Deep Learning: McCulloch Pitts Neuron (Walter Pitts & Warren McCulloch)

Course Instructor:

Dr. Bam Bahadur Sinha Assistant Professor Computer Science & Engineering National Institute of Technology Sikkim Fundamental building block of deep learning.

MP Neuron a.k.a

- **Boolean Output**

The Model

$$g(x1,x2,x3... x_n) = g(x) = \sum_{i=1}^{n} x_i$$

 $Y = f(g(x))$
 $Y = f(g(x)) = 1$, if $g(x) > = b$
 $Y = f(g(x)) = 0$, if $g(x) < b$

Note: This is a general architecture of neurons. MP-Neuron doesn't have weights associated with it.

Data

Pitch In-Line	Impact	Missing Stumps	Is it LBW?
1	0	0	0
0	1	1	0
1	1	1	1
0	1	0	0

Input: Boolean
Output: Boolean

How to handle Non-Boolean Input?

Eg: Product launched 16 days back Product launched 2 weeks back

Whether launched (within 6 months): Yes (1) \parallel No (0)

	P1	P2	P3	P4
Launch (within 6 months)	0	1	1	0
Weight (<160 gm)		0	1	1
Screen Size (<5.9 inch)	1	1	0	0
Dual Sim	0	0	1	1
Price > 20K	0	0	1	1
Like Prediction (Y)	0	0	0	1

Loss Function

- Loss/ Error = True Predicted : Basic Idea
- Loss/ Error = $\sum (True Predicted)$: Loss for all 'n' points
- Loss/Error = $\sum (True Predicted)^2$: Square of difference
- Loss/ Error = |True Predicted| : Absolute Difference

Learning Algorithm

•
$$Y = \sum_{i=1}^{n} x_i \ge b$$
 : Model

• L =
$$\sum_i (A_i - Y_i)^2$$
 : Loss

Can afford Brute Force: Since only parameter is there - $\ensuremath{\mathsf{b}}$

Evaluation

• To determine the model performance

$$Accuracy = \frac{Number\ of\ Correct\ Predictions}{Total\ Number\ of\ Predictions}$$

Implementation of MP – Neuron using Python