See working examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

		Built-in function in R	Equivalent linear model in R	if N	The model in words	Icon
Simple regression: $lm(y \sim 1 + x)$	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	W or L: t.test(y) W or L: wilcox.test(y)	W or L: lm(y ~ 1) W or L: lm(signed_rank(y) ~ 1)	<u>>14</u>	One number (intercept) predicts y . One number (intercept) predicts the signed rank of y .	ÿ
	P: Paired-sample t-test N: Wilcoxon matched pairs	W: t.test(y ₁ , y ₂ , paired=TRUE) W: wilcox.test(y ₁ , y ₂ , paired=TRUE)	W: $lm(y_2 - y_1 \sim 1)$ W: $lm(signed_rank(y_2 - y_1) \sim 1)$	<u>>14</u>	One intercept predicts the pairwise y_2 - y_1 differences. One intercept predicts the pairwise difference in the signed rank of y_2 - y_1 .	Z +
	y ~ continuous x P: Pearson correlation N: Spearman correlation	W: cor.test(x, y, method='Pearson') W: cor.test(x, y, method='Spearman')	W: lm(y ~ 1 + x) W: lm(rank(y) ~ 1 + rank(x))	≥ <u>10</u>	x multiplied by a number (slope) predicts y . The rank of x multiplied by a number (slope) predicts the rank of y .	نسببسر
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	W: t.test(y ₁ , y ₂ , var.equal=TRUE) W: t.test(y ₁ , y ₂ , var.equal=FALSE) W: wilcox.test(y ₁ , y ₂)	L: $lm(y \sim 1 + G_2)^A$ L: $gls(y \sim 1 + G_2, weights=^B)^A$ L: $lm(signed_rank(y) \sim 1 + G_2)^A$	<u>>11</u>	One intercept per group (i.e., per x) predicts y . One intercept per group (i.e., per x) predicts y (but different variances). One intercept per group (i.e., per x) predicts the signed rank of y .	\
Multiple regression: $lm(y \sim 1 + x_1 + x_2 +)$	P: One-way ANOVA N: Kruskall-Wallis	L: aov(y ~ group) L: kruskal.test(y ~ group)	L: $lm(y \sim 1 + G_2 + G_3 + + G_N)^A$ L: $lm(rank(y) \sim 1 + G_2 + G_3 + + G_N)^A$	<u>>11</u>	One intercept per group (i.e., per x) predicts y . One intercept per group (i.e., per x) predicts the signed rank of y .	<u>i, †</u> †
	P: One-way ANCOVA	L: aov(y ~ group + x)	L: $lm(y \sim 1 + G_2 + G_3 + + G_N + x)^A$		One intercept per group plus x multiplied by a number (slope) predicts y . Note: this is discrete AND continuous. All ANCOVAs are ANOVAs with a continuous x .	
	P: Two-way ANOVA	L: aov(y ~ group * sex)	L: $lm(y \sim 1 + G_2 + G_3 + + G_N + G_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 + + G_N * S_K)$		Interaction: changing sex changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Note: $G_{2 \text{ to } N}$ is an <u>indicator (0 or 1)</u> for each of N levels of the group variable except for the one modeled by the intercept (1). Similarly for $S_{2 \text{ to } N}$ for sex . Line 1 is main effect of group , line 2 for sex and line 3 is the group X sex interaction. For two levels (e.g. male/female sex), line 2 would just be " S_2 " and line 3 would be interactions between just S_2 and all $G_{2 \text{ to } N}$.	[Coming]
	Counts ~ discrete x N: Chi-square test	M: chisq.test(group * sex_table)	Equivalent log-linear R model L: $glm(y \sim 1 + G_2 + G_3 + + G_N + S_2 + S_3 + + S_K + G_2*S_2+G_3*S_3++G_N*S_K$, family=) ^A		Interaction: changing sex changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Run glm using the following arguments: glm(model, family=binomial(link='log')) As linear-model, the Chi-square test is $\log(y_i) = \log(N) + \log(\alpha_i) + \log(\beta_i) + \log(\alpha_i\beta_i)$ where α_i and β_i are proportions. See more info in the notebook accompanying this table.	Same as Two-way ANOVA
	N: Goodness of fit	L: chisq.test(y)	L: $glm(y \sim 1 + G_2 + G_3 + + G_N,)^A$		One intercept per group (i.e., x) predicts y .	1W-ANOVA

List of parametric (P) non-parametric (N) tests and equivalent linear models. The notation $y \sim 1 + x$ is R shorthand for $y = 1 \cdot b + a \cdot x$ which most learned in high-school. Models in similar colors are highly similar. Notice how little changes from line to line! For non-parametric models, the linear models are acceptable approximations for sample sizes in the "if N" column (empty = exact). Click links to see more details. Other less accurate approximations exist, e.g., Wilcoxon for sign test and Goodness-of-fit for binomial test. Some R commands require wide format data (W) with multiple values per row while others require long format (L) with one value per row. The signed rank function is $signed_rank = function(x) \cdot sign(x) \cdot rank(abs(x))$. The variables G_i and G_i are "dummy coded" indocator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G_2 or g_1) indicate different columns in data.

^A See the note to the two-way ANOVA for explanation of the notation.

^B Same model, but with one variance per group: gls (value ~ 1 + G_2 , weights = varIdent (form = ~1|group), method="ML").