(1) Op-amp rules:

What are the currents flowing into the u^{\pm} terminals? $I_{u} = I_{u} = 0$

b) If we connect a resistor RL across Vour, does Wour change?

No! Your is independent of RL, since our op-amp model output is a voltage source.

c/d] Consider the circuit:

• What is Wour for an ideal op-amp (A+00)?

· Consider finite A and find Vour:

condition:

$$\mathcal{U}_{\text{OUT}} = A \left(2\ell_{+} - 2\ell_{-} \right)$$

$$\mathcal{U}_{\text{out}}(1+A) = A \text{ Vin}$$

$$\mathcal{U}_{out} = \left(\frac{A}{A+1}\right) V_{in}$$

$$\mathcal{U}_{\text{out}} = \left(\frac{1}{1 + (1/A)}\right) \text{Vin}$$

(2) Comparators

For the following circuits, plot 2000 (Vin) on the domain Vin & [-10,+10] V: A~106

$$\mathcal{U}_{+} = V_{in}$$

$$\mathcal{U}_{-} = V_{in} \left(\frac{R_{2}}{R_{i} + R_{2}} \right) = \frac{2}{3} V_{in}$$

