2.4절 미분과 기울기, 그리고 경사 하강법의 개념

페이지와 위치	오류
40 마지막 수식	$\frac{d}{dx}[f(g(x))] = \frac{d}{dg(x)}f(g(x))? = f'(g(x))g'(x)$
정정 내용 (연쇄법칙으	l 일부가 사라졌음)
	$\frac{d}{dx}[f(g(x))] = \frac{d}{dg(x)}f(g(x))\frac{dg(x)}{dx} = f'(g(x))g'(x)$

3.6절 벡터화 연산 - 넘파이 배열 계산 성능의 핵심

3.6절 벡터화 연산 - 넘파이 배열 계산 성능의 핵심

```
페이지와 위치
                 오류와 자료형 변경
67
                 def matmult naive(a, b):
소스코드
                    c = np.zeros( (a.shape[0], b.shape[1]) , dtype = int)
함수
                    for i in range(a.shape[0]):
matmult_naive
                        for j in range(b.shape[0]):
                           for k in range(a.shape[1]):
                               c[i,j] += a[i,k] * b[k,j]
                    return c
정정 내용 (행렬 곱셈을 위해 부동소수점 자료형을 사용하고, 두번째 for 루프의 반복 횟수 오류 수정)
def matmult naive(a, b):
   c = np.zeros( (a.shape[0], b.shape[1]) , dtype = float)
  for i in range(a.shape[0]):
      for j in range(b.shape[1]):
          for k in range(a.shape[1]):
              c[i,j] += a[i,k] * b[k,j]
  return c
```

3.6절 벡터화 연산 - 넘파이 배열 계산 성능의 핵심

```
페이지와 위치
                오류와 자료형 변경
67
                def matmult2d(a, b):
소스코드
                    c = np.zeros( (a.shape[0], b.shape[1]) , dtype = int)
                    for i in range(a.shape[0]):
함수
                       # a[i,:]는 b.T의 각 행에 브로드캐스팅 된다.
matmult2d
                       c[i,:] = (a[i,:] * b.T).sum(axis=1)
                    return c
정정 내용 (행렬 곱셈을 위해 부동소수점 자료형을 사용하고, 두번째 for 루프의 반복 횟수 오류 수정)
def matmult2d(a, b):
   c = np.zeros( (a.shape[0], b.shape[1]) , dtype = float )
   for i in range(a.shape[0]):
       # a[i,:]는 b.T의 각 행에 브로드캐스팅 된다.
       c[i,:] = (a[i,:] * b.T).sum(axis=1)
   return c
```

4..5 데이터의 관계를 설명하는 선형 회귀 함수의 시각적 이해

페이지와 위치	오류
100 그림	w=0.5일 때, 오차의 제곱을 표현하는 정사각형이 하나 잘못 그려짐

4.10 다변량 회귀분석 - 수학적 모델

	· · · —
페이지와 위치	첨자 오류 (이상윤 독자의 도움)
111 두번째 문단	데이터 인스턴스의 개수가 m 이라고 하면 i 번째 데이터 인스턴스는 $oldsymbol{x^{(m)}}$ 으로 나타낼 수 있고
정정 내용 (i 번째 데	이터 인스턴스의 첨자 오류 수정)
데이터 인스턴스의 개	수가 m 이라고 하면 i 번째 데이터 인스턴스는 $oldsymbol{x}^{(i)}$ 으로 나타낼 수 있고

페이지와 위치	첨자 오류
111 마지막 수식	$E_{\it mse}(\mathbf{x},\theta) = \frac{1}{m} \sum_{i=1}^n \bigl(\theta^T \mathbf{x}^{(i)} - y^{(i)}\bigr)^2$ 다변량 선형 회귀 분석은 결국 이 오차가 최소가 되는 파라미터 θ 를 찾는 문제이다.
정정 내용 ($∑$ 기호의	윗 첨자를 n 에서 m 으로 수정)
	$E_{mse}(\mathbf{x}, \theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{\mathrm{T}} \mathbf{x}^{(i)} - y^{(i)})^2$

4.11 회귀분석의 학습, 혹은 최적화 방법 - 정규 방정식

페이지와 위치	첨자 오류
112 첫 수식	$\frac{\partial E_{mse}(\mathbf{x}, \theta)}{\partial \theta_j} = \frac{2}{m} \sum_{i=1}^{n} (\theta^T \mathbf{x}^{(i)} - y^{(i)}) x_j^{(i)}$
정정 내용 (∑ 기호의	윗 첨자를 n 에서 m 으로 수정)
	$\frac{\partial E_{mse}(\mathbf{x}, \theta)}{\partial \theta_j} = \frac{2}{m} \sum_{i=1}^{m} (\theta^{\mathrm{T}} \mathbf{x}^{(i)} - y^{(i)}) x_j^{(i)}$

페이지와 위치	오타 (이상윤 독자의 도움)
112 세번째 문단 3행	바로 최적의 파라미터를 찾는 수식이 존재한다. 이것을 <mark>정규 방적식^{normal} equation</mark> 이라고 부른다
정정 내용 (정규 방적	식을 정규 방정식으로)
바로 최적의 파라미터	를 찾는 수식이 존재한다. 이것을 정규 방정식 ^{normal equation} 이라고 부른다

4.15 특징들의 상관 쌍 그림을 확인하고 중요 특징 추출하기

6.16 커널 트릭을 이용한 비선형 서포트 벡터 대신

페이지와 위치	오타
215 마지막 수식	$K(\mathbf{x}^{(i)},^{(j)}) = (\gamma \mathbf{x}^{(i)\mathrm{T}} \mathbf{x}^{(j)} + r)^d$
정정 내용 (수식 오류	
$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\gamma \mathbf{x}^{(i)})$	$\mathbf{x}^{(j)} + r)^d$

Lab7-5 XOR 연산이 가능한 다층 퍼셉트론 만들기

페이지와 위치	코드 오류
261 4 번 코드	input = np.zeros(2) # 순전파시 계산될 값들 $h^{\Sigma}, h^{\phi}, h^{\phi'}$ h_sum, h_out, h_deriv = np.zeros(3), np.zeros(3), np.zeros(3) # 역전파시 계산될 값들 e^{it}, δ^{it} h_error, h_delta = np.zeros(3), np.zeros(3) # 순전파시 계산될 값들 $y^{\Sigma}, y^{\phi}, y^{\phi'}$ yy_error, y_delta = np.zeros(2), np.zeros(2) # 역전파시 계산될 값들 e^{it}, δ^{it} y_error, y_delta = np.zeros(2), np.zeros(2)

정정 내용 (불필요한 코드 제거)

Lab7-6 다층 퍼셉트론으로 비선형 회귀 구현하기

페이지와 위치	U 수정 누락
---------	---------

```
215
마지막 수식

def backward(error):
global y_delta, W, h2_delta, V, h1_delta, U

y_delta = y_deriv * error
dW = - learning_rate * np.outer(h2_out, y_delta) # 쓰의 수정

W = W + dW
h2_delta = h2_deriv * W.dot(y_delta) # 은닉 계층 2의 델타
dV = - learning_rate * np.outer(h1_out, h2_delta) # V의 수정

V = V + dV
h1_delta = h1_deriv * V.dot(h2_delta) # 은닉 계층 1의 델타
dU = - learning_rate * np.outer(input, h1_delta) # U의 수정
```

정정 내용 (마지막에 U 수정 추가)

7. 역전파 과정도 오차를 입력하면 출력 계층까지 한 번에 이루어지게 구현하자.

```
def backward(error):
global y delta, W, h2 delta, V, h1 delta, U

y delta = y deriv * error # 출력 계층의 델타
dW = - learning_rate * np.outer(h2_out, y_delta) # W의 수정
W = W + dW

h2 delta = h2 deriv * W.dot(y delta) # 은닉 계층 2의 델타
dV = - learning_rate * np.outer(h1_out, h2_delta) # V의 수정
V = V + dV

h1 delta = h1 deriv * V.dot(h2 delta) # 은닉 계층 1의 델타
dU = - learning_rate * np.outer(input, h1_delta) # U의 수정
U = U + dU
```

8.4 최적화 기법 - 경사 하강법의 문제와 개선

페이지와 위치	수식 오류
281 마지막 수식	
	이 방법은 아래와 같이 이전의 이동과 현재의 기울기를 함께 고려하여 큰 학습률을 사용해도 원래의 경사 하강법보다 최적해에 잘 근접할 수 있는 것으로 알려져 있다.
	$-\eta abla J^{(2)}(\mathbf{w})$ 가을기에 의해서 가야할 방향 \mathbf{e}^{Δ} 할수 곡면 $J(\mathbf{w})$ $\mathbf{m}^{(1)} = -\nabla J(\mathbf{w})$ $\mathbf{m}^{(2)} = \beta \mathbf{m}^{(1)} - \eta \nabla J(\mathbf{w})$ 모멘텀과 기울기를 함께 고려한 이동 이전의 이동에 따른 모멘텀

정정 내용 (수식 오류) - 원고를 올바르게 되어 있었으나, 편집시 오류 발생

$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla J(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{m}$$

이 방법은 아래와 같이 이전의 이동과 현재의 기울기를 함께 고려하여 큰 학습률을 사용해도 원래의 경사하강법보다 최적해에 잘 근접할 수 있는 것으로 알려져 있다.

8.5 다양한 최적화 기법 소개

페이지와 위치	수식 오류
282 첫 수식	우선 네스테로프 가속 경사 Nesterov accelerated gradient 기법이다. 이 방법은 손실 함수 곡면의 기울기를 계산할 때 이전 모멘텀만큼 이동한 곳에서 기울기를 측정하여 이 기울기와 모멘텀을 함께 고려하여 최종적으로 이동할 곳을 찾는 것이다. 식으로는 다음과 같다. $\mathbf{w}^{temp} \leftarrow \mathbf{w} + \beta \mathbf{m}$ $\mathbf{m} \leftarrow \beta - \mathbf{m} - \eta \nabla J(\mathbf{w}^{temp})$ $\mathbf{w} \leftarrow \mathbf{w}^{temp} + \mathbf{m}$

정정 내용 (수식 오류) - 원고를 올바르게 되어 있었으나, 편집시 오류 발생

우선 네스테로프 가속 경사^{Nesterov accelerated} gradient 기법이다. 이 방법은 손실 함수 곡면의 기울기를 계산할 때 이전 모멘텀만큼 이동한 곳에서 기울기를 측정하여 이 기울기와 모멘텀을 함께 고려하여 최종적으로 이동할 곳을 찾는 것이다. 식으로는 다음과 같다.

$$\begin{array}{ccc} \mathbf{w}^{temp} & \leftarrow & \mathbf{w} + \beta \mathbf{m} \\ \mathbf{m} & \leftarrow & \beta \mathbf{m} - \eta \nabla J(\mathbf{w}^{temp}) \\ \mathbf{w} & \leftarrow & \mathbf{w}^{temp} + \mathbf{m} \end{array}$$

11.3 주성분 분석과 특이값 분해

페이지와 위치 오류	
------------	--

414	공분산 $^{ ext{covariance}}$ 행렬 $^{f s}$ ${ m C}={ m M}^{ m T}{ m M}(m-1)$ 를 구해
두번째 문단	

정정 내용 (공분산 행렬은 m-1이 곱해지는 것이 아니라 m-1로 나누어야 함. 나누기 연산자 누락됨)

공분산 $^{ ext{covariance}}$ 행렬 $_{ ext{O}}$ $\mathbf{C} = \mathbf{M}^{ ext{T}}\mathbf{M}/(m-1)$ 를 구해

페이지와 위치	오류
414 가운데 수식	$\mathbf{C} = \mathbf{W} \wedge \mathbf{W}^{-1}$
정정 내용 (논리곱 표시처럼 된 것은 그리스 대문자 람다의 오기)	
$\mathbf{C} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^{-1}$	

페이지와 위치	오류
414 문단 3 의 제 2, 3 행	2행: 각행렬 ∧로 분해된다. 3행: M를 분산을 최대로 보존하면서
정정 내용 (2행:논리곱 표시를 그리스 대문자 람다로, 3행: 조사 변경 필요)	
각행렬 Λ 로 분해된다. \mathbf{M} 의 분산을 최대로 보존하면서	

페이지와 위치	오류
415 수식	$\mathbf{M} = \begin{pmatrix} & & \cdots & \\ \mathbf{u}_{\cdot,1} & \mathbf{u}_{\cdot,2} & \cdots & \mathbf{u}_{\cdot,m} \\ & & \cdots & \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} - & \mathbf{v}_{\star,1}^T & - \\ - & \mathbf{v}_{2,\star}^T & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{v}_{n,\star}^T & - \end{pmatrix}$
정정 내용	
${f M}$ =	$= \begin{pmatrix} & & \cdots & \\ U_{*,1} & U_{*,2} & \cdots & U_{*,m} \\ & & \cdots & \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_n \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} - & V_{1,*}^{\mathrm{T}} & - \\ - & V_{2,*}^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & V_{n,*}^{\mathrm{T}} & - \end{pmatrix}$

페이지와 위치	오류
415 마지막 수식	$\mathbf{C} = \frac{(\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^T)(\mathbf{V}\boldsymbol{\Sigma}\mathbf{V}^T)}{m-1} = \frac{\mathbf{V}\boldsymbol{\Sigma}^2\mathbf{V}^T}{m-1} = \mathbf{V}\frac{\boldsymbol{\Sigma}^2}{m-1}\mathbf{V}^T = \mathbf{V}\wedge\mathbf{V}^T$

정정 내용 (논리곱 표시처럼 된 것은 <mark>그리스 대문자 람다</mark>의 오기, **U**와 **V** 표기 오류

$$\mathbf{C} = \frac{(\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\mathrm{T}})(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}})}{m-1} = \frac{\mathbf{V}\boldsymbol{\Sigma}^{2}\mathbf{V}^{\mathrm{T}}}{m-1} = \mathbf{V}\frac{\boldsymbol{\Sigma}^{2}}{m-1}\mathbf{V}^{\mathrm{T}} = \mathbf{V}\boldsymbol{\Lambda}\mathbf{V}^{\mathrm{T}}$$

11.4 특이값 분해의 기하적 이해

페이지와 위치	오류
416 첫 수식	$\mathbf{M} = \begin{pmatrix} & & \cdots & \\ \mathbf{u}_{\cdot,1} & \mathbf{u}_{\cdot,2} & \cdots & \mathbf{u}_{\cdot,m} \\ & & \cdots & \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} - & \mathbf{v}_{\cdot,1}^{\mathrm{T}} & - \\ - & \mathbf{v}_{2,\cdot}^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{v}_{n,\cdot}^{\mathrm{T}} & - \end{pmatrix}$

정정 내용 (행렬의 원소는 이탤릭체 대문자에 행과 열을 첨자로 표현)

$$\mathbf{M} = \begin{pmatrix} | & | & \cdots & | \\ U_{*,1} & U_{*,2} & \cdots & U_{*,m} \\ | & | & \cdots & | \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_n \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} - & V_{1,*}^{\mathrm{T}} & - \\ - & V_{2,*}^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & V_{n,*}^{\mathrm{T}} & - \end{pmatrix}$$

페이지와 위치	오류
416 두 번째 수식	$\mathbf{M} = \begin{pmatrix} & & \cdots & \\ \mathbf{u}_{\cdot,1} & \mathbf{u}_{\cdot,2} & \cdots & \mathbf{u}_{\cdot,n} \\ & & \cdots & \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots & \vdots & 0 \\ 0 & 0 & \cdots & \sigma_m & \cdots & 0 \end{pmatrix} \begin{pmatrix} - & \mathbf{v}_{\cdot,1}^{T} & - \\ - & \mathbf{v}_{2,*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{v}_{n,*}^{T} & - \end{pmatrix}$
정정 내용 (행렬의 원소는 이탤릭체 대문자에 행과 열을 첨자로 표현)	

$$\mathbf{M} = \begin{pmatrix} | & | & \cdots & | \\ U_{*,1} & U_{*,2} & \cdots & U_{*,m} \\ | & | & \cdots & | \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots & \vdots & 0 \\ 0 & 0 & \cdots & \sigma_m & \cdots & 0 \end{pmatrix} \begin{pmatrix} - & V_{1,*}^{\mathrm{T}} & - \\ - & V_{2,*}^{\mathrm{T}} & - \\ \vdots & \vdots & \vdots \\ - & V_{n,*}^{\mathrm{T}} & - \end{pmatrix}$$

페이지와 위치	오류
417 마지막 수식	$\mathbf{M}_k = \mathbf{M}\mathbf{V}_k$
정정 내용	

$$\mathbf{M}_k = \mathbf{M}\mathbf{V}_{*,:k}$$

11.6 다양한 귀널의 적용

페이지와 위치	오류	
424	커널 이름	커널 함수
표의 수식	선형 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \mathbf{x}^{(i)^T} \mathbf{x}^{(j)}$
	다항 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\gamma x^{(i)^T} x^{(j)} + r)^d$
	방사 기저 함수 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = e^{\gamma \ \mathbf{x}^{(i)} - \mathbf{x}^{(j)}\ ^2}$
	시그모이드 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \tanh(\gamma \mathbf{x}^{(i)^T} \mathbf{x}^{(j)} + r)$
	코사인 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \mathbf{x}^{(i)^T} \mathbf{x}^{(j)} / \mathbf{x}^{(i)} \mathbf{x}^{(j)} $

정정 내용 (전치를 표시할 때 기울인 T가 아니라 정자 T로 통일)

귀널 이름	귀널 함수
선형 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \mathbf{x}^{(i)^{\mathrm{T}}} \mathbf{x}^{(j)}$
다항 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\gamma \mathbf{x}^{(i)^{\mathrm{T}}} \mathbf{x}^{(j)} + r)^d$
방사 기저 함수 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = e^{\gamma \mathbf{x}^{(i)} - \mathbf{x}^{(j)} ^2}$
시그모이드 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \tanh(\gamma \mathbf{x}^{(i)^{\mathrm{T}}} \mathbf{x}^{(j)} + r)$
코사인 커널	$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \mathbf{x}^{(i)^{\mathrm{T}}} \mathbf{x}^{(j)} / \mathbf{x}^{(i)} \mathbf{x}^{(j)} $

11.8 LLE 기법의 구현을 위한 최적화 해 구하기

페이지와 위치	오류
---------	----

434	해를 구하는 방법은 <mark>라그랑주 승수법^{Lagrange multiplie}</mark> t
아래에서 4 행	

정정 내용 (첨자 Lagrange multiplier와 본문의 라그랑주 승수법이 대응되게 같은 색으로 표시해야 함)

공해를 구하는 방법은 라그랑주 승수법^{Lagrange multiplier}

11.9 그 밖의 매니폴드 학습 알고리즘

페이지와 위치	오류
438 수식	$p_{j i} = \frac{e^{- \mathbf{x}_i - \mathbf{x}_j ^2/\sigma_i^2}}{\sum_{k \neq i} e^{- \mathbf{x}_i - \mathbf{x}_k ^2/2\sigma_i^2}}$
정정 내용	
	$p_{j i} = \frac{e^{- \mathbf{x}_i - \mathbf{x}_j ^2 / 2\sigma_i^2}}{\sum_{k \neq i} e^{- \mathbf{x}_i - \mathbf{x}_k ^2 / 2\sigma_i^2}}$