Early Stopping & Data Scaling

Early Stopping

```
from keras. callbacks import EarlyStopping
model. fit ( callbacks =[early_stopping])
```

 Early Stopping is a regularization technique that halts training when the model stops improving on a validation set, preventing overfitting and saving computation time.

*** How Early Stopping Works**

- 1. Monitor Validation Metric (e.g., val_loss , val_accuracy).
- 2. **Stop Training** if the metric doesn't improve for N epochs (patience).
- 3. **Restore Best Weights** (optional) to the epoch with the optimal performance.

Key Parameters:

Parameter	Description	Recommended Value
monitor	Metric to track (e.g., val_loss , val_accuracy)	val_loss (default)
patience	Epochs to wait before stopping	5-10
restore_best_weights	Revert to best model weights	True
min_delta	Minimum change to qualify as improvement	0.001
mode	auto / min / max (e.g., minimize loss or maximize accuracy)	auto

Implementation in Keras

```
from keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(
    monitor='val_loss', # Track validation loss
    patience=5, # Stop after 5 epochs without improvement
    restore_best_weights=True, # Revert to best weights
    min_delta=0.001 # Minimum change to count as improvement
)

model.fit(
    X_train, y_train,
    validation_data=(X_val, y_val),
    epochs=100,
    callbacks=[early_stopping] # Add to training
)
```

- monitor: What metric to monitor ('val_loss', 'val_accuracy', etc.).
- patience: The number of epochs to wait for improvement before stopping.
- min_delta: Minimum change in the monitored metric to count as an improvement.
- restore_best_weights: Ensures the model returns to the weights from the epoch with the best performance on the validation set.

When to Use Early Stopping

Early stopping is especially useful when:

- You don't have a large amount of training data.
- You're working with deep learning models that have a risk of overfitting due to their complexity.
- You want to ensure that your model generalizes well without manually tuning for too many epochs.

Why Use Early Stopping?

- **✓ Prevents Overfitting:** Stops training before the model memorizes noise.
- ✓ Saves Time: Avoids unnecessary epochs.
- **▼ No Extra Parameters**: Unlike L2/Dropout, it doesn't modify the model.

Data Scaling (Normalization)

Neural networks are sensitive to input scale. Proper data scaling ensures:

- ▼ Faster convergence (optimizers work efficiently).
- ✓ Better performance (avients dominance of large-scale features).
- ✓ Numerical stability (prevents exploding/vanishing gradients).

Standardize vs Normalize

- Standardize → -1 to 1
- Normalize → 0 to 1

When to standardise & when to normalize?

- If you know the max & min values → Normalize
- Otherwise → Standardise
 - Standardise if data is normally distributed.

Standardization (Z-Score Normalization)

$$X_{ ext{scaled}} = rac{X - \mu}{\sigma}$$

from sklearn.preprocessing import StandardScaler scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

Min-Max Normalization

$$X_{
m scaled} = rac{X - X_{
m min}}{X_{
m max} - X_{
m min}}$$

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

When to Scale Data?

Algorithm	Scaling Needed?	Recommended Method
Neural Networks	✓ Yes	Standardization
CNNs (Images)	✓ Yes	Min-Max (0-1)
RNNs (Time Series)	✓ Yes	Standardization
Tree-Based Models	X No	Not required

Common Mistakes

Scaling Test Data Separately: Always use transform() with the **same scaler** from training.

X Ignoring Categorical Features: Scale only numerical features (one-hot encode categoricals).

X Forgetting to Scale Outputs: In regression, scale yy if it has a large range.