

GEOMETRÍA Capítulo 11

Relaciones métricas en el triángulo rectángulo y en la circunferencia

MOTIVATING | STRATEGY

En la actualidad, existen más de 300 demostraciones del teorema de Pitágoras, lo que confirma que es uno de los teoremas que más han llamado la atención a través de la

historia.

PROYECCIÓN ORTOGONAL

I. De un punto sobre una recta

II. De un segmento sobre una recta

 A_1B_1 : Proyección de \overline{AB} sobre $\overline{L_2}$

 $\overline{C_1D_1}$: Proyección de $\overline{C_1D_1}$ sobre $\overline{L_2}$

EF₁: Proyección de EF sobre L₂

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

* AB y BC son catetos

* AC: hipotenusa

AH: proyección ortogonal AB sobre AC

HC: proyección ortogonal BC sobre AC

$$(AC)^2 = (AB)^2 + (BC)^2$$

Teorema de la Longitud de un cateto al cuadrado

Teorema de la longitud de la altura al cuadrado

$$h^2 = mn$$

Teoremas adicionales

$$c \cdot a = h \cdot b$$

$$\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{h^2}$$

$$x = 2\sqrt{R.r}$$

A, B y C son puntos de tangencia

RELACIONES MÉTRICAS EN LA CIRCUNFERENCIA

T. de Cuerdas

T. de las Secantes

T. de la Tangente

$$a.b=m.n$$

$$x.y = a.b$$

$$x^2 = n \cdot m$$

T: punto de tangencia

O1

1. En un triángulo rectángulo ABC recto en B, se traza la altura \overline{BD} , tal que AD = 12 y DC = 4. Halle BC.

2. En un triángulo rectángulo, las longitudes de las proyecciones de los catetos sobre la hipotenusa son 2 y 8. Calcule el producto entre las longitudes de los catetos.

3. Si ABCD es un cuadrado, BE = 1 y EC = 9, halle EF.

• Prolongamos EF hasta P.

$$h^2 = (1)(9)$$

 $h^2 = 9$
 $h = 3$

En $\overline{ ext{EP}}$.

$$x + 3 = 10$$

$$x = 7$$

4. En la figura se observa una cometa que tiene forma de un trapezoide simétrico calcula su perfecata. simétrico, calcule su perímetro.

Resolución

En el gráfico, ABCD: Trapezoide Simétrico

Piden:
$$2P_{ABCD} = 2(a + b) ... (1)$$

Aplicamos el Teorema de Pitágoras

BOC

$$a^2 = 15^2 + 36^2$$

$$a^2 = 225 + 1296$$

$$a^2 = 223 + 1270$$
 $b^2 = 625$ $b^2 = 625$

$$a = 39$$

$$a^2 = 15^2 + 36^2$$
 $b^2 = 15^2 + 20^2$

$$a^2 = 225 + 1296$$
 $b^2 = 225 + 400$

$$b^2 = 625$$

$$b = 325$$

$$b = 25$$

Reemplazando en (1): $2P_{ABCD} = 2(39 + 25)$

 $2P_{ABCD} = 128 \text{ cm}$

5. En la figura, halle el valor de x.

T. de Cuerdas

$$(b).(b) = (a).(2a)$$

$$b^2 = 2a^2$$

$$b = a\sqrt{2}$$

ΔPMN: Notable de 45° y 45°

$$x = 45^{\circ}$$

6. En la figura, BC = 3 y AB = 2. Halle PT si, además, T y B son puntos de tangencia

7. Una persona caminó 3 m hacia el norte, luego 6 m hacia el este, luego 5 m hacia el norte y finalmente 9 m hacia el este. ¿A cuántos metros del punto inicial se encuentra la persona?

