Problems

Sarawut Suebsang

January 7, 2022

§1 Number theory

Example 1.1

ให้ m,n เป็นจำนวนเต็มบวกโดยที่ $\gcd(m,n)=1,m$ เป็นจำนวนคู่ และ n เป็นจำนวนคี่ จงหาค่าของ

$$\frac{1}{2n} + \sum_{k=1}^{n-1} (-1)^{\left\lfloor \frac{km}{n} \right\rfloor} \left\{ \frac{km}{n} \right\}$$

 $extit{Proof.}$ ให้ $r_k = (km \mod n)$ จะได้ $\left\{ rac{km}{n}
ight\} = rac{r_k}{n}$ และ $\left\lfloor rac{km}{n}
ight
floor = rac{km-r_k}{n}$ พิจารณา

$$\frac{km - r_k}{n} \equiv r_k \pmod{2}$$

จะได้ $(-1)^{\left\lfloor \frac{km}{n} \right\rfloor} = (-1)^{r_k}$ และจาก $\gcd(m,n)=1$ แสดงว่า $(km \mod n), k=1,2,\ldots,n-1$ ต่างกันหมด ดังนั้นจากโจทย์จะเขียนใหม่ได้เป็น

$$\frac{1}{2n} + \frac{1}{n} \sum_{r=1}^{n-1} (-1)^r r = \frac{1}{2}$$

Example 1.2

จงหาจำนวนเฉพาะ p ทั้งหมด ซึ่ง $p=m^2+n^2$ และ p หาร m^3+n^3-4 ลงตัว สำหรับจำนวนเต็มบวก m,n บางค่า

Proof.

$$(m+n)^2 \equiv 2mn \pmod{p}$$

จะได้

$$(m+n)^3 \equiv m^3 + n^3 + 3mn(m+n) \pmod{p}$$

$$m^3 + n^3 \equiv (m+n)^3 - 3mn(m+n) \pmod{p}$$

$$2(m^3 + n^3) \equiv 2(m+n)^3 - 3(m+n)(2mn) \pmod{p}$$

$$2(m^3 + n^3) \equiv -(m+n)^3 \pmod{p}$$

จาก $m^3+n^3-4\equiv 0\pmod p$ จะได้ $(m+n)^3+8\equiv 0\pmod p$ นั่นคือ

$$p|(m+n+2)((m+n)^2-2(m+n)+4)$$

จะได้

$$p|m+n+2$$
 หรือ $p|2mn-4(m+n)+4$

ในกรณี p=2,5 เห็นชัดว่าสอดคล้องกับที่โจทย์ต้องการ พิจารณา กรณี $p\geq 13$ จะได้

$$p|m+n+2$$
 หรือ $p|mn-(m+n)+2$

จาก
$$p=m^2+n^2$$
 จะได้ $\max\{m,n\}>\sqrt{\frac{13}{2}}$ นั่นคือ $\max\{m,n\}\geq 3$ ดังนั้น $m(m-1)+n(n-1)>2$ หรือ $p>m+n+2$ จะได้ $p\not|m+n+2$ จะได้ $p|mn-(m+n)+2$ เท่านั้น , $mn-(m+n)+2=(m-1)(n-1)+1>0$ เนื่องจาก $\max\{m,n\}^2>(m-1)(n-1)$ จะได้ $p>(m-1)(n-1)+1$ ดังนั้นกรณีนี้ไม่มีคำตอบ

Theorem (triangle inequality of floor function)

ให้ $a,b \in \mathbb{R}$

$$\lfloor a + b \rfloor \ge \lfloor a \rfloor + \lfloor b \rfloor$$

Theorem (Legendre's formula)

สำหรับ p เป็นจำนวนเฉพาะให้ $v_p(n)$ คือเลขชี้กำลังที่มากของสุดของ p ซึ่งหาร n ลงตัว จะได้

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

Example 1.3

ให้ a_1,a_2,\ldots,a_k เป็นจำนวนเต็มบวก และ $d=\gcd(a_1,a_2,\ldots,a_k)$ และ $a_1+a_2+\cdots+a_k=n$ จงแสดวง่า $\frac{d(n-1)!}{a_1!a_2!\ldots a_k!}$ เป็นจำนวนเต็ม

Proof. ก่อนอื่นจะพิจารณาสมบัติที่ต้องใช้แก้โจทย์

Claim — ให้
$$a,b\in\mathbb{Z}$$
 ถ้า $b\not|a$ แล้ว $\left|\frac{a}{b}\right|=\left|\frac{a-1}{b}\right|$

เนื่องจาก $b\not|a$ ให้ a=bq+r เมื่อ 0< r< b จะได้ $q=\left\lfloor\frac{a}{b}\right\rfloor=\left\lfloor\frac{a-1}{b}\right\rfloor$ ให้ p เป็นจำนวนเฉพาะใดๆ ต่อไปเราจะแสดงว่า $v_p(d(n-1)!)\geq \sum_{i=1}^k v_p(a_i!)$ เราจะใช้ triangle inequality of floor function และ Legendre's formula เพื่อแสดงอสมการข้างต้น $v_p(d(n-1)!)=v_p(d)+v_p((n-1)!)=v_p(d)+\sum_{i=1}^\infty \left\lfloor\frac{n-1}{p^i}\right\rfloor$ และ $\sum_{j=1}^k v_p(a_j)=\sum_{j=1}^k \sum_{i=1}^\infty \left\lfloor\frac{a_j}{p^i}\right\rfloor$ จัดรูปอสมการใหม่จะได้

$$v_p(d) + \sum_{i=1}^{\infty} \left\lfloor \frac{n-1}{p^i} \right\rfloor \ge \sum_{j=1}^k \sum_{i=1}^{\infty} \left\lfloor \frac{a_j}{p^i} \right\rfloor$$

หรือ

$$v_p(d) + \sum_{i=1}^{\infty} \left(\left\lfloor \frac{n-1}{p^i} \right\rfloor - \sum_{j=1}^k \left\lfloor \frac{a_j}{p^i} \right\rfloor \right) \ge 0$$

ในกรณี $p \nmid d$ จะได้ $v_p(d) = 0$ และจะมี l ซึ่ง $p \nmid a_l$ จากที่ Claim ไว้จะได้ $\left\lfloor \frac{a_l}{p^i} \right\rfloor = \left\lfloor \frac{a_l-1}{p^i} \right\rfloor$ ดังนั้นเราสามารถเปลี่ยน a_l เป็น a_l-1 และจาก triangle inequality of floor function ทำให้ได้

$$\left\lfloor \frac{n-1}{p^i} \right\rfloor \ge \sum_{j=1}^k \left\lfloor \frac{a_j}{p^i} \right\rfloor$$

ดังนั้นอสมการที่เราต้องการแสดงเป็นจริงในกรณี $p \nmid d$ กรณี $p \mid d$ ถ้าหาก $i > v_p(d)$ ใช้เหตุผลคล้ายกรณีแรกจะได้

$$\left\lfloor \frac{n-1}{p^i} \right\rfloor \ge \sum_{j=1}^k \left\lfloor \frac{a_j}{p^i} \right\rfloor$$

ถ้าหาก $i \leq v_p(d)$ เราจะแบ่ง 1 จาก $v_p(i)$ ให้กับแต่ละวงเล็บ $i \leq v_d(p)$ ซึ่งเพียงพอพอที่จะพิสูจน์

$$1 + \left\lfloor \frac{n-1}{p^i} \right\rfloor \ge \sum_{j=1}^k \left\lfloor \frac{a_j}{p^i} \right\rfloor$$

ซึ่งเป็นจริงจาก $1+\left|\frac{n-1}{p^i}\right|\geq \left|\frac{n}{p^i}\right|$ และ triangle inequality of floor function

Theorem (primitive roots)

ให้ p เป็นจำนวนเฉพาะ จะมีจำนวนเต็ม g เรียกว่า primitive root ซึ่ง order ของ g ใน modulo p เท่ากับ p-1

Order ของ a ใน modulo p = k หมายถึงจำนวนเฉพาะที่เล็กที่สุดที่ $a^k \equiv 1 \pmod p$

Proof. จากเอกลักษณ์

Example 1.4

ให้ $p \geq 2$ เป็นจำนวนเฉพาะ จงหาค่า k ทั้งหมดซึ่ง $S_k = 1^k + 2^k + \dots + (p-1)^k$ หารด้วย p ลงตัว

Proof. ให้ g เป็น primitive root ใน modulo p จะได้ $\{1^k,2^k,\ldots,(p-1)^k\}=\{g^{1k},g^{2k},\ldots,g^{(p-1)k}\}$ ใน modulo p ในกรณี $p-1\mid k$ จะได้ $S_k\equiv -1\pmod p$ ในกรณี $p-1\nmid k$ จะได้

$$S_k \equiv g^{1k} + g^{2k} + \dots + g^{(p-1)k} \pmod{p}$$
$$\equiv \frac{g^k (g^{k(p-1)} - 1)}{g^k - 1} \pmod{p}$$
$$\equiv 0 \pmod{p}$$

ทุก $k \in \mathbb{N}$ โดยที่ $p-1 \nmid k$ จะสอดคล้องกับที่โจทย์ต้องการ

Example 1.5

ให้ $p \geq 3$ เป็นจำนวนเฉพาะ นิยาม

$$F(p) = \sum_{k=1}^{rac{p-1}{2}} k^{120}, f(p) = rac{1}{2} - \left\{rac{F(p)}{p}
ight\}$$
 โดยที่ $x = x - \lfloor x
floor$

จงหาค่าของ f(p)

$$\begin{array}{ll} \textit{Proof.} \ \ \text{จาก} \ i^2 \equiv (p-i)^2 \ (\bmod p) \ \ \tilde{\text{o}}$$
 งนั้น $2F(p) \equiv 1^{120} + 2^{120} + \dots (p-1)^{120} \ (\bmod p) \\ \ \ \text{จากข้อก่อนหน้าจะได้} \ 2F(p) \equiv \begin{cases} 0, & \text{if } p-1 \nmid 120 \\ p-1, & \text{otherwise} \end{cases} \ \text{และ} \ \left\{ \frac{F(p)}{p} \right\} = \frac{F(p) \ \bmod p}{p} \\ \ \ \text{und} \ \ f(p) = \begin{cases} \frac{1}{2} & \text{if } p-1 \nmid 120 \\ \frac{1}{2} + \frac{1}{p}(2^{-1}(-1) \ \bmod p) & \text{otherwise} \end{cases} \end{array}$

Example 1.6

ให้ $p\geq 3$ เป็นจำนวนเฉพาะ จงหาฟังก์ชัน $f:\mathbb{Z}\to\mathbb{Z}$ ทั้งหมดซึ่ง สำหรับแต่ละ $m,n\in\mathbb{Z}$ 1. ถ้า $m\equiv n\pmod p$ แล้ว f(m)=f(n)-2.f(mn)=f(m)f(n)

Proof. ให้ g เป็น primitive root ใน modulo p พิจารณา $f(0)=f(0)^2$ ดังนั้น f(0)=1 หรือ f(0)=0 กรณี f(0)=1 , f(0)=f(n)f(0) จะได้ f(n)=1 ทุก $n\in\mathbb{Z}$ กรณี f(0)=0 พิจารณา $f(1)=f(1)^2$ ดังนั้น f(1)=1 หรือ f(1)=0 กรณี f(1)=0 จะได้ $f(g)^{p-1}=f(1)=0$ ดังนั้น f(n)=0 ทุก $n\in\mathbb{Z}$ กรณี f(1)=1 จะได้ $f(g)^{p-1}=1$ นั่นคือ f(g)=1 หรือ f(g)=-1 ถ้า f(g)=1 จะได้ f(n)=1 ทุก f(n)=1 ทุก f(n)=1 กรณี f(n)=1 จะได้ f(n)=1

Example 1.7

จงหาจำนวนเฉพาะ p ทั้งหมด ที่ทำให้ $\binom{100}{p}+7$ หารด้วย p ลงตัว

Proof. พิจารณา ในกรณี $p \mid \binom{100}{p}$ จะได้ p=7 ในกรณี $p \nmid \binom{100}{p}$ แสดงได้ไม่ยากว่า $50 พิจารณา <math>\binom{100}{p} = \frac{100\cdot 99...p...(100-(p-1))}{p(p-1)!} = \frac{S}{(p-1)!}$ สังเกตว่าเดิม S' ประกอบด้วย $\{100,99,...,(100-(p-1))\} = \{0,1,2,...,p-1\}$ ใน mod p การตัด p ออกเหมือนเป็นการเอา ศูนย์ออกจะได้ S ประกอบด้วย $\{1,2,3,...,p-1\}$ นั่นคือ $S \equiv 1\cdot 2...\cdot (p-1) \equiv -1 \pmod{p}$ จาก Wilson's theorem จะได้ $\binom{100}{p}((p-1)!) \equiv S \equiv -1 \pmod{p}$ จาก Wilson's theorem อีกรอบได้ $\binom{100}{p}+7 \equiv 8 \pmod{p}$ ดังนั้น p=7

Example 1.8

จงหาจำนวนเต็มบวก N ทั้งหมดที่มีตัวประกอบเฉพาะอย่างน้อยสองจำนวนและ N มีค่าเท่ากับผลบวกของกำลังสองของตัวหารบวกที่มีค่าน้อยที่สุด 4 จำนวนแรก

Proof. ให้ตัวที่น้อยที่สุด 4 อันดับแรกเบ็น $1,d_1,d_2,d_3$ โดย $1 < d_1 < d_2 < d_3$ และ $1^2 + d_1^2 + d_2^2 + d_3^2 = N$ พิจารณา mod 2 สมมุติ $2 \nmid N$ จะได้ $1 + d_1^2 + d_2^2 + d_3^2 \equiv 0 \pmod{2}$ ขัดแย้ง ดังนั้น $2 \mid N$ ราจะได้ $d_1 = 2$ ต่อไป จะแสดง $4 \nmid N$ สมมุติ $4 \mid N$ จะได้ $1^2 + 2^2 + d_2^2 + d_3^2 \equiv 0 \pmod{4}$ ซึ่งเป็นไปไม่ได้ ดังนั้น $2 \mid N$ ต่อไปพิจารณา พิจาณา mod 4 อีกครั้งจะได้ ซึ่งจะได้ d_2,d_3 ต้องมีตัวใดตัวนึงหาร 2 เห็นได้ชัดว่า $d_2 = p$ บางจำนวนเฉพาะ p และ $d_3 = 2p$ จากโจทย์เขียนใหม่ได้เป็น $1^2 + 2^2 + p^2 + (2p)^2 = N$ จัดรูปจะได้ $5(p^2 + 1) = N$ ในกรณี p = 3 เห็นได้ชัดว่าเป็นไปไม่ได้ดังนั้น p = 5 จะได้ N = 130 ซึ่งตรวจสอบได้ไม่ยากว่าสอดคล้อง

Example 1.9

ให้ a และ b เป็นจำนวนเต็ม และ p เป็นจำนวนเฉพาะ สำหรับแต่ละจำนวนนับ k ใดๆ กำหนด $A_k=\{n\in\mathbb{N}:p^k|a^n-b^n\}$ จงแสดงว่าถ้า $A_1\neq\emptyset$ แล้ว $A_k\neq\emptyset$ สำหรับทุก จำนวนนับ k

Proof. จากโจทย์เพียงพอที่จะแสดงทุก k จะมี n ซึ่ง $p^k \mid a^n - b^n$ จะพิสูจน์โดยหลักอุปนัยเชิงคณิตศาสตร์ ให้ P(n) แทนข้อความ $p^n \mid a^{p^n} - b^{p^n}$ เมื่อ n เป็นจำนวนนับ

ขั้นฐาน P(1) จริงโจทย์กำหนด

 $\overline{oldsymbol{\check{v}uo_0U}}$ ขื้นอุปนัย สมมุติ P(n) จริงเมื่อ $n\geq 1$ จะแสดง P(n+1) เป็นจริง พิจารณา

$$a^{p^{n+1}} - b^{p^{n+1}} = (a^{p^n} - b^{p^n})(a^{p^n(p-1)} + a^{p^n(p-2)}b^{p^n} + \dots + b^{p^n(p-1)}) = (a^{p^n} - b^{p^n})(S)$$

เพียงพอที่จะแสดง p|S และจากโจทย์กำหนดจะได้ $a\equiv b\pmod p$

$$S \equiv pa^{p^n(p-1)} \equiv 0 \pmod{p}$$

ดังนั้น P(n+1) เป็นจริง จากหลักอุปนัยเชิงคณิตศาสตร์สรุปได้ว่า P(n) เป็นจริงทุก $n\in\mathbb{Z}$

Example 1.10

ให้ p เป็นจำนวนเฉพาะคี่ จงหาเศษจากการหาร $\displaystyle \sum_{k=0}^p k! (p-k)!$ ด้วย p

Proof.

$$k! \equiv (-1)^{k-1}(-1)(-2)\dots(-(k-1))k\pmod p$$

$$\equiv (-1)^{k-1}(p-1)(p-2)\dots(p-(k-1))k\pmod p$$
 $k!(p-k)! \equiv k(-1)^{k-1}(p-1)!\pmod p$ $\equiv k(-1)^k\pmod p$ จาก Wilson 's theorem

ดังนั้น
$$\sum_{k=0}^p k! (p-k)! \equiv \sum_{k=0}^p k (-1)^k \equiv rac{p-1}{2} \pmod p$$

Example 1.11

จงหา (a,b,c) ของจำนวนเต็มบวกทั้งหมดซึ่ง $(1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})=2$

Proof. โดยไม่เสียนับให้ $a \geq b \geq c$ สมมุติ $c \geq 4$ ซึ่งจะได้ $2 > \frac{125}{64} \geq (1 + \frac{1}{a})(1 + \frac{1}{b})(1 + \frac{1}{c})$ ซึ่งเป็นไปไม่ได้ ดังนั้น $3 \geq c$ ต่อไปเราจะพิจารณา c = 1, 2, 3 ตามลำดับ

กรณี
$$c=1$$
 จะได้ $(1+\frac{1}{a})(1+\frac{1}{b})>1$ ซึ่งเป็นไปไม่ได้

<u>กรณี c=2</u> จะได้ $(1+\frac{1}{a})(1+\frac{1}{b})=\frac{4}{3}$ จัดรูปใหมได้ (a-3)(b-3)=12 ซึ่งแยกกรณีหา a,b ได้ไม่ยาก <u>กรณี c=3</u>จะได้ $(1+\frac{1}{a})(1+\frac{1}{b})=\frac{3}{2}$ จัดรูปใหมได้ (a-2)(b-2)=3 ซึ่งแยกกรณีหา a,b ได้ไม่ยาก

Example 1.12

จงหาจำนวนสองหลัก n=10a+b โดยที่ $a,b\in\{0,1,2,\ldots,9\}$ ซึ่ง ทุกจำนวนเต็ม k $n|k^a-k^b$

Proof. ไอเดียในการทำข้อนี้คือพิจารณาจำนวนเฉพะที่หาร n แล้วเลือก k ที่เป็น primitive root ของจำนวนเฉพาะที่หาร n ลงตัว เห็นได้ชัดว่าถ้า a=b จะเป็นจริงหมด ดังนั้นจะพิจารณา $a\neq b$ ถ้า a,b มีตัวใดตัวหนึ่งเป็นศูนย์เราสามารถเลือก k=n เพื่อหาข้อขัดแย้งได้ยกเว้นกรณี n=1 ดังนั้น n จะเป็นเลขสองหลักสมมุติ n มีตัวประกอบจำนวนเฉพาะที่ ≥ 11 เลือก k=g ซึ่งเป็น primitive root ของ p จะได้ $p|g^{\min\{a,b\}}(g^{|a-b|}-1)$ ได้ $p|g^{|a-b|}-1$ แต่ $|a-b|\leq 9$ ซึ่งขัดแย้งเพราะ p-1 จะต้องหาร |a-b| ดังนั้น n จะต้องประกอบด้วยจำนวนเฉพาะ 2,3,5,7 และ มี 2 หลัก และถ้า p เป็นตัวประกอบของ n p-1 จะต้องหาร |a-b| ซึ่งสามารถไล่กรณีได้ไม่ยาก

Example 1.13

กำหนดให้ x_1, x_2, \dots, x_k เป็นจำนวนเต็มซึ่ง $x_1 + x_2 + \dots + x_k = 1492$ จงแสดงว่า

$$x_1^7 + x_2^7 + \dots + x_k^7 \neq 1998$$

Proof. พิสูจน์ได้ไม่ยากว่า $x^7 \equiv x \pmod{3}$ ทุก $x \in \mathbb{Z}$

$$x_1 + x_2 + \dots + x_k \equiv x_1^7 + x_2^7 + \dots + x_k^7 \pmod{3}$$

ดังนั้น

$$x_1^7 + x_2^7 + \dots + x_k^7 \equiv 1492 \equiv 1 \pmod{3}$$

แต่ $1998 \equiv 0 \pmod{3}$ ดังนั้น $x_1^7 + x_2^7 + \dots + x_k^7 \neq 1998$

Example 1.14

กำหนดให้ $p_1 < p_2 < \dots < p_{31}$ เป็นจำนวนเฉพาะ ถ้า 30 หาร $p_1^4 + p_2^4 + \dots + p_{31}^4$ ลงตัว จงแสดงว่ามี k ซึ่ง p_k, p_{k+1}, p_{k+2} เป็นจำนวนเฉพาะที่เรียงติดกัน

Proof. ข้อนี้เพียงพอที่จะแสดงว่า 2,3,5 อยูในอันดับ p_i สมมุติไม่มี 2 ในลำดับ a_i จะได้ $p_i^4\equiv 1\pmod 2$ จะได้ $\sum_{i=1}^{31}p_i^4\equiv 1\pmod 2$ ซึ่งขัดแย้งกับที่โจทย์กำหนดดังนั้นมี 2 ในลำดับ ในทำนองเดียวกันกับ $\mod 3$ และ $\mod 5$ จะได้ 2,3,5 อยู่ในลำดับ p_i

Example 1.15

จงหาจำนวนเฉพาะ p ทั้งหมดที่ทำให้ $2p^2-3p-1$ เป็นกำลังสามของจำนวนเต็มบวก

Proof. (TMO 2014) ให้ เห็นได้ชัดว่า p=2,3 สอดคล้องสมมุติ $p\neq 2,3$ ให้ $x^3=2p^2-3p-1$ จัดรูปได้ $(x+1)(x^2-x+1)=p(2p-3)$ แสดงได้ไม่ยากว่า $\gcd(x+1,x^2-x+1)=\gcd(p,2p-3)=1$ และ p>x เมื่อ p>3 กรณี p|x+1 จะได้ $p\leq x+1$ ดังนั้น p=x+1 แทนค่ากลับได้ p=2,3 ขัดแย้ง

กรณ p|x+1 จะเด $p \le x+1$ ดงนน p=x+1 แทนคากลบเด p=2,3 ขดแยง n กรณี $p|x^2-x+1$ จะได้ x+1|2p-3 ได้ 2p-3=(x+1)k แทนคากลับจะได้ $pk=x^2-x+1$ พิจารณา $\mod x+1$ จะได้ $2p\equiv 3\pmod {x+1}$ และ $x^2-x+1\equiv 3\equiv pk\pmod {x+1}$ ดังนั้น $2p\equiv pk\pmod {x}+1$ นั่นคือ x+1|k-2 ถ้า k=2 แทนคากลับแก้สมการแล้วจะขัดแย้ง ดังนั้น $x+1\le k-2$ และจาก $x+1\le p$ จะได้ $x^2-x+1=pk\ge (x+1)(x+3)$ ขัดแย้ง

Example 1.16

จงหาพหุนาม P(x) ทั้งหมดที่มีสัมประสิทธิ์เป็นจำนวนเต็ม ซึ่ง $2557^n + 213 \cdot 2014$ หารด้วย P(n) ลงตัว สำหรับแต่ละจำนวนเต็มบวก n

Proof. (TMO 2014)ในกรณี P(x) เป็นพหุนามคงตัวสามารถแก้หา P(x) ได้ไม่ยากเราจะพิจารณา P(x) ไม่เป็นพหุนามคงตัวแสดงได้ไม่ยากว่าจะมีจำนวนเฉพาะ q ซึ่ง $q \neq 2557, q \nmid 2556$ และ $q|P(n_0)$ จะได้ $q|P(n_0+rp)$ สำหรับ r เป็นจำนวนเต็มใดๆ ดังนั้น $q|2557^{n_0}+213\cdot 2014$ และ $q|2557^{n_0+rq}+213\cdot 2014$ จะได้ $q|2557^{rq}-1$ จาก Fermat's little theorem จะได้ $q|2557^{q-1}-1$ จะได้ $q|2557^r-1$ เลือก r=1 จะได้ q|2556 ขัดแย้ง

Example 1.17

ให้ p เป็นจำนวนเฉพาะที่อยู่ในรูป 4k+3 เมื่อ k เป็นจำนวนเต็มบวกหรือศูนย์ ถ้า m และ n เป็นจำนวนเต็มซึ่ง $p|m^2+n^2$ แล้ว $p^2|m^2+n^2$

Proof. ข้อนี้เพียงพอที่จะแสดง $p\mid n$ และ $p\mid m$ สมมุติ $p\nmid n$ เพื่อหาข้อขัดแย้งจะได้ $p\nmid n$ ด้วยดังนั้น $(m^{-1}n)^2\equiv -1\pmod p$ ให้ g เป็น primitive root ของ p จะมี $a\in\mathbb{N}$ ซึ่ง $g^a\equiv m^{-1}n\pmod p$ ดังนั้น $((g^a)^2)^{\frac{p-1}{2}}\equiv (-1)^{\frac{p-1}{2}}\pmod p$ ซึ่งได้ $1\equiv -1\pmod p$ ขัดแย้ง \square

Example 1.18

จงแสดงว่าไม่มีคู่อันดับ (x,y) ของจำนวนเต็ม ที่สอดคล้องกับสมการ $2560x^2+5x+6=y^5$

Proof. (TMO 2017)

$$5(512x^2 + 5x + 5 + 5) = (y - 1)(y^4 + y^3 + y^2 + y + 1)$$

แสดงได้ไม่ยากว่า $y\equiv 1\pmod 5$ ทำให้ได้ $y^4+y^3+y^2+y+1\equiv 5\equiv 0\pmod 5$ ดังนั้น $5^2\mid y^5-1$ พิจารณา $\mod 5$ จะได้ $512x^2+5x+5+5\not\equiv 0\pmod 5$ ดังนั้นขัดแย้ง

Example 1.19

สำหรับจำนวนเต็มบวก n กำหนดให้ S(n) แทนผลรวมของเลขโดดใน n จงหาจำนวนเฉพาะ p ทั้งหมดซึ่ง $S(p^{p+2}) = S((p+2)^p)$

Proof. ถ้า p=2 เห็นชัดว่าจริงจะพิจารณากรณีอื่น จาก $S(p^{p+2})=S((p+2)^p)$ พิจารณา $\mod 3$ จะได้ $p^{p+2}\equiv (p+2)^p\pmod 3$ แสดงได้ไม่ยากว่า $p\neq 3$ กรณี $p\equiv 1\pmod 3$ ได้ $p+2\equiv 0\pmod 3$ ซึ่งเป็นไปไม่ได้ที่ $p^{p+2}\equiv (p+2)^p\pmod 3$ ต่อไปจะพิจารณากรณี $p\equiv 2\pmod 3$ จะได้ $p+2\equiv 1\pmod 3$ จะได้ $p+2\equiv 1\pmod 3$ จะได้ $p^{p+2}\equiv 2\pmod 3$ และ $(p+2)^p\equiv 1\pmod 3$ ซึ่งขัดแย้ง

§2 Combinatorics

Theorem 2.1 (Double counting)

ให้
$$S\subset X imes Y$$
 จะได้ $\sum_{x\in X}|S(x,*)|=\sum_{y\in Y}|S(*,y)|$

Example 2.2

ให้ $a_1 \leq a_2 \leq \cdots \leq a_n = m$ เป็นจำนวนเต็มบวก ให้ b_k เป็นจำนวนจอง a_i ซึ่ง $a_i \geq k$ จงแสดงว่า

$$a_1 + a_2 + \dots + a_n = b_1 + b_2 + \dots + b_m$$

Proof. ให้ $S = \{(a_i, k) | a_i \ge k\}$ แล้วใช้ double counting จบ

Example 2.3

กระทรวงศึกษาธิการจัดกิจกรรมโดยสุ่มเลือกนักเรียน ชั้น ม.1 จำนวน 2010 คนจาก 5 ภูมิภาคทั่ว ประเทศ เพื่อให้นักเรียนคู่ใด ๆ เลือกถกปัญหาร่วมกันจำนวน 1 หัวข้อ จากปัญหา 3 หัวข้อคือ ปัญหาด้านการเมือง ปัญหาด้านเศรษฐกิจ และปัญหาด้านสังคม ให้แสดงว่าจะมีนักเรียน 3 คนซึ่งเกิด เดือนเดียวกัน เป็นเพศเดียวกัน มาจากภูมิภาคเดียวกัน และนักเรียนทุก ๆ คู่ใน 3 คนนี้เลือกถกปัญหา ร่วมกันในหัวข้อเดียวกันหมด

Proof. รังนกจะได้มีอย่างน้อย 17 คน สอดคล้องกับโจทย์จะแสดงว่า 17 คนนี้มี 3 คนที่คุยเรื่องเดียวกัน เป็นจริงโดย Ramsey number

Example 2.4

ให้ (V,E) เป็นกราฟจงแสดงว่า

$$\sum_{v \in V} \deg(v)^2 = \sum_{xy \in E} (\deg(x) + \deg(y))$$

Proof. ให้ $S = \{((vx, vy), v) | vx, vy \in E$ และ $v \in V\}$ แล้วใช้ double counting

Example 2.5

ในบางบริษัท ลูกจ้างแต่ละคนจะทำงานแค่ 10 วันต่อเดือนเท่านั้น นอกจากนี้ ทุกๆ ลูกจ้าง 3 คน จะมีวันที่ทำงสนร่วมกัน 1 วันเท่านั้น จงแสดงว่าบริษัทมีลูกจ้างอย่างมาก 19 คนเท่านั้น (สมมติให้ 1 เดือนมี 30 วัน)

Proof. สมมติใน 1 วันมีคนทำงานมากสุดได้ m คน แสดงว่า อีก 29 วันที่เหลือ ใน m คนนี้จะทำงานได้ ร่วมกันอย่างมาก 2 คน นั่นคือ $29*2\ge 9m$ (ผลรวมของจำนวนวันที่เหลือของ m คนนี้) จะได้ $6\ge m$ ดังนั้นแต่ละวัน ทำงานร่วมกันได้อย่างมาก 6 คน $6*30\ge 10n$ จะได้จำนวนคน น้อยกว่าเท่ากับ \square

Example 2.6

กำหนดให้ n จุดต่างกันบนระนาบหนึ่ง จงแสดงว่ามีน้อยกว่า $2n^{3/2}$ คู่อันดับซึ่งห่างกัน 1 หน่วย

Proof. (solution จาก putnam 1978 A6) พิจารณา $S=\{(\{2$ งกลม1, 2งกลม2 $\}$, จุดตัด) $|\dots)\}$ เห็นได้ชัดว่า $|S|\leq n(n-1)$ (นับจากวงกลม) ให้ n_i คือจำนวนจุด บนวงกลม i นับจากจุดตัดจะได้ 2งกลม1, 2งกลม2 เป็นไปได้ $\frac{n_i(n_i-1)}{2}$ จะได้ $\sum_{i=1}^n \frac{n_i(n_i-1)}{2} \leq n(n-1)$ ใช้อสมการไม่ยากได้สอดคล้อง กับโจทย์

§3 Algebra