Structures of positive electrode materials

Lamelar structure
LiCoO₂

4.5

2.40

3.0

0.4

0.6

xin LiCoO₃

high cycling stability (>1200

high cycling stability (>1200 cycles) and cycle life (2-3 years)

@ 130°C $\text{Li}_{0.5}\text{CoO}_2 \rightarrow$

 $0.5 \text{Li}_{0.5} \text{Co}_{2} + 1/6 \text{Co}_{3} \text{O}_{4} + 1/6 \text{O}_{2}$

@ 190°C Li0. $_5$ CoO $_2$ +0.1C $_3$ H $_4$ O $_3$ (EC) \rightarrow 0.5LiCoO $_2$ +0.5CoO + 0.3CO $_2$ +0.2H $_2$ O

cell phones, laptops and digital cameras

Spinel structure 3D

high rate capability fast charging and high-current discharging

capacity lower than that for lamelar oxides

power tools, medical instruments, hybrid and electric vehicles

Olivine structure 3D LiFePO₄

high safety and stability due to P-O covalent bond

poor electrical conductivity

transportations - hybrid and electric vehicles, bikes

Other positive electrode materials

- ➤ High specific energy or high specific power,
- > Low self-heating rate.

Cost Specific power
Life span Safety

LiNiCoAIO₂ (NCA)

- ➤ High specific energy and power densities,
- > Long life span.

Applications: Power tools and power trains for vehicles.

Applications: Automotive industry.

NMC – combination of nickel and manganese

Ni - high specific energy but low stability

Mn - formation a spinel structure → low internal resistance but low specific energy

}

Combining the metals brings out the best in each

Commercial positive electrodes

«Sony Energy» - 2009 commercialization new long life LiB battery using olivine-type lithium iron phosphate as the cathode material

- Rapid charging: 99% charge completed in 30 minutes
- Power density: 1800W/kg (20A continuous discharge)Energy density: 95Wh/kg
- Long-life: more than 80% capacity retention after 2,000 charge-discharge cycles

Commercial cathode materials

Cathode active materials in 2016 > 210 000 Tons

Cathode active materials in 2025 540 000 Tons

Assumption: Tesla keep NCA chemistry and have a relative success (+250 000 EV sold per year in 2025 – TESLA forecast 500 000)

Source Avicenne 2017

Contents

- I. Introduction
- II. Electrochemistry & fundamentals of battery
- III. Electrochemical characterizations of batteries
- IV. Batteries definitions, classification
- V. Secondary batteries: Pb-acid, NiMH, Ni-Cd
- VI. Secondary batteries: Lithium-Ion Batteries (LIB);

Electrode bulk reactions (mechanism of Li insertion);

Battery components (LIB): electrolyte, separator, negative & positive electrodes

- VII. Application of LIB in e-mobility
- VIII. Life Cycle Assessment (LCA) of LIB
- IX. Other battery technologies Li(Me)-air, Li-S

First batteries for EV - XIX, XX

1884, UK

First electric carriage Thomas Parker

1899, Belgique

« La Jamais Contente » 100% electric, Pb-battery driven by Camille Jenatzy, 100 km/h, 1,5 tons (50% battery)

1907-1915, USA

Roadster with Edison Ni-Fe in series « New Edison Storage Batteries »

134

Hybrid Electric Vehicles - HEV

1997, Toyota Prius Battery Ni-MH, 170 km/h 1,3 tons (40 kg battery)

2012, Toyota Prius Plug-In Hybrid Battery LiB 8,8 kWh Autonomy 50 km (up to 135 km/h)

1997 - 2000....

Many companies starts productions of HEV: Honda EV Plus, G.M. EV1, Ford Ranger pickup EV, Nissan Altra EV, Chevy S-10 EV et Toyota RAV4 EV.

Electric Vehicles

Plug-in vehicle with rechargeable battery only:

- Driving range limited by battery size industry norm for range ~ 100 miles
 - Tesla is exception, offering longer range
- Nominal recharge time of ~8 hours (fully depleted battery)

Nissan Leaf **Battery Electric Vehicle**

- Battery: 24-30 kWh 360 V lithium-ion
- 200-250 km advertised range
- Charging: 20 hours at 120V, 12A 8 hours at 240V, 15A 30 min at 400V

2009, Pininfarina, Bolloré

- Batteries lithium metal polymer, 130 km/h,
- Power 50 kW, autonomy 250 km
- Acceleration 0 to 60 km/h in 6"3 s

Tesla Model S (2015)

- Battery Li-ion 450 kg,
- Power 215 kW, 60-85 kWh,
- Autonomy 370-480 km
- Acceleration 0 to 100 km/h in 3 s, 212 km/h max

Carbon balance of electric vehicle Émissions de CO₂ du puits à la roue (WTW) « from well to wheel » – WTW moteur thermique diesel motorisation hybride essence hybride Diesel Hybrides hybride gaz naturel hybride rechargeable essence (mix France) Hybrides rechargeables hybride rechargeable Diesel (mix F) hybride rechargeable gaz nat. (mix F) hybride rechargeable éthanol 2º génér. (mix UE) Hyb. rech. hybride rechargeable éthanol 2ª génér. (mix F) + biocarburant 2e génér. véhicule électrique (mix F) véhicule électrique (mix UE) Electrique véhicule électrique (mix Allemagne) véhicule électrique (mix Pologne) véhicule électrique (100 % charbon) 20 40 60 80 100 120 140 160 Émissions de CO₂ (g/km WTW) 137

Other electric mobility

Hover board LiB~150 Wh

Electric scooter

LiB (LiEePO₄) 12V, 12Ah, **144 Wh** LiB 24V, 10Ah, **240 Wh** 400W, 150 x 95 x 98, 1.9 kg

City electric bike, Emotion RS26

Max speed with assistance: 25 km/h 40-100 km at 30 km/h on flat Autonomy: 40 km

Yamaha EC-03

LiB 3 kWh, 4 kW road

Bluebus Bolloré

3 battery LMP® (LITHIUM METAL POLYMER) – all solid battery « 3 batteries »: 90 kWh, autonomy of 120 km, max 50 km/h, charge time 8 h

138

Electric aviation

E-Fan, small electric plane (100% electric made in France)

E-Fan X hybrid-electric flight demonstrator developed by Airbus, Siemens and Rolls-Royce

Shift to electric could significantly reduce operating costs, while eliminating greenhouse gas emissions

Contents

- I. Introduction
- II. Electrochemistry & fundamentals of battery
- III. Electrochemical characterizations of batteries
- IV. Batteries definitions, classification
- V. Secondary batteries: Pb-acid, NiMH, Ni-Cd
- VI. Secondary batteries: Lithium-Ion Batteries (LIB);
 - Electrode bulk reactions (mechanism of Li insertion);

Battery components (LIB): electrolyte, separator, negative & positive electrodes

- VII. Application of LIB in e-mobility
 VIII. Life Cycle Assessment (LCA) of LIB
- IX. Other battery technologies Li(Me)-air, Li-S

140

LCA -life cycle assessment

LCA: Life-cycle assessment (LCA, also known as life-cycle analysis, ecobalance, and cradle-to-grave analysis)

Aim: LCA Study identifies opportunities for reducing impacts (from BATTERY SUPPLIERS, BATTERY MANUFACTURES and BATTERY RECYCLERS) of current and emerging LiB systems for different applications

Key opportunities for improvement

- Increase the battery life-span
- Reduce energy use for electrode production (cathode)
- Use a solvent less or water based process
- Reduce the percentage of metals by mass
- Reduce cobalt and nickel use (& exposure upstream)
- Use recovered material
- More efficient production
- Other battery technologies

Reduce human health & environmental impacts of Li - ion batteries for EVs

Contents Introduction I. II. **Electrochemistry & fundamentals of battery** III. **Electrochemical characterizations of batteries** Batteries - definitions, classification IV. Secondary batteries: Pb-acid, NiMH, Ni-Cd ٧. VI. Secondary batteries: Lithium-Ion Batteries (LIB); Electrode bulk reactions (mechanism of Li insertion); Battery components (LIB): electrolyte, separator, negative & positive electrodes VII. Application of LIB in e-mobility VIII. Life Cycle Assessment (LCA) of LIB Other battery technologies Li(Me)-air, Li-S IX.

Limitations of LiB

- **Energy density**
- Safety issues
- Cost
- Resource of Li and Co, Ni, Mn

Types	Cell reactions	Theoretical energy density (Wh/Kg)	Practical energy density (Wh/Kg)
Lead– Acid	Pd +PdO ₂ +2HSO ₄ +2H+→2PdSO ₄ +2 H ₂ O	170	30-50
Ni-Cd	2NiO(OH)+Cd+2HzO->2Ni(OH)z+Cd(OH)z	245	45-80
Ni-MH	xNi(OH)₂+M→xNiOOH+MHx	280	60-120
Li-ion	LiCoO₂+C→LixC+Li1-xCoO₂	400	110-160
Li–S	xLi++S8+e→Li₂Sx	2600	~400
	Li ₂ Sx+ Li++e→Li ₂ S ₂ or Li ₂ S		
Zn-air	2Zn +O₂→2ZnO	1084	~400
Li-air	2Li+O ₂ →Li ₂ O ₂	11,680	~2000

Actions:

Actions:

- enhancement of about 2-3 times in energy density is needed replacement of the present electrode materials with alternative compounds with higher values of specific capacity

Limitations of LiB - Energy density **Safety issues** Cost Resource of Li and Co, Ni, Mn

replacement of the oxygen releasing cathode materials (ex. LiCoO₂) with more compounds like LiFePO₄

replacement of the flammable liquid organic electrolytes by more stable ex. polymer, solid electrolytes, ionic liquids

Limitations of LiB - Energy density Safety issues Resource of Li and Co, Ni, Mn Forecast of Li-ion battery pack cost Li amount and price Metal cost processed in positive electrode and production 2010-2030 is no significant (\$/kWh) (before cell and pack process yield) Lithium-ion battery price outlook pack price (real 2018 S/kWh) Only 2.5%wt. of Li 1,200 1,000 10g Actions: replacement of expensive components of LiB, like cathodes containing (Co, Ni...) by low cost, abundant alternative compounds like Fe, S replacement of current collectors based on Cu by stainless steel

Comparision of LiB, Li-O₂ and Li-S

Battery	Cell voltage (V)	Theoretical specific energy (Wh kg ⁻¹)	Theoretical energy density (Wh I ⁻¹)
Today's Li-ion $\frac{1}{2}C_6\text{Li} + \text{Li}_{0.5}\text{CoO}_2 \leftrightarrow 3\text{C} + \text{LiCoO}_2$	3.8	387	1,015
Zn-air Zn+½ O_2 ↔ZnO	1,086	1,086	6,091* (ZnO)
Li-S 2Li+S↔Li ₂ S	2,567	2,567	2,199 [†] (Li + Li ₂ S)
$Li-O_2$ (non-aqueous) $2Li+O_2 \longleftrightarrow Li_2O_2$	3,505	3,505	$3,436^{\ddagger} (Li + Li_2O_2)$
Li-O ₂ (aqueous) 2Li+½O ₂ +H ₂ O ↔ 2LiOH [§]	3,582	3,582	2,234 (Li+H ₂ O+LiOH)

^{*}Based on volume of ZnO at the end of discharge; *based on the sum of the volumes of Li at the beginning and Li₂O₂ at the end of discharge; *based on the sum of the volumes of Li at the beginning and Li₂O₂ at the end of discharge; *sassuming the product is anhydrous LiOH and alkaline conditions; and *based on the sum of the volumes of Li + H₂O consumed and the LiOH at the end of discharge.

Li–O2 and Li–S batteries with high energy storage, Peter G. Bruce et al, Nature Materials, Vol 11, 2012

Issues of Li-S battery

The Li/S concept is not new. However, so far limited progress due to a series of practical issues

Major Issues:

 \otimes solubility of the polysulphides Li_xS_y in the electrolyte (loss of active mass \rightarrow low utilization of the sulphur cathode and severe capacity decay upon cycling)

 $\ensuremath{\mathfrak{B}}$ low electronic conductivity of S , Li₂S and intermediate Li-S products (low rate capability, isolated active material)

Reactivity of the lithium metal anode (dendrite deposition, cell short circuit, safety)

Challenge: find and an electrolyte to combat the irreversible loss of sulphur associated with the formation of soluble Li_2S_6 , Li_2S_4 and insoluble Li_2S_2 or Li_2S (cyclic or linear ethers, ionic liquids or polymers PEO-based electrolytes)

Me-air batteries

Important parameters of metal-air batteries [1]

Batteries	Year of invention	Theoretical working voltage (V)	Theoretical specific capacity (Ah/kg)	Theoretical energy density (Wh/kg)
Mg-air	1966	3.09	920	2843
Zn-air	1878	1.65	658	1085
Li-air	1996	2.96	1170	3463
Al-air	1962	2.71	1030	2791
Na-air	2012	2.33	687	1600
K-air	2013	2.48	377	935
Lithium-ic	on	2.33	687	150-250

- · Low materials cost and great chemical stability
- Mg is also environmentally friendly, non-toxic

[1] N.S. Hazri, A.M. Zainoodin, International Journal of Energy Research, 45 (2021) 15739-15759. [2] M. Deng, D. Snihirova, Energy Storage Materials, 43 (2021) 238-247.

Key features of metallic anodes [2]

Zn-air battery working principle

 $Zn + 4OH^{-} \rightarrow Zn(OH)_{4}^{2-} + 2e^{-}$ Anode (porous):

Cathode: $1/2 O_2 + H_2O + 2e^- \rightarrow (2OH^-)$ Overall: $2 Zn + O_2 \rightarrow 2 ZnO$

 $(E_0 = -1.2 \text{ V})$

Migration to anode at discharge $(E_0 = 0.44 \text{ V, pH} = 11)$

 $(E_0 = 1.64 \text{ V})$

Anode: Metal mechanically recheargable

Application of Zn-air batteries

- hearing aids,
- patient monitors,
- road traffic signaling...

Energizer PP355 Zinc Air Prismatic 1.4V battery; size: 32.2 x 14.7 x 5.0 mm

Limiting the amount of air access to a zinc air battery can increase the battery life

- from 1 to 3 months with no air management
- from 1 to 2 years using air management

- transport

APET (Taiwan) Zinc-Air Battery

zinc filled pouch cells are assembled to a 30kWh (for extra 300 km)

Leo Motors -Zinc-Air Range Extender (Korea)

140-mile driving range

16

Mg-air batteries working mechanism **Mg-air Battery** Mg anode: Air cathode: • Mg alloys: Discharge Catalyst layer: Pt/C or MO₂/C; - Mg/Al/Zn: AZ31, AZ61, AZ91 Gas diffusion layer - Mg/Al/Mn: AM50, AM60, MA8M06 Current collector layer - Mg/Li alloys Mg Waterproof layer Air • Pure Mg: Anode - Commercial Mg - Nano/mesoscale Mg O2 + 2H2O+4e- -- 4OH-2Mg → 2Mg²⁺ + 4e⁻ **Electrolytes:** NaCl, KHCO₃, NH₄NO₃, NaNO₃, HNO₃, *Na₂SO₄*, Mg(NO₃)₂·6H₂O + NaNO₂, MgCl₂, and MgBr₂, ionic liquid L. Zhang, Q. Shao, J. Zhang, Materials Reports: Energy, 1 (2021) 100002.

Application of Mg-air batteries

Portable application

Light emitting diode, portable mini light, supporting mobile phone charging (5 V USB port)

Commercial Mg-air batteries

Lightweight, infinite shelf life at dry package and easy to handle

Emergency back-up power

Mg metal can be replaced by new Mg plate when the Mg anode is exhausted

Discharge-charge cycle for Li-air aprotic cell

Irreversible charge/discharge (different products or kinetics during both steps)

Reduction of O2 @ discharge: Other reduction processes:

$$O_2 + e^- \rightarrow O_2^-$$

$$\text{LiO}_2 + \text{Li}^+ + e^- \rightarrow \text{Li}_2\text{O}_2$$

$$O_2^- + Li^+ \rightarrow LiO_2$$

$$\text{Li}_2\text{O}_2 + \text{Li}^+ + \text{e}^- \Rightarrow 2\text{Li}_2\text{O}$$

 $2\text{LiO}_2 \rightarrow \text{Li}_2\text{O}_2 + \text{O}_2$

Oxidation process:

$$\text{Li}_2\text{O}_2 \Rightarrow 2\text{Li}^+ + 2\text{e}^- + \text{O}_2$$

Reduction processes ≠ Oxidation processes thus occuring @ different potentials

 $\eta_{chg} >> \eta_{dis} \Rightarrow$ energy efficiency 65 % Problem with electrolyte and carbon oxidation, thus developement of electrochemical stability of electrolyte and cathode

Cell components:

- Li metal foil
- porous cathode (high surface area Super P conductive carbon black - TIMCAL Graphite & Carbon) + carbon particles mixed with R-MnO2 nanorods as a catalyst,
- electrolyte 1 M LiN(SO₂CF₃)₂ [LiTFSI] in propylene carbonate

General problems in Me-Air betteries

Corrosion - Parasitic corrosion reaction (self-discharge) degrades the coulombic efficiency of the anode and must be controlled to minimize this loss of capacity.

$$M + nH_2O \rightarrow M(OH)_n + n/2H_2$$

Polarization - voltage decrease with current increase — problems with diffusion and other limitations in the oxygen or air cathode (⇒ low- to moderate-power applications than to high power ones)

Electrolyte Carbonation – absorption of carbon dioxide (\Rightarrow crystallization of carbonate in the porous air electrode \Rightarrow impeding air access and mechanical damage and a decreasing electrode performance).

Water Transpiration - water loss \Rightarrow increase of the concentration of the electrolyte \Rightarrow drying out and premature failure; Gain of water \Rightarrow dilution of the electrolyte.

Charging - oxidation of catalysts and electrode supports, so application of oxidation-resistant substrates and catalysts or a third electrode for charging

An experimental lithium-air battery developed at MIT has inlet and outlet on the sides to provide a flow of air, providing oxygen for the battery's operation

