

IS42

USN 1 M S 0 8 1 5 0 9 9

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) BANGALORE – 560 054

SEMESTER END EXAMINATIONS - JUNE 2010

Course & Branch : B.E.(Information Science & Engineering)

Semester :

IV

Subject

: Finite Automata and Formal Languages

Max. Marks

100

Subject Code

TS42

Duration

3 hrs.

Instructions to the Candidates: Answer one full question from each unit

UNIT-I

1. a) Define the language of an NFA.

(2)

b) Define a DFA. Obtain DFA for the following languages.

(8)

- (i) L={w|wε {a,b}* with atmost two consecutive b's}
- (ii) L={w| $|w| \mod 5\# 0$ } on $\Sigma = \{a\}$
- c) Prove that "If L=L(A) for some DFA A, then there is a regular expression R (10) such that L=L(R)".
- 2. a) Define Regular Expression. What does the following regular expressions (10) represent.
 - (i) (a+b) * (ab+ba)
 - (ii) (a+b)* ab(a+b)*
 - (iii) ab(a+b)*
 - (iv) ((a+b) (a+b))*
 - b) Define ε-closure. Convert the following ε-NFA to equivalent DFA.
 (10)

UNIT - II

3. a) State and prove pumping lemma for regular languages. Show that the (12) language $L = \{a^nb^n \mid n \ge o\}$ is not regular.

mother quickers in a only a see ago yet statisfied.

b) Show that the regular languages are closed under.

(8)

- i) Complementation operation
- ii) Difference operation

4.	a)	Minimize the following DFA.				(10)
7	a)	Pilitilize the following DIA.	δ	0	1	(10)
			Α	В	F	
		by Bins No. 1 - 2 - 3	В	G	C Z I M A S S S S S S S S S S S S S S S S S S	
		*	C	A	C	
		- manufac Commercia	D	C	G	
			E	Н	F CONTROL	
			F	C	G 1 31 - Short to much	
			G	G	E	
			Н	G	C	
	6)	Define string homomorphism	7.7		・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	(10)
	b)				over alphabet Σ , and h is a	(10)
		homomorphism on Σ , then h				
		nomomorphism on 2, then in	(L) 13 di	30 regula	A IG e ar field sold	
			IIN	TT - TIT		
5	-1	Define a CFG. Obtain CFG for				(8)
3	. a)		i the it	mowning in	anguages.	(0)
		(i) $L = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$				
		(ii) $L = \{0^i 1^n 2^i \mid n \ge 1, i \ge 1\}$				
P	b)	List out any four applications	of CFG	.v Test		(2)
	c)				s grammar? The grammar	(10)
	-,	$G=(\{E,I\},T,P,E),$ where				
					est whether the above grammar	
		is ambiguous. If so, resole a				
				C18.100		
6	. a)	State and prove pumping ler	nma fo	r CFL.		(10)
	b)	Consider the following gramm				(10)
		S → ABC BaB				
		A → aA BaC aaa			0 . 1	
9		B → bBb a D			Prove for CF. C	
		C → cA AC			7.00	
		$D \rightarrow \epsilon$ (epsilon)				
		a) Eliminate epsilon (ε)	product	ions		
		b) Eliminate any unit pro			resulting grammar	
		c) Eliminate any useless				
		d) Put the resulting gran				
			U	VI - TIV		
7	. a)	Let L be a CFL and R is a reg	jular lai	nguage.	Prove that the language LoR is a	(10)
		CFL.	DIMU		25 Ams I linal	stall
0	b)	Obtain an NPDA for the lang	uage L	={WWRIV	$V_{\varepsilon}(0+1)^*$. Show the accessible	(10)
		instantaneous descriptions for				
				SANCE THE SANCE		
8	. a)	With a neat diagram, explain	the wo	orking of	pushdown automata.	(8)
	EA	Backgroup parameters and a second		20.4	F 1167 B	(4)

b) Define the language acceptance of PDA.

i) By final stateii) By Empty stack

(4)

b)

IS42

((h(E)

(12)

- Convert the following CFG into PDA by final state. (8)S → aSa|aa S -> bSb|bb UNIT - V 9. a) Briefly explain the basic model of Turing machine with a neat diagram along (8) with relevant terms. Design a Turing machine for the language $L=\{0^n1^n|n>0\}$. b) (8) Briefly explain halting problem of Turing Machine. c) (4) 10 a) Prove that "Every language accepted by Multiple TM is recursively (8) enumerable.
 - a) Multitape TMb) Turing machines with semi-infinite tapes
 - c) Multistack TM

Write a short notes on
