Part F: Miscellaneous

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2023

F Outline

Multiplicative effects

2 More on standard errors

Final words

Multiplicative effects

- Readings: Chen and Roth (forthcoming)
- For many treatments and outcomes $Y_i \ge 0$ it's more natural to think that the effects are multiplicative, rather than additive
 - ▶ E.g. D_i = regional trade agreement between countries, Y_i = import value
 - ▶ E.g. $D_i = (\log)$ price, $Y_i = \text{demand}$
- How should we deal with this case?
 - Models? Estimands? Estimators?
- Common practice: use $\log Y_i$ as outcome, $\log Y_i = \beta' X_i + \varepsilon_i$
 - Assuming $\mathbb{E}\left[\varepsilon_i \mid X_i\right] = 0$, OLS in logs is consistent for (constant effect) β

Issue of zeros

- If $Pr(Y_i = 0) > 0$, $\log Y_i$ is not well-defined
- Common to use log-like transformations: $\log(1 + Y_i)$ or inverse hyperbolic sine $\operatorname{arcsinh}(Y_i) \equiv \log\left(Y_i + \sqrt{1 + Y_i^2}\right)$

• With and without zeros, are these good ideas? Are there other options?

Modeling outcome in levels

Another way to model multiplicative effects:

$$Y_i = \exp(\beta' X_i) U_i$$

- With no zeros and assuming $\mathbb{E}[\log U_i \mid X_i] = 0$, what would you do?
- Assuming $\mathbb{E}[U_i \mid X_i] = 1$, this implies

$$\mathbb{E}\left[Y_i\mid X_i\right] = \exp\left(\beta'X_i\right)$$

- ▶ Is this different from $\mathbb{E}[\log U_i \mid X_i] = 0$?
- ▶ Is this different from $Y_i = \exp(\beta' X_i) + \varepsilon_i$, $\mathbb{E}[\varepsilon_i \mid X_i] = 0$?

Modeling outcome in levels

Another way to model multiplicative effects:

$$Y_i = \exp(\beta' X_i) U_i$$

- With no zeros and assuming $\mathbb{E}[\log U_i \mid X_i] = 0$, what would you do?
- Assuming $\mathbb{E}[U_i \mid X_i] = 1$, this implies

$$\mathbb{E}\left[Y_i\mid X_i\right] = \exp\left(\beta'X_i\right)$$

- ▶ Is this different from $\mathbb{E}[\log U_i \mid X_i] = 0$? Yes! (Santos Silva and Tenreyro 2006)
- ▶ Is this different from $Y_i = \exp(\beta' X_i) + \varepsilon_i$, $\mathbb{E}[\varepsilon_i \mid X_i] = 0$?

Modeling outcome in levels

Another way to model multiplicative effects:

$$Y_i = \exp(\beta' X_i) U_i$$

- With no zeros and assuming $\mathbb{E}[\log U_i \mid X_i] = 0$, what would you do?
- Assuming $\mathbb{E}\left[U_i \mid X_i\right] = 1$, this implies

$$\mathbb{E}\left[Y_i \mid X_i\right] = \exp\left(\beta' X_i\right)$$

- ▶ Is this different from $\mathbb{E}[\log U_i \mid X_i] = 0$? Yes! (Santos Silva and Tenreyro 2006)
- ▶ Is this different from $Y_i = \exp(\beta' X_i) + \varepsilon_i$, $\mathbb{E}[\varepsilon_i \mid X_i] = 0$? No!

Estimating the exponential model (2)

How would we estimate the model $\mathbb{E}[Y_i \mid X_i] = \mu(X_i, \beta) \equiv \exp(\beta' X_i)$?

Nonlinear least squares (NLLS):

$$\hat{\beta}_{NLLS} = \arg\min_{b} \sum_{i} (Y_i - \exp(b'X_i))^2$$
FOC:
$$0 = \sum_{i} (Y_i - \exp(\hat{\beta}'_{NLLS}X_i)) \cdot \exp(\hat{\beta}'_{NLLS}X_i) X_i$$

- ▶ Consistent when $\mathbb{E}[Y_i \mid X_i] = \exp(\beta' X_i)$; efficient when $Var[Y_i \mid X_i] = \text{const}$
- ▶ E.g. because this is MLE assuming $Y_i \mid X_i \sim \mathcal{N}(\exp(\beta'X_i), \sigma^2)$
- ▶ In practice, $\operatorname{Var}\left[Y_i \mid X_i\right]$ increases with $\mathbb{E}\left[Y_i \mid X_i\right] \Longrightarrow \mathsf{NLLS}$ is very inefficient

Estimating the exponential model (3)

• Poisson regression: originates as MLE for count data, $Y_i \in \{0, 1, 2, ...\}$:

$$Y_i \mid X_i \sim \mathsf{Poisson}(\mu(X_i, \beta)),$$
 i.e. $\mathit{Pr}(Y_i = k \mid X_i) = \frac{\mu(X_i, \beta)^k \exp{(-\mu(X_i, \beta))}}{k!}$

- ▶ Log-likelihood: $\mathcal{L} = \sum_{i} (Y_i \cdot \beta' X_i \exp(\beta' X_i)) + \text{const}$
- FOC: $\sum_{i} \left(Y_{i} \exp \left(\hat{\beta} X_{i} \right) \right) X_{i} = 0$
- But this $\hat{\beta}_{PPML}$ is well-defined for any data $Y_i \geq 0$ Poisson pseudo-maximum likelihood (PPML) estimator
 - ▶ Consistency only requires $\mathbb{E}[Y_i \mid X_i] = \exp(\beta' X_i)$
 - ► Efficient if $\operatorname{Var}[Y_i \mid X_i] = \sigma^2 \mathbb{E}[Y_i \mid X_i]$ (not limited to "equi-dispersion," $\sigma^2 = 1$, as under actual Poisson model)
- There is also Gamma-PML: solves $\sum_i \left(\frac{Y_i \exp(\hat{\beta} X_i)}{\exp(\hat{\beta} X_i)} \right) X_i = 0$

Application

Santos Silva and Tenreyro (2006) estimate the gravity equation of international trade across country pairs, assuming:

$$\mathbb{E}\left[\mathsf{Exports}_{ij}\right] = \exp\left(\beta' X_{ij} + \alpha_i + \gamma_j\right)$$

Estimator: Dependent variable:		OLS ln $(1 + T_{ij})$	Tobit $\ln (a + T_{ij})$	$NLS \\ T_{ij}$	$\begin{array}{l} \text{PPML} \\ T_{ij} > 0 \end{array}$	$\begin{array}{c} \text{PPML} \\ T_{ij} \end{array}$
Log distance	-1.347**	-1.332**	-1.272**	-0.582**	-0.770**	-0.750**
Contiguity dummy	(0.031) 0.174 (0.130)	(0.036) -0.399* (0.189)	(0.029) -0.253 (0.135)	(0.088) 0.458** (0.121)	(0.042) 0.352** (0.090)	(0.041) 0.370** (0.091)
Common-language dummy	0.406** (0.068)	0.550**	0.485**	0.926**	0.418**	0.383**
Colonial-tie dummy	0.666**	0.693**	0.650**	-0.736**	0.038	0.079
Free-trade agreement dummy	(0.070) 0.310**	(0.067) 0.174	(0.059) 0.137**	(0.178) 1.017**	(0.134) 0.374**	(0.134) 0.376**
Fixed effects	(0.098) Yes	(0.138) Yes	(0.098) Yes	(0.170) Yes	(0.076) Yes	(0.077) Yes
Observations	9613	18360	18360	18360	9613	18360
RESET test p-values	0.000	0.000	0.000	0.000	0.564	0.112

(Santos Silva and Tenreyro 2006, Fig. 5)

A causal interpretation

- We now have several *models* + *estimators*:
 - $\blacktriangleright \ \mathbb{E}\left[\log Y_i \mid X_i\right] = \beta' X_i \quad \text{or} \quad \mathbb{E}\left[\log \left(1 + Y_i\right) \mid X_i\right] = \beta' X_i \quad + \mathsf{OLS}$
 - ightharpoons $\mathbb{E}\left[Y_i \mid X_i\right] = \exp\left(\beta' X_i\right)$ + NLLS, PPML, Gamma-PML
- But for causal questions all of this is a wrong starting point
 - Potential outcomes is our model!
 - ▶ What are the estimands of different estimators? And what do we want?
 - ightharpoonup Assume for now random assignment of treatment D_i

Case without zeros

- OLS of $\log Y_i$ on D_i : $\tau = \mathbb{E} [\log Y_i(1) \log Y_i(0)]$
- Poisson of Y_i on D_i : $\mathbb{E}[Y_i(0)] = \exp(\beta_0)$, $\mathbb{E}[Y_i(1)] = \exp(\beta_0 + \tau) \Longrightarrow$

$$\tau = \log \mathbb{E}\left[Y_i(1)\right] - \log \mathbb{E}\left[Y_i(0)\right]; \qquad \exp\left(\tau\right) - 1 = \frac{\mathbb{E}\left[Y_i(1) - Y_i(0)\right]}{\mathbb{E}\left[Y_i(0)\right]}$$

- What are the differences? (Cf. Chen and Roth, forthcoming)
- Poisson identifies the ATE in levels, rescaled by the control mean
 - ▶ The effect may be dominated by the right tail of $Y_i(0)$
- That may be what the policymaker cares about
- A policymaker who cares about inequality or decreasing returns may be maximizing $\mathbb{E}\left[\mathcal{U}(Y_i)\right]$ for concave social welfare function $\mathcal{U}(\cdot)$
 - If $\mathcal{U}(Y_i) = \log Y_i$, regression in logs tells you whether the program was effective

Case with zeros

- Additional issue with zero: there are two types of responses
 - **Extensive margin**: $Pr(Y_i(1) = 0) Pr(Y_i(0) = 0)$
 - ► Intensive margin: $\mathbb{E}[Y_i(1) Y_i(0) \mid Y_i(0) > 0, Y_i(1) > 0]$
- Log-like transformations are very dependent on measurement units of Y_i (Chen and Roth, forthcoming):
 - ▶ If extensive margin $\neq 0$, by rescaling Y_i any real number can become the estimand!
- Pros and cons of other methods depend on the goal
- Case 1: you don't care about separating extensive and intensive margins
 - ▶ E.g. $Y_i = \#$ of publications in a year: 0 has no special meaning
 - ▶ PPML still yields $\mathbb{E}[Y_i(1) Y_i(0)] / \mathbb{E}[Y_i(0)]$, a mix of the two margins

Case with zeros (2)

- Case 2: you want to isolate the two margins
 - ▶ E.g. $Y_i = \#$ of hours worked per week; extensive margin = non-employment
 - ▶ For extensive margin, can regress $\mathbf{1}[Y_i > 0]$ on D_i
 - Intensive margin is not point identified because of selection: can't just drop zeros
 - ★ But "Lee bounds" are available (Lee 2009, Semenova 2023)
- Case 3: you can take a stand on how to combine the two margins: e.g.

$$\mathcal{U}(Y_i) = \begin{cases} \log Y_i, & Y_i > 0 \\ -c, & Y_i = 0 \end{cases}$$

▶ Then give up on scale invariance and regress $\mathcal{U}(Y_i)$ on D_i

PPML with fixed effects

- We mentioned in part C1 that most nonlinear models with fixed effects suffer from an incidental parameters problem
 - PPML is quite special
- Wooldridge (1999) considers a short panel with $\mathbb{E}\left[Y_{it}\right] = \exp\left(\alpha_i + \beta' X_{it}\right)$
 - PPML is consistent for β
- Fernandez-Val and Weidner (2016) consider a long panel $(N, T \to \infty)$ with two-way fixed effects: $\mathbb{E}[Y_{it}] = \exp(\alpha_i + \gamma_t + \beta' X_{it})$
 - ▶ An equivalent setting: gravity model for Y_{ij}
 - ▶ Various estimators are consistent (because many observations per FE) but PPML doesn't suffer from bias of order $O_p(1/N+1/T)$
- Correia, Guimaraes, Zylkin (2020): fast implementation (in Stata) with multi-dimensional fixed effects

PPML diff-in-diff

- Wooldridge (2023) extends DiD imputation to the multiplicative model with staggered adoption
- Assume multiplicative parallel trends at the cohort level:

$$\mathbb{E}\left[Y_{it}(0) \mid E_i = e\right] = \exp\left(\alpha_t + \beta_e\right)$$

• Use untreated data to estimate α_t and β_e by TWFE PPML, then estimate CATT (in levels)

$$CATT_{et} = \bar{Y}_{t|E_i=e} - \exp\left(\hat{\alpha}_t + \hat{\beta}_e\right)$$

- As in Wooldridge (2021), can implement in a single step: PPML regression on TWFE and dummies for each treated cohort-period
 - ▶ Coefficients are interpreted as $\log \mathbb{E}\left[Y_{it}(1) \mid E_i = e\right] \log \mathbb{E}\left[Y_{it}(0) \mid E_i = e\right]$
 - ▶ Can convert ATT as % of untreated mean or ATT in levels

Outline

Multiplicative effects

2 More on standard errors

Final words

More on standard errors

- We have previously covered:
 - Heteroskedasticity-robust (Eicker-Huber-White) SE
 - Cluster-robust (clustered) SE
 - Spatially-clustered (Conley) SE
 - Exposure-robust (shift-share) SE
 - Randomization inference
- Still not covered:
 - Multi-way clustering
 - ▶ At what level to cluster? [See MacKinnon, Nielsen, Webb (2023)]
 - ▶ The case of few clusters [See Cameron and Miller (2014), Imbens and Kolesar (2016), and MacKinnon, Nielsen, Webb (2023)]
 - ▶ Bootstrap, wild bootstrap, Bayesian bootstrap, ... [Too big of a topic]

Multi-way clustering

- Consider OLS estimation of $Y_i = \beta' X_i + \varepsilon_i$ (extends naturally to GMM)
 - ▶ Assume each unit belongs to group $g(i) \in \{1, ..., G\}$
 - ▶ And each unit belongs to (non-nested) group $h(i) \in \{1, ..., H\}$
- Examples:
 - ▶ Workers belong to state g(i) and industry h(i)
 - ▶ Bilateral trade flow corresponds to exporter g(i) and importer h(i)
- Two-way (a.k.a. double) clustering assumption (cf. Cameron, Gelbach, Miller 2011):

$$\mathbb{E}\left[X_i\varepsilon_i\varepsilon_jX_j'\right]=0\quad \text{unless } g(i)=g(j) \text{ or } h(i)=h(j), \text{ or both }$$

Allows correlation between unit pairs that share at least one cluster

Multi-way clustering (2)

• Variance estimator: for $G, H \rightarrow \infty$,

$$\widehat{Var}(\hat{\beta}) = (X'X)^{-1} \Omega (X'X)^{-1}, \quad \Omega = \sum_{i,i=1}^{N} X_i \hat{\varepsilon}_i \hat{\varepsilon}_j X'_j \cdot \mathbf{1} \left[g(i) = g(j) \text{ or } h(i) = h(j) \right]$$

• Warning #1: do not confuse it with one-way clustering by (g(i), h(i)) pair:

$$\Omega = \sum_{i,j=1}^{N} X_{i} \hat{\varepsilon}_{i} \hat{\varepsilon}_{j} X'_{j} \cdot \mathbf{1} \left[g(i) = g(j) \text{ and } h(i) = h(j) \right]$$

- \blacktriangleright E.g. two-way clustering by state and industry \ne clustering by state-industry
- Warning #2: if two-way clustering matters, is it sufficient?
 - ► E.g. in a long panel you may double-cluster by unit and period if there may be random aggregate shocks in each period
 - ▶ But if so, could aggregate shocks be serially correlated? That would induce correlations across different states and adjacent years

Outline

Multiplicative effects

More on standard errors

3 Final words

- 1. Motivate the treatment variable
 - Use a formal or informal model (causal or structural), never identification concerns
 - Goal: to avoid unmodeled spillovers, have relatively homogeneous effects (for external validity), more useful estimand
 - Unit of analysis?
 - Autor, Dorn, Hanson (2013): import competition by region rather than industry, to capture spillovers
 - Binary or continuous treatment? In levels or logs? Rescaled by something?
 - ▶ Broda and Parker (2014): receiving stimulus payment as a dummy or \$ amount?
 - ▶ Autor et al. (2013): import competition growth by industry measured as...

$$\frac{\textit{Imports}_t - \textit{Imports}_{t-1}}{\textit{Empl}_{t-1}} \quad \text{or } \Delta \frac{\textit{Imports}_t}{\textit{Empl}_t} \quad \text{or } \Delta \log \textit{Imports}_t$$

2. Think and talk about the error term/potential outcomes

Exogeneity/endogeneity don't mean anything without specifying them

Contextual knowledge helps: what else affects the outcome

• Theory helps: e.g. demand and supply

3. Don't confuse the model (setting + assumptions), estimated, and estimator

- For causal questions, potential outcomes or a DAG is the model not the regression you run
- Be clear about the estimand, especially when spillovers are relevant

 Questionable practice: discussing threats to identification without stating the identification assumptions (and the estimand)

- 4. Distinguish natural and quasi experiments
 - Natural experiments (or design-based identification strategies) are "serendipitous randomized trials" (DiNardo 2008)
 - You can describe an experiment that your treatment or instrument approximates, with many randomly determined shocks
 - Don't fake it: e.g. the RD cutoff is not randomized
 - Quasi-experiments (or model-based identification strategies):
 - You can describe a treatment and control group.
 - ► They are imbalanced (or small) but you'll still cautiously compare them in some way: e.g. on trends but not on levels in a DiD
 - Neither: One big shock, with no clear treatment and control group

Thanks!

If you suspect a typo or mistake, send me an email