Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Department Informatik Markus Püschel Peter Widmayer Thomas Tschager

Tobias Pröger Tomáš Gavenčiak 20. Oktober 2016

Datenstrukturen & Algorithmen

Blatt P5

HS 16

Abgabe: Bis Donnerstag, 27. Oktober 2016 um 10 Uhr auf dem Judge (ausschliesslich Quellcode).

Aufgabe P5.1 Binäre Suche von Funktionswerten.

In der Code-Vorlage ist eine Funktion f(x), als int f(int x) deklariert, gegeben. Die Funktion ist für alle $x \in \{0, 1, \dots x_{max}\}$ mit $x_{max} = 20\,000\,000$ definiert und ist in diesem Bereich monoton steigend, d.h. $0 \le i < j \le x_{max}$ gilt f(i) < f(j). Alle Werte sind Ganzzahlen.

Als Eingabe bekommt Ihr Programm $n \ge 1$ Ganzzahlen a_0 bis a_{n-1} . Für jedes a_i sollen Sie x_i mit $a_i = f(x_i)$ und $0 \le x_i \le x_{max}$ finden oder ausgeben, dass kein solches x_i existiert.

Eingabe Die Eingabe besteht aus zwei Zeilen. Die erste Zeile enthält lediglich die Ganzzahl n. Die zweite Zeile enthält n Ganzzahlen a_0 bis a_{n-1} , durch Leerzeichen getrennt.

Ausgabe Die Ausgabe soll n Zeilen enthalten, je eine Zeile für jedes a_i : entweder den Wert von x_i sodass $a_i = f(x_i)$ oder den String NO (gross geschrieben), falls kein solches x_i existiert.

Bonus Sie erhalten 2 Bonuspunkte wenn Ihr Programm für alle Eingaben funktioniert. Die Laufzeit Ihres Programms soll der Laufzeit der binären Suche für jedes a_i entsprechen, d.h. die Funktion f soll nur $\mathcal{O}(n \log x_{max})$ mal aufgerufen werden. Insbesondere darf f nicht für alle Werte $0, \ldots x_{max}$ aufgerufen werden.

Senden Sie Ihr Main. java unter folgendem Link ein: https://judge.inf.ethz.ch/team/websubmit.php?cid=18985&problem=DA_P5.1. Das Passwort für die Einschreibung ist "quicksort".

Beispiele

Eingabe:		
6		
12 6 13 6 0 2		
Ausgabe:		
4		
3		
NO		
3		
0		
NO		

Hinweis: f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 6, f(4) = 12, f(5) = 15.

Hinweis Wir stellen für diese Aufgabe eine Programmvorlage als Eclipse Projektarchiv auf der Vorlesungswebseite zur Verfügung. In der Vorlage wird die Eingabe bereits eingelesen und die Funktion f definiert. Das Archiv enthält weitere Beispiele – Sie können diese als Eingabe für Ihr Programm verwenden und die Ausgabe überprüfen.

Wir empfehlen dieses Problem mit binärer Suche für x im Bereich $0 \dots x_{max}$ für jedes gegebene a zu lösen. Stellen Sie sich vor, dass jeder Wert von f für $0 \dots x_{max}$ in einem Array mit $x_{max} + 1$ Elementen gespeichert ist, Sie aber nur diejenigen Werte von f berechnen, die sie tatsächlich brauchen. Sie können sowohl die einfache binäre Suche mit einer While-Schleife als auch die rekursive binäre Suche verwenden.

Ausserdem sollten Sie nicht versuchen, die Funktion f zu analysieren und die Inverse direkt zu berechnen – betrachten Sie f als Blackbox. (Natürlich können Sie es versuchen.)