Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{ \alpha}$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = =$	$0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{X} \partial_{\epsilon} \partial_{X} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{X}_{\chi} -$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	
Total constraints/ga	uge generators:	16

$\tau_1^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$	
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0	
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0	
$\sigma_1^{\#2}{}_+\alpha\beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$t_{1}^{\#1} + \alpha \beta \frac{i\sqrt{2}k}{t_{1} + k^{2}t_{1}}$	0	0	0	0	
	$r_{1}^{#1} + \alpha \beta$	$a_1^{\#2} + \alpha \beta$	$\frac{\#1}{1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$	

12/5/18/2) / VZ+T)										_				
/ V 7			$\sigma_{2^{+}c}^{\#1}$	α. <i>β</i>	τ	#1 2 ⁺ αβ	,	$\sigma_{2^{-1}c}^{\#1}$	v Q v	$ hootabule \sigma_{0}^{\#1}$	0	0	0	- 1
1	41 ±0	αβ	$\frac{2}{(1+2k^2)}$					0	ιρχ	$\tau_0^{\#1}$ $\tau_0^{\#2}$	0	0	0	0
	$\sigma_{2}^{#1} \dagger^{6}$				(1+	$i \sqrt{2}$ $(2k^2)^2$	$\frac{2}{t_1}$				0	0	0	0
T ₁ /	$\tau_{2}^{#1}$ †	αβ	$\frac{2i\sqrt{2}}{(1+2k^2)}$	$\frac{2k}{(2t_1)^2t_1}$	(1+)	4 k ² 2 k ²) ²	$\frac{1}{t_1}$	0		$\sigma_{0}^{\#1}$	$\frac{1}{6k^2r_3}$	0	0	0
, C , L S ,	$\sigma_2^{\#1} \dagger^{\alpha_l}$	βχ	0			0		$\frac{2}{t_1}$			$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger
1,5,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,	Quadratic (free) action	$S = \int \int \int \int (f^{\mu\nu} \tau_{\alpha\beta} + \omega^{\mu\nu\lambda} \sigma_{\alpha\beta\chi} + \sigma_{\alpha\gamma} + \sigma_{\alpha\gamma}$	$\frac{1}{6}t_1(2\ \omega^{\alpha\prime}_{\alpha}\ \omega^{}_{} - 4\ \omega^{}_{\beta}\ \partial_{}f^{\alpha\prime} + 4\ \omega^{}_{\beta}\ \partial^{\prime}f^{\alpha}_{} - 2\partial_{\prime}f^{\beta}_{\beta}$	$\partial'f^{\alpha}_{\alpha}-2\partial_{i}f^{\alpha i}\partial_{\theta}f^{\beta}_{\alpha}+4\partial'f^{\alpha}_{\alpha}\partial_{\theta}f^{\beta}_{i}-6\partial_{\alpha}f_{i\theta}\partial^{\theta}f^{\alpha i}-$	$3\partial_{\alpha}f_{\theta_{1}}\partial^{\theta}f^{\alpha_{1}}+3\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha_{1}}+3\partial_{\theta}f_{\alpha_{1}}\partial^{\theta}f^{\alpha_{1}}+$	$3 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha\prime} + 6 \omega_{\alpha\theta\prime} (\omega^{\alpha\prime\theta} + 2 \partial^{\theta} f^{\alpha\prime}))$ -	$2 r_3 \left(\partial_eta \omega_{,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$2\partial'\omega^{lphaeta}_{}\partial_{ heta}\omega^{eta}_{}+\partial_{lpha}\omega^{lphaeta_{\prime}}\partial_{eta}\omega^{eta}_{}$ -	$2 \partial' \omega^{\alpha \beta} \partial_{\alpha} \omega^{\beta} + 2 \partial_{\alpha} \omega_{\alpha} \partial^{\beta} \omega^{\alpha \beta}) +$	$\alpha = \beta + \beta = \beta + \beta = \beta + \beta = \beta + \beta = \beta = \beta$				

0

0

0

0

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,kt_1$

0

 $\frac{t_1}{3\sqrt{2}}$

0

0

 $\omega_1^{\#2} +^{\alpha}$

0

0

0

0

0

 $f_{1}^{\#1} \dagger^{\alpha}$

 $-\frac{1}{3}\,\bar{l}\,k\,t_1$

 $\frac{ikt_1}{3}$

0

 $\frac{t_1}{3\sqrt{2}}$

 $k^2 (2 r_3 + r_5) + \frac{t_1}{6}$

0

0

 $\omega_{1}^{\#1} +^{\alpha}$

0

0

0

0

0

0

0

 $6 k^2 r_3$

0

0

0

 $\omega_{0}^{#1}$ + $f_{0}^{#1}$ + $f_{0}^{#2}$ + $f_{0}^{#2}$ + $\omega_{0}^{#1}$ + $\omega_{0}^{#1}$

0

0

0

0

 $\omega_1^{\#2} + \alpha \beta$

 $\frac{t_1}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$

 $f_1^{\#1} + \alpha \beta$

0

0

0

 $k^2 (2 r_3 + r_5) - \frac{t_1}{2}$

 $\omega_{1}^{\#1} + ^{\alpha eta}$

 $\omega_{1^{-}\alpha}^{\#2}$

 $\omega_{1^{-}}^{\#1}{}_{\alpha}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_5 < -2 \, r_3 \, \&\& \, t_1 < 0 \, || \, t_1 > 0$$