Syntax Analysis – Part V

(Finish LR(0) Parsing, Start on LR(1) Parsing)

Yongjun Park
Hanyang University

From Last Time: Shift-Reduce Parsing

$$S \rightarrow S + E \mid E$$

E \rightarrow num \rightarrow (S)

derivation	st
(1+2+(3+4))+5	
(1+2+(3+4))+5	(
(1+2+(3+4))+5	(1
(E+2+(3+4))+5	(E
(S+2+(3+4))+5	(5
(S+2+(3+4))+5	(5
(S+2+(3+4))+5	(5
(S+E+(3+4))+5	(5
(S+(3+4))+5	(5
•••	

input stream	action
(1+2+(3+4))+5	shift
1+2+(3+4))+5	shift
+2+(3+4))+5	reduce E→ num
+2+(3+4))+5	reduce S→ E
+2+(3+4))+5	shift
2+(3+4))+5	shift
+(3+4))+5	reduce E→ num
+(3+4))+5	reduce S → S+E
+(3+4))+5	shift
(3+4))+5	shift
3+4))+5	shift
+4))+5	reduce E→ num

From Last Time: LR Parsing Table Example

We want to derive this in an algorithmic fashion

Input terminal

Non-terminals

	()	id	,	\$	S	L
1	s3			s2			g4	
2	S-	→ id	S→id	S→id	S→id	S→id		
3	s3			s2			g7	g5
4						accept		
5			s6		s8	-		
6	S-	→ (L)	S→(L)	S→(L)	S→(L)	S → (L)		
7				L→S		L→S		
8	s3			s2			g9	
9	L-	≯ L,S	L→L,S	L→L,S	L→L,S	L→L,S	-	

Start State and Closure

Start state

- Augment grammar with production: S' → S \$
- Start state of DFA has empty stack: $S' \rightarrow .S$ \$

Closure of a parser state:

- Start with Closure(S) = S
- Then for each item in S:
 - $X \rightarrow \alpha . Y \beta$
 - Add items for all the productions Y $\rightarrow \gamma$ to the closure of S: Y $\rightarrow \cdot \gamma$

Closure

$$S \rightarrow (L) \mid id$$

 $L \rightarrow S \mid L,S$

DFA start state

 $S' \rightarrow ... S$ \$

$$S' \rightarrow ... S $$$

 $S \rightarrow ... (L)$

 $S \rightarrow .id$

- Set of possible productions to be reduced next
- Closure of a parser state, S:
 - Start with Closure(S) = S
 - Then for each item in S:

$$-X \rightarrow \alpha . Y \beta$$

- Add items for all the productions Y $\rightarrow \gamma$ to the closure of S: Y $\rightarrow \cdot \gamma$

The Goto Operation

- Goto operation = describes transitions between parser states, which are sets of items
- Algorithm: for state S and a symbol Y
 - If the item [X $\rightarrow \alpha$. Y β] is in I, then
 - Goto(I, Y) = Closure([X $\rightarrow \alpha$ Y $\cdot \beta$])

$$S' \rightarrow ... S \$$$

 $S \rightarrow ... (L)$
 $S \rightarrow ... id$

Closure($\{S \rightarrow (L)\}$)

Goto: Terminal Symbols

In new state, include all items that have appropriate input symbol just after dot, advance do in those items and take closure

Goto: Non-terminal Symbols

same algorithm for transitions on non-terminals

Class Problem

$$E' \rightarrow E$$

$$E \rightarrow E + T | T$$

$$T \rightarrow T * F | F$$

$$F \rightarrow (E) | id$$

1. If
$$I = \{ [E' \rightarrow .E] \}$$
, then $Closure(I) = ??$

2. If
$$I = \{ [E' \rightarrow E], [E \rightarrow E], [E \rightarrow E] \}$$
, then $Goto(I,+) = ??$

Applying Reduce Actions

Pop RHS off stack, replace with LHS X (X \rightarrow β), then rerun DFA (e.g., (x))

Reductions

- On reducing $X \rightarrow \beta$ with stack $\alpha\beta$
 - Pop β off stack, revealing prefix α and state
 - Take single step in DFA from top state
 - Push X onto stack with new DFA state

Example

derivation	stack	input	action
((a),b) ←	1 (3 (3	a),b)	shift, goto 2
((a),b) ←	1(3(3a2),b)	reduce $S \rightarrow id$
((S),b) ←	1(3(3S7),b)	reduce L → S

Full DFA

Parsing Example ((a),b) _{S → (L)}

 $S \rightarrow (L) \mid id$ $L \rightarrow S \mid L,S$

derivation	stack	input	action $L \rightarrow S \mid L,S$
((a),b) ←	1	((a),b)	shift, goto 3
((a),b) ←	1(3	(a),b)	shift, goto 3
((a),b) ←	1(3(3	a),b)	shift, goto 2
((a),b) ←	1(3(3a2),b)	reduce S→id
((S),b) ←	1(3(3\$7),b)	reduce L→S
((L),b) ←	1(3(3L5),b)	shift, goto 6
((L),b) ←	1(3(3L5)6	,b)	reduce S→(L)
(S,b) ←	1(3S7	,b)	reduce L→S
(L,b) ←	1(3L5	,b)	shift, goto 8
(L,b) ←	1(3L5,8	b)	shift, goto 9
(L,b) ←	1(3L5,8b2)	reduce S→id
(L,S) ←	1(3L8,S9)	reduce L→L,S
(L) ←	1(3L5)	shift, goto 6
(L) ←	1(3L5)6		reduce S→(L)
S←	1S4	\$	done

Building the Parsing Table

- States in the table = states in the DFA
- For transition S → S' on terminal C:
 - Table[S,C] += Shift(S')
- For transition S → S' on non-terminal N:
 - Table[S,N] += Goto(S')
- If S is a reduction state $X \rightarrow \beta$ then:
 - Table[S,*] += Reduce(X $\rightarrow \beta$)

Computed LR Parsing Table

Input terminal

Non-terminals

		()	id	,	\$	S	L
	1	s3		s2			g4	
	2	S→id	S→id	S→id	S→id	S→id		
	3	s 3		s2			g7	g5
<u>ب</u>	4					accept		
State	5		s6		s8			
(0)	6	S→(L)	S→(L)	S→(L)	S→(L)	S→(L)		
	7	L→S	L→S	L→S	L→S	L→S		
	8	s 3		s2			g9	
	9	 L→L,S	L→L,S	L→L,S	L→L,S	L→L,S		

blue = shift

red = reduce

LR(0) Summary

- LR(0) parsing recipe:
 - Start with LR(0) grammar
 - Compute LR(0) states and build DFA:
 - Use the closure operation to compute states
 - Use the goto operation to compute transitions
 - Build the LR(0) parsing table from the DFA
- This can be done automatically

Class Problem

Generate the DFA for the following grammar

$$S \rightarrow E + S \mid E$$

E \rightarrow num

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a single reduce action
 - Always reduce regardless of lookahead
- With a more complex grammar, construction gives states with shift/reduce or reduce/reduce conflicts
- Need to use lookahead to choose

OK

 $L \rightarrow L, S.$

shift/reduce

reduce/reduce

$$L \rightarrow S, L.$$

 $L \rightarrow S.$

A Non-LR(0) Grammar

- Grammar for addition of numbers
 - $-S \rightarrow S + E \mid E$
 - $-E \rightarrow num$
- Left-associative version is LR(0)
- Right-associative is not LR(0) as you saw with the previous class problem
 - $-S \rightarrow E + S \mid E$
 - $-E \rightarrow num$

LR(0) Parsing Table

 $\frac{\text{Grammar}}{S \rightarrow E + S \mid E}$ $E \rightarrow \text{num}$

Shift or reduce in state 2?

	num	+	\$	Е	S
1	s4			g2	g6
2	S→E	$s3/S \rightarrow E$	S→E		

Solve Conflict With Lookahead

- 3 popular techniques for employing lookahead of 1 symbol with bottom-up parsing
 - SLR Simple LR
 - LALR LookAhead LR
 - -LR(1)
- Each as a different means of utilizing the lookahead
 - Results in different processing capabilities

SLR Parsing

- SLR Parsing = Easy extension of LR(0)
 - For each reduction X $\rightarrow \beta$, look at next symbol C
 - Apply reduction only if <u>C is in FOLLOW(X)</u>
- SLR parsing table eliminates some conflicts
 - Same as LR(0) table except reduction rows
 - Adds reductions X $\rightarrow \beta$ only in the columns of symbols in FOLLOW(X)

Example: $FOLLOW(S) = \{\$\}$

<u>Grammar</u> S → E + S | E E → num

	num	+	\$	Е	S
1	s4			g2	g6
2		s3	S→E		

SLR Parsing Table

- Reductions do not fill entire rows as before
- Otherwise, same as LR(0)

$$\frac{\text{Grammar}}{S \to E + S \mid E}$$

$$E \to \text{num}$$

	num	+	\$	Е	S
1	s4			g2	g6
2		s3	S→E		
3	s4			g2	g5
4		E→num	E→num	-	
5			$S \rightarrow E+S$		
6			s7		
7			accept		

Class Problem

Consider:

$$S \rightarrow L = R$$

 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow ident$
 $R \rightarrow L$

Think of L as I-value, R as r-value, and * as a pointer dereference

When you create the states in the SLR(1) DFA, 2 of the states are the following:

$$S \rightarrow R$$
.

Do you have any shift/reduce conflicts? (Not as easy as it looks)

LR(1) Parsing

- Get as much as possible out of 1 lookahead symbol parsing table
- LR(1) grammar = recognizable by a shift/reduce parser with 1 lookahead
- LR(1) parsing uses similar concepts as LR(0)
 - Parser states = set of items
 - LR(1) item = LR(0) item + lookahead symbol possibly following production
 - LR(0) item: $S \rightarrow .S + E$
 - LR(1) item: $S \rightarrow .S + E_{,+}$
 - Lookahead only has impact upon REDUCE operations, apply when lookahead = next input

LR(1) States

- LR(1) state = set of LR(1) items
- LR(1) item = $(X \rightarrow \alpha . \beta, y)$
 - Meaning: α already matched at top of the stack, next expect to see β y
- Shorthand notation

$$-(X \rightarrow \alpha . \beta, \{x1, ..., xn\})$$

– means:

•
$$(X \rightarrow \alpha . \beta, x1)$$

- . . .
- $(X \rightarrow \alpha . \beta . xn)$

Ins:
$$S \rightarrow S + .E$$
 num $X \rightarrow \alpha . \beta , x1)$

Need to extend closure and goto operations

LR(1) Closure

- LR(1) closure operation:
 - Start with Closure(S) = S
 - For each item in S:
 - $X \rightarrow \alpha . Y \beta , z$
 - and for each production Y $\rightarrow \gamma$, add the following item to the closure of S: Y $\rightarrow . \gamma$, FIRST(βz)
 - Repeat until nothing changes
- Similar to LR(0) closure, but also keeps track of lookahead symbol

LR(1) Start State

- Initial state: start with (S' → . S , \$), then apply closure operation
- Example: sum grammar

$$S' \rightarrow S \$$$

 $S \rightarrow E + S \mid E$
 $E \rightarrow num$

$$S' \rightarrow .S, \$$$

$$S' \rightarrow .S, \$$$

 $S \rightarrow .E + S, \$$
 $S \rightarrow .E, \$$
 $E \rightarrow .num, +, \$$

LR(1) Goto Operation

- LR(1) goto operation = describes transitions between
 LR(1) states
- Algorithm: for a state S and a symbol Y (as before)
 - If the item [X $\rightarrow \alpha$. Y β] is in I, then
 - Goto(I, Y) = Closure([X $\rightarrow \alpha$ Y $\cdot \beta$])

S1

$$S \rightarrow E.+S, \$$$

 $S \rightarrow E., \$$

Goto(S1, '+')

S2

Closure($\{S \rightarrow E + . S, \$\}$)

Grammar:

$$S' \rightarrow S$$

 $S \rightarrow E + S \mid E$
 $E \rightarrow num$

Class Problem

```
1. Compute: Closure(I = \{S \rightarrow E + ... S, \$\})
```

2. Compute: Goto(I, num)

3. Compute: Goto(I, E)

$$S' \rightarrow S$$
\$
 $S \rightarrow E + S \mid E$