We used the train-test split function from the model selection module implemented in the scikit-learn library to randomly split the dataset into train and test sets. We separate 20% of the data as the test set and the rest as for training a 5-fold cross validation. We conducted the following experiments:

Table 1. Cardiovascular disease classification using the conclusion section from discharge letters

	E11	E78	I10	I21	I25	I42	I48	I50	N18	Z95
Sensitivity	0.8783434	0.7739362	0.6993197	0.9670543	0.8131737	0.9165154	0.8400984	0.8817087	0.9378723	0.7639821
Specificity	0.8055556	0.5970149	0.6804348	0.8650307	0.7333333	0.8494624	0.9005236	0.8475177	0.6000000	0.6378738
Pos Pred Value	0.9931707	0.9700000	0.7776097	0.9784314	0.8761290	0.9863281	0.9472954	0.9492925	0.9927928	0.8623737
Neg Pred Value	0.1705882	0.1355932	0.5861423	0.8057143	0.6285714	0.4619883	0.7257384	0.6887608	0.1411765	0.4764268
F1	0.9322344	0.8609467	0.7363897	0.9727096	0.8434783	0.9501411	0.8904824	0.9142533	0.9645514	0.8102017

Table 2. Cardiovascular disease classification using complete discharge letters

	E11	E78	I10	I21	I25	I42	I48	I50	N18	Z95
Sensitivity	0.9449193	0.7771883	0.7965616	0.9689018	0.8612500	0.9565217	0.8750000	0.9100346	0.9581882	0.8292398
Specificity	0.7887324	0.6718750	0.7887324	0.8614458	0.7822785	0.9124088	0.8997613	0.8201220	0.7872340	0.7558824
Pos Pred Value	0.9707317	0.9766667	0.8411498	0.9774510	0.8890323	0.9882812	0.9417476	0.9304245	0.9909910	0.8952020
Neg Pred Value	0.6588235	0.1457627	0.7340824	0.8171429	0.7357143	0.7309942	0.7953586	0.7752161	0.4352941	0.6377171
F1	0.9576516	0.8655835	0.8182487	0.9731576	0.8749206	0.9721422	0.9071476	0.9201166	0.9743136	0.8609593

Table 3. Cardiovascular disease classification using discharge letters and variables age and sex

	E11	E78	I10	I21	125	I42	I48	150	N18	Z95
Sensitivity	0.9485224	0.7787611	0.7964861	0.9707887	0.8629442	0.9573460	0.8711340	0.9095128	0.9573542	0.8352941
Specificity	0.7945205	0.6923077	0.7714844	0.8630952	0.7665848	0.9000000	0.8926014	0.8078078	0.7826087	0.7623188
Pos Pred Value	0.9707317	0.9777778	0.8229955	0.9774510	0.8774194	0.9863281	0.9375867	0.9245283	0.9909910	0.8964646
Neg Pred Value	0.6823529	0.1525424	0.7397004	0.8285714	0.7428571	0.7368421	0.7890295	0.7752161	0.4235294	0.6526055
F1	0.9594986	0.8669951	0.8095238	0.9741085	0.8701216	0.9716210	0.9031396	0.9169591	0.9738822	0.8647990

Table 4. Multi-label cardiovascular disease classification

	Sensitivity	Specificity	Pos Pred Value	Neg Pred Value	F1	True cardinality	Prediction cardinality
Multi-label case	0.8798827	0.9813590	0.9274347	0.9551151	0.8893025	2.57	2.39

