NIO 2005 - NTNU Trondheim - 2.April

Oppgave 4 - Alpinanlegg

Severin Suveren har til en avveksling hørt værmeldingen, og på grunn av den varslede snøstormen i høyfjellet holder han seg nå unna langrennsløypene. Men å sitte inne foran peisen sømmer seg bare etter at man har blitt reddet av Røde Kors; derfor vil Severin prøve noe nytt: slalåm! Han drar av gårde til nærmeste alpinanlegg og bytter ut de medfødte langrensskiene med slalåmski. Men han synes fort det blir ensformig å kjøre de samme løypene om og om igjen. Derfor lurer han på hvilket sted han må starte fra for å kunne velge mellom flest mulig kombinasjoner av løyper ned til bunnen. Heldigvis er du i nærheten og kan bidra med et program som løser dette problemet for ham. "Flaks!" sa Severin Suveren.

INPUT

Programmet ditt vil få oppgitt en beskrivelse av et alpinanlegg. Anlegget har et visst antall knutepunkter N ($2 \le N \le 100\,000$), nummerert fra 0 til og med N-1, og et visst antall løyper M ($2 \le M \le 100\,000$), der løype nummer x går fra et knutepunkt a_x (toppen av løypa) til et annet b_x (bunnen av løypa). Løypene kan naturligvis bare kjøres nedover, altså fra a_x til b_x . Det går en heis opp til alle knutepunkter, slik at alle knutepunkter er potensielle steder å starte fra. Ett av knutepunktene (u) er bunnen av hele alpinanlegget, og uansett hvor i bakken man befinner seg, er det mulig å på ett eller annet vis kjøre ned til bunnen ved å følge én eller flere løyper. Alle de oppgitte knutepunktene vil være gyldige (0 ≤ $u, a_x, b_x < N$). Det kan finnes flere løyper mellom samme par av knutepunkter (alle i samme retning); disse må tas med i beregningen (se eksempelet). Ingen løyper vil gå fra ett knutepunkt og tilbake til det samme, og det vil ikke være mulig å kjøre i ring på noen måte – har du kjørt ned fra et knutepunkt, kan du ikke komme tilbake til det. Inputen vil være på følgende format:

N U M a_1 b_1 a_2 b_2 a_M b_M

OUTPUT

Programmet ditt skal skrive ut nummeret (et tall mellom 0 og N-1) på knutepunktet som gir flest mulig måter å kjøre ned til bunnen av bakken på første linje, og det aktuelle antallet måter på neste linje. Dette antallet vil aldri overstige $2^{31}-1$, hvilket vil si at du trygt kan bruke int. Det vil kun finnes ett knutepunkt som har det maksimale antallet.

EKSEMPEL

INPUT

OUTPUT

0 3

KOMMENTAR

Det finnes fire måter å komme seg fra knutepunkt 2 til bunnen (knutepunkt 3) på:

$$2 \rightarrow 0 \rightarrow 3$$

$$2 \rightarrow 4 \rightarrow 5 \rightarrow 3$$

$$2 \rightarrow 0 \rightarrow 1 \rightarrow 3$$
 (via den ene løypa mellom 0 og 1)

$$2 \rightarrow 0 \rightarrow 1 \rightarrow 3$$
 (via den andre løypa mellom 0 og 1)

Alpinanlegget som er beskrevet her, kan se slik ut på et løypekart (se bilde).