COMP 249 Advanced Distributed Systems Multimedia Networking

The Multimedia Control Protocol RTCP

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill

jeffay@cs.unc.edu
October 5, 1999

http://www.cs.unc.edu/~jeffay/courses/comp249f99

The Multimedia Transport Protocol RTP Outline

- ◆ RTP concepts
 - » Entities and abstractions
- ◆ Protocol definition
 - » Header format and packet structure
- Developing interoperable applications with RTP
 » RTP profiles
- Quality-of-service monitoring and reporting
 - » Real-time control protocol RTCP

Overview

- Senders & receivers periodically generate reports of various session statistics and multicast to the group
- RTCP enables...
 - » Diagnosis of faults in the multicast distribution tree
 - » Congestion control
 - » Third party performance monitoring & logging
 - » (Simple) conference control

The Real-Time Control Protocol RTCP

Message types

- Sender reports (SR)
 - » cumulative frame & byte counts
 - » wall clock/timestamp values
- Receiver reports (RR)
 - » frame loss/Frame delivery rate

- Source description (SDES) items
 - » useful ASCII text strings (user & host name of participant, e-mail address, notes, ...)
- "Bye" message
 - » used to update participant's SSRC tables

3

Mechanics

- RTCP messages are "stackable"
 - » To amortize header overhead, multiple RTCP messages can be combined and sent in a *compound RTCP message*
- ◆ RTCP messages are always sent in (at least) pairs
 - Messages must always contain a sender/receiver report and a source description message containing the *canonical name* (CNAME) of the participant
- ◆ RTCP messages are sent periodically with a period set to ensure that control messages consume no more than 5% of the session bandwidth
 - » Much of the contents of sender & receiver reports are included so that participants can compute the RTCP sending interval

The Real-Time Control Protocol RTCP

Message encapsulation

RTCP Message IP header UDP header RTCP header **RTCP Report** Reception Report₁ Block Sender/Receiver Report Reception Report_n Compound RTCP header **RTCP UDP RTCP SDES** Message **CNAME** Message Report RTCP header **Optional** Reports

Common sender/receiver report message header

 $\begin{smallmatrix}0&&&&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$

v=2 p RR count packet type message length

SSRC of report sender

- ◆ All report messages have the same 8 byte header
 - » version number (same as RTP)
 - » padding indicator
 - » reception report count (5 bits)
 - » RTCP message type (8 bits)
 - » RTCP message length (16 bits)
 - » *SSRC* for the sender of this report (32 bits)

The Real-Time Control Protocol RTCP

Sender reports — packet format

 $\begin{smallmatrix}0&&&&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$

v=2p	RR count	packet type=200	message length		
	SSRC of report sender				
NTP timestamp (two 32-bit words)					
	RTP timestamp				
	Sender's cumulative packet count				
Sender's cumulative byte count					
Reception Report Block 1					
Reception Report Block 2					
	:				

Reception report blocks

◆ Each sender and receiver report should contain a reception report block for each synchronization source heard from since the last RTCP report

Contents:

- » source identifier for the block (SSRC)
- » fraction of RTP packets from this source lost since the last report
- » cumulative number of lost packets
- » extended highest sequence number received
- » estimated average RTP packet interarrival time jitter
- » last SR timestamp received from this source
- » delay since receiving the last SR report from this source

RTCP Reception Report Blocks

Loss calculation

◆ The number of lost packets is expressed as a fraction

$$fraction\ lost = \frac{number\ of\ packets\ lost}{number\ of\ packets\ expected}$$

» where:

nbr of packets lost = nbr packets expected - nbr packets received number of packets expected = EHSNR - initial sequence number

EHSNR = extended highest sequence number received = number of sequence number cycles x 2¹⁶ + last sequence number received

RTCP Reception Report Blocks

Jitter calculation

- ◆ Interarrival time jitter is an estimate of the statistical variance of RTP data packet interarrival times
 - » the smoothed mean absolute value of the difference between the sending interval at a source and the interarrival time at a receiver

$$jitter_{new} = jitter_{old} + \frac{instantaneous\ jitter - jitter_{old}}{16}$$
$$instantaneous\ jitter = \left| (rec_i - rec_{i-1}) - (sent_i - sent_{i-1}) \right|$$

RTCP Reception Report Blocks

Round trip time calculation

◆ The *last-SR-timestamp received* and *delay-since-receiving-last-SR-report* fields in the reception report block are used to compute an estimate of the round-trip time from the receiver to a synchronization source

estimated round-trip- time = RR received - SR sent - delay

RR received = time a source received this reception report

SR sent = last SR timestamp received field

delay = delay since last SR report field

Receiver reports

 $\begin{smallmatrix}0&&&&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$

v=2p	RR count	packet type=201	message length		
	SSRC of report sender				
SSRC of first source heard from					
fraction lost cumulative number of			tive number of lost packets		
extended highest sequence number received					
estimate RTP packet interarrival time jitter					
timestamp of last SR report received					
elapsed time since last SR report received					
Reception Report 2					

The Real-Time Control Protocol RTCP

Source description item (SDES) messages

v=2 p chunk cnt	packet type=202	message length	
SSRC or first CSRC			
SDES type	SDES length	SDES item	
•••			
SSRC or second CSRC			
SDES type	SDES length	SDES item	

- ◆ An SDES message consists of one or more "chunks" of source description items
 - » CNAME (user@host)

» PHONE

» NOTE

» NAME

» LOC

» ...

» EMAIL

» TOOL

Source Description Item (SDES) Messages

BYE message

 $\begin{smallmatrix}0&&&&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$

v=2p	source cnt	packet type=203	message length
SSRC/CSRC			
SSRC/CSRC			
not	note length reason for leaving		

- ◆ The BYE message is used by participants to update their SSRC tables
 - » participants can optionally say why they are leaving (a cheap way of reporting errors in real-time)

The Real-Time Control Protocol RTCP

Scalability issues

- RTP data transmission is inherently scalable
- RTCP message transmissions are not!
 - » RTCP message bandwidth must be controlled
- Generic RTCP transmission guidelines:
 - » RTCP messages should consume no more than 5% of session bandwidth
 - » 25% of RTCP bandwidth should be allocated to senders
- ◆ The challenge: Each session participant must independently compute an RTCP sending interval that ensures transmission guidelines are met

Computing the RTCP Sending Interval

- Participants keep a running estimate of the session size
- ◆ For a given session bandwidth, session size, and RTCP packet size, compute a transmission delay
- ◆ Randomize the delay to avoid synchronization effects
 - » Randomize uniformly in the range [0.5, 1.5] x computed delay
- As other participants join and leave the group, adjust the delay accordingly

Computing the RTCP Sending Interval

Algorithm

- Case 1: number of senders < 25% of session membership
 Compute the average expected RTCP message interarrival time
 - $\frac{average \ IAT \ of}{sender \ reports} = \frac{average \ RTCP \ packet \ size}{0.25 \ x \ RTCP \ bandwidth}$ $\frac{average \ IAT \ of}{receiver \ reports} = \frac{average \ RTCP \ packet \ size}{0.75 \ x \ RTCP \ bandwidth}$
 - » Average transmission delay is number of peers x average SR/RR IAT

Computing the RTCP Sending Interval

Algorithm

- ◆ <u>Case 1</u>: number of senders < 25% of session membership
 - » Compute the "deterministic interval" $T_d = \text{MAX}(T_{min}, ave \ delay)$ where $T_{min} = 2.5 \ secs$ if the session is starting, and $T_{min} = 5 \ secs$ otherwise
 - » Then delay for a duration $T = \frac{(0.5 + random()) \times T_d}{e 1.5}$

Computing the RTCP Sending Interval

Algorithm

- ◆ <u>Case 2</u>: number of senders > 25% of session membership
 - » Average expected RTCP message interarrival time is simply

average RTCP packet size

RTCP bandwidth

- » The deterministic interval is $T_d = \text{MAX}(T_{min}, n \times ave \ RTCP \ IAT)$ where n is the total number of session participants
- » T_{min} and the computed delay T are as before

--

Computing the RTCP Sending Interval

Example

- For a 32 kbps DVI4 audio conference with 100 participants
 - » senders transmit every

number of senders
$$\times \frac{average\ RTCP\ packet\ size}{0.25\ x\ RTCP\ bandwidth} = \frac{5\ x\ 100\ bytes\ x\ 8\ bits/byte}{0.25\ x\ 32\ kbps\ x\ 0.05}$$
$$= 10\ secs$$

» receivers transmit every

number of receivers
$$\times \frac{average\ RTCP\ packet\ size}{0.75\ x\ RTCP\ bandwidth} = \frac{95\ x\ 100\ bytes\ x\ 8\ bits/byte}{0.75\ x\ 32\ kbps\ x\ 0.05}$$
$$= 63\ secs$$

RTCP Scalability Issues

BYE floods

Time (secs)

22

RTCP Scalability Issues

Timer reconsideration

- We want to slow down the RTCP transmission process when the session size is growing and speed up the process when the sesion size is shrinking
- Timer reconsideration:
 - » While waiting to send an RTCP message, update session size estimate
 - \gg When transmission timer expires, recompute T. If

$$time\ of\ last\ RTCP + T \leq current \ transmission + T$$

then transmit an RTCP message and calculate another delay, else, reschedule transmission for time

23

RTCP Scalability Issues

Reverse reconsideration

 On a receipt of a BYE message, if session size has decreased since last RTCP delay was computed, then next message will be sent at time:

$$\frac{current}{time} + \frac{new\ session\ size}{previous\ session\ size} \times \left(\frac{next\ RTCP}{transmission\ time} - \frac{current}{time}\right)$$

» We also update the time of the last (logical) RTCP transmission

$$\frac{current}{time} - \frac{new\ session\ size}{previous\ session\ size}\ \mathbf{x} \begin{pmatrix} current\\time \end{pmatrix} - \frac{time\ of\ last\ RTCP}{transmission}$$

RTCP Scalability Issues

Reverse reconsideration

 On a receipt of a BYE message, if session size has decreased since last RTCP delay was computed, then next message will be sent at time

$$\frac{current}{time} + \frac{new\ session\ size}{previous\ session\ size} \times \left(\frac{next\ RTCP}{transmission\ time} - \frac{current}{time}\right)$$

» We also update the time of the last (logical) RTCP transmission

$$\frac{current}{time} - \frac{new\ session\ size}{previous\ session\ size}\ \mathbf{x} \begin{pmatrix} current\\ time \end{pmatrix} - \frac{time\ of\ last\ RTCP}{transmission}$$

25

RTCP Scalability Issues

Sending BYE messages

- For BYE message we "splurge" and allow bursts of RTCP messages
 - » Set session size to 1, average packet size to BYE message size and compute T as before
 - » Only increment the session size on receipt of BYE messages
- ◆ In the worst case BYE messages consume 5% of session bandwidth
 - » Other RTCP traffic consumes 5% of session bandwidth...
 - » Hence worst case is an additional 5% of session bandwidth consumed

RTCP message processing in translators & mixers

- Translators that do not modify RTP data packets typically will not modify RTCP packets
- ◆ Translators that modify data packets must modify RTCP packets to so that the reported statistics reflect the performance of the modified stream

The Real-Time Control Protocol RTCP

Sender reports

 $\begin{smallmatrix}0&&&&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$

v=2p	RR count	packet type=200	message length		
	SSRC of report sender				
NTP timestamp (two 32-bit words)					
RTP timestamp					
Sender's cumulative packet count					
Sender's cumulative byte count					
Reception Report Block 1					
Reception Report Block 2					
	:				

Receiver reports

 $\begin{smallmatrix}0&&&&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&0&1\end{smallmatrix}$

v=2	p	RR count	packet type=201	message length	
	SSRC of report sender				
SSRC of first source heard from					
fraction lost cumulative number of lost packets			tive number of lost packets		
	extended highest sequence number received				
estimate RTP packet interarrival time jitter					
timestamp of last SR report received					
elapsed time since last SR report received					
Reception Report 2					

29

The Real-Time Control Protocol RTCP

RTCP message processing in translators & mixers

- Since mixers are synchronization sources, they generate their own RCTP packets
 - » Mixers generate *SR* sender information in exactly the same way sources do
 - » Mixers generate reception report blocks for sources in exactly the same way receivers do
- But all messages are only sent to one "cloud"

