ECE216: Digital Electronics Laboratory

Table of Content

Task	Title	Page No.
Experiment 1	Understanding the combinational logic by implementing the	1
	boolean function using basic logic gates	
Experiment 2	To design and analyze the circuit for Full adder and Full	6
	subtractor using Logic Gates.	
Practical work	Practical work evaluation based on Experiment 1 and	9
evaluation 1	Experiment 2.	
Experiment 3	Understanding the combinational logic by implementing the	12
	boolean function using multiplexer	
Experiment 4	Understanding the combinational logic by implementing the	16
	boolean function using decoder	
Practical work	Practical work evaluation based on Experiment 3 and	20
evaluation 2	Experiment 4.	
Project evaluation 1	Design and Implementation of application-based projects-1	23

Experiment 5	Understanding the sequential logic by implementing the flip flop with the help of logic gates	26
Experiment 6	Understanding the sequential logic by implementing the counter with flip flop.	28
Practical work	Practical work evaluation based on Experiment 5 and	31
evaluation 3	Experiment 6.	
Experiment 7	To visualize the output of decade counter on seven segment	34
	display	
Experiment 8	To implement and simulate combinational and sequential	37
	circuit using DSCH/Proteus.	
Practical work	Practical work evaluation based on Experiment 7 and	41
evaluation 4	Experiment 8.	
Project evaluation 2	Design and Implementation of application-based projects-2	44

Experiment 2

Aim: To design a circuit for Full adder and full subtractor using X-OR and basic gates

- 1. Apparatus Required: IC 7486, IC 7432, IC 7408, IC 7400, IC 7404 etc.

 2. Learning objective: X°R OR AND NAME NOT
 - a) How to realize the functionality full adder.
- 3. Theory:
- 1) Using X OR and Basic Gates to implement full Adder:

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder adds three one-bit numbers, often written as A, B, and Cin; A and B are the operands, and Cin is a bit carried in from the next less significant stage. The full-adder is usually a component in a cascade of adders, which add 8, 16, 32, etc. binary numbers. The circuit produces a two-bit output sum typically represented by the signals Count and S.

In this implementation, the final OR gate before the carry-out output may be replaced by an XOR gate without altering the resulting logic. Using only two types of gates is convenient if the circuit

It can add 2,1-sit binney number Half Adder

VCC Outputs

It can add 2, 1-bit Bing nows, Consider Previor Carry (A+B+Gin) Full Adder Cour ABCint ABCint ABCint ABCin ABCin SCONT = (AB+AB) Cint AB(Citch S= ABCin+ ABCint ABCin = (AB+AB) Cin+ (AB+AB) Cin (ABB) Cin + ABB Cin = (ABBBC)

Draw Bread Board Connection diagram:

Half Subtractor

$$\mathcal{D} = \overline{AB} + A\overline{B} = A\overline{B}B$$

9f com Subtur 2, 1-bit bing nun be A-B

VCC Outputs

Full Subtractor

Draw Bread Board Connection diagram:

for full Sustructu

MW)

VCC Outputs

000000

00000

00000

GND

Inputs

1 st 2 — 8th feb 2021

- MCQ / The short onown question 10 Marks

- With up / BA dim

- Simulation

Where