

Higgs Search at LEP with the L3 detector

Janík W. Andrejkovic & Jonas Kunath

23.05.2017

Taught by: Christoph Grab and Mauro Donegà

Assistants: Matthieu Marionneau and Luca Perrozzi

What is the signal we are looking for?

Our Analysis

- Step 1 Select signal candidates
- Step 2 Perform log likelihood ratio analysis
- Step 3 Set confidence levels

- cut-flow approach
- BDT optimized cut
- □ 1D analysis → single discriminating variable
- 2D analysis using MVA technique for second variable
- ☐ CL_s method

What is the signal we are looking for?

Our Analysis

- Step 1 Select signal candidates
- Step 2 Perform log likelihood ratio analysis
- Step 3 Set confidence levels

- cut-flow approach
- BDT optimized cut

- □ 1D analysis → single discriminating variable
- 2D analysis using MVA technique for second variable
- CL_s method

What is the signal we are looking for?

Our Analysis

- Step 1 Select signal candidates
- Step 2 Perform log likelihood ratio analysis
- Step 3 Set confidence levels

- cut-flow approach
- BDT optimized cut
- □ 1D analysis → single discriminating variable
- 2D analysis using MVA technique for second variable

☐ CL_s method

What is the signal we are looking for?

Our Analysis

- Step 1 Select signal candidates
- Step 2 Perform log likelihood ratio analysis
- Step 3 Set confidence levels

- cut-flow approach
- BDT optimized cut
- □ 1D analysis → single discriminating variable
- 2D analysis using MVA technique for second variable
- CL_s method

Higgs search with L3 detector

We do not see H and Z in the detector but their decay products

(Production) Process of interest: e^+ Higgs-Strahlung Z

Good variables to characterize the final state:

- missing energy/mass
- btag of the jets, i.e. probability that jet comes from hadronization of b quark
- angular variables, i.e. angle between jets or direction where E_{miss} is pointing.

Events without Higgs dominate the final state category → background

- → Apply cuts to enhance signal events
- → Obtain Higgs candidates

Cut-flow approach

variable	cut applied	data events after cut (85 GeV model)	
btag1 and btag2	both < 0.18	274 (/641)	
mmis	< 65 GeV	230	
mvis	> m _H + 5 GeV	143	
fmvis	> m _H + 5 GeV	105	
mvissc	> m _H + 5 GeV	97	
ucsdbt0	< 1.4	41	

m_H: Higgs-mass in the signal hypothesis

Cut removes all events with btag1 > 0.18 or btag2 > 0.18

1D analysis

after applying the cuts

1D analysis

without selection cuts

after applying the cuts

The log-likelihood ratio is defined as:

$$-2\ln(Q(m_H)) = 2s_{tot} - 2\sum_{i=1}^{N_{bins}} N_i \ln\left(1 + \frac{s_i(m_H)}{b_i}\right).$$

- \Rightarrow rebin if $b_i = 0$
- ⇒ bins below 65 GeV empty because of cut

test b-hypo
$$\rightarrow N_i^-b_i$$

test s+b-hypo $\rightarrow N_i^-b_i^+s_i$

generate toys \Rightarrow -2ln(Q) distribution

after applying the cuts

probability density functions of:

$$-2\ln(Q(m_H)) = 2s_{tot} - 2\sum_{i=1}^{N_{bins}} N_i \ln\left(1 + \frac{s_i(m_H)}{b_i}\right).$$

probability density functions of:

$$-2\ln(Q(m_H)) = 2s_{tot} - 2\sum_{i=1}^{N_{bins}} N_i \ln\left(1 + \frac{s_i(m_H)}{b_i}\right).$$

Confidence level:

$$CL_s = \frac{CL_{s+b}}{CL_b} = \frac{CL_{s+b}}{1 - (1 - CL_b)}$$

⇒ reject signal hypothesis with 1-CL_s

m _H	1-CL _s	# data events	
85 GeV	44.8 %	41 (/641)	
90 GeV	59.5 %	60	
95 GeV	33.2 %	81	

Optimized Cuts from BDT (Boosted Decision Tree)

bkg vs sig discrimination binary classification problem:

each event characterized by set of kinematical variables → features

decision tree scans feature space and applies cuts where best separation between classes is achieved

Optimized Cuts from BDT (Boosted Decision Tree)

bkg vs sig discrimination binary classification problem:

each event characterized by set of kinematical variables \rightarrow features

Gradient Boosting → take many shallow trees (weak learners) each trying to correct for the mistakes of the previous one

→ BDT builds decision function for sig vs bkg classification

decision tree scans feature space and applies cuts where best separation between classes is achieved

BDT for $m_H = 85$ GeV

Generalization performance

Use BDT response to cut - but where?

BDT for $m_H = 85$ GeV

Generalization performance

Use BDT response to cut - but where?

BDT event selection

m _H	# data events	purity	
85 GeV	27 (/641)	40 %	
90 GeV	32	40 %	
95 GeV	10	37 %	

used all (MC) bkg and sig samples for the analysis not just the test set

m _H	1-CL _s now	1-CL _s before
85 GeV	78.6 %	44.8 %
90 GeV	50.4 %	59.5 %
95 GeV	37.8 %	33.2 %

2D MVA analysis

composed variable

$$c = \sum_{i} \alpha_i f_i$$

$$-2\ln(Q(m_H)) = 2s_{tot} - 2\sum_{i=1}^{N_{bins}} N_i \ln\left(1 + \frac{s_i(m_H)}{b_i}\right).$$

m _H	1-CL _s	# data events	
85 GeV	96.1 %	32 (/641)	
90 GeV	62.7 %	27	
95 GeV	52.1 %	10	

Conclusion

Approach	m _H = 85 GeV	m _H = 90 GeV	m _H = 95 GeV
1D Selection cuts by eye	44.8 %	59.5 %	33.2 %
1D BDT cuts	78.6 %	50.4 %	37.8 %
2D BDT and MVA for second variable	96.1 %	62.7 %	52.1 %

References

Higgs @ LEP:

Gross, Eilam, and Amit Klier. "Higgs statistics for pedestrians." *arXiv* preprint hep-ex/0211058 (2002).

for Higgs, The LEP Working Group, et al. "Search for the standard model Higgs boson at LEP." *Physics Letters B* 565 (2003): 61-75.

Machine Learning:

Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python*. O'Reilly Media, 2017.

Backup

generate toys

- according to bkg and calculate 1-CL_b
- 2) according to sig+bkg and calculate 1-CL_b

