

Sipeed M1 Datasheet v1.11

Key Features:

- CPU: RISC-V Dual Core 64bit, with FPU, 400Mhz-500Mhz, Neural network processor
- Image Recognition: QVGA@60FPS/VGA@30FPS
- Voice Recognition: up to 8 microphones
- Deep learning framework: TensorFlow/Keras/Darknet
- Peripheral: FPIOA、UART、GPIO、SPI、I²C、I²S、WDT、TIMER、RTC etc.

Sipeed Technology www.sipeed.com

UPDATE		
V1.0	2018/10/25 Published original document	
V1.1	2019/3/6 Removed M1w description	
V1.11	2020/7/30 Modified IOs description & fixed PIN MAP picture	

	SPECIFICATION
CPU : RISC-V Dual Core 64bit, 400Mh adjustable	Powerful dual-core 64-bit open architecture-based processor with rich community resources
FPU Specifications	IEEE754-2008 compliant high-performance pipelined FPU
Debugging Support	High-speed UART and JTAG interface for debugging
Neural Network Processor (KPU)	 Supports the fixed-point model that the mainstream training framework trains according to specific restriction rules There is no direct limit on the number of network layers, and each layer of convolutional neural network parameters can be configured separately, including the number of input and output channels, and the input and output line width and column height Support for 1x1 and 3x3 convolution kernels Support for any form of activation function The maximum supported neural network parameter size for real-time work is 5MiB to 5.9MiB The maximum supported network parameter size when working in non-real time is (flash size - software size)
Audio Processor (APU)	 Up to 8 channels of audio input data, ie 4 stereo channels Simultaneous scanning pre-processing and beamforming for sound sources in up to 16 directions Supports one active voice stream output 16-bit wide internal audio signal processing Support for 12-bit, 16-bit, 24-bit, and 32-bit input data widths • Multichannel direct raw signal output Up to 192kHz sample rate Built-in FFT unit supports 512-point FFT of audio data Uses system DMAC to store output data in system memory
Static Random-Access Memory (SRAM)	The SRAM is split into two parts, 6MiB of on-chip general-purpose SRAM memory and 2MiB of on-chip AI SRAM memory, for a total of 8MiB
Field Programmable IO Array (FPIOA/IOMUX)	FPIOA allows users to map 255 internal functions to 48 free IOs on the chip
Digital Video Port (DVP)	Maximum frame size 640x480

FFT Accelerator	The FFT accelerator is a hardware implementation of the Fast Fourier Transform (FFT)
sc	OFTWARE FEATURES
FreeRtos & Standard SDK	Support FreeRtos and Standrad development kit.
MicroPython Support	Support MicroPython on M1
Machine vision	Machine vision based on convolutional neural network
Machine hearing	High performance microphone array processor
Maixpy & Maixpy IDE	https://maixpy.sipeed.com/en/

HARDWARE FEATURES		
Supply voltage of external power supply	5.0V ±0.2V	
Supply current of external power supply	> 300mA @ 5V	
Temperature rise	<30K	
Range of working temperature	-30℃ ~ 85℃	

M1 PIN MAP

M1 BLOCK DIAGRAM

SIZE		
Length	25.4mm	
Width	25.4mm	
Height	3.3 mm	

Sipeed M1 PIN ASSIGNMENT

Go to dl.sipeed.com to download the DXF file

#	PIN	#	PIN	#	PIN	#	PIN
1	JTAG_TCK	19	MIC_BCK	37	LCD_CS	55	RST
2	JTAG_TDI	20	MIC_WS	38	LCD_RST	56	LCD_D7
3	JTAG_TMS	21	MIC_DAT3	39	LCD_DC	57	LCD_D6
4	JTAG_TDO	22	MIC_DAT2	40	LCD_WR	58	LCD_D5
5	ISP_RX	23	MIC_DAT1	41	DVP_SDA	59	LCD_D4
6	ISP_TX	24	MIC_DAT0	42	DVP_SCL	60	LCD_D3
7	106	25	MIC_LED_DAT	43	DVP_RST	61	LCD_D2
8	IO7	26	SPI0_CS1	44	DVP_VSYNC	62	LCD_D1
9	108	27	SPI0_MISO	45	DVP_PWDN	63	LCD_D0
10	109	28	SPI0_SCLK	46	DVP_HSYNC	64	DVP_D7
11	IO10	29	SPI0_MOSI	47	DVP_XCLK	65	DVP_D6
12	IO11	30	SPI0_CS0	48	DVP_PCLK	66	DVP_D5
13	LED_G	31	MIC0_WS	49	GND	67	DVP_D4
14	LED_B	32	MIC0_DATA	50	GND	68	DVP_D3
15	LED_R	33	MIC0_BCK	51	5V	69	DVP_D2
16	IO15	34	12S_WS	52	5V	70	DVP_D1
17	BOOT KEY0	35	I2S_DA	53	1V8	71	DVP_D0
18	IO17	36	I2S_BCK	54	3V3	72	GND

Electrical Characteristics

Parameter	Name	Min	Тур	Max	Unit
3.3V/1.8V IO supply voltage	VDD	-	3.3/1.8	-	\overline{V}
1.8V Digital supply voltage	$DVDD_{1.8V}$	-	1.8	-	V
1.8V Analog supply voltage	$AVDD_{1.8V}$	-	1.8	-	V
0.9V Core supply voltage	$VDD_{0.9V}$	-	0.9	-	V
3.3V IO supply current	$I_{3.3V}$	1	-	-	mA
1.8V Digital supply current	$I_{1.8V}$	1	-	-	mA
1.8V Analog supply current	$I_{1.8V}$	2	-	-	mA
0.9V Core supply current	$I_{0.9V}$	30	-	-	mA
3.3V/1.8V IO input high level	V_{IH}	0.7*VDD	-	-	V
3.3V/1.8V IO input low level	V_{IL}	-	-	0.3*VDD	V
IO High output level	V_{OH}	-	VDD - 0.3	-	mV
IO Low output level	V_{OL}	-	0.3	-	mV
IO Input leakage current	I_{IL}	-	TBD*1	-	nA
IO Input capacitance	C_{PAD}	-	TBD	-	pF
Storage Temperature	T_{STR}	- 40	25	150	$^{\circ}C$
Operating Temperature	T_{OPR}	- 40	25	125	$^{\circ}C$

The above information comes from kendryte_datasheet_20181011163248_en.pdf

IO voltage configuration (Hardware)		
BANK0 (IO0-IO5)		
BANK1 (IO6-IO11)		
BANK2 (IO12-IO17)	3.3V default	
BANK3 (IO18-IO23)	5.5V delauit	
BANK4 (IO24-IO29)		
BANK5 (IO30-IO35)		
BANK6 (IO36-IO41)	1 0V default	
BANK7 (IO42-IO47)	1.8V default	
DVP_D0-DVP_D7	1 0V only	
SPI0_D0-SPI0_D7	1.8V only	
RST	1.8V only	

Progra	nmmable Driv	e Capability		
	DS[3:0]	Min(mA)	Typ(mA)	Max(mA)
	0000	3.2	5.4	8.3
	0001	4.7	8.0	12.3
	0010	6.3	10.7	16.4
Low level output current	0011	7.8	13.2	20.2
	0100	9.4	15.9	24.2
	0101	10.9	18.4	28.1
	0110	12.4	20.9	31.8
	0111	13.9	23.4	35.5
	DS[3:0]	Min(mA)	Typ(mA)	Max(mA)
	0000	5.0	7.6	11.2
	0001	7.5	11.4	16.8
	0010	10.0	15.2	22.3
High level output current	0011	12.4	18.9	27.8
	0100	14.9	22.6	33.3
	0101	17.4	26.3	38.7
	0110	19.8	30.0	44.1
	0111	22.3	33.7	49.5

The above information comes from kendryte_datasheet_20181011163248_en.pdf

Matters needing attention			
	IO_16 is used for boot mode selection. During power-on reset,		
Special pine	pull high to boot from FLASH and pull low to enter ISP mode.		
Special pins	After reset, IO_0, IO_1, IO_2, and IO_3 are JTAG pins.		
	IO_4 and IO_5 are ISP pins.		
DCT nin	Vrst range: 0 to 1.8V; Active low; Do not let the voltage of		
RST pin	RST pin be greater than 1.8V		
	It is recommended to connect the pad on the bottom of the		
Thermal design	module to a large piece of copper on the bottom plate to help		
	heat dissipation		

REFLOW PROFILE GUIDELINE

RESOURCES		
Official Website	www.sipeed.com	
Github	https://github.com/sipeed	
BBS	http://bbs.sipeed.com	
Wiki	maixpy.sipeed.com	
Sipeed Model Store	https://maixhub.com/	
SDK Reference	dl.sipeed.com/MAIX/SDK	
HDK Reference	dl.sipeed.com/MAIX/HDK	
E-mail (Technical Support)	support@sipeed.com	
Telegram Link	https://t.me/sipeed	
QQ Group	878189804	

Disclaimer and copyright notice

The information in this document, including the URL address for reference, is subject to change without notice.

The documentation is provided by Sipeed without warranty of any kind, including any warranties of merchantability, and any proposal, specification or sample referred to elsewhere. This document is not intended to be a liability, including the use of information in this document to infringe any patent rights.

Copyrights © 2019 Sipeed Limited. All rights reserved.