

高等数学 A2

浙江理工大学期中试题汇编(试卷册)

学校:	
专业:	
班级:	
姓名:	
学号:	

(此为2022年 第二版 第2次发行)

资料说明

试卷整理人: 张创琦

版次: 2021年8月9日 第二版

微信公众号: 创琦杂谈

OO 号: 1020238657

创琦杂谈学习交流群(QQ群): 749060380

cq 数学物理学习群 (QQ 群): 967276102

微信公众号用于**提前告知资料更新内容**,**分享一些学习内容和一些优秀的文章**,我也 会写一些文章,主要是**以大学生视角进行一些事情的审视批判**。

QQ 学习群用于**学习资料的分享**,一般会第一时间进行资料的分享的。群里也可以进行**学习内容的讨论**,群里大佬云集哦,大家有什么不会的题目发到群里就好了哈! 创琦杂谈大学数学学习交流群专门进行数学相关的资料分享与讨论,这套试卷里不会的题目直接在群里问就好了哈~ cq 数学物理学习群主要进行其它资料的分享以及知识的解答,不仅仅限于数学物理哈~ 建议大家都加一下,你会有很多收获的~ 可以**水群**哦~ 我们分享的资料只作为学习使用,**不得进行售卖等行为,否则后果自负**。

如果有任何问题可以联系我的 QQ 哈,我的性格很开朗,喜欢结交更多的朋友,欢迎大家加我的联系方式哈~

版权声明: 试卷整理人: 张创琦, 试卷首发于 QQ 群"创琦杂谈学习交流群"和"创琦杂谈 大学数学学习交流群", 转发前需经过本人同意, 侵权后果自负。本资料只用于学习交流使 用,禁止进行售卖、二次转售等违法行为,一旦发现,本人将追究法律责任。解释权归本人 所有。

在这里感谢我的高数老师以及其他老师们对我的鼎力帮助!(高数老师不让我写上她的名字,那我就在这里默默感谢她吧)

考试承诺:

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

目录

1	浙江理工大学	2020-	-2021	学年第	2 学期	《高等数学 A	42》期	月中试卷	1
2	浙江理工大学	2018-	-2019	学年第	2 学期	《高等数学 A	A2》期	月中试卷	4
3	浙江理工大学	2017—	-2018	学年第	2 学期	《高等数学 A	A2》期	月中试卷	7
4	浙江理工大学	2016—	-2017	学年第	2 学期	《高等数学A	A2》期	月中试卷	10
5	浙江理工大学	2015—	-2016	学年第	2 学期	《高等数学A	A2》期	月中试卷	14
6	浙江理工大学	2013—	-2014	学年第	2 学期	《高等数学A	A2》期	月中试卷	18
7	浙江理工大学	2012-	-2013	学年第	2 学期	《高等数学 A	42》期	月中试卷	22
8	浙江理工大学	2011—	-2012	学年第	2 学期	《高等数学 A	42》期	月中试卷	26
9	浙江理工大学	2010—	-2011	学年第	2 学期	《高等数学 A	42》期	月中试卷	30
1	0 浙江理工大学	ź 2009-	2010	学年第	2 学期	《高等数学AZ	2》期]中试卷	34
1	1 浙江理工大学	2006-	2007	学年第	2 学期	《高等数学AZ	2》期]中试卷	37
12	2 浙江理工大学	≥ 2005-	-2006	学年第	2 学期	《高等数学 A2	2》期	月中试卷	40

写在前面

亲爱的小伙伴们:

你们好!我是张创琦,这是我第二次写序言,现在是 2022 年上半年,我已经在读大二下学期了。我很欣慰的是,现在开学才四周,群里有很多人在找我要下册高数期中试卷了。我为什么要坚持写序言呢?因为我觉得或许试题是没有感情的,试题的快乐来源于最终对答案的正确与否,而在学习路上身边人的鼓励或许才是动力之源,你会发现,原来身边有这么多志同道合的小伙伴和我在走一样的道路。

学习之路注定是孤独的,或许你每天晚上在学校学习结束到宿舍后看到的是舍友在打游戏,而你还在苦逼地敲代码或写作业;或许你身边的小伙伴一周内有好几天都可以睡大觉,而你天天早八;或许你每天坐到空教室或者实验室里,面对实验室、教学楼、餐厅、宿舍四点一线的生活早已怀疑自己当初的选择是否正确,但是亲爱的朋友,"Stormy rainbow, sonorous rose."没有谁能随随便便成功。或许你不聪明,别人一天学习的内容要比你多很多,别人的反应速度比你要快很多,别人的做事效率要比你高很多,但是上天给予你最美好的东西就是你自己,这谁都无法替代。每次难受,我都会告诉自己,"张创琦,你现在一无所有,你拥有的就是你的专业知识和你手中的电脑。而你,要在这所城市拼出一条自己的道路,你不像他们一样拥有殷实的家底和丰富的童年,生命给予最美好的东西叫生活,还有一样东西叫未来。"

这个故事看起来或许是洗脑的,但我并不这样觉得,一个斗士的一生是充满能量和挑战的。谁都有怀疑自我的时候,谁也都有想从众的时候,谁都知道不学习享受生活是轻松的,但他们更知道,这个社会给予爱学习的人更多的机会——选择的机会,而这个前提是你要有充足的知识储备。B 站发布的《后浪三部曲》中的《后浪》和《入海》给我的感触很深。《后浪》的各种美好生活我确实没有享受过,我从小接受的教育就是"知识改变命运",但这有错吗?每个人的出身不尽相同,刘媛媛曾说过,"命运给你一个低的起点,是想让你用你的一生,去奋斗出一个绝地反击的故事。"

身处计算机专业,他们给我的感觉不是聪明的人多,而是奋斗的人多。有多少人算法题目不知道刷了多少遍,有多少人为了开发项目不知道奋斗了多少,有多少人看了数不清的技术书籍,又有多少人为了一个小 bug 不知道翻阅了多少的文章。当然,其它专业的同学们又谈何容易,生化环材的同学们为了一个数据测量不知道要准备多少材料,实验结果错误不知道要排除多少因素……

未来生活美好吗?我有想过好多次未来。他们给程序员的定义是"秃头"、"加班"、"呆",但,现实的生活只有自己经历才知道。B 站采访了几位即将毕业的毕业的大学生,他们的问题如下:"我的专业真的有前途吗?""努力真的有收获吗?""现在选的这条路走错了吗?""没有老师再教我了,该怎样自学自立?""大城市能留得住我的梦想吗?""他们说毕业后就会分手,我们可以逃过这个定律吗?""我还能保留住自己的初心吗?""学历真的决定一切吗?""怎样才算不虚度光阴?""喜欢打游戏,就是玩物丧志吗?""毕业之后,我还可以像学校这么快乐吗?""我可以成为想要成为的那个人吗?"

"时间会回答成长,成长会回答梦想。梦想会回答生活,生活回答你我的模样。"我亲爱的朋友,时间无语,但回答了所有的梦想。

最终,感谢小伙伴们与我一起经历了这本资料的第二个版本的发行,共勉!

张创琦

1 浙江理工大学 2020—2021 学年第 2 学期《高等数学 A2》期中试卷

_	选择题(本题共6小题,每小题4分,共	24分)		
1.	设 $\vec{a} = (1,2,1), \vec{b} = (-2,3,2)$ 为 \mathbb{R}^3 中的两 (A) \vec{a} 与 \vec{b} 垂直。 (C) \vec{a} 与 \vec{b} 夹角大于 90 度。	个向量,则下列说法中正确的是: (B) \vec{a} 与 \vec{b} 平行。 (D) \vec{a} 与 \vec{b} 夹角小于 90 度。	()
2.	设 f 为一个一元函数,假设下面各选项中的程决定的点集具有绕 y 轴的旋转对称性: (A) $f(x^2+z^2)+y=0$	的方程决定的 \mathbb{R}^3 中的点集均非空,问 (B) $f(y^2 + x^2) + z = 0$	可哪个 (`方)
3.	(C) $f(y) + z = 0$ 设 $z = f(x, y)$ 为定义在点 (x_0, y_0) 的一个开	(D) $f(z) + x = 0$ - 邻域上的函数。下列说法中正确的是:	. ()
0.	(A) 若 f 在 (x_0, y_0) 处偏导数均存在,则 f (B) 若 f 在 (x_0, y_0) 处偏导数均存在,则 f (C) 若 f 在 (x_0, y_0) 处偏导数均存在,则 f (D) 以上说法都不对。	\dot{x} 在 (x_0, y_0) 处极限存在。 在 (x_0, y_0) 处连续。	. ()
4.	设 $z = f(x,y)$ 为定义在点 (x_0,y_0) 的一个设 $f_x(x_0,y_0) = f_y(x_0,y_0) = 0$, $f_{xy}(x_0,y_0) = 0$ 中正确的是:			
	(A) (x_0, y_0) 必定为极小值点。	(B) (x_0, y_0) 可能为极小值点。		
	(C) (x_0, y_0) 一定不是极值点。	(D) 以上说法都不对。		
5.	设 $\Omega = \{(x,y,z) \in \mathbb{R}^3 \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leqslant 1 \}$,所 (A) $\iiint\limits_{\Omega} (xe^y + ye^x) dx dy dz$	可下面哪个积分必为零: (B) $\iiint 1 dx dy dz$	()
	(C) $\iint_{\Omega} \cos x dx dy dz$	(D) $\iiint_{\Omega} (x^2 - y^2) dx dy dz$		
6.	设 $\Omega = \{(x,y,z) x+y+z \leq 1, x \geq 0, y \geq 0\}$ 式子计算了 $\iint\limits_{\Omega} f(x,y,z) dx dy dz$:	$\{0,z\geqslant 0\},f$ 为 Ω 上的连续函数,问门	下面员	『个
	(A) $\int_0^1 dx \int_0^x dy \int_0^{x+y} f(x, y, z) dz$ (C) $\int_0^1 dy \int_0^{1-y} dx \int_0^{1-x-y} f(x, y, z) dz$	(B) $\int_0^1 dx \int_x^1 dy \int_{x+y}^1 f(x, y, z) dz$ (D) $\int_0^1 dy \int_{1-y}^1 dx \int_{1-x-y}^1 f(x, y, z) dz$		
	填空题(本题共6小题,每小题4分,共	24 分)		
1.	设直线 L 的方程为 $\begin{cases} 2x + 3y + 4z = 1\\ -2x + y - z = 0 \end{cases}$,则	一个与 L 的方向平行的向量为:		
2.	设平面 Γ 的方程为 $2x-3y-4z=5$,则 Γ	与 xOy 坐标平面的夹角的余弦为: _		_ •
3.	求函数 $f(x,y) = x^y$ 在点 $(2,1)$ 处的微分为	:		
4.	求函数 $f(x,y) = x^y$ 在点 $(2,1)$ 处变化率为	零的方向:		
5.	求函数 $f(x,y) = x^y$ 在点 $(2,1)$ 处变化率为设函数 $x = g(y)$, 是在点 $(-1,-1)$ 附近由方	程 $x^4+2y^4=3$ 所决定的隐函数,则 g	'(-1)	=
6.	——· 设 $f(x,y)$ 是定义在 $[0,1] \times [0,1]$ 上的连续图	所数, 交换 $\int_0^1 dy \int_0^y f(x,y)dx$ 的积分顺	序得	到:
=	计算题(本题共6小题,每小题8分,共4	8.分。应写出必要的演算过程及文字:	说明.	古

接写答案零分)

1. 求由方程组 $\begin{cases} x^2 + y^4 + 2z^2 - 4x = 0 \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 所决定的曲线在点 (1,1,1) 处的切线方程与法平面方程。

2. 设 z=z(x,y) 为由方程 $F(x+y+z,x^2+y^2+z^2)=0$ 所局部决定的隐函数,其中 F 为连续可微函数,试求: $\frac{\partial z}{\partial x}$.

3. 用 Lagrange 乘数法求函数 f(x,y,z)=x-2y+2z 在条件 $x^2+y^2+z^2=1$ 下的极大值与极小值。

4. 设 D 为 xOy 平面上由 $y=\pi-x, x=\pi, y=\pi$ 所围成的区域,试求 $\iint\limits_{D} \frac{\sin x}{x} dx dy$.

A little better than the best!

5. 设 Ω 是以点 (0,0,1),(0,1,1),(1,1,1),(0,0,2),(0,2,2),(2,2,2) 为顶点的棱台,试求 Ω 的 体积 V 。

6. 设 a>0, 试求锥面 $z=\sqrt{x^2+y^2}$ 被圆柱面 $x^2+y^2=ax$ 所截下的部分的曲面的面积。

四 (本题4分)

考虑函数
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & \ddot{\Xi}(x,y) \neq (0,0) \\ 0, & \ddot{\Xi}(x,y) = (0,0). \end{cases}$$
 证明: $f \in (0,0)$ 处不可微。

(注: 2019-2020 学年第二学期由于新冠疫情暴发等因素,当时没有开学,故没有期末考试试卷)

2 浙江理工大学 2018—2019 学年第 2 学期《高等数学 A2》期中试卷

- 一 单选题 (每小题 4 分, 共 20 分)
- 1 点(-1,0,2)到平面 $x + \sqrt{2}y z + 1 = 0$ 的距离为 ()
 - A. 1
- C. 3 D. 4
- - A. 垂直于 π

- 3 函数 $z = xe^{2y}$ 在点 P(1,0) 处沿从点 P(1,0) 到点 Q(2,-1) 的方向的方向导数等于 (
 - A. $\sqrt{2}$

- B. $-\sqrt{2}$ C. $\frac{\sqrt{2}}{2}$ D. $-\frac{\sqrt{2}}{2}$
- 4 已知点(-3,2)为函数 $f(x,y) = x^3 + ay^3 + 3x^2 + 3y^2 9x$ 的极值点,则 a = (
 - A. 1
- B. -1

- 5 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ 在点 M(0,0)处 ()
- A. 连续, 偏导存在 B. 连续, 偏导不存在
- C. 不连续, 偏导存在 D. 不连续, 偏导不存在
- 二 填空题 (每题 4 分, 共 20 分)
- 1. 曲线 $x = t, y = t^2, z = t^3$ 在点(1,1,1)处切线的切向量 $\vec{T} =$ ______.
- 2. 设 $z = f\left(2x, \frac{x}{v}\right)$, 则 $\frac{\partial^2 z}{\partial x^2} = \underline{\hspace{1cm}}$
- 3. 已知曲面 $z=4-x^2-y^2$ 上点 P 的切平面平行于平面 2x+2y+2z-1=0 ,则点 P 的坐 标为_____.
- 4. 函数 u = xyz 在点 M(1,1,1)处的梯度 $grad \ u \big|_{M} =$ ______
- 三 计算题 (每小题 8 分, 共 48 分)

1 已知两条直线的方程是

$$L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}, \quad L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$$

已知平面 π 过 L_1 且平行于 L_2 , 求平面 π 的方程.

2 设
$$\begin{cases} xy^2 - uv = 1 \\ x^2 + y^2 - u + v = 0 \end{cases}, \quad w = e^{u+v}, \quad 其中 u, v 是由上式确定的 x, y 的函数, 求 \frac{\partial w}{\partial x}.$$

1.
$$\vec{x} \lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{2-e^{xy}}-1}$$
.

2. 求函数 f(x,y,z) = xyz 在限制条件 xy + yz + xz = 6下的最大值.

3.
$$z = f(e^x \sin y, x^2 + y^2)$$
, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

4. 计算
$$\iint_D (x^2 + y^2) dx dy$$
,其中 D 为圆 $x^2 + y^2 = 2y$, $x^2 + y^2 = 4y$ 及直线 $x - \sqrt{3}y = 0$, $y - \sqrt{3}x = 0$ 所围成的平面闭区域.

四 证明题 (每小题 6 分, 共 12 分)

5. 设
$$z = xy + xF(u)$$
, 而 $u = \frac{y}{x}$, $F(u)$ 为可导函数, 证明 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z + xy$.

6. 试证曲面
$$\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} (a > 0)$$
 上任意点处的切平面在各坐标轴上的截距之和等于 a.

3 浙江理工大学 2017—2018 学年第 2 学期《高等数学 A2》期中试卷

一选择题(本题共6小题,每小题4分,共24分)

1	微分方程 y'' + 4	$4y = \cos 2x$ 的一个特解具有形	形式()	
A	$a\cos 2x$	B $a\cos 2x + b\sin 2x$	C axcos2x	$D x(a\cos 2x + b\sin 2x)$
2	在y0z平面内的	一条直线绕z轴旋转一周所得	导曲面的图形不可能	党是 ()
A	旋转单叶双曲面	面 B 圆柱面	C 圆锥面	D 平面
3	对函数 $f(x,y) =$	$= x^2 + xy + y^2 - 3x - 6y$,	気(0,3) ()	
A	不是驻点	B 是驻点但非极值点	C 是极小值点	D 是极大值点
4	在下列命题中,	不正确的是()		
A	若函数 $f(x,y)$ 在	$\mathbb{E}_{\mathbb{R}_0^{\prime},y_0^{\prime}}$ 处可微,则它在词	该点连续;	
В	若函数 $f(x,y)$ 在	$\mathbb{E}_{\mathbb{R}_0^{\prime},y_0^{\prime}}$ 处可微,则它在词	该点沿任何方向的方	方向导数存在;
С	若函数 $f(x,y)$ 在	$\mathrm{EL}(x_0,y_0)$ 处可微,则它在词	该点的偏导数连续;	
D	若函数 $f(x,y)$ 在	$\operatorname{EL}(x_0,y_0)$ 处可微,这曲面 x_0	$z = f(x, y)$ 在点 (x_0, y)	$(y_0, f(x_0, y_0))$ 处的切平面存
在				
5	设D是由曲线y	$y = x^2 - 1, y = \sqrt{1 - x^2}$ 所围]成的平面区域,则	$\iint_D (axy + by^2) dx dy$ 的
A	值等于0		B 符号与 a 有关,	与 b 无关
С	符号与 a 无关,	与 <i>b</i> 有关	D 符号与 a, b 都	有关
6	设 Ω 是由球面 x^2	$+y^2+z^2=R^2(R>0)$ 所围	成的闭区域,则三重	重积分∭ _Ω $(x^2 + y^2 + z^2)$ dV
的	1值为()			
A	$\frac{4}{3}\pi R^3$	B $\frac{4}{5}\pi R^3$	$C \frac{2}{5}\pi R^3$	D 0
_	填空题(本题)	共6小题,每小题4分,共	24分)	
1	点 P(1, - 2,3)关	$E + x$ 的对称点 Q 的坐标为_		_
2	函数 $z = x^4 + \frac{y^2}{2}$	。 在点 A(1, - 3) 处其函数值增	曾加最快的单位方向]向量为
3	设 $y = e^x(C_1 + C_2)$	$(C_2x)(C_1,C_2$ 为任意常数)是某	二阶常系数齐次线	性微分方程的通解,则该方
程	<u> </u>			
4	如果直线 L_1 : $\frac{x-1}{1}$	$- = \frac{y+1}{2} = \frac{z-1}{\lambda}$ 与直线 L_2 : $\frac{x+1}{1} =$	$\frac{y-1}{1} = \frac{z}{1}$ 相交,那么	、常数λ的值为
5	已知 $ \vec{a} =2$, $ \vec{b} $	$=\sqrt{2}$,且 $\vec{a}\cdot\vec{b}=2$,则 $ \vec{a}\times$	$ \vec{b} = $	

A little better than the best!

- 三 计算题 (本题共5小题,每题8题,满分40分)
- 1 求微分方程 $y'' + 2y' 3y = e^{-3x}$ 的通解。

2 已知在球面 $x^2 + y^2 + z^2 = 14$ 上点 P 处的切平面与平面x - 2y + 3z = 0 平行,求点 P 的 坐标及该平面的方程。

3 设函数z=z(x,y)是由方程 $x^2+y^2+z^2-4z=0$ 确定,求 $\frac{\partial^2 z}{\partial x\partial y}$.

4 计算二次积分 $I = \int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} \ln(x^2 + y^2 + 1) dy$

5 求 $\iint_{\Omega} \sqrt{x^2 + y^2} dV$,其中 Ω 是xOz平面上两条曲线 $z = x^2$ 与 $z = 2 - x^2$ 绕z轴旋转而成的闭区域。

四 应用题 (本题满分6分)

形状为椭球: $4x^2 + y^2 + 4z^2 = 16$ 的空间探测器进入地球大气层,其表面开始受热,1 小时后在探测器表面点(x,y,z)的温度为 $T(x,y,z) = 8x^2 + 4yz - 16z + 600$,求探测器表面温度最高的点和温度最低的点。

五 证明题 (本题满分6分)

设函数z=z(x,y)由方程 $\frac{x}{z}=\varphi(\frac{y}{z})$ 所确定,其中 $\varphi(u)$ 具有二阶连续导数,试证明:

(1)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z;$$

$$(2) \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = (\frac{\partial^2 z}{\partial x \partial y})^2.$$

4 浙江理工大学 2016—2017 学年第 2 学期《高等数学 A2》期中试卷

一选择题(本题共6小题,每题4分,共24分)

1 设直线
$$L$$
 为 $\begin{cases} x + 3y + 2z + 1 = 0 \\ 2x - y - 10z + 3 = 0 \end{cases}$,平面π为 $4x - 2y + z - 2 = 0$,则()

AL 平行于 π

CL垂直于 π DL与 π 斜交

2下列说法正确的是()

A 两向量 \vec{a} 与 \vec{b} 平行的充要条件是存在唯一的实数 λ ,使得 $\vec{a} = \lambda \vec{b}$

B 函数z = f(x, y)的两个二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ 在区域 D 内连续,则在该区域内两个二阶混合偏 导数必相等

C 函数z = f(x, y)的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条件

D 函数z = f(x, y)的两个偏导数在点 (x_0, y_0) 处存在是函数在该点可微的充分条件

3 对函数
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$
,点(0,3) (

A 不是驻点

B 是驻点但非极值点 C 是极大值点 D 是极小值点

4 将三重积分 $I=\iiint_{\Omega}(x^2+y^2+z^2)\mathrm{d}v$,其中 $\Omega: x^2+y^2+z^2\leq 1$,化为球面坐标下的三次 积分为(

$$A \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 dr$$

$$\mathrm{B} \int_0^{2\pi} \mathrm{d}\theta \int_0^{\frac{\pi}{2}} \mathrm{d}\varphi \int_0^1 r \mathrm{d}r$$

$$C \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^4 \sin\varphi dr$$

$$\mathrm{D}\int_0^{2\pi}\mathrm{d} heta\int_0^\pi\mathrm{d}arphi\int_0^1r^2\mathrm{sin}arphi\mathrm{d}r$$

5 旋转抛物面 $z = x^2 + 2y^2 - 4$ 在点(1, -1, -1)处的切平面方程为()

$$A 2x + 4y - z = 0$$

$$B 2x - 4y - z = 4$$

$$C 2x + 4y - z = 4$$

$$D 2x - 4y - z = 7$$

6 二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$ 可写成 ()

$$A \int_0^1 \mathrm{d}y \int_0^{\sqrt{y-y^2}} f(x,y) \mathrm{d}x$$

B
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$$

$$C \int_0^1 dx \int_0^1 f(x, y) dy$$

$$D \int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$$

二 填空题(本题共6小题,每题4分,共24分)

1 已知函数 $z = e^{xy}$,则在(2,1)处的全微分 dz =______

2 设直线 L 的方程为 $\begin{cases} x-y+z=1 \\ 2x+v+z=4 \end{cases}$,则 L 的参数方程为______

3 设函数 $\mathbf{u} = x^2 + y^2 + z^2$, O 为坐标原点,则函数 u 在点P(1,1,1)沿 \overrightarrow{OP} 方向的方向导数为

A little better than the best!

- 5 已知向量 \mathbf{a} 位于第一卦限内,其方向余弦中 $\cos\beta=\frac{2}{3}$, $\cos\gamma=\frac{2}{3}$, 且 $|\mathbf{a}|=3$,则 $\mathbf{a}=$ ______
- 6 交换积分次序 $\int_0^e dx \int_0^{\ln x} f(x,y) dy =$ ______
- 二 解答题(本题共5小题,每题6分,共30分,应写出演算过程及文字说明)
- 1 设函数 $z = f(y x, ye^x)$, 其中f具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$

2 设 $D=\{(x,y)|x^2+y^2\leq 4\}$,利用极坐标求 $I=\iint_D x^2\mathrm{d}x\mathrm{d}y$

3 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的曲面面积。

4 把积分 $\iint_{\Omega} f(x,y,z) dx dy dz$ 化为三次积分,其中积分区域 Ω 是由曲面 $z=x^2+y^2$, $y=x^2$ 及平面y=1,z=0 所围成的区域。

5 设
$$\frac{x}{z} = \ln \frac{z}{y}$$
 , 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$.

(拓展: 将曲线改为
$$\begin{cases} 3x^2 + y^2 + z^2 = 5 \\ 2x^5 + y^2 - 4z = 7 \end{cases}$$
 其它条件、题设均不变)

2 建模题:设某电视机厂生产一台电视机的成本为 c,每台电视机的销售价格为 p,销售量为 x。假设该厂的生产处于平衡状态,即电视机的生产量等于销售量。根据市场预测,销售量 x 与销售价格 p 之间有下面的关系: $x = Me^{-ap}$ (M > 0, a > 0),其中 M 为市场最大需求量,a 是价格系数。同时,生产部门根据对生产环节的分析,对每台电视机的生产成本 c 有如下测算: $c = c_0 - k lnx$ (k > 0, x > 1),其中 c_0 是只生产一台电视机时的成本,k 是规模系数。根据上述条件,应如何确定电视机的售价 p,才能使该厂获得最大利润?

3 设f(x)连续,证明 $\int_a^b dx \int_a^x f(y)dy = \int_a^b f(x)(b-x)dx$

4 证明曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} (a > 0)$ 上任何点处的切平面在各坐标轴上的截距之和等于 a.

5 浙江理工大学 2015—2016 学年第 2 学期《高等数学 A2》期中试卷

一选择题(本题共6小题,每题4分,共24分)
1. 函数 $f(x,y) = 4(x-y) - x^2 - y^2$ 的极值为 ()
A. 极大值为 8 B. 极小值为 0 C. 极小值为 8 D. 极大值为 0
2.设有直线 L_1 : $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$, L_2 : $\begin{cases} x-y=6, \\ 2y+z=3, \end{cases}$ 则 L_1 与 L_2 的夹角为 ()
(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$
3. 函数 $z = x^2 + y^2$ 在点 (1,2) 处从点 (1,2) 到 (2,2+ $\sqrt{3}$) 的方向的方向导数为()
(A)1+2 $\sqrt{3}$ (B)1-2 $\sqrt{3}$ (C)-1+2 $\sqrt{3}$ (D)-1-2 $\sqrt{3}$
4. 设 $xy-z\ln y+e^{xz}=1$,根据隐函数存在定理,存在点 $(0,1,1)$ 的一个领域,在此领域内该方
程() (A) 只能确定一个具有连续偏导数的函数 z=z(x,y) (B) 可确定具有两个具有连续偏导数的函数 y=y(x,z)和 z=z(x,y) (C) 可确定具有两个具有连续偏导数的函数 x=x(y,z)和 z=z(x,y) (D) 可确定具有两个具有连续偏导数的函数 x=x(y,z)和 y=y(x,z)
5.设 Ω 由 $z = \frac{1}{2}(x^2 + y^2)$, $z = 1$, $z = 4$ 围成,则 $\iint_{\Omega} x^2 - 2xy^2 \cos \sqrt{x^2 + y^2} dx dy dz = ()$
(A) 21π (B) 42π (C) 11π (D) 22π 6. 设有平面闭区域 $D = \{(x,y) -1 \le x \le 1, x \le y \le 1\}$, $D_1 = \{(x,y) 0 \le x \le 1, x \le y \le 1\}$
且 $f(x)$ 是连续奇函数, $g(x)$ 是连续偶函数,则 $\iint_D [f(x)+g(x)]f(y)dxdy = 0$
(A) $2\iint\limits_{D_i}g(x)f(y)dxdy$ (B) $2\iint\limits_{D_i}f(x)f(y)dxdy$
(C) $4\iint_{D_1} [f(x) + g(x)] f(y) dxdy$ (D) 0
二 填空题(本题共6小题,每题4分,共24分)
1.已知两条直线的方程是 L_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$, L_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 则过 L_1 且平行于
L ₂ 的平面方程是;
2.由曲线 $\begin{cases} z = x^2 - 1, \\ y = 0 \end{cases}$ 绕 z 轴旋转一周所成的旋转曲面在点(2,1,4)处的法线方程

3.设函数 z = f(x, y) 在点 (1,1) 处可微,且 $f(1,1) = 1, f_x(1,1) = 2, f_y(1,1) = 3$,

$$g(x) = f(x, f(x, x)).$$
 $\bowtie \frac{d}{dx} g^{3}(1) = ____;$

4.由方程 $x^2 + y^2 + z^2 - 4z = 0$ 所确定的函数 z = z(x, y) 在点 $(\frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2}, 1)$ 处的全微分

dz=	=	
UZ-		,

5. 交换二次积分的积分顺序:
$$\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$$

三、解答题(本题共6小题,每小题6分,满分36分)

1. 求直线 $l: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 π : x-y+2z-1=0 上的投影直线 l_0 的方程,并求 l_0 绕 y 轴旋转一周所成曲面的方程.

2. 设 $\begin{cases} xu - yv = 0, \\ yu + xv = 1, \end{cases}$ 求 u_x, u_y, v_x 和 v_y .

3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$ 在点 (1, -2, 1) 处的切线及法平面方程.

4. 计算二重积分:
$$\iint_{D} e^{\max\{x^2,y^2\}} dx dy, 其中 D=\{0 \le x \le 1, 0 \le y \le 1\}.$$

5. 计算三重积分:
$$\iiint_{\Omega} z dv$$
, 其中 Ω 由曲面 $z = \sqrt{2-x^2-y^2}$ 及 $z = x^2 + y^2$ 所围成的闭区域.

6. 设变换
$$\begin{cases} u = x - 2y, \\ v = x + ay \end{cases}$$
 可把方程 $6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$ 简化为 $\frac{\partial^2 z}{\partial u \partial v} = 0$, 求常数 a .

A little better than the best!

四、应用题(本题10分)

设有一高度为h(t)(t)为时间)的雪堆在融化过程中,其侧面满足方程 $z = h(t) - \frac{2(x^2 + y^2)}{h(t)}$, 设长度单位为厘米,时间单位为小时,已知体积减少的速率与侧面积成正比(比例系数 0.9),问高度为 130 cm 的雪堆全部融化需要多少小时?

五 证明题 (第一题 4 分, 第二题 6 分, 共 10 分)

1. 设函数 f(x,y), g(x,y) 在有界闭区域 D 上连续,且 $g(x,y) \ge 0$,证明:在 D 上必有一点 (ξ,η) 使得 $\iint_D f(x,y)g(x,y)d\sigma = f(\xi,\eta)\iint_D g(x,y)d\sigma$ 成立.

2.证明函数
$$f(x,y) = \begin{cases} xy \sin \frac{1}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 在点 (0,0) 处

(1) 连续且偏导数存在; (2)偏导数不连续; (3)可微.

6 浙江理工大学 2013—2014 学年第 2 学期《高等数学 A2》期中试卷

一 选择题(本题共6小题,每题4分,共计24分)

1 在曲线: $x = t, y = -t^2, z = t^3$ 的所有切线中,与平面 π : x + 2y + z + 4 = 0 平行的切线

- (A) 只有1条 (B) 只有2条 (C) 至少有3条

2 设区域 $D:(x-2)^2+(y-1)^2\leq 1, I_1=\iint_{\mathcal{D}}(x+y)^2d\sigma, I_2=\iint_{\mathcal{D}}(x+y)^3d\sigma$,则有(

- (A) $I_1 < I_2$ (B) $I_1 = I_2$ (C) $I_1 > I_2$ (D) 不能比较

3 球面 $x^2 + y^2 + z^2 = 4a^2$ 与柱面 $x^2 + y^2 = 2ax$ 所围成的立体体积 V= (

(A)
$$4\int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} d\rho$$

(A)
$$4\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} d\rho$$
 (B) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} \rho \sqrt{4a^{2} - \rho^{2}} d\rho$

(C)
$$8\int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta} \rho \sqrt{4a^2 - \rho^2} d\rho$$

(C)
$$8 \int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta} \rho \sqrt{4a^2 - \rho^2} d\rho$$
 (D) $4 \int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta} \rho \sqrt{4a^2 - \rho^2} d\rho$

4 设 u(x,y) 在平面有界区域 D 上有二阶连续偏导数,且满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 及 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$,

则()

- (A) 最大值点和最小值点必定都在 D 的内部
- (B) 最大值点和最小值点必定都在 D 的边界上
- (C) 最大值点在 D 的内部,最小值点在 D 的边界上
- (D) 最小值点在 D 的内部,最大值点在 D 的边界上

5 将三重积分 $I = \iiint_{\Omega} (x^2 + y^2 + z^2) dv$, 其中 Ω : $x^2 + y^2 + z^2 \le 1$, 化为球面坐标下的三次 积分为(

(A)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 dr$$

(B)
$$\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r dr$$

(C)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^4 \sin\varphi dr$$

(C)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^4 \sin\varphi dr$$
 (D)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^2 \sin\varphi dr$$

6 设 $f(x,y) = |x-y| \varphi(x,y)$, 其中 $\varphi(x,y)$ 在点 (0,0) 连续且 $\varphi(0,0) = 0$, 则 f(x,y) 在 (0,0)

处()

(A) 连续,偏导数不存在 (B) 不连续,偏导数存在 (C) 可微 (D) 不可微

二 填空题(本题共6小题,每题4分,共计24分)

1 已知 a 的方向余弦为 $\cos \beta = \frac{2}{2}$, $\cos \gamma = \frac{2}{2}$, 且 |a| = 3, 则 $a = \underline{\hspace{1cm}}$

2 已知曲面 $z=4-x^2-y^2$ 在点 P 处的切平面平行于平面 2x+2y+z-1=0,则点 P 的坐标

3 设
$$I = \int_0^2 dx \int_x^{2x} f(x, y) dy$$
,交换积分次序后, $I =$ ______

4 设函数
$$f(u)$$
 可微,已知 $f'(0) = \frac{1}{2}$,且 $z = f(4x^2 - y^2)$,则 $dz \Big|_{\substack{x=1 \ y=2}} = \underline{\qquad}$

5 设
$$u(x,t) = \int_{x-t}^{x+t} f(z) dz$$
, 求 $\frac{\partial u}{\partial x} =$ ______

三 计算题(本题共6小题,每题6分,共计36分)

1 设函数
$$z = f(y - x, ye^x)$$
, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2 函数
$$z=z(x,y)$$
 是由方程 $x^2+y^2+z^2=3$ 所确定的隐函数,求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(1,1,1,)}$ 。

3 求函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1)沿 A 指向点 B(3, -2, 2)方向的方向导数。

4 设
$$D = \{(x, y) | x^2 + y^2 \le 4\}$$
,利用极坐标求 $I = \iint_D x^2 dx dy$ 。

5 设
$$\Omega$$
 是由 $x^2+y^2=2z, z=1, z=2$ 所围成的空间闭区域,求 $I=\iiint_{\Omega}(x^2+y^2)dV$ 。

6 计算
$$I = \iiint_{\Omega} \frac{dV}{(1+x+y+z)^3}$$
, 其中 Ω 由 $x = 0, y = 0, z = 0, x+y+z=1$ 所围。

四 应用题(8分)

设一座山的表面的方程为 $z = 100 - 2x^2 - y^2$, M(x, y)时山脚 z = 0 即等高线 $2x^2 + y^2 = 1000$ 上的点。

- (1) 问: z 在点 M(x,y) 处沿什么方向的增长率最大,并求出此增长率;
- (2)攀岩活动要在山脚处找一最陡的位置作为攀岩的起点,即在该等高线上找一点 M 使得上述增长率最大,请写出该点的坐标。

五 证明题 (本题共2小题,每题4分,共计8分)

1 设
$$z = \arctan \frac{x}{y}$$
,而 $x = u + v$, $y = u - v$,证明 $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \frac{u - v}{u^2 + v^2}$

2 设
$$f(x)$$
 连续, 证明 $\int_{a}^{b} dx \int_{a}^{x} f(y) dy = \int_{a}^{b} f(x)(b-x) dx$ 。

7 浙江理工大学 2012—2013 学年第 2 学期《高等数学 A2》期中试卷

一 选择题(本题共6小题,每小题4分,满分24分)

1 设直线
$$L$$
: $\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4}$ 及平面 π : $x+y+z-3=0$, 则直线 L ()

- (A) 平行于 π
- (B) 在π上
- (C) 垂直于 π
- (D) 与π斜交

$$2 \otimes z = f(x,y)$$
 在 M_0 处存在二阶偏导数,则函数在 M_0 处 (

- (A) 一阶偏导数必连续 (B) 一阶偏导数不一定连续 (C) 必可微 (D) $z_{xy} \equiv z_{yx}$

3 对函数
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$
 , 点(0,3) (

- (A) 不是驻点 (B) 是驻点但非极值点 (C) 是极小值点 (D) 是极大值点

4 设
$$z = f(x, y)$$
 在点 $(0,0)$ 处的偏导数 $\frac{\partial f}{\partial x}\Big|_{(0,0)} = -1, \frac{\partial f}{\partial y}\Big|_{(0,0)} = 2$ 则(

(A)
$$z = f(x, y)$$
 在点 (0,0) 处的全微分 $dz|_{(0,0)} = -dx + 2dy$;

- (B) z = f(x, y) 在点 (0,0) 的某一邻域有定义;
- (C) 极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 存在;

(D) 曲线 C:
$$\begin{cases} z = f(x, y) \\ y = 0 \end{cases}$$
 在点 $(0, 0, f(0, 0))$ 的切线的方向向量 $\vec{s} = \vec{i} - \vec{k}$ 。

5 累次积分
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$$
 可写成 ()

(A)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y) dx$$
 (B) $\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx$ (C) $\int_{0}^{1} dx \int_{0}^{1} f(x,y) dy$ (D) $\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$

(B)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx$$

(C)
$$\int_0^1 dx \int_0^1 f(x,y) dy$$

(D)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$$

6 设有平面闭区域
$$D = \{(x,y) | -1 \le x \le 1, x \le y \le 1\}$$
, $D_1 = \{(x,y) | 0 \le x \le 1, x \le y \le 1\}$,

且 f(x) 是连续奇函数,g(x) 是连续偶函数,则 $\iint_{\mathcal{D}} [f(x)+g(x)]f(y)dxdy = 0$

(A)
$$2\iint_{\Omega} g(x)f(y)dxdy$$

(B)
$$2\iint_{\Omega} f(x)f(y)dxdy$$

(A)
$$2\iint_{D_1} g(x)f(y)dxdy$$
 (B) $2\iint_{D_1} f(x)f(y)dxdy$ (C) $4\iint_{D_1} [f(x)+g(x)]f(y)dxdy$ (D) 0

二 填空题(本题共6小题,每小题4分,满分24分)

4 设
$$z = y \cdot \sin(xy) - (1-y) \arctan x + e^{-2y}$$
,则 $\frac{\partial z}{\partial x}\Big|_{y=0}^{x=1} = \underline{\qquad}$

5 设
$$D = \{(x,y)||x|+|y| \le 1\}$$
, 则 $\iint_D (x+y+1)d\sigma = _____;$

6 设
$$\Omega$$
 是由曲面 $z = x^2 + y^2$ 与平面 $z = 4$ 所围成的闭区域,则 $\iint_{\Omega} z dv =$ _______.

三 计算题(本题共5小题,每题6分,满分30分)

1设u = f(x,z),而z(x,y)是由方程 $z = x + y\varphi(z)$ 所确定的函数,求du.

2 设
$$z = x^3 f(xy, \frac{y}{x})$$
, 其中 f 具有连续二阶偏导数, 求 $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$.

3 计算 $\iint_D \arctan \frac{y}{x} dx dy$,其中 D 是由圆周 $x^2+y^2=4$, $x^2+y^2=1$ 及直线 y=0 ,y=x 所围成的在第一象限内的闭区域。

4 设 f(x,y) 连续,且 $f(x,y) = xy + \iint_D f(x,y) dx dy$, $D: y = 0, y = x^2, x = 1$ 围成,求 f(x,y).

5 求 $\iint_{\Omega} (y^2 + z^2) dv$,其中 Ω 是 xoy 平面上曲线 $y^2 = 2x$ 绕 x 轴旋转而成的曲面与平面 x = 8 所围成的闭区域.

四 综合题 (本题满分8分)

试求曲面 $x^2 + y^2 = 2z$ 的切平面,使之经过曲线 $\begin{cases} 3x^2 + y^2 + z^2 = 5 \\ 2x^5 + y^2 - 4z = 7 \end{cases}$ 在点 (1,-1,-1) 处的切线。

五 建模题(本题满分7分)

设某电视机厂生产一台电视机的成本为 c,每台电视机的销售价格为 p,销售量为 x。 假设该厂的生产处于平衡状态,即电视机的生产量等于销售量。根据市场预测,销售量 x 与销售价格 p 之间有下面的关系: $x = Me^{-ap}$ (M>0,a>0),其中 M 为市场最大需求量,a 是价格系数。同时,生产部门根据对生产环节的分析,对每台电视机的生产成本 c 有如下测算: $c=c_0-k\ln x$ (k>0,x>1),其中 c_0 是只生产一台电视机时的成本,k 是规模系数。根据上述条件,应如何确定电视机的售价 p,才能使该厂获得最大利润?

六 证明题 (第一小题 4 分, 第二小题 3 分, 满分 7 分)

1 已知
$$u = x - ay$$
 , $v = x + ay$, $a^2 \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$ ($a \neq 0$) , 函数 $z = z(u, v)$ 具有二阶连续 偏导数,求证 $\frac{\partial^2 z}{\partial u \partial v} = 0$.

2 设
$$f(x)$$
 连续, 证明 $\int_a^b dx \int_a^x (x-y)^{n-2} f(y) dy = \frac{1}{n-1} \int_a^b (b-y)^{n-1} f(y) dy$.

8 浙江理工大学 2011—2012 学年第 2 学期《高等数学 A2》期中试卷 —选择题(本题共 6 小题,每小题 4 分,满分 24 分)

1 设直线 L: $\begin{cases} x+3y+2z-4=0\\ 2x-y-10z-1=0 \end{cases}$ 及平面 $\pi:\ x+y-2z-2=0$,则直线 L()
(A) 平行于 π (B) 在 π 上 (C) 垂直于 π (D) 与 π 斜交 2下列说法正确的是 (
(A) 两向量 \overrightarrow{a} 与 \overrightarrow{b} 平行的充要条件是存在唯一的实数 λ ,使得 $\overrightarrow{a} = \lambda \overrightarrow{b}$;
(B) 函数 $z = f(x,y)$ 的两个二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ 在区域 D 内连续,则在该区域内两个
二阶混合偏导数必相等;
(C) 函数 $z = f(x, y)$ 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条件;
(D) 函数 $z = f(x,y)$ 的两个偏导数在点 (x_0, y_0) 处存在是函数在该点可微的充分条件.
3 $u = 3xy^2 + 2x^3y - 1$ 在点 $P(3,2)$ 沿与 x 轴正向成 $\frac{\pi}{3}$ 倾角方向的方向导数为 ()
(A) $60+45\sqrt{3}$ (B) $60\sqrt{3}+45$ (C) $-60-45\sqrt{3}$ (D) $-60\sqrt{3}-45$
4 旋转抛物面 $z = x^2 + 2y^2 - 4$ 在点 $(1,-1,-1)$ 处的切平面方程为()
(A) $2x + 4y - z = 0$ (B) $2x - 4y - z = 4$ (C) $2x + 4y - z = 4$ (D) $2x - 4y - z = 7$
5 设 $f(x)$ 为连续函数, $F(t) = \int_1^t dy \int_y^t f(x) dx$, 则 $F'(2)$ 等于().
(A) $2f(2)$ (B) $f(2)$ (C) $-f(2)$ (D) 0
6 设 $f(x)$ 是 连 续 的 奇 函 数 , $g(x)$ 是 连 续 的 偶 函 数 , 且 区 域
$D = \left\{ (x, y) \mid 0 \le x \le 1, -\sqrt{x} \le y \le \sqrt{x} \right\}, \text{ 则下列结论正确的是} $
(A) $\iint_D f(y)g(x)dxdy = 0;$ (B) $\iint_D f(x)g(y)dxdy = 0;$
(C) $\iint_{D} [f(x) + g(y)] dxdy = 0;$ (D) $\iint_{D} [f(y) + g(x)] dxdy = 0.$
二 填空题(本题共 6 小题,每小题 4 分,满分 24 分)
1 向量 $\vec{a} = -4\vec{i} + 3\vec{j} + 8\vec{k}$,向量 \vec{b} 的三个方向角均相等且为锐角,则 $\Pr{\mathbf{j}_{\vec{b}}}\vec{\mathbf{a}} = $
2 设函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点 $(1,-1)$ 取得极值,则常数 $a =$;
3 函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$ 在 $(1, 2, -2)$ 处的最大变化率是
向余弦是
4 设 $z = z(x, y)$ 由 $z = z(u, v)$, $u = x + ay$, $v = x + by$ 复合而成,且 $z = z(x, y)$ 有二

2 设 $z = f(x^2 - y^2, xy) + g(x^2 + y^2)$,其中 f 具有二阶连续偏导数,g 具有二阶导数, $\vec{x} \frac{\partial^2 z}{\partial x \partial y}.$

3 设 f(x,y) 在 闭 区 间 $D = \{(x,y) \mid x^2 + y^2 \le y, x \ge 0\}$ 上 连 续 , 且 $f(x,y) = \sqrt{1-x^2-y^2} - \frac{8}{\pi} \iint_D f(x,y) dx dy \, , \, \, \, \, \, \, \, \, \, \, \, f(x,y) \, .$

A little better than the best!

4求 $\iint_{\Omega} (y^2 + z^2) dv$,其中 Ω 是 xoy 平面上曲线 $y^2 = 2x$ 绕 x 轴旋转而成的曲面与平面 x = 8 所围成的闭区域.

5 设空间曲线
$$\Gamma$$
:
$$\begin{cases} z = x^2 + y^2 \\ x + y + 2z - 2 = 0 \end{cases}$$
 求: (1) Γ 在 xOy 面内的投影曲线;

(2) Γ 在点(-1,-1,2) 处切线方程和法平面方程;(3) 原点到 Γ 的最长和最短距离。

四、(8分) 设函数
$$f(x,y) = \begin{cases} \frac{x^2y^2}{(x^2+y^2)^{\frac{3}{2}}} & x^2+y^2 \neq 0 \\ 0 & x^2+y^2 = 0 \end{cases}$$

问: (1) 函数 f(x,y) 在点 (0,0) 是否连续? (2) 计算函数 f(x,y) 在点 (0,0) 的偏导数 $f'_x(0,0)$ 及 $f'_y(0,0)$,在点 (0,0) 是否可微? 说明理由。

五 证明(每小题4分,共8分)

(1) 试证曲面 f(x-ay,z-by)=0 的任一切平面恒与某一直线相平行(其中 f 为可微函数,a,b 为常数).

(2) 设 f(x) 在 [0,a] 上连续,证明: $2\int_0^a f(x)dx \int_x^a f(y)dy = \left[\int_0^a f(x)dx\right]^2$.

9 浙江理工大学 2010—2011 学年第 2 学期《高等数学 A2》期中试卷

一选择题(本题共7小题,每小题4分,满分28分,每小题给出的四个选项中,只有一项 符合题目要求。)

1 二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_x(x_0,y_0)$, $f'_v(x_0,y_0)$ 存在, 是 f(x,y) 在

该点可微的[]

- (A) 充分非必要条件
- (B) 既非充分又非必要条件
- (C) 充要条件

(D) 必要非充分条件

2 设 f(x,y) 是连续函数,则 $I = \int_0^a dx \int_0^x f(x,y) dy (a > 0) = [$]

- (A) $\int_0^a dy \int_0^y f(x,y) dx$ (B) $\int_0^a dy \int_0^a f(x,y) dx$
- (B) (C) $\int_a^a dy \int_a^y f(x,y) dx$ (D) $\int_a^a dy \int_a^a f(x,y) dx$

3 曲面 z = xy 上点 M 处的法线垂直于平面 2x - y - z = 5 ,则点 M 的坐标是[

- (A) (-1,2,-2) (B) (1,2,2) (C) (-1,-2,2) (D) (1,-2,-2)

4 二重积分 $\iint_{\Omega} xyd\sigma$ (其中 $D: 0 \le y \le x^2, 0 \le x \le 1$) 的值为[]

- (A) $\frac{1}{6}$ (B) $\frac{1}{2}$ (C) $\frac{1}{12}$ (D) $\frac{1}{4}$

5 设 Ω 是由曲面 $z = x^2 + y^2$ 与平面 z = 4 所围成的闭区域,则 $\iiint_{\Omega} z dv$ 为[

- (A) $\frac{64}{2}$ (B) π (C) $\frac{64}{2}\pi$ (D) 8π

6 设 z=z(x,y) 由 z=z(u,v), u=x+ay, v=x+by 复合而成,且 z=z(x,y)有二阶连续

偏导数, 欲把方程: $6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x^2} = 0$ 化简为 $\frac{\partial^2 z}{\partial u \partial v} = 0$,则常数 a, b 满足[

- (A) a = -2, b = -2 (B) a = 3, b = 3 (C) a = -2, b = 3 (D) a = 2, b = -3

7 设 $D: x^2 + y^2 \le a^2$,若 $\iint_D \sqrt{a^2 - x^2 - y^2} dx dy = \pi$,则a为[]

- (A) $\sqrt[3]{\frac{3}{4}}$ (B) $\sqrt[3]{\frac{1}{2}}$ (C) 1 (D) $\sqrt[3]{\frac{3}{2}}$

二 填空题 (本题共 5 小题,每小题 4 分,满分 20 分)

- 1、已知 $u=x^y$,则du=
- 2、设积分区域 D 是由直线 y=0, x=1 及 y=2x 所围成的闭区域,则

$$\iint_{D} xyd\sigma = \underline{\hspace{1cm}}$$

3、设
$$D = \{(x,y) | 1 \le x \le 2, 1 \le y \le 2\}$$
,则 $\iint_D |x+y-3| dx dy =$ ______

4、设函数
$$f(x,y) = 2x^2 + ax + xy^2 + 2y$$
 在点 $(1,-1)$ 取得极值,则常数 $a =$ ______

5、设
$$\overset{r}{a},\overset{r}{b}$$
为非零向量,且满足 $\left(\overset{r}{a}+3\overset{r}{b}\right)\perp\left(7\overset{r}{a}-5\overset{r}{b}\right),\left(\overset{r}{a}-4\overset{r}{b}\right)\perp\left(7\overset{r}{a}-2\overset{r}{b}\right)$,则 $\overset{1}{a}$ 与 $\overset{1}{b}$ 的

三 计算题(本题共 5 小题,每小题 6 分,满分 30 分,应写出演算过程及相应文字说明)

1 设
$$z = x^3 + y^3 - 3xy^2$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$

2 设
$$e^z - xyz = 0$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$

$$3$$
 计算 $\iint_D \ln(1+x^2+y^2)d\sigma$,其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的第一象限内的闭区域

4 已知函数
$$z = f(xy^2, x^2y)$$
 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial y^2}$

5 若 D 满足:
$$x^2 + y^2 \le 2x$$
, 求 $\iint_D \sqrt{x^2 + y^2} dx dy$

四、(本题 8 分)设
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
问: (1)函数 $f(x,y)$ 在点(0,0)是

否连续? (2) 求 f(x,y) 在点(0,0) 的偏导数 $f'_x(0,0)$ 及 $f'_y(0,0)$, 在点(0,0) 是否可微? 说明理由。

五、设z=z(x,y)是由 $x^2-6xy+10y^2-2yz-z^2+18=0$ 确定的函数,求z=z(x,y)的极值点和极值。(本题 6 分)

六、证明题(本题共2小题,满分8分)

1、设
$$z = x^y (x > 0, x \neq 1)$$
, 求证 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{1}{\ln x} \frac{\partial z}{\partial y} = 2z$ (本题 3 分)

2、若函数
$$f(\xi,\eta)$$
 具有连续二阶偏导数且满足拉普拉斯方程 $\frac{\partial^2 f}{\partial \xi^2} + \frac{\partial^2 f}{\partial \eta^2} = 0$, 证明函数

$$z = f(x^2 - y^2, 2xy)$$
 也满足拉普拉斯方程 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ (本题 5 分)

10 浙江理工大学 2009-2010 学年第 2 学期《高等数学 A2》期中试卷

一、选择题(每小题 4 分,满分 28 分)

1.二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_x(x_0,y_0)$, $f'_v(x_0,y_0)$ 存在, 是 f(x,y) 在 该点可微的()

- (A) 充分非必要条件
- (B) 既不充分也不必要 (C) 充分必要 (D) 必要非充分

2.函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 在 $(0,0)$ 处()

(A) 连续且偏导存在 (B) 连续但偏导不存在 (C) 不连续但偏导存在 (D) 不连续且偏导不存在

(D) 不连续且偏导不存在

$$3.$$
累次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$ 可写成 ()

(A)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y) dx$$

(B)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx$$

(C)
$$\int_0^1 dx \int_0^1 f(x,y) dy$$

(D)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$$

4.对函数
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$
, 在点(0,3) (

- (A) 不是驻点 (B) 是极大值点 (C) 是极小值点 (D) 是驻点但非极值点

5.函数
$$u = \ln(x + \sqrt{y^2 + z^2})$$
 在点 $A(1,0,1)$ 处沿 A 指向 $B(3,-2,2)$ 方向的方向导数是()

(A)
$$\frac{1}{2}$$

- (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $-\frac{1}{2}$ (D) $-\frac{1}{4}$

6.设 D 是平面上以 $\left(1,1\right)$, $\left(-1,1\right)$, $\left(-1,-1\right)$ 为顶点的三角形区域, D_1 是 D 在第一象限的部

分,则
$$\iint_{\Sigma} (xy + \cos x \sin y) dxdy$$
 的值为 ()

(A)
$$2\iint_{D_1} (\cos x \sin y) dxdy$$
 (B) $2\iint_{D_1} (xy) dxdy$ (C) $4\iint_{D_1} (xy + \cos x \sin y) dxdy$ (D) 0

7.设
$$l$$
 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长记为 a ,则 $\int_{a} (2xy + 3x^2 + 4y^2) ds = ($)

- (A) 2*a* (B) 6*a*

- (D) 24^a

二、填空题(每小题 4 分,满分 20 分)

1.设
$$z = e^{\cos xy}$$
,则 $dz =$

2.设函数
$$z = z(x,y)$$
 由方程 $x^2 + 2y^2 + 3z^2 + xy - z - 9 = 0$ 确定,则函数 z 的驻点是_____

3.曲面
$$z - e^x + 2xy = 3$$
 在点 $(0,2,1)$ 处的切平面方程为_____

4.
$$\int_0^2 dx \int_x^2 e^{-y^2} dy = \underline{\hspace{1cm}}$$

5.设 L 是以 A(0,0), B(0,2), C(2,0) 为顶点的三角形区域的周界,且沿 ABCA 方向,则 积分 $I = \int_I (3x-y) dx + (x-2y) dy$ 的值为_____

三、计算题(每小题8分,共24分)

1.设
$$z = f(x^2 + y^2, xy)$$
, 其中 f 具有连续的二阶偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$

2.计算二重积分 $\iint_D (x+y) dx dy$,其中 D 是由直线 x+y=4,x+y=12 及抛物线 $y^2=2x$ 所 围成的平面区域。

3. $I = \iiint_{\Omega} z^2 dv$,其中 Ω 是由球面 $x^2 + y^2 + z^2 = R^2 与 x^2 + y^2 + z^2 = 2Rz(R > 0)$ 所围成的闭区域。

四、(9 分) 计算曲线积分 $I = \int_L \left[\cos\left(x+y^2\right)+2y\right] dx + \left[2y\cos\left(x+y^2\right)+3x\right] dy$,其中 L 为正弦曲线 $y=\sin x$ 上自 x=0 到 $x=\pi$ 的弧段。

五、(9分)求 $\iint_S (y^2-z) dy dz + (z^2-x) dz dx + (x^2-y) dx dy$,其中 S 是圆锥面 $x^2+y^2=z^2$ 在 $0 \le z \le h$ 部分的外侧。

六、证明题(每小题5分,共10分)

1.设函数
$$u = f\left(\sqrt{x^2 + y^2}\right)$$
, 满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \iint_{s^2 + t^2 \le x^2 + y^2} \frac{1}{1 + s^2 + t^2} ds dt$, $f''(x)$ 存在, 求证: $f''(r) + f'(r) \frac{1}{r} = \pi \ln(1 + r^2)$ 。

2.利用拉格朗日乘数法,证明圆的内接三角形中,正三角形面积最大。

11 浙江理工大学 2006-2007 学年第 2 学期《高等数学 A2》期中试卷

2 设
$$x^2 + y^2 + z^2 - xyz = 0$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (8分)

四 求下列多元函数的积分。

1 计算
$$\int_0^2 dx \int_x^2 e^{-y^2} dy$$
. (8分)

2 计算二重积分
$$\iint_D y dx dy$$
 ,其中 D 是由直线 $x=-2$, $y=0$, $y=2$ 及曲线 $x=-\sqrt{2y-y^2}$ 所 围成的平面区域。(8 分)

3 求均匀半球体的质心。(8分)

五 要造一个容积等于定数 a^2 的长方体无盖水池,如何选择水池的尺寸,方可使它的表面积最小。 $(8\, \mathcal{G})$

六 计算曲线积分 $I = \int_L \frac{xdy - ydx}{4x^2 + y^2}$,其中 L 是以点(1,0) 为中心, R 为半径的圆周(R > 1),取逆时针方向。(7 分)

12 浙江理工大学 2005-2006 学年第 2 学期《高等数学 A2》期中试卷

一、选择题(每小题 4 分	入,满分 28 分)		
1. 设直线 $L: \begin{cases} x+3y+\\ 2x-y-1 \end{cases}$	2z+1=0 $0z+3=0$,设平[$\overline{\text{m}} \pi : 4x - 2y + z - 2 = 0 ,$	则直线 <i>L</i> ()。
(A) 平行于 π	(B) 在π上	(C) 垂直于 π	(D) 与π斜交
2. 设 $z = 2^{x+y^2}$,则 $z_y =$	= ()。		
$(A) y \cdot 2^{x+y^2} \ln 4$	$(B) \left(x^2 + y^2\right) \cdot x$	2 y ln 4	
(C) $2y(x+y^2)e^{x+y^2}$	(D) $2y \cdot 4$	$x+y^2$	
3. 设 $u=2xy-z^2$,则	u 在(2,-1,1)处的	方向导数的最大值为()。
(A) $2\sqrt{6}$	(B) 4	(C) $2\sqrt{2}$	(D) 24
4. 函数 $z = f(x, y)$ 在点	$\mathcal{K}(x_0,y_0)$ 处具有偏	导数是它在该点存在全微分	分的 ()。
(A) 充分必要条件 (C) 充分条件而非必要	条件	(B) 必要条件而非充分。 (D) 既非充分又非必要。	条件 条件
5. 利用被积函数的对称的	生及区域的对称性,	则 $\iint_D (x+x^3y^2)d\sigma$ 的值	(), 其中 D 为
$x^2 + y^2 \le 4, y \ge 0$			
(A) 大于 0	(B) 小于 0	(C) 等于 0	(D) 上述都不对
6. 设函数 $y = y(x, z)$ 由	方程 $yz = \sin(x + y)$	y) 所确定,则 $\frac{\partial y}{\partial x} = ($)。
(A) $\frac{\cos(x+y)}{z}$	$(B) \frac{1}{z - \cos(x + x)}$	<u>y)</u>	
(C) $\frac{\cos(x+y)}{z-\cos(x+y)}$	$(D) \frac{1+\cos z}{z-\cos z}$	$\frac{s(x+y)}{s(x+y)}$	
7. 已知 $\frac{(x+ay)dx+yd}{(x+y)^2}$	y 一为某函数的全微	分 , 则 <i>a</i> = ()。	

二、填空题(每小题4分,满分20分)

(A) -1 (B) 0

1. 设函数 z = z(x,y) 由方程 $x^2 + 2y^2 + 3z^2 + xy - z - 9 = 0$ 确定,则函数 z 的驻点是_____。

(C) 1

(D) 2

2. 曲面 $e^z - z + xy = 3$ 在点 (2, 1, 0) 处的切平面为_____。

3. 设
$$z = \ln(x^2 + xy + y^2)$$
,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$ _______。

4. 设积分区域
$$D$$
 为 $x^2+y^2\leq 1$,在 $\iint_D \sqrt{1+x^2+y^2}\,d\sigma$ 与 $\iint_D \sqrt{1+x^4+y^4}\,d\sigma$ 两者中比较大的值是

5. 设
$$L$$
为 $x^2 + y^2 = 1$ 的一周,则 $\oint_{L} (x^2 + y^2) ds = _____$ 。

三、(本题满分 6 分) 设
$$z = f(x^2 - y^2, xy) + g(x^2 + y^2)$$
, 其中 f 具有二阶连续偏导数,

$$g$$
 具有二阶导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$ 。

四、计算下列二重积分(每小题6分,满分12分)

1. 计算
$$I = \iint_D |\cos(x+y)| dxdy$$
, 其中 $D: x = 0, x = \frac{\pi}{2}, y = 0, y = \frac{\pi}{2}$ 围成。

2. 计算 $I=\iint_D \ln(1+x^2+y^2)d\sigma$, 其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的第一象限内的闭区域。

五、计算下列三重积分(每小题7分,满分14分)

1. 计算
$$\iint_{\Omega} \sqrt{x^2 + y^2} \cdot z dv$$
,其中 Ω 是由圆柱面 $x^2 + y^2 = 4$,平面 $z = 0$ 和平面 $y + z = 2$ 所围成的区域。

2. 计算
$$\iint_{\Omega} (y+z) dv$$
, 其中 Ω 是由 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{1 - x^2 - y^2}$ 所围成的区域。

六、(本题满分 6 分) 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的曲面面积。

七、(本题满分 8 分) 计算 $I=\oint_L e^x(1-\cos y)dx-e^x(y-\sin y)dy$, 其中 L 是区域 $D:\sqrt{\sin x}\leq y\leq \sqrt{\cos x}\ ,\ 0\leq x\leq \frac{\pi}{4}$ 的正向边界曲线。

八、(本题满分6分)设 f(x)在 [a,b] 上连续,且 f(x)>0,证明: $\int_a^b f(x) dx \cdot \int_a^b \frac{1}{f(x)} dx \ge (b-a)^2 .$

A little better than the best!

高等数学试题资料目录

- 1高等数学 A1 期中试题汇编 1~10 套(试卷册)(第二版)
- 2 高等数学 A1 期中试题汇编 1~10 套 (答案册) (第二版)
- 3 高等数学 A1 期中试题汇编 11 套及以后(试卷册)(第二版)
- 4 高等数学 A1 期中试题汇编 11 套及以后(试卷册)(第二版)
- 5 高等数学 A1 期末试题汇编 1~10 套(试卷册)(第二版)
- 6 高等数学 A1 期末试题汇编 1~10 套(答案册)(第二版)
- 7 高等数学 A1 期末试题汇编 11 套及以后(试卷册)(第二版)
- 8 高等数学 A1 期末试题汇编 11 套及以后(试卷册)(第二版)

9 高等数学 A2 期中试题汇编 1~10 套(试卷册)(第二版)

- 10 高等数学 A2 期中试题汇编 1~10 套(答案册)(第二版)
- 11 高等数学 A2 期中试题汇编 11 套及以后(试卷册)(第二版)
- 12 高等数学 A2 期中试题汇编 11 套及以后(试卷册)(第二版)
- 13 高等数学 A2 期末试题汇编 1~10 套(试卷册)(第二版)
- 14 高等数学 A2 期末试题汇编 1~10 套 (答案册) (第二版)
- 15 高等数学 A2 期末试题汇编 11 套及以后(试卷册)(第二版)
- 16 高等数学 A2 期末试题汇编 11 套及以后(试卷册)(第二版)
- 17 高等数学 A1 期中试题汇编五套精装版(试卷册)(第二版)
- 18 高等数学 A1 期中试题汇编五套精装版(答案册)(第二版)
- 19 高等数学 A1 期末试题汇编五套精装版(试卷册)(第二版)
- 20 高等数学 A1 期末试题汇编五套精装版(答案册)(第二版)
- 21 高等数学 A2 期中试题汇编五套精装版(试卷册)(第二版)
- 22 高等数学 A2 期中试题汇编五套精装版(答案册)(第二版)
- 23 高等数学 A2 期末试题汇编五套精装版(试卷册)(第二版)
- 24 高等数学 A2 期末试题汇编五套精装版 (答案册) (第二版)