PMG

Pontuação Multicore Genérica de CPUs

Introdução

Inúmeros fatores determinam a performance de um processador, como tipo de arquitetura, quantidade de instruções por ciclo, tamanho e velocidade das memórias cache, tipo de instrução a ser executada, dentre incontáveis outros. Apesar de tantas variáveis, é possível argumentar que três delas possuem um impacto mais significativo na performance geral de um processador moderno, que são:

- · Frequência máxima;
- Quantidade de núcleos;
- · Quantidade de threads.

Não é atoa que atualmente estas características são as maiores determinantes do preço de uma CPU, além de receber grande destaque pela equipe de marketing das fabricantes. Tal destaque também se dá pelo o fato de que frequência, quantidade de núcleos e de *threads* são os principais (e muitas vezes, os únicos) diferencias entre processadores de uma mesma geração.

PMG - Pontuação Multicore Genérica

O conceito de performance é relativo, sendo importante definir um parâmetro para o prosseguimento desse estudo. Pontuação Multicore Genérica, ou PMG, é um valor que quantifica a performance multicore máxima de uma CPU, ou seja, quando a

mesma recebe uma grande carga de trabalho que a faça utilizar todos os núcleos e threads em frequência máxima.

Fórmula PMG

A fórmula PMG é uma ferramenta simples que pode ser útil para prever e comparar, de forma rápida, a performance multicore de diferentes processadores. Preferencialmente, deve ser utilizada para comparar CPUs de mesma geração e fabricante, garantindo a eliminação de qualquer viés relacionado com a quantidade de instruções por ciclo (IPC). A fórmula é a seguinte:

$$FM(2N + T) = PMG$$

Onde:

- FM: Frequência máxima;
- N: Quantidade de núcleos;
- **T**: Quantidade de *threads*;
- PMG: Pontuação Multicore Genérica;

Observação: Para o atributo FM, é aceitável na maior parte dos casos utilizar a frequência máxima comum (geralmente de um único núcleo), explicitamente apresentada pelas fabricantes em seu website oficial, porém, para obter maior precisão, é recomendado utilizar a frequência máxima simultânea de todos os cores (se tal informação estiver disponível para ambas as CPUs), sendo este um tipo de informação mais difícil (ou impossível) de se obter (recomendo o site https://en.wikichip.org/wiki/Wiki-Chip). Tal observação é mais relevante ao comparar CPUs com uma grande diferença de potência de design térmico (TDP), como por exemplo, um processador de 15 watts com um de 45 watts. Quanto menor o TDP, menor é a sua capacidade de manter uma frequência alta em todos os núcleos simultaneamente. Um exemplo disso, é o fato de

alguns processadores de 15 watts possuirem a frequência máxima especificada como 4.2GHz, porém ao utilizar todos os núcleos em carga máxima, os mesmos conseguem atingir apenas 2.6GHz ao mesmo tempo (devido a limitações térmicas). Tal diferença é menos relevante em processadores *desktop*.

Para manter a consistência, este artigo irá utilizar a frequência máxima comum (de 1 núcleo) por padrão.

Como comparar a PMG com referências do mundo real (Benchmarks)

Ao comparar a PMG com alguma referência de performance do mundo real, para que o resultado faça sentido, é preferível que o *benchmark* possua um bom suporte a múltiplos núcleos e *threads*. Logo, a PMG não é recomendada para prever a performance em aplicações como jogos, que muitas vezes valorizam a frequência muito mais do que a quantidade de núcleos. Processos que utilizem o processamento paralelo plenamente, como edição de video e imagens, modelagem, animação, renderização e atividades computacionais geralmente relacionadas à produtividade serão mais bem representadas pelos valores PMG.

É importante ressaltar que dependendo da capacidade de refrigeração de um dispositivo, a PMG pode se tornar imprecisa, já que é possível que a CPU atinja sua frequência máxima por um curto período de tempo, até reduzi-la para manter uma temperatura aceitável. Nessas situações, é recomendável utilizar a real frequência máxima estável (após a redução de velocidade por motivos térmicos) que o dispositivo suporte ao invés das especificações do fabricante. Notebooks e portáteis em geral possuem maior dificuldade em atingir as frequências máximas e manterem-se estáveis.

Por fim, a PMG possui uma excelente precisão ao comparar CPUs de uma mesma geração e fabricante. Se duas CPUs de diferentes fabricantes forem comparadas, é provável que haja uma discrepância em razão de diferenças arquiteturais e de

instruções por ciclo. Comparações entre processadores AMD Ryzen de primeira ou segunda geração e Intel de oitava geração são relativamente precisas, já que a performance por frequência são similares, entretanto, ao comparar processadores mais antigos, como AMD FX, com gerações mais recentes, os resultados serão completamente errôneos, sendo, nestes casos, necessário recorrer à fórmula PMGU (Pontuação Multicore Genérica Universal), que será apresentada mais adiante.

Calculando e Comparando o PMG de Processadores AMD Ryzen:

Primeiramente, deve-se obter as três principais especificações de uma CPU.

Especificações do processador Ryzen 2700X:

- Frequência máxima (FM): 4.3GHz;
- Número de núcleos (N): 8;
- Número de threads (T): 16.

Finalmente, aplica-se a fórmula:

$$4.3 \times (2 \times 8 + 16) = 137.6$$
 PMG

Portanto, conclui-se que o processador Ryzen 2700X possui um PMG de 137,6.

Especificações do processador Ryzen 2600X:

- Frequência máxima (FM): 4.2GHz;
- Número de núcleos (N): 6;
- Número de threads (T): 12.

Aplicando a fórmula:

$$4.2 \times (2 \times 6 + 12) = 100.8 \text{ PMG}$$

Logo, o processador Ryzen 2700X possui 36,5% vezes mais PMG que o 2600X.

PMG de processadores Ryzen 1000 e 2000:

Modelo Ryzen	PMG
2700X	137,6
2700	131,2
2600X	100,8
2600	93,6
2400G	62,4
1500X	59,2
1400	54,4
2200G	44,4
1300X	44,4
1200	40,8

PMG de processadores Intel de oitava geração

Aplicando o mesmo método utilizado acima, a seguinte tabela foi criada com alguns dos principais processadores Intel de oitava geração (Coffee Lake):

Modelo Intel	PMG
i7 8700K (5GHz)	120,0
i7 8700K	112,8
i5 8600K (5GHz)	90,0
i5 8600K	77,4
i5 8400	72,0
i3 8350K (5GHz)	60,0
i3 8350K	48,0
i3 8100	43,2
Pentium Gold G5600	31,2
Celeron G4920	19,2

Explicação Teórica para a Fórmula

Núcleos e threads são estão diretamente ligados pela frequência do processador, por isso se multiplica a variável MF pela soma dos outros elementos. Como o objetivo da fórmula é calcular a performance máxima de uma CPU, é necessário obter a frequência máxima da mesma. A quantidade de cores (C) é multiplicada por 2, pois cada core pode conter até 2 threads. A quantidade de núcleos possuem uma maior importância na performance multicore, e isso pode ser provado ao verificar que a performance de qualquer processador com 4 núcleos e 4 threads é maior do que um de 2 cores e 4 threads de mesma geração e fabricante. Depois de aplicar peso 2 aos núcleos, é adicionada a quantidade de *threads* (T).

Provando a precisão da fórmula PMG

Observando as tabelas, é possível verificar as diferenças de performance multicore entre diferentes processadores, mas quão bem essas informações se traduzem ao
compara-las com resultados do mundo real? Nas tabelas abaixo, alguns processadores serão comparados uns aos outros, juntamente com as seguintes referências de
performance (benchmarks):

- Cinebench R15 (Multicore);
- CPU-Z (Multicore);
- Renderização Blender (em segundos);
- Time Spy CPU Score;
- Compressão e Descompressão no 7-Zip;
- Criptografia e Decriptografia AES (GB/s);

Ryzen 2700X vs 2600X:

Modelo Ryzen	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
2700X	137,6	1792 [1]	4915 [3]	273 [1]	9147 [5]	47082 [2]	10,9 [2]
2600X	100,8	1358 [1]	3716 [4]	356 [1]	6666 [5]	36844 [2]	8,2 [2]
%	36,5	31,0	32,2	30,4	37,2	27,7	32,9

No caso do Ryzen 2700X vs 2600X, o primeiro apresenta uma vantagem de 36,5% em PMG. Fazendo uma média da diferença percentual das seis referências do mundo real, obtém-se uma vantagem de 31,9% para o 2700X, que é um valor consideravelmente próximo ao previsto pelo PMG.

Ryzen 2400G vs 2200G:

Modelo Ryzen	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
2400G	62,4	800 [6]	2281 [7]	600 [6]	3828 [10]	21119 [9]	4,1 [9]
2200G	44,4	549 [6]	1703 [8]	899 [6]	3469 [10]	13647 [9]	2,5 [9]
%	40,5	45,7	33,9	49,8	10,3	54,7	64,0

Segundo a fórmula, o processador Ryzen 2400G possui um PMG 40,5% maior que o 2200G. Ao fazer a média dos seis *benchmarks*, obtém-se uma vantagem de 43,0% para o 2400G. Novamente, a fórmula se mostrou bastante precisa.

Intel Core i7 8700K vs Core i5 8400:

Modelo Intel	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
i7 8700K	112,8	1364 [11]	3801 [15]	314 [12]	7918 [12]	37668 [13]	8,0 [13]
i5 8400	77,4	924 [11]	2602 [16]	485 [12]	5595 [14]	24877 [13]	5,0 [13]

Modelo Intel	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
%	45,7	47,6	46,0	54,4	41,5	51,4	60,0

Já na tabela acima, o i7 8700K tem uma vantagem de 45,7% em PMG. Ao fazer a média das vantagens dos *benchmarks*, obtêm-se 50,1%, uma diferença de apenas 4,4% neste caso.

Intel core i3 8350K (5GHz) vs i3 8100:

Modelo Intel	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender 2070 Tiles Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Tom's Hardware	LAME (.WAV to .MP3) (Seconds)
i3 8350K	60,0	841 [19]	2374 [20]	209,8 [19]	5059 [17]	44964 [19]	22,3 [19]
i3 8100	43,2	611 [19]	1658 (u)	283,3 [19]	3750 [17]	31379 [19]	31,1 [19]
%	38,8	37,6	43,1	35,0	34,9	43,3	28,3

Na comparação entre o i3 8350K e o 8100, há a diferença de que há uma CPU com overclock. Mesmo assim, a fórmula se manteve extremamente precisa, resultando em uma vantagem de 38,8% PMG e uma vantagem média de 37,0% nos *benchmarks*.

Precisão da Fórmula PMG

Ao comparar diversas CPUs diferentes com 6 benchmarks cada, a fórmula PMG se mostrou extremamente precisa. Mais especificamente, das oito CPUs comparadas acima, as quatro mais potentes obtiveram em média 40,3% mais PMG em relação à mais fraca. No mundo real, a vantagem foi uma média de 40,5% nos *benchmarks*.

Com isso, pode-se concluir que a fórmula PMG é extremamente precisa quando compara processadores de uma mesma geração e fabricante, sendo extremamente útil

para comparar processadores sem a necessidade de pesquisar por diversos benchmarks. A fórmula também pode ser útil para calcular os ganhos de um overclock.

IPC - O Problema em Comparar CPUs de Diferentes Fabricantes

Comparar processadores de diferentes fabricantes já não é tão simples. Muitos novos fatores entram em jogo, como suporte à diferentes velocidades de memória RAM, diferentes placas mãe e, principalmente, variações na quantidade de instruções por ciclo (IPC) de cada arquitetura.

A tabela abaixo mostra uma comparação entre o processador AMD Ryzen 2700X com o Intel Core i7 8700K:

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
2700X	137,6	1792 [1]	4915 [3]	273 [1]	9147 [5]	47082 [2]	10,9 [2]
i7 8700K	112,8	1364 [11]	3801 [15]	314 [12]	7918 [12]	37668 [13]	8,0 [13]
%	21,9	31,3	29,3	15,0	15,5	25,3	36,2

Note que no caso acima, a fórmula também é precisa, com uma diferença PMG de +21,9% e uma diferença média dos *benchmarks* de +25,4%. Porém, tal fato é apenas uma coincidência, já que ambos os processadores foram lançados no mesmo ano, e, coincidentemente, ambos possuem um IPC muito similar nas referências comparadas, o que torna a comparação direta entre a segunda geração AMD Ryzen e a oitavageração Intel Coffee-Lake válida, sem nem mesmo considerar o IPC. Abaixo, outra tabela reforçando este ponto:

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
i5 8400	77,4	924 [11]	2602 [16]	485 [12]	5595 [14]	24877 [13]	5,0 [13]

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
R5 2400G	62,4	800 [6]	2281 [7]	600 [6]	3828 [10]	21119 [9]	4,1 [9]
%	24,0	15,5	14,0	23,7	46,1	17,7	21,9

Com uma vantagem de 24% em PMG, e 23,1% na média dos benchmarks, a fórmula novamente se mostra precisa, sendo mais uma evidência de um IPC similar entre os modelos comparados.

Entretanto, tal coincidência nem sempre ocorre, e um exemplo que deixa isso evidente é a série de processadores FX da AMD, como mostra seguinte tabela:

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Time Spy CPU Score
FX-9590	120	728 [21]	1744 [23]	3313 [22]
i5 8400	77,4	924 [11]	2602 [16]	5595 [14]
%	55,0	-21,2	-32,9	-40,7

Note que neste caso, esperava-se que o FX-9590 obtivesse uma vantagem de cerca de 55%, porém, na realidade ele obteve uma desvantagem de 31,6%! Esta grande diferença ocorreu pois a quantidade de instruções por ciclo (IPC) do processador FX-9590 é significativamente menor que o i5 de oitava geração. É exatamente por este motivo que não se recomenda utilizar a fórmula PMG para comparar processadores de diferentes gerações e fabricantes.

Contornando o problema do IPC

É possível contornar o problema da quantidade de instruções por ciclo adicionando uma nova constante à formula, tal constante representaria o IPC de cada geração de processadores. Entretanto, tal solução não é elegante, já que IPC é algo que pode variar bastante de acordo com o tipo de instrução sendo executada. A simplicidade da fórmula também é afetada de forma negativa, já que será necessário consultar uma tabela com os valores para cada geração de CPU.

PMGU - Pontuação Multicore Genérica Universal

Para tornar possível a comparação entre qualquer CPU, é necessário conhecer a quantidade de instruções por ciclo de cada geração de processadores e utilizar uma fórmula universal. Como IPC é subjetivo e variável, o conceito deste aqui utilizado só é válido para cargas de trabalho multicore.

A nova fórmula é a seguinte:

$$IPC(MF(2C + T)) = PMGU$$

Que é o equivalente de:

onde:

 IPC: Valor que representa a quantidade de instruções por ciclo de uma geração de processadores.

Como obter o valor IPC

Para obter o IPC da fórmula PMGU, é necessário calcular um valor que normalize o PMG, tornando-o similar à média dos resultados dos *benchmarks*. Diferentemente da fórmula PMG, a fórmula PMGU possui uma variável que tem relação direta com dados do mundo real. Portanto, para garantir a precisão da fórmula PMGU, é importante obter o máximo de informações de *benchmarking* multicore o possível.

Obtendo os valores para a tabela IPC Multicore

A primeira coisa a fazer é definir um valor de referência. Os processadores mais atuais, que neste momento são os AMD Ryzen+, receberão o valor IPC de 1. O restante

será o resultado de uma comparação com os mesmos. Como as comparações com os AMD Ryzen+ e Coffee Lake obtiveram resultados PMG realistas, pode-se também atribuir o IPC de 1,0 para os processadores Intel de oitava geração com segurança. A partir daqui, serão calculados os IPCs das gerações anteriores, que dará origem à tabela IPC.

IPC dos Processadores AMD FX:

Primeiramente, será necessário comparar um processador AMD FX com um processador de IPC 1,0. Neste caso, os processadores escolhidos foram:

- AMD FX-9560 (8 núcleos, 8 threads e frequência máxima de 5GHz);
- Intel Core i5 8400 (6 núcleos, 6 threads e frequência máxima de 4GHz);

Depois, é necessário criar uma tabela PMG simples, em ordem decrescente em relação aos *benchmarks*:

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Time Spy CPU Score
i5 8400	77,4	924 [11]	2602 [16]	5595 [14]
FX-9590	120	728 [21]	1744 [23]	3313 [22]
%	-0,35	26,9	49,2	68,9

Neste caso, como a diferença PMG de -35% está completamente distante da média de +48,3% dos *benchmarks*, é possível concluir que o IPC da série de processadores AMD FX é consideravelmente menor que os Intel Coffee Lake.

Será necessário transformar o PMG de 120 do FX-9590 em um PMGU que resulte em uma diferença de 48,3% sob o PMGU do Core i5 8400 (Como o IPC do processador Intel é 1, o PMG é igual ao PMGU para o mesmo).

O cálculo do PMGU do FX-9590, representado por x, pode ser feito da seguinte forma:

$$77.4 \div x = 1 + 0.483$$

$$x = 77,4 \div 1,483$$

$$x = 52,2$$

Logo, obteve-se o valor PMGU da série do processador da AMD. Para obter o IPC do mesmo, basta realizar o seguinte cálculo:

$$PMGU = IPC \times PMG$$

$$52,2 = IPC \times 120,0$$

$$IPC = 52,2 \div 120,0$$

$$IPC = 0.43$$

Portanto, é possível obter o IPC de uma série de processadores a partir do PMGU de um de seus processadores.

IPC dos Processadores Intel Haswell:

A próxima geração de processadores analisada será a Haswell (quarta geração da Intel). O procedimento de cálculo será o mesmo do AMD FX, porém, sem toda a explicação utilizada anteriormente.

Intel Core i5 8400 vs i7 4770:

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	3DMark CPU Score	PassMark PerformanceTest Average Score	Geekbench 4 Multi- Core Score
i5 8400	77,4	924 [11]	2602 [16]	12072 [26]	11793 [28]	18598 [30]
i7 4770	62,4	690 [25]	2015 [24]	9032 [27]	9791 [29]	13050 [31]
%	24,0	33,9	29,1	33,6	20,4	42,5

Diferença entre o 8400 e 4770:

• PMG: +24%;

Média dos 5 benchmarks: +31,2%;

Portanto, a discrepância de 8,2% prova que o IPC da oitava geração de processadores Intel é superior à quarta-geração, como esperado.

Realizando os cálculos necessários, se chega aos seguintes valores para o processador i7 4770 e sua respectiva geração:

• PMGU: 58,9;

• IPC Haswell: 0,94.

IPC dos Processadores AMD Ryzen de Primeira Geração (ZEN):

Para obter o valor IPC da primeira geração de processadores Ryzen (ZEN), os mesmos serão comparados com a segunda geração Ryzen (ZEN+) que já possui um IPC de 1,0.

AMD Ryzen 2600X vs Ryzen 1600X:

Modelo Ryzen	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
2600X	100,8	1358 [1]	3716 [4]	356 [1]	6666 [5]	36844 [2]	8,2 [2]
1600X	96	1232 [32]	3410 [34]	390 [32]	5932 [35]	32484 [33]	7,5 [33]
%	5	10,2	9,0	9,5	12,4	13,4	9,3

Diferença entre o 2600X e 1600X:

• PMG: +5%;

• Média dos 6 benchmarks: +10,6%.

Portanto, houve uma discrepância de 5,6%, logo, a arquitetura ZEN+ tem um IPC maior que a ZEN. Realizando os cálculos, se chega aos seguintes valores para o processador Ryzen 1600X e a primeira geração Ryzen:

• PGMU: 91,1;

• IPC: **0,95**.

IPC dos Processadores Intel Kaby Lake:

Intel Core i7 8700K vs i5 7400:

Modelo Intel	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
i7 8700K	112,8	1428 [36]	3801 [15]	302 [36]	7918 [12]	39554 [36]	8,0 [36]
i5 7400	42	551 [36]	1525 [18]	823 [36]	3246	14656 [36]	2,9 [36]
%	168,5	159,1	149,2	172,5	144,0	170,0	175,8

Diferença entre o i7 8700K e i5 7400:

• PMG: 168,5%;

• Média dos 6 benchmarks: 161,8%;

Neste caso, como a média dos *benchmarks* ficou 6,7% abaixo da diferença PMG, é seguro assumir que o IPC da geração Kaby Lake seja o mesmo da Coffee Lake, pois sabe-se que não é possível ser menor que esta, já que é mais antiga. Portanto, será atribuído o valor 1,0 ao IPC da sétima geração de processadores Intel.

IPC dos Processadores Intel Skylake:

Intel Core i7 8700K vs i7 6700:

Modelo Intel	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Blender Scene Render (seconds)	Time Spy CPU Score	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
i7 8700K	112,8	1428 [36]	3801 [15]	302 [36]	7918 [12]	39554 [36]	8,0 [36]
i7 6700	64,0	820 [37]	2176 [24]	529,3 [39]	4573 [38]	22426 [39]	4,6 [39]
%	76,2	74,1	74,7	75,3	73,1	76,4	73,9

Diferença entre o i7 8700K e i7 6700:

• PMG: +76,2%;

• Média dos 6 benchmarks: +74,6%.

Como a diferença é de apenas -1,6%, é seguro assumir que o IPC da sexta geração de processadores também é 1.

IPC dos Processadores Intel Broadwell:

Intel Core i7 6700 vs i7 5775C:

Modelo Intel	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Time Spy CPU Score	HandBrake v0.9.9 2x4K (fps)	7-Zip Combined Scores - Anandtech	AES (GB/s) Encryption and Decryption
i7 6700	64,0	820 [37]	2176 [24]	4573 [38]	26,1 [37]	23572 [37]	4,6 [39]
i7 5775C	59,2	782 [37]	2352 [24]	4092 [40]	22,11 [37]	22724 [37]	4,3 [37]
%	8,1	4,9	-7,5	11,7	18,0	3,7	7,0

Diferença entre o i7 6700 e o i7 5775C:

- PMG: +8,1%;
- Média dos 6 benchmarks: +6,3%.

Como a diferença foi de apenas -1,8%, é possível concluir o IPC Multicore dos processadores Intel Broadwell também possui o valor 1,0. É bom lembrar que os processadores Broadwell possuem um diferencial que pode fazer a diferença em *benchmarks*, que é a memória cache L4 de 128MB, especialmente utilizada pela GPU integrada Iris Pro 6200. Tal fato explicaria a vantagem do processador de quinta geração em alguns *benchmarks*, como CPU-Z.

IPC dos Processadores Intel Sandy Bridge:

Intel Core i5 7600K vs i5 2500K:

Modelo da CPU	PMG	Blender GN 4K Render (Minutos)	Cinebench R15 (Multicore)		TimeSpy CPU Score	CPU-Z Multicore	Geekbench 4.0 Multicore Score
i5 7600K	46,8	73,4 [41]	664,3 [41]	8801 [41]	4098 [41]	1691 [18]	14439 [42]

Modelo da CPU	PMG	Blender GN 4K Render (Minutos)	Cinebench R15 (Multicore)	3DMark FireStrike Physics Score	TimeSpy CPU Score	CPU-Z Multicore	Geekbench 4.0 Multicore Score
i5 2500K	44,4	106,2 [41]	460 [41]	6190 [41]	2519 [41]	1314 [18]	10858 [43]
%	5,4	44,7	44,4	42,2	62,7	28,7	33,0

Diferença entre o i5 6600K e o i5 2500K:

• PMG: +5,4%;

• Média dos 6 benchmarks: +42,62%.

Devido à enorme discrepância entre PMG e média de *benchmarks*, é possível concluir que o IPC dos processadores Sandy Bridge são consideravelmente inferiores aos processadores Skylake. Depois de realizar os devidos cálculos, se chega aos seguintes valores para o processador i5 2500K e a geração Sandy Bridge:

• PMGU: 32,81;

• IPC: **0,74**.

IPC dos Processadores Intel Ivy Bridge:

Intel Core i5 3570K vs i5 2500K:

Modelo da CPU	PMG	Cinebench R10 Multi-Threaded	7-Zip (Anandtech) Total MIPS	Blender Character Render (seconds)	CPU-Z Multicore	Geekbench 4.0 Multicore Score	Time Spy CPU Score
i5 3570K	45,6	22742 [47]	15724 [47]	39 [47]	1436 [18]	11426 [44]	2785 [45]
i5 2500K	44,4	20381 [47]	15274 [47]	46,1 [47]	1314 [18]	10858 [43]	2610 [46]
%	2,7	11,6	2,9	18,2	9,3	5,2	6,7

Diferenças entre o i5 3570K e o i5 2500K:

• PMG: +2,7%;

• Média dos 6 benchmarks: +9%.

Portanto, o IPC Multicore dos processadores Ivy Bridge é superior aos Sandy Bridge. Realizando os cálculos, obtêm-se os seguintes valores para o i5 3570K e a geração Ivy Bridge:

• PMGU: 35,8;

• IPC: **0,785**.

Tabela IPC Multicore:

Geração	IPC Multicore
AMD Ryzen (ZEN+)	1,0
Intel Coffee Lake	1,0
AMD Ryzen (ZEN)	0,95
Intel Kaby Lake	1,0
Intel Skylake	1,0
Intel Broadwell	1,0
Intel Haswell	0,94
Intel Ivy Bridge	0,785
Intel Sandy Bridge	0,74
AMD FX	0,43

Com a tabela acima, é possível comparar processadores de diferentes fabricantes e gerações. Observe a nova comparação do processador AMD FX-9590 com o Intel Core i5 8400:

Modelo da CPU	PMGU	Cinebench R15 Multicore	CPU-Z Multicore	Time Spy CPU Score
i5 8400	77,4	924 [11]	2602 [16]	5595 [14]
FX-9590	52,2	728 [21]	1744 [23]	3313 [22]
%	48,2	26,9	49,2	68,8

Para relembrar, a mesma comparação utilizando apenas a fórmula PMG simples era a seguinte:

Modelo da CPU	PMG	Cinebench R15 Multicore	CPU-Z Multicore	Time Spy CPU Score
FX-9590	120	728 [21]	1744 [23]	3313 [22]
i5 8400	77,4	924 [11]	2602 [16]	5595 [14]
%	55,0	-21,2	-32,9	-40,7

Ou seja, o que a constante IPC fez, foi transformar o resultado PMG de 120,0 do processador FX-9590 em um PMGU de 52,2, que representa uma quantificação de performance universal muito mais realista.

Lista de Processadores Ordenados por PMGU:

Com a tabela IPC Multicore pronta, é possível construir uma lista de processadores em ordem decrescente em relação ao PMGU:

Modelo da CPU	PMGU
2700X	137,6
2700	131,2
i7 8700K (5GHz)	120,0
i7 8700K	112,8
2600X	100,8
2600	93,6
i5 8600K (5GHz)	90,0
i5 8600K	77,4
i5 8400	72,0
i3 8350K (5GHz)	60,0
2400G	59,3
1500X	56,2
FX-9590	52,2
1400	51,7
i3 8350K	48,0
i3 8100	43,2

Modelo da CPU	PMGU
2200G	42,2
1300X	42,2
1200	38,8
Pentium Gold G5600	31,2
Celeron G4920	19,2

Conclusão

A fórmula PMG é uma ferramenta interessante, capaz de prever com precisão alguns valores de performance, sem a necessidade de depender de referências de terceiros. Algumas previsões interessantes podem ser realizadas, como o fato de que, em geral, um processador com 6 núcleos e 6 threads possui mais performance multicore que um com 4 núcleos e 8 threads.

Já a fórmula PMGU, mesmo sendo limitada à uma constante que pode conter vieses, permite a comparação entre virtualmente qualquer processador no mercado.

Com dados suficientes de benchmarks multicore, a fórmula se torna extremamente confiável.

Em geral, os Resultados das fórmulas se mostraram extremamente precisos com referências do mundo real, retirando a necessidade de consultar diversos *benchmarks* para saber se um processador x é mais rápido que o y, ou quais serão os ganhos de performance em um eventual overclock. A fórmula também pode ser bastante útil para comparar processadores não tão populares, que possuem poucas informações e referências na internet.

Referências

- 1. CUTRESS, IAN. The AMD 2nd Gen Ryzen Deep Dive: The 2700X, 2700, 2600X and 2600 Tested CPU Rendering Tests. Disponível em: https://www.anand-tech.com/show/12625/amd-second-generation-ryzen-7-2700x-2700-ryzen-5-2600x-2600/10. Acesso em 26/05/2018.
- 2. CUTRESS, IAN. The AMD 2nd Gen Ryzen Deep Dive ... CPU Encoding
 Tests. Disponível em: https://www.anandtech.com/show/12625/amd-second-gene-ration-ryzen-7-2700x-2700-ryzen-5-2600x-2600/12. Acesso em 26/05/2018.
- 3. CPU-Z. CPU-Z Benchmark (x64 2017.1) 16 Threads. Disponível em: http://valid.x86.fr/bench/s8ng35/16. Acesso em 26/05/2018.
- 4. CPU-Z. CPU-Z Benchmark (x64 2017.1) 12 Threads. Disponível em: https://valid.x86.fr/bench/p2d7tu/12. Acesso em 26/05/2018.
- 5. HAGEDOORN, HILBERT. AMD Ryzen 7 2700X review Performance 3D-Mark Time Spy CPU. Disponível em: http://www.guru3d.com/articles-pages/amd-ryzen-7-2700x-review,18.html. Acesso em 26/05/2018.
- 6. CUTRESS, IAN. Marrying Vega and Zen: The AMD Ryzen 5 2400G Review Benchmarking Performance: CPU Rendering Tests. Disponível em: https://www.a-nandtech.com/show/12425/marrying-vega-and-zen-the-amd-ryzen-5-2400g-review/8. Acesso em 26/05/2018.
- 7. HEGEDOORN, HILBERT. AMD Ryzen 5 2400G review Performance CPU-Z. Disponível em: http://www.guru3d.com/articles_pages/amd_ryzen_5_2400g_re-view,9.html. Acesso em: 26/05/2018.
- 8. HEGEDOORN, HILBERT. AMD Ryzen 3 2200G review Performance CPU-Z. Disponível em: http://www.guru3d.com/articles_pages/amd_ryzen_3_2200g_re-view,9.html. Acesso em: 26/05/2018.

- 9. CUTRESS, IAN. Marrying Vega and Zen: The AMD Ryzen 5 2400G Review Benchmarking Performance: CPU Encoding Tests. Disponível em: https://www.a-nandtech.com/show/12425/marrying-vega-and-zen-the-amd-ryzen-5-2400g-review/10. Acesso em: 26/05/2018.
- 10. HAGEDOORN, HILBERT. AMD Ryzen 3 2200G review Performance 3D-Mark Time Spy CPU. Disponível em: http://www.guru3d.com/articles_pages/ amd ryzen 3 2200g review,18.html. Acesso em: 26/05/2018.
- 11. CUTRESS, IAN. The AnandTech Coffee Lake Review: Initial Numbers on the Core i7-8700K and Core i5-8400 Benchmarking Performance: CPU Rendering Tests. Disponível em: https://www.anandtech.com/show/11859/the-anandtech-coffee-lake-review-8700k-and-8400-initial-numbers/8. Acesso em: 26/05/2018.
- 12. HAGEDOORN, HILBERT. Intel Core i7 8700K processor review Performance 3DMark Time Spy CPU. Disponível em: http://www.guru3d.com/articles_pages/ intel_core_i7_8700k_processor_review,16.html. Acesso em: 26/05/2018.
- 13. CUTRESS, IAN. The AnandTech Coffee Lake Review: Initial Numbers on the Core i7-8700K and Core i5-8400 Benchmarking Performance: CPU Encoding Tests. Disponível em: https://www.anandtech.com/show/11859/the-anandtech-coffee-lake-review-8700k-and-8400-initial-numbers/10. Acesso em: 26/05/2018.
- 14. BAILEY, DAMON. Intel Core i5-8400 CPU Review: Page 4 of 6. Disponível em: https://proclockers.com/reviews/cpus/intel-core-i5-8400-cpu-review/page/0/3. Acesso em: 26/05/2018.
- 15. CPU-Z. CPU-Z Benchmark (x64 2017.1) 12 Threads. Disponível em: http://valid.x86.fr/bench/xyws8u/12. Acesso em: 26/05/2018.
- 16. CPU-Z. CPU-Z Benchmark (x64 2017.1) 6 Threads. Disponível em: http://valid.x86.fr/bench/xyws8u/6. Acesso em: 26/05/2018.

- 17. ALCORN, PAUL. Intel Core i3-8100 CPU Review. Disponível em: https://www.tomshardware.com/reviews/intel-core-i3-8100-cpu-review,5385-3.html. Acesso em: 26/05/2018.
- 18. CPU-Z. CPU-Z Benchmark (x64 2017.1) 4 Threads. Disponível em: http://valid.x86.fr/bench/4. Acesso em: 26/05/2018.
- 19. ALCORN, PAUL. Intel Core i3-8100 CPU Review. Disponível em: https://www.tomshardware.com/reviews/intel-core-i3-8100-cpu-review,5385-8.html. Acesso em: 26/05/2018.
- 20. CPU-Z. CPU-Z Benchmark (x64 2017.1) 4 Threads. Disponível em: http://valid.x86.fr/bench/2najq4/4. Acesso em: 26/05/2018.
- 21. CUTRESS, IAN. AMD's 5 GHz Turbo CPU in Retail: The FX-9590 and ASRock 990FX Extreme9 Review. Disponível em: https://www.anandtech.com/show/8316/ amds-5-ghz-turbo-cpu-in-retail-the-fx9590-and-asrock-990fx-extreme9-review/6. Acesso em: 26/05/2018.
- 22. 3DMark. Time Spy 1.0. Disponível em: https://www.3dmark.com/spy/769680. Acesso em: 26/05/2018.
- 23. CPU-Z. CPU-Z Benchmark (x64 2017.1) 8 Threads. Disponível em: http://valid.x86.fr/bench/8. Acesso em: 26/05/2018.
- 24. CPU-Z. CPU-Z Benchmark (x64 2017.1) 8 Threads. Disponível em: https://valid.x86.fr/bench/8. Acesso em: 28/05/2018.
- 25. CPU Monkey. Intel Core i7 4770. Disponível em: https://www.cpu-monkey.com/en/cpu-intel core i7 4770-36. Acesso em: 28/05/2018.
- 26. BENCHMARKS. INTEL CORE I5-8400 PROCESSOR REVIEW. Disponível em: https://benchmarks.ul.com/hardware/cpu/Intel+Core+i5-8400+Processor+review.

 Acesso em: 28/05/2018.

- 27. BENCHMARKS. INTEL CORE I7-4770 PROCESSOR REVIEW. Disponível em: https://benchmarks.ul.com/hardware/cpu/Intel+Core+i7-4770+Processor+review.

 Acesso em: 28/05/2018.
- 28. PassMark Software. Intel Core i5-8400 @ 2.80GHz. Disponível em: https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i5-8400+ %40+2.80GHz&id=3097. Acesso em: 28/05/2018.
- 29. PassMark Software. Intel Core i7-4770 @ 3.40GHz. Disponível em: https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i7-4770+ %40+3.40GHz&id=1907. Acesso em: 28/05/2018.
- 30. Geekbench. Intel Core i5-8400 Benchmarks. Disponível em: https://brow-ser.geekbench.com/processors/2066. Acesso em: 28/05/2018.
- 31. Geekbench. Intel Core i7-4770 Benchmarks. Disponível em: https://brow-ser.geekbench.com/processors/973. Acesso em: 28/05/2018.
- 32. CUTRESS, IAN. The AMD Ryzen 5 1600X vs Core i5 Review: Twelve Threads vs Four at \$250 Benchmarking Performance: CPU Rendering Tests. Disponível em: https://www.anandtech.com/show/11244/the-amd-ryzen-5-1600x-vs-core-i5-review-twelve-threads-vs-four/6. Acesso em: 28/05/2018.
- 33. CUTRESS, IAN. The AMD Ryzen 5 1600X vs Core i5 Review: Twelve Threads vs Four at \$250 Benchmarking Performance: CPU Encoding Tests. Disponível em: https://www.anandtech.com/show/11244/the-amd-ryzen-5-1600x-vs-core-i5-review-twelve-threads-vs-four/8. Acesso em: 28/05/2018.
- 34. CPU-Z. CPU-Z Benchmark (x64 2017.1) 12 Threads. Disponível em: https://valid.x86.fr/bench/12. Acesso em: 28/05/2018.
- 35. HAGEDOORN, HILBERT. AMD Ryzen 5 1500X and 1600X review DX11/12: 3DMark FireStrike (2013) & TimeSpy. Disponível em: http://www.guru3d.com/arti-

- <u>cles-pages/amd-ryzen-5-1500x-and-1600x-review,25.html</u>. Acesso em: 28/05/2018.
- 36. Anandtech. CPU Benchmarks. Disponível em: https://www.anandtech.com/bench/product/1833?vs=2109. Acesso em: 28/05/2018.
- 37. Anandtech. CPU Benchmarks. Disponível em: https://www.anandtech.com/bench/product/1501?vs=1554. Acesso em: 30/05/2018.
- 38. 3DMARK. TIME SPY 1.0 CPU Score. Disponível em: https://www.3dmark.-com/spy/14405. Acesso em: 28/05/2018.
- 39. Anandtech. CPU Benchmarks. Disponível em: https://www.anandtech.com/bench/product/1554. Acesso em: 28/05/2018.
- 40. 3DMARK. TIME SPY 1.0 CPU Score. Disponível em: https://www.3dmark.-com/spy/534833. Acesso em: 30/05/2018.
- 41. BURKE, STEVE. Intel i5-2500K Benchmark in 2017: Finally Showing Its Age P2: Intel i5-2500K Blender, FireStrike, TimeSpy 2017. Disponível em: https://www.-gamersnexus.net/guides/2773-intel-i5-2500k-revisit-benchmark-for-2017/page-2. Acesso em: 31/05/2018.
- 42. Geekbench. Intel Core i5-6600K Benchmarks. Disponível em: https://brow-ser.geekbench.com/processors/1706. Acesso em: 31/05/2018.
- 43. Geekbench. Intel Core i5-2500K Benchmarks. Disponível em: https://brow-ser.geekbench.com/processors/379. Acesso em: 31/05/2018.
- 44. Geekbench. Intel Core i5-3570K Benchmarks. Disponível em: https://brow-ser.geekbench.com/processors/750. Acesso em: 31/05/2018.
- 45. 3DMARK. TIME SPY 1.0 CPU Score. Disponível em: https://www.3dmark.-com/spy/3719967. Acesso em: 31/05/2018.

- 46. 3DMARK. TIME SPY 1.0 CPU Score. Disponível em: https://www.3dmark.-com/spy/1558512. Acesso em: 31/05/2018.
- 47. Anandtech. CPU Benchmarks. Disponível em: https://www.anandtech.com/
 bench/product/288?vs=701. Acesso em: 31/05/2018.