Gesture Recognition – Deep Learning

Problem Statement

As a data scientist at a home electronics company which manufactures state of the art smart televisions. We want to develop a cool feature in the smart-TV that can recognize five different gestures performed by the user which will help users control the TV without using a remote.

• Thumbs up : Increase the volume.

• Thumbs down : Decrease the volume.

• Left swipe : 'Jump' backwards 10 seconds.

• Right swipe : 'Jump' forward 10 seconds.

• Stop : Pause the movie.

Observations

- The resolution of Image, number of frames in sequence and number of layers in the model have more impact on training time
- Batch Size around 15-40 would be ideal
- The resolution can be 160X160, 120X120 depending upon the model performance
- With Image Resolution 160X160 and Number of Frames = 30 we are getting Out of Memory Issue. So we need to crop image further while experimenting with model
- With Image resolution 160X160 and Batch size 20 & 40 we have observed model is overfitting and there is huge gap between Training and Validation Accuracy
- Reducing Image Resolution to 120X120 along with reduction in layers, lowering learning rate to 0.2 has removed the overfitting and we have managed to reduce gap between Training & Validation Accuracy. With this model we can see Validation Loss also reduced to < 1.
- CNN based model has given us good result and we have managed to achieve 92% training and 79% validation accuracy in the model
- For more detailed information on the Observations and Inference, please refer below Tables for more details.

Experiment#	Model	Hyper-parameters	Result	Decision + Explanation
1	Conv3D	image_height=160 image_width=160 frames_to_sample=30 batch_size=15	Refer to Sample Models. This is giving OOM error.	 Image Resolution and number of frames in sequence have more impact on training time Batch Size around 15-40 would be ideal The resoulution can be 160X160, 128X128, 120X120 depending upon the model performance
2	Conv3D	image_height=160 image_width=160 frames_to_sample=20 batch_size=40 num_epochs=15	Model1: Training Accuracy = 0.93 Validation Accuracy = 0.21	Validation Loss doesn't improved post 1.67941 Huge Gap between Training & Validation Accuracies Model Overfitting Add Some Dropouts
3	Conv3D	image_height=160 image_width=160 frames_to_sample=20 batch_size=20 num_epochs=15 Dropout = 0.5	Model2: Training Accuracy = 0.82 Validation Accuracy = 0.22	Model is overfitting Validation Loss doesn't improved post 2.7660 Lets reduce filter size, image resolution and apply learning rate 0.02
4	Conv3D	image_height=120 image_width=120 frames_to_sample=16 batch_size=30 num_epochs=25 Dropout = 0.5 LR = 0.02	Model3: Training Accuracy = 0.79 Validation Accuracy = 0.72 At Epoch = 22 Training Accuracy = 0.81 Validation Accuracy = 0.73	This has reduced overfitting however accuracy still needs to be increased. Lets reduce Dropout and number of layers model-00022-0.49264-0.81222- 0.77594-0.73000.h5
5	Conv3D	image_height=120 image_width=120 frames_to_sample=16 batch_size=20 num_epochs=25 Dropout = 0.25 LR = 0.02	Model4: Training Accuracy = 0.92 Validation Accuracy = 0.75 At Epoch = 21 Training Accuracy = 0.92 Validation Accuracy = 0.79	This has helped us get more improvement in the model Validation Loss further reduced to 0.7048 Still there is a gap between these training & validation accuracies. Lets try reducing dropout model-00021-0.24294-0.91629- 0.61091-0.79000.h5
6	Conv3D	image_height=128 image_width=128 frames_to_sample=16 batch_size=15 num_epochs=25 Dropout = 0.2 LR = 0.01	Model5: Training Accuracy = 0.93 Validation Accuracy = 0.79 At Epoch = 24 Training Accuracy = 0.93 Validation Accuracy = 0.81	Validation Loss further reduced to 0.5998 This is the best model with Conv3D Architecture. model-00024-0.19574-0.92609-0.57976-0.81000.h5
7	Conv3D + LSTM	image_height=120 image_width=120 frames_to_sample=18 batch_size=15 num_epochs=40	Model6: Training Accuracy = 0.69 Validation Accuracy = 0.62	Though there is no improvement in Val Loss after 0.78924 at Epoch 26 we can see both training and validation accuracy is 66%

		Dropout = 0.2 LSTM Cells = 128 LR = 0.01		Lets try reducing No. frames to 10 and LSTM Cells to 64
8	Conv3D + LSTM	image_height=120 image_width=120 frames_to_sample=16 batch_size=15 num_epochs=40 Dropout = 0.2 LSTM Cells = 64 LR = 0.01	Model7: Training Accuracy = 0.53 Validation Accuracy = 0.59	With Image Resolution 120X120, LSTM Cells 64 we are unable to significant improvement in the Accuracy. Lets try reducing no. of frames to 10
9	Conv3D + LSTM	image_height=120 image_width=120 frames_to_sample=10 batch_size=15 num_epochs=40 Dropout = 0.2 LSTM Cells = 64 LR = 0.01	Model8: Training Accuracy = 0.56 Validation Accuracy = 0.58	Though model is not overfitting the accuracy for the model is around ~50% Let's try selecting alternate frames from 5-26 since after analyzing first 5 and last 5 frames doesn't have much significant gesture information Also increasing learning rate to 0.002
10	Conv3D + LSTM	image_height=120 image_width=120 frames_to_sample=11 batch_size=15 num_epochs=50 Dropout = 0.2 LSTM Cells = 64 LR = 0.01	Model9: Training Accuracy = 0.46 Validation Accuracy = 0.54	Validation Loss is > 1 Model is having 54% accuracy so it's not a good model. Let's try reducing layers and increasing learning rate to 0.02
11	Conv3D	image_height=120 image_width=120 frames_to_sample=16 batch_size=15 num_epochs=22 Dropout = 0.2 LR = 0.01	Model10: Training Accuracy = 0.33 Validation Accuracy = 0.33	Model is having 33% accuracy so it's not a good model.

Summary

• After doing all the experiments, we finalized **Model4** – CNN, which performed well.

Reasons:

Training Accuracy: 92%Validation Accuracy: 79%

Number of Parameters 504,709 less compared to other models

➤ Weight of the model is 5.89MB which can easily fit in any webcam