Assignment 2

· Name: Abhiroop Mukherjee

• Roll No.: 510519109

• GSuite: 510519109.abhirup@students.iiests.ac.in

• Subject: Computer Networks Lab (CS 3272)

Question (a)

Check the version of the tcpdump and the libpcap utilities. Also find the number of interfaces available with your computer. Switch the network of eth0/eth1 (or the ethernet interface name as appeared) to promiscuous mode.

Answer

1. • Check Version of tcpdump and libcap: sudo tcpdump --version

```
tcpdump version 4.9.3
libpcap version 1.9.1 (with TPACKET_V3)
OpenSSL 1.1.1f 31 Mar 2020
```

2. • Iterfaces available: tcpdump -D

```
1.eth0 [Up, Running]
2.lo [Up, Running, Loopback]
3.any (Pseudo-device that captures on all interfaces) [Up,
Running]
4.bluetooth-monitor (Bluetooth Linux Monitor) [none]
5.nflog (Linux netfilter log (NFLOG) interface) [none]
6.nfqueue (Linux netfilter queue (NFQUEUE) interface) [none]
7.dummy0 [none]
8.tunl0 [none]
9.sit0 [none]
10.bond0 [none]
```

- 3. Switch the network of eth0 to promiscuous mode: sudo ifconfig eth0 promisc
 - Check if promiscuous mode is turned on: ifconfig | grep PROMISC

```
eth0: flags=4419<UP, BROADCAST, RUNNING, PROMISC, MULTICAST> mtu
1500
```

· hence turned on promiscuous mode and verified

Question (b)

Write the tcpdump command to capture 20 packets by listening to the promiscuous mode interface of your host and save the result as *.pcap file (both with and without -n option).

Answer

- did curl www.google.com with both the commands
- sudo tcpdump -i eth0 -n -w "with-n.pcap" -c 20
 sudo tcpdump -i eth0 -w "without-n.pcap" -c 20

Question (c)

Read the above file and identify the different fields present in TCP/IP packets captured by tcpdump.

Answer

1. Read with-n.pcap:tcpdump -n -r with-n.pcap

```
[RAH: 15% | SMAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[Batt: 79%][12:49 9M] > tepdump -n -r with-n.pcap
reading from file with-n.pcap, link-type ENIOME (Ethernet)
12:45:59.697061 ARP, Request who-has 172.22.221.1 tell 172.22.376.67, length 28
12:45:59.697061 ARP, Request who-has 172.22.221.1 is-at 09:15:55:03-174:109, length 28
12:46:03.792310 F1 172.22.237.67, 59462 > 172.22.221.1 is-at 09:15:55:03-174:109, length 28
12:46:03.792315 F1 172.22.237.67, 59462 > 172.22.221.1 is-at 09:15:55:03-174:109, length 28
12:46:03.792315 F1 172.22.237.67, 59462 > 172.22.227.1 is-at 3715:34 APR waw google.com. (32)
12:46:03.792315 F1 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 59462 > 172.22.237.67, 53461 > 172.22.237.67, 53461 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 38361 > 172.22.237.67, 3836
```

2. Read without-n.pcap:tcpdump -r without-n.pcap

```
[RAM: 15% | SMAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[Batt: 9%][12:52 PM] > tepdump -r without-n.pcap, inth-type ENIOME (Ethernet)
12:46:16.331837 IP 177.22.237 67.52176 > LAPIOP-TMR28RHP.ashome.net.domain: 23943+ A? www.google.com. (32)
12:46:16.331837 IP 177.22.237 67.52176 > LAPIOP-TMR28RHP.ashome.net.domain: 56968+ AAAA? www.google.com. (32)
12:46:16.338985 IP LAPIOP-TMR28RHP.mshome.net.domain > 177.22.237 67.52176: 23943- 1/6/9 A 142.259-76.164 (62)
12:46:16.339395 IP LAPIOP-TMR28RHP.ashome.net.domain > 177.22.237 67.52176: 56968- 1/6/9 AAAA2 2944: 68989: 323::2004 (74)
12:46:16.339395 IP LAPIOP-TMR28RHP.ashome.net.domain > 177.22.237 67.52176: 56968- 1/6/9 AAAA2 2944: 68089: 323::2004 (74)
12:46:16.339334 IP D 172.22.237 67.38818 > bomlzs09-in-f4.1e100.net.http: Flags [S], seq 2327451116, win 64240, options [mss 1466, sackOK,TS val 3642665415 ecr 0,nop.wscale 7], length 0
12:46:16.349331 IP boml2509-in-f4.1e100.net.http: Flags [S], seq 2337443757, ack 2327451117, win 65535, options [mss 1412, sackOK,TS val 2022847857] tength 0
12:46:16.349917 IP 172.22.237.67.38818 > boml2509-in-f4.1e100.net.http: Flags [P], seq 1:79, ack 1, win 502, options [nop,nop,TS val 3642685426 ecr 2832047857], length 78: HTTP: GET / HTTP/1.
12:46:16.351391 IP boml2509-in-f4.1e100.net.http > 172.22.237.67.38818: Flags [P.], seq 1:79, ack 1, win 502, options [nop,nop,TS val 3642685426 ecr 2832047857], length 78: HTTP: GET / HTTP/1.
12:46:16.351371 IP boml2509-in-f4.1e100.net.http > 172.22.237.67.38818: Flags [P.], seq 1:79, ack 79, win 256, options [nop,nop,TS val 2032048022 ecr 3642685456], length 1000 NC 1.246:16.5529770 IP boml2509-in-f4.1e100.net.http > 172.22.237.67.38818: Flags [P.], seq 1:4001, win 447, options [nop,nop,TS val 2032048022 ecr 3642685506], length 1000 NC 1.246:16.5529770 IP boml2509-in-f4.1e100.net.http > 172.22.237.67.38818: Flags [P.], seq 1:4001, win 447, options [nop,nop,TS val 2032048022 ecr 3642685506], length 20146:16.529770 IP boml2509-in-f4.1e100.net.http > 172.22.237.67.38818: Fla
```

- 3. consider the following packet (from tcpdump -n -r with-n.pcap):
 - 12:46:03.899822 IP 142.250.76.164.80 > 172.22.237.67.38816: Flags [P.], seq 1:8401, ack 79, win 256, options [nop,nop,TS val 3857071643 ecr 3642672806], length 8400: HTTP: HTTP/1.1 200 OK

Data	Description		
12:46:03.899822	Timestamp of the packet dumped		
IP	IP protocol used, here its IPv4		
172.22.237.67.38816	Source IP address and port		
142.250.76.164.80	Destination IP address and port		
Flags [P.]	Flags of the packet, P means PUSH and . means ACK		
seq 1:8401	Sequence number of the packet		
ack 79	Acknowledgement number of the packet. 79 represents the next expected byts(data) on the network flow		
win 256	Window size of the packet, represents the no. of bytes available in the receiving buffer		
length 8400	Length of the packet, reptesents the length in bytes of the payload data		
HTTP: HTTP/1.1 200 OK	Payload data, here HTTP 200 OK response to my laptop		

Question (d)

Extract packet arrival time, source IP address, destination IP address and port.

Answer

• tcpdump -tttt -n -r with-n.pcap -c 3

```
[RAM: 15% | SWAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[Batt: 79%][01:19 PM] > tcpdump -tttt -n -r with-n.pcap -c 3
reading from file with-n.pcap, link-type EN10MB (Ethernet)
2022-01-24 12:45:59.697061 ARP, Request who-has 172.22.224.1 tell 172.22.237.67, length 28
2022-01-24 12:45:59.697310 ARP, Reply 172.22.224.1 is-at 00:15:5d:9a:7d:d9, length 28
2022-01-24 12:46:03.702340 IP 172.22.237.67.59462 > 172.22.224.1.53: 37153+ A? www.google.com. (32)
```

• From the last record:

packet arrival time: 12:46:03.702340
 source IP address: 172.22.237.67
 destination IP address: 172.22.224.1

destination port: 53

Question (e)

Extract source MAC address and destination MAC addresses.

Answer

• we will use the -e tag to extract the MAC address: tcpdump -tttt -e -n -r with-n.pcap -c

```
[Batt: 79%][01:19 PM] ) tcpdump -tttt -e -n -r with-n.pcap -c 3
reading from file with-n.pcap, link-type ENIOMB (Ethernet)
2622-01-24 12:45:59.697861 00:15:5d:93:ef:b3 > 00:15:5d:9a:7d:d9, ethertype ARP (0x0806), length 42: Request who-has 172.22.224.1 tell 172.22.237.67, length 28
2622-01-24 12:45:59.697310 00:15:5d:93:ef:b3 > 00:15:5d:9a:r6:b3, ethertype ARP (0x0806), length 42: Reply 172.22.224.1 is-at 00:15:5d:9a:7d:d9, length 28
2022-01-24 12:46:03.702340 00:15:5d:93:ef:b3 > 00:15:5d:9a:7d:d9, ethertype IPv4 (0x0800), length 74: 172.22.237.67.59462 > 172.22.224.1.53: 37153+ A? www.google.com. (32)
```

• From the last record from the image:

```
source MAC address: 00:15:5d:93:ef:b3destination MAC address: 00:15:5d:9a:7d:d9
```

Question (f)

Get the inter-arrival times while capturing packets.

Answer

- the -ttt tag shows inter-arrival time instead of arrival time in the result
- sudo tcpdump -n -ttt

```
[RAM: 16% | SMAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2 07s
[Batt: 79%][01:31 PM] > sudo tcpdump -n -ttt
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
00:00:00:00:000000 IP 20.84.171.179.443 > 172.22.237.67.45814: Flags [.], ack 3653389144, win 1341, options [nop,nop,TS val 907679791 ecr 144654694], length 0
00:00:00:00:00:000007 IP 172.22.237.67.45814 > 20.84.171.179.443: Flags [.], ack 1, win 4138, options [nop,nop,TS val 144669927 ecr 907634193], length 0
00:00:00:00:00:0000045 IP 20.84.171.179.443 > 172.22.237.67.45814: Flags [.], ack 1, win 1341, options [nop,nop,TS val 907695031 ecr 144669927], length 0
00:00:00:00:00:0000045 IP 172.22.237.67.45814 > 20.84.171.179.443: Flags [.], ack 1, win 4138, options [nop,nop,TS val 144685173 ecr 907634193], length 0
^C
4 packets captured
4 packets captured
4 packets dropped by kernel
```

Question (g)

Use tcpdump to capture HTTP/HTTPS request and reply from www.google.com. Also print the packet content in ASCII format.

Answer

- We will use the -A flag to also print the ASCII data of the packet payload
- HTTP Default Port: 80
- HTTPS Default Port 443
- · Host: www.google.com
- Hence we will use the following command:

```
• sudo tcpdump -A 'host www.google.com and (port 80 or port 443)' -c 1
```

Question (h)

For each command, use tcpdump to capture the associated packets, and explain the different fields of each request and reply: (i) ping (ii) wget (iii) traceroute

Answer

ping

sudo tcpdump -n host www.google.com -c 6 and ping www.google.com -c 5

```
[RAM: 14% | SWAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[Batt: 79%][03:48 PM] ) sudo tcpdump -n host www.google.com -c 6
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
15:49:00.794798 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 600, seq 23, length 64
15:49:00.806128 IP 142.250.76.164 > 172.22.236.145: ICMP echo reply, id 600, seq 23, length 64
15:49:01.796925 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 600, seq 24, length 64
15:49:01.809005 IP 142.250.76.164 > 172.22.236.145: ICMP echo reply, id 600, seq 24, length 64
15:49:02.798378 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 600, seq 25, length 64
15:49:02.807198 IP 142.250.76.164 > 172.22.236.145: ICMP echo reply, id 600, seq 25, length 64
6 packets captured
10 packets received by filter
0 packets dropped by kernel
```

- my IP: 172.22.236.145
- We can observe that ping uses ICMP Protocol for contacting hosts
- We can observe that for every ICMP echo request given by my computer, it receives an ICMP echo
 request by the destination IP; all request having same size wich is the default 64 bytes given by ping

wget

 sudo tcpdump -n host www.google.com and wget www.google.com -0 /tmp/index.html

```
[RAM: 15% | SMAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[East: 79%][08:195 PM] > sudo tepdump -n host www.google.com
tepdump: verbose output suppressed, use -v or -v v for full protocol decode
listening on ethol, Link-type ENIONB (Ethernet), capture size 2621M4 bytes
li-08:155.0166277 10 172.22.236.1U5.170800 > 1102.259.76.161.08: Flags [S], seq 682170994, win 642U0, options [mss 1460, sackOK, TS val 4158356726 ecr 0,nop,wscale 7], length 0
16:08:155.0238109 10 122.250.76.161.08: Plags [S], seq 682170994, win 642U0, options [mss 1460, sackOK, TS val 4128917946] err 4158356726,nop,wscale 8], length 0
16:08:155.0238109 10 122.250.76.161.08: Plags [S], seq 682170994, win 65355, options [msp 1412, sackOK, TS val 4128917946] err 4158356726,nop,wscale 8], length 0
16:08:155.0238108 10 172.22.236.1U5.470000 > 1402.259.76.161.08: Plags [S], seq 12812170905, win 65355, options [msp 1412, sackOK, TS val 4128917946], length 0 16:08:155.023818 10 172.22.236.1U5.470000 > 1402.259.76.161.08: Plags [S], seq 1:102, ack 1, win 502, options [nop,nop,TS val 4158356733 err 4128917946], length 141: HTTP: GET / HTTP/1.1
16:08:155.1501659 10 112.2596.76.161.08 > 172.22.236.1U5.470000 > 1402.259.76.161.08: Plags [S], ack 1412, win 261, options [nop,nop,TS val 4120917904], length 141: HTTP: GET / HTTP/1.1
16:08:155.1501659 10 112.2596.76.161.08 > 172.22.236.1U5.470000 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161.08 > 1402.559.76.161
```

Packet No.	Source	Destination	Packet Type	Packet Length
1	172.22.236.145.47000	142.250.76.164.80	[S]-> SYN	0
2	142.250.76.164.80	172.22.236.145.47000	[S.] -> SYN ACK	0
3	172.22.236.145.47000	142.250.76.164.80	[.] -> ACK	0
4	172.22.236.145.47000	142.250.76.164.80	[P.] -> PUSH ACK	141 -> GET REQ
5	142.250.76.164.80	172.22.236.145.47000	[.] -> ACK	0
6	142.250.76.164.80	172.22.236.145.47000	[P.] -> PUSH ACK	12600 -> 200 OK RES
7	172.22.236.145.47000	142.250.76.164.80	[.] -> ACK	0
8	142.250.76.164.80	172.22.236.145.47000	[.] -> ACK	1400 -> HTTP
9	172.22.236.145.47000	142.250.76.164.80	[.] -> ACK	0
10	142.250.76.164.80	172.22.236.145.47000	[.] -> ACK	2800 -> HTTP
11	142.250.76.164.80	172.22.236.145.47000	[P.] -> PUSH ACK	331 -> HTTP
12	172.22.236.145.47000	142.250.76.164.80	[.] -> ACK	0
13	172.22.236.145.47000	142.250.76.164.80	[.]-> ACK	0
14	172.22.236.145.47000	142.250.76.164.80	[F.] -> FIN ACK	0
15	142.250.76.164.80	172.22.236.145.47000	[F.] -> FIN ACK	0
16	172.22.236.145.47000	142.250.76.164.80	[.]-> ACK	0

traceroute

- sudo tcpdump -n and sudo traceroute www.google.com -I
- -I will give ICMP requests for traceroute

```
[RAM: 17% | SWAP: 0%] .../Sem 6/CS 3272
[Batt: 79%][04:28 PM] > sudo tcpdump -n
                                 em 6/CS 3272 Computer Network Lab/Assignment 2 👏 19s
cpdump: verbose output suppressed, use -v or -vv for full protocol decode
istening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:29:35.822506 IP 172.22.224.1.53 > 172.22.236.145.49909: 55465 NXDomain 0/0/0 (44)
.l6:29:35.822560 IP 172.22.236.145 > 172.22.224.1: ICMP 172.22.236.145 udp port 49909 unreachable, length 80
.l6:29:37.806282 IP 172.22.224.1.53 > 172.22.236.145.46214: 12165 NXDomain θ/θ/θ (42)
.6:29:37.806373 IP 172.22.236.145 > 172.22.224.1: ICMP 172.22.236.145 udp port 46214 unreachable, length 78
.6:29:37.939300 IP 172.22.236.145.47873 > 172.22.224.1.53: 25186+ A? www.google.com. (32)
.6:29:37.939336 IP 172.22.236.145.47873 > 172.22.224.1.53: 30318+ AAAA? www.google.com. (32)
.6:29:37.940126 IP 172.22.224.1.53 > 172.22.236.145.47873: 25186- 1/0/0 A 142.250.76.164 (62)
.6:29:37.950546 IP 172.22.224.1.53 > 172.22.236.145.47873: 30318- 1/0/0 AAAA 2404:6800:4009:813::2004 (74)
.
16:29:37.951268 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 1, length 40
16:29:37.951294 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 2, length 40
.6:29:37.951298 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 3, length 40
6:29:37.951300 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 4, length 40
.6:29:37.951303 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 5, length 40
.6:29:37.951305 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq
.6:29:37.951308 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq
                                                                                                       7, length 40
.6:29:37.951310 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 8, length 40
16:29:37.951313 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 9, length 40
.
16:29:37.951315 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 10, length 40
16:29:37.951318 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 11, length 40
16:29:37.951346 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 12, length 40
.6:29:37.951352 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq
                                                                                                       13, length 40
16:29:37.951355 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 14, length 40
.6:29:37.951358 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq
                                                                                                       15, length 40
16:29:37.951363 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 16, length 40
16:29:37.951785 IP 172.22.224.1 > 172.22.236.145: ICMP time exceeded in-transit, length 68
16:29:37.951846 IP 172.22.224.1 > 172.22.236.145: ICMP time exceeded in-transit, length 68
.6:29:37.951846 IP 172.22.224.1 > 172.22.236.145: ICMP time exceeded in-transit, length 68
.6:29:37.952006 IP 172.22.236.145.39200 > 172.22.224.1.53: 43732+ PTR? 1.224.22.172.in-addr.arpa. (43)
l6:29:37.952985 IP 172.22.224.1.53 > 172.22.236.145.39200: 43732- 1/0/0 PTR LAPTOP-TNR28RHP.mshome.net. (108)
.6:29:37.953459 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 17, length 40
l6:29:37.953496 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 18, length 40
16:29:37.953503 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 19, length 40
16:29:37.967506 IP 192.168.1.251 > 172.22.236.145: ICMP time exceeded in-transit, length 68
16:29:37.967507 IP 192.168.1.251 > 172.22.236.145: ICMP time exceeded in-transit, length 68
16:29:37.967548 IP 192.168.0.1 > 172.22.236.145: ICMP time exceeded in-transit, length 68
.6:29:37.967548 IP 192.168.0.1 > 172.22.236.145: ICMP time exceeded in-transit, length 68
.6:29:37.967548 IP 192.168.0.1 > 172.22.236.145: ICMP time exceeded in-transit, length 68
16:29:37.967710 IP 172.22.236.145.40136 > 172.22.224.1.53: 63518+ PTR? 1.0.168.192.in-addr.arpa. (42)
.6:29:37.969354 IP 172.22.224.1.5353 > 224.0.0.251.5353: 0 PTR (QM)? 1.0.168.192.in-addr.arpa.local. (48)
.6:29:37.969558 IP 192.168.1.251 > 172.22.236.145: ICMP time exceeded in-transit, length 68
.6:29:37.970172 IP6 fe80::a0fc:5075:3e18:1b48.5353 > ff02::fb.5353: 0 PTR (QM)? 1.0.168.192.in-addr.arpa.local. (48)
6:29:37.972398 IP 74.125.51.205 > 172.22.236.145: ICMP time exceeded in-transit, length 68
16:29:37.972408 IP 59.185.210.202 > 172.22.236.145: ICMP time exceeded in-transit, length 76
6:29:37.972414 IP 59.185.210.201 > 172.22.236.145: ICMP time exceeded in-transit, length 148
l6:29:37.972408 IP 59.185.210.202 > 172.22.236.145: ICMP time exceeded in-transit, length 76
[RAM: 17% | SWAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[Batt: 79%][04:29 PM] [☆ INT] > sudo traceroute www.google.com -I
traceroute to www.google.com (142.250.76.164), 30 hops max, 60 byte packets
 1 LAPTOP-TNR28RHP.mshome.net (172.22.224.1) 0.526 ms 0.555 ms 0.550 ms
      192.168.0.1 (192.168.0.1) 16.249 ms 16.246 ms 16.244 ms
      192.168.1.251 (192.168.1.251) 16.199 ms 16.198 ms 18.247 ms
  4
      * * *
      static-mum-59.185.210.201.mtnl.net.in (59.185.210.201) 21.064 ms 21.060 ms 21.057 ms static-mum-59.185.210.202.mtnl.net.in (59.185.210.202) 21.047 ms 18.964 ms 18.917 ms
```

74.125.51.205 (74.125.51.205) 18.898 ms 19.545 ms 19.502 ms 209.85.246.51 (209.85.246.51) 19.492 ms 19.489 ms 19.483 ms 74.125.253.165 (74.125.253.165) 17.839 ms 17.750 ms 17.743 ms

bom12s09-in-f4.1e100.net (142.250.76.164) 16.249 ms 16.246 ms 16.244 ms

First some DNS Resolution happens

```
16:29:37.939300 IP 172.22.236.145.47873 > 172.22.224.1.53: 25186+ A? www.google.com. (32)
16:29:37.939336 IP 172.22.236.145.47873 > 172.22.224.1.53: 30318+ AAAA? www.google.com. (32)
16:29:37.940126 IP 172.22.224.1.53 > 172.22.236.145.47873: 25186- 1/0/0 A 142.250.76.164 (62)
16:29:37.950546 IP 172.22.224.1.53 > 172.22.236.145.47873: 30318- 1/0/0 AAAA 2404:6800:4009:813::2004 (74)
```

· Then many ICMP echo requests are sent

```
16:29:37.951268 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 1, length 40
16:29:37.951294 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 2, length 40
16:29:37.951298 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 3, length 40
16:29:37.951300 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 4, length 40
16:29:37.951303 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 5, length 40
16:29:37.951305 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 4000, seq 6, length 40
...
```

• We then recieve some ICMP time exceeded in-transit, which shows us the working of traceroute

```
16:29:37.951785 IP 172.22.224.1 > 172.22.236.145: ICMP time exceeded intransit, length 68
16:29:37.951846 IP 172.22.224.1 > 172.22.236.145: ICMP time exceeded intransit, length 68
16:29:37.951846 IP 172.22.224.1 > 172.22.236.145: ICMP time exceeded intransit, length 68
...
```

Question (i)

Write the tcpdump command that captures packets containing TCP packets with a specific IP address as (i) both source and destination, (ii) only source, and (iii) only destination.

Answer

- My IP: 172.22.236.145
- · Both Source and Destination
 - sudo tcpdump -n src 172.22.236.145 and dst www.google.com
- Only Source
 - sudo tcpdump -n src www.google.com
- · Only Destination
 - sudo tcpdump -n dst 172.22.236.145

Question (j)

Write the tcpdump command that captures packets containing ICMP packets between two hosts with different IP addresses.

Answer

- sudo tcpdump -n icmp -c 5
- we specify the icmp protocol as a filter in tcpdump

```
[RAM: 18% | SWAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2 *22s
[Batt: 79%][04:52 PM] > sudo tcpdump -n icmp -c 5
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:53:13.119933 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 6661, seq 1, length 64
16:53:13.128235 IP 142.250.76.164 > 172.22.236.145: ICMP echo reply, id 6661, seq 1, length 64
16:53:14.121581 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 6661, seq 2, length 64
16:53:14.134128 IP 142.250.76.164 > 172.22.236.145: ICMP echo reply, id 6661, seq 2, length 64
16:53:15.123402 IP 172.22.236.145 > 142.250.76.164: ICMP echo request, id 6661, seq 3, length 64
5 packets captured
5 packets received by filter
0 packets dropped by kernel
```

Question (k)

Write the tcpdump command to capture packets containing SSH request and reply between two specific IP addresses (hint: use port number 22 for SSH).

Answer

• sudo tcpdump -n port 22

```
[RAM: 19% | SWAP: 0%] .../Sem 6/CS 3272 Computer Network Lab/Assignment 2
[Batt: 79% [105:06 PM] ) sudo tcpdump -n port 22
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type ENLOWED (Ethernet), capture size 262144 bytes
17:11:59 3866831 P1 772.22.26.1185.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 30895896418 ecr 0,nop,wscale 7], length 0
17:15:02.371918 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089590653 ecr 0,nop,wscale 7], length 0
17:15:02.471918 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089590653 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 308950613 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 308950613 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089604893 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089604893 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089604893 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089604893 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2228929108, win 64240, options [mss 1460, sackOK, TS val 3089604893 ecr 0,nop,wscale 7], length 0
17:15:10.631786 IP 172.22.236.145.60866 > 172.28.0.2.22: Flags [S], seq 2
```