Calcolo Matriciale e Ricerca Operativa
Programmazione Lineare
Programmi a variabili continue

Andrea Grosso
Dipartimento di Informatica
Università di Torino
grosso@di.unito.it - 011-6706824

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Soluzioni di base

Sommario

Programmi lineari in 2D

Forma standard dei programmi linear

Soluzioni di vertice

Soluzioni di base

Metodo grafico

$$\max \ z = c_1 x_1 + c_2 x_2$$
 soggetto a $a_{i1} x_1 + a_{i2} x_2 \leq = \geq b_i$ $i = 1, 2, \ldots, m.$

Metodo grafico

$$\max z = c_1x_1 + c_2x_2$$
 soggetto a $a_{i1}x_1 + a_{i2}x_2 \le \ge b_i$ $i=1,2,\ldots,m.$

Se un programma lineare ha solo due variabili di decisione (x_1, x_2) si presta ad essere risolto con una costruzione grafica.

▶ Rappresentare in \mathbb{R}^2 la regione ammissibile

$$S_a = \{(x_1, x_2) : a_{i1}x_1 + a_{i2}x_2 \le \ge b_i, i = 1, 2, \dots, m\}$$

Studiare le curve di livello della funzione obiettivo

$$z = c_1 x_1 + c_2 x_2$$
 (rette isocosto/isoprofitto).

$$\begin{array}{l} \max \, z = 8x_1 + 3x_2 \\ \text{soggetto a } 4x_1 + 5x_2 \, \leq 10 \\ 4x_1 + 10x_2 \! \leq 15 \\ x_2 \, \, \leq \, 1 \\ x_1, x_2 \, \, \geq 0. \end{array}$$

$$\max z = -x_1 + 3x_2$$
 soggetto a $2x_1 + 3x_2 \ge 6$
$$3x_1 - 4x_2 \le 7$$

$$x_1, x_2 \ge 0$$

$$\max z = -x_1 + 3x_2$$
 soggetto a $2x_1 + 3x_2 \ge 6$
$$3x_1 - 4x_2 \le 7$$

$$x_1, x_2 \ge 0$$

Problema illimitato.

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Soluzioni di base

Forma generale di un PL

$$\max / \min z = c_1 x_1 + \cdots + a_n x_n$$

soggetto a

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \ge b_i$$
 $i = 1, \dots, k,$
 $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \le b_i$ $i = k + 1, \dots, l,$
 $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i$ $i = l + 1, \dots, m.$

Forma generale di un PL

 S_a insieme convesso (poliedro/politopo).

Forma standard di un PL

$$\max \ z = \sum_{j=1}^n c_j x_j$$
 soggetto a
$$\sum_{j=1}^n a_{ij} x_j = b_i \qquad i = 1, \dots, m$$

$$x_1, \dots, x_n \geq 0.$$

- Programma di massimizzazione.
- Vincoli di uguaglianza.
- ▶ Disuguaglianze $x_j \ge 0$, per ogni j = 1, ..., n.

Forma standard di un PL

$$\max \ z = \sum_{j=1}^n c_j x_j$$
 soggetto a $\sum_{j=1}^n a_{ij} x_j = b_i$ $i=1,\ldots,m$ $x_1,\ldots,x_n \geq 0.$

- Programma di massimizzazione.
- Vincoli di uguaglianza.
- ▶ Disuguaglianze $x_j \ge 0$, per ogni j = 1, ..., n.

Ogni PL è equivalente a un PL in forma standard.

Da min a max.

$$\min \ z = \sum_{j=1}^n c_j x_j \iff \max \ \bar{z} = -\sum_{j=1}^n c_j x_j$$
 soggetto a $x \in S_a$ soggetto a $x \in S_a$

Eliminazione di variabili non-positive.

$$x_j \leq 0 \iff x_j = -\bar{x}_j, \ \bar{x}_j \geq 0.$$

Eliminazione di variabili libere.

$$x_j$$
 libera $\iff x_j = x_i^+ - x_i^-, x_i^+, x_i^- \ge 0.$

Eliminazione di disuguaglianze.

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \iff \sum_{j=1}^{n} a_{ij} x_{j} + \underbrace{y_{i}}_{\text{var. di slack}} = b_{i}, \quad y_{i} \geq 0.$$

Eliminazione di disuguaglianze.

$$\sum_{j=1}^n a_{ij}x_j \le b_i \iff \sum_{j=1}^n a_{ij}x_j + \underbrace{y_i}_{\text{var. di slack}} = b_i, \quad y_i \ge 0.$$

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \iff \sum_{j=1}^{n} a_{ij} x_j - \underbrace{y_i}_{\text{var. di surplus}} = b_i, \quad y_i \ge 0.$$

Esempio 1.

$$\begin{aligned} & \text{min } z = & 4x_1 + 5x_2 - x_3 \\ & \text{soggetto a} & 2x_1 + x_3 \ \geq 7 \\ & x_1 + x_2 \ \leq 16 \\ & x_1 + 2x_2 \ = 8 \\ & x_1 \geq 0, x_2 \leq 0, x_3 \text{ libera.} \end{aligned}$$

max
$$z = -4x_1 - 5x_2 + x_3$$

soggetto a $2x_1 + x_3 \ge 7$
 $x_1 + x_2 \le 16$
 $x_1 + 2x_2 = 8$
 $x_1 > 0, x_2 < 0, x_3$ libera.

$$\begin{array}{ll} \max \ z = -4x_1 - 5x_2 + x_3 \\ \text{soggetto a} & 2x_1 + x_3 \geq 7 \\ & x_1 + x_2 \leq 16 \\ & x_1 + 2x_2 = 8 \\ & x_1 \geq 0, x_2 \leq 0, x_3 \text{ libera.} \\ & x_2 = -\bar{x}_2, \quad \bar{x}_2 \geq 0. \end{array}$$

$$\begin{array}{ll} \max \ z = -4x_1 + 5\bar{x}_2 + x_3 \\ \text{soggetto a} & 2x_1 + x_3 \, \geq 7 \\ & x_1 - \bar{x}_2 \, \leq 16 \\ & x_1 - 2\bar{x}_2 \, = 8 \\ & x_1, \bar{x}_2 \geq 0, x_3 \ \text{libera}. \end{array}$$

$$\begin{array}{ll} \max \ z = -4x_1 + 5\bar{x}_2 + x_3 \\ \text{soggetto a} & 2x_1 + x_3 \geq 7 \\ & x_1 - \bar{x}_2 \leq 16 \\ & x_1 - 2\bar{x}_2 = 8 \\ & x_1, \bar{x}_2 \geq 0, x_3 \ \text{libera}. \\ \\ x_3 = x_3^+ - x_3^-, \quad x_3^+, x_3^- \geq 0. \end{array}$$

$$\begin{array}{ll} \text{max } z = -4x_1 + 5\bar{x}_2 + x_3^+ - x_3^- \\ \text{soggetto a} & 2x_1 + x_3^+ - x_3^- \geq 7 \\ & x_1 - \bar{x}_2 & \leq 16 \\ & x_1 - 2\bar{x}_2 & = 8 \\ & x_1, \bar{x}_2, x_3^+, x_3^- \geq 0. \end{array}$$

$$\begin{array}{ll} \text{max } z = -4x_1 + 5\bar{x}_2 + x_3^+ - x_3^- \\ \text{soggetto a} & 2x_1 + x_3^+ - x_3^- \geq 7 \\ & x_1 - \bar{x}_2 & \leq 16 \\ & x_1 - 2\bar{x}_2 & = 8 \\ & x_1, \bar{x}_2, x_3^+, x_3^- \geq 0. \end{array}$$

$$\begin{array}{ll} \text{max } z = -4x_1 + 5\bar{x}_2 + x_3^+ - x_3^- \\ \text{soggetto a} & 2x_1 + x_3^+ - x_3^- - x_4 = 7 \\ & x_1 - \bar{x}_2 & \leq 16 \\ & x_1 - 2\bar{x}_2 & = 8 \\ & x_1, \bar{x}_2, x_3^+, x_3^-, x_4 \geq 0. \end{array}$$

$$\begin{array}{ll} \text{max } z = -4x_1 + 5\bar{x}_2 + x_3^+ - x_3^- \\ \text{soggetto a} & 2x_1 + x_3^+ - x_3^- - x_4 = 7 \\ & x_1 - \bar{x}_2 + x_5 = 16 \\ & x_1 - 2\bar{x}_2 = 8 \\ & x_1, \bar{x}_2, x_3^+, x_3^-, x_4, x_5 \geq 0. \end{array}$$

Esempio 2.

$$\begin{array}{ll} \max \ z = 8x_1 + 3x_2 \\ \text{soggetto a} & 4x_1 + \ 5x_2 \le \! 10 \\ & 4x_1 \! + \! 10x_2 \le \! 15 \\ & x_2 \le \ 1 \\ & x_1, x_2 \ge 0. \end{array}$$

Esempio 2.

$$\begin{array}{ll} \max \ z = 8x_1 + 3x_2 \\ \text{soggetto a} & 4x_1 + \ 5x_2 \le \! 10 \\ & 4x_1 \! + \! 10x_2 \le \! 15 \\ & x_2 \le 1 \\ & x_1, x_2 \ge 0. \\ \\ \max \ z = 8x_1 + 3x_2 \\ \text{soggetto a} & 4x_1 + \ 5x_2 + x_3 \! = \! 10 \\ & 4x_1 \! + \! 10x_2 + x_4 \! = \! 15 \\ & x_2 + x_5 \! = \! 1 \\ & x_1, \dots, x_5 \ge 0. \end{array}$$

Esempio 3.

max
$$z=-x_1+3x_2$$

soggetto a $2x_1+3x_2 \ge 6$
 $3x_1-4x_2 \le 7$
 $x_1,x_2 \ge 0$.

Esempio 3.

$$\max \ z = -x_1 + 3x_2$$
 soggetto a $2x_1 + 3x_2 \ge 6$ $3x_1 - 4x_2 \le 7$ $x_1, x_2 \ge 0$.
$$\max \ z = -x_1 + 3x_2$$
 soggetto a $2x_1 + 3x_2 - x_3 = 6$ $3x_1 - 4x_2 + x_4 = 7$ $x_1, x_2, x_3, x_4 \ge 0$.

Ipotesi di lavoro e notazioni

Programma in forma standard

$$\max\{z = oldsymbol{c}^T oldsymbol{x} : oldsymbol{A} oldsymbol{x} = oldsymbol{b}, \ oldsymbol{x} \geq oldsymbol{0} \}$$
 $\max \ z = \sum_{j=1}^n c_i x_i$
 $\sum_{j=1}^n a_{ij} x_j = b_i \qquad i = 1, \dots, m$
 $x_j \geq 0 \qquad j = 1, \dots, n$

Dimensioni e notazione

$$\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{c} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m$$

$$S_a = \{ \boldsymbol{x} \colon \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \, \boldsymbol{x} \geq \boldsymbol{0} \}$$

$$\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n).$$

 $\mathbf{x} = \text{variabili di controllo}$

Ipotesi sul rango

 $\rho(\mathbf{A}) = m, m < n - \underline{no}$ equazioni ridondanti o contraddittorie.

Infinite soluzioni per $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Sommario

Programmi lineari in 2D

Forma standard dei programmi linear

Soluzioni di vertice

Soluzioni di base

Insiemi convessi

▶ Dati $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, $\alpha \in [0, 1]$ il punto

$$\mathbf{x} = \mathbf{v} + \alpha(\mathbf{u} - \mathbf{v}) =$$

= $\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}$

è una combinazione lineare convessa di u, v.

- ▶ Un insieme $S \subseteq \mathbb{R}^n$ è *convesso* se per ogni coppia $u, v \in S$ tutte le combinazioni lineari convesse di u, v sono elementi di S.
- ▶ Dato S convesso, un punto $\mathbf{x} \in S$ è un *vertice* di S se *non esistono* $\mathbf{u}, \mathbf{v} \in S$, $\mathbf{u} \neq \mathbf{v}$, $\alpha \in (0,1)$ tali che

$$\mathbf{x} = \alpha \mathbf{u} + (1 - \alpha) \mathbf{v}.$$

▶ Dato S convesso, un punto $x \in S$ è un *vertice* di S se *non esistono* $u, v \in S$, $u \neq v$, tali che

$$\mathbf{x} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}.$$

Vertici della regione ammissibile

Teorema. Se il programma lineare

$$\max\{z = \boldsymbol{c}^T \boldsymbol{x} \colon \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \, \boldsymbol{x} \geq \boldsymbol{0}\}$$

ammette soluzioni ottime, allora almeno una di esse è un vertice di $S_a = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}.$

Vertici della regione ammissibile

Dimostrazione.

- ► Sia \mathbf{x}^* ottimo: $\mathbf{z}^* = \mathbf{c}^T \mathbf{x}^* = \max\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in S_a\}$.
- ► Caso banale: se $x = 0 \implies x^*$ vertice.

Dimostrazione.

- ► Sia x^* ottimo: $z^* = c^T x^* = \max\{c^T x : x \in S_a\}$.
- ► Caso banale: se $x = 0 \implies x^*$ vertice.

$$\mathbf{0} = \frac{1}{2} \mathbf{u} + \frac{1}{2} \mathbf{v} \\
\mathbf{u}, \mathbf{v} \in S_a \subseteq \mathbb{R}_+^n \qquad \Longrightarrow \quad \forall i \begin{cases} \frac{1}{2} u_i + \frac{1}{2} v_i = 0 \\ u_i, v_i \ge 0 \end{cases} \implies u_i = v_i = 0$$

Dimostrazione.

- ► Sia x^* ottimo: $z^* = c^T x^* = \max\{c^T x : x \in S_a\}$.
- ► Caso banale: se $x = 0 \implies x^*$ vertice.

$$\begin{array}{c}
\mathbf{0} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} \\
\mathbf{u}, \mathbf{v} \in S_a \subseteq \mathbb{R}_+^n
\end{array} \implies \forall_i \begin{cases}
\frac{1}{2}u_i + \frac{1}{2}v_i = 0 \\
u_i, v_i \ge 0
\end{cases} \implies u_i = v_i = 0$$

- Se x^* è un vertice, il teorema vale.

Dimostrazione.

- ► Sia x^* ottimo: $z^* = c^T x^* = \max\{c^T x : x \in S_a\}$.
- ► Caso banale: se $x = 0 \implies x^*$ vertice.

$$\begin{array}{c}
\mathbf{0} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} \\
\mathbf{u}, \mathbf{v} \in S_{\mathbf{a}} \subseteq \mathbb{R}_{+}^{n}
\end{array} \implies \forall_{i} \begin{cases} \frac{1}{2}u_{i} + \frac{1}{2}v_{i} = 0 \\ u_{i}, v_{i} \ge 0 \end{cases} \implies u_{i} = v_{i} = 0$$

- ▶ Se x* è un vertice, il teorema vale.
- ► Se x* non è un vertice...

 $ightharpoonup x^*$ non vertice $\implies \exists x' \in S_a$:

$$x'$$
 ottimo, e $\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$

- ► Se proviamo l'implicazione, il teorema vale (perché)?
- ► Siano $\boldsymbol{u}, \boldsymbol{v} \in S_a$ distinti, con $\boldsymbol{x}^* = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$.

 $ightharpoonup x^*$ non vertice $\implies \exists x' \in S_a$:

$$x'$$
 ottimo, e $\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$

- ► Se proviamo l'implicazione, il teorema vale (perché)?
- ▶ Siano $\boldsymbol{u}, \boldsymbol{v} \in S_a$ distinti, con $\boldsymbol{x}^* = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$.
 - 1. $u_i = v_i = x_i^* = 0$ per i = k + 1, ..., n.

 $ightharpoonup x^*$ non vertice $\implies \exists x' \in S_a$:

$$x'$$
 ottimo, e $\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$

- ► Se proviamo l'implicazione, il teorema vale (perché)?
- Siano $\boldsymbol{u}, \boldsymbol{v} \in S_a$ distinti, con $\boldsymbol{x}^* = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$.
 - 1. $u_i = v_i = x_i^* = 0 \text{ per } i = k+1, \ldots, n.$

$$\frac{1}{2}u_i + \frac{1}{2}v_i = 0, u_i, v_i \ge 0 \implies u_i = v_i = 0.$$

2. $\boldsymbol{u}, \boldsymbol{v}$ sono soluzioni ottime!

 $ightharpoonup x^*$ non vertice $\implies \exists x' \in S_a$:

$$x'$$
 ottimo, e $\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$

- ► Se proviamo l'implicazione, il teorema vale (perché)?
- Siano $\boldsymbol{u}, \boldsymbol{v} \in S_a$ distinti, con $\boldsymbol{x}^* = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$.
 - 1. $u_i = v_i = x_i^* = 0 \text{ per } i = k+1, \ldots, n.$

$$\frac{1}{2}u_i + \frac{1}{2}v_i = 0, u_i, v_i \ge 0 \implies u_i = v_i = 0.$$

2. u, v sono soluzioni ottime! Se per assurdo $c^T u < z^*$:

$$\boldsymbol{z}^* = \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x}^* = \frac{1}{2} \underbrace{\boldsymbol{c}^{\mathsf{T}} \boldsymbol{u}}_{\leq \boldsymbol{z}^*} + \frac{1}{2} \underbrace{\boldsymbol{c}^{\mathsf{T}} \boldsymbol{v}}_{\leq \boldsymbol{z}^*} < \boldsymbol{z}^* \implies \boldsymbol{z}^* < \boldsymbol{z}^*.$$

- ► Sia $y = (u v) = (y_1, ..., y_n)^T \neq 0.$
- ▶ Ipotesi: almeno un $y_j < 0$ (se no, $\mathbf{y} = \mathbf{v} \mathbf{u}$).

- ► Sia $y = (u v) = (y_1, ..., y_n)^T \neq 0.$
- ▶ Ipotesi: almeno un $y_j < 0$ (se no, $\mathbf{y} = \mathbf{v} \mathbf{u}$).
- ► Consideriamo le soluzioni

$$\mathbf{x}' = \mathbf{x}^* + \varepsilon \mathbf{y}.$$

Per quali $\varepsilon > 0$ risulta $\mathbf{x}' \in S_a$?

$$x' \in S_a \iff Ax' = b, x' \ge 0.$$

- ► Sia $y = (u v) = (y_1, ..., y_n)^T \neq 0.$
- ▶ Ipotesi: almeno un $y_j < 0$ (se no, $\mathbf{y} = \mathbf{v} \mathbf{u}$).
- Consideriamo le soluzioni

$$\mathbf{x}' = \mathbf{x}^* + \varepsilon \mathbf{y}.$$

Per quali $\varepsilon > 0$ risulta $\mathbf{x}' \in S_a$?

$$x' \in S_a \iff Ax' = b, x' \geq 0.$$

1.
$$\mathbf{A}\mathbf{x}' = \mathbf{b}$$
.
$$\mathbf{A}\mathbf{x}' = \mathbf{A}(\mathbf{x}^* + \varepsilon \mathbf{y}) = \mathbf{A}\mathbf{x}^* + \varepsilon \mathbf{A}(\mathbf{u} - \mathbf{v}) = \mathbf{A}\mathbf{x}^* + \varepsilon \mathbf{A}\mathbf{u} - \varepsilon \mathbf{A}\mathbf{v} = \mathbf{b}$$

2.
$$x' \geq 0$$
....

Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente i = 1, ..., n:

Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente i = 1, ..., n: 1. $i \in k+1, ..., n$: $x_i^* = u_i = v_i = 0$, $y_i = (u_i - v_i) = 0$, quindi

$$x_i' = x_i^* + \varepsilon y_i = 0 \quad \forall \varepsilon > 0.$$

- Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente $i = 1, \dots, n$:
 - 1. $i \in k+1,...,n$: $x_i^* = u_i = v_i = 0$, $y_i = (u_i v_i) = 0$, quindi

$$x_i' = x_i^* + \varepsilon y_i = 0 \quad \forall \varepsilon > 0.$$

- 2. $i \in 1, ..., k$:
 - 2a. $y_i \ge 0 \implies x_i' = x_i^* + \varepsilon y_i \ge x_i^* \ge 0$.
 - 2b. $y_i < 0$: $x_i^* + \varepsilon y_i \ge 0$ solo se

$$\varepsilon \leq -\frac{x_i^*}{y_i}.$$

- Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente $i = 1, \dots, n$:
 - 1. $i \in k+1, ..., n$: $x_i^* = u_i = v_i = 0$, $y_i = (u_i v_i) = 0$, quindi

$$x_i' = x_i^* + \varepsilon y_i = 0 \quad \forall \varepsilon > 0.$$

2. $i \in 1, ..., k$:

2a.
$$y_i \ge 0 \implies x_i' = x_i^* + \varepsilon y_i \ge x_i^* \ge 0$$
.

2b. $y_i < 0$: $x_i^* + \varepsilon y_i \ge 0$ solo se

$$\varepsilon \leq -\frac{x_i^*}{y_i}.$$

▶ In $\mathbf{x} = \mathbf{x}^* + \varepsilon \mathbf{y}$, fissiamo

$$\varepsilon = \min \left\{ -\frac{x_i^*}{y_i} : y_i < 0 \right\}.$$

Conclusione. Per la scelta di ε , almeno una delle

$$x_i^* + \varepsilon y_i \ge 0$$
 $y_i < 0$

satura (=è soddisfatta per uguaglianza), quindi

- ightharpoonup almeno una x'_1, \ldots, x'_k è = 0.

$$\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$$

► Inoltre:

$$c^{T}x' = c^{T}(x^{*} + \varepsilon y) =$$

$$= c^{T}x^{*} + \varepsilon c^{T}u - \varepsilon c^{T}v =$$

$$= z^{*} + \varepsilon z^{*} - \varepsilon z^{*} = z^{*}.$$

 \mathbf{x}' ottima.

Lemma. Sia $\mathbf{x} \in S_a = \{\mathbf{x} \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}.$ \mathbf{x} è un vertice di $S_a \iff$ le colonne di \mathbf{A} in $\{\mathbf{A}_j \colon x_j > 0\}$ sono linearmente indipendenti.

Dimostrazione. Sia

$$\mathbf{x} = (\underbrace{x_1, \dots, x_k}_{>0}, \underbrace{x_{k+1}, \dots, x_n}_{=0}).$$

 $m{x}$ vertice $\Longrightarrow m{A}_1, \dots, m{A}_k$ l.i. Per assurdo: $m{A}_1, \dots, m{A}_k$ non l.i. Allora esistono y_1, \dots, y_k : $\sum_{j=1}^k y_k m{A}_j = m{0}$. Poniamo $m{y} = (y_1, \dots, y_k, 0, \dots, 0)^T \in \mathbb{R}^n$. Nota: $m{A} m{y} = \sum_{j=1}^n y_j m{A}_j = \sum_{j=1}^k y_j m{A}_j = m{0}$.

Dimostrazione. Sia

$$\mathbf{x} = (\underbrace{x_1, \dots, x_k}_{>0}, \underbrace{x_{k+1}, \dots, x_n}_{=0}).$$

 $m{x}$ vertice $\Longrightarrow m{A}_1, \dots, m{A}_k$ l.i. Per assurdo: $m{A}_1, \dots, m{A}_k$ non l.i. Allora esistono y_1, \dots, y_k : $\sum_{j=1}^k y_k m{A}_j = m{0}$. Poniamo $m{y} = (y_1, \dots, y_k, 0, \dots, 0)^T \in \mathbb{R}^n$. Nota: $m{A} m{y} = \sum_{j=1}^n y_j m{A}_j = \sum_{j=1}^k y_j m{A}_j = m{0}$.

Definiamo

$$u = x + \varepsilon y$$
, $v = x - \varepsilon y$ $(\varepsilon > 0)$.

Dimostrazione. Sia

$$\mathbf{x} = (\underbrace{x_1, \dots, x_k}_{>0}, \underbrace{x_{k+1}, \dots, x_n}_{=0}).$$

 $m{x}$ vertice $\Longrightarrow m{A}_1, \dots, m{A}_k$ l.i. Per assurdo: $m{A}_1, \dots, m{A}_k$ non l.i. Allora esistono y_1, \dots, y_k : $\sum_{j=1}^k y_k m{A}_j = m{0}$. Poniamo $m{y} = (y_1, \dots, y_k, 0, \dots, 0)^T \in \mathbb{R}^n$.

Nota:
$$\mathbf{A}\mathbf{y} = \sum_{j=1}^{n} y_{j} \mathbf{A}_{j} = \sum_{j=1}^{\kappa} y_{j} \mathbf{A}_{j} = \mathbf{0}.$$

Definiamo

$$u = x + \varepsilon y$$
, $v = x - \varepsilon y$ $(\varepsilon > 0)$.

$$\mathbf{A}\mathbf{u} = \underbrace{\mathbf{A}\mathbf{x}}_{=\mathbf{b}} + \varepsilon \underbrace{\mathbf{A}\mathbf{y}}_{=\mathbf{0}} = \mathbf{b}.$$

ightharpoonup Anche Av = b.

- ▶ Per $\varepsilon >=$ sufficientemente piccolo, $\boldsymbol{u}, \boldsymbol{v} \geq 0$.
- Scegliamo

$$arepsilon \leq -rac{x_i}{y_i} \quad orall \, y_i < 0 \qquad \qquad ext{per avere } oldsymbol{u} \geq oldsymbol{0}$$
 $arepsilon \leq rac{x_i}{y_i} \quad orall y_i > 0 \qquad \qquad ext{per avere } oldsymbol{v} \geq oldsymbol{0}$

- ▶ Per $\varepsilon >=$ sufficientemente piccolo, $\boldsymbol{u}, \boldsymbol{v} \geq 0$.
- Scegliamo

$$arepsilon \leq -rac{x_i}{y_i} \quad orall \, y_i < 0 \qquad \qquad ext{per avere } oldsymbol{u} \geq oldsymbol{0}$$
 $arepsilon \leq rac{x_i}{y_i} \quad orall y_i > 0 \qquad \qquad ext{per avere } oldsymbol{v} \geq oldsymbol{0}$

▶ Allora $\boldsymbol{u}, \boldsymbol{v} \in S_a$.

$$\frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} = \frac{1}{2}(\mathbf{x} + \varepsilon \mathbf{y}) + \frac{1}{2}(\mathbf{x} - \varepsilon \mathbf{y}) = \mathbf{x}$$
 ASSURDO!

- ightharpoonup x non vertice di $S_a \implies A_1, \ldots, A_k$ non l.i.
- ightharpoonup Per assurdo: A_1, \ldots, A_k l.i.
- ▶ Se x non è vertice, esistono $u, v \in S_a$ distinti tali che

$$\mathbf{x} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}.$$

- Osservazione: $u_j = v_j = 0$ per $j = k + 1, \dots, n$.
- ► Allora:

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_{j} \mathbf{A}_{j} = \sum_{j=1}^{k} x_{j} \mathbf{A}_{j} = \mathbf{b}$$

$$\mathbf{A}\mathbf{u} = \sum_{j=1}^{n} u_{j} \mathbf{A}_{j} = \sum_{j=1}^{k} u_{j} \mathbf{A}_{j} = \mathbf{b}$$

$$\mathbf{A}\mathbf{v} = \sum_{j=1}^{n} v_{j} \mathbf{A}_{j} = \sum_{j=1}^{k} v_{j} \mathbf{A}_{j} = \mathbf{b}$$

ASSURDO.

max
$$z=8x_1+3x_2$$
 soggetto a $4x_1+5x_2\leq 10$ $4x_1+10x_2\leq 15$ $x_2\leq 1$ $x_1,x_2\geq 0$.

max
$$z = 8x_1 + 3x_2$$
 max $z = 8x_1 + 3x_2$
soggetto a $4x_1 + 5x_2 \le 10$ soggetto a $4x_1 + 5x_2 + x_3 = 10$
 $4x_1 + 10x_2 \le 15$ $4x_1 + 10x_2 + x_4 = 15$
 $x_2 \le 1$ $x_2 + x_5 = 1$
 $x_1, x_2 \ge 0$. $x_1, \dots, x_5 \ge 0$.
A' $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

$$\begin{pmatrix} 4 & 5 & 1 & 0 \\ 4 & 10 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
B($x_1 = \frac{5}{4}, x_2 = 1, x_3 = 0, x_4 = 0, x_5 = 0$)
$$\begin{pmatrix} 4 & 5 & 1 & 0 \\ 4 & 10 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$C(x_1 = \frac{5}{2}, x_2 = 0, x_3 = 0, x_4 = 5, x_5 = 1)$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Soluzioni di base

Soluzioni di base di un sistema di equazioni lineari

Sistema ridotto (senza equazioni contraddittorie)

$$\max\{\boldsymbol{c}^{T}\boldsymbol{x}\colon \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\,\boldsymbol{x}\geq\boldsymbol{0}\} \qquad \boldsymbol{A}\in\mathbb{R}^{m\times n},\, \rho(\boldsymbol{A})=m< n$$

$$x_{j_{1}} \quad x_{j_{2}} \quad \dots \quad x_{j_{m}} \quad x_{j_{m+1}} \quad \dots \quad x_{j_{n}}$$

$$\begin{pmatrix} 1 & 0 & \dots & 0 & \alpha_{1,k+1} & \dots & \alpha_{1n} & \beta_{1} \\ 0 & 1 & \dots & 0 & \alpha_{2,k+1} & \dots & \alpha_{2n} & \beta_{2} \\ \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & 0 & \dots & 1 & \alpha_{m,m+1} & \dots & \alpha_{mn} & \beta_{m} \end{pmatrix}.$$

$$x_{j_{1}} = \beta_{1} - \sum_{k=m+1}^{n} \alpha_{1j_{k}}x_{j_{k}}$$

$$x_{j_{2}} = \beta_{2} - \sum_{k=m+1}^{n} \alpha_{2j_{k}}x_{j_{k}}$$

$$\dots = \dots$$

$$x_{j_{m}} = \beta_{m} - \sum_{k=m+1}^{n} \alpha_{m,k}x_{j_{k}}$$

Soluzioni di base di un sistema di equazioni lineari

- ▶ $B = \{x_{j_1}, \dots, x_{j_m}\}$ insieme di variabili di base (o base).
- $N = \{x_{j_{m+1}}, \dots, x_{j_n}\}$ insieme di variabili fuori base.
- ► La soluzione

$$x_{j_i} = \beta_i$$
 $i = 1, \dots, m$
 $x_{j_i} = 0$ $i = m + 1, \dots, n$

è l'unica soluzione che ha $x_{j_{m+1}}, \ldots, x_{j_n} = 0$ ed è chiamata soluzione di base (associata B) del sistema.

- ▶ $B = \{x_{j_1}, x_{j_2}, \dots, x_{j_m}\}$ è un insieme di *variabili di base* (o in breve base) \iff le colonne $\mathbf{A}_{j_1}, \dots, \mathbf{A}_{j_m}$ formano una base dello spazio generato dalle colonne di \mathbf{A} .
- ▶ $\mathbf{A}_B = (\mathbf{A}_i : x_i \in B)$ matrice di base (quadrata e invertibile!).

Insiemi di variabili di base

Notazioni.

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{N} \end{pmatrix} \qquad \mathbf{x}_{B} = (x_{j} : x_{j} \in B)$$

$$\mathbf{x}_{N} = (x_{j} : x_{j} \in N)$$

$$\mathbf{c} = \begin{pmatrix} \mathbf{c}_{B} \\ \mathbf{c}_{N} \end{pmatrix} \qquad \mathbf{c}_{B} = (c_{j} : c_{j} \in B)$$

$$\mathbf{c}_{N} = (c_{j} : c_{j} \in N)$$

$$\mathbf{A} = (\mathbf{A}_{B} \mathbf{A}_{N})$$

$$\mathbf{A}_{B} = (\mathbf{A}_{j} : x_{j} \in B)$$

$$\mathbf{A}_{N} = (\mathbf{A}_{i} : x_{i} \in N)$$

$$Ax = b \iff A_Bx_B + A_Nx_N = b$$

 $x_B = A_B^{-1}b - A_B^{-1}A_Nx_N$
 $x_N = 0 \implies x_B = A_B^{-1}b$

La soluzione di base del sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ associata a B è l'unica sua soluzione $\mathbf{x} = \mathbf{x}(B)$ che ha $\mathbf{x}_N = \mathbf{0}$.

$$\mathbf{x}(B) = \begin{pmatrix} \mathbf{A}_B^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix}$$

Soluzioni di base

Definizione. Se $x(B) \ge 0$, $x(B) \in S_a$ è una soluzione ammissibile di base (B è una base ammissibile). B è degenere se $x_j(B) = 0$ per qualche $x_j \in B$.

$$\begin{array}{llll} \max & z = 8x_1 + 3x_2 \\ \text{soggetto a } 4x_1 & +5x_2 + x_3 & = 10 \\ & 4x_1 & +10x_2 & +x_4 & = 5 \\ & x_2 & +x_5 & = 1 \\ & x_1, \dots, x_5 \geq 0 \end{array}$$

$$x_1 = \frac{5}{2} - \frac{5}{4}x_2 - x_3$$
 $x_2 = 2 - \frac{4}{5}x_1 - \frac{1}{5}x_3$
 $x_4 = 5 - 5x_2 + x_3$ $x_4 = -5 + 4x_2 + 2x_3$
 $x_5 = 1 - x_2$ $x_5 = -1 + \frac{4}{5}x_2 + \frac{1}{5}x_3$

Teorema fondamentale della PL. Se il programma lineare

$$\max\{z=\boldsymbol{c}^T\boldsymbol{x}\colon \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\,\boldsymbol{x}\geq\boldsymbol{0}\}$$

ammette soluzioni ottime, allora almeno una di esse è un vertice di $S_a = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}.$

Lemma. Sia $\mathbf{x} \in S_a = \{\mathbf{x} \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}\}.$ \mathbf{x} è un vertice di $S_a \iff$ le colonne di \mathbf{A} in $\{\mathbf{A}_j \colon x_j > 0\}$ sono linearmente indipendenti.

Proprietà. Sia $\bar{x} \in S_a$. \bar{x} è una soluzione ammissibile di base $\iff \bar{x}$ è un vertice di S_a .

$$ar{m{x}} = (rac{5}{4}, 1, 0, 0, 0)^T$$
 $m{A}_B = \begin{pmatrix} 4 & 5 & 0 \\ 4 & 10 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
 $m{x}_B = \begin{pmatrix} x_1 \\ x_2 \\ x_5 \end{pmatrix} = \begin{pmatrix} rac{5}{4} \\ 1 \\ 0 \end{pmatrix}$
 \rightarrow

 $x_2 + x_5 = 1$

$$\begin{array}{ll} \max \ z = 8x_1 + 3x_2 \\ \text{soggetto a} & 4x_1 + \ 5x_2 + x_3 {=} 10 \\ & 4x_1 {+} 10x_2 + x_4 {=} 15 \\ & x_2 + x_5 {=} 1 \\ & x_1, \dots, x_5 \geq 0. \end{array}$$

ightharpoonup Due insiemi di variabili di base B, B' (basi) sono adiacenti se

$$B' = (B \setminus \{x_p\}) \cup \{x_q\}.$$

- Sulla matrice ridotta di Gauss-Jordan, sia passa da una base all'altra per mezzo di un opportuno pivot $\alpha_{pq} \neq 0$ x_q entra in base, x_p esce.
- ▶ Se B è una base ammissibile, a quali condizioni una variabile x_q può entrare in base in modo da ottenere una nuova base B' ammissibile?
- ▶ Occorre scegliere in modo opportuno la variabile uscente (e quindi il pivot α_{pq} .

$$\alpha_{pq} > 0$$

$$\frac{\beta_p}{\alpha_{pq}} \le \frac{\beta_i}{\alpha_{iq}} \ \forall i = 1, \dots, m : \alpha_{iq} > 0$$