Spring Break Deliverable Plan: Functional Prototype

MVP

Our minimal viable product for the Spring break deadline will have the following characteristics and functionality:

- Detection of a stiffness difference between two media with stiffnesses representative of the sphincter and the prostate
- · Balloon inflation mechanism is consistent and can attain stiffness readings
- Manual screw mechanism integrated with the balloon component and calibrated to attain the required imaging resolution
- Micro-controller software developed to be able to work through the full sequence of events (inflation, location detection/refinement, surgical tool positioning)
- Position of external sensor (for attachment onto the surgical tool) can be detected relative to the boundary that has been located

Tasks for after Spring Break (End of April Deadline)

Taking into account the initial vision and conception of the project scope, this is a list of features that will be implemented after Spring break for the final submission:

- Automation of the mechanical refinement process
- Improvement of the user input and display system to provide an intuitive user experience
- Adding additional sensors to increase ease of attaining an initial estimate of where the boundary is
- Optimize and reduce physical size of device (e.g. replacing Arduinos)

Schedule

Week	Stiffness	Boundary Location	Surgical Tool Detection	UI and General	Testing Model
2	Sensor choice	Develop design and related specifications for the working mechanism	Test EM mechanism as a proof-of-concept	Draft and discuss IO requirements	
3	Sensor characterization on balloons	Mechanical and electrical design/ schematic	Configure two sensors along a line: electrical and software (Arduino) Test different EM sources	Mechanical design of what all the parts will look like together	Cardboard tube
4	Sensor and balloon optimization	Prototype screw mechanism	Optimize the sensors and source with a chunk of meat Create indicator to show position of the tool relative to boundary	Create CAD drawing and begin mechanical prototyping	Gelatin model with one stiffness
5	Continue sensor characterization; design of mechanical part	Prototype screw mechanism	Add third sensor for detection in 3D space; test out five configurations		Gelatin model with two stiffness
6	Construct balloon inflation mechanism	Circuit design and building	Test out five configurations (carried on from previous week)	Ensure mechanical design of all parts can be integrated	
7		Circuit design and building			
8	Integration				Test with device
9	Demo				