0.1 Exercice 2 : Les balades de Stan l'escargot

Stan l'escargot se déplace en ligne droite à l'intérieur d'une place qui a la forme d'un triangle équilatéral ABC de côté 10 mètres.

- 1. Le **lundi**, Stan part d'un point quelconque M_0 sur [AB], il se déplace parallèlement à (AC) pour atteindre [BC] en P_0 , il repart parallèlement à (AB) pour atteindre [AC] en Q_0 , puis il continue parallèlement à (BC) pour atteindre [AB] en M_1 . En poursuivant ainsi, on construit ainsi une suite de points M_0 , M_1 , M_2 , ...
 - (a) Dans cette question, $AM_0 = 2$ mètres. Sur une figure (échelle $2 \text{ m} \longleftrightarrow 1 \text{ cm}$), représenter les points de M_0 jusqu'à M_6 .
 - (b) Si $AM_0 = x$ avec $x \in [0; 10]$, déterminer la longueur AM_{2021} .
- 2. Le **mardi**, Stan part du point M_0 sur [AB] tel que $AM_0 = 2$ mètres. Il va atteindre [BC] en P_0 puis [AC] en Q_0 pour revenir en M_0 .
 - Un peu fatigué de son trajet de la veille, Stan souhaite faire un trajet le plus court possible. Sans calcul, représenter le chemin de Stan (échelle $2 \text{ m} \longleftrightarrow 1 \text{ cm}$).
- 3. Le **mercredi**, trouvant son trajet un peu monotone, Stan décide de modifier ses déplacements. Il part du segment [AB]. Il se dirige en ligne droite en suivant le plus court chemin vers [BC] pour atteindre P_0 , puis vers [AC] pour atteindre Q_0 et revient sur [AB] en M_1 . En poursuivant ainsi, on construit ainsi une suite de points M_0 , M_1 , M_2 , ...

- (a) Le trajet idéal de Stan serait de revenir à son point de départ après un tour, c'est-à-dire que le trajet idéal serait d'avoir $M_1 = M_0$.
 - Où doit-on placer le point M_0 (on notera I ce point M_0) pour que le trajet soit idéal? Que peut-on dire de ce trajet?
- (b) Stan désire revenir à son point de départ après deux tours. Est-ce possible?
- (c) Stan part d'un point quelconque M_0 sur [AB], au $n^{\text{ème}}$ tour, il se retrouve au point M_n . Démontrer que les points M_n sont de plus en plus proches du point I.
- 4. Le **jeudi**, Stan se place à l'intérieur de la place au point D, il se déplace toujours en ligne droite en suivant le plus court chemin.

Il va d'abord vers [AB] et revient en D, puis vers [BC] et revient en D et enfin, il va vers [AC] et revient en D (il fait donc trois aller-retours).

Il y a t-il un emplacement pour D qui minimise ce trajet?

0.2 Exercice 2 éléments de correction : Les balades de Stan

1. (a) Dans cette question, $AM_0 = 2$ mètres. Sur une figure (échelle $2 \text{ m} \longleftrightarrow 1 \text{ cm}$), représenter les points de M_0 jusqu'à M_6 .

Les points M_0, M_2, M_4, M_6 sont confondus et les points M_1, M_3, M_5 sont confondus

(b) Si $AM_0 = x$ avec $x \in [0; 10]$.

Le triangle M_0BP_0 est équilatéral donc BM_0 = $10 - x = MP_0$.

Le triangle P_0CQ_0 est équilatéral donc CP_0 = x = CQ_0 .

Le triangle Q_0AM_1 est équilatéral donc $AQ_0 = 10 - x = AM_1$.

Donc si $AM_0 = x$ alors $AM_1 = 10 - x$.

On déduit que $AM_2 = 10 - (10 - x) = x = AM_0$ et $AM_3 = 10 - x$.

Les suites $(AM_{2k})_{k\in\mathbb{N}}$ et $(AM_{2k+1})_{k\in\mathbb{N}}$ sont constantes.

Par conséquent $AM_{2021} = 10 - x$.

2. On trace le symétrique du triangle ABC par rapport à (BC) puis le symétrique de ce triangle par rapport à (CA'). On place Q'_0 le point de [A'B'] tel que $A'M'_0 = 2$.

Le trajet $M_0M'_0$ est le chemin le plus court, il coupe [BC] en P_0 et [CA'] en Q'_0 . Le symétrique de Q'_0 par rapport à (BC) donne Q_0 .

3. (a) M_0BP_0 est un triangle rectangle en P_0 et $\widehat{B}=60^\circ$ donc $BP_0=\frac{1}{2}BM_0=\frac{10-x}{2}$

De même
$$CQ_0 = \frac{1}{2}CP_0 = \frac{10+x}{4}$$
 et $AM_1 = \frac{1}{2}AQ_0 = \frac{30-x}{8}$

Le trajet idéal de Stan serait de revenir à son point de départ après un tour, c'est-à-dire que le trajet idéal serait d'avoir $M_1 = M_0$. Donc $\frac{30-x}{8} = x$ c'est à dire $x = \frac{10}{3}$

Ce trajet est un triangle équilatéral

(b) Stan désire revenir à son point de départ après deux tours.

Donc
$$M_2 = M_0$$
 ce qui correspond à : $\frac{30 - \frac{30 - x}{8}}{8} = x$ on obtient aussi $x = \frac{10}{3}$ ce qui n'est vrai que si $M_0 = I$.

(c) Stan part d'un point quelconque M_0 sur [AB], au $n^{\text{ème}}$ tour, il se retrouve au point M_n .

On note
$$x_n = AM_n$$
 on a alors $x_{n+1} = \frac{30 - x_n}{8}$

On pose
$$u_n = x_n - \frac{10}{3}$$

$$u_{n+1} = x_{n+1} - \frac{10}{3} = \frac{30 - x_n}{8} - \frac{10}{3} = \frac{30 - u_n - \frac{10}{3}}{8} - \frac{10}{3} = \frac{\frac{80}{3} - u_n}{8} - \frac{10}{3} = -\frac{u_n}{8}$$

 $IM_n = |u_n|$ et $(IM_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison $\frac{1}{8}$ donc elle est décroissante et tend vers 0 quand $n \to +\infty$.

Ce qui prouve que les points M_n sont de plus en plus proches du point I.

4. L'aire du triangle DAB est $\mathcal{A}(DAB) = DM \times 5$. De même $\mathcal{A}(DCB) = DP \times 5$ et $\mathcal{A}(DAC) = DQ \times 5$.

Donc
$$5 \times (DM + DP + DQ) = \mathcal{A}(DAB) + \mathcal{A}(DCB) + \mathcal{A}(DAC) = \mathcal{A}(ABC)$$
.

Par conséquent la longueur du trajet est $2 \times (DM + DP + DQ) = \frac{2A(ABC)}{5}$ donc ne dépend pas de la position de D.