Week 5: Tutorial Handout

A form $\|\cdot\|$ is called a norm over V if any $x, y \in V$ satisfy:

- (Positive definite) $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$.
- (Homogeneous) ||ax|| = |a|||x|| for any $a \in \mathbb{R}$.
- (Triangle inequality) $||x + y|| \le ||x|| + ||y||$

A subset $U \subset V$ is called **open** if $\forall x \in U$, there exists $\delta > 0$ s.t. $B_{\delta}(x) := \{y : ||x - y|| \le \delta\} \subset U$. A subset $C \subset V$ is called **closed** if for any sequence $x_n \in C$ with limit point $||x_n - x|| \to 0$, we have that $x \in C$.

Norms

- 1. Prove that the form $\|\mathbf{x}\|_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$ is a norm on \mathbb{R}^n for $p \ge 1$ (called the p-norm). (Hint: Concave functions f(x) are subadditive $f(x+y) \le f(x) + f(y)$).
- 2. For $n \times n$ matrices A and vectors $x \in \mathbb{R}^n$ with the standard Euclidean norm $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$, prove that the form

$$||A|| := \max_{||x||_2 \le 1} ||Ax||_2$$

is a norm over the space of $n \times n$ matrices. It is called the operator norm.

- 3. The set $\{f \in C([0,1]) : f(x) > 0 \ \forall x \in [0,1] \}$ is open wrt to the sup norm $||f||_{\infty,[0,1]} := \sup_{x \in [0,1]} |f(x)|$.
- 4. The set $\{f \in C([0,1]) : f(0) = 0\}$ is closed wrt to the sup norm $||f||_{\infty,[0,1]} := \sup_{x \in [0,1]} |f(x)|$.
- 5. The set $\{f \in C^1([0,1]) : f(x) > 0 \ \forall x \in [0,1], ||f'||_{\infty} < 1, \}$ is open wrt to the sup norm $||f||_{1,\infty,[0,1]} := \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$
- 6. The set $\{f \in C^2([0,1]) : f(x) > 0 \ \forall x \in [0,1], \|f'\|_{\infty} < 1, |f''(0)| > 2\}$ is open wrt to the sup norm $\|f\|_{2,\infty,[0,1]} := \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)| + \sup_{x \in [0,1]} |f''(x)|.$