Работа 11.1

Определение ширины запрещенной зоны полупроводника

Подлесный Артём группа 827

20 февраля 2021 г.

Краткая теория

Проводимость полупроводника определяется наличием носителей, электронов или дырок соответственно, в зоне проводимости и валентной зоне, а также их подвижностью.

При ненулевой температуре возникает распределение электронов по уровням энергии, в результате которого часть электронов переходит из валентной зоны в зону проводимости, а в валентной зоне при этом появляется равное количество дырок. Вероятность заполнения электронами уровня с энергией E при температуре T определяется распределением Φ ерми:

$$F(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}},\tag{1}$$

где E_F – энергия Ферми, равная (в собственных полупроводниках):

$$E_F = \frac{E_C + E_V}{2},\tag{2}$$

середина между границами валентной зоны и зоны проводимости (в контексте энергий). При комнатной температуре ширина зоны проводимости $E_q \gg kT$, так что можно получить следующие оценки для валентной зоны:

$$F(E)|_{E_F-E \ge E_F-E_V \gg kT} \approx 1 - e^{-\frac{E-E_F}{kT}},$$

и для зоны проводимости:

$$F(E)|_{E-E_F \ge E_C-E_F \gg kT} \approx e^{-\frac{E-E_F}{kT}}.$$

Отсюда получаем концентрацию электронов в зоне проводимости:

$$n = N_C F(E_C) \approx N_C e^{-\frac{E_g}{2kT}},\tag{3}$$

где N_C – коэффициент, характеризующий плотность уровней на нижней границе зоны проводимости.

Аналогично для концентрации дырок в валентной зоне:

$$p = N_V(1 - F(E_V)) \approx N_V e^{-\frac{E_g}{2kT}},$$
 (4)

 N_V – коэффициент, характеризующий плотность уровней на верхней границе валентной зоны.

В приведенных выше приближениях удельная проводимость, обусловленная вкладами от электронов и дырок, равна:

$$\sigma = e(n\mu_n + p\mu_p) \approx e(N_C\mu_n + N_V\mu_p)e^{-\frac{E_g}{2kT}},\tag{5}$$

где μ_n , μ_p — подвижности соответственно электронов и дырок. Полученную зависимость можно записать в координатах Аррениуса, в которых она будет иметь линейный вид:

$$\ln \sigma(T) = -\frac{E_g}{2k}T^{-1} + \text{const.}$$
 (6)

Параллельно с измерением проводимости полупроводника в работе предлагается определить зависимость удельного сопротивления медного проводника от температуры. В исследуемом температурном диапазоне применима практическая формула:

$$\rho = \rho_0 (1 + \alpha \Delta T). \tag{7}$$

Обычно за начальные значения берут $T_0 = 20$ °C.

Экспериментальная установка

Рис. 1: Схема экспериментальной установки. Все необходимые параметры показаны на схеме.

Температура образцов определяется напряжением на термопаре, принимая во внимание комнатную температуру в 23°С. Погрешность в определении температуры определяется приборной погрешностью вольтметра термопары – 3 последних значащих цифры (0.03 мкВ). Аналогичная погрешность в измерении сопротивления образцов омметром (0.3 Ом).

Для цилиндрического образца проводимость определяется формулой:

$$\sigma = \frac{1}{\rho} = \frac{l}{RS}.\tag{8}$$

Выполнение эксперимента

Экспериментальные данные представлены на таблице 1. Из нее можно понять, что с ростом температуры сопротивление образцов разных материалов меняется в противоположные стороны. Более наглядно эта зависимость изображена на графиках на рис.2.

$V_{ m терм},\ { m M}{ m K}{ m B}$	T, ° C	σ_T , m° C	$R_{ m Meдu},~{ m Om}$	$R_{\rm III}$, Ом
440	33	6.95	94.4	448
700	41	4.49	96.5	356.2
1000	48	3.21	98.7	239.2
1200	53	2.72	100.4	197.2
1600	63	2.10	103.6	137
1900	70	1.81	106	105.5
2200	77	1.59	108.4	82.5
2600	86	1.38	111.5	65
2900	93	1.26	113.9	50
3100	97	1.19	115.3	43.5
3400	104	1.11	117.6	37.3

Таблица 1: Экспериментальные данные зависимости сопротивления образцов полупроводника и меди. Погрешность для температуры, связанная с методом определения температуры по напряжению на термопаре, представлена отдельным столбцом.

Рис. 2: а) График зависимости $\rho_{\rm M}(T)$ — удельного сопротивления меди от температуры (в мкОм·м) б) График $\sigma_{\rm nn}(T)$ — полупроводника от температуры (в См/м)

Зависимости согласуются с теорией проводимости для своего материала. Проводимость меди уменьшается с ростом температуры (то есть удельное сопротивление растет), так как усиливаются тепловые колебания ионов решетки, а так же хаотическое движение самих электронов, что препятствует свободному движению зарядов. В полупроводниках же, наоборот, с увеличением температуры растет кол-во носителей заряда, из-за чего проводимость пп увеличивается.

Температурный коэффициент меди

Из графика 2.а) можно получить уравнение аппроксимируещей прямой: $\rho = I + S \cdot T$. Тогда, если принять расчет для α из уравнения (7) для начальной температуры в 20°C, то $\rho_0 = I + S \cdot 293$. Окончательно получаем:

$$\alpha = \frac{S}{I + 293S} = 3.7 \pm 0.7 \frac{\text{HOM} cdotm}{K},$$

где погрешность посчитана по следующей формуле:

$$\sigma_{\alpha} = \alpha * \sqrt{\left(\frac{\sigma_I}{I}\right)^2 + 2\left(\frac{\sigma_S}{S}\right)^2}.$$

Учитывая, что в большинстве источников, температурный коэффициент в диапазоне 0-100° равен 4 н ${\rm Om^*m/K}$, то с учетом погрешности и зависимости α от технологии изготовления меди, результаты можно считать достоверными.

Ширина запрещенной зоны полупроводника

Линеаризовать график проводимости полупроводника от температуры можно в координатах Аррениуса (6). Полученный график изображен на рис.3.

Используя формулу (6) получаем, что ширина запрещенной зоны данного полупроводника при температурах, близких к комнатной, равна:

$$E_g = -2k \cdot S = 0.70 \pm 0.01 \text{ 9B}.$$

Известно, что при комнатной температуре ширина запрещенной зоны собственного полупроводника из германия (Ge) $E_{\rm Ge}=0.67$ эВ. В работе исследовался собственный полупроводник, а т.к. найденная ширина находится в пределах 3 σ от реального значения, то ислледуемый образец скорее всего состоит из германия.

Рис. 3: Линеаризованный график зависимости $ln(\sigma)\left(\frac{1}{T}\right)$. Аппрокисимрующая прямая построена по точкам из высокотемпературной области (первым 6).

Вывод

Результаты можно считать достоверными, однако необходимо принять во внимания, что при данной методике измерения проводимость всегда будет немного занижена. Так как нагрев образца происходит непрерывно, то в момент измерения он еще не достигнет термодинамического равновесия с термопарой на всем своем объеме. Благодаря его малым размерам он нагревается достаточно быстро, однако для более точных измерений необходимо перед снятием данных ждать хотя бы пару минут на одной и той же температуре.