Miscellaneous Exercise on Chapter 3

Prove that:

Prove that:

$$1. \quad 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$$

2.
$$(\sin 3x + \sin x) \sin x + (\cos 3x - \cos x) \cos x = 0$$

3.
$$(\cos x + \cos y)^2 + (\sin x - \sin y)^2 = 4 \cos^2 \frac{x+y}{2}$$

4.
$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4 \sin^2 \frac{x - y}{2}$$

5. $\sin x + \sin 3x + \sin 5x + \sin 7x = 4 \cos x \cos 2x \sin 4x$

6.
$$\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$$

7. $\sin 3x + \sin 2x - \sin x = 4\sin x \cos \frac{x}{2} \cos \frac{3x}{2}$

Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ in each of the following:

8.
$$\tan x = -\frac{4}{3}$$
, x in quadrant II

9. $\cos x = -\frac{1}{3}$, x in quadrant III

10.
$$\sin x = \frac{1}{4}$$
, x in quadrant II