				ପ୍ରଶ୍ନାବଳୀ	Life Control	
1.	ଜୀବମାନଙ୍କୁ ଶ୍ରେଣୀବିଭକ୍ତ କରିବାଦ୍ୱାରା କ'ଶ ଉପକାର ମିଳେ ?					
2.	ଏକ ଶ୍ରେଣୀବିଭାଗରେ କିପରି ଦୂଇଟି					
3.	ପାଞ୍ଚଜଗତ ଶ୍ରେଣୀବିଭାଗର ଜୀବମାନଙ୍କୁ କିପରି ଗୋଷୀଭୁକ୍ତ କରାଯାଏ, ତାହାର ଧାରା ବର୍ତ୍ତନା କର ।					
4.	ପ୍ଲାଷ୍ଟି (Plantae)ର ମୁଖ୍ୟ ବିଭାଗ ଗୁଡ଼ିକ କ'ଣ ?					
5.	ଉଦ୍ଭିଦର ବିଭକ୍ତିକରଣ ଓ ପ୍ରାଣୀର ବିଭକ୍ତିକରଣ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ ଦର୍ଶାଅ ।					
6.	ଭର୍ଟିବ୍ରାଟ। ପ୍ରାଣୀମାନଙ୍କ ଶ୍ରେଣୀବିଭାଗ ଲେଖ ।					
7.	କେଉଁ ପ୍ରାଣୀମାନଙ୍କ ଦ୍ୱିପାର୍ଶ୍ୱ ପ୍ରତିସାମ୍ୟ (Bilateral symmetry) ରହିଅଛି ତାର ତାଲିକା କର ।					
8.	ନିମ୍ନପ୍ରଶ୍ମରେ ଥିବା ଚାରିଗୋଟି ଉତ୍ତର ମଧ୍ୟରୁ ସଠିକ୍ ଉତ୍ତରଟି ବାଛି ଲେଖ ।					
	(କ) ଶ୍ରେଶୀବିଭାଗ ବିଜ୍ଞାନ (Taxonomy)ର ଜନକ କିଏ ?					
		(i)	କାର୍ଲ ଲିନିୟସ୍	(ii)	ଚାର୍ଲିସ ଡାରଉଇନ୍	
		(iii)	ଏର୍ଣ୍ଣଷ୍ଟ ହ୍ୟାକେଲ୍	(iv)	କାର୍ଲିଭନ୍	
	(ଖ)	କେଉଁ	ଗୋଷୀରେ ସର୍ବାଧିକ	ପ୍ରାଶୀ ଅନ୍ତର୍ଭୁକ୍ତ ?		
		(i)	ମୋଲୁୟା	(ii)	ଏନିଲିଡ଼ା	
		(iii)	ଆରଥ୍ରୋପଡ଼ା	(iv)	ନିମାଟୋଡା	
	(ଗ) ମନୁଷ୍ୟର ବୈଜ୍ଞାନିକନାମର ଜିନସ୍ଟି କ'ଣ ?					
		(i)	ହୋମୋ	(ii)	ମ୍ୟାନ୍	
		(iii)	ସାପିଏନ୍	(iv)	ଇରେକ୍ସ୍	
	(ଘ) ମଟର ଗଛର ବୈଜ୍ଞାନିକ ନାମର ସ୍ୱିସିସ୍ଟି କ'ଣ ?					
		(i)	ପାଇସମ୍	(ii)	ଓରାଇକା	
		(iii)	ଭାଇଭାକ୍ୱ	(iv)	ସାଟିଭମ୍	
	(ଡ଼)	କେଉଁ	ଟି ପ୍ଲାଣ୍ଣିର ଅନ୍ତର୍ଭୁକ୍ତ			
		(i)	ଆଞ୍ଜିଓସ୍କର୍ମି	(ii)	ଏକାଇନୋଡର୍ମାଟା	
		(iii)	ହୁକଓ୍ୱାର୍ମି	(iv)	ପୋରିଫେରା	
9.	ଗୋଟି	ଏ ବାକ	୍ୟରେ ଉତ୍ତର ଦିଅ।			
	(କ) ଜୈବ ବିବିଧତା (ଖ) ସହଜୀବୀତା				(ଗ) ବାଇନୋମିଅଲ	ନୋମେନ୍କ୍ଲେଚର
	(ଘ) ଲାଇକେନ୍ (ଙ) କ୍ରିପଟୋଗାମ୍ସ					
10. ବି	ନ୍ଧିପ୍ତ ଜ	୍ଧାତି କହି	ଲେ କ'ଣ ବୁଝ ?			
	-	_	ଅ ପରି ଖାଦ୍ୟ ସଂଗ୍ରହ କ	ରେ ?		
12. ల	।ସୁରକ୍ଷିପ	ତ ଓ ଦୁଳ	ର୍ରାଡିର ଜୀବଙ୍କ ମ	ାଧ୍ୟରେ ମୌଳିକ ପ୍ରାର୍ଥକ୍ୟ	ଦର୍ଶାଅ ?	

ଦ୍ୱିତୀୟ ଅଧ୍ୟାୟ

ଜୀବକୋଷର ଆକାର, ସଂଗଠନ ଓ କାର୍ଯ୍ୟକାରିତ। ସମ୍ପନ୍ଧରେ ଆଲୋଚନା କଲାବେଳେ ଆମ ମନରେ ସ୍ୱତଃ ପ୍ରଶ୍ନ ଉଠେ ''ଜୀବ କୋଷ ଗୁଡ଼ିକ ଦେଖିବାକୁ କିପରି ?'' ଏହାର ରହସ୍ୟ ଜାଣିବାପାଇଁ ପ୍ରଥମେ 1665 ମସିହାରେ ରବର୍ଟ ହୁକ୍ (Robert Hooke) ନାମକ ଜଣେ ବୈଜ୍ଞାନିକ ଏକ କର୍କ (Cork) ର ପତଳା ଖଣ୍ଡକୁ ନେଇ ନିଜ ତିଆରି ଏକ ସରଳ ଅଣୁବୀକ୍ଷଣ ସାହାଯ୍ୟରେ ଅନୁଧାନ କରିଥିଲେ । ସେଥିରେ ସେ ଗୋଟିଏ ମହୁଫେଣାରେ ଥିବା ଛୋଟ ଛୋଟ କୋଠରୀ ସଦୃଶ୍ୟ ଅନେକ କୋଠରୀ ଥିବା ଲକ୍ଷ୍ୟ କରିଥିଲେ ଓ ସେହି କୋଠରୀଗୁଡ଼ିକକୁ ସେ ''କୋଷ'' ବୋଲି ନାମିତ କରିଥିଲେ ।

ତୁମେ ଗୋଟିଏ ପିଆଜର ଏକ ପତଳା ଆବରଣ ବାହାର କରି ଅଣୁବୀକ୍ଷଣ ସାହାଯ୍ୟରେ ଅନୁଧ୍ୟାନ କର । ସେଥିରେ ପ୍ରାୟ ଏକ ପ୍ରକାର ଓ ଏକ ଆକୃତି (Structure)ର ଅନେକ କୋଠରୀ ଦେଖିବାକୁ ମିଳିବ ଯାହାଦ୍ୱାରା ପୂରା ପିଆଜଟି ଗଠିତ । ପିଆଜର ପତଳା ଆବରଣରେ ଥିବା ସେହି ଏକ ପ୍ରକାର ଓ ଆକୃତିର କୋଠରୀଗୁଡ଼ିକୁ କୋଷ କୁହାଯାଏ । ପରବର୍ତ୍ତୀ ସମୟରେ 1831 ମସିହାରେ ରବର୍ଟ ବ୍ରାଉନ୍ଙ ଦ୍ୱାରା ନ୍ୟଷ୍ଟି (Nucleus), 1839 ମସିହାରେ ପୁରୁକିନ୍କୀଙ୍କ ଦ୍ୱାରା ଆଦିଜୀବକ (Protoplast) ଆବିଷ୍କୃତ ହୋଇଥିଲା । ଏ

ସବୁକୁ ଆଧାରକରି 1839 ମସିହାରେ ସିଲଡନ୍ ଓ ସ୍ୱାନ୍ (Scheliden and Schwann) "କୋଷ ସିଦ୍ଧାନ୍ତ" (Cell Theory) ବର୍ତ୍ତନା କରିଥିଲେ । ପୁଣି 1855 ମସିହାରେ ଭିରଟୋ (Virchow) କହିଥିଲେ ଯେ ''କୋଷ ବିଭାଜନକ୍ଷମ ଓ ନୂତନ କୋଷର ସୃଷ୍ଟି ସର୍ବଦା ଏକ ପୂର୍ବିକୋଷରୁ ସୟବ ହୋଇଥାଏ ।''

ଆମ ଜୀବଜଗତରେ ଭାଇରସ, ବାକ୍ଟେରିଆ, ଆଦିଜୀବ, ଶୈବାଳ ଆଦି ଅନେକ ପ୍ରକାରର ଅଣୁଜୀବ ଏବଂ ଉଦ୍ଭିଦ ଓ ପ୍ରାଣୀ ଦେଖାଯାଆନ୍ତି । ଏମାନଙ୍କ ମଧ୍ୟରୁ ବାକ୍ଟେରିଆ, ନୀଳହରିତ୍ ଶୈବାଳ ଓ ଆଦିପ୍ରାଣୀ ଇତ୍ୟାଦି ଅଣୁଜୀବମାନଙ୍କ ଶରୀର ଗୋଟିଏ କୋଷରେ ଗଠିତହୋଇଥିବା ବେଳେ ଉଦ୍ଭିଦ ଓ ପ୍ରାଣୀମାନଙ୍କର ଶରୀର ବହୁକୋଷ ବିଶିଷ ହୋଇଥାଏ । ଏକକୋଷ ବିଶିଷ ଜୀବମାନଙ୍କୁ ଏକକୋଷୀ ଜୀବ (Unicellular Organism) ଓ ବହୁକୋଷ ବିଶିଷ ଜୀବମାନଙ୍କୁ ବହୁକୋଷୀ ଜୀବ (Multicellular Organism) କୁହାଯାଏ । ଏମିବା ଭଳି ଏକକୋଷୀ ଜୀବମାନଙ୍କର ସମୟ ଜୀବନ ପ୍ରକ୍ରିୟା (Life Processes) ଯଥା : ପରିପାକ (Digestion) ଶ୍ୱାସକ୍ରିୟା, (Respiration), ରେଚନ (Excretion), ବୃଦ୍ଧି (Growth) ଓ ପ୍ରଜନନ (Reproduction) ଆଦି କେବଳ ଗୋଟିଏ କୋଷ ମଧ୍ୟରେ ସମାହିତ ହୋଇଥିବା ବେଳେ ବହୁକୋଷୀ

ଜୀବମାନଙ୍କର ଜୀବନ ପ୍ରକ୍ରିୟା ସେମାନଙ୍କ ଶରୀରରେ ଥିବା ଏକାଧିକ ସ୍ୱତଃ ଧରଣର କୋଷରେ ତିଆରି ଭିନ୍ନ ଭିନ୍ନ ଟିସୁ (Tissue) ଓ ଅଙ୍ଗପ୍ରତ୍ୟଙ୍ଗ ଦ୍ୱାରା ସମାହିତ ହୋଇଥାଏ । ଏହି କୋଷମାନଙ୍କର ଗଠନ ଓ କାର୍ଯ୍ୟ ସୟନ୍ଧରେ ତୁମେମାନେ ଅଷ୍ଟମ ଶ୍ରେଣୀରେ ସମ୍ୟକ୍ ଜ୍ଞାନ ପାଇଥିଲ । ବର୍ତ୍ତମାନ ଆସ ସେହି ବିଷୟରେ ଅଧିକ ଆଲୋଚନା କରିବା ।

2.1. ଜୀବର ମୌଳିକ ଏକକ : କୋଷ

ଯେ କୌଣସି ଏକ ଜୀବନ୍ତ କୋଷକୁ ଅନୁଧାନ କଲେ ଜଣାଯାଏ ଯେ ପ୍ରତ୍ୟେକ କୋଷର ଜୀବନଧାରଣ କରିବା କ୍ଷମତା ସହିତ ସମୟ ଜୀବନ ପ୍ରକ୍ରିୟାକୁ ସୂଚାର ରୂପେ ସମାପନ କରିବା କ୍ଷମତା ସେଥିରେ ଅର୍ନ୍ଧନିହିତ ହୋଇ ରହିଅଛି। ଏଣୁ କୋଷକୁ "ଜୀବନର ମୌଳିକ ଏକକ'' (Unit of Life) କୁହାଯାଇଥାଏ । ଉଭୟ କ୍ଷେତ୍ରରେ ଉଦ୍ଦେଶ୍ୟ ସମାନ ହେଲେ ମଧ୍ୟ ଏକକୋଷୀ ଓ ବହୁକୋଷୀ ଜୀବକୋଷରେ ଘଟୁଥିବା ଜୀବନ ପକ୍ରିୟାଗୁଡ଼ିକ ମଧ୍ୟରେ କେତେକ ସମାନତା ଓ ପାର୍ଥକ୍ୟ ଦେଖାଯାଇଥାଏ। ବହୁକୋଷୀ ଜୀବମାନଙ୍କର ବିଭିନ୍ନ ଜୀବନ ପୁକ୍ରିୟା ସଂପାଦନରେ କାର୍ଯ୍ୟ ବିଭାଜନ (Division of Labour) ରହିଥିବା ଯୋଗୁଁ ଗୋଟିଏ ନିର୍ଦ୍ଦିଷ କାର୍ଯ୍ୟରେ ଦକ୍ଷତା ପାଇଁ କୋଷଗୁଡ଼ିକର ଆକାର ଓ କାର୍ଯ୍ୟଶୈଳୀରେ ପରିବର୍ତ୍ତନ ଦେଖାଯାଇଥାଏ। ଉଦାହରଣ ସ୍ୱରୂପ, ମାଂସପେଶୀ କୋଷ (Muscle Cell) ଓ ସ୍ନାୟୁକୋଷ (Nerve Cell) କୁ ଅନୁଧାନ କଲେ ଜଣାଯାଏ ଯେ କୋଷ ଦୁଇଟି ଯଥାକ୍ରମେ ଚଳପ୍ରଚଳ ହେବା ଓ ସ୍ୱାୟବିକ ଆବେଗ (Nerve Impulse) ସଞ୍ଚରଣ କରିବା ପାଇଁ ନିୟୋଜିତ ହୋଇଥିବାରୁ ସେଗୁଡ଼ିକର ଆକାର ଓ କାର୍ଯ୍ୟଧାରାରେ ପାର୍ଥକ୍ୟ ଦେଖାଯାଏ । ଅର୍ଥାତ୍ ବହୁକୋଷୀ ଶରୀରର ଭିନ୍ନ ଭିନ୍ନ କୋଷ ଭିନ୍ନ ଭିନ୍ନ କାର୍ଯ୍ୟ ସଂପାଦନ କରିଥାନ୍ତି। ଅପର ପକ୍ଷରେ, ଜୀବନର ସମୟ ପ୍ରକ୍ରିୟାକୁ ଏକକୋଷୀ ଜୀବଟିଏ ତାହାର ସେହି ଏକକ କୋଷ ଦ୍ୱାରା ସମ୍ପାଦିତ କରିଥାଏ। ବାଞ୍ଚବରେ କାର୍ଯ୍ୟ ବିଭାଜନର ଧାରାଟି

ଗୋଟିଏ କୋଷ ଭିତରେ ରହିଥିବା ମଧ୍ୟ ପରିଲକ୍ଷିତ କରାଯାଏ । କାରଣ ପତ୍ୟେକ କୋଷ ଭିତରେ କୋଷ ଆବରଣ ବା କୋଷ ଝିଲ୍ଲୀ ଦ୍ୱାରା ଆବୃତ ଛୋଟବଡ଼ ଥଳି, ନଳୀ ଓ ଜାଲିକା ଆକୃତିର କୋଷ ଅଙ୍ଗିକା (Cell Organelle) ରହିଥାଏ । (ଚିତ୍ର 2.1 ଓ 2.2) କୋଷ ଭିତରେ ଏହି କୋଷ ଅଙ୍ଗିକାମାନଙ୍କର ସଂଖ୍ୟା, ଆକାର, ପ୍ରକାର ଏବଂ କାର୍ଯ୍ୟଧାରା ଗୋଟିଏ ଠାରୁ ଅନ୍ୟଟିର ଅଲଗା। କିନ୍ତୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ କୋଷ ଅଙ୍ଗିକା ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ କାର୍ଯ୍ୟ ସମ୍ପାଦନ କରିଥାଏ । ଯେପରିକି ହରିତ୍ ଲବକ (Chloroplast) ଦ୍ୱାରା ଖାଦ୍ୟ ପୃୟୁତିକରଣ, ରାଇବୋଜୋମ୍ ଦ୍ୱାରା ପୁଷ୍ଟିସାର ସଂଶ୍ଳେଷଣ ଇତ୍ୟାଦି କାର୍ଯ୍ୟ ସମାପନ କରିବା ସମ୍ଭବ ହୋଇଥାଏ । ଏହି ସମୟ ଅଙ୍ଗିକାର ସମାହାରରେ ଗଠିତ ମୌଳିକ ଏକକଟି 'କୋଷ' ନାମରେ ପରିଚିତ । ଏଣ୍ଡ, କୋଷ ହିଁ ଜୀବନର ମୂଳ ଆଧାର ଓ ଜୀବର ସମୟ କ୍ରିୟା-ପ୍ରକ୍ରିୟାର ମୌଳିକ ଏକକ ।

ଜୈବ ବିବର୍ତ୍ତନବାଦୀଙ୍କ ମତ ଅନୁସାରେ କୋଷକୁ ଦୁଇ ଶ୍ରେଣୀରେ ବିଭକ୍ତ କରାଯାଇଥାଏ । ଯଥା- ପ୍ରାକ୍-ନ୍ୟଷ୍ଟିୟ କୋଷ (Prokaryotic Cell) ଓ ସ୍ଥନ୍ୟଷ୍ଟିୟ କୋଷ (Eukaryotic Cell) । ବାକ୍ଟେରିଆ, ନୀଳହରିତ୍ ଶୈବାଳ ଆଦି ମାନଙ୍କର ପ୍ରାକ୍ନ୍ୟଷିୟ କୋଷ ହୋଇଥିବାବେଳେ, ଏକକୋଷୀ ଆଦିପ୍ରାଣୀ (Protozoa) ଠାରୁ ଆରୟ କରି ବହୁକୋଷୀ କବକ, ଉଦ୍ଭିଦ ଓ ପ୍ରାଣୀମାନଙ୍କର କୋଷ ସୁନ୍ୟଷ୍ଟିୟ ଶ୍ରେଣୀର ଅନ୍ତର୍ଭୁକ୍ତ । ଏହି ଦୁଇ ପ୍ରକାର କୋଷର ଆକାର, ଗଠନ ଓ କାର୍ଯ୍ୟ ମଧ୍ୟରେ ଅନେକ ପାର୍ଥିକ୍ୟ ରହିଥାଏ (ସାରଣୀ-2.1)। ପ୍ରଥମେ ଜୀବନର ବିବର୍ତ୍ତନ ସମୟରେ ପ୍ରାକ୍ନ୍ୟଷ୍ଟିୟ କୋଷର ସୃଷ୍ଟି ହୋଇ ପରେ ସୁନ୍ୟଷ୍ଟିୟ କୋଷର ଉତ୍ପତ୍ତି ଘଟିଥିଲା । ଯଦି ଗୋଟିଏ ସୁନ୍ୟଞ୍ଜିୟ କୋଷକୁ ଅଣୁବୀକ୍ଷଣ ସାହାଯ୍ୟରେ ଦେଖାଯାଏ, ତେବେ ପ୍ରତ୍ୟେକ କୋଷରେ ଆମେ ମୁଖ୍ୟତଃ ୩ଟି ଅଂଶ ଲକ୍ଷ୍ୟ କରି ପାରିବା, ଯଥା-କୋଷ ଝିଲ୍ଲୀ (Plasma Membrane), କୋଷ ଜୀବକ (Cytoplasm) ଓ ନ୍ୟର୍ଷି (Nucleus) l

ଚିତ୍ର - 2.1 ଉଦ୍ଭିଦ କୋଷ

2.1.1 କୋଷ ଝିଲ୍ଲୀ (Plasma Membrane) :

କୋଷ ଭିତରେ ଥିବା କୋଷର ବିଭିନ୍ନ ଉପାଦାନକୁ ଆବୃତ କରି ରଖିଥିବା ଆବରଣଟିକୁ କୋଷ ଝିଲ୍ଲୀ (Plasma Membrane) କୁହାଯାଏ । ଏହା ଛିଦ୍ରଯୁକ୍ତ । କୋଷସହ ଜଡ଼ିତ ବିଭିନ୍ନ ପଦାର୍ଥର ଆଦାନ ପ୍ରଦାନ ପାଇଁ କୋଷ ଝିଲ୍ଲୀ ଏକ ମାଧ୍ୟମ ଭାବରେ କାର୍ଯ୍ୟ କରିଥାଏ । ତେଣ୍ଡ କୋଷ ଝିଲ୍ଲୀ ଦେଇ କୋଷ ଭିତରକୁ ଓ ବାହାରକ ସମୟ ପଦାର୍ଥ ୟାତାୟତ କରିପାରେ ନାହିଁ। କେବଳ କେତେକ ନିର୍ଦ୍ଦିଷ ପଦାର୍ଥର କୋଷ ଭିତରକ ଯିବା ଓ ବାହାରକୁ ଆସିବା ସମ୍ଭବ ହୋଇଥାଏ । ତେଣୁ କୋଷ ଝିଲ୍ଲୀକୁ ଏକ ଅର୍ଦ୍ଧ ପାରଗମ୍ୟ ଝିଲ୍ଲୀ (Semi Permeable Membrane 91 Selectively Permeable Membrane) କୁହାଯାଏ । କୋଷ ଝିଲ୍ଲୀ ମାଧ୍ୟମରେ ବିଭିନ୍ନ ପଦାର୍ଥର ଯାତାୟତ, ସାଧାରଣତଃ ବିସରଣ (Diffusion), ପରାସରଣ (Osmosis) ଓ ସକ୍ରିୟ ପରିବହନ (Active Transport) ପ୍ରକ୍ରିୟା ହାରା ସମ୍ପାଦିତ ହୋଇଥାଏ । ଉଦାହରଣ ସ୍ୱରୂପ; କୋଷୀୟ ବିପାକ (Cellular Metabolism) ପ୍ରକ୍ରିୟା ଦ୍ୱାରା ନିର୍ଗତ ଅଙ୍ଗାରକାମ୍ଲ (CO,) ଗ୍ୟାସର (Concentration) କୋଷ ଭିତରେ ଅଧିକ । କିନ୍ତୁ କୋଷ ବାହାରେ ଏହି ଗ୍ୟାସର ମାତ୍ରା କମ୍ ଥାଏ । କୋଷ ବାହାରେ ଓ କୋଷ ଭିତରେ ଥିବା ଏହି ଗ୍ୟାସର ସାନ୍ଦ୍ରତାର ପାର୍ଥକ୍ୟ ହେତୃ ବିସରଣ ପ୍ରକ୍ରିୟାଦ୍ୱାରା କୋଷରୁ ଅଙ୍ଗାରକାମ୍ଲ ଗ୍ୟାସ ନିର୍ଗତ ହୋଇ କୋଷ ବାହାରକୁ ଚାଲିଯାଇଥାଏ । ସେହିପରି ଅମ୍ଲୁଜାନ (O୍ର) ଗ୍ୟାସର ର ପରିମାଣ କୋଷ ଭିତର ଅପେକ୍ଷା କୋଷର ବାହାରପଟେ ଅଧିକା ଥିବାରୁ ଅମ୍ଳଜାନ କୋଷ ବାହାରୁ କୋଷ ଭିତରକୁ

ବିସରଣ ପ୍ରକ୍ରିୟାରେ ଆସିଥାଏ । ଅତଏବ, କୋଷର ଏହି ଗ୍ୟାସୀୟ ଆଦାନପ୍ରଦାନରେ ବିସରଣ ପ୍ରକ୍ରିୟା ଏକ ପ୍ରମୁଖ ଭୂମିକା ଗ୍ରହଣ କରିଥାଏ । ଗ୍ୟାସୀୟ ପଦାର୍ଥଭଳି କଳ ମଧ୍ୟ ଏହି ବିସରଣ ନିୟମକୁ ମାନିଥାଏ । ତେବେ କୋଷ ଝିଲ୍ଲୀ ଦେଇ ଜଳ ଅଣୁର ଯାତାୟାତ ପ୍ରକ୍ରିୟା ପରାସରଣ ପଦ୍ଧତିରେ ସମାହିତ ହୋଇଥାଏ । ଏଥିରେ ଜଳ ଅଣୁର ଗତି ଅଧିକ ଗାଡ଼ (High Concentration) ଅଞ୍ଚଳରୁ କମ୍ ଗାଡ଼ (Low Concentration) ଥିବା ଜଳ ଦିଗକୁ ଏକ ଅର୍ଦ୍ଧ ପାରଗମ୍ୟ ଝିଲ୍ଲୀ ମଧ୍ୟଦେଇ ଘଟିଥାଏ । ଏହି ପ୍ରକ୍ରିୟାଦ୍ୱାରା କୋଷର ଆବଶ୍ୟକୀୟ ଧାତବ ଲବଣ ଓ ଅନ୍ୟାନ୍ୟ ପଦାର୍ଥଗୁଡ଼ିକ ମଧ୍ୟ କୋଷ ଝିଲ୍ଲୀ ଦେଇ ଯାତାୟତ ହୋଇଥାନ୍ତି ।

2.1.2 କୋଷ ଭିଉି :

ଉଦ୍ଭିଦ କୋଷରେ କୋଷ ଝିଲ୍ଲୀର ବାହାରପଟେ ଏକ ଅତିରିକ୍ତ କଠିନ ଆବରଣ ରହିଥାଏ । ଏହାକୁ କୋଷ ଭିତ୍ତି (Cell Wall) କୁହାଯାଏ । ଏହା ମୁଖ୍ୟତଃ ସେଲ୍ୟୁଲୋକ୍ (Cellulose) ନାମକ ଏକ ଶ୍ୱେତସାର ଦ୍ୱାରା ଗଠିତ । ଏହା ଉଦ୍ଭିଦ କୋଷକୁ ଆକୃତି ଓ ଦୃଢ଼ତା ଦିଏ । ବାକ୍ଟେରିଆ କୋଷରେ ମଧ୍ୟ କୋଷ ଭିତ୍ତି ରହିଥାଏ ।

2.1.3. କୋଷଜୀବକ (Cytoplasm) :

କୋଷଜୀବକ ବା ସାଇଟୋପ୍ଲାକମ୍ କୋଷ ଝିଲ୍ଲୀ ଓ ନ୍ୟଷି ମଧ୍ୟରେ ରହିଥାଏ । ଏହା ଅପେକ୍ଷାକୃତ ସ୍ୱୃଚ୍ଛ, ତରଳ ବା ଅର୍ଦ୍ଧତରଳ ଏବଂ ଗତିଶୀଳ । ଏଥିରେ ଜୈବିକ ଓ ଅଜୈବିକ ଉଭୟ ପ୍ରକାରର ଉପାଦାନ ରହିଥାଏ । କୋଷଜୀବକରେ ବିଭିନ୍ନ କୋଷ ଅଙ୍ଗିକା ଯଥା-ମାଇଟୋକଣ୍ଡିଆ (Mitochondria), ରାଇବୋଜମ୍ (Ribosome), ଗଲଗୀବଡ଼ି (Golgibodies), ଏଷୋପ୍ଲାକମିକ୍ ରେଟିକୁଲମ୍ (ER ବା Endoplasmic Reticulum), ଲବକ (Plastid), ରସଧାନୀ (Vacuole) ରହିଥାଏ । ଏହା ବ୍ୟତୀତ ଅନେକ ଏନ୍ ଜାଇମ୍ (Enzymes), ପୁଷ୍ଟିସାର (Protein), ଏମିନୋଅମ୍ଲ (Amino Acid), ଧାତବ ଲବଣ ଓ ଅନ୍ୟାନ୍ୟ କେତେକ ପଦାର୍ଥ ଯଥା : ଏକ୍ଟିନ୍ (Actin) ଓ ମାଇକ୍ରୋଟ୍ୟୁବ୍ଲ (Microtubule) ପରି ପୁଷ୍ଟିସାର ଫିଲାମେଷ୍ଟମାନ ମଧ୍ୟ ଏଥିରେ ରହିଥାଏ । ସାଇଟୋପ୍ଲାକମ୍ ମଧ୍ୟରେ ଥିବା ବିଭିନ୍ନ କୋଷ ଅଙ୍ଗିକାମାନଙ୍କ ଗଠନ ଓ କାର୍ଯ୍ୟ ଧାରା ଭିନ୍ନ ଭିନ୍ନ ହୋଇଥାଏ । ତେଣୁ ସେଗୁଡ଼ିକୁ ପୃଥକ୍ଭାବେ ଆଲୋଚନା କରାଯାଇଅଛି । ସାଧାରଣତଃ, କୋଷ ଅଙ୍ଗିକାମାନଙ୍କୁ ଦେଖିବାପାଇଁ ଇଲୋକଟ୍ରନ୍ ଅଣୁବୀକ୍ଷଣ (Electron Microscope)ର ବ୍ୟବହାର କରାଯାଇଥାଏ ।

2.1.4. ମାଇଟୋକଣ୍ଡିଆ (Mitochondria) :

ସମୟ ସୂନ୍ୟଷିୟ କୋଷରେ ମାଇଟୋକଣ୍ଡିଆ ଦେଖାଯାଏ। ଏହାର ଆକାର ଏକ ସିଲିଣର ବା କାକୁଡ଼ି ଆକୃତିର, ମାଇଟୋକଣ୍ଡିଆର ଆବରଣ ଝିଲ୍ଲୀଟି ଦ୍ୱିଞରୀୟ। ବହିଃୟରର ଝିଲ୍ଲୀଟି ଛିଦ୍ରଯୁକ୍ତ, ଚିକ୍କଣ ଓ ନମନୀୟ। ଅବଃୟର ଝିଲ୍ଲୀଟି ଭିତରପଟକୁ ଭାଙ୍ଗିହୋଇ ଅଙ୍ଗୁଠି ଭଳି ଲୟିଥାଏ। ଏଗୁଡ଼ିକକୁ କ୍ରିଷା (Cristae) କୁହାଯାଏ। ମାଇଟୋକଣ୍ଡିଆର ମଧ୍ୟବର୍ତ୍ତୀ ସ୍ଥାନକୁ ଆଧାର (Matrix) କୁହାଯାଏ। ରାସାୟନିକ ପ୍ରକ୍ରିୟା ଦ୍ୱାରା ଏହି କ୍ରିଷାଠାରେ ଶକ୍ତି ଉତ୍ପନ୍ନ ହୋଇଥାଏ। ମାଇଟୋକଣ୍ଡିଆରେ ଅମ୍ଳକାନ ଦ୍ୱାରା ଖାଦ୍ୟ ପଦାର୍ଥଗୁଡ଼ିକର ଜାରଣ ଘଟି ତହିଁରୁ ATP (Adenosine Triphosphate) ବା ଜୈବିକ ଶକ୍ତି ଉତ୍ପନ୍ନ ହୁଏ। ATPକୁ କୋଷର ଶକ୍ତିମୁଦ୍ରା (Energy Currency) ଓ ମାଇଟୋକଣ୍ଡିଆକୁ କୋଷର ଶକ୍ତିକେନ୍ଦ୍ର

(Power House of the Cell) କୁହାଯାଏ। ମାଇଟୋକଣ୍ଡିଆର ନିଜସ୍ ଡି.ଏନ୍.ଏ. ଅଣୁ ଓ ରାଇବୋଜମ୍ ରହିଥାଏ। ଏଣୁ ମାଇଟୋକଣ୍ଡିଆକୁ ଏକ ଅର୍ଦ୍ଧସଂୟଚାଳିତ ଅଙ୍ଗିକା କହାଯାଏ।

ଚିତ୍ର - 2.3 ମାଇଟୋକଣ୍ଡିଆ

2.1.5. ରସଧାନୀ (Vacuoles) :

ସମୟ ଉଦ୍ଭିଦ ଓ କେତେକ ଆଦିପ୍ରାଣୀମାନଙ୍କ କୋଷରେ ଅନେକ ପ୍ରକାରର ଛୋଟବଡ଼ ଥଳି ରହିଥାଏ । ସେଗୁଡ଼ିକୁ ରସଧାନୀ କୁହନ୍ତି । ରସଧାନୀରେ ବିଭିନ୍ନ ପ୍ରକାରର ତରଳ ପଦାର୍ଥ ଓ ଦ୍ରବଣ ରହିଥାଏ । ପ୍ରତ୍ୟେକ ରସଧାନୀ ଏକ ଆବରଣ ଦ୍ୱାରା ଆବୃତ ହୋଇଥାଏ । ଏକକୋଷୀ ଆଦିପ୍ରାଣୀ ବ୍ୟତୀତ ଅନ୍ୟ ପ୍ରାଣୀମାନଙ୍କର କୋଷରେ ରସଧାନୀ ନଥାଏ । ଏକକୋଷୀ ଆଦିପ୍ରାଣୀର ସଂକୋଚ ରସଧାନୀ ନଥାଏ । ଏକକୋଷୀ ଆଦିପ୍ରାଣୀର ସଂକୋଚ ରସଧାନୀ (Contractile Vacuole) ଜଳ ନିୟନ୍ତଣରେ ଓ ଖାଦ୍ୟ ରସଧାନୀ (Food Vacuole) ପାଚନ କ୍ରିୟାରେ ସାହାଯ୍ୟ କରିଥିବାବେଳେ ଉଦ୍ଭିଦ କୋଷର ରସଧାନୀଗୁଡ଼ିକ ଅପେକ୍ଷାକୃତ ବଡ଼ ଏବଂ ସେଗୁଡ଼ିକ କୋଷର ସୀତି (Turgidity) ଓ ଦୃଢ଼ତା (Rigidity) ନିୟନ୍ତଣ କରିଥାନ୍ତି ।

2.1.6. ଏଷୋପ୍ଲାକମିକ୍ ରେଟିକୁଲମ୍ (Endoplasmic Reticulum)

ଏହି ଜାଲିକା, ନ୍ୟଷ୍ଟି ଆବରଣ (Nuclear envelope)ର ବହିଃଷ୍ଟର ସହିତ ସଂଯୁକ୍ତ ହୋଇ କୋଷ ଭିତରର ବିଭିନ୍ନ ଦିଗ ଦେଇ କୋଷ ଝିଲ୍ଲୀ ପର୍ଯ୍ୟନ୍ତ ବିୟୃତ ହୋଇ ରହିଥାଏ । ଏହା ଦୁଇ ପ୍ରକାରର । ଯଥା- ଅମସୂଣ ଏଣୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍ (Rough ER) ଚିତ୍ର 2.4.(କ) ଯାହାର ପୃଷ ଭାଗରେ ରାଇବୋଜମ୍ମାନ ଅବସ୍ଥାନ କରି ପୃଷ୍ଟିସାର ସଂଶ୍ଲେଷଣ କରିଥାନ୍ତି ଓ ମସ୍ତଣ ଏଣୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍ (Smooth ER) ଚିତ୍ର 2.4.(ଖ) ଯାହା ଉପର ଭାଗରେ ରାଇବୋଜମ୍ ନଥାଏ କିନ୍ତୁ ଏଥିରେ ସ୍ନେହସାର (Lipid) ସଂଶ୍ଳେଷିତ ହୁଏ । ଏହି ଦୁଇ ପ୍ରକାର ଜାଲିକାର କାର୍ଯ୍ୟଧାରା ପୃଥକ୍ ହେଲେ ମଧ୍ୟ ସେମାନେ ଅଲଗା ନହୋଇ ପରସ୍କର ସହିତ ସଂଯୁକ୍ତ ହୋଇ ରହିଥାନ୍ତି। ଏଣ୍ଡୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍ କୋଷ ଭିତରେ ବିଭିନ୍ନ ସ୍ଥାନକୁ ବିଭିନ୍ନ ପଦାର୍ଥ ପ୍ରେରଣ କରିବା ସହ କୋଷ ଝିଲ୍ଲୀ ନିର୍ମାଣରେ ମଧ୍ୟ ସାହାଯ୍ୟ କରିଥାଏ ଏବଂ ତାହାକୁ ଝିଲ୍ଲା ନିର୍ମାଣ (membrane biogensis) ପ୍ରକ୍ରିୟା କୁହାଯାଇଥାଏ। ପୁଣି, ଏହି ଏଷୋପ୍ଲାକମିକ୍ ରେଟିକୁଲମ ଗୁଡ଼ିକ ଭିତରେ ବିଭିନ୍ନ ଔଷଧ ଓ ଦୃଷିତ ପଦାର୍ଥର ବିପାକ ମଧ୍ୟ ଘଟିଥାଏ।

(କ) ଅମସୃଣ ଏଣ୍ଡୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍

(ଖ) ମସୃଣ ଏଣୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍ ଚିତ୍ର - 2.4 ଏଣୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍

2.1.7. ଗଲଗୀବଡ଼ି (Golgi Bodies) :

ଏଗୁଡ଼ିକର ଆକାର ବକ୍ରାକାର ଥଳି, ଚେପ୍ଟାନଳୀ ବା ସୃକ୍ଷୁ ଜାଲିକା ପରି ହୋଇ ଗୋଟିଏ ଉପରେ ଗୋଟିଏ ସମାନ୍ତରାଳ ଭାବରେ ଏଷୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ ନିକଟରେ ରହିଥାଏ। ମସ୍ଣ ଏଞୋପ୍ଲାକମିକ୍ ରେଟିକୁଲମରେ ଥିବା ରାଇବୋଜମ୍ରେ ପୃଷ୍ଟିସାର ସଂଶ୍ରେଷିତ ହୋଇ ନିଧାନୀ (Vescicle) ମାଧ୍ୟମରେ ଗଲଗୀବଡ଼ି ଭିତରକୁ ପ୍ରବେଶ କରିଥାଏ। ପରବର୍ତ୍ତୀ ସମୟରେ ସେହି ପୃଷ୍ଟିସାର ଅଣୁଗୁଡ଼ିକ ସହିତ ଅନ୍ୟ ଶ୍ୱେତସାର, ସ୍ୱେହସାର ଓ ଗନ୍ଧକ ଆଦି ଅଣୁ ସଂଯୁକ୍ତ ହୋଇ ପରିବହନ ନିଧାନୀ (Transport Vescicle) ଦ୍ୱାରା କୋଷ ଭିତରର ବିଭିନ୍ନ ସ୍ଥାନକୁ ଆବଶ୍ୟକତା ଅନୁଯାୟୀ ପ୍ରେରିତ ହୋଇଥାଏ। ପୁଣି କେତେକ ପରିବର୍ତ୍ତିତ ପୃଷ୍ଟିସାର ଅଣୁ କୋଷ ବାହାରକୁ ମଧ୍ୟ ପଠାଯାଇଥାଏ। ଏମାନଙ୍କର ଝିଲ୍ଲୀ ଏଣୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ ସହିତ ସଂଯୋଗ ହୋଇ ବିଭିନ୍ନ ଦରକାରୀ ପଦାର୍ଥର ଆଦାନପଦାନରେ ସାହାଯ୍ୟ କରନ୍ତି । ଉଦ୍ଭିଦ କୋଷରେ ଥିବା ଗଲଗୀବଡ଼ିକୁ, ଡିକ୍ଟିଓଜୋମ୍ (Dictyosome) କୁହାଯାଇଥାଏ । ଏଗୁଡ଼ିକ କୋଷ ଭିଉି ତିଆରିରେ ସାହାଯ୍ୟ କରିବା ସହିତ ବିଭିନ୍ନ ପ୍ରକାରର ଏନ୍ଜାଇମ୍ କ୍ଷରଣ କରିଥାନ୍ତି । (ଚିତ୍ର 2.5)

ଚିତ୍ର - 2.5 ଗଲଗୀବଡ଼ି

2.1.8. ରାଇବୋକମ୍ (Ribosome) :

ରାଇବୋଜମ୍ର ଆକାର କ୍ଷୁଦ୍ର ଦାନା ସଦୃଖ୍ୟ। ଏଗୁଡ଼ିକ ଅମସୃଣ ଏଣୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ ସହିତ ମିଶି ତାହାର ଉପର ଭାଗରେ ଅଥବା କୋଷଜୀବକ ଭିତରେ ମୁକ୍ତ ଭାବରେ ରହିଥାନ୍ତି । ରାଇବୋଜମ୍ବରେ ଥିବା ଆର୍.ଏନ୍.ଏ (RNA) କୁ ରାଇବୋଜମାଲ ଆର.ଏନ୍.ଏ କୁହାଯାଏ । ନ୍ୟଞ୍ଜିରେ ଥିବା DNAର ନିର୍ଦ୍ଦେଶରେ ତିଆରି ବାର୍ତ୍ତାବହ RNA (m RNA) କୋଷଜୀବକରେ ପହଞ୍ଚବା ପରେ ରାଇବୋଜମ୍ ସହିତ ସଂଶ୍ଳିଷ୍ଟ ହୋଇ ପୁଷ୍ଟିସାର ସଂଶ୍ଳେଷିତ ହୁଏ । ଏହି ପୁଷ୍ଟିସାର ସଂଶ୍ଳେଷଣ ଏକ ଜଟିଳ ପ୍ରକ୍ରିୟା । ଏଥିପାଇଁ ଅନ୍ୟ ଏକ ପ୍ରକାରର RNA (ସ୍ଥାନାନ୍ତର RNA ବା t RNA), ଏମିନୋ ଅମ୍ଳ ଓ କେତେକ ଏନ୍ଜାଇମ୍ର ସହଯୋଗ ଦ୍ୱାରା ପୁଷ୍ଟିସାର ତିଆରି ହୋଇଥାଏ ।

2.1.9. ଲାଇସୋକମ୍ (Lysosome) :

ଲାଇସୋକମ୍ ବହୁଳ ଭାବରେ ପ୍ରାଣୀ କୋଷରେ ଦେଖିବାକୁ ମିଳିଥାଏ। ଏହା ଏକ ଝିଲ୍ଲୀ ଦ୍ୱାରା ଆବୃତ ହୋଇଥାଏ। ଏଥିରେ ଅନେକ ପ୍ରକାର ପାଚକ ଏନ୍କାଇମ୍ ରହିଥାଏ। ମସୃଣ ଏଣ୍ଡୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ ଥିବା ରାଇବୋଜମ୍ବର ସଂଖ୍ଲେଷିତ ଏହି ଏନ୍କାଇମ୍ଗୁଡ଼ିକ ଗଲଗୀବଡ଼ି ମାଧ୍ୟମରେ ଲାଇସୋଜମ୍କୁ ଆସିଥାନ୍ତି। କୌଣସି କାରଣରୁ ଜୀବକୋଷଟି ଷଡିଗ୍ରୟ ବା ରୁଗ୍ଣ ହୋଇ ପଡ଼ିଲେ, ଲାଇସୋଜମ୍ବର ଥିବା ପାଚକ ଏନ୍କାଇମ୍ଗୁଡ଼ିକ ଜୀବକୋଷରେ ଥିବା ବିଭିନ୍ନ ଜୈବିକ ଅଣୁର ପଚନ ଘଟାଇଥାନ୍ତି। ଏଣୁ ଲାଇସୋଜମ୍କୁ କୋଷର ''ପାଚକଥଳୀ'' ଆଖ୍ୟା ଦିଆଯାଇଛି। ଅନେକ ସମୟରେ ଷଡକୋଷ ଓ ମୃତକୋଷ ବା ସେମାନଙ୍କର ଅଙ୍ଗିକାଗୁଡ଼ିକୁ ପାଚନକ୍ରିୟା ସାହାଯ୍ୟରେ ଛୋଟ ଛୋଟ

ଅଂଶରେ ପରିଶତ କରିବାରେ ଲାଇସୋଜମ୍ ସଂଶ୍ଲିଷ୍ଟ ହେବାକଥା ଜଣାଯାଇଛି। ଏଥିପାଇଁ ଲାଇସୋଜମ୍କୁ ଆତ୍ମଘାତୀ ଥଳୀ (Suicidal Bag) ନାମରେ ମଧ୍ୟ ଅଭିହିତ କରାଯାଇଥାଏ।

2.1.10. ଲବକ (Plastid) : ।

ଲବକ ମଖ୍ୟତଃ ଉଦ୍ଭିଦ କୋଷରେ ଦେଖାଯାଏ । ଏହା ଦୁଇ ପ୍ରକାରର ଯଥା: ବର୍ଷହୀନ ଲବକ (Leucoplast) ଓ ରଙ୍ଗୀନ ଲବକ (Chromoplast) l ଉଦ୍ଭିଦର ମୂଳ ଓ କାଷରେ ସାଧାରଣତଃ ବର୍ତ୍ତହୀନ ଲବକ ରହିଥିବାବେଳେ ଫୁଲ, ଫଳ ଓ ପତ୍ର ଆଦିରେ ରଙ୍ଗୀନ୍ ଲବକ ରହିଥାଏ । ଉଦ୍ଭିଦର ପତ୍ର ଓ ଅନ୍ୟାନ୍ୟ ସବୁଜ ଅଂଶରେ ରହିଥିବା ରଙ୍ଗୀନ୍ ଲବକକୁ ହରିତ୍ ଲବକ (Chloroplast) କୁହାଯାଏ । ହରିତ୍ର ଲବକରେ ରହିଥିବା ସବୁଜ କଣିକା (Chlorophyll) ପତ୍ରକୁ ସବୁଜ ରଙ୍ଗ ଦେବା ସହିତ ଆଲୋକସଂଶ୍ଲେଷଣ (Photosynthesis) ପ୍ରକ୍ରିୟାରେ ମୁଖ୍ୟ ଅଂଶ ଗ୍ରହଣ କରିଥାଏ । ହରିତ୍ର ଲବକକୁ ଉଦ୍ଭିଦର ରନ୍ଧନଶାଳା କୁହାଯାଏ କାରଣ ଏଥିରେ ଉଦ୍ଭିଦର ଖାଦ୍ୟ ପ୍ରସ୍ତୁତ ହୋଇଥାଏ । ମାଇଟୋକଣ୍ଡିଆ ପରି ହରିତ୍ ଲବକକୁ ମଧ୍ୟ ଏକ ଅର୍ଦ୍ଧ ସୃଂୟଚାଳିତ ଅଙ୍ଗିକା କୁହାଯାଇଥାଏ, କାରଣ ଲବକ ନିଜର DNA, ରାଇବୋକମ୍ ଓ କେତେକ ଏନ୍ଜାଇମ୍ ସାହାଯ୍ୟରେ ନିଜେ ପୁଷ୍ଟିସାର ତିଆରି କରିପାରେ । ଏହା ହରିତ୍ ଲବକର ଅନ୍ୟ ଏକ ବିଶେଷତ୍ତ ।

ଚିତ୍ର - 2.6 କ୍ଲୋରୋପ୍ଲାଷ୍ଟ

2.2. ନ୍ୟୁକ୍ଲିଅସ୍ ବା ନ୍ୟଷ୍ଟି (Nucleus) :

କୋଷର ଏକ ମୁଖ୍ୟ ଅଂଶ ହେଲା ନ୍ୟଞ୍ଜି । ଏହାର ଝିଲ୍ଲୀ ଦ୍ୱିଷରୀୟ ଓ ଛିଦ୍ରଯୁକ୍ତ । ଏହି ଛିଦ୍ର ମଧ୍ୟଦେଇ କୋଷ ଜୀବକ ଓ ନ୍ୟଞ୍ଜି ମଧ୍ୟରେ ଆବଶ୍ୟକୀୟ ପଦାର୍ଥଗୁଡ଼ିକର ଆଦାନ ପ୍ରଦାନ ହୋଇଥାଏ । ନ୍ୟଞ୍ଜିର ଆକାର ଓ ସଂଗଠନ ଅନୁସାରେ କୋଷକୁ ଦୁଇ ପ୍ରକାରରେ ବିଭକ୍ତ କରାଯାଇଥାଏ । ଯଥା– ପ୍ରାକ୍ନ୍ୟଞ୍ଜିୟ କୋଷ ଯେଉଁଥିରେ ନ୍ୟଞ୍ଜିଟି ଅସଂଗଠିତ (Unorganised) ଓ ସେଥିରେ ଗୁଣସୂତ୍ର ବା କ୍ରୋମୋଜୋମ୍ (Chromosome) ଓ ନ୍ୟୁକ୍ଲିଓଲସ୍ (Nucleolus) ନଥାଏ । କିନ୍ତୁ ଗୋଟିଏ ବୃତ୍ତାକାର DNA ଅଣୁ ରହିଥାଏ । ସେହି ପ୍ରକାରର ନ୍ୟଞ୍ଜିକୁ ପ୍ରାକ୍ନ୍ୟଞ୍ଜି (Prokaryotic Nucleus) କୁହାଯାଏ । ଅନ୍ୟଟି ହେଲା ସୁନ୍ୟଞ୍ଜିୟ କୋଷ (Eukarygoetic Nucleus) ଏବଂ ତାହାର ନ୍ୟଞ୍ଜିଟି ସୁସଂଗଠିତ ହୋଇ ତହିରେ କ୍ରୋମୋଜୋମ୍ ଓ ନ୍ୟୁକ୍ଲିଓଲସ୍ ରହିଥାଏ ।

ପ୍ରାଥମିକ ଅବସ୍ଥାରେ ପ୍ରତ୍ୟେକ କୋଷର ନ୍ୟଷ୍ଟି ମଧ୍ୟରେ ସାଧାରଣ ଭାବେ କ୍ରୋମାଟିନ୍ ଜାଲିକା ଥାଏ । କୋଷ ବିଭାଜନ ସମୟରେ କ୍ରୋମାଟିନ୍ ଜାଲିକାଗୁଡ଼ିକ ବିଭାଜନ ପ୍ରକ୍ରିୟା ଦ୍ୱାରା କ୍ରମେ ସୁଷ୍ପଷ୍ଟ ଓ ସ୍ଥୁଳ ରୂପ ଧାରଣ କରିଥାଏ, ଯାହକୁ କ୍ରୋମୋଜୋମ୍ କୁହାଯାଏ । ପ୍ରତ୍ୟେକ କ୍ରୋମୋଜୋମ୍ ସାଧାରଣ ଭାବେ ମାତ୍ର ଗୋଟିଏ DNA ଅଣୁ ଦ୍ୱାରା ଗଠିତ ହୋଇ ଗୋଟିଏ ପ୍ରକାର ଜାତିର ସମୟ ଜୀବଙ୍କ ପାଇଁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ସଂଖ୍ୟକ ଗୁଣସୂତ୍ର ବହନ କରିଥାଏ । ତେଣୁ ପ୍ରତ୍ୟେକ ଜାତିର ଜୀବମାନଙ୍କ ପାଇଁ କ୍ରୋମୋଜୋମ୍ ସଂଖ୍ୟା ସବ୍ତବେଳେ ସମାନ ଥାଏ ।

ଚିତ୍ର-2.7 ଡ଼ି.ଏନ୍.ଏ. ଅଣୁ

୨.୩.: କ୍ଲୋମୋଜୋମ୍ (Chromosome):

ପ୍ରାକ୍ନ୍ୟଷ୍ଟିୟ କୋଷରେ ଥିବା DNA ଅଣୁ କ୍ରୋମୋଜୋମ୍ କିୟା କ୍ରୋମୋଜୋମ୍ ଜାଲିକା ଭାବରେ ସଂଗଠିତ ହୋଇନଥାଏ । କିନ୍ତୁ ସୁନ୍ୟଷ୍ଟିୟ (Eukaryotic Nucleus) କୋଷ ରେ DNA ଅଣୁ ଗୁଡ଼ିକ କ୍ରୋମୋଜୋମ ଭିତରେ ସଂଗଠିତ ହୋଇରହିଥାନ୍ତି । କ୍ରୋମୋଜୋମ୍ ଦୁଇଟି ଏକକ ସୂତ୍ର (Chromotid) ମଧ୍ୟରେ ଥିବା ସେଷ୍ଟ୍ରୋମିଅର (Centromere) ଦ୍ୱାରା ସଂଯୋଜିତ ହୋଇ ରହିଥାଏ । ପ୍ରତ୍ୟେକ ଏକକ ସୂତ୍ର (Chromotid) ସାଧାରଣ ଭାବେ DNA ଅଣୁ ଏବଂ ହିଷ୍ଟୋନ୍ ପ୍ରୋଟିନ (Histone rotein) ଦ୍ୱାରା ଗଠିତ ହୋଇଥାଏ । DNA ଅଣୁ ମୁଖ୍ୟତଃ ତିନି ପ୍ରକାରର ବିଭିନ୍ନ ଅଣୁ ସହିତ ସଂଯୋଜିତ ହୋଇ ଗଠିତ ହୋଇଥାଏ । ଏହି ତିନି ପ୍ରକାର ଅଣୁଗୁଡ଼ିକ ହେଲା - ୧) ପଞ୍ଚ ଅଙ୍ଗାରକୀୟ ଶର୍କରା (Pentose Sugar) ୨) ଯବକ୍ଷାରୀୟ କ୍ଷାରକ (Nitrogenous Base) ୩) ଫସ୍ଟେଟ୍ (Phosphate)

ପ୍ରତ୍ୟେକ DNA ଅଶୁରେ ଥିବା ଏହି ପଞ୍ଚ ଅଙ୍ଗାରକୀୟ ଶର୍କରା ଗୋଟିଏ ଅମ୍ଳଜାନ ଅଶୁର ଉପସ୍ଥିତିରେ ରାଇବୋଜ୍ ଶର୍କରା (Ribose Sugar)ଏବଂ ଅମ୍ଳଜାନର ଅନୁପସ୍ଥିତିରେ ଡିଅକ୍ୱି ରାଇବୋଜ୍ ଶର୍କରା (Deoxyribose Sugar) ଯଥାକ୍ରମେ ରାଇବୋନ୍ୟୁକ୍ଲିକ୍ ଏସିଡ୍ (Ribonuclic Acid) ଏବଂ ଡିଅକ୍ୱି ରାଇବୋନ୍ୟୁକ୍ଲିକ୍ ଏସିଡ୍ (Deoxyribonuclic Acid) ସଂରଚନା ହୋଇଥାଏ ।

ଯବକ୍ଷାରୀୟ କ୍ଷାରକ ପ୍ରାୟ ଚାରି ପ୍ରକାରର କ୍ଷାରକକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ସେଗୁଡ଼ିକ ହେଲା କ) ଆଡ଼େନାଇନ୍ (Adenine) ଖ) ଗୁଆନାଇନ୍ (Guanine) ଗ) ସାଇଟୋସିନ୍ (Cytosine) ଏବଂ ଘ) ଥାୟାମିନ୍ (Thiamine) । ପ୍ରତ୍ୟେକଟି DNA ଅଣୁ ଏହି ଚାରିପ୍ରକାରର କ୍ଷାରକକୁ ନେଇ ସଂଗଠିତ ହେଲାବେଳେ RNA ରେ Thyamine କ୍ଷାରକ ବଦଳରେ Uracil ନାମକ ଅନ୍ୟ ଏକ କ୍ଷାରକ ସହ ସଂଗଠିତ ହୋଇଥାଏ ।

ସେଉଁ ଏକକ ସୂତ୍ରରେ (Chromatid) ରେ ପଞ୍ଚ ଅଙ୍ଗାରକୀୟ ଶର୍କର। ଏବଂ ଯବକ୍ଷାରୀୟ କ୍ଷାରକକୁ ନେଇ ଗଠିତ ହୋଇଥାଏ । ତାହାକୁ ନ୍ୟୁକ୍ଲିୟସାଇଡ଼୍ (Nucleoside) କୂହାଯାଏ । ନ୍ୟୁକ୍ଲିୟୋସାଇଡ୍ ସହ ଫସ୍ଫେଟ୍ ସଂଯୋଜିତ ହେଲେ ଏହାକୁ ନ୍ୟୁକ୍ଲିୟୋଟାଇଡ୍ (Nucleotide) କୁହାଯାଏ । ଜୀବର ପ୍ରତ୍ୟେକ କୋଷରେ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ସଂଖ୍ୟକ କ୍ରୋମୋଜୋମ୍ ଥାଏ ଓ ସେହି ସଂଖ୍ୟାକୁ ଦ୍ୱିଗୁଣିତ (Diploid ବା 2n) ଓ ଅଗୁଣିତ (Haploid ବା n)ଭାବରେ ଧରାଯାଏ । ଦ୍ୱିଗୁଣିତ କ୍ରୋମୋଜୋମ୍ ସଂଖ୍ୟା କାୟିକ ବା ସୋମାଟିକ୍ କୋଷ (Somatic Cell)ରେ ରହିଥିବା ବେଳେ ଏକଗୁଣ/ଅଗୁଣିତ କ୍ରୋମୋଜୋମ୍ ସଂଖ୍ୟା ଜନନ କୋଷ (Germ Cell) ମାନଙ୍କରେ ରହିଥାଏ ।

କ୍ରୋମୋଜୋମ୍ବର ଆକାର ବିଷୟରେ ଜ୍ଞାନ ଆହରଣ ପାଇଁ ଆମକୁ କୋଷର ସମବିଭାଜନ କିୟା ଅର୍ଦ୍ଧ ବିଭାଜନକୁ ନିରୀକ୍ଷଣ କରିବାକୁ ହେବ । କାରଣ ଏହି ବିଭାଜନ ସମୟରେ ହିଁ କ୍ରୋମୋଜୋମ୍ଗୁଡ଼ିକ କୁନ୍ତଳନ (Coiling) ହୋଇ ଷଷ ଭାବରେ ଦେଖାଯାଇଥାନ୍ତି । କୋଷବିଭାଜନର ମେଟାଫେଜ୍ (Metaphase) ଅବସ୍ଥାରେ ପ୍ରତ୍ୟେକ କ୍ରୋମୋଜୋମ୍କୁ ଲକ୍ଷ୍ୟକଲେ ଜଣାଯାଏ ଯେ ସେଥିରେ ଦୁଇଟି ଲେଖାଏଁ କ୍ରୋମାଟିଡ୍ ରହିଥାଏ । ଏହି ଦୁଇ କ୍ରୋମାଟିଡ୍ ବିଶିଷ୍ଟ କ୍ରୋମୋଜୋମ୍ କେବଳ କୋଷ ବିଭାଜନ ସମୟରେ ହିଁ ପରିଲକ୍ଷିତ

ହୋଇଥାଏ । କ୍ରୋମୋକୋମ୍ କେନ୍ଦ୍ର (Centromere)ର ଅବସ୍ଥିତି (Location) ଅନୁସାରେ କ୍ରୋମୋକୋମ୍କୁ ବିଭିନ୍ନ ପ୍ରକାରରେ ବିଭକ୍ତ କରାଯାଇଥାଏ । କ୍ରୋମୋକାମ୍ର ଅଗ୍ର ଭାଗକୁ ଟିଲୋମିୟର (Telomere) କୁହାଯାଏ । ଟିଲୋମିୟର ଯୋଗୁଁ ଗୋଟିଏ କ୍ରୋମୋକୋମ୍ ଅନ୍ୟଏକ କ୍ରୋମୋକୋମ୍ ସହିତ ଯୋଡ଼ି ନହୋଇ ନ୍ୟଷ୍ଟି ଭିତରେ ଅଲଗା ହୋଇ ରହିବା ସୟବପର ହୋଇଥାଏ ।

ସାରଣୀ - 2.1

ପ୍ରାକ୍ନ୍ୟଷ୍ଟିୟ କୋଷ

- ୧। କୌଣସି ଝିଲ୍ଲୀ ଆବୃତ କୋଷ ଅଙ୍ଗିକା ନଥାଏ
- ୨ । ନ୍ୟଞ୍ଜିଟି ସୁସଂଗଠିତ ନୁହେଁ।
- ୩। ନ୍ୟଷ୍ଟି ଝିଲ୍ଲୀ ନଥାଏ।
- ୪ । କେବଳ ଏକମାତ୍ର ଗୋଲାକାର DNA ଅଣୁ ଥାଏ । କ୍ରୋମୋଜୋମ୍ ନଥାଏ

ସୁନ୍ୟଷ୍ଟିୟ କୋଷ

- ୧। ସମୟ କୋଷ ଅଙ୍ଗିକା : ମାଇଟୋକଣ୍ଡିଆ, ଗଲଗୀବତି, ଏଷୋପ୍ଲାଜମିକ୍ ରେଟିକୁଲମ୍ ଇତ୍ୟାଦି ଝିଲ୍ଲୀ ଦ୍ୱାରା ଆବୃତ ଓ ସୁସଂଗଠିତ।
- ୨ । ନ୍ୟକ୍ଷି ସ୍ରସଂଗଠିତ ।
- ୩। ନ୍ୟଷ୍ଟି ଝିଲ୍ଲୀଯୁକ୍ତ।
- ୪ । ଏକାଧିକ ରୈଖିକ (Linear) DNA ଅଣୁ ଥାଏ । କ୍ରୋମୋଜୋମ୍ ଭିତରେ ସଂଗଠିତ ହୋଇ ରହିଥାଏ ।

ସାରଣୀ - 2.2

ଉଦ୍ଭିଦ କୋଷ

- ୧ । ଆକୃତିରେ ପ୍ରାଣୀ କୋଷଠାରୁ ଅପେକ୍ଷାକୃତ ବଡ଼
- ୨। କୋଷ ଝିଲ୍ଲୀ ଓ କୋଷ ଭିଭି ଥାଏ।
- ୩। ରସଧାନୀ (Vacule) ଗୁଡ଼ିକ ସ୍ଥାୟୀ।
- ୪। ଏଥିରେ ଲବକ ଦେଖାଯାଏ।
- ୫ । ସେଣ୍ଡୋଜୋମ୍ (Centrosome) ନାମକ କୋଷ ଅଙ୍ଗିକା ନଥାଏ ।

ପ୍ରାଣୀ କୋଷ

- ୧ । ଉଦ୍ଭିଦ କୋଷଠାରୁ ଅପେକ୍ଷାକୃତ ସାନ
- ୨ । କେବଳ କୋଷ ଝିଲ୍ଲୀ ଥାଏ । କୋଷ ଭିଭି ନଥାଏ ।
- ୩। ରସଧାନୀ ଛୋଟ ଓ ଅସ୍ଥାୟୀ। କେବଳ ଆଦିପ୍ରାଣୀମାନଙ୍କଠାରେ ଦେଖାଯାଏ।
- ୪। ଲବକ ଆଦୌ ନଥାଏ।
- ୫ । ସେଖ୍ରୋଜୋମ୍ଥାଏ ।

ତୁମ ପାଇଁ କାମ :

- 2.1. ପିଆଜର ଏକ ପଡଳା ଆବରଣ ବାହାର କର । ସେଥିରୁ ଏକ ଛୋଟ ଖଣ୍ଡ କାଟି ଏକ କାଚ ସ୍ନାଇଡ୍ ଉପରେ ଟୋପାଏ ପାଣି ଦେଇ ରଖ । 'O' ସାଇଜର ତୂଳୀ ସାହାଯ୍ୟରେ ଟୋପାଏ Saffranin ରଙ୍ଗ ଦିଅ । ଅଣୁବୀକ୍ଷଣ (Microscope) ଦ୍ୱାରା ନିରୀକ୍ଷଣ କରି ଅବିକଳ ଚିତ୍ର ଅଙ୍କନ କର । ନିଜର ମନ୍ତବ୍ୟ ଲେଖ ।
- 2.2. ଗୋଟିଏ ରିଓଡିସ୍କଲର (Rhoeodiscolor) ପତ୍ରରୁ ପତଳା ଦ୍ୱତା ଆବରଣ ଖଞ୍ଜେ ବାହାର କରି ଅଣୁବୀକ୍ଷଣ ସାହାଯ୍ୟରେ ଦେଖ । ଅହ ପାଣିରେ ବେଶୀ ଚିନି ପକାଇ ଏକ ଦ୍ରବଣ ତିଆରି କର । ଏହି ଚିନି ଦ୍ରବଣରେ ରିଓଡିୟଲର ପତ୍ରର ପତଳା ଦ୍ୱତା ଆବରଣର ଛୋଟ ଖଣ୍ଡକୁ ପକାଅ ଓ 10 ମିନିଟ୍ ଛାଡ଼ି ଦିଆ । 10 ମିନିଟ୍ ପରେ ତାହାକୁ ବାହାର କରି ଗୋଟିଏ କାଚ ସ୍ଲାଇଡ୍ ଉପରେ ରଖି ତା'ଉପରେ ଟୋପାଏ ପାଣି ଅଥବା ଗ୍ଲିସେରିନ୍ ଦେଇ ପରୀକ୍ଷା କର । ଅଣୁବୀକ୍ଷଣ ଦ୍ୱାରା ନିରୀକ୍ଷଣ କରି କ'ଣ ଦେଖିଲ ନିଜର ମନ୍ତବ୍ୟ ଲେଖ ।
- 2.3. ଦୁଇଟି କାଚ ପାତ୍ର ନିଅ । ଗୋଟିଏ ପାତ୍ରରେ କିଛି ଖାଲି ପାଣି ରଖ । ଅନ୍ୟ ପାତ୍ରରେ କିଛି ଚିନି ପାଣି ରଖ । ଉଭୟ ପାତ୍ରରେ କେତୋଟି ଅଙ୍ଗୁର ପକାଅ ଓ 30 ମିନିଟ୍ ଛାଡ଼ି ଦିଅ । କେଉଁ ପାତ୍ରରେ ଅଙ୍ଗୁରର ଆକାର ଛୋଟ ହେଲା ଓ କେଉଁଥିରେ ଆକାର ବଡ଼ ହେଲା ଏବଂ କାହିଁକି ଏଭଳି ହେଲା ତାହାର କାରଣ ଲେଖ ।
- 2.4. ଗୋଟିଏ ବଡ଼ ସାଇଜ୍ର ଆଳୁ ନିଅ। ତାହାର ଚୋପାକୁ ଚାଞ୍ଚ୍ ବାହାର କରିଦିଆ। ବର୍ତ୍ତମାନ ଆଳୁରେ ଏକ ଗୋଲାକାର ଗାଡ ତିଆରି କର। ସେହି ଗାଡ ମଧ୍ୟରେ କିଛି ପାଣି ରଖ। ଏକ କାଚ ପାତ୍ରରେ ଚିନିପଣା ତିଆରି କର। ସେହି ଚିନିପଣା

ମଧ୍ୟରେ ସେହି ଆଳୁଟିକୁ ଭାସିବା ଅବସ୍ଥାରେ 15 ମିନିଟ୍ ଛାଡ଼ିଦିଅ। ଆଳୁ ଭିତରେ ଥିବା ପାଣିକୁ ଚାଖି ଦେଖ। କ'ଣ ଲାଗିଲା ଓ କାହିଁକି ଅଲଗା ଲାଗିଲା ଡାହାର କାରଣ ଲେଖ।

ଆମେ କ'ଣ ଶିଖିଲେ :

- ୧। ଜୀବର ମୌଳିକ ଏକକ ''କୋଷ''।
- ୨ । ସାଧାରଣତଃ କୋଷ ଦୁଇ ପ୍ରକାର ଯଥା : ପ୍ରାକ୍ ନ୍ୟଷ୍ଟିୟ କୋଷ ଓ ସୁନ୍ୟଷ୍ଟିୟ କୋଷ ।
- ୩। କୋଷ ଭିତରେ ମୁଖ୍ୟତଃ ୩ଟି ଅଂଶ ଥାଏ ଯଥା :- କୋଷ ଝିଲ୍ଲୀ, କୋଷ ଜୀବକ ଓ ନ୍ୟଷ୍ଟି ଲକ୍ଷ୍ୟ କରିପାରିବ।
- ୪। କୋଷକୁ ଆବୃଭ କରି ରଖିଥିବା କୋଷ ଝିଲ୍ଲୀ ଲିପୋପ୍ରୋଟିନ୍ରେ ଗଠିତ। ଏହା ଏକ ଅର୍ଦ୍ଧପାରଗମ୍ୟ ଝିଲ୍ଲୀ।
- ୫। ଇଣ୍ଡୋପ୍ଲାଜିମିକ୍ ରେଟିକୂଲମ୍ କୋଷ ଭିତରେ ବିଭିନ୍ନ ସ୍ଥାନକୁ ବିଭିନ୍ନ ପଦାର୍ଥ ପ୍ରେରଣ କରିବା ସହ କୋଷ ଝିଲ୍ଲୀ ନିର୍ମାଣରେ ସହାୟତା କରେ।
- ୬। ଗଲ୍ଗିବଡ଼ି, ଇଞ୍ଚୋପ୍ଲାକିମିକ୍ ରେଟିକୁଲମ୍ ସହ ସଂଯୋଗ ହୋଇ ବିଭିନ୍ନ ଦରକାରୀ ପଦାର୍ଥର ଆଦାନ ପ୍ରଦାନରେ ସାହାଯ୍ୟ କରନ୍ତି।
- ୭ । ରାଇବୋଜୋମ୍ କେତେକ ଏନ୍ଜାଇମ୍ ସହଯୋଗରେ ପୃଷିସାର ତିଆରି କରିଥାଏ।
- ୮। ଲାଇସୋଜୋମ୍ ଥିବା ଏନ୍ଜାଇମ୍ଗୁଡ଼ିକ ଜୈବିକ ଅଣୁର ପାଟନ ଘଟାଇଥିବାରୁ ଏହାକୁ 'ପାଟକ ଥଳୀ' କୁହାଯାଏ।
- ୯ । କୋଷ ପାଇଁ ନ୍ୟଷିର ଭୂମିକା ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ, କାରଣ ଏହା କୋଷର ସମୟ କାର୍ଯ୍ୟକୁ ନିୟନ୍ତଣ କରିଥାଏ।
- ୧୦। ଲବକ ଓ ମାଇଟୋକଣ୍ଡିଆର ନିଜସ୍ୱ ଡି.ଏନ୍.ଏ. ଅଣୁ ଥିବା ହେତୁ ସେମାନଙ୍କୁ ଅର୍ଦ୍ଧସ୍ୱୟଂଚାଳିତ ଅଙ୍ଗିକା କୁହାଯାଏ।