Russ Johnson Final Exam April 20, 2013

2.

(a) The operation table for U_{44} is given in Table 1. Explain why $U_{44} = \langle [3] \rangle \times \langle [21] \rangle$, the internal direct product of the subgroups $\langle [3] \rangle$ and $\langle [21] \rangle$.

First of all, $\langle [3] \rangle = \{[1], [3], [9], [15], [23], [25], [27], [31], [37]\}$ and $\langle [21] \rangle = \{[1], [21]\}$. From this we see that the intersection of $\langle [3] \rangle$ and $\langle [21] \rangle$ contains only [1]. From Theorem 26.6 (2) we can conclude that each element in $\langle [3] \rangle \times \langle [21] \rangle$ has a unique representation kn where $k \in \langle [3] \rangle$ and $n \in \langle [21] \rangle$. And so, $|\langle [3] \rangle \times \langle [21] \rangle| = |\langle [3] \rangle| \cdot |\langle [21] \rangle| = 10 \cdot 2 = 20$. From the closure property of the group G and the fact that $\langle [3] \rangle$ and $\langle [21] \rangle$ are subgroups of G we know that each element in $\langle [3] \rangle \times \langle [21] \rangle$ is also in G. From this fact and the fact that $\langle [3] \rangle \times \langle [21] \rangle$ and G have the same order, it must be the case that $G = \langle [3] \rangle \times \langle [21] \rangle$

(b)