PESQUISA OPERACIONAL

Introdução – Prof João Vagner

Apresentação das aulas e conceitos iniciais

DESENVOLVIMENTO DAS AULAS

- Teorias;
- Expositivas / participativas;
- Exercícios e atividades complementares;
- Exercícios serão realizados individualmente ou em grupo;

AVALIAÇÕES

- Média para aprovação
 ② 6 pontos;
- Cada trabalho realizado tem o mesmo valor de uma questão de avaliação 01;
- A AVALIAÇÃO 01 será realizada em <u>02/06/2025</u> entretanto, esta data pode sofrer alteração;
- O professor orientará a forma de entrega de cada trabalho / exercício;
- PONTOS DE TRABALHO SOMENTE VALEM PARA A ENTREGA NA AULA CORRENTE!
- Composição da nota A1:
- ((pontos dos trabalhos realizados) + (Pontos de acerto nas questões da AVALIAÇÃO)) / 10
- Nota A1 disponibilizada sempre no BOLETIM DO ALUNO.

CONTROLE DE FREQUENCIA:

• HORÁRIO DE INICIO DAS AULAS: 19:30 hs;

ENCERRAMENTO: 22:00 hs;

CHAMADAS REALIZADAS VIA SISTEMA;

 BASE DE ESTUDO: PLATAFORMA AAPA + COMPLEMENTOS.

Conceito

Pesquisa Operacional é um método científico de tomada de decisões. Em linhas gerais, consiste na descrição de um sistema organizado com o auxílio de um modelo, e através da experimentação com o modelo, na descoberta da melhor maneira de operar o sistema.

A Pesquisa Operacional como a conhecemos teve enfase durante a Segunda Guerra Mundial, resultado de estudos realizados por equipes interdisciplinares de cientistas contratados para resolver problemas militares de ordem estratégica e tática.

Fases de um Estudo em P.O.

Um estudo em Pesquisa Operacional costuma envolver seis fases:

- 1. formulação do problema;
- 2. construção do modelo do sistema;
- 3. cálculo da solução através do modelo;
- 4. teste do modelo e da solução;
- 5. estabelecimento de controles da solução;
- 6. implantação e acompanhamento.

Formulação do Problema

Nesta fase, o administrador do sistema e o responsável pelo estudo em P.O. deverão discutir, no sentido de colocar o problema de maneira clara e coerente, definindo os objetivos a alcançar e quais os possíveis caminhos alternativos para que isso ocorra.

Além disso, serão levantadas as limitações técnicas do sistema e as relações desse sistema com outros da empresa ou do ambiente externo, com a finalidade de criticar a validade de possíveis soluções em face destes obstáculos.

Deverá ainda ser acordada uma medida de eficiência para o sistema, que permita ao administrador ordenar as soluções encontradas, concluindo o processo decisório.

Construção do Modelo do Sistema

Os modelos que interessam em Pesquisa Operacional são os modelos matemáticos, isto é, modelos formados por um conjunto de equações e inequações. Uma das equações do conjunto serve para medir a eficiência do sistema para cada solução proposta. É a função objetivo ou função de eficiência. As outras equações geralmente descrevem as limitações ou restrições técnicas do sistema. As variáveis que compõem as equações são de dois tipos:

Variáveis controladas ou de decisão

São variáveis cujo valor está sob controle do administrador. Decidir, neste caso, é atribuir um particular valor a cada uma dessas variáveis. Numa programação de produção, por exemplo, a variável de decisão é a quantidade a ser produzida num período, o que compete ao administrador controlar.

Variáveis não controladas

São as variáveis cujos valores são arbitrados por sistemas fora do controle do administrador. Custos de produção, demanda de produtos, preço de mercado são variáveis não controladas.

Modelo em Programação Linear

Uma das técnicas mais utilizadas na abordagem de problemas em Pesquisa Operacional é a **programação linear**. A simplicidade do modelo envolvido e a disponibilidade de uma técnica de solução programável em computador facilitam sua aplicação. As aplicações mais conhecidas são feitas em sistemas estruturados, como os de produção, finanças, controles de estoques etc.

O modelo matemático de programação linear é composto de uma função objetiva linear; e de restrições técnicas representadas por um grupo de inequações também lineares.

Exemplo: Função objetivo a ser maximizada:

$$Lucro = 2x_1 + 3x_2$$

$$\begin{cases} t\'{e}cnicas & \begin{cases} 4x_1+3x_2 \leq 10 \\ 6x_1-x_2 \geq 20 \end{cases} \\ de \ n\~{a}o \ negatividade & \begin{cases} x_1 \geq 0 \\ x_2 \geq 0 \end{cases} \end{cases}$$

As variáveis controladas ou variáveis de decisão são X₁ e X₂. A função objetivo ou função eficiência mede o desempenho do sistema, no caso a capacidade de gerar lucro, para cada solução apresentada. O objetivo é maximizar o lucro. As restrições garantem que essas soluções estão de acordo com as limitações técnicas impostas pelo sistema. As duas últimas restrições exigem a não negatividade das variáveis de decisão, o que deverá acontecer sempre que a técnica de abordagem for a de programação linear.

Roteiro:

a) Quais as variáveis de decisão?

Aqui o trabalho consiste em explicitar as decisões que devem ser tomadas e representar as possíveis decisões através de variáveis chamadas variáveis de decisão. Se o problema é de programação de produção, as variáveis de decisão são as quantidades a produzir no período; se for um problema de programação de investimento, as variáveis vão representar as decisões de investimento, isto é, quanto investir em cada oportunidade de investimento, e em que período. Nas descrições sumárias de sistemas, isso fica claro quando lemos a questão proposta, isto é, a pergunta do problema.

b) Qual o objetivo?

Aqui devemos identificar o objetivo da tomada de decisão. Eles aparecem geralmente na forma da maximização de lucros ou receitas, minimização de custos, perdas etc.

A função objetivo é a expressão que calcula o valor do objetivo (lucro, custo, receita, perda etc.), em função das variáveis de decisão.

c) Quais as restrições?

Cada restrição imposta na descrição do sistema deve ser expressa como uma relação linear (igualdade ou desigualdade), montadas com as variáveis de decisão.

Exemplo 1:

Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de 1.000 unidades monetárias e o lucro unitário de P2 é de 1.800 unidades monetárias. A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1.200 horas. A demanda esperada para cada produto é de 40 unidades anuais para P1 e 30 unidades anuais para P2.

Qual é o plano de produção para que a empresa maximize seu lucro nesses itens? Construa o modelo de programação linear para esse caso.

Solução:

a) Quais as variáveis de decisão?

O que deve ser decidido é o plano de produção, isto é, quais as quantidades anuais que devem ser produzidas de P1 e P2.

Portanto, as variáveis de decisão serão x₁ e x₂

- x1 → quantidade anual a produzir de P1
- x2 → quantidade anual a produzir de P2.

b) Qual o objetivo?

O objetivo é maximizar o lucro, que pode ser calculado:

Lucro devido a P1: 1.000 . x₁

(lucro por unidade de P1 x quantidade produzida de P1)

Lucro devido a P2: 1.800 . x₂

(lucro por unidade de P2. x quantidade produzida de P2)

Lucro total: $L = 1.000 \cdot x_1 + 1.800 \cdot x_2$

Objetivo: maximizar

 $L = 1.000 \cdot x_1 + 1.800 \cdot x_2$

c) Quais as restrições?

As restrições impostas pelo sistema são:

- Disponibilidade de horas para a produção: 1.200 horas.
- horas ocupadas com P1: 20x₁ (uso por unidade x quantidade produzida)
- horas ocupadas com P2: 30x₂ (uso por unidade x quantidade produzida)
- Total em horas ocupadas na produção: $20x_1 + 30x_2$ disponibilidade: 1.200 horas.
- Restrição descritiva da situação: 20x₁ + 30x₂ ≤ 1.200

Disponibilidade de mercado para os produtos (demanda)

Disponibilidade para P1: 40 unidades

Quantidade a produzir de P1: x1

Restrição descritiva da situação: x1 ≤ 40

Disponibilidade para P2: 30 unidades

Quantidade a produzir de P2: x2

Restrição descritiva da situação: x2 ≤ 30

Resumo do modelo: max L = 1.000x1 + 1.800x2

$$restrições técnicas \begin{cases} 20x_1 + 30x_2 \leq 1200 \\ x_1 \leq 40 \\ x_2 \leq 30 \end{cases}$$

$$restrições de não negatividade \begin{cases} x_1 \geq 0 \\ x_2 \geq 0 \end{cases}$$

Problema: Produção de camisetas em uma fábrica

Uma pequena fábrica produz dois tipos de camisetas: padrão e premium.

Cada tipo de camiseta requer uma quantidade diferente de tecido e tempo de costura. A fábrica tem um estoque limitado de tecido (100 metros) e um tempo máximo de produção disponível (80 horas por semana).

Cada camiseta padrão consome 2 metros de tecido e 1 hora de costura, enquanto cada camiseta premium consome 3 metros de tecido e 2 horas de costura.

A fábrica deseja maximizar o número de camisetas produzidas respeitando essas restrições.

Identificar as variáveis de decisão. Numero de camisetas a serem produzidas Restrições e função objetivo Identificar as variáveis de decisão.

X1 – quantidade de camisetas padrão a serem produzidas

X2 – quantidade de camisetas premium a serem produzidas

Restrições e função objetivo

$$1.x1 + 2.x2 \le 80$$
 (tempo total disponível)

Função objetivo Max = x1 + x2

Agradecimentos à professora Débora Canne, pela autorização de uso deste material.