Espacios vectoriales.

Definición.

Sea V un espacio vectorial que cuenta con dos operaciones, suma y multiplicación por un escalar. La suma es una regla que asocia dos elementos del espacio vectorial, por ejemplo, u y v con un tercero, la suma de v v, la cual representaremos con v v. La multiplicación por un escalar es una regla que asocia cualquier número real, que llamaremos escalar, y cualquier elemento v de v con otro de v, el múltiplo escalar de v por v, lo representaremos como v. Este conjunto v se denomina espacio vectorial real las dos operaciones cumplen con los axiomas siguientes.

Axiomas de la suma:

- 1. $u + v \in V$ para todos $u, v \in V$.
- 2. u + v = v + u para todos $u, v \in V$.
- 3. (u+v)+w=u+(v+w) para todos $u,v,w\in V$.
- 4. Para todo u que pertenece a V existe un elemento único $0 \in V$, llamado cero de V, tal que para todo u en V se cumple: u + 0 = 0 + u = u
- 5. Para cada elemento u que pertenece a V existe un elemento único $-u \in V$, llamado negativo de u y cumple con: u + (-u) = (-u) + u = 0

Axiomas de la multiplicación por escalar:

- 6. cu pertenece a V para todo $u \in V$ y toda $c \in \mathbb{R}$.
- 7. c(u + v) = cu + cv para todos $u, v \in V$ y toda $c \in \mathbb{R}$.
- 8. (c+d)u = cu + du para todo $u \in V$ y todas $c, d \in \mathbb{R}$.
- 9. c(bu) = (cd)u para todo $u \in V$ y todas $c, d \in \mathbb{R}$.
- 10. 1u = u para todo $u \in V$.

Los elementos de un espacio vectorial se llaman vectores. Los axiomas 1 y 6 también se pueden expresar diciendo que V es cerrado bajo la suma y la multiplicación por escalar.

Independencia lineal.

Definición.

Un conjunto de vectores v_1, \ldots, v_n de un espacio vectorial V es linealmente dependiente si hay escalares c_1, \ldots, c_n , no todos cero, tal que:

$$c_1v_1 + \ldots + c_nv_n = 0$$

El conjunto de vectores v_1, \ldots, v_n es linealmente independiente si *no es* linealmente dependiente.

Base.

Definición.

Un subconjunto \boldsymbol{B} no vacío de un espacio vectorial \boldsymbol{V} distinto de cero es una base de \boldsymbol{V} si:

- i. \boldsymbol{B} es linealmente independiente, y si
- ii. B genera a V.

Todo espacio vectorial tiene al menos una base.