





[ransplantation]

Suture

∟ight

Crypt (Iris Artefact)

Opacity

## Quantitative approach in vessel morphology analyses in corneal eye diseases

Cornea

Vessel

Abrasion —

### Mathilde Vergnaud<sup>1,2</sup>, Katrina Crompton<sup>1</sup>, Noémie Moreau<sup>1,2</sup>, Felix Bock<sup>1</sup>, Katarzyna Bozek<sup>1,2,3</sup>

<sup>1</sup>Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany

<sup>2</sup>Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany <sup>3</sup>Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany

#### Context

- Cornea neovascularisation: Vessel in the cornea Loss of the vision acuity, pair with opacity and loss of the immune privilege of the eyes, increase risk of greff rejection
- Slit-lamp microscope: cheapest, easiest and none invasive method
- Only criterion to evaluate vessels progressions : % vessels / cornea

Problematic: Describe vessels morphology

Vessels, suture points and crypts (Iris artefact) have similar

appearances

Important: to keep the vessels topology and vascular network

#### Segmentation of cornea and vessels



Dataset

Eyes images

### Morphological parameters





# Vessels Sutures Corneas



Suture Penalties

Vessel





## Results



#### Ablation study



| Model                         | Only<br>Vessel | Area under Precision recall-curve | Global<br>Accuracy | Sensitivity | Specificity | Precision | Jacquard<br>Score | F1 Score | clDice<br>Score |
|-------------------------------|----------------|-----------------------------------|--------------------|-------------|-------------|-----------|-------------------|----------|-----------------|
| UNet                          | False          | 0.7087                            | 0.9421             | 0.7147      | 0.9668      | 0.6746    | 0.5049            | 0.6586   | 0.7030          |
| UNet with suture              | False          | 0.8610                            | 0.9564             | 0.7572      | 0.9752      | 0.7402    | 0.6062            | 0.7469   | 0.7872          |
| UNet with 4<br>layer          | False          | 0.7502                            | 0.9547             | 0.7476      | 0.9771      | 0.7281    | 0.5780            | 0.7220   | 0.7620          |
| Unet with 4<br>layer + suture | False          | 0.7799                            | 0.9599             | 0.7760      | 0.9808      | 0.7610    | 0.6174            | 0.7552   | 0.7979          |

#### Exemple application study

