1. Let function f be defined by the polynomial below:

$$f(x) = 6x^4 + 4x^3 - 2x^2 - 8x + 9$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
f(−x) •	$ -6x^4 - 4x^3 + 2x^2 + 8x - 9 $	
- f(x) •	\bullet $-6x^4 + 4x^3 + 2x^2 - 8x - 9$	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

	f(x)	a(m)	h(m)
\underline{x}	f(x)	g(x)	n(x)
1	4	2	h(x)
2	3	4	7
3	9	9	5
4	7	8	3
5	6	5	4
6	8	6	2
7	1	3	6
8	2	7	9
9	5	1	1

3. Evaluate f(1).

4. Evaluate $g^{-1}(7)$.

5. By filling more rows of the table, it is possible to make function h **odd**. If that were done, what would be the value of h(-5)?

6. By filling more rows of the table, it is possible to make function g even. If that were done, what would be the value of g(-2)?

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + 1$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x-4}{7}$$

a. Evaluate f(81).

b. Evaluate $f^{-1}(13)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

b. Evaluate $b^{-1}(2)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	5			
-1	-7			
0	0			
1	7			
2	-5			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?