Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 7

To be completed by November 6th, 14:00

The solution of each problem should be no longer than one page!

Problem 1. Let $m \ge (n+1)(r-1)+1$, and let A_1, \ldots, A_m be subsets of [n]. Show that there exist pairwise disjoint sets $I_1, \ldots, I_r \subseteq [m]$ such that the unions $\bigcup_{j \in I_i} A_j$ are the same for all $i \in [r]$, and similarly the intersections $\bigcap_{j \in I_i} A_j$ are the same for all $i \in [r]$.

Problem 2.

Let X be a subset of \mathbb{R}^d of size n. An X-simplex is the convex hull of some d+1 points of X. Show that there is a point in \mathbb{R}^d which is contained in at least $c_d\binom{n}{d+1}$ X-simplicies, where c_d is a positive constant that depends only on d.

Problem 3. Let $X \subset \mathbb{R}^d$ be finite and let $0 < \varepsilon < 1$. A set Y is a weak ε -net for X (with respect to convex sets) if for every convex set B such that $|B \cap X| \ge \varepsilon |X|$, B intersects Y. Show (using the previous assignment) that there is a weak ε -net for X of size at most $C_{d,\varepsilon}$, where $C_{d,\varepsilon}$ is a constant that depends only on d and ε .

Problem 4. Let F_1, \ldots, F_{d+1} be sets consisting of 2 points in \mathbb{R}^d each. Show that it is possible to split each F_i into a_i and b_i in so that $conv(a_1, \ldots, a_{d+1}) \cap conv(b_1, \ldots, b_{d+1}) \neq \emptyset$.