Regularized Estimation of Player Performance

Bobby Gramacy, Chicago BoothMatt Taddy, Microsoft Research and Chicago Boothwith Sen Tian (NYU) and Shane Jenson (Wharton)

Plus-Minus

PM is a running count of, for every goal, a +1 for those on the scoring team and -1 for those on the team scored upon.

It doesn't quite measure player quality, as we haven't controlled for the effects of teammate and opponent quality (or anything else).

A Regression version of PM

Set up a 'response' variable:

 $y_i = +1$ for a *home* team goal,

 $y_i = -1$ for an away team goal.

We're interested in how individual players affect

$$q_i = p(y_i = 1) = p(\text{home team scored goal } i)$$

The standard model for such problems is logistic regression, say

$$\log \left[\frac{q_i}{1 - q_i} \right] = \alpha + \beta_{HG} + \beta_{HD} \dots + \beta_{HR} - \beta_{AG} - \dots - \beta_{AR}$$

where β_{HG} is Home-Goalie and β_{AR} is Away-Right-wing, etc.

Then, for player j and given a goal was scored, e_j^{β} is the multiplier on odds that it was scored by his team if he's on the ice.

We actually use a larger regression model:

$$\log \left[\frac{q_i}{1 - q_i} \right] = \alpha + \mathbf{u}_i' \gamma + \mathbf{v}_i' \varphi + \mathbf{x}_i' \beta_0 + (\mathbf{x}_i \circ \mathbf{s}_i)' (\beta_s + p_i \beta_p)$$

where

- ▶ **u**_i holds indicators for each team-season,
- \triangleright \mathbf{v}_i holds indicators for various special-teams scenarios,
- ▶ **x**_i contains player-presence indicator,

All of these indicators are +1 for home and -1 for away.

Then β_j measures player effect after controlling for team strength (e.g., coach or schedule) and on-ice scenarios (e.g., PP or PK).

We also allow deviations in the player effects for specific seasons (s_{it}) and in the playoffs (p_{it}) , but these are seldom 'significant'.

Regularization

Instead of minimizing deviance, we minimize deviance plus penalty $\lambda |\beta_j|$ on the size of each β_j estimates.

Enumerate a 'path' of models for different λ , and use the one that predicts best out-of-sample. This is how modern stats/ML works.