In the Claims:

Please cancel claims 1-19, 32-55 and 77-129. A detailed listing of the claims is provided, below.

1.-19. (Canceled)

20. (Original) A compound of the formula:

or N-oxides thereof or salts thereof wherein

R₁ and R₂ taken together with the carbon atoms to which they are attached form an aryl or heteroaryl ring, wherein said aryl ring is an aromatic containing 6-14 ring carbon atoms and said heteroaryl ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring carbon atoms and 1-4 heteroatoms selected from O, S and N, said aryl and heteroaryl rings may each independently be unsubstituted or substituted with lower alkyl or an electron donating group;

Y is O, NR_4 or CR_4R_5 ;

R₅ is hydrogen or lower alkyl;

R₄ is hydrogen or lower alkyl;

X is CR_6R_7 or NR_6 ;

 R_6 and R_7 are independently hydrogen or lower alkyl or R_6 and R_7 taken together may form an oxo;

Q is CR₈R₉ or NR₈;

n is 0 or 1;

R₈ and R₉ are independently hydrogen or lower alkyl or R₇ and R₈ taken together with the carbon atom to which they are attached form an aryl ring;

or R_8 may be taken with R_4 to form a bond between Q and Y or R_8 may be taken together with R_6 to form a bond between Q and X, provided there is no double bond simultaneously between X and Q and Q and Y; or R_4 and R_6 may form a bond between X and Y, when Y is NR_4 or CR_4R_5 and Q is not present;

$$R_3$$
 is $P \longrightarrow R_{10}$ or $Rb_1 \longrightarrow Rc_2$ Rc_2

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloakyl lower alkyl, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl lower alkyl, lower cycloalkyl heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

ring A₁ and ring B are independently aromatic containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms;

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR $_{31}$), O, S or NR $_{31}$; and R $_{31}$ is hydrogen or lower alkyl.

21. (Original) The compound according to Claim 20 of the formula:

or N-oxides thereof or salts thereof wherein

R₁ and R₂ taken together with the carbon atoms to which they are attached form an aryl or heteroaryl ring, wherein said aryl ring is an aromatic containing 6-14 ring carbon atoms and said heteroaryl ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring carbon atoms, said aryl ring and heteroaryl ring may each be unsubstituted or substituted with lower alkyl or an electron donating group;

Y is O, NR_4 or CR_4R_5 ;

R₅ is hydrogen or lower alkyl;

R₄ is hydrogen or lower alkyl;

X is CR_6R_7 or NR_6 ;

 R_6 and R_7 are independently hydrogen lower alkyl or R_6 and R_7 taken together may form an oxo;

Q is CR₈R₉ or NR₈;

 R_8 and R_9 are independently hydrogen or lower alkyl or R_7 and R_8 taken together with the carbon atom to which they are attached form an aryl ring; or R_8 may be taken with R_4 to form a bond between Q and Y; or R_8 may be taken together with R_6 to form a bond between Q and X; provided there is no double bond simultaneously between X and Q and Q and Y;

$$R_3$$
 is $P \longrightarrow R_{10}$ or Rb_2

$$R_{11}$$

$$Rb_1$$

$$Rc_2$$

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cyclalkenyl lower alkyl;

ring A₁ and ring B are independently aromatic containing 6 to 14 ring carbon atoms or cycloalkenyl or cycoalkyl, each containing 5 to 14 ring carbon atoms;

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR_{31}) , O, S or NR_{31} ; and R_{31} is hydrogen or lower alkyl.

22. (Original) The compound according to Claims 20 and 21 wherein R₁ and R₂ taken together with the carbon atoms to which they are attached form an aryl ring or heteroaryl ring, wherein said aryl ring is phenyl or naphthyl and said heteroaryl ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring carbon atoms and contains either at least 1 sulfur

ring atom or at least 1 oxygen ring atom or at least two nitrogen ring atoms, said aryl and heteroaryl ring may each be unsubstituted or substituted with lower alkyl or an electron donating group.

23. (Original) The compound according to Claim 20 having the formula:

$$R_1$$
 N R_2 OR_3

or N-oxides thereof or salts thereof wherein

 R_1 and R_2 taken together with the carbon atoms to which they are attached form an aryl or heteroaryl ring, wherein said aryl ring is an aromatic ring containing 6-14 ring carbon atoms and wherein said heteroaryl ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring carbon atoms, said aryl and heteroaryl ring may each be unsubstituted or substituted with lower alkyl or an electron donating group;

Y is O, or CR₄R₅;

R₅ is hydrogen or lower alkyl;

R₄ is hydrogen or lower alkyl;

X is CR₆R₇ or NR₆;

 $$R_{6}$$ and $$R_{7}$$ are independently hydrogen or lower alkyl or $$R_{6}$$ and $$R_{7}$$ taken together may form an oxo;

n is 0 or 1;

$$R_3$$
 is $P - R_{10}$ or Rb_1 Rc_2 Rc_2

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3;

R₁₂ and R₁₃ are independently lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

ring A₁ and ring B are independently aromatic containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms;

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR $_{31}$), O, S or NR $_{31}$; and R $_{31}$ is hydrogen or lower alkyl.

24. (Original) The compound according to Claim 20 of the formula:

or N-oxides thereof or salts thereof wherein

R₁ and R₂ taken together with the carbon atoms to which they are attached form an aryl or heteroaryl ring, wherein said aryl ring is an aromatic ring containing 6-14 ring carbon atoms and said heteroaryl ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring carbon atoms, said aryl and heteroaryl ring may each be unsubstituted or substituted with lower alkyl or an electron donating group;

Y is N or CR₅;

R₅ is hydrogen or lower alkyl;

X is CR₇ or N;

R₇ is hydrogen or lower alkyl;

$$R_3$$
 is $P \longrightarrow R_{10}$ or $Rb_1 \longrightarrow Rc_2$ Rc_2

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

ring A_1 and ring B are independently aromatic containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR_{31}) , O, S or NR_{31} ; and R_{31} is hydrogen or lower alkyl.

- 25. (Original) The compound according to any one of Claims 20-24 wherein R_{10} is OR_{12} , lower alkyl, aryl, or aryl lower alkyl; R_{11} is OR_{13} , lower alkyl, aryl, or aryl lower alkyl and R_{10} and R_{11} may be connected by a group selected form the group consisting of O, S, NH, or $(CH_2)_m$, and R_{12} and R_{13} are independently lower alkyl, aryl, or aryl lower alkyl.
 - 26. (Original) The compound according to Claim 25 wherein R_3 is

independently lower alkyl or aryl.

27. (Original) The compound according to Claim 25 wherein

$$R_3$$
 is $P \longrightarrow OR_{12}$ wherein R_{12} and R_{13} are OR_{13}

independently lower alkyl or aryl.

28. (Original) The compound according to Claim 20 of the formula

or N-oxides thereof or salts thereof.

29. (Original) The compound according to Claim 28 wherein R₃ is

$$R_{11} - P - R_{10}$$

wherein R_{10} is lower alkyl or aryl or OR_{12} ;

R₁₁ is lower alkyl or aryl or OR₁₀;

R₁₂ is lower alkyl and

R₁₃ is lower alkyl.

30. (Original) The compound according to Claim 29 wherein the compound has the formula:

31. (Original) The compound according to Claim 28 wherein the compound is

wherein R_{b1} , R_{b2} , R_{c1} and R_{c2} are independently hydrogen or lower alkyl, and T is O, S, NH or CH₂.

32. - 55. (Canceled)

56. (Original) A compound or salt, wherein the compound or the cation of the salt is of the formula

$$R_1$$
 Y_1
 Q_1
 N
 OR_{14}

wherein

 R_1 and R_2 taken together with the carbon atoms to which they are attached form an heteroaryl ring wherein said heteroaryl ring is an oxygen, sulfur or nitrogen heteroaromatic containing from 3 to 13 ring carbon atoms and 1-4 heteroatoms selected from O, S, and N, said heteroaryl ring may be unsubstituted or substituted with lower alkyl or electron donating group;

Y₁ is N or CR₁₅;

R₁₅ is H or lower alkyl;

Q₁ is N or CR₁₆;

R₁₆ is H or lower alkyl;

R₁₄ is a positively charged electron withdrawing group,

$$R_{10} = 0$$

$$R_{11} = 0$$

 SO_2R_{17} , lower alkyl carbonyl, aryl carbonyl, lower alkyl aryl, or BLK_1 - AA_1

R₁₇ is aryl, aryl lower alkyl or lower alkyl;

 AA_1 is an amino acid or peptide less a hydrogen atom on the N-terminus and an OH on the C-terminus;

BLK₁ is an amino protecting group,

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

ring A_1 and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is CHR₃₁, O, S or NR₃₀; and

 R_{31} is hydrogen or lower alkyl.

- 57. (Original) The salt according to Claim 56 wherein R_{14} is a positively charged electron withdrawing group.
- 58. (Original) The salt according to Claim 57 wherein R_{14} is an electron withdrawing group of the formula

wherein

 R_{18} , R_{19} , R_{20} , R_{21} , R_{22} , R_{23} and R_{24} are independently hydrogen, lower alkyl, or lower alkoxy lower alkyl or R_{18} and R_{19} taken together with the atoms to which they are attached form a ring containing up to 6 ring atoms and

up to a total of 5 carbon ring atoms or R₂₀ and R₂₁ taken together with the nitrogen atom to which they are attached form a 5 or 6 membered nitrogen containing heterocyclic ring containing up to a total of 5 carbon ring atoms or R₁₈ and R₂₀ taken together with the nitrogen atom and the carbon atom to which they are attached form a heterocyclic ring, or R₂₂ and R₂₃ taken together with the atoms to which they are attached form a ring containing up to 6 ring atoms and up to a total of 5 carbon atoms or R₂₄ and R₂₅ taken together with the carbon atoms to which they are attached form a ring containing up to 6 ring atoms and up to a total of 5 carbon atoms.

59. (Original) The salt according to Claim 58 wherein R_{14} is

⊕ or P(NR₂₄R₂₅)₃

wherein R_{19} , R_{20} , and R_{21} , R_{24} and R_{25} are independently hydrogen, or lower alkyl or loweralkoxy lower alkyl and n_1 is 0 or 1.

60. (Original) The salt according to Claim 59 wherein R_{19} and R_{21} or R_{24} and R_{25} are the same

61. (Original) The salt according to Claim 56 wherein R₁₄ is

$$R_{23}R_{22}N \longrightarrow P \longrightarrow NR_{24}R_{25}$$

$$NR_{20}R_{21}$$

$$N(R_{18}R_{19})_{2},$$

$$N(R_{20})_{2}$$

$$R_{19}$$

$$R_{21}$$
or
$$R_{21}$$

$$R_{20}$$

wherein R₁₈, R₁₉, R₂₀, R₂₁, R₂₂, R₂₃, R₂₄ and R₂₅ are independently hydrogen, methyl, ethyl, propyl, butyl, pentyl, or CH₂CH₂OCH₂CH₃.

- 62. (Original) The salt according to Claim 61 wherein R_{23} , R_{22} , R_{20} , R_{21} , R_{24} , R_{25} are the same or R_{18} , R_{19} and R_{20} are the same or R_{19} and R_{21} are the same.
- 63. (Original) The compound or salt according to Claim 56 wherein R_{14} is \oplus -P-(NMe₂)₃, lower alkyl carbonyl, lower arylalkyl carbonyl, aryl carbonyl,

H
|
wherein U is N, CH₂ or O.

64. (Original) The compound according to Claim 56 wherein R₁₄ is

65. (Original) The compound according to Claim 64 wherein R_{10} is OR_{12} , lower alkyl, aryl, or aryl lower alkyl; R_{11} is OR_{13} , lower alkyl, aryl; or aryl lower alkyl and R_{10} and R_{11} may optionally be connected by a bridging group selected form the group consisting of O, S, NH, and $(CH_2)_m$; m is 1-3; and R_{12} and R_{13} are independently lower alkyl, aryl, or aryl lower alkyl.

17

66. (Original) The compound according to Claim 56 wherein

$$R_{14}$$
 is $P - R_{10}$

wherein R₁₀ and R₁₁ are independently lower alkyl or aryl.

67. (Original) The compound according to Claim 56 wherein

$$R_{14} \text{ is } P \longrightarrow OR_{12}$$

$$R_{13}$$

wherein R_{12} and R_{13} are independently lower alkyl or aryl.

68. (Original) The compound or salt according to Claim 56 wherein the compound or the cation of the salt has the formula

$$R_1$$
 N
 Q_1
 N
 OR_{14}

69. (Original) The compound or salt according to Claim 56 wherein the compound or the cation of the salt has the formula

70. (Original) The compound according to Claim 56 wherein the compound or the cation of the salt has the formula

$$D \cap A \cap Y_1 \cap Q_1 \cap Q_$$

wherein

A is N or CR₂₄;

D is CR₂₅ or N;

E is CR₂₆ or N;

G is CR₂₇ or N;

 R_{24} , R_{25} , R_{26} and R_{22} are independently hydrogen or lower alkyl or electron donating group or R_{25} and R_{26} or R_{24} and R_{25} or R_{26} and R_{27} taken together with the carbon atoms to which they are respectively attached from an aryl ring;

wherein at least one of A, D, E G, is N;

 Y_1 is N or CR_{15} ;

R₁₅ is H or lower alkyl;

 Q_1 is N or CR_{16} ;

 R_{16} is H or lower alkyl;

R₁₄ is a positively charged electron withdrawing group,

$$R_{10} = 0$$
 R_{11}
 R_{11}

SO₂R₁₇, lower alkyl carbonyl, aryl carbonyl, loweralkyl aryl, or BLK₁-AA₁

R₁₇ is aryl, aryl lower alkyl or lower alkyl;

AA₁ is an amino acid or peptide less a hydrogen atom on the N-terminus and an OH on the C-terminus;

BLK₁ is an amino protecting group,

R₁₀ is OR₁₂, lower alkyl, aryl aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cyclalkenyl lower alkyl;

ring A₁ and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR $_{31}$), O, S or NR $_{31}$; and

R₃₁ is hydrogen or lower alkyl.

71. (Original) A compound or salt wherein the compound or the cation of the salt has the formula:

wherein

D is CR₂₅ or N;

E is CR₂₆ or N;

J is NR_{28} , O, $CR_{28}R_{29}$ or S(O)p;

 R_{25} and R_{26} are independently hydrogen or lower alkyl or an electron donating group or R_{25} and R_{26} taken together with the carbon atoms to which attached form an aryl ring;

R₂₈ is hydrogen or lower alkyl or an electron donating group;

R₂₉ is hydrogen or lower alkyl;

p is 0, 1 or 2;

 Y_1 is N or CR_{15} ;

R₁₅ is H or lower alkyl;

 Q_1 is N or CR_{16} ;

R₁₆ is H or lower alkyl;

R₁₆ is hydrogen, a positively charged electron withdrawing group,

$$\begin{array}{c|c}
R_{10} & P = 0 \\
R_{11} & R_{01}
\end{array}$$

$$\begin{array}{c|c}
R_{11} & R_{02} \\
R_{01} & R_{02}
\end{array}$$

SO₂R₁₇, lower alkyl carbonyl, aryl carbonyl, loweralkyl aryl, or BLK₁-AA₁

R₁₇ is aryl, aryl lower alkyl or lower alkyl;

AA₁ is an amino acid or peptide less a hydrogen atom on the N-terminus and an OH on the C-terminus;

BLK₁ is an amino protecting group,

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cyclalkenyl lower alkyl;

ring A₁ and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR₃₁), O, S or NR₃₁; and

R₃₁ is hydrogen or lower alkyl.

72. (Original) The compound or salt according to Claim 70 where the compound or the cation has the formula

$$D \longrightarrow A \longrightarrow Y_1 \searrow Q_1$$

$$E \longrightarrow G \longrightarrow N$$

$$OR_{14}$$

wherein

A is N or CR₂₄;

D is CR₂₅ or N;

E is CR₂₆ or N;

G is CR27 or N;

R₂₄, R₂₅, R₂₆ and R₂₇ are independently hydrogen or lower alkyl; wherein at least one of A, D, E G, is N;

 Y_1 is N or CR_{15} ;

R₁₅ is H or lower alkyl;

 Q_1 is N or CR_{16} ;

R₁₆ is H or lower alkyl;

R₁₄ is a positively charged electron withdrawing group,

$$R_{10} \longrightarrow P \longrightarrow O$$
 Rb_2 Rb_1 Rc_2 Rc_2

 SO_2R_{17} , lower alkyl carbonyl, aryl carbonyl, loweralkyl aryl, or BLK_1 - AA_1 R_{17} is aryl, aryl lower alkyl or lower alkyl;

AA₁ is an amino acid or peptide less a hydrogen atom on the N-terminus and an OH on the C-terminus;

BLK₁ is an amino protecting group,

R₁₀ is OR₁₂, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl, or lower cycloalkenyl lower alkyl;

R₁₁ is OR₁₃, lower alkyl, aryl, aryl lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

and R_{10} and R_{11} may optionally be connected by a bridging group selected from the group consisting of O, S, NR_{30} , or $(CHR_{30})_m$, wherein each R_{30} is independently lower alkyl or hydrogen and m is 1-3; and

R₁₂ and R₁₃ are independently lower alkyl, lower cycloalkyl, lower cycloalkyl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower cycloalkenyl or lower cycloalkenyl lower alkyl;

ring A_1 and ring B are independently an aromatic ring containing 6 to 14 ring carbon atoms or cycloalkenyl or cycloalkyl, each containing 5 to 14 ring carbon atoms, and

 R_{b1} , R_{c1} , R_{b2} , R_{c2} are independently hydrogen, lower alkyl or electron donating group;

T is (CHR_{31}) , O, S or NR_{31} ; and

R₃₁ is hydrogen or lower alkyl.

73. (Original) The compound according to Claim 72 wherein R_{14} is

$$R_{11}$$
 P R_{10} or R_{10} $R_{$

wherein R_{10} and R_{11} , R_{b1} , R_{b2} , R_{c1} , R_{c2} are independently hydrogen or lower alkyl and T is O, CH₂, NH or S and ring A₁ and ring B are independently an aromatic ring.

74. (Original) The compound according to Claim 56 wherein

$$R_{14}$$
 is $P \longrightarrow OR_{12}$ or Rb_1 Rc_2 Rc_1

wherein R_{12} , R_{13} , R_{b1} , R_{b2} , R_{c1} and R_{c2} are independently hydrogen or lower alkyl;

ring A_1 and ring B are independently phenyl; and T is CH_2 , O, S or NH.

75. (Original) The compound according to Claim 56 wherein the compound is a salt, the cation of which has the formula

76. (Original) The compound according to Claim 56 wherein the compound has the formula

wherein R_b , R_{b1} , R_c , are independently lower alkyl or hydrogen and T is CH_2 , NH, O or S.

77. – 129 (Canceled)