What does classification tell us about the brain? Statistical inference through machine learning

Charles Zheng

Stanford University

October 4, 2016

(Joint work with Yuval Benjamini.)

Studying the neural code

activity patterns

experimental conditions

Present the subject with visual stimuli, pictures of faces and houses. Record the subject's brain activity in the fMRI scanner.

Studying the neural code: data

- Let \mathcal{X} define a class of stimuli (faces, objects, sounds.)
- Stimulus $\mathbf{X} = (X_1, \dots, X_p)$, where X_i are features (e.g. pixels.)
- Present X to the subject, record the subject's brain activity using EEG, MEG, fMRI, or calcium imaging.
- Recorded response $\mathbf{Y} = (Y_1, \dots, Y_q)$, where Y_i are single-cell responses, or recorded activities in different brain region.

Image credits: Quiroga et al. (2009).

Experimental design

- ullet How to make inferences about the population of stimuli in ${\mathcal X}$ using finitely many examples?
- Randomization. Select $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(K)}$ randomly from some distribution $p(\mathbf{x})$ (e.g. an image database). Record r responses from each stimulus.

Analyzing the data using machine learning

- Now we have data consisting of (stimulus, reponse) pairs.
- Can we classify the response using the stimulus? What is the confusion matrix?

Gaussian example

To help think about these problems, consider a concrete example:

- Let $\mathbf{X} \sim N(0, I_d)$ and $\mathbf{Y} | \mathbf{X} \sim N(\mathbf{X}, \sigma^2 I_d)$.
- We draw stimuli $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \sim N(0, I_d)$ i.i.d.
- For each stimulus $\mathbf{x}^{(i)}$, we draw observations $\mathbf{y}^{(i,j)} = \mathbf{x}^{(i)} + \epsilon^{(i,j)}$, where $\epsilon^{(i,j)} \sim \mathcal{N}(0, \sigma^2 I_d)$.

Motivation for my research

Ultimately, the goal of these experiments is to understand the dependence between X (stimulus) and Y (the brain response).

Possible goals for statistical methodology (which currently don't exist):

- What can be inferred from the classification accuracy?
- Can we predict what the result (classification accuracy) would be in a similar (but possibly larger or smaller) experiment?
- Can we summarize the total information content contained in Y about X?
- Can we decompose the total information contained in Y about X? (Something like a nonlinear ANOVA decomposition?)

Motivation 1: Generalizing to identical replicate

What can be inferred from the classification accuracy?

- The achieved classification accuracy is an estimate of *generalization* accuracy...
- which in turn lower bounds on the generalization error of the best classifier, the *Bayes accuracy*.
- But the Bayes accuracy varies depending on the stimuli set $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(K)}$!

Average Bayes accuracy

Inferring average Bayes accuracy

- We cannot observe either ABA_k , or even BA_k .
- However, we can obtain a *lower confidence bound* for BA_k , since the generalization accuracy is an *underestimate* of BA_k
- But we actually want a lower confidence bound for ABA_k!

Concentration of Bayes accuracy

Recall that

$$ABA_k = \mathbf{E}[BA_k]$$

Converting a LCB for BA_k to an LCB on ABA_k boils down to the following problem:

What is the variability of BA_k ?

We will discuss this later in the talk!

Motivation 2: Generalizing to similar designs

Define ABA_k as the average Bayes accuracy for k classes. Can we predict ABA_{100} given data from 30 classes? See Z., Achanta and Benjamnini (2016).

Motivation 3 and 4: Quantifying and decomposing information

Can we summarize the total information content contained in Y about X? Can we decompose the total information contained in Y about X?

The answer is yes, and the solution was provided by Claude Shannon. $Mutual\ information$ measures the information contained in Y about X (or vice versa) in a nonlinear way.

Mutual information

Section 2

Variability of Bayes accuracy

Definitions

- Suppose (X, Y) have a joint density p(x, y),
- The Bayes accuracy is a function of the stimuli set $x_1, ..., x_k$,

$$BA(x_1, ..., x_k)$$

- Draw $Z \sim \{1, ..., k\}$, and draw $Y \sim p(y|x_z)$.
- Let f (the *classifier*) that associates a label $\{1, ..., k\}$ to each possible value of y:

$$f: \mathcal{Y} \rightarrow \{1, ..., k\}$$

Define

$$BA(x_1,...,x_k) = \sup_{f} Pr[f(Y) = Z|x_1,...,x_k]$$

where the probability is over the joint distribution (Y, Z) defined above. Notice we condition on the particular stimuli set $x_1, ..., x_k$.

An identity

 It is a well-known result from Bayesian inference that the optimal classifier f is defined as

$$f(y) = \operatorname{argmax}_{i=1}^{k} p(y|x_i),$$

since the prior class probabilities are uniform.

Therefore,

$$\begin{aligned} \mathsf{BA}(x_1,...,x_k) &= \mathsf{Pr}[\mathsf{argmax}_{i=1}^k p(y|x_i) = Z|x_1,...,x_k] \\ &= \frac{1}{k} \int \max_{i=1}^k p(y|x_i) dy. \end{aligned}$$

An identity

Let's go over the result more slowly. Suppose k=3. For the following one-dimensional example, we have plotted $p(y|x_i)$ for $i=\{1,2,3\}$.

$$BA(x_1, x_2, x_3) = \sum_{i} Pr[x_i] Pr[zonei|Y \sim p(y|x_i)]$$

$$= \sum_{i} \frac{1}{k} Area \text{ under curve } i \text{ in zone } i$$

$$= \frac{1}{k} Area \text{ under } \max_{i=1}^{k} p(y|x_i)$$

Efron-Stein lemma

We have

$$\mathsf{ABA}_k = \mathbf{E}[\mathsf{BA}(X_1,...,X_k)]$$

where the expectation is over the independent sampling of $X_1, ..., X_k$ from p(x).

According to the Efron-Stein lemma,

$$Var[BA(X_1,...,X_k)] \le \sum_{i=1}^k \mathbf{E}[Var[BA|X_1,...,X_{i-1},X_{i+1},...,X_k]].$$

which is the same as

$$Var[BA(X_1,...,X_k)] \le kE[Var[BA|X_1,...,X_{k-1}]].$$

• The term $Var[BA|X_1,...,X_{k-1}]$ is the variance of $BA(X_1,...,X_k)$ conditional on fixing the first k-1 curves $p(y|x_1),...,p(y|x_{k-1})$ and allowing the final curve $p(y|X_k)$ to vary randomly.

Efron-Stein lemma

•

$$Var[BA(X_1,...,X_k)] \le kE[Var[BA|X_1,...,X_{k-1}]].$$

Note the following trivial results

$$-p(y|x_k) + \max_{i=1}^k p(y|x_i) \le \max_{i=1}^{k-1} p(y|x_i) \le \max_{i=1}^k p(y|x_i)$$

This implies

$$BA(X_1,...,X_k) - \frac{1}{k} \le \frac{k-1}{k}BA(X_1,...,X_{k-1}) \le BA(X_1,...,X_k).$$

i.e. conditional on $(X_1, ..., X_{k-1})$, BA_k is supported on an interval of size 1/k.

• Therefore,

$$Var[BA|X_1,...,X_{k-1}] \le \frac{1}{4k^2}$$

since $\frac{1}{4c^2}$ is the maximal variance for any r.v. with support of length c.

Variance bound

Therefore, Efron-Stein bound gives

$$\mathsf{sd}[\mathsf{BA}_k] \leq \frac{1}{2\sqrt{k}}$$

Compare this with empirical results (searching for worst-case distributions):

k	2	3	4	5	6	7	8
$\frac{1}{2\sqrt{k}}$	0.25	0.194	0.167	0.150	0.136	0.126	0.118
Worst-case sd	0.353	0.289	0.250	0.223	0.204	0.189	0.177

Improving the variance bound?

 All of the worst-case distributions found so far have the following simple form:

$$\mathcal{Y} = \mathcal{X} = \{1, ..., d\}$$
 for some d
$$p(y|x) = I\{x = y\}$$

Can we prove this rigorously?

Recalling that

$$BA(X_1,...,X_k) - \frac{1}{k} \le \frac{k-1}{k}BA(X_1,...,X_{k-1}) \le BA(X_1,...,X_k).$$

it is worth noting that distributions of this type actually concentrate on the two endpoints of the bound, thus in some sense "maximizing" the variance.

Section 3

Inferring mutual information from classification accuracy

Outline

- We observe (X, Y) pairs from the random-stimulus repeated-sampling design.
- Goal is to infer I(X; Y), also written I[p(x, y)].

Outline

- Step 1: Apply machine learning to obtain test accuracy TA_k
- Step 2: Use TA_k to infer the generalization accuracy GA_k
- Step 3: The generalization accuracy is a lower bound on the Bayes accuracy,

$$\mathsf{GA}_k \leq \mathsf{BA}_k$$

- Step 4: Use BA_k to infer the average Bayes accuracy ABA_k
- Step 5: Obtain a lower bound on I(X; Y) from $ABA_k!$

We already know how to do steps 1-4; now we discuss step 5.

References

- Cover and Thomas. Elements of information theory.
- Muirhead. Aspects of multivariate statistical theory.
- van der Vaart. Asymptotic statistics.