Package 'CommonSplines'

May 12, 2018

Title Regression Spline and Smoothing Spline

Version 1.0.0 **Imports** MASS

Date 2018-05-11	
Authors Xingchen LIU <e0225109@u.nus.ed <yang_xiaozhou@icloud.c<="" aozhou="" td="" yang=""><td>u>, Yuchen SHI <yuchenshinus@gmail.com>, Xiom></yuchenshinus@gmail.com></td></e0225109@u.nus.ed>	u>, Yuchen SHI <yuchenshinus@gmail.com>, Xiom></yuchenshinus@gmail.com>
	only seen basis functions are provided such as trun- nd B-spline basis. For smoothing spline, penal-
Depends R (>= $3.3.2$)	
License Apache License 2.0	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.0.1	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
_	
-1	
_	
<i>e</i> =	
_	
ncs_train	
1 – 0	
. —	
. —	
prace_kilots	

2 bs_knots

Index 14

bs_basis

Generate an evaluated basis matrix for B-splines

Description

#' This function generates B-spline basis. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bs_basis(x, order, knots)
```

Arguments

x Predictor variable vector.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots.

Value

Basis matrix evaluated at each x value.

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)

basis<-ncs_basis(x,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots))){
   lines(x,basis[,i])
}</pre>
```

bs_knots

Add phantom knots for B-splines

Description

Add phantom knots for B-splines

Usage

```
bs_knots(x, real_knots)
```

Arguments

x Predictor variable vector.

knots The innerknots and boundary knots that define the spline. The knots can all be

innerknots.

bs_predict 3

Value

The knots used to construct the B-splines, including innerknots, boundary knots and phantom knots

bs_predict

Prediction using regression spline with B-spline basis

Description

This function provides prediction at value of interest using regression spline with B-spline basis. The B-splines are generated by the function bs_train. The return value of bs_train is required as an argument of bs_predict

Usage

```
bs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
    basis = NULL)
```

Arguments

x_test The input values at which evaluations are required.

basis The return value of function bs_train.

Value

The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0.1, 0.9, 0.01)
order<-4
basis<-bs_train(x,y,order,knots)

x_test<-seq(0, 1, 0.01)
fit<-bs_predict(x_test,basis)
plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

4 bs_train

he	train	
$\nu_{\mathcal{S}_{-}}$	_ ti aiii	

Train regression coefficients for B-splines.

Description

Train regression coefficients for B-splines.

Usage

```
bs_train(x, y, order, real_knots = NULL, df = NULL, q = FALSE)
```

Arguments

Х	The input vector of training dataset.
У	The output vector of training dataset.
order	The order of B-spline functions. The default is order=4 for cubic B-splines.
df	Degrees of freedom. One can supply df rather than knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x. Default is FALSE.
knots	The innerknots and boundary knots that define the spline. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be

seen in generate_knots.

Value

A list with the following components:

beta	The coefficients of nonparametric regression.
basis	The B-spline basis matrix of dimension $c(length(x), df)$. $df = length(innerknots) + order$.
knots	The knots used to construct the B-splines, including innerknots, boundary knots and phantom knots
order	The order of basis functions. order=degree+1

See Also

generate_knots.

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0, 1, 0.1)
order<-4
basis<-bs_train(x,y,order,knots)</pre>
plot(x,rep(0,length(x)),type="l",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
 lines(x,basis$basismatrix[,i])
}
```

cal_loo_cv_error 5

cal_loo_cv_error	cal	_loo_	_cv_	_error
------------------	-----	-------	------	--------

Calculte leave-one-out CV error

Description

Calculte leave-one-out CV error

Usage

```
cal_loo_cv_error(y, f_hat, S)
```

Arguments

y response variable values

f_hat fitted response variable values

S smoother matrix

Value

leave-one-out cross-validation error

css_predict

Prediction using smoothing spline with squared 2nd derivative penalty

Description

This function takes the coefficients trained by CubicSmoothingSpline.Train and evaluate the output at x_test

Usage

```
css_predict(basis, x_test)
```

Arguments

basis The return value of function CubicSmoothingSpline.Train.

x_test The input values at which evaluations are required.

Value

The evaluated output at x_test.

6 css_train

Examples

```
x<-seq(0, 1, 0.0015)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
lambda<-0.001
basis<-css_train(x,y,lambda)

x_test<-seq(0, 1, 0.1)
fit<-css_predict(basis,x_test)

plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

css_train

Train a smoothing spline with squared 2nd derivative penalty using natural cubic spline

Description

This function trains a smoothing spline with squared 2nd derivative penalty. It has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline. This function can be used for small or moderate number of knots. When the number of data N<=50, all knots are included. When N>50, 50 knots are uniformly chosen from the training dataset.

Usage

```
css_train(x, y, lambda)
```

Arguments

x The input vector of training dataset.
 y The output vector of training dataset.
 lambda A fixed smoothing parameter.

Value

A list with the following components:

beta The coefficients of natural splines.

S The smoother matrix.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

Examples

```
x < -seq(0, 1, 0.001)

y < -x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)

plot(x,y)

lambda < -0.001

basis < -css\_train(x,y,lambda)

cat("the knots chosen are: ",basis$knots)
```

generate_knots 7

|--|

Description

Generate knots when real value is not specified.

Usage

```
generate_knots(x_train, df, knots, q)
```

Arguments

_	
x_train	The input vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; generate_knots then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles or real valus of x . The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable define whether knots provided are quantiles or real values. When $q=TRUE$, knots provided are quantiles of x. When $q=FALSE$, knots provided are real values of x.

Value

A vector of knots in terms of real values of x.

ncs_basis	Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
ncs_basis(x, knots)
```

Arguments

x Predictor variable vector.

knots Knots location in terms of real values of x.

Value

Basis matrix evaluated at each x value.

8 ncs_train

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)

basis<-ncs_basis(x,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots))){
   lines(x,basis[,i])
}</pre>
```

ncs_predict

Prediction using regression spline with natural cubic spline.

Description

Prediction using regression spline with natural cubic spline.

Usage

```
ncs_predict(x_test, beta, knots)
```

Arguments

x_test The input values at which evaluations are required.

knots Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots.

betas Least square fit parameters obtained from training.

Value

 y_pred A vector of dimension length(x), the prediction vector evaluated at x_test values.

ncs_train

Train regression coefficients for natural cubic splines.

Description

Train regression coefficients for natural cubic splines.

Usage

```
ncs_train(x_train, y_train, df = NULL, knots = NULL, q = FALSE)
```

np_reg

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; $ncs()$ then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles of x or real values of x. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x. Default is FALSE.

Value

A list of following components:

nknots Number of knots.

knots A vector of knot locations.

N Basis matrix evaluated at each x value.

betas Least square fit parameters.

Examples

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
df <- 10
train_result <- ncs_train(x_train, y_train, df)
print(train_result$betas)
print(train_result$N[1:5,1:5])</pre>
```

np_reg

Nonparametric Regression using spline based methods

Description

This function provides regression using natural cubic splines with truncated power basis functions. Only univariate input can be used.

Usage

```
np_reg(x_train, y_train, x_test, func = "bs", order = 3, df = NULL,
knots = NULL, lambda = 0.001, q = FALSE)
```

10 pbs_basis

Arguments

x_train
 The input vector of training dataset.
 x_test
 The input values at which evaluations are required.
 Degrees of freedom. One can supply df rather than knots; (df + 1) knots are chosen at uniform quantiles of x. The default, df = 4, sets 5 knots with 3 inner knots at uniform quantiles of x.
 knots
 Breakpoints that define the spline. The default is five knots at uniform quantiles c(0, .25, .5, .75, 1). Typical values are the mean or median for one knot, quantiles for more knots.

Value

y_pred A vector of dimension length(x), the prediction vector evaluated at x_test values.

Examples

```
x_{train} \leftarrow seq(1, 10, 0.1)
y_{train} < cos(x_{train})^3 * 3 - sin(x_{train})^2 * 2 + x_{train} + exp(1) + rnorm(length(x_{train}), 0, 1)
plot(x_train,y_train)
title('Comparison of Different Degrees of Freedom')
x_{\text{test}} < - \text{seq}(1, 10, 0.1)
lines(x_test,cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1),col="red")
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='blue')
df <- 4
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='green')
df <- 10
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='black')
legends <- c("Actual", "Prediction: 2 df", "Prediction: 4 df", "Prediction: 10 df")</pre>
legend('topleft', legend=legends, col=c('red', 'blue', 'green', 'black'), lty=1, cex=0.8)
```

pbs_basis	Evaluate basis functions as each x and return the evaluated basis ma-
	trix N

Description

Evaluate basis functions as each x and return the evaluated basis matrix N

Usage

```
pbs_basis(x, order, knots)
```

pbs_train 11

Arguments

x Predictor variable vector.

order The order that defines the power basis spline.

knots The innerknots and boundary knots that define the spline. The knots should be

real values of x. The knots can be generated by generate_knots.

Value

Basis matrix evaluated at each x value.

See Also

generate_knots.

s_train Regression using Power Basis spline

Description

This function provides regressions using Power Basis splines. The basis are defined as $1,x,x^2,...,x^m,(x-k1)^m(m-1)+,(x-k2)^m(m-1)+,...,(x-kn)^m(m-1)+$ where m is the order, k1, k2 and kn are n knots, '+' denotes the positive part.

Usage

```
pbs_train(x, y, order, df = NULL, knots = NULL, q = FALSE)
```

Arguments

X	The input vector of training dataset.
У	The output vector of training dataset.
order	The order that defines the spline.
df	Degrees of freedom. One can supply df rather than knots.
knots	The innerknots and boundary knots that define the spline. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in <code>generate_knots</code> .
q	A boolean variable define whether knots provided are quantiles or real values. When $q=TRUE$, knots provided are quantiles of x. When $q=FALSE$, knots provided are real values of x. Default is FALSE.
x_test	The input values at which evaluations are required.

Details

Only univariate input can be used.

12 place_knots

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The spline basis matrix of dimension c(length(x), length(knots)+order)

f The evaluated output at x_test.

See Also

```
generate_knots.
```

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots)
fit<-pbs_predict(t,basis=basis)
y.hat <- fit
plot(t, y1, t="1")
lines(t, y.hat, col=2)</pre>
```

place_knots

Find evenly spaced knots by quantile

Description

Knots found include boundary knots at 0th and 100th quantile.

Usage

```
place_knots(nknots, x)
```

Arguments

nknots Number of knots to be located.

x Data vector on which knots are placed.

Value

A named vector with knot quantiles and values.

sel_smoothing_para 13

sel_smoothing_para

Select smoothing parameter based on leave-one-out CV error

Description

Select smoothing parameter based on leave-one-out CV error

Usage

```
sel_smoothing_para(x, y, cv_lambda)
```

Arguments

x predictor variabley response variable

cv_lambda vector of candidate lambda values

Value

lamdba value that minimizes leave-one-out CV error

Index

```
bs_basis, 2
bs\_knots, \textcolor{red}{2}
bs_predict, 3
bs_train, 4
cal_loo_cv_error, 5
css_predict, 5
\mathsf{ncs\_basis}, 7
\verb|ncs_predict|, 8
\mathsf{ncs\_train}, 8
np\_reg, 9
{\tt pbs\_basis}, {\tt 10}
pbs_train, 11
\verb|place_knots|, 12
sel\_smoothing\_para, 13
```