高等数值分析

张鑫航 国防科技大学

版本: 1.0 更新: 2024年6月20日

判断 10×3′

大题 6

目录

1	绪论		5
	1.1	误差的来源和分类	5
	1.2	误差度量	5
	1.3	误差分析方法与原则	8
2	数值	逼近	8
	2.1	插值法	8
	2.2	Lagrange 插值	9
	2.3	Newton 插值	12
		2.3.1 差分与等距节点插值公式	13
	2.4	Hermite 插值	14
	2.5	分段低次插值	16
		2.5.1 分段线性插值	16
		2.5.2 分段 Hermite 插值	17
	2.6	三次样条插值	17
3	函数	逼近	18
	3.1	最佳一致逼近	18
		3.1.1 Chebyshev 多项式	19
	3.2	最佳平方逼近	22
	3.3	正交多项式	23
	3.4	最小二乘法	25
4	数值	积分与数值微分	26
	4.1	数值积分基本概念	26

	4.2	Newton-Cotes 求积公式	28
		4.2.1 复化求积法及其收敛性	29
	4.3	Romberg 算法	30
	4.4	高斯 (Gauss) 公式	32
		4.4.1 固定部分节点的高斯型求积公式	35
	4.5	二重积分计算方法	36
		4.5.1 复合求积公式	36
	4.6	数值微分	37
		4.6.1 机械求导公式	37
5	微分	方程数值解的基本概念(没有大题)	38
J	5.1	微分方程数值解的基本概念	38
	5.2		39
	5.3		40
	5.4	单步法的收敛性与稳定性	43
	5.5	线性多步法(1)	44
	5.6	方程组与刚性问题	45
	5.7	边值问题的解法	46
6	方程	求根	47
	6.1	非线性方程求根的基本概念	47
	6.2	跟的搜索与二分法	47
	6.3	不动点迭代法	48
	6.4	Newton 迭代法	51
	6.5	非线性方程组的解法	53
7	解线	性方程组的直接法	56

	7.1	Gauss 消元法	58
	7.2	直接三角分解法	60
	7.3	大型带状方程组的求解	63
	7.4	向量和矩阵范数	63
	7.5	条件数与病态矩阵	65
8	解线	性方程组的迭代法	66
	8.1	迭代法的构造	66
		8.1.1 Jacobi 迭代法	69
		8.1.2 Gauss-Seidel 迭代法	69
		8.1.3 SOR	70
	8.2	梯度法	72
	8.3	最速下降法	72
		8.3.1 共轭方向法	72
9	矩阵	的特征值和特征向量的计算	74
	9.1	特征值理论	74
	9.2	幂法	74
		9.2.1 幂法	75
		9.2.2 改进幂法	75
10	2023	3 春考试题目	7 6

1 绪论

1.1 误差的来源和分类

定义 1.1 (舍入误差) 由于计算机字长的有限性,对相关数据进行存储表示时便产生舍入误差。

定义 1.2 (截断误差) 计算机必须在有限的时间内得到运行结果,于是无穷的运算过程必须截断为有限过程,由此产生截断误差。

1.2 误差度量

定义 1.3 (误差) 设 x 为精确值 (准确值), x^* 是 x 的一个近似值, 称 $e^* = x^* - x$ 为近似 x 的绝对误差或误差。

定义 1.4 (误差限) 如果精确值 x 与近似值 x^* 的误差的绝对值不超过某正数 ε , 即

$$|e| = |x^* - x| < \varepsilon$$

称 ε 为绝对误差限或误差限。

定义 1.5 (相对误差) 设 x 为精确值(准确值), x^* 是 x 的一个近似值,称 $r = \frac{e^*}{x^*} = \frac{x^* - x}{x^*}$ 为近似 x 的相对误差。

定义 1.6 (相对误差限) 如果有正数 ε_r ,使得 $r = \left| \frac{e^*}{x^*} \right| < \varepsilon_r$,则称 ε_r 为 x 的相对误差限。

定义 1.7 (有效数字) 当 x 的误差限为 某一位 的半个单位,则 这一位 到第一个非零位的位数称为 x 的有效位数。若有效数字共有 n 个,则称 x 有 n 位有效数字,或者说 x 精确到 n 位。

或者说对于用标准形式表示的近似值 x*

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_n \times 10^{-(n-1)})$$
$$a_i \in \{1, 2, \dots 9\}, i = 1, 2, \dots n - 1$$

有

$$|x^* - x| < \frac{1}{2} \times 10^{m-n+1}$$

定理 1.1 对于用标准形式表示的近似值 x^*

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_n \times 10^{-(n-1)})$$
$$a_i \in \{1, 2, \dots 9\}, i = 1, 2, \dots n - 1$$

若 x^* 具有n位有效数字,则其相对误差限为

$$r \leqslant \frac{1}{2a_1} \times 10^{-(n-1)}$$

反之, 若 x^* 的相对误差限 $r \leq \frac{1}{2(a_1+1)} \times 10^{-(n-1)}$, 则 x^* 至少具有 n 位有效数字。

证明. 对于 x^* 有

$$a_1 \times 10^m \le |x^*| \le (a_1 + 1) \times 10^m$$

则,相对误差限 r

$$r = \frac{|x^* - x|}{|x^*|} \le \frac{\frac{1}{2} \times 10^{m-n+1}}{a_1 \times 10^m} = \frac{1}{2a_1} \times 10^{-(n-1)}$$

反之,若 $r \leqslant \frac{1}{2(a_1+1)} \times 10^{-(n-1)}$,有

$$|x^* - x| = r|x^*| < \frac{1}{2(a_1 + 1)} \times 10^{-(n-1)} \times (a_1 + 1) \times 10^m = \frac{1}{2} \times 10^{m-n+1}$$

则 x^* 至少具有 n 位有效数字。证毕!

定理 1.2 四舍五入所得皆为有效数字。

证明. 若将精确值 x 表示为

$$x = \pm 10^m \times \left(a_1 + a_2 \times 10^{-1} + \dots + a_n \times 10^{-(n-1)} + a_{n+1} \times 10^{-n} + \dots \right)$$

将 x 四舍五入到第 n 位得到 x^*

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a'_n \times 10^{-(n-1)})$$

对于四舍五入到第 n 位得到的 x^* ,有以下两种情况:

1. $a'_n - a_n = 0$, $a_{n+1} < 5$ (靠近原点)

$$\left| (a'_n - a_n) - a_{n-1} \times 10^{-1} \right| < \frac{1}{2}$$

2. $a'_n - a_n = 1$, $5 \leqslant a_{n+1} < 10$ (远离原点)

$$\left| (a'_n - a_n) - a_{n-1} \times 10^{-1} \right| < \frac{1}{2}$$

那么 $|x^* - x|$ 有

$$|x^* - x| = 10^{m-n+1} \times |(a_n - a'_n) + a_{n-1} \times 10^{-1}|$$

 $< \frac{1}{2} \times 10^{m-n+1}$

证毕!

注 误差的传播: 记 x^* 和 y^* 分别为 x 和 y 的近似值,则初始误差与计算结果中产生的误差有下列关系

$$\begin{split} \varepsilon_{x^* \pm y^*} &= \varepsilon_{x^*} + \varepsilon_{y^*}, \ \varepsilon_{r_{x^* \pm y^*}} = \frac{\varepsilon_{x^*} + \varepsilon_{y^*}}{x^* \pm y^*} \\ \varepsilon_{x^* \cdot y^*} &= x^* \varepsilon_{y^*} + y^* \varepsilon_{x^*}, \ \varepsilon_{r_{x^* \cdot y^*}} = \frac{x^* \varepsilon_{y^*} + y^* \varepsilon_{x^*}}{x^* \cdot y^*} \\ \varepsilon_{\frac{x^*}{y^*}} &\approx \frac{x^* \varepsilon_{y^*} + y^* \varepsilon_{x^*}}{y^{*2}}, \ \varepsilon_{r_{\frac{x^*}{y^*}}} &\approx \frac{x^* \varepsilon_{y^*} + y^* \varepsilon_{x^*}}{x^* \cdot y^*} \\ \varepsilon(f(\boldsymbol{x}^*)) &\approx \sum_{i=1}^{n} \left| \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \right| \frac{\varepsilon(x_i^*)}{f(\boldsymbol{x}^*)} \\ \varepsilon_r(f(\boldsymbol{x}^*)) &\approx \sum_{i=1}^{n} \left| \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \right| \frac{\varepsilon(x_i^*)}{f(\boldsymbol{x}^*)} \end{split}$$

$$e_r[V] = \frac{e[V]}{V} = \frac{4\pi R^2 \cdot e[R]}{\frac{4\pi R^3}{3}} = 3\frac{e[R]}{R} = 3e_r R$$

$$\ln x - \ln x^* = \ln \frac{x}{x^*} = \ln \frac{x - x^* + x^*}{x^*} = \ln(\delta + 1) \approx \delta$$

或者

$$e(\ln x^*) \approx \frac{e(x^*)}{x^*} = e_r(x^*) = \delta$$

$$e_r(x^n) \approx n \frac{x^{*(n-1)}e(x^*)}{x^{*(n)}} = ne_r(x^*) = 0.02n$$

1.3 误差分析方法与原则

定义 1.8 (病态问题) 对于一个数值问题, 若输入数据的微小扰动(即误差)会引起输出数据(即问题解)相对误差很大, 这就是病态问题。

定义 1.9 (数值稳定性) 一个算法如果原始数据有扰动 (即误差), 二计算过程中舍入误差不增长,则称此算法是数值稳定的;否则,若误差增长则称算法数值不稳定。

注 数值运算中误差分析的方法与原则

- 避免除数的绝对值远远小于被除数
- 。避免两相近数相减
- 防止大数"吃掉"小数
- 注意简化计算步骤, 减少运算次数

2 数值逼近

2.1 插值法

定义 2.1 (插值函数) 已知函数 y = f(x) 在互异节点 $\{x_i\}_{i=0}^n \subset [a,b]$ 处的函数值 $\{y_i = f(x_i)\}_{i=0}^n$,若存在简单函数 p(x),使得

$$p(x_i) = y_i, (i = 0, 1, ..., n)$$
 (2-1)

成立,则称 p(x) 是 f(x) 关于节点 $\{x_i\}_{i=0}^n$ 的一个插值函数。 $\{x_i\}_{i=0}^n$ ——插值节点,[a,b] ——插值区间,f(x)——被插值函数。

注 用 p(z) 的值作为 f(z) 的近似值, 当元在节点形成的区间上时, 称该方法为内插法; 当元不在节点形成的区间上但在插值区间上, 则称该方法为外插法。

注 当插值函数 p(z) 为多项式时, 称 p(x) 是 f(x) 的一个插值多项式。插值余项 $R(x) \stackrel{\text{def}}{=} f(x) - p(x)$,插值余项又称为截断误差。

定理 2.1 (插值多项式的存在惟一性定理) 满足插值条件 (2-1) 的不超过 n 次的插值多项式 p(x) 是存在唯一的。

推论 若 $f(\alpha)$ 是不超过 n 次的多项式,则它的关于 n+1 个互异节点 $\{x_i\}_{i=0}^n$ 的不超过 n 次的插值多项式 p(x) 与被插值函数 f(x) 恒等,即有

$$p(x) \equiv f(x)$$

注 误差的估计:

• 若被插值函数 $f(x) \in \mathbb{C}^{n+1}[a,b]$, 则有插值误差估计式

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$$

• 若仅需估计某一点 京* 处的插值误差, 则利用

$$|R(\bar{x})| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(\bar{x})|, \ \bar{x} \in [a, b]$$

• 若要估计在整个插值区间上的误差, 用

$$|R(\bar{x})| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|, \, \forall x \in [a, b]$$

其中, M_{n+1} 和 $\max_{x \in [a,b]} |\omega_{n+1}(x)|$ 用微积分中求极值的方法进行。

2.2 Lagrange 插值

设 p(x) 是形如 $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$,根据 n+1 个互异节点 $\{x_i\}_{i=0}^n$,得到

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0, \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1, \\ \vdots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n. \end{cases}$$

因为

$$V_n(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} \neq 0$$

所以方程存在唯一一组解 a_0, a_1, \cdots, a_n ,故而拉格朗日插值多项式也存在且唯一。

$$p_n(x) = L_n(x) = \sum_{i=0}^n f(x_i)l_i(x)$$

拉格朗日插值多项式需要满足 $p_n(x_i) = f(x_i)$, 故而 n 次多项式 $l_i(x)$ 需要满足

$$l_i(x_j) = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$

可以将拉格朗日插值基函数 $\{l_i(x)\}_{i=0}^n$ 的定义如下:

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}} \frac{x - x_j}{x_i - x_j} = \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x_i)}$$

其中

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$

$$\omega'_{n+1}(x_k) = (x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1})(x_k - x_n)$$

定理 2.2 (插值余项定理) 设 $f^n(x)$ 在 [a,b] 上连续, $f^{n+1}(x)$ 在 (a,b) 上存在,节点 $a \le x_0 < x_1 < \cdots < x_n \le b$, $L_n(x)$ 是满足条件 $p_n(x_i) = f(x_i)$ 的多项式,则对任何 $x \in [a,b]$,插值余项

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

这里, $\xi \in (a,b)$ 且依赖于 x。

证明. 由给定条件知, $R_n(x)$ 在 $\{x_i\}_{i=0}^n$ 上为 0,即

$$R_n(x_i) = 0$$

于是

$$R_n(x) = K(x)\omega_{n+1}(x)$$

其中 K(x) 是与 x 有关的待定系数。现在把 x 看成 [a,b] 上的一个固定点,做函数

$$\phi(t) = f(t) - L_n(t) - K(x)\omega_{n+1}(t)$$

容易知道 $\phi(t)$ 在点 x, x_0, \dots, x_n 这 n+2 个点上满足 $\phi(t)=0$, 反复利用 Rolle 定理,知道

$$\phi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)!K(x) = 0$$

于是

$$K(x) = \frac{f^{(n+1)(\xi)}}{(n+1)!}$$

证毕!

评论 ξ 在 (a,b) 内的具体位置通常不可能给出,如果可以求出 $\max_{a\leqslant x\leqslant b}|f^{(n+1)}(x)|=M_{n+1}$,那么插值多项式 $L_n(x)$ 逼近 f(x) 的截断误差是

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$$

推论 若 f(x) 是不超过 n 次的多项式,则它的关于 n+1 个互异节点 $\{x_i\}_{i=0}^n n$ 次的拉格朗日插值多项式 $L_n(x)$ 有

$$R_n(x) = f(x) - L_n(x) = 0$$

即

$$f(x) = L_n(x) = \sum_{i=0}^{n} f(x_i)l_i(x)$$

例 2.1 证明 $\sum_{i=0}^{5} (x-x_i)^2 l_i(x) = 0$,其中 $l_i(x)$ 是关于 $\{x_0, x_1, \dots, x_5\}$ 的插值基函数。

证明.

$$\sum_{i=0}^{5} (x - x_i)^2 l_i(x) = x^2 \sum_{i=0}^{5} 1 \cdot l_i(x) - 2x \sum_{i=0}^{5} x_i \cdot l_i(x) + \sum_{i=0}^{5} x_i^2 \cdot l_i(x)$$
$$= x^2 - 2x \cdot x + x^2 = 0$$

证毕!

例 2.2 对一条直线采样 10 个点进行 Lagrange 插值, 所得插值多项式是 [1] 次的。

注 Aitken 逐次线性插值法:

用 Lagrange 插值多项式 $L_n(x)$ 计算函数近似值时,如需增加插值节点,那么原来算出来的数据均不能利用,必须重新计算。为克服这个缺点通常可用逐次线性插值方法得到高次插值。

两个 k 次插值多项式可通过线性插值得到 k+1 次插值多项式

$$I_{0,1,\dots,k,l}(x) = I_{0,1,\dots,k}(x) + \frac{I_{0,1,\dots,k-1,l}(x) - I_{0,1,\dots,k}(x)}{x_l - x_k} (x - x_k)$$
(2-2)

这是关于节点 $\{x_0, \cdots, x_k, x_l\}$ 的插值多项式。显然

• 对于 $i = 0, 1, \dots, k-1$

$$I_{0,1,\ldots,k,l}(x_i) = I_{0,1,\ldots,k}(x_i) = f(x_i)$$

•对于 x_k

$$I_{0,1,\dots,k,l}(x_k) = I_{0,1,\dots,k}(x_k) = f(x_k)$$

• 对于 x₁

$$I_{0,1,\dots,k,l}(x_l) = I_{0,1,\dots,k}(x_l) + \frac{f(x_l) - I_{0,1,\dots,k}(x_l)}{x_l - x_k} (x_l - x_k) = f(x_l)$$

这证明了(2-2)满足插值条件。

当 k=0 时为线性插值, 当 k=1 时插值节点为 x_0, x_1, x_l , 插值多项式为

$$I_{0,1,l}(x) = I_{0,1}(x) + \frac{I_{0,l}(x) - I_{0,1}(x)}{x_l - x_1}(x - x_1)$$

x_0	$f(x_0)$					$x-x_0$
x_1	$f(x_1)$	$I_{0,1}$				$x-x_1$
x_2	$f(x_2)$	$I_{0,2}$	$I_{0,1,2}$			$x-x_2$
x_3	$f(x_3)$	$I_{0,3}$	$I_{0,1,3}$	$I_{0,1,2,3}$		$x-x_3$
x_4	$f(x_4)$	$I_{0,4}$	$I_{0,1,4}$	$I_{0,1,2,4}$	$I_{0,1,2,3,4}$	$x-x_4$

2.3 Newton 插值

$$p_n(x) = N_n(x) = \sum_{i=0}^n f[x_0, x_1, \cdots, x_i] \omega_i(x)$$

其中零阶插商

$$f[x_0] = f(x_0), \ \omega_0(x) \equiv 1, \ \omega_i(x) = \prod_{k=0}^{i-1} (x - x_k)$$

定义 2.2 (差商) 称 $f[x_0,x_k]=rac{f(x_k)-f(x_0)}{x_k-x_0}$ 为函数 f(x) 关于 x_0,x_k 的一阶差商,称

$$f[x_0, x_l, x_k] = \frac{f[x_0, x_k] - f[x_0, x_l]}{x_k - x_l}$$

为 f(x) 关于 x_0, x_k, x_l 的二阶差商。一般的称

$$f[x_0, x_1, \cdots, x_m] = \frac{f[x_0, x_1, \cdots, x_{k-2}, x_m] - f[x_0, x_1, \cdots, x_{k-2}, x_{k-1}]}{x_m - x_{k-1}}$$

为 f(x) 的 k 阶差商。

注 插值误差: 把x 当作[a,b] 一点,可得

$$f(x) = f(x_0) + f[x, x_0](x - x_0)$$

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x, x_0, x_1](x - x_0)(x - x_1)$$

...

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, \cdots, x_n](x - x_0) \cdots (x - x_{n-1})$$

$$+ f[x, x_0, \cdots, x_n] \prod_{i=0}^{n} (x - x_i) \rightarrow$$
 插值误差 or 余项 $R_n(x)$

由上, 得

$$f(x)=N_n(x)+f\left[x,x_0,\cdots,x_n
ight]\prod_{i=0}^n(x-x_i)$$

和拉格朗日插值对比
$$f(x)=L_n(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_{n+1}(x)$$

注 差商有如下性质:

1. k 阶差商可表示为函数值 $f(x_0), \dots, f(x_k)$ 的线性组合, 即

$$f[x_0, x_1, \cdots, x_k] = \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j+1})(x_j - x_{j+1}) \cdots (x_j - x_k)}.$$

这个性质也表明差商与节点的排列顺序无关 (插值的对称性)。

2. 差商与导数的关系

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a, b].$$
 (2-3)

证明.

$$f(x) = N_{n-1}(x) + f[x, x_0, \cdots, x_{n-1}] \omega_n(x)$$

记
$$R(x) = f(x) - N_{n-1}(x) = f[x, x_0, \dots, x_{n-1}] \omega_n(x)$$
, 固定 x , 令

$$g(t) = f(t) - N_{n-1}(x) - f[x, x_0, \dots, x_{n-1}] \omega_n(t)$$

对于 $\{x, x_0, \dots, x_{n-1}\}$ 有

$$g(x) = g(x_0) = \dots = g(x_{n-1}) = 0$$

反复利用 Rolle 定理,得到

$$g^{(n)}(\xi) = f^{(n)}(\xi) - f[x, x_0, \dots, x_{n-1}] n! = 0$$

即(这一步将 x_n 带入 x,并利用插值的对称性)

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a, b].$$

证毕!

x_k	$f(x_k)$	一阶差商	二阶差商	三阶差商	四阶差商
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f[x_0,x_1]$			
x_2	$f(x_2)$	$f[x_1,x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f(x_3)$	$-f[x_2,x_3]$	$f[x_1,x_2,x_3]$	$f[x_0, x_1, x_2, x_3]$	
x_4	$f(x_4)$	$-f[x_3,x_4]$	$-f[x_2, x_3, x_4]$ -	$f[x_1, x_2, x_3, x_4]$ -	$f[x_0, x_1, x_2, x_3, x_4]$
:	•		:	:	:

2.3.1 差分与等距节点插值公式

设等式 y=f(x) 在等距节点 $x_k=x_0+kh$ $(k=0,1,\cdots,n)$ 上的值 $f_k=f(x_k)$ 为已知,这里 h 为常数,称为步长。

定义 2.3 (偏差)

$$\Delta f_k = f_{k+1} - f_k$$

$$\nabla f_k = f_k - f_{k-1}$$

$$\delta f_k = f(x_k + h/2) - f(x_k - h/2) = f_{k+\frac{1}{2}} - f_{k-\frac{1}{2}}$$

分别为向前差分、向后差分以及中心差分。

推论 (差商与差分的关系★★★★)

$$f[x_k, x_{k+1}, \dots, x_{k+m}] = \frac{1}{m!} \frac{1}{h^m} \Delta^m f_k, (m = 1, 2, \dots, n)$$
$$f[x_k, x_{k-1}, \dots, x_{k-m}] = \frac{1}{m!} \frac{1}{h^m} \Delta^m f_k$$

同时利用 (2-3) 可以得到

$$\Delta^n f_k = h^n f^{(n)}(\xi), \, \xi \in (x_k, x_{k+n})$$

2.4 Hermite 插值

不少实际问题不但要求在节点上函数值相等,而且还要求它的导数值相等,甚至要求高阶导数值也相等。满足这种要求的插值多项式就是 Hermite 插值多项式.

已知节点 $\{x_j\}_{j=0}^n$, 满足

$$H(x_j) = y_j, H'(x_j) = m_j = f'(x_j)$$

可以确定 2n+1 次的多项式

$$H_{2n+1}(x) = a_0 + a_1 x + \dots + a_{2n+1} x^{2n+1}$$
(2-4)

插值误差

$$R_n(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!}\omega_{n+1}^2(x)$$

用基函数表示 (2-4) 为

$$H_{2n+1}(x) = \sum_{i=0}^{n} [\alpha_i(x)f_i + \beta_i(x)f_i']$$

其中 $\alpha_i(x)$ 和 $\beta_i(x)$ 均为 2n+1 次多项式,且满足

$$\begin{cases} \alpha_i(x_k) = \delta_{ik}, & \alpha'_i(x_k) = 0\\ \beta_i(x_k) = 0, & \beta'_i(x_k) = \delta_{ik} \end{cases}$$
 (2-5)

注 下面的问题就是求满足条件 (2-5) 的基函数 α_i 和 $\beta_i(x)$ 。

• 先求 $\alpha_i(x)$, 可利用 Lagrange 插值基函数 $l_i(x)$, 令 (1.2n+1 次多项式, 2. 在 $x_j \neq x_i$ 处为 2 重零点)

其中
$$l_i(x) = [a(x-x_i)+b]l_i^2(x)$$

其中 $l_i(x) = \prod_{j=0, j\neq i}^n \frac{x-x_j}{x_i-x_j}$ 。由 $\alpha_i(x_i) = 1$,知 $b=1$;由 $\alpha_i'(x_i) = 0$ 知
$$al_i^2(\mathbf{x_i}) + 2[a(\mathbf{x_i}-x_i)+1]l_i(\mathbf{x_i})l_i'(\mathbf{x_i}) = 0$$
$$a = -2l_i'(x_i)$$
$$(\ln l_i(x_i))' = \frac{l_i'(x_i)}{l_i(\mathbf{x_i})} = \sum_{\substack{j=0 \ j\neq i}}^n \frac{1}{(x_i-x_j)}$$
$$a = -2\sum_{\substack{j=0 \ j\neq i}}^n \frac{1}{(x_i-x_j)}$$

故而有

$$\alpha_i(x) = \left[1 - 2(x - x_i) \sum_{\substack{j=0 \ j \neq i}}^{n} \frac{1}{(x_i - x_j)} \right] l_i^2(x)$$

• 再求 $\beta_i(x)$,同理设 $\beta_i(x) = [a(x-x_i)+b]l_i^2(x)$ (1.2n+1 次多项式,2. 在 $x_j \neq x_i$ 处为 2 重零点)。由 $\beta_i(x_i) = 0$,知 b=0;由 $\beta_i'(x_i) = 1$ 知,

$$al_i^2(\mathbf{x_i}) + 2[a(\mathbf{x_i} - x_i) + 0]l_i(\mathbf{x_i})l_i'(\mathbf{x_i}) = 1$$

$$a = 1$$

故而有

$$\beta_i(x) = (x - x_i)l_i^2(x)$$

综上,

$$\alpha_i(x) = \left[1 - 2(x - x_i) \sum_{j=0, j \neq i}^{n} \frac{1}{(x_i - x_j)}\right] l_i^2(x)$$

$$\beta_i(x) = (x - x_i) l_i^2(x)$$

请写出 x=1 处的导数值基函数 $\beta_1(x)$ 和 x=2 处的函数值基函数 $\alpha_2(x)$

$$\mathbf{p} \beta_1(x) = (x-1) \left[\frac{(x-2)}{1-2} \right]^2, \quad \alpha_2(x) = \left[1 - 2(x-2) \frac{1}{2-1} \right] \left[\frac{(x-1)}{2-1} \right]^2$$

解 [解法一]: 设 $p(x) = [\alpha_1(x)p(0) + \alpha_2(x)p(1) + \alpha_3(x)p(2) + \beta_1(x)p'(0) + \beta_2(x)p'(1)]$, 满足 可以设

	函数值			导数值	
	0	1	2	0	1
$\alpha_1(x)$	1	0	0	0	0
$\alpha_2(x)$	0	1	0	0	0
$\alpha_3(x)$	0	0	1	0	0
$\beta_1(x)$	0	0	0	1	0
$\beta_2(x)$	0	0	0	0	1

$$\alpha_1(x) = (ax+b)(x-1)^2(x-2)$$

$$\alpha_2(x) = (ax+b)x^2(x-2)$$

$$\alpha_3(x) = bx^2(x-1)^2$$

$$\beta_1(x) = (ax+b)x(x-1)^2$$

$$\beta_2(x) = (ax+b)x^2(x-1)$$

上述做法要解多个 2 元方程, 虽然每个方程计算量不大。

[解法二]: 可以看出关于 x=0 为二重根,设 $p(x)=(ax^2+bx+c)x^2$,可以通过求解 1 个三元方程组

[解法三]: 由给定的条件, 可确定次数不超过 4 的插值多项式

$$p(x) = f(0) + f[0,1](x-0) + f[0,1,2](x-0)(x-1) + (ax+b)(x-0)(x-1)(x-2)$$

解 可以设 p(x) 为

$$p(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + A(x - x_0)(x - x_1)(x - x_2)$$

可以得到

$$A = \frac{f'(x_1) - f[x_0, x_1] - f[x_0, x_1, x_2](x_1 - x_0)}{(x_1 - x_0)(x_1 - x_2)}$$

2.5 分段低次插值

2.5.1 分段线性插值

设已知节点 $a = x_0 < x_1 < \dots < x_n = b$ 上的函数值为 $f_0, f_1, \dots, f_n, h_i = x_{i+1} - x_i$, $h = \max_{0 \le i \le n-1} h_i$, 若一折线 $I_h(x)$ 满足条件:

- 1. $I_h(x) \in C[a,b];$
- 2. $I_h(x_i) = f_i, i = 0, 1, \dots, n;$
- 3. $I_h(x)$ 在每个小区间 $[x_i, x_{i+1}](i = 0, 1, \dots, n-1)$ 上为线性函数。

则称 $I_h(x)$ 为分段线性函数,相应的插值为分段线性插值。

$$I_h(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} f_i + \frac{x - x_i}{x_{i+1} - x_i} f_{i+1}, \quad x \in [x_i, x_{i+1}]$$

例 2.6 分段线性插值可否用基函数表示, 若能, 请写出基函数; 若不能, 请说明理由

解 其基函数可表示为

$$l_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, x_{i-1} \le x \le x_i \\ \frac{x - x_{i+1}}{x_i - x_{i+1}}, x_i \le x \le x_{i+1} \\ 0, \sharp \ \& \end{cases}$$

注 分段线性插值的误差估计

- 若 $f(x) \in C[a,b]$, 则当 $h \to 0$ 时 $I_h(x)$ 一致收敛于 f(x)。
- 若 $f(x) \in C^2[a,b]$, 则余项 $R(x) = f(x) I_h(x)$ 有估计式

$$| R(x) | \le \frac{Mh^2}{8}, M = \max_{a \le x \le b} | f''(x) |$$

2.5.2 分段 Hermite 插值

定义 2.4 (分段 Hermite 插值) 设已知节点 $a = x_0 < x_1 < \dots < x_n < b$ 上的函数值为 f_0, f_1, \dots, f_n ,导数值为 f'_0, f'_1, \dots, f'_n 满足插值条件

- $I_h(x) \in C^1[a,b]$
- $I_h(x_i) = f_i, I'_h(x_i) = f'_i$
- $I_h(x)$ 在每个小区间为 3 次多项式

2.6 三次样条插值

定义 2.5 (三次样条插值) 给定 [a,b] 上 n+1 个节点 $a=x_0 < x_1 < \cdots < x_n = b$ 和这些点上的函数值 $f(x)_i = y_i, i = 0, 1, \cdots, n$ 。若函数 S(x) 满足条件

- 1. $S(x_i) = f_i$
- 2. $S(x) \in C^2[a, b]$
- S(x) 在每个小区间 $[x_i, x_{i+1}]$ 上为三次多项式

则称 S(x) 为 [a,b] 上的三次样条插值函数。

例 2.7 设
$$S(x) = \begin{cases} x^3 + x^2, 0 \le x \le 1 \\ 2x^3 + ax^2 + bx + c, 1 \le x \le 2 \end{cases}$$
 是以 $0,1,2$ 为节点的三次样条函数,则 a,b,c 应取何值?

解

$$\frac{d(x^3 + x^2)}{dx} = 3x^2 + 2x$$

$$\frac{d(2x^3 + ax^2 + bx + c)}{dx} = 6x^2 + 2ax + b$$

$$\frac{d^2(x^3 + x^2)}{dx^2} = 6x + 2$$

$$\frac{d^2(2x^3 + ax^2 + bx + c)}{dx^2} = 12x + 2a$$

$$\begin{cases} 2 + a + b + c = 2\\ 6 + 2a + b = 5\\ 12 + 2a = 8 \end{cases}$$

解得

$$a = -2, b = 3, c = -1$$

给定 n+1 个插值节点,确定 S(x) 需要确定 4n (每个区间 4 个参数) 。现在有以下

•
$$S(x_j) = f(x_j)$$
 (n+1) \uparrow

•
$$S(x_{j+0}) = f(x_{j-0})$$
 (n-1) \uparrow

•
$$S'(x_{i+0}) = f'(x_{i-0})$$
 (n-1) \uparrow

•
$$S''(x_{j+0}) = f''(x_{j-0})$$
 (n-1) \uparrow

少两个条件。

3 函数逼近

3.1 最佳一致逼近

定义 3.1 设 $f \in C[a,b], p_n \in H_n = \text{Span}\{1, x, \dots, x^n\},$ 称

$$\Delta(f, p_n) = || f - p_n ||_{\infty} = \max_{a \le x \le b} |f(x) - p_n(x)|$$

为 p_n 与 f 的偏差

$$E_n = \inf_{p_n \in H_n} \Delta(f, p_n)$$

为 p_n 与 f 的最小偏差

若 $\exists p_n^* \in H_n$, 使 $\Delta(f, p_n^*) = E_n$, 则称 p^* 为 f 在 [a, b] 上的最佳一致逼近多项式,简称最佳逼近多项式。

定义 3.2 (偏差点) 设 $f \in C[a,b], p_n \in H_n, \ \ \exists x_0 \in [a,b]$ 使得

$$| f(x_0) - p(x_0) | = \Delta(f, p) = \mu$$

则称 x_0 是 p 关于 f 的偏差点。

- 若 $p(x_0) f(x_0) = \mu$, 则称 x_0 为正偏差点。
- 若 $p(x_0) f(x_0) = -\mu$, 则称 x_0 为负偏差点。

定理 3.1 设 $p_n^* \in H_n$ 为 $f \in [a,b]$ 的最佳一致逼近多项式,则 p_n^* 关于 f 的正负偏差点同时存在。

3.1.1 Chebyshev 多项式

定义 3.3 (Chebyshev 多项式) 当权函数 $\rho(x) = \frac{1}{\sqrt{1-x^2}}$, 区间为 [-1,1] 时,得到的 正交多项式就是 Chebyshev 多项式,它可以表示为

$$T_n(x) = \cos(n \arccos x), \quad |x| \le 1$$

推论 递推关系

$$T_0(x) = 1, \quad T_1(x) = x$$

 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad (n = 1, 2, \dots, n)$

由递推关系式还可以得到 $T_n(x)$ 的最高项系数为 $2^{n-1}(n\geqslant 1)$

证明. 由和差化积 $\cos(n+1)x - \cos(n-1)x = 2\cos(nx)\cos(x)$ 并令 $x = \arccos x$ 得到

$$T_{n+1}(x) - T_{n-1}(x) = 2xT_n(x)$$

 $\Rightarrow T_{n+1}(x) = 2xT_n(x) + T_{n-1}(x)$

证毕!

推论 $T_n(x)$ 对零的偏差最小,可以写成如下定理。

定理 3.2 在区间 [-1,1] 上所有最高项系数为 1 的一切 n 次多项式中, $\widetilde{T}_n(x) = \frac{1}{2^{n-1}}T_n(x)$ 与零的偏差最小,其偏差为 $\frac{1}{2^{n-1}} \bigstar \bigstar \bigstar \bigstar$

注 $T_n(x)$ 的函数及其图形如下:

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

$$T_6(x) = 32x^5 - 48x^4 + 18x^2 - 1$$

$$T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x$$

$$T_8(x) = 128x^8 - 256x^5 + 160x^4 - 32x^2 + 1$$

注 性质:

1. 正交性

$$(T_n, T_m) = \begin{cases} 0 & m \neq n \\ \frac{\pi}{2} & m = n \neq 0 \\ \pi & m = n = 0 \end{cases}$$

- 2. 递推关系 $T_{n+1}(x) = 2xT_n(x) + T_{n-1}(x)$
- 3. 奇偶性 $T_n(-x) = (-1)^n T_n(x)$

解由定理 3.2知道

$$\frac{f(x) - p_3^*(x)}{1} = \frac{T_4(x)}{2^{4-1}}$$

其中 $T_4(x) = 8x^4 - 8x^2 + 1$, 故而

$$p_3^*(x) = f(x) - \frac{T_4(x)}{2^3}$$

= $x^2 - \frac{1}{8}$

例 3.2 求 $f(x) = 2x^3 + x^2 + 2x - 1$ 在 [-1,1] 上的最佳一致逼近多项式。 (x)

解

$$\frac{f(x) - p_2^*(x)}{a_n} = \frac{T_3(x)}{2^{n-1}}$$
 变成最高次系数为 1 的多项式

故

$$p_2^*(x) = f(x) - \frac{1}{2}T_3(x) = x^2 + \frac{7}{2}x - 1$$

定理 3.3 若 $P(x) \in H_n$ 是 $f(x) \in C[a,b]$ 的最佳逼近多项式,则 P(x) 同时存在正负偏差点。

定理 3.4 (Chebyshev) $p_n^* \in H_n$ 是 $f \in C[a,b]$ 的最佳逼近多项式的充要条件是:在 [a,b] 上至少有 n+2 个轮流为正负的偏差点,即至少有 n+2 个点 $a \leq x_1 \leq x_2 \leq \cdots \leq x_{n+2} \leq b$ 使得

$$p_n^*(x_k) - f(x_k) = (-1)^k \sigma ||f - p_n^*||_{\infty}, \ \sigma = \pm 1, \ k = 1, 2, \dots, n+2$$

上述点 $\{x_k\}_1^{n+2}$ 称为切比雪夫交错点。

推论 设 $f \in C[a,b]$, 则在 H_n 中的最佳逼近多项式是唯一的。

推论 若 $f \in C[a,b]$, 则其最佳逼近多项式 $p_n^*(x) \in H_n$ 是 f 的一个拉格朗日多项式。

解 根据定理 3.4可知, 至少有 3 个点 $a \leq x_1 \leq x_2 \leq x_3 \leq b$ 使得

$$P_1(x_k) - f(x_k) = (-1)^k \sigma \max_{a \le x \le b} |P_1(x) - f(x)|$$

由于 f''(x) 在 (a,b) 内不变号, 故 f'(x) 单调, $f'(x) - a_1$ 在 (a,b) 内只有一个零点, 记为 x_2 , 于是

$$P'_1(x_2) - f'(x_2) = a_1 - f'(x_2) = 0, \quad \text{ pr } f'(x_2) = a_1$$

另外两个偏差点必在区间端点,即 $x_0 = a, x_1 = b$,且满足

$$P_1(a) - f(a) = P_1(b) - f(b) = -[P_1(x_2) - f(x_2)]$$

由此得到

$$\begin{cases} a_0 + a_1 a - f(a) = a_0 + a_1 b - f(b) \\ a_0 + a_1 a - f(a) = f(x_2) - (a_0 + a_1 x_2). \end{cases}$$

解得

$$a_1 = \frac{f(b) - f(a)}{b - a} = f'(x_2)$$

$$a_0 = \frac{f(a) + f(x_2)}{2} - \frac{f(b) - f(a)}{b - a} \frac{a + x_2}{2}$$

解 先求 x_2 和 $f(x_2)$

$$f'(x_2) = \frac{x_2}{\sqrt{x_2^2 + 1}} = \frac{f(1) - f(0)}{1 - 0} = \sqrt{2} - 1 \approx 0.414$$

$$\Rightarrow x_2 = \sqrt{\frac{\sqrt{2} - 1}{2}} \approx 0.4551, f(x_2) = \sqrt{1 + x_2^2} = 1.0986$$

3.2 最佳平方逼近

定义 3.4 (正交函数) 若 $f(x), g(x) \in C[a, b]$ 满足

$$(f,g) = \int_a^b \rho(x)f(x)g(x)dx = 0,$$

则称 f 与 g 在 [a,b] 上带权 $\rho(x)$ 正交。若函数族 $\varphi_0(x), \dots, \varphi_n(x)$ 满足关系

$$(\varphi_j, \varphi_k) = \int_a^b \rho(x)\varphi_j(x)\varphi_k(x)dx = \begin{cases} 0, & j \neq k, \\ A_k > 0, & j = k, \end{cases}$$

则称 φ_k 是 [a,b] 上带权 $\rho(x)$ 得正交族函数。

定理 3.5 若 $(f,g) \in C[a,b]$, 则有

$$\begin{split} |(f,g)| &\leqslant \|f\|_2 \|g\|_2 & \text{ 柯西不等式} \\ &\| f+g \|_2 \leqslant \| f \|_2 + \| g \|_2 & = \text{ 三角不等式} \\ &\| f+g \|_2^2 + \| f-g \|_2^2 = 2(\| f \|_2^2 + \| g \|_2^2) & \text{ 平行四边形定律} \end{split}$$

定义 3.5 (最佳平方逼近函数) 设 $f\in[a,b]$, 若 $\exists \varphi^*\in\Phi=\mathrm{Span}\{\varphi_0,\cdots,\varphi_n\}$ 使得

$$||f - \varphi^*||_2^2 = \inf_{\varphi \in \Phi} ||f - \varphi||_2^2$$

则称 φ^* 为 f 在 Φ 中的最佳平方逼近函数。

注 上述问题等价于求多元函数

$$I(a_0, a_1, \dots, a_n) = \int_a^b \rho(x) \left[\sum_{j=0}^n a_j \varphi(x) - f(x) \right]^2 dx$$

的最小值。由于 $I(a_0, a_1, \dots, a_n)$ 是关于 a_0, a_1, \dots, a_n 的二次函数,利用多元函数极值的必要条件

$$\frac{\partial I}{\partial a_k} = 2 \int_a^b \rho(x) \left[\sum_{j=0}^n a_j \varphi_j(x) - f(x) \right] \varphi_k(x) dx = 0, \quad (k = 0, 1, \dots, n),$$

$$\int_a^b \rho(x) \varphi_k(x) \sum_{j=0}^n a_j \varphi_j(x) dx = \int_a^b \rho(x) f(x) \varphi_k(x) dx, \quad (k = 0, 1, \dots, n),$$

于是有 法方程

$$\sum_{j=0}^{n} (\varphi_j, \varphi_k) a_j = (f, \varphi_k), k = 0, \cdots, n$$

系数矩阵 A 为

$$\boldsymbol{A} = \begin{bmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) & \cdots & (\varphi_0, \varphi_n) \\ (\varphi_1, \varphi_0) & (\varphi_1, \varphi_1) & \cdots & (\varphi_1, \varphi_n) \\ \vdots & \vdots & \ddots & \vdots \\ (\varphi_n, \varphi_0) & (\varphi_n, \varphi_1) & \cdots & (\varphi_n, \varphi_n) \end{bmatrix}$$

例 3.5 设 $f(x) = \sqrt{1+x^2}$,求 [0,1] 上的一次最佳平方逼近多项式 $p_1^*(x) = a_0^* + a_1^*x$

解: 系数:

$$(\varphi_0, \varphi_0) = 1, \quad (\varphi_0, \varphi_1) = \frac{1}{2}, \quad (\varphi_1, \varphi_1) = \frac{1}{3}$$
$$(f, \varphi_0) = \int_0^1 f(x) \cdot 1 dx, \quad (f, \varphi_1) = \int_0^1 f(x) \cdot x dx$$

3.3 正交多项式

若取 $\{\varphi_k(x)\}_{k=0}^n$ 为正交多项式族,求 f 在 $\Phi = \mathrm{Span}\,\{\varphi_0, \varphi_1, \cdots, \varphi_n\}$ 上的最佳平方逼近,此时 法方程 的的系数矩阵 \boldsymbol{A} 为 对角阵 。

$$a_k^* = \frac{(f, \varphi_k)}{(\varphi_k, \varphi_k)}, \quad k = 0, 1, \dots n$$

定义 3.6 (正交多项式族) 若 φ_n 是首项次数 $a_n \neq 0$ 的 n 次多项式, 若

$$(\varphi_i, \varphi_j) = \int_a^b \varphi_i \varphi_j \rho(x) dx = \begin{cases} 0 & i \neq j \\ A_i \neq 0 & i = j \end{cases}$$

则称多项式族序列 $\{\varphi_i\}_0^\infty$ 是在 [a,b] 上带权 $\rho(X)$ 的正交多项式族, φ_n 是在 [a,b] 上带权 ρ 的正交多项式序列。

定义 3.7 (施密特正交化) x^n 减去投影到 $1, \dots, x^{n-1}$ 方向的分量:

- $\frac{(x^n, \varphi_k)}{\|\varphi_k\|_2}$: x^n 投影到 φ_k 方向的长度
- $\frac{\|\varphi_k^{n_1}\|^2}{\|\varphi_k\|_2}$: φ_k 方向的单位向量

序列 $\{x^n\}_0^\infty$ 线性无关且正交。

$$\varphi_0(x) = 1, \quad \varphi_n(x) = x^n - \sum_{k=0}^{n-1} \frac{(x^n, \varphi_k)}{(\varphi_k, \varphi_k)} \varphi_k$$

定理 3.6 设 $\{\varphi_n\}_0^{\infty}$ 在 [a,b] 上带权 ρ 的正交多项式序列,则 $\varphi_n(n \ge 1)$ 的 n 个根都是单重实根,且都在 (a,b) 内。

证明. 设 $\varphi_n(x)$ 有 m 个奇数重根 $(m \le n)$,记为 x_1, \dots, x_m ,证明上述定理就是证明 m = n。

记

$$q(x) = (x - x_1) \cdots (x - x_m)$$

那么 $\varphi_n(x)q(x)$ 在 (a,b) 内不变号,

$$(\varphi_n(x), q(x)) = \int_a^b \varphi_n(x)q(x)dx \neq 0$$

因为 (q(x)) 可以表示为正交多项式序列 $\{\varphi_n\}_0^n$ 的线性组合) ,那么若 m < n,则 $(\varphi_n(x), q(x)) = 0$ 。故而 m = n,即 $\varphi_n(x)$ 有 n 个单根。证毕!

定义 3.8 (勒让德 (Legendre) 多项式) 区间为 [-1,1] 和权函数为 $\rho=1$,由 $\{1,x,\cdots\}$ 正交化得到的多项式称为 Legendre 多项式。

下面试着写几个 Legendre 多项式

- $P_0(x) = 1$
- $P_1(x) = x$
- $\bullet P_2(x)$

$$P_2(x) = x^2 - \frac{(x^2, 1)}{(1, 1)} \cdot 1 - \frac{(x^2, x)}{(x, x)} \cdot x$$

$$= x^2 - \frac{\int_{-1}^1 x^2 \cdot 1 dx}{\int_{-1}^1 1 \cdot 1 dx} \cdot 1 - \frac{\int_{-1}^1 x^2 \cdot x dx}{\int_{-1}^1 x \cdot x dx} \cdot x$$

$$= x^2 - 2\frac{1/3}{2} - \frac{0}{2/3}x = x^2 - \frac{1}{3}$$

通项可以写为

$$P_0(x) = 1, P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d} x^n} \{ (x^2 - 1)^n \}, n = 1, 2, \dots$$

推论 Legendre 多项式有以下性质

1. 正交性

$$(P_m, P_n) = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$

2. 递推关系

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \quad n = 1, 2, \cdots$$

3. 奇偶性

$$P_n(-x) = (-1)^n P_n(x)$$

定理 3.7 在所有首项系数为 1 的 n 次多项式中,Legendre 多项式 $\tilde{P}_n(x)$ 在 [-1,1] 上与零的平方误差最小。

证明. 设 $Q_n(x)$ 是首项系数为 1 的 n 次的多项式

$$Q_n(x) = \tilde{P}_n(x) + \sum_{k=1}^n a_k \tilde{P}_k(x)$$

$$||Q_n(x)||_2^2 = (Q_n(x), Q_n(x))$$

$$= (\tilde{P}_n(x) + \sum_{k=1}^{n-1} a_k \tilde{P}_k(x), \tilde{P}_n(x) + \sum_{k=1}^{n-1} a_k \tilde{P}_k(x))$$

$$= (\tilde{P}_n(x), \tilde{P}_n(x)) + \sum_{k=0}^{n-1} (a_k \tilde{P}_k, a_k \tilde{P}_k)$$

$$\geqslant ||\tilde{P}_n(x)||_2^2$$

当且仅当 $a_0 = a_1 = \cdots = a_{n-1} = 0$ 时取等号。证毕!

3.4 最小二乘法

定义 3.9 (最小二乘问题) 设 f 由函数表 (x_i, f_i) , $i = 1, 2, \dots, m$ 给出,求 $\varphi^* \in \Phi = \operatorname{Span}\{\varphi_0, \dots, \varphi_n\}, n < m$, 使

$$\| f - \varphi^* \|_2^2 = \sum_{i=0}^m [f_i - \varphi^*(x_i)]^2 \rho_i = \inf_{\varphi \in \Phi} \| f - \varphi \|_2^2$$

就是曲线拟合的最小二乘问题, 称 $\varphi^*(x)$ 为 f 在 Φ 中的最小二乘逼近函数。

求解上述问题也就是求

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

Ax = b 无解

投影到以 A 的列向量为基的空间中

$$oldsymbol{A}^{ ext{T}}oldsymbol{A}oldsymbol{x} = oldsymbol{A}^{ ext{T}}oldsymbol{b}$$

如图,在三维空间 O - xyz 中, $\overrightarrow{OA} = \alpha_1$ 、 $\overrightarrow{OB} = \alpha_2$, $\overrightarrow{OP'} = \boldsymbol{b}$ 。显然无解,那么我们可以退而求其次找距离 $\overrightarrow{OP'}$ 最近的解。

4 数值积分与数值微分

4.1 数值积分基本概念

数值积分就是将定积分的计算用和式近似表示

$$I = \int_{a}^{b} f(x) dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

其中 A_k 与被积函数 f 无关,称为求积系数, x_k 为求积节点。

定义 4.1 (插值型求积公式) 在 [a,b] 上给定 n+1 个节点 $a \leq x_0 \leq x_1 \leq \cdots \leq x_n \leq b$, 以及相应的函数值 $f(x_0), \cdots f(x_n)$

$$L_n(x) = \sum_{k=0}^{n} l_k(x) f(x_k)$$

$$I = \int_a^b f(x) dx \approx \int_a^b L_n(x) dx$$
$$= \int_a^b \sum_{k=0}^n f(x_k) l_k(x) dx = \sum_{k=0}^n \int_a^b f(x_k) l_k(x) dx$$
$$= \sum_{k=0}^n f(x_k) \int_a^b l_k(x) dx = \sum_{k=0}^n A_k f(x_k)$$

其中, $A_k = \int_a^b l_k(x) dx$

n=1 时, 由

$$I(f) = \int_{a}^{b} \frac{x - b}{a - b} f(a) + \frac{x - a}{b - a} f(b) dx$$

$$= \frac{1}{2} \frac{(x - b)^{2}}{a - b} f(a) \Big|_{a}^{b} + \frac{1}{2} \frac{(x - a)^{2}}{b - a} f(b) \Big|_{a}^{b}$$

$$= \frac{b - a}{2} [f(a) + f(b)]$$

 $A_0 = A_1 = \frac{b-a}{2}$, 该式称为 梯形公式。

解 易知:

$$P_2(x) = \frac{(x-h)(x-2h)}{(0-h)(0-2h)} f(0) + \frac{(x-0)(x-2h)}{(h-0)(h-2h)} f(h) + \frac{(x-0)(x-h)}{(2h-0)(2h-h)} f(2h)$$

故而

$$I_h = \left[\frac{3}{2} f(0) + \frac{9}{2} f(2h) \right] h$$

定义 4.2 (求积公式的代数精确度) 若求积公式

$$I(f) = \sum_{k=0}^{n} A_k f(x_k)$$

对 $f(x) = 1, x, \dots, x^m$ 时精确成立,而对 $f(x) = x^{m+1}$ 不精确成立,则称求积公式具有 m 次代数精度。

n+1 个点的插值型求积公式至少有 n 次代数精确度

定理 4.1 求积公式 $I(f) = \sum_{k=0}^{n} A_k f(x_k)$ 至少有 n 次代数精确度的充分必要条件是它是插值型的。

证明. 由插值余项定理, 可知

$$R[f] = I - I_n = \int_a^b \frac{f^{n+1}(\xi)}{(n+1)!} w_{n+1}(x) dx$$

如果是插值型的,R[f] = 0。证毕!

例 4.2 求积公式

$$\int_0^1 f(x)dx \approx A_0 f(0) + A_1 f(1) + B_0 f'(0),$$

解

得到 $A_0 = \frac{2}{3}, A_1 = \frac{1}{3}, B_0 = \frac{1}{6}$, 公式的代数精确度为 2。 令 $f(x) = x^3$, 余项为

$$R[f] = \int_0^1 x^3 dx - \frac{2}{3} \cdot 0^3 - \frac{1}{3} \cdot 1^3 - \frac{1}{6} (3 \cdot 0)^2$$
$$-\frac{1}{12} = 3! f'''(\xi)$$

故而,
$$k = -\frac{1}{72}$$
。

 $\boxed{\textbf{M}}$ 4.3 确定求积公式中的待定系数 a, 使其代数精度尽量高, 并指出其具有的代数精度 及余项★★★★★

$$\int_0^h f(x) dx \approx \frac{h}{2} [f(0) + f(h)] + ah^2 [f'(0) - f'(h)]$$

解

• 当
$$f(x) = 1$$
 时, $h = h + 0$ 恒成立

• 当
$$f(x) = x$$
 时, $\frac{h^2}{2} = \frac{h^2}{2} + 0$ 恒成立

• 当
$$f(x) = 1$$
 时, $h = h + 0$ 但成立
• 当 $f(x) = x$ 时, $\frac{h^2}{2} = \frac{h^2}{2} + 0$ 恒成立
• 当 $f(x) = x^2$ 时, $\frac{h^3}{3} = \frac{h^3}{2} + ah^2 \cdot (-2h)$,得

$$a = -\frac{1}{12}$$

代数精度为3。

定义 4.3 对任给 $\varepsilon > 0$,若 $\exists \delta > 0$,只要 $|f(x_k) - \tilde{f}_k| \leq \delta(k = 0, 1, \dots, n)$ 就有

$$|I_n(f) - I_n(\tilde{f})| = \left| \sum_{k=0}^n A_k(f(x_k) - \tilde{f}_k) \right| \le \varepsilon$$

成立,则称求积公式是稳定的。

定理 4.2 若求积公式中系数 $A_k > 0 (k = 0, 1, \dots, n)$, 则此求积公式是稳定的。

Newton-Cotes 求积公式 4.2

定义 4.4 (Newton-Cotes 公式) 考虑等间距剖分情况下的插值型求积公式,设等距节 点: $x_k = a + kh$, 其中 $h = \frac{b-a}{n}$, $k = 0, 1, \dots, n$ 。 插值基函数 $l_k(x)$ 为

$$l_k(x) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{x - x_j}{x_k - x_j} = \prod_{\substack{j=0 \ j \neq k}}^n \frac{t - j}{k - j}$$
$$dx = \frac{b - a}{n} dt$$
$$\int_a^b f(x) dx \approx \sum_{k=0}^n A_k f(x_k) = \sum_{k=0}^n f(x_k) \int_a^b l_k(x) dx$$
$$= \sum_{k=0}^n f(x_k) \int_0^n \frac{b - a}{n} \prod_{\substack{j=0 \ j \neq k}}^n \frac{t - j}{k - j} dt$$
$$= (b - a) \sum_{k=0}^n C_k^{(n)} f(x_k) + R_n[f]$$

其中,
$$C_k^{(n)} = \frac{1}{n} \int_0^n \prod_{\substack{j=0\\j\neq k}}^n \frac{t-j}{k-j} dt$$

下面列出了一些 Cotes 系数

\overline{n}	$C_k^{(n)}$				
1	$\frac{1}{2}$	$\frac{1}{2}$			
2	$\begin{array}{ c c }\hline \frac{1}{2}\\\hline \frac{1}{6}\\\hline \end{array}$	$\frac{1}{2}$ $\frac{4}{6}$ $\frac{3}{8}$	$\frac{1}{6}$		
3	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{6}$ $\frac{3}{8}$	$\frac{1}{8}$	

定理 4.3 当阶数 n 为偶数时, Newton-Cotes 公式至少有 n+1 次代数精度。 注 梯形公式:

$$I(f) = \frac{b-a}{2} [f(a) + f(b)]$$

$$E(f) = \int_a^b \frac{f''(\xi)}{2} (x-a)(x-b) dx = -\frac{(b-a)^3}{12} f''(\eta)$$

注 Simpson 公式:

$$I(f) = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$
$$E(f) = -\frac{(b-a)^5}{2880} f^{(4)}(\eta)$$

4.2.1 复化求积法及其收敛性

定义 4.5 (复化求积公式) 考虑等间距剖分情况下的插值型求积公式, 设等距节点: $x_k=a+kh$, 其中 $h=\frac{b-a}{n}$, $k=0,1,\cdots,n$ 。 先用低阶的 Newton-Cotes 公式求得每个子区间 $[x_k,x_{k+1}]$ 上的积分值 I_k 然后再求和用作为所求分的近似值, 然后再求和。

$$\int_{a}^{b} f(x)dx \approx T_{n}(f)
= \sum_{k=0}^{n-1} \frac{h}{2} [f(x_{k}) + f(x_{k+1})]
= \frac{h}{2} [f(a) + 2 \sum_{k=1}^{n-1} f(x_{k}) + f(b)]$$

其积分余项

$$I - T_n = \sum_{k=0}^{n-1} \left[-\frac{h^3}{12} f''(\eta_k) \right]$$
$$= -\frac{h^3}{12} n \sum_{k=0}^{n-1} \left[\frac{f''(\eta_k)}{n} \right]$$
$$= -\frac{b-a}{12} h^2 f''(\eta).$$

最后一个 = 这里用到连续函数介值定理

这里称 Simpson 是 2 阶收敛的。

注 梯形公式

$$I_1(f) = \frac{b-a}{2}[f(a)+f(b)] \quad E_1(f) = -\frac{(b-a)^3}{12}f''(\eta)$$

复合梯形公式

$$\int_{a}^{b} f(x)dx \approx T_{n}(f) = \frac{h}{2} [f(a) + 2 \sum_{k=1}^{n-1} f(x_{k}) + f(b)]$$

误差

$$E_n(f) = -\frac{b-a}{12}h^2f''(\eta), \quad \eta \in (a,b)$$

注 Simpson 求积公式

$$I_2(f) = \frac{b-a}{6}[f(a) + 4f(\frac{a+b}{2}) + f(b)] \quad E_2(f) = -\frac{(b-a)^5}{2880}f^{(4)}(\eta)$$

复合 Simpson 求积公式

$$\int_{a}^{b} f(x)dx \approx S_n(f) = \frac{h}{6} [f(a) + 4\sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}) + 2\sum_{k=1}^{n-1} f(x_k) + f(b)]$$

误差

$$E_n(f) = -\frac{b-a}{2880}h^4f^{(4)}(\eta), \ \eta \in (a,b)$$

注 Romberg 算法:

- 梯形公式,Simpson 公式,Cotes 公式的代数精度分别为 1 次,3 次和 5 次
- 复化梯形、复化 Simpson、复化 Cotes 公式的收敛阶分别为 2 阶、4 阶和 6 阶

定义 4.6 (求积公式收敛阶) 若一种复化求积公式 I_n 当 $h \to 0$ 时成立

$$\frac{I-I_n}{h^p} \to C(C \neq 0)$$

则称求积公式 I_n 是 p 阶收敛的。

4.3 Romberg 算法

将定积分 $I=\int_a^b f(x)=\mathrm{d}x$ 的积分区间 [a,b] 分割为 n 等份,复化梯形 (Trapz) 公式为

$$T_n = \frac{b-a}{2n} [f(a) + 2\sum_{j=1}^{n-1} f(x_j) + f(b)]$$

如果将 [a,b] 分割为 2n 等份,则

$$T_{2n} = \frac{b-a}{4n} [f(a) + 2\sum_{j=1}^{n-1} f(x_j) + 2\sum_{j=0}^{n-1} f(x_{j+\frac{1}{2}}) + f(b)]$$
$$T_{2n} = \frac{1}{2} T_n + \frac{b-a}{2n} \sum_{j=0}^{n-1} f(x_{j+\frac{1}{2}})$$

注 递推得梯形公式

$$\begin{cases} T_0(0) = \frac{b-a}{2} \left[f(a) + f(b) \right] \\ T_0(k) = \frac{1}{2} T_0(k-1) + \frac{b-a}{2^k} \sum_{j=0}^{2^{k-1}} f\left(a + (2j+1)\frac{b-a}{2^k}\right) \end{cases}$$

例 4.4 已知 $S_n = n \sin \frac{\pi}{n} = \pi - \frac{\pi^3}{3!n^2} + \frac{\pi^5}{5!n^4} - \cdots$, 如果采用 Richardson 外推法来基于 S, 计算 π 的值,那么下列公式中的加权系数分别是多少? $\spadesuit \spadesuit \spadesuit \spadesuit$

解

1.
$$\pi \approx \alpha_1 S_3 + \alpha_2 S_6$$
 有

$$\begin{cases} \alpha_1 + \alpha_2 = 1 \\ -\alpha_1/9 - \alpha_2/36 = 0 \end{cases}$$

解得:

$$\alpha_1 = -\frac{1}{3}, \alpha_2 = \frac{4}{3}$$

2. $\pi \approx \beta_1 S_3 + \beta_2 S_9$ 有

$$\begin{cases} \alpha_1 + \alpha_2 = 1 \\ -\alpha_1/9 - \alpha_2/81 = 0 \end{cases}$$

解得:

$$\beta_1 = -\frac{1}{8}, \alpha_2 = \frac{9}{8}$$

$$\lambda_1 F(h) = a + a_1 h^p + o(h^8)$$
$$\lambda_2 F(h) = a + a_1 \left(\frac{h}{2}\right)^p + o(h^8)$$

解

$$\lambda_1 F(h) + \lambda_2 F(h) = (\lambda_1 + \lambda_2) a + a_1 h^p (\lambda_1 + \frac{\lambda_2}{2^p})$$

$$\begin{cases} \lambda_1 + \lambda_2 = 1 \\ \lambda_1 + \frac{\lambda_2}{2^p} = 0 \end{cases}$$

得到

$$\begin{cases} \lambda_1 = -\frac{1}{2^p - 1} \\ \lambda_2 = \frac{2^p - 1}{2^p - 1} \end{cases}$$

例 4.6 由复化梯形公式得余项公式☆☆☆☆☆

解

$$I(f) - T_n = -\frac{b-a}{12}h^2f''(\eta)$$

有

$$I(f) - T_{2n} = -\frac{b-a}{12} \frac{h^2}{4} f''(\eta)$$

结合二者可以得到

$$\begin{cases} \lambda_1 T_n = \lambda_1 I(f) + \lambda_1 \cdot \left[-\frac{b-a}{12} h^2 f''(\eta) \right] \\ \lambda_2 T_{2n} = \lambda_2 I(f) + \lambda_2 \cdot \left[-\frac{b-a}{12} \frac{h^2}{4} f''(\eta) \right] \end{cases}$$

那么

$$\begin{cases} |\lambda_1| + |\lambda_2| = 1 \\ -|\lambda_1| - |\frac{1}{4}\lambda_2| = 0 \end{cases}$$

解得

$$\begin{cases} \lambda_1 = -\frac{1}{3} \\ \lambda_2 = \frac{4}{3} \end{cases}$$

可以得到外推加速公式

$$I(f) \approx \frac{4}{3}T_{2n} - \frac{1}{3}T_n$$

4.4 高斯(Gauss)公式

考虑带权积分 $I(f) = \int_a^b f(x)\rho(x)dx$, 寻找形如

$$I(f) \approx \sum_{k=0}^{n} A_k f(x_k) = I_n(f)$$

的求积公式使它具有最高的代数精确度。式中含有 2n+2 个待定参数 $x_k, A_k(k=0,1,\cdots,n)$ 适当选择这些参数,有可能使得求积公式具有 2n+1 次代数精度。

定义 4.7 (Gauss 型求积公式) 具有最高代数精度的插值型求积公式称为 Gauss 型求积公式, 相应的求积节点 $a \leq x_0, < x_1 < \cdots < x_n \leq b$ 称为 Gauss 点。

当插值型节点个数比较多时,方程求解比较困难。因此我们可以先找出满足条件的插值节点(Gauss 点)。

定理 4.4 插值型求积公式的求积节点 $\{x_k\}_{k=0}^n$ 是高斯点的充要条件是: 在 [a,b] 上以这组节点为根的多项式 $\omega_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$ 与任何次数 $\leq n$ 的多项式 P(x) 带权 $\rho(x)$ 正交,即

$$\int_{a}^{b} P(x)\omega_{n+1}(x)\rho(x)dx = 0$$

证明. 先证明必要性: 即 $\{x_k\}_{k=0}^n$ 是高斯点 $\Rightarrow \int_a^b Q(x)\rho(x)\mathrm{d}x = 0$

设 x_k 为 Gauss 点,那么有

$$Q(x) = P(x)\omega_{n+1}(x)$$

是次数不超过 (2n+1) 次的多项式,则

$$\int_{a}^{b} Q(x)\rho(x)dx = \sum_{k=0}^{n} A_{k} Q(x_{k}) = 0$$

前一个等号利用了高斯节点的定义,后面是因为 $\omega_{n+1}(x_k)=0$

再证明充分性: 即 $\int_a^b P(x)\omega_{n+1}(x)\rho(x)\mathrm{d}x = 0 \Rightarrow \int_a^b P_{2n+1}(x)\mathrm{d}x = \sum_{k=0}^n A_k P_{2n+1}(x_k)$

设 $P_{2n+1}(x)$ 是任意次数 $\leq 2n+1$ 次的多项式

$$P_{2n+1}(x) = P(x)\omega_{n+1}(x) + Q(x)$$

其中 P(x), Q(x) 是次数 $\leq n$ 的多项式

$$\int_{a}^{b} P_{2n+1}(x) dx$$

$$= \int_{a}^{b} P(x) \omega_{n+1}(x) \rho(x) dx + \int_{a}^{b} Q(x) dx$$

$$= 0 + \sum_{k=0}^{n} A_{k} Q(x_{k}) = \sum_{k=0}^{n} A_{k} P_{2n+1}(x_{k})$$

最后一个等号是因为 $P(x_k)$ $\omega_{n+1}(x_k) = 0$

故公式有 2n+1 次代数精度。证毕!

定理 4.5 Gauss 型求积公式的求积系数 $A_k > 0 (k = 0, 1, \dots, n)$

证明. 设 $\{x_k\}$ 为高斯点, $l_k(x)$ 是 x_k 点时对应的拉格朗日插值基函数,那么有

$$0 < \int_{a}^{b} l_{k}^{2}(x)\rho(x)dx = \sum_{j=0}^{n} A_{j}l_{k}^{2}(x_{j}) = A_{k}$$

推论 Gauss 型求积公式是稳定的。

定理 4.6 设 $f \in C[a,b]$, 则 Gauss 型求积公式是收敛的,即

$$\lim_{n \to \infty} I_n(f) = \int_a^b f(x)\rho(x)dx$$

证明. 仅对 $\rho(x)=1$ 进行证明,因 $f\in C[a,b]$,由 Weierstrass 定理知,对 $\forall \varepsilon>0, \exists P_n(x)$,使得

$$||f(x) - P_n(x)||_{\infty} < \varepsilon$$

$$\left| I_n(f) - \int_a^b f(x) dx \right|$$

$$\leq \left| I_n(f) - I_n(P) + I_n(P) - \int_a^b f(x) dx \right|$$

$$\leq |I_n(f) - I_n(P)| + \left| I_n(P) - \int_a^b f(x) dx \right|$$

而

$$|I_n(f) - I_n(P)| \leqslant \sum_{k=0}^n A_k |f(x_k) - P(x_k)|$$

$$\leqslant \sum_{k=0}^n A_k ||f - P_n||_{\infty} = (b - a) ||f - P_n||_{\infty}$$

又

$$\left| I_n(P) - \int_a^b f(x) dx \right| \le \int_a^b |P - f| dx$$
$$\le \|P - f\|_{\infty} (b - a)$$

证毕!

定理 4.7 Gauss-Legendre 求积公式的余项

$$R(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} \omega^{2}(x) dx$$

例 4.7 利用 Gauss-Legendre 求积公式求在 [a,b] 区间内的求积公式

解

$$\int_{a}^{b} f(x) dx \stackrel{x = \frac{b+a}{2} + \frac{b-a}{2}t}{=} \frac{b-a}{2} \int_{-1}^{1} F(t) dt \approx \frac{b-a}{2} \sum_{k=0}^{n} A_{k} F(t_{k})$$

高斯点 t_0, t_1, \dots, t_n 时 P_{n+1} 的零点。

例 4.8 求两点 Gauss-Legendre 积分的求积公式,并用其计算★★★★

$$I = \int_0^{\frac{\pi}{2}} \sin x \mathrm{d}x$$

解

$$I = \int_0^{\frac{\pi}{2}} \sin x dx = \frac{\pi}{4} \int_{-1}^1 \sin(\frac{\pi}{4} + \frac{\pi}{4}t) dt$$
$$t_0 = -\frac{1}{\sqrt{3}}, \quad t_1 = \frac{1}{\sqrt{3}}$$

$$x_0 = 4 - \frac{1}{\sqrt{3}}, x_1 = 4 + \frac{1}{\sqrt{3}}$$

注 Gauss-Chebyshev 公式

$$[-1,1], \rho = \frac{1}{\sqrt{1-x^2}}$$

 $T_n(x)$ 的零点为 $x_k = \frac{2k-1}{2n}\pi$, $k = 1, 2, \dots, n$

$$\int_{-1}^{1} f(x) \frac{1}{\sqrt{1 - x^2}} dx \approx \frac{\pi}{n} \sum_{k=1}^{n} f(x_k)$$

4.4.1 固定部分节点的高斯型求积公式

在实际应用中有时希望预先固定高斯型公式的一个或几个求积节点。

注 采用自适应 Simpson 公式计算 $I = \int_a^{a+h} f(x) dx$

$$S_{1}(a, a + h) = \frac{h}{6} \left[f(a) + 4f(a + \frac{h}{2}) + f(b) \right]$$

$$I - S_{1}(a, a + h) = -\frac{h^{5}}{2880} f^{(4)}(\eta)$$

$$S_{2} = S_{1}(a, a + \frac{h}{2}) + S_{1}(a + \frac{h}{2}, a + h)$$

$$I - S_{2}(a, a + h) = -\frac{1}{2880} \left(\frac{h}{2} \right)^{5} f^{(4)}(\overline{\eta})$$

$$S_{1} - S_{2} = \frac{1}{2880} \left(\frac{15}{16} \right) h^{5} f^{(4)}(\overline{\eta})$$

$$I - S_{2}(a, a + h) \approx \frac{1}{15} |S_{1}(a, a + h) - S_{2}(a, a + h)| < \varepsilon$$

4.5 二重积分计算方法

$$I(f) = \iint_{\Omega} f(x, y) dx dy$$
$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) dy = \int_{a}^{b} F(x) dx$$
$$\approx \sum_{k=0}^{n} A_{k} F(x_{k})$$
$$\approx \sum_{k=0}^{n} A_{k} \left[\sum_{l=0}^{m} B_{kl} f(x_{k}, y_{l}) \right]$$

例 4.11 计算上述二重积分的梯形公式为

解

$$T(f) = \frac{b-a}{2} \left[\frac{\psi(a) - \varphi(a)}{2} (f(a, \varphi(a)) + f(a, \psi(a))) + \frac{\psi(b) - \varphi(b)}{2} (f(b, \varphi(b)) + f(b, \psi(b))) \right]$$

4.5.1 复合求积公式

考虑矩形区域的重积分 $\Omega = [a, b] \times [c, d]$

$$I(f) = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$$

注 复合梯形公式

$$I(f) = \iint_{\Omega} f(x, y) dx dy$$

$$\approx \frac{h_x h_y}{4} \sum_{i=0}^n \sum_{i=0}^m \lambda_{ij} f(x_i, y_j)$$

$$\Lambda = \begin{bmatrix} 1 & 2 & 2 & \cdots & 2 & 2 & 1 \\ 2 & 4 & 4 & \cdots & 4 & 4 & 2 \\ \vdots & \cdots & \vdots & \cdots & \cdots & \ddots & \vdots \\ 2 & 4 & 4 & \cdots & 4 & 4 & 2 \\ 1 & 2 & 2 & \cdots & 2 & 2 & 1 \end{bmatrix} = (\lambda_{ij})$$

4.6 数值微分

4.6.1 机械求导公式

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \frac{f''(x_0)}{2}h^2$$

注 中点公式 (二阶截断误差)

$$G(h) = \frac{f(a+h) - f(a-h)}{2h}$$
 h 过小,两相近的数相减,影响舍入误差

- 。从舍入误差看, h 不宜过小
- 。 从截断误差看, h 越小, 计算越准确

例 4.12 以下关于数值微分的说法 不正确 的是 ()

- A 在实际应用中,基于插值多项式的微分方法,其插值次数不能太高
- B 近似导数 f'(x) 的数值微分公式 $\frac{f(x_0+h)-f(x_0-h)}{2h}$ 和 $\frac{f(x_0)-4f(x_0+h)+3f(x_0+2h)}{2h}$ 误差阶相同
- ◎ 数值微分公式的误差包括截断误差和舍入误差两部分
- D 当插值多项式 $L_n(x)$ 收敛于 f(x) 时, 其导数 $L_n'(x)$ 收敛于 f'(x)

定义 4.8 (插值型求导公式) 建立 f(x) 的插值多项式 $P_n(x)$, 用 $P'_n(x)$ 作为 f'(x) 的近似值

$$f'(x_k) - P'_n(x_k) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x_k)$$

其中
$$\omega'_{n+1}(x_k) = (x - x_0)(x - x_1)(x - x_{k-1})\cdots(x - x_{k+1})(x - x_n).$$

两点公式: 给定两个节点 x_0,x_1 ,做线性插值多项式 $P_1(x)$

$$P_1'(x_0) = P_1'(x_1) = \frac{f(x_1) - f(x_0)}{h}$$

$$f'(x_0) = P_1'(x_0) - \frac{h}{2}f''(\xi)$$
 $f'(x_1) = P_1'(x_1) + \frac{h}{2}f''(\xi)$

三点公式: 给定三个节点 x_0, x_1, x_2 , 做二次插值多项式 $P_2(x)$

$$P_2'(x_0) = \frac{-f(x_2) + 4f(x_1) - 3f(x_0)}{2h}$$

$$P_2'(x_1) = \frac{f(x_2) - f(x_0)}{2h}$$

$$P_2'(x_2) = \frac{3f(x_2) - 4f(x_1) + f(x_0)}{2h}$$

以上公式近似相应导数的误差分别为 $\frac{h^2}{3}f'''(\xi), -\frac{h^2}{6}f'''(\xi), \frac{h^2}{3}f'''(\xi).$

5 微分方程数值解的基本概念(没有大题)

5.1 微分方程数值解的基本概念

定理 5.1 如果方程 $\begin{cases} \frac{dy}{dx} = f(x,y), \\ y(x_0) = y_0. \end{cases}$ 中右端函数 f(x,y) 满足

- 1. f(x,y) 是实值函数
- 2. f(x,y) 在矩形区域 $\Omega = \{(x,y)|x \in [x_0,T], y \in (-\infty,+\infty)\}$ 内连续
- 3. f(x,y) 关于 y 满足 Lipschitz 条件: 即存在正常数 L, 使得对任意 $x \in [x_0,T]$, 均成立不等式

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

则方程存在唯一解 $y(x) \in C^1[x_0, T]$

定义 5.1 (扰动问题) 考虑扰动问题 $\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) + \delta(x), x_0 \leq x \leq T, \\ y(x_0) = y_0 + \varepsilon. \end{cases}$

例 5.1 以下初值问题是否关于数据的扰动稳定?

$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}t} = 100u - 101e^{-t} \\ u(0) = 1 \end{cases}$$

A 是

B 否

解 原问题的通解为

$$u(t) = e^{-\int -100 dt} \left(\int -101 e^{-t} e^{\int -100 dt} dt + C \right)$$
$$= e^{100t} \left(e^{-101t} + C \right)$$

代入初始条件 u(0) = 1 得到

$$u(t) = e^{-t}$$

现在有初值的扰动 $u(0) = 1 + \varepsilon$ 得到

$$u(t) = e^{-t} + \varepsilon e^{100t}$$

显然对 $\forall \varepsilon > 0, u(t; \varepsilon)$ 偏离真解很大,故问题不稳定。

5.2 Euler 方法

定义 5.2 (Euler 方法) 考虑问题

$$\begin{cases} \frac{\mathrm{d}y(x)}{\mathrm{d}x} = f(x, y(x)), x_0 \le x \le T, \\ y(x_0) = y_0. \end{cases}$$

将区域 $[x_0, T]$ 剖分成 m 等份, 步长 $h = \frac{T - x_0}{m}$, 网点 $x_n = x_{n-1} + h = x_0 + (n-1)h$, $n = 1, 2, \dots, m$.

注 梯形法

$$y(x_{n+1}) = y(x_n) + \frac{h}{2} [f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1}))] + R_n^{(1)}$$

$$R_n^{(1)} = -\frac{h^3}{12} y'''(\xi), x_n < \xi < x_{n+1}$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

• 梯形法为二阶方法

$$|y(x_n) - y_n| = O(h^2), \, \exists h \to 0 \, \text{th}$$

- 梯形法为单步隐式方法
- 梯形法计算格式

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n), \\ y_{n+1}^{(m+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(m)})], \\ m = 0, 1, 2, \dots \end{cases}$$

• 梯形格式收敛的条件 是什么?

$$y_{n+1}^* = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*) \right]$$

记
$$y_{n+1}^{(m)}-y_{n+1}^*=\varepsilon^m$$
,则

$$\begin{aligned} |\varepsilon^{(m+1)}| &= \frac{h}{2} \left[f(x_{n+1}, y_{n+1}^{(m)}) + f(x_{n+1}, y_{n+1}^*) \right] \\ &\leqslant \frac{hL}{2} |y_{n+1}^{(m)} - y_{n+1}^*| = \frac{hL}{2} \varepsilon^{(m)} \\ &= \left(\frac{hL}{2} \right)^m \varepsilon^{(0)} \end{aligned}$$

$$\lim_{m \to \infty} |\varepsilon^{(m+1)}| \Longrightarrow \frac{hL}{2} < 1$$

例 5.2 下列关于梯形法的叙述错误的是★★★☆☆

- A 梯形法是一个显式方法
- B 梯形法的整体截断误差是 $O(h^3)$
- □ 梯形法是一个稳定的方法
- D 梯形法的迭代步长可以任取

注 改进 Euler 法

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) &$$
 预测
$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] &$$
 校正

预测校正格式还可写为

$$y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n)) \right]$$

$$\begin{cases} y_p = y_n + hf(x_n, y_n) \\ y_c = y_n + hf(x_{n+1}, y_p) \\ y_{n+1} = \frac{1}{2} [y_n + y_p] \end{cases}$$

5.3 Runge-Kutta 方法

定义 5.3 (Taylor 级数法)

$$y(x_0 + h) = y(x_0) + hy'(x_0) + \frac{h^2}{2}y''(x_0) + \dots + \frac{h^q}{q!}y^{(q)}(x_0) + O(h^{q+1})$$

$$y'(x_0) = \frac{\mathrm{d}}{\mathrm{d}x}f(x,y)\big|_{x=x_0} = (f'_x + f'_y\frac{\mathrm{d}y}{\mathrm{d}x})\big|_{x=x_0}$$

$$= f'_x(x_0, y_0) + f'_y(x_0, y_0)f(x_0, y_0)$$

$$y_{n+1} = y_n + hy'_n + \frac{h^2}{2}y''_n + \dots + \frac{h^q}{q!}y_n^{(q)}$$

注 Taylor 级数法优缺点:

- 优点: 可达任意阶精度
- 缺点: 求导复杂. 不实用

注 Runge-Kutta 方法的基本思想

$$\frac{y(x_{n+1}) - y(x_n)}{h} = y'(x_n + \theta h)$$

$$y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{(n+1)}} f(x, y) dx$$

= $f(x_n + \theta h, y(x_n + \theta h))h$

定义 5.4 (Runge-Kutta 法) 设 s 是一个正整数代表使用函数值 f 的个数, α_i , β_{ij} 和 W_i 是一些待定的权因子 (为实数) ,方法

$$y_{n+1} = y_n + h \sum_{i=1}^{s} W_i K_i$$

其中 K_i 满足下列方程:

$$K_1 = f(x_n, y(x_n)), K_2 = f(x_n + \alpha_2 h, y(x_n) + h\beta_{21} K_1)$$

$$K_3 = f(x_n + \alpha_3 h, y(x_n) + h\beta_{31} K_1 + h\beta_{32} K_2)$$

.....

$$K_s = f(x_n + \alpha_s h, y(x_n) + h \sum_{j=1}^{s-1} \beta_{sj} K_j)$$

被称为一阶常微分方程的 s 级显式Runge-Kutta 方法。

注 Runge-Kutta 方法可采用 Butcher 表表示

$$y_{n+1} = y_n + h \sum_{i=1}^{s} W_i K_i$$

$$K_1 = f(x_n, y(x_n))$$

$$K_i = f(x_n + \alpha_i h, y(x_n) + h \beta_{i1} K_1 + \dots + h \beta_{i,i-1} K_{i-1})$$

例 5.4 4 级 Runge-Kutta 方法的局部截断误差是 [5] 阶.

注 s 级 Runge-Kutta 法的精度

- 当 \leq 4 时, s 级 RK 方法的阶 q(s) = s;
- 当 s = 5, 6, 7 时, s 级 RK 方法的阶 q(s) = s 1;
- 当 s = 8,9 时, s 级 RK 方法的阶 q(s) = s 2;

• q(10) < 8.

以上都是单步法的代表。

注 一般单步法: 显式单步法的一般形式

$$y_{n+1} = y_n + h\varphi(x_n, y_n, h)$$

• Euler 法

$$\varphi(x, y, h) = f(x, y)$$

• Taylor 级数法

$$\varphi(x, y, h) = \sum_{j=1}^{k} \frac{h^{j-1}}{j!} y^{(j)}(x)$$

· s 级四阶 RK 方法

$$\varphi(x,y,h) = \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

定义 5.5 (收敛) 若对于任意的初值 y_0 及任意 $x \in [x_0, T]$

$$\lim_{n\to 0} y_n = y(x_n),$$

称 $\varepsilon(x,y,h)$ 确定的单步方法是收敛的

定义 5.6 (单步法的阶数) 单步法

$$y_{n+1} = y_n + h\varphi(x_n, y_n, h)$$

称为 p 阶 的,是指: 对于真解 y(x), p 是使关系式

$$y(x + h) - y(x) = h\varphi(x, y(x), h) + O(h^{p+1})$$

成立的最大整数.

定理 5.2 假设单步法具有 p 阶精度, 且增量函数 $\varepsilon(x,y,h)$ 关于满足 Lipschitz 条件:

$$|\varphi(x,y,h)-\varphi(x,\overline{y},h)| \leq L_{\omega}(y-\overline{y})$$

又设初值 $y_0 = y(x)$ 是准确的,则整体截断误差为

$$y(x_n) - y_n = O(h^p)$$

证明.

$$\begin{cases} y_{n+1} = y_n + \varphi(x_n, y_n, h) \\ y(x_{n+1}) = y(x_n) + h\varphi(x_n, y(x_n), h) + Ch^{p+1} \end{cases}$$

令 $\varepsilon_n = y(x_n) - y_n$, 那么有

$$|\varepsilon_{n+1}| \leq |\varepsilon_n| + h| \left[\varphi(x_n, y(x_n), h) - \varphi(x_n, y_n, h) \right] | + Ch^{p+1}$$

$$\leq |\varepsilon_n| + hL|y(x_n) - y_n| + Ch^{p+1}$$

所以

$$\begin{split} |\varepsilon_{n+1}| &\leqslant (1+hL)|\varepsilon_n| + Ch^{p+1} \\ &\leqslant (1+hL)|^2 \varepsilon_{n-1}| + \left[(1+hL) + 1 \right] Ch^{p+1} \\ &\leqslant (1+hL)^n |\varepsilon_0| + \left[(1+hL)^n + (1+hL)^{n-1} + \dots + 1 \right] Ch^{p+1} \\ &\leqslant (1+hL)^n |\varepsilon_0| + \frac{1}{\aleph L} Ch^{p+1} \end{split}$$

证毕!

例 5.5 分析改进 Euler 法的收敛性★★★☆☆

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] \end{cases}$$

解

$$\varphi(x,y,h) = \frac{1}{2} \left[f(x,y) + f(x+h,y+hf(x,y)) \right]$$

那么有

$$\begin{split} |\varphi(x,y,h) - \varphi(x,\bar{y},h)| \\ &\leqslant \frac{1}{2} |f(x,y) - f(x,\bar{y})| + \frac{1}{2} |f(x+h,y+hf(x,y)) - f(x+h,\bar{y}+hf(x,\bar{y}))| \\ &\leqslant \frac{L}{2} |y - \bar{y}| + \frac{L}{2} |(y - \bar{y}) + h \left[f(x,y) - f(x,\bar{y}) \right] | \\ &\leqslant (L + \frac{L^2h}{2}) |y - \bar{y}| \end{split}$$

5.4 单步法的收敛性与稳定性

对于模型问题 $y' = \lambda y$,考察格式的稳定性,有 $y = Ce^{\lambda x}$

• Euler 法 $y_{n+1} = y_n + hf(x_n, y_n)$ (条件稳定) 根据 $\varepsilon_n = y_n - z_n$ 有

$$y_{n+1} = y_n + h\lambda y_n$$

$$z_{n+1} = z_n + h\lambda z_n$$

$$\varepsilon_{n+1} = (1 + h\lambda)\varepsilon_n$$

• 后退 Euler 法 $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ (无条件稳定)

$$y_{n+1} = y_n + h\lambda y_{n+1} \Rightarrow y_{n+1} = \frac{1}{1 - \lambda h} y_n$$

那么有

$$(1 - h\lambda)\varepsilon_{n+1} = \varepsilon_n$$

 $\varepsilon_{n+1} = \frac{|\varepsilon_n|}{|(1 - h\lambda)|} \le |\varepsilon_n|$

当 $|1-h\lambda| > 1$,即 $h \ge 0$ 时,格式稳定

5.5 线性多步法(1)

基于数值积分的构造方法

$$y(x_{n+k}) - y(x_{n-j}) = \int_{x_{n-j}}^{x_{n+k}} f(x, y(x)) dx$$

用 $f(x,y(x)) \approx P_q(x) = \sum_{i=0}^q f(x_{n-i},y_{n-i})L_i(x)$ 来估计,其中

$$L_i(x) = \prod_{\substack{l=0\\l\neq i}}^{q} \frac{x - x_{n-l}}{x_{n-i} - x_{n-l}}.$$

得到

$$y(x_{n+k}) - y(x_{n-j}) = \sum_{i=0}^{q} f(x_{n-i}, y_{n-i}) \int_{x_{n-j}}^{x_{n+k}} L_i(x) dx$$

$$= \sum_{i=0}^{q} f(x_{n-i}, y_{n-i}) \int_{x_{n-j}}^{x_{n+k}} \prod_{\substack{l=0 \ l \neq i}}^{q} \frac{x - x_{n-l}}{x_{n-i} - x_{n-l}} dx$$

$$\stackrel{x=x_n+th}{=} \sum_{i=0}^{q} f(x_{n-i}, y_{n-i}) \int_{x_{n-j}}^{x_{n+k}} \prod_{\substack{l=0 \ l \neq i}}^{q} \frac{(x_n + th) - (x_n - lh)}{(x_n - ih) - (x_n - lh)} dx$$

$$= h \sum_{i=0}^{q} f(x_{n-i}, y_{n-i}) \int_{-j}^{k} \prod_{\substack{l=0 \ l \neq i}}^{q} \frac{l+t}{l-i} dt$$

线性多步法的计算公式

• k = 1, j = 0 时,得到 Adams 显式方法:

$$y_{n+1} = y_n + h \sum_{i=0}^{q} \beta_{qi} f_{n-i}$$
$$y_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$$

• k = 0, j = 1 时,得到 Adams 隐式方法:

$$y_n = y_{n-1} + h \sum_{i=0}^{q} \beta_{qi} f_{n-i}$$

$$y_{n+1} = y_n + h [\beta_{q0} f_{n+1} + \beta_{q1} f_n + \dots + \beta_{qq} f_{n-q+1}]$$

$$y_{n+1} = y_n + \frac{h}{24} (9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2})$$

例 5.6 假设网格点等间距分布,空间步长为 h,请采用数值积分方法基于 x_{n-1}, x_n, x_{n+1} 构造一个隐式多步法。 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

解3个点,对2阶拉格朗日多项式换元积分,得到

$$\int_{x_n}^{x_{n+1}} f_{n-1} \frac{(x - x_n)(x - x_{n+1})}{(x_{n-1} - x_n)(x_{n-1} - x_{n+1})} + f_n \frac{(x - x_{n-1})(x - x_{n+1})}{(x_n - x_{n-1})(x_n - x_{n+1})} + f_n \frac{(x - x_{n-1})(x_n - x_{n+1})}{(x_n - x_{n-1})(x_n - x_{n+1})} + f_n \frac{(x - x_{n-1})(x_n - x_{n+1})}{(x_{n-1} - x_{n-1})(x_{n+1} - x_n)} dx$$

$$\stackrel{x = x_n + th}{=} h \int_0^1 f_{n-1} \frac{t(t-1)}{-1 \cdot (-2)} + f_n \frac{(t+1)(t-1)}{1 \cdot (-1)} + f_{n+1} \frac{(t+1)t}{2 \cdot 1}$$

$$= h \left[\frac{-1}{12} f_{n-1} + \frac{2}{3} f_n + \frac{5}{12} f_{n+1} \right]$$

故而, 隐式多步法可以构造为

$$y_{n+1} - y_n = h \left[\frac{-1}{12} f_{n-1} + \frac{2}{3} f_n + \frac{5}{12} f_{n+1} \right]$$

$$\Rightarrow y_{n+1} = y_n + \frac{h}{12} \left[5 f_{n+1} + 8 f_n - f_{n-1} \right]$$

注 基于 Taylor 展开的构造方法

• 线性 k 步法的一般形式

$$y_{n+1} = \sum_{k=0}^{r} \alpha_k y_{n-k} + h \sum_{k=-1}^{r} \beta_k f_{n-k}$$

例 5.7 关于前面预测-校正算法,下列叙述正确的是? ★★★☆

- A 预测-校正算法是一个显式方法
- B 预测-校正算法是一个显式方法预测步和校正步的截断误差为同阶
- \mathbb{C} 预测-校正算法的整体截断误差是 $O(h^5)$
- D 由于初始时刻无预测值和校正值,所以可令它们的差为零,然后多次校正

5.6 方程组与刚性问题

例 5.8 考虑方程组
$$\begin{cases} \frac{dY}{dx} = JY, 0 \le x \le 1, \\ Y(0) = (2, 1, 2)^{T} \end{cases}$$

其中
$$J = \begin{pmatrix} -0.1 & -49.9 & 0\\ 0 & -50 & 0\\ 0 & 70 & -30000 \end{pmatrix}$$

解 上述问题的解为

$$\begin{cases} Y_1(x) = e^{-0.1x} + e^{-50x} \\ Y_2(x) = e^{-50x} \\ Y_3(x) = e^{-50x} + e^{-30000x} \end{cases}$$

不同的解的分量有不同的衰减速度

考虑方程组

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = JY + Z$$

设 J 有互异的特征值 λ_k ,对应的特征向量为 C_k ,则方程组的通解为

$$Y = \sum_{k=1}^{m} U_k e^{\lambda_k} C_k + V(x)$$

其中 Q_k 为常数, V(x) 为特解

定义 5.7 (刚性) 上述线性方程组称为刚性的,若 $\operatorname{Re}(\lambda_k) < 0$, $\max |\operatorname{Re}(\lambda_k)| \gg \min |\operatorname{Re}(\lambda_k)$, 此时 $\frac{\max |\operatorname{Re}(\lambda_k)|}{\min |\operatorname{Re}(\lambda_k)|}$ 称为刚性比

例 5.9 一阶微分方程初值问题

$$\begin{cases} u_1' = -0.01u_1 - 99.99u_2 \\ u_2' = -100u_2 \\ u_1(0) = 2, u_2(0) = 1. \end{cases}$$

的刚性比 [10000] 。 ★★★★☆

解

$$\mathbf{A} = \begin{bmatrix} -0.01 & 99.99 \\ 0 & -100 \end{bmatrix}$$

特征值为 $\lambda_1 = -0.01$, $\lambda_2 = -100$ 。故而刚性比为 $\frac{100}{0.01} = 10000$

5.7 边值问题的解法

考虑两点边值问题

$$y'' = f(x, y, y'), a < x < b,$$

$$y(a) = \alpha$$

$$y(b) = \beta$$

$$y_1'' = f(x, y_1, y_1') \quad y_2'' = f(x, y_2, y_2')$$

$$y_1(a) = \alpha \qquad y_2(a) = \alpha$$

$$y_1'(a) = m_1 \qquad y_2'(a) = m_2$$

$$c_1 y_1(b) + c_2 y_1(b) = y_1(b) \Rightarrow c_2 = \frac{\beta - y_1(b)}{y_2(b) - y_1(b)}$$

$$c_1 y_2(b) + c_2 y_2(b) = y_2(b) \Rightarrow c_1 = \frac{\beta - y_2(b)}{y_1(b) - y_2(b)}$$

$$y = c_1 y_1 + c_2 y_2$$

$$c_1 + c_2 = 1$$

$$c_1 y_1(b) + c_2 y_2(b) = \beta$$

注 有限差分法

$$\begin{cases} y'' = f(x, y, y'), a \le x \le b, \\ y(a) = \alpha, y(b) = \beta. \end{cases}$$

将求解区域 [a,b] 分成 N 等份, 步长 $h=\frac{b-a}{N}$ 网点 $x_n=a+nh, n=0,1,2,\cdots,N$.

$$y''|_{x_n} = \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} \quad y'|_{x_n} = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2)$$

差分近似得到

$$\frac{y_{n+1} - 2y_n + y_{n-1}}{h^2} = f(x_n, y_n, \frac{y_{n+1} - y_{n-1}}{2h})$$
$$y_0 = \alpha, y_n = \beta.$$

N+1 个差分点,N-1 个未知量,N-1 个差分方程

6 方程求根

6.1 非线性方程求根的基本概念

定义 6.1 (单根区间、多根区间、有根区间) 如果方程 f(x) = 0 在区间 [a,b] 上只有一个根、多个跟、至少有一个根,称 [a,b] 为单根区间、多根区间、有根区间。

6.2 跟的搜索与二分法

例 6.1 求方程 $f(x) = x^3 - 11.1x^2 + 38.8x - 41.77 = 0$ 的有根区间。

解 方程的三个有根区间为 [2.3][3,4] 和 [5,6]

注 逐步搜素法:

- 搜索步长的选取是逐步搜索法的关键, 当步长缩小时, 搜索步数增多, 计算量增大
- 如果精度要求比较高, 单用逐步搜索法不合算

注 二分法: 假设 $a_0 = a, b_0 = b$

- 取 $x_0 = \frac{a_0 + b_0}{2}$, 将区间 $[a_0, b_0]$ 分为两半 若 $f(a_0)f(x_0) > 0$, 则取 $a_1 = x_0, b_1 = b_0$, 否则取 $a_1 = a_0, b_1 = x_0$
- 取 $x_1 = \frac{a_1 + b_1}{2}$, 将区间 $[a_1, b_1]$ 分为两半 若 $f(a_1)f(x_1) > 0$, 则取 $a_2 = x_1, b_2 = b_1$, 否则取 $a_2 = a_1, b_2 = x_1$

6.3 不动点迭代法

定义 6.2 (不动点迭代法) 将非线性方程 f(x) = 0 化为一个同解方程

$$x = \varphi(x)$$

任取一个初值 x_0 代入上式右端, 得到

$$x_1 = \varphi(x_0), x_2 = \varphi(x_1), \cdots, x_{k+1} = \varphi(x_k)$$

求解非线性方程 f(x) = 0 的不动点选代法。

如果存在一点 x^* , 使得 $\lim_{k\to\infty} x_k = x^*$, 则称选代法收敛, 否则称为发散。

定义 6.3 (压缩映射)

$$|x_k - x^*| = |\varphi(x_{k-1}) - \varphi(x^*)| \le L|x_{k-1} - x^*| (0 < L < 1)$$

称为压缩映射。

定理 6.1 设迭代函数且满足 $\varphi(x) \in C[a,b]$ 且满足

- 1. $\forall x \in [a,b]$,有 $\varphi(x) \in [a,b]$
- 2. 存在 $L \in (0,1)$, 使得 $\forall x, y \in [a,b]$

$$|\varphi(x) - \varphi(y)| \le L|x - y|$$

则

- 1. $\varphi(x)$ 在区间 [a,b] 内存在唯一不动点
- 2. 对于任意初值 $x_0 \in [a,b]$, 由迭代法生成的迭代序列 $\{x_k\}$ 均收敛于 x^*

3.
$$|x_k - x^*| \le \frac{L}{1-L} |x_k - x_{k-1}|$$

4. $|x_k - x^*| \le \frac{L^k}{1-L} |x_1 - x_0|$

4.
$$|x_k - x^*| \le \frac{L^k}{1-L} |x_1 - x_0|$$

证明. 证明 1: 令 $F(x) = \varphi(x) - x$,则 $F(x) \in C[a,b]$ 且

$$F(a) = \varphi(a) - a \geqslant 0, F(b) = \varphi(b) - b \leqslant 0,$$

有闭区间连续函数的性质知道, $\exists x^* \in [a,b]$ 使得 $F(x^*) = \varphi(x^*) - x^*$

设 y^* 也是 $\varphi(x)$ 的不动点,则

$$0 < |y^* - x^*| = |\varphi(y^*) - \varphi(x^*)| \le L|y^* - x^*|$$

矛盾!

证明 2:

$$0 < |x_k - x^*| = |\varphi(x_{k-1}) - \varphi(x^*)| \le \dots \le L^k |x_0 - x^*|$$

证明 3:

$$|x_k - x^*| \le L|x_{k-1} - x^*| \le L(|x_{k-1} - x^k| + |x_k - x^*|)$$

$$\Rightarrow |x_k - x^*| \le \frac{L}{1 - L}|x_k - x_{k-1}|$$

证明 4:

$$|x_k - x^*| \le \frac{L}{1 - L} |\varphi(x_{k-1}) - \varphi(x_{k-2})| \le \dots \le \frac{L^k}{1 - L} |x_1 - x_0|$$

$$\Rightarrow |x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

证毕!

注 利用拉格朗日中值定理

$$|\varphi(x) - \varphi(y)| = |\varphi'(\xi)||x - y| \le \underbrace{\max_{x \in [a,b]} |\varphi(x)'|}_{x = y} |x - y|$$

例 6.2 构造不同的迭代法求 $x^2 - 3 = 0$ 根 $x^* = 3$. 要求计算结果精确到小数点后第 7

• 迭代格式 1:
$$x_{k+1} = \frac{3}{x_k}$$

• 迭代格式 2:
$$x_{k+1} = x_k - \frac{1}{4}(x^2 - 3)$$

• 迭代格式 3:
$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{3}{x_k} \right)$$

上述迭代格式中收敛的是 [2,3] , 收敛最快的是 [3]

解

$$\begin{aligned} |\varphi_1'(x)| &= \frac{3}{x^2} & |\varphi_1'(\sqrt{3})| = 1\\ |\varphi_2'(x)| &= |1 - \frac{x}{2}| & |\varphi_2'(\sqrt{3})| = 1 - \frac{\sqrt{3}}{2}\\ |\varphi_3'(x)| &= \frac{1}{2} \left| 1 - \frac{3}{x^2} \right| & |\varphi_3'(\sqrt{3})| = 0 \end{aligned}$$
$$|\varphi_3'(x)| &= \frac{1}{2} \left| 1 - \frac{3}{x^2} \right|, |\varphi_3'(\sqrt{3})| = 0, |\varphi_3''(\sqrt{3})| = \frac{6}{(\sqrt{3})^3} \neq 0$$

迭代格式 3 是二阶收敛的

定义 6.4 (收敛) 若存在实数 $p \ge 1$ 和常数 c > 0 满足

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^p} = c$$

则称迭代法 p 阶收敛, 当 p=1 时称为线性收敛, p>1 时称为超线性收敛, p=2 时称为平方收敛。

显然, p 越大, 收敛速度也就越快。

注 如何确定 p, 从而确定收敛阶呢?

$$\varphi(x) = \varphi(x^*) + \varphi'(x^*)(x - x^*) + \frac{\varphi''(x^*)}{2!}(x - x^*)^2 + \cdots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!}(x - x^*)^{p-1} + \frac{\varphi^{(p)}(x^*)}{p!}(x - x^*)^p + \cdots$$

如果 $\varphi'(x^*)=\varphi''(x^*)=\cdots=\varphi^{(p-1)}(x^*)=0$, 从而 $\varphi^{(p)}(x^*)\neq 0$

$$\varphi(x) = \varphi(x^{*}) + \frac{\varphi^{(p)}(x^{*})}{p!} (x - x^{*})^{p} + \cdots$$

$$x_{k+1} = \varphi(x_{k}) = \varphi(x^{*}) + \frac{\varphi^{(p)}(x^{*})}{p!} (x_{k} - x^{*})^{p} + \cdots$$

$$\frac{|x_{k+1} - x^{*}|}{|x_{k} - x^{*}|^{p}} = \left| \frac{\varphi^{(p)}(x^{*})}{p!} + \frac{\varphi^{(p+1)}(x^{*})}{(p+1)!} (x_{k} - x^{*}) + \cdots \right| \rightarrow \left| \frac{\varphi^{(p)}(x^{*})}{p!} \right|, (k \to \infty)$$

即迭代法 $x_{k+1} = \varphi(x_k)$ 的收敛阶是 p

定理 6.2 如果迭代法迭代函数 $\varphi(x)$ 在根 x^* 附近满足

1. $\varphi(x)$ 存在 p 阶导数且连续;

2.
$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$$
, for $\varphi^{(p)}(x^*) \neq 0$

注 Aitken 加速方法

设 x_0 是根 x^* 的某个近似值, 用迭代公式校正一次得,

$$x_1 = \varphi(x_0)$$

$$x_1 - x^* = \varphi(x_0) - \varphi(x^*) = \varphi'(\xi)(x_0 - x^*)$$

若将 x_1 再迭代一次得,

$$x_2 = \varphi(x_1)$$

$$x_2 - x^* = \varphi'(\eta)(x_1 - x^*)$$

$$\frac{x_1 - x^*}{x_2 - x^*} \approx \frac{x_0 - x^*}{x_1 - x^*} \Rightarrow x^* \approx \frac{x_0 x_2 - x_1^2}{x_2 - 2x_1 + x_0} = x_0 - \frac{(x_1 - x_0)^2}{x_2 - 2x_1 + x_0}$$

记

$$\overline{x}_{k+1} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$

可以证明,

$$\lim_{k \to \infty} \frac{\overline{x}_{k+1} - x^*}{x_k - x^*} = 0$$

定义 6.5 (Aitken 迭代法) 假设 $\{x_k\}$ 是由不动点迭代得到的序列,

$$\begin{cases} y_k = \varphi(x_k), z_k = \varphi(y_k), \\ x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k} \end{cases}$$
 $(k = 0, 1, 2, \dots)$

称上述公式为 Aitken 迭代法。

其中, 相当于将原来的迭代改为另一种不动点迭代,

$$x_{k+1} = \psi(x_k)$$

$$\psi(x) = x - \frac{[\varphi(x) - x]^2}{\varphi(\varphi(x)) - 2\varphi(x) + x}$$

例 6.3 送代格式 l: $x_{k+1} = \frac{3}{x_k}, k = 0, 1, \dots$

解 Aitken 加速后:

$$x_{k+1} = \frac{x_k^2 + 3}{2x_k}, k = 0, 1 \cdots$$

$$\psi'(x) = \frac{1}{2} - \frac{3}{2x^2}, \ \psi'(\sqrt{3}) = 0$$

$$\psi''(x) = \frac{3}{x^3}, \ \psi''(\sqrt{3}) = \frac{1}{\sqrt{3}} \neq 0$$

6.4 Newton 迭代法

定义 6.6 (Newton 迭代法公式) 采用 Aitken 方法加速 f(x) = 0 的迭代法: 令 $\varphi(x) = x + f(x)$, 设 $L = \varphi'(x) = 1 + f'(x)$

$$x_{k+1} = x_k + f(x_k), \quad \bar{x}_{k+1} = x_k + f(x_k)$$

$$x_{k+1} = \bar{x}_{k+1} + \frac{L}{1 - L}(\bar{x}_{k+1} - x_k)$$

记
$$M=L-1$$
,则 $x_k+1=x_k-rac{f(x_k)}{M}$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, \dots$$

称为解方程 f(x) = 0 的 Newton 迭代法。

注 Newton 迭代法几何解释: Newton 迭代法也称为切线法

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

切线方程

$$f(x_k) + f'(x_k)(x - x_k) = 0 \Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

注 收敛性问题

• 若 x^* 是 f(x) = 0 的一个单根,则 $\varphi'(x^*) = 0$,即 Newton 法在附近是平方收敛的.

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}, \ \varphi'(x^*) = 0$$

• 若 x^* 是 f(x) = 0 的 $m(m \ge 2)$ 重根,则 Newton 法仅为线性收敛. 有 $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$,则

$$x_{k+1} - x^* = x_k - x^* - \frac{f(x_k)}{f'(x_k)}$$

$$= x_k - x^* - \frac{f^{(m)}(x^*) \frac{(x_k - x^*)^m}{m!} + o(x_k - x^*)^{m+1}}{f^{(m)}(x^*) \frac{(x_k - x^*)^{(m-1)}}{(m-1)!} + o(x_k - x^*)^{m-1}}$$

$$= x_k - x^* - \frac{1}{m} \frac{f^{(m)}(x^*) (x_k - x^*)^m + o(x_k - x^*)}{f^{(m)}(x^*) + o(1)}$$

有

$$\frac{x_{k+1} - x^*}{x_k - x^*} = 1 - \frac{1}{m} \quad (k \to \infty)$$

• 改进 $\varphi(x) = x - m \frac{f(x)}{f'(x)}$ 设 $f(x) = (x - x^*)^m g(x), g(x^*) \neq 0$

$$\varphi(x) = x - m \frac{f(x)}{f'(x)} = x - m \frac{(x - x^*)^m g(x)}{m(x - x^*)^{m-1} g(x) + (x - x^*)^m g'(x)}$$
$$= x - m \frac{(x - x^*)g(x)}{mg(x) + (x - x^*)g'(x)}$$

求异

$$\varphi'(x) = 1 - m \frac{g(x)[mg(x) + (x - x^*)g'(x)] - (x - x^*)g(x)[\cdots]}{[mg(x) + (x - x^*)g'(x)]^2}$$
$$\varphi'(x^*) = 1 - m \frac{g(x^*)mg(x^*)}{[mg(x^*)]^2} = 0$$

• 或者改进,记 $\mu(x) = \frac{f(x)}{f'(x)}$,则可对 $\mu(x)$ 应用 Newton 法:

$$\varphi(x) = x - \frac{\mu(x)}{\mu'(x)}$$

$$\varphi(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

例 6.4 构造一个二阶收敛的格式计算方程★★★☆☆

$$x^3 + x^2 - 3x - 3 = 0$$

的二重根 $x = \sqrt{3}$

解

$$f(x) = x^3 + x^2 - 3x - 3$$

$$f'(x) = 3x^2 + 2x - 3$$

$$f''(x) = 6x + 2$$

$$x_{k+1} = \frac{(x_k^3 + x_k^2 - 3x_k - 3)(3x_k^2 + 2x_k - 3)}{(3x_k^2 + 2x_k - 3)^2 - (x_k^3 + x_k^2 - 3x_k - 3)(6x_k + 2)}$$

注 牛顿下山法

如果在构造迭代法时加入要求: $|f(x_{k+1})| < |f(x_k)|$, 因此考虑引入一因子 λ , 建立迭代法

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

在迭代时,选择一个 λ ,使得

$$| f(x_{k+1}) | < | f(x_k) |$$

这种方法称为 Newton 下山法, λ 称为下山因子。 λ 的选取方式按 $\lambda=1,\frac{1}{2},\frac{1}{2^2},\frac{1}{2^3},\cdots$ 的顺序,直到 $|f(x_{k+1})|<|f(x_k)|$ 成立为止。

6.5 非线性方程组的解法

$$\begin{cases} f_1(x_1, x_2, \cdots, x_n) = 0 \\ \dots \\ f_n(x_1, x_2, \cdots, x_n) = 0 \end{cases}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \mathbf{F}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \dots f_n(\mathbf{x}) \end{pmatrix}$$

向量值函数 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$, $F(x^*) = 0, x^* \in D$

例 6.5 判断下列说法是否正确,正确请填"T",错误请填"F"★★☆☆☆

- •非线性方程组的解通常不唯一. [T]
- 。二分法可以推广到多维方程组的求解. [F]

给定向量值函数 $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, 求 $\mathbf{x}^* \in D$, 使得

$$\boldsymbol{F}(\boldsymbol{x}^*) = 0$$

迭代求解需要讨论的几个问题

- 迭代序列的适定性;
- 。 迭代序列的收敛性;
- 迭代序列的收敛速度与效率。

例 6.6 判断下列说法是否正确,正确请填"T",错误请,填"F"

对于求解非线性方程组的不动点迭代 $x^{k+1} = G(x^k)$, 若 x^* 为不动点且 $\rho(G'(x^k)) < 1$, 则对任意初值 x^0 , 迭代序列均收敛. [F]

注 Newton 法及其变形

$$F:D \subset \mathbb{R}^n \to \mathbb{R}^n$$
, $F(x) = 0F(x) \approx F(x^k) + F'(x^k)(x - x^k) = 0$
 $x^{k+1} = x^k - [F'(x^k)]^{-1}F(x^k)$ $(k = 0, 1, \cdots)$

Newton 迭代法

$$\begin{cases} x^{k+1} = x^k + \Delta x^k \\ F'(x^k) \Delta x^k = -F(x^k) \quad (k = 0, 1, \dots) \end{cases}$$

例 6.7 判断下列说法是否正确,正确请填"T",错误请填"F".★★★☆☆

Newton 迭代法是不动点迭代的一个特例. [T]

注 简化的 Newton 迭代法 (Simplified Newton iterative method)

$$x^{k+1} = x^k - BF(x^k)$$
 $(k = 0, 1, \dots), B = [F'(x^0)]^{-1}$

例 6.8 判断下列说法是否正确,正确请填"T",错误请填"F"☆★☆☆☆

简化 Newton 迭代法是不动点迭代的一个特例 [T]

例 6.9 练习★★★★★

1. 设权函数 $\rho(x) = 1 + x^2$, 区间为 [-1,1], 试求首项系数为 1 的正交多项式 $\varphi_n(x), n = 0, 1, 2, 3$.

解

$$\varphi_0(x) = 1$$

$$\begin{split} \varphi_1(x) &= x - \frac{(x,1)}{(1,1)} \cdot 1 \\ &= x - \frac{\int_{-1}^1 (1+x^2)x \cdot 1 \mathrm{d}x}{\int_{-1}^1 (1+x^2)1 \cdot 1 \mathrm{d}x} \cdot 1 = x \\ \varphi_2(x) &= x^2 - \frac{(x^2,1)}{(1,1)} \cdot 1 - \frac{(x^2,x)}{(x,x)} \cdot x \\ &= x^2 - \frac{\int_{-1}^1 (1+x^2)x^2 \cdot 1 \mathrm{d}x}{\int_{-1}^1 (1+x^2)1 \cdot 1 \mathrm{d}x} \cdot 1 - \frac{\int_{-1}^1 (1+x^2)x^2 \cdot x \mathrm{d}x}{\int_{-1}^1 (1+x^2)x \cdot x \mathrm{d}x} \cdot x \\ &= x^2 - \frac{2}{5} \end{split}$$

$$\varphi_3(x) &= x^3 - \frac{(x^3,1)}{(1,1)} \cdot 1 - \frac{(x^3,x)}{(x,x)} \cdot x - \frac{(x^3,x^2)}{(x^2,x^2)} \cdot x \\ &= x^3 - \frac{\int_{-1}^1 (1+x^2)x^3 \cdot 1 \mathrm{d}x}{\int_{-1}^1 (1+x^2)x \cdot x \cdot x \mathrm{d}x} \cdot x - \frac{\int_{-1}^1 (1+x^2)x^3 \cdot x^2 \mathrm{d}x}{\int_{-1}^1 (1+x^2)x \cdot x^2 \cdot x^2 \mathrm{d}x} \cdot x^2 \\ &= x^3 - \frac{9}{14}x \end{split}$$

2. $m{A} \in \mathbb{R}^{n \times n}$ 为对称正定阵,经一步顺序 Gauss 消元后 $m{A}$ 约化为 $egin{bmatrix} a_{11} & m{a}_{1}^{\mathrm{T}} \ 0 & m{A}_{2} \end{bmatrix}$,证明 $m{A}_{2}$ 也是对称正定阵

证明. 可以设 A 为

$$oldsymbol{A} = egin{bmatrix} a_{11} & oldsymbol{a}_{1}^{\mathrm{T}} \ oldsymbol{a}_{1} & oldsymbol{A}_{2}^{\prime} \end{bmatrix}$$

其中 A_2' 为对称正定阵。

根据 Gauss 消元的性质,得到

$$m{A}_2 = m{A}_2' - rac{1}{a_{11}} egin{bmatrix} a_{21}m{a}_1^{
m T} \ a_{31}m{a}_1^{
m T} \ \ddots \ a_{n1}m{a}_1^{
m T} \end{bmatrix}$$

所以,有

$$\boldsymbol{A}_{2}^{\mathrm{T}} = \boldsymbol{A}_{2}^{'\mathrm{T}} - \frac{1}{a_{11}} \begin{bmatrix} a_{21}\boldsymbol{a}_{1} & a_{31}\boldsymbol{a}_{1} \cdots & a_{n1}\boldsymbol{a}_{1} \end{bmatrix}$$

$$= \boldsymbol{A}_{2}^{'} - \frac{1}{a_{11}} \begin{bmatrix} a_{21}\boldsymbol{a}_{1}^{\mathrm{T}} \\ a_{31}\boldsymbol{a}_{1}^{\mathrm{T}} \\ \vdots \\ a_{n1}\boldsymbol{a}_{1}^{\mathrm{T}} \end{bmatrix}$$

3. $G(x) = \frac{1}{3}x + 3$, 证明 G 在 [0,1] 上是压缩的,但没有不动点

证明. 因为 $|G'(x)| = \frac{1}{3} < 1$,故而 G 在 [0,1] 上是压缩的. 接下开证明没有不动点,令 G(x) = x,解得 $x = -\frac{9}{2} \notin [0, 1]$ 。 综上所述, $G(x) = \frac{1}{3}x + 3$, 证明 G 在 [0,1] 上是压缩的,但没有不动点。证毕!

解线性方程组的直接法 7

定义 7.1 (特征值和谱半径) 设 $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$, 若存在一个数 λ (实数或复数) 和非零 向量 $\boldsymbol{x} = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbf{R}^n$, 使

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

则称 λ 为 A 的特征值, x 为 A 对应 λ 的特征向量, A 的全体特征值称为 A 的谱, 记 作 $\sigma(\mathbf{A})$, 即 $\sigma(\mathbf{A}) = \{\lambda_1, \dots, \lambda_n\}$,

$$\rho(\mathbf{A}) = \max_{\lambda \in \sigma(\mathbf{A})} |\lambda|$$

称为 A 的谱半径。

定义 7.2 设 $u, v \in \mathbb{R}^n, \sigma$ 为实数,则

$$E(\boldsymbol{u}, \boldsymbol{v}, \sigma) = \boldsymbol{I} - \sigma \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$$

称为初等矩阵。

初等矩阵 = 单位矩阵 减去 秩最多为 1 的方阵

注 记 $\boldsymbol{u} = (u_1, u_2, \cdots, u_n)^{\mathrm{T}}, \boldsymbol{v} = (v_1, v_2, \cdots, v_n)^{\mathrm{T}}$ 则

$$E(\boldsymbol{u}, \boldsymbol{v}, \sigma) = (\delta_{ij} - \sigma u_i v_j)_{n \times n}$$

1. 初等矩阵的逆矩阵

$$E^{-1}(\boldsymbol{u}, \boldsymbol{v}, \sigma) = I - \beta \boldsymbol{u} \boldsymbol{v}^T$$

其中
$$\beta = \frac{\sigma}{\sigma v^{\mathrm{T}} u - 1}$$
2. 其行列式

$$\det(E(\boldsymbol{u}, \boldsymbol{v}, \sigma)) = 1 - \sigma \boldsymbol{v}^{\mathrm{T}} \boldsymbol{u}$$

定义 7.3 (初等-k 下三角矩阵(或 Gauss 变换)) 设

$$m{l}_k = egin{pmatrix} 0 \ dots \ 0 \ m_{k+1} \ dots \ m_n \end{pmatrix}, \quad m{e}_k = egin{pmatrix} 0 \ dots \ 0 \ 1 \ 0 \ dots \ 0 \end{pmatrix}$$

称矩阵 $L_k(l_k) = E(l_k, e_k, 1) = I - l_k e_k^{\mathrm{T}}$ 的初等-k 下三角矩阵(或 Gauss 变换)

$$\mathbf{L}_{k}(\mathbf{l}_{k}) = E(\mathbf{l}_{k}, \mathbf{e}_{k}, 1) = \mathbf{I} - \mathbf{l}_{k}\mathbf{e}_{k}^{\mathrm{T}}$$

$$= \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & -m_{k+1} & 1 & \\ & \vdots & & \ddots & \\ & & & m & 1 \end{bmatrix}$$

对其逆矩阵 $\beta = \frac{1}{e^{\mathrm{T}}l - 1} = 1$

定理 7.1 设有向量 $x = (x_1, x_2, \dots, x_n)^T$, 且 $x_k \neq 0$, 则存在唯一的初等下三角矩阵 (指标为 k) $L_k(\boldsymbol{l}_k) = E(\boldsymbol{l}_k, \boldsymbol{e}_k, 1) = \boldsymbol{I} - \boldsymbol{l}_k \boldsymbol{e}_k^T$, 使

$$m{L}_k(m{l}_k)m{x} = egin{pmatrix} x_1 \ dots \ x_k \ 0 \ dots \ 0 \end{pmatrix} \equiv y$$

其中

$$\boldsymbol{l}_k = (0, \dots, 0, m_{k+1}, m_n)^{\mathrm{T}}$$

$$m_i = \frac{x_i}{x_k}, \quad (i = k+1, \dots, n)$$

定义 7.4 (初等反射矩阵) 设 $\boldsymbol{w} \in \mathbb{R}^n$ 满足 $\|\boldsymbol{w}\|_2^2 = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{w} = 1, \sigma = 2,$ 称初等矩阵

$$E(\boldsymbol{w}, \boldsymbol{w}, 2) = \boldsymbol{I} - 2\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}} \equiv H(\boldsymbol{w})$$

为初等反射矩阵或 Householder 变换。

定理 7.2 设 $H(\boldsymbol{w}) = \boldsymbol{I} - 2\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}}$ 为初等反设矩阵,则

- 1. $H(w)^{T} = H(w)$ (对称)
- 2. $H(w)^{\mathrm{T}} = H(w)^{-1}$ (正交)
- 3. 设 A 为对称阵, 那么

$$A_1 = H^{-1}AH = HAH$$

也是对称的

注 初等反设矩阵的几何意义

$$H(\boldsymbol{w}) = \boldsymbol{I} - 2\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}}, \quad \|\boldsymbol{w}\|_{2}^{2} = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{w} = 1,$$

v' 为 v 关于平面 S 的镜面反设

$$egin{aligned} oldsymbol{H} oldsymbol{v} &= oldsymbol{v} - 2oldsymbol{w} oldsymbol{w}^{ ext{T}} oldsymbol{v} \ &= oldsymbol{x} + oldsymbol{y} - 2oldsymbol{w} oldsymbol{w}^{ ext{T}} oldsymbol{y} \ &= oldsymbol{x} - 2oldsymbol{y} = oldsymbol{v}' \end{aligned}$$

7.1 Gauss 消元法

得到等价的线性代数方程组

$$\begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{ii}^{(i)}x_i + a_{i,i+1}^{(i)}x_{i+1} + \dots + a_{in}^{(i)}x_n = b_i^{(i)} \\ & \dots \\ a_{n-1,n-1}^{(n-1)}x_{n-1} + a_{n-1,n}^{(n-1)}x_n = b_{n-1}^{(n-1)} \\ & a_{nn}^{(n)}x_n = b_n^{(n)} \end{cases}$$

算法 7.1: Gauss 消元法

输入: [A|b]

输出: x

1
$$Z = [A | b]$$

2 for
$$k = 1 \to n - 1$$
 do

$$\begin{array}{c|c} \mathbf{3} & \mathbf{for} \ i = k+1 \to n \ \mathbf{do} \\ \mathbf{4} & \mathbf{Z}[i,:] \leftarrow \mathbf{Z}[i,:] - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} \mathbf{Z}[k,:] \\ \mathbf{5} & \mathbf{end} \end{array}$$

6 end

7
$$A = Z[:, 1:n]$$

8
$$b = Z[:, n+1]$$

9 for
$$i = n \rightarrow 1$$
 do

10
$$x[i] = b[i]$$
11 $x[i] = x[i] - A[i, i+1:]x[i+1:]$
12 $x[i] = x[i]/A[i, i]$

13 end

14 return x

注 高斯消元法的运算量

$$MD = \frac{n^3}{3} - \frac{n}{3} = \frac{n^3}{3} + O(n)$$

例 7.1 用 Gauss 消去法解线性方程组 (用四位有效数字计算)

解 用 Gauss 消去法求解 回代得到 $x_1=0.0000,\,x_2=0.5000$

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} 0.0001 & 2 & 1\\ 2 & 3 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 0.0001 & 2 & 1\\ 0 & -4.000 \times 10^4 & -2.000 \times 10^4 \end{bmatrix}$$
$$-39997 & -19998$$

注 问题:

与精确解相比,该结果相当糟糕

原因: 在求行乘数时用了很小的数 0.0001 作除数

例 7.2 将两个方程互换为

$$\begin{cases} 2x_1 + 3x_2 = 2\\ 0.0001x_1 + 2x_2 = 1 \end{cases}$$

解 再采用 Gauss 消去法求解 回代得到 $x_1 = 0.2500, x_2 = 0.5000$

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} 2 & 3 & 2 \\ 0.0001 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 2 & 0.9998 \end{bmatrix} 0.99985$$
1.99985

定义 7.5 (列主元 Gauss 消元法) 经过 k 步约化后

在 $\boldsymbol{A}^{(k)}$ 的第 k 列选主元, $|a_{i_k,k}^{(k)}| = \max_{k \leq i \leq n} |a_{i_k}^{(k)}|$ 。若 $i_k > k$,则在 $[\boldsymbol{A}^{(k)}|\boldsymbol{b}^{(k)}]$ 中将 i_k 与 k 行互换,再按照 Gauss 消元公式求出 $[A^{(k+1)}|\boldsymbol{b}^{(k+1)}]$ 。重复以上过程直到求出 $[\boldsymbol{A}^{(n)}|\boldsymbol{b}^{(n)}]$

例 7.3 要将这段顺序 Gauss 消元法的 Matlab 程序改成列主元 Gauss 消元法,需要在 [A] 处添加代码☆☆☆☆☆

算法 7.2: Gauss 列主元消元法

```
输入: [A \mid b]
输出: x

1 Z = [A \mid b]

2 for k = 1 \rightarrow n - 1 do

// A

3 for i = k + 1 \rightarrow n do

| // B

2[i,:] \leftarrow Z[i,:] - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}Z[k,:]

5 end

// C

6 end

7 A = Z[:,1:n]

8 b = Z[:,n+1]

9 for i = n \rightarrow 1 do

| // D

10 x[i] = b[i]

11 x[i] = x[i] - A[i,i+1:]x[i+1:]

12 x[i] = x[i]/A[i,i]
```

14 return x

13 end

7.2 直接三角分解法

经过以下变换

$$m{L}_{2}\left(m{l}_{2}
ight) = egin{pmatrix} 1 & & & & & \ 0 & 1 & & & \ 0 & -rac{a_{32}^{(2)}}{a_{22}^{(2)}} & 1 & & \ 0 & -rac{a_{42}^{(2)}}{a_{22}^{(2)}} & 1 \end{pmatrix}, \ \left[m{A}^{(3)} \quad m{b}^{(3)}
ight] = m{L}_{2}\left(m{l}_{2}
ight) \left[m{A}^{(2)} \quad m{b}^{(2)}
ight] \ & m{L}'m{A} = m{U} \Rightarrow m{A} = m{L}m{U}$$

其中

$$m{L}' = m{L}_1(m{l}_2) m{L}_2(m{l}_1) \cdots m{L}_{n-1}(m{l}_{n-1}) = egin{bmatrix} 1 & & & & & \ l_{21} & 1 & & & \ dots & l_{32} & \ddots & & \ dots & dots & \ddots & & \ l_{n1} & l_{n2} & \cdots & \cdots & 1 \end{bmatrix}$$

定理 7.3 设 $A \in \mathbb{R}^{n \times n}$ 非奇异, 且各阶顺序主子式

$$D_k = \det \mathbf{A}_k = \begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix} \neq 0$$

则 A 可唯一地分解为一个单位下三角阵 L 与一个上三角阵 U 的乘积, 即

$$A = LU$$

例 7.4 请将下列矩阵进行三角分解★★★★

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 5 \\ 1 & 2 & 0 \end{bmatrix}$$

解

第一列
$$L$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$ $\begin{bmatrix} U & 2 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$

第二行
$$\boldsymbol{L}$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$ \boldsymbol{U} $\begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -1 \\ 0 & 0 \end{bmatrix}$

第二列
$$\boldsymbol{L}$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \hline \frac{1}{2} & \frac{5}{8} & 1 \end{bmatrix}$ \boldsymbol{U} $\begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -1 \\ \hline 0 & 0 & 0 \end{bmatrix}$

第三行
$$\boldsymbol{L}$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & \frac{5}{8} & 1 \end{bmatrix}$ \boldsymbol{U} $\begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -1 \\ 0 & 0 & -\frac{7}{8} \end{bmatrix}$

例 7.5 用 Doolittle 分解法求解线性方程组★★★★☆

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 5 \end{bmatrix}$$

解

$$\boldsymbol{L} = \begin{bmatrix} 1 \\ 1/2 & 1 \\ 1/2 & 3/5 & 1 \end{bmatrix}, \, \boldsymbol{U} = \begin{bmatrix} 2 & 1 & 1 \\ & 5/2 & 3/2 \\ & & 3/5 \end{bmatrix}$$

求解 Ly = b 得 $y = (4, 4, 3/5)^{\mathrm{T}}$

求解 Ux = y 得 $x = (1, 1, 1)^{T}$

定义 7.6 若 $A \in \mathbb{R}^{n \times n}$ 对称正定,则存在唯一的对角元为正的下三角矩阵 L, 使 A 分解为

$$\boldsymbol{A} = \boldsymbol{L} \boldsymbol{L}^{\mathrm{T}}$$

例 7.6 用平方根法求解线性方程组★★★★☆

$$\begin{pmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ -0.5 \\ 1.25 \end{pmatrix}$$

则分解后矩阵中的 $l_{21} = [-0.5]$ 。

7.3 大型带状方程组的求解

定义 7.7 (三对角方程) 方程组 Ax = f 称为三对角方程

其中

$$\mathbf{A} = \begin{pmatrix} b_{1} & c_{1} & & & & \\ a_{2} & b_{2} & c_{2} & & & \\ & \ddots & \ddots & \ddots & \\ & a_{n-1} & b_{n-1} & c_{n-1} \\ & & a_{n} & b_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{1} & \alpha_{1}\beta_{1} & & & \\ \gamma_{2} & \gamma_{2}\beta_{1} + \alpha_{2} & \alpha_{2}\beta_{2} & & & \\ & & \gamma_{3} & \ddots & \ddots & \\ & & & \ddots & \gamma_{n-1}\beta_{n-2} + \alpha_{n-1} & \alpha_{n-1}\beta_{n-1} \\ & & & & \gamma_{n}\beta_{n-1} + \alpha_{n} \end{pmatrix}$$

7.4 向量和矩阵范数

定义 7.8 设 $x \in \mathbb{R}^n$ (或 $x \in \mathbb{C}^n$), 关于 x 的某个实值非负函数 $N(x) \equiv ||x||$, 如果满足下列条件:

- 1. $\|x\| \ge 0$, $\mathbb{H} \|x\| = 0 \Leftrightarrow x = 0$
- 2. $\|\alpha \boldsymbol{x}\| = |\alpha| \cdot \|\boldsymbol{x}\|, \alpha \in \mathbb{R}(\mathbb{C});$
- 3. $\|x + y\| \le \|x\| + \|y\|, \forall x, y \in \mathbb{R}^n(\mathbb{C}^n)$.

则称 $N(x) \equiv ||x||$ 是 \mathbb{R}^n (或 $x \in \mathbb{C}^n$) 上的一个向量范数 (或模)。

注 常用的向量范数

有
$$\boldsymbol{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}} \in \mathbb{R}^n$$

- ∞ 范数 $\|oldsymbol{x}\|_{\infty} = \max_{\substack{1 \leq i \leq n \\ n}} |x_i|$
- 1-范数 $\| {m x} \|_1 = \sum_{i=1}^n |x_i|$

• 2-范数
$$\| \boldsymbol{x} \|_2 = \sum_{i=1}^n \left(x_i^2 \right)^{1/2}$$

定义 7.9 (向量的 w 范数) 向量的 w 范数由矩阵 w 诱导

- 1. 设 $N(\mathbf{x}) = ||\mathbf{x}||_v$ 是 \mathbb{R}^n 上的一个向量范数
- 2. 设 $\mathbf{w} \in \mathbb{R}^{n \times n}$ 为非奇异矩阵,则 $M(\mathbf{x}) \equiv ||\mathbf{x}||_{\mathbf{w}} \equiv ||\mathbf{w}\mathbf{x}||_{\mathbf{v}}$ 是 \mathbb{R}^n 上的一个向量范数 定义 7.10 (矩阵范数) 关于矩阵 $A \in \mathbb{R}^{n \times n}$ 的某个实值非负函数 $N(A) \equiv ||A||$, 如果 满足下列条件:
 - 1. $\| A \| \ge 0$, $\mathbb{H} \| A \| = 0 \Leftrightarrow A = 0$;
 - 2. $\|\alpha A\| = |\alpha| \cdot \|A\|, \alpha \in \mathbb{R};$
 - 3. $|| A + B || \le || A || + || B ||, \forall A, B \in \mathbb{R}^{n \times n};$
 - $A. \parallel AB \parallel \leq \parallel A \parallel \cdot \parallel B \parallel, \forall A, B \in \mathbb{R}^{m \times n}$

则称 $N(\mathbf{A})$ 是 $\mathbb{R}^{n \times n}$ 上的一个矩阵范数 (或模)。

定义 7.11 (矩阵的 F 范数)
$$F(A) \equiv \|A\|_F = \left(\sum_{i,j=1}^n a_{ij}^2\right)^{1/2}$$

定义 7.12 (矩阵的算子范数) 设 $x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$, 已经给出了一种向量范数 $||x||_v$ 定 义一个矩阵的非负函数

$$N(\boldsymbol{A}) \equiv \parallel \boldsymbol{A} \parallel_v = \max_{\substack{\boldsymbol{x} \in \mathbb{R}^n \\ \boldsymbol{x} \neq 0}} \frac{\parallel \boldsymbol{A}\boldsymbol{x} \parallel_v}{\parallel \boldsymbol{x} \parallel_v} = \max_{\substack{\boldsymbol{y} \in \mathbb{R}^n \\ \parallel \boldsymbol{y} \parallel = 1}} \parallel \boldsymbol{A}\boldsymbol{y} \parallel_v$$

注 常用的矩阵范数

读 $\boldsymbol{x} \in \mathbb{R}^n$. $\boldsymbol{A} \in \mathbb{R}^{n \times n}$

- $\| A \|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$, 行范数
 $\| A \|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$, 列范数
- $\| \boldsymbol{A} \|_2 = \sqrt{\rho(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})}, 2-\tilde{n}$

注 矩阵特征值的界

- 1. 设 $\mathbf{A} \in \mathbb{R}^{n \times n}$, 则 $\rho(\mathbf{A}) \leq \|\mathbf{A}\|_{v}$, $\|\mathbf{A}\|_{v}$ 为满足相容条件的矩阵范数;
- 2. 设 $\mathbf{A} \in \mathbb{R}^{n \times n}$ 为对称矩阵,则 $\|\mathbf{A}\|_2 = \rho(\mathbf{A})$

定理 7.4 设 $A \in \mathbb{R}^{n \times n}$, 则

$$\lim_{k \to \infty} \mathbf{A}^k = 0 \Leftrightarrow \rho(\mathbf{A}) < 1$$

定理 7.5 设 $B \in \mathbb{R}^{n \times n}$, 且 $\|B\| < 1(\|B\|)$ 为矩阵的算子范数), 则 $I \pm B$ 为非奇异矩 阵, 且有估计

$$\|(I \pm B)^{-1}\| \le \frac{1}{1 - \|B\|}$$

证明. 只证明 $I \pm B$ 为非奇异矩阵,设 I - B 为奇异矩阵,则存在非零向量 x 使得

$$(\boldsymbol{I} + \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$$

那么有

$$\|(I + B)x\| = \|x + Bx\| \le \|x\| + \|Bx\|$$

 $\le \|x\| + \|B\| \|x\| = (1 + \|B\|) \|x\|$
 $< 2\|x\|$

7.5 条件数与病态矩阵

 $\mathbf{H} \| \mathbf{A} \|_{\infty} = 4 \| \mathbf{A} \|_{1} = 5$

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ -5 & 13 \end{pmatrix}$$

$$\lambda_{1,2} = \frac{15 \pm \sqrt{221}}{2} \quad \|\mathbf{A}\|_2 = \sqrt{\frac{15 + \sqrt{221}}{2}} \approx 3.864$$

注 常用条件数:

$$\operatorname{Cond}(\boldsymbol{A})_{\infty} = \|\boldsymbol{A}^{-1}\|_{\infty} \cdot \|\boldsymbol{A}\|_{\infty}$$

$$\begin{aligned} &\operatorname{Cond}(\boldsymbol{A})_2 = \|\boldsymbol{A}^{-1}\|_2 \cdot \|\boldsymbol{A}\|_2 \\ &= \sqrt{\lambda_{\max} \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1}} \cdot \sqrt{\lambda_{\max} \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)} = \frac{\sqrt{\lambda_{\max} \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)}}{\sqrt{\lambda_{\min} \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)}} \end{aligned}$$

A 非奇异、对称, $\|\lambda_1\| \ge \|\lambda_2\| \ge \cdots \ge \|\lambda_n\|$

$$\operatorname{Cond}(\boldsymbol{A})_2 = \frac{\|\lambda_1\|}{\|\lambda_n\|}$$

例 7.8
$$\mathbf{A} = \begin{bmatrix} 1. & 1. \\ 1. & 1.0001 \end{bmatrix}$$
 的条件数 $\operatorname{Cond}(\mathbf{A})_{\infty} = \begin{bmatrix} 40000 \end{bmatrix}$

解

$$\mathbf{A} = \begin{bmatrix} 1. & 1. \\ 1. & 1.0001 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 1.0001 & -1. \\ -1. & 1. \end{bmatrix} \cdot \frac{1}{0.0001}$$
$$\|\mathbf{A}\|_{\infty} = 2.0001 \quad \|\mathbf{A}^{-1}\|_{\infty} = 2.0001 \times 10^{4}$$
$$\operatorname{Cond}(\mathbf{A})_{\infty} \approx 4. \times 10^{4}$$

注 如何判断 Ax = b 是病态?

- 1. 估计条件数:
- 2. 若用列主元消去法求解方程组 Ax = b, 在约化中出现小主元, 可能是病态;
- 3. Ax = b 出现一个相对很大的解,可能是病态;
- 4. A 中的元素的数量级相差很大, 可能是病态;
- 5. 当 det(A) 相对很小、或 A 某些行 (列) 近似线性相关, 可能是病态

8 解线性方程组的迭代法

8.1 迭代法的构造

注 迭代法的基本思想:

$$Ax = b \Leftrightarrow x = Bx + f$$

选取初始向量 $x^{(0)}$, 构造迭代格式:

$$egin{aligned} oldsymbol{x}^{(1)} &= oldsymbol{B} oldsymbol{x}^{(0)} + oldsymbol{f} \ oldsymbol{x}^{(2)} &= oldsymbol{B} oldsymbol{x}^{(1)} + oldsymbol{f} \ &dots \ oldsymbol{x}^{(k)} &= oldsymbol{B} oldsymbol{x}^{(k-1)} + oldsymbol{f} \end{aligned}$$

两边取极限得到

$$x^* = Bx^* + f$$

注 迭代法构造的一般原则:

将系数矩阵分解为

$$A = M - N$$

故而有

$$Ax = b \Leftrightarrow Mx = Nx + b$$

从而方程组等价化为

$$\boldsymbol{x} = \boldsymbol{M}^{-1} \boldsymbol{N} \boldsymbol{x} + \boldsymbol{M}^{-1} \boldsymbol{b}$$

需要满足以下条件

- M 非奇异
- M⁻¹ 容易求

迭代法的收敛性

定理 8.1 (迭代法基本定理) 对于任意的初始向量 $x^{(0)}$, 迭代法构

$$x^{(k)} = Bx^{(k-1)} + f$$

收敛的充分必要条件为

$$|\lambda_i(\mathbf{B})| < 1, \quad (i = 1, \dots, n)$$

或者

$$\rho(\boldsymbol{B}) < 1$$

例 8.1 用迭代法求解下列方程组

$$\begin{cases} 8x_1 - 3x_2 + 2x_3 = 20 \\ 4x_1 + 11x_2 - x_3 = 33 \\ 6x_1 + 3x_2 + 12x_3 = 36 \end{cases} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3.0000 \\ 2.0000 \\ 1.0000 \end{pmatrix}$$

解 将系数矩阵分解为

$$\begin{pmatrix} 8 & -3 & 2 \\ 4 & 11 & -1 \\ 6 & 3 & 12 \end{pmatrix} = \begin{pmatrix} 8 & & & \\ & 11 & & \\ & & 12 \end{pmatrix} - \begin{pmatrix} 0 & 3 & -2 \\ -4 & 0 & 1 \\ -6 & -3 & 0 \end{pmatrix}$$

从而构造迭代法

$$\boldsymbol{x}^k = \boldsymbol{M}^{-1} \boldsymbol{N} \boldsymbol{x}^{(k-1)} + \boldsymbol{M}^{-1} \boldsymbol{b}$$

定理 8.2 对于任意的初始向量 $x^{(0)}$, 若存在 B 的某种范数 $\|\cdot\|$, 使得 $\|B\| = q < 1$, 则 迭代法收敛. 且

1.
$$\parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \parallel \leq \frac{q}{1-q} \parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)} \parallel;$$

2. $\parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \parallel \leq \frac{q^k}{1-q} \parallel \boldsymbol{x}^{(1)} - \boldsymbol{x}^{(0)} \parallel.$

2.
$$\| \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \| \le \frac{q^k}{1-q} \| \boldsymbol{x}^{(1)} - \boldsymbol{x}^{(0)} \|$$

证明. 先证明 1

故而

$$\parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \parallel \leq \frac{q}{1-q} \parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)} \parallel$$

再证明 2

$$\parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \parallel \leq \frac{q}{1-q} \parallel \boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)} \parallel$$

 $\leq \frac{q^k}{1-q} \parallel \boldsymbol{x}^{(1)} - \boldsymbol{x}^{(0)} \parallel$

例 8.2 对线性方程组

$$\begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

若用迭代法

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha(\boldsymbol{A}\boldsymbol{x}^{(k)} - \boldsymbol{b})$$

求解,则 $\alpha \in [(-0.5,0)]$ 时迭代收敛, $\alpha = [-0.4]$ 时迭代收敛最快。

解 由 $x^{(k+1)} = x^{(k)} + \alpha(Ax^{(k)} - b)$ 知道

$$\boldsymbol{x}^{(k+1)} = (\alpha \boldsymbol{A} + \boldsymbol{I}) \boldsymbol{x}^{(k)} - \alpha b$$

求 $\alpha A + I$ 的谱半径 ρ

$$\begin{vmatrix} \lambda - 3\alpha - 1 & -2\alpha \\ -\alpha & \lambda - 2\alpha - 1 \end{vmatrix}$$

$$= \lambda^2 - (5\alpha + 2)\lambda + (3\alpha + 1)(2\alpha + 1) - 2\alpha^2$$

$$= \lambda^2 - (5\alpha + 2)\lambda + 4\alpha^2 + 5\alpha + 1$$

$$= [\lambda - (4\alpha + 1)][\lambda - (\alpha + 1)]$$

谱半径的图像 $\rho = \max\{|4\alpha+1|, |\alpha+1|\}$

当 $\alpha \in (-0.5, 0)$ 时迭代收敛, $\alpha = -0.4$ 时迭代收敛最快

8.1.1 Jacobi 迭代法

设
$$a_{ii} \neq 0, (i = 1, 2, \cdots n), M = D, N = D - A$$
,有
$$B_J = D^{-1}(D - A) = I - D^{-1}A = D^{-1}(L + U)$$
 $f = D^{-1}b$

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{B}_J \boldsymbol{x}^{(k)} + \boldsymbol{f}$$

定理 8.3 (Jacobi 迭代的收敛性定理) Jacobi 迭代法收敛有以下结论

· Jacobi 迭代法收敛的充分必要条件是

$$\rho(\boldsymbol{B}_J) < 1$$

• Jacobi 迭代法收敛的充分条件是存在一种范数 $\|\cdot\|$, 使得 $\|B_J\| \leqslant 1$

8.1.2 Gauss-Seidel 迭代法

$$x_1^{(k+1)} = \frac{1}{a_{11}} (b_1 - \sum_{j=2}^n a_{1j} x_j^{(k)})$$

$$x_2^{(k+1)} = \frac{1}{a_{22}} (b_2 - a_{21} x_1^{(k+1)} - \sum_{j=3}^n a_{2j} x_j^{(k)})$$

$$\dots$$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} (b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)})$$

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{G} \boldsymbol{x}^{(k)} + \boldsymbol{f}_G$$

其中

$$G = (D - L)^{-1}U, f_G = (D - L)^{-1}b$$

定理 8.4 (GS 迭代的收敛性定理) GS 迭代法收敛的充分必要条件是

· GS 迭代法收敛的充分必要条件是

$$\rho(\mathbf{G}) < 1$$

•GS 迭代法收敛的充分条件是存在一种范数 $\|\cdot\|$, 使得 $\|G\| \leqslant 1$

8.1.3 SOR

$$\widetilde{x_i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

$$x_i^{(k+1)} = (1 - \omega) x_i^{(k)} + \omega \widetilde{x}_i^{(k+1)}$$

$$= x_i^{(k)} + \omega \left(\widetilde{x}_i^{(k+1)} - x_i^{(k)} \right)$$

$$= (1 - \omega) x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

其中 ω 为可选择的松弛因子

$$\boldsymbol{x}^{(k+1)} = (1 - \omega)\boldsymbol{x}^{(k)} + \omega \boldsymbol{D}^{-1} \left(\boldsymbol{b} + \boldsymbol{L} \boldsymbol{x}^{(k+1)} + \boldsymbol{U} \boldsymbol{x}^{(k)} \right)$$
$$(\boldsymbol{D} - \omega \boldsymbol{L})\boldsymbol{x}^{(k+1)} = [(1 - \omega)\boldsymbol{D} + \omega \boldsymbol{U}]\boldsymbol{x}^{(k)} + \omega \boldsymbol{b}$$

表示为矩阵

$$egin{aligned} m{x}^{(k+1)} &= m{G}_{\omega} m{x}^{(k)} + m{f}_{\omega} \ &m{G}_{\omega} &= (m{D} - \omega m{L})^{-1} [(1 - \omega) m{D} + \omega m{U}] \ &m{f} &= \omega (m{D} - \omega m{L})^{-1} m{b} \end{aligned}$$

定理 8.5 ((SOR 方法收敛的必要条件)) 设解 $Ax = b(A \in \mathbb{R}^{n \times n})$ 的 SOR 方法收敛。则 $0 < \omega < 2$.

证明. SOR 法收敛就是 $\rho(G_{\omega}) < 1$ 因为 $G_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$

 $0 < \omega < 2$

$$|\det((1-\omega)\mathbf{D} + \omega \mathbf{U})| = |(1-\omega)^n| \prod_{i=1}^n |a_{ii}|$$
$$|\det(\mathbf{G}_{\omega})| = |(1-\omega)^n| \le \rho(\mathbf{G}_{\omega})^n$$
$$|(1-\omega)| < \rho(\mathbf{G}_{\omega}) < 1$$
$$-1 < 1 - \omega < 1$$

 $|\det(\boldsymbol{D} - \omega \boldsymbol{L})| = \prod_{i=1}^{n} |a_{ii}|$

证毕!

注 关于解特殊方程组迭代法的收敛性

定义 8.1 (对角占优) 设 $\mathbf{A} = (a_i j) \in \mathbb{R}^{n \times n}$, 则

• 若 $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}| (i=1,2,\cdots,n)$, 称 A 为严格对角占优矩阵 (或强占优阵)。

• 若 $|a_ii| \ge \sum_{i=1}^n |a_{ij}| (j=1,2,\cdots,n)$, 且至少有一个不等式严格成立,则称 A 为弱对角占优阵。

定义 8.2 ((可约与不可约阵)) 设 $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n} (n \ge 2)$, 如果存在置换矩阵 \mathbf{P} 使

$$oldsymbol{P}^{ ext{T}}oldsymbol{A}oldsymbol{P} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ 0 & oldsymbol{A}_{22} \end{pmatrix}$$

其中 A_{11} 为 r 阶方阵, A_{22} 为 n-r 阶方阵 $(1 \le r < n)$, 则称 A 为可约矩阵; 否则如果不存在这样的置换矩阵 P 使上式成立, 称 A 为不可约阵.

$$egin{aligned} oldsymbol{A}oldsymbol{x} &= oldsymbol{b} \Rightarrow oldsymbol{P}^{\mathrm{T}}oldsymbol{A}oldsymbol{P}^{\mathrm{T}}oldsymbol{x} &= oldsymbol{P}^{\mathrm{T}}oldsymbol{b} \ egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ 0 & oldsymbol{A}_{22} \end{pmatrix} egin{pmatrix} y_1 \ y_2 \end{pmatrix} &= egin{pmatrix} oldsymbol{C}_1 \ oldsymbol{C}_2 \end{pmatrix} \end{aligned}$$

定理 8.6 设 $Ax = b, A = (a_{ij}) \in \mathbb{R}^{n \times n}$,

- 如果 A 为严格对角占优阵,则解方程组 Ax = b 的 J 法及 GS 法均收敛.
- 如果 A 为弱对角占优阵且不可约阵,则解方程组 Ax = b 的 J 法及 GS 法均收敛.

定理 8.7 设 $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$, 若

- 1. A 严格对角占优或弱对角占优且不可约,
- 2. $0 < \omega < 1$,

则解方程组 Ax = b 的 SOR 法收敛。

定理 8.8 设 $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$, 若

- 1. A 为对称正定矩阵,
- 2. $0 < \omega < 2$,

则解方程组 Ax = b 的 SOR 法收敛。

注 送代法的收敛速度

记
$$arepsilon^{(k)} = oldsymbol{x}^{(k)} - oldsymbol{x}^*$$
.

$$egin{aligned} & oldsymbol{x}^{(k+1)} = oldsymbol{B} oldsymbol{x}^{(k)} + f \ & oldsymbol{x}^{(*)} = oldsymbol{B} oldsymbol{x}^{(*)} + f \ & egin{aligned} & eta^{(k+1)} = oldsymbol{B} oldsymbol{arepsilon}^{(k)} = \cdots = oldsymbol{B}^{k+1} oldsymbol{arepsilon}^{(0)} \end{aligned}$$

则有 $\boldsymbol{\varepsilon}^{(k)} = \boldsymbol{B}^k \boldsymbol{\varepsilon}^{(0)}$

若迭代 k 步后, 有 $\| \boldsymbol{\varepsilon}^{(k)} \| < 10^{-m} \| \boldsymbol{\varepsilon}^{(0)} \|$

误差模的缩减因子接近 $[\rho(\mathbf{B})]^k$

$$[\rho(\boldsymbol{B})]^k \le 10^{-m}$$

称

$$R(\boldsymbol{B}) = -\ln \rho(\boldsymbol{B})$$

为迭代法的渐近收敛速度。

8.2 梯度法

线性方程组 (A 对称正定):

$$Ax = b$$

• 经典算法: Gauss 消元法、系数矩阵三角分解法

• 算法缺陷: 计算时间随问题规模急速增长。

将问题转化为

$$\min f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}^{\mathrm{T}}\boldsymbol{x}$$

8.3 最速下降法

$$egin{aligned} oldsymbol{d}_k &= -
abla f(oldsymbol{x}_k) = oldsymbol{b} - oldsymbol{A} oldsymbol{x} \ lpha_k &= rg \min_{lpha \in \mathbb{R}} f(oldsymbol{x}_k + lpha oldsymbol{d}_k) = rac{\langle oldsymbol{d}_k, oldsymbol{d}_k
angle}{\langle oldsymbol{A} oldsymbol{d}_k, oldsymbol{d}_k
angle} \end{aligned}$$

8.3.1 共轭方向法

定义 8.3 (共轭方向) 对对称正定阵 A, 若 $d_1, d_2 \in \mathbb{R}^n$, 满足 $d_1^T A d_2 = 0$, 则称 d_1, d_2 关于矩阵 A 共轭, 并称其为 A 的共轭方向。

共轭是正交的推广。

定义 8.4 (线性共轭方向的推广) 若向量组 d_1, d_2, \cdots, d_n 关于对称正定阵 A 两两共轭,即满足

$$d_i A d_i = 0, 1 \leqslant i \neq j \leqslant k$$

推论 若向量组 d_1, d_2, \cdots, d_n , 关于矩阵 A 共轭, 则它们线性无关。

注 线性共轭方向法:

$$\min_{\boldsymbol{x} \in \mathbf{R}^n} f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}$$

- 1. 初始点 x_0 , 搜索方向 d_0 满足 $\langle d_0, g_0 \rangle < 0$, 终止参数 $\varepsilon \geqslant 0$, 令 k = 0
- 2. 若 $\|g_k\| \leq \varepsilon$, 算法终止; 否则, 进入下一步
- 3. 计算最优步长 $\alpha = \arg\min_{\alpha \geqslant 0} \{ f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k) \}$, 令 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$
- 4. 构造 d_{k+1} 使其与 d_0, \dots, d_k 关于矩阵 A 共轭, 令 $k \leftarrow k+1$, 返回步 2

定理 8.9 (二次终止性) 对严格凸二次函数 $\min f(x) = \frac{1}{2} x^{\mathrm{T}} A x - b^{\mathrm{T}} x$,向量组 d_0, d_1, \dots, d_{n-1} 关于 A 共轭。共轭方向发产生点列 $\{x_k\}$ 。则对任意 $0 \le k \le n-1$, x_{k+1} 是目标函数 在仿射集 $x_0 + \mathrm{span}[d_0, \dots, d_k]$ 上的最小值点,算法至多 n 步迭代后终止。

例 8.3 利用共轭梯度法求 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 或者说,利用共轭梯度法求 $\min x_1^2 + \frac{1}{2}x_2^2 + \frac{1}{2}x_3^2$

其中,

$$m{A} = egin{bmatrix} 1 & 0 & 0 \\ 0 & rac{1}{2} & 0 \\ 0 & 0 & rac{1}{2} \end{bmatrix}, \quad m{b} = egin{bmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

解 取初始点 $x_0 = (1,1,1)^T$, 迭代过程:

1.
$$\boldsymbol{x}_0 = (1, 1, 1)^{\mathrm{T}}, \ \boldsymbol{g}_0 = \boldsymbol{A}\boldsymbol{x}_0 - \boldsymbol{0} = (2, 1, 1)^{\mathrm{T}}, \ \beta_{-1} = 0, \ \boldsymbol{d}_0 = -\boldsymbol{g}_0.$$

$$\alpha = \arg \min f(\mathbf{x}_0 + \alpha \mathbf{d}_0)$$

= $(1 - 2\alpha)^2 + \frac{1}{2}(1 - \alpha)^2 + \frac{1}{2}(1 - \alpha)^2 = \frac{3}{5}$

2.
$$\boldsymbol{x}_1 = \boldsymbol{x}_0 + \alpha_0 \boldsymbol{d}_0 = \frac{1}{5} (-1, 2, 2)^{\mathrm{T}}, \ \boldsymbol{g}_0 = \boldsymbol{A} \boldsymbol{x}_1 - \boldsymbol{0} = \frac{1}{5} (-1, 2, 2)^{\mathrm{T}}, \ \beta_0 = \frac{\boldsymbol{g}_1^{\mathrm{T}} \boldsymbol{g}_1}{\boldsymbol{g}_0^{\mathrm{T}} \boldsymbol{g}_0} = \frac{2}{25}$$

$$d_1 = -g_1 + \beta_0 g_0 = -\frac{6}{25} (1, -2, -2)^{\mathrm{T}}$$

$$\alpha = \arg \min f(\mathbf{x}_0 + \alpha \mathbf{d}_0)$$

= $(1 - 2\alpha)^2 + \frac{1}{2}(1 - \alpha)^2 + \frac{1}{2}(1 - \alpha)^2 = \frac{3}{5}$

3.
$$x_2 = x_1 + \alpha_1 d_1 = 0$$
, $||g_2|| = 0$, 终止。

\overline{k}	$oldsymbol{x}_k$	$oldsymbol{g}_k$	β_{k-1}	d_k	α_k
0	$(1,1,1)^{\mathrm{T}}$	$(2,1,1)^{\mathrm{T}}$	0	$-(2,1,1)^{\mathrm{T}}$	$\frac{3}{5}$
1	$\frac{1}{5}(-1,2,2)^{\mathrm{T}}$	$\frac{1}{5}(-2,2,2)^{\mathrm{T}}$	$\frac{2}{25}$	$-\frac{6}{25}(1,-2,-2)^{\mathrm{T}}$	$\frac{5}{6}$
2	$(0,0,0)^{\mathrm{T}}$	$(0,0,0)^{\mathrm{T}}$			

定理 8.10 (收敛速度) 对严格凸二次函数 $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x$. 若系数矩阵 A 有 r 个相异特征根,则最优步长规则下的共轭梯度法至多 r 步迭代后终止。

矩阵的特征值和特征向量的计算 9

特征值理论 9.1

定理 9.1 (Gerschgorin 圆盘定理) 关于 A 有以下结论

- 1. 设 ${m A}=(a_{ij})_{n imes n}$, 则 ${m A}$ 的每一个特征值必属于下述某个圆盘; $\mid \lambda-a_{ii}\mid \leq r_i=1$ $\sum_{i \neq i} |a_{ij}| (j = 1, 2, \cdots, n)$
- 2. 若 A 的 m 圆盘组成并集 S(连通的) 且与余下的 n-m 个圆盘是分离的 (即不 相交),则S内恰包含m个A的特征值。特别,当S是由一个圆盘组成且与其他 n-1 个圆盘是分离的 (即为孤立圆盘), 则 S 中精确地包含 A 的一个特征值。

证明. 设 $x \neq 0$ 为 A 的特征向量,那么有

$$\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$$

取 x 中分量的绝对值最大的一个,设为 x_i

$$(\lambda - a_{ii})x_i = \sum_{\substack{j=1\\j\neq i}} a_{ij}x_j$$

$$\Rightarrow |\lambda - a_{ii}||x_i| = |\sum_{\substack{j=1\\j\neq i}} a_{ij}||x_j|$$

$$\Rightarrow |\lambda - a_{ii}| = |\sum_{\substack{j=1\\j\neq i}} a_{ij}| \left| \frac{x_j}{x_i} \right| < r_i$$

证毕!

定理 9.2 设 $\mathbf{A} \in \mathbb{R}^{n \times n}$ 为对称矩阵, 其特征值为 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, 其对应的特征向 量 x_1, x_2, \cdots, x_n 组成规范化正交组,则

- 1. $\lambda_n \leq \frac{(\boldsymbol{A}\boldsymbol{x}, \boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})} \leq \lambda_1 \ (\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x} \neq 0)$
- 2. $\lambda_1 = \max_{\boldsymbol{x} \in \mathbb{R}^n} R(\boldsymbol{x})$ 3. $\lambda_n = \min_{\boldsymbol{x} \in \mathbb{R}^n} R(\boldsymbol{x})$

幂法 9.2

9.2.1 幂法

一种计算矩阵主特征值 (按模最大特征值) 及其特征向量的迭代法。设 $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$, 有一组线性无关的特征向量组

$$Ax_i = \lambda_i x_i \quad (i = 1, 2, \cdots, n)$$

其中 $\{x_1, x_2, \cdots, x_n\}$ 线性无关,且满足: $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$

注 基本思想: 任取初始向量 $v_0 \in \mathbb{R}^n$ 且 $v_0 \neq 0$

$$\left\{egin{array}{l} oldsymbol{v}_1 = oldsymbol{A} oldsymbol{v}_0 \ oldsymbol{v}_2 = oldsymbol{A} oldsymbol{v}_1 = oldsymbol{A}^2 oldsymbol{v}_0 \ oldsymbol{v}_{k+1} = oldsymbol{A} oldsymbol{v}_k = oldsymbol{A}^{k+1} oldsymbol{v}_0 \ oldsymbol{dagger} \end{array}
ight.$$

设
$$\boldsymbol{v}_0 = \sum_{i=1}^n \alpha_i \boldsymbol{x}_i$$
, $\boldsymbol{v}_k = \boldsymbol{A}^k \boldsymbol{v}_0 = \boldsymbol{A}^k \left(\sum_{i=1}^n \alpha_i \boldsymbol{x}_i\right) = \sum_{i=1}^n \alpha_i \lambda_i^k \boldsymbol{x}_i$, 两边同时除以 λ_1^k
$$\frac{\boldsymbol{v}_k}{\lambda_1^k} = \alpha_1 \boldsymbol{x}_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k \boldsymbol{x}_i \approx \alpha_1 \boldsymbol{x}_1$$

有

$$\begin{aligned} \boldsymbol{v}_{k+1} &\approx \alpha_1 \lambda_1^{k+1} \boldsymbol{x}_1 \\ \boldsymbol{v}_k &\approx \alpha_1 \lambda_1^k \boldsymbol{x}_1 \\ \lim_{k \to \infty} \frac{\boldsymbol{v}_k}{\lambda_1^k} &= \alpha_1 \boldsymbol{x}_1 \quad \lim_{k \to \infty} \frac{(\boldsymbol{v}_{k+1})_i}{(\boldsymbol{v}_k)_i} &= \lambda_1 \end{aligned}$$

9.2.2 改进幂法

设
$$\boldsymbol{u}_0 = \boldsymbol{v}_0 \neq \boldsymbol{0} (\alpha_1 \neq 0)$$

迭代
$$\boldsymbol{v}_k = \boldsymbol{A}\boldsymbol{u}_{k-1}$$
, $\mu_k = \max(\boldsymbol{v}_k)$, $k = 1, 2, \cdots$

规范化:
$$\boldsymbol{u}_k = \boldsymbol{v}_k/\mu_k$$

仍然设
$$\boldsymbol{v}_0 = \sum\limits_{i=1}^n \alpha_i \boldsymbol{x}_i$$
,那么

$$\boldsymbol{u}_{k} = \frac{\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \boldsymbol{x}_{i}}{\max \left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \boldsymbol{x}_{i}\right)} \stackrel{\text{pherical problem}}{=} \frac{\alpha_{1} \boldsymbol{x}_{1} + \sum_{i=2}^{n} \alpha_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \boldsymbol{x}_{i}}{\max \left(\alpha_{1} \boldsymbol{x}_{1} + \sum_{i=2}^{n} \alpha_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \boldsymbol{x}_{i}\right)} = \frac{\boldsymbol{x}_{1}}{\max \left(\boldsymbol{x}_{1}\right)}, \ k \to \infty$$

同时

$$\mu_k = \max\left(\boldsymbol{v}_k\right) = \lambda_1$$

迭代序列 規范化序列
$$m{v}_1 = m{A} m{u}_0 = m{A} m{v}_0 \ m{v}_2 = rac{m{A}^2 m{v}_0}{\max(m{A} m{v}_0)} \ m{u}_2 = rac{m{A}^2 m{v}_0}{\max(m{A}^2 m{v}_0)} \ m{v}_k = rac{m{A}^k m{v}_0}{\max(m{A}^{k-1} m{v}_0)} \ m{u}_k = rac{m{A}^k m{v}_0}{\max(m{A}^k m{v}_0)}$$

定理 9.3 (改进幂法) 设(1) $A=(a_{ij})\in\mathbb{R}^{n\times n}$ 有 n 个线性无关的特征向量;(2)设 A的特征值满足: $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$ 且 $Ax_i = \lambda_i x_i \ (i = 1, 2, \cdots, n)$; (3) $\{u_k\}, \{\nu_k\}$ 由改进幂法得到,则有:

1.
$$\lim_{k \to \infty} \boldsymbol{u}_k = \frac{\boldsymbol{x}_1}{\max(\boldsymbol{x}_1)}$$
2. $\mu_k = \max(\boldsymbol{v}_k) = \lambda_1$

2.
$$\mu_k = \max(\boldsymbol{v}_k) = \lambda_1$$

3. 且收敛速度
$$r = \left| \frac{\lambda_2}{\lambda_1} \right|$$
 确定。

2023 春考试题目 10

例 10.1 已知 f(1) = 5, f'(1) = 7, f'(0) = 1, 试问满足上插值述条件的多项式是否适定? 若不适定请说明理由;若适定,则求出该多项式并给出误差估计.★★★★

解 设插值多项式 $p(x) = a_0 + a_1 x + a_2 x^2$ 满足题述条件,那么有

$$\begin{cases} a_0 + a_1 + a_2 = 5 \\ a_1 + 2a_2 = 7 \\ a_1 = 1 \end{cases}$$

解得 $a_0 = 1$, $a_1 = 1$, $a_2 = 3$, 方程组有唯一解, 插值多项式适定。

设插值误差为
$$R(x)$$
,并做 $\varphi(t)=f(t)-p(t)-W(t)$ 满足 $\varphi(x)=0$,即
$$W(x)=R(x)$$

因为 R(x) 满足 R(1) = R'(1) = 0,故而设 $W(t) = (mt + n)(t - 1)^2$,由 W'(0) = 0可得

$$m(0-1)^2 + (m \cdot 0 + n) \cdot 2 \cdot (0-1) = 0$$

解得 m=2n

两次利用罗尔定理可得

$$\varphi'''(\xi) = f'''(\xi) - 3!m = 0$$

解得
$$m = \frac{f'''(\xi)}{6}$$
。故而

$$R(x) = \frac{f'''(\xi)}{12}(x-1)^2(2x+1)$$

例 10.2 设 f(x) = 0 有单根 x^* , $x = \varphi(x)$ 是 f(x) = 0 的等价方程,若 $\varphi(x) = x - m(x)f(x)$, 且所有函数都充分光滑。证明:当 $m(x^*) \neq \frac{1}{f'(x^*)}$ 时, $x_{k+1} = \varphi(x_k)$ 至多是一阶收敛的;当 $m(x^*) = \frac{1}{f'(x^*)}$ 时, $x_{k+1} = \varphi(x_k)$ 至少是二阶收敛的。

证明. 由 x^* 是 f(x) = 0 的单根,有

$$f(x^*) = 0, f'(x^*) \neq 0$$

由 $\varphi(x) = x - m(x)f(x)$,有

$$\varphi'(x) = 1 - m'(x)f(x) - m(x)f'(x)$$
$$\varphi'(x^*) = 1 - m'(x)^*f(x^*) - m(x^*)f'(x^*) = 1 - m(x^*)f'(x^*)$$

由迭代阶的定理, 当 $m(x^*) \neq 1/f'(x^*)$ 时, $\varphi'(x^*) = 1 - m(x^*)f'(x^*) \neq 0$. 此时若 $|\varphi'(x^*)| < 1$,则迭代法 $x_{k+1} = \varphi(x_k)$ 一阶收敛;若 $|\varphi'(x^*)| \geq 1$,则迭代法 $x_{k+1} = \varphi(x_k)$ 不收敛;故迭代法是最多是一阶收敛的。

 $m(x^*)=1/f'(x^*)$ 时, $\varphi'(x^*)=1-m(x^*)f'(x^*)=0$. 此时则迭代法 $x_{k+1}=\varphi(x_k)$ 至少是二阶收敛的.

例 10.3 对下列线性代数方程组给出使 Jacobi 迭代法和 Gauss-Seidel 迭代法均收敛的 迭代格式,要求分别写出这两个迭代格式,并说明迭代法收敛的理由。☆★☆★★

$$\begin{cases} 2x_1 - x_2 + x_4 = 1\\ x_1 - x_3 + 5x_4 = 6\\ x_2 + 4x_3 - x_4 = 8\\ -x_1 + 3x_2 - x_3 = 3 \end{cases}$$

解

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & 1 & 1 \\ 1 & 0 & -1 & 5 & 6 \\ 0 & 1 & 4 & -1 & 8 \\ -1 & 3 & -1 & 0 & 3 \end{bmatrix} \xrightarrow{\substack{r_2 \leftrightarrow r_4 \\ r_1 \times 10 + r_2 \\ }} \begin{bmatrix} 19 & -7 & -1 & 10 & 10 \\ -1 & 3 & -1 & 0 & 3 \\ 0 & 1 & 4 & -1 & 8 \\ 1 & 0 & -1 & 5 & 6 \end{bmatrix}$$

因其变化后为等价方程组,且严格对角占优,故而 Jacobi 迭代法和 Gauss-Seidel 迭代 法均收敛。 Jacobi 迭代格式为:

$$\begin{cases} x_1^{(m+1)} = \frac{1}{19} (7x_2^{(m)} + x_3^{(m)} - 10x_4^{(m)} + 10) \\ x_2^{(m+1)} = \frac{1}{3} (x_1^{(m)} + x_3^{(m)} + 3) \\ x_3^{(m+1)} = \frac{1}{4} (-x_2^{(m)} + x_4^{(m)} + 8) \\ x_4^{(m+1)} = \frac{1}{5} (-x_1^{(m)} + x_3^{(m)} + 6) \end{cases}$$
 $(m = 0, 1, 2, \cdots)$

Gauss-Seidel 迭代格式:

$$\begin{cases} x_1^{(m+1)} = \frac{1}{19} (7x_2^{(m)} + x_3^{(m)} - 10x_4^{(m)} + 10) \\ x_2^{(m+1)} = \frac{1}{3} (x_1^{(m+1)} + x_3^{(m)} + 3) \\ x_3^{(m+1)} = \frac{1}{4} (-x_2^{(m+1)} + x_4^{(m)} + 8) \\ x_4^{(m+1)} = \frac{1}{5} (-x_1^{(m+1)} + x_3^{(m+1)} + 6) \end{cases}$$
 $(m = 0, 1, 2, \cdots)$

解 切比雪夫多项式为

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_2(x) = 2x^2 - 1$
 $T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 3x$

有

$$\frac{f(x) - p(x)}{3} = \frac{T_3(x)}{4}$$
$$\Rightarrow p(x) = 2x^2 + \frac{13}{4}x$$

解因为

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{0} f(x)dx + \int_{0}^{1} f(x)dx$$

$$\approx \left[\frac{1}{6}f(-1) + \frac{4}{6}f(-0.5) + \frac{1}{6}f(0)\right] + \left[\frac{1}{6}f(0) + \frac{4}{6}f(0.5) + \frac{1}{6}f(1)\right]$$

$$\approx \frac{1}{6}[1 + 4 \times 4 + 6 + 6 + 4 \times 9 + 2] = \frac{67}{6} \approx 11.1667$$

误差

$$|I - S_2| \le \left| \int_{-1}^0 \frac{f^{(4)}(\xi_1)}{4!} (x+1)(x+0.5)^2 (x-0) dx \right| + \left| \int_0^1 \frac{f^{(4)}(\xi_2)}{4!} (x-0)(x-0.5)^2 (x-1) dx \right|$$

$$\le \frac{M}{24} \left[\int_{-1}^0 \left| (x+1)(x+0.5)^2 (x-0) \right| dx + \int_0 \left| (x-0)(x-0.5)^2 (x-1) \right| dx \right]$$

$$\le \frac{M}{12} \int_0^1 \left| (x-0)(x-0.5)^2 (x-1) \right| dx = \frac{M}{6} \int_0^{0.5} t^2 (0.25 - t^2) dt = \frac{M}{6} \times 0.0042$$

$$\le 0.008M$$

例 10.6 设 n 阶实矩阵 A 的特征值满足: $\lambda_1 = \lambda_2, \lambda_1 > |\lambda_3| \geq \cdots \geq |\lambda_n|$, 试讨论用幂 法如何求主特征值,并分析收敛性.

例 10.7 设多元函数 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n, \forall x, y \in D_0 \subset D$ 都有 $||G(x) - G(y)|| \le ||x - y||$, 则称 G 在 D_0 为非膨胀映射,若当 $x \ne y$ 时不等式严格成立,则称 G 在 D_0 为严格非膨胀映射.

证明. 设 $\varphi(x) = \|x - G(x)\|$

显然,设 $\varphi(x) = \|x - G(x)\|$ 在 D_0 上连续,而 D_0 为闭集,故 $\varphi(x)$ 在 D_0 上有最小值,记为 $\varphi(x^*) = \min_{x \in D_0} \|x - G(x)\|$

若 $G(x^*) \neq x^*$,则有

$$\varphi(G(x^*)) = \|G(x^*) - G(G(x^*))\| < \|x^* - G(x^*)\|$$

矛盾!

所以必有 $G(x^*) = x^*$ 。