Solution to Feb 25th 2022 Riddler Classic

Eric Dallal

February 27, 2022

Problem Statement:

From Sean Sweeney, Chris Nho and Eli Luberoff comes a Classic that is for anyone who ever thought even more deeply about functions in high school algebra. Suppose you have two distinct points on the x-axis of the coordinate plane. If I tell you a parabola passes through those two points, where on the plane could that parabola's vertex be? Spoiler alert: The vertex can be anywhere on the perpendicular bisector of those two points. (Neat!)

Now, suppose the two distinct points are anywhere on the coordinate plane. If I tell you that a parabola with a vertical line of symmetry passes through those two points, where on the plane could that parabola's vertex be?

Solution:

Let's suppose the two points are (x_1, y_1) and (x_2, y_2) . If $x_1 = x_2$, then there is no solution. If $y_1 = y_2$, then the solution is as given in the problem statement. So suppose that $x_1 \neq x_2$ and $y_1 \neq y_2$.

The equation of a line that passes through the two points is:

$$y = \frac{y_2 - y_1}{x_2 - x_1} x + \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}. (1)$$

To simplify notation in what follows, let:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$k = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

$$\bar{x} = (x_1 + x_2)/2$$

$$\bar{y} = (y_1 + y_2)/2$$

The equation of a parabola that passes through the two points is therefore:

$$y = mx + k + a(x - x_1)(x - x_2)$$

= $ax^2 + [m - a(x_1 + x_2)]x + (k + ax_1x_2)$ (2)

For a quadratic of the form $y = ax^2 + bx + c$, the extreme point of the parabola is at x = -b/(2a), $y = -b^2/(4a) + c$.

Therefore, the locus of points for the extreme point of the parabola is given by:

$$x(a) = -\frac{m}{2a} + \bar{x} \tag{3}$$

$$y(a) = -\frac{m^2}{4a} + m\bar{x} - \bar{x}^2 a + k + ax_1 x_2 \tag{4}$$

$$= -\frac{m^2}{4a} + \bar{y} - \frac{a}{4}(x_2 - x_1)^2 \tag{5}$$

(The simplification between Eqs (4) and (5) has been skipped.) This set of equations has two asymptotes. Taking the limit as a goes to plus or minus infinity gives $x = \bar{x}$ whereas y goes to plus or minus infinity. Thus the first asymptote is $x = \bar{x}$. As a converges to 0, we have that $y - \bar{y}$ converges to $m(x - \bar{x})/2$, so that the second asymptote is $y = m(x - \bar{x})/2 + \bar{y}$.

Moreover, taking $a = m/(x_2 - x_1)$ gives $(x, y) = (x_1, y_1)$, whereas taking $a = -m/(x_2 - x_1)$ gives $(x, y) = (x_2, y_2)$.

Although not obvious from the above equations, these are the equations of a hyperbola. This can be seen by solving for a in terms of x, plugging this into the equation for y, and re-arranging:

$$a = -\frac{m}{2(x-\bar{x})} \tag{6}$$

$$y = \frac{1}{2}m(x-\bar{x}) + \bar{y} + \frac{1}{8}m\frac{(x_2-x_1)^2}{x-\bar{x}}$$
 (7)

$$0 = 4m(x - \bar{x})^2 - 8(x - \bar{x})(y - \bar{y}) + m(x_2 - x_1)^2$$
 (8)

Thus, the locus of points for the extreme point of the parabola is the hyperbola that is uniquely defined by the following properties:

- 1. It passes through both given points
- 2. It has an asymptote at $x = \bar{x}$
- 3. It has an asymptote given by $y = m(x \bar{x})/2 + \bar{y}$.

For example, if the given points are (1,2) and (3,6), the locus of points would be the following hyperbola:

