CSE512 Fall 2019 - Machine Learning - Homework $4\,$

November 2, 2019

Name: Anmol Shukla

Solar ID: 112551470

NetID: anmshukla

 $Email\ address:\ Anmol.shukla@stonybrook.edu$

Names of people whom I have discussed the homework with: None

1 Question 1

1.1 Linear Case

(ii) If a point is a support vector, then the margins will shift giving a new classifier plane. This may lead to the case where this point is misclassified.

f(x)=0 if pt. is correctly classified

= 1 if misclassified.

Worst case: it is possible that all the support vectors

may be misclassified

ino. of support vectors is m.

LOOCV error = 1 & f (yi , xi; 0 i, b-i)

where xi is a support vector for whole data.

There worst case scenario f(x)=1 & x & Support vectors

ithe maximum coocv error = 1 & (1)

m

m

1.2 General Case

1.2 If we use a general kernel that separates the data in high-dimensional feature space, then, the bound on LOOCV will still hold.
(hottood y larval at Lice of the larval of the file
Similar to the previous answer; the data is linearly
deparable in higher dimension, thus, removery non-support
verter want change the syll margin a mass will
any error. On the other hand, if in the higher dimension,
a dupport vector is removed, then, margin will change.
This will add one to the LOOCV orror on the worst
case all the 'm' support vectors in the higher dimens-
-ims will lie on the wrong did of the plane & add
"m" to the error
$\frac{1}{n} = \frac{1}{n} = \frac{1}{n}$

2 Question 2

2.1 SVM Dual Objective

```
2.1. SVM dual Objective = max. \sum \alpha_i - 1 \sum \sum y_i \alpha_i y_j \alpha_j \cdot k(x_i, x_j)
                                                                                                                                                                                                                       s.t. \sum_{j=1}^{n} y_j \alpha_j = 0
                                                                                                                                                                                                                                                              0 5 x; 6 C +;
                                     Quadprog in matleb:
                                                    min \frac{1}{x} 
                                           Since we are using Linear Kernel
H = (YYT) * (XTX)
                                                                                            f = -1 \times \text{ ones } (\text{size } (Y, \bot), \bot) = \begin{bmatrix} -1 \\ \vdots \end{bmatrix}
                                                                                             b = []
Aeq = y' (IXN)
beq = 0
lb = zeros(n,1)
                                                                                                 ub = (* ones (n, 1)
```

2.4 C = 0.1

```
Validation accuracy: [90.735695]
Objective Value: [24.764818]
Support Vectors: [339]
Validation Confusion Matrix -
152 32
2 181
```

2.5 C = 10

```
Validation accuracy: [97.820163]
Objective Value: [112.146132]
Support Vectors: [123]
Validation Confusion Matrix -
180 4
4 179
```

2.6

For this challenge, I used the SVM code that I created for Q 2.2 and Q 2.3. Additionally, I used one-vs-all SVM classifier with Linear Kernel and for predicting the class for a data point, I assigned the class with the maximum confidence which can be calculated as ((X'*w)+b). I also tried Polynomial Kernel but it did not give me better results than a Linear Kernel. To find the best value for hyper-parameters, I did a search on the input space of hyper-parameters and evaluated the accuracy of classifier on validation set. I did not include the validation set in the training set or else it would give us incorrect answers. Then, based on the value of C found using cross-validation, I trained the model for which I got a Kaggle score (on 30% test data) of 0.50666 with C=0.0056.

3 Question 3

3.4.1

AP: 0.638

Figure 1: Precision recall curve for 3.4.1

3.4.3NOTE: Please see the last page for the curves.Objective values:

Iteration	Objective Value
1	0.6398
2	0.9156
3	0.9943
4	1.0102
5	1.0121
6	1.0122
7	1.0122
8	1.0122
9	1.0122
10	1.0122

AP Values:

Iteration	AP
1	0.8275
2	0.8620
3	0.8637
4	0.8582
5	0.8591
6	0.8587
7	0.8587
8	0.8587
9	0.8587
10	0.8587

3.4.4

AP: 0.8018

Figure 2: Objective values for 3.4.3

Figure 3: APs for 3.4.3