Ecology of Uncultivated Freshwater Actinobacteria Revealed via Reverse Ecology

Joshua J. Hamilton¹, Brittany S. Brown¹, Matthew Bendall², Tijana Glavina del Rio², Stefan Bertilsson³, Rex Malmstrom², Ramunas

Stepanauskas⁴, Susannah Tringe², Tanja Woyke², and Katherine D. McMahon¹

¹University of Wisconsin-Madison, ²Department of Energy Joint Genome Institute, ³Uppsala University, and ⁴Bigelow Laboratory for Ocean Science

Introduction

Uncultured microbes are critical players in all ecosystems, where they support essential ecosystem functions such as nutrient cycling. While metagenomic approaches are increasingly being used to study the genetics and physiology of these organisms, such approaches would benefit from techniques which link specific biochemical transformations to individual community members. We have developed a computational pipeline which combines metabolic reconstructions of Actinobacterial genomes with a computational "reverse ecology" approach to identify biochemical requirements (e.g., carbon and nitrogen sources) and potential niches for members of the freshwater Actinobacteria.

PHYLOGENY AND METADATA

We have sequenced and assembled 60 Actinobacterial single-cell genomes (SAGs) and genomes from metagenomes (GFMs). SAGs were classified using 16S rRNA sequences and a controlled taxonomic nomenclature. Phylogeny of all samples was determined using a concatenated alignment of 37 marker genes. Only genomes with classification to the 'tribe' level are shown. Genome completeness was estimated using the presence/absence of 37 marker genes.

NETWORK RECONSTRUCTION

>AAA027L06_contig00001 TTTGAATTAAGTGATGATCAGATTGACTGGACAGTTG ATGCCTATACCAGGGGGCGTAATTGCAGATGAACAAATG TCAGCACTTTTGATGGCTATTTTGTTAAATGGAATG ...

Step 1. Annotate microbial contigs using the RAST toolkit.

Build metabolic network reconstruction using the Model

SEED framework.

Reaction $rxn02085$ $rxn01642$	Genes CDS.1611 CDS.1612	$\begin{array}{l} \textbf{Equation} \\ cpd02311 <-> cpd00001 + cpd00581 \\ cpd00001 + cpd02311 -> cpd00344 \end{array}$
•••		

Compound	Name	Formula	Charge
cpd00001	$H_{2}O$	$H_{2}O$	0
cpd00344	N-Formimino-L-glutamate	$C_6H_9N_2O_4$	-1
cpd00581	Urocanate	$C_{6}^{0}H_{5}^{3}N_{2}^{2}O_{2}^{4}$	-1
cpd02311	4-Imidazolone-5-propanoate	0 0	-1
•••		0 1 2 3	

Step 2. Convert reconstruction to a metabolic network graph. Metabolites are represented as nodes, and reactions as directed edges.

Step 3. Create network graphs for each tribe by joining graphs for all genomes from that tribe.

	Num. of		Avg. GC	Est.	Avg. Est.	Genome	Avg. Genome	Est. Size	Avg. Est.
Tribe	Genomes	GC Content	Content	Completeness	Completeness	Size (MB)	Size (MB)	(MB)	Size (MB)
Luna1-A2	1	0.49	0.49	0.84	0.84	0.99	0.99	1.18	1.18
acI-B4	1	0.44	0.44	0.95	0.95	1.15	1.15	1.22	1.22
acI-B1	7	0.4 to 0.42	0.41 + 0.01	0.14 to 0.97	0.57+0.31	0.66 to 1.16	0.87 + 0.17	1.03 to 4.89	2.06 + 1.35
acI-A5	2	0.46 to 0.46	0.46 + 0	0.95 to 0.97	0.96 + 0.02	1.35 to 1.41	1.38 + 0.05	1.42 to 1.45	1.44 + 0.02
acI-A1	2	0.47 to 0.48	0.48 + 0.01	0.05 to 0.97	0.51+0.65	0.82 to 1.14	0.98 + 0.22	1.17 to 15.21	8.19 + 9.93
acI-A7	4	0.44 to 0.46	0.45 + 0.01	0.11 to 0.76	0.36 + 0.3	0.7 to 1.38	1.04+0.35	1.03 to 8.52	4.74 + 3.37
acI-A6	2	0.45 to 0.46	0.46 + 0.01	0.14 to 0.84	0.49+0.5	0.78 to 0.88	0.83+0.07	1.06 to 5.8	3.43 + 3.35
Iluma-B1	1	0.50	0.50	0.78	0.78	1.03	1.03	1.31	1.31
Iluma-A2	1	0.53	0.53	0.59	0.59	0.77	0.77	1.29	1.29

RESOURCE UTILIZATION

The seed set of a metabolic network is the minimal set of compounds from which all other compounds in the network can be

synthesized. For a metabolic network represented as a directed graph, the seed set is the minimal set of nodes from which all other nodes can be reached. These nodes approximate a tribe's essential metabolites.

We classified 49 genomes as belonging to one of three major lineages: acI, acIV, and acV. Patterns of resource utilization reveal distinct niches for each of these lineages.

Seed Co	acI	acIV	acV	1	
Branched-chain	Leucine	0.97	0.67	1.00	\sim \sim \sim \sim \sim \sim
_	Iso-Leucine	0.97	0.67	1.00	ion ome
amino acids	Valine	0.97	0.67	1.00	Fraction Genomes
Diamines	Ala-Leu	1.00	1.00	0.88	
	Gly-Pro	1.00	1.00	0.88	\circ \blacksquare 0
	Agmatine	0.56	0.50	0.88	
Polyamines	Putrescine	0.69	0.78	0.38	
	Spermidine	0.69	0.78	0.38	
Polysaccharides	Stachyose	0.28	1.00	0.13	
1 Olysaccharides	Manninotriose	0.28	1.00	0.13	
	5-Methylcytosine	0.16	0.44	0.88	
Nucleotides	OMP	0.97	0.78	0.75	
	XMP	0.06	0.00	0.88	
Sulfur	Sulfide	0.91	0.78	0.50	
compounds	Thiosulfate	0.75	0.89	0.38	
	Total Genomes	32	9	8	

The acI lineage comprises three clades, each with a distinct substrate utilization pattern.

Seed C	ompound	acI-A	acI-B	acI-C	
Amaira a saida	Ornithine	0.50	0.78	0.00	$\mathbf{S}_{\mathbf{S}}$
Amino acids	5-Aminolevulinate	0.83	0.72	0.50	raction Jenomes
Nucleotides	Deoxycytidine	0.25	0.78	0.00	Fraction Genome
Nucleotides	Cytidine	0.25	0.78	0.00	Fr of G
Polysaccharides	Maltose	0.33	0.17	1.00	
Olysaccharides	Stachyose	0.42	0.11	1.00	
	Total genomes	12	18	2	

METABOLIC COMPETITION

Metabolic competition can arise when two organisms have similar nutritional profiles, and the potential for

and the potential for competition can be quantified Competition between A and B: 2/4 using the metabolic B and A: 2/5

Organism A

using the metabolic competition index. For two

organisms A and B, the **metabolic competition index** is calculated as the fraction of compounds in A's seed set that are also present in B's seed set.

Competition is strongest within—rather than between—lineages.

Unique seed compounds suggest niche specialization based on carbohydrate (acI lineage), amino acid (acI and acIV lineages) and polyamine (acIV) acquisition.

Tribe	Unique Seed Compounds		
acI-A1	arabinose, citrate, glucose		
acI-A5	chitobiose		
acI-A6	altronate, prephenate		
acI-B1	sarcosine		
acI-B4	glucarate		
acIV-A2	arginine, putrescine, spermidine		
acIV-B1	agmatine, prephenate		

Conclusions

Reverse ecology represents a powerful approach for inferring the ecological traits of an organism directly from its metabolic network. The predicted niche for acI tribes agrees with our experimental understanding, and predicted niches for acIV tribes have begun to emerge. These predictions will be enhanced through the sequencing of under-sampled tribes and the calculation of additional metrics, such as potential for cooperation. Finally, reverse ecology predictions are sensitive to genome completeness, and we are developing ANI- and coverage-based approaches to associate unclassified GFMs with specific tribes.

ACKNOWLEDGEMENTS

