Video Dehazing with P and I frame

b04902028 洪浩翔 b04902031 王立人

Contents

- Motivation
- Problem definition
- Algorithm
- Expected results
- Reference

Motivation

- An ideal video should be clear to viewers, so people keep pursuing video of higher resolution.
- But some basic problems can't be solved with only getting a higher resolution for videos, such as haze, out-of-focus, or poor light.
- So in this project, we aim for improve the basic quality of video to avoid haze problem.

Problem definition

- Our problem is that given a haze video, output a dehazed version of the original video.
- We will compare the performance of machine learning method, and traditional method.

- Haze is considered to be the part of background
- Estimate B frame first
- Dehaze I frame and P frame then compress
- Restore B frame with haze-free I frame and P frame to produce haze-free video

Fast ?	Result quality?	Consuming memory?
Who will want to wait for a long time to dehaze?	If quality is not good enough, who want to use?	If it doesn't consume too much resources, may be implemented on mobile or other devices
 Real time is ideal Trade-off between quality and time Can be measured by OS 	 Should be measured by human visual Good quality may be time consuming Trade-off 	 Easy to use if implement on mobile device Decrease the threshold of implement

Expected result

- Of course, we hope to produce a haze-free video
- No ground truth, should be measured by human visual

Reference

- 1. Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, Dan Feng. AOD-Net: All-in-OneDehazingNetwork. In Computer Vision (ICCV) 2017.
- 2. Yafei Song, JiaLi, Xiaogang Wang, Xiaowu Chen. Single Image Dehazing Using Ranking Convolutional Neural Network. In IEEE 2017.
- 3. Tzu Chun Chen. Minmap-based Image and Video Haze Removal.
- 4. Kaiming He, Jian Sun, and Xiaoou Tang. Single Image Haze Removal Using Dark Channel Prior. In IEEE 2011.
- 5. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, 2017
- 6. Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, Dan Feng. End-to-End United Video Dehazing and Detection. arXiv:1709.03919, 2017