Química orgánica

CUESTIÓNS

Formulación/Nomenclatura

a) Nomea os seguintes compostos e identifica e nomea os grupos funcionais presentes en cada un

a.1) CH₃-COO-CH₂-CH₃ a.2) CH₃-NH₂ a.3) CH₃-CH₂-CHOH-CH₃ a.4) CH₃-CH₂-COOH (A.B.A.U. ord. 19)

Solución:

	Fórmula	Nome	Tipo	Grupo	funcional
a.1)	CH ₃ -COO-CH ₂ -CH ₃	etanoato de etilo	éster	-COO-	acilo
a.2)	CH ₃ -NH ₂	metilamina	amina	-NH₂	amino
a.3)	CH ₃ -CH ₂ -CHOH-CH ₃	butan-2-ol	alcohol	-OH	hidroxilo
a.4)	CH ₃ -CH ₂ -COOH	ácido propanoico	ácido carboxílico	-COOH	carboxilo

a) Escribe a fórmula semidesenvolvida de:

a.1) dimetilamina

Nomea:

a.2) etanal

a.3) ácido 2-metilbutanoico

a.4) CH₃-CH₂-O-CH₂-CH₃

a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃

a.6) CH₃Cl (A.B.A.U. extr. 18)

Solución:

CH₃-NH-CH₃ a.1) Dimetilamina: a.2) Etanal:

 CH_3 - CH_2 -CH-C OH CH_3 a.3) Ácido 2-metilbutanoico:

etoxietano o dietiléter a.4) CH_3 - CH_2 -O- CH_2 - CH_3 : a.5) CH₃-CH(CH₃)-CO-CH₂-CH(CH₃)-CH₃: 2,5-dimetilhexan-3-ona

clorometano a.6) CH₃Cl:

<u>Isomería</u>

a) Xustifica se a seguinte afirmación é verdadeira ou falsa:

O CH₃-CH=CH-CH₃ reacciona con HCl para dar un composto que non presenta isomería óptica.

b) Escribe as fórmulas semidesenvolvidas e nomea os isómeros xeométricos do 2,3-dibromobut-2-eno.

(A.B.A.U. ord. 23)

Solución:

a) Falsa.

O composto CH₃-CH=CH-CH₃ é o 2-buteno, que pode reaccionar con HCl para dar 2-clorobutano (CH₃-CHCl−CH₂-CH₃) seguindo a regra de Markovnikov. Trátase dunha reacción de adición.

$$CH_3\text{-}CH=CH\text{-}CH_3 + HCI \longrightarrow CH_3 - \overset{\ \ \, C}{\overset{\ \ \, \, }{\overset{\ \ \ \, }{\overset{\ \ }{\overset{\ \ \, }}}}}}}}}}}}} \, CH_3 - CH_2 - CH_3$$

O 2-clorobutano presenta isomería óptica porque o carbono 2 é un carbono asimétrico (quiral). Está unido a catro substituíntes diferentes: metilo (CH_3-), hidróxeno (H-), cloro (CI-) e etilo (CH_3-CH_2-). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

$$\begin{array}{cccc} CH_2CH_3 & CH_2CH_3 \\ | & | & \\ CCH_3 & CH_3 \end{array}$$

b) O 2,3-dibromobut-2-eno ten isomería xeométrica porque cada un dos carbonos do dobre enlace están unidos a grupos diferentes (bromo e metilo). Os seus isómeros poden chamarse *cis* e *trans* ou *Z* e *E*.

Br Br Br
$$CH_3$$
 $C = C$ CH_3 CH_3 CH_3 Br CH_3 Br Cis -2,3-dibromobut-2-eno (Z) -2,3-dibromobut-2-eno (E) -2,3-dibromobut-2-eno

2. Nomea os seguintes compostos, razoa cales presentan algún tipo de isomería e noméaa:

CH₂=CH-CH₃ CH₃-CH₂-CHOH-CH₃ CH₃-CH=CH-COOH CH₃-CHCl-CH₃ (A.B.A.U. extr. 20)

Solución:

 $CH_2=CH-CH_3$: prop-1-eno $CH_3-CH_2-CHOH-CH_3$: butan-2-ol

 CH_3 -CH=CH-COOH: ácido but-2-enoico CH_3 -CHCl- CH_3 : 2-cloropropano

OH
O butan-2-ol, CH₃-C-CH₂-CH₃, ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro

grupos distintos: hidróxeno (-H), etilo (- CH_2 - CH_3), hidroxilo (-OH) e metilo (- CH_3). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

Do ácido but-2-enoico existen dous isómeros xeométricos, que se poden chamar cis e trans ou Z e E .

$$CH_3$$
 H $C=C$ CH_3 $COOH$ $Acido (E)-but-2-enoico$ $Acido (z)-but-2-enoico$ $Acido (z)-but-2-enoico$ $Acido (z)-but-2-enoico$

3. a) Nomea os seguintes compostos e xustifica se presentan algún tipo de isomería e de que tipo: CH₃-CHOH-COH CH₂-CH₂-CH₂-CH₃

(A.B.A.U. ord. 20)

Solución:

CH₃-CHOH-COH: 2-hidroxipropanal. O carbono 2 é asimétrico (está unido a catro grupos distintos: hidróxeno (-H), hidroxilo (-OH), metilo (-CH₃) e carbonilo (-CHO), polo que presenta isomería óptica.

Ademais pode ter isómeros de función como CH_3 - CH_2 -COOH: ácido propanoico CH_3 -COO- CH_3 : etanoato de metilo CH_2OH -CH=CHOH: propeno-1,3-diol.

CH₃-CH₂-CH=CH-CH₂-CH₃: hex-3-eno, ten un dobre enlace entre os carbonos 3 e 4, e cada un deles está unido a dous grupos distintos: hidróxeno (-H) e etilo (-CH₂-CH₃). Existen dous isómeros xeométricos, que se poden chamar *cis* e *trans* ou *Z* e *E*.

$$\begin{array}{ccccc} CH_3-CH_2 & H & H & H \\ C=C & C=C \\ H & CH_2-CH_3 & CH_3-CH_2 & CH_2-CH_3 \\ (\textit{E})-Hex-3-eno & (\textit{Z})-Hex-3-eno \\ & \textit{trans-Hex-3-eno} & \textit{cis-Hex-3-eno} \end{array}$$

Ademais pode ter isómeros de cadea como:

$$CH_3$$
 $CH_3 - C - CH = CH_2$
 CH_3
 $CH_3 - C - CH = CH_2$
 CH_3
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$

Tamén presenta isómeros de posición: CH₂=CH-CH₂-CH₂-CH₃ hex-1-eno

- 4. b) Para os compostos:
 - b.1.1) 2-pentanol b.1.2) dietiléter b.1.3) ácido 3-metilbutanoico b.1.4) propanamida:
 - b.1) Escribe as súas fórmulas semidesenvolvidas.
 - b.2) Razoa se algún pode presentar isomería óptica.

(A.B.A.U. ord. 18)

Solución:

b.1.1) 2-Pentanol (pentan-2-ol):
$$\begin{array}{c} H \\ CH_3-\overset{\cdot}{C}-CH_2-CH_2-CH_3 \\ OH \\ b.1.2) \text{ Dietiléter:} \\ CH_3-CH_2-O-CH_2-CH_3 \\ CH_3-CH-CH_2-C \overset{O}{\overset{\cdot}{C}O} \\ OH \\ b.1.4) \text{ Propanamida:} \\ \end{array}$$

b.2) Presenta isomería óptica o pentan-2-ol porque ten un carbono asimétrico. O carbono 2 está unido a catro grupos distintos: metilo (-CH₃), hidróxeno (-H), hidroxilo (-OH) e propilo (-CH₂-CH₂-CH₃).

- 5. a) Escribe a formula semidesenvolvida dos seguintes compostos:
 - a.1) 3-metil-2,3-butanodiol a.2) 5-hepten-2-ona a.3) etilmetiléter
- a.4) etanamida
- b) Indica se o ácido 2-hidroxipropanoico presenta carbono asimétrico e representa os posibles isómeros ópticos.

(A.B.A.U. extr. 17)

Solución:

a.1) 3-Metil-2,3-butanodiol (2-metilbutano-2,3-diol): CH_3 CH_3 CH

a.2) 5-Hepten-2-ona (hept-5-en-2-ona): CH₃-CH=CH-CH₂-CO-CH₃

a.3) Etilmetiléter: CH_3 -O- CH_2 - CH_3 a.4) Etanamida: CH_3 -CO- NH_2

b) O ácido 2-hidroxipropanoico, CH_3 –C–COOH, ten un carbono asimétrico. O carbono 2 está unido a ca-

tro grupos distintos: metilo (-CH $_3$), hidróxeno (-H), hidroxilo (-OH) e carboxilo (-COOH). Os isómeros ópticos son:

6. b) Xustifica cal dos seguintes compostos presenta isomería óptica:

 $\begin{array}{cccc} CH_3CH_2CH_3 & CH_3CH(OH)CH_2CH_3 & BrCH=CHBr \\ BrCH=CHCI & CH_3CH(NH_2)COOH & H_3CH(OH)CH_2CH_2CH_3 \end{array}$

(A.B.A.U. ord. 17)

Solución:

b) A isomería óptica preséntana os compostos que teñen algún carbono asimétrico.

O butan-2-ol, CH_3 – C – CH_2 – CH_3 , ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro

grupos distintos: hidróxeno (-H), etilo (- CH_2 - CH_3), hidroxilo (-OH) e metilo (- CH_3). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

O ácido 2-aminopropanoico, CH₃-C-COOH, ten isomería óptica porque o carbono 2 é asimétrico. Está

unido a catro grupos distintos: hidróxeno (-H), amino $(-NH_2)$, metilo $(-CH_3)$ e carboxilo (-COOH). Ten dous isómeros ópticos.

OH
O pentan-2-ol, $CH_3 - C - CH_2 - CH_2 - CH_3$, ten isomería óptica porque o carbono 2 é asimétrico. Está unido a

catro grupos distintos: hidróxeno(-H), hidroxilo (-OH), propilo (-C H_2 -C H_3 -C H_3) e metilo (-C H_3). Ten dous isómeros ópticos.

7. b) Escribe a fórmula semidesenvolvida e xustifica se algún dos seguintes compostos presenta isomería cis-trans:

b.1) 1,1-dicloroetano

b.2) 1,1-dicloroeteno

b.3) 1,2-dicloroetano

b.4) 1,2-dicloroeteno

(A.B.A.U. extr. 19)

Solución:

b.1) 1,1-Dicloroetano: CHCl₂-CH₃ b.2) 1,1-Dicloroeteno: CCl₂=CH₂ b.3) 1,2-Dicloroetano; CH₂Cl-CH₂Cl b.4) 1,2-Dicloroeteno: CHCl=CHCl

Un composto terá isomería xeométrica (cis-trans), se ten polo menos un dobre enlace no que os grupos unidos a cada carbono do dobre enlace sexan distintos.

O único composto que ten isomería xeométrica é o 1,2-dicloroeteno:

Reaccións

1. Complete as seguintes reaccións nomeando todos os produtos orgánicos presentes nelas, tanto reactivos como produtos, e indique a que tipo de reacción se corresponden:

 $\text{CH}_3\text{-CH}_2\text{-COOH} + \text{CH}_3\text{OH} \rightarrow$

 CH_3 - CH_2 - CH_2 - CH_2 OH $\xrightarrow{K_2Cr_2O_7. H^+}$

(A.B.A.U. extr. 22)

Solución:

 $\text{CH}_3\text{-CH}_2\text{-COO}\text{H} + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-COO-CH}_3 + \text{H}_2\text{O}$

ácido butanoico metanol butanoato de metilo agua

É unha reacción de esterificación, que é un dos casos das reaccións de condensación.

 $\begin{array}{cccc} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{OH} & \xrightarrow{K_2\text{Cr}_2\text{O}_7\text{. H}^+} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2 & \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-COOH} \\ & \text{butan-1-ol} & \text{butanal} & \text{ácido butanoico} \end{array}$

É unha reacción de oxidación. Os alcohois primarios oxídanse primeiro a aldehidos e despois a ácidos carboxílicos.

 Escribe a reacción que sucede cando o 2-metil-1-buteno reacciona con HCl, dando lugar a dous haloxenuros de alquilo. Nomea os compostos obtidos e indica razoadamente se algún deles presenta isomería óptica.

(A.B.A.U. ord. 22)

Solución:

Son reaccións de adición

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \\ CH_3 \end{array} + HCl \rightarrow CH_3 - C - CH_2 - CH_3 \\ Cl \end{array} \qquad \text{(2-cloro-2-metilbutano)}.$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HCl \longrightarrow \begin{array}{c} CH_2CI - CH - CH_2 - CH_3 \\ CH_3 \end{array} \qquad \text{(1-cloro-2-metilbutano)}.$$

O 1-cloro-2-metilbutano-2 ten isomería óptica porque o carbono 2 é asimétrico. Está unido a catro grupos distintos: hidróxeno (-H), etilo (-CH₂-CH₃), clorometilo (-CH₂Cl) e metilo (-CH₃). Ten dous isómeros ópticos que son imaxes no espello, chamados enantiómeros.

3. Completa as seguintes reaccións químicas orgánicas empregando as fórmulas semidesenvolvidas e indique o tipo de reacción ao que pertencen:

(A.B.A.U. extr. 21)

Solución:

 CH_3 - CH_2OH + HBr \rightarrow CH_3 - CH_2Br + H_2O etanol bromuro de hidróxeno 2-bromoetano auga Reacción de substitución.

 $CH_2=CH_2+H_2O \rightarrow CH_3-CH_2OH$ eteno auga etanol Reacción de adición.

 CH_3 - $COOH + CH_3NH_2 \rightarrow CH_3$ -CONH- $CH_3 + H_2O$ ácido etanoico metilamina N-metiletanamida auga

Reacción de condensación.

4. Completa as seguintes reaccións indicando o tipo de reacción e nomeando os produtos que se forman:

Solución:

a) CH_3 -CHOH- $CH_3 \xrightarrow{KMnO_4, H^+} CH_3$ -CO- CH_3

É unha reacción de oxidación. Os alcohois secundarios oxídanse a cetonas. Prodúcese propanona.

b) CH_3 - $CH=CH_2 + Br_2 \rightarrow CH_3$ -CHBr- CH_2Br

É unha reacción de adición. O produto é o 1,2-dibromopropano.

5. Completa as seguintes reaccións, identificando o tipo de reacción e nomeando os compostos orgánicos que se forman:

cos que se forman:

$$CH_3-CH_2-COOH + CH_3-CH_2OH \rightarrow ____ + ___ + CH_4 + CI_2 \rightarrow ___ + ___$$
(A.B.A.U. ord. 20)

Solución:

 CH_3 - CH_2 - $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - CH_2 -COO- CH_2 - $CH_3 + H_2O$ Ácido propanoico Etanol Propanoato de etilo

Reacción de esterificación.

 $\begin{array}{cccc} CH_4 + CI_2 & \rightarrow & CH_3CI + HCI \\ Metano & Clorometano \\ CH_3CI + CI_2 & \rightarrow & CH_2CI_2 + HCI \\ Clorometano & Diclorometano \\ CH_2CI_2 + CI_2 & \rightarrow & CHCI_3 + HCI \\ Diclorometano & CHCI_3 + CI_2 & \rightarrow & CCI_4 + HCI \\ \end{array}$

Triclorometano Tetracloruro de carbono

Reaccións de substitución.

6. b) Completa a seguinte reacción: CH₃-CH₂-CH₂-CH₂-CH₂+ Cl₂ →
 Identifica o tipo de reacción e nomea os compostos orgánicos que participan nela.

(A.B.A.U. ord. 19)

Solución:

b)
$$CH_3$$
- CH_2

É unha reacción de adición.

7. b) O 2-metil-1-buteno reacciona co ácido bromhídrico (HBr) para dar dous haloxenuros de alquilo. Escribe a reacción que ten lugar indicando que tipo de reacción orgánica é, e nomeando os compostos que se producen.

(A.B.A.U. extr. 17)

Solución:

b) Son reaccións de adición

b) son reactions de adicion
$$CH_2 = C - CH_2 - CH_3 + HBr \rightarrow CH_3 - C - CH_2 - CH_3$$

$$CH_3 + HBr \rightarrow CH_3 - C - CH_2 - CH_3$$

$$CH_3 + C - CH_2 - CH_3 + C - CH_2 - CH_3$$

$$CH_3 + C - CH_2 - CH_3 + C - C - CH_3 + C - C - CH_3 + C - C - CH_3 + C$$

$$\begin{array}{c} CH_2 = C - CH_2 - CH_3 \\ CH_3 \end{array} + HBr \longrightarrow \begin{array}{c} CH_2Br - CH - CH_2 - CH_3 \\ CH_3 \end{array} \quad \text{(1-bromo-2-metilbutano)}.$$

 b) Dada a reacción: 2-propanol → propeno + auga, escribe as fórmulas semidesenvolvidas dos compostos orgánicos e identifica o tipo de reacción.

(A.B.A.U. ord. 18)

Solución:

 a) Completa e indica o tipo de reacción que ten lugar, nomeando os compostos orgánicos que participan nelas:

a.1)
$$CH_3$$
- CH = CH - CH_3 + HCI \rightarrow

a.2)
$$CH_3$$
- $COOCH_2$ - CH_3 + H_2O

(A.B.A.U. extr. 18)

Solución:

a.1)
$$CH_3$$
- CH - CH - CH_3 + HCI \rightarrow CH_3 - CH - CH - CH_3

but-2-eno 2- clorobutano

Reacción de adición.

a.2)
$$CH_3$$
- $COOH + CH_3$ - $CH_2OH \rightarrow CH_3$ - COO - CH_2 - $CH_3 + H_2O$

ácido etanoico etanol etanoato de etilo

Reacción de condensación.

Polímeros

1. b) Nomea cada monómero, emparéllao co polímero ao que dá lugar e cita un exemplo dun uso doméstico e/ou industrial de cada un deles.

CH₂=CH₂ CH₂=CHCl policloruro de vinilo poliestireno polietileno

(A.B.A.U. extr. 19)

Solución:

b) Monómeros

CH₂=CH₂: eteno (monómero do polietileno)

CH₂=CHCl: cloroeteno (monómero do policloruro de vinilo)

Exemplos de uso de polímeros:

Policloruro de vinilo: illante cables eléctricos.

Poliestireno: illante térmico.

Polietileno: fabricación de envases.

2. b) Identifica o polímero que ten a seguinte estrutura: ... CH_2 - $(CH_2)_n$ - CH_2 ..., indicando ademais o nome e a fórmula do monómero de partida.

(A.B.A.U. ord. 17)

Solución:

b) O polímero é o polietileno.

O monómero de partida é o eteno CH₂=CH₂ tamén chamado etileno.

Actualizado: 08/07/23

Cuestións e problemas das <u>probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice ou OpenOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM)

Consultouse o chat de BING e y empregáronse algunhas respostas nas cuestións.

Sumario

QUÍMICA ORGÁNICA	
CUESTIÓNS	1
Formulación/Nomenclatura	1
	1
	5
	8
Índice de probas A.B.A.U.	
1. (ord.)	4, 8
2. (extr.)	3, 7
,	
1. (ord.)	3, 7
	5, 8
	, , , , , , , , , , , , , , , , , , ,
	2, 6
	2
,	
	6