Assignment 2: Coding Basics

Wynona Curaming

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on coding basics.

Directions

- 1. Rename this file <FirstLast>_A02_CodingBasics.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. After Knitting, submit the completed exercise (PDF file) to Sakai.

Basics, Part 1

- 1. Generate a sequence of numbers from one to 30, increasing by threes. Assign this sequence a name.
- 2. Compute the mean and median of this sequence.
- 3. Ask R to determine whether the mean is greater than the median.
- 4. Insert comments in your code to describe what you are doing.

```
#1.
sequencefrom1to30<-seq(1:30)
sequencefrom1to30

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## [26] 26 27 28 29 30

# I have assigned the sequence to an object.

#2.
meanseq <-mean(sequencefrom1to30)
medianseq <- median(sequencefrom1to30)
meanseq
```

[1] 15.5

[1] 15.5 #3. mean(sequencefrom1to30)>median(sequencefrom1to30) ## [1] FALSE # I am calculating the mean of a sequence from 1 to 30 by creating a function # Then I'm comparing it with the median of the same sequence by creating a function.

Basics, Part 2

- 5. Create a series of vectors, each with four components, consisting of (a) names of students, (b) test scores out of a total 100 points, and (c) whether or not they have passed the test (TRUE or FALSE) with a passing grade of 50.
- 6. Label each vector with a comment on what type of vector it is.

In this case, the mean and median are equal.

7. Combine each of the vectors into a data frame. Assign the data frame an informative name.

When running the code, we find that the mean is not larger than the median.

8. Label the columns of your data frame with informative titles.

```
student_names <- c("Ariane","Nikhil","Anais", "Wynona") #character vector
test_score <- c(90, 86, 99, 49) #numeric vector
pass_status <- test_score>=50 #logical vector

# alternative method: class_performance<- cbind(student_names, test_score, pass_status)
class_performance <- data.frame (
    "Name" = student_names,
    "Score" = test_score,
    "Passed" = pass_status
)
class_performance</pre>
```

```
## Name Score Passed
## 1 Ariane 90 TRUE
## 2 Nikhil 86 TRUE
## 3 Anais 99 TRUE
## 4 Wynona 49 FALSE
```

9. QUESTION: How is this data frame different from a matrix?

Answer: A matrix would have the same data type across each column and no column names. Data frame could have columns with different data types and columns would have names.

10. Create a function with an if/else statement. Your function should take a **vector** of test scores and print (not return) whether a given test score is a passing grade of 50 or above (TRUE or FALSE). You will need to choose either the **if** and **else** statements or the **ifelse** statement.

11. Apply your function to the vector with test scores that you created in number 5.

```
student_names <- c("Ariane", "Nikhil", "Anais", "Wynona") #character vector
test_score <- c(90, 86, 99, 49) #numeric vector
passing_status_2 <- ifelse(test_score >= 50, TRUE, FALSE)

class_performance3 <- data.frame (
    "Name" = student_names,
    "Score" = test_score,
    "Passed" = passing_status_2
)
return(class_performance3)</pre>
```

```
## Name Score Passed
## 1 Ariane 90 TRUE
## 2 Nikhil 86 TRUE
## 3 Anais 99 TRUE
## 4 Wynona 49 FALSE
```

12. QUESTION: Which option of if and else vs. ifelse worked? Why?

Answer: 'ifelse' worked because it generates a vector that can be combined with other vectors to create a data frame. 'if' and 'else' generate only functions based on conditional arguments.