Teoria da Computaçãos - COS700 - 2019.1

Lista 3

Entrega: 15/05/2019

Lema do Bombeamento para Linguagens Livres de Contexto

- 1. Mostre que nenhuma das linguagens abaixo é livre de contexto usando o lema do bombeamento.
 - (a) $\{a^{2^n} : n \text{ \'e primo}\};$
 - (b) $\{a^{n^2}: n \ge 0\};$
 - (c) O conjunto das palavras em $\{a, b, c\}^*$ que têm o mesmo número de as e bs, e cujo número de cs é maior ou igual que o de as;
 - (d) $\{0^n 1^n 0^n 1^n : n \ge 0\};$
 - (e) $\{rrr: s \in \{0 \cup 1\}^*\};$
 - (f) $\{wcwcw : w \in \{0,1\}^*\};$
 - (g) $\{0^{n!} : n \ge 1\};$
 - (h) $\{0^k 1^k 0^k : k \ge 0\};$
 - (i) $\{wct : w \text{ \'e uma subpalavra de } t \text{ e } w, t \in \{a, b\}^*\};$
 - (j) O conjunto de todos os palíndromos no alfabeto $\{0,1\}$ que contém o mesmo número de 0's e 1's.

Autômatos de Pilha

2. Considere o autômato de pilha não-determinístico \mathcal{M} com alfabetos $\Sigma = \{a, b\}$ e $\Gamma = \{a\}$, estados q_1 e q_2 , estado inicial q_1 e final q_2 e transições dadas pela tabela:

estado	entrada	topodapilha	transies
q_1	a	ϵ	(q_1,a)
			(q_e,ϵ)
q_1	b	ϵ	(q_1,a)
q_2	a	a	(q_2,ϵ)
q_2	b	a	(q_2,ϵ)

- (a) Descreva todas as possíveis sequências de transições de \mathcal{M} na entrada aba;
- (b) Mostre que aba, aa e abb não pertencem a $L(\mathcal{M})$ e que baa, bab e baaaa pertencem a $L(\mathcal{M})$;

- (c) Descreva a linguagem aceita por \mathcal{M} em português.
- 3. Ache um autômato de pilha não-determinístico cuja linguagem aceita é L onde:
 - (a) $L = \{a^n b^{n+1} : n \ge 0\};$
 - (b) $L = \{a^n b^{2n} : n \ge 0\};$
 - (c) $L = \{w \in a, b^* : \text{ o número de } as \text{ é diferente do de } bs\};$
 - (d) $L = \{a^n b^m : m, n \ge 0 \text{ e } m \ne n\};$
 - (e) $L = \{w_1 c w_2 : w_1, w_2 \in \{a, b\}^* \text{ e } w_1 \neq w_r^2\}.$
- **4.** Um autômato finito não-determinístico que aceita a linguagem denotada por 0.0*.1.0 não pode ter menos de 4 estados. Construa um autômato de pilha não-determinístico com apenas 2 estados que aceita esta linguagem.
- 5. Esta questão trata da existência ou inexistência de computações infinitas.
 - (a) Explique porque um autômato finito determinístico não admite uma computação com um número infinito de etapas;
 - (b) Dê exemplo de um autômato de pilha não-determinístico que admite uma computação com um número infinito de etapas.
- 6. Seja \mathcal{M} um autômato de pilha não-determinístico com alfabeto de entrada Σ , estado inicial q_1 e conjunto de estados Q. A linguagem que \mathcal{M} aceita por pilha vazia é definida como:

$$N(\mathcal{M}) = \{ w \in \Sigma^* : \exists (q_1, w, \epsilon) \vdash^* (q, \epsilon, \epsilon) \text{ onde } q \in Q \}.$$

Note que a diferença entre $L(\mathcal{M})$ e $N(\mathcal{M})$ é que, para a palavra ser aceita em $L(\mathcal{M})$ tem que ser possível chegar a uma configuração (q, ϵ, ϵ) em que q é um estado final, ao passo que não há restrições sobre o estado no caso de $N(\mathcal{M})$.

- (a) Dê exemplo de um autômato de pilha não-determinístico \mathcal{M} para o qual $N(\mathcal{M}) \neq L(\mathcal{M})$;
- (b) Mostre que, dado um autômato de pilha não-determinístico \mathcal{M} , existe um autômato de pilha não-determinístico \mathcal{M}' tal que $L(\mathcal{M}) = N(\mathcal{M}')$;
- (c) Mostre que dado um autômato de pilha não-determinístico \mathcal{M} existe um autômato de pilha não-determinístico \mathcal{M}' tal que $N(\mathcal{M}) = L(\mathcal{M}')$.

Relação entre Gramáticas Livres de Contexto e Autômatos de Pilha

7. Ache um autômato de pilha não-determinístico que aceita a linguagem gerada pela gramática cujas regras são:

$$S \to 0AA$$

$$A \rightarrow 1S \mid 0S \mid 0$$

- 8. Para cada uma das linguagens L, abaixo, construa uma gramática livre de contexto que gere L e construa um autômato de pilha não-determinístico que aceite L.
 - (a) $L = \{wc^4w^r : w \in \{0, 1\}\};$
 - (b) $L = \{a^n b^m c : n \ge m \ge 1\};$
 - (c) $L = \{0^m 1^n : n \le m \le 2n\};$
 - (d) $L = \{a^{i+3}b^{2i+1} : i \ge 0\};$
 - (e) $L = \{a^i b^j c^j d^i e^3 : i, j \ge 0\}.$