Correction

d'après Ecole de l'Air 2002

Partie I

- 1.a C a pour équation cartésienne : $x^2 + y^2 + 2ax = 0$.
- 1.b $H(t)\begin{vmatrix} x \\ y \end{vmatrix}$ avec x = 2a et y = tx donc $H(t)\begin{vmatrix} 2a \\ 2ta \end{vmatrix}$,

$$M(t)\begin{vmatrix} x \\ y \end{vmatrix}$$
 avec $x^2 + y^2 + 2ax = 0$ et $y = tx$ donc $M(t)\begin{vmatrix} -\frac{2a}{1+t^2} \\ -\frac{2at}{1+t^2} \end{vmatrix}$ sachant $M(t) \neq 0$,

- I(t) est le milieu du segment $\left[H(t)M(t)\right]$ donc $I(t)\dfrac{\dfrac{at^2}{1+t^2}}{\dfrac{at^3}{1+t^2}}.$
- 2.a x(-t) = x(t) et y(-t) = -y(t) donc I(-t) et I(t) sont symétriques par rapport à (Ox).

$$x'(t) = \frac{2at}{(1+t^2)^2}$$
 et $y'(t) = a\frac{t^2(3+t^2)}{(1+t^2)^2}$

t	0		$+\infty$
$\overline{x'(t)}$	0	+	
x(t)	0	7	a
y'(t)	0	+	
y(t)	0	7	$+\infty$
m(t)	?	+	

2.b Le point de paramètre I(0) = O est singulier.

$$\begin{cases} x''(t) = 2a \frac{1 - 3t^2}{(1 + t^2)^3} \\ y''(t) = 2a \frac{t(3 - t^2)}{(1 + t^2)^3} \end{cases} \text{ donc } \begin{cases} x''(0) = 2a \\ y''(0) = 0 \end{cases}$$

L'axe (Ox) est tangent à la courbe au point I(0) = O.

En vertu de la symétrie par rapport à (Ox) on peut assurer

qu'il s'agit d'un point de rebroussement à tangente horizontale.

2.c Pour $t_0 = 0$, la tangente en $J(t_0) = 0$ est horizontale et l'équation proposée est convenable.

Pour $t_0 \neq 0$, la tangente en $J(t_0)$ est dirigée par le vecteur vitesse.

Le reste est du calcul avec à un moment une simplification par $\,at_0\,$ d'où la nécessité de traiter le cas $t_0=0\,$ à part.

2.d

3.

 $\rightarrow\!$ donc la droite d'équation x=a est asymptote à Γ en $+\infty$, courbe à gauche.

4.
$$x(t) = \frac{at^2}{1+t^2}, y(t) = tx(t) \text{ donc } x(t) = \frac{a\left(\frac{y(t)}{x(t)}\right)^2}{1+\left(\frac{y(t)}{x(t)}\right)^2} = \frac{a\left(y(t)\right)^2}{\left(x(t)\right)^2+\left(y(t)\right)^2}.$$

Soit $\tilde{\Gamma}$ la courbe d'équation cartésienne : $x(x^2 + y^2) = ay^2$.

Par l'étude ci-dessus : $\Gamma \subset \tilde{\Gamma}$.

Inversement, soit $M(x,y) \in \tilde{\Gamma}$.

Si x = 0 alors y = 0 (en vertu de l'équation) et donc M = O = J(0).

Si $x \neq 0$ alors posons $t = \frac{y}{x}$. La relation $x = \frac{ay^2}{x^2 + y^2}$ donne x = x(t) et y = tx donne y = y(t). Par suite M = J(t).

Dans les deux cas : $M \in \Gamma$. Ainsi $\tilde{\Gamma} \subset \Gamma$ puis $\Gamma = \tilde{\Gamma}$.

Finalement $x(x^2 + y^2) = ay^2$ est une équation cartésienne de Γ .

Partie II

Soit M de coordonnées polaires (ρ, θ) . 1.a

 $M \in \mathcal{D} \Leftrightarrow \rho \cos \theta = 2a$ donc D a pour équation polaire $\rho = \frac{2a}{\cos \theta}$

$$M \in C \Leftrightarrow \Omega M^2 = (2a)^2$$
. Or $\Omega M^2 = \Omega O^2 - 2(\overrightarrow{OO} \mid \overrightarrow{OM}) + OM^2 = (2a)^2 + 4a\rho\cos\theta + \rho^2$.

donc $M \in C \Leftrightarrow \rho^2 + 4a\rho\cos\theta = 0 \Leftrightarrow \rho + 4a\cos\theta = 0$ ou $\rho = 0$

Soit C' la courbe d'équation polaire : $\rho + 4a\cos\theta = 0$.

Par l'équivalence ci-dessus : $C = C' \cup \{O\}$.

Or $O \in C'$ puisque pour $\theta = \frac{\pi}{2}$, $\rho = -4a\cos\theta = 0$ donc C = C'.

Finalement C a pour équation polaire : $\rho + 4a\cos\theta = 0$. On peut aussi exploiter une formule du cours.

 $H(\theta) \in D$ donc $H(\theta)$ a pour coordonnées polaires : $\frac{2a}{\cos \theta}$, θ , pour $\theta \neq \frac{\pi}{2}$ $[\pi]$. 1.b

 $M(\theta) \in C$ donc $M(\theta)$ a pour coordonnées polaires : $-4a\cos\theta, \theta$, pour $\theta \neq \frac{\pi}{2}$ $[\pi]$ ou non.

 $I(\theta)$ étant le milieu de $[M(\theta), H(\theta)]$, ce point a pour coordonnées polaires ρ, θ avec

$$\rho = \frac{1}{2} \left(\frac{2a}{\cos \theta} - 4a \cos \theta \right) = \frac{a(1 - 2\cos^2 \theta)}{\cos \theta} = -a \frac{\cos 2\theta}{\cos \theta}.$$

2.a $r(\theta + 2\pi) = r(\theta)$ donc $I(\theta + 2\pi) = I(\theta)$.

$$r(\theta + \pi) = -r(\theta)$$
 donc $I(\theta + \pi) = I(\theta)$.

 $r(-\theta) = r(\theta)$ donc $I(-\theta)$ est le symétrique de $I(\theta)$ par rapport à l'axe (Ox).

Il suffit d'étudier la courbe sur $[0, \pi/2]$ pour, en complétant par la symétrie précédente, obtenir l'intégralité de courbe étudiée.

 $r \text{ est } \mathcal{C}^{\infty} \text{ et } r'(\theta) = -a \frac{-2\sin 2\theta \cos \theta + \cos 2\theta \sin \theta}{\cos^2 \theta} = a \frac{\sin \theta (2\cos^2 \theta + 1)}{\cos^2 \theta} \ge 0.$ $\frac{\theta \quad 0 \quad \pi/4 \quad \pi/2}{r(\theta) \quad -a \quad \nearrow \quad 0 \quad \nearrow \quad +\infty} \text{ donc } \frac{\theta \quad \pi/4}{r(\theta) \quad -0 \quad +}.$

$$\frac{\theta \mid 0 \qquad \pi/4 \qquad \pi/2}{r(\theta) \mid -a \mid \nearrow \qquad 0 \qquad \nearrow \qquad +\infty} \mid \operatorname{donc} \frac{\theta \mid \qquad \pi/4}{r(\theta) \mid -\qquad 0 \qquad +}.$$

2.c Quand
$$\theta \to \frac{\pi}{2}$$
, on a $r(\theta) \to +\infty$ donc la courbe présente une branche

infinie de direction
$$\theta=\pi/2$$
 i.e. $x=0$.

$$x(\theta) = r(\theta)\cos\theta = -a\cos 2\theta \xrightarrow{\theta \to \pi/2} a^{-}$$
.

La droite d'équation x=a est asymptote à la courbe quand $\theta \to \pi/2$, courbe à gauche.

3. Courbe est ci-contre:

4. On a
$$r(\theta)\cos\theta + a\cos 2\theta = 0$$
 donc $r^3(\theta)\cos\theta + ar^2(\theta)(\cos^2\theta - \sin^2\theta) = 0$ donc en posant $x = r(\theta)\cos\theta$ et $y = r(\theta)\sin\theta$ on a $(x^2 + y^2)x + a(x^2 - y^2) = 0$.

Soit
$$\tilde{\Gamma}'$$
 la courbe d'équation cartésienne $(x^2 + y^2)x + a(x^2 - y^2) = 0$.

Par ce qui précède, on a
$$\Gamma' \subset \tilde{\Gamma}'$$
.

Inversement, soit
$$M(x,y) \in \tilde{\Gamma}'$$
.

Il existe
$$(r,\theta) \in \mathbb{R}^2$$
 tel que $x = r\cos\theta$ et $y = r\sin\theta$.

L'équation
$$(x^2+y^2)x+a(x^2-y^2)=0$$
 donner alors $r^3\cos\theta+ar^2\cos2\theta=0$ d'où $r=0$ ou $a\cos2\theta$

Si
$$r = 0$$
 alors $M = O = I(\pi/4) \in \Gamma'$.

Si
$$r = -\frac{a\cos 2\theta}{\cos \theta}$$
 alors $M = I(\theta) \in \Gamma'$.

Dans les deux cas :
$$M \in \Gamma'$$
 . Ainsi $\tilde{\Gamma}' \subset \Gamma'$ puis $\Gamma' = \tilde{\Gamma}'$.

Finalement
$$(x^2 + y^2)x + a(x^2 - y^2) = 0$$
 est une équation cartésienne de Γ .