MIT Art Design and Technology University MIT School of Computing, Pune Department of Computer Science and Engineering

Second Year B. Tech Academic Year 2022-2023. (SEM-II)

Subject: Advance Data Structures Laboratory

Assignment 1

Assignment Title: Accept prefix expressions, and construct a binary tree and perform recursive and non-recursive traversals.

Aim: Implement Binary tree traversals.

Prerequisite:

- 1. Basic tree terminology and concepts
- 2. Tree traversals
- 3. Concept of Prefix/Postfix (Polish Notations)

Objectives:

- 1. To understand how Binary Tree (BT) is used to represent prefix expression in hierarchical manner
- 2. Understand the different type of traversals (recursive & non-recursive).

Outcomes:

Upon Completion of the assignment the students will be able to

- 1. Construct a BT from prefix expression.
- 2. Understand and analyse various recursive and non-recursive traversals of the BT

Theory:

Binary Tree

- A binary tree is a data structure which is defined as a collection of elements called nodes. Every node contains a "left" pointer, a "right" pointer, and a data element. Every binary tree has a root element pointed by a "root" pointer. The root element is the topmost node in the tree. If root = NULL, then it means the tree is empty.
- If the root node R is not NULL, then the two trees T1 and T2 are called the left and right subtrees of R. if T1 is non-empty, then T1 is said to be the left successor of R. likewise, if T2 is non-empty then, it is called the right successor of R (Ref. Figure 1)

• In a binary tree every node has 0, 1 or at the most 2 successors. A node that has no successors or 0 successors is called the leaf node or the terminal node.

Figure 1: Binary Tree

Expression Tree:

- Binary trees are widely used to store algebraic expressions. For example, consider the algebraic expression Exp given as,
- $Exp = (2 \times 3) + (8/4)$
- This expression can be represented using a binary tree as shown in figure

Figure 1: Expression Tree

Construction of expression tree by using prefix expression

- > Scan the given prefix expression from **Right to Left.**
- ➤ If the character encountered is an **operand**, then
 - Create a new a node; set left and right pointers of the newly created node as NULL
 - ➤ Push the address of newly created node to stack.
- ➤ If character encountered is an **operator**, then
 - Create a new a node; Pop 2 values (address of the nodes already pushed on to the stack) from stack
 - ➤ 1st popped node is attached as **left** child
 - > 2nd popped node is attached as **right** child.
 - Push the address of the newly created node back on to stack.
- Repeat the above process till expression is scanned and stack is empty

Traversing of a Binary Tree (Expression Tree)

• Traversing a binary tree is the process of visiting each node in the tree exactly once, in a systematic way. Unlike linear data structures in which the elements are traversed

sequentially, tree is a non-linear data structure in which the elements can be traversed in many different ways. There are different algorithms for tree traversals. These algorithms differ in the order in which the nodes are visited.

• Pre-order recursive algorithm

To traverse a non-empty binary tree in preorder, the following operations are performed recursively at each node. The algorithm starts with the root node of the tree and continues by,

- Visiting the root node.
- o Traversing the left subtree.
- o Traversing the right subtree.

Pre-order Traversal of the Expression Tree shown in Figure 1 is: + x 2 3 / 8 4

• In-order recursive algorithm

To traverse a non-empty binary tree in in-order, the following operations are performed recursively at each node. The algorithm starts with the root node of the tree and continues by,

- o Traversing the left subtree.
- Visiting the root node.
- o Traversing the right subtree.
- In-order Traversal of the Expression Tree shown in Figure 1 is: 2 x 3 + 8 / 4

• Post-order recursive algorithm

To traverse a non-empty binary tree in post-order, the following operations are performed recursively at each node. The algorithm starts with the root node of the tree and continues by,

- o Traversing the left subtree.
- o Traversing the right subtree.
- Visiting the root node.

Post-order Traversal of the Expression Tree shown in Figure 1 is: 2 3 x 8 4 / +

• Conclusion:

- The expression tree when traversed in the Pre-order manner then the output is a prefix expression
- The expression tree when traversed in the In-order manner then the output is a infix expression
- The expression tree when traversed in the Post-order manner then the output is a postfix expression

Questions:

- 1. Construct an Expression Tree from following prefix expression + 3 * + 592 (step by step output expected)
- 2. Write a non-recursive Pre-order, In-order, Post-order traversal algorithm in a Binary Tree

2 95+*3+ 5+*3+ 12		MIT SCHOOL OF ENGINEERING Rajbaug, Loni-Kalbhor, Pune
Foll No: 2213047 Subject: Advance Data Structures Laboratory. Assignment - 1. Title: Accept prefin enpressions, and construct beinery tree and perform recursing and non-recursing transversels. Questions: 1. Construct an impression Tree from following prefin +3 x + 59 2 (1+ep my step output enper stack enpression tree stack enpression tree from the stack enpression tree stack enpression tree from the stack engrees and the stack engrees		Name: Sowar el : (1) Tou
Subject: Advance Data Structures Laboratory. Assignment - 1 Title: Accept prefin enpressions, and construct binary tree and perform recursive and non-secursive transveals. Questione: 1. Construct an expression Tree from following prefin +3 * + 59 2 (1+ep my step output expect stack expression expression tree from the stack expression expr		class: SV CCF-1 (12)
Subject: Advance Data Structures Laboratory. Assignment - 1 Title: Accept prefin enpressions, and construct binary tree and perform recursing and non-recursing transversels. Questions: 1. Construct an enpression Tree from following prefin +2* + 59 2 (1+ep by step output enper stack enpression tree enpression tree transversion transversion tree transversion tree transversion tree transversion tree transversion		ROLL No.: 2213047
Assignment - 1 Title: Accept prefin engressions, and construct beinery tree and perform recursine and non-recursine transcreats. Questions: 1. Construct an engression Tree from following prefin +3 * + 59 2 (1+ep by step output enper stack enquession enpression tree from the stack enquession tree stack enquession tree from the stack enquesion tree from the stack enquession tree from the stack enque		Subject: Advance O Ct. 1-1
Title: Accept prefin enpressions, and construct binery tree and perform recursive and non-recursive transcreals. Questions: 1. Construct an inpression Tree from following prefin +3 * + 59 2 (1+ep by step output enpectable) Stack enpression enpression tree 1. 2 95 + *3 + 1. 3 + 3 + 1. 4 3 + 1. 5 + * 3 + 1. 5 + * 3 + 1. 6 9		hara Structures Laboratory.
Title: Accept prefin enpressions, and construct binery tree and perform recursive and non-recursive transcreals. Questions: 1. Construct an inpression Tree from following prefin +3 * + 59 2 (1+ep by step output enpectable) Stack enpression enpression tree 1. 2 95 + *3 + 1. 3 + 3 + 1. 4 3 + 1. 5 + * 3 + 1. 5 + * 3 + 1. 6 9		Assimment - 1
Questions: 1. Construct an engression Tree from following prefrin +3* + 59 2 (3+ep my step output enper stack engression engression tre 1. Construct an engression Tree from following prefrin +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tree stack engression engression tree stack engression tree stack engression engression tree stack engression engression tree stack engression engression tree stack engression engressio		
Questions: 1. Construct an engression Tree from following prefrin +3* + 59 2 (3+ep my step output enper stack engression engression tre 1. Construct an engression Tree from following prefrin +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tree stack engression engression tree stack engression tree stack engression engression tree stack engression engression tree stack engression engression tree stack engression engressio		Title: Accept mali amount
Questions: 1. Construct an engression Tree from following prefrin +3* + 59 2 (3+ep my step output enper stack engression engression tre 1. Construct an engression Tree from following prefrin +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tre 1. Construct an engression Tree from following prefrint +3* + 59 2 (3+ep my step output enper stack engression tree stack engression engression tree stack engression tree stack engression engression tree stack engression engression tree stack engression engression tree stack engression engressio		binary tree and north market
Construct an Engression Tree from following prefrin +3*+592 (1+ep my step output enper stack engression tree from following stack engression tree from following prefrin +3*+592 (1+ep my step output enper stack engression tree from following prefrin +3*+592 (1+ep my step output enper stack engression tree from following prefrin +3*+592 (1+ep my step output enper stack engression tree from following prefrin +3*+592 (1+ep my step output enper stack engression tree from following prefrin +3*+592 (1+ep my step output enper stack engression tree from following engression engression tree from following engression tree from following engression		non-securities traversal
1. Construct an expression Tree from following prefix +3* + 59 2 (step by step output expected stack expression tree expression tree \$\frac{1}{2}\$ \$\frac{1}		MINORIANS,
1. Construct an expression Tree from following prefix +3* + 59 2 (step by step output expected stack expression tree expression tree \$\frac{1}{2}\$ \$\frac{1}		Questione:
Stack enpression tre 2 95+*3+ 5 + * 3 + 1 2		
Stack enpression tre 2 95+*3+ 5 + * 3 + 1 2		Construct an expression Tree from following
Stack enpression tre 2 95+*3+ 5 + * 3 + 1 2		prefix +3 * + 59 2 (step by step outnut expert
5 + * 3 + 5 + * 3 + 1	Ans	
5 + * 3 + 2	J. Same	Stack enpression expression tree
5 + * 3 + 2		and the same of th
+ * 3 + 2	- 24	2 95+*3+
+ * 3 + 2	2.5	
2 * 3 + 3 + 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·	- 20	5+*3+
2 * 3 + 3 + 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 ·	_35:013	151
3 9 V		1 1 1 1 1 1
3 9 V		
2		2 857
2		₩ 3 +
1	2.200	3+
The transfer of the transfer o		

MIT SCHOOL OF ENGINEERING Rajbaug, Loni-Kalbhor, Pune 4) If werent is NVLL and stack is not empty then a) Pop the top item from stack. b) Print the papped item, set current = popped - item - right. c) Go to step 3, 5) If current is NVII and stack is empty then we are done C. Postorder non-recursive 1) Create an empty stark. 2) 900 following while reget is not NULL a) Push root's right child and then root to stack b) Set root as roots left shild. -ii) pop an item from stack and set it deroot. a) If the popped Hem has a right child and the right child is at top of stack, then remone the right shild from stack, push the root back and set root as rood's right child. - Repeat is and is while stack is not empty. Conclusion: - The enpression true when traversed in the Pre-order manner than the output is a prefin expression. -The expression true when transvered in the In-orda manner then the output is infin enpression. The enpression tree whon transvered in the Post-order marmer than the output is a postfin expression.

```
Code:
/*
    Construct a expression tree from postfix expression
    _____
   Functions:
       1.Create
       2.Inorder Traversal (Recursive)
       3.Preorder Traversal (Recursive)
       4. Postorder Traversal (Recursive)
       5.Inorder Traversal(N.Recursive)
       6.Preorder Traversal(N.Recursive)
       7.Postorder Traversal(N.Recursive)
*/
#include<iostream>
#include<stdlib.h>
using namespace std;
#define MAX 30
int isoperand(char ch)
   if((ch>='A' && ch<='Z')||(ch>='a' && ch<='z')||(ch>='0' && ch<='9'))
       return 1;
   else
       return 0;
int isoperator(char ch)
   if(ch=='$'||ch=='^'||ch=='+'||ch=='-'||ch=='*'||ch=='/')
       return 1;
   else
       return 0;
struct Treenode
    Treenode *lchild;
   char data;
   Treenode *rchild;
class ET
    Treenode *root;
   public:
       void create(char postfix[MAX]);
       void inorder();
```

```
void inorder(Treenode *);
        void preorder();
        void preorder(Treenode *);
        void postorder();
        void postorder(Treenode *);
        void inorder_nrc();
        void preorder_nrc();
        void postorder_nrc();
ET::ET()
    root=NULL;
void ET::create(char prefix[MAX])
    Treenode *stack[MAX];
    int top=-1;
   int i,len,val;
    char ch;
    Treenode *temp;
    for(i=0;prefix[i]!='\0';i++);
    len=i-1;
    for(i=len;i>=0;i--)
        ch=prefix[i];
        temp=new Treenode;
        temp->lchild=NULL;
        temp->data=ch;
        temp->rchild=NULL;
        if(isoperand(ch))
            stack[++top]=temp;
        else if(isoperator(ch))
            temp->lchild=stack[top--];
            temp->rchild=stack[top--];
            stack[++top]=temp;
        else
            cout<<"\nWrong expression tree";</pre>
            cout<<"\nNode cannot be created";</pre>
            exit(0);
    root=stack[top--];
void ET::inorder()
```

```
if(root)
        inorder(root);
    else
        cout<<"\nEmpty expression tree";</pre>
void ET::inorder(Treenode *root)
    if(root)
        inorder(root->lchild);
        cout<<root->data<<" ";</pre>
        inorder(root->rchild);
void ET::preorder()
    if(root)
    else
        cout<<"\nEmpty expression tree";</pre>
void ET::preorder(Treenode *root)
    if(root)
        cout<<root->data<<" ";</pre>
        preorder(root->lchild);
        preorder(root->rchild);
void ET::postorder()
    if(root)
    else
        cout<<"\nEmpty expression tree";</pre>
void ET::postorder(Treenode *root)
    if(root)
        postorder(root->lchild);
        postorder(root->rchild);
        cout<<root->data<<" ";</pre>
void ET::inorder_nrc()
```

```
Treenode *curr=root;
    Treenode *stack[MAX];
    int top=-1;
    while(1)
        while(curr!=NULL)
            stack[++top]=curr;
        if(top!=-1)
            curr=stack[top--];
            cout<<curr->data<<" ";</pre>
        else
            break;
void ET::preorder_nrc()
    Treenode *curr=root;
    Treenode *stack[MAX];
    int top=-1;
    while(1)
        while(curr!=NULL)
            cout<<curr->data<<" ";</pre>
            stack[++top]=curr;
        if(top!=-1)
            curr=stack[top--];
        else
            break;
void ET::postorder_nrc()
    Treenode *curr=root;
    Treenode *stack[MAX];
    int top=-1,flag[MAX],f;
```

```
while(1)
        if(curr!=NULL)
            stack[++top]=curr;
            flag[top]=0;
        else
                 if(top!=-1)
                     f=flag[top];
                     curr=stack[top--];
                     if(f==0)
                         stack[++top]=curr;
                         flag[top]=1;
                         curr=curr->rchild;
                     else if (f==1)
                         cout<<curr->data<<" ";</pre>
                         curr=NULL;
                 else
                     break;
int main()
    int ch;
    char prefix[MAX];
    cout<<"\nEnter a prefix expression";</pre>
    cin>>prefix;
    while(1)
        cout<<"\n*******MENU********
        cout<<"\n1.Create a expression tree\n2.Inorder Traversal</pre>
(Recursive)\n3.Preorder Traversal (Recursive)";
        cout<<"\n4.Postorder (Recursive)\n5.Inorder Traversal(Non</pre>
Recursive)\n6.Preorder Traversal(Non Recursive)";
        cout<<"\n7.Post order Traversal(Non Recursive)\n8.Exit";</pre>
        cout<<"\nEnter your choice";</pre>
```

```
switch(ch)
    case 1:
        e.create(prefix);
        cout<<"\nExpression Tree Created from Prefix Expression\n";</pre>
    case 2:
        e.inorder();
        break;
    case 3:
        e.preorder();
        break;
    case 4:
        e.postorder();
        break;
    case 5:
        e.inorder_nrc();
        break;
    case 6:
        e.preorder_nrc();
        break;
    case 7:
        e.postorder_nrc();
        break;
    case 8:
        exit(0);
    default:
       break;
```

Output:

```
PS C:\SOURAV\CODE\C++ language codes\ADS assignment> cd "c:\SOURAV\CODE\C++ language codes\ADS assignment\" ; if ($?)
 Enter a prefix expression++234/54
 ********MFNU*******

    Create a expression tree
    Inorder Traversal (Recursive)

 3.Preorder Traversal (Recursive)4.Postorder (Recursive)
 5.Inorder Traversal(Non Recursive)
 6.Preorder Traversal(Non Recursive)
 7.Post order Traversal(Non Recursive)
 8.Exit
 Enter your choice
 Expression Tree Created from Prefix Expression
 ****************

    Create a expression tree
    Inorder Traversal (Recursive)

 3.Preorder Traversal (Recursive)4.Postorder (Recursive)
 5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
7.Post order Traversal(Non Recursive)
 8.Exit
 Enter your choice2
 2 + 3 + 4
********MENU*******
 1.Create a expression tree
 2.Inorder Traversal (Recursive)3.Preorder Traversal (Recursive)
 4.Postorder (Recursive)
5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
 7.Post order Traversal(Non Recursive)

    Create a expression tree
    Inorder Traversal (Recursive)

 3.Preorder Traversal (Recursive)4.Postorder (Recursive)
5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
7.Post order Traversal(Non Recursive)
2 3 + 4 +
********MENU*******
1.Create a expression tree
2.Inorder Traversal (Recursive)
3.Preorder Traversal (Recursive)
4.Postorder (Recursive)
5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
7.Post order Traversal(Non Recursive)
8.Fxit
Enter your choice5
2 + 3 + 4
********MENU********
2. Inorder Traversal (Recursive)
3.Preorder Traversal (Recursive)
4.Postorder (Recursive)
5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
7.Post order Traversal(Non Recursive)
8.Exit
Enter your choice6
+ + 2 3 4
********MENU*******
1.Create a expression tree
2.Inorder Traversal (Recursive)
3.Preorder Traversal (Recursive)
4.Postorder (Recursive)5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
7.Post order Traversal(Non Recursive)
8.Exit
Enter your choice7
2 3 + 4 +
********MENU********
1.Create a expression tree
2.Inorder Traversal (Recursive)
Preorder Traversal (Recursive)
4.Postorder (Recursive)
5.Inorder Traversal(Non Recursive)
6.Preorder Traversal(Non Recursive)
7.Post order Traversal(Non Recursive)
  8.Exit
  Enter your choice8
```