1. Лабораторная работа №1. МЕТОДЫ ОЦЕНКИ ПОГРЕШНОСТЕЙ

1.1. Погрешности приближенных вычислений

1.1.1. Правила оценки погрешностей

Пусть A и a — два «близких» числа. A — точное, a — приближенное.

Определение. Величина $\Delta(a) = |A - a|$ называется абсолютной погрешностью приближенного числа a, а величина $\delta(a) = \frac{\Delta a}{|a|}$ — относительной погрешностью.

Числа Δ_a и δ_a такие, что $\Delta_a \geq \Delta a$ и $\delta_a \geq \delta a$ называются оценками или границами абсолютной или относительной погрешностей (предельные погрешности).

Пусть a и b – два приближенных числа.

Абсолютные погрешности:

$$\Delta(a+b) = \Delta a + \Delta b ,$$

$$\Delta(a-b) = \Delta a + \Delta b,$$

$$\Delta(a \cdot b) = a\Delta b + b\Delta a$$

$$\Delta \left(\frac{a}{b}\right) = \frac{a\Delta b + b\Delta a}{b^2}.$$

Относительные погрешности:

$$\delta(a+b) = \frac{\Delta(a+b)}{|a+b|} = \frac{\Delta a + \Delta b}{|a+b|} = \frac{|a|}{|a+b|} \frac{\Delta a}{|a|} + \frac{|b|}{|a+b|} \frac{\Delta b}{|b|} = \frac{|a|}{|a+b|} \delta a + \frac{|b|}{|a+b|} \delta b,$$

$$\delta(a-b) = \frac{\Delta(a-b)}{|a-b|} = \frac{\Delta a + \Delta b}{|a-b|} = \frac{|a|}{|a-b|} \frac{\Delta a}{|a|} + \frac{|b|}{|a-b|} \frac{\Delta b}{|b|} = \frac{|a|}{|a-b|} \delta a + \frac{|b|}{|a-b|} \delta b,$$

$$\delta(a \cdot b) = \delta\left(\frac{a}{b}\right) = \delta a + \delta b,$$

$$\delta(a^k) = k\delta a.$$

Определение. Для приближенного числа, полученного округлением, *предельная абсолютная погрешность* Δ_a равна половине единицы последнего разряда числа.

Пример.
$$a = 0.817$$
, $\Delta_a = 0.0005$.

Определение. Значащими цифрами числа называются все его цифры, начиная с первой ненулевой слева.

Пример. $0,000\underline{15}$ — две значащие цифры, $\underline{12,150}$ — все цифры значащие.

Определение. Округлением числа a называется замена его числом b с меньшим количеством значащих цифр.

Определение. Значащую цифру приближенного числа называют *верной*, если абсолютная погрешность числа не превосходит половины единицы разряда, в котором стоит эта цифра (в узком смысле) или единицы разряда (в широком смысле).

1.1.2. Оценка ошибок при вычислении функций

Пусть дана функция y = f(x) и a — приближенное значение аргумента x, Δa — его абсолютная погрешность. Тогда за абсолютную погрешность функции можно принять ее приращение или дифференциал.

$$\Delta y \approx dy$$
, $\Delta y = |f'(a)| \cdot \Delta a$.

Для функции *п* переменных можно записать:

$$\Delta y = |f'_{x_1}(x_1,...,x_n)| \cdot \Delta x_1 + ... + |f'_{x_n}(x_1,...,x_n)| \cdot \Delta x_n,$$

где $\Delta x_1,...,\Delta x_n$ – абсолютные погрешности.

$$\delta y = \frac{\Delta y}{|f(x_1,...,x_n)|}$$
 — относительная погрешность.

Пример. $y = \sin x$, a - приближенное значение x.

$$\Delta y = \Delta(\sin x) = |\cos(a)| \cdot \Delta a$$
.

1.1.3. Правила подсчета цифр

Принции Крылова: Согласно техническому подходу, приближенное число должно записываться так, чтобы в нем все значащие цифры, кроме последней, были верными и лишь последняя была бы сомнительна и притом в среднем не более чем на одну единицу.

Чтобы результаты арифметических действий, совершенных над приближенными числами, записанными в соответствии с принципом Крылова, так же соответствовали этому принципу, нужно придерживаться следующих правил:

- 1. При сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков.
- 2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр.
- 3. При определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. Если это значение не превосходит единицы или близко к ней, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Если же модуль производной функции В окрестности приближенного значения аргумента превосходит единицу, то количество верных десятичных знаков в значении функции меньше, чем в значении аргумента на величину k, где k – наименьший показатель степени, при котором имеет место $|f'(x)| < 10^k$.
- 4. Результаты промежуточных вычислений должны иметь 1–2 запасных знака, которые затем должны быть отброшены.

1.1.4. Вычисления со строгим учетом предельных абсолютных погрешностей

Этот метод предусматривает использование правил вычисления предельных абсолютных погрешностей.

При пооперационном учете ошибок промежуточные результаты, так же как и их погрешности, заносятся в специальную таблицу, состоящую из двух параллельно заполняемых частей — для результатов и их погрешностей.

1.1.5. Вычисления по методу границ

Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений – метод границ.

Пусть f(x,y) — функция непрерывная и монотонная в некоторой области допустимых значений аргументов x и y. Нужно получить ее значение f(a, b), где a и b — приближенные значения аргументов, причем достоверно известно, что

$$H\Gamma_a < a < B\Gamma_a$$
;

$$H\Gamma_b < b < B\Gamma_b$$
.

Здесь НГ, ВГ – обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b) при известных границах значений a и b.

Допустим, что функция f(x,y) возрастает по каждому из аргументов x и y. Тогда

$$f(H\Gamma_a, H\Gamma_b) < f(a, b) < f(B\Gamma_a, B\Gamma_b).$$

Пусть теперь f(x,y) возрастает по аргументу x и убывает по аргументу y. Тогда будет строго гарантировано неравенство

$$f(H\Gamma_a, B\Gamma_b) \le f(a, b) \le f(B\Gamma_a, H\Gamma_b).$$

Рассмотрим указанный принцип на примере основных арифметических действий.

Пусть
$$f(x,y) = x + y$$
. Тогда очевидно, что

$$H\Gamma_a + H\Gamma_b < a + b < B\Gamma_a + B\Gamma_b$$
.

Точно так же для функции f(x,y) = x - y (она по x возрастает, а по y убывает) имеем

$$H\Gamma_a - B\Gamma_b \le a - b \le B\Gamma_a - H\Gamma_b$$
.

Аналогично для умножения и деления:

$$H\Gamma_a \cdot H\Gamma_b < a \cdot b < B\Gamma_a \cdot B\Gamma_b$$

$$H\Gamma_a / B\Gamma_b < a / b < B\Gamma_a / H\Gamma_b$$
.

Вычисляя по методу границ с пошаговой регистрацией промежуточных результатов, удобно использовать обычную вычислительную таблицу, состоящую из двух строк - отдельно для вычисления НГ и ВГ результата (по этой причине метод границ называют еще методом двойных вычислений). При выполнении промежуточных вычислений и округлении результатов используются все рекомендации правил подсчета цифр с ОДНИМ дополнением: округление нижних границ ведется по недостатку, а верхних – по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

1.2. Пример выполнения лабораторной работы

1.2.1. Задание к лабораторной работе

- 1. Число X, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа $X_1 \approx X$ найдите предельную абсолютную и предельную относительную погрешности. В записи числа X_1 укажите количество верных цифр (в узком и широком смысле).
- 2. Вычислите с помощью микрокалькулятора значение величины Z при заданных значениях параметров $a,\ b$ и $c,\$ используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:
 - 1) по правилам подсчета цифр;
 - 2) по методу строгого учета границ абсолютных погрешностей;

3) по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

1.2.2. Решение типового примера

1. Число X = 7,3344, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа $X_1 \approx X$ найдите предельную абсолютную и предельную относительную погрешности. В записи числа X_1 укажите количество верных цифр (в узком и широком смысле).

Пусть X = 7,3344.

Округлим данное число до трех значащих цифр, получим число:

$$X_1 = 7.33$$
.

Вычислим абсолютную погрешность:

$$\Delta X_1 = |X - X_1| = |7,3344 - 7,33| = 0,0044.$$

Определим границы абсолютной погрешности (предельную погрешность), округляя с избытком до одной значащей цифры:

$$\Delta_{X_1} = 0.005$$
.

Предельная относительная погрешность составляет:

$$\delta_{X_1} = \frac{\Delta_{X_1}}{|X_1|} = \frac{0,005}{7,33} = 0,0007 = 0,07\%.$$

Укажем количество верных цифр в узком и широком смысле в записи числа $X_1 = 7,33$.

Так как $\Delta_{X_1} = 0,005 \le 0,005$, следовательно, в узком смысле верными являются все цифры числа X_1 7, 3, 3.

Так как $\Delta_{X_1}=0{,}005{\,\leq\,}0{,}01,$ следовательно, в широком смысле верными являются также все цифры числа X_1 7, 3, 3.

2. Вычислите с помощью микрокалькулятора значение величины $Z = \frac{ab-4c}{\ln a+b} \ \text{при заданных значениях параметров } a = 12,762, \, b = 0,4534$

и c = 0,290, используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:

- 1) по правилам подсчета цифр;
- 2) по методу строгого учета границ абсолютных погрешностей;
- 3) по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

1) «Правила подсчета цифр»

$$Z = \frac{ab - 4c}{\ln a + b}$$

а	b	С	a·b	4· <i>c</i>	$a \cdot b - 4 \cdot c$	ln a	$\ln a + b$	Z
12,762	0,4534	0,290	5,786 3	1,16 0	4,62 6	2,546 5	3,000 0	1,54 2

Прокомментируем ход вычислений.

1) Сначала вычислим $a \cdot b = 12,762 \cdot 0,4534 = 5,786 \ 290 \ 8$. Воспользуемся правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 12,762 содержит пять значащих цифр, число 0,4534 — четыре значащие цифры, т. е. в полученном значении следует сохранить четыре значащие цифры. Округляя с одной запасной цифрой, получаем 5,7863 (запасная цифра выделена) и заносим результаты в таблицу.

$$a \cdot b = 12,762 \cdot 0,4534 = 5,786\ 290\ 8 \approx 5,786$$
3.

2) Вычислим $4 \cdot c = 4 \cdot 0,290 = 1,160$. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо

оценить значение модуля производной функции. Оценка величины производной в этой точке: $4 < 10^1$, т. е. в полученном значении следует сохранить на один десятичный знак меньше, чем в значении аргумента. Округляя с одной запасной цифрой, получаем 1,160 (запасная цифра выделена) и заносим результаты в таблицу.

$$4 \cdot c = 4 \cdot 0.290 = 1.160 \approx 1.160$$
.

3) Вычислим $a \cdot b - 4 \cdot c = 5,7863 - 1,160 = 4,6263$. Воспользуемся правилом, что при сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число 5,7863 содержит три десятичных знака, число 1,160 - 2,7863 десятичных знака, т. е. в полученном значении следует сохранить два десятичных знака. Округляя с одной запасной цифрой, получаем 4,626 (запасная цифра выделена) и заносим результаты в таблицу.

$$a \cdot b - 4 \cdot c = 5,7863 - 1,160 = 4,6263 \approx 4,626.$$

4) Вычислим $\ln a = \ln 12,762 = 2,546472005446$. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. этой Оценка производной величины В точке: $(\ln a)' = \frac{1}{a} = \frac{1}{12.762} \approx 0,784 < 10^{\circ}$. Так как значение производной не превосходит единицы, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Округляя с одной запасной цифрой, получаем 2,5465 (запасная цифра выделена) и заносим результаты в таблицу.

$$\ln a = \ln 12,762 = 2,546 472 005 446 \approx 2,5465.$$

5) Вычислим $\ln a + b = 2,546\mathbf{5} + 0,4534 = 2,9999$. Воспользуемся правилом, что при сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число $2,546\mathbf{5}$ содержит три десятичных знака, число 0,4534 — четыре десятичных знака, т. е. в полученном значении следует сохранить три десятичных знака. Округляя с одной запасной цифрой, получаем $3,000\mathbf{0}$ (запасная цифра выделена) и заносим результаты в таблицу.

$$\ln a + b = 2,546\mathbf{5} + 0,4534 = 2,9999 \approx 3,000\mathbf{0}.$$

6) Вычислим
$$Z = \frac{ab-4c}{\ln a+b} = \frac{4,626}{3,0000} = 1,542$$
. Воспользуемся правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число $4,626$ содержит три значащих цифры, число $3,0000$ — четыре значащие цифры, т. е. в полученном значении следует сохранить три значащие цифры. Округляя с одной запасной цифрой, получаем $1,542$ (запасная цифра

$$Z = \frac{ab - 4c}{\ln a + b} = \frac{4,626}{3,0000} = 1,542 \approx 1,542.$$

выделена) и заносим результаты в таблицу.

Округляя окончательный результат без запасной цифры, получим Z = 1,54 (три верные значащие цифры).

2) «Метод строгого учета границ абсолютных погрешностей»

Проделаем пошаговые вычисления по методу строгого учета границ предельных абсолютных погрешностей в предположении, что исходные данные a, b и c имеют предельные абсолютные погрешности $\Delta a = 0,0005$, $\Delta b = 0,000$ 05, $\Delta c = 0,0005$ (т. е. у a, b и c все цифры верны в узком смысле).

Промежуточные результаты вносятся в таблицу после округления до одной запасной цифры (с учетом вычисленной параллельно величины погрешности); значения погрешностей для удобства округляются (с возрастанием) до двух значащих цифр.

а	12,762	Δa	0,0005
b	0,4534	Δb	0,000 05
С	0,290	Δc	0,0005
a·b	5,786	$\Delta(a \cdot b)$	0,000 87
4· <i>c</i>	1,160	$\Delta(4\cdot c)$	0,002
$a \cdot b - 4 \cdot c$	4,62 6	$\Delta(a \cdot b - 4 \cdot c)$	0,0029
ln a	2,546 47	$\Delta(\ln a)$	0,000 040
$\ln a + b$	2,999 9	$\Delta(\ln a + b)$	0,000 09
Z	1,542	ΔZ	0,0011

1) Вычисляем $a \cdot b = 12,762 \cdot 0,4534 = 5,786 \ 290 \ 8$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(a \cdot b) = b \cdot \Delta a + a \cdot \Delta b = 0.4534 \cdot 0.0005 + 12,762 \cdot 0.00005 = 0.000865 \approx 0.00087.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 5,786 (запасная цифра выделена) и вносим его в таблицу.

2) Вычисляем $4 \cdot c = 4 \cdot 0,290 = 1,160$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(4\cdot c) = |(4c)'| \cdot \Delta c = 4 \cdot 0,0005 = 0,002.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 1,160 (запасная цифра выделена) и вносим его в таблицу.

3) Вычисляем $a \cdot b - 4 \cdot c = 5,7863 - 1,160 = 4,6263$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(a \cdot b - 4 \cdot c) = \Delta(a \cdot b) + \Delta(4 \cdot c) = 0,000 \ 87 + 0,002 = 0,002 \ 87 \approx 0,0029.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 4,626 (запасная цифра выделена) и вносим его в таблицу.

4) Вычисляем $\ln a = \ln 12,762 = 2,546\,472\,005\,446$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(\ln a) = |(\ln a)'| \cdot \Delta a = 1 / 12,762 \cdot 0,0005 = 0,000 039 178 81 \approx 0,000 040.$$

Судя по ее величине, в полученном значении в узком смысле верны четыре знака после запятой. Округляем это значение с одной запасной цифрой 2,546 47 (запасная цифра выделена) и вносим его в таблицу.

5) Вычисляем $\ln a + b = 2,546 \ 47 + 0,4534 = 2,999 \ 87$. Подсчитаем предельную абсолютную погрешность:

$$\Delta(\ln a + b) = \Delta(\ln a) + \Delta b = 0,000\ 040 + 0,000\ 05 = 0,000\ 09.$$

Судя по ее величине, в полученном значении в узком смысле верны три знака после запятой. Округляем это значение с одной запасной цифрой 2,999 (запасная цифра выделена) и вносим его в таблицу.

6) Вычисляем $Z = \frac{ab-4c}{\ln a+b} = \frac{4,626}{2,9999} = 1,542\ 051\ 4$. Подсчитаем предельную абсолютную погрешность:

$$\Delta Z = \frac{(ab - 4c)\Delta(\ln a + b) + (\ln a + b)\Delta(ab - 4c)}{(\ln a + b)^2} =$$

$$= \frac{4,626 \cdot 0,000 \cdot 09 + 2,9999 \cdot 0,0029}{2,9999^2} = 0,001 \cdot 012 \cdot 96 \approx 0,0011.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 1,542 (запасная цифра выделена) и вносим его в таблицу.

Округляя окончательный результат до последней верной в узком смысле цифры, а также округляя погрешность до соответствующих разрядов результата, окончательно получаем: $Z = 1,54 \pm 0,01$.

3) «Способ границ»

Нижняя и верхняя границы значений a, b и c определены из условия, что в исходных данных a=12,762, b=0,4534 и c=0,290 все цифры верны в узком смысле ($\Delta a=0,0005$, $\Delta b=0,00005$ и $\Delta c=0,0005$), т. е.

$$12,7615 < a < 12,7625; 0,453 35 < b < 0,453 45; 0,2895 < c < 0,2905.$$

При выполнении промежуточных вычислений и округлении результатов будем использовать все рекомендации правил подсчета цифр с одним важным дополнением: округление нижних границ ведется по недостатку, а верхних — по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

	НГ	ВГ
a	12,7615	12,7625
b	0,453 35	0,453 45
С	0,2895	0,2905
$a \cdot b$	5,785 4 2	5,787 1 6
4·c	1,1580	1,1620
$a \cdot b - 4 \cdot c$	4,6234	4,629 2
ln a	2,546 43	2,546 5 2
$\ln a + b$	2,999 78	2,999 97
Z	1,541 4	1,543 2

1)
$$H\Gamma_{ab} = H\Gamma_a \cdot H\Gamma_b = 12,7615 \cdot 0,453 \ 35 = 5,785 \ 426 \ 025 \approx 5,785 \ 42;$$

 $B\Gamma_{ab} = B\Gamma_a \ B\Gamma_b = 12,7625 \cdot 0,453 \ 45 = 5,787 \ 155 \ 625 \approx 5,787 \ 16.$

2)
$$H\Gamma_{4c} = 4 \cdot 0,2895 = 1,1580;$$

 $B\Gamma_{4c} = 4 \cdot 0,2905 = 1,1620.$

3)
$$H\Gamma_{ab-4c} = H\Gamma_{ab} - B\Gamma_{4c} = 5,785 \ 42 - 1,1620 = 4,623 \ 42 \approx 4,6234;$$

 $B\Gamma_{ab-4c} = B\Gamma_{ab} - H\Gamma_{4c} = 5,787 \ 16 - 1,1580 = 4,629 \ 16 \approx 4,6292.$

4)
$$H\Gamma_{\ln a} = \ln(H\Gamma_a) = \ln(12,7615) = 2,546 \ 432 \ 825 \ 867 \approx 2,546 \ 43;$$

 $B\Gamma_{\ln a} = \ln(B\Gamma_a) = \ln(12,7625) = 2,546 \ 511 \ 183 \ 491 \approx 2,546 \ 52.$

5)
$$H\Gamma_{\ln a + b} = H\Gamma_{\ln a} + H\Gamma_b = 2,546 \, 43 + 0,453 \, 35 = 2,999 \, 78 \approx 2,999 \, 78$$
;

$$B\Gamma_{\ln a + b} = B\Gamma_{\ln a} + B\Gamma_b = 2,546 \, 52 + 0,453 \, 45 = 2,999 \, 97 \approx 2,999 \, 97.$$

6)
$$H\Gamma_Z = H\Gamma_{ab-4c} / B\Gamma_{\ln a+b} = 4,6234 / 2,999 97 = 1,541 148 744 821 \approx 1,5411$$
;

BΓ_Z = BΓ_{ab-4c} / HΓ_{ln a+b} = 4,629**2** / 2,999 7**8** = 1,543 179 833 188
$$\approx$$
 1,543**2**.

Таким образом, результат вычислений значения Z по методу границ имеет вид $1,541 \le Z \le 1,543$.

Вычисляя значение величины Z тремя разными способами, получили следующие результаты:

- 1) $Z \approx 1.54$,
- 2) $Z = 1.54 \pm 0.01$,
- 3) 1,541 < *Z* < 1,543.

1.2.3. Варианты заданий

№	X	Z	а	b	c
1	0,068 147	$\frac{(b-c)^2}{2a+b}$	1,105	6,453	3,54
2	0,121 38	$\frac{\ln b - a}{a^2 + 12c}$	0,9319	15,347	0,409

No	X	Z	а	b	С
3	7,321 47	$\frac{\ln(b+c)}{b-ac}$	0,2399	4,893	1,172
4	0,007 275	$\frac{(a-c)^2}{\sqrt{a}+3b}$	11,437	0,609 37	8,67081
5	45,548	$\frac{a - bc}{\ln a + 3b}$	10,589	0,5894	0,125
6	10,7818	$\frac{b^2 - \ln c}{\sqrt{c - a}}$	2,038	3,912 53	5,0075
7	1,005 745	$\frac{a - \cos b}{13c + b}$	3,149	0,85	0,007
8	2,189 01	$\frac{\cos^2 a + 2b}{\sqrt{2c} - a}$	1,068 32	3,043	2,7817
9	35,3085	$\frac{\sqrt{a+b}}{3a-c}$	9,6574	1,4040	1,126
10	78,5457	$\frac{a - \sin b}{b^2 + 6c}$	2,751	1,215	0,1041
11	0,9538	$\frac{\ln a + 4b}{ab - c}$	7,0345	0,231	0,6572
12	2,0543	$\frac{\sqrt{ab}}{b-2c}$	3,124	5,92	1,789
13	0,108 34	$\frac{c + \sin b}{c - a^2}$	0,3107	13,27	4,711
14	0,001 245	$\frac{b-\sin a}{a+3c}$	3,672	3,863	0,1098
15	11,2621	$\frac{\ln c - 10a}{\sqrt{bc}}$	0,1135	0,101 56	89,453
16	2,734 91	$\frac{\lg(a-b)}{\sqrt{b-c}}$	8,325 74	3,156	1,0493
17	37,5461	$\frac{b + \cos c}{b + 2a}$	0,134 87	14,025	3,001 29

Окончание

Nº	X	Z	а	b	с
18	23,6394	$\frac{a^2 - b}{\sqrt{ab + c}}$	2,7252	3,034	0,7065
19	14,1674	$\frac{\sqrt{b-c}}{\ln a+b}$	19,034 73	3,751	0,1071
20	1,450 06	$\frac{ac+b}{\sqrt{b-c}}$	0,093	2,3471	1,231 74
21	0,5485	$\frac{10c + \sqrt{b}}{a^2 - b}$	1,289	1,0346	0,34
22	3,8469	$\frac{a+\sqrt{c}}{\lg(a^2+b)}$	1,621	5,5943	16,65
23	15,0897	$\frac{(a-c)^2}{\sqrt{a}+3b}$	11,7	0,0937	5,081
24	0,058 64	$\frac{10c + \sqrt{b}}{a^2 - b}$	1,247 34	0,346	0,051
25	2,504 71	$\frac{\ln b - a}{a^2 + 10c}$	0,7219	135,347	0,013
26	6,200 89	$\frac{(b-c)^2}{2a+b}$	4,05	6,723	0,032 54
27	12,4782	$\frac{b^2 - \ln c}{\sqrt{c - a}}$	0,038	3,9353	5,75
28	5,023 84	$\frac{\ln a + 4b}{ab - c}$	7,345	0,31	0,098 72
29	8,5441	$\frac{a^2 - b}{\sqrt{ab + c}}$	3,714 52	3,03	0,765
30	0,246 89	$\frac{b + \cos c}{b + 2a}$	0,115 87	4,25	3,009 71

2. Лабораторная работа №2. МЕТОДЫ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

2.1. Прямые методы решения

2.1.1. Постановка задачи

Будем рассматривать системы уравнений вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots & , \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{n1n}x_n = b_n \end{cases}$$
(2.1)

$$A\overline{x} = \overline{b}$$
, (2.2)

 $\overline{b} = (b_1, b_2, ..., b_n)^T$ — вектор свободных членов, $\overline{x} = (x_1, x_2, ..., x_n)^T$ — вектор неизвестных с вещественными координатами, $A = (a_{ij}), \ i = \overline{1, n}, \ j = \overline{1, n}$ — вещественная матрица размера $n \times n$, матрица коэффициентов системы (2.1).

Эффективность способов решения системы (2.1) во многом зависит от структуры и свойств матрицы A: размера, обусловленности, симметричности, заполненности (т. е. соотношения между числом нулевых и ненулевых элементов), специфики расположения ненулевых элементов матрицы.

Теорема Кронекера–Капелли: Необходимым условием существования единственного решения системы (2.1) является:

 $\det A \neq 0$.

Определение. Нормой называется такая величина, обладающая свойствами:

- 1) ||x|| > 0, $||x|| = 0 \Leftrightarrow x = 0$,
- $2) \quad ||\lambda x|| = |\lambda| \cdot ||x||,$
- 3) $||x + y|| \le ||x|| + ||y||$.

Определение. Если в пространстве векторов $\overline{x} = (x_1, x_2, ..., x_n)^T$ введена норма ||x||, то согласованной с ней нормой в пространстве матриц A называется норма $||A|| = \sup \frac{||Ax||}{x}$, $x \neq 0$.

Таблица 2.1 Виды норм векторов и матриц

В пространстве векторов	В пространстве матриц				
1. Кубич	неская норма				
$\ x\ _1 = \max_{1 \le j \le n} x_j $	$ A _1 = \max_{1 \le i \le n} \left(\sum_{j=1}^n a_{ij} \right)$				
2. Октаэдр	2. Октаэдрическая норма				
$\left\ x\right\ _2 = \sum_{j=1}^n \left x_j\right $	$\left\ A\right\ _{2} = \max_{1 \le j \le n} \left(\sum_{i=1}^{n} \left a_{ij}\right \right)$				
3. Сферическая норма					
$ x _3 = \sqrt{\sum_{j=1}^n x_j ^2} = \sqrt{(x,x)}$	$ A _3 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$				

2.1.2. Метод Гаусса

Один из методов решения системы (2.1) — метод Гаусса. Суть метода Гаусса заключается в приведении исходной матрицы A к треугольному виду. Будем постоянно приводить систему (2.1) к треугольному виду, исключая последовательно сначала x_1 из второго, третьего, ..., n-го уравнений, затем x_2 из третьего, четвертого, ..., n-го уравнений преобразованной системы и т. д.

На первом этапе заменим второе, третье, ..., n-е уравнения на уравнения, получающиеся сложением этих уравнений с первым, умноженным соответственно на $-\frac{a_{21}}{a_{11}}, -\frac{a_{31}}{a_{11}}, ..., -\frac{a_{n1}}{a_{11}}$.

Результатом этого этапа преобразований будет эквивалентная (2.1) система

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\
a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)} \\
a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 + \dots + a_{3n}^{(1)}x_n = b_3^{(1)} , \\
\dots \\
a_{n2}^{(1)}x_2 + a_{n3}^{(1)}x_3 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)}
\end{cases}$$
(2.3)

коэффициенты которой (с верхним индексом 1) подсчитываются по формулам

$$a_{ij}^{(1)} = a_{ij} - \frac{a_{i1}}{a_{11}} \cdot a_{1j}, \ b_i^{(1)} = b_i - \frac{a_{i1}}{a_{11}} \cdot b_1, \ i, j = 2,3,...,n.$$

При этом можно считать, что $a_{11} \neq 0$, так как по предположению система (2.1) однозначно разрешима, значит, все коэффициенты при x_1 не могут одновременно равняться нулю и на первое место всегда можно поставить уравнение с отличным от нуля первым коэффициентом.

На втором этапе проделываем такие же операции, как и на первом, с подсистемой (2.3). Эквивалентный (2.3) результат будет иметь вид

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\
a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)} \\
a_{33}^{(2)}x_3 + \dots + a_{3n}^{(2)}x_n = b_3^{(2)} , \\
\dots \\
a_{n3}^{(2)}x_3 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)}
\end{cases}$$
(2.4)

где
$$a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} \cdot a_{2j}^{(1)}, \ b_i^{(2)} = b_i^{(1)} - \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} \cdot b_2^{(1)}, \ i, j = 3,...,n.$$

Продолжая этот процесс, на (n-1)-м шаге так называемого прямого хода метода Гаусса систему (2.1) приведем к треугольному виду

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\
a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)} \\
a_{33}^{(2)}x_3 + \dots + a_{3n}^{(2)}x_n = b_3^{(2)} \\
\dots \\
a_{nn}^{(n-1)}x_n = b_n^{(n-1)}
\end{cases} (2.5)$$

Общая формула для расчета коэффициентов:

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \cdot a_{kj}^{(k-1)}, \ b_{i}^{(k)} = b_{i}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \cdot b_{k}^{(k-1)},$$

$$(2.6)$$

где верхний индекс k — номер этапа, $k=\overline{1,n-1}$, нижние индексы i и j изменяются от k+1 до n . Полагаем, что $a_{ij}^{(0)}=a_{ij}$, $b_i^{(0)}=b_i$.

Структура полученной матрицы позволяет последовательно вычислять значения неизвестных, начиная с последнего (обратный ход метода Гаусса).

$$x_{n} = \frac{b_{n}^{(n-1)}}{a_{nn}^{(n-1)}},$$
...,
$$x_{2} = \frac{b_{2}^{(1)} - a_{23}^{(1)} x_{3} - \dots - a_{2n}^{(1)} x_{n}}{a_{22}^{(1)}},$$

$$x_{1} = \frac{b_{1} - a_{12} x_{2} - \dots - a_{1n} x_{n}}{a_{22}}.$$

Этот процесс можно определить одной формулой

$$x_{k} = \frac{1}{a_{kk}^{(k-1)}} \left(b_{k}^{(k-1)} - \sum_{j=k+1}^{n} a_{kj}^{(k-1)} x_{j} \right), \tag{2.7}$$

где k полагают равным n, n-1, ..., 2,1 и сумма по определению считается равной нулю, если нижний предел суммирования имеет значение больше верхнего.

2.1.3. Оценки погрешностей решения системы

Приведем оценки погрешностей системы (2.1).

Пусть $A = (a_{ij})$ — матрица коэффициентов системы, $\|A\| = \max_{1 \le i \le n} \left(\sum_{j=1}^n \left|a_{ij}\right|\right)$ — ее норма, $\bar{b} = (b_1, b_2, ..., b_n)^T$, $\bar{x} = (x_1, x_2, ..., x_n)^T$ — соответственно столбики свободных членов и неизвестных, $\|\bar{b}\| = \max_{1 \le i \le n} \left|b_i\right|$, $\|\bar{x}\| = \max_{1 \le i \le n} \left|x_i\right|$ — нормы, $\Delta_{\bar{b}}$, $\Delta_{\bar{x}}$ и $\delta_{\bar{b}} = \frac{\Delta_{\bar{b}}}{\|\bar{b}\|}$, $\delta_{\bar{x}} = \frac{\Delta_{\bar{x}}}{\|\bar{x}\|}$ —

соответственно их абсолютные и относительные погрешности.

Тогда абсолютная погрешность решения системы (2.1) имеет оценку:

$$\Delta_{\bar{x}} \leq ||A^{-1}|| \cdot \Delta_{\bar{b}} \quad ,$$

а относительная погрешность - оценку:

$$\delta_{\bar{x}} \leq ||A|| \cdot ||A^{-1}|| \cdot \delta_{\bar{b}}.$$

2.2. Итерационные методы решения

2.2.1. Метод простой итерации (МПИ)

Система вида $A\overline{x}=\overline{b}$ может быть преобразована к эквивалентной ей системе

$$\overline{x} = (E - A)\overline{x} + \overline{b}$$
.

Обозначим через B=(E-A), тогда $\overline{x}=B\overline{x}+\overline{b}$.

Образуем итерационный процесс

$$\overline{x}^{k+1} = B\overline{x}^k + \overline{b} \tag{2.8}$$

Теорема (о простых итерациях). Необходимым и достаточным условием сходимости МПИ (2.8) при любом начальном векторе \bar{x}^0 к решению \bar{x}^* системы (2.2) является выполнение условия: или ||B|| < 1 (хотя бы в одной норме), или все собственные числа $\lambda_B^i < 1$.

Для определения количества итераций, необходимых для достижения заданной точности ε , можно воспользоваться априорной

оценкой погрешности решения системы и это значение найти из неравенства:

$$\frac{\left\|B\right\|^{k}}{1-\left\|B\right\|}\cdot\left\|\overline{x}^{1}-\overline{x}^{0}\right\|<\varepsilon.$$

Апостериорную (уточненную) оценку погрешности решения находят по формуле

$$\Delta_{\overline{x}_k} \leq \frac{\|B\|}{1 - \|B\|} \cdot \|\overline{x}^k - \overline{x}^{k-1}\|.$$

2.2.2. Метод Якоби

Для сходимости МПИ необходимо выполнение соответствующих условий. Одним достаточно эффективным способом приведения системы к виду, чтобы было выполнено условие сходимости МПИ, является метод Якоби.

Представим A = L + D + R, где D — диагональная матрица, L, R — левая и правая строго треугольные матрицы (с нулевыми диагоналями).

Тогда систему (2.2) можно записать в виде $L\overline{x} + D\overline{x} + R\overline{x} = \overline{b}$.

Если на диагонали исходной матрицы нет 0, то эквивалентной к формуле (2.2) задачей будет $\bar{x} = -D^{-1}(L+R)\bar{x} + D^{-1}\bar{b}$,

где
$$B = -D^{-1}(L+R)$$
, $\bar{c} = D^{-1}\bar{b}$ — вектор свободных членов.

Тогда итерационный процесс Якоби:

$$\bar{x}^{k+1} = -D^{-1}(L+R)\bar{x}^k + D^{-1}\bar{b}. \tag{2.9}$$

Чтобы записать метод Якоби в развернутом виде, достаточно заметить, что обратной матрицей к матрице $D = (a_{ii})_{i=1}^n$ служит диагональная матрица D^{-1} с элементами $d_{ii} = \frac{1}{a_{ii}}$.

Тогда (2.9) имеет вид:

$$\begin{cases} x_1^{k+1} = -\frac{(a_{12}x_2^k + \dots + a_{1n}x_n^k - b_1)}{a_{11}} \\ x_2^{k+1} = -\frac{(a_{21}x_2^k + \dots + a_{2n}x_n^k - b_2)}{a_{22}} \\ \dots \\ x_n^{k+1} = -\frac{(a_{n1}x_1^k + \dots + a_{n,n-1}x_n^k - b_n)}{a_{nn}} \end{cases}$$

Теорема. В случае диагонального преобладания в матрице A, метод Якоби (2.9) сходится. $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}| \ \forall \ i = \overline{1,n} \ i \neq j$.

2.2.3. Метод Зейделя

Метод Зейделя применяется в основном к системам, в которых преобладающими элементами являются диагональные. В противном случае скорость его сходимости практически не отличается от скорости сходимости МПИ.

Рассмотрим систему (2.1), где $a_{ii} \neq 0$ $i = \overline{1,n}$.

В (2.1) разделим *i*-е уравнение на
$$a_{ii}$$
 и обозначим $\widetilde{a}_{ij} = \frac{a_{ij}}{a_{ii}}$, $\widetilde{b}_i = \frac{b_i}{a_{ii}}$.

Получим эквивалентную (2.1) систему, выразив в каждом i-м уравнении компонент решения x_i

$$\begin{cases} x_{1} = \widetilde{b}_{1} - \widetilde{a}_{12}x_{2} - \dots - \widetilde{a}_{1n}x_{n} \\ x_{2} = \widetilde{b}_{2} - \widetilde{a}_{21}x_{1} - \dots - \widetilde{a}_{2n}x_{n} \\ \dots \\ x_{n} = \widetilde{b}_{n} - \widetilde{a}_{n1}x_{1} - \dots - \widetilde{a}_{n,n-1}x_{n-1} \end{cases}$$
(2.10)

Идея метода Зейделя: При проведении итераций по формуле (2.10) используется результат предыдущих уравнений в процессе одной итерации.

Общая формула:

$$x_i^{k+1} = \widetilde{b}_i - \sum_{\substack{j=1\\j \neq i}}^{i-1} \widetilde{a}_{ij} x_j^{k+1} - \sum_{j=i+1}^n \widetilde{a}_{ij} x_j^k . \tag{2.11}$$

Теорема. Для того чтобы метод Зейделя сходился, достаточно выполнения одного из условий: $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}| \ \forall \ i = \overline{1,n} \ i \neq j$ или A — вещественная, симметричная, положительно определенная матрица.

2.2.4. Метод релаксации

Пусть имеется система линейных алгебраических уравнений. Преобразуем эту систему следующим образом.

Перенесем свободные члены налево и разделим первое уравнение на $(-a_{11})$, второе уравнение на $(-a_{22})$ и т.д. Получим систему, подготовленную к релаксации:

$$\begin{cases}
-x_{1} + \widetilde{a}_{12}x_{2} + \dots + \widetilde{a}_{1n}x_{n} + \widetilde{b}_{1} = 0 \\
\widetilde{a}_{21}x_{1} - x_{2} + \dots + \widetilde{a}_{2n}x_{n} + \widetilde{b}_{2} = 0 \\
\dots \\
\widetilde{a}_{n1}x_{1} + \widetilde{a}_{n2}x_{2} + \dots - x_{n} + \widetilde{b}_{n} = 0
\end{cases}$$
(2.12)

$$\widetilde{a}_{ij} = -\frac{a_{ij}}{a_{ii}} (i \neq j), \ \widetilde{b}_{i} = \frac{b_{i}}{a_{ii}}.$$

Пусть $\bar{x}^0 = (x_1^0, ..., x_n^0)$ — начальное приближение системы (2.12).

Подставляя эти значения в систему (2.12), получим невязки.

$$\begin{cases}
R_1^0 = \widetilde{b}_1 - x_1^0 + \sum_{j=2}^n \widetilde{a}_{1j} x_j^0 \\
R_2^0 = \widetilde{b}_2 - x_2^0 + \sum_{j=1}^n \widetilde{a}_{2j} x_j^0 \\
\dots \\
R_n^0 = \widetilde{b}_n - x_n^0 + \sum_{j=1}^{n-1} \widetilde{a}_{nj} x_j^0
\end{cases}$$
(2.13)

Если одной из неизвестных x_s^0 дать приращение δx_s^0 , то соответствующая невязка R_s^0 уменьшится на величину δx_s^0 , а все остальные невязки R_i^0 ($i \neq s$) увеличатся на $\widetilde{a}_{is}\delta x_s^0$.

Чтобы обратить очередную невязку в 0, достаточно величине x_s^0 дать приращение $\delta x_s^0 = R_s^0$. Тогда $R_s^1 = 0$, а $R_i^1 = R_i^0 + \widetilde{a}_{is} \delta x_s^0$ $(i \neq s)$.

Метод релаксации (ослабления) в его простейшей форме заключается в том, что на каждом шаге обращают в 0 максимальную по модулю невязку путем изменения значения соответствующей компоненты приближения. Процесс заканчивается, когда все невязки последней преобразованной системы будут равняться 0 с заданной точностью.

2.3. Пример выполнения лабораторной работы

2.3.1. Задание к лабораторной работе

Дана система четырех уравнений с четырьмя неизвестными:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = b_4. \end{cases}$$

- 1. Решите систему уравнений методом Гаусса.
- 2. Для матрицы системы найдите обратную.
- 3. Зная, что свободные члены исходной системы имеют абсолютную погрешность 0,001, найдите оценку абсолютной и относительной погрешности решения.
- 4. Преобразуйте систему к виду, необходимому для применения метода простой итерации. Выбрав в качестве начального приближения $\bar{x}^0 = \bar{0}$, найдите k_0 необходимое число итеративных шагов для решения системы методом простой итерации с точностью 0,01.

- 5. Сделав k_0 итеративных шагов, найдите приближенное решение системы МПИ. Определите уточненную оценку погрешности решения.
- 6. Преобразуйте систему к виду, необходимому для применения метода (по варианту).

Метод по вариантам:

Найдите приближенное решение системы с точностью 0,001.

2.3.2. Решение типового примера

1. Решим систему уравнений методом Гаусса:

$$5,526 \cdot x_1 + 0,305 \cdot x_2 + 0,887 \cdot x_3 + 0,037 \cdot x_4 = 0,774$$

 $0,658 \cdot x_1 + 2,453 \cdot x_2 + 0,678 \cdot x_3 + 0,192 \cdot x_4 = 0,245$

$$0.398 \cdot x_1 + 0.232 \cdot x_2 + 4.957 \cdot x_3 + 0.567 \cdot x_4 = 0.343$$

$$0.081 \cdot x_1 + 0.521 \cdot x_2 + 0.192 \cdot x_3 + 4.988 \cdot x_4 = 0.263.$$

На первом этапе заменим второе, третье, четвертое уравнения на уравнения, получающиеся сложением этих уравнений с первым, умноженным соответственно на $-\frac{0,658}{5,526}$, $-\frac{0,398}{5,526}$, $-\frac{0,081}{5,526}$, т. е.

исключаем x_1 из второго, третьего и четвертого уравнений.

Система уравнений примет вид:

$$5,5260 \cdot x_1 + 0,3050 \cdot x_2 + 0,8870 \cdot x_3 + 0,0370 \cdot x_4 = 0,7740$$

$$2,4167 \cdot x_2 + 0,5724 \cdot x_3 + 0,1876 \cdot x_4 = 0,1528$$

$$0,2100 \cdot x_2 + 4,8931 \cdot x_3 + 0,5643 \cdot x_4 = 0,2873$$

$$0,5165 \cdot x_2 + 0,1790 \cdot x_3 + 4,9875 \cdot x_4 = 0,2517.$$

На втором этапе проделываем такие же операции, как и на первом, с полученной подсистемой, т. е. исключаем x_2 из третьего и четвертого уравнений. Результат будет иметь вид

$$5,5260 \cdot x_1 + 0,3050 \cdot x_2 + 0,8870 \cdot x_3 + 0,0370 \cdot x_4 = 0,7740$$

 $2,4167 \cdot x_2 + 0,5724 \cdot x_3 + 0,1876 \cdot x_4 = 0,1528$
 $4,8434 \cdot x_3 + 0,5480 \cdot x_4 = 0,2740$
 $0,0567 \cdot x_3 + 4,9474 \cdot x_4 = 0,2190$.

На третьем шаге исключаем x_3 из четвертого уравнения. Система уравнений примет вид:

$$5,5260 \cdot x_1 + 0,3050 \cdot x_2 + 0,8870 \cdot x_3 + 0,0370 \cdot x_4 = 0,7740$$

 $2,4167 \cdot x_2 + 0,5724 \cdot x_3 + 0,1876 \cdot x_4 = 0,1528$
 $4,8434 \cdot x_3 + 0,5480 \cdot x_4 = 0,2740$
 $4,9410 \cdot x_4 = 0,2158$.

Прямой ход метода Гаусса завершен. По формуле (2.7) находим неизвестные:

$$x_4 = 0.0437;$$

 $x_3 = 0.0516;$
 $x_2 = 0.0476;$
 $x_1 = 0.1289.$

Получаем решение системы: $\bar{x} = (0.1289; 0.0476; 0.0516; 0.0437)^T$.

2. Для матрицы системы найдем обратную. Чтобы найти обратную матрицу, нужно четыре раза решить исходную систему, в которой столбик свободных членов поочередно заменяется столбиками: $(1,0,0,0)^T$, $(0,1,0,0)^T$, $(0,0,1,0)^T$, $(0,0,0,1)^T$. Полученные решения системы заносим в соответствующие столбики матрицы A^{-1} . В итоге получим матрицу

$$A^{-1} = \begin{pmatrix} 0,1856 & -0,0208 & -0,0305 & 0,0029 \\ -0,0464 & 0,4202 & -0,0488 & -0,0103 \\ -0,0130 & -0,0131 & 0,2067 & -0,0229 \\ 0,0023 & -0,0431 & -0,0024 & 0,2024 \end{pmatrix}.$$

3. Зная, что свободные члены исходной системы имеют абсолютную погрешность 0,001, найдем оценку абсолютной и относительной погрешности решения.

Для этого предварительно получим оценки норм ||A|| и $||A^{-1}||$, используя формулу кубической нормы.

$$||A|| = \max_{1 \le i \le 4} \sum_{j=1}^{4} |a_{ij}| = \max\{6,755; 3,981; 6,154; 5,782\} = 6,755,$$

$$||A^{-1}|| = \max\{0,1372; 0,3147; 0,1577; 0,1592\} = 0,3147,$$

$$||\overline{b}|| = \max_{1 \le i \le 4} |b_{i}| = 0,774.$$

По условию
$$\Delta_{\bar{b}} = 10^{-3}$$
, тогда $\delta_{\bar{b}} = \frac{\Delta_{\bar{b}}}{\|\bar{b}\|} = \frac{10^{-3}}{0.774} \approx 1,292 \cdot 10^{-3}$.

Абсолютная погрешность решения: $\Delta_{\bar{x}} \leq ||A^{-1}|| \cdot \Delta_{\bar{b}} = 0,4 \cdot 10^{-3}$.

Относительная погрешность решения: $\delta_{\bar{x}} \leq ||A|| \cdot ||A^{-1}|| \cdot \delta_{\bar{b}} = 2.8 \cdot 10^{-3}$.

4. Преобразуем систему к виду, необходимому для применения метода простой итерации. Для этого обе части первого уравнения разделим на 5,526, второго – 2,453, третьего – на 4,957, четвертого – на 4,988, и система примет вид:

$$x_1 + 0.0552 \cdot x_2 + 0.1605 \cdot x_3 + 0.0067 \cdot x_4 = 0.1401$$

 $0.2682 \cdot x_1 + x_2 + 0.2764 \cdot x_3 + 0.0783 \cdot x_4 = 0.0999$
 $0.0803 \cdot x_1 + 0.0468 \cdot x_2 + x_3 + 0.1144 \cdot x_4 = 0.0692$
 $0.0162 \cdot x_1 + 0.1045 \cdot x_2 + 0.0385 \cdot x_3 + x_4 = 0.0527$.

Неизвестные, стоящие на главной диагонали, оставим слева, остальные члены уравнений перенесем вправо, и тогда система примет вид:

$$x_1 = -0.0552 \cdot x_2 - 0.1605 \cdot x_3 - 0.0067 \cdot x_4 + 0.1401$$

$$x_2 = -0.2682 \cdot x_1 - 0.2764 \cdot x_3 - 0.0783 \cdot x_4 + 0.0999$$

$$x_3 = -0.0803 \cdot x_1 - 0.0468 \cdot x_2 - 0.1144 \cdot x_4 + 0.0692$$

$$x_4 = -0.0162 \cdot x_1 - 0.1045 \cdot x_2 - 0.0385 \cdot x_3 + 0.0527.$$

Обозначим:

$$\bar{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \ \bar{c} = \begin{pmatrix} 0.1401 \\ 0.0999 \\ 0.0692 \\ 0.0527 \end{pmatrix}, \ B = \begin{pmatrix} 0 & -0.0552 & -0.1605 & -0.0067 \\ -0.2682 & 0 & -0.2764 & -0.0783 \\ -0.0803 & -0.0468 & 0 & -0.1144 \\ -0.0162 & -0.1045 & -0.0385 & 0 \end{pmatrix}.$$

Вычислим ||B||, чтобы обосновать возможность решения системы методом итерации.

 $||B|| = \max\{0,2224; 0,6229; 0,2415; 0,1592\} = 0,6299 < 1,$ следовательно, условия теоремы о сходимости МПИ выполнены, и систему можно решать методом итерации.

5. Выбрав в качестве начального приближения $\bar{x}^{_0} = \bar{0}$, найдем $k_{_0}$ – необходимое число итеративных шагов для решения системы методом простой итерации с точностью 0,001.

Так как по условию задачи нулевое приближение $\overline{x}^{_0}=\overline{0}$, то $\overline{x}^{_1}=B\overline{x}^{_0}+\overline{c}$. Значит, $\|\overline{x}^{_1}-\overline{x}^{_0}\|=\|\overline{c}\|=0,1401$.

Решим неравенство
$$\frac{\|B\|^k}{1-\|B\|} \cdot \|\overline{x}^1 - \overline{x}^0\| < \varepsilon$$
.

$$\frac{(0,6299)^k}{1-0,6299} \cdot 0,1401 < 0,01,$$

$$(0,6299)^k < 0,0264,$$

$$\ln(0,6299)^k < \ln(0,0264),$$

$$k > \frac{\ln(0,0264)}{\ln(0,6299)} = 7,8633 \text{ и полагаем } k_0 = 8.$$

Сделаем 8 итеративных шагов и получим:

$$\overline{x}^{1} = \begin{pmatrix} 0,1401 \\ 0,0999 \\ 0,0692 \\ 0,0527 \end{pmatrix}; \ \overline{x}^{2} = \begin{pmatrix} 0,1231 \\ 0,0391 \\ 0,0472 \\ 0,0373 \end{pmatrix}; \ \overline{x}^{3} = \begin{pmatrix} 0,1301 \\ 0,0509 \\ 0,0532 \\ 0,0448 \end{pmatrix}; \ \overline{x}^{4} = \begin{pmatrix} 0,1284 \\ 0,0468 \\ 0,0512 \\ 0,0432 \end{pmatrix};$$

$$\bar{x}^5 = \begin{pmatrix} 0,1290 \\ 0,0479 \\ 0,0518 \\ 0,0438 \end{pmatrix}; \ \bar{x}^6 = \begin{pmatrix} 0,1288 \\ 0,0476 \\ 0,0516 \\ 0,0436 \end{pmatrix}; \ \bar{x}^7 = \begin{pmatrix} 0,1289 \\ 0,0477 \\ 0,0516 \\ 0,0437 \end{pmatrix}; \ \bar{x}^8 = \begin{pmatrix} 0,1289 \\ 0,0476 \\ 0,0516 \\ 0,0436 \end{pmatrix}.$$

Столбик \bar{x}^{8} выбираем в качестве приближенного решения исходной системы. Оценим погрешность приближенного решения \bar{x}^{8} .

$$\Delta_{\bar{x}^8} \le \frac{\|B\|}{1 - \|B\|} \cdot \|\bar{x}^8 - \bar{x}^7\| = \frac{0.6299}{0.3701} \cdot 0.0001 \le 0.0002.$$

6. Найдем решение системы методом по варианту.

1) «Метод Якоби»

Преобразуйте систему к виду, необходимому для применения метода Якоби.

Представим матрицу в виде A = L + D + R,

где
$$A = \begin{pmatrix} 5,526 & 0,305 & 0,887 & 0,037 \\ 0,658 & 2,453 & 0,678 & 0,192 \\ 0,398 & 0,232 & 4,957 & 0,567 \\ 0,081 & 0,521 & 0,192 & 4,988 \end{pmatrix}, D = \begin{pmatrix} 5,526 & 0 & 0 & 0 \\ 0 & 2,453 & 0 & 0 \\ 0 & 0 & 4,957 & 0 \\ 0 & 0 & 0 & 4,988 \end{pmatrix},$$

$$L = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0,658 & 0 & 0 & 0 \\ 0,398 & 0,232 & 0 & 0 \\ 0,081 & 0,521 & 0,192 & 0 \end{pmatrix} \text{ M } R = \begin{pmatrix} 0 & 0,305 & 0,887 & 0,037 \\ 0 & 0 & 0,678 & 0,192 \\ 0 & 0 & 0 & 0,567 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Тогда
$$B = -D^{-1}(L+R) = \begin{pmatrix} 0 & -0.0552 & -0.1605 & -0.0067 \\ -0.2682 & 0 & -0.2764 & -0.0783 \\ -0.0803 & -0.0468 & 0 & -0.1144 \\ -0.0162 & -0.1045 & -0.0385 & 0 \end{pmatrix}$$
 и

вектор свободных членов
$$\bar{c}=D^{-1}\bar{b}=\begin{pmatrix}0,1401\\0,0999\\0,0692\\0,0527\end{pmatrix}$$
.

Запишем итерационный процесс метода Якоби:

$$\bar{x}^{k+1} = \begin{pmatrix} 0 & -0.0552 & -0.1605 & -0.0067 \\ -0.2682 & 0 & -0.2764 & -0.0783 \\ -0.0803 & -0.0468 & 0 & -0.1144 \\ -0.0162 & -0.1045 & -0.0385 & 0 \end{pmatrix} \bar{x}^{k} + \begin{pmatrix} 0.1401 \\ 0.0999 \\ 0.0692 \\ 0.0527 \end{pmatrix}.$$

Проверим условие сходимости метода Якоби

$$|a_{ii}| > \sum_{j=1}^{n} |a_{ij}| \quad \forall i = \overline{1,n} \quad i \neq j.$$

$$5,526 > 0,305 + 0,887 + 0,037$$

$$2,453 > 0,658 + 0,678 + 0,192$$

$$4,957 > 0,398 + 0,232 + 0,567$$

$$4,988 > 0,081 + 0,521 + 0,192$$

следовательно, условие сходимости метода Якоби выполнено.

Для достижения точности $\varepsilon = 0{,}001$ приближения будем находить до тех пор, пока не выполнится неравенство

$$\Delta_{\bar{x}^k} = \left\| \bar{x}^k - \bar{x}^{k-1} \right\| \le \frac{1 - \|B\|}{\|B\|} \cdot \varepsilon = \frac{0.3701}{0.6299} \cdot 0.001 \approx 0.0006.$$

Все вычисления занесем в таблицу.

k	$x_{_1}$	x_2	\mathcal{X}_3	X_4	$\Delta_{\overline{x}^k} = \left\ \overline{x}^k - \overline{x}^{k-1} \right\ $
0	0	0	0	0	
1	0,1401	0,0999	0,0692	0,0527	0,1401
2	0,1231	0,0391	0,0472	0,0373	0,0608
3	0,1301	0,0509	0,0532	0,0448	0,0118
4	0,1284	0,0468	0,0512	0,0432	0,0041
5	0,1290	0,0479	0,0518	0,0438	0,0011
6	0,1288	0,0476	0,0516	0,0436	0,0003

2) «Метод Зейделя»

Преобразуйте систему к виду, необходимому для применения метода Зейделя. Для этого разделим каждое уравнение системы на диагональный элемент и выразим в каждом уравнении компонент решения x_i , получим систему вида:

$$x_1 = 0.1401 - 0.0552 \cdot x_2 - 0.1605 \cdot x_3 - 0.0067 \cdot x_4$$

$$x_2 = 0.0999 - 0.2682 \cdot x_1 - 0.2764 \cdot x_3 - 0.0783 \cdot x_4$$

$$x_3 = 0.0692 - 0.0803 \cdot x_1 - 0.0468 \cdot x_2 - 0.1144 \cdot x_4$$

$$x_4 = 0.0527 - 0.0162 \cdot x_1 - 0.1045 \cdot x_2 - 0.0385 \cdot x_3.$$

Запишем итерационный процесс метода Зейделя:

$$\begin{cases} x_1^{k+1} = 0.1401 - 0.0552x_2^k - 0.1605x_3^k - 0.0067x_4^k \\ x_2^{k+1} = 0.0999 - 0.2682x_1^{k+1} - 0.2764x_3^k - 0.0783x_4^k \\ x_3^{k+1} = 0.0692 - 0.0803x_1^{k+1} - 0.0468x_2^{k+1} - 0.1144x_4^k \\ x_4^{k+1} = 0.0527 - 0.0162x_1^{k+1} - 0.1045x_2^{k+1} - 0.0385x_3^{k+1} \end{cases}$$

Проверим условие сходимости метода Зейделя:

следовательно, условие сходимости выполнено, и систему можно решать методом Зейделя.

Для достижения точности $\varepsilon = 0{,}001$ приближения будем находить до тех пор, пока не выполнится неравенство

$$\Delta_{\bar{x}^k} = \left\| \overline{x}^k - \overline{x}^{k-1} \right\| \le \frac{1 - \|B\|}{\|B\|} \cdot \varepsilon = \frac{0.3701}{0.6299} \cdot 0.001 \approx 0.0006.$$

Все вычисления занесем в таблицу.

k	$x_{_1}$	x_2	x_3	X_4	$\Delta_{\overline{x}^k} = \left\ \overline{x}^k - \overline{x}^{k-1} \right\ $
0	0	0	0	0	
1	0,1401	0,0623	0,0550	0,0418	0,1401
2	0,1275	0,0472	0,0520	0,0437	0,0151
3	0,1289	0,0476	0,0516	0,0437	0,0013
4	0,1289	0,0476	0,0516	0,0436	0,0001

3) «Метод релаксации»

Преобразуйте систему к виду, необходимому для применения метода релаксации. Перенесем, свободные члены налево и разделим первое уравнение на (-5,526), второе уравнение на (-2,453) и т. д. Получим систему, подготовленную к релаксации:

$$\begin{cases} -x_1 - 0.0552x_2 - 0.1605x_3 - 0.0067x_4 + 0.1401 = 0 \\ 0.2682x_1 - x_2 - 0.2764x_3 - 0.0783x_4 - 0.0999 = 0 \\ 0.0803x_1 - 0.0468x_2 - x_3 - 0.1144x_4 - 0.0692 = 0 \\ 0.0162x_1 - 0.1045x_2 - 0.0385x_3 - x_4 - 0.0527 = 0 \end{cases}$$

Пусть $\bar{x}^0 = (x_1^0, ..., x_n^0)$ — начальное приближение, подставим эти значения в систему, получим невязки.

$$\begin{cases} R_1^0 = 0.1401 - x_1^0 - 0.0552x_2^0 - 0.1605x_3^0 - 0.0067x_4^0 = 0.1401 \\ R_2^0 = 0.0999 - x_2^0 - 0.2682x_1^0 - 0.2764x_3^0 - 0.0783x_4^0 = 0.0999 \\ R_3^0 = 0.0692 - x_3^0 - 0.0803x_1^0 - 0.0468x_2^0 - 0.1144x_4^0 = 0.0692 \\ R_4^0 = 0.0527 - x_4^0 - 0.0162x_1^0 - 0.1045x_2^0 - 0.0385x_3^0 = 0.0527 \end{cases}$$

Выберем максимальную по модулю невязку $R_1^0 = 0,1401$ и соответствующей неизвестной x_1^0 дадим приращение $\delta x_1^0 = R_1^0 = 0,1401$.

Тогда $R_1^1=0$, а остальные невязки пересчитаем по формуле $R_i^1=R_i^0+\widetilde{a}_{il}\delta\!x_1^0$ $(i\neq 1)$, получим

$$\begin{cases} R_1^1 = 0 \\ R_2^1 = R_2^0 - 0.2682 \delta x_1^0 = 0.0999 - 0.2682 \cdot 0.1401 = 0.0623 \\ R_3^1 = R_3^0 - 0.0803 \delta x_1^0 = 0.0692 - 0.0803 \cdot 0.1401 = 0.0579 \\ R_4^1 = R_4^0 - 0.0162 \delta x_1^0 = 0.0527 - 0.0162 \cdot 0.1401 = 0.0504 \end{cases}$$

Аналогично находим максимальную по модулю невязку $R_2^1=0,0623$ и соответствующей неизвестной x_2^1 дадим приращение $\delta x_2^1=R_2^1=0,0623$.

Тогда $R_2^2=0$, а остальные невязки пересчитаем по формуле $R_i^2=R_i^1+\widetilde{a}_{i2}\delta\!x_2^1$ $(i\neq2)$, получим

$$\begin{cases} R_1^2 = R_1^1 - 0.0552 \delta x_2^1 = 0 - 0.0552 \cdot 0.1375 = -0.0034 \\ R_2^2 = 0 \\ R_3^2 = R_3^0 - 0.0468 \delta x_2^1 = 0.0805 - 0.0468 \cdot 0.1375 = 0.0550 \\ R_4^2 = R_4^0 - 0.0162 \delta x_2^1 = 0.0550 - 0.1045 \cdot 0.1375 = 0.0439 \end{cases}$$

Снова находим максимальную по модулю невязку $R_3^2 = 0.0550$ и соответствующей неизвестной x_3^2 дадим приращение $\delta x_3^2 = R_3^2 = 0.0550$.

Тогда $R_3^3 = 0$, а остальные невязки пересчитаем по формуле $R_i^3 = R_i^2 + \widetilde{a}_{i3} \delta x_3^2 \ (i \neq 3)$, получим

$$\begin{cases} R_1^3 = -0.0123 \\ R_2^3 = -0.0152 \\ R_3^3 = 0 \\ R_4^3 = 0.0418 \end{cases}$$

Процесс заканчивается, когда все невязки последней преобразованной системы будут равняться 0 с заданной точностью.

Для достижения точности $\varepsilon = 0{,}001$ приближения будем находить до тех пор, пока не выполнится неравенство

$$R_i^k \leq 0.001, i = \overline{1.4}$$
.

Все вычисления занесем в таблицу.

k	δx_1^k	δx_2^k	δx_3^k	δx_4^k	$R_{_1}$	R_2	R_3	$R_{_4}$
0	0,1401	0	0	0	0,1401	0,0623	0,0550	0,0418
1	0	0,0623	0	0	0	0,0623	0,0579	0,0504
2	0	0	0,0550	0	-0,0034	0	0,0550	0,0439
3	0	0	0	0,0418	-0,0123	-0,0152	0	0,0418
4	0	-0,0185	0	0	-0,0126	-0,0185	-0,0048	0
5	-0,0115	0	0	0	-0,0115	0	-0,0039	0,0019
6	0	0,0031	0	0	0	0,0031	-0,0030	0,0021
7	0	0	-0,0031	0	-0,0002	0	-0,0031	0,0018
8	0	0	0	0,0019	0,0003	0,0009	0	0,0019
9	0	0,0007	0	0	0,0003	0,0007	-0,0002	0

Суммируя все приращения δx_i^k , найдем значения корней:

$$x_{1} = \sum_{k=0}^{9} \delta x_{1}^{k} = 0,1401 - 0,0115 = 0,1286,$$

$$x_{2} = \sum_{k=0}^{9} \delta x_{2}^{k} = 0,0623 - 0,0185 + 0,0031 + 0,0007 = 0,0477,$$

$$x_{3} = \sum_{k=0}^{9} \delta x_{3}^{k} = 0,0550 - 0,0031 = 0,0519,$$

$$x_{4} = \sum_{k=0}^{9} \delta x_{4}^{k} = 0,0418 + 0,0019 = 0,0437.$$

2.3.3. Варианты заданий

№	Система уравнений
1	$4,003 \cdot x_{1} + 0,207 \cdot x_{2} + 0,519 \cdot x_{3} + 0,281 \cdot x_{4} = 0,425$ $0,416 \cdot x_{1} + 3,273 \cdot x_{2} + 0,326 \cdot x_{3} + 0,375 \cdot x_{4} = 0,021$ $0,297 \cdot x_{1} + 0,351 \cdot x_{2} + 2,997 \cdot x_{3} + 0,429 \cdot x_{4} = 0,213$ $0,412 \cdot x_{1} + 0,194 \cdot x_{2} + 0,215 \cdot x_{3} + 3,628 \cdot x_{4} = 0,946.$
2	$2,591 \cdot x_{1} + 0,512 \cdot x_{2} + 0,128 \cdot x_{3} + 0,195 \cdot x_{4} = 0,159$ $0,203 \cdot x_{1} + 3,469 \cdot x_{2} + 0,572 \cdot x_{3} + 0,162 \cdot x_{4} = 0,280$ $0,256 \cdot x_{1} + 0,273 \cdot x_{2} + 2,994 \cdot x_{3} + 0,501 \cdot x_{4} = 0,134$ $0,381 \cdot x_{1} + 0,219 \cdot x_{2} + 0,176 \cdot x_{3} + 5,903 \cdot x_{4} = 0,864.$

Nº	Система уравнений
	$2,979 \cdot x_1 + 0,427 \cdot x_2 + 0,406 \cdot x_3 + 0,348 \cdot x_4 = 0,341$
3	$0,273 \cdot x_1 + 3,951 \cdot x_2 + 0,217 \cdot x_3 + 0,327 \cdot x_4 = 0,844$
3	$0.318 \cdot x_1 + 0.197 \cdot x_2 + 2.875 \cdot x_3 + 0.166 \cdot x_4 = 0.131$
	$0.219 \cdot x_1 + 0.231 \cdot x_2 + 0.187 \cdot x_3 + 3.276 \cdot x_4 = 0.381.$
	$3,738 \cdot x_1 + 0,195 \cdot x_2 + 0,275 \cdot x_3 + 0,136 \cdot x_4 = 0,815$
4	$0.519 \cdot x_1 + 5.002 \cdot x_2 + 0.405 \cdot x_3 + 0.283 \cdot x_4 = 0.191$
4	$0,306 \cdot x_1 + 0,381 \cdot x_2 + 4,812 \cdot x_3 + 0,418 \cdot x_4 = 0,423$
	$0,272 \cdot x_1 + 0,142 \cdot x_2 + 0,314 \cdot x_3 + 3,935 \cdot x_4 = 0,352.$
	$4,855 \cdot x_1 + 1,239 \cdot x_2 + 0,272 \cdot x_3 + 0,258 \cdot x_4 = 1,192$
5	$1,491 \cdot x_1 + 4,954 \cdot x_2 + 0,124 \cdot x_3 + 0,236 \cdot x_4 = 0,256$
3	$0,456 \cdot x_1 + 0,285 \cdot x_2 + 4,354 \cdot x_3 + 0,254 \cdot x_4 = 0,852$
	$0,412 \cdot x_1 + 0,335 \cdot x_2 + 0,158 \cdot x_3 + 2,874 \cdot x_4 = 0,862.$
	$5,401 \cdot x_1 + 0,519 \cdot x_2 + 0,364 \cdot x_3 + 0,283 \cdot x_4 = 0,243$
6	$0,295 \cdot x_1 + 4,830 \cdot x_2 + 0,421 \cdot x_3 + 0,278 \cdot x_4 = 0,231$
0	$0.524 \cdot x_1 + 0.397 \cdot x_2 + 4.723 \cdot x_3 + 0.389 \cdot x_4 = 0.721$
	$0.503 \cdot x_1 + 0.264 \cdot x_2 + 0.248 \cdot x_3 + 4.286 \cdot x_4 = 0.220.$
	$3,857 \cdot x_1 + 0,239 \cdot x_2 + 0,272 \cdot x_3 + 0,258 \cdot x_4 = 0,190$
7	$0.491 \cdot x_1 + 3.941 \cdot x_2 + 0.131 \cdot x_3 + 0.178 \cdot x_4 = 0.179$
/	$0,436 \cdot x_1 + 0,281 \cdot x_2 + 4,189 \cdot x_3 + 0,416 \cdot x_4 = 0,753$
	$0.317 \cdot x_1 + 0.229 \cdot x_2 + 0.326 \cdot x_3 + 2.971 \cdot x_4 = 0.860.$
	$4,238 \cdot x_1 + 0,329 \cdot x_2 + 0,256 \cdot x_3 + 0,425 \cdot x_4 = 0,560$
8	$0.249 \cdot x_1 + 2.964 \cdot x_2 + 0.351 \cdot x_3 + 0.127 \cdot x_4 = 0.380$
	$0.365 \cdot x_1 + 0.217 \cdot x_2 + 2.897 \cdot x_3 + 0.168 \cdot x_4 = 0.778$
	$0.178 \cdot x_1 + 0.294 \cdot x_2 + 0.432 \cdot x_3 + 3.701 \cdot x_4 = 0.749.$
	$389 \cdot x_1 + 0.273 \cdot x_2 + 0.126 \cdot x_3 + 0.418 \cdot x_4 = 0.144$
9	$0.329 \cdot x_1 + 2.796 \cdot x_2 + 0.179 \cdot x_3 + 0.278 \cdot x_4 = 0.297$
	$0.186 \cdot x_1 + 0.275 \cdot x_2 + 2.987 \cdot x_3 + 0.316 \cdot x_4 = 0.529$
	$0.197 \cdot x_1 + 0.219 \cdot x_2 + 0.274 \cdot x_3 + 3.127 \cdot x_4 = 0.869.$

№	Система уравнений
10	$2,958 \cdot x_1 + 0,147 \cdot x_2 + 0,354 \cdot x_3 + 0,238 \cdot x_4 = 0,651$
	$0.127 \cdot x_1 + 2.395 \cdot x_2 + 0.256 \cdot x_3 + 0.273 \cdot x_4 = 0.898$
	$0,403 \cdot x_1 + 0,184 \cdot x_2 + 3,815 \cdot x_3 + 0,416 \cdot x_4 = 0,595$
	$0,259 \cdot x_1 + 0,361 \cdot x_2 + 0,281 \cdot x_3 + 3,736 \cdot x_4 = 0,389.$
11	$4,503 \cdot x_1 + 0,219 \cdot x_2 + 0,527 \cdot x_3 + 0,396 \cdot x_4 = 0,553$
	$0,259 \cdot x_1 + 5,121 \cdot x_2 + 0,423 \cdot x_3 + 0,206 \cdot x_4 = 0,358$
	$0.413 \cdot x_1 + 0.531 \cdot x_2 + 4.317 \cdot x_3 + 0.264 \cdot x_4 = 0.565$
	$0,327 \cdot x_1 + 0,412 \cdot x_2 + 0,203 \cdot x_3 + 4,851 \cdot x_4 = 0,436.$
	$5,103 \cdot x_1 + 0,293 \cdot x_2 + 0,336 \cdot x_3 + 0,270 \cdot x_4 = 0,745$
	$0,179 \cdot x_1 + 4,912 \cdot x_2 + 0,394 \cdot x_3 + 0,375 \cdot x_4 = 0,381$
12	$0.189 \cdot x_1 + 0.321 \cdot x_2 + 2.875 \cdot x_3 + 0.216 \cdot x_4 = 0.480$
	$0.317 \cdot x_1 + 0.165 \cdot x_2 + 0.386 \cdot x_3 + 3.934 \cdot x_4 = 0.552.$
	$5,554 \cdot x_1 + 0,252 \cdot x_2 + 0,496 \cdot x_3 + 0,237 \cdot x_4 = 0,442$
13	$0.580 \cdot x_1 + 4.953 \cdot x_2 + 0.467 \cdot x_3 + 0.028 \cdot x_4 = 0.464$
	$0.319 \cdot x_1 + 0.372 \cdot x_2 + 8.935 \cdot x_3 + 0.520 \cdot x_4 = 0.979$
	$0.043 \cdot x_1 + 0.459 \cdot x_2 + 0.319 \cdot x_3 + 4.778 \cdot x_4 = 0.126.$
	$2,998 \cdot x_1 + 0,209 \cdot x_2 + 0,315 \cdot x_3 + 0,281 \cdot x_4 = 0,108$
14	$0.163 \cdot x_1 + 3.237 \cdot x_2 + 0.226 \cdot x_3 + 0.307 \cdot x_4 = 0.426$
	$0.416 \cdot x_1 + 0.175 \cdot x_2 + 3.239 \cdot x_3 + 0.159 \cdot x_4 = 0.310$
	$0.287 \cdot x_1 + 0.196 \cdot x_2 + 0.325 \cdot x_3 + 4.062 \cdot x_4 = 0.084.$
	$5,452 \cdot x_1 + 0,401 \cdot x_2 + 0,758 \cdot x_3 + 0,123 \cdot x_4 = 0,886$
15	$0.785 \cdot x_1 + 2.654 \cdot x_2 + 0.687 \cdot x_3 + 0.203 \cdot x_4 = 0.356$
	$0,402 \cdot x_1 + 0,244 \cdot x_2 + 4,456 \cdot x_3 + 0,552 \cdot x_4 = 0,342$
	$0.210 \cdot x_1 + 0.514 \cdot x_2 + 0.206 \cdot x_3 + 4.568 \cdot x_4 = 0.452.$ $2.923 \cdot x_1 + 0.220 \cdot x_2 + 0.159 \cdot x_3 + 0.328 \cdot x_4 = 0.605$
16	$\begin{vmatrix} 2,923 \cdot x_1 + 0,220 \cdot x_2 + 0,139 \cdot x_3 + 0,328 \cdot x_4 = 0,003 \\ 0,363 \cdot x_1 + 4,123 \cdot x_2 + 0,268 \cdot x_3 + 0,327 \cdot x_4 = 0,496 \end{vmatrix}$
	$0.169 \cdot x_1 + 0.271 \cdot x_2 + 0.208 \cdot x_3 + 0.295 \cdot x_4 = 0.590$
	$\begin{vmatrix} 0.105 \cdot x_1 + 0.271 \cdot x_2 + 3.000 \cdot x_3 + 0.255 \cdot x_4 = 0.350 \\ 0.241 \cdot x_1 + 0.319 \cdot x_2 + 0.257 \cdot x_3 + 3.862 \cdot x_4 = 0.896. \end{vmatrix}$
	0,= 11 11 1 0,5 17 112 1 0,25 1 113 1 3,002 114 - 0,070.

№	Система уравнений
17	$5,482 \cdot x_1 + 0,358 \cdot x_2 + 0,237 \cdot x_3 + 0,409 \cdot x_4 = 0,416$
	$0.580 \cdot x_1 + 4.953 \cdot x_2 + 0.467 \cdot x_3 + 0.028 \cdot x_4 = 0.464$
	$0.319 \cdot x_1 + 0.372 \cdot x_2 + 8.935 \cdot x_3 + 0.520 \cdot x_4 = 0.979$
	$0.043 \cdot x_1 + 0.459 \cdot x_2 + 0.319 \cdot x_3 + 4.778 \cdot x_4 = 0.126.$
18	$3,738 \cdot x_1 + 0,195 \cdot x_2 + 0,275 \cdot x_3 + 0,136 \cdot x_4 = 0,815$
	$0.519 \cdot x_1 + 5.002 \cdot x_2 + 0.405 \cdot x_3 + 0.283 \cdot x_4 = 0.191$
	$0,306 \cdot x_1 + 0,381 \cdot x_2 + 4,812 \cdot x_3 + 0,418 \cdot x_4 = 0,423$
	$0,272 \cdot x_1 + 0,142 \cdot x_2 + 0,314 \cdot x_3 + 3,935 \cdot x_4 = 0,352.$
1.0	$3,910 \cdot x_1 + 0,129 \cdot x_2 + 0,283 \cdot x_3 + 0,107 \cdot x_4 = 0,395$
	$0.217 \cdot x_1 + 4.691 \cdot x_2 + 0.279 \cdot x_3 + 0.237 \cdot x_4 = 0.432$
19	$0.201 \cdot x_1 + 0.372 \cdot x_2 + 2.987 \cdot x_3 + 0.421 \cdot x_4 = 0.127$
	$0.531 \cdot x_1 + 0.196 \cdot x_2 + 0.236 \cdot x_3 + 5.032 \cdot x_4 = 0.458.$
20	$5,482 \cdot x_1 + 0,617 \cdot x_2 + 0,520 \cdot x_3 + 0,401 \cdot x_4 = 0,823$
	$0,607 \cdot x_1 + 4,195 \cdot x_2 + 0,232 \cdot x_3 + 0,570 \cdot x_4 = 0,152$
	$0.367 \cdot x_1 + 0.576 \cdot x_2 + 8.193 \cdot x_3 + 0.582 \cdot x_4 = 0.625$
	$0,389 \cdot x_1 + 0,356 \cdot x_2 + 0,207 \cdot x_3 + 5,772 \cdot x_4 = 0,315.$
21	$3,345 \cdot x_1 + 0,329 \cdot x_2 + 0,365 \cdot x_3 + 0,203 \cdot x_4 = 0,305$
	$0,125 \cdot x_1 + 4,210 \cdot x_2 + 0,402 \cdot x_3 + 0,520 \cdot x_4 = 0,283$
21	$0.314 \cdot x_1 + 0.251 \cdot x_2 + 4.531 \cdot x_3 + 0.168 \cdot x_4 = 0.680$
	$0.197 \cdot x_1 + 0.512 \cdot x_2 + 0.302 \cdot x_3 + 2.951 \cdot x_4 = 0.293.$
	$4,247 \cdot x_1 + 0,275 \cdot x_2 + 0,397 \cdot x_3 + 0,239 \cdot x_4 = 0,721$
	$0,466 \cdot x_1 + 4,235 \cdot x_2 + 0,264 \cdot x_3 + 0,358 \cdot x_4 = 0,339$
22	$0,204 \cdot x_1 + 0,501 \cdot x_2 + 3,721 \cdot x_3 + 0,297 \cdot x_4 = 0,050$
	$0,326 \cdot x_1 + 0,421 \cdot x_2 + 0,254 \cdot x_3 + 3,286 \cdot x_4 = 0,486.$
	$3,476 \cdot x_1 + 0,259 \cdot x_2 + 0,376 \cdot x_3 + 0,398 \cdot x_4 = 0,871$
23	$0,425 \cdot x_1 + 4,583 \cdot x_2 + 0,417 \cdot x_3 + 0,328 \cdot x_4 = 0,739$
	$0,252 \cdot x_1 + 0,439 \cdot x_2 + 3,972 \cdot x_3 + 0,238 \cdot x_4 = 0,644$
	$0,265 \cdot x_1 + 0,291 \cdot x_2 + 0,424 \cdot x_3 + 3,864 \cdot x_4 = 0,581.$

Окончание

Nº	Система уравнений
24	$3,241 \cdot x_1 + 0,197 \cdot x_2 + 0,643 \cdot x_3 + 0,236 \cdot x_4 = 0,454$
	$0,257 \cdot x_1 + 3,853 \cdot x_2 + 0,342 \cdot x_3 + 0,427 \cdot x_4 = 0,371$
	$0,324 \cdot x_1 + 0,317 \cdot x_2 + 2,793 \cdot x_3 + 0,238 \cdot x_4 = 0,465$
	$0,438 \cdot x_1 + 0,326 \cdot x_2 + 0,483 \cdot x_3 + 4,229 \cdot x_4 = 0,822.$
25	$4,405 \cdot x_1 + 0,472 \cdot x_2 + 0,395 \cdot x_3 + 0,253 \cdot x_4 = 0,623$
	$0,227 \cdot x_1 + 2,957 \cdot x_2 + 0,342 \cdot x_3 + 0,327 \cdot x_4 = 0,072$
	$0.419 \cdot x_1 + 0.341 \cdot x_2 + 3.238 \cdot x_3 + 0.394 \cdot x_4 = 0.143$
	$0,325 \cdot x_1 + 0,326 \cdot x_2 + 0,401 \cdot x_3 + 4,273 \cdot x_4 = 0,065.$
26	$2,974 \cdot x_1 + 0,347 \cdot x_2 + 0,439 \cdot x_3 + 0,123 \cdot x_4 = 0,381$
	$0,242 \cdot x_1 + 2,895 \cdot x_2 + 0,412 \cdot x_3 + 0,276 \cdot x_4 = 0,721$
26	$0.249 \cdot x_1 + 0.378 \cdot x_2 + 3.791 \cdot x_3 + 0.358 \cdot x_4 = 0.514$
	$0.387 \cdot x_1 + 0.266 \cdot x_2 + 0.431 \cdot x_3 + 4.022 \cdot x_4 = 0.795.$
	$3,452 \cdot x_1 + 0,458 \cdot x_2 + 0,125 \cdot x_3 + 0,236 \cdot x_4 = 0,745$
27	$0,254 \cdot x_1 + 2,458 \cdot x_2 + 0,325 \cdot x_3 + 0,126 \cdot x_4 = 0,789$
	$0,305 \cdot x_1 + 0,125 \cdot x_2 + 3,869 \cdot x_3 + 0,458 \cdot x_4 = 0,654$
	$0,423 \cdot x_1 + 0,452 \cdot x_2 + 0,248 \cdot x_3 + 3,896 \cdot x_4 = 0,405.$
28	$2,979 \cdot x_1 + 0,427 \cdot x_2 + 0,406 \cdot x_3 + 0,348 \cdot x_4 = 0,341$
	$0,273 \cdot x_1 + 3,951 \cdot x_2 + 0,217 \cdot x_3 + 0,327 \cdot x_4 = 0,844$
20	$0.318 \cdot x_1 + 0.197 \cdot x_2 + 2.875 \cdot x_3 + 0.166 \cdot x_4 = 0.131$
	$0.219 \cdot x_1 + 0.231 \cdot x_2 + 0.187 \cdot x_3 + 3.276 \cdot x_4 = 0.381.$
	$2,048 \cdot x_1 + 0,172 \cdot x_2 + 0,702 \cdot x_3 + 0,226 \cdot x_4 = 0,514$
29	$0,495 \cdot x_1 + 4,093 \cdot x_2 + 0,083 \cdot x_3 + 0,390 \cdot x_4 = 0,176$
	$0,277 \cdot x_1 + 0,368 \cdot x_2 + 4,164 \cdot x_3 + 0,535 \cdot x_4 = 0,309$
	$0.766 \cdot x_1 + 0.646 \cdot x_2 + 0.767 \cdot x_3 + 5.960 \cdot x_4 = 0.535.$
30	$2,389 \cdot x_1 + 0,273 \cdot x_2 + 0,126 \cdot x_3 + 0,418 \cdot x_4 = 0,144$
	$0.329 \cdot x_1 + 2.796 \cdot x_2 + 0.179 \cdot x_3 + 0.278 \cdot x_4 = 0.297$
	$0.186 \cdot x_1 + 0.275 \cdot x_2 + 2.987 \cdot x_3 + 0.316 \cdot x_4 = 0.529$
	$0,197 \cdot x_1 + 0,219 \cdot x_2 + 0,274 \cdot x_3 + 3,127 \cdot x_4 = 0,869.$