de Rham 上同调与 Jordan 曲线定理

魏子涵

2022年7月10日

0 微分形式回顾

我们回顾一下需要用到的有关微分形式的知识.

一个 1**-形式**是一个形式和 $p \, dx + q \, dy$, 其中 p,q 是光滑函数. 一个光滑函数 f 的**微** 分是一个 1-形式 $(\partial f/\partial x) \, dx + (\partial f/\partial y) \, dy$. 1-形式中的**闭形式**是指满足 $\partial p/\partial x = \partial q/\partial y$ 的 $p \, dx + q \, dy$; **恰当形式**是指作为一个光滑函数微分的 1-形式. 闭形式与恰当形式均构成实向量空间.

一个简单的结论是

准则 1.10 恰当形式都是闭形式. [1, p. 10]

以及一个部分的逆命题

命题 1.12 设 U 是两个有限或无限长的开区间的乘积,那么在 U 上闭形式都是恰当形式.

我们之后需要一个更强的命题

Poincaré 引理 如果 U 中存在一点 P, 使得任意 $Q \in U$ 与 P 连接的线段均在 U 内 (即 U 是星形区域), 那么 U 中的闭形式都是恰当形式.

证明参阅[2,定理4.11].此外,我们需要一个关于卷绕数的命题

命题 3.16 设γ是闭路径, supp γ 是 γ 的图像, 那么 γ 的卷绕数 (作为点的函数) 在 \mathbb{R}^2 \supp γ 的每个连通分支上是常值函数. 特别地, 在无界的连通分支上卷绕数为 0.

1 de Rham 上同调群

本书在这一章只考虑平面上一个开集 U 的第零阶和第一阶上同调群, 分别定义为

$$H^{0}(U) = \{ f \in C^{\infty}(U) | f 局部为常值 \}$$

$$H^{1}(U) = \frac{\{U \perp 的闭1-形式\}}{\{U \perp 的恰当1-形式\}}$$

这两者实质上是实向量空间,但在传统上会把上同调叫做群.

容易看出 $\dim H^0(U)$ 就是 U 的连通分支个数. 而对于 H^1 , 这一节有一个简单的计算 (命题 5.1), 我们直接证明问题 5.2 的推广形式:

问题 5.2 设 $X = \{P_1, \dots, P_n\}$ 是 $\mathbb{R}^2 \perp n$ 个点构成的集合, 那么 $H^1(\mathbb{R}^2 \backslash X) \cong \mathbb{R}^n$.

分析. 本书是通过直接给出生成元来证明这个命题的. 对 $P = (x_0, y_0) \in \mathbb{R}^2$ 与某个含 P 的开集 U, 设 1–形式

$$\omega_P := \frac{1}{2\pi} \frac{-(y - y_0) \, \mathrm{d}x + (x - x_0) \, \mathrm{d}y}{(x - x_0)^2 + (y - y_0)^2}$$

那么 ω_P 都是闭形式, 记 $[\omega_P]$ 为 ω_P 在 $H^1(U\setminus \{P\})$ 中的等价类. 我们希望证明 n 个形式的 等价类 $[\omega_{P_1}], \cdots, [\omega_{P_n}]$ 是 $H^1(\mathbb{R}^2\setminus X)$ 的一组基. 这需要用到引理 1.17 到问题 1.19 的一个结论: 设 $r < \min_{i,j}\{|P_iP_j|\}, C_i$ 为以 P_i 为圆心半径为 r 的圆, 如果 1-形式 ω 满足对每个 $i=1,2,\cdots,n$ 都有

$$\int_{C_i} \omega = 0 \tag{1}$$

那么 ω 在 $\mathbb{R}^2 \setminus X$ 上是恰当的. 证明这个结论通过归纳法, 通过在一个点处画两根直线, 将平面分为 4 个半平面, 然后在这四个半平面上均存在光滑函数使其微分为 ω , 积分为 0 保证可以通过调整常数使得这些函数在半平面的重合处相等, 从而 ω 使恰当的.

问题 1.19 设 U 是两个有限或无限长的开区间的乘积, X 是 U 中有限个点的集合, 那么满足 (1) 式假设的 1-形式 ω 是恰当的.

证明. 我们对 X 中的点的个数 n 使用归纳法. n=0 时是命题 1.12. 假设命题对所有不超过 n 个点的情况成立. 对 n+1 个点构成的集合 X, 取 X 中的一点 P, 在 P 处平行于 U 的边建立坐标系. 设 U 与第 I, II 象限及 Y 轴正半轴的交为 U_1 , 类似地逆时针旋转定义 U_2 , U_3 , U_4 . 那么每个 U_i 均为去掉不超过 n 个点的两个开区间的乘积, 从而按归纳假设, 存在 U_i 上的光滑函数 f_i 满足 $df_i=\omega$. 由于在重叠处有 $df_i=df_j$, 所以 f_i 与 f_j 在 $U_i\cap U_j$ 上只相

差一个常数 (因重叠处是连通的). 那么可以通过调整常数使得 $f_1 = f_2, f_2 = f_3, f_3 = f_4$. 取 $Q \in U_1 \cap U_4$, 考虑

$$\int_{C_P} \omega = f_4(Q) - f_1(Q) = 0$$

从而有 $f_1 = f_4$, 因此在 $U_1 \cup \cdots \cup U_4 = U \setminus X$ 上存在 f 使得 $\mathrm{d} f = \omega$.

问题 5.2 的证明. 我们首先证明 $[\omega_{P_1}], \cdots, [\omega_{P_n}]$ 是线性无关的. 设

$$\sum_{i=1}^{n} a_i [\omega_{P_i}] = 0$$

即 $\sum_{i=1}^{n} a_i \omega_{P_i}$ 是恰当的,那么有

$$0 = \int_{C_i} \sum_{i=1}^n a_i \omega_{P_i} = a_i$$

从而 $[\omega_{P_1}], \cdots, [\omega_{P_n}]$ 线性无关. 我们现在证明 $[\omega_{P_1}], \cdots, [\omega_{P_n}]$ 生成 $H^1(\mathbb{R}^2 \backslash X)$. 设 ω_0 是闭 的 1–形式, 记

$$\int_{C_i} \omega_0 = c_i$$

设 $\omega := \omega_0 - \sum_{i=1}^n c_i \omega_{P_i}$,由于对每个 C_i 都有

$$\int_{C_i} \omega = 0$$

所以 ω 在 $\mathbb{R}^2 \setminus X$ 上是恰当的. 因此就有 $[\omega_0] = \sum_{i=0}^n c_i [\omega_{P_i}]$, 从而

$$H^1(\mathbb{R}^2 \backslash X) = \langle [\omega_{P_1}], \cdots, [\omega_{P_n}] \rangle \cong \mathbb{R}^n$$

本章还会用到一个结论

命题 5.3 设 A 是 \mathbb{R}^2 上的连通闭集, $P,Q \in A$, 那么在 $H^1(\mathbb{R}^2 \backslash A)$ 中有 $[\omega_P] = [\omega_Q]$.

证明. 我们只需要证明 $\omega_P - \omega_Q$ 在 $\mathbb{R}^2 \setminus A$ 中任意闭路径上的积分为 0. 而对闭路径 γ 有

$$\int_{\gamma} (\omega_P - \omega_Q) = W(\gamma, P) - W(\gamma, Q)$$

按命题 3.16, γ 关于 P 和 Q 的卷绕数是相等的, 所以以上积分为 0, 从而命题得证.

2 上边缘映射

我们换用一个更明晰一些的方法来讲这一节的内容. 对两个开集 U 与 V, 考虑嵌入映射构成的交换图

设线性映射

 $i^*: H^0(U) \to H^0(U \cap V), \ f \mapsto f|_{U \cap V}$ $j^*: H^0(V) \to H^0(U \cap V), \ g \mapsto g|_{U \cap V}$ $k^*: H^1(U \cap V) \to H^1(U), \ [\omega] \mapsto [\omega|_U]$ $l^*: H^1(U \cap V) \to H^1(V), \ [\tau] \mapsto [\tau|_V]$

那么定义**上边缘映射**为一个线性映射 $\delta: H^0(U \cap V) \to H^1(U \cup V)$, 满足序列

$$H^{0}(U) \oplus H^{0}(V) \xrightarrow{i^{*}-j^{*}} H^{0}(U \cap V) \xrightarrow{\delta} H^{1}(U \cup V) \xrightarrow{k^{*} \oplus l^{*}} H^{1}(U) \oplus H^{1}(V)$$
 (2)

是正合的. 按照这个定义, δ 满足

- 1. 对 $f \in \ker \delta$, 存在 U 和 V 上的局部常值函数 f_1, f_2 使得 $f = f_1 f_2$ (严格写应该是 $f_1|_{U \cap V} f_2|_{U \cap V}$, 但书上的命题 5.7 没有这么写);
- 2. 如果 $\omega \in \text{im } \delta$, 那么 ω 在 U 和 V 上的限制都是恰当的 (命题 5.9 前半部分);
- 3. 如果 $H^1(U) = H^1(V) = 0$, 那么 δ 是满射 (命题 5.9 后半部分). 我们证明上边缘映射的存在性. 这需要用到单位分解定理. (证明见 [1, 附录 B2] 或 [2, pp. 63–64])

证明. 取 $U \cup V$ 的从属于 $\{U, V\}$ 的一组单位分解 φ_1, φ_2 , 即满足 $\operatorname{supp} \varphi_1 \subset U$, $\operatorname{supp} \varphi_2 \subset V$ 且 $\varphi_1 + \varphi_2 = 1$. 对 $f \in H^0(U \cap V)$, 取

$$f_1(p) = \begin{cases} \varphi_2(p)f(p), & p \in U \cap V \\ 0, & p \in U \setminus V \end{cases}$$

$$f_2(p) = \begin{cases} -\varphi_1(p)f(p), & p \in U \cap V \\ 0, & p \in V \setminus U \end{cases}$$

那么 f_1, f_2 都是光滑的,且 $f_2|_{U\cap V} - f_1|_{U\cap V} = f$. 由于 f 是局部常值的,那么有 $0 = \mathrm{d}f = \mathrm{d}f_2|_{U\cap V} - \mathrm{d}f_1|_{U\cap V}$,从而存在闭形式 $\omega_f \in U \cup V$ 使得在 $U \cap V \perp \omega_f = \mathrm{d}f_1 = \mathrm{d}f_2$.定义 $\delta(f) = [\omega_f]$.我们说明 δ 是良定义的.如果另外有 $f_3|_{U\cap V} - f_4|_{U\cap V} = f$ 与由 f_3, f_4 定义的 ω_f' ,那么在 $U \cap V$ 上有

$$f_1 - f_2 = f_3 - f_4 \implies f_1 - f_3 = f_2 - f_4$$

从而可以在 $U \cup V$ 上定义 f' 满足 $f'|_{U \cap V} = f_1 - f_3 = f_2 - f_4$, 且有 $\mathrm{d}f' = \omega_f - \omega_f'$. 那 么 $\omega_f - \omega_f'$ 是恰当的,有 $[\omega_f] = [\omega_f']$,因此 δ 是良定义的. 以下我们验证序列 (2) 是正合的. 首先证明 $\mathrm{im}(i^* - j^*) = \ker \delta$. 如果 $f = g|_{U \cap V} - h|_{U \cap V}$,其中 g, h 分别是 V, U 上的局部常值函数,那么一定有 $\mathrm{d}g = 0$, $\mathrm{d}h = 0$,从而 $\delta f = 0$. 反过来,如果 $\delta f = 0$,按以上过程取 $f_2 - f_1 = f$,并设 $\omega_f|_U = \mathrm{d}f_1$, $\omega_f|_V = \mathrm{d}f_2$. 由于 $\delta f = [\omega_f] = 0$,可知 ω_f 是恰当的,设 $\omega_f = \mathrm{d}g$,那么有

$$df_1 - dg|_U = 0, df_2 - dg|_V = 0$$

所以 $g - f_1$ 与 $g - f_2$ 是局部常值函数, 满足 $(i^* - j^*)(g - f_1, g - f_2) = f$. 其次证明 im $\delta = \ker k^* \oplus l^*$. 如果 $f = f_2 - f_1$, 那么

$$k^*(\delta(f)) = d(df_1) = 0, l^*(\delta(f)) = d(df_2) = 0$$

从而 im $\delta \subset \ker(k^* \oplus l^*)$. 反过来, 对任意 $[\omega] \in \ker(k^* \oplus l^*)$, $k^* \oplus l^*([\omega]) = 0$ 意味着 $\omega|_U = \omega|_V$ 都是恰当的, 从而存在 U, V 上的光滑函数 f_1, f_2 使得 $\omega|_U = \mathrm{d}f_1, \omega|_V = \mathrm{d}f_2$. 定义 $U \cap V$ 上的光滑函数 $f = f_2 - f_1$, 那么 $\mathrm{d}f = \mathrm{d}f_2 - \mathrm{d}f_1 = 0$, 从而 f 是局部常值的, 即 $f \in H^0(U \cap V)$, 那么按定义就有 $\delta(f) = [\omega]$, 所以 im $\delta = \ker k^* \oplus l^*$.

上边缘映射本质上是 Mayer-Vietoris 序列的一部分, 在第 10 章与第 23, 24 章会讲到 这个.

3 Jordan 曲线定理

这一节要证明

定理 5.10 (Jordan 曲线定理) 如果 $X \subset \mathbb{R}^2$ 与一个圆周同胚, 那么 $\mathbb{R}^2 \backslash X$ 有两个连通分支, 一个有界, 另一个无界. X 上任意一点的任意邻域均同时包含这两个两个连通分支中的点.

而这依赖于一个命题

定理 5.11 如果 $Y \subset \mathbb{R}^2$ 同胚于一个闭区间, 那么 $\mathbb{R}^2 \setminus Y$ 是连通的.

这两个命题都需要代数拓扑的方法来证明. 我们先证明定理 5.11.

证明. 设 I = [0,1] 是单位闭区间, $f: I \to Y$ 是同胚. 反设 $\mathbb{R}^2 \setminus Y$ 是不连通的, 即

$$\dim H^0(\mathbb{R}^2 \backslash Y) \geq 2$$

取定两个在不同连通分支中的点 A,B. 设 Y 中与 $\left[0,\frac{1}{2}\right]$ 同胚的部分为 Y^+ , 与 $\left[\frac{1}{2},1\right]$ 同胚的部分为 Y^- , $Y^+ \cap Y^- = Q$. 考虑 Mayer-Vietoris 序列

$$H^{0}(\mathbb{R}^{2}\backslash Y^{+}) \oplus H^{0}(\mathbb{R}^{2}\backslash Y^{-}) \longrightarrow H^{0}(\mathbb{R}^{2}\backslash Y) \longrightarrow H^{1}(\mathbb{R}^{2}\backslash \{Q\})$$
$$\longrightarrow H^{1}(\mathbb{R}^{2}\backslash Y^{+}) \oplus H^{1}(\mathbb{R}^{2}\backslash Y^{-})$$

对 $k^* \oplus l^*$ 而言, 由于 $H^1(\mathbb{R}^2 \setminus \{Q\}) = \langle [\omega_Q] \rangle$, 而 $\omega_{Q|\mathbb{R}^2 \setminus Y^+}$ 与 $\omega_{Q|\mathbb{R}^2 \setminus Y^-}$ 均为非零的闭形式, 所以 $k^* \oplus l^*$ 是单射. 因此有 im $\delta = \ker(k^* \oplus l^*) = 0$, 那么正合列

$$H^0(\mathbb{R}^2\backslash Y^+) \oplus H^0(\mathbb{R}^2\backslash Y^-) \xrightarrow{i^*-j^*} H^0(\mathbb{R}^2\backslash Y) \xrightarrow{\delta} 0$$

说明 i^*-j^* 是满射. 对某个在 A,B 处取值不同的 $f \in H^0(\mathbb{R}^2 \setminus Y)$, 存在 $g \in H^0(\mathbb{R}^2 \setminus Y^+)$, $h \in H^0(\mathbb{R}^2 \setminus Y^-)$ 使得 $g|_{\mathbb{R}^2 \setminus Y} - h|_{\mathbb{R}^2 \setminus Y} = f$. 如果 g,h 均在 A,B 处取值相等, 可以推出 f 在 A,B 处取值相等, 矛盾. 所以 A,B 在 $H^0(\mathbb{R}^2 \setminus Y^+)$ 或 $H^0(\mathbb{R}^2 \setminus Y^+)$ 的两个不同连通分支中, 设满足的那个为 $\mathbb{R}^2 \setminus Y$. 依次构造下去, 我们可以得到一个集合列

$$Y = Y_0 \supset Y_1 \supset \cdots \supset Y_n \supset \cdots$$

设 $\bigcap_{n=1}^{\infty} Y_n = \{P\}$. 对 $\mathbb{R}^2 \setminus Y$ 任意两个不同连通分支中的点 A, B, 由于 $\mathbb{R}^2 \setminus \{P\}$ 是连通的, 存在一条闭路径 γ 连接 A, B. 那么存在 P 的一个邻域 N 与 γ 不交, 但又存在充分大的 n 使得 $Y_n \subset N$, 从而 $\operatorname{supp} \gamma \subset \mathbb{R}^2 \setminus Y_n$, 矛盾.

Jordan 曲线定理的证明. 设 P,Q 是 X 上任意两点, 连接 P,Q 的两段闭弧记为 A,B. 考虑 对 $U = \mathbb{R}^2 \backslash A, V = \mathbb{R}^2 \backslash B$ 的 Mayer-Vietoris 序列

$$H^{0}(\mathbb{R}^{2}\backslash A) \oplus H^{0}(\mathbb{R}^{2}\backslash B) \xrightarrow{l^{*}-j^{*}} H^{0}(\mathbb{R}^{2}\backslash X) \xrightarrow{\delta} H^{1}(\mathbb{R}^{2}\backslash \{P,Q\})$$
$$\xrightarrow{k^{*}\oplus l^{*}} H^{1}(\mathbb{R}^{2}\backslash A) \oplus H^{1}(\mathbb{R}^{2}\backslash B)$$

由定理 5.11, $\mathbb{R}^2 \setminus A$ 与 $\mathbb{R}^2 \setminus B$ 是连通的, 所以 $H^0(\mathbb{R}^2 \setminus A)$ 与 $H^0(\mathbb{R}^2 \setminus B)$ 由常值函数构成. 对 $\mathbb{R}^2 \setminus A$ 与 $\mathbb{R}^2 \setminus B$ 上的常值函数 g, h, 那么有 $(i^* - j^*)(g, h) = g|_{\mathbb{R}^2 \setminus X} - h|_{\mathbb{R}^2 \setminus X}$ 为常值函数, 从 而 dim im $(i^* - j^*) = 1$. 由正合可知 dim ker $\delta = \dim \operatorname{im}(i^* - j^*) = 1$. 而对于 $k^* \oplus l^*$, 由于

 $H^1(\mathbb{R}^2\setminus\{P,Q\}) = \langle [\omega_P], [\omega_Q] \rangle$, 而由命题 5.3 知在 $\mathbb{R}^2\setminus A$ 上有 $[\omega_P] = [\omega_Q]$, 在 $\mathbb{R}^2\setminus B$ 上同理, 所以有 $k^* \oplus l^*([\omega|_P]) = k^* \oplus l^*([\omega|_Q])$. 因此 dim im $k^* \oplus l^* = 1$, 而 dim $H^1(\mathbb{R}^2\setminus\{P,Q\}) = 2$, 有

$$\dim\operatorname{im}\delta=\dim\ker k^*\oplus l^*$$

$$=\dim H^1(\mathbb{R}^2\backslash\{P,Q\})-\dim\operatorname{im} k^*\oplus l^*$$

$$=1$$

所以 $\dim H^0(\mathbb{R}^2 \backslash X) = \dim \ker \delta + \dim \operatorname{im} \delta = 2$, 即 $\mathbb{R}^2 \backslash X$ 有两个连通分支, 显然一个有界而另一个无界.

我们证明最后一个断言. 对任意一点 $T \in X$ 及 T 的邻域 N, 在 N 中取两点 P, Q, 设两点将 X 分的两段闭弧为 A, B, 其中 A 在 N 内. 设 P_0 , P_1 是 $\mathbb{R}^2 \setminus X$ 的两个不同连通分支中的点,由于 $\mathbb{R}^2 \setminus B$ 是连通的,所以存在闭路径 γ 连接这两点. γ 一定与 A 相交 (否则 X 将会连通),且交点的集合是闭集,那么设

$$t_m = \min_{t \in [0,1]} \{t | \gamma(t) \in A\}, t_M = \max_{t \in [0,1]} \{t | \gamma(t) \in A\}$$

那么存在某个充分小的 ε , 使得 $\gamma(t_M - \varepsilon)$ 与 P_0 在同一连通分支而 $\gamma(t_M + \varepsilon)$ 与 P_1 在同一连通分支,且 $\gamma(t_M - \varepsilon)$, $\gamma(t_M + \varepsilon)$ 均在 N 中. 从而命题得证.

4 应用和变体

本节需要用到一个(现在还证不出来的)结论:

命题. 设 K 是平面上的非空紧集.

- (a) 如果 K 是连通的, 那么 dim $H^1(\mathbb{R}^2 \setminus K) = 1$, 且 $H^1(\mathbb{R}^2 \setminus K) = \langle [\omega_P] \rangle$, 对任意 $P \in K$;
- (b) 如果 K 不连通且 P, Q 在不同的连通分支中, 那么 $[\omega_P]$ 与 $[\omega_Q]$ 在 $H^1(\mathbb{R}^2 \backslash K)$ 中线性 无关;
- (c) 如果 K 恰好有两个连通分支, 那么任取两个连通分支中的 P,Q, 有 $H^1(\mathbb{R}^2 \setminus K) = \langle [\omega_P], [\omega_Q] \rangle$.

习题 5.13 到习题 5.16 是证明 Jordan 曲线定理中处理 H^0 的技巧的一些应用.

习题 5.13 如果 A,B 是 \mathbb{R}^2 上的连通紧集, 且 $A \cap B$ 非空而不连通, 证明 $\mathbb{R}^2 \setminus (A \cup B)$ 不连通.

习题 5.14 如果 Y 是平面上同胚于一个矩形或者闭圆盘的子集,证明它的补是连通的.

习题 5.15 如果 X 是平面上同胚于一个圆环的子集,证明它的补有两个连通分支.

习题 5.16 如果 X 是平面上同胚于一个 "8 字形" 的子集, 证明它的补有三个连通分支.

此题略过不证.

命题 5.17 到推论 5.19 是 Jordan 曲线定理的一个简单应用.

命题 5.17 设 D 是闭圆盘, 记 D° 为其内部, C 为其边界圆. 设 $f: D \to \mathbb{R}^2$ 是连续的双射, 那么 $\mathbb{R}^2 \setminus f(C)$ 有两个连通分支, 分别为

$$f(D^{\circ}) = \mathbb{R}^2 \backslash f(D)$$

特别地, $f(D^\circ)$ 是平面上的一个开集.

推论 5.18 (区域不变定理) 如果 U 是平面上的开集, $F: U \to \mathbb{R}^2$ 是连续的双射, 那么 F(U) 是 \mathbb{R}^2 的开子集, 且 F 是 U 到 F(U) 的一个同胚.

利用区域不变定理给出第4章中的一个结论的另一证明.

推论 5.19 2 维球面不同胚于平面的任何子集.

以下是一些和 Jordan 曲线定理相关的结论.

命题 5.20 设 $F: C \to \mathbb{R}^2$ 是连续的双射, 那么对 $\mathbb{R}^2 \setminus F(C)$ 的有界连通分支中的任一点 P 有 $W(F,P)=\pm 1$.

接下来两个问题是有关平面图的问题.

问题 5.21 (Euler 公式) 设 X 是平面上 $v \ge 1$ 个顶点与 $e \ge 0$ 条边构成的集合, 边指连接点与点的不自交的路径, 同时假设不同的边在顶点之外不相交. 假设 X 有 k 个连通分支, 证明 $\mathbb{R}^2 \setminus X$ 有 f = e - v + k + 1 个连通分支, 从而有

$$v - e + f = 2 + (k - 1)$$

问题 5.22 证明

$$K_{3,3} := (\{P_1, P_2, P_3, Q_1, Q_2, Q_3\}, \{\{P_i, Q_j\} | i, j = 1, 2, 3\})$$

 $K_5 := (\{P_1, \dots, P_5\}, \{\{P_i, P_j\} | 1 \le i < j \le 5\})$

不能被嵌入平面.

问题 5.23 是定理 5.11, Jordan 曲线定理以及 Euler 公式缩小到一个连通的开集上. 实际上证明方法是一样的, 这里不再详细写.

习题 5.24 证明定理 5.11, Jordan 曲线定理以及 Euler 公式在 2 维球面上也成立.

问题 5.25 在球面上找两个图, 使得他们是同胚的, 但是不存在球面之间的同胚将其中一个映为另一个.

问题 5.26 证明不存在 Möbius 带到平面的连续双射.

问题 5.27 设 X 是平面上同胚于圆周的子集, P_1 , P_2 在其补集中, 由一条穿过 X n 次的路径连接. 证明当 n 是偶数时 P_1 , P_2 在 $\mathbb{R}^2 \setminus X$ 的同一个连通分支中, n 为奇数时在不同的连通分支中. (穿过是需要被定义的)

问题 5.28 一个**带边的拓扑曲面**是指一个第二可数的 Hausdorff 空间,满足对任意一点 P,都存在 P 的一个邻域同胚于平面或上半平面 $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2 | x \ge 0\}$ 中的一个开集.如果这个同胚是到 \mathbb{H}^2 的且将 P 映为 x 轴上的点,则称 P 为**边界点**,否则称为**内点**¹.证明同胚的带边曲面有着同胚的边界 (即边界点的集合),从而 Möbius 带与圆锥面不同胚.

参考文献

- [1] William Fulton. *Algebraic topology*. Vol. 153. Graduate Texts in Mathematics. A first course. Springer-Verlag, New York, 1995, pp. xviii+430. ISBN: 0-387-94326-9; 0-387-94327-7. DOI: 10.1007/978-1-4612-4180-5. URL: https://doi.org/10.1007/978-1-4612-4180-5.
- [2] Michael Spivak. *Calculus on manifolds. A modern approach to classical theorems of advanced calculus.* W. A. Benjamin, Inc., New York-Amsterdam, 1965, pp. xii+144.

¹这里对带边拓扑流形的定义是更加现代的定义, 与书上略微不同