STA 5010

Final Exam. December 10, 2003

1. Suppose that

$$Y_i = \alpha + \beta x_i + \varepsilon_i, \quad i = 1, \cdots, n$$

 $\varepsilon_i's$ are i.i.d. with density function

$$f(u) = \exp\{c_2 u^2 + c_1 u + c_0\}$$

where $x_1, \dots, x_n, c_0, c_1, c_2$ are known constants and α, β are unknown parameters.

- (a) Find a minimal sufficient statistics for (α, β) .
- (b) Is your statistic complete?
- (c) Give the UMVUE for (α, β) .
- 2. Continue with the Last problem. Let X_{n+1} and X_{n+2} be two known numbers. What is the UMVUE of $P\{Y_{n+1} > Y_{n+2}\}$, where $Y_{n+i} = \alpha + \beta X_{n+i} + \varepsilon_{n+i}$.
- Let X_1, \dots, X_n be a random Sample from $N(0, \sigma_X^2)$, and let Y_1, \dots, Y_m be a random Sample from $N(0, \sigma_Y^2)$, independent of X_s' . Define $X = \frac{\sigma_Y^2}{\sigma_X^2}$.
 - (a) Find the level α LRT of $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$.
 - Express the rejection region of the LRT of part (a) in terms of an F random variable.
 - (c) Find a $1-\alpha$ confidence interval for λ .
- Let X_1, X_2, X_3 be a random sample of size three from a uniform $(\theta, 2\theta)$ distribution, where $\theta > 0$,
 - (a) Find the method of moments estimator of θ .
 - (b) Find the MLE, $\hat{\theta}$, and find a constant k such that $E_{\theta}(k\hat{\theta}) = \theta$.
 - (c) Which of the two estimators can be improved by using sufficiency? How?
- We observe the values of X_1, \dots, X_{n+m} be an i.i.d. sample from $f(x) = \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right), x > 0$. We observe the values of X_1, \dots, X_n and the event that $X_{n+1} > Y_{n+1}, \dots, Y_{n+m} > Y_{n+m}$ (The exact value of X_{n+1}, \dots, X_{n+m} are unknown, but Y_{n+1}, \dots, Y_{n+m} are observed).
 - (a) Find a MLE of β .
 - (b) Find a minimal sufficient.
 - (c) Is you Statistic in a) an UMVUE?