BAYESIAN PROBABILISTIC NUMERICAL METHODS

J. Cockayne¹ M. Girolami^{2,3} H. C. Lie^{4,5} C. Oates^{3,6} **T. J. Sullivan**^{4,5} A. Teckentrup^{3,7}

SAMSI–Lloyds–Turing Workshop on Probabilistic Numerical Methods Alan Turing Institute, London, UK, 11 April 2018

¹University of Warwick, UK

²Imperial College London, UK

³Alan Turing Institute, London, UK

⁴Free University of Berlin, DE

⁵Zuse Institute Berlin, DE

⁶Newcastle University, UK

⁷University of Edinburgh, UK

A Probabilistic Treatment of Numerics?

- The last 5 years have seen a renewed interest in probabilistic perspectives on numerical tasks e.g. quadrature, ODE and PDE solution, optimisation continuing a theme with a long heritage: Poincaré (1896); Larkin (1970); Diaconis (1988); Skilling (1992).
- There are many ways to motivate this modelling choice:
 - To a statistician's eye, numerical tasks look like inverse problems.
 - Worst-case errors are often too pessimistic perhaps we should adopt an average-case viewpoint (Traub et al., 1988; Ritter, 2000; Trefethen, 2008)?
 - "Big data" problems often require (random) subsampling.
 - If discretisation error is not properly accounted for, then biased and over-confident inferences result (Conrad et al., 2016). However, the necessary numerical analysis in nonlinear and evolutionary contexts can be hard!
 - Accounting for the impact of discretisation error in a statistical way allows forward and Bayesian inverse problems to speak a common statistical language.
- To make these ideas precise and to relate them to one another, some concrete definitions are needed!

2/41

OUTLINE

- 1. Numerics: An Inference Perspective
- 2. Bayes' Theorem via Disintegration
- 3. Optimal Information
- 4. Numerical Disintegration
- 5. Coherent Pipelines of BPNMs
- 6. Randomised Bayesian Inverse Problems
- 7. Closing Remarks

An Inference Perspective on

Numerical Tasks

An Abstract View of Numerical Methods 1

An abstract setting for numerical tasks consists of three spaces and two functions:

- \mathcal{X} , where an unknown/variable object x or u lives;
- \mathcal{A} , where we observe information A(x), via a function $A: \mathcal{X} \to \mathcal{A}$; dim $\mathcal{A} < \infty$
- Q, with a quantity of interest $Q: \mathcal{X} \to Q$.

 $\dim \mathcal{X} = \infty$

An Abstract View of Numerical Methods i

An abstract setting for numerical tasks consists of three spaces and two functions:

• \mathcal{X} , where an unknown/variable object x or u lives;

 $\dim \mathcal{X} = \infty$ $\dim \mathcal{A} < \infty$

- A, where we observe information A(x), via a function $A: \mathcal{X} \to A$;
- Q, with a quantity of interest $Q: \mathcal{X} \to Q$.

Example 1 (Quadrature)

$$\mathcal{X} = C^0([0,1]; \mathbb{R})$$

$$\mathcal{A} = ([0,1] \times \mathbb{R})^m$$

$$Q = \mathbb{R}$$

$$A(u) = (t_i, u(t_i))_{i=1}^m$$

$$Q(u) = \int_0^1 u(t) \, \mathrm{d}t$$

An Abstract View of Numerical Methods 1

An abstract setting for numerical tasks consists of three spaces and two functions:

- \mathcal{X} , where an unknown/variable object x or u lives; $\dim \mathcal{X} = \infty$
- \mathcal{A} , where we observe information A(x), via a function $A: \mathcal{X} \to \mathcal{A}$; dim $\mathcal{A} < \infty$
 - Q, with a quantity of interest $Q: \mathcal{X} \to Q$.

Example 1 (Quadrature)

$$\mathcal{X} = C^0([0,1];\mathbb{R})$$
 $\mathcal{A} = ([0,1] \times \mathbb{R})^m$ $\mathcal{Q} = \mathbb{R}$
$$A(u) = (t_i, u(t_i))_{i=1}^m$$
 $Q(u) = \int_0^1 u(t) dt$

- Conventional numerical methods are cleverly-designed functions $b: A \to Q$: they estimate Q(x) by b(A(x)).
- N.B. *Some* methods try to "invert" A, form an estimate of x, then apply Q.
- Vanilla Monte Carlo $b((t_i, y_i)_{i=1}^n) := \frac{1}{n} \sum_{i=1}^n y_i$ does not! (cf. O'Hagan, 1987)

4/41

An Abstract View of Numerical Methods 11

- Question: What makes for a "good" numerical method? (Larkin, 1970)
- Answer 1, Gauss: $b \circ A = Q$ on a "large" finite-dimensional subspace of \mathcal{X} .
- Answer 2, Sard (1949): $b \circ A Q$ is "small" on \mathcal{X} . In what sense?
 - The worst-case error:

$$e_{WC} := \sup_{x \in \mathcal{X}} \|b(A(x)) - Q(x)\|_{\mathcal{Q}}.$$

■ The average-case error with respect to a probability measure μ on \mathcal{X} :

$$e_{AC} := \int_{\mathcal{X}} \|b(A(x)) - Q(x)\|_{\mathcal{Q}} \mu(dx).$$

■ To a Bayesian, seeing the additional structure of μ , there is "only one way forward": if $x \sim \mu$, then b(A(x)) should be obtained by conditioning μ and then applying Q. But is this Bayesian solution always well-defined, and what are its error properties?

 $b: \mathcal{A} \to \mathcal{Q}$

Go Probabilistic!

 $b \colon \mathcal{A} \to \mathcal{Q}$

Go Probabilistic!

$$B: \mathcal{P}_{\mathcal{X}} \times \mathcal{A} \to \mathcal{P}_{\mathcal{Q}}$$

Example 2 (Quadrature)

$$\mathcal{X} = C^0([0,1]; \mathbb{R})$$

$$\mathcal{A} = ([0,1] \times \mathbb{R})^m$$

 $A(u) = (t_i, u(t_i))_{i=1}^m$

$$Q(u) = \int_0^1 u(t) \, \mathrm{d}t$$

 $Q = \mathbb{R}$

A deterministic numerical method uses only the spaces and data to produce a point estimate of the integral. A probabilistic numerical method converts an additional belief about the integrand into a belief about the integral.

6/41

Definition 2 (Bayesian PNM)

A PNM $B(\mu, \cdot)$: $\mathcal{A} \to \mathcal{P}_{\mathcal{Q}}$ with prior $\mu \in \mathcal{P}_{\mathcal{X}}$ is **Bayesian** for a quantity of interest $Q: \mathcal{X} \to \mathcal{Q}$ and information operator $A: \mathcal{X} \to \mathcal{A}$ if the bottom-left \mathcal{A} - $\mathcal{P}_{\mathcal{X}}$ - $\mathcal{P}_{\mathcal{Q}}$ triangle commutes, i.e. the output of B is the push-forward of the conditional distribution μ^a through Q:

$$B(\mu, a) = Q_{\#}\mu^{a}$$
, for $A_{\#}\mu$ -almost all $a \in \mathcal{A}$.

Zellner (1988) calls *B* an "information processing rule".

Definition 3 (Bayesian PNM)

A PNM B with prior $\mu \in \mathcal{P}_{\mathcal{X}}$ is **Bayesian** for a quantity of interest Q and information A if its output is the push-forward of the conditional distribution μ^a through Q:

$$B(\mu, a) = Q_{\#}\mu^{a}$$
, for $A_{\#}\mu$ -almost all $a \in \mathcal{A}$.

Definition 3 (Bayesian PNM)

A PNM B with prior $\mu \in \mathcal{P}_{\mathcal{X}}$ is **Bayesian** for a quantity of interest Q and information A if its output is the push-forward of the conditional distribution μ^a through Q:

$$B(\mu, a) = Q_{\#}\mu^{a}$$
, for $A_{\#}\mu$ -almost all $a \in \mathcal{A}$.

Example 4

- Under the Gaussian Brownian motion prior on $\mathcal{X} = C^0([0,1];\mathbb{R})$, the posterior mean / MAP estimator for the definite integral is the trapezoidal rule, i.e. integration using linear interpolation (Sul'din, 1959, 1960).
- The integrated Brownian motion prior corresponds to integration using cubic spline interpolation.

A Rogue's Gallery of Bayesian and non-Bayesian PNMs

Method	QoI $Q(x)$	Information $A(x)$	Non-Bayesian PNMs	Bayesian PNMs ¹
Integrator	$\int x(t)\nu(\mathrm{d}t)$	$\{x(t_i)\}_{i=1}^n$	Approximate Bayesian Quadrature Methods [Os-	Bayesian Quadrature [Diaconis, 1988, O'Hagan,
			borne et al., 2012b a, Gunter et al., 2014]	1991, Ghahramani and Rasmussen, 2002, Briol
	C C(1) (11)	(4.3% -4.4	T	et al., 2016]
	$\int f(t)x(\mathrm{d}t) \\ \int x_1(t)x_2(\mathrm{d}t)$	$\begin{cases} \{t_i\}_{i=1}^n \text{ s.t. } t_i \sim x \\ \{(t_i, x_1(t_i))\}_{i=1}^n \text{ s.t. } t_i \sim x_2 \end{cases}$	Kong et al. [2003], Tan [2004], Kong et al. [2007]	Oates et al. [2016]
Optimiser	$\frac{\int x_1(t)x_2(dt)}{\arg\min x(t)}$	$\{x(t_i)\}_{i=1}^n$		Bayesian Optimisation [Mockus, 1989] ⁶
Optimiser	$\arg\min x(t)$	$\begin{cases} \{x(t_i)\}_{i=1}^n \\ \{\nabla x(t_i)\}_{i=1}^n \end{cases}$		Hennig and Kiefel [2013]
		$\{(x(t_i), \nabla x(t_i)\}_{i=1}^n$		Probabilistic Line Search Mahsereci and Hennig,
		(1)		2015]
		$\{\mathbb{I}[t_{\min} < t_i]\}_{i=1}^n$		Probabilistic Bisection Algorithm Horstein,
		forth and a large	W. J. J. Joseph	1963]5
		$\left \{ \mathbb{I}[t_{\min} < t_i] + \text{error} \}_{i=1}^n \right $	Waeber et al. [2013]	
Linear Solver	$x^{-1}b$	$\{xt_i\}_{i=1}^n$		Probabilistic Linear Solvers [Hennig, 2015, Bartels
				and Hennig, 2016]
ODE Solver	\boldsymbol{x}	$\{\nabla x(t_i)\}_{i=1}^n$	Filtering Methods for IVPs Schober et al., 2014,	Skilling [1992]
			Chkrebtii et al., 2016, Kersting and Hennig, 2016,	
			Teymur et al., 2016, Schober et al., 2016, Finite Difference Methods John and Wu, 2017,	
		∇x + rounding error	Hull and Swenson [1966], Mosbach and Turner	
		V 2 Tounding error	2009 2	
	$x(t_{ m end})$	$\{\nabla x(t_i)\}_{i=1}^n$	Stochastic Euler [Krebs, 2016]	
PDE Solver	x	$\{Dx(t_i)\}_{i=1}^n$	Chkrebtii et al. [2016]	Probabilistic Meshless Methods [Owhadi,
				2015a,b, Cockayne et al., 2016, Raissi et al., 2016
		Dx + discretisation error	Conrad et al. [2016] ³	

GENERALISING BAYES' THEOREM VIA

DISINTEGRATION

Bayes' Theorem

- Thus, we are expressing PNMs in terms of Bayesian inverse problems (Stuart, 2010).
- But a naïve interpretation of Bayes' rule makes no sense here, because

$$\operatorname{supp}(\mu^a) \subseteq \mathcal{X}^a := \{ x \in \mathcal{X} \mid A(x) = a \},\$$

typically $\mu(\mathcal{X}^a) = 0$, and — in contrast to typical statistical inverse problems — we think of the observation process as noiseless.

- E.g. quadrature example from earlier, with $A(u) = (t_i, u(t_i))_{i=1}^m$.
- Thus, we cannot take the usual approach of defining μ^a via its prior density as

$$\frac{\mathrm{d}\mu^a}{\mathrm{d}\mu}(x) \propto \mathrm{likelihood}(x|a)$$

because this density "wants" to be the indicator function $\mathbb{1}[x \in \mathcal{X}^a]$.

 While linear-algebraic tricks work for linear conditioning of Gaussians, in general we condition on events of measure zero using disintegration. Write

$$\mu(f) \equiv \mathbb{E}_{\mu}[f] \equiv \int_{\mathcal{X}} f(x) \, \mu(\mathrm{d}x)$$

Definition 5 (Disintegration)

A **disintegration** of $\mu \in \mathcal{P}_{\mathcal{X}}$ with respect to a measurable map $A : \mathcal{X} \to \mathcal{A}$ is a map $\mathcal{A} \to \mathcal{P}_{\mathcal{X}}$, $a \mapsto \mu^a$, such that

•
$$\mu^a(\mathcal{X} \setminus \mathcal{X}^a) = 0$$
 for $A_{\#}\mu$ -almost all $a \in \mathcal{A}$;

(support)

and, for each measurable $f: \mathcal{X} \to [0, \infty)$,

• $a \mapsto \mu^a(f)$ is measurable;

(measurability)

 $\bullet \mu(f) = A_{\#}\mu(\mu^{a}(f)),$

(conditioning/reconstruction)

i.e.
$$\int_{\mathcal{X}} f(x) \, \mu(\mathrm{d}x) = \int_{\mathcal{A}} \left[\int_{\mathcal{X}^a} f(x) \, \mu^a(\mathrm{d}x) \right] (A_\# \mu)(\mathrm{d}a).$$

Theorem 6 (Disintegration theorem (Chang and Pollard, 1997, Thm. 1))

Let \mathcal{X} be a metric space and let $\mu \in \mathcal{P}_{\mathcal{X}}$ be inner regular. If the Borel σ -algebra on \mathcal{X} is countably generated and contains all singletons $\{a\}$ for $a \in \mathcal{A}$, then there is an essentially unique disintegration $\{\mu^a\}_{a\in\mathcal{A}}$ of μ with respect to A. (If $\{v^a\}_{a\in\mathcal{A}}$ is another such disintegration, then $\{a \in \mathcal{A} : \mu^a \neq v^a\}$ is an $A_{\#}\mu$ -null set.)

Example 7

For $\mu \in \mathcal{P}_{\mathbb{R}^2}$ with continuous Lebesgue density $\rho \colon \mathbb{R}^2 \to [0, \infty)$, i.e. $\mathrm{d}\mu(x_1, x_2) = \rho(x_1, x_2) \, \mathrm{d}(x_1, x_2)$, the disintegration of μ with respect to vertical projection $A(x_1, x_2) \coloneqq x_1$ is just the family of measures μ^a , where μ^a has Lebesgue density $\rho(a, \cdot)/Z^a$ on the vertical line $\{(a, x_2) \mid x_2 \in \mathbb{R}\}$, and $Z^a \coloneqq \int_{\mathbb{R}} \rho(a, x_2) \, \mathrm{d}x_2$.

Except for nice situations like this, Gaussian measures, etc. (Owhadi and Scovel, 2015), disintegrations cannot be computed exactly — we have to work approximately.

OPTIMAL INFORMATION: THE WORST, THE AVERAGE, AND THE BAYESIAN

Measures of Error

Suppose we have a loss function $L: \mathcal{Q} \times \mathcal{Q} \to \mathbb{R}$, e.g. $L(q,q') := \|q - q'\|_{\mathcal{Q}}^2$.

■ The worst-case loss for a classical numerical method $b: A \to Q$ is

$$e_{WC}(A, b) := \sup_{x \in \mathcal{X}} L(b(A(x)), Q(x)).$$

■ The average-case loss under a probability measure $\mu \in \mathcal{P}_{\mathcal{X}}$ is

$$e_{AC}(A,b) := \int_{\mathcal{X}} L(b(A(x)), Q(x)) \mu(dx),$$

$$e_{AC}(A,B) := \int_{\mathcal{X}} \left[\int_{\mathcal{Q}} L(q,Q(x)) B(\mu,A(x)) (dq) \right] \mu(dx).$$

- Kadane and Wasilkowski (1985) show that the minimiser *B* is a non-random Bayes decision rule *b*, and the minimiser *A* is "optimal information" for this task.
- A BPNM *B* has "no choice" but to be $Q_{\sharp}\mu^a$ once A(x)=a is given; optimality of *A* means minimising the **Bayesian loss**

$$e_{\mathrm{BPN}}(A) := \int_{\mathcal{X}} \left[\int_{\mathcal{Q}} L(q, Q(x)) \left(Q_{\sharp} \mu^{A(x)} \right) (\mathrm{d}q) \right] \mu(\mathrm{d}x).$$

Optimal Information: AC = BPN?

Theorem 8 (AC = BPN for quadratic loss; Cockayne, Oates, Sullivan, and Girolami, 2017)

For a quadratic loss $L(q, q') := ||q - q'||_Q^2$ on a Hilbert space Q, optimal information for BPNM and ACE coincide (though the minimal values may differ).

Optimal Information: AC = BPN?

Theorem 8 (AC = BPN for quadratic loss; Cockayne, Oates, Sullivan, and Girolami, 2017)

For a quadratic loss $L(q, q') := ||q - q'||_Q^2$ on a Hilbert space Q, optimal information for BPNM and ACE coincide (though the minimal values may differ).

Example 9 (AC = BPN in general?)

Decide whether or not a card drawn fairly at random is \blacklozenge , incurring unit loss if you guess wrongly; can choose to be told whether the card is red (A_1) or is non- \clubsuit (A_2) .

$$\mathcal{X} = \{ \clubsuit, \blacklozenge, \blacktriangledown, \spadesuit \} \qquad \mu = \mathrm{Unif}_{\mathcal{X}} \qquad \mathcal{Q} = \{0, 1\} \subset \mathbb{R}$$

$$\mathcal{A}_1 = \{0, 1\} \qquad A_1(x) = \mathbb{1}[x \in \{ \blacklozenge, \blacktriangledown \}] \qquad \mathcal{Q}(x) = \mathbb{1}[x = \blacklozenge]$$

$$\mathcal{A}_2 = \{0, 1\} \qquad A_2(x) = \mathbb{1}[x \in \{ \blacklozenge, \blacktriangledown, \spadesuit \}] \qquad L(q, q') = \mathbb{1}[q \neq q']$$

Which information operator, A_1 or A_2 , is better? (Note that $e_{WC}(A_i, b) = 1$ for all deterministic b!)

$$\mathcal{X} = \{ \clubsuit, \blacklozenge, \blacktriangledown, \blacklozenge \} \qquad \mu = \mathrm{Unif}_{\mathcal{X}} \qquad \mathcal{Q} = \{0, 1\} \subset \mathbb{R}$$

$$A_1(x) = \blacksquare \text{ vs.} \qquad Q(x) = \mathbb{1}[x = \blacklozenge]$$

$$A_2(x) = \neg \clubsuit \text{ vs.} \clubsuit \qquad L(q, q') = \mathbb{1}[q \neq q']$$

$$x = \qquad \clubsuit \qquad \qquad \blacktriangledown \qquad \qquad \spadesuit$$

$$e_{\mathrm{AC}}(A_1, b) = \frac{1}{4} \left(L(b(\blacksquare), 0) + L(b(\blacksquare), 1) + L(b(\blacksquare), 0) \right)$$

$$\mathcal{X} = \{ \clubsuit, \blacklozenge, \blacktriangledown, \blacklozenge \} \qquad \mu = \mathrm{Unif}_{\mathcal{X}} \qquad \mathcal{Q} = \{0, 1\} \subset \mathbb{R}$$

$$A_1(x) = \blacksquare \text{ vs.} \blacksquare \qquad Q(x) = \mathbb{1}[x = \blacklozenge]$$

$$A_2(x) = \neg \clubsuit \text{ vs.} \clubsuit \qquad L(q, q') = \mathbb{1}[q \neq q']$$

$$x = \qquad \clubsuit \qquad \qquad \qquad \blacklozenge \qquad \qquad \qquad \qquad \spadesuit$$

$$e_{\mathrm{AC}}(A_1, b) = \frac{1}{4}(\qquad L(b(\blacksquare), 0) \qquad + \qquad L(b(\blacksquare), 1) \qquad + \qquad L(b(\blacksquare), 0) \qquad + \qquad L(b(\blacksquare), 0) \qquad)$$

$$e_{\mathrm{AC}}(A_1, 0) = \frac{1}{4}(\qquad 0 \qquad + \qquad 1 \qquad + \qquad 0 \qquad) = \frac{1}{4}$$

$$e_{\mathrm{AC}}(A_1, \mathrm{id}) = \frac{1}{4}(\qquad 0 \qquad + \qquad 0 \qquad + \qquad 1 \qquad + \qquad 0 \qquad) = \frac{1}{4}$$

$$\mathcal{X} = \{ \clubsuit, \blacklozenge, \blacktriangledown, \clubsuit \} \qquad \mu = \text{Unif}_{\mathcal{X}} \qquad \mathcal{Q} = \{0, 1\} \subset \mathbb{R} \\
A_1(x) = \blacksquare \text{ vs.} \blacksquare \qquad Q(x) = \mathbb{I}[x = \blacklozenge] \\
A_2(x) = \neg \clubsuit \text{ vs.} \clubsuit \qquad L(q, q') = \mathbb{I}[q \neq q'] \\
\underbrace{x = \qquad \blacklozenge \qquad \qquad } \qquad \qquad \blacklozenge \qquad \qquad \blacklozenge \qquad \qquad \\
\underline{e_{AC}(A_1, b) = \frac{1}{4}(\quad L(b(\blacksquare), 0) + L(b(\blacksquare), 1) + L(b(\blacksquare), 0) + L(b(\blacksquare), 0))}_{e_{AC}(A_1, 0) = \frac{1}{4}(\quad 0 + \quad 1 \quad + \quad 0 \quad + \quad 0 \quad) = \frac{1}{4}}_{e_{AC}(A_1, id) = \frac{1}{4}(\quad 0 \quad + \quad 0 \quad + \quad 1 \quad + \quad 0 \quad) = \frac{1}{4}}_{e_{AC}(A_2, b) = \frac{1}{4}(\quad L(b(\clubsuit), 0) + L(b(\neg \clubsuit), 1) + L(b(\neg \clubsuit), 0) + L(b(\neg \clubsuit), 0))}_{e_{AC}(A_2, 0) = \frac{1}{4}(\quad 0 \quad + \quad 1 \quad + \quad 0 \quad + \quad 0 \quad) = \frac{1}{4}}_{e_{BPN}(A_1) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \blacksquare L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \blacksquare L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \blacksquare L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \blacksquare L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 1) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0))}_{e_{BPN}(A_2) = \frac{1}{4}(\quad \mathbb{E}_{Q_{\sharp}\mu} \clubsuit L(\cdot, 0) + \mathbb{E}_{Q_{\sharp}\mu} \multimap L(\cdot, 0) + \mathbb{E}_{Q$$

Numerical Disintegration

Numerical Disintegration i

- The exact disintegration " $\mu^a(\mathrm{d}x) \propto \mathbb{1}[A(x) = a] \, \mu(\mathrm{d}x)$ " can be accessed numerically via relaxation, with approximation guarantees provided $a \mapsto \mu^a$ is "nice", e.g. $A_\# \mu \in \mathcal{P}_{\mathcal{A}}$ has a smooth Lebesgue density.
- Consider relaxed posterior $\mu_{\delta}^{a}(\mathrm{d}x) \propto \phi(\|A(x) a\|_{\mathcal{A}}/\delta) \, \mu(\mathrm{d}x)$ with $0 < \delta \ll 1$.
 - Essentially any ϕ : $[0, \infty) \to [0, 1]$ tending continuously to 1 at 0 and decaying quickly enough to 0 at ∞ will do.
 - E.g. $\phi(r) := \mathbb{1}[r < 1] \text{ or } \phi(r) := \exp(-r^2).$

Definition 10

The integral probability metric on $\mathcal{P}_{\mathcal{X}}$ with respect to a normed space \mathcal{F} of test functions $f \colon \mathcal{X} \to \mathbb{R}$ is

$$d_{\mathcal{F}}(\mu,\nu) := \sup\{|\mu(f) - \nu(f)| | ||f||_{\mathcal{F}} \le 1\}.$$

- $\mathcal{F} = \text{bounded continuous functions with uniform norm} \leftrightarrow \text{total variation}$.
- $\mathcal{F}=$ bounded Lipschitz continuous functions with Lipschitz norm \leftrightarrow Wasserstein.

Numerical Disintegration II

Theorem 11 (Cockayne, Oates, Sullivan, and Girolami, 2017, Theorem 4.3)

If $a \mapsto \mu^a$ is γ -Hölder from $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ into $(\mathcal{P}_{\mathcal{X}}, d_{\mathcal{F}})$, then so too is the approximation $\mu^a_{\delta} \approx \mu^a$ as a function of δ . That is,

$$d_{\mathcal{F}}(\mu^{a}, \mu^{a'}) \leq C \cdot \|a - a'\|^{\gamma} \qquad \text{for } a, a' \in \mathcal{A}$$

$$\Rightarrow \qquad d_{\mathcal{F}}(\mu^{a}, \mu^{a}_{\delta}) \leq C \cdot C_{\phi} \cdot \delta^{\gamma} \qquad \text{for } A_{\#}\mu\text{-almost all } a \in \mathcal{A}.$$

Open question: when does the hypothesis, a quantitative version of the Tjur property (Tjur, 1980), actually hold?

Numerical Disintegration III

To evaluate expectations against μ^a we can extrapolate expectations against μ^a_δ (Schillings and Schwab, 2016).

To sample μ^a_{δ} we take inspiration from rare event simulation and use tempering schemes to sample the posterior.

Set $\delta_0 > \delta_1 > \ldots > \delta_N$ and consider

$$\mu_{\delta_0}^a$$
, $\mu_{\delta_1}^a$, ..., $\mu_{\delta_N}^a$

- $\mu_{\delta_0}^a$ is easy to sample often $\mu_{\delta_0}^a = \mu$.
- $\mu_{\delta_N}^a$ has δ_N close to zero and is hard to sample.
- Intermediate distributions define a "ladder" which takes us from prior to posterior.
- Even within this framework, there is considerable choice of sampling scheme, e.g. brute-force MCMC, SMC, QMC, pCN, ...

Example: Painlevé's First Transcendental i

A multivalent boundary value problem:

Figure 1: The two solutions of Painlevé's first transcendental and their spectra in the orthonormal Chebyshev polynomial basis over [0, 10].

18/41

Example: Painlevé's First Transcendental i

A multivalent boundary value problem:

$$u''(t) - u(t)^{2} = -t$$
 for $t \ge 0$

$$u(0) = 0$$

$$u(10) = \sqrt{10}$$

Figure 1: The two solutions of Painlevé's first transcendental and their spectra in the orthonormal Chebyshev polynomial basis over [0, 10].

18/41

Example: Painlevé's First Transcendental III

- Parallel tempered pCN with 100 δ -values log-spaced from $\delta = 10$ to $\delta = 10^{-4}$ and 10^8 iterations recovers both solutions in approximately the same proportions as the posterior densities at the two exact solutions.
- SMC reliably recovers one solution, but not both simultaneously.
- $\, \blacksquare \,$ Of course, this comes at the price of MCMC...

Example: Painlevé's First Transcendental III

- Parallel tempered pCN with 100 δ -values log-spaced from $\delta = 10$ to $\delta = 10^{-4}$ and 10^8 iterations recovers both solutions in approximately the same proportions as the posterior densities at the two exact solutions.
- SMC reliably recovers one solution, but not both simultaneously.
- Of course, this comes at the price of MCMC...

X

Example: Painlevé's First Transcendental III

- Parallel tempered pCN with 100 δ -values log-spaced from $\delta = 10$ to $\delta = 10^{-4}$ and 10^8 iterations recovers both solutions in approximately the same proportions as the posterior densities at the two exact solutions.
- SMC reliably recovers one solution, but not both simultaneously.
- $\, \blacksquare \,$ Of course, this comes at the price of MCMC...

COHERENT PIPELINES OF BPNMS

COMPUTATIONAL PIPELINES

- Numerical methods usually form part of pipelines.
- Prime example: a PDE solve is a *forward model* in an *inverse problem*.
- Motivation for PNMs in the context of Bayesian inverse problems:

Make the forward and inverse problem speak the same statistical language!

• We can compose PNMs in series, e.g. $B_2(B_1(\mu, a_1), a_2)$ is formally $B(\mu, (a_1, a_2))...$ although figuring out what the spaces \mathcal{X}_i , \mathcal{A}_i and operators A_i etc. are is a headache!

Coherence i

- More generally, we compose PNMs in a graphical way by allowing input information nodes (□) to feed into method nodes (■), which in turn output new information.
- N.B. Deterministic data at the left-most □ nodes, then random variables as outputs, realisations of which get fed into the next ■.

Coherence i

- More generally, we compose PNMs in a graphical way by allowing input information nodes (□) to feed into method nodes (■), which in turn output new information.
- N.B. Deterministic data at the left-most □ nodes, then random variables as outputs, realisations of which get fed into the next ■.

- We define the corresponding dependency graph by replacing each \longrightarrow \Longrightarrow by \longrightarrow \longrightarrow , and number the vertices in an increasing fashion, so that [i] implies i < i'.
- The independence properties of the random variables at each node are crucial.

Coherence II

Definition 12

A prior μ is **coherent** for the dependency graph if — when the "leaf" input nodes are $A_{\sharp}\mu$ -distributed and the remaining nodes are $B(\mu, \text{parents})$ -distributed — every node Y_k is conditionally independent of all older non-parent nodes Y_i given its direct parents Y_j .

$$Y_k \perp \!\!\!\perp Y_{\{1,\dots,k-1\}\setminus parents(k)} \mid Y_{parents(k)}$$

This is weaker than the Markov condition for directed acyclic graphs (Lauritzen, 1991): we do not insist that the variables at the source nodes are independent.

COHERENCY THEOREM

Theorem 13 (Cockayne, Oates, Sullivan, and Girolami, 2017, Theorem 5.9)

If a pipeline of PNMs is such that

- the prior is coherent for the dependence graph, and
- the component PNMs are all Bayesian

then the pipeline is the Bayesian pipeline data at leaves $\rightarrow \blacksquare \rightarrow$ final output.

COHERENCY THEOREM

Theorem 13 (Cockayne, Oates, Sullivan, and Girolami, 2017, Theorem 5.9)

If a pipeline of PNMs is such that

- the prior is coherent for the dependence graph, and
- the component PNMs are all Bayesian

then the pipeline is the Bayesian pipeline data at leaves $\rightarrow \blacksquare \rightarrow$ final output.

- Redundant structure in the pipeline (recycled information) will break coherence, and hence Bayesianity of the pipeline.
- In principle, coherence and hence being Bayesian depend upon the prior.
- This should not be surprising as a loose analogy, one doesn't expect the trapezoidal rule to be a good way to integrate very smooth functions.

SPLIT INTEGRATION: COHERENCE

■ Integrate a function over [0,1] in two steps using nodes $0 \le t_0 < \cdots < t_{m-1} < 0.5$, $t_m = 0.5$, and $t_{m+1} < \cdots < t_{2m} \le 1$.

SPLIT INTEGRATION: COHERENCE

- Integrate a function over [0,1] in two steps using nodes $0 \le t_0 < \cdots < t_{m-1} < 0.5$, $t_m = 0.5$, and $t_{m+1} < \cdots < t_{2m} \le 1$.
- Is $\int_{0.5}^{1} u(t) dt$ independent of $u(t_0), \ldots, u(t_{m-1})$ given $u(t_m), \ldots, u(t_{2m})$?

SPLIT INTEGRATION: COHERENCE

- Integrate a function over [0,1] in two steps using nodes $0 \le t_0 < \cdots < t_{m-1} < 0.5$, $t_m = 0.5$, and $t_{m+1} < \cdots < t_{2m} \le 1$.
- Is $\int_{0.5}^{1} u(t) dt$ independent of $u(t_0), \ldots, u(t_{m-1})$ given $u(t_m), \ldots, u(t_{2m})$?
- For a Brownian motion prior on the integrand u, yes.
- For an integrated BM prior on u, i.e. a BM prior on u', no.

Split Integration: Coherence

- Integrate a function over [0,1] in two steps using nodes $0 \le t_0 < \cdots < t_{m-1} < 0.5$, $t_m = 0.5$, and $t_{m+1} < \cdots < t_{2m} \le 1$.
- Is $\int_{0.5}^{1} u(t) dt$ independent of $u(t_0), \ldots, u(t_{m-1})$ given $u(t_m), \ldots, u(t_{2m})$?
- For a Brownian motion prior on the integrand u, yes.
- For an integrated BM prior on u, i.e. a BM prior on u', no.
- So how do we elicit an appropriate prior that respects the problem's structure?
- And is being *fully* Bayesian worth it in terms of cost and robustness? Cf. Owhadi et al. (2015a,b) and Jacob et al. (2017).

RANDOMISED BAYESIAN INVERSE

PROBLEMS

RANDOMISED BAYESIAN INVERSE PROBLEMS

A Bayesian inverse problem can be seen as a simple pipeline of the form

with the first method being the forward solve, the second the inversion.

- How much does replacing the traditional deterministic forward solve by a PNM (or just a random surrogate) affect the solution of the BIP, à la Stuart (2010)?
- Usual posterior μ^y over \mathcal{U} with prior μ_0 and negative log-likelihood $\Phi = \Phi(\cdot; y) \colon \mathcal{U} \to \mathbb{R}$:

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(u) = \frac{\exp(-\Phi(u))}{Z(y)}.\tag{1}$$

■ Let now $\Phi_N \colon \Omega \times \mathcal{U} \to \mathbb{R}$ be a measurable function that provides a random approximation to Φ , and denote by ν_N the distribution of Φ_N .

■ Replacing Φ by Φ_N in (1), we obtain a random approximation μ_N^{samp} of μ :

$$\frac{\mathrm{d}\mu_N^{\mathrm{samp}}}{\mathrm{d}\mu_0}(u) := \frac{\exp(-\Phi_N(u))}{Z_N^{\mathrm{samp}}},$$

$$Z_N^{\mathrm{samp}} := \mathbb{E}_{\mu_0}[\exp(-\Phi_N(\cdot))].$$
(2)

Taking the expectation of the random likelihood gives a deterministic approximation:

$$\frac{\mathrm{d}\mu_N^{\mathrm{marg}}}{\mathrm{d}\mu_0}(u) := \frac{\mathbb{E}_{\nu_N} \left[\exp(-\Phi_N(u)) \right]}{\mathbb{E}_{\nu_N} \left[Z_N^{\mathrm{samp}} \right]}.$$
 (3)

• An alternative deterministic approximation can be obtained by taking the expected value of the density $(Z_N^{\text{samp}})^{-1}e^{-\Phi_N(u)}$ in (2). However, μ_N^{marg} provides a clear interpretation as the posterior obtained by the approximation of the true data likelihood $e^{-\Phi(u)}$ by $\mathbb{E}_{\nu_N}\big[e^{-\Phi_N(u)}\big]$, and is more amenable to sampling methods such as pseudo-marginal MCMC (Beaumont, 2003; Andrieu and Roberts, 2009).

Theorem 14 (Lie, Sullivan, and Teckentrup, 2017)

For suitable Hölder exponents p_1, p'_1, p_2, \ldots quantifying the integrability of Φ and Φ_N , we obtain deterministic convergence $\mu_N^{\text{marg}} \to \mu$ and mean-square convergence $\mu_N^{\text{samp}} \to \mu$ in the Hellinger metric:

$$d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{marg}}) \leq C \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{p'_{2}} \right]^{1/p'_{2}} \right\|_{L_{\mu_{0}}^{2p'_{1}p'_{3}}(\mathcal{U})'}$$

$$\mathbb{E}_{\nu_{N}} \left[d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{samp}})^{2} \right]^{1/2} \leq D \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{2q'_{1}} \right]^{1/2q'_{1}} \right\|_{L_{\mu_{0}}^{2q'_{2}}(\mathcal{U})}.$$

SUMMARY OF CONVERGENCE RATES

Theorem 14 (Lie, Sullivan, and Teckentrup, 2017)

For suitable Hölder exponents p_1, p'_1, p_2, \ldots quantifying the integrability of Φ and Φ_N , we obtain deterministic convergence $\mu_N^{\text{marg}} \to \mu$ and mean-square convergence $\mu_N^{\text{samp}} \to \mu$ in the Hellinger metric:

$$d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{marg}}) \leq C \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{p'_{2}} \right]^{1/p'_{2}} \right\|_{L^{2p'_{1}p'_{3}}_{\mu_{0}}(\mathcal{U})'}$$

$$\mathbb{E}_{\nu_{N}} \left[d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{samp}})^{2} \right]^{1/2} \leq D \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{2q'_{1}} \right]^{1/2q'_{1}} \right\|_{L^{2q'_{2}}_{\mu_{0}}(\mathcal{U})}.$$

Skip to Example or **Show Gory Details** ?

Convergence of $\mu_N^{\rm marg}$

Theorem 15 (Deterministic convergence of the marginal posterior)

Suppose there exist positive scalars C_1 , C_2 , C_3 , that do not depend on N, such that for the Hölder conjugate exponent pairs (p_1, p'_1) , (p_2, p'_2) , and (p_3, p'_3) , we have

$$\min \Big\{ \big\| \mathbb{E}_{\nu_N}[e^{-\Phi_N}]^{-1} \big\|_{L^{p_1}_{\mu_0}(\mathcal{U})}, \big\| e^{\Phi} \big\|_{L^{p_1}_{\mu_0}(\mathcal{U})} \Big\} \le C_1(p_1);$$

$$\| \mathbb{E}_{\nu_N} \left[\left(e^{-\Phi} + e^{-\Phi_N} \right)^{p_2} \right]^{1/p_2} \|_{L^{2p'_1p_3}_{\mu_0}(\mathcal{U})} \le C_2(p_1, p_2, p_3);$$

$$\bullet C_3^{-1} \leq \mathbb{E}_{\nu_N}[Z_N^{\text{samp}}] \leq C_3.$$

Then there exists a scalar $C = C(C_1, C_2, C_3, Z) > 0$ that does not depend on N, such that

$$d_{\mathrm{H}}(\mu, \mu_{N}^{\mathrm{marg}}) \leq C \left\| \mathbb{E}_{\nu_{N}} \left[|\Phi - \Phi_{N}|^{p'_{2}} \right]^{1/p'_{2}} \right\|_{L^{2p'_{1}p'_{3}}_{\mu_{0}}(\mathcal{U})'}$$

$$C(C_{1}, C_{2}, C_{3}, Z) = \left(\frac{C_{1}(p_{1})}{Z} + C_{3} \max \left\{ Z^{-3}, C_{3}^{3} \right\} \right) C_{2}^{2}(p_{1}, p_{2}, p_{3}).$$

Theorem 16 (Mean-square convergence of the sample posterior)

Suppose there exist positive scalars D_1 , D_2 , that do not depend on N, such that for Hölder conjugate exponent pairs (q_1, q'_1) and (q_2, q'_2) , we have

$$\| \mathbb{E}_{\nu_N} \left[\left(e^{-\Phi/2} + e^{-\Phi_N/2} \right)^{2q_1} \right]^{1/q_1} \|_{L^{q_2}_{\mu_0}(\mathcal{U})} \le D_1(q_1, q_2);$$

$$\| \mathbb{E}_{\nu_N} \Big[\Big(Z_N^{\text{samp}} \max \big\{ Z^{-3}, (Z_N^{\text{samp}})^{-3} \big\} \big(e^{-\Phi} + e^{-\Phi_N} \big)^2 \Big)^{q_1} \Big]^{1/q_1} \Big\|_{L^{q_2}_{\mu_0}(\mathcal{U})} \leq D_2(q_1, q_2).$$

Then

$$\mathbb{E}_{\nu_N} \left[d_{\mathrm{H}} (\mu, \mu_N^{\mathrm{samp}})^2 \right]^{1/2} \leq (D_1 + D_2) \left\| \mathbb{E}_{\nu_N} \left[|\Phi - \Phi_N|^{2q_1'} \right]^{1/2q_1'} \right\|_{L^{2q_2'}_{\mu_0}(\mathcal{U})},$$

APPLICABILITY OF CONVERGENCE THEOREMS I

The assumptions of Theorems 15 and 16 are satisfied when the exact potential Φ and the approximation quality $\Phi_N \approx \Phi$ are suitably well behaved. Recall from (1) that Z is the normalisation constant of μ . Therefore, for μ to be well-defined, we must have that $0 < Z < \infty$. In particular, there exists $0 < C_3 < \infty$ such that $C_3^{-1} < Z < C_3$.

Assumption 17

There exists $C_0 \in \mathbb{R}$ that does not depend on N such that, for all $N \in \mathbb{N}$,

$$\Phi \ge -C_0 \quad \text{and} \quad \nu_N(\{\Phi_N \mid \Phi_N \ge -C_0\}) = 1,$$
 (4)

and for any $0 < C_3 < +\infty$ with the property that $C_3^{-1} < Z < C_3$, there exists $N^*(C_3) \in \mathbb{N}$ such that, for all $N \ge N^*$,

$$\mathbb{E}_{\mu_0}[\mathbb{E}_{\nu_N}[|\Phi_N - \Phi|]] \le \frac{1}{2e^{C_0}} \min\left\{Z - \frac{1}{C_3}, C_3 - Z\right\}.$$
 (5)

APPLICABILITY OF CONVERGENCE THEOREMS II

Lemma 18

Suppose that Assumption 17 holds with C_0 as in (4) and C_3 and $N^*(C_3)$ as in (5), that $\exp(\Phi) \in L^{p^*}_{\mu_0}(\mathcal{U})$ for some $1 \leq p^* \leq +\infty$ with conjugate exponent $(p^*)'$, and there exists some $C_4 \in \mathbb{R}$ that does not depend on N, such that, for all $N \in \mathbb{N}$,

$$\nu_N\big(\big\{\Phi_N\mid \mathbb{E}_{\mu_0}[\Phi_N]\leq C_4\big\}\big)=1.$$

Then the hypotheses of Theorem 15 hold, with

$$p_1 = p^*, \ p_2 = p_3 = +\infty, \ C_1 = \|e^{\Phi}\|_{L^{p^*}_{\mu_0}}, \ C_2 = 2e^{C_0},$$

and C₃ as above. Moreover, the hypotheses of Theorem 16 hold, with

$$q_1 = q_2 = \infty$$
, $D_1 = 4e^{C_0}$, $D_2 = 4e^{3C_0} \max\{C_3^{-3}, e^{3C_4}\}$.

Lemma 19

Suppose that Assumption 17 holds with C_0 as in (4) and C_3 and $N^*(C_3)$ as in (5), and that there exists some $2 < \rho^* < +\infty$ such that $\mathbb{E}_{\nu_N}[\exp(\rho^*\Phi_N)] \in L^1_{\mu_0}$. Then the hypotheses of Theorem 15 hold, with

$$p_1 = \rho^*, p_2 = p_3 = +\infty, C_1 = \|\mathbb{E}_{\nu_N}[\exp(\rho^*\Phi_N)]\|_{L^1_{\mu_0}}^{1/\rho^*}, C_2 = 2e^{C_0},$$

and C₃ as above. Moreover, the hypotheses of Theorem 16 hold, with

$$q_1 = \frac{\rho^*}{2}, \ q_2 = +\infty, \ D_1 = 4e^{C_0}, \ D_2 = 4e^{2C_0} \left(C_3^{-3} e^{C_0} + \|\mathbb{E}_{\nu_N}[e^{\rho^* \Phi_N}]\|_{L^1_{\mu_0}}^{2/\rho^*} \right).$$

Example: Monte Carlo approximation of high-dimensional misfits

We consider a Monte Carlo approximation Φ_N of a quadratic potential Φ (Nemirovski et al., 2008; Shapiro et al., 2009), further applied and analysed in the MAP estimator context by Le et al. (2017). This approximation is particularly useful for data $y \in \mathbb{R}^J$, $J \gg 1$.

Context by Le et al. (2017). This approximation is particularly userul for data
$$y \in \mathbb{R}^J$$
, $\gg 1$.
$$\Phi(u) := \frac{1}{2} \left\| \Gamma^{-1/2} (y - G(u)) \right\|^2$$

$$= \frac{1}{2} \left(\Gamma^{-1/2} (y - G(u)) \right)^T \mathbb{E} [\sigma \sigma^T] \left(\Gamma^{-1/2} (y - G(u)) \right) \quad \text{where } \mathbb{E} [\sigma] = 0 \in \mathbb{R}^J, \mathbb{E} [\sigma \sigma^T] = I_{J \times J}$$

$$= \frac{1}{2} \mathbb{E} \left[\left| \sigma^T \left(\Gamma^{-1/2} (y - G(u)) \right) \right|^2 \right]$$

$$\approx \frac{1}{2N} \sum_{i=1}^N \left| \sigma^{(i)^T} \left(\Gamma^{-1/2} (y - G(u)) \right) \right|^2 \quad \text{for i.i.d. } \sigma^{(1)}, \dots, \sigma^{(N)} \stackrel{d}{=} \sigma$$

$$\approx \frac{1}{2N} \sum_{i=1}^{T} |\sigma^{(i)} \left(\Gamma^{-1/2} (y - G(u)) \right)|^{2} \qquad \text{for i.i.d. } \sigma^{(1)}, \dots, \sigma^{(N)} \stackrel{\cong}{=} \sigma$$

$$= \frac{1}{2} \left\| \sum_{N=1}^{T} \left(\Gamma^{-1/2} (y - G(u)) \right) \right\|^{2} \qquad \text{for } \Sigma_{N} := \frac{1}{\sqrt{N}} [\sigma^{(1)} \cdots \sigma^{(N)}] \in \mathbb{R}^{J \times N}$$

 $=: \Phi_N(u).$

Example: Monte Carlo approximation of high-dimensional misfits

The analysis and numerical studies in Le et al. (2017, Sections 3–4) suggest that a good choice for the \mathbb{R}^J -valued random vector σ would be one with independent and identically distributed (i.i.d.) entries from a sub-Gaussian probability distribution. Examples of sub-Gaussian distributions considered include

- the Gaussian distribution: $\sigma_j \sim \mathcal{N}(0,1)$, for $j=1,\ldots,J$; and
- the ℓ -sparse distribution: for $\ell \in [0,1)$, let $s := \frac{1}{1-\ell} \ge 1$ and set, for $j = 1, \dots, J$,

$$\sigma_j := \sqrt{s} \begin{cases} 1, & \text{with probability } \frac{1}{2s}, \\ 0, & \text{with probability } \ell = 1 - \frac{1}{s}, \\ -1, & \text{with probability } \frac{1}{2s}. \end{cases}$$

Example: Monte Carlo approximation of high-dimensional misfits

- Le et al. (2017) observe that, for large J and moderate $N \approx 10$, the random potential Φ_N and the original potential Φ are very similar, in particular having approximately the same minimisers and minimum values.
- Statistically, these correspond to the maximum likelihood estimators under Φ and Φ_N being very similar; after weighting by a prior, this corresponds to similarity of maximum a posteriori (MAP) estimators.
- Here, we study the BIP instead of the MAP problem, and thus the corresponding conjecture is that the deterministic posterior $d\mu(u) \propto \exp(-\Phi(u)) d\mu_0(u)$ is well approximated by the random posterior $d\mu_N^{\text{samp}}(u) \propto \exp(-\Phi_N(u)) d\mu_0(u)$.

Example: Well-posedness of BIPs with Monte Carlo misfits

Applying the general Theorem 16 from earlier gives the following transfer of the Monte Carlo convergence rate from the approximation of Φ to the approximation of μ :

Proposition 20

Suppose that the entries of σ are i.i.d. ℓ -sparse, for some $\ell \in [0,1)$, and that $\Phi \in L^2_{\mu_0}(\mathcal{U})$. Then there exists a constant C, independent of N, such that

$$\left(\mathbb{E}_{\sigma}\left[d_{\mathrm{H}}(\mu,\mu_{N}^{\mathrm{samp}})^{2}\right]\right)^{1/2} \leq \frac{C}{\sqrt{N}}.$$

For technical reasons to do with the non-compactness of the support and finiteness of MGFs of maxima, the current proof technique does not work for the Gaussian case.

CLOSING REMARKS

CLOSING REMARKS

• Full details and further applications in

 Numerical methods can be characterised in a Bayesian fashion. 	✓
 This does not coincide with average-case analysis and IBC. 	✓
 BPNMs can be composed into pipelines, e.g. for inverse problems. 	✓
■ Bayes' rule as disintegration \rightarrow (expensive!) numerical implementation.	√ //
 Lots of room to improve computational cost and bias. 	<u>!?</u>
 Departures from the "Bayesian gold standard" can be assessed in terms of c 	ost-accuracy
tradeoff.	<u>!?</u>
 How to choose/design an appropriate (numerically-analytically right) pri 	ior? 🧖

Cockayne, Oates, Sullivan, and Girolami (2017) arXiv:1702.03673. Lie, Sullivan, and Teckentrup (2017) arXiv:1712.05717.

CLOSING REMARKS

• Full details and further applications in

 Numerical methods can be characterised in a Bayesian fashion. 	✓
■ This does not coincide with average-case analysis and IBC.	✓
■ BPNMs can be composed into pipelines, e.g. for inverse problems.	✓
■ Bayes' rule as disintegration \rightarrow (expensive!) numerical implementation.	1/
 Lots of room to improve computational cost and bias. 	<i>!</i> ?
 Departures from the "Bayesian gold standard" can be assessed in terms of cost-ac 	curac
tradeoff.	<i>!</i> ?
■ How to choose /design an appropriate (numerically-analytically right) prior?	P

Cockayne, Oates, Sullivan, and Girolami (2017) arXiv:1702.03673. Lie, Sullivan, and Teckentrup (2017) arXiv:1712.05717.

Thank You

- N. L. Ackerman, C. E. Freer, and D. M. Roy. On computability and disintegration. *Math. Structures Comput. Sci.*, 27(8): 1287–1314, 2017. doi:10.1017/S0960129516000098.
- C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. *Ann. Statist.*, 37(2): 697–725, 2009. doi:10.1214/07-AOS574.
- M. A. Beaumont. Estimation of population growth or decline in genetically monitored populations. *Genetics*, 164(3): 1139–1160, 2003.
- P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating belief distributions. *J. R. Stat. Soc. Ser. B. Stat. Methodol.*, 78(5):1103–1130, 2016. doi:10.1111/rssb.12158.
- J. T. Chang and D. Pollard. Conditioning as disintegration. *Statist. Neerlandica*, 51(3):287–317, 1997. doi:10.1111/1467-9574.00056.
- J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. Bayesian probabilistic numerical methods, 2017. arXiv:1702.03673.
- P. R. Conrad, M. Girolami, S. Särkkä, A. M. Stuart, and K. C. Zygalakis. Statistical analysis of differential equations: introducing probability measures on numerical solutions. *Stat. Comput.*, 27(4), 2016. doi:10.1007/s11222-016-9671-0.
- P. Diaconis. Bayesian numerical analysis. In *Statistical Decision Theory and Related Topics, IV, Vol. 1* (West Lafayette, Ind., 1986), pages 163–175. Springer, New York, 1988.
- M. Giry. A categorical approach to probability theory. In *Categorical aspects of topology and analysis (Ottawa, Ont., 1980)*, volume 915 of *Lecture Notes in Math.*, pages 68–85. Springer, Berlin-New York, 1982.

References II

- P. E. Jacob, L. M. Murray, C. C. Holmes, and C. P. Robert. Better together? Statistical learning in models made of modules, 2017. arXiv:1708.08719.
- J. B. Kadane and G. W. Wasilkowski. Average case ϵ -complexity in computer science. A Bayesian view. In *Bayesian Statistics*, 2 (*Valencia*, 1983), pages 361–374. North-Holland, Amsterdam, 1985.
- F. M. Larkin. Optimal approximation in Hilbert spaces with reproducing kernel functions. *Math. Comp.*, 24:911–921, 1970. doi:10.2307/2004625.
- S. Lauritzen. Graphical Models. Oxford University Press, 1991.
- E. B. Le, A. Myers, T. Bui-Thanh, and Q. P. Nguyen. A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems. *Inverse Probl.*, 33(6):065003, 2017. doi:10.1088/1361-6420/aa6cbd.
- H. C. Lie, T. J. Sullivan, and A. L. Teckentrup. Random forward models and log-likelihoods in Bayesian inverse problems, 2017. arXiv:1712.05717.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM J. Optim.*, 19(4):1574–1609, 2008. doi:10.1137/070704277.
- A. O'Hagan. Monte Carlo is fundamentally unsound. Statistician, 36(2/3):247-249, 1987. doi:10.2307/2348519.
- H. Owhadi and C. Scovel. Conditioning Gaussian measure on Hilbert space, 2015. arXiv:1506.04208.
- H. Owhadi, C. Scovel, and T. J. Sullivan. Brittleness of Bayesian inference under finite information in a continuous world. *Electron. J. Stat.*, 9(1):1–79, 2015a. doi:10.1214/15-EJS989.
- H. Owhadi, C. Scovel, and T. J. Sullivan. On the brittleness of Bayesian inference. SIAM Rev., 57(4):566–582, 2015b. doi:10.1137/130938633.

References III

- H. Poincaré. Calcul des Probabilites. Georges Carré, Paris, 1896.
- K. Ritter. Average-Case Analysis of Numerical Problems, volume 1733 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. doi:10.1007/BFb0103934.
- A. Sard. Best approximate integration formulas; best approximation formulas. Amer. J. Math., 71:80–91, 1949. doi:10.2307/2372095.
- C. Schillings and C. Schwab. Scaling limits in computational Bayesian inversion. *ESAIM Math. Model. Numer. Anal.*, 50(6): 1825–1856, 2016. doi:10.1051/m2an/2016005.
- A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling and Theory, volume 9 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2009. doi:10.1137/1.9780898718751.
- J. Skilling. Bayesian solution of ordinary differential equations. In C. R. Smith, G. J. Erickson, and P. O. Neudorfer, editors, *Maximum Entropy and Bayesian Methods*, volume 50 of *Fundamental Theories of Physics*, pages 23–37. Springer, 1992. doi:10.1007/978-94-017-2219-3.
- $A.\ M.\ Stuart.\ Inverse\ problems:\ a\ Bayesian\ perspective.\ \textit{Acta Numer.},\ 19:451-559,\ 2010.\ doi:10.1017/S0962492910000061.$
- A. V. Sul'din. Wiener measure and its applications to approximation methods. I. *Izv. Vysš. Učebn. Zaved. Matematika*, 6(13): 145–158, 1959.
- A. V. Sul'din. Wiener measure and its applications to approximation methods. II. *Izv. Vysš. Učebn. Zaved. Matematika*, 5(18): 165–179, 1960.

References IV

- T. Tjur. Probability Based on Radon Measures. John Wiley & Sons, Ltd., Chichester, 1980. Wiley Series in Probability and Mathematical Statistics.
- J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. *Information-Based Complexity*. Computer Science and Scientific Computing. Academic Press, Inc., Boston, MA, 1988. With contributions by A. G. Werschulz and T. Boult.
- $L.\ N.\ Trefethen.\ Is\ Gauss\ quadrature\ better\ than\ Clenshaw-Curtis?\ \textit{SIAM Rev.}, 50(1):67-87, 2008.\ doi:10.1137/060659831.$
- $A.\ Zellner.\ Optimal\ information\ processing\ and\ Bayes's\ theorem.\ \textit{Amer.\ Statist.,}\ 42(4):278-284,\ 1988.\ doi:10.2307/2685143.$