MDSC 103-Lab Test-Roll number 23902

2. Consider the following problem: $f(x_1, x_2) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ a) Write a program to visualize the above function. b) Write an iterative program to maximize the function.

Jupyter 23902_MDSC-102-ESE Last Checkpoint: 2 hours ago (unsaved changes) Logout File Edit View Insert Cell Kernel Widgets Help Trusted Python 3 (ipykernel) O
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □</ In []: from scipy.optimize import minimize from scipy import optimize from scipy.optimize import minimize imp import numpy as np
import matplotlib.pyplot as plt 3d Subplot In [25]: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data from matplotlib import cm import numpy as np # set up a figure twice as wide as it is tall fig = plt.figure(figsize=plt.figaspect(0.5)) #======= # First subplot #set up the axes for the second plot
ax = fig.add_subplot(1, 2, 2, projection='3d')
plot a 3D wireframe like in the example mplot3d/wire3d_demo
X, Y, Z = get_test_data(0.85)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show() C:\Users\Msc 1\AppData\\ocal\Temp\ipykernel_5188\483067341.py:16: RuntimeWarning: invalid value encountered in sqrt R = np.sqrt(4*X + 6*Y-2*X**2 - 2*X*Y - 2*Y**2) 80 60 40 20 0 -20 -40 -60 0.0 0.6 - 0.4 - 0.2 -30₋₂₀-10 0 10 20 30 In [21]: import random
 import numpy as np
 import numpy as np
 import matplotlib.pyplot as plt
 from matplotlib import cm
 from mpl_toolkits.mplot3d import Axes3D
 X = np.arange(-5, 5, 0, 25)
 Y = np.arange(-5, 5, 0, 25)
 X, Y = np.meshgrid(X, Y)
 R = np.sqrr(-4*X + 6*Y-2*X**2 - 2*X*Y - 2*Y**2)
 Z = np.sin(R)
 fig = plt.figure()
 ax = Axes3D(fig)
 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis)
 plt.show() C:\Users\\Hsc 1\AppData\Loca\\Temp\ipy\ennel_5188\1785549611.py:9: RuntimeWarning: invalid value encountered in sqrt R = np.sqrt($4^*X + 6^*Y - 2^*X^*2 - 2^*X^*Y - 2^*Y^*2$) <Figure size 640x480 with 0 Axes> In [8]: f(x1, x2) = 4x1 + 6x2 - 2x12 - 2x1x2 - 2x2 Cell In[8], line 1 f(x1, x2) = 4x1 + 6x2 - 2x1SyntaxError: invalid decimal literal In [31]: f = lambda x1,x2 : (-4*x[0] - 6*x[1] + 2*x[1]**2 + 2*x[0]x[1] + 2*x[0]**2)Cell In[31], line 1 $f = lambda \ x1,x2 : (-4*x[\theta] - 6*x[1] + 2*x[1]**2 + 2*x[\theta]x[1] + 2*x[\theta]**2)$ SyntaxError: invalid syntax. Perhaps you forgot a comma?