Japanese Patent Application Publication No. 63-66385

This document relates to (a) a tool steel containing C: 0.2 to 2.5 %, Si: 0.1 to 2.0 %, Mn: 0.4 to 3.0 %, Cr: 1.0 to 20.0 %, Mo: 0.1 to 3.0 %, N: 0.01 to 0.3 %, one or more of S: 0.04 to 0.4 %, Te: 0.03 to 0.3 % and Se: 0.01 to 0.4 % as one or more free machining components, one or more rare earth elements: 0.005 to 0.60 %, and the balance: substantially Fe and inevitable impurities. This document also relates to (b) a tool steel containing C: 0.2 to 2.5 %, Si: 0.1 to 2.0 %, Mn: 0.4 to 3.0 %, Cr: 1.0 to 20.0 %, Mo: 0.1 to 3.0 %, N: 0.01 to 0.3 %, Ni; 0.3 to 4.0 %, one or more of S: 0.04 to 0.4 %, Te: 0.03 to 0.3 % and Se: 0.01 to 0.4 % as one or more free-machining components, one or more rare earth elements: 0.005 to 0.60 %, and the balance: substantially Fe and inevitable impurities; (c) a tool steel containing C: 0.2 to 2.5 %, Si: 0.1 to 2.0 %, Mn: 0.4 to 3.0 %, Cr: 1.0 to 20.0 %, Mo: 0.1 to 3.0 %, N: 0.01 to 0.3 %, V: 0.05 to 3.0 %, Al: 0.3 to 1.5 %, Nb: 0.1 to 3.0 %, Zr: 0.05 to 3.0 %, Ti: 0.05 to 3.0 %, B: 0.001 to 0.050 %, one or more of S: 0.04 to 0.4 %, Te: 0.03 to 0.3 % and Se: 0.01 to 0.4 % as one or more free-machining components, one or more rare-earth elements: 0.005 to 0.60 %, and the balance: substantially Fe and inevitable impurities; and (d) a tool steel containing C: 0.2 to 2.5 %, Si: 0.1 to 2.0 %, Mn: 0.4 to 3.0 %, Cr: 1.0 to 20.0 %, Mo: 0.1 to 3.0 %, N: 0.01 to 0.3 %, Ni; 0.3 to 4.0 %, V: 0.05 to 3.0 %, Al: 0.3 to 1.5 %, Nb: 0.1 to 3.0 %, Zr:

0.05 to 3.0 %, Ti: 0.05 to 3.0 %, B: 0.001 to 0.050 %, one or more of S: 0.04 to 0.4 %, Te: 0.03 to 0.3 % and Se: 0.01 to 0.4 % as one or more free-machining components, one or more rare-earth elements: 0.005 to 0.60 %, and the balance: substantially Fe and inevitable impurities.

19 日本国特許庁(JP)

⑪特許出願公告

⑩特 許 公 報(B2)

昭63-66385

@Int_Cl_4	識別記号	庁内整理番号	❷❷公告	昭和63年(1988)12月20日
C 22 C 38/60 38/00	3 0 1	H-6813-4K M-6813-4K			
	3 0 2	E-6813-4K		発明の数 4	(全8頁)

工具鋼 ❷発明の名称

> 願 昭55-148197 ②特

63公 開 昭57-73170

23出 願 昭55(1980)10月24日 ❸昭57(1982)5月7日

愛知県名古屋市千種区向陽町 3-23 井 彰 砂発 明 者 福 善 之 砂発 明 者 新 Ш 群馬県渋川市元町625

直 行 群馬県渋川市金井402-4 砂発 明 者 Щ 内

愛知県名古屋市中区錦一丁目11番18号 人 大同特殊鋼株式会社 砂出 願

簭 雄 四代 理 人 泂 審査官 秀 Щ 影

1

切特許請求の範囲

1 C0.2~2.5%, Si0.1~2.0%, Mn0.4~3.0% Cr1.0~20.0%, Mo0.1~3.0%, N0.01~0.3% & 快削成分としてS0.04~0.4%とTe0.03~0.3%、 希土類元素の1種または2種以上を合計量で 0.005~0.60%含有し、残余が実質的にFeおよび 不可避的不純物からなる工具鋼。

2 C0.2~2.5%, Si0.1~2.0%, Mn0.4~3.0% Cr1.0~20.0%、Mo0.1~3.0%、N0.01~0.3% 10 る工具鋼。 Ni0.3~4.0%と快削成分としてS0.04~0.4%と Te0.03~0.3%、Se0.01~0.4%の 1 種または 2 種 と、さらに希土類元素の1種または2種以上を合 計量で0.005~0.60%含有し、残余が実質的にFe および不可避的不純物からなる工具鋼。

3 $C0.2 \sim 2.5\%$, Si0.1 $\sim 2.0\%$, Mn0.4 $\sim 3.0\%$ Cr1.0~20.0%, Moo.1~3.0%, N0.01~0.3% & $V0.05 \sim 3.0 \%$, Al0.3 $\sim 1.5 \%$, Nb0.1 $\sim 3.0 \%$, Zr0.05~3.0%、Ti0.05~3.0%、B0.001~0.050% 量が0.1~6.0%で、快削成分としてS0.04~0.4% とTe0.03~0.3%、Se0.01~0.4%の1種または2 種と、さらに希土類元素の1種または2種以上を 合計量で0.005~0.60%含有し、残余が実質的に Feおよび不可避的不純物からなる工具鋼。

4 C0.2~2.5%, Si0.1~2.0%, Mn0.4~3.0%

 $Cr1.0 \sim 20.0\%$, $Mo0.1 \sim 3.0\%$, $N0.01 \sim 0.3\%$, Nb0.1~3.0%, Zr0.05~3.0%, Ti0.05~3.0%, B0.001~0.050%の内、少なくとも2種以上の元 Se0.01~0.4%の1種または2種以上と、さらに 5 素を含み、その合計量が0.1~6.0%で、快削成分 としてS0.04~0.4%と、Te0.03~0.3%、Se0.01~ 0.4%の1種または2種と、希土類元素の1種ま たは2種以上を合計量で0.005~0.60%含有し、 残余が実質的にFeおよび不可避的不純物からな

発明の詳細な説明・

本発明はH_sC40~47程度の中硬度で使用される ダイブレート、絞り型、抜き型、ダイカスト金型 およびその他の工具に使用される快削性を有する 15 工具鋼に関するものである。

さらに詳しくは快削成分のS、Te、Seおよび 希土類元素の複合添加により、従来公知の快削合 金工具鋼より、その被削性を大巾に向上させると ともに、希土類元素の投入によつて、上配快削成 の内少なくとも2種以上の元素を含み、その合計 20 分により形成される非金属介在物の形状を粒状化 させて耐衝撃性を改善した快削性工具鋼である。

> なお本発明鋼の用途は、機械加工後熱処理をお こなう通常の冷間工具鋼としてはもとより、中硬 度に熱処理をした後複雑な機械加工をおこなうこ 25 とができる快削性プレハードン鋼としてきわめて 好適である。

3

従来の快削成分を含有している鋼の場合、塑性 加工によつてA系介在物が線状に変形し、この介 在物の鋭角コーナー部に応力が集中して初期破壊 を生じる。このため靭性も著しく低下し耐酸化性 や耐ヒートチェック性が劣化し、耐摩耗性が必然 5 る。 的に悪くなる欠点があつた。

本発明者等は種々研究の結果、公知快削成分の S、Te、Seに希土類元素を微量添加することに より、他の特性を損なうことなく被削性や靱性が 著しく向上することを知見し本発明に到つた。

また、それとともに本発明の鋼は、耐酸化性耐 ヒートチエツク性に富み、耐摩耗性を向上させる ために施行される各種表面硬化処理性に優れた特 性を有することが明らかとなつた。

また、従来公知鋼のプレハードン材として使用 15 する場合、被削性の関係からH_RC40前後のかたさ しか得られなかつたが、本発鋼はHgC40~47の中 硬度に上げることができ、しかも工具寿命を著し く延長することができる。

すなわち、本発明の要旨とするところは、下記 20 のとおりである。

 $C0.2 \sim 2.5\%$, Si0.1 $\sim 2.0\%$, Mn0.4 $\sim 3.0\%$, Cr1.0~20.0%、Mo0.1~3.0%、N0.01~0.3% € 基本成分とし、快削成分としてS0.04~0.4%と、 Te0.03~0.3%、Se0.01~0.4%の1種または2種 25 要である。 と、さらに希土類元素の1種または2種以上を合 計量で0.005~0.60%含有し、残余が実質的にFe および不可避不純物からなり、必要によりNi0.3 ~4.0%を含み、または/および、V0.05~3.0%、 Ti0.05~3.0%、B0.001~0.050%の内、少なくと も2種以上の元素を含み、この2種以上の合計量 が0.1~6.0%である工具鋼。

なお、本発明における希土類元素とは、La、 素のことを言う。

次に本発明鋼の化学成分組成範囲限定理由を以 下に述べる。

C: 0.2~2.5%

成元素と結合して、硬い複合炭化物を生成し、工 具として必要な耐摩耗性の向上に著しい効果があ り、また基地中に固溶して所要の硬さを付与せし めるために必要な成分元素である。しかし、0.2

%未満の含有では前述特性を十分に発揮できず焼 もどしにより必要な硬さが得られない。他方、 2.5%を超える過剰の含有量では、焼もどし軟化 抵抗性を減少させると共に、靱性が著しく劣化す

また、大形介在物の現出による鏡面仕上性の劣 化が生じるので2.5%以下に限定した。

Si: 0.1~2.0%

Siは基地中に固溶して降状点を高め、疲労限を 10 向上させるのに大きな影響を有する非常に有効な 成分元素である。また200~300℃の温度領域で軟 化抵抗性を高める効果がある。しかし2.0%を超 えると熱伝導性の劣化による金型温度の上昇や被 削性の低下が生じるので2.0%以下に限定した。

また、0.1%未満ではこれらの特性を得ること が出来ない。

なお一般的溶解法では脱酸剤として添加され る。

Mn: 0.4~2.0%

Siと同様に脱酸剤として添加されると共に、 MnはSと反応しMnSを形成し被削性向上に大い に寄与している。0.4%未満の含有ではMnSの形 成が完全に行なわれず余剰のSがFeと反応し低 融点のFeSを形成するので最低量でも0.4%が必

またMnはオーステナイトを安定化し、マルテ ンサイト変態点を著しく降下させる。このため 2.0%をこえて添加するとマルテンサイト変態点 が約80℃低下して残留オーステナイト量が増加 Al0.3~1.5%、Nb0.1~3.0%、Zr0.05~3.0%、30 し、経年変化等の寸法変形が生ずる。また、加工 硬化能が高いので被削性も劣化させるので2.0% 以下に限定した。

Cr: 1.0~20.0%

Cと結合して複合炭化物を形成し、耐摩耗性の Ce、Nd、Sc、Y、Smおよびその他の希土類元 35 向上に大いに寄与する元素である。また基地中に も多量に固溶して焼入性を向上させると共に耐酸 化性の向上にも大きく寄与するのに必須の成分元 素であるが、1.0%未満ではその効果が達成され ず、しかも必要な焼もどし硬さが得られない。一 Cは、Cr、Mo、W、V、Nbなどの炭化物形 40 方、20.0%を超えて多量に含有すると炭化物反応 を低温度側に移行させ、焼もどし軟化抵抗性を減 少させると共に靱性をも劣化させる。

> これはM₇C₂型の巨大炭化物を形成させるため である。この炭化物は一般的製造方法では角ばつ

た形状となるため、使用中の外応力が負荷された 場合にこの炭化物のコーナー部に応力集中が生 じ、その部分より割れが生じるためである。この ような理由からCr含有量は1.0~20.0%の範囲に 限定した。

Mo: 0.1~3.0%

MoはCと結合して微細なM₂C型あるいはM₅C 型複合炭化物を生成させ、かつ基地中にも固溶し てこれを強化するので耐摩耗性や高温硬さを高め エック性を改善させるのに大いに寄与する元素で ある。Cr含有量が2.0%以上の場合には、Mo添加 量0.1%以上で焼もどし軟化抵抗性が向上するか 3.0%を超えるとその効果がほぼ一定となるので Mo成分範囲は0.1~3.0%に限定した。

N: 0.01~0.3%

NはCと同様に、Cr、Mo、V、Nbなどの元 素と反応し、窒化物を形成し耐摩耗性の向上、結 晶粒の粗大化防止に著しい効果がある。この特性 述の効果は期待できないし、0.3%をこえると炭 窒化物が結晶粒界のトリブルポイントで巨大成長 し、靱性を劣化させるので0.3%以下に限定した。 なお、0.02%以上のNを添加すれば、特に細粒が 得られるので0.02~0.3%の範囲が好ましい。 $S: 0.05 \sim 0.3\%$, $Te: 0.03 \sim 0.3\%$, $Se: 0.01 \sim$ 0.4%、希土類元素: 0.005~0.60%

S、Te、Seと希土類元素は快削性付与成分と して重要な元素で必ずSとTeまたは/およびSe と希土類元素の3元素以上を複合状態で添加する 30 ことが必要である。

希土類元素はSと結合しやすく高融点の希土類 硫化物を形成し、球状粒子となつて鋼中に分散 し、圧延に際して点線状に延伸される。一方Te オテレナイド、固溶体Mn(S、Te) またはマン ガンーサルフオセレナイド固溶体Mn(S、Se) を形成するが、このMn(S、Te) やMn(S、 Se)の介在物は希土類硫化物より融点が低く、 しかも硫化物生成エネルギーが大きいために、希 40 Al: 0.3~1.5% 土類硫化物を核として成長する結果、基地中に均 一分布し被削性を向上させる。この複合介在物は MnS型よりも硬いので母材の塑性加工中でも変 形しにくく、欄円形あるいは卵形になるのみで従

6

来公知の線状非金属介在物とはならない。公知の Sを主体とした快削鋼では、軟らかなMnS介在 物が主であるため、塑性加工時に糸状に長く伸 び、その先端が鋭いエツジ状を呈し、外応力の負 荷、除去の繰り返しによりノッチ作用が生じ、早 期破壊原因となる欠陥をもつている。

これに対して、S、Te、Seと希土類元素を複 合添加した場合には、希土類硫化物やMn(S、 Te)等が球状に近い形となるため、鋭いエッジ ると共に焼もどし軟化抵抗性の向上や耐ヒートチ 10 が生成されず、クラツク発生の起点となりにく い、したがつて、この複合介在物を起点としたク ラックの発生が少ないため靱性が著しく改善でき ることになる。

また被削性に対してもこの形状はMnSのよう 15 な糸状に延びたものよりはるかに好結果が得られ る。このように容易に卵状の複合介在物を得るこ とができ、しかも鍛造時の熱間加工性を考慮し て、S0.05~0.3%、Te0.03~0.3%Se0.01~0.4% の1種または2種以上とさらに希土類元素の1種 は0.01%未満では大部分炭窒化物の型となり、上 20 または2種以上を合計量で0.005~0.60%含有す る成分範囲内の組合せ添加が必要である。

Ni: 0.3~4.0%

Niは、焼入性の向上や結晶粒微細化による靱 性向上に大きく寄与する元素であるが、その効果 25 は0.30%未満の含有では得られず、他方4.0%を こえると残留オーステナイト量が急激に増加し、 炭化物反応が遅滞して被削性を劣化させるので Niの含有量は0.3~4.0%の範囲に限定した。

$V: 0.05 \sim 3.0\%$

Vは鋼中のC、Nと結合して非常に硬くしかも 固溶しいくいMC型炭化物を生成し、耐摩耗性の 向上に大きく寄与し、かつ結晶粒を微細化させる 結果、靱性を向上させる効果がある。しかしなが らVは有効なCを固着するために硬さ低下を生 またはSeはMnやSと結合してマンガンーサルフ 35 じ、しかもNb、Zr、Tiとの関係から3.0%をこえ て含有すると巨大なMC型炭化物を生成し、被削 性や硬さの低下を生じる。他方0.05%未満では、 耐軟化抵抗性が劣化するので添加範囲を0.05~ 3.0%に限定した。

AlはNと結合してAl-N固溶体を作り、硬さ を高めるとともに、金型キャピティー部表層で加 熱されることによりAl₂O₃を形成し、これが表層 部をおおい、耐酸化性を著しく向上させる。0.3

%未満ではAI-N化合物の量が少なく耐摩耗性 の向上が望めず1.5%をこえると溶鋼中での酸化 反応が生じ鋼の清浄度を低下させる。またAIの 偏析が生じ硬さむらを起すので1.5%以下に限定 した。

$Nb: 0.1 \sim 3.0\%$

Nbは非常に高融点の微細な特殊炭化物を形成 するために、鍛造あるいは圧延、焼入れの際、加 熱温度の上昇にともなう結晶粒の粗大化を阻止さ 感受性を著しく鈍化させる効果がある。

この作用を最も有効ならしめるには、最少量 0.1%以上を必要とし、炭素量とのかねあいから すると上限は3.0%までである。

Zr: 0.05~3.0%

乙は溶鋼中の酸素と結合して微細な酸化物を 形成する。これは、希土類元素と同様に、硫化物 系の介在物の析出時に核的働きをし、硫化物系介 在物の微粒分散に効果的な添加元素である。しか 硫化物やMn(S、Te) やMn(S、Se) の分散に は十分効果が発揮できず、また3.0%をこえると 鋼中の窒素と反応し、大形の角ばつた窒化物を形 成する。これが塑性加工により連鎖状になり早期 割れを引き起こすので添加範囲を0.05~3.0%に 25 添加合計で0.1~6.0%と限定した。 限定した。

Ti: 0.05~3.0%

Tiは溶湯での強脱酸効果があり、しかもCが TiCとして固定され非常に硬い炭化物を形成し、 耐摩耗性を向上させる。

さらに長時間加熱によるCrの局部的減少を防

害し、オーステナイトの生成を防止するのに効果 的に働く。しかし0.05%未満ではこの特性を著し く発揮させることが出来ず、Cとの関係から3.0 %をこえた多量の含有は、析出硬化が生じ靱性を 5 劣化させるので添加範囲を0.05~3.0%に限定し

$B:0.001\sim0.050\%$

Bは極微量の添加で焼入性や強さを著しく向上 させる元素であり、焼入冷却過程において、オー せる。この結果、髙温加熱に対する結晶粒成長の 10 ステナイト結晶粒界への初析炭化物の析出を抑制 して靱性の劣化を防止する効果がある。上記効果 を有効に発揮させるためには、少なくとも0.001 %以上含有する必要がある。ただし、多量に含有 するとほう化物が多量に形成され、鍛造性が著し 15 く劣化するので0.050%以下に限定した。これら Nb、Zr、Ti、Bは結晶粒の調整に有効に作用 し、結晶粒微細化をはかることができるので靱性 向上に著しく寄与する。

また鋼中のNと反応して窒化物を生成しNによ し0.05%未満では有用添加して形成された希土類 20 る各種の脆化を防止する。しかし、これらの元素 中 2種以上の添加で0.1%未満ではその効果が期 待できず、6.0%をこえた多量の添加では結晶粒 界への優先析出が生じるために靱性低下が生じ る。従つてこれら4元素の添加範囲は2種以上の

> 次に本発明の特徴を実施例により詳細に説明す る。

実施例

第1表は本発明鋼と公知鋼の化学組成を示す。 この内M 1~11は本発明鋼であり、M 12~13は 30 従来から用いられている快削合金工具鋼である。

9

10

第1表 供試材の化学成分(%)

試料No.		化 学 成 分 (wt%)										
		С	Si	Mn	S	Ni	Сг	Мо	V	Те	Se	La
1	第1発明鋼	0.40	0.57	0.60	0.11	_	2, 10	0.43	<u> </u>	0, 13	-	_
2	第2発明鋼	0.43	0.43	0.62	0.17	0,63	2,30	0.31	_	-	-	0.40
3	第3発明鋼	0,41	0.58	0.61	0, 10	_	2, 11	0.42		0.14	_	0.54
4	第3発明鋼	0.45	0.42	1.25	0. 15	. –	2,03	2,44	0.44	_	0, 10	0, 20
5	第4発明鋼	0,29	0.25	0.43	0,05	0.36	1.09	0.14	0.11	0.032	_	0.18
6	第4発明鋼	2,20	1.09	2.50	0.21	1.13	11.20	0.83	0.43	0, 22	_	0.23
7	第4発明鋼	0.38	0.53	0.58	0, 13	0.33	2, 30	0,34	1	0.11	_	0,23
8	第4発明鋼	0.42	0.44	0,61	0.16	0.65	2, 32	0,30	2, 60	-	0,13	0.18
9	第4発明鋼	1,48	0.41	0.62	0, 12	0, 40	2,00	0.29	0, 15	0.07	0.07	0.19
10	第4発明鋼	0,60	0, 32	0.60	0.12	3, 25	17.50	0.29	0.13	0, 11	_	0.32
11	第4発明鋼	0,40	0.45	0.62	0.10	1,20	2, 16	0.28	0.13	0.10	_	0.30
12	公知鋼	0.34	0, 23	1.06	0.11	0,05	2, 24	0.40	0.01	_		
13	AISI P20	0,35	0.51	0.43	0,02	0, 12	1.25	0.40		_		

試料Na		化 学 成 分 (wt%)							
	ው ኒዮትΝα		Nd	В	Al	N	NЬ	Zr	Ti
1	第1発明鋼	0.35	-	_	-	0.13	 	_	-
2	第2発明鋼	_	_	-	-	0,12	_	_	
3	第3発明鋼	_	0.02	0.01	0,70	0.03	_	1.85	0.15
4	第3発明鋼	0.10	_	_	_	0.08	_	_	_
5	第4発明鋼	_	_		_	0.14	_	_	_
6	第4発明鋼	_	-	_	1,50	0.01	_		_
7	第4発明鋼	0.10	0.02	_	_	0.13	0.13	_	0.30
8	第4発明鋼	0, 12	1	0.01	_	0.12	0, 35	-	-
9	第4発明鋼	0, 10	-	1	0, 41	0.03	2.15	0,30	0. 15
10	第4発明鋼	0,05	0.14	0.03	0.37	0.03	1	0.54	1
11	第4発明鋼	_	0.14	-	1.49	0, 15	ı	-	0, 60
12	公知鋼	-	_	-	-	_	-	_	_
13	AISI P20	_	-	- 1	_	- 7	_	_	_

第2表 シャルピー衝 撃試験結果 (2mJJノツチ)

	試料Ma	硬さ (HRC)	衝撃値 (kgf·m/cd)
1	第1発明鋼	44.7	4.0
2	第2発明鋼	44.3	4.3
3	第3発明鋼	44, 9	4.0
4	第3発明鋼	44.5	4.5
5	第4発明鋼	44.8	3,8
6	第4発明鋼	45,5	3, 0
7	第4発明鋼	43.8	4,2
8	第4発明鋼	45, 1	4.2
9	第4発明鋼	44,3	3,0
10	第4発明鋼	44.5	3.4
11	第4発明鋼	45,0	4.1

試料Na	硬さ (HRC)	衝擊値 (kgf·m/cfi)
12 公知鋼	44.7	1.8
13 AISI P20	44.5	2.2

* 試験片の熱処理条件

30

25

780℃×1Hr油冷→620℃×1Hr× 2空冷→620~650℃で硬さ調整用 焼もどしを実施。但し試料2、5、8の 焼入温度は各々1000℃、950℃、900 ℃。

35 第2表はシャルピー衝撃試験結果を示す。本発明鋼は公知鋼に比べていずれも優れた衝撃特性を示している。

すなわち、快削成分 S、Te、Seおよび希土類 元素の複合添加により形成される非金属介在物、 40 特に硫化物系介在物の形状を粒状化させるため衝 撃特性の低下は認められないものと考えられる。

第1図は鋼中の硫化物系介在物を比較した結果 である。

第2図は本発明鋼及び公知鋼の穿孔試験の結果

14

であり、熱処理によりほゞ同一硬さ(HgC43.1~ 45.5) にした供試材をSKH9製 5 zm φストレート シャンクドリルを用いて深さ 5 mmの穴加工をし

り0.067mm/revである。本発明鋼は従来鋼と比較 して高硬度での穿孔試験結果が2.8~4.4倍も優れ ていることが明瞭であり、冷間並びに温間用金型 材として機械加工する場合、非常に容易に金型製

なお、本願の実施例に示した以外の希土類元素 についても同様の優れた効果の得られることを確 認している。

以上のごとく本発明鋼は、S、Te、Seおよび 希土類元素を適当にパランスさせた快削冷間工具 鋼であつて、従来の快削合金工具鋼に比べて、靱 なお、この際の切削条件は、回転数1480rpm送 5 性および被削性に優れており、冷間用金型材とし て好適であることが判る。

図面の簡単な説明

第1図は本発明鋼と比較鋼の介在物形態を示す 顕微鏡組織写真(倍率400倍)であり、a は公知 作が出きるため経済性に富む型材であることが判 10 鋼 (Na12)、bは本発明鋼 (Na10) である。第2 図は、本発明鋼と比較鋼の穿孔試験結果を示す図 である。

第1図

第2図

