Programa de teoría

Parte I. Estructuras de Datos.

- 1. Abstracciones y especificaciones.
- 2. Conjuntos y diccionarios.
- 3. Representación de conjuntos mediante árboles.
- 4. Grafos.

Parte II. Algorítmica.

- 1. Análisis de algoritmos.
- 2. Divide y vencerás.
 - 3. Algoritmos voraces.
 - 4. Programación dinámica.
 - 5. Backtracking.
 - Ramificación y poda.

PARTE II: ALGORÍTMICA

Tema 2. Divide y vencerás.

- 2.1. Método general.
- 2.2. Análisis de tiempos de ejecución.
- 2.3. Ejemplos de aplicación.
 - 2.3.1. Multiplicación rápida de enteros largos.
 - 2.3.2. Multiplicación rápida de matrices.
 - 2.3.3. Ordenación por mezcla y ordenación rápida.
 - 2.3.4. El problema de selección.
 - 2.3.5. Ejemplo de DyV 1D Secuencia más larga
 - 2.3.6. Ejemplo de DyV 2D El derbi
 - 2.3.7. DyV en búsqueda/optimización

- La técnica divide y vencerás consiste en:
 - Descomponer un problema en un conjunto de subproblemas más pequeños.
 - Se resuelven estos subproblemas.
 - Se combinan las soluciones para obtener la solución para el problema original.

Ventajas:

- Simplificar problemas "difíciles" Ej.: Torres de Hanoi
- Eficiencia: ayuda a descubrir algoritmos eficientes. Ejs.:
 - Multiplicación rápida de enteros largos/matrices.
 - Ordenación rápida (mergesort, quicksort)
- Paralelismo: esquema ideal para paralelizar.
- Jerarquía de memoria: disminuye fallos de caché.

Desventajas:

- Sobrecarga:
 - · Dividir y combinar.
 - Llamadas recursivas.
- Cálculos repetidos (a veces). Ejemplo Fibonacci.

Esquema general:

DivideVencerás (p: problema)

```
Dividir (p, p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub>)

para i:= 1, 2, ..., k

s_i:= Resolver (p<sub>i</sub>)

solución:= Combinar (s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>k</sub>)
```

 Normalmente para resolver los subproblemas se utilizan llamadas recursivas al mismo algoritmo (aunque no necesariamente).

2.1. Método general (bis).

Esquema general:

DivideVencerás (p: problema)

```
Dividir (p, p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub>)

para i:= 1, 2, ..., k

s_i:= Resolver (p<sub>i</sub>)

solución:= Combinar (s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>k</sub>, [p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>k</sub>])
```

 Normalmente para resolver los subproblemas se utilizan llamadas recursivas al mismo algoritmo (aunque no necesariamente).

- Ejemplo. Problema de las torres de Hanoi.
 Mover n discos del poste A al C:
 - Mover n-1 discos de A a B
 - Mover 1 disco de A a C
 - Mover n-1 discos de B a C

```
Hanoi (n, A, B, C: entero)
si n==1 entonces
mover (A, C)
sino
Hanoi (n-1, A, C, B)
mover (A, C)
Hanoi (n-1, B, A, C)
finsi
```

- Si el problema es "pequeño", entonces se puede resolver de forma directa.
- Otro ejemplo. Cálculo de los números de Fibonacci:

$$F(n) = F(n-1) + F(n-2)$$

• F(0) = F(1) = 1

- Ejemplo. Cálculo de los números de Fibonacci.
 - El cálculo del n-ésimo número de Fibonacci se descompone en calcular los números de Fibonacci n-1 y n-2.
 - Combinar: sumar los resultados de los subproblemas.
- La idea de la técnica divide y vencerás es aplicada en muchos campos:
 - Estrategias militares.
 - Demostraciones lógicas y matemáticas.
 - Diseño modular de programas.
 - Diseño de circuitos.
 - Etc.

• Esquema recursivo. Con división en 2 subproblemas y datos almacenados en una tabla entre las posiciones p y q:

```
DivideVencerás (p, q: indice)
```

```
var m: indice
    si Pequeño (p, q) entonces
        solucion:= SoluciónDirecta (p, q)
    sino
        m:= Dividir (p, q)
        solucion:= Combinar (DivideVencerás (p, m),
                             DivideVencerás (m+1, q))
    finsi
```

2.1. Método general (bis).

• Esquema recursivo. Con división en 2 subproblemas y datos almacenados en una tabla entre las posiciones p y q:

```
DivideVencerás (p, q: indice)
var m: indice
    si Pequeño (p, q) entonces
        solucion:= SoluciónDirecta (p, q)
    sino
        m:= Dividir (p, q)
        solucion, [cálculos auxiliares]:=
            Combinar (DivideVencerás (p, m),
                      DivideVencerás (m+1, q),
                      [+ datos, típicamente p, q, m])
    finsi
```

Tema 2. Divide v vencerás.

- Aplicación de divide y vencerás: encontrar la forma de definir las funciones genéricas:
 - Pequeño: Determina cuándo el problema es pequeño para aplicar la resolución directa.
 - SoluciónDirecta: Método alternativo de resolución para tamaños pequeños.
 - Dividir: Función para descomponer un problema grande en subproblemas.
 - Combinar: Método para obtener la solución al problema original, a partir de las soluciones de los subproblemas.
- Para que pueda aplicarse la técnica divide y vencerás debe existir una forma de definirlas -> Aplicar un razonamiento inductivo...

A.E.D. Tema 2. Divide y vencerás.

- Requisitos para aplicar divide y vencerás:
 - Necesitamos un método (más o menos directo) de resolver los problemas de tamaño pequeño.
 - El problema original debe poder dividirse fácilmente en un conjunto de subproblemas, del mismo tipo que el problema original pero con una resolución más sencilla (menos costosa).
 - Los subproblemas deben ser disjuntos: la solución de un subproblema debe obtenerse independientemente de los otros.
 - Es necesario tener un método de combinar los resultados de los subproblemas.

Ejemplo.
 Problema
 del viajante.

- Método directo de resolver el problema:
 Trivial con 3 nodos.
- Descomponer el problema en subproblemas más pequeños: ¿Por dónde?
- Los subproblemas deben ser disjuntos:
 ...parece que no
- Combinar los resultados de los subproblemas:
 ¡¡Imposible aplicar divide y vencerás!!

- Normalmente los subproblemas deben ser de tamaños parecidos.
- Como mínimo necesitamos que hayan dos subproblemas.
- Si sólo tenemos un subproblema entonces hablamos de técnicas de reducción (o simplificación).

Ejemplo sencillo: Cálculo del factorial.
 Fact(n):= n*Fact(n-1)

2.2. Análisis de tiempos de ejecución.

(REPASO del tema 1)

 En general, si se realizan a llamadas recursivas de tamaño n/b, y la división y combinación requieren f(n) = d·n^p ∈ O(n^p), entonces:

$$t(n) = a \cdot t(n/b) + d \cdot n^p$$

Suponiendo $n = b^k \Rightarrow k = \log_b n$

$$t(b^k) = a \cdot t(b^{k-1}) + d \cdot b^{pk}$$

Podemos deducir que:

2.2. Análisis de tiempos de ejecución.

 Ejemplo 1. Dividimos en 2 trozos de tamaño n/2, con f(n) ∈ O(n):

$$a = b = 2$$

 $t(n) \in O(n \cdot log n)$

 Ejemplo 2. Realizamos 4 llamadas recursivas con trozos de tamaño n/2, con f(n) ∈ O(n):

$$a = 4$$
; $b = 2$
 $t(n) \in O(n^{\log_2 4}) = O(n^2)$

(...)

2.3. Ejemplos de aplicación.

- 2.3.1. Multiplicación rápida de enteros largos.
- >> Concepto: TAMAÑO ÓPTIMO DEL CASO BASE
- 2.3.2. Multiplicación rápida de matrices.
- >> Concepto: COTA DE COMPLEJIDAD de un PROBLEMA
- 2.3.3. Ordenación por mezcla y ordenación rápida.
- 2.3.4. El problema de selección.
- 2.3.5. Ejemplo de DyV 2D El derbi
- 2.3.6. DyV en búsqueda/optimización

2.3. Ejemplos de aplicación.

2.3.1. Multiplicación rápida de enteros largos.

 Queremos representar enteros de tamaño arbitrariamente grande: mediante listas de cifras.

tipo EnteroLargo = Puntero[Nodo]

Nodo = registro

valor: 0..9

sig: EnteroLargo

finregistro

 Implementar operaciones de suma, resta, multiplicación, etc.

> A.E.D. Tema 2. Divide y vencerás.

- Algoritmo clásico de multiplicación:
 - Inicialmente r= 0
 - Para cada cifra de v hacer
 - Multiplicar todas las cifras de u por v
 - Sumar a r con el desplazamiento correspondiente

- Suponiendo que u es de tamaño n, y v de tamaño m, ¿cuánto es el tiempo de ejecución?
- ¿Y si los dos son de tamaño n?

Algoritmo de multiplicación con divide y vencerás:

- SoluciónDirecta: si el tamaño es 1, usar la multiplicación escalar
- Dividir: descomponer los enteros de tamaño n en dos trozos de tamaño n/2
- Resolver los subproblemas correspondientes
- Combinar: sumar los resultados de los subproblemas con los desplazamientos correspondientes

A.E.D. Tema 2. Divide v vencerás.

Cálculo de la multiplicación con divide y vencerás:

$$r = u \cdot v = 10^{2S} \cdot w \cdot y + 10^{S} \cdot (w \cdot z + x \cdot y) + x \cdot z$$

- El problema de tamaño n es descompuesto en 4 problemas de tamaño n/2.
- La suma se puede realizar en un tiempo lineal O(n).
- ¿Cuánto es el tiempo de ejecución?
- t(n) = 4·t(n/2) + d·n ∈ O(n²) → No mejora el método clásico.

- ¿Y si en vez de 4 tuviéramos 3 subproblemas…?
- Multiplicación rápida de enteros largos (Karatsuba y Ofman):

$$r = u \cdot v = 10^{2S} \cdot w \cdot y + 10^{S} \cdot [(w-x) \cdot (z-y) + w \cdot y + x \cdot z] + x \cdot z$$

- Subproblemas:
 - m1= w·y
 - $m2 = (w-x) \cdot (z-y)$
 - $m3 = x \cdot z$

```
operación Mult(u, v: EnteroLargo; n, base: entero) : EnteroLargo
  si n == base entonces
       devolver MultBasica(u,v)
  sino
       asignar(w, primeros(n/2, u))
       asignar(x, ultimos(n/2, u))
       asignar(y, primeros(n/2, v))
       asignar(z, ultimos(n/2, v))
       asignar(m1, Mult(w, y, n/2, base))
       asignar(m2, Mult(x, z,n/2, base))
       asignar(m3, Mult(restar(w,x), restar(z,y), n/2, base))
        devolver sumar(sumar(Mult10(m1,n),
                       Mult10(sumar(m1, m2),m3),n/2)),m2)
```

finsi

¿Cuánto es el tiempo de ejecución?

- En este caso se requieren 3 multiplicaciones de tamaño n/2:
 t(n) = 3·t(n/2) + d'·n ∈ O(n^{log}2³) ≈ O(n^{1.59})
- El método es asintóticamente mejor que el método clásico.
- Sin embargo, las constantes y los términos de menor orden son mucho mayores (la combinación es muy costosa).
- En la práctica se obtiene beneficio con números de más de 500 bits...

A.E.D. Tema 2. Divide v vencerás.

Conclusión:

- Para tamaños pequeños usar el método directo.
- Para tamaños grandes usar el método de Karatsuba y Ofman.
- El caso base no necesariamente debe ser n = 1...
- Cuestión importante en Divide y Vencerás:
 - >> ¿Cómo elegir del caso base?

Concepto de TAMAÑO ÓPTIMO DEL CASO BASE

- >> Ver fichero "tema2a estudio caso base óptimo texto guía"
- >> Ver vídeo en "tema2b Integer multiplication in time O(n log n)"

Supongamos el problema de multiplicar dos matrices cuadradas A, B de tamaños nxn. C = AxB
 C(i, j) = ∑ A(i, k)·B(k, j); Para todo i, j= 1..n

Método clásico de multiplicación:

```
for i:= 1 to N do
    for j:= 1 to N do
        suma:= 0
        for k:= 1 to N do
            suma:= suma + a[i,k]*b[k,j]
        end
        c[i, j]:= suma
        end
        end
        end
end
```

El método clásico de multiplicación requiere Θ(n³).

Aplicamos divide y vencerás:
 Cada matriz de nxn es dividida en cuatro submatrices de tamaño (n/2)x(n/2): A_{ii}, B_{ii} y C_{ii}.

A ₁₁	A ₁₂	×		B ₁₂		C ₁₁	C ₁₂	$ \bigcup_{AB} - \bigcap_{AA} D_{AB} + \bigcap_{AB} D_{BB}$
A ₂₁	A ₂₂		B ₂₁	B ₂₂		C ₂₁	C ₂₂	$C_{21} = A_{21}B_{11} + A_{22}B_{21}$ $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

- Es necesario resolver 8 problemas de tamaño n/2.
- La combinación de los resultados requiere un O(n²).
 t(n) = 8·t(n/2) + a·n²
- Resolviéndolo obtenemos que t(n) es O(n³).
- Podríamos obtener una mejora si hiciéramos 7 multiplicaciones (o menos)...

A.E.D. Tema 2. Divide y vencerás.

Multiplicación rápida de matrices (Strassen):

$$P = (A_{11}+A_{22})(B_{11}+B_{22})$$

$$Q = (A_{12}+A_{22}) B_{11}$$

$$R = A_{11} (B_{12}-B_{22})$$

$$S = A_{22}(B_{21}-B_{11})$$

$$T = (A_{11}+A_{12})B_{22}$$

$$U = (A_{21}-A_{11})(B_{11}+B_{12})$$

$$V = (A_{12}-A_{22})(B_{21}+B_{22})$$

$$C_{11} = P + S - T + U$$
 $C_{12} = R + T$
 $C_{21} = Q + S$
 $C_{22} = P + R - Q + U$

- Tenemos 7 subproblemas de la mitad de tamaño.
- ¿Cuánto es el tiempo de ejecución?

• El tiempo de ejecución será:

$$t(n) = 7 \cdot t(n/2) + a \cdot n^2$$

- Resolviéndolo, tenemos que: t(n) ∈ O(n^{log}2⁷) ≈ O(n^{2.807}).
- Las constantes que multiplican al polinomio son mucho mayores (tenemos muchas sumas y restas), por lo que sólo es mejor cuando la entrada es muy grande (empíricamente, para valores en torno a n>120).
- ¿Cuál es el tamaño óptimo del caso base?

- Aunque el algoritmo es más complejo e inadecuado para tamaños pequeños, se demuestra que la cota de complejidad del problema es menor que O(n³).
- COTA DE COMPLEJIDAD DE UN PROBLEMA: tiempo del algoritmo más rápido posible que resuelve el problema.
- Algoritmo clásico → O(n³)
- V. Strassen (1969) \rightarrow O(n^{2.807})
- V. Pan (1984) \rightarrow O(n^{2.795})
- D. Coppersmith y S. Winograd (1990) \rightarrow O(n^{2.376})
- •

$$>>$$
 V. Vassilevska (2014) \rightarrow O(n^{2.376})

- Cuando pensamos en ordenar una serie de elementos, se nos ocurren seguramente algoritmos intuitivos como:
 - Selección (ir eligiendo de los restantes el siguiente mayor)
 - Inserción (coger el siguiente e insertarlo ordenado)
- Ambos tardan un t de orden n².
- Existen otros algoritmos cuadráticos como:
 - Burbuja (bubble sort)
 - Sacudida (shaker sort o cocktail sort)
 - **–** (...)
- Afortunadamente se han conseguido algoritmos de ordenación más rápidos, con orden n log(n), como los que veremos en este apartado:
 - Mergesort
 - Quicksort

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

A.E.D. Tema 2. Divide y vencerás.

- La ordenación por mezcla (mergesort) es un buen ejemplo de divide y vencerás.
- Para ordenar los elementos de un array de tamaño n:
 - Dividir: el array original es dividido en dos trozos de tamaño igual (o lo más parecidos posible), es decir [n/2] y [n/2].
 - Resolver recursivamente los subproblemas de ordenar los dos trozos.
 - Pequeño: si tenemos un solo elemento, ya está ordenado.
 - Combinar: combinar dos secuencias ordenadas. Se puede conseguir en O(n).

L	1
Γ	7

1	2	3	4	5	6	7	8
5	2	7	9	3	2	1	6

```
operación MergeSort (i, j: entero)
    si Pequeño (i, j) entonces
        OrdenaciónDirecta (i, j)
    sino
        s:= (i + j) div 2
        MergeSort (i, s)
        MergeSort (s+1, j)
        Combinar (i, s, j)
    finsi
```

- 11115
- ¿Cómo es la operación Combinar?
- ¿Cuánto es el tiempo de ejecución?
- Ojo: para tamaños pequeños es mejor un método de ordenación directa → Usar un caso base mayor que 1...

- La ordenación rápida (quicksort) también se basa en la técnica divide y vencerás.
 - *Dividir*: el array (i..j) es dividido usando un procedimiento **Pivote**, que devuelve un entero I entre (i, j), tal que: $A[i_a] \le A[l] \le A[j_a]$, para $i_a = i..l-1$; $j_a=l+1..j$.
 - Ordenar recursivamente los trozos (i..l-1) y (l+1..j).
 - Pequeño: si tenemos un solo elemento, entonces ya está ordenado.
 - Combinar: no es necesario realizar ninguna operación.

Tema 2. Divide y vencerás.

36

2.3.3. Métodos de ordenación rápidos (n log(n))

```
operación QuickSort (i, j: entero)
si i ≥ j entonces
{ Ya está ordenado, no hacer nada }
sino
Pivote (i, j, l)
QuickSort (i, l-1)
QuickSort (l+1, j)
finsi
```

- Aunque no hay coste de combinar los resultados, la llamada a Pivote tiene un coste O(n).
- Las particiones no tienen por qué ser de tamaño n/2...

2.3.3. Métodos de ordenación rápidos (n log(n))

```
operación Pivote (i, j: entero; var l: entero)
  var p: tipo { p es el pivote, del tipo del array }
       k: entero
       p:= A[i] { se toma como pivote el primer elemento }
       k:=i
       1:=j+1
       repetir k:= k+1 hasta (A[k] > p) or (k \ge j)
       repetir l := l-1 hasta (A[l] \le p)
       mientras k < l hacer
           intercambiar (k, l)
           repetir k := k+1 hasta (A[k] > p)
           repetir I:=I-1 hasta (A[I] \le p)
       finmientras
       intercambiar (i, I)
```

2.3.3. Métodos de ordenación rápidos (n log(n)) Tiempo de ejecución de la ordenación rápida:

Mejor caso.

Todas las particiones son de tamaño similar, **n**/2.

$$t(n) = 2 \cdot t(n/2) + b \cdot n + c \in \Omega(n \cdot \log n)$$

Peor caso.

Se da cuando el array está ya ordenado. En ese caso una partición tiene tamaño 0 y la otra n-1.

$$t(n) = t(n-1) + b \cdot n + c \in O(n^2)$$

Caso promedio.

Se puede comprobar que $t(n) \in O(n \cdot \log n)$

 Sea T[1..n] un array (no ordenado) de enteros, y sea s un entero entre 1 y n. El problema de selección consiste en encontrar el elemento que se encontraría en la posición s si el array estuviera ordenado.

T	1	2	3	4	5	6	7	8	9	10
	5	9	2	5	4	3	4	10	1	6

- Si s = \[\text{n/2} \], entonces tenemos el problema de encontrar la **mediana** de T, es decir el valor que es mayor que la mitad de los elementos de T y menor que la otra mitad.
- ¿Cómo resolverlo?

- Forma sencilla de resolver el problema de selección:
 - 1. Ordenar T y devolver el valor T[s]
 - 2. Esto requeriría Θ(n log n)
- ¡Igual de complejo que una ordenación completa!
- Pero sólo necesitamos "ordenar" uno...
- Idea: usar el procedimiento pivote de QuickSort.

1	2	3	4	5	6	7	8	9	10
X	X	X≤	ξ Z s	S y	у	y	y	y	у

 Utilizando el procedimiento Pivote podemos resolverlo en O(n)...

Selección (T: array [1..n] de entero; s: entero) var i, j, l: entero i := 1j:= n repetir Pivote (i, j, l) si s < | entonces j:= I-1 sino si s > | entonces i:=1+1hasta |==s devolver T[l]

- Se trata de un algoritmo de reducción: el problema es descompuesto en un solo subproblema de tamaño menor.
- El procedimiento es no recursivo.
- En el mejor caso, el subproblema es de tamaño n/2:
 t(n) = t(n/2) + a·n; t(n) ∈ Ω(n)
- En el peor caso (array ordenado) el subproblema es de tamaño n-1:

$$t(n) = t(n-1) + a \cdot n; t(n) \in O(n^2)$$

En el caso promedio el tiempo del algoritmo es un O(n).

2.3.5. Ejemplo con secuencias

- Dada una secuencia S de n números, encontrar:
 - El mayor/menor...
 - La subsecuencia más larga que cumple:
 - Ascendente
 - Simétrica
 - Pares
 - Potencias del primer elemento
 - Números en posiciones pares son pares
 - ...

2.3.6. Ejemplo de DyV 2D – El derbi

- Barrio en forma de matriz de caracteres M.
- Cada celda (i, j) es una casa
- M[i, j] = casa del equipo 'A', 'B', o neutra ('N')
- Adyacencia conflictiva: M[i,j] = 'A' y M[k,l] = 'B' con:
 - i=k y j=l-1 ó j=l+1
 - j=l y i=k-1 ó i=k+1
- Objetivo: contar adyacencias conflictivas por DyV
- (...)

2.3.7. DyV en búsqueda/optimización

¿Cómo encontramos el tesoro?

Versión sin colorines...

A.E.D.

- El backtracking (retroceso o vuelta atrás) es una técnica general de resolución de problemas, aplicable en problemas de optimización, juegos y otros tipos.
- Por cierto, ¿qué es eso de problema de optimización?
- En todos los problemas hay restricciones, condiciones que determinan si tenemos o no una solución.
- Si además elegimos la mejor solución: optimización
- ¿Mejor? Se define función objetivo: FO(solución), y se busca solución que genera su menor (mayor) valor.

- El backtracking realiza una búsqueda exhaustiva y sistemática en el espacio de soluciones
 - >> Suele resultar muy ineficiente.
- Se puede entender como opuesto a avance rápido:
 - Backtracking: probar todas las combinaciones (con constantes vueltas hacia atrás).
 - Avance rápido:
 - Laberinto con oso hambriento... tomo decisiones y no miro atrás (no las reconsidero).

 Se puede ver como un BT sin vuelta atrás, las decisiones tomadas no se deshacen, así que la elección tomada en cada paso es clave.

¿Y qué tiene que ver esto con Divide y Vencerás?

- Podríamos plantear el mejor camino como una recursión:
- >> mejor camino = el más corto entre:
 - 1) ir por la izquierda
 - 2) ir por la derecha
- ¿Y esto es eficiente? ¿No se repiten cálculos?
- >> Programación dinámica evitará repetir cálculos
- >> BT iterativo evitará recursión y algunos subproblemas

2. Divide y vencerás.

Conclusiones:

- Idea básica Divide y Vencerás: dado un problema, descomponerlo en partes, resolver las partes y juntar las soluciones.
- Idea muy sencilla e intuitiva, pero...
- ¿Qué pasa con los problemas reales de interés?
 - Pueden existir muchas formas de descomponer el problema
 en subproblemas → Quedarse con la mejor.
 - Puede que no exista ninguna forma viable, los subproblemas no son independientes → Descartar la técnica.
- Divide y vencerás requiere la existencia de un método directo de resolución:
 - Tamaños pequeños: solución directa.
 - Tamaños grandes: descomposición y combinación.
 - ¿Dónde establecer el límite pequeño/grande?