ELECTRONIQUE, LABO

RAPPORT

Télécommande à 1 canal par infrarouge

Auteurs:
SPIELER Michael
ROUSSET Vianney

Professeur: DÉCURNEX André

1 Introduction

Le but est de concevoir un système d'émission - réception infrarouge avec adressage permettant d'enclencher et déclencher un relais optique.

2 Structure générale et principe

On a divisé le système en 5 étages avec des interfaces définies :

Générateur de signal Générerateur de salves de N pulses de durée de 100µs avec une période de 1ms

espacées de 100ms.

LED driver Sortie de puissance qui drive la LED IR.

Récepteur Récepteur IR avec amplification et filtrage. La sortie est le signal digital des

pulses.

Décodeur Circuit logique de décodage du nombre de pulses. La sortie est un pulse d'en-

viron? ms pour chaque salve correcte reçue.

Sortie Circuit de détection d'interruption du signal avec commutation et du relais

optique.

todo : durée de sortie du décodeur

FIGURE 1 – Schéma bloc du système avec signaux

Le but de la structure choisie est de faciliter le développement et la testabilité du sous-système.

3 Notation et nomenclature

n_{pulse}	Nombre de pulses dans une salve (addressage)	13
t_0	Durée high d'un pulse	0.1 ms
T_0	Période des pulse	1.0 ms
D_0	Duty cycle dans une salve	10%
τ	Période des slaves	0.1 s
t _{miss}		
t _{true}	Durée du pulse signal une salve correcte	

pulse

TODO: tableau pas fini

3.1 Générateur de signal

Le générateur de signal génère dans OUTPUT des salves de n_{pulses} à une période τ en active high tant que celui-ci est alimenté à 3V. Les pulses dans les salves ont une durée high t_0 et une période T_0 . Le nombre de pulses et les durées ne sont pas garanties lorsque l'alimentation est retirée.

Pulse timer Génère des impulsion à hautes fréquences tant qu'il n'est pas RESET

Burst timer Oscille à une période τ pour signaler le début d'une salve.

Decounter Compte le nombre de pulses reçu depuis son dernier RESET et signal lorsque n_{pulse}

pulses ont été reçu.

Logic Assure les conditions logiques sur les signaux.

dimensionnement de valeurs R et C

3.2 LED driver

3.3 Récepteur et filtrage

3.4 Décodeur

Le décodeur à 3 fonctions :

- Le comptage des pulses assuré par le *decounter*. Celui-ci signal en *active high* si n_{pulse} ont été reçus par la tension d'entrée depuis son dernier *reset*.
- La détection de pulse manquant assuré par le *missing pulse detector*. Celui-ci signal en *active low* si la tension d'entrée est maintenue *low* pendant au moins $t_{miss} = xxx$ ms après la fin d'un pulse.
- La génération du signal sortant assuré par un délais et des portes logiques. Celui si génère en *active high* un pulse de $t_{true} = xx$ ms si la salve est *correcte*.

Une salve est considéré correcte si le missing pulse

low	low	Nombre incorrect de pulses dans la salve	low
low	high	Salve correcte	high
high	low	Salve non finie	low
high	high	Salve non finie	low

3.5 Sortie

3.6 Mesures

FIGURE 2 – todo

4 Annexes