VARIATIONAL PRINCIPLES

Jonathan Gai

4th May 2022

Contents

0.1	The Brachistochrone Problem	1
0.2	Geodesics	2
0.3	Introduction	2

Lecture 1

29 Apr. 2022

Motivation

0.1 The Brachistochrone Problem

Problem. Particle slides on a wire under influence of gravity between two fixed points *A*, *B*. Which shape of the wire gives the shortest travel time, starting from rest?

The travel time is $T=\int_A^B \frac{\mathrm{d}\ell}{v(x,y)}$, and by energy conservation, and by energy conservation

$$\frac{1}{2}mv^2 + mgy = 0 \implies v = \sqrt{-2gy}.$$

So

$$T[y] = \frac{1}{\sqrt{2g}} \int_0^{x_2} \frac{\sqrt{1 + (y')^2}}{\sqrt{-y}} dx$$

subject to y(0) = 0, $y(x_2) = y_2$.

0.2 Geodesics

Problem. What is the shortest path γ between two points A, B on a surface.

Take $\Sigma = \mathbb{R}^2$. The distance along γ is

$$D[y] = \int_A^B d\ell = \int_{x_1}^{x_2} \sqrt{1 + (y')^2} dx,$$

and we want to minimize D by varying γ .

0.3 Introduction

In general, we want to minimize (maximize)

$$F[y] = \int_{x_1}^{x_2} f(x, y, y') \, \mathrm{d}x$$

among all functions s.t. $y(x_1) = y_1$, $y(x_2) = y_2$. The expression is a *functional*. (A function on a space of functions). Functions map numbers to numbers, and functionals map functions to numbers.

Area under the graph is when f = y and the length of a curve is when $f = \sqrt{1 + (y')^2}$.

Calculus of variations finds extrema of functionals on space of functions.

Notation. • $C(\mathbb{R})$ is space of continuous functions on \mathbb{R} .

- $C^k(\mathbb{R})$ is the space of functions with continuous kth derivatives.
- $C^k_{(\alpha,\beta)}$ is the space of functions with continuous kth derivatives and $f(\alpha) = f(\beta)$.

We need to specify the function space beforehand. It is a branch of functional analysis—Part III analysis on the space of functions, while Analysis I is analysis on the number line. Variational Principles follows principles in Nature, where the laws follow from extremizing functionals.

Example (Fermat's Principle). Light between two pints travel along paths which require least time.

Example (Principle of Least Action). Let T be the kinetic energy $\frac{m|\dot{\mathbf{x}}|^2}{2}$ and potential energy $V = V(\mathbf{x})$.

$$S[\gamma] = \int_{t_1}^{t_2} (T - V) \, \mathrm{d}t$$

is minimized along paths of motion.

Leibniz commented on this, saying that "we live in the best of all worlds".

Feynman's take on this: "This is wrong. In quantum theorem the motion takes place along all possible path with different possibilities". [See Part III QFT]

In this course, we discuss

- 1. necessary condition for extrema of the Euler Lagrange Equations;
- 2. lots of examples (geometry, physics, problems with constraints);
- 3. second variation (some sufficient condition of extrema).

The following books will be useful

- 1. Gelfand Fomin "Calculus of Variations".
- 2. DAMTP notes (e.g. P. Townsend).
- 3. Lectures are self-contained.