Análisis de Complejidad

El proyecto utiliza un árbol binario de búsqueda para almacenar y gestionar productos.

Se presenta el análisis de complejidad de las operaciones principales:

Operación de Inserción:

Big-O: O(h), donde h es la altura del árbol. En el peor caso, si el árbol está desbalanceado (por ejemplo, si se comporta como una lista enlazada), la complejidad es O(n).

Theta (Θ) : $\Theta(\log n)$ en promedio para árboles balanceados, donde la altura h es logarítmica respecto al número de nodos n.

Omega (Ω): $\Omega(1)$ si el árbol está vacío, ya que en ese caso se realiza una única operación de asignación.

Operación de Búsqueda:

Big-O: O(h). Similar a la inserción, la búsqueda en el peor caso es lineal O(n) si el árbol está desbalanceado.

Theta (Θ): Θ(log n) en promedio para árboles balanceados.

Omega (Ω): $\Omega(1)$ si el nodo buscado es la raíz.