Some further observations on good strategies with n-bit memory May 23, 2023

Reminder of the notation. We assume the players' decisions only depend on the outcome of the previous n rounds. An n-history for player p is a string $h^p = (a_{-1}^p, \ldots, a_{-n}^p) \in \{C, D\}^n$. An entry a_{-k}^p corresponds to player p's action k rounds ago. Let H^p denote the space of all n-histories of player p. Analogously, we define H^q as the set of n-histories h^q of player q. A pair $h = (h^p, h^q)$ is called an n-history of the game. The space of all such histories is $H = H^p \times H^q$. A memory-n strategy is a vector $\mathbf{p} = (p_h)_{h \in H}$. One special case of such a memory-n strategy is the round-k-repeat strategy for some $1 \le k \le n$. Player p uses a round-k-repeat strategy $\mathbf{p}^{k-\text{Rep}}$ if in any given round, the player chooses the same action as k rounds ago. That is, if the game's n-history is such that $a_{-k}^p = C$, then $p_h^{k-\text{Rep}} = 1$; otherwise $p_h^{k-\text{Rep}} = 0$.

If the two players use memory-n strategies \mathbf{p} and \mathbf{q} , one can represent the interaction as a Markov chain with transition matrix M. Let $\mathbf{v} = (v_h)_{h \in H}$ be an invariant distribution of this Markov chain. Akin's lemma says that for each k with $1 \le k \le n$, the invariant distribution \mathbf{v} satisfies the following relationship,

$$\mathbf{v} \cdot (\mathbf{p} - \mathbf{p}^{k-\text{Rep}}) = \sum_{h \in H} v_h (p_h - p_h^{k-\text{Rep}}) = 0.$$
 (1)

Based on the invariant distribution \mathbf{v} , we can also compute the players' payoffs. To this end, let $\mathbf{S}^k = (S_h^k)_{h \in H}$ denote the vector that returns for each h the one-shot payoff that player p obtained k rounds ago,

$$S_{h}^{k} = \begin{cases} b - c & \text{if } a_{-k}^{p} = C \text{ and } a_{-k}^{q} = C \\ -c & \text{if } a_{-k}^{p} = C \text{ and } a_{-k}^{q} = D \\ b & \text{if } a_{-k}^{p} = D \text{ and } a_{-k}^{q} = C \\ 0 & \text{if } a_{-k}^{p} = D \text{ and } a_{-k}^{q} = D \end{cases}$$

$$(2)$$

Then we can define player p's repeated-game payoff $s_{\mathbf{p}}$ as

$$s_{\mathbf{p}} = \mathbf{v} \cdot \mathbf{S}^1 = \mathbf{v} \cdot \mathbf{S}^2 = \dots = \mathbf{v} \cdot \mathbf{S}^n. \tag{3}$$

Let $\tilde{\mathbf{S}}^k = (\tilde{S}_h^k)_{h \in H}$ denote the analogous vector that returns for each h the one-shot payoff that player q obtained k rounds ago. Then player q's payoff is defined analogously, $s_{\mathbf{q}} = \mathbf{v} \cdot \tilde{\mathbf{S}}^{\mathbf{1}} = \dots = \mathbf{v} \cdot \tilde{\mathbf{S}}^{\mathbf{n}}$.

Zero-determinant strategies. Based on Akin's Lemma, we can derive a theory of zero-determinant strategies analogous to the case of memory-one strategies. In the following, we say a memory-n strategy \mathbf{p} is a zero-determinant strategy if there are k_1 , k_2 , k_3 and α , β , γ such that \mathbf{p} can be written as

$$\mathbf{p} = \alpha \mathbf{S}^{k_1} + \beta \tilde{\mathbf{S}}^{k_2} + \gamma \mathbf{1} + \mathbf{p}^{k-\text{Rep}}, \tag{4}$$

where 1 is the vector for which every entry is 1. By Akin's Lemma and the definition of payoffs,

$$0 = \mathbf{v} \cdot (\mathbf{p} - \mathbf{p}^{k-\text{Rep}}) = \mathbf{v} \cdot (\alpha \mathbf{S}^{k_1} + \beta \tilde{\mathbf{S}}^{k_2} + \gamma \mathbf{1}) = \alpha s_{\mathbf{p}} + \beta s_{\mathbf{q}} + \gamma.$$
 (5)

That is, payoffs satisfy a linear relationship.

One interesting special case arises if $k_1 = k_2 = k_3 =: k$ and $\alpha = -\beta = 1/(b+c)$ and $\gamma = 0$. In that case, the

formula (4) yields the strategy

$$p_h = \begin{cases} 1 & \text{if } a_{-k}^q = C \\ 0 & \text{if } a_{-k}^q = D \end{cases}$$
 (6)

That is, this strategy implements Tit-for-Tat (for k=1) or delayed versions thereof (for k>1). By Eq. (5), the enforced payoff relationship is $s_{\mathbf{p}} = s_{\mathbf{q}}$ (in particular, these strategies are good).

Another interesting special case arises if $k_1 = k_2 = k_3 =: k$ and $\alpha = 0$, $\beta = -1/b$, $\gamma = 1 - c/b$. In that case Eq. (4) yields the strategy

$$p_h = \begin{cases} 1 & \text{if } a_{-k}^q = C \\ 1 - c/b & \text{if } a_{-k}^q = D \end{cases}$$
 (7)

That is, the generated strategy is GTFT (if k=1), or delayed versions thereof (for k>1). By Eq. (5), the enforced payoff relationship is $s_{\mathbf{q}} = b - c$. In particular, these strategies are not *good*, but they satisfy the notion of being *Nash-type* [Akin, 2016].

Proving the conjecture by considering the corner cases. Consider the following subset of 2-bit reactive strategies,

$$\mathcal{N} = \left\{ \hat{\mathbf{p}} = (\hat{p}_{CC}, \hat{p}_{CD}, \hat{p}_{DC}, \hat{p}_{DD}) \middle| \hat{p}_{CC} = 1, \ \hat{p}_{CD} + \hat{p}_{DC} \le 2 - c/b, \ \hat{p}_{DD} \le 1 - c/b \right\}.$$
(8)

Then one may phrase our conjecture as saying: an agreeable $\hat{\mathbf{p}}$ is of Nash type if and only if $\hat{\mathbf{p}} \in \mathcal{N}$. The set \mathcal{N} is the convex hull of 10 corner points (in the following we use $p^* := 1 - c/b$),

One way how to prove our conjecture is thus to prove (i) All 10 corner points are of Nash type, and (ii) the set of strategies that are of Nash-type is convex. Again, numerical computations suggest that the 10 corner points are indeed of Nash type. We have a rigorous proof (above) for the 4 corner points TFT, Delayed TFT, GTFT, and Delayed GTFT. Moreover, a proof that GRIM is of Nash type seems doable. We do not know yet how to do a proof for the other 5 strategies (for example, we checked that they are not zero-determinant strategies). One approach that might work is to show that the following auxiliary conjecture is true: If $(1, \hat{p}_{CD}, \hat{p}_{DC}, \hat{p}_{DD})$ is of Nash-type and $\hat{p}'_{CD} \leq \hat{p}_{DC}$, $\hat{p}'_{DC} \leq \hat{p}_{DC}$, $\hat{p}'_{DD} \leq \hat{p}_{DD}$, then the strategy $(1, \hat{p}'_{CD}, \hat{p}'_{DC}, \hat{p}'_{DD})$ is of Nash-type. If that auxiliary conjecture is true, the 10 corner strategies are of Nash type because they can all be derived from GTFT or Delayed GTFT by decreasing some of the entries.

References

E. Akin. The iterated prisoner's dilemma: good strategies and their dynamics. *Ergodic Theory, Advances in Dynamical Systems*, pages 77–107, 2016.