```
In [140... import pandas as pd
import numpy as np
from google.colab import drive
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import os
import yfinance as yf

In [141... drive.mount('/content/drive')
df_call = pd.read_csv('/content/drive/My Drive/CapstoneProject/IVSurfaceWay/Data/2025-08-19spx_call_options.csv')
df_put = pd.read_csv('/content/drive/My Drive/CapstoneProject/IVSurfaceWay/Data/2025-08-19spx_put_options.csv')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

In [291... PATH = '/content/drive/My Drive/CapstoneProject/IVSurfaceWay/Result'
DATE = '2025-08-19'
```

Data Cleaning

In [142... def get_current_spot_price(date):

```
spx = yf.Ticker("^SPX")
           hist = spx.history(start=date) # Get data for July 15, 2024
           spot price = float(hist['Close'].iloc[0])
           return spot price
         SPOT = get_current_spot_price(DATE)
In [143... def clean_df(df, DATE=DATE):
           temp df = df.copy()
           temp df["expirationDate"] = pd.to datetime(temp df["expirationDate"])
           date = pd.to datetime(DATE)
           temp df['T'] = (temp df["expirationDate"]-date).dt.days
           temp_df.rename(columns = {"strike":"K", "lastPrice":'price', 'impliedVolatility':'IV'}, inplace = True)
           temp_df = temp_df[(temp_df['openInterest'] >= 1) | (temp_df['volume'] >= 1)]
           temp_df = temp_df[(temp_df['K'] <= SPOT*1.25) & (temp_df['K'] >= SPOT*0.75)]
           temp df = temp df[temp df['T'] <= 200]
           temp_df = temp_df[temp_df['IV'] > 0.001]
           return temp_df
```

```
In [144... cleaned call = clean df(df call)
          cleaned put = clean df(df put)
In [145... cleaned_call.head(1)
Out[145...
                    contractSymbol lastTradeDate
                                                      K price
                                                                   bid
                                                                         ask
                                                                                 change percentChange volume openInterest
                                                                                                                                 IV inTheMor
                                      2025-08-19
          0 SPXW250819C05000000
                                                 5000.0 1425.9 1402.3 1420.5 152.34998
                                                                                             11.962623
                                                                                                           1.0
                                                                                                                        1.0 1.375003
                                                                                                                                            Ti
                                   15:03:11+00:00
In [146... cleaned put.head(1)
Out [146...
                    contractSymbol lastTradeDate
                                                       K price bid ask change percentChange volume openInterest
                                                                                                                          IV inTheMoney con
                                       2025-08-14
                                                                             0.0
          12 SPXW250819P05000000
                                                  5000.0 0.05 0.0 0.05
                                                                                            0.0
                                                                                                   47.0
                                                                                                              936.0 1.359378
                                                                                                                                    False
                                    19:30:15+00:00
In [304... # graph raw
          def graph_raw(datadf, Z='IV', fst_axis=None, second_axis=None,
                        title='3D Scatter Plot of Option Prices', spot=SPOT,
                        path=None, date=None, DATE=DATE):
           # datadf["expirationDate"]= pd.to_datetime(datadf["expirationDate"])
            # date = pd.to datetime(DATE)
           # datadf['T'] = (datadf["expirationDate"]-date).dt.days
           # datadf['K'] = datadf['strike']
           X vals = datadf['K']
           Y vals = datadf['T']
           Z_vals = datadf[Z]
            fig = plt.figure(figsize=(14, 10))
            ax = fig.add_subplot(111, projection='3d')
            ax.scatter(X_vals, Y_vals, Z_vals, c=Z_vals, cmap='viridis')
            ax.set_xlabel('Strike')
            ax.set_ylabel('Days to Expiration')
            ax.set_zlabel('IV')
            ax.set_title(f'{title} of {date} with spot:{round(spot, 2)}')
            fig.colorbar(ax.scatter(X_vals, Y_vals, Z_vals, c=Z_vals, cmap='viridis'),
                         ax=ax, shrink=0.5, label=Z)
            ax.view_init(fst_axis, second axis)
            if path is not None:
```

```
plt.savefig(path + f'/{date}BlendedIVScatter.png')
else:
  plt.show()
```

In [300... graph_raw(cleaned_call)

In [149... graph_raw(cleaned_put)

IV blending

```
In [293... def blend data(cleaned calls, cleaned puts, spot=SPOT, path=None, date=None):
             df_call = cleaned_calls[['K', 'T', 'IV', 'openInterest']].copy()
             df_put = cleaned_puts[['K', 'T', 'IV', 'openInterest']].copy()
             # Far-from-spot slices
             sliced_call = df_call[df_call['K'] >= spot * 1.02]
             sliced put = df put[df put['K'] <= spot * 0.98]</pre>
             # Near-the-money slices (±2%)
             small_sliced_call = df_call[(df_call['K'] \le spot * 1.02) & (df_call['K'] >= spot * 0.98)]
             small sliced put = df put[(df put['K'] \leq spot * 1.02) & (df put['K'] > spot * 0.98)]
             # Merge near-the-money calls and puts on strike & maturity
             merged df = pd.merge(
                 small sliced call, small sliced put,
                 on=['K', 'T'], suffixes=('_call', '_put')
             # Weighted IV
             merged df['IV'] = (
                 merged df['IV call'] * merged df['openInterest call'] +
                 merged_df['IV_put'] * merged_df['openInterest_put']
             ) / (merged_df['openInterest_call'] + merged_df['openInterest_put'])
             # Keep only desired columns
             merged_df = merged_df[['K', 'T', 'IV', 'openInterest_call', 'openInterest_put']]
             # Final blended dataset: far calls + merged + far puts
             final_df = pd.concat([sliced_call, merged_df, sliced_put], ignore_index=True)
             # Add call and put price to the final df based on cleaned call and cleaned puts
             final_df = pd.merge(
               final_df,
               cleaned_calls[['K', 'T', 'price']].rename(columns={'price': 'call_price'}),
               on=['K', 'T'],
               how='left'
             final_df = pd.merge(
               final_df,
```

```
cleaned_puts[['K', 'T', 'price']].rename(columns={'price': 'put_price'}),
  on=['K', 'T'],
  how='left'
)

if path is not None:
  final_df.to_excel(path + f'/{date}BlendedIV.xlsx')

return final_df
```

In [296...

blended_df = blend_data(cleaned_call, cleaned_put, path=PATH, date=DATE)
blended_df

Out[296...

	K	Т	IV	openInterest	openInterest_call	openInterest_put	call_price	put_price
0	6540.0	0	0.140634	2251.0	NaN	NaN	0.03	132.32
1	6545.0	0	0.145516	530.0	NaN	NaN	0.03	125.46
2	6550.0	0	0.149911	1188.0	NaN	NaN	0.03	145.80
3	6555.0	0	0.154794	719.0	NaN	NaN	0.03	118.80
4	6560.0	0	0.159676	1241.0	NaN	NaN	0.03	88.39
•••	•••			•••			•••	
6350	6175.0	185	0.150090	2100.0	NaN	NaN	459.75	168.80
6351	6200.0	185	0.147361	2915.0	NaN	NaN	518.75	174.79
6352	6225.0	185	0.144605	2343.0	NaN	NaN	460.09	168.84
6353	6250.0	185	0.141871	1491.0	NaN	NaN	452.86	173.10
6354	6275.0	185	0.139037	354.0	NaN	NaN	463.87	188.45

6355 rows × 8 columns

ML part

```
In [165... import torch
         from torch import nn
         from torch.utils.data import Dataset, DataLoader
         import torch.nn.functional as F
         from sklearn.preprocessing import MinMaxScaler
         from collections import defaultdict
         class OptionPriceDataset(Dataset):
             def __init__(self, df):
                 self.scaler X = MinMaxScaler()
                 self.scaler y = MinMaxScaler()
                 # Fit and transform inputs
                 self.X = self.scaler_X.fit_transform(df[['K', 'T']].values)
                 self.y = self.scaler y.fit transform(df[['IV']].values)
             def len (self):
                 return len(self.y)
             def __getitem__(self, idx):
                 x = torch.tensor(self.X[idx], dtype=torch.float32)
                 y = torch.tensor(self.y[idx], dtype=torch.float32)
                 return x, y
             def inverse_transform_y(self, y_scaled_tensor):
                 y_np = y_scaled_tensor.detach().cpu().numpy()
                 return self.scaler_y.inverse_transform(y_np)
         class FeedForwardRegressor(nn.Module):
             def __init__(self, num_inputs, num_hidden, num_outputs=1):
                 super(). init ()
                 self.net = nn.Sequential(
                     nn.Linear(num_inputs, num_hidden),
                     nn.Softplus(),
                     nn.Linear(num_hidden, num_hidden),
                     nn.Softplus(),
                     nn.Linear(num_hidden, num_outputs)
             def forward(self, x):
                 return self.net(x)
             def loss(self, y_pred, y_true):
                 return F.mse_loss(y_pred, y_true)
             def training_step(self, batch):
                 X, y = batch
```

```
y hat = self(X)
        return self.loss(y hat, y)
    def configure optimizers(self, lr=0.01):
        return torch.optim.Adam(self.parameters(), lr)
class Trainer:
    def __init__(self, model, train_loader, device='cpu', lr=0.01):
        self.model = model.to(device)
        self.train loader = train loader
        self.device = device
        self.lr = lr
        self.best score = float('inf')
        self.best_model_state = None
    def fit(self, epochs=100):
        optimizer = self.model.configure optimizers(self.lr)
       for epoch in range(epochs):
            self.model.train()
            for batch in self.train loader:
                optimizer.zero_grad()
                loss = self.model.training step(batch)
                loss.backward()
                optimizer.step()
           if loss < self.best_score:</pre>
                self.best score = loss
                self.best_model_state = self.model.state_dict()
    def load best model(self):
        if self.best_model_state:
            self.model.load state dict(self.best model state)
def full train(datadf, epochs=100, learnR=0.01):
    # Create a new model instance each time
    model = FeedForwardRegressor(num_inputs=2, num_hidden=64)
    # Prepare dataset
   train_dataset = OptionPriceDataset(datadf)
   train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
    # Train
   trainer = Trainer(model, train_loader, lr=learnR)
    trainer.fit(epochs)
    trainer.load_best_model()
    return model, train_loader
```

```
# Create
d202501013 = datadf
moneyness min = d202501013['K'].min()
moneyness max = d202501013['K'].max()
T \min = d202501013['T'].min()
T \max = d202501013['T'].\max()
# Step 1: Create meshgrid and model prediction surface
K_vals = np.linspace(moneyness_min, moneyness_max, 20)
T vals = np.linspace(T min, T max, 20)
grid = np.array([[K, T] for T in T_vals for K in K_vals]) # shape (400, 2)
# Normalize the input grid using the fitted scaler
scaler_X = train_loader.dataset.scaler_X
scaler y = train loader.dataset.scaler y
grid scaled = scaler X.transform(grid)
x_tensor = torch.tensor(grid_scaled, dtype=torch.float32)
# Model prediction (on normalized input)
model.eval()
with torch.no grad():
    call prices scaled = model(x tensor)
# Inverse-transform the output price to original scale
call prices np = scaler y.inverse transform(call prices scaled.cpu().numpy()).reshape(len(T vals), len(K vals))
# Prepare meshgrid for plotting
K vals grid, T vals grid = np.meshgrid(K vals, T vals)
# Step 2: Prepare scatter points from original df cleaned
df scatter = d202501013.copy()
scatter x = df scatter['K'].values
scatter_y = df_scatter['T'].values
scatter z = df_scatter['IV'].values
# Step 3: Plot surface + scatter
fig = plt.figure(figsize=(14, 10))
ax = fig.add subplot(111, projection='3d')
# Surface (predicted)
ax.plot_surface(K_vals_grid, T_vals_grid, call_prices_np.reshape(len(T_vals), len(K_vals)), alpha=0.7, cmap='viridis')
# Scatter (real), colored by call price
sc = ax.scatter(
    scatter_x, scatter_y, scatter_z,
                     # color by call price
    c=scatter_z,
```

```
cmap='viridis',
                                          # choose any colormap you like
               s=10.
               label='Implied Volatility'
           fig.colorbar(sc, ax=ax, shrink=0.5, label='Implied Volatility')
           ax.set_xlabel("Strike (K)")
           ax.set_ylabel("Maturity (T)")
           ax.set_zlabel(f"Call Price")
           ax.set_title(f"Predicted Implied Volatility Surface, date:{date},spot price:{round(spot_price, 2)}")
           ax.legend()
           ax.view_init(elev=faxis, azim=saxis)
           if path is not None:
             plt.savefig(path + f'/{date}IVSurface.png')
           else:
             plt.show()
In [168... model, train_loader = full_train(blended_df)
In [306... surface_plot(blended_df, model, path=PATH, date=DATE, faxis=None, saxis=None,
                        train_loader=train_loader, spot_price=SPOT)
```

Implied Volatility

Yield Curve

```
In [181... df yield = pd.read csv('/content/drive/My Drive/CapstoneProject/IVSurfaceWay/Data/2025-08-19yield curve.csv')
In [179... import numpy as np
         import pandas as pd
         import re
         def col to years(col: str) -> float:
             Convert tenor column names like '1 Mo', '1.5 Month', '2 Yr', '30 Yr' to years.
             Assumes 30 days per month, 365 days per year.
             s = col.strip().replace('Months', 'Month').replace('Mos', 'Mo').replace('Yrs', 'Yr')
             m = re.match(r'^(\d+(\.\d+)?)\s*(Mo|Month|Yr|Year)$', s)
             if not m:
                 raise ValueError(f"Unrecognized tenor column: {col}")
             qty = float(m.qroup(1))
             unit = m.group(3)
             if unit in ('Mo', 'Month'):
                 return (gty * 30.0) / 365.0
             else: # 'Yr' or 'Year'
                 return gty
         def rate from yield curve(d, df yield, row=0, convention='cont', clamp=True):
             Map days-to-maturity -> interest rate using the given yield curve.
             Parameters
             d : int | float | array-like
                 Days to maturity.
             df_yield : pd.DataFrame
                 First row (by default) contains columns like '1 Mo', '1.5 Month', '2 Mo', '6 Mo', '1 Yr', ... with % yields.
             row: int
                 Which row of df_yield to use (default: 0, the most recent).
             convention : {'cont','simple'}
                 Return rate as continuous-compounded ('cont') or simple annualized ('simple').
             clamp : bool
                 If True, clamp outside the curve to the nearest endpoint. If False, allow linear extrapolation.
             Returns
```

```
r : float or np.ndarray
    Annual rate in decimal (e.g., 0.043 for 4.3%).
1111111
# Pick the curve row and collect tenor columns (ignore 'Date' or non-numeric cells)
row series = df vield.iloc[row]
cols = [c for c in df_yield.columns if c != 'Date']
# Build x (years) and y (yields as decimals)
tenors_years = []
vields = []
for c in cols:
    val = row_series[c]
    if pd.isna(val):
        continue
    try:
        y = float(val) / 100.0 # convert % to decimal
       t = _col_to_years(c)
        tenors_years.append(t)
        yields.append(y)
    except Exception:
        # Skip columns that aren't tenor columns
        continue
if not tenors_years:
    raise ValueError("No valid tenor columns found in df_yield.")
x = np.array(tenors_years, dtype=float)
y = np.array(yields, dtype=float)
# Sort by maturity just in case
order = np.argsort(x)
x = x[order]
y = y[order]
# Convert input days -> years
d_arr = np.asarray(d, dtype=float)
t_query = d_arr / 365.0
# Interpolate (or clamp) on APR first
if clamp:
    tq = np.clip(t_query, x[0], x[-1])
else:
    tq = t_query
y_interp = np.interp(tq, x, y)
```

```
# Return in requested compounding convention
              if convention == 'cont':
                 # Convert APR to continuous rate: r cont = ln(1 + APR)
                  r = np.log1p(y interp)
              elif convention == 'simple':
                  r = y_interp
              else:
                  raise ValueError("convention must be 'cont' or 'simple'")
             # Preserve scalar if input was scalar
             if np.isscalar(d):
                  return float(r)
              return r
In [182... df_yield.head(1)
Out [182...
                  Date 1 Mo 1.5 Month 2 Mo 3 Mo 4 Mo 6 Mo 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr
          0 08/19/2025 4.46
                                  4.4 4.35
                                              4.3
                                                   4.21
                                                         4.11 3.91 3.75 3.7 3.82 4.04
                                                                                         4.3 4.89
                                                                                                      4.9
In [195... # Using your df_yield (most recent row at index 0)
          r 45d = rate from yield curve(90, df yield, convention='cont')
                                                                            # 45 days
          r_45d
Out [195... 0.04210117601863539
```

Recovered call price

```
In [196... # def a function that gives the predict unscaled output while input is a non scaled input
def model_prediction(model_used=None, K=6000, T=100, train_loader=None):
    model_used.eval()
    scaler_X = train_loader.dataset.scaler_X
    scaler_y = train_loader.dataset.scaler_y
    with torch.no_grad():
        x_tensor = torch.tensor([[K, T]], dtype=torch.float32)
        x_transformed = scaler_X.transform(x_tensor.numpy())
        x_tensor = torch.tensor(x_transformed, dtype=torch.float32)
        y_pred_scaled = model_used(x_tensor)
        y_pred_np = scaler_y.inverse_transform(y_pred_scaled.cpu().numpy()).reshape(1, 1)
    return y_pred_np
```

```
In [217... import numpy as np
         from scipy.stats import norm
         # def r_from_CPP(c, p, T, S, K):
               # Returns the risk free rate used in black scholes for the current option pair
               T = T / 365
               # # Avoid division by zero or log of non-positive values
               # if T \le 0 or K \le 0 or (p + S - c) / K \le 0:
               # return np.nan
               r = (np \log((p+S-c)/K))/(-T)
               return r
         def black_scholes_call(S, K, T, r, sigma):
             Black-Scholes European call price (no dividends).
             Parameters
             S : float
                 Spot price
             K : float
                 Strike price
             T : float
                 Time to maturity in DAYS
             r : float
                 Annualized continuously compounded risk-free rate (e.g., 0.04 for 4%)
             sigma : float
                 Annualized volatility
             1111111
             # Convert days -> years
             T = T / 365.0
             if T <= 0 or sigma <= 1e-9: # handle expiry and tiny vol
                 return max(S - K, 0.0)
             d1 = (np.log(S / K) + (r + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))
             d2 = d1 - sigma * np.sgrt(T)
             result = S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)
             return result[0, 0]
```

def single_price_prediction(K=None, T=None, model_used=None, train_loader=None, yield_data=df_yield, spot_price=SPOT):
 r_t = rate_from_yield_curve(T, yield_data, convention='cont')
 IV = model_prediction(model_used=model_used, K=K, T=T, train_loader=train_loader)
 p = black_scholes_call(S=spot_price, K=K, T=T, r=r_t, sigma=IV)

```
return p
def recoverd call price(model used=None, delta percent=0.01,
                    llim=-12, rlim=13, start=7, end=185, freq=7,
                    train loader=None, spot price=None, path=None, date=None):
    K_range = spot_price * (1 + np.arange(llim, rlim) * delta_percent) # 25 strikes from -12% to +12%
    T range = np.arange(start, end, freg) # weekly: 0 to 350
    # Build grid
    results = []
    for K in K_range:
        for T in T range:
            r t = rate from yield curve(T, df yield, convention='cont')
            IV = model prediction(model used=model used, K=K, T=T, train loader=train loader)
            p = black_scholes_call(S=spot_price, K=K, T=T, r=r_t, sigma=IV)
            results.append({
                'Strike': round(K, 0),
                'T_days': T,
                'p_K_T': p
            })
    # Convert to DataFrame and pivot
    df state price = pd.DataFrame(results)
    pivot_table = df_state_price.pivot(index='Strike', columns='T_days', values='p_K_T')
    # replace any neagtive to 0
    pivot_table[pivot_table < 0] = 0</pre>
    if path is not None:
      pivot_table.to_excel(path + f'/{date}RecovedCall.xlsx')
    return pivot_table
recoved call df = recoverd call price(model used=model, delta percent=0.015,
                    llim=-12, rlim=13, start=7, end=185, freg=7,
                    train_loader=train_loader, spot_price=SPOT, path=PATH, date=DATE)
```

```
In [318... #recoved_call_df.to_excel('recoved_call.xlsx')
recoved_call_df.head(3)
```

In [317...

3 rows × 26 columns

Surface plot function for K T

```
In [359...
         import matplotlib.pyplot as plt
         from mpl toolkits.mplot3d import Axes3D
         import numpy as np
         import pandas as pd
         from datetime import datetime
         def plot_3d_scatter(dataset, size=(14, 10), elev=None, azim=None,
                             path=None, date=None, spot=SPOT, title='Recoved Call Price',
                             x_label='Days to Expiration', y_label='Strike', z_label='Call Price',
                             file name='RecovedCall'):
           # Ensure columns (dates) are sorted
           panel_cleaned = dataset.sort_index(axis=1)
           # Get the column and index values as 1D arrays
           X_vals_1d = panel_cleaned.columns.values
           Y_vals_1d = panel_cleaned.index.values
           Z_vals = panel_cleaned.values
           # Create 2D meshgrid for X and Y values
           X vals, Y vals = np.meshgrid(X_vals_1d, Y_vals_1d)
           # Reshape Z_vals to match the meshgrid shape
           z_reshaped = Z_vals.reshape(len(Y_vals_1d), len(X_vals_1d))
           # Plot
           fig = plt.figure(figsize=(14, 10))
           ax = fig.add subplot(111, projection='3d')
           # Surface (predicted)
```

```
ax.plot_surface(X_vals, Y_vals, z_reshaped, alpha=0.7, cmap='viridis')
 # Create X, Y, Z values for scatter plot
X_scatter = []
Y scatter = []
Z scatter = []
for i, strike in enumerate(panel_cleaned.index):
    for j, exp date in enumerate(panel cleaned.columns):
        last_price = panel_cleaned.loc[strike, exp_date]
        if pd.notna(last_price):
            X_scatter.append(exp_date)
            Y_scatter.append(strike)
            Z_scatter.append(last_price)
 # Scatter (real), colored by call price
scatter = ax.scatter(X_scatter, Y_scatter, Z_scatter, c=Z_scatter, cmap='viridis', s=10)
ax.set_xlabel(x_label)
ax.set ylabel(y label)
ax.set_zlabel(z_label)
ax.set_title(f'{title} of {date} with spot: {round(spot, 2)}')
fig.colorbar(scatter, ax=ax, shrink=0.5, label=z_label)
ax.view init(elev, azim)
if path is not None:
  plt.savefig(path + f'/{date}{file_name}.png')
plt.show()
```

```
In [313... plot_3d_scatter(recoved_call_df, size=(14, 10), elev=20, azim=135, path=PATH, date=DATE, spot=SPOT)
```


Second Order Derivative

Raw State price

Out[342... 0.002934795853812485

```
# Convert to DataFrame and pivot
             df state price = pd.DataFrame(results)
             pivot table = df state_price.pivot(index='Strike', columns='T_days', values='p_K_T')
             # check negative
             if pivot table.min().min() < 0:</pre>
               print('Negative found')
             # replace any neagtive to 0
             pivot_table[pivot_table < 0] = 0</pre>
             if path is not None:
               pivot table.to excel(path + f'/{date}RawStatePrice.xlsx')
             return pivot table
         raw_state_df = raw_state_price(model_used=model, train_loader=train_loader, spot_price=SPOT, path=PATH, date=DATE)
In [350...
         raw state df.head(3)
        Negative found
Out [350... T_days 7 14 21
                                                           42
                                                                              56
                                                                                                 70 ...
                                                                                                                               133
                                        28
                                                 35
                                                                    49
                                                                                       63
                                                                                                             119
                                                                                                                      126
                                                                                                                                         14(
           Strike
          5257.0 0.0 0.0 0.0 0.000000e+00 0.000002 0.000006 0.000009 0.000013
                                                                                 0.000018 0.000022 ... 0.000050 0.000054 0.000057 0.00006(
          5353.0 0.0 0.0 0.0
                              3.087192e-07 0.000003 0.000007 0.000012 0.000017 0.000022 0.000027 ... 0.000061 0.000065 0.000069
                                                                                                                                    0.000072
         5450.0 0.0 0.0 0.0 2.095512e-06 0.000006 0.000012 0.000017 0.000023 0.000030 0.000036 ... 0.000076 0.000080 0.000084 0.000088
```

3 rows × 26 columns

Normalized State Price

```
In [351... def build_discount_df(yield_data=df_yield, n_weeks=52):
    weeks = np.arange(1, n_weeks)
    t_years = weeks / 52
    days = weeks * 7
    r_t = rate_from_yield_curve(days, yield_data, convention='cont')
    D_t = np.exp(-r_t * t_years)

df_discount = pd.DataFrame({
    'Week': weeks,
    'T (Years)': np.round(t_years, 6),
    'Interpolated Yield': np.round(r_t * 100, 6),
```

```
In [354... build_discount_df().head(3)
```

Out[354		Week	T (Years)	Interpolated Yield	Discount Factor	Days	
	0	1	0.019231	4.363404	0.999161	7	
	1	2	0.038462	4.363404	0.998323	14	
	2	3	0.057692	4.363404	0.997486	21	

```
In [357... NormState = state_price_matrix(df_discount=build_discount_df(), pivot_table=raw_state_df, path=PATH, date=DATE)
NormState
```

Strike														
5257.0	0.000000	0.000000	0.000000	0.000000	0.000233	0.000533	0.000889	0.001285	0.001709	0.002145	•••	0.005032	0.005383	0.00{
5353.0	0.000000	0.000000	0.000000	0.000030	0.000333	0.000713	0.001152	0.001635	0.002156	0.002686	•••	0.006135	0.006549	0.006
5450.0	0.000000	0.000000	0.000000	0.000202	0.000623	0.001120	0.001674	0.002272	0.002902	0.003535	•••	0.007594	0.008062	800.0
5546.0	0.000000	0.000000	0.000126	0.000633	0.001253	0.001933	0.002644	0.003385	0.004136	0.004890	•••	0.009521	0.010056	0.010
5642.0	0.000000	0.000053	0.000648	0.001513	0.002476	0.003434	0.004372	0.005282	0.006172	0.007041		0.012128	0.012689	0.013
5738.0	0.000011	0.000537	0.001689	0.003202	0.004719	0.006093	0.007309	0.008410	0.009425	0.010375		0.015602	0.016151	0.016
5834.0	0.000319	0.001532	0.003816	0.006459	0.008818	0.010732	0.012259	0.013514	0.014579	0.015511	•••	0.020211	0.020686	0.02
5931.0	0.001036	0.003898	0.008472	0.012913	0.016326	0.018751	0.020449	0.021664	0.022566	0.023266	•••	0.026263	0.026552	0.026
6027.0	0.003289	0.010463	0.019204	0.025793	0.029901	0.032288	0.033591	0.034246	0.034513	0.034565	•••	0.034005	0.033938	0.033
6123.0	0.012661	0.029898	0.043474	0.050356	0.053152	0.053862	0.053502	0.052606	0.051449	0.050196	•••	0.043561	0.042972	0.042
6219.0	0.055309	0.082187	0.091341	0.091217	0.088174	0.084389	0.080516	0.076779	0.073258	0.069986	•••	0.054741	0.053421	0.052
6315.0	0.201183	0.182682	0.161075	0.143369	0.129943	0.119468	0.110916	0.103666	0.097358	0.091781	•••	0.066820	0.064673	0.062
6411.0	0.381034	0.272651	0.216597	0.183692	0.162379	0.147211	0.135535	0.126012	0.117905	0.110814	•••	0.078407	0.075511	0.072
6508.0	0.262688	0.240574	0.208597	0.184189	0.166782	0.153821	0.143578	0.135043	0.127626	0.120989	•••	0.087532	0.084229	0.081
6604.0	0.067035	0.121676	0.141077	0.142621	0.139282	0.134939	0.130550	0.126297	0.122178	0.118146	•••	0.092114	0.089007	0.08
6700.0	0.009351	0.037493	0.068042	0.086004	0.095158	0.099823	0.102167	0.103189	0.103370	0.102957	•••	0.090736	0.088473	0.086
6796.0	0.001203	0.008027	0.024282	0.041217	0.054024	0.063104	0.069605	0.074360	0.077894	0.080525	•••	0.083351	0.082391	0.081
6892.0	0.000233	0.001433	0.006742	0.016080	0.025954	0.034637	0.041892	0.047904	0.052920	0.057141	•••	0.071415	0.071836	0.07
6988.0	0.000133	0.000267	0.001553	0.005233	0.010728	0.016750	0.022580	0.027958	0.032835	0.037245	•••	0.057266	0.058770	0.059
7085.0	0.000202	0.000080	0.000323	0.001458	0.003869	0.007220	0.011022	0.014946	0.018816	0.022551	•••	0.043251	0.045350	0.047
7181.0	0.000354	0.000091	0.000069	0.000359	0.001233	0.002798	0.004912	0.007378	0.010041	0.012795	•••	0.031005	0.033235	0.035
7277.0	0.000547	0.000245	0.000020	0.000082	0.000352	0.000982	0.002010	0.003382	0.005019	0.006845	•••	0.021264	0.023304	0.025
7373.0	0.000733	0.000659	0.000019	0.000018	0.000091	0.000314	0.000759	0.001445	0.002358	0.003466	•••	0.014051	0.015745	0.017
7469.0	0.000875	0.001433	0.000063	0.000005	0.000022	0.000092	0.000265	0.000577	0.001044	0.001665	•••	0.008995	0.010309	0.01′
7565.0	0.000964	0.002443	0.000256	0.000003	0.000005	0.000025	0.000086	0.000216	0.000437	0.000760	•••	0.005600	0.006570	0.007

State Price Transition Matrix

```
In [374... import numpy as np
         import pandas as pd
         from scipy.optimize import nnls, lsq_linear
         def fit_state_price_transition_columnwise(Pt_matrix, ridge=0.0, scale=False):
             Column-wise NNLS fit of P from p^{t+1} = p^{t} P.
             Pt_matrix: array (m, T) with columns p^t (state-price vectors).
                        nonnegative Tikhonov weight.
             ridge:
             scale:
                        True -> row-scale X for conditioning.
             Pt = np.asarray(Pt_matrix, float)
             if (Pt < 0).any():
                 Pt = np.maximum(Pt, 0.0) # clip tiny negatives
             m, T = Pt.shape
             if T < 2:
                 raise ValueError("Need at least two tenors (T >= 2).")
             # X shape: (T-1, m); Y shape: (T-1, m)
             X = Pt[:, :-1].T
             Y = Pt[:, 1:].T
             # Optional scaling
             if scale:
                 col_scale = np.median(np.abs(X), axis=0)
                 col_scale[col_scale == 0] = 1.0
                 Xs = X / col scale
             else:
                 col_scale = np.ones(m)
                 Xs = X
             # Optional ridge via augmentation
             if ridge > 0.0:
                 R = np.sqrt(ridge) * np.eye(m)
                 X_aug = np.vstack([Xs, R])
             else:
                 X_{aug} = Xs
             P = np.zeros((m, m))
```

```
for j in range(m):
        y = Y[:, i]
        if ridge > 0.0:
           y = np.concatenate([y, np.zeros(m)])
        coef, resnorm = nnls(X aug, y)
        coef = coef / col scale # undo scaling
        P[:, i] = coef
    return P
def Transition_Matrix(spot_price, df_rename, path=None, date=None, ridge=0.000001):
    1111111
    df rename = df rename.reset index()
    df rename['Strike'] = np.round(df rename['Strike'] / spot price, 2)
    df_rename = df_rename.rename(columns={'Strike': 'Moneyness'})
    maturity cols = df rename.columns[1:25] # pick your tenors
    df_filtered = df_rename[['Moneyness'] + list(maturity_cols)].copy()
    # STATE PRICES per tenor, on same moneyness grid
    Pt_matrix = df_filtered.iloc[:, 1:].to_numpy(dtype=float)
    moneyness_states = df_filtered['Moneyness'].to_numpy()
    # Clean tiny negatives from numerical extraction
    Pt_matrix = np.maximum(Pt_matrix, 0.0)
   # 1) Estimate P (no row-sum=1 constraint)
    P_hat = fit_state_price_transition_columnwise(Pt_matrix, ridge=ridge, scale=False)
    P_df = pd.DataFrame(P_hat, index=moneyness_states, columns=moneyness_states)
    P_df = P_df.sort_index(axis=0).sort_index(axis=1)
    if path is not None:
        P_df.to_excel(f"{path}/{date}TransitionMatrix.xlsx")
    return P df
```

1.0

0.82	0.017732	0.018272	0.018731	0.020616	0.023043	0.010430	0.009049	0.006302	0.001160	0.000000	•••	0.000000	0.000000	0.00000
0.83	0.020459	0.021269	0.021628	0.023406	0.026042	0.012175	0.010210	0.006885	0.001488	0.000000		0.000000	0.000000	0.00000
0.85	0.026877	0.029229	0.028398	0.027449	0.027059	0.013543	0.010476	0.006245	0.001754	0.000000	•••	0.000000	0.000000	0.00000
0.87	0.031859	0.037543	0.038137	0.035484	0.027342	0.014730	0.011052	0.006432	0.003026	0.000000		0.000000	0.000000	0.00000
0.88	0.020906	0.032100	0.043463	0.049543	0.032122	0.017214	0.015971	0.013565	0.008893	0.000000		0.000000	0.000000	0.00000
0.89	0.000000	0.000000	0.018589	0.042644	0.044937	0.018968	0.021234	0.024720	0.023311	0.000000	•••	0.000000	0.000000	0.00000
0.91	0.000000	0.000000	0.000000	0.000000	0.028912	0.019819	0.029633	0.043061	0.047399	0.027977	•••	0.000000	0.000000	0.00000
0.93	0.000000	0.000000	0.000000	0.000000	0.001301	0.021002	0.040597	0.069045	0.085473	0.079959	•••	0.000000	0.000000	0.00000
0.94	0.000000	0.000000	0.000000	0.000000	0.000000	0.022271	0.050209	0.094952	0.131189	0.142422	•••	0.000000	0.000000	0.00000
0.96	0.000000	0.000000	0.000000	0.000000	0.000000	0.004263	0.045470	0.098743	0.162710	0.193780	•••	0.000000	0.000000	0.00000
0.97	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.005892	0.033231	0.134222	0.275453	•••	0.000000	0.000000	0.00000
0.98	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.045877	•••	0.000000	0.000000	0.00000
1.00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000109	0.000000	0.000000	0.000000	•••	0.000000	0.000000	0.00000
1.02	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	•••	0.028087	0.000000	0.00000
1.03	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001265	0.033670	•••	0.420233	0.075392	0.00000
1.05	0.000000	0.000000	0.000000	0.000000	0.006131	0.023068	0.018552	0.021430	0.016999	0.000000	•••	0.174060	0.331811	0.13466
1.06	0.000000	0.000000	0.000000	0.015620	0.033430	0.019471	0.034261	0.045137	0.054350	0.043111	•••	0.380033	0.208546	0.14157
1.07	0.000000	0.002173	0.021452	0.016432	0.000000	0.022681	0.038020	0.047164	0.044892	0.017263	•••	0.000000	0.391056	0.41585
1.09	0.029857	0.035386	0.008893	0.000000	0.006853	0.037282	0.036324	0.027078	0.003333	0.000000	•••	0.000000	0.000000	0.31447
1.11	0.009608	0.010974	0.021477	0.034570	0.060119	0.049079	0.034769	0.012655	0.000000	0.000000	•••	0.000000	0.000000	0.00000
1.12	0.023520	0.031363	0.055897	0.075149	0.073151	0.054009	0.039119	0.018309	0.000000	0.000000	•••	0.000000	0.000000	0.00000
1.14	0.045882	0.053793	0.064822	0.070090	0.055876	0.051699	0.045247	0.034277	0.022077	0.000000	•••	0.000000	0.000000	0.00000
1.15	0.042084	0.042527	0.026029	0.014641	0.028057	0.043398	0.046212	0.046045	0.039026	0.000000	•••	0.000000	0.000000	0.00000
1.16	0.000000	0.000000	0.000000	0.000000	0.006141	0.031617	0.039320	0.047216	0.046717	0.044833	•••	0.000000	0.000000	0.00000
1.18	0.000000	0.000000	0.000000	0.000000	0.000000	0.020135	0.028733	0.041953	0.048598	0.088973	•••	0.000000	0.000000	0.00000

Visualization

```
In [420... plot_3d_scatter(TransState, size=(14, 10), elev=30, azim=30, path=PATH, date=DATE, spot=SPOT, title='State Price Transition Matrix', x_label='Moneyness State i', y_label='Moneyness State j', z_label='p (i, j) is the state i price of an Debreu security paying off in state j
```


Natural probabiliy

```
In [404... import numpy as np
         from numpy.linalg import eig
         def is_irreducible(df: pd.DataFrame) -> bool:
             if not isinstance(df, pd.DataFrame):
                 raise TypeError("Input must be a pandas DataFrame.")
             if df.shape[0] != df.shape[1]:
                 raise ValueError("Input matrix must be square.")
             if not (df.values >= 0).all():
                 raise ValueError("Matrix entries must be non-negative.")
             # Convert to boolean adjacency matrix: True if entry > 0
             adj_matrix = (df.values > 0).astype(bool)
             n = adi matrix.shape[0]
             # Reachability matrix: initially only direct connections
             reachability = adj matrix.copy()
             # Warshall's algorithm to compute transitive closure
             for k in range(n):
                 for i in range(n):
                     for j in range(n):
                         reachability[i, j] = reachability[i, j] or (
                              reachability[i, k] and reachability[k, j]
             # Ensure diagonal is reachable (self-reachability)
             np.fill_diagonal(reachability, True)
             # Matrix is irreducible if every state can reach every other
             return np.all(reachability)
         def ross_D_from_P(P, tol=1e-10, gap_tol=1e-8, imag_tol=1e-12):
             P = np.asarray(P, dtype=float)
             # 1) Eigen-decomposition (right eigenpairs)
             vals, vecs = eig(P)
             # 2) Identify (numerically) real eigenvalues and pick the Perron root among them
```

```
real mask = np.isclose(vals.imag, 0.0, atol=imag tol)
    if not np.any(real mask):
        raise ValueError("No (numerically) real eigenvalues found.")
    real idx = np.where(real mask)[0]
                                                   # indices into original arrays
                                                 # real eigenvalues as reals
    vals real = vals[real idx].real
    j = int(np.argmax(vals_real))
                                                  # index within the real subset
    i = int(real idx[i])
                                                   # map back to original index
    delta = float(vals real[i])
   # 3) Uniqueness: spectral gap among real eigenvalues
    if vals real.size > 1:
        others = np.delete(vals_real, j)
        gap = delta - np.max(others)
       if gap <= gap tol:</pre>
            raise ValueError(
                f"Perron root not unique or gap too small (gap={gap:.3e}). "
                "Check irreducibility / symmetry of P."
   # 4) Perron right eigenvector (corresponding to the original index i)
   z = vecs[:, i]
   if np.max(np.abs(z.imag)) > np.sqrt(imag_tol):
        # Allow tiny numerical noise but flag if it's not tiny
        raise ValueError("Dominant eigenvector has significant imaginary part; check P.")
    z = z.real
   # 5) (Optional) Enforce positivity if PF assumptions hold
    # if np.all(z <= 0): z = -z
   # if (z \le 0).any(): raise ValueError("Perron vector not strictly positive; P may be reducible or invalid.")
    # 6) Normalize (avoid dividing by ~0: pick first reasonably large entry)
   \# anchor_idx = np.argmax(np.abs(z))
   # if np.abs(z[anchor_idx]) < tol:</pre>
         raise ZeroDivisionError("All components of z are ~0; cannot normalize.")
   \# z = z / z[anchor\_idx]
   # 7) Build D with d_ii = 1 / z_i
   if (np.abs(z) < tol).any():</pre>
        raise ZeroDivisionError("A component of z is \sim 0; cannot form D = diag(1/z).")
    D = np.diag(1.0 / z)
    return D, delta, z
def natural_probability(AD, path=None, date=None):
```

```
# Calculate e
             e = np.ones((25.1))
             # Calcualte eigenvalues and eigen vectors
             D, delta, z = ross D from P(AD)
             # Changes data types from complex to real given nature of np.linalg functions
             # if np.all(z.values.imag ==0):
                   z = z_*astype(float)
                   delta = delta.astype(float)
             # Creation of Pricing Kernel
             phi = (1/z) * delta
             # Creation of Natural probabilities
             F = pd.DataFrame(np.empty((25, 25)) * np.nan)
             for i in range(len(AD)):
                 for j in range(len(AD)):
                      F.iloc[i,j] = (1/delta)*(z[j]/z[i])*AD.iloc[i,j]
             # AD inv = np.linalg.inv(AD)
             # D inv = np.linalq.inv(D)
             \# F = (1.0 / delta) * (D * AD * D inv)
              F.index = AD.index
              F. columns = AD. columns
             if path is not None:
                 F.to_excel(path + f'/{date}NaturalProbability.xlsx')
                 # phi.to excel(path + f'/{date}PricingKernal.xlsx')
             # print(D)
             # print(F)
             return F, phi, delta
In [399... # Check irreducibility
         is irreducible(TransState)
Out[399... np.True
In [419... NaturalMatrix, phi, delta= natural_probability(TransState, path=PATH, date=DATE)
         plot_3d_scatter(NaturalMatrix, size=(14, 10), elev=30, azim=30,
                          path=PATH, date=DATE, spot=SPOT, title='State Price Transition Matrix', x_label='Moneyness State i',
                         y_label='Moneyness State j', z_label='probability', file_name='NaturalProbabilitySurface')
```

if np.linalg.matrix rank(AD) == len(AD):

print(is irreducible(AD))


```
In [407... # plot phi and sav
plt.figure()
plt.plot(phi)
plt.title("Pricing Kernal")
plt.xlabel("State")
plt.ylabel("Scaled Kernel")
plt.savefig(PATH + f'/{DATE}PricingKernal.png')
plt.show()
plt.close()
```

