2. REPRESENTACIÓN DIGITAL DE LA INFORMACIÓN

2. REPRESENTACIÓN DIGITAL DE LA INFORMACIÓN

2.1 Conceptos generales sobre la información.

- Concepto de información y unidad de información.
- Codificación de la Información.

2.2 Sistemas de numeración.

- Sistema de numeración binario.
- Sistema de numeración octal.
- Sistema de numeración hexadecimal.
- Conversión entre sistemas.

2.3 Códigos binarios.

- Código binario natural.
- Códigos decimales codificados en binario: BCD, BCD-Exceso 3.
- Códigos binarios continuos y cíclicos: Gray y Johnson.
- Representación de números con signo.
- Representación de números en coma fija y en coma flotante.
- Códigos alfanuméricos: ASCII.
- Aplicaciones.

Conceptos generales sobre la información

Concepto de información y unidad de información

 En lo sistemas digitales la información se representa y transmite mediante señales de dos niveles, cada una de las cuales se interpreta como 0 y 1 respectivamente

$$X = [x_1, ..., x_n]$$

donde $x_i = 0$ ó 1

x_i representa 1 bit de información

X es un elemento de información y contiene n bits de información

X puede tomar 2ⁿ valores distintos puede representar 2ⁿ elementos distintos de información

n =
$$\frac{4 \text{ bit } 2^4=16 \text{ elementos}}{\text{NYBBLE}}$$

n= $\frac{8 \text{ bit } 2^8=256 \text{ elementos}}{\text{BYTE}}$

Conceptos generales sobre la información

Concepto de información y unidad de información

 En los sistemas digitales la información se almacena en registros, que son dispositivos o circuitos capaces de almacenar información digital (se verán en el capítulo 6)

- La leyenda del tablero de ajedrez (http://bit.ly/1pmRk3R)
 - Si se quiere rellenar cada casilla de un tablero de ajedrez con un número de granos de trigo equivalente a elevar 2 al número de la casilla, la casilla 64 equivaldría a más de 20000 años de cosechas mundiales
 - Esa cifra es el número de elementos de información que se pueden representar con 64 bits

 De ahí que la capacidad de almacenar información en formato digital sea tan grande

Conceptos generales sobre la información

Codificación de la información

- Toda información que tenga que ser procesada mediante circuitos digitales, debe ser previamente codificada
- Código: conjunto de unidades de información relacionadas de forma sistemática y biunívoca con otro conjunto de signos y símbolos según unas determinadas reglas de traducción fijadas de antemano
- Los códigos utilizados en sistemas digitales son binarios (combinaciones de 0s y 1s)
- Con n bits se pueden representar 2ⁿ=K elementos distintos y se pueden crear 2ⁿ! códigos
- Ejemplo:

n= 2 bits
$$K = 2^n = 2^2 = 4$$
 Número de códigos (asignaciones) = $2^2! = 4! = 24$

N	00	00	00	00	00	00	01	01	01	01	01	01	10	10	10	10	10	10	11	11	11	11	11	11
S	01	01	10	10	11	11	00	00	10	10	11	11	00	00	01	01	11	11	00	00	01	01	10	10
E	10	11	01	11	01	10	10	11	00	11	00	10	01	11	00	11	00	01	01	10	00	10	00	01
0	11	10	11	01	10	01	11	10	11	00	10	00	11	01	11	00	01	00	10	01	10	00	01	00

Tipos de codificación de la información

- Lógica: cada uno de los n bits representa verdad (1) o falsedad (0) de una sentencia (cada sentencia es independiente)
- Simbólica: cada grupo de n bits representa un carácter alfanumérico o símbolo especial (A, B, C, 0, +, ...). Por ejemplo el '9' = 0111001 en ASCII
- Numérica: cada grupo de n bits representa un número binario.

Sistemas de numeración

Aspectos generales

- Casi todos los sistemas de numeración son de tipo polinomial:
 - Un número es una expresión formada por un conjunto de símbolos llamados "dígitos" o "cifras", cada uno con un valor fijo y diferente
 - El número de símbolos distintos es la "base"
 - El valor numérico que indica una combinación de dígitos depende de:
 - El valor de los símbolos o dígitos y
 - de la posición dentro de la combinación
 - La posición del dígito tiene un valor que aumenta de derecha a izquierda según potencias sucesivas de la base
- Sistemas de numeración usados por el ser humano:

Sistema decimal o arábigo

Base 10

Dígitos: 0,1,2,3,4,5,6,78,9

$$N = 123.125_{(10)} = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 1 \cdot 10^{-1} + 2 \cdot 10^{-2} + 5 \cdot 10^{-3}$$

La suma es en potencias de 10 y los coeficientes representan el número en decimal

Otros sistemas:

- En el siguiente link puedes encontrar otros sistemas de numeración que se han empleado a lo largo de la historia: http://bit.ly/1pOHhGu
- El más curioso es el maya, de base 20. Un interesante vídeo: http://bit.ly/1nojjw0

Sistemas de numeración

Sistemas de numeración usados por las máquinas

Sistema binario Base 2 Dígitos: 0,1

$$N = 123.125_{(10)} = 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 11110011.001_{(2)}$$

La suma es en potencias de 2 y los coeficientes representan el número en binario El anterior número en binario también se puede representar con esta notación: 0b11110011.001

Sistema octalBase 8Dígitos: 0,1,2,3,4,5,6,7

$$N = 123.125_{(10)} = 1.8^{2} + 7.8^{1} + 3.8^{0} + 1.8^{-1} = 173.1_{(8)}$$

La suma es en potencias de 8 y los coeficientes representan el número en binario El anterior número en octal también se puede representar con esta notación: 0o173.1

- Sistema hexadecimal Base 16 Dígitos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F $N = 123.125_{(10)} = 7.16^{1} + 11.16^{0} + 2.16^{-1} = 7B.2_{(16)}$

La suma es en potencias de 16 y los coeficientes representan el número en binario El anterior número en hexadecimal también se puede representar con esta notación: 0x7B.2

Nota: desplazar el punto n lugares a la derecha o a la izquierda significa multiplicar o dividir por 10ⁿ, 2ⁿ, 8ⁿ, o 16ⁿ

Ejemplo:
$$1111011.001_{(2)} = 123.125_{(10)}$$

 $11110110.01_{(2)} = 246.25_{(10)}$

Tabla relacional de los sistemas decimal, binario, octal y hexadecimal

Decimal	Binario	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12

- Binario es el sistema básico de numeración de los ordenadores
- Octal permite compactar la representación numérica binaria (cada 3 bits se representan mediante un dígito)
- Hexadecimal también compacta (cada 4 bits se representan mediante un dígito)
- La ventaja de hexadecimal es que el número de bits que representa es potencia de 2, y el espacio de memoria de los ordenadores se organiza más eficazmente en binario.
- 2 dígitos hexadecimales son 1 byte, y el byte (8 bit) es la unidad básica en informática.
- Los ordenadores evolucionan hacia bloques de memoria cada vez mayores pero siempre potencia de 2: 16, 32, 64 bit...

Conversión entre sistemas

Conversión decimal – binario

$$N = 123.125(10)$$

0.125 x 2 = 0.25 (no llega a la unidad)
0.25 x 2 = 0.5 (no llega a la unidad)
0.5 x 2 = 1 (alcanza la unidad)
1-1=0 (se resta la parte entera y si queda algo se repiten las multiplicaciones por 2)

Conversión binario – decimal

$$N = 1111011.001_{(2)} = 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 123.125_{(10)}$$

Conversión decimal – octal

$$N = 123.125_{(10)}$$

número de pasos = $1 \rightarrow 0.125 \times 8 = 1.0$ (alcanza la unidad)

1-1=0 (se resta la parte entera y si queda algo se repiten las multiplicaciones por 8)

Conversión entre sistemas

Conversión octal – decimal

$$N = 173.1_{(8)} = 1.8^2 + 7.8^1 + 3.8^0 + 1.8^{-1} = 123.125_{(10)}$$

Conversión decimal – hexadecimal

número de pasos = $1 \rightarrow 0.125 \times 16 = 2.0$ (alcanza la unidad)

2-2=0 (se resta la parte entera y si queda algo se repiten las multiplicaciones por 16)

→11 en hexadecimal es B

Conversión hexadecimal – decimal

$$N = 7B.2_{(16)} = 7 \cdot 16^{1} + 11 \cdot 16^{0} + 2 \cdot 16^{-1} = 123.125_{(10)}$$

Conversión binario – octal

$$\underbrace{0\ 0\ 1}_{1}\ \underbrace{1\ 1\ 1}_{7}\ \underbrace{0\ 1\ 1}_{3}\ .\ \underbrace{0\ 0\ 1}_{1}_{(2)} = 173.1_{(8)}$$

Conversión octal – binario

$$173.1_{(8)} = \underbrace{0\ 0\ 1}_{1} \underbrace{1\ 1\ 1}_{7} \underbrace{0\ 1\ 1}_{3} \cdot \underbrace{0\ 0\ 1}_{(2)} = 1111011.011_{(2)}$$

Conversión binario – hexadecimal

$$\underbrace{0\ 1\ 1\ 1}_{7}\underbrace{1\ 0\ 1\ 1}_{B}.\underbrace{0\ 0\ 1}_{2}\underbrace{0}_{(2)} = 7B.2_{(16)}$$

Conversión hexadecimal – binario

$$173.1_{(8)} = \underbrace{0\ 0\ 1}_{7}\underbrace{1\ 1\ 1}_{7}\underbrace{0\ 1\ 1}_{3}.\underbrace{0\ 0\ 1}_{(2)} = 1111011.011_{(2)}$$

$$7B.2_{(16)} = \underbrace{0\ 1\ 1}_{7}\underbrace{1\ 0\ 1\ 1}_{B}.\underbrace{0\ 0\ 1}_{0}\underbrace{0\ 1}_{(2)} = 1111011.011_{(2)}$$

- Conversión octal - hexadecimal:
$$173.1_{(8)} = 0.011111011$$
. $0.010_{(2)} = 78.2_{(16)}$

Código binario natural

El sistema binario se llama código binario natural

Decimal	Binario natural											
	24	2 ³	2 ²	2 ¹	2 ⁰							
	16	8	4	2	1							
0					0							
1					1							
2				1	0							
3				1	1							
4			1	0	0							
5			1	0	1							
6			1	1	0							
7			1	1	1							
8		1	0	0	0							
9		1	0	0	1							
10		1	0	1	0							
11		1	0	1	1							
12		1	1	0	0							
13		1	1	0	1							
14		1	1	1	0							
15		1	1	1	1							
16	1	0	0	0	0							
17	1	0	0	0	1							
18	1	0	0	1	0							

- Es un código ponderado: a cada posición o cifra binaria se le asigna un peso. El número decimal equivalente se obtiene sumando los pesos de las posiciones que poseen el valor 1
- Se utiliza en la realización de operaciones aritméticas (suma, resta, producto binario)
- Además del código binario natural se utilizan otros códigos binarios: BCD, BCD-Exceso 3, Gray, Johnson, etc.
- Conversores de código: circuitos combinacionales que pasan de un código a otro

Código decimales codificados en binario (binary coded decimal – BCD)

- El ser humano está acostumbrado al sistema de numeración decimal
- Código BCD: consiste en codificar en binario y por separado cada una de las cifras del número decimal (cada cifra ocupará 4 bits):

Número decimal	Binario natural	BCD	BCD Aiken (2)	BCD Aiken (5)	BCD Exceso 3
Pesos	8421	Decenas Unidades 8 4 2 1 8 4 2 1	Decenas Unidades 2421 2421	Decenas Unidades 5 4 2 1 5 4 2 1	Decenas Unidades
0	0000	0000	0000	0000	0011
1	0001	0001	0001	0001	0100
2	0010	0010	0010	0010	0101
3	0011	0011	0011	0011	0110
4	0100	0100	0100	0100	0111
5	0101	0101	1011	1000	1000
6	0110	0110	1100	1001	1001
7	0111	0111	1101	1010	1010
8	1000	1000	1110	1011	1011
9	1001	1001	1111	1100	1100
10	1010	0001 0000	0001 0000	0001 0000	0100 0000

- Los códigos BCD ocupan más bits que el binario natural
- Todo los anteriores códigos son ponderados menos el BCD Exceso 3
- Ejemplo: $132_{(10)}$: en binario natural: 10000100 y en BCD natural: 0001 0011 0010

Código binarios continuos y cíclicos

- Código binario continuo: si las combinaciones correspondientes a los números decimales consecutivos son adyacentes (difieren solamente en un bit)
- Código cíclico: código continuo en que la última combinación es adyacente a la primera
- Los dos códigos más importantes son: Gray y Johnson
- Código Gray: es un código continuo y cíclico que se llama también "reflejado":

Número decimal	Gray (1 bit)	Gray (2 bits)	Gray (3 bits)	Gray (4 bits)	Binario natural
0	0	0 0	0 0 0	0 0 0 0	0000
1	1	0 1 ESPEJO	0 01	0 0 1	0001
2		1 1	0 11	0 0 1 1	0010
3		1 0	0 10 ESPEJ	0 0 0 1 0	0011
4			1 10	0 110	0100
5			1 1 1	0 1111	0101
6			1 0 1	0 101	0110
7			1,00	0 100 ESPEJO	0111
8				1 100	1000
9				1 101	1001
10				1 111	1010
11				1 110	1011
12				1 010	1100
13				1 011	1101
14				1 001	1110
15				1,000	1111

 Formación de un código Gray de n bits: se parte de n-1 bits y se repiten simétricamente sus combinaciones añadiéndose un 0 en las 2ⁿ⁻¹ primeras combinaciones y un 1 en las 2ⁿ⁻¹ siguientes

Códigos binarios

Aplicación del código Gray

- Resulta muy útil para codificación de entradas o estados de un sistema cuando estos evolucionan siguiendo una secuencia fija. Al diferenciarse en un solo bit, el paso de una combinación a la siguiente no produce errores debidos a diferencias en el tiempo en la transición o propagación de cada bit
- Ejemplo: un encoder absoluto (http://bit.ly/TdesFx)

Se trata de un sistema que detecta la posición de un disco en el que hay zonas transparentes y opacas que permiten o no el paso de la luz hacia unos fotoreceptores. La señal recibida por estos será '1' o '0'. Con cuatro fotoreceptores se podrán detectar 2⁴ posiciones diferentes

Con código binario natural, el paso del 3 al 4 puede provocar estados intermedios no deseados:

$$011 \longrightarrow 000 \longrightarrow 100$$

$$011 \longrightarrow 111 \longrightarrow 100$$

Con código Gray se evitan los estados intermedios:

$$\underbrace{010}_{3} \longrightarrow \underbrace{110}_{4}$$
 (sólo cambia un bit)

Códigos binarios

• Conversión de código Gray a natural y viceversa

Paso de natural a Gray:

$$g_i(gray) = b_i \oplus b_{i+1}$$
 (binario)
Ejemplo:

$$4 = 0 \ 1 \ 0 \ 0 \qquad g_i = b_i \oplus b_{i+1} \qquad 0 \ 1 \ 0 = 4$$

Paso de Gray a natural

bi (binario) =
$$g_i \oplus g_{i+1} \oplus ... \oplus g_{n-1}$$
 (gray)

Ejemplo

• Código Johnson

Es un código continuo y cíclico que se llama también "progresivo":

Número decimal	Johnson (3 bits)	Johnson (4 bits)	Johnson (5 bits)
0	000	0000	00000
1	001	0001	00001
2	011	0011	00011
3	111	0111	00111
4	110	1111	01111
5	100	1110	11111
6		1100	11110
7		1000	11100
8			11000
9			10000

- Se forma añadiendo 1s y después 0s progresivamente
- Con n bits se pueden codificar 2n cantidades diferentes
- Para codificar un número N en código en código Johnson se necesita un número n de bits tal que:
 2(n-1) ≤ N < 2n
- Inconveniente: dada su poca capacidad de codificación (binario natural y Gray codifican 2ⁿ cantidades diferentes), no se utiliza en sistemas digitales complejos por implicar una mayor complejidad de los mismos
- Ventaja: gran sencillez de diseño de sistemas de conteo bastados en este código

Códigos binarios

Representación de números con y sin signo

Números sin signo:

n bits \implies 2ⁿ números diferentes (0 al 2ⁿ-1)

Ejemplo:
$$n=8$$
 $2^8 = 256$ números: $00000000_{(2)} = 0_{(10)}$ $11111111_{(2)} = 255_{(10)}$

- Números con signo
 - Convenio signo-magnitud

Ejemplo: n=8 28 = 256 números:

 $1\ 1111111_{(2)} = -127_{(10)}$

 $0\ 1111111_{(2)} = +127_{(10)}$

 $1\ 0000000_{(2)} = -0_{(10)}$ $0\ 00000000_{(2)} = +0_{(10)}$

- La ventaja de este convenio su simplicidad:
 - Bit de signo: si vale 0 el número es positivo y si vale 1 es negativo
 - Magnitud: su valor binario pasado a decimal es la magnitud
- La desventaja es que requiere de circuitos sumadores y restadores si se suman números, cosa no necesaria con los convenios complemento A1 y A2

• Representación de números con y sin signo

 Convenio complemento A 1 (CA1): se define como el complemento A 1 de un número N (sin signo y representado por n bits) como:

$$CA1(N)=(2^{n}-1)-N$$

- El complemento A1 se obtiene también de otras dos maneras:
 - a) Restando el número de tantos 1s como bits (n) tiene el número:

$$1111 = (2^{n}-1)$$

$$- 0010 = 2$$

$$1101 = CA1(2)$$

b) Cambiando 1s y 0s en el número

- Para representar números positivos y negativos
 - a) número positivo: convenio signo magnitud

$$+2 = 00010$$

b) número negativo: bit de signo (1) y CA1 de la magnitud

$$-2 = 11101 = CA1(+2)$$

Representación de números con y sin signo

 Convenio complemento A 2 (CA2): se define como el complemento A 2 de un número N (sin signo y representado por n bits) como:

$$CA2(N)=2^{n}-N$$

- El complemento A2 se obtiene también de otras dos maneras:
 - a) Restando el número de un 1 seguido de tantos 0s como bits (n) tiene el número:

$$10000 = 2^n$$
 $-0010 = 2$
 $1110 = CA2(2)$

b) Calculando el CA1 y sumando un 1

- Para representar números positivos y negativos
 - a) número positivo: convenio signo magnitud

$$+2 = 00010$$

b) número negativo: bit de signo (1) y CA2 de la magnitud

$$-2 = 11110 = CA2(+2)$$

• Representación de números con y sin signo

Cuadro resumen de los diferentes tipos de numeración con signo para números de 4 bits incluyendo el de signo

Decimal	Signo y magnitud	Complemento a 1	Complemento a 2
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	N/A
0	N/A	N/A	0000
-0	1000	1111	N/A
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001

• Representación de números racionales

Un número racional tiene una parte entera y otra decimal o fraccionaria

- a) Representación en coma fija
- Los números se representan con un número fijo de cifras decimales:

- Ejemplo:

Considerando un registro de 8 bits (1 byte), donde 1 bit es de signo, 4 de parte entera y 3 de parte decimal, el número $6.25_{(10)} = 110.01_{(2)}$ se representa como:

 Para practicar: representa el -6.5, el 8.75 y el -11.2 en un registro de 16 bit con 1 bit de signo 8 de parte entera y 7 de parte decimal. Después comprueba que se ha realizado bien la conversión obteniendo el número decimal a partir del número en coma fija

- Representación de números racionales
 - b) Representación en coma flotante (notación científica)
 - Se utiliza para representar números grandes o pequeños
 - Los números se representan en forma exponencial (base del exponente 2):

- Se siguen diversos estándares. Veremos el Estándar ANSI IEEE 754 precisión simple:
 - Signo: O para números positivos y 1 para negativos

exponente (k+1 bits)

signo (1 bit)

- Exponente: 8 bits con exceso 127 (al exponente de la forma exponencial se le suma 127)
- Mantisa: la mantisa de la forma exponencial se representa como el 1 seguido de la coma y de 23 cifras. Estas 23 cifras son las que se representan en el campo mantisa del registro

Mantisa (r bits)

Ejemplo: para representar el 6.25 en ANSI IEEE 754 precisión simple:

• Representación de números racionales

Más ejemplos de representación en coma flotante ANSI 754 single

Representación en precisión simple (IEEE Standard) S Exponente Mantisa	Signo	Exponente (en exceso a -127)	Valor binario (representación con coma)	Valor decimal
0 10000000 0000000000000000000000000000	+	128-127= 1	+1.0	+2
1 01111111 1100000000000000000000000	-	127-127= 0	-1.11	-1.75
0 10000001 1010000000000000000000	+	129-127= 2	+110.1	
1 01111111 111000000000000000000000	-	127-127= 0		
1 10000010 01000100000000000000000	+			

Para hacer más ejemplos, convertidor online entre binarios y formatos de precisión simple, doble y otros: www.binaryconvert.com

Comparativa de ANSI 754 single con double:

Tipo de precisión	Signo (1 bit)	Exponente	Mantisa	Menor Valor	Mayor Valor
Single	0=positivo 1= negativo	8 bits exceso a 127	23+1	1.5×10^{-45}	3.4 × 10 ⁺³⁸
Doble	0=positivo 1= negativo	11 bits exceso a 1023	52+1	5.0×10^{-324}	$1.7 \times 10^{+308}$

Códigos binarios

A string is a collection of up to 255 characters enclosed in single quotes. For

example: 'Bert' is a string of 4 characters. More details about strings will

Ejemplo de programa en PASCAL

El STRING es un array de registros de 8 bit sin

signo

```
PROGRAM Test;
   WAR
      x : REAL;
                            variable name is x, type is real
      i : INTEGER:
                            variable name is i, type is integer
      c : CHAR;
                            variable name is c, type is character
      s : STRING;
                            variable name is s, type is string
   BEGIN
       x := -34.55;
                           valid real number assigned to variable x
       x := -3.9E-3;
                           valid real number assigned to variable x
                           x contains the value -3.9E-3 }
        WRITELN(x);
        i := 10;
                           valid integer number assigned to variable i
        i := i * i;
                           valid (!) - i will be 100 now }
                           valid integer number assigned to variable i }
        i := 9933;
        i := -99999;
                           invalid integer - too small
        i := 999.44;
                          { invalid assignment - types do not match }
        c := '1';
                           valid character assigned to variable c }
        c := 1;
                           invalid assignment - types do not match }
        c := 'Bert';
                          valid character assigned to variable c }
        c := 'd';
                           c contains the value 'd' }
        WRITELN(c);
        d := 'c';
                            unknown variable - the variable d is not declared }
                           invalid reference - s has undefined value }
        WRITELN(s);
                                                                                                   Tipos de variables en Pascal
   END.
El INTEGER es un registro de 16 bit con un bit
                                                                               INTEGER A positive or negative integer between a smallest (negative) and a largest
                                                                                        number. In general the smallest and largest number possible depends on
de signo y convenio signo magnitud
                                                                                       the machine; for IBM PC and Turbo Pascal they are:
                                                                                       smallest Integer: -32766
                                                                                        largest Integer: 32767
                                                                                       Can contain a real number in scientific or decimal notation. There is a limit
El REAL es en notación decimal como la coma
                                                                               REAL
                                                                                       on the size and accuracy of the real number that will be covered later. Valid
fija y en científica como la coma flotante
                                                                                       real numbers are, for example:
                                                                                       Decimal Notation: 1.234 or -34.5507
                                                                                       Scientific Notation: 5.0E-3 or -7.443E3
                                                                               CHAR
                                                                                       Any key on the keyboard is considered a valid character. Characters are
El BOOLEAN es un bit que puede valer true of
                                                                                       usually enclosed in single quotes. For example: '1' is a character, while 1 is
false (1 o 0)
                                                                                       an integer.
                                                                               BOOLEAN We will deal with boolean variables later
```

STRING

follow later.

Ejemplo de programa en C

```
#include
int i = 0;
int j = 2 + 2;
int k = 2 * (3 << 8) / 3;
int m = (int)(&i + 2);
int p = sizeof(float) * 2;
int q = sizeof(p);
float r = (float)(2 * 3);
main () {
  printf ("i = %i\n", i);
 printf ("j = %i\n", j);
 printf ("k = %i\n", k);
 printf ("m = %i\n", m);
 printf ("p = %i\n", p);
 printf ("q = %i\n", q);
  printf ("r = f\n", r);
  for (r = 0.0; r < 1.0; r += 0.1) {
    double s = sin(r);
   printf ("The sine of %f is %f\n", r, s);
```

El char es un registro para números enteros de 8 bit sin signo o con signo

El short e int son registros para números enteros de 16 bit o 32 bit sin signo o con signo

El float y el double son registros para números en coma flotante ANSI 754 single o double

El bool es un bit que puede valer true of false (1 o 0)

Tipos de variables en lenguaje C

Name	Description	Size*	Range*
char	Character or small integer.	1byte	signed: -128 to 127 unsigned: 0 to 255
short int (short)	Short Integer.	2bytes	signed: -32768 to 32767 unsigned: 0 to 65535
int	Integer.	4bytes	signed: -2147483648 to 2147483647 unsigned: 0 to 4294967295
long int (long)	Long integer.	4bytes	signed: -2147483648 to 2147483647 unsigned: 0 to 4294967295
bool	Boolean value. It can take one of two values: true or false.	1 bit	true or false
float	Floating point number.	4bytes	+/- 3.4e +/- 38 (~7 digits)
double	Double precision floating point number.	8bytes	+/- 1.7e +/- 308 (~15 digits)
long double	Long double precision floating point number.	8bytes	+/- 1.7e +/- 308 (~15 digits)
wchar_t	Wide character.	2 <i>or</i> 4 bytes	1 wide character

Códigos alfanuméricos: ASCII

- ASCII es el código alfanumérico más empleado
- Originariamente cada carácter o símbolo se representaba mediante 7 bits, lo que servía para abarcar el alfabeto latino, pero se amplió a 8 bits para incluir un mayor abanico de símbolos
- A continuación se muestra la tabla para 7 bits, que es internacional

Dec	Нх	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Hx	Oct	Html Cl	hr_
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	@	0	96	60	140	a#96;	8
1	1	001	SOH	(start of heading)	33	21	041	@#33;	1				A		97	61	141	6#97;	a
2	2	002	STX	(start of text)				 4 ;		66	42	102	a#66;	В	98	62	142	4#98;	b
3	3	003	ETX	(end of text)				#		67			a#67;					6#99;	C
4				(end of transmission)				\$					D					d	
5	5	005	ENQ	(enquiry)				a#37;					E					e	
6	6	006	ACK	(acknowledge)				@#38;		70			F					f	
7			BEL	(bell)	l .			%#39;		71			G					a#103;	
8		010		(backspace)				&# 4 0;		72			H					a#104;	
9	_	011		(horizontal tab))		73			a#73;					i	
10		012		(NL line feed, new line)				a#42;		74			a#74;					j	_
11	_	013		(vertical tab)				a#43;		75	_		a#75;					k	
12		014		(NP form feed, new page)				a#44;		76			a#76;					a#108;	
13		015		(carriage return)				<u>445;</u>	5.3	77	_		M					a#109;	
14	_	016		(shift out)				a#46;	+	78	_		a#78;					n	
15	_	017		(shift in)				a#47;		79		:	a#79;					o	
			DLE	(data link escape)				&#48;</td><td></td><td></td><td></td><td></td><td>4#80;</td><td></td><td></td><td></td><td></td><td>p</td><td></td></tr><tr><td>17</td><td>11</td><td>021</td><td>DC1</td><td>(device control 1)</td><td></td><td></td><td></td><td>@#49;</td><td></td><td>I</td><td></td><td></td><td>Q</td><td></td><td> </td><td>. –</td><td></td><td>q</td><td></td></tr><tr><td></td><td></td><td></td><td>DC2</td><td>(device control 2)</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>R</td><td></td><td></td><td></td><td></td><td>r</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 3)</td><td>-</td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td>4#83;</td><td></td><td></td><td></td><td></td><td>s</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 4)</td><td></td><td></td><td></td><td>4</td><td></td><td>1</td><td></td><td></td><td>a#84;</td><td></td><td></td><td></td><td></td><td>t</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(negative acknowledge)</td><td></td><td></td><td></td><td>a#53;</td><td></td><td>I</td><td></td><td></td><td>4#85;</td><td></td><td></td><td></td><td></td><td>6#117;</td><td></td></tr><tr><td>22</td><td>16</td><td>026</td><td>SYN</td><td>(synchronous idle)</td><td></td><td></td><td></td><td>4;</td><td></td><td></td><td></td><td></td><td>4#86;</td><td></td><td></td><td></td><td></td><td>v</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(end of trans. block)</td><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td>W</td><td></td><td></td><td></td><td></td><td>w</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(cancel)</td><td></td><td></td><td></td><td>8</td><td></td><td>88</td><td></td><td></td><td>4#88;</td><td></td><td></td><td></td><td></td><td>x</td><td></td></tr><tr><td></td><td></td><td>031</td><td></td><td>(end of medium)</td><td></td><td></td><td></td><td>%#57;</td><td></td><td>89</td><td></td><td></td><td>4#89;</td><td></td><td></td><td></td><td></td><td>y</td><td></td></tr><tr><td></td><td></td><td>032</td><td></td><td>(substitute)</td><td></td><td></td><td></td><td>a#58;</td><td></td><td>90</td><td></td><td></td><td>a#90;</td><td>Z</td><td></td><td></td><td></td><td>z</td><td></td></tr><tr><td></td><td></td><td></td><td>ESC</td><td>(escape)</td><td></td><td></td><td></td><td>a#59;</td><td></td><td>91</td><td></td><td></td><td>a#91;</td><td>[</td><td></td><td></td><td></td><td>{</td><td></td></tr><tr><td></td><td></td><td>034</td><td></td><td>(file separator)</td><td></td><td></td><td></td><td>4#60;</td><td></td><td>92</td><td></td><td></td><td>a#92;</td><td></td><td></td><td></td><td></td><td>4;</td><td></td></tr><tr><td></td><td></td><td>035</td><td></td><td>(group separator)</td><td></td><td></td><td></td><td>=</td><td></td><td>93</td><td></td><td></td><td>6#93;</td><td>-</td><td></td><td></td><td></td><td>}</td><td></td></tr><tr><td></td><td></td><td>036</td><td></td><td>(record separator)</td><td></td><td></td><td></td><td>a#62;</td><td></td><td> </td><td></td><td></td><td>a#94;</td><td></td><td></td><td></td><td></td><td>~</td><td></td></tr><tr><td>31</td><td>1F</td><td>037</td><td>US</td><td>(unit separator)</td><td>63</td><td>3F</td><td>077</td><td>?</td><td>2</td><td>95</td><td>5F</td><td>137</td><td><u>@</u>#95;</td><td>_</td><td>127</td><td>7F</td><td>177</td><td></td><td>DEI</td></tr><tr><td colspan=12>Source: www.LookupTables.com</td></tr></tbody></table>											

 Para incluir los símbolos del alfabeto chino se usa un mayor número de bits por carácter: http://bit.ly/1lGQb5z

Códigos detectores de error

- En el manejo y transmisión de la información se pueden producir errores (cambio de bits). Esto obliga a la creación de códigos capaces de detectar o corregir errores
- Condición necesaria para que un código binario de n bits sea detector de errores:
 - no utilizar todas las combinaciones posibles (2ⁿ), ya que una combinación del código se transformará en otra que también pertenece a él
- La condición anterior es necesaria pero no suficiente:
 - Ejemplo: El código BCD
 - Utiliza para cada cifra decimal 4 bits (esto supone utilizar 10 de las 16 combinaciones posibles)
 - 2(10)=0010(2) cambiando el último bit 0011(2)=3

Cambiando un bit se ha pasado de detectar el 2 a detectar el 3, con lo que se creerá que hay un 3 cuando debería haber un 2

- Condición necesaria y suficiente: que la distancia mínima del código sea superior a la unidad
 - Distancia mínima de un código: la menor distancia entre dos combinaciones cualesquiera pertenecientes al mismo
 - Distancia entre dos combinaciones de un código: número de bits de una de ellas que hay que modificar para obtener la otra

BCD:
$$2 = 0.010$$
 $3 = 0.011$
 $d=1$
 $3 = 0.011$
 $d=1$
 $d=2$
 d_{min}
 $d=1$
 $d=1$

En general el número de bits erróneos que un código puede detectar es: nº bits erróneo = d_{min} - 1

Ejemplos de códigos detectores de error

a) Códigos de paridad

- Se obtienen partiendo de un código de distancia mínima 1 al que se le añade un bit llamado de paridad
- Código de paridad impar: se añade al código de partida un bit de forma que el número de unos de cada combinación resultante sea impar:

Número decimal	BCD Exceso 3		Bit paridad impar			BCD Exceso 3			
0	0011		1			00111	_ d=4\		
1	0100		0		d=2 ≺	01000			
2	0101		1]	u_2	01011	} d=2 \		
3	0110		1]	J 0	01101	J 4-2		
4	0111	+	0] =	d=2 -	01110	→ d=2	d=4	d _{min} =2
5	1000		0			10000	J 4-2	4-4	Permite detectar
6	1001		1		d=2 -{	10011	d=2		1 error
7	1010		1			10101			
8	1011		0		d=2 \(\frac{1}{2}\)	10110			
9	1100		1]		11001	\frac{1}{2} d=4		
				•	,				

- Código de paridad par: se añade al código de partida un bit de forma que el número de unos de cada combinación resultante sea par
- Conclusión: la detección consiste en comprobar si el número de 1s de cada combinación es par (paridad par) o impar (paridad impar). Existen circuitos generadores y detectores de bit de paridad

Ejemplos de códigos detectores de error

b) Códigos de peso constante

Todas las combinaciones tienen el mismo número de 1s.

Número decimal	Código 2 entre 5	Código biquinario		
Pesos		50 43210		
0	01100	01 00001		
1	11000	01 00010		
2	10100	01 00100		
3	10010	01 01000		
4	01010	01 10000		
5	00110	10 00001		
6	10001	10 00010		
7	01001	10 00100		
8	00101	10 01000		
9	00011	10 10000		

- Bi Quinario
- Código biquinario: es un código ponderado de 7 bits dividido en dos partes:
 - Bi (2 bits): indica si el número está por encima o por debajo de 5
 - Quinario (5 bits): el 1 va desplazándose progresivamente hacia bits de mayor peso al aumentar el valor
- Tanto el biquinario como el 2 entre 5 son códigos con distancia mínima 2, luego permiten detectar
 1 error. Se plantea como ejercicio comprobar que efectivamente tienen d_{min}=2

Códigos binarios

Códigos correctores de error

- Para que un código pueda corregir los bits erróneos su distancia mínima debe ser mayor que 2.
- La ecuación para calcular el número de errores que puede detectar un código es:

d_{min}=2·(nº de errores a corregir)+1

para detectar 2 errores dmin=5, para 3 errores dmin=7, etc.

Ejemplo: Código Hamming

Número decimal	D3	D2	D1	P2	D0	P1	P0
	b7	b6	b5	b4	b3	b2	b1
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	1	1	0	0	1
3	0	0	1	1	1	1	0
4	0	1	0	1	0	1	0
5	0	1	0	1	1	0	1
6	0	1	1	0	0	1	1
7	0	1	1	0	1	0	0
8	1	0	0	1	0	1	1
9	1	0	0	1	1	0	0

 $\mathsf{P}_0 = \mathsf{D}_0 \oplus \mathsf{D}_1 \oplus \mathsf{D}_3$ $\mathsf{P}_1 = \mathsf{D}_0 \oplus \mathsf{D}_2 \oplus \mathsf{D}_3$ $P_2 = D_1 \oplus D_2 \oplus D_3$

P_i bit de paridad D_i bit de datos

$C_0 = P_0 \oplus P_0' = P_0 \oplus D_0 \oplus D_1 \oplus D_2 \oplus D_3 \oplus D_4 \oplus D_4 \oplus D_6 \oplus D_6$	ΘD_3
$C_1 = P_1 \oplus P_1' = P_1 \oplus D_0 \oplus D_2 \oplus D_2$	ΘD_3
$C_2 = P_2 \oplus P_2' = P_2 \oplus D_1 \oplus D_2 \oplus C_2$	

Ejemplo (el código de C₂, C₁, C₀ indica el número del bit erróneo):

Número decimal	D3	D2	D1	P2	D0	P1	P0
	b7	b6	b5	b4	b3	b2	b1
Transmitido	1	1	1	1	1	1	1
Recibido	1	1	1	1	1	1	0

$C_2 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$					
$C_1 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$					
$C_0 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$)				
b₁ erróneo ▲					