Министерство образования и науки РФ Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчёт по лабораторной работе №2 по дисциплине «Вычислительная математика»

Вариант №15

Выполнил

студент гр. 3530904/00005 Рябикин В.М.

Руководитель

Воскобойников С.П.

Оглавление

Оглавление	2
Эписание работы	
1. Постановка задачи:	
2. Текст программы	
3. Результаты работы программы	
4. Выволы по результатам	

Описание работы

1. Постановка задачи:

Сравнить два вектора: $x_1 = A^{-1}b$ и x_2 , полученный непосредственным решением системы с использованием программ DECOMP и SOLVE. Обратную матрицу A^{-1} вычислить с помощью DECOMP и SOLVE. Система Ax=b зависит от параметра р ($p=1.0,\,0.1,\,0.01,\,0.0001,\,0.000001$). Проанализировать связь числа обусловленности cond и величины: $\delta = ||x_1 - x_2|| / x_1$.

$$\begin{pmatrix} p+27 & -6 & -1 & -6 & -3 & -4 & -3 & -4 \\ -6 & 35 & -1 & -6 & -5 & -6 & -3 & -8 \\ -1 & -1 & 19 & -6 & -8 & -2 & 0 & -1 \\ -6 & -6 & -6 & 36 & -4 & -3 & -4 & -7 \\ -3 & -5 & -8 & -4 & 25 & 0 & -1 & -4 \\ -4 & -6 & -2 & -3 & 0 & 28 & -8 & -5 \\ -3 & -3 & 0 & -4 & -1 & -8 & 21 & -2 \\ -4 & -8 & -1 & -7 & -4 & -5 & -2 & 31 \end{pmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \\ x6 \\ x7 \\ x8 \end{pmatrix} = \begin{pmatrix} 8p+140 \\ -91 \\ -7 \\ 142 \\ 7 \\ -99 \\ 25 \\ -117 \end{pmatrix}$$

2. Текст программы

```
import numpy as np
import scipy.linalg
def matrixPrint(name, matrix):
  print(name, ":", sep = '')
  for line in matrix:
    print(' '.join(map(str, line)))
  print("\n", end = '')
pArray = [1.0, 0.1, 0.01, 0.0001, 0.000001]
for p in pArray:
                          -----")
  print("-----
  # Initializing A and b
  A = np.array([[p+27, -6, -1, -6, -3, -4, -3, -4], [-6, 35, -1, -6, -5, -6, -3, -8],
  [-1, -1, 19, -6, -8, -2, 0, -1], [-6, -6, -6, 36, -4, -3, -4, -7], [-3, -5, -8, -4, 25,
0, -1, -4],
  \begin{bmatrix} -4, -6, -2, -3, 0, 28, -8, -5 \end{bmatrix}, \begin{bmatrix} -3, -3, 0, -4, -1, -8, 21, -2 \end{bmatrix}, \begin{bmatrix} -4, -8, -1, -7, -4, -1, -8, 21, -2 \end{bmatrix}
-5, -2, 31]])
  b = np.array([[8*p+140], [-91], [-7], [142], [7], [-99], [25], [-117]])
  LU, p LU = scipy.linalg.lu factor(A) # DECOMP to A
  x2 = scipy.linalg.lu_solve((LU, p_LU), b) # solving the system to get x2 value
  E = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0],
  [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
Ainv = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]
  Ainv = scipy.linalg.lu_solve((LU, p_LU), E)
  x1 = Ainv.dot(b) # A^{(-1)} * b = x1
  condN = np.linalg.cond(A)
  delta = np.linalg.norm(x1 - x2) / np.linalg.norm(x1)
```

```
\label{eq:matrixPrint} $$ \max x^2 = 1, x^2 $$ matrixPrint("x2", x2) $$ print("Parameter P: %5.6f" % (p)) $$ print("Condition number: ", condN) $$ print("\delta = ||x1 - x2|| / ||x1||: ", delta) $$
```

3. Результаты работы программы

```
xl:
7.99999999999972
1.0
4.0000000000000028
3.999999999999716
2.842170943040401e-14
4.0000000000000028
2.842170943040401e-14
x2:
8.00000000000000021
1.00000000000000226
4.0000000000000024
7.0000000000000024
4.0000000000000023
2.2746396158605997e-14
4.0000000000000023
2.261678203330194e-14
Parameter P: 1.000000
Condition number: 355.004165481365
\delta = ||x1 - x2|| / ||x1||: 6.250757566679921e-15
x1:
8.0
1.00000000000002274
7.0000000000000227
4.000000000000455
2.2737367544323206e-13
4.0000000000000455
0.0
x2:
8.000000000000142
1.000000000000143
4.000000000000143
7.000000000000142
4.000000000000143
1.436883508733742e-13
4.000000000000144
1.4297554712569865e-13
Parameter P: 0.100000
Condition number: 3458.233619431464
\delta = ||x1 - x2|| / ||x1||: 4.1298496995935445e-14
```

```
xl:
0.99999999996362
3.99999999996362
6.99999999996362
3.99999999996362
-3.637978807091713e-12
3.99999999996362
-3.637978807091713e-12
x2:
8.000000000002132
1.0000000000021325
4.0000000000021325
7.0000000000021325
4.00000000000021325
2.1327211850285327e-12
4.0000000000021325
2.132928707239968e-12
Parameter P: 0.010000
Condition number: 34491.0319438957
\delta = ||x1 - x2|| / ||x1||: 1.211165301036579e-12
xl:
8.000000000465661
1.000000000698492
4.000000000465661
7.000000000232831
4.000000000465661
4.656612873077393e-10
4.000000000931323
2.3283064365386963e-10
x2:
8.000000000426326
1.0000000004263276
4.000000000426328
7.000000000426328
4.000000000426328
4.2632791923364224e-10
4.000000000426327
4.2632824244198987e-10
Parameter P: 0.000100
Condition number: 3448099.4028203613
```

 $\delta = ||x1 - x2|| / ||x1||$: 5.031780171586688e-11

```
7.999999940395355
1.0
4.0
7.0
3.9999999701976776
-2.9802322387695312e-08
4.0
-2.9802322387695312e-08
x2:
8.000000021316282
1.0000000213162827
4.000000021316283
7.000000021316282
4.000000021316283
2.131628247244822e-08
4.000000021316283
2.1316283414042527e-08
Parameter P: 0.000001
Condition number: 344808938.1092988
\delta = ||x1 - x2|| / ||x1||: 1.0001563947373445e-08
```

р	\mathbf{x}_1	X ₂	cond	δ
1.0	7.99999999999	8.000000000000	355.004165481	6.250757566679
	972	021	365	921e-15
	1.0	1.0000000000000		
	4.000000000000	0226		
	028	4.0000000000000		
	7.0	024		
	3.999999999999	7.0000000000000		
	9716	024		
	2.842170943040	4.0000000000000		
	401e-14	023		
	4.0000000000000	2.274639615860		
	028	5997e-14		
	2.842170943040	4.0000000000000		
	401e-14	023		
		2.261678203330		
		194e-14		
0.1	8.0	8.000000000000	3458.23361943	4.129849699593
	1.000000000000	142	1464	5445e-14
	2274	1.0000000000000		
	4.0	143		
	7.0000000000000	4.0000000000000		
	227	143		
	4.0000000000000	7.0000000000000		
	455	142		

	2.273736754432	4.0000000000000		
	3206e-13	143		
	4.0000000000000	1.436883508733		
	455	742e-13		
	0.0	4.0000000000000		
		144		
		1.429755471256		
		9865e-13		
0.01	8.0	8.0000000000002	34491.0319438	1.211165301036
	0.99999999999	132	957	579e-12
	362	1.000000000000		
	3.999999999996	1325		
	362	4.0000000000002		
	6.99999999999	1325		
	362	7.0000000000002		
	3.99999999999	1325		
	362	4.0000000000002		
	-	1325		
	3.637978807091	2.132721185028		
	713e-12	5327e-12		
	3.99999999999	4.0000000000002		
	362	1325		
	-	2.132928707239		
	3.637978807091	968e-12		
	713e-12			
0.000	8.00000000465	8.000000000426	3448099.40282	5.031780171586
1	661	326	03613	688e-11
	1.000000000698	1.000000000426		
	492	3276		
	4.000000000465	4.000000000426		
	661	328		
	7.000000000232	7.000000000426		
	831	328		
	4.000000000465	4.000000000426		
	661	328		
	4.656612873077	4.263279192336		
	393e-10	4224e-10		
	4.000000000931	4.000000000426		
	323	327		
	2.328306436538	4.263282424419		
0.000	6963e-10	8987e-10	244000020 100	1.000156204525
0.000	7.999999940395	8.000000021316	344808938.109	1.000156394737
001	355	282	2988	3445e-08
	1.0	1.000000021316		
	4.0	2827		

7.0	4.000000021316	
3.999999970	197 283	
6776	7.000000021316	
_	282	
2.980232238	769 4.000000021316	
5312e-08	283	
4.0	2.131628247244	
_	822e-08	
2.980232238	769 4.000000021316	
5312e-08	283	
	2.131628341404	
	2527e-08	

4. Выводы по результатам

По результатам, полученным в ходе работы программы, мы видим, что при каждом изменении параметра р число обусловленности увеличивается. Вместе с ним возрастает и дельта, исходя из данных в таблице.