CPE301 – SPRING 2020

Design Assignment 3B

Student Name: Minsung Cho Student #: 2001446442

Student Email: chom3@unlv.nevada.edu

Primary Github address: https://github.com/cho-minsung/assignment3B

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

DHT11

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
#define F_CPU 16000000UL
#define BAUD_RATE 9600
#include <avr/io.h>
#include <util/delay.h>
void usart_init ();
void usart_send(unsigned char ch);
int main(void)
{
      usart_init();
       ADMUX = (0<<REFS1) | //Reference Selection Bits
                     (1<<REFS0) | //AVcc - external cap at AREF
                     (0<<ADKAR) | //ADC Left Adjust Result
                     (1<<MUX2) | //Analog channel selection bits
                     (0<<MUX1) | //ADC4 (PC4 PIN27)
                     (0<<MUX0);
      ADCSRA = (1<<ADEN) | //ADC Enable
                     (0<<ADSC) | //ADC Start conversion
                     (0<<ADATE) | //ADC auto trigger enable
                     (0<<ADIF) | //ADC interrupt flag
                     (0<<ADIE) | //ADC interrupt enable
                     (1<<ADPS2) | //ADC prescaler select bit
                     (0<<ADPS1)|
                     (1<<ADPS0);
    while (1)
              ADCSRA |= (1<<ADSC); //START CONVERSION
              while ((ADCSRA & (1<<ADIF))==0); //wait for conversion to finish
              ADCSRA |= (1<<ADIF);
              int a = ADCL;
```

```
a = a \mid (ADCH << 8);
               a = (a/1024.0)*5000/10;
               usart send((a/100)+'0');
               a = a \% 100;
               usart_send((a)+'0');
               a = a \% 10;
               usart send((a)+'0');
               usart send('\r');
               _delay_ms(100);
    }
       return 0;
void usart_init(void)
       UCSROB = (1 < \langle TXENO \rangle;
       UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);
       UBRRØL = F CPU/16/BAUD RATE-1;
void usart_send(unsigned char ch)
       while (!(UCSR0A & (1<<UDRE0)));</pre>
       UDR0 = ch;
```

the code from the tutorial video

DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

```
#define F CPU 16000000UL
#define BAUD RATE 9600
#include <avr/io.h>
#include <avr/interrupt.h>
void usart_init ();
void usart_send(unsigned char ch);
void usart string(char *data);
int main(void)
   usart_init();
   TCCR0A = 0x00; //normal mode set
   TCCR0B = 0x05; //prescaler of 1024
   TIMSK0 = (1<<TOIE0); //timer 0 interrupt enable</pre>
   ADMUX = (0<<REFS1) | //Reference Selection Bits
                 (1<<REFS0) | //AVcc - external cap at AREF
                  (0<<ADLAR) | //ADC Left Adjust Result
                 (1<<MUX2) | //Analog channel selection bits
                  (0<<MUX1) | //ADC4 (PC4 PIN27)
                  (0<<MUX0);
   ADCSRA = (1<<ADEN) | //ADC Enable
                  (0<<ADSC) | //ADC Start conversion
                  (0<<ADATE) | //ADC auto trigger enable
                  (0<<ADIF) | //ADC interrupt flag
                  (0<<ADIE) //ADC interrupt enable
```

```
(1<<ADPS2) | //ADC prescaler select bit
                  (0<<ADPS1)
                  (1<<ADPS0);
   usart_init();
   sei();
   while (1);
   return 0;
ISR(TIMER0 OVF vect) {
   //60 is roughly 1 second, 30 will be roughly 0.5s.
   for (int i = 0; i <= 30; i++) {
          while (TCNT0 != 255) {}
          TCNT0 = 0;
   adc_read();
   TCNT0 = 0;
void adc_read(void)
   ADCSRA |= (1<<ADSC); //START CONVERSION
   while ((ADCSRA & (1<<ADIF))==0); //wait for conversion to finish
   ADCSRA |= (1<<ADIF);
   //Celcius read
   int a = ADCL;
   a = a \mid (ADCH << 8);
   usart_string("Centigrade: ");
   usart_send((a/100)+'0');
   a = a \% 100;
   usart_send((a/10)+'0');
   a = a \% 10;
   usart_send((a)+'0');
   usart_send('\r');
   //Farenheit read
   a = ADCL;
   a = a \mid (ADCH << 8);
   a = (a/1024.0)*5000/10;
   usart_string("Farenheit: ");
   usart send((a/100)+'0');
   a = a \% 100;
   usart_send((a/10)+'0');
   a = a \% 10;
   usart send((a)+'0');
   usart send('\r');
void usart_init(void)
   UCSROB = (1<<TXENO); //enable interrupts</pre>
   UCSROC = (1 < UCSZO1) | (1 < UCSZOO);
   UBRRØL = F CPU/16/BAUD RATE-1;
```

```
void usart_send(unsigned char ch)
{
    while (!(UCSR0A & (1<<UDRE0)));
    UDR0 = ch;
}

void usart_string(char *data) {
    while((*data != '\0')) {
        while(!(UCSR0A & (1<<UDRE0)));
        UDR0 = *data;
        data++;
    }
}</pre>
```

4. SCHEMATICS

The 32 is actually PCO and the rest of the legs are grounded and connected to the power.

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/UqAnStqKjmE

8. GITHUB LINK OF THIS DA

https://github.com/cho-minsung/assignment3B

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Minsung Cho