MAT222

LINEAR ALGEBRA HOMEWORK ASSIGNMENT 2 SOLUTIONS

(1) Find the inverse of

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

if any exists.

Solution: We have

$$\begin{bmatrix} 1 & 1 & 1 & 0 & \vdots & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & \vdots & 0 & 1 & 0 & 0 \\ 1 & 2 & 2 & 1 & \vdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 1 & 1 & 0 & \vdots & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & \vdots & -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(-1)_{R_2} \begin{bmatrix} 1 & 1 & 1 & 0 & \vdots & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 1 & 0 & \vdots & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{1-R_3} \xrightarrow{R_4 - R_3} \begin{bmatrix} 1 & 0 & 0 & -1 & \vdots & 2 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 & \vdots & -2 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & \vdots & 2 & -2 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & \vdots & 2 & -1 & -1 & 1 \end{bmatrix} \xrightarrow{(-1)_{R_2}} \begin{bmatrix} 1 & 0 & 0 & -1 & \vdots & 2 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 & \vdots & -2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & \vdots & -2 & 1 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & \vdots & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & \vdots & 2 & -1 & -1 & 2 \\ 0 & 0 & 0 & 1 & \vdots & -2 & 1 & 1 & -1 \end{bmatrix}$$

so

$$\begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & -1 \\ 2 & -1 & -1 & 2 \\ -2 & 1 & 1 & -1 \end{bmatrix}$$

is the inverse of A.

(2) If A is an $n \times n$ matrix with integer entries such that $\det(A) = 1$, are the entries of A^{-1} necessarily integers? Explain your answer.

Solution: We have $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$, so if $\det(A) = 1$, then $A^{-1} = \operatorname{adj}(A)$. If A has integer entries, then $(-1)^{i+j} \det(A_{ij})$ is integer for all $1 \leq i, j \leq n$. Hence, $\operatorname{adj}(A)$ has integer entries. Therefore, A^{-1} has integer entries.

(3) Let

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & -3 & 0 & 4 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 3 & x & 2 \end{bmatrix}.$$

If det(A) = 30, find x.

Solution: Expanding down the second column, we have

$$30 = \det(A) = -2 \begin{vmatrix} 0 & 3 & 0 & 1 \\ 0 & -3 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 3 & x & 2 \end{vmatrix}.$$

Since

$$\begin{vmatrix} 0 & 3 & 0 & 1 \\ 0 & -3 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 3 & x & 2 \end{vmatrix} \xrightarrow{R_1 + R_2} \begin{vmatrix} 0 & 0 & 0 & 5 \\ 0 & -3 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & x & 6 \end{vmatrix},$$

we have

$$-15 = \begin{vmatrix} 0 & 0 & 0 & 5 \\ 0 & -3 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & x & 6 \end{vmatrix}.$$

Expanding across the first row, we have

$$-15 = -5 \begin{vmatrix} 0 & -3 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & x \end{vmatrix} \Rightarrow 3 = \begin{vmatrix} 0 & -3 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & x \end{vmatrix}.$$

Again, expanding across the first row, we find

$$3 = 3 \begin{vmatrix} 1 & 1 \\ 1 & x \end{vmatrix} = 3(x - 1) \Rightarrow x - 1 = 1 \Rightarrow x = 2,$$

the desired value of x.

(4) Show that the matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

cannot be the adjoint of any invertible matrix with real entries.

Solution: Let A be an invertible 3×3 matrix. Then

$$A^{-1} = \frac{1}{\det(A)}\operatorname{adj}(A)$$

implies that

$$\det\left[\operatorname{adj}\left(A\right)\right] = \det\left(\det\left(A\right)A^{-1}\right) = \left[\det\left(A\right)\right]^{3}\det\left(A^{-1}\right) = \left[\det\left(A\right)\right]^{3}\frac{1}{\det\left(A\right)} = \left[\det\left(A\right)\right]^{2}.$$

Now let

$$adj(A) = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 2 & -1 \end{bmatrix}.$$

Since

$$\det \left[\mathrm{adj} \left(A \right) \right] = 2 \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = 2 \left(-3 - 2 \right) = -10,$$

we must have $-10 = [\det(A)]^2$, which is impossible. Thus, the given matrix cannot be the adjoint of any invertible matrix with real entries.

(5) Show that the adjoint matrix of the transpose of a matrix is the transpose of adjoint of that matrix.

Solution: Since $\operatorname{adj}(A) = (\det A) A^{-1}$, $\det (A^T) = \det (A)$, and $(A^{-1})^T = (A^T)^{-1}$, we have

$$\left[\operatorname{adj}\left(A\right)\right]^{T}=\left(\det A\right)A^{-1}\right]^{T}=\left(\det A\right)\left(A^{-1}\right)^{T}=\left(\det A^{T}\right)\left(A^{T}\right)^{-1}=\operatorname{adj}\left(A^{T}\right),$$

the desired conclusion.