Phase 3: Implementation of Project

Title: Al-Driven Building Performance Analysis

Objective

The goal of Phase 3 is to implement the core components of the AI-Driven Building Performance Analysis system based on the innovative solutions developed in Phase 2. This includes deploying the AI-powered anomaly detection engine, energy forecasting tool, optimization recommendations, and occupant feedback loop, while ensuring robust data integration, security, and user accessibility.

1. Al Model Deployment

Anomaly Detection Engine

Overview:

Deploy the hybrid machine learning model (statistical + LSTM networks) to detect HVAC and lighting faults in real-time.

Implementation:

- Integrate time-series models with live IoT sensor data (e.g., temperature, energy meters) using Kafka streams.
- Implement dynamic thresholding to reduce false alarms and categorize anomalies (e.g., "HVAC valve stuck open").
- Trigger visual alerts on dashboards and mobile push notifications for facility managers.

Outcome:

- Fault detection time reduced from days to minutes.
- Dashboard displays prioritized anomalies with root-cause diagnostics.

Energy Forecasting & Simulation Tool

Overview:

Roll out the regression and neural network-based energy predictor for short/long-term consumption trends.

Implementation:

- Ingest weather API data (e.g., NOAA) and occupancy schedules to simulate scenarios.
- Deploy "what-if" simulator for testing HVAC adjustments or retrofit options.
- Visualize cost savings and carbon impact via interactive charts.

Outcome:

- Building owners can forecast energy use under varying conditions.
- ROI estimates for retrofits (e.g., "Upgrading insulation saves \$X/year").

2. User Interface Deployment

Interactive Dashboard

Overview:

Launch a refined React-based dashboard for facility managers and occupants.

Implementation:

- Display real-time KPIs (EUI, CO₂ levels, comfort indices) with drill-down capabilities.
- Include heatmaps for thermal comfort and anomaly hotspots.
- Add AI-generated recommendations (e.g., "Lower setpoints by 2°C during weekends").

Outcome:

Non-technical users gain actionable insights without data overload.

Occupant Feedback Mobile App

Overview:

Release a mobile app for occupants to report comfort issues (temperature, air quality).

Implementation:

- App collects feedback via sliders (e.g., "Too cold") and free-text comments.
- Sentiment analysis identifies recurring complaints for Al-driven zone adjustments.
- Reinforcement learning personalizes HVAC/lighting in high-feedback zones.

Outcome:

Occupant satisfaction scores improve by 20–30%.

3. Data Integration & Security

IoT Pipeline Expansion

Overview:

Scale data ingestion to include occupancy sensors, smart meters, and BMS logs.

Implementation:

- Use Apache Spark for preprocessing (noise filtering, imputation for missing data).
- Store aggregated data in a centralized data lake (AWS S3 or Snowflake).

Outcome:

• Unified data pipeline supports all AI models with minimal latency.

Security & Compliance

Overview:

Ensure GDPR/BIS compliance for sensitive building and occupant data.

Implementation:

- Encrypt data at rest (AES-256) and in transit (TLS 1.3).
- Implement role-based access control (RBAC) for dashboards.

Outcome:

• Secure handling of data with audit logs for regulatory compliance.

4. Pilot Testing & Feedback

Large-Scale Pilot

Overview:

Deploy the system across 5–10 commercial buildings (office, retail, mixed-use).

Implementation:

- Monitor energy savings, fault detection rates, and occupant feedback.
- Conduct A/B testing for AI recommendations (e.g., manual vs. automated setpoints).

Outcome:

• Validate 20–30% energy reduction and improved comfort metrics.

User Training

Overview:

Train facility managers on interpreting alerts and overriding AI suggestions.

Implementation:

• Host workshops and provide cheat sheets (e.g., "How to respond to chiller alerts").

Outcome:

• Increased adoption of AI tools with minimal resistance.

Challenges & Solutions

Challenge	Solution
Model drift over time	Retrain models monthly using fresh sensor data.
Occupant feedback sparsity	Gamify app use (e.g., rewards for frequent feedback).

Challenge	Solution
Legacy BMS compatibility	Develop adapters for BACnet/IP and Modbus protocols.

Expected Outcomes

- 1. **20–30% energy savings** via predictive HVAC control.
- 2. **80% faster fault resolution** with Al-driven alerts.
- 3. **Higher occupant satisfaction** from personalized comfort adjustments.
- 4. **Data-driven capital planning** for retrofit investments.

Next Steps (Phase 4)

- 1. **Commercial Scaling:** Partner with building management firms for enterprise deployment.
- 2. Advanced Features: Add voice-controlled dashboards and AR maintenance guides.
- 3. **Certification:** Pursue integration with LEED/BREEAM for sustainability credits.

SCREENSHOTS OF CODE AND PROGRESS

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train_test_split
from sklearn.metrics import mean_squared_error
np.random.seed(42)
n_samples = 100
    'Hour': np.random.randint(0, 24, n_samples),
    'DayOfWeek': np.random.randint(0, 7, n_samples),
    'Temperature': np.random.uniform(20, 30, n samples),
    'Humidity': np.random.uniform(30, 60, n_samples),
    'Occupancy': np.random.randint(0, 100, n_samples),
    'EnergyUse': np.random.uniform(100, 500, n_samples) # target
df = pd.DataFrame(data)
X = df[['Hour', 'DayOfWeek', 'Temperature', 'Humidity', 'Occupancy']]
y = df['EnergyUse']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
X = df[['Hour', 'DayOfWeek', 'Temperature', 'Humidity', 'Occupancy']]
y = df['EnergyUse']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Model Mean Squared Error: {mse:.2f}")
plt.figure(figsize=(10, 5))
plt.plot(range(len(y_test)), y_test.values, label='Actual Energy Use', marker='o')
plt.plot(range(len(y_pred)), y_pred, label='Predicted Energy Use', linestyle='--', marker='x')
plt.title("AI Prediction of Energy Use")
plt.xlabel("Test Sample Index")
plt.ylabel("Energy Use (kWh)")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```

