Revision

Approaches to reduce interpolation errors

- o Selection of interpolation points
- o Piecewise fitting of polynomials

Cubic splins
$$Q_{n}(n) = q_{n} + b_{n} + c_{n} + d_{n}$$

$$30 \le x \le x,$$

$$Q_{n}(n) = q_{n} + b_{n} + c_{n} + d_{n}$$

$$q_{n}(n) = q_{n} + b_{n} + c_{n} + d_{n}$$

4n unknown

Condutions

Romaining 2 condutous from BG

Set of
$$n-1$$
 equations in $(n+1)$ unknowns

BC 1

 h_1 $2(h_1+h_2)$ h_2
 h_2 $2(h_1+h_3)$ h_3
 h_{m-1} $2(h_m+h_m)$ h_m

BC 2

BC 2

$$\hat{h}_{i}^{\circ} = \chi_{i} - \chi_{i-1}$$
 $f_{i}^{\circ} = g_{i}^{\circ}(\chi_{i})$
 $f_{i}^{\circ} = g_{i+1}^{\circ}(\chi_{i})$
 $f_{i}^{\circ} = g_{i+1}^{\circ}(\chi_{i})$

m-1/eg.

Examp	le_		1		J	1		1		1
° L	% :	9;	h = n;-n;-1	ુ ં	G;	Ai	B, '	Ci	D;	
0	3	2.5			0					
1	4. S	1. 0	1.5	2 1-2.5 = -1 1.5	1.6971	_				
2	7	2.5	2.5	0·6	-1.5331	_				
3	9	0.5	2.5	-1.0	0	_		,		2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Natural	2(hi+hz) hz	To = T 2(h2+h3) 2.5 9.0	$ \left[\begin{array}{c} \sigma_1 \\ \sigma_2 \end{array} \right] =$		$\sigma_{1} = \sigma_{2} = \sigma_{3}$	1.6971 -1.5331	A: =	- <u>(()</u>	i (x -	$(x_{i-1})^3$

$$Q_1^{(1)}(n_1) = Q_2^{(1)}(n_1)$$

$$Q_{n-1}^{n}(\chi_{n-1}) = Q_n^{n}(\chi_n)$$

$$\mathcal{F}_{i}(k) = \frac{\mathcal{F}_{i}}{h_{i}} \left(n - n_{i-1} \right) - \frac{\mathcal{F}_{i-1}}{h_{i}} \left(n - n_{i} \right)$$

Differential

$$Q_{i}(n) = \frac{G_{i}}{f_{i}} - \frac{G_{i-1}}{f_{i}}$$

If apply the condition

$$\frac{\sigma_1}{h_1} - \frac{\sigma_0}{h_1} = \frac{\sigma_2}{h_2} - \frac{\sigma_1}{h_1}$$

$$\Rightarrow \sigma_0 h_2 - \sigma_1 \left(h_1 + h_2\right) + \sigma_2 h_1 = 0$$

Not-a-knot spline
$$Q_{1}^{(1)}(n_{1}) = Q_{2}^{(1)}(n_{1})$$

$$Q_{1}^{(1)}(n_{1}) = Q_{2}^{(1)}(n_{1})$$

$$Q_{2}^{(1)}(n_{2}) = Q_{3}^{(1)}(n_{1})$$

$$\frac{q_{1}(n_{1})}{q_{m-1}(n_{m-1})} = \frac{q_{2}(n_{1})}{q_{m}(n_{m})} = \frac{q_{m}(n_{1})}{q_{m}(n_{1})} = \frac{q_{m}(n_{1})}{q_{m}(n$$

n	2 3	45	*
7	8 27	64 125	J = 100

Remark 2 Multi dimensemel Interpolation

y X	2	3	4	5	
1	-	-			Py (7) 4
(· 6	-		•	-	Py:15(2) 4,
2,0					Py=2 (Zy) 4,
2.\$	-		•	•	 14=25 () y'y

on dimensional interpolation Successive

Direct fit

$$P_{m}(n_{1}y) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{2} + a_{3}x^{2$$

Numerical Integration 4 Differentiation

INTE GRATIONS

$$I = \int_{a}^{b} f(x) dx$$

$$= F(b) - F(a)$$

of
$$f(x)$$

$$f(x) = \frac{dF(x)}{dx}$$

Numerical Integration (Quadratule)

Need > 1. Sometimes functions can be evaluated only at disortion points

2. The function is so conflex that analytical expression does not exists

 $\int_{0}^{b} f(n) dn \approx \int_{0}^{b} f_{m}(n) dx$ $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \left(P_{n}(x) + R_{n}(x) \right) dx$ $= \int_{a}^{b} P_{n}(n) dn + \int_{a}^{b} R_{n}(n) dn$ = I + E

Mewton-Eotes formulas for integration Applicable when function values are gradable at equal interals.

Only One Interval

$$f(n)$$

$$f(a)$$

$$f(b)$$

$$f(b)$$

$$f(b)$$

$$\frac{P_{\pm}(n)}{x_{0}-x_{1}} = \frac{x_{0}-x_{1}}{x_{0}-x_{0}} f(x_{0}) + \frac{x_{0}-x_{0}}{x_{1}-x_{0}} f(x_{0})$$

$$\frac{h}{h} = \frac{x_{0}-x_{1}}{x_{0}-x_{1}} f(x_{0}) + \frac{x_{0}-x_{0}}{x_{1}-x_{0}} f(x_{0}) dx$$

$$\frac{h}{h} = \frac{h}{h} = \frac{h}{h} f(x_{0}) + \frac{h}{h} f(x_{0}) dx$$

$$\frac{h}{h} = \frac{h}{h} f(x_{0}) + \frac{h}{h} f(x_{0}) dx$$

$$R_{1}(n) = \int_{2!}^{4!} (x) (n-n_{0}) (n-n_{1})$$

$$E = \int_{a}^{4!} (x) dx$$

$$= \int_{a}^{4!} (x) (n-a) (n-b)$$

$$= \int_{a}^{4!} (x) (x) dx$$

$$E = \int_{|z|}^{\infty} - \int_{|z|}^{\infty} f''(\xi_{j}) \int_{z}^{3} \int_{|z|}^{\infty} \int_{z}^{\infty} \int$$

$$P_3(n) = L_0 f(n_0) + L_1 f(n_1) + L_2 f(n_2)$$

$$I = \frac{h}{3} \left[f(n_0) + 4f(n_1) + f(n_2) \right]$$

$$E = -\frac{1}{90} h^5 f''(\xi)$$

Multiple app

$$T = \frac{h}{3} \left(f(n_{0}) + 4 \sum_{i=1,3}^{m} f(n_{i}) + f(n_{0}) + 2 \sum_{i=2,4}^{m} f(n_{i}) + f(n_{0}) \right)$$

$$E \approx O(h4) \qquad (h|_{2}) \xrightarrow{i=2,4} Eh|_{1b} = t_{h|_{2}}$$