ZADANIA 06/10/2022

Zadanie 1 Wykorzystując nierówność pomiędzy średnią arytmetyczną a średnią geometryczną (dla a,b>0 mamy $\frac{a+b}{2} \geqslant \sqrt{ab}$) uzasadnij, że:

- (a) dla a, b > 0 zachodzi nierówność $\frac{1}{a} + \frac{1}{b} \geqslant \frac{4}{a+b}$, (b) dla a, b > 0 zachodzi nierówność $2(a^2 + b^2) \geqslant (a + b)^2$,
- (c) dla a,b>0, a+b=1 zachodzi nierówność $\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\geqslant \frac{25}{2},$ (d) dla a,b,c>0 zachodzi nierówność $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geqslant \frac{3}{2}.$

Zadanie 2 Wiedząc, że $\frac{1}{x} + \frac{2}{y} + \frac{3}{z} = 0$ oraz $\frac{1}{x} - \frac{6}{y} - \frac{5}{z}$ wyznacz wartość wyrażenia $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$.

Zadanie 3 W trójkącie ABC: AB = AC, punkt D leży na odcinku AB punkt E leży na przedłużeniu odcinka AC(bliżej punktu C), BD = CE, odcinki BC i DE przecinają się w punkcie G. Udowodnij, że BD = GE.

Zadanie 4 Udowodnij, że jeśli liczba n jest sumą kwadratów dwóch liczb całkowitych różnych od zera, to liczba 5nrównież jest sumą kwadratów dwóch liczb całkowitych różnych od zera.

Zadanie 5 Zapisz wyrażenie $x^4 + y^4 + (x+y)^4$ jako iloczyn czynników nierozkładalnych.

Zadanie 6 Wyznacz ilość podzbiorów czterolelementowych $\{a, b, c, d\}$ zbioru $\{1, 2, \dots, 20\}$, których suma elementów a + b + c + d jest podzielna przez 3.

Zadanie 7 Rozwiąż równanie $2(x^2+2) = \sqrt{x^3+1}$.

 Zadanie 8 Niech $S=\{1,2,3,4,5\}$. Wyznaczyć liczbę funkcji $f:S\mapsto S$ spełniających zależność $f^{50}(x)=x$ dla wszystkich $x \in S$, przy czym f^{50} oznacza piećdziesięciokrotne złożenie funkcji f ze sobą.