EJERCICIOS ANÁLISIS DE VARIABLE REAL

Juan Diego Barrado Daganzo

27 de octubre de 2022^1

QUIÉNES SOMOS

Somos un grupo de estudiantes de la Universidad Complutense de Madrid, concretamente del Doble Grado de Informática y Matemáticas que queremos compartir unos apuntes de calidad y, como mínimo, ordenados para que os sea más fácil llevar la asignatura al día (sobre todo a estudiantes de Doble Grado).

Estos apuntes son posibles gracias a la colaboración de más alumnos como tú que deciden aportar un granito de arena al proyecto. Puedes contribuir de la siguiente manera:

- Notificando erratas
- Modificando erratas
- Proponiendo mejoras
- Aportando ejemplos nuevos
- Aportando nuevas versiones

Para contribuir no tienes más que ponerte en contacto con juandbar@ucm.es o dejarnos un *Pull Request* en https://github.com/JuanDiegoBarrado/CalculoDiferencial. Los detalles para que la contribución de todos sea lo más homogénea posible estarán en el fichero *Contribute.md* de dicho repositorio o, en caso de no aparecer correctamente, podéis poneros en contacto con el correo anteriormente mencionado.

Muchas gracias, esperamos que este documento te sea útil.

AGRADECIMIENTOS

Queremos dar gracias especialmente al Profesor Javier Soria, por ser el profesor que impartió la asignatura de *Cálculo Diferencial* durante la elaboración de estos apuntes y por darnos *feedback* sobre la calidad y las posibles mejoras de los mismos.

También queremos dar las gracias a los Profesores Víctor Manuel Sánchez, Jose María Martínez Ansemil y Socorro Ponte Miramontes, por elaborar otros manuales más formales sobre la asignatura que nos han permitido contrastar adecuadamente los nuestros y entender adecuadamente los contenidos aquí expuestos.

Cálculo Diferencial © 2021 by Juan Diego Barrado & Iker Muñoz is licensed under Attribution-NonCommercial 4.0 International. To view a copy of this license, visit

Índice general

1. Conjuntos y Funciones

3

CONJUNTOS Y FUNCIONES

Ejercicio 1 Sea $A := \{n \in \mathbb{N} : n \le 20\}, B := \{3n - 1 : n \in \mathbb{N}\} \ y \ C := \{2n + 1 : n \in \mathbb{N}\}, \ describir los conjuntos:$

- 1. $A \cap B \cap C$
- 2. $(A \cap B) \setminus C$
- 3. $(A \cap C) \setminus B$

Solución Ejercicio 1 Cosas de prueba

1. En primer lugar, si $m \in B \cap A$, entonces nos preguntamos por los elementos de B que son menores o iguales que 20, es decir:

$$3n-1 \leq 20 \Leftrightarrow \underbrace{n \leq \frac{21}{3} = 7}_{Esto\ indica\ que\ 1 \leq n \leq 7} \Rightarrow B \cap A = \underbrace{\{2,5,8,11,14,17,20\}}_{Por\ eso\ s\'olo\ hay\ 7}$$

Del mismo modo, podemos expresar $A \cap C$ como:

$$2n+1 \leq 20 \Leftrightarrow n \leq \frac{19}{2} \overset{n \in \mathbb{N}}{\Rightarrow} \underbrace{n \leq \frac{18}{2} = 9}_{De\ nuevo,\ 1 \leq n \leq 9} \Rightarrow C \cap A = \{3,5,7,9,11,13,15,17,19\}$$

Luego, $A \cap B \cap C = A \cap B \cap A \cap C$, es decir, los comunes a los 2 conjuntos anteriores, por tanto:

$$A \cap B \cap C = \{5, 11, 17\}$$

2. Como ya tenemos calculada A∩B, calcular (A∩B) \ C no es más que quitar los elementos de C. Es más, como los elementos de A∩B son menores que 20 (por definición) realmente tenemos que quitar los elementos de C menores que 20 (pues los otros seguro que no están para quitarlos) y, por tanto, tenemos que quitar los elementos de C∩A, luego:

$$(A \cap B) \setminus C = \{2, 8, 14, 20\}$$

3. De nuevo, tenemos calculada $A \cap C$ y hay que quitar los elementos de B, pero como los elementos de $A \cap C$ son menores que 20 sólo hay que quitar los elementos de B menores que 20 (porque los demás no están) y, por tanto, hay que quitar $B \cap A$:

$$(A \cap C) \setminus B = \{3, 7, 9, 13, 15, 19\}$$

Ejercicio 2 Mediante diagramas, identifica los siguientes conjuntos:

Ejercicio 3 Sea I un conjunto de índices y para cada $i \in I$ sea A_i un conjunto. Si B es otro conjunto demuestra que:

$$\left(\bigcup_{i\in I} A_i\right) \cap B = \bigcup_{i\in I} (A_i \cap B)$$

Solución Ejercicio 2 En este tipo de ejercicios, para demostrar la igualdad de dos conjuntos se suele demostrar que uno está contenido en el otro y viceversa.

■ ⊂

Para hacer el contenido de izquierda a derecha, suponemos que cogemos un elemento del de la izquierda y hay que ver que está en la derecha:

$$x \in \left(\bigcup_{i \in I} A_i\right) \cap B \Rightarrow x \in \left(\bigcup_{i \in I} A_i\right) \land x \in B \Rightarrow (\exists i \in I : x \in A_i) \land x \in B \Rightarrow$$
$$\Rightarrow \exists i \in I : (x \in A_i \land x \in B) \Rightarrow \exists i \in I : (x \in A_i \cap B) \Rightarrow \bigcup_{i \in I} (A_i \cap B)$$

■ ⊃

Para ver el contenido de derecha a izquierda, volvemos a partir de un elemento de la derecha y tenemos que ver que está en la izquierda. En este caso, se puede coger la demostración anterior empezando por el final, puesto que a pesar de que se han puesto implicaciones, de hecho son equivalencias.

$$x \in \left(\bigcup_{i \in I} A_i\right) \cap B \Leftrightarrow x \in \left(\bigcup_{i \in I} A_i\right) \land x \in B \Leftrightarrow (\exists i \in I : x \in A_i) \land x \in B \Leftrightarrow$$
$$\Leftrightarrow \exists i \in I : (x \in A_i \land x \in B) \Leftrightarrow \exists i \in I : (x \in A_i \cap B) \Leftrightarrow \bigcup_{i \in I} (A_i \cap B)$$