1 Degree of Connectedness

We would like to have a measure of how well connected is the graph. Viewed as a whole, a network with a lot of disconnected cliques should score lower than a loosely connected network. From the perspective of a single player, this measure can be expressed as the expected mean indirect trust, defined incrementally as follows:

$$Tr(A) = \sum_{B \in \mathcal{V} \setminus \{A\}} Tr_{A \to B} \text{ (Total indirect trust for player } A)$$

$$ETr(A) = \frac{Tr(A)}{|\mathcal{V} \setminus \{A\}|} = \frac{Tr(A)}{|\mathcal{V}| - 1} \text{ (Expected indirect trust for player } A)$$

$$EMTr = \frac{1}{|\mathcal{V}|} \sum_{A \in \mathcal{V}} ETr(A) \text{ (Expected mean indirect trust)}$$

2 Centrality

Another important measure is the network centrality. We propose here some different measures to that end.

2.1 Degree Centrality

One possible approach is the degree centrality [Freeman citation], that can be broken down as in-degree and out-degree centrality. We first define the node in-degree centrality.

$$C_{in}^{d}\left(A\right) = \sum_{B \in \mathcal{V} \setminus \{A\}} DTr_{B \to A}^{-1}$$
 (Node in-degree centrality)

Let $A^* = \underset{A \in \mathcal{V}}{\operatorname{argmax}} C_{in}^d(A)$. The network in-degree centrality is defined as:

$$C_{in}^{d} = \sum_{A \in \mathcal{V}} \left(C_{in}^{d} \left(A^{*} \right) - C_{in}^{d} \left(A \right) \right) \text{ (Network in-degree centrality)}$$

Similarly, for the out-degree centrality we have:

$$C_{out}^{d}\left(A\right) = \sum_{B \in \mathcal{V} \setminus \{A\}} DTr_{A \to B}^{1}$$
 (Node out-degree centrality)

¹ Maybe indirect trust is more intuitive here than direct trust.

Let $A^* = \underset{A \in \mathcal{V}}{\operatorname{argmax}} C_{out}^d(A)$. The network out-degree centrality is defined as:

$$C_{out}^{d} = \sum_{A \in \mathcal{V}} \left(C_{out}^{d} \left(A^{*} \right) - C_{out}^{d} \left(A \right) \right) \text{ (Network out-degree centrality)}$$

A problem of these centrality measures is that their unit is the currency used (i.e. Bitcoin) and thus may not always have an intuitive meaning. We would thus like to have a measure of *centalization* that has no units and can take values in the interval [0,1], with 0 corresponding to a network of no centralization (all nodes are equal, e.g. cycle) and 1 to a network with the maximum centralization possible (there is one central vital node for all, e.g. star). A centralization measure that achieves this target is proposed in [Freeman citation]. Here we use the following modified form. For a graph \mathcal{G} , the in- and out-centralization are defined as:

$$\begin{split} Cn_{in}^d &= \frac{C_{in}^d}{\max C_{in}^d} \text{ (in-degree centralization)} \\ Cn_{out}^d &= \frac{C_{out}^d}{\max C_{out}^d} \text{ (out-degree centralization) }, \end{split}$$

where $\max C_{in}^d$ is defined as the maximum in-degree centrality for any graph with the same number of nodes for which the maximum direct² trust is equal to the maximum direct² trust of \mathcal{G} ; $\max C_{out}^d$ is defined equivalently.

2.2 maxFlow Centrality

An alternative measure of centrality for a player $A \in \mathcal{V}$ of a network \mathcal{G} can be defined as the impact that the removal of A would have on the indirect trust between the rest of the players. More specifically, let $\mathcal{G}' = \mathcal{G} \setminus \{A\}$. Then it is:

$$C^{mF}\left(A\right) = \sum_{B,C \in \mathcal{V}'} \left(Tr_{\mathcal{G},B \to C} - Tr_{\mathcal{G}',B \to C}\right) \text{ (Node maxFlow centrality) }.$$

We can now follow the same steps as previously for the relevant network definitions. Let A^* be the player with the maximum maxFlow centrality:

$$A^* = \operatorname*{argmax}_{A \in \mathcal{V}} C^{mF}\left(A\right) \ .$$

² Maybe indirect trust is more intuitive here than direct trust.

Then the network maxFlow centrality is defined as follows:

$$C^{mF} = \sum_{A \in \mathcal{V}} \left(C^{mF} \left(A^* \right) - C^{mF} \left(A \right) \right)$$

and the centralization:

$$C n^{mF} = \frac{C^{mF}}{\max C^{mF}} \mbox{ (Network maxFlow centralization) } \ , \label{eq:cnmF}$$

where $\max C^{mF}$ is the maximum centrality for any graph with the same number of nodes for which the maximum direct³ trust is equal to the maximum direct³ trust of \mathcal{G} .

³ Maybe indirect trust is more intuitive here than direct trust.

Here we can see several possible network health measures. A combination of them will probably do the job.

1.
$$n := |\mathcal{V}|$$
 How many players
2. $e := |\mathcal{E}| - |\{A : DTr_{A \to A} > 0\}|^4$ How many direct trust lines
3. $\frac{e}{n}$ Mean direct trust lines per player
4. $DTr := \sum_{A,B \in \mathcal{V}} DTr_{A \to B}$ How much direct trust in total
5. $\mu := \frac{DTr}{n}$ Mean direct trust per player
6. $Cap := \sum_{A \in \mathcal{V}} DTr_{A \to A}$ Total capital

5.
$$\mu := \frac{DTr}{n}$$
 Mean direct trust per player
6. $Cap := \sum DTr_{A \to A}$ Total capital

7.
$$\frac{Cap}{n}$$
 Mean capital per player 8. $\frac{DTr-Cap}{n}$ Mean direct trust minus capital per player

8.
$$\frac{1}{n} \sum_{A \in \mathcal{V}} \left(\sum_{\substack{B \in V \\ B \neq A^4}} DTr_{A \to B} - \mu \right)^2$$
 Outgoing direct trust variance
$$10. \frac{1}{n} \sum_{B \in \mathcal{V}} \left(\sum_{\substack{A \in V \\ A \neq B^4}} DTr_{A \to B} - \mu \right)^2$$
 Incoming direct trust variance

10.
$$\frac{1}{n} \sum_{B \in \mathcal{V}} \left(\sum_{\substack{A \in V \\ A \neq B}} DTr_{A \to B} - \mu \right)^2$$
 Incoming direct trust variance

Total capital to total direct trust ratio

⁴ Maybe it makes sense to include looped direct trusts (Capital) as well.