Grafos y DFS

MATERIAL DE APOYO

- 1. Cheatsheet C (notion resumen)
- 2. Ejercicios de práctica C
- 3. Cápsulas de semestres pasados

Dónde encuentro esto?

Links en ReadMe carpeta "Ayudantías" del repo

Sonrisa coqueta

Contenidos

- 1. Repaso grafos, caminos y ciclos
- 2. Algoritmos DFS (Depth First Search)
- 3. Orden Topológico
- 4. Componentes fuertemente conexas (CFC)
- 5. Algoritmo de Kosaraju y su relación con TopSort

¿Qué es un Grafo?

Grafo G = (V, E)

 Estructura de datos compuesta por nodos (V) los cuales están unidos por aristas (E). Estas aristas pueden estar dirigidas o no. Un grafo puede ser dirigido (pares ordenados) o no dirigido (conjuntos).

Grafo G = (V, E)

 Estructura de datos compuesta por nodos los cuales están unidos por aristas. Estas aristas pueden estar dirigidas o no. Un grafo puede ser dirigido (pares ordenados) o no dirigido (conjuntos).

¿Cómo los podemos representar?

Según sea el caso, podemos representarlos a través de **listas de adyacencia** (para grafos poco densos) o como una **matriz de adyacencia** (para grafos muy densos) ¿Por qué? ¿Qué queremos decir con "denso"?

Caminos y ciclos:

 Un camino π de largo n, es una secuencia de nodos v0,...,vn tal que (vi, vi+1) (par!) pertenece al conjunto de aristas E para todo 0 <= i <= n-1.

¿Cuándo un camino se convierte en un ciclo?

Caminos y ciclos:

 Un camino π de largo n, es una secuencia de nodos v0,...,vn tal que (vi, vi+1) (par!) pertenece al conjunto de aristas E para todo 0 <= i <= n-1.

¿Cuándo un camino se convierte en un ciclo?

Si v0 = vn cuando n > 0 (al menos dos vértices)

¿Por qué es importante detectar estos ciclos?

Caminos y ciclos:

 Un camino π de largo n, es una secuencia de nodos v0,...,vn tal que (vi, vi+1) (par!) pertenece al conjunto de aristas E para todo 0 <= i <= n-1.

¿Cuándo un camino se convierte en un ciclo?

Si v0 = vn cuando n > 0 (al menos dos vértices)

¿Por qué es importante detectar estos ciclos?

De no hacerlo podemos:

- 1. Quedarnos atrapados en loops infinitos!
- 2. No ser capaces de ordenar un conjunto de tareas a ejecutar.
- 3. No detectar proyectos inviables (Referencia circular en proyectos con requisitos)

DFS - Deep First Search

- Depth First Search o Búsqueda en profundidad.
- Grafo dirigido o no dirigido
- Este algoritmo nos ayuda a recorrer un grafo de forma ordenada. Su funcionamiento es similar al **backtracking**. Recorre un camino hasta el fondo y luego sigue explorando otros caminos.

Notar que si bien vamos a presentar un algoritmo DFS, DFS es en sí mismo una **estrategia** (estrategia de búsqueda en profundidad) en la cual se pueden basar los algoritmos.

Ejemplo visual

Ejemplo visual

DFS, estrategia <u>iterativa</u>

```
dfs(graph G, node start)
       stack s
       s.push(start)
   label start as discovered
       while not s.empty()
               node u = s.pop()
               for v in G.adjacent[u]
           if v is not discovered
               s.push(v)
               label v as discovered
```

DFS, estrategia recursiva

Recordemos el código de colores

- BLANCO: Nodo aún no visitado
- GRIS: Nodo visitado pero con vecinos por descubrir
- NEGRO: Nodo visitado con vecinos visitados

DFS, estrategia recursiva

Ng(u): vecinos de u, i.e. nodos apuntados por aristas desde u


```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(u):
        if v.color = blanco:
                 DfsVisit(G, v)
        u.color <- negro</pre>
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(v):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
Nota: Todos los vecinos de 3 han sido visitados (gris)...
```

```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(u):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro
```



```
Nota: Todos los vecinos de 3 han
sido visitados (gris). Por lo
tanto, lo pintamos de negro
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(u):
        if v.color = blanco:
                DfsVisit(G, v)
        u.color <- negro</pre>
```



```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(u):
         if v.color = blanco:
                   DfsVisit(G, v)
         u.color <- negro
Nota: El algoritmo continúa por un rato más, pero no se mostrará
el resto
```

Ejemplo


```
DfsVisit(G, 0)
DfsVisit(G, u):
    u.color <- gris</pre>
    for v in Ng(u):
         if v.color = blanco:
                   DfsVisit(G, v)
         u.color <- negro
Nota: El algoritmo continúa por un rato más, pero no se mostrará
```

el resto

Escriba un algoritmo que determine si es posible llegar del vértice v al u en un grafo dirigido. Indique el camino encontrado.

Escriba un algoritmo que determine si es posible llegar del vértice v al u en un grafo dirigido. Indique el camino encontrado.

Para esto podemos seguir ocupando la estrategia DFS. Notar que solo tendremos que realizar un llamado a *DfsVisit(G,v)* (asumiendo que es *conexo*), al cual vamos a tener que modificar, terminado el algoritmo prematuramente si es que encontramos a u, retornando TRUE, de lo contrario el algoritmo recorrerá todo el grafo y al terminar retornará FALSE.

friendly reminder:

"grafo conexo" = todos sus vértices están conectados por un camino

Escriba un algoritmo que determine si es posible llegar del vértice v al u en un grafo dirigido. Indique el camino encontrado.

```
INPUT : Grafo G, nodo v in V(G)
DfsVisit(G, v, u):
   v.color <- gris
   for p in Nq(v):
       if p = u:
           return TRUE
       if p.color = blanco:
           DfsVisit(G,p,u)
           v.sqteCamino <- p
   v.color <- negro
   Recorrer v a p y borrar .sqteCamino (opcional)
   return FALSE
```

Escriba un algoritmo que determine si es posible llegar del vértice v al u en un grafo dirigido. Indique el camino encontrado.

¿Cómo se puede relacionar/diferenciar con backtracking?

Palabras Clave

- G, grafo dirigido
- Secuencia de nodos

Definición

 Sea G un grafo dirigido. Un orden topológico de G es una secuencia de sus nodos

$$v_0, v_1, \ldots, v_n \qquad v_i \in V(G)$$

- Tal que
 - 1. Todo nodo del grafo **aparece** en la secuencia
 - 2. En la secuencia **no hay** elementos repetidos
 - 3. Si (a,b) ∈ E(G) entonces el nodo **a** aparece antes que el nodo **b** en la secuencia

Orden Topológico: Pseudocódigo

```
input: grafo G, lista de nodos L,
  input: grafo G
                                                            nodo u \in V(G), tiempo t
  output: lista de nodos L
                                                 output: tiempo t \ge 1
  TopSort(G):
                                                 TopDfsVisit(G, L, u, t):
      L ← lista vacía
                                                      u.start \leftarrow t
    t \leftarrow 1
2
                                                    t \leftarrow t + 1
      for u \in V(G):
                                                     for v \in N_G(u):
          u.start \leftarrow 0
                                                          if v.start = 0:
          u.end \leftarrow 0
5
                                                              TopDfsVisit(G, L, v, t)
      for u \in V(G):
6
                                                      u.end \leftarrow t
           if u.start = 0:
                                                      Insertar u como cabeza de L
               {\tt TopDfsVisit}(\textit{G},\textit{L},\textit{u},\textit{t})
8
                                                      t \leftarrow t + 1
      return L
9
                                                      return t
```

¿Cómo se ve?

1. Elegimos un nodo para comenzar, en este caso usaremos el nodo 3

Nodo	Start	End	ОТ
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	0	
5	0	0	

- Elegimos un nodo hijo del nodo actual: 2

Nodo	Start	End	ОТ
0	0	0	
1	0	0	
2	1	0	
3	0	0	
4	0	0	
5	0	0	

- Elegimos un nodo hijo del nodo actual: 4

Nodo	Start	End	ОТ
0	0	0	
1	0	0	
2	1	0	
3	0	0	
4	2	0	
5	0	0	

- Elegimos un nodo hijo del nodo actual: 5

Nodo	Start	End	ОТ
0	0	0	
1	0	0	
2	1	0	
3	0	0	
4	2	0	
5	3	0	

- El nodo actual no tiene nodos hijos, por lo cual lo agregamos al orden topológico
- Seteamos su End en t=4

Nodo	Start	End	ОТ
0	0	0	5
1	0	0	
2	1	0	
3	0	0	
4	2	0	
5	3	4	

- Volvemos al nodo (4) y este no tiene más hijos. Lo agregamos al OT
- Seteamos su End en t=5

Nodo	Start	End	ОТ
0	0	0	4
1	0	0	5
2	1	0	
3	0	0	
4	2	5	
5	3	4	

- Volvemos al nodo (2) y este no tiene más hijos. Lo agregamos al OT
- Seteamos su End en t=6

Nodo	Start	End	ОТ
0	0	0	2
1	0	0	4
2	1	6	5
3	0	0	
4	2	5	
5	3	4	

- Volvemos al nodo (3) y tiene el nodo (5) de hijo. El start del nodo (5) no es 0. Lo agregamos al OT
- Seteamos su End en t=7

Nodo	Start	End	ОТ
0	0	0	3
1	0	0	2
2	1	6	4
3	0	7	5
4	2	5	
5	3	4	

- Elegimos un nodo restante, elegimos el (1)

Nodo	Start	End	ОТ
0	0	0	3
1	8	0	2
2	1	6	4
3	0	7	5
4	2	5	
5	3	4	

- Elegimos un nodo hijo: (0)

Nodo	Start	End	ОТ
0	9	0	3
1	8	0	2
2	1	6	4
3	0	7	5
4	2	5	
5	3	4	

- El nodo 0 no tiene hijos con start=0. Lo agregamos al OT
- Seteamos su End en t=10

Nodo	Start	End	ОТ
0	9	10	0
1	8	0	3
2	1	6	2
3	0	7	4
4	2	5	5
5	3	4	

- Volvemos al nodo 1 y no tiene más hijos con start=0. Lo agregamos al OT
- Seteamos su End en t=11

Nodo	Start	End	ОТ
0	9	10	1
1	8	11	0
2	1	6	3
3	0	7	2
4	2	5	4
5	3	4	5

Finalmente el orden topológico del grafo es: (1)(0)(3)(2)(4)(5)

Orden topológico: Notas Importantes

- En resumen, orden en que vamos "descubriendo los nodos"
- Los intervalos de tiempo de los nodos no se traslapan entre ellos, por construcción

Los grafos cíclicos no tienen orden topológico ¿Por qué?

Orden topológico: Notas Importantes

- En resumen, orden en que vamos "descubriendo los nodos"
- Los intervalos de tiempo de los nodos no se traslapan entre ellos, por construcción

Los grafos cíclicos no tienen orden topológico ¿Por qué?

No se puede definir el nodo inicial del orden del orden (regla 3)

Palabras Clave

- G, grafo dirigido
- Conjunto maximal

Definición

En un grafo dirigido G, una CFC es un conjunto maximal de nodos
 C ⊆ G de tal manera que dados u,v ∈ C existe un camino dirigido desde u hasta v

¿Cómo se ve una CFC?

1. Grafo dirigido

¿Cómo se ve una CFC?

- 1. Grafo dirigido
- 2. Conjunto maximal

¿Cómo se ve una CFC?

- 1. Grafo dirigido
- 2. Conjunto maximal

¿Cómo se ve una CFC?

Grafo de Componentes

Grafo de Componentes

El nuevo grafo de componentes es acíclico, ¿Por qué?

Grafo de Componentes

El nuevo grafo de componentes es acíclico, ¿Por qué?

Si tuviera ciclos, los nodos de ambas CFC estarían en realidad en una misma CFC

Kosaraju

Palabras Clave

- G, grafo dirigido
- Grafo de **componentes**

Kosaraju

Definición

- Dado un grafo **G** dirigido, sean C_1, \ldots, C_k sus **CFC**. Se define el **grafo de componentes** G^{CFC} según:
 - $V(G^{CFC}) = \{C_1, \ldots, C_k\}$
 - Si $(u, v) \in E(G)$ y $u \in C_i, v \in C_j$, entonces $(C_i, C_j) \in E(G^{CFC})$

Kosaraju: Pseudocódigo

Ejemplo de Kosaraju

https://www.programiz.com/dsa/strongly-connected-components