Instituto Superior Técnico - 1º Semestre 2006/2007 Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

4^a Ficha de exercícios para as aulas práticas: 16 - 20 Outubro de 2006

1. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \alpha \in \mathbb{R},$$

 $u_{n+1} = (-1)^n u_n + \frac{u_n}{n}$ (para todo o $n \in \mathbb{N}$).

Verifique que se (u_n) é convergente então $\lim u_n = 0$.

2. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1,$$

 $u_{n+1} = \frac{2u_n + 3}{4}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que $u_n < \frac{3}{2}$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é monótona.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- (d) A sucessão (u_n) é contractiva? Justifique.

3. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1,$$

 $u_{n+1} = \frac{2}{3}\alpha u_n + 1$ (para todo o $n \in \mathbb{N}$).

- (a) Seja $\alpha = 1$.
- (a1) Verifique que $u_n < 3$, para todo o $n \in \mathbb{N}$.
- (a2) Verifique que (u_n) é monótona.
- (a3) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- (b) Para $\alpha = -1$, verifique que (u_n) é convergente. (Note que neste caso (u_n) não é monótona.)

4. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \frac{3}{2},$$
 $u_{n+1} = \frac{u_n^2 + 2}{3}$ (para todo o $n \in \mathbb{N}$).

1

- (a) Verifique que $1 < u_n < 2$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é decrescente.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.

5. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 0,$$

 $u_{n+1} = \frac{1}{4} (1 - u_n^2)$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é contractiva.
- (c) Justifique que (u_n) é convergente e calcule o seu limite.
- 6. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1,$$
 $u_{n+1} = \frac{1}{3 + 2u_n}$ (para todo o $n \in \mathbb{N}$).

- (a) A sucessão (u_n) é limitada? Justifique.
- (b) Verifique se (u_n) é monótona.
- (c) A sucessão (u_n) é contractiva? Justifique.
- (d) A sucessão (u_n) é de Cauchy? Justifique. Determine se possível $\lim u_n$.
- 7. Considere as expressões:

$$u_1 = 1,$$
 $u_{n+1} = \frac{u_n}{2} + \frac{2}{u_n}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que as expressões anteriores definem, por recorrência, uma sucessão de termos positivos.
- (b) Verifique que $u_n \geq 2$, para todo o $n \geq 2$.
- (c) Verifique que (u_n) é monótona, para todo o $n \geq 2$.
- (d) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- 8. Considere as expressões:

$$u_1 = 1,$$
 $u_{n+1} = \frac{2u_n}{1+2u_n}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que as expressões anteriores definem, por recorrência, uma sucessão de termos positivos.
- **(b)** Verifique que $u_n \ge \frac{1}{2}$, para todo o $n \in \mathbb{N}$.
- (c) Verifique que (u_n) é monótona.
- (d) Justifique que (u_n) é convergente e calcule $\lim u_n$.

9. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1,$$
 $u_{n+1} = \sqrt{2u_n} - \frac{1}{4n}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que $u_n \leq 2$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é crescente.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- 10. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 2,$$
 $u_{n+1} = \sqrt{1 + u_n}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que (u_n) é decrescente.
- (b) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- 11. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \sqrt{5}$$
, $u_{n+1} = \sqrt{5 + u_n}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que $u_n \geq 0$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é contractiva.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- 12. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 2,$$

$$u_{n+1} = \frac{1}{3-u_n} + \frac{1}{n} \quad \text{(para todo o } n \in \mathbb{N}\text{)}.$$

- (a) Verifique que $0 \le u_n \le 2$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é decrescente.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- 13. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1,$$
 $u_{n+1} = 1 + \frac{1}{u_n}$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que (u_n) não é monótona.
- (b) Verifique que

$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n|,$$

para todo o $n \in \mathbb{N}$.

(c) Justifique que (u_n) é convergente e calcule $\lim u_n$.

14. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = u_2 = \frac{1}{2},$$

 $u_{n+2} - u_{n+1} + \frac{1}{4}u_n = 0$ (para todo o $n \in \mathbb{N}$).

- (a) Verifique que $u_{n+1} > \frac{1}{2}u_n$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é decrescente.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- 15. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 3,$$

$$u_{n+1} = \frac{3(1+u_n)}{3+u_n} \quad \text{(para todo o } n \in \mathbb{N}\text{)}.$$

Justifique que (u_n) é convergente e calcule $\lim u_n$.

16. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \sqrt{2},$$
 $u_{n+1} = \sqrt{2 + \sqrt{u_n}}$ (para todo o $n \in \mathbb{N}$).

Justifique que (u_n) é convergente.

17. (a) Seja $\alpha \in]0,1[$. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \frac{1}{1-\alpha},$$

 $u_{n+1} = \alpha u_n + 2^{-n} \text{ (para todo o } n \in \mathbb{N}).$

- (a1) Verifique que $(1-\alpha)u_n \geq 2^{-n}$, para todo o $n \in \mathbb{N}$.
- (a2) Verifique que (u_n) é decrescente.
- (a3) Justifique que (u_n) é convergente e calcule $\lim u_n$.
- (b) Considere a sucessão (x_n) de números reais definida por:

$$x_1 = 1,$$

 $x_{n+1} = x_n + 2^{-n}$ (para todo o $n \in \mathbb{N}$).

Justifique que (x_n) é convergente e calcule $\lim x_n$.

18. Seja a>0. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \sqrt{a}$$
, $u_{n+1} = \sqrt{a + u_n}$ (para todo o $n \in \mathbb{N}$).

4

- (a) Verifique que $u_n < 1 + \sqrt{a}$, para todo o $n \in \mathbb{N}$.
- (b) Verifique que (u_n) é crescente.
- (c) Justifique que (u_n) é convergente e calcule $\lim u_n$.

19. Estude quanto à natureza (convergência absoluta, convergência simples, divergência) cada uma das seguintes séries, determinando as somas das que forem convergentes.

(1)
$$\sum_{n=0}^{+\infty} \left(\frac{1}{n!} - \frac{1}{(n+2)!} \right)$$
 (2) $\sum_{n=1}^{+\infty} \left(\cos \frac{\pi}{n+2} - \cos \frac{\pi}{n} \right)$ (3) $\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1}$ (4) $\sum_{n=3}^{+\infty} \frac{1}{n(n-2)}$

(5)
$$\sum_{n=1}^{+\infty} \frac{1}{(2n+1)(2n+3)}$$
 (6) $\sum_{n=1}^{+\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^2+n}}$ (7) $\sum_{n=1}^{+\infty} \frac{1}{n^2+2n}$ (8) $\sum_{n=1}^{+\infty} \log\left(\frac{n+1}{n}\right)$

(9)
$$\sum_{n=1}^{+\infty} \frac{2n+1}{n^2(n+1)^2}$$
 (10) $\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)(n+3)}$ (11) $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}(2n+1)}{n(n+1)}$ (12) $\sum_{n=1}^{+\infty} \frac{n}{2^n}$

(13)
$$\sum_{n=1}^{+\infty} \frac{-2}{n\sqrt{n+1} + (n+1)\sqrt{n}}$$
 (14) $\sum_{n=2}^{+\infty} (-1)^n \frac{e^{-n+1}}{2^{-n+1}}$ (15) $\sum_{n=1}^{+\infty} \frac{5^{n-1}}{2^{2n}}$ (16) $\sum_{n=1}^{+\infty} \frac{(-2)^{-n-1}}{5^{n-1}3^{-(2n+1)}}$

(17)
$$\sum_{n=1}^{+\infty} \frac{2^n + 3^n}{6^n}$$
 (18) $\sum_{n=1}^{+\infty} \frac{5 + (-1)^n}{3^{n-1}}$ (19) $\sum_{n=1}^{+\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)}$ (20) $\sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \frac{n-1}{n!} \right]$

(21)
$$\sum_{n=1}^{+\infty} \left[\frac{1}{ne^{1/n} - n} - \frac{1}{(n+1)e^{1/(n+1)} - n - 1} \right]$$
 (22) $\sum_{n=2}^{+\infty} (-1)^n \frac{2e(-\pi)^{-n+2}}{(-e)^{-n+1}}$

(23)
$$\sum_{n=1}^{+\infty} \left[(-1)^n \left(n \operatorname{sen} \frac{1}{n+2} + (n+1) \operatorname{sen} \frac{1}{n+3} \right) \right]$$
 (24) $\sum_{n=1}^{+\infty} \frac{1}{n^2 + 3n + 2}$

20. Estude quanto à natureza (convergência absoluta, convergência simples, divergência) cada uma das seguintes séries.

(1)
$$\sum_{n=1}^{+\infty} \frac{2^{2n}}{3^n + 1}$$
 (2) $\sum_{n=1}^{+\infty} \frac{2n - 1}{3n + 2}$ (3) $\sum_{n=1}^{+\infty} \left(\frac{1}{n^2}\right)^{\frac{1}{n}}$ (4) $\sum_{n=1}^{+\infty} \frac{(-1)^n e^{n+1}}{1 + 2^n}$ (5) $\sum_{n=1}^{+\infty} (-1)^n \frac{3^n}{n^3 2^n}$

(6)
$$\sum_{n=1}^{+\infty} \cos(n^2 \pi)$$
 (7) $\sum_{n=1}^{+\infty} \cos(e^{-n})$ (8) $\sum_{n=1}^{+\infty} \frac{n!}{n^2 + 2^n}$ (9) $\sum_{n=1}^{+\infty} \cos^2 \frac{1}{n^n}$ (10) $\sum_{n=1}^{+\infty} \left(1 + \frac{2}{n}\right)^n$

(11)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{\sqrt[5]{n}}{1 + \log n}$$
 (12) $\sum_{n=1}^{+\infty} e^{1/n!}$ (13) $\sum_{n=1}^{+\infty} \frac{1}{n!(-n)^{-n}}$ (14) $\sum_{n=1}^{+\infty} \frac{2+n!}{n!}$ (15) $\sum_{n=1}^{+\infty} \sqrt[n]{e}$

(16)
$$\sum_{n=1}^{+\infty} [1 + (-1)^n]$$
 (17) $\sum_{n=1}^{+\infty} \cos\left(\frac{(-2)^n}{n!}\right)$ (18) $\sum_{n=1}^{+\infty} \frac{1}{2 + \cos(n\pi)}$ (19) $\sum_{n=1}^{+\infty} \left(\frac{1}{n}\right)^{(-1)^n}$

(20)
$$\sum_{n=1}^{+\infty} \frac{n2^n}{n+2^n}$$
 (21) $\sum_{n=1}^{+\infty} \operatorname{arctg} \frac{n}{n+1}$ (22) $\sum_{n=1}^{+\infty} \frac{1}{n \log(1+1/n)}$ (23) $\sum_{n=1}^{+\infty} (-1)^n \frac{n + \log n}{2n + \log^2 n}$

(24)
$$\sum_{n=1}^{+\infty} 2^{-1/n}$$
 (25) $\sum_{n=1}^{+\infty} (-1)^{n+2} \frac{n^2}{n^2+2}$ (26) $\sum_{n=1}^{+\infty} [1+(-1)^n]^n$ (27) $\sum_{n=1}^{+\infty} n^n e^{-n}$

(28)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{(n+1)^n}{n^n}$$
 (29) $\sum_{n=1}^{+\infty} \frac{2^n}{1+\arctan n}$ (30) $\sum_{n=1}^{+\infty} \arcsin \left(1-\frac{1}{n!}\right)$ (31) $\sum_{n=1}^{+\infty} n \sin \frac{1}{n}$

(32)
$$\sum_{n=1}^{+\infty} \frac{(n+1)^{n+2} + 2^n + n!}{\log n + (n^2 + 1) n^n}$$