

RANGKAIAN PENGUAT TRANSISTOR

Nama : Septian Bagus Jumantoro

 $Kelas \hspace{1cm} : \hspace{1cm} 1-D4 \hspace{1cm} Teknik \hspace{1cm} Komputer \hspace{1cm} B$

NRP : 3221600039

Dosen : Heny Yuniarti S.ST., M.T.

Mata Kuliah : Praktikum Rangkaian Elektronika 2

Hari/Tgl. Praktikum : Senin, 14 Maret 2022

BAB 4

RAINGKAIAN PENGUAT TRANSISTOR

VIAULUT 1.L

- 1. Mahasiswa mampu menahani karakteristik dasar dari rongkaian amplifier
- 2. Mahsiswo mampu menahami maksud dari 3 jenis upng digunikan pada transistar
- 3. Mahasiswa mampa memahani penggunaan transistor

A.2 DASAR TEORI

1. Common Collector
Penguat CC Seperti le dupat dilitat laupkrya short circuit dengin mengano:
sinyal AC. C odalah common terminal dari V: dan Vo. Vorenci Vollace culput
terletak pada emitter yang mengikuti leupropun input, basa disebut emitter follower.

2. Bios DC complifier CC

o) Emmiter - Rangkaian bias umpan balik

Daupa tahan emmiter the dapat meningkot secure stabil, sebagai baikut:

- : Vcc = Ib x Rb + Vbe + Ie x Re = Ib x Rb + Vbe + (1+ B) Ib Rb
- : Ib = Vac Vbe Wb + Vkc Vbe Rb + BRe

Ie = ib + fc = (1+B) |b = B Tb

Ve : Te x Re . (1+B) lb Re = BlbR

b) Rangkaian bias litik konstan Mdalah varapaian bias indupenden dari nilar B. karena B tidak munan di nilar akhir, maka diulumdan unluk signifikan secara Stabil

3. Analisa AC untuk penguat CC

Karena R: 22 (1thfe) Roe, makes Ay-1 A1 = (1b + hfe 1b) / Ib = 1 + hfr Kesimpulannya hahwa CC:

- .> 2: songat lah besor
- 1 . VA Y.
- -> Ai dai CC amplifier sedikit lebih herar daripada CE amplifier. Ai CC amplifier = 1 + hfe
- 12 Zo sargutlah kecil
- ·> Vo sama duran Vi

CC tidak dapat dipakai padu legongan amplifikasi, tapi untuk punccokan impedansi. CC amplifier adalah sesuatu upng digunakan pada penerapan daripada penerapan arus.

A. 3 ALAT PERCOBARN

- 1. KL 200 Linier Circuit Lab
- 2. Modul Parcobaon: KL-23003
- 3. Instrument Percoboon: .. Multimeter ... Oscilloscope
- 1. Basic hand tools
- 5. Mater: KL-25003

4.4. PROSERUR PERCOBARN

- 4.4.1 Percoban Uji Statis
 - 1. Masukkan rangkalan
 - 2. Gurakan voltmiter untuk mengukur Vc x Vb, kunudian altur VR2 (VRloka) untuk mengubah Vb, den catat peninahan Ve

4.4.2 Parcobocan Uji Diramis

- 1. Maxikkan rangkaian
- 2. Alur VA2 (VR lolk 2) hingga Ve = 1/2 Vec
- 3. Huburgkan signal generator pada input den oscilloscope pada output. Alur output signal generator ke Ac 1 KH2 den railkan sedikit deni sedikit
- 4. Gurakan Oscilloscope untuk merchalar Va. Vo dan catat
- 5. Atur resistansi pada VA2, kemudian omati perubahan singil keluaran

4.5 HASIL PERCOBARN

A.5.1

Vb	2,01V	3.021	1.01V	51
	1.39 V			

A.5.2

Va.(Upp)	Vb(vpp)	Vo (Vpp)	Ţ _e	I _b
16.6 V				14,0401
Av	Ai	Ap	2in	Vpp
1,46	299.1	436,68	1.394	10 V

Voltage poda Signal generator: 5 V Fretuens: pado Signal generator: 1 Hz Besor potensio: 70 %

