Task 3: Unsupervised Machine Learning

From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually

Dataset: https://drive.google.com/file/d/11lq7YvbWZbt8VXjfm06brx66b10YiwK-/view

Importing Libraries

```
In [1]:
```

```
#importing the required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
```

Loading the dataset

```
In [2]:
```

```
iris = datasets.load_iris()
iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
iris_df.head(15)
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2

```
In [3]:
```

Out[4]:

```
iris_df.shape #shape of the dataset
Out[3]:
(150, 4)
In [4]:
iris_df.describe(include='all') #description of the dataset
```

-count	sepal length (cm) 150.000000	sepal width (cm)	petal length (cm) 150.000000	petal width (cm) 150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [5]:

```
iris_df.info() #information about the dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm) 150 non-null float64
```

petal length (cm) 150 non-null float64
petal width (cm) 150 non-null float64

dtypes: float64(4)
memory usage: 4.8 KB

sepal width (cm)

Finding the optimum number of clusters for k-means classification

150 non-null float64

In [6]:

```
# Determining the optimum number of clusters using elbow method
x = iris_df.iloc[:, [0,1,2,3]].values
from sklearn.cluster import KMeans
wcss = []
for i in range (1,11):
  kmeans = KMeans(n clusters = i, init = 'k-means++', max iter = 300, n init = 10, rand
om state = 0)
  kmeans.fit(x)
  wcss.append(kmeans.inertia)
# Plotting the results onto a line graph,
# Allowing us to observe 'The elbow'
plt.plot(range(1, 11), wcss, marker='.')
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') # Within cluster sum of squares
plt.show()
```


From this we choose the number of clusters as '3'.

TOTAL WIND THE STREETS WIND HARMOND OF STREETS AND STREET

Creating the k means classifier

In [7]:

```
# Applying kmeans to the dataset
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_
state = 0)
y_kmeans = kmeans.fit_predict(x)
```

Visualising the clusters

In [8]:

```
# Visualising the clusters - On the first two columns
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Iris-
setosa')
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Iris-
versicolour')
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Iri
s-virginica')

# Plotting the centroids of the clusters
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'y
ellow', label = 'Centroids')
plt.legend()
```

Out[8]:

<matplotlib.legend.Legend at 0x2c52f549f28>

In []: