COMP20007 Design of Algorithms: Week 3

- Designing an intersection
- Graph representation
- An algorithm
- DFS
- complexity

Review

- Minimal spanning tree problem
- Representing the problem using known ADTs
 - adjacency list, adjacency matrix
- Algorithm for identifying the minimal set of connections
 - Two algorithms, led to ideas of cyclicity and connectedness
- Required operations
 - add_node: Graph × int → Graph
 - o add_edge: Graph × int × int → Graph
 - o Is_cyclic: Graph → Bool
- Formal definition
 - \circ G = (V, E), V=vertex set, E=edge set

Topological sort

- Motivation
- Directed graphs
 - Sources and sinks
- Directed acyclic graphs (DAGs)
- Source removal algorithm
- Complexity?
- Critical path algorithm

This week's labs and tutes

Implementation and analysis of median finding (k-smallest element of a list)

Value of kth-smallest item is d

Choose a pivot p and split into L and R. Look at the size of L:

 \geq k, then d is in L

= k - 1, then p is d

< k - 1, d in R:

k - (|L| + 1)th-smallest in R

Either way, same problem, but smaller input.

Next steps...

- Student rep(s)
- Read: <u>DPV 3.1, 3.2</u>
- Assignment 1 posted last Tuesday
- Week 2 tutorial solutions available
- News: <u>AlphaGo</u>

