

V1.5 June 26, 2018

POWERBUS[™] 总线收发器

Check for Samples: PB331

特性

- 总线可供电,通讯和供电无需电气隔离
- 总线抗干扰能力强,可与市电并走
- 可同时挂接256个设备
- 通讯距离可达3000m
- 支持无极性布线
- 支持任意拓扑布线: 树形, 星形, 总线型
- 无特殊线缆要求
- 最大总线电压可达48V
- 透明串口协议,可兼容原RS485系统
- 自适应9600bps和2400bps半双工通讯
- 低成本的解决方案
- 可隔离设计又可非隔离设计,保证电磁兼容特 性

应用

- 消防监控
- 智能楼宇
- 集中抄表
- 智能照明
- 传感器网络
- 自动化控制

描述

PB331是POWERBUS™技术的从站通讯芯片。

POWERBUS属于低压供电总线技术。通过在供电电缆上调制控制信号,替代了传统分离的控制电缆和供电电缆并大幅度提高通讯稳定性。

POWERBUS采用电压发送,电流信号回传的方式,提供了高通讯抗干扰能力。

PB331能适应现场使用的各种线材并实现远距离通讯的功能。电缆可以总线型、树型或星型等任意方式铺设,极大方便施工布线,并且可以防止错接发生,简化施工维护。

PB331可通过POWERBUS总线,满足设备供电和通讯的需求。

www.powerbus.com.cn Rev.1.5 Jun,2018

历史修订记录 (†)

Re	v.1.5 Jun,2018	页码
•	更新典型应用电路。R3从100Ω改成68Ω,合理增加信号发射功率。	6
•	更新典型应用电路。去掉EMC电容。	<i>6</i>
•	典型应用电路中输入构架优化,增加US1M可选ES1D,更低压降。	6

† NOTE: 以前版本的页码可能与当前版本的页码不同。

Rev.1.5 Jun,2018

www.nowerbus.com.cn

绝对最大值 ^(†)

表 1.

参数	范围
Vcc至 GND电压	-0.3V ~ 6.0V
TX,RX,PI,PO	-0.3V ~ Vcc+0.3V
储存温度	−65°C to +150°C
工作温度	−40°C to +85°C
焊接温度(引脚,10秒)	220°C
ESD额定值(HBM)	4KV
ESD额定值 (CDM)	2KV
ESD额定值 (MM)	400V

† 注:如果器件工作条件超过上述"绝对最大值",可能引起器件 永久性损坏。这仅是极限参数,我们不建议器件在极限值或超过 上述极限值的条件下工作。器件长时间工作在极限条件下可能会 影响其可靠性。

引脚排列

图1 引脚排列

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高 能量ESD时,器件可能会损坏。因此,应当采取适当 的ESD防范措施,以避免器件性能下降或功能丧失。

表2. 引脚功能描述

PB331 — Jun 2018

引脚编号	引脚名称	说明
1	VCC	电源供电正
2	TX	串行发送。接至MCU的RX
3	RX	串行接收。接至MCU的TX
4	NC	无连接
5	PO	POWERBUS信号输出
6	PI	POWERBUS信号输入
7	NC	无连接
8	GND	电源供电负

版权 © 2013, 北京强联通讯技术有限公司

技术规格

除非另有说明,-40℃≤TA≤+85℃,所有所有电压测量都是相对GND。

表 3.

参数		测试条件	最小值	典型值	最大值	单位
一般DC规格						
Vcc	供电输入	引脚 Vcc	2.7		5.5	V
lcc	静态工作电流	VCC = 3.3V, 无数据通讯			8.0	mA
		VCC = 5V,无数据通讯			1.2	mA
串口DC规格						
VIL	RX 低电平逻辑电压	2.7 ≤ Vcc ≤ 5.5			0.2Vcc	V
VIH	RX 高电平逻辑电压	2.7 ≤ Vcc ≤ 5.5	0.6 Vcc			V
Vol	TX 低电平逻辑电压	$I_{TX} = 1.1 \text{ mA}$			0.6	V
Vон	TX 高电平逻辑电压	$I_{TX} = 1.1 \text{ mA}$	Vcc - 0.7			V
串口定时规模	各					
Ton	 上电延迟 ⁽¹⁾		2		20	mS
Tbit	1bit的通讯时间	9600bps	100	104	108	uS
	(2)	2400bps	410	416	428	uS
$T_{d(TX)}$	发送延时 (2)				11*Tbit	uS
$T_{d(RX)}$	接收延时 ⁽²⁾				11*Tbit	uS

- (1) 从上电开始器件到正常工作的延时。
- (2) 由于数据转发缓冲产生的延时,在连续发送或接收时,总延时不变。

UART 通讯接口

PB331波特率根据主机设置自适应9600bps和2400bps。

接收和发送自适应支持8位9位数据方式,第9位可以是数据位、校验位、地址位。

8位串口数据:起始位+8位数据位+停止位

9位串口数据:起始位+8位数据位+第9位数据位+停止位

版权 © 2013, 北京强联通讯技术有限公司

www.powerbus.com.cn

应用信息

负载的电源供给

负载电源可以从图6的DCS端口处取得,可将此端口电 压当做普通DC直流供电线使用,进行降压供给低压系 统,或用于负载带载。

注意:不可将负载直接跨接在二总线上,这将会造 成主站检测到短路进行保护动作。

负载要求

POWERBUS总线是智能低压供电二总线,负载可以是 任意负载:阻性,感性。负载可以是;电动机、步进 电机、电热执行器、继电器、高功率LED。负载电流动 态变化,不会影响通讯。

图4 直流负载连接

PB331供电

PB331为宽供电范围,可以使用LDO或DC/DC降压器。 可以与MCU共用供电系统。

供电电源可以从总线提供,也可以从备电电池或者其 他外部市电降压供电。

FUSE作用与从站短路保护

图6中FUSE可以是可恢复保险丝PPTC,也可以是电阻。 作用为防止短路和减少上电冲击。若从站损坏变成短 路状态时, FUSE可以使此从站从总线脱离, 而不影响 总线和其他从站。主站可以通过巡检检测到此故障。 可选器件, 如不需要可以省略。

定负载

对于不需要通讯的线上定负载,如风机,常亮指示等 ,可以使用图5电路:

图5 定负载无极性应用

版权 © 2013, 北京强联通讯技术有限公司

PB331 — Jun 2018

www.powerbus.com.cn

图6 PB331 基本应用电路

C1选择与DCS输出纹波情况

图6中C1为供电输出稳压电容,此电容位于DCS端口处,可根据负载电流选择C1值。突发电流时,DSC也遵循表5的参数。此纹波大小并不影响通讯,但不要使DCS对地电压低于10V。C1可以是电解电容,钽电容,陶瓷电容。

表4. C1容量选择

负载电流 (1)	DCS处纹波 ⁽²⁾										
贝 敦电流	10uF	22uF	33uF	47uF	100uF	220uF	470uF	1000uF			
10mA	400mV	250mV	170mV	100mV	40mV	不可测	不可测	不可测			
50mA	2000mV	1100mV	600mV	400mV	180mV	90mV	50mV	20mV			
100mA	4000mV	2000mV	1200mV	800mV	350mV	200mV	100mV	50mV			
200mA		3000mV	2200mV	1600mV	700mV	350mV	200mV	100mV			
300mA		5000mV	3500mV	2500mV	1300mV	600mV	300mV	150mV			
500mA			5000mV	3800mV	2000mV	900mV	450mV	250mV			
1000mA				7800mV	4000mV	2000mV	1000mV	500mV			

⁽¹⁾ 持续负载电流。

POWERBUS总线工作电压

PowerBUS最低工作电压需要总线峰值电压在12V以上。请选择合适的主站电压,保证经过传输线后远端从站接口电压峰值大于等于12V即可。

版权 © 2013, 北京强联通讯技术有限公司

www.powerbus.com.cn

⁽²⁾ 此值仅与负载电流有关,跟总线所用电压无关。

应用信息

隔离设计与其他供电系统

如果从站负载使用其他接地回路供电,如市电。可使用图7所示电路。 相对RS485的隔离应用,此电路无需使用DC/DC隔离模块,光耦侧供电可由总线提供。

图7 PB331隔离设计应用电路

从站设备电池备电

版权 © 2013, 北京强联通讯技术有限公司

如从站使用电池作为备电,可使用图8拓扑,从站的供电既可以来自总线也可以来自电池。可以自行设计供电切换路径和切换条件,控制电池供电与总线供电。

图8 从站备电电路拓扑

PB331 — Jun 2018 PB331 Product data sheet

vw.powerbus.com.cn Rev.1.5 Jun,2018

应用信息

与其他电源系统共地时

版权 © 2013, 北京强联通讯技术有限公司

在实际应用中,可能会碰到需要与其他外接供电系统配接的需求。如RS485接口,AC降压供电系统。 POWERBUS总线采用电流环技术,接入其他供电系统将造成地电位差,造成通讯误码,在这种应用条件下必须将DCS 总线供电输出地与其共地。

此应用需求,可以通过图9所示电路满足:

*注: MOSFET应选择低开启门限(VGS(th))的功率MOSFET。 推荐型号: AO4828、ME4046、FDS9945、IRF7341

图9 无极性共地桥电路

将典型应用图6中的整流桥部分,如左图,替换为右图中的电路。通过MOSFET低导通的特性,将两个地系统连接起来即可实现与其他接地回路配接,并保留无极性特性。

PB331 — Jun 2018 PB331 Product data sheet

外形尺寸及推荐LAYOUT板图

8引脚塑封SOIC

- 注: 1.引脚1的标注方式可能不同,但必须在阴影区域内 2.所有的数据单位都是毫米 3.尺寸C和D不包括塑模毛边或突起。塑模每侧的毛边或突起不超过0.15毫米

推荐的焊盘布局

TAPE AND REEL INFORMATION

Reel Diameter Reel Width (W1)

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	•	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PB331	SOIC	D	8	3000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

版权 © 2013, 北京强联通讯技术有限公司

PB331 — Jun 2018

*All dimensions are nominal

Device	Package Type	Package Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
PB331	SOIC	D	8	3000	367.0	367.0	35.0	