R.T. M. Nagpur University, Nagpur FOUR YEAR B.E. COURSE

B.E. SCHEME OF EXAMINATION wef: 2021-22

$\overline{}$		Category	Course Name Ho		Hours/ Credit S		E. (Computer Science and Engineering) Maximum Marks					
Sr. No.	Course	Category	Course name					Theory		Practical		Total
				L	T P	P						
								Internal	University	Internal U	niversity	
1	BECSE301T	Sciences	Applied Mathematics – III	3	1	•	4.00	30	70	-	-	100
2	BECSE302T	Professional core courses	Object Oriented Programming with Java	3	1	•	4.00	30	70			
3	BECSE303T	Professional core courses	Operating System	3	-	-	3.00	30	70	(2)		100
4	BECSE304T	Professional core courses	Computer Architecture & Digital System	3	I	•	4.00	30	70			100
5	BECSE305T	Professional core courses	Ethics in IT	3	*	•	3.00	30	70			100
6	BECSE306T	Humanities Social and Managemen t Courses	Universal Human Values	2	-	-	2.00	15	35		•	50
7	BECSE307T	Mandatory Course	Environment Science (Audit)	2		-	0.00				*	-
8	BECSE302P	Professional core courses	Object Oriented Programming with Java Lab		-	2	1.00	•	-	25	25	50
9	BECSE303P	The second section of	Operating System Lab		•	2	1.00	*	•	25	25	5
10	BECSE308P	Professional core courses	Computer Workshop-I Lab			2	1.00	7.5	-	25	75	70
_		Total		19	3	6	23.00	165	385	75	/5	,0

Dr. S. v. Sonekar Chairman.

SEMESTER: 3rd (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Applied Mathematics - III

Subject Code: BECSE301T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
03 Hrs. (Theory) 01 Hr. (Tutorial)	04	30	70	100

Aim: To provide the necessary mathematical skills required to solve problems of practical interest and to expose students to a range of problems and teach appropriate methods to solve them.

Prerequisite(s): Basic Mathematics and Calculus

Course Objectives:

1	A primary objective is to provide a bridge for the student from lower-division mathematics courses to upper-division mathematics
2	Explain the importance of mathematics and its techniques to solve real life problems and provide the limitations of such techniques and the validity of the results.
3	Propose new mathematical and statistical questions and suggest possible software packages and/or computer programming to find solutions to these questions.

Course Outcomes:

After completing the course, students will be able to:

CO1	Understand numerical methods, matrices for the solution of linear and nonlinear equations, and the solution of differential equations, among other mathematical processes and activities.
CO2	Analyze real world scenarios to recognize when matrices and probability are appropriate, formulate problems about the scenarios, creatively model these scenarios (using technology, if appropriate) in order to solve the problems using multiple approaches.
CO3	Organize, manage and present data in a clear and concise manner.
CO4	Develop an ability to identify, formulate, and/or solve real world problems.
CO5	Understand the impact of scientific and engineering solutions in a global and societal context.
CO6	Create the groundwork for post-graduate courses, specialized study, and research in computational mathematics.

Unit I: Numerical Methods

[8 Hours]

Solution of algebraic and transcendental equations: Newton-Raphson method, Method of false position and their convergence, Solution of simultaneous linear equations using Gauss-Seidal method and Crout's method (LU decomposition).

www.studyHub.com

Numerical solution of ordinary differential equations: Taylor's series method, Euler's modified method, Runge-Kutta fourth order method, Milne's predictor- corrector method.

Unit II: Matrices [7 Hours]

Linear dependence of vectors, Eigen values and Eigen vectors, Reduction to diagonal form, Singular value decomposition, Sylvester's theorem (Statement only), Largest Eigen value and its corresponding Eigen vector by iteration method.

Unit III: Mathematical Expectation and Probability Distributions

[8 Hours]

Discrete Random Variable: Review of discrete random variable, Probability function and Distribution function, Mathematical expectation, Variance and Standard deviation, Moments, Moment generating function.

Probability Distributions: Binomial distribution, Poisson distribution, Normal distribution, Exponential distribution.

Unit IV: Statistical Techniques

[6 Hours]

Statistics: Introduction to correlation and regression, Multiple correlation and its properties, Multiple regression analysis, Regression equation of three variables.

Measures of central tendency and dispersion: Mean, Median, Quartile, Decile, Percentile, Mode, Mean deviation, Standard deviation.

Skewness: Test and uses of skewness and types of distributions, Measure of skewness, Karl Pearson's coefficient of skewness, Measure of skewness based on moments.

Unit V: Stochastic Process and Sampling Techniques

[7 Hours]

Stochastic Process: Introduction of stochastic process, Classification of random process, Stationary and non-stationary random process, Stochastic matrix.

Markov Chain: Classification of states, Classification of chains, Random walk and Gambler ruin.

Sampling: Population (Universe), Sampling types and distribution, Sampling of mean and variance, Testing a hypothesis, Null and Alternative Hypothesis, One-tail and two-tails tests (Only introduction), t test and F test (Only introduction), Chi-square test.

Text/ Reference Books:

- Advanced Engineering Mathematics (Wiley), Erwin Kreyzig.
- 2. Higher Engineering Mathematics (Khanna Publishers), B. S. Grewal.
- Advanced Engineering Mathematics (S. Chand), H. K. Dass.
- Probability and Statistics (Schaum's Outline Series), Murray Spiegel, John Schiller, R. A. Srinivasan.
- 5. Advanced Mathematics for Engineers, Chandrika Prasad.
- Probability, Statistics and Randam Processes (TMH), T. Veerarajan.

M

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FOUR YEAR BACHELOR OF ENGINEERING (B.E.) DEGREE COURSE SEMESTER: 3rd (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Object Oriented Programming with Java Subject Code : BECSE302T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
03 Hrs. (Theory) 01 Hr. (Tutorial)	04	30	70	100

Aim:

This course explains the fundamental ideas behind the object-oriented approach to programming. Knowledge of java helps to create the latest innovations in programming. Like the successful computerlanguages that came before, java is the blend of the best elements of its rich heritage combined with the innovative concepts required by its unique environment. This course involves OOP's concepts, java basics concepts, inheritance, polymorphism, interfaces, inner classes, packages, Exception handling, multithreading and objects Oriented Methodology basic concepts.

Prerequisite(s): Knowledge of structure programming language and Application development

Course Objectives:

1	Gain knowledge about basic Java language syntax and semantics to write Java programs and use concepts such as variables, conditional and iterative execution methods etc.
2	Be able to use the Java SDK environment to create, debug and run simple Java programs.
_	
3	To analyze the object-oriented paradigm using java programming language

Course Outcomes:

At the end of this course student are able to:

CO1	Identify classes, objects, members of a class and relationships among them for a specific problem
CO2	Understand and demonstrate the concepts of garbage collection, polymorphism, inheritance etc.

CO3	Do numeric (algebraic) and string-based computation.
CO4	Understand and implement modularity as well as basic error handling techniques
CO5	Develop, design and implement small multithreaded programs using Java language
CO6	Apply appropriate problem-solving strategies for the implementation of small /medium scale java applications

Unit I: [8 Hrs]

Object Oriented Programming features: objects and classes, Abstraction, Encapsulation, Inheritance, Polymorphism, Characteristics of Java, Java Source File Structure – Compilation. Fundamental Programming Structures in Java, Introduction of JVM, Object class, Constructors, Access specifiers, static members, Data Types.

Unit II: [7 Hrs]

Operators, Control Flow, Wrapper classes, Command line arguments, static modifier, this keyword, Garbage collection, Java Arrays, Declaration and initialization of an array, One Dimensional Array, Two-Dimensional Array, Vector. String Handling: String, StringBuffer and StringBuilder class, String constructors, Data conversion using valueOf(), toString() methods, Methods for String Comparison, Searching string and modifying string

Unit III: [7 Hrs]

Inheritance: Types of inheritance, Abstract class, Method Overriding, super keyword, final modifier Packages: Package Fundamental, importing packages, Concept of interface, Exception Handling: Fundamental Exception type: Checked, Unchecked Exceptions, throw and throws keywords, creating user defined exceptions, Built-in Exceptions.

Unit IV: [7 Hrs]

Threads and Multithreading: Fundamentals, Thread Life Cycle, Ways of creating threads, Creating multiple threads, isAlive (), join (), sleep(), Thread Synchronization, Thread priorities, Interthread communication, Methods for suspending, resuming and stopping threads

Unit V: [7 Hrs]

Collection Framework: Introduction, Difference between Array and Collection, List interface and its classes, Set interface and its classes, Map interface and its classes.

Ar

Text Books:

- The Complete Reference (8th Edition) by Herbelt Schildt, Tata McGraw-Hill publications
- Head First Java,2nd Edition by Kathy Sierra, Bert Bates, O'Reilly Media
- Programming in Java(Fifth edition) by E Balguruswami, McGraw Hill Education

Reference Books:

- Sun Certified Java Programmer for Java 6 by Kathy Sierra.
- The JavaTM Programming Language (3rd Edition) by Arnold, Holmes, Gosling, Goteti
- Core Java for Beginners by Rashmi Kanta Das(III Edition) Vikas Publication
- Java A Beginner's Guide, Fifth Edition, Tata McGra

T

SEMESTER: THIRD (C.B.C.S.) BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Operating System

Subject Code: BECSE303T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
3 Hrs (Theory)	3	30	70	100

Aim: To understand operating system concepts used in designing operating system.

Prerequisite(s): Basic knowledge of microprocessors, data structures and any programming language.

Course Objectives:

1	To make the computer system convenient to use in an efficient manner.
2	To provide users a convenient interface to use the computer system.
3	Course Description Covers the classical internal algorithms and structures of operating systems, including CPU scheduling, memory management, device management and deadlock
4	To keep track of who is using which resource, to provide efficient and fair sharing of resources among users and programs.

Course Outcomes:

At the end of this course Student are able to:

CO1	Explain the basic concepts of Operating System.
CO2	Understand the process management policies and scheduling algorithms.
CO3	Design the various memory management techniques.
CO4	Analyze process synchronization techniques.
CO5	Understand file system concepts.
CO6	Evaluate deadlock detection & prevention mechanism.

Unit I: [09 Hrs]

Introduction: Evolution of OS, Types of OS, Basic h/w support necessary for modern operating systems, services provided by OS, system programs and system calls, OS structure: Layered, Monolithic, Microkernel, Disk space management and space allocation strategies, disk arm scheduling algorithms.

Unit II: [06 Hrs]

Process Scheduling: Process concept, Process control Block, Types of scheduler, context switch, threads, multithreading model, goals of scheduling and different scheduling algorithms, examples from WINDOWS 2000 & LINUX.

Unit III: [06 Hrs]

Memory Management: Contiguous allocation, Relocation, Paging, Segmentation, Segmentation with paging, demand paging, page faults and instruction restart, page replacement algorithms, working sets, Locality, Thrashing, Garbage Collection.

Unit IV: [06 Hrs]

Process Cooperation and Synchronization: Concurrency conditions, Critical section problem, software and hardware solution, semaphores, conditional critical regions and monitors, classical interprocess communication problems.

Unit V: [09 Hrs]

File Systems: File concept, Access methods, directory structures, Recovery, Log-structured File System. Deadlocks & Protection: Deadlock characteristics, Prevention, Avoidance, Detection and recovery, Goals of Protection, access matrix, implementation, Security problem.

Text books:

- Operating System Concepts (8th Edition) by Silberschatz, Peter B. Galvin and Greg Gagne, WileyIndian Edition (2010).
- Modern Operating Systems (Third Edition) by Andrew S Tanenbaum, Prentice Hall India (2008).
- 3. Operating Systems A.Godbole: TMH Pubilcations
- Operating Systems by D.M. Dhamdhere, Tata McGraw Hill 2nd edition.

Reference books:

- Operating Systems (5th Ed) Internals and Design Principles by William Stallings, Prentice Hall India, 2000
- 2. Operating System: Concepts and Design by Milan Milenkovik, McGraw Hill Higher Education
- 3. Operating Systems, 3rd Edition by Gary Nutt, Pearson Education
- Operating System, 3rd Edition by P.Balakrishna Prasad ,SciTech Publications

to

SEMESTER: III (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Computer Architecture & Digital System

Subject Code: BECSE304T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
3 Hrs. (Theory) 1 Hr. (Tutorial)	4	30	70	100

Aim: To understand the basic principles and the working of Computer and Digital Systems.

Prerequisite(s): Knowledge of semiconductors, transistors and concepts of physics related to digital system.

Course Objectives:

1	Discuss the basic concepts of digital system that are applicable in the designing of computer architecture
2	Explain concepts of basic processing unit of computer such as ALU, CU, MU, I/O Units and Arithmetic Operation used in computer.
3	Explain various technologies used in memory system and motivate students to design memory modules.
4	Discuss the different types of interrupts and interrupt handling mechanism.

Course Outcomes:

At the end of this course student are able:

CO1	Understand the basic concept of digital system & apply for problem solving.
CO2	Describe the Computer Architecture & addressing modes.
CO3	Understand various instruction formats.
CO4	Perform the arithmetic operations.
CO5	Design & evaluate various memory management system.
CO6	Illustrate I/O mapped & memory mapped operations.

Unit I: Motivation for Digital Systems:

[8 Hrs]

Logic and Boolean algebra, Logic Gates & Truth Tables, Demorgan's law, Minimization of combinational circuits using Karnaugh maps. Multiplexers, Demultiplexer, Encoders, Decoders.

Unit II: Basic Structure of Computers:

[08 Hrs]

Functional units, Von Neumann Architecture, Basic operational concepts, Bus structures Addressing modes, Subroutines: parameter passing, Instruction formats: Three- address Instructions, Two-address instructions, One- address instructions, Zero-address instructions.

Unit III: Basic Processing Unit:

[06 Hrs]

Bus architecture, Execution of a complete instruction, sequencing of control signals, Hardwired control, Micro-programmed Control, microinstruction format.

Unit IV: Arithmetic: [6 Hrs]

Number representations and their operations, Addition and Subtraction with signed-magnitude, Design of Fast Adders, Array multiplier, Signed multiplication: Booth's Algorithm, Bit-pair recoding, Integer Division, Floating-point Arithmetic operations, guard bits and rounding.

Unit V: The Memory System:

[8 Hrs]

Various technologies used in memory design, higher order memory design, Memory hierarchy, Main memory, Auxiliary memory, Cache memory, cache optimization techniques, Memory interleaving, Virtual memory, Address Space and Memory Space, Associative memory, Page table, Page Replacement.

Input/output Organization: I/O mapped I/O and memory mapped I/O, Interrupts and Interrupts handling mechanisms, vectored interrupts, Synchronous vs. Asynchronous data transfer, Direct Memory Access.

Text books:

- V.C.Hamacher, Z.G. Vranesic and S.G. Zaky, Computer Organisation, McGraw Hill, 5thed, 2002.
- Computer Organization, Design and Architecture (IV Ed), Sajjan G. Shiva, CRCPress
- 3. Computer Architecture & Organization III Ed-J.P.Hayes.
- 4. Fundamental of Digital Electronics: A. Anand Kumar

Reference books:

- 1. M. Mano, "Computer System and Architecture", PHI, 1993
- W. Stallings, "Computer Organization & Architecture", PHI, 2001.
- Digital circuit & design: A.P.Godse

26

SEMESTER: III (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Ethics in IT

Subject Code: BECSE305T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
3 Hrs. (Theory)	3	30	70	100

Aim: To understand the ethical behavior of individuals, organizations towards IT Profession

Prerequisite(s): None

Course Objectives:

1	Ability to understand and meet ethical standards and legal responsibilities.
2	Create an awareness on professionals Ethics and Human Values.
3	Discuss the Privacy and Anonymity issues, Defamation and Hate Speech
4	Gain the knowledge of Copyrights, Patents and Trade Secret Laws.
5	Create and understand the awareness on Whistle-blowing

Course Outcomes:

At the end of this course Student are able:

CO1	Acquire knowledge about ethical values & principals.						
CO2	Understand key issues of privacy protection policies.						
CO3	Understand and apply Intellectual Property Rights and related law in reality.						
CO4	Understand the core values that shape the ethical behavior of an engineer / IT Professional.						
CO5	Identify the multiple ethical interests at stake in a real-world situation.						
CO6	Develop cognitive skills in solving social problems.						

Unit I: [09 Hrs]

An overview of Ethics: Ethics in IT, Ethics for IT professionals and IT users, IT professionals, Ethical behavior, IT professional malpractices, IT users. Educating Employees, contractors and part-time Workers Computer and Internet Crime: Types of Exploits, Reducing Vulnerabilities, Establishing a Security Policy, Prevention, Detection, Response.

Unit II: [07 Hrs]

Privacy: The right of Privacy, Recent History of Privacy Protection, Key Privacy and Anonymity issues, Governmental Electronic Surveillance, Data Encryption, Identity Theft, Consumer Profiling, Workplace Monitoring, Advanced surveillance Technology, Freedom of Expression: Key issues, Controlling Access to Information on the Internet, Defamation and Hate Speech.

Unit III: [07 Hrs]

Intellectual Property: Copyrights, Patents, Trade Secret Laws, Key Intellectual Property Issues, Plagiarism, Reverse Engineering, Open Source Code, Software Development, Strategies to Engineer Quality Software, Capability Maturity Model Integration for Software, Development of Safety-Critical Systems.

Unit IV: [06 Hrs]

Ethics of IT Organization: Need for Nontraditional Workers, Contingent Workers H-IB Workers, Whistle-blowing, Protection for Whistle-Blowers, Dealing with Whistle-Blowing Situation.

Unit V: [07 Hrs]

The Impact of Information Technology on the Quality of Life: The impact of IT on the standard of Living and productivity, The impact of IT on Health care costs, Electronic Health Records, Use of Mobile and Wireless Technology, Telemedicine.

Text books:

1. George Reynolds, "Ethics in information Technology" Cengage Learning

Reference books:

- Deborah G.Johnson, "Computer Ethics", 3/e Pearson Education.
- Sara Baase, "A Gift of Fire: Social, Legal and Ethical Issues, for Computing and the Internet," PHI Publications.
- Richard A.Spinello, "Case study in Information Technology Ethics", second Edition PHI Publications.
- Duncan Lanford "Internet Ethics".
- 5. D. Micah Hester and Paul J. Ford "Computer and Ethics in the Cyber age".
- Prof.A.R.Aryasri, Dharanikota Suyodhana "Professional Ethics and Morals" Maruthi Publications.
- A.Alavudeen, R.KalilRahman and M.Jayakumaran "Professional Ethics and Human Values" -LaxmiPublications.

N

SEMESTER: 3rd (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject: Universal Human Values

Subject Code: BECSE306T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
02 Hrs (Theory)	02	15	35	50

Aim: To inculcate sensitivity among students towards themselves and their surrounding including family, society and nature.

Prerequisite(s): None

Course Objectives:

1	Development of a holistic perspective based on self-exploration, about themselves (human being), family, society and nature/existence.
2	Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
3	Strengthening of self-reflection.
4	Development of commitment and courage to act.

Course Outcomes:

At the end of this course Student are able to:

CO1	Become more aware of themselves, and their surroundings (family, society, nature)				
	Become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.				
CO3	They would have better critical ability.				
CO4	Become sensitive to their commitment towards what they have understand (human values, human relationship and human society).				

Unit 1 [06 Hrs]

Value education, definition, need for value education. The content and the process of value education, basic guidelines for value education, self-exploration as a means of value education, happiness and prosperity as part of value education.

Unit 2 [06 Hrs]

Harmony of self with body, coexistence of self and body, understanding the needs of self and the needs of body, understanding the activities in the self and the activities in the body.

de

Unit 3 [06 Hrs]

Values in relationship, the five dimensions of human endeavour, the holistic perception of harmony in existence.

Unit 4 [06 Hrs]

Basics for ethical human conduct, defects in ethical human conduct, human rights violations and social disparities, value based life.

Text Books:

 Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- Indian Ethos and Modern Management: Amalgam of the best of the ideas from the East and the West, B.L. Bajpai, New Royal Book Bo., Lucknow, 2004
- 4. Human society in ethics and politics, Bertrand Russel, Routledge Publications, 2009

26

SEMESTER: 3rd (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Environmental Science

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
02 Hrs (Theory)	NIL	NIL	NIL	NIL

Course Outcomes:

At the end of this course student are able to:

CO1	Identify different types of air pollutions as well as explain their causes, detrimental effects on environment and effective control measures.
CO2	Recognize various sources of water pollutants and interpret their causes and design its effective control measure
CO3	Illustrate various types of pollutants and waste management
CO4	Analyze various social issues related to environment and challenges in implementation of environmental laws.

Subject Code: BECSE307T

Unit I: [06 Hrs]

Contaminant behaviour in the environment, Air pollution due to SOx, NOx, photochemical smog, Indoor air pollution

Natural pathways for degradation: Carbon cycle, Sulphur cycle, Nitrogen cycle, Oxygen cycle.

Factors responsible for altering the composition of atmosphere (deforestation, burning of fossil fuels, industrial and vehicular emissions, CFCs).

Techniques to control Air pollution, ambient air quality and continuous air quality monitoring, Control measures at source, Kyoto Protocol, Carbon Credits.

Unit II: [06 Hrs]

Major sources of water pollution: Eutrophication, acid mine drains, pesticides and fertilizers, dyeing and tanning, marine pollution, microplastics

Techniques to control water pollution: Conventional waste water treatment-types of sewage, sewerage system, alternative systems, primary, secondary and tertiary processes including aerobic and anaerobic techniques, safe disposal and its utility.

Treatment schemes for waste water from dairy, textile, power plants, pharmaceutical industries, and agro based industries such as rice mills

Unit III: [06 Hrs]

Soil pollution: Soil around us, Soil water characteristics, soil pollution.

Causes, effects & control: noise pollution, nuclear & radiation hazards, marine pollution (Oil spills & Ocean Acidification)

Solid waste management: Composting, vermiculture, landfills, hazardous waste treatment, bioremediation technologies, conventional techniques (land farming, constructed wetlands), and phytoremediation.

Degradation of xenobiotics in environment: Petroleum hydrocarbons, pesticides, heavy metals Introduction, types of e-wastes, environmental impact, e-waste recycling, e-waste management rules.

Unit IV: [06 Hrs]

Concept of Sustainable development

Water conservation, rain water harvesting, watershed management

Resettlement and rehabilitation of people; its problems and concerns.

Environmental Laws (brief idea only)

Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act

Issues involved in enforcement of environmental legislation.

Different government initiatives (brief idea only)- National ambient air quality standard 2009, Swachh Bharat Abhiyan, National afforestation program and Act- 2016, National River conservation plan and National Ganga River basin authority, Formation of National Green Tribunal

20

Activity

- 1. Field Trip & Report Writing
- 2. Case-study & Report Writing

Books suggested:

- 1. Benny Joseph, Environmental Studies, Mc Graw Hill Education (India) Private Limited
- 2.B. K. Sharma, Environmental Chemistry, Goel Publishing House, Meerut
- 3.P Aarne Vesilind, J. Jeffrey Peirce and Ruth F. Weiner, Environmental Pollution and Control, Butterworth-Heinemann
- 4.D. D. Mishra, S. S. Dara, A Textbook of Environmental Chemistry and Pollution Control, S. Chand & Company Ltd.
- 5. Shree Nath Singh, Microbial Degradation of Xenobiotics, Springer-Verlag Berlin Heidelberg
- Indian Environmental Law: Key Concepts and Principles edited by Shibani Ghosh, Publisher, Orient BlackSwan, 2019. ISBN, 9352875796.
- 7.P. Thangavel & Sridevi, Environemental Sustainability: Role of Green technologies, Springer publications

H

SEMESTER: 3rd (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject: Object Oriented Programming with Java

Subject Code: BECSE302P

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
02 Hrs (Practical)	01	25	25	50

Note:

- Practical's are based on Object Oriented Programming with java syllabus (subject code: BECSE302T)
- 2. There should be at the most two practical's per unit
- 3. Minimum ten practical's have to be performed
- 4. IDE (e.g. eclipse, netbeans)
- 5. Include at least one content beyond syllabus practical
- 6. Do not include study experiments

Text Books:

- 1. The Complete Reference (8th Edition) by Herbelt Schildt, Tata McGrawHill Publications
- 2. Head First Java, 2nd Edition by Kathy Sierra, Bert Bates, O'Reilly Media
- 3. Programming in Java(Fifth edition) by E Balguruswami, McGraw Hill Education

Reference Books:

- 1. Sun Certified Java Programmer for Java 6 by Kathy Sierra.
- 2. The JavaTM Programming Langauge(3rd Edition) by Arnold, Holmes, Gosling, Goteti
- 3. Core Java for Beginners by Rashmi Kanta Das(III Edition) Vikas Publication
- Java A Beginner"s Guide, Fifth Edition, Tata McGRAW-HILL.

76

SEMESTER: 3rd (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Operating System

Subject Code: BECSE303P

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
02 Hrs (Practical)	01	25	25	50

Note:

- 1.Practical's are based on Operating system syllabus
- 2. There should be at the most two practical's per unit
- 3. Minimum ten practical's have to be performed
- 4. Include at least one content beyond syllabus practical

Text books:

- Operating System Concepts (8th Edition) by Silberschatz, Peter B. Galvin and Greg Gagne, WileyIndian Edition (2010).
- Modern Operating Systems (Third Edition) by Andrew S Tanenbaum, Prentice Hall India (2008).
- 3. Operating Systems A.Godbole: TMH Pubilcations
- 4. Operating Systems by D.M. Dhamdhere, Tata McGraw Hill 2nd edition.

Reference books:

- Operating Systems (5th Ed) Internals and Design Principles by William Stallings, Prentice Hall India, 2000
- Operating System: Concepts and Design by Milan Milenkovik , McGraw Hill Higher Education
- 3. Operating Systems, 3rd Edition by Gary Nutt, Pearson Education

H

SEMESTER: THIRD (C.B.S.C)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject : Computer Workshop-I

Subject Code: BECSE308P

Load	Credit	College Assessment Marks	University Evaluation	Total Marks
2 Hrs. (Practical)	01	25	25	50

Note: - Practical list must have at least 10 practical's.

Unit I:

[Min 2 Practicals]

Basic concepts of HTML: HTML, Web Pages, World Wide Web, Tags in HTML, HTML As a Markup Language, HTML as a Page Formatting Tool, Structure of an HTML Page, Commands Written In Notepad, the <H>TAG, the basic tags, the <P>TAG, The Text attributes: The <marquee> tag, Example of Text Styles, the images, the list tag: Ordered List, Unordered List, Nested List The links: Links between Two Pages, Links in the Same Page, Images as Links, Attributes of Links, the basic web page, other formatting tags: sounds and videos, comments, the <XMP> tag, special characters.

Unit II:

[Min 2 Practicals]

The Tables: The Table, The Rows, The Columns, Cellspacing, Cellpadding, Alignment of the Text Present inside the Cells, Alignment of Table, Border Attributes in the Table, Merging Of Rows and Columns, Colspan, Rowspan, Table within a Table, Empty Cells inside the Table, Links in the Table.

Unit III:

[Min 2 Practicals]

The Forms: The input Tag, The textarea Tag, The Dropdown List, The Normal List, HTML 5: New Markup Elements of HTML5, Basic Tags, Images, List and Links, Tables and Forms. Cascading Style Sheet(CSS): Definition and Usage, Syntax, Selectors, Borders, Margin, padding, Box Model, outline, link, table, Rounded Corners, Border Images, Backgrounds.

Af

Unit IV: [Min 2 Practical]

Java Script: Variables, Array, Comments, Operators, Conditional Statements, Looping Statements.

Unit V: [Min 2 Practicals]

The Frames: Frames with Column Arrangement, Column Size for Frames, Row Size for Frames, Frame Spacing, Margin Width and Height in Frames.

Applets: Basics of applets – Types of Applet- Life cycle of an Applet – AWT: Event Handling Delegation event Model.

Text Books:

- HTML Programming, Freeman and Robson, Oreilly publications.
- 2. E. Balaguruswamy, "Programming in java", Fourth Edition, Tata McGraw Hill, 2010.

pr. S. V. Sonelcol

Chairman CSE