编译原理

项欣光

计算机科学与工程学院

第4章 自顶向下语法分析方法

- 理解 "能使用<u>自顶向下分析</u>技术的文法必须是LL(1)文法
- LL(1) 文法的充要条件
- LL(1) 文法的判别
- 某些 <u>非LL(1) 文法</u> 到 <u>LL(1) 文法</u> 的等价变换
 - 提取左公共因子
 - 消除左递归(直接左递归、间接左递归)
- 不确定的自顶向下分析思想
- 确定的自顶向下分析方法
 - 递归子程序法
 - 预测分析法[判别LL(1)文法;构造预测分析表;分析输入串]

@ 南主理二大学

预备知识

- 1. 语法分析的作用:识别单词符号序列是否是给定文法的正确程序。
- 2. 语法分析的方法:

- 自顶向下分析法: "面向目标的分析方法"
 从开始符号出发,企图推导出与输入的单词串完全匹配的句子。
 - (1) 确定的方法:需要对文法有一定的限制。

优点:简单、直观

(2) 不确定的方法:带回溯的分析方法——穷举的试探方法 缺点:效率低、代价高

4.1 确定的自顶向下分析思想

主要思想:

从文法的开始符号出发,如何根据当前的单词符号,

唯一地确定选用哪个产生式来替换相应的V_N向下推导。

@ 南京理工大学

文法例1

例1: 文法

 $G1[S]: S \rightarrow pA$

S→qB

 $A \rightarrow cAd$

A→a

B→dB

B→b

W=pccadd 自顶向下的推导过程:

S ⇒pA ⇒pcAd ⇒pccAdd ⇒pccadd

对应的语法树:

S A A d C A d C A d

这个文法的特点: (保证了推导过程唯一)

- 1. 每个产生式的右部都由终结符号开始。
- 2. 左部相同的产生式,它们的右部由不同的终结符开始。

文法例2

例2:

文法G[S]:

 $S \rightarrow Ap$

S→Bp

A→a

 $A \rightarrow cA$

B→b

B→dB

W = ccap 自顶向下的推导过程:

 $S \Rightarrow Ap \Rightarrow cAp \Rightarrow ccAp \Rightarrow ccap$

语法树:

这个文法的特点: (保证了推导过程唯一)

- 1. 每个产生式的右部不全是由终结符号开始。
- 2. 左部相同的产生式,它们的右部由不同的<u>终结符或非终结</u>符开始。(引出First集合)
- 3. 文法中无空产生式。 $(\rightarrow \epsilon)$

First集合

为得到唯一的推导过程,条件为:

左部相同的产生式,其"右部的首符号集合"不相交。

定义:设 $G = (V_T, V_N, S, P)$ 是上下文无关文法,

FIRST(
$$\alpha$$
) = {a | $\alpha \stackrel{*}{\Rightarrow} a\beta$, $a \in V_T$, α , $\beta \in V^*$ }

若α $\stackrel{*}{\Longrightarrow}$ ε ,则规定 ε ∈ FIRST(α)

例2: 文法G[S]: 求:

S→Ap

S→Bp

A→a

 $A \rightarrow cA$

B→b

B→dB

$$First(Ap) = \{a,c\}$$

$$First(Bp) = \{b,d\}$$

$$First(a) = \{a\}$$

$$First(cA) = \{c\}$$

文法例3

• 例3: 文法G[S]: W=abd 自顶向下的推导过程:

S→aA

 $S \rightarrow d$

A→bAS

 $A \rightarrow \epsilon$

这个文法的特点:

- 1. 文法中包含空产生式。 (→ε)
- 2. 为得到唯一的推导过程,条件为:

当某一V_N的产生式含空产生式,

则它的非空产生式的First集两两互不相交,且与推导过程中<u>紧跟该 V_N 可能出现的 V_T 集合也不相交。</u>

Follow集

Select集

 $S \Rightarrow aA \Rightarrow abAS \Rightarrow abS \Rightarrow abd$

@ \$ # # · +

Follow集合

• 定义: 设 $G = (V_T, V_N, S, P)$ 是上下文无关文法, $A \in V_N$, S是开始符号。

FOLLOW (A) = $\{a \mid S \rightarrow \mu A \beta \mid \exists a \in FIRST(\beta), \mu \in V_T^*, \beta \in V^+\}$

若S→μAβ,且β→ε,则规定#∈FOLLOW(A)
 #作为输入串的结束符,或称为句子括号,

如: #输入串#

通俗地讲:

举例,求例3中每个非终结符的Follow集

SELECT集合

- 为得到唯一的推导过程,条件为:
 - 当 某一V_N的产生式含空产生式,
 - 则它的非空产生式的First集两两互不相交 且 与推导过程中<u>紧跟该V_N可能出现的V_T集合</u>也不相交
- 可得到唯一的推导过程的条件 等价的表示:

则 $FIRST(\alpha) \cap ((FIRST(\beta) - \{\epsilon\}) \cup FOLLOW(A)) = \Phi$

■ SELECT集 定义:

给定上下文无关文法的产生式 $A \rightarrow \alpha$, $A \in V_N$, $\alpha \in V^*$,

若α \Rightarrow ε, 则 SELECT($A\rightarrow \alpha$) = First(α)

若α $\stackrel{*}{\Longrightarrow}$ ε,则 SELECT(A \rightarrow α) = (First(α)-{ε})∪Follow(A)

举例,求例3中每个产生式的Select集

LL(1)文法

可使用"自顶向下分析"的文法称为LL(1)文法。 必须满足的条件:

• 定义:

一个上下文无关文法是LL(1) 文法的充要条件: 对每个 V_N , A的两个不同产生式A $\rightarrow \alpha$, A $\rightarrow \beta$, 满足 SELECT(A $\rightarrow \alpha$) \cap SELECT(A $\rightarrow \beta$)= Φ 其中, α 、 β 不能同时推导出 ϵ 。

L: scan from Left 从左向右扫描输入串

L: analyze from Left: 分析过程是最左推导

1: 只需向右看一个符号便可以决定选择哪个产生式进行推导。

@ \$ # # + # B

LL(1)文法判别举例

```
例4: 判断文法G[S]是否为LL(1)文法?
           G[S]: S \rightarrow aAS
                     S \rightarrow b
                      A \rightarrow bA
                      A \rightarrow \epsilon
  解: Select(S \rightarrow aAS) = {a}
       Select(S \rightarrow b) = \{b\}
       Select(A \rightarrow bA) = \{b\}
       Select (A \rightarrow \varepsilon) = (First(\varepsilon) - \{\varepsilon\}) \cup Follow(A)
  \therefore Follow(A) = First(S) \cup Follow(A) = {a, b}
  ∴ Select (A → \varepsilon) = (First (\varepsilon) -{\varepsilon}) \cup Follow (A) = {a, b}
  由于 Select(S\rightarrowaAS) \cap Select(S\rightarrowb) = \Phi
             Select (A \rightarrow bA) \cap Select (A \rightarrow \epsilon) \neq \Phi
  故该文法不是LL(1)文法,不能用自顶向下分析技术。
```

举例:对输入串 ab 进行推导就可能产生错误。

4.2 LL(1) 文法的判别

判别步骤:

- 1. 求出能推出 ε 的非终结符
- 2. 计算FIRST集
- 3. 计算FOLLOW集
- 4. 计算SELECT集
- 5. 判别是否是LL(1)文法

例5: 设文法G[S] 为:

$$A \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$

$$C \rightarrow AD$$

$$C \rightarrow b$$

$$D \rightarrow c$$

判别步骤:

- 1. 求出能推出 ε 的非终结符
- 2. 计算FIRST集
- 3. 计算FOLLOW集
- 4. 计算SELECT集
- 5. 判别是否是LL(1)文法

判断它是否是LL(1) 文法。

- 1) 建立一个以 V_N 的个数为上限的一维数组X[],数组元素为 V_N ,对应每个 V_N 有一<u>标志位</u>;(该标志位记录能否推出 ϵ ,其值为:"未定"、"是"、"否")
- 2) 置初值——将数组X[]中对应的每一个 V_N 的标记置为"未定";
- 3) 删除所有右部含V_T的产生式,若某一V_N为左部的产生式全被删除,则 将数组中对应的标记值改为"否";
- 4) 若某一的某产生式右部为 ε , 则数组中对应的标记值为"是", 并删除该V_N为左部的所有产生式;
- 5) 扫描产生式右部的每个 V_N ,若该 V_N 在数组中对应标志为"是",则删去该 V_N ,转6;若该 V_N 在数组中对应标志为"否",则转7;
- 6) 若该 V_N 删去后,所在产生式右部为空,则该产生式左部的 V_N 在数组中对应的标志改为"是",并删去该 V_N 为左部的所有产生式; 否则转8
- 7) 删去该产生式,若该产生式左部在剩余的产生式中是唯一的左部(即 $A \to \alpha$...,再无其它 " $A \to \beta$ "的产生式),则把数组中该 V_N 对应的标 志改为 "否";
- 8) 返回5,直至扫描完一边文法的产生式后,数组中的标志不再改变。

- (1) 建数组X[4]: X[0]——S; X[1]——A; X[2]——B; X[3]——C; X[4]——D
- (2) X[0]="未定" X[1]="未定" X[2]="未定" X[3]="未定" X[4]="未定"
- (3) 删除右部含V_T的产生式
 - \bullet S \rightarrow AB
 - A → E
 - B → ε
 - \bullet C \rightarrow AD
 - "D"被全部删除,则x[4]="否"
 - 即: X[0]="未定" X[1]="未定" X[2]="未定" X[3]="未定" X[4]="否"

- (4) 删除产生式右部为 ε
 - $S \rightarrow AB$
 - \bullet C \rightarrow AD
 - x[1]="是" x[2]="是"
 - 即: X[0]="未定" X[1]="<u>是</u>" X[2]="<u>是</u>" X[3]="未定" X[4]="否"
- (5) step5: S→B →step 8 →step5: S→ →step6: x[0]="是"
- \bullet C \rightarrow AD
- 即: X[0]="<u>是</u>" X[1]="是" X[2]="是" X[3]="未定" X[4]=" 否"
- \Rightarrow step8 \Rightarrow step5: C \rightarrow D \Rightarrow step8 \Rightarrow step5: C \rightarrow \Rightarrow step7: x[3]="否"
- 即: X[0]="是" X[1]="是" X[2]="是" X[3]="<u>否</u>" X[4]="否"
- →step5 →step8 → 结束

 $S \rightarrow AB$

 $S \rightarrow bC$

 $A \rightarrow \epsilon$

 $A \rightarrow b$

 $B \rightarrow \epsilon$

 $B\rightarrow aD$

 $C \rightarrow AD$

 $C \rightarrow b$

 $D\rightarrow aS$

 $D \rightarrow c$

非终结符	S	Α	В	С	D
初值	未定	未定	未定	未定	未定
第 1 次 扫描		是	是		否
第 2 次 扫描	是			否	

2. 计算FIRST集

方法一: 根据定义计算

方法二: 关系图法

定义:

```
First(α)={a|α \triangleq aβ, a∈V<sub>T</sub>, α, β∈V*} 若α\triangleq ε, 则ε∈First(α)
```

求First(x)的算法:

- 1) 若 $x \in V_T$,则first(x)={x}
- 2) 若X∈V_N,且有产生式 X→a...,a∈V_T,则a∈first(X)
- 3) 若 $X \in V_N$, $x \rightarrow \epsilon$, 则 $\epsilon \in first(X)$
- 4) 若X∈ V_N ,且有产生式 X \rightarrow Y₁Y₂…Y_n,其中Y₁, Y₂,… Y_n都∈ V_N
 - 当 $Y_1, Y_2, ... Y_{i-1}$ 都能推导出 ε 时 (1<=i<=n), 则 first (Y_1) { ε } ∈ first (X) first (Y_2) { ε } ∈ first (X)

. . .

$$first(Y_{i-1}) - \{\epsilon\} \in first(X), first(Y_i) \in first(X)$$

• 当 $Y_1, Y_2, ...$ Y_n 都能推导出 ε 时,则first(X) = (first(Y_1)-{ε}) \cup (first(Y_2)-{ε}) \cup \cup (first(Y_n)-{ε}) \cup {ε}

2. 计算FIRST集

- 对符号串求first集算法:
- $\alpha = X_1 X_2 \dots X_n$
- 1. 若X₁不能推导出 ε,则first(α)=first(X₁₎
- 2. 若对任何j, $\epsilon \in first(X_i)$ (1<=j=i-1,2<=i<=n)
- \mathbb{M} first(α)= $\bigcup_{j=1}^{i-1}$ (first(X_j)-{ ϵ }) \cup first(X_i)
- 3. 若任何j, ε∈first(X_i) (1<=j<=n)
- 则first(α)= $\bigcup_{i=1}^{n}$ first(X_{i}) \bigcup first(ϵ)

2. 计算FIRST集

```
S \rightarrow AB
```

 $S \rightarrow bC$

 $A \rightarrow \epsilon$

 $A \rightarrow b$

 $B \rightarrow \epsilon$

 $B \rightarrow aD$

 $C \rightarrow AD$

 $C \rightarrow b$

 $D\rightarrow aS$

 $D \rightarrow c$

```
First(S) =(First(A)-\{\epsilon\})\cup(First (B)-\{\epsilon\})\cup\{\epsilon\}\cup\{b\}
=\{a,b,\epsilon\}
```

First (A)= $\{b, \epsilon\}$

First (B)= $\{a, \epsilon\}$

First (C)=(First(A)- $\{\epsilon\}$) \cup First(D) \cup {b}= $\{a,b,c\}$

First (D)= $\{a,c\}$

First $(aD)=\{a\}$

First $(aS)=\{a\}$

First (AB)=
$$\{a,b,\epsilon\}$$
 First (bC)= $\{b\}$ First (ϵ)= $\{\epsilon\}$

First (AD)={a,b,c}

First (c)={c}

3. 计算FOLLOW集

方法一: 根据定义计算

方法二: 关系图法

- 1) 设S为开始符号,把{#}加入Follow(S)中(#为句子括号)
- 2) 若A→αBβ,则把 <u>First(β)-{ε}</u> 加入Follow(B)中,如果β 等 ε,则把 Follow(A)也加入Follow(B)中。
- 3) 反复2,直到每个V_N的Follow集不再增大为止。

3. 计算FOLLOW集

- $S \rightarrow AB$
- $S \rightarrow bC$
- $A \rightarrow \epsilon$
- $A \rightarrow b$
- $B \rightarrow \epsilon$
- $B \rightarrow aD$
- $C \rightarrow AD$
- $C \rightarrow b$
- $D\rightarrow aS$
- $D\rightarrow c$

- Follow(S)={#}UFollow(D)
- Follow(A)= $\{a\} \cup \{a,c\} \cup Follow(S)$
- Follow(B)=Follow(S)
- Follow(C)=Follow(S)
- Follow(D)=Follow(B) U Follow(C)
- $Follow(S) = \{\#\}$
- Follow(A)= $\{a,c,\#\}$
- Follow(B)= $\{\#\}$
- $Follow(C) = \{\#\}$
- Follow(D)= $\{\#\}$

4. 计算SELECT集

First (S) = {a, b, ε } First (A) = {b, ε } First (B) = {a, ε } First (C) = {a, b, c} First (D) = {a, c} First (AB) = {a, b, ε } First (AD) = {a, b, c}

Follow(S) = {#}
Follow(A) = {a, c, #}
Follow(B) = {#}
Follow(C) = {#}
Follow(D) = {#}

定义:

对于产生式 $A \rightarrow \alpha$, $A \in V_N$, $\alpha \in V^*$

若α类ε,则 Select(A→α)=First(α)

若α =ε, 则 Select(A \rightarrow α)=(First(α)-{ε}) UFollow(A)

Select $(D \rightarrow c) = First(c) = \{c\}$

续上例:

S→AB

S→bC

 $A \rightarrow \epsilon$

A→b

 $B \rightarrow \epsilon$

B→aD

 $C \rightarrow AD$

 $C \rightarrow b$

D→aS

 $D \rightarrow c$

Select $(S \rightarrow AB) = (First (AB) - \{ \epsilon \}) \cup Follow(S) = \{ a, b, \# \}$ Select $(S \rightarrow bC) = First (bC) = \{ b \}$ Select $(A \rightarrow \epsilon) = (First (\epsilon) - \{ \epsilon \}) \cup Follow(A) = \{ a, c, \# \}$ Select $(A \rightarrow b) = First (b) = \{ b \}$ Select $(B \rightarrow \epsilon) = (First (\epsilon) - \{ \epsilon \}) \cup Follow(B) = \{ \# \}$ Select $(B \rightarrow aD) = First (aD) = \{ a \}$ Select $(C \rightarrow AD) = First (AD) = \{ a, b, c \}$ Select $(C \rightarrow b) = First (b) = \{ b \}$ Select $(D \rightarrow aS) = First (aS) = \{ a \}$

5. 判别

Select
$$(S \rightarrow AB) = \{a, b, \#\}$$
 Select $(S \rightarrow bC) = \{b\}$
Select $(A \rightarrow \epsilon) = \{a, c, \#\}$ Select $(A \rightarrow b) = \{b\}$
Select $(B \rightarrow \epsilon) = \{\#\}$ Select $(B \rightarrow aD) = \{a\}$
Select $(C \rightarrow AD) = \{a, b, c\}$ Select $(C \rightarrow b) = \{b\}$
Select $(D \rightarrow aS) = \{a\}$ Select $(D \rightarrow c) = \{c\}$

LL(1) 文法:

左部相同的产生式的SELECT集的交集均为空。

$$S \rightarrow AB$$

 $S \rightarrow bC$
 $A \rightarrow \epsilon$
 $A \rightarrow b$
 $B \rightarrow \epsilon$
 $B \rightarrow aD$
 $C \rightarrow AD$
 $C \rightarrow b$
 $D \rightarrow aS$
 $D \rightarrow c$

Select(S
$$\rightarrow$$
AB) \cap Select(S \rightarrow bC)={b} $\neq \Phi$
Select(A $\rightarrow \epsilon$) \cap Select(A \rightarrow b)= Φ
Select(B $\rightarrow \epsilon$) \cap Select(B \rightarrow aD)= Φ
Select(C \rightarrow AD) \cap Select(C \rightarrow b)={b} $\neq \Phi$
存在交集非空的SELECT集合,所以该文法不是LL(1)文法。

练习:设文法G[A]为:

 $A \rightarrow A \cup B$

A**→**B

 $B \rightarrow B \cap C$

B**→**C

C**→**!D

 $C \rightarrow D$

 $D \rightarrow (A)$

 $D \rightarrow i$

判断它是否是LL(1)文法。

4.3 某些非LL(1) 文法到LL(1) 文法的等价变换

非LL(1) 文法

- 若文法含有左公共因子,一定不是LL(1)文法
- 若文法含有直接或间接左递归,一定不是LL(1)文法

非LL(1) 文法 > LL(1) 文法的等价变换:

- 提取左公共因子
- 消除左递归

注: 左公共因子 $S \rightarrow a \alpha \mid a \beta$ 其中a即为左公共因子

4.3.1.1 提取左公共因子

对形如 $A \rightarrow \alpha \beta \mid \alpha \gamma$ 进行等价变换为: $A \rightarrow \alpha (\beta \mid \gamma)$

进一步变换: A→ α A'

$$A' \rightarrow \beta \mid \gamma$$

对形如 $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid ... \mid \alpha \beta_n$ 进行等价变换为:

A→α(β₁|β₂| ... |β_n) 进一步变换(引入新非终结符A'):

$$A' \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$$

注: $\text{若}A' \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$ 中仍含左公共因子,再次提取,直至 所有的产生式不再有左公共因子。

例6: 文法 G[S] 为:
$$S \rightarrow aSb$$

$$S \rightarrow aS$$

$$S \rightarrow \epsilon$$
解:
$$S \rightarrow aSb \} S \rightarrow aS(b|\epsilon) \begin{cases} S \rightarrow aS S' & S \rightarrow aS S' \\ S \rightarrow aS \end{cases} S \rightarrow \epsilon S \rightarrow$$

结论1:文法中<u>不含左公共因子</u>只是LL(1)文法的<u>必要条件</u>。即:

- LL(1) 文法一定不含左公共因子
- 不含左公共因子的文法不一定是LL(1)文法

4.3.1.2 提取隐含的左公共因子

- 1) 隐式 变 显式: 右部以 V_N 开始的产生式,用该 V_N 对应的产生式进行相应替换
- 2) 再用一般形式进行提取:

 $A \rightarrow \alpha A'$

 $A' \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$

例7: 文法G[S]为:

$$S \rightarrow aSd$$
 $S \rightarrow aS (d | c)$
 $S \rightarrow aSc$ $S \rightarrow bc$
 $S \rightarrow bc$ $A \rightarrow aS$
 $A \rightarrow aS$ $A \rightarrow b$
 $A \rightarrow b$

A是多余产生式!

4.3.1.3 不能在有限步骤内提取完左公共因子的文法

例8: 文法G[S]为:

S→Ap	S → aApp	S→a (App Bqq)	S→aS'
S→Bq	S→dp	S→dp	S' → App
A→aAp	S → <u>a</u> Bqq	S→eq	S'→Bqq
A→d	S→eq	A→aAp	S→dp
B→aBq	A→aAp	A→d	S→eq
•	A→d	B → aBq	A→aAp
В→е	B → aBq	В→е	A→d
	В→е		B→aBq
			В→е

继续替换S'产生式右部的A和B, 只能使产生式无限地增加下去。

结论2: 不是所有文法,都能在有限的步骤内提取完"左公共因子"

4.3.2 消除左递归

✓ 文法提取左公共因子后,并不一定是LL(1)文法。 只有不含空产生式,且无左公共因子,且无左递归时, 文法才是LL(1)文法。否则需要进行判别。

左递归的形式:

- 直接左递归 A→Aβ A∈V_N, β ∈V*
- 间接左递归
 A→Bβ
 B→Aα
 A, B∈ V_N, α, β ∈V*

4.3.2.1 消除直接左递归

例9: 消除文法G[S] 的左递归。

解: 左递归文法改写为:

4.3.2.2 消除间接左递归

- 先把"间接左递归"变为"直接左递归"
- 再将"直接左递归"化为"右递归":

$$A \rightarrow A \alpha_{1} | A \alpha_{2} | \dots | A \alpha_{m}$$

$$A \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$$

改写为:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid$$

A' → ε

例10: 消除文法G[A] 的间接左递归。

A→aB

A→Bb

B→Ac

 $B \rightarrow d$

"间接"变"直接"

A→aB

A→Acb

A→db

 $B \rightarrow Ac$

 $B \rightarrow d$

"左递归"化为"右递归"

A→aBA'|dbA'

 $A' \rightarrow cbA' \mid \varepsilon$

 $B \rightarrow Ac$

 $B \rightarrow d$

3 消除文法中一切左递归

```
以某种顺序将V_N的排序为: A_1, A_2, ..., A_n for (i=1;i <=n;i++) { for (j=1;j <=\underline{i-1};j++) //以A_1, ..., A_{i-1}的产生式代入A_i产生式 { 若A_j的产生式为: A_j \rightarrow \delta_1 \mid \delta_2 \mid ... \mid \delta_k 则形如A_i \rightarrow A_j γ的产生式变为: A_i \rightarrow \delta_1 γ \mid \delta_2 γ \mid ... \mid \delta_k γ 消除A_i中的一切直接左递归 }
```

例11: 消除文法G[A] 的一切左递归。

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Rb \mid b$
 $R \rightarrow Sa \mid a$

@ 南方理工大学

例11: 消除文法G[A] 的一切左递归。

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Rb \mid b$
 $R \rightarrow Sa \mid a$

解: 非终结符排序为: S, Q, R

(1)对于S:无直接左递归(不用消除)

(2)对于Q: 右部不含S开头的产生式

无直接左递归(不用消除)

(3)对于R: 右部含S开头的产生式,则:

 $S \rightarrow Qc$

Q→Rb

 $R \rightarrow Qca$

 $S \rightarrow c$

Q→b

R→ca

R→a

右部含Q开头的产生式:

S**→**Qc

Q**→**Rb

R→Rbca

 $S \rightarrow c$

 $0 \rightarrow b$

R→bca

R→ca

R→a

消除直接左递归:

S**→**Qc

Q→Rb

R→ (bca | ca | a) R'

 $S \rightarrow c$

 $Q \rightarrow b$

R'→bcaR' | ε

(4) 考察是否存在无用产生式:没有"无用产生式",所以不用删除。

(a) 有有限2 大选

 $S \rightarrow Qc \mid c, Q \rightarrow Rb \mid b, R \rightarrow Sa \mid a$

另解: 非终结符排序为: R,Q,S

(1)对于R: 无直接左递归(不用消除)

(2)对于Q: 右部含R开头的产生式:

 $S \rightarrow Qc$ $Q \rightarrow Sab$ $R \rightarrow Sa$ $S \rightarrow c$ $Q \rightarrow ab$ $R \rightarrow a$

Q→b 无直接左递归(不用消除)

(3) 对于S: 右部不含R开头的产生式, 右部含Q开头的产生式

 $S \rightarrow Sabc Q \rightarrow Sab R \rightarrow Sa$

 $S \rightarrow abc \quad Q \rightarrow ab \quad R \rightarrow a$

 $S \rightarrow bc$ $Q \rightarrow b$

 $S \rightarrow c$

消除直接左递归:

 $S \rightarrow (abc \mid bc \mid c)S'$ $Q \rightarrow Sab R \rightarrow Sa$ $S' \rightarrow abcS' \mid \epsilon$ $Q \rightarrow Sab R \rightarrow Sa$

 $Q \rightarrow b$

(4) 考察是否有"无用产生式": Q、R的产生式是无用产生式,删除! 最终的产生式为:

S→abcS' S'→abcS'

 $S \rightarrow bcS'$ $S' \rightarrow \varepsilon$

 $S \rightarrow cS'$

4.5 确定的自顶向下分析方法

- 1. 递归子程序法:
 - 主要思想:

对文法中每个非终结符编写一个递归过程,每个过程的功能是识别由该非终结符推出的串,当某非终结符的产生式有多个候选时能够按LL(1)形式可唯一地确定选择某个候选进行推导。

■ 优点:

简单、直观、易于构造。(PL/0的语法分析)

缺点:

对文法要求高,必须满足LL(1)文法; 由于递归调用多,速度慢,占用空间多。

4.5 确定的自顶向下分析方法

- 2. 预测分析法:
 - 预测分析器的组成:预测分析程序、先进后出栈、预测分析表
 - 预测分析法的步骤:
 - (1) 提取左公共因子,消除左递归
 - (2) 判断文法是否为LL(1) 文法
 - (3) 若是,构造预测分析表; 否则,不能进行"确定的自顶向下"分析
 - (4) 预测分析程序根据"预测分析表"并利用"分析栈",对输入串进行分析

例12: 文法G[E]:

 $E \rightarrow E + T \mid T$

构造预测分析表。

 $T \rightarrow T * F \mid F$

 $F \rightarrow i \mid (E)$

解:

(1) 消除左递归:

V_N排列为 E, T, F

消除E一切直接左递归:

 $E \rightarrow TE'$

T**→**T*F

 $F \rightarrow i$

 $E' \rightarrow +TE' \mid \varepsilon \qquad T \rightarrow F$

 $F \rightarrow (E)$

消除T的一切直接左递归:

 $E \rightarrow TE'$

T→FT'

 $F \rightarrow i$

 $E' \rightarrow +TE' \mid \varepsilon \qquad T' \rightarrow *FT' \mid \varepsilon$

 $F \rightarrow (E)$

F没有左递归。

文法无左公共因子。

所以, 提取左公共因子和消除左递归后的文法为:

 $E \rightarrow TE'$

T→FT'

 $F \rightarrow i$

 $E' \rightarrow +TE'$

T'**→***FT'

 $F \rightarrow (E)$

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

- (2) <u>判断</u>改写后的文法是否为LL(1) 文法:
 - a) 可推导出 ε 的V_N表:

E E' T T' F 否 是 否 是 否

b) 求First集:

First (E) = { i , (}
First (E') = { + , ε }
First (T) = { i , (}
First (T') = { * , ε }
First (F) = { i , (}
First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = First (F) = { i , (}
First (FT') = { i , (

c) 求Follow集:

Follow(E) = { # ,) }
Follow(E') = Follow(E) U Follow(E') = { # ,) }
Follow(T) = (First(E') - { ε }) U Follow(E') = { + , # ,) }
Follow(T') = Follow(T) U Follow(T') = { + , # ,) }
Follow(F) = (First(T') - { ε }) U Follow(T) U Follow(T')
= { * , + , # ,) }

d) 求各产生式的SELECT集:

SELECT (E
$$\rightarrow$$
TE') = First (TE') = { i , (}
SELECT (E' \rightarrow +TE') = First (+TE') = { + }
SELECT (E' \rightarrow ϵ) = Follow (E') = { #,)}
SELECT (T \rightarrow FT') = First (FT') = { i , (}
SELECT (T' \rightarrow *FT') = First (*FT') = { * }
SELECT (T' \rightarrow ϵ)= Follow (T')={ +, #,)}
SELECT (F \rightarrow (E)) = First ((E)) = { (}
SELECT (F \rightarrow i) = First (i) = { i }

e) 判定:

SELECT (E'
$$\rightarrow$$
+TE') \cap SELECT (E' \rightarrow ϵ) = ϕ
SELECT (T' \rightarrow *FT') \cap SELECT (T' \rightarrow ϵ) = ϕ
SELECT (F \rightarrow (E)) \cap SELECT (F \rightarrow i) = ϕ

所以该文法是LL(1)文法,可以使用预测分析法。

构造预测分析表的方法:

对每个V_⊤或"#"用符号a表示。 若a∈SELECT (A→α),则把A-Select(T→FT') = { i, (}

Select (E
$$\rightarrow$$
 TE') = { i , (}
日造预测分析表的方法: Select (E' \rightarrow +TE') = { + }
日每个 V_T 或 "#" 用符号a表示。 Select (E' \rightarrow ϵ) = { #,)}
Fa \in SELECT (A \rightarrow α),则把A \rightarrow Select (T \rightarrow FT') = { i , (}
(所有空白的M[A, a]表示出错。 Select (T' \rightarrow *FT') = { * }
Select (T' \rightarrow ϵ) = { +, #,)}
Select (F \rightarrow (E)) = { (}

 $Select(F \rightarrow i) = \{ i \}$

(3) 构造预测分析表:

	+	*	()	i	#
E			E→TE'		E→TE'	
E'	E'→+TE'			E'→ε		E' → ε
Т			T→FT'		T→FT'	
T'	T'→ε	T'→*FT'		T'→ε		T'→ε
F			F→(E)		F→i	

0.00000	A PROPERTY OF THE PARTY OF THE				100	THE RESERVE OF THE PARTY OF THE
	+	*	()	i	#
Е			E → TE'		E → TE'	
Ε'	E' → +TE'			E '→ε		E' →ε
Т			T→FT'		T→FT'	
T'	T '→ε	T' → *FT'		T' →ε		T '→ε
F			F → (E)		F→i	

(4) 预测分析输入串 #i+i*i#

步骤	分析栈	剩余输入串	所用产生式
1	#E	i+i*i#	E→TE'
2	#E ' T	i+i*i#	T→FT'
3	#E ' T ' F	i+i*i#	F→i
4	#E'T'i	i+i*i#	i匹配
5	#E'T'	+i*i#	T' → ε
6	#E'	+i*i#	E' → +TE'
7	#E'T+	+i*i#	+匹配
8	#E'T	i*i#	T→FT'
9	#E'T'F	i*i#	F→i
10	#E'T'i	i*i#	i匹配
11	#E'T'	*i#	T' → *FT'
12	#E'T'F*	*i#	*匹配
13	#E'T'F	i#	F→i
14	#E'T'i	i#	i匹配
15	#E'T'	#	T' → ε
16	#E'	#	Ε'→ε
17	#	#	接受

4.4 不确定的自顶向下分析思想

非LL(1) 文法不能用"确定的"自顶向下分析,但可以使用"不确定的"自顶向下分析("带回溯的"自顶向下分析)

引起回溯的原因:

- 1. 由于左部相同的产生式的右部First集交集不为空。
- 2. 由于左部相同 V_N 的右部能推导出 ε ,且该 V_N 的Follow 集中含有其右部First集的元素。
- 3. 由于文法中含有左递归。

引起回溯的原因:

1. 由于左部相同的产生式的右部First集交集不为空。

例13: 文法G[S]:

 $S \rightarrow xAy$

A→ab a

分析输入串w=xay是否为该文法接受。

引起回溯的原因:

2. 由于左部相同 V_N 的右部能推导出 ϵ , 且该 V_N 的Follow集中含有其右部First集的元素。

例14: 设文法G[S] 为: S→aAS

 $S \rightarrow b$

A→bAS

 $A \rightarrow \epsilon$

分析输入串 w=ab 是否为该文法接受。

引起回溯的原因:

3. 由于文法中含有左递归。

例15: 设文法G[S] 为:

S→Sa

S→b

分析输入串 w=baa 是否为该文法接受。

 S
 S
 S

 b
 S a
 S a

 Sa
 S a

 Ja
 S a

 Ja
 Ja

 <t

谢谢各位同学!

