Formulario Fisica della Materia

Grufoony

9 gennaio 2022

1 Insieme microcanonico

- $S=k_B \ln \Omega$ entropia di Boltzmann

2 Insieme canonico

- $\beta = \frac{1}{k_B T}$
- $Z_1 = \sum_s e^{-\beta \epsilon_s}$ funzione di partizione (particella singola)
- $Z = (Z_1)^N$ funzione di partizione (N particelle distinguibili)
- $Z = \frac{(Z_1)^N}{N!}$ funzione di partizione (N particelle indistinguibili)
- $F = -k_BT \ln Z$ energia libera di Helmoltz
- $\langle E \rangle = \frac{\partial \ln Z}{\partial \beta}$ energia media

3 Insieme gran canonico

- $\gamma = -\beta \mu$
- $\mu = \frac{\partial F}{\partial N}|_{T,V} = -T\frac{\partial S}{\partial N}|_{U,V}$ potenziale chimico
- $\Xi = \sum_N e^{\beta \mu N} Z(N)$ funzione di partizione gran canonica
- $\Phi = k_B T \ln \Xi$ gran potenziale

4 Cose cinetiche

• $f(v) = \sqrt{\frac{m}{2\pi k_B T}} e^{-\frac{m}{2k_B T} v^2}$ distribuzione velocità di Maxwell-Boltzmann

5 Cose quantistiche

- $n_Q = \left(\frac{mk_BT}{2\pi\hbar^2}\right)^{\frac{3}{2}}$ concentrazione quantistica
- $\epsilon_j = \hbar\omega\left(j+\frac{1}{2}\right)$ energia oscillatore armonico quantistico
- $\langle n_s \rangle_f = \frac{1}{e^{\beta(\epsilon_s \mu)} + 1}$ distribuzione di Fermi-Dirac
- $\langle n_s \rangle_f = \frac{1}{e^{\beta(\epsilon_s \mu)} 1}$ distribuzione di Bose-Einstein
- $\epsilon_F = \frac{\hbar^2}{2m} \left(\frac{6\pi^2 n}{g_s} \right)^{\frac{2}{3}}$ energia di Fermi

- $\mu(T) \approx \epsilon_F \left(1 \frac{\pi^2}{12} \frac{T^2}{T_0^2}\right)$
- $Vu(\omega)d\omega=\frac{V\hbar}{\pi^2c^3}\frac{\omega^3}{e^{\beta\hbar\omega}-1}d\omega$ equazione di Plank per il corpo nero
- $Vu_{RJ}(\omega)d\omega=k_BTg(\omega)d\omega$ approssimazione di Rayleigh-Jeans per le basse frequenze

6 Cose termodinamiche

- $S = -\frac{\partial F}{\partial T}|_{N,V}$ entropia
- $C_V = \frac{\partial U}{\partial T}|_V$ capacità termica
- $P = -\frac{\partial U}{\partial V}|_{N,S} = -\frac{\partial F}{\partial V}|_{N,T} = T\frac{\partial S}{\partial V}|_{N,U}$ pressione
- $S = \frac{\partial \Phi}{\partial T}|_{\mu,V}$
- $P = \frac{\partial \Phi}{\partial V}|_{U,T}$
- $\langle N \rangle = \frac{\partial \Phi}{\partial \mu}|_{V,T}$

7 Cose matematiche

- $N! \simeq \sqrt{2\pi N} N^N e^{-N}$ approssimazione di Stirling (N >> 1)
- $\int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^3}}$
- $\sum_{n=0}^{\infty} ne^{-an} = \frac{e^a}{(e^a 1)^2}$
- $\Gamma(n+1) = \int_0^\infty t^n e^{-t} dt = n!$ funzione gamma
- $I \approx \int_0^\mu k(\epsilon) d\epsilon + \frac{\pi^2}{6} (k_B T)^2 k'(\mu) + o(T^4)$ espansione di Sommerfeld
- $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ funzione zeta di Riemann