How Does Batch Normalization Help Optimization?

논문리뷰 이도연

목차

1. Introduction

2. BatchNorm & ICS

3. Why dose BatchNorm work?

4. Conclusion

1. Introduction

- Batch Normalization은 의심할 여지없이 유용
- DNN에서 더 빠르고 안정적인 학습을 가능하게 함
- 그렇지만 왜 잘 되는지에 대한 이해가 부족
- ICS(Internal Covariate Shift)를 감소시키는 효과가 있다고 알려져 있음

ICS를 줄이는 것은 성능과 관련이 없으며 Batch Normalization이 ICS를 감소시키지도 않는다 Batch Normalization의 진짜 효과는 Smoothing!!

Internal Covariate Shift

Input layer distribution의 변동

Batch Normalization은 효과적이다
Input layer distribution의 결과는 명확하지 않다

Noise를 삽입해 강제로 ICS를 발생시켜 보았다

BatchNorm이 ICS를 감소시키나? 아닌 거 같은데?

Noise를 삽입해 강제로 ICS를 발생해도 성능 개선은 명확

ICS를 계산하는 방법 제시

Definition 2.1. Let \mathcal{L} be the loss, $W_1^{(t)}, \ldots, W_k^{(t)}$ be the parameters of each of the k layers and $(x^{(t)}, y^{(t)})$ be the batch of input-label pairs used to train the network at time t. We define internal covariate shift (ICS) of activation i at time t to be the difference $||G_{t,i} - G'_{t,i}||_2$, where

$$G_{t,i} = \nabla_{W_i^{(t)}} \mathcal{L}(W_1^{(t)}, \dots, W_k^{(t)}; x^{(t)}, y^{(t)})$$

$$G'_{t,i} = \nabla_{W_i^{(t)}} \mathcal{L}(W_1^{(t+1)}, \dots, W_{i-1}^{(t+1)}, W_i^{(t)}, W_{i+1}^{(t)}, \dots, W_k^{(t)}; x^{(t)}, y^{(t)}).$$

앞 레이어만 업데이트한 상황에서 동일한 입력에 대해 기울기를 다시 계산

BatchNorm을 사용했을 때 별 차이가 없거나 오히려 ICS가 증가하기도 했다

그렇다면 왜 잘되지? 바로, Optimization Landscape를 부드럽게 만드는 Smoothing 효과

$$\mathcal{L}(x + \eta \nabla \mathcal{L}(x))$$

Loss 값의 변화

$$||\nabla \mathcal{L}(x) - \nabla \mathcal{L}(x + \eta \nabla \mathcal{L}(x))||$$

기울기 예측성 Loss Gradient의 변화

기울기 값 변화에 대한 Lipschitzness

기울기 예측성 Loss Gradient의 변화

립시츠 연속 함수 (Lipschitz-continuous function)

연속적이고, 미분 가능하며, 어떠한 두 점을 잡아도 기울기가 K보다 작은 함수

 $|f(x_1) - f(x_2)| \le L||x_1 - x_2||$, for all x_1 and x_2

BatchNorm을 사용하면 Loss의 Lipschitzness를 향상시킨다. 즉, 안정적인 학습을 할 수 있다!

$$egin{aligned} L_1 &= (\sum_i^n |x_i|) \ &= |x_1| + |x_2| + |x_3| + \ldots + |x_n| \end{aligned}$$

$$egin{aligned} L_2 &= \sqrt{\sum_i^n x_i^2} \ &= \sqrt{x_1^2 + x_2^2 + x_3^2 + \ldots + x_n^2} \end{aligned}$$

$$L_{\infty} = max(|x_1|, |x_2|, |x_3|, \dots, |x_n|)$$

다른 Normalization 기법도 성능을 향상시킬 수 있다

+ Theoretical Analysis

Theorem 4.1 (The effect of BatchNorm on the Lipschitzness of the loss). *For a BatchNorm network* with loss $\widehat{\mathcal{L}}$ and an identical non-BN network with (identical) loss \mathcal{L} ,

$$\left| \left| \nabla_{\boldsymbol{y_j}} \widehat{\mathcal{L}} \right| \right|^2 \leq \frac{\gamma^2}{\sigma_j^2} \left(\left| \left| \nabla_{\boldsymbol{y_j}} \mathcal{L} \right| \right|^2 - \frac{1}{m} \left\langle \mathbf{1}, \nabla_{\boldsymbol{y_j}} \mathcal{L} \right\rangle^2 - \frac{1}{m} \left\langle \nabla_{\boldsymbol{y_j}} \mathcal{L}, \hat{\boldsymbol{y}_j} \right\rangle^2 \right).$$

Theorem 4.2 (The effect of BN to smoothness). Let $\hat{g}_j = \nabla_{y_j} \mathcal{L}$ and $H_{jj} = \frac{\partial \mathcal{L}}{\partial y_j \partial y_j}$ be the gradient and Hessian of the loss with respect to the layer outputs respectively. Then

$$\left(\nabla_{y_{\boldsymbol{j}}}\widehat{\mathcal{L}}\right)^{\top} \frac{\partial \widehat{\mathcal{L}}}{\partial y_{j} \partial y_{j}} \left(\nabla_{y_{\boldsymbol{j}}}\widehat{\mathcal{L}}\right) \leq \frac{\gamma^{2}}{\sigma^{2}} \left(\frac{\partial \widehat{\mathcal{L}}}{\partial y_{j}}\right)^{\top} \boldsymbol{H}_{jj} \left(\frac{\partial \widehat{\mathcal{L}}}{\partial y_{j}}\right) - \frac{\gamma}{m\sigma^{2}} \left\langle \hat{g}_{j}, \hat{y}_{j} \right\rangle \left\| \frac{\partial \widehat{\mathcal{L}}}{\partial y_{j}} \right\|^{2}$$

If we also have that the H_{jj} preserves the relative norms of \hat{g}_j and $\nabla_{y_j} \widehat{\mathcal{L}}$,

$$\left(\nabla_{y_{\boldsymbol{j}}}\widehat{\mathcal{L}}\right)^{\top} \frac{\partial \widehat{\mathcal{L}}}{\partial y_{j} \partial y_{j}} \left(\nabla_{y_{\boldsymbol{j}}}\widehat{\mathcal{L}}\right) \leq \frac{\gamma^{2}}{\sigma^{2}} \left(\widehat{g}_{j}^{\top} \boldsymbol{H}_{jj} \widehat{g}_{j} - \frac{1}{m\gamma} \left\langle \widehat{g}_{j}, \widehat{y}_{j} \right\rangle \left\| \frac{\partial \widehat{\mathcal{L}}}{\partial y_{j}} \right\|^{2} \right)$$

Theorem 4.4 (Minimax bound on weight-space Lipschitzness). *For a BatchNorm network with loss* $\widehat{\mathcal{L}}$ *and an identical non-BN network (with identical loss* \mathcal{L}), *if*

$$g_{j} = \max_{||X|| \leq \lambda} ||\nabla_{W} \mathcal{L}||^{2}, \qquad \hat{g}_{j} = \max_{||X|| \leq \lambda} \left| \left| \nabla_{W} \widehat{\mathcal{L}} \right| \right|^{2} \implies \hat{g}_{j} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(g_{j}^{2} - m \mu_{g_{j}}^{2} - \lambda^{2} \left\langle \nabla_{y_{j}} \mathcal{L}, \hat{y}_{j} \right\rangle^{2} \right).$$

Lemma 4.5 (BatchNorm leads to a favourable initialization). Let W^* and \widehat{W}^* be the set of local optima for the weights in the normal and BN networks, respectively. For any initialization W_0

$$\left| \left| W_0 - \widehat{W}^* \right| \right|^2 \le \left| \left| W_0 - W^* \right| \right|^2 - \frac{1}{\left| \left| W^* \right| \right|^2} \left(\left| \left| W^* \right| \right|^2 - \left\langle W^*, W_0 \right\rangle \right)^2,$$

if $\langle W_0, W^* \rangle > 0$, where \widehat{W}^* and W^* are closest optima for BN and standard network, respectively.

+ Related Work

- Batch Normalization의 대안으로 Layer 정규화, Batch Subset, 이미지 차원 등
- Weight Normalization은 Activation 대신 Weight를 정규화하는 보완 방식
- ELU, SELU를 Batch Normalization의 대안으로 사용할 수 있음

이외에도 몇몇 이야기가 더 있음.. 논문 참고..

4. Conclusion

- DNN에서 BatchNorm의 효과를 연구
- ICS(분포 안정성 관점)는 성능 향상에 대한 좋은 설명이 아니었다.
- BatchNorm & ICS 크게 관계 없다.
- BatchNorm은 Loss 관점에서 stable 하고 smooth 하게 optimization 한다.
- 이를 통해 예측 가능하고, 빠르고 효과적인 최적화가 진행된다.
- 몇몇 다른 normalization 방법들이 유사한 효과를 냈다.
- 추가적으로 이 논문은 Training 에서의 BN 효과에 집중했지만, BatchNrom이 Generalization을 향상시키는 경향이 있는 것 같다.

(특히 BN의 Smoothing Effect가 Training 과정에서 more flat minima에 수렴)

Q&A

참고

https://www.youtube.com/watch?v=TDx8iZHwFtM&t=619s PR-021: Batch Normalization

https://www.youtube.com/watch?v=58fuWVu5DVU&t=3289s 나동빈님의 배치 정규화

https://ml-dnn.tistory.com/6 How Does Batch Normalization Help Optimization? 논문 정리