Homomorphic Inference of Deep Neural Network

USING TFHE [CGGI16]

Samuel Tap - Zama samuel.tap@zama.ai

Agenda

- 1. Problem
- 2. Toward Homomorphic Neuron
- 3. Conclusion

Me

- One year of research at Zama => speed up homomorphic inference
- Co-author of Concrete Library

- PhD Director: Teddy Furon (INRIA)
- PhD Supervisor: Pascal Paillier (ZAMA)

Neural Network

Past

- x in transit
- x in processing

Present

in transit

X in processing

(One) Future

Problematic

Homomorphic Inference

Encrypted Neural Network

Homomorphic Training

HOW?

FHE using TFHE

HOW?

FHE using TFHE

Noise in ciphertexts

Security rely on LWE / RLWE hardness assumption

 m_1

 m_2

$$m_1$$
 Encryption

$$m_2 \xrightarrow{\text{Encryption}}$$

 m_1

 m_2

$$m_1 \longrightarrow$$

$$m_2 \xrightarrow{\text{Encryption}}$$

Encryption

 m_2

 m_{γ}

Choose a circuit to evaluate

Choose a circuit to evaluate

Choose cryptographic parameters large enough

Choose a circuit to evaluate

Choose cryptographic parameters large enough

Bigger parameters

Choose a circuit to evaluate

Choose cryptographic parameters large enough

Bigger parameters

Choose a circuit to evaluate

Choose cryptographic parameters large enough

Bigger parameters

Slower computation

Bootstrapping [Gen09]

Bootstrapping [Gen09]

≈ Homomorphic decryption

Bootstrapping [Gen09]

≈ Homomorphic decryption

Aneuron

Addition

$$\sum_{i=1}^{n} x_i w_i$$

$$\sum_{i=1}^{n} x_i w_i \qquad \qquad \frac{1}{\Delta} \sum_{i=1}^{n} x_i \lceil w_i \times \Delta \rfloor$$

$$\sum_{i=1}^{n} x_i w_i \qquad \qquad \frac{1}{\Delta} \sum_{i=1}^{n} x_i \lceil w_i \times \Delta \rfloor$$

Activation function

Programmable Bootstrapping

Programmable Bookstrapping

Conclusion

	Accuracy	CPU	AWS	
in the clear				
NN-20	97.5%	0.17ms	0.19ms	
NINI OO	97.4%	30.04s	5.10s	80 bits security
NN-20 homomorphic	97.5%	115.5s	17.96s	128 bits security

Future work

Homomorphic Inference

Encrypted Neural Network

Homomorphic Training

Bibliography

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005.

[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. ASIACRYPT 2009.

[LPR10] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. EUROCRYPT 2010.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009.

[RAD78] R. L. Rivest, L. Adleman, M. L. Dertouzos. On data banks and privacy homomorphisms. Foundations of secure computation 1978.

[DGHV10] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan. Fully homomorphic encryption over the integers. EUROCRYPT 2010.

[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. ITCS 2012.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012.

[FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, Y. Song. Homomorphic encryption for arithmetic of approximate numbers. ASIACRYPT 2017.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. CRYPTO 2013.

[DM15] L. Ducas, D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. EUROCRYPT 2015.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. ASIACRYPT 2016.