Universidade Estadual do Oeste do Paraná (UNIOESTE)

Centro de Engenharias e ciências exatas (CECE)

Ciência da Computação

PROJETO – SISTEMAS DIGITAIS

Enzo Manente Ferreira

Gabriel José Biudes Lino

Hicham Karim Jebai

Professor Jorge Habib Hanna El Khouri

Foz do Iguaçu, PR

Julho de 2022

INTRODUÇÃO

Este documento foi produzido com o intuito de documentar e descrever todo o processo de desenvolvimento do projeto proposto em sala de aula. Sendo assim, ao decorrer do documento, será mostrado o passo a passo de como foi desenvolvido o cronômetro, conforme os requisitos propostos na apresentação do projeto.

DETALHAMENTO DO PROBLEMA

Primeiramente, é importante definir qual é o objetivo do projeto. É necessário que seja desenvolvido um cronômetro digital que conta de 00.0 até 99.9, ou seja, de 0 a 99,9 segundos. O cronômetro deve oferecer as opções RESET, que reseta o tempo do cronômetro, START/STOP, que inicia ou para o cronômetro, LAP que congela o display e uma entrada de CLOCK.

CIRCUIT.JS

No circuito final, foram utilizados, em forma de subcircuito, registradores de 4 bits com as funcionalidades de LOAD e RESET, além de incrementadores de 4 bits.

https://tinyurl.com/2aoe6btw

Nesse circuito, os três registradores e incrementadores da esquerda são os responsáveis pelo funcionamento do cronômetro em si. Na parte direita, além do display de 7 segmentos, há outros três registradores que cuidam do funcionamento do LAP.

No que diz respeito aos registradores da esquerda, todos compartilham a mesma entrada START/STOP e RESET, de modo que os três valores parem/iniciem ou sejam resetados ao mesmo tempo. A entrada RESET de cada um recebe pulso sempre que a saída do registrador transita de 9 para 10, fazendo com que cada um conte somente de 0 a 9. O gerador de CLOCK entra apenas no primeiro registrador, com uma frequência de 10 kHz, fornecendo um pulso ao primeiro registrador sempre que este emite um sinal. Sendo assim, a entrada de clock do segundo registrador é ligada ao RESET automático do primeiro registrador, de modo que este receba um pulso sempre que ocorra a transição do valor 9 ao valor 0 do primeiro registrador, o mesmo ocorre para o terceiro registrador.

A partir disso, podemos também comentar a respeito dos três registradores da parte direita do circuito, os responsáveis pelo LAP. Nesse caso, todos os três compartilham do mesmo sinal de CLOCK do gerador, e recebem como entrada o mesmo valor que sai dos registradores da parte esquerda. Porém, no caso destes, a entrada LAP está ligada à entrada LOAD de todos os três, ou seja, os registradores só são alterados caso a entrada LAP esteja desligada. Dessa forma, mostrase o valor contido nesses três registradores utilizando os displays de 7 segmentos. Com isso, a entrada LAP esteja ligada, os valores dos registradores da esquerda (responsáveis pelo funcionamento do cronômetro) permanecem sendo alterados, mas os valores dos registradores da direita (responsáveis por atualizar o display) permanecem sem se alterar, produzindo assim um efeito de congelamento no display.

DESENVOLVIMENTO EM PROTOBOARD

Para o desenvolvimento em Protoboard, foi necessário fazer algumas mudanças no circuito, de modo a se adaptar aos componentes. Assim, este ficou da seguinte forma:

https://tinyurl.com/2z4ug6bp

Onde, para cada contador, o incremento é feito utilizando 4 flip flops JK com funcionalidades de RESET, e o START/STOP passa a entrar através de um AND com o pulso do clock na entrada de clock do primeiro flip flop, garantindo que o contador só se atualize quando o START/STOP estiver em 0. Além disso, o LAP passa a ser controlado através do uso de 4 flip flops D, onde estes são apenas responsáveis por transferir os valores dos flip flops JK para as entradas do circuito de 7 segmentos. Os flip flops D recebem pulso apenas quando o circuito estiver sendo incrementado e a entrada LAP estiver desligada. A entrada LAP é a mesma para todos os contadores.

PROTOBOARD

Para o desenvolvimento no Protoboard, foram utilizados os seguintes CIs:

Decoder de 7 segmentos:

Portas OR:

Portas AND:

Flip Flop D:

Flip Flop JK:

CONCLUSÃO

Assim, após o desenvolvimento do projeto, pode-se concluir que a lógica de circuitos sequenciais pode ser utilizada para produzir diversos tipos de contadores, podendo estes ter uma série de funcionalidades diferentes.

REFERÊNCIAS

https://tinyurl.com/2aoe6btw

https://tinyurl.com/2z4ug6bp