IB Analysis and Approaches HL2 Inverse Trigonometric Functions

May 13, 2024

Introduction

Inverse trigonometric functions are crucial for determining angles from given trigonometric ratios. They are the inverse operations of the basic trigonometric functions.

Understanding Trigonometry

Suppose we have a right triangle with an angle θ and sides of length a, b, and c as shown below.

In regular trigonometry:

$$\sin(\theta) = \frac{b}{c},$$

$$\cos(\theta) = \frac{a}{c},$$

$$\tan(\theta) = \frac{b}{a}.$$

Inverse Trigonometric Functions

Inverse trigonometric functions return the angle for a given trigonometric ratio, essentially reversing the operations shown above.

Key Functions and Their Properties

Function	Definition	Domain	Range
$\arcsin(x)$	$\sin(\arcsin(x)) = x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le \arcsin(x) \le \frac{\pi}{2}$
$\arccos(x)$	$\cos(\arccos(x)) = x$	$-1 \le x \le 1$	$0 \le \arccos(x) \le \pi$
$\arctan(x)$	$\tan(\arctan(x)) = x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < \arctan(x) < \frac{\pi}{2}$

Graphical Representations

The graphs below help visualize the behavior and transformation from standard trigonometric functions to their inverses.

Example Problems

Here are some examples to practice: 1. Calculate $\arcsin(\frac{1}{2})$. 2. Determine $\arccos(-1)$. 3. Find $\arctan(1)$.