A tutorial for the \P package forensim

Hinda Haned

July 17, 2009

Contents

1	Inti	roduction	3
2	Get	ting started	3
	2.1	forensim installation	3
	2.2	How to get help	3
3	Ger	nerating data in forensim	3
	3.1	tabfreq objects	4
	3.2	simugeno objects	6
	3.3	simumix objects	7
	3.4	Allele frequencies simulation	8
		3.4.1 The homogeneous population case	8
		3.4.2 The subdivided population case	8
4	Sta	tistical methods for forensic DNA mixtures interpretation	9
_	4.1	The maximum allele count	10
	4.2	The maximum likelihood estimator	11
		4.2.1 Likelihood of the observed alleles at a given locus, conditional	
		on the number of contributors to the mixture	11
		4.2.2 Maximum likelihood estimators	12
	4.3	The exclusion probability	12
	4.4	The random match probability	13
	4.5	Likelihood ratios	14
5	Tw	o-person DNA mixtures resolution using allele peak heights or	,
	area	as information: The mastermix interface	15
6	Mis	scellaneous	19
	6.1	Manipulating forensim objects	19
	6.2	How to change population names	20
	6.3	How to find the allele frequencies of a mixture	20
	6.4	The number of alleles in a mixture	21
\mathbf{R}	efere	nces	22

\mathbf{A}	App	pendix: Formulas used in mastermix	2 4
	A.1	Expected allelic ratios	24
	A.2	Conditional mixtures proportions	26

1 Introduction

This tutorial is a presentation of the forensim package for the R software [1, 2]. forensim is dedicated to the interpretation of forensic DNA mixtures through statistical methods. It also provides simulation tools that allow the generation of genetic data commonly encountered in forensic casework.

In this tutorial, I first introduce forensim object classes. Then, I present statistical tools for forensic DNA mixtures interpretation. Finally, various functionalities of forensim are explored. For all addressed topics, practical and reproducible examples are given.

2 Getting started

2.1 forensim installation

The current version of the package is 1.1-1 and is compatible with R 2.9.0. forensim is hosted by Rforge, the latest version of the package (resulting from the Rforge nightly compilation) can be obtained by typing in R the command line:

```
> install.packages("forensim",repos="http://r-forge.r-project.org")
```

Be aware that this is the development version. To be sure to get the latest stable version, download the forensim package (according to your platform) on forensim web page: http://forensim.r-forge.r-project.org/.
Then, the package must be loaded:

```
> library(forensim)
```

```
### forensim 1.1.0 is loaded ###
```

2.2 How to get help

- The mailing list: please ask questions on forensim mailing list, forensim-help@lists.r-forge.r-project.org
- The help pages: classes and functions are documented in the help pages, type ?forensim in R to get an overview of the package.
- The forensim package manual: a compilation of all the help pages in a single pdf file, it can be found at: http://forensim.r-forge.r-project.org/

3 Generating data in forensim

forensim provides object classes that facilitate the generation and the storage of data that is commonly encountered in forensic casework: population allele frequencies, individual genotypes and DNA mixtures. Thus, three classes of objects are defined in forensim:

- tabfreq objects: used to store allele frequencies
- simugeno objects: used to store genotypes
- simumix objects: used to store DNA mixtures

forensim objects have the particularity that they can either be used to store preexisting data, such as allele frequencies in a given population, or simulated data. Creating forensim objects is achieved using specific functions, called constructors, that have the same names than the object they are linked to.

3.1 tabfreq objects

In forensim, allele frequencies are stored in tabfreq objects. Importing data into tabfreq objects is achieved using the tabfreq constructor. The input data must be an object of type data frame¹ or matrix. This object must have the format of the *Journal of Forensic Sciences* for Short Tandem Repeat (STR) loci data: allele names (the number of tandem repeats in case of STR loci) are given in the first column, and frequencies for a given allele are read in rows for different loci given in columns. When an allele is not observed for a given locus, value is coded "NA"². Note that even if the requested input format is based on STR data, different kinds of markers can be imported in forensim.

As an example, we will be using a data set included in forensim:

> data(Tu)

What is the class of object Tu?

> class(Tu)

[1] "data.frame"

Tu is a data frame giving the allele frequencies for 15 STR loci commonly used in forensic studies, in the Tu Chinese population [3] (see ?Tu). Note that the data set is imported using the command data.

Displaying the first rows (command head):

> head(Tu)

	Allele	D8S117	9 D21S1:	D7S82	20 CSF1	PO D3	3S1358	THO1	D13S317	D16S539	D2S1338
1	6.0	N	IA NA	A N	JA 1	NA	NA	0.1151	NA	NA	NA
2	7.0	N	IA NA	0.003	33 0.00	34	NA	0.2599	NA	NA	NA
3	8.0	0.009	8 NA	0.138	32 0.00	34	NA	0.0559	0.2712	0.0097	NA
4	9.0	N	IA NA	0.049	3 0.05	82	NA	0.4605	0.1503	0.2305	NA
5	9.2	N	IA NA	0.003	33	NA	NA	NA	NA	NA	NA
6	9.3	N	IA NA	A N	IA]	NA	NA	0.0691	NA	NA	NA
	DS19S43	B3 vWA	TPOX I)18S51	D5S818	FGA					
1	N	IA NA	NA	NA	NA	NA					
2	N	IA NA	NA	NA	0.0097	NA					
3	N	IA NA	0.5359	NA	NA	NA					
4	N	IA NA	0.1340	NA	0.0487	NA					
5	N	IA NA	NA	NA	NA	NA					
6	N	IA NA	NA	NA	NA	NA					
U	1	IN I	IVA	IVA	IVA	IVA					

¹in R a data frame is a collection of variables, possibly of different types

²non observed alleles are coded "-" in the Journal of Forensic Sciences

This data frame is converted into a tabfreq object by the tabfreq constructor:

```
> tupop <- tabfreq(tab = Tu, pop.names = as.factor("Tu"))</pre>
```

The population name is specified as a factor in the pop.names argument.

```
> is.tabfreq(tupop)
```

[1] TRUE

tupop is a tabfreq object:

> tupop

```
# Tabfreq object: allele frequencies #
```

```
@tab: list of allele frequencies
@which.loc: vector of 15 locus names
@pop.names: populations names
```

As a formal class object, tabfreq is constituted of different 'slots' that contain different types of information. Each slot can be accessed using '@' or the '\$' operator that have been implemented for all forensim objects.

Allele frequencies are stored in the @tab slot. For example, frequencies for locus FGA are given by:

> tupop\$tab\$Tu\$FGA

Population names are stored in the @pop.names argument:

> tupop\$pop.names

```
[1] Tu
Levels: Tu
```

Finally, locus names appearing in @tab can be accessed elsewhere:

> tupop\$which.loc

```
[1] "D8S1179" "D21S11" "D7S820" "CSF1P0" "D3S1358" "TH01" [7] "D13S317" "D16S539" "D2S1338" "DS19S433" "vWA" "TPOX" [13] "D18S51" "D5S818" "FGA"
```

Note that if several populations are imported in the same tabfreq object, data frames (or matrices) must be given as a list of data frames (or matrices) in the tab argument. In this case, the population argument, which is optional when a single population is handled, becomes obligatory in order to distinguish the populations.

3.2 simugeno objects

simugeno objects are used to store simulated genotypes from a tabfreq object. simugeno objects are created from tabfreq objects by specifying the number of individuals to simulate in the n argument. The loci to take into account for the simulation are given in the which loc argument. For the illustration purpose, 10 individuals are simulated and only three loci are chosen: D8S1179, TH01 and FGA.

```
> tugeno <- simugeno(tab = tupop, n = 10, which.loc = c("D8S1179",
+ "TH01", "FGA"))

> tugeno

# Simugeno object: simulated genotypes #

@which.loc: vector of 3 locus names
@nind: 10
@indID: vector of the individuals ID
@tab.geno: 10 x 3 data frame of genotypes
@tab.freq: allele frequencies for the 3 loci

Population-related information:
@pop.names: population names
@popind: factor giving the population of each individual
```

@tab.geno is a matrix of 10 genotypes simulated from the allele frequencies of the Tu population. For instance, the genotypes of the five first simulated individuals are:

The genotype of a homozygous individual carrying the allele 9 is coded "9/9". A heterozygous individual carrying alleles 8 and 10 is coded "8/10".

Allele frequencies of the population are stored in the slot @tab.freq:

> tugeno\$tab.freq

```
$Tu
$Tu$D8S1179
\begin{matrix} 8 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 0.0098 & 0.0784 & 0.0784 & 0.1046 & 0.2876 & 0.1863 & 0.1634 & 0.0719 & 0.0196 \end{matrix}
$Tu$TH01
                         8
                                         9.3
0.1151 0.2599 0.0559 0.4605 0.0691 0.0395
$Tu$FGA
              19
                     19.2
                                 20
                                          21
                                                    22
                                                           22.2
                                                                       23
                                                                              23.2
    18
0.0392 0.0686 0.0033 0.0458 0.0980 0.1765 0.0033 0.1961 0.0098 0.2222 0.1013
                     26.2
              26
0.0065 0.0131 0.0065 0.0098
```

simugeno objects also contain information about the simulated individuals, their (default) ID:

```
> tugeno@indID

[1] "ind1" "ind2" "ind3" "ind4" "ind5" "ind6" "ind7" "ind8" "ind9"

and their population names:
> tugeno@popind

[1] Tu Tu Tu Tu Tu Tu Tu Tu Tu Tu
Levels: Tu
```

3.3 simumix objects

simumix objects store DNA mixtures. Mixtures can be created from simugeno objects using the constructor simumix. The number of contributors is specified in the argument ncontri.

```
> mix2 <- simumix(tugeno, ncontri = 2)</pre>
```

Constructor simumix has also a which loc argument, which is by default set to NULL, corresponding to all loci taken into account.

```
> mix2
```

```
# Simumix object: simulated mixture #

@which.loc: vector of 3 locus names
@ncontri: 2
@mix.prof: 2 x 3 data frame of the contributors genotypes
@mix.all: list of the alleles found in the mixture
@popinfo: populations of the contributors
```

simumix objects keep two types of information: information usually available when dealing with practical cases of forensic DNA mixtures: the alleles present by locus,

```
> mix2$mix.all

$D8S1179
[1] "13" "15" "16"

$TH01
[1] "6" "7" "8"

$FGA
[1] "21" "23" "25"
```

and information that is usually not available: the number of simulated contributors

```
> mix2@ncontri
```

Γ17 2

and their genetic profiles:

```
> mix2$mix.prof
```

```
D8S1179 TH01 FGA
ind7 "13/16" "8/6" "23/23"
ind9 "13/15" "7/7" "21/25"
```

3.4 Allele frequencies simulation

In the following, we denote L a locus with k alleles and the ith allele frequency at this locus, in a given population, is denoted p_i .

3.4.1 The homogeneous population case

In forensim, allele frequencies for a single non subdivided population are simulated using the simufreqD function.

Principle

The vector of allele frequencies at locus L is simulated as a vector of random deviates of the Dirichlet distribution [4] with a vector of parameters $(\alpha_1, ..., \alpha_k)$:

$$(p_1,...,p_k) \leadsto Dirichlet(\alpha_1,...,\alpha_k)$$

An example

5 loci (argument nloc=5) having 2, 3, 4, 5 and 6 alleles respectively (argument na) are simulated:

```
> simufreqD(nloc = 5, na = c(2, 3, 4, 5, 6), alpha = 1)
```

Argument alpha is the parameter of the Dirichlet distribution. Setting a single value for alpha means that all alleles for all loci are simulated with the same value; this can be changed by giving the appropriate values in alpha, for further details please type '?simufreqD'.

Setting alpha to 1, leads to the generation of allele frequencies as random deviates from a uniform Dirichlet distribution, this means that allele frequencies could take any value varying from 0 to 1, with equal probabilities. Note that the simulated data is in the format of the *Journal of Forensic Sciences* for STR loci data.

3.4.2 The subdivided population case

Principle

The simupopD function simulates subpopulations allele frequencies for independent loci, from a given reference population, following a Dirichlet model.

Allele frequencies in the subpopulations are generated as random deviates from a Dirichlet distribution, the parameters of which control the deviation of allele frequencies from the values in the reference population.

Each allele frequency is modeled as a random variable; with a parameter

 $\alpha_i = \frac{p_i(1-\theta)}{\theta}$, where θ is Wright's *Fst* coefficient which allows here accounting for population subdivision [5, 6]. The vector of allele frequencies at a given locus, for a

given population, is obtained by:

$$(p_1,...,p_k) \leadsto Dirichlet\left(\alpha_1 = \frac{p_1(1-\theta)}{\theta},...,\alpha_k = \frac{p_k(1-\theta)}{\theta}\right)$$

An example

In the following example we simulate allele frequencies in two subpopulations: the global population is taken as the Tu Chinese population, and three STR loci are chosen: FGA, TH01 and TPOX. The strength of the deviation from the reference allele frequencies is specified in argument alpha1 for each simulated subpopulation, here we choose 0.01 for the first population and 0.3 for the second one:

```
> simpop1 <- simupopD(npop = 2, globalfreq = Tu, which.loc = c("FGA",
+ "TH01", "TP0X"), alpha1 = c(0.01, 0.3))</pre>
```

simpop1 is a list of two tabfreq object; the first one contains allele frequencies used for the simulation (from the Tu population):

```
> simpop1$globfreq

# Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 3 locus names
@pop.names: - empty -
```

the second tabfreq object contains the subpopulations allele frequencies:

```
> simpop1$popfreq

# Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 3 locus names
@pop.names: populations names
```

The simulated subpopulations have the following (default) names:

```
> simpop1$popfreq$pop.names
[1] pop1 pop2
Levels: pop1 pop2
```

4 Statistical methods for forensic DNA mixtures interpretation

Several statistical methods dedicated to the interpretation of forensic DNA mixtures are implemented in forensim:

4.1 The maximum allele count

This method consists in setting the lower bound on the number of contributors to a mixture to the minimum required to explain the observed profiles [7]. For instance, if a mixture shows at three loci, 1, 3 and 4 alleles, then the number of contributors is bounded to $2 \left(\frac{4}{2}\right)$ contributors.

To exemplify this method, let us simulate a 3-person mixture from the strusa data set, using the allele frequencies from the Caucasian population [8] (see ?strusa):

```
> data(strusa)
> class(strusa)

[1] "tabfreq"
attr(,"package")
[1] ".GlobalEnv"

> strusa

    # Tabfreq object: allele frequencies #

@tab: list of allele frequencies
@which.loc: vector of 15 locus names
@pop.names: populations names
strusa is a tabfreq object that contains multiple populations:
> strusa$pop.names

[1] Afri Cauc Hisp
Levels: Afri Cauc Hisp
```

thus, the number of genotypes to simulate must be specified in each population (argument n):

```
> geno <- simugeno(tab = strusa, n = c(0, 100, 0))
```

100 genotypes are simulated from the Caucasian population allele frequencies, no genotypes are simulated from the other two populations.

A 3-person mixture is simulated by randomly drawing three contributors from these 100 simulated individuals. The number of contributors in each population must be specified:

```
> mix3 <- simumix(tab = geno, ncontri = c(0, 3, 0))
```

The minimum number of contributors required is computed by the mincontri function. This number can either be computed from all available loci simultaneously (in this default case, the argument loc is set to NULL),

```
> mincontri(mix3, loc = NULL)
[1] 3
or be computed for a specific locus, for example, D8S1179:
> mincontri(mix3, loc = "D8S1179")
[1] 2
```

4.2 The maximum likelihood estimator

The main characteristic of this method is that it takes into account allele frequencies in the estimations. The likelihood function is derived from the formula of Curran *et al* [9] for DNA mixtures interpretation, in the particular case where all contributors to the mixture are unknown and there are no typed individuals [10].

4.2.1 Likelihood of the observed alleles at a given locus, conditional on the number of contributors to the mixture

The function lik.loc computes the likelihood of the observed alleles at a given locus, conditional on the number of contributors to the mixture [10]. This function takes in argument the number of contributors x, the mixture as a simumix object, and the allele frequencies given in a tabfreq object. For the previously simulated 3-person mixture mix3,

```
> mix3
```

```
# Simumix object: simulated mixture #

@which.loc: vector of 15 locus names
@ncontri: 3
@mix.prof: 3 x 15 data frame of the contributors genotypes
@mix.all: list of the alleles found in the mixture
@popinfo: populations of the contributors
```

the likelihood per locus of observing alleles given that 1 individual contributed to the mixture is:

the likelihood that 3 individuals contributed to the mixture is: > lik.loc(x = 3, mix = mix3, freq = strusa, refpop = "Cauc")

```
CSF1P0
                    FGA
                                            TPOX
                                                         VWA
                                                                 D3S1358
                               TH01
0.323807884 0.013081447 0.048956580 0.080985509 0.026858178 0.079081515
     D5S818
                 D7S820
                            D8S1179
                                         D13S317
                                                     D16S539
                                                                  D18S51
0.025764685 0.010385653 0.017965806 0.003034289 0.107510776 0.001573515
                D2S1338
                            D19S433
     D21S11
0.045229081 0.001206379 0.021617802
```

Note here that strusa contains three populations, so the reference population, here Caucasians, must be specified in the refpop argument.

The overall likelihood, for all loci characterized in the mixture can be computed using the function lik:

```
> lik(x = 3, mix = mix3, freq = strusa, refpop = "Cauc")
[1] 1.038273e-25
```

4.2.2 Maximum likelihood estimators

likestim.loc looks for the number of contributors that maximizes the likelihood at each given locus. For the estimations to be biologically plausible, the estimations are restricted to the discrete interval [1,6] [10]. These functions give the number of contributors that maximizes the likelihood (max) and the corresponding likelihood value (maxval). The per locus estimations are:

```
> likestim.loc(mix = mix3, freq = strusa, refpop = "Cauc")
          CSF1P0
                                                                D3S1358
                                                         VWA
       3.0000000 4.00000000 2.00000000 6.0000000 2.00000000 6.0000000
max
maxval 0.3238079 0.02027513 0.05902785 0.2193759 0.04448796 0.4570763
           D5S818
                      D7S820
                                D8S1179
                                            D13S317
                                                      D16S539
                                                                    D18S51
       5.00000000 5.00000000 3.00000000 6.00000000 2.0000000 3.00000000
maxval 0.03698673 0.01814758 0.01796581 0.07675353 0.1075496 0.001573515
                      D2S1338
                                  D19S433
           D21S11
       3.00000000 3.000000000 4.00000000
maxval 0.04522908 0.001206379 0.02261401
and the estimation using all loci simultaneously is:
> likestim(mix = mix3, freq = strusa, refpop = "Cauc")
               [,1]
       4.000000e+00
max
maxval 1.109110e-24
```

4.3 The exclusion probability

The exclusion probability, also known as the Random Man Not Excluded (RMNE) is implemented in forensim in the function PE.

The PE function takes a simumix object for which to compute the exclusion probability and the allele frequencies given in a tabfreq object. If the latter contains several populations, than the reference population must be specified in the refpop argument. Implementation of the PE function includes the possibility of correcting for deviation from Hardy Weinberg proportions in the population, due to subdivision, using Wright's *Fst* called here theta [11]:

```
> PE(mix3, strusa, refpop = "Cauc", theta = 0, byloc = TRUE)
        CSF1P0
                     FGA
                              TH01
                                          TPOX
                                                    VWA
                                                           D3S1358
                                                                      D5S818
PE_1 0.2271129 0.4571994 0.5324449 0.09055168 0.648683 0.02957799 0.2842332
                 D8S1179
                         D13S317
        D7S820
                                    D16S539
                                                D18S51
                                                          D21S11
                                                                   D2S1338
PE_1 0.4047569 0.5723232 0.103191 0.4225064 0.6718543 0.4644834 0.7365744
     D19S433
PE_1 0.432509
```

The row PE_l stands for the exclusion probability per locus, read in column. The byloc argument is a logical indicating whether the exclusion probability should be computed per locus (byloc=TRUE) or for all loci (byloc=FALSE):

```
> PE(mix = mix3, freq = strusa, refpop = "Cauc", theta = 0, byloc = FALSE)

PE
0.9998492
```

4.4 The random match probability

The Random Match Probability (RMP) is computed using the RMP function which implements the formulas gave by Balding and Nichols [12]. The suspect's profile can either be given directly in R as matrix, or be read from a text file.

DNA evidence as a matrix

```
a <- matrix(c("CSF1PO", "FGA", "TH01", "TPOX", "VWA", "D3S1358", "D5S818", "D7S820", "D8S1179", "D13S317", "D16S539", "D18S51", "D2S1311", "D2S1338", "D19S433", "12/11", "22/19", "6/7", "10/8", "17/18", "18/17", "12/12", "8/8", "13/13", "11/11", "12/10", "14/15", "33.2/32.2", "23/22", "14/14"), nc = 2)
> data <- matrix(c("CSF1PO", "FGA", "
+     "D5S818", "D7S820", "D8S1179",
+     "D21S11", "D2S1338", "D19S433",</pre>
> colnames(data) <- c("locus", "genotype")</pre>
> data
                                genotype
            locus
            "CSF1PO"
                                 "12/11
                                 "22/19"
            "FGA"
   [3,
            "TH01"
                                 "6/7"
             "TPOX"
                                 "10/8"
            "VWA"
   [6, ]
            "D3S1358"
            "D5S818"
   رِ, 8]
            "D7S820"
            "D8S1179"
   [9,]
 [10,]
            "D13S317"
  11,
            "D16S539"
  [12,]
            "D18S51"
                                 "14/15"
                                "33.2/32.2"
"23/22"
  13,
            "D21S11"
            "D2S1338"
            "D19S433"
                                "14/14"
```

The random match probability in the unrelated case (unknown offender and suspect are not related) and in absence of population subdivision (theta=0,default case) is given by ¹:

```
> RMP(suspect = data, freq = strusa, refpop = "Cauc")
NOTE: THIS PACKAGE IS NOW OBSOLETE.
 The R-Genetics project has developed an set of enhanced genetics
 packages to replace 'genetics'. Please visit the project homepage
  at http://rgenetics.org for informtion.
$RMP.loc
     CSF1P0
                                            TPOX
                                                         VWA
                                                                 D3S1358
                    FGA
                               TH01
0.217510855 0.023156498 0.088265632 0.060204407 0.112769764 0.065567667
     D5S818
                 D7S820
                            D8S1179
                                         D13S317
                                                     D16S539
                                                                  D18S51
0.147540492 0.022698436 0.092805530 0.115192360 0.036719093 0.043683070
                D2S1338
                            D19S433
     D21S11
0.004473631 0.008952608 0.136316024
[1] 6.204726e-20
```

In the absence of population subdivision, and in the case where the suspect and an unknown offender are for example siblings, the k argument must be modified from k=(1,0,0) to k=c(1/4,1/2,1/4):

¹RMP calls many functions from the genetics package, which is now obsolete. So, don't worry if you get a warning message from the genetics package.

```
> RMP(suspect = data, freq = strusa, k = c(1/4, 1/2, 1/4), refpop = "Cauc")
$RMP.loc
   CSF1P0
                                    TPOX
                                                     D3S1358
                                                                D5S818
                                                                           D7S820
                FGA
                         TH01
                                               VWA
0.4699402 0.3236691 0.3776139 0.4128161 0.3986399 0.3582794 0.4789401 0.3310046
           D13S317
                      D16S539
                                 D18S51
                                            D21S11
                                                     D2S1338
                                                               D19S433
  D8S1179
0.4255214 0.4484981 0.3547923 0.3350108 0.2788509 0.2911457 0.4686840
[1] 4.63387e-07
```

DNA evidence read from an existing text file The same data is available in a preexisting file "exprofile.txt" from the forensim package, accessed by the system.file command:

```
> RMP(filename = system.file("files/exprofile.txt", package = "forensim"),
      freq = strusa, refpop = "Cauc")
$RMP.loc
     CSF1P0
                    FGA
                                TH01
                                            TPOX
                                                          VWA
                                                                  D3S1358
0.217510855 0.023156498 0.088265632 0.060204407 0.112769764 0.065567667
                 D7S820
                             D8S1179
                                         D13S317
                                                      D16S539
                                                                   D18S51
     D5S818
 .147540492 0.022698436 0.092805530 0.115192360 0.036719093 0.043683070
     D21S11
                D2S1338
                             D19S433
0.004473631 0.008952608 0.136316024
$RMP
[1] 6.204726e-20
```

4.5 Likelihood ratios

Likelihood ratios are computed using the LR function which implements the general formula of Curran *et al* for forensic DNA mixtures interpretation [13].

An example Consider the following genetic profiles from a rape case in Hong Kong [14]:

Locus	Mixture	Victim	Suspect	Frequency
D3S1358	14		14	0.033
	15	15		0.331
	17		17	0.239
	18	18		0.056

Table 1: Alleles from a DNA stain from a rape case in Hong Kong

Locus D3S1358 shows 4 distinct alleles (14, 15, 17 and 18), thus, the number of contributors to the mixed sample is taken 2.

Scenario 1 The following hypotheses are tested:

Prosecution hypotheses Hp: Contributors were the victim and the suspect.

Defense hypotheses Hd: Contributors were 2 unknown people.

First, the genotypes are assigned to the victim and the suspect:

```
> victim <- "15/18"
> suspect <- "14/17"</pre>
```

Then, the likelihood ratio is computed using the LR function:

```
> LR(stain = c(14, 15, 17, 18), freq = c(0.033, 0.331, 0.239, 0.056),
+ xp = 0, Tp = c(victim, suspect), Vp = NULL, Td = victim,
+ Vd = NULL, xd = 2)
```

[1] 37.95501

[1] 63.39546

The mixture profile is nearly 38 times more likely if it came from the suspect and the victim than if it came from two unknown unrelated individuals from the population of Hong Kong.

Scenario 2 The following hypotheses are tested:

Prosecution hypotheses Hp: Contributors were the victim and the suspect. Defense hypotheses Hd: Contributors were the victim and one unknown.

The mixture profile is 63 times more likely if it came from the suspect than if it came from an unrelated individual from the population of Hong Kong.

5 Two-person DNA mixtures resolution using allele peak heights or areas information: The *mastermix* interface

mastermix is a Tcl/Tk graphical user interface dedicated to the resolution of twoperson DNA mixtures using allele peak heights or areas information. mastermix is the implementation of a method developed by Gill *et al* [15] and previously programmed into an Excel macro by Dr. Peter Gill.

This method searches through simulation the most likely combination(s) of the contributors' genotypes. Having previously obtained an estimation for the mixture proportion, it is possible to reduce the number of possible genotype combinations by keeping only those supported by the observed data. This is achieved by computing the sum of square differences between the expected allelic ratio and the observed allelic ratio, for all possible mixture combinations. The likelihood of peak heights

(or areas), given the combination of genotypes, is high if the residuals are low. Genotype combinations are thus selected according to the peak heights with the highest likelihoods. Appendix A gives the formulas for the expected allelic ratios following from [15].

Typing mastermix() in the R console launches a dialog window (Figure 1):

Figure 1: The mastermix interface

mastermix offers a graphical representation of the simulation for three models:

- The two allele model: at a given locus, two alleles are observed in the DNA stain
- The three allele model: at a given locus, three alleles are observed in the DNA stain
- The four allele model: at a given locus, four alleles are observed in the DNA stain

A left-click on each button launches a simulation dialog window for the corresponding model, while a right-click opens the corresponding help page. For instance, a left-click on the "Two-allele model" button yields Figure 2:

Figure 2: Two-allele model interface.

Note that default values for peak heights and observed mixture proportion are only given for illustration purposes.

As an example, we suppose that a locus showing four distinct alleles gives an estimation for the mixture proportion of 0.70, and that another locus shows two distinct alleles with heights of 899 and 2183 rfus. A left-click on the "Plot simulations" button yields a graphical representation of the residuals of each possible genotype combinations of the peak areas, for varying values of the mixture proportion across the interval [0.1, 0.9].

Figure 3: Graphical simulations of the residuals for each possible genotype combination, in a two-allele model, for every possible mixture combination based on variation of the mixture proportion.

The graphical simulation shows that multiple combinations correspond to the lowest residual value. The corresponding numerical results are obtained by clicking the "Simulations details" button¹:

¹ Please note that some buttons won't be working the same according to your platform, this is because some of the functionalities of the tcl/tk package (more specifically, the tktable widget) are not up to date under Unix-like systems. Consequently, under these systems, the "Simulations details" and "Genotypes filter" buttons yield an interface to save the results. Under the Windows system, the corresponding tables are displayed.

Figure 4: Numerical results of the graphical simulation.

Genotype combinations having the lowest residuals are highlighted along with the corresponding mixture proportion. The most likely combinations are: (BB,AA), (AA, AB), (AB, AA), (AA, BB) with the corresponding mixtures proportions :0.3, 0.4, 0.5 and 0.7. Note that clinking the "Save" button launches a window where the desired path for the save file can be specified, default creates a text file in the current folder.

The third button, "Genotypes filter" launches a window showing a matrix of the mixture proportion conditional on the genotype combination.

Figure 5: Genotypes filter: Mixture proportion conditional on the genotypes combination.

The mixture proportions conditional on the genotype combination gives a supplementary indication for the reduction of the number of possible combinations: Genotypes with non plausible mixture proportions ranges are not kept. The results confirm that genotypes which have not been already selected during the graphical simulation step, are not supported by the data. Formulas used for the calculations are given in Appendix A.

6 Miscellaneous

6.1 Manipulating forensim objects

forensim objects are mainly formed by lists and data frames. Modification of the slots of an object can easily be done using operators '\$' (lists) or '[' (data frame and matrix). For example, we wish to modify the frequencies of a given locus, say FGA, in the tabfreq object tupop:

> tupop\$tab\$Tu\$FGA

Frequencies of alleles 18 and 27 are modified from 0.0392 and 0.0098 to 0.01 and 0.03 respectively:

6.2 How to change population names

Changing population names in any forensim object is achieved using the function changepop. For example, changing the population name in the tabfreq object tupop from "Tu" (argument oldpop) to "Tu2" (argument newpop) is achieved by:

```
> tupop2 <- changepop(tupop, oldpop = "Tu", newpop = "Tu2")
> tupop2@pop.names

[1] Tu2
Levels: Tu2
```

6.3 How to find the allele frequencies of a mixture

The allele frequencies of a mixture; stored in a simumix object, can be found using the function findfreq. The tabfreq object from which to extract the allele frequencies must be specified. For instance, allele frequencies in object mix3 are found from the Caucasian population:

```
> temp <- findfreq(mix3, freq = strusa, refpop = "Cauc")</pre>
> temp
$Cauc
$Cauc$CSF1PO
                11
      10
10 11 12
0.21689 0.30132 0.36093
$Cauc$FGA
20 21 22 23 25
0.12748 0.18543 0.21854 0.13411 0.07119
$Cauc$TH01
6 8 9.3
0.23179 0.08444 0.36755
                 8
$Cauc$TPOX
8 9 10 11
0.53477 0.11921 0.05629 0.24338
$Cauc$VWA
                16
0.11093 0.20033 0.28146
$Cauc$D3S1358
               15
                          16
0.10265 0.26159 0.25331 0.21523 0.15232
$Cauc$D5S818
9 10 11 12
0.04967 0.05132 0.36093 0.38411
$Cauc$D7S820
8 9 10 12 13
0.15066 0.17715 0.24338 0.16556 0.03477
$Cauc$D8S1179
10 11 13 14
0.10099 0.08278 0.30464 0.16556
$Cauc$D13S317
                       11
\begin{matrix} 8 & 9 & 11 & 12 & 13 & 14 \\ 0.11258 & 0.07450 & 0.33940 & 0.24834 & 0.12417 & 0.04801 \end{matrix}
```

```
$Cauc$D16S539

9 11 12

0.11258 0.32119 0.32616

$Cauc$D18S51

12 15 16 17 20

0.12748 0.15894 0.13907 0.12583 0.02152

$Cauc$D2IS11

28 29 30 31.2

0.15894 0.19536 0.27815 0.09934

$Cauc$D2S1338

17 18 21 23 25

0.18212 0.07947 0.04139 0.11755 0.09272

$Cauc$D19S433

12 13 14 16

0.08113 0.25331 0.36921 0.04967
```

temp is a list of a single element "Cauc", which contains also a list:

```
> class(temp$Cauc)
```

```
[1] "list"
```

Allele frequencies of locus TPOX for example, are given by:

```
> temp$Cauc$TPOX
```

```
8 9 10 11
0.53477 0.11921 0.05629 0.24338
```

6.4 The number of alleles in a mixture

The number of alleles in a simumix object can be determined by the function nball. The overall loci number of alleles in the 2-person mixture mix2 is:

```
> nball(mix2, byloc = FALSE)
```

[1] 9

and the numbers of alleles per locus can be obtained by setting the argument byloc to TRUE:

```
> nball(mix2, byloc = TRUE)
```

```
D8S1179 TH01 FGA 3 3 3
```

References

- [1] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5:299–314, 1996.
- [2] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org/. 2006.
- [3] B. Zhu, J. Yan, C. Shen, T. Li, Y. Li, X. Yu, X. Xiong, H. Muf, Y. Huang, and Y. Deng. Population genetic analysis of 15 STR loci of Chinese Tu ethnic minority group. *Forensic Science International*, 174:255–258, 2008.
- [4] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions, vol. 2. John Wiley & Sons, 1995.
- [5] G. Nicholson, A. V. Smith, F. Jónsson, O. Gústafsson, K. Stefánsson, and P. Donnelly. Assessing population differentiation and isolation from singlenucleotide polymorphism data. *Journal of the Royal Statistical Society B*, 64:695–715, 2002.
- [6] J. Marchini and L. R. Cardon. Discussion on the meeting on "Statistical modelling and analysis of genetic data". *Journal of the Royal Statistical Society B*, 64:740–741, 2002.
- [7] D. R. Paoletti, T. E. Doom, C. M. Krane, M. L. Raymer, and D. E. Krane. Empirical analysis of the STR profiles resulting from conceptual mixtures. *Journal of Forensic Sciences*, 50(6):1361–1366, 2005.
- [8] J.M. Butler, R. Schoske, M.P. Vallone, J. W. Redman, and M. C. Kline. Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. *Journal of Forensic Sciences*, 48(8):908–911, 2003.
- [9] J. M. Curran, C. M. Triggs, J. Buckleton, and B. S. Weir. Interpreting DNA Mixtures in Structured Populations. *Journal of Forensic Sciences*, 44(5):987–995, 1999.
- [10] H. Haned, D. Pontier, J. R. Lobry, L. Pene, and A. B. Dufour. Estimating the number of contributors to forensic DNA mixtures: does maximizing the likelihood performs better than the maximum allele count? *Submitted*, 2009.
- [11] J. Buckleton, C. M. Triggs, and S. J. Walsh. Forensic DNA evidence interpretation. CRC PRESS, 2005.
- [12] D. J. Balding and R. A. Nichols. DNA profile match probability calculation: how to allow for population stratification, relatedness, databse selection and single bands. *Forensic Science International*, 64:125–140, 1994.
- [13] J. Curran, J. Buckleton, and C. M. Triggs. What is the magnitude of the subpopulation effect? *Forensic Science International*, 135:1–8, 2003.

- [14] W. K. Hu and W. K. Fung. Interpreting dna mixtures with the presence of relatives. *International Journal of Legal Medicine*, 117:39–45, 2003.
- [15] P. Gill, P. Sparkes, R. Pinchin, Clayton, J. Whitaker, and J. Buckleton. Interpreting simple STR mixtures using allele peak areas. Forensic Science International, 91:41–53, 1998.
- [16] T. Clayton and J. Buckleton. Forensic DNA evidence interpretation, chapter Mixtures, pages 217–239. CRS PRESS, 2005.

A Appendix: Formulas used in *mastermix*

A.1 Expected allelic ratios

Two-allele model: expected allelic ratios conditional on each possible genotype combination of the contributors to the mixture, when two alleles, A and B (in ascending order of molecular weights) are observed at a given locus, and \hat{M}_x is the proportion of sample from the first contributor [15].

Combination	Alleles	
	A	В
AA,AB	$\frac{\hat{M}_x}{2} + 0.5$	$\frac{1-\hat{M}_x}{2}$
AB,AB	0.5	0.5
AA,BB	\hat{M}_x	$1-\hat{M_x}$
AB,AA	$\hat{M}_x \\ 1 - \frac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{\frac{\hat{M}_x}{2}}$
BB,AA	$1 - \hat{M}_x$	\hat{M}_x
AB,BB	$rac{\hat{M}_x}{2}$	$1-rac{\hat{M}_x}{2}$
BB,AB	$\frac{1-\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2} + 0.5$

Three-allele model: expected allelic ratios conditional on each possible genotype combination of the contributors to the mixture when three alleles, A, B and C (in ascending order of molecular weights) are observed at a given locus [15].

Combination	Alleles		
	A	В	С
AA,BC	\hat{M}_x	$\frac{1-\hat{M}_x}{2}$	$\frac{1 - \hat{M}_x}{2}$ $\frac{1 - \hat{M}_x}{2}$
BB,AC	$\frac{1-\hat{M}_x}{2} \\ \frac{1-\hat{M}_x}{2}$	$\hat{M_x}$	$\frac{1-M_x}{2}$
CC,AB	$\frac{1-M_x}{2}$	$\frac{1-\hat{M}_x}{2}$	\hat{M}_x
AB,AC	0.5	$rac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$
BC,AC	$\frac{1-\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$	0.5
AB,BC	$\frac{\hat{M}_x}{2}$	0.5	$\frac{1-\hat{M}_x}{2}$
BC,AA	$1 - \hat{M}_x$	$\frac{\hat{M}_x}{2}$	$rac{\hat{M}_x}{2}$
AC,BB	$\frac{\hat{M}_x}{2}$	$1 - \hat{M}_x$	$rac{\hat{M}_x}{2}$
AB,CC	$\frac{\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$	$1-\hat{M_x}$
AC,AB	0.5	$\frac{1-\hat{M}_x}{2}$	$rac{\hat{M}_x}{2}$
AC,BC	$\frac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$	0.5
BC,AB	$\frac{1-\hat{M_x}}{2}$	0.5	$\frac{\hat{M}_x}{2}$

Four-allele model: expected allelic ratios conditional on each possible genotype combination of the contributors to the mixture when four alleles, A, B, C and D (in ascending order of molecular weights) are observed at a given locus [15].

Combination	Alleles			
	A	В	С	D
AB,CD	$\frac{\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$	$\frac{1-\hat{M_x}}{2}$
AC,BD	$rac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$
AD,BC	$rac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$	$\frac{1-\hat{M_x}}{2}$	$\frac{\hat{M}_x}{2}$
BC,AD	$\frac{1-\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$	$\frac{\hat{M_x}}{2}$	$\frac{1-\hat{M}_x}{2}$
BD,AC	$\frac{1-\hat{M}_x}{2}$	$rac{\hat{M}_x}{2}$	$\frac{1-\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$
CD,AB	$\frac{1-\hat{M_x}}{2}$	$\frac{1-\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$	$\frac{\hat{M}_x}{2}$

A.2 Conditional mixtures proportions

The following tables give the formulas for the mixture proportion conditional on the genotype combinations. The conditional mixture proportions are computed using observed allele peak heights (or equivalently peak areas) [16].

Mixture proportions conditioned on the genotype combination for a locus showing two alleles, A and B (in ascending order of molecular weights), with peak heights ϕ_A and ϕ_B .

Two-allele model

Genotype combination	Conditional mixture proportion
AA,AB	$rac{\phi_A - \phi_B}{\phi_A + \phi_B}$
$_{ m AB,AB}$	No information is present
AA,BB	$\frac{\phi_A}{\phi_A+\phi_B}$
AB,AA	$\frac{2\phi_B}{\phi_A+\phi_B}$
BB,AA	$\frac{\phi_B}{\phi_A+\phi_B}$
AB,BB	$\frac{2\phi_A}{\phi_A+\phi_B}$
$_{ m BB,AB}$	$rac{\phi_B - \phi_A}{\phi_A + \phi_B}$

Mixture proportions conditioned on the genotype combination for a locus showing three alleles,, A , B and C (in ascending order of molecular weights), with peak heights ϕ_A , ϕ_B and ϕ_C .

Three-allele model

Genotype combination Co	nditional mixture proportion
AA,BC	$\frac{\phi_A}{\phi_A + \phi_B + \phi_C}$
$_{ m BB,AC}$	$\frac{\phi_B}{\phi_A + \phi_B + \phi_C}$
$^{\rm CC,AB}$	$\frac{\phi_C}{\phi_A + \phi_B + \phi_C}$
AB,AC	$\frac{\phi_B}{\phi_B+\phi_C}$
BC,AC	$\frac{\phi_B}{\phi_A+\phi_B}$
AB,BC	$\frac{\phi_A}{\phi_A+\phi_C}$
BC,AA	$\frac{\phi_B + \phi_C}{\phi_A + \phi_B + \phi_C}$
AC,BB	$\frac{\phi_A + \phi_C}{\phi_A + \phi_B + \phi_C}$
AB,CC	$\frac{\phi_A + \phi_B}{\phi_A + \phi_B + \phi_C}$
AC,AB	$\frac{\phi_C}{\phi_B+\phi_C}$
AC,BC	$\frac{\phi_A}{\phi_A+\phi_B}$
BC,AB	$\frac{\phi_C}{\phi_A+\phi_C}$

Mixture proportions conditioned on the genotype combination for a locus showing four alleles, A , B, C and D (in ascending order of molecular weights), with peak heights ϕ_A , ϕ_B , ϕ_C and ϕ_D .

Four-allele model

Genotype combination	Conditional mixture proportion
AB,CD	$\frac{\phi_A + \phi_B}{\phi_A + \phi_B + \phi_C + \phi_D}$
AC,BD	$\frac{\phi_A + \phi_C}{\phi_A + \phi_B + \phi_C + \phi_D}$
$_{ m AD,BC}$	$\frac{\phi_A + \phi_D}{\phi_A + \phi_B + \phi_C + \phi_D}$
BC,AD	$\frac{\phi_B + \phi_C}{\phi_A + \phi_B + \phi_C + \phi_D}$
BD,AC	$\frac{\phi_B + \phi_D}{\phi_A + \phi_B + \phi_C + \phi_D}$
CD,AB	$\frac{\phi_C + \phi_D}{\phi_A + \phi_B + \phi_C + \phi_D}$