Κωνσταντίνος Χαϊδεμένος Sdi2200262

Αριθμητική Ανάλυση 1η εργαστηριακή άσκηση

Links στα μέρη εργασίας:

- Εισαγωγή Επεξηγήσεις
- Αποτελέσματα Εκτέλεσης
- Παρατηρήσεις αποτελεσμάτων Σύγκριση Τέμνουσας με Newton-Raphson (NR)
- Ερώτημα 1.4 Θεωρία

Το directory του προγράμματος περιέχει 3 αρχεία:

- Main.m περιέχει τις απαντήσεις των ερωτημάτων και τις κλήσεις των συναρτήσεων παρακάτω
- Syndiasmos_D_NR.m υλοποίηση συνδιαστικής μεθόδου Διχοτόμισης και Newton-Raphson (NR)
- Syndiasmos_D_T.m υλοποίηση συνδιαστικής μεθόδου Διχοτόμισης και Newton-Raphson (NR)

Ο κώδικας των υλοποιήσεων των παραπάνω μεθόδων είναι από τον αντίστοιχο φάκελο στο e-class του μαθήματος. Υπάρχουν μερικές αλλαγές μόνο για να επιτευχθεί ο συνδιασμός των μεθόδων. Επίσης προσθέσαμε μερικές πινελιές για την όμορφη εκτύπωση των αποτελεσμάτων.

Για την σωστή εκτέλεση του προγράμματος πρέπει όλα τα αρχεία να βρίσκονται στο ίδιο directory και αυτό να ανήκει στο εκτελέσιμο path του Matlab.

Τρέχουμε την εντολή main στο command window που αντιστοιχεί στο συγκεκριμένο directory και εκτυπώνονται τα αποτελέσματα ενώ ταυτόχρονα δημιουργούνται σε 2 νέα παράθυρα οι ζητούμενες γραφικές παραστάσεις.

Αποτελέσματα εκτέλεσης:

(copy – paste + λίγο δουλίτσα για να είναι πιο κατανοητά)

Ερώτημα 1.1

ΕΠΑΝΑΛΗΠΤΙΚΗ ΜΕΘΟΔΟΣ D_NR

Ψάχνουμε τη ρίζα της f1 κοντά στο x = -1...Ελέγχουμε το διάστημα [-3,0]

Αποτελέσματα Διχοτόμισης μέχρι 0.0050000000

Iteration	а	b	С	f(c)	
1	-3.000000	0.000000	-1.500000	0.43750000	
2	-1.500000	0.000000	-0.750000	-0.04296875	
3	-1.500000	-0.750000	-1.125000	0.00610352	
4	-1.125000	-0.750000	-0.937500	-0.00071716	

Αποτελέσματα Newton-Raphson από 0.0050000000 μέχρι 0.0000005000 Έχουμε ως αρχικό x0 το τελευταίο c της μεθόδου Διχοτόμισης

Iteration	x(k)	f(k)	
1	-0.937500	-0.000717	
2	-0.958482	-0.000212	
3	-0.972386	-0.000063	
4	-0.981620	-0.000019	
5	-0.987759	-0.000005	
6	-0.991845	-0.000002	
7	-0.994566	-0.000000	
8	-0.996378	-0.000000	
9	-0.997586	-0.000000	
10	-0.998391	-0.000000	
11	-0.998927	-0.000000	
12	-0.999285	-0.000000	
13	-0.999523	-0.000000	
14	-0.999682	-0.000000	
15	-0.999788	-0.000000	
16	-0.999859	-0.000000	
17	-0.999906	-0.000000	
18	-0.999937	-0.000000	
19	-0.999958	-0.000000	
20	-0.999972	-0.000000	

21	-0.999981	-0.000000
22	-0.999988	-0.000000
23	-0.999992	-0.000000
24	-0.999994	-0.000000
25	-0.999996	-0.000000
26	-0.999998	-0.000000
27	-0.999998	-0.000000
28	-0.999999	-0.000000
29	-0.999999	-0.000000

Ψάχνουμε τη ρίζα της f1 κοντά στο x = 2...Ελέγχουμε το διάστημα [0,3]

Αποτελέσματα Διχοτόμισης μέχρι 0.0050000000

Iteration	a	b	С	f(c)
1	0.000000	3.000000	1.500000	-7.81250000
2	1.500000	3.000000	2.250000	8.58203125
3	1.500000	2.250000	1.875000	-2.97045898
4	1.875000	2.250000	2.062500	1.79518127
5	1.875000	2.062500	1.968750	-0.81765652
6	1.968750	2.062500	2.015625	0.42850119
7	1.968750	2.015625	1.992188	-0.20929384
8	1.992188	2.015625	2.003906	0.10588127
9	1.992188	2.003906	1.998047	-0.05263145

10	1.998047	2.003906	2.000977	0.02639295
11	1.998047	2.000977	1.999512	-0.01317716
12	1.999512	2.000977	2.000244	0.00659341
13	1.999512	2.000244	1.999878	-0.00329550

Αποτελέσματα Newton-Raphson από 0.0050000000 μέχρι 0.0000005000 Έχουμε ως αρχικό χθ το τελευταίο c της μεθόδου Διχοτόμισης

Iteration	x(k)	f(k)	
1	1.999878	-0.003295	
2	2.000000	0.000000	
3	2.000000	0.000000	

Ψάχνουμε τη ρίζα της f2 μέσα στο διάστημα [0,2]... Αποτελέσματα Διχοτόμισης μέχρι 0.0050000000

Iteration	а	b	С	f(c)
1	0.000000	2.000000	1.000000	-0.28171817
2	1.000000	2.000000	1.500000	0.23168907
3	1.000000	1.500000	1.250000	-0.07215704
4	1.250000	1.500000	1.375000	0.06445172
5	1.250000	1.375000	1.312500	-0.00720551
6	1.312500	1.375000	1.343750	0.02772774
7	1.312500	1.343750	1.328125	0.01004456

8 1.312500 1.328125 1.320312 0.00136628

Αποτελέσματα Newton-Raphson από 0.0050000000 μέχρι 0.0000005000 Έχουμε ως αρχικό χ0 το τελευταίο c της μεθόδου Διχοτόμισης

Iteration	x(k)	f(k)	
1	1.320312	0.001366	
2	1.319075	0.000001	
3	1.319074	0.000000	
4	1.319074	-0.000000	

Ερώτημα 1.2Πίνακας 1: Αποτελέσματα Συνδιασμού D NR

	[a,b]	x0	xn	n
f1	[-3,0]	-0.937500	-0.999999	33.000000
f1	[0,3]	1.999878	2.000000	16.000000
f2	[0,2]	1.320312	1.319074	12.000000

Ερώτημα 1.3 Πίνακας 2: Μελέτη Σύγκλισης f1 για ρίζα x=-1

n	ε_n	ε_(n+1)/ε_n^1	ε_(n+1)/ε_n^2
0	0.0624992743	NaN	NaN
1	0.0415171315	0.6642818164	10.6286324677
2	0.0276128036	0.6650942070	16.0197533738
3	0.0183797020	0.6656224486	24.1055728129
4	0.0122402771	0.6659671153	36.2338364633
5	0.0081543628	0.6661910274	54.4261393686
6	0.0054335278	0.6663338368	81.7150101223
7	0.0036210136	0.6664203658	122.6496644465
8	0.0024132806	0.6664654834	184.0549513195
9	0.0016083958	0.6664769034	276.1704990581
10	0.0010719260	0.6664566082	414.3610796458
11	0.0007143328	0.6664012341	621.6858628551
12	0.0004759610	0.6663015246	932.7606432691
13	0.0003170570	0.6661407679	1399.5699610201
14	0.0002111257	0.6658919470	2100.2275382615
15	0.0001405069	0.6655130792	3152.2120011253

16	0.0000934287	0.6649398594	4732.4343220404
17	0.0000620436	0.6640741225	7107.8199493330
18	0.0000411203	0.6627656086	10682.2630536920
19	0.0000271716	0.6607826086	16069.4844423749
20	0.0000178725	0.6577633121	24207.7475491417
21	0.0000116731	0.6531317597	36543.9839706378
22	0.0000075402	0.6459441884	55336.1935418592
23	0.0000047849	0.6345861748	84160.8082181217
24	0.0000029480	0.6161135554	128762.5144955322
25	0.0000017235	0.5846152653	198307.0126727985
26	0.0000009071	0.5263157178	305382.4743200676
27	0.0000003628	0.3999999637	440972.3729765152
28	0.000000000	0.0000000000	0.0000000000

<u>Πίνακας 2: Μελέτη Σύγκλισης f1 για ρίζα x=2</u>

ε_(n+1)/ε_n^2	ε_(n+1)/ε_n^1	ε_n	n
 NaN	NaN	0.0001220703	0
1.0001627505	0.0001220902	0.000000149	1
0.0000000000	0.000000000	0.000000000	2

Πίνακας 2: Μελέτη Σύγκλισης f2 για άγνωστη ρίζα μέσα στο δίαστημα [0,2]

n	x_{n+1} - x_n	()/()^1	()/()^2
1	0.0012376116	NaN	NaN
2	0.0000012115	0.0009789415	0.7909924966
3	0.000000000	0.0000009569	0.7897901570

Ερώτημα 1.5 - ΞΑΝΑ τα ερωτήματα 1.1 - 1.3 αυτή τη φορά με συνδιαστική επαναληπτική μέθοδο Διχοτόμος - Τέμνουσα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΜΕΘΟΔΟΣ D_T

Ψάχνουμε τη ρίζα της f1 κοντά στο x = -1...Ελέγχουμε το διάστημα [-3,0]

Αποτελέσματα Διχοτόμισης μέχρι 0.0050000000

Iteration	a	b	С	f(c)	
1	-3.000000	0.000000	-1.500000	0.43750000	
2	-1.500000	0.000000	-0.750000	-0.04296875	
3	-1.500000	-0.750000	-1.125000	0.00610352	
4	-1.125000	-0.750000	-0.937500	-0.00071716	

Αποτελέσματα Τέμνουσας από 0.0050000000 μέχρι 0.0000005000 Έχουμε ως αρχικά x0 και x1 τα τελευταία [a,b] της μεθόδου Διχοτόμισης

Iteration	x(k)	f(k)	eps(k)	conv_rate(k)
1	-1.125000	0.006104	0.000000	0.00000
2	-0.750000	-0.042969	0.000000	0.000000
3	-1.078358	0.001481	2.277049	Inf
4	-1.067417	0.000940	2.266109	0.607414
5	-1.048414	0.000346	2.247106	0.606980
6	-1.037347	0.000158	2.236038	0.612184
7	-1.028019	0.000067	2.226710	0.614465
8	-1.021237	0.000029	2.219928	0.616705
9	-1.016027	0.000012	2.214718	0.618267
10	-1.012111	0.000005	2.210803	0.619499
11	-1.009146	0.000002	2.207837	0.620422
12	-1.006907	0.000001	2.205598	0.621125
13	-1.005215	0.000000	2.203906	0.621657
14	-1.003938	0.000000	2.202629	0.622060
15	-1.002973	0.000000	2.201664	0.622365
16	-1.002244	0.000000	2.200936	0.622595

17	-1.001694	0.000000	2.200386	0.622769
18	-1.001279	0.000000	2.199970	0.622901
19	-1.000966	0.000000	2.199657	0.623000
20	-1.000729	0.000000	2.199420	0.623075
21	-1.000550	0.000000	2.199242	0.623132
22	-1.000415	0.000000	2.199107	0.623174
23	-1.000314	0.000000	2.199005	0.623207
24	-1.000237	0.000000	2.198928	0.623231
25	-1.000179	0.000000	2.198870	0.623249
26	-1.000135	0.000000	2.198826	0.623263
27	-1.000102	0.000000	2.198793	0.623274
28	-1.000077	0.000000	2.198768	0.623282
29	-1.000058	0.000000	2.198749	0.623288
30	-1.000044	0.000000	2.198735	0.623292
31	-1.000033	0.000000	2.198724	0.623296
32	-1.000025	0.000000	2.198716	0.623298
33	-1.000019	0.000000	2.198710	0.623300
34	-1.000014	0.000000	2.198705	0.623302
35	-1.000011	0.000000	2.198702	0.623303
36	-1.000008	0.000000	2.198699	0.623304
37	-1.000006	0.000000	2.198697	0.623304
38	-1.000005	0.000000	2.198696	0.623305
39	-1.000003	0.000000	2.198695	0.623305
40	-1.000003	0.000000	2.198694	0.623305
41	-1.000002	0.000000	2.198693	0.623306
42	-1.000001	0.000000	2.198693	0.623306

Ψάχνουμε τη ρίζα της f1 κοντά στο x = 2...Ελέγχουμε το διάστημα [0,3]

Αποτελέσματα Διχοτόμισης μέχρι 0.0050000000

Iteration	a	b	С	f(c)
1	0.000000	3.000000	1.500000	-7.81250000
2	1.500000	3.000000	2.250000	8.58203125
3	1.500000	2.250000	1.875000	-2.97045898
4	1.875000	2.250000	2.062500	1.79518127
5	1.875000	2.062500	1.968750	-0.81765652
6	1.968750	2.062500	2.015625	0.42850119
7	1.968750	2.015625	1.992188	-0.20929384
8	1.992188	2.015625	2.003906	0.10588127
9	1.992188	2.003906	1.998047	-0.05263145
10	1.998047	2.003906	2.000977	0.02639295
11	1.998047	2.000977	1.999512	-0.01317716
12	1.999512	2.000977	2.000244	0.00659341
13	1.999512	2.000244	1.999878	-0.00329550

Αποτελέσματα Τέμνουσας από 0.0050000000 μέχρι 0.0000005000 Έχουμε ως αρχικά x0 και x1 τα τελευταία [a,b] της μεθόδου Διχοτόμισης

Iteration	x(k)	f(k)	eps(k)	conv_rate(k)

0.000000	0.000000	-0.013177	1.999512	1
0.000000	0.000000	0.006593	2.000244	2
Inf	0.801309	-0.000003	2.000000	3
1.142142	0.801309	-0.000000	2.000000	4

Ψάχνουμε τη ρίζα της f2 μέσα στο διάστημα [0,2]... Αποτελέσματα Διχοτόμισης μέχρι 0.00500000000

Iteration	a	b	c	f(c)
1	0.000000	2.000000	1.000000	-0.28171817
2	1.000000	2.000000	1.500000	0.23168907
3	1.000000	1.500000	1.250000	-0.07215704
4	1.250000	1.500000	1.375000	0.06445172
5	1.250000	1.375000	1.312500	-0.00720551
6	1.312500	1.375000	1.343750	0.02772774
7	1.312500	1.343750	1.328125	0.01004456
8	1.312500	1.328125	1.320312	0.00136628

Αποτελέσματα Τέμνουσας από 0.0050000000 μέχρι 0.0000005000 Έχουμε ως αρχικά χ θ και χ θ 1 τα τελευταία θ 3 της μεθόδου Διχοτόμισης

Iteration x(k) f(k) eps(k) conv_rate(k)

1	1.312500	-0.007206	0.000000	0.000000
2	1.328125	0.010045	0.000000	0.000000
3	1.319027	-0.000052	0.120335	Inf
4	1.319073	-0.000000	0.120382	3.563954
5	1.319074	0.000000	0.120382	3.561755

Πίνακας ερωτήματος 1.2 με δεδομένα ερωτήματος 1.5 Αποτελέσματα Συνδιασμού D T

	[a,b]	х0	xn	n
f1	[-3,0]	-0.937500	-1.000001	46.000000
f1	[0,3]	1.999878	2.000000	17.000000
f2	[0,2]	1.320312	1.319074	13.000000

Πίνακες ερωτήματος 1.3 με δεδομένα ερωτήματος 1.5 Πίνακας 2: Μελέτη Σύγκλισης f1 για ρίζα x=-1

n	ε_n	ε_(n+1)/ε_n^1	ε_(n+1)/ε_n^2
0	0.1249985001	NaN	NaN
1	0.2500014999	2.0000359986	16.0004799844

2	0.0783567090	0.3134249557	1.2536923010
3	0.0674158701	0.8603713824	10.9801878233
4	0.0484127569	0.7181210722	10.6521071587
5	0.0373453273	0.7713943529	15.9337001709
6	0.0280170878	0.7502166897	20.0886360984
7	0.0212354668	0.7579469687	27.0530247086
8	0.0160253573	0.7546505798	35.5372729921
9	0.0121099724	0.7556756557	47.1549957376
10	0.0091441373	0.7550915094	62.3528679272
11	0.0069053532	0.7551672680	82.5848563308
12	0.0052136654	0.7550179224	109.3380598424
13	0.0039361864	0.7549748748	144.8069279501
14	0.0029714378	0.7549027209	191.7853075981
15	0.0022429798	0.7548466066	254.0341242154
16	0.0016929619	0.7547825250	336.5088431580
17	0.0012777002	0.7547129131	445.7943799611
18	0.0009641901	0.7546293220	590.6153142465
19	0.0007275066	0.7545261842	782.5492272629
20	0.0005488272	0.7543948017	1036.9593284038
21	0.0004139391	0.7542247742	1374.2480903165
22	0.0003121110	0.7540023116	1821.5295966525
23	0.0002352410	0.7537093909	2414.8758252588
24	0.0001772123	0.7533220861	3202.3415582799
25	0.0001334069	0.7528085115	4248.0612646802
26	0.0001003388	0.7521259102	5637.8339437271
27	0.0000753762	0.7512166228	7486.8023724839
28	0.0000565323	0.7500023554	9950.1268607633
29	0.0000423074	0.7483758855	13238.0235172081

30	0.0000315693	0.7461887558	17637.3071741417
31	0.0000234633	0.7432324732	23542.8781196158
32	0.0000173443	0.7392087430	31504.8412893166
33	0.0000127252	0.7336803039	42300.9349828049
34	0.0000092383	0.7259854718	57051.1201674030
35	0.0000066061	0.7150801682	77403.9368501107
36	0.0000046191	0.6992228385	105844.7174138712
37	0.0000031192	0.6752822116	146191.8921701562
38	0.0000019870	0.6370075953	204219.5329795924
39	0.0000011323	0.5698403722	286788.1962032497
40	0.0000004871	0.4301597553	379913.4060531292
41	0.000000000	0.0000000000	0.0000000000

<u>Πίνακας 2: Μελέτη Σύγκλισης f1 για ρίζα x=2</u>

n	x_{n+1} - x_n	()/()^1	()/()^2
0	0.0004882812	NaN	NaN
1	0.0002441407	0.5000000894	1024.0002441407
2	0.0000001192	0.0004882414	1.9998367355
3	0.0000000000	0.000000000	0.000000000

Πίνακας 2: Μελέτη Σύγκλισης f2 για άγνωστη ρίζα μέσα στο δίαστημα [0,2]

n	ε_n	ε_(n+1)/ε_n^1	ε_(n+1)/ε_n^2

1	0.0156250000	NaN	NaN
2	0.0090982945	0.5822908478	37.2666142574
3	0.0000466359	0.0051257834	0.5633784875
4	0.0000003355	0.0071935891	154.2500754444

>>

Μετά από τα παραπάνω αποτελέσματα παρατηρούμε τα εξής:

- Στους δύο πίνακες αποτελεσμάτων των ερωτημάτων 1.2 και
 1.5 δεν υπάρχουν διαφορές στις τελικές τιμές... Ωστόσο παρατηρούμε πως και στις 3 περιπτώσεις ο συνδιασμός Διχοτόμισης και Τέμνουσας ολοκληρώνεται σε περισσότερες επαναλήψεις. Συγκεκριμένα στην πρώτη περίπτωση κάνει 14 επαναλήψεις παραπάνω ενώ στις άλλες δύο 1 παραπάνω.
- Επίσης στους πίνακες μελέτης σύγκλισης των ερωτημάτων 1.3 και 1.5 βλέπουμε ανάλογες τιμές στα πεδία του απόλυτου σφάλματος και του σχετικού σφάλματος, τόσο με εκθέτη p=1 όσο και με p=2

Συμπεραίνουμε λοιπόν πως ενώ οι ακρίβεια των τιμών δεν αλλάζει σημαντικά, η προτιμότερη επιλογή επαναληπτικής μεθόδου, για τα συγκεκριμένα παραδείγματα, είναι η Διχοτόμιση + Newton-Raphson (NR) καθώς ολοκληρώνεται σε λιγότερες επαναλήψεις.

ΠΑΡ'ΟΛΑ ΑΥΤΆ... σε γενικές γραμμές είναι προτιμότερη η χρήση της μεθόδου Τέμνουσας καθώς απαιτεί λιγότερες πράξεις. Επιπλέον, δεν χρειάζεται η εύρεση της παραγώγου της συνάρτησης εισόδου.

Αυτό το πλεονέκτημα ωστόσο μπορεί να εξαλείφεται με την πάροδο του χρόνου. Καθώς αν μια συνάρτηση απαιτεί πολλές επαναλήψεις για την εύρεση της ρίζας, τότε οι υπολογισμοί αυτών των επαναλήψεων αντισταθμίζουν τους υπολογισμούς που "γλιτώνουμε" αφού δεν υπολογίσαμε την παράγωγο.

Ερώτημα 1.4 - Θεωρία

Σε αυτό το ερώτημα εξετάζουμε τις περιπτώσεις του ερωτήματος 1.1 και τα αποτελέσματα του ερωτήματος 1.2. Επομένως αναφερόμαστε στην μέθοδο Διχοτόμισης και NR...

Στην πρώτη περίπτωση γίνεται εύρεση της προφανής ρίζας x = -1 στο διάστημα [-3,0]. Εκτελούνται 33 επαναλήψεις εκ των οποίων 29 ήταν της μεθόδου NR. Αυτό συμβαίνει γιατί στη συγκεκριμένη συνάρτηση η πολλαπλότητα της ρίζας -1 είναι k = 3 άρα η σύγκλιση είναι γραμμική, σύμφωνα με τη θεωρία. Χρησιμοποιώντας την

τροποποιημένη εκδοχή της NR θα παρατηρούσαμε τετραγωνική σύγκλιση...

Στην δεύτερη περίπτωση η πολλαπλότητα της ρίζας είναι απλή k=1. Από θεωρία θα γνωρίζουμε πως σε αυτές τις περιπτώσεις η σύγκλιση της NR είναι τετραγωνική. Πράγματι αυτό αποτυπώνεται στα αποτελέσματα της εκτέλεσης, αφού σε 16 βήματα εκ των οποίων μόλις τα 3 είναι της NR, προσεγγίζεται η ρίζα.

Στην τρίτη περίπτωση έχουμε άγνωστη ρίζα, επομένως δεν γνωρίζουμε άμεσα την πολλαπλότητα της. Παρατηρούμε ωστόσο ότι η τιμή της παραγώγου της f2 στο σημείο ξ διαφέρει από το 0, επομένως αναγκαστικά η ρίζα είναι απλή k=1. Άρα περιμένουμε τετραγωνική σύγκλιση της NR προς την ρίζα, όπως και έχουμε. Με μόλις 12 βήματα εκ των οποίων μόνο τα 4 είναι της NR, προσεγγίζεται η ρίζα.

Στο ερώτημα 1.5 στο οποίο η μέθοδος NR αντικαταστείται από την μέθοδο Τέμνουσας παρατηρούμε μια αύξηση στον αριθμό επαναλήψεων.

Η αύξηση στην πρώτη περίπτωση, όπου η πολλαπλότητα είναι 3, είναι αρκετά μεγάλη (14). Άρα έχουμε πάλι γραμμική σύγκλιση όπως αναμέναμε και βάση της θεωρίας.

Στις επόμενες 2 περιπτώσεις όπως δείξαμε η πολλαπλότητα είναι 1, επομένως περιμένουμε βάση της θεωρίας τετραγωνική συγκλιση. Πράγματι παρατηρούμε αύξησεις μόνο κατά μία επανάληψη.

THE END - FIN