Normal and Unimodular Hierarchical Models

Daniel Irving Bernstein and Seth Sullivant

North Carolina State University

dibernst@ncsu.edu
http://www4.ncsu.edu/~dibernst/

http://arxiv.org/abs/1502.06131 http://arxiv.org/abs/1508.05461

October 3, 2015

Example

• Let T be the following $3 \times 2 \times 2$ table

 If we sum entries going down, we get the 2-way margin below. If we sum entries going left and back, we get the 1-way margin below.

$$\begin{pmatrix} 3 & 6 \\ 6 & 2 \end{pmatrix} \qquad \begin{pmatrix} 5 \\ 6 \\ 6 \end{pmatrix}$$

We are interested in the matrix that maps tables to margins

Main Definition

- $\mathbf{d} = (d_1, d_2, \dots, d_n)$ is an integer vector, $d_i \geq 2$
- C denotes a simplicial complex on [n]
- ullet facet($\mathcal C$) denotes the inclusion-maximal faces of $\mathcal C$

Definition

Let $\mathcal{A}_{\mathcal{C},\mathbf{d}}$ be the matrix defined as follows:

- Columns are indexed by elements of $\bigoplus_{i=1}^{n} [d_i]$
- ullet Rows are indexed by $igoplus_{F \in \mathsf{facet}(\mathcal{C})} igoplus_{j \in F} [d_j]$
- Entry in row $(F,(j_1,\ldots,j_k))$ and column (i_1,\ldots,i_n) is 1 if $i|_F=(j_1,\ldots,j_k)$
- All other entries are 0

Example

- Let n = 3 with $d_1 = 3, d_2 = 2, d_3 = 2$
- Let $\mathcal C$ be the complex $\stackrel{1}{\bullet}$ $\stackrel{2}{\bullet}$ $\stackrel{3}{\bullet}$
- Then $\mathcal{A}_{\mathcal{C},\mathbf{d}}$ is the following matrix:

	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	1 1 2	1 2 1	1 2 2	2 1 1	2 1 2	2 2 1	2 2 2	3 1 1	3 1 2	3 2 1	3 2 2 \ \
$\overline{\{1\},1}$	1	1	1	1	0	0	0	0	0	0	0	0
$\{1\}, 2$	0	0	0	0	1	1	1	1	0	0	0	0
$\{1\}, 3$	0	0	0	0	0	0	0	0	1	1	1	1
${\{2,3\},11}$	1	0	0	0	1	0	0	0	1	0	0	0
$\{2,3\},12$	0	1	0	0	0	1	0	0	0	1	0	0
$\{2,3\},21$	0	0	1	0	0	0	1	0	0	0	1	0
$\{2,3\},22$	0 /	0	0	1	0	0	0	1	0	0	0	1 /

Motivating Question

Definition (Unimodularity)

Assume $A \in \mathbb{Z}^{d \times n}$ has full row rank. We say that A is **unimodular** if all nonsingular $d \times d$ submatrices have determinant ± 1 .

Definition (Normality)

We say that $A \in \mathbb{Z}^{d \times n}$ is **normal** if $\mathbb{Z}A \cap \mathbb{R}_{\geq 0}A = \mathbb{N}A$. This is a weaker condition than unimodularity.

Question

When is $\mathcal{A}_{\mathcal{C},\mathbf{d}}$ unimodular? When is it normal?

Observation

If $\mathcal{A}_{\mathcal{C},\mathbf{d}}$ is unimodular/normal, then so is $\mathcal{A}_{\mathcal{C},(2,\ldots,2)}$.

Our Results

Our results include:

- Necessary and sufficient conditions on $\mathcal C$ guaranteeing unimodularity of $\mathcal A_{\mathcal C,\mathbf 2}$
- ullet Progress towards a similar classification for normal $\mathcal{A}_{\mathcal{C},\mathbf{2}}$

Note

We abuse language and say that a simplicial complex $\mathcal C$ is unimodular/normal to mean that $\mathcal A_{\mathcal C,(2,\dots,2)}$ is unimodular/normal.

Applications include:

- Integer programming
- Disclosure limitation
- Compute Markov basis via toric fiber product (Rauh-Sullivant 2014)

Unimodularity-Preserving Operations

Definition (Adding a cone vertex)

If $\mathcal C$ is a simplicial complex on [n], define $\mathrm{cone}(\mathcal C)$ to be the complex on [n+1] with facets

$$facet(cone(C)) = \{F \cup \{n+1\} : F \in facet(C)\}.$$

Definition (Adding a ghost vertex)

If C is a simplicial complex on [n], define G(C) to be the simplicial complex on [n+1] that has exactly the same faces as C.

Definition (Alexander Duality)

If C is a simplicial complex on [n], then the Alexander dual complex C^* is the simplicial complex on [n] with facets

$$facet(\mathcal{C}^*) = \{[n] \setminus S : S \text{ is a minimal non-face of } \mathcal{C}\}.$$

Unimodularity: Constructive Classification

Definition

We say that a simplicial complex C is *nuclear* if it satisfies one of the following:

- **①** $C = \Delta_k$ for some $k \ge -2$ (i.e. a simplex)
- ② $C = \Delta_m \sqcup \Delta_n$ (i.e. a disjoint union of simplices)
- 3 C = cone(D) where D is nuclear
- ${f 0}$ ${\cal C}={\it G}({\cal D})$ where ${\cal D}$ is nuclear
- $oldsymbol{\circ}$ C is the Alexander dual of a nuclear complex.

Theorem (B-Sullivant 2015)

The matrix $A_{\mathcal{C}}$ is unimodular if and only if \mathcal{C} is nuclear.

Simplicial Complex Minors

Definition (Deletion)

Let \mathcal{C} be a simplicial complex on [n]. Let $v \in [n]$ be a vertex of \mathcal{C} . Then $\mathcal{C} \setminus v$ denotes the induced simplicial complex on $[n] \setminus \{v\}$.

Definition (Link)

Let $\mathcal C$ be a simplicial complex on [n]. Let $v \in [n]$ be a vertex of $\mathcal C$. Then $\operatorname{link}_v(\mathcal C)$ denotes the simplicial complex on $[n] \setminus \{v\}$ with facets

 $\mathsf{facet}(\mathsf{link}_{v}(\mathcal{C})) = \{F \setminus \{v\} : F \text{ is a facet of } \mathcal{C} \text{ with } v \in F\}.$

Definition (Simplicial Complex Minor)

Let \mathcal{C}, \mathcal{D} be simplicial complexes. If \mathcal{D} can be obtained from \mathcal{C} by taking links of vertices and deleting vertices, then we say that \mathcal{D} is a *minor* of \mathcal{C} .

Unimodularity: Excluded Minor Classification

Theorem (B-Sullivant 2015)

The matrix A_C is unimodular if and only if C has no simplicial complex minors isomorphic to any of the following

- $\partial \Delta_k \sqcup \{v\}$, the disjoint union of the boundary of a simplex and an isolated vertex
- ullet O_6 , the boundary complex of an octahedron, or its Alexander dual O_6^*
- The four simplicial complexes shown below

Sketch of Proof

- ullet C nuclear \Longrightarrow C unimodular
 - Simplices are unimodular
 - A disjoint union of two simplices is unimodular
 - Adding cone and ghost vertices and taking duals preserves unimodularity
- ullet C unimodular $\Longrightarrow \mathcal{C}$ avoids forbidden minors
 - The forbidden minors are not unimodular
 - Taking minors preserves unimodularity
- ullet C avoids forbidden minors \Longrightarrow C nuclear
 - If $\mathcal C$ avoids the forbidden minors but has a 4-cycle, then it must be an iterated cone over the 4-cycle. This is nuclear.
 - So focus on 4-cycle-free complexes. Then the 1-skeleton is either a complete graph, or two complete graphs glued along a clique.
 - ullet Complex induction argument based on the link of a vertex of ${\cal C}.$

Next Steps - Unimodularity

Question

Given a simplicial complex C on [n] and an integer vector $\mathbf{d} = (d_1, \dots, d_n)$ with $d_i \geq 2$, is $\mathcal{A}_{C,\mathbf{d}}$ unimodular?

Corollary (B-Sullivant 2015)

If $A_{C,d}$ is unimodular, then C is nuclear.

Question

Let $\mathcal C$ and $\mathbf d$ be specified by the figure below. For which values of p and q is $\mathcal A_{\mathcal C,\mathbf d}$ unimodular?

Known Classification Results - Normality

Theorem (Sullivant 2010)

If C is a graph, then $A_{C,2}$ is normal if and only if C is free of K_4 -minors.

Theorem (Bruns, Hemmecke, Hibi, Ichim, Ohsugi, Köppe, Söger 2007-2011)

Let C be a complex whose facets are all m-1 element subsets of [m]. Then $A_{C,\mathbf{d}}$ is normal in precisely the following situations up to symmetry:

- lacktriangledown At most two of the d_v are greater than two
- **2** m = 3 and $\mathbf{d} = (3, 3, a)$ for any $a \in \mathbb{N}$
- **3** m = 3 and $\mathbf{d} = (3, 4, 4), (3, 4, 5)$ or (3, 5, 5).

Theorem (Rauh-Sullivant 2014)

Let C be the four-cycle graph. Then $A_{C,d}$ is normal if $\mathbf{d}=(2,a,2,b)$ or $\mathbf{d}=(2,a,3,b)$ with $a,b,\in\mathbb{N}$.

Corollary of Unimodular Classification

Definition

Let C be a simplicial complex on [n]. We say a facet of C that has n-1 vertices is called a **big facet**.

Proposition

If C is a complex with a big facet, then C is normal if and only if unimodular.

So our classification result on unimodular $\mathcal C$ immediately gives a classification of the normal $\mathcal C$ when $\mathcal C$ has a big facet.

Normality Preserving Operations

Theorem (Sullivant 2010)

Normality of $\mathcal{A}_{\mathcal{C},d}$ is preserved under the following operations on the simplicial complex

- Deleting vertices
- 2 Contracting edges
- Gluing two simplicial complexes along a common face
- Adding or removing a cone or ghost vertex.

Theorem (B-Sullivant 2015)

Normality of $A_{\mathcal{C},d}$ is preserved when taking links of vertices of \mathcal{C} .

Minimally Non-Normal Simplicial Complexes

Question

Which simplicial complexes are minimally non-normal with respect to the operations of deleting vertices, contracting edges, gluing two complexes along a facet, removing cone and ghost vertices, and taking links of vertices?

Computational method:

- All simplicial complexes on 3 or fewer vertices are normal
- Choose two normal simplicial complexes \mathcal{C},\mathcal{D} on n-1 vertices. Create simplicial complex \mathcal{C}' on n vertices by attaching a new vertex v to \mathcal{C} such that $\operatorname{link}_v(\mathcal{C}')=\mathcal{D}$
- ullet See if (non)normality of \mathcal{C}' can be certified by reducing to a smaller complex via our normality-preserving operations
- ullet If not, check normality of \mathcal{C}' using Normaliz. If non-normal, then minimally non-normal

Minimally Non-Normal Simplicial Complexes

We were able to use the computational method to determine normality of all but 6 of the complexes on up to 6 vertices.

So far, we know that the set of minimally non-normal simplicial complexes consists of:

- 20 sporadic complexes, obtained by computational method
- Two infinite families, obtained by theoretical means

References

Daniel Irving Bernstein and Seth Sullivant. Unimodular Binary Hierarchical Models. ArXiv:1502.06131. 2015.

Daniel Irving Bernstein and Seth Sullivant. Normal Binary Hierarchical Models

ArXiv:1508.05461, 2015

Winfried Bruns, Raymond Hemmecke, Bogdan Ichimc, Matthias Kpped and Christof Sgera. Challenging Computations of Hilbert Bases of Cones Associated with Algebraic Statistics Exp. Math. 20, 25 - 33 (2011)

Nakayuki Hlbi and Hidefumi Ohsugi

Toric Ideals Arising from Contingency Tables

Commutative Algebra and Combinatorics

Ramanujan Mathematical Society Lecture Notes Series, Number 4, Ramanujan Math. Soc., Mysore, 2007, pp. 91-115.

Johannes Rauh and Seth Sullivant

Lifting markov bases and higher codimension toric fiber products

ArXiv:1404.6392 2014

Bernd Sturmfels.

Gröbner Bases and Convex Polytopes, volume 8 of University Lecture Series.

American Mathematical Society, Providence, RI, 1996.

Seth Sullivant.

Normal binary graph models.

Ann. Inst. Statist. Math., 62(4):717-726, 2010.

