Лабораторная работа № 3.2.2 Резонанс напряжений.

Содержание

1	Предстоит сделать.					
	1.1	Цель работы и оборудование	4			
2	Теоритические сведения.					
	2.1	Теория, как она есть	•			
		Свободные колебания				
		Свободные колебания. Метод комплексных амплитуд				
		Свободные колебания. Резонанс				
	2.5	Формулы и зависимости.	4			
	2.6	Экспериментальная установка	,			
3	Экс	спериментальные данные и их обработка.	(
4	Вы	вол.	8			

1 Предстоит сделать.

1.1 Цель работы и оборудование.

Цель работы: Изучение последовательной цепи переменного тока, наблюдение резонанса напряжений. Определение добротности и сопротивления контура, а так же параметров катушки.

В работе используется: Регулировочный трансформатор, катушка индуктивности с выдвижным сердечником, магазин емкостей, реостат, резистор, амперметр, три вольтметра, ваттметр, осциллограф, универсальный мост.

2 Теоритические сведения.

2.1 Теория, как она есть.

Все колебания рассмотриваются в условиях **квазистационарности**. Это означает, что мгновенные значения тока I практически одинаковы во всех проводниках, соединяющих элементы цепи, а изменения во времени происходят настолько медленно, что распространение электродинамических взаимодействий можно считать мгновенным.

Это позволяет нам пользоваться ЗСЗ и законом Ома для замкнутой цепи для цепей перемнного тока. Отсюда следуют и **правила Кирхгофа**. Первое: алнебраическая сумма токов в узле равна нулю. Второе: для любого замкнутого контура сумма падений напряжений на отдельных участках контура равна алгебраической сумме ЭДС в этом контуре.

Используя правила Кирхгофа для цепей перменного тока, мы получаем систему линейных дифференциальных уравнений, которые позволяют найти *временную* зависимость токов в данной цепи.

2.2 Свободные колебания

Сумма падений напряжений в цепи равна ЭДС самоиндукции катушки:

$$RI + U_C = -L\frac{dI}{dt}; \quad L\frac{dI}{dt} + RI + \frac{q}{C}$$
 (1)

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0 \tag{2}$$

Разделим уравнение на L и введем обозначения:

$$\gamma = \frac{R}{2L}; \qquad \omega_0^2 = \frac{1}{LC} \tag{3}$$

Таким образом получаем γ - коэффициент затухания и ω_0 - собственная частота контура.

Подобными уравнениями описывают целый ряд колебательных систем. Проще всего иъ представить в виде уравнения:

$$I = A \cdot e^{\lambda t} \tag{4}$$

От этого вида уравнения можно простой подстановкой перйти в **характеристическому** виду уравнения:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0 \tag{5}$$

Величина $\omega = \sqrt{\omega_0^2 - \gamma^2}$ называется $uacmomo\ddot{u}$ свободных колебаний.

2.3 Свободные колебания. Метод комплексных амплитуд.

Так называют контур, в котором ЭДС изменяется по гармоническому закону:

$$\varepsilon = \varepsilon_0 \cos(\Omega t) \tag{6}$$

Рис. 1: Последовательный контур с внещним ЭДС.

2.4 Свободные колебания. Резонанс.

Снова рассмотрим процессы протекающие в последовательном контуре (1) подсоединенном к внешней ЭДС. Продивверенцируем уравнени из лабника (2.34) по времени:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = -\varepsilon_o\Omega\sin(\Omega t)$$
 (7)

Находя общее решение однородного уравнения I_1 и любое частное решение I_2 найдем решение дифференциального уравнения, полученного заменой $\sin(\Omega t)$ на $e^{i\Omega t}$ и разделением уравнения (7) на L.

2.5 Формулы и зависимости.

Выражение для напряжения на резисторе, катушке и суммарного напряжения.

$$U_R = IR, \qquad U_L = I(r_L + i\Omega L), \qquad U_{R+L} = I(R + r_L + i\Omega L)$$
 (8)

Где r_L - активное сопротивление катушки.

Переходя к модулям и фазам токов и напряжений, найдем из (8).

$$U_R = IR, tg\varphi_1 = 0 (9)$$

$$U_L = I\sqrt{r_L^2 + (\Omega L)^2}, tg\varphi_2 = \frac{\Omega L}{r_L} (10)$$

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2}, tg\varphi_3 = \frac{\Omega L}{R+r_L} (11)$$

В этих формулах U и I - эффективные значения напряжения и тока. Мощность переменного тока, выделяемая в катушке

$$P_L = U_L I cos \varphi = I^2 r_L \tag{12}$$

В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают $\omega_0 = \Omega$), реактивные сопротивления индуктивности и емкости одинаковы.

$$\omega_0 L = \frac{1}{\omega_0 C} \tag{13}$$

Определив добротность контура Q, можно рассчитать полное сопротивление контура R_{Σ} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \tag{14}$$

$$R_{\Sigma} = R + r_L \tag{15}$$

Резонанстные напряжения на контуре и на емкости равны

$$U_{\Sigma pe3} = I_{pe3} R_{\Sigma}, \qquad U_{Cpe3} = \frac{I_{pe3}}{\Omega C}$$
 (16)

Из (14) и (16) получим

$$Q = \frac{U_{Cpe3}}{U_{\Sigma pe3}} \tag{17}$$

2.6 Экспериментальная установка

Рис. 2: Схема установки для изучения закона Ома в цепи переменного тока.

Рис. 3: Схема установки для наблюдения резонанса напряжений.

3 Экспериментальные данные и их обработка.

Таблица 1: Данные эксперимента и рассчетные r_l и L.

X(MM)	I(A)	$V_R(B)$	$V_{R+L}(B)$	$V_L(B)$	Р(Вт)	$r_l(O_M)$	$L(\Gamma_{\rm H})$
5	0.80	70	106	70	9.25	14.45	1.73
7	0.85	74	104	63	8.25	11.42	1.46
9	0.88	78	104	58	7.75	10.12	1.31
11	0.93	81	103	53.5	7.25	8.47	1.14
13	0.95	83	103	50	7.00	7.76	1.04
15	0.95	84	103	47	6.75	7.48	0.98
17	0.98	85	102	45	6.50	6.84	0.91
19	0.98	86	102	42	6.25	6.57	0.85
20	0.98	86	102	41	6.00	6.31	0.83
16	0.95	84	102	46	6.50	7.20	0.96
12	0.93	82	103	51	7.25	8.47	1.09
8	0.88	76	105	60	8.25	10.78	1.35
6	0.83	72	106	66	9.00	13.22	1.58

По данным таблицы построим график зависимости сопротивления катушки r_L и ее индуктивности L от величины смещения сердечника x.

Из графика для среднего положения найдем $r_L = 7.37 \pm 0.14$ Ом и $L = 0.98 \pm 0.05 \Gamma$ н

Рис. 4: Векторная диаграмма напряжений.

Из векторной диаграммы найдем (3): $U_{\rm L,akt} = 8 \pm 0.5$ (В) и $U_{\rm L,peakt} =$

 46.31 ± 0.5 (В). Отсюда:

$$L = \frac{U_{L, \text{peakt}}}{I\Omega} = 0.97 \pm 0.01 \; \Gamma_{\text{H}} \qquad r_L = \frac{U_{L, \text{akt}}}{I} = 7.89 \pm 0.5 \; \text{Om}$$

Из этой же диаграммы $\cos\Theta=0,13$. Теоритический рассчет показывает, что $\cos\Theta^*=\frac{P_L}{U_LI}=0.15$. Отличие составляет 16%.

По теореме косинусов

$$P_L = U_L \frac{U_R}{R_1} cos \Theta = 5.64 \text{ BT}$$

Отличие от экспериментального значения $P_L^* = 6.75$ Вт составило 16.4%.

Активное сопротивление катушки вычисляем по формуле:

$$r_L = \frac{U_{\Sigma, \text{pe}_3} - I_{\text{pe}_3} \cdot R_2}{I_{\text{pe}_3}}$$

Для среднего положения: $r_L = 4.28 \pm 0.21$ Ом.

Условия резонанса:

$$\omega_0 = 2\pi\nu$$
 $L = \frac{1}{\omega^2 C}$ $r_L = \frac{\omega_0 L}{Q}$

Для среднего положения: $L=0.17~\Gamma$ н, $r_L=4.15~\mathrm{Om}$. Полученные значения сведем в таблицу:

	График	Векторная диаграмма	Резонанс	Добротность	LCR-метр
$r_L O_{\mathrm{M}}$	7.37 ± 0.14	7.89 ± 0.5	4.28 ± 0.21	4.15	3.28
LГн	0.98 ± 0.05	0.97 ± 0.01	_	0.17	0.13

Таблица 2: Итоговые значения индуктивности L и сопротивления r_L катушки

4 Вывод.

Получены значения сопротивления r_L и индуктивности L катушки (таблица (2)). Добротность составила 5.52. Расхождения результатов первых двух от последующих ихмерений обусловлены скорее всего тем, что при выполнении лабораторной работы мы с другими выполняющими обменялись катушками (ненамеренно).