```
714团队:基础设施与资料整理
  基础设施
     1. 水下机器人
     2. 巡检机器人
     3. 监控摄像头
     4. 工业相机
     5. 深度学习服务器
     6. 无人飞行器:
  附录1:推荐学习资料(更新于2019年11月)
     编程开发与软件工程
       C++ (编程语言)
       Python (编程语言)
       Git与GitHub (工具)
       Markdown (工具)
       软件工程 (思想)
       WinForm / QT (用户界面实现)
          WinForm/.NET
          QT
       Linux (工具)
       MATLAB (工具)
       SketchUP (工具)
     图像处理/计算机视觉
       理论
       工具
          OpenCV
         Halcon
       学习资源
     深度学习&机器学习
       理论
       工具
     学校及网络资源获取方式
  附录 2: 深度学习服务器搭建与使用
     技术方案
       硬件配置
       技术方案
       参考资源/链接
     搭建介绍
       系统
       GPU驱动
       LXD/ZFS安装
          安装
          配置
            网络
            初始化LXD
            测试
     使用介绍
       创建容器模板
         LXC清华源
          下载创建
       配置共享目录和GPU
          共享目录设置
       GPU配置
          添加GPU
          安装显卡驱动
```

配置SSH免密码登录

```
安装SSH服务
       生成RSA文件
       测试SSH
     配置frp (内网穿透工具)
       关于frp
       使用方式
       服务端配置
       客户端配置
       在校园网内进行测试
  给用户分配容器
    克隆容器
     修改hostname
    修改SSH秘钥文件
    修改frp映射端口
    交付容器
  拓展
    LXDUI 可视化管理界面
    资源限制问题
    图形界面
    驱动的更新
    关于镜像自动备份
  备注
    容器中无法使用GPU的问题
       方案一: 重新安装GPU显卡驱动
       方案二: 重新挂载
    注意
机器视觉项目基本流程
  1. 基本流程
  2. 确定客户需求
  3. 方案设计
  4. 软件开发
  5. 现场调试
  6. 文档交接
```

714团队:基础设施与资料整理

基础设施

1. 水下机器人

水下机器人细节介绍。参考文件:《通用型开架式水下机器人开源手册.pdf》

朱晓坡、侯一兴、黄渊博等已上手。

相关的配套软件:

- 1. QGC: QGroundControl,开源的地面站控制软件,可用于水下机器人的视频查看和实时控制。
- 2. 水下巡检与定位上位机系统(团队在研软件): 用于声纳数据的接收,定位解算,视频传输以及缺陷检测的综合系统。
 - o version1.0: 沈晓海
 - 声纳数据接收保存展示,并提供实时解算的数据接口。
 - 2D+3D的定位展示接口,并提供位置接口用于实时展示。
 - 视频流接收、解码、显示和保存的功能实现。

- o version2.0: 黄渊博
 - 遥控操作的实现
 - 缺陷检测系统的整合

2. 巡检机器人

黄渊博、宋柯正在制作。

上位机平台黄渊博已接手。

相关的配套软件:

1. 巡检机器人系统平台:上海国家电网项目图像处理库+英特尔杯竞赛作品。

3. 监控摄像头

海康的多路摄像头,

信息备注:

用户名: admin

密码: qianxin714

录像机采集五路视频 (录像机本地可以播放,录像机作为网页服务端也可以播放)

VLC打开RSTP串流: rtsp://admin:qianxin714@169.254.61.108:554/Streaming/Channels/101

chanels: 101 201 401 701 801教程: https://blog.csdn.net/xiejiashu/article/details/71786187

4. 工业相机

两个Baumer(堡盟)工业相机,多个海康工业相机。另外配备多个镜头。

工业相机的使用需要多了解,多尝试。光源的选择搭配也要通过多尝试来确认。

光源选择相关资料:

- 1. 《灯源种类整理.pdf》
- 2. 多看淘宝上的光源介绍资料。

工业相机开发方式:

- 1. Halcon的开发方式案例: 采用HALCON机器视觉软件及C#语言检测工件位置的方法
- 2. Baumer相机的开发方式: Baumer官网的一些有用信息: <u>工业相机的相关技术信息</u> 文档笔记(Baumer驱动安装后值得注意的文档,介绍了如何利用SDK进行开发)
 - Docs
 - Installation_GuideInstallationGuide_Win.pdf
 - Installation Guide for Microsoft® Windows®
 - Baumer GAPI SDK v2.10.0
 - 介绍了SDK的开发框架和安装配置,是第一个步骤。
 - Programmers_Guide
 - ProgrammersGuide_BaumerFeatures.pdf
 - Programmer's Guide Baumer Features
 - Baumer GAPI SDK v2.10.0
 - 介绍Baumer相机和SDK中,区别于GenTL SFNC标准的功能。有需要可以来 这里查询。

■ ProgrammersGuide.pdf

- Programmer's GuideBaumer
- GAPI SDK v2.10.0
- 编程指导。比较全面,找API就需要参考这一份文档。
- Baumer_SDK_ReferenceSDK
 - 参考文档,用于搜索查找信息。

。 指导:

- GAPI 安装,参考Installation guide。
- C++/C#, 用的是C#方式。
- 需要了解GAPI的核心概念,参考第三章: Central Idea Behind Baumer GAPI,有助于理解API接口。了解这几个概念(System, Interface, Device, DataStream, Buffer)
- 第四章Programming Basics in Baumer GAPI2介绍编程配置。详见C#小节。
 - 需要设置环境变量(安装包形式),如果用的现成的压缩包解压的话,应该可以将 Components文件夹下的文件拷贝到Bin即可。
 - 编程最好是通过不同的线程来处理。即采图一个线程,处理一个线程。
- Baumer Camera Explorer中有ForcelP选项,可以调整IP。
- 影响datastream效率的是buffer size,这部分需要关注。参考programmingguide 第58页。 TLParamsLocked mechanism. 机制
- 获取缓冲输入后需要转换Image,详见guide 5.5节。具体包括
 - Load image processor object
 - Create Image
 - Transform Image
 - Release Image Objects
 - Release Image Processor

5. 深度学习服务器

详见 附录2。

服务器宿主端用户和密码是: ubuntu, hhuec714。

6. 无人飞行器:

型号: DJI M210

热成像相机: DII XT

相机: Z30

操控方式, 万至达已经掌握。

维护问题可以联系: 常州赛思网络科技 吴国强 13806123949。

附录1:推荐学习资料(更新于2019年11月)

需要注意的几点

- 1. 各位同学有推荐的相关资源随时进行补充。
- 2. 清单中资源多, 但贪多嚼不烂, 注意辨别哪些需要致力研究, 哪些仅是随手使用。
- 3. 除推荐中的工具、书籍等,还应当通过追踪期刊和会议来了解自己领域的最新动态。
- 4. 文档写于2019年11月,需要大家随时更新维护。

编程开发与软件工程

C++ (编程语言)

C++除了C语言部分,至少要掌握面向对象概念和STL库的使用,而不应仅局限于拿C++写C程序。

- 书籍
 - 基础书籍推荐看《C++ Primer》(不推荐《C++ Primer Plus》)
 - 实用书籍推荐看《Effective C++》
 - 进阶清单链接: http://bestcbooks.com/recommended-cpp-books/
- 视频
 - 侯捷系列视频 (哔哩哔哩已有搬运)
 - 基础:《C++面向对象开发》
 - 进阶: 《STL标准库与泛型编程》
 - 拓展: 《C++新标准C++11/14》、《C++内存管理机制》、《C++Startup揭秘》
- 开发工具
 - 。 Visual Studio: Community版本即可。
 - 。 JetBrains CLion: JetBrains系列开发工具可以通过学生邮箱认证。
- 网站推荐
 - C语言中文网 <u>http://c.biancheng.net/</u>

Python (编程语言)

Python作为一门解释型语言,方便快捷。一方面可以当成日常工具使用,另一方面图像处理、深度学习领域有大量开源代码基于Python进行研究。Python是一门实践语言,可以边学边用。 **备注:使用 Python3.x版本,不要学Python2.x版本**

- 书籍
 - 入门:《简明Python教程》
 - 进阶: 《流畅的Python》
- 视频
 - o Coursera课程《Python For Everybody》,覆盖数据结构、网络和数据库和数据可视化等领域
- 开发工具
 - Anaconda (务必掌握虚拟环境的管理)
 - Visual Studio Code
 - JetBrains PyCharm: JetBrains系列开发工具可以通过学生邮箱认证。
- 网站
 - o Python教程-廖雪峰的官方网站 https://www.liaoxuefeng.com/wiki/1016959663602400

Git与GitHub (工具)

版本管理工具,Git常用于开源项目,SVN常用与团队内部代码管理。SVN可以不学,Git最好掌握,对于项目代码、论文实验代码以及文档版本的管理,能够提升效率。

- Git
 - o 《Git 简明指南》 https://rogerdudler.github.io/git-guide/index.zh.html
 - o Git教程 https://www.liaoxuefeng.com/wiki/896043488029600
- GitHub上的代码管理和团队协作教程

重点关注以下两个Learning Path:

First Day on GitHub

First Week on GitHub

Markdown (工具)

轻量型标记语言,主流的代码托管平台、开源项目的说明文档、技术社区和论坛的问答,均使用 Markdown写作。学习成本很低,掌握基本语法即可。

- 《MarkDown: 教程》 https://www.markdown.cn/
- 本地工具推荐: Typora, 这份文档就是通过该软件编写的。

软件工程 (思想)

软件工程主要指项目开发中涉及编码规范、设计、文档等与技术无直接关系,但又影响到开发质量的合理规范的开发流程。

需要平时多积累。

- 推荐的书籍
 - 0 《构建之法》
- 推荐的博客
 - 。 现代软件工程讲义 源代码管理
 - 现代软件工程讲义 且录

WinForm / QT (用户界面实现)

目前为止实验室的PC软件界面开发使用的是C#/.NET配合WinForm, WinForm方便搭建简单的UI界面,但其局限性在于UI可拓展性差,无法搭建美观的界面;

对于仅仅需要界面进行算法调试的,可以使用WinForm搭建。

但C#与C++难以进行高级数据结构的交互;要求.NET环境部署难。目前很少有使用WinForm搭建UI的大型项目。

推荐使用C++/QT进行PC软件界面的开发,UI扩展性强、跨平台、与C++高度结合,不需要再费心思学C#语言。

WinForm/.NET

- 入门: 《C#教程》 http://c.biancheng.net/csharp/
- 进阶:《Learning Hard C# 学习笔记》

QT

- 《C++ GUI QT 4编程 (第二版)》
- 《QmlBook》 https://github.com/cwc1987/QmlBook-In-Chinese

Linux (工具)

掌握Linux的理由如下: 1. 大量开源软件和深度学习框架优先支持 2. 与嵌入式系统打交道的最主要方式。深度学习、图像处理等方向的掌握基本使用即可,硬件开发方向的需要深入理解。

Linux可以边学边用, 遇到不会的进行查询即可。

- 入门:一般推荐《鸟哥的Linux私房菜》,但其体量大,应当成工具书选择自己需要的进行查阅。
- 推荐使用Ubuntu系统进行Linux初步使用,学会基本的操作命令。

MATLAB (工具)

MATLAB是经典的仿真工具,提供了大量的函数、绘图工具,也有大量的开源代码和实验都是基于 MATLAB,至少要掌握MATLAB的基本使用,看到别人的代码做到心中不慌。比如MATLAB编程风格、如何写脚本和运行、如何查询函数使用等。

- 商业软件都有其详细的使用文档和教程,入门和进阶无需考虑其他市面教材,
- 入门: 官网文档《MATLAB 快速入门》
- 进阶: 官网文档 https://ww2.mathworks.cn/help/matlab/index.html 包括语言基础知识、数学、图形、数据导入和分析、脚本和函数编程、APP构建、高级软件开发等
- 具体方向 (图像、视频、音频等) 研究则应自行查找相关书籍

SketchUP (工具)

SketchUP是易于上手的三维绘图工具,在绘制专利、演示等示意图上有帮助。非设计专业,掌握基本使用即可,学会绘制基本元素,利用好模型库中的已有模型。

• 《SketchUp建模新手必读教程合集》 https://www.asketchup.com/thread-344151-1-1.html

图像处理/计算机视觉

理论

- 《数字图像处理》冈萨雷斯著
- 《机器视觉算法与应用》HALCON研发者编著
- 《图像处理,分析与机器视觉》
- 课程推荐:《CS131 Computer Vision: Foundations and Applications》,主要讲解常见算法的原理和实现。
- 书籍推荐(张学武推荐)
 - 。 清华大学 章毓竟
 - 。 天津大学 张广军

工具

OpenCV

开源视觉库, 封装了许多算法。

建议看书和查文档API。

- 《OpenCV3编程入门》
- 《Python计算机视觉编程》
- https://www.pyimagesearch.com/ 该博主提供了一些小项目的教程和代码实现。

Halcon

商业工业视觉软件。提供了丰富的工业检测案例,可以拿来参考。安装目录下有详细的使用文档和说明,无需再找其他教程。

- 《manuals》
- 《reference》
- «solution_guide»
- 结合《机器视觉算法与应用》一起看。

学习资源

https://github.com/jbhuang0604/awesome-computer-vision 罗列了与视觉相关的资源

https://handong1587.github.io/index.html

深度学习&机器学习

理论

理论的书籍看不下去可以先找一些有对应代码的课程或者书籍,先尝试运行。

- 书籍
 - 0 《机器学习》
 - 。 《深度学习》
- 课程
 - 机器学习入门: 吴恩达《machine learning》 (哔哩哔哩)
 - 深度学习入门: 吴恩达《深度学习工程师》 (网易云课堂)
 - 。 深度学习进阶: 《CS231n: Convolutional Neural Networks for Visual Recognition》
 - 。 深度学习进阶: https://www.fast.ai/ 有两门课(哔哩哔哩已搬运),一门注重实践,一门注重前沿

工具

- 深度学习框架目前有许多深度学习框架,TensorFlow、PyTorch、MXnet等。推荐使用PyTorch, 方便模型的搭建和调试,更易于学术上进行研究。
 - PyTorch入门: 官网文档和《DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ》
 - PyTorch教程: https://github.com/yunjey/pytorch-tutorial
- 网站
 - 。 https://github.com/ 丰富的论文复现代码
 - o https://arxiv.org/ 丰富的计算机领域论文下载(出版和未出版)
 - https://www.paperweekly.site 论文追踪
 - o Kaggle和天池大数据:深度学习领域竞赛平台,经常会有比赛,通过参加比赛或者学习别人的解决方案来提高自己的实践能力。
- 公众号和微博
 - 机器之心 https://www.jiqizhixin.com/
 - 我爱计算机视觉 https://www.52cv.net/
 - 爱可可-爱生活 https://weibo.com/fly51fly?is all=1

学校及网络资源获取方式

- 学校数据库 资源大平台, 许多非常棒的资源可以从上面获取
 - 。 知网 国内的学术期刊几乎都可以搜到, 下载
 - 。 Springer 出版社,包括期刊文章、会议集和该社的电子书
 - o EI 检索网站
 - 。 IEEE 检索各类期刊文章和会议集
- 网络平台
 - o http://sci-hub.cc/
 - o http://sci-hub.io/
 - Google Scholar
 - 。 百度学术 也可以下载一些文档
- 提供代码复现的平台
 - o http://www.cvpapers.com/ 提供计算机视觉顶会的论文, 还提供了代码
 - o http://www.gitxiv.com 基于arXiv和Github的计算机科学协作平台。文章源码同时放出,还可以和原作互动评论

- 电子书籍
 - 。 外文书籍
 - 查询网络是否有公版书籍
 - 查询Springer 等学校购买版权的网站是否提供下载
 - 查询图灵和异步等电子书社区是否提供电子书
- 实体书籍
 - 查询图书馆是否有相关书籍
 - 。 买买买,可以报销

附录 2: 深度学习服务器搭建与使用

技术方案

硬件配置

指标	参数
CPU	Intel至强 E5-2680 v4 *2
GPU	NVIDIA TITAN V *2
Memory	128G
Disk	480G SSD + 8T HDD + (4T RAID HDD)

技术方案

主机系统: Ubuntu 18.04容器管理工具: LXD文件管理系统: ZFS

参考资源/链接

- <u>搭建多人共用的GPU服务器</u>
- 为实验室建立公用GPU服务器
- LXD, ZFS and bridged networking on Ubuntu 16.04 LTS+
- ZFS 与 LXC 与 GPU Passthrough, 以及贵校超算队集群管理
- 搭建公用GPU服务器过程记录
- <u>搭建实验室公共GPU服务器</u>

搭建介绍

方案流程

- 1. 宿主机安装Ubuntu18.04系统,安装GPU驱动。
- 2. 安装LXD/ZFS软件并进行配置。
- 3. 创建容器模板 (Ubuntu16.04) ,包括: 网络、GPU驱动、共享目录、SSH登录。
- 4. 按需分配, 克隆容器模板, 并做个性化修改。
- 5. 使用lxdui进行可视化容器管理。

系统

系统选择Ubuntu 18.04。

原因: Ubuntu 16.04下默认下载安装的是LXD2.0,LXD2.0不支持配置GPU到容器中,如果Ubuntu16.04需要配置GPU到容器,则需自行编译LXD3.0。而Ubuntu 18.04默认下载安装的则是LXD3.0的,安装方便。

安装完成后,注意将软件源配置为清华源,提高下载更新速度。具体步骤参考: Ubuntu 镜像使用帮助

GPU驱动

往常Linux下的GPU驱动安装是很复杂的,网上NVIDIA Driver教程百花绽放。经过实践发现,装完系统后,使用系统 软件和更新 中提供的NVIDIA驱动是可行的,非常方便。

安装完成后,重启,输入 nvidia-smi 进行确认,注意显卡驱动版本。

LXD/ZFS安装

安装

• LXD: 用于创建和管理容器

• ZFS:用于管理物理磁盘,支持LXD高级功能,负责容器存储。

• Bridge-Utils:用于搭建网桥,负责容器上网。

运行命令进行安装:

sudo apt-get install lxd zfsutils-linux bridge-utils

配置

网络

需要注意的是,不同网络环境下,大家对于上网方式的诉求是不一样的。有些情况是希望用户在自己容器中登录校园网进行上网,有些情况则是上网免费,无所谓个人不个人。不同情况下,对于网络的配置是不同的。

目前我们是这样打算的,宿主机使用我的个人账号登录,每个容器就直接通过宿主机NAT上网,也不需要每个同学登录了,反正费用最后都能报销。对于较大的几十个G的数据集,则建议用户自己下载下来后,通过物理拷贝或者局域网内传输的方式上传到容器。

这种情况的下网络配置是最简单的,因为LXD默认初始化的网络方式就是:宿主机通过DHCP的方式给每个容器分配IP。如果上网方式跟我的相同的话,可以参考下节的配置。如果不是的话,请留意网络/网桥的配置。

初始化LXD

运行 sudo 1xd init 进行LXD初始化配置,选项如下图:

```
Would you like to use LXD clustering? (yes/no) [default=no]: no
Do you want to configure a new storage pool? (yes/no) [default=yes]: yes
Name of the new storage pool [default=default]: lxd_pool
Name of the storage backend to use (dir, zfs) [default=zfs]: zfs
Create a new ZFS pool? (yes/no) [default=yes]: yes
Would you like to use an existing block device? (yes/no) [default=no]: yes
Path to the existing block device: /dev/sda
Would you like to connect to a MAAS server? (yes/no) [default=no]: no
Would you like to create a new local network bridge? (yes/no) [default=yes]: yes
What should the new bridge be called? [default=lxdbr0]: lxdbr0
What IPv4 address should be used? (CIDR subnet notation, "auto" or "none") [default=auto]: a
uto
What IPv6 address should be used? (CIDR subnet notation, "auto" or "none") [default=auto]: a
uto
Would you like LXD to be available over the network? (yes/no) [default=no]: no
Would you like stale cached images to be updated automatically? (yes/no) [default=yes] yes
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]: yno
```

• LXD Clustering: 不需要

● new storage pool:需要创建一个存储池

Name of storage pool:给存储池命名

• storage backend: 存储后端, 使用ZFS

• Create a new ZFS pool: 需要创建一个ZFS池

- use an existing block device: Yes Path to block device: 使用已有的磁盘分区用于ZFS的存储后端。细节可以参考Be aware
- MAAS server?: 不知道是啥,不需要
- new local network bridge?:需要,我只需要使用LXD默认的网桥即可。
- new bridge be called: 给网桥命名

• IPv4: 默认auto

• IPv6: 默认auto

• LXD available over the network?: 默认no

• stale cached?: 默认yes

• YAML printed?: 打印信息, yes/no都行, 原谅最后手抖的yno

测试

sudo zpool list lxd 查看ZFS的后端存储池。

sudo 1xc info 查看LXD的配置信息。

sudo lxc profile show default 查看默认容器配置。

sudo lxc list 查看容器列表。

更多命令可以参考LXD Documentation

到这里就已经安装完这套方案的基础设施了,接下来的步骤可以算作是使用指南

使用介绍

创建容器模板

LXC清华源

使用Ixc清华源可以加速镜像的下载。LXC Images 镜像帮助

运行如下命令配置:

```
# 创建一个remote链接,指向TUNA镜像站。
sudo lxc remote add tuna-images https://mirrors.tuna.tsinghua.edu.cn/lxc-images/
--protocol=simplestreams --public
```

```
# 查看镜像列表,寻找合适的镜像的FINGERPRINT,用于下载 sudo lxc image list tuna-images:
```

下载创建

```
# FINGERPRINT是镜像的指纹,在上条命令下查找,ContainerTemplateName为容器模板名称,自己定义。
sudo lxc launch tuna-images:<FINGERPRINT> <ContainerTemplateName>

# 举例,创建一个名为xenialTemplate的容器。在lxc清华源中24be957c5e9f是Ubuntu16.04的
fingerprint
sudo lxc launch tuna-images:24be957c5e9f xenialTemplate
```

运行 sudo lxc list 进行容器列表查看。

运行 sudo lxc exec <ContainerTemplateName> bash 可进入容器的root用户下 bash。

可以使用 su ubuntu 或 sudo su 进行用户切换。

如果容器下出现 sudo: no tty present and no askpass program specified 的问题。解决方式:

创建 /etc/sudoer.d/ubuntu 文件, 编辑内容为

```
ubuntu ALL=(ALL) NOPASSWD:ALL
```

配置共享目录和GPU

共享目录设置

设置共享目录来实现宿主机与容器之间的文件传输,以及容器与容器之间的文件传输。

```
# 设置键值
sudo lxc config set <ContainerTemplateName> security.privileged true
# 设置共享目录,其中shareName为虚拟的设备名称,lxd会虚拟出该设备并导通接通两者共享目录。
# path1为宿主机下共享目录路径,path2为容器下共享目录路径
sudo lxc config device add <ContainerTemplateName> <shareName> disk source=
<path1> path=<path2>
```

GPU配置

添加GPU

```
# 为容器添加所有GPU:
sudo lxc config device add <ContainerTemplateName> gpu gpu
# 添加指定GPU:
sudo lxc config device add <ContainerTemplateName> gpu0 gpu id=0
```

安装显卡驱动

还记得之前记录的宿主机显卡驱动的版本号码,根据版本号去官网下载驱动文件,通过共享目录传至容器中。

例如,宿主机中的NVIDIA Driver Version为390.77,则下载 NVIDIA-Linux-x86_64-390.77.run。 安装显卡驱动。

```
# 进入容器
sudo lxc exec <ContainerTemplateName> bash
# 安装驱动
sudo sh NVIDIA-Linux-x86_64-xxx.xx.run --no-kernel-module
```

运行 nvidia-smi 进行确认。

配置SSH免密码登录

SSH免密登录网上资料一大把,有不明白的地方可以网上找。

安装SSH服务

```
# 装OpenSSH服务
sudo apt install openssh-server

# 启动SSH服务
sudo service ssh start

# 查看SSH服务状态
sudo service ssh status
```

生成RSA文件

```
# 进入SSH目录
cd ~/.ssh

# 生成RSA
ssh-keygen -t rsa

# 复制公钥内容到authorized_keys
cat id_rsa.pub >> authorized_keys

# 重启SSH服务
sudo service ssh restart
```

测试SSH

容器终端运行 ifconfig ,确认容器IP和网段,这些是LXD自动分配的。如模板容器的IP为10.135.139.83。

宿主机终端运行 ifconfig, 查看宿主机在网桥lxdbr0下的IP。如宿主机在该网段下的IP为10.135.139.1。

通过共享目录将SSH秘钥 id_rsa 文件拷贝到宿主机,宿主机运行如下命令登录容器:

给容器SSH秘钥文件合适权限

sudo chmod 400 id_rsa

命令行登录SSH

ssh -i id_rsa ubuntu@10.135.139.83

成功后,进行下一步frp的设置(端口转发)。

配置frp (内网穿透工具)

关于frp

根据上面的网络配置,可以看到,每个容器其实是处于宿主机构建出来的小型局域网内的,并不暴露在校园网内,也就是说用户从校园网是无法直接访问容器的。

一般来讲,要做的就是在宿主机上做端口转发了。我使用的是内网穿透工具frp,配置和使用都很简单。

架在宿主机上,我们可以通过校园网在校园内访问容器;架在公网服务器上,我们就可以在家访问容器。

- frp gitRepo
- <u>frp 中文文档</u>

使用方式

在 frp版本发布页面 下载linux的文件,如 frp_0.21.0_linux_amd64.tar.gz。解压后文件如下:

• frps: 服务端执行文件

frps_full.ini: 服务端参数参考frps.ini: 服务端参数文件frpc: 客户端执行文件

frpc_full.ini: 客户端参数参考frpc.ini: 客户端参数文件

服务端配置

服务端文件放置在宿主机中,宿主机的frps.ini可供参考,更多参数请看官方文档。

```
[common]
bind_port = 7000

# 限制端口,要对端口做好管理
allow_ports = 2000-3000
```

宿主机执行./frps -c frps.ini 开启服务。

客户端配置

客户端文件放置在用户容器中,容器的frpc.ini可供参考,更多参数请看官方文档。

```
[common]
server_addr = 10.135.139.1 # 网段下宿主机的IP
server_port = 7000 # 服务端的bind_port

[ssh-template] # 一个转发实例,注意每个实例名称都不能相同,括号中的名称自定义
type = tcp
local_ip = 127.0.0.1
local_port = 22 # 容器本地SSH访问端口
remote_port = 2011 # 宿主机映射端口
```

容器执行 ./frpc -c frpc.ini 连接服务。

在校园网内进行测试

如上步骤,在已知宿主机校园网IP和容器SSH的映射端口之后,就可以在校园网内访问容器了。

给用户分配容器

创建了容器模板之后,就可以按需给用户分配容器了。

克隆容器

```
# 克隆容器 参数一为模板容器名称,参数二为目标容器名称
sudo lxc copy <ContainerTemplateName> <newContainerName>

# 运行新容器
sudo lxc start <newContainerName>

# 进入新容器bash
sudo lxc exec <newContainerName> bash
```

修改hostname

克隆的容器还保留着模板的hostname,看起来令人不悦。快速修改hostname的步骤如下:

```
# 进入新容器bash
sudo lxc exec <newContainerName> bash

# 将旧的hostname 改成新的
sudo vim /etc/hostname

# 将旧的hostname改成新的,在127.0.0.1后面
sudo vim /etc/hosts

# 重启生效
sudo reboot
```

修改SSH秘钥文件

克隆的容器还保留着模板的SSH(id_rsa)文件,要是大家都用一份id_rsa文件访问不同的容器,就太扯了。所以要生成新的 id_rsa 文件。快速修改id_rsa文件步骤如下:

```
# 进入新容器bash
sudo lxc exec <newContainerName> bash

# 注意切换成ubuntu用户
su ubuntu

# 进入SSH目录
cd ~/.ssh/

# 生成新的id_rsa文件
ssh-keygen -t rsa

# 复制公钥内容到authorized_keys
cat id_rsa.pub >> authorized_keys
# 重启SSH服务
sudo service ssh restart

# 记得将新生成的id_rsa文件拷贝到外部,共SSH访问使用
```

修改frp映射端口

道理很简单,要能访问不同的容器,就要将不同容器的SSH 22端口映射到宿主机不同的端口上。

直接修改容器中的frpc.ini,将转发实例中的括号名和remote_port。

然后容器执行./frpc -c frpc.ini 连接服务即可。

交付容器

把容器的SSH秘钥文件、SSH访问IP和SSH访问端口交付给同学即可。

Tips 记得交付之前,调用LXD的快照(snapshot)进行初始版本的备份,免得后面弄砸了,又要重新配置。

执行 sudo lxc snapshot <ContainerName> 进行快照。

拓展

LXDUI 可视化管理界面

LXDUI是一个LXD/LXC的Web UI工具,支持LXD/LXC的一些基本操作。

具体使用请参考: Ixdui GitRepo

效果如下:

LXDUI v2.1.2 Copyright © 2018 AdaptiveScale, Inc

LXDUI v2.1.2

资源限制问题

目前是公平的给大家所有的硬件访问权限,后面如果涉及到资源拥挤的话,不可避免需要对每个人的资源进行限制,资源限制请参考: LXD 2.0 系列(四): 资源控制

图形界面

目前我还没有实现图形界面,比较担心的是大家都用图形界面的话,带宽会不会被占用太多。

驱动的更新

宿主机的软件一般不用更新,毕竟能够维持容器运行即可,所有的操作反正都在容器中进行。

但偶尔难免会出现打开终端双手不受控制的输入update和upgrade的情况,一般情况都还行,但是万一更新显卡驱动,就有糟心事了。

但是别慌,如果由于宿主机更新显卡驱动,导致容器显卡没法用了,就按照之前的安装容器显卡驱动一样,下载和宿主机显卡驱动版本相同的驱动文件,拷到容器内,无内核安装即可。

关于镜像自动备份

使用固然方便,如果能替大家实现定时备份容器的镜像就更好了。可以弄崩溃了恢复原来的备份即可。

解决方案参考:

LXD Automatic snapshotting

<u>lxdsnap</u>

需要注意的地方就是,关注一下代码和定时设置:定时间隔?哪些要保存?哪些过期删除?千万不要误删了重要的备份节点。

备注

容器中无法使用GPU的问题

如果遇到断电或者重启,有时候容器虽然挂载了GPU,但仍会遇到无法使用GPU训练的问题,这个时候可以尝试重新挂载GPU。

方案一: 重新安装GPU显卡驱动

当没有别的办法来解决的时候,重新安装显卡驱动也不是很麻烦,记得提前备份好显卡驱动的版本号或者备份好显卡驱动文件。遇到重装的时候,直接装就OK。注意主机GPU版本要与容器GPU版本保持一致。

方案二: 重新挂载

兴冲冲的装好环境,发现TensorFlow无法使用显卡,原因是宿主机没有/dev/nvidia-uvm设备,需要通过以下命令挂载设备:

宿主机挂载

```
/sbin/modprobe nvidia-uvm

D=`grep nvidia-uvm /proc/devices | awk '{print $1}'`
mknod -m 666 /dev/nvidia-uvm c $D 0
```

先卸载

1xc config device remove yourContainerName nvidia-uvm

重挂裁

lxc config device add yourContainerName nvidia-uvm unix-char path=/dev/nvidiauvm

注意

目前,该套方案运行较为稳定,宿主机端需要操作的是用户容器的创建、删除等操作,即上述教程中的**使用**部分,**搭建**部分中的内容切勿随意尝试,避免造成不可逆的影响,同时切勿随意进行重装服务器系统等操作。

机器视觉项目基本流程

1. 基本流程

确定客户需求、方案设计、软件开发、现场调试、文档交接。

在实际项目中,各个流程可能互相耦合,不过整体流程是基本明确的,整理后如下图。

2. 确定客户需求

项目开始,需要准确、详细地了解客户需求,这个过程需要多次现场考察、反复与客户沟通,才能落实客户需求。主要确定项目的应用类型、节拍要求、精度要求、安装空间、光照环境、通讯接口等内容。

应用类型: 确定视觉应用类型 (测量、识别、检测、引导定位), 了解产品 表面状态、外形尺寸等影响

视觉检测因素的变化情况,初步评估能否满足需求

节拍要求: 客户对生产效率方面的要求, 量化视觉检测步骤时间

精度要求:针对各检测功能点及客户生产要求量化视觉检测精度

安装空间: 确认现场环境对视觉系统的安装是否有限制

光照环境: 确认现场环境是否有强光、日光干扰等特殊影响

通讯接口:确认现场与视觉系统配合的数据传输接口类型、I/O接口类型等

3. 方案设计

视觉系统是一个各部分互相配合的有机整体,并不是简单的组合,所以一个项目的方案设计关乎着整个项目的成败,从初步方案,到最终方案,以及中间经历的各个版本,需要整个团队共同评审,才能敲定最终方案。整体方案内容主要包括需求分析、视觉硬件设计、视觉软件设计、可行性验证、开发计划。

需求分析:整理客户关键需求,并分析需求可行性

视觉硬件设计:包括视觉系统平台、相机、镜头、光源的选择

视觉软件设计: 采用第三方视觉软件, 抑或自行开发视觉处理软件

可行性验证: 搭建软硬件环境, 初步测试能否满足客户需求

开发计划: 罗列项目开发计划, 模块化项目节点, 跟进项目进度

另外,一个完整的项目应包括机械、电气、视觉等其他部分,以上只是简单陈述下视觉方案的设计内容,而最终呈现给客户的完整项目方案还应包括机械设计、电气设计。

4. 软件开发

软件开发主要包括人机交互界面、底层算法,测试运行。

人机交互界面开发:简单易用、处理结果直观显示;落实软件框架,功能化软件模块;软件框架多采用生产者/消费者模式,功能模块一般包括图像采集模块、算法处理模块,数据保存模块,通讯模块等。

底层算法开发: 落实算法处理工具(Halcon、OpenCV、NI Vision等); 开发算法处理流程; 生成动态

库.DLL

测试运行:模拟现场出现的各种情况,测试软件算法的稳定性、鲁棒性。

5. 现场调试

现场调试是一个比较繁琐的过程,主要体现在调试过程中的不确定性因素较多,例如环境光的影响、机械振动的影响、硬件工作的稳定性等。主要流程包括设备安装、模块调试、系统联调、自动运行。

设备安装: 运动部件安装; 相机、镜头、光源安装; 视觉系统内部线缆附件走线; 视觉控制器、光源控

制器安装;外部通信、I/O线缆走线等;

模块调试: 相机功能调试 (触发拍照等); 工件检测特征视觉参数调试 (相机参数、镜头参数、光源位

置和亮度等);外部通讯调试等;

系统联调: 调试完整视觉程序; 正常生产检测调试等;

自动运行: 开机自动运行;

6. 文档交接

需要与客户进行文档交接时,说明已进入项目尾部,此时应编写操作文档并进行现场培训。

操作手册:软件基本操作;常见问题及解决方法;

现场培训: 项目工作流程; 软件操作; 问题解决步骤;