Problem 1: (6.8.1) stable spiral = 1

$unstable\ spiral=1$

center = 1

 $\mathrm{star}=1$

degenerate node = 1

Problem 2: (6.8.6) In a closed orbit, $I_{\Gamma} = 1$. We also know that $I_{\Gamma} = I_1 + I_2 + \cdots + I_n$ Each saddle node contributes -1 to the index, while degenerate nodes, spirals, and centers all contribute +1 per. Hence, we get $I_{\Gamma} = 1 = N + F + C - S$.

Problem 3: (6.8.8)

We Know that $I_{C_3} = 1 = I_{C_1} + I_{C_2} + \text{index of any fixed points.}$ Since, $I_{C_1} = I_{C_2} = 1$ because they are closed orbits, there must be at least one fixed point that contributes -1 to the index of I_{C_3} to fufill the first equality.

Problem 4: (6.8.13)

(a) Let
$$u = \frac{g(x,y)}{f(x,y)}$$
. So, $du = \frac{(f)dg - (g)df}{f^2}$

So, $\phi = \arctan(u)$ and $d\phi = \frac{du}{1+u^2}$. Substituting du, we get

$$d\phi = \frac{(f)dg - (g)df}{f^2(1 + \frac{g^2}{f^2})}$$

Simplifying some things,

$$d\phi = \frac{(f)dg - (g)df}{f^2(1 + \frac{g^2}{f^2})} = \frac{fdg - gdf}{f^2 + g^2}$$

(b) So,
$$I_C = \frac{1}{2\pi} \oint d\phi = \frac{1}{2\pi} \oint \frac{f dg - g df}{f^2 + g^2}$$

Problem 5: (6.8.14bc) (b) Let $x = r \cos \theta$ and $y = r \sin \theta$. Then

$$f(x,y) = f(r,\theta) = r\cos\theta\cos\alpha - r\sin\theta\sin\alpha = r\cos(\theta + \alpha)$$

$$g(x,y) = g(r,\theta) = r\cos\theta\sin\alpha + r\sin\theta\cos\alpha = r\sin(\theta + \alpha)$$

So,
$$\phi = \arctan(\frac{r\sin(\theta+\alpha)}{r\cos(\theta+\alpha)}) = \arctan(\tan(\theta+\alpha)) = \theta+\alpha$$
. Thus, $d\phi = d\theta$.

Therefore, $I_C = \frac{1}{2\pi} \oint d\phi = \frac{1}{2\pi} \oint d\theta$. The integral is independent of α .

$$I_C = \frac{1}{2\pi} \oint d\theta = \frac{1}{2\pi} 2\pi = 1$$