

Table of contents

01 Introduction

02 Related work

03 Dataset/Platform

04 Baseline

05 Main approach

06 Evaluation metrics

07 Results & Analysis

Introduction

- AI applied to medical field
- COVID-19 CT images
 - O Why CT?

- Haar like features & adaboost
- VGG 16
- Inception V3

Haar-like feature & Adaboost

• HW1

- \circ Using openCV to load data (19 x 19) -> 24 x 24
- Dataset only 400 images in total -> 7955
- Classify face and non faces

VGG16, InceptionV3

- https://p.migdal.pl/2017/04/30/teaching-deep-learning.html/
- Used for multi-classes classification
- https://iopscience.iop.org/article/10.1088/1757-899X/1084/1/012001/pdf
- Used for collect data and select model that we use to train-

Baseline

- Haar like feature & Adaboost:
 - Haar like feature detector resolution: 24 x 24
 - Grayscale
 - \circ The number of weak classifiers(T) = 10
- VGG16 and Inception V3:
 - \circ Epoch = 10
 - Input size: 299 x 299
 - \circ Batch size = 32
 - Normalize:

(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

Current situation & problems **Current situation** 02 01 03 Haar-like Vgg16 Inception V3 Adaboost **Problems**

Haar-like feature & Viola Jones

Haar-like feature

Features are used to extract some useful information, like edges and lines.

The value of the feature is the difference between the sum of the pixels within two regions.

Haar-like feature & Viola Jones

Integral Image

$$ii(x,y) = \sum_{x' \leq x, y' \leq y} i(x',y'),$$

Integral image is used for fast calculation of rectangle features.

We can easily get the sum of area D by calculating 4 - 2 - 3 + 1.

Haar-like feature & Viola Jones

Adaboost

- Given example images (x1, y1),...,(xn, yn) where yi = 0, 1 for negative and positive examples respectively.
- Initialize weights w_{1,i} = \frac{1}{2m}, \frac{1}{2l} \text{ for } y_i = 0, 1 \text{ respectively, where } m \text{ and } l \text{ are the number of negatives and positives respectively.}
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i \, |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i=0$ if example x_i is classified correctly, $e_i=1$ otherwise, and $\beta_t=\frac{\epsilon_t}{1-\epsilon_t}$.

The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

Initialize weights first.

For each loop, normalize the weights and train weak classifier. Next, choose the classifier with the smallest error, then update the weights.

Finally get the strong classifier.

VGG16

Vgg16 is a powerful DL model widely used for image analysis and classification.

- VGG splits image into R,G,B three channels as input of CNN
- Consist of a series of convolutional layers followed by fully connected layers for classification.
- Output will be a tensor contains 1000 classifiers

Analysis of VGG16

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 × 2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
	v	max	pool	Sc	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-250
~		max	pool	-	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	***************************************	3110 2000	conv1-512	conv3-512	conv3-512
					conv3-512
	111		pool	110	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			2553		conv3-512
•			pool	•	
		= -	4096		,
			4096		
		-	1000		
		soft-	-max	://blog.csdn.ne	t/aa 459980

VGG is a type of streamlined CNN architecture, known for its consistent size of convolutional layers across the network, making it easy to understand and manipulate. The right figure shows a rough overview of the different types of VGG architectures. It can be observed that all VGG types are divided into 5 blocks, followed by 3 fully connected layers, and finally a softmax layer. Among them, VGG-16 has a similar architecture to type D.

VGG16

The left image shows the architecture of VGG-16, which consists of five blocks and three fully connected layers. Each block undergoes a series of convolutional operations followed by pooling, which passes specific feature values to the next block.

The right image visualizes the process of performing convolution on a tensor.

Maxpooling

```
[[ 1, 2, 3, 4],
 [ 5, 6, 7, 8],
 [ 9, 10, 11, 12],
 [13, 14, 15, 16]]

Maxpool2d (kernel_size=2, stride=2):
 [[ 6, 8],
 [14, 16]]
```

Normalization

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

Image below illustrates the number of parameters and computations.

```
(not counting biases)
INPUT: [224x224x3]
                     memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512; [28x28x512] memory; 28*28*512=400K params; (3*3*256)*512 = 1,179.648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```


Inception V3

A classification method

First Level

- InceptionV3 use modular organization method like Inception V1.
- The picture in the left is the first block of modular. Our input size is 3 * 299 * 299.
- Through some basic convolution, we get some feature first.
- And there are three Inception module later. They are Inception A, Inception B, and Inception C.

Inception Module

Inception Module A

Inception Module B

Inception Module C

The concept of Inception is easy, we use divide data into four ways to compute. And concatenate them into one then transport it to next step.

- In the **module A**, it replaces a 7x7 convolution layer with three 3x3 convolution layer, Which can achieve same performance but with less computation.
- In the **module B**, it uses asymmetric convolution layer, which reduce the calculation and also have same performance.(In the implementation, n = 7)
- In the **module C**, it expands asymmetric convolution layer across width, which is for promoting high dimensional representation to more features.

Inception Module

Auxiliary classifiers

 In the Inception V1 model, it uses two auxiliary classifiers. On the other hand, Inception V3 only use one auxiliary classifier. The reason is that we found that removing the classifier in the low-level didn't have a impact on the performance.

Metrics

Accuracy

$\frac{TP + TN}{TP + TN + FP + FN}$

- The percentage of correctly identified cases
- Used when the True Positives and True negatives are more important

F1-score

$$\frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

- The harmonic mean of Precision and Recall
- Used when the False Negatives and False Positives are crucial

Results of testing dataset

	Pre trained	Accuracy	F1 score
Haar like & Adaboost (T=10)	X	0.763	0.808
VGG16	True	0.961	0.941
(epochs=10)	False	0.884	0.814
Inception V3	True	0.958	0.941
(epochs=10)	False	0.868	0.815

Analysis

- Difference of performance between haar-like feature & adaboost and others
 - Haar: can only detect specific feature
 - CNN: more complex feature
- Difference between pre trained and non pre trained (when there is no time for large epochs training, it may be a good way to achieve nice performance)
 - Pre-trained has parameter that fits our data, non-pre-trained may need more epoch to get same performance

- CT images are not easily to obtain
- Different types of data may have different results, e.g. X-ray

Appendix-References

- Source of dataset:
 https://data.mendeley.com/datasets/8h65ywd2jr/3?fbclid=IwAR3N9RbCdET
 V0E35TcUIpPFm1umGn-c2oqiijQuaHXr5min6ReRmifx-_3E
- VGG16:
 https://iopscience.iop.org/article/10.1088/1757-899X/1084/1/012001/pdf
 https://hackmd.io/@TienYi/pytorch-stanford-dog
- Inception V3: https://medium.com/ching-i/inception-%E7%B3%BB%E5%88%97-inceptionv2-inceptionv3-93cd42054d23

Appendix-Github link

https://github.com/Alanhsu1/Intro_AI/tree/main

Appendix-Contribution of each member

- 110550063 張博凱:25% split dataset, debug, make slides, video edit
- 110550076 羅民棋:25% VGG16, collect data
- 110550123 黃柏竣:25% haar-like feature & adaboost and evaluation metrics code, debug, use GPU device, make slides, video
- 110550157 徐翊芳:25% InceptionV3, collect data, help others train model, make slides, Github resources preparation

Thanks for listening~