# 07. Maximum Flow Formulations and Bipartite Matching CPSC 535

Kevin A. Wortman





This work is licensed under a Creative Commons Attribution 4.0 International License.

## Big Idea: Problem Reduction

problem A reduces to problem B = can use an algorithm for B to do all the hard work of solving problem A = A is easier than B (or tied)

Sometimes A, B are closely related e.g. A = sorting bounded integers, B = general sorting

More interesting: problems seem completely unrelated (e.g. SAT, CLIQUE; max-flow, bipartite matching)

# Reduction Algorithm Pseudocode

problem A reduces to problem B = can use an algorithm for B to do all the hard work of solving problem A

- 1: function SOLVE-A(input-for-A)
- 2: input-for-B = pre-process input-for-A
- 3: solution-for-B = solve-B(input-for-B)
- 4: solution-for-A = post-process solution-for-B
- 5: return solution-for-A
- 6: end function

#### In spirit

- the solve-B part is complex and the bottleneck
- the overhead (pre-process and post-process parts) is simple and fast

# Reducing to Max-Flow

#### maximum flow problem

input: a flow network G output: a flow f of maximum value |f|

```
1: function SOLVE-A(input-for-A)
```

2: G' = flow network based on input-for-A

3: f = SOLVE-MAX-FLOW(G')

4: solution-for-A = post-process f

5: return solution-for-A

6: end function

(use G' because sometimes input-for-A is already a graph G)

The fastest max-flow alg. in CLRS takes  $O(|V|^3)$  time; overhead usually takes linear time; so SOLVE-MAX-FLOW is usually the bottleneck;  $O(n^3)$  time

#### Formulation in General

To formulate A as a B instance, need to explain

- Input mapping: how to map input-for-A to input-for-B
- Output mapping: how to map solution-for-B to solution-for-A
- Correctness: how
  - ▶ all the "rules" of A are enforced...
  - .....by the B problem itself, and/or our input mapping
- "rules:" constraints on the output
- Overhead: analyze whether the input/output mapping becomes the bottleneck

#### This is a valuable problem-solving skill!

#### Max-Flow Formulation

Max-Flow Formulation: details of how an algorithm for problem A

- ▶ maps an input into a flow network *G'*
- recovers a solution from the flow f

Also: analyze these steps to determine whether

- overhead is  $O(|V|^3) \Longrightarrow \mathsf{SOLVE}\mathsf{-MAX}\mathsf{-FLOW}$  is the bottleneck in SOLVE-A (usually yes)
- ightharpoonup or, overhead is  $\Omega(|V|^3)$  and is the bottleneck

Usually we only discuss these parts, and don't write out the SOLVE-A pseudocode explicitly.

#### Max-Flow Formulation

"Rules" of problem A must be implemented by the "rules" built into the max-flow problem and/or the edges and weights we introduce

- ▶ directed graph G = (V, E), source  $s \in V$ , sink  $t \in V$
- none of: self-loop, antiparallel edge, unreachable vertex
- non-negative capacity on every edge
- flow is function f(u, v) over vertices u, v
- **nonexistent edges**: if  $(u, v) \notin E$  then f(u, v) = 0
- **capacity constraint**:  $0 \le f(u, v) \le c(u, v)$
- ▶ **flow conservation**: (flow-in) = (flow-out), except for source and sink; formally,  $\forall u \in V \{s, t\}$ ,

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

ightharpoonup value |f| = net flow into sink

#### A Straightforward Formulation: Evacuation

Suppose we are working with safety authorities to determine how quickly CSUF could be evacuated in a natural disaster such as a wildfire.

#### evacuation rate problem

**input:** directed graph G representing a road map of Fullerton, each edge weighted with the number of autos/hour that may travel on that road

**output:** the maximum number of autos/hour that could travel from CSUF to a 57 or 91 freeway onramp

(Straightforward because this is clearly about flow in a directed graph.)

#### A Straightforward Formulation: Evacuation

For a clear formulation, need to specify

- $\triangleright$  how to convert road map into flow network G'; needs
  - to be a directed graph
  - source s and sink t
  - non-negative capacity on each edge
  - no self-loops, antiparallel edges, or disconnected vertices
- how to decode flow f into a solution for our problem (# autos/hour evacuated)
- overhead time efficiency

#### A Straightforward Formulation: Evacuation

- suppose for sake of discussion, road map G has none of the taboo components (self-loops etc.)
- ightharpoonup start with G' = G
- define source s in G' as the Gymnasium-Campus intersection on campus
- reate new sink t in G' that represents "on either freeway;" create edges from highway onramps to t, each with capacity  $\infty$
- ightharpoonup after finding max-flow in G', examine flow function f to compute evacuation rate as

$$\sum_{\text{onramp vertex } o} f(o, t)$$

• overhead is O(|V| + |E|), not bottleneck



#### Robust Max-Flow

Goal: eliminate some of the pesky constraints of the classical max-flow problem

#### robust maximum flow problem

*input:* a flow network G = (V, E), which may contain unreachable vertices, antiparallel edges, a set  $S \subseteq V$  of sources, and a set  $T \subseteq V$  of sinks output: a flow f of maximum value |f|

- unreachable vertices are allowed
- antiparallel edges are allowed
- set of sources/sinks instead of just one vertex each

#### Reformulating to Eliminate Unreachable Vertices

given flow network G that may contain unreachable vertices,

- use BFS (or DFS) to mark every vertex that is reachable from s
- use BFS again, following edges backwards, to mark every vertex that is reachable from t
- if a vertex was not marked both times, it is redundant
- $ightharpoonup G' = ext{induced subgraph of } G ext{ with all redundant vertices}$ removed
- ightharpoonup compute flow f' in G'
- ▶ to convert f' to flow f in G, set flow along all redundant edges to 0
- overhead is  $2 \times BFS = O(|V| + |E|)$ , not bottleneck

# Reformulating to Eliminate Unreachable Vertices



# Reformulating to Eliminate Antiparallel Edges

given a flow network G that may contain antiparallel edges,

- ▶ initially G' = G
- identify all antiparallel edges
- ▶ when  $\exists$  antiparallel edges between vertices  $v_1, v_2$ ,
  - $\triangleright$  create new vertex v' in G' between  $v_1, v_2$
  - replace edge  $(v_1, v_2)$  with edges  $(v_1, v')$  and  $(v', v_2)$
  - ightharpoonup set  $c(v_1, v') = c(v', v_2) = c(v_1, v_2)$
- ightharpoonup observe that flow between  $v_1, v_2$  is identical but antiparallel edge is eliminated
- ▶ to convert flow f' in G' to equiv. flow in G: for each v' introduced above, set  $f(v_1, v_2) = f'(v_1, v')$
- ▶ overhead is O(|E|),  $|E'| < 2|E| \in \Theta(|E|)$ , not bottleneck

#### Reformulating to Eliminate Antiparallel Edges



# Reformulating to Accommodate Multiple Sinks or Sources

- ightharpoonup initially G' = G
- create in G' a super-source vertex s and super-sink t
- ▶ for each source  $s_i \in G$ , create an edge  $(s, s_i)$  in G' with capacity  $c(s, s_i) = \infty$
- for each sink  $t_i \in G$ , create an edge  $(t_i, t)$  in G' with capacity  $c(t_i, t) = \infty$
- ▶ to convert flow f' in G' to equiv. flow f in G : delete flow info. along any of the new edges
- ▶ overhead is  $O(|V|), |V'| = |V| + 2 \in \Theta(|V|), |E'| \le |V| + |E|,$  not bottleneck

# Reformulating to Accommodate Multiple Sinks or Sources



#### Formulations for Robust Max-Flow

From now on, we have the option of formulating problems as instances of the more robust max-flow problem:

#### robust maximum flow problem

input: a flow network G = (V, E), which may contain unreachable vertices, antiparallel edges, a set  $S \subseteq V$  of sources, and a set

 $T \subseteq V$  of sinks

output: a flow f of maximum value |f|

So far, all our reductions to max-flow have been either straightforward flow simulations, or variations on max-flow.

Now we'll see a quite-different problem that also reduces to max-flow.

#### Partition of a Set

Intuitively: if  $X = L \cup R$  is a *partition*, then every element of X is placed in L or R (but not both).

Formally: L and R partition X if

- $\triangleright$   $X = L \cup R$ ,
- $ightharpoonup L \cap R = \emptyset$ , and
- $ightharpoonup L \neq \emptyset, R \neq \emptyset.$

#### bipartite maximum matching problem

*input*: an undirected bipartite graph G = (V, E) with parts

 $V = L \cup R$ 

*output:* a matching  $M \subseteq E$  where the number of matched vertices is maximum

- bipartite: L, R are disjoint and edges only go between L, R
- matching: pick edges that "pair off" two vertices; goal is to maximize #paired-off
- ▶ intuitively, L is one kind of thing and R is another kind of thing





$$M = \{ \text{included edges} \} = \{ \{l_1, r_1\}, \{l_3, r_3\}, \{l_4, r_3\}, \{l_5, r_4\} \}$$

$$|M| = 4$$
(other optimal matchings exist)

4□ → 4□ → 4 □ → 1 □ → 9 Q (~)

# Bipartite Matching Applications

- any scenario where there are two kinds of things that can be paired
- goal is simply maximum number of pairings
- ▶ casting for a play: L = set of actors; R = set of roles; edge  $\{I, r\}$  exists when I could play role I
- packing leftover food (one item/container): L = set of food items; R = available containers; edge {I, r} exists when food I could fit in container r
- scheduling appointments: L = set of clients; R = set of time slots; edge  $\{I, r\}$  exists when client I could meet appointment r
- ▶ might feel *NP*-hard, but actually in *P*

## Formulating Bipartite Matching as Flow

- ightharpoonup let G = (V, E) be bipartite matching instance
- ▶ create G' = (V', E') with  $V' = V \cup \{s, t\}$  where s, t are new source/sink
- ightharpoonup create edges in G':
  - $\blacktriangleright$   $(I,r) \forall I \in L, r \in R, \{I,r\} \in E$
  - $\triangleright$   $(s, l) \forall l \in L$
  - $ightharpoonup (r,t) \ \forall r \in R$
- every edge (v, w) has capacity c(v, w) = 1
- ▶ post-processing: edge  $(I, r) \in M$  iff f(I, r) = 1
- ▶ observe  $|V'| \in O(|V|), |E'| \in O(|E|)$ , overhead is O(|V| + |E|)
- $\Rightarrow$  if this is correct, can solve bipartite matching in  $O(|V|^3)$  time

# Formulating Bipartite Matching as Flow



(other max flows ⇔ matchings exist)

#### Correctness of this Formulation

#### Technical details:

- ▶ integrality theorem: if every capacity  $c(u, v) \in \mathbb{Z}$  then every  $f(u, v) \in \mathbb{Z}$  and  $|f| \in \mathbb{Z}$
- ▶  $\exists$  matching M with cardinality k = |M| iff  $\exists$  some flow f with value k = |f|
  - ▶ key idea: pairing two vertices in the matching adds exactly one flow from  $s \leadsto t$
  - there are no opportunities for flow aside from matched vertices
- ightharpoonup a maximum flow in G' corresponds to a maximum matching in G

# Summary

- $\blacktriangleright$  classical max-flow problem can be solved in  $O(|V|^3)$  time, in P
- robust max-flow problem (supports unreachable vertices, antiparallel edges, multiple sinks/sources) also in  $O(|V|^3)$  time w/ worse constant factors, in P
- bipartite matching reduces to max-flow, so bipartite matching can be solved in  $O(|V|^3)$  time, in P
- ▶ other practical, distinct problems reduce to max-flow or bipartite matching so take  $O(|V|^3)$  time and are in P