Esercizi Cache Architettura degli elaboratori

Laurea in Informatica

Docente: Nicolò Navarin

Esercizio 3 cache

Si consideri una cache di **4KB** con associazione a gruppi a 4 vie (4-way set associative) in congiunzione con una memoria centrale di 256KB.

Supponendo che un blocco sia di dimensione 64B, e che la dimensione di parola sia di un singolo byte, si dica:

- se le locazioni di memoria con indirizzi (in esadecimale)
 30E5C e 17A87 hanno la possibilita di essere caricate all'interno dello stesso set di linee;
- b) se in cache è presente la locazione con indirizzo **05ABC**, quali altre locazioni sono sicuramente presenti nella cache.

Esercizio 3 cache - soluzione

Si consideri una cache di **4KB** con associazione a gruppi a 4 vie (4-way set associative) in congiunzione con una memoria centrale di 256KB. Supponendo che un blocco sia di dimensione 64B, e che la dimensione di parola sia di un singolo byte, si dica:

a) se le locazioni di memoria con indirizzi (in esadecimale) **30E5C** e **17A87** hanno la possibilità di essere caricate all'interno dello stesso set di linee;

Soluzione:

- procedendo come visto negli esercizi precedenti, calcoliamo le dimensioni dei campi tag, set e parola
- abbiamo che un indirizzo di memoria è decomponibile in un campo parola di 6 bit, un campo set di 4 bit, ed un campo tag di 8 bit.
- le due locazioni di indirizzo 30E5C e 17A87 possono trovarsi nello stesso insieme se il loro campo set è identico. Quindi basta controllare se i bit da 10 a 7 (a partire da destra) sono identici:

30E5C = (su 18 bit) 11000011100101110017A87 = (su 18 bit) 010111101010000111

non essendo identici, la risposta è no.

Esercizio 3 cache - soluzione

Si consideri una cache di **4KB** con associazione a gruppi a 4 vie (4-way set associative) in congiunzione con una memoria centrale di 256KB. Supponendo che un blocco sia di dimensione 64B, e che la dimensione di parola sia di un singolo byte, si dica:

se in cache è presente la locazione con indirizzo **05ABC**, quali altre locazioni sono sicuramente presenti nella cache.

Soluzione:

- le altre locazioni che necessariamente saranno presenti con la locazione di indirizzo 05ABC sono quelle all'interno del medesimo blocco.
- poiché 05ABC = (su 18 bit) 0001011010101111100, tutte le locazioni con indirizzo da 000101101010000000 (hex 05A80) a 0001011010101111111 (hex 05ABF) si troveranno simultaneamente in cache.

Esercizio 4 cache

Sia data la seguente sequenza di indirizzi in lettura (I) o scrittura (s) emessi dalla

CPU:

	Indirizzo	l/s	Dato scritto (in esadecimale)
1	0001 0000 0000	I	
2	0001 0000 1000	I	
3	0001 0000 1100	S	B1
4	0001 0000 1100	I	
5	0001 0001 0000	S	B4
6	0001 0001 0000		
7	0001 0001 0100	S	B7

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (con politica di rimpiazzo LRU e politica di scrittura write-through). Si assuma che la memoria abbia il contenuto esadecimale mostrato di

seguito:

ind	byte	ind	byte	ind	byte	ind	byte
100	0C	101	00	102	07	103	02
104	00	105	00	106	00	107	00
108	AE	109	13	10A	A1	10B	23
10C	A1	10D	42	10E	90	10F	75
110	В9	111	16	112	00	113	00
114	0A	115	07	116	03	117	71

Si mostri come cambiano sia il contenuto della cache che il contenuto della memoria

Esercizio 4 cache - soluzione

Soluzione:

- Poiché un blocco è costituito da 4B, e la cache è di 16B, si avranno in cache 2⁴/2² = 2² linee.
 Essendo l'associatività a due linee (2 vie), la cache sarà costituita da due insiemi (set 0 e set 1) ognuno di 2 linee.
- Quindi i 12 bit di indirizzo saranno suddivisi nel seguente modo:
 - i 2 bit meno significativi individueranno il byte all'interno del blocco (word);
 - il terzo bit da destra individuerà l'insieme (set 0 o set 1);
 - i restanti bit costituiranno il campo tag.

Esercizio 4 cache - soluzione

 Mostriamo di seguito l'evoluzione del contenuto della cache e della memoria.

E' necessario fare assunzioni aggiuntive per la cache:

- nel caso in cui tutte e due le linee di un insieme (set) siano libere, si sceglie la linea con indirizzo minore per la allocazione (scelta arbitraria: si poteva usare un criterio diverso).
- In caso di miss per una operazione di scrittura, si assume la politica "write allocate", cioè si porta prima in cache il blocco che contiene la parola da scrivere e poi si effettua la scrittura.

Indirizzo	Hit/ miss	(per ogr	Cach ni linea di cache indicare	Modifica memoria <i>M[ind.]= contenuto</i>	
Binario	Hit/ miss	Set 0	Linea 0 [cont. linea 0 set 0] tag:	Linea 1 [cont. linea 1 set 0] tag:	Mem[ind.]=conten
HEX	111100	Set 1	[cont. linea 0 set 1] tag:	[cont. linea 1 set 1] tag:	ato

Soluzione Esercizio 4 cache – inizio

Indirizzo	Hit/ miss	(ре	Cache er ogni linea di cache indicare il contei	Modifica memoria <i>M[ind.]= contenuto</i>	
			Linea 0	Linea 1	
0001 0000 0000 100 HEX	miss	Set 0	[0C 00 07 02] tag:000100000		
TOOTILA		Set 1			
			Linea 0	Linea 1	
0001 0000 1000 108 HEX	miss	Set 0	[0C 00 07 02] tag:000100000	[AE 13 A1 23] tag: 0000100001	
100 FILX		Set 1			
	miss		Linea 0	Linea 1	
000100001100 10C HEX		Set 0	[0C 00 07 02] tag:000100000	[AE 13 A1 23] tag: 0000100001	Mem[10C]=B1
100112/		Set 1	[A1 42 90 75] [B1 42 90 75] write allocate tag:000100001		
			Linea 0	Linea 1	
0001 0000 1100 10C HEX	hit	Set 0	[0C 00 07 02] tag:000100000	[AE 13 A1 23] tag: 000100001	
		Set 1	[B1 42 90 75] tag:000100001		

Soluzione Esercizio 4 cache – continua

Indirizzo	Hit/ miss	(p	er ogni linea di cach	Modifica memoria <i>M[ind.]= contenuto</i>		
			Line	ea 0	Linea 1	M [440] D4
0001 0001 0000 110 HEX	miss	Set 0	[B9 16 00 00] write allocate LRU	[B4 16 00 00] tag:000100010	[AE 13 A1 23] tag: 000100001	Mem[110]=B4
		Set 1	[B1 42 90 75] tag:000100001			
	1, 11		Linea 0		Linea 1	
0001 0001 0000 110 HEX	hit	Set 0	[B4 16 tag:000	•	[AE 13 A1 23] tag: 000100001	
		Set 1	[B1 42 90 75] tag:000100001			
			Linea 0	L	inea 1	
0001 0001 0100 114 HEX	miss	Set 0	- 1 1 1 - 1		13 A1 23] 000100001	Mem[114]=B7
		Set 1	[B1 42 90 75] tag:000100001	[0A 07 03 71] write allocate	→ [B7 07 03 71] tag:000100010	

Esercizio 5 cache

 Sia data la seguente sequenza di indirizzi in lettura (I) o scrittura (s) emessi dalla CPU e la memoria con contenuto mostrato di seguito:

	Indirizzo	l/s	Dato scritto (HEX)
1	0001 0000 1000	S	43
2	0001 0000 1100	S	3F
3	0001 0000 1111	I	
4	0001 0000 1101	I	
5	0001 0001 0100	I	
6	0001 0001 1111	S	AE
7	0001 0000 0111	S	CD
8	0001 0010 0110		

ind	byte	ind	byte	ind	byte	ind	byte
100	8	101	D0	102	7	103	2
104	0	105	0	106	0	107	0
108	AE	109	13	10A	A1	10B	23
10C	A1	10D	42	10E	90	10F	75
110	BB	111	16	112	0	113	0
114	0A	115	87	116	3	117	71
118	3E	119	13	11A	A1	11B	23
11C	A1	11D	82	11E	90	11F	15
120	F9	121	86	122	A0	123	0
124	E9	125	16	126	5	127	0

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 2B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come cambiano sia il contenuto della cache che il contenuto della memoria

Esercizio 5 cache – inizio soluzione

Soluzione:

- Indicare di seguito in quali campi (e la loro dimensione) gli indirizzi emessi dalla CPU sono suddivisi
 - tag (o etichetta) da 9 bit, set (o insieme) da 2 bit, word (o parola) da 1 bit
- Indicare di seguito in quante linee/set la cache è suddivisa
 - la cache è costituita da 4 set, ognuno di 2 linee da 2B
- Indicare l'evoluzione della cache e della modifica della memoria nello schema sottostante:

Indirizzo	Hit/ miss	(p	Cache (per ogni linea di cache indicare il contenuto del campo tag)					
0001 0000 1000 108 HEX	miss	Cot 00	Linea 0	Linea 1				
	Set 00	Set 00	[AE13] (4313)* write allocate tag:000100001					
		Set 10						
Set 11								

^{*} indica linea sporca a causa della politica write-back

Esercizio 5 cache – inizio soluzione

Indirizzo	Hit/ miss	(per	Cache ogni linea di cache indicare il contenu	Modifica memoria <i>M[ind.]= contenuto</i>	
0001 0000 1100 10C HEX	miss		Linea 0	Linea 1	
		Set 00	[4313]* tag:000100001		
		Set 01			
		Set 10	[A142]		
		Set 11			
0001 0000 1111	miss		Linea 0	Linea 1	
10F HEX		Set 00	[4313]* tag:000100001		
		Set 01			_
		Set 10	[3F42]* tag:000100001		
		Set 11	[9075] tag:000100001		

Soluzione completa disponibile in un documento a parte su Moodle.