

第五章 矩阵的相似对角化

第一节 特征值与特征向量

第二节 相似矩阵

第三节 实对称矩阵的对角化

第一节 特征值与特征向量

一、特征值与特征向量的概念与求法

定义1 设A是n阶方阵,若存在数 λ 和n维非零向量X,使关系式

$$AX = \lambda X$$

成立,则称数 λ 方阵A的特征值,非零向量X称为方阵A的对应于特征值 λ 的特征向量.

注: 1.对应于一个特征值有无穷多个特征向量;

2. 一个特征向量只能属于一个特征值.

特征值与特征向量的求法

$$AX = \lambda X \iff (A - \lambda E) X = 0 \iff |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{nn} - \lambda \end{vmatrix} = 0$$

方阵A的特征多项式,记 $f(\lambda)$ 是关于 λ 的一元n次多项式.

→ 方阵A的特征方程

方阵A的特征值与特征向量的求法:

- (1) 方阵A的特征值: A的特征多项式 $f(\lambda) = A \lambda E$ 的根. (有n个)
- (2) 方阵A的属于特征值 λ 的特征向量: 齐次线性方程组($A - \lambda E$) X = 0 的所有非零解.

例1 求 $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$ 的所有特征值与特征向量

解 (1) 求特征值
$$f(\lambda) = |A - \lambda E| = \begin{vmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{vmatrix} = (2 - \lambda)(3 - \lambda)$$

A的所有特征值为 $\lambda_1 = 2$, $\lambda_2 = 3$.

(2) 求特征向量

当 λ_1 =2时,求(A-2E)X=0的所有非零解.

$$A - 2E = \begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \qquad \qquad$$
 令基础解系 $\xi_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 \triangle 的属于特征值 λ 的所有特征向量: $k_1\xi_1(k_1\neq 0)$

当 λ_1 =3时,求(A-3E)X=0的所有非零解.

$$A - 3E = \begin{bmatrix} -2 & 1 \\ -2 & 1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix} \qquad \Rightarrow \text{基础解系} \xi_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 \triangle 的属于特征值3的所有特征向量: $k_2\xi_2(k_2\neq 0)$

例2 求
$$A = \begin{pmatrix} 3 & -4 & 0 \\ 1 & -1 & 0 \\ 4 & 0 & 5 \end{pmatrix}$$
的所有特征值与特征向量

A的所有特征值为 $\lambda_1 = 1$ (二重), $\lambda_2 = 5$.

A的属于特征值1的所有特征向量: $k_1(-2 - 1 2)^T$ $(k_1 \neq 0)$ A的属于特征值1的所有特征向量: $k_2(0 \ 0 \ 1)^T$ $(k_2 \neq 0)$

注:基础解系 就是A的对应 于此特征值的 线性无关的特 征向量.

例3 求
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$
的所有特征值与特征向量

A的所有特征值为 $\lambda_1 = 1$ (二重), $\lambda_2 = 5$.

A的属于特征值1的所有特征向量:

$$k_1(-1\ 1\ 0)^{\mathrm{T}} + k_2(-2\ 0\ 1)^{\mathrm{T}} (k_1, k_2 \neq \mathbf{不全为0})$$

A的属于特征值1的所有特征向量: $k_3(111)^T(k_3 \neq 0)$

属于同一特征值的线性无关的特征向量的个数

≤该特征值的重数.

二、特征值与特征向量的性质

定理1 设A 是n阶矩阵,则 A^T与A有相同的特征值.

定理2 设 $\lambda_1, \lambda_2, ..., \lambda_n$ 为n阶矩阵 $A=(a_{ii})$ 的n个特征值,则

(1)
$$\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii} ; \qquad (2) \qquad \prod_{i=1}^n \lambda_i = |A|$$

其中 $\sum_{i=1}^{n} a_{ii}$ 是A的主对角元素之和,称为方阵A的迹,记做tr(A).

例4 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & a & -2 \\ -4 & -2 & 2 \end{pmatrix}$$
 的特征值分别为 -2, 1, b, 试求参数 a,b .

a = -1, b = 3

$$A$$
的特征多项式 $f(\lambda) = |A - \lambda E| = egin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}$

$$= (a_{11} - \lambda) \begin{vmatrix} a_{22} - \lambda & a_{23} & \cdots & a_{2n} \\ a_{32} & a_{33} - \lambda & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} - \lambda \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{33} - \lambda & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n3} & \cdots & a_{nn} - \lambda \end{vmatrix} + \cdots$$

 $\mathcal{F}(\lambda)$ 的最高次 $(n\chi)$ 项和(n-1)次项只能出现在 $(a_{11}-\lambda)(a_{22}-\lambda)\cdots(a_{nn}-\lambda)$

中, 且
$$f(0) = |A|$$
,由于

$$f(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) \lambda^{n-1} + \dots + |A|$$
$$= (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots (\lambda_n - \lambda) \dots \dots$$

理学院

定理3 设 λ 是n阶矩阵A的特征值.

(1)则 λ^m 是 A^m (m为正整数)的特征值,且 A 与 A^m 有相同的特征向量;

(2) 设
$$\varphi(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$
 为 m 次多项式,称
$$\varphi(A) = a_0 E + a_1 A + a_2 A^2 + \dots + a_m A^m$$
 为方阵 A 的多项式.

则 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值,且A与 $\varphi(A)$ 有相同的特征向量.

定理4 设 λ 是n阶可逆矩阵A的特征值.则

- (1) $\lambda \neq 0$
- (2) $\frac{1}{\lambda}$ 为 A^{-1} 的特征值, 且A 与 A^{-1} 有相同的特征向量.
- (3) $\frac{|A|}{\lambda}$ 为A的伴随矩阵 A^* 特征值,且A与 A^* 有相同的特征向量.

例5 设3阶方阵A的特征值分别为:-1,1,3, 求 $B=A^*+A^2-2A+3E$ 的,

特征值,并计算行列式 |B| 的值. g(-1)=9,g(1)=-1,g(3)=5

$$|B| = 9 \times (-1) \times 5 = -45$$

定理5 不同的特征值对应的特征向量线性无关.

定理6 若 λ_1 , λ_2 , ..., λ_n 为n阶方阵A的不同的特征值,而 ξ_{i1} , ξ_{i2} , ..., ξ_{ir_i}

 $(i=1,2,\cdots m)$ 是属于特征值 λ_i 的线性无关的特征向量,则向量组

 $\xi_{11}, \xi_{12}, \dots, \xi_{1r_1}, \xi_{21}, \xi_{22}, \dots, \xi_{2r_2}, \dots, \xi_{m1}, \xi_{m2}, \dots, \xi_{mr_m}$ **线性无关.**

例6 设 λ_1 和 λ_2 是方阵A的两个不同的特征值,对应的特征向量依次

为 ξ_1 和 ξ_2 ,证明: $a\xi_1$ 和 $b\xi_2$, $ab\neq 0$ 不是A的特征向量. (反证法)

例. 设矩阵A满足等式 A^2 -3A-4E=0,试证明的特征值只能取值-1或4.

思考题一

2. 设 λ_0 方阵A的特征值,齐次线性方程组 $(A - \lambda_0 E) X = 0$ 的解向量是否是A的特征向量?

- 3. 不同方阵的特征值一定不同吗? 可以相同
- 4. 举例说明实矩阵的特征值不一定是实数.
- 5. 如果 λ 是A的r 重特征值,那么方阵A的属于不同方阵的 λ 的线性无关的特征向量是否一定有r 个? $\leq r$ 个 $\frac{1}{2}$ 主对角元就是特征值
 - 6.对角矩阵的特征值与其主对角线上的元素有什么关系?

7. 如果n阶方阵A的每行(列)的元素之和为同一个数a,则 a 是 A 的特征值,且n维向量(1,1,…,1)^T是对应的特征向量,对吗? 正确

作业

P139 习题五

1(1,3,5), 3, 4, 6, 7

相似矩阵的概念与性质

第二节 相似矩阵

一、相似矩阵的概念与性质

定义2 设A与B都是n 阶矩阵. 若存在n 阶可逆矩阵P,使 $P^{-1}AP=B$

成立,则称B是A的相似矩阵,并称矩阵A与B相似.

性质1 若n阶矩阵A和B相似,则

$$(1) \quad |A| = |B|$$

- (2) A和B有相同的秩,即 R(A) = R(B)
- (3) A和B有相同的特征多项式和特征值,从而 tr(A) = tr(B)

注:相似和等价的区别

A与B等价:存在可逆矩阵P和Q,使PAQ=B

例7 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & a & -2 \\ -4 & -2 & 2 \end{pmatrix}$$
与 $B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似,求 a, b . $a = -1, b = 3$

性质2 设n阶矩阵A与B相似,函数 $\varphi(x)$ 是一个多项式,则 $\varphi(A)$ 与 $\varphi(B)$ 相似.

二、矩阵与对角矩阵相似的条件 存在可逆矩阵P,使 $P^{-1}AP = \Lambda$ 矩阵A可相似对角化(简称可对角化):A跟某个对角阵 Λ 相似 \Longrightarrow

矩阵与对角矩阵相似的条件

- (1) n阶矩阵A与对角矩阵相似 $\longleftrightarrow A$ 有n个线性无关的特征向量.
- (2) 不同的特征值对应的特征向量线性无关.
- (3) n阶方阵A可相似对角化 \longrightarrow 对应于A的每个特征值的线性无关特征向量的个数=该特征值的重数,即设 λ_i 是A的 n_i 重特征值,

则A与对角矩阵 Λ 相似 \longleftrightarrow $R(A-\lambda_i E)=n-n_i, i=1,2,\cdots,s$

(4) 若A与对角矩阵 Λ 相似,取可逆矩阵 $P = (\xi_1, \xi_2, \cdots, \xi_n)$,使 $P^{-1}AP = \Lambda$ 为对角矩阵,其中 $\xi_1, \xi_2, \cdots, \xi_n$ 为矩阵 Λ 的n个线性无关的特征向量.

例8 设三阶矩阵
$$A = \begin{pmatrix} -1 & 1 & 2 \\ -2 & 2 & 2 \\ -2 & 1 & 3 \end{pmatrix}$$
. (1) 矩阵 A 是否可相似对角化,为什么?

- (2) 试求可逆矩阵P,使 $P^{-1}AP = \Lambda$ 为对角矩阵;
- (3) 试求 A^k , 其中k为正整数.
- 解 (1) 先求A的特征值为 $\lambda_{1,2} = 1, \lambda_3 = 2$ 属于特征值 $\lambda_{1,2} = 1$ 的线性无关的特征向量为 $\xi_1 = \begin{bmatrix} 2 \end{bmatrix}$ 和 $\xi_2 = \begin{bmatrix} 0 \end{bmatrix}$. 属于1的线性无关的特征向量个数

= 特征值1的重数, 所以矩阵A是否可相似对角化.

(2) 属于特征值 $\lambda_3 = 2$ 的线性无关的特征向量为 $\xi_3 = (1,1,1)^T$.

由 (2) 得 $P^{-1}AP = \Lambda$,则 $A = P\Lambda P^{-1}$, $A^k = P\Lambda^k P^{-1} = \cdots$

$$\Lambda^{k} = \begin{pmatrix} 1^{k} & 0 & 0 \\ 0 & 1^{k} & 0 \\ 0 & 0 & 2^{k} \end{pmatrix}$$

$$= \begin{pmatrix} 3-2^{k+1} & -1+2^k & -2+2^{k+1} \\ 2-2^{k+1} & 2^k & -2+2^{k+1} \\ 2-2^{k+1} & -1+2^k & -1+2^{k+1} \end{pmatrix}$$

求得
$$P^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & -1 \\ -2 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 3-2^{k+1} & -1+2^k & -2+2^{k+1} \\ 2-2^{k+1} & 2^k & -2+2^{k+1} \\ 2-2^{k+1} & -1+2^k & -1+2^{k+1} \end{pmatrix}$$

例9 设三阶矩阵 $A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & a \\ 4 & 0 & 5 \end{pmatrix}$,问a 为何值时,矩阵A 可相似对角化。

解: A 的特征值为 $\lambda_{1,2} = 1, \lambda_3 = 6$.

因为 A 可相似对角化,所以对于特征值 $\lambda_{1,2} = 1$,特征方程组 (A - E)X = 0的基础解系有两个线性无关的解 向量, 即 R(A - E) = 1

$$A - E = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 0 & a \\ 4 & 0 & 4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & a - 3 \\ 0 & 0 & 0 \end{pmatrix}$$

例9 设三阶矩阵 $A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & a \\ 4 & 0 & 5 \end{pmatrix}$,问 a 为何值时,矩阵A 可相似对角化.

解: A 的特征值为 $\lambda_{1,2} = 1, \lambda_3 = 6$.

因为 A 可相似对角化, 所以对于特征值 $\lambda_{1,2} = 1$, 特征方程组 (A - E)X = 0的基础解系有两个线性无关的解 向量, 即 R(A-E)=1

$$A - E = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 0 & a \\ 4 & 0 & 4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & a - 3 \\ 0 & 0 & 0 \end{pmatrix}$$

故当 a=3 时,矩阵 A 可相似对角化.

例10 设A 三阶方阵的特征值为 $\lambda_1 = 2, \lambda_2 = -2, \lambda_3 = 1$,对应的特征向量

依次为
$$\xi_1 = (0,1,1)^T$$
, $\xi_2 = (1,1,1)^T$, $\xi_3 = (1,1,0)^T$ 试求 A.

解: A有三个不同的特征值,则A 可相似对角化.

所以 $A = P\Lambda P^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 3 & -3 \\ -4 & 5 & -3 \\ -4 & 4 & -2 \end{pmatrix}.$

思考题

线性无关

3. 如果n阶方阵A有n个互不相同的特征向量,则A可与对角阵相似吗?不

5. 已知n阶方阵A可相似对角化,如何求可逆矩阵P,使得 $P^{-1}AP = \Lambda$ 为对角

矩阵? n个线性无关的特征向量按列排列所得的矩阵

6. 相似矩阵定义中的可逆矩阵 P 是唯一的吗? 不唯一

作业

P140 习题五

10, 11, 12, 13(1,2), 14

§ 5.3 实对称矩阵的对角化

上一节已指出,不是任何方阵与对角矩阵相似,然而实对称矩阵一定 可对角化.

- 一、实向量的内积、施密特(Schmidt)正交化方法与正交矩阵
- 1、向量的内积
- 定义3 给定 n 元实向量 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (b_1, b_2, \dots, b_n)^T$,
- 称实数 [α , β]= $a_1b_1+a_2b_2+...+a_nb_n$ 为向量 α 与 β 的内积.
- 由内积定义和矩阵乘法,有 $[\alpha,\beta]=\alpha^{\mathsf{T}}\beta=\beta^{\mathsf{T}}\alpha$, 从而得内积的下列性质:

- (1) $[\alpha,\beta]=[\beta,\alpha]$;
 - (2) $[\alpha + \beta, \gamma] = [\alpha, \gamma] + [\beta, \gamma];$
- (3) $[\lambda \alpha, \beta] = \lambda [\beta, \alpha]$; (4) $[\alpha, \alpha] \ge 0$; 当且仅当 $\alpha = 0$ 时等号成立.
 - 2、向量的长度与夹角

定义4 给定n元实向量 $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)^T$,称

$$\| \boldsymbol{\alpha} \| = \sqrt{[\boldsymbol{\alpha}, \boldsymbol{\alpha}]} = \sqrt{[\boldsymbol{\alpha}_1^2 + \boldsymbol{\alpha}_2^2 + \dots + \boldsymbol{\alpha}_n^2]}$$

为向量α的长度(范数或模).

向量的长度具有下述性质(其中λ为实数):

- 非负性: | α | ≥0
- 齐次性: $\|\lambda\alpha\| = |\lambda| \cdot \|\alpha\|$;
- •三角不等式: $\|\alpha + \beta\| = \|\alpha\| + \|\beta\|$.

长度为1的向量称为单位向量. 对任一非零向量 α ,向量 $\frac{\alpha}{\|\alpha\|}$ 为单位向量,这一过程称为将向量单位化(或规范化,或标准化).

可以证明,向量的内积满足: $[\alpha,\beta] \le |\alpha| \cdot |\beta|$

等号成立当且仅当 α 与 β 线性相关. 上式称为施瓦茨(Schwarz)不等式.

由此可得
$$\left| \frac{[\alpha, \beta]}{\|\alpha\| \|\beta\|} \right| \le 1$$
 $\alpha \ne 0, \beta \ne 0$

定义5 设 α , β 为n元实非零向量,记

$$<\alpha, \beta> = \arccos \frac{[\alpha, \beta]}{\|\alpha\| \|\beta\|}$$
 $0 \le \langle \alpha, \beta \rangle \le \pi$

 $称\langle\alpha,\beta\rangle$ 为向量 α 与 β 的夹角.

例11 求向量 $\alpha = (1, 1, 0, -1)^T$, $\beta = (1, 2, 1, 0)^T$ 的夹角. $\pi/4$

3、正交向量组

定义6 设 α 与 β 是两个n元实向量,若 $[\alpha,\beta]=0$,则称向量 α 与 β 正交(或垂直),记为 α \perp β .

显然,零向量与任何向量都正交. 两个非零向量正交当且仅当它们的 夹角为 $\pi/2$.

定义7 若不含零向量的向量组中任意两个向量都正交,则称此向量组为正交向量组. 由单位向量构成的正交向量组叫做正交单位向量组.

(规范正交向量组或标准正交向量组)

定理10 设 α_1 , α_2 , …, α_m 是正交向量组,则 α_1 , α_2 , …, α_m 必线性无关.

例12 已知向量 $\alpha_1 = (1, 1, -1)^T$, $\alpha_2 = (1, 1, 2)^T$,试求一个单位向量 α_3 ,使 α_{1} , α_{2} , α_{3} 成为标准正交向量组. (先求正交的向量,再单位化)

4、施密特(Schmidt)正交化方法 设向量组 α_1 , α_2 , …, α_m 线性无关,下面介绍如何从 α_1 , α_2 , …,

 α_m 构造出与 α_1 , α_2 , …, α_m 等价的正交向量组 β_1 , β_2 , …, β_m .

定理11 设向量组 α_1 , α_2 , …, α_m 线性无关. 令

$$\beta_{1} = \alpha_{1} \qquad \beta_{2} = \alpha_{2} - \frac{[\alpha_{2}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} \qquad \beta_{3} = \alpha_{3} - \frac{[\alpha_{3}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{3}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2}$$

$$\beta_{m} = \alpha_{m} - \frac{[\alpha_{m}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{m}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2} - \cdots - \frac{[\alpha_{m}, \beta_{m-1}]}{[\beta_{m-1}, \beta_{m-1}]} \beta_{m-1}$$

则 β_1 , β_2 ,…, β_m 是正交向量组,且 β_1 , β_2 ,…, β_j 与 α_1 , α_2 ,…, α_j (j=1,2 …m)等价.上述过程称为施密特(Schmidt)正交化方法.

例13 用施密特正交化方法将向量组

$$\alpha_1 = (1, 1, 1)^T$$
, $\alpha_2 = (1, 2, 3)^T$, $\alpha_3 = (1, 4, 9)^T$,

化为规范正交向量组.

$$\eta_{1} = \frac{1}{\|\beta_{1}\|} \beta_{1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \eta_{2} = \frac{1}{\|\beta_{2}\|} \beta_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\eta_3 = \frac{1}{\|\beta_3\|} \beta_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

5、正交矩阵

定义8 设A为n阶矩阵,如果 $AA^{T}=E$,则称A为正交矩阵.

显然,若A为正交矩阵,则 $A^{-1}=A^{T}$.

正交矩阵性质:

- (1) A为正交矩阵 $\Leftrightarrow A$ 的列(或行)向量组是单位正交向量组.
- (2) 设A,B为正交矩阵,则 $|A|=\pm 1$;

 $A^{-1}=A^{\mathrm{T}}$ 、AB也是正交矩阵

二、实对称矩阵特征值与特征向量的性质

性质1 实对称矩阵的特征值为实数.

从而有:实对称阵A的特征向量可取为实向量.

性质2 实对称矩阵属于不同特征值的特征向量相互正交.

定理13 设A为n阶实对称矩阵, λ_0 是A的r重特征值,则A的属于特征值 λ_0

的线性无关的特征向量恰有r个,即 $R(A-\lambda_0 E) = n-r$

三、实对称矩阵的对角化

定理14 设A为n阶实对称矩阵,则存在n阶正交矩阵Q,使得

$$Q^{-1}AQ = Q^{T}AQ = \Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

其中 λ_1 , λ_2 , …, λ_n 为A的特征值.

给出了对于实对称矩阵A,如何求正交矩阵Q,使 $Q^{-1}AQ = Q^TAQ = \Lambda$ 为对角阵的方法. 具体步骤如下:

- (1) 求A的n个特征值和每个特征值对应的齐次线性方程组的基础解系;
 - (2) 对每组基础解系分别进行正交化和单位化;
 - (3)将单位化后的向量按列排列得到的矩阵就是需要的正交矩阵Q.

例14 设
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$
, 求一个正交矩阵 Q , 使 $Q^{-1}AQ = \Lambda$ 为对角阵.

例15 设3阶实对称矩阵A的特征值为2、4、4,属于特征值2的特征向量

为
$$\xi_1 = (0,1,-1)^T$$

- (1) 求A的属于特征值4的特征向量;
- (2) 求矩阵A.

$$\mathbf{A} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

利用属于2的特征向量与 属于4的特征向量正交

思 考 题 三

1. A, B都是n阶实对称阵,且A = B有相同的特征多项式,则A = B必相似吗? A = B必相似

2. 实对称矩阵一定可以对角化,则和对角矩阵相似的矩阵一定是实对称

矩阵吗? 不是

作业

P141 习题五

19, 20, 21(1,3), 22, 24, 25

P147 17