

A GENERALIZATION OF WOLSTENHOLME'S HARMONIC SERIES CONGRUENCE

HAO PAN

ABSTRACT. Let A, B be two non-zero integers. Define the Lucas sequences $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ by

$$u_0 = 0, \ u_1 = 1, \ u_n = Au_{n-1} - Bu_{n-2} \text{ for } n \geq 2$$

and

$$v_0 = 2, \ v_1 = A, \ v_n = Av_{n-1} - Bv_{n-2} \text{ for } n \geq 2.$$

For any $n \in \mathbb{Z}^+$, let w_n be the largest divisor of u_n prime to u_1, u_2, \dots, u_{n-1} . We prove that for any $n \geq 5$

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2 - 1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{w_n^2},$$

where $\Delta = A^2 - 4B$.

1. INTRODUCTION

Let A, B be two non-zero integers. Define the Lucas sequence $\{u_n\}_{n=0}^{\infty}$ by

$$u_0 = 0, \ u_1 = 1 \text{ and } u_n = Au_{n-1} - Bu_{n-2} \text{ for } n \geq 2.$$

Also its companion sequence $\{v_n\}_{n=0}^{\infty}$ is given by

$$v_0 = 2, \ v_1 = A \text{ and } v_n = Av_{n-1} - Bv_{n-2} \text{ for } n \geq 2.$$

Let $\Delta = A^2 - 4B$ be the discriminant of $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$. It is easy to show that

$$v_n = \alpha^n + \beta^n$$

and

$$u_n = \sum_{j=0}^{n-1} \alpha^j \beta^{n-1-j} = \begin{cases} n\alpha^{n-1} & \text{if } \Delta = 0, \\ (\alpha^n - \beta^n)/(\alpha - \beta) & \text{otherwise,} \end{cases}$$

1991 *Mathematics Subject Classification.* Primary 11B39; Secondary 11A07.

Key words and phrases. Wolstenholme's harmonic series congruence, Lucas sequence.

where

$$\alpha = \frac{1}{2}(A + \sqrt{\Delta}), \beta = \frac{1}{2}(A - \sqrt{\Delta}).$$

Let $p \geq 5$ be a prime. The well-known Wolstenholme's harmonic series congruence asserts that

$$\sum_{j=1}^{p-1} \frac{1}{j} \equiv 0 \pmod{p^2}. \quad (1.1)$$

In [3], Kimball and Webb proved a generalization of (1.1) involving the Lucas sequences. Let r be the rank of apparition of p in the sequence $\{u_n\}_{n=0}^\infty$, i.e., r be the least positive integer such that $p \mid u_r$. Kimball and Webb showed that

$$\sum_{j=1}^{r-1} \frac{v_j}{u_j} \equiv 0 \pmod{p^2} \quad (1.2)$$

provided that $\Delta = 0$ or $r = p \pm 1$.

In this paper we will extend the result of Kimball and Webb to arbitrary Lucas sequences. For any positive integer n , let w_n be the largest divisor of u_n prime to u_1, u_2, \dots, u_{n-1} . Here w_n was firstly introduced by Hu and Sun [2] in an extension of the Lucas congruence for Lucas' u -nomial coefficients.

Theorem 1.1. *Let $n \geq 5$ be a positive integer. Then*

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2 - 1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{w_n^2}. \quad (1.3)$$

It is easy to check that either all u_n are odd when $n \geq 1$, or one of $u_2 = A$ and $u_3 = A^2 - B$ is even. So w_n is odd for any $n > 3$. Also we can verify that either u_n is prime to 3 for each $n \geq 1$, or 3 divides one of u_2, u_3 and $u_4 = A^3 - 2AB$. Hence $3 \nmid w_n$ provided that $n > 4$. Finally we mention that w_n is always prime to v_n when $n \geq 3$. Indeed, since

$$u_n = Au_{n-1} - Bu_{n-2} \text{ and } (w_n, Au_{n-1}) = (w_n, u_2u_{n-1}) = 1,$$

we have w_n and B are co-prime. And from

$$v_n = u_{n+1} - Bu_{n-1} = Au_n - 2Bu_{n-1},$$

it follows that $(w_n, v_n) = (w_n, 2Bu_{n-1}) = 1$.

The Fibonacci numbers F_0, F_1, \dots are given by

$$F_0 = 0, F_1 = 1 \text{ and } F_n = F_{n-1} + F_{n-2} \text{ for } n \geq 2.$$

And the Lucas numbers L_0, L_1, \dots are given by

$$L_0 = 2, L_1 = 1 \text{ and } L_n = L_{n-1} + L_{n-2} \text{ for } n \geq 2.$$

Then by Theorem 1.1, we immediately have

Corollary 1.2. *Let $p \geq 5$ be a prime. Let n be the least positive integer such that $p \mid F_n$. Then we have*

$$\sum_{j=1}^{n-1} \frac{L_j}{F_j} \equiv \frac{5(n^2 - 1)}{6} \cdot \frac{F_n}{L_n} \pmod{p^2}. \quad (1.4)$$

The proof of Theorem 1.1 will be given in the next section.

2. PROOF OF THEOREM 1.1

For any $n \in \mathbb{N}$, the q -integer $[n]_q$ is given by

$$[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + \cdots + q^{n-1}.$$

Now we consider $[n]_q$ as the polynomial in the variable q . Recently Shi and Pan [5] established a q -analogue of (1.1) for prime $p \geq 5$:

$$\sum_{j=1}^{p-1} \frac{1}{[j]_q} \equiv \frac{p-1}{2}(1-q) + \frac{p^2-1}{24}(1-q)^2[n]_q \pmod{[p]_q^2}. \quad (2.1)$$

Let

$$\Phi_n(q) = \prod_{\substack{1 \leq k \leq n \\ (k,n)=1}} (q - \zeta_n^k)$$

be the n -th cyclotomic polynomial, where $\zeta_n = e^{2\pi i/n}$. We know that $\Phi_n(q)$ is a polynomial with integral coefficients, and clearly $\Phi_n(q)$ is prime to $[j]_q$ for each $1 \leq j < n$. Indeed, using similar method, we can easily extend (2.1) as follows:

Proposition 2.1. *Let n be a positive integer. Then*

$$24 \sum_{j=1}^{n-1} \frac{1}{[j]_q} \equiv 12(n-1)(1-q) + (n^2-1)(1-q)^2[n]_q \pmod{\Phi_n(q)^2}. \quad (2.2)$$

For the proof of (2.1) and (2.2), the reader may refer to [5]. From (2.2), we deduce that

$$\begin{aligned} 12 \sum_{j=1}^{n-1} \frac{1 + q^j}{[j]_q} &= 12 \sum_{j=1}^{n-1} \frac{2 - (1 - q^j)}{[j]_q} \\ &= 24 \sum_{j=1}^{n-1} \frac{1}{[j]_q} - 12(n-1)(1-q) \\ &\equiv (n^2-1)(1-q)^2[n]_q \pmod{\Phi_n(q)^2}. \end{aligned}$$

And the above congruence can be rewritten as

$$\left(12 \sum_{j=1}^{n-1} \frac{1+q^j}{[j]_q} - (n^2-1)(1-q)(1-q^n) \right) \prod_{j=1}^{n-1} [j]_q \equiv 0 \pmod{\Phi_n(q)^2}.$$

Since $\Phi_n(q)$ is a primitive polynomial, by Gauss's lemma (cf. [4], Chapter IV Theorem 2.1 and Corollary 2.2), there exists a polynomial $G(q)$ with integral coefficients such that

$$\left(12 \sum_{j=1}^{n-1} \frac{1+q^j}{[j]_q} - (n^2-1)(1-q)(1-q^n) \right) \prod_{j=1}^{n-1} [j]_q = G(q)\Phi_n(q)^2. \quad (2.3)$$

Proof of Theorem 1.1. When $\Delta = 0$, the theorem reduces to Wolstenholme's congruence (1.1). So below we assume that $\Delta \neq 0$, i.e., $\alpha \neq \beta$. Let p be a prime with $p \mid w_n$, and let m be the integer such that $p^m \mid w_n$ but $p^{m+1} \nmid w_n$. Obviously we only need to show that

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2-1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{p^{2m}}$$

for each such p and m .

Let $\mathbb{K} = \mathbb{Q}(\sqrt{\Delta})$ and let $\mathcal{O}_{\mathbb{K}}$ be the ring of algebraic integers in \mathbb{K} . Clearly $\alpha, \beta \in \mathcal{O}_{\mathbb{K}}$. Let (p) denote the ideal generated by p in $\mathcal{O}_{\mathbb{K}}$. We know that if $\left(\frac{\Delta}{p}\right) = -1$ then (p) is prime in $\mathcal{O}_{\mathbb{K}}$, where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol. Also there exist two distinct prime ideal \mathfrak{p} and \mathfrak{p}' such that $(p) = \mathfrak{p}\mathfrak{p}'$ provided that $\left(\frac{\Delta}{p}\right) = 1$. Finally when $p \mid \Delta$, (p) is the square of a prime ideal \mathfrak{p} . The reader can find the details in [1]. Let

$$\mathfrak{P} = \begin{cases} (p) & \text{if } \left(\frac{\Delta}{p}\right) = -1 \text{ or } 0, \\ \mathfrak{p} & \text{if } \left(\frac{\Delta}{p}\right) = 1. \end{cases}$$

Obviously either α or β is prime to \mathfrak{P} , otherwise we must have \mathfrak{P} is not prime to u_j for any $j \geq 2$, which implies that $p \mid u_j$. Without loss of generality, we may assume that β is prime to \mathfrak{P} .

Lemma 2.2. *Let p be a prime and $k \in \mathbb{Z}$. Suppose that $\left(\frac{\Delta}{p}\right) = 1$ and $(p) = \mathfrak{p}\mathfrak{p}'$. Then for any $m \in \mathbb{Z}^+$, $\mathfrak{p}^m \mid k$ implies that $p^m \mid k$.*

Proof. Observe that $\sigma : \sqrt{\Delta} \mapsto -\sqrt{\Delta}$ is an automorphism over \mathbb{K} . Also we know that $\sigma(\mathfrak{p}) = \mathfrak{p}'$. Hence

$$\mathfrak{p}'^m = \sigma(\mathfrak{p}^m) \mid \sigma(k) = k.$$

Since \mathfrak{p} and \mathfrak{p}' are distinct prime ideals, by the unique factorization theorem, we have $(p)^m = \mathfrak{p}^m \mathfrak{p}'^m$ divides k . \square

Now it suffices to prove that

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} \equiv \frac{(n^2 - 1)\Delta}{6} \cdot \frac{u_n}{v_n} \pmod{\mathfrak{P}^{2m}}.$$

For any $l \in \mathbb{Z}^+$, let

$$\Phi_l(\alpha, \beta) = \beta^{\varphi(l)} \Phi_l(\alpha/\beta) = \prod_{\substack{1 \leq d \leq l \\ (d, l) = 1}} (\alpha - \zeta_l^d \beta),$$

where φ is the Euler totient function. Apparently $\Phi_l(\alpha, \beta) \in \mathcal{O}_{\mathbb{K}}$. Notice that

$$u_l = \frac{\alpha^l - \beta^l}{\alpha - \beta} = \prod_{1 < d, d|l} \beta^{\varphi(d)} \Phi_d(\alpha/\beta) = \prod_{1 < d, d|l} \Phi_d(\alpha, \beta).$$

Hence u_l is always divisible by $\Phi_l(\alpha, \beta)$. Then we have w_n divides

$$\Phi_n(\alpha, \beta) = \frac{u_n}{\prod_{\substack{1 < d < n \\ d|n}} \Phi_d(\alpha, \beta)}$$

since w_n is prime to u_d whenever $1 \leq d < n$.

Substituting α/β for q in (2.3), and noting that

$$u_j = \beta^{j-1} \frac{1 - (\alpha/\beta)^j}{1 - \alpha/\beta} = \beta^{j-1} [j]_{\alpha/\beta} \text{ and } v_j = \beta^j (1 + (\alpha/\beta)^j),$$

we obtain that

$$\left(12\beta^{-1} \sum_{j=1}^{n-1} \frac{v_j}{u_j} - (n^2 - 1)\beta^{-n-1}(\alpha - \beta)^2 u_n \right) \prod_{j=1}^{n-1} \beta^{1-j} u_j = \beta^{-2\varphi(n)} G(\alpha/\beta) \Phi_d(\alpha, \beta)^2.$$

As $(w_n, 6) = 1$ and \mathfrak{P} is prime to β , we conclude that

$$\sum_{j=1}^{n-1} \frac{v_j}{u_j} - \frac{(n^2 - 1)\Delta}{12} \beta^{-n} u_n \equiv 0 \pmod{(\mathfrak{P}^m)^2}.$$

Finally, since

$$\alpha^n = \frac{1}{2}(v_n + u_n\sqrt{\Delta}) \text{ and } \beta^n = \frac{1}{2}(v_n - u_n\sqrt{\Delta}),$$

we have

$$\alpha^n \equiv \beta^n \equiv v_n/2 \pmod{w_n}.$$

All are done. \square

Acknowledgment. I thank the referee for the valuable comments on this paper. I also thank my advisor, Professor Zhi-Wei Sun, for his helpful suggestions.

REFERENCES

- [1] E. Hecke, *Lectures on the Theory of Algebraic Numbers* (Graduated texts in mathematics; 77), Springer-Verlag, New York, 1981.
- [2] H. Hu and Z.-W. Sun, *An extension of Lucas' theorem*, Proc. Amer. Math. Soc. **129** (2001), 3471–3478.
- [3] W. A. Kimball and W. A. Webb, *Some generalizations of Wolstenholme's theorem*, Applications of Fibonacci numbers, Vol. 8, Kluwer Acad. Publ., Dordrecht, 1999, 213–218.
- [4] S. Lang, *Algebra*. Revised third edition. (Graduated texts in mathematics; 211), Springer-Verlag, New York, 2002.
- [5] L.-L. Shi and H. Pan, *A q -analogue of Wolstenholme's harmonic series congruence*, Amer. Math. Monthly, to appear, arXiv:math.NT/0507495.

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, PEOPLE'S REPUBLIC OF CHINA

E-mail address: haopan79@yahoo.com.cn