Joint Optimization of Fidelity And Commensurability for Manifold Alignment

Sancar Adali, Carey E. Priebe

Department of Applied Mathematics & Statistics
Johns Hopkins University

July 8, 2012

Dissimilarity Representation vs Feature Representation

j

$$\Delta = [\delta_{ij}]$$

$$\delta_{ij} >= 0$$
, $\delta_{ii} = 0$, $\delta_{ij} = \delta_{ji}$
 $i = \{1, ..., n\}$ $j = \{1, ..., n\}$

 $x_i \in \mathbf{R}^d$

How do we embed dissimilarities in Euclidean space?

Multidimensional Scaling [BorgGroenen1997]

Given $n \times n$ dissimilarity matrix

$$\Delta = [\delta_{st}]; s = 1, \ldots, n; \ t = 1, \ldots, n,$$

- Finds an embedding of the dissimilarities in the Euclidean space (with a chosen dimension d) such that the distances between the embeddings are as close as possible (in various senses) to the original dissimilarities in Δ .
- One function to measure closeness is the weighted raw-stress:

$$\sigma_W(X) = \sum_{1 \le s \le n; 1 \le t \le n} w_{st} (d_{st}(X) - \delta_{st})^2$$

where $d_{st}(X)$ is the Euclidean distance between s^{th} and t^{th} embedded points, and weight matrix $W = [w_{st}]; s = 1, ..., n; \ t = 1, ..., n$.

How do we embed dissimilarities in Euclidean space?

Multidimensional Scaling [BorgGroenen1997]

Given $n \times n$ dissimilarity matrix

$$\Delta = [\delta_{st}]; s = 1, \ldots, n; \ t = 1, \ldots, n,$$

- Finds an embedding of the dissimilarities in the Euclidean space (with a chosen dimension d) such that the distances between the embeddings are as close as possible (in various senses) to the original dissimilarities in Δ .
- One function to measure closeness is the weighted raw-stress:

$$\sigma_W(X) = \sum_{1 \le s \le n; 1 \le t \le n} w_{st} (d_{st}(X) - \delta_{st})^2$$

where $d_{st}(X)$ is the Euclidean distance between s^{th} and t^{th} embedded points, and weight matrix $W = [w_{st}]; s = 1, ..., n; t = 1, ..., n$.

Given $K n \times n$ dissimilarity matrices

$$\Delta^{(k)} = [\delta_{ij}]^{(k)}; 1 \le i < j \le n; k = 1, \dots, K;$$

- Dissimilarities between n objects are each measured under K different conditions.
- The set of dissimilarities under different conditions for the same object are "matched".

Also given

 $\mathbf{D}^{(k)} = \{\delta_i; i = 1, \dots, n\}$ $k = 1, \dots, K$: dissimilarities between K new measurements and previous n objects under the same K conditions.

Question we can answer

Given $K n \times n$ dissimilarity matrices

$$\Delta^{(k)} = [\delta_{ij}]^{(k)}; 1 \le i < j \le n; k = 1, \dots, K;$$

- Dissimilarities between n objects are each measured under K different conditions.
- The set of dissimilarities under different conditions for the same object are "matched".

Also given

 $\mathbf{D}^{(k)} = \{\delta_i; i = 1, \dots, n\}$ $k = 1, \dots, K$: dissimilarities between K new measurements and previous n objects under the same K conditions.

Question we can answer

Given $K n \times n$ dissimilarity matrices

$$\Delta^{(k)} = [\delta_{ij}]^{(k)}; 1 \le i < j \le n; k = 1, \dots, K;$$

- Dissimilarities between n objects are each measured under K different conditions.
- The set of dissimilarities under different conditions for the same object are "matched".

Also given

 $\mathbf{D}^{(k)} = \{\delta_i; i=1,\ldots,n\}$ $k=1,\ldots,K$: dissimilarities between K new measurements and previous n objects under the same K conditions.

Question we can answer

Given $K n \times n$ dissimilarity matrices

$$\Delta^{(k)} = [\delta_{ij}]^{(k)}; 1 \le i < j \le n; k = 1, \dots, K;$$

- Dissimilarities between n objects are each measured under K different conditions.
- The set of dissimilarities under different conditions for the same object are "matched".

Also given

 $\mathbf{D}^{(k)} = \{\delta_i; i = 1, \dots, n\}$ $k = 1, \dots, K$: dissimilarities between K new measurements and previous n objects under the same K conditions.

Question we can answer

Meaning of "conditions" and "matched"

	Condition 1	Condition 2
A linked collection of wikipedia articles	Textual content of an article	Hyperlink graph of articles
A linked collection of English and French wikipedia articles	The articles in English	The articles in French
Photos of same objects taken under different condition	Indoor photos	Outdoor photos

Hypotheses

For
$$K=2$$
,

$$H_0: \mathbf{D}^{(1)} \sim \mathbf{D}^{(2)}$$
 (Matched) versus $H_A: \mathbf{D}^{(1)} \nsim \mathbf{D}^{(2)}$ (Not matched)

(Hypothesis testing with $\alpha =$ constraint on the probability of missing a true match)

Omnibus Embedding Approach

$$\stackrel{^{2n imes 2n}}{M}= \left[egin{matrix} ^{^{n imes n}} \Delta_1 & \stackrel{^{n imes n}}{L} \ & & \Delta_2 \end{array}
ight]$$

- Impute L (dissimilarities between different conditions) to obtain an omnibus dissimilarity matrix M
- Embed the omnibus matrix M as 2n points (one point for each condition of each object) in commensurate space (\mathbb{R}^d)

Out-of-sample Embedding

$$\Delta \longrightarrow X$$

$$[D^{(k)}; k = 1, \dots, K] \xrightarrow{\text{OOS-embed}} Y$$

Omnibus Embedding Approach (OOS-embedding)

$$\stackrel{_{2n\times 2n}}{M} = \left[egin{array}{cccc} \Delta_1 & L \ \Delta_1 & L \ L & \Delta_2 \end{array}
ight]_{\stackrel{_{n\times 1}}{:}}^{n\times 1} \stackrel{_{n\times 1}}{:} D^{(1)} \stackrel{_{1}}{:} D^{(2)} \ D^{(1)^T} & D^{(2)} \end{array}$$

General Approach

- Map/Embed via MDS in-sample (Δ_k ; k = 1, ..., K) dissimilarities into commensurate space.
- Map/Embed (Out-of-sample) test dissimilarities $(\mathbf{D}^{(k)}; k = 1, ..., K)$ into commensurate space.
- **3** Compute test statistic τ (the distance between embeddings of test dissimilarities).
- **4** Reject null hypothesis if τ is large.

Fidelity and Commensurability Criteria

Fidelity is how well the mapping to commensurate space preserves original dissimilarities. Within-condition *fidelity error* is given by

$$\epsilon_{f_k} = \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} (d(\widetilde{\boldsymbol{x}}_{ik}, \widetilde{\boldsymbol{x}}_{jk}) - [\delta_{ij}]^{(k)})^2,$$

where \tilde{x}_{ik} is the embedded configuration of *i*th object for *k*th condition.

Fidelity and Commensurability Criteria

Commensurability is how well the mapping to commensurate space preserves matchedness. Between-condition *commensurability error* is given by

$$\epsilon_{c_{k_1k_2}} = \frac{1}{n} \sum_{1 \le i \le n} (d(\widetilde{\boldsymbol{x}}_{ik_1}, \widetilde{\boldsymbol{x}}_{ik_2}) - [\delta_{ii}]^{(k_1, k_2)})^2$$

for different conditions k_1 and k_2 .

Although $[\delta_{ii}]^{(k_1,k_2)}$ is not available (the between-condition dissimilarities), it is not unreasonable in this setting to set $[\delta_{ii}]^{(k_1,k_2)} = 0$ for all i,k_1,k_2 . (We want embedded points of the same object to be close.)

Fidelity and Commensurability Criteria

Commensurability is how well the mapping to commensurate space preserves matchedness. Between-condition *commensurability error* is given by

$$\epsilon_{c_{k_1k_2}} = \frac{1}{n} \sum_{1 \le i \le n} (d(\widetilde{\boldsymbol{x}}_{ik_1}, \widetilde{\boldsymbol{x}}_{ik_2}) - [\delta_{ii}]^{(k_1, k_2)})^2$$

for different conditions k_1 and k_2 .

Although $[\delta_{ii}]^{(k_1,k_2)}$ is not available (the between-condition dissimilarities), it is not unreasonable in this setting to set $[\delta_{ii}]^{(k_1,k_2)}=0$ for all i,k_1,k_2 . (We want embedded points of the same object to be close.)

Commensurability and Fidelity Terms in Raw Stress

The weighted raw stress criterion for MDS with different conditions is

$$\sigma_W(X) = \sum_{i \le j, k_1 \le k_2} w_{ijk_1k_2} (d_{ijk_1k_2}(X) - [\delta_{ij}]^{(k_1,k_2)})^2$$

(i and j are the indices for the object, k_1 and k_2 are condition indices).

Ignoring some error terms (We can set $w_{ijk_1k_2}=0$ for $i\neq j$ and $k_1\neq k_2$)

$$\sigma_{W}(X) = \underbrace{\sum_{i=j,k_{1} < k_{2}} w_{ijk_{1}k_{2}}(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k1,k2)})^{2}}_{Commensurability} - \underbrace{\sum_{i < j,k_{1} = k_{2}} w_{ijk_{1}k_{2}}(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k1,k2)})^{2}}_{Fidelity}$$

Commensurability and Fidelity Terms in Raw Stress

The weighted raw stress criterion for MDS with different conditions is

$$\sigma_W(X) = \sum_{i \le j, k_1 \le k_2} w_{ijk_1k_2} (d_{ijk_1k_2}(X) - [\delta_{ij}]^{(k_1,k_2)})^2$$

(i and j are the indices for the object, k_1 and k_2 are condition indices).

Ignoring some error terms (We can set $w_{ijk_1k_2}=0$ for $i\neq j$ and $k_1\neq k_2$)

$$\sigma_{W}(X) = \underbrace{\sum_{i=j,k_{1} < k_{2}} w_{ijk_{1}k_{2}}(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k1,k2)})^{2}}_{Commensurability} + \underbrace{\sum_{i < j,k_{1} = k_{2}} w_{ijk_{1}k_{2}}(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k1,k2)})^{2}}_{Fidelity}$$

Which one is critical for hypothesis testing performance: Fidelity or Commensurability?

Setting $w_{ijk_1k_2}$ to (1-w) for Fidelity terms, and to w for Commensurability terms,

$$\sigma_{w}(X) = \underbrace{\sum_{i=j,k_{1} < k_{2}} w(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k_{1},k_{2})})^{2} + \underbrace{\sum_{i < j,k_{1} = k_{2}} (1 - w)(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k_{1},k_{2})})^{2}}_{Fidelity} + \underbrace{\sum_{i < j,k_{1} = k_{2}} (1 - w)(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k_{1},k_{2})})^{2}}_{Fidelity}.$$

w controls the tradeoff between Fidelity and Commensurability. Define w^* to be the value of w which maximizes power.

Which one is critical for hypothesis testing performance: Fidelity or Commensurability?

Setting $w_{ijk_1k_2}$ to (1-w) for Fidelity terms, and to w for Commensurability terms,

$$\sigma_{w}(X) = \underbrace{\sum_{i=j,k_{1} < k_{2}} w(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k_{1},k_{2})})^{2} + \underbrace{\sum_{i < j,k_{1} = k_{2}} (1 - w)(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k_{1},k_{2})})^{2}}_{Fidelity} + \underbrace{\sum_{i < j,k_{1} = k_{2}} (1 - w)(d_{ijk_{1}k_{2}}(X) - [\delta_{ij}]^{(k_{1},k_{2})})^{2}}_{Fidelity}.$$

w controls the tradeoff between Fidelity and Commensurability. Define w^* to be the value of w which maximizes power.

Simulation Results

ROC curves: Power(β) against allowable Type I error(α)

Simulation Results

ROC curves: Power(β) against allowable Type I error(α)

Matching Dissimilarities

If multiple dissimilarities are available $\mathbf{D}_{i}^{(k)}$, $i=1,\ldots,n$ from two different conditions, what is the best matching of dissimilarities from two different conditions?

- Embed the dissimilarities
- Interpret the distances between embeddings as costs in an assignment problem
- Solve the linear assignment problem by the Hungarian algorithm:

Find the best assignment $f:\{1,\ldots,s\}\to\{1,\ldots,s\}$ that minimizes the cost

$$\sum_{i=1}^{n} C(i, f(i))$$

where the cost $C(\cdot,\cdot)$ is the distance between the embeddings of each dissimilarity from the different conditions.

Matching Dissimilarities

If multiple dissimilarities are available $\mathbf{D}_{i}^{(k)}$, $i=1,\ldots,n$ from two different conditions, what is the best matching of dissimilarities from two different conditions?

- Embed the dissimilarities
- Interpret the distances between embeddings as costs in an assignment problem
- Solve the linear assignment problem by the Hungarian algorithm:

Find the best assignment $f:\{1,\ldots,s\}\to\{1,\ldots,s\}$ that minimizes the cost

$$\sum_{i=1}^{n} C(i, f(i))$$

where the cost $C(\cdot,\cdot)$ is the distance between the embeddings of each dissimilarity from the different conditions.

Vertex Correspondence: Graph matching with seeds

To solve the inexact graph matching problem with hard seeds where the objects we want to match are graph vertices,

- Compute dissimilarities between vertices
- Embed the hard seeds which are known to be matched with JOFC.
- OOS-embed the vertices to be matched.
- Compute dissimilarities between embeddings of vertices between different graphs
- Solve the linear assignment problem with dissimilarities as costs.

Simulation Results: Graph Matching

Fraction of Correct Matches vs Number of Hard Seeds

Conclusions

- Our JOFC approach is a general tool that can solve many kinds of related problems.
- The tradeoff between fidelity and commensurability, controlled by the parameter w has a big effect on the performance for the inference task.
- A particular type of graph matching problem can be solved using JOFC followed by the Hungarian algorithm.

Measurement Spaces and Commensurate Space

Simulation Results

Power(β) curves: Power(β) against w at fixed α

I. Borg and P. Groenen.

Modern Multidimensional Scaling. Theory and Applications.

Springer, 1997.

Carey E. Priebe, David J. Marchette, Zhiliang Ma, Sancar Adali

Manifold Matching: Joint Optimization of Fidelity and Commensurability

Brazilian Journal of Probability and Statistics, accepted for publication February, 2012.