Improvements to A-Priori

Park-Chen-Yu Algorithm
Sampling
SON Algorithm

PCY Algorithm

- Main observation: during pass 1 of A-priori, most memory is idle.
- Use that memory to keep additional info to improve storage during pass 2 of A-priori.
- Passes > 2 are the same as in A-Priori.

PCY (Pass 1)

- Use a hash function which ``bucketizes" item pairs, that is, maps them to integers in [1,k].
- Each ``bucket" i in [1,k] is associated with a counter c_i.
- During pass 1, as we examine a basket (e.g. {m,b,d,o}):
 - update counters of single items;
 - Generate all item pairs for that basket, hash each of them and add 1 to the corr. counter.

PCY: Observations

- A bucket is *frequent* if its counter is at least the support threshold s.
- If a bucket is not frequent, no pair that hashes to that bucket could possibly be a frequent pair.
- Therefore, on pass 2 we only count pairs that hash to frequent buckets.

PCY: Observations (2)

- 1. A bucket that a frequent pair hashes to is surely frequent.
- 2. Even without any frequent pair, a bucket can be frequent.

Observations – (2)

3. But in the best case, the count for a bucket is less than the support s.

Now, all pairs that hash to this bucket can be eliminated as candidates, even if the pair consists of two frequent items.

PCY Algorithm – Pass 2

Count all pairs {*i*, *j* } that meet the conditions for being a candidate pair:

- 1. Both *i* and *j* are frequent items.
- 2. The pair $\{i, j\}$, hashes to a frequent bucket.

Ignore all pairs belonging to non-frequent buckets (do not use a counter for them).

All (Or Most) Frequent Itemsets In ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k.
- Other techniques use 2 or fewer passes for all sizes:

Simple algorithm.

SON (Savasere, Omiecinski, and Navathe).

Simple Algorithm – (1)

- Take a random sample of the market baskets.
- Run A-priori or one of its improvements in main memory, so you don't pay for disk I/O each time you give a pass on the data.
 - Be sure you leave enough space for counts.

Sampling

- To sample: give a full pass on the data and keep a basket in main memory with probability p (depending on main memory and input size)
- Why do we need to give a full pass just to retain a fraction p of the data?

Sampling

- To sample: give a full pass on the data and keep a basket in main memory with probability p (depending on main memory and input size)
- Why do we need to give a full pass just to retain a fraction p of the data?
 - A random sample is the best representative of a dataset. Keeping only the first baskets might not contain iPhones for example.

Simple Algorithm – (2)

Adjust the support threshold s accordingly:

E.g., if p=1/100 of the baskets, use s/100 as your support threshold instead of s.

Simple Algorithm: errors

- We might have:
 - False positives: items frequent in the sample but not in the dataset.
 - False negatives: items not frequent in the sample but frequent in the dataset.
- If the sample is large enough it is unlikely that we get either of them.

Simple Algorithm: Improvement

- If we cannot have a sample large enough then
 - Remove false positives with one more pass (count only frequent itemsets in the sample).
 - False negatives: decrease the support threshold (e.g. 0.9ps). This might increase false positives. We might not remove all false negatives.

SON Algorithm

- Two passes,
- No false positives or false negatives.
- Divide the dataset into chunks, where each chunk contains a subset of baskets.

SON Algorithm – Pass 1

- Divide the dataset into chunks, where each chunk contains a subset of baskets.
- Let p_i such that the ith chunk contains a fraction p_i of the dataset.
- For each chunk i compute all frequent itemsets with support p_i x s and store them on disk. This is the set of candidates for next pass.

SON Algorithm – Pass 2

- Read all frequent itemsets found in the previous pass (candidates).
- For each of them count the number of occurrences and output only those with support at least s.

False positives?

- False positives? No, because we compute the correct support in the second pass.
- False negatives?

- False positives? No, because we compute the correct support in the second pass.
- False negatives? No. Suppose $p_i = p$ for all i. If an itemset is not frequent in any chunk then its support is < ps(1/p)=s (there are 1/p chunks). So it is not frequent in the dataset.
- A similar argument applies for general case.

- False positives? No, because we compute the correct support in the second pass.
- False negatives? No. Suppose $p_i = p$ for all i. If an itemset is not frequent in any chunk then its support is < ps(1/p)=s (there are 1/p chunks). So it is not frequent in the dataset.
- A similar argument applies for general case.
- The SON algorithm lends itself to a MapReduce implementation...

References

Frequent Itemsets via sampling, how large the sample?:

Matteo Riondato, Eli Upfal: Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees. TKDD 8(4):20 (2014)