JP2002049156

Title: POSITIVE TYPE PHOTORESIST COMPOSITION

Abstract:

PROBLEM TO BE SOLVED: To provide a positive type photoresist composition having improved marginal resolving power, development defects, linearity and dry etching resistance. SOLUTION: The positive type photoresist composition contains a polymer having repeating units with specified two acetal structures and having solubility in an alkali developing solution increased by decomposition under the action of an acid, a compound which generates the acid when irradiated with active light or radiation and a solvent.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-49156 (P2002-49156A)

(43)公開日 平成14年2月15日(2002.2.15)

(51) Int.Cl. ⁷	識別記号	FI		テーマコード(参考)
G03F 7/039	6 0 1	C03F 7/039	601	2 H O 2 5
C08F 212/14		C08F 212/14		4 J 0 0 2
C08K 5/00		C 0 8 K 5/00		4 J 1 0 0
5/16		5/16		
13/08		13/08		
15, 05	審査請求	未請求 請求項の数	4 OL (全 30)	頁) 最終頁に続く
(21)出顧番号	特願2000-234733(P2000-234733)	(1-7)	05201 写真フイルム株式:	
(22) 出願日	平成12年8月2日(2000.8.2)		川県南足柄市中沼2	
(/ -/ 147/	1,7,4-2 6,7, 2 H (2000) 0		字	
			県榛原郡吉:3町川原	元4000番地 富士写
			イルム株式会社内) I 1000 E 7
			史郎	
		(, , , , , , , , , , , , , , , , , , ,	える。 県榛原郡吉田町川原	元4000番地 富士写
			ポープルル イルム株式会社内	75000年16 日工子
			05647	
		(1-) (1-)		(M 4 ~)
		开 棋	土 小栗 昌平	(外4名)
				且被百万绝之
				最終頁に続く

(54) 【発明の名称】 ポジ型フォトレジスト組成物

(57)【要約】

【課題】 限界解像力、現像欠陥、リニアリティ及びドライエッチング耐性の4点で良化したポジ型フォトレジスト組成物を提供すること。

【解決手段】 特定の2種のアセタール構造を有する繰り返し単位を有し、酸の作用により分解してアルカリ現像液に対する溶解性が増大するポリマー、活性光線又は放射線の照射により酸を発生する化合物、及び溶剤を含有するポジ型フォトレジスト組成物。

【特許請求の範囲】

【請求項1】 (a)下記一般式(I)、(II)及び(III)で表される繰り返し単位を有し、酸の作用により分解してアルカリ現像液に対する溶解性が増大するポリマー、(b)活性光線又は放射線の照射により酸を発生する化合物、及び(c)溶剤を含有することを特徴とするポジ型フォトレジスト組成物。

【化1】

上記式中、Lは、水素原子、置換されていてもよい、直鎖、分岐もしくは環状のアルキル基、又は置換されていてもよいアラルキル基を表す。Zは、置換されていてもよい、直鎖、分岐もしくは環状のアルキル基、又は置換されていてもよいアラルキル基を表す。L'は、Lと同義である。Wは、Zと同義である。ZとL、WとL'は、互いに結合して5又は6員環を形成してもよい。ただし、ZとWが同一となることはない。

【請求項2】 Wが、脂環式基又は芳香族基を有する基であることを特徴とする請求項1記載のポジ型フォトレジスト組成物。

【請求項3】 更に、(d)シリコン系及び/またはフッ素系界面活性剤を含むことを特徴とする請求項1又は2に記載のポジ型フォトレジスト組成物。

【請求項4】 更に、(e)塩基性化合物を含むことを特徴とする請求項1~3のいずれかに記載のポジ型フォトレジスト組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体集積回路素子、集積回路製造用マスク、プリント配線板、液晶パネル等の製造に好適に用いることができるポジ型フォトレジスト組成物に関する。

[0002]

【従来の技術】ポジ型感光性樹脂組成物として、米国特許第4,491,628号明細書、欧州特許第29,139号明細書等に記載されている化学増幅系ポジレジスト組成物がある。化学増幅型ポジレジスト組成物は、遠紫外光等の放射線の照射により露光部に酸を生成させ、この酸を触媒とする反応によって、活性放射線の照射部と非照射部の現像液に対する溶解性を変化させパターンを基板上に形成させるパターン形成材料である。

【0003】特開平2-19847号公報にはポリ(pーヒドロキシスチレン)のフェノール性ヒドロキシル基を全部あるいは部分的にテトラヒドロピラニル基で保護した樹脂を含有することを特徴とするフォトレジスト組

成物が開示されている。

【0004】特開平4-219757号公報には同様にポリ(p-ヒドロキシスチレン)のフェノール性ヒドロキシル基の20~70%がアセタール基で置換された樹脂を含有することを特徴とするフォトレジスト組成物が開示されている。

【0005】更に、特開平5-249682号公報にも同様のアセタール保護された樹脂を用いたフォトレジスト組成物が開示されている。

【0006】また、特開平8-123032号公報には アセタール基で置換された基を含む三元共重合体を用い たフォトレジスト組成物が示されている。

【0007】更に、特開平5-113667号公報、特開平6-266112号公報、特開平6-289608号公報、特開平7-209868号公報にはヒドロキシスチレンと(メタ)アクリレート共重合体よりなるフォトレジスト組成物が開示されている。

【0008】また、特開平9-297396号公報には、酸により分解し得る基を有する重合体、感放射線性酸発生剤、フェノール性水酸基を有する分子量1000未満の化合物中のフェノール性水酸基の水素原子をアセタール化した化合物、並びに酸拡散制御材を含有する感光性樹脂組成物が記載されている。この組成物はコンタクトホールの解像力、断面形状、及びフォーカス許容性に優れることが記載されている。

[0009]

【発明が解決しようとする課題】しかしながら、従来の ポジ型フォトレジスト組成物は、限界解像力、現像欠 陥、リニアリティ及びドライエッチング耐性の4点で必 ずしも充分な成果は得られていなかった。

【 O O 1 O 】本発明の目的は、限界解像力、現像欠陥、 リニアリティ及びドライエッチング耐性の4点で良化し たポジ型フォトレジスト組成物を提供することにある。

[0011]

【課題を解決するための手段】即ち、本発明に係わるポジ型フォトレジスト組成物は下記構成である。

(1) (a)下記一般式(I)、(II)及び(III)で表される繰り返し単位を有し、酸の作用により分解してアルカリ現像液に対する溶解性が増大するポリマー、(b)活性光線又は放射線の照射により酸を発生する化合物、及び(c)溶剤を含有することを特徴とするポジ型フォトレジスト組成物。

[0012]

【化2】

【0013】上記式中、Lは、水素原子、置換されていてもよい、直鎖、分岐もしくは環状のアルキル基、又は置換されていてもよいアラルキル基を表す。Zは、置換されていてもよい、直鎖、分岐もしくは環状のアルキル基、又は置換されていてもよいアラルキル基を表す。L'は、Lと同義である。Wは、Zと同義である。ZとL、WとL'は、互いに結合して5又は6員環を形成してもよい。ただし、ZとWが同一となることはない。

【 O O 1 4 】 (2) Wが、脂環式基又は芳香族基を有する基であることを特徴とする上記(1)記載のポジ型フォトレジスト組成物。

- (3) 更に、(d)シリコン系及び/またはフッ素系 界面活性剤を含むことを特徴とする上記(1)又は (2)に記載のポジ型フォトレジスト組成物。
- (4) 更に、(e)塩基性化合物を含むことを特徴とする上記(1)~(3)のいずれかに記載のポジ型フォトレジスト組成物。

[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。本発明のポジ型フォトレジスト組成物は、上記一般式(I)、(II)及び(III)で表される繰り返し単位を有し、酸の作用により分解してアルカリ現像液に対する溶解性が増大するポリマー(a)、活性光線または放射線の照射により酸を発生する化合物(b)及び溶剤(c)を少なくとも含有する。

【0016】以下、本発明のポジ型フォトレジスト組成物に配合される各成分につき説明する。

(a)上記一般式(I)、(II)及び(III)で表される繰り返し単位を有し、酸の作用により分解してアルカリ現像液に対する溶解性が増大するポリマー(以下、「酸分解性ポリマー(a)」ともいう)

【 0 0 1 7 】本発明で使用される酸分解性ポリマー (a) は、下記一般式(I)、(I I) 及び(I I I) で表される繰り返し単位を有する。

[0018]

【化3】

てもよい、直鎖、分岐もしくは環状のアルキル基、又は 置換されていてもよいアラルキル基を表す。Zは、置換 されていてもよい、直鎖、分岐もしくは環状のアルキル 基、又は置換されていてもよいアラルキル基を表す。 L'は、Lと同義である。Wは、Zと同義である。Zと L、WとL'は、互いに結合して5又は6員環を形成してもよい。ただし、ZとWが同一となることはない。 【0020】上記一般式におけるし、し、、乙及びWのアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、セーブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ドデシル基などの炭素数1~20個の直鎖、分岐あるいは環状のものが挙げられる。

【0021】L、L'、Z及びWのアルキル基が有しうる好ましい置換基としては、アルキル基、アルコキシ基、水酸基、ハロゲン原子、ニトロ基、アシル基、アシルオキシ基、アシルアミノ基、スルホニルアミノ基、アルキルチオ基、アリールチオ基、アラルキルチオ基、チオフェンカルボニルオキシ基、チオフェンメチルカルボニルオキシ基、ピロリドン残基等のヘテロ環残基などが挙げられ、好ましくは、炭素数12以下である。

【0022】置換基を有するアルキル基として、例えばシクロヘキシルエチル基、アルキルカルボニルオキシメチル基、アルキルカルボニルオキシエチル基、アリールカルボニルオキシエチル基、アラルキルカルボニルオキシエチル基、アルキルオキシメチル基、アリールオキシメチル基、アリールオキシエチル基、アリールオキシエチル基、アリールオオメチル基、アラルキルチオメチル基、アリールチオメチル基、アラルキルチオメチル基、アリールチオエチル基、アリールチオエチル基、アリールチオエチル基、アリールチオエチル基、アリールチオエチル基、アリールチオエチル基、アリールチオエチル

【0023】これらの基におけるアルキルは特に限定されないが、鎖状、環状、分岐状のいずれでもよく、更に前述のアルキル基、アルコキシ基等の置換基を有してもよい。

【0024】上記アルキルカルボニルオキシエチル基の例としては、シクロヘキシルカルボニルオキシエチル基、tーブチルシクロヘキシルカルボニルオキシエチル基、nーブチルシクロヘキシルカルボニルオキシエチル基等を挙げることができる。

【0025】アリールも特に限定されないが、一般的にフェニル基、キシリル基、トルイル基、クメニル基、ナフチル基、アントラセニル基のような炭素数6~14のものが挙げられ、更に前述のアルキル基、アルコキシ基等の置換基を有してもよい。上記アリールオキシエチル基の例としては、フェニルオキシエチル基、シクロヘキシルフェニルオキシエチル基等を挙げることができる。【0026】アラルキルも特に限定されないが、ベンジル基などを挙げることができる。上記アラルキルカルボニルオキシエチル基の例としては、ベンジルカルボニル

【0027】一般式におけるL、L、Z及びWのPラルキル基としては、例えば、置換又は未置換のベンジル基、置換又は未置換のフェネチル基などの炭素数 $7\sim1$ 5個のものを挙げることができる。

オキシエチル基等を挙げることができる。

【0028】アラルキル基への好ましい置換基としてはアルコキシ基、水酸基、ハロゲン原子、ニトロ基、アシル基、アシルアミノ基、スルホニルアミノ基、アルキルチオ基、アリールチオ基、アラルキルチオ基等が挙げられ、置換基を有するアラルキル基としては、例えば、アルコキシベンジル基、ヒドロキシベンジル基、フェニルチオフェネチル基等を挙げることができる。L、L'、ZまたはWとしてのアラルキル基が有しうる置換基の炭素数の範囲は、好ましくは12以下である。

【OO29】Zとし、あるいはWとし、が互いに結合し て形成する5又は6員環としては、テトラヒドロピラン 環、テトラヒドロフラン環等が挙げられる。本発明にお ける酸分解性ポリマー(a)は、ZとWが同一となるこ とはない。本発明において、好ましくはWが脂環式基又 は芳香族基を有する基であることが好ましい。この場 合、Zは、直鎖状あるいは分岐状のアルキル基であるこ とが好ましい。これにより、本発明の効果が一層顕著に なる。ここで、脂環式基としては、シクロペンチル基、 シクロヘキシル基、シクロヘプチル基、シクロオクチル 基、シクロノニル基、シクロデカニル基等の炭素数5個 ~12個のものが好ましい。また、芳香族基としては、 フェニル基、ナフチル基等の炭素数6個~16個のもの が好ましく、これらの基はたとえば、メチルフェニル 基、エチルフェニル基などのように更に置換基を有して いてもよい。これらの脂環式基又は芳香族基は、そのも のでWに相当する基として成り立ってもよいが、アルキ レン基や他の連結基を有していてもよい。Wの脂環式基 又は芳香族基を有する基としては、フェノキシエチル 基、シクロヘキシルフェノキシエチル基、シクロヘキシ ルチオエチル基、t-ブチルシクロヘキシルカルボニル オキシエチル基、n-ブチルシクロヘキシルカルボニル オキシエチル基、シクロヘキサノンー4ーイルーフェノ キシエチル基、シクロヘキシル基、シクロヘキシルエチ ル基、フェネチル基、ベンジル基が好ましい。Zの直鎖 状あるいは分岐状のアルキル基としては、エチル基、プ ロピル基、イソプロピル基、n-ブチル基、i-ブチル 基、セーブチル基等が好ましい。上記のように置換アル キル基や置換アラルキル基は末端にフェニル基やシクロ ヘキシル基のような嵩高い基を導入することで、更にエ ッジラフネスの向上も認められる。

【0030】酸分解性ポリマー(a)は、全繰り返し単位中、一般式(I)で表される繰り返し単位を5~60モル%(好ましくは、5~30モル%)、一般式(II)で表される繰り返し単位を5~60モル%(好ましくは、5~30モル%)、一般式(III)で表される繰り返し単位を20~80モル%(好ましくは、40~80モル%)含有することが好ましく、必要に応じて併せて他の繰り返し単位を含有してもよい。酸分解性ポリマー(a)中の、一般式(I)で表される繰り返し単位と一般式(II)で表される繰り返し単位の含有比率

((I):(II))は、好ましくは 0.10:1 $\sim 1:0.10$ であり、より好ましくは $0.25:1\sim1:0.25$ である。

【0031】本発明の酸分解性ポリマー(a)は、例えばフェノール性水酸基を有するポリマーを、好ましくは有機溶媒に溶解し、系中の水分を共沸蒸留等の手法で脱水した後、2種以上のアルキルビニルエーテル化合物及び酸触媒を添加してアセタール化反応を行い、フェノール性水酸基に所望のアセタール基を導入することにより得ることができる。

【0032】上記フェノール性水酸基を有するポリマーとしては、ヒドロキシスチレン類の重合体が好ましく、 tーブチルアクリレートもしくはtーブチルメタクリレート等の酸分解性の(メタ)アクリレートとの共重合体 であってもよい。

【0033】また、酸分解性ポリマー(a)のアルカリ溶解性を調節する目的で、フェノール性水酸基を有するポリマーに非酸分解性基を導入することもできる。非酸分解性基の導入方法としては、スチレン類、非酸分解性の(メタ)アクリル酸エステル類、非酸分解性の(メタ)アクリル酸アミド類を共重合する方法や、ヒドロキシスチレン類の水酸基を非酸分解性の置換基で保護する方法が好ましい。

【0034】上記非酸分解性基の置換基としては、アセチル基、メシル基、トルエンスルホニル基等が好ましいが、これらに限定されるものではない。

【0035】上記スチレン類としては、スチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ジブロモスチレン、ヨードスチレン、メチルスチレン、ジメチルスチレン、エチルスチレン、イソプロピルスチレン、メトキシスチレン、エトキシスチレン、フェニルスチレン、tーブチルスチレン、オーブトキシスチレン等があげられるが、スチレン、メチルスチレン、tーブチルスチレン、tーブトキシスチレンが特に好ましい。

【0036】上記非酸分解性の(メタ)アクリル酸エステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸アリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル等があげられる。

【0037】非酸分解性の(メタ)アクリル酸アミド類としては、(メタ)アクリル酸アミド、(メタ)アクリル酸フェニルアミド、(メタ)アクリル酸イソプロピルアミド等があげられる。

【0038】更に、共重合可能なモノマーとしては、例えば、マレイン酸誘導体、無水マレイン酸誘導体、(メタ)アクリロニトリル、ビニルピロリドン、ビニルピリジン、酢酸ビニル等を挙げることができる。

【0039】上述したように、酸分解性ポリマー(a)のアルカリ溶解性を調節し、そのアルカリ現像性を損な

わない範囲で、上記フェノール性水酸基を有するポリマ 一に共重合成分及び/又は非酸分解性基を導入すること が可能であるが、一般的にはフェノール性水酸基を有す るポリマーを構成する成分のうちヒドロキシスチレン類 成分が60モル%以上、好ましくは70モル%以上占め ることがドライエッチング耐性や感度の点で望ましい。 【0040】上記幹ポリマー(フェノール性水酸基を有 するポリマー)の重量平均分子量は、ゲルバーミエーシ ョンクロマトグラフィー(GPC)により、ポリスチレ ン換算分子量 (Mw)として測定することができ、好ま しくは2000~200,000であり、2,500~ 30,000が特に好ましい。分子量が200,000 を超えると溶解性が劣り解像力が低下する傾向にある。 【0041】アセタール化反応に用いるアルキルビニル エーテル化合物としては、下記一般式(A)で表される 化合物が望ましい。 $R^1 - O - CH = CH_2$ 式(A)式中、R1は置換基を有してもよい鎖状アルキ ル基、置換基を有してもよい環状アルキル基、置換基を 有してもよいアリール基、又は置換基を有してもよいア ラルキル基を表す。

【0042】上記R1の置換基を有してもよい鎖状アル キル基としては、好ましくは炭素数1~20、さらに好 ましくは炭素数1~18の、直鎖状であっても分岐状で あってもよく、例えば、メチル基、エチル基、nープロ ピル基、i-プロピル基、n-ブチル基、i-ブチル 基、tーブチル基、nーペンチル基、iーペンチル基、 t-ペンチル基、n-ヘキシル基、i-ヘキシル基、t へキシル基、nーヘプチル基、iーヘプチル基、tー ヘプチル基、n-オクチル基、i-オクチル基、t-オ クチル基、n-ノニル基、i-ノニル基、t-ノニル 基、n-デシル基、i-デシル基、t-デシル基、n-ウンデシル基、iーウンデシル基、nードデシル基、i -ドデシル基、n-トリデシル基、i-トリデシル基、 n-テトラデシル基、i-テトラデシル基、n-ペンタ デシル基、i-ペンタデシル基、n-ヘキサデシル基、 i-ヘキサデシル基、n-ヘプタデシル基、i-ヘプタ デシル基、n-オクタデシル基、i-オクタデシル基、 n-ノナデシル基、i-ノナデシル基等を挙げることが できる。これらの置換基は、下記に示す置換基によって 置換されていてもよい。

【0043】上記R¹の置換基を有してもよい環状アルキル基としては、好ましくは炭素数3~20、さらに好ましくは炭素数3~18の、20までの炭素数で環を形成する場合でも置換基を有した環状アルキルでもよく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロペキシル基、シクロペプチル基、シクロインチル基、シクロバデシル基、シクロドデシル基、シクロトリデシル基、シクロトリデシル基、シクロトリデシル基、シクロトリデシル基、シクロトリデシル基、シクロトリデシル基、シクロペンタデシル基、シクロペナ

タデシル基、シクロオクタデシル基、シクロノナデシル基、4-シクロヘキシルシクロヘキシル基、4-n-ヘキシルシクロヘキシル基、ペンタニルシクロヘキシル基、ペンタニルオキシシクロヘキシル基等を挙げることができる。ここに挙げた以外の置換環状アルキル基も上記範囲内であれば使用できることができる。これらの置換基は、下記に示す置換基によって置換されていてもよい。

【0044】上記R1の置換基を有していてもよいアリ ール基としては、好ましくは炭素数6~30、好ましく は炭素数6~25の、例えば、フェニル基、トリル基、 キシリル基、エチルフェニル基、プロピルフェニル基、 メトキシフェニル基、エトキシフェニル基、プロピルオ キシフェニル基、4-シクロペンチルフェニル基、4-シクロヘキシルフェニル基、4-シクロヘプテニルフェ ニル基、4-シクロオクタニルフェニル基、2-シクロ ペンチルフェニル基、2-シクロヘキシルフェニル基、 2-シクロヘプテニルフェニル基、2-シクロオクタニ ルフェニル基、3-シクロペンチルフェニル基、3-シ クロヘキシルフェニル基、3-シクロヘプテニルフェニ ル基、3-シクロオクタニルフェニル基、4-シクロペ ンチルオキシフェニル基、4-シクロヘキシルオキシフ ェニル基、4-シクロヘプテニルオキシフェニル基、4 -シクロオクタニルオキシフェニル基、2-シクロペン チルオキシフェニル基、2-シクロヘキシルオキシフェ ニル基、2-シクロヘプテニルオキシフェニル基、2-シクロオクタニルオキシフェニル基、3-シクロペンチ ルオキシフェニル基、3-シクロヘキシルオキシフェニ ル基、3-シクロヘプテニルオキシフェニル基、3-シ クロオクタニルオキシフェニル基、4-n-ペンチルフ ェニル基、4-n-ヘキシルフェニル基、4-n-ヘプ テニルフェニル基、4-n-オクタニルフェニル基、2 - n - ペンチルフェニル基、2 - n - ヘキシルフェニル 基、2-n-ヘプテニルフェニル基、2-n-オクタニ ルフェニル基、3-n-ペンチルフェニル基、3-n-ヘキシルフェニル基、3-n-ヘプテニルフェニル基、 3-n-オクタニルフェニル基、2,6-ジーイソプロ ピルフェニル基、2、3-ジーイソプロピルフェニル 基、2、4-ジーイソプロピルフェニル基、3、4-ジ -イソプロピルフェニル基、3,6-ジーt-ブチルフ ェニル基、2,3-ジーt-ブチルフェニル基、2,4 ージーt-ブチルフェニル基、3,4-ジーt-ブチル フェニル基、2,6-ジーn-ブチルフェニル基、2, 3-ジーn-ブチルフェニル基、2,4-ジーn-ブチ ルフェニル基、3,4-ジーn-ブチルフェニル基、 2,6-ジーi-ブチルフェニル基、2,3-ジーi-ブチルフェニル基、2,4-ジーi-ブチルフェニル 基、3,4-ジーi-ブチルフェニル基、2,6-ジー t-アミルフェニル基、2,3-ジ-t-アミルフェニ ル基、2,4-ジーセーアミルフェニル基、3,4-ジ

-t-アミルフェニル基、2,6-ジ-i-アミルフェ ニル基、2、3-ジ-i-アミルフェニル基、2、4-ジー i ーアミルフェニル基、3,4-ジー i ーアミルフ ェニル基、2, 6 - $\hat{\nu}$ - n - \mathcal{N} $\hat{\nu}$ $\hat{\nu$ 3-ジ-n-ペンチルフェニル基、2,4-ジ-n-ペ ンチルフェニル基、3、4 - ジー n - ペンチルフェニル 基、4-アダマンチルフェニル基、2-アダマンチルフ ェニル基、4-イソボロニルフェニル基、3-イソボロ ニルフェニル基、2-イソボロニルフェニル基、4-シ クロペンチルオキシフェニル基、4-シクロヘキシルオ キシフェニル基、4-シクロヘプテニルオキシフェニル 基、4-シクロオクタニルオキシフェニル基、2-シク ロペンチルオキシフェニル基、2-シクロヘキシルオキ シフェニル基、2-シクロヘプテニルオキシフェニル 基、2-シクロオクタニルオキシフェニル基、3-シク ロペンチルオキシフェニル基、3-シクロヘキシルオキ シフェニル基、3-シクロヘプテニルオキシフェニル 基、3-シクロオクタニルオキシフェニル基、4-n-ペンチルオキシフェニル基、4-n-ヘキシルオキシフ ェニル基、4-n-ヘプテニルオキシフェニル基、4n-オクタニルオキシフェニル基、2-n-ペンチルオ キシフェニル基、2-n-ヘキシルオキシフェニル基、 2-n-ヘプテニルオキシフェニル基、2-n-オクタ ニルオキシフェニル基、3-n-ペンチルオキシフェニ ル基、3-n-ヘキシルオキシフェニル基、3-n-ヘ プテニルオキシフェニル基、3-n-オクタニルオキシ フェニル基、2,6-ジーイソプロピルオキシフェニル 基、2,3-ジーイソプロピルオキシフェニル基、2, 4-ジーイソプロピルオキシフェニル基、3,4-ジー イソプロピルオキシフェニル基、2,6-ジーt-ブチ ルオキシフェニル基、2,3-ジーt-ブチルオキシフ ェニル基、2,4-ジーt-ブチルオキシフェニル基、 3,4-ジーt-ブチルオキシフェニル基、2,6-ジ - n - ブチルオキシフェニル基、2,3-ジ-n-ブチ ルオキシフェニル基、2,4-ジーn-ブチルオキシフ ェニル基、3,4-ジーn-ブチルオキシフェニル基、 2, 6-ジ-i-ブチルオキシフェニル基、<math>2, 3-ジ- i - ブチルオキシフェニル基、2, 4 - ジー i - ブチ ルオキシフェニル基、3,4-ジ-i-ブチルオキシフ ェニル基、2,6-ジーt-アミルオキシフェニル基、 2,3-ジーt-アミルオキシフェニル基、2,4-ジ ーt-アミルオキシフェニル基、3,4-ジーt-アミ ルオキシフェニル基、2,6-ジ-i-アミルオキシフ ェニル基、2, 3-ジ-i-アミルオキシフェニル基、 2, 4-ジ-i-rミルオキシフェニル基、3, 4-ジi-アミルオキシフェニル基、2,6-ジーn-ペン チルオキシフェニル基、2,3-ジ-n-ペンチルオキ シフェニル基、2,4-ジーn-ペンチルオキシフェニ ル基、3,4-ジーn-ペンチルオキシフェニル基、4 - アダマンチルオキシフェニル基、3 - アダマンチルオ

キシフェニル基、2-アダマンチルオキシフェニル基、4-イソボロニルオキシフェニル基、3-イソボロニルオキシフェニル基、2-イソボロニルオキシフェニル基、等が挙げられこれらは上記範囲内であればさらに置換してもよく上記例以外の置換基に限定されない。これらの置換基は、下記に示す置換基によって置換されていてもよい。

【0045】R1の置換基を有してもよいアラルキル基 としては、好ましくは炭素数7~30、さらに好ましく は炭素数8~25の、例えば、フェニルエチル基、トリ ルフェニルエチル基、キシリルフェニルエチル基、エチ ルフェニルエチル基、プロピルフェニルエチル基、4-シクロペンチルフェニルエチル基、4-シクロヘキシル フェニルエチル基、4ーシクロヘプテニルフェニルエチ ル基、4-シクロオクタニルフェニルエチル基、2-シ クロペンチルフェニルエチル基、2-シクロヘキシルフ ェニルエチル基、2-シクロヘプテニルフェニルエチル 基、2-シクロオクタニルフェニルエチル基、3-シク ロペンチルフェニルエチル基、3-シクロヘキシルフェ ニルエチル基、3ーシクロヘプテニルフェニルエチル 基、3-シクロオクタニルフェニルエチル基、4-シク ロペンチルオキシフェニルエチル基、4-シクロヘキシ ルオキシフェニルエチル基、4-シクロヘプテニルオキ シフェニルエチル基、4-シクロオクタニルオキシフェ ニルエチル基、2-シクロペンチルオキシフェニルエチ ル基、2-シクロヘキシルオキシフェニルエチル基、2 -シクロヘプテニルオキシフェニルエチル基、2-シク ロオクタニルオキシフェニルエチル基、3-シクロペン チルオキシフェニルエチル基、3-シクロヘキシルオキ シフェニルエチル基、3-シクロヘプテニルオキシフェ ニルエチル基、3-シクロオクタニルオキシフェニルエ チル基、4-n-ペンチルフェニルエチル基、4-n-ヘキシルフェニルエチル基、4-n-ヘプテニルフェニ ルエチル基、4-n-オクタニルフェニルエチル基、2 - n - ペンチルフェニルエチル基、2 - n - ヘキシルフ ェニルエチル基、2-n-ヘプテニルフェニルエチル 基、2-n-オクタニルフェニルエチル基、3-n-ペ ンチルフェニルエチル基、3-n-ヘキシルフェニルエ チル基、3-n-ヘプテニルフェニルエチル基、3-n -オクタニルフェニルエチル基、2,6-ジーイソプロ ピルフェニルエチル基、2,3-ジーイソプロピルフェ ニルエチル基、2、4ージーイソプロピルフェニルエチ ル基、3,4-ジーイソプロピルフェニルエチル基、 2,6-ジーセーブチルフェニルエチル基、2,3-ジ - t - ブチルフェニルエチル基、2,4-ジー t - ブチ ルフェニルエチル基、3,4-ジーセーブチルフェニル エチル基、2,6-ジーn-ブチルフェニルエチル基、 2,3-ジーn-ブチルフェニルエチル基、2,4-ジ - n - ブチルフェニルエチル基、3,4-ジ-n-ブチ ルフェニルエチル基、2,6-ジーi-ブチルフェニル エチル基、2,3-ジーi-ブチルフェニルエチル基、 2, 4-ジ-i-ブチルフェニルエチル基、<math>3, 4-ジ- i - ブチルフェニルエチル基、2,6-ジーt-アミ ルフェニルエチル基、2、3-ジーセーアミルフェニル エチル基、2,4-ジーt-アミルフェニルエチル基、 3、4-ジーt-アミルフェニルエチル基、2、6-ジ - i - アミルフェニルエチル基、2,3-ジ-i-アミ ルフェニルエチル基、2,4-ジ-i-アミルフェニルエチル基、3, 4-ジ-i-アミルフェニルエチル基、 2,6-ジーn-ペンチルフェニルエチル基、2,3-ジーn-ペンチルフェニルエチル基、2,4-ジーn-ペンチルフェニルエチル基、3,4-ジーn-ペンチル フェニルエチル基、4ーアダマンチルフェニルエチル 基、3-アダマンチルフェニルエチル基、2-アダマン チルフェニルエチル基、4-イソボロニルフェニルエチ ル基、3-イソボロニルフェニルエチル基、2-イソボ ロニルフェニルエチル基、4-シクロペンチルオキシフ ェニルエチル基、4-シクロヘキシルオキシフェニルエ チル基、4-シクロヘプテニルオキシフェニルエチル 基、4-シクロオクタニルオキシフェニルエチル基、2 -シクロペンチルオキシフェニルエチル基、2-シクロ ヘキシルオキシフェニルエチル基、2-シクロヘプテニ ルオキシフェニルエチル基、2-シクロオクタニルオキ シフェニルエチル基、3-シクロペンチルオキシフェニ ルエチル基、3-シクロヘキシルオキシフェニルエチル 基、3-シクロヘプテニルオキシフェニルエチル基、3 -シクロオクタニルオキシフェニルエチル基、4-n-ペンチルオキシフェニルエチル基、4-n-ヘキシルオ キシフェニルエチル基、4-n-ヘプテニルオキシフェ ニルエチル基、4-n-オクタニルオキシフェニルエチ ル基、2-n-ペンチルオキシフェニルエチル基、2n-ヘキシルオキシフェニルエチル基、2-n-ヘプテ ニルオキシフェニルエチル基、2-n-オクタニルオキ シフェニルエチル基、3-n-ペンチルオキシフェニル エチル基、3-n-ヘキシルオキシフェニルエチル基、 3-n-ヘプテニルオキシフェニルエチル基、3-n-オクタニルオキシフェニルエチル基、2,6-ジーイソ プロピルオキシフェニルエチル基、2、3-ジーイソプ ロピルオキシフェニルエチル基、2、4-ジーイソプロ ピルオキシフェニルエチル基、3,4一ジーイソプロピ ルオキシフェニルエチル基、2,6-ジーt-ブチルオ キシフェニルエチル基、2,3-ジ-t-ブチルオキシ フェニルエチル基、2、4-ジーセーブチルオキシフェ ニルエチル基、3,4-ジーt-ブチルオキシフェニル エチル基、2,6-ジーn-ブチルオキシフェニルエチ ル基、2、3-ジーn-ブチルオキシフェニルエチル 基、2,4-ジ-n-ブチルオキシフェニルエチル基、 3,4-ジーn-ブチルオキシフェニルエチル基、2, ジーi-ブチルオキシフェニルエチル基、2,4-ジー

i-ブチルオキシフェニルエチル基、3,4-ジーi-ブチルオキシフェニルエチル基、2,6-ジーt-アミ ルオキシフェニルエチル基、2,3-ジーt-アミルオ キシフェニルエチル基、2、4-ジーt-アミルオキシ フェニルエチル基、3,4-ジーt-アミルオキシフェ ニルエチル基、2, 6-ジ-i-rミルオキシフェニル エチル基、2,3-ジーi-アミルオキシフェニルエチ ル基、2,4-ジ-i-アミルオキシフェニルエチル 基、3,4-ジーi-アミルオキシフェニルエチル基、 2,6-ジ-n-ペンチルオキシフェニルエチル基、 3-ジーn-ペンチルオキシフェニルエチル基、 2, 4-ジーn-ペンチルオキシフェニルエチル基、 3,4-ジーn-ペンチルオキシフェニルエチル基、4 - アダマンチルオキシフェニルエチル基、3 - アダマン チルオキシフェニルエチル基、2-アダマンチルオキシ フェニルエチル基、4-イソボロニルオキシフェニルエ チル基、3-イソボロニルオキシフェニルエチル基、2 ーイソボロニルオキシフェニルエチル基、あるいは、上 記アルキルがメチル基、プロピル基、ブチル基等に置き 換えたもの等が挙げられる。これらの置換基は、下記に 示す置換基によって置換されていてもよい。

【0046】また、上記基の更なる置換基としては、水 酸基、ハロゲン原子(フツ素、塩素、臭素、ヨウ素)、 ニトロ基、シアノ基、上記のアルキル基、メトキシ基、 エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒ ドロキシプロポキシ基、n-ブトキシ基、イソブトキシ 基、sec-ブトキシ基、t-ブトキシ基等のアルコキ シ基、メトキシカルボニル基、エトキシカルボニル基等 のアルコキシカルボニル基、ベンジル基、フエネチル 基、クミル基等のアラルキル基、アラルキルオキシ基、 ホルミル基、アセチル基、ブチリル基、ベンゾイル基、 シアナミル基、バレリル基等のアシル基、ブチリルオキ シ基等のアシロキシ基、上記のアルケニル基、ビニルオ キシ基、プロペニルオキシ基、アリルオキシ基、ブテニ ルオキシ基等のアルケニルオキシ基、上記のアリール 基、フエノキシ基等のアリールオキシ基、ベンゾイルオ キシ基等のアリールオキシカルボニル基を挙げることが できる。

【0047】これらの置換基はさらに置換基を有してもよく、置換アリール基や置換アラルキル基の炭素数がこの範囲内であればよい。

【0048】一般式(A)で表される化合物の具体例としては、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、も-ブチルビニルエーテル、シクロヘキシルビニルエーテル、ベンジルビニルエーテル、シクロヘキシルビニルエーテル、シクロヘキシルフェノキシエチルビニルエーテル、4-カルボニルシクロヘキシルフェノキシルフェノキシエチルビニルエーテル、4-カルボニルシクロヘキシルフェノキシエチルビニルエーテル、4-カルボニルシ

チルシクロヘキシルカルボニルオキシエチルビニルエーテル、シクロヘキシルチオエチルビニルエーテル、nーブチルシクロヘキシルカルボニルオキシエチルビニルエーテル等があげられるが、実質的にポリマー中のフェノール性水酸基との間でアセタール化反応をおこすものであればよく、上記のものに限定されない。上記の中では、tーブチルビニルエーテル、イソプロピルビニルエーテル、シクロヘキシルビニルエーテルが好ましく、tーブチルビニルエーテルがより好ましい。

【0049】反応において用いられる、2種以上のアルキルビニルエーテル化合物の使用量は、フェノール性水酸基を有するポリマー中のフェノール性水酸基に対して、5モル%~95モル%を用いることが好ましく、より好ましくは10モル%~60モル%であり、更に好ましくは15モル%~50モル%である。

【0050】反応に用いられる有機溶媒としては、不活性溶媒であれば特に制限されないが、プロピレングリコールメチルエーテルアセテート(PGMEA)、2一へプタノン、エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、テトラヒドロフラン等を挙げることができる。なかでも、PGMEA、2ーへプタノンが好ましい。

【0051】反応溶媒は、フェノール性水酸基を有するポリマー100重量部に対して、通常100~1000 重量部用いられる。

【0052】酸分解性ポリマー(a)は、1種単独でまたは2種以上を組み合わせて使用することができる。また、フェノール性水酸基を有するポリマーの分子量、組成比の異なる2種以上のフェノール性水酸基を有するポリマーから合成された酸分解性ポリマー(a)の組合せ、アセタール保護率の異なる2種以上の酸分解性ポリマーの組合せ等も感度、解像力、プロファイルその他のレジスト特性を発揮させるために選択することができる。

【0053】酸分解性ポリマー(a)の合成は、先に示した有機溶媒(アセタール化反応に対して不活性な溶媒)にフェノール性水酸基を有するポリマーを溶解し、必要に応じて減圧蒸留等で系中の水分を除去し、2種以上のアルキルビニルエーテル化合物を添加する。2種以上のアルキルビニルエーテル化合物は、同時に添加してもよいし、順次に添加してもよい。アセタール化反応は、酸性触媒の添加により進行する。

【0054】上記酸性触媒は無機酸、有機酸の何れも用いることができる。有機酸は残留金属不純物が無いことから好ましく、pートルエンスルホン酸、pートルエンスルホン酸ピリジニウム塩等がより好ましい。

【0055】アセタール化反応を停止させる目的で、塩 基化合物による中和を行うことが好ましい。この中和を 行わないと、酸が残存しレジストの貯蔵安定性を損なう 恐れがある。用いる塩基化合物としては、添加した触媒としての酸を中和し、水洗工程で塩が除去されればよく、特に限定されない。なかでも、有機塩基化合物は残留金属不純物が無いことから好ましく、具体的にはトリエチルアミン、トリメチルアミン、ピリジン、アミノピリジン、ピペラジン、イミダゾール等があげられ、トリエチルアミン、ピリジンが特に好ましい。

【0056】アセタール化反応を完了し、中和した後は、超純水等を用いて系中に残存している塩を除去することが好ましい。

【 0 0 5 7 】 一般式 (I) 、 (I I) 及び (I I I) で 表される繰り返し単位を有する酸分解性樹脂 (a) 具体 例としては、以下のものが挙げられる。

[0058]

【化4】

【0059】 【化5】

【0060】 【化6】

【0061】 【化7】

[0062]

【化8】

【0063】 【化9】

【0064】酸分解性ボリマー(a)の組成物中の含有量としては、該組成物の全固形分の重量に対して通常 $70\sim98$ 重量%であり、好ましくは $75\sim96$ 重量%であり、より好ましくは $80\sim96$ 重量%である。(b)活性光線または放射線の照射により酸を発生する化合物(以下、「光酸発生剤(b)」ともいう)

【0065】本発明で使用される光酸発生剤(b)としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている公知の光(400~200nmの紫外線、遠紫外線、特に好ましくは、g線、h線、i線、KrFエキシマレーザー光)、ArFエキシマレーザー光、電子線、X線、分子線またはイオンビームにより酸を発生する化合物及びそれらの混合物を適宜に選択して使用することができる。

【0066】また、その他の本発明に用いられる活性光線または放射線の照射により酸を発生する化合物として

は、たとえばジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等のオニウム塩、有機ハロゲン化合物、有機金属/有機ハロゲン化物、oーニトロベンジル型保護基を有する光酸発生剤、イミノスルフォネート等に代表される光分解してスルホン酸を発生する化合物、ジスルホン化合物、ジアゾケトスルホン、ジアゾジスルホン化合物等を挙げることができる。

【0067】また、これらの光により酸を発生する基、 あるいは化合物をポリマーの主鎖または側鎖に導入した 化合物を用いることができる。

【 O O 6 8 】 さらにV.N.R.Pillai,Synthesis,(1),1(19 80)、A.Abad etal,Tetrahedron Lett.,(47)4555(197 1)、D.H.R.Barton etal,J.Chem.Soc.,(C),329(1970)、米国特許第3,779,778号明細書、欧州特許第126,712号明細書等に記載の光により酸を発生する化合物も使用することができる。

【0069】上記活性光線または放射線の照射により分解して酸を発生する化合物の中で、特に有効に用いられるものについて以下に説明する。

(1)トリハロメチル基が置換した下記一般式(PAG1)で表されるオキサゾール誘導体または一般式(PAG2)で表されるS-トリアジン誘導体。

【0070】 【化10】

【0071】式中、 R^{201} は置換もしくは未置換のアリール基、 R^{202} は置換もしくは未置換のアリール基、 R^{202} は置換もしくは未置換のアリール基、 R^{202} は置換もしくは未置換のアリール基、 R^{202} は直換をしくは未置換のです。Yは塩素原子または臭素原子を示す。

【0072】具体的には以下の化合物を挙げることができるがこれらに限定されるものではない。

[0073]

【化11】

【0075】(2)下記の一般式(PAG3)で表されるヨードニウム塩、または一般式(PAG4)で表されるスルホニウム塩。

[0076]

【化13】

$$Ar^{1} \downarrow^{\bigoplus} Z^{\bigcirc} \qquad R^{204} \xrightarrow{\mathbb{R}^{205}} \mathbb{S}^{\bigoplus} Z^{\bigcirc}$$

$$R^{205} \qquad R^{205} \qquad R^{205} \qquad R^{206} \qquad R^{2$$

【0077】ここで式 Ar^1 、 Ar^2 は各々独立に置換もしくは未置換のアリール基を示す。 R^{203} 、 R^{204} 、 R^{205} は各々独立に、置換もしくは未置換のアルキル基、アリール基を示す。

【0078】Z-は対アニオンを示し、例えばBF₄-、

 AsF_6^- 、 PF_6^- 、 SbF_6^- 、 SiF_6^{2-} 、 $C1O_4^-$ 、 $CF_3SO_3^-$ 等のパーフルオロアルカンスルホン酸アニオン、ペンタフルオロベンゼンスルホン酸アニオン、ナフタレン-1-スルホン酸アニオン等の縮合多核芳香族スルホン酸アニオン、アントラキノンスルホン酸アニオン、スルホン酸基含有染料等を挙げることができるがこれらに限定されるものではない。

【0079】また R^{203} 、 R^{204} 、 R^{205} のうちの2つ及 VAr^1 、 Ar^2 はそれぞれの単結合または置換基を介して結合してもよい。

【0080】具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0081]

【化14】

[0082]

$$CI \longrightarrow I^{\oplus} \longrightarrow CI \longrightarrow C_{3} \longrightarrow OCH_{3} \quad (PA63-11)$$

$$F_{3}C \longrightarrow I^{\oplus} \longrightarrow CF_{3} \quad CF_{3}SO_{3}^{\oplus} \qquad (PA63-12)$$

$$H_{3}COOCH_{3} \longrightarrow COOCH_{3} \longrightarrow SO_{3}^{\oplus} \qquad (PA63-13)$$

$$CI \longrightarrow I^{\oplus} \longrightarrow CI \longrightarrow CI \longrightarrow COOCH_{3} \longrightarrow SO_{3}^{\oplus} \qquad (PA63-14)$$

$$CI \longrightarrow I^{\oplus} \longrightarrow CI \longrightarrow CI \longrightarrow SO_{3}^{\oplus} \qquad (PA63-14)$$

$$CI \longrightarrow I^{\oplus} \longrightarrow CI \longrightarrow CI \longrightarrow SO_{3}^{\oplus} \qquad (PA63-14)$$

$$CI \longrightarrow I^{\oplus} \longrightarrow CI \longrightarrow CI \longrightarrow SO_{3}^{\oplus} \qquad (PA63-15)$$

$$CI \longrightarrow I^{\oplus} \longrightarrow CI \longrightarrow CI \longrightarrow SO_{3}^{\oplus} \qquad (PA63-16)$$

$$CF_{3}SO_{3}^{\oplus} \longrightarrow CH_{3} \longrightarrow CH_$$

$$(PAG4-1) \qquad SO_3^{\Theta} \qquad (PAG4-2) \qquad (CH_3) \qquad (PAG4-2) \qquad (CH_3) \qquad (C$$

【0085】 【化18】

【0086】 【化19】

【 O O 8 7 】 一般式 (PAG 3)、 (PAG 4)で示される上記オニウム塩は公知であり、例えばJ.W.Knapczyketal, J.Am. Chem. Soc., 91,145(1969)、A.L. Maycoketal, J.Org. Chem., 35,2532,(1970)、E. Goethasetal, Bull. Soc. Chem. Belg., 73,546,(1964)、H.M. Leicester J.Ame. Chem. Soc., 51,3587(1929)、J.V. Crivelloetal, J.Polym. Chem. Ed., 18,2677(1980)、米国特許第2,807,648号明細書及び同4,247,473号明細書、特開昭53-101,331号公報等に記載の方法により合成することができる。

【0088】(3)下記一般式(PAG5)で表される ジスルホン誘導体または一般式(PAG6)で表される イミノスルホネート誘導体。

[0089]

【化20】

$$Ar^3 - SO_2 - SO_2 - Ar^4$$
 $R^{206} - SO_2 - O - N$ (PAG6)

【0090】式中、Ar³、Ar⁴は各々独立に置換もしくは未置換のアリール基を示す。R²⁰⁶は置換もしくは 未置換のアルキル基、アリール基を示す。Aは置換もし くは未置換のアルキレン基、アルケニレン基、アリーレン基を示す。

【0091】具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0092]

【化21】

$$CI \longrightarrow SO_2 - SO_2 \longrightarrow CI \longrightarrow H_3C \longrightarrow SO_2 - SO_2 \longrightarrow CH_3$$

$$H_3CO \longrightarrow SO_2 \cdot SO_2 \longrightarrow OCH_3 : H_3C \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PA@5-3) \longrightarrow (PA@5-4)$$

$$i^*_3C \longrightarrow SO_2 - SO_2 \longrightarrow Ci^*_3 \longrightarrow SO_2 - SO_2 \longrightarrow CI$$

$$(PA@5-6) \longrightarrow (PA@5-6) \longrightarrow (PA@5-6) \longrightarrow (PA@5-6) \longrightarrow (PA@5-8)$$

$$SO_2 - SO_2 \longrightarrow CH_3 \longrightarrow SO_2 - SO_2 \longrightarrow CH_3$$

$$(PA@5-7) \longrightarrow (PA@5-8) \longrightarrow (PA@5-10)$$

$$CI \longrightarrow SO_2 - SO_2 \longrightarrow CH_3 \longrightarrow (PA@5-10)$$

$$CI \longrightarrow SO_2 - SO_2 \longrightarrow CH_3 \longrightarrow (PA@5-10)$$

$$CI \longrightarrow SO_2 - SO_2 \longrightarrow CH_3 \longrightarrow (PA@5-10)$$

$$CI \longrightarrow SO_2 - SO_2 \longrightarrow CH_3 \longrightarrow (PA@5-10)$$

$$(PA@5-11) \longrightarrow (PA@5-12)$$

$$F \longrightarrow F \longrightarrow (PA@5-13) \longrightarrow F \longrightarrow i$$

$$(PA@5-14) \longrightarrow (PA@5-14)$$

【0093】 【化22】

[0094]

Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

【0095】(4)下記一般式(PAG7)で表される ジアゾジスルホン誘導体。

(PAG6-19)

[0096]

【化24】

【0097】ここでRは、直鎖、分岐または環状アルキル基、あるいは置換していてもよいアリール基を表す。 【0098】具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0099]

【化25】

(PAG6-20)

【0100】これらの活性光線または放射線の照射により分解して酸を発生する化合物の添加量は、組成物中の固形分を基準として、通常 $0.001\sim40$ 重量%の範囲で用いられ、好ましくは $0.01\sim20$ 重量%、更に好ましくは $0.1\sim5$ 重量%の範囲で使用される。活性光線または放射線の照射により分解して酸を発生する化合物の添加量が、0.001重量%より少ないと感度が低くなり、また添加量が40重量%より多いとレジストの光吸収が高くなりすぎ、プロファイルの悪化や、プロセス(特にベーク)マージンが狭くなり好ましくない。【0101】(c)溶剤

本発明の組成物は、上記各成分及び後述する任意成分を

溶解する機溶剤に溶かして支持体上に塗布する。ここで 使用する溶剤としては、エチレンジクロライド、シクロ ヘキサノン、シクロペンタノン、2-ヘプタノン、 $\gamma-$ ブチロラクトン、メチルエチルケトン、エチレングリコ ールモノメチルエーテル、エチレングリコールモノエチ ルエーテル、2-メトキシエチルアセテート、エチレン グリコールモノエチルエーテルアセテート、プロピレン グリコールモノメチルエーテル、プロピレングリコール モノメチルエーテルアセテート、トルエン、酢酸エチ ル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メ チル、エトキシプロピオン酸エチル、ピルビン酸メチ ル、ピルビン酸エチル、ピルビン酸プロピル、N, N-ジメチルホルムアミド、ジメチルスルホキシド、Nーメ チルピロリドン、テトラヒドロフラン等が好ましい。こ れらの有機溶剤は、1種単独でまたは2種以上を組み合 わせて使用することができる。

【0102】上記の中でも、好ましい有機溶剤としては2-ヘプタノン、アーブチロラクトン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、Nーメチルピロリドン、テトラヒドロフランを挙げることができる。

【0103】(本発明に使用されるその他の成分)本発明のポジ型フォトレジスト組成物には、樹脂成分として前記酸分解性ポリマー(a)以外に酸分解性基を含有していないアルカリ可溶性樹脂を配合することができ、これにより感度が向上する。

【 0 1 0 4 】酸分解基を含有していないアルカリ可溶性 樹脂(以下単に「アルカリ可溶性樹脂」という)は、ア ルカリに可溶な樹脂であり、ポリヒドロキシスチレン、 ノボラック樹脂及びこれらの誘導体を好ましくあげるこ とができる。またローヒドロキシスチレン単位を含有す る共重合樹脂もアルカリ可溶性であれば用いることがで きる。

【0105】なかでも、ポリ(pーヒドロキシスチレン)、ポリ(pー/mーヒドロキシスチレン)共重合体、ポリ(pー/oーヒドロキシスチレン)共重合体、ポリ(pーヒドロキシスチレン/スチレン)共重合体が好ましく用いられる。更にポリ(4ーヒドロキシー3ーメチルスチレン)、ポリ(4ーヒドロキシー3,5ージメチルスチレン)の様なポリ(アルキル置換ヒドロキシスチレン)樹脂、上記樹脂のフェノール性水酸基の一部がアルキル化またはアセチル化された樹脂もアルカリ可溶性であれば好ましく用いられる。

【0106】更に、上記樹脂のフェノール核の一部(全フェノール核の30mo1%以下)が水素添加されてい

る場合は、樹脂の透明性が向上し、感度、解像力、プロファイルの矩形形成の点で好ましい。

【0107】本発明において、上記酸分解性基を含有しないアルカリ可溶性樹脂の組成物中の添加量としては、組成物の固形分の全重量に対して、好ましくは2~60重量%であり、より好ましくは5~30重量%である。【0108】本発明のボジ型フォトレジスト組成物には、必要に応じて更に酸分解性溶解促進化合物、染料、可塑剤、界面活性剤、光増感剤、塩基性化合物、及び現像液に対する溶解性を促進させる化合物等を含有させることができる。

【 O 1 O 9 】本発明のポジ型フォトレジスト組成物には、(d)フッ素系及び/またはシリコン系界面活性剤(フッ素系界面活性剤、シリコン系界面活性剤及びフッ素原子、シリコン原子の両方を含む界面活性剤)を含有することができる。

【 O 1 1 O 】これらの界面活性剤として、例えば特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号、米国特許第5405720、5360692、5529881、5296330、5436098、5576143、5294511、5824451号公報記載の界面活性剤を挙げることができ、下記市販の界面活性剤をそのまま用いることもできる。

【0111】使用できる市販の界面活性剤として、例えばエフトップEF301、EF303、(新秋田化成(株)製)、フロラードFC430、431(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(大日本インキ化学工業(株)製)、サーフロンS-382、SC101、102、103、104、105、106(旭硝子(株)製)、トロイゾルS-366(トロイケミカル社製)等のフッ素系界面活性剤またはシリコン系界面活性剤を挙げることができる。またポリシロキサンポリマーKP-341(信越化学工業(株)製)もシリコン系界面活性剤として用いることができる。。

【 0 1 1 2 】これらの界面活性剤の配合量は、本発明の 組成物中の固形分100重量%当たり、通常0.01重 量%~2重量%、好ましくは0.01重量%~1重量% である。

【0113】これらの界面活性剤は1種単独であるいは 2種以上を組み合わせて用いることができる。

【0114】本発明のポジ型フォトレジスト組成物には、(e)塩基性化合物、より好ましくは有機塩基性化合物を用いることができる。これにより、保存時の安定性向上及びPED(Post Exposure Delay)による線巾変化が少なくなるため好ましい。

【0115】本発明で用いることのできる好ましい有機 塩基性化合物とは、フェノールよりも塩基性の強い化合 物である。中でも含窒素塩基性化合物が好ましい。好ま しい化学的環境として、下記式 $(A) \sim (E)$ 構造を挙げることができる。

[0116]

【化26】

$$R^{251}$$
 | ... (A)

【0117】ここで、 R^{250} 、 R^{251} 及び R^{252} は、同一または異なり、水素原子、炭素数 $1\sim6$ のアルキル基、炭素数 $1\sim6$ のアミノアルキル基、炭素数 $1\sim6$ のヒドロキシアルキル基または炭素数 $6\sim20$ の置換もしくは非置換のアリール基であり、ここで R^{251} と R^{252} は互いに結合して環を形成してもよい。

[0118]

【化27】

【0119】式中、 R^{253} 、 R^{254} 、 R^{255} 及 UR^{256} は、同一または異なり、炭素数 $1\sim6$ のアルキル基を示す。

【0126】上記の中でも、1,8ージアザビシクロ〔5.4.0〕ウンデカー7ーエン、1,5ージアザビシクロ〔4.3.0〕ノナー5ーエンが特に好ましい。【0127】一分子中に異なる化学的環境の窒素原子を2個以上有する含窒素塩基性化合物としては、特に好ましくは、置換もしくは未置換のアミノ基と窒素原子を含む環構造の両方を含む化合物もしくはアルキルアミノ基を有する化合物である。特に好ましい化合物として、グアニジン、1,1ージメチルグアニジン、1,1,3,3,一テトラメチルグアニジン、2ーアミノピリジン、3ーアミノピリジン、4ーアミノピリジン、2ージメチルアミノピリジン、4ージメチルアミノピリジン、2ージエチルアミノピリジン、4ージメチルアミノピリジン、2ージエチルアミノピリジン、2ーアミノー3ーメチルピリジン、2ーアミノー4

【0120】更に好ましい化合物は、窒素含有環状化合物あるいは一分子中に異なる化学的環境の窒素原子を2個以上有する含窒素塩基性化合物である。

【0121】窒素含有環状化合物としては、多環構造であることがより好ましい。窒素含有多環環状化合物の好ましい具体例としては、下記一般式(F)で表される化合物が挙げられる。

[0122]

【化28】

【0123】式(F)中、Y、Zは、各々独立に、ヘテロ原子を含んでいてもよく、置換してもよい直鎖、分岐、環状アルキレン基を表す。

【0125】 【化29】

ルイミダゾール、トリフェニルイミダゾール、メチルジフェニルイミダゾール等が挙げられるがこれに限定されるものではない。

【0128】これらの塩基性化合物は、単独であるいは2種以上一緒に用いられる。塩基性化合物の使用量は、組成物(固形分)100重量部に対し、通常、0.001~10重量部、好ましくは0.01~5重量部である。0.001重量部未満では上記効果が得られない。一方、10重量部を超えると感度の低下や非露光部の現像性が悪化する傾向がある。

【 0 1 2 9 】本発明で使用できる現像液に対する溶解促進性化合物としては、フェノール性水酸基を 2 個以上、またはカルボキシ基を 1 個以上有する分子量 1,000以下の低分子化合物である。カルボキシ基を有する場合は上記と同じ理由で脂環族または脂肪族化合物が好ましい。

【0130】これら溶解促進性化合物の好ましい添加量は、本発明におけるポリマーに対して2~50重量%であり、更に好ましくは5~30重量%である。50重量%を越えた添加量では、現像残渣が悪化し、また現像時にパターンが変形するという新たな欠点が発生して好ましくない。

【0131】このような分子量1000以下のフェノール化合物は、例えば、特開平4-122938号公報、特開平2-28531号公報、米国特許第4916210号明細書、欧州特許第219294号明細書等に記載の方法を参考にして、当業者に於て容易に合成することが出来る。

【0132】フェノール化合物の具体例を以下に示すが、本発明で使用できる化合物はこれらに限定されるものではない。

【0133】レゾルシン、フロログルシン、2,3,4 ートリヒドロキシベンゾフェノン、2,3,4,4′ー テトラヒドロキシベンゾフェノン、2,3,4,3′, 4′,5′-ヘキサヒドロキシベンゾフェノン、アセト ンーピロガロール縮合樹脂、フロログルコシド、2, 4, 2', 4'-ビフェニルテトロール、4, 4'ーチ オビス(1,3-ジヒドロキシ)ベンゼン、2,21, 4,4'-テトラヒドロキシジフェニルエーテル、2, 2′, 4, 4′-テトラヒドロキシジフェニルスルフォ キシド、2,2',4,4'-テトラヒドロキシジフェ ニルスルフォン、トリス(4-ヒドロキシフェニル)メ タン、1,1-ビス(4-ヒドロキシフェニル)シクロ ヘキサン、4, $4-(\alpha-x$ チルベンジリデン) ビスフ ェノール、 α , α' , α'' ートリス(4 ーヒドロキシフ ェニル)-1, 3, 5-トリイソプロピルベンゼン、 α , α' , α'' ートリス (4ーヒドロキシフェニル)ー 1-エチルー4-イソプロピルベンゼン、1,2,2-トリス(ヒドロキシフェニル)プロパン、1,1,2-トリス(3,5-ジメチル-4-ヒドロキシフェニル)

プロパン、2, 2, 5, 5-テトラキス(4-ヒドロキシフェニル)ヘキサン、1, 2-テトラキス(4-ヒドロキシフェニル)エタン、1, 1, 3-トリス(ヒドロキシフェニル)ブタン、パラ〔 α , α , α , α -テトラキス(4-ヒドロキシフェニル)〕ーキシレン等を挙げることができる。

【0134】好適な染料としては油性染料及び塩基性染料がある。具体的にはオイルイエロー#101、オイルイエロー#101、オイルグリーンBG、オイルブルーBOS、オイルブルー#603、オイルブラックBY、オイルブラックBS、オイルブラックT-505(以上オリエント化学工業株式会社製)、クリスタルバイオレット(CI42555)、メチルバイオレット(CI42535)、ローダミンB(CI45170B)、マラカイトグリーン(CI42000)、メチレンブルー(CI52015)等を挙げることができる。

【0135】露光による酸発生率を向上させる為、さら に下記に挙げるような光増感剤を添加することができ る。好適な光増感剤としては、具体的にはベンゾフェノ ン、p,p'ーテトラメチルジアミノベンゾフェノン、 p, p'ーテトラエチルエチルアミノベンゾフェノン、 2-クロロチオキサントン、アントロン、9-エトキシ アントラセン、アントラセン、ピレン、ペリレン、フェ ノチアジン、ベンジル、アクリジンオレンジ、ベンゾフ ラビン、セトフラビン-T、9,10-ジフェニルアン トラセン、9-フルオレノン、アセトフェノン、フェナ ントレン、2-ニトロフルオレン、5-ニトロアセナフ テン、ベンゾキノン、2-クロロ-4-ニトロアニリ ン、Nーアセチルーpーニトロアニリン、pーニトロア ニリン、、N-アセチル-4-ニトロ-1-ナフチルア ミン、ピクラミド、アントラキノン、2-エチルアント ラキノン、2-tert-ブチルアントラキノン1,2-ベ ンズアンスラキノン、3-メチル-1,3-ジアザー 1,9-ベンズアンスロン、ジベンザルアセトン、1, 2ーナフトキノン、3,3'ーカルボニルービス(5, 7-ジメトキシカルボニルクマリン)及びコロネン等で あるが、これらに限定されるものではない。

【 0 1 3 6 】また、これらの光増感剤は、光源の遠紫外 光の吸光剤としても使用可能である。この場合、吸光剤 は基板からの反射光を低減し、レジスト膜内の多重反射 の影響を少なくさせることで、定在波改良の効果を発現 する。

【0137】本発明においては、上記フッ素系及び/又はシリコン系界面活性剤以外の他の界面活性剤を加えることもできる。具体的には、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエー

テル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ボリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤等を挙げることができる。

【0138】これらの界面活性剤の配合量は、本発明の 組成物中の固形分100重量%当たり、通常、2重量% 以下、好ましくは1重量%以下である。

【 0 1 3 9 】 これらの界面活性剤は単独で添加してもよいし、また、いくつかの組み合わせで添加することもできる。

【0140】本発明に係わるポジ型フォトレジスト組成物を精密集積回路素子の製造に使用されるような基板 (例:シリコン/二酸化シリコン被覆)上にスピナー、コーター等の適当な塗布方法により塗布した後プリベークを行い、所定のマスクを通して露光し、ポストベークを行い現像することにより良好なレジストパターンを得ることができる。ここで露光光としては、好ましくは250nm以下の波長の遠紫外線である。具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、 F_2 エキシマレーザー(157nm)、X線、電子ビーム等が挙げられる。

【0141】本発明のポジ型フォトレジスト組成物の現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ロープロピルアミン等の第一アミン類、ジエチルアミン、ジーローブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ドリエチルアミン、メチルエタノールアミン、トリエタノールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩、ピロール、ピヘリジン等の環状アミン類等のアルカリ性水溶液を使用することができる。

【 0 1 4 2 】更に、上記アルカリ性水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。

[0143]

【実施例】以下、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。

【 0 1 4 4 】 合成例 1 (フェノール性水酸基を有するポリマー: 樹脂 R - 1 の合成)

p-アセトキシスチレン32.4g(0.2モル)をメタノール120m1に溶解し、窒素気流下撹拌し、60 $^{\circ}$ でにてアゾビスイソブチルニトリル(AIBN)0.033gを添加し、12時間撹拌を続けて重合を行った。反応液に希塩酸を添加してアセトキシ基を切断した後減圧蒸留により揮発分を留去した。得られた樹脂を再度メタノール150m1に溶解し、大量の水に添加して白色のポリマーを得た。このポリマーを再度メタノールに溶解し大量の水に添加する操作を3回繰り返し、得られた樹脂を真空乾燥器中60 $^{\circ}$ で24時間乾燥し、ポリ(p-ヒドロキシスチレン)(樹脂R-1)を得た。得られた樹脂の重量平均分子量は15,000 $^{\circ}$ あった。

【 0 1 4 5 】 合成例 2 (フェノール性水酸基を有するポリマー: 樹脂 R - 2 の合成)

定法に従って、脱水、蒸留精製したp-tert-ブト キシスチレンモノマー35.25g(0.2モル)及び p-tert-ブチルスチレン2. 42g(0.015 1モル)をテトラヒドロフラン100m1に溶解した。 窒素気流及び撹拌下、83℃にてアゾビスイソブチルニ トリル(AIBN) O. 033gを3時間おきに3回添 加し、最後に更に6時間撹拌を続けることにより、重合 反応を行った。反応液をヘキサン1200m1に投入 し、白色の樹脂を析出させた。得られた樹脂を乾燥後、 テトラヒドロフラン150m1に溶解した。これに4N 塩酸を添加し、6時間加熱還流することにより加水分解 させた後、51の超純水に再沈し、この樹脂を沪別し、 水洗、乾燥した。更にテトラヒドロフラン200m1に 溶解し、5Lの超純水に激しく撹拌しながら滴下、再沈 を行った。この再沈操作を3回繰り返した。得られた樹 脂を真空乾燥器中で60℃、24時間乾燥し、ポリ(p ーヒドロキシスチレン/p-tert-ブチルスチレ ン) 共重合体(樹脂R-2)を得た。得られた樹脂の重 量平均分子量は10,000であった。

【0146】合成例3 (フェノール性水酸基を有するポリマー: 樹脂R-3の合成)

p-ヒドロキシスチレン40g(0.33モル)、アクリル酸 t e r t - ブチル10.7g(0.08モル)をジオキサン50gに溶解しアゾビスイソブチルニトリル(AIBN)8gを加えて、窒素気流下60℃にて8時間加熱撹拌を行った。反応液を1200m1のヘキサンに投入し、白色の樹脂を析出させた。得られた樹脂を乾燥後、アセトンに溶解し、5Lの超純水に激しく撹拌しながら滴下、再沈を行った。この再沈操作を3回繰り返した。得られた樹脂を真空乾燥器中で60℃、24時間乾燥し、ポリ(p-ヒドロキシスチレン/t e r t - ブチルアクリレート)共重合体(樹脂R-3)を得た。得られた樹脂の重量平均分子量は21, 000であった。【0147】合成例4(酸分解性ポリマー(a):ポリ

マーB-1の合成)

日本曹達(株)製のポリ(p-ヒドロキシスチレン) (樹脂R-4) (分子量10000) 50gをプロピレ ングリコールモノメチルエーテルアセテート(PGME A) 240gに溶解し、この溶液を60℃、20mmH gまで減圧して約40gの溶剤を系中に残存している水 と共に留去した。20℃まで冷却し、エチルビニルエー テル6.1g、別途合成したシクロヘキシルフェノキシ エチルビニルエーテル4.0gとパラトルエンスルホン 酸0.02gを添加し、室温にて1時間撹拌した。その 後、トリエチルアミン〇. 〇2gを添加して中和し、酢 酸エチル240g、水140gにより抽出操作を3回行 った。得られたポリマーをB-1とした。

【0148】合成例5~13(酸分解性ポリマー

(a):ポリマーB-2~B-10の合成)

表1に示すフェノール性水酸基を有するポリマー(幹ポ リマー)、2種の各各のアルキルビニルエーテルを用い た以外は合成例4と同様にして酸分解性ポリマーを合成。 し、得られたポリマーをB-2~B-10とした。ま た、比較例用樹脂(C-1)を、アルキルビニルエーテ ルを表1に記載の1種のみを用いる以外は、上記と同様 にして合成した。

[0149]

【表1】

表 1	
-----	--

表 1				
合成例	酸分解性	幹がリマー	アルキルと "ニル	アルキルヒ*ニル
	ポ リマー		エーテル 1	エーデル 名
		(50g)	()内g	()内g
5	B - 2	R - 1	エチルヒ。ニル	シクロヘキシルフェノキシエチルと"ニル
			1-jル (6.1g)	エーデル(9.6g)
6	B 3	R - 2	エチルヒ*ニル	t フ*チルシクロヘキシルカルホ*ニルオキシエチルヒ*ニル
			1-7ル (6.1g)	エーデル(12.1g)
7	B - 4	R - 3	ユチルヒ *ニル	シクロヘキシルエチルと゛ニル
			1-71 (6.1g)	エーテル(11.3g)
8	B - 5	R - 1	イソフ*チルと*ニル	シクロヘキシルチオエチルピ゛ニル
			1-71 (6.1g)	エーテル(13.5g)
9	B – 6	R – 2	エチルヒ ^ニル	n-フ*チルシクロヘキシルカルホ*ニルオキシエチルヒ*ニル
		<u> </u>	1-71 (6.1g)	エーテル(9.7g)
1 0	B - 7	R – 3	イソフ*チルヒ*ニル	フェノキシエチルと゛ニル
			1-7ル (6.1g)	I-FN(7.8g)
1 1	B – 8	R - 4	ュチルヒ *ニル	4ーカルな*ニルシクロヘキシあフェノキシエチルヒ*ニル
			1-71 (6.1g)	I-71/(8.8g)
1 2	B – 9	R - 4	イソフトチルヒ ニル	<u>ペンジルピニル</u>
			ェーテル (7.1g)	エーテル(9.1g)
13	B - 1 0	R - 4	エチルヒ ゛ニル	シクロヘキシルビ*ニル
			1-71 (6.1g)	I-fl/(8.8g)
比較例	C - 1	R - 4	エチルヒ゛ニル	
用樹脂			1-7₺(8.5g)	

【0150】上記酸分解性ポリマーB-1~B-10及 びC-1の各溶液を、PGMEA中の固形分濃度が20 重量%となるように調整して、下記実施例及び比較例に 用いた。

【0151】実施例1~12、比較例1(ポジ型フォト レジスト組成物の調製と評価)

下記表2に示す各成分をPGMEA8. 4gに溶解し、 0. 1μmのフィルターで沪過してポジ型フォトレジス ト組成物を調製した。酸分解性ポリマーは全てPGME A30%溶液をそれぞれ7.66g用いた。

[0152]

【表2】

表 2				
	酸分解性	光酸発生剤	界面活性剤	塩基性化合物
	赤°リ? ー	()内g		()内g
実施例 1	B-1	D 1(0.04g)	F-1	DBN (0.01g)
		D-3(0.06g)		
実施例 2	B-2	D-2(0.11g)	F-1	DBM (0.01g)
実施例3	B-3	D-3(0.10g)	F-2	DBN (0.01g)
実施例4	B-4	D-1(0.09g)	F-1	DBN (0.01g)
実施例 5	B-5	D-2(0.10g)	F-2	DMAP(0.02g)
実施例 6	B-6	D-1(0.10g)	F-1	トリオクチルアミン
				(0.01g)
実施例 7	B-7	D-2(0.11g)	F-2	DMAP(0.02g)
実施例8	B-8	D-1(0.04g)	F-1	DBN (0.01g)
		D-3(0.06g)		
実施例 9	B-9	D-2(0.11g)	F-1	トリオクチルアミン
				(0.01g)
実施例10	B-10	D 1(0.10g)	F-1	DMAP(0.02g)
実施例11	B-1	D 1(0.04g)		DBN (0.01g)
		D 3(0.06g)		
実施例12	B-1	D 1(0.10g)		_
比較例1	C-1	D 1(0.10g)	F-1	DBN (0.01g)

界面活性剤の量は、全てレジスト溶液に対して100ppm。

【0153】 【化30】

$$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)_{3} S^{\oplus} \left(\begin{array}{c} \\ \\ \\ \end{array} \right)_{3}$$

【 0 1 5 4 】界面活性剤として用いた「F-1」はメガファックR 0 8 (大日本インキ化学工業(株)製)、「F-2」はトロイゾルS-366 (トロイケミカル (株) 製)を示す。

【0156】このポジ型フォトレジスト組成物を、スピンコーターを用いて、ヘキサメチルジシラザン処理を施したシリコンウエハー上に均一に塗布し、120℃で90秒間ホットプレート上で加熱乾燥を行い、0.4μm

のレジスト膜を形成させた。このレジスト膜に対し、K rFエキシマレーザーステッパー (NA:0.63)を 用い透過率6%のハーフトーンコンタクトホール用マスクを使用してパターン露光し、露光後すぐに90℃で90秒間ホットプレート上で加熱した。更に2.38%テトラメチルアンモニウムヒドロオキサイド水溶液で23℃、60秒間現像し、30秒間純水にてリンスした後乾燥した。

【0157】得られたパターンを走査型電子顕微鏡にて 観察し、下記のようにレジストの性能を評価した。

【0158】感度は、マスク上の径 0.22μ mのコンタクトホールが径 0.18μ mのパターンを与える最小露光エネルギー(最小露光量)で決定した。

【0159】限界解像力は、この最小露光量で解像できる限界解像力(コンタクトホール径:μm)で表した。 【0160】現像欠陥については、6インチシリコンウエハー上にポジ型フォトレジスト組成物を塗布し、上記と同様に露光、現像し、得られたパターン上の現像欠陥に対応する異物の数を測定し、現像欠陥の数が非常に少ないものを◎、少ないものを○、多いものを×とした。

【 0 1 6 1 】 リニアリティは、マスクパターンがどの程度忠実に転写されるかを表す。マスクパターン(マスク上のコンタクトホール径)を横軸に、パターン転写サイズ(得られたコンタクトホール径)を縦軸にした場合、傾きが1に近いほどリニアリティが高いことを表す。

【0162】ドライエッチング耐性:シリコンウエハー上にポジ型フォトレジスト組成物を塗布し、ベイクし、DES-215R活性イオンエッチャーをプラズマシステムとして用いてエッチングした。エッチング条件は、150W、10°C、20mmTorr、使用ガスは10

 $sccm酸素ガスと40sccmCF_4ガスの混合ガス$ であった。エッチング速度は、同条件下でエッチングしたノボラックベースのレジストの値を1.00とし、その相対値にて評価した。数値が1.0に近づいているも

のが良好なものとなる。結果を表3に示した。【0163】【表3】

表 3

	限界解像力	現像欠陥	リニアリティ	ト゛ライエッチンク゛	感度
	(mm)			耐性	(mj/cm ²)
実施例1	0.14	Ø	1.03	1.07	4 7
実施例 2	0.15	0	1.02	1.06	4 9
実施例3	0.14	0	1.04	1.06	4 6
実施例4	0.14	0	1.03	1.05	4 8
実施例 5	0.15	(0)	1.02	1.06	48
実施例 6	0.15	0	1.02	1.06	4 6
実施例7	0.14	0	1.04	1.05	47
実施例8	0.14	0	1.03	1.06	4 7
実施例 9	0.15	0	1.03	1.05	4 6
実施例10	0.14	0	1.04	1.07	4 9
実施例11	0.15	0	1.19	1.06	48
実施例12	0.14	0	1.21	1.07	4 9
比較例1	0.17	0	1.28	1.35	7 3

【 0 1 6 4 】上記表 3 に示すように、本発明に係わるポジ型フォトレジスト組成物は、限界解像力に優れ、現像 欠陥が非常に少なく、且つリニアリティ、ドライエッチング耐性が良好である。

[0165]

【発明の効果】本発明に係わるポジ型フォトレジスト組

成物は、上記一般式(I)、(II)及び(III)で表される繰り返し単位を有する酸分解性ポリマー(a)を含有することにより、優れた限界解像力を有し、現像欠陥が非常に少なく、且つリニアリティ、ドライエッチング耐性が良好である。

フロントページの続き

(51) Int. Cl. ⁷	識別記号	F I	(参考)
COSL 25/18		CO8L 25/18	
G03F 7/004	501	G03F 7/004	501
	504		504
H O 1 L 21/027		H O 1 L 21/30	502B

Fターム(参考) 2H025 AA02 AA09 AB16 AC04 AD03

BE00 BE07 BE10 BF15 BG00

CB45 CC04 CC20 FA17

4J002 BC121 ER028 EU008 EU048

EU078 EU118 EU128 EU138

EU186 EU216 EU238 EV216

EV236 EV256 EV296 EV318

EX007 FD206 FD208 FD317

GP03

4J100 AB02T AB07P AB07Q AB07R

ABO7S ALO3S BA02P BA02Q

BAO3R BA11Q BA15Q BA15S

BA51Q BC04P BC04Q BC43Q

CA03 CA05 CA06 JA38