2021 - 2022

MÉCANIQUE

Nom: Prénom:

EXAMEN D'EXERCICES DE MECANIQUE - 10 juin 2020

1^{ère} Bachelier en Sciences Industrielles

Déterminez les réactions d'appui de la poutre illustrée à la figure 1.
Valeurs numériques : p = 15 kN/m ; L = 6 m ; d = 5 m

Figure 1 : poutre

2. Le cric, proposé à la figure 2, est utilisé en cas de crevaison pour lever la voiture S₀. Une manivelle (non représentée) entraîne la vis de commande S₅, celle-ci est articulée sur une noix S₆ (articulation d'axe CE) et agit sur l'écrou S₇. Ce dernier est articulé en C sur la barre S₃. La noix S₆ est articulée en E sur la barre S₂. Les barres S₂ et S₃ sont articulées entre elles en D, en B sur le patin S₄ et en F sur le patin S₁. Le mouvement de rotation de la vis S₅ entraîne le mouvement de translation de l'écrou S₇, la distance EC varie, la distance BF varie, il en résulte le levage du véhicule S₀.

On demande de déterminer les forces de liaisons aux rotules aux points F, B, D et E en supposant le poids du véhicule représenté par une force P = 300 daN agissant en A. Les poids des solides S₁, S₂, ..., S₇ sont négligés.

Pour résoudre le problème :

- Considérez le mécanisme constitué des solides S₂, S₃ et S₈.
- Se est un solide réunissant les solides Ss, Se et Sr. Le solide Se peut être considéré comme une barre biarticulée en C et en E et non chargée.

Figure 2 : cric de voiture

 Dans la configuration représentée, la barre AB a une vitesse angulaire de 7 rad/s dans le sens horaire.

Calculer la vitesse angulaire des barres BC et CD

Figure 3 : problème de cinématique