Geospatial Data Science Content Block II: *Techniques*Lab 6 Generate & Analyze Spatial RVs

Austin J. Brockmeier, Ph.D.

Wednesday, March 15th, 2023

Probability and Spatial Statistics for Geospatial Systems and Data

- 1. Statistical analysis
- 2. Generate data from random variables and processes through **computer simulation** (Lab 6&7)
- 3. Analyze spatial patterns in data

Outline

- Generating random numbers
- Counting: binning/histograms
- Basic statistics
- Bayes rule: joint and conditional
- Spatial correlation

Binary data: Flip a fair coin, create a **Bernoulli** random variable *X*

$$X(\omega) = \begin{cases} +1, \omega = \text{Heads} \\ 0, \omega = \text{Tails} \end{cases}$$

$$P_X(1) = \Pr(X = 1) = p$$

 $P_X(0) = \Pr(X = 0) = 1 - p$

 $X \in \{0,1\}$

Count data:

Flip a fair coin *N* times, count of heads is **binomial** random variable *S* with probability mass function

$$P_S(n) = \binom{n}{N} p^N (1-p)^{n-N}$$

$$S \in \{0,1,...,N\}$$

Analysis Questions

What is the proportion of heads if we observe 10, 100, or 1000 coin flips? What is mean value?

What are the confidence intervals for the proportion of heads?

Random number generation

Pseudo random number generators (deterministic if seed is known): https://en.wikipedia.org/wiki/Pseudorandom_number_generator
Generating normal RVs from uniform: https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

```
import numpy as np
import scipy.stats as st

rng = np.random.default_rng(seed=0)
```


scipy.stats.bernoulli

1000 flips with 519 heads (0.519%)

numpy.random.Generator.binomial

Counting in NumPy

numpy.sum numpy.newaxis

```
p = 0.25
n_trials = 4
X = rng.binomial(1, p, n_trials)
L=X[:,np.newaxis] == [0,1]
counts = np.sum(L,axis=0)
```


matplotlib.stem

```
Count (total=100)
  = 0.25
                                               20
n trials = 100
                                               10
X = rng.binomial(1, p, n trials)
                                                 0.0
                                                      0.2
                                                           0.4
                                                                0.6
                                                                     0.8
                                                                          1.0
print(X)
plt.figure()
plt.stem([0,1],np.sum(X[:,np.newaxis]==[0,1],axis=0))
plt.ylabel("Count (total={})".format(n trials))
plt.xlabel(r'$x$')
plt.grid(axis='y')
plt.title('Histogram {}{}'.format(r"$p=$",p))
```

60

50

Coin data p = 0.25

numpy.histogram or matplotlib.hist

Not clear what values X takes.... 0.1? 0.9

matplotlib.hist


```
plt.figure()
plt.hist(X,bins=[-0.01,0.01,0.99,1.01])
plt.xlabel(r'$x$')
plt.grid(axis='y')
plt.title('Histogram {}{}'.format(r"$p=$",p))
```


Notes: bins

All but the last (righthand-most) bin is half-open. In other words, if *bins* is:

[1, 2, 3, 4]

then the first bin is **[1, 2)** (including 1, but excluding 2) and the second **[2, 3)**. The last bin, however, is **[3, 4]**, which *includes* 4.

numpy.histogram or matplotlib.hist

```
p, N = 0.5,20
S = rng.binomial(N, p, n_trials)
n_vals = np.linspace(0,N,N+1)

plt.figure()
plt.hist(S, bins=n_vals)
plt.ylabel("Count
(total={})".format(n_trials))
plt.xlabel(r'$n$')
plt.xlabel(r'$n$')
plt.grid(axis='y')
plt.title('Histogram {}{}'.
format(r"$p=$",p,r"$N=$",N))
```


plt.show()

scipy.stats.binom

```
plt.figure()
n_vals = np.arange(0,N)
p_S = st.binom.pmf(n_vals, N, p)
ax = plt.stem(n_vals,p_S)
plt.xlabel(r'$n$')
plt.ylabel(r"$p_S(n)$")
plt.grid(axis='y')
plt.title('{}}{}{}'.
format(r"$p=$",p,r"$N=$",N))
```


numpy.convolve

S 0.4 The probability mass function (pmf) of the sum of two random variables is equal to the convolution of their pmfs 0.2

```
def binomial pmf(p,N):
  pmf = np.array((1-p,p))
  pmf binomial = pmf
  for i in range (N-1):
    pmf = np.convolve(pmf,pmf binomial)
  return np.linspace(0,N,N+1), pmf
N, p = 2, 0.25
plt.figure(figsize=(3,3))
n \text{ vals,p } N = binomial pmf(p,N)
ax = plt.stem(n vals,p N)
plt.xlabel(r'$n$')
plt.ylabel(r"$p S(n)$")
plt.grid(axis='y')
plt.title('{}{} {} {} '.format(r"$p=$",p,r"$N=$",N))
```


PMF: p = 0.25 N = 1

0.6


```
N, n trials = 1000, 2000
S = rng.binomial(N, p, n trials)
plt.plot(S,linestyle='None',marker='x',color='k',
             label="N={}}, p={}".format(N,p)
plt.ylabel('Number of heads on trial')
plt.xlabel('trial index')
                                                    N=1000, p=0.5
plt.legend()
                                              540
                                            Number of heads on trial
                                              520
                                              500
                                              460
                                                                        1500
                                                     250
                                                         500
                                                                    1250
                                                                           1750
                                                                                2000
                                                                1000
                                                               trial index
```

The state of the s

numpy.quantile

```
quantiles95 =np.array((0.025,0.975))
conf_interval = np.quantile(S/N,quantiles95)
print("95% confidence interval on prob of heads is
{}".format(conf_interval))
plt.plot(S/N,linestyle='None',marker='x',color='k')
plt.plot([-1,n_trials],conf_interval[0]*np.ones(2),color='r',linewidth=4)
plt.plot([-1,n_trials],conf_interval[1]*np.ones(2),color='m',linewidth=4)
plt.xlabel('trial index')
plt.ylabel('Number of heads on trial')
```

95% confidence interval on prob of heads is [0.469 0.529025]

The shape of the violin is a density estimate!

0.54 - 0.52 - 0.50 - 0.48 - 0.46 - 0.44 - 0.

1.0

0.9

1.2

1.1

matplotlib.pyplot.violinplot

0.8

matplotlib.pyplot.violinplot

```
Binomial data across 2000 trials
    0.8
    0.7
    0.6
ê using 1000 flips
    0.5
    0.4
    0.3
    0.2
    0.1
                   0.0
                               0.2
                                           0.4
                                                       0.6
                                                                   0.8
                                                                               1.0
```


Estimators: bias, variance, mean squared error

• Expected bias of a parameter estimate: $\mathbb{E} \big[\widehat{\theta(X)} \big] - \theta^*$

Variance of a parameter estimate:

$$\mathbb{E}\left[\left(\widehat{\theta(X)} - \mathbb{E}[\widehat{\theta(X)}]\right)^2\right]$$

RMSE of a parameter estimate:

$$\sqrt{\mathbb{E}\left[\left(\widehat{\theta(X)} - \theta^*\right)^2\right]}$$

Consider an unfair/loaded coin. The goal is to estimate the proportion of tails.

Estimator Silly: Use first flip to estimate probability of tail.

Estimator ML: Observed proportion, this maximizes the likelihood (ML) of the data.

• **Estimator Prior:** Weighted average of the observed proportion (weight = *N*) and 0.5 (weight = 100).

Estimator Ignorant: Say the probability of a tail is 0.5 no matter what.

Estimators: bias, variance, mean squared error

Expected bias of a parameter estimate:

$$\mathbb{E}[\widehat{\theta(X)}] - \theta^*$$

Variance of a parameter estimate:

$$\mathbb{E}\left[\left(\widehat{\theta(X)} - \mathbb{E}[\widehat{\theta(X)}]\right)^2\right]$$

RMSE of a parameter estimate:

$$\sqrt{\mathbb{E}\left[\left(\widehat{\theta(X)} - \theta^*\right)^2\right]}$$

Estimators: bias, variance, mean squared error

 With only 2 observations ML no longer wins in terms of RMSE.

numpy.sum, numpy.ones, numpy.vstack

```
X = bernoulli.rvs(p, size=(n flips,n trials))
good p = np.sum(X==0,axis=0)/n flips
silly p = X[0,:] == 0
ignorant p = 0.5*np.ones(n trials)
prior weight = 100
prior value =0.5
prior p = (n flips*np.sum(X==0,axis=0)/n flips
            + prior weight*prior value) / (n flips+prior weight)
names = ['1st flip', "Max. Likelihood",
           "with prior of 0.5", 'constant']
estimates = np.vstack([silly p,good p,prior p,ignorant p])
```


numpy.mean, numpy.var, numpy.std

```
markers = ['v', 'x', 's', 'd', '+']
plt.figure()
for i, estimate name in enumerate (names):
  bias = np.mean(estimates[i]) - (1-p)
  h = plt.plot(bias, np.var(estimates[i]), marker=markers[i],
                     linestyle='None', label=estimate name)
                                                                  20 trials
                                                      0.25
                                                                         1st flip
plt.xlabel('Bias')
                                                                          Max. Likelihood
                                                      0.20
                                                                          with prior of 0.5
plt.ylabel('Variance')
                                                                          constant
plt.title('{} trials'.format(n trials))
                                                     0.10 Variance
plt.legend(loc='best')
                                                      0.05
```

-0.15

Maximum likelihood estimation

scipy.stats.binom.pmf

```
def bernoulli likelihood(ps, X):
                                                                                29 tails out of 100 from p=0.25
                                                          0.08
    like = []
    for p in ps:
                                                          0.06
         like.append(st.binom.pmf(np.sum(X),len(X)
    return like
                                                          0.04
                                                          0.02
ps = np.linspace(0, 1, 1000)
                                                          0.00
N_{r} p = 100, 0.25
                                                                     0.2
                                                                           0.4
                                                                                  0.6
                                                                                         0.8
                                                              0.0
                                                                                               1.0
X = st.bernoulli.rvs(p, size=N)
plt.plot(ps,bernoulli likelihood(ps,X), l
       label = '{} tails out of {} from p={}'.format(np.sum(X),N,p))
plt.xlabel(r'$\hat{p}$')
plt.ylabel('Likelihood')
plt.legend()
```


Maximum likelihood estimation

scipy.stats.binom.pmf

Fair dice data

Roll two dices and observe the numbers on top.

Attributes

(die 1, die 2) $\in \{1, ..., 6\}^2$

Analysis Questions

What is the distribution of the first die after 100 rolls?

What is the distribution of the sum of the two die?

How likely is the event $A=\{(5,1)\}$?

How likely is the event $B=\{(3,3),(4,3),(4,4),(4,5),(5,4)\}$?

Modified dice data

Roll one die and observe the number on top, reroll the second die until it is equal or greater than the first.

Attributes

(die 1, die 2) $\in \{1, ..., 6\}^2$

Analysis Questions

What is the distribution of the first die after 100 rolls?

What is the distribution of the sum of the two die?

How likely is the event $A=\{(5,1)\}$?

How likely is the event $B=\{(3,3),(4,3),(4,4),(4,5),(5,4)\}$?

Fair dice data

Modified dice data

X is the sum of numbers rolled on 2 dice

