May 2022: END SEMESTER ASSESSMENT (ESA) B TECH IV SEMESTER

UE20MA251 - Linear Algebra and Its Applications

Time: 3 Hrs	Answer All Questions	Max Marks: 100

	1 a	Determine the values of 'a' and 'b' for which the linear system $x + z = 4$, $2x + y + 3z = 5$ and $-3x - 3y + (a^2-5a)z = b-8$ has (a) no solution (b) a unique solution (c) infinitely many solutions.	7				
	b	Which elementary matrices E_{21} and E_{32} put A into upper triangular form $E_{32}E_{21}A=U$? Multiply by E_{32}^{-1} and E_{21}^{-1} to factor A into $LU=E_{21}^{-1}E_{32}^{-1}U$ given $A=\begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 5 \\ 0 & 4 & 0 \end{pmatrix}$.	6				
Use Gauss Jordan method to find the third column of B given A = $\begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}$ such that AB = I.							
2	For every c find Row reduced echelon form R and the special solutions to Ax=0, given $A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 1 & c & 2 & 2 \end{pmatrix}$						
	b)	Find a basis for the space spanned by the vectors $v_1 = \begin{pmatrix} 1 \\ 0 \\ -3 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -3 \end{pmatrix}$, $v_3 = \begin{pmatrix} -3 \\ -4 \\ 1 \\ 6 \end{pmatrix}$, $v_4 = \begin{pmatrix} 1 \\ -3 \\ -8 \\ 7 \end{pmatrix}$, $v_5 = \begin{pmatrix} 2 \\ 1 \\ -6 \\ 9 \end{pmatrix}$					
	c)	Which space do the basis vectors span? Given $A = \begin{pmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{pmatrix}$, find a non-zero vector in Null space of A. Determine if $u = (3, -1, 3)$ is in column space of A? Does U belong to N(A)? Give reason.	7				
3	a)	Find the projection p of w=(-1,1,4,3) onto the column space of V spanned by the vectors v_1 =(1,1,0,1), v_2 =(0,-1,1,1) . Which space does p belong to? Find a basis of the orthogonal complement V^{\perp} of V. Split the vector w=v+u such that v is in C(V) and u is a vector in N(V^{\intercal}).					
	b)	Let T be a linear mapping $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t)$. Write the matrix of transformation T and find the basis and dimension of Range of T and kernel of T.					

-	-									
	c)	Project the vector $b=($ is $p_1+p_2+p_3=b$? What and a_2 .	1,0,0) onto the vis the product of	ectors a ₁ =(-: the project	1,2,2), a ₂ = (2	2,2,-1) and a P ₁ P ₂ where	12=(2,-1,2). Ad P ₁ and P ₂ are	ld the projections p ₁ +p ₂ +p ₃ . Why the projection matrices on a ₁	7	
4	a)	Apply Gram – Schmidt process to produce an orthonormal basis for $a_1 = (2, 0, 1)$, $a_2 = (4, -1, 2)$. Factor A=QR where A=(a ₁ , a ₂ ,a ₃).							7	
	b)	The eigen vectors of a 3x3 matrix A corresponding to the eigen values -2. 3. 6 are (1, 0, -1), (1, -1, 1) and (1, 2, 1). Find the matrix A.								
	c)	Find all eigen values and eigen vectors of $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ and write two different diagonalising matrices S_1 and S_2 .								
5	a)	The sum of squares of Determine A, its mult	$(y^2 + 2(y + \frac{1}{2}z)^2 + \frac{1}{2}z^2$.	6						
	b)	The following table lis	sts the weights ar	nd heights o	f 5 boys:					
		Boy	#1	#2	#3	#4	#5		5	
		Weight(lbs)	120	125	125	135	145			
		Height(in)	61	60	64	68	72			
		Find the covariance m	natrix for the abo	ve data.						
	c)	Find SVD of the matri	$A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	1 0					9	

(0 1)