Linear Regression

ECE 449

Regression Problems

- Task: Given observation vector x, estimate real-valued $\hat{y} = f(x)$ to minimize error
- Examples
 - Predict temperature from weather statistics
 - Predict object position in space
- Linear if $f(x; w) = w^t x$
- Extend to non-linear $f(x; w) = w^t h(x)$, where h(x) is a non-linear function
- Input features
 - Numerical $(\mathcal{R}^d, \mathcal{Z}^d)$, binary $\{0,1\}$, categorical
 - If categorical, map to a one-hot vector

Line Fitting

Line Fitting

- How about 3 points?
- $y = w_0 + w_1 x$
- What is a "good" choice for w_0 and w_1 ?
 - How to define "good"?
 - How to estimate w_0 and w_1 ?

Line Fitting

- How to define "good"?
 - An appropriate loss function, like MSE
- How to estimate w_0 and w_1 ?

•
$$l = (y_1 - (w_0 + w_1 x_1))^2 + (y_2 - (w_0 + w_1 x_2))^2 + (y_3 - (w_0 + w_1 x_3))^2$$

•
$$\frac{\partial l}{\partial w_0} = 0, \frac{\partial l}{\partial w_1} = 0$$

More Fitting Problems

Ordinary Least Squares (OLS)

• Total error = $\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} (y_i - \sum_{k} w_k x_{i,k})^2$

Extend to Non-Linear Function

- Map from x to h(x)
- Total error = $\sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} (y_i \sum_{k} w_k h_k (x_i))^2$

Regression with Matrix Notation

- $\widehat{w} = \arg\min_{w} \sum_{i} (y_i \sum_{k} w_k h_k (x_i))^2$
- $\widehat{w} = \arg\min_{w}^{w} (\mathbf{Hw} \mathbf{y})^{T} (\mathbf{Hw} \mathbf{y})$

Matrix Notation

•
$$\mathbf{H} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$

Closed Form Solution

- The closed form solution
- $\widehat{w} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$

•
$$l = (\mathbf{H}\mathbf{w} - \mathbf{y})^T (\mathbf{H}\mathbf{w} - \mathbf{y})$$

$$\bullet \frac{\partial l}{\partial \mathbf{w}} = 2\mathbf{H}^T(\mathbf{H}\mathbf{w} - \mathbf{y}) = 0$$

•
$$\mathbf{H}^T \mathbf{H} \mathbf{w} = \mathbf{H}^T \mathbf{y}$$

•
$$\widehat{w} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{y}$$

https://en.wikipedia.org/wiki/Matrix_calculus

Regularization in Linear Regression

• One sign of overfitting: large parameter values

- Regularized or penalized regressions modified
 - Learning object to penalize large parameters

Ridge Regression

• l_2 regularization

•
$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i} \left(y_i - \left(w_0 + \sum_{k=1}^{K} w_k h_k (x_i) \right) \right)^2 + \lambda \sum_{k=1}^{K} w_k^2$$

•
$$\widehat{w}_{ridge} = \arg\min_{w} (\mathbf{Hw} - \mathbf{y})^{T} (\mathbf{Hw} - \mathbf{y}) + \lambda \mathbf{w}^{T} I_{0+K} \mathbf{w}$$

- The closed form solution
- $\widehat{w}_{ridge} = (\mathbf{H}^T \mathbf{H} + \lambda I_{0+K})^{-1} \mathbf{H}^T \mathbf{y}$

Ridge Regression

• How does varying λ change w?

- Larger λ ? Smaller λ ?
- As $\lambda \rightarrow 0$?
 - unregularized
- As $\lambda \rightarrow \infty$?
 - All weights will be 0

Bias-Variance Trade-off

- Model too simple: does not fit the data well
 - A biased solution
- Model too complex: small changes to the data, solution changes a lot
 - A high-variance solution

 Regularization reduces variance at the cost of some bias

How to Pick λ

- Experimentation cycle
 - Select a hypothesis f to best match training set
 - Tune λ on held-out set
 - Try many different values of lambda, pick best one
- Or, can do k-fold cross validation
 - No held-out set
 - Divide training set into k subsets
 - Repeatedly train on k-1 and test on remaining one
 - Use average of λ 's to retrain on full data set, OR use average of w's

Training
Part 1

Training Data

Training Part 2

. . .

Held-Out (Development) Data

> Test Data

Training Part K

Test Data

LASSO

• l_1 regularization

•
$$\widehat{w}_{LASSO} = \arg\min_{w} \sum_{i} \left(y_i - \left(w_0 + \sum_{k=1}^{K} w_k h_k (x_i) \right) \right)^2 + \lambda \sum_{k=1}^{K} |w_k|$$

- Linear penalty pushes more weights to zero
- Allows for a type of feature selection
- But, not differentiable and no closed form solution....

Geometric Intuition

