Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

Лабораторная работа №4 на тему:

«Мультивибратор на основе операционного усилителя с интегрирующей RC - цепью»

Вариант 4

Преподаватель:

Ковынев Н.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-44

Репозиторий работы: https://github.com/ledibonibell/Module04-ECE

Москва 2024

Цель работы

Изучение принципов построения схем мультивибраторов на основу ОУ, исследование режимов работы.

Входные данные

Задание 1:

Вариант	R_1, R_2, R_4 кОМ	\mathcal{C}_1 мк Φ	
4	40	0.056	

Задание 2:

Вариант	\mathcal{C}_1 мк Φ	R_1, R_2, R_4 кОМ	R ₅ кОМ
4	0.068	40	80

Задание 3:

Вариант	\mathcal{C}_1 мк Φ	R_1 , R_2 кОМ	R ₃ кОМ	R_4 , R_5 , R_6 кОМ
4	0.068	47	4.7	24

Задание 4:

Вариант	${\cal C}_1$ мк Φ	R_1 , R_2 кОМ	R ₃ кОМ	R_4 , R_5 кОМ
4	0.068	47	4.7	24

Перечень приборов

Транзистор ВС817-16:

- 1. Источники постоянной ЭДС
- 2. Резисторы
- 3. Конденсатор
- 4. Операционный усилитель
- 5. Осциллограф
- 6. Частотомер

Ход работы

Задание 1. Соберите, согласно варианту, на рабочем поле среды Multisim схему (Рис. 1) для испытания симметричного автоколебательного мультивибратора на ОУ. Запустите процесс моделирования работы схемы. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.

Рис. 1

	$U_{_{\mathit{Hac}}}^{+}$	<i>U</i> ⁻ _{нас}	U_2^+	U_2^-	t_{u1}	t_{u2}	T	f
Измер.	20.80	-20.80	10.40	-10.40	2.462	2.434	4.896	204.18
Расч.	20.57	-20.84	10.32	-10.25	2.305	2.261	4.699	204.25

Таблица 1

Рис. 2 - Осциллограмма

Задание 2. Соберите, согласно варианту, на рабочем поле среды Multisim схему для испытания несимметричного автоколебательного мультивибратора на ОУ (Рис. 3). Запустите процесс моделирования работы схемы. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.

Рис. 3

	<i>U</i> ⁺ _{нас}	<i>U</i> _ _{нас}	U_2^+	U_2^-	t_{u1}	t_{u2}	T	f
Измер.	20.80	-20.80	10.405	-10.12	5.786	3.042	8.902	112.3
Расч.	20.92	-20.86	10.24	-10.07	9.489	4.983	14.56	67.174

Таблица 2

Рис. 4 - Осциллограмма

Задание 3. Соберите, согласно варианту, на рабочем поле среды Multisim схему для испытания автоколебательного мультивибратора на ОУ (Рис. 5), с изменяемой скважностью импульсов. Запустите процесс моделирования. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.

Рис. 5

	0%	20%	40%	60%	80%	100%
t_{u1}	1.89	2.275	2.659	2.984	3.309	3.664
t_{u2}	3.693	3.309	2.925	2.600	2.275	1.890
T	5,583	5,584	5,584	5,584	5,584	5,554
f	179,100	179,083	179,083	179,083	179,083	180,050

Таблица 3

Рис. 6 - Осциллограмма

Задание 4. Соберите, согласно варианту, на рабочем поле среды Multisim схему для испытания автоколебательного мультивибратора на ОУ (Рис. 7), с изменяемой частотой следования импульсов. Запустите процесс моделирования. С помощью осциллографа проверьте наличие импульсов на выходе мультивибратора.

Рис. 7

	0%	20%	40%	60%	80%	100%
t_{u1}	3.486	3.250	2.865	2.541	2.186	1.861
t_{u2}	3.574	3.161	2.866	2.511	2.215	1.802
T	7.060	6.411	5.731	5.052	4.401	3.663
f	141.643	155.981	174.489	197.941	227.221	273.001

Таблица 4

Рис. 8 - Осциллограмма

Вывод

В результате проведенных экспериментов было выявлено, что увеличение сопротивлений или емкостей в схеме приводит к увеличению периода колебаний, а изменение параметров питания или коэффициента усиления операционного усилителя влияет на форму сигнала выходного колебания.

Таким образом, изучение принципов построения схем мультивибраторов на основе операционных усилителей позволяет понять принцип их работы, а исследование различных режимов работы позволяет оптимизировать параметры схемы под конкретные требования.