DS n° 03 : Fiche de calculs

	Durée : 60 minutes, calcula	trices et documents inter	rdits		
Nom et prénom :			Note:		
Porter di	rectement les réponses	s sur la feuille, sans	justificat	ion.	
Fonctions usuelle	S.				
Simplifier: Arcsin	$\ln\left[\cos\left(\frac{24\pi}{7}\right)\right] = $. (1)		
Donner un réel x tel α	que $Arctan(tan(x)) \neq tan(x)$	Arctan x):		. (2)	
Donner l'ensemble de	s solutions de l'équation sh	$\mathbf{n}(x) = 3.$			
					(3)
Dérivation.					
La fonction $f: x \mapsto A$	$\arccos(\tan x)$ vérifie les pro	priétés suivantes :			
f est définie	sur			;	(4)
f est dérivable sur	A =			;	(5)
$\forall x \in A, \ f'(x)$	c) =				(6)
Calculs d'intégra	les et de primitives.				
Donner une primitive	de Arcsin :				
					(7)

Calculer	les	intégral	les	suivantes
Carcarci	100	111005100		Dai valioos

$$\int_0^1 (x^3 + 2x^2 - x + 1)e^{2x+1} dx =$$
 (8)

$$\int_{e}^{1} -\frac{\mathrm{d}x}{x\sqrt{1-\ln^2 x}} = \boxed{9}$$

$$\int_{1/6}^{3/2} \frac{\mathrm{d}x}{2\sqrt{x} + 4x\sqrt{x}} = \tag{10}$$

Équations différentielles.	
Soit (\mathscr{E}) : $(1+x^2)y'+2xy=\ln(2x)$. L'ensemble des solutions homogènes réelles de (\mathscr{E}) est	
	(11)
et une solution particulière de (\mathscr{E}) est	
	(10)
	(12)
L'unique solution y de (\mathcal{E}) vérifiant $y(2) = 6$ est	
	(13)
Soit $(\mathscr{F}): y'' + y' - 6y = \operatorname{ch}(x)$. L'ensemble des solutions homogènes réelles de (\mathscr{F}) est	
	(14)
et une solution particulière de (\mathscr{F}) est	
	(1 = \
	(15)
L'unique solution y de (\mathcal{F}) vérifiant $y(0) = 0$ et $y'(0) = 0$ est	
	(16)