第五章 序列埠通訊

- 並列與序列通訊簡介
- 認識序列埠
- 認識字元資料類型
- 字串資料類型
- 從序列埠監控視窗觀 察變數
- 從Arduino接收序列 資料
- switch...case控制結 構

並列與序列通訊簡介

並列代表處理器和周邊之間,有多條資料線連結,處理器能一口氣輸出或接收多個位元的資料。

序列則是用少數(通常是兩條或三條)資料線, 將整批資料依序一個個送出或傳入。

認識序列埠

RS-232是最早廣泛使用的序列埠標準,在系統軟體中稱為COM,每個COM介面同時只能接一個裝置。

一般數位IC的0與1訊號的電壓準位,分別是0v和5v,稱為TTL或邏輯準位。

序列埠/串列埠

桌上型電腦的RS-232C 介面·這個連接器稱為 D型9針(DB-9)插座。

並列埠/印表機埠/平行埠 採D型25針插座(DB-25)

VGA顯示埠(D型15針插座) 用於視訊輸出,非通訊介面。

TTL訊號的電壓

RS-232訊號的電壓

序列埠最重要的三個接腳:

- 數據傳送(TxD)
- •數據接收(RxD)
- •接地(GND)

認識字元資料類型

電腦把文字訊息分成字元(character)和字串(string)兩種資料類型。字元類型的資料值要用單引號(')刮起來。 每個字元都用一個唯一的數字碼表示。

```
char data = 'A'; 

字元要單引號刮起來,不能用雙引號,
而且只能存放一個字。

以數字編碼格式儲存「字元」時,
不用單引號!
```

ASCII定義了128個字元,其中有33個是不能顯示的控制字元。

控制字元	ASCII編碼(10進位)	程式寫法	說明
NULL	0	\0	代表「沒有資料 」或字串的結尾 。
CR (Carriage Return)	13	\r	換行
LF (Line Feed),也稱 為New Line	10	\n	新行

字串資料類型

字串是一連串字元(char)的集合,也就是一段文字。程式採用陣列存放字串,資料值前後一定要用雙引號刮起來。每個字串都有一個Null字元(ASCII值為0)結尾。

從序列埠監控視窗觀察變數

Arduino內建處理序列埠連線的Serial程式庫 建立序列埠連線的首要任務是設定資料傳輸率,底下的程式設定為9600bps。 序列埠監控視窗的連線速率要和Arduino程式一致。

```
const byte ledPin = 13;
void setup() {
                                                              - 0
                                      COM18
      初始化序列埠,以GGOObps速率連線。
                                                                   傳送
   Serial.begin(9600);
                                      Hello,
   Serial.println("Hello," );
                                           LED pin is: 13
                                      BYE!
   Serial.print("\tLED pin is: ");
   Serial.print(ledPin);
   Serial.print("\nBYE!");
                                       ▽ 自動捲動
                                               沒有行結尾
                                                            9600 傳輸鮑率
void loop() {
```


從Arduino接收序列資料

微處理器內部有一個類似儲存槽的緩衝記憶區(buffer),用於暫存來自序列埠的輸入資料。

如果緩衝記憶區裡面沒有資料, Serial.available()將傳回0。


```
void loop() {

if( Serial.available() ) {

val = Serial.read();

if (val == '1') {

digitalWrite(LED, HIGH);

Serial.print("LED ON");

} else if (val == '0') {

digitalWrite(LED, LOW);

Serial.print("LED OFF");

}

}
```


switch...case控制結構

發音體和聲音

電子裝置常見的發音體為揚聲器(喇叭,speaker)和蜂鳴器(buzzle)或是壓電轉換器 (piezo transducer)

聲音是由震動產生, 其震動的頻率稱為**音頻**,音頻的範圍介於20Hz~200KHz之間,普通人發出聲音的頻率範圍約為300Hz~3400Hz。

音階與節拍

聲音的頻率(音頻)高低稱為音階(pitch),鋼琴鍵盤就是依照聲音頻率的高低階級(音階)順序來排列。

音階對照表

	•	_	•	•	. /	_		_	. /	
	0	1	2	3	4	5	6	7	8	
С	16	33	65	131	262	523	1046	2093	4186	
C#	17	35	69	139	277	554	1109	2217	4435	
D	18	37	73	147	294	587	1175	2349	4699	
D#	19	39	78	156	311	622	1245	2489	4978	
E	21	41	82	165	330	659	1319	2637	5274	
F	22	44	87	175	349	698	1397	2794	5588	
F#	23	46	93	185	370	740	1480	2960	5920	
G	25	49	98	196	392	784	1568	3136	6272	
G#	26	52	104	208	415	831	1661	3322	6645	
Α	28	55	110	220	440 5	880	1760	3520	7040	
A #	29	58	117	233	466	932	1864	3729	7459	
В	31	62	123	247	493	988	1976	3951	7902	

88鍵樂器的最低音 標準音 (用於調校樂器,有些採442Hz)

節拍

除了音階,構成旋律的另一個要素是節拍(beat),它決定了音樂的快慢速度。

Arduino編輯器內建 "tone"(音調)程式庫,可以輸出指定頻率的聲音和持續時間。 tone(輸出腳位,頻率,持續時間);

或: tone(輸出腳位, 頻率);

聲音停止 noTone(輸出腳位);

利用#define指令替換資料

程式碼裡的音階,用音階代碼,比直接用 頻率好。

C程式語言有一種用#開頭的特殊指令,稱為巨集(macro), Arduino也是如此。常見用途是在程式編譯之前,載入外部程式檔或者替換字串。

替換文字的巨集指令叫做#define。

const (常數)代表宣告一個不可改變的資料值,而#define則用於定義置換值。

```
const byte SP PIN = 11;
#define E5 659
                 - 在程式閱頭定義替換字
#define C5 523
                   (結尾不加分號)
#define G5 784
void setup() {
  pinMode (SP PIN, OUTPUT);
               所有E5都會被置換成659
void loop() {
  tone (SP_PIN, E5, 150);
  delay(150);
  tone (SP PIN, E5, 150);
  delay(150);
  tone (SP PIN, E5, 150);
  delay(300);
  tone (SP PIN, C5, 150);
  delay(150);
  tone (SP PIN, E5, 150);
  delay(300);
  tone (SP PIN, G5, 150);
  delay(3000);
```


短腳,一樣是接地

程式非常簡單,tone(7, 頻率) 就能讓蜂鳴器發出聲音了,要持續多久,就用delay()來控制,然後再用noTone(7)就能讓聲音停止了。

switch...case控制結構

switch具有「切換」的涵意:透過比對 switch()裡的變數和case後面的值,來決 定切換執行哪一段程式。

- 一分鐘回饋:
- https://goo.gl/forms/0C6jWOW5MTX9paos1

