An On-line Machine Learning Return Prediction

Yueliang (Jacques) Lu Weidong Tian

Belk College of Business, University of North Carolina at Charlotte

October, 2020

IRMC 2020 - Global Virtual Conference

A preliminary version appears as "Predict Relative Stock Index Returns by Sufficient Historical Data"

Punchlines

- 1. Propose a new prediction methodology for relative stock index returns based on universal portfolio construction
 - relative stock index return \equiv gross return of a stock index / (1 + interest rate)
 - An on-line strategy competitive with the best constant proportional portfolio

Punchlines

- 1. Propose a new prediction methodology for relative stock index returns based on universal portfolio construction
 - relative stock index return \equiv gross return of a stock index / (1 + interest rate)
 - An on-line strategy competitive with the best constant proportional portfolio
- 2. Derive a closed-form 6-order (sextic) predicting formula whose coefficients are solely determined by historical data
 - no other model assumptions or market assumptions

Punchlines

- 1. Propose a new prediction methodology for relative stock index returns based on universal portfolio construction
 - relative stock index return \equiv gross return of a stock index / (1 + interest rate)
 - An on-line strategy competitive with the best constant proportional portfolio
- 2. Derive a closed-form 6-order (sextic) predicting formula whose coefficients are solely determined by historical data
 - no other model assumptions or market assumptions
- 3. Empirically, the daily predictive errors in the 2010-2018 period is below 2%

Market	Stock Index (Asset 2)	Risk Free Rate (Asset 1)	Sample Period	# of Obs (N)
US	S&P 500 index	12-month T-Bill	1970 - 2018	12,228
US	CRSP value weighted index	12-month T-Bill	1970 - 2018	12,228
UK	FTSE 100 index	12-month LIBOR	1986 - 2018	8,856
Japan	NIKKEI 225	12-month Government Bond	1981 - 2018	9,753
China	CSI 300 index	12-month deposit rate	2005 - 2018	3,265

- Use daily observations to ensure sufficient historical data

Sponsors

Relative Stock Index Return Prediction

Relative Stock Index Return Prediction

Motivations I

- An On-line machine learning prediction strategy for the decision maker
 - Deterministic prediction unconditionally? NO ← Foster and Vohra (1999)
 - On-line machine learning? Promising ← Cesa-Bianchi and Lugosi (2006)
 - To find the best on-line learning strategies for portfolio constructions against which the worst-case return data that **Nature** provides

Motivations I

- An On-line machine learning prediction strategy for the decision maker
 - Deterministic prediction unconditionally? NO \(\bigcup \) Foster and Vohra (1999)
 - On-line machine learning? Promising \(\subseteq Cesa-Bianchi and Lugosi (2006) \)
 - To find the best on-line learning strategies for portfolio constructions against which the worst-case return data that **Nature** provides
 - Widely studied in Computer Science, Operational Research, Game Theory, etc.
 - Cover (1991), Cover and Thomas (1991), Hazan and Kale (2015), Hazan et al. (2007), Helmbold et al. (1998), and Vovk and Watkins (1998)

Motivations II

- To predict/forecast based entirely on sufficient historical data
 - Without any assumptions on the market.
 - Even though efficient numerical schemes can solve our problems, we are able to derive a closed-form solution that can be easily implemented

Setup

- Consider an economy of two assets with sufficient discrete periods, N
- In each single period, n,
 - $x_n \equiv$ gross return of asset 1 (bond)
 - $y_n \equiv$: gross return of asset 2 (stock)
- A relative stock return is defined as,

$$R_n = \frac{y_n}{x_n}, \quad \Longleftrightarrow \quad r_n = \frac{1 - R_n}{R_n} = \frac{x_n}{y_n} - 1,$$
 (1)

Constant proportional strategy I

- $b \in [0,1]$: weight in asset 1 (bond) and remains constant through time.
- The cumulative return after N periods is,

$$S_N(b) \equiv \prod_{n=1}^N \left[b x_n + (1-b) y_n \right] = \prod_{n=1}^N x_n \prod_{n=1}^N \left[b + (1-b) R_n \right]$$
 (2)

- R_n is the relative stock return

Constant proportional strategy II

- The best proportional strategy for the first N periods is thus

$$b_N^{\star} = \underset{0 \le b \le 1}{\operatorname{argmax}} S_N(b). \tag{3}$$

which needs all information up to N (unknown).

Constant proportional strategy II

- The best proportional strategy for the first N periods is thus

$$b_N^{\star} = \underset{0 < b < 1}{\operatorname{argmax}} S_N(b). \tag{3}$$

which needs all information up to N (unknown).

Logarithm transformation and first-order condition (FOC)

$$\sum_{n=1}^{N} \frac{1 - R_n}{R_n + (1 - R_n)b_N^*} = 0 \quad \iff \quad \sum_{n=1}^{N} \frac{r_n}{1 + r_n b_N^*} = 0. \tag{4}$$

On-line Machine Learning Strategy I

- An on-line strategy by Thomas M. Cover (Mathematical Finance, 1991)
 - μ : a distribution on [0, 1], either uniform or Dirchlet $(\frac{1}{2}, \frac{1}{2})$ distributed.
 - \hat{b}_n : the weight of asset 1 (risk-free bond),

$$\hat{b}_1 = \frac{1}{2}; \quad \hat{b}_n = \frac{\int_0^1 b S_{n-1}(b) d\mu(b)}{\int_0^1 S_{n-1}(b) d\mu(b)}, \quad n \ge 2$$
 (5)

- \hat{b}_n is conditionally known at the time (n-1)

On-line Machine Learning Strategy II

Following this strategy, the cumulative return for the first N periods is,

$$\hat{S}_{N} \equiv \prod_{n=1}^{N} \left[\hat{b}_{n} x_{n} + (1 - \hat{b}_{n}) y_{n} \right] = \prod_{n=1}^{N} x_{n} \prod_{n=1}^{N} \left[\hat{b}_{n} + (1 - \hat{b}_{n}) R_{n} \right].$$
 (6)

Market Intelligence

An Example of Implementation

Algorithm 1 Pseudo algorithm for Cover (1991) on-line strategy

- 1: Initialization: $b = [0.01 : 0.01 : 0.99]^T$
- 2: **for** n = 2 to N **do**
- 3: **for** i = 1 to length(b) **do**
- 4: $b_i \leftarrow b(i)$
- 5: $S_i \leftarrow \prod_{t=1}^{n-1} [b_i x_t + (1-b_i)y_t]$
- 6: $\omega_i \leftarrow \frac{S_i}{\sum_{i=1}^{i} S_i}$
- 7: $\hat{b}_n \leftarrow \sum_i \omega_i * b_i$

- \triangleright cumulative return of N-1 periods given b_i
- \triangleright the contribution of *i*-th "fund", b_i , to the on-line, \hat{b}_n
 - \triangleright the on-line strategy, \hat{b}_n , for the period n

A Rough Comparison

Optimal constant strategy

$$S_N^{\star} = \prod_{n=1}^N x_n \prod_{n=1}^N \left[b_N^{\star} + (1 - b_N^{\star}) R_n \right]$$

- $-b_N^{\star} = \operatorname*{argmax}_{0 \le b \le 1} S_N(b)$
- needs the information in all *N* time periods

On-line ML strategy

$$\hat{S}_{N} = \prod_{n=1}^{N} x_{n} \prod_{n=1}^{N} \left[\hat{b}_{n} + (1 - \hat{b}_{n}) R_{n} \right]$$

$$- \hat{b}_n = \frac{\int_0^1 b S_{n-1}(b) d\mu(b)}{\int_0^1 S_{n-1}(b) d\mu(b)}$$

- needs the information in (N-1) time periods

Universal Portfolio as Input

- Cover (1991) proves that

$$1 \le \frac{S_N^{\star}}{\hat{S}_N} \le 2\sqrt{N+1}. \tag{7}$$

- A universal portfolio is the on-line strategy with the property such that

$$\lim_{N\to\infty}\frac{1}{N}\log\left(\frac{S_N^{\star}}{\widehat{S}_N}\right)=0.$$

(8)

Universal Portfolio as Input

- Rewrite Equation (7) with a constant, $c_N \in [0, 1]$

$$\log\left(\frac{S_N^{\star}}{\hat{S}_N}\right) = \log(2c_N) + \frac{\log(N+1)}{2}, \quad 0 \le c_N \le 1 \tag{9}$$

- Drop $log(2c_N)$ and express the left side above with r_n such that,

$$r_n = \frac{1 - R_n}{R_n} = \frac{x_n}{y_n} - 1$$

Solve $\{b_N^*, \hat{r}_N\}$ Simultaneously

Function from universal portfolio construction

$$\left[\log(1+b_{N}^{\star}\hat{r}_{N})-\log(1+\hat{b}_{n}\hat{r}_{N})\right]+\sum_{n=1}^{N-1}\left[\log(1+b_{N}^{\star}r_{n})-\log(1+\hat{b}_{n}r_{n})\right]=\frac{\log(N+1)}{2}$$
(10)

Solve $\{b_N^*, \hat{r}_N\}$ Simultaneously

(11)

1. Function from universal portfolio construction

$$\left[\log(1+b_{N}^{\star}\hat{r}_{N})-\log(1+\hat{b}_{n}\hat{r}_{N})\right]+\sum_{n=1}^{N-1}\left[\log(1+b_{N}^{\star}r_{n})-\log(1+\hat{b}_{n}r_{n})\right]=\frac{\log(N+1)}{2}.$$
(10)

 $\frac{\hat{r}_{N}}{1+\hat{r}_{N}b_{N}^{\star}}+\sum_{n=1}^{N-1}\frac{r_{n}}{1+r_{n}b_{N}^{\star}}=0.$

Function from first-order condition

How Close between r_N and \hat{r}_N ?

Proposition 1

- Assume that $0 < m \le r_n \le M, \forall n$ for two fixed positive numbers m and M.
- By viewing b_N^* as a function of $\{r_1, \dots, r_N\}$, its partial derivative to r_N is uniformly bounded from below by a positive constant c.
- Then the solution of the Equation (10) and (11), \hat{r}_N , approximates to r_N as close as possible when N is large enough.

How Close between r_N and \hat{r}_N ?

- As a function of the data $\{r_1, \dots, r_N\}$, we can show that,

$$\frac{\partial b_N^*}{\partial r_N} > 0. \tag{12}$$

- When the relative return of the asset 1 to the asset 2 is increased, the proportion on the asset 1 is increased as well following the strategy b_N^*

How Close between r_N and \hat{r}_N ?

Proposition 1 states that if the contribution of r_N to b_N^* is non-degenerate in the sense that, for a positive number c,

$$\frac{\partial b_N^*}{\partial r_N} \ge c, N = 1, 2, \cdots,$$
 (13)

- then

$$r_N - \hat{\mathbf{r}}_N = o(1). \tag{14}$$

Approximation

- Introduce the following notations by historical data only

$$P_1 = \sum_{n=1}^{N-1} r_n, \quad P_2 = \sum_{n=1}^{N-1} r_n^2, \quad Q_1 = \sum_{n=1}^{N-1} \hat{b}_n r_n, \quad Q_2 = \sum_{n=1}^{N-1} \hat{b}_n^2 r_n^2.$$

- To derive a analytical formula for \hat{r}_N with Taylor expansion
 - 2nd-order for $log(x) \implies sextic formula$
 - 1st-order for $log(x) \implies cubic formula$

A Sextic Predicting Formula

- \hat{r}_N can be solved from the following formula,

$$f_6(x) \equiv \hat{b}_N^2 x^6 - 2\hat{b}_N x^5 + \left[Q_2 - 2Q_1 + 2P_2 \hat{b}_N - \log(N+1) + 1 \right] x^4$$

$$+ (2P_1 - 2P_2 \hat{b}_N) x^3 + \left[P_1^2 - 2P_2 Q_1 + P_2 + P_2^2 \hat{b}_N^2 - 2P_2^2 \log(N+1) \right] x^2$$

$$+\left.\left(2P_{1}P_{2}-2P_{2}^{2}\hat{b}_{N}\right)\!x+\left[P_{1}^{2}P_{2}-2P_{2}^{2}Q_{1}+P_{2}^{2}Q_{2}-P_{2}^{2}\log(N+1)\right],$$

- whose coefficients are **solely** determined by historical data.

Alternative Construction of \hat{b}_n

- Vovk and Watkins (1998)

$$\hat{b}_{n}^{VW} = \frac{\int_{0}^{1} b S_{n-1}(b)^{\eta} db}{\int_{0}^{1} S_{n-1}^{\eta} db}, \quad 0 < \eta \le 1, n \ge 2$$

$$1, n \geq 2$$

- When
$$\eta = 1$$
,

$$\hat{b}_n^{VW} \implies \hat{b}_n$$

(15)

Predicted Relative Stock Index Return

- red line: sextic formula predicted *relative stock index return*
- blue line: market observed relative stock index return

(e) S&P 500 vs 12M T-Bill (USA)

(f) FTSE 100 vs 12M LIBOR (UK)

(g) NIKKEI 225 vs 12M gov bond (Japan)

(h) CSI 300 vs 12M deposit rate (China)

Predictive Errors I

- We evaluate the prediction performance during the period 2010 - 2018

predictive error
$$\equiv \frac{\hat{R}_N - R_N}{R_N}$$
.

(16)

Predictive Errors II

- Consider 4 statistics for the time series of predictive errors suggested by Cremers (2002)
 - 1. MAD: the average of the absolute predictive errors
 - 2. Bias: the average of the predictive errors
 - 3. *Deviation*: the average of the squared difference between the bias and the predictive errors
 - 4. RMSE: the square root of the average of the sum of squared predictive errors.

S&P 500 index vs 12-month T-Bill

$$\hat{b}_{1}^{VW} = 0.5, \quad \hat{b}_{n}^{VW} = \frac{\int_{0}^{1} b S_{n-1}(b)^{\eta} db}{\int_{0}^{1} S_{n-1}^{\eta} db}, \quad 0 < \eta \le 1, n \ge 2$$

0401010	η = 1 (Cover)	η = 0.75	η = 0.5	η = 0.15	η = 0.05
MAD	1.96%	2.00%	2.06%	2.13%	2.15%
Bias	1.78%	1.83%	1.88%	1.96%	1.98%
Deviation	0.02%	0.02%	0.02%	0.02%	0.02%
RMSE	2.29%	2.34%	2.40%	2.48%	2.51%

CRSP value index vs 12-month T-Bill

$$\hat{b}_1^{VW} = 0.5, \quad \hat{b}_n^{VW} = \frac{\int_0^1 b S_{n-1}(b)^{\eta} db}{\int_0^1 S_{n-1}^{\eta} db}, \quad 0 < \eta \le 1, n \ge 2$$

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0401010	η = 1 (Cover)	η = 0.75	η = 0.5	η = 0.15	η = 0.05
MAD	1.14%	1.16%	1.18%	1.20%	1.21%
Bias	0.23%	0.24%	0.25%	0.26%	0.26%
Deviation	0.02%	0.02%	0.02%	0.02%	0.02%
RMSE	1.42%	1.44%	1.46%	1.49%	1.50%

FTSE 100 index vs 12-month LIBOR

$$\hat{b}_1^{VW} = 0.5, \quad \hat{b}_n^{VW} = \frac{\int_0^1 b S_{n-1}(b)^{\eta} db}{\int_0^1 S_{n-1}^{\eta} db}, \quad 0 < \eta \le 1, n \ge 2$$

0401010	η = 1 (Cover)	η = 0.75	η = 0.5	η = 0.15	η = 0.05
MAD	1.46%	1.48%	1.51%	1.54%	1.54%
Bias	-1.35%	-1.37%	-1.40%	-1.43%	-1.44%
Deviation	0.01%	0.01%	0.01%	0.01%	0.01%
RMSE	1.80%	1.82%	1.84%	1.87%	1.88%
100101					

NIKKEI 225 index vs 12-month Gov-bonds

$$\hat{b}_1^{VW} = 0.5, \quad \hat{b}_n^{VW} = \frac{\int_0^1 b S_{n-1}(b)^{\eta} db}{\int_0^1 S_{n-1}^{\eta} db}, \quad 0 < \eta \le 1, n \ge 2$$

040100	η = 1 (Cover)	η = 0.75	η = 0.5	η = 0.15	η = 0.05
MAD	2.81%	2.89%	2.97%	3.10%	3.13%
Bias	-2.70%	-2.79%	-2.88%	-3.01%	-3.04%
Deviation	0.03%	0.03%	0.03%	0.03%	0.03%
RMSE	3.23%	3.31%	3.39%	3.52%	3.55%

CSI 300 index vs 12-month Deposit Rate

$$\hat{b}_1^{VW} = 0.5, \quad \hat{b}_n^{VW} = \frac{\int_0^1 b S_{n-1}(b)^{\eta} db}{\int_0^1 S_{n-1}^{\eta} db}, \quad 0 < \eta \le 1, n \ge 2$$

04011010	η = 1 (Cover)	η = 0.75	η = 0.5	η = 0.15	η = 0.05
MAD	4.27%	4.33%	4.40%	4.49%	4.52%
Bias	4.21%	4.28%	4.35%	4.45%	4.47%
Deviation	0.11%	0.11%	0.11%	0.11%	0.12%
RMSE	5.33%	5.40%	5.48%	5.59%	5.62%

Future Work

- Economic meanings behind the on-line machine learning strategy
 - Two time series: any similarities between them? Patterns?
- Option strategy based on the predicted relative return
 - If we have available (sufficient) option data, we can construct an option trading strategy based on our 2% error bounded predicted value

References I

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge university press.

Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1(1):1-29.

Cover, T. M. and Thomas, J. A. (1991). Elements of information theory. New York: Wiley, 3:37–38.

Cremers, K. M. (2002). Stock return predictability: A bayesian model selection perspective. The Review of Financial Studies, 15(4):1223-1249.

Foster, D. P. and Vohra, R. (1999). Regret in the on-line decision problem. Games and Economic Behavior, 29(1-2):7-35.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning, 69(2-3):169-192.

Hazan, E. and Kale, S. (2015). An online portfolio selection algorithm with regret logarithmic in price variation. Mathematical Finance, 25(2):288–310.

Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1998). On-line portfolio selection using multiplicative updates. Mathematical Finance, 8(4):325–347.

Vovk, V. and Watkins, C. (1998). Universal portfolio selection. In Proceedings of the eleventh annual conference on Computational learning theory, pages 12–23.

