Kapitel 1

Vorwort

Dieses Dokument findest du auf github.com unter: https://github.com/henrilibre/analysis1. Du darfst das Dokument nutzen, erweitern und verbreiten. Maintainer des Dokumentes erreichst du entweder dort oder per E-Mail an analysis1istgeil@nanooq.org. Für die Korrektheit des Dokumentes ist entweder keiner oder du verantwortlich. Die URL der Veranstaltung an sich lautet: https://analysis3.wordpress.com/analysis-i-ws-1516/uebungen-zu-analysis-i-wise-1516/

Kapitel 2

Übungsblatt 1

2.1 Aufgabe 1:

Beweisen Sie mit vollständiger Induktion: Für alle $n \in N$ gilt:

- 1. $5^n 1$ ist durch 4 teilbar.
- 2. $3^{2^n} 1$ ist durch $2^{(n+2)}$ teilbar.
- 3. Die Anzahl A_n aller Teilmengen einer $n\text{-}\mathrm{elementigen}$ Menge ist gegeben durch $A_n=2^n$

2.1.1 Musterlösung

Noch nicht bekannt gegeben

2.1.2 Lösung Lerngruppe "HenriLibre, du?, du?"

- 1. z. z.: $5^n 1|4$
 - Induktionsanker:

$$n_1 = 1: 5^1 - 1 = x \cdot 4$$

$$\Leftrightarrow 5 - 1 = x \cdot 4$$

$$\Leftrightarrow x = 4$$

• Induktionsvoraussetzung: $(5^n - 1)$ ist durch 4 teilbar.

• Induktionsschritt:

$$n \mapsto n+1 : a_{n+1} = 5^{n+1} - 1$$

= $(5 \cdot 5^n) - 1$
 $(4 \cdot 5^n + 5^n) - 1$
 $(4 \cdot 5^n) + (5^n - 1)$

Erster Term ist per Definition durch 4 teilbar. Zweiter Term ist gleich unserer Induktionsvoraussetzung.

- 2. z. z.: $3^{2^n} 1|2^{n+2}$
 - Induktionsanker:

$$n_1 = 1:3^2 - 1 = 9 - 1 = 8$$

- Induktionsvoraussetzung: $3^{2^n} 1$ durch 2^{n+2} teilbar.
- Induktionsschritt:

$$\begin{array}{l} n \mapsto n+1: 3^{2^{n+1}}-1 \\ \text{aus } \overset{\text{der Kla-}}{=} (3^{2^n})^2-1 \\ \text{mer ziehen} \\ \overset{\text{Binomische}}{=} (3^{2^n}-1)(3^{2^n}+1) \end{array}$$

Erster Term ist die Induktionsvoraussetzung. Der zweite Term ist im Detail unwichtig, wegen der Multiplikation.

- 3. z. z.: Für Menge M mit $|M| = n \Rightarrow |P(M)| = 2^n$
 - Induktionsvoraussetzung: n = 1: Sei $M = \{n\}$. Dann ist $P(M) = \{\emptyset, \{a\}\} \rightarrow |P(M)| = 2^1$.
 - Induktionsschritt:

Dann sei
$$M^* = \{a_1, \ldots, a_n\}$$
.
Dann gilt laut Induktionsvoraussetzung: $|P(M^*) = 2^n|$.
Nun gilt $P(M) \setminus P(M^*) = \{T \cup \{a_{n+1}\} | T \in P(M^*)\}$
 $\Rightarrow |P(M)| = 2|P(M^*)| = 2 \cdot 2^n = 2^{n+1}$

• Beispiel:

$$P(m^*): \{\varnothing\}$$

 $^{{}^{1}}P(M) \setminus P(M^{*})$ muss disjunkt sein, weil: Wenn A, B disjunkt, dann $A \cap B = \emptyset$.