Professor: Michael Christ Vishal Raman

Contents

1	August 27th, 2020 1.1 Introduction	3 3 3 4
2		7 7 8 9
3	3.1 Convolution and Continuity	11 11 11 12
4	4.1 Fourier Transform Identities	15 15 16 17
5	5.1 Schwartz Space, continued	19 19 19
6	6.1 Poisson Summation Formula	23 23 23
7	September 17th, 2020 7.1 Size of Fourier Coefficients, continued	
8	8.1 Comparing Size of Functions to Size of Fourier Coefficients, continued	30 30 30
9	September 24th, 2020 9.1 Rademacher Functions, continued	

§1 August 27th, 2020

§1.1 Introduction

We begin by considering the problem of conduction of heat in a circle. We use the map $x \mapsto e^{ix}, x \in [0, 2\pi)$. Where u is the temperature, t is the time, we believed that $u_t = \gamma u_{xx}$, where subscripts denote partial derivatives. We also have an initial condition, f(x) = u(x, 0).

There are some simple solutions $e^{inx}e^{-\gamma n^2t}|_{t=0}=e^{inx}$. The product of solutions, the sum of solutions, and scalar multiple of solutions are all solutions, so he wrote the solution as

$$f(x) = \sum_{n = -\infty}^{\infty} a_n e^{inx}, u(x, t) = \sum_n a_n e^{-\gamma n^2 t} e^{inx}.$$

§1.2 Fourier Analysis

We take a circle $\{z \in \mathbb{C} : |z=1|\}$, which can also be thought of as $\mathbb{R}/(2\pi\mathbb{Z})$, with the map $x \mapsto e^{ix}$. Suppose we have G a finite abelian group, and $\widehat{G} = \{\text{hom } \varphi : G \to \mathbb{R}/\mathbb{Z}\}$, the dual group. \widehat{G} is also a group, formally known as the set of characters.

Example 1.1

If we take $G = \mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$, with the map $x \mapsto e^{2\pi i x n/N}$, for $n \in \mathbb{Z}_n$. Similarly, taking $G \cong \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \dots$, we take $x \mapsto \prod e^{2\pi i x n/N_i}$.

Take $e_{\xi}(x) = e^{2\pi i \xi(x)}$, where $\xi: G \mapsto \mathbb{R}/\mathbb{Z}$. Working in $L^2(G)$, we note the following:

Fact 1.2. If $\xi \neq \varphi$, then $\langle e_{\xi}, e_{\varphi} \rangle = 0$.

Proof.

$$\sum_{x \in G} \xi(x) \overline{\varphi(x)} = \sum_{u} \xi(u+y) \overline{\varphi(u+y)} - \left(\sum_{u} \xi(u) \overline{\varphi(u)}\right) \xi(y) \overline{\varphi(u)}.$$

Hence, either $\langle \xi, \varphi \rangle = 0$ or $\xi(y)\overline{\varphi}(y) = 1$ for all $y \in G$, which implies $\xi = \varphi$.

If follows that $\{e_f : f \in \widehat{G}\}$ is an orthonormal set in $L^2(G)$ Then, the dimension is $|\widehat{G}| = |G| = \dim(L^2(G))$. Hence, the set forms an orthonormal basis for $L^2(G)$.

Then, for all $f \in L^2(G)$, we have

$$\|f\|_{L^2(G)}^2 = \sum_{\varphi \in \widehat{G}} |\left\langle f, e_\xi \right\rangle|^2,$$

$$f = \sum_{e_{\varepsilon} \in \widehat{G}} \langle f, e_{\xi} \rangle e_{\varphi}.$$

§1.3 On Tori of Arbitrary Dimension

We define $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$, from $[0, 2\pi]$. We then work on \mathbb{T}^d , $d \geq 1$. For $f \in L^2(\mathbb{T}^d)$, we define

$$\widehat{f}(n) = (2\pi)^{-d} \int f(x)e^{-inx} dx.$$

We have an inner product $\langle f, g \rangle = \int_{\mathbb{T}^d} f(x) \overline{g(x)} d\mu(x)$ defined over a Lebesgue measure or Euclidean measure on \mathbb{T}^d .

Theorem 1 (Parseval's Theorem)

For all $f \in L^2(\Pi^d)$,

$$||f||_{L^2}^2 = (2\pi)^d \sum_{n \in \mathbb{Z}^d} |\widehat{f}(n)|^2,$$

and we have

$$f = \sum_{n \in \mathbb{Z}^d} \widehat{f}(n)e^{inx},$$

in the sense that

$$||f - \sum_{n \in \mathbb{Z}^d} \widehat{f}(n)e^{inx}||_L^2 \to 0.$$

Note: you can usually figure out the constant with the simplest example, f = 1.

Proof. Take \mathbb{T}^d , $e_n(x) = e^{in \cdot x}$. The $\{(2\pi)^{-d/2}e^n : n \in \mathbb{Z}^d\}$ is orthonormal(left as an exercise). Then, for all f, $\sum_n \langle f, (2\pi)^{-d/2}e_n \rangle \leq \|f\|_{L^2}^2$, with equality if the set is a basis(Bessel's inequality).

It suffices to show that span $\{e_n\}$ is dense in L^2 . Take $P = \text{span}\{e_n\}$, and note that P is an algebra of continuous functions on Π^d , closed under conjugation, contains 1, and separates points. Hence, the Stone-Weierstrass theorem implies that P is dense in $C^o(\Pi^d)$ with respect to $\|\cdot\|_{C^o}$. Then $C^o \subset L^2$ is dense(general theory about Compact Hausdorff spaces, Radon Measures).

The statement $||f - \sum_{n \in \mathbb{Z}^d} \widehat{f}(n)e^{inx}||_L^2 \to 0$ follows from the general theory of orthonormal systems.

§1.4 Euclidean Spaces

We work in \mathbb{R}^d , $(d \ge 1)$. Take $\xi \in \mathbb{R}^d$, and $x \mapsto x\xi \in \mathbb{R}$ is a homomorphism from $\mathbb{R}^d \to \mathbb{R}$, but if we take $x \mapsto e^{ix\xi}$, we have a homomorphism from $\mathbb{R}^d \mapsto \Gamma$. We try to define the following:

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-ix\xi} dx = \langle f, e_{\xi} \rangle_{L^2(\mathbb{R}^d)},$$

where $e_{xi}(x) = e^{ix\xi}$.

Some problems:

- 1. $e_{\xi} \not\in L^2(\mathbb{R}^d)$
- 2. $f(x)e^{-ix\xi}$ need not be in L^1 if $f \in L^2$.

We fix this by imposing extra conditions.

Definition 1.3. For $f \in L^1(\mathbb{R}^d)$, we define

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-ix\xi}dx.$$

Note that $f \in L^1$ implies that \widehat{f} is bounded, continuous. We see this as follows: $\widehat{f}(\xi+u) - \widehat{f}(\xi) = \int f(x)e^{-ix\xi}(e^{-ixu}-1)dx$. If we let $u \to 0$, the right goes to 0 pointwise, and $(2|f|) \in L^1$ dominates the integral, it goes to 0.

Proposition 1.4

If $f \in L^1 \cap L^2(\mathbb{R}^d)$, $\widehat{f} \in L^2(\mathbb{R}^d)$,

$$\|\widehat{f}\|_{L^2}^2 = (2\pi)^d \|f\|_{L^2}^2.$$

Theorem 2 (Plancherel's Theorem)

 $\pi: L^1 \cap L^2 \to L^2$ extends uniquely to $\widehat{\pi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, linear, bounded, $\|\widehat{\pi}f\|_{L^2}^2 = (2\pi)^d \|f\|_{L^2}^2$, and for all $f \in L^2$, we have an inverse Fourier Transform, $\check{f}(y) = \int f(\xi) e^{iy\xi} d\xi$ for $f \in L^1 \cap L^2$, and $\check{\cdot}$ also extends.

Finally,

$$||f - (2\pi)^{-d} \int_{|\xi| \le R} \widehat{f}(\xi) e^{ix\xi} d\xi||_{L^2} \to 0.$$

Note that $\check{f}(y) = \widehat{f}(-y)$.

Proof. We first prove that $||f||_{L^2}^2 = (2\pi)^{-d} ||\widehat{f}||_{L^2}^2$ for all $f \in L^1 \cap L^2$. We prove this for a dense subspace \mathscr{P} of L^2 . We will show later that there exists a subspace $V \subset L^2(\mathbb{R}^d)$ so that V is dense in L^2 , $V \subset L^1$, $\forall f \in V$, there exists $C_f < \infty$, so for all $\xi \in \mathbb{R}^d$, $|\widehat{f}(\xi)| \leq C_f(f(\xi))^{-d}$ and f is continuous with compact support.

We are given $f: \mathbb{R}^d \to \mathbb{C}$ supported where $|x| \leq R = R_f < \infty$. For large $t \geq 0$, define $f_t(x) = f(tx)$ (this shrinks the support of f), supported where $|x| \leq R/t < \pi$. We can then think of $f_t: \mathbb{T}^d \to \mathbb{C}$.

Now, we calculate

$$\widehat{f}_{t}(n) = (2\pi)^{d} \int_{\mathbb{T}^{d}} f_{t}(x) e^{-inx} dx$$

$$= t^{-d} (2\pi)^{d} \int_{\mathbb{R}^{d}} f(x) e^{-in/ty} dy$$

$$= t^{-d} (2\pi)^{-d} \widehat{f}(t^{-1}n),$$

where the first hat is on \mathbb{T}^d and the second is on \mathbb{R}^d , so the Fourier coefficients in the euclidean case are scalar multiples of the Fourier coefficients in the Tori case.

Thus,

$$||f_t||_{L^2(\mathbb{T}^d)}^2 = t^{-d}||f||_{L^2(\mathbb{R}^d)}^2 = c_d \sum_{n \in \mathbb{Z}^d} |\widehat{f_t}(n)|^2 = c_d' t^{-2d} \sum_n |\widehat{f}(t^{-1}n)|^2$$

Hence,

$$||f||_{L^2(\mathbb{R}^d)}^2 = c'_d t^{-d} \sum_n |\widehat{f}(t^{-1}n)|^2.$$

This has a nice tiling Riemann sum interpretation: if we take \mathbb{R}^d and tile it with cubes of sidelength 1/t where one corner is at $t^{-1}n$ for $n \in \mathbb{Z}^d$, then

$$||f||_{L^2(\mathbb{R}^d)}^2 = c'_d t^{-d} \sum_n \left| \widehat{f}(t^{-1}n) \right|^2 = \int_{\mathbb{R}^d} |g_t|^2 dx,$$

where $g(x) = \widehat{f}(t^{-1}n)$.

We claim

$$\int_{\mathbb{R}^d} |g_t|^2 \to \int_{\mathbb{R}^d} |\widehat{f}|^2,$$

which follows from the dominated convergence theorem: where we take a sequence over t going to infinity, with dominator $C_f^2(1+|\xi|)^{-2d}$ in L^1 and $|\widehat{f}(\xi)| \leq C_f^2(1+|\xi|)^{-2d}$. Furthermore, we have $g_t(\xi) \to \widehat{f}(\xi)$ as $t \to 0$, and \widehat{f} is continuous so g_t is pointwise convergent, and we have

$$|g_t(\xi)| = |\widehat{f}(t^{-1}n)| \le C_f(1 + |t^{-1}n|)^{-d} \le C'(1 + |\xi|)^{-d}.$$

§2 September 1st, 2020

§2.1 Proof of Plancherel's Theorem

Last time

 $\bullet \mathbb{R}^d$.

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-ix\cdot\xi} f(x) dx.$$

- $V = (f \in L_1 \cap L_2(\mathbb{R}^d)) : |\widehat{f}(\xi)| \langle \xi \rangle^d$ is a bounded linear function, $\langle x \rangle = (1+|x|^2)^{1/2} \ge 1, = |x|$ for x large.
- Claim: V is dense in $L^2(\mathbb{R}^d)$. Then $\|\widehat{f}\|_{L^2} = (2\pi)^{d/2} \|f\|_{L^2}$ for all $f \in V$ so there exists a unique bounded linear operator \mathscr{F} on $L^2(\mathbb{R}^d)$, where \mathscr{F} takes a function to it's fourier transform.
- We discussed some properties of \mathscr{F} .
 - $\|\mathscr{F}f\|_2 = (2\pi)^{d/2} \|f\|_2$
 - $-\mathscr{F}$ is onto.
 - For all $f \in L^2$,

$$\left\| f - (2\pi)^{-d} \int_{|\xi| \le R} e^{ix \cdot \xi} \mathscr{F}(f)(\xi) d\xi \right\|_{L^2} \to 0,$$

in the limit where $R \to \infty$.

First note that \mathscr{F} has closed range(this was an exercise). It suffices to show: If $g \in L^2$, $g \perp \mathscr{F}(f)$ for all $f \in V$, then g = 0.

Proof. First, note that

$$0 = \langle g, \mathscr{F}(f) \rangle = \langle \mathscr{F}^*(g), f \rangle,$$

and for all $g \in V$,

$$\mathscr{F}^*g(x) = \int g(\xi)e^{ix\cdot\xi}d\xi$$

Therefore, $\mathscr{F}^*(g)(x) = (\mathscr{F}g)(-x)$ for all $g \in V$, which is dense in L^2 . Hence, $\mathscr{F}g = 0$, and the Fourier transform preserves norms, so g = 0.

We also claimed the following: Let $f \in L^2$:

$$||f(x) - (2\pi)^{-d} \int_{|\xi| \le R} (\mathscr{F}f)(\xi) e^{ix \cdot \xi} d\xi||_2^2 \to 0.$$

Proof. Let $g_r = (2\pi)^{-d} \int_{|\xi| \le R} (\mathscr{F}f)(\xi) e^{ix\cdot \xi} d\xi$. We have to show $\langle f, g_r \rangle \to ||f||_2^2$. Then

$$||f - g_r||_2^2 = ||f||_2^2 + ||g_r||_2^2 - 2\operatorname{Re}\langle f, g_r \rangle \to ||f||_2^2 + ||f||_2^2 - 2||f||_2^2.$$

$$\langle f, g_R \rangle = (2\pi)^{-d} \int f(x) \overline{\int_{|\xi| \le R} (\mathscr{F}f)(\xi) e^{ix \cdot \xi} d\xi} dx$$

$$= (2\pi)^{-d} \int_{|\xi| \le R} \left(\int f(x) e^{-ix \cdot \xi} dx \right) \overline{(\mathscr{F}f)(\xi)} d\xi$$

$$= (2\pi)^{-d} \int_{|\xi| \le R} |\mathscr{F}f(\xi)|^2 d\xi \to (2\pi)^{-d} ||\mathscr{F}f||_2^2 = ||f||_2^2.$$

However, it's not clear that we can use Fubini's theorem. We would need $f \in L^1 \cap L^2$. But this is not an issue as $L^1 \cap L^2 \subset L^2$ is dense, so if we let $\epsilon > 0$, f = G + h, $||h||_2 \le \epsilon$ and $G \in L^1 \cap L^2$. Showing the convergence from here is an exercise.

We still need $V = (f \in L^1 \cap L^2 : \langle \xi \rangle^d (\widehat{f}(\xi))$ is bounded) is dense in L^2 . We'll discuss this in the future.

§2.2 Introduction to Convolution

Our meta definition is $f * g(x) = \int f(x-y)g(y)dy$, but it will depend on the conditions of the function for the integral to be defined.

Convolution is generally associated to a group, where

$$\int_G f(xy^{-1}g(y)d\mu(y)),$$

with the Haar measure(done in 202b).

 \mathbb{R}^d so that for all $f \in C_0^0$, $T(f) = f * \mu$, where

If we substitute y = x - u, then

$$f * g(x) = \int f(u)g(x-u)du = g * f(x).$$

It is also associative: (f * g) * g = f * (g * h) for all f, g, h (involves Fubini's theorem). We can formally write

$$f * g(x) = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(u)g(v)d\lambda_x(u,v),$$

where λ_x is supported on $\Lambda = \{(u,v) : u+v=\lambda\}$ (an affline subspace). If we have a subset $E \subset \Lambda$, $\lambda_x(E) = |\pi_1(E)| = |\pi_2(E)|$, where π_i are Lebesgue measures of projections on the i-th factor. Note the following: suppose that f,g are continuous with compact support. Then $\operatorname{supp}(f*g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$, where $A+B=\{a+b:(a,b)\in A\times B\}$. Let $T:C_0^0(\mathbb{R}^d)\to C_b^0(\mathbb{R}^d)$ be bounded, linear and $T\circ\tau_y=\tau_y\circ T$ for all $x\in\mathbb{R}^d$ ($\tau_y f(x)=f(x+y)$, a translation). Then, there exists a Complex Radon measure μ on

$$f * \mu(x) = \int f(x - y) d\mu(y).$$

In the case of \mathbb{T}^1 , $f(x) = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{inx}$ for all $f \in L^2$. Suppose we wanted to consider the partial sums,

$$\sum_{n=-N}^{N} \widehat{f}(n)e^{inx} = S_N(f)(x).$$

In what sense does $S_N f \to f$, and for which functions f do we have convergence?

$$S_N(f)(x) = \sum_{n=-N}^{N} e^{inx} (2\pi)^{-1} \int_{-\pi}^{\pi} f(y) e^{-iny} dy = (2\pi)^{-1} \int f(y) \sum_{n=-N}^{N} e^{in(x-y)} dy$$
$$= (2\pi)^{-1} \int_{-\pi}^{\pi} f(y) D_n(x-y) dy.$$

The Dirichlet Kernels, $D_N(x) = \sum_{n=-N}^N e^{inx} = \frac{\sin{(N+1/2)x}}{\sin{(x/2)}}$ if $x \neq 0$ or $D_N(x) = 2N+1$ if x = 0.

§2.3 General Convolution

Theorem 3

Let $f, g \in L^1(\mathbb{R}^d)$. Then, the following are true:

- $y \mapsto f(x-y)g(y) \in L^1(\mathbb{R}^d)$ for almost every $x \in \mathbb{R}^d$.
- $x \mapsto \int f(x-y)g(y)dy$ is Lebesgue measurable.
- $f * g \in L^1(\mathbb{R}^d)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.
- If $f, g \ge 0$, then $||f * g||_1 = \int f * g = \int f \int g$.
- The operation commutative and associative, so L^1 is an algebra, but it no multiplicative identity, so no inverses.
- For $f, g \in L^1$, $(\widehat{f \star g}) = \widehat{f} \cdot \widehat{g}$.

In other words, convolution is a nice bilinear operation.

Proof. Let F(x,y) = f(x-y)g(y), $F: \mathbb{R}^{d+d} \to \mathbb{C}$ is Lebesgue measurable. We claim that $F \in L^1(\mathbb{R}^d \times \mathbb{R}^d)$. It follows from

$$\int |F(x,y)| dx dy = \int |f(x-y)| |g(y)| dx dy = \int |g(y)| dy \int |f(x)| dx = ||g||_1 ||f||_1 < \infty.$$

Now, $F \in L^1$, so by Fubini's theorem, for almost every $x, y \to f(x-y)g(y) \in L^1$ and $x \mapsto \int f(x-y)g(y)dy$ is Lebesgue measurable.

$$||f*g||_1 = \int |f*g(x)| dx = \int \left| \int f(x-y)g(y) dy \right| dx \le \int \int |f(x-y)||g(y)| dy dx = ||f||_1 ||g||_1.$$

Note that $\int (f * g)(x) dx = ||f||_1 ||g||_1$, for non-negative functions. Finally,

$$(f * g)^{\wedge}(\xi) = \int e^{-ix \cdot \xi} \left(\int f(x - y)g(y)dy \right) dx$$

$$= \int \left(\int e^{-ix \cdot \xi} f(x - y)dx \right) dy, x = u + y$$

$$= \int \left(e^{-i(u + y) \cdot \xi} f(u)du \right) g(y)dy$$

$$= \int e^{-iy \cdot \xi} \widehat{f}(u)g(y)dy$$

$$= \widehat{f}(\xi) \cdot \widehat{g}(\xi).$$

Example 2.1 (A Warning)

In \mathbb{R}^1 , $f(x) = |x|^{-2/3} \mathbf{1}_{|x| \le 1}$, which has an asymptote at 0. $f \in L^1$, and

$$(f * f)(0) = \int_{-1}^{1} |u|^{-4/3} dy = +\infty.$$

Proposition 2.2

Let $p \in [1, \infty]$. Let $f \in L^1, g \in L^p$. Then,

- $y \mapsto f(x-y)g(y) \in L^1$ for almost every $x \in \mathbb{R}^d$. $x \mapsto \int f(x-y)g(y)dy$ is Lebesgue measurable.
- $f * g \in L^p(\mathbb{R}^d), \|f * g\|_p \le \|f\|_1 \|g\|_p.$

Proof. For $p = \infty$, $\int f(x - y)g(y)dy \in C_0(\mathbb{R}^d)$. If $1 , <math>L^P \subset L^1 + L^\infty$, as follows:

$$f(x) = f(x)1_{|f(x)| < 1} + f(x)1_{f(x) > 1}.$$

We can prove the rest with Minkowski's inequality, or a simpler way. Let $q = p' = \frac{p}{p-1}$ (hence $\frac{1}{q} + \frac{1}{p} = 1$). We use the norm definition,

$$||f * g||_p = \sup_{\|h\|_q \le 1} \int |g * f| \cdot |h|.$$

$$\int |g * f| \cdot h \le \int (|g| * |f|) \cdot h = \int \int |g(x - y)| |f(y)| dy h(x) dx$$

$$= \int |f(y)| \int |g(x - y)| h(x) dx dy \le \int |f(y)| ||g||_p * 1 dy = ||f||_1 ||g||_p.$$

§3 September 3rd, 2020

§3.1 Convolution and Continuity

Recall convolution:

$$f * g(x) = \int f(x - y)g(y)dy, f * \mu(x) = \int_{\mathbb{R}^d} f(x - y)d\mu(y),$$

where f is continuous, bounded, μ is a complex Radon measure($|\mu|$ is finite)

Proposition 3.1

Let $T: C_0^0 \to C_b^0$. Suppose T is translation invariant: $T \circ \tau_y = \tau_y \circ T$ for all $y \in \mathbb{R}^d$. [There exists $A < \infty : \|Tf\|_{C_0} \le A\|f\|_{C_0}$ for all f. Recall $\|f\|_{C_0} = \sup_x |f(x)|$, and C_0^0, C_b^0 are Banach spaces.] There exists a complex radon measure μ such that $Tf = f * \mu$ for all f.

Proof. Given $T: C_0^0 \to C_b^0$, consider the map $\ell: \mathbb{C}_0^0 \to \mathbb{C}$ given by $f \mapsto (Tf)(0)$. It is clear that ℓ is linear. Furthermore, ℓ is bounded, since

$$|Tf(0)| \le ||Tf||_{C_0} \le A||f||_{C_0}$$

so $\ell \in (C_0^0)^*$. Recall the Riesz Representation Theorem, there exists ν , a complex Radon measure, such that for all $f \in C_0^0$

$$\ell(f) = \int f d\nu.$$

Let $y \in \mathbb{R}^d$. We have

$$Tf(-y) = Tf(0-y) = (\tau_y Tf)(0) = T(\tau_y f)(0) = \int \tau_y f(x) d\nu(x) = \int f(x-y) d\nu(x).$$

Similarly, for all x, $(Tf)(-x) = \int f(y-x)d\nu(y)$. [See lecture notes for correct algebra, sad].

§3.2 Convolution and Differentiation

Informally,

$$\frac{\partial}{\partial x_i} \int f(x-y)g(y)dy = \int \frac{\partial f}{\partial x_i} f(x-y)g(y)dy.$$

Proposition 3.2

Assume $f \in C^1(\mathbb{R}^d), g \in L^1$ and $f, \nabla f$ is bounded. Then

$$f * g \in C^1, \frac{\partial}{\partial x_j} (f \star g) = \left(\frac{\partial f}{\partial x_j}\right) * g.$$

Proof. We assume d=1 for clarity.

$$\frac{(f * g)(x+t) - (f * g)(x)}{t} = \int \frac{f(x+t-y) - f(x-y)}{t} g(y) dy.$$

Let $t \to 0$. Use DCT, with dominator

$$|g(y)| \cdot \sup_{t,u} \frac{|f(u+t) - f(u)|}{|t|}.$$

The supremum is finite by the mean value theorem.

Example 3.3

Take $g \in L^{\infty}$, $f \in C_1$, and there exists $a < \infty$ such that for all x,

$$|f(x)| + |\nabla f(x)| \le A\langle x \rangle^{-\gamma}.$$

Hence, $f, \nabla f \in L^1$. Then $f * g \in C^1, \nabla (f * g) = (\nabla f) * g$.

We can iterate this: Under appropriate conditions

$$\frac{\partial^{\alpha}(f*g)}{\partial x^{\alpha}} = \frac{\partial^{\alpha}f}{\partial x^{\alpha}} * g,$$

$$\frac{\partial^{\alpha+\beta}(f*g)}{\partial x^{\alpha_{\beta}}} = \frac{\partial^{\alpha}f}{\partial x^{\alpha}} * \frac{\partial^{\beta}g}{\partial x^{\beta}}.$$

Proposition 3.4

If $f \in L^1$ and $g \in L^{\infty}$, then $f * g \in C_b^0$.

Proof. Recall: If $f \in L^1(\mathbb{R}^d)$, then $y \mapsto \tau_y f \in L^1$ is continuous: As $y \to 0$,

$$\|\tau_u f - f\|_1 \to 0.$$

Then,

$$(f*g)(x) - (f*g)(x') = \int (f(x-y) - f(x'-y))g(y)dy = \int [f(x-y) - (\tau_u f)(x-y)]g(y)dy,$$

where u = x' - x. As $u \to 0$, $||f - \tau_u f||_1 \to 0$, and $g \in L^{\infty}$, so the integral approaches 0, as desired.

§3.3 Approximation

Definition 3.5 (Approximate Identity Sequence). An approximate identity sequence for \mathbb{R}^d is $(\varphi_n)_{n\in\mathbb{N}}, \varphi_n \in L^1(\mathbb{R}^d)$ with the following conditions:

- $\int_{\mathbb{R}^d} \varphi_n = 1.$
- For all $\delta > 0$, $\int_{|x| \ge \delta} |\varphi_n| dx \to 0$ as $n \to \infty$.

Let (φ_n) be an approximate identity sequence in \mathbb{R}^d .

- 1. Let $f \in C_b^0$ be uniformly continuous. Then $f * \varphi_n \to f$ uniformly.
- 2. Let $f \in C_b^0$. Then $f * \varphi_n \to f$ uniformly on every compact set. 3. If $1 \le p \le \infty$, then for all $f \in L^p$, $||f * \varphi_n f||_p \to 0$.

[All the above limits are taken for $n \to \infty$.]

Proof.

$$f * \varphi_n(x) - f(x) = \int f(x - y)\varphi_n(y)dy - f(x)$$
$$= \int (f(x - y) - f(x))\varphi_n(y)dy$$

Then,

$$|f * \varphi_n(x) - f(x)| \le \int |f(x-y) - f(x)| |\varphi_n(y)| dy.$$

Let $\delta > 0$. Then,

$$\int |f(x-y) - f(x)| |\varphi_n(y)| dy = \int_{|y \le \delta|} |f(x-y) - f(x)| |\varphi_n(y)| dy + \int_{|y \ge \delta|} |f(x-y) - f(x)| |\varphi_n(y)| dy.$$

$$\int_{|y \le \delta|} |f(x - y) - f(x)| |\varphi_n(y)| dy \le \|\varphi_n\|_1 \cdot \sup_{x, |y| \le \delta} |f(x - y) - f(x)|$$

$$= \|\varphi_n\|_1 \cdot \omega_f(\delta)$$

$$\le A \cdot \omega_f(\delta).$$

Then

$$\int_{|y| \geq \delta} |f(x-y) - f(x)| |\varphi_n(y)| dy \leq \int_{|y| \geq \delta} 2||f||_{C^0} \cdot |\varphi_n(y)| dy$$
$$\leq 2||f||_{C^0} \int_{|y| \geq \delta} |\varphi_n| dy.$$

Hence

$$|f * \varphi_n(x) - f(y)| \le A\omega_f(\delta) + 2||f||_{C^0} \int_{|y| > \delta} |\varphi_n| dy.$$

Taking the lim sup, the second term goes to 0, so for all $\delta > 0$,

$$\lim_{n \to \infty} \sup \|f * \varphi_n - f\|_{C^0} \le A\omega_f(\delta).$$

Since f is uniformly continuous, $\lim_{\delta\to 0} \omega_f(\delta) = 0$, which proves the claim.

Corollary 3.6

 $C^{\infty} \cap L^p$ is dense in L^p for all $1 \leq p \leq \infty$.

Proof. We want to construct (φ_n) with $\varphi_n \in C_0^{\infty}$. We claim there exists a function $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ with $\int \varphi = 1$ and $\varphi \geq 0$. In d = 1, take $h(x) = 1x > 0e^{-\|x\|}$. Then, define $\varphi(x) = h(x)h(1-x) \in C_0^{\infty}$. Then, we normalize φ . Now, take $\varphi_n(x) = n^d \varphi(nx)$.

Example 3.7

Let $\varphi \geq 0$, $\int \varphi = 1$. Define $\varphi_n(x) = n^d \varphi(nx)$. Then $\int \varphi_n = 1$. Furthermore,

$$\int_{|x| \ge \delta} n^d \varphi(nx) dx = \int_{|y| \ge n\delta} \varphi(y) dy \to 0.$$

Example 3.8

Let $\varphi(x) = (2\pi)^{-d/2} e^{-|x^2|/2}$, $x \in \mathbb{R}^d$. Let t > 0 and $\varphi_t(x) = (2\pi)^{-d/2} t^{-d/2} e^{-|x|^2/(2t)}$. Now $t \to 0^+$ and

$$\int_{|x| \ge \delta} \varphi_t(x) dx \to 0.$$

This is an approximate identity family.

Example 3.9 (Interpretation of f * g)

$$f * g = \int \tau_y f(x) \cdot g(y) dy.$$

If $g \ge 0$ and $\int g = 1$, then we have an **average** of translates of f.

As $n \to \infty$, $g = \varphi_n$ so the weight concentrates asymptotically at the origin.

§4 September 8th, 2020

§4.1 Fourier Transform Identities

We have many functorial identities.

1. For $f \in L^1$,

$$(\tau_u f)^{\wedge}(\xi) = e^{-iy \cdot \xi} \widehat{f}(\xi).$$

2. For $f, g \in L^1(\mathbb{R})$,

$$(f * g)^{\wedge} = \widehat{f} \cdot \widehat{g}.$$

3. For $f \in L^1$,

$$(e^{ix\cdot\eta}f)^{\wedge}(\xi) = \widehat{f}(\xi - \eta).$$

4. We use the notation

$$\xi^{\alpha} = \prod_{j=1}^{d} \xi_j^{\alpha_j}.$$

For $f \in C^0, C^{|\alpha|}, C_0^0,$

$$(\partial^{\alpha} f)^{\wedge}(\xi) = (i\xi)^{\alpha} \widehat{f}(\xi).$$

This comes from the fact that

$$\int_{\mathbb{R}^d} \left(\frac{\partial}{\partial x_k} f(x) \right) e^{-ix \cdot \xi} dx,$$

so we integrate by parts, use Fubini in \mathbb{R}^d and induct on $|\alpha|$.

5. For $f \in C_0^{\infty}$,

$$(X^{\beta}f(x))^{\hat{}}(\xi) = (i\partial_{\xi})^{\beta}\widehat{f}(\xi),$$

where

$$x^{\beta} = \prod_{j=1}^{d} x_j^{\beta_j}, (i\partial_{\xi})^{\beta} = i^{|\beta|} \partial^{\beta}.$$

6. For $f \in C_0^{\infty}$,

$$(\partial_x^{\alpha} f)^{\wedge}(\xi) = (i\xi)^{\alpha} \widehat{f}(\xi).$$

7. If $L \in GL(d)$, $L: \mathbb{R}^d \to \mathbb{R}^d$, linear invertible, then for all $f \in L61$,

$$(f \circ L)^{\wedge}(\xi) = |\det(L)|^{-1} \widehat{f} \circ ((L^*)^{-1})(\xi).$$

The proof follows from the substitution $x = L^{-1}(y)$ and $(L^{-1})^* = (L^*)^{-1}$

Corollary 4.1

$$V = \{ f \in (L^1 \cap L^2)(\mathbb{R}^d) : \exists A = A_f < \infty, |\widehat{f}(\xi)| \le A_f \langle \xi \rangle^{-d} \}$$

is dense in $L^2(\mathbb{R}^d)$.

Proof. We showed last time that C_0^{∞} is dense in $L^2(\mathbb{R}^d)$. We need to show that $f \in C_0^{\infty}$ implies that $\widehat{f}(\xi) = O(\langle \xi \rangle^{-N})$ for all $N \leq \infty$.

WLOG, assume $\xi \neq 0$, $\xi_d \neq 0$, $|\xi_d| \geq \frac{|\xi|}{d}$. Then,

$$\begin{split} \int f(x)e^{-ix\cdot\xi}dx &= (-i\xi_d)^{-1}\int f(x)\frac{\partial}{\partial x_d}(e^{-ix\cdot\xi})dx \\ &= (-i\xi_d)^{-1}\int_{\mathbb{R}^d}\frac{\partial f}{\partial x_d}(x)e^{-ix\cdot\xi}dx \leq \infty. \end{split}$$

We can pick up as many factors of ξ_d as we'd like to get arbitrary bounds.

§4.2 The Gaussian

Fact 4.2. $(d \ge 1)$ Take $e^{-z|x|^2/2} = f(x) = f_z(x)$. Assume $Re(z) \ge 0 \to f_z \in L^1$.

$$(e^{-z|x|^2/2})^{\wedge}(\xi) = (2\pi)^{d/2}z^{-d/2}e^{-|\xi|^2/(2z)}.$$

We consider $z^{-d/2}$ in the principal branch. When z=1, $(e^{-|x|^2/2})^{\wedge}(\xi)=(2\pi)^{d/2}e^{-|\xi|^2/2}$. Note the fact

$$I = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}.$$

In order to calculate

$$\int_{R} e^{-x^2/2} e^{-ix\xi} dx,$$

we have

$$x^{2}/2 + ix\xi = \frac{1}{2}(x^{2} + 2ix\xi) = 1/2(x + i\xi)^{2} + \xi^{2}/2,$$

so

$$e^{-\xi^2/2} \int_{\mathbb{R}} e^{-(x+i\xi)^2/2} = e^{-\xi^2/2} \sqrt{2\pi}.$$

If $F(x) = \prod_{j=1}^{d} f_j(x_j)$, then $\widehat{F}(\xi) = \prod_{j=1}^{d} \widehat{f}_j(\xi_j)$. For $z \in \mathbb{R}^+$, $e^{-z|x|^2/2} = e^{-|L(x)|^2/2}$, where

$$L(x) = z^{1/2}x.$$

Then, we use $(f \circ L)^{\wedge}(\xi) = |\det(L)|^{-1}\widehat{f}((L^*)^{-1}(\xi))$. For $Re(z) \ge 0$,

$$\int f(x)e^{-ix\cdot\xi}dx = \int e^{-z|x|^2/2}e^{-ix\cdot\xi}dx.$$

We claim that this is a homomorphic function of z in Re(z) > 0.

Fact 4.3. If $f \in L^1(\mathbb{R}^d)$ and $\widehat{f} \in L^1$, then

$$f = (2\pi)^{-d}(\widehat{f})^{\vee}, \check{g}(x) = \int g(\xi)e^{ix\cdot\xi}d\xi.$$

Corollary 4.4

If $f \in L^1$, $\widehat{f} = 0$, then f = 0 almost everywhere.

Proof. Given $f, \widehat{f} \in L^1$. Let $\varphi \in C_0^{\infty}$ with $\int \varphi = 1$. Let $\varphi_n(x) = n^d \varphi(nx)$. Define $f_n = f * \varphi_n$. We know that $f_n \to f$ in L^1 as $n \to \infty$. Moreover, $f_n \in L^2$, since $f_n \in L^1 * L^2$. For each n, we have

$$\|(2\pi)^{-d}\int_{|\xi|\leq R} \widehat{f}_n(\xi)e^{ix\cdot\xi}d\xi - f_n(x)\|_{L^2} \to 0,$$

as $R \to \infty$.

Note that

$$\widehat{f_n}(\xi) = \widehat{f}(\xi)\widehat{\varphi_n}(\xi) = \widehat{f}(\xi)\widehat{\varphi}(n^{-1}\xi).$$

As $n \to \infty$, $\widehat{\varphi}(n^{-1}\xi) \to \widehat{\varphi}(0) = \int \varphi = 1$. Hence,

$$\widehat{f_n}(\xi) \to \widehat{f}(\xi).$$

Furthermore

$$\int_{|\xi| < R} \widehat{f_n}(\xi) e^{ix \cdot \xi} d\xi \to \int_{\mathbb{R}^d} \widehat{f_n}(\xi) e^{ix \cdot \xi} d\xi,$$

since $\widehat{f_n} \in L^1$ as $R \to \infty$.

Hence, we have that

$$(2\pi)^{-d} \int_{\mathbb{R}^d} \widehat{f}(\xi) \widehat{\varphi}(n^{-1}\xi) e^{ix\cdot\xi} d\xi = f_n(x),$$

in the L^2 norm. Now, letting $n \to \infty$, $f_n = f * \varphi_n \to f$ in the L^1 norm.

$$\int_{\mathbb{R}^d} \widehat{f}(\xi) \widehat{\varphi}(n^{-1}\xi) e^{ix\cdot\xi} d\xi \to \int_{\mathbb{R}^d} \widehat{f}(\xi) e^{ix\cdot\xi} d\xi = (\widehat{f})^{\vee}(x),$$

by the dominated convergence theorem. Thus,

$$f(x) = (2\pi)^{-d}(\widehat{f})^{\vee}(x).$$

But we actually proved a stronger result: $g \in L^1 \Longrightarrow \check{g} \in C^0$, so if $g = \widehat{f}$, $(\widehat{f})^{\vee} \in C^0$ if $f \in L^1$, so if f, \widehat{f} are in L^1 , then f agrees almost everywhere with $(2\pi)^{-d}(\widehat{f})^{\vee} \in C^0$. \square

Take $f(x) = 1_{[0,1]}(x)$. Hence $\widehat{f} \not\in L^1$. Essentially, we have that $|\widehat{f}(\xi)| \approx \frac{1}{|\xi|}$ as

§4.3 Schwartz Spaces

Definition 4.6 (Schwartz Space).

$$\mathscr{S} = \mathscr{S}(\mathbb{R}^d) = \{ f : \mathbb{R}^d \to \mathbb{C}, f \in C^{\infty}, \forall N, \alpha, x \mapsto \langle x \rangle^N \frac{\partial^{\alpha} f}{\partial x^{\alpha}} \text{ is bounded.} \}.$$

It is clear that $\mathscr S$ is a vector space over $\mathbb C$. Furthermore, $\mathscr S$ is a topological vector space.

The topology on \mathcal{S} is defined by a countable family of seminorms.

$$||f||_{M,N} = \sup_{x \in \mathbb{R}^d} \langle x \rangle^N \sum_{0 < |\beta| < M} \left| \frac{\partial^{\beta} f}{\partial x^{\beta}}(x) \right|.$$

We have that $f \in \mathscr{S}$ if and only if $f \in C^{\infty}$ and for all $M, N \in \mathbb{N}, ||f||_{M,N} < \infty$. A neighborhood base for the topology at g would be

$$V(g, M, N, \epsilon) = \{ f \in \mathcal{S} : ||f - g||_{M,N} < \epsilon \}.$$

Note that if ρ_n is a metric,

$$\sum_{n=1}^{\infty} 2^{-n} \left(\frac{\rho_n}{1 + \rho_n} \right)$$

is also a metric, but it wouldn't preserve the vector space condition. Next time, we will prove the following theorem:

Theorem 5

 $\wedge: \mathscr{S} \to \mathscr{S}$ is a linear, bijective homeomorphism.

§5 September 10th, 2020

§5.1 Schwartz Space, continued

Last time, we introduced the Schwartz space,

$$\mathscr{S} = \mathscr{S}(\mathbb{R}^d) = \{ f \in C^{\infty} : \forall M, N || f ||_{M,N} < \infty \},$$

$$||f||_{M,N} = \sup_{x} \{ \langle x \rangle^{M} \sum_{|\alpha|=0}^{N} \left| \frac{\partial^{\alpha} f}{\partial x^{\alpha}} \right| \}.$$

An equivalent formulation is $x^{\beta}\partial^{\alpha}f$ is bounded for all α, β .

Theorem 6

The fourier transform, $\wedge: \mathscr{S} \to \mathscr{S}$ is a linear, bijective homeomorphism.

Proof. Note that if $f \in \mathcal{S}$, then $\widehat{f} \in C^{\infty}$. This is clear since

$$\partial_{\xi}^{\alpha} \int f(x)e^{-ix\cdot\xi}dx = \int f(x)\partial_{xi}^{\alpha}(e^{-ix\cdot\xi})dx.$$

Hence $f \cdot \langle x \rangle^N$ is in L^1 for all N.

Note the following identities:

$$(\partial_x^{\alpha} f)^{\wedge} = (i\xi)^{\alpha} \widehat{f}(\xi), (x^{\beta} f)^{\wedge} = (i\partial_x i)^{\beta} \widehat{f}(\xi),$$

which can be verified from repeated integration by parts.

We claim that $\xi^{\beta} \partial_{\xi}^{\alpha} \widehat{f}$ is bounded for all α, β . Moreover, there exists M, N such that

$$\sup_{xi} |\xi^{\beta} \partial_{\xi}^{\alpha \widehat{f}(\xi)}| \le C_{\alpha,\beta} ||f||_{M,N}.$$

Note that

$$|\xi^{\beta} \partial_{\xi}^{\alpha \widehat{f}(\xi)}| = |(\partial_{x}^{\beta} x^{\alpha} f)^{\wedge}(\xi)|,$$

so

$$\sup_{xi} |\xi^{\beta} \partial_{\xi}^{\alpha \widehat{f}(\xi)}| \le \|(\partial_x^{\beta} x^{\alpha} f)^{\wedge}(\xi)\|_{L^1} \le C_d \sup_{x} |\langle x \rangle^{d+1} \partial_x^{\beta}(x^{\alpha} f)|.$$

By the Leibniz rule, we can commute ∂_x^{β} , which gives the result.

Hence, we have proved that $\widehat{\mathscr{S}} \subset \mathscr{S}$, and $\wedge : \mathscr{S} \to \mathscr{S}$ is continuous. and the same holds for $f \mapsto \check{f}$, so $f \in \mathscr{S} \Rightarrow f \in L^1$ and $\widehat{f} \in L^1$, so \wedge is 1-1 on \S and \vee is onto, so we get that \wedge is onto.

§5.2 Tempered Distributions

We will consider the dual of the Schwartz space,

$$\mathscr{S}' = \{ \varphi : \mathscr{S} \to \mathbb{C}, \text{ linear and continuous} \}.$$

Recall, continuity by definition is given by the existence of $M, N, C < \infty$ so that for all $f \in \mathcal{S}$, $|\varphi(f)| \leq C||f||_{M,N}$.

Example 5.1 (Dirac Mass)

We can take $\varphi(f) = f(0)$, the dirac mass. We can also take $\varphi(f) = \partial^{\alpha} f(y_0)$. Let μ be a complex Radon measure, $h \in L^1_{loc}$, $\int_{|x| < R} |h| dx \le C_h \langle R \rangle^{A_h}$. We can define

$$\varphi(f) = \int \partial^{\alpha} f(x) \cdot h(x) d\mu(x) \in \mathbb{C}.$$

Theorem 7

Every $\varphi \in \mathscr{S}'$ is a finite linear combination of $f \mapsto \int \partial^{\alpha} f \cdot h d\mu$, with h, μ, α as before.

The proof is left as an exercise. The key ingredient is the Riesz Representation theorem and the Hahn-Banach theorem.

 \mathscr{S}' is given a weak topology: a neighborhood hood base of $\varphi \in \mathscr{S}'$ is given by choosing J, a finite index set, $\epsilon > 0$ and $f_i \in \mathcal{S}(j \in J)$. Then

$$V = \{ \psi \in \mathcal{S}' : |\psi(f_j) - \varphi(f_j)| < \epsilon \ \forall j \in J \}.$$

Definition 5.2. For $\varphi \in \mathscr{S}'$, $\widehat{\varphi}$ is a map $f \in \mathscr{S} \mapsto \varphi(\widehat{f})$. Then $\widehat{\varphi} : \mathscr{S} \mapsto \mathbb{C}$ is linear. Similarly, we can define $\check{\varphi}: \mathscr{S} \to \mathbb{C}$, linear.

We can verify that $\widehat{\varphi} \in \mathscr{S}'$. Note that

$$|\widehat{\varphi}(f)| = |\varphi(\widehat{f})| \le C_{\varphi} ||\widehat{f}||_{M,N} \le C' ||f||_{M',N'}.$$

Theorem 8

 $\wedge: \mathscr{S}' \to \mathscr{S}'$ is a bijective homeomorphism.

Proof. We first show that $\varphi \mapsto \widehat{\varphi}$ is continuous at ψ . Given V, a neighborhood of ψ : J finite, $\epsilon > 0$, $f_j : j \in J$, we need to control $|\widehat{\varphi}(f_j) - \widehat{\psi}(f_j)| < \epsilon$ for every $j \in J$. The neighborhood $W = \{ \varphi : |\varphi(\widehat{f}_j) - \psi(\widehat{f}_j)| < \epsilon \forall j \in J \}$ gives the desired bound. Now we claim for all $\varphi \in \mathscr{S}'$, $(\widehat{\varphi})^{\vee} = (2\pi)^d \varphi$. This comes from

$$(\widehat{\varphi})^{\vee}(f) = \widehat{\varphi}(\check{f}) = \varphi((\check{f})^{\wedge}) = \varphi((2\pi)^d f).$$

Hence \wedge is 1-1 and onto, so we conclude that it is a bijective homeomorphism.

We can define a partial derivative of a distribution, $\partial^{\alpha}\varphi$, with $\partial^{\alpha}: \mathscr{S}' \to \mathscr{S}'$ continuous, linear. This is a bit shocking: Take $\varphi = h \in L^1_{loc}$ with $\int_{|x| \leq R} |h| dx \leq C_h R^{A_h}$. This defines a distribution $f \mapsto \int fh = \varphi(f)$. That means, we have a way of essentially differentiating anything.

Note that we have a natural map $i: \mathscr{S} \to \mathscr{S}'$ injective, where $i(g)(f) = \int_{\mathbb{R}^d} fg$. Then, we take $g \mapsto i(g)$. Note that i is a continuous map.

Given some linear operator $T: \mathscr{S} \to \mathscr{S}$, we want to associate an extension \tilde{T} : T(i(q)) = i(T(q)) for all $q \in \mathscr{S}$.

Define $T': \mathscr{S}' \to \mathscr{S}'$, where $T'(\varphi)(f) = \varphi(T(f))$. It's easy to check that $T' \in \operatorname{End}(\mathscr{S}')$, but there are some bad examples.

Example 5.3

If we take $T(f) = \frac{df}{dx}$, $\int f \cdot g' = -\int f' \cdot g$, then

$$T(i(g)) = -i(T(g)).$$

Suppose we have some $T \in \text{End}(\mathscr{S})$ and a transpose $A \in \text{End}(\mathscr{S})$ in the sense that

$$\int T(f)g = \int fA(g) \forall f, g \in \mathscr{S}.$$

For example, $T = \frac{d}{dx}$, $A = -\frac{d}{dx}$. With $T, A \in \text{End}(\mathscr{S})$, we can define $\tilde{T}(\varphi)(f) = \varphi(A'(f))$, which defines our extension.

Proposition 5.4

 $i(\mathscr{S})$ is dense in \mathscr{S}' .

Definition 5.5 (Convolution for Distributions). If $f \in \mathcal{S}$ and $\varphi \in \mathcal{S}'$, then

$$\varphi * f(x) = \varphi(f_x), f_x(y) = f(x - y).$$

One can show that $\varphi * f \in C^{\infty}$ if $f \in \mathscr{S}$.

Proposition 5.6

Let $(\varphi_n) \in \mathscr{S}'$. If $\varphi_n \to \varphi$ in \mathscr{S}' , then $\varphi_n f \to \varphi(f) \forall f \in \mathscr{S}$.

Proposition 5.7

Let $(\varphi_n) \in \mathscr{S}'$. If $\varphi_n \to 0$ in \mathscr{S}' . Then there exists $M, N < \infty$ such that for all n and for all $f \in \mathscr{S}$,

$$|\varphi_n(f)| \leq C_n ||f||_{M,N},$$

and $C_n \to 0$ as $n \to \infty$.

The proof uses the Baire Category Theorem. Recall $\mathscr S$ is a complete metrizable space, where we define a norm from

$$\sum_{M,N} 2^{-M-N} \frac{\|f\|_{M,N}}{1 + \|f\|_{M,N}}.$$

For $d \geq 1$, define $g(x) = e^{-i\lambda|x|^2/2}$, $\lambda \in \mathbb{R}$. Note that $g \in L^{\infty}$, $|g| \equiv 1$. We define $\widehat{g}(\xi) = (2\pi)^{d/2} (i\lambda)^{-d/2} e^{-i|\xi|^2/(2\lambda)}$, for $\lambda \neq 0$. If we take $g \mapsto i(g) \in \mathscr{S}'$, note

We define $\widehat{g}(\xi) = (2\pi)^{d/2} (i\lambda)^{-d/2} e^{-i|\xi|^2/(2\lambda)}$, for $\lambda \neq 0$. If we take $g \mapsto i(g) \in \mathscr{S}'$, note that $(i(g))^{\wedge} = i$, so we are in fact doing a normal fourier transform.

Define $g_z(x) = e^{-z\lambda|x|^2/2}$, for $z \in \mathbb{C}$, $Re(z) \geq 0$. We claim that as $z \to i\lambda$, $g_z \to g$ in the topology of \mathscr{S}' . Furthermore,

$$\int fg_z \to \int fg$$

for all $f \in \mathcal{S}$ by the dominated convergence theorem, with dominator |f|, since $|g_z| \leq 1$, $|g| \equiv 1$.

We know that $\widehat{g}_z \to \widehat{g}$ in \mathscr{S}' as $z \to i\lambda$. Note that

$$\widehat{g}_z(\xi) = (2\pi)^{d/2} z^{-d/2} e^{-|\xi|^2/(2z)}.$$

If Re(z) > 0, then $g_z \in \mathscr{S}$.

Then as $z \to i\lambda$,

$$(2\pi)^{d/2}z^{-d/2}e^{-|\xi|^2/(2z)} \to (2\pi)^{d/2}(i\lambda)^{-d/2}e^{-|\xi|^2/(2i\lambda)}.$$

So $\widehat{g}_z \to \widehat{g}$ in \mathscr{S}' , so we have the result.

§6 September 15th, 2020

§6.1 Poisson Summation Formula

Define $\mathscr{F}(f)(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix\cdot\xi}dx$. We have that $\|\mathscr{F}(f)\|_{L^2} = \|f\|_{L^2}$ for all $f \in L^2 \cap L^1$.

Theorem 9

For all $f \in \mathcal{S}$,

$$\sum_{n\in\mathbb{Z}^d}\mathscr{F}(f)(n)=\sum_{k\in\mathbb{Z}^d}f(k).$$

This has a nice interpretation: suppose we define $\delta_n(g) = g(n)$. We have $\delta_n \in \mathscr{S}'$, and

$$\mathscr{F}\left(\sum_{n\in\mathbb{Z}^d}\delta_n\right)=\sum_{k\in\mathbb{Z}^d}\delta_k.$$

Proof. Given $f \in \mathscr{S}$, set $g : \mathbb{R}^d/\mathbb{Z}^d \to \mathbb{C}$, defined by $g(x) = \sum_{n \in \mathbb{Z}^d} f(x+n)$. Note that g is periodic: $g(x+e_j) = g(x)$ for all $1 \le j \le d$.

$$g(x) = \sum_{k \in \mathbb{Z}^d} \left(\int g(y) e^{-2\pi i k \cdot y} dy \right) e^{ik \cdot x}.$$

Note that

$$\sum_{n} f(n) = g(0) = \sum_{k} \int e^{-2\pi i k \cdot y} \sum_{n} f(y+n) dy$$

$$= \sum_{k} \int_{[0,1]^{d}} \sum_{n} e^{-2\pi i k \cdot (y+n)} f(y+n) = \sum_{k} \int_{R^{d}} f(u) e^{-2\pi i k \cdot u} du = \sum_{k} \widehat{f}(k).$$

Because f is a Schwartz function, all these series converge and we can easily swap sums and integrals.

Example 6.1

There are lots of functions that are their own Fourier transforms. Take $x^n e^{-x^2/2}$, for $n \in \mathbb{Z}_{\geq 0}$. Apply Gram-Schmidt in the order of $\mathbb{Z}_{\geq 0}$. We get an orthonormal basis $P_n(x)e^{-x^2/2}$, where $P_n = c_n x^n + O(|x|^{n-2})$.

If $n \equiv 0 \pmod{4}$,

$$(P_n e^{-x^2/2})^{\wedge} = (2\pi)^{1/2} P_n e^{-x^2/2}.$$

§6.2 Size of Fourier Coefficients

Remark: If $f \in C_c^k(\mathbb{R}^d)$ or $C^k(\mathbb{T}^d)$, then

$$\widehat{f}(\xi) = O(\langle \xi \rangle^{-k}).$$

This comes from $\left(\frac{\partial f}{\partial x_j}\right)\widehat{\xi} = i\xi_j\widehat{f}(\xi)$.

We can have a stronger bound,

$$\langle \xi \rangle^k \widehat{f} \in L^2, \ell^2.$$

The proof is the same since $\xi^{\alpha} \widehat{f} \in L^2/\ell^2$ whenever $0 \le |\alpha| \le k$. Recall the class

$$\operatorname{Lip} = \left\{ f : \mathbb{R}^d \to \mathbb{C} : \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} < \infty \right\}.$$

Proposition 6.2

Assume $f \in \text{Lip}$ and has compact support. Then,

$$\widehat{f}(\xi) = O(\langle \xi \rangle^{-1}),$$

 $\langle \xi \rangle \widehat{f} \in L^2.$

Proof. We have $f \in C_0^0(\mathbb{R}^d) \cap \text{Lip.}$ Assuming $\xi \neq 0$,

$$\widehat{f}(\xi) = \int f(x)e^{-ix\cdot\xi}dx = \frac{1}{2}\int f(x)e^{-ix\cdot\xi}dx + \frac{1}{2}\int f(x+\frac{\pi}{\xi})e^{-i(x+\frac{\pi}{\xi})\xi}dx.$$

Since $e^{-i(\pi/\xi)\xi} = -1$, we have

$$\frac{1}{2} \int [f(x) - f(x + \pi/\xi)]e^{-ix\cdot\xi} dx.$$

Because f is Lipschitz, $f(x) - f(x + \pi/\xi) \in O(|\xi|^{-1})$, so it's clear the whole integral is bounded.

Definition 6.3 (Holder Class). Define $\Lambda_{\alpha}(0 < \alpha < 1)$, as $f : \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty$. Note that $\alpha > \beta \Rightarrow \Lambda_{\alpha} \subset \Lambda_{\beta}$. Furthermore Lip $\subset \Lambda_{\alpha}$.

We can state a similar proposition as above for Holder classes.

Example 6.4

Let $0 < \alpha < 1$,

$$f(x) = \sum_{n=0}^{\infty} 2^{-n\alpha} e^{i2^n x}.$$

The function $f \in \Lambda_{\alpha}$, but not Λ_{β} for any $\beta > \alpha$, since $\widehat{f}(2^n) = (2^n)^{-\alpha}$.

Let $f \in \text{Lip} \cap C_0^0$. Claim $f' \in L^{\infty}$ in the \mathscr{S}' sense. In other words, there exists $g \in L^{\infty}$ such that $\int f \varphi' = - \int g \varphi$ for all $\varphi \in \mathscr{S}$.

The claim immediately implies that $\xi \hat{f}(\xi) \in L^2$, since $\hat{g} \in L^2 = i\xi \hat{f}$ and has compact support.

$$\lim_{t \to 0} \int f(x) \frac{\varphi(x+t) - \varphi(x)}{t} dx = \lim_{t \to 0} \int \frac{f(x) - f(x-t)}{t} \varphi(x) dx$$

Let $f_t = frac f(x) - f(x-t)t$. Note that $f_t \in L^{\infty}(\mathbb{R})$ and $L^{\infty} = (L^1)^*$, so by Alouglu's theorem, there exists a sequence $t_{\nu} \to 0$ and $g \in (L^1)^8$ with $f_t \to -g$ in the weak star topology.

Therefore, $\int f_{t_{\nu}}\varphi \to -\int g\varphi$ as $\nu \to \infty$. Thus, $\int f\varphi' = -\int g\varphi$.

Example 6.5

Take

$$f(x) = \sum_{n=0}^{\infty} 2^{-n\alpha} e^{i2^n x}$$

with $\alpha = 1$. f is not Lipschitz, since

$$\sum_{\xi=2^n} |\xi| |\widehat{f}(\xi)| = \sum_n 1 = \infty.$$

Remark: For $\alpha < 1$, f is nowhere differentiable.

Example 6.6

Take $f \in BV(\mathbb{R}^1)$ with compact support, the class with bounded variation. Then $|\hat{f}(\xi)| \leq \pi V(f) |\xi|^{-1}$.

Lemma 6.7 (Riemann-Lebesgue Lemma)

If $f \in L^1(\mathbb{R}^d)$ or (\mathbb{T}^d) (then $\widehat{f} \in C^0$ bounded), then $|\widehat{f}(\xi)| \to 0$ as $|\xi| \to \infty$.

Proof. Note that

$$\widehat{f}(\xi) = \frac{1}{2} \int_{\mathbb{R}^d} (f(x) - f(x + \frac{\pi \xi}{|\xi|^2})) e^{-ix \cdot \xi} dx$$

Then

$$|\widehat{f}(\xi)| \le \frac{1}{2} ||f(x) - f(x + \frac{\pi \xi}{|\xi|^2})||_{L^1} \to 0.$$

How fast do they go to zero? Is there a quantitative bound? (Nope) How do we characterize \widehat{L}^1 ? Is $C_{\to 0}^0 = (L^1)^{\wedge}$? (Nope).

Proposition 6.8

The map $\wedge: L^1(\mathbb{R}^d) \to C^0_{\to 0}(\mathbb{R}^d)$ is not onto. Equivalently, $\vee: C^0_{\to 0}(\mathbb{R}^d) \not\to L^1$.

Proof. $\wedge: L^1 \to C^0_{\to 0}$ is linear, bounded, and an injective mapping between Banach spaces. We can apply the Open Mapping Theorem: if the map was onto, there would exist $A < \infty$ such that $||f||_{L^1} \le A||\widehat{f}||_{C^0}$.

We claim that $\frac{\|\widehat{f}\|_{C_0}}{\|f\|_{L^1}}$ can be arbitrarily small. Define $f_t(x) = e^{-(1+it)|x|^2/2}$ for $t \in \mathbb{R}$ going to ∞ .

We know that

$$\widehat{f}_t(\xi) = (2\pi)^{d/2} (1+it)^{-d/2} e^{-(1-it)|\xi|^2/(2(1+t^2))}.$$

Hence,

$$|\widehat{f}_t| = (2\pi)^{d/2} (1+t^2)^{-d/4} e^{-|\xi|^2/(2(1+t^2))} \le (2\pi)^{d/2} (1+t^2)(-d/4) \to 0.$$

On the other hand $||f_t||_{L^1}$ is independent of t.

Theorem 10

Let $w: \mathbb{R}^d \to (0, \infty)$ and $w(\xi) \to 0$ as $|\xi| \to \infty$. There exists $f \in L^1$ with $|\widehat{f}(\xi)| \ge w(\xi) \forall \xi.$

Proof. We have a key lemma: Let $w: \mathbb{R}^1 \to (0, \infty)$ continuous, even, piecewise, $C^2(\mathbb{R} \setminus \{0\})$, convex on $(0, \infty)$ with compact support. Then, $\widehat{w} \in L^1$ and $\widehat{w} \geq 0$, hence, $\|\widehat{w}\|_{L^1} = \int \widehat{w} = (2\pi)^d w(0)$.

§7 September 17th, 2020

§7.1 Size of Fourier Coefficients, continued

Theorem 11

Let $w: \mathbb{R}^d \to (0, \infty)$ and $w(\xi) \to 0$ as $|\xi| \to \infty$. There exists $f \in L^1$ with

$$|\widehat{f}(\xi)| \ge w(\xi) \forall \xi.$$

Proof. We have a key lemma:

Lemma 7.1

Let $w: \mathbb{R}^1 \to (0, \infty)$ continuous, even, piecewise $C^2(\mathbb{R} \setminus \{0\})$, convex on $(0, \infty)$ with compact support and nondecreasing. Then, $\widehat{w} \in L^1$ and $\widehat{w} \geq 0$, hence,

$$\|\widehat{w}\|_{L^1} = \int \widehat{w} = (2\pi)^d w(0).$$

Proof. Note that

$$\widehat{w}(\xi) = \int_{\mathbb{R}} w(x)e^{-ix\cdot\xi}dx = \int_{\mathbb{R}} w(x)\cos(x\xi)dx.$$

Furthermore, note that $|x| \cdot |w'(x)|$ is a bounded function (as $x \to 0$). It follows from Jensen's inequality.

$$\widehat{w}(\xi) = 2 \int_0^\infty w(x) \cos(x\xi)$$
$$= 2\xi^{-2} \int_0^\infty w''(x) (1 - \cos(x\xi)) dx \ge 0.$$

It suffices to show the equality $\int_0^\infty w(x)\cos(x\xi) = \xi^{-2}\int_0^\infty w''(x)(1-\cos(x\xi))$. We integrate by parts twice:

$$\widehat{w}(\xi) = 2 \int_0^\infty w'(x)\xi^{-1} \sin(x\xi) dx = 2 \int_0^\infty w''(x)\xi^{-2} (1 - \cos(x\xi)) dx.$$

We might have issues at 0, but we can take a limit for integrating from ϵ to ∞ with boundary terms $w''(\epsilon)(1-\cos(\epsilon\xi)) \in O(\epsilon^2)$. Hence, $\widehat{w} \geq 0$.

Note that $\widehat{w} \in L^1$ and for $|\xi| \geq 1$,

$$|\widehat{w}(\xi)| \leq 2\xi^{-1} \int_0^\infty |w''(x)| dx \cdot 2$$

. Assume $|w'(0)| < \infty$, where the derivative is the right-hand derivative at 0. Then

$$\int_0^\infty w''(x)dx = -w'(0)$$

so it follows that $\widehat{w} \in L^1$.

Finally,

$$w(0) = (2\pi)^{-1}(\widehat{w})^{\vee}(0) = (2\pi)^{-1} \int \widehat{w}(\xi) d\xi = (2\pi)^{-1} \|\widehat{w}\|_{L^{1}},$$

which gives the desired bound.

Let $g: \mathbb{R} \to [0, \infty]$ continuous, with $g(\xi) \to 0$ as $\xi \to \infty$.

Lemma 7.2

There exists $w : \mathbb{R} \to (0, \infty)$ so that $w \ge g$ and w is even, convex on $(0, \infty)$, $w(\xi) \to 0$ as $|\xi| \to \infty$, and w is piecewise C^2 , where we may have infinity many breaks.

To prove the theorem, it suffices to find a function $f \in L^1$ such that $\widehat{f}(\xi) \geq w(\xi)$ for all ξ . WLOG, g is even(replace $g(\xi)+g(-\xi)$), nonincreasing(we can replace $\widetilde{g}(x)=\sup_{y\geq x}g(y)$ for $x\geq 0$). Note that $\check{w}(\xi)=\widehat{w}(-\xi)$ so define $f=\widehat{w}$. $\widehat{f}=(2\pi)w\geq 2\pi g$.

To treat w, we approximate it with functions of compact support. Let t > 0 and define $w_t = \max(w - t, 0)$. We conclude that $\widehat{w_t} \in L^1$ and $\|\widehat{w_t}\|_{L^1} = (2\pi)w_t(0)$. As $t \to 0^+$, $w_t \to w$ in \mathscr{S}' so $\widehat{w_t} \to \widehat{w}$ in \mathscr{S}' . We have that \widehat{w} is a complex radon measure.

Fact 7.3. If μ is a complex Radon measure and if $\mu|_{\mathbb{R}\setminus 0}$ is absolutely continuous, then $\mu = c\delta_0 + h$ for $h \in L^1$.

We know that $w(\xi) \to 0$ as $|\xi| \to \infty$ and $\widehat{\mu}(\xi) = c + \widehat{h}(\xi)$ so c = 0 and $\widehat{w} \in L^1$ as desired.

§7.2 Comparing Size of Functions to Size of Fourier Coefficients

We have that $\|\widehat{f}\|_{L^2} = (2\pi)^{-d/2} \|f\|_{L^2}$ and $\|\widehat{f}\|_{C^0} \leq \|f\|_{L^1}$.

Theorem 12 (Hausdorff-Young)

Let $p \in [1,2]$. The n $f \in L^p(\mathbb{R}^d)$ implies that $\widehat{f} \in L^1$ for $q = p' = \frac{p}{p-1}$, and

$$\|\widehat{f}\|_q \le C(p,d)\|f\|_p.$$

For \mathbb{T}^d ,

$$\|\widehat{f}\|_{\ell^q} \le C(p)^d \|f\|_{L^p(\mathbb{T}^d)}.$$

Note that for \mathbb{R}^d , $\wedge: L^p \to L^r$ is bounded.

Proof. We must have that r = p'. Fix a function $0 \neq f \in \mathcal{S}$. Define $f_t(x) = f(tx)$ for $t \in \mathbb{R}^+$.

$$\widehat{f}_t(\xi) = t^{-d}\widehat{f}(t^{-1}\xi).$$

Note that

$$||f_t||_p^p = \int |f(tx)|^p dx = t^{-d} \int |f(y)|^p dy = t^{-d} ||f||_p^p.$$

Then $\|\widehat{f}_t\|_r = t^{-d}t^{d/r}\|\widehat{f}\|_r$, so

$$\frac{\|\widehat{f}_t\|_r}{\|f_t\|_p} = t^{\gamma} \frac{\|\widehat{f}\|_r}{\|f\|_p}$$

where $\gamma = -d + d/r + d/p$. We must have that $\gamma = 0$ for the ratio to be bounded, which

gives $1 = \frac{1}{p} + \frac{1}{r}$. For \mathbb{T}^d , we can only take $t \to +\infty$ so $\gamma \le 0$, and we can only conclude that $r \ge p'$. But $r \ge p'$ implies that $\ell^{p'} \subset \ell^r$, so $\wedge : L^p \to \ell^{p'} \subset \ell^r$.

Theorem 13 (Riesz-Thoren)

Let $(X, \mu), (Y, \nu)$ be σ -finite measure spaces. Suppose we have exponents $p_0, p_1, q_0, q_1 \in$ $[1,\infty]$. Let S(X) be the set of simple functions from $X\to\mathbb{C}$. Assume $T:S(X)\to$ $(L^1 + L^{\infty})(Y)$ is linear and there exists $A_0, A_1 < \infty$ so that for all $f \in S(X)$,

$$||Tf||_{L^{q_j}} \le A_j ||f||_{L^p_i}.$$

§8 September 22nd, 2020

§8.1 Comparing Size of Functions to Size of Fourier Coefficients, continued

Recall

Theorem 14 (Riesz-Thoren)

Let (X, μ) , (Y, ν) be σ -finite measure spaces. Suppose we have exponents $p_0, p_1, q_0, q_1 \in [1, \infty]$. Let S(X) be the set of simple functions from $X \to \mathbb{C}$. Assume $T: S(X) \to (L^1 + L^\infty)(Y)$ is linear and there exists $A_0, A_1 < \infty$ so that for all $f \in S(X)$,

$$||Tf||_{L^{q_j}} \leq A_j ||f||_{L^p_i}.$$

We will prove this later, with an elegant application of complex analysis.

Remark: (\mathbb{R}^d) Is it true that $\widehat{L^p} \subset L^q$ (2 < p, q = p')? No. We sketch the proof. Suppose it was true. For $f \in L^p$ with $||f||_p \leq 1$, define $\ell^f \in (L^{q'})^*$ by

$$\ell_f(g) = \int g\widehat{f}.$$

This defines a bounded linear functional as desired. We claim that $\{\ell_f\}$ is pointwise bounded. Then, by the Uniform Boundedness Principle, it follows that ℓ_f are uniformly bounded. We know that

$$\|\ell_f\|_{(L^{q'})^*} = \|\widehat{f}\|_{L^{(q')'}} = \|\widehat{f}\|_{L^p}$$

by the Reverse Holder's Inequality. This would give the desired inequality.

Finally,

$$\ell_f(g) = \int g\widehat{f} = \int \widehat{g}f,$$

and $\widehat{g} \in L^q$. Then

$$|\ell_f(g)| = |\int \widehat{g}f| \le \|\widehat{g}\|_q \|f\|_p \le \|\widehat{g}\|_{L^q}.$$

§8.2 Rademacher Functions

Theorem 15 (Kahane)

If $a \in \ell^2$, there exists $f \in L^{\infty}$ such that for all n, $|\widehat{f}(n)| \geq |a_n|$.

We prove a weaker result.

Theorem 16

For \mathbb{T}^d , $d \geq 1$. For any $a \in \ell^2$, there exists $f \in \bigcap_{p < \infty} L^p$ such that for all $n \in \mathbb{N}$,

$$|\widehat{f}(n)| = |a_n|$$

We will use **Rademacher Functions**: $r_n : [0,1] \to \{-1,1\}$, with $n \ge 0$. We let $r_0(x) = 1$, for r_n , we split [0,1] into 2^n intervals and alternate between 1 and -1.Note that $||r_n||_{L^2([0,1])} = 1$. If n > m, then

$$\int r_n r_m dx = 0.$$

Lemma 8.1

For $a_j \in \{1, 2, 3, \dots\},\$

$$\int_0^1 \prod_{j=1}^N r_{n_j}^{a_j} dx = 0,$$

unless every a_i is even.

We can now form a Rademacher Series:

$$f(x) = \sum_{n=0}^{\infty} c_n r_n(x).$$

If $c \in \ell^2$, then $f \in L^2$ and $||c||_{\ell^2} = ||f||_{L^2}$.

Theorem 17 (Khinchine's Inequality)

If $c \in \ell^2$ then $f \in \bigcap_{p < \infty} L^p$. For all $p, q \in (0, \infty)$, there exists $A_{p,q} < \infty$ such that for all c, $||f||_{L^q} \le A||f||_{L^p}$.

Proof. WLOG, p = 2q.

$$\int |f|^{2q} = \int f^q \overline{f}^q = \int \sum_{n_1,\dots,n_q} \prod_{j=1}^q c_{n_j} r_{n_j} \sum_{m_1,\dots,m_q} \prod_{i=1}^q \overline{c_{m_i}} r_{m_i}.$$

which is

$$\sum \sum \int_{0}^{1} (\prod_{i=1}^{q} r_{n_{i}}) (\prod_{i=1}^{q} r_{m_{i}}) dx.$$

If the n's and m's are pairwise distinct, we bounded it above by $q! ||c||_{\ell^2}^{2q} \leq C^q q^q ||c||_{\ell^2}^{2q}$ in general.

§9 September 24th, 2020

§9.1 Rademacher Functions, continued

We consider $\Omega = [0, 1]$ with Lebesgue measure, a probability space. Then $\{r_n\}$ are independent random variables: for $N, a_j = \pm 1$. Consider $B = \{x \in [0, 1] : r_j(x) = a_j, j \in [1, N] \cap \mathbb{Z}, r_{N+1}(x) = 1\}$. Then,

$$\frac{\mu(B)}{\mu(\{x:r_j(x)=a_j\})} = \frac{1}{2}.$$

We were proving the following theorem:

Theorem 18

For \mathbb{T}^d , $d \geq 1$. For any $a \in \ell^2$, there exists $f \in \bigcap_{p < \infty} L^p$ such that for all $n \in \mathbb{N}$,

$$|\widehat{f}(n)| = |a_n|.$$

Proof. We have Khinchine's Inequality: For all $p < \infty$, there exists $C_p < \infty$ such that

$$\left\| \sum_{n=1}^{\infty} c_n r_n \right\|_{L^p} \le C_p \|c\|_{\ell^2}.$$

We are given $a \in \ell^2$ and we want $f \in L^p(\mathbb{T}^d) : |\widehat{f}(n)| = |a_n|$ for all n. Define

$$f_{\omega}(x) = \sum_{n \in \mathbb{Z}^d} r_n(\omega) a_n e^{in \cdot x}, \omega \in [0, 1] = \Omega.$$

We know that $f_{\omega} \in L^2(\mathbb{T}^d)$. Consider

$$\int_{\Omega} \|f_{\omega}\|_{L^{p}(\mathbb{T}^{d})}^{p} d\omega = \int_{\mathbb{T}^{d}} \int_{\Omega} \left| \sum_{n} r_{n}(\omega) a_{n} e^{in \cdot x} \right|^{p} d\omega dx$$

$$\leq \int_{T^{d}} C_{p}^{p} \|a\|_{\ell^{2}}^{p} dx$$

$$= (2\pi)^{d} C_{p}^{p} \|a\|_{\ell^{2}}.$$

Hence, the average $\int_{\Omega} \|f_{\omega}\|_{L^{p}}^{p} d\omega < \infty$, so for almost every $\omega \in \Omega$, $f_{\omega} \in L^{p}$.

Hence, for any p,

$$|\widehat{f}_{\omega}(n)| = |r_n(\omega)a_n| = |a_n|.$$

Finally, we can take $p=2,4,6,\ldots$, so that the set of all bad ω is a countable union of Lebesgue null sets.

For almost every
$$\omega$$
, $f_{\omega} \in \bigcap_{n < \infty} L^p$ and $|\widehat{f}_{\omega}(n)| = |a_n|$ for all n .

§9.2 Convergence of Fourier Series for 1-dimensional Tori

Recall

$$\widehat{f}(n) = (2\pi)^{-1} \int_{\pi}^{\pi} f(x)e^{-in\cdot x} dx,$$

where we identify $\pi^1 = [-\pi, pi]$.

The partial sums

$$S_N f(x) = \sum_{n=-N}^{N} \widehat{f}(n)e^{inx} = f * D_n(x) = (2\pi)^{-1} \int f(x-y)D_n(y)dy,$$

and recall that

$$D_N(x) = \sum_{-N}^{N} e^{inx} = \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

if $x \neq 0$, or 2N + 1 if x = 0. Note that $D_N(x) \in C^{\infty}$, so there are no issues with singularities at 0.

Note that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=-N}^{N} e^{inx} dx = 1.$$

However, $||D_N||_{L^1} = \Omega(\log(N))$, so we don't have an approximate identity sequence.

Proof. Let $M = N + \frac{1}{2}$.

$$\int_{2^{k2\pi/M}}^{2^{(k+1)2\pi/M}} \frac{|\sin(Mx)|}{|\sin(x/2)|} dx \ge \int_{2^{k2\pi/M}}^{2^{(k+1)2\pi/M}} \frac{2|\sin(Mx)|}{|x|} dx$$

$$\ge 2^{-k} \frac{M}{2\pi} \int_{2^{k2\pi/M}}^{2^{(k+1)2\pi/M}} |\sin(Mx)| dx$$

$$= 2^{-k} \frac{1}{2\pi} \int_{2^{k2\pi}}^{2^{(k+1)2\pi}} |\sin(y)| dy$$

$$= C_0 2^{-k} 2^k = C_0.$$

So $||D_n|| = \Omega(\log N)$.

Theorem 19

There exists a function $f \in C^0(\Pi^1)$ such that $S_N f(0) \not\to f(0)$ (and $\{S_N f(0)\}$ unbounded).

Proof. Suppose for all $f \in C^0$, $\{S_N f(0)\}$ is bounded.

$$\ell_N(g) = S_N g(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(-y) D_N(y) dy,$$

so $\ell_N \in (C_0(\mathbb{T}^1))^*$. By the Uniform Boundedness Principle, ℓ_N is uniformly bounded:

$$\|\ell_N\|_{(C^0)^*} = \frac{1}{2\pi} \|D_N\|_1 < \infty.$$

Theorem 20

Let $f \in L^1(\mathbb{T}), x_0 \in \mathbb{T}, a \in \mathbb{C}$. If

$$\int_{\mathbb{T}} |f(x) - a| |x - x_0|^{-1} dx < \infty,$$

then $S_N f(x_0) \to a$.

Proof. Let $g(x) = f(x - x_0)$ and reduce to the case where $x_0 = 0$. Similarly, g(x) = f(x) - a reduces to the case where a = 0.

So $\int |f(x)||x|^{-1} < \infty$, and we want $S_N f(0)$.

$$2\pi S_N f(0) = \int_{-\pi}^{\pi} \frac{f(x)}{\sin(x/2)} \sin((N+1/2)x) dx].$$

So we have

$$I = \int_{-\pi}^{\pi} g(x)e^{iNx}dx \to 0,$$

by the Riemann-Lebesgue Lemma.

Corollary 9.1

If $\alpha > 0$, then $S_N f(x) \to f(x)$ for all x for all $f \in \Lambda_{\alpha}$.

Theorem 21

Let $\alpha \in (0,1)$. There exists $C_{\alpha} < \infty$ so that for every $f \in \Lambda_{\alpha}(\mathbb{T})$, and for all N,

$$||S_N f - f||_{C^0} \le C_{\alpha} N^{-\alpha} \log(N+2) ||f||_{\Lambda_{\alpha}}$$

Proof. We can reduce to $S_N f(0) - f(0)$, f(0) = 0.

 $||f||_{\Lambda_{\alpha}}$ has norms:

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}.$$

$$2\pi S_N f(0) = \int_{-\pi}^{\pi} f(x) \frac{\sin(Mx)}{\sin(x/2)}, M = N + 1/2$$

Then

$$\left| \int_{|x| \le \delta} f(x) D_N(x) \right| \le \int_{|x| \le \delta} |x|^{\alpha} ||f||_{\Lambda_{\alpha}} \frac{2}{|x|} dx = C_{\alpha} ||f||_{\Lambda_{\alpha}} \delta^{\alpha},$$

and

$$\begin{split} \int_{\delta}^{\pi} \frac{f(x)}{\sin(x/2)} e^{iMx} dx &= \int_{\delta}^{\pi} g(x) e^{iMx} dx \\ &= \frac{1}{2} \int_{\delta}^{\pi} g(x) e^{iMx} - \frac{1}{2} \int_{\delta+\pi/M}^{\pi+\pi/M} g\left(x - \frac{\pi}{M}\right) e^{iMx} dx \\ &= \frac{1}{2} \int_{\delta}^{\pi} [g(x) - g(x - \pi/M)] e^{iMx} dx \pm \frac{1}{2} \int_{\delta}^{\delta+\pi/N} g(x - \pi/M) e^{iMx} dx \\ &\pm \frac{1}{2} \int_{\pi}^{\pi+\pi/M} g(x - \pi/M) e^{iMx} \end{split}$$