Math 470 Assignment 18

Arnold Jiadong Yu

March 15, 2018

7.4.1. Prove that each of the following functions is analytic on ${\bf R}$ and find its Maclaurin expansion.

$$a)x^2 + \cos(2x)$$

proof: $f(x) = x^2 + \cos(2x)$ is infinity differentiable for all $x \in \mathbf{R}$ and $|f^{(n)}(x)| \leq 2^n$ where 2 > 0 and $n \in \mathbf{N}$. Also $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$, then $\cos(2x) = \sum_{k=0}^{\infty} \frac{(-1)^k (2x)^{2k}}{(2k)!}$, then

$$x^{2} + \cos(2x) = x^{2} + \sum_{k=0}^{\infty} \frac{(-1)^{k} (2x)^{2k}}{(2k)!} = x^{2} + \sum_{k=0}^{\infty} \frac{(-4)^{k} x^{2k}}{(2k)!} = 1 - x^{2} + \sum_{k=2}^{\infty} \frac{(-4)^{k} x^{2k}}{(2k)!}$$

Hence it is analytic on **R** by Theorem 7.43. b) x^23^x

proof: $f(x) = x^2 3^x$ is infinity differentiable for all $x \in \mathbf{R}$. Also $3^x = e^{x \log 3}$ and $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, then

$$3^{x} = e^{x \ln 3} = \sum_{k=0}^{\infty} \frac{x^{k} \log^{k} 3}{k!} \Rightarrow x^{2} 3^{x} = \sum_{k=0}^{\infty} \frac{x^{k+2} \log^{k} 3}{k!} = \sum_{k=2}^{\infty} \frac{x^{k} \log^{k-2} 3}{(k-2)!}$$

Hence it is analytic on \mathbf{R} by Theorem 7.46.

$$c)\cos^2 x - \sin^2 x$$

proof: By trigonometry identity, $f(x) = \cos^2 x - \sin^2 x = \cos(2x)$, and it is infinity differentiable in **R**. Moreover $|f^{(n)}(x)| \leq 2^n$ where 2 > 0 and

 $n \in \mathbf{N}$. Then

$$\cos(2x) = \sum_{k=0}^{\infty} \frac{(-1)^k (2x)^{2k}}{(2k)!} = \sum_{k=0}^{\infty} \frac{(-4)^k x^{2k}}{(2k)!}$$

Hence it is analytic on \mathbf{R} by Theorem 7.43.

$$\mathrm{d})\frac{e^x-1}{x}$$

proof: Let $f(x) = \frac{e^x - 1}{x}$ on $\mathbb{R} \setminus \{0\}$ and f(x) = 0 for x = 0. It is continuous and infinitely differentiable on \mathbb{R} . Since $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, then $e^x - 1 = \sum_{k=1}^{\infty} \frac{x^k}{k!}$. Thus

$$f(x) = \frac{e^x - 1}{x} = \frac{\sum_{k=1}^{\infty} \frac{x^k}{k!}}{x} = \sum_{k=1}^{\infty} \frac{x^{k-1}}{k!} = \sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}$$

Hence it is analytic on \mathbf{R} by Theorem 7.46.