

$TI\emptyset4120$ - Operasjonsanalyse, grunnkurs

Exercise #9

Author: Sondre Pedersen

Problem 1

a) Utled EOQ formelen

La

Q: bestillingsmengden

K: Bestillingskostnad(fast)

c: Bestillingskostnadperenhet

h: Lagerkostnad per enhet per tidsenhet

L(t): Lagerbeholdning ved tidspunkt t

Antar at D er kjent konstant etterspørsel. Da vil L(t) = Q - Dt, og en periode $L(T) = 0 \Rightarrow T = Q/D.$

Målet er å minimere kostnader for en periode.

Bestillingskostnad for en periode: K + cQ

Lagerkostnad for en periode: $h \times \frac{Q^2}{2d}$

Total kostnad for en periode: $K + cQ + h \times \frac{Q^2}{2d}$

Her er $Q^2/2d$ alle enhetene som må betales for på lager (integral av L(t) fra 0 til T).

F = Kostnad per tidsenhet = Total kostnad / tid =
$$\frac{K + cQ + h \times \frac{Q^2}{2d}}{Q/D} = \frac{DK}{Q} + cD + \frac{hQ}{2}$$
 $\frac{dF}{dt} = 0 \Rightarrow -\frac{DK}{Q^2} + \frac{h}{2} \Rightarrow Q = \sqrt{\frac{2DK}{h}}$

b)

Oppgitt:

$$D=500\times12$$

$$K = 1000$$

$$c = 400$$

$$h = 40 + 0.15 * 400$$

$$Q^*=\sqrt{\frac{2*500*12*1000}{40+0.15*400}}=346.4$$
enheter bør bestilles. $T=Q/D\times 12\approx 0.7$ måneder mellom hver bestilling.

Utvider variablene i a) ved å legge til p for shortage cost. Bruker s som betegnelse på maks lagerbeholdning. Denne verdien er nå ulik Q, siden vi bestiller mer en vi vil ha på lager, ettersom noe må etterleveres.

Bestillingskostnad for en periode: K + cQ

Lagerkostnad for en periode: $h \times \frac{s^2}{2d}$ Shortage cost for en periode: $p \times \frac{(Q-s)^2}{2d}$ Total kostnad for en periode: $K + cQ + h\frac{Q^2}{2d} + p\frac{(Q-s)^2}{2d}$ F = Kostnad per tidsenhet = $\frac{KD}{Q} + cD + \frac{hS^2 + p(Q-S)^2}{2Q}$

Løser nå $\frac{\partial F}{\partial Q}=0$ og $\frac{\partial F}{\partial S}=0.$ Dette gir et system med likninger som man kan regne på og komme fram til $Q^*=\sqrt{\frac{2DK}{h}}\sqrt{\frac{p+h}{p}}, S^*=\sqrt{\frac{2DK}{h}}\sqrt{\frac{p}{p+h}}$

$$Q^* = \sqrt{\frac{2DK}{h}} \sqrt{\frac{p+h}{p}}, S^* = \sqrt{\frac{2DK}{h}} \sqrt{\frac{p}{p+h}}$$

d)
$$p = 150, \text{ så D'} = 6000 \text{ h} = 40 + 0.15 * 400 = 2400$$

$$Q^* = \sqrt{\frac{2*6000*1000}{2400}} \sqrt{\frac{150+2400}{150}} = 291 \text{ enheter.} \quad S^* = \sqrt{\frac{2*6000*1000}{2400}} \sqrt{\frac{150}{150+2400}} = 17 \text{ enheter.}$$

e) Ledetid vil ikke påvirke noe særlig. Alt som må endres er at bestillingen må skje 1 måned tidligere.

Problem 2

p/h forhold	Q* (Optimal ordrekvantum)	S* (Maksimum lagernivå)	B* (Maksimal shortage)
0.3333333333333333	2000	500	1500
1	1414	707	707
2	1225	816	408
3	1155	866	289
5	1095	913	183
10	1049	953	95

Problem 3

a) Gitt:

Gitt:

$$K = 1500$$

$$h = 3000$$

$$p = 1000$$

$$d = 900$$

 $EOQ_s tandard = sqrt((2*K*d)/h) \ EOQ_s tandard = sqrt((2*1500*900)/3000) = 30.98 \approx 31 \ \text{biler}$ $EOQ_s hortage = EOQ_s tandard * sqrt((p+h)/p)$ $EOQ_s hortage = 30.98 * sqrt((1000+3000)/1000) = 30.98 * sqrt(4) = 61.96 \approx 62 \ \text{biler}$ $S = EOQ_s hortage * (p/(p+h))$ $S = 62 * (1000/(1000+3000)) = 62 * 0.25 = 15.5 \approx 16 \ \text{biler}$ b)

$$\mu_L = 50$$

$$\sigma_L = 15$$

$$z_0.75 = 0.674$$

$$R = \mu_L + z_0.75 * \sigma_L$$

$$R = 50 + (0.674 * 15) = 50 + 10.11 = 60.11 \approx 60 \text{ biler}.$$

c)
$$SS = R - \mu_L = 60 - 50 = 10$$
 biler