

Digital Emulation of the Roland RE-201 SPACE ECHO

Jonathan S. Abel, David P. Berners

RE-201 Space Echo

 The RE-201 Space Echo has tape delay and spring reverb systems operating in parallel.

Presentation Overview

RE-201 Tape Transport

Tape Delay Emulation

- Tape Delay Overview
- Tape Transport Dynamics
- Tape Loop Model

Spring Reverberator Modeling

Accutronics Type 8 Spring Tank

- Spring Reverberator Development History
- Spring Wave Propagation, Dispersion
- Waveguide Model and Parameter Tuning

Spring Reverberation

spring propagation modes

Accutronics Type 8
Sansui RA-700

spring reverberators

dry € wet € €

- Helical coils support a number of audio-frequency transmission modes, and have long been used for delay and reverberation.
- Dispersive propagation gives spring reverberators a distinctive sound.

Spring Propagation Modes

R. L. WEGEL

April 5, 1932.

1,852,795

Hammond Spring Reverberator

Meinema, Young Spring Reverberators

Wave Propagation

 Torsional waves travel back and forth along the spring, reflecting off the supports, and creating a decaying series of echoes at the pick-up.

Spring Element Impulse Response

Spring Element Impulse Response Onset

Dispersive Wave Propagation

• Torsional waves propagate dispersively, becoming smeared out as they travel.

Dispersive, Nondispersive Echo Sequences

Waveguide Section

 Left-going and right-going waves are separately processed via pure delay elements and commuted dispersion and propagation loss filters.

Waveguide Spring Element Model

 Each spring element is modeled using a set of waveguide sections, connected via scattering junctions, and terminated at the element ends.

Spring Element Arrivals

Spring Element Response Spectrogram

Single Traversal Dispersive Delay Estimation

Dispersion Filter Design

 The dispersion filter is chosen to match the allpass component of the spring traversal group delay.

Allpass Dispersion Filter Design

$$G(z) = \frac{\rho_N + \rho_{N-1} z^{-1} + \dots + \rho_1 z^{-N+1} + z^{-N}}{1 + \rho_1 z^{-1} + \dots + \rho_{N-1} z^{-N+1} + \rho_N z^{-N}}$$

- Hilbert transform methods
 - Yegnanarayana, IEEE-ASSP 1982
 - Reddy and Swamy, ICASSP 1998
 - Filter phase (not group delay) matched
 - Potential time aliasing, numerical issues; not in factored form
- Optimal filter design formulation
 - Lang and Laakso, IEEE-CAS1 1994; Lang, IEEE-SP 1998
 - Rocchesso and Scalcon, IEEE-CAS 1996
 - Bensa et al., ASA 2004
 - Rauhala and Valamaki, IEEE-SPL 2006
 - Maximum order limited by numerical difficulties; expensive design

First-Order Allpass Filter

$$G(z) = \frac{-\rho e^{-j\theta} + z^{-1}}{1 - \rho e^{j\theta} z^{-1}}$$

transfer function

$$\tau(\omega) = \frac{1 - \rho^2}{1 + \rho^2 - 2\rho\cos(\omega - \theta)}$$

group delay

First-Order Allpass Group Delay

• As the pole is moved toward the unit circle, the first-order allpass group delay $\tau(\omega)$ becomes more peaked about the pole angle θ – the maximum increases, and the peak narrows.

First-Order Allpass Group Delay

• The integral of the group delay $\tau(\omega)$ of a first-order allpass filter is 2π , independent of ρ and θ ,

$$\tau(\omega)d\omega = \varphi(2\pi) - \varphi(0) = 2\pi.$$

-√Ĥ

0

Allpass Filter Design Approach

- Integrate $\tau(\omega)$, and add a constant delay τ_0 such that $\tau(\omega) + \tau_0$ integrates to a multiple of 2π .
- Divide $\tau(\omega) + \tau_0$ into 2π -area frequency bands.
- Fit a first-order allpass filter section to each band.

First-Order Allpass Design

$$\rho = \eta - \left[\eta^2 - 1\right]^{1/2}$$

$$\eta = \frac{1 - \beta \cos \delta}{1 - \beta}$$

$$\delta = (\omega_{-} - \omega_{+})/2$$

• The pole angle θ is the band midpoint,

$$\theta = (\omega_- + \omega_+)/2$$

• The section pole radius ρ is chosen to make the band edge group delay a fraction β of its maximum.

Dispersion Filter Model

 The dispersion filter is chosen to match the allpass component of the spring traversal group delay.

Dispersion Aligned Arrivals

Dispersion Aligned Arrivals

Attenuation Filter Model

 The attenuation filter is modeled after the ratio of successive arrival transfer functions.

Secondary Arrival Model

 Secondary arrivals are consistent with a coupling between the longitudinal and torsional modes.

Measured and Modeled Spring Spectrograms

Spring Model Summary

Spring propagation

- Strongly dispersive; cutoff frequency
- Coupled torsional, longitudinal modes

Spring reverberator emulation

- Efficient dispersive waveguide structure
- Model elements fit to impulse response measurements from the unit being emulated

Tape Echo

repeat rate intensity

mode selector

- Multiple play heads read the input signal, delayed according to the tape speed and head spacing.
- The tape transport produces a fluctuating delay time responsible for much of the tape echo sonics.

Tape Echo Model

 The tape delay is simulated using separate record and playback processes, driven by a fluctuating tape speed.

Time Delay, Transfer Function Measurement

Tape Speed-Dependent Equalization

Delay Trajectories, Static Rates

 The tape transport produces a time varying delay with quasi-periodic and noise-like components.

Delay Trajectory Spectra, Static Rates

Delay Trajectories, Splice Detail

Delay Trajectories, Stepped Rate Control

Delay Trajectories, Static Rate Control

 The character of the delay trajectory depends on factors such as tape age.

Delay Trajectories, Static Rate Control

 The character of the delay trajectory depends on factors such as tape age.

capstan angular velocity

$$I\frac{d\omega_c}{dt} = \tau(r,\!\omega_c) - \mu \quad T(v) \quad \rho_c(\theta_c) - \gamma(\rho_p(\theta_p))$$
 fly wheel moment motor torque tensioner friction pinch wheel deformation

Steady-State, Dynamic Motor Torque

$$\tau(r,\omega_c) = \eta \left[\varphi(r) - \psi(\omega_c) \right] = 0$$

$$I\frac{d\omega_c}{dt} = \tau(r,\omega_c)$$

read head 1 echo delay, stepped rate delay - milliseconds 091 140 time - seconds

$$\tau(r,\omega_c) = \begin{cases} \eta_A \left[\varphi(r) - \psi(\omega_c) \right], & \varphi(r) - \psi(\omega_c) \\ \eta_R \left[\varphi(r) - \psi(\omega_c) \right], & \varphi(r) < \psi(\omega_c) \end{cases}$$

Tensioner-Tape Friction Steady-State Torque

$$\frac{d\omega_c}{dt} = 0 \qquad \qquad \mu \quad T(v) = \eta \left[\varphi(r) - \psi(\omega_c) \right] / \rho_c$$

Pinch Wheel Deformation

 Deformation energy stored, kinetic energy acquired in time ∆t,

$$E_{s} = \frac{1}{2}k \ \rho_{p}^{2}(\theta_{p})$$

$$E_{s} = \frac{1}{2}k \ \rho_{p}(\theta_{p}) \frac{d\rho_{p}}{d\theta_{p}} \frac{d\theta_{p}}{dt} t$$

$$E_{\omega} = \frac{1}{2}I \ \omega_{c}^{2}$$

$$E_{\omega} = I \ \omega_{c} \frac{d\omega_{c}}{dt} t$$

• Pinch wheel deformation torque, $\Delta E_s + \Delta E_{\omega} = 0$:

$$\gamma(\rho_p(\theta_p)) = I \frac{d\omega_c}{dt} = -k \frac{\omega_p}{\omega_c} \rho_p(\theta_p) \frac{d\rho_p}{d\theta_p}$$

Off-center pinch wheel radius,

$$\rho_p(\theta_p) = \rho_0 \left[(\cos \theta_p - \beta)^2 + \sin^2 \theta_p \right]^{\frac{1}{2}}, \quad \frac{d\rho_p}{d\theta_p} = \frac{\rho_0 \beta \sin \theta_p}{\left[(\cos \theta_p - \beta)^2 + \sin^2 \theta_p \right]^{\frac{1}{2}}}$$

Synthesized Delay Trajectories

Synthesized Delay Trajectories

Summary

- Spring Reverberator Modeling
 - Dispersive Waveguide Model
- Tape Delay Emulation
 - Tape Transport Dynamics Model
- Applications / Future Work
 - Spring Tanks: Accutronics, AKG
 - Tape Echo Units: Echoplex

