Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Tiago Madeira

Geração uniforme de k-trees para aprendizado de redes bayesianas

Supervisor: Prof. Dr. Denis Deratani Mauá

São Paulo Novembro de 2016

Resumo

O resumo ainda não foi escrito.

 ${\bf Palavras\text{-}chave:}\ {\rm sem},\ {\rm resumo},\ {\rm por},\ {\rm enquanto}.$

Abstract

The abstract has not been written yet.

 ${\bf Keywords:}\ {\bf no,\ abstract,\ yet.}$

Sumário

1	Intr	odução 1
	1.1	Código desenvolvido
	1.2	Organização da monografia
2	Fun	damentos 5
	2.1	Grafos
		2.1.1 <i>k-trees</i>
	2.2	Probabilidade
		2.2.1 Redes bayesianas
3	Ger	ação aleatória de k - $trees$ 15
	3.1	Codificando árvores e k -trees
	3.2	A solução de Caminiti et al
		3.2.1 Codificação
		3.2.2 Decodificação
	3.3	Geração uniforme
	3.4	Utilitários
		3.4.1 code-ktree
		3.4.2 decode-ktree
		3.4.3 generate-ktree

vi SUM	ÁRIO
--------	------

	3.5	Testes,	experimentos e resultados	29
		3.5.1	Testes unitários e cobertura	29
		3.5.2	Experimentos e resultados	31
4	Apr	endiza	do de redes bayesianas	33
	4.1	Motiva	ıção	33
	4.2	Aprend	dizado por amostra de k -trees	35
	4.3	Resulta	ados obtidos	35
5	Con	aluaão		97
O	COL	ıclusão		31

Capítulo 1

Introdução

Em teoria dos grafos, k-trees são consideradas uma generalização de árvores. Há interesse considerável em desenvolver ferramentas eficientes para manipular essa classe de grafos, porque todo grafo com $treewidth\ k$ é um subgrafo de uma k-tree e muitos problemas NP-completos podem ser resolvidos em tempo polinomial quando restritos a grafos com treewidth limitada.

Com efeito, o artigo de Arnborg e Proskurowski [1] apresenta algoritmos para resolver em tempo linear problemas como, dado um grafo com *treewidth* limitada:

- Encontrar o tamanho máximo dos seus conjuntos independentes;
- Computar o tamanho mínimo dos seus conjuntos dominantes;
- Calcular seu número cromático; e
- Determinar se ele tem um ciclo hamiltoniano.

O problema que desperta nosso interesse em k-trees é a inferência em redes bayesianas.

Uma rede bayesiana é um modelo probabilístico em grafo usado para raciocinar e tomar decisões em situações com incerteza através de técnicas de inteligência artificial e aprendizagem computacional. Ela representa uma distribuição de probabilidade multivariada num DAG (grafo acíclico dirigido) no qual os vértices correspondem às variáveis aleatórias do domínio e as arestas correspondem, intuitivamente, a influência de uma variável sobre outra.

Segundo Koller e Friedman [8], a inferência em redes bayesianas em geral é NP-difícil; porém, se seu DAG possui treewidth limitado, a inferência pode ser realizada em tempo polinomial. Daí a importância de aprender redes bayesianas que tenham treewidth limitada.

A partir dessa motivação, este trabalho de conclusão de curso consistiu em estudar os conceitos de teoria dos grafos relacionados a k-trees e implementar um algoritmo para gerar k-trees de forma uniforme que possam ser usadas no aprendizado de redes bayesianas.

1.1 Código desenvolvido

As implementações deste trabalho foram realizadas na linguagem Go^1 . Go é uma linguagem de código aberto criada em 2007. Ela é compilada e usa tipagem estática como o C, mas por ser uma linguagem muito nova tem garbage collection e recursos para programação concorrente.

Escolhemos Go porque ela tem boa performance e é agradável de usar. Tem sistemas de pacotes (go get), testes (go test) e documentação ($Go-Doc^2$) padronizados facilitando que os códigos sejam testados e reutilizados. Produz código limpo e padronizado (identação, espaçamento e outros detalhes de estilo são automatizados pela ferramenta gofmt que vem com ela).

¹ The Go Programming Language: https://golang.org/

² GoDoc: https://godoc.org/

Todo o código desenvolvido neste trabalho está num repositório público no $GitHub^3$ cujo endereço é https://github.com/tmadeira/tcc/.

A documentação de todas as estruturas e funções declaradas no código está disponível em https://godoc.org/github.com/tmadeira/tcc.

Para baixar o código, rodar os testes e instalar os utilitários, recomenda-se usar as ferramentas da linguagem Go:

```
1  $ export ${GOPATH:=$HOME/go}
2  $ mkdir -p $GOPATH
3  $ go get github.com/tmadeira/tcc/...
4  $ go test -v github.com/tmadeira/tcc/...
5  $ go install github.com/tmadeira/tcc/examples/...
```

1.2 Organização da monografia

No capítulo 2, apresentamos definições fundamentais de teoria dos grafos, teoria da probabilidade e redes bayesianas que o leitor deve conhecer para compreender o trabalho.

No capítulo 3, apresentamos o problema de codificar k-trees, discutimos os algoritmos lineares para codificar e decodificar k-trees propostos no artigo "Bijective Linear Time Coding and Decoding for k-Trees" [4], explicamos como eles foram implementados neste trabalho para gerar k-trees aleatórias uniformemente e apresentamos o resultado que obtivemos através de experimentos.

No pequeno capítulo 4, explicamos como as k-trees que geramos no capítulo 3 podem ser usadas para aprender redes bayesianas a partir do arcabouço desenvolvido no artigo "Advances in Learning Bayesian Networks of Bounded Treewidth" [11].

³ GitHub: https://github.com/

Capítulo 2

Fundamentos

Neste capítulo, apresentamos definições fundamentais de teoria dos grafos, teoria da probabilidade e redes bayesianas que o leitor deve conhecer para compreender o trabalho.

Outras definições mais específicas, como as utilizadas para construir o algoritmo para codificar e decodificar k-trees, estão localizadas nos capítulos subsequentes.

Partimos do pressuposto de que o leitor conhece notações básicas de conjuntos.

2.1 Grafos

Nesta seção apresentamos de forma breve apenas os conceitos de teoria dos grafos necessários para a compreensão deste trabalho. Mais detalhes podem ser encontrados no livro de Bondy e Murty [3], que foi utilizado como referência.

Definição 1 (grafo). Um **grafo** é um par ordenado G = (V, E). Os elementos de V são chamados de **vértices** de G. Os elementos de E são chamados

de **arestas** de G e consistem em pares (não-ordenados) de vértices distintos¹. Dados $u, v \in V$, se $(u, v) \in E$ dizemos que u e v são **adjacentes** em G.

A figura 2.1(a) mostra como costuma ser representado um grafo. Os vértices são representados pelos círculos e as arestas são representadas pela ligação entre eles. Se $(u, v) \in E$, há uma linha ligando os vértices u e v.

Dado um grafo G=(V,E), o número de arestas que incide num determinado vértice $v\in V$ é chamado de **grau** do vértice v.

Há diferentes estruturas de dados que podem ser usadas para representar um grafo na memória do computador. Uma das mais comuns, que usamos nas implementações deste trabalho, é a **lista de adjacência**. Suponha, sem perda de generalidade, que os vértices de um grafo G sejam representados por inteiros de 0 a |V|-1. Então, a representação desse grafo consiste em um vetor de listas Adj. A lista Adj[i] contém os vértices adjacentes ao vértice de rótulo i (para todo $i \in [0, |V|)$).

Definição 2 (grafo dirigido). Um grafo G = (V, E) é dito **dirigido** se E consiste em pares *ordenados* de vértices. Se $(a, b) \in E$, dizemos que a aponta para b, que há uma aresta de a para b ou que b é filho de a.

A figura 2.1(b) mostra como costuma ser representado um grafo dirigido. Como o conjunto de arestas consiste em pares ordenados, elas são representadas por setas. Se $(u, v) \in E$, então a seta aponta de u para v.

Definição 3 (grafo completo). Um grafo G = (V, E) é dito **completo** se $(u, v) \in E$ para todo $u, v \in V, u \neq v$. Um grafo completo com n vértices é geralmente denotado K_n .

Na figura 2.1(c), a representação de um grafo completo com 4 vértices.

 $^{^1}$ A rigor, por causa da palavra "distintos", essa é a definição do que a literatura costuma chamar de *grafo simples*. Tal definição é utilizada porque neste trabalho não temos interesse em grafos que possuam arestas (u,v) com u=v.

2.1. GRAFOS 7

Figura 2.1: (a) Representação do grafo $G = (V_G, E_G)$ com $V_G = \{1, 2, 3, 4\}$ e $E_G = \{(1, 3), (1, 4), (2, 3), (3, 4)\}$. (b) Representação do grafo dirigido $D = (V_D, E_D)$ com $V_D = \{1, 2, 3, 4\}$ e $E_D = \{(1, 3), (1, 4), (2, 3)\}$. (c) Representação do K_4 , o grafo completo com 4 vértices.

Definição 4 (subgrafo). Um grafo $F = (V_F, E_F)$ é chamado de **subgrafo** de $G = (V_G, E_G)$ se $V_F \subseteq V_G$ e $E_F \subseteq E_G$.

Definição 5 (subgrafo induzido). Dado um grafo G = (V, E) e um subconjunto V' de V, o subgrafo de G induzido por V', G' = (V', E'), é o grafo formado pelos vértices $V' \subseteq V$ e arestas que só contém elementos de V', ou seja, $E' = \{(u, v) \in E \mid u, v \in V'\}$.

Definição 6 (k-clique). Seja G = (V, E) um grafo. Um k-clique (também chamado de clique de tamanho k) é um subconjunto dos vértices, $C \subseteq V$, tal que $(u, v) \in E \ \forall \ u, v \in C, u \neq v$ (ou seja, tal que o subgrafo induzido por C é completo).

Definição 7 (caminho). Dado um grafo G = (V, E), um **caminho** em G é um subgrafo de G cujos vértices podem ser arranjados numa sequência linear de forma que dois vértices são adjacentes se eles são consecutivos na sequência e não-adjacentes caso contrário. Se $u, v \in V$ pertencem a um caminho P, dizemos que eles estão conectados pelo caminho P.

Definição 8 (distância). Dado um grafo G = (V, E) e dois vértices $(u, v) \in V$, a **distância** entre u e v é o número de arestas num menor caminho que os conecte.

Definição 9 (ciclo). Dado um grafo G = (V, E), um **ciclo** em G é um caminho formado por vértices $x_1, \dots, x_k \in V$ onde $x_1 = x_k$.

Definição 10 (DAG). Um grafo G = (V, E) é chamado de **DAG** (do inglês directed acyclic graph: grafo dirigido acíclico) se ele é dirigido e não possui ciclos.

Dizemos que um ciclo tem uma **corda** se dois vértices no ciclo são conectados por uma aresta que não está no ciclo. Um **grafo cordal** é um grafo no qual todos os ciclos com pelo menos 4 vértices têm uma corda. Qualquer grafo pode ser transformado num grafo cordal adicionando-se arestas num processo chamado de **cordalização**.

O grafo moral de um DAG G=(V,E) é um grafo não-dirigido obtido conectando-se todo par de vértices com um filho em comum e retirando a direção das arestas.

Definição 11 (*treewidth*). [11] Dado um grafo G = (V, E), seu *treewidth* é um inteiro definido da seguinte forma:

- \bullet Se G é um grafo cordal, então seu treewidth é o tamanho do seu maior clique menos 1.
- Se G é um grafo não-dirigido arbitrário, então seu treewidth é o mínimo entre os treewidth de todas as suas cordalizações.
- \bullet Se G é um DAG, então seu treewidth é o treewidth do seu grafo moral.

Definição 12 (árvore). Dado um grafo G = (V, E), dizemos que ele é uma **árvore** se cada dois vértices $u, v \in V$ são conectados por exatamente um caminho.

2.1. GRAFOS 9

Figura 2.2: (a) Uma 1-tree (ou seja, uma árvore comum) com 4 vértices. (b) Uma 2-tree com 5 vértices. (c) Uma 3-tree com 5 vértices.

Dada uma árvore T=(V,E), os vértices em V que tem grau 1 são chamados de **folhas**.

Dada uma árvore T=(V,E), às vezes é conveniente destacar um vértice $r \in V$ e chamá-lo de **raiz** da árvore T. Chamamos o par formado pela árvore T e pela raiz $r \in V$ de **árvore enraizada**.

2.1.1 *k*-*trees*

Definição 13 (k-tree). [7] Uma k-tree é definida da seguinte forma recursiva:

- 1. Um grafo completo com k vértices é uma k-tree.
- 2. Se $T_k'=(V,E)$ é uma k-tree, $K\subseteq V$ é um k-clique e $v\not\in V$, então $T_k=(V\cup\{v\},E\cup\{(v,x)\mid x\in K\})$ é uma k-tree.

Na figura 2.2(a), um exemplo de k-tree com k = 1 (ou seja, uma árvore comum) e n = 4 vértices rotulados com inteiros em [1, 4]; na figura 2.2(b), um exemplo de k-tree com k = 2 e n = 5 vértices rotulados com inteiros em [1, 5]; na figura 2.2(c), um exemplo de k-tree com k = 3 e n = 5 vértices rotulados em [1, 5].

Figura 2.3: (a) Uma 3-tree T_3 com 11 vértices. (b) A mesma 3-tree (T_3) enraizada no 3-clique $\{2,3,9\}$.

Definição 14 (k-tree enraizada). [4] Uma k-tree enraizada é uma k-tree com um k-clique destacado $R = \{r_1, r_2, \dots, r_k\}$ que é chamado de raiz da k-tree enraizada.

Na figura 2.3(a), um exemplo de uma k-tree com k=3 e n=11 vértices rotulados com inteiros em [1, 11]. Na figura 2.3(b), a mesma k-tree, dessa vez enraizada no 3-clique $R=\{2,3,9\}$.

Definição 15 (partial k-tree). [2] Um subgrafo de uma k-tree é chamado de partial k-tree. Um grafo é uma partial k-tree se e só se ele tem treewidth menor ou igual a k.

2.2 Probabilidade

Nesta seção apresentamos de forma sintética alguns conceitos de teoria da probabilidade necessários para a compreensão deste trabalho. Mais detalhes podem ser encontrados no livro de Koller e Friedman [8], que foi utilizado

como referência.

Um **experimento aleatório** é um fenômeno que possui resultado imprevisível. Por exemplo, o lançamento de um dado de seis faces é um experimento aleatório.

O espaço amostral de um experimento aleatório, geralmente denotado Ω , é o conjunto de todos os resultados possíveis do experimento. Por exemplo, o espaço amostral do lançamento de um dado de seis faces é $\{1, 2, 3, 4, 5, 6\}$.

Chamamos de **eventos** os subconjuntos de um espaço amostral para os quais pretendemos atribuir probabilidades. Por exemplo, no lançamento de um dado de seis faces o evento $\{6\}$ corresponde ao caso em que o lançamento resulta em 6 e o evento $\{1,2\}$ corresponde ao caso em que o lançamento resulta em 1 ou 2.

A teoria da probabilidade requer que o espaço dos eventos $S\subseteq\Omega$ satisfaça três propriedades:

- Deve conter o evento vazio \emptyset e o evento trivial Ω .
- Se $\alpha, \beta \in S$, então $\alpha \cup \beta \in S$.
- Se $\alpha \in S$, então $\Omega \setminus \alpha \in S$.

O requisito de que o espaço dos eventos é fechado sob a união e o complemento implica que ele também seja fechado sob outras operações booleanas como interseção e diferença.

Definição 16 (distribuição de probabilidade). Seja Ω um espaço amostral e S o espaço dos eventos. Uma distribuição de probabilidade P sobre (Ω, S) é um mapeamento dos eventos em S para valores reais que satisfaz as seguintes condições:

- Probabilidades são não-negativas, ou seja, $P(\alpha) \ge 0$ para todo $\alpha \in S$.
- O evento trivial tem a maior probabilidade possível, ou seja, $P(\Omega) = 1$.
- A probabilidade de que um de dois eventos disjuntos ocorra é a soma das probabilidades de cada evento, ou seja, se $\alpha, \beta \in S$ e $\alpha \cup \beta = \emptyset$, então $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$.

Essas condições implicam em outras. Em particular, vale destacar que $P(\emptyset) = 0$ e $P(\alpha \cup \beta) = P(\alpha) + P(\beta) - P(\alpha \cap \beta)$.

Definição 17 (probabilidade condicional). Seja P uma distribuição de probabilidade sobre (Ω, S) e sejam $\alpha, \beta \in S$. A probabilidade condicional de β dado α , $P(\beta|\alpha)$, é definida como:

$$P(\beta|\alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$$

Duas consequências da definição da probabilidade condicional são as fórmulas que chamamos de **regra da cadeia** e **regra de Bayes**:

Regra da Cadeia. Se $\alpha_1, \dots, \alpha_k \in S$, então

$$P(\alpha_1 \cap \cdots \cap \alpha_k) = P(\alpha_1)P(\alpha_2|\alpha_1)\cdots P(\alpha_k|\alpha_1 \cap \cdots \cap \alpha_{k-1})$$

Regra de Bayes. Se $\alpha, \beta \in S$, então

$$P(\alpha|\beta) = \frac{P(\beta|\alpha)P(\alpha)}{P(\beta)}$$

Uma variável aleatória é uma função que associa a cada elemento em Ω um valor. Por exemplo, no caso do lançamento de um dado de seis faces, podemos definir uma variável aleatória $f_{\text{Resultado}}(\omega)$ para $\omega \in \Omega$ que vale

"bom" se o resultado do lançamento é 6 ou "ruim" caso contrário. Nesse caso, podemos representar $P(\{1,2,3,4,5\})$ pela notação P(Resultado = "ruim"), que equivale a $P(\{\omega \in \Omega : f_{\text{Resultado}}(\omega) = \text{"ruim"}\})$.

Muitas vezes a notação P(X=x) é redundante, porque x é um valor que só faz sentido como imagem de X. Nesses casos, é comum usar a abreviação P(x). Além disso, no lugar de $P((X=x) \cap (Y=y))$ é comum escrever P(X=x,Y=y) ou simplesmente P(x,y).

2.2.1 Redes bayesianas

Redes bayesianas são modelos probabilísticos gráficos que representam distribuições de probabilidade conjunta e são usados para raciocinar em situações com incerteza. Formalmente:

Definição 18 (rede bayesiana). [11] Seja $N = \{1, \dots, n\}$ e seja $X = \{X_i : i \in N\}$ um conjunto de variáveis aleatórias X_i tomando valores em conjuntos finitos \mathcal{X}_i . Uma rede bayesiana é uma tripla (X, G, θ) , onde G = (V, E) é um DAG (que chamamos de estrutura da rede bayesiana) cujos vértices correspondem a variáveis em X e $\theta = \{\theta_i(x_i, x_{\pi_i})\}$ é um conjunto de parâmetros numéricos especificando valores de probabilidade condicional $\theta_i(x_i, x_{\pi_i}) = P(x_i|x_{\pi_i})$ para todo vértice $i \in V$, valor $x_i \in X_i$ e atribuição x_{π_i} para os pais π_i de X_i (em G).

Redes bayesianas são geralmente usadas para fazer inferências como computar a probabilidade de alguma variável depois que alguma evidência é observada. Por exemplo, uma rede bayesiana pode representar as relações de probabilidade entre doenças e sintomas. Observados alguns sintomas, a rede pode ser usada para computar a probabilidade da presença das doenças.

No capítulo 4, discutimos o problema de aprender estruturas de redes

bayesianas a partir de dados.

Capítulo 3

Geração aleatória de k-trees

O problema de gerar k-trees está intimamente relacionado ao problema de codificá-las e decodificá-las. De fato, se há uma codificação bijetiva que associa k-trees a strings, basta gerar strings aleatórias para gerar k-trees aleatórias.

Neste capítulo, apresentamos o problema de codificar k-trees, discutimos a solução linear para codificar e decodificar k-trees de forma bijetiva proposta por Caminiti et al. [4], explicamos como ela foi implementada neste trabalho para gerar k-trees aleatórias e mostramos os resultados obtidos.

3.1 Codificando árvores e k-trees

O problema de codificar árvores já foi amplamente estudado na literatura. Como destaca Caminiti *et al.* [4]:

Codificar árvores rotuladas por meio de *strings* de rótulos de vértices é uma alternativa interessante à representação usual de estruturas de dados de árvore na memória e tem muitas aplicações práticas (por exemplo, algoritmos evolucionários sobre árvores, geração aleatória de árvores, compressão de dados e computação

Figura 3.1: A árvore rotulada equivalente ao código de Prüfer {4, 4, 4, 5}.

do volume de floresta de grafos). Diversos códigos bijetivos diferentes que realizam associações entre árvores rotuladas e *strings* de rótulos foram introduzidas. De um ponto de vista algorítmico, o problema foi cuidadosamente investigado e algoritmos ótimos de codificação e decodificação desses códigos são conhecidos.

Em 1889, Cayley [5] demonstrou que para um conjunto de n vértices distintos existem n^{n-2} árvores possíveis. Desde lá, foram criados vários códigos para associar strings e árvores.

Um dos mais conhecidos é o código de Prüfer [12], que surgiu em 1918 e é bijetivo, associando cada árvore (rotulada) de n vértices a uma lista distinta de comprimento n-2 no alfabeto dos rótulos da árvore.

Codificar uma árvore usando o código de Prüfer é trivial: basta remover iterativamente as folhas da árvore até que apenas dois vértices sobrem, escolhendo sempre a folha de memor rótulo. Quando uma folha é removida, adiciona-se ao código o rótulo do seu vizinho.

A figura 3.1 exemplifica a codificação de Prüfer mostrando uma árvore cujo o código resultante do algoritmo é $\{4,4,4,5\}$.

k-trees [7] são consideradas uma generalização de árvores. Há interesse

considerável em desenvolver ferramentas eficientes para manipular essa classe de grafos, porque todo grafo com $treewidth\ k$ é um subgrafo de uma k-tree e muitos problemas NP-completos podem ser resolvidos em tempo polinomial quando restritos a grafos com treewidth limitada, como destacado no capítulo 1 deste trabalho.

Há estudos sobre a codificação de k-trees há pelo menos quatro décadas. Em 1970, Rényi e Renýi apresentaram uma codificação redundante (ou seja, não bijetiva) para um subconjunto de k-trees rotuladas que chamamos de k-trees de Rényi e que são definidas como segue:

Definição 19 (k-tree de Rényi). [13] Uma k-tree de Rényi R_k é uma k-tree enraizada com n vértices rotulados em [1, n] e raiz $R = \{n - k + 1, n - k + 2, \dots, n\}$.

Entretanto, até onde sabemos, apenas em 2008 surgiu um código bijetivo para k-trees com algoritmos lineares de codificação e decodificação. Foram esses algoritmos, propostos por Caminiti $et\ al.\ [4]$, que implementamos neste trabalho.

3.2 A solução de Caminiti et al.

O artigo "Bijective Linear Time Coding and Decoding for k-Trees" [4] apresenta um código bijetivo para k-trees rotuladas, juntamente a algoritmos lineares para realizar a codificação e a decodificação.

O código é formado por uma permutação de tamanho k e uma generalização do Dandelion Code [14], que consiste em n-k-2 pares (onde né o número de vértices) definidos no conjunto $\{(0,\varepsilon)\} \cup ([1,n-k]\times[1,k])$. Portanto, dizemos que a codificação das k-trees associa elementos em \mathcal{T}_k^n (conjunto das k-trees com n vértices) com elementos em:

$$\mathcal{A}_k^n = \binom{[1,n]}{k} \times (\{(0,\varepsilon)\} \cup ([1,n-k] \times [1,k]))^{n-k-2}$$

Caminiti et al. [4] mostra que a estrutura dessas strings que o Dandelion Code gera é essencial para garantir a bijetividade.

Os algoritmos consistem em uma série de transformações. Para compreendê-los, é necessário definir esqueleto de uma k-tree enraizada e árvore característica:

Definição 20 (esqueleto de uma k-tree enraizada). [4] O esqueleto de uma k-tree enraizada T_k com raiz R, denotado por $S(T_k, R)$, é definido da seguinte forma recursiva:

- 1. Se T_k é apenas o k-clique R, seu esqueleto é uma árvore com um único vértice R.
- 2. Dada uma k-tree enraizada T_k com raiz R, obtida por T'_k enraizada em R através da adição de um novo vértice v conectado a um k-clique K (ver definição 13), seu esqueleto $S(T_k, R)$ é obtido adicionando a $S(T'_k, R)$ um novo vértice $X = \{v\} \cup K$ e uma nova aresta (X, Y), onde Y é o vértice de $S(T'_k, R)$ que contém K com uma distância mínima da raiz. Chamamos Y de pai de X.

Definição 21 (árvore característica). [4] A árvore característica $T(T_k, R)$ de uma k-tree enraizada T_k com raiz R é obtida rotulando os vértices e arestas de $S(T_k, R)$ da seguinte forma:

1. O vértice R é rotulado 0 e cada vértice $\{v\} \cup K$ é rotulado v;

Figura 3.2: (a) Uma 3-tree de Rényi R_3 com 11 vértices e raiz $\{9, 10, 11\}$. (b) O esqueleto de R_3 . (c) A árvore característica de R_3 .

2. Cada aresta do vértice $\{v\} \cup K$ ao seu pai $\{v'\} \cup K'$ é rotulada com o índice do vértice em K' (visualizando-o como um conjunto ordenado) que não aparece em K. Quando o pai é R a aresta é rotulada ε .

Note que a existência de um único vértice em $K' \setminus K$ é garantida pela definição 20. De fato, v' precisa aparecer em K, caso contrário K' = K e o pai de $\{v'\} \cup K'$ contém K. Isso contradiz o fato de que cada vértice em $S(T_k, R)$ é ligado à distância mínima da raiz.

A figura 3.2 mostra uma k-tree de Rényi com 11 vértices, seu esqueleto e sua árvore característica. O Dandelion Code generalizado correspondente a essa árvore é $[(0,\varepsilon),(2,0),(8,2),(8,1),(1,2),(5,2)]$. A forma como codificamos e decodificamos árvores características usando esse código será vista a seguir, nos algoritmos de codificação e decodificação.

3.2.1 Codificação

O algoritmo para codificar uma k-tree rotulada consiste em cinco passos e tem complexidade O(nk). Aqui apresentamos esse algoritmo indicando onde

CAPÍTULO 3. GERAÇÃO ALEATÓRIA DE K-TREES

cada um dos passos pode ser encontrado na nossa implementação.

ALGORITMO DE CODIFICAÇÃO

20

Entrada: uma k-tree T_k com n vértices

Saída: um código (Q, S) em \mathcal{A}_k^n

1. Identificar Q, o k-clique adjacente à folha de maior rótulo l_M de T_k ;

2. Através de um processo de re-rotulação ϕ (computado a partir de Q e detalhado a seguir), transformar T_k numa k-tree de Rényi R_k ;

3. Gerar a árvore característica T para R_k ;

4. Computar o Dandelion Code generalizado S para T;

5. Remover da string obtida S o par correspondente a $\phi(l_M)$.

O algoritmo retorna o par (Q, S) computado durante esse processo.

Na nossa implementação, uma k-tree (estrutura definida no pacote ktree) é representada através de uma lista de adjacências (Adj) e um inteiro k (K).

O algoritmo de codificação é implementado pela função CodingAlgorithm do pacote codec. A seguir, detalhamos os cinco passos.

Passo 1. Primeiramente precisamos encontrar l_M , a folha de T_k com maior rótulo. Uma folha em uma k-tree consiste em um vértice de grau k, portanto basta iterar na lista de adjacências em ordem decrescente nos rótulos até encontrar um vértice com grau k. Isso foi implementado na função FindLm, localizada no pacote ktree.

Encontrado l_M , atribuímos a Q a lista $Adj[l_M]$ (ver função GetQ do pacote ktree).

3.2. A SOLUÇÃO DE CAMINITI ET AL.

21

Figura 3.3: Representação gráfica da função ϕ computada para a 3-tree mostrada na figura 2.3.

Passo 2. Queremos transformar T_k numa k-tree de Rényi enraizada em Q. Para isso, precisamos definir uma permutação que associe os vértices de Q a $\{n-k+1, n-k+2, \cdots, n\}$. A função de permutação, que chamamos de ϕ , é definida da seguinte forma:

- 1. Se q_i é o *i*-ésimo menor vértice em Q, fazemos $\phi(q_i) = n k + i$;
- 2. Para cada $q \notin Q \cup \{n-k+1, \cdots, n\}$, fazemos $\phi(q) = q$;
- 3. O restante dos valores são usados para fechar os ciclos de permutação, ou seja, para cada $q \in \{n-k+1, \cdots, n\} \setminus Q$, fazemos $\phi(q) = i$ tal que $\phi^j(i) = q$ e j é maximizado.

Essa computação é implementada pela função ComputePhi no pacote ktree.

Usamos a função ϕ para re-rotular os vértices de T_k , obtendo a k-tree de Rényi R_k . A implementação desse processo foi realizada na função Relabel do pacote ktree.

A figura 3.3 mostra uma representação gráfica da função ϕ usada para re-rotular a 3-tree mostrada na figura 2.3 com $Q = \{2, 3, 9\}$ produzindo a k-tree de Rényi mostrada na figura 3.2(a).

Passo 3. As definições 20 e 21 sugerem algoritmos triviais para gerar a árvore característica T para a k-tree de Rényi R_k obtida no passo anterior por meio do seu esqueleto (o processo visto na figura 3.2).

Para garantir tempo linear, no entanto, o artigo de Caminiti *et al.* [4] sugere evitar a construção explícita do esqueleto $S(R_k)$ e construir os conjuntos de vértices e arestas de T separadamente.

Para computar o conjunto de vértices, identifica-se cliques maximais em R_k através da poda sucessiva das k-folhas de R_k . Esse processo pode ser visto na função pruneRk do pacote characteristic. Para cada vértice v podado, essa função guarda uma lista $K_v \subseteq Adj(v)$ dos exatamente k vértices adjacentes a v que ainda não foram podados.

Ao fim desse processo, que tem complexidade O(nk), a k-tree de Rényi é reduzida apenas à sua raiz $R = \{n - k + 1, \dots, n\}$.

A partir das listas K_i ($i \in V$) e da ordem em que os vértices foram podados, constrói-se o conjunto das arestas num processo de complexidade O(nk) detalhado no programa 7 do artigo [4] cuja implementação encontra-se na função addEdges do pacote characteristic.

Na nossa implementação, as arestas são representadas por duas listas (vetores), p(v) e l(v). Elas indicam para cada $v \in V(T)$, respectivamente, o pai de v na árvore e o rótulo da aresta (p(v), v).

Passo 4. A ideia do Dandelion Code é enraizar a árvore T no vértice 0 e transformá-la para garantir a existência da aresta (0, x). Por meio dessa transformação, o vetor de pais da árvore (transformada) vai conter duas informações inúteis (os pais de 0 e x), cuja eliminação leva a uma representação da árvore com n-2 rótulos.

Escolhemos $x = \phi(\bar{q})$ onde $\bar{q} = min\{v \notin Q\}$ e, enquanto $p(x) \neq 0$, fazemos sucessivas trocas $p(x) \leftrightarrow p(w)$, $l(x) \leftrightarrow l(w)$ escolhendo w como o vértice de maior rótulo no caminho entre 0 e x.

A implementação desse processo pode ser vista na função Code do pacote dandelion.

3.2. A SOLUÇÃO DE CAMINITI ET AL.

23

Ao final, o código S é dado por uma lista ordenada de pares $(p(v), l(v)) \ \forall v \in V(T) \setminus \{0, x\}.$

Passo 5. Como l_M foi escolhida como a folha de maior rótulo adjacente a Q, ela não é \bar{q} (porque $\bar{q} = min\{v \notin Q\}$ e $n \ge k + 2$). A prova formal desse fato pode ser encontrada no Lema 1 do artigo [4]. Além disso, $\phi(l_M)$ não estava no caminho de 0 a $x = \phi(\bar{q})$ em T (porque é uma folha).

Como l_M é adjacente a Q, $\phi(l_M)$ é adjacente a 0. Portanto $(p(\phi l_M), l(\phi l_M)) = (0, \varepsilon)$ pode ser removido da lista S de forma que o tamanho do código passe a ser n - k - 2. Isso é crucial para o código ser bijetivo.

O algoritmo retorna o par (Q, S).

3.2.2 Decodificação

O algoritmo para decodificar um par $(Q, S) \in \mathcal{A}_k^n$ em uma k-tree rotulada T_k com n vértices consiste numa sequência de transformações inversas às transformações usadas no algoritmo de codificação. Aqui apresentamos esse algoritmo, de complexidade O(nk), indicando onde cada um dos passos pode ser encontrado na nossa implementação.

ALGORITMO DE DECODIFICAÇÃO

Entrada: um código (Q, S) em \mathcal{A}_k^n

Saída: uma k-tree T_k com n vértices

- 1. Computar ϕ , \bar{q} , $x \in l_M$ (definidos como no algoritmo de codificação);
- 2. Inserir o par $(0, \varepsilon)$ correspondente a l_M em S e decodificar S para obter a árvore característica T;
- 3. Reconstruir a k-tree de Rényi R_k a partir de T;
- 4. Aplicar ϕ^{-1} a R_k para obter T_k .

O algoritmo de decodificação é implementado pela função DecodingAlgorithm do pacote codec. A seguir, detalhamos os quatro passos.

- Passo 1. Para computar ϕ , \bar{q} , x e l_M , os procedimentos são exatamente os mesmos usados no algoritmo de codificação.
- Passo 2. Como já computamos ϕ e l_M no passo anterior, inserimos o par $(0, \varepsilon)$ na posição $\phi(l_M)$ do vetor S.

O procedimento para decodificar o *Dandelion Code* numa árvore característica, implementado na função Decode do pacote dandelion, consiste em:

- 1. Construir o grafo a partir do código S, gerando vetores p (de pais) e l (de rótulos das arestas (p(v), v));
- 2. Identificar todos os ciclos do grafo e guardar num vetor m, para cada ciclo, o vértice com maior rótulo;
- 3. Ordenar o vetor m em ordem crescente e iterar nele fazendo trocas $p(x) \leftrightarrow p(m_i), l(x) \leftrightarrow l(m_i)$ (para $i = 1, \dots, |m|$).

A árvore característica T é dada pelo par (p, l) resultante desse processo.

Passo 3. A reconstrução da k-tree de Rényi R_k a partir de T foi implementada na função RenyiKtreeFrom do pacote characteristic.

O processo consiste em inicializar R_k com o k-clique $\{n-k+1, \dots, n\}$ e percorrer T na ordem da busca em largura (a partir dos filhos do vértice de rótulo 0) para inserir vértices em R_k .

O programa 8 do artigo de Caminiti et al. [4] detalha esse passo.

Passo 4. Para transformar a k-tree de Rényi R_k na k-tree rotulada T_k , basta aplicar o inverso da permutação ϕ . Esse processo foi implementado na função TkFrom do pacote ktree.

3.3 Geração uniforme

Como comentamos no início deste capítulo, se temos uma codificação bijetiva que associa k-trees a strings, basta gerar strings aleatórias para gerar k-trees aleatórias.

Para gerar k-trees aleatórias de forma uniforme, usamos o código de Caminiti et al. [4] e o algoritmo linear para decodificar uma string em uma k-tree rotulada que apresentamos na seção 3.2.

As strings que estamos interessados em gerar são elementos do conjunto:

$$\mathcal{A}_k^n = \binom{[1,n]}{k} \times (\{(0,\varepsilon)\} \cup ([1,n-k] \times [1,k]))^{n-k-2}$$

A função que implementamos para gerar tais *strings* é randomCode, que recebe n e k como parâmetros e pertence ao pacote generator.

Primeiramente, ela sorteia Q em $\binom{[1,n]}{k}$ (e inicializa um $Dandelion\ Code$ vazio):

Depois, ela gera S sorteando n-k-2 pares em $\{(0,\varepsilon)\}\cup([1,n-k]\times[1,k])$. Para gerar um par nesse intervalo de forma uniforme, gera-se um inteiro r no intervalo [0,(n-k)k+1). Se r=0, então o par é $(0,\varepsilon)$. Caso contrário, o par é dado por $(1+\frac{r-1}{k},(r-1)\mod k)$:

```
for i := 0; i < n-k-2; i++ {
 1
 2
        r := rand.Intn((n-k)*k + 1)
 3
        if r == 0 {
          C.S.P[i] = 0
 4
          C.S.L[i] = characteristic.E
5
 6
        } else {
 7
          C.S.P[i] = 1 + r/k
 8
          C.S.L[i] = r % k
9
10
        }
11
```

Decodificamos o código usando o algoritmo de decodificação apresentado na seção 3.2 para transformar essa string $(Q, S) \in \mathcal{A}_k^n$ em uma k-tree rotulada.

3.4 Utilitários

Para exemplificar como se usa a biblioteca desenvolvida nas seções anteriores, foram desenvolvidos três utilitários que se encontram no pacote examples: code-ktree, decode-ktree e generate-ktree.

Eles permitem codificar/decodificar k-trees e gerar k-trees aleatórias.

3.4.1 code-ktree

O utilitário code-ktree serve para codificar k-trees usando o algoritmo da subseção 3.2.1. Sua entrada deve ser dada no formato¹:

¹A leitura da entrada despreza espaços e quebras de linha.

27

```
4 ...
5 x_m y_m
```

Onde:

- n é o número de vértices;
- $k \notin o$ parâmetro k da k-tree;
- m é o número de arestas;
- x_i y_i corresponde à *i*-ésima aresta $(0 \le x_i, y_i < n)$.

Um exemplo de entrada equivalente à k-tree da figura 2.3(a) é:

```
      1
      11
      3

      2
      27

      3
      0
      1
      0
      4
      0
      6
      0
      7

      4
      1
      2
      1
      4
      1
      5
      1
      7
      1
      8
      1
      9
      1
      10

      5
      2
      3
      2
      4
      2
      7
      2
      8
      2
      9
      2
      10

      6
      3
      8
      3
      10
      4
      6

      7
      4
      7
      8

      9
      6
      7

      10
      7
      8

      11
      8
      9
      8
      10
```

A saída desse utilitário é um par (Q, S) no formato de entrada esperado pelo utilitário decode-ktree, que será descrito a seguir.

3.4.2 decode-ktree

O utilitário decode-ktree serve para decodificar um código (Q, S) numa k-tree usando o algoritmo da subseção 3.2.2. Sua entrada deve ser dada no formato:

```
1 | k
2 | Q_1
3 | ...
4 | Q_k
5 | s
6 | p_1 1_1
7 | ...
8 | p_s 1_s
```

Onde:

- $k \notin o tamanho de Q$;
- Q_i corresponde ao i-ésimo valor em Q;
- s é o tamanho do Generalized Dandelion Code, |S|;
- \bullet p_i l_i corresponde ao i-ésimo valor em S.

Um exemplo de entrada equivalente ao código gerado pela k-tree da figura 2.3(a) é:

```
1 | 3 | 2 | 8 | 2 | 8 | 3 | 6 | 6 | 8 | 2 | 7 | 8 | 1 | 2 | 9 | 5 | 2 |
```

A saída desse utilitário é uma k-tree no formato de entrada esperado pelo utilitário code-ktree.

3.4.3 generate-ktree

O utilitário generate-ktree serve para gerar uma k-tree aleatória usando o algoritmo desenvolvido na seção 3.3.

Sua entrada deve ser dada no formato:

$$1 \parallel$$
n k

Sua saída é uma k-tree com n vértices no formato de entrada esperado pelo utilitário code-ktree.

3.5 Testes, experimentos e resultados

3.5.1 Testes unitários e cobertura

Como escrevemos na introdução deste trabalho, um dos motivos pelos quais escolhemos a linguagem *Go* para a implementação foi a facilidade para escrever testes.

Todos os pacotes desenvolvidos neste trabalho possuem testes unitários que podem ser executados usando o utilitário go test:

```
||$ go get github.com/tmadeira/tcc/...
   $ go test -v github.com/tmadeira/tcc/...
2
   === RUN
             TestTreeFrom
3
   --- PASS: TestTreeFrom (0.00s)
4
   === RUN TestRenyiKtreeFrom
5
6
   --- PASS: TestRenyiKtreeFrom (0.00s)
7
   PASS
         github.com/tmadeira/tcc/characteristic 0.002s
8
   ok
   === RUN TestCodingAlgorithm
10
   --- PASS: TestCodingAlgorithm (0.00s)
   === RUN TestDecodingAlgorithm
12 --- PASS: TestDecodingAlgorithm (0.00s)
```

```
13 PASS
         github.com/tmadeira/tcc/codec 0.017s
14
15
   === RUN
           TestCodeFig2C
   --- PASS: TestCodeFig2C (0.00s)
16
   === RUN
           TestDecodeFig2C
17
18 --- PASS: TestDecodeFig2C (0.00s)
   === RUN TestDecodeFig3
19
   --- PASS: TestDecodeFig3 (0.00s)
20
21
   PASS
22
   ok github.com/tmadeira/tcc/dandelion 0.002s
23
   === RUN
           TestRandomKtree
24
   --- PASS: TestRandomKtree (0.03s)
25 | PASS
26 ok
       github.com/tmadeira/tcc/generator 0.029s
27
   === RUN
             TestGetQ
   --- PASS: TestGetQ (0.00s)
28
29
   === RUN TestComputePhi
30
   --- PASS: TestComputePhi (0.00s)
   === RUN TestRelabel
31
32
   --- PASS: TestRelabel (0.00s)
33
   === RUN TestRkFrom
34
   --- PASS: TestRkFrom (0.00s)
   === RUN TestTkFrom
35
   --- PASS: TestTkFrom (0.00s)
36
   PASS
37
         github.com/tmadeira/tcc/ktree 0.002s
```

Com efeito, 96% das linhas do código são cobertas por testes, como mostra o relatório da ferramenta *Coveralls*².

 $^{^2}Esse\ relatório\ pode\ ser\ visto\ em:\ https://coveralls.io/github/tmadeira/tcc?branch=master$

Figura 3.4: Representação das três 1-trees rotuladas distintas com n=3 vértices.

3.5.2 Experimentos e resultados

Corretude e uniformidade

Para mostrar que nossa implementação gera k-trees aleatórias corretamente e uniformemente, realizamos dezenas de milhares de testes com n e k pequenos.

Escrevemos um pequeno script em Bash para nos auxiliar nesse experimento. Ele usa o utilitário generate-ktree para gerar 10000 k-trees com parâmetros (n,k) constantes e imprime quantas vezes cada k-tree diferente foi gerada:

```
1 | i=0
2 | while [ $i -lt 10000 ]; do
3 | echo $N $K | generate-ktree | xargs echo
4 | i=$((i+1))
5 | done | sort | uniq -c
```

Com n=3 e k=1, existem 3 k-trees rotuladas distintas, como mostra a figura 3.4.

Ao executar o *script* com N=3 K=1 esperamos portanto que as três 1trees apareçam com uma frequência similar. O resultado que obtivemos foi:

```
1 3320 3 1 2 0 1 0 2
2 3345 3 1 2 0 1 1 2
3 3335 3 1 2 0 2 1 2
```

O primeiro inteiro que aparece em cada linha é a quantidade de vezes que a k-tree apareceu e o restante é a k-tree gerada no formato de saída do

Figura 3.5: Representação das seis 2-trees rotuladas distintas com n=4 vértices.

utilitário generate-ktree (sem quebras de linha).

Como a frequência de cada uma das 3 k-trees com n=3 e k=1 está similar, o experimento mostra que o algoritmo gera k-trees aleatórias de forma uniforme.

Testes com outros pares (n,k) também mostram frequências similares, comprovando a uniformidade. Por exemplo, existem 6 2-trees com n=4 vértices, como pode-se ver na figura 3.5. Rodando o script com N=4 K=2 obtivemos:

```
      1
      1703
      4
      2
      5
      0
      1
      0
      2
      0
      3
      1
      2
      1
      3

      2
      1627
      4
      2
      5
      0
      1
      0
      2
      0
      3
      1
      2
      2
      3

      3
      1573
      4
      2
      5
      0
      1
      0
      2
      0
      3
      1
      3
      2
      3

      4
      1709
      4
      2
      5
      0
      1
      0
      2
      1
      2
      1
      3
      2
      3

      5
      1717
      4
      2
      5
      0
      2
      0
      3
      1
      2
      1
      3
      2
      3

      6
      1671
      4
      2
      5
      0
      2
      0
      3
      1
      2
      1
      3
      2
      3
```

E com N=5 K=3 obtivemos:

```
970 5 3 9 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 3 2 4
 1
 2
    1023 5 3 9 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 3 3 4
3
    1009 5 3 9 0 1 0 2 0 3 0 4 1 2 1 3 1 4 2 4 3 4
 4
    1014 5 3 9 0 1 0 2 0 3 0 4 1 2 1 3 2 3 2 4 3 4
     994 5 3 9 0 1 0 2 0 3 0 4 1 2 1 4 2 3 2 4 3 4
 5
    1019 5 3 9 0 1 0 2 0 3 0 4 1 3 1 4 2 3 2 4 3 4
 6
 7
    1008 5 3 9 0 1 0 2 0 3 1 2 1 3 1 4 2 3 2 4 3 4
8
    1000 5 3 9 0 1 0 2 0 4 1 2 1 3 1 4 2 3 2 4 3 4
9
     978 5 3 9 0 1 0 3 0 4 1 2 1 3 1 4 2 3 2 4 3 4
10
     985 5 3 9 0 2 0 3 0 4 1 2 1 3 1 4 2 3 2 4 3 4
```

Capítulo 4

Aprendizado de redes

bayesianas

Neste capítulo apresentamos o problema de aprender redes bayesianas e descrevemos um método desenvolvido por Nie $et\ al.\ [10]$ para resolvê-lo que é baseado na geração de k-trees.

4.1 Motivação

Aprender uma rede bayesiana se refere ao processo de inferir a estrutura (ou seja, o DAG) dela a partir de dados. Como mostra Chickering [6], este é um problema NP-completo.

O aprendizado de redes bayesianas costuma servir para realizar inferências em situações com incerteza. O artigo de Nie et al. [11] mostra que tais inferências são NP-difíceis até mesmo aproximadamente e todos os algoritmos conhecidos (exatos e comprovadamente bons) têm uma complexidade de pior caso exponencial no treewidth.

Além disso, resultados empíricos sugerem que limitar o treewidth pode

melhorar a performance dos modelos e há evidências de que limitar a treewidth da estrutura de uma rede bayesiana não causa perdas significativas na expressividade do modelo para conjuntos de dados reais (também visto em [11]).

Por isso, estamos interessados em fixar k e aprender redes bayesianas cuja estrutura tem treewidth limitada a k.

A fim de identificar o "melhor" DAG para um determinado conjunto de dados, vamos supôr que há uma função de score s(G) que atribui uma pontuação para cada DAG G. Segundo [10], as funções de score costumam poder ser escritas como a soma de funções de score locais, ou seja,

$$s(G) = \sum_{i \in N} s_i(X_{\pi_i}).$$

Para cada variável, sua pontuação só depende do seu conjunto de pais. Ou seja, nosso problema é encontrar G^* tal que

$$G^* = \underset{G \in \mathcal{G}_{n,k}}{\operatorname{arg\,max}} \sum_{i \in N} s_i(\pi_i),$$

onde $\mathcal{G}_{n,k}$ é o conjunto de todos os DAGs de treewidth não maiores que k.

Mesmo esse problema é NP-difícil, como mostram Korhonen e Parviainen [9]. Entretanto, os artigos [10] e [11] mostram um método aproximado para aprender redes bayesianas com treewidth limitado que é baseado em amostrar k-trees e encontrar DAGs cujo grafo moral é um subgrafo dessas k-trees.

Tal método funciona com domínios grandes e *treewidth* alto. Nos artigos é mostrado empiricamente que ele tem um desempenho muito bom numa coleção de conjuntos de dados públicos.

4.2 Aprendizado por amostra de k-trees

A continuar.

4.3 Resultados obtidos

A continuar.

Capítulo 5

Conclusão

Ainda não foi escrita.

Referências Bibliográficas

- [1] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard problems restricted to partial k-trees. *Discrete Applied Mathematics*, 23:11–24, 1989.
- [2] Hans L. Bodlaender. Treewidth: Structure and algorithms. *Structural Information and Communication Complexity*, 4474:11–25, 2007.
- [3] John A. Bondy and Uppaluri S. R. Murty. *Graph Theory*. Springer, 2008.
- [4] Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi. Bijective linear time coding and decoding for k-trees. Theory of Computing Systems, 46:284–300, 2010.
- [5] Arthur Cayley. A theorem on trees. Quart J. Math, 23:376–378, 1889.
- [6] David Maxwell Chickering. Learning Bayesian Networks is NP-Complete, pages 121–130. Springer New York, New York, NY, 1996.
- [7] Frank Harary and Edgar M. Palmer. On acyclic simplicial complexes. Mathematika, 15:115–122, 1968.
- [8] Daphne Koller and Nir Friedman. *Probabilistic Graphical Models: Principles and Techniques*. The MIT Press, 2009.

- [9] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded tree-width bayesian networks. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, volume 31 of JMLR Workshop and Conference Proceedings, pages 370–378. JMLR.org, 2013.
- [10] Siqi Nie, Cassio P. de Campos, and Qiang Ji. Learning Bounded Tree-Width Bayesian Networks via Sampling, pages 387–396. Springer International Publishing, Cham, 2015.
- [11] Siqi Nie, Denis Deratani Mauá, Cassio Polpo de Campos, and Qiang Ji. Advances in learning bayesian networks of bounded treewidth. CoRR, abs/1406.1411, 2014.
- [12] Heinz Prüfer. Neuer beweis eines satzes über permutationen. Archiv der Mat. und Physik, 27:142–144, 1918.
- [13] C. Rényi and A. Rényi. The prüfer code for k-trees. Combinatorial Theory and its Applications, pages 945–971, 1970.
- [14] Ömer Eğecioğlu and J. B. Remmel. Bijections for cayley trees, spanning trees, and their q-analogues. *Journal of Combinatorial Theory*, 42:15–30, 1986.