

Set Theory and Relations PAGE 19

ASSIGNMENT

Relation and Function

1.	A relation from P to	Q is			
	(a) A universal set of (c) An equivalent set		(b) P × Q (d) A subset of P ×	Q	
2.		ro <mark>m a</mark> set A to set B, then			
	(a) <i>R</i> = <i>A</i> ∪ <i>B</i>	(b) R = A ∩ B	(c) $R \subseteq A \times B$	(d) $R \subseteq B \times A$	
3.	Let $A = \{a, b, c\}$ an equal to set	nd <i>B</i> = {1, 2}. Consider a r	relation R defined from	m set A to set B. Then R is	
	(a) <i>A</i>	(b) B	(c) <i>A</i> × <i>B</i>	(d) $B \times A$	
4.	Let $n(A) = n$. Then the number of all relations on A is				
	(a) 2 ⁿ	(b) $2^{(n)!}$	(c) 2^{n^2}	(d) None of these	
5.	If R is a relation from a finite set A having m elements to a finite set B having n elements, then the number of relations from A to B is				
	(a) 2 ^{mn}	(b) $2^{mn}-1$	(c) 2mn	(d) m ⁿ	
6.	Let <i>R</i> be a reflexive in <i>R</i> . Then	relation on a finite set A h	aving <i>n</i> -elements, and	let there be <i>m</i> ordered pairs	
	(a) <i>m</i> ≥ <i>n</i>	(b) <i>m</i> ≤ <i>n</i>	(c) $m=n$	(d) None of these	
7.	The relation <i>R</i> defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(x, y) : x^2 - y^2 < 16\}$ is given by				
	(a) {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)}		(b) {(2, 2), (3, 2), (4, 2), (2, 4)}		
	(c) {(3, 3), (3, 4), (5, 4), (4, 3), (3, 1)}		(d) None of these		
8.	A relation <i>R</i> is define domain of <i>R</i> is	ed from {2, 3, 4, 5} to {3,	6, 7, 10} by; $xRy \Leftrightarrow x$	is relatively prime to <i>y</i> . Then	

	PAGE 22 Set Theory and Re	lations			
	(a) {2, 3, 5}	(b) {3, 5}	(c) {2, 3, 4}	(d) {2, 3, 4, 5}	
9. Let R be a relation on N defined by $x + 2y = 8$. The domain of R is					
	(a) {2, 4, 8}	(b) {2, 4, 6, 8}	(c) {2, 4, 6}	(d) {1, 2, 3, 4}	
10.	If $R = \{(x,y) x,y \in Z, x^2 + y\}$	$2^{2} \le 4$ is a relation in Z ,	then domain of <i>R</i> is		
11.		. , .	(c) {- 2, -1, 0, 1, 2} relation from <i>A</i> to <i>B</i> defi	(d) None of these ined by 'x is greater than y'.	
	(a) {1, 4, 6, 9}	(b) {4, 6, 9}	(c) {1}	(d) None of these	
12.	R is a relation from {1	11, 12, 13} to { <mark>8, 10, 12</mark>]	defined by $y=x-3$. The	$en R^{-1}$ is	
13.			(c) {(10, 13), (8, 11) from <i>A</i> to <i>B</i> is given by <i>R</i>	} (d) None of these ={(1, 3), (2, 5), (3, 3)}. Then	
14.	Let <i>R</i> be a reflexive r	<mark>elatio</mark> n on a set <i>A</i> and <i>l</i>	3)} (c) {(1, 3), (5, 2)} be the identity relation o	n A. Then	
15.	(3, 1), (1, 3)}. Then R		given by <i>R</i> = {(1, 1), (2, 2	(d) None of these 2), (3, 3), (4, 4), (1, 2), (2, 1), (d) An equivalence	
40	relation			o do Theodore eletion is	
16.	(a) Reflexive and syntansitive	nmetric	(b) Reflexive and tra	le of <i>n</i> . Then the relation is ansitive (c) Symmetric and	
17.	The relation R define	d in <i>N</i> as ^{aRb⇔ b} is div	isible by <i>a</i> is		
	(a) Reflexive but not symmetric Symmetric and transitive		(b) Symmetric but n(d) None of these	(b) Symmetric but not transitive (c) (d) None of these	
18.	Let <i>R</i> be a relation or				
40	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these	
19.	Let $R = \{(a, a)\}$ be a relation on a set A . Then R is (a) Symmetric (b) Antisymmetric				
	(c) Symmetric and antisymmetric anti-symmetric		(b) Antisymmetric (d)	Neither symmetric nor	
20.	The relation "is subset of" on the power set $P(A)$ of a set A is				
	(a) Symmetric	(b) Anti-symmetric	(c) Equivalency rela	ation(d) None of these	

21. The relation *R* defined on a set *A* is antisymmetric if $(a,b) \in R \Rightarrow (b,a) \in R$ for

2

Set Theory and Relations PAGE 19

	(a) Every (a, b) ∈ R	(b) No $(a,b) \in R$	(c) No $(a,b), a \neq b, \in R$	(d) None of these		
22.		4, 5}, a relation <i>R</i> is definently (b) Symmetric			? is	
23.	Let A be the non-void set of the children in a family. The relation 'x is a brother of y o					
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these		
24.	Let $A = \{1, 2, 3, 4\}$ and	let $R = \{(2, 2), (3, 3), (4, 4)\}$		n <i>A</i> . Then <i>R</i> is		
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these		
25. The void relation on a set A is				- .		
	(a) Reflexive symmetric	(b) Symmetric and transit (d) Reflexive and transit	• •	Reflexive	and	
26. Let R_1 be a relation defined by $R_1 = \{(a,b) a \ge b, a,b \in R\}$. Then R_1 is						
	(a) An equivalence rela	ation on R	(b)	Reflexive, transitive	but	
	(c) Symmetric, Trans <mark>iti</mark> symmetric	ve but not reflexive	(d) Neither transitive	e not reflexive	but	
27. Let $A = \{p, q, r\}$. Which of the following is an equivalence relation on A						
	(a) $R_1 = \{(p, q), (q, r), ($	(p, r), (p, p)}	(b) $R_2 = \{(r, q), (r, p), ($	(r, r), (q, q)		
(c) $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$			(d) None of these			
28. Which one of the following relations on R is an equivalence relation						
	(a) $aR_1b \Leftrightarrow a \neq b $	(b) $aR_2b \Leftrightarrow a \ge b$	(c) $aR_3b \Leftrightarrow a \text{ divides}b$	(d) $aR_4b \Leftrightarrow a < b$		
29. If R is an equivalence relation on a set A , then R^{-1} is						
	(a) Reflexive only (b) Symmetric but not None of these		ansitive	(c) Equivalence	(d)	
30.	R is a relation over the					
	(a) Symmetric and transitiveA partial order relation (d)		(b) Reflexive and symmetric (d An equivalence relation			
31.	In order that a relation if <i>R</i>	R defined on a non-empt	y set A is an equivalenc	e relation, it is sufficie	ent,	
	(a) Is reflextive (c) Is transitive		(b) Is symmetric			
			(d) Possesses all the above three properties			

32. The relation "congruence modulo m" is

	PAGE 22 Set Theory and Rel	ations			
	(a) Reflexive only relation	(b) Transitive only	(c) Symmetric only	(d) An equivalence	
33.	Solution set of $x \equiv 3 \pmod{7}$, $x \in \mathbb{Z}$, is given by				
	(a) {3}	(b) $\{7p-3: p \in Z\}$	(c) $\{7p+3: p \in Z\}$	(d) None of these	
34.	Let R and S be two equivalence relations on a set A. Then				
	(a) $R \cup S$ is an equivalence relation on A (b) $R \cap S$ is an equivalence relation on A				
	(c) $R-S$ is an equivalence relation on A (d) None of these				
35.	Let R and S be two relations on a set A. Then				
	(a) R and S are transitive, then R ∪ S is also transitive				
	(b) R and S are transitive, then $R \cap S$ is also transitive				
	(c) <i>R</i> and <i>S</i> are reflexive, then <i>R</i> ∩ <i>S</i> is also reflexive				
	(d) <i>R</i> and <i>S</i> are symmetric then <i>R</i> ∪ <i>S</i> is also symmetric				
36.		$(3, 2)$ and $S = \{(2, 1), (3, 2)\}$	2), (2, 3)} be two relation	ons on set $A = \{1, 2, 3\}$.	
	Then <i>RoS</i> =	(0,4), (0,0)	(L) ((2, 0), (4, 0))		
	(a) {(1, 3), (2, 2), (3, 2)		(b) {(3, 2), (1, 3)}		
	(c) {(2, 3), (3, 2), (2, 2)	**	(d) {(2, 3), (3, 2)}		
37.	In problem 36, RoS ⁻¹ =				
		(b) {(1, 2), (2, 2), (3, 2)}			
	(C) {(1, 2), (2, 2)}	(d) {(1, 2), (2, 2), (3, 2),	(2, 3)}		
38.	Let <i>R</i> be a relation on	the set N be defined by {	$(x, v) x, v \in N, 2x + v =$	41}. Then <i>R</i> is	
	(a) Reflexive	(b) Symmetric			
39.	` ,	of all straight lines in a pla	` '	` '	
	$\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L$. Then R is				
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these	
40.	` '	Il triangles in the Euclide	,	` '	Γ by
	aRb iff $a \approx b, a, b \in T$. Then R is				
	(a) Reflexive but not transitive (b) Transitive but not symmetric		symmetric	(c)	
	Equivalence	(d) None of these	· /	•	` ,
41.	Two points P and Q in a plane are related if $OP = OQ$, where O is a fixed point. This relation is				S
	(a) Partial order relation	on (b)	Equivalence relation	(c) Reflexive but	not
	symmetric	(d) Reflexive but not tra	insitive		
42.	Let <i>r</i> be a relation over	er the set $N \times N$ and it is d	efined by $(a,b)r(c,d) \Rightarrow a+d$	$^{\prime =b+c.}$ Then r is	

(a) Reflexive only (b) Symmetric only (c)Transitive only (d) An equivalence relation

Set Theory and Relations PAGE 19

- **43.** Let *L* be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said to be related by the relation *R* iff l_1 is parallel to l_2 . Then the relation *R* is
 - (a) Reflexive
- (b) Symmetric
- (c) Transitive
- (d) Equivalence
- **44.** Let *n* be a fixed positive integer. Define a relation *R* on the set *Z* of integers by, $aRb \Leftrightarrow n|a-b|$. Then *R* is
 - (a) Reflexive
- (b) Symmetric
- (c) Transitive
- (d) Equivalence

