Modelling, Simulation, and Analysis

Subject Code: 23AID201

Session 2024-25 (Third Semester)

Section F: AI&DS

Lecture Contents after Mid-Semester

"Topic: Frequency Response and Bode Plots"

Read the from Ogata, Chapter 7 from pages 398 to 427.

Course Instructor:

Dr. Yogesh Singh

PhD in Mechanical Engineering Former PMRF Ph.D. Scholar Specialization in Robotics in Healthcare and Rehabilitation

Frequency Response

System dynamics embedded in G(s) is

- Linear
- Time-invariant
- Stable

The output $y_{ss}(t)$ has three characteristics:

- It has the same frequency as the input sinusoid.
- The amplitude of the $y_{ss}(t)$, i.e., Y is 'scaled' factor of the amplitude if input (X). The scaling factor depends on $|G(j\omega)|$.
- The output $y_{ss}(t)$ is phase shifted relative to the input x(t) given by ϕ .

Frequency Response

Example 7-1 (Ogata):

Q. Find the steady state response for a sinusoidal input?

$$x(t) = X \sin(\omega t) \longrightarrow Input$$

$$y_{ss}(t) = Y \sin(\omega t + \phi) \longrightarrow Output$$

$$\begin{cases} Y = X * |G(j\omega)| \\ \phi = tan^{-1} \left(\frac{Im(G(j\omega))}{Re(G(j\omega))}\right) \end{cases}$$

$$G(j\omega) = \frac{K}{T(j\omega) + 1} = \frac{K}{1 + j(\omega T)}$$

$$|G(j\omega)| = \frac{K}{\sqrt{1 + \omega^2 T^2}}$$

$$\emptyset = ang(G(j\omega)) = \tan^{-1}\frac{Im(num)}{Re(num)} - \tan^{-1}\frac{Im(den)}{Re(den)}$$

$$\emptyset = \tan^{-1}\frac{0}{K} - \tan^{-1}\frac{\omega T}{1} = -\tan^{-1}\omega T$$

$$y_{ss}(t) = \frac{XK}{\sqrt{1 + \omega^2 T^2}} \sin(\omega t - \tan^{-1} \omega T)$$

Standard Forms of G(s)

0.1

$$G(j\omega) = K \longleftarrow$$
 Substitute $s = j\omega$

 10^{4}

10⁵

$$M_{dB} = 20 \log_{10}|G(j\omega)| \qquad \phi$$
$$= 20 \log_{10}|K|$$

Bode Plots

10²

10³

10¹

Case 2: G(s) = s or G(s) = $\frac{1}{s}$

$$G(s) = s \implies G(j\omega) = j\omega$$

$$G(s) = \frac{1}{s} \Longrightarrow G(j\omega) = \frac{1}{j\omega} = -\frac{1}{\omega}j$$

$$M_{dB} = 20 \log_{10} |j\omega| = \mathbf{20} \log_{10} \boldsymbol{\omega}$$

$$M_{dB} = 20 \log_{10} \left| \frac{1}{j\omega} \right| = -20 \log_{10} \omega$$

$$\phi = \tan^{-1}\frac{\omega}{0} = 90^{\circ}$$

Bode Plots

Case 3a: G(s) =
$$\frac{1}{1+sT}$$

$$X(t)$$
 $G(s)$ $Y(s)$

$$G(s) = \frac{1}{1 + sT} \implies G(j\omega) = \frac{1}{1 + j\omega T}$$

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$

$$M_{dB} = -20 \log_{10} \sqrt{1 + \omega^2 T^2}$$

Case 3a: G(s) =
$$\frac{1}{1+sT}$$

$$\begin{array}{c|c}
x(t) & y(t) \\
\hline
X \sin(\omega t) & Y \sin(\omega t + \phi)
\end{array}$$

$$G(s) = \frac{1}{1 + sT} \implies G(j\omega) = \frac{1}{1 + j\omega T}$$

$$M_{dB} = -20 \log_{10} \sqrt{1 + \omega^2 T^2}$$

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$

$$\phi = -\tan^{-1} \omega T$$

- $M_{dB} = 0 \implies |G(j\omega)| = 1 \implies Y = X$ $Y = X * |G(j\omega)|$
- $2 \quad M_{dB} < 0 \quad \Rightarrow \quad 0 < |G(j\omega)| < 1 \quad \Rightarrow \quad Y \iff X \qquad \text{Amp of O/P}$

$$Y = X * |G(j\omega)|$$

Amp of I/P

$$G(s) = \frac{1}{1+sT}$$

Has the characteristics of a "low pass filter"

Case 3a: G(s) =
$$\frac{1}{1+sT}$$

$$X(t)$$
 $G(s)$ $Y(s)$

$$G(s) = \frac{1}{1 + sT} \implies G(j\omega) = \frac{1}{1 + j\omega T}$$

$$M_{dB} = -20 \log_{10} \sqrt{1 + \omega^2 T^2}$$

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$

$$\phi = -\tan^{-1} \omega T$$

dΒ

 $\frac{1}{1+sT}, 1+sT$

Case 3b: G(s) = 1 + sT

$$G(s) = 1 + sT \implies G(j\omega) = 1 + j\omega T$$

$$M_{dB} = 20 \log_{10} \sqrt{1 + \omega^2 T^2}$$

$$if \ \omega \ll 1/T \qquad if \ \omega \gg 1/T$$

$$M_{dB} = 0 \qquad M_{dB} = 20 \log_{10}(\omega T)$$

$$|G(j\omega)| = \sqrt{1 + \omega^2 T^2}$$
 $\phi = \tan^{-1} \omega T$

Case 3a: G(s) =
$$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$X(t)$$
 $G(s)$ $Y(s)$

Standard Forms of G(s)

$$\frac{\omega_n^2}{s^2+2\xi\omega_n s+\omega_n^2}$$
 , $s^2+2\xi\omega_n s+\omega_n^2$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

$$G(s) = \frac{1}{1 + 2\xi \frac{s}{\omega_n} + \left(\frac{s}{\omega_n}\right)^2}$$

$$|G(j\omega)| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}} \qquad \qquad \text{if } \omega \ll \omega_n$$

$$\Rightarrow M_{dB} = 0$$

$$M_{dB} = -20 \log_{10} \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}$$

Generic 2nd Order System
$$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} , s^2 + 2\xi\omega_n s + \omega_n^2$$

$$\phi = -\tan^{-1}\left(\frac{2\xi\frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

$$G(j\omega) = \frac{1}{1 + 2\xi \frac{j\omega}{\omega_n} + \left(\frac{j\omega}{\omega_n}\right)^2}$$

$$G(s) = \frac{1}{1 + 2\xi \frac{s}{\omega_n} + \left(\frac{s}{\omega_n}\right)^2} \qquad G(j\omega) = \frac{1}{1 - \left(\frac{\omega^2}{\omega_n^2}\right) + j\left(2\xi \frac{\omega}{\omega_n}\right)}$$

if
$$\omega \ll \omega_n$$

$$\implies M_{dB} = 0$$

if
$$\omega \gg \omega_n$$

$$M_{dB} = -20 \log_{10} \frac{\omega^2}{\omega_n^2}$$

$$\Rightarrow M_{dB} = -40 \log_{10} \frac{\omega}{\omega_n}$$

Case 3a: G(s) =
$$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$X(t)$$
 $G(s)$ $Y(s)$

$$M_{dB} = -20 \log_{10} \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}$$

$$dE$$

Standard Forms of G(s)

$$if \ \omega \ll \omega_n$$
 $if \ \omega \gg \omega_n$
 $\Rightarrow M_{dB} = 0$ $\Rightarrow M_{dB} = -40 \log_{10} \frac{\omega}{\omega_n}$

$$\phi = -\tan^{-1} \left(\frac{2\xi \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n} \right)^2} \right)$$

$$\frac{\omega_n^2}{s^2+2\xi\omega_n s+\omega_n^2}$$
 , $s^2+2\xi\omega_n s+\omega_n^2$

Case 3a: G(s) =
$$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

x(t) y(t) G(s) Y(s) X(s)

Resonant Frequency of a 2nd Order System

Frequency at which $|G(j\omega)|$ is maximum

 $|G(j\omega)| = \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}$

For max $|G(j\omega)|$, denominator should be minimum

 $\omega = \omega_n \sqrt{1 - 2\xi^2}$

Resonant frequency (ω_r)

Standard Forms of G(s)

$$\frac{\omega_n^2}{s^2+2\xi\omega_n s+\omega_n^2}$$
 , $s^2+2\xi\omega_n s+\omega_n^2$

Case 3a: G(s) =
$$\frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

Resonant Frequency

$$\omega_r = \omega_n \sqrt{1-2\xi^2}$$
 at $\xi=0$; $\omega_r=\omega_n$ No damping
$$\text{Valid for } 0 \leq \xi \leq 0.707$$

For $\xi > 0.707$

- No resonant peak occurs
- $|G(j\omega)|$ decreases monotonically with increasing ω

$$\dfrac{\omega_n^2}{s^2+2\xi\omega_n s+\omega_n^2}$$
 , $s^2+2\xi\omega_n s+\omega_n^2$

Case 3a: G(s) =
$$\frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$

For $0 \le \xi \le 0.707$

At Resonant freq.:
$$\omega = \omega_r = \omega_n \sqrt{1 - 2\xi^2}$$
;

→ Max. Magnitude:

$$|G(j\omega)|_{Max} = |G(j\omega_r)| = \frac{1}{2\xi\sqrt{1-\xi^2}}$$

$$M_r(in dB) = 20 \log \frac{1}{2\xi\sqrt{1-\xi^2}}$$

For
$$\xi > 0.707$$

$$M_r(in dB) = 0$$

$$|G(j\omega)|_{Max} = 1$$

 ϕ at which resonant occurs (valid for $0 \le \xi \le 0.707$

$$\underline{/G(j\omega_r)} = -\tan^{-1}\frac{\sqrt{1-2\zeta^2}}{\zeta} = -90^\circ + \sin^{-1}\frac{\zeta}{\sqrt{1-\zeta^2}}$$

Bandwidth Frequency

Frequency Range:
$$0 \le \omega \le \omega_b$$

Bandwidth frequency

- Frequency after which the output amplitude starts to fall significantly
- Measure of how well the system, G(s), will track the input

$$20log_{10}|G(j\omega)| = -3$$
$$|G(j\omega)| = 10^{\frac{-3}{20}} = 0.707$$

At Bandwidth frequency

$$G(s) = \frac{10(s+3)}{s(s+2)(s^2+s+2)}$$

$$CF_1 = 3$$

$$\omega_n = \sqrt{2} = 1.414$$

$$G(s) = \frac{7.5 \left(\frac{s}{3} + 1\right)}{s \left(\frac{s}{2} + 1\right) \left(\frac{s^2}{2} + \frac{s}{2} + 1\right)}$$

$$\frac{1}{1 + sT}$$

$$\frac{1}{1 + 2\xi \frac{s}{\omega_n} + \left(\frac{s}{\omega_n}\right)^2}$$

$$CF_2 = 2$$

$$\frac{2\xi}{\omega_n} = \frac{1}{2} \quad \Longrightarrow \ \xi = \frac{1}{2\sqrt{2}} = 0.35$$

Step: 1

Simplify G(s) to combination of standard forms studied earlier.

Step: 2

Find the corner frequencies.

Arrange them in ascending order.

$$G(s) = \frac{7.5 \left(\frac{s}{3} + 1\right)}{s \left(\frac{s}{2} + 1\right) \left(\frac{s^2}{2} + \frac{s}{2} + 1\right)}$$

Write down slope contribution for every standard form

Step: 1

Simplify G(s) to combination of standard forms studied earlier.

Step: 2

Find the corner frequencies.

Arrange them in ascending order.

Step: 3

Make bode plots (magnitude and angle) for individual standard components.

Step: 4

Superimpose all the individual plots.

$$G(s) = \frac{7.5 \left(\frac{s}{3} + 1\right)}{s \left(\frac{s}{2} + 1\right) \left(\frac{s^2}{2} + \frac{s}{2} + 1\right)}$$

$$|G(j\omega)| = \frac{7.5 \sqrt{\frac{\omega^2}{9} + 1}}{\omega \sqrt{\frac{\omega^2}{4} + 1} \sqrt{\frac{\omega^2}{4} + \left(1 - \frac{\omega^2}{2}\right)^2}}$$

Step: 1

Simplify G(s) to combination of standard forms studied earlier.

Step: 2

Find the corner frequencies.

Arrange them in ascending order.

Step: 3

Make bode plots (magnitude and angle) for individual standard components.

Step: 4

Superimpose all the individual plots.