3-10 Traversability

(Part I: Eulerian Graphs)

Hengfeng Wei

hfwei@nju.edu.cn

December 03, 2018

Leonhard Euler (1707 – 1783)

Leonhard Euler (1707 – 1783)

Graph Theory Topology

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

" \Leftarrow " (Carl Hierholzer 1873);

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"←" (Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

$$v = u$$

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

$$v = u \implies T = u \sim u$$

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step:
$$m = k + 1$$

$$v = u \implies T = u \sim u$$

$$H = G - E(T) = \bigcup H_i$$

$$H = G - E(T) = \bigcup H_i$$

$$H = G - E(T) = \bigcup H_i$$

(I) $\forall v \in H : \deg(v)$ is even

(II)
$$\forall i : E(H_i) < m$$

$$H = G - E(T) = \bigcup H_i$$

- (I) $\forall v \in H : \deg(v)$ is even
- (II) $\forall i : E(H_i) < m$

By I.H., each H_i has an Eulerian trail T_i .

$$H = G - E(T) = \bigcup H_i$$

- (I) $\forall v \in H : \deg(v)$ is even
- (II) $\forall i : E(H_i) < m$

By I.H., each H_i has an Eulerian trail T_i .

$$\forall i: V(H_i) \cap V(T) \neq \emptyset$$

$$H = G - E(T) = \bigcup H_i$$

(II)
$$\forall i : E(H_i) < m$$

By I.H., each H_i has an Eulerian trail T_i .

$$\forall i: V(H_i) \cap V(T) \neq \emptyset$$

Combine each T_i with T to get an Eulerian circuit of G.

1: **procedure** HIERHOLZER(G)

1: **procedure** FLEURY(G, w, s)

Office 302

Mailbox: H016

hfwei@nju.edu.cn