Large-Scale Pre-training for Segmentation of Organs-at-Risk and Gross Tumor Volume of NPC for Radiotherapy Planning

GERMAN CANCER RESEARCH CENTER

Constantin Ulrich¹³ and Klaus H. Maier-Hein¹⁴

- 1 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 2 Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- 3 National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and University Medical Center Heidelberg

4 Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany

Research for a Life without Cancer

Solution for SegRap 2023 challenge

- Training dataset consists of 120 cases including both a CT and a contrast CT scan
- 2 Subtasks: Segmentation of 45 overlapping Organs at Risk and of two Tumor classes
- Our solution employs a large scale supervised pre-training using "MultiTalent"
- Task specific nnU-Net modifications for fine-tuning on both subtasks

b) Contradicting and overlapping classes

Initial experiments

- initial experiments to find right modality for each task
 - CT for OAR (Task 1)
 - contrast CT for tumors (task 2)
- a few task specific modifications
 - tested foreground oversampling strategies
 - increased GPU limit for nnU-Net's experiment planning
 - extended training schedule to improve convergence

Fig. 4: Motivation for the task specific modifications: Top: The small head region covers only a small part of the CT volume. Bottom: For segmentation of the OARs, the default nnU-Net seams not to be fully converged after 1000 epochs.

a) Collection of partially labeled datasets

MultiTalent

A novel strategy for a combined training using multiple partially labeled datasets for a comprehensive structure segmentation

Pre-training

- extended dataset collection (included totalsegmentator and AMOS dataset) resulting in >2800 images
- Preprocessed as nnU-Net suggested for the SegRap dataset

Fine-tuning

- fine-tuning using default nnU-Net configurations unless stated otherwise
- finetuning schedule:
 - 1. 10 epoch only heads warm up, Ir linearly increased to 0.001
- 2. 50 epochs whole network warm up, Ir linearly increased to 0.01
- 3. default nnU-Net scheme

Fig. 1: MultiTalent deals with different annotation protocols for the same target classes

Fig. 2: Overview over all datasets used for pre-training. Totalsegmentator has 1204, Amos 300 and the original dataset collection has 1460 images.

Results - Task 1

Architecture	'epochs	patch size		over- sampling		Dice	
U-Net	1000	[28, 256, 256]	$\stackrel{\circ}{}_{}$	\det	no	77.88	 :
Resenc U-Net	1 2000	[32, 320, 256]	1 2	default	l no	78.04	_
Resenc U-Net	$\frac{1}{1} 2000$	[32, 320, 256]	$\frac{1}{1}$ 2	33%	no	72.63	_
Resenc U-Net	2000	[32, 320, 256]	1 2	default	yes yes	82.48	82.02
Resenc U-Net	1 2000	[32, 320, 256]	$\frac{1}{2}$	33%	yes .	82.76	82.23
Resenc U-Net	$\frac{1}{1} 2000$	[32, 320, 256]	$^{\prime}_{l}$ 4	default	$_{l}^{l}$ yes	82.54	82.34
Resenc U-Net	∟ 2000	[32, 320, 256]	1 4	33%	yes	82.26	82.53

Table 1: Dice averaged over 54 non-overlapping classes

Task 2

Architecture	epochs	$egin{array}{c} ext{patch} \ ext{size} \end{array}$!	over- sampling	_	Dice Dice
U-Net	1000	[28, 256, 256]	$\stackrel{\circ}{}_{1}$	default	no	75.02 -
U-Net	2000	[28, 256, 256]	2	0.33%	no	75.78 76.44
U-Net	2000	[28, 256, 256]	$^{L}_{L}$ L	0.33%	no	75.22 76.42
U-Net	2000	[32, 320, 256]	2	0.33%	no	$75.35 \mid 76.19$
Resenc U-Net	2000	[32, 320, 256]	2	default	no	·74.39· -
Resenc U-Net	1 2000 1	[32, 320, 256]	$\frac{1}{1}$ 2	default	yes	74.66 -
Resenc U-Net	2000	[32, 320, 256]	$\frac{1}{1}$ 2	0.33%	yes	74.90 -
Resenc U-Net	2000	[32, 320, 256]	I	-0.33%	yes	175.70176.44

Table 2: Dice averaged over 2 tumor classes

Out of Competition for task 1: Not valid submission

Test Set (5 fold ensemble because of issues regarding the RAM and time limit.

GTVp: Dice avg.: 77.71,

Test Set: DSC avg: 84.77, NSD avg: 84.41

Test Set (5 fold ensemble: no test time augmentation):

GTVp: Dice avg.: 77.71, NSD avg.: 35.60 GTVnd: Dice avg.: 69.18, NSD avg.: 64.76