Econometrics 710 Final Exam, Spring 2014

1.

(a)
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \left(e_{1i}^2 - e_{2i}^2 \right) = \hat{\sigma}_1^2 - \hat{\sigma}_2^2$$
 where $\hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^{n} e_{1i}^2$ and $\hat{\sigma}_2^2 = \frac{1}{n} \sum_{i=1}^{n} e_{2i}^2$

(b) Let
$$u_i = (e_{1i}^2 - e_{2i}^2) - \theta = (e_{1i}^2 - e_{2i}^2) - (\sigma_1^2 - \sigma_2^2)$$
. Note that $Eu_i^2 = 0$ and

$$var(u_{i}) = E((e_{1i}^{2} - e_{2i}^{2}) - (\sigma_{1}^{2} - \sigma_{2}^{2}))^{2}$$

$$= E((e_{1i}^{2} - \sigma_{1}^{2}) - (e_{2i}^{2} - \sigma_{2}^{2}))^{2}$$

$$= E(e_{1i}^{2} - \sigma_{1}^{2})^{2} + E(e_{2i}^{2} - \sigma_{2}^{2})^{2} + 2E((e_{1i}^{2} - \sigma_{1}^{2})(e_{2i}^{2} - \sigma_{2}^{2}))$$

$$= E(e_{1i}^{4}) - \sigma_{1}^{4} + E(e_{2i}^{4}) - \sigma_{2}^{4} + 2E(e_{1i}^{2}e_{2i}^{2}) - \sigma_{1}^{2}\sigma_{2}^{2}$$

$$= \sigma_{v}^{2}$$

say. Alternatively, you could write

$$var(u_i) = E((e_{1i}^2 - e_{2i}^2)^2) - (\sigma_1^2 - \sigma_2^2)^2$$

By the CLT

$$\sqrt{n}\left(\widehat{\theta} - \theta\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} u_i \to_d N(0, \sigma_v^2)$$

(c) $\widehat{\sigma}_v^2 = \frac{1}{n} \sum_{i=1}^n \widehat{u}_i^2$ where $\widehat{u}_i = u_i = (e_{1i}^2 - e_{2i}^2) - \widehat{\theta}$. Equivalently,

$$\widehat{\sigma}_{v}^{2} = \frac{1}{n} \sum_{i=1}^{n} e_{1i}^{4} - \widehat{\sigma}_{1}^{4} + \frac{1}{n} \sum_{i=1}^{n} e_{2i}^{4} - \widehat{\sigma}_{2}^{4} + 2 \frac{1}{n} \sum_{i=1}^{n} e_{1i}^{2} e_{2i}^{2} - \widehat{\sigma}_{1}^{2} \widehat{\sigma}_{2}^{2}$$

or

$$\widehat{\sigma}_{v}^{2} = \frac{1}{n} \sum_{i=1}^{n} (e_{1i}^{2} - e_{2i}^{2})^{2} - (\widehat{\sigma}_{1}^{2} - \widehat{\sigma}_{2}^{2})^{2}$$

- (d) A t-ratio is $T_n = \sqrt{n}\widehat{\theta}/\widehat{\sigma}_v$. A test of asymptotic size α rejects H_0 in favor of H_1 if $|T_n| > Z_{\alpha/2}$ where $Z_{\alpha/2}$ is the $\alpha/2$ quantile of the normal distribution, and accepts H_0 if $|T_n| \leq Z_{\alpha/2}$
- (e) If the test accepts H_0 , this means that the evidence cannot reject the hypothesis that the two models have equal fit. Based on the evidence, we cannot say if model (1) or model (2) is better than the other.

2.

(a) In matrix notation, $Y = X_1\beta_1 + X_2\beta_2 + e$ and

$$\widehat{\boldsymbol{\beta}}_1 = \left(\left(X_1'Z \right) \left(Z'Z \right)^{-1} \left(Z'X_1 \right) \right)^{-1} \left(X_1'Z \right) \left(Z'Z \right)^{-1} \left(Z'Y \right)$$

The estimate is overidentified since $\ell > k_1$.

Substituting $Y = X_1\beta_1 + X_2\beta_2 + e$ for Y,

$$\widehat{\beta}_{1} = \beta_{1} + \left(\left(X_{1}'Z \right) \left(Z'Z \right)^{-1} \left(Z'X_{1} \right) \right)^{-1} \left(X_{1}'Z \right) \left(Z'Z \right)^{-1} \left(Z'X_{2} \right) \beta_{2}$$

$$+ \left(\left(X_{1}'Z \right) \left(Z'Z \right)^{-1} \left(Z'X_{1} \right) \right)^{-1} \left(X_{1}'Z \right) \left(Z'Z \right)^{-1} \left(Z'e \right)$$

$$= \beta_{1} + b_{1n} + r_{1n}$$

where

$$b_{1n} = ((X'_1 Z) (Z'Z)^{-1} (Z'X_1))^{-1} (X'_1 Z) (Z'Z)^{-1} (Z'X_2) \beta_2$$

$$r_{1n} = ((X'_1 Z) (Z'Z)^{-1} (Z'X_1))^{-1} (X'_1 Z) (Z'Z)^{-1} (Z'e)$$

(b) Since $\frac{1}{n}Z'e \stackrel{p}{\longrightarrow} 0$,

$$r_{1n} = \left(\left(\frac{1}{n} X_1' Z \right) \left(\frac{1}{n} Z' Z \right)^{-1} \left(\frac{1}{n} Z' X_1 \right) \right)^{-1} \left(\frac{1}{n} X_1' Z \right) \left(\frac{1}{n} Z' Z \right)^{-1} \left(\frac{1}{n} Z' e \right)$$

$$\xrightarrow{p} \left(Q_{z1}' Q_{zz}^{-1} Q_{z1} \right)^{-1} Q_{z1}' Q_{zz}^{-1} 0$$

$$= 0$$

where we write $Q_{z1} = Ez_i x'_{1i}$. Since $Q_{zx} = [Q_{z1}, Q_{z2}]$ has full rank, Q_{z1} has full rank so the matrix $Q'_{z1}Q_{zz}^{-1}Q_{z1}$ is invertible under the assumptions.

(c)

$$b_{1n} = \left(\left(\frac{1}{n} X_1' Z \right) \left(\frac{1}{n} Z' Z \right)^{-1} \left(\frac{1}{n} Z' X_1 \right) \right)^{-1} \left(\frac{1}{n} X_1' Z \right) \left(\frac{1}{n} Z' Z \right)^{-1} \left(\frac{1}{n} Z' X_2 \right) \beta_2$$

$$\xrightarrow{p} \left(Q_{z1}' Q_{zz}^{-1} Q_{z1} \right)^{-1} Q_{z1}' Q_{zz}^{-1} Q_{z2} \beta_2$$

Since $\hat{\beta}_1 = \beta_1 + b_{1n} + r_{1n}$, it follows that $\hat{\beta}_1 \xrightarrow{p} \beta_1 + (Q'_{z1}Q_{zz}^{-1}Q_{z1})^{-1}Q'_{z1}Q_{zz}^{-1}Q_{z2}\beta_2$

(d) The estimator $\hat{\beta}_1$ suffers from omitted variables bias in the sense that it is inconsistent for β_1 . The probability limit is $\beta_1 + \left(Q'_{z1}Q_{zz}^{-1}Q_{z1}\right)^{-1}Q'_{z1}Q_{z2}^{-1}Q_{z2}$. This equals β_1 (and thus there is no omitted variables bias) in one of two cases. First, when $\beta_2 = 0$ (the variables x_{2i} have true zero coefficients). Second, when $Q'_{z1}Q_{zz}^{-1}Q_{z2} = 0$. This second condition is a bit tricky to interpret. Notice that the assumptions include $Q_{zx} = [Q_{z1}, Q_{z2}]$ has full rank k, which implies that both Q_{z1} and Q_{z2} have full rank. Thus the answer "there is no asymptotic bias when $Q_{z2} = 0$ " is in conflict with this assumption. However, it is still possible for $Q'_{z1}Q_{z1}^{-1}Q_{z2} = 0$. It occurs when the projections of x_{1i} and x_{2i} onto z_i are uncorrelated. To see this, suppose without loss of generality that $Q_{zz} = I$ (or equivalently redefine the instrument vector by rotation). Then the plim of the estimator is $\beta_1 + \left(Q'_{z1}Q_{z1}\right)^{-1}Q'_{z1}Q_{z2}\beta_2$ This equals β_1 when $Q'_{z1}Q_{z2} = 0$. This can occur when both Q_{z1} and Q_{z2} are full rank but mutually orthogonal. You can also interpret Q_{z1} as the population coefficients from a projection of x_{2i} on z_i . $Q'_{z1}Q_{z2}^{-1}Q_{z2} = 0$ occurs when these two regression coefficients are orthogonal.

(e)

$$\begin{split} \sqrt{n} \left(\widehat{\beta}_{1} - \beta_{1} - b_{1n} \right) &= \sqrt{n} r_{1n} \\ &= \left(\left(\frac{1}{n} X_{1}' Z \right) \left(\frac{1}{n} Z' Z \right)^{-1} \left(\frac{1}{n} Z' X_{1} \right) \right)^{-1} \left(\frac{1}{n} X_{1}' Z \right) \left(\frac{1}{n} Z' Z \right)^{-1} \left(\frac{1}{\sqrt{n}} Z' e \right) \\ &\xrightarrow{d} \left(Q_{z1}' Q_{zz}^{-1} Q_{z1} \right)^{-1} Q_{z1}' Q_{zz}^{-1} N(0, \Omega) \\ &= N(0, V) \end{split}$$

where $\Omega = E z_i z_i' e_i^2$ and

$$V = \left(Q_{z1}^{\prime} Q_{zz}^{-1} Q_{z1}\right)^{-1} Q_{z1}^{\prime} Q_{zz}^{-1} \Omega Q_{zz}^{-1} Q_{z1} \left(Q_{z1}^{\prime} Q_{zz}^{-1} Q_{z1}\right)^{-1}$$