主管 领导 审核 答字

哈尔滨工业大学(深圳) 2017 学年秋季学期

高等数学试题

题号	_	=	III	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范

遵守考场纪律

一,	填空题	(每小题1分	分,共5	小题,	满分:	5分)

- 1. 极限 $\lim_{x\to 0} \frac{\tan x}{\sin 2x} =$ ______
- 2. 曲线 $y = \arctan x$ 在横坐标为 x = 1 的点处的切线方程是___
- 3. 设 y = y(x) 是由方程 $e^{xy} + y^2 = \cos x$ 所确定的隐函数,则函数 y = y(x)的导数
- 4. 设函数 $y = (1 + \sin x)^x$, 则此函数在 $x = \pi$ 点的微分 $dy|_{x=\pi} =$
- 5. 已知函数 $f(x) = (3x+1)e^{-x}$,则 $f^{(2017)}(0) =$ _____

二、选择题(每小题 1 分,共 5 小题,满分 5 分,每小题中给出的四个选项中只 有一个是符合题目要求的,把所选项的字母填在题后的括号内)

1. 设极限 $\lim a_n = a$, 且 $a \neq 0$, 则当 n 充分大时有 (

(A)
$$|a_n| > \frac{|a|}{2}$$
; (B) $|a_n| < \frac{|a|}{2}$; (C) $a_n < a + \frac{1}{n}$; (D) $a_n > a - \frac{1}{2n}$.

- 2. 设 $\alpha_1 = x(\cos\sqrt{x} 1)$, $\alpha_2 = \sqrt{x}\ln(1 + \sqrt[3]{x})$, $\alpha_3 = \sqrt[3]{1 + x} 1$, 当 $x \to 0^+$ 时,以上三个 无穷小量按照从低阶到高阶的排序是(
 - (A) $\alpha_1, \alpha_2, \alpha_3$; (B) $\alpha_2, \alpha_3, \alpha_1$; (C) $\alpha_3, \alpha_1, \alpha_2$; (D) $\alpha_1, \alpha_3, \alpha_2$.
- 3. 设函数 y = f(x) 在点 $x = x_0$ 的某邻域内有定义,则 y = f(x) 在 $x = x_0$ 处可微的 充分必要条件是(
 - (A) f(x) 在 $x = x_0$ 处连续; (B) $\Delta y = f(x_0 + \Delta x) f(x_0)$ 是 Δx 的线性函数;

- (C) f(x) 在 $x = x_0$ 处可导; (D) 曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处有切线.
- 4. 极限 $\lim_{n\to\infty} \left(\frac{n^2}{2^n+3^n}\right)^{\frac{1}{n}} = ($

- (A) $\frac{1}{3}$; (B) $\frac{1}{2}$; (C) $\frac{1}{6}$; (D) $\frac{2}{3}$.
- 5. 设 f(0) = 0,则 f(x) 在 x = 0 处可导的一个充分必要条件是(
 - (A) $\lim_{h\to 0} \frac{f(1-\cos h)}{h^2}$ 存在; (B) $\lim_{h\to 0} \frac{f(2^h-1)}{h}$ 存在;
- - (C) $\lim_{h\to 0} \frac{f(h-\sin h)}{h}$ 存在; (D) $\lim_{h\to 0} \frac{f(\tan h)-f(h)}{h^3}$ 存在.
- 三、(5 分) 设函数 y = y(x) 由参数方程 $\begin{cases} x = t + e^t \\ y = \sin t \end{cases}$ 所确定,求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.

四、(4分) 计算极限 $\lim_{x\to 0} \frac{e^{x^2} - e^{2-2\cos x}}{r^2 \sin^2 x}$.

		$\left(\frac{(\ln x)(\sin x)}{(x+1) x-1 }, x > -1\right)$
		五、(5 分) 讨论函数 $f(x) = \begin{cases} 3, & x = -1 \text{ 的连续性, 若有间断点, 则判别} \\ \frac{1}{e^{\frac{x+2}{x+1}} - 1}, & , x < -1 \end{cases}$
		其类型.
姓名		
**	封	
班号		六、(3 分) 设函数 $f(x) = \begin{cases} \frac{g(x) - e^{-x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 其中 $g(x)$ 具有二阶连续导数,且 $g(0) = 1, g'(0) = -1,$ (1) 求 $f'(x)$; (2) 讨论 $f'(x)$ 在区间 $\left(-\infty, +\infty\right)$ 上的连续性.
学院		

七、(3 分) 设函数 f(x) 在闭区间 [0,1] 上具有二阶导数,且 f(1) > 0, $\lim_{x \to 0^+} \frac{f(x)}{x} < 0$,证明:

- (1) 方程 f(x) = 0 在开区间(0,1)内至少存在一个实根;
- (2) 方程 $f(x)f''(x)+(f'(x))^2=0$ 在开区间(0,1)内至少存在两个不同的实根.