

International University for Science & Technology (IUST)

Department of Computer &Informatics

Engineering

Neural Networks unit (4)

Adaline and MAdaline

Neural Networks

Dr. Ali Mayya

Adaline Architecture

By Widrow and Hoff (1960)

- Adaptive Linear Neuron for signal processing
- The same architecture of simple network
- Learning method: delta rule (another way of error driven), also called Widrow-Hoff learning rule
- The delta: *t y_in*
 - NOT t y because y = f(y_in) is not differentiable
- Learning algorithm: same as
 Perceptron learning except in Step 5:

$$b := b + \alpha * (t - y_in)$$

$$wi := wi + \alpha * xi * (t - y_in)$$

Adaline Architecture -Learning Steps- Method1 (Sequential mode)

Sequential model: Update weights after each training pattern (as in Perceptron)

Step 1: Initialize weight not zero but small random values are used. Set learning rate α .

Step 2: While the stopping condition is False do steps 3 to 7.

Step 3: For each training set perform steps 4 to 6.

Step 4: Set xi for (i=1 to n).

Step 5: Compute net input to output unit:

$$y_{in} = \sum w_i x_i + b$$

Here, b is the bias and n is the total number of neurons.

Step 6: Update the weights and bias for i=1 to n (Delta rule)

$$w_i(new) = w_i(old) + \alpha (t - y_{in})x_i$$

$$b_i(new) = b_i(old) + \alpha (t - y_{in})$$

note: **y**_{in} is denoted as **net** in previous lectures

And calculate the error: $(t - y_{in})^2$

Step7: stop training when the stopping condition is satisfied (for example, reaching the required number of epochs, or getting an accumulative error value less than the specified tolerance value).

Accumulative error formula is the mean squared error (\underline{MSE}) : $MSE = \frac{1}{P} \sum_{i=1}^{P} (t - y_{in})^2$

Adaline Architecture -Learning Steps- Method2 (Batch mode)

change wi at the end of each epoch. Within an epoch, cumulate $\alpha(t(p)-y_in(p))x_i$ for every pattern (x(p), t(p))

Method 2 is slower but may provide slightly better results (because Method 1 may be sensitive to the sample ordering)

Notes:

E monotonically decreases until the system reaches a state with (local) minimum E (a small change of any wi will cause E to increase).

At a local minimum E state, $\partial E / \partial w_i = 0 \ \forall i$, but E is not guaranteed to be zero

ta rula

Adaline Architecture –Learning Steps- Method2 (Batch mode)

- Derivation of the delta rule
 - Error for all P samples: mean square error

$$E = \frac{1}{P} \sum_{p=1}^{P} (t(p) - y_in(p))^2$$

- E is a function of W = $\{w1, ... wn\}$
- Learning takes gradient descent approach to reduce E by modify W

• the gradient of E:
$$\nabla E = (\frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n})$$

$$\Delta w_{i} \propto -\frac{\partial E}{\partial w_{i}}$$

$$\frac{\partial E}{\partial w_{i}} = \left[\frac{2}{P} \sum_{p=1}^{P} (t(p) - y_{in}(p))\right] \frac{\partial}{\partial w_{i}} (t(p) - y_{in}(p))$$

$$= -\left[\frac{2}{P} \sum_{p=1}^{P} (t(p) - y_{in}(p))\right] x_{i}$$

• There for
$$\Delta w_i \propto -\frac{\partial E}{\partial w_i} = \left[\frac{2}{P}\sum_{1}^{P}(t(p) - y_in(p))\right]x_i$$

Adaline Architecture -Learning Steps- Method1 (Example)

OR gate: Consider all weights are initialized to 0.1, and bias weight =0.1, learning rate=0.1.

Tolerance = 0.1

\mathbf{x}_1	X ₂	t
1	1	1
1	-1	1
-1	1	1
-1	-1	-1

1. Compute net (yin)
$$y_{in} = \sum w_i x_i + b = 1*0.1 + 1*0.1 + 0.1 = 0.3 \rightarrow e=(t-yin) = 1-0.3=0.7$$

2. *Update Weights*:

$$w_i(new) = w_i(old) + \alpha (t - y_{in})x_i$$

 $w_1(new) = 0.1 + 0.1 * 0.7 * 1 = 0.17$
 $w_2(new) = 0.1 + 0.1 * 0.7 * 1 = 0.17$
 $b(new) = 0.1 + 0.1 * 0.7 = 0.17$

3. Compute error²
$$(E_{w1})^2 = (t - y_{in})^2 = 0.49$$

Round1 (Epoch1) of training

x ₁	x ₂	t	y in	(t-y _{in})	Δw ₁	Δw ₂	Δb	w ₁ (0.1)	w ₂ (0.1)	b (0.1)	error ²
1	1	1	0.3	0.7	0.07	0.07	0.07	0.17	0.17	0.17	0.49
1	-1	1	0.17	0.83	0.083	-0.083	0.083	0.253	0.087	0.253	0.69
-1	1	1	0.087	0.913	-0.0913	0.0913	0.0913	0.1617	0.1783	0.3443	0.83
-1	-1	-1	0.0043	-1.0043	0.1004	0.1004	-0.1004	0.2621	0.2787	0.2439	1.01

Adaline Architecture -Learning Steps- Method1 (Example)

OR gate: Consider all weights are initialized to 0.1, and bias weight =0.1, learning rate=0.1.

Tolerance = 0.1

X ₁	x ₂	t	Y _{in}	(t-y _{in})	Δw ₁	Δw ₂	Δb	w ₁ (0.1)	w ₂ (0.1)	b (0.1)	error ²
1	1	1	0.3	0.7	0.07	0.07	0.07	0.17	0.17	0.17	0.49
1	-1	1	0.17	0.83	0.083	-0.083	0.083	0.253	0.087	0.253	0.69
-1	1	1	0.087	0.913	-0.0913	0.0913	0.0913	0.1617	0.1783	0.3443	0.83
-1	-1	-1	0.0043	-1.0043	0.1004	0.1004	-0.1004	0.2621	0.2787	0.2439	1.01

$$MSE = \frac{1}{P} \sum_{i=1}^{P} (t - y_{in})^2 = \frac{1}{4} * (0.49 + 0.69 + 0.83 + 1.01) = 0.755$$
MSE > 0.1 \rightarrow continue training

Adaline Architecture -Learning Steps- Method1 (Example)

Round 2 (Epoch2)

11001											
Inpu t X1	Input x2	Target t	yin	Δw1	Δw2	Δb	Updated w1 (0.26213)	Updated w2 (0.27873)	Updated b (0.24387)	Error ²	
1	1	1	0.78473	0.021527	0.021527	0.021527	0.283657	0.300257	0.265397	0.04641	
1	-1	1	0.248797	0.0751203	-0.0751203	0.0751203	0.3587773	0.2251367	0.3405173	0.56431	
-1	1	1	0.2068767	-0.07931233	0.07931233	0.07931233	0.27946497	0.3044490 3	0.41982963	0.62904	
-1	-1	-1	-0.16408437	0.08359156 3	0.08359156 3	-0.083591563	0.36305653 3	0.3880405 93	0.33623806 7	0.69876	

$$MSE_{epoch 2} = \frac{1}{4}(0.04635 + 0.56431 + 0.62904 + 0.69876)$$

$$MSE_{epoch 2} = \frac{1}{4} \times (1.93846) = 0.484615$$

Adaline Architecture -Learning Steps- Method1 (Example1)

Let's check the decision boundary with the final weights and biases

W1 (new)	W2 (new)	B (new)
0.51095	0.53995	-0.12095

Decision line equation is:

$$w_1*x_1 + w_2*x_2 + b = 0 \rightarrow 0.5109 x1 + 0.5399 x2 -0.1209 = 0$$

Adaline Architecture -Learning Steps- Method1 (Example2)

OR gate in ADALINE with initial weights of w1=0.2, w2=0.3, Bias=0.1 and learning rate of 0.2

X1	X2	T	Yin	Error	Δw1	Δw2	Δb	W1	W2	b
1	1	1	0.6	0.4	0.08	0.08	0.08	0.28	0.38	0.18
1	-1	1	0.08	0.92	0.184	-0.184	0.184	0.464	0.196	0.364
-1	1	1	0.096	0.904	-0.1808	0.1808	0.1808	0.2832	0.3768	0.5448
-1	-1	-1	-0.1152	-0.8848	0.17696	0.17696	-0.17696	0.4601 6	0.55376	0.36784

[•]w2=0.55376

$$0 = 0.46016 \cdot x_1 + 0.55376 \cdot x_2 + 0.36784$$

[•]b=0.36784

Multiple Adaline (Madaline) Architecture

MADALINE: Multiple adaline neurons

- Multi-layer network consists of many Adaline modules
- Suitable to solve non-linear problems
- Uses the Madaline Rule1 algorithm (MR1) for learning
- Only the weights for the hidden Adalines are adjusted; the weights for the output unit are fixed.

Multiple Adaline (Madaline) MR1 training algorithm

MADALINE: Multiple adaline neurons

Compute net input to each Adaline unit:

$$Z-in_1 = b_1 + x_1w_{11} + x_2w_{21}$$
$$Z-in_2 = b_2 + x_1w_{12} + x_2w_{22}$$

Determine output of each hidden unit:

$$Z_1 = f(Z-in_1)$$
$$Z_2 = f(Z-in_2)$$

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Determine output of net:

$$y-in = b_3 + Z_1v_1 + Z_2v_2$$
$$y = f(y-in)$$

Multiple Adaline (Madaline) MR1 training algorithm

MADALINE: Multiple adaline neurons

Determine error and update weights according to the following:

if t = y, no weight updates are performed.

if $t \neq y$, then:

if t = 1, then: update weights on Z_j , the unit whose net input is closest to 0

$$b_J(new) = b_J(old) + \alpha(1 - Z - in_J)$$

$$w_{iJ}(new) = w_{iJ}(old) + \alpha(1-Z-in_J)x_i$$

if t = -1, then: update weights on all units Z_k that have positive net input $(Z-in_k > 0)$:

$$b_k(new) = b_k(old) + \alpha(-1 - Z - in_k)$$

$$w_{ik}(new) = w_{ik}(old) + \alpha(-1 - Z - in_k)x_i$$

If weight changes have stopped (or reached an acceptable level),, then stop; otherwise continue.

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Note: activation function is hardlims (signum)

$$a = hard \lim s(n) = \begin{cases} 1 & \text{if } a \ge 0 \\ -1 & \text{if } a < 0 \end{cases}$$

Solution: For first sample $(1,1) \rightarrow$

$$Z_1 = \text{hardlims}(Z_{in1}) = \text{hardlims}(w_{11} * x_1 + w_{12} * x_2 + b_1)$$

= \text{hardlims}(0.05 + 0.2 + 0.3) = \text{hardlims}(0.55) = 1

$$Z_2 = \text{hardlims}(Z_{in2}) = \text{hardlims}(w_{21} * x_1 + w_{22} * x_2 + b_2)$$

= \text{hardlims}(0.1 + 0.2 + 0.15) = \text{hardlims}(0.45) = 1

$$y = \text{hardlims}(y_{in}) = \text{hardlims}(v_1 * z_1 + v_2 * z_2 + b_3)$$

= \text{hardlims}(0.5 + 0.5 + 0.5) = \text{hardlims}(1.5) = 1

 $t \neq y$ and $(t=-1) \rightarrow$

update weights of only positive Zins (Zin1 and Zin2 are positives) → Update W11,W12, W21,W22, b1, b2

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Solution: $t \neq y \rightarrow$ update weights (t=-1)

$$\Delta w_{11} = lr * (t - z_{in1}) * x_1 = 0.5 * (-1 - 0.55) * 1 = -0.775$$

$$w_{11}(new) = w_{11}(old) + \Delta w_{11} = 0.05 - 0.775 = -0.725$$

$$\Delta w_{12} = lr * (t - z_{in1}) * x_2 = 0.5 * (-1 - 0.55) * 1 = -0.775$$

$$w_{12}(new) = w_{12}(old) + \Delta w_{12} = 0.2 - 0.775 = -0.575$$

$$\Delta w_{21} = lr * (t - z_{in2}) * x_1 = 0.5 * (-1 - 0.45) * 1 = -0.725$$

$$w_{21}(new) = w_{21}(old) + \Delta w_{21} = 0.1 - 0.725 = -0.625$$

$$\Delta w_{22} = lr * (t - z_{in2}) * x_2 = 0.5 * (-1 - 0.45) * 1 = -0.725$$

$$w_{22}(new) = w_{22}(old) + \Delta w_{22} = 0.2 - 0.725 = -0.525$$

$$\Delta b_1 = lr * (t - z_{in1}) = 0.5 * (-1 - 0.55) * 1 = -0.775$$

$$b_1(new) = b_1(old) + \Delta b_1 = 0.3 - 0.775 = -0.475$$

$$\Delta b_2 = lr * (t - z_{in2}) = 0.5 * (-1 - 0.45) * 1 = -0.725$$

$$b_2(new) = b_2(old) + \Delta b_2 = 0.15 - 0.725 = -0.575$$

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Note: activation function is hardlims (signum)

$$a = hard \lim s(n) = \begin{cases} 1 & \text{if } a \ge 0 \\ -1 & \text{if } a < 0 \end{cases}$$

Hidden layer

Output layer

Solution: For second sample $(1,-1) \rightarrow$

$$Z_1 = \operatorname{hardlims}(Z_{in1}) = \operatorname{hardlims}(w_{11(new)} * x_1 + w_{12(new)} * x_2 + b_{1(new)})$$

$$= \operatorname{hardlims}((-0.725*1) + (-0.757*(-1)) - 0.475) = \operatorname{hardlims}(-0.625) = -1$$

$$Z_2 = \operatorname{hardlims}(Z_{in2}) = \operatorname{hardlims}(w_{21(new)} * x_1 + w_{22(new)} * x_2 + b_{2(new)})$$

$$= \operatorname{hardlims}((-0.625*1) + (-0.525*(-1)) - 0.575) = \operatorname{hardlims}(-0.675) = -1$$

$$y = \text{hardlims}(y_m) = \text{hardlims}(v_1 * z_1 + v_2 * z_2 + b_3)$$

= \text{hardlims}(-0.5 - 0.5 + 0.5) = \text{hardlims}(-0.5) = -1

 $t \neq y$ and $(t=1) \rightarrow$

update weights of Z whose Zin is closest to 0 and here Z1 have the lowest absolute zin value closest to 0 \rightarrow update only W11, W12, b1

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Solution:

$$\Delta w_{11(new)} = lr * (t - z_{in1}) * x_1 = 0.5 * (1 + 0.625) * 1 = 0.8125$$

$$w_{11}(new) = w_{11}(old) + \Delta w_{11} = -0.725 + 0.8125 = 0.0875$$

$$\Delta w_{12} = lr * (t - z_{in1}) * x_2 = 0.5 * (1 + 0.625) * (-1) = -0.8125$$

$$w_{12}(new) = w_{12}(old) + \Delta w_{12} = -0.575 - 0.8125 = -0.3875$$

$$\Delta b_1 = lr * (t - z_{in1}) = 0.5 * (1 + 0.625) * 1 = 0.8125$$

 $b_1(new) = b_1(old) + \Delta b_1 = -0.475 + 0.8125 = 0.3375$

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Note: activation function is hardlims (signum)

$$a = hard \lim s(n) = \begin{cases} 1 & \text{if } a \ge 0 \\ -1 & \text{if } a < 0 \end{cases}$$

Solution: For the third sample $(-1,1) \rightarrow$

$$\begin{split} Z_1 &= \text{hardlims}(Z_{in1}) = \text{hardlims}(\mathbf{w}_{11(new)} * x_1 + w_{12(new)} * x_2 + b_{1(new)}) \\ &= \text{hardlims}((0.0875*(-1)) + (-1.3875*(1)) + 0.3375) \\ &= \text{hardlims}(-1.1375) = -1 \end{split}$$

$$\begin{split} Z_2 &= \text{hardlims}(Z_{in2}) = \text{hardlims}(\mathbf{w}_{21(new)} * x_1 + w_{22(new)} * x_2 + b_{2(new)}) \\ &= \text{hardlims}((-0.625*(-1)) + (-0.525*(1)) - 0.575) \\ &= \text{hardlims}(-0.475) = -1 \\ y &= \text{hardlims}(y_{in}) = \text{hardlims}(v_1 * z_1 + v_2 * z_2 + b_3) \\ &= \text{hardlims}(-0.5 - 0.5 + 0.5) = \text{hardlims}(-0.5) = -1 \end{split}$$

Hidden layer

 $t \neq y$ and $(t=1) \rightarrow$ update weights of Z whose Zin is closest to 0 and here Z2 have the lowest absolute zin value closest to 0 \rightarrow update only W21, W22, b2

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

$$\Delta w_{21} = lr * (t - z_{in2}) * x_1 = 0.5 * (1 + 0.475) * (-1) = -0.7375$$

$$w_{21}(new) = w_{21}(old) + \Delta w_{21} = -0.625 - 0.7375 = -1.3625$$

$$\Delta w_{22} = lr * (t - z_{in2}) * x_2 = 0.5 * (1 + 0.475) * 1 = 0.7375$$

$$w_{22}(new) = w_{22}(old) + \Delta w_{22} = -0.525 + 0.7375 = 0.2125$$

$$\Delta b_2 = lr * (t - z_{in2}) = 0.5 * (1 + 0.475) * 1 = 0.7375$$

$$b_2(new) = b_2(old) + \Delta b_2 = -0.575 + 0.7375 = 0.1625$$

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Note: activation function is hardlims (signum)

$$a = hard \lim s(n) = \begin{cases} 1 & \text{if } a \ge 0 \\ -1 & \text{if } a < 0 \end{cases}$$

Solution: For the third sample $(-1,-1) \rightarrow$

$$Z_{1} = \text{hardlims}(Z_{in1}) = \text{hardlims}(w_{11(new)} * x_{1} + w_{12(new)} * x_{2} + b_{1(new)})$$

$$= \text{hardlims}((0.0875*(-1)) + (-1.3875*(-1)) + 0.3375)$$

$$= \text{hardlims}(1.6375) = 1$$

$$Z_{2} = \text{hardlims}(Z_{in2}) = \text{hardlims}(w_{21(new)} * x_{1} + w_{22(new)} * x_{2} + b_{2(new)})$$

=hardlims(
$$(-1.3625*(-1))+(0.2125*(-1))+0.1625$$
)
= hardlims(1.3125) = 1

$$y = \text{hardlims}(v_1 * z_1 + v_2 * z_2 + b_3)$$

= hardlims(0.5 + 0.5 + 0.5) = hardlims(1.5) = 1

Hidden layer

 $t \neq y$ and $(t=-1) \rightarrow$

update weights of only positive Zins (Zin1 and Zin2 are positives) → Update W11,W12, W21,W22, b1, b2

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

X_1	X_2	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Solution:

$$w_{new} = w_{old} + \Delta w$$

$$\begin{bmatrix} w_{11 n e w} & w_{12 n e w} \\ w_{21 n e w} & w_{22 n e w} \end{bmatrix} = \begin{bmatrix} w_{11 o l d} & w_{12 o l d} \\ w_{21 o l d} & w_{22 o l d} \end{bmatrix} + \begin{bmatrix} \Delta w_{11} & \Delta w_{12} \\ \Delta w_{21} & \Delta w_{22} \end{bmatrix}$$

$$\begin{bmatrix} w_{11new} & w_{12new} \\ w_{21new} & w_{22new} \end{bmatrix} = \begin{bmatrix} 0.0875 & -1.3875 \\ -1.3625 & 0.2125 \end{bmatrix} + \begin{bmatrix} 1.319 & 1.3217 \\ 1.1555 & 1.1565 \end{bmatrix}$$

$$\begin{bmatrix} w_{11new} & w_{12new} \\ w_{21new} & w_{22new} \end{bmatrix} = \begin{bmatrix} 1.4065 & -0.0685 \\ -0.207 & 1.369 \end{bmatrix}$$

$$b_{new} = b_{old} + \Delta b$$

$$\begin{bmatrix} b_{1new} \\ b_{2new} \end{bmatrix} = \begin{bmatrix} b_{1old} \\ b_{2old} \end{bmatrix} + \begin{bmatrix} \Delta b_1 \\ \Delta b_2 \end{bmatrix}$$

$$\begin{bmatrix} b_{1new} \\ b_{2new} \end{bmatrix} = \begin{bmatrix} 0.3375 \\ 0.1625 \end{bmatrix} + \begin{bmatrix} -1.319 \\ -1.1565 \end{bmatrix}$$

$$\begin{bmatrix} b_{1new} \\ b_{2new} \end{bmatrix} = \begin{bmatrix} -0.9815 \\ -0.994 \end{bmatrix}$$

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

X_1	X ₂	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Weights and biases at the end of epoch 1

	Input	S			7in1	Zin2	W11	W21	h 1	W12	W22	b2	71	72	Vin		
	x1	x2	b			Zin1	ZIIIZ	AATT	VVZI	DI	WIZ	VVZZ	UZ	Z1	22	(11)	У
	1	1	1	-1	0.55	0.45	-0.725	-0.575	-0.475	-0.625	-0.525	-0.575	1	1	1.5	1	
Enoch1	1	-1	1	1	-0.625	-0.675	0.0875	-1.3875	0.3375	-0.625	-0.525	-0.575	-1	-1	-0.5	-1	
Epocn1	-1	1	1	-1	-1.1375	-0.475	0.0875	-1.3875	0.3375	-1.3625	0.2125	0.1625	-1	-1	-0.5	-1	
	-1	-1	1	-1	1.6375	1.3125	1.4065	-0.0685	-0.9815	-0.207	1.369	-0.994	1	1	1.5	1	

W11=0.05, W12=0.2, W21=0.1, W22=0.2, b1=0.3, b2=0.15, V1=V2=b3=0.5, learning rate=0.5

Weights and biases at the end of epoch 2

	ı	nput	S			7in1	Zin2	W11	W21	b1	W12	W22	b2	71	72	Yin	
		x1	x2	b		Zin1	21112	AATT	VVZI	ŊΤ	VV 12	VVZZ	UZ	<u> </u>		- (11)	У
		1	1	1	-1	0.3565	0.168	0.7285	-0.7465	-1.6595	-0.791	-0.207	-1.578	1	1	1.5	1
Гиол	L 2	1	-1	1	1	-0.1845	-3.154	1.3205	-1.339	-1.068	-0.791	0.785	-1.578	-1	-1	-0.5	-1
Epoc	nz	-1	1	1	-1	-3.728	-0.002	1.3205	-1.339	-1.068	-1.292	0.785	-1.077	-1	-1	-0.5	-1
		-1	-1	1	-1	-1.0495	-1.071	1.3205	-1.339	-1.068	-1.292	1.286	-1.077	-1	-1	-0.5	-1

Weights and biases at the end of epoch 3

	Input	S		t			7in1	7in2	W11	W21	b1	W12	W22	b2	71	70	Vin	
	x1	x2	b		ZIIII	Zin2	AATT	VVZI	DI	VVIZ	VVZZ	DZ	<u> </u>			У		
	1	1	1	-1	-1.0865	-1.083	1.3205	-1.339	-1.068	-1.292	1.286	-1.077	-1	-1	-0.5	-1		
Enoch2	1	-1	1	1	1.5951	-3.655	1.3205	-1.339	-1.068	-1.292	1.286	-1.077	1	-1	0.5	1		
Epochs	-1	1	1	-1	-3.728	1.501	1.3205	-1.339	-1.068	-1.292	1.286	-1.077	-1	1	0.5	1		
	-1	-1	1	-1	-1.0495	-1.071	1.3205	-1.339	-1.068	-1.292	1.286	-1.077	-1	-1	-0.5	-1		

Let's draw the two decision lines:

$$Z_{in1} = 0 \implies w_{11} * x_1 + w_{12} * x_2 + b_1 = 0$$

$$x_2 = -\frac{w_{11}}{w_{12}}x_1 - \frac{b_1}{w_{12}} = 0.9862x_1 - 0.798 \qquad L$$

$$Z_{in2} = 0 \implies w_{21} * x_1 + w_{22} * x_2 + b_2 = 0$$

$$x_2 = -\frac{w_{21}}{w_{22}}x_1 - \frac{b_2}{w_{22}} = 1.0047x_1 + 0.837$$
 L_2

