

CSC3100 Data Structures Lecture 24: DAG and SCC computation

Li Jiang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- We focus on directed graphs in this lecture
- Directed acyclic graph (DAG) checking
 - What is DAG?
 - How to check the existence of DAGs?
- Strongly connected component (SCC) computation
 - What is SCC?
 - How to detect SCCs?

Directed graphs are everywhere

Social networks

DBLP co-author network

Knowledge graphs

La Directed Acyclic Graph (DAG)

- Cycle: A simple path that starts and ends at the
 - same node
 - \circ In directed graph G
 - Path $P = (v_1, v_2, v_3, v_1)$ is a cycle
- Directed acyclic graph (DAG)
 - A directed graph that contains no cycles

DAG checking: using DFS

- \blacktriangleright Doing DFS on the entire graph G
 - The DFS we learned has an input source s
- To apply to the entire graph:
 - Randomly generate a permutation of the nodes and repeat the following until there is no white node
 - Pick the first white node s in the permutation and do DFS (during DFS, we will color nodes, and record timestamps)

A running example

A running example

Edge classifications (i)

 \blacktriangleright Results of the DFS-trees on graph G

- \circ v_3 is an ancestor of v_8 in the DFS tree rooted at v_3
- \circ v_5 is a descendant of v_1 in the DFS tree rooted at v_1
- Neither v_1 or v_3 is the descendant of the other

Edge classifications (ii)

- Assume we have done DFS on graph G. Let $\langle u, v \rangle$ be an edge in G. It can be classified into three types:
 - \circ Forward edge: if u is an ancestor of v in one of the DFS-trees
 - Backward edge: if u is a descendant of v in one of the DFS-trees
 - · Cross edge: if none of the above happens

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

Cross edge

Recap: interval property

- Interval I(u) of node u is [u.d,u.f], where u.d is the first discovery time and u.f is the finish time
 - \circ We will only have three cases for two nodes u and v
 - $I(u) \subset I(v)$, u is the descendant of v
 - $I(v) \subset I(u)$, v is the descendant of u
 - $I(u) \cap I(v) = \emptyset$, neither one is the descendant of the other.

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

$$I(v_5) \subset I(v_1)$$
: v_5 is
the descendant of v_1

 $I(v_6) \cap I(v_7) = \emptyset$:neither one is the descendant of the other

How about v_3 and v_8 ? How about v_3 and v_1 ?

Cost for edge classifications

For an edge $\langle u, v \rangle$, we can check edge type in O(1) time

given the interval information

- ∘ $I(u) \subset I(v)$, backward edge
- ∘ $I(v) \subset I(u)$, forward edge
- $I(u) \cap I(v) = \emptyset$, cross edge

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

$$\langle v_2, v_3 \rangle$$
: $I(v_2) = [10, 15],$ $I(v_3) = [1,8]$ $I(v_2) \cap I(v_3) = \emptyset$. Cross edge

How about $\langle v_2, v_5 \rangle$ and $\langle v_5, v_2 \rangle$?

Cycle theorem

Theorem 1: Given the DFS result on graph G, then G contains a cycle if and only if there is a backward edge in the DFS result on G.

Proof: (i) there is a backward edge $\langle u, v \rangle$, then G contains a cycle. This part can be proved according to the definition and will be left as exercise.

(ii) Prove that if there is a cycle, then there will exist a backward edge. Assume that the cycle is $(v_1, v_2, v_3, \cdots v_l, v_1)$. Then actually, we know path $(v_2, v_3, \cdots, v_l, v_1, v_2)$ is also a cycle, and so on for the other paths starting from $v_3, v_4, \cdots v_l$.

Assume that v_i is the first node to be pushed onto the stack when doing DFS from a source s. Then, since there is a path from v_i to any other nodes $v_1, v_2, \cdots, v_{i-1}, v_{i+1}, \cdots v_l$, all these nodes will be visited during this DFS traversal with source s, and will be descendant of v_i . Therefore, we have an edge $\langle v_{i-1}, v_i \rangle$, and v_{i-1} is an descendant of v_i , which is a backward edge according to the definition. Proof done.

Cycle detection: putting it all together

- \blacktriangleright Step 1: Do DFS traversal on graph G
 - Time complexity: O(n+m) (permutation can be done in O(n))
- Step 2: Classify edges according to the interval of each node derived with DFS
 - Time complexity: O(m)
- Step 3: If there exists a backward edge, G contains a cycle, otherwise, G is a DAG
- ▶ Total time complexity: O(n+m)

- Given a graph G, and assume that the permutation generated for the nodes is: $(v_3, v_2, v_4, v_5, v_7, v_6, v_1)$
 - Verify if the graph is a DAG by using DFS step by step
 - In your solution, you should explicitly output the type of each edge

Connected [Undirected] Graphs

- Connected graph a graph where every vertex is connected to every other vertex via some path
 - It is not required for every vertex to have an edge to every other vertex
 - There exists some way to get from each vertex to every other vertex
- Connected Component a subgraph in which any two vertices are connected via some path, but is connected to no additional vertices in the supergraph
 - A vertex with no edges is itself a connected component

Strongly Connected Component (SCC)

Strongly Connected Component (SCC)

A subgraph C such that every pair of vertices in C is connected via some path in both directions, and there is no other vertex which is connected to every vertex of C in both directions.

Note: the direction of edges matters!

{A}, {B}, {C,D,E,F}, {J,K}

Strongly Connected Components Problem

Given: A directed graph G

Find: All the strongly connected components of G

- Given the SCCs of G, let's build a new graph out of them! Call it H
 - Have a vertex for each of the SCCs
 - Add an edge from component 1 to component 2 if there is an edge from a vertex inside 1 to one inside 2

- That's awful meta. Why?
- This new graph summarizes reachability information of the original graph
 - I can get from A in 1 to F in 3, if and only if I can get from 1 to 3 in H

H is always a DAG (do you see why?)

How to solve the SCC problem?

A naïve approach: $O(n^2(n+m))$

```
For each i, j in nodes:

If i is reachable from j and vice versa

Then i and j are in the same SCC
```

Another approach: O(n(n+m))

```
Array of bool reachable

For each i in nodes:

DFS and put the visited array inside reachable of i

For each i, j in nodes:

If reachable[i][j] and reachable[j][i]

Then i, j are in the same SCC.
```


Three algorithms with linear time

- Kosaraju-Sharir algorithm [1]
 - Run DFS on G, and get a post order
 - Run DFS on G^T and output SCCs
- Path-based algorithm [2]
 - · A single DFS with sub-path contraction
- Tarjan's algorithm [3]
 - A single DFS; Each SCC corresponds to a sub-tree
- [1] M. Sharir, "A strong-connectivity algorithm and its applications in data flow analysis," Computers & Mathematics with Applications, vol. 7, no. 1, pp. 67-72, 1981.
- [2] H. N. Gabow, "Path-based depth-first search for strong and biconnected components," Information Processing Letters, vol. 74, no. 3-4, pp. 107-114, 2000.
- [3] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

Kosaraju-Sharir algorithm

▶ Fact: the transpose graph (the same graph with the direction of every edge reversed) has exactly the same SCCs as the original graph

🛚 Kosaraju-Sharir algorithm

Input: a directed graph G=(V, E)

Output: all the SCCs of G

- 1. Run DFS on G, during which we compute the first discovery time and finish time of each vertex
- Build the transpose graph $G^{T}=(V, E^{T})$
- Run DFS on G^T , by considering the vertices' finish time in descending order
- 4. Output the vertex set in each DFS traversal as an SCC

Kosaraju-Sharir algorithm

Run DFS and compute the first discovery time and finishing time of each vertex

Kosaraju-Sharir algorithm

Reverse the edge directions

🔀 Kosaraju-Sharir algorithm

Run DFS and consider vertices in the decreasing

post-order

SCC list: {a} {b, d, e, f} {c}

📞 Kosaraju-Sharir algorithm

What's the overall time complexity?

```
Input: a directed graph G=(V, E)
```

Output: all the SCCs of G

- $O(n+m) \longrightarrow 1$ Run DFS on G, during which we compute the first discovery time and finish time of each vertex
 - $O(m) \longrightarrow 2$. Build the transpose graph $G^T=(V, E^T)$
- $O(n+m) \longrightarrow 3$. Run DFS on G^T , by considering the vertices' finish time in descending order
 - $O(n) \longrightarrow 4$. Output the vertex set in each DFS traversal as an SCC

The overall time complexity: O(n+m)

Recommended reading

- Reading this week
 - DAG checking and SCC computation, Chapter 22
- Next lecture
 - Some data structures in Java JDK