COMP9417 Presentation

Group 42

Roger Li (z5470193) (Presenter)

Weihao Zhou (z5463147)

Xuda Chen (z5527738)

Hao Zhu (z5503328)

Introduction & Experiment Environment

Problem Part 1: 28-class classification task

- Exploratory data analysis
- Model & method selection
- Row sampling + feature selection + Bayesian hyperparameter tunning
- Ensemble strategy & final prediction

Problem Part 2: Distribution shift

- Data analysis based on definition
- Corresponding strategies

Device	GPU T4 x 2
Execution platform	Kaggle
Random Seed	42
Main Metric	Weighted Cross-Entropy Loss
scikit-learn Version	1.2.2
imbalanced-learn Version	0.12.4

Exploratory Data Analysis

Extreme Data Imbalance

Distribution of Labels

- The majority class represents 44.8%
- The top-5 frequent classes represent 70.9%
- The rarest class contains only 6 samples, accounting for just 0.06%

Solution: Over & Under Sampling

- Random Over & Under Sampling
- SMOTE + Random Under Sampling + ENN (best performance)
- ADASYN + TomeLinks

Wilcoxon test p-value: 0.0625

Exploratory Data Analysis

Feature Redundancy

PCA Cumulative Explained Variance

The first 170 principal components capture over
 95% of the total variance

Solution: GDBT Model & Feature Selection

- Tree-based models, automatic feature selection by selecting the most informative features
- Additional feature selection based on importance/SHAP (best performance)

Paired t-test p-value: 0.6527

Other Objectives & Strategies

Bias Reduction

• **Solution:** GDBT Models (XGBoost, LightGBM, CatBoost) with Bayesian hyperparameter tuning

Generalization

 Solution: Ensemble learning (k-fold inference) using logistic regression as meta learner

Overall Performance

• **Solution:** Grid search for optimal ratios for over & under sampling, as well as feature selection

Paired t-test p-value: 0.0001

Ensemble Strategy	Score
Soft (Average) Voting	0.005126
Weighted Voting	0.01467
Stacking (Logistic Regression)	0.007238
Stacking (Logistic Regression-L2Norm)	0.005098
Stacking (Random Forest)	0.006608
Stacking (XGBoost)	0.007377

Result

5-Fold Cross Validation Average Result: 0.0046

- Baseline naive model: 0.0097
- Improvement over 50%

Fold	Weighted Cross-Entropy Loss
1	0.00468284242453362,
2	0.004930164069682667
3	0.004956693588339414
4	0.004138630629427997
5	0.00450934519741661

Distribution Shift

Covariate Shift

Experiment: Kolmogorov–Smirnov (K-S) tests on each feature between the training set and Test Set 2

- Result: Significant distribution changes in 268/300 features
- Conclusion: P(X) changes

Experiment: Make prediction using trained model on 202 known samples

- Result: No significant drop in performance
- Conclusion: P(y|X) remains the same

Conclusion: Covariate shift occurs, but no concept drift

Solution: Retrain model with sample weights

Distribution Shift

Label Shift

Experiment: Kolmogorov–Smirnov (K-S) tests on each

feature between the training set and Test Set 2

Result: Significant distribution change

Conclusion: P(y) changes

Experiment: Kolmogorov–Smirnov (K-S) tests on each

feature in each category

Result: No significant change in distribution

Conclusion: P(X|y) remains the same

Conclusion: Label shift occurs

Solution: Bayes posterior correction

Class	Changed Feature Count	Proportion (%)
12	15	5
25	13	4.3
9	7	2.3
27	25	8.3
14	5	1.6
24	10	3.3
8	7	2.3
5	9	3.0
4	10	3.3
17	14	4.7
11	39	13.0
6	22	7.3
23	4	1.3
21	12	4.0
13	7	2.3
7	17	5.7
26	14	4.7
19	16	5.3
10	15	5.0
20	18	6.0
3	23	7.7
18	14	4.7

Discussion

Pros

- Select GDBT models to overcome extreme imbalance
- Perform k-fold inference strategy to prevent overfitting
- Conduct grid search for sampling and feature selection ratios to optimize performance
- Evaluate models through strict statistical test
- Thoroughly detect and address distribution shift based on its formal definitions

Cons & Further Works

- Resource demands incurred by GBDT models
- Try other strategies for handling imbalanced classification include onevs-all modeling
- Perform grid search with smaller step sizes
- Conduct Further exploration on recent strategies for combating distribution shift

Thank you!