NASA TECHNICAL MEMORANDUM

NASA TM X-64649

Scientific and Technical Information Facility P. O. Box 33 College Park, Maryland 20740

Attn: NASA Representative (S-AK/RKT)

PRECISE LINEAR SUN SENSC.....

By Danny D. Johnston Astrionics Laboratory

June 9, 1972

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

MSFC - Form 3190 (Rev June 1971)

		TECHN	NICAL REPORT STANDARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT AC		3. RECIPIENT'S CATALOG NO.
NASA TM X-64649			
4. TITLE AND SUBTITLE			5. REPORT DATE June 9, 1972
Precise Linear Sun Sensor			6. PERFORMING ORGANIZATION CODE
			6.
7. AUTHOR(S)			8. PERFORMING ORGANIZATION REPORT #
Danny D. Johnston			
9. PERFORMING ORGANIZATION NAME AND AD	DRESS		10. WORK UNIT NO.
			CONTRACT OR CRANT NO
George C. Marshall Space Flight			11. CONTRACT OR GRANT NO.
Marshall Space Flight Center, A	labama 35812		13. TYPE OF REPORT & PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS	<u> </u>		13
Ý			Technical Memorandum
National Aeronautics and Space A	Administration		
Washington, D. C. 20546			14. SPONSORING AGENCY CODE
Y			
15. SUPPLEMENTARY NOTES			
Prepared by Astrionics Laborato	ory, Science and	Engineering	
16. ABSTRACT	· · · · · ·		
An evaluation of the preci	ise linear sun se	ensor relating	to future mission applications
was performed. The test proced	lures, data, and	results of the	dual-axis, solid-state system
are included. Brief descriptions			·
teristics are presented. A uniqu			•
various fields of view may be use			, manuple bonder medde
701 1000 110100 01 11011 1101 1101 1101	74 11 1011 VII.C 261-1-1	, crooti onico.	
\$7. KEY WORDS		18. DISTRIBUTION	STATEMENT
Sun Sensor			
Solid State Sun Sensor	1		
Dual Axis Sun Sensor	1		
Dual Taris out oction	1	Unlimited -	•
	1		D. grhnaton
		Manny	N. girnoun
	1-1-1-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	<u>U</u>	
19. SECURITY CLASSIF, (of this report) Inclassified	20. SECURITY CLASS		21. NO. OF PAGES 22. PRICE 53 \$3.00

TABLE OF CONTENTS

INTRODUCTION	Page 1
PROCEDURE	2
RESULTS	3
CONCLUSION	4
APPENDIX A. PRECISE LINEAR SUN SENSOR DESCRIPTION	21
APPENDIX B. TEST DATA FOR EVALUATION OF PLSS	27

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Simplified sketch of two-axis sensor	9
2.	Sensor head and electronics	10
3.	Test setup showing heliostat	11
4.	Precision linear sun sensor test setup utilizing heliostat for solar input	12
5.	Dividing head arrangement, sensor, and controls	13
6.	Test setup showing light shields	14
7.	Ideal volts - $\frac{V_0 K}{\cos \delta}$ versus degrees (yaw axis $\pm 10 \deg FOV$)	15
8.	Ideal volts - $\frac{V_0 K}{\cos \delta}$ versus degrees (pitch axis ± 10 deg FOV)	16
9•	Ideal volts - $\frac{V_0 K}{\cos \delta}$ versus degrees (yaw axis ±30 deg FOV)	17
10.	Ideal volts - $\frac{V_0 K}{\cos \delta}$ versus degrees (yaw axis ±30 deg FOV)	18
11.	Ideal volts - $\frac{V_0 K}{\cos \delta}$ versus degrees (pitch axis $\pm 30 \deg FOV$)	19
12.	Ideal volts - $\frac{V_0 K}{\cos \delta}$ versus degrees (pitch axis $\pm 30 \deg FOV$)	20
A-1.	Cross-sectional view of detector (incoming rays are slanted at angle ϕ into the paper and an angle θ to	,
	the might tetal alithemeth in 1)	OO.

LIST OF TABLES

Table	Title	Page
1.	Yaw Sensitive Axis ±10 Deg Head	5
2.	Pitch Sensitive Axis ±10 Deg	6
3.	Yaw Sensitive Axis ±30 Deg	7
4.	Pitch Sensitive Axis ±30 Deg	8

PRECISE LINEAR SUN SENSOR

INTRODUCTION

The precise linear sun sensor (PLSS) is a dual-axis, solid-state system that linearly converts an angle, θ , into an output voltage, V_0 . Silicon detectors are used as the system's sensing elements. The system uses geometry and an electronic divider to change the dimensions of the energized area of the silicon detectors. The PLSS is designed to compute the output voltage as the ratio of

$$V_0 = \frac{V_A - V_B}{V_A + V_B}$$

where V_A and V_B are the voltages of the two opposing sensors (detectors). Figure 1 shows a simplified sketch of the two-axis sensor. A more detailed analysis of the PLSS is given in Appendix A.

The sensor characteristics of the PLSS are listed thus:

Sensor type: Silicon — no moving parts

Operating range: ±30 deg or ±10 deg

Acquisition range: Double the operating range

Response time: 0.005 s

Size: 7.6 cm by 8.9 cm by 8.9 cm

Weight: 0.68 kg

Accuracy: 0.15 percent of operating range

Power: 1 W from ±15 Vdc

Scale factor: $\pm 30 \text{ deg } 0.333 \text{ V/deg; } \pm 10 \text{ deg } 1.000 \text{ V/deg}$

The PLSS, developed by Honeywell Radiation Center (HRC), was loaned to MSFC for study and evaluation. Two sensor heads were supplied by HRC. One sensor head had a ± 30 deg field of view (FOV) and the other had a ± 10 deg FOV. Both sensor heads used the same set of electronics. Figure 2 shows a sensor head and its accompanying electronics.

The PLSS was tested by rotating the sensing head (which was in a beam of collimated light) through a known angle and recording the output (V_0) for the known angle.

PROCEDURE

The PLSS was tested in the Celestial Facility utilizing the heliostat developed by the Astrionics Laboratory to supply the solar illumination (Fig. 3).

The PLSS was held by a group of precision dividing heads so that precision positioning in any axis, to an accuracy of ≈ 2 arc-sec, could be obtained (Figs. 4, 5, and 6).

Both axes of the PLSS were tested for linearity over their entire FOV. The pitch axis of the ± 10 deg sensor was tested while the yaw axis was held stationary at null, ± 5 deg, and ± 10 deg, respectively. The pitch axis of the ± 30 deg sensor was tested while the yaw axis was held stationary at null, ± 15 deg, and ± 30 -deg, respectively. The same electronics were used with both the ± 10 deg FOV and the ± 30 deg FOV heads. This procedure was repeated with the words pitch and yaw interchanged to test the yaw axis of each sensor head.

To minimize translation errors, all data were taken by rotating the sensing unit about the horizontal axis (Leitz head).

The optical mechanical table (OMT) vertical axis was used to provide the desired angular offset (from null) of the nonsensitive axis. For example, if the yaw axis was being tested, the OMT (pitch axis) would be held stationary as the yaw axis was tested at various voltages from +10 V to -10 V. The voltage was recorded for the appropriate angle of the sensitive axis. The voltage output of the system was averaged for a 10 s interval by a Dymec model 2401C integrating voltmeter.

During the early phase of evaluation, a number of discrepancies were observed in the test results. Scattered light was the major cause of these discrepancies. Extensive shielding was required to assure that only desirable illumination reached the sensor head.

To improve the test apparatus, a piece of optical quality glass was installed between the sensing unit and the heliostat. A barrier was constructed to prevent the mass exodus of warm air to the outside. This greatly improved the thermal jitter.

RESULTS

The best method of showing the linearity of the PLSS would have been to plot the raw data, but this method would have required an excessively large graph to show the error of the system. Instead, a table of the data is included for each axis so that a quick comparison of the voltage output of the system from -10 V to +10 V can be easily made (Tables 1 through 4).

The material shown in Figures 7 through 12 was determined as follows. The average scale factor of the sensitive axis with the nonsensitive axis at null was determined. The appropriate constant (K) to make the scale factor equal 1 V/deg was selected. The raw (V0) data were multiplied by the previously determined K. For data where the nonsensitive axis was not at null, the raw data were multiplied by $\frac{K}{\cos\delta}$ where δ was the angle at which the nonsensitive axis was rotated from null; i.e., the raw data were actually corrected by $\frac{K}{\cos\delta}$

The test data for evaluation of the PLSS are presented in Appendix B.

An ideal voltage of 1 V/deg of rotation was assumed. The graphs plotted consist of the ideal volts minus the direct volts $(V_0) \times \frac{K}{\cos \delta}$ versus deg rotation. Since the scale factor of the two axes (pitch and yaw) was different, a different K was used for each axis. The aforementioned method was used with the ± 10 deg sensing unit. The ± 30 deg sensing unit was treated in similar fashion but an ideal scale factor of 0.33333 V/deg was used and the appropriate K was selected to make the average null data scale factor equal 0.33333 V/deg.

The 0.1 deg accuracy of each PLSS sensing unit is equivalent to 0.33 V and 0.100 V for the ± 30 deg head and the ± 10 deg head, respectively.

The graphed material indicates that a K selected where the nonsensitive axis had an output of 5 V would probably have been a better choice, since the zero-to-peak error signal would have been decreased.

The largest direct voltage (V_0) spread between the null reading and the extreme angle reading for the ± 10 deg FOV head was 0.115 V. The largest direct voltage (V_0) spread between the null reading and the extreme angle reading for the ± 30 deg FOV head exceeded 1 V in every case (Tables 3 and 4).

The ± 10 deg FOV head had a worst-case error of approximately ± 0.1 deg when the direct voltage (V_0) output was corrected by $\frac{K}{\cos \delta}$. The ± 30 deg FOV head had an error of approximately 1.2 deg at the extremes for the corrected data $\left(\frac{K}{\cos \delta}\right)$. The null crossing error varied considerably (0.110 V) for the yaw axis of the ± 30 deg FOV head.

CONCLUSION

The PLSS system has a number of very good features, such as its size, weight, and simplicity. The four silicon detectors are all etched at the same time and from the same chip, and each has the same substrate. This fact guarantees greater stability and uniformity of output for alignment, temperature variation, natural deterioration, etc.

Another favorable point of the PLSS system is that both the fine and coarse sensors use the same electronics. This is a simple and economical arrangement for a system that needs both a fine and coarse sun sensor. By proper interconnection, multiple redundancy can be obtained with two coarse sensor heads, two fine sensor heads, and two sets of electronics.

Although the PLSS did not achieve the 0.1 deg accuracy for all values of θ and ϕ as specified by the manufacturer, the system shows considerable promise. With a sufficient refinement of the mask and improvement in the electronics, this system should be suitable for a space mission such as the High Energy Astronomical Observatory at a much reduced cost to the program.

The error of the system would be reduced if the FOV of the PLSS was specified as a 30 deg half-angle cone. The extreme angle of the 30 deg by 30 deg FOV converts to an actual angle of 39 deg.

TABLE 1. YAW SENSITIVE AXIS ± 10 DEG HEAD

Sensitive Yaw Axis	Yaw Pitch Nonsensitive Avis					
(deg)	-10 deg	-5 deg	Null	+5 deg	+10 deg	(V)
+10	9. 984	10.028	10.036	10.022	9.960	0.076
+ 9	8.980	9.057	9.075	9.050	8.969	0.106
+ 8	7.969	8.040	8.061	8.041	7.972	0.092
+ 7	6.957	7.038	7.050	7.032	6.973	0.093
+ 6	5.948	6.031	6.049	6.030	5.975	0.101
+ 5	4.946	5.034	5.052	5.032	4.980	0.106
+ 4	3.950	4.040	4.056	4.033	3.985	0.106
+ 3	2.950	3.041	3.058	3.031	2. 991	0.108
+ 2	1.951	2.028	2.047	2.021	1. 993	0.096
+ 1	+0.953	+ 1.015	1.028	1.012	1.004	0.075
Null	-0.044	- 0.001	- 0.001	- 0.005	+0.010	0.043
- 1	-1.042	- 1.025	- 1.030	- 1.021	-0.981	0.049
- 2	-2.040	- 2.046	- 2.056	- 2.039	-1.981	0.075
- 3	-3.036	- 3.061	- 3.077	- 3.052	-2.976	0.101
- 4	-4.025	- 4.059	- 4.069	- 4.044	-3.967	0.102
- 5	-5.012	- 5.043	- 5.052	- 5.032	-4.956	0.096
- 6	-5.998	- 6.029	- 6.037	- 6.018	-5.945	0.092
- 7	-6.984	- 7.018	- 7.028	- 7.007	-6.932	0.096
- 8	-7.973	- 8.009	- 8.016	- 7.999	-7.922	0.094
- 9	-8.964	- 9.006	- 9.015	- 8.995	-8.918	0.097
-10	-9.979	-10.021	-10.027	-10.012	-9.940	0.087

TABLE 2. PITCH SENSITIVE AXIS ± 10 DEG

Sensitive Pitch Axis		Extreme Spread				
(deg)	-10 deg	-5 deg	Null	+5 deg	+10 deg	(V)
+10	9. 974	10. 025	+10.032	10.024	+9.980	0.058
+ 9	8. 997	9. 058	+ 9.073	9.057	8.985	0.088
+ 8	8.000	8.050	+ 8.061	8.050	7.981	0.080
+ 7	7.001	7.043	+ 7.051	7.041	6.972	0.079
+ 6	6.002	6.041	+ 6.049	6.039	5.964	0.085
+ 5	5.007	5.042	+ 5.051	5.042	4.965	0.086
+ 4	4.009	4.042	+ 4.058.	4.050	+3.970	0.088
+ 3	+3.013	3.042	+ 3.057	3.051	+2.972	0.085
+ 2	+2.017	2.031	+ 2.046	2.043	+1.978	0.068
+ 1	+1.027	1.024	+ 1.028	1.028	+0.985	0.043
Null	+0.034	+ 0.012	+ 0.004	+ 0.003	-0.017	0.030
- 1	-0.961	- 1.009	- 1.027	- 1.014	-1.009	0.066
- 2	-1.963	- 2.028	- 2.050	- 2.034	-2.008	0.087
- 3	-2.957	- 3.038	- 3.071	- 3.051	-3.003	0.114
- 4	-3.949	- 4.032	- 4.064	- 4.045	-3.988	0. 115
- 5	-4.941	- 5.024	- 5.048	- 5.029	-4.975	0.107
- 6	-5.931	- 6.011	- 6.035	- 6.018	-5.962	0.104
- 7	-6.918	- 7.003	- 7.025	- 7.002	-6.943	0.107
- 8	-7.910	- 7 . 993	- 8.013	- 7.993	-7.9 63	0. 103
- 9	-8.907	- 8.988	- 9.013	- 8.988	-8.921	0.106
-10	-9.933	-10.006	-10.026	-10.006	-9.938	0.093

TABLE 3. YAW SENSITIVE AXIS ±30 DEG

Sensitive Yaw Axis		Extreme Spread				
(deg)	-30 deg	-15 deg	Null	+15 deg	+30 deg	(V)
+30	9.045	+9.777	10.015	9.731	+8.879	1.136
+27	8.166	8.785	8.973	8.746	+7.993	0.980
+24	7.276	7.802	7.961	7.765	+7.098	0.863
+21	6.378	6.819	6.952	6.785	+6.202	0.750
+18	5.474	5.841	5.950	5.811	+5.308	0.642
+15	4.566	4.862	4.957	4.840	+4.412	0.545
+12	3.660	3.894	3.974	3.871	+3.516	0.458
+ 9	2.759	2.932	3.001	2.911	+2.619	0.382
+ 6	1.847	+1.958	2.022	1.939	+1.724	0.298
+ 3	0.933	+0.971	1.019	0.961	+0.828	0.191
Null	+0.025	-0.018	+ 0.001	-0.023	-0.085	0.086
- 3	-0.885	-1.004	- 1.022	-1.010	-0.991	0. 137
- 6	-1.791	-1.988	- 2.040	-1.996	-1.900	0.249
- 9	-2.694	-2.966	- 3.042	-2.974	-2.808	0.348
-12	-3.595	-3.930	- 4.016	-3.940	-3.709	0.421
- 15	-4.491	-4.892	- 4.992	-4.900	-4.610	0.501
-18	-5.394	-5.861	- 5.972	-5.863	-5.506	0.578
-21	-6.304	-6.836	- 6.964	-6.835	-6.404	0.660
-24	-7.217	-7.825	- 7.977	-7.814	-7.302	0.760
• -27	-8.217	-8.815	- 8.998	-8.803	8.194	0.804
-30	-9.030	-9.804	-10.044	-9.787	-9.070	1.014

TABLE 4. PITCH SENSITIVE AXIS ±30 DEG

Sensitive Pitch	Year Name and Advanced to the					
Axis	Yaw Nonsensitive Axis					Spread
(deg)	-30 deg	-15 deg	Null	+15 deg	+30 deg	(V)
+30	+8.690	+9.563	+9.742	+9.477	+8.778	1.052
+27	+7.842	+8.575	+8.719	+8.511	+7.890	0.877
+24	+6.986	+7.612	+7.733	+7.557	+7.002	0.747
+21	+6.118	+6.656	+6.752	+6.606	+6.116	0.636
+18	+5.248	+5.703	+5.776	+5.654	+5.227	0.549
+15	+4.380	+4.753	+4.813	+4.710	+4.344	0.469
+12	+3.506	+3.815	+3.862	+3.773	+3.470	0.392
+ 9	+2.629	+2.879	2. 918	+2.836	+2.595	0.323
+ 6	+1.750	+1.930	1.960	+1.892	+1.715	0.245
+ 3	+0.869	0.974	+0.983	+0.945	+0.832	0.151
Null	-0.006	+0.017	-0.002	-0.005	-0.050	0.048
- 3	-0.879	-0.943	-0.938	-0.952	-0.932	0.059
- 6	-1.748	-1.899	-1.959	-1.895	-1.825	0.211
- 9	-2.615	-2.850	-2.919	-2.838	-2.712	0.304
-12	-3.478	-3.786	-3.864	-3.773	-3.592	0.386
-15	-4.337	-4.718	-4.806	-4.702	-4.472	0.469
-18	-5.200	-5.663	-5.763	-5.642	-5.353	0.563
-21	-6.063	-6.612	-6.734	-6.582	-6.232	0.671
-24	-6.924	-7.566	-7.710	-7.527	-7.110	0.786
-27	-7.785	-8.525	-8.695	-8.480	-7. 986	0.910
-30	-8.645	-9.495	-9.708	-9.436	-8.855	1.063

Figure 1. Simplified sketch of two-axis sensor.

Figure 2. Sensor head and electronics.

Figure 3. Test setup showing heliostat.

Q

Figure 4. Precision linear sun sensor test setup utilizing heliostat for solar input.

12

0

Figure 5. Dividing head arrangement, sensor, and controls.

Figure 6. Test setup showing light shields.

 $\frac{V_0 K}{\cos \delta}$ versus degrees (pitch axis ±10 deg FOV). Figure 8. Ideal volts -

 $\frac{V_0 \, \text{K}}{\cos \delta}$ versus degrees (yaw axis ±30 deg FOV). Figure 9. Ideal volts -

 $\frac{V_0 K}{\cos \delta}$ versus degrees (yaw axis ±30 deg FOV). Figure 10. Ideal volts -

versus degrees (pitch axis ±30 deg FOV). $\frac{V_0 K}{\cos \delta}$ Figure 11. Ideal volts -

APPENDIX A. PRECISE LINEAR SUN SENSOR DESCRIPTION*

INTRODUCTION

The precise linear sun sensor is a system that linearly converts an angle, θ , into an output voltage, V_0 . This system can be made to operate independently of an orthogonal angle, ϕ . Both θ and ϕ may vary between +30 deg and -30 deg, and V_0 is accurate to within 0.1 deg of θ for all values of θ and ϕ .

SYSTEM ANALYSIS

The PLSS system uses both geometry and an electronic divider to change the dimensions of the active area of a silicon sensor. A cross-sectional sketch is shown in Figure A-1. The entire cross section is rotated forward an angle ϕ about the y-axis. Two slits, of width s and of length 1, are imaged on the sensors. The left sensor picks up a signal, e_{τ} , per unit length:

$$e_L = IR_L (s_1 + s_2)$$

where I is the effective illumination of the source, and R_{L} is the left sensor responsivity.

The right sensor picks up a signal, e_R , per unit length:

$$e_R = IR_R x_3$$

where $R_{R}^{}$ is the right sensor responsivity.

The total voltages, V_{I} and V_{R} , depend on the lengths of the slits,

$$V_{L} = l_{L} e_{L}$$

$$V_R = I_R e_R$$

^{*} This material was excerpted from the Honeywell-prepared literature that accompanied the system.

Figure A-1. Cross-sectional view of detector (incoming rays are slanted at angle ϕ into the paper and an angle θ to the right; total slit length is 1).

The geometry is designed so that

$$\mathbf{x_2} + \mathbf{x_3} = \mathbf{x_1}$$

or

$$x_3 = x_1 - x_2$$

For future reference, the dimensions x_1 and x_2 are

$$x_i = d \cos \theta'$$

and

$$x_2 = \hat{h} \sin \theta$$

where $\hat{h} = \frac{h}{\cos \phi^{\dagger}}$ and θ^{\dagger} and ϕ^{\dagger} are the counterparts in the glass of θ and ϕ .

The system is designed to compute the output voltage as the ratio

$$V_{0} = \frac{V_{L} - V_{R}}{V_{L} + V_{R}}$$

$$= \frac{\begin{pmatrix} l_{L} R_{L} - l_{R} R_{R} \end{pmatrix} x_{1} + \begin{pmatrix} l_{L} R_{L} + l_{R} R_{R} \end{pmatrix} x_{2}}{\begin{pmatrix} l_{L} R_{L} + l_{R} R_{R} \end{pmatrix} x_{1} + \begin{pmatrix} l_{L} R_{L} - l_{R} R_{R} \end{pmatrix} x_{2}} \qquad (1)$$

Nominally there is complete symmetry and each L-parameter is equal to its R-parameter counterpart. Hence,

$$V_0 = \frac{x_2}{x_1} = \left(\frac{h}{d}\right) \left(\frac{\tan \theta^{\dagger}}{\cos \phi^{\dagger}}\right)$$

In practice, however, complete symmetry may not occur. If we assume that $R_R = R - \frac{\Delta R}{2}$ and $R_L = R + \frac{\Delta R}{2}$ and that there is complete

symmetry otherwise, equation (1) becomes

$$V_{0} = \frac{\frac{\Delta R}{2R} + \frac{x_{2}}{x_{1}}}{1 + \frac{\Delta R}{2R} \frac{x_{2}}{x_{1}}} \approx \frac{x_{2}}{x_{1}} + \frac{\Delta R}{2R} \left[1 - \left(\frac{x_{2}}{x_{1}}\right)^{2}\right] \qquad (2)$$

The last statement in equation (2) results from expanding $\frac{1}{1+x}$ in a Taylor series and then dropping terms containing $\left(\frac{\Delta R}{R}\right)^2$ or higher order. At $\theta=0$ the nonlinear error term is $\frac{\Delta R}{2R}$ since $x_2=0$. As $\theta\to 30^\circ$, $x_2\approx x_1$ and the nonlinear term is approximately 0. This introduces a quadratic nonlinearity into the system.

If there is complete symmetry except that $l_R=1-\frac{\Delta l}{2}$ and $l_L=1+\frac{\Delta l}{2}$, by a similar analysis we see that

$$V_0 \approx \frac{x_2}{x_1} + \frac{\Delta l}{2l} \left[1 - \left(\frac{x_2}{x_1} \right)^2 \right] \qquad (3)$$

Note that there is the same type quadratic nonlinearity as with a responsivity mismatch.

. If the only asymmetry is $d_R = d - \frac{\Delta d}{2}$ and $d_L = d + \frac{\Delta d}{2}$, then

$$V_0 = \frac{x_2}{x_1} + \frac{\Delta d}{2d} \qquad (4)$$

Note that this is a constant offset voltage independent of both $\,\theta^{\,\raisebox{3.5pt}{\text{\circle*{1.5}}}}\,$ and $\,\phi^{\,\raisebox{3.5pt}{\text{\circle*{1.5}}}}\,$.

Finally if the only asymmetry is $h_R=h-\frac{\Delta h}{2}$ and $h_L=h+\frac{\Delta h}{2}$,

$$V_0 \approx \left(1 - \frac{\Delta h}{2h}\right) \frac{x_2}{x_1} \tag{5}$$

As a first order approximation a mismatch in h changes the scale factor in the electronic output voltage.

LINEARITY AND CROSS-COUPLING

In the previous section we saw what effect various mismatches had on the output voltage $\ V_0$,

$$V_0 = \frac{x_2}{x_1} = \frac{h}{d} \frac{\tan \theta'}{\cos \phi'}$$
 (1a)

In this section we shall see how linear the θ - V_0 relation is. The equations governing the optics are

$$\tan^2\theta + \tan^2\phi = \tan^2\psi \tag{6}$$

$$\tan^2 \theta^{\dagger} + \tan^2 \phi^{\dagger} = \tan^2 \psi^{\dagger} \tag{6a}$$

$$\sin \psi = \eta \sin \psi' \tag{6b}$$

and

$$\frac{\tan\theta}{\tan\phi} = \frac{\tan\theta'}{\tan\phi'} \tag{6c}$$

Equations (6) and (6a) define angles ψ and ψ' ; equation (6b) is Snells's law; and equation (6c) states that the tangential phase velocity is the same on both sides of the air-glass boundary.

Computer simulation and analysis shows that the best fit to $f(\theta', \phi') = \frac{\tan \theta'}{\cos \phi'}$ by $g(\theta) = K\theta$ would introduce an error of 1.0 percent or 0.30 deg. On the other hand, the best fit to f by $g(\theta, \phi) = K(\phi)\theta$ is better. Its maximum error is 0.5 percent or 0.15 deg. This shows that there is some cross-coupling between θ and ϕ

In both cases the poorest fit to a straight line occurs at the extreme values of θ and ϕ . Smaller fields-of-view can be represented linearly more accurately. A rough estimate of the magnitude of this nonlinearity is that it is quadratic in both θ , and ϕ ,

The nonlinearity and cross-coupling are both dependent on the index of refraction. For example, a different material $(\eta \approx 1.5 - 1.6)$ using $g(\theta, \phi) = K(\phi)\theta$ would be able to give a maximum nonlinearity of less than 0.33 percent or 0.1 deg.

Note that $K(\phi)$ can be realized by using a mask. The edge of this mask, m(x), is determined by the integral equation

$$x + \frac{1}{2}$$

$$\int m(\xi) d\xi = w(x) = K \left[\tan^{-1} \left(\frac{x}{h} \right) \right]$$

$$x - \frac{1}{2}$$
(7)

It can be solved in a straightforward manner by using Fourier transform techniques. A more practical approach is to note w(x) is an even function. An approximation of the form

$$w(x) = A + Bx^2 + Cx^4$$
 (7a)

is quite reasonable. An approximation for m(x) of the form

$$m(x) = a + bx^2 + cx^4 (7b)$$

leads to a simple and satisfactory solution to equation (7). The relations between the coefficients are

$$C = 1c (7c)$$

$$B = l\left(b + c \frac{l^2}{2}\right) \tag{7d}$$

and

$$A = 1 \left(a + b \frac{1^2}{12} + c \frac{1^4}{80} \right)$$
 (7e)

APPENDIX B. TEST DATA FOR EVALUATION OF PLSS

Data Date: November 17, 1971 Test Engr.: D.D. Johnston

PLSS: ±10 deg Head Yaw Axıs

	465 Head				
Command Angle, deg	Volts for Ideal S. F.* 0.33333 V	Direct Volts (V ₀)	Δ Volt per Increment	<u>V₀ Κ</u> ** cos δ	Ideal Volts, -V ₀ K cos δ
-10	-10.000	-9.940	1.022	-10.056	+0.056
- 9	- 9.000	-8.918	0. 996	- 9.023	+0.023
- 8	- 8.000	-7.922	0.990	- 8.015	+0.015
- 7	- 7.000	-6.932	0.987	- 7.013	+0.013
- 6	- 6.000	-5.945	0.989	- 6.015	+0.015
- 5	- 5.000	-4.956	0.989	- 5.014	+0.014
- 4	- 4.000	-3.967	0. 991	- 4.013	+0.013
- 3	- 3.000	-2.976	0.995	- 3.011	+0.011
- 2	- 2.000	-1.981	1.000	- 2.004	+0.004
- 1	- 1.000	-0.981	0.991	- 0.992	-0.008
NULL	0. 000	+0.010		+ 0.010	-0.010
+ 1	+ 1.000	+1.004	0.994	+ 1.016	-0.016
+ 2	+ 2.000	+1.993	0.989	+ 2.016	-0.016
+ 3	+ 3.000	+2.991	0. 998	+ 3.026	-0.026
+ 4	+ 4.000	+3.985	0.994	+ 4.032	-0.032
+ 5	+ 5.000	+4.980	0. 995	+ 5.038	-0.038
+ 6	+ 6.000	+5.975	0. 995	+ 6.045	-0.045
+ 7	+ 7.000	+6.973	0.998	+ 7.055	-0.055
+ 8	+ 8.000	+7.972	0.999	+ 8.065	- 0. 065
+ 9	+ 9.000	+8.969	0.997	+ 9.074	-0.074
+10	+10.000	+9.960	0.991	+10.077	-0.077

^{*}Scale factor

Pitch (Nonsensitive) Axis

Output Voltage: +9.724

OMT Reading: 299 deg 12 min 49 s

Solar Constant: 49 percent

Angle: +10 deg

^{**}K is constant

Data Date: November 17, 1971

Test Engr.: D.D. Johnston

PLSS: ±10 deg Head

Yaw Axis

Command Angle, deg	Volts for Ideal S. F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
-10	-10.000	-10.012	1.017	-10.014	-0.014
- 9	- 9.000	- 8.995	0. 996	- 8.997	-0.003
- 8	- 8.000	- 7.999	0. 992	- 8.000	0.000
- 7	- 7.000	- 7.007	0. 989	- 7.008	+0.008
- 6	- 6.000	- 6.018	0. 986	- 6.019	-0.019
- 5	- 5.000	- 5.032	0. 988	- 5.033	÷0.033
- 4	- 4.000	- 4.044	0. 992	- 4.045	~0.045
- 3	- 3.000	- 3.052	1.013	- 3.053	+0.053
- 2	- 2.000	- 2.039	1.018	- 2.039	+0.039
- 1	- 1.000	- 1.021	1.016	- 1.021	+0.021
NULL	0. 000	- 0.005		- 0.005	+0.005
+ 1	+ 1.000	+ 1.012	1. 017	+ 1.012	-0.012
+ 2	+ 2.000	+ 2.021	1.009	+ 2.021	-0.021
+ 3	+ 3.000	+ 3.031	1.010	+ 3.032	-0.032
+ 4	+ 4.000	+ 4.033	1.002	+ 4.034	-0.034
+ 5	+ 5.000	+ 5.032	0.999	+ 5.033	~ 0. 033
+ 6	+ 6.000	+ 6.030	0.998	+ 6.031	-0.031
+ 7	+ 7.000	+ 7.032	1.002	+ 7.033	-0.033
+ 8	+ 8.000	+ 8.041	1.009	+ 8.042	-0.042
+ 9	+ 9.000	+ 9.050	1.009	+ 9.052	-0.052
+10	+10.000	+10.022	0.972	+10.024	-0.024

Pitch (Nonsensitive) Axis

OMT Reading: 304 deg 12 min 49 s

Angle: +5 deg

Output Voltage: +4.884

Solar Constant: 49 percent

Data Date: November 17, 1971 Test Engr.: D.D. Johnston

PLSS: ±10 deg Head Yaw Axis

Command Angle, deg	Volts for Ideal S. F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
-10	-10.000	-10.027	1.012	-9. 991	-0.009
- 9	- 9.000	- 9.015	0. 999	-8.982	-0.018
- 8	- 8.000	- 8.016	0. 998	-7.987	-0.013
- 7	- 7.000	- 7.028	0. 991	-7.002	+0.002
- 6	- 6.000	- 6.037	0. 985	-6.015	+0.015
- 5	- 5.000	- 5.052	0 . 9 83	-5.034	+0.034
- 4	- 4.000	- 4.069	0. 992	-4.054	+0.054
- 3	- 3.000	- 3.077	1. 021	-3.066	+0.066
- 2	- 2.000	- 2.056	1.026	-2.049	÷0.049
- 1	- 1.000	- 1.030	1. 029	-1.026	+ 0. 026
NULL	0.000	- 0.001		-0.001	+0.001
+ 1	+ 1.000	+ 1.028	1. 029	÷1.024	-0.024
+ 2	+ 2.000	+ 2.047	1.019	+2.040	-0.040
+ 3	+ 3.000	+ 3.058	1.011	+3.047	-0.047
+ 4	+ 4.000	+ 4.056	0.998	+4.041	-0.041
+ 5	+ 5.000	+ 5.052	0. 996	+5.034	-0.034
- 6	+ 6.000	÷ 6.049	0. 997	+6.027	~0.027
+ 7	+ 7.000	- 7.050	1.001	÷7.024	-0.024
+ 8	+ 8.000	+ 8.061	1.011	+8.032	-0.032
± 9	4 9.000	+ 9.075	1.014	-9.042	-0.042
+10	+10.000	-10.036	0. 961	-9.999	+0.001

Pitch (Nonsensitive) Axis

OMT Reading: 309 deg 12 min 49 s

Angle: Null

Output Voltage: ±0.001 Solar Constant: 51 percent

Data Date: November 17, 1971

Test Engr.: D.D. Johnston

PLSS: ±10 deg Head

Yaw Axis

Command Angle, deg	Volts for Ideal S.F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, -V ₀ K cos δ
-10	-10.000	-10.021	1.015	-10.023	+0.023
- 9	- 9.000	- 9.006	0. 997	- 9.008	+0.008
- 8	- 8.000	- 8.009	0.991	- 8.010	+0.010
- 7	- 7.000	- 7.018	0. 989	- 7.019	+0.019
- 6	- 6.000	<u>-</u> 6.029	0.986	- 6.030	+0.030
- 5	- 5.000	- 5.043	0.984	- 5.044	+0.044
- 4	- 4.000	- 4.059	0.998	- 4.060	+0.060
- 3	- 3.000	- 3.061	1.015	- 3.062	+0.062
- 2	- 2.000	- 2.046	1.021	- 2.046	+0.046
<u> </u>	- 1.000	- 1.025	1.024	- 1.025	+0.025
NULL	0.000	- 0.001		- 0.001	+0.001
+ 1	+ 1.000	+ 1.015	1.016	+ 1.015	-0.015
+ 2	+ 2.000	+ 2.028	1. 013	+ 2.028	-0.028
+ 3	+ 3.000	± 3.041	1.013	+ 3.042	-0.042
+ 4	+ 4.000	+ 4.040	0.999	+ 4.041	-0.041
+ 5	+ 5.000	+ 5.034	0.994	+ 5.035	-0.035
+ 6	+ 6.000	+ 6.031	0. 997	+ 6.032	-0.032
+ 7	+ 7.000	+ 7.038	1. 007	+ 7.039	-0.039
+ 8	+ 8.000	÷ 8.048	1.010	+ 8.049	-0.049
+ 9	+ 9.000	+ 9.057	1.009	+ 9.059	-0.059
+10	+10.000	+10.028	0.971	+10.030	-0.030

Pitch (Nonsensitive) Axis

OMT Reading: 314 deg 12 min 49 s

Angle: -5 deg

Output Voltage: -4.873

Solar Constant: 51 percent

Data Date: November 17, 1971

Test Engr.: D.D. Johnston

PLSS: ±10 deg Head

Yaw Axis

Command Angle, deg	Volts for Ideal S.F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
-10	-10.000	-9.979	1. 015	-10.096	+0.096
- 9	- 9.000	-8.964	0. 991	- 9.069	+0.069
- 8	- 8.000	-7.97 3	0.989	- 8.066	+0.066
- 7	- 7.000	-6.984	0. 986	- 7.066	+0.066
- 6	- 6.000	-5.998	0. 986	- 6.068	+0.068
- 5	- 5.000	-5.012	0. 987	- 5.071	+0.071
- 4	- 4.000	-4.025	0. 989	- 4.072	+0.072
- 3	- 3.000	-3.036	0. 996	- 3.072	+0.072
- 2	- 2.000	-2.040	0. 998	- 2.064	+0.064
- 1	- 1.000	-1.042	0.998	- 1.054	+0.054
NULL	0.000	-0.044		- 0.045	+0.045
+ 1	+ 1.000	+0.953	0. 997	+ 0.964	+0.036
+ 2	+ 2.000	+1.951	0. 998	+ 1.974	+0.026
+ 3	+ 3.000	- 2.950	0. 999	+ 2.985	+0.015
+ 4	+ 4.000	+3.950	1.000	+ 3.996	+0.004
+ 5	+ 5.000	4.94 6	0.996	+ 5.004	-0.004
÷ 6	- 6.000	+5.948	1.002	- 6.018	-0.018
+ 7	- 7.000	+6.957	1.009	- 7.038	-0.038
- 8	₹ 8.000	+7.969	1.012	± 8.062	-0.062
+ 9	- 9.000	+8.980	1.011	÷ 9.085	-0.085
- 10	-10.000	±9.984	1.004	- 10. 101	-0.101

Pitch (Nonsensitive) Axis

OMT Reading: 319 deg 12 min 49 s

Angle: -10 deg

Output Voltage: -9.576

Solar Constant: 50 percent

PLSS: ±10 deg Head Pitch Axis

Command Angle, deg	Volts for Ideal S.F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
+10	+10.000	+9.980	0.995	÷10.104	-0.104
+ 9	+ 9.000	+8.985	1.004	+ 9.097	-0.097
+ 8	+ 8.000	+7.981	1.009	+ 8.081	-0.081
+ 7	+ 7.000	+6.972	1.008	+ 7.059	-0.059
+ 6	+ 6.000	+5.964	0. 999	+ 6.038	-0.038
+ 5	+ 5.000	+4.965	0.995	+ 5.027	-0.027
+ 4	+ 4.000	+3.970	0.998	+ 4.020	-0.020
+ 3	+ 3.000	+2.972	0. 994	+ 3.009	-0.009
+ 2	+ 2.000	+1.978	0.993	+ 2.003	-0.003
+ 1	+ 1.000	+0.985	1. 002	+ 0.997	+0.003
NULL	0.000	-0.017		- 0.017	÷0.017
- 1	- 1.000	-1.009	0.992	- 1.022	+0.022
- 2	- 2.000	-2.008	0.999	- 2.033	÷0.033
- 3	- 3.000	-3.003	0.995	- 3.040	÷0.040
- 4	- 4.000	-3.988	0.985	- 4.038	+0.038
- 5	- 5.000	-4.975	0.987	- 5.037	+0.037
- 6	- 6.000	-5.962	0.987	- 6.036	+0.036
- 7	- 7.000	-6.943	0.981	- 7.030	+0.030
- 8	- 8.000	-7.936	0.993	- 8.035	+0.035
- 9	- 9.000	-8.921	0. 985	- 9.032	+0.032
-10	-10.000	-9.938	1. 017	-10.062	+0.062

Yaw (Nonsensitive Axis)

OMT Reading: 351 deg 6 min 24 s

Angle: +10 deg

Output Voltage: +9.562

Solar Constant: 52 percent

PLSS: ±10 deg Head Pitch Axis

					,
Command Angle, deg	Volts for Ideal S.F.	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, -V ₀ Κ cos δ
+10	+10.000	+10.024	0.967	+10.033	-0.033
+ 9	+ 9.000	+ 9.057	1.007	+ 9.065	-0.065
+ 8	+ 8.000	+ 8.050	1.009	+ 8.057	-0.057
+ 7	+ 7.000	+ 7.041	1.002	+ 7.047	-0.047
+ 6	+ 6.000	+ 6.039	0.997	+ 6.044	-0.044
+ 5	+ 5.000	+ 5.042	0.992	+ 5.047	-0.047
+ 4	+ 4.000	+ 4.050	0.999	+ 4.054	-0.054
+ 3	+ 3.000	+ 3.051	1.008	+ 3.054	-0.054
+ 2	+ 2.000	+ 2.043	1.015	+ 2.045	-0.045
+ 1	+ 1.000	+ 1.028	1.025	+ 1.029	-0.029
NULL	0.000	+ 0.003		+ 0.003	-0.003
- 1	- 1.000	- 1.014	1.017	- 1.015	+0.015
- 2	- 2.000	- 2.034	1.020	- 2.036	+0.036
- 3	- 3.000	- 3.051	1.017	- 3.054	+0.054
- 4	- 4.000	- 4.045	0.994	- 4.049	+0.049
- 5	- 5.000	- 5.029	0.984	- 5.034	+0.034
- 6	- 6.000	- 6.018	0.989	- 6.023	+0.023
- 7	- 7.000	- 7.002	0.984	- 7.008	+0.008
- 8	- 8.000	- 7.993	0.991	- 8.000	+0.000
- 9	- 7.000	- 8,988	0.995	- 8.996	-0.004
-10	-10.000	-10.006	1.018	-10.015	+0.015

Yaw (Nonsensitive) Axıs

OMT Reading: 356 deg 6 min 24 s

Angle: +5 deg

Output Voltage: 4.780

Solar Constant: 52 percent

PLSS: ±10 deg Head Pitch Axis

Command Angle, deg	Volts for Ideal S.F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, -V ₀ K cos δ
+10	+10.000	+10.032	0.959	+10.003	-0.003
+ 9	+ 9.000	+ 9,073	1.012	+ 9.041	-0.047
+ 8	+ 8.000	+ 8.061	1.010	+ 8.038	-0.038
+ 7	+ 7.000	+ 7.051	1.002	+ 7.031	-0.031
+ 6	+ 6.000	+ 6.049	0.998	+ 6.031	-0.031
+ 5	+ 5.000	+ 5.051	0.993	+ 5.036	-0.036
+ 4 .	+ 4.000	+ 4.058	1.001	+ 4.046	-0.046
+ 3	+ 3.000	+ 3.051	1.011	+ 3.048	-0.048
+ 2	+ 2.000	+ 2.046	1.018	+ 2.040	-0.040
+ 1	+ 1.000	+ 1.028	1.024	+ 1.025	-0.025
NULL	0.000	+ 0.004		+ 0.004	-0.004
- 1	- 1.000	- 1.027	1.031	- 1.024	+0.024
- 2	- 2.000	- 2.050	1.023	- 2.044	+0.044
- 3	- 3.000	- 3.071	1.021	- 3.062	+0.062
- 4	- 4.000	- 4.064	0.993	- 4.052	+0.052
- 5	- 5.000	- 5.048	0.984	- 5.033	+0.033
- 6	- 6.000	- 6.035	0.987	- 6.017	+0.017
- 7	- 7.000	- 7.025	0.990	- 7.005	-0.005
- 8	- 8,000	- 8.013	0.988	- 7.990	-0.010
- 9	- 9.000	- 9.013	1.000	- 8.981	-0.013
-10	-10.000	-10.026	1.013	- 9.997	-0.003

Yaw (Nonsensitive) Axis

OMT Reading: 1 deg 6 min 24 s

Angle: Null

Output Voltage: -0.016

Solar Constant: 52 percent

PLSS: ±10 deg Head Pitch Axis

	<u> </u>				
Command Angle, deg	Volts for Ideal S. F. 1.000 V	$\begin{array}{c} \text{Direct} \\ \text{Volts} \\ (\text{V}_0) \end{array}$	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
+10	+10.000	+10.025	0.967	+10.034	-0.034
+ 9	+ 9.000	+ 9.058	1.008	+ 9.066	-0.066
+ 8	+ 8.000	+ 8.050	1.007	+ 8.057	-0.057
+ 7	+ 7.000	+ 7.043	1.002	+ 7.049	-0.049
+ 6	+ 6.000	+ 6.041	0.999	+ 6.046	-0.046
+ 5	+ 5.000	+ 5.042	1.000	+ 5.047	-0.047
+ 4	+ 4.000	+ 4.042	1.000	+ 4.046	-0.046
+ 3	+ 3.000	+ 3.042	1.011	+ 3.045	-0.045
+ 2	+ 2.000	+ 2.031	1.007	+ 2.033	-0.033
+ 1	+ 1.000	+ 1.024	1.012	+ 1.025	-0.025
NULL	0.000	+ 0.012		+ 0.012	-0.012
- 1	- 1.000	- 1.009	1.021	- 1.010	+0.010
- 2	- 2.000	- 2.028	1.019	- 2.030	+0.030
- 3	- 3.000	- 3.038	1.010	- 3.053	+0.053
- 4	- 4.000	- 4.032	0.994	- 4.036	+0.036
- 5	- 5.000	- 5.024	0.992	- 5.029	+0.029
- 6	- 6.000	- 6.011	0.987	- 6.016	+0.016
- 7	- 7.000	- 7.003	0.992	- 7.009	÷0.009
- 8	- 8.000	- 7.993	0.990	- 8.000	+0.000
- 9	- 9.000	- 8,988	0,995	- 8.996	-0.004
-10	-10.000	-10.006	1.018	-10.015	+0.015

Yaw (Nonsensitive) Axis

OMT Reading: 6 deg 6 min 24 s

Angle: -5 deg

Output Voltage: -4.923

Solar Constant: 52 percent

PLSS: ±10 deg Head Pıtch Axis

Command Angle, deg	Volts for Ideal S.F. 1.000 V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_{\emptyset}K}{\cos\delta}$	Ideal Volts, -V _θ K cos δ
+10	-10,000	+9.974	0.977	+10.098	-0.098
+ 9	+ 9,000	+8.997	0.991	+ 9.109	-0.109
+ 8	4 8.000	+8.000	0.999	+ 8.100	-0.100
+ 7	+ 7.000	+7.001	0.999	+ 7.088	-0.088
+ 6	+ 6.000	+6.002	0.995	+ 6.077	-0.077
+ 5	+ 5.000	+5.007	0.998	+ 5,069	-0.069
+ 4	+ 4.000	+4.009	0.996	+ 4.059	-0.059
+ 3	+ 3.000	+3.013	0.996	+ 3.051	-0.051
+ 2	+ 2.000	+2.017	0.990	+ 2.042	-0.042
+ 1	+ 1.000	+1.027	0.993	+ 1.040	-0.040
NULL	0.000	+0.034		+ 0.034	-0.034
- 1	- 1.000	-0.961	0.995	- 0.973	-0.027
- 2	- 2.000	-1.963	1.002	- 1.987	-0.013
- 3	- 3.000	-2.957	0.994	- 2.994	-0.006
- 4	- 4.000	-3.949	0.992	- 3.998	-0.002
- 5	- 5.000	-4.941	0.992	- 5.003	+0.003
- 6	- 6.000	-5.931	0.990	- 6.005	+0.005
- 7	- 7.000	-6.918	0.987	- 7.004	+0.004
- 8	- 8.000	-7.910	0.992	- 8.009	+0.009
- 9	- 9.000	-8.907	0.997	- 9.018	+0.018
-10	-10.000	-9.933	1.026	-10.057	+0.057

Yaw (Nonsensitive) Axis

OMT Reading: 11 deg 6 min 24 s

Angle: -10 deg

Output Voltage: -9.712

Solar Constant: 52 percent

Data Date: November 15, 1971

PLSS: ±30 deg Head

Test Engr.: D. D. Johnston

Yaw Axis

Command Angle, deg	Volts for Ideal S.F. 0.33333 V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
-30	-10.000	-9.070	0.876	-10.442	+0.442
-27	- 9.000	-8.194	0.892	- 9.434	+0.434
-24	- 8.000	-7.302	0.898	- 8.407	+0.407
-21	- 7.000	-6.404	0.898	- 7.373	+0.373
-18	- 6.000	-5.506	0.898	- 6.339	+0.339
-15	- 5.000	-4.610	0.896	- 5.307	+0.307
-12	- 4.000	-3,709	0.901	- 4.270	+0.270
- 9	- 3.000	-2.808	0.901	- 3.233	+0.233
- 6	- 2.000	-1.900	0.908	- 2.187	+0.187
- 3	- 1.000	-0.991	0.909	- 1.141	+0.141
NULL	0.000	-0.085		- 0.098	+0.098
+ 3	+ 1.000	+0.828	0.913	+ 0.953	+0,047
+ 6	+ 2.000	+1.724	0.896	+ 1.985	+0.015
+ 9	+ 3.000	+2.619	0.895	+ 3.015	-0.015
+12	+ 4.000	+3.516	0.897	+ 4.048	-0.048
+15	+ 5.000	+4.412	0.896	+ 5.079	-0.079
+18	+ 6.000	+5.308	0.896	+ 6.111	-0.111
+21	+ 7.000	+6.202	0.894	+ 7.140	-0.140
+24	+ 8.000	+7.098	0, 896	+ 8.172	-0.172
+27	+ 9,000	+7.993	0.895	+ 9.202	-0.202
+30	+10.000	+8.879	0.886	+10.222	-0,222

Pitch (Nonsensitive) Axis

OMT Reading: 279 deg 20 min 38 s

Angle: +30 deg

Output Voltage: +9.757

Solar Constant: 50 percent

Data Date: November 15, 1971.

Test Engr.: D.D. Johnston

PLSS: ±30 deg Head

Yaw Axis

Command Angle, deg	Volts for Ideal S.F. 0.33333 V	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, -V ₀ K cos δ
-30	-10.000	-9.787	0.984	-10.102	+0.102
-27	- 9.000	-8.803	0.989	- 9.087	+0.087
-24	- 8.000	-7.814	0.979	- 8.066	+0.066
-21	- 7.000	-6.835	0.972	- 7.055	+0.055
-18	- 6.000	-5.863	0.963	- 6.052	+0.052
-15	- 5.000	-4.900	c. 960	- 5.058	+0.058
-12	- 4.000	-3,940	0.966	- 4.067	+0.067
- 9	- 3.000	-2.974	0.978	- 3.070	+0.070
- 6	- 2.000	-1.996	0.986	- 2.060	+0.060
- 3	- 1.000	-1.010	0.987	- 1.043	+0.043
NULL	0.000	-0.023		- 0.024	+0.024
+ 3	+ 1.000	+0.961	0.984	+ 0.992	-0.008
+ 6	+ 2.000	+1.939	0.978	+ 2.001	+0.001
+ 9	+ 3.000	+2.911	0.972	+ 3.005	+0.005
+12	+ 4.000	+3.871	0.960	+ 3.996	-0.004
+15	→ 5.000	+4.840	0.969	+ 4.996	-0.004
т 18	- 6.000	+5.811	0.971	+ 5.998	-0.002
+21	+ 7.000	+6.785	0.974	+ 7.004	+0•004
+24	+ 8,000	+7.765	0.980	+ 8.015	+ 0.015
+27	+ 9.000	+8.746	0.981	+ 9.028	+0.028
+30	+10.000	+9.731	0.981	+10.044	+0.044

Pitch (Nonsensitive) Axis

OMT Reading: 294 deg 22 min 17 s

Angle: 15 deg

Output Voltage: +4.818

Solar Constant: 50 percent

PLSS: ±30 deg Head Yaw Axis

Command Angle, deg	Volts for Ideal S.F. 0.33333V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, -V ₀ K cos δ
+30	+10.000	+10.015	1.042	+ 9.985	+0.015
+27	+ 9.000	+ 8.973	1.012	+ 8.947	+0.053
+24	+ 8.000	+ 7.961	1.009	+ 7.938	+0.062
+21	+ 7.000	+ 6.952	1.002	+ 6.931	+0.069
+18	+ 6.000	+ 5.950	0.993	+ 5.932	+0.068
+15	+ 5.000	+ 4.957	0 . 9 83	+ 4.942	+0.058
+12	+ 4.000	+ 3.974	0.973	+ 3.962	+0.038
+ 9	+ 3.000	+ 3.001	0.979	+ 2.992	+0.008
+ 6	+ 2.000	+ 2.022	1.003	+ 2.016	-0.016
+ 3	+ 1.000	+ 1.019	1.018	+ 1.016	-0.016
NULL	0.000	+ 0.001		+ 0.001	-0.001
- 3	- 1.000	- 1.022	1.023	- 1.019	+0.019
- 6	- 2.000	- '2.040	1.018	- 2.034	+0.034
- 9	- 3.000	- 3.042	1.002	- 3.033	+0.033
-12	- 4.000	- 4.016	0.974	- 4.004	+0.004
-15	- 5.000	- 4.992	0.976	- 4.977	-0.023
-18	- 6.000	- 5.972	0.980	- 5.954	-0.046
-21	- 7.000	- 6.964	0.992	- 6.943	-0.057
-24	- 8.000	- 7.977	1.013	- 7.953	-0.047
-27	- 9.000	- 8.998	1.021	- 8.971	-0.029
-30	-10.000	-10.044	1.046	-10.014	+0.014

Pitch (Nonsensitive) Axis

OMT Reading: 309 deg 49 min 36 s

Angle: Null

Output Voltage: +0.002

Solar Constant: 68 percent

PLSS: ±30 deg Head Yaw Axis

Command Angle, deg	Volts for Ideal S. F. 0.33333 V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, -V ₀ K cos δ
+30	+10.000	+9.777	0.992	+10.092	-0.092
+27	+ 9.000	+8.785	0.983	+ 9.068	-0.068
+24	+ 8.000	+7.802	0.983	+ 8.053	-0.053
+21	+ 7.000	+6.819	0.978	+ 7.039	-0.039
+18	+ 6.000	+5.841	0.979	+ 6.029	-0.029
+15	+ 5.000	+4.862	0.968	+ 5.018	-0.018
+12	+ 4.000	+3.894	0.962	+ 4.019	-0.019
+ 9	+ 3.000	+2.932	0.974	+ 3.026	-0.026
+ 6	+ 2.000	+1.958	0.987	+ 2.021	-0.021
+ 3	+ 1.000	+0,971	0.989	+ 1.002	-0.002
NULL	0.000	-0.018		- 0.019	+0.019
- 3	- 1.000	-1.004	0.986	- 1.036	+0.036
- 6	- 2.000	-1.988	0.984	- 2.052	+0.052
- 9	- 3.000	-2.966	0.978 '	- 3.062	+0.062
-12	- 4.000	-3.930	0.964	- 4.057	+0.057
-15	- 5.000	-4.892	0.962	- 5.050	+0.050
-18	- 6.000	-5.861	0.969	- 6.050	+0.050
-21	- 7.000	-6: 836	0.975	- 7.056	+0.056
-24	- 8.000	-7.825	0.989	- 8.077	+0.077
-27	- 9.000	-8.815	0.990	- 9.099	+0.099
-30	-10.000	-9.804	0.989	-10.120	+0.120

Pitch (Nonsensitive) Axis

OMT Reading: 295 deg 08 min 00 s

Angle: -15 deg

Output Voltage: -4.805

Solar Constant: 49 percent

PLSS: ±30 deg Head Yaw Axis

Command Angle, deg	Volts for Ideal S.F. 0.33333 V	Direct Volts (V ₀)	ΔVolt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
+30	+10.000	+ 9. 045	0.879	+10.413	-0.413
+27	+ 9.000	+8.166	0.890	+ 9.401	-0.401
+24	+ 8.000	+7.276	0.898	+ 8.377	-0.377
+21	+ 7.000	+6.378	0.904	+ 7.343	-0.343
+18	+ 6.000	+5.474	0.908	+ 6.302	-0.302
+15	+ 5.000	+4.566	0.906	+ 5.257	-0.257
+12	+ 4.000	+3.660	0.901	+ 4.214	-0.214
+ 9	+ 3.000	+2.759	0.912	+ 3.176	-0.176
+ 6	+ 2.000	+1.847	0.914	+ 2.126	-0.126
+ 3	+ 1.000	+0.933	0.908	+ 1.074	-0.074
NULL	0.000	+0.025		+ 0.029	-0.029
- 3	- 1.000	-0.885	0.910	- 1.019	+0.019
- 6	- 2.000	-1.791	0.906	- 2.062	+0.062
- 9	- 3.000	-2.694	0.903	- 3.102	+0.102
-12	- 4.000	-3 . 595	0.901	- 4.139	+0.139
-15	- 5.000	-4.491	0.896	- 5.170	+0.170
-18	- 6.000	-5.394	0.903	- 6.210	+0.210
-21	- 7.000	-6.304	0.910	- 7.258	+0.258
-24	- 8,000	-7.217	0.913	- 8.309	+0.309
-27	- 9.000	-8.127	0.910	- 9.356	+0.356
-30	-10.000	-9.030	0.903	-10.396	+0.396

Pitch (Nonsensitive) Axis

OMT Reading: $279 \deg 49 \min 36 s$

Angle: -30 deg

Output Voltage: -9.761

Solar Constant: 68 percent

PLSS: ±30 deg Head Pitch Axis

Command Angle, deg	Volts for Ideal S.F. 0.33333 V	Direct Volts (V ₀)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, -V ₀ K cos δ
-30	-10.000	-8, 855	0.869	-10.514	+0.514
-27	- 9.000	-7.986	0.876	- 9.482	+0.482
-24	- 8.000	-7.110	0.878	- 8.442	+0.442
-21	- 7.000	-6.232	0.879	- 7.399	+0.399
-18	- 6.000	-5.353	0.881	- 6.356	+0.356
-15	- 5.000	-4.472	0.880	- 5.310	+0.310
-12	- 4.000	-3.592	0.880	- 4.265	+0.265
- 9	- 3.000	-2.712	0.887	- 3.220	+0.220
- 6	- 2.000	-1.825	0.886	- 2.167	+0.167
- 3	- 1.000	-0.932	0.889	- 1.106	+0.106
NULL	0.000	-0.050		- 0.059	+0.059
+ 3	+ 1.000	+0.832	0.882	+ 0.988	+0.012
+ 6	+ 2.000	+1.715	0.883	+ 2.036	-0.036
+ 9	+ 3.000	+2.595	0.880 .	+ 3.081	-0.081
+12	+ 4.000	+3.470	0.875	+ 4.120	-0.120
+15	+ 5.000	+4.344	0.874	+ 5.157	-0.157
+18	+ 6.000	+5.227	0.883	+ 6.206	-0.206
+21	+ 7.000	+6.116	0.889	+ 7.262	-0.262
+24	+ 8.000	+7.002	0.886	+ 8.314	-0.314
+27	+ 9.000	+7.890	0.888	+ 9.368	-0.368
+30	+10.000	+8.778	0.888	+10.422	-0.422

Yaw (Nonsensitive) Axis

OMT Reading: 280 deg 23 min 33 s

Angle: +30 deg

Output Voltage: -9.981

Solar Constant: 48 percent

Data Date: November 17, 1971

Data Date. November 11, 19

Test Engr.: D. D. Johnston

PLSS: ±30 deg Head

Pitch Axis

				l	
Command	Volts for	Direct	△ Volt	17. 17	Ideal Volts,
Angle, deg	Ideal S.F. 0.33333V	$Volts$ (V_0)	per Increment	$\frac{V_0 K}{\cos \delta}$	$\frac{-V_0 K}{\cos \delta}$
ueg	0.0000 V	(• 0)	nicrement		cos o
+30	+10.000	+9.477	0.966	+10.089	-0.089
+27	+ 9.000	+8.511	0.954	+ 9.060	-0.060
+24	+ 8.000	+7.557	0.951	+ 8.045	-0.045
+21	+ 7.000	+6.606	0.952	+ 7.032	-0.032
+18	+ 6.000	+5.654	0.944	+ 6.019	-0.019
+15	+ 5.000	+4.710	0.937	+ 5.014	-0.014
+12	+ 4.000	+3.773	0.937	+ 4.016	-0.016
+ 9	+ 3.000	+2.836	0 . 944	+ 3.019	-0.019
+ 6	+ 2.000	+1.892	0.947	+ 2.014	-0.014
+ 3	+ 1.000	+0.945	0.950	+ 1.006	-0.006
NULL	0.000	-0.005		- 0.005	+0,005
- 3	- 1.000	-0.952	0.947	- 1.013	+0.013
- 6	- 2.000	-1.895	0,943	- 2.017	+0.017
- 9	- 3.000	-2.838	0.943	- 3.021	+0.021
-12	- 4.000	-3.773	0 . 935	- 4.016	+0.016
-15	- 5.000	-4.702	0.929	- 5.005	+0.005
-18	- 6.000	-5.642	0 .9 40	- 6.006	+0.006
-21	- 7.000	-6.582	0 . 9 40	- 7.007	+0.007
-24	- 8.000	-7.527	0.945	- 8.013	+0.013
-27	- 9.000	-8.480	0.953	- 9 027	+0.027
-30	-10.000	-9.436	0.956	-10.045	+0.045

Yaw (Nonsensitive) Axis

OMT Reading: 293 deg 31 min 48 s

Angle: +15 deg

Output Voltage: +5.310

Solar Constant: 49 percent

PLSS: ±30 deg Head Pitch Axis

Command Angle, deg	Volts for Ideal S. F. 0.33333 V	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
+30	+10.000	+9.742	1.023	+10.017	-0.017
+27	+ 9.000	+8.719	0.986	+ 8.965	+0.035
+24	+ 8.000	+7.733	0.981	+ 7.952	+0.048
+21	+ 7.000	+6.752	0.976	+ 6.943	+0.057
+18	+ 6.000	+5.776	0.963	+ 5.939	+0.061
+15	+ 5.000	+4.813	0.951	+ 4.949	+0.051
+12	+ 4.000	+3.862	0.944	+ 3.971	+0.029
+ 9	+ 3.000	+2.918	0.958	+ 3.000	+0.000
+ 6	+ 2.000	+1.960	0.977	+ 2.015	-0.015
+ 3	+ 1.000	+0.983	0.985	+ 1.011	-0.011
NULL	0.000	-0.002	,	- 0.002	+0.002
- 3	- 1.000	-0.983	0.981	- 1.011	+0.011
- 6	- 2.000	-1.959	0.976	- 2.014	+0.014
- 9	- 3.000	-2.919	0.960	3.002	+0.002
-12	- 4.000	-3.864	0.945	- 3.973	-0.027
-15	- 5.000	-4.806	0.942	- 4.942	-0.058
-18	- 6.000	-5.763	0.957	- 5.926	-0.074
-21	- 7.000	-6.734	0.971	- 6.924	-0.076
-24	- 8.000	-7.710	0.976	- 7.928	-0.072
-27	- 9.000	-8.695	0.985	- 8.941	-0.059
-30	-10.000	-9.708	1.013	- 9.982	-0.018

Yaw (Nonsensitive) Axis

OMT Reading: 308 deg 30 min 59 s

Angle: Null

Output Voltage: -0.0004

Solar Constant: 68 percent

PLSS: ±30 deg Head Pitch Axis

Command Angle, deg	Volts for Ideal S. F.	Direct Volts (V ₀)	Δ Volt per Increment	$\frac{V_0 K}{\cos \delta}$	Ideal Volts, $\frac{-V_0 K}{\cos \delta}$
+30	+10.000	+9.563	0.988	+10.180	-0.180
+27	+ 9.000	+8.575	0.963	+ 9.128	-0.128
+24	+ 8.000	+7.612	0.956	+ 8.103	-0.103
+21	+ 7.000	+6.656	0.953	+ 7.086	-0.086
+18	+ 6.000	+5.703	0.950	+ 6.071	-0.071
+15	+ 5.000	+4.753	0.938	+ 5.060	-0.060
+12	+ 4.000	+3,815	0.936	+ 4.061	-0.061
+ 9	+ 3.000	+2.879	0.949	+ 3.065	-0.065
+ 6	+ 2.000	+1.930	0.956	+ 2.055	-0.055
+ 3	+ 1.000	+0.974	0.957	+ 1.037	-0.037
NULL	0.000	+0.017		+ 0.018	-0.018
- 3	- 1.000	-0.943	0.960	- 1.004	+0.004
- 6	- 2.000	-1.899	0.956	- 2.022	+0.022
- 9	- 3.000	-2.850	0.951	- 3.034	+0.034
-12	- 4.000	-3.786	0.936	- 4.030	+0.030
-15	- 5.000	-4.718	0.932	- 5.022	+0.022
-18	- 6.000	-5.663	0.945	- 6.028	+0.028
-21	- 7.000	-6.612	0.949	- 7.039	+0.039
-24	- 8.000	-7.566	0.954	- 8.054	+0.054
-27	- 9.000	-8.525	0.959	- 9.075	+0.075
-30	-10.000	-9.495	0.970	-10.108	+0.108

Yaw (Nonsensitive) Axis

OMT Reading: 323 deg 31 min 48 s

Angle: -15 deg

Output Voltage: -4.989

Solar Constant: 47 percent

PLSS: ±30 deg Head Pitch Axis

1 100. 100 dog nedd			THOI THIS			
Command Angle, deg	Volts for Ideal S.F. 0.33333 V	Direct Volts (V_0)	Δ Volt per Increment	V ₀ K cos δ	Ideal Volts, -V ₀ K cos δ	
+30	+10.000	+8.690	0.848	+10.317	-0.317	
+27	+ 9.000	+7.842	0.856	+ 9.311	-0.311	
+24	+ 8.000	+6.986	0.868	+ 8,295	-0.295	
+21	÷ 7.000	+6.118	0.870	+ 7.264	-0.264	
+18	+ 6.000	+5.248	0.868	+ 6.231	-0.231	
+15	+ 5.000	+4.380	0.874	+ 5.201	-0.201	
+12	+ 4.000	+3.506	0.877	+ 4.163	-0.163	
+ 9	+ 3.000	+2.629	0.879	+ 3.121	-0.121	
+ 6	+ 2.000	+1.750	0.881	+ 2.078	-0.078	
+ 3	+ 1.000	+0.869	0.875	+ 1.032	-0.032	
NULL	0.000	-0.006		- 0.007	-0.007	
- 3	- 1.000	-0.879	0.873	- 1.044	+0.044	
- 6	- 2.000	-1.748	0.869	- 2.075	· 0.075	
- 9	- 3.000	-2.615	0.867	- 3.105	70 . 105	
-12	- 4.000	-3.478	0.863	- 4.130	-0.130	
-15	- 5.000	-4.337	0.859	- 5.149	0.149	
-18	- 6.000	-5.200	0.863	- 6.174	-0.174	
-21	- 7.000	-6.063	0.863	- 7.199	-0.199	
-24	- 8.000	-6.924	0.861	- 8.221	7 0 . 221	
-27	- 9.000	-7.785	0.861	- 9.243	¬ 0 . 243	
-30	-10.000	-8.645	0.860	-10.264	÷0.264	

Yaw (Nonsensitive) Axis

OMT Reading: 278 deg 31 min 48 s

Angle: -30 deg

Output Voltage: -10.038

Solar Constant: 49 percent

APPROVAL

PRECISE LINEAR SUN SENSOR

By Danny D. Johnston

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

JAMES D. JOHNSTON

Chief, Encoders and Interface Instrumentation Section

for PETER H. BROUSSARD, JR.

Chief, Sensors Branch

CARL H. MANDEL

Chief, Guidance and Control Division

F. B. MOORE

Director, Astrionics Laboratory

DISTRIBUTION

S& E-ASTR-ZX INTERNAL A& TS-PAT DIR Mr. L.D. Wofford, Jr. DEP-T A&TS-MS-H AD-S A&TS-MS-IP (2) PD-AP-DIR A& TS-MS-IL (8) Mr. Stewart A&TS-TU (6) PD-DO-DIR Dr. Thomason S&E-CSE-DIR Dr. Haeussermann EXTERNAL S&E-ASTR-DIR Scientific and Technical Information Facility (25) Mr. Moore P. O. Box 33 College Park, Maryland 20740 S& E-ASTR-A Attn: NASA Representative (S-AK/RKT) Mr. Hosenthien National Aeronautics and Space Administration Washington, D.C. 20546 S&E-ASTR-C Attn: Mr. Theodore Michaels, REG Mr. Swearingen Mr. Authur Reetz, Jr., RX Mr. Richard Livingston, MTG S&E-ASTR-G Mr. Carl Janow, REG Mr. Mandel Mr. William Hamby, HLO Dr. Doane Mr. Wood Langley Research Center Mr. Jones National Aeronautics and Space Administration Mr. Doran Langley Station Mr. Broussard Hampton, Virginia 23365 Mr. Morgan Attn: Dr. Kurzhals Mr. Kelley Mr. Keckler Mr. Lee Mr. Kalange

Honeywell Radiation Center

2 Forbes Road

Lexington, Massachusetts 02173

Attn: Mr. Koso Mr. Kollodge

 $S\&\,E\text{-}ASTR\text{-}S$

Mr. Smith

Mr. Fikes

Mr. Gaines

Mr. Walls

Mr. Wojtalik

Mr. J.D. Johnston Mr. D.D. Johnston

Mr. Noel

Mr. Brooks