Trolls on State Street: Comment

Rufus Pollock
Department of Economics
Cambridge University

Toulouse 2007

The Paper

- Ongoing intense policy debate about patent quality and patentability.
- Paper tries to get at this problem indirectly via patent litigation using an approach heavily based on Lanjouw and Schankerman (could be entitled: Litigation as a window on quality).
- Very little existing empirical literature on these questions so this work especially welcome.
- Secondarily: general factors affecting litigation of business method patents.

Testing Strategy

- Hypotheses:
 - \bullet \bullet Business method patents are 'good' patents.
 - H₁ Business method patents are 'bad' patents (of 'dubious validity')
- Lanjouw and Schankerman (2001) deal with 'good' patents so by comparison with their results and the standard law and economics literature would expect under H₀ (H₁):
 - More 'important' patents will be litigated (patent value matters less).
 - 2 Larger entities litigate more as litigation relatively less costly (small firms and individuals do it more).
 - Litigation rates should be approximately equal to 'normal' (L&J) rates (litigation rates should be higher).

How did business method patents measure up?

- More 'valuable' patents litigated?
 - YES (mostly). More 'important' (no of claims, forward citations) patents are litigated more.
 - Backward citation effect is +ve rather than -ve though.
- Large firms litigate more.
 - NO. Individuals and small corporations are much more likely to litigate compared to L&S.
 - However, evidence in Lerner (2006) in Journal of Finance Economics is that small firms (though not individuals) innovate more in finance.
- Litigation rates should be approximately equal to 'normal' (L&J) rates
 - NO. Litigation rates are 27 times those for 'normal' patents (mean is 5x: 3.84% vs. 0.7%, so substantial skewness)
 - Compared to L&J drugs and health category rates are 13x (2x at mean)

Comments 1

- Reject 2/3 pieces of evidence on H_0 .
- Strongest piece of evidence is the amount of litigation.
- Concerns with the 'identification' strategy.

Comments 2

- Crucial question: How does q enter the equation?
- Consider: q high but value or σ also high ⇒ litigation high (early in the industry with lots of foundational patents and doubts over scope)
- Conversely, q low and σ low \Rightarrow litigation low.
- ⇒ Low quality patents (if everyone knows their low quality) not necessarily enough to generate high litigation.

Comments 3

- Need an explicit assumption: (a) sign of q positive (Cooter and Rubinfield p. 1082 citing Danzon and Willard) or (b) no direct effect of q but σ and q negatively correlated.
- Explicitly: $q = g(\text{litigation}, v, \sigma, \theta)$
- θ: similar story. Example: field with low entry costs for ideas (so more small firms patenting) but product providers are large. Large firms innovate and use in-house but small firms want to innovate and license (and litigate).

Conclusion

- Interesting paper with a novel empirical approach to address an important topic.
- Clarify 'identification strategy' used to determine when a patent is good or bad.
- Relate bad patents to general debate about patentability.
 - Impact of bad patents on innovation (innovation structure dependent?).
 - Conversely, how do bad patents relate to the characteristics of this industry (more bad patents when cheap to enter?)
 - Welfare
 - Policy: b/m patentable or not (discreteness of the policy space).

