

# เรื่อง

# ศึกษาความพึงพอใจด้านรถโดยสารสาชารณะของนักท่องเที่ยวชาวต่างประเทศที่เดินทางเข้ามา ท่องเที่ยวในประเทศไทย

## จัดทำโดย

นางสาว ปรียานุช สุภาสิบ รหัสนักศึกษา 61070306 นางสาว อารีญา สมิงแก้ว รหัสนักศึกษา 61070365

เสนอ

อาจารย์วารุณี บัววิรัตน์

รายงานนี้เป็นส่วนหนึ่งของวิชา Business Data Analytics (06026116)
สาขาวิชาวิทยาการข้อมูลและการวิเคราะห์เชิงธุรกิจ คณะเทคโนโลยีสารสนเทศ
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
ประจำภาคเรียนที่ 2 ปีการศึกษา 2562

#### คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา Business Data Analytics (06026116)โดยมีจุดประสงค์เพื่อ ศึกษาการทดสอบสมมติฐานค่าเฉลี่ยสองประชากรของคะแนนความพึงพอใจด้านรถโดยสารสาธารณะของ นักท่องเที่ยวชาวต่างประเทศที่เดินทางเข้ามาท่องเที่ยวในประเทศไทย และศึกษาคะแนนความพึงพอใจว่ามี ความแตกต่างกันตามประเภทของการบริการด้านต่างๆ รวมถึงแต่ละจังหวัดหรือไม่ เพื่อถือเป็นแนวทางในการ พัฒนาระดับการท่องเที่ยวของประเทศไทย ให้เป็นไปในทางทีดียิ่งขึ้น ซึ่งผู้จัดทำเล็งเห็นถึงความสำคัญ ในเรื่อง ของรถยนต์สาธารณะ หากนักท่องเที่ยวได้รับการบริการที่ดี แน่นอนว่าย่อมเป็นอีกหนึ่งปัจจัยที่จะเป็นการเพิ่ม จำนวนของนักท่องเที่ยวได้ ผู้จัดทำจึงได้เลือกที่จะศึกษาถึงการบริการด้านการขนส่งสาธารณะต่างๆ เพื่อที่จะนำ ผลลัพธ์ไปปรับปรุงและพัฒนาการบริการให้นักท่องเที่ยวพึงพอใจมากยิ่งขึ้น

ผู้จัดทำขอขอบพระคุณ อาจารย์วารุณี บัววิรัตน์ ผู้ให้ความรู้และแนวทางการศึกษา ผู้จัดทำหวังว่า รายงานฉบับนี้จะให้ความรู้และเป็นประโยชน์แก่ผู้อ่านรายงานฉบับนี้

ผู้จัดทำ

นางสาว ปรียานุช สุภาสิบ รหัสนักศึกษา 61070306 นางสาว อารีญา สมิงแก้ว รหัสนักศึกษา 61070365

# สารบัญ

| เรื่อง                                                                          | หน้า  |
|---------------------------------------------------------------------------------|-------|
| 1. คำนำ                                                                         | ก     |
| 2. สารบัญ                                                                       | ข     |
| 3. สารบัญภาพ                                                                    | ค     |
| 4. สารบัญตาราง                                                                  | 1     |
| 5. บทนำ                                                                         | 1     |
| 6. วัตถุประสงค์                                                                 | 1     |
| 7. ประชากร และตัวอย่าง                                                          | 1     |
| 8. วิธีการเก็บข้อมูล                                                            | 2     |
| 9. การจัดการข้อมูล                                                              | 2-4   |
| 10. สถิติเชิงพรรณนา                                                             | 5-11  |
| 11. การวิเคราะห์ข้อมูลด้วยวิธีค่าเฉลี่ยของสองประชากร                            | 12-28 |
| 12. การวิเคราะห์ข้อมูลด้วยวิธี การวิเคราะห์ความแปรปรวนแบบหนึ่งทาง (1-way Anova) | 29–43 |
| 13. ประโยชน์ที่ธุรกิจจะใค้จากการทำการวิเคราะห์                                  | 44    |
| 14. บรรณานุกรม                                                                  | 45    |

# สารบัญภาพ

| รูปที่ (ชื่อรูป)                                                | หน้า |
|-----------------------------------------------------------------|------|
| รูปที่ 1 การแสดงข้อมูลภายในไฟล์ excel                           | 2    |
| รูปที่ 2 การแสดงการจัดการข้อมูลของประเภทบริการด้านการท่องเที่ยว | 3    |
| รูปที่ 3 การแสดงการจัดการข้อมูลของจังหวัด                       | 3    |
| รูปที่ 4 การแสดงการจัดการข้อมูลของคะแนนความพึงพอใจ              | 4    |
| รูปที่ 5 การแสดงภาพรวมของข้อมูลภายในโปรแกรม SPSS                | 4    |
| รูปที่ 6 Histogram แสดงความถี่ประเภทการบริการ                   | 6    |
| รูปที่ 7 Histogram แสดงความถี่ของจังหวัด                        | 8    |
| รูปที่ 8 Boxplot ของคะแนนความพึงพอใจ                            | 11   |
| รูปที่ 9 Normal Q-Q Plot ของความพึงพอใจกับจังหวัดเชียงราย       | 13   |
| รูปที่ 10 Normal Q-Q Plot ของความพึงพอใจกับจังหวัดอุดรธานี      | 15   |
| รูปที่ 11 Normal Q-Q Plot ของความพึงพอใจกับจังหวัดกทม           | 21   |
| รูปที่ 12 Normal Q-Q Plot ของความพึงพอใจกับเมืองพัทยา           | 23   |

# สารบัญตาราง

| ตารางที่ (ชื่อตาราง)                                                                     | หน้า |
|------------------------------------------------------------------------------------------|------|
| ตารางที่ 1 Statistics ของข้อมูลประเภทบริการค้านท่องเที่ยว                                | 5    |
| ตารางที่ 2 ค่าสถิติขั้นพื้นฐานของประเภทบริการค้านท่องเที่ยว                              | 5    |
| ตารางที่ 3 Statistics ของข้อมูลจังหวัด                                                   | 7    |
| ตารางที่ 4 ค่าสถิติขั้นพื้นฐานของข้อมูลจังหวัด                                           | 7    |
| ตารางที่ 5 Statistics ของข้อมูลคะแนนความพึงพอใจ                                          | 9    |
| ตารางที่ 6 Descriptive Statistics ของคะแนนความพึงพอใจ                                    | 10   |
| ตารางที่ 7 Tests of Normality ความพึงพอใจของจังหวัดเชียงราย                              | 12   |
| ตารางที่ 8 Tests of Normality ความพึงพอใจของจังหวัดอุครธานี                              | 14   |
| ตารางที่ 9 Group Statistics ค่าเฉลี่ยความพึงพอใจของจังหวัดเชียงราย และอุครธานี           | 15   |
| ตารางที่ 10 Independent Samples Test ค่าเฉลี่ยความพึงพอใจของจังหวัดเชียงราย และอุครธานี  | 16   |
| ตารางที่ 11 Tests of Normality ความพึงพอใจของจังหวัดกทม                                  |      |
| ตารางที่ 12 Tests of Normality ความพึงพอใจของเมืองพัทยา                                  | 22   |
| ตารางที่ 13 Group Statistics ค่าเฉลี่ยความพึงพอใจของจังหวัดกรุงเทพและเมืองพัทยา          | 23   |
| ตารางที่ 14 Independent Samples Test ค่าเฉลี่ยความพึงพอใจของจังหวัดกรุงเทพ และเมืองพัทยา | 24   |
| ตารางที่ 15 Tests of Normality ความพึงพอใจจำแนกตามประเภทการบริการ                        | 29   |
| ตารางที่ 16 Test of Homogeneity of Variances ความพึงพอใจจำแนกตามประเภทการบริการ          | 31   |
| ตารางที่ 17 ANOVA ความพึงพอใจจำแนกตามประเภทการบริการ                                     | 32   |
| ตารางที่ 18 Multiple Comparison ความพึงพอใจจำแนกตามประเภทการบริการ                       | 34   |
| ตารางที่ 19 Test of Normality ความพึงพอใจจำแนกตามแต่ละจังหวัด                            | 36   |
| ตารางที่ 20 Test of Homogeneity of Variances ความพึงพอใจจำแนกตามแต่ละจังหวัด             | 38   |
| ตารางที่ 21 ANOVA ความพึงพอใจจำแนกตามแต่ละจังหวัด                                        | 39   |
| ตารางที่ 22 Multiple Comparison ความพึงพอใจในแต่ละจังหวัด                                | 42   |

#### 1.บทน้ำ

ปัจจุบันมีจำนวนนักท่องเที่ยวมากมายที่เข้ามาท่องเที่ยวในประเทศไทย ผู้จัดทำเห็นความสำคัญของการ เดินทางท่องเที่ยวค้วยบริการรถสาธารณะจึงได้ทำการวิเคราะห์ข้อมูลจากการสำรวจทัศนคติและความพึงพอใจ ของนักท่องเที่ยวชาวต่างประเทศที่เดินทางท่องเที่ยวในประเทศไทยตามจังหวัดต่างๆที่มีแหล่งท่องเที่ยวสำคัญ ว่ามีความพึงพอใจต่อการให้บริการรถโดยสารสาธารณะอย่างไร เพื่อเป็นแนวทางในการรับทราบถึงความพึง พอใจของนักท่องเที่ยวที่มีต่อ การขนส่งสาธารณะของประเทศไทย ตลอดจนได้แนวทางในการพัฒนาระดับการ ท่องเที่ยงของไทยให้ดียิ่งขึ้น โดยข้อมูลมีประเภทความพึงพอใจได้แก่ ความคุ้มค่าเงิน ความสะควกในการใช้ บริการ ความปลอดภัย ประสิทธิภาพ ความสะอาดและสิ่งอำนวยความสะดวก ความซื่อสัตย์ และการ ติดต่อสื่อสาร/ภาษา

## 2.วัตถุประสงค์

- เพื่อวิเคราะห์ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวชาวต่างประเทศที่เดินทางท่องเที่ยวใน ประเทศไทยตามแต่ละจังหวัดว่าเป็นอย่างไร เพื่อที่จะได้แนวทางในการพัฒนาการท่องเที่ยวของ ประเทศไทยให้ดียิ่งขึ้น
- เพื่อวิเคราะห์ว่าคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวตามประเภทของการบริการ และตามแต่ละ จังหวัดว่ามีความแตกต่างกันหรือไม่ ตลอดจนสามารถที่จะนำข้อสรุปที่ได้ไปพัฒนาในเรื่องของการ ท่องเที่ยว พัฒนาปัจจัยต่างๆ ที่จะส่งผลต่อความพึงพอใจของชาวต่างชาติ เพื่อเชิญชวนให้ชาวต่างชาติ เลือกที่จะมาท่องเที่ยวในไทยมากยิ่งขึ้น
- เพื่อนำการวิเคราะห์ไปพัฒนาและปรับปรุงด้านการท่องเที่ยวของประเทศไทยให้มีรายได้เข้าสู่ประเทศ มากยิ่งขึ้น

### 3.ประชากร และตัวอย่าง

ประชากร : ไก้แก่นักท่องเที่ยวชาวต่างประเทศที่เดินทางท่องเที่ยวในประเทศไทย

<u>ตัวอย่าง</u> : คือนักท่องเที่ยวชาวต่างประเทศที่เดินทางมาท่องเที่ยวในประเทศไทย ตามจังหวัดที่เป็นแหล่ง ท่องเที่ยวสำคัญๆ รวมทั้งบริเวณด่านตรวจคนเข้าเมืองต่างๆ ในช่วงเดือนมกราคม – กันยายน 2557

## 4.วิธีการเก็บข้อมูล

ข้อมูลที่นำมาใช้ในการทคสอบสมมติฐานเป็น ข้อมูลทุติยภูมิ (Secondary Data) กล่าวคือเป็น ข้อมูลที่มีการรวบรวมโดยผู้จัดทำไม่ได้ทำการเก็บรวบรวมเอง โดยที่สำนักงานปลัดกระทรวงการ ท่องเที่ยวและกีฬาเป็นหน่วยงานที่เก็บรวบรวมข้อมูลไว้แล้ว ซึ่งการรวบรวมของสำนักงาน ปลัดกระทรวงการท่องเที่ยวและกีฬา ได้จัดทำโดยการออกแบบสอบถามแก่นักท่องเที่ยวชาว ต่างประเทศที่เดินทางเข้ามาในประเทศไทยในแต่ละจังหวัด

## 5.การจัดการข้อมูล

รูปแบบข้อมูลเดิมในโปรแกรม excel ที่ได้มีการเก็บข้อมูลเป็นดังรูปที่ 1

| В    | С                                                   | D                                                                                                     | E                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| กทม. | อยุธยา                                              | เชียงใหม่                                                                                             | เชียงราย                                                                                                                                                                                                                                                                                                                           | นครราชสีมา                                                                                                                                                                                                                                                                                                                                                                                                                                    | อุดรธานี                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | พัทยา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | หัวหิน                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ภูเก็ต                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | สุราษฎร์ธานี                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.82 | 3.73                                                | 3.98                                                                                                  | 4.08                                                                                                                                                                                                                                                                                                                               | 3.83                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.64 | 3.68                                                | 3.83                                                                                                  | 4.11                                                                                                                                                                                                                                                                                                                               | 3.81                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.72 | 3.76                                                | 3.99                                                                                                  | 4.11                                                                                                                                                                                                                                                                                                                               | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.71 | 3.78                                                | 3.99                                                                                                  | 4.19                                                                                                                                                                                                                                                                                                                               | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.5  | 3.51                                                | 3.87                                                                                                  | 4.07                                                                                                                                                                                                                                                                                                                               | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.53 | 3.56                                                | 3.81                                                                                                  | 4.2                                                                                                                                                                                                                                                                                                                                | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.8  | 3.72                                                | 4.02                                                                                                  | 4.26                                                                                                                                                                                                                                                                                                                               | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.67 | 3.68                                                | 3.91                                                                                                  | 4.15                                                                                                                                                                                                                                                                                                                               | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | กทม.<br>3.82<br>3.64<br>3.72<br>3.71<br>3.5<br>3.53 | ุกทม. อยุธยา<br>3.82 3.73<br>3.64 3.68<br>3.72 3.76<br>3.71 3.78<br>3.5 3.51<br>3.53 3.56<br>3.8 3.72 | กทม.         อยุธยา         เชียงใหม่           3.82         3.73         3.98           3.64         3.68         3.83           3.72         3.76         3.99           3.71         3.78         3.99           3.5         3.51         3.87           3.53         3.56         3.81           3.8         3.72         4.02 | กทม.         อยุธยา         เชียงใหม่         เชียงราย           3.82         3.73         3.98         4.08           3.64         3.68         3.83         4.11           3.72         3.76         3.99         4.11           3.71         3.78         3.99         4.19           3.5         3.51         3.87         4.07           3.53         3.56         3.81         4.2           3.8         3.72         4.02         4.26 | กทม.         อยุธยา         เชียงใหม่         เชียงราย         นครราชสีมา           3.82         3.73         3.98         4.08         3.83           3.64         3.68         3.83         4.11         3.81           3.72         3.76         3.99         4.11         3.75           3.71         3.78         3.99         4.19         3.8           3.5         3.51         3.87         4.07         3.63           3.53         3.56         3.81         4.2         3.64           3.8         3.72         4.02         4.26         3.8 | กทม.         อยุธยา         เชียงใหม่         เชียงราย         นครราชสีมา         อุดรธานี           3.82         3.73         3.98         4.08         3.83         4.06           3.64         3.68         3.83         4.11         3.81         4.25           3.72         3.76         3.99         4.11         3.75         4.04           3.71         3.78         3.99         4.19         3.8         4.17           3.53         3.51         3.87         4.07         3.63         4.14           3.53         3.56         3.81         4.2         3.64         4.19           3.8         3.72         4.02         4.26         3.8         4.22 | กทม.         อยุธยา         เชียงใหม่         เชียงราย         นครราชสีมา         อุดรธานี         พัทยา           3.82         3.73         3.98         4.08         3.83         4.06         3.84           3.64         3.68         3.83         4.11         3.81         4.25         3.8           3.72         3.76         3.99         4.11         3.75         4.04         3.86           3.71         3.78         3.99         4.19         3.8         4.17         3.88           3.5         3.51         3.87         4.07         3.63         4.14         3.66           3.53         3.56         3.81         4.2         3.64         4.19         3.78           3.8         3.72         4.02         4.26         3.8         4.22         3.86 | กทม.         อยุธยา         เชียงใหม่         เชียงราย         นครราชสีมา         อุดรธานี         พัทยา         หัวหิน           3.82         3.73         3.98         4.08         3.83         4.06         3.84         4.03           3.64         3.68         3.83         4.11         3.81         4.25         3.8         3.97           3.72         3.76         3.99         4.11         3.75         4.04         3.86         3.99           3.71         3.78         3.99         4.19         3.8         4.17         3.88         3.96           3.53         3.51         3.87         4.07         3.63         4.14         3.66         3.82           3.53         3.56         3.81         4.2         3.64         4.19         3.78         3.88           3.8         3.72         4.02         4.26         3.8         4.22         3.86         4.05 | กทม.         อยุธยา         เชียงใหม่         เชียงราย         นครราชสีมา         อุดรธานี         พัทยา         หัวหิน         ภูเก็ต           3.82         3.73         3.98         4.08         3.83         4.06         3.84         4.03         4           3.64         3.68         3.83         4.11         3.81         4.25         3.8         3.97         4.01           3.72         3.76         3.99         4.11         3.75         4.04         3.86         3.99         3.98           3.71         3.78         3.99         4.19         3.8         4.17         3.88         3.96         4           3.53         3.51         3.87         4.07         3.63         4.14         3.66         3.82         3.81           3.53         3.56         3.81         4.2         3.64         4.19         3.78         3.88         3.92           3.8         3.72         4.02         4.26         3.8         4.22         3.86         4.05         3.92 |

รูปที่ 1 การแสดงข้อมูลภายในไฟล์ excel

จากข้อมูลรูปที่ 1 ข้อมูลจะไม่มีค่า Missing Value จึงไม่มีการจัดการแก้ไขค่า Missing Value แต่หากเรา นำเข้าโปรแกรม SPSS โดยตรงข้อมูลจะมีลักษณะการประมวลผลได้ยาก เนื่องจากจำนวนคอลัมน์จะมีตาม จำนวนรายการจังหวัดที่ได้เก็บข้อมูลมา ซึ่งการจะนำไปคำนวณต่อได้นั้นจะทำให้ลำบาก และประเภทของการ บริการก็ยังมีลักษณะเป็นตัวอักษร เราจึงมีการจัดการข้อมูลดังนี้ 1. กำหนดหมายเลขให้แก่ประเภทบริการด้านการท่องเที่ยวโดยการกำหนด Value Labels ใน SPSS ดังรูปที่ 2



รูปที่ 2 การแสดงการจัดการข้อมูลของประเภทบริการด้านการท่องเที่ยว

2. รวมจังหวัดทั้งหมดจากข้อมูลเดิมให้อยู่ในตัวแปรเดียวพร้อมกำหนดค่า Value Labels ใน SPSS ดังรูปที่ 3



รูปที่ 3 การแสดงการจัดการข้อมูลของจังหวัด

# 3 กำหนดตัวแปรคะแนนความพึงพอใจดังรูปที่ 4

| ความพึงพอใจ | Numeric | 8 | 2 | คะแนนความพึงพอใจ | None | None | 13 | <b>≣</b> Right | ➤ Input |
|-------------|---------|---|---|------------------|------|------|----|----------------|---------|
|             |         |   |   |                  |      |      |    |                |         |

รูปที่ 4 การแสดงการจัดการข้อมูลของคะแนนความพึงพอใจ

# ภาพรวมของการจัดการข้อมูลในโปรแกรม SPSS มีดังรูปที่ 5

| Name                  | Type    | Width | Decimals  | Label                      | Values      | Missing            | Columns    | 1            | ∖lign     | Measure     | Role      |
|-----------------------|---------|-------|-----------|----------------------------|-------------|--------------------|------------|--------------|-----------|-------------|-----------|
| บริการด้านท่องเที่ยว  | Numeric | 34    | 0         | ประเภทบริการด้านท่องเที่ยว | {1, ความสะด | . None             | 42         | <b>■</b> Rig | ht 🤞      | Nominal     | > Input   |
| จังหวัด               | Numeric | 8     | 0         | จังหวัด                    | {1, กทม}    | None               | 8          | <b>■</b> Rig | ht        | Nominal     | > Input   |
| ความพึงพอใจ           | Numeric | 8     | 2         | คะแนนความพึงพอใจ           | None        | None               | 17         | <b>≡</b> Rig | ıht 🤞     | Scale Scale | > Input   |
| 🗞 บริการด้านท่องเที่ย | מ       |       | 🗞 จังหวัด | 🔗 ความพึงพอใจ              | 🚜 บริการต์  | ้<br>กานท่องเที่ยว |            |              | 🚜 จังหวัด | า 🔗 คา      | ามพึงพอใจ |
|                       |         | 1     | 1         | 3.82                       |             | ความสะ             | ดวกในการใช | ั<br>/บริการ | กา        | าม          | 3.82      |
|                       |         | 2     | 1         | 3.64                       | ควา         | ามสะอาดและสั่      | งอำนายความ | เสะดวก       | กา        | าม          | 3.64      |
|                       |         | 3     | 1         | 3.72                       |             |                    | ประสั      | ทธิภาพ       | กา        | าม          | 3.72      |
|                       |         | 4     | 1         | 3.71                       |             |                    | ความป      | ลอดภัย       | กา        | าผ          | 3.71      |
|                       |         | 5     | 1         | 3.50                       |             |                    | การสื่อสา  | ร/ภาษา       | กา        | าผ          | 3.50      |
|                       |         | 6     | 1         | 1 3.53 ความชื่อลัตย์       |             | กา                 | าผ         | 3.53         |           |             |           |
|                       |         | 7     | 1         | 3.80                       |             |                    | ความคุ้    | มค่าเงิน     | กา        | าผ          | 3.80      |
|                       |         | 8     | 1         | 3.67                       |             | ภาพรวม             | รถโดยสารสา | รารณะ        | กา        | าม          | 3.67      |
|                       |         | 1     | 2         | 3.73                       |             | ความสะ             | ดวกในการใช | ขับริการ     | อยุธ      | ยา          | 3.73      |
|                       |         | 2     | 2         | 3.68                       | ควา         | ามสะอาดและสั่      | งอำนวยความ | เสะดวก       | อยุธ      | ยา          | 3.68      |
|                       |         | 3     | 2         | 3.76                       |             |                    | ประสำ      | ทธิภาพ       | อยุธ      | ยา          | 3.76      |
|                       |         | 4     | 2         | 3.78                       |             |                    | ความป      | ลอดภัย       | อยุธ      | ยา          | 3.78      |
|                       |         | 5     | 2         | 3.51                       |             |                    | การสื่อสา  | ร/ภาษา       | อยุธ      | ยา          | 3.51      |
|                       |         | 6     | 2         | 3.56                       |             |                    | ความ       | ชื่อสัตย์    | อยุธ      | ยา          | 3.56      |
|                       | 7       |       | 2         | 3.72                       |             |                    | ความคุ้    | มค่าเงิน     | อยุธ      | ยา          | 3.72      |
|                       |         | 8     | 2         | 3.68                       |             | ภาพรวม             | รถโดยสารสา | รารณะ        | อยุธ      | ยา          | 3.68      |
|                       |         | 1     | 3         | 3.98                       |             | ความสะ             | ดวกในการใช | ขับริการ     | เขียงใ    | า๋ผ่        | 3.98      |
|                       |         | 2     | 3         | 3.83                       | ควา         | ามสะอาดและสั่      | งอำนวยความ | เสะดวก       | เชียงใ    | า๋ผ่        | 3.83      |
|                       |         | 3     | 3         | 3.99                       |             |                    | ประสั      | ทธิภาพ       | เชียงใ    | า๋ผ่        | 3.99      |
|                       |         | 4     | 3         | 3.99                       |             |                    | ความป      | ลอดภัย       | เชียงใ    | าผ่         | 3.99      |

รูปที่ 5 การแสดงภาพรวมของข้อมูลภายในโปรแกรม SPSS

### 6.สถิติเชิงพรรณนา

## การวิเคราะห์ข้อมูลเชิงคุณภาพ

### 1. ประเภทบริการค้านการท่องเที่ยว

Statistics ประเภทบริการด้านท่องเที่ยว

| N | Valid   | 80 |
|---|---------|----|
|   | Missing | 0  |

## ตารางที่ 1 Statistics ของข้อมูลประเภทบริการค้านท่องเที่ยว

### ประเภทบริการด้านท่องเที่ยว

|       |                           |           |         |               | Cumulative |
|-------|---------------------------|-----------|---------|---------------|------------|
|       |                           | Frequency | Percent | Valid Percent | Percent    |
| Valid | ภาพรวมรถโดยสารสาธารณะ     | 10        | 12.5    | 12.5          | 12.5       |
|       | ความกุ้มค่าเงิน           | 10        | 12.5    | 12.5          | 25.0       |
|       | ความซื่อสัตย์             | 10        | 12.5    | 12.5          | 37.5       |
|       | การสื่อสาร/ภาษา           | 10        | 12.5    | 12.5          | 50.0       |
|       | ความปลอคภัย               | 10        | 12.5    | 12.5          | 62.5       |
|       | ประสิทธิภาพ               | 10        | 12.5    | 12.5          | 75.0       |
|       | ความสะอาดและสิ่งอำนวยความ | 10        | 12.5    | 12.5          | 87.5       |
|       | สะควก                     |           |         |               |            |
|       | ความสะดวกในการใช้บริการ   | 10        | 12.5    | 12.5          | 100.0      |
|       | Total                     | 80        | 100.0   | 100.0         |            |

ตารางที่ 2 ค่าสถิติขั้นพื้นฐานของประเภทบริการค้านท่องเที่ยว

Frequency: จำนวนความถี่ในแต่ละประเภทบริการด้านการท่องเที่ยว

Percent: ร้อยละในแต่ละประเภทบริการค้านการท่องเที่ยว

Valid Percent : ร้อยละในแต่ละประเภทบริการค้านการท่องเที่ยวเมื่อไม่นำค่า Missing Value มาคำนวณ ถ้าตัว แปร ใคมีค่า Missing จะต้องอ่านผลจาก Valid Percent จึงจะถูกต้อง

### Cumulative Percent : ร้อยละสะสม

จากตารางที่ 1 แสดงให้เห็นว่าข้อมูลไม่มีค่า Missing Value และมีจำนวนข้อมูลทั้งหมด 80 ข้อมูล โดยที่ มีจำนวน Value ทั้งหมด 8 ตัวดังตารางที่ 2 ซึ่งจะมีประเภทบริการด้านการท่องเที่ยวทั้งหมด 8 ด้าน คือ ภาพรวม รถโดยสาร, สาธารณะ, ความคุ้มค่าเงิน, ความชื่อสัตย์, การสื่อสาร/ภาษา, ความปลอดภัย, ประสิทธิภาพ, ความ สะอาดและสิ่งอำนวยความสะดวก, ความสะดวกในการใช้บริการ ซึ่งจำนวนความถี่ของทุกด้านการบริการมีค่า เท่ากันอยู่ที่ 10 คิดเป็นด้านการบริการละ 12.5%



รูปที่ 6 Histogram แสดงความถี่ประเภทการบริการ

จากรูปที่ 6 แสดงผลว่าข้อมูลจังหวัดมีการแจกแจงความถี่เท่ากันทั้ง 8 ด้านการบริการซึ่งมีความถี่เท่ากับ 10 คิดเป็นความถี่จังหวัดละ 12.5%

### 2. จังหวัด

**Statistics** 

จังหวัด

| N | Valid   | 80 |
|---|---------|----|
|   | Missing | 0  |

ตารางที่ 3 Statistics ของข้อมูลจังหวัด

จังหวัด

| ONITOPI     |                                                                   |                                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                          |  |  |  |  |  |
|-------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             |                                                                   |                                                                                                                                                                                               |                                                                                                                                                                   | Cumulative                                                                                                                                                                                                                               |  |  |  |  |  |
|             | Frequency                                                         | Percent                                                                                                                                                                                       | Valid Percent                                                                                                                                                     | Percent                                                                                                                                                                                                                                  |  |  |  |  |  |
| สุราษฎ์ชานี | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 10.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| ภูเก็ต      | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 20.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| หัวหิน      | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 30.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| พัทยา       | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 40.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| อุครธานี    | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 50.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| นครราชสีมา  | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 60.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| เชียงราย    | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 70.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| เชียงใหม่   | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 80.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| อยุธยา      | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 90.0                                                                                                                                                                                                                                     |  |  |  |  |  |
| กทม         | 8                                                                 | 10.0                                                                                                                                                                                          | 10.0                                                                                                                                                              | 100.0                                                                                                                                                                                                                                    |  |  |  |  |  |
| Total       | 80                                                                | 100.0                                                                                                                                                                                         | 100.0                                                                                                                                                             |                                                                                                                                                                                                                                          |  |  |  |  |  |
|             | ภูเก็ต หัวหิน พัทยา อุดรธานี นครราชสีมา เชียงราย เชียงใหม่ อยุธยา | <ul> <li>สุราษฎ์ธานี</li> <li>มูเก็ต</li> <li>พัทยา</li> <li>อุดรธานี</li> <li>นครราชสีมา</li> <li>เชียงราย</li> <li>เชียงใหม่</li> <li>อุขุธยา</li> <li>8</li> <li>กทม</li> <li>8</li> </ul> | สุราษฎ์ธานี 8 10.0  ภูเก็ต 8 10.0  หัวหิน 8 10.0  พัทยา 8 10.0  อุดรธานี 8 10.0  นครราชสีมา 8 10.0  เชียงราย 8 10.0  เชียงใหม่ 8 10.0  อุยุธยา 8 10.0  กทม 8 10.0 | สุราษฎ์ธานี 8 10.0 10.0  ภูเก็ต 8 10.0 10.0  หัวหิน 8 10.0 10.0  พัทยา 8 10.0 10.0  อุดรธานี 8 10.0 10.0  นครราชสีมา 8 10.0 10.0  เชียงราช 8 10.0 10.0  เชียงใหม่ 8 10.0 10.0  อยุธยา 8 10.0 10.0  กทม 8 10.0 10.0  Total 80 100.0 100.0 |  |  |  |  |  |

ตารางที่ 4 ค่าสถิติขั้นพื้นฐานของข้อมูลจังหวัด

Frequency: จำนวนความถี่ในแต่ละจังหวัด

Percent: ร้อยละในแต่ละจังหวัด

Valid Percent : ร้อยละในแต่ละจังหวัดเมื่อไม่นำค่า Missing Value มาคำนวณ ถ้าตัวแปร ใดมีค่า Missing

จะต้องอ่านผลจาก Valid Percent จึงจะถูกต้อง

Cumulative Percent : ค่าของร้อยละสะสม

จากตารางที่ 3 แสดงให้เห็นว่าข้อมูลไม่มีค่า Missing Value และมีจำนวนข้อมูลทั้งหมด 80 ข้อมูล โดยที่ มีจำนวน Value ทั้งหมด 10 ตัวดังตารางที่ 4 จะมีจังหวัดทั้งหมด 10 จังหวัด คือ สุราษฎ์ธานี, ภูเก็ต, หัวหิน, พัทยา , อุดรธานี, นครราชสีมา, เชียงราย, เชียงใหม่, อยุธยา, กทม ซึ่งจำนวนความถี่ของทุกจังหวัดที่ค่าเท่ากันที่ 8 คิด เป็นจังหวัดละ 10%



รูปที่ 7 Histogram แสดงความถี่ของจังหวัด

จากรูปที่ 7 แสดงผลว่าข้อมูลจังหวัดมีการแจกแจงความถี่เท่ากันทั้ง 10 จังหวัดซึ่งมีความถี่เท่ากับ 8 คิด เป็นความถี่จังหวัดละ 10%

## <u>การวิเคราะห์ข้อมูลเชิงปริมาณ</u>

## 1.ใช้ความถี่วิเคราะห์กะแนนความพึงพอใจ

#### **Statistics**

#### ความพึงพอใจ

| N                      | Valid   | 80         |
|------------------------|---------|------------|
|                        | Missing | 0          |
| Mean                   |         | 3.8771     |
| Median                 |         | 3.8350     |
| Mode                   |         | $3.80^{a}$ |
| Std. Deviation         |         | .18546     |
| Variance               |         | .034       |
| Skewness               |         | .188       |
| Std. Error of Skewness |         | .269       |
| Kurtosis               |         | 672        |
| Std. Error of Kurtosis |         | .532       |
| Range                  |         | .76        |
| Minimum                |         | 3.50       |
| Maximum                |         | 4,26       |
| Percentiles            | 25      | 3.7350     |
|                        | 50      | 3.8350     |
|                        | 75      | 4.0075     |

a. Multiple modes exist. The smallest value is shown

## ตารางที่ 5 Statistics ของข้อมูลคะแนนความพึงพอใจ

จากตารางที่ 5 จะพบว่าข้อมูลของคะแนนความพึงพอใจของค้านการบริการท่องเที่ยวจะไม่พบค่า Missing Value และพบค่าสถิติขั้นพื้นฐานคังนี้

**ค่า Mean** (ค่าเฉลี่ย) เท่ากับ 3.8771

ค่า Median (ค่ามัธยฐาน) เท่ากับ 3.8350

ค่า Std. Deviation (ส่วนเบี่ยงเบนมาตรฐาน) เท่ากับ 0.18546

ค่า Variance (ความแปรปรวน) เท่ากับ 0.034

ค่า Skewness (ความเบ้ของข้อมูล) เท่ากับ 0.188 (ลักษณะข้อมูลมีการกระจายค่อนไปทางเบ้ขวา)

ค่า Kurtosis (ความโค่งของข้อมูล) เท่ากับ -0.672 (ข้อมูลมีลักษณะการแจกแจงที่ก่อนข้างป้าน)



รูปที่ 8 Histogram ความถึ่ของคะแนนความพึงพอใจ

จากรูปที่ 8 แสดงกราฟการกระจายความถี่ของคะแนนความพึงพอใจ จะพบว่าข้อมูลมีความถี่มากที่สุด อยู่ที่ 3.8 คะแนน รองลงมาคือ 4 คะแนน และข้อมูลมีการกระจายใกล้ๆค่า Mean คือใกล้กับคะแนน 3.8 คะแนน

## 2.การใช้การอธิบายเพื่อศึกษาข้อมูลคะ แนนความพึงพอใจ

## Descriptive Statistics

|                    | N  | Minimum | Maximum | Mean   | Std. Deviation |
|--------------------|----|---------|---------|--------|----------------|
| ความพึงพอใจ        | 80 | 3.50    | 4.26    | 3.8771 | .18546         |
| Valid N (listwise) | 80 |         |         |        |                |

ตารางที่ 6 Descriptive Statistics ของคะแนนความพึงพอใจ

จากตารางที่ 6 ข้อมูลกะแนนความพึงพอใจของนักท่องเที่ยวมีจำนวน 80 ข้อมูลมีค่าน้อยที่สุดอยู่ที่ 3.50 และมากที่สุดอยู่ที่ 4.26 หมายความว่านักท่องเที่ยวส่วนใหญ่ให้คะแนนความพึงพอใจที่ค่อนข้างสูงในหลายๆ ด้านของการบริการ ซึ่งถือเป็นผลดีต่อการท่องเที่ยวของประเทศไทย

## 3.การตรวจสอบการแจกแจงข้อมูลค้วย boxplot



รูปที่ 8 Boxplot ของคะแนนความพึงพอใจ

จากรูปที่ 8 กราฟ boxplot ไม่มีข้อมูลใดที่มีค่า Outlier หรือ Extreme ที่เป็นค่าของข้อมูลที่ผิดปกติเลย หรืออาจกล่าวได้ว่าข้อมูลที่มีการเก็บมานั้นเป็นข้อมูลที่มีการแจกแจงปกติ

## 7.วิเคราะห์ข้อมูล

7.1 ทำการทดสอบสมมติฐานคะแนนความพึงพอใจของนักท่องเที่ยวของแต่ละจังหวัดมาจำนวน 2 จังหวัด โดยใช้วิธีการทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของสองประชากร

โดยในการทดสอบนี้เราจะทำการทดสอบระหว่างจังหวัดที่มีค่าเฉลี่ยความพึงพอใจมากที่สุด 2 อันดับแรกคือ จังหวัดเชียงราย และจังหวัดอุดรธานีในข้อที่ <u>7.1.1</u> และจังหวัดกรุงเทพมหานคร และเมืองพัทยาในข้อที่ <u>7.1.2</u>

7.1.1 ต้องการทดสอบความแตกต่างระหว่างคะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวว่ามีค่าเฉลี่ยคะแนน ความพึงพอใจของจังหวัดเชียงราย และ จังหวัดอุดรธานีนั้นแตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05 (โดยวิธีการทดสอบค่าเฉลี่ยสองประชากร )

## <u>เงื่อนไขสำหรับการทดสอบ</u>

- 1.ความพึงพอใจมีการแจกแจงแบบปกติ
- 1.1 ความพึงพอใจของจังหวัดเชียงรายมีการแจกแจงแบบปกติ

#### **Tests of Normality**

|             |                       | Kolm      | ogorov-Smi | rnov <sup>a</sup> | Shapiro-Wilk |    |                   |
|-------------|-----------------------|-----------|------------|-------------------|--------------|----|-------------------|
|             | จังหวัด               | Statistic | df         | Sig.              | Statistic    | df | Sig.              |
| ความพึงพอใจ | กทม                   | .144      | 8          | .200*             | .940         | 8  | .608              |
|             | อยุธยา                | .260      | 8          | .118              | .886         | 8  | .214              |
|             | เชียงใหม่             | .251      | 8          | .146              | .893         | 8  | .248              |
|             | <mark>เชียงราย</mark> | .208      | 8          | .200*             | .936         | 8  | <mark>.570</mark> |
|             | นครราชสีมา            | .244      | 8          | .179              | .837         | 8  | .070              |
|             | อุครธานี              | .182      | 8          | .200*             | .947         | 8  | .680              |
|             | พัทยา                 | .203      | 8          | .200*             | .849         | 8  | .093              |
|             | หัวหิน                | .263      | 8          | .109              | .927         | 8  | .488              |
|             | ภูเก็ต                | .208      | 8          | .200*             | .850         | 8  | .095              |
|             | สุราษฎ์ชานี           | .148      | 8          | .200*             | .981         | 8  | .968              |

ตารางที่ 7 Tests of Normality ความพึงพอใจของจังหวัดเชียงราย

## สมมติฐาน

 $H_0:$  คะแนนความพึงพอใจของจังหวัดเชียงรายมีการแจกแจงปกติ

 $H_1$ : คะแนนความพึงพอใจของจังหวัดเชียงรายมีการแจกแจงไม่ปกติ

### สถิติทคสอบ

ใช้ค่า Sig. จากตารางที่ 7 ด้วย Shapiro-Wilk Test เนื่องจากขนาดตัวอย่างที่เก็บมามีจำนวนน้อยกว่า 50 คำนวณสถิติทคสอบ

$$Sig. = 0.570$$

### <u>กำหนดระดับนัยสำคัญ</u>

ระดับนัยสำคัญ = 0.05

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ  $H_0$  เมื่อค่า Sig.<lpha

0.57 > 0.05 จึงยอมรับ  $H_0$ 

## <u>สรุปผล</u>

กะแนนความพึงพอใจของจังหวัดเชียงรายมีการแจกแจงปกติ ที่ระดับนัยสำคัญ 0.05 หากทคสอบด้วย กราฟจะเห็นว่าข้อมูลมีการกระจุกกันอยู่ใกล้กับเส้น ดังนั้นเป็นการแจกแจงปกติ ดังรูปที่ 9



รูปที่ 9 Normal Q-Q Plot ของความพึงพอใจกับจังหวัดเชียงราย

| <b>Tests</b> | of | No | rm | ality |
|--------------|----|----|----|-------|
|--------------|----|----|----|-------|

|             |                       | Kolm      | ogorov-Smi | rnov <sup>a</sup> | Shapiro-Wilk |    |                   |  |
|-------------|-----------------------|-----------|------------|-------------------|--------------|----|-------------------|--|
|             | จังหวัด               | Statistic | df         | Sig.              | Statistic    | df | Sig.              |  |
| ความพึงพอใจ | กทม                   | .144      | 8          | .200*             | .940         | 8  | .608              |  |
|             | อยุธยา                | .260      | 8          | .118              | .886         | 8  | .214              |  |
|             | เชียงใหม่             | .251      | 8          | .146              | .893         | 8  | .248              |  |
|             | เชียงราย              | .208      | 8          | .200*             | .936         | 8  | .570              |  |
|             | นครราชสีมา            | .244      | 8          | .179              | .837         | 8  | .070              |  |
|             | <mark>อุครธานี</mark> | .182      | 8          | .200*             | .947         | 8  | <mark>.680</mark> |  |
|             | พัทยา                 | .203      | 8          | .200*             | .849         | 8  | .093              |  |
|             | หัวหิน                | .263      | 8          | .109              | .927         | 8  | .488              |  |
|             | ภูเก็ต                | .208      | 8          | .200*             | .850         | 8  | .095              |  |
|             | สุราษฎ์ธานี           | .148      | 8          | .200*             | .981         | 8  | .968              |  |

<sup>\*.</sup> This is a lower bound of the true significance.

a. Lilliefors Significance Correction

ตารางที่ 8 Tests of Normality ความพึงพอใจของจังหวัดอุดรธานี

## <u>สมมติฐาน</u>

 $H_0$  : คะแนนความพึงพอใจของจังหวัดอุดรธานีมีการแจกแจงปกติ

 $H_1$ : คะแนนความพึงพอใจของจังหวัดอุดรธานีมีการแจกแจงไม่ปกติ

## <u>สถิติทคสอบ</u>

ใช้ค่า Sig. จากตารางที่ 8 ด้วย Shapiro-Wilk Test เนื่องจากขนาดตัวอย่างที่เก็บมามีจำนวนน้อยกว่า 50 คำนวณสถิติทคสอบ

Sig. = 0.680

## <u>กำหนดระดับนัยสำคัญ</u>

ระดับนัยสำคัญ =0.05

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ  $H_0$  เมื่อค่า Sig.<lpha

จากตารางค่า Sig. ของจังหวัดอุครธานี = 0.68 > 0.05 จึงยอมรับ  $H_{f 0}$ 

### <u>สรุปผล</u>

กะแนนความพึงพอใจของจังหวัดเชียงรายมีการแจกแจงปกติ ที่ระดับนัยสำคัญ 0.05 หากทดสอบด้วย กราฟจะเห็นว่าข้อมูลมีการกระจุกกันอยู่ใกล้กับเส้น ดังนั้นเป็นการแจกแจงปกติดังรูปที่ 10



รูปที่ 10 Normal Q-Q Plot ของความพึงพอใจกับจังหวัดอุดรธานี

## 2.ทคสอบความแปรปรวนของจังหวัดเชียงราย และจังหวัดอุครธานีว่าเท่ากันหรือไม่

#### **Group Statistics**

|             |          |   |        |                     | Std. Error |
|-------------|----------|---|--------|---------------------|------------|
|             | จังหวัด  | N | Mean   | Std. Deviation      | Mean       |
| ความพึงพอใจ | เชียงราย | 8 | 4.1463 | <mark>.06610</mark> | .02337     |
|             | อุครธานี | 8 | 4.1525 | <mark>.07285</mark> | .02576     |

ตารางที่ 9 Group Statistics ค่าเฉลี่ยความพึงพอใจของจังหวัดเชียงราย และอุครธานี

#### **Independent Samples Test**

|          | Levene's Test for |                   |                   |     |       |          |              |             |            |          |
|----------|-------------------|-------------------|-------------------|-----|-------|----------|--------------|-------------|------------|----------|
|          |                   | Equal             | lity of           |     |       |          |              |             |            |          |
|          |                   | Varia             | ances             |     |       | t-tes    | t for Equali | ty of Means | S          |          |
|          |                   |                   |                   |     |       |          |              | Std.        | 95% Cor    | nfidence |
|          |                   |                   |                   |     |       |          | Mean         | Error       | Interva    | l of the |
|          |                   |                   |                   |     |       | Sig. (2- | Differen     | Differen    | Difference |          |
|          |                   | F                 | Sig.              | t   | df    | tailed)  | ce           | ce          | Lower      | Upper    |
| ความพึ่ง | Equal variances   | <mark>.004</mark> | <mark>.949</mark> | 180 | 14    | .860     | 00625        | .03478      | 08084      | .06834   |
| พอใจ     | assumed           |                   |                   |     |       |          |              |             |            |          |
|          | Equal variances   |                   |                   | 180 | 13.87 | .860     | 00625        | .03478      | 08091      | .06841   |
|          | not assumed       |                   |                   |     | 0     |          |              |             |            |          |

ตารางที่ 10 Independent Samples Test ค่าเฉลี่ยความพึงพอใจของจังหวัดเชียงราย และอุครธานี

## สมมติฐาน

 $H_0$  : ค่าความแปรปรวนของจังหวัดเชียงราย และจังหวัดอุดรธานีเท่ากัน

 $H_{\mathbf{1}}$  : ค่าความแปรปรวนของจังหวัดเชียงราย และจังหวัดอุดรธานีไม่เท่ากัน

## <u>สถิติทคสอบ</u>

ค่า F หรือ Sig. จากตารางที่ 10 ใน Levene's Test for Equality of Variances หรือ สูตร F =  $S_{\rm มาก}^2/S_{\rm น้อย}^2$ โดยใช้ค่า S จากตารางที่ 9

## <u>คำนวณสถิติทคสอบ</u>

## <u>กำหนดระดับนัยสำคัญ</u>

ระดับนัยสำคัญ = 0.05

## <u> เขตปฏิเสธ</u>

จะปฏิเสช 
$$H_0$$
 เมื่อค่า  $Sig.< ~lpha$ 

$$_{0.949} > 0.05$$
 จึงยอมรับ  $H_0$ 

## <u>สรุปผล</u>

ค่าความแปรปรวนของจังหวัดเชียงราย และจังหวัดอุครธานีเท่ากัน จึงใช้ข้อมูลในแถว Equal Variances Assumed ในการทดสอบสมมติฐาน

## ทำการวิเคราะห์สมมติฐาน

ทคสอบสมมติฐานความแตกต่างระหว่างคะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวว่ามีค่าเฉลี่ยคะแนนความ พึงพอใจของจังหวัดเชียงราย และจังหวัดอุดรธานีนั้นแตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05

<u>กำหนดให้</u>  $\mu_1$  = ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดเชียงราย

 $\mu_2$  = ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดอุครธานี

## สมมติฐาน

 $H_0$  : ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดเชียงรายเท่ากับค่าเฉลี่ยคะแนนความพึง พอใจของนักท่องเที่ยวจังหวัดอุครธานี หรือ  $\mu_1$  =  $\mu_2$ 

 $H_1$  : ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดเชียงรายไม่เท่ากับค่าเฉลี่ยคะแนนความพึง พอใจของนักท่องเที่ยวจังหวัดอุดรธานี หรือ  $\mu_1 
eq \mu_2$ 

#### สถิติทคสอบ

ค่า t หรือ Sig(2-tailed) จากตารางที่ 10 ใน t-test for Equality of Means หรือจากสูตรดังต่อไปนี้ โดยนำ ค่า S มาจากตารางที่ 9  $\mathbf{t} = \frac{\left(\mathbf{x}_1 - \mathbf{x}_2\right) - \mathbf{d}_0}{\mathbf{S}_n \sqrt{(1/\mathbf{n}_1) + (1/\mathbf{n}_2)}}$ 

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

## <u>คำนวณสถิติทคสอบ</u>

$$t = -.180$$
 หรือ Sig(2-tailed) = 0.860

### <u>กำหนดระดับนัยสำคัญ</u>

### <u>เขตปฏิเสธ</u>

จะปฏิเสธ 
$$H_0$$
 เมื่อค่า  $Sig(2-tailed)  $0.860~>~0.05~$  จึงยอมรับ  $H_0$$ 

## <u>สรุปผล</u>

ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดเชียงรายเท่ากับค่าเฉลี่ยคะแนนความพึงพอใจ ของนักท่องเที่ยวจังหวัดอุดรธานี ที่ระดับนัยสำคัญ 0.05

### <u>อธิบายผลการวิเคราะห์</u>

จากผลลัพธ์สามารถสรุปได้ว่าคะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวจังหวัดเชียงรายไม่แตกต่าง กันกับคะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวจังหวัดอุดรธานี หมายความว่า นักท่องเที่ยวให้คะแนนความ พึงพอใจในทั้งสองจังหวัดใกล้เคียงกัน ไม่ว่าจะเป็นเรื่องของความสะอาด ความปลอดภัย หรือการใช้ภาษา ซึ่ง แสดงให้เห็นว่าเป็นสองจังหวัดที่มีนักท่องเที่ยวพึงพอใจมากที่สุด 7.1.2 ต้องการทดสอบคะแนนความพึงพอใจเฉลี่ยของจังหวัดกรุงเทพมหานคร มีมากกว่าคะแนนความพึง พอใจเฉลี่ยของนักท่องเที่ยวเมืองพัทยา แตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05 (โดยวิธีการทดสอบ ค่าเฉลี่ยสองประชากร)

# <u>เงื่อนไขสำหรับการทดสอบ</u>

- 1.ความพึงพอใจมีการแจกแจงแบบปกติ
- 1.1 ความพึงพอใจของจังหวัดกรุงเทพมหานครมีการแจกแจงแบบปกติ

**Tests of Normality** 

|             |                  | Kolmo     | ogorov-Smi | rnov <sup>a</sup> | Shapiro-Wilk |    |                   |  |  |
|-------------|------------------|-----------|------------|-------------------|--------------|----|-------------------|--|--|
|             | จังหวัด          | Statistic | df         | Sig.              | Statistic    | df | Sig.              |  |  |
| ความพึงพอใจ | <mark>กทม</mark> | .144      | 8          | .200*             | .940         | 8  | <mark>.608</mark> |  |  |
|             | อยุธยา           | .260      | 8          | .118              | .886         | 8  | .214              |  |  |
|             | เชียงใหม่        | .251      | 8          | .146              | .893         | 8  | .248              |  |  |
|             | เชียงราย         | .208      | 8          | .200*             | .936         | 8  | .570              |  |  |
|             | นครราชสีมา       | .244      | 8          | .179              | .837         | 8  | .070              |  |  |
|             | อุครธานี         | .182      | 8          | .200*             | .947         | 8  | .680              |  |  |
|             | พัทยา            | .203      | 8          | .200*             | .849         | 8  | .093              |  |  |
|             | หัวหิน           | .263      | 8          | .109              | .927         | 8  | .488              |  |  |
|             | ภูเก็ต           | .208      | 8          | .200*             | .850         | 8  | .095              |  |  |
|             | สุราษฎ์ชานี      | .148      | 8          | .200*             | .981         | 8  | .968              |  |  |

<sup>\*.</sup> This is a lower bound of the true significance.

ตารางที่ 11 Tests of Normality ความพึงพอใจของจังหวัดกทม

a. Lilliefors Significance Correction

## <u>สมมติฐาน</u>

 $H_0$  : คะแนนความพึงพอใจของจังหวัดกรุงเทพมหานครมีการแจกแจงปกติ

 $H_1$  : คะแนนความพึงพอใจของจังหวัดกรุงเทพมหานครมีการแจกแจงไม่ปกติ

### สถิติทคสอบ

ใช้ก่า Sig. จากตารางที่ 11 ด้วย Shapiro-Wilk Test เนื่องจากขนาดตัวอย่างที่เก็บมามีจำนวนน้อยกว่า 50 คำนวณสถิติทดสอบ

Sig. = 0.608

### <u>กำหนดระดับนัยสำคัญ</u>

ระดับนัยสำคัญ = 0.05

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ  $H_0$  เมื่อค่า Sig.<lpha

0.608 > 0.05 จึงยอมรับ  $H_{f 0}$ 

## <u>สรุปผล</u>

กะแนนความพึงพอใจของจังหวัดกรุงเทพมหานครมีการแจกแจงปกติ ที่ระดับนัยสำคัญ 0.05 หาก ทดสอบด้วยกราฟจะเห็นว่าข้อมูลมีการกระจุกกันอยู่ใกล้กับเส้น ดังนั้นเป็นการแจกแจงปกติดังรูปที่ 11



รูปที่ 11 Normal Q-Q Plot ของความพึงพอใจกับจังหวัดกทม

### 1.2 ความพึงพอใจของเมืองพัทยามีการแจกแจงแบบปกติ

**Tests of Normality** 

|             |                    | Kolm      | ogorov-Smi | rnov <sup>a</sup> | Shapiro-Wilk |    |                   |  |
|-------------|--------------------|-----------|------------|-------------------|--------------|----|-------------------|--|
|             | จังหวัด            | Statistic | df         | Sig.              | Statistic    | df | Sig.              |  |
| ความพึงพอใจ | กทม                | .144      | 8          | .200*             | .940         | 8  | .608              |  |
|             | อยุธยา             | .260      | 8          | .118              | .886         | 8  | .214              |  |
|             | เชียงใหม่          | .251      | 8          | .146              | .893         | 8  | .248              |  |
|             | เชียงราย           | .208      | 8          | .200*             | .936         | 8  | .570              |  |
|             | นครราชสีมา         | .244      | 8          | .179              | .837         | 8  | .070              |  |
|             | อุครธานี           | .182      | 8          | .200*             | .947         | 8  | .680              |  |
|             | <mark>พัทยา</mark> | .203      | 8          | .200*             | .849         | 8  | <mark>.093</mark> |  |
|             | หัวหิน             | .263      | 8          | .109              | .927         | 8  | .488              |  |
|             | ภูเก็ต             | .208      | 8          | .200*             | .850         | 8  | .095              |  |
|             | สุราษฎ์ชานี        | .148      | 8          | .200*             | .981         | 8  | .968              |  |

<sup>\*.</sup> This is a lower bound of the true significance.

a. Lilliefors Significance Correction

ตารางที่ 12 Tests of Normality ความพึงพอใจของเมืองพัทยา

## <u>สมมติฐาน</u>

 $H_0$  : คะแนนความพึงพอใจของเมืองพัทยามีการแจกแจงปกติ

 $H_1$ : คะแนนความพึงพอใจของเมืองพัทยามีการแจกแจงไม่ปกติ

### <u>สถิติทคสอบ</u>

ใช้ค่า Sig. จากตารางที่ 12 ด้วย Shapiro-Wilk Test เนื่องจากขนาดตัวอย่างที่เก็บมามีจำนวนน้อยกว่า 50 คำนวณสถิติทดสอบ

Sig. = 0.093

## <u>กำหนดระดับนัยสำคัญ</u>

ระดับนัยสำคัญ = 0.05

## <u>เขตปฏิเสธ</u>

จะปฏิเสช 
$$H_0$$
 เมื่อค่า  $Sig. < lpha$ 

$$0.093 > 0.05$$
 จึงยอมรับ  $H_0$ 

### <u>สรุปผล</u>

คะแนนความพึงพอใจของเมืองพัทยามีการแจกแจงปกติ ที่ระคับนัยสำคัญ 0.05 หากทดสอบค้วยกราฟ จะเห็นว่าข้อมูลมีการกระจุกกันอยู่ใกล้กับเส้น คังนั้นเป็นการแจกแจงปกติคังรูปที่ 12



รูปที่ 12 Normal Q-Q Plot ของความพึงพอใจกับเมืองพัทยา

## 2. ทดสอบค่าความแปรปรวนของจังหวัดกรุงเทพมหานคร และเมืองพัทยา ว่าเท่ากันหรือไม่

#### **Group Statistics**

|             | จังหวัด | N | Mean   | Std. Deviation      | Std. Error Mean |  |
|-------------|---------|---|--------|---------------------|-----------------|--|
| ความพึงพอใจ | กทม     | 8 | 3.6738 | .11513              | .04071          |  |
|             | พัทยา   | 8 | 3.8113 | <mark>.06999</mark> | .02474          |  |

ตารางที่ 13 Group Statistics ค่าเฉลี่ยความพึงพอใจของจังหวัดกรุงเทพและเมืองพัทยา

#### **Independent Samples Test** Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Sig. Mean Std. Error Interval of the (2-Differenc Differenc Difference F Sig. t df tailed) e e Lower Upper ความพึง Equal variances 1.989 .180 -2.886 14 .012 -.13750 .04764 -.23967 -.03533 พอใจ assumed Equal variances -2.886 11.552 .014 -.13750 .04764 -.24174 -.03326

## ตารางที่ 14 Independent Samples Test ค่าเฉลี่ยความพึงพอใจของจังหวัดกรุงเทพและเมืองพัทยา

## <u>สมมติฐาน</u>

not assumed

 $H_{\mathbf{0}}$  : ค่าความแปรปรวนของจังหวัดกรุงเทพมหานคร และเมืองพัทยาเท่ากัน

 $H_{\mathbf{1}}$  : ค่าความแปรปรวนของจังหวัดกรุงเทพมหานคร และเมืองพัทยาไม่เท่ากัน

## <u>สถิติทคสอบ</u>

ค่า F จากสูตร F =  $S_{\rm มาก}^2$  /  $S_{\rm น้อย}^2$  โดยนำค่า S จากตารางที่ 13 หรือค่า Sig. จากตารางที่ 14 ในคอลัมน์ Levene's Test for Equality of Variances

## <u>คำนวณสถิติทคสอบ</u>

### <u>กำหนดระดับนัยสำคัญ</u>

ระคับนัยสำคัญ = 0.05

## <u> เขตปฏิเสธ</u>

จะปฏิเสช 
$$H_0$$
 เมื่อค่า  $Sig.< ~lpha$ 

$$_{0.180} \; > \; 0.05 \;$$
 จึงยอมรับ  $H_0$ 

## <u>สรุปผล</u>

ค่าความแปรปรวนของของจังหวัดกรุงเทพมหานคร และเมืองพัทยาเท่ากัน จึงใช้ข้อมูลในแถว Equal Variances Assumed ในการทดสอบสมมติฐาน

## ทำการวิเคราะห์สมมติฐาน

ทดสอบสมมติฐานความแตกต่างระหว่างคะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวว่ามีค่าเฉลี่ยคะแนนความ พึงพอใจของจังหวัดกรุงเทพมหานคร และเมืองพัทยานั้นแตกต่างกันหรือไม่ ที่ระดับนัยสำคัญ 0.05

<u>กำหนดให้</u>  $\mu_1$  = ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดกรุงเทพมหานคร

 $\mu_2$  = ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวเมืองพัทยา

## สมมติฐาน

 $H_0$  : ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดกรุงเทพมหานครมากกว่าเท่ากับค่าเฉลี่ย คะแนนความพึงพอใจของนักท่องเที่ยวเมืองพัทยา หรือ  $\mu_1 \geq \mu_2$ 

 $H_1$  : ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดกรุงเทพมหานครน้อยกว่าค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวเมืองพัทยา หรือ  $\mu_1 < \mu_2$ 

#### สถิติทคสอบ

Sig(2-tailed) หรือ ค่า t จากตารางที่ 14 ใน t-test for Equality of Means หรือคำนวณ t จากสูตร คังต่อไปนี้ โดยใช้ค่า S จากตารางที่ 13 (---)

$$\mathbf{t} = \frac{(\mathbf{x}_1 - \mathbf{x}_2) - \mathbf{d}_0}{\mathbf{S}_{\mathbf{p}} \sqrt{(1/\mathbf{n}_1) + (1/\mathbf{n}_2)}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

## <u>คำนวณสถิติทคสอบ</u>

### <u>กำหนคระดับนัยสำคัญ</u>

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ 
$$H_0$$
 เมื่อค่า  $rac{sig(2-tailed)}{2}<~lpha~$  และค่าสถิติทคสอบ t ต้องเป็นลบ

0.012/2 < 0.05 และ t = -2.886 จึงปฏิเศษ  $H_{f 0}$ 

## <u>สรุปผล</u>

ค่าเฉลี่ยคะแนนความพึงพอใจของนักท่องเที่ยวจังหวัดกรุงเทพมหานครน้อยกว่าค่าเฉลี่ยคะแนนความ พึงพอใจของนักท่องเที่ยวเมืองพัทยา ที่ระดับนัยสำคัญ 0.05

### <u>อธิบายผลการวิเคราะห์</u>

จากผลลัพธ์สามารถสรุปได้ว่าคะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวจังหวัดกรุงเทพมหานคร น้อยกว่า คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวเมืองพัทยา หมายความว่า นักท่องเที่ยวส่วนใหญ่ชอบที่จะ ท่องเที่ยวในเมืองพัทยามากกว่าในกรุงเทพ ฯ นั่นหมายความว่าการที่นักท่องเที่ยวพอใจในเมืองพัทยามากกว่าจะ ส่งผลให้เศรษฐกิจในเมืองพัทยาดีขึ้นด้วย

## <u>ประโยชน์ที่ธูรกิจได้จากการวิเคราะห์เกี่ยวกับค่าเฉลี่ยของสองประชากร</u>

จากการทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของสองประชากร ทั้งสองครั้งนั้น ทำให้ทราบในเรื่องของ คะแนนความพึงพอใจของนักท่องเที่ยวในแต่ละจังหวัดที่ทำการทดสอบว่านักท่องเที่ยวส่วนใหญ่จะมีความพึง พอใจกับจังหวัดใดมากกว่ากัน หรือความพึงพอใจของทั้งสองจังหวัดเมื่อนำมาเปรียบเทียบกันแล้วนั้น มีคะแนน ที่แตกต่างกันหรือไม่ ซึ่งหลังจากที่เราสามารถรับรู้ได้ถึงคะแนนในแต่ละจังหวัด ธุรกิจสามารถนำผลลัพธ์จาก การทดสอบในครั้งนี้ไปวางแผนในการกระตุ้นเสรษฐกิจต่อไป อาทิเช่น จากหัวข้อที่ 7.1.2 การที่เราทราบว่าเมือง พัทยานักท่องเที่ยวพึงพอใจมากกว่าจังหวัดกรุงเทพมหานครนั้น เราอาจจะค้นหาแนวทางในการที่จะพัฒนา กิจกรรมในจังหวัดกรุงเทพ ให้มีนักท่องเที่ยวเข้ามาเพิ่มขึ้นเรื่อยๆ พัฒนาการบริการด้านการท่องเที่ยวให้ดียิ่งขึ้น เพื่อที่จะดึงคูดนักท่องเที่ยวเข้ามาได้มากขึ้น และเช่นเดียวกัน เพื่อการเจริญเติบโตที่เพิ่มขึ้นในเมืองพัทยา จากที่ นักท่องเที่ยวพึงพอใจอยู่แล้วนั้นก็อาจจะมีการจัดเตรียมความพร้อมในเรื่องของการบริการด้านสถานที่ อาหาร หรือแม้แต่รักษาเรื่องความปลอดภัย เพื่อช่วยให้นักท่องเที่ยวมีความไว้วางใจในเมืองพัทยาซึ่งเป็นการกระคุ้น เศรษฐกิจได้

# 7.2 ทำการศึกษาคะแนนแฉลี่ยความพึงพอใจของนักท่องเที่ยวจากประเภทการบริการด้านท่องเที่ยว และตามแต่ ละจังหวัดว่าแตกต่างกันหรือไม่ โดยใช้วิธี การวิเคราะห์ความแปรปรวนแบบหนึ่งทาง (1-WAY ANOVA)

โดยในการทดสอบนี้ผู้จัดทำจะทำการทำการศึกษาคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวจากประเภทการ บริการค้านท่องเที่ยว ในข้อที่ <u>7.2.1</u> และทำการศึกษาคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวตามแต่ละ จังหวัด ในข้อที่ <u>7.2.2</u>

# 7.2.1 ต้องการศึกษาคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวจากประเภทการบริการด้านท่องเที่ยวว่า แตกต่างกันหรือไม่ โดยใช้ การวิเคราะห์ความแปรปรวน (1-WAY ANOVA แบบ CRD)

## เงื่อนไขการทดสอบ

1. คะแนนความพึงพอใจของแต่ละกลุ่มประเภทบริการมีการแจกแจงปกติหรือไม่

#### **Tests of Normality**

|             | 10000 011011111111    |           |             |                   |              |    |                   |  |  |  |
|-------------|-----------------------|-----------|-------------|-------------------|--------------|----|-------------------|--|--|--|
|             | ประเภทบริการค้าน      | Kolm      | nogorov-Smi | rnov <sup>a</sup> | Shapiro-Wilk |    |                   |  |  |  |
|             | ท่องเที่ยว            | Statistic | df          | Sig.              | Statistic    | df | Sig.              |  |  |  |
| ความพึงพอใจ | ความสะควกในการใช้     | .226      | 10          | .161              | .902         | 10 | <mark>.228</mark> |  |  |  |
|             | บริการ                |           |             |                   |              |    |                   |  |  |  |
|             | ความสะอาดและสิ่งอำนวย | .196      | 10          | .200*             | .934         | 10 | <mark>.488</mark> |  |  |  |
|             | ความสะควก             |           |             |                   |              |    |                   |  |  |  |
|             | ประสิทธิภาพ           | .227      | 10          | .154              | .882         | 10 | <mark>.139</mark> |  |  |  |
|             | ความปลอดภัย           | .160      | 10          | .200*             | .923         | 10 | <mark>.386</mark> |  |  |  |
|             | การสื่อสาร/ภาษา       | .129      | 10          | .200*             | .940         | 10 | <mark>.553</mark> |  |  |  |
|             | ความซื่อสัตย์         | .146      | 10          | .200*             | .913         | 10 | .303              |  |  |  |
|             | ความคุ้มค่าเงิน       | .173      | 10          | .200*             | .907         | 10 | <mark>.260</mark> |  |  |  |
|             | ภาพรวมรถโดยสาร        | .160      | 10          | .200*             | .901         | 10 | .225              |  |  |  |
|             | สาธารณะ               |           |             |                   |              |    |                   |  |  |  |

<sup>\*.</sup> This is a lower bound of the true significance.

ตารางที่ 15 Tests of Normality ความพึงพอใจจำแนกตามประเภทการบริการ

a. Lilliefors Significance Correction

### <u>สมมติฐาน</u>

 $H_0$  : คะแนนความพึงพอใจ<u>จำแนกตามประเภทการบริการ</u>มีการแจกแจงปกติ

 $H_1$ : คะแนนความพึงพอใจ<u>จำแนกตามประเภทการบริการ</u>มีการแจกแจงไม่ปกติ <u>สถิติทคสอบ</u>

ใช้ค่า Sig. จากตารางที่ 15 ใน Shapiro- Wilk Test เนื่องจากขนาดตัวอย่างที่เก็บมาน้อยกว่า 50 คำนวณสถิติทคสอบ

Sig.คะแนนความพึงพอใจของความสะดวกในการใช้บริการ = 0.228

Sig.กะแนนความพึงพอใจของความสะอาดและสิ่งอำนวยความสะควก = 0. 488

Sig.คะแนนความพึ่งพอใจของประสิทธิภาพ = 0.139

Sig.กะแนนความพึงพอใจของความปลอดภัย = 0.386

Sig.คะแนนความพึงพอใจของความการสื่อสาร/ภาษา = 0.553

Sig.คะแนนความพึงพอใจของความซื่อสัตย์ = 0.303

Sig.คะแนนความพึงพอใจของความคุ้มค่าเงิน = 0.260

 ${
m Sig}$ .กะแนนความพึงพอใจของภาพรวมรถโดยสารสาธารณะ = 0.225

## <u>กำหนดระดับนัยสำคัญ</u>

ระคับนัยสำคัญ = 0.05

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ  $H_0$  เมื่อค่า Sig.<lpha

ค่า Sig. ของแต่ละประเภทบริการนั้น > 0.05 จึงยอมรับ  $H_{f 0}$ 

### <u>สรุปผล</u>

คะแนนความพึงพอใจจำแนกตามประเภทการบริการเป็นการแจกแจงปกติ ที่ระดับนัยสำคัญ 0.05

2. การทดสอบเงื่อนใชว่า ค่าแปรปรวนของคะแนนความพึงพอใจของทุกประเภทบริการด้านท่องเที่ยว แตกต่างกันหรือไม่

Test of Homogeneity of Variances

|             |                          | Levene Statistic | df1 | df2    | Sig.              |
|-------------|--------------------------|------------------|-----|--------|-------------------|
| ความพึงพอใจ | Based on Mean            | .618             | 7   | 72     | <mark>.740</mark> |
|             | Based on Median          | .468             | 7   | 72     | .854              |
|             | Based on Median and with | .468             | 7   | 53.873 | .853              |
|             | adjusted df              |                  |     |        |                   |
|             | Based on trimmed mean    | .585             | 7   | 72     | .766              |

ตารางที่ 16 Test of Homogeneity of Variances ความพึงพอใจจำแนกตามประเภทการบริการ

#### สมมติฐาน

 $H_0$  : ค่าแปรปรวนของคะแนนความพึงพอใจของทุกประเภทบริการด้านท่องเที่ยวเท่ากัน

 $H_1$  : ค่าแปรปรวนของคะแนนความพึงพอใจของทุกประเภทบริการด้านท่องเที่ยวไม่เท่ากัน

#### สถิติทคสอบ

ใช้ค่า Sig. จากตารางที่ 16 ด้วย Levene's Test

### <u>คำนวณสถิติทคสอบ</u>

$$Sig. = 0.740$$

## <u>กำหนคระดับนัยสำคัญ</u>

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ 
$$H_0$$
 เมื่อค่า  $sig < lpha$ 

$$_{0.740} > 0.05$$
 จึงยอมรับ  $H_{0}$ 

<u>สรุปผล</u> ค่าแปรปรวนของคะแนนความพึงพอใจของทุกประเภทบริการค้านท่องเที่ยวเท่ากัน ใช้สถิติทคสอบ F-test ในตาราง ANOVA

## ทำการวิเคราะห์สมมติฐาน

ต้องการศึกษาคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวจากประเภทการบริการด้านท่องเที่ยวว่าแตกต่างกัน หรือไม่

#### **ANOVA**

#### ความพึงพอใจ

|                | Sum of Squares | df | Mean Square | F                 | Sig.              |
|----------------|----------------|----|-------------|-------------------|-------------------|
| Between Groups | .228           | 7  | .033        | <mark>.944</mark> | <mark>.478</mark> |
| Within Groups  | 2.489          | 72 | .035        |                   |                   |
| Total          | 2.717          | 79 |             |                   |                   |

ตารางที่ 17 ANOVA ความพึงพอใจจำแนกตามประเภทการบริการ

#### <u>สมมติฐาน</u>

 $H_0$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละประเภทการบริการด้านการท่องเที่ยวไม่มี ความแตกต่างกัน

 $H_1$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละประเภทการบริการค้านการท่องเที่ยวมี ความแตกต่างกันอย่างน้อยหนึ่งประเภท

#### <u>สถิติทคสอบ</u>

F = MSTr / MSE หรือ ค่า Sig. จากตารางที่ 17

## <u>คำนวณค่าสถิติทคสอบ</u>

## <u>กำหนดระดับนัยสำคัญ</u>

$$\alpha = 0.05$$

# <u>เขตปฏิเสธ</u>

จะปฏิเสช 
$$H_0$$
 ถ้าค่า  ${
m Sig.} < lpha$ 

# 0.478 > 0.05 จึงยอมรับ $H_{\mathbf{0}}$

# <u>สรุปผล</u>

คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวจากประเภทการบริการด้านท่องเที่ยวนั้นไม่แตกต่างกัน ที่ระดับนัยสำคัญ ที่ 0.05

#### จากผลการทดลองแสดงตาราง Multiple Comparison

#### Post Hoc Tests

| Multiple Comparisons |                                    |                                    |                      |            |       |             |               |  |  |  |
|----------------------|------------------------------------|------------------------------------|----------------------|------------|-------|-------------|---------------|--|--|--|
| ependen)             | t Variable: ความพึงพอใจ            |                                    |                      |            |       |             |               |  |  |  |
|                      | (1)                                | (J)                                | Mean                 |            |       | 95% Confid  | ence Interval |  |  |  |
|                      | ประเภทบริการด้านท่องเที่ย<br>ว     | ประเภทบริการด้านท่องเที่ย<br>ว     | Difference (l-<br>J) | Std. Error | Sig.  | Lower Bound | Upper Boun    |  |  |  |
| cheffe               | ความสะดวกในการใช้บริกา<br>ร        | ความสะอาดและสิ่งอำนวยค<br>วามสะดวก | .03700               | .08315     | 1.000 | 2848        | .358          |  |  |  |
|                      |                                    | ประสิทธิภาพ                        | .02100               | .08315     | 1.000 | 3008        | .342          |  |  |  |
|                      |                                    | ความปลอดภัย                        | 00500                | .08315     | 1.000 | 3268        | .316          |  |  |  |
|                      |                                    | การสือสาร/ภาษา                     | .14500               | .08315     | .877  | 1768        | .466          |  |  |  |
|                      |                                    | ความชื่อสัตย์                      | .09900               | .08315     | .984  | 2228        | .420          |  |  |  |
|                      |                                    | ความคุ้มค่าเงิน                    | 02600                | .08315     | 1.000 | 3478        | .295          |  |  |  |
|                      |                                    | ภาพรวมรถโดยสารสาธาร<br>ณะ          | .04000               | .08315     | 1.000 | 2818        | .361          |  |  |  |
|                      | ดวามสะอาดและสิ่งอำนวยค<br>วามสะดวก | ความสะดวกในการใช้บริกา<br>ร        | 03700                | .08315     | 1.000 | 3588        | .284          |  |  |  |
|                      |                                    | ประสิทธิภาพ                        | 01600                | .08315     | 1.000 | 3378        | .305          |  |  |  |
|                      |                                    | ความปลอดภัย                        | 04200                | .08315     | 1.000 | 3638        | .279          |  |  |  |
|                      |                                    | การสือสาร/ภาษา                     | .10800               | .08315     | .973  | 2138        | .429          |  |  |  |
|                      |                                    | ความชื่อสัตย์                      | .06200               | .08315     | .999  | 2598        | .383          |  |  |  |
|                      |                                    | ความคุ้มค่าเงิน                    | 06300                | .08315     | .999  | 3848        | .258          |  |  |  |
|                      |                                    | ภาพรวมรถโดยสารสาธาร<br>ณะ          | .00300               | .08315     | 1.000 | 3188        | .324          |  |  |  |
|                      | ประสิทธิภาพ                        |                                    | 02100                | .08315     | 1.000 | 3428        | .300          |  |  |  |
|                      |                                    | ความสะอาดและสิ่งอำนายค<br>วามสะดวก | .01600               | .08315     | 1.000 | 3058        | .337          |  |  |  |
|                      |                                    | ความปลอดภัย                        | 02600                | .08315     | 1.000 | 3478        | .295          |  |  |  |
|                      |                                    | การสื้อสาร/ภาษา                    | .12400               | .08315     | .944  | 1978        | .445          |  |  |  |
|                      |                                    | ความชื่อสัตย์                      | .07800               | .08315     | .996  | 2438        | .399          |  |  |  |
|                      |                                    | ความคุ้มค่าเงิน                    | 04700                | .08315     | 1.000 | 3688        | .274          |  |  |  |
|                      |                                    | ภาพรวมรถโดยสารสาธาร<br>ณะ          | .01900               | .08315     | 1.000 | 3028        | .340          |  |  |  |
|                      | ความปลอดภัย                        | ความสะดวกในการใช้บริกา<br>ร        | .00500               | .08315     | 1.000 | 3168        | .326          |  |  |  |
|                      |                                    | ความสะอาดและสิ่งอำนวยค<br>วามสะดวก | .04200               | .08315     | 1.000 | 2798        | .363          |  |  |  |
|                      |                                    | ประสัทธิภาพ                        | .02600               | .08315     | 1.000 | 2958        | .347          |  |  |  |
|                      |                                    | การสื้อสาร/ภาษา                    | .15000               | .08315     | .857  | 1718        | .471          |  |  |  |
|                      |                                    | ความชื่อสัตย์                      | .10400               | .08315     | .979  | 2178        | .425          |  |  |  |
|                      |                                    | ความคุ้มค่าเงิน                    | 02100                | .08315     | 1.000 | 3428        | .300          |  |  |  |
|                      |                                    | ภาพรวมรถโดยสารสาธาร<br>ณะ          | .04500               | .08315     | 1.000 | 2768        | .366          |  |  |  |

| การสื่อสาร/ภาษา           | ความสะดวกในการใช้บริกา<br>ร        | 14500  | .08315 | .877  | 4668 | .176 |
|---------------------------|------------------------------------|--------|--------|-------|------|------|
|                           | ความสะอาดและสิ่งอำนวยค<br>วามสะดวก | 10800  | .08315 | .973  | 4298 | .213 |
|                           | ประสัทธิภาพ                        | 12400  | .08315 | .944  | 4458 | .197 |
|                           | ความปลอดภัย                        | 15000  | .08315 | .857  | 4718 | .171 |
|                           | ความชื่อสัตย์                      | 04600  | .08315 | 1.000 | 3678 | .275 |
|                           | ความคุ้มค่าเงิน                    | 17100  | .08315 | .750  | 4928 | .150 |
|                           | ภาพรวมรถโดยสารสาธาร<br>ณะ          | 10500  | .08315 | .977  | 4268 | .210 |
| ความชื่อสัตย์             | ความสะดวกในการใช้บริกา<br>ร        | 09900  | .08315 | .984  | 4208 | .222 |
|                           | ความสะอาดและสิ่งอำนวยค<br>วามสะดวก | 06200  | .08315 | .999  | 3838 | .259 |
|                           | ประสิทธิภาพ                        | 07800  | .08315 | .996  | 3998 | .243 |
|                           | ความปลอดภัย                        | 10400  | .08315 | .979  | 4258 | .21  |
|                           | การสื่อสาร/ภาษา                    | .04600 | .08315 | 1.000 | 2758 | .36  |
|                           | ความคุ้มค่าเงิน                    | 12500  | .08315 | .941  | 4468 | .19  |
|                           | ภาพรวมรถโดยสารสาธาร<br>ณะ          | 05900  | .08315 | .999  | 3808 | .26  |
| ความคุ้มค่าเงิน           | ความสะดวกในการใช้บริกา<br>ร        | .02600 | .08315 | 1.000 | 2958 | .34  |
|                           | ความสะอาดและสิ่งอำนวยค<br>วามสะดวก | .06300 | .08315 | .999  | 2588 | .38  |
|                           | ประสัทธิภาพ                        | .04700 | .08315 | 1.000 | 2748 | .36  |
|                           | ความปลอดภัย                        | .02100 | .08315 | 1.000 | 3008 | .34  |
|                           | การสือสาร/ภาษา                     | .17100 | .08315 | .750  | 1508 | .49  |
|                           | ความชื่อสัตย์                      | .12500 | .08315 | .941  | 1968 | .44  |
|                           | ภาพรวมรถโดยสารสาธาร<br>ณะ          | .06600 | .08315 | .999  | 2558 | .38  |
| ภาพรวมรถโดยสารสาธาร<br>ณะ | ความสะดวกในการใช้บริกา<br>ร        | 04000  | .08315 | 1.000 | 3618 | .28  |
|                           | ความสะอาดและสิ่งอำนวยค<br>วามสะดวก | 00300  | .08315 | 1.000 | 3248 | .31  |
|                           | ประสิทธิภาพ                        | 01900  | .08315 | 1.000 | 3408 | .30  |
|                           | ความปลอดภัย                        | 04500  | .08315 | 1.000 | 3668 | .27  |
|                           | การสื่อสาร/ภาษา                    | .10500 | .08315 | .977  | 2168 | .42  |
|                           | ความชื่อสัตย์                      | .05900 | .08315 | .999  | 2628 | .38  |
|                           | ความคุ้มค่าเงิน                    | 06600  | .08315 | .999  | 3878 | .25  |

ตารางที่ 18 Multiple Comparison ความพึงพอใจจำแนกตามประเภทการบริการ
สามารถทดสอบความแตกต่างของคะแนนความพึงพอใจประเภทการบริการค้านการท่องเที่ยว คังนี้
สมมติฐาน

 $H_0$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละประเภทการบริการด้านการท่องเที่ยวไม่มี ความแตกต่างกัน

 $H_1$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละประเภทการบริการด้านการท่องเที่ยวมี ความแตกต่างกันอย่างน้อยหนึ่งประเภท

#### <u>กำหนดระดับนัยสำคัญ</u>

$$\alpha = 0.05$$

#### <u>เขตปฏิเสธ</u>

จะปฏิเสช  $H_0$  ถ้าค่า  ${
m Sig.} < lpha$  โดยนำค่า  ${
m Sig.}$  จากตารางที่  ${
m 18}$  ทุกคู่มีค่า  ${
m Sig.} < 0.05$  จึงปฏิเสช  $H_0$ 

#### <u>สรุปผล</u>

จากตารางที่ 18 เป็นวิธีการทดสอบด้วย Scheffe แสดงถึงไม่มีประเภทการบริการด้านท่องเที่ยวคู่ใหน ที่แตกต่างกันที่ระดับนัยสำคัญ ที่ 0.05

#### <u>อธิบายผลการวิเคราะห์</u>

จากผลลัพธ์สามารถสรุปได้ว่าการบริการด้านการท่องเที่ยวในแต่ละประเภทนั้นได้คะแนนความพึง พอใจที่ระดับใกล้เคียงกัน กล่าวคือไม่มีความแตกต่างระหว่างคะแนนความพึงพอใจของแต่ละประเภทการ บริการด้านขนส่งสาธารณะ ดังนั้น จากผลลัพธ์นี้ก็สามารถที่จะนำไปพัฒนาให้แต่ละประเภทการบริการต่างๆ ได้ เพื่อให้ได้รับความพึงพอใจจากนักท่องเที่ยวให้มากที่สุด กล่าวคือ เป็นแนวทางในการปรับปรุงในทุกๆ ประเภทการบริการ เพื่อช่วยให้ธุรกิจการท่องเที่ยว มีแนวทางในการจัดการบริการด้านขนส่งสาธารณะ ให้ดี ยิ่งขึ้นต่อไป

# 7.2.2 ต้องการศึกษาถึงคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวจำแนกตามแต่ละจังหวัดว่าแตกต่างกัน หรือไม่ โดยใช้ การวิเคราะห์ความแปรปรวนหนึ่งทาง (1-WAY ANOVA)

#### เงื่อนไขการทดสอบ

1. คะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวจำแนกตามแต่ละจังหวัดมีการแจกแจงปกติหรือไม่

Tests of Normality

|             |             | Kolm      | ogorov-Smii | nov <sup>a</sup> | Shapiro-Wilk |    |      |
|-------------|-------------|-----------|-------------|------------------|--------------|----|------|
|             | จังหวัด     | Statistic | df          | Sig.             | Statistic    | df | Sig. |
| ความพึงพอใจ | กทม         | .144      | 8           | .200*            | .940         | 8  | .608 |
|             | อยุธยา      | .260      | 8           | .118             | .886         | 8  | .214 |
|             | เชียงใหม่   | .251      | 8           | .146             | .893         | 8  | .248 |
|             | เชียงราย    | .208      | 8           | .200*            | .936         | 8  | .570 |
|             | นครราชสีมา  | .244      | 8           | .179             | .837         | 8  | .070 |
|             | อุดรธานี    | .182      | 8           | .200*            | .947         | 8  | .680 |
|             | พัทยา       | .203      | 8           | .200*            | .849         | 8  | .093 |
|             | หัวหิน      | .263      | 8           | .109             | .927         | 8  | .488 |
|             | ภูเก็ต      | .208      | 8           | .200*            | .850         | 8  | .095 |
|             | สุราษฎ์ธานี | .148      | 8           | .200*            | .981         | 8  | .968 |

<sup>\*.</sup> This is a lower bound of the true significance.

ตารางที่ 19 Test of Normality ความพึงพอใจจำแนกตามแต่ละจังหวัด

# <u>สมมติฐาน</u>

 $H_0$ : คะแนนความพึงพอใจ<u>จำแนกตามแต่ละจังหวัด</u>มีการแจกแจงปกติ

 $H_1$  : คะแนนความพึงพอใจ<u>จำแนกตามแต่ละจังหวัค</u>มีการแจกแจงไม่ปกติ

## <u>สถิติทคสอบ</u>

ใช้ค่า Sig. จากตารางที่ 19 ใน Shapiro- Wilk Test เนื่องจากขนาคตัวอย่างที่เก็บมาน้อยกว่า 50 คำนวณสถิติทคสอบ

Sig.คะแนนความพึงพอใจของจังหวัดกทม. = 0.608

Sig.คะแนนความพึ่งพอใจของจังหวัดอยุธยา = 0. 214

 ${
m Sig}$ .กะแนนความพึงพอใจของจังหวัดเชียงใหม่ = 0.248

 ${
m Sig.}$ คะแนนความพึ่งพอใจของจังหวัดเชียงราย = 0.570

a. Lilliefors Significance Correction

Sig.กะแนนความพึงพอใจของจังหวัดนครราชสีมา = 0.070

 ${
m Sig.}$ คะแนนความพึงพอใจของจังหวัดอุดรธานี = 0.680

Sig.กะแนนกวามพึ่งพอใจของจังหวัดพัทยา = 0.093

Sig.คะแนนความพึงพอใจของจังหวัดหัวหิน = 0.488

Sig.คะแนนความพึงพอใจของจังหวัดภูเก็ต = 0.095

Sig.คะแนนความพึงพอใจของจังหวัดสุราษฎ์ชานี = 0.968

#### <u>กำหนดระดับนัยสำคัญ</u>

ระดับนัยสำคัญ = 0.05

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ  $H_0$  เมื่อค่า Sig < lpha

ค่า Sig ของแต่ละจังหวัดนั้น > 0.05 จึงยอมรับ  $H_{f 0}$ 

#### <u>สรุปผล</u>

คะแนนความพึงพอใจจำแนกตามแต่ละจังหวัดเป็นการแจกแจงปกติ ที่ระดับนัยสำคัญ 0.05

## 2. การทดสอบเงื่อนใบว่า ค่าแปรปรวนของคะแนนความพึงพอใจของทุกจังหวัดแตกต่างกันหรือไม่

#### **Test of Homogeneity of Variances**

|             |                          | Levene Statistic | df1 | df2    | Sig. |
|-------------|--------------------------|------------------|-----|--------|------|
| ความพึงพอใจ | Based on Mean            | .918             | 9   | 70     | .515 |
|             | Based on Median          | .794             | 9   | 70     | .623 |
|             | Based on Median and with | .794             | 9   | 56.764 | .623 |
|             | adjusted df              |                  |     |        |      |
|             | Based on trimmed mean    | .893             | 9   | 70     | .536 |

ตารางที่ 20 Test of Homogeneity of Variances ความพึงพอใจจำแนกตามแต่ละจังหวัด

#### <u>สมมติฐาน</u>

 $H_0$  : ค่าแปรปรวนของคะแนนความพึงพอใจของทุกจังหวัดเท่ากัน

 $H_1$  : ค่าแปรปรวนของคะแนนความพึงพอใจของทุกจังหวัดไม่เท่ากัน

#### <u>สถิติทคสอบ</u>

ใช้ค่า Sig. จากตารางที่ 20 ด้วย Levene's Test

#### <u>คำนวณสถิติทคสอบ</u>

$$Sig. = 0.740$$

## <u>กำหนดระดับนัยสำคัญ</u>

## <u>เขตปฏิเสธ</u>

จะปฏิเสธ 
$$H_0$$
 เมื่อค่า  $Sig.$ 

$$_{0.515} > 0.05$$
 จึงยอมรับ  $H_{0}$ 

## <u>สรุปผล</u>

ค่าแปรปรวนของคะแนนความพึงพอใจของทุกประเภทบริการค้านท่องเที่ยวเท่ากัน ใช้สถิติทคสอบ F-test ในตาราง ANOVA

## ทำการวิเคราะห์สมมติฐาน

ต้องการศึกษาถึงคะแนนเฉลี่ยความพึงพอใจของนักท่องเที่ยวจำแนกตามแต่ละจังหวัดว่าแตกต่างกันหรือไม่

#### **ANOVA**

#### ความพึงพอใจ

|                | Sum of Squares | df | Mean Square | F                   | Sig.              |
|----------------|----------------|----|-------------|---------------------|-------------------|
| Between Groups | 2.287          | 9  | .254        | <mark>41.390</mark> | <mark>.000</mark> |
| Within Groups  | .430           | 70 | .006        |                     |                   |
| Total          | 2.717          | 79 |             |                     |                   |

#### ตารางที่ 21 ANOVA ความพึงพอใจจำแนกตามแต่ละจังหวัด

#### สมมติฐาน

 $H_0$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละจังหวัดไม่มีความแตกต่างกัน

 $H_1$ : กะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละจังหวัดมีความแตกต่างกันอย่างน้อยหนึ่ง จังหวัด

#### <u>สถิติทคสอบ</u>

F = MSTr / MSE หรือ ค่า Sig. จากตารางที่ 21

## <u>คำนวณค่าสถิติทคสอบ</u>

## <u>กำหนดระดับนัยสำคัญ</u>

$$\alpha = 0.05$$

# <u>เขตปฏิเสธ</u>

จะปฏิเสช 
$$H_0$$
 ถ้าค่า  ${
m Sig.} < lpha$ 

$$0.000$$
 <  $0.05$  จึงปฏิเสธ  $H_{\mathbf{0}}$ 

# <u>สรุปผล</u>

คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละจังหวัดแตกต่างกันอย่างน้อยหนึ่งจังหวัด ที่ระดับนัยสำคัญ ที่ 0.05

#### จากผลการทดสอบแสดงตาราง Multiple Comparison

|                          |                  | Multipl                | e Compari  | sons  |                         |             |  |
|--------------------------|------------------|------------------------|------------|-------|-------------------------|-------------|--|
| Dependent'<br>Bonferroni | Variable: ความพื | ังพอใจ                 |            |       |                         |             |  |
|                          |                  | Mean<br>Difference (l- |            |       | 95% Confidence Interval |             |  |
| (I) จังหวัด              | (J) จังหวัด      | J) ,                   | Std. Error | Sig.  | Lower Bound             | Upper Bound |  |
| กทม                      | อยุธยา           | 00375                  | .03918     | 1.000 | 1370                    | .1295       |  |
|                          | เชียงใหม่        | 25125 <sup>*</sup>     | .03918     | .000  | 3845                    | 1180        |  |
|                          | เขียงราย         | 47250 <sup>*</sup>     | .03918     | .000  | 6058                    | 3392        |  |
|                          | นครราชสีมา       | 07750                  | .03918     | 1.000 | 2108                    | .0558       |  |
|                          | อุดรธานี         | 47875 <sup>*</sup>     | .03918     | .000  | 6120                    | 3455        |  |
|                          | พัทยา            | 13750*                 | .03918     | .036  | 2708                    | 0042        |  |
|                          | หัวห์น           | 28375                  | .03918     | .000  | 4170                    | 150         |  |
|                          | ภูเก็ต           | 27500 <sup>*</sup>     | .03918     | .000  | 4083                    | 141         |  |
|                          | สุราษฎ์ธานี      | 05375                  | .03918     | 1.000 | 1870                    | .079        |  |
| อยุธยา                   | กทม              | .00375                 | .03918     | 1.000 | 1295                    | .137        |  |
|                          | เชียงใหม่        | 24750 <sup>*</sup>     | .03918     | .000  | 3808                    | 114         |  |
|                          | เขียงราย         | 46875 <sup>*</sup>     | .03918     | .000  | 6020                    | 335         |  |
|                          | นครราชสีมา       | 07375                  | .03918     | 1.000 | 2070                    | .059        |  |
|                          | อุดรธานี         | 47500 <sup>*</sup>     | .03918     | .000  | 6083                    | 341         |  |
|                          | พัทยา            | 13375                  | .03918     | .048  | 2670                    | 000         |  |
|                          | หัวหิน           | 28000 <sup>*</sup>     | .03918     | .000  | 4133                    | 146         |  |
|                          | ภูเก็ต           | 27125 <sup>*</sup>     | .03918     | .000  | 4045                    | 138         |  |
|                          | สุราษฎ์ธานี      | 05000                  | .03918     | 1.000 | 1833                    | .083        |  |
| เชียงใหม่                | กทม              | .25125                 | .03918     | .000  | .1180                   | .384        |  |
|                          | อยุธยา           | .24750*                | .03918     | .000  | .1142                   | .380        |  |
|                          | เชียงราย         | 22125 <sup>*</sup>     | .03918     | .000  | 3545                    | 088         |  |
|                          | นครราชสีมา       | .17375*                | .03918     | .002  | .0405                   | .307        |  |
|                          | อุดรธานี         | 22750 <sup>*</sup>     | .03918     | .000  | 3608                    | 094         |  |
|                          | พัทยา            | .11375                 | .03918     | .222  | 0195                    | .247        |  |
|                          | หัวหิน           | 03250                  | .03918     | 1.000 | 1658                    | .100        |  |
|                          | ภูเก็ต           | 02375                  | .03918     | 1.000 | 1570                    | .109        |  |
|                          | สุราษฎ์ธานี      | .19750                 | .03918     | .000  | .0642                   | .330        |  |

| เดียวสาย   | on n        | .47250              | 02040  | 000   | 2202  | 6050  |
|------------|-------------|---------------------|--------|-------|-------|-------|
| เขียงราย   | กทม         |                     | .03918 | .000  | .3392 | .6058 |
|            | อยุธยา      | .46875*             | .03918 | .000  | .3355 | .6020 |
|            | เชียงใหม่   | .22125              | .03918 | .000  | .0880 | .3545 |
|            | นครราชสีมา  | .39500              | .03918 | .000  | .2617 | .5283 |
|            | อุดรธานี    | 00625               | .03918 | 1.000 | 1395  | .1270 |
|            | พัทยา       | .33500              | .03918 | .000  | .2017 | .4683 |
|            | หัวหิน      | .18875*             | .03918 | .000  | .0555 | .3220 |
|            | ภูเก็ต      | .19750              | .03918 | .000  | .0642 | .3308 |
|            | สุราษฎ์ธานี | .41875              | .03918 | .000  | .2855 | .5520 |
| นครราชสีมา | กทม         | .07750              | .03918 | 1.000 | 0558  | .2108 |
|            | อยุธยา      | .07375              | .03918 | 1.000 | 0595  | .2070 |
|            | เชียงใหม่   | 17375 <sup>*</sup>  | .03918 | .002  | 3070  | 0405  |
|            | เขียงราย    | 39500               | .03918 | .000  | 5283  | 2617  |
|            | อุดรธานี    | 40125               | .03918 | .000  | 5345  | 2680  |
|            | พัทยา       | 06000               | .03918 | 1.000 | 1933  | .0733 |
|            | หัวหิน      | 20625               | .03918 | .000  | 3395  | 0730  |
|            | ภูเก็ต      | 19750 <sup>*</sup>  | .03918 | .000  | 3308  | 0642  |
|            | สุราษฎ์ธานี | .02375              | .03918 | 1.000 | 1095  | .1570 |
| อุดรธานี   | กทม         | .47875*             | .03918 | .000  | .3455 | .6120 |
|            | อยุธยา      | .47500*             | .03918 | .000  | .3417 | .6083 |
|            | เชียงใหม่   | .22750*             | .03918 | .000  | .0942 | .3608 |
|            | เขียงราย    | .00625              | .03918 | 1.000 | 1270  | .1395 |
|            | นครราชสีมา  | .40125*             | .03918 | .000  | .2680 | .5345 |
|            | พัทยา       | .34125*             | .03918 | .000  | .2080 | .4745 |
|            | หวัหิน      | .19500*             | .03918 | .000  | .0617 | .3283 |
|            | ภูเก็ต      | .20375*             | .03918 | .000  | .0705 | .3370 |
|            | สุราษฎ์ธานี | .42500 <sup>*</sup> | .03918 | .000  | .2917 | .5583 |
| พัทยา      | กทม         | .13750*             | .03918 | .036  | .0042 | .2708 |
|            | อยุธยา      | .13375*             | .03918 | .048  | .0005 | .2670 |
|            | เชียงใหม่   | 11375               | .03918 | .222  | 2470  | .0195 |
|            | เชียงราย    | 33500 <sup>*</sup>  | .03918 | .000  | 4683  | 2017  |
|            | นครราชสีมา  | .06000              | .03918 | 1.000 | 0733  | .1933 |
|            | อุดรธานี    | 34125 <sup>*</sup>  | .03918 | .000  | 4745  | 2080  |
|            | หัวห์น      | 14625               | .03918 | .017  | 2795  | 0130  |
|            | ภูเก็ต      | 13750 <sup>*</sup>  | .03918 | .036  | 2708  | 0042  |
|            | สุราษฎ์ธานี | .08375              | .03918 | 1.000 | 0495  | .2170 |

| หัวหิน      | กทม         | .28375             | .03918 | .000  | .1505 | .4170 |
|-------------|-------------|--------------------|--------|-------|-------|-------|
|             | อยุธยา      | .28000*            | .03918 | .000  | .1467 | .4133 |
|             | เชียงใหม่   | .03250             | .03918 | 1.000 | 1008  | .1658 |
|             | เขียงราย    | 18875              | .03918 | .000  | 3220  | 0555  |
|             | นครราชสีมา  | .20625             | .03918 | .000  | .0730 | .3395 |
|             | อุดรธานี    | 19500              | .03918 | .000  | 3283  | 0617  |
|             | พัทยา       | .14625             | .03918 | .017  | .0130 | .279  |
|             | ภูเก็ต      | .00875             | .03918 | 1.000 | 1245  | .1420 |
|             | สุราษฎ์ธานี | .23000*            | .03918 | .000  | .0967 | .3633 |
| กูเก็ต      | กทม         | .27500             | .03918 | .000  | .1417 | .408  |
|             | อยุธยา      | .27125             | .03918 | .000  | .1380 | .404  |
|             | เชียงใหม่   | .02375             | .03918 | 1.000 | 1095  | .157  |
|             | เขียงราย    | 19750*             | .03918 | .000  | 3308  | 064   |
|             | นครราชสีมา  | .19750*            | .03918 | .000  | .0642 | .330  |
|             | อุดรธานี    | 20375 <sup>*</sup> | .03918 | .000  | 3370  | 070   |
|             | พัทยา       | .13750*            | .03918 | .036  | .0042 | .270  |
|             | หัวหิน      | 00875              | .03918 | 1.000 | 1420  | .124  |
|             | สุราษฎ์ธานี | .22125             | .03918 | .000  | .0880 | .354  |
| รุราษฎ์ธานี | กทม         | .05375             | .03918 | 1.000 | 0795  | .187  |
|             | อยุธยา      | .05000             | .03918 | 1.000 | 0833  | .183  |
|             | เชียงใหม่   | 19750*             | .03918 | .000  | 3308  | 0642  |
|             | เขียงราย    | 41875 <sup>*</sup> | .03918 | .000  | 5520  | 285   |
|             | นครราชสีมา  | 02375              | .03918 | 1.000 | 1570  | .109  |
|             | อุดรธานี    | 42500              | .03918 | .000  | 5583  | 291   |
|             | พัทยา       | 08375              | .03918 | 1.000 | 2170  | .049  |
|             | หัวหิน      | 23000*             | .03918 | .000  | 3633  | 096   |
|             | ภูเก็ต      | 22125 <sup>*</sup> | .03918 | .000  | 3545  | 088   |

ตารางที่ 22 Multiple Comparison ความพึงพอใจในแต่ละจังหวัด

สามารถทดสอบความแตกต่างของคะแนนความพึงพอใจในแต่ละจังหวัด ได้ดังนี้ ดังนี้ สมมติฐาน

 $H_0$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละจังหวัดไม่มีความแตกต่างกัน

 $H_1$  : คะแนนความพึงพอใจเฉลี่ยของนักท่องเที่ยวในแต่ละจังหวัดมีความแตกต่างกันอย่างน้อยหนึ่งจังหวัด

#### <u>กำหนดระดับนัยสำคัญ</u>

 $\alpha = 0.05$ 

#### <u>เขตปฏิเสธ</u>

จะปฏิเสช  $H_0$  ถ้าค่า Sig. < lpha โดยการนำค่า Sig. จากตารางที่ 22  $\underline{\alpha$ รุปผล

จากตารางที่ 22 เป็นวิธีการทดสอบด้วย Bonferroni ตารางแสดงให้เห็นว่ามีจังหวัดที่มีคะแนน ความพึงพอใจเฉลี่ยที่แตกต่างกับจังหวัดอื่นๆ ซึ่งจะมีสัญลักษณ์ \* เพื่อเป็นการบ่งบอกถึงความแตกต่าง จากจังหวัดอื่นๆ ได้แก่ จังหวัดที่มีค่า  $\mathrm{sig} < 0.05$  ที่ระดับนัยสำคัญ = 0.05 ซึ่งจังหวัดที่มีความแตกต่างกัน มีดังนี้

[กทม - เชียงใหม่ , กทม - เชียงราย, กทม – อุครธานี, กทม- พัทยา , กทม- หัวหิน , กทม- ภูเก็ต
อยุธยา-เชียงใหม่ , อยุธยา- เชียงราย , อยุธยา – อุครธานี, อยุธยา – พัทยา, อยุธยา – หัวหิน, อยุธยา – ภูเก็ต
เชียงใหม่- เชียงราย , เชียงใหม่- นครราชสีมา , เชียงใหม่- อุครธานี, เชียงใหม่- สุราษฎ์ธานี
เชียงราย- นกรราชสีมา , เชียงราย- พัทยา , เชียงราย- หัวหิน , เชียงราย- ภูเก็ต , เชียงราย- สุราษฎ์ธานี
นครราชสีมา-อุครธานี , นครราชสีมา-หัวหิน , นครราชสีมา-ภูเก็ต
อุครธานี- พัทยา, อุครธานี- หัวหิน, อุครธานี- ภูเก็ต, อุครธานี- สุราษฎ์ธานี
พัทยา – หัวหิน , พัทยา – ภูเก็ต ,
หัวหิน-สุราษฎ์ธานี

# <u>ประโยชน์ที่ธูรกิจจะได้จากการทำการวิเคราะห์</u>

จากการทดสอบการวิเคราะห์ความแปรปรวนตั้งแต่ 3 ประชากรขึ้นไปนั้น ทำให้ทราบในเรื่องของ กะแนนความพึงพอใจของนักท่องเที่ยวในแต่ละจังหวัดที่ทำการทดสอบว่าในแต่ละจังหวัดที่มีนักท่องเที่ยวเข้า มาในประเทศไทยนั้นส่วนมากจะมีความพึงพอใจในแต่ละจังหวัดเท่ากันหรือไม่ ซึ่งผลลัพธ์ส่วนใหญ่กีพบว่า ใน แต่ละจังหวัดนักท่องเที่ยวจะให้คะแนนความพึงพอใจที่แตกต่างกัน อาทิเช่น กทม. และ เชียงใหม่ เมื่อเราทราบ ถึงความแตกต่างของทั้งสองจังหวัดแล้วนั้นเราสามารถกำหนดกิจกรรมต่างๆ หรือบริการการขนส่งต่างๆ เพื่อที่จะตอบสนองต่อความต้องการของนักท่องเที่ยวในแต่ละจังหวัด เป็นต้น และอีกหนึ่งผลลัพธ์คือความพึง พอใจเฉลี่ยของนักท่องเที่ยวที่จำแนกตามประเภทการบริการนักท่องเที่ยวที่เดินทางเข้ามาในประเทศไทยนั้นมี คะแนนทางด้านการบริการขนส่งสาธารณะที่แตกต่างกันหรือไม่

ซึ่งเราสามารถรับรู้ได้ถึงคะแนนในแต่ละจังหวัด ธุรกิจสามารถนำผลลัพธ์จากการทดสอบในครั้งนี้ไป วางแผนในการกระตุ้นเศรษฐกิจต่อไป อาทิเช่น จากหัวข้อที่ 7.2.1 การที่เรารับรู้แล้วว่าประเภทการบริการ นักท่องเที่ยวไม่มีความแตกต่างกัน ช่วยให้เรารับรู้ถึงประสิทธิภาพการบริการนักท่องเที่ยวได้ และพัฒนา กิจกรรมต่างๆ ที่จะทำให้นักท่องเที่ยวมีความพึงพอใจมากยิ่งขึ้น หมายความว่าธุรกิจจะต้องให้ความสำคัญกับใน ทุกๆประเภทการบริการไม่เน้นไปที่ประเภทใดประเภทหนึ่ง และเช่นเดียวกันความแตกต่างของความพึงพอใจ ในแต่ละจังหวัดก็สามารถที่จะช่วยให้ธุรกิจ พัฒนาและปรับปรุงด้านการท่องเที่ยวในแต่ละจังหวัดต่อไปได้ เนื่องจากมีความแตกต่างระหว่างแต่ละจังหวัด ธุรกิจสามารถที่จะค้นหาสิ่งที่ทำให้แตกต่างในแต่ละจังหวัด และ นำมาเป็นจุดเค่นของแต่ละจังหวัดเพื่อชักจูงนักท่องเที่ยวได้มากยิ่งขึ้น ดังนั้น จากข้อมูลที่เราได้ทำการทดสอบ นั้นช่วยให้ธุรกิจการท่องเที่ยวของประเทศไทยรวมถึงการบริการด้านการขนส่งสาธารณะของไทย เติบโตมาก ยิ่งขึ้น ถือเป็นการนำเอาข้อมูลที่ผ่านการทดสอบ ไปปรับปรุงการดำเนินงานต่อไปได้ในอนาคต

# บรรณานุกรม

สำนักงานปลัดกระทรวงการท่องเที่ยวและกีฬา.2557. ผลการสำรวจความพึงพอใจด้านรถโดยสารสาธารณะ ของนักท่องเที่ยวชาวต่างประเทศที่เดินทางท่องเที่ยวในประเทศไทย : https://data.go.th/dataset/item\_16e60456cc98-42ea-ac70-aff49aba9a1c