Trying 3106016892...Open

Welcome to STN International! Enter x:x LOGINID:ssspta1600exs

PASSWORD:

Ç

* * * * * * RECONNECTED TO STN INTERNATIONAL * * * * * SESSION RESUMED IN FILE 'STNGUIDE' AT 15:39:21 ON 27 APR 2000 FILE 'STNGUIDE' ENTERED AT 15:39:21 ON 27 APR 2000 COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE COST IN U.S. DOLLARS SINCE FILE

TOTAL ENTRY SESSION

FULL ESTIMATED COST

0.00 72.43

72.43

=> file embase, scisearch, caplus, medline, biosis

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION

0.00

FULL ESTIMATED COST

FILE 'EMBASE' ENTERED AT 15:39:42 ON 27 APR 2000 COPYRIGHT (C) 2000 Elsevier Science B.V. All rights reserved.

FILE 'SCISEARCH' ENTERED AT 15:39:42 ON 27 APR 2000 COPYRIGHT (C) 2000 Institute for Scientific Information (ISI) (R)

FILE 'CAPLUS' ENTERED AT 15:39:42 ON 27 APR 2000 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'MEDLINE' ENTERED AT 15:39:42 ON 27 APR 2000

FILE 'BIOSIS' ENTERED AT 15:39:42 ON 27 APR 2000 COPYRIGHT (C) 2000 BIOSIS(R)

=> s adenoviral vector

5905 ADENOVIRAL VECTOR

=> s deletion (s) E1b

384 DELETION (S) E1B

=> s p19

L22 6178 P19

=> s 55K

L23 966 55K

=> s pIX

L24 620 PIX

=> s TNF? (s) CD (s)

MISSING TERM AFTER CD (S

Operators must be followed by a search term, L-number, or query name. => s TNF? (s) CD L25 882 TNF? (S) CD => s L20 and L21 and L22 and L23 and L25 0 L20 AND L21 AND L22 AND L23 AND L25 L26 => s L20 and L21 and L22 0 L20 AND L21 AND L22 L27 => s L20 and L21 L28 21 L20 AND L21 => duplicate remove L28 DUPLICATE PREFERENCE IS 'EMBASE, SCISEARCH, CAPLUS, MEDLINE, BIOSIS' KEEP DUPLICATES FROM MORE THAN ONE FILE? Y/(N):n PROCESSING COMPLETED FOR L28 9 DUPLICATE REMOVE L28 (12 DUPLICATES REMOVED) => display total ibib abs L29 L29 ANSWER 1 OF 9 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V. DUPLICATE 1 ACCESSION NUMBER: 2000068982 EMBASE TITLE: Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. AUTHOR: Sauthoff H.; Heitner S.; Rom W.N.; Hay J.G. CORPORATE SOURCE: Dr. J.G. Hay, NYU School of Medicine, 550 First Avenue, York, NY 10016, United States. john.hay@med.nyu.edu SOURCE: Human Gene Therapy, (10 Feb 2000) 11/3 (379-388). Refs: 47 ISSN: 1043-0342 CODEN: HGTHE3 COUNTRY: United States DOCUMENT TYPE: Journal; Article FILE SEGMENT: 004 Microbiology 016 Cancer Human Genetics 022 Drug Literature Index 037 LANGUAGE: English SUMMARY LANGUAGE: English Replicating adenoviral vectors are a promising new modality for cancer treatment and clinical trials with such vectors are ongoing. Targeting these vectors to cancer cells has been the focus of research. However, even if perfect targeting were to be achieved, a vector still must effectively kill cancer cells and spread throughout the bulk of the tumor. The adenoviral E1b- 19kD protein is a potent inhibitor of apoptosis and may therefore compromise the therapeutic efficacy of an adenoviral vector. In this study we have investigated if an Elb-19kD gene deletion could improve the ability of a replicating adenoviral vector to spread through and kill cancer cells. In several lung cancer cell lines

an E1b-19kD-deleted virus (Ad337) induced substantially more

apoptosis than did a wild-type virus (Ad309), and tumor cell survival was

significantly reduced in three of four cell lines. In addition, the apoptotic effects of cisplatin or paclitaxel were augmented by Ad337, but inhibited by wild-type virus. The number of infectious virus particles in the supernatant of infected cells was increased with Ad337 compared with wild-type virus, indicating enhanced early viral release. Ad337, in contrast to Ad309, induced significantly larger plaques after infection

of

A549 cells. This well-described large plaque phenotype of an E1b -19kD mutant virus is likely the result of early viral release and enhanced cell-to-cell viral spread. Loss of E1b-19kD function caused only minor cell line-specific increase or decrease in viral yield. We conclude that deletion of the E1b-19kD gene may enhance the tumoricidal effects of a replicating adenoviral vector.

L29 ANSWER 2 OF 9 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1999:723195 CAPLUS

DOCUMENT NUMBER:

131:318578

TITLE:

Partially deleted adenoviral vectors

with therapeutic expression potential for transgenes where delected vector genes are introduced within

producer cell chromosome

INVENTOR(S):

Wadsworth, Samuel C.; Scaria, Abraham

PATENT ASSIGNEE(S):

Genzyme Corp., USA PCT Int. Appl., 50 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE _____ WO 9957296 A1 19991111 WO 1999-US9590 19990430

W: AU, CA, JP, US

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE

PRIORITY APPLN. INFO.:

US 1998-83841 19980501 VS 1999-118118 19990201

The invention is directed to novel partially deleted adenoviral vectors (DeAd) in which the majority of adenoviral early genes required for replication are deleted from the vector and placed within

the

chromosome of a producer cell line under conditional promoter control. Rephrased, the expression of genes encoding virion structural proteins is made conditional by replacement of the major late promoter with alternative promoters that can be controlled.. Moreover, the procedures described here is directed to DeAd vectors in which expression of genes encoding virion structural proteins in diminished by deletion the VA RNA genes from the vector. This system is applicable to human adenovirus 2, 5, 6, and 17. The partially deleted adenoviral (DeAd) vectors of the invention can accommodate inserts, such as transgenes, of up to 12-15 kb in size. The invention is further directed to DeAd vector producer cell lines that contain the adenoviral early genes necessary for replication under conditional promoter control that allow for large scale prodn. of vectors. This conditional promoter system includes control sequences

from

the dimerizer gene or tetracycline or ecdysone control systems. The invention is also directed to methods for the prodn. of DeAd vectors in such cell lines and to the use of such vectors to deliver transgenes to target cells. These transgenes include the CFTR and human .alpha.-galactosidase A and erythropoietin and factor VII and factor IX.

L29 ANSWER 3 OF 9 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1999:359656 CAPLUS

DOCUMENT NUMBER: 131:14848 TITLE: Adenovirus-helper virus vector system using Sp1 and MAZ transcription factor regulation INVENTOR (S): Parks, Christopher L.; Shenk, Thomas PATENT ASSIGNEE(S): Princeton University, USA SOURCE: PCT Int. Appl., 68 pp. CODEN: PIXXD2 DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: PATENT INFORMATION: PATENT NO. KIND DATE APPLICATION NO. DATE ----------WO 9927101 A1 19990603 WO 1998-US25361 19981125 W: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MW, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, UZ, VN, YU, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG AU 9915394 A1 19990615 AU 1999-15394 19981125 PRIORITY APPLN. INFO.: US 1997-66295 19971125 WO 1998-US25361 19981125 AB Claimed are adenoviral vectors prepd. by inserting exogenous nucleic acid between the terminal segments of the linear adenovirus genome, which include the viral origin of replication and packaging sequence genes. The vectors are based on adenovirus type 5, and are prepd. with a a helper adenovirus comprising a deletion of genes EIA and/or EIB. The helper virus contains a promoter with pinding sites for the MAZ and Spl transcription factors. Co-transfection with the adenoviral vector, the helper vector, and administration of the MAZ and SP1 transcription factors produces expression of the exogenous nucleic acid. L29 ANSWER 4 OF 9 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.DUPLICATE 2 ACCESSION NUMBER: 1999311904 EMBASE TITLE: p53 Selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. AUTHOR: Vollmer C.M.; Ribas A.; Butterfield L.H.; Dissette V.B.; Andrews K.J.; Eilber F.C.; Montejo L.D.; Chen A.Y.; Hu B.; Glaspy J.A.; McBride W.H.; Economou J.S. CORPORATE SOURCE: J.S. Economou, Division of Surgical Oncology, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1782, United States. jeconomo@surgery.medsch.ucla.edu SOURCE: Cancer Research (1 Sep 1999) 59/17 (4369-4374). Refs: 21 ISSN: 0008-5472 CODEN: CNREA8 COUNTRY: United States Journal; Article 016 Cancer 048 Gastroenterology LANGUAGE: English

DOCUMENT TYPE: FILE SEGMENT:

SUMMARY LANGUAGE: English

An E1B gene-attenuated adenovirus (dl1520) has been proposed to have a selective cytolytic activity in cancer cells with a mutation or deletion in the p53 tumor suppressor gene (p53-null), a defect present in almost half of human hepatocellular carcinomas (HCCs). In this study, the in vitro and in vivo antitumor activity of dl1520 was investigated focusing on two human HCC cell lines, a p53-wild type (p53-wt) cell line and a p53-null cell line. dl1520 was tested for in vitro cytopathic effects and viral replication in the human HCC cell

lines

Hep3B (p53-null) and HepG2 (p53-wt). The in vivo antitumor effects of dl1520 were investigated in tumors grown s.c. in a severe combined immunodeficient mouse model. In addition, the combination of dl1520 infection with systemic chemotherapy was assessed in these tumor xenografts. At low multiplicities of infection, dl1520 had an apparent p53- dependent in vitro viral growth in HCC cell lines. At higher multiplicities of infection, dl1520 viral replication was independent of the p53 status of the target cells. In vivo, d11520 significantly

the growth of the p53-null Hep3B xenografts, an effect augmented by the addition of cisplatin. However, complete tumor regressions were rare, and most tumors eventually grew progressively. dl1520 had no effect on the in vivo growth of the p53-wt HepG2 cells, with or without cisplatin treatment. The E1B-deleted adenoviral vector dl1520 has an apparent p53-dependent effect in HCC cell lines. However, this effect is lost at higher viral doses and only induces partial tumor regressions without tumor cures in a human HCC xenograft model.

L29 ANSWER 5 OF 9 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.DUPLICATE 3 ACCESSION NUMBER: 1999222721 EMBASE

'Autoreplication' of the vector genome in recombinant

TITLE:

adenoviral vectors with different El

region deletions and transgenes.

AUTHOR:

Marienfeld U.; Haack A.; Thalheimer P.; Schneider-Rasp S.;

Brackmann H.-H.; Poller W.

CORPORATE SOURCE:

W. Poller, Department Cardiology and Pneumology, Univ.

Hospital Benjamin Franklin, Freie Universitat Berlin,

Hindenburgdamm 30, D-12200 Berlin, Germany

SOURCE:

Gene Therapy, ((1999)) 6/6) (1101-1113).

to lar

COUNTRY:

ISSN: 0969-7128 CODEN: GETHEC United Kingdom

DOCUMENT TYPE: FILE SEGMENT:

Journal; Article 004 Microbiology

022 Human Genetics

LANGUAGE:

English

SUMMARY LANGUAGE:

English

High transgene stabilities of 1 year and more have been reported in immunodeficient hosts after adenovirus mediated gene transfer. Transgene persistence of this duration could be due to inherently high stability of the episomal viral vector DNA. An alternative explanation would be limited

'autoreplication' of transgenic vector DNA, just sufficient counteract slow but continuous degradation within the host cells. Autoreplication could occur in the absence of any production of infectious virus particles, based on residual activity of the adenoviral DNA replication system only. To test this hypothesis, a series of DNA metabolic labeling studies in non-permissive cells cultures transfected with different vectors was conducted. Due to extensive El region deletions none of the vectors was able to produce viral progeny in non-permissive cells. Vectors fell into two categories, however, with respect to their autoreplication potential. Neosynthesis of vector DNA in non-permissive vector-transfected cells was readily detectable in 'type A' but not in 'type B' vectors. In addition to their different transgene expression cassettes, vector DNA sequencing showed a less extensive E1 deletion in type A (nucleotides 453-3333 of wild-type virus) as compared to type B vectors (nucleotides 325-3523). Autoreplication was also associated with high transcriptional activity of several viral genes (E1B-14k, adenoviral DNA polymerase, single-strand DNA-binding protein, E4-25k), in contrast to type B vectors. In addition to these 'wild-type' transcripts, 'irregular' recombinant transcripts were

in autoreplication vectors which contained the transgenic cDNA in conjunction with adenoviral vector sequences. Exogenous or cryptic promoters may (under certain conditions) enhance the

transcriptional activity of a vector in such a way that autoreplication occurs. Conditions determining the level of transcriptional enhancement (extent of E1 deletion, type of promoter and transgene, etc) need to be further defined before rational design of adenovectors with high autoreplication capacity becomes possible. In summary, we have shown autoreplication to be a novel feature of certain El-deleted adenovectors with likely relevance for their stability in vivo, but also with possibly adverse consequences for target cell function or vector immunogenicity. Full characterization of adenoviral vector systems should therefore include a description of their autoreplication capacity.

L29 ANSWER 6 OF 9 SCISEARCH COPYRIGHT 2000 ISI (R)

2000:4504 SCISEARCH ACCESSION NUMBER:

THE GENUINE ARTICLE: 265JR

TITLE:

Deletion of the E1b-19-kDa gene

enhances the tumoricidal effect of a replicating

adenoviral vector

AUTHOR:

Sauthoff K (Reprint); Heitner S; Rom W N; Hay J G CORPORATE SOURCE: NYU, SCH MED, DEPT MED, DIV PULM & CRIT CARE MED, NEW

YORK, NY; NYU, SCH MED, DEPT PATHOL, DIV PULM & CRIT CARE

MED, NEW YORK, NY

COUNTRY OF AUTHOR: USA

SOURCE:

CANCER GENE THERAPY, (NOV-DEC 1999) Vol. 6, No. 6, Supp.

[S], pp. 038-038.

Publisher: STOCKTON PRESS, 345 PARK AVE SOUTH, NEW YORK,

NY 10010-1707. ISSN: 0929-1903. Conference; Journal

DOCUMENT TYPE: FILE SEGMENT:

LIFE; CLIN

LANGUAGE:

English _0___

REFERENCE COUNT:

129 ANSWER 7 OF 9 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1998:550499 CAPLUS

DOCUMENT NUMBER:

129:157708

TITLE:

An oncolytic/immunogenic complementary-

adenoviral vector system

INVENTOR(S):

Alemany, Ramon; Fang, Xiangming; Zhang, Wei-Wei

PATENT ASSIGNEE(S): Baxter International Inc., USA

SOURCE:

PCT Int. Appl., 59 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO. DATE
∵WO 9835028)	A2	19980813	WO 1998-US1301 (19980123
WO 9835028	A3	19981022	

W: CA, JP

RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

SE

EP 968281 A2 20000105 EP 1998-904658 19980123

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI

PRIORITY APPLN. INFO.:

US 1997-797160 19970210 WO 1998-US1301 19980123

This invention encompasses a compn. for killing target cells, such as tumor cells. The compn. comprises a first and a second adenoviral vector that have complementary function and are mutually dependent on each other for replication in a target cell. One of said adenoviral vectors has a target cell-activated promoter or a functional deletion that controls and limits propagation of the adenoviral vectors in the target cells which directly or

indirectly kills the target cells. One of the adenoviral vectors comprises a gene encoding a protein which is expressed in the target cells and can induce anticancer immune responses. The target cells may be hepatoma, breast cancer, melanoma, colon cancer, or prostate cancer cells, for example. The vectors of this invention may also be utilized to treat other diseases such as restenosis, in which case the target cell may be a vascular smooth muscle cell, for example.

```
L29 ANSWER 8 OF 9 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1997:111187 CAPLUS
```

DOCUMENT NUMBER:

1997:11110/

mIMIN.

126:113179

TITLE:

0

Gene therapy for myocardial ischemia

INVENTOR (S):

Giordano, Frank J.; Dillmann, Wolfgang H.; Mestril,

Ruben

PATENT ASSIGNEE(S):

Regents of the University of California, USA;

Giordano, Frank J.; Dillmann, Wolfgang H.; Mestril,

Ruben

SOURCE:

PCT Int. Appl., 35 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PA	TENT	NO.		KI	ND	DATE			A	PPLI	CATI	ON N	0.	DATE			
	- WO	0640	105				1006	1010						[
	, MO	9640			A.		1996	1219		W) 19:	96-U	S985	8 L	1996	0607	ائب	
		W:	AL,	AM,	ΑT,	AU,	ΑZ,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CZ,	DE,	DK,	EE,
			ES,	FI,	GB,	GE,	HU,	IL,	IS,	JP,	KE,	KG,	KP,	KR.	KZ,	LK.	LR.	LS.
			LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO.	RU.	SD.
			SE,	SG									-	•	•	•	•	
		RW:	KE,	LS,	MW,	SD,	SZ,	ŬĠ,	ΑT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,
			ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	BJ,	CF.	CG.	CI.	CM,	GA	•	•
	CA	2174	040			A.	1997	1013	•						19960			
	CA	2221	710		ΑZ	Α.	1996	1219							19960			
	114	9662	681		ν.						1 100	20 21	2211. 2211.	10	19900	7007		
	710	0010	7.4															
	EP	8318	/4		A.	1	1998	0401		E	9 199	96-92	2146:	1	19960	0607		
		R:	DE,	ES,	FR,													
PRI	ORIT	Y APP	LN.	INFO	.:					US	199	95-48	81122	2	19950	607		
										WC	199	96-US	39858	3	19960	0607		

AB A transgene-inserted replication-deficit adenoviral

vector is effectively used in in vivo gene therapy for myocardial ischemia in an protective way, by a single intracoronary injection directly conducted deeply in the lumen of the coronary arteries in an

sufficient for transfecting all cell types in the affected region, including cardiac myocytes. The vector contains a transgene coding for a stress-related factor (HSP70i, HSP27, etc.).

L29 ANSWER 9 OF 9 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1996:738180 CAPLUS

DOCUMENT NUMBER:

126:2494

TITLE:

amt.

An adenovirus vector capable of expressing up to 36

kB

heterologous DNA, a helper virus, and gene therapy

INVENTOR(S):
PATENT ASSIGNEE(S):

Zhang, Wei-Wei; Alemany, Ramon University of Texas System, USA

SOURCE:

PCT Int. Appl., 63 pp.

DOCUMENT TYPE:

CODEN: PIXXD2

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.

KIND DATE

APPLICATION NO. DATE

A1 WO 9633280 19961024 WO 1996-US5310 19960417 AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML CA 2218610 AΑ 19961024 CA 1996-2218610 19960417 AU 9655519 A1 19961107 AU 1996-55519 19960417 EP 1996-912839 EP 821739 A1 19980204 19960417 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI JP 11503910 T2 19990406 JP 1996-531882 19960417 PRIORITY APPLN. INFO.: US 1995-423573 19950417 WO 1996-US5310 19960417

AB An adenoviral helper viruses system is disclosed that is capable of expressing up to 36 kB of heterologous DNA in a replication defective adenoviral vector. The system comprises adenoviral vector constructs, one or more helper viruses and a helper cell line. The vector construct is capable of being replicated and packaged into a virion particle in the helper cell when coinfected with a helper virus that contains a defective packaging signal.

In particular, the helper cell expresses DNA from one or more of the "early" codings regions of the adenovirus 5 genome (Ad5) and one or more helper viruses express DNA from one or more of the "early" coding regions and all of the later coding regions of the Ad5 genome, complementing mutations in the corresponding regions of the vector. Also disclosed are methods of transferring heterologous DNA-contg. vectors into mammalian cells.

=> file stnguide

COST IN U.S. DOLLARS FULL ESTIMATED COST	SINCE FILE ENTRY 38.57	TOTAL SESSION 111.00
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
CA SUBSCRIBER PRICE	ENTRY -2.78	SESSION -2.78

FILE 'STNGUIDE' ENTERED AT 15:45:09 ON 27 APR 2000
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.

LAST RELOADED: Apr 21, 2000 (20000421/UP).

Trying 3106016892...Open

Welcome to STN International! Enter x:x LOGINID:ssspta1600exs

PASSWORD:

* * * * * * RECONNECTED TO STN INTERNATIONAL * * * * * * * * * SESSION RESUMED IN FILE 'STNGUIDE' AT 15:39:21 ON 27 APR 2000 FILE 'STNGUIDE' ENTERED AT 15:39:21 ON 27 APR 2000 COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST

0.00 72.43

=> file embase, scisearch, caplus, medline, biosis

COST IN U.S. DOLLARS SINCE FILE TOTAL

ENTRY SESSION

FULL ESTIMATED COST 0.00 72.43

FILE 'EMBASE' ENTERED AT 15:39:42 ON 27 APR 2000 COPYRIGHT (C) 2000 Elsevier Science B.V. All rights reserved.

FILE 'SCISEARCH' ENTERED AT 15:39:42 ON 27 APR 2000 COPYRIGHT (C) 2000 Institute for Scientific Information (ISI) (R)

FILE 'CAPLUS' ENTERED AT 15:39:42 ON 27 APR 2000 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'MEDLINE' ENTERED AT 15:39:42 ON 27 APR 2000

FILE 'BIOSIS' ENTERED AT 15:39:42 ON 27 APR 2000 COPYRIGHT (C) 2000 BIOSIS(R)

=> s adenoviral vector

L20 5905 ADENOVIRAL VECTOR

=> s deletion (s) E1b

L21 384 DELETION (S) E1B

=> s p19

L22 6178 P19

=> s 55K

L23 966 55K

=> s pIX

L24 620 PIX

=> s TNF? (s) CD (s)

MISSING TERM AFTER CD (S

Trying 3106016892...Open

Welcome to STN International! Enter x:x
LOGINID:ssspta1600exs
PASSWORD:
TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS 1 Feb 2 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 Dec 17 Expanded CAplus Coverage of US, Japanese, WIPO,
EPO, and German patents
NEWS 3 Feb 1 Addition of Machine-Translated Abstracts to CAplus
NEWS 4 Feb 2 STEREO BOND SEARCH PROBLEM FIXED WITH STN EXPRESS 5.0C
NEWS 5 Feb 14 Homology Searching for Nucleotide Sequences in DGENE
now available!
NEWS 6 Feb 16 BIOTECHNOBASE NOW ON STN
NEWS 7 Feb 22 New Database Producer Clusters Now Available on STN
NEWS 8 Feb 28 Structure Search Limits Increased in REGISTRY,
ZREGISTRY, and CASREACT
NEWS 9 Feb 28 Patent Information Now Searchable in CAOLD
NEWS 10 Mar 1 New IMSDIRECTORY Provides Pharma Company Details
NEWS 11 Mar 20 INPADOC: PRODUCER WARNING ABOUT DATA DELAYS
NEWS 12 Mar 22 NEW FEATURES IN INPADOC - RANGE SEARCHING AND NEW

NEWS EXPRESS FREE UPGRADE 5.0C NOW AVAILABLE

NEWS HOURS STN Operating Hours Plus Help Desk Availability

SDI/UPDATE SEARCH FIELD

NEWS INTER General Internet Information

NEWS LOGIN Welcome Banner and News Items

NEWS PHONE Direct Dial and Telecommunication Network Access to STN

NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 09:18:30 ON 28 APR 2000

=> file embase

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.15 0.15

FULL ESTIMATED COST

FILE 'EMBASE' ENTERED AT 09:18:50 ON 28 APR 2000 COPYRIGHT (C) 2000 Elsevier Science B.V. All rights reserved.

FILE COVERS 1974 TO 27 Apr 2000 (20000427/ED)

EMBASE has been reloaded. Enter HELP RLOAD for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s Poller W?/AU ran = 1985

L1 0 POLLER W?/AU

=> s Poller/AU ran = 1985

L2 0 POLLER/AU

=> s Poller W? and Germany/SO ran = 1990

0 "POLLER"

222045 W?

0 POLLER W?

("POLLER"(W)W?)

19 GERMANY/SO

L3 0 POLLER W? AND GERMANY/SO

=> file embase

COST IN U.S. DOLLARS

SINCE FILE

TOTAL

ENTRY 10.80 SESSION 10.95

FULL ESTIMATED COST

FILE 'EMBASE' ENTERED AT 09:25:50 ON 28 APR 2000 COPYRIGHT (C) 2000 Elsevier Science B.V. All rights reserved.

FILE COVERS 1974 TO 27 Apr 2000 (20000427/ED)

EMBASE has been reloaded. Enter HELP RLOAD for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> e poller W/AU

E1	1	POLLER S/AU
E2	8	POLLER U/AU
E3	37>	POLLER W/AU
E4	2	POLLER W C/AU
E5	2	POLLER W R/AU
E6	2	POLLERA C/AU
E7	24	POLLERA C F/AU
E8	20	POLLERA M/AU
E9	1	POLLERA ORSUCCI M/AU
E10	1	POLLERBERG A/AU
E11	1	POLLERBERG E/AU
E12	2	POLLERBERG E G/AU

=> s E3-E5

37 "POLLER W"/AU

2 "POLLER W C"/AU

2 "POLLER W R"/AU

L4 41 ("POLLER W"/AU OR "POLLER W C"/AU OR "POLLER W R"/AU)

=> s L4 and PY>1990

3516989 PY>1990

L5 32 L4 AND PY>1990

=> s L5 and adenoviral

=> display total ibib abs L6

L6 ANSWER 1 OF 7 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 1999368188 EMBASE

TITLE: Highly sensitive and species-specific assay for

quantification of human transgene expression levels.

AUTHOR: Haack A.; Poller W.; Schneider-Rasp S.;

Thalheimer P.; Schmitt C.; Hanfland P.; Brackmann H.-H.;

Schwaab R.

CORPORATE SOURCE: Dr. A. Haack, Inst. Exptl. Haematol. Transfu. Med.,

University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn,

Germany

SOURCE: Haemophilia, (1999) 5/5 (334-339).

Refs: 15

ISSN: 1351-8216 CODEN: HAEMF4

COUNTRY: United Kingdom DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 022 Human Genetics

025 Hematology

LANGUAGE: English SUMMARY LANGUAGE: English

AB During the past few years great efforts have been made to construct and

to

test human factor VIII (hFVIII) and IX (hFIX) vectors suitable for haemophilia gene therapy in vivo. However, little is known about the molecular mechanisms of persistence and shut-off of transgene expression in the target organs after gene transfer using recombinant adenoviral vectors. To evaluate low transgene mRNA levels in different tissues, especially at long times after the gene transfer, the common northern blot method is often not sensitive enough. For this

reason

we developed a new, highly sensitive and species-specific method for hFIX mRNA quantification and employed it in mice treated with an adenoviral vector (Ad5CMVFIX) expressing human FIX. In addition to its very high sensitivity (lowest detection level = 1 fg RNA), the method was shown to be strictly species-specific, since hFIX mRNA signals were never detected in untreated mice. In a long-term study of 18 vector-treated mice we compared the human FIX:Ag levels in the mouse plasma, the human FIX mRNA levels and human FIX vector DNA concentrations in the mouse liver. We found that a slow but continuous decrease of hFIX:Ag levels in mouse plasma was associated with corresponding decrease of hFIX mRNA levels in the liver. However, the Ad5CMVFIX vector DNA

levels

did not decrease to a comparable degree, suggesting that the decrease of human FIX:Ag levels in mouse plasma is, to a significant extent, also caused by CMV promotor shut-off and only to a minor degree by loss of vector DNA.

L6 ANSWER 2 OF 7 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 1999344920 EMBASE

TITLE: Expression of Coxsackie adenovirus receptor and

alpha(v)-integrin does not correlate with aconovector
. targeting in vivo indicating anatomical vector barriers.

AUTHOR: Fechner H.; Haack A.; Wang H.; Wang X.; Eizema K.;

Pauschinger M.; Schoemaker R.G.; Van Veghel R.;

Houtsmuller

A.B.; Schultheiss H.-P.; Lamers J.M.J.; Poller W.

CORPORATE SOURCE: H. Fechner, Department Cardiology and Pneumology,
University Hosp. Benjamin Franklin, Freie Universitat
Berlin, Hindenburgdamm 30, D-12200 Berlin, Germany

SOURCE: Gene Therapy, (1999) 6/9 (1520-1535).

Refs: 69

ISSN: 0969-7128 CODEN: GETHEC

COUNTRY: DOCUMENT TYPE: FILE SEGMENT:

United Kingdom Journal; Article

004 Microbiology 022 Human Genetics

LANGUAGE: English SUMMARY LANGUAGE: English

Recombinant adenoviral vectors are broadly applied in gene therapy protocols. However, adenovector-mediated gene transfer has limitations in vivo. One of these is the low gene transfer rate into organs other than the liver after systemic intravenous vector injection.

Local direct injection into the target organ has been used as one possible

solution, but increases necessary equipment and methodology and is traumatic to the target. Wild-type adenovirus infection as well as adenovector-mediated gene transfer depends on virus interaction with the Coxsackie adenovirus receptor (CAR) mediating virus attachment to the

cell

surface, and on interaction with .alpha.(v).beta.3 and .alpha.(v).beta.5 integrins mediating virus entry into the cell. In order to assess the receptor-associated potential of different tissues to act as adenovector targets, we have therefore determined CAR and .alpha.(v)-integrin expression in multiple organs from different species. In addition, we

have

newly determined several human, rat, pig and dog CAR-mRNA sequences. Sequence comparison and structural analyses of known and of newly determined sequences suggests a potential adenovirus binding site between amino acids 29 and 128 of the CAR. With respect to the virus receptor expression patterns we found that CAR-mRNA expression was extremely variable between different tissues, with the highest levels in the liver, whereas .alpha.(v)-integrin expression was far more homogenous among different organs. Both CAR and .alpha.(v)-integrin showed similar expression patterns among different species. There was no correlation, however, between the adenovector expression patterns after intravenous, intracardiac and aortic root injection, respectively, and the virus receptor patterns. In summary, many organs carry both receptors required to make them potential adenovector targets. In sharp contrast, their actual targeting clearly indicates that adenovirus receptor expression is necessary but not sufficient for vector transfer after systemic injection.

The apparently very important role of anatomical barriers, in particular the endothelium, requires close attention when developing non-traumatic, organ-specific gene therapy protocols.

ANSWER 3 OF 7 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER:

1999283875 EMBASE

TITLE: oxide

Biochemical and functional characterization of nitric

synthase III gene transfer using a replication-deficient

adenoviral vector. AUTHOR:

Paul

Frey A.; Schneider-Rasp S.; Marienfeld U.; Yu J.C.-M.;

M.; Poller W.; Schmidt H.H.H.

CORPORATE SOURCE:

Prof. H.H.H. Schmidt, Dept. Pharmacology and Toxicology, Julius-Maximilians-University, Versbacher Strasse 9, D-97078 Wurzburg, Germany. schmidt@toxi.uni-wuerzburg.de

SOURCE:

Biochemical Pharmacology, (1999) 58/7 (1155-1166).

Refs: 44

ISSN: 0006-2952 CODEN: BCPCA6

PUBLISHER IDENT .:

S 0006-2952(99)00196-3

COUNTRY:

United States

DOCUMENT TYPE:

Journal; Article

FILE SEGMENT:

022 Human Genetics 029 Clinical Biochemistry

030 Pharmacology 004 Microbiology

LANGUAGE: English
SUMMARY LANGUAGE: English

AB Nitric oxide (NO) produced in endothelial cells has been implicated in the

regulation of blood pressure, regional blood flow, inhibition of platelet aggregation, and endothelial and vascular smooth muscle cell proliferation. In a variety of cardiovascular disease states, such as atherosclerosis, arterial hypertension, and restenosis, expression of endothelial NO synthase (NOS-III) and endothelial NO production appear to be altered. Thus, NOS-III is an attractive target for cardiovascular gene therapy for which adenoviral vectors are one of the most effective vector systems. Therefore, a recombinant adenoviral vector expressing NOS-III (adenovirus type 5 [Ad5] cytomegalovirus [CMV] NOSIII) was constructed and biochemically and pharmacologically characterized both in vitro and in intact cells. Ad5CMVNOSIII-derived recombinant NOS-III was successfully expressed, as shown by immunoprecipitation and immunocytochemistry, and biologically active, as shown by functional assays in human primary umbilical vein and EA.hy926 endothelial cells, as well as 293 human embryonic kidney and Chinese hamster ovary cells. The K(m) values for NADPH and L-arginine and the

K(a)

for tetrahydrobiopterin as well as the enzyme's dependency on other cofactors were similar to recombinant reference enzyme and literature values. NOS-III expression levels correlated linearly with the multiplicity of infection with Ad5CMVNOSIII and lasted for at least 8 days. NOS-III transfection inhibited endothelial cell proliferation. In conclusion, adenovirus-mediated gene transfer of Ad5CMVNOSIII to vascular and non-vascular cells resulted in the dose-dependent expression of intact, physiologically regulated, and functionally active NOS-III. Copyright (C) 1999 Elsevier Science Inc.

L6 ANSWER 4 OF 7 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 1999222721 EMBASE

TITLE: 'Autoreplication' of the vector genome in recombinant

adenoviral vectors with different E1 region

deletions and transgenes.

AUTHOR: Marienfeld U.; Haack A.; Thalheimer P.; Schneider-Rasp S.;

Brackmann H.-H.; Poller W.

CORPORATE SOURCE: W. Poller, Department Cardiology and Pneumology, Univ.

Hospital Benjamin Franklin, Freie Universitat Berlin,

Hindenburgdamm 30, D-12200 Berlin, Germany

SOURCE: Gene Therapy, (1999) 6/6 (1101-1113).

Refs: 38

ISSN: 0969-7128 CODEN: GETHEC

COUNTRY: United Kingdom

DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 004 Microbiology 022 Human Genetics

LANGUAGE: English SUMMARY LANGUAGE: English

AB High transgene stabilities of 1 year and more have been reported in immunodeficient hosts after adenovirus mediated gene transfer. Transgene persistence of this duration could be due to inherently high stability of the episomal viral vector DNA. An alternative explanation would be

limited

'autoreplication' of transgenic vector DNA, just sufficient counteract slow but continuous degradation within the host cells. Autoreplication could occur in the absence of any production of infectious virus particles, based on residual activity of the adenoviral DNA replication system only. To test this hypothesis, a series of DNA metabolic labeling studies in non-permissive cells cultures transfected with different vectors was conducted. Due to extensive E1 region

deletions

none of the vectors was able to produce viral progeny in non-permissive cells. Vectors fell into two categories, however, with respect to their autoreplication potential. Neosynthesis of vector DNA in non-permissive vector-transfected cells was readily detectable in 'type A' but not in 'type B' vectors. In addition to their different transgene expression cassettes, vector DNA sequencing showed a less extensive E1 deletion in type A (nucleotides 453-3333 of wild-type virus) as compared to type B vectors (nucleotides 325-3523). Autoreplication was also associated with high transcriptional activity of several viral genes (E1B-14k, adenoviral DNA polymerase, single-strand DNA-binding protein, E4-25k), in contrast to type B vectors. In addition to these 'wild-type' transcripts, 'irregular' recombinant transcripts were detected in autoreplication vectors which contained the transgenic cDNA in conjunction

with adenoviral vector sequences. Exogenous or cryptic promoters may (under certain conditions) enhance the transcriptional activity of a vector in such a way that autoreplication occurs. Conditions determining the level of transcriptional enhancement (extent of E1 deletion, type of promoter and transgene, etc) need to be further defined before rational design of adenovectors with high autoreplication capacity becomes possible. In summary, we have shown autoreplication to be a novel feature of certain E1-deleted adenovectors with likely relevance for their stability in vivo, but also with possibly adverse consequences for target cell function or vector immunogenicity. Full characterization of adenoviral vector systems should therefore include a description of their autoreplication capacity.

EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V. ANSWER 5 OF 7

ACCESSION NUMBER:

1998254159 EMBASE

TITLE:

Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP- dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated

juxtaglomerular cells.

AUTHOR:

SOURCE:

Gambaryan S.; Wagner C.; Smolenski A.; Walter U.;

Poller W.; Haase W.; Kurtz A.; Lohmann S.M.

CORPORATE SOURCE:

S. Gambaryan, Medizinische Universitats-Klinik, Klin. Biochem./Pathobiochem. Inst., 97080 Wurzburg, Germany Proceedings of the National Academy of Sciences of the United States of America, (21 Jul 1998) 95/15 (9003-9008).

Refs: 34

ISSN: 0027-8424 CODEN: PNASA6

United States

COUNTRY:

Journal; Conference Article DOCUMENT TYPE:

002 Physiology FILE SEGMENT:

Urology and Nephrology 028 029 Clinical Biochemistry

English LANGUAGE: SUMMARY LANGUAGE: English

An overactive renin-angiotensin-aldosterone system (RAAS) has a central role in the pathogenesis of hypertension and cardiac hypertrophy, precursors of cardiac failure. Natriuretic peptides and NO acting through their second messenger, cGMP, increase natriuresis and diuresis, and inhibit renin release; however the mechanism by which this inhibition of the RAAS system functions is obscure. We recently reported cloning of the cDNA for type II cGMP-dependent protein kinase (cGK II), elucidated its first known function of inhibiting the cystic fibrosis transmembrane conductance regulator in rat intestine, and initially described its location in rat kidney juxtaglomerular (JG) cells, the ascending thin limb, and the brush border of proximal tubules. Here, we demonstrate inhibition of isoproterenol- or forskolin- stimulated renin release by 8-para-chlorophenylthio-cGMP (8-pCPT-cGMP), a selective activator of cGK, and prevention of this inhibition by a selective inhibitor of cGK, Rp-8-pCPT-cGMPS. In systems of differing complexity, inhibition by 8-pCPT-cGMP was nearly complete in isolated perfused kidney and microdissected afferent arterioles but only .simeq.25% in isolated JG

cells. Expression of either cGK II or cGK I in JG cells by using adenoviral vectors enhanced the inhibition of forskolin-stimulated renin release by 8-pCPT-cGMP to 50%. Our results indicate that cGK II,

and

possibly cGK I, can mediate cGMP inhibitory effects on renin release and are physiological components of the cGMP signal transduction system which opposes the RAAS.

ANSWER 6 OF 7 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER:

97054706 EMBASE

DOCUMENT NUMBER:

1997054706

TITLE:

cGMP stimulation of cystic fibrosis transmembrane conductance regulator C1- channels co-expressed with cGMP-dependent protein kinase type II but not type

I.beta.. AUTHOR:

Vaandrager A.B.; Tilly B.C.; Smolenski A.; Schneider-Raspi S.; Bot A.G.M.; Edixhoven M.; Scholte B.J.; Jarchau T.;

Walter U.; Lohmann S.M.; Poller W.C.; De Jonge

H.R.

CORPORATE SOURCE:

A.B. Vaandrager, Dept. of Biochemistry, Medical Faculty,

Erasmus University Rotterdam, P.O. Box 1738, 3000 DR

Rotterdam, Netherlands

SOURCE:

Journal of Biological Chemistry, (1997) 272/7 (4195-4200).

Refs: 33

ISSN: 0021-9258 CODEN: JBCHA3

COUNTRY: DOCUMENT TYPE:

United States Journal; Article

FILE SEGMENT:

029

Clinical Biochemistry

LANGUAGE:

English English

SUMMARY LANGUAGE:

In order to investigate the involvement of cGMP-dependent protein kinase (cGK) type II in cGMP-provoked intestinal Cl- secretion, cGMP-dependent activation and phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels was analyzed after expression

of

cGK II or cGKIss in intact cells. An intestinal cell line which stably expresses CFTR (IEC-CF7) but contains no detectable endogenous cGK II was infected with a recombinant adenoviral vector containing the cGK II coding region (Ad-cGK II) resulting in co-expression of active cGK II. In these cells, CFTR was activated by membrane-permeant analogs of cGMP

or

by the cGMP-elevating hormone atrial natriuretic peptide as measured by 125I- efflux assays and whole-cell patch clamp analysis. In contrast, infection with recombinant adenoviruses expressing cGK I.beta. or luciferase did not convey cGMP sensitivity to CFTR in IEC-CF7 cells. Concordant with the activation of CFTR by only cGK II, infection with Ad-cGK II but not Ad-cGK I.beta. enabled cGMP analogs to increase CFTR phosphorylation in intact cells. These and other data provide evidence that endogenous cGK II is a key mediator of cGMP-provoked activation of CFTR in cells where both proteins are colocalized, e.g. intestinal epithelial cells. Furthermore, they demonstrate that neither the soluble cGK I.beta. nor cAMP-dependent protein kinase are able to substitute for cGK II in this cGMP-regulated function.

ANSWER 7 OF 7 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER:

96202087 EMBASE

DOCUMENT NUMBER:

1996202087

TITLE:

Stabilization of transgene expression by incorporation of

E3 region genes into an adenoviral factor IX

vector and by transient anti-CD4 treatment of the host.

AUTHOR: Poller W.; Schneider-Rasp S.; Liebert U.;

Merklein F.; Thalheimer P.; Haack A.; Schwaab R.; Schmitt

C.; Brackmann H.-H.

CORPORATE SOURCE:

Medical University Clinic, University of Wurzburg, Josef-Schneiner-Strasse 2, D-97080 Wurzburg, Germany SOURCE: Gene Therapy, (1996) 3/6 (521-530).

ISSN: 0969-7128 CODEN: GETHEC

COUNTRY:

United Kingdom

DOCUMENT TYPE:

Journal; Article

FILE SEGMENT:

004 Microbiology 022 Human Genetics

026 Immunology, Serology and Transplantation

LANGUAGE:

English English

SUMMARY LANGUAGE:

Complex interactions between replication deficient adenoviral

of

vectors (Ad5) and the immune system of the host influence the stability

transgenes in vivo. Vector-infected cells are attacked by diverse cellular

immune mechanisms which limit transgene persistence. On the other hand, the products of several E3 region genes of wild-type adeno-virus can suppress host immune reactions by interference with the expression of MHC class I molecules and by other mechanisms. We have developed an adenoviral vector for human factor IX (Ad5.DELTA.E3+FIX) which carries the E3 region of wild-type adenovirus, and an E3-deleted vector

of

otherwise similar structure (Ad5.DELTA.E3FIX). Intravenous injection of Ad5E3+FIX in C57BI/6 mice resulted in expression levels up to 6000 ng/ml of recombinant human factor IX in the mouse plasma and in enhanced transgene stability as compared with the vector Ad5.DELTA.E3FIX. Whereas expression from E3-deleted vectors was essentially turned off 8 weeks after the gene transfer, the vector Ad5E3+FIX supported transgene expression with therapeutic levels of human factor IX in the mouse plasma for > 4 months. The enhanced stability of the vector Ad5E3+FIX appears to be a consequence of efficient E3 region-mediated suppression of the host's

antivector immune response. As an additional approach to improving transgene stability the influence of transient CD4+ T cell depletion of the host was investigated. CD4+ cytotoxic T lymphocytes, contribute to

the

clearance of adenovirus-infected cells and play a pivotal role in the activation of CD8+ cytotoxic T cells and as helper T cells in the formation of human adenovirus neutralizing antibodies (HANA). Transient anti-CD4 treatment of the host limited to the time of vector injection resulted in a significant prolongation of transgene expression from the factor IX vector Ad5E3+FIX and a luciferase vector Ad5Luc. The combination

of transient anti-CD4 treatment of the host and integration of a complete E3 region in an adenoviral vector resulted in markedly improved transgene stability after gene transfer to the liver (therapeutic factor IX levels for > 6 months).

=> file caplus

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 29.70 40.65

FULL ESTIMATED COST

FILE 'CAPLUS' ENTERED AT 09:37:03 ON 28 APR 2000 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE COVERS 1967 - 28 Apr 2000 VOL 132 ISS 18 FILE LAST UPDATED: 27 Apr 2000 (20000427/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

This file supports REGISTRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

Now you can extend your author, patent assignee, patent information, and title searches back to 1907. The records from 1907-1966 now have this searchable data in CAOLD. You now have electronic access to all of CA: 1907 to 1966 in CAOLD and 1967 to the present in CAPLUS on STN.

=> e poller w/AU

- U

E1 E2 E3 E4 E5 E6 E7 E8	9 1 2 1 2	POLLER U/AU POLLER ULRIKE/AU POLLER W/AU POLLER WOLFGANG/AU POLLER WOLFGANG C/AU POLLER WOLFGANG CHRISTIAN/AU POLLER Z/AU POLLERA C F/AU POLLERA CAMILLO/AU
	2	POLLERA C F/AU

=> s E3-E6

- 13 "POLLER W"/AU
- 9 "POLLER WOLFGANG"/AU
- 1 "POLLER WOLFGANG C"/AU
- 2 "POLLER WOLFGANG CHRISTIAN"/AU

L7 25 ("POLLER W"/AU OR "POLLER WOLFGANG"/AU OR "POLLER WOLFGANG" C"/AU

OR "POLLER WOLFGANG CHRISTIAN"/AU)

=> s L7 and PY<1999 and E1

15165918 PY<1999

5 "POLLER U"/AU

L8 0 L7 AND PY<1999 AND "POLLER U"/AU

=> s L7 and E1

5 "POLLER U"/AU

L9 0 L7 AND "POLLER U"/AU

=> s L7

- 13 "POLLER W"/AU
- 9 "POLLER WOLFGANG"/AU
- 1 "POLLER WOLFGANG C"/AU
- 2 "POLLER WOLFGANG CHRISTIAN"/AU

L10 25 ("POLLER W"/AU OR "POLLER WOLFGANG"/AU OR "POLLER WOLFGANG"/AU

OR "POLLER WOLFGANG CHRISTIAN"/AU)

=> display TI L10

ENTER ANSWER NUMBER OR RANGE (1):10

=> file embase, scisearch, caplus, biosis

COST IN U.S. DOLLARS

FULL ESTIMATED COST

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

CA SUBSCRIBER PRICE

SINCE FILE TOTAL ENTRY
ENTRY
SESSION
-13.91
-13.91

FILE 'EMBASE' ENTERED AT 09:53:00 ON 28 APR 2000 COPYRIGHT (C) 2000 Elsevier Science B.V. All rights reserved.

FILE 'SCISEARCH' ENTERED AT 09:53:00 ON 28 APR 2000 COPYRIGHT (C) 2000 Institute for Scientific Information (ISI) (R)

FILE 'CAPLUS' ENTERED AT 09:53:00 ON 28 APR 2000 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 09:53:00 ON 28 APR 2000 COPYRIGHT (C) 2000 BIOSIS(R)

=> file medline, scisearch, caplus, biosis, embase

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 2.97 126.83 DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL ENTRY SESSION CA SUBSCRIBER PRICE 0.00 -13.91

FILE 'MEDLINE' ENTERED AT 09:53:27 ON 28 APR 2000

FILE 'SCISEARCH' ENTERED AT 09:53:27 ON 28 APR 2000 COPYRIGHT (C) 2000 Institute for Scientific Information (ISI) (R)

FILE 'CAPLUS' ENTERED AT 09:53:27 ON 28 APR 2000 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 09:53:27 ON 28 APR 2000 COPYRIGHT (C) 2000 BIOSIS(R)

FILE 'EMBASE' ENTERED AT 09:53:27 ON 28 APR 2000 COPYRIGHT (C) 2000 Elsevier Science B.V. All rights reserved.

- => s adenoviral (s) E1B or E1b or E1b genes or E1B genes (s) deletion
- L11 3410 ADENOVIRAL (S) E1B OR E1B OR E1B GENES OR E1B GENES (S) DELETION
- => s L11 and PY<1999
 - 2 FILES SEARCHED...
 4 FILES SEARCHED...
- L12 2982 L11 AND PY<1999
- => s shuttle vectors and L12

```
Six mutations in the glucokinase gene identified in MODY by using a
  TI
       nonradioactive sensitive screening technique
       Hager, Joerg; Blanche, Helene; Sun, Fang; Vaxillaire, Nathalie Vionnet
 ΑU
       Martine; Poller, Wolfgang; Cohen, Daniel; Czernichow, Paul;
       Velho, Gilberto; Robert, Jean Jacques; et al.
       Hum. Polymorphism Study Cent., Hop. Necker-Enfants Mal., Paris, 75010,
 CS
 Fr.
 so
       Diabetes (1994), 43(5), 730-3
       CODEN: DIAEAZ; ISSN: 0012-1797
 DT
       Journal
 LΑ
      English
 CC
       14-8 (Mammalian\Pathological Biochemistry)
      Section cross-reference(s): 3
      The authors have reported that 56% of French families with maturity-onset
 AB
      diabetes of the young (MODY) carry a mutation in the glucokinase gene
      (GCK). Therefore, the authors have estd. a quick and sensitive
      nonradioactive technique (with the PhastSystemTM based on single-strand
      conformation polymorphism [SSCP] anal.) to routinely screen the 12 exons
      of GCK for mutations. The authors have studied GCK in 12 young hyperglycemic patients with a strong family history of type II diabetes.
      SSCP variants were obsd in 6 of those 12 patients (50%), which
      cosegregated with diabetes in five families where DNA from addnl. members
      was available. Direct sequencing identified a 10-bp (base pair) deletion
      in exon 3; a 33-bp deletion at the exon 5/intron 5 junction, including
 the
      two consensus bases (GT) of the donor splice site; a nonsense mutation in
      exon 5 (Arg186 .fwdarw. Stop) in a Black-African family, which has been
      identified previously in a Caudasian family; and three missense
      Thr209 .fwdarw. Met209 in exon 6, Gly261 .fwdarw. Glu261 in exon 7, and Arg36 .fwdarw. Trp36 in exon 2. The missense mutation in exon 2 was
      Arg36 .fwdarw. Trp36 in exon 2.
 found
      only in the second and third generation of the tested family but not in
      the first. To the authors' knowledge this is the first time that a de
      novo mutation of GCK is reported within a family. All six families
      carrying a mutation in GCK were typical MODY and most of their affected
     members had a mild form of diabetes. This nonradioactive SSCP technique
     may be useful to routinely diagnose glucokinase deficiency, which is an
      important cause of hyperglycemia among young type II diabetic patients.
      glucokinase gene mutation detection MODY disease
ST
IT
      Gene, animal
     RL: BIOL (Biological study)
         (for glucokinase, detection of mutations in \( \) in humans with
        maturity-onset diabetes of the young, SSCP using nonradioactive
         PhastSystem in)
IT
     Mutation
         (in glucokinase gene, in humans with maturity-onset diabetes of the
        young, detection of, by SSCP using nonradioactive PhastSystem)
     Genetic polymorphism
ΙT
        (single-strand conformation, glucokinase gene mutations in humans with
        maturity-onset diabetes of the young detected by, using nonradioactive
        PhastSystem)
IT,
     Diabetes mellitus
        (MODY (maturity-onset diabetes of the young), glucokinase gene
        mutations in, in humans, detection of, SSCP using nonradioactive
        PhastSystem in)
IT
     9001-51-8, Glucokinase
     RL: BIOL (Biological study)
        (gene for, detection of mutations in, in humans with maturity-onset
        diabetes of the young, SSCP using nonradioactive PhastSystem in)
L10
     ANSWER 17 OF 25 CAPLUS COPYRIGHT 2000 ACS
```

TI A leucine-to-proline substitution causes a defective .alpha.1antichymotrypsin allele associated with familial obstructive lung disease
AN 1994:188562 CAPLUS

contrast to Ad309, induced significantly larger plaques after infection of

A549 cells. This well-described large plaque phenotype of an E1b -19kD mutant virus is likely the result of early viral release and enhanced cell-to-cell viral spread. Loss of E1b-19kD function caused only minor cell line-specific increase or decrease in viral yield. We conclude that deletion of the E1b-19kD gene may enhance the tumoricidal effects of a replicating adenoviral vector.

L29 ANSWER 2 OF 9 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1999:723195 CAPLUS

DOCUMENT NUMBER:

131:318578

TITLE:

Partially deleted adenoviral vectors

with therapeutic expression potential for transgenes where delected vector genes are introduced within

producer cell chromosome

INVENTOR(S):

Wadsworth, Samuel C.; Scaria, Abraham

PATENT ASSIGNEE(S): SOURCE:

Genzyme Corp., USA PCT Int. Appl., 50 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9957296	A 1	19991111	WO 1999-US9590	19990430

W: AU, CA, JP, US

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE

PRIORITY APPLN. INFO.:

US 1998-83841 19980501 US 1999-118118 19990201

The invention is directed to novel partially deleted adenoviral vectors (DeAd) in which the majority of adenoviral early genes required for replication are deleted from the vector and placed within

chromosome of a producer cell line under conditional promoter control. Rephrased, the expression of genes encoding virion structural proteins is made conditional by replacement of the major late promoter with alternative promoters that can be controlled.. Moreover, the procedures described here is directed to DeAd vectors in which expression of genes encoding virion structural proteins in diminished by deletion the VA RNA genes from the vector. This system is applicable to human adenovirus 2, 5, 6, and 17. The partially deleted adenoviral (DeAd) vectors of the invention can accommodate inserts, such as transgenes, of up to 12-15 kb in size. The invention is further directed to DeAd vector producer cell lines that contain the adenoviral early genes necessary for replication under conditional promoter control that allow for large scale prodn. of vectors. This conditional promoter system includes control sequences

from

the dimerizer gene or tetracycline or ecdysone control systems. The invention is also directed to methods for the prodn. of DeAd vectors in such cell lines and to the use of such vectors to deliver transgenes to target cells. These transgenes include the CFTR and human .alpha.-galactosidase A and erythropoietin and factor VII and factor IX.

L29 ANSWER 3 OF 9 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1999:359656 CAPLUS

DOCUMENT NUMBER:

131:14848

TITLE:

Adenovirus-helper virus vector system using Sp1 and

MAZ transcription factor regulation

INVENTOR(S):

Parks, Christopher L.; Shenk, Thomas

PATENT ASSIGNEE(S): Princeton University, USA

SOURCE:

PCT Int. Appl., 68 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

KIND DATE APPLICATION NO. DATE PATENT NO. WO 9927101 A1 19990603 WO 1998-US25361 19981125 W: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MW, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, UZ, VN, YU, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG A1 19990615 AU 1999-15394 US 1997-66295 19971125

PRIORITY APPLN. INFO .: WO 1998-US25361 19981125 AB

Claimed are adenoviral vectors prepd. by inserting exogenous nucleic acid between the terminal segments of the linear adenovirus genome, which include the viral origin of replication and packaging sequence genes. The vectors are based on adenovirus type 5, and

are prepd. with a a helper adenovirus comprising a deletion of genes E1A and/or E1B. The helper virus contains a promoter with binding sites for the MAZ and Spl transcription factors. Co-transfection with the adenoviral vector, the helper vector, and administration of the MAZ and SP1 transcription factors produces expression of the exogenous nucleic acid.

L29 ANSWER 4 OF 9 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.DUPLICATE 2

ACCESSION NUMBER:

1999311904 EMBASE

TITLE:

p53 Selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma.

AUTHOR:

Vollmer C.M.; Ribas A.; Butterfield L.H.; Dissette V.B.; Andrews K.J.; Eilber F.C.; Montejo L.D.; Chen A.Y.; Hu B.;

Glaspy J.A.; McBride W.H.; Economou J.S.

CORPORATE SOURCE:

J.S. Economou, Division of Surgical Oncology, UCLA School

of Medicine, 10833 Le Conte Avenue, Los Angeles, CA

90095-1782, United States.

jeconomo@surgery.medsch.ucla.edu

SOURCE:

Cancer Research, (1 Sep 1999) 59/17 (4369-4374).

Refs: 21

ISSN: 0008-5472 CODEN: CNREA8

COUNTRY:

United States Journal; Article

DOCUMENT TYPE: FILE SEGMENT:

016 Cancer

Gastroenterology 048

LANGUAGE:

English

SUMMARY LANGUAGE: English

An E1B gene-attenuated adenovirus (dl1520) has been proposed to have a selective cytolytic activity in cancer cells with a mutation or deletion in the p53 tumor suppressor gene (p53-null), a defect present in almost half of human hepatocellular carcinomas (HCCs). In this study, the in vitro and in vivo antitumor activity of dl1520 was investigated focusing on two human HCC cell lines, a p53-wild type (p53-wt) cell line and a p53-null cell line. dl1520 was tested for in vitro cytopathic effects and viral replication in the human HCC cell

lines

Hep3B (p53-null) and HepG2 (p53-wt). The in vivo antitumor effects of dl1520 were investigated in tumors grown s.c. in a severe combined immunodeficient mouse model. In addition, the combination of dl1520 infection with systemic chemotherapy was assessed in these tumor

```
L13 0 SHUTTLE VECTORS AND L12
```

=> s vector or vectors and L12

L14 411737 VECTOR OR VECTORS AND L12

=> s 55K gene and p19 gene and PIX gene

L15 0 55K GENE AND P19 GENE AND PIX GENE

=> s 55K gene

L16 16 55K GENE

=> s PIX gene or pIX gene

L17 62 PIX GENE OR PIX GENE

=> s p19 gene

L18 107 P19 GENE

=> s L14 and L15

L19 0 L14 AND L15

=> s L14 and L17

L20 1 L14 AND L17

=> display total ibib abs L20

L20 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1999:722791 CAPLUS

DOCUMENT NUMBER:

131:347488

TITLE:

Packaging systems for human recombinant adenovirus to

be used in gene therapy

INVENTOR(S):

Vogels, Ronald; Bout, Abraham Introgene B.V., Neth.

PATENT ASSIGNEE(S): SOURCE:

Eur. Pat. Appl., 82 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 955373 EP 955373	A2 A3	19991110 20000419	EP 1999-201278	19990423
R: AT, BE,	CH, DE		GB, GR, IT, LI, LU	, NL, SE, MC, PT,
AU 9934458 PRIORITY APPLN. INFO	A1	19991116	AU 1999-34458 US 1998-65752 WO 1999-N	19990423 19980424

L235 19990423

AB The invention discloses novel means and methods for the generation of adenovirus vectors. One method of the invention entails a method for generating an adenovirus vector comprising welding together two nucleic acid mols. whereby said mols. comprise partially overlapping sequences capable of combining with each other allowing the generation of a phys. linked nucleic acid comprising at least two functional adenovirus inverted terminal repeats, a functional encapsulation signal, and a nucleic acid of interest or functional parts,

```
by sequence anal. of all coding exons, exon-intron junctions, and the
         hepatocyte-specific promotor region including exon Ic)
 IT
      Mutation
         (insertion, the PI*Q0saarbruecken allele generated by a 1-bp
         C-nucleotide insertion within a stretch of seven cytosines is assocd.
         with undetectable or very low serum levels of .alpha.1-antitrypsin)
 IT
      Genetic element
      RL: PRP (Properties)
         (intron, genotyping of 15 new .alpha.1-antitrypsin variants was
         performed by sequence anal. of all coding exons, exon-intron
 junctions,
         and the hepatocyte-specific promotor region including exon Ic)
     Mutation
         (point, the PI*Q0lisbon allele generated by a/point mutation resulting
         in a single amino acid substitution Thr68(ACC).fwdarw.Ile(ATC) is
         assocd. with undetectable or very low serum Aevels of
         .alpha.1-antitrypsin)
 IT
      Genetic element
     RL: PRP (Properties)
         (promoter, hepatocyte-specific; genotyping of 15 new
         .alpha.1-antitrypsin variants was performed by sequence anal. of all
         coding exons, exon-intron junctions, and/the hepatocyte-specific
        promotor region including exon Ic)
IT
     Mutation
         (substitution, the remaining 12 allele$ of .alpha.1-antitrypsin gene
        are assocd. with normal .alpha.1AT serum levels and are characterized
        by point mutations causing single amino acid substitutions in all but
        one case)
IT
     9041-92-3, .alpha.1-Antitrypsin
     RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (identification and DNA sequence anal. of 15 new .alpha.1-antitrypsin
        variants, including two PI*Q0 alle#es and one deficient PI*M allele)
L10
     ANSWER 15 OF 25 CAPLUS COPYRIGHT 2000 ACS
     Molecular analysis of pulmonary risk gene. Relevance for clinical
     research, diagnosis, and therapy
AN
     1994:554229 CAPLUS
DN
     121:154229
     Molecular analysis of pulmonary ri/sk gene. Relevance for clinical
TI
     research, diagnosis, and therapy
AU
     Poller, Wolfgang Christian: Faber, Jakob Peter
CS
     Med. Klin. Poliklin., Klin. Bergmannsheil, Bochum, W-4630/1, Germany
SO
     Med. Klin. (Munich) (1993), 88(4), 212-30
     CODEN: MEKLA7; ISSN: 0723-5003/
DT
     Journal; General Review
LA
     German
CC
     14-0 (Mammalian Pathological /Biochemistry)
     Section cross-reference(s): 3
     A review, with 200 refs. The mol. genetic research on pulmonary diseases
AB
     as it applies to DNA diagnosis, gene transfer therapy, and pathogenetic
     anal. is emphasized.
ST
     review lung disease risk genetics
IT
     Gene, animal
     RL: BIOL (Biological study)
        (in lung disease risk, diagnosis and pathogenesis and treatment in
        relation to, in humans)
IT
     Lung, disease
        (risk for, genes in, diagnosis and pathogenesis and treatment in
        relation to, in humans)
L10 ANSWER 16 OF 25 CAPLUS COPYRIGHT 2000 ACS
     Six mutations in the glucokinase gene identified in MODY by using a
     nonradioactive sensitive screening technique
AN
     1994:505791 CAPLUS
DN
     121:105791
```

complexes by low-d. lipoprotein receptor-related protein (LDR) and glycoprotein gp330) 9004-06-2D, Elastase, .alpha.1-antitrypsin complexes .alpha.1-Antitrypsin, elastase complexes 56645-49-9D, Cathepsin G, .alpha.1-antichymotrypsin complexes 141176-92-3D, .alpha.1-Antichymotrypsin, cathepsin G complexes RL: BPR (Biological process); BIOL (Biological study); PROC (Process) (differential recognition of .alpha.1-antitrypsin-elastase and .alpha.1-antichymotrypsin-cathepsin G complexes by low-d. lipoprotein receptor-related protein (LDR) and glycoprotein gp330) L10 ANSWER 14 OF 25 CAPLUS COPYRIGHT 2000 ACS Identification and DNA sequence analysis of 15 new .alpha.1-antitrypsin variants, including two PI* Q0 alleles and one deficient PI* M allele AN 1995:309394 CAPLUS DN 122:232287 Identification and DNA sequence analysis of 15 new .alpha.1-antitrypsin TI variants, including two PI*,QO alleles and one deficient PI* M allele Faber, Jakob-Peter; Poller, Wolfgang; Weidinger, Sebastian; AU Kirchgesser, Michael; Schwaab, Rainer; Bidlingmaier, Frank; Olek, Klaus Institut Klinische Biochemie, Universitaet Bonn, Bonn, Germany CS Am. J. Hum. Genet. (1994), 55(6), 1113-121 CODEN: AJHGAG; ISSN: 0002-9297 DTJournal LΑ English 3-3 (Biochemical Genetics) Section cross-reference(s): 7, 13 We have investigated the mol. basis of 15 new .alpha.1-antitrypsin AB (.alpha.1AT) variants. Phenotyping by isoelec. focusing (IEF) was used as a screening method to detect .alpha.1AT variants at the protein level. Genotyping was then performed by sequence anal. of all coding exons, exon-intron junctions, and the hepatocyte-specific promotor region including exon Ic. Three of these rare variants are alleles of clin. relevance, assocd. with undetectable or very low serum levels of .alpha.1AT: the PI*Q0saarbruecken allele generated by a 1-bp C-nucleotide insertion within a stretch of seven cytosines spanning residues 360-362, resulting in a 3' frameshift and the acquisition of a stop codon at residue 376; a point mutation in the PI*Q0lisbon allele, resulting in a single amino acid substitution Thr68 (ACC).fwdarw.lle(ATC); and an in-frame trinucleotide deletion .DELTA.Phe51 (TTC) in the highly deficient PI*Mpalermo allele. The remaining 12 alleles are assocd. with normal .alpha.1AT serum levels and are characterized by point mutations causing single amino acid substitutions in all but one case. This exception is a silent mutation, which does not affect the amino acid sequence. The limitation of IEF compared with DNA sequence anal., for identification of new variants, their generation by mutagenesis, and the clin. relevance of the three deficiency alleles are discussed. alphal antitrypsin variant DNA sequence analysis ST Deoxyribonucleic acid sequence determination IT (identification and DNA sequence anal. of 15 new .alpha.1-antitrypsin variants, including two PI*Q0 alleles and one deficient PI*M allele) IT Gene, animal RL: PRP (Properties) (identification and DNA sequence anal. of 15 new .alpha.1-antitrypsin variants, including two PI*Q0 alleles and one deficient PI*M allele) IT Mutation (deletion, an in-frame trinucleotide deletion .DELTA.Phe51 (TTC) in the highly deficient PI*Mpalermo allele is assocd. with undetectable or very low serum levels of .alpha.1-antitrypsin) Genetic element RL: PRP (Properties)

(exon, genotyping of 15 new .alpha.1-antitrypsin variants was

performed

derivs., and/or analogs thereof. A novel packaging cell line, designated 911, is derived from diploid human embryonic retinoblasts (HER) that harbors nucleotides 80-6788 of the adenovirus 5 genome. Novel packaging cell lines are also provided that express just E1A genes and E1B genes without undergoing apoptotic cell death, as occurs in human diploid cells that express E1A in the absence of E1B, and are able to transcomplement E1B-defective recombinant adenoviruses. Packaging constructs that are mutated or deleted for E1B 21-kDa, but just express the 55-kDa protein, and packaging constructs to be used for generation of complementing cell lines from diploid cells without the need of selection with marker genes are also provided. After transfection of HER cells with construct pIG.ElA.ElB, 7 independent cell lines could be established (designated PER.C1 to PER.C9) which express E1A and E1B proteins, are stable, and complement E1-defective adenovirus vectors. New adenovirus vectors are provided with extended El deletions but contain pIX promoter sequences and the pIX gene, and are the basis for the development of further deleted adenovirus vectors that are mutated for E2A, E2B, or E4.

=> dis his

=> s L11 and PY<1998 and L14 and L18

0 L11 AND PY<1998 AND L14 AND L18

2 FILES SEARCHED...
4 FILES SEARCHED...

L21

```
(FILE 'HOME' ENTERED AT 09:18:30 ON 28 APR 2000)
     FILE 'EMBASE' ENTERED AT 09:18:50 ON 28 APR 2000
L1
              0 S POLLER W?/AU RAN=(1985)
L2
              0 S POLLER/AU RAN=(1985)
L3
              0 S POLLER W? AND GERMANY/SO RAN=(1990)
     FILE 'EMBASE' ENTERED AT 09:25:50 ON 28 APR 2000
                E POLLER W/AU
L4
             41 S E3-E5
L5
             32 S L4 AND PY>1990
L6 ·
              7 S L5 AND ADENOVIRAL
     FILE 'CAPLUS' ENTERED AT 09:37:03 ON 28 APR 2000
              E POLLER W/AU
L7
             25 S E3-E6
L8
              0 S L7 AND PY<1999 AND E1
L9
              0 S L7 AND E1
L10
             25 S L7
     FILE 'EMBASE, SCISEARCH, CAPLUS, BIOSIS' ENTERED AT 09:53:00 ON 28 APR
     2000
     FILE 'MEDLINE, SCISEARCH, CAPLUS, BIOSIS, EMBASE' ENTERED AT 09:53:27 ON
     28 APR 2000
           3410 S ADENOVIRAL (S) E1B OR E1B OR E1B GENES OR E1B GENES (S)
L11
DELET
L12
           2982 S L11 AND PY<1999
L13
              0 S SHUTTLE VECTORS AND L12
         411737 S VECTOR OR VECTORS AND L12
L14
L15
              0 S 55K GENE AND P19 GENE AND PIX GENE
L16
             16 S 55K GENE
L17
             62 S PIX GENE OR PIX GENE
L18
            107 S P19 GENE
L19
              0 S L14 AND L15
L20
              1 S L14 AND L17
```

'=> s L11 and PY<1998 and L18 2 FILES SEARCHED... 4 FILES SEARCHED... 0 L11 AND PY<1998 AND L18 => s L11 and L12 and TNF.alpha. L23 20 L11 AND L12 AND TNF.ALPHA. => display total ibib abs ENTER (L23), L# OR ?:L23 L23 ANSWER 1 OF 20 MEDLINE ACCESSION NUMBER: 97022998 MEDITNE DOCUMENT NUMBER: 97022998 TITLE: [Apoptosis and human viral infections]. Apoptose et infections virales humaines. AUTHOR: Wattre P; Bert V; Hober D Laboratoire de virologie, batiment IRFPPS, CHRU, Lille, CORPORATE SOURCE: France. ANNALES DE BIOLOGIE CLINIQUE, (1996) 54 (5) SOURCE: 189-97. Ref: 51 Journal code: 4ZS. ISSN: 0003-3898. PUB. COUNTRY: France Journal; Article; (JOURNAL ARTICLE) (General Review; (REVIEW) (REVIEW, TUTORIAL) LANGUAGE: French FILE SEGMENT: Priority Journals ENTRY MONTH: 199701 ENTRY WEEK: 19970104 Homeostasis of cell numbers in tissues is maintained by a critical balance between cell proliferation and programmed cell death or apoptosis. Many human viruses are able to develop suitable strategies for modifying apoptosis in virus-infected cells and in virus-primed T cells. Apoptosis is characterized by the fragmentation of nuclear DNA into 180-200 bp apoptotic bodies and can be analysed microscopically or by flow cytometry using staining with various dyes. Moreover DNA cleavage can be identified by electrophoresis and by specific labeling using in situ nucleotidyltransferase assay (ISNT), terminal deoxynucleotidyltransferasemediated dUTP nick-end labeling technique (Tunel), or by Elisa. Adenovirus E1A induces expression of protooncogenes c-myc and c-fos which sensitize cells to apoptosis; EBV EBNA-5, and adenovirus E1A, HPV E7, and polyomavirus large T act in the same way by displacing pRB-bound E2F. EBV EBNA-5, HPV E6, Adenovirus E1B 55 kDa inactivate/the tumor suppressor protein p53 and engage the cells in the transformation process. EBV LMP-1, HHV6, and HTLV1 tax induce the antiapoptotic bc1-2 protein. **EBV** BHRF1 encodes proteins with homology to bcl-2 and Adenovirus E1B 19 kDa encodes proteins that have protective functions similar to bcl-2.

Activated lymphocytes responding to viral infections express high levels of fas and are susceptible to apoptosis. TNF alpha can

down- or up-regulate fas and down-regulates TNF-R. Adenovirus E1B 19 kDa blocks the proapoptotic activity of TNF alpha. Inversly, Cytomegalovirus, hepatitis C virus and Myxoviruses up-regulate fas antigen prior to undergoing apoptosis. In HIV-infected patients, CD4+

T-cell apoptosis is mediated by the cytopathic effect of the virus and

the

cell surface expression of gp 120-env protein. Moreover, an accelerated T-cell apoptosis in HIV-infected individuals is characterized by (i) HIV gp120-CD4+ cross-linking and subsequent aberrant signaling of T-cells, (ii) involvement of TNF alpha-fas/Apo-1 (TNF-R)

binding, (iii) involvement of accessory cells as an apoptosis inducer and as a result of defective antigen presentation, (iv) possible superantigen activity induced by HIV products and cofactors. Many viruses also encode proteins with protease activity which could induce apoptosis. The induction of apoptosis may result in virus clearance, in contrast the inhibition of apoptosis may result in virus cell transformation and viral persistence. Indirectly, the apoptosis of infected cells may be induced

by

CTLs, NK cells and cytokines. In addition, apoptosis-mediated physiological depletion of T lymphocytes in the course of viral infection can silence the immune response and can induce immunodeficiency.

L23 ANSWER 2 OF 20 MEDLINE

ACCESSION NUMBER: 96145137 MEDLINE

DOCUMENT NUMBER: 96145137

TITLE: Essential role of NF-kappa B in transactivation of the

human immunodeficiency virus long terminal repeat by the

human cytomegalovirus 1E1 protein.

AUTHOR: Kim S; Yu S S; Kim V N

CORPORATE SOURCE: Institute for Molecular Biology and Genetics, Seoul

National University, Kwan-Ak-Gu, Korea.

SOURCE: JOURNAL OF GENERAL VIROLOGY, (1996 Jan) 77 (Pt

1) 83-91.

Journal code: I9B. ISSN: 0022-1317.

PUB. COUNTRY: ENGLAND: United Kingdom

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals; Cancer Journals

ENTRY MONTH: 199605

AB The 72 kDa 1E1 protein of human cytomegalovirus (HCMV) is one of a few viral regulatory proteins expressed immediately after infection of a host cell. Although it is now well-established that 1E1 is a potent transcriptional activator of the human immunodeficiency virus (HIV) long terminal repeat (LTR), the identity of the nucleotide sequence responsive to 1E1 remains elusive and the molecular mechanism of this interaction is not well-understood. We have constructed various LTR mutants and tested them for their ability to be activated by 1E1 using transient

transfection

assays. Mutations in the NF-kappa B sites, of either a few changes in the nucleotide sequence or a deletion of the entire region, abrogated 1E1-driven transactivation. Deletion of the Tat-responsive element (TAR) had no significant effect on reporter expression. Mutations in the Sp1 sites or the TATA box significantly lowered LTR activity, but this is probably due to an effect on the general transcription system, as these elements are also required for the transactivation of the LTR by many stimulators including Tat, tumour necrosis factor alpha (TNF-alpha). E1A/E1B and phorbol myristate acetate (PMA). In addition, gel retardation analysis demonstrated that NF- kappa B activity

addition, gel retardation analysis demonstrated that NF- kappa B activity was significantly increased in human T lymphoid H9 and monocytic U937

lines constitutively expressing 1E1. Taken together, these data suggest that NF- kappa B plays a central role in the 1E1 transactivation of the HIV LTR.

L23 ANSWER 3 OF 20 MEDLINE

ACCESSION NUMBER: 92269829 MEDLINE

DOCUMENT NUMBER: 92269829

TITLE: The 19-kilodalton adenovirus E1B transforming

protein inhibits programmed cell death and prevents

cytolysis by tumor necrosis factor alpha.

AUTHOR: White E; Sabbatini P; Debbas M; Wold W S; Kusher D I;

Gooding L R

CORPORATE SOURCE:

Piscataway,

Center for Advanced Biotechnology and Medicine,

New Jersey 08854.

CONTRACT NUMBER: CA13106 (NCI)

CA53370 (NCI) CA48219 (NCI)

SOURCE: MOLECULAR AND CELLULAR BIOLOGY, (1992 Jun) 12 (6)

2570-80.

Journal code: NGY. ISSN: 0270-7306.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

199208 ENTRY MONTH:

The adenovirus ElA and ElB proteins are required for

transformation of primary rodent cells. When expressed in the absence of

the 19,000-dalton (19K) E1B protein, however, the E1A proteins

are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency.

Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency

transformation.

Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (

TNF-alpha) evokes a programmed cell death response in

many tumor cell lines by inducing DNA fragmentation and cytolysis.

Expression of the E1B 19K protein by viral infection, by

transient expression, or in transformed cells completely and specifically

blocks this TNF-alpha-induced DNA fragmentation and

intrinsic cell death mechanism activated by TNF-alpha

cell death. Cosegregation of 19K protein transforming activity with

protection from TNF-alpha-mediated cytolysis

demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an

or E1A, the E1B 19K protein enhances the transforming activity

of E1A and enables adenovirus to evade TNF-alpha

-dependent immune surveillance.

L23 ANSWER 4 OF 20 SCISEARCH COPYRIGHT 2000 ISI (R)

1999:597317 SCISEARCH ACCESSION NUMBER:

THE GENUINE ARTICLE: 220YD

TITLE: Regulation of apoptosis by adenovirus E1A and E1B

oncogenes

White E (Reprint) AUTHOR:

RUTGERS STATE UNIV, DEPT MOL BIOL & BIOCHEM, CTR ADV CORPORATE SOURCE:

BIOTECHNOL & MED, HOWARD HUGHES MED INST, PISCATAWAY, NJ

08854 (Reprint); RUTGERS STATE UNIV, CANC INST NEW

JERSEY,

PISCATAWAY, NJ 08854

COUNTRY OF AUTHOR: USA

SOURCE: SEMINARS IN VIROLOGY, (AUG 1998) Vol. 8, No. 6,

pp. 505-513.

Publisher: ACADEMIC PRESS INC, 525 B ST, STE 1900, SAN

DIEGO, CA 92101-4495.

ISSN: 1044-5773.

DOCUMENT TYPE: General Review; Journal

FILE SEGMENT: LIFE LANGUAGE: English REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Adenovirus E1A promotes apoptosis by interacting with and inhibiting · AB negative regulators of cell cycle control. Binding of E1A to, and inhibition of, the transcriptional coadaptor p300 promotes accumulation

of

the p53 tumor suppressor protein which induces apoptosis. By inhibiting p300, E1A prevents the transcriptional activation of mdm-2, the product

of

which interacts with and promotes the degradation of p53. Thus the E1A-p300 interaction disables the negative feedback loop to control p53 levels, which left unrestrained, cause apoptosis rather than growth arrest. The E1B 19K protein functions analogously to Bcl-2 to inhibit apoptosis by E1A, p53, and multiple other stimuli. The E1B 19K protein functions by at least two independent mechanisms to inhibit apoptosis. First, the E1B 19K protein binds to the pro-apoptotic Bar protein to prevent loss of mitochondrial membrane potential, caspase activation, and apoptosis. Second, the E1B 19K protein inhibits caspase interaction by interfering with the function of adaptor molecules such as FADD and Ced-4 that interact with and activate caspases. By inhibiting FADD-dependent activation of the caspase FLICE, the E1B 19K protein can disable both the TNF-alpha- and the Fas-mediated death signaling pathways which play an important role in immune surveillance against virus infection and cancer. The E1B 19K protein binds to Ced-4, and presumably mammalian Ced-4 homologues,

and

thereby prevents caspase activation. Thus, the study of the mechanism of regulation of apoptosis by the adenovirus transforming proteins has revealed important regulatory steps in death signaling pathways. (C) 1998 Academic Press.

L23 ANSWER 5 OF 20 SCISEARCH COPYRIGHT 2000 ISI (R)

ACCESSION NUMBER: 96:601518 SCISEARCH

THE GENUINE ARTICLE: VB164

TITLE: ROLE OF APOPTOSIS IN THE PATHOGENESIS OF HUMAN

VIRUS-DISEASE

AUTHOR: WATTRE P (Reprint); BERT V; HOBER D

CORPORATE SOURCE: CTR HOSP REG & UNIV LILLE, VIROL LAB, BATIMENT IRFPPS,

F-59037 LILLE, FRANCE (Reprint),

COUNTRY OF AUTHOR: FRANCE

SOURCE: ANNALES DE BIOLOGIE CLINIQUE, (1996) Vol. 54,

> No. 5, pp. 189-197. ISSN: 0003-3898.

DOCUMENT TYPE: General Review; Journal

French LANGUAGE:

REFERENCE COUNT: 51

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

Homeostasis of cell numbers in tissues is maintained by a critical balance between cell proliferation and programmed cell death or apoptosis.

Many human viruses are able to develop suitable strategies for modifying apoptosis in virus-infected cells and in virus-primed T cells. Apoptosis is characterized by the fragmentation of nuclear DNA into 180-200 bp apoptotic bodies and can be analysed microscopically or by flow cytometry using staining with various dyes. Moreover DNA cleavage can be identified by electrophoresis and by specific labeling using in situ nucleotidytransferase assay (ISNT), terminal deoxynucleotidyltransferasemediated dUTP nick-end labeling technique (Tunel), or by Elisa.

Adenovirus

ElA induces expression of pr otooncogenes c-myc and c-fos which sensitize cells to apoptosis; EBV EBNA-5, and adenovirus E1A, HPV E7, and polyomavirus large T act in the same way by displacing pRB-bound E2F. EBV EBNA-5, HPV E6, Adenovirus E1B 55 kDa inactivate the tumor suppressor protein p53 and engage the cells in the transformation

EBV LMP-1, HHV6, and HTLV1 tax induce the antiapoptotic bcl-2 protein. EBV

BHRF1 encodes proteins with homology to bcl-2 and Adenovirus E1B
19 kDa encodes proteins that have protective functions similar to bcl-2.
Activated lymphocytes responding to viral infections express high levels
of fas and are susceptible to apoptosis. TNF alpha can
down- or up-regulate fas and down-regulates TNF-R. Adenovirus E1B
19 kDa blocks the proapoptotic activity of TNF alpha.
Inversly, Cytomegalovirus, hepatitis C virus and Myoviruses up-regulate
fas antigen prior to undergoing apoptosis. In HIV-infected patients, CD4+
T-cell apoptosis is mediated by the cytopathic effect of the virus and

the

cell surface expression of gp 120-env protein. Moreover, an accelerated T-cell apoptosis in HIV-infected individuals is characterized by (i) HIV gp120-CD4+ doss-linking and subsequent aberrant signaling of T-cells,

(ii)

involvement of TNF alpha-fas/Apo-1 (TNF-R) binding, (iii) involvement of accessory cells as an apoptosis inducer and as a result of defective antigen presentation, (iv) possible superantigen activity induced by HN products and cofactors. Many viruses also encode proteins with protease activity which could induce apoptosis.

The induction of apoptosis may result in virus clearance, in contrast the inhibition of apoptosis mag result in virus cell transformation and viral persistence. Indirectly, the apoptosis of infected cells may be induced by CTLs, NK cells and cytokines. In addition, apoptosis-mediated physiological depletion of T lymphocytes in the course of viral infection can silence the immune response and can induce immunodeficiency.

L23 ANSWER 6 OF 20 SCISEARCH COPYRIGHT 2000 ISI (R)

ACCESSION NUMBER: 96:67140 SCISEARCH

THE GENUINE ARTICLE: TP215

TITLE: ESSENTIAL ROLE OF NF-KAPPA-B IN TRANSACTIVATION OF THE

HUMAN-IMMUNODEFICIENCY-VIRUS LONG TERMINAL REPEAT BY THE

HUMAN CYTOMEGALOVIRUS IE1 PROTEIN KIM S Y (Reprint); YU S S; KIM V N

AUTHOR: KIM S Y (Reprint); YU S S; KIM V N

CORPORATE SOURCE: SEOUL NATL UNIV, INST MOLEC BIOL & GENET, KWAN AK GU,

BLDG

105, SEOUL 151742, SOUTH KOREA (Reprint)

COUNTRY OF AUTHOR: SOUTH KOREA

SOURCE: JOURNAL OF GENERAL VIROLOGY, (JAN 1996) Vol. 77,

Part 1, pp. 83-91. ISSN: 0022-1317. Article; Journal

DOCUMENT TYPE: Article; C FILE SEGMENT: LIFE LANGUAGE: ENGLISH

REFERENCE COUNT: 48

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

The 72 kDa IE1 protein of human cytomegalovirus (HCMV) is one of a few viral regulatory proteins expressed immediately after infection of a host cell. Although it is now well-established that IE1 is a potent transcriptional activator of the human immunodeficiency virus (HIV) long terminal repeat (LTR), the identity of the nucleotide sequence responsive to IE1 remains elusive and the molecular mechanism of this interaction is not well-understood. We have constructed various LTR mutants and tested them for their ability to be activated by IE1 using transient

transfection

assays. Mutations in the NF-kappa B sites, of either a few changes in the nucleotide sequence or a deletion of the entire region, abrogated IE1-driven transactivation. Deletion of the Tat-responsive element (TAR) had no significant effect on reporter expression. Mutations in the Sp1 sites or the TATA box significantly lowered LTR activity, but this is probably due to an effect on the general transcription system, as these elements are also required for the transactivation of the LTR by many stimulators including Tat, tumour necrosis factor alpha (TNF-alpha), E1A/E1B and phorbol myristate acetate (PMA). In addition, gel retardation analysis demonstrated that NF-kappa B activity was significantly increased in human T lymphoid H9 and monocytic U937

cell

lines constitutively expressing IE1. Taken together, these data suggest that NF-kappa B plays a central role in the IE1 transactivation of the HIV

LTR.

L23 ANSWER 7 OF 20 SCISEARCH COPYRIGHT 2000 ISI (R)

94:486537 SCISEARCH ACCESSION NUMBER:

THE GENUINE ARTICLE: NZ494

THE MOLECULAR-BASIS OF ADENOVIRUS PATHOGENESIS TITLE:

GINSBERG H S (Reprint); PRINCE G A AUTHOR:

CORPORATE SOURCE: NIAID, INFECT DIS LAB, TWIN BROOK 2, 12441 PARK LAWN DR,

ROCKVILLE, MD, 20852 (Reprint); COLUMBIA UNIV COLL PHYS & SURG, DEPT MICROBIOL, NEW YORK, NY, 10032; COLUMBIA UNIV

COLL PHYS & SURG, DEPT MED, NEW YORK, NY, 10032

COUNTRY OF AUTHOR: USA

INFECTIOUS AGENTS AND DISEASE-REVIEWS ISSUES AND SOURCE:

COMMENTARY, (FEB 1994) Vol. 3, No. 1, pp. 1-8.

ISSN: 1056-2044.

General Review; Journal DOCUMENT TYPE:

LIFE FILE SEGMENT: LANGUAGE: ENGLISH REFERENCE COUNT: 40

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

The pathology of type 5 (Ad5) pneumonia in Sigmodon hispidus cotton rats is closely similar to that in humans. Virus replicates in bronchiolar

epithelial cells, but in situ hybridization shows early gene expression in

macrophage/monocytes in alveoli and hilar lymph nodes. Only early gene expression is required to produce the pathology of which there is an ''early'' and a ''late'' phase. The early region 3 (E3), which does not function in viral replication, plays an important role in the natural history of at least the subgroup C adenoviruses (types 1, 2, 5, 6), which produce latent infections in host-infected lymphocytes: The 19-kDa glycoprotein markedly reduces the transport of the class I MHC to the surface of infected cells and, therefore, the attack of cytotoxic T cells,

which could eliminate infected cells. When this gene is mutated, the late-phase inflammatory response to infection is markedly increased. The E3 14.7-kDa protein reduces the presence of polymorphonuclear leukocytes in the early-phase pathological inflammatory exudate. The E1B 55-kDa is essential to effect the late phase, and when its gene is mutated, the inflammation is greatly reduced although viral replication

not affected. Because only early genes are required to induce the complete

pathogenesis of adenovirus infection in cotton rats, it is possible to produce the same pneumonia in lungs of mice in which only adenovirus early

genes are expressed. In the unique mouse model, it was possible to demonstrate that tumor necrosis factor (TNF)-alpha, interleukin-1, (IL-1), and IL-6 cytokines are elaborated during the first 2 to 3 days after infection, but only TNF-alpha plays a major role in the early phase of pathogenesis. In nude mice, the late inflammatory response does not appear, indicating that it primarily consists of T cells. Steroids almost completely eliminate the pneumonic inflammatory response to infection.

L23 ANSWER 8 OF 20 SCISEARCH COPYRIGHT 2000 ISI (R) ACCESSION NUMBER: 92:336148 SCISEARCH

THE GENUINE ARTICLE: HV309

is

TITLE: THE 19-KILODALTON ADENOVIRUS E1B TRANSFORMING

PROTEIN INHIBITS PROGRAMMED CELL-DEATH AND PREVENTS

CYTOLYSIS BY TUMOR-NECROSIS-FACTOR-ALPHA

AUTHOR: WHITE E (Reprint); SABBATINI P; DEBBAS M; WOLD W S M; KUSHER D I; GOODING L R

CORPORATE SOURCE: CTR ADV BIOTECHNOL & MED, 679 HOES LANE, PISCATAWAY, NJ,

08854 (Reprint); COLD SPRING HARBOR LAB, COLD SPRING HARBOR, NY, 11724; ST LOUIS UNIV, SCH MED, INST MOLEC VIROL, ST LOUIS, MO, 63110; EMORY UNIV, SCH MED, DEPT

MICROBIOL & IMMUNOL, ATLANTA, GA, 30322

COUNTRY OF AUTHOR:

USA

SOURCE: MOLECULAR AND CELLULAR BIOLOGY, (JUN 1992) Vol.

12, No. 6, pp. 2570-2580.

ISSN: 0270-7306.

DOCUMENT TYPE:

Article; Journal

FILE SEGMENT:

LIFE

LANGUAGE:

ENGLISH

REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS

The adenovirus ElA and ElB proteins are required for

transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to

overcome abortive transformation to produce high-frequency

transformation.

Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or ElA, the ElB 19K protein enhances the transforming activity

of E1A and enables adenovirus to evade TNF-alpha

-dependent immune surveillance.

L23 ANSWER 9 OF 20 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1998:584507 CAPLUS

DOCUMENT NUMBER:

130:2522

TITLE:

Regulation of apoptosis by adenovirus E1A and

E1B oncogenes

AUTHOR(S):

White, Eileen

CORPORATE SOURCE:

Howard Hughes Medical Institute, Center for Advanced

Biotechnology and Medicine, Department of Molecular

Biology and Biochemistry, Rutgers University,

Piscataway, NJ, 08854, USA

Semin. Virol. (1998), 8(6), 505-513 CODEN: SEVIEL; ISSN: 1044-5773

PUBLISHER:

SOURCE:

Academic Press

DOCUMENT TYPE:

Journal; General Review

LANGUAGE: English

A review with 106 refs. Adenovirus E1A promotes apoptosis by interacting with and inhibiting neg. regulators of cell cycle control. Binding of AΒ E1A

to, and inhibition of, the transcriptional coadaptor p300 promotes accumulation of the p53 tumor suppressor protein which induces apoptosis. By inhibiting p300, E1A prevents the transcriptional activation of mdm-2, the product of which interacts with and promotes the degrdn. of p53.

Thus

gp120-CD4+ crosslinking and subsequent aberrant signaling of T-cells (11)

involvement of TNF alpha-fas/Apo-1 (TNF-R) binding, (\mbox{iii}) involvement of accessory cells as an apoptosis inducer and as a result of defective antigen presentation, (i.v.) possible superantigen activity induced by HIV products and cofactors. Many viruses also encode proteins with protease activity which could induce apoptosis. The induction of apoptosis may result in virus clearance, in contrast the inhibition of apoptosis may results in virus cell transformation and

persistence. Indirectly, the apoptosis of infected cells may be induced by CTLs, NK cells and cytokines. In addn., apoptosis-mediated physiol. depletion of T lymphocytes in the course of viral infection can silence the immune response and can induce immunodeficiency.

L23 ANSWER 11 OF 20 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1996:33927 CAPLUS

DOCUMENT NUMBER:

CORPORATE SOURCE:

124:108787

TITLE:

Essential role of NF-.kappa.B in transactivation of the human immunodeficiency virus long terminal repeat

by the human cytomegalovirus IE1 protein AUTHOR(S):

Kim, Sunyoung; Yu, Seung Shin; Kim, Vic Narry Inst. Mol. Biol. Genetics, Seoul Natl. Univ., Seoul,

151-742, S. Korea

SOURCE:

J. Gen. Virol. (1996), 77(1), 83-91 CODEN: JGVIAY; ISSN: 0022-1317

DOCUMENT TYPE: LANGUAGE:

English

AB The 72 kDa IE1 protein of human cytomegalovirus (HCMV) is one of a few viral regulatory proteins expressed immediately after infection of a host cell. Although it is now well-established that IE1 is a potent transcriptional activator of the human immunodeficiency virus (HIV) long terminal repeat (LTR), the identity of the nucleotide sequence responsive to IE1 remains elusive and the mol. mechanism of this interaction is not well-understood. We have constructed various LTR mutants and tested them for their ability to be activated by IE1 using transient transfection assays. Mutations in the NF- kappa.B sites, of either a few changes in the nucleotide sequence or a deletion of the entire region, abrogated IEI-driven transactivation. Deletion of the Tat-responsive element (TAR) had no significant effect on reporter expression. Mutations in the Spl sites or the TATA box significantly lowered LTR activity, but this is probably due to an effect on the general transcription system, as these elements are also required for the transactivation of the LTR by many

alpha.), E1A/E1B and phorbol myristate acetate (PMA). In addn., gel retardation anal. demonstrated that NF-.kappa.B activity

stimulators including Tat, tumor necrosis factor alpha (TNF-.

significantly increased in human T lymphoid H9 and monocytic U937 cell lines constitutively expressing IE1. Taken together, these data suggest that NF-.kappa.B plays a central role in the IE1 transactivation of the HIV LTR.

L23 ANSWER 12 OF 20 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1995:430050 CAPLUS

DOCUMENT NUMBER:

122:236357

TITLE: AUTHOR (S): A new look at an old virus: Molecular pathogenesis of

Adenovirus pneumonia

CORPORATE SOURCE:

Ginsberg, Harold S.

College Physicians and Surgeons, Columbia University,

New York, NY, 10032, USA

SOURCE:

Virus Strategies (1993), 473-9. Editor(s): Doerfler, Walter; Boehm, Petra. VCH: Weinheim,

CODEN: 60ZKAT

DOCUMENT TYPE:

Conference; General Review

the E1A-p300 interaction disables the neg. feedback loop to control p53 levels, which left unrestrained, cause apoptosis rather than growth arrest. The E1B 19K protein functions analogously to Bc1-2 to inhibit apoptosis by E1A, p53, and multiple other stimuli. The E1B 19K protein functions by at least two independent mechanisms to inhibit apoptosis. First, the E1B 19K protein binds to the pro-apoptotic Bax protein to prevent loss of mitochondrial membrane potential, caspase activation, and apoptosis. Second, the EIB 19K protein inhibits caspase interaction by interfering with the function of adaptor mols. such as FADD and Ced-4 that interact with and activate caspases. By inhibiting FADD-dependent activation of the caspase FLICE, the EIB 19K protein can disable both the TNF-.

alpha. - and the Fas-mediated death signaling pathways which play an important role in immune surveillance against virus infection and cancer. The E1B 19K protein binds to Ced-4, and presumably mammalian Ced-4 homologs, and thereby prevents caspase activation. Thus, the study of the mechanism of regulation of apoptosis by the adenovirus transforming proteins has revealed important regulatory steps in death signaling pathways. (c) 1998 Academic Press.

L23 ANSWER 10 OF 20 CAPLUS COPYRIGHT 2000 ACS ACCESSION NUMBER: 1996:522933 CAPLUS

DOCUMENT NUMBER:

125:192067

TITLE: Apoptosis and the pathogenesis of human viral disease

Wattre, P.; Bert, V.; Hober, D. Laboratoire de virologie, CHRU, Lille, 59037, Fr.

CORPORATE SOURCE:

Ann. Biol. Clin. (1996), 54(5), 189-197

SOURCE:

CODEN: ABCLAI; ISSN: 0003-3898

DOCUMENT TYPE:

Journal; General Review

LANGUAGE: French

A review with 51 refs. Homeostasis of cell nos. in tissues is maintained by a crit. balance between cell proliferation and programmed cell death

apoptosis. Many human viruses are able to develop suitable strategies

for

modifying apoptosis in virus-infected cells and in virus-primed T cells. Apoptosis is characterized by the fragmentation of nuclear DNA into

180-200 bp apoptotic bodies and can be analyzed microscopically or by

cytometry using staining with various dyes. Moreover DNA cleavage can be identified by electrophoresis and by specific labeling using in situ nucleotidyltransferase assay (ISNT), terminal

deoxynucleotidyltransferase-

mediated dUTP nick-end labeling technique (Tunel), or by Elisa. Adenovirus E1A induces expression of protooncogenes c-myc and c-fos which sensitize cells to apoptosis; EBV EBNA-5, and adenovirus E1A, HPV E7, and polyomavirus large T act in the same way by displacing pRB-bound E2F.

EBV

ENBA-5, HPV E6, Adenovirus E1B 55 kDa inactivate the tumor suppressor protein p53 and engage the cells in the transformation process.

EBV LMP-1, HHV6M and HTLV1 tax induce the antiapoptotic bcl-2 protein. EBV BHRF1 encodes proteins with homol. to bcl-2 and Adenovirus E1B 19 kDa encodes proteins that have protective functions similar to bcl-2. Activated lymphocytes responding to viral infections express high levels of fas are susceptible to apoptosis. TNF.alpha. can down- or up-regulate fas and down-regulates TNF-R. Adenovirus E1B 19 kDa blocks the proapoptotic activity of TNF.alpha.. Inversely, Cytomegalovirus, hepatitis C virus and Myxoviruses up-regulate fas antigen prior to undergoing apoptosis. In HIV-infected patients,

CD4+

T-cell apoptosis is mediated by the cytopathic effect of the virus and the

cell surface expression of gp120-env protein. Moreover, an accelerated T-cell apoptosis in HIV-infected individuals is characterized by (i) HIV LANGUAGE: English

A review with 23 refs. on the mol. pathogenesis of adenovirus infections. The results indicate that only the expression of early genes is required for infection. Early genes ElA, ElB, and E3 are important. These genes, and possibly others, induce an early, inflammatory phase which the cytokine TNF-.alpha., and possibly others, produce. A cytotoxic T-cell response induces the late phase.

L23 ANSWER 13 OF 20 CAPLUS COPYRIGHT 2000 ACS

ACCESSION NUMBER:

1992:446333 CAPLUS

DOCUMENT NUMBER:

117:46333

TITLE:

The 19-kilodalton adenovirus E1B

transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor

.alpha.

AUTHOR (S):

White, Eileen; Sabbatini, Peter; Debbas, Michael;

Wold, William S. M.; Kusher, David I.; Gooding, Linda

CORPORATE SOURCE:

Cent. Adv. Biotechnol. Med., Piscataway, NJ, 08854,

SOURCE:

Mol. Cell. Biol. (1992), 12(6), 2570-80

CODEN: MCEBD4; ISSN: 0270-7306

DOCUMENT TYPE:

Journal

English LANGUAGE:

The adenovirus E1A and E1B proteins are required for AB transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). ElA alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation.

Like E1A, the tumoricidal cytokine tumor necrosis factor .alpha. (TNF-.alpha.) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-.alpha.-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-.alpha.-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, the authors propose that by suppressing an intrinsic cell death mechanism activated by TNF-. alpha. or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF -.alpha.-dependent immune surveillance.

L23 ANSWER 14 OF 20 BIOSIS COPYRIGHT 2000 BIOSIS

ACCESSION NUMBER: 1996:464353 BIOSIS DOCUMENT NUMBER: PREV199699186709

TITLE: Role of apoptosis in the pathogenesis of human virus

disease.

AUTHOR (S): Wattre, P. (1); Bert, V.; Hober, D.

CORPORATE SOURCE: (1) Lab. de virol., batiment IRFPPS, CHRU, 59037 Lille

Cedex France

SOURCE: Annales de Biologie Clinique, (1996) Vol. 54, No. 5, pp.

189-197.

ISSN: 0003-3898. General Review

DOCUMENT TYPE: LANGUAGE: French

SUMMARY LANGUAGE: French; English

'AB Homeostasis of cell numbers in tissues is maintained by a critical balance

between cell proliferation and programmed cell death or apoptosis. Many human viruses are able to develop suitable strategies for modifying apoptosis in virus-infected cells and in virus-primed T cells. Apoptosis is characterized by the fragmentation of nuclear DNA into 180-200 bp apoptotic bodies and can be analysed microscopically or by flow cytometry using staining with various dyes. Moreover DNA cleavage can be identified by electrophoresis and by specific labeling using in situ nucleotidytransferase assay (ISNT), terminal deoxynucleotidytransferasemediated dUTP nick-end labeling technique (Tunel), or by Elisa.

Adenovirus

E1A induces expression of protooncogenes c-myc and c-fos which sensitize cells to apoptosis; EBV EBNA-5, and adenovirus E1A, HPV E7, and polyomavirus large T act in the same way by displacing pRB-bound E2F. EBV EBNA-5, HPV E6, Adenovirus E1B 55 kDa inactivate the tumor suppressor protein p53 and engage the cells in the transformation

EBV LMP-1, HHV6, and HTLV1 tax induce the antiapoptotic bcl-2 protein. EBV

BHRF1 encodes proteins with homology to bcl-2 and Adenovirus E1B
19 kDa encodes proteins that have protective functions similar to bcl-2.
Activated lymphocytes responding to viral infections express high levels of fas and are susceptible to apoptosis. TNF-alpha can down- or up-regulate fas and down-regulates TNF-R. Adenovirus E1B
19 kDa blocks the proapoptotic activity of TNF-alpha.
Inversely, Cytomegalovirus, hepatitis C virus and Myxoviruses up-regulate fas antigen prior to undergoing apoptosis. In HIV-infected patients, CD4+T-cell apoptosis is mediated by the cytopathic effect of the virus and

the

cell surface expression of gp 120-env protein. Moreover, on accelerated T-cell apoptosis in HIV-infected individuals is characterized by (i) HIV gp120-CD4+ cross-linking and subsequent aberrant signaling of T-cells, (ii) involvement of TNF alpha-fas/Apo-1 (TNF-R) binding (iii) involvement of accessory cells as an apoptosis inducer and

binding, (iii) involvement of accessory cells as an apoptosis inducer and as a result of defective antigen presentation, (iv) possible superantigen activity induced by HIV products and cofactors. Many viruses also encode proteins with protease activity which could induce apoptosis. The induction of apoptosis may result in virus cell clearance, in contrast

t.he

by

inhibition of apoptosis may result in virus cell transformation and viral persistence. Indirectly, the apoptosis of infected cells may be induced

CTs, NK cells and cytokines. In addition, apoptosis-mediated physiological

depletion of T lymphocytes in the course of viral infection can silence the immune response and can induce immunodeficiency.

L23 ANSWER 15 OF 20 BIOSIS COPYRIGHT 2000 BIOSIS

ACCESSION NUMBER: 1996:75974 BIOSIS DOCUMENT NUMBER: PREV199698648109

TITLE: Essential role of NF-kappa-B in transactivation of the

human immunodeficiency virus long terminal repeat by the

human cytomegalovirus IE1 protein.

AUTHOR(S): Kim, Sunyoung (1); Yu, Seung Shin; Kim, Vic Narry CORPORATE SOURCE: (1) Inst. Mol. Biol. Genetics, Build. 105 Seoul Natl.

Univ., Kwan-Ad-Gu, Seoul 151-742 South Korea

SOURCE: Journal of General Virology, (1996) Vol. 77, No. 1, pp.

83-91.

ISSN: 0022-1317.

DOCUMENT TYPE: Article LANGUAGE: English

AB The 72 kDa IE1 protein of human cytomegalovirus (HCMV) is one of a few viral regulatory proteins expressed immediately after infection of a host cell. Although it is now well-established that IE1 is a potent

transcriptional activator of the human immunodeficiency virus (HIV) long terminal repeat (LTR), the identity of the nucleotide sequence responsive to IE1 remains elusive and the molecular mechanism of this interaction is not well-understood. We have constructed various LTR mutants and tested them for their ability to be activated by IE1 using transient transfection

assays. Mutations in the NF-kappa-B sites, of either a few changes in the nucleotide sequence or a deletion of the entire region, abrogated IE1-driven transactivation. Deletion of the Tat-responsive element (TAR) had no significant effect on reporter expression. Mutations in the Sp1 sites or the TATA box significantly lowered LTR activity, but this is probably due to an effect on the general transcription system, as these elements are also required for the transactivation of the LTR by many stimulators including Tat, tumour necrosis factor alpha (TNFalpha), E1A/E1B and phorbol myristate acetate (PMA). In addition, gel retardation analysis demonstrated that NF-kappa-B activity was significantly increased in human T lymphoid H9 and monocytic U937

cell

lines constitutively expressing IE1. Taken together, these data suggest that NF-kappa-B plays a central role in the IE1 transactivation of the

HIV

LTR.

L23 ANSWER 16 OF 20 BIOSIS COPYRIGHT 2000 BIOSIS

ACCESSION NUMBER: 1992:349418 BIOSIS

DOCUMENT NUMBER: BA94:41643

THE 19-KILODALTON ADENOVIRUS E1B TRANSFORMING TITLE:

PROTEIN INHIBITS PROGRAMMED CELL DEATH AND PREVENTS

CYTOLYSIS BY TUMOR NECROSIS FACTOR ALPHA.

AUTHOR (S): WHITE E; SABBATINI P; DEBBAS M; WOLD W S M; KUSHER D I;

GOODING L R

CORPORATE SOURCE: COLD SPRING HARBOR LAB., COLD SPRING HARBOR, NEW YORK

11724.

MOL CELL BIOL, (1992) 12 (6), 2570-2580. CODEN: MCEBD4. ISSN: 0270-7306. SOURCE:

FILE SEGMENT: BA; OLD LANGUAGE: English

AB The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). ElA alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell ines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation.

Like ElA, the tumoricidal cytokine tumor necrosis factor .alpha. (TNF-.alpha.) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-.alpha.-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-.alpha.-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-.alpha . or ElA, the ElB 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-.alpha .-dependent immune surveillance.

L23 ANSWER 17 OF 20 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

*ACCESSION NUMBER: 1998321445 EMBASE

Regulation of apoptosis by adenovirus E1A and E1B TITLE:

oncogenes.

AUTHOR: White E.

CORPORATE SOURCE: E. White, Howard Hughes Medical Institute, Ctr. Advanced

> Biotechnology Medicine, Dept. Molecular Biology Biochemistry, Piscataway, NJ 08854, United States

SOURCE: Seminars in Virology, (1998) 8/6 (505-513).

Refs: 106

ISSN: 1044-5773 CODEN: SEVIEL

COUNTRY:

United States

DOCUMENT TYPE: Journal; General Review FILE SEGMENT: 004 Microbiology

029 Clinical Biochemistry

LANGUAGE: English English SUMMARY LANGUAGE:

Adenovirus E1A promotes apoptosis by interacting with and inhibiting negative regulators of cell cycle control. Binding of E1A to, and inhibition of, the transcriptional coadaptor p300 promotes accumulation

of

the p53 tumor suppressor protein which induces apoptosis. By inhibiting p300, E1A prevents the transcriptional activation of mdm-2, the product

of

which interacts with and promotes the degradation of p53. Thus the E1A-p300 interaction disables the negative feedback loop to control p53 levels, which left unrestrained, cause apoptosis rather than growth arrest. The E1B 19K protein functions analogously to Bcl-2 to inhibit apoptosis by E1A, p53, and multiple other stimuli. The E1B 19K protein functions by at least two independent mechanisms to inhibit apoptosis. First, the E1B 19K protein binds to the pro-apoptotic Bax protein to prevent loss of mitochondrial membrane potential, caspase activation, and apoptosis. Second, the E1B 19K protein inhibits caspase interaction by interfering with the function of adaptor molecules such as FADD and Ced-4 that interact with and activate caspases. By inhibiting FADD-dependent activation of the caspase FLICE, the E1B 19K protein can disable both the TNF-.alpha. - and the Fas-mediated death signaling pathways which play an important role in immune surveillance against virus infection and cancer. The E1B 19K protein binds to Ced-4, and presumably mammalian Ced-4 homologues,

and

thereby prevents caspase activation. Thus, the study of the mechanism of regulation of apoptosis by the adenovirus transforming proteins has revealed important regulatory steps in death signaling pathways.

L23 ANSWER 18 OF 20 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 96036615 EMBASE

1996036615 DOCUMENT NUMBER:

Essential role of IVF-.kappa.B in transactivation of the TITLE:

human immunodeficiency virus long terminal repeat by the

human cytomegalovirus IE1 protein.

AUTHOR: Kim S.; Yu S.S.; Kim V.N.

Institute Molecular Biology Genetics, Bldg. 105 Seoul CORPORATE SOURCE:

National University, Kwan-Ak-Gu, Seoul 151-742, Korea,

Republic of

SOURCE: Journal of General Virology, (1996) 77/1 (83-91).

ISSN: 0022-1317 CODEN: JGVIAY

COUNTRY: United Kingdom

DOCUMENT TYPE: Journal; Article FILE SEGMENT: 004 Microbiology

LANGUAGE: English

SUMMARY LANGUAGE: English

The 72 kDa IE1 protein of human cytomegalovirus (HCMV) is one of a few viral regulatory proteins expressed immediately after infection of a host cell. Although it is now well-established that IE1 is a potent transcriptional activator of the human immunodeficiency virus (HIV) long

terminal repeat (LTR), the identity of the nucleotide sequence responsive to IE1 remains elusive and the molecular mechanism of this interaction is not well-understood. We have constructed various LTR mutants and tested them for their ability to be activated by IE1 using transient transfection

assays. Mutations in the NF-.kappa.B sites, of either a few changes in the

nucleotide sequence or a deletion of the entire region, abrogated IE1-driven transactivation. Deletion of the Tat-responsive element (TAR) had no significant effect on reporter expression. Mutations in the Sp1 sites or the TATA box significantly lowered LTR activity, but this is probably due to an effect on the general transcription system, as these elements are also required for the transactivation of the LTR by many stimulators including Tat, tumour necrosis factor alpha (TNF-. alpha.), ElA/E1B and phorbol myristate acetate (PMA). In addition, gel retardation analysis demonstrated that NF-.kappa.B activity was significantly increased in human T lymphoid H9 and monocytic U937

cell

lines constitutively expressing IE1. Taken together, these data suggest that NF-.kappa.B plays a central role in the IE1 transactivation of the HIV LTR.

L23 ANSWER 19 OF 20 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 94235426 EMBASE

DOCUMENT NUMBER: 1994235426

TITLE: The molecular basis of adenovirus pathogenesis.

AUTHOR: Ginsberg H.S.; Prince G.A.

CORPORATE SOURCE: NIH, Twin Brook II, 12441 Park Lawn Drive, Rockville, MD

20852, United States

SOURCE: Infectious Agents and Disease, (1994) 3/1 (1-8).

ISSN: 1056-2044 CODEN: IADIEV

COUNTRY: United States

DOCUMENT TYPE: Journal; General Review FILE SEGMENT: 004 Microbiology

LANGUAGE: English SUMMARY LANGUAGE: English

AB The pathology of type 5 (Ad5) pneumonia in Sigmodon hispidus cotton rats is closely similar to that in humans. Virus replicates in bronchiolar epithelial cells, but in situ hybridization shows early gene expression

in

macrophage/monocytes in alveoli and hilar lymph nodes. Only early gene
expression is required to produce the pathology of which there is an
'early' and a 'late' phase. The early region 3 (E3), which does not
function in viral replication, plays an important role in the natural
history of at least the subgroup C adenoviruses (types 1, 2, 5, 6), which
produce latent infections in host-infected lymphocytes: The 19-kDa
glycoprotein markedly reduces the transport of the class I MHC to the
surface of infected cells and, therefore, the attack of cytotoxic T
cells,

which could eliminate infected cells. When this gene is mutated, the late-phase inflammatory response to infection is markedly increased. The E3 14.7-kDa protein reduces the presence of polymorphonuclear leukocytes in the early-phase pathological inflammatory exudate. The E1B 55-kDa is essential to effect the late phase, and when its gene is mutated, the inflammation is greatly reduced although viral replication

is

not affected. Because only early genes are required to induce the complete

pathogenesis of adenovirus infection in cotton rats, it is possible to
 produce the same pneumonia in lungs of mice in which only adenovirus
early

genes are expressed. In the unique mouse model, it was possible to demonstrate that tumor necrosis factor (TNF)-.alpha., interleukin-I, (IL-1), and IL-6 cytokines are elaborated during the first 2 to 3 days after infection, but only TNF-.alpha.

plays a major role in the early phase of pathogenesis. In nude mice, the late inflammatory response does not appear, indicating that it primarily consists of T cells. Steroids almost completely eliminate the pneumonic inflammatory response to infection.

L23 ANSWER 20 OF 20 EMBASE COPYRIGHT 2000 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 92210480 EMBASE

DOCUMENT NUMBER:

1992210480

TITLE:

The 19-kilodalton adenovirus E1B transforming

protein inhibits programmed cell death and prevents

cytolysis by tumor necrosis factor .alpha..

AUTHOR:

White E.; Sabbatini P.; Debbas M.; Wold W.S.M.; Kusher

D.I.; Gooding L.R.

CORPORATE SOURCE:

Advanced Biotechnology/Medicine Ctr., 679 Hoes

Lane, Piscataway, NJ 08854, United States

SOURCE:

Molecular and Cellular Biology, (1992) 12/6 (2570-2580).

ISSN: 0270-7306 CODEN: MCEBD4

COUNTRY:

United States
Journal; Article
004 Microbiology

DOCUMENT TYPE: FILE SEGMENT:

005 General Pathology and Pathological Anatomy

029 Clinical Biochemistry

LANGUAGE: SUMMARY LANGUAGE: English English

AB The adenovirus ElA and ElB proteins are required for

transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). ElA alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high- frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor .alpha. (TNF-.alpha.) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-.alpha.-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-.alpha.-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-. alpha. or E1A, the E1B 19K protein enhances the transforming activity of EIA and enables adenovirus to evade TNF -.alpha.-dependent immune surveillance.

Creation date: 10-30-2003

Indexing Officer: HSIAD - HUSSEIM SIAD

Team: OIPEBackFileIndexing

Dossier: 09472691

Legal Date: 04-28-2000

No.	Doccode	Number of pages
1	SRNT	. 31

Total number of pages: 31

Remarks:

Order of re-scan issued on