Index

Adjusted R^2 , 162	Analysis of variance, 295–338
Alias matrix, 170	estimability of β in the empty cells
Analysis of covariance, 443–478	model, 432, 434–435
assumptions, 443-444	estimability of $\boldsymbol{\beta}$ in the non-full-rank
covariates, 444	model, 302-304
estimation, 446–448	estimable functions $\lambda' \beta$, 305–308
model, 444-445	conditions for estimability of $\lambda'\beta$,
one-way model with one covariate,	305-307
449-451	estimators of $\lambda' \beta$, 309–313
estimation of parameters, 449-450	BLUE properties of, 313
model, 449	covariance of, 312
testing hypotheses, 448, 450-451	variance of, 311
equality of treatment effects,	estimation of σ^2 in the non-full-rank
450-452	model, 313-314
homogeneity of slopes, 452-456	model, 3-4, 295-301
interpretation, 456	one-way. See One-way model
slope, 452	two-way. See Two-way model
one-way model with multiple covariates,	normal equations, 302-303
464-472	solution using generalized inverse,
estimation of parameters, 465-468	302-303
model, 464–465	normal model, 314–316
testing hypotheses, 468–469	estimators of β and σ^2 , 314–315
equality of treatment effects,	properties of, 316
468-469	and regression, 4
homogeneity of slope vectors,	reparameterization to full-rank model,
470-472	318-320
slope vector, 470	side conditions, 320–322, 433
power, 444	SSE in the non-full-rank model,
testing hypotheses, 448	313-314
two-way model with one covariate,	testable hypotheses, 323–324
457-464	testable hypotheses in the empty cells
model, 457	model, 433
testing hypotheses, 458–464	testing hypotheses, 323–329
homogeneity of slopes, 463–464	full and reduced model, 324-326
main effects and interactions,	general linear hypothesis, 326–329
458-462	treatments or natural groupings of units, 4
slope, 462	unbalanced data. See Unbalanced data
unbalanced models, 473–474	in ANOVA
cell means model, 473	Angle between two vectors, 41–42, 136,
constrained model, 473–474	163, 238

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje Copyright © 2008 John Wiley & Sons, Inc.

Asymptotic inference for large samples, 260–262, 491, 515	Data space, 153, 163, 316–317 Dependent variable, 1, 137, 295
Augmented matrix, 29	Derivative, matrix and vector, 56–59, 91, 109, 142, 158, 495
Davies' theorem 279, 270	Determinant, 37–41
Bayes' theorem, 278–279	Determination, coefficient of.
Bayesian linear model, 279–284, 480	See Coefficient of determination
Bayesian linear mixed model, 497	Diagnostics, regression,
Best linear predictor, 499	227–238 <i>also</i> Hat matrix;
Best linear unbiased estimators (BLUE),	Influential observations;
147, 165, 313	Outliers; Residual(s)
Best quadratic unbiased estimators, 151,	
486	Diagonal matrix, 8 DIC. See Information criterion
Beta weights, 251	Distance
BIC. See Information criterion	
BLUE. See Best linear unbiased estimators	Mahalanobis, 77
	standardized, 77 Distribution(s)
Causality, 3, 130–131, 443	* *
Chi-square distribution, 112–114	chi-square, 112–114
central chi-square, 112	F, 114–116
moment-generating function, 112–113	gamma, 280
noncentral chi-square, 112–114	inverse gamma, 284
noncentrality parameter, 112, 124	multivariate t, 282–283, 285
Cluster correlation, 479–480, 481–485	normal. See Normal distribution
Coefficient of determination	t, 216, 283
in multiple regression, 161–164	
in simple linear regression, 133–134	Effect of each variable on R^2 ,
Coefficient(s), regression, 2, 127	262-265
Conditional density, 73, 95–99,	Eigenvalues. See Matrix, eigenvalues
278–284, 498–499	Eigenvectors. See Matrix, eigenvectors
Confidence interval(s)	Empty cells, 432–439
for β_1 in simple linear regression, 133	Error sum of squares. See SSE
in Bayesian regression, 278, 285	Error term, 1, 137
in linear mixed models, 491, 495	Estimated best linear unbiased predictor,
in multiple regression. See Regression,	499
multiple linear with fixed x 's,	Estimated generalized least squares
confidence interval(s)	estimation, 490
in random-x regression, 261–262	Exchangeability, 277
Contrasts, 308, 341, 357–371	Expected mean squares, 173–174, 179,
Control of output, 3	182, 312–317, 362–367, 433
Correlation	Expected value
bivariate, 134	of bilinear form $[E(\mathbf{x}'\mathbf{A}\mathbf{y})]$, 111
Correlation matrix (matrices)	of least squares estimators,
population, 77–78	131–132
relationship to covariance matrix, 77-78	of quadratic form $[E(\mathbf{y}'\mathbf{A}\mathbf{y})]$, 107
sample, 247	of R^2 , 162
relationship to covariance matrix,	of random matrix, 75–76
247 – 248	of random variable $[E(y)]$, 70
Covariance matrix (matrices)	of random vector $[E(y)]$, 75–76
for $\hat{\beta}$, 145	of sample covariance $[E(s_{xy})]$, 112
for partitioned random vector, 78	of sample variance $[E(s^2)]$, 108, 131, 150
population, 75–76	of sum of random variables, 70
sample, 156, 246–247	of sum of random vectors, 75–76
for two random vectors, 82	Exponential family, 514

F-Distribution, 114–116 central F, 114	Independence of contrasts, 358–362
mean of central <i>F</i> , 115 noncentral <i>F</i> , 115	independence and zero covariance, 93–94
noncentrality parameter, 115 variance of central <i>F</i> , 115	of linear functions and quadratic forms, 119–120
F-Tests. See also Regression, multiple	of quadratic forms, 120–121
linear with fixed x 's, tests of hypoth-	of random variables, 71, 94
eses; Tests of hypotheses	of random vectors, 93, 94
general linear hypothesis test, 198–203	of SSR and SSE, 187
for overall regression, 185	Influential observations, 235–238
power, 115	Cook's distance, 236–237
subset of the β 's, 189	leverage, 236
False discovery rate, 206	Information criterion, 286
First order multivariate Taylor series, 495	Iterative methods for finding estimates, 490
Fixed effects models, 480	Invariance
	of F, 149, 200
Gauss-Markov theorem, 146–147, 276. See	of maximum likelihood estimators, 247–248
also Best linear unbiased estimators	of R^2 , 149
Generalized least squares, 164–169,	of s^2 , 149
285–286, 479, 503	of t, 149
Generalized linear models, 513–516	of \hat{y} , 148–149
exponential family, 514	Inverse matrix. See Matrix, inverse
likelihood function, 512	
linear predictor, 513–514	• 0
link function, 514	j vector, 8
model, 514	J matrix, 8
Generalized inverse, 32–37, 302–303, 343, 384	Kenward-Roger adjustment, 496-497
of symmetric matrix, 33	Kenward Roger adjustment, 470–477
Generalized variance, 77, 88–89	1. 1. (0 (0 170 201 220
	Lagrange multiplier, 60, 68, 179, 201, 220,
Geometry of least squares, 151–154, 163, 316–317	223, 429
	Least squares, 128, 131, 141, 143,
angle between two vectors, 163	145–151, 302, 507
prediction space, 153–154, 163, 316–317	properties of estimators, 129–133, 143, 145–147
data space, 153, 163, 316-317	Likelihood function, 158, 513–514
parameter space, 152, 154, 316-317	Likelihood ratio tests, 258–262
Gibbs sampling, 289, 291	Linear estimator, 143. See also Best linear
r 8,,	unbiased estimators
Hadamand mudwat 16 125	Linear mixed model, 480
Hadamard product, 16, 425	randomized blocks, 481–482
Hat matrix, 230–231	subsampling, 482
Hessian matrix, 495	split plot studies, 483–484, 492–494
Highest density interval, 279, 285	one-way random effects, 484, 489
Hyperprior distribution, 280, 287	random coefficients, 484–485
Hypothesis tests. See Tests of hypotheses	
	heterogeneous variances, 485–486
Idempotent matrix	Linear model, 2, 137 Linear models, generalized. <i>See</i>
for chi-square distribution, 117–118	
definition and properties, 54–55	Generalized linear models
in linear mixed models, 487	Logistic regression, 508–511
· · · · · · · · · · · · · · · · · · ·	binary y, 508
Identity matrix, 8	estimation, 510

Logistic regression (Continued)	of partitioned matrix, 23–24
logit transformation, 509	of product, 22
model, 509-510	j vector, 8
polytomous model, 511	J matrix, 8
categorical, 511	multiplication of, 10
ordinal, 511	conformal matrices, 10
several x's, 510	nonsingular matrix, 21
Logit transformation, 509	notation, 5
Loglinear models, 511–512	O (zero matrix), 8
contingency table, 511	orthogonal matrix, 41–43
likelihood ratio test, 512	partitioned matrix, 16–18
maximum likelihood estimators, 512	multiplication of, 17
LSD test, 209	positive definite matrix, 24–28
	positive semidefinite matrix, 25–28
Mahalanobis distance, 77	product, 10
*	commutativity, 10
Markov Chain Monte Carlo, 288–289,	as linear combination of columns, 17
291–292 Matrix (matrices) 5 68	matrix and diagonal matrix, 16
Matrix (matrices), 5–68	matrix and j , 12
addition of, 9–10	matrix and scalar, 10
algebra of, 5–60	product equal to zero, 20
augmented matrix, 29	rank of product, 21
bilinear form, 16	quadratic form, 16. See also Quadratic
Cholesky decomposition, 27 conditional inverse, 33	form(s)
*	random matrix, 69
conformable matrices, 9	rank, 19–21. See also Rank of a matrix
definition, 5	spectral decomposition, 51, 360, 362,
derivatives, 56–58	495–496
determinant, 37–41	square root matrix, 53
of partitioned matrix, 38–40	sum of, 9
diagonal of a matrix, 7	symmetric matrix, 7
diagonal matrix, 8	spectral decomposition, 51
diagonalizing a matrix, 52	trace, 44–46
differentiation, 56–57	transpose, 7
eigenvalues, 46–53, 496	of product, 13
characteristic equation, 47	triangular matrix, 8
and determinant, 51–52	vector(s). See Vector(s)
of functions of a matrix, 49–50	zero matrix (0) and zero vector (0), 8
of positive definite matrix, 53	Matrix product. See Matrix, product
square root matrix, 53	Maximum likelihood estimators
of product, $50-53$	for β and σ^2 in ANOVA, 315
of symmetric matrix, 51	for $\boldsymbol{\beta}$ and $\boldsymbol{\sigma}^2$ in fixed-x regression,
and trace, 51	158–159
eigenvectors, 46–47, 496	properties, 159–161
equality, 6	for β_0 , β_1 , and σ^2 in random-x
generalized inverse, 32–37, 302, 343,	regression, $245-248$
384, 391–395	
of symmetric matrix, 36	properties, 248–249 invariance of, 249
Hadamard product, 16, 425	
idempotent matrix, 54	in loglinear models, 511 for partial correlation, 266–268
and eigenvalues, 54	MCMC. See Markov Chain Monte Carlo
identity matrix, 8	
inverse, 21–23	Mean. See also Expected value
conditional inverse, 33	sample mean. <i>See</i> Sample mean population mean, 70
generalized inverse 32-37	population mean, /0

Missing at random, 432	orthogonal contrasts, 358–371
Misspecification of cov(y), 167–169. See	independence of, 363–364
also Generalized least squares	orthogonal polynomial contrasts,
Misspecification of model, 169–174	363–371
alias matrix, 170	partitioning of sum of squares,
overfitting, 170–172	360–361
underfitting, 170–172	estimable functions, 340–341
Model diagnostics, 227–238. See also Hat	contrasts, 341
matrix; Influential observations;	estimation of σ^2 , 343–344
Outliers; Residual(s)	expected mean squares, 351-357
Model, linear, 2, 137	full-reduced-model method, 352-354
Model validation, 227-238. See also Hat	general linear hypothesis method,
matrix; Influential observations;	354–356
Outliers; Residual(s);	normal equations, 341-344
Moment-generating function, 90-92, 96,	solution using generalized inverse, 343
99-100, 103-104, 108	solution using side conditions,
Multiple linear regression, 90–92, 108,	342–343
112–114, 117–119, 122. See	overparameterized model, 297
Regression, multiple linear with	assumptions, 297–298
fixed x's	parameters not unique, 297
Multivariate delta method, 495	reparameterization, 298
Multivariate normal distribution, 87-103	side conditions, 298
conditional distribution, 95-97	SSE, 314
density function, 88-89	testing the hypothesis H_0 : $\mu_1 = \mu_2 =$
independence and zero covariance, 93-94	$\dots = \mu_k, 344 - 351$
linear functions of, 89	full and reduced model, 344-348
marginal distribution, 93	general linear hypothesis, 348–351
moment generating-function of, 90-92	Orthogonal matrix, 41–43
partial correlation, 100–101	Orthogonal polynomials, 363–371
properties of, 92–100	Orthogonal vectors, 40
	Orthogonal <i>x</i> 's in regression models, 149,
Noncentrality parameter	174–178
for chi-square, 112	Orthogonality of columns of X in balanced ANOVA models, 333–335
for F, 114, 187, 192, 325	Orthogonality of rows of A in unbalanced
for t, 116, 132	ANOVA models, 293–296
Nonlinear regression, 507	Orthogonalizing the x 's in regression
confidence intervals, 507	models, 174–178
least squares estimators, 507	and partial regression coefficients,
tests of hypotheses, 507	175–176
Nonsingular matrix, 21	Outliers, 232–235
Normal distribution	mean shift outlier model, 235
multivariate. See Multivariate normal	PRESS (prediction sum of squares), 235
distribution	Overfitting, 170–172
univariate, 87–88	5 (orntaing, 175 172
standard normal, 87	<i>p</i> -Value
Normalizing constant, 278, 281, 284	for F-test, 188–189
	for <i>t</i> -test, 132
O (zero matrix), 8	Parameter space, 152, 154, 316–317
One-way model (balanced), 3, 295–298,	Partial correlation(s), 100–101, 266–273
339–376	matrix of (population) partial
contrasts, 357–371	correlations, 100–101
and eigenvectors, 360-362	sample partial correlations, 177-178,
hypothesis test for, 344–351	266–173

Partial interaction constraints, 434	Random variable(s), 69
Poisson distribution, 512	correlation, 74
Poisson regression, 512–513	covariance, 71
likelihood function, 513	and independence, 71–74
model, 513	expected value (mean), 70
Polynomials, orthogonal. See Orthogonal	independent, 71, 94
polynomials	mean (expected value), 70
Positive definite matrix, 24–28	standard deviation, 71
Positive semidefinite matrix, 25–28	variance, 70
Posterior distribution, 278–284	Random vector(s), 69-74
conditional, 289	correlation matrix, 77–78
marginal, 282	covariance matrix, 75-76, 83
Posterior predictive distribution, 279,	linear functions of, 79–83
290-292	mean of, 80
Prediction, 2–3, 137, 142, 148,	variances and covariances of,
156, 161	81-83
Precision, 280	mean vector, 75–76
Prediction of a random effect, 497–499	partitioned, 78–79
Prediction interval, 213–215	Random x's in regression. See Regression,
Prediction space, 153–154, 163,	random x's
316–317	Rank of a matrix, 19–21
Prediction sum of squares (PRESS), 235	full rank, 19
PRESS (prediction sum of squares), 235	rank of product, 20-21
Prior distribution, 278–284	Regression coefficients (β 's), 2,
diffuse, 281, 287	138, 251
informative, 281	partial regression coefficients, 138
conjugate, 281, 289	standardized coefficients (beta weights),
specification, 280	251
Projection matrix, 228	Regression, logistic. See Logistic regression
	Regression, multiple linear with fixed x 's,
Quadratic form(s), 16, 489	2-3, 137-184
distribution of, 117–118	assumptions, 138–139
expected value of, 107	centered x's, 154–157
idempotent matrix, 106	coefficients. See Regression coefficients
independence of, 119–121	confidence interval(s)
moment-generating function of, 108	for $\boldsymbol{\beta}$, 209
variance of, 108	for $E(y)$, 211–212
2: : 1 1: : : 122 124	for one $\mathbf{a}'\mathbf{\beta}$, 211
r^2 in simple linear regression, 133–134	for one β_j , 210–211
R^2 (squared multiple correlation),	for σ^2 , 215
161–164, 254–257	for several $a_i'\beta$'s, 216–217
effect of each variable on R^2 , 262–265	for several β_j 's, 216
fixed x's, 161–164	for several β_j 's, 216 design matrix, 138
fixed <i>x</i> 's, $161-164$ adjusted R^2 , 162	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also
fixed x's, $161-164$ adjusted R^2 , 162 angle between two vectors, 163	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression
fixed x's, $161-164$ adjusted R^2 , 162 angle between two vectors, 163 properties of R^2 and R , 162	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of $\beta_0, \beta_1, \dots, \beta_k$, 141–145
fixed x's, $161-164$ adjusted R^2 , 162 angle between two vectors, 163 properties of R^2 and R , 162 random x's, $254-257$	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of $\beta_0, \beta_1, \dots, \beta_k$, 141–145 with centered x 's, 154–157
fixed x 's, $161-164$ adjusted R^2 , 162 angle between two vectors, 163 properties of R^2 and R , 162 random x 's, $254-257$ population multiple correlation, 254	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of β_0 , β_1 ,, β_k , 141–145 with centered x 's, 154–157 least squares, 2, 143–144
fixed x's, 161–164 adjusted R ² , 162 angle between two vectors, 163 properties of R ² and R, 162 random x's, 254–257 population multiple correlation, 254 properties, 255	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of β_0 , β_1 ,, β_k , 141–145 with centered x 's, 154–157 least squares, 2, 143–144 maximum likelihood,
fixed x's, 161–164 adjusted R ² , 162 angle between two vectors, 163 properties of R ² and R, 162 random x's, 254–257 population multiple correlation, 254 properties, 255 sample multiple correlation, 256	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of β_0 , β_1 ,, β_k , 141–145 with centered x 's, 154–157 least squares, 2, 143–144 maximum likelihood, 158–159
fixed x's, 161–164 adjusted R ² , 162 angle between two vectors, 163 properties of R ² and R, 162 random x's, 254–257 population multiple correlation, 254 properties, 255 sample multiple correlation, 256 properties, 256–257	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of β_0 , β_1 ,, β_k , 141–145 with centered x 's, 154–157 least squares, 2, 143–144 maximum likelihood, 158–159 properties of estimators,
fixed x's, 161–164 adjusted R ² , 162 angle between two vectors, 163 properties of R ² and R, 162 random x's, 254–257 population multiple correlation, 254 properties, 255 sample multiple correlation, 256	for several β_j 's, 216 design matrix, 138 diagnostics, 227–238. See also Diagnostics, regression estimation of β_0 , β_1 ,, β_k , 141–145 with centered x 's, 154–157 least squares, 2, 143–144 maximum likelihood, 158–159

estimation of σ^2	in terms of R^2 , 196–198
maximum likelihood estimator,	several $\mathbf{a}_i' \boldsymbol{\beta}'$ s, 205
158-159	several β_i 's
minimum variance unbiased	Bonferonni method, 206–207
estimator, 158–159	experimentwise error rate, 206
unbiased estimator,149-151	overall α -level, 206
best quadratic unbiased estimator,	Scheffé method, 207–209
151	subset of the β 's, 189–196
generalized least squares, 164–169	expected mean squares, 193, 196
minimum variance estimators,	full and reduced model, 190
158–159	noncentrality parameter, 192–193
misspecification of error structure,	quadratic forms, 190–193, 195
151–153	in terms of R^2 , 196
misspecification of model, 169–174.	weighted least squares, 168
See also Misspecification of model	X matrix, 138–139
model, 137–140	Regression, nonlinear. See Nonlinear
multiple correlation (R) , $161-162$	regression
normal equations, 141–142	Regression, Poisson. See Poisson regression
orthogonal x's, 149, 174–178	Regression, random x 's, $243-273$
orthogonalizing the x's, 174–178	multivariate normal model, 244
outliers, 232–235. See also Outliers	confidence intervals, 258–262
partial regression, 141	estimation of β_0 , β_1 , and σ^2 , 245–249
prediction. See Prediction	properties of estimators, 249
prediction equation, 142	standardized coefficients (beta
prediction interval, 213–215	weights), 251
properties of estimators, 145–149	in terms of correlations, 249–154
purposes of, 2–3	R^2 , 254–257. See also R^2 , random
random x's. See Regression,	x's
random x's	effect of each variable on R^2 ,
residuals, 227–230. See also Residuals	262–265
sufficient statistics, 159–160	tests of hypotheses, 258–262
tests of hypotheses	comparison with tests for fixed x 's,
all possible $\mathbf{a}'\boldsymbol{\beta}$, 193–194	258
expected mean squares,	correlations, tests for, 260–261
173–174	Fisher's z-transformation, 261
general linear hypothesis test	likelihood ratio tests, 258–260
$H_0: \mathbf{C}\boldsymbol{\beta} = 0, 198-203$	nonnormal data, 265–266
estimation under reduced model,	estimation of $\hat{\boldsymbol{\beta}}_0$ and $\hat{\boldsymbol{\beta}}_1$, 266
324–326	sample partial correlations, $266-273$
full and reduced model, 324–326	maximum likelihood estimators, 268
$H_0: \mathbf{C}\boldsymbol{\beta} = t, 203-204$	other estimators, 269–271
likelihood ratio tests, $217-221$	Regression, simple linear (one x), 1,
distribution of likelihood ratio,	127–136
218–219	assumptions, 127
likelihood ratio, 218	coefficient of determination r^2 ,
for H_0 : $\beta = 0$, 219–220	133–134
for H_0 : $\mathbf{C}\boldsymbol{\beta} = 0$, 219–220 for H_0 : $\mathbf{C}\boldsymbol{\beta} = 0$, 220–221	confidence interval for β_0 , 134
linear combination $\mathbf{a}'\boldsymbol{\beta}$,	
204-205	confidence interval for β_1 , 132–133
	correlation r, 133–134
one β_j , 204–205	in terms of angle between
F-test, 204–205	vectors, 135
t-test, 205	estimation of β_0 and β_1 , 128–129
overall regression test, 185–189	estimation of σ^2 , 131–132

Regression, simple linear (Continued)	simple linear regression, 131–132
model, 127	unbalanced ANOVA
properties of estimators, 131	one-way model, 417
test of hypothesis for β_0 , 119	two-way model
test of hypothesis for β_1 , 132–133	constrained, 428
test of hypothesis for ρ , 134	unconstrained, 432
Regression sum of squares. See SSR	SSH (for general linear hypothesis test)
Regression to the mean, 498	in ANOVA, 326–329, 348–351,
Residual(s), 131, 227–230	401-403
deleted residuals, 234	in regression, 199, 203
externally studentized residual, 234	SSR (regression sum of squares), 133–134
hat matrix, 228, 230-232	161, 164, 186–189
in linear mixed models, 501-502	Standardized distance, 77
plots of, 230	Subspace, 153, 317
properties of, 237–230	Sufficient statistics, 159–160
residual sum of squares (SSE), 131,	Sum(s) of squares
150–151. See SSE	Analysis of covariance, 449–463,
studentized residual, 233	468-473
Response variable, 1, 137, 150	ANOVA, balanced
Robust estimation methods, 232	one-way, 345–346, 348–351
	contrasts, 358–363, 367–331
Sample mean	two-way, 388–395, 395–403
definition, 105–106	ANOVA, unbalanced
independent of sample variance,	one-way, 417
119–120	contrasts, 417–421
Sample space (data space), 152–153	two-way, 426, 431–432
Sample variance (s^2) , $107-108$	full-and-reduced-model test in ANOVA,
best quadratic unbiased estimator, 151	324-326
distribution, 118	SSE. See SSE
expected value, 108, 127	SSH (for general linear hypothesis test).
independent of sample mean, 120	See SSH
Satterthwaite, 494	SSR (for overall regression test). See SSR
Scalar, 6	as quadratic form, 105-107
Scientific method, 1	test of a subset of β 's, 190–192
Selection of variables, 2, 172	Symmetric matrix, 7
Serial correlation, 479	Systems of equations, 28–32
Shrinkage estimator, 287, 500	consistent and inconsistent, 29
Significance level (α), 132	and generalized inverse, 37–39
Simple linear regression. See Regression,	
simple linear	<i>t</i> -Distribution, 116–117, 123
Singular matrix, 22	central t, 117
Small sample inference for mixed linear	noncentral t, 116–117, 132
models, 491–491, 494–497	noncentrality parameter, 116-117, 132
Span, 153	p-value. See p-Value
Spectral decomposition, 51,	<i>t</i> -Tests, 123, 131–132, 134, 205
495–496	p-value. See p-Value
Square root matrix, 53	Tests of hypotheses. See also Analysis
SSE (error sum of squares)	of variance, testing hypotheses;
balanced ANOVA	One-way model (balanced), testing
one-way model, 343-344	the hypothesis H_0 : $\mu_1 = \mu_2 = \cdots =$
two-way model, 385, 390-391	μ_k ; Two-way model (balanced), tests
independence of SSR and SSE, 187	of hypotheses
multiple regression, 150-156, 179	for β_1 in simple linear regression,
non-full-rank model, 313–314	131–132

in Bayesian regression, 286 <i>F</i> -tests. <i>See F</i> -Tests	Unbalanced data in ANOVA cell means model, 414
general linear hypothesis test, 198-204	one-way model, 415-421
for individual β 's or linear combinations.	contrasts, 417–421
See Regression, multiple linear with	conditions for independence, 418
fixed x's, tests of hypotheses	orthogonal contrasts, 418
likelihood ratio tests, 217–221	weighted orthogonal contrasts, 419
in linear mixed models, 491, 495	estimation, 415–416
overall regression test, 185–189, 196	SSE, 416
for ρ in bivariate normal distribution, 134	testing $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$, 416
regression tests in terms of R^2 ,	overparameterized model, 414
196–198	-
	serial correlation, 479
significance level (α) , 132	two-way model, 421–432
subset of the β 's, 189–196	cell means model, 421, 422
t-tests. See t-Tests	constrained model, 428–432
Trace of a matrix, 44–46	estimation, 430
Transpose, 7	model, 429
Treatments, 4, 295, 339, 377	SSE, 431
Triangular matrix, 8	testing hypotheses, 431–432
Two-way model (balanced), 3,	type I, II and III sums of squares, 414
299-301, 377-408	unconstrained model, 421-428
estimable functions, 378–382	contrasts, 424–425
estimates of, 382-384	estimator of σ^2 , 423
interaction terms, 380	Hadamard product, 425
main effect terms, 380-381	SSE, 423
estimation of σ^2 , 384–385	testing hypotheses, 425-428
expected mean squares, 403-408	two-way model with empty
quadratic form approach, 405	cells, 432–439
sums of squares approach, 403–405	estimability of empty cell means, 435
interaction, 301, 377	estimation for the partially
model, 377–378	constrained model, 434
assumptions, 378	isolated cells, 432
no-interaction model, 329–335	missing at random, 432
estimable functions, 330–331	testing the interaction, 433–434
	SSE, 433
testing a hypothesis, 331–333	
normal equations, 382–384	weighted squares of means, 414
orthogonality of columns of X , 333–335	Underfitting, 170–172
reparameterization, 299–300	Validation of model, 227–238. See also Hat
side conditions, 300–301, 381	matrix; Influential observations;
SSE, 384, 390	Outliers; Residual(s)
tests of hypotheses	Variable(s)
interaction	dependent, 1, 137
full-and-reduced-model test,	independent, 1, 137
388-391	predictor, 1, 137
generalized inverse approach,	response, 1, 137
391–395	selection of variables, 2, 172
hypothesis, 385–388	Variance
main effects	of estimators of $\lambda' \beta$, 311
full-and-reduced-model approach,	generalized, 77
395–401	of least squares estimators, 130–131
general linear hypothesis approach,	population, 70–71
401–403	of quadratic form, 107
hypothesis, 396	sample, 95, See also Sample variance

672 INDEX

Variance components, 480 estimating equations, 488 estimation, 486–489	orthogonal vectors, 37 orthonormal vectors, set of, 38 product of, 10–11
Vector(s)	random vector. See Random Vectors
angle between two vectors, 41-42, 136,	row vector, 6
163, 238	zero vector (0), 8
column vector, 6 j vector, 8–9 length of, 12 linear independence and dependence, 19	Weighted least squares, 168
normalized vector, 42	Zero matrix (O), 8
notation, 6	Zero vector (0), 8