Inference 2, 2023, lecture 9

Rolf Larsson

November 27, 2023

Today

Chap. 4. Estimation (continued).

- Asymptotic properties
 - Consistency
 - Asymptotic normality

Consistency

Definition (4.12)

We say that a sequence $\{T_n\}$ of estimators for a parameter $\gamma = g(\theta)$ is **weakly consistent**, if T_n converges in probability to γ , that is: If for any $\varepsilon > 0$ and for all $\theta \in \Theta$

$$\lim_{n\to\infty} P_{\theta}(|T_n - \gamma| > \varepsilon) = 0.$$

If $\{T_n\}$ converges with probability one (almost surely, a.s.) to γ , that is, for all $\theta \in \Theta$

$$P_{\theta}\left(\lim_{n\to\infty}T_n=\gamma\right)=1,$$

then it is **strongly consistent**.

Strong consistency implies weak consistency.

Write $T_n \xrightarrow{p} \gamma$ for convergence in probability and $T_n \xrightarrow{\text{a.s.}} \gamma$ for convergence almost surely.

4日 > 4周 > 4 差 > 4 差 > 差 の 9 ○

Consistency

Example 1: Weak consistency *does not* imply strong consistency.

- Let $X_1, X_2, ...$ be a sequence of independent Bernoulli variables, where $P(X_k = 1) = 1/k$ for all k.
- X_n converges in probability to 0 as $n \to \infty$, because $\mathrm{P}(X_n = 0) = 1 1/n \to 1$, implying $\lim_{n \to \infty} \mathrm{P}(|X_n = 0| > \varepsilon) = 0$ for any positive $\varepsilon < 1$.
- X_n does not converge almost surely to 0, because
 - $X_n \xrightarrow{\text{a.s.}} 0$ is equivalent to $P(|X_n| > \varepsilon \text{ i.o.}) = 0$ for all $\varepsilon > 0$, where i.o. means infinitely often.
 - But $\sum_{n} P(X_n = 1) = \sum_{n} \frac{1}{n} = \infty$ implies $P(X_n = 1 \text{ i.o.}) = 1$.
 - Hence, $P(|X_n| > \varepsilon \text{ i.o.}) = 1$ for any positive $\varepsilon < 1$, and we can not have $X_n \xrightarrow{\text{a.s.}} 0$.

4 / 10

Consistency

Theorem (4.8)

(The Continuous Mapping Theorem.) Let $\{S_n\}$ be a sequence of random variables, S_0 a random variable and h a continuous function. Then,

$$S_n \xrightarrow{\mathrm{p}} S_0 \Rightarrow h(S_n) \xrightarrow{\mathrm{p}} h(S_0),$$

 $S_n \xrightarrow{\mathrm{a.s.}} S_0 \Rightarrow h(S_n) \xrightarrow{\mathrm{a.s.}} h(S_0).$

- Let $X_1, ..., X_n$ be independent random variables, distributed as X.
- Let $E(X) = \mu$ and $Var(X) = \sigma^2$.
- Let \bar{X}_n be the mean and S_n^2 be the sample variance of $(X_1,...,X_n)$.

Then,

- $\bullet \quad \bar{X}_n \xrightarrow{p} \mu$

5 / 10

Convergence in distribution:

$$X_n \xrightarrow{\mathcal{D}} X$$
 as $n \to \infty$ if $F_n(x) = \mathrm{P}(X_n \le x) \to \mathrm{P}(X \le x) = F(x)$ for all points x at which $F_n(x)$ is continuous.

Definition (4.13)

A sequence of estimators $\{T_n\}$ for a m-dimensional parameter $\gamma = g(\theta)$ is asymptotically normal if for all $\theta \in \Theta$,

$$\sqrt{n}(T_n - \gamma) \xrightarrow{\mathcal{D}} N_m\{0, \Sigma(\theta)\},$$

where $\Sigma(\theta)$ is a positive definite $m \times m$ (covariance) matrix.

 An estimator is said to be asymptotically efficient if it is asymptotically normal with

$$\Sigma(\theta) = (D_{\theta}g)(\theta)\{I_{\mathbf{X}}(\theta)\}^{-1}\{(D_{\theta}g)(\theta)\}^{\mathrm{T}}$$

for all $\theta \in \Theta$ (cf the Cramér-Rao lower bound).

Under regularity conditions, the MLE is asymptotically efficient.

Theorem (4.10)

The Delta method (scalar case)

Suppose T_n is an estimator of the form $T_n = h(S_n)$ where the sequence $\{S_n\}$ is asymptotically normal, i.e.

$$\sqrt{n}(S_n-\mu)\xrightarrow{\mathcal{D}}N(0,\tau^2)$$

for some constants μ and $\tau^2 > 0$.

If h has a continuous nonzero derivative h' at μ , then

$$\sqrt{n} \{ T_n - h(\mu) \} \xrightarrow{\mathcal{D}} N \{ 0, h'(\mu)^2 \tau^2 \}.$$

Let $X_1, ..., X_n$ be independent random variables, distributed as X which is exponential with intensity β .

- What is the asymptotic distribution of \bar{X} ?
- ② Derive the asymptotic distribution of \hat{eta}_{MLE} via 1. and the delta method.
- $oldsymbol{3}$ Verify that \hat{eta}_{MLE} is asymptotically efficient.

News of today

- Consistency, weak and strong
- The continuous mapping theorem
- Asymptotically normal estimator
- Asymptotically efficient estimator
- Under regularity conditions, the MLE is asymptotically efficient.
- The delta method