Exercices avec solutions: LES EQUATIONS DIFFERENTIELLES

PROF: ATMANI NAJIB

2ème BAC Sciences Physiques et Sciences de la Vie et de la Terre (2BAC PC et SVT)

LES EQUATIONS DIFFERENTIELLES

Exercice1: soit l'équation différentielle

- (E): y'' + 4y = 0
- 1)Résoudre l'équation différentielle (E)
- 2)Déterminer la solution g qui vérifie :

$$g(0)=1$$
 et $g'(0)=2$

solution: (w=2)1) la solution générale de

l'équation différentielle (E) est :

La fonction : $F(x) = a \cos 2x + b \sin 2x$ où α et β sont des

réels

2)
$$F'(x) = -2a\sin 2x + 2b\cos 2x \quad \forall x \in \mathbb{R}$$

Donc:
$$\begin{cases} F(0)=1 \\ F'(0)=2 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ 2b=2 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ b=1 \end{cases}$$

Donc:
$$F(x) = \cos 2x + \sin 2x$$

On peut écrire
$$F(x)$$
 sous la forme : $F(x) = \sqrt{2} \sin \left(2x + \frac{\pi}{4}\right)$

Exercice2: Résoudre les équations différentielles

suivantes :1)
$$(E_1)$$
: $y'=3y$ 2) (E_2) : $y'-y=0$

Solution :1) La solution générale de l'équation

différentielle (E_1): est l'ensemble des fonctions :

$$x \to y(x) = \lambda e^{3x}$$
 où λ est un réel.

2)
$$(E_2)$$
: $y'-y=0 \iff (E_2)$: $y'=1y$

La solution générale de l'équation différentielle (E_2): est

l'ensemble des fonctions : $x \to y(x) = \lambda e^x$ où λ est un réel. (E_0) : y' - y = 0 et (E) : $y' - y = 2x^2 + x$

Exercice3: Résoudre l'équations différentielle suivante : 1- Résoudre l'équation différentielle (E_0)

$$(E): 2y'-4y-3=0$$

Solution:
$$(E): 2y'-4y-3=0 \Leftrightarrow 2y'=4y+3$$

$$\Leftrightarrow y' = \frac{4y+3}{2} \Leftrightarrow y' = 2y + \frac{3}{2}$$

on a donc;
$$a = 2$$
 et $b = \frac{3}{2}$

La solution générale de l'équation différentielle (E) : est l'ensemble des fonctions :

$$x \mapsto \lambda e^{2x} - \frac{3}{4}$$
 Où λ est un réel.

Exercice4: soit l'équations différentielle suivante :

$$(E)$$
: $\frac{1}{2}y' + 3y - 1 = 0$

- 1)Résoudre l'équation différentielle (E)
- 2) Déterminer la solution f de (E)

Telle que f'(0) = -2.

Solution :1)
$$(E): \frac{1}{2}y' + 3y - 1 = 0 \Leftrightarrow y' = -6y + 2$$

Donc : a = -6et b = 2

La solution générale de l'équation différentielle (E): est l'ensemble des fonctions :

$$x \mapsto \lambda e^{-6x} + 3$$
 Où λ est un réel.

2)
$$f(x) = \lambda e^{-6x} + 3$$
 On va calculer: $f'(x)$

$$f'(x) = (\lambda e^{-6x} + 3)' = -6\lambda e^{-6x}$$

$$f'(0) = -2 \Leftrightarrow -6\lambda e^0 = -2 \Leftrightarrow \lambda = \frac{1}{3}$$

Donc: $f(x) = \frac{1}{3}e^{-6x} + 3$ c'est la solution de (E) qui vérifie la

condition initiale

Exercice5: Considérons les équations différentielles

$$(E_0)$$
: $v'-v=0$ et (E) : $v'-v=2x^2+x$

- 2- a) Soit P une fonction polynôme, quel sera le degré de P afin que P soit une solution de (E)
- b) Déterminer le polynôme *P* pour que *P* soit une solution de (*E*)
- c) Montrer que : y est solution de (E) si et seulement si (y -P) est solution de (E)
- d) En déduire la solution générale de

L'équation (E)

3) déterminer la solution φ de (E) telle que $\varphi(0) = 2$

Exercice6:1) Résoudre l'équations différentielle

suivante : (E): y'' - 7y' + 12y = 0

2) Déterminer la solution f de (E)

Telle que f(0) = 0 et f'(0) = 1

Solution :1) l'équation Caractéristique de(E) est :

$$(E_1)$$
: $r^2 - 7r + 12 = 0$

On a : $\Delta = 1$ donc l'équation (E_1) a deux racines : r_1 et r_2

réelles et distinctes : $r_1 = 3$ et $r_2 = 4$

Donc les solutions de l'équation (E) sont les fonctions :

$$y(x) = \alpha e^{4x} + \beta e^{3x}$$
 où α et β réels

$$2) f(x) = \alpha e^{4x} + \beta e^{3x}$$

$$f'(x) = (\alpha e^{4x} + \beta e^{3x})' = 4\alpha e^{4x} + 3\beta e^{3x}$$

$$\begin{cases} f(0) = 0 \\ f'(0) = 1 \end{cases} \Leftrightarrow \begin{cases} \alpha + \beta = 0 \\ 4\alpha + 3\beta = 1 \end{cases} \Leftrightarrow \begin{cases} \beta = -\alpha \\ 4\alpha - 3\alpha = 1 \end{cases} \Leftrightarrow \begin{cases} \beta = -1 \\ \alpha = 1 \end{cases}$$

Donc: $f(x) = e^{4x} - e^{3x}$ c'est la solution de (E) qui vérifie

les conditions initiales

Exercice7:1) Résoudre l'équations différentielle

suivante : (E) : y'' - 2y' + y = 0

2) Déterminer la solution f de (E)

Telle que f(0) = 0 et f'(0) = 1

Solution :1) l'équation Caractéristique de(E) est :

$$(E_1)$$
: $r^2 - 2r + 1 = 0$

On a : $\Delta = 0$ donc l'équation (E_1) admet une racine double $r_0 = \frac{-b}{2a} = 1$

Donc les solutions de l'équation (E) sont les fonctions :

$$y(x) = (\alpha x + \beta)e^x$$
 où α et β réels

2)
$$f(x) = (\alpha x + \beta)e^x$$

$$f'(x) = ((\alpha x + \beta)e^x)' = ((\alpha x + \beta))' e^x + (\alpha x + \beta)(e^x)'$$

$$f'(x) = (\alpha x + \alpha + \beta)e^x$$

$$\begin{cases} f(0) = 0 \\ f'(0) = 1 \end{cases} \Leftrightarrow \begin{cases} \beta = 0 \\ \alpha + \beta = 1 \end{cases} \Leftrightarrow \begin{cases} \beta = 0 \\ \alpha = 1 \end{cases}$$

Donc:
$$f(x) = (1x+0)e^x$$
 donc: $f(x) = xe^x$

C'est la solution de (*E*) qui vérifie les conditions initiales.

Exercice8:1) Résoudre l'équations différentielle

suivante : (E): y'' - 4y' + 13y = 0

2) Déterminer la solution f de (E)

Telle que f(0) = 0 et f'(0) = 1

Solution :1) l'équation Caractéristique de(E) est :

$$(E_1)$$
: $r^2 - 4r + 13 = 0$ On a: $\Delta = -36 = (6i)^2$

donc l'équation (E_1) a deux racines \mathcal{Z}_1 et \mathcal{Z}_2 complexes

conjugués et on a:
$$z_1 = \frac{4+i6}{2}$$
 et $r_2 = \frac{4-i6}{2}$ donc

$$z_1 = 2 + 3i = p + iq$$

Donc les solutions de l'équation (*E*) sont les fonctions :

$$y(x) = e^{2x} (\alpha \cos 3x + \beta \sin 3x)$$
 où α et β réels

2)
$$f(x) = e^{2x} (\alpha \cos 3x + \beta \sin 3x)$$

$$f'(x) = \left(e^{2x} \left(\alpha \cos 3x + \beta \sin 3x\right)\right)'$$

$$= (e^{2x})'(\alpha\cos 3x + \beta\sin 3x) + e^{2x}(\alpha\cos 3x + \beta\sin 3x)'$$

$$=2e^{2x}\left(\alpha\cos 3x+\beta\sin 3x\right)+e^{2x}\left(-3\alpha\sin 3x+3\beta\cos 3x\right)$$

$$f'(x) = e^{2x} \left(2\alpha \cos 3x + 2\beta \sin 3x - 3\alpha \sin 3x + 3\beta \cos 3x \right)$$

$$f'(x) = e^{2x} \left((2\alpha + 3\beta)\cos 3x + (2\beta - 3\alpha)\sin 3x \right)$$

$$\begin{cases} f(0) = 0 \\ f'(0) = 1 \end{cases} \Leftrightarrow \begin{cases} \alpha = 0 \\ 2\alpha + 3\beta = 1 \end{cases} \Leftrightarrow \begin{cases} \alpha = 0 \\ \beta = \frac{1}{3} \end{cases}$$

Donc:
$$f(x) = e^{2x} \left(0 \times \cos 3x + \frac{1}{3} \sin 3x \right) = \frac{1}{3} e^{2x} \sin 3x$$

c'est la solution de (E) qui vérifie les conditions initiales

Exercice9: Résoudre les équations différentielles suivantes:

1)
$$y' = 7y - 5$$
 avec $y(0) = -6$

2)
$$y'' - 15y' + 56y = 0$$
 avec : $y'(0) = 9$; $y(0) = -3$

3)
$$y'' + 14y' + 49y = 0$$
 avec : $y'(0) = 6$; $y(0) = -3$

4)
$$y'' + y' + \frac{5}{2}y = 0$$
 avec: $y'(0) = 6$; $y(0) = -4$

Solutions : 1) y' = 7y - 5 Donc les solutions de

l'équation (E) sont les fonctions :

$$y(x) = \lambda e^{7x} + \frac{5}{7} (\lambda \in \mathbb{R})$$

On a:
$$y(0) = \lambda + \frac{5}{7} = -6$$
 donc: $\lambda = -\frac{47}{7}$

Donc : la solution de l'équation qui vérifie les conditions

initiales est :
$$y(x) = -\frac{47}{7}e^{7x} + \frac{5}{7}$$

2)
$$y'' - 15y' + 56y = 0$$
 avec: $y'(0) = 9$; $y(0) = -3$

l'équation Caractéristique de l'équation est :

$$r^2 - 15y + 56 = 0$$
 donc: $r_1 = 7$ et $r_2 = 8$

$${\rm Donc}: y(x) = \alpha e^{7x} + \beta e^{8x} \quad {\rm où} \ \alpha \ {\rm et} \ \beta \ {\rm r\'eels}$$

Donc:
$$y'(x) = 7\alpha e^{7x} + 8e^{8x}$$

$$\begin{cases} y(0) = \alpha + \beta \\ y'(0) = 7\alpha + 8\beta \end{cases} \Leftrightarrow \begin{cases} y(0) = -3 \\ y'(0) = 9 \end{cases}$$

Donc:
$$\begin{cases} \alpha + \beta = -3 \\ 7\alpha + 8\beta = 9 \end{cases}$$
 donc: $\beta = 30$; $\alpha = -33$ Donc: la

solution de l'équation qui vérifie les conditions initiales est :

$$y(x) = -33e^{7x} + 30e^{8x}$$

3)
$$y'' + 14y' + 49y = 0$$
 avec: $y'(0) = 6$; $y(0) = -3$

l'équation Caractéristique de l'équation est :

$$r^2 + 14u + 49 = 0$$
 donc: $r = -7$

Les solutions :
$$((\alpha; \beta) \in \mathbb{R}^2)$$
 $y(x) = (\alpha x + \beta)e^{-7x}$

$$y'(x) = \alpha e^{-7x} - 7(\alpha x + \beta)e^{-7x}$$

$$\begin{cases} y(0) = -3 \\ y'(0) = 6 \end{cases} \Leftrightarrow \begin{cases} y(0) = \beta \\ y'(0) = \alpha - 7\beta \end{cases} \Leftrightarrow \begin{cases} \beta = -3 \\ \alpha - 7\beta = 6 \end{cases}$$

Donc :
$$\alpha = -15$$
 ; $\beta = -3$

Donc : la solution de l'équation qui vérifie les conditions

initiales est
$$y(x) = (-15x - 3)e^{-7x}$$

4)
$$y'' + y' + \frac{5}{2}y = 0$$
 avec: $y'(0) = 6$; $y(0) = -4$

l'équation Caractéristique de l'équation est :

$$r^2 + y + \frac{5}{2} = 0$$
 on trouve: $z = -\frac{1}{2} - \frac{3}{2}i$ et $\bar{z} = -\frac{1}{2} + \frac{3}{2}i$

Donc:
$$(\alpha; \beta) \in \mathbb{R}^2$$
 $y(x) = e^{-\frac{1}{2}x} \left(\alpha \cos\left(\frac{3}{2}x\right) + \beta \sin\left(\frac{3}{2}x\right) \right)$

où α et β réels

$$y'(x) = -\frac{1}{2}e^{-\frac{1}{2}x}\left(\alpha\cos\left(\frac{3}{2}x\right) + \beta\sin\left(\frac{3}{2}x\right)\right)$$

$$+\frac{3}{2}e^{-\frac{1}{2}x}\left(-\alpha\sin\left(\frac{3}{2}x\right)+\beta\cos\left(\frac{3}{2}x\right)\right)$$

$$\begin{cases} y(0) = -4 \\ y'(0) = 6 \end{cases} \Leftrightarrow \begin{cases} y(0) = \alpha \\ y'(0) = -\frac{1}{2}\alpha + \frac{3}{2}\beta \end{cases} \Leftrightarrow \begin{cases} \alpha = -4 \\ -\frac{1}{2}\alpha + \frac{3}{2}\beta = 6 \end{cases}$$

Donc :
$$\alpha = -4$$
 ; $\beta = \frac{8}{3}$

Donc : la solution de l'équation qui vérifie les conditions initiales est

$$y(x) = e^{-\frac{1}{2}x} \left(-4\cos\left(\frac{3}{2}x\right) + \frac{8}{3}\sin\left(\frac{3}{2}x\right) \right)$$

Exercice10 : Résoudre les équations différentielles suivantes :

1)
$$2y'' + y' - 3y = 0$$

2)
$$y'' + 2y' + 2y = 0$$

3)
$$y'' + 4y' + 4y = 0$$

4)
$$y'' + 2y = 0$$

« C'est en forgeant que l'on devient forgeron »

Dit un proverbe.

C'est en s'entraînant régulièrement

Aux calculs et exercices Que l'on devient

Un mathématicien