Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-[2,2-Bis(phenylsulfonyl)ethenyl]-4-methoxybenzene

Haruyasu Asahara, Peter Mayer* and Herbert Mayr

Ludwig-Maximilians-Universität, Department of Chemistry, Butenandtstrasse 5–13, 81377 München, Germany

Correspondence e-mail: p.mayer@lmu.de

Received 16 December 2011; accepted 16 January 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.084; data-to-parameter ratio = 17.5.

In the title compound, $C_{21}H_{18}O_5S_2$, the two sulfur-bound phenyl rings lie on opposite sides of the methoxyphenyl group, making dihedral angles of 77.58 (8) and 87.45 (8)° with it. The dihedral angle between the sulfur-bound phenyl rings is 57.31 (8)°. In the crystal, π – π stacking is observed between the two sulfur-bound phenyl rings, with a centroid–centroid distance of 3.878 (1) Å and a dihedral angle of 7.58 (8)°. The molecules are linked by weak C–H··· σ 0 and C–H··· σ 1 contacts.

Related literature

For background to bissulfonyl ethylenes and their synthesis, see: Simpkins (1993); Najera & Yus (1999); Prilezhaeva (2000); Nielsen *et al.* (2010), Zhu & Lu (2009), Alba *et al.* (2010), Sulzer-Moss *et al.* (2009). For a related structure, see: De Lucchi *et al.* (1985).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C_{21}H_{18}O_{5}S_{2}} & c = 12.0332 \ (2) \ {\rm Å} \\ M_{r} = 414.50 & \beta = 107.8449 \ (10)^{\circ} \\ {\rm Monoclinic,} \ P_{2_{1}}/c & V = 1942.99 \ (5) \ {\rm \mathring{A}}^{3} \\ a = 7.8291 \ (1) \ {\rm \mathring{A}} & Z = 4 \\ b = 21.6666 \ (4) \ {\rm \mathring{A}} & {\rm Mo} \ K\alpha \ {\rm radiation} \\ \end{array}$

 $\mu = 0.31 \text{ mm}^{-1}$ $0.33 \times 0.26 \times 0.21 \text{ mm}$ T = 173 K

Data collection

Nonius KappaCCD diffractometer 15675 measured reflections 4445 independent reflections 3908 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$

Refinement

4445 reflections

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.084$ S = 1.08

254 parameters H-atom parameters constrained $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 $\Delta \rho_{\text{max}} = 0.33 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.38 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C16-C21 ring.

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$C8-H8\cdots Cg1^{i}$ $C14-H14\cdots O1^{ii}$ $C21-H21\cdots O3^{i}$ $C20-H20\cdots O4^{iii}$	0.95	2.56	3.4835 (17)	164
	0.95	2.51	3.229 (2)	133
	0.95	2.50	3.2695 (19)	138
	0.95	2.59	3.453 (2)	151

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: *COLLECT* (Hooft, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009).

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2048).

References

Alba, A. R., Companyo, X. & Rios, R. (2010). Chem. Soc. Rev. 39, 2018–2033.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

De Lucchi, O., Pasquato, L., Modena, G. & Valle, G. (1985). Z. Kristallogr. 170, 267–274

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hooft, R. W. W. (2004). *COLLECT*. Bruker-Nonius BV, Delft, The Netherlands

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.

Najera, C. & Yus, M. (1999). Tetrahedron, 55, 10547-10658.

Nielsen, M., Jacobsen, C. B., Holub, N., Paixao, M. W. & Jorgensen, K. A. J. (2010). Angew. Chem. Int. Ed. 49, 2668–2679.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Prilezhaeva, E. N. (2000). Russ. Chem. Rev. 69, 367-408.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Simpkins, N. S. (1993). Sulfones in Organic Synthesis. Oxford: Pergamon Press. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Sulzer-Moss, S., Alexakis, A., Mareda, J., Bollot, G., Bernardinelli, G. & Filinchuk, Y. (2009). *Chem. Eur. J.* 15, 3204–3220.
Zhu, Q. & Lu, Y. (2009). *Aust. J. Chem.* 62, 951–955.

supplementary m	aterials	

Acta Cryst. (2012). E68, o470 [doi:10.1107/S1600536812001961]

1-[2,2-Bis(phenylsulfonyl)ethenyl]-4-methoxybenzene

H. Asahara, P. Mayer and H. Mayr

Comment

Bissulfonyl ethylenes are important reagents in synthetic organic chemistry, because they are active Michael acceptors [Simpkins (1993), Najera *et al.* (1999), Prilezhaeva (2000)]. Recently, organocatalytic Michael additions of bissulfonyl ethylene have also been reported [Nielsen *et al.* (2010), Zhu *et al.* (2009), Alba *et al.* (2010)]. During our studies on the electrophilic reactivity of bissulfonyl ethylenes, we discussed structure-reactivity relationships.

In the title compound, the C1—C2 double bond deviates only slightly from coplanarity with the phenyl ring of the methoxyphenyl group (plane-bond angle 10.22 (10)°). The double bonds S1—O2 and S2—O3 are coplanar with the C1—C2 double bond as is indicated by the torsion angles O2—S1—C1—C2 (-178.13 (13)°) and O3—S2—C1—C2 (1.12 (13)°). The sulfur-bound phenyl rings lie to opposite sides of the methoxyphenyl group with dihedral angles of 77.58 (8)° and 87.45 (8)°. The ring bound to S1 is almost coplanar with the S1—O1 double bond (plane-bond angle 7.79 (8)°), the ring bound to S2 is nearly coplanar with the S2—O4 double bond (plane-bond angle 9.12 (7)°). The molecular structure of the title compound is shown in Figure 1.

The packing of the title compound is shown in Figure 2. π - π -stacking is observed between the two sulfur-bound phenyl rings with a centroid-centroid distance of 3.878 (1) Å and a dihedral angle of 7.58 (8)°. A C–H··· π contact is established between the phenyl ring bound to S2 and the C8–H8 moiety. The distance of H8 to the centre of gravity of the phenyl ring is 2.56 Å, the angle around H8 is 164°. Furthermore weak C–H···O contacts with sulfur-bound oxygen atoms as acceptors are observed.

Experimental

The title compound has been obtained by following modified method of Alexakis [Sulzer-Moss *et al.* (2009)]. A mixture of *p*-anisaldehyde (15.0 g, 110 mmol, 7.4 equiv.), bis(phenylsulfonyl)methane (4.4 g, 14.8 mmol, 1.0 equiv.), diethylammonium chloride (32.1 mmol, 2.1 equiv.) and potassium fluoride (2.5 mmol, 0.17 equiv.) in dry toluene (150 ml) was stirred and refluxed under a Dean Stark water separator for 24 h. After cooling, the solvent was evaporated and residue was partitioned between water (50 ml) and CH₂Cl₂ (150 ml). The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (three times 25 ml). The combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (pentane/ethyl acetate: from 95/5 to 80/20), followed by recrystallization from pentane/chloroform. mp 123.0–123.9 °C (yield 4.9 g, 11.8 mmol, 79.9%).

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.98 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [$U_{iso}(H) = 1.2U_{eq}(C, aromatic), U_{iso}(H) = 1.5U_{eq}(C, aliphatic)$].

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. The packing of the title compound.

1-[2,2-bis(phenylsulfonyl)ethenyl]-4-methoxybenzene

Crystal data

 $C_{21}H_{18}O_5S_2$ F(000) = 864

 $M_r = 414.50$ $D_{\rm x} = 1.417 \, (1) \, {\rm Mg \ m}^{-3}$

Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Hall symbol: -P 2ybc Cell parameters from 7909 reflections

 $\theta = 3.1-27.5^{\circ}$ a = 7.8291 (1) Å b = 21.6666 (4) Å $\mu = 0.31 \text{ mm}^{-1}$

c = 12.0332 (2) Å T = 173 K

 $\beta = 107.8449 (10)^{\circ}$ Block, yellow

 $0.33\times0.26\times0.21~mm$ $V = 1942.99 (5) \text{ Å}^3$

Z = 4

Data collection

Nonius KappaCCD 3908 reflections with $I > 2\sigma(I)$ diffractometer

 $R_{\rm int} = 0.026$ Radiation source: rotating anode

 $\theta_{\text{max}} = 27.5^{\circ}, \, \theta_{\text{min}} = 3.3^{\circ}$ MONTEL, graded multilayered X-ray optics

CCD; rotation images; thick slices scans $h = -10 \rightarrow 10$ 15675 measured reflections $k = -27 \rightarrow 28$ 4445 independent reflections $l = -15 \rightarrow 15$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.033$

sites

$wR(F^2) = 0.084$	H-atom parameters constrained		
S = 1.08	$w = 1/[\sigma^2(F_0^2) + (0.031P)^2 + 1.0861P]$ where $P = (F_0^2 + 2F_c^2)/3$		
4445 reflections	where $T = (T_0 + 2T_c)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$		
254 parameters	$\Delta \rho_{\text{max}} = 0.33 \text{ e Å}^{-3}$		
0 restraints	$\Delta \rho_{\text{min}} = -0.38 \text{ e Å}^{-3}$		

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.20814 (5)	0.197024 (16)	0.62810(3)	0.02090 (9)
S2	0.18614 (5)	0.089334 (17)	0.46455 (3)	0.02332 (10)
01	0.07863 (14)	0.21777 (5)	0.68234 (10)	0.0292(2)
O2	0.20435 (14)	0.22512 (5)	0.51907 (9)	0.0278 (2)
O3	0.17420 (16)	0.02302 (5)	0.46677 (9)	0.0313 (3)
O4	0.33662 (14)	0.11588 (5)	0.43740 (9)	0.0305(3)
O5	0.25877 (18)	0.04667 (6)	1.16063 (9)	0.0365(3)
C1	0.18455 (19)	0.11624 (7)	0.60485 (12)	0.0214(3)
C2	0.1764 (2)	0.07226 (7)	0.68278 (13)	0.0245 (3)
H2	0.1564	0.0325	0.6481	0.029*
C3	0.1902 (2)	0.07015 (7)	0.80624 (12)	0.0242 (3)
C4	0.18860 (19)	0.12011 (7)	0.88083 (13)	0.0243 (3)
H4	0.1734	0.1609	0.8506	0.029*
C5	0.2090(2)	0.11019 (7)	0.99738 (13)	0.0276 (3)
H5	0.2058	0.1443	1.0464	0.033*
C6	0.2341 (2)	0.05075 (7)	1.04444 (13)	0.0274 (3)
C7	0.2320(2)	0.00049 (8)	0.97225 (14)	0.0338 (4)
H7	0.2464	-0.0403	1.0027	0.041*
C8	0.2085 (2)	0.01103 (7)	0.85489 (14)	0.0322 (4)
Н8	0.2045	-0.0234	0.8054	0.039*
C9	0.2945 (3)	-0.01316 (9)	1.21382 (15)	0.0435 (4)
H9A	0.1915	-0.0403	1.1800	0.065*
H9B	0.3150	-0.0094	1.2981	0.065*
Н9С	0.4014	-0.0307	1.1998	0.065*
C10	0.42503 (19)	0.20496 (7)	0.72786 (13)	0.0227 (3)

C11	0.4505(2)	0.23657 (7)	0.83213 (13)	0.0284(3)
H11	0.3517	0.2532	0.8523	0.034*
C12	0.6252(2)	0.24312 (8)	0.90616 (14)	0.0365 (4)
H12	0.6463	0.2645	0.9780	0.044*
C13	0.7677 (2)	0.21894 (9)	0.87638 (15)	0.0394 (4)
H13	0.8863	0.2241	0.9275	0.047*
C14	0.7396 (2)	0.18709 (9)	0.77248 (16)	0.0368 (4)
H14	0.8387	0.1701	0.7531	0.044*
C15	0.5677 (2)	0.17990 (8)	0.69699 (14)	0.0283 (3)
H15	0.5474	0.1583	0.6254	0.034*
C16	-0.0154 (2)	0.11649 (7)	0.36510 (12)	0.0231 (3)
C17	-0.0075 (2)	0.14543 (7)	0.26401 (13)	0.0298 (3)
H17	0.1047	0.1546	0.2526	0.036*
C18	-0.1677 (2)	0.16064 (8)	0.17987 (14)	0.0361 (4)
H18	-0.1656	0.1801	0.1096	0.043*
C19	-0.3298 (2)	0.14774 (8)	0.19744 (15)	0.0355 (4)
H19	-0.4383	0.1582	0.1390	0.043*
C20	-0.3363 (2)	0.11958 (8)	0.29952 (15)	0.0323 (4)
H20	-0.4487	0.1113	0.3112	0.039*
C21	-0.1780 (2)	0.10357 (7)	0.38461 (14)	0.0270(3)
H21	-0.1806	0.0842	0.4549	0.032*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01895 (17)	0.02019 (17)	0.02280 (18)	0.00109 (13)	0.00526 (13)	0.00185 (13)
S2	0.02724 (19)	0.02359 (19)	0.01953 (17)	0.00020 (14)	0.00776 (14)	0.00026 (13)
O1	0.0256 (5)	0.0272 (6)	0.0373 (6)	0.0061 (4)	0.0134 (5)	0.0010 (5)
O2	0.0302(6)	0.0260(6)	0.0252 (5)	0.0007 (4)	0.0054 (4)	0.0073 (4)
O3	0.0453 (7)	0.0237 (6)	0.0250(5)	0.0030(5)	0.0112 (5)	-0.0005 (4)
O4	0.0279 (6)	0.0390(7)	0.0275 (6)	-0.0007 (5)	0.0125 (5)	0.0005 (5)
O5	0.0530(7)	0.0367 (7)	0.0210 (5)	0.0024 (6)	0.0133 (5)	0.0005 (5)
C1	0.0213 (7)	0.0219 (7)	0.0204(6)	-0.0013 (5)	0.0056 (5)	-0.0011 (5)
C2	0.0267 (7)	0.0229 (7)	0.0231 (7)	-0.0024 (6)	0.0062 (6)	-0.0017 (6)
C3	0.0261 (7)	0.0244 (7)	0.0218 (7)	-0.0024 (6)	0.0069 (6)	-0.0006 (6)
C4	0.0240 (7)	0.0232 (7)	0.0261 (7)	-0.0021 (6)	0.0082 (6)	0.0002 (6)
C5	0.0305 (8)	0.0274 (8)	0.0260(7)	-0.0012 (6)	0.0102 (6)	-0.0053 (6)
C6	0.0297 (8)	0.0334 (8)	0.0198 (7)	-0.0022 (6)	0.0085 (6)	-0.0004 (6)
C7	0.0511 (10)	0.0261 (8)	0.0255 (8)	0.0004(7)	0.0139 (7)	0.0027 (6)
C8	0.0503 (10)	0.0233 (8)	0.0247 (8)	-0.0026 (7)	0.0138 (7)	-0.0033 (6)
C9	0.0634 (12)	0.0432 (11)	0.0268 (8)	0.0097 (9)	0.0180(8)	0.0097 (7)
C10	0.0209 (7)	0.0218 (7)	0.0241 (7)	-0.0031 (5)	0.0046 (5)	0.0024 (5)
C11	0.0342 (8)	0.0242 (8)	0.0261 (7)	-0.0037 (6)	0.0080(6)	0.0004 (6)
C12	0.0448 (10)	0.0330 (9)	0.0248 (8)	-0.0110 (8)	0.0005 (7)	0.0012 (7)
C13	0.0305 (9)	0.0432 (10)	0.0349 (9)	-0.0134 (7)	-0.0039 (7)	0.0104(8)
C14	0.0220(8)	0.0451 (10)	0.0419 (10)	-0.0015 (7)	0.0077 (7)	0.0094(8)
C15	0.0234 (7)	0.0325 (8)	0.0289(8)	-0.0020 (6)	0.0079 (6)	0.0013 (6)
C16	0.0272 (7)	0.0200(7)	0.0202(7)	-0.0025(6)	0.0047 (6)	-0.0018(5)

C18	C17	0.0345 (8)	0.0296 (8)	0.0243 (7)	-0.0056 (7)	0.0076 (6)	0.0028 (6)
C19 0.044 (9) 0.038 (9) 0.0324 (8) 0.0027 (7) −0.0030 (7) −0.0033 (7) C20 0.0280 (8) 0.0289 (8) 0.086 (9) −0.0007 (6) 0.0082 (7) −0.0024 (6) C21 0.0313 (8) 0.0233 (7) 0.0207 (6) 0.0016 (6) −0.0024 (6) Geometric parameters (Å. *) S1—01 1.4389 (11) C9—H9B 0.9800 S1—C10 1.7620 (15) C10—C11 1.389 (2) S1—C1 1.7731 (15) C10—C15 1.391 (2) S2—O3 1.4405 (12) C11—H11 0.9500 S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C16 1.7897 (14) C12—H12 0.9500 S2—C1 1.7897 (14) C12—H12 0.9500 S5—C9 1.4355 (2) C13—H13 0.9500 C5—C6 1.3544 (18) C13—C14 1.385 (3) C5—C7 1.357 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
C20 0.0280 (8) 0.0289 (8) 0.0335 (7) -0.0007 (6) 0.0082 (7) -0.0083 (7) C21 0.0313 (8) 0.0233 (7) 0.0273 (7) -0.0020 (6) 0.0005 (6) -0.0082 (7) Geometric parameters (Å, °) SI—O1 1.4359 (11) C9—H9B 0.9800 S1—O2 1.4383 (11) C9—H9C 0.9800 S1—C1 1.7620 (15) C10—C11 1.389 (2) S1—C1 1.7731 (15) C10—C15 1.391 (2) S2—O4 1.4357 (11) C11—C12 1.392 (2) S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 S5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.335 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C6 1.397 (2) C16—C17 1.387 (2) C4—H4 0.9500 C15—H15 0.9500							
C21 0.0313 (8) 0.0233 (7) 0.0273 (7) -0.0020 (6) 0.0105 (6) -0.0024 (6) Geometric parameters (Å. 9) SI—O1 1.4359 (11) C9—H9B 0.9800 SI—C10 1.7620 (15) C10—C11 1.389 (2) SI—C10 1.7731 (15) C10—C15 1.391 (2) S2—O4 1.4357 (11) C11—C12 1.392 (2) S2—O3 1.4405 (12) C11—H11 0.9500 S2—C16 1.7897 (14) C12—H12 0.9500 S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C6 1.354 (2) C14—H14 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C4—C5 1.379 (2) C16—C21 1.392 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) <td< td=""><td></td><td>* *</td><td></td><td></td><td></td><td>` ′</td><td>` '</td></td<>		* *				` ′	` '
Geometric parameters (Å, °) S1—O1			` ′			` '	* /
S1-O2	C21	0.0313 (0)	0.0233 (7)	0.0275 (7)	0.0020 (0)	0.0103 (0)	0.0024 (0)
S1—O1 1.4359 (11) C9—H9B 0.9800 S1—O2 1.4383 (11) C9—H9C 0.9800 S1—C10 1.7620 (15) C10—C11 1.389 (2) S1—C1 1.7731 (15) C10—C15 1.391 (2) S2—O4 1.4357 (11) C11—C12 1.392 (2) S2—O3 1.4405 (12) C11—H11 0.9500 S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C6 1.354 (18) C13—C15 1.382 (2) C1—C2 1.352 (2) C14—C15 1.382 (2) C2—G3 1.457 (2) C14—H14 0.9500 C3—C3 1.357 (2) C14—H14 0.9500 C3—C4 1.409 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2	Geometric para	ımeters (Å. °)					
S1—02 1.4383 (II) C9—H9C 0.9800 S1—C10 1.7620 (15) C10—C11 1.389 (2) S1—C1 1.7731 (15) C10—C15 1.391 (2) S2—O4 1.4357 (II) C11—C12 1.392 (2) S2—O3 1.4405 (12) C11—H11 0.9500 S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C8 1.397 (2) C16—C21 1.389 (2) C4—H4 0.9500 C17—C18 1.389 (2) C4—H4 0.9500 C17—C18 1.389 (2) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.396 (2) C18—C19 1.377 (3) </td <td>_</td> <td>(,)</td> <td>1 /250 (11)</td> <td>C0 I</td> <td>JOD</td> <td>0.00</td> <td>200</td>	_	(,)	1 /250 (11)	C0 I	JOD	0.00	200
S1—C10 1.7620 (15) C10—C11 1.389 (2) S1—C1 1.7731 (15) C10—C15 1.391 (2) S2—O4 1.4357 (11) C11—C12 1.392 (2) S2—O3 1.4405 (12) C11—H11 0.9500 S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.388 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—G3 1.457 (2) C14—C15 1.382 (2) C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C8 1.397 (2) C16—C12 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C18—C19 1.377 (3) C5—C6 1.396 (2) C19—C20 1.386 (2) C7—R8 1.386 (2) C19—H19 0.9500							
S1-C1 1.7731 (15) C10-C15 1.391 (2)							
S2—04 1.4357 (11) C11—C12 1.392 (2) S2—03 1.4405 (12) C11—H11 0.9500 S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—R7 0.9500 C20—C21 1.388 (2)							
S2—03 1.4405 (12) C11—H11 0.9500 S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—G3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C16—C21 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—C21 1.388 (2)							
S2—C16 1.7638 (15) C12—C13 1.375 (3) S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C8 1.397 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—K8 1.386 (2) C19—H19 0.9500 C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C9—H9A 0.9800 C21—H21 0.9500 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
S2—C1 1.7897 (14) C12—H12 0.9500 O5—C6 1.3544 (18) C13—C14 1.385 (3) O5—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—H7 0.9500 C20—H19 0.9500 C7—H7 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.950 O2—S1—C10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
05—C6 1.3544(18) C13—C14 1.385 (3) 05—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C9—H9C 109.5 101—S1—C1 109.0 (7) H9A—C9—H9C <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
05—C9 1.435 (2) C13—H13 0.9500 C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—C10 109.08 (7) H9A—C9—H9C 109.5 O1—S1—C1							
C1—C2 1.352 (2) C14—C15 1.382 (2) C2—C3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—H5 0.9500 C20—C21 1.388 (2) C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—C1 109.09 (7) H9A—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14)							
C2—C3 1.457 (2) C14—H14 0.9500 C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C9—H9A 0.9800 C21—H21 0.950 O1—S1—C10 109.05 (7) H9A—C9—H9C 109.5 O1—S1—C1 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14)							
C2—H2 0.9500 C15—H15 0.9500 C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 109.64 (7) C15—C10—S1 117.77 (11)<							` '
C3—C8 1.397 (2) C16—C17 1.387 (2) C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 107.57 (7) C11—C10—S1 117.77 (15)							
C3—C4 1.409 (2) C16—C21 1.392 (2) C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) 05—C9—H9C 109.5 01—S1—C10 109.05 (7) H9A—C9—H9C 109.5 01—S1—C10 109.05 (7) H9B—C9—H9C 109.5 01—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) 02—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) 04—S2—O3 117.79 (7) C10—C11—H11 121.0 04—S2—C16 109.75 (7) C10—C11—H11 12							
C4—C5 1.379 (2) C17—C18 1.389 (2) C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O1—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—H11	C3—C4						
C4—H4 0.9500 C17—H17 0.9500 C5—C6 1.396 (2) C18—C19 1.377 (3) C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 C1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O1—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C							
C5—H5 0.9500 C18—H18 0.9500 C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 109.75 (7) C12—C11—H11 121.0 O3—S2—C16 106.75 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) <td>C4—H4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	C4—H4						
C6—C7 1.390 (2) C19—C20 1.386 (2) C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—H13 119.8 C2—C1—S1 127.66 (11) <td>C5—C6</td> <td></td> <td>1.396 (2)</td> <td>C18—</td> <td>-C19</td> <td>1.37</td> <td>77 (3)</td>	C5—C6		1.396 (2)	C18—	-C19	1.37	77 (3)
C7—C8 1.386 (2) C19—H19 0.9500 C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 109.08 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 106.75 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 S1—C1—S2	C5—H5			C18—	-H18		
C7—H7 0.9500 C20—C21 1.388 (2) C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—H13 119.8 C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2	C6—C7		1.390(2)	C19—	-C20	1.38	36 (2)
C8—H8 0.9500 C20—H20 0.9500 C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—82—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—82—C16 109.75 (7) C10—C11—H11 121.0 O3—82—C16 107.20 (7) C12—C11—H11 121.0 O4—82—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 S1—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—	C7—C8		1.386 (2)	C19—	-H19	0.95	500
C9—H9A 0.9800 C21—H21 0.9500 O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	C7—H7		0.9500	C20—	-C21	1.38	38 (2)
O1—S1—O2 117.52 (7) O5—C9—H9C 109.5 O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	C8—H8		0.9500	C20—	-H20	0.95	500
O1—S1—C10 109.09 (7) H9A—C9—H9C 109.5 O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	C9—H9A		0.9800	C21—	-H21	0.95	500
O2—S1—C10 109.05 (7) H9B—C9—H9C 109.5 O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O1—S1—O2		117.52 (7)	05—0	С9—Н9С	109	.5
O1—S1—C1 109.08 (7) C11—C10—C15 121.94 (14) O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O1—S1—C10		109.09 (7)	H9A-	-С9—Н9С	109	.5
O2—S1—C1 107.57 (7) C11—C10—S1 120.33 (12) C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O2—S1—C10		109.05 (7)	H9B-	-С9—Н9С	109	.5
C10—S1—C1 103.64 (7) C15—C10—S1 117.71 (11) O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O1—S1—C1		109.08 (7)	C11—	-C10—C15	121	.94 (14)
O4—S2—O3 117.79 (7) C10—C11—C12 117.97 (15) O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O2—S1—C1		107.57 (7)	C11—	-C10—S1	120	.33 (12)
O4—S2—C16 109.75 (7) C10—C11—H11 121.0 O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	C10—S1—C1		103.64 (7)	C15—	-C10—S1	117.	.71 (11)
O3—S2—C16 107.20 (7) C12—C11—H11 121.0 O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O4—S2—O3		117.79 (7)	C10—	-C11—C12	117.	.97 (15)
O4—S2—C1 109.11 (7) C13—C12—C11 120.72 (16) O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O4—S2—C16		109.75 (7)	C10—	-C11—H11	121	.0
O3—S2—C1 106.75 (7) C13—C12—H12 119.6 C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O3—S2—C16		107.20 (7)	C12—	-C11—H11	121	.0
C16—S2—C1 105.54 (7) C11—C12—H12 119.6 C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O4—S2—C1		109.11 (7)	C13—	-C12—C11	120	.72 (16)
C6—O5—C9 117.78 (13) C12—C13—C14 120.50 (15) C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)	O3—S2—C1						
C2—C1—S1 127.66 (11) C12—C13—H13 119.8 C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)							
C2—C1—S2 116.11 (11) C14—C13—H13 119.8 S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)							
S1—C1—S2 116.10 (8) C15—C14—C13 120.17 (17)							
C1—C2—C3 136.46 (14) C15—C14—H14 119.9							
	C1—C2—C3		136.46 (14)	C15—	-C14—H14	119	9

C1—C2—H2	111.8	C13—C14—H14	119.9
C3—C2—H2	111.8	C14—C15—C10	118.70 (15)
C8—C3—C4	117.20 (14)	C14—C15—H15	120.7
C8—C3—C2	114.97 (14)	C10—C15—H15	120.7
C4—C3—C2	127.82 (14)	C17—C16—C21	121.88 (14)
C5—C4—C3	120.49 (14)	C17—C16—S2	118.33 (12)
C5—C4—H4	119.8	C21—C16—S2	119.53 (11)
C3—C4—H4	119.8	C16—C17—C18	118.24 (15)
C4—C5—C6	120.95 (14)	C16—C17—H17	120.9
C4—C5—H5	119.5	C18—C17—H17	120.9
C6—C5—H5	119.5	C19—C18—C17	120.58 (16)
O5—C6—C7	124.39 (15)	C19—C18—H18	119.7
O5—C6—C5	115.88 (14)	C17—C18—H18	119.7
C7—C6—C5	119.73 (14)	C18—C19—C20	120.75 (15)
C8—C7—C6	118.70 (15)	C18—C19—H19	119.6
C8—C7—H7	120.7	C20—C19—H19	119.6
C6—C7—H7	120.7	C19—C20—C21	119.75 (16)
C7—C8—C3	122.86 (15)	C19—C20—H20	120.1
C7—C8—H8	118.6	C21—C20—H20	120.1
C3—C8—H8	118.6	C20—C21—C16	118.78 (15)
O5—C9—H9A	109.5	C20—C21—C10 C20—C21—H21	120.6
O5—C9—H9B	109.5	C16—C21—H21	120.6
	109.5	C10—C21—H21	120.0
H9A—C9—H9B			
01—\$1—C1—C2	-49.65 (15)	O1—S1—C10—C11	-9.58 (14)
O2—S1—C1—C2	-178.13 (13)	O2—S1—C10—C11	119.97 (12)
C10—S1—C1—C2	66.46 (15)	C1—S1—C10—C11	-125.68 (12)
O1—S1—C1—S2	134.70 (8)	O1—S1—C10—C15	171.88 (12)
O2—S1—C1—S2	6.22 (10)	O2—S1—C10—C15	-58.57 (13)
C10—S1—C1—S2	-109.19 (9)	C1—S1—C10—C15	55.78 (13)
O4—S2—C1—C2	-127.17 (12)	C15—C10—C11—C12	0.4(2)
O3—S2—C1—C2	1.12 (13)	S1—C10—C11—C12	-178.05 (12)
C16—S2—C1—C2	114.95 (12)	C10—C11—C12—C13	0.0(2)
O4—S2—C1—S1	49.00 (10)	C11—C12—C13—C14	-0.6(3)
O3—S2—C1—S1	177.29 (8)	C12—C13—C14—C15	0.7(3)
C16—S2—C1—S1	-68.88 (9)	C13—C14—C15—C10	-0.3(3)
S1—C1—C2—C3	-3.5(3)	C11—C10—C15—C14	-0.3 (2)
S2—C1—C2—C3	172.18 (15)	S1—C10—C15—C14	178.21 (12)
C1—C2—C3—C8	-167.66 (18)	O4—S2—C16—C17	14.62 (14)
C1—C2—C3—C4	11.9 (3)	O3—S2—C16—C17	-114.41 (12)
C8—C3—C4—C5	1.6 (2)	C1—S2—C16—C17	132.07 (12)
C2—C3—C4—C5	-177.91 (14)	O4—S2—C16—C21	-171.11 (12)
C3—C4—C5—C6	0.9(2)	O3—S2—C16—C21	59.86 (13)
C9—O5—C6—C7	3.5 (2)	C1—S2—C16—C21	-53.66 (13)
C9—O5—C6—C5	-176.81 (16)	C21—C16—C17—C18	-1.1 (2)
C4—C5—C6—O5	177.80 (14)	S2—C16—C17—C18	172.98 (13)
C4—C5—C6—C7	-2.4 (2)	C16—C17—C18—C19	0.6(3)
O5—C6—C7—C8	-178.93 (16)	C17—C18—C19—C20	0.3 (3)
C5—C6—C7—C8	1.3 (3)	C18—C19—C20—C21	-0.7 (2)
C6—C7—C8—C3	1.3 (3)	C19—C20—C21—C16	0.2 (2)
	• •		

C4—C3—C8—C7	-2.8(3)	C17—C16—C21—C20	0.8 (2)
C2—C3—C8—C7	176.83 (16)	S2—C16—C21—C20	-173.31 (12)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C16–C21 ring.

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
C8—H8···Cg1 ⁱ	0.95	2.56	3.4835 (17)	164
C14—H14···O1 ⁱⁱ	0.95	2.51	3.229 (2)	133
C21—H21···O3 ⁱ	0.95	2.50	3.2695 (19)	138
C20—H20···O4 ⁱⁱⁱ	0.95	2.59	3.453 (2)	151

Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.

Fig. 1

Fig. 2

