Stat 206: Linear Models

Lecture 13

Nov. 16, 2015

Key Components for Model Selection

- A criterion to compare models.
 - R_p^2 , $R_{a,p}^2$, C_p , AIC_p , BIC_p , $Press_p$, etc.
- A procedure to search through the model space to find a good model according to a pre-specified criterion.
 - Stepwise regression: Greedy search algorithm; Applicable even if the number of potential *X* variables is large.

Notations and assumptions.

- Denote the total number of potential X variables by P − 1 and assume that all important X variables are included in this pool.
- Full model: The model that contains all potential X variables.
 - The full model is a correct model.
 - It is often used to provide an unbiased estimator for the error variance. In that case, it is also needed that the sample size n is sufficiently large, e.g., n/P at least 6.
- Candidate model: A model that contains a subset of p − 1 X variables with 1 ≤ p ≤ P.

R_p^2 Criterion

$$R_p^2 := 1 - \frac{SSE_p}{SSTO}.$$

- The R_p² criterion favors models with high coefficient of multiple determination.
- The subscript p indicates the number of regression coefficients in the model.
- The R_p² criterion is equivalent to using the error sum of squares SSE_p as a criterion where models with small SSE_p are considered "good". (Note SSTO is the same for all models.)

The R_p^2 criterion is maximizes R^2 .

to choose **the** model that

- R² is always maximized by
- The R_p² criterion should be used to find the point starting from where adding more X variables only leads to a marginal increase in R².

The R_p^2 criterion is **not intended** to choose **the** model that maximizes R^2 .

- R² is always maximized by the full model.
- The R_p^2 criterion should be used to find the point starting from where adding more X variables only leads to a marginal increase in R^2 .

$R_{a,p}^2$ Criterion

Unlike R_p^2 , the adjusted coefficient of multiple determination $R_{a,p}^2$ takes into account of in the model:

$$R_{a,p}^2 = 1 - \frac{n-1}{n-p} \frac{SSE_p}{SSTO} = 1 - \frac{MSE_p}{MSTO}.$$

- R_a^2 could when additional X variables are added into the model since the increase in R^2 may be too small to offset the loss of .
- The $R_{a,p}^2$ criterion is equivalent to using the mean squared error MSE_p as a criterion where models with small MSE_p are considered "good".

$R_{a,p}^2$ Criterion

Unlike R_p^2 , the adjusted coefficient of multiple determination $R_{a,p}^2$ takes into account of the number of parameters in the model:

$$R_{a,p}^2 = 1 - \frac{n-1}{n-p} \frac{SSE_p}{SSTO} = 1 - \frac{MSE_p}{MSTO}.$$

- R_a² could decrease when additional X variables are added into the model since the increase in R² may be too small to offset the loss of degrees of freedom.
- The $R_{a,p}^2$ criterion is equivalent to using the mean squared error MSE_p as a criterion where models with small MSE_p are considered "good".

Surgical Unit: Model Selection Criteria

For illustration purposes, only consider X_1 , X_2 , X_3 , X_4 (clotting, prognostic, enzyme, liver) as the potential X variables. There are 16 sub-models.

```
sse R^2 R^2_a
intercept X1 X2 X3 X4
                                                 aic
                                                         bic
                                                                press
                  0 12.805 0.000 0.000 151.569 -75.716 -73.727 13.292
                     7.334 0.427 0.416
                                       66.518 -103.811 -99.833 8.329
                     7.408 0.421 0.410 67.696 -103.268 -99.290 8.024
                     9.974 0.221 0.206 108.469 -87.205 -83.227 10.738
                  0 12.028 0.061 0.043 141.093 -77.096 -73.118 13.508
                     4.313 0.663 0.650 20.523 -130.479 -124.512 5.066
                  1 5.132 0.599 0.583 33.536 -121.089 -115.122 6.123
                     5.783 0.548 0.531 43.873 -114.644 -108.677 6.989
                  1 6.620 0.483 0.463 57.175 -107.342 -101.375 7.474
                  1 7.299 0.430 0.408 67.961 -102.070 -96.103 8.472
                  0 9.437 0.263 0.234 101.937 -88.194 -82.227 11.055
                    3.109 0.757 0.743* 3.388* -146.161* -138.205* 3.914*
                  1 3.615 0.718 0.701 11.434 -138.011 -130.055 4.598
                     4.970 0.612 0.589
                                       32.960 -120.823 -112.867 6.209
                  1 6.568 0.487 0.456 58.358 -105.763 -97.807 7.902
                     3.084 0.759* 0.739 5.000 -144.587 -134.642 4.069
```

Within each subset size, models are sorted in ascending SSE so that the first one has the smallest SSE. Consequently, within each subset size, R_p^2 , $R_{a,p}^2$ are from the largest to the smallest and C_p , BIC_p , AIC_p are from the smallest to the largest. $Press_p$ may not be monotone with SSE.

Figure: Surgical Unit: Model Selection Criteria Plots

- max(R_p²) (eq. max(R_{a,p}²)) denotes the largest R² (eq. R_a²) among models with p regression coefficients.
- The max(R_p²) versus p plot is necessarily
- From the plot, there is little increase in both $\max(R_{\rho}^2)$ and $\max(R_{a,\rho}^2)$ going from $\rho = 0$ to $\rho = 0$.
 - Best model with 3 X variables (p = 4) contains X_1, X_2, X_3 with $R^2 = 0.757, R_a^2 = 0.743$.
 - Best model with 4 X variables (p = 5) contains X_1, X_2, X_3, X_4 with $R^2 = 0.759, R_a^2 = 0.739$.
 - $\max(R_{a,p}^2)$ decreases when p increases from 4 to 5.
- By both R_p² and R_{a,p}² criteria, the model with is favored among the 16 models being considered.
- Although X_3 and X_4 correlate most highly with the response variable (r=0.65), they do not both appear in the "best" model. This means that X_1, X_2, X_3 contain much of the information in X_4 in terms of explaining Y.

- max(R_p²) (eq. max(R_{a,p}²)) denotes the largest R² (eq. R_a²) among models with p regression coefficients.
- The $\max(R_p^2)$ versus p plot is necessarily nondecreasing.
- From the plot, there is little increase in both $\max(R_{\rho}^2)$ and $\max(R_{a,\rho}^2)$ going from $\rho = 4$ to $\rho = 5$.
 - Best model with 3 X variables (p = 4) contains X_1, X_2, X_3 with $R^2 = 0.757, R_a^2 = 0.743$.
 - Best model with 4 X variables (p = 5) contains X_1, X_2, X_3, X_4 with $R^2 = 0.759, R_a^2 = 0.739$.
 - $\max(R_{a,p}^2)$ decreases when p increases from 4 to 5.
- By both R_p² and R_{a,p}² criteria, the model with X₁, X₂, X₃ is favored among the 16 models being considered.
- Although X_3 and X_4 correlate most highly with the response variable (r=0.65), they do not both appear in the "best" model. This means that X_1, X_2, X_3 contain much of the information in X_4 in terms of explaining Y.

Mallows' Cp Criterion

Mallows' C_p for a model with p regression coefficients:

$$C_p := \frac{SSE_p}{\hat{\sigma}^2} - (n-2p).$$

- n : sample size (constant across models).
- SSE_p: error sum of squares of the candidate model.
- $\hat{\sigma}^2$: an unbiased estimator of the error variance σ^2 . E.g.,

$$\hat{\sigma}^2 = MSE_{\text{full model}} = MSE(X_1, \dots, X_{P-1}).$$

- $\hat{\sigma}^2$ is unbiased due to the assumption that the full model contains all important X variables so that
- C_p of the full model is always

Mallows' Cp Criterion

Mallows' C_p for a model with p regression coefficients:

$$C_p := \frac{SSE_p}{\hat{\sigma}^2} - (n-2p).$$

- n : sample size (constant across models).
- SSE_p: error sum of squares of the candidate model.
- $\hat{\sigma}^2$: an unbiased estimator of the error variance σ^2 . E.g.,

$$\hat{\sigma}^2 = MSE_{\text{full model}} = MSE(X_1, \cdots, X_{P-1}).$$

- $\hat{\sigma}^2$ is unbiased due to the assumption that the full model contains all important X variables so that it has no model bias.
- C_p of the full model is always P.

Mallows' C_p as an Estimator of msee

Let $\mathbb{M} = \mathbb{M}(X_1, \dots, X_{p-1})$ be a model. Then:

$$\begin{split} E(C_p(\mathbb{M})) &\approx & \frac{E(SSE(\mathbb{M}))}{\sigma^2} - (n - 2p) \\ &= & \frac{(n - p)\sigma^2 + \|bias_{in}(\mathbb{M})\|_2^2}{\sigma^2} - (n - 2p) \\ &= & \frac{p\sigma^2 + \|bias_{in}(\mathbb{M})\|_2^2}{\sigma^2} \\ &= & \frac{Var_{in}(\mathbb{M}) + \|bias_{in}(\mathbb{M})\|_2^2}{\sigma^2} = \frac{msee_{in}(\mathbb{M})}{\sigma^2}. \end{split}$$

So C_p can be viewed as an estimator of the overall (in-sample) mean-squared-estimation-error divided by the error variance.

How to Use C_p ?

- If a model has no (in-sample) bias, i.e., $bias_{in}(\mathbb{M}) = \mathbf{0}$, then $E(C_p)$. Otherwise $E(C_p)$ tends to be than p.
- When C_p is plotted against p, then models with will tend to fall near the diagonal line C_p = p.
- On the other hand, models with will tend to fall considerably above this line.
- We should look for models with (i) the C_p value not far above p and (ii) small C_p value. Such models have bias and number of X variables (thus model variance).
 - Surgical unit. The model with X₁, X₂, X₃ has
 C_p = 3.38 p</sub> value is also the smallest among all models being considered.

How to Use C_p ?

- If a model has no (in-sample) bias, i.e., $bias_{in}(\mathbb{M}) = \mathbf{0}$, then $E(C_p) \approx p$. Otherwise $E(C_p)$ tends to be larger than p.
- When C_p is plotted against p, then models with little bias will tend to fall near the diagonal line C_p = p.
- On the other hand, models with substantial bias will tend to fall considerably above this line.
- We should look for models with (i) the C_p value not far above p and (ii) small C_p value. Such models have small bias and small number of X variables (thus less model variance).
 - Surgical unit. The model with X₁, X₂, X₃ has
 C_p = 3.38 p</sub> value is also the smallest among all models being considered.

AIC_p and BIC_p Criteria

Akaike's information criterion (AIC):

$$AIC_p = n\log\frac{SSE_p}{n} + 2p.$$

Bayesian information criterion (BIC):

$$BIC_p = n \log \frac{SSE_p}{n} + (\log n)p.$$

- We should look for models with small AIC (BIC).
 - Surgical unit. The model with X₁, X₂, X₃ has the smallest AIC and BIC among the models being considered.

Both AIC and BIC consist of two terms.

- The first term: $n \log \frac{SSE_p}{n}$ reflects the of the model to the observed data.
 - It by adding more *X* variables into the model.
- The second term, 2p for AIC and (log n)p for BIC, reflects
 - It by adding more *X* variables into the model.
 - If n ≥ 8, then log n > 2 and BIC puts more penalty on model complexity and tends to choose models than AIC.
- Overly simplified models have model complexity (p), but they tend to have a SSE (underfitting). On the other hand, overly complicated models may have a SSE (overfitting), but they have model complexity (p).
- By minimizing AIC (or BIC), we are trying to find a model that balances between model complexity and the goodness-of-fit of the model to the observed data.

Both AIC and BIC consist of two terms.

- The first term: $n \log \frac{SSE_p}{n}$ reflects the *goodness-of-fit* of the model to the observed data.
 - It decreases by adding more X variables into the model.
- The second term, 2p for AIC and (log n)p for BIC, reflects model complexity.
 - It increases by adding more X variables into the model.
 - If n ≥ 8, then log n > 2 and BIC puts more penalty on model complexity and tends to choose smaller models than AIC.
- Overly simplified models have small model complexity (p), but they tend to have a large SSE (underfitting). On the other hand, overly complicated models may have a small SSE (overfitting), but they have large model complexity (p).
- By minimizing AIC (or BIC), we are trying to find a model that balances between model complexity and the goodness-of-fit of the model to the observed data.

Press_p Criterion

 $Press_p$ (predicted residual sum of squares) is a measure on how well a model performs in terms of prediction.

Press_p is the sum of the squared prediction errors:

$$Press_p = \sum_{i=1}^n (Y_i - \widehat{Y}_{i(i)})^2.$$

- Y_i is the observed response of the *ith* case.
- $\widehat{Y}_{i(i)}$ is a predicted value for the ith case obtained by fitting the model only using n-1 cases excluding case i.
- $Press_p$ is also known as leave-one-out-cross-validation (LOOCV).
- Models with small Press_p are considered good in terms of predictive ability.
 - Surgical unit: the model with X_1, X_2, X_3 has $Press_p = 3.914$ which is the smallest among all models being considered here.

Calculate Pressp

 $Press_p$ can be calculated without actually performing n regressions.

• The deleted residual for the ith case :

$$d_i:=Y_i-\widehat{Y}_{i(i)}=\frac{e_i}{1-h_{ii}},\quad i=1,\cdots,n.$$

where $e_i = Y_i - \widehat{Y}_i$ is the residual of the *ith* case and h_{ii} is the *ith* diagonal element of the hat matrix **H**, both from the regression fit using all n cases.

So

$$Press_p = \sum_{i=1}^{n} \frac{(Y_i - \widehat{Y}_i)^2}{(1 - h_{ii})^2}.$$

Derive the Deleted Residuals

Define Y by replacing the ith element of the response vector Y with the leave-i-out predicted value Ŷ_{i(i)} of the ith case:

$$\tilde{\boldsymbol{Y}} = (Y_1, \cdots, Y_{i-1}, \hat{Y}_{i(i)}, Y_{i+1}, \cdots, Y_n)^T.$$

- Let $\hat{\boldsymbol{\beta}}_{(i)}$ be the leave-i-out LS fitted regression coefficients. Then $\hat{\boldsymbol{\beta}}_{(i)}$ is also the LS fitted regression coefficients by using $\tilde{\mathbf{Y}}$ as the response vector, i.e. $\hat{\boldsymbol{\beta}}_{(i)} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\tilde{\mathbf{Y}}$. Why?
- So the leave-i-out fitted values for the n cases are:

$$\hat{\mathbf{Y}}_{(i)} = \mathbf{X}\hat{\boldsymbol{\beta}}_{(i)} = H\tilde{\mathbf{Y}} = H(\mathbf{d}_{(i)} + \mathbf{Y}), \quad \mathbf{d}_{(i)} = \tilde{\mathbf{Y}} - \mathbf{Y} = (0, \cdots, -d_i, \cdots, 0)^T$$

• Subtract the *i*th element from *Y_i* on both sides:

$$d_i = h_{ii}d_i + e_i \Longrightarrow d_i = \frac{e_i}{1 - h_{ii}}.$$

Surgical Unit: Full Model X₁, X₂, X₃, X₄

```
> fit.f =lm(log(Y)~X1+X2+X3+X4. data=data.o)
> summary(fit.f)
Call:
lm(formula = log(Y) ~ X1 + X2 + X3 + X4, data = data.o)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
X1
          0.083739 0.028834 2.904 0.00551 **
X2
          0.012671 0.002315 5.474 1.50e-06 ***
         0.015627 0.002100 7.440 1.38e-09 ***
X3
X4
          0.032056 0.051466 0.623 0.53627
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
Residual standard error: 0.2509 on 49 degrees of freedom
Multiple R-squared: 0.7591. Adjusted R-squared: 0.7395
F-statistic: 38.61 on 4 and 49 DF, p-value: 1.398e-14
> anova(fit.f)
Analysis of Variance Table
Response: log(Y)
Df Sum Sq Mean Sq F value Pr(>F)
X 1
         1 0 7770 0 7770 12 3443 0 0009618 ***
X2
         1 2.5904 2.5904 41.1565 5.341e-08 ***
Х3
         1 6.3286 6.3286 100.5490 1.838e-13 ***
X4
         1 0 0244 0 0244 0 3879 0 5362698
Residuals 49 3.0841 0.0629
```

Surgical Unit: Full Model

Full model has P = 5 and

$$SSE = 3.0841, MSE = 0.0629, R^2 = 0.7591, R_a^2 = 0.7395.$$

- By definition, for the full model, C_P =
- Sample size n = 54, so for the full model:
 AIC_P =
 and BIC_P =
- $Press_p = 4.069$.
- > e.f=fit.f\$residuals ## residuals
- > h.f=influence(fit.f)\$hat ## diagonals of hat matrix
- > press.f= sum(e.f^2/(1-h.f)^2) ## calculate press

Surgical Unit: Full Model

Full model has P = 5 and

$$SSE = 3.0841, MSE = 0.0629, R^2 = 0.7591, R_a^2 = 0.7395.$$

- By definition, for the full model, $C_P = P = 5$.
- Sample size n=54, so for the full model: $AIC_P=54\log(3.0841/54)+2\times 5=-144.5871$ and $BIC_P=54\log(3.0841/54)+\log(54)\times 5=-134.6422$.
- $Press_p = 4.069$.
- > e.f=fit.f\$residuals ## residuals
- > h.f=influence(fit.f)\$hat ## diagonals of hat matrix
- > press.f= sum(e.f^2/(1-h.f)^2) ## calculate press

Surgical Unit: Null Model

The *null model* refers to the model with no *X* variable and only the intercept term:

$$Y_i = \beta_0 + \epsilon_i, \quad i = 1, \dots, n.$$

- SSE = , $R^2 =$, $R_a^2 =$, p =
- Use MSE=0.0629 from the "full model", $C_p=$ Here, $C_p=$, indicating model bias.
- $AIC_p = 54 \log(12.80451/54) + 2 \times 1 = -75.71608$ and $BIC_p = 54 \log(12.80451/54) + \log(54) \times 1 = -73.72709$.

What is Press_p of the null model?

Surgical Unit: Null Model

The *null model* refers to the model with no *X* variable and only the intercept term:

$$Y_i = \beta_0 + \epsilon_i, \quad i = 1, \cdots, n.$$

- SSE = SSTO = 12.80451, $R^2 = 0$, $R_a^2 = 0$, p = 1.
- Use MSE = 0.0629 from the "full model",

$$C_p = \frac{12.80451}{0.0629} - (54 - 2 \times 1) = 151.5693.$$

Here, $C_p = 151 >> p = 1$, indicating severe model bias.

• $AIC_p = 54 \log(12.80451/54) + 2 \times 1 = -75.71608$ and $BIC_p = 54 \log(12.80451/54) + \log(54) \times 1 = -73.72709$.

What is $Press_p$ of the null model? For null model: $\hat{Y}_i \equiv \bar{Y}$ and $h_{ii} \equiv \frac{1}{n}$, so

$$Press_p = \sum_{i=1}^n \frac{(Y_i - \overline{Y})^2}{(1 - \frac{1}{n})^2} = (\frac{n}{n-1})^2 \times SSTO.$$

Model Search Procedures

- The number of possible models, 2^{P-1} , grows very fast with the number potential X variables P-1.
- Evaluating every possible model can be computationally infeasible even for moderate P.
- A variety of search procedures have been developed to efficiently search for the "best" model(s) in the model space.
 - Stepwise regression procedures
 - Best subsets algorithms: Not applicable when the pool of potential X variables is large, say more than 30.

Stepwise Regression Procedures

These are procedures that search for the "best" subset in a **sequential** manner.

- They are applicable to situations with a large number of potential X variables.
- They rely on "greedy" search strategies by developing a sequence of models, at each step adding or deleting only one X variable according to a pre-specified criterion (e.g., AIC).
- Stepwise procedures could end up with a suboptimal model rather than the global "best" model.
- Commonly used stepwise procedures include: forward stepwise, forward selection, backward stepwise and backward elimination.

Forward Stepwise Procedure

We need to specify the following.

- A model selection criterion, e.g., AIC.
- An initial model M₀, usually a small model, e.g., the null-model with no X variable.
- The pool of potential X variables X.
- The set of X variables that will always be in the model X₀, e.g., the intercept term.

Starting from the initial model M_0 , at each step:

- (a) Consider the X variables in the potential pool X that are not currently in the model. Examine the change in the criterion by adding each such variable into the current model.
- (b) Consider the X variables that are already in the model but not in the set X_0 . Examine the change in the criterion by dropping each such variable out of the current model.
 - Choose the operation that improves the criterion the most and update the current model accordingly. Repeat steps (a) and (b) for the updated model.
 - If there is no operation that can improve the criterion anymore, then stop the search procedure and return the current model as the selected model.

Forward Selection and Backward Elimination

- Forward selection is a simplified version of forward stepwise procedure, omitting the considerations of dropping a variable currently in the model at each step.
- Backward elimination is the opposite of the forward selection.
 - It starts with a "big" initial model, e.g., the full model.
 - At each step, it examines the change of the criterion by dropping a variable currently in the model.
 - It then chooses the operation that improves the criterion the most to update the current model. It stops if no operation is able to improve the criterion anymore.
- Backward stepwise procedure. Guess what is it?

stepAIC () Function

We can use the stepAIC() function in the MASS library to perform various stepwise regression.

- direction=''both" corresponds to forward stepwise procedure or backward stepwise procedure (depending on the initial model); direction=''forward" corresponds to froward selection; direction='backward" corresponds to backward elimination.
- The option scope specifies the potential pool of X variables (upper) and the X variables that should always be included in the model (lower).
- k=2 corresponds to AIC criterion; k=log(n) corresponds to BIC criterion.

Surgical Unit: Forward Stepwise

Start with the null-model.

```
> library(MASS)
> fit.0 =lm(log(Y)~1, data=data.o) ## initial model: null-model with only intercept term
> step.0=stepAIC(fit.0.scope=list(upper=~X1+X2+X3+X4+X5+X6+X7+X8. lower=~1). direction="both". k=2)
Start: ATC=-75.72
log(Y) ~ 1
Df Sum of Sa
                RSS
                         ATC
+ X3
            5 4708 7 3337 -103 811
+ X4
            5.3967 7.4079 -103.268
+ X2
            2 8303 9 9742 -87 205
+ X8
            1.7808 11.0238 -81.802
+ X1
            0.7770 12.0275 -77.096
            0.6889 12.1156 -76.703
+ X6
                   12.8045 -75.716
<none>
+ X5
            0.2694 12.5351 -74.864
+ X7
            0.2067 12.5978 -74.595
Step: AIC=-103.81
log(Y) ~ X3
Df Sum of Sa
                RSS
                         ATC
+ X2
            3.0209 4.3129 -130.479
+ X4
            2.2018 5.1319 -121.089
+ X1
            1 5512 5 7825 -114 644
+ X8
            1.1386 6.1951 -110.922
<none>
                    7.3337 -103.811
+ X6
            0.2582 7.0755 -103.747
+ X5
            0.2390 7.0947 -103.600
+ X7
            0.0659 7.2679 -102.298
- X3
            5.4708 12.8045 -75.716
```

Surgical Unit: Forward Stepwise (Cont'd)

```
Step: AIC=-130.48
log(Y) \tilde{X}3 + X2
Df Sum of Sq
                RSS
                         ATC
+ X8
             1.4709 2.8420 -151.002
+ X1
             1.2044 3.1085 -146.161
+ X4
            0.6979 3.6150 -138.011
+ X7
            0.2280 4.0849 -131.412
+ X5
            0.1648 4.1481 -130.583
<none>
                    4.3129 -130.479
+ X6
            0.0822 4.2306 -129.518
- X2
            3.0209 7.3337 -103.811
- X3
             5.6613 9.9742 -87.205
Step: AIC=-151
log(Y) \sim X3 + X2 + X8
Df Sum of Sq
                RSS
                         AIC
+ X1
             0.6642 2.1778 -163.376
+ X4
            0.4658 2.3761 -158.669
+ X6
             0.1372 2.7048 -151.674
                    2.8420 -151.002
<none>
+ X5
             0.0709 2.7711 -150.367
+ X7
            0.0241 2.8179 -149.462
- X8
            1.4709 4.3129 -130.479
- X2
             3.3531 6.1951 -110.922
- X3
             4.9403 7.7823 -98.605
```

Surgical Unit: Forward Stepwise (Cont'd)

```
Step: AIC=-163.38
log(Y) ~ X3 + X2 + X8 + X1
Df Sum of Sa
               RSS
                         AIC
+ X6
             0.0966 2.0812 -163.826
                    2.1778 -163.376
<none>
+ X5
             0.0760 2.1018 -163.293
+ X4
            0.0415 2.1363 -162.415
+ X7
            0.0224 2.1554 -161.935
- X1
            0.6642 2.8420 -151.002
- X8
            0.9307 3.1085 -146.161
- X2
            2.9891 5.1670 -118.722
- X3
             5.4459 7.6237 -97.717
Step: AIC=-163.83
log(Y) ~ X3 + X2 + X8 + X1 + X6
Df Sum of Sa
               RSS
                        AIC
+ X5
             0.0769 2.0043 -163.86
<none>
                    2.0812 -163.83
- X6
             0.0966 2.1778 -163.38
+ X7
            0.0219 2.0593 -162.40
+ X4
            0.0163 2.0649 -162.25
- X1
            0.6236 2.7048 -151.67
- X8
            0.9754 3.0567 -145.07
- X2
             2.8287 4.9099 -119.48
- X3
             5.0742 7.1554 -99.14
```

Surgical Unit: Forward Stepwise (Cont'd)

```
Step: AIC=-163.86
log(Y) ~ X3 + X2 + X8 + X1 + X6 + X5
Df Sum of Sa
               RSS
                        AIC
<none>
                   2.0043 -163.858
- X5
            0.0769 2.0812 -163.826
- X6
            0.0975 2.1018 -163.293
+ X7
            0.0326 1.9718 -162.743
+ X4
            0.0022 2.0021 -161.919
- X1
            0 6284 2 6327 -151 133
- X8
            0.9011 2.9054 -145.810
- X2
            2.7644 4.7688 -119.052
- X3
            5.0752 7.0795 -97.716
> step.0$anova
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
log(Y) ~ 1
Final Model:
log(Y) ~ X3 + X2 + X8 + X1 + X6 + X5
Step Df Deviance Resid. Df Resid. Dev
                                              ATC
                           53 12.804509 -75.71608
2 + X3 1 5.47078352
                           52 7.333726 -103.81102
3 + X2 1 3.02085553
                           51 4.312870 -130.47855
4 + X8 1 1.47089284
                           50 2.841977 -151.00214
5 + X1 1 0.66416961
                           49 2.177808 -163.37593
6 + X6 1 0.09659084
                           48 2.081217 -163.82569
7 + X5 1 0.07688125
                           47 2.004335 -163.85826
```

Surgical Unit: Forward Stepwise (Cont'd)

- The selected model is $X_1, X_2, X_3, X_5, X_6, X_8$ (p = 7) with $AIC_p = -163.858$.
- In this case, the forward selection procedure also selects the same model.

```
## forward selection
> step.0.f=stepAIC(fit.0, scope=list(upper="X1+X2+X3+X4+X5+X6+X7+X8, lower="1),
+ direction="forward", k=2)
```

Surgical Unit: Backward Elimination

Start with the full model with all eight predictors.

```
> fit.f =lm(log(Y)~., data=data.o)
> step.b=stepAIC(fit.f. scope= list(upper=~.. lower=~1). direction="backward". k=2)
Start: AIC=-160.78
log(Y) ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
Df Sum of Sa
               RSS
                       AIC
- X4
           0.00126 1.9718 -162.74
- X7
           0.03159 2.0021 -161.92
- X5
           0.07359 2.0441 -160.80
                   1.9705 -160.78
<none>
- X6
           0.08403 2.0545 -160.52
- X1
     1 0.31845 2.2890 -154.69
- X8
     1 0.84489 2.8154 -143.51
- X2
     1 2.09285 4.0634 -123.70
- X3
     1 2 98863 4 9591 -112 94
```

Surgical Unit: Backward Elimination (Cont'd)

```
Step: AIC=-162.74
log(Y) ~ X1 + X2 + X3 + X5 + X6 + X7 + X8
Df Sum of Sq
              RSS
                       ATC
            0.0326 2.0043 -163.858
- X7
                   1.9718 -162.743
<none>
- X5
           0.0876 2.0593 -162.396
- X6 1 0.0969 2.0687 -162.152
- X1 1 0.6269 2.5987 -149.835
- X8 1 0.8438 2.8156 -145.506
- X2 1
           2.6755 4.6473 -118.446
- X3
            5.0934 7.0652 -95.825
Step: AIC=-163.86
log(Y) ~ X1 + X2 + X3 + X5 + X6 + X8
Df Sum of Sq
              RSS
                       ATC
<none>
                   2 0043 -163 858
- X5
         0.0769 2.0812 -163.826
- X6
       1 0.0975 2.1018 -163.293
- X1
       1 0.6284 2.6327 -151.133
- X8
       1 0.9011 2.9054 -145.810
- X2
       1 2.7644 4.7688 -119.052
- X3
            5 0752 7 0795 -97 716
## backward stepwise
> step.bs=stepAIC(fit.f, scope= list(upper=~., lower=~1),
+ direction="both". k=2)
```

Again the model $X_1, X_2, X_3, X_5, X_6, X_8$ is selected. Backward stepwise also selects the same model.

Stepwise Procedures: Comments

- Forward stepwise procedure often works better than forward selection when there is
- Backward procedures are not good when the number of potential X variables, P-1, is . Particularly, they are not feasible when P n, since then the full model can not be fitted.
- A potential disadvantage of forward procedures is the MSE and thus the standard errors of the LS estimators tend to be in the initial steps since important X variables are likely to be omitted in those steps.
- Another commonly used strategy is to perform one pass of forward selection followed by one pass of backward elimination.

Stepwise Procedures: Comments

- Forward stepwise procedure often works better than forward selection when there is high multicollinearity.
- Backward procedures are not good when the number of potential X variables, P-1, is large. Particularly, they are not feasible when P>n, since then the full model can not be fitted.
- A potential disadvantage of forward procedures is the MSE and thus the standard errors of the LS estimators tend to be overestimated in the initial steps since important X variables are likely to be omitted in those steps. This will affect testing-based criteria.
- Another commonly used strategy is to perform one pass of forward selection followed by one pass of backward elimination.

Model Building and Selection: Comments

- For the sake of interpretability, it is often appropriate to select all the indicator variables corresponding to a qualitative variable as a group (i.e., to be in or out of the model simultaneously), even if a subset containing only part of them is "better" according to the model selection criterion.
- Hierarchical principle: If higher-order terms (e.g., interactions, powers) are selected, it is often appropriate to include the related lower-order terms as well.
- When the number of potential interactions is large, we could
 - use aprior knowledge to decide on the most likely interaction terms to be included.
 - first fit a first-order model and then plot the residuals against interaction terms to decide which interactions should be included. These plots may be limited to interactions that involve important X variables based on the first-order model.

Model Validation

- Internal validation: Check validity using the same data used to fit the model.
- External validation: Check validity using new data either newly collected or a holdout sample (i.e., cross-validation).
 Which of the two validations is more trustworthy?
- Compare results with theoretical expectations, previous results, and simulation results.

Internal Validation

We can use $Press_p$ and C_p to conduct internal validation of candidate models.

Press_p is always

than SSE_p as

$$|d_i| = |Y_i - \widehat{Y}_{i(i)}| = |\frac{Y_i - \widehat{Y}_i}{1 - h_{ii}}| \ge |Y_i - \widehat{Y}_i| = |e_i|, \quad i = 1, \dots, n.$$

 Press_p/n can be viewed as an estimator of the (out-of-sample) mean squared prediction error:

$$mspe := E((\hat{y} - y)^2).$$

It is a measure for the model.

of the

- Press_p not much larger than SSE_p means there is by the model.
- C_p ≈ p indicates
 C_p >> p indicates

in the model, whereas model bias.

Internal Validation

We can use $Press_p$ and C_p to conduct internal validation of candidate models.

Press_p is always larger than SSE_p as

$$|d_i| = |Y_i - \widehat{Y}_{i(i)}| = |\frac{Y_i - \widehat{Y}_i}{1 - h_{ii}}| \ge |Y_i - \widehat{Y}_i| = |e_i|, \quad i = 1, \dots, n.$$

 Press_p/n can be viewed as an estimator of the (out-of-sample) mean squared prediction error:

$$mspe := E((\hat{y} - y)^2).$$

- It is a measure for the predictive ability of the model.
- Press_p not much larger than SSE_p means there is no severe overfitting by the model.
- C_p ≈ p indicates little bias in the model, whereas C_p >> p indicates substantial model bias.

Cross-Validation

When sample size is sufficiently large, we can split the data into two sets, a *training data* used to develop the model and a *validation data* used to check model validity.

- Validation data is used to check consistency of the fitted parameters and predictive ability.
- Training data should be sufficiently large (e.g., n/P at least 6) so that a reliable model can be developed based on it. Sometimes, the validation data will have to be smaller.
- Once a final model has been validated and chosen, it is a common practice to use the entire data set to re-fit the final model.

Mean Squared Prediction Error

Mean squared prediction error (MSPE) on the validation data:

$$MSPE_{v} = \frac{\sum_{j=1}^{m} (Y_{j} - \widehat{Y}_{j})^{2}}{m},$$

where m is the sample size of the validation data, Y_j is the jth observation in the validation data, and \widehat{Y}_j is the predicted value of the jth case in the validation data based on the model fitted on the training data.

- MSPE_v can be viewed as an estimator of the (out-of-sample) mean squared prediction error and thus a measure for the predictive ability of the model.
- MSPE_v is usually than SSE/n, since the model is fitted on the training data and thus it naturally would fit the training data than it fits the validation data.
- If $MSPE_v$ is not much larger than SSE/n, then there is by the model.

Mean Squared Prediction Error

Mean squared prediction error (MSPE) on the validation data:

$$MSPE_{v} = \frac{\sum_{j=1}^{m} (Y_{j} - \widehat{Y}_{j})^{2}}{m},$$

where m is the sample size of the validation data, Y_j is the jth observation in the validation data, and \widehat{Y}_j is the predicted value of the jth case in the validation data based on the model fitted on the training data.

- MSPE_v can be viewed as an estimator of the (out-of-sample) mean squared prediction error and thus a measure for the predictive ability of the model.
- MSPE_v is usually larger than SSE/n, since the model is fitted on the training data and thus it naturally would fit the training data better than it fits the validation data.
- If MSPE_v is not much larger than SSE/n, then there is no severe overfitting by the model.

Surgical Unit: Internal Validation

Three "best" models according to various criteria.

- By BIC_p and Press_p: Model 1, log Y ~ X₁, X₂, X₃, X₈.
 - p = 5, $SSE_p = 2.178$, $C_p = 5.734$, $Press_p = 2.736$.
- By C_p: Model 2, log Y ~ X₁, X₂, X₃, X₆, X₈.
 - p = 6, $SSE_p = 2.081$, $C_p = 5.528$, $Press_p = 2.782$.
- By R_{a,p}² and AIC_p: Model 3, log Y ~ X₁, X₂, X₃, X₅, X₆, X₈.
 - p = 7, $SSE_p = 2.004$, $C_p = 5.772$, $Press_p = 2.771$.
- For all three models, Press_p and SSE_p are reasonably close and C_p ≈ p, supporting their validity.

Surgical Unit: External Validation

Figure: Distributions of variables in training (n = 54) and validation (n = 54) sets.

No big difference in how variables are distributed in these two sets.

All three models have:

- Consistency in parameter estimation: same sign and similar magnitude between the two sets of estimated coefficients and their standard errors.
- MSPE_V based on the validation data is not much larger than SSE/n and Press/n based on the training data.

Surgical Unit: Model 1 External Validation

```
## fit model 1 on training and validation sets
> fit1=lm(log(Y)~X1+X2+X3+X8, data=data.o)
> fit1.v=lm(log(Y)~X1+X2+X3+X8, data=data.v)
## get estimates and statistics
> est1=cbind(summary(fit1)$coefficients[,1:2], summary(fit1.v)$coefficients[,1:2])
> sse1=c(anova(fit1)["Residuals".2].anova(fit1.v)["Residuals".2])
> mse1=c(anova(fit1)["Residuals".3].anova(fit1.v)["Residuals".3])
> Rs1=c(summary(fit1)$adj.r.squared, summary(fit1.v)$adj.r.squared)
> press1= c(sum(fit1$residuals^2/(1-influence(fit1)$hat)^2),
+ sum(fit1.v$residuals^2/(1-influence(fit1.v)$hat)^2))
## MSPE on validation set
> newdata=data.v[.1:8] ## validation cases for prediction
> mspe1=c('NA', mean((predict.lm(fit1, newdata)-log(data.v$Y))^2))
## display results
> temp=cbind(sse1, mse1, Rs1, press1, press1/n,mspr1)
> rownames(temp)=c("Training", "Validation")
> colnames(temp)=c("sse"."mse"."R2 a"."press"."press/n". "mspe")
> round(est1.3)
> round(temp.3)
```

Surgical Unit: Model 1 External Validation (Cont'd)

Training	V	alidation		
Estimate Std.	Error Est	imate Std.	Error	
(Intercept)	3.853	0.193	3.635	0.289
X1	0.073	0.019	0.096	0.032
X2	0.014	0.002	0.016	0.002
Х3	0.015	0.001	0.016	0.002
X8	0.353	0.077	0.186	0.096

| SSE | MSE | R2_a press press/n | mspe | Training | 2.178 | 0.044 | 0.816 | 2.736 | 0.051 | -- | Validation | 3.794 | 0.077 | 0.682 | -- | -- | 0.077 |

Surgical Unit: Model 2 External Validation

Training	V	alidation		
Estimate Std.	Error Est	imate Std.	Error	
(Intercept)	3.867	0.191	3.614	0.291
X1	0.071	0.019	0.100	0.032
X2	0.014	0.002	0.016	0.002
Х3	0.015	0.001	0.015	0.002
X6	0.087	0.058	0.073	0.079
X8	0.363	0.077	0.189	0.097

```
        sse
        mse
        R2_a
        press
        press/n
        mspe

        Training
        2.081
        0.043
        0.821
        2.782
        0.052
        --

        Validation
        3.728
        0.078
        0.682
        --
        --
        0.076
```

Surgical Unit: Model 3 External Validation

Training		Validation		
Estimate Std.	Error Es	timate Std.	Error	
(Intercept)	4.054	0.235	3.470	0.347
X1	0.072	0.019	0.099	0.032
X2	0.014	0.002	0.016	0.002
Х3	0.015	0.001	0.016	0.002
X5	-0.003	0.003	0.003	0.003
Х6	0.087	0.058	0.073	0.079
X8	0.351	0.076	0.193	0.097

```
sse mse R2_a press press/n mspe
Training 2.004 0.043 0.823 2.771 0.051 --
Validation 3.681 0.078 0.679 -- -- 0.079
```

Surgical Unit: Choice of Final Model

- MSPE_v of the three models have similar values, indicating that they have similar predictive ability.
- Model 3 has one estimated regression coefficient changing sign from training data to validation data, probably due to relatively large SE of this coefficient. So it is eliminated from further consideration.
- Models 1 and 2 perform similarly in validation. Based on the principle of parsimony, we choose Model 1 as the final model.
- Fit Model 1 on all data (*n* = 108):
 - log (Survial Time) = $3.76 + 0.084 \times$ clotting score
 - + 0.015 × prognostic index + 0.016 × enzyme score
 - + 0.265 \times *I*(severe use of alcohol).

Surgical Unit: Final Model Fitted on All Data

```
Call:
lm(formula = log(Y) \sim X1 + X2 + X3 + X8, data = rbind(data.o,
data.v))
Residuals:
         10 Median
Min
                       3Q
                                   Max
-0.60369 -0.15201 0.00977 0.13175 0.57726
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.756276   0.162825   23.069   < 2e-16 ***
X 1
           0.083744 0.016781 4.990 2.46e-06 ***
X2
           0.014988 0.001409 10.641 < 2e-16 ***
           0.015690 0.001134 13.839 < 2e-16 ***
X3
X۸
           0 265096 0 060045 4 415 2 50e-05 ***
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
Residual standard error: 0.2446 on 103 degrees of freedom
Multiple R-squared: 0.7642. Adjusted R-squared: 0.755
F-statistic: 83.45 on 4 and 103 DF, p-value: < 2.2e-16
> anova(fit1.all)
Analysis of Variance Table
Response: log(Y)
Df Sum Sq Mean Sq F value
                          Pr(>F)
X1
           1 1.0809 1.0809 18.064 4.703e-05 ***
X2
           1 6.5415 6.5415 109.322 < 2.2e-16 ***
Х3
           1 11 1859 11 1859 186 940 < 2 2e-16 ***
X8
           1 1.1663 1.1663 19.492 2.498e-05 ***
Residuals 103 6.1632 0.0598
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
```