HOMEWORK SET 4. MATHEMATICAL INDUCTION. SETS AND SET OPERATIONS

1. Prove that the product of two consecutive integers is even.

Solution. Observe first that if a and b are integers and a is even then ab is even. Indeed, since a is even, a=2m for some integer m and so ab=2(mb). Thus, ab is an integer multiple of 2 and hence is even.

Let k be an integer. If k is even then k(k+1) is even by the above. Otherwise, k is odd and hence can be written as 2m+1 for some integer m. Then k+1=2m+2=2(m+1) is even. Then again k(k+1) is a product of an even integer and an integer and hence is even.

2. Prove that every odd integer can be written as a sum of two consecutive integers.

Solution. Let n be odd. Then n=2k+1 for some integer k and so n=k+(k+1). Thus, n is a sum of two consecutive integers.

3. Define a sequence f_n , $n \ge 0$ by $f_0 = 1$ and $f_n = 1 + \frac{1}{f_{n-1}}$, $n \ge 1$. Prove that $f_n = \frac{F_{n+2}}{F_{n+1}}$ for all $n \in \mathbb{N}$ where F_n is the nth Fibonacci number ($F_0 = 0$, $F_1 = 1$ etc)

Remark. The sequence f_n provides approximations for the so called *golden ratio*, $(1 + \sqrt{5})/2$. For example, f_{100} approximates the golden ratio with the error less than 10^{-41} .

Solution. The induction base holds since $f_0 = 1$ and $F_2 = 1 = F_1$. For the inductive step we have

$$f_{n+1} = 1 + \frac{1}{f_n}$$

$$= 1 + \frac{F_{n+1}}{F_{n+2}}$$

$$= \frac{F_{n+1} + F_{n+2}}{F_{n+2}}$$

$$= \frac{F_{n+3}}{F_{n+2}}.$$

Here we used the recursive definition of Fibonacci numbers: $F_{n+1} + F_{n+2} = F_{n+3}$.

4. Let n be an integer. Use induction to show that $2n < 2^n - 1$ for $n \ge 3$ and that $n^2 < 2^n$ for all $n \ge 5$.

Solution. The induction base is clear: $2 \cdot 3 = 6 < 7 = 2^3 - 1$ and $5^2 = 25 < 32 = 2^5$. For the inductive step, we have, for $n \ge 3$,

$$2(n+1) = 2n + 2$$

$$< (2^{n} - 1) + 2$$

$$= 2^{n} + 1$$

$$< 2^{n} + 2^{n} - 1$$

$$= 2^{n+1} - 1.$$

Then we also have, for $n \ge 5$, $(n+1)^2 = n^2 + 2n + 1 < 2^n + 2^n = 2^{n+1}$ (here we used the first inequality which yields $2n + 1 < 2^n$).

5. Use induction to prove that $1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all non-negative integers n. *Solution.* For n = 0 the sum and the expression in the right hand side are both zero.

For the inductive step, assume that the equality holds for n. Then

$$1^{2} + 2^{2} + \dots + (n+1)^{2} = 1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2}$$

$$= \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2} \qquad \text{by the induction hypothesis}$$

$$= \frac{1}{6}(n+1)(n(2n+1) + 6(n+1))$$

$$= \frac{1}{6}(n+1)(2n^{2} + 7n + 6)$$

$$= \frac{1}{6}(n+1)(n+2)(2n+3).$$

Thus, the equality holds for n + 1. This proves the inductive step.

6. For each of the following sets, determine whether 2 is its element. Do the same for $\{2\}$.

- a) $\{x \in \mathbb{Z} : x > 1\}$
- **b)** $\{x \in \mathbb{Z} \mid x = y^2 \text{ for some } y \in \mathbb{Z}\}$
- **c)** {2, {2}}

- **d)** {{2}, {{2}}}
- **e)** {{2}, {2, {2}}}}
- **f)** {{{2}}}

Answers. a) Yes; No

- **b)** No (2 is not a square of an integer); No
- c) Yes; Yes

- d) No; Yes
- e) No; Yes
- f) No; No

For each of the following statements determine whether it is true or false.

- a) $0 \in \emptyset$
- **b)** $\emptyset \in \{0\}$
- c) $\{0\} \subset \emptyset$
- **d)** $\emptyset \subset \{0\}$
- **e)** $\{0\} \in \{0\}$
- **f)** $\{0\} \subset \{0\}$
- **g)** $\{\emptyset\} \subset \{\emptyset\}$
- **h)** $\emptyset \in \{\emptyset\}$
- i) $\emptyset \in \{\emptyset, \{\emptyset\}\}$
- \mathbf{j}) $\{\emptyset\} \in \{\emptyset\}$
- **k)** $\{\emptyset\} \in \{\{\emptyset\}\}$
- 1) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$

Answers. a) False

- **b)** False
- c) False
- **d)** True (∅ is a subset of **g)** True
 - every set)
- e) False
- f) True
- h) True
- i) True i) False
- k) True
- 1) True

m) $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$

n) $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}\}$

- m) True n) True
- 8. Suppose that A is the set of sophomores at UCR and B is the set of students in discrete mathematics at UCR (we can take U to be the set of all undergraduate students at UCR). Use set operations to express each of the following sets in terms of A and B.
- a) the set of sophomores taking discrete mathematics in UCR
- b) the set of sophomores at UCR who are not taking discrete mathematics
- c) the set of students at UCR who either are sophomores or are taking discrete mathematics
- d) the set of students at UCR who either are not sophomores or are not taking discrete mathemat-
- e) the set of students at UCR who are not sophomores and take discrete mathematics.

Answers.

a)
$$A \cap B$$

c)
$$\underline{A} \cup \underline{B}$$

e)
$$\overline{A} \cap B = B \setminus A$$

d)
$$\overline{A} \cup \overline{B}$$

9. Let $A = \{a, c, e, g, i, k\}$, $B = \{a, b, c, d, e, f, g\}$ and $C = \{e, f, g, h, i, j, k\}$. Find

a)
$$A \cap B \cap C$$

c)
$$(A \cup B) \cap C$$
.

e)
$$(A \setminus B) \cup (B \setminus C)$$

b)
$$A \cup B \cup C$$

d)
$$(A \cap B) \cup C$$

f)
$$(A \cup B) \setminus C$$

Answers. a)
$$\{e, g\}$$

b)
$$\{a, b, c, d, e, f, g, h, i, j, k\}$$

c)
$$\{e, f, g, i, k\}$$

d)
$$\{a, c, e, f, g, h, i, j, k\}$$

e)
$$\{a, b, c, d, i, k\}$$

f)
$$\{a, b, c, d\}$$

10. Let A, B, C be sets. Show that

a)
$$A \setminus B = A \cap \overline{B}$$

b)
$$A \setminus \emptyset = A$$
 and $\emptyset \setminus A = \emptyset$

c)
$$(B \setminus A) \cup (C \setminus A) = (B \cup C) \setminus A$$

d)
$$(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$$

Draw the corresponding Venn diagrams.

Solution. **a)** Let p be the statement " $x \in A$ " and q be the statement " $x \in B$ ". Then $x \in A \setminus B$ is $p \land \neg q$ which is exactly the same as $x \in A \cap \overline{B}$.

Alternatively, suppose that $x \in A \setminus B$. Then $x \in A$ and $x \notin B$ which means that $x \in A \cap \overline{B}$. On the other hand, if $x \in A \cap \overline{B}$ then $x \in A$ and $x \notin B$ which means that $x \in A \setminus B$.

- **b)** By the previous part, $A \setminus \emptyset = A \cap \overline{\emptyset} = A \cap \mathbb{U} = A$. Similarly, $\emptyset \setminus A = \emptyset \cap \overline{A} = \emptyset$.
- c) Using the first part we can write

$$(B \setminus A) \cup (C \setminus A) = (B \cap \overline{A}) \cup (C \cap \overline{A})$$
$$= (B \cup C) \cap \overline{A}$$
$$= (B \cup C) \setminus A.$$

d) Using the first part we obtain

$$(A \setminus C) \setminus (B \setminus C) = (A \cap \overline{C}) \cap \overline{B \cap \overline{C}}$$

$$= (A \cap \overline{C}) \cap (\overline{B} \cup C)$$

$$= (A \cap (\overline{B} \cup C)) \cap \overline{C}$$

$$= ((A \cap \overline{B}) \cup (A \cap C)) \cap \overline{C}$$

$$= ((A \setminus B) \setminus C) \cup (A \cap C \cap \overline{C})$$

$$= ((A \setminus B) \setminus C) \cup (A \cap \emptyset)$$

$$= ((A \setminus B) \setminus C) \cup \emptyset$$

$$= (A \setminus B) \setminus C.$$

11. What can we conclude about sets *A* and *B* if

a)
$$A \cup B = A$$

c)
$$A \setminus B = A$$

e)
$$(A \setminus B) \cup (B \setminus A) = A$$
?

b)
$$A \cap B = A$$

d)
$$A \setminus B = B \setminus A$$

- *Solution.* **a)** We always have $A \subset A \cup B$. The equality means that also $A \cup B \subset A$. This implies that $B \subset A$. Indeed, if $x \in B$ then $x \in A \cup B$ and so $x \in A$.
- **b)** We always have $A \cap B \subset A$. The equality means that also $A \subset A \cap B$. Thus, if $x \in A$ then $x \in B$ that is $A \subset B$
- c) $A \setminus B = A \cap \overline{B} = A$. By the previous part this means that $A \subset \overline{B}$.
- **d)** Let $x \in A \setminus B$. This implies that $x \in A$ and $x \notin B$. Since $A \setminus B = B \setminus A$, we also have that $x \in B \setminus A$, which means that $x \in B$ and $x \notin A$. Therefore, $A = B = \emptyset$.
- e) We can analyze this equality using logic. Let P(x) be $x \in A$ and Q(x) be $x \in B$. Then $A \triangle B = A$ means that $\forall x (P(x) \oplus Q(x) \leftrightarrow P(x))$. But if Q(x) is true for some x then $P(x) \oplus Q(x)$ and P(x) have the opposite truth values. So $\exists x Q(x)$ is false that is $B = \emptyset$.

We can also argue using elements. Suppose that there exits $x \in B$. If $x \notin A$ then $x \in A \triangle B$. Since $A \triangle B = A$ this leads to the conclusion that $x \in A$, which is a contradiction. Thus, if $x \in B$ then $x \in A$. Then $x \notin A \triangle B = A$. So, this is also impossible. Thus, our assumption $x \in B$ is always false and so $B = \emptyset$.

12. Prove the De Morgan's law for sets $\overline{A \cap B} = \overline{A} \cup \overline{B}$ by showing that each side is a subset of the other side.

Solution. Suppose that $x \in \overline{A \cap B}$. Then $x \notin A \cap B$ which means that $x \notin A$ or $x \notin B$. Therefore, $x \in \overline{A} \cup \overline{B}$.

Conversely, if $x \in \overline{A} \cup \overline{B}$ then $x \notin A$ or $x \notin B$. Then $x \notin A \cap B$.

13. Is it true that the set difference is associative (that is, if A, B, C are sets then $(A \setminus B) \setminus C = A \setminus (B \setminus C)$)? What about the symmetric difference?

Solution. The first set is $A \cap \overline{B} \cap \overline{C}$. The second set is $A \cap \overline{B} \cap \overline{C} = A \cap (\overline{B} \cup C)$. For this to be always true we need $\overline{B} \cap \overline{C}$ to be equal to $\overline{B} \cup C$. But this is manifestly false.

The easiest way to study the associativity of \triangle is to determine whether XOR is associative. For, note that $F \oplus p \equiv p$ while $T \oplus p \equiv \neg p$. Thus, if p = T then $(p \oplus q) \oplus r \equiv \neg q \oplus r$, while $p \oplus (q \oplus r) \equiv \neg (q \oplus r) \equiv \neg q \oplus r$. If p = F then $(p \oplus q) \oplus r \equiv q \oplus r \equiv p \oplus (q \oplus r)$. Thus, \oplus is associative and so \triangle is associative.