ALGO QCM

- 1. Quels éléments composent la signature d'un type abstrait?
 - (a) Les TYPES
 - (b) Les OPERATIONS
 - (c) Les PRECONDITIONS
 - (d) Les AXIOMES
 - (e) Les variables AVEC
- 2. Pour la déclaration

TYPES du, avec UTILISE beurre, les, croissants

l'opération et : du x beurre x avec x les -> croissants est?

- (a) Un observateur
- (b) Une opération interne
- (c) Un rapporteur
- (d) Une opération externe
- (e) Un observeur
- 3. Quels problèmes se posent lors de la conception d'un type algébrique abstrait?
 - (a) Complétude
 - (b) Conséquence
 - (c) Consistance
 - (d) Complémentation
 - (e) Inmplémentation
- 4. Une opération qui n'est pas définie partout est?
 - (a) Une opération ponctuelle
 - (b) Une opération auxiliaire
 - (c) Une opération partielle
 - (d) Une précondition
- 5. Pour la déclaration

TYPES vrai UTILISE mais, incroyable

l'opération c'est : incroyable x mais -> vrai est?

- (a) Un observateur
- (b) Une opération interne
- (c) Un rapporteur
- (d) Une opération externe
- (e) Un observeur

- 6. Les éléments qui ne composent pas la signature d'un type abstrait sont?
 - (a) Les TYPES
 - (b) Les OPERATIONS
 - (c) Les AXIOMES
 - (d) Les PRECONDITIONS

7. Les TYPES servent à préciser?

- (a) Les types définis
- (b) Les types prédéfinis

8. Un type algébrique abstrait est composé?

- (a) d'une signature ou d'un système d'axiomes
- (b) d'une signature et d'un système d'axiomes

9. Les AXIOMES?

- (a) permettent de déduire une valeur pour toute application des observateurs aux opérations internes
- (b) permettent de déduire une valeur pour toute application d'une opération interne aux observateurs

10. Les PRECONDITIONS servent à préciser le domaine de définition?

- (a) Des opérations ponctuelles
- (b) Des opérations auxiliaires
- (c) Des opérations partielles

QCM N°9

lundi 16 octobre 2017

Question 11

Les solutions de l'équation différentielle y'' - 9y' + 20y = 0 sur \mathbb{R} sont les fonctions de la forme

(a.)
$$k_1 e^{4x} + k_2 e^{5x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$e^{5x}(k_1\cos(4x) + k_2\sin(4x))$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$e^{4x}(k_1\cos(5x) + k_2\sin(5x))$$
 où $(k_1, k_2) \in \mathbb{R}^2$

d.
$$k_1 e^{-4x} + k_2 e^{-5x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

e. rien de ce qui précède

Question 12

Les solutions de l'équation différentielle y'' - 10y' + 25y = 0 sur \mathbb{R} sont les fonctions de la forme

a.
$$k_1 e^x + k_2 e^{5x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$k_1 \cos(5x) + k_2 \sin(5x)$$
 où $(k_1, k_2) \in \mathbb{R}^2$

c.
$$k_1 e^{-x} + k_2 e^{-5x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

d.
$$(k_1x+k_2)e^{-5x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

Question 13

Les solutions de l'équation différentielle y'' + 9y = 0 sur \mathbb{R} sont les fonctions de la forme

a.
$$k_1e^{3x}+k_2e^{-3x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

b.
$$(k_1x+k_2)e^{3x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

(c.)
$$k_1 \cos(3x) + k_2 \sin(3x)$$
 où $(k_1, k_2) \in \mathbb{R}^2$

d. rien de ce qui précède

Question 14

Les solutions de l'équation différentielle y''-9y=0 sur $\mathbb R$ sont les fonctions de la forme

a)
$$k_1 e^{3x} + k_2 e^{-3x}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$(k_1x+k_2)e^{3x}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

c.
$$k_1 \cos(3x) + k_2 \sin(3x)$$
 où $(k_1, k_2) \in \mathbb{R}^2$

d. rien de ce qui précède

Question 15

Les solutions de l'équation différentielle $(1+x^2)y'-y=0$ sur $\mathbb R$ sont les fonctions de la forme

- (a) $ke^{\arctan(x)}$ où $k \in \mathbb{R}$
- b. $\frac{k}{1+x^2}$ où $k \in \mathbb{R}$
- c. ke^{1+x^2} où $k \in \mathbb{R}$
- d. $k(1+x^2)$ où $k \in \mathbb{R}$
- e. rien de ce qui précède

Question 16

Les solutions de l'équation différentielle xy'-y=0 sur \mathbb{R}_+^* sont les fonctions de la forme

- a. $ke^{x/2}$ où $k \in \mathbb{R}$.
- b. $ke^{x^2/2}$ où $k \in \mathbb{R}$.
- (c.) kx où $k \in \mathbb{R}$.
- d. $k \ln(x)$ où $k \in \mathbb{R}$.
- e. rien de ce qui précède

Question 17

Les solutions de l'équation différentielle y'-xy=0 sur $\mathbb R$ sont les fonctions de la forme

- a. $ke^{x/2}$ où $k \in \mathbb{R}$.
- b. $ke^{x^2/2}$ où $k \in \mathbb{R}$.
 - c. kx où $k \in \mathbb{R}$.
- d. $k \ln(x)$ où $k \in \mathbb{R}$.
- e. rien de ce qui précède

Question 18

Les solutions de l'équation différentielle y'+y=0 sur $\mathbb R$ sont les fonctions de la forme

- a. ke^x où $k \in \mathbb{R}$
- b. kx où $k \in \mathbb{R}$
- c. ke^{-x} où $k \in \mathbb{R}$
- d. k + x où $k \in \mathbb{R}$
- e. rien de ce qui précède

Question 19

Les solutions de l'équation différentielle $(1+x^2)y'-xy=0$ sur $\mathbb R$ sont les fonctions de la forme

- a. $ke^{\arctan(x)}$ où $k \in \mathbb{R}$
- b. $\frac{k}{1+x^2}$ où $k \in \mathbb{R}$
- c. ke^{1+x^2} où $k \in \mathbb{R}$
- d. $k(1+x^2)$ où $k \in \mathbb{R}$
- e, rien de ce qui précède

Question 20

Au voisinage de 0, on a

- a. $\cos(x)e^x = 1 + x + x^2 + o(x^2)$
- (b) $\cos(x)e^x = 1 + x + o(x^2)$
- c. $\cos(x)e^x = 1 + x x^2 + o(x^2)$
- (d.) $\cos(x)e^x = 1 + x + o(x)$
- e. rien de ce qui précède

S1 MCQ 3 (Plagiarism Lines Blur for Students in Digital Age)
21. One of the problems of plagiarism among the current generation is the fact that
a) they don't know how to copy and paste.
b) they lack originality.
c) they don't understand the concept of authorship.
d) Both b and c
22. According to Ms. Wilensky, the main reason why plagiarism occurs in Universities is because
a) the students are lazy.
b) the students don't have the time to write original documents.
c) the students never go through the intellectual rigors of writing in their college days.
d) None of the above.
23. According to the article, the concept of is being challenged now among the current generation of students.
a) intellectual copyrights
b) cultivating a unique identity
c) researching online
d) writing
24. A freshman is
a) a new student in a college.
b) a new writer of an article.
c) a newcomer to a class.
d) a first year student in university or college.
25. The temperatures in September this year had been different than in the past years.
25. The temperatures in September this year had been different than in the past years. a) mainly

d) All of the above.

26. She to b reak the world record.
a) set in
b) set up
c) set by
d) set out
27. The students who copy intentionally, do it because they are unwilling to the writing process.
a) involve
b) engage
c) commit
d) All of the above.
28. Scholars are people who
a) are students.
b) are experts on particular subjects.
c) are administrators.
d) None of the above.
29. 'To lift something from the Web' means
a) to copy and paste something from the internet.
b) to paraphrase something from the internet.
c) to do research from the internet.
d) None of the above.
30. 'To synthesize something' means
a) to copy something.
b) to paste something.
c) to combine separate ideas.
d) to write something.

Lecture 6

- 31. You should use an elucidating explanation when your audience
 - a. Is made up of professionals in the field about which you are presenting
 - b. Has difficulty understanding a term
 - c. Has already heard your presentation before
 - d. None of the above
- 32. Which of the following is a good time to use the elucidating explanation?
 - a. When your audience has difficulty understanding the amount of information you are presenting
 - b. When your audience has difficulty understanding the process of the information you are presenting
 - c. When your audience is having difficulty understanding a specific term
 - d. When you are presenting difficult material and your audience is struggling to understand it
- 33. How many steps are there in elucidating explanations?
 - a. 6
 - b. 5
 - C. 4
 - d. 3
- 34. The first step to take when explaining a new concept to a particular audience is
 - a. Provide a definition of the concept
 - b. Provide examples of the concept
 - List the key terms related to the concept
 - d. Provide nonexamples of the concept
- 35. Which of the following is true of quasi-scientific explanations and elucidating explanations?
 - a. They both relate to the amount of difficulty of the material
 - b. They both relate to the level of difficulty of the material
 - c. They both relate to the level of difficulty of a specific term
 - d. None of the above

Lecture 7

- 36. Which of the following is used as an example of a hard-to-believe phenomenon?
 - a. Climate
 - b. Gravity
 - c. Weather
 - d. Statistical data
- 37. How many steps are there in transformative explanations?
 - a. 5
 - b. 4
 - c. 3
 - d. 2
- 38. Transformative explanations are used when
 - a. Audiences hold a lay belief about a particular process that isn't true
 - b. Audiences hold a lay belief about a particular process that is true
 - c. Audiences have difficulty understanding the amount of information you are presenting
 - d. Audiences struggle to understand the level of difficulty of the information you are presenting
- 39. Another term for "lay theory" could be
 - a. Myth
 - b. Fact
 - c. Publication
 - d. Evidence
- 40. The final step in transformative explanations is to
 - a. State the lay theory that the audience holds
 - b. Show limitations of the lay theory that the audience holds
 - c. State why the lay theory that the audience holds may seem reasonable
 - d. None of the above

EPITA-S1 2017/20 18

Q.C.M n°3 de Physique

41- La dérivée par rapport à la variable t de la fonction $f(\theta(t)) = 4(\theta(t))^2$ s'écrit :

a)
$$\frac{df}{dt} = 4.\theta(t) \dot{\theta}(t)$$

a)
$$\frac{df}{dt} = 4.\theta(t)\dot{\theta}(t)$$
 b) $\frac{df}{dt} = 8.\theta(t)\dot{\theta}(t)$ c) $\frac{df}{dt} = 8.\theta(t)\dot{\theta}(t)$

c)
$$\frac{df}{dt} = 8.\theta(t) \stackrel{\bullet}{\theta}(t)$$

42- Soit un mouvement de vecteur position: $O\vec{M}\begin{pmatrix} x(t) = a.t \\ y(t) = b.t^2 + c.t \end{pmatrix}$, tel que (a, b, et c) sont

des constantes. La trajectoire de ce mouvement est

- a) rectiligne
- b) circulaire
- c) elliptique
- (d) parabolique
- 43- Le vecteur vitesse du vecteur position : $\overrightarrow{OM} \left(x(t) = 3t^4 4t^3 \right)_{\vec{v}_t = \vec{v}_t}$ s'écrit :

a)
$$\vec{V} = \begin{pmatrix} x(t) = 12.t^3 - 4.t^2 \\ y(t) = -2.t \end{pmatrix}$$

$$\vec{V} = \begin{pmatrix} x(t) = 12x^3 - 12x^2 \\ x(t) = -2x \end{pmatrix}$$

a)
$$\vec{V} = \begin{pmatrix} \dot{x}(t) = 12.t^3 - 4.t^2 \\ \dot{y}(t) = -2.t \end{pmatrix}$$
 (b) $\vec{V} = \begin{pmatrix} \dot{x}(t) = 12.t^3 - 12.t^2 \\ \dot{x}(t) = 12.t^3 - 12.t^2 \end{pmatrix}$ (c) $\vec{V} = \begin{pmatrix} \dot{x}(t) = 12.t^3 - 4.t \\ \dot{y}(t) = -2.t \end{pmatrix}$

44- Le vecteur accélération \vec{a} du vecteur position $O\vec{M}\begin{pmatrix} x(t) = R\sin(\omega t) \\ v(t) = R\cos(\omega t) \end{pmatrix}$ est :

(R et ω sont des constantes)

a)
$$\vec{a} = \begin{pmatrix} -R.\omega \cos(\omega t) \\ -R\omega.\sin(\omega t) \end{pmatrix}$$

b)
$$\vec{a} = \begin{pmatrix} -R\omega^2 \sin(\omega t) \\ R\omega^2 \cos(\omega t) \end{pmatrix}$$

a)
$$\vec{a} = \begin{pmatrix} -R.\omega \cos(\omega t) \\ -R\omega.\sin(\omega t) \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} -R\omega^2 \sin(\omega t) \\ R\omega^2 \cos(\omega t) \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} -R\omega^2 \sin(\omega t) \\ -R\omega^2 \cos(\omega t) \end{pmatrix}$

45- Le vecteur vitesse en coordonnées cylindriques s'écrit :

a)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + z . \vec{u}_{z}$$

b)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta} + \stackrel{\bullet}{z} . \vec{u}_{z}$$

(c)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_o + \rho \stackrel{\bullet}{\theta} \vec{u}_\theta + \stackrel{\bullet}{z} . \vec{u}_z$$

46- Le vecteur unitaire \vec{u}_{θ} des coordonnées cylindriques vérifie

a)
$$\frac{d\vec{u}_{\theta}}{dt} = -\stackrel{\bullet}{\theta} \vec{u}_{\theta}$$
 c) $\frac{d\vec{u}_{\theta}}{dt} = \vec{0}$

c)
$$\frac{d\vec{u}_{\theta}}{dt} = 0$$

b)
$$\frac{d\vec{u}_{\theta}}{dt} = \dot{\theta} \, \vec{u}_{\rho}$$

47- Le vecteur unitaire \vec{u}_{ρ} des coordonnées cylindriques vérifie :

(a)
$$\frac{d\vec{u}_{\rho}}{dt} = \overset{\bullet}{\theta} \vec{u}_{\theta}$$
 c) $\frac{d\vec{u}_{\rho}}{dt} = \vec{0}$

c)
$$\frac{d\vec{u}_{\rho}}{dt} = \vec{0}$$

b)
$$\frac{d\vec{u}_{\rho}}{dt} = \frac{d\vec{u}_{\theta}}{dt} \cdot \hat{\theta}$$
 d) $\frac{d\vec{u}_{\rho}}{dt} = -\hat{\theta} \vec{u}_{\theta}$

d)
$$\frac{d\vec{u}_{\rho}}{dt} = -\dot{\theta}\,\vec{u}_{\theta}$$

48- Les équations horaires d'un mouvement en coordonnées cartésiennes sont données par:

$$O\vec{M} = \begin{pmatrix} x(t) = \rho_0 . e^{\theta(t)} . \cos(\theta(t)) \\ y(t) = \rho_0 . e^{\theta(t)} . \sin(\theta(t)) \\ z(t) = \rho_0 . \ln(1 + \theta(t)) \end{pmatrix}; \text{ Tels que : } \theta(t) = \omega . t \text{ ; } \omega, \rho_0 \text{ sont constantes positives.}$$

Ces équations écrites en coordonnées cylindriques donneraient

a)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0 \cdot e^{\theta(t)} (\cos(\theta(t)) + \sin(\theta(t))) \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$
b)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0 (\cos(\theta(t)) - \sin(\theta(t))) \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$
c)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0 \cdot e^{\theta(t)} \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

b)
$$\vec{OM} = \begin{pmatrix} \rho(t) = \rho_0(\cos(\theta(t)) - \sin(\theta(t))) \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

$$\vec{C}) \vec{OM} = \begin{pmatrix} \rho(t) = \rho_0 \cdot e^{\theta(t)} \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

49- Le vecteur vitesse d'un mouvement circulaire de rayon R, en coordonnées polaires s'écrit:

a)
$$\vec{V} = R \dot{\theta}(t) \vec{u}_{\rho} + \dot{\theta}(t) \vec{u}_{\theta}$$
 (b) $\vec{V} = R \dot{\theta}(t) \vec{u}_{\theta}$ (c) $\vec{V} = R \dot{\theta}(t) \vec{u}_{\rho}$

$$\vec{V} = R \vec{\theta}(t) \vec{u}_{e}$$

c)
$$\vec{V} = R \dot{\theta}(t) \vec{u}_{\rho}$$

50- L'équation de la trajectoire du mouvement d'équations horaires $\begin{cases} x(t) = a\cos(\omega t) \\ v(t) = a\sin(\omega t) \end{cases}$

est de la forme :

a)
$$x^2 - y^2 = a^2$$

b)
$$\frac{x^2}{v^2} = a^2$$

$$c) (x+y)^2 = a$$

a)
$$x^2 - y^2 = a^2$$
 b) $\frac{x^2}{y^2} = a^2$ c) $(x+y)^2 = a^2$ d) $x^2 + y^2 = a^2$

A. Zellagui

QCM Electronique - InfoS1

Pensez à bien lire les questions ET les réponses proposées

Q1. L'intensité du courant qui entre dans un générateur est inférieure à l'intensité de celui qui en ressort.

a- VRAI

b- FAUX

Q2. Si l'on applique la loi d'Ohm avec R en $k\Omega$ et I en mA, on obtient directement U en :

a. MV

b. kV

c. mV

(d.) V

Q3. Une maille d'un circuit correspond à un ensemble de dipôles placés en série.

a. VRAI

b.) FAUX

Q4. Une résistance court-circuitée a :

a. un courant infini qui la traverse

c. une tension infinie à ses bornes

(b.) une tension nulle à ses bornes

d. Aucune de ces réponses

Q5. Soit le circuit ci-dessous. Quelle est l'égalité fausse ?

(a-) $U_1 = R_1.I$

b- $U_2 = R_2.I$

c- $U_3 = -R_3.I$

 $d- U_4 = -E_2$

Q6. Soit le circuit suivant avec I_0 , E_2 , E_3 , R_1 , R_2 , R_3 , R_4 supposés connus.

Quelle est l'affirmation vraie?

a- I_2 ne dépend pas de R_3

c- $U_1 = R_1 \cdot I_0$

b- I_0 dépend de R_1

d- U_0 ne dépend pas de R_1

Q7. Dans le circuit ci-contre, que vaut U?

b.
$$-2.5 V$$

Q8. On considère le circuit ci-contre. Que vaut I?

a.
$$I = \frac{R_1.R_2}{R_1+R_2}.E$$

b.
$$I = \frac{R_1}{R_1 + R_2} \cdot E$$

c.
$$I = \frac{R_2}{R_1 + R_2} \cdot E$$

(d.)
$$I = \frac{R_1 + R_2}{R_1 \cdot R_2} \cdot E$$

Q9. Quelle est la bonne formule ?

a-
$$U = \frac{R_1^2}{R_1 + R_2}I$$

$$b U = \frac{R_1 R_2}{R_1 + R_2} I$$

c-
$$U = \frac{R_1 \cdot R_2}{R_1 + R_2} I'$$

d-
$$U = \frac{R_1 + R_2}{R_1 \cdot R_2} I$$

Q10. Quelle est la bonne formule?

a-
$$I_1 = \frac{3}{5}$$
. I

c-
$$I_1 = \frac{1}{4} . I$$

b-
$$I_1 = \frac{I}{5}$$

d-
$$I_1 = \frac{3}{4} . I$$

QCM 3

Architecture des ordinateurs

Lundi 16 octobre 2017

- 11. Combien de symboles différents possède la base 100 ?
 - A. 99
 - B. 101
 - (C) 100
 - D. 98
- 12. $70_{16} 1_{16} =$
 - A. 60₁₆
 - B. 6A₁₆
 - C. 69₁₆
 - (D) $6F_{16}$
- 13. $12321_4 =$
 - A. 110101001₂
 - B. 110111001₂
 - C. 110100011₂
 - D. 110110101₂
- 14. $AC13_{16} =$
 - A. 1010110100010011₂
 - (B.) 126023₈
 - C. 126423₈
 - D. 1010110000010011₈
- 15. En supposant que $16_b = 40_4$, quelle est la valeur de la base b?
 - (A) Impossible
 - B. 10
 - C. 8
 - D. 9

- 16. $11101001011_2 1111010100_2 =$
 - A. 1001110111₂
 - B. 1100110111₂
 - C. 1011110111₂
 - (D) 1101110111₂
- 17. $1011100010_2 / 100_2 =$
 - A. 10111001,1₂
 - B. 10111010,1₂
 - (C) 10111000,1₂
 - D. 101110001₂
- 18. $1110110_2 + 11101111_2 + 1001011_2 + 1011110_2 =$
 - A. 1 0110 0010₂
 - B. 1 0111 0110₂
 - C. 1 0110 0100₂
 - D. 1 0110 0110₂
- 19. $531_8 + 224_8 + 221_8 =$
 - A. 1176₈
 - B. 2177₈
 - C. 2176₈
 - D. 1177₈
- 20. $B2A_{16} + A0C_{16} + 10D2_{16} =$
 - A. 3609₁₆
 - B. 3608₁₆
 - C. 2609₁₆
 - (D) 2608₁₆