Компьютерное зрение

Лекция 2. Сверточные нейронные сети. Базовые блоки, принципы и приложения

18.06.2020 Руслан Алиев

ImageNet Challenge

Сверточные нейронные сети (CNNs)

Мотивация

- изображения представляют собой объекты с большим количеством признаков
- изображение в формате RGB размера 640х480 будет иметь ~1млн признаков
- число параметров полносвязной сети с внутренним слоем из 10 нейронов равно ~10млн
- большое число параметров модели существенно затрудняет процесс обучения

Операция свертки

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

F - исходное изображение

H - фильтр размера kxk

G - результат на выходе свертки

і, ј - координаты пикселя в районе которого применяется операция свертки

	0	0	1	1	1
Input =	0	0	1	1	0
	0	1	1	0	0

0	0	1
0	0	1
0	1	1

1	0	1
0	1	0
1	0	1

dot

Filter =	0	1	0
riitei –	1	0	1

Filter =
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

0	0	1
0	0	1
0	1	1

dot

1	0	1
0	1	0
1	0	1

Filter = 0 1 0 1 0 1

Как посчитать свертку

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0 _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Как посчитать свертку

- 1. Имея входное изображение, наложить на него маленькое окно (ядро свертки). Найти произведение ядра и участка изображения которое накрыло ядро
- 2. Сдвинуть окно и повторить процедуру
- 3. Повторить шаги 1 и 2 для всех остальных выходных каналов уже с другими ядрами

Объемная свертка (Volume Convolution, Conv2d)

• Картинка имеет 3 канала, т.е. это 3d матрица

Объемная свертка (Volume Convolution, Conv2d)

Объемная свертка (Volume Convolution, Conv2d)

Как применить свертку?

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

308

Bias = 1

(Jutp	ut	

0.....

Сверточный слой

$$V(x,y,t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} K^{t}(i-x+\delta, j-y+\delta, s) \cdot U(i,j,s)$$

Что делает свертка

Двигать окно по изображению - что это нам дает?

- 1. Local connectivity свертка как способ извлекать локальные признаки
- 2. Weight (Parameter) sharing свертка как способ уменьшить сложность модели

Свертка как детектор признаков

Local connectivity

Fully Connected: 200x200 image, 40K hidden units, ~2B parameters

Locally Connected: 200x200 image, filter size 10x10, 4M parameters!

Weight sharing

Weight sharing

α β γ δ	applied to	A B C D E F G H J	yields	P	
α β γ δ		A B C D E F G H J		Q	
α β γ δ		A B C D E F G H J		R	
α β ν δ		A B C		S	

G H J

$$\alpha * A + \beta * B + y * D + \delta * E + b = P$$

$$\alpha * B + \beta * C + y * E + \delta * F + b = Q$$

$$\alpha * D + \beta * E + y * G + \delta * H + b = R$$

$$\alpha * E + \beta * F + y * H + \delta * J + b = S$$

Weight sharing

α	β	0	γ	δ	0	0	0	0		Α	
0	α	β	0	у	δ	0	0	0	*	В	
0	0	0	α	β	0	У	δ	0		С	
0	0	0	0	α	β	0	у	δ		D	
										E	
A	В	C	D	E	F	G	Н	J		F	
										G	
										Н	
										J	

b		α A+ β B+0C+ γ D+ δ E+0F+0G+0H+0J+ b
b	=	$0A+\alpha B+\beta C+0D+\gamma E+\delta F+0G+0H+0J+b$
b		0A+0B+0C+ <mark>αD+βE</mark> +0F +yG+δH +0J +b
b		0A+0B+0C+0D+ αE+βF +0G +γH+δJ+b

$\alpha A + \beta B + \gamma D + \delta E + b$		P
$\alpha B + \beta C + \gamma E + \delta F + b$	=	Q
$\alpha D + \beta E + \gamma G + \delta H + b$		R
$\alpha E + \beta F + \gamma H + \delta J + b$		S

Как применить свертку

Вопросы на которые мы еще не ответили включают:

- 1. Размер изображения на выходе меньше чем на входе и мы не знаем как хорошо обрабатывать границы
- 2. Накладываем ядро свертки на каждый участок изображения или можем двигаться с интервалом?

Отступы (padding)

Отступы (padding)

- чтобы размер на выходе совпадал с размером на входе, размер исходного изображения увеличивают, заполняя пространство по периметру например определенными значениями
- zero padding
- replication padding
- reflection padding

Шаг (Stride)

Шаг (Stride)

- шаг может быть разным по оси х и у, но в основном используют одинаковый
- определяет смещение фильтра на очередной итерации
- при увеличении шага уменьшается размер выхода
- шаг > 1 в начальных слоях
- шаг > 1 увеличивает receptive field (далее)

Область видимости фильтра (reception field)

- область видимости область исходного изображения от которой зависит значение пикселя на выходе сверточного слоя
- область видимости отдельного пикселя на выходе сверточного слоя возрастает с увеличением глубины сети

Область видимости фильтра (reception field)

Область видимости фильтра (reception field)

Pooling Layer

Pooling Layer

Тензор признаков на выходе свертки говорит нам о:

- 1. присутствует ли признак на изображении (большая активация)
- 2. если да, то где примерно был найден на изображении

Мы можем сохранить оба свойства достаточно хорошо с помощью операции pooling (например max или average)

Отступы (padding)

- при последовательном применении фильтров размер выхода будет уменьшаться с каждым шагом на размер фильтра
- при этом теряется информация о краях изображения

Pooling Layer

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling Layer

- pooling слой вствляется после активаций сверточного слоя
- уменьшает пространственный размер данных
- как результат уменьшается число параметров сети
- необучаемый слой не содержит параметров

Расширение (dilation)

- увеличение размера фильтра (области видимости) без увеличения числа параметров (весов)
- веса фильтра "раздвигаются" в пространстве
- фильтр имеет разреженную структуру
- свободные позиции фильтра заполняются нулями
- число свободных позиций является гипер-параметром
- свертки с расширением именуются atrous (dilated) convolutions

Расширение (dilation)

Математика

- Размер картинки (cin, h, w)
- Размер фильтра (cout, cin, k1, k2)
 - Обычно k1=k2=f=нечетному числу, например 3, 5, 7
- Допустим h = n, w = n тогда размер картинки на выходе (cout, m, m)

$$m = \left\lfloor \frac{n + 2p - f}{S} \right\rfloor + 1$$

• где S - размер шага, р значение паддинга с одной стороны

Сверточный слой (Convolution layer)

- Содержит набор из cout фильтров одинакового размера (cin, f, f)
- Размер входа (b, cin, h, w)
- Размер выхода (b, cout, h~, w~)

где:

- o b размер батча
- o cin число каналов на входе
- o cout число каналов на выходе
- На выходе применяется нелинейная активация

LeNet (1998)

Сверточные нейронные сети

- в нейронных сетях для обработки изображений полносвязные слои заменяют на сверточные
- полносвязные слои (+dropout) могут использоваться в выходном слое
- сверточный блок обычно имеет следующий вид: Conv2d -> нормализация -> нелинейная активация (н: ReLU) -> Pooling

Invariance

- CNNs обладают интересным свойством translation (shift) invariance, т.е.
 если мы сдвинем объект на фото, сеть все равно можно распознать
 его, так как свертка операция локальная
- Pooling layers тоже добавляют свойство инвариантности, но это invariance to small perturbations, т.е. если появляется какой-то шум после активаций, pooling позволяет снизить влияние шума

Invariance vs Equivariance

• Часто это эти понятия путают

Shift-equivariance and invariance A function \mathcal{F} is shift-equivariant if shifting the input equally shifts the output, meaning shifting and feature extraction are commutable.

$$Shift_{\Delta h, \Delta w}(\widetilde{\mathcal{F}}(X)) = \widetilde{\mathcal{F}}(Shift_{\Delta h, \Delta w}(X)) \quad \forall \ (\Delta h, \Delta w)$$
(1)

A representation is shift-invariant if shifting the input results in an *identical* representation.

$$\widetilde{\mathcal{F}}(X) = \widetilde{\mathcal{F}}(\mathrm{Shift}_{\Delta h, \Delta w}(X)) \quad \forall \ (\Delta h, \Delta w)$$
 (2)

Нормализация

Нормализация

- чаще всего дает прирост как в качестве, так и в скорости сходимости процесса обучения сети
- повышает обобщающую способность сети

Batch normalization

- приводит значения активаций на выходе слоя к нулевому среднему и единичной дисперсии
- во время обучения среднее и дисперсия оцениваются для каждого батча
- далее применяется афинное преобразование (optional)
- самый популярный вариант

Batch normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
    \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                           // mini-batch mean
    \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                    // mini-batch variance
     \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                        // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                // scale and shift
```

Batch normalization (режимы работы)

- train or eval mode
 - во время обучения используются текущие статистики батча
 - во время тестирования (inference) используются бегущие средние статистик, собранные во время обучения
- affine = True (default) or affine = False
 - o применять ли scale и shift после нормализации или нет

Batch normalization (минусы)

- в случае маленького размера батча, могут появиться коррелированные по контенту изображения или зависимости между картинками, что плохо
- требуется большой размер матча, обычно >= 16
- такой размер батча иногда сложно использовать, так как потребление памяти очень сильно растет с увеличением модели
- возможное решение synchronous batch norm
 - о если у вас много gpu
 - о статистики батча собираются со всех видеокарт
- еще решение убрать зависимость от размера батча, использовать другую нормализацию

Другие известные нормализации

В этих нормализациях зависимость от размера батча исчезает, делаем для каждой картинки по-отдельности

- Layer normalization
 - среднее и дисперсия считаются по всем каналам по всем пикселям Local response normalization
- Local response normalization
 - о среднее и дисперсия считаются по группам каналов для каждого пикселя
 - о практически потеряла популярность
- Group normalization
 - о среднее и дисперсия считаются по группам каналов по всем пикселям

Другие известные нормализации

В этих нормализациях зависимость от размера батча исчезает, делаем для каждой картинки по-отдельности

- Layer normalization
 - среднее и дисперсия считаются по всем каналам по всем пикселям Local response normalization
- Local response normalization
 - о среднее и дисперсия считаются по группам каналов для каждого пикселя
 - о практически потеряла популярность
- Group normalization
 - о среднее и дисперсия считаются по группам каналов по всем пикселям

Другие известные нормализации

Dropout

Dropout

- в процессе обучения случайным образом выбранная часть нейронов (каналов в случае CNN) слоя зануляется
- доля зануляемых входов является гипер-параметром р
- на этапе обучения значения выходов делится на р
- на этапе тестирования dropout не используется
- является способом регуляризации, т.е. позволяет модели быть более устойчивой к переобучению

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Recap

- в отличие от полносвязных, сверточные сети содержат меньше параметров, как результат менее склонны к переобучению
- основные параметры свертки: размер фильтра, receptive field
- pooling layer и stride > 1 помогает увеличить receptive field
- основной операцией в процессе работы сверточной нейронной сети является перемножение матриц