ML2017 Final Project

Problem: 俄羅斯房地產 Sberbank Russian Housing Market

Team name: NTU b04902112 捲起袖子開心幹

Members:

資工二 B04902112 張凱捷 資工二 B04902023 鄭士驤 資工二 B04902048 蔡毓聰 資工二 B04611015 陳佳佑

Work division:

B04902112 - Sberbank Strong Baseline and Final Submission, Report

B04902023 - Presentation · Sberbank DNN implementation and experiments, Report

B04902048 - Pump Simple Baseline, Pump Strong Baseline, Report

B04611015 - Sberbank Simple Baseline, DengAI Simple Baseline, Report

Preprocessing / Feature Engineering

◆ Train data依照時序的價格分布,可以看出來是呈現指數成長,剛好符合Metric的RMSLE的性質,一般而言,可以不用特別對做轉換調整分布,不過為了更好的performance,還有2015俄羅斯有些突發狀況,我們還是有做了一些調整

◆ 我們對於特徵的前處理,依其目的大概可以分為過濾錯誤資料、去除極端情形、防止 overfit、新增特徵。以下敘述的前處理方式,都會用在兩個我們所使用的模型 (XGBoost, DNN)中。

□ 過濾錯誤資料

- 居住面積 > 總面積
- 廚房面積 > 居住面積
- 未知面積
- 最高樓層 = 0
- 樓層>最高樓層
- 房間數 = 0

□ 去除極端情形

- 居住面積 < 5
- 居住面積 > 300
- 居住面積比例 (居住面積/總面績) < 0.3
- 每平方米價格 (總價 / 總面績) > 600000
- 每平方米價格 (總價 / 總面績) < 10000
- 非常老的房 (建造時間 < 1500)

□ 防止Overfit

去除id

去除timestamp

□ 新增其它特徵

- 相對樓層(樓層/最高樓層)
- 廚房比例(廚房面積/總面積)
- 公寓名稱(區域名稱+離地鐵站平均距離)

□ 房價調整

• 透過House Price Index對training data的房價做標準化

Reference: http://www.globalpropertyguide.com/real-estate-house-prices/R#russia

◆ DNN模型額外前處理:除了上述的前處理之外,針對DNN模型,我們還另外對NaN做處理,處理方式如下:

□ 新增NaN特徵及改寫NaN為0

- ◆ 上述捨棄資料的前處理實作方式是將想要捨棄的資料填寫為NaN,但不適合NaN 處理,所以我們把NaN改成一個實數,就取0,但是實際上它並不是仍然是NaN, 所以我們決定新增維度
- ◆ 一共有54個維度是含有NaN,所以我們新增54個新維度,值只會是0或1,用來指該欄是否為NaN

□ 切Validation Set

◆ 切Validation Set的時候,我們想要盡量讓各種情況以相同的比例出現在Validation Set及Training Set中。我們讓對於所有54維NaN的組合,都有占總資料0.2的 Validation Set及0.8的Training Set,簡單地來說就是分Case去切Validation Set,事實上,這裡的NaN並非原始資料的NaN,它包含著經過「去除極端情形」之後的 NaN,所以這麼做等於是我們也它極端情形拉回討論,但是會至少有一個維度是 跟非極端情形不同的。

Model Description (At least two different models)

☐ Model 1 - XGBoost + shifting

□ 我們用了三個model做training,分別以不同的考量,去做feature preprocess,然後再透過ensemble,平衡每組的bias。

❖ Parameter of XGB1

• Eta: 0.05

max_depth : 6Subsample : 0.6

Colsample_bytree: 1Objective: reg:linear

• Eval_metric: rmse

❖ Parameter of XGB2

• Eta: 0.05

max_depth: 5Subsample: 0.7

• Colsample_bytree: 0.7

Objective: reg:linearEval_metric: rmse

❖ Parameter of XGB3

• Eta: 0.05

max_depth : 5Subsample : 0.7

Colsample_bytree: 0.7Objective: reg:linear

• Eval_metric: rmse

☐ Model 2 - DNN

♦ DNN1

• Loss function: RMSLE, optimizer: adam

• Layer: (350, 64, 64, 1) (input_dim = 350)

• Validation Split = 0.2

• Validation RMSLE: 0.38

Epoch: 500Batch Size: 32

Activation Function: RELU

❖ DNN2

• Validation Split = 0.2

Epoch: 300Batch Size: 128

• Activation Function: RELU

● 結構

Layer (type)	Output	Shape	Param #
======================================	(None,	80)	23760
activation_1 (Activation)	(None,	80)	0
batch_normalization_1 (Batch	(None,	80)	320
dropout_1 (Dropout)	(None,	80)	0
dense_2 (Dense)	(None,	40)	3240
activation_2 (Activation)	(None,	40)	0
dropout_2 (Dropout)	(None,	40)	0
dense_3 (Dense)	(None,	20)	820
activation_3 (Activation)	(None,	20)	0
dropout_3 (Dropout)	(None,	20)	0
dense_4 (Dense)	(None,	1)	21
Total params: 28,161 Trainable params: 28,001 Non-trainable params: 160			

● 過程

• Training loss: 0.3086

Validation loss: 0.3110Kaggle public: 0.46182

Experiments and Discussion

□ DNN 結構實驗

- ❖ 以下實驗為搜尋DNN結構做的實驗,以訓練100個epoch做的正確率做為參考
- ◆ 由於實際在測試時,會遇到卡在很高的minima,所以實驗中每一種神經元數目組合都會跑好幾次,取loss最低者來評估(不使用val_loss,因為在訓練時最小化的函數是loss而不是val_loss)
- ◆ 無隱藏層 loss: 0.4356, val loss: 0.4902
- ❖ 一個隱藏層:

- ◆ 一個隱藏層所需要的隱藏層神經元數目並沒有顯著影響,除非是太少神經元數目。另外可觀察到使用一個隱藏層的表現明顯好過無隱藏層的表現
- ❖ 兩個隱藏層:

□ DNN 易overfit

◆ 在我們嘗試使用DNN的時候發現,DNN很容易就會overfit,但有時候在validation set的上面表現又特別好,於是我們嘗試從validation的過程中選一次結果特別好的,也就是做到250epochs validation的分數大概在0.29~0.32之間,並將此model拿來預測test data,但是即便如此在kaggle public testdata上也只拿到大概0.46的分數,因此我們最後決定使用XGBoost。

□ DNN & XGB output comparison, 極端值調整

DNN

• XGB

Training data

- ◆ 由上面DNN和XGBoot的圖可以知道,XGBoost會預測出一些比較極端的房價,而 從training data的圖可以知道確實會有比較極端的情況存在,我認為DNN由於極端 training data的資料量不夠大,因此再預測的時候沒有辦法應付這種狀況。
- ◆ 利用這個結論我們做了一個猜測,將XGBoost預測出price > 20,000,000的房價再乘上1.1,因為看起來極端房價的幅度沒有像training data那麼大,結果只用了一個submission public leader board的分數就從0.30900衝到0.30867。

□ 捨棄macro.csv改而使用HPI以及fit public test data

- ◆ 由training data每個月的平均成交價格,可發現每個月的平均值其實是相差很大的 ,但是會有一定的趨勢,造成這樣波動的原因有兩個,一個是國內的通貨膨脹率 ,另一個是投資客炒房的房價指數。由美國的次級房貸事件,可了解到房價與 GDP、CPI、Inflation rate比較沒有直接的關係,而像這種房價崩盤是無法由過去 的總體經濟資料所得知,所以使用俄羅斯官方所提供的House Price Index先對 training data做初步的調整。
- ◆ 經過對public和private test data分布的測試,可以發現是隨機的,也就是說每個 public test data每一個月都有,因此我們可以透過public test data來調整output的 mean,期望能使private的分數提升。

(USA Subprime mortgage crisis 2007 ~ 2010) Reference:

http://systemisbroken.blogspot.tw/2016/03/looks-like-australias-housing-market-is.html

◆ 缺點: 這個方法雖然可以有效的提升準確度,但是通用性並不高,因為通常預測房價這件事,不應該要有未來的資料可以做validation (puclib),也不應該要有外來的

總體經濟資訊·macro.csv給了2016的資訊相當不合理·House Price Index也被 Kaggle認定為合法資料,我們認為主辦方經過這次比賽應該會好好檢討。

□ XGBoost 不同深度的分數分布

□ XGBoost 做為base learner 篩選 feature importance (top 30)

□ Feature 跟 price_doc 的 Correlation(top 30)

