Groups Theory

Eyal Shukrun

October 30, 2020

1 Groupes Universels

1.1 Reels (\mathbb{R})

Tous les nombres réels.

1.2 Rationels (\mathbb{Q})

Tous les nombres qui peuvent être exprimés en fraction.

1.3 Integers (\mathbb{Z})

Tous les nombres entiers.

1.4 Naturels (\mathbb{N})

Tous les nombres entiers positifs.

Ainsi: $\mathbb{R} > \mathbb{Q} > \mathbb{Z} > \mathbb{N}$

2 Notations

2.1 Est compris dans

Si un élément a est compris dans un ensemble E, ce la se note $a \in E$.

2.2 Implications

Si deux éléments ont un rapport logique (si A alors B), on utilise les flèches afin de le noter:

Si A alors B: $A \Rightarrow B$ Si B alors A: $A \Leftarrow B$

Double implication: $A \leftrightarrow B$

3 Definitions

3.1 Groupe vide (\emptyset)

Il n'existe qu'un seul groupe vide, noté \emptyset , il ne contient aucun élément.

3.2 Ensembles egaux

A = B si tous les éléments de A sont presents dans B et inversement.

Attention: Le nombre d'occurences n'importe pas.

3.3 Ensemble compris

On dit que A est compris dans B si tous les éléments de A se trouvent dans B.

Notation: $A \subseteq B$

Ainsi, si $A \subseteq B$, alors $a \in B$

A est strictement compris dans B si $A \subseteq B$ et $A \neq B$

Notation: $A \subset B$

3.4 Operations

Une operation peut se produire uniquement entre deux ensembles, pas entre un ensemble et un élément.

3.4.1 L'intersection

L'intersection de deux ensembles A et B est l'ensemble de nombres se trouvant dans A et dans B.

Notation: $A \cap B$

3.4.2 L'union

L'union de deux ensembles A et B est l'ensemble de nombres se trouvant soit dans A soit dans B, soit dans les deux.

Notation: $A \cup B$

3.5 Ensembles Étrangers

Deux ensembles sont dits étrangers si $A \cap B = \emptyset$

3.6 Couples ordonnés

Un couple ordonné est un groupe **ordonné** de deux nombres, il se note (a, b).

Attention: $(a, b) \neq (b, a)$.

Ainsi: (a, b) = (c, d) uniquement si a = c et b = d

.

3.7 Multiplication Cartesienne

La multiplication cartesienne de deux ensembles A et B est l'ensemble de tous les couples ordonnés (x, y) tel que $x \in A$ et $y \in B$.

Ainsi: $A * B = \{(x, y) | x \in A, y \in B\}$

3.8 Power Set

Le power set d'un ensemble A est l'ensemble des sous ensembles de A.

Notation: P(A)

Attention: Les éléments de P(A) sont eux mêmes des ensembles.

Attention: P(A) contient toujours \emptyset .

4 Propriétés

4.1 Unions et Intersections

Si $A \subseteq B$, alors:

 $A \cap C \subseteq B \cap C$.

 $A \cup C \subseteq B \cup C$.

Si $A \subseteq B$ et $B \subseteq C$, alors $A \subseteq C$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

5 Démonstrations

5.1 $A \subseteq B$

Pour prouver que $A \subseteq B$, il faut prouver que n'import quel élément a contenu dans A est aussi contenu dans B.

Ainsi: Il faut prouver que $a \subseteq A \Rightarrow a \subseteq B$.

5.2 A = B

Pour prouver que A = B, il faut prouver que $A \subseteq B$ et que $B \subseteq A$.

5.3 $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$

Soit $a \in A \cap C$, prouvons que $a \in B \cap C$.

Si $a \in A \cap C$, alors $a \in A$ et $a \in C$.

Mais puisque $A \subseteq B$, alors $a \in B$.

Ainsi, puisque $a \in B$ et $a \in C$, $a \in B \cap C$.

Donc $A \cap C \subseteq B \cap C$.

5.4 $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$

Soit $a \in A \cup C$, prouvons que $a \in B \cup C$.

Si $a \in A \cup C$, alors $a \in A$ ou $a \in C$.

Dans le cas ou $a \in C$, alors $a \in B \cup C$.

Dans le cas ou $a \in A$, puisque $A \subseteq B$ alors $a \in B$.

Ainsi $a \in B \subseteq C$.

Donc $A \cup C \subseteq B \cup C$

5.5 $R \subseteq S \Rightarrow R \cap S = R$

Pour démontrer que deux ensembles sont égaux, il faut demontrer que chaque élément du premier est présent dans le deuxième.

Ainsi, prouvons que:

- $1)R \cap S \subseteq R$
- $2)R \subseteq R \cap S$
- 1) soit $a \in R \cap S$, alors $a \in R$ et $a \in S$, donc $a \in R$, et $R \cap S \subseteq R$.
- 2) soit $a \in R$, puisque $R \subseteq S$, alors $a \in S$, ainsi $a \in R$ et $a \in S$, donc $a \in R \cap S$, et $R \subseteq R \cap S$.

Ainsi, $R \cap S = R$.

5.6
$$R \subseteq S \Rightarrow R \cup S = S$$

Prouvons que:

- $1)R \cup S \subseteq S$
- $2)S \subseteq R \cup S$
- 1)Soit $a \in R \cup S$, alors $a \in S$ ou $a \in R$, si $a \in S$, il n'y a rien a démontrer, si $a \in R$, puisque $R \subseteq S$, alors $a \in S$, donc $R \cup S \subseteq S$.
- 2) Soit $a \in S$, alors par la definition de l'union, $a \in R \cup S$, donc $S \subseteq R \cup S$. Ainsi: $R \cup S = S$.

FIN.