Yelp Dataset Project

DS3010

By: Ethan Falcão, Emre Sabaz, Maanav Iyengar, Nur Fateemah, Sarah Kogan

01

TASK 1:

Predicting the Business
Attributes using Review
and Tip textual
information

Solution:

Use review and tip information to extract relevant features from the text data and then use these features to train a machine learning model

General Process:

- Clean and decrease data size/merge data together; Process attributes column
- Split into training and testing data
- Fit vectorizer with text data and transform
- Train different classifiers and test their accuracy rates

YUMMY CURRY!!! Process Diagram:

Results (Accuracy & Split):

74% accuracy (80% training vs. 20% testing)

Results (Test Performance):

			11	fi			
		precision	recall	f1-score	support		
	0	0.93	1.00	0.96	4453		
	1	0.84	0.99	0.90	3900		
	2	0.85	0.98	0.91	3646		
micro	avg	0.87	0.99	0.93	11999		
macro	avg	0.87	0.99	0.93	11999		
weighted	avg	0.87	0.99	0.93	11999		
samples	avg	0.86	0.94	0.89	11999		

			11	C4	support
	Р	recision	recall	T1-score	
	0	0.93	1.00	0.96	4453
	1	0.84	1.00	0.91	3900
	2	0.84	0.99	0.91	3646
micro	avg	0.87	0.99	0.93	11999
macro	avg	0.87	0.99	0.93	11999
weighted	avg	0.87	0.99	0.93	11999
samples	avg	0.86	0.95	0.89	11999

Random Forest Classifier Report

SVC Classifier Report

Results (Confusion Matrix):

```
[[4716 0 0]
[ 80 0 0]
[ 40 0 0]]
```


Future Work:

- Consider exploring different feature representation techniques
 - Experiment with alternative approaches such as word embeddings
 - (e.g., Word2Vec, GloVe, etc.)
- Model Selection: Try different models or algorithms to see if they yield better results

Business Applications:

 By accurately categorizing businesses based on reviews, our model enhances Yelp's search algorithm, providing users with more relevant and tailored search results

02

TASK 2:

Identifying Fake Reviews

Solution:

Utilize natural language processing (NLP) techniques to extract relevant features from the text data, and then apply a supervised learning algorithm to classify reviews as fake or genuine based on these features

General Process:

- Data preprocessing and feature engineering
- Machine Learning algorithms
- Model training and evaluating
- Supervised Learning

Process Diagram:

Results (Accuracy & Split):

84% accuracy (30% training vs. 70% testing)

Results (Test Performance):

value	variable	Model	
0.844287	F1 Score	GradientBoostingClassifier	0
0.835436	F1 Score	RandomForestClassifier	1
0.783698	F1 Score	LogisticRegression	2
0.892655	Recall Score	GradientBoostingClassifier	3
0.920904	Recall Score	RandomForestClassifier	4
0.779661	Recall Score	LogisticRegression	5
0.841121	Accuracy Score	GradientBoostingClassifier	6
0.841121	Accuracy Score	RandomForestClassifier	7
0.761682	Accuracy Score	LogisticRegression	8
0.821347	AUC Score	GradientBoostingClassifier	9
0.821805	AUC Score	RandomForestClassifier	10
0.815086	AUC Score	LogisticRegression	11

Results (Confusion Matrix):

Future Work:

- Collecting additional data sources such as user profiles and activity history to supplement the review and tip data
- Utilizing more advanced anomaly detection techniques to identify unusual patterns or behaviors in the review data
- Considering the impact of external factors such as cultural nuances and language differences

Business Applications:

- Fraud detection
- Reputation management
- Sentiment analysis

What We Learned:

- Data preprocessing is a crucial step in ML and can impact model performance greatly
- Model evaluation is a crucial step in data processing, as it is important to look at the way different models change the results
- It is important to consider different angles to approach a problem and to discuss solutions to find inaccuracies we would otherwise miss

THANK YOU!!