Grado en Ingeniería Informática de Gestión y Sistemas de Información Departamento: Tecnología Electrónica

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Curso:	$1^{\mathbf{Q}}$
Nota:	

Grupo: 01

Nombre- <i>A</i>	pellidos:
------------------	-----------

Fundamentos de Tecnología de Computadores

Duración: 3 horas Fecha: 2022/06/15

- 1. (1 punto) Lee detenidamente las afirmaciones siguientes e indica si son verdaderas o falsas, justificando tu respuesta en todos los casos.
 - (a) La tecnología RTL tiene transistores NMOS y resistencias.

Solution: Falso, se usan BJT y resistencias.

(b) Un generador de corriente será siempre un elemento activo en un circuito eléctrico.

Solution: Falso, también puede ser un elemento pasivo. Depende del sentido de la corriente y de la tensión.

(c) La corriente I_D por el circuito es nula.

Solution: Falso, Es un MOSFET de empobrecimiento, y por o tanto, existe un canal con un valor de V_{GS} nulo. Asimismo, como es de tipo N conducirá corriente para un valor de V_{DS} positivo.

(d) Si se acercan dos cargas cualquiera la fuerza eléctrica entre ellas será menor.

Solution: Falso, la distancia entre las cargas es inversamente proporcional a la fuerza ejercida por ellas.

(e) En un transistor JFET, al no estar aislada la puerta del canal, la corriente de puerta IG será diferente de 0.

Solution: Falso, el terminal de puerta está aislado, y por tanto, la corriente es cero.

(f) Una carga puntual crea un campo eléctrico de $410^6N/C$ de intensidad en un punto concreto. Si en ese punto se coloca una carga de $2\mu C$, el módulo de la fuerza eléctrica resultante será de 8N.

Solution: Verdadero. $F=q \cdot E$

(g) Al conectar el circuito de la figura se observará un estado transitorio debido a la presencia de una fuente de corriente continua.

Solution: Falso, los regímenes transitorios dependen de la presencia de condensadores y bobinas.

(h) En un circuito cualquiera las fuentes de corrientes dependientes se cortocircuitan para calcular la resistencia Norton.

Solution: Falso, en realidad solo tenemos que cortocircuitar las fuentes independientes.

(i) La tensión en los bornes de una bobina en régimen permanente con corriente alterna es siempre nula.

Solution: Falso, será nula solamente con corriente continua.

(j) En el circuito de la figura, si se conecta una carga de 350Ω la potencia entregada será mínima.

Solution: Falso, la potencia entregada será máxima ya que la carga es igual a la resistencia Norton.

- 2. (2.5 puntos) Teniendo en cuenta el circuito de la figura:
 - (a) Utilizando el método de mallas, calcula las corrientes, tensiones y potencias de todos los elementos. Indica los sentidos de las corrientes y las tensiones así como el tipo de potencia (cedida o absorbida).
 - (b) Realiza el balance de potencias.

Solution: $I_1 = 238.61mA$, $I_2 = -954.4mA$, $I_3 = 650.75mA$, $V_{ks} = 3.34V$

	R_1	R_2	R_3	R_4	R_5	R_6	R_7	\mathbf{C}	E_1	E_2	V_{ks}
I(mA)	954.4	650.7	238.7	650.7	0	1605.1	238.6	0	0	1605.1	715.8
E (V)	3.81	3.9	1.43	3.25	0	12.84	1.908	0	10	20	3.34
P (mW)	3.63	2.54	0.34	2.11	0	20.51	3.45	0	0	32.1	2.39
C/A	A	A	A	A	A	A	-	-	-	С	A

$$\sum P_{ced} = P_{abs} = 32.103 \ mW$$

3. (2 puntos) Teniendo en cuenta el circuito de la figura:

- (a) Calcula y dibuja el circuito equivalente Thevenin entre los puntos A y B.
- (b) Calcula y dibuja el circuito equivalente Norton entre los puntos A y B.
- (c) Entre los puntos A y B se conecta una resistencia que absorbe $11.95 \ mW$. Calcula el valor de la resistencia conectada e indica si se trata de la máxima potencia que se puede obtener entre esos dos puntos. Justifica tus respuestas.
- (d) En caso de no ser la máxima potencia que se podría obtener, indica cuánto vale ésta y para que valor de resistencia se obtendría.

Solution: $R_{th} = 4 \ k\Omega$, $V_{th} = -22V$, $I_{NORTON} = -5.5 \ mA$, $R_{NORTON} = R_{TH}$, $R = 500 \ \Omega$ $P_{max} = 242 \ mW$

- 4. (2 puntos) Responde a las siguientes cuestiones teniendo en cuenta el circuito dibujado a continuación.
 - (a) El interruptor lleva mucho tiempo en la posición A, y en el instante t=0 s se mueve a B. Calcula los valores de las siguientes magnitudes: $v_c(0^-)$; $v_c(0^+)$; $i_c(0^-)$; $i_c(0^+)$; $v_c(\infty)$; $i_c(\infty)$.
 - (b) Indica cuánto tiempo ha de transcurrir desde que el conmutador se conecta al punto B para que el condensador alcance una tensión de $20.9\ V$ en sus extremos.

Solution:
$$v_c(0^-) = v_c(0^+) = 15V$$
; $i_c(0^-) = 0$ mA ; $i_c(0^+) = -3.75mA$; $v_c(\infty) = 30V$; $i_c(\infty) = 0$ $t = 1s$

5. (1.5 puntos) Analiza el circuito, teniendo en cuenta que la ganancia del corriente es $\beta = 100$ y que $V_{in} = \{0, 10, 15\}V$ es una fuente variable. Calcula V_{CE} , V_{BE} , I_B , I_C , I_E e indica el estado del transistor para cada valor de la fuente de entrada.

Datos:
$$\beta = 100, V_{BE} = 0.7 \ V, V_{CE_{sat}} = 0.2 \ V$$

	Solution:									
	V_{in}	$I_B(uA)$	$I_c(mA)$	$I_E(mA)$	$V_{CE}(V)$	$V_{BE}(V)$	Estado			
	0	0	0	0	0	0	corte			
	5	57.33	5.73	5.79	4.27	0.7	activa			
	15	190.66	9.8	9.99	0.2	0.7	sat.			
ı					I					

6. (1 punto) Diseñar una puerta OR de 3 entradas con la tecnología $Diodo\ Logic$ y una puerta NAND de tres entradas con la tecnología CMOS.