

Binary Prediction

- So far we've focused on binary prediction
- Machine learning can do much more than that!
- Multi-class prediction
- Complex structured outputs

What is Structured Prediction?

- Input: x
 - Typically a structured input
 - Maintain structure of input in x
 - Do not flatten into list of features in an instance
- Output: y
 - y is now from a large set of possible outputs
 - Outputs defined based on input
 - Often exponential in size of input

Previous Approaches

- Naturally multi-class algorithm
 - Neural networks
 - Decision Trees
- Reduction to binary
 - e.g. one classifier per class
- These methods don't work when
 - Exponential number of output
 - Outputs defined based on input

Structured Prediction Challenges

- Scoring
 - How do we assign a score/probability to a possible output structure
- Search/Inference
 - Find the best scoring output structure
 - How do we search through an exponential number of options?

Outline

- Graphical models for structured prediction
 - Sequences: HMMs and CRFs
- Score based linear models
 - Perceptron, SVM
- Deep networks

Graphical Models: Sequence Models

Sequential Events

- Many events happen in sequence
 - Weather on consecutive days
 - Words in a written sentence
 - Spoken sounds by a person
 - Movements in the stock market
 - DNA base pairs
- We want to model these sequences with a graphical model

Sequential Models

- Simple approach
 - Each event is independent

- $p(x_1, x_2 \dots x_N) = \prod p(x_n)$
- Simple, but not very helpful

Sequential Models

- Complex approach
 - Each event is dependent on previous events

- $p(x_1, x_2 ... x_N) = \prod_{n=1}^{N} p(x_n | x_1 ... x_{n-1})$
- Captures dependencies, but way too complex

Markov Assumption

- The current state depends on a fixed number of previous states
 - The weather today depends on the past three days, but NOT two weeks ago
 - The next word in the sentence depends on the past three words, but nothing before
- Pro: makes for simple models
- Con: doesn't capture full history

Markov Chains

First order Markov chain

$$p(x_1, x_2 \dots x_N) = \prod_{n=1}^{N} p(x_n \mid x_{n-1})$$

Second order Markov chain

$$p(X_1, X_2...X_N) = \prod_{n=1}^{N} p(X_n \mid X_{n-1}, X_{n-2})$$

DNA Example

 Given a sequence of base pairs, find regions that encode for Genes

- What model is this?
- Hidden Markov model

Markov Blankets

- The Markov blanket for z_n contains z_{n-1} , z_{n+1} and x_n
- The Markov blanket for x_n contains z_n
- Nodes are dependent on a small number of neighbors

Conditional Probability Tables

• Tables are the same for each node

Joint Probability of HMM

• The joint probability of an HMM

$$p(\mathbf{X},\mathbf{Z}\mid\theta) = p(z_{1}\mid\pi)\left[\prod_{n=1}^{N}p(z_{n}\mid z_{n-1},\mathbf{A})\right]\prod_{n=1}^{N}p(x_{m}\mid z_{m},\phi)$$

- A- transition probabilities (matrix)
 - A_{ii} is the probability of moving from state i to j
- π vector with starting probabilities
- φ emission probabilities (matrix)
 - ϕ_{ij} is the probability of state i and emitting observation j

Unsupervised Training

- How do we train a probabilistic model?
 - Maximum likelihood!
 max_θ p(X,Z |θ)
 - Problem: we don't know Z
- Solution: EM
 - Step 1: Write the complete data likelihood

$$p(\mathbf{X} \mid \theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)$$

$$p(\mathbf{X}, \mathbf{Z} \mid \theta) = p(\mathbf{z} \mid \pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{m=1}^{N} p(\mathbf{x}_{m} \mid \mathbf{z}_{m}, \phi)$$

EM for HMMs

- E-Step
 - Find the expected values for the hidden variables Z given the model parameters
 - The most likely **Z** given **X** and current model parameters
- M-Step
 - Pretend to observe the values for Z
 - Update model parameters \mathbf{A} , $\mathbf{\pi}$, $\mathbf{\varphi}$ to maximize complete data likelihood

EM for HMMs

- E-Step
 - Given Q function, evaluate probabilities for Z

$$Q(\theta, \theta^{old}) = \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \theta^{old}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta)$$

For the HMM

$$Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(Z_{1k}) \log \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{n-1,j}, Z_{nk}) \log A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(Z_{nk}) \log p(X_n | \phi_k)$$

$$\gamma(Z_n) = p(Z_n | X, \theta^{old}) \qquad \pi, \Phi \text{ and } \mathbf{A} \text{ are model parameters}$$

$$\xi(Z_{n-1}, Z_n) = p(Z_{n-1}, Z_n | X, \theta^{old})$$

EM for HMMs

How can we get these values?

$$\gamma(z_n) = p(z_n \mid X, \theta^{old})$$

$$\xi(z_{n-1}, z_n) = p(z_{n-1}, z_n \mid X, \theta^{old})$$

- What is the probability of being in state z_n ?
- What is the probability of being in state z_n and z_{n+1} ?
- Inference
 - Sum Product Algorithm
 - Forward Backward in HMMs

EM for HMMs

- M Step
 - Maximize Q function with respect to π , Φ and A
- Assuming values for **Z**, we get

$$\pi_{k} = \frac{\gamma(Z_{1k})}{\sum_{j=1}^{K} \gamma(Z_{1j})} \qquad A_{jk} = \frac{\sum_{n=2}^{N} \xi(Z_{n-1,j}, Z_{nk})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(Z_{n-1,j}, Z_{nl})} \qquad \phi_{ik} = \frac{\sum_{n=1}^{N} \gamma(Z_{nk}) X_{ni}}{\sum_{n=1}^{N} \gamma(Z_{nk})}$$

Prediction

- Given a new sequence X, find the most likely set of states to have generated X
 - Find the sequence **Z** with the maximum probability given **X**

Prediction

- How do we find the most likely state? $\operatorname{arg\,max} p(\mathbf{z} \mid X, \theta)$
- Inference
 - Max Product Algorithm
 - Viterbi Decoding

Supervised Training

- We actually observe Z
 - Just compute M step a single time
 - Very fast and easy
- What if we observe only some Z
 - Case 1: only some examples are labeled with Z
 - Case 2: each example has only some labels for Z
- Semi-supervised Learning
 - Use EM algorithm but fix **Z** when known

Notes on HMMs

- An HMM can have continuous or discrete emissions
 - Discrete- base pair, word in sentence
 - Continuous- stock price, frequency of a sound
- An HMM has discrete hidden states
- A Linear Dynamical System has continuous hidden states

Sequence Models

- An HMM is a directed graphical model
 - Bayesian Network

- What happens if we have an undirected graphical model?
 - Markov Random Field
 - Conditional Random Fields

Conditional Random Fields

- Replace conditional probabilities with potential functions
- The joint probability is a product of potential functions $p(\mathbf{X},\mathbf{Z}) = \frac{1}{7} \prod \psi_A(\mathbf{x}_A)$

Joint Probability

- The joint probability of the HMM can be written using potential functions
 - $\bowtie \bowtie \bowtie$ $p(\mathbf{X}, \mathbf{Z} \mid \theta) = p(\mathbf{z}_{1} \mid \pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{m=1}^{N} p(\mathbf{x}_{m} \mid \mathbf{z}_{m}, \phi)$
 - CRF $p(\mathbf{X}, \mathbf{Z} \mid \theta) = \frac{1}{Z} \psi(\mathbf{Z}) \left[\prod_{n=2}^{N} \psi(\mathbf{Z}_{n} \mid \mathbf{Z}_{n-1}) \right] \prod_{m=1}^{N} \psi(\mathbf{X}_{m} \mid \mathbf{Z}_{m})$

$$p(\mathbf{X}, \mathbf{Z} \mid \theta) = \frac{1}{Z} \prod_{A} \psi_{A}(\mathbf{x}_{A}, \mathbf{z}_{A}) \qquad \mathbf{Z} = \sum_{X, Z} \prod_{A} \psi_{A}(\mathbf{x}_{A}, \mathbf{z}_{A})$$

Learning a CRF

- Given some data, we want to learn a CRF
- How should we learn the model?
 - Maximum likelihood!
 - Maximize the probability of the data given the model
- Questions
 - What are the parameters of our model?
 - The potential functions
 - What is the objective?
 - How do we compute model probabilities efficiently?

Model Parameters

- HMM: model parameters are CPTs
 - CRF: CPTs replaced with potential functions
- Parameterize the potential functions
 - Learn the parameters

$$\psi(\mathbf{x},\mathbf{z}) = \exp\left\{\sum_{k} \theta_{k} f_{k}(\mathbf{x},\mathbf{z})\right\}$$

- ullet Parameters ullet determine value of potential function
- f_k is a feature function
 - f_k = 1 if x is the base pair "G"
- Notice: linear combination of features (linear model!)

Objective

- Let's maximize the likelihood of the data
 - For a single example

$$p(\mathbf{X},\mathbf{Z}\mid\theta) = \frac{1}{Z} \prod_{A} \psi_{A}(\mathbf{x}_{A},\mathbf{z}_{A})$$

• What about Z?

$$\mathbf{Z} = \sum_{X,Z} \prod_{A} \psi_{A}(\mathbf{X}_{A}, \mathbf{Z}_{A})$$

- Sum over all X!
 - All possible sequences of base pairs
- It's too hard to learn X

Discriminative Training

- Solution: don't learn p(X)!
- Maximize the conditional likelihood of the data
 - For a single example

$$p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) = \frac{1}{Z} \prod_{A} \psi_{A}(\mathbf{x}_{A}, \mathbf{z}_{A})$$
$$\mathbf{Z} = \sum_{Z} \prod_{A} \psi_{A}(\mathbf{x}_{A}, \mathbf{z}_{A})$$

• CRF Conditional log likelihood of all examples

$$\log p(z|x) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_{k} f_{k}(z_{it}, z_{it-1}, x_{it}) - \sum_{i=1}^{N} \log Z(x_{i})$$

Problems with Objective

- Recall for logistic regression (discriminative training) maximum likelihood over-fit the data
- Solution: regularization

$$\log p(z|x) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_{k} f_{k}(z_{it}, z_{it-1}, x_{it}) - \sum_{i=1}^{N} \log Z(x_{i}) - \sum_{k=1}^{K} \frac{\theta_{k}^{2}}{2\sigma^{2}}$$

• Gaussian prior (μ =0, Σ = σ ²l)

Training a CRF

- The conditional log likelihood is convex
 - ullet Take the derivative and solve for ullet

$$\frac{\partial L}{\partial \theta_k} = \sum_{i=1}^{N} \sum_{t=11}^{T} f_k(z_{it}, z_{it-1}, x_{it}) - \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{z, z} f_k(z, z, x_{it}) p(z, z' | x_{it}) - \sum_{k=1}^{K} \frac{\theta_k}{\sigma^2}$$

- The derivative is 0 when
 - The last term (regularizer) is 0
 - The first term and the second term cancel each other
 - First term: the expected value for f_k under the empirical distribution (from the data)
 - $\bullet\,$ Second term: expectation for f_k given model distribution

Computing Probabilities

- What do we need to compute the values in the derivative?
 - Marginal probability of $p(zz|x_{it})$
 - The normalization constant Z
 - Total score for all possible labelings of the sequence
 - Sum Product Algorithm (Forward-Backward)
- Prediction
 - Sequence of states with max probability
 - Prediction
 - How do we find the highest probability sequence?
 - Max Product Algorithm (Viterbi decoding)

CRF Summary

- CRFs are
 - Markov Random Fields
 - The MRF equivalent of a supervised HMM
 - Discriminatively trained using conditional log likelihood
 - Linear models (recall linear potential functions)
- CRF training contains versions of
 - Sum Product Algorithm
 - Max Product Algorithm
 - Convex optimization

Why CRFs?

- CRF training is much harder than HMM
 - Computing gradients, optimization vs. counting
 - 11 labels, 200k tokens: 2 hours / 45 labels, 1m tokens: 1 week
- Why bother?
 - HMMs require
 - Assumptions of causation / generative story
 - Independence assumptions for observations
 - These aren't problems for CRFs!
 - Can allow arbitrary dependencies
 - Transition can depend on x and z
 - Can condition on the whole sequence x
 - Recal
 - Generative models limit the features
 - · Discriminative models can have any types of features

HMMs and CRFs

- Generative/Discriminative pairs
 - A generative and discriminative parametric model family that can represent the same set of conditional probability distributions
 - Naïve Bayes/Logistic Regression
 - HMM/CRF
- HMM is a Naïve Bayes classifier at each node
- CRF is a Logistic Regression classifier at each node

Score Based Methods

- We have several methods that produce a score for a label
 - Perceptron, SVM
 - Generalized linear models
 - Not probabilistic graphical models
- Can we use these for structured prediction?

Multi-class Encodings

- Encode multiple labels into a single weight vector
- Update the entire vector at once in a single model

1 of K Encoding for Perceptron

- Learning:
 - Given example x, get score for each possible label
 - If highest scoring label != correct label
 - Update
 - Highest scoring incorrect label

$$W_i' = W_i - f_i(\hat{y}, X)$$

Correct label

$$W_i' = W_i + f_i(y, x)$$

- This takes a gradient step
 - Increases the score of the correct label and decreases the score of the incorrect label

1 of K Encoding for Perceptron

- Prediction:
 - Given example x
 - For each label y:
 - Generate each feature f_i(y,x)
 - This returns a feature vector, where only the parameters corresponding to y are non-zero
 - Assign score = w∙x
 - Return the label with the highest score

Beyond Multiclass

- We used a 1 of K encoding to extend Perceptron to multiclass
- What about for general structured problems?
 - Sequence
 - Ranking
 - Trees
- Can we learn this using a Perceptron style algorithm?
 - Yes!

Generalized Perceptron

- On each round
 - Receive example x
 - Predict $\hat{y} = \text{sign}(w \cdot x)$ \longrightarrow $\hat{y} = \underset{y \in L}{\operatorname{argmax}} w \cdot f(x, y)$
 - Receive correct label $y \in \{+1,-1\} \longrightarrow y \in L$
 - Suffer loss $\ell_{0/1}(y,\hat{y}) \longrightarrow \ell(y,\hat{y})$
 - Update w $W^{i+1} = W^i + y_i X_i \longrightarrow W^{i+1} = W^i + f(y_i, X_i) f(\hat{y}, X_i)$

Feature Functions

- How do we get this encoding?
- Feature functions!
 - Define a function f_i(y,x)
 - Returns the value of the ith feature based on the label and instance
 - Ex. Does this document contain the word "sports" AND is y=="travel"
 - Create a duplicate of each feature for each label to obtain a unique position in w

Structured Perceptron

- On each round
 - Receive example x
 - Predict $\hat{y} = \underset{y \in L}{\operatorname{argmax}} w \cdot f(x, y)$ Need efficient procedure since L may be exponential
 - Receive correct label $y \in L$
 - Suffer loss $\ell(\mathbf{y}, \hat{\mathbf{y}})$ Loss sensitive to comparing structured objects
- Update w $W^{j+1} = W^j + f(y_i, x_i) f(\hat{y}, x_i)$

General representations for each prediction

Example: Sequence Labeling

• Label a sequence of words with part of speech tags

John saw Mary with the telescope noun verb noun preposition article noun

We want to assign all tags for sentence at once

Requirements

- Procedure for finding best sequence using w
 - Yes! Viterbi decoding
 - We'll cover this in graphical models
- Loss sensitive to sequences
 - Yes! Hamming distance
 - How many labels disagree
- General representation
 - Features are based on sentence and label sequence

General Perceptron

- Perceptron updates can be used in any decision making process
- Requirements
 - Find best decision
 - Knowing incorrect decision
 - Featurize decisions

Other Types of Output

- Hierarchical Classification
 - Labels are organized in hierarchy
 - Mistaking "football" for "baseball" better than "football" for "NYSE"
- Sequences
 - Each label depends on neighboring labels
 - Part of speech
- Graphs
 - Output a graph or a tree given some input
 - Syntactic parse trees

One More Trick

- You can represent a structured Perceptron using a binary Perceptron
- Notice that:

- Binary form $W^{i+1} = W^i + y'x'$
- Prediction: Find highest scoring label according to w
 - It will be greater than all other labels