Initiation à la Programmation en C (L1 CPEI)*

TP 4

13/02/2019

§1. Fonctions

Exercice 1 (Afficher ou renvoyer?). Dans les cas suivants, doit-on utiliser printf ou return?

- (1) Arrêter la fonction et donner son résultat.
- (2) Afficher une information dans le terminal.
- (3) À la dernière ligne de la fonction int main().

Exercice 2 (Vrai ou faux?). (1) Une fonction int f(float a) doit contenir une instruction de la forme return a;, où a est de type float.

- (2) Une fonction int f(float a) doit renvoyer une valeur entière.
- (3) Une fonction int f(float a) doit afficher une valeur entière.
- (4) Une fonction void f(float a) doit afficher une valeur entière.
- (5) Une fonction void f(float a) peut afficher une valeur entière.
- (6) Une fonction float f(float a) peut afficher une valeur entière.
- (7) Une fonction **float f(float a)** peut afficher plusieurs valeurs entières.

§2. RÉCURSION ET ITÉRATION

Exercice 3. Écrivez une fonction f qui prend en argument un entier n et renvoie la somme des n premiers entiers impairs. Par exemple, f (3) renvoie 1+3+5=9. Testez cette fonction que quelques entiers. Que remarquez-vous? Proposez un algorithme plus efficace pour f.

^{*}Cours donné par prof. Roberto Amadio. Moniteur 2019 : Cédric Ho Thanh. TPs/TDs basés sur ceux des précédents moniteurs : Florien Bourse (2017), Antoine Dallon (2018). Autres contributeurs : Juliusz Chroboczek, Gabriel Radanne.

Exercice 4 (PGCD). On se propose d'implémenter et de tester deux versions de la fonction pgcd(a, b) qui renvoie le plus grand commun diviseur de deux entiers a et b:

- *itérativement*, en essayant tous les entiers de 1 jusqu'à min(a, b), et en ne gardant que le dernier commun diviseur trouvé ;
- récursivement, en utilisant la relation

$$pgcd(a, b) = pgcd(b, a) = pgcd(a, b\%a).$$

Attention! à l'ordre des arguments afin de ne pas tomber dans une boucle infinie!

D'après vous, laquelle de ces deux méthodes est la plus efficace?

On rappelle que la suite de Fibonacci (f_n) est définie par la récurrence suivante :

$$f_0 = 1,$$

 $f_1 = 1,$
 $f_n = f_{n-2} + f_{n-1}$ pour $n \ge 2.$

Exercice 5 (Fibonacci par récursion). Nous nous intéressons ici à la méthode la plus simple pour calculer la suite de Fibonacci, et aussi la moins efficace, la récursion.

- (1) Proposer une fonction **int fib(int n)** qui calcule le *n*-ième terme de la suite de Fibonacci en utilisant la définition ci-dessus.
- (2) Votre algorithme termine-t-il? Pourquoi^a?
- (3) Combien d'appels à la fonction fib ont lieu lorsque l'on veut calculer fib(5)?

Exercice 6 (Fibonacci par itération). Comme la méthode récursive est très, très lente, nous allons utiliser une mémoire de 3 variables, contenant les valeurs de f_n , f_{n-1} , et f_{n-2} , quand $n \geq 2$. Aussi, on n'aura pas besoin de les recalculer quand on en aura besoin. Écrire un algorithme utilisant une boucle **for**, et qui affiche la valeur de f_n .

 $[^]a$ Ceci est une question qu'il faut toujours se poser quand on écrit un algorithme récursif.