Session

Agenda

- Introduction to machine learning
- Supervised Learning
 - Linear Regression
 - Gradient Descent
 - Linear Regression vs Logistic Regression

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed

- Supervised Learning
 - Regression
 - Classification
- Unsupervised Learning
 - Clustering
 - Association
- Reinforcement Learning

- Programming Language
 - Python
 - C++
 - R
 - •
- Many Libraries
 - Scikit-learn ←
 - PyTorch
 - TensorFlow
 - Keras

•

Classical machine learning

Deep learning frameworks

Agenda

- Introduction to machine learning
- Supervised Learning
 - Linear Regression
 - Gradient Descent
 - Linear Regression vs Logistic Regression

Supervised Learning

Apply what has been learned in the past to new data using labeled examples to predict future events.

Agenda

- Introduction to machine learning
- Supervised Learning
 - Linear Regression
 - Gradient Descent
 - Linear Regression vs Logistic Regression

- Let's say we want to estimate the price of the medium sized house
- What do we do?

You can think of Linear Regression as a painter drawing best fit line through your data

Now how do we find that line?

Now how do we find that line?

- Now...
- How do we move that line (in mathematical terms)

Increase the slope (w1)

Decrease the slope (w1)

Increase y-intercept (w2)

Decrease y-intercept (w2)

- Now that we know how to move the line.
- Its time to move the line towards the point
- For that we have two techniques:
 - Absolute trick
 - Square trick

- Absolute trick
- Square trick

- We successfully moved the line towards the point.
- Notice however that we moved the line too much. And the line has now moved past the point
- We don't like to do that in machine learning. So we have to take smaller steps

- Absolute trick
- Square trick

- The absolute trick doesn't consider how far or close the point is from the line.
- Taking the same step everytime

Agenda

- Introduction to machine learning
- Supervised Learning
 - Linear Regression
 - Gradient Descent
 - Linear Regression vs Logistic Regression

Gradient Descent

Gradient Descent

Error:

Gradient Descent

Error:

Gradient Descent

Error:

Gradient Descent

Gradient Descent

Error Function - Gradient of Error Function $w_i o w_i - lpha rac{\partial}{\partial w_i} Error$

- Error Functions:
 - Mean Absolute Error
 - Mean Squared Error

- Error Functions:
 - Mean Absolute Error
 - Mean Squared Error

Error Functions:

- Mean Absolute Error
- Mean Squared Error

$$Error = \frac{1}{m} \sum_{i=1}^{m} |y - \hat{y}|$$

- Error Functions:
 - Mean Absolute Error
 - Mean Squared Error

- Error Functions:
 - Mean Absolute Error
 - Mean Squared Error

- Error Functions:
 - Mean Absolute Error
 - Mean Squared Error

$$Error = \frac{1}{2m} \sum_{i=1}^{m} (y - \hat{y})^2$$

- Error Functions:
 - Mean Absolute Error
 - Mean Squared Error

1) Absolute Error Function

$$Error = \frac{1}{m} \sum_{i=1}^{m} |y - \hat{y}|$$

2) Squared Error Function

$$Error = \frac{1}{2m} \sum_{i=1}^{m} (y - \hat{y})^2$$

- We have learned 2 methods to decrease the error. Tricks, and Error functions.
- Turns out they are both the exact same thing

Tricks

Error Functions

- Linear regression rules:
 - Affected by outliers.
 - □ It works best when data is linear

- Linear regression rules:
 - Affected by outliers.
 - It works best when data is linear

Linear Regression in scikit-learn

```
>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> model.fit(x_values, y_values)
```

```
>>> print(model.predict([ [127], [248] ]))
[[ 438.94308857, 127.14839521]]
```

Agenda

- Introduction to machine learning
- Supervised Learning
 - Linear Regression
 - Gradient Descent
 - Linear Regression vs Logistic Regression

Supervised Learning: Linear Regression vs Logistic Regression

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Supervised Learning: Linear Regression vs Logistic Regression

REGRESSION AND CLASSIFICATION

Regression returns a numeric value
We use Linear Regression

Classification returns a numeric state.
We use Logistic Regression

Supervised Learning: Linear Regression vs Logistic Regression

Logistic Regression in scikit-learn

```
# import the class
from sklearn.linear_model import LogisticRegression
# instantiate the model (using the default parameters)
logreg = LogisticRegression()
```