# Statistical Intervals for a Single Sample

An <u>interval estimator</u> is a rule for calculating two numbers – say L and U- to create an interval that you are <u>fairly certain</u> contains the parameter of interest. The concept of <u>fairly certain</u> means "with high probability". We measure this probability using the confidence coefficient, designed by  $1-\alpha$ .

The basic ideas of a confidence interval (CI) are most easily understood by initially considering a simple situation. Suppose that we have a normal population with unknown mean  $\mu$  and known variance  $\sigma^2$ . This is a somewhat unrealistic scenario because typically both the mean and variance are unknown. However, in subsequent sections we will present confidence intervals for more general situations.

## Confidence Interval on the Mean of a Normal Distribution, Variance Known

- Suppose that  $X_1, X_2, ..., X_n$  is a random sample from a normal distribution with unknown mean  $\mu$  and known variance  $\sigma^2$ .
- We know the sample mean  $\overline{X}$  is <u>normally</u> distributed with mean  $\mu$  and variance  $\sigma^2/n$ .
- We may standardize  $\bar{x}$  as

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

• The random variable Z has a standard normal distribution.

A <u>confidence interval</u> estimate for  $\mu$  is an interval of the form  $l \le \mu \le u$ , where the endpoints l and u are computed from the sample data. Because different <u>samples</u> will <u>produce different values</u> of l and u, these endpoints are values of random variables L and U, respectively. Suppose that we can determine values of L and U such that the following probability statement is true:

$$P(L \le \mu \le \mathbf{U}) = 1 - \alpha$$

where  $0 \le \alpha \le 1$ .

There is a probability of  $\frac{1-\alpha}{\alpha}$  of selecting a sample for which the CI will contain the true value of  $\mu$ .

Once we have selected the sample, so that

$$X_1 = x_1, X_2 = x_2, ..., X_n = x_n$$

and computed  $\frac{l}{u}$  and  $\frac{u}{u}$ , the resulting confidence interval for  $\frac{u}{u}$  is

$$l \le \mu \le u$$

The end-points l and u are called the lower and upper-confidence limits, respectively, and  $1-\alpha$  is called the confidence coefficient.

## Confidence Interval on the Mean, Variance Known

If  $\bar{x}$  is the sample mean of a random sample of size n from a normal population with known variance  $\sigma^2$ , a  $100(1-\alpha)\%$  CI on  $\mu$  is given by

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where  $z_{\alpha/2}$  is the upper  $100 \alpha/2$  percentage point of the standard normal distribution.

$$P\left\{\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

### Assume that the confidence coefficient is 0.95



Estimator ± 1.96 SE

### Assume that the confidence coefficient is 0.99



Estimator  $\pm 2.58$  SE

**Example:** Ten measurements of impact energy (J) on specimens of A238 steel cut at 60°C are as follows:

Assume that impact energy is **normally distributed** with  $\sigma=1J$ .

Find 95% CI for  $\mu$ , the mean impact energy.

$$z_{\alpha/2} = z_{0.025} = 1.96$$
, n=10,  $\sigma = 1$ ,  $\bar{x} = 64.46$ 

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$64.46 - 1.96 \frac{1}{\sqrt{10}} \le \mu \le 64.46 + 1.96 \frac{1}{\sqrt{10}}$$

$$63.84 \le \mu \le 65.08$$

MTB > zint 95 1 c1

One-Sample Z: Impact Energy

The assumed standard deviation = 1

 Variable
 N
 Mean
 StDev
 SE Mean
 95% CI

 Impact Energy
 10
 64.460
 0.227
 0.316
 (63.840; 65.08)

### **Interpreting a Confidence Interval**

In the impact energy estimation problem the 95% CI is  $63.84 \le \mu \le 65.08$ , so it is tempting to conclude that  $\mu$  is within this interval with probability 0.95. However, with a little reflection, it's easy to see that this <u>cannot</u> be correct; the true value of  $\mu$  is unknown and the statement  $63.84 \le \mu \le 65.08$  is either correct (<u>true with probability 1</u>) or incorrect (<u>false with probability 1</u>). The correct interpretation lies in the realization that CI is a <u>random interval</u> because in the probability statement defining the end-points of the interval <u>L</u> and <u>U</u> are random variables.

- Consequently, the correct interpretation of a  $\frac{100(1\text{-}\alpha)\%CI}{\text{depends}}$  on the relative frequency view of probability.
  - Specifically, if an infinite number of random samples are collected and

 $100(1-\alpha)\%CI$ 

for  $\mu$  is computed from each sample,  $\frac{100(1-\alpha)\%}{}$  of these intervals will contain the true value of  $\mu$ .



Descriptive Statistics: Population; sample 1; sample 2; sample 3; sample 4; ...

| Variable |      | Mean   | SE Mean | StDev |
|----------|------|--------|---------|-------|
| Populat  | cion | 100.02 | 0.0317  | 10.02 |
| sample   | 1    | 99.10  | 1.27    | 8.96  |
| sample   | 2    | 100.21 | 1.46    | 10.33 |
| sample   | 3    | 100.36 | 1.57    | 11.10 |
| sample   | 4    | 98.80  | 1.42    | 10.05 |
| sample   | 5    | 97.21  | 1.42    | 10.02 |
| sample   | 6    | 100.95 | 1.21    | 8.57  |
| sample   | 7    | 99.62  | 1.18    | 8.33  |
| sample   | 8    | 102.32 | 1.27    | 8.98  |
| sample   | 9    | 98.65  | 1.49    | 10.53 |
| sample   | 10   | 99.25  | 1.55    | 10.99 |
| sample   | 11   | 100.28 | 1.26    | 8.93  |
| sample   | 12   | 101.86 | 1.34    | 9.48  |
| sample   | 13   | 102.19 | 1.48    | 10.48 |
| sample   | 14   | 100.99 | 1.30    | 9.20  |
| sample   | 15   | 100.19 | 1.32    | 9.34  |
| sample   | 16   | 102.01 | 1.46    | 10.33 |
| sample   | 17   | 99.63  | 1.54    | 10.90 |
| sample   | 18   | 100.38 | 1.75    | 12.39 |
| sample   | 19   | 97.60  | 1.24    | 8.80  |
| sample   | 20   | 101.25 | 1.16    | 8.19  |

### MTB > zint 95 10 c2-c21

One-Sample 2; sample 2; sample 3; sample 4; sample 5; sample 6; ...

### The assumed standard deviation = 10

| Varia  | able |    | N Mea  | n StDev | SE Mean |         | 95% CI  |
|--------|------|----|--------|---------|---------|---------|---------|
| sample | 1    | 50 | 99.10  | 8.96    | 1.41    | (96.32; | 101.87) |
| sample | 2    | 50 | 100.21 | 10.33   | 1.41    | (97.44; | 102.98) |
| sample | 3    | 50 | 100.36 | 11.10   | 1.41    | (97.59; | 103.13) |
| sample | 4    | 50 | 98.80  | 10.05   | 1.41    | (96.03; | 101.57) |
| sample | 5    | 50 | 97.21  | 10.02   | 1.41    | (94.44; | 99.98)  |
| sample | 6    | 50 | 100.95 | 8.57    | 1.41    | (98.18; | 103.72) |
| sample | 7    | 50 | 99.62  | 8.33    | 1.41    | (96.85; | 102.39) |
| sample | 8    | 50 | 102.32 | 8.98    | 1.41    | (99.55; | 105.10) |
| sample | 9    | 50 | 98.65  | 10.53   | 1.41    | (95.88; | 101.42) |
| sample | 10   | 50 | 99.25  | 10.99   | 1.41    | (96.47; | 102.02) |
| sample | 11   | 50 | 100.28 | 8.93    | 1.41    | (97.51; | 103.05) |
| sample | 12   | 50 | 101.86 | 9.48    | 1.41    | (99.09; | 104.63) |
| sample | 13   | 50 | 102.19 | 10.48   | 1.41    | (99.42; | 104.96) |
| sample | 14   | 50 | 100.99 | 9.20    | 1.41    | (98.22; | 103.76) |
| sample | 15   | 50 | 100.19 | 9.34    | 1.41    | (97.42; | 102.97) |
| sample | 16   | 50 | 102.01 | 10.33   | 1.41    | (99.24; | 104.78) |
| sample | 17   | 50 | 99.63  | 10.90   | 1.41    | (96.86; | 102.40) |
| sample | 18   | 50 | 100.38 | 12.39   | 1.41    | (97.61; | 103.15) |
| sample | 19   | 50 | 97.60  | 8.80    | 1.41    | (94.82; | 100.37) |
| sample | 20   | 50 | 101.25 | 8.19    | 1.41    | (98.48; | 104.02) |

### **Confidence level and Precision of Estimation**

Notice in the previous example that our choice of the 95% level of confidence was essentially arbitrary. What would have happened if we had chosen a higher level of confidence, say, 99%?

At  $\alpha=0.01$ , we find  $z_{\alpha/2}=z_{0.005}=2.58$ , while for  $\alpha=0.01$   $z_{\alpha/2}=z_{0.025}=1.96$ . Thus, the length of the 95% confidence interval is

$$2(1.96\sigma/\sqrt{n}) = 3.92\sigma/\sqrt{n}$$

whereas the length of the 99% CI is

$$2(2.58\sigma/\sqrt{n}) = 5.16\sigma/\sqrt{n}$$

Thus the 99% CI is longer that 95% CI. This is why we have a higher level of confidence in the 99% confidence interval.

- Generally, for a fixed sample size n and standard deviation  $\sigma$ , the <u>higher the confidence</u> level, the longer the resulting CI.
- The <u>length of a confidence interval</u> is a measure of the precision of estimation.
- It is desirable to obtain a confidence interval that is short enough for decision-making purposes and that also has adequate confidence.
- One way to achieve this is by choosing the sample size n to be large enough to give a CI of specified length of precision with prescribed confidence.

### **Choice of Sample Size**

A  $100(1-\alpha)$ % CI on  $\mu$  is given by

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The precision of the confidence interval in the previous equation is



This means that in using  $\bar{x}$  to estimate  $\mu$ , the error  $E = |\bar{x} - \mu|$  is less than or equal to  $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$  with confidence  $100(1-\alpha)$ .

In situations where the sample size can be controlled, we can choose n so that we are  $\frac{100(1-\alpha)}{\mu}$  percent confident that the error in estimating  $\frac{\mu}{\mu}$  is less that a specified bound on the error E.

The appropriate sample size is found by choosing n such that

$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = E$$

Solving this equation gives the following formula for n.

# Sample Size for Specified Error on the Mean, Variance Known

If  $\bar{x}$  is used as an estimate of  $\mu$ , we can be 100(1- $\alpha$ )% confident that the error  $|\bar{x}-\mu|$  will not exceed a specified amount E when the sample size is

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

**Example:** Consider the previous example, and suppose that we wanted to determine how many specimens must be tested to ensure that the 95% CI on  $\mu$  for A238 steel cut has a length of at **most 1.0J**.

### Before we obtain for n equals to 10

$$64.46 - 1.96 \frac{1}{\sqrt{10}} \le \mu \le 64.46 + 1.96 \frac{1}{\sqrt{10}}$$

$$63.84 \le \mu \le 65.08$$

Since the bound on error in estimation E is one-half of the length of the CI.

**E=0.5**, 
$$\sigma$$
=1, and  $z_{\alpha/2}$  = 1.96

The required sample size is  $n = \left(\frac{1.96}{0.5}\right)^2 = 15.37$  and because n must be an integer, the required sample size is n=16.

Notice the general relationship between sample size, desired length of the confidence interval 2E, confidence level  $100(1-\alpha)$ , and standard deviation  $\sigma$ :

- As the desired length of the interval <u>2E</u> decreases, the required sample size n increases for a fixed value of σ and specified confidence.
- As σ increases, the required sample size n increases for a fixed desired length 2E and specified confidence.
- As the <u>level of confidence increases</u>, the required sample size n increases for fixed desired length 2E and standard deviation o.

### Large-Sample Confidence Interval for $\mu$

We have assumed that the population distribution is normal with unknown mean and known standard deviation. However, the standard deviation is unknown. It turns out that when n is large, replacing  $\sigma$  by the sample standard deviation S has little effect on the distribution of Z. This leads to the following useful result.

Large-Sample Confidence Interval on the Mean

When n is large, the quantity

$$\frac{\overline{x} - \mu}{S / \sqrt{n}}$$

has an <u>approximate</u> standard normal distribution. Consequently,

$$\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$

is a large sample confidence interval for  $\mu$ , with confidence level of approximately  $100(1-\alpha)\%$ .

MTB > random 100 c1; SUBC> normal 10 2. MTB > print c1 Data Display 11.7800 8.7355 7.83 10.6937 8.0952 10.84

| 11.7800 | 8.7355  | 7.8383  | 9.8455  | 10.8566 | 7.2477  | 11.1385 |
|---------|---------|---------|---------|---------|---------|---------|
| 10.6937 | 8.0952  | 10.8427 | 8.0928  | 9.9364  | 9.7830  | 9.5375  |
| 9.0326  | 10.5664 | 11.6442 | 7.0891  | 10.1029 | 10.9549 | 8.0954  |
| 13.0997 | 12.8814 | 5.5040  | 8.2945  | 13.3737 | 9.3716  | 8.2152  |
| 4.6611  | 9.1933  | 6.6900  | 12.8446 | 11.8177 | 8.1979  | 8.6519  |
| 9.7078  | 9.1291  | 8.5152  | 11.7702 | 9.1775  | 9.8409  | 9.1542  |
| 9.4752  | 10.0042 | 10.3100 | 11.7184 | 9.9753  | 10.5709 | 6.5498  |
| 6.7017  | 10.2139 | 7.8130  | 9.7468  | 8.7328  | 13.7653 | 9.6900  |
| 8.7187  | 5.4559  | 12.5540 | 9.1570  | 11.4057 | 9.4203  | 8.5856  |
| 8.5929  | 9.6257  | 9.9148  | 10.4549 | 10.9034 | 9.1943  | 8.2688  |
| 11.1239 | 6.1162  | 9.8353  | 10.1374 | 10.4322 | 12.7195 | 10.2830 |
| 7.7909  | 14.0790 | 10.8794 | 10.7572 | 10.5939 | 8.7564  | 7.9499  |
| 12.4014 | 6.1800  | 8.1428  | 10.7438 | 8.3990  | 11.2722 | 11.9227 |
| 8.6773  | 11.8154 | 10.9196 | 10.7286 | 9.8517  | 10.3959 | 12.1236 |
| 9.2700  | 9.5138  |         |         |         |         |         |

#### **Descriptive Statistics: C1**

| <b>Variable</b> | N   | N* | Mean  | SE Mean | StDev | Minimum | Q1    | Median | Q3     |
|-----------------|-----|----|-------|---------|-------|---------|-------|--------|--------|
| C1              | 100 | 0  | 9.733 | 0.186   | 1.861 | 4.661   | 8.587 | 9.809  | 10.874 |

Variable Maximum C1 14.079

zint 95 1.861 cl

One-Sample Z: C1

The assumed standard deviation = 1.861

Variable N Mean StDev SE Mean 95% CI C1 100 9.733 1.861 0.186 (9.369; 10.098)

$$\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$9.733 - 1.96 \frac{1.861}{\sqrt{100}} \le \mu \le 9.733 + 1.96 \frac{1.861}{\sqrt{100}}$$

 $9.369 \le \mu \le 10.098$ 

MTB > zint 95 2 c1

One-Sample Z: C1

The assumed standard deviation = 2

### Confidence Interval on the Mean of a Normal Distribution, <u>Variance Unknown</u>

- Suppose that the population of interest has a normal distribution with unknown mean  $\mu$  and unknown variance  $\sigma^2$ .
- Assume that a random sample of size n, say  $X_1, X_2,..., X_n$  is available and let  $\overline{X}$  and  $S^2$  be the sample mean and variance, respectively.
- If the variance  $\sigma^2$  is known, we know that

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

has a standard normal distribution.

• When  $\sigma^2$  is <u>unknown</u>, a logical procedure is to replace  $\sigma$  with the sample standard deviation S. The random variable Z now becomes

$$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

• A logical question is what effect does replacing  $\sigma$  by S have on the distribution of the random variable T? If n is large, the answer of this question is "very little" and we can proceed to use the confidence interval based on normal distribution. However, n is usually small in most engineering problems, and in this situation a different distribution must be employed to construct the CI.

### t Distribution

Let  $X_1, X_2, ..., X_n$  be a random sample from a normal distribution is with unknown mean and unknown variable

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

The t probability density function is

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{\pi k} \Gamma(k/2)} \cdot \frac{1}{[(x^2/k)+1]^{(k+1)/2}} - \infty < x < \infty$$

where k is the number of degrees of freedom.

The mean and variance of the t distribution are

$$E(x) = 0,$$
  $Var(x) = \frac{k}{(k-2)}$  for  $k > 2$ 



### t table with right tail probabilities



|      |          |          |          |          | * (p,ar) |          |          |          |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
| df\p | 0.40     | 0.25     | 0.10     | 0.05     | 0.025    | 0.01     | 0.005    | 0.0005   |
| 1    | 0.324920 | 1.000000 | 3.077684 | 6.313752 | 12.70620 | 31.82052 | 63.65674 | 636.6192 |
| 2    | 0.288675 | 0.816497 | 1.885618 | 2.919986 | 4.30265  | 6.96456  | 9.92484  | 31.5991  |
| 3    | 0.276671 | 0.764892 | 1.637744 | 2.353363 | 3.18245  | 4.54070  | 5.84091  | 12.9240  |
| 4    | 0.270722 | 0.740697 | 1.533206 | 2.131847 | 2.77645  | 3.74695  | 4.60409  | 8.6103   |
| 5    | 0.267181 | 0.726687 | 1.475884 | 2.015048 | 2.57058  | 3.36493  | 4.03214  | 6.8688   |
| 6    | 0.264835 | 0.717558 | 1.439756 | 1.943180 | 2.44691  | 3.14267  | 3.70743  | 5.9588   |
| 7    | 0.263167 | 0.711142 | 1.414924 | 1.894579 | 2.36462  | 2.99795  | 3.49948  | 5.4079   |
| 8    | 0.261921 | 0.706387 | 1.396815 | 1.859548 | 2.30600  | 2.89646  | 3.35539  | 5.0413   |
| 9    | 0.260955 | 0.702722 | 1.383029 | 1.833113 | 2.26216  | 2.82144  | 3.24984  | 4.7809   |
| 10   | 0.260185 | 0.699812 | 1.372184 | 1.812461 | 2.22814  | 2.76377  | 3.16927  | 4.5869   |
| 11   | 0.259556 | 0.697445 | 1.363430 | 1.795885 | 2.20099  | 2.71808  | 3.10581  | 4.4370   |
| 12   | 0.259033 | 0.695483 | 1.356217 | 1.782288 | 2.17881  | 2.68100  | 3.05454  | 4.3178   |
| 13   | 0.258591 | 0.693829 | 1.350171 | 1.770933 | 2.16037  | 2.65031  | 3.01228  | 4.2208   |
| 14   | 0.258213 | 0.692417 | 1.345030 | 1.761310 | 2.14479  | 2.62449  | 2.97684  | 4.1405   |
| 15   | 0.257885 | 0.691197 | 1.340606 | 1.753050 | 2.13145  | 2.60248  | 2.94671  | 4.0728   |
| 16   | 0.257599 | 0.690132 | 1.336757 | 1.745884 | 2.11991  | 2.58349  | 2.92078  | 4.0150   |
| 17   | 0.257347 | 0.689195 | 1.333379 | 1.739607 | 2.10982  | 2.56693  | 2.89823  | 3.9651   |
| 18   | 0.257123 | 0.688364 | 1.330391 | 1.734064 | 2.10092  | 2.55238  | 2.87844  | 3.9216   |
| 19   | 0.256923 | 0.687621 | 1.327728 | 1.729133 | 2.09302  | 2.53948  | 2.86093  | 3.8834   |
| 20   | 0.256743 | 0.686954 | 1.325341 | 1.724718 | 2.08596  | 2.52798  | 2.84534  | 3.8495   |
| 21   | 0.256580 | 0.686352 | 1.323188 | 1.720743 | 2.07961  | 2.51765  | 2.83136  | 3.8193   |
| 22   | 0.256432 | 0.685805 | 1.321237 | 1.717144 | 2.07387  | 2.50832  | 2.81876  | 3.7921   |
| 23   | 0.256297 | 0.685306 | 1.319460 | 1.713872 | 2.06866  | 2.49987  | 2.80734  | 3.7676   |
| 24   | 0.256173 | 0.684850 | 1.317836 | 1.710882 | 2.06390  | 2.49216  | 2.79694  | 3.7454   |
| 25   | 0.256060 | 0.684430 | 1.316345 | 1.708141 | 2.05954  | 2.48511  | 2.78744  | 3.7251   |
| 26   | 0.255955 | 0.684043 | 1.314972 | 1.705618 | 2.05553  | 2.47863  | 2.77871  | 3.7066   |
| 27   | 0.255858 | 0.683685 | 1.313703 | 1.703288 | 2.05183  | 2.47266  | 2.77068  | 3.6896   |
| 28   | 0.255768 | 0.683353 | 1.312527 | 1.701131 | 2.04841  | 2.46714  | 2.76326  | 3.6739   |
| 29   | 0.255684 | 0.683044 | 1.311434 | 1.699127 | 2.04523  | 2.46202  | 2.75639  | 3.6594   |
| 30   | 0.255605 | 0.682756 | 1.310415 | 1.697261 | 2.04227  | 2.45726  | 2.75000  | 3.6460   |
| inf  | 0.253347 | 0.674490 | 1.281552 | 1.644854 | 1.95996  | 2.32635  | 2.57583  | 3.2905   |

















### t Confidence Interval on $\mu$

If  $\bar{x}$  and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance  $\sigma^2$ , a  $100(1-\alpha)\%$  CI on  $\mu$  is given by

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where  $t_{\alpha/2}$  is the upper  $100 \, \alpha/2$  percentage point of the t distribution with (n-1) degrees of freedom.

### Example: Find 95% CI for $\mu$ for the following data.

| 1  | 8.0463             | 14.9389 | 24.7806 | 15.0582 | 13.6385 | 12.0605 | 23.8229 |
|----|--------------------|---------|---------|---------|---------|---------|---------|
| 4  | .3229              | 15.3207 | 15.3834 | 14.6664 | 5.7122  | 11.4338 | 9.4838  |
| 1  | 5.8191             | 8.9311  | 19.3247 | 14.1855 | 13.2899 | 17.1080 | 13.5305 |
| 13 | <mark>.9155</mark> |         |         |         |         |         |         |

#### **Descriptive Statistics: C1**

| Variable Variable    | N  | N* | Mean  | SE Mean | StDev | Minimum | Q1    | Median | Q3    |
|----------------------|----|----|-------|---------|-------|---------|-------|--------|-------|
| <mark>Maximum</mark> |    |    |       |         |       |         |       |        |       |
| C1                   | 22 | 0  | 14.31 | 1.03    | 4.85  | 4.32    | 11.90 | 14.43  | 16.14 |
| <mark>24.78</mark>   |    |    |       |         |       |         |       |        |       |

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$t_{0.025,21} = 2.080$$

$$14.31 - 2.080 \frac{4.85}{\sqrt{22}} \le \mu \le 14.31 + 2.080 \frac{4.85}{\sqrt{22}}$$

$$12.16 \le \mu \le 16.46$$

#### MTB > TINT 95 C1

### **One-Sample T: C1**

| <mark>Variable</mark> | N  | Mean  | StDev | SE Mean | 95% CI         |
|-----------------------|----|-------|-------|---------|----------------|
| C1                    | 22 | 14.31 | 4.85  | 1.03    | (12.16; 16.46) |