

Clifford Group Equivariant Neural Networks

David Ruhe^{1,2}, Johannes Brandstetter³, Patrick Forré^{1,2}

¹AI4Science Lab, AMLab

²University of Amsterdam

³Microsoft Research AI4Science

Angxiao Yue

2023-11-09

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- > Experiment
- > Conclusion

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- Experiment
- Conclusion

Introduction

- > Equivariant neural networks can be divided into three categories:
 - 1. Scalarize geometric quantities. Lack of directional information
 - 2. Regular group representations. Intractable for Lie Group
 - 3. Irreducible representations. Operate in a steerable spherical harmonics basis. The Clebsch-Gordan coefficients are not trivial to obtain.

Introduction

- ➤ Propose CGENN: an equivariant parameterization(3) of neural networks based on Clifford algebras. Inside the algebra, identify the Clifford group(2) and its action, termed the (adjusted) twisted conjugation(1).
 - 1. Directly transform data in a vector basis.

2. Preserve geometrically meaningful product structure.

3. Readily generalizes to orthogonal groups regardless of the dimension or metric signature of the space

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- Experiment
- Conclusion

Clifford Algebras

■ Basic definitions and settings

- Let V be a finite-dimensional vector space over a field \mathbb{F} , equipped with a quadratic form $q: V \to \mathbb{F}$. In this paper's context, $\mathbb{F} \coloneqq \mathbb{R}$.
- The Clifford Algebra Cl(V, q) generated by V with $v^2 = q(v)$. For $x \in Cl(V, q)$, $x = \sum_{i \in I} c_i \cdot v_{i,1} \cdot v_{i,2} ... v_{i,k_i}$.
- Associated bilinear form is $b(v_1, v_2) = \frac{1}{2}(q(v_1 + v_2) q(v_1) q(v_2))$.
- $ightharpoonup If n := Dim(V), Dim(Cl(V,q)) = 2^n.$
- Let $\{e_1, e_2, ..., e_n\}$ be an orthogonal basis for V. The tuple $(e_A)_{A\subseteq [n]}$ is an orthogonal basis for Cl(V, q), where $[n] = \{1, ..., n\}$, $e_A := \prod_{i \in A}^{<} e_i$.

Clifford Algebras

Basic definitions and settings

- We can decompose the algebra into vector subspaces $Cl(V,q)^{(m)}$, m=0,1,...,n, called grades. $Dim(Cl(V,q)^{(m)})=C_n^m$.
- $\rightarrow m = 0$: scalars \mathbb{F} .
- $\rightarrow m = 1$: vectors V.
- $\geq m = 2$ and m = 3 refer to bivectors and trivectors.

Clifford Algebras

Basic definitions and settings

$$\triangleright Cl(V,q) = \bigoplus_{m=0}^{n} Cl(V,q)^{(m)}$$

For
$$x \in Cl(V, q)$$
, we can always write $x = x^{(0)} + x^{(1)} + ... + x^{(n)}$

$$\succ Cl^{[0]}(V,q) = \bigoplus_{m,\,even}^{n} Cl(V,q)^{(m)},\,Cl^{[1]}(V,q) = \bigoplus_{m,\,odd}^{n} Cl(V,q)^{(m)},\,\text{so }x = x^{[0]} + x^{[1]}.$$

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- Experiment
- Conclusion

- Clifford Group and its Clifford Algebra Representations
- Let $Cl^{\times}(V, q)$ denote the group of **invertible** elements of the Clifford algebra. For $w, w^{-1} \in Cl^{\times}(V, q)$, we have $ww^{-1} = w^{-1}w = 1$.
- For $w \in Cl^{\times}(V, q)$, define the (adjusted) **twisted conjugation(1)** as follows: $\rho(w): Cl(V, q) \to Cl(V, q), \quad \rho(w)(x) = wx^{[0]}w^{-1} + \alpha(w)x^{[1]}w^{-1}$ where $\alpha(w)$ is called main involution of Cl(V, q) and $\alpha(w) = w^{[0]} w^{[1]}$.

Clifford Group and its Clifford Algebra Representations

- The map(action) $\rho(w)$ is essential for constructing equivariant neural networks operating on the Clifford algebra.
- When $\rho(w)$ is restricted to a carefully chosen **subgroup** of $Cl^{\times}(V,q)$, many desirable characteristics emerge.
- \triangleright This subgroup will be called the Clifford group(2) of Cl(V, q) and we define it as:

$$\Gamma(V,\mathfrak{q}) := \left\{ w \in \mathrm{Cl}^{\times}(V,\mathfrak{q}) \cap \left(\mathrm{Cl}^{[0]}(V,\mathfrak{q}) \cup \mathrm{Cl}^{[1]}(V,\mathfrak{q}) \right) \, \middle| \, \forall v \in V, \, \rho(w)(v) \in V \right\}$$

Pay attention: $\cup \neq \oplus !!!$

$$Cl(V,q) = Cl^{[0]}(V,q) \oplus Cl^{[1]}(V,q)$$

$$Cl(V,q) \neq Cl^{[0]}(V,q) \cup Cl^{[1]}(V,q)$$

Clifford Group and its Clifford Algebra Representations

Specifically, $\rho(w)$ was ensured to reduce to a reflection when restricted to V. $w, x \in Cl^{(1)}(V,q) = V, w \in Cl^{\times}(V,q) = V$.

$$\rho(w)(x) = -wxw^{-1} \stackrel{!}{=} x - 2\frac{\mathfrak{b}(w,x)}{\mathfrak{b}(w,w)}w.$$

- $\triangleright \rho(w)$: $Cl(V,q) \rightarrow Cl(V,q)$, $\rho(w)(x) = wx^{[0]}w^{-1} + \alpha(w)x^{[1]}w^{-1}$
 - 1. Additivity: $\rho(w)(x_1 + x_2) = \rho(w)(x_1) + \rho(w)(x_2)$,
 - 2. Multiplicativity: $\rho(w)(x_1x_2) = \rho(w)(x_1)\rho(w)(x_2)$, and: $\rho(w)(c) = c$,
 - 3. Invertibility: $\rho(w^{-1})(x) = \rho(w)^{-1}(x)$,
 - 4. Composition: $\rho(w_2)\left(\rho(w_1)(x)\right) = \rho(w_2w_1)(x)$, and: $\rho(c)(x) = x$ for $c \neq 0$,
 - 5. Orthogonality: $\bar{\mathfrak{b}}(\rho(w)(x_1), \rho(w)(x_2)) = \bar{\mathfrak{b}}(x_1, x_2)$.

Resulted Equivariance on Clifford Group

All grade projections are Clifford group equivariant. For $w \in \Gamma(V, q)$, $x \in Cl(V, q)$ and m = 0, ..., n. We have

$$\rho(w)(x^{(m)}) = (\rho(w)(x))^{(m)}.$$

$$\begin{array}{c}
\operatorname{Cl}(V,\mathfrak{q}) \xrightarrow{(_)^{(m)}} & \operatorname{Cl}^{(m)}(V,\mathfrak{q}) \\
\downarrow^{\rho(w)} & & \downarrow^{\rho(w)} \\
\operatorname{Cl}(V,\mathfrak{q}) \xrightarrow{(_)^{(m)}} & \operatorname{Cl}^{(m)}(V,\mathfrak{q})
\end{array}$$

Resulted Equivariance on Clifford Group

All polynomials are Clifford group equivariant. Let $F \in \mathbb{F}[T_1, T_2, ..., T_l]$ be a polynomial in l variables with coefficients in \mathbb{F} . $w \in \Gamma(V, q)$. Further, consider l variables $x_1, x_2, ...x_l \in C \ l \ (V, q)$.

$$\rho(w) (F(x_1, \dots, x_\ell)) = F(\rho(w)(x_1), \dots, \rho(w)(x_\ell)).$$

$$\overbrace{\operatorname{Cl}(V,\mathfrak{q})\times\cdots\times\operatorname{Cl}(V,\mathfrak{q})}^{\ell \text{ times}} \xrightarrow{F} \operatorname{Cl}(V,\mathfrak{q})$$

$$\downarrow \rho(w) \qquad \downarrow \rho(w) \qquad \downarrow \rho(w) \qquad \downarrow \rho(w)$$

$$\operatorname{Cl}(V,\mathfrak{q})\times\cdots\times\operatorname{Cl}(V,\mathfrak{q}) \xrightarrow{F} \operatorname{Cl}(V,\mathfrak{q})$$

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- Experiment
- Conclusion

Clifford Group Equivariant Neural Networks

■ Linear layers

Let $x_1, x_2, ..., x_l \in Cl(V, q)$. Using the fact that a polynomial restricted to the first order constitutes a linear map, we can construct a linear layer by setting

$$y_{c_{\text{out}}}^{(k)} := T_{\phi_{c_{\text{out}}}}^{\text{lin}}(x_1, \dots, x_\ell)^{(k)} := \sum_{c_{\text{in}}=1}^{\ell} \phi_{c_{\text{out}}c_{\text{in}}k} \, x_{c_{\text{in}}}^{(k)},$$

Where $\phi_{c_{out}c_{in}k} \in \mathbb{R}$ are optimizable coefficients (equivariant parameterization(3)). c_{in} and c_{out} denote the input and output channel.

■ Geometric Product Layers

In this work, we only consider layers up to second order. Higher-order interactions are indirectly modeled via multiple successive layers. As an example, we take the pair x_1 , x_2 , their interaction terms take the form $(x_1^{(i)}x_2^{(j)})^{(k)}$, i, j, k = 0, ..., n.

$$P_{\phi}(x_1, x_2)^{(k)} := \sum_{i=0}^{n} \sum_{j=0}^{n} \phi_{ijk} \left(x_1^{(i)} x_2^{(j)} \right)^{(k)},$$

Where $\phi_{ijk} \in \mathbb{R}$ are optimizable coefficients (equivariant parameterization(3)). We need $(n+1)^3$ parameters for every geometric product between a pair of multivectors.

■ Geometric Product Layers

$$P_{\phi}(x_1, x_2)^{(k)} := \sum_{i=0}^{n} \sum_{j=0}^{n} \phi_{ijk} \left(x_1^{(i)} x_2^{(j)} \right)^{(k)},$$

Parameterizing and computing all second-order terms amounts to l^2 . Instead, we first apply a linear map to obtain y_1 , ..., y_l . Through this map, the **mixing** (i.e., the terms that will get multiplied) gets learned. That is, we only get l pairs: (x_1, y_1) , (x_2, y_2) ... (x_l, y_l) ,

$$z_{c_{\text{out}}}^{(k)} := T_{\phi_{c_{\text{out}}}}^{\text{prod}}(x_1, \dots, x_{\ell}, y_1, \dots, y_{\ell})^{(k)} := \sum_{c_{\text{in}}=1}^{\ell} P_{\phi_{c_{\text{out}}c_{\text{in}}}}(x_{c_{\text{in}}}, y_{c_{\text{in}}})^{(k)},$$

Nonlinearities

$$x^{(m)} \mapsto \operatorname{ReLU}(x^{(m)})$$
 when $m = 0$
 $x^{(m)} \mapsto \sigma_{\phi}(\bar{\mathfrak{q}}(x^{(m)})) x^{(m)}$ otherwise.

Embedding Data in the Clifford Algebra

- > Scalars: mass, charge, temperature...
- > Vectors: positions, velocities...

$$\mathrm{Cl}^{(0)}(V,\mathfrak{q})\cong\mathbb{R} \text{ and } \mathrm{Cl}^{(1)}(V,\mathfrak{q})\cong V$$

 $\operatorname{Cl}^{(0)}(V,\mathfrak{q})\cong\mathbb{R}$ and $\operatorname{Cl}^{(1)}(V,\mathfrak{q})\cong V$ we can embed the data into the scalar and vector subspaces of the Clifford algebra to obtain Clifford features

$$x_1,\ldots,x_\ell\in\operatorname{Cl}(V,\mathfrak{q})$$

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- > Experiment
- Conclusion

Experiment

■ Experiment setting

- ➤ O(3) Experiment: Signed Volumes
- \triangleright O(5) Experiment: Convex Hulls.
- \triangleright O(5) Experiment: Regression.
- > E(3) Experiment: n-Body System
- \triangleright O(1, 3) Experiment: Top Tagging

Experiment

Figure 3: Left: Test mean-squared errors on the O(3) signed volume task as functions of the number of training data. Note that due to identical performance, some baselines are not clearly visible. Right: same, but for the O(5) convex hull task.

Figure 4: Test mean-squared-errors on the O(5) regression task.

Experiment

Method	$MSE\left(\downarrow\right)$		
SE(3)-Tr.	0.0244		
TFN	0.0244		
NMP	0.0107		
Radial Field	0.0104		
EGNN	0.0070		
SEGNN	0.0043		
CGENN	0.0039 ± 0.0001		

Table 1: Mean-squared error (MSE) on the n-body system experiment.

Model	Accuracy (†)	AUC (†)	$1/\epsilon_B \left(\uparrow\right)$ $(\epsilon_S = 0.5)$	$1/\epsilon_B \; (\uparrow) \\ (\epsilon_S = 0.3)$
ResNeXt XGD+17	0.936	0.9837	302	1147
P-CNN [CMS17]	0.930	0.9803	201	759
PFN [KMT19]	0.932	0.9819	247	888
ParticleNet [QG20]	0.940	0.9858	397	1615
EGNN [SHW21]	0.922	0.9760	148	540
LGN [BAO ⁺ 20]	0.929	0.9640	124	435
LorentzNet [GMZ ⁺ 22]	0.942	0.9868	498	2195
CGENN	0.942	0.9869	500	2172

Table 2: Performance comparison between our proposed method and alternative algorithms on the top tagging experiment. We present the accuracy, Area Under the Receiver Operating Characteristic Curve (AUC), and background rejection $1/\epsilon_B$ and at signal efficiencies of $\epsilon_S = 0.3$ and $\epsilon_S = 0.5$.

- > Introduction
- Clifford Algebras
- > Theoretical Results
- Methodology
- Experiment
- > Conclusion

Conclusion

They presented a novel approach for constructing O(n)- and E(n)-equivariant neural networks based on Clifford algebras. After establishing the required theoretical results, they proposed parameterizations of nonlinear multivector-valued maps that exhibit versatility and applicability across scenarios varying in dimension. This was achieved by the core insight that polynomials in multivectors are O(n)-equivariant functions. Theoretical results were empirically substantiated in three distinct experiments, outperforming or matching baselines that were sometimes specifically designed for these tasks.

Angxiao Yue 2023-11-09