

Low Power Wide Area Networks for the Internet of Things

Framework, Performance Evaluation, and Challenges of LoRaWAN and NB-IoT

Samer Lahoud Melhem El Helou

ESIB, Saint Joseph University of Beirut, Lebanon

ICT 2018, Saint-Malo, France

Tutorial Outcomes

- Questions we are going to answer
- Feedback form
- Presentation slides are available

I S C

Outline

1 General Framework

A New Dimension in Communications

Source: The Internet of Things, ITU Internet Reports, 2005

- Current communications brought the ABC (Always Best Connected) paradigm
- The Internet of Things (IoT) explores a new dimension in communications

A New Dimension in Communications

Source: The Internet of Things, ITU Internet Reports, 2005

- Current communications brought the ABC (Always Best Connected) paradigm
- The Internet of Things (IoT) explores a new dimension in communications

IoT Scenarios

Internet of Things

The Internet of Things (IoT) generally refers to scenarios where network connectivity and computing capability extends to devices, sensors, and everyday items (ISOC IoT Overview, 2015).

Scenario	Example
Human	Wearables for health monitoring
Home	Heating, security automation
Retail	Self-checkout, inventory optimization
Vehicles	Condition-based maintenance
Cities	Traffic control, environmental monitoring

	Capabilities		Functions	
Application Layer				
Support Layer				
Network Layer	Networking Capabilities		Davidina	
	Transport Capabilities		Routing	
Device Layer	Gateway Capabilities			
	Device Capabilities		Sensing and Gathering	

	Capabilities		Functions	
Application Layer				
Support Layer	Generic Support Capabilities	IoT Specific Support Capabilities	Processing and Storing	
Network	Networking Capabilities		Doubles	
Layer	Transport Capabilities		Routing	
Device Layer		Gateway Capabilities		
	Device Capabilities		Sensing and Gathering	

	Capabilities		Functions	
Application Layer	IoT Applications		Analysing	,
Support Layer	Generic Support Capabilities	IoT Specific Support Capabilities	Processing and Storing	
Network	Networking Capabilities		Routing	
Layer	Transport Capabilities		Routing	
Device Layer		Gateway Capabilities		`
	Device Capabilities		Sensing and Gathering	

Evolution of IoT Devices

■ The largest growth is expected for devices connected to a wide-area network

Source: Ericsson mobility report, 2017

The Case of IoT for Smart Agriculture

Constraints on the Device and Network Layers

- Difficult physical accessibility and limited access to power sources
 - Wireless communications
 - Autonomy and long battery life operation
- Wide area coverage with a large number of communicating devices
 - Scalable deployment
 - Cost efficient devices
- Very loose bandwidth and latency constraints
 - Adaptive radio and access mechanisms

Challenge

Do existing wireless networking technologies satisfy these constraints?

L S C

LPWAN Sweet Spot

F S C

LPWAN Sweet Spot

LPWAN Sweet Spot

I S C

LPWAN Sweet Spot

LPWAN Scenarios

Low Power Wide Area Networks

Low power refers to the ability of an IoT device to function for many years on a single battery charge, while at the same time it is able to communicate from locations where shadowing and path loss would limit the usefulness of more traditional cellular technologies (3GPP Low Power Wide Area Technologies, GSMA White Paper, 2016)

- Typical scenarios for LPWAN (Usman Raza et al., Low Power Wide Area Networks: An Overview, IEEE Communications Surveys & Tutorials, 2017)
 - Smart grid
 - Industrial asset monitoring
 - Critical infrastructure monitoring
 - Agriculture

LPWAN Requirements

Indicator	Requirement		
Low power consumption Low device unit cost	Devices operate for 10 years on a single charge Below \$5 per module		
Reliability Improved coverage	Completely unattended and resilient operation Outdoor and indoor penetration coverage		
Security Optimized data transfer Design complexity	Secure connectivity and strong authentication Supports small, intermittent blocks of data Simplified network topology and deployment		
Network scalability	Support of high density of devices		

LPWAN Architecture

Common Characteristics of LPWAN Technologies

- Optimised radio modulation
- Star topology
- Frame sizes in the order of tens of bytes
- Frames transmitted a few times per day at ultra-low speeds
- Mostly upstream transmission pattern
- Devices spend most of their time in low-energy deep-sleep mode

LPWAN Technologies

Various technologies are currently candidating for LPWA: LoRaWAN, NB-IoT, Sigfox, Wi-SUN, Ingenu, etc.

Comparison of LPWAN Technologies