ARQUITETURA

BI Business Intelligence

CENÁRIO ATUAL CADA VEZ MAIS DADOS

Volume crescente de informações

Dados geram cada vez mais dados

As informações são vastas porém a sua perecibilidade tem a mesma velocidade de sua geração

ONDE ESTÁ O PROBLEMA?

Fonte: especificações Seagate ST-41600n

A IMPORTANCIA DO BIG DATA

O principal objetivo do Big Data é poder tomar decisões mais rápidas e principalmente, com maior acurácia.

Volume

Velocidade

Variedade

Veracidade

- Alto volume de informações geradas;
- · Fontes internas e externas;
- 6 bilhões de usuários com celulares;
- · Internet das coisas;
- 40 Zetabytes serão criados até 2020; 300 vezes mais que em 2005;
- · 2.5 Quintilhões de bytes dia;

- · Perecibilidade do dado;
- Consumo imediato da informação;
- Sensores captam informações ex. Carro moderno mais de 100 sensores;
- 18.9 bilhões de redes conectadas;

- Texto, imagem, vídeo, áudio, logs, etc.
- Dados estruturados, desestruturados e semi estruturados;
- 4 bilhões de horas de vídeo no you tube;
- 7 petabytes de fotos/mês no facebook, 30 bilhões de conteúdos compartilhados por mês;
- 400 Milhões de tweets dia;

- 1 em cada 3 líderes não confiam na informação disponível para tomada de decisão;
- Poor data custam U\$ 3.1 trilhão ao ano;
- 27% dos tomadores de decisão não sabem o quanto seus dados são incorretos;

DIFERENÇAS ENTRE OS MODELOS

Estruturado

- Linguagem única (SQL)
- Necessidade obrigatória de Schema
- Limitação de armazenamento
- · Limitação de processamento
- Não volátil
- · Arquitetura Cliente / Servidor
- Alta consistência
- Formato padronizado dos dados
- Fontes internas

BigData

- Múltiplas linguagens
- Raw data desestruturado
- Armazenamento escalável
- Processamento escalável
- Dados voláteis
- Arquitetura de cluster
- Resiliente a falhas
- Diversos formatos
- Fontes internas e externas

COMO FUNCIONA UM BIG DATA

O Big Data funciona através de um cluster

Cluster é um conjunto de máquinas que se comportam como se fossem apenas uma

Cada nó do cluster realiza simultaneamente as atividades abaixo:

ARMAZENAMENTO DISTRIBUÍDO

- HDFS
- Data node
- Resiliente a falhas
- Map Reduce
- Spark
- Streaming

PROCESSAMENTO DISTRÍBUIDO

- Yarn
- Job task
- Memória EMC
- RDD
- Spark
- Streaming

IMPLEMENTANDO UM BIG DATA

- Arquitetar o ecossistema
- Criar o Datalake
- Realizar a ingestão dos dados (Raw data)
- Integrar com outras estruturas de dados da organização
- Criar camada manage
- Extrair insights de bases de dados com elevado volume e complexidade
- Gerar Data products

APLICABILIDADES BIG DATA

APLICABILIDADES BIG DATA

BI & BIGDATA SOLUTION

ECOSSISTEMA HADOOP

ECOSSISTEMA MICROSOFT

Data Sources

Apps

Information Management

Data Factory

Data Catalog

Event Hubs

Big Data Stores

Data Lake Store

SQL Data Warehouse

Document DB

Machine Learning and Analytics

Machine Learning

Data Lake **Analytics**

HDInsight

Stream Analytics

Azure Analysis
Service

Intelligence

Cognitive Services

Bot Framework

Cortana

Dashboards & Visualizations

Power BI

Automated Systems

Portifólio soluções

ETL: PowerCenter, Talend, NIFI, Pentaho, Data Service, SSIS, Data Stage, ODI...

Bancos SQL: SQL Server, Maria Db, Postgree, Oracle Database, Oracle Hexadata, MySql, DB2, Teradata...

Visualization: Alteryx Designer, Tableau, OBIEE, QlickView, PowerBI, SBO, SSRS, Cognus, Grafana...

Bancos NoSQL: Mongo DB, Hbase, Cassandra, Impala...

Machine Learning: Mahout, Spark Mlib, Spark, Tensor Flow...

Kafka, Tess, BDM, DataBriks, Azure, AWS...

Modelagem Preditiva: Regressão / classificação Linear / não linear, Árvores de decisão, Inferência difusa, Bayesiano, Cadeias de Markov / séries temporais, Support vector machines

BigData: HDFS, Kudu, MapReduce, YARN, Hive, Sqoop, Spark, Flume, Zookeeper, Ozie,

Otimização: Programação linear / inteira, Estocástico/ não linear, Desenho fatorial, Combinatória, Controle ótimo, Critérios múltiplos

Simulação: Simulação/ Monte Carlo, Martingale, Teoria de filas de espera, Teoria de jogos, Análise de dados topológicos, Análise linguista / Análise de imagem

