

The Copperbelt University

School of Mathematics And Natural Sciences

Department of Mathematics

MA 110: (Mathematical Methods I): Test Two

Friday - July 22, 2022

Instructions

- You must write your Name, Computer number and Programme of study on your answer sheet. Time allowed is 2 hours.
- (2). Calculators and use of Cell phones are Not allowed in this paper.
- (3). There are Four (4) questions in this paper, attempt all the questions and show detailed working for full credit.

QUESTION ONE

(a) Find the center and radius of the circle whose equation is

$$x^2 + y^2 + 8x - 2y + 13 = 0.$$

(5 marks)

(b) Write down the constant term in the expansion of $\left(x - \frac{1}{2x^2}\right)^9$.

(5 marks)

(c) Prove that $\log_a \left(\frac{A}{B}\right) = \log_a(A) - \log_a(B)$.

(5 marks)

(d) Use Crammer's method to solve the linear system of the equation

$$3x - 4y = -11$$
$$-5x + y = 7.$$

(5 marks)

QUESTION TWO

(a) Change the repeating decimal 3.7 to its reduced form $\frac{a}{b}$, where a and b are integers and $b \neq 0$ using sum to infinity of a geometric series.

(5 marks)

- (b) Use Mathematical induction to prove that $2^n \ge n + 1$ for all possible integer n.

 (5 marks)
- (c) Find the equation of the tangent at the point (3, 1) on the circle

$$x^2 + y^2 - 4x + 10y - 8 = 0.$$

(5 marks)

(d) Graph the function $f(x) = 2^{(x-3)} + 2$ and obtain its inverse on the same axes. (5 marks)

QUESTION THREE

(a) Solve $25^x - 5^x = 12$.

(5 marks)

(b) Express $\frac{2x^2-5x+7}{(x-2)(x-1)^2}$ into a partial fraction.

(5 marks)

(c) What is the common ratio of the G.P. $(\sqrt{2}-1)+(3-2\sqrt{2})+\cdots$? Find the third term of progression.

(5 marks)

(d) How long will it take K2000 to double itself at 13% interest compounded continously?

(5 marks)

QUESTION FOUR

- (a) Find the first term and the general expansion of $\frac{1}{(2-3x)^3}$ in ascending power of x. State the range of value of x for which this expansion is valid. (5 marks)
- (b) Show that the general term of an arithmetic sequence is given by

$$a_n = a_1 + (n-1)d.$$
 (5 marks)

(c) Solve the equation $\log_2 x = \log_4(x+6)$.

(5 marks)

(d) Find the inverse of the matrix

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}.$$

(5 marks)

THE END OF TEST

Page 2 of 2

91

(2)

a find the center and rading of the circle with equipment $x^2 + y^2 + 8x - 2y + 13 = 0$

tometh: form (x-h)2+(y-K)2=r2 by completing the square - make sore the coefficients of x2 \$ y2 are 1. x2+ y2+8x-2y+13=0 x2+8x+(+8)2-(+8)2 +y2-2y+(-2)-(-2)=-13 $\left(x + \frac{8}{2}\right)^2 - \left(\frac{8}{2}\right)^2 + \left(y - \frac{2}{2}\right)^2 - \left(-\frac{2}{2}\right)^2 = -13$ $(x+4)^2-(4)^2+(y-4)^2-(-1)^2=-13$ $(x+4)^2 + (y-1)^2 - 16 - 1 = -13$ (SC+4)2+ (y-1)2=-13+16+1 (x+4) + (y-1) 2= 4 center is (-4,+1), , radius = 14=2,

1b) write down The constant in the expansion of $(z-\frac{1}{2x^2})^q$ 0965944100

* Pointers:

sobstitute into (n) and br, neu equate the power of the first of the second of that is a denominator.

(n) an-r br

1. a = x

first substitution

 $\begin{pmatrix} 9 \\ r \end{pmatrix} \propto \begin{pmatrix} -1 \\ 2\pi^2 \end{pmatrix} \Rightarrow \begin{pmatrix} 9 \\ r \end{pmatrix} \propto \begin{pmatrix} -1 \\ 2\pi^2 \end{pmatrix}$

9-r=2r

9=2rtr

9=3r

r= 31

Then substitute into the governd formula and evaluate.

 $\binom{9}{3} \propto \frac{9^{-3}}{2\pi^2} \left(\frac{-1}{2\pi^2}\right)^3 \Rightarrow \binom{9}{3} \propto \left(\frac{-1}{8\pi^6}\right)$

$$\binom{9}{3} \times \left(\frac{-1}{6}\right) \Rightarrow \frac{9!}{(9-3)!3!} \times \frac{-1}{8}$$

$$=> \frac{3 + 7 \times -1}{2} = -\frac{21}{2}$$

$$a^{P} = A$$
, $a^{Q} = B$

When dividing Things with The Same ball with the Same ball Subtracting their powers.

A: B= a P-a

A: B= a

Aintroducer

$$\frac{A}{R} = a^{R-Q}$$

 $\log_{a}\left(\frac{A}{B}\right) = \log_{a}a$ $\log_{a}a$ $\log_{a}a$ $\log_{a}a$ $\log_{a}a$ $\log_{a}a = 1$ $\log_{a}\left(\frac{A}{B}\right) = (P-Q)\log_{a}a$ $\log_{a}\left(\frac{A}{B}\right) = P-Q$ $\log_{a}\left(\frac{A}{B}\right) = \log_{a}A - \log_{a}B$ Hence Proved.

1d Ose crammers method to solve

$$3x - 4y = -11$$

 $-5x + y = 7$

Pointers:

Convert the equations to their matrix form by arranging the coefficient

$$\begin{pmatrix} 3 & -4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} -11 \\ 7 \end{pmatrix}$$

find do, dx and dy replace second colonin with anguers then of original first colonin determinat.

answer? Then Find

$$\begin{vmatrix} 3 & -4 \\ -5 & 1 \end{vmatrix} = > (341) - (-4 \times -5)$$

$$|-5 & 1 \end{vmatrix} = |-7|$$

the determinant

$$\frac{dx}{|-1|} - 4 = (-1) - (-4+7)$$

$$-11 + 28$$

$$+17$$

$$\begin{vmatrix} 3 & -11 \\ -5 & 7 \end{vmatrix} = > (3x7) - (-11x-5)$$

$$\begin{vmatrix} -5 & 7 \\ -34n \end{vmatrix}$$

confirm by plugging into any

$$3x - 4y = -11$$

 $3(-1) - 4(2)$
 $-3 - 8$
 $-11 \sqrt{2}$

@ convert 3.7 to the form of Using G.P som to worwity [5]

* Divide 3.7 into a repeating part and a non repeating part!

a = 0.7 or 7 then apply som to repeating

DECVOVOEN

$$r = 0.07 \times 100 = 70 = 10$$

$$-1.91 = 70, r = 10$$

$$-1.91 = 70, r = 10$$

$$S_{8} = \frac{1}{1-r} = \frac{7}{10} = \frac{7}{10}$$

0965944100 Now add he non repeating part to the fraction that the som to infuffy formular gave 700.

$$\frac{3+\frac{7}{9}}{\frac{27+7}{9}} = \frac{34}{9}$$

$$2.3.7 = \frac{34}{9}$$

use mathematical induction to prove that 2">n+1 for Step 1 Let n=1 NOVCTION - DON'T FORGE 2/31+1 272 true Statement.

> Step 2 led n=K, KEZt 2 ×> K+1 - -- (i) the statement.

Step 3 let n=K+1, KEZT

2K+1 > K+1+1

2K+1 > K+2 -- (ii) the stendent

Step4 use copicio to denne egn (ii)

2 (2K > K+1)

ousing The transitive 2K+1 > 2K+2 > K+2) Hence Proved

P2c find the equation of the family to the point (3,1) on me avele 512+y2-4x+10y-8=0

> Pointers: Sketch (Tour sketch may not be accorate)

* find The center of The circles new find me gradient of he line connecting the center to B(3,1).

* The radius is the normal to The tangent so their gradients are related by The egm Mrad x Mtangent = -1

* After Anding The gradient of The tangent, use The point (3,1) and the egy Y-T, =m(x-X,). at a

 $3x^2 + y^2 - 4x + 10y - 8 = 0$ x2-4x4-(2)2-(3)2+ y2+10y+(5)-(3)=+8 $(x-2)^2-4+(y+5)^2-25=-8$ (c-2) + (y+5)2 = +8+4+25 $(x-2)^2+(y+5)^2=37$

$$(x-2)^2 + (y+5)^2 = 37$$

eenter is $(2,5)$

4 this is jost 9 rough sketch, it doesn't

(1)

Evadient (80) =
$$\frac{72-71}{X_2-x_1} = \frac{1-5}{3-2} = \frac{6}{1} = 6$$

$$M_1 M_2 = -1$$

Then plug into
$$Y - T_1 = M(X - X_1)$$

$$(3,1)$$

$$1 = -\frac{1}{4}(x-3)$$

$$Y-1=-\frac{1}{6}(x-3)$$

$$y = -\frac{1}{6}x + \frac{3}{6} + \frac{1}{6}$$

0965944100

Q29 Graph $f(x) = 2^{x-3} + 2$ and obtain 173 inverse on the same Painters: we get the inverse of a by replecting the graph we have about the morror like y = x. & find what 22-3+2 looks like. 3

$$y = 2^{x-3} + 2$$
 * lets try and find $1e^{(3)}$

$$y - 2 = 2^{x-3}$$

$$\log_2(y-2) = \log_2^2(x-3)$$

$$\log_2(y-2) = x-3$$

$$\log_2(y-2) + 3 = x$$

$$\frac{1}{2} = x = x = x = x$$

 $2 \cdot x = \log_2(y-2) + 3$ $4 \cdot \text{replace}$

- replace X with f (x) and Y with X

$$-1 \cdot f^{-1}(x) = \log_2(x-2) + 3$$
 $\log_2(x-2) + 3$
 $\log_2(x-2) + 3$

0965944100 @ Solve 25 = 12 Pointers: $25^{2} \Rightarrow (5^{2})^{2} \Rightarrow (5^{2})^{2}$ $(5^{2})^{2} - 5^{2} = 12$ replace 59 with P p2-12=0 S:-1 P:-12 F:+3 8-4 P2+30-4P-12=0 P(P+3)-4(P+3)=0 (P-4)(P+3) = 6

P = 4 , P = -35=4, 5=3 colution

logis = logit por iln 5 = ln 4 por log 5 = log4 $x = \frac{\ln 4}{\ln 5}, \qquad x = \frac{\log 4}{\log 5}$ oc= log,x, all are correct

3b) Gapress
$$2x^2 - 5x + 7$$
 into a (5)
Partial fraction. [5]

$$\frac{25c^{2}-5x+7}{(x-2)(3c-1)^{2}} = \frac{A}{x-2} + \frac{B}{x-1} + \frac{C}{(x-1)^{2}} = \frac{A}{(x-1)^{2}}$$

$$2x^{2}-5\alpha+7=A(x-1)^{2}+B(x-2)(x-1)+c(x-2)$$

Let $x=1$

$$2-5+7 = 0 + 0 + c(1-2)$$

 $4 = -c$
 $c = -4\pi$

Let
$$\alpha = 2$$

$$2(2)^{2} - 5(2) + 7 = A(2-1)^{2} + 0 + 0$$

$$8 - 10 + 7 = A$$

$$\frac{lef \times = 0}{0-0+7} = A(0-1)^{2} + B(0-2)(0-1) + C(0-2)$$

$$7 = 5(1) + B(-2x-1) + (-4x-2)$$

$$7 = 5 + 28 + 8$$

 $7 = 13 + 28$

$$7-13 = 28$$

 $-6 = 28$

$$\frac{5}{x-2} + \frac{-3}{x-1} + \frac{-4}{(x-1)^2}$$

30 What is the common ratio of the G.P (
$$\sqrt{2}-1$$
)+(3-2 $\sqrt{2}$)+...?
Find the third term of the G.A

$$V = \frac{q_{K+1}}{q_{K}} = \frac{3-2\sqrt{2}}{\sqrt{2}-1}$$
The denominator

$$r = \frac{3 - 2\sqrt{2}}{\sqrt{2} - 1} \left(\frac{\sqrt{2} + 1}{\sqrt{2} + 1} \right) = \frac{\sqrt{2} (3 - 2\sqrt{2}) + 1(3 - 2\sqrt{2})}{(\sqrt{2})^2 - (1)^2}$$

$$r = 3\sqrt{2} - 2(2) + 3 - 2\sqrt{2} \Rightarrow \sqrt{2} - 1 = \sqrt{2} - 1$$

* to find the Third term, derive the general formla then replace in with 3.

$$a_{n} = 9 \times r^{n-1}$$

$$(2-1)$$

$$Q_n = (\overline{2} - 1)(\overline{12} - 1)^{n-1}$$
 * add The powers
Since the bases

are the sane.

16)

Third Man term in n=3 an = (2-1)" 93= (12-1)3 the can grittly see (pasals) bhomal (a+9)3 her replace a = 12, b=-1 1 2 1 (C+b)3= 125° 326' 3262 1265 = 93+3a2b+3ab2+b3 $G = \sqrt{2}$ => $(\sqrt{2})^3 + 3(\sqrt{2})^2 (-1) + 3(\sqrt{2})(-1)^2 + (-1)^3$ 2/2 +3(2)(-1) + 3/2 - 1 5/2 + -6-1 SV2-7, is the third term. * or you could multiply (12-1) (12-1) (12-1) to confirm 0965944100.

P32

How long does it take
K 2000 to double itself at 13%.
interest compounded [5]

Pointers: Pay attention to worde wice doubled (x2), tripled (x3)

Overdruple (X4) -- time.

Use A = PeTime.

The state of the posting in .

A = 2000 x 2 = 4000

 $\frac{4000 = 2000 e}{2000}$

 $2 = e^{0.13t}$ * introdue loge ln 2 = 2 n e sides ln 2 = 0.13t (loge) ... ln e = 1ln 2 = 0.13t (loge) loge = 1.

t= <u>Ln2</u> ≈ 0.693 0.13 0.13/1 Yorcan leave it Quantom, here

19

Phul The first and general expansion of 1 ascending powers (2-32)3 in ascending powers of x and state the proments for which the expansion is valid.

 $\frac{1}{(2-3x)^3} = (2-3x)^{-3} = (1-\frac{3x}{2a})^{-3}$ $= 2^{-3}(1-\frac{3}{2}x)^{-3}$

 $2^{-3} a^{1} + na^{1-1}b^{1} + n(n-1)a^{n-2}b^{2}$

 $2^{-3}\left[1+\left(-3\right)\left(-\frac{3}{2}x\right)+\left(+3\right)\left(+4\right)\left(-\frac{34}{2}\right)^{2}\left(\frac{1}{2}\right)\right]$

 $\frac{1}{8} \left[1 + \frac{94}{4} + \frac{3}{12} \times \frac{9a^2}{4} \times 1 \right]$

 $\frac{1}{8} \left[1 + \frac{9\alpha}{4} + \frac{27\alpha^2}{2} \right]$ => $\frac{1}{8} + \frac{9\alpha}{32} + \frac{27\alpha^2}{16} + \cdots$ * first term 13

Show that the general term of (20) an API3 9n=a,+(n-1)d.

* bet 9, be our first term. * to get 9, we add d to 9.

 $a_{1}, a_{2}, a_{3}, \dots a_{n}$ a_{n}, a_{n}, a_{n} a_{n}, a_{n}, a_{n}

The coefficient of d
is always less than
the position by 1.

I take the position to be
n.

1.a., a,+1d, a,+2d, ... an

 $-1.01 = 9. + (Pasition - 1)d \cdot \alpha_2 = 9. + (Pasition - 1)d \cdot .$ Let position be n

1. $a_n = a_1 + (Axi7704 - 1) d$ $a_n = a_1 + (n-1) d_{11}$ (4c) solve

log_x = log_(x+6)

1. Convert to log 2

 $\log_2 x = \frac{\log_2(x+6)}{\log_2(x+6)}$

 $\log_2 x = \frac{\log_2(x+6)}{\log_2 2^2}$

 $\frac{\log_2 x = \sqrt{\log_2 (x+6)}}{2}$

2 log 2 = log (x+6)

log x2 = 109 (x+6)

log(x) -109 (x+6)=0

use $\log_b(\frac{x}{y}) = \log_b x - \log_b y$

 $\log_2\left(\frac{x^2}{x+6}\right) = 0$

convert to its exponential

$$2^{\circ} = \frac{\alpha^{2}}{\alpha + 6}$$

$$\frac{1}{4} \approx \frac{\alpha^{2}}{\alpha + 6}$$

$$\alpha^{2} = \alpha + 6$$

$$\alpha^{2} - \alpha - 6 = 0$$

$$5:-1 \quad P:-6 \quad f:+2 \quad 8-3$$

$$\alpha^{2} + 2\alpha - 3\alpha - 6 = 0$$

$$3x - 6 = 0$$

$$x(x+2)-3(x+2)=0$$

 $(x-3)(x+2)=0$

$$\alpha = 3$$
, $\alpha = -2$

Sobstitute each answer into The expression to see which would be invalid.

$$L = 3$$

0965944100

if
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$$

23

And The inverse of A

[5]

Inverse = 1 x Adjoint.

eofactors.

$$\begin{pmatrix} 3 & -1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} t & 5 & t \\ -1 & 2 & t \\ 2 & 2 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} t & 5 & t \\ -1 & 2 & t \\ 4 & 5 & 5 \\ -1 & 2 & 1 \end{pmatrix}$$

$$g:+(-1-2)=-3$$
 $h:-(3-2)=-1$ $i:+(3--1)=+4$

$$\begin{pmatrix}
-3 & 3 & 0 \\
3 & -7 & -8 \\
-3 & -1 & 4
\end{pmatrix}$$

transpose of the meetro of co-factors.

$$\begin{vmatrix} -3 & 3 & -3 \\ 3 & -2 & -1 \\ 0 & -8 & 4 \end{vmatrix}$$

Inverse = 1 x Adjoint

$$= \frac{1}{-12} \begin{pmatrix} -3 & 3 & -3 \\ 3 & -7 & -1 \\ 0 & -8 & 4 \end{pmatrix}$$

Jay Inspired.

Reach is on 0965944100 or 09746665691.