K-Means Clustering

Shah Md. Arshad Rahman Ziban

What is K-Means Clustering?

Imagine you have a big box of different-colored marbles, and you want to group them based on their colors. Instead of sorting them by hand, you use an algorithm to do it for you. K-Means is an algorithm that finds groups (**clusters**) in a dataset based on similarity.

How It Works (Step by Step)

1. Choose the Number of Clusters K

First, decide how many clusters you want. Let's say you choose K=3 because you think your marbles can be divided into 3 groups.

2. Select K Initial Centroids Randomly

Randomly select K points from the dataset as the initial centroids (leaders of the clusters).

3. Assign Each Data Point to the Nearest Centroid

For each point in the dataset, compute the distance to all centroids and assign it to the nearest one. This forms K groups.

4. Update the Centroids

Compute the mean (average) position of all points in each cluster. This new mean becomes the new centroid.

5. Repeat Until Convergence

Steps 3 and 4 are repeated until centroids no longer change significantly, meaning the clusters are stable.

Mathematical Representation

1. Compute the Euclidean distance between each point x_i and each centroid c_k :

$$d(x_i, c_k) = \sqrt{\sum_{j=1}^{n} (x_{ij} - c_{kj})^2}$$

2. Assign each point x_i to the cluster with the nearest centroid:

$$C_k = \{x_i \mid d(x_i, c_k) \le d(x_i, c_j) \text{ for all } j \ne k\}$$

3. Update each centroid to the mean of its assigned points:

$$c_k = \frac{1}{|C_k|} \sum_{x_i \in C_k} x_i$$

4. Repeat the process until centroids no longer change significantly.

Applications of K-Means

- Customer Segmentation in marketing (grouping customers with similar purchasing behavior)
- Document Clustering (grouping articles by topics)
- Image Compression (reducing colors in an image by clustering similar colors)