Infinite versions of (p, q)-theorems

Attila Jung and Dömötör Pálvölgyi

Eötvös Loránd University

EUROCOMB'25

The hypergraph \mathcal{K}_d

- Let \mathcal{K}_d be the hypergraph whose vertices are the compact convex sets in \mathbb{R}^d .
- Edges represent intersecting families of convex sets.
- This edge set is downwards closed.

Helly's theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a family of compact convex sets in \mathbb{R}^d . If every d+1 of them intersect, then $\cap \mathcal{F} \neq \emptyset$.

Helly's theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a family of compact convex sets in \mathbb{R}^d . If every d+1 of them intersect, then $\cap \mathcal{F} \neq \emptyset$.

Theorem (Helly, 1923)

If $S \subset V(\mathcal{K}_d)$, and $\mathcal{K}_d^{(d+1)}[S]$ is a clique, then $S \in \mathcal{K}_d$.

- $V(\mathcal{H})$: vertex set of hypergraph \mathcal{H} .
- $\mathcal{H}^{(q)}$: q-uniform part edges with exactly q vertices.
- $\mathcal{H}[S]$: subhypergraph induced by $S \subset V(\mathcal{H})$.

The Alon–Kleitman (p, q)-theorem

Theorem (Helly, 1923)

If $S \subset V(\mathcal{K}_d)$, and $\mathcal{K}_d^{(d+1)}[S]$ is a clique, then $S \in \mathcal{K}_d$.

Theorem (Alon and Kleitman, 1992)

For every $p \geq d+1$, there exists $C < \infty$ such that: If $S \subset V(\mathcal{K}_d)$ and $\mathcal{K}_d^{(d+1)}[S]$ has no independent set of size p, then S can be covered with C edges of \mathcal{K}_d .

- $V(\mathcal{H})$: vertex set of hypergraph \mathcal{H} .
- $\mathcal{H}^{(q)}$: q-uniform part edges with exactly q vertices.
- $\mathcal{H}[S]$: subhypergraph induced by $S \subset V(\mathcal{H})$.

Fractional Helly theorem

Theorem (Katchalski and Liu, 1979)

If $S \subset V(\mathcal{K}_d)$ is finite and

$$e(\mathcal{K}_d^{(d+1)}[S]) \ge \alpha \binom{|S|}{d+1}$$

for some $\alpha > 0$, then there exists an edge of $\mathcal{K}_d[S]$ of size $\beta |S|$, where $\beta = \beta(\alpha, d) > 0$.

• $e(\mathcal{H})$: number of edges.

Fractional Helly property (general form)

Definition

A q-uniform (possibly infinite) hypergraph $\mathcal H$ satisfies the fractional Helly property if: For all $\alpha>0$ there exists $\beta>0$ such that for every finite $S\subset V(\mathcal H)$ with

$$e(\mathcal{H}[S]) \ge \alpha \binom{|S|}{q},$$

 $\mathcal{H}[S]$ contains a *q*-uniform clique of size $\beta|S|$.

• Katchalski, Liu '79: $\mathcal{K}_d^{(d+1)}$ satisfies the fractional Helly property.

The hypergraph $\mathcal{B}_{d,k}$

- Vertices: compact balls in \mathbb{R}^d .
- Edges: families of balls that can be pierced by a single k-flat.

Theorem (Keller and Perles, 2022)

If $S \subset V(\mathcal{B}_{d,k})$ and $\mathcal{B}_{d,k}^{(k+2)}[S]$ has no infinite independent set, then S can be covered with finitely many edges of $\mathcal{B}_{d,k}$.

Our main result

- Alon–Kleitman type hypergraph: $\exists q \forall p \geq q \exists C < \infty$ such that if $\mathcal{H}^{(q)}[S]$ has no independent set of size p, then S can be covered with at most C edges of \mathcal{H} .
- Keller-Perles type hypergraph: If $\mathcal{H}^{(q)}[S]$ has no infinite independent set, then S can be covered with finitely many edges of \mathcal{H} .

Our main result

- Alon–Kleitman type hypergraph: $\exists q \forall p \geq q \exists C < \infty$ such that if $\mathcal{H}^{(q)}[S]$ has no independent set of size p, then S can be covered with at most C edges of \mathcal{H} .
- Keller-Perles type hypergraph: If $\mathcal{H}^{(q)}[S]$ has no infinite independent set, then S can be covered with finitely many edges of \mathcal{H} .

$\mathsf{Theorem}$

If an Alon-Kleitman type hypergraph satisfies the fractional Helly property, then it is Keller-Perles type.

Our main result

- Alon–Kleitman type hypergraph: $\exists q \forall p \geq q \exists C < \infty$ such that if $\mathcal{H}^{(q)}[S]$ has no independent set of size p, then S can be covered with at most C edges of \mathcal{H} .
- Keller-Perles type hypergraph: If $\mathcal{H}^{(q)}[S]$ has no infinite independent set, then S can be covered with finitely many edges of \mathcal{H} .

$\mathsf{Theorem}$

If an Alon-Kleitman type hypergraph satisfies the fractional Helly property, then it is Keller-Perles type.

Theorem

Corollaries

Theorem

Let $\mathcal F$ be a family of compact convex sets in $\mathbb R^d$. If among every \aleph_0 members of $\mathcal F$ some d+1 are intersecting, then all the members of $\mathcal F$ can be pierced by finitely many points.

Corollaries

Theorem

Let \mathcal{F} be a family of compact convex sets in \mathbb{R}^d . If among every \aleph_0 members of \mathcal{F} some d+1 are intersecting, then all the members of \mathcal{F} can be pierced by finitely many points.

Theorem (Chackraborty, Ghosh, Nandi '24)

Let $\mathcal F$ be a family of compact convex sets in $\mathbb R^d$. If among every \aleph_0 members of $\mathcal F$ some d+1 can be pierced by a hyperplane, then all the members of $\mathcal F$ can be pierced by finitely many hyperplanes.

Corollaries

Theorem

Let $\mathcal F$ be a family of compact convex sets in $\mathbb R^d$. If among every \aleph_0 members of $\mathcal F$ some d+1 are intersecting, then all the members of $\mathcal F$ can be pierced by finitely many points.

Theorem (Chackraborty, Ghosh, Nandi '24)

Let $\mathcal F$ be a family of compact convex sets in $\mathbb R^d$. If among every \aleph_0 members of $\mathcal F$ some d+1 can be pierced by a hyperplane, then all the members of $\mathcal F$ can be pierced by finitely many hyperplanes.

Theorem

Let $\mathcal F$ be a family of compact convex sets in $\mathbb R^d$. If among every \aleph_0 members of $\mathcal F$ some d+1 contain a point in their intersection with integer coordinates, then all the members of $\mathcal F$ can be pierced by finitely many points with integer coordinates.

Theorem

Theorem

If a uniform hypergraph satisfies the fractional Helly property and has arbitrarily large finite independent sets, then it has an infinite independent set.

1 Fractional Helly property: If a uniform hypergraph has edge density at least $\alpha > 0$ on a large vertex set, then it contains a clique on a β -fraction of its vertices (for some $\beta = \beta(\alpha) > 0$).

Theorem

- **1 Fractional Helly property:** If a uniform hypergraph has edge density at least $\alpha > 0$ on a large vertex set, then it contains a clique on a β -fraction of its vertices (for some $\beta = \beta(\alpha) > 0$).
- ② If a hypergraph has the fractional Helly property, then every induced balanced multipartite graph is sparse.

Theorem

- **1 Fractional Helly property:** If a uniform hypergraph has edge density at least $\alpha > 0$ on a large vertex set, then it contains a clique on a β -fraction of its vertices (for some $\beta = \beta(\alpha) > 0$).
- ② If a hypergraph has the fractional Helly property, then every induced balanced multipartite graph is sparse.
- **③** Take an increasing sequence of finite independent sets $S_1 \subset S_2 \subset \ldots$ with $|S_n| \to \infty$.

Theorem

- **1 Fractional Helly property:** If a uniform hypergraph has edge density at least $\alpha > 0$ on a large vertex set, then it contains a clique on a β -fraction of its vertices (for some $\beta = \beta(\alpha) > 0$).
- ② If a hypergraph has the fractional Helly property, then every induced balanced multipartite graph is sparse.
- **③** Take an increasing sequence of finite independent sets $S_1 \subset S_2 \subset \ldots$ with $|S_n| \to \infty$.
- **4** Apply Ramsey-type arguments to find a large *homogeneous* subhypergraph: $S_1' \subset S_{i_1}, S_2' \subset S_{i_2}, \ldots$

Theorem

- **1 Fractional Helly property:** If a uniform hypergraph has edge density at least $\alpha > 0$ on a large vertex set, then it contains a clique on a β -fraction of its vertices (for some $\beta = \beta(\alpha) > 0$).
- ② If a hypergraph has the fractional Helly property, then every induced balanced multipartite graph is sparse.
- **③** Take an increasing sequence of finite independent sets $S_1 \subset S_2 \subset \ldots$ with $|S_n| \to \infty$.
- **4** Apply Ramsey-type arguments to find a large *homogeneous* subhypergraph: $S_1' \subset S_{i_1}, S_2' \subset S_{i_2}, \ldots$
- **5** Use (2) to conclude that $\bigcup_i S_i'$ spans an independent set.

Key lemma

Let \mathcal{H} be a k-uniform hypergraph with disjoin vertex sets $V_1, V_2, \ldots, V_n, \ldots \subset V(\mathcal{H})$ with $|V_i| \to \infty$.

Lemma

We can find subsets $V_i' \subset V_i$ with $w_n = \max\{|V_i| : i \leq n\} \to \infty$ and the following property.

If $i_1 < i_2 < \ldots < i_k$ and $v_j \in V_{i_j}$, then $\{v_1, \ldots, v_k\} \in \mathcal{H}$ depends only on v_1 .

Key lemma

Let \mathcal{H} be a k-uniform hypergraph with disjoin vertex sets $V_1, V_2, \ldots, V_n, \ldots \subset V(\mathcal{H})$ with $|V_i| \to \infty$.

Lemma

We can find subsets $V_i' \subset V_i$ with $w_n = \max\{|V_i| : i \leq n\} \to \infty$ and the following property.

If
$$i_1 < i_2 < \ldots < i_k$$
 and $v_j \in V_{i_j}$,
then $\{v_1, \ldots, v_k\} \in \mathcal{H}$ depends only on v_1 .

Thank you!