MATH/COSC 303

Assignment 4

Due: Mar 11 in LAB, assignments are due at the END of lab.

Hand Written Questions:

- 1. (Big oh Calculus) Suppose $F(h) = O(h^k)$ (at h = 0) and $G(h) = O(h^k)$ (at h = 0) where k is a positive integer. Show that
 - a) $(F+G)(h) = O(h^k)$,
 - b) $\alpha F(h) = O(h^k)$ for any $\alpha \in \mathbf{R}$, and
 - c) $\frac{F(h)}{h} = O(h^{k-1}).$
- 2. Let

$$CD_{h^4}^{(1)}(h) = \frac{-f(\bar{x}+2h) + 8f(\bar{x}+h) - 8f(\bar{x}-h) + f(\bar{x}-2h)}{12h}.$$

Prove that, if $f \in \mathcal{C}^5$, then $f'(\bar{x}) = CD_{h^4}^{(1)}(h) + O(h^4)$. (You may use the results of question 1 to do the 'simple proof'.)

3. Let

$$CD_{h^2}^{(3)}(h) = \frac{f(\bar{x}+2h) - 2f(\bar{x}+h) + 2f(\bar{x}-h) - f(\bar{x}-2h)}{2h^3}.$$

Prove that, if $f \in \mathcal{C}^5$, then $f'''(\bar{x}) = CD_{h^2}^{(3)}(h) + O(h^2)$. (You may use the results of question 1 to do the 'simple proof'.)

- 4. Let $f(x) = x^3 + 4x^2 1$.
 - a) Use Lagrange Interpolation to construct interpolating polynomials of degree 2, 3, and 4 on the interval [0, 3].
 - b) Use Newton Interpolation to construct interpolating polynomials of degree 2, 3,and 4 on the interval [0,3].
 - c) What do you notice about the Lagrange versus the Newton polynomial of higher degrees?
- 5. Prove that

$$\frac{f[x_2, x_0] - f[x_1, x_0]}{x_2 - x_1} = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}.$$

Computer Assisted Questions:

6. Three formulae for approximating f' are

$$DD(h) = \frac{f(\bar{x}+h)-f(\bar{x})}{h}$$

$$CD_{h^2}(h) = \frac{f(\bar{x}+h)-f(\bar{x}-h)}{2h}$$

$$CD_{h^4}(h) = \frac{-f(\bar{x}+2h)+8f(\bar{x}+h)-8f(\bar{x}-h)+f(\bar{x}-2h)}{12h}.$$

Consider $f(x) = \frac{1}{2}e^{2x}$ at $\bar{x} = 1$.

a) Use each formula and $h = \{1, 10^{-1}, 10^{-2}, \dots, 10^{-16}\}$ to approximate $f'(\bar{x})$.

- b) Compute the relative error for each formula and value of h.
- c) Which formula approximates $f'(\bar{x})$ the 'fastest'?
- d) What value of h provides the highest accuracy for each formula?
- 7. Two formulae for approximating f'' are

$$\begin{array}{lcl} CD_{h^2}^{(2)}(h) & = & \frac{f(\bar{x}+h)-2f(\bar{x})+f(\bar{x}-h)}{h^2} \\ \\ CD_{h^4}^{(2)}(h) & = & \frac{-f(\bar{x}+2h)+16f(\bar{x}+h)-30f(\bar{x})+16f(\bar{x}-h)-f(\bar{x}-2h)}{12h^2}. \end{array}$$

Consider $f(x) = \frac{1}{2}e^{2x}$ at $\bar{x} = 1$.

- a) Use each formula and $h = \{1, 10^{-1}, 10^{-2}, \dots, 10^{-16}\}$ to approximate $f''(\bar{x})$.
- b) Compute the relative error for each formula and value of h.
- c) Which formula approximates $f''(\bar{x})$ the 'fastest'?
- d) What value of h provides the highest accuracy for each formula?
- 8. Let $f(x) = \cos(x)$.
 - a) Write a MATLAB function that uses Lagrange or Newton Interpolation to create a polynomial interpolation p(x) of degree d for $f(x) = \cos(x)$ over the interval [0,1] (d should be an input to the function).
 - c) Use (a) to approximate f(0.5) by using polynomials of degree $d = \{2, 3, 4, ... 10\}$. Compute the relative error for each estimation.