1 Báze a dimenze vektorového prostoru

Obsah

Obsah

Báze a dimenze vektorového prostoru
 Aritmetické vektorové prostory
 Eukleidovské vektorové prostory

Levá vnější operace

Definice 5.1

Nechť $A \neq \emptyset \neq B$. Levou vnější operací nad A a B nazýváme každé zobrazení " · " : $A \times B \to B$.

Příklad 5.1

Násobení matice skalárem je levá vnější operace nad T a $\mathcal{M}_{m \times n}(T)$.

Vektorový prostor

Definice 5.2

Čtveřici $(V; +, T, \cdot)$ nazýváme vektorový prostor, jestliže

- 1. (V; +) je abelovská grupa s jednotkou \vec{o} (nulový vektor);
- 2. T je číselné těleso;
- 3. $\cdot: T \times V \to V$ je levá vnější operace nad T a V;
- 4. Pro všechny $\vec{u}, \vec{v} \in V$ a všechny $c, d \in T$ platí
 - $c \cdot (\vec{u} + \vec{v}) = c \cdot \vec{u} + c \cdot \vec{v}$,
 - $(c+d) \cdot \vec{u} = c \cdot \vec{u} + d \cdot \vec{u}$,
 - $(c \cdot d) \cdot \vec{u} = c \cdot (d \cdot \vec{u}),$
 - $1 \cdot \vec{u} = \vec{u}$.
- \bullet Vektory ... prvky pole V
- $\bullet \;\; Skal{\acute{a}ry} \ldots$ prvky tělesaT

Vektorový prostor

Příklad 5.2

- Množina všech čtvercových matic stupně n nad číselným tělesem T spolu se sčítáním a násobením matice skalárem, tedy $(\mathcal{M}_n(T); +, T, \cdot)$ tvoří vektorový prostor nad tělesem T.
- Množina C[a,b] spojitých funkcí na intervalu $\langle a,b\rangle\subseteq \mathbf{R}$ spolu s bodovým sčítáním funkcí a násobením funkcí reálným číslem zleva, tedy $(C[a,b];\oplus,\mathbf{R},\cdot)$, kde

$$\forall f, g \in C[a, b], \ \forall x \in \langle a, b \rangle, \ \forall c \in \mathbf{R}:$$

$$(f \oplus g)(x) \stackrel{def}{=} f(x) + g(x),$$

$$(c \cdot f)(x) \stackrel{def}{=} c \cdot f(x),$$

tvoří vektorový prostor nad tělesem R.

Lineární kombinace vektorů

Definice 5.3

Nechť V je vektorový prostor nad tělesem T, nechť $\vec{v}, \vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$. Říkáme, že vektor \vec{v} je lineární kombinací vektorů $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$, jestliže existují skaláry $c_1, c_2, \dots, c_n \in T$ tak, že

$$\vec{v} = \sum_{i=1}^{n} c_i \vec{u_i} = c_1 \vec{u_1} + c_2 \vec{u_2} + \dots + c_n \vec{u_n} .$$

Příklad 5.3

Nulový vektor $\vec{o} \in V$ je lineární kombinací libovolných vektorů z V.

Lineární nezávislost vektorů

Definice 5.4

Nechť V je vektorový prostor nad tělesem T. Vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$ nazýváme $lineárně závislé, jestliže existují skaláry <math>c_1, c_2, \dots, c_n \in T$ tak, že

$$\vec{o} = \sum_{i=1}^{n} c_i \vec{u_i} = c_1 \vec{u_1} + c_2 \vec{u_2} + \dots + c_n \vec{u_n},$$

a přitom alespoň jedno z číslo mezi c_1, c_2, \ldots, c_n je nenulové.

V opačném případě, tedy pokud

$$\vec{o} = \sum_{i=1}^{n} c_i \vec{u_i} = c_1 \vec{u_1} + c_2 \vec{u_2} + \dots + c_n \vec{u_n},$$

pouze v případě, že $c_1=c_2=\ldots=c_n=0$, se vektory $\vec{u_1},\vec{u_2},\ldots,\vec{u_n}\in V$ nazývají $line\acute{a}rn\check{e}$ nezávislé.

Lineární nezávislost vektorů

Příklad 5.4

- Nulový vektor $\vec{o} \in V$ je lineárně závislý.
- Vektor $\vec{o} \neq \vec{u} \in V$ je lineárně nezávislý.

Lineární nezávislost vektorů

Věta 5.1

Nechť V je vektorový prostor nad tělesem T. Jsou-li mezi vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$ některé lineárně závislé, pak jsou lineárně závislé i $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$.

Důsledek 5.2

Nechť V je vektorový prostor nad tělesem T. Je-li mezi vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$ nulový vektor, pak jsou $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$ lineárně závislé.

Důsledek 5.3

Nechť V je vektorový prostor nad tělesem T. Jsou-li vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$ lineárně nezávislé a je-li $\{\vec{u_{j_1}}, \vec{u_{j_2}}, \dots, \vec{u_{j_k}}\} \subseteq \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$, pak $\vec{u_{j_1}}, \vec{u_{j_2}}, \dots, \vec{u_{j_k}}$ jsou lineárně nezávislé.

Lineární nezávislost vektorů

Věta 5.4

Nechť V je vektorový prostor nad tělesem T a nechť $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$. Pak $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$ jsou lineárně závislé právě když je aspoň jeden z nich lineární kombinací ostatních.

Podprostory vektorového prostoru

Definice 5.5

Nechť $(V; +, T, \cdot)$ je vektorový prostor nad tělesem T a nechť $\emptyset \neq W \subseteq V$. Pak $(W; +, T, \cdot)$ nazveme podprostor vektorového prostoru V, jestliže

- 1. $\forall \vec{u}, \vec{v} \in W$: $\vec{u} + \vec{v} \in W$,
- 2. $\forall \vec{u} \in W, \forall c \in T : c \cdot \vec{u} \in W$.

Příklad 5.5

- Množina všech diagonálních čtvercových matic stupně n nad číselným tělesem T je polem podprostoru ve vektorovém prostoru $(\mathcal{M}_n(T); +, T, \cdot)$.
- Množina všech funkcí f z C[a,b] splňujících f(a)=0 tvoří pole podprostoru ve vektorovém prostoru $(C[a,b]; \oplus, \mathbf{R}, \cdot)$.

Podprostory vektorového prostoru

Věta 5.5

Neprázdná podmnožina W pole vektorového prostoru $(V; +, T, \cdot)$ je polem podprostoru ve V právě když s každými prvky $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$ obsahuje také každou jejich lineární kombinaci.

Podprostory vektorového prostoru

- Podprostory ve VP $(V;+,T,\ \cdot\)$ můžeme uspořádat vzhledem k relaci " \subseteq ".
- Sub(V) ... množina všech podprostorů ve VP $(V; +, T, \cdot)$
- $(Sub(V); \subseteq)$ je uspořádaná množina s Hasseho diagramem

• Pro každou množinu $A \subseteq V$, která není polem podprostoru ve V, existuje nejmenší podprostor prostoru V obsahující A, tzv. podprostor generovaný množinou A, značíme [A].

Lineární obal množiny

Definice 5.6

Nechť $(V;+,T,\cdot)$ je vektorový prostor nad tělesem T a nechť $\emptyset \neq M \subseteq V$. Lineárním obalem množiny M ve VP V budeme nazývat množinu všech lineárních kombinací libovolných vektorů z M.

Věta 5.6

Nechť $(V;+,T,\cdot)$ je vektorový prostor nad tělesem T a nechť $\emptyset \neq M \subseteq V$. Pak lineární obal množiny M ve V je právě podprostor generovaný M.

Průnik podprostorů vektorového prostoru

• Průnik $W_1 \cap W_2$ dvou podprostorů W_1 a W_2 ve VP $(V; +, T, \cdot)$ je obecně opět podprostor ve V. Je to "největší" (vzhledem $k \subseteq$) podprostor ve V, který je obsažen současně ve W_1 a W_2 .

• Uvažujme množiny

$$M^{+} = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) : \ a, b \in \mathbf{R} \right\}, \ M^{-} = \left\{ \left(\begin{array}{cc} 0 & c \\ d & 0 \end{array} \right) : \ c, d \in \mathbf{R} \right\}.$$

Pak $(M^+;+,\mathbf{R},\,\cdot\,)$ a $(M^-;+,\mathbf{R},\,\cdot\,)$ jsou podprostory ve VP $(\mathcal{M}_2(\mathbf{R});+,\mathbf{R},\,\cdot\,)$ a platí

$$M^+ \cap M^- = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right\} = \{\vec{o}\}.$$

Sjednocení podprostorů vektorového prostoru

• Přitom $M^+ \cup M^-$ není polem podprostoru VP $(\mathcal{M}_2(\mathbf{R}); +, \mathbf{R}, \cdot)$, protože např.

$$(-1) \cdot \underbrace{\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}}_{\in M^+} + 3 \cdot \underbrace{\begin{pmatrix} 0 & 1, 5 \\ -1 & 0 \end{pmatrix}}_{\in M^-} = \begin{pmatrix} 2 & 4, 5 \\ -3 & -1 \end{pmatrix},$$

což není prvek ani z M^+ , ani z M^- , tedy ani z $M^+ \cup M^-$.

• Obecně, jsou-li W_1 a W_2 dva podprostory VP V, pak nejmenší podprostor ve V obsahující současně jak W_1 , tak i W_2 je podprostor $[W_1 \cup W_2]$.

Součet podprostorů VP

Věta 5.7

Jsou-li W_1 a W_2 podprostory VP $(V; +, T, \cdot)$, pak polem nejmenšího podprostoru obsahujícího současně W_1 a W_2 je množina

$$W_1 + W_2 = \{ \vec{w} \in V : \vec{w} = \vec{w_1} + \vec{w_2}, \vec{w_1} \in W_1, \vec{w_2} \in W_2 \}.$$

Definice 5.7

Nechť $(V;+,T,\cdot)$ je VP a W_1 a W_2 jeho podprostory. Podprostor W_1+W_2 nazveme součet podprostorů W_1,W_2 .

Přímý součet podprostorů VP

Definice 5.8

Nechť $(V;+,T,\cdot)$ je VP a W_1 a W_2 jeho podprostory. Je-li $W_1\cap W_2=\{\vec{o}\}$, pak platí $V=W_1+W_2$, říkáme, že V je *přímý součet podprostorů* $W_1,\ W_2$ a píšeme $V=W_1\oplus W_2$.

Věta 5.8

Je-li VP $(V; +, T, \cdot)$ přímým součtem podprostorů W_1 a W_2 , pak každý vektor $\vec{v} \in V$ lze psát právě jedním způsobem ve tvaru $\vec{v} = \vec{w_1} + \vec{w_2}$, kde $\vec{w_1} \in W_1$, $\vec{w_2} \in W_2$.

Příklad 5.6

VP $(\mathcal{M}_2(\mathbf{R}); +, \mathbf{R}, \cdot)$ čtvercových matic stupně 2 nad \mathbf{R} je podle předchozího přímým součtem podprostorů $(M^+; +, \mathbf{R}, \cdot)$ a $(M^-; +, \mathbf{R}, \cdot)$.

Množina generátorů VP

Definice 5.8

Nechť $(V; +, T, \cdot)$ je VP a M neprázdná podmnožina jeho pole. Je-li [M] = V, pak M se nazývá množina generátorů VP V.

Příklad 5.7

Množina $M = \{A_1, A_2, A_3, A_4\}$, kde

$$A_1 = \left(\begin{array}{cc} 4 & 0 \\ 0 & 0 \end{array}\right), A_2 = \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array}\right), A_3 = \left(\begin{array}{cc} 0 & 0 \\ -\sqrt{2} & 0 \end{array}\right), A_4 = \left(\begin{array}{cc} 0 & 0 \\ 0 & \pi \end{array}\right)$$

tvoří množinu generátorů pro VP $(\mathcal{M}_2(\mathbf{R}); +, \mathbf{R}, \cdot)$.

Báze VP

Definice 5.9

VP $(V;+,T,\,\cdot\,)$ se nazývá konečné~dimenze,má-li aspoň jednu konečnou množinu generátorů.

 $B\acute{a}z\acute{i}$ VP konečné dimenze nazveme každou lineárně nezávislou konečnou množinu $\{\vec{u_1},\vec{u_2},\ldots,\vec{u_n}\}$ jeho generátorů.

Věta 5.9

Nechť $M = \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$ je báze VP $(V; +, T, \cdot)$. Potom každý vektor $\vec{v} \in V$ lze jediným způsobem vyjádřit jako lineární kombinaci vektorů $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$.

Dimenze VP

Věta 5.10

Je-li $M = \{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$ množina generátorů VP $(V; +, T, \cdot)$, pak z ní lze vybrat nějakou bázi VP V.

Věta 5.11

Nechť $V \neq \{\vec{o}\}$ je VP konečné dimenze. Pak každé dvě různé jeho báze mají stejný počet prvků.

Definice 5.10

Je-li $V \neq \{\vec{o}\}$ VP konečné dimenze, pak počet prvků některé jeho báze nazýváme dimenze VP V a píšeme dim(V). Je-li $V = \{\vec{o}\}$, položíme dim(V) = 0.

Dimenze VP

Věta 5.12

Je dán VP $(V; +, T, \cdot)$, kde dim(V) = n a dále vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$. Pak následující tvrzení jsou ekvivalentní:

- 1. $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$ jsou lineárně nezávislé;
- 2. $[\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}] = V;$
- 3. $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$ je báze V.

Věta 5.13

Nechť W je podprostor VP V konečné dimenze. Pak $\dim(W) \leq \dim(V)$.

Věta 5.14

Nechť W_1 a W_2 jsou podprostory VP V konečné dimenze. Pak $\dim(W_1+W_2)=$ $\dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$

Aritmetické vektorové prostory $\mathbf{2}$

Obsah

Obsah

Konstrukce aritmetického VP

- Dáno číselné těleso $(T; +, \cdot)$ a $n \in \mathbb{N}$.
- Na množině $T^n = \underbrace{T \times T \times \cdots \times T}_{n \text{ krát}} = V$ definujeme binární operaci " + " $(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) \stackrel{def}{=} (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$ takto:

• (V; +) je potom abelovská grupa s jednotkou $(0,0,\ldots,0) = \vec{o}$ a s inverzním prvkem $(-x_1, -x_2, \dots, -x_n)$ pro každý prvek $\vec{x} = (x_1, x_2, \dots, x_n) \in$

V. $c \cdot (x_1, x_2, \dots, x_n) \stackrel{def}{=} (c \cdot x_1, c \cdot x_n)$

• Dále zavedeme levou vnější operaci " \cdot " nad T a V, kde

• Pak $(T^n; +, T, \cdot)$ je vektorový prostor, jehož dimenze je rovna číslu n. Tento vektorový prostor nazýváme aritmetický.

Báze aritmetického VP

• Dá se ukázat, že jednou z bází sestrojeného aritmetického VP $V=(T^n; +, T, \cdot)$ je množina $\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$, kde

$$\vec{e_1} = (1, 0, 0, \dots, 0),$$

 $\vec{e_2} = (0, 1, 0, \dots, 0),$
 \vdots
 $\vec{e_n} = (0, 0, \dots, 0, 1),$

tzv. kanonická báze. Zřejmě pro každý $\vec{x} = (x_1, x_2, \dots, x_n) \in V$ platí, že $\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \dots + x_n \vec{e_n}$.

Rozklad aritmetického VP na přímý součet podprostorů

- Označme $V_i = \{(0, \dots, 0, x_i, 0, \dots, 0) : x_i \in T\}.$
- Pak množina V_i je polem podprostoru aritmetického VP $V=(T^n;+,T,\cdot)$, kde dim $(V_i)=1$ a platí

$$V_i = [\{\vec{e_i}\}] = [\{(0, \dots, 0, 1, 0, \dots, 0)\}].$$

• Navíc $V_i \cap V_j = \emptyset$ pro každé $i \neq j$, tedy aritmetický VP $V = (T^n; +, T, \cdot)$ je přímým součtem podprostorů V_1, V_2, \dots, V_n , tzn.

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$
.

Reprezentace VP konečné dimenze aritmetickým VP

- Uvažujme VP $V=(V;+,T,\cdot)$, který není aritmetický a kde dim(V)=n. Nechť $\{\vec{u_1},\vec{u_2},\ldots,\vec{u_n}\}$ je některá jeho báze.
- Pak pro každý $\vec{x} \in V$ máme jednoznačné vyjádření

$$\vec{x} = x_1 \cdot \vec{u_1} + x_2 \cdot \vec{u_2} + \dots + x_n \cdot \vec{u_n}.$$

- Každému vektoru $\vec{x} \in V$ tedy přiřadíme n-tici (x_1, x_2, \dots, x_n) , kterou můžeme považovat za vektor v aritmetickém VP $(T^n; +, T, \cdot)$.
- Pro každé $\vec{x}, \vec{y} \in V$ a $c \in T$ platí (resp. můžeme provést přiřazení)

$$\vec{x} + \vec{y} \longrightarrow (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

$$c \cdot \vec{x} \longrightarrow (c \cdot x_1, c \cdot x_2, \dots, c \cdot x_n).$$

3 Eukleidovské vektorové prostory

Obsah

Obsah

Skalární součin

Definice 5.11

Nechť $V=(V;+,\mathbf{R},\cdot)$ je VP nad tělesem reálných čísel. *Skalárním součinem na V* nazveme každé zobrazení $\circ:V\times V\to\mathbf{R}$, které pro každé $\vec{u},\vec{v},\vec{w}\in V$ a pro každé $c\in\mathbf{R}$ splňuje:

- 1. $\vec{u} \circ \vec{v} = \vec{v} \circ \vec{u}$;
- $2. \ \vec{u} \circ \ (\vec{v} + \vec{w}) \ = \ \vec{u} \circ \vec{v} + \vec{u} \circ \vec{w};$
- 3. $(c \cdot \vec{u}) \circ \vec{v} = c \cdot (\vec{u} \circ \vec{v});$
- 4. $\vec{u} \circ \vec{u} \geq 0$, rovnost nastane právě když $\vec{u} = \vec{o}$.

Skalární součin

Příklad 5.7

• Je-li $V=({\bf R}^n;\ +\ ,{\bf R},\ \cdot\)$ aritmetický VP dimenze n nad ${\bf R},$ pak skalární součin zde můžeme definovat následovně:

$$\vec{x} \circ \vec{y} = \sum_{i=1}^{n} x_i \cdot y_i, \quad \forall \vec{x}, \ \vec{y} \in \mathbf{R}^n.$$

• Je-li $V=(C[a,b];\oplus,\mathbf{R},\cdot)$ VP všech spojitých funkcí na reálném intervalu $\langle a,b\rangle$ nad \mathbf{R} , pak skalární součin zde můžeme zavést předpisem:

$$f \circ g = \int_{a}^{b} f(x) \cdot g(x) \, \mathrm{d}x, \quad \forall f, g \in C[a, b].$$

Eukleidovský vektorový prostor

Definice 5.12

Eukleidovským vektorovým prostorem (EVP) rozumíme každý VP, na kterém je zaveden skalární součin.

Délka vektoru

Definice 5.13

Nechť V je EVP, $\vec{u} \in V$. Číslo $||\vec{u}|| = \sqrt{\vec{u} \circ \vec{u}}$ nazveme délka vektoru \vec{u} .

Věta 5.15

Nechť V je EVP, $\vec{u}, \vec{v} \in V, c \in \mathbf{R}$. Platí

- 1. $||c \cdot \vec{u}|| = |c| \cdot ||\vec{u}||$,
- 2. $||\vec{o}|| = 0$ a pro $\vec{u} \neq \vec{o}$ pak $||\vec{u}|| > 0$.
- 3. $|\vec{u} \circ \vec{v}| \leq ||\vec{u}|| \cdot ||\vec{v}||$ (Schwarzova nerovnost).

Úhel vektorů

Definice 5.14

Nechť V je EVP, $\vec{u} \ \vec{v} \in V, \ \vec{u} \ \neq \ \vec{o} \ \neq \ \vec{v}$. Úhlem vektorů \vec{u} a \vec{v} rozumíme číslo

$$\varphi(\vec{u}, \vec{v}) = \arccos \frac{\vec{u} \circ \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||} \ \cdot$$

- Ze Schwarzovy nerovnosti plyne, že úhel φ je určen korektně.
- Platí, že $\cos \varphi(\vec{u}, \vec{v}) = \frac{\vec{u} \circ \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||}$, kde $0 \le \varphi \le \pi$.

Ortogonální vektory

Definice 5.15

Nechť V je EVP. Vektory $\vec{u}, \vec{v} \in V$ nazveme ortogonální (tj. kolmé), píšeme $\vec{u} \perp \vec{v}$, jestliže $\varphi(\vec{u}, \vec{v}) = \frac{\pi}{2}$.

Věta 5.16

Nechť V je EVP, $\vec{u}, \vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \in V$ a nechť platí $\vec{u} \perp \vec{v_i}$ pro každé $i = 1, 2, \dots, n$. Pak $\vec{u} \perp \vec{w}$ pro každý $\vec{w} \in [\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}]$.

Ortogonální vektory

Definice 5.16

Nechť V je EVP. Vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n} \in V$ nazveme vzájemně ortogonální, platí-li $\vec{u_i} \perp \vec{u_j}$ pro každé $i \neq j$, kde $i, j = 1, 2, \dots, n$.

Věta 5.17

Nenulové vzájemně ortogonální vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$ z EVP V jsou lineárně nezávislé.

Věta 5.18

Jsou-li vektory $\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}$ vzájemně ortogonální v EVP V a platí-li $V = [\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}]$, pak množina $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$ je báze VP V, tzv. ortogonální báze.