вариант	факултетен номер	група	курс	специалност
1				СИ
Име:				

- 1. За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че всеки елемент на A е и подмножество на A.
- **2.** Нека $S = \{1, 2, \dots, n\}$ и R е релация над S, която е рефлексивна, симетрична и антисиметрична. Докажете, че има единствена релация с това свойство и намерете тази релация.
- 3. Нека \unlhd е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \leq (b, B) \iff A \cup \{a, b\} \subseteq B.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \leq . Определете дали е частична наредба или релация на еквивалентност.

- 4. Намерете общото решение на рекурентната зависимост:
 - $a_{n+3} = 11a_{n+2} 35a_{n+1} + 25a_n.$

вариант	факултетен номер	група	курс	специалност
1				СИ
Име:				

- 1. За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че всеки елемент на A е и подмножество на A.
- **2.** Нека $S = \{1, 2, \dots, n\}$ и R е релация над S, която е рефлексивна, симетрична и антисиметрична. Докажете, че има единствена релация с това свойство и намерете тази релация.
- 3. Нека \unlhd е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \leq (b, B) \iff A \cup \{a, b\} \subseteq B.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \leq . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 11a_{n+2} - 35a_{n+1} + 25a_n.$$

вариант	факултетен номер	група	курс	специалност
1				СИ
Име:				

- 1. За всяко $n\in\mathbb{N},$ дайте пример за множество A с n елемента такова, че всеки елемент на A е и подмножество на A.
- **2.** Нека $S=\{1,2,\dots,n\}$ и R е релация над S, която е рефлексивна, симетрична и антисиметрична. Докажете, че има единствена релация с това свойство и намерете тази релация.
- 3. Нека \unlhd е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \leq (b, B) \iff A \cup \{a, b\} \subseteq B.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \leq . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 11a_{n+2} - 35a_{n+1} + 25a_n.$$

вариант	факултетен номер	група	курс	специалност
1				СИ
Име:				

- 1. За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че всеки елемент на A е и подмножество на A.
- **2.** Нека $S=\{1,2,\dots,n\}$ и R е релация над S, която е рефлексивна, симетрична и антисиметрична. Докажете, че има единствена релация с това свойство и намерете тази релация.
- **3.** Нека \unlhd е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \leq (b, B) \iff A \cup \{a, b\} \subseteq B.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \leq . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 11a_{n+2} - 35a_{n+1} + 25a_n.$$

вариант	факултетен номер	група	курс	специалност
2				СИ
Име:				

- 1. За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че от всеки два различни елемена на A, единият е елемент на другия.
- **2.** Нека $S=\{1,2,\ldots,n\}$. Нека R е релация над S, която е симетрична и антисиметрична и за никое $k\in S$ не е изпълненто, че kRk (т.е. R е иррефлексивна). Докажете, че има единствена релация с това свойство и намерете тази релация.
- **3.** Нека \sim е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \sim (b, B) \iff A \setminus B \subseteq \{a, b\}.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \sim . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 13a_{n+2} - 48a_{n+1} + 36a_n.$$

вариант	факултетен номер	група	курс	специалност
2				СИ
Име:				

- **1.** За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че от всеки два различни елемена на A, единият е елемент на другия.
- **2.** Нека $S=\{1,2,\ldots,n\}$. Нека R е релация над S, която е симетрична и антисиметрична и за никое $k\in S$ не е изпълненто, че kRk (т.е. R е иррефлексивна). Докажете, че има единствена релация с това свойство и намерете тази релация.
- **3.** Нека \sim е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \sim (b, B) \iff A \setminus B \subseteq \{a, b\}.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \sim . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 13a_{n+2} - 48a_{n+1} + 36a_n.$$

вариант	факултетен номер	група	курс	специалност
2				СИ
Име:				

- 1. За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че от всеки два различни елемена на A, единият е елемент на другия.
- **2.** Нека $S=\{1,2,\dots,n\}$. Нека R е релация над S, която е симетрична и антисиметрична и за никое $k\in S$ не е изпълненто, че kRk (т.е. R е иррефлексивна). Докажете, че има единствена релация с това свойство и намерете тази релация.
- 3. Нека \sim е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a, A) \sim (b, B) \iff A \setminus B \subseteq \{a, b\}.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \sim . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 13a_{n+2} - 48a_{n+1} + 36a_n.$$

вариант	факултетен номер	група	курс	специалност
2				СИ
Име:		•		

- 1. За всяко $n \in \mathbb{N}$, дайте пример за множество A с n елемента такова, че от всеки два различни елемена на A, единият е елемент на другия.
- **2.** Нека $S=\{1,2,\ldots,n\}$. Нека R е релация над S, която е симетрична и антисиметрична и за никое $k\in S$ не е изпълненто, че kRk (т.е. R е иррефлексивна). Докажете, че има единствена релация с това свойство и намерете тази релация.
- **3.** Нека \sim е релацията в $\mathbb{N} \times \mathcal{P}(\mathbb{N})$, определена чрез:

$$(a,A) \sim (b,B) \iff A \setminus B \subseteq \{a,b\}.$$

Определете кои от свойствата рефлексивност, симетричност, антисиметричност и транзитивност притежава релацията \sim . Определете дали е частична наредба или релация на еквивалентност.

4. Намерете общото решение на рекурентната зависимост:

$$a_{n+3} = 13a_{n+2} - 48a_{n+1} + 36a_n.$$