7MR10040: Medical Robotics: Theory and Applications

Semester 1

Assignment 5

Written by Alexandros Megalemos

Question 1

Derive the inverse kinematics equations

$$\vartheta_2 = atan2\left(\pm\sqrt{1-cos\vartheta_2^2},cos\vartheta_2\right)$$

$$\vartheta_1 = \gamma - \beta = atan2(y, x) - atan2(a_2sin\vartheta_2, a_1 + a_2cos\vartheta_2)$$

$$\theta_4 = \theta_1 + \theta_2 + \theta_u$$

$$d_3 = d_4 - d_{gp}$$

Where:

Using the law of cosines:
$$cos\vartheta_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

and:

$$\beta = atan2(a_2sin\theta_2, a_1 + a_2cos\theta_2)$$

$$\gamma = atan2(y, x)$$

 d_4 = the distance between the ground and o_3

 $d_{gp} =$ the distance between the ground and o_4

 ϑ_u is an angle given by the user or zero as there is no orientation matrix for the object or point rotation. If we had an orientation matrix then perhaps

 $\vartheta_4 = \vartheta_1 + \vartheta_2 - atan2(X_i, Y_i)$ where X_i and Y_i describe the orientation of the point