Coding Theory

CO 331

Alfred John Menezes

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 331 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

P	reface	1
0	Pre	3
1	Introduction & Fundamentals	5
	1.1 Decoding Strategy	7
	1.1.1 Nearest Neighbour Decoding	
	1.2 Error Correcting & Detecting Capabilities of a Code	
2	Introduction to Finite Fields	13
	2.1 Non-existence of finite fields	16
	2.2 Constructing finite fields	18
	2.3 Properties of finite fields	21
3	Linear Codes	24
	3.1 Properties of Linear Codes	24
	3.2 Dual Codes	28
	3.3 Perfect Code	32
	3.4 Error Correction (for Hamming Codes)	
	3.5 General Decoding Problem for binary linear codes	
	3.5.1 Syndrome Decoding	
4	The binary Golay code	40
	4.1 The (binary) Golay code C_{23} (1949)	40
	4.2 The Extended Golay Code C_{24}	
	4.2.1 Decoding Algorithm for C_{24}	

Pre

```
Example: Replication code
source msgs
                   codewords
      0
                       0
      1
                       1
\# of errors/codeword that be detected: 0
# errors/codeword that can be corrected: 0
Rate: 1
                   codewords
source msgs
     0
                       00
      1
                       11
\# of errors/codeword that be detected: 1
\# errors/codeword that can be corrected: 0
Rate: 1/2
                   codewords
source msgs
                      000
                      111
# of errors/codeword that be detected: 2
# errors/codeword that can be corrected: 1 (nearest neighbour decoding)
Rate: 1/3
                   codewords
source msgs
                     00000
      0
      1
                     11111
\# of errors/codeword that be detected: 4
# errors/codeword that can be corrected: 2 (nearest neighbour decoding)
Rate: 1/5
```

CHAPTER 0. PRE 4

Goal of Coding Theory Design codes so that:

- 1. High information rate
- 2. High error-correcting capability
- 3. Efficient encoding & decoding algorithms

The big picture In its broadest sense, coding deals with the reliable, efficient, secure transmission of data over channels that are subject to inadvertent noise and malicious intrusion.

mid: Feb 26th

Introduction & Fundamentals

alphabet, word, length...

An alphabet A is a finite set of $q \ge 2$ symbols. E.g. $A = \{0, 1\}$.

A word is a finite sequence of symbols from A. (tuples or vectors)

The *length* of a word is the number of symbols in it.

A code C over A is a finite set of words over A (of size ≥ 2).

A codeword is a word in C.

A block code is a code where all codewords have the same length.

A block code C of length n containing M codewords over A is a subset $C \subseteq A^n$, with |C| = M. This is denoted by [n, M].

Example:

$$A = \{0,1\}. \ C = \{00000, 11100, 00111, 10101\} \ \text{is a } [5,4]\text{-code over } \{0,1\}.$$

	Codewords
\rightarrow	00000
\rightarrow	11100
\rightarrow	00111
\rightarrow	10101
	${\rightarrow}$

Encoding 1-1 map

The channel encoder transmits only codewords. But, what's received by the channel decoder might not be codeword.

Example:

Suppose the channel decoder receives r = 11001. What should it do?

Example: q = 2 (Binary symmetric channel, BSC)

Example: q = 3

Assumptions about the communications channel

- 1) The channel only transmits symbols from A.
- 2) No symbols are deleted, added, or transposed.
- 3) (Errors are "random") Suppose the symbol transmitted are X_1, X_2, X_3, \ldots Suppose the symbols received and Y_1, Y_2, Y_3, \ldots Then for all $i \geq 1$, and all $i \leq j, k \leq q$,

$$Pr(Y_i = a_j | X_i = a_k) = \begin{cases} 1 - p, & \text{if } j = k \\ \frac{p}{q - 1}, & \text{if } j \neq k \end{cases}$$

where p = symbol error prob.

Notes about BSC

- (i) If p = 0, the channel is perfect.
- (ii) If $p = \frac{1}{2}$, the channel is useless.
- (iii) If $1 \ge p > \frac{1}{2}$, then simply flip all bits that are received.

- (iv) WLOG, we will assume that 0 .
- (v) Analogously, for a q-ary channel, we can assume that 0 . (Optional exercise)

Hamming distance

If $x, y \in A^n$, the Hamming distance d(x, y) is the # of coordinate positions in which x & y differ.

The distance of a code C is

$$d(C) = \min\{d(x, y) \in C, x \neq y\}$$

Example:

$$d(10111, 01010) = 4$$

Theorem 1.1

d is a metric. For all $x, y, z \in A^n$

- (i) $d(x,y) \ge 0$, and d(x,y) = 0 iff x = y.
- (ii) d(x,y) = d(y,x)
- (iii) \triangle inequality $d(x,z) \leq d(x,y) + d(y,z)$

rate

The rate of an [n, M]-code C over A with |A| = q is

$$R = \frac{\log_q M}{n}.$$

If the source messages are all k-tuples over A,

$$R = \frac{\log_q(q^k)}{n} = \frac{k}{n}.$$

Example:

$$C = \{00000, 11100, 00111, 10101\}$$
 $A = \{0, 1\}$

Here $R = \frac{2}{5}$ and d(C) = 2.

1.1 Decoding Strategy

Let C be an [n, M]-code over A of distance d. Suppose some codeword is transmitted, and $r \in A^n$ is received. The channel decoder has to decide the following:

- (i) no errors have occurred, accept r.
- (ii) errors have occurred, and (decode) correct r to some codeword.
- (iii) errors has occurred, correction is not possible.

1.1.1 Nearest Neighbour Decoding

Incomplete Maximum Likelihood Decoding (IMLD). Correct r to the unique codeword c for which d(r,c) is smallest. If c is not unique, reject r. Complete MLD (CMLD). Same as IMLD, accept ties are broken arbitrarily.

Question Is IMLD a reasonable strategy?

Theorem 1.2

IMLD selects the codeword c that maximizes P(r|c) prob. that r is received given that c was sent.

Proof.

Suppose $c_1, c_2 \in C$ with $d(c_1, r) = d_1$ and $d(c_2, r) = d_2$. Suppose $d_1 > d_2$.

Now

$$P(r|c_1) = (1-p)^{n-d_1} \left(\frac{p}{q-1}\right)^{d_1}$$

and

$$P(r|c_2) = (1-p)^{n-d_2} \left(\frac{p}{q-1}\right)^{d_2}$$

 S_0

$$\frac{P(r|c_1)}{P(r|c_2)} = (1-p)^{d_2-d_1} \left(\frac{p}{q-1}\right)^{d_1-d_2} = \left(\frac{p}{(1-p)(q-1)}\right)^{d_1-d_2}$$

Recal

$$p < \frac{q-1}{q} \implies pq < q-1 \implies 0 < q-pq-1$$

$$\implies p$$

Hence

$$\frac{P(r|c_1)}{P(r|c_2)} < 1$$

and so

$$P(r|c_1) < P(r|c_2)$$

The ideal strategy is to correct r to $c \in C$ that minimizes P(c|r). This is Minimum

error decoding (MED).

Example: (IMD is not the same as MED)

Let
$$C = \{\underbrace{000}_{c_1}, \underbrace{111}_{c_2}\}$$
. (corresponding to 0, 1).

Suppose $P(c_1) = 0.1, P(c_2) = 0.9$. Suppose p = 1/4 and r = 100.

IMLD $r \rightarrow 000$

MED

$$P(c_1|r) = \frac{P(r|c_1) \cdot P(c_1)}{P(r)}$$

$$= p(1-p)^2 \times 0.1/P(r)$$

$$= \frac{9}{640 \cdot P(r)}$$

Similarly

$$P(c_2|r) = \frac{P(r|c_2) \cdot P(c_2)}{P(r)}$$

$$= p(1-p)^2 \times 0.9/P(r)$$

$$= \frac{27}{640 \cdot P(r)}$$

So MED: $r \to 111$

Note

- 1. IMLD: Select c. s.t. P(r|c) is maximum MED: Select c. s.t. P(c|r) is maximum
- 2. MED has the drawback that it requires knowledge of $P(c_i)$, $1 \le i \le M$
- 3. Suppose source messages are equally likely, so $P(c_i) = \frac{1}{M}$, for each $1 \le i \le M$. Then

$$P(r|c_i) = P(c_i|r) \cdot P(c_i)/P(r) = P(c_i|r) \cdot \underbrace{\left[\frac{1}{M \cdot P(r)}\right]}_{\text{does not depend on } i}$$

So IMLD is the same as MED.

4. In the remainder of the course, we will use IMLD/CMLD.

1.2 Error Correcting & Detecting Capabilities of a Code

- If C is used for error correction, the strategy is IMLD/CMLD.
- If C is used for error detection (only), the strategy is:

If $r \notin C$, then reject r; otherwise accept r.

e-error correcting code

A code C is called an e-error correcting code if the decoding always makes the correct decision if at most e errors per codeword are introduced. (Similarly: e-error detecting code)

Example:

 $C = \{0000, 1111\}$ is 1-error correcting code, but not a 2-error correcting code.

 $C = \{\underbrace{0\dots 0}_m, \underbrace{1\dots 1}_m\}$ is a $\left\lfloor \frac{m-1}{2} \right\rfloor$ -error correcting code.

 $C = \{0000, 1111\}$ is a 3-error detecting code.

Theorem 1.3

Suppose d(C) = d. Then C is a (d-1)-error detecting code.

Proof:

Suppose $c \in C$ is transmitted and r is received.

- If no error occur, then $r = c \in C$ and the decoder accepts r.
- If ≥ 1 and $\leq (d-1)$ errors occur, then $1 \leq d(r,c) \leq d-1$. So, $r \notin C$, and hence the decoder rejects r.

Theorem 1.4

If d(C) = d, then C is not a d-error detecting code.

Proof:

Since d(C) = d, there exist $c_1, c_2 \in C$ with $d(c_1, c_2) = d$. If c_1 is sent, it is possible that d errors occur and c_2 is received. In this case, the decoder accepts c_2 .

Theorem 1.5

If d(C) = d, then C is a $\left\lfloor \frac{d-1}{2} \right\rfloor$ -error correcting code.

Proof:

Suppose $c \in C$ is transmitted, at most $\frac{d-1}{2}$ errors are introduced, and r is received. Let $c_1 \in C, c_1 \neq c$.

By \triangle ineq, $d(c, c_1) \le d(c, r) + d(r, c_1)$. So

$$d(r, c_1) \ge d(c, c_1) - d(c, r) \ge d - \frac{d-1}{2} = \frac{d+1}{2} \ge \frac{d-1}{2}$$

So c is the unique codeword closest to r.

So IMLD/CMLD will decode r to c.

Theorem 1.6

If d(C) = d, then C is not a $\left(\left\lfloor \frac{d-1}{2} \right\rfloor + 1 \right)$ -error correcting code.

Question Given q, n, M, d, does there exist an [n, M]-code C over A (with |A| = q), with d(C) = d?

 $C = \{c_1, c_2, \dots, c_M\}$. Let $e = \lfloor \frac{d-1}{2} \rfloor$. For $c \in C$, let S_c =sphere of radius e centered at $c = \{r \in A^n : d(r, c) \leq e\}$. We proved: If $c_1, c_2 \in C, c_1 \neq c_2$, then $S_{c_1} \cap S_{c_2} \neq \emptyset$. The question can be viewed as a *sphere packing problem*: Can we place M spheres of radius e in A^n (such that no 2 spheres overlap)? This is purely combinatorial problem.

Example:

Take $q=2,\,n=128,\,M=2^{64},\,d\geq 22.$ Does a code with these parameters exist?

Answer YES.

Question What are the codewords?

Question How do we encode and decode efficiently?

Preview We'll view $\{0,1\}^{128}$ as a vector space of dimension 128 over \mathbb{Z}_2 . We'll choose C to be a 64-dimensional subspace of this vector space.

Introduction to Finite Fields

field

A field $(F, +, \cdot)$ consists of a set F and two operations

$$+: F \times F \to F$$

and

$$\cdot: F \times F \to F$$

such that

(i)
$$a + (b + c) = (a + b) + c \quad \forall a, b, c \in F$$
.

(ii)
$$a + b = b + a$$
, $\forall a, b \in F$.

(iii) $\exists 0 \in F \text{ such that } a + 0 = a, \forall a \in F.$

(iv)
$$\forall a \in F, \exists -a \in F \text{ such that } a + (-a) = 0.$$

(v)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c, \quad \forall a, b, c \in F.$$

(vi)
$$a \cdot b = b \cdot a$$
, $\forall a, b \in F$.

(vii)
$$\exists 1 \in F, 1 \neq 0$$
, such that $a \cdot 1 = a \quad \forall a \in F$.

(viii)
$$\forall a \in F, a \neq 0, \exists a^{-1} \in F \text{ such that } a \cdot a^{-1} = 1.$$

(ix)
$$a \cdot (b+c) = a \cdot b + b \cdot c$$
, $\forall a, b, c \in F$.

infinite, finite, order

A field F is *infinite* if |F| is infinite. F is *finite* if |F| is finite, in which case |F| is the *order* of F.

Example:

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are infinite fields. \mathbb{Z} is *not* a field.

Q For what integers $n \geq 2$ do there exist finite fields of order n? if a field of order n exists, how do we "construct"?

Recall Let $n \geq 2$, the integers modulo n, \mathbb{Z}_n , is the set of all equivalent classes $\mod n$,

$$\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$$

where
$$[a] + [b] = [a + b],$$
 $[a] \cdot [b] = [a \cdot b].$

More simply $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ with addition & multiplication performed mod

$$\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}.$$
 In $\mathbb{Z}_9, 5+7=3, 5\cdot 7=8.$

In
$$\mathbb{Z}_9$$
, $5+7=3$, $5\cdot 7=8$.

Fact \mathbb{Z}_n is a *commutative ring*. (i.e. field axioms (i)-(ix) are satisfied, except possibly (viii)).

Theorem 2.1

 \mathbb{Z}_n is a field if and only if n is prime.

 \iff) Suppose n is prime. Let $a \in \mathbb{Z}_n, a \neq 0$ (so $1 \leq a \leq n-1$). Since n is prime, gcd(a, n) = 1, so $\exists s, t \in \mathbb{Z}$ such that as + nt = 1. Reducing both sizes (mod n), gives

$$as \equiv 1 \pmod{n}$$

 $as \equiv 1 \pmod{n}$ So $a^{-1} = s$. So (viii) is satisfied, so \mathbb{Z}_n is a field (of order n). $\Longrightarrow) \text{ Suppose } n \text{ is composite, say } n = a \cdot b \text{. where } 2 \leq a, b \leq n-1 \text{. Suppose } a^{-1}$ exists, $a^{-1} = s$. Then $as \equiv 1 \pmod{n}$. So

$$abs \equiv b \pmod{n}$$
,

$$ns \equiv b \pmod{n}$$
,

 $ns \equiv b \pmod{n}$ so $0 \equiv b \pmod{n}$, so n|b which is impossible.

 $\therefore a^{-1}$ does not exist, so \mathbb{Z}_n is not a field.

Do there exist finite fields of orders 4 and 6?

characteristic

The *characteristic* of a field denoted char(F), is the smallest positive integer m such that

$$\underbrace{1+1+1+\ldots+1}_{m}=0.$$

If no such m exists, then char(F) = 0.

Example:

 $\operatorname{char}(\mathbb{Q}) = 0$, $\operatorname{char}(\mathbb{R}) = 0$, $\operatorname{char}(\mathbb{C}) = 0$.

 $char(\mathbb{Z}_p) = p \ (p \text{ is prime})$

Theorem 2.2

If char(F) = 0, then F is infinite.

Proof:

Consider 1, 1+1, 1+1+1, 1+1+1+1,...

Then no 2 elements in this list are equal, because if

$$\underbrace{1+1+1+\ldots+1}_{a} = \underbrace{1+1+1+\ldots+1}_{b}$$
 where $a < b$

then $0 = \underbrace{1 + 1 + 1 + \dots + 1}_{b-a}$ which contradicts $\operatorname{char}(F) = 0$.

So F is infinite.

Theorem 2.3

If F is a finite field, then char(F) is prime.

Proof:

Suppose char(F) = m, which is composite. Say, $m = a \cdot b$, where $2 \le a, b \le m-1$. Now $\underbrace{(1+1+1+\ldots+1)}_{a} \cdot \underbrace{(1+1+1+\ldots+1)}_{b} = \underbrace{1+1+1+\ldots+1}_{m} = 0$ since char(F) = m

Let
$$\underbrace{1+\ldots+1}_{a}=s$$
 and $\underbrace{1+\ldots+1}_{b}=t$, so $s\cdot t=0$.

But $s \neq 0$, and so s^{-1} exists, thus $s^{-1} \cdot s \cdot t = 0$, therefore t = 0, which contradicts char(F) = m.

Next class Let F be a finite field of order n. Then $\operatorname{char}(F) = p$ (prime). Then \mathbb{Z}_p is a "subfield" of F. And F is a vector space over \mathbb{Z}_p say of dimension k. Then order of F is p^k .

2.1 Non-existence of finite fields

Let F be a finite field of characteristic p. Consider

$$E = \{0, 1, 1 + 1, 1 + 1 + 1, \dots, \underbrace{1 + 1 + 1 + \dots + 1}_{p-1}\} \subseteq F$$

Check: E is a field w.r.t the field operations of F. Also, E has order p. If we label the elements of E in a natural way

$$1 + 1 \leftrightarrow 2, 1 + 1 + 1 \leftrightarrow, \dots, \underbrace{1 + 1 + 1 + \dots + 1}_{p-1} \leftrightarrow p - 1,$$

then E is really just \mathbb{Z}_p . (E is isomorphic to \mathbb{Z}_p).

Theorem 2.4

If F be a finite field of order n, then char(F) = p (prime). Then \mathbb{Z}_p is a "subfield" of F.

So let's identify:

elements of $F \leftrightarrow \text{vectors}$ elements of $\mathbb{Z}_p \leftrightarrow \text{scalars}$ addition in $F \leftrightarrow \text{vector}$ addition multiplication in $F \leftrightarrow \text{scalar}$ multiplication

Theorem 2.5

If F is a finite char P, then F is a vector space over \mathbb{Z}_p .

Proof:

Read Appendix A (of the textbook).

Theorem 2.6

If F is a finite field of char P, then order of F is p^n for some $n \ge 1$.

Proof:

Let n be the dimension of (the vector space) F over \mathbb{Z}_p . Let $\{\alpha_1, \alpha_2, \dots \alpha_n\}$ be a basis. Then every element in F can be written uniquely as

$$c_1\alpha_1 + c_2\alpha_2 + \ldots + c_n\alpha_n, \tag{*}$$

where $c_i \in \mathbb{Z}_p$.

Also every element (*) is in F. Hence $\operatorname{ord}(F) = p^n$.

Example:

There is no field of order 6.

Q Is there a finite field of order 4? 8? 9? Yes.

F[x]

If F is a field, then F[x] is the set of all polynomials in x with coefficients from F.

Addition and multiplication is done in the usual way, with coefficient arithmetic in F.

Example:

In
$$\mathbb{Z}_{11}[x]$$
, $(2+5x+6x^2)+(3+9x+5x^2)=5+3x$.

Theorem 2.7

F[x] is an infinite commutative ring.

Some notations

Let $f \in F[x]$, $\deg(f) \ge 1$.

If $g, h \in F[x]$, we write $g \equiv h \pmod{f}$.

If $g - h = \ell f$ for some $\ell \in F[x]$, we write (f|g - h).

Facts

- 1. \equiv is an equivalence relation.
- 2. The equivalence class containing $g \in F[x]$ is

$$[g] = \{h \equiv g \pmod{f} : h \in F[x]\}$$

- 3. We define $[g_1] + [g_2] = [g_1 + g_2]$ $[g_1] \cdot [g_2] = [g_1 \cdot g_2]$
- 4. The set of all equivalence classes, denoted F[x]/(f) (where $f \in F[x], \deg(f) \ge 1$) is a commutative ring.
- 5. The polynomials in F[x] of degree $< \deg(f)$ are a system of distinct representatives of the equivalence classes in F[x]/(f).

Justification Let $g \in F[x]$. By division algorithm for polynomials, we can write $g = \ell f + r$ where $\deg(r) < \deg(f)$. [Convention: $\deg(0) = -\infty$]

Then
$$g - r = \ell f$$
. So $g \equiv r \pmod{f}$. So $[g] = [r]$.

Also if $r_1, r_2 \in F[x], r_1 \neq r_2$ and $\deg(r_1), \deg(r_2) < \deg(f)$, then $f \nmid r_1 - r_2$, so $r_1 \not\equiv r_2 \pmod{f}$. Hence $[r_1] \neq [r_2]$.

2.2 Constructing finite fields

We proved A system of distinct representatives for $\mathbb{Z}_p[x]/(f)$ is $[r(x)]: r \in \mathbb{Z}_p[x], \deg(r) < \deg(f)$. Therefore, $|\mathbb{Z}_p[x]/(f)| = p^n$.

irreducible

Let F be a field and $f(x) \in F[x]$ of degree $n \ge 1$. Then f is *irreducible (over F)* if f cannot be written as f = gh, where $g, h \in F[x]$ and $\deg(g), \deg(h) \ge 1$.

Example:

 $x^2 + 1$ is irreducible over \mathbb{R} .

 $x^2 + 1$ is reducible over \mathbb{C} , since $(x^2 + 1) = (x + i)(x - i)$. $x^2 + 1$ is reducible over \mathbb{Z}_2 , since $x^2 + 1 = (x + 1)^2$.

Theorem 2.8

Let F be a field, and $f \in F[x]$ of degree $n \ge 1$. Then F[x]/(f) is a field if and only if f irreducible over F.

F[x]/(f) is a commutative ring.

(\iff) Suppose $g \in F[x]/(f), g \neq 0$, (and $\deg(g) < \deg(f)$). Then $\gcd(g,f) = 1$, and by the EEA for polynomials, there exist $s, t \in F[x]$ such that gs + ft =1. Reducing both sides mod f gives $gs \equiv \pmod{f}$. So $g^{-1} = s$. Hence

So, to construct a finite field of order $p^n (n \ge 2)$, we need an irreducible polynomial $f \in \mathbb{Z}_p[x]$ of degree n. Then $\mathbb{Z}_p[x]/(f)$ is a finite field of order p^n .

Fact For any prime p, integer $n \geq 2$, there exists an irreducible polynomial degree $n \text{ in } \mathbb{Z}_p[x].$

Theorem 2.9

There exists a finite field of order q iff q is a prime power.

Example: Construct a finite field of order 4.

Take $f(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$, which is irreducible over \mathbb{Z}_2 . So, the field is $\mathbb{Z}_2[x]/(x^2 + x + 1) = \{0, 1, x, x + 1\}$. $\omega_{2}[x]/(x^{2} + x + 1) = \{0, 1, x, x\}$ $\bullet x + (x + 1) = 1.$ $\bullet x \cdot (x + 1) = x^{2} + x = 1.$ $\bullet \text{ So, } x^{-1} = x + 1.$ $\bullet x^{-1} = 1$ $\bullet x^{-1} = x + 1$ $\bullet (x + 1)^{-1} = x$

 \Box

Example: Field of order $8 = 2^3$

We need an irreducible polynomial of degree 3 over \mathbb{Z}_2 . Take $f(x) = x^3 + x + 1$ which is irreducible over \mathbb{Z}_2 . Then a field of order 8 is

$$F_1 = \mathbb{Z}_2[x]/(x^3 + x + 1) = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$$

$$F_{1} = \mathbb{Z}_{2}[x]/(x^{3} + x + 1) = \{0, 1, x, x + 1\}$$

$$\bullet x^{2} + (x^{2} + x + 1) = x + 1$$

$$\bullet x^{2} \cdot (x^{2} + x + 1) = x^{4} + x^{3} + x^{2} = 1.$$

$$x + 1$$

$$x^{3} + x + 1) = x^{4} + x^{3} + x^{2} = 1.$$

$$x + 1$$

$$x^{4} + x^{3} + x^{2}$$

$$-x^{4} - x^{2} - x$$

$$x^{3} - x$$

$$-x^{3} - x - 1$$

$$-2x - 1$$

$$\bullet (x^{2})^{-1} = x^{2} + x + 1$$

$$\bullet x^{-1} = x^{2} + 1$$

Example: Finite field of order 8

Take $f_2(x) = f(x) = x^3 + x^2 + 1$. Then $F_2 = \mathbb{Z}_2[x]/(x^3 + x^2 + 1)$ is a finite field of order 8. Its elements are $F_2 = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$.

•
$$x^{-1} = x^2 + x$$
.

Note

 F_1 and F_2 are two different field of order 8. In fact, they are "essentially the same", i.e., they are isomorphic, i.e., there is a bijection $\alpha: F_1 \to F_2$ such that $\alpha(a+b) = \alpha(a) + \alpha(b)$ and $\alpha(a \cdot b) = \alpha(a) \cdot \alpha(b)$, $\forall a, b \in F$.

Any two fields of order q are isomorphic.

$\mathbf{GF}(q)$

We will denote the finite field of order q by GF(q).

We saw two different representations of $GF(2^3)$.

Recall A finite field of order q exists iff $q = p^n$ for some prime p and $n \ge 1$. (p = characteristic)

• Also $GF(q) = \mathbb{Z}_p[x]/(f)$, where $f \in \mathbb{Z}_p[x]$ is irreducible and has degree n.

Example: Construct GF(16)

Take $f(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$.

f has no roots in \mathbb{Z}_2 , and hence no linear factors.

Long division shows that $x^2 + x + 1 \nmid x^4 + x + 1$, so f has no irreducible quadratic

f is irreducible over \mathbb{Z}_2 . So $\mathrm{GF}(16) = \mathbb{Z}_2[x]/(x^4+x+1)$.

Properties of finite fields 2.3

Theorem 2.10: Frosh's Dream

Let $\alpha, \beta \in GF(q)$, where char(GF(q)) = p. Then $(\alpha + \beta)^p = \alpha^p + \beta^p$.

$$(\alpha + \beta)^p = \alpha^p + \sum_{i=1}^{p-1} \binom{p}{i} \alpha^i \beta^{p-i} + \beta^p$$

$$(\alpha + \beta)^p = \alpha^p + \sum_{i=1}^p \binom{i}{i} \alpha^{p^n} + \beta^p$$
Now, $\binom{p}{i} = \frac{p(p-1)\dots(p-i+1)}{1\cdot 2\cdot \dots \cdot i} \in \mathbb{N}$.

If $1 \le i \le p-1$, then $p|$ numerator; but $p \nmid$ denominator. $\therefore p|\binom{p}{i}$. So,

$$\binom{p}{i}\alpha^{i}\beta^{p-i} = \underbrace{\alpha^{i}\beta^{p-i} + \dots + \alpha^{i}\beta^{p-i}}_{\binom{p}{i}}$$

$$= \alpha^{i}\beta^{p-i}(\underbrace{1+1+1+\dots+1}_{\binom{p}{i}})$$

$$= \alpha^{i}\beta^{p-i} \cdot 0 \quad \text{since char} = p \text{ and } p \mid \binom{p}{i}$$

$$= 0$$

More generally,

$$(\alpha + \beta)^{p^m} = \alpha^{p^m} + \beta^{p^m}$$

for all $m \geq 1$.

Theorem 2.11

Let $\alpha \in GF(q)$. Then $\alpha^q = \alpha$.

- If $\alpha = 0$, then of course $\alpha^q = \alpha$.
- Suppose $\alpha \neq 0$. Let $\alpha_1, \ldots, \alpha_{q-1}$ be the nonzero elements in GF(q). Consider $\alpha\alpha_1, \ldots, \alpha\alpha_{q-1}$. The elements in this list are pairwise distinct because

if
$$\alpha \alpha_i = \alpha \alpha_j$$
 $(i \neq j)$, then $\alpha^{-1} \alpha \alpha_i = \alpha^{-1} \alpha \alpha_j$, so $\alpha_i = \alpha_j$. Also

$$\alpha \alpha_i \neq 0, \ \forall 1 \leq i \leq q-1.$$

Hence

$$\{\alpha_1, \alpha_2, \dots, \alpha_{q-1}\} = \{\alpha\alpha_1, \dots, \alpha\alpha_{q-1}\}$$

$$\therefore \alpha_1 \dots \alpha_{q-1} = (\alpha \alpha_1) \dots (\alpha \alpha_{q-1})$$

$$\alpha^{q-1} = 1$$

$$\alpha^q = c$$

$\mathbf{GF}(q)^*$

Let $GF(q)^* = GF(q) \setminus \{0\}.$

ord(alpha)

Let $\alpha \in GF(q)^*$. The order of α , denoted $ord(\alpha)$, is the smallest, positive integer t such that $\alpha^t = 1$.

Example:

How many elements of order 1 are there in GF(q)?

$$\alpha = 1$$

Example:

Find ord(x) in GF(16) =
$$\mathbb{Z}_2[x]/(x^4 + x + 1)$$
.
 $x^1 = 1, x^2 = x^2, x^3 = x^3, x^4 = x + 1, x^5 = x^2 + x, \dots, x^{15} = 1$.

Since $\operatorname{ord}(x) \neq 1, 3, 5, \operatorname{ord}(x) | 15$, we have $\operatorname{ord}(x) = 15$.

Let $\alpha \in GF(q)^*$, ord $(\alpha) = t, s \in \mathbb{Z}$. $\alpha^s = 1 \iff t|s$.

Let $s \in \mathbb{Z}$. Long division g gives $s = \ell t + r$, where $0 \le r \le t - 1$.

Then
$$\alpha^s = \alpha^{\ell t + r} = (\alpha^t)^{\ell} \alpha^r = \alpha^r$$
.

$$\alpha^s = 1 \iff \alpha^r = 1$$
 $\iff r = 0 \quad \text{since } 0 \le r \le t - 1$
 $\iff t|s$

Corrollary 2.13

If $\alpha \in GF(q)^*$, then $ord(\alpha)|q-1$.

Proof:

We know that $\alpha^{q-1} = 1$. So $\operatorname{ord}(\alpha)|q-1$ by previous lemma.

generator

An element $\alpha \in GF(q)$ is a generator of $GF(q)^*$ (primitive element in GF(q)). If $ord(\alpha) = q - 1$.

Lemma 2.14

If α is a generator of $GF(q)^*$ then $\{\alpha^0, \alpha^1, \alpha^2, \dots, \alpha^{q-2}\} = GF(q)^*$.

Lemma 2.15

If $\alpha \in GF(q)^*$ has order t, then $\alpha^0, \alpha^1, \dots, \alpha^{t-1}$ are pairwise distinct.

Proof:

Suppose $\alpha^i = \alpha^j$, where $0 \le i < j \le t - 1$. Then $\alpha^{j-1} = 1$ which contradicts $\operatorname{ord}(\alpha) = t$ since $1 \le j - i \le t - 1$.

So, if α is a generator of $GF(q)^*$ then $\{\alpha^0, \alpha^1, \alpha^2, \dots, \alpha^{q-2}\} = GF(q)^*$.

Theorem 2.16

 $GF(q)^*$ has at least one generator.

Proof:

See LEARN (optional).

Example:

Find a generator of $GF(8) = \mathbb{Z}_2[x]/(x^3 + x + 1)$.

x is a generator.

Linear Codes

Let F = GF(q).

Let
$$V_n(F) = F \times F \times \ldots \times F = F^n$$

Then $V_n(F)$ is an *n*-dimensional vector space over F.

We have $|V_n(F)| = q^n$.

linear (n,k)-code over F

A linear (n,k)-code over F is a k-dimensional subspace of $V_n(F)$.

subspace

A subspace of of a vector space V over F is a subset $S \subseteq V$ such that

- (i) $S \neq \emptyset$.
- (ii) $v_1 + v_2 \in S$ $\forall v_1, v_2 \in S$.
- (iii) $\lambda v \in S$, $\forall v \in S, \lambda \in F$.

Note

S is also a vector space over F.

 $0 \in S$.

3.1 Properties of Linear Codes

Let C be an (n, k)-code over F. Let v_1, v_2, \ldots, v_k be an ordered basis for C.

1) The codewords in C are precisely:

$$mv_1 + m_2v_2 + \ldots + m_kv_k$$

where $m_i \in F$.

So
$$|C| = M = q^k$$
.

- 2) The rate of C is $R = \frac{\log_q M}{n} = \frac{k}{n}$,
- 3) Distance

weight

The (Hamming) weight of $v \in V_n(F)$, $\omega(v)$, is the number of nonzero coordinate positions in v.

The weight of C is $\omega(C) = \min\{\omega(c) : c \in C, c \neq 0\}.$

Theorem 3.1

If C is a linear code, then $d(C) = \omega(C)$.

Proof:

$$d(C) = \min\{d(x,y) : x, y \in C, x \neq y\}$$

$$= \min\{\omega(x-y) : x, y \in C, x \neq y\}$$

$$= \min\{\omega(c) : c \in C, c \neq 0\}$$

$$= \omega(C)$$

4) Encoding.

Since $M = q^k$, there are q^k source messages. We'll assume that the source messages are elements of $V_k(F)$. A natural encoding rule is: Given $(m_1, m_2, \ldots, m_k) \in V_n(F)$. We will encode it as $c = m_1v_1 + m_2v_2 + \ldots + m_kv_k$.

Note

The encoding rule depends on the basis chosen for C.

5) Note if $m = (m_1, \ldots, m_k)$, then the encoding rule can be written as follows.

$$c = (m_1, m_2, \dots, m_k) \begin{bmatrix} - & v_1 & - \\ & \vdots & \\ - & v_k & - \end{bmatrix}_{k \times n}$$
$$c = mG$$

generator matrix

Let C be an (n, k) code. A generator matrix G for C is a $k \times n$ matrix whose rows form a basic for C.

Note

An encoding rule for C w.r.t. G is c = mG.

Note

Performing elementary row operations on G gives a different matrix for the same code C.

Example: Consider a binary (5,3)-code C

where binary means "over $F = GF(2) = \mathbb{Z}_2$. 5 is n, length of code. 3 is k, dimension.

Then
$$M = q^k = 2^3$$
 and $R = \frac{k}{n} = \frac{3}{5}$. and

$$C = \langle \underbrace{10010}_{v_1}, \underbrace{01011}_{v_2}, \underbrace{00101}_{v_3} \rangle$$

$$G = \left[\begin{array}{cc|cc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right]_{3 \times 5}$$

indeed has rank 3 so G is a GM for C.

Encoding rule is c = mG.

$$d(C) = 2, e = 0$$

Note

Any matrix row equivalent to G is also a GM for C, but yields a different encoding rule.

systematic, standard form

Let matrix $[I_k|A]_{k\times n}$ is a GM for an (n,k)-code C. If an (n,k)-code has a GM of this form, then C is systematic, and the GM is in standard form.

Example:

 $C = \langle 100011, 101010, 100110 \rangle$ is a non-systematic (6, 3)-code. A GM for C is

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Another GM for C is

$$G_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Another GM for C:

$$G_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

C is not systematic.

However, if every codeword is permuted by moving the second bit to a new fourth bit, then we get a new code C' that is linear, and has the same n, k, d as C.

equivalent

Let C be an (n, k)-code. If π is a permutation on $\{1, 2, ..., n\}$, Then $\pi(C)^a$ is an (n, k)-code and is said to be *equivalent* to C.

^ai.e. apply π to each codeword

Fact

- 1. If C, C' are equivalent codes, then d(C) = d(C').
- 2. Every linear code is equivalent to a systematic code.

Proof:

Let C be an (n, k)-code. Let G be a GM for C in row reduced form. Then one can permute to columns of G to get a matrix $G' = [I_k|A]$ in standard form

Then G' is a GM for a code C' that is equivalent to C.

3.2 Dual Codes

inner product

Let $x, y \in V_n(F)$. The inner product of x and y is

$$x \cdot y = \sum_{i=1}^{n} x_i y_i \in F$$

Properties For all $x, y, z \in V_n(F)$ and all $\lambda \in F$

- 1. $x \cdot y = y \cdot x$
- $2. \ x \cdot (y+z) = x \cdot y + x \cdot z$
- 3. $(\lambda x) \cdot y = \lambda (x \cdot y)$
- 4. $x \cdot x = 0$ does **not** imply that x = 0.

Example:

Consider $V_2(\mathbb{Z}_2)$

Then $(1,1) \cdot (1,1) = 0$.

dual code

Let C be an (n,k)-code over F. The dual code of C is

$$C^{\perp} = \{ x \in V_n(F) : x \cdot c = 0, \ \forall c \in C \}$$

orthogonal

If $x, y \in V_n(F)$ and $x \cdot y = 0$, then x, y are orthogonal.

Theorem 3.2

If C is an (n,k)-code over F, then C^{\perp} is an (n,n-k)-code over F.

Proof:

Let v_1, v_2, \ldots, v_k be a basis for C.

Claim Let $x \in V_n(F)$. Then $x \in C^{\perp}$ iff $v_1 \cdot x = v_2 \cdot x = \ldots = v_k \cdot x = 0$. (\Longrightarrow) If $x \in C^{\perp}$, then $x \cdot c \ \forall c \in C$. In particular, $x \cdot v_1 = 0, \ldots, x \cdot v_k = 0$. (\Longleftrightarrow) Suppose $x \cdot v_1 = x \cdot v_2 = \ldots = x \cdot v_k = 0$. Let $c \in C$. We can write $c = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k$, $v_i \in F$

$$c = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k, \qquad v_i \in F$$

Then $x \cdot c = \lambda_1(x \cdot v_1) + \ldots + \lambda_k(x \cdot v_k) = 0$. Hence $x \in C^{\perp}$.

$$G = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix}_{k \times n}$$

Then $x \in C^{\perp}$ iff $Gx^T = 0$. So C^{\perp} is the nullspace of G. Hence C^{\perp} is an (n-k)-dimensional subspace of $V_n(F)$.

Theorem 3.3

If C is a linear code, then $(C^{\perp})^{\perp} = C$.

Proof:

Let C be an (n,k)-code, then C^{\perp} is an (n,n-k)-code. So $(C^{\perp})^{\perp}$ is an (n,k)-code. But $C \subseteq (C^{\perp})^{\perp}$ by definition of C^{\perp} .

Suppose C is a code over F = GF(q). Then $|C| = q^k$ and $|(C^{\perp})^{\perp}| = q^k$.

$$\therefore C = (C^{\perp})^{\perp}.$$

Theorem 3.4: Constructing a GM for C^{\perp}

Let C be an (n,k)-code with GM $G = [I_k | A_{k \times (n-k)}]_{k \times n}$. Then a GM for C^{\perp} is

$$H = \left[-A^T | I_{n-k} \right]_{(n-k) \times n}$$

Proof:

rank(H) = n - k, so H is indeed a GM for some (n, n - k)-code \overline{C} .

$$GH^{T} = [I_{k}|A] \left[\frac{-A}{I_{n-k}} \right] = -A + A = 0$$

Since $GH^T = 0$, every row of H is orthogonal to every row of G. So, every vector in the row space of H is orthogonal to every vector in the row space of G. Hence $\overline{C} \subseteq C^{\perp}$. Since $\dim(\overline{C}) = \dim(C^{\perp})$, we have $\overline{C} = C^{\perp}$.

parity-check matrix

A GM for C^{\perp} is called a *parity-check matrix* (PCM) for C.

Example:

Consider a (5,2)-code C over \mathbb{Z}_3 with GM

$$G = \begin{bmatrix} 2 & 0 & 2 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}_{2 \times 5}$$

For C: $q = 3, n = 5, k = 2, M = 3^2 = 9$.

$$C = \{00000, 20210, 10120, 11001, 22002, 01211, 12212, 21121, 02122\}$$

Now find a GM for C^\perp

$$\begin{bmatrix} 2 & 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{row reductions}} \begin{bmatrix} 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix}$$

So,

$$H = \left[\begin{array}{cc|ccc} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \end{array} \right]$$

is a GM for C^{\perp} which is an (5,3)-code over \mathbb{Z}_3 .

Note

Let C be an (n, k)-code over F with GM G:

- 1. C^{\perp} is the nullspace of G.
- 2. C^{\perp} is an (n, n-k)-code over F.
- $3. \ (C^{\perp})^{\perp} = C$
- 4. Let H be a GM for C^{\perp} , then H is a PCM for C (by definition).
- 5. G is a PCM for C^{\perp} .
- 6. $GH^T = 0$.
- 7. For $x \in V_n(F), x \in C$ iff $Hx^T = 0$.

[C is the nullspace of H.]

Theorem 3.5

Let C be an (n,k)-code over F, and let H be a PCM for C. Then $d(C) \geq s$ iff every s-1 cols of H are linearly independent over F.

Proof:

Let h_1, h_2, \ldots, h_n be the cols of H.

 \Leftarrow) Suppose $d(C) \leq s-1$, so $\omega(C) \leq s-1$. Let $c \in C$, with $1 \leq \omega(C) \leq s-1$. WLOG, suppose $c_j = 0$, $\forall s \leq j \leq n$. Since $c \in C$, we have $Hc^T = 0$. $\therefore c_1h_1 + c_2h_2 + \ldots + c_{s-1}h_{s-1} = 0$

$$\therefore c_1h_1 + c_2h_2 + \ldots + c_{s-1}h_{s-1} = 0$$

Since $\omega(C) \geq 1$, this is a non-trivial linear combinations of h_1, \ldots, h_{s-1} that equal 0. So h_1, \ldots, h_{s-1} are linear dependent over F.

 \implies) Suppose there are s-1 cols of H that are linear dependent over F, say h_1, \ldots, h_{s-1} . So we can write $c_1h_1 + c_2h_2 + \ldots + c_{s_1}h_{s-1}$ where $c_j \in F$, not

Let
$$c = (c_1, c_2, \dots, c_{s-1}, \underbrace{0, \dots, 0}_{n-s+1}) \in V_n(F)$$
.

Then $Hc^T = 0$. So $c \in C$. And $1 \le \omega(C) \le s - 1$, so $d(C) \le s - 1$.

Corrollary 3.6

Let C be an (n,k)-code over F with PCM H. Then d(C) is the smallest number of cols of H that are linearly dependent over F.

Example:

Recall we found a PCM

$$H = \left[\begin{array}{cc|cc} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \end{array} \right]$$

for a (5,2)-code C over \mathbb{Z}_3 .

Find d(C)

- No 0 col in $H \implies d(C) \ge 2$
- \bullet No two linearly dependent cols in H (since no repeated cols, and no col is 2 times another cols $\implies d(C) \ge 2$

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

so columns 1, 3, 4 are linearly dependent over \mathbb{Z}_3 . Then $d(C) \not\geq 4$, so d(C) = 3.

Example:

C be a binary code, with PCM H

- d(C) = 1 iff H has a 0 column.
- d(C) = 2 iff the cols of H are non-zero and two are the same.
- d(C) = 3 iff the cols of H are non-zero, distinct, and one column is the sum of two other (distinct) columns.

Example: Construct a (7, 4, 3)-binary code C

Consider a PCM for C:

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}_{3 \times 7}$$

This is a Hamming Code of order 3 over \mathbb{Z}_2 .

3.3 Perfect Code

perfect code

Let C be an [n, M]-code C over A of distance d. Then

$$M\sum_{i=0}^{e} \binom{n}{i} (q-i)^i \le q^n$$

where $e = \lfloor \frac{d-1}{2} \rfloor$. [Sphere packing bound]

Then C is perfect if

$$M\sum_{i=0}^{e} \binom{n}{i} (q-i)^i = q^n$$

Note

If C is perfect, then IMLD = CMLD.

For fixed n, q, d, a perfect code maximized $R = \frac{\log_q M}{n}$.

Example:

 $C = GF(q)^n$ is a (trivial) perfect code with d = 1.

Example:

 $C = \{\underbrace{0 \dots 0}_{n}, \underbrace{1 \dots 1}_{n}\}$ over \mathbb{Z}_2 is a perfect code if n is odd. (distance = n).

Proof:

$$2\left(\sum_{i=0}^{e} \binom{n}{i}\right) = 2\left(\binom{n}{0} + \dots + \binom{n}{e}\right)$$
$$= \binom{n}{0} + \dots + \binom{n}{e} + \binom{n}{e+1} + \dots + \binom{n}{n}$$
$$= 2^{n}$$

Exercise

Prove that every perfect code must have odd distance.

Theorem 3.7: Tietäräinen, 1973

The only perfect codes are

- (i) $V_n(GF(q))$
- (ii) The binary replication code of odd length.
- (iii) The (23, 12, 7)-binary Golay code and all codes equivalent to it.
- (iv) The (11, 6, 5)-ternary Golay and all codes equivalent to it.

A GM is

$$G = \left[\begin{array}{c|cccc} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 \end{array} \right]_{6 \times 11}$$

(v) The Hamming codes and all codes of the same [n, M, d] parameters as them. (d = 3).

^aover \mathbb{Z}^3

Hamming code of order r over GF(q)

A Hamming code of order r over GF(q) is a linear code over GF(q) with $n = \frac{q^r - 1}{q - 1}$, k = n - r and PCM a $r \times n$ matrix whose columns are nonzero & no two are scalar multiples of each other.

Example: A Hamming code of order r = 3 over GF(2)

is a (7,4,3)-binary code with PCM

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}_{3 \times 7}$$

Example: A Hamming code of order r = 3 over GF(3)

is a (13, 10, 3)-code over GF(3) with PCM

Observations

- 1. For every nonzero vector $v \in V_r(GF(q))$, exactly one scalar of v must be a column of a PCM (for the Hamming code of order r over GF(q)) $n = \frac{q^r 1}{q 1}$
- 2. The dimension of the code is indeed k, since $\operatorname{rank}(P(M)) = r = n k$. Since $\lambda_i e_i$ ($e_i = i^{th}$ unit vector, λ_i 's are non-zero scalars) are cols of PCM.
- 3. The Hamming codes have distance 3. (since $\lambda_1 e_1, \lambda_2 e_2$ and $\lambda_3 (e_1 + e_2)$ are cols of H for some scalar multiples $\lambda_1, \lambda_2, \lambda_3$)
- 4. The Hamming codes are perfect:

$$M \sum_{i=0}^{e} {n \choose i} (q-1)^i = q^{n-r} \left(1 + n(q-1) \right)$$
$$= q^{n-r} \left(1 + \frac{q-1}{q-1} (q-1) \right)$$
$$= q^n$$

3.4 Error Correction (for Hamming Codes)

error vector

Suppose $c \in C$ is transmitted. Suppose $r \in V_n(F)$ is received. The *error* vector is e = r - c. (c + e = r)

Example:

Over \mathbb{Z}_3 , if c = (120212) is sent and r = (122102) is received, then e = (00220).

Decoding algorithm for single-error correcting codes (e.g. Hamming codes)

Let H be a PCM for an (n, k)-code C over GF(q) with $d \geq 3$.

Recall $c \in C$ is sent, $r \in V_n(GF(q))$ is received, the *error vector* is e = r - c.

Main idea $Hr^T = H(c+e)^T = Hc^T + He^T = He^T$

syndrome

If $r \in V_n(GF(q))$, $s = Hr^T$ is called the *syndrome* of r.

Note

- 1) r and e have the same syndrome.
- 2) If e = 0, then $He^T = 0$
- 3) If $\omega(e) = 1$, say $e = (0, \dots, \underbrace{\alpha}_{i^{th} \text{ position}}, \dots, 0)$ where $\alpha \neq 0$.

Then $He^T = \alpha h_i$ (nonzero), where $h_i = i^{th}$ col of H.

4) Note: The converses of 2) and 3) are false.

Algorithm 1: Decoding algorithm (for single error-correcting codes)

 $\overline{\text{Given}: H, r}$

- 1 Compute $s = Hr^T$
- 2 If $\omega(s) = 0$, then accept r. (STOP)
- **3** Compare r with the columns of H. If $s = \alpha h_i$ (where $\alpha \neq 0$), then $e = (0, \ldots, \alpha_{2}, \ldots, 0)$, and correct r to c = r - e. (STOP)
- 4 Reject. NOT NEEDED if H is a Hamming code (because it is perfect)

Claim If $\omega(e) \leq 1$, then the decoding algorithm always makes the correct decision.

Note

If H is a Hamming code & $\omega(e) \geq 2$, then this decoding algorithm always makes the wrong decision.

Example:

Consider the (7,4,3)-binary Hamming code with PCM

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}_{3 \times 7}$$

- 1. Compute $s = Hr^T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, which is the 6^{th} col of H.

 - 3. Decode r to c = (0111100). [Check $Hc^T = 0$]

3.5 General Decoding Problem for binary linear codes

Instance

- An $(n-k) \times n$ matrix H over GF(2) with rank(H) = n k.
- $r \in V_n(GF(2))$

Find Find a vector $e \in V_n(GF(2))$ of minimum weight with $Hr^T = He^T$.

Fact This problem is NP-hard¹.

Decoding Linear Codes

Let C be an (n, k)-code over F = GF(q) with PCM H.

$\equiv \pmod{C}$

We write $x \equiv y \pmod{C}$, where $x, y \in V_n(F)$ if $x - y \in C$.

Note

- 1) $\equiv \pmod{C}$ is an equivalence relation. (Reflexive, Symmetric, Transitive)
- 2) So, the set of equivalence classes partitions $V_n(F)$.
- 3) The equivalence class containing $x \in V_n(F)$ is called a *coset* of $V_n(F)$.

This class is $\{y \in V_n(F) : y \equiv x \pmod{C}\} = \{x + c : c \in C\} = C + x.$

We call C = x the coset of C represented by x. (See the example below)

- 4) C + 0 = C
- 5) If $y \in C + x$, then C + y = C + x
- 6) Every coset has size q^k

- P = problems solvable in "polynomial time" (i.e. efficiently)
- NP = a "certain" class of problems including many problems of strong practical interest which do not know to solve efficiently.
- \bullet NP-hard: If any single problem in this class of problems can be solved efficiently, then so can all problems in NP (in which, P=NP)

 $^{^1\}mathrm{These}$ ideas could be found in CS 341/466/666 ...

7) # of cosets is $q^n/q^k = q^{n-k}$.

Example:

Consider the (5,2)-binary code C with GM

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

The cosets of C are:

$$C + 00000 = \{00000, 10111, 01110, 11001\}$$

$$= C + 10111 = \{10111, 00000, 11001, 01110\}$$

$$= C + 01110 = \dots$$

$$= C + 11001 = \dots$$

and

$$C + 10000 = \{10000, 00111, 11110, 01001\} = C + 00111$$

which is disjoint from the previous equivalent class. And brand new cosets:

$$C + 01000 = \{01000, 11111, 00110, 10001\}$$

$$C + 00100 = \{00100, 10011, 01010, 11101\}$$

$$C + 00010 = \{00010, 10101, 01100, 11011\}$$

$$C + 00001 = \{00001, 10110, 01111, 11000\}$$

$$C + 00011 = \{00011, 10100, 01101, 11010\}$$

$$C + 11100 = \{11100, 01011, 10010, 00101\}$$

Theorem 3.8

Let
$$x, y \in V_n(F)$$
. Then $x \equiv y \pmod{C}$ iff $Hx^T = Hy^T$.

Proof:

$$x \equiv y \pmod{C} \iff H(x-y)^T = 0 \iff Hx^T = Hy^T$$

So, cosets are characterized by their syndromes.

Decoding $c \in C$ is send, $r \in V_n(F)$ is received. $e = r - c \in V_n(F)$. $Hr^T = He^T$. So, r and e belong to the same coset of C.

CMLD Given r, find a vector e of smallest weight in C+r, or, equivalently, find a vector e of smallest weight with the same syndrome as r. Then decode r to c = r - e.

IMLD Find the unique vector e of smallest weight having the same syndrome as r. If no such e exists, then reject r. Otherwise, decode r to c = r - e.

coset leader

A vector of smallest weight is a coset of C is distinguished and called a coset leader (of that coset).

3.5.1 Syndrome Decoding

Algorithm 2: Syndrome Decoding Algorithm

Given : A PCM H for an (n, k)-code C over F = GF(q)

- o Create a table of coset leaders and their syndromes. Given r, do
- 1 Compute $s = Hr^T$
- **2** Look up the coset leader corresponding to s, say ℓ .
- з Decode r to $c = r \ell$.

Example:

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}_{2 \times 5}$$

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}_{3 \times 5}$$

$$n = 5, k = 2, q = 2$$

Coset Leaders	Syndromes
00000	 000
10000	 111
01000	 110
00100	 100
00010	 010
00001	 001
00011	 011
10010	 101

Suppose r = 10111.

Compute
$$s = Hr^T = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Coset leader is $\ell = 00000$

So
$$c = r - e = 10111$$
.

Recall There is a 1-1 correspondence between cosets of C and syndromes. Also, $s = Hr^T = He^T$.

For a binary (n, k)-code C, the syndrome table has size $2^{n-k} \times n$, which is exponen-

tially large.

Goal Design decoding algorithm which require very little space.

Example:

Use only the PCH, H, which is (n-k)n bits.

The binary Golay code

4.1 The (binary) Golay code C_{23} (1949)

Let

All rows below the second are left cyclic shifts of second row.

Let
$$\hat{G} = [I_{12}|\hat{B}]_{12\times23}$$

Then \hat{G} is a GM for a (23, 12)-binary code called C_{23}

Facts

- (i) $d(C_{23}) = 7$ (proof later) So e = 3
- (ii) C_{23} is perfect:

$$2^{12} \left(\binom{23}{0} + \binom{23}{1} + \binom{23}{2} + \binom{23}{3} \right) = 2^{23}$$

4.2 The Extended Golay Code C_{24}

Let

Let $G = [I_{12}|B]_{12 \times 24}$

- (i) C₂₄ is a (24, 12, 8)-binary code (so e = 3)
 (ii) G^TG = 0 (Check this)
 (iii) Hence C₂₄ ⊆ C₂₄ (C₂₄ is a self orthogonal code)
 (iv) dim(C₂₄) = 12 and d(C₂₄) = 12, so C₂₄ = C₂₄ (C₂₄ is a self dual code)
 (v) B is symmetric (check this).
 (vi) A PCM for C₂₄ is H = [-B^T|I₁₂] = [B|I₁₂]
 (vii) Since C₂₄ = C₂₄, H is also a GM for C₂₄
 (viii) G is also a PCM for C₂₄.

Decoding Algorithm for C_{24} 4.2.1

 $s = Hr^T$ syndrome table has size $2^{12} \times 24 \approx 96,000$ bits.

Recall C_{24} is a (24, 12, 8)-binary codes with PCMs $[B|I_{12}]$ and $[I_{12}|B]$.

Decoding strategy (IMLD) Compute a syndrome of r. Find a vector e of weight ≤ 3 that has the same syndrome as r.

If no such vector e exists, then reject r; else decode r to c = r - e.

Let $r = (x, y), e = (e_1, e_2)$. [all are 12 bits in length]¹

There are cases 5 cases (not mutually exclusive) in the event $\omega(e) \leq 3$.

- (A) $w(e_1) = 0, w(e_2) = 0^2$
- (B) $1 \le w(e_1) \le 3, w(e_2) = 0$
- (C) $w(e_1) = 1$ or $2, w(e_2) = 1$
- (D) $w(e_1) = 0, 1 \le w(e_2) \le 3$
- (E) $w(e_1) = 1, w(e_2) = 1$ or 2

Theorem 4.1

Let C be an (n, k, d)-code over GF(q). Let $x \in V_n(GF(q))$ have weight $\leq \lfloor \frac{d-1}{2} \rfloor$. Then x is the unique vector of min weight in the coset of C containing x (so must be a coset leader).

Proof:

Let y be a vector in the same coset of C as x, with $y \neq x$ and

$$w(y) \le w(x) \le \left| \frac{d-1}{2} \right|$$

Then $y - x \neq 0$, and $x \equiv y \pmod{C}$, and $x - y \in C$. Now

$$w(x - y) = w(x + (-y))$$

$$\leq w(x) + w(-y)$$

$$= w(x) + w(y)$$

$$\leq \left\lfloor \frac{d - 1}{2} \right\rfloor + \left\lfloor \frac{d - 1}{2} \right\rfloor$$

$$\leq d - 1$$

contradicting d(C) = d.

¹Different presentation from textbook

²Note that I use w to represent weight from now on...

Index

A	Н
alphabet, word, length 5	Hamming code of order r over GF(q)
	Hamming distance 7
С	
characteristic	
coset leader	infinite, finite, order
D	irreducible 18
dual code	L
	linear (n, k) -code over $F \dots 24$
E	
10	0
e-error correcting code	ord(alpha)
error vector	orthogonal
	Р
F	
F[x]	parity-check matrix
field	perfect code 32
	R
G	rate 7
generator	
generator matrix	S
GF(q)	
$GF(q)^*$	subspace

INDEX 44

syndrome	35	W	
systematic, standard form	26	weight	25