Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Escola de Matemática Aplicada, Fundação Getúlio Vargas

11-02-2015

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue

Single-strain model
Variable Force of Infection

Parameter estimation

Estimating S₀

Summary

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue
Single-strain model
Variable Force of Infection

Parameter estimation

Estimating S_0 Attack Ratio

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue

Single-strain model Variable Force of Infection

Parameter estimation

Estimating S_0 Attack Ratio

▶ Dengue is a Multi-Strain vector-borne disease

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks
Variable Force of Infection
Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation
Estimating S₀
Attack Ratio

- Dengue is a Multi-Strain vector-borne disease
- ▶ 4 major viral strains in circulation in Brazil

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks
Variable Force of Infection
Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation
Estimating S₀
Attack Ratio

- ▶ Dengue is a Multi-Strain vector-borne disease
- ▶ 4 major viral strains in circulation in Brazil
- Case-notification data is aggregated, i.e., does not discriminate serotype except for a handful of cases.

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation
Estimating S_0

- ▶ Dengue is a Multi-Strain vector-borne disease
- 4 major viral strains in circulation in Brazil
- Case-notification data is aggregated, i.e., does not discriminate serotype except for a handful of cases.
- ▶ It's a Seasonal disease, but recurrence pattern is hard to predict

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation Estimating S₀

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation Estimating S_0

- ▶ Dengue is a Multi-Strain vector-borne disease
- 4 major viral strains in circulation in Brazil
- Case-notification data is aggregated, i.e., does not discriminate serotype except for a handful of cases.
- ▶ It's a Seasonal disease, but recurrence pattern is hard to predict
- Vector population dynamics plays a major role in the modulation of incidence

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation Estimating S₀

- ▶ Dengue is a Multi-Strain vector-borne disease
- 4 major viral strains in circulation in Brazil
- Case-notification data is aggregated, i.e., does not discriminate serotype except for a handful of cases.
- ▶ It's a Seasonal disease, but recurrence pattern is hard to predict
- Vector population dynamics plays a major role in the modulation of incidence
- Imunological structure of the population is also a key factor, but is mostly unknown.

4 epidemics

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation Estimating S_0 Attack Ratio

Effective Reproductive number (R_t)

The effective reproductive number can be easily estimated from the incidence time-series, Y_t :

$$R_t = \left(\frac{Y_{t+1}}{Y_t}\right)^{1/n} \tag{1}$$

Where n is the ration between the length of reporting interval and the mean generation time of the disease.

Nishiura et. al. (2010)

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection

Vector dynamics

Modeling Dengue

Single-strain model Variable Force of Infection

Parameter estimation
Estimating S₀
Attack Ratio

R_t 's uncertainty

But what about the uncertainty about R_t ? If we assume that the counts Y_t are Poisson distributed for all t, we can derive the probability distribution of R_t ¹

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model

Variable Force of Infection

Parameter estimation Estimating S_0

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

¹Coelho, FC and Carvalho, LM (Submitted) ← → ← 章 → ← 章 → ● ● ◆ ○ ○ ○

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model

ariable Force of Infection

Parameter estimation
Estimating S₀
Attack Ratio

▶ A. Aegypti population dynamics display marked seasonality

- Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data
 - Flávio Codeco Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model

Parameter estimation

- ▶ A. Aegypti population dynamics display marked seasonality
- ► Temperature, Humidity and rainfall are important factors

- A. Aegypti population dynamics display marked seasonality
- ► Temperature, Humidity and rainfall are important factors
- ► Environmental stock of eggs

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks
Variable Force of Infection
Vector dynamics

Modeling Dengue
Single-strain model
Variable Force of Infection

Parameter estimation

stimating S₀

- ▶ A. Aegypti population dynamics display marked seasonality
- ▶ Temperature, Humidity and rainfall are important factors
- Environmental stock of eggs
- Effects on mosquito reproduction are non-linear

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeco Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation

- ▶ A. Aegypti population dynamics display marked seasonality
- ▶ Temperature, Humidity and rainfall are important factors
- Environmental stock of eggs
- ▶ Effects on mosquito reproduction are non-linear
- Delayed influence

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeco Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model

Parameter estimation

R_t vs. Temperature

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model

Variable Force of Infection

Parameter estimation

Estimating S₀
Attack Ratio

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model

Variable Force of Infection

Parameter estimation
Estimating S_0

 $\frac{dS}{dt} = -\beta(t)SI$ $\frac{dI}{dt} = \beta(t)SI - \tau I$ (2)

 $\frac{dI}{dt} = \beta(t)SI - \frac{dR}{dt} = \tau I$

Why not multi-strain? No Multi-strain data!!

where $S(t) + I(t) + R(t) = 1 \forall t$.

Variable Force of Infection

From R_t , we can define a force of infection which varies with time:

$$\beta(t) = \frac{R_t \cdot \tau}{S} \tag{3}$$

But how do we get the value of S? we need to estimate S_0 .

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation Estimating S_0

▶ Define priors for S_0 in the range (0,1)

$$p(S_{0j}|\mathbf{Y_j}) \propto L(\mathbf{Y_j}|S_{0j}, R_t, m, \tau)\pi(S_{0j})$$
 (4)

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue

Single-strain model

Variable Force of Infection

Parameter estimation Estimating S_0

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection

Modeling Dengue Single-strain model

Variable Force of Infection

Parameter estimation
Estimating S₀
Attack Ratio

Bayesian framework:

- ▶ Define priors for S_0 in the range (0,1)
- ▶ Samples from prior, calculate $\beta(t)$ and run the model

$$p(S_{0j}|\mathbf{Y_j}) \propto L(\mathbf{Y_j}|S_{0j}, R_t, m, \tau)\pi(S_{0j})$$
 (4)

Motivation

Building blocks Variable Force of Infection

Modeling Dengue Single-strain model

Variable Force of Infection

Parameter estimation
Estimating S₀

Bayesian framework:

- ▶ Define priors for S_0 in the range (0,1)
- ▶ Samples from prior, calculate $\beta(t)$ and run the model
- ▶ calculate Likelihood of data given current parameterization

$$p(S_{0j}|\mathbf{Y_j}) \propto L(\mathbf{Y_j}|S_{0j}, R_t, m, \tau)\pi(S_{0j})$$
 (4)

Flávio Codeco Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation

Estimating S_0

Bayesian framework:

- ▶ Define priors for S_0 in the range (0,1)
- ▶ Samples from prior, calculate $\beta(t)$ and run the model
- calculate Likelihood of data given current parameterization
- ▶ Determine posterior probability of parameterization

$$p(S_{0j}|\mathbf{Y_j}) \propto L(\mathbf{Y_j}|S_{0j}, R_t, m, \tau)\pi(S_{0j})$$
 (4)

Models vs Data

fiting the model to data (Rio de janeiro) to estimate S_0^2 .

Posterior distribution for Susceptible (S) and infectious (I) individuous. Blue dots are data.

²Coelho FC et al., 2011

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへ©

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue

Single-strain model Variable Force of Infection

Parameter estimation

Estimating S₀

Attack Ratio

Once we have S_0 , we can caculate the attack ratio:

$$A_j = \frac{\sum Y_j}{S_{0i}} \tag{5}$$

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection Vector dynamics

Modeling Dengue

Single-strain model Variable Force of Infection

Parameter estimation

Estimating S₀
Attack Ratio

Attack ratio

Table: Median attack ratio and 95% credibility intervals calculated according to (5). Values are presented as percentage of total population. †: Year corresponds to the start of the epidemic, however the peak of cases may occur in the following year. ‡: Susceptible fraction. These results show considerable variation in AR between epidemics, consistent with the accquiring and loss of serotype-specific immunity.

Year [†]	median Attack Ratio	S_0^{\ddagger}
1996	0.39 (0.17-0.54)	0.00171(0.0012-0.0038)
1997	0.87 (0.74-0.87)	0.00273(0.0027-0.0032)
1998	0.5 (0.49-0.5)	0.00142(0.0014-0.0014)
1999	0.11 (0.037-0.2)	0.00345(0.0018-0.01)
2000	0.25 (0.24-0.27)	0.0155(0.015-0.016)
2001	0.48 (0.47-0.49)	0.0495(0.048-0.051)
2005	0.15 (0.1-0.21)	0.0147(0.01-0.021)
2006	0.11 (0.08-0.14)	0.0281(0.022-0.037)
2007	0.15 (0.15-0.15)	0.135(0.13-0.14)
2008	0.14 (0.031-0.31)	0.00672(0.003-0.024)
2010	0.18 (0.17-0.19)	0.0454(0.043-0.048)
2011	0.086 (0.082-0.094)	0.215(0.2-0.23)
2012	0.14 (0.13-0.15)	0.0621(0.058-0.068)

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks

Variable Force of Infection

Vector dynamics

Modeling Dengue
Single-strain model
Variable Force of Infection

Parameter estimation
Estimating S₀

Attack Ratio

References

Nishiura H, Chowell G, Heesterbeek H, Wallinga J (2010)
The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course.

J. R. Soc. Interface 7: 297–307.

Coelho FC, Codeço CT, Gomes MG (2011) A Bayesian framework for parameter estimation in dynamical models. PLoS ONE 6: e19616.

Coelho FC, Carvalho, LM Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data
Arxiv. http://arxiv.org/abs/1502.01236

Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

Flávio Codeço Coelho and Luiz Max Carvalho

Motivation

Building blocks Variable Force of Infection Vector dynamics

Modeling Dengue Single-strain model Variable Force of Infection

Parameter estimation
Estimating S₀
Attack Ratio