Statistics for the Sciences

Multiple Linear Regression Models

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Introduction
- MLR Models
- Model formulation
- Scatter plot matrix
- Estimation
- ANOVA
- Statistical inferences
- Lab

Introduction

• loyn.csv: Loyn (1987) selected 56 forest patches in southeastern Victoria, Australia, and related the abundance of forest birds in each patch to six predictor variables: patch area (ha), distance to nearest patch (km), distance to nearest larger patch (km), grazing stock (1 to 5 indicating light to heavy), altitude (m) and years since isolation (years).

##		abund	${\tt area}$	yearisol	dist	distl	graze	alt
##	1	5.3	0.1	1968	39	39	2	160
##	2	2.0	0.5	1920	234	234	5	60
##	3	1.5	0.5	1900	104	311	5	140
##	4	17.1	1.0	1966	66	66	3	160
##	5	13.8	1.0	1918	246	246	5	140
##	6	14.1	1.0	1965	234	285	3	130
##	7	3.8	1.0	1955	467	467	5	90
##	8	2.2	1.0	1920	284	1829	5	60
##	9	3.3	1.0	1965	156	156	4	130
##	10	3.0	1.0	1900	311	571	5	130

Introduction

- Response variable abund, the target that we wish to predict
- with the following five **predictors** or independent variables as input
 - area
 - yearisol
 - dist
 - distl
 - graze
 - ▶ alt
- The aim was to develop a **best** predictive model relating bird abundance to these predictors. Perhaps we can use a model

abund $\approx f(\text{area, dist, distl, graze, alt, yearisol})$

Introduction

We can refer to the input vector collectively as

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{pmatrix}$$

Now we can write our model as

$$Y = f(X) + \varepsilon$$

where ε captures measurement errors and other discrepancies.

▶ One such model is Multiple Linear Regression Models

• Data:

Y	X_1		X_k
<i>y</i> ₁	<i>x</i> ₁₁		<i>x</i> _{1<i>k</i>}
:	:	:	:
Уn	X _{n1}		X _{nk}

- Y: Response variable
- X_1, X_2, \dots, X_k : Predictors or independent variables

Definition. A linear statistical model relating a random response Y to a set of independent variables X_1, X_2, \ldots, X_k is of the form

$$Y|_{X_1=x_1,...,X_k=x_k} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \varepsilon,$$

where $\beta_0, \beta_1, \ldots, \beta_k$ are unknown parameters, ε is a random variable, and the variables X_1, X_2, \ldots, X_k assume known values.

• We will assume that $E(\varepsilon) = 0$, and hence that

$$E(Y|_{X_1=x_1,...,X_k=x_k}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k.$$

• When k = 1, the model is the simple linear regression model.

• New predictors can be created by transforming available predictors

Matrix notation: We define the following matrices

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}$$
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, \qquad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Then the MLR model can be written as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

where ε has a multivariate distribution with mean $\mathbf{0}$ and variance-covariance matrix $\sigma^2 I_n$, and I_n is a n-dimensional identity matrix.

• **Y** is generally assumed to have a multivariate normal distribution $\mathbf{Y} \sim MVN(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is the Variance-Covariance Matrix of \mathbf{Y} :

$$\boldsymbol{\Sigma} = \begin{bmatrix} Var(Y_1) & Cov(Y_1, Y_2) & \cdots & Cov(Y_1, Y_n) \\ Cov(Y_2, Y_1) & Var(Y_2) & \cdots & Cov(Y_2, Y_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(Y_n, Y_1) & Cov(Y_n, Y_2) & \cdots & Var(Y_n) \end{bmatrix} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$$

• Question What does linear in multiple linear regression models mean?

- We can build a very complex model without fitting errors (all fitted values are equal to the corresponding observed values). It is called **overfitting**.
 - Overfitting performs very bad in predictions.
 - It is often possible to get more accurate predictions with a simpler, instead of a complicated model.

- How do we build a reasonable **linear** model for given Y's and predictors X_1, X_2, \ldots, X_k ?
 - ightharpoonup We need to check the relationship between Y and each X_i

January 18, 2025

We may check the correlation matrix as well

```
##
           abund
                      area
                               vearisol
                                             dist
                                                       distl
                                                                   graze
               1 0.2559702 0.503357741 0.2361125 0.08715258 -0.68251138
## abund
                 1.0000000 -0.001494192 0.1083429 0.03458035 -0.31040242
## area
## yearisol
                            1.000000000 0.1132175 -0.08331686 -0.63556710
## dist
                                        1.0000000 0.31717234 -0.25584182
## distl
                                                   1.00000000 -0.02800944
                                                               1,00000000
## graze
## alt.
##
                  alt
## abund
         0.3858362
        0.3877539
## area
## yearisol 0.2327154
## dist
       -0.1101125
## distl -0.3060222
## graze
        -0.4071671
## alt.
           1.0000000
```

 Now let's remove predictor dist1 and consider log transformation of area and dist

The new correlation matrix

```
##
           abund
                   logarea yearisol logdist
                                                                   alt.
                                                      graze
               1 0.7400358 0.5033577
## abund
                                      0.12672333 -0.6825114 0.3858362
                 1.0000000 0.2784145 0.30216662 -0.5590886 0.2751428
## logarea
## yearisol
                           1.0000000 -0.01957223 -0.6355671 0.2327154
## logdist
                                      1.00000000 -0.1426392 -0.2190070
## graze
                                                  1.0000000 -0.4071671
## alt
                                                             1,0000000
```

Estimation by Least Squares

Analysis of Variance

• The Analysis of Variance for MLR models can be summarized in the following table.

Source	df	SS	MS	F
Regression	k	SSR	MSR = SSR/k	MSR/MSE
Error	n-1-k	SSE	MSE = SSE/(n-1-k)	
Total	n-1	SS_{total}		

where
$$SSR = \sum_{i=1}^n (\widehat{y}_i - \overline{y})^2$$
, $SSE = \sum_{i=1}^n (y_i - \widehat{y}_i)^2$ and $SS_{total} = \sum_{i=1}^n (y_i - \overline{y})^2$.

- Note. The F-test is for $H_0: \beta_1=\beta_2=\cdots=\beta_k=0$ versus $H_a: \beta_i\neq 0$ for some $i=1,2,\ldots,k$. And the F-test statistic (Exercise 11.84(a)) has an F distribution under H_0 with $df_1=k, df_2=n-1-k$.
- H_0 is rejected only if the calculated test statistic F^* is large: given significance level α , H_0 is rejected only if $F^* \geq F_{df_1,df_2,1-\alpha}$.

Analysis of Variance

• The Coefficient of Multiple Determination, R², is defined as

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SS}_{total}}.$$

- \circ R^2 is
 - ▶ The proportion of variation in the response explained by the regression.
 - The proportion by which the unexplained variation in the response is reduced by the regression.
- One problem with using R^2 to measure the quality of model fit, is that it can always be increased by adding another regressor.
- The Adjusted Coefficient of Multiple Determination, R_a^2 , is a measure that adjusts R^2 for the number of regressors in the model. It is defined as

$$R_a^2 = 1 - \frac{\mathsf{SSE}/(n-1-k)}{\mathsf{SS}_{total}/(n-1)}.$$

Statistical inference problems

- Suppose that the MLR model is $Y_i|_{X_1=x_1,...,X_k=x_ki}=\beta_0+\beta_1x_{1i}+\beta_2x_{2i}+\cdots+\beta_kx_{ki}+\varepsilon_i, i=1,...,k$
- Inferences about individual parameters: $H_0: \beta_i = 0$ versus $H_a: \beta_i \neq 0$, $i = 1, 2, \dots, k$
- Inferences about a set of parameters: testing $H_0: \beta_{r+1} = \beta_{r+2} = \cdots = \beta_k = 0$ versus $H_a: At$ least one of the $\beta_i, i = r+1, \ldots, k$ differs from 0 which is checking if a reduced model is sufficient:
- Model R (Reduced model):

$$E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_r x_r$$

Model C (Complete model):

$$E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_r X_r + \beta_{r+1} X_{r+1} + \beta_{r+2} X_{r+2} + \dots + \beta_k X_k$$

Statistical inference problems

Let $\mathbf{x} = \mathbf{x}^* = (x_1^*, x_2^*, \dots, x_k^*)$ be a vector of new observation of the predictors.

- Predicting the average Value of Y: $E(Y) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \cdots + \beta_k x_k^*$
- Predicting a Particular Value of $Y=Y^*=\beta_0+\beta_1x_1^*+\beta_2x_2^*+\cdots+\beta_kx_k^*+\varepsilon$

Remark. Again, prediction intervals for the actual value of Y are longer than confidence intervals for E(Y) if both confidence levels are the same and both are determined for the same value of $\mathbf{x} = \mathbf{x}^*$.

- loyn.csv: Loyn (1987) selected 56 forest patches in southeastern Victoria, Australia, and related the abundance of forest birds in each patch to six predictor variables: patch area (ha), distance to nearest patch (km), distance to nearest larger patch (km), grazing stock (1 to 5 indicating light to heavy), altitude (m) and years since isolation (years).
- ullet After importing data, Click on Graphs in the top menu ullet Select Chart Builder... to plot a scatter plot matrix
 - In the Chart Builder dialog box, drag the Scatterplot Matrix under icon Scatter/Dot from the Gallery tab into the Chart Preview area.

- Drag all numerical variables to the Scattermatrix? box.
 - graze is a nominal variable.

- Click OK to generate the scatter plot matrix.
- ullet Or We can get a scatter plot matrix by clicking on Graphs o Scatter/Dot $\dots o$ Matrix Scatter

ullet To get the correlation matrix, click on Analyze o Correlate o Bivariate.., and then Add all numerical variables to the Variables box.

→ Correlations

Correlations

		abund	area	yearisol	dist	distl	graze	alt
abund	Pearson Correlation	1	.256	.503	.236	.087	683***	.386
	Sig. (2-tailed)		.057	<.001	.020	.523	<.001	.003
	И	56	56	56	56	56	56	56
area	Pearson Correlation	.256	1	001	.108	.035	310*	.388
	Sig. (2-tailed)	.057		.991	.427	.800	.020	.003
	N	56	56	56	56	56	56	56
yearisol	Pearson Correlation	.503***	001	1	.113	083	636	.233
	Sig. (2-tailed)	<.001	.991		.406	.542	<.001	.084
	И	56	56	56	56	56	56	56
dist	Pearson Correlation	.236	.108	.113	1	.317*	256	110
	Sig. (2-tailed)	.080	.427	.406		.017	.057	.419
	N	56	56	56	56	56	56	56
distl	Pearson Correlation	.087	.035	083	.317*	1	028	306*
	Sig. (2-tailed)	.523	.800	.542	.017		.838	.022
	И	56	56	56	56	56	56	56
graze	Pearson Correlation	683***	310**	636	256	028	1	407
	Sig. (2-tailed)	<.001	.020	<.001	.057	.838		.002
	И	56	56	56	56	56	56	56
alt	Pearson Correlation	.386***	.388	.233	110	306*	407	1
	Sig. (2-tailed)	.003	.003	.084	.419	.022	.002	
	И	56	56	56	56	56	56	56

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

- Conduct log transformation for two variables area and dist
- ullet Click on Transform o Compute Variable ...

- Follow the procedure fitting a simple linear regression model, to fit an MLR, Click on Analyze \rightarrow Regression \rightarrow Linear ...
 - ▶ Model: abund ~ logarea + logdist + graze + alt + yearisol

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.827ª	.684	.653	6.3256

a. Predictors: (Constant), logdist, yearisol, alt, logarea, graze

b. Dependent Variable: abund

$ANOVA^a$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4337.272	5	867.454	21.679	<.001 ^b
	Residual	2000.656	50	40.013		
	Total	6337.929	55			

a. Dependent Variable: abund

b. Predictors: (Constant), logdist, yearisol, alt, logarea, graze

Coefficients^a

		Unstandardiz	ed Coefficients	Standardized Coefficients			95.0% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-131.847	88.640		-1.487	.143	-309.886	46.191
	yearisol	.077	.044	.182	1.744	.087	012	.165
	graze	-1.676	.921	230	-1.819	.075	-3.526	.174
	alt	.021	.023	.087	.937	.353	025	.067
	logarea	7.295	1.336	.552	5.460	<.001	4.612	9.979
	logdist	-1.303	2.319	050	562	.577	-5.961	3.354

a. Dependent Variable: abund

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.