Algorithms and Satisfiability 9. Binary Decision Diagrams

Álvaro Torralba

AALBORG UNIVERSITET

Spring 2023

Agenda

- Introduction
- 2 Binary Decision Diagrams
- Queries
- Operations
- Conclusions

References

Agenda

- Introduction

How To Represent Logical Formulas?

Option 1: Logical Formula (e.g. in CNF)

 $(\neg x_1 \lor x_2) \land x_3$ Disadvantage: SAT (and other operations) is hard

How To Represent Logical Formulas?

Option 1: Logical Formula (e.g. in CNF)

$$(\neg x_1 \lor x_2) \land x_3$$

Introduction

Advantage: Compact representation

Disadvantage: SAT (and other operations) is hard

Option 2: Truth table

x_1	x_2	x_3	valu
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	0
1	0	0	0
1	0	1	0

Advantage: SAT is easy (linear in the size of the table)

Disadvantage: Table is BIG (exponentially longer than CNF formula)

How To Represent Logical Formulas?

Option 1: Logical Formula (e.g. in CNF)

$$(\neg x_1 \lor x_2) \land x_3$$

Introduction

Advantage: Compact representation

Disadvantage: SAT (and other operations) is hard

Option 2. Truth table

~ P *.				•
x_1	x_2	x_3	value	
0	0	0	1	Advantage: SAT is easy (linear in the size of the table)
0	0	1	0	ravantage. 3711 is easy (initial in the size of the table)
0	1	0	1	
0	1	1	0	Disadvantage: Table is BIG (exponentially longer than
1	1	0	1	CNF formula)
1	1	1	0	Civi iorinala)
1	0	0	0	
1	0	1	0	

 \rightarrow So, does there exist some compact representation under which SAT is easy (in the size of the representation)?

Definition

Introduction

000

A Boolean function $f:\{0,1\}^k \to \{0,1\}$ maps k Boolean values to true or false.

x_1	x_2	x_3	value
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	0
1	0	0	0
1	0	1	0

Definition

Introduction

A Boolean function $f:\{0,1\}^k \to \{0,1\}$ maps k Boolean values to true or false.

x_1	x_2	x_3	value
0	0	0	Т
0	0	1	\perp
0	1	0	Т
0	1	1	\perp
1	1	0	Т
1	1	1	\perp
1	0	0	\perp
1	0	1	\perp

• Notation: We use 0,1 for the inputs and \bot , \top for the output

Definition

A Boolean function $f: \{0,1\}^k \to \{0,1\}$ maps k Boolean values to true or false.

Queries

x_1	x_2	x_3	value
0	0	0	Т
0	0	1	
0	1	0	Т
0	1	1	\perp
1	1	0	Т
1	1	1	\perp
1	0	0	\perp
1	0	1	

- Notation: We use 0,1 for the inputs and \perp , \top for the output
- Represents sets of assignments to the variables in a logical formula
- Represents a set of sets of elements (over k elements)

Definition

Introduction

A Boolean function $f: \{0,1\}^k \to \{0,1\}$ maps k Boolean values to true or false.

Queries

x_1	x_2	x_3	value
0	0	0	Т
0	0	1	\perp
0	1	0	Т
0	1	1	\perp
1	1	0	T
1	1	1	\perp
1	0	0	\perp
1	0	1	\perp

- Notation: We use 0,1 for the inputs and \perp , \top for the output
- Represents sets of assignments to the variables in a logical formula
- Represents a set of sets of elements (over k elements)
 - \rightarrow Example: given k products each with a price, which sets of products can be bought with the available money?

Definition

A Boolean function $f:\{0,1\}^k \to \{0,1\}$ maps k Boolean values to true or false.

x_1	x_2	x_3	value
0	0	0	Т
0	0	1	\perp
0	1	0	Т
0	1	1	\perp
1	1	0	T
1	1	1	\perp
1	0	0	\perp
1	0	1	\perp

- Notation: We use 0,1 for the inputs and \bot , \top for the output
- Represents sets of assignments to the variables in a logical formula
- ullet Represents a set of sets of elements (over k elements)
 - ightarrow Example: given k products each with a price, which sets of products can be bought with the available money? which sets of products satisfy our requirements?

5/38

Boolean Functions

Definition

A Boolean function $f: \{0,1\}^k \to \{0,1\}$ maps k Boolean values to true or false.

x_1	x_2	x_3	value
0	0	0	Т
0	0	1	\perp
0	1	0	Т
0	1	1	\perp
1	1	0	Т
1	1	1	\perp
1	0	0	\perp
1	0	1	\perp

- Notation: We use 0,1 for the inputs and \bot , \top for the output
- Represents sets of assignments to the variables in a logical formula
- Represents a set of sets of elements (over k elements)
 - \rightarrow Example: given k products each with a price, which sets of products can be bought with the available money? which sets of products satisfy our requirements? what's the intersection of the previous sets?

Agenda

- Introduction
- 2 Binary Decision Diagrams
- Queries
- Operations
- Conclusions

(Reduced Ordered) Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams (or BDDs for short): representation of logical functions that follows the following key ideas:

Decision Diagram: Use Directed Acyclic Graph

(Reduced Ordered) Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams (or BDDs for short): representation of logical functions that follows the following key ideas:

- Decision Diagram: Use Directed Acyclic Graph
- 2 Reduced: Apply Reduction Rules

(Reduced Ordered) Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams (or BDDs for short): representation of logical functions that follows the following key ideas:

- Decision Diagram: Use Directed Acyclic Graph
- Reduced: Apply Reduction Rules
- Ordered: Fixed Variable Ordering
- "BDDs are one of the only really fundamental data structures that came out in the last twenty-five years" Donald Knuth

Turn a truth table for the Boolean function into a decision tree.

Notation: Nodes are labelled with the variable they checked (x_i) , we use solid edge for $x_i = 1$ and dashed edge for $x_i = 0$.

Representing Logical Functions as a Decision Tree

Turn a truth table for the Boolean function into a decision tree.

Notation: Nodes are labelled with the variable they checked (x_i) , we use solid edge for $x_i = 1$ and dashed edge for $x_i = 0$.

Shannon Expansion

Introduction

For any Boolean formula f and variable x, it can be written as:

$$f \equiv (\neg x \land f[x=0]) \lor (x \land f[x=1])$$

This is the Shannon expansion of f (originally due to G. Boole).

Shannon Expansion

Introduction

For any Boolean formula f and variable x, it can be written as:

$$f \equiv (\neg x \land f[x=0]) \lor (x \land f[x=1])$$

This is the Shannon expansion of f (originally due to G. Boole).

Deja vu? Same principle used by DPLL!

Shannon Expansion

For any Boolean formula f and variable x, it can be written as:

$$f \equiv (\neg x \land f[x=0]) \lor (x \land f[x=1])$$

This is the Shannon expansion of f (originally due to G. Boole).

Deja vu? Same principle used by DPLL!

ightarrowInner nodes correspond to a function represented via the Shannon expansion!

Notation

Introduction

Node $A=(x_i,B,B')$ represents $f_A=(\overline{x_i}\wedge f_B)\vee (x_i\wedge f_{B'})$

- Variable $v(A) = x_i$ (nodes are labelled with the variable they check)
- Low child l(A) = B (represented by a dashed edge)
- High child r(A) = B' (represented by a solid edge)

Representing Logical Functions as a Decision Diagram

Diagram: Directed Acyclic Graph (DAG)

→We can share a node in different parts of the diagram

x_1	x_2	x_3	value
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	0
1	0	0	0
1	0	1	0

Notation: We denote |B| to the number of nodes of a DAG B.

Representing Logical Functions as a Decision Diagram

Diagram: Directed Acyclic Graph (DAG)

ightarrowWe can share a node in different parts of the diagram

x_1	x_2	x_3	value
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	0
1	0	0	0
1	0	1	0

Notation: We denote |B| to the number of nodes of a DAG B.

Reduction Rule #1: Eliminate Equivalent Leaves

There are only two unique leaves: \bot and \top

Reduction Rule #1: Eliminate Equivalent Leaves

There are only two unique leaves: \bot and \top

Reduction Rule #2: Eliminate Redundant Nodes

I(n) = r(n), then eliminate n and re-direct all its references to I(n)

Reduction Rule #2: Eliminate Redundant Nodes

I(n) = r(n), then eliminate n and re-direct all its references to I(n)

Reduction Rule #3: Eliminate Equivalent Inner Nodes

Two inner nodes n,n' are equivalent if and only if v(n)=v(n'), l(n)=l(n'), and r(n)=r(n')

Reduction Rule #3: Eliminate Equivalent Inner Nodes

Two inner nodes n,n' are equivalent if and only if v(n)=v(n'), l(n)=l(n'), and r(n)=r(n')

Queries

Queries

Reduction Rules Example

Apply reduction rule 1: Eliminate equivalent leaves

Apply reduction rule 2: Eliminate redundant nodes

Apply reduction rule 2: Eliminate redundant nodes

Apply reduction rule 3: Eliminate equivalent inner nodes

Apply reduction rule 3: Eliminate equivalent inner nodes

Apply reduction rule 2: Eliminate redundant nodes

Reduction Rules Example

Apply reduction rule 2: Eliminate redundant nodes

The Reduce Operation: Pseudocode

12 **return** result

Introduction

reduce(A):

5 $n_l = reduce(l(A))$

References

The Reduce Operation: Pseudocode

```
reduce(A):
```

5 $n_l = reduce(l(A))$

Introduction

```
1 if A is terminal then
      // Eliminate equivalent leaves
      return UniqueTerminal(A.value)
```

```
6 n_r = reduce(r(A))
7 if n_l == n_r then
       // Eliminate redundant nodes
       result = n_I
  else
       // Eliminate equivalent nodes
       result = NodeUnique(v(A), n_l, n_r)
10
```

12 return result

NodeUnique (v, n_l, n_r) :

- 1 if (v, n_l, n_r) not in GlobalCache then
- $\mathsf{GlobalCache}[(v, n_l, n_r)] = \mathsf{new}$ Node (v, n_l, n_r)
- 3 return GlobalCache[(v, n_l, n_r)]
 - GlobalCache is a single cache for all BDDs and operations! →Ensures the Equivalence reduction rule

Conclusions

The Reduce Operation: Pseudocode

```
reduce(A):
1 if A is terminal then
      // Eliminate equivalent leaves
      return UniqueTerminal(A.value)
 if A in Cache then
  return Cache[A]
5 n_l = reduce(l(A))
6 n_r = reduce(r(A))
7 if n_l == n_r then
      // Eliminate redundant nodes
      result = n_I
  else
      // Eliminate equivalent nodes
      result = NodeUnique(v(A), n_l, n_r)
  Cache[A] = result
```

```
NodeUnique(v, n_l, n_r):
```

- 1 if (v, n_l, n_r) not in GlobalCache then
- $\mathsf{GlobalCache}[(v, n_l, n_r)] = \mathsf{new}$ Node (v, n_l, n_r)
- 3 return GlobalCache[(v, n_l, n_r)]
 - GlobalCache is a single cache for all BDDs and operations! →Ensures the Equivalence reduction rule

return result

```
1 if A is terminal then
      // Eliminate equivalent leaves
      return UniqueTerminal(A.value)
 if A in Cache then
  return Cache[A]
5 n_l = reduce(l(A))
6 n_r = reduce(r(A))
7 if n_l == n_r then
      // Eliminate redundant nodes
   | result = n_l
  else
      // Eliminate equivalent nodes
      result = NodeUnique(v(A), n_l, n_r)
  Cache[A] = result
```

```
NodeUnique(v, n_l, n_r):
```

```
1 if (v, n_l, n_r) not in GlobalCache
    then
```

```
\mathsf{GlobalCache}[(v, n_l, n_r)] = \mathsf{new}
  Node (v, n_l, n_r)
```

- 3 return GlobalCache[(v, n_l, n_r)]
 - GlobalCache is a single cache for all BDDs and operations! →Ensures the Equivalence reduction rule

Question: How many calls to reduce(A) we perform?

12 return result

Introduction

reduce(A):

The Reduce Operation: Pseudocode

```
reduce(A):
1 if A is terminal then
      // Eliminate equivalent leaves
      return UniqueTerminal(A.value)
 if A in Cache then
  return Cache[A]
5 n_l = reduce(l(A))
6 n_r = reduce(r(A))
7 if n_l == n_r then
      // Eliminate redundant nodes
8 result = n_l
  else
      // Eliminate equivalent nodes
      result = NodeUnique(v(A), n_l, n_r)
```

```
NodeUnique(v, n_l, n_r):
```

- 1 if (v, n_l, n_r) not in GlobalCache then
- $\begin{tabular}{ll} {\bf 2} & & & {\bf GlobalCache}[(v,n_l,n_r)] = {\bf new} \\ & & & {\bf Node} \ (v,n_l,n_r) \end{tabular}$
- 3 return GlobalCache $[(v, n_l, n_r)]$
 - GlobalCache is a single cache for all BDDs and operations!
 →Ensures the Equivalence reduction rule

- 11 Cache[A] = result
- 12 return result

Introduction

Question: How many calls to reduce(A) we perform? $\mathcal{O}(|A|)$: due to the cache, we will never do recursive calls over the same node twice

```
reduce(A):
1 if A is terminal then
      // Eliminate equivalent leaves
      return UniqueTerminal(A.value)
 if A in Cache then
  return Cache[A]
5 n_l = reduce(l(A))
6 n_r = reduce(r(A))
7 if n_l == n_r then
      // Eliminate redundant nodes
      result = n_I
  else
      // Eliminate equivalent nodes
      result = NodeUnique (v(A), n_l, n_r)
```

```
NodeUnique(v, n_l, n_r):
```

- 1 if (v, n_l, n_r) not in GlobalCache then
- $\begin{tabular}{ll} {\bf GlobalCache}[(v,n_l,n_r)] = {\sf new} \\ {\bf Node} \ (v,n_l,n_r) \end{tabular}$
- 3 return GlobalCache $[(v, n_l, n_r)]$
 - GlobalCache is a single cache for all BDDs and operations!
 →Ensures the Equivalence reduction rule

- 11 Cache[A] = result
- 12 return result

Introduction

Question: How many calls to reduce(A) we perform? $\mathcal{O}(|A|)$: due to the cache, we will never do recursive calls over the same node twice Overall time complexity: $\mathcal{O}(|A|\log(|A|))$

Questionnaire

Question!

How many nodes would have the resulting BDD after applying Reduce?

(A): 3

(B): 4

(C): 5

(D): 6

Questionnaire

Question!

How many nodes would have the resulting BDD after applying Reduce?

(A): 3

(B): 4

(C): 5

(D): 6

Introduction

Decide arbitrary total order on variables $p_1 < p_2 < \cdots < p_n$. Always decompose a function based on the first variable.

Introduction

Decide arbitrary total order on variables $p_1 < p_2 < \cdots < p_n$. Always decompose a function based on the first variable.

Definition (Canonicity). We say that a representation R of a logical formula φ is canonical if there is a unique representation:

$$\varphi \equiv \varphi' \implies R(\varphi) = R(\varphi')$$

Introduction

Decide arbitrary total order on variables $p_1 < p_2 < \cdots < p_n$. Always decompose a function based on the first variable.

Definition (Canonicity). We say that a representation R of a logical formula φ is canonical if there is a unique representation:

$$\varphi \equiv \varphi' \implies R(\varphi) = R(\varphi')$$

Theorem (ROBDDs are a canonical representation). For a function $f:\{0,1\}^n \to \{0,1\}$ there is exactly one ROBDD u with ordering $p_1 < \cdots < p_n$ such that u represents $f(p_1, \ldots, p_n)$.

Introduction

Decide arbitrary total order on variables $p_1 < p_2 < \cdots < p_n$. Always decompose a function based on the first variable.

Definition (Canonicity). We say that a representation R of a logical formula φ is canonical if there is a unique representation:

$$\varphi \equiv \varphi' \implies R(\varphi) = R(\varphi')$$

Theorem (ROBDDs are a canonical representation). For a function $f:\{0,1\}^n \to \{0,1\}$ there is exactly one ROBDD u with ordering $p_1 < \cdots < p_n$ such that u represents $f(p_1, \ldots, p_n)$.

Proof sketch. By induction (base case is trivial for terminal nodes). Assume ROBDDs for functions $f(p_i, \ldots, p_n)$ are canonical, then show that ROBDDs for $f(p_{i-1}, \ldots, p_n)$ are canonical as well.

Importance of Variable Ordering

Choice of variable ordering can cause the representation of a function to be exponential or polynomial in the number of variables.

Example: $f(x_1, ..., x_n, y_1, ..., y_n) = (x_1 \land y_1) \lor ... \lor (x_n \land y_n) \ (n = 3).$

Polynomial size:

 $x_1, y_1, x_2, y_2, x_3, y_3$

Exponential size:

$$x_1, x_2, x_3, y_1, y_2, y_3$$

Variable Ordering Heuristics

- Static Variable Ordering:
 - Put "related" variables as close as possible in the variable ordering

Variable Ordering Heuristics

- Static Variable Ordering:
 - Put "related" variables as close as possible in the variable ordering
- Dynamic Variable Ordering:
 - Find the best ordering for a given BDD (or set of BDDs)

Queries

- Optimization problem that is NP-complete
- But we can just use some approximation

- 2 Binary Decision Diagrams
- Queries
- 4 Operations
- Conclusions

Queries

• Tautology: Is $\varphi = \top$?

• Tautology: Is $\varphi = \top$?

ightarrowConstant time: just check if $n_{arphi}= op$

- Tautology: Is $\varphi = \top$?
- ightarrowConstant time: just check if $n_{\varphi} = \top$
 - SAT: Is $M(\varphi) \neq \emptyset$?

- Tautology: Is $\varphi = \top$?
- ightarrowConstant time: just check if $n_{arphi} = \top$
 - SAT: Is $M(\varphi) \neq \emptyset$?
- ightarrowConstant time: just check if $n_{\varphi}
 eq \bot$

- Tautology: Is $\varphi = \top$?
- ightarrowConstant time: just check if $n_{arphi} = \top$
 - SAT: Is $M(\varphi) \neq \emptyset$?
- ightarrowConstant time: just check if $n_{\varphi}
 eq \bot$
 - Equivalence ($\varphi \equiv \psi$?): Is $M(\varphi) = M(\psi)$?

Queries

- Tautology: Is $\varphi = \top$?
- \rightarrow Constant time: just check if $n_{\varphi} = \top$
 - SAT: Is $M(\varphi) \neq \emptyset$?
- \rightarrow Constant time: just check if $n_{\omega} \neq \bot$
 - Equivalence $(\varphi \equiv \psi?)$: Is $M(\varphi) = M(\psi)$?
- \rightarrow Constant time: just check if $n_{\omega} = n_{\psi}$

- Tautology: Is $\varphi = \top$?
- \rightarrow Constant time: just check if $n_{\varphi} = \top$
 - SAT: Is $M(\varphi) \neq \emptyset$?
- \rightarrow Constant time: just check if $n_{\omega} \neq \bot$
 - Equivalence $(\varphi \equiv \psi?)$: Is $M(\varphi) = M(\psi)$?
- ightarrowConstant time: just check if $n_{\varphi}=n_{\psi}$
 - Model counting: Number of satisfying assignments: $|M(\varphi)|$

Queries

Introduction

- Tautology: Is $\varphi = \top$?
- \rightarrow Constant time: just check if $n_{\omega} = \top$
 - SAT: Is $M(\varphi) \neq \emptyset$?
- \rightarrow Constant time: just check if $n_{\omega} \neq \bot$
 - Equivalence $(\varphi \equiv \psi?)$: Is $M(\varphi) = M(\psi)$?
- \rightarrow Constant time: just check if $n_{\omega} = n_{\psi}$
 - Model counting: Number of satisfying assignments: $|M(\varphi)|$

Queries

→Linear time: dynamic programming algorithm

References

Model Counting: Example

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

References

Model Counting: Example

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

- Leaf nodes: $mc(\top)=1, mc(\bot)=0$ and define $v(\bot)=v(\top)=x_{n+1}$
- Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1), v(f_0) = x_j, v(f_1) = x_k$, then

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

- Leaf nodes: $mc(\top)=1, mc(\bot)=0$ and define $v(\bot)=v(\top)=x_{n+1}$
- Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1)$, $v(f_0) = x_j$, $v(f_1) = x_k$, then

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

• Leaf nodes: $mc(\top) = 1, mc(\bot) = 0$ and define $v(\bot) = v(\top) = x_{n+1}$

Queries

• Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1), v(f_0) = x_i, v(f_1) = x_k$, then

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

• Leaf nodes: $mc(\top) = 1, mc(\bot) = 0$ and define $v(\bot) = v(\top) = x_{n+1}$

Queries

• Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1), v(f_0) = x_i, v(f_1) = x_k$, then

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

• Leaf nodes: $mc(\top) = 1, mc(\bot) = 0$ and define $v(\bot) = v(\top) = x_{n+1}$

Queries

• Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1), v(f_0) = x_i, v(f_1) = x_k$, then

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

- Leaf nodes: $mc(\top)=1, mc(\bot)=0$ and define $v(\bot)=v(\top)=x_{n+1}$
- Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1), \ v(f_0) = x_j, \ v(f_1) = x_k$, then

MC(f): number of assignments over x_1, \ldots, x_n that make f true.

 $MC(f) = 2^{v(f)} mc(f)$ where:

• Leaf nodes: $mc(\top) = 1, mc(\bot) = 0$ and define $v(\bot) = v(\top) = x_{n+1}$

Queries

• Inner nodes: $mc(f) = 2^{j-i-1} \cdot mc(f_0) + 2^{k-i-1} \cdot mc(f_1)$ where $f = (x_i, f_0, f_1), v(f_0) = x_i, v(f_1) = x_k, \text{ then}$

Questionnaire

Question!

How many models does n_2 have over x_1 , ..., x_3 ? (MC (n_2)))

(A): 1

(B): 2

(C): 3

(D): 4

Questionnaire

Introduction

Question!

How many models does n_2 have over x_1 , ..., x_3 ? (MC (n_2)))

(A): 1 (B): 2

(C): 3 (D): 4

2 assignments (010 and 110), so MC $(n_2) = 2$. Similarly, $MC(n_3) =$

Álvaro Torralba

Questionnaire

Question!

How many models does n_2 have over x_1 , ..., x_3 ? (MC (n_2)))

(A): 1 (B): 2

(C): 3 (D): 4

2 assignments (010 and 110), so MC $(n_2) = 2$.

Similarly, $MC(n_3) = 2^2 \cdot 1 = 4$, $MC(\top) =$

Questionnaire

Introduction

Queries

Question!

How many models does n_2 have over x_1, \ldots, x_3 ? (MC (n_2)))

(A): 1 (B): 2

(D): 4 (C): 3

2 assignments (010 and 110), so MC $(n_2) = 2$.

Similarly, $MC(n_3) = 2^2 \cdot 1 = 4$, $MC(\top) = 2^3 \cdot 1 = 8$ →We must specify over how many variables we perform model counting

Agenda

- Introduction
- 2 Binary Decision Diagrams
- Queries
- 4 Operations
- Conclusions

- Reduce (f)
 - ightarrowReduces the canonical form of a function f represented as a non-reduced BDD

- Reduce (f)
 - \rightarrow Reduces the canonical form of a function f represented as a non-reduced BDD
- ullet Apply (f_1,f_2)
 - \rightarrow Generic implementation for binary operations (\vee, \wedge, \dots)

- Reduce (f)
 - \rightarrow Reduces the canonical form of a function f represented as a non-reduced BDD
- Apply (f_1, f_2)
 - \rightarrow Generic implementation for binary operations (\vee, \wedge, \dots)
- If-Then-Else (ITE) (f_1, f_2, f_3)
 - →Generic implementation for ternary operations

- Reduce (f)
 - ightarrowReduces the canonical form of a function f represented as a non-reduced BDD
- ullet Apply (f_1,f_2)
 - \rightarrow Generic implementation for binary operations (\vee, \wedge, \dots)
- If-Then-Else (ITE) (f_1, f_2, f_3)
 - →Generic implementation for ternary operations
- Exists (X, f)
 - \rightarrow Forgets variables X from the BDD

References

BDD Operations

Introduction

- Reduce (f)
 - \rightarrow Reduces the canonical form of a function f represented as a non-reduced BDD

Queries

- Apply (f_1, f_2)
 - \rightarrow Generic implementation for binary operations (\vee, \wedge, \dots)
- If-Then-Else (ITE) (f_1, f_2, f_3)
 - →Generic implementation for ternary operations
- Exists (X, f)
 - \rightarrow Forgets variables X from the BDD

Keys:

- Recursively iterate over the BDD
- Dynamic programming: Use cache to store intermediate results. Never re-do the same work twice!

But...how to obtain a BDD in the first place?

BDDs are always reduced

But...how to obtain a BDD in the first place?

BDDs are always reduced (the reduce function is never actually used!)

But...how to obtain a BDD in the first place?

BDDs are always reduced (the reduce function is never actually used!)

You can easily obtain the BDDs that represent simple functions:

And then, use operations on them to construct more complex functions!

$$(\neg x_1 \lor x_2) \land x_3$$

The Apply Operation

Introduction

Given compatible OBDDs B_f and B_g that represent formulas f and g, apply(\Box , B_f , B_g) computes an OBDD representing $f\Box g$.

- Compatible: operands must use the same variable ordering
- \square is some binary operation on Boolean formulas (e.g. \vee, \wedge, \oplus)
- Unary operations can be handled too. for example, negation: $\neg x = x \oplus 1$

Using the Shannon expansion, $f \square g$ can be expanded as:

$$f\Box g \equiv (\neg x \land (f[x=0]\Box g[x=0])) \lor (x \land (f[x=1]\Box g[x=1]))$$

```
apply(\Box, A, B):
```

Introduction

- 1 if A is terminal and B is terminal then
- return UniqueTerminal($A.value \square B.value$)

```
5 if v(A) == v(B) then
 \begin{array}{c|c} \mathbf{6} & v = v(A) \\ \mathbf{7} & n_l = apply(\square, l(A), l(B)) \\ \mathbf{8} & n_r = apply(\square, r(A), r(B)) \end{array} 
    else if B is terminal or v(B) > v(A) then
      v = v(A)
10
    n_l = apply(\square, l(A), B)
     n_r = apply(\square, r(A), B)
12
13 else
     v = v(B)
15 n_l = apply(\square, A, l(B))
      n_r = apply(\square, A, r(B))
17 result = NodeUnique (v, n_l, n_r)
```

19 return result

Operations

The Apply Operation: Pseudocode

```
apply(\Box, A, B):
                 1 if A is terminal and B is terminal then
                         return UniqueTerminal(A.value \square B.value)
                 3 if (A,B) in Cache then
                 4 return Cache[(A, B)]
                 5 if v(A) == v(B) then
                 \begin{array}{c|c} \mathbf{6} & v = v(A) \\ \mathbf{7} & n_l = apply(\square, l(A), l(B)) \\ \mathbf{8} & n_r = apply(\square, r(A), r(B)) \end{array} 
                   else if B is terminal or v(B) > v(A) then
                     v = v(A)
                10
                   n_l = apply(\square, l(A), B)
                    n_r = apply(\square, r(A), B)
                12
                13 else
                    v = v(B)
                   n_l = apply(\square, A, l(B))
                     n_r = apply(\square, A, r(B))
                17 result = NodeUnique (v, n_l, n_r)
                    Cache[(A,B)] = result
                19 return result
```

The Apply Operation: Cases

The Apply Operation: Cases

 $apply(\Box, B', C')$

Х

The Apply Operation: Cases

2 apply
$$(\Box, \begin{array}{c} \times \\ B \end{array}, \begin{array}{c} \times \\ C \end{array}, \begin{array}{c} \times \\ B \end{array}) = \begin{array}{c} (\Box, B, C) \end{array}$$

when C is terminal node, or non-terminal with v(C)>x

The Apply Operation: Cases

when C is terminal node, or non-terminal with v(C) > x

Álvaro Torralba

Introduction

Algorithms and Satisfiability Chapter 9: Binary Decision Diagrams

1.
$$(a,d) \mapsto (x_1, ,,)$$

- 1. $(a,d) \mapsto (x_1, , ,)$ 2. $(c,c) \mapsto (x_3, , ,)$

- $\begin{array}{lll} 1. \ (a,d) & \mapsto (x_1, \ , \) \\ 2. \ (c,c) & \mapsto (x_3, \ , \) \\ 3. \ (\top,\top) & \mapsto \top \end{array}$

 \top

- 1. $(a,d) \mapsto (x_1, ,,)$
- $2. (c,c) \mapsto (x_3, \top, _)$
- 3. $(\top, \top) \mapsto \top$

 \top

 \perp

- 1. $(a,d) \mapsto (x_1, ,,)$
- 2. $(c,c) \mapsto (x_3, \top, _)$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$

 \top

 \perp

- 1. $(a,d) \mapsto (x_1, ,,)$
- 2. $(c,c) \mapsto (x_3, \top, \perp)$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, ,,)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) $\mapsto (x_2, -, -)$

- 1. $(a,d) \mapsto (x_1, c, _)$
- $2. (c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) $\mapsto (x_2, -, -)$

6. $(\bot, e) \mapsto$

Álvaro Torralba

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- $5. (b,e) \mapsto (x_2, \dots,)$

- 6. $(\bot, e) \mapsto$
- 7. $(\bot, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) $\mapsto (x_2, \perp, _)$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) $\mapsto (x_2, \perp, _)$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot,\bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, -, -)$

- 1. $(a,d) \mapsto (x_1, c_{-})$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) $\mapsto (x_2, \perp, \perp)$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot,\bot)\mapsto\bot$
- 8. $(c,e) \mapsto (x_3, -, -)$
- 9. $(\top, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c_{-})$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) $\mapsto (x_2, \perp, \perp)$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot, \bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, _)$
- 9. $(\top, \bot) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) \mapsto $(x_2, \perp, _)$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot, \bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, _)$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. $(b,e)' \mapsto (x_2, \perp, _)$

- 6. $(\bot, e) \mapsto \bot$
 - 7. $(\bot, \bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, \perp)$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

Álvaro Torralba

- 1. $(a,d) \mapsto (x_1, c_{-})$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot,\bot) \mapsto \bot$
- 5. $(b,e) \mapsto (x_2, \perp, _)$

- 6. $(\bot, e) \mapsto \bot$
 - 7. $(\bot,\bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, \perp) \mapsto \perp$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. (b,e) \mapsto (x_2, \perp, \perp)

- 6. $(\bot, e) \mapsto \bot$
 - 7. $(\bot, \bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, \perp) \mapsto \perp$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, _)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. $(b,e) \mapsto (x_2, \perp, \perp) \mapsto \perp$

- 6. $(\bot, e) \mapsto \bot$
 - 7. $(\bot,\bot)\mapsto\bot$
 - 8. $(c,e) \mapsto (x_3, \perp, \perp) \mapsto \perp$
 - 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, \perp)$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot, \bot) \mapsto \bot$
- 5. $(b,e) \mapsto (x_2, \perp, \perp) \mapsto \perp$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot,\bot)\mapsto\bot$
- 8. $(c,e) \mapsto (x_3, \perp, \perp) \mapsto \perp$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, \perp) \mapsto f$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot,\bot) \mapsto \bot$
- 5. $(b,e) \mapsto (x_2, \perp, \perp) \mapsto \perp$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot,\bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, \perp) \mapsto \perp$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

- 1. $(a,d) \mapsto (x_1, c, \perp) \mapsto f$
- 2. $(c,c) \mapsto (x_3, \top, \perp) \mapsto c$
- 3. $(\top, \top) \mapsto \top$
- 4. $(\bot,\bot) \mapsto \bot$
- 5. $(b,e) \mapsto (x_2, \perp, \perp) \mapsto \perp$

- 6. $(\bot, e) \mapsto \bot$
- 7. $(\bot,\bot) \mapsto \bot$
- 8. $(c,e) \mapsto (x_3, \perp, \perp) \mapsto \perp$
- 9. $(\top, \bot) \mapsto \bot$
- 10. $(\bot, \top) \mapsto \bot$

Question!

What is the running time of $apply(\Box, B_f, B_q)$?

Question!

Introduction

What is the running time of $apply(\Box, B_f, B_g)$?

Answer: Quadratic, $\mathcal{O}(|B_f||B_g|)$. The number of calls to the recursive function in which we do not return immediately is bounded by the pairs of nodes, because we cache the results for every pair of input nodes.

Question!

Introduction

What is the running time of $apply(\Box, B_f, B_g)$?

Answer: Quadratic, $\mathcal{O}(|B_f||B_g|)$. The number of calls to the recursive function in which we do not return immediately is bounded by the pairs of nodes, because we cache the results for every pair of input nodes.

Question!

What is the maximum size of the BDD representing $f \wedge g$?

Question!

Introduction

What is the running time of $apply(\Box, B_f, B_g)$?

Answer: Quadratic, $\mathcal{O}(|B_f||B_g|)$. The number of calls to the recursive function in which we do not return immediately is bounded by the pairs of nodes, because we cache the results for every pair of input nodes.

Question!

What is the maximum size of the BDD representing $f \wedge g$?

Answer: $|B_f||B_q|$, same reason as above.

Question!

Introduction

What is the running time of $apply(\Box, B_f, B_g)$?

Answer: Quadratic, $\mathcal{O}(|B_f||B_g|)$. The number of calls to the recursive function in which we do not return immediately is bounded by the pairs of nodes, because we cache the results for every pair of input nodes.

Question!

What is the maximum size of the BDD representing $f \wedge g$?

Answer: $|B_f||B_g|$, same reason as above.

Question!

So, is the BDD representing each CNF formula of polynomial size?

Question!

What is the running time of $apply(\Box, B_f, B_g)$?

Answer: Quadratic, $\mathcal{O}(|B_f||B_g|)$. The number of calls to the recursive function in which we do not return immediately is bounded by the pairs of nodes, because we cache the results for every pair of input nodes.

Question!

What is the maximum size of the BDD representing $f \wedge g$?

Answer: $|B_f||B_g|$, same reason as above.

Question!

So, is the BDD representing each CNF formula of polynomial size?

Answer: NO! If the CNF formula has N clauses, each represented with a BDD with K nodes then in the worst case we have K^N nodes.

Complexity of Operations (extracted from Darwiche and Marquis (2002)

	Queries				Transformations				
L	CO	VA	EQ	CT	\bigwedge_n	\wedge	\bigvee_n	\vee	$\neg C$
NNF	0	0	0	0	√	√	✓	√	\checkmark
OBDD<	✓	\checkmark	\checkmark	\checkmark	•	\checkmark	•	\checkmark	\checkmark
DNF	✓	0	0	0	•	\checkmark	\checkmark	\checkmark	•
CNF	0	\checkmark	0	0	✓	\checkmark	•	\checkmark	•

 \checkmark : Polynomial Time, \bullet (\circ) Exponential time (unless P=NP)

Agenda

- Introduction
- 2 Binary Decision Diagrams
- Queries
- 4 Operations
- Conclusions

Summary

Introduction

Reduced Ordered Binary Decision Diagrams (BDDs for short)

- ullet Directed acyclic graph with two leave nodes ot, ot
- Each node decomposes the function using the Shannon expansion
- Reduced any node with two identical children is removed equivalent nodes are merged
- Ordered Splitting variables always follow the same order along all paths $x_1 < x_2 < x_3 < ... < x_n$
- Properties:
 - Canonical representation
 - Efficient queries
 - Efficient operations

Some Caveats

Introduction

We made some simplifying assumptions, and didn't mention a lot of optimizations. For example:

- Typically, negation is encoded on the edges
 - The same node is used to represent a function and its negation
 - Negation can be performed in constant time
 - One needs to handle this during the apply operation
- In our version of apply we always reach the terminals. However, we can return early in some cases by encoding some additional if conditions
 - $f \vee f = f$
 - $f \lor \bot = f$
 - $\bullet \ \ f \lor \top = \top$
 - $f \wedge f = f$
 - . . .

Introduction

• What if instead of two terminals (\bot, \top) , I have many (e.g. Numbers) \rightarrow Algebraic Decision Diagrams (ADD)

(you can also use multiple BDDs or auxiliary variables in the BDD)

- What if instead of two terminals (⊥, ⊤), I have many (e.g. Numbers)
 →Algebraic Decision Diagrams (ADD)
 (you can also use multiple BDDs or auxiliary variables in the BDD)
- What if my variables are not Boolean but multi-valued?
 →Multi-valued decision diagrams (MDDs)
 (you can also use as auxiliary variables in the BDD)

- What if instead of two terminals (⊥, ⊤), I have many (e.g. Numbers)
 →Algebraic Decision Diagrams (ADD)
 (you can also use multiple BDDs or auxiliary variables in the BDD)
- What if my variables are not Boolean but multi-valued?
 →Multi-valued decision diagrams (MDDs)
 (you can also use as auxiliary variables in the BDD)
- Are there other possible reduction rules?
 →Zero-Suppressed Decision Diagrams (ZDDs)

- What if instead of two terminals (⊥, ⊤), I have many (e.g. Numbers)
 →Algebraic Decision Diagrams (ADD)
 (you can also use multiple BDDs or auxiliary variables in the BDD)
- What if my variables are not Boolean but multi-valued?
 →Multi-valued decision diagrams (MDDs)
 (you can also use as auxiliary variables in the BDD)
- Are there other possible reduction rules?
 →Zero-Suppressed Decision Diagrams (ZDDs)
- Can I generalize Shannon Expansion?
 →Sentential Decision Diagrams (SDDs)

- What if instead of two terminals (\bot, \top) , I have many (e.g. Numbers) → Algebraic Decision Diagrams (ADD) (you can also use multiple BDDs or auxiliary variables in the BDD)
- What if my variables are not Boolean but multi-valued? →Multi-valued decision diagrams (MDDs) (you can also use as auxiliary variables in the BDD)
- Are there other possible reduction rules? →Zero-Suppressed Decision Diagrams (ZDDs)
- Can I generalize Shannon Expansion? → Sentential Decision Diagrams (SDDs)
- Can I represent more complex arithmetic expressions? →Edge-valued Multi-valued Decision Diagrams (EVMDDs)

Reading

- The art of Computer Programming. Knuth. Section 7.1.4. Binary Decision Diagrams
- Graph-based algorithms for Boolean function manipulation [Bryant (1986)].
 →Original paper exploring BDDs
- A Knowledge Compilation Map [Darwiche and Marquis (2002)].
 - ightarrowA very good summary of how BDDs relate to other alternative representations

References I

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. *IEEE Transactions on Computers*, 35(8):677–691, 1986.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. *J. Artif. Intell. Res.*, 17:229–264, 2002.

References

Conclusions