

Corporación Favorita: Time-Series Forecasting

Rafael Velasco Huerta - A01283168

Overview

Overview del problema

Corporación Favorita es una empresa ecuatoriana de tiendas de autoservicio, inversiones inmobiliarias, generación eléctrica, producción de alimentos y productos de primera necesidad, comercio, y ferretería.

En este caso nos estaremos enfocando en las tiendas de autoservicio, en donde existe la necesidad de predecir las ventas de diferentes familias de productos con el objetivo de que las personas puedan obtener la cantidad de productos que necesitan en el momento en el que lo necesitan.

Implicaciones

Conocer las posibles ventas a futuro puede tener impacto en algunas áreas como:

Compras e Inventarios

Ej. Productos perecederos

Planeación financiera

Ej. Manejo de flujo de efectivo

Alineación a objetivos

Ej. Correción de estrategias

Metodología

Metodología utilizada

CRISP-DM

Business understanding – Qué necesita el negocio?

Data understanding – Qué datos tenemos / están limpios?

Data preparation – Cómo preparamos los datos para modelarlos?

Modeling – Qué técnicas de modelado utilizaremos?

Evaluation – Qué modelo cumple mejor con las necesidades?

Deployment – Cómo podemos darle acceso a las partes interesadas?

Pasos

Análisis Descriptivo

Datasets utilizados

- 1) train.csv
- 2) test.csv
- 3) oils.csv
- 4) transactions.csv
- 5) holiday_events.csv
- 6) stores.csv

	id	date	store_nbr	family	sales	onpromotion
0	0	2013-01-01	1	AUTOMOTIVE	0.0	0
1	1	2013-01-01	1	BABY CARE	0.0	0
2	2	2013-01-01	1	BEAUTY	0.0	0
3	3	2013-01-01	1	BEVERAGES	0.0	0

6]:		date	type	locale	locale_name	description	transferred
	0	2012-03-02	Holiday	Local	Manta	Fundacion de Manta	False
	1	2012-04-01	Holiday	Regional	Cotopaxi	Provincializacion de Cotopaxi	False
	2	2012-04-12	Holiday	Local	Cuenca	Fundacion de Cuenca	False
	3	2012-04-14	Holiday	Local	Libertad	Cantonizacion de Libertad	False
	4	2012-04-21	Holiday	Local	Riobamba	Cantonizacion de Riobamba	False

sto	re_nbr	city	state	type	cluster
0	1	Quito	Pichincha	D	13
1	2	Quito	Pichincha	D	13
2	3	Quito	Pichincha	D	8
3	4	Quito	Pichincha	D	9
4	5	Santo Domingo	Santo Domingo de los Tsachilas	D	4

[5]:	<pre>df_transactions.head()</pre>							
[5]:		date	store_nbr	transactions				
	0	2013-01-01	25	770				
	1	2013-01-02	1	2111				
	2	2013-01-02	2	2358				
	3	2013-01-02	3	3487				
	4	2013-01-02	4	1922				

[7]:	df	_oils.head	()
[7]:		date	dcoilwtico
	0	2013-01-01	NaN
	1	2013-01-02	93.14
	2	2013-01-03	92.97
	3	2013-01-04	93.12
	4	2013-01-07	93.20

1) Ventas mensuales por año

- Las ventas tienen un crecimiento cada año desde el año 2013 hasta el 2017
- Todas las tiendas tienen históricamente un máximo en el mes 12, diciembre
- Mes puede ser una columna significativa para la predicción de ventas

2) Ventas mensuales por cluster

- Los cinco clústeres con mayores ventas mensuales consistentes durante todo el periodo analizado son el 6, 8, 10,11 y 14
- Prácticamente todas las tiendas tienen históricamente un disminución local en agosto
- Cluster puede tener un efecto en la predicción de ventas

3) Ventas mensuales por tipo de tienda

- Las ventas tienen un crecimiento cada año desde el año 2013 hasta el 2017
- Todas las tiendas tienen históricamente un máximo en el mes 12, diciembre
- Mes puede ser una columna significativa para la predicción de ventas

4) Ventas mensuales por familia de productos

- Las tres familias de productos con más ventas históricamente son Grocery I, Produce y Beverages
- Familias como Automotive, Baby Care, Beauty, Hardware, Home Appliances, Lawn and Garden, Pet Supplies, Electronics y Seafood tienen ventas mínimas comparadas con las demás

Análisis Estadístico

Análisis Estadístico: Hallazgos

sales	
3000888.0000	count
357.77575	mean
1101.99772	std
0.00000	min
0.00000	25%
11.00000	50%
195.84725	75%
124717.00000	max

std v	std	max	min	mean	
					year
7453 538865.4149	734.07453	46271.00000	0.00000	216.47953	2013
8445 1009591.7886	1004.78445	45361.00000	0.00000	322.93979	2014
7800 1210611.6783	1100.27800	40351.46000	0.00000	371.35719	2015
4033 1671177.5670	1292.74033	124717.00000	0.00000	443.79030	2016
9131 1836543.4840	1355.19131	38422.62500	0.00000	480.12447	2017

va	std	max	min	mean	
					type
3.582316e+0	1892.700760	76090.000	0.0	705.878743	Α
9.555629e+0	977.528999	89576.360	0.0	326.739714	В
3.379224e+0	581.310901	45361.000	0.0	197.263301	С
9.326320e+0	965.728732	124717.000	0.0	350.979407	D
5.797643e+0	761.422519	16542.902	0.0	269.121301	E

1) Ventas por año:

- La media de ventas estuvo subiendo todos los años desde 2013 en \$216.48 hasta \$480.12 en 2017

2) Ventas por tipo de tienda

- El tipo de tienda A a
 pesar de tener la mayor
 media tiene la mayor
 varianza
- El tipo de tienda D tiene un récord de ventas con una venta de \$124717

Análisis Estadístico: Hallazgos

Ventas por familia:

- La gran mayoría de familias no tiene ventas mensuales a 20,000
- Grocery y Carnes tienen los récords de ventas mensuales

var	std	max	min	mean	
					family
38.33703	6.19169	255.00000	0.00000	6.10124	AUTOMOTIVE
0.46385	0.68106	116.00000	0.00000	0.11053	BABY CARE
22.98884	4.79467	136.00000	0.00000	3.71572	BEAUTY
5326320.73551	2307.88231	25413.00000	0.00000	2385.79315	BEVERAGES
0.30028	0.54798	61.00000	0.00000	0.07080	BOOKS
135605.38669	368.24637	4551.29800	0.00000	463.33625	BREAD/BAKERY
253.67296	15.92711	1783.00000	0.00000	8.37047	CELEBRATION
539756.89626	734.68149	11377.00000	0.00000	1072.41674	CLEANING
451516.31596	671.94964	5636.00000	0.00000	709.15489	DAIRY
44275.34481	210.41707	2118.32500	0.00000	265.13507	DELI
26187.90782	161.82678	3110.00000	0.00000	171.42052	EGGS
105606.34880	324.97130	14541.55000	0.00000	154.76695	FROZEN FOODS
8261076.48349	2874.20884	124717.00000	0.00000	3776.97210	GROCERYI
964.87426	31.06242	2931.00000	0.00000	21.58405	GROCERY II
2.68317	1.63804	49.00000	0.00000	1.13783	HARDWARE
1293.67166	35.96765	1935.00000	0.00000	20.47034	HOME AND KITCHEN I
979.61633	31.29882	1568.00000	0.00000	16.72242	HOME AND KITCHEN II
0.94003	0.96955	15.00000	0.00000	0.45748	HOME APPLIANCES
44064.97038	209.91658	2504.00000	0.00000	176.19803	HOME CARE
194.49933	13.94630	147.00000	0.00000	7.16063	LADIESWEAR
150.88335	12.28346	712.00000	0.00000	6.03548	LAWN AND GARDEN
89.76653	9.47452	1059.00000	0.00000	7.18213	LINGERIE
16016.32914	126.55564	4821.00000	0.00000	85.18782	LIQUOR,WINE,BEER
36.10198	6.00849	79.00000	0.00000	2.92908	MAGAZINES
207852.55864	455.90850	89576.36000	0.00000	341.84996	MEATS
51307.68940	226.51201	7504.00000	0.00000	270.43251	PERSONAL CARE
58.64270	7.65785	106.00000	0.00000	3.92126	PET SUPPLIES
111.18642	10.54450	269.00000	0.00000	6.18686	PLAYERS AND ELECTRONICS
160409.56682	400.51163	12143.20100	0.00000	350.53229	POULTRY
10961.07324	104.69514	912.56800	0.00000	96.77020	PREPARED FOODS
4780700.61719	2186.48133	17850.61500	0.00000	1349.35212	PRODUCE
472.88577	21.74594	1332.00000	0.00000	2.96160	SCHOOL AND OFFICE SUPPLIES
1064.56208	32.62763	274.44000	0.00000	22.16319	SEAFOOD

Feature Engineering

Feature Engineering

Promedio, máximo y mínimo móvil de ventas de cada familia de productos en cada tienda, para:

- Últimos 23 días (al predecir a 16 días, se pueden obtener al menos los 7 últimos datos)
- Últimos 31 días (promedio mensual)
- <u>6 columnas en total</u>

Promedio, máximo y mínimo <u>móvil</u> de ventas de cada familia de productos en cada tienda el último mismo día de la semana <u>(último lunes, último martes, etc.)</u>

- Últimos 4 mismos días de la semana (al predecir a 16 días, se pueden obtener al menos los 2 últimos datos)
- Últimos 5 mismos días de la semana
- Últimos 6 mismos días de la semana
- 9 columnas en total

Ejemplo	sales	weekDay_mean_last4	mean_last23days
Penúltimo registro	1500	1459.34	9530
Último registro	1400 👡	235.88	1239
Primera predicción		1450	1688.84

Modelado

Modelos / Algoritmos utilizados

DecisionTree (Regressor)

Una árbol de decisión que combina una secuencia de pruebas a los datos para ajustar su predicción

RandomForest (Regressor)

Una gran cantidad de árboles de decisión que operan como un conjunto

3 pasos:

Creación de modelo

Ajuste a los datos

Predicción con nuevos datos

Experimentos

- 3,000,888 filas en el set de datos de entrenamiento
- Alta cantidad de procesamiento y cómputo necesario
- Dado que los recursos del proyecto son limitados, se optó por realizar <u>pruebas con entrenamientos de muestras más</u> <u>pequeñas</u>

15,000 últimas filas

25,000 últimas filas

150,000 últimas filas

1,500,000 últimas filas

Resultados

Resultados finales: Mean Squared Logarithmic Error

Modelo / Tamaño de la muestra	15,000 filas	25,000 filas	150,000 filas	1,500,000 filas
RandomForest Regressor	0.47824	<u>0.46888</u>	0.47800	Kernel died
DecisionTree Regressor	0.58283	0.55402	0.57101	Kernel died

Mejor Modelo: Random Forest Regressor (25,000 filas)

Siguientes pasos

Siguientes pasos:

- Evaluar más tipos de modelos y continuar con Feature Engineering para buscar generar más variables relevantes para el modelo
 - Buscar plataforma para correr los modelos con más registros/información
 - Buscar la manera de automatizar la llegada de información y generar un pipeline que corra el modelo cada cierto periodo de tiempo
 - Hacer el modelo un producto y establecer canales y roles de acceso

Bibliografía: Links

Metodología:

Hotz, N. (2022, April 16). What is CRISP DM? Data Science Process Alliance.
 Retrieved June 15, 2022, from
 https://www.datascience-pm.com/crisp-dm-2/

Imágenes;

- https://www.freepik.es/vector-gratis/cajero-isometrico-autoservicio_84
 85241.htm#query=autoservicio&position=18&from_view=search
- https://www.flaticon.es/icono-gratis/inventario_2897785
- https://www.subpng.com/png-borbyz/download.html
- https://www.flaticon.es/icono-gratis/metas_3391881

Gracias!

