Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів»

Варіант<u>23</u>

Виконав студент	<u>III-13 Недельчев Євген Олександрович</u>
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище ім'я по батькові)

Лабораторна робота 5 Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання Варіант 23

23. Для чисел, що належать діапазону [a, b] визначити дільники, що ϵ членами послідовності Фібоначі.

Постановка задачі

Заданий діапазон [a, b]. Розробити універсальний алгоритм, результатом роботи якого ϵ пошук та виведення дільників чисел у діапазоні [a, b], які ϵ членами посліовності Фібоначчі.

Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Нижня границя діапазону	Цілий	a	Вхідні дані
Верхня границя діапазону	Цілий	b	Вхідні дані
n-те число ряду Фібоначчі	Цілий	fib1	Результат
(n+1) число ряду Фібоначчі	Цілий	fib2	Результат
Лічильник у вкладеному циклі	Цілий	i	Лічильник
Тимчасова змінна для коректної зміни значень fib1 та fib2	Цілий	temp	Тимчасова змінна
Тимчасова змінна, за допомогою якої уникається повторення дільників	Цілий	last	Тимчасова змінна

```
Розв'язання
```

- Крок 1. Визначимо основні дії.
- Крок 2. Визначимо ряд Фібоначчі до числа в
- Крок 3. Перевіримо, чи ϵ взятий елемент ряду Фібоначчі дільником кожного елемента послідовності [a, b]
- Крок 4. Перевірка останнього fib2 для запобігання повторення дільників

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Псевдокод

```
Крок 1.

початок

введення змінних а та b

визначення ряду Фібоначчі до числа b
перевірка, чи є взятий елемент ряду Фібоначчі дільником кожного
елемента послідовності [a, b]
перевірка останнього fib2 для запобігання повторення дільників
кінець
Крок 2.
```

початок введення змінних а та b

fib1 := 1 fib2 := 1last := 0

виведення $1 // 1 \epsilon$ дільником будь-якого числа та належить ряду Φ ібоначчі

повторити

temp := fib1 fib1 := fib2 fib2 += temp

перевірка, чи ϵ взятий елемент ряду Фібоначчі дільником кожного елемента послідовності [a, b]

перевірка останнього fib2 для запобігання повторення дільників

поки fib2 < b

все повторити

кінець

Крок 3.

початок

введення змінних а та в

fib1 := 1

fib2 := 1last := 0

виведення $1 /\!/ 1 \, \epsilon$ дільником будь-якого числа та належить ряду Фібоначчі

повторити

```
temp := fib1
          fib1 := fib2
          fib2 += temp
          повторити для і від а до b+1
                  якщо і % fib2 == 0
                        перевірка останнього fib2
                  все якщо
     поки fib2 < b
     все повторити
кінець
Крок 4.
початок
     введення змінних а та b
     fib1 := 1
     fib2 := 1
     last := 0
     виведення 1 // 1 \epsilon дільником будь-якого числа та належить ряду Фібоначчі
     повторити
          temp := fib1
          fib1 := fib2
          fib2 += temp
          повторити для і від а до b+1
                  якщо і % fib2 == 0
                        якщо last != fib2
                               виведення fib2
                              last := fib2
                        все якщо
                  все якщо
     поки fib2 < b
     все повторити
кінець
```

Блок-схема

Тестування алгоритму

Блок	Дія
	Початок
1	Введення: a = 10 b = 35
	Виведення: 1
2	temp = 1
	fib1 = 1
	fib2 = 2
	10 % 2 == 0 = true
	Виведення: 2
	fib2 < b = true
9	temp = 21
	fib1 = 34
	fib2 = 55
	fib2 < b = false
10	Кінець

Висновки

Під час роботи я дослідив особливості роботи складних циклів та набув практичних навичок їх використання під час складання програмних специфікацій.