Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

PROBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEN 2023							
Arkusz egzaminacyjny – nowa matura 2023							
Czas pracy: 210 minut	Liczba punktów do uzyskania: 50						

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1-8). Ewentualny brak zgłoś 1. przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 5. Wpisz poniżej zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator jezyka programowania oraz program użytkowy.
- 6. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: w postaci listy kroków, schematu blokowego, pseudokodu lub w języku programowania, który wybrałaś/eś na egzamin.
- Symbol Zamieszczony przy zadaniu oznacza, że zadanie nie wymaga użycia komputera 7. i odpowiedzi należy zapisać tylko w miejscu na to przeznaczonym w arkuszu. Nie wyklucza to jednak użycia komputera jako pomocy przy rozwiazywaniu zadania.

Dane uzupełnia u	czeń:									
WYBRANE:				 (środo	owisko)				
			••••	 (komp	oilator		•••••			
			••••	 (progr	am uż					
PESEL:										
Klasa:										

Zadanie 1. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F, jeśli zdanie jest fałszywe. W każdym zadaniu możesz uzyskać dwa punkty, po jednym punkcie za każde dwie poprawne odpowiedzi.

Zadanie 1.1. (0-2)

Protokół sterowania transmisją TCP (ang. Transmission Control Protocol) to protokół, którego zadaniem jest

1.	znajdowanie odpowiednich dróg połączeń między węzłami sieci (tzw. routing). Operuje adresami logicznymi węzłów sieci które przydzielane są niezależnie od rzeczywistej adresacji fizycznej poszczególnych urządzeń.	P	F
2.	gwarantowanie wyższym warstwom komunikacyjnym dostarczenia wszystkich pakietów w całości, z zachowaniem kolejności i bez duplikatów. Zapewnia to wiarygodne połączenie kosztem większego narzutu w postaci nagłówka i większej liczby przesyłanych pakietów.	P	F
3.	pośredniczenie między warstwami łącza danych i sieciową, w kojarzeniu adresu MAC przypisanemu interfejsowi z adresem sieciowym IP.	P	F
4.	zamiana nazwy domenowej, zrozumiałej dla człowieka na adresy IP urządzeń w sieci.	P	F

Zadanie 1.2. (0–2)

W wyniku wywołania poniższej funkcji

```
f(n):
    jeśli n<5 wykonaj dwie instrukcje:
          f(n+1)
          wypisz(n-1)</pre>
```

dla wartości n = 1 wypisane zostaną kolejno liczby:

1.	3 2 1 0	P	F
2.	4 3 2 1 0	P	F
3.	4	P	F
4.	0 1 2 3	P	F

Zadanie 1.3. (0–2)

Liczba 222₃ zapisana jest w systemie trójkowym. Wskaż prawdziwe relacje.

1.	222 ₃ > 121 ₆	P	F
2.	$222_3 = 10_{11}$	P	F
3.	222 ₃ > 11 ₁₀	P	F
4.	2223 < 1214	P	F

Wypełnia egzaminator	Numer zadania	1.1	1.2	1.3	Suma
	Maksymalna liczba punktów	2	2	2	6
	Uzyskana liczba punktów				

Zadanie 2. GRA W KAMYKI

Ada i Bajtek postanowili zagrać w, z pozoru prostą, grę. Na stole przed sobą rozłożyli *N* kamyków. Zasady gry są proste. Gracze grają na przemian, a Ada zaczyna jako pierwsza. W swoim ruchu gracz może zabrać ze stołu 1, 3 lub 4 kamyki (pod warunkiem, że na stole jest ich wystarczająca liczba). Wygrywa ten z graczy, który jako ostatni weźmie ze stołu pozostałe kamyki.

Przykładowy przebieg rozgrywki dla *N*=5 kamyków może wyglądać następująco: Ada bierze jeden kamyk ze stołu, następnie Bajtek weźmie cztery kamyki i wygra grę. Ada może też zacząć od zabrania trzech kamyków, następnie Bajtek może jedynie zabrać jeden kamyk (ponieważ na stole zostały dwa), a na końcu Ada zabiera ostatni kamyk i wygrywa grę.

Ada zastanawia się dla jakich liczb kamyków na stole ma strategię pozwalającą jej wygrać z Bajtkiem, niezależnie od tego, jakie ruchy on wykona. Pomóż jej odpowiedzieć na to pytanie.

Zadanie 2.1. (0-2)

Uzupełnij poniższą tabelkę zgodnie z przykładem – dla każdej liczby kamyków określ, czy Ada ma strategię pozwalającą jej wygrać z Bajtkiem.

N	Czy Ada ma strategię pozwalającą jej wygrać?
1	TAK
2	NIE
3	TAK
4	TAK
5	TAK
6	
7	
8	
14	

Miejsce na obliczenia

Zadanie 2.2. (0–3)

Zapisz w wybranej przez siebie notacji (w postaci listy kroków, schematu blokowego, pseudokodu lub w wybranym języku programowania) algorytm, który dla podanej liczby kamyków N>0 znajdzie odpowiedź na pytanie, czy Ada ma strategię wygrywającą w opisanej grze. Przy ocenie będzie brana pod uwagę złożoność obliczeniowa Twojego rozwiązania.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne: dodawanie, odejmowanie, mnożenie, dzielenie całkowite, resztę z dzielenia oraz porównywanie liczb; operacje logiczne: koniunkcja, alternatywa, zaprzeczenie; instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Algorytm

	Numer zadania	2.1	2.2	Suma
Wypełnia egzaminator	Maksymalna liczba punktów	2	3	5
	Uzyskana liczba punktów			

Zadanie 3. LICZBY SILNE

Liczbą silną nazwiemy liczbę naturalną N, większą od zera, która jest równa sumie jednej lub kilku parami różnych silni. Dla przykładu liczba N=7 jest liczbą silną, ponieważ 7=3!+1!, natomiast liczba N=4 nie jest liczbą silną, chociaż 4=2!+2!, ale nie są to parami różne silnie.

Zadanie 3.1 (0-2)

Uzupełnij poniższą tabelkę. Dla każdej liczby określ, czy jest ona liczbą silną, a jeżeli tak, to wypisz jej sumę silni, zgodnie z przykładem.

N	Czy silna?	Suma
7	TAK	3! + 1!
4	NIE	-
5		
6		
9		
25		

Miejsce na obliczenia

Zadanie 3.2. (0–3)

Zapisz w wybranej przez siebie notacji (w postaci listy kroków, schematu blokowego, pseudokodu lub w wybranym języku programowania) algorytm zachłanny, który dla podanej liczby naturalnej N>0 obliczy, czy liczba ta jest liczbą silną. Podczas oceny będzie brana pod uwagę złożoność obliczeniowa Twojego rozwiązania.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne: dodawanie, odejmowanie, mnożenie, dzielenie całkowite, resztę z dzielenia oraz porównywanie liczb; instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Algorytm

Wypełnia egzaminator	Numer zadania	3.1	3.2	Suma
	Maksymalna liczba punktów	2	3	5
	Uzyskana liczba punktów			

Zadanie 4. RODZINY PALINDROMÓW

W kolejnych wierszach pliku slowa. txt zapisano małymi literami alfabetu angielskiego po jednym słowie o długości nie większej niż 200 liter.

Napisz program, który będzie rozwiązywał poniższe zadania.

Zadanie 4.1 (0-4)

Podaj liczbę słów z pliku slowa. txt, które są palindromami.

Zadanie 4.2 (0-4)

Wszystkie palindromy o tej samej długości tworzą jedną rodzinę palindromów. Podaj liczbę niepustych rodzin palindromów, które znajdują się w pliku slowa.txt.

Zadanie 4.3 (0-4)

Każdą rodzinę palindromów zapisz w oddzielnym wierszu pliku rodziny.txt. Palindromy każdej rodziny wymień w kolejności alfabetycznej, oddzielone jedną spacją.

Do oceny oddajesz:

Plik tekstowy wyniki4.txt zawierający odpowiedzi do zadań 4.1 i 4.2 (odpowiedź do każdego zadania powinna być poprzedzona jego numerem), plik rodziny.txt zawierający rozwiązanie zadania 4.3, kody źródłowe Twojego(-ich) programu(-ów) o nazwie(nazwach):

(uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania)

	Numer zadania	4.1	4.2	4.3	Suma
Wypełnia egzaminator	Maksymalna liczba punktów	4	4	4	12
	Uzyskana liczba punktów				

Zadanie 5. DWA CIAGI

Rozważamy dwa następujące ciągi liczbowe: $a_n = (-1)^n$ oraz $b_n = n$, gdzie $n \in \{1,2,3,\ldots\} = N_+$.

Tworzymy ciąg C_n w następujący sposób: $c_1 = a_1 * b_1$, $c_n = (a_n * b_n) + c_{n-1}$.

Oznaczamy:

- przez Σ_n sumę wyrazów ciągu c_n ,
- przez $m\Sigma_n$ sumę wyrazów ciągu c_n mniejszych od zera,
- przez $w\Sigma_n$ sumę wyrazów ciągu c_n większych od zera.

Przykład:

Dla n=2 mamy
$$a_1 = -1$$
, $a_2 = 1$, $b_1 = 1$, $b_2 = 2$, $c_1 = (-1 * 1) = -1$, $c_2 = (1 * 2) - 1 = 1$, $m\Sigma_2 = -1$, $w\Sigma_2 = 1$, $\Sigma_2 = -1 + 1 = 0$.

Zadanie 5.1. (0–4)

Uzupełnij poniższą tabelkę, zgodnie z przykładem.

N	a _n	$\mathbf{b_n}$	$\mathbf{c_n}$	$m\Sigma_n$	$w\Sigma_n$	$\Sigma_{ m n}$
1	-1	1	-1	-1	0	-1
2	1	2	1	-1	1	0
3	-1	3	-2	-3	1	-2
6						
11						
24						
120						

Miejsce na notatki

	Nr zadania	5.1	Suma
Wypełnia egzaminator	Maksymalna liczba punktów		4
	Uzyskana liczba punktów		

Zadanie 6. PESEL

Każda z 11 cyfr w numerze PESEL ma swoje znaczenie. Można je podzielić następująco:

RRMMDDPPPPK RR – to 2 ostanie cyfry roku urodzenia,

MM – to miesiac urodzenia:

- dla osób urodzonych w latach 1900 do 1999 miesiąc zapisywany jest w sposób naturalny, tzn. dwucyfrowo od 01 do 12,
- dla osób urodzonych w latach 2000–2099 dodawana jest do numeru miesiąca wartość 20,
 np. 012311 oznacza 11 marca 2001r, numer miesiąca to 3, bo 20 + 3 = 23,
 053101 oznacza 01 listopada 2005r, numer miesiąca to 11, bo 20 + 11 = 31,

DD – to dzień urodzenia,

PPPP – to liczba porządkowa, gdzie ostatnia cyfra oznacza płeć. U kobiety ostatnia cyfra tej liczby jest parzysta (0, 2, 4, 6, 8), a u mężczyzny - nieparzysta (1, 3, 5, 7, 9),

K – to cyfra kontrolna otrzymywana w następujący sposób:

- Każdą cyfrę z numeru PESEL poprzedzająca cyfrę kontrolną mnożymy przez odpowiadającą jej co do kolejności wagę: 1, 3, 7, 9, 1, 3, 7, 9, 1, 3.
- Dodajemy do siebie te iloczyny i jako wynik przyjmujemy resztę z dzielenia otrzymanej sumy przez 10.
- Jeżeli wynik wynosi 0 to suma kontrolna wynosi 0, w przeciwnym wypadku odejmujemy uzyskany wynik od 10. Cyfra, którą uzyskamy, to cyfra kontrolna.

Internetowy portal sprzedażowy w celu optymalizacji swoich usług gromadził informacje o swoich klientach. W pliku ips.txt znajdują się dane 1000 osób zawierające następujące dane kodowane w formacje UTF-8:

```
pesel; województwo; miejsce zamieszkania (miasto/wieś) 93071285223; zachodniopomorskie; wieś 71100161818; pomorskie; wieś 81042322710; świętokrzyskie; miasto
```

Korzystając z dostępnych narzędzi informatycznych, podaj odpowiedzi do poniższych zadań. Odpowiedzi zapisz w pliku wyniki6.txt, a każdą odpowiedź poprzedź numerem oznaczającym to zadanie. Wykres przedstaw w pliku graficznym.

Zadanie 6.1. (0–2)

Przedstaw liczbę mieszkańców województw pomorskiego, zachodniopomorskiego i warmińskomazurskiego z podziałem na miejsce zamieszkania, czyli wieś oraz miasto. Dane zobrazuj wykresem.

Zadanie 6.2. (0-2)

Określ na dzień 11 stycznia 2023 roku wiek każdej osoby, tzn. ile pełnych lat ukończyła do tego dnia włącznie. Podaj średni wiek osób w każdym województwie z dokładnością do miejsca dziesiętnego. Uporządkuj dane od największej wartości średniej do najmniejszej.

Zadanie 6.3. (0–2)

Podaj liczbe błędnych cyfr kontrolnych w numerach PESEL znajdujących się w bazie ankiet.

Do oceny oddajesz:

Plik tekstowy wyniki6.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem), plik wykres.jpg lub wykres.png zawierający wykres do zadania 6.1 oraz plik(-i) zawierający(-e) komputerową realizację Twoich rozwiązań o nazwie (nazwach):

(uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania)

.....

.....

Wypełnia egzaminator	Nr zadania	6.1.	6.2.	6.3.	Suma
	Maksymalna liczba punktów	2	2	2	6
	Uzyskana liczba punktów				

Zadanie 7. TRANSPORTUŚ

Diagram opisuje schemat bazy danych, w której zapisano informacje o aktywności firmy spedycyjnej *Transportuś* w 2022 roku.

W tabeli *Pojazdy* znajdują się informacje o pojazdach, którymi dysponuje firma *Transportuś*:

- Nr_rejestracyjny alfanumeryczny numer rejestracyjny pojazdu, unikatowy identyfikator
- *Model* marka i model pojazdu
- Ladownośc ładowność pojazdu wyrażona w tonach (liczba rzeczywista, maksymalnie dwucyfrowa)

W tabeli *Magazyny* i *Magazyny_1* są te same dane, które zawierają wykaz magazynów, pomiędzy którymi przewożone są towary:

- Nazwa nazwa magazynu, unikatowy identyfikator
- *Adres* adres magazynu
- Kontakt dane kontaktowe do właściciela

W tabeli *Kursy* znajduje się rejestr tras:

- *Lp* numer porządkowy, unikalny identyfikator kursu
- *Magazyn_poczatkowy* nazwa magazynu początkowego
- *Magazyn_koncowy* nazwa magazynu końcowego
- *Pojazd* numer rejestracyjny pojazdu
- *Towar* rodzaj przewożonego towaru (w tonach)
- *Masa* masa przewożonego towaru
- *Data_wyjazdu* data w formacie *dd-mm-rrrr*
- *Data_przyjazdu* data w formacie *dd-mm-rrrr*

Wykonaj poniższe zadania.

Zadanie 7.1. (0–2)

Miejsce na wpisanie zapytania

Zadanie 7.2. (0–2)

Napisz w języku SQL zapytanie zwracające zestawienie różnych modeli pojazdów o ładowności do 3,5 tony, posiadanych przez firmę *Transportuś*.

Miejsce na wpisanie zapytania

Zadanie 7.3. (0–2)

Napisz w języku SQL zapytanie, którego wynikiem będzie zestawienie zawierające: nazwę magazynu początkowego, nazwę magazynu końcowego, liczbę kursów na tej trasie, łączny czas kursów na tej trasie (dzień wyjazdu i przyjazdu liczymy jako całe dni). Zestawienie powinno być posortowane malejąco względem liczby kursów, a w drugiej kolejności rosnąco po nazwie magazynu początkowego.

Miejsce na wpisanie zapytania

Wypełnia egzaminator	Nr zadania	7.1.	7.2.	7.3.	Suma
	Maksymalna liczba punktów	2	2	2	6
	Uzyskana liczba punktów				

Zadanie 8. NABÓR

Do elitarnego Prywatnego Liceum Ogólnokształcącego Ojców Pneumatyków Bosych (patrz: Witkacy, "Gyubal Wahazar, czyli na przełęczach bezsensu") prowadzony jest nabór uczniów do klas pierwszych. Jest 10 klas pierwszych o różnych profilach.

Kandydaci zdobyli punkty, jak wyszczególniono w pliku danych Kandydaci.txt.

Każdy z kandydatów będący laureatem (cyfra 1 w pozycji "laureat") otrzymuje dodatkowo 200 pkt.

Kolejność kandydatów wyznacza całkowita liczba punktów, a przy jednakowej całkowitej liczbie punktów – liczba punktów za egzamin. Przy jednakowych wartościach całkowitej liczby punktów i liczby punktów za egzamin – liczba punktów za świadectwo.

Na każdy z profili zgłosiło się więcej niż 25 kandydatów.

Rozpatrywane są dwa modele A i B naboru:

- A. Model PRZYJMUJEMY DO SZKOŁY: Przyjmuje się 250 pierwszych kandydatów, bez względu na deklarowane profile. Do szkoły można przyjąć nie więcej niż 250 uczniów.
- B. Model PRZYJMUJEMY NA PROFIL: Przyjmuje się na każdy z profili 25 najlepszych kandydatów na ten profil. W klasie pod żadnym pozorem nie może być więcej niż 25 uczniów.

Plik tekstowy Kandydaci. txt ma strukturę:

ident;nazwisko;imie;data urodz;laureat;swiadectwo;egzamin;wolontariat;konkursy;profil 1351;Fpbacka;Amadea;31.12.2007;0;64;78;2;17;9

.....

Pierwszy wiersz pliku jest wierszem nagłówkowym. W kolejnych wierszach umieszczono rozdzielone średnikami dane kandydata: jednoznaczny identyfikator, nazwisko, imię, data urodzenia (w formacie dzień.miesiąc.rok), czy jest laureatem (1 - tak, 0 - nie), punkty za świadectwo, punkty za egzamin, punkty za wolontariat, punkty za konkursy, numer wybranego profilu. Każdy wiersz kończy się znakiem końca akapitu.

Plik tekstowy Profile.txt ma strukturę: numer; symbol; nazwa 1; a; matematyczno-fizyczny

Pierwszy wiersz pliku jest wierszem nagłówkowym. W kolejnych wierszach umieszczono rozdzielone średnikami dane profilu: unikalny numer, jednoliterowy symbol, nazwa profilu. Każdy wiersz kończy się znakiem końca akapitu.

Korzystając z wybranych narzędzi informatycznych znajdź odpowiedzi na poniższe pytania. Odpowiedzi zamieść w pliku wyniki8.txt, każdą poprzedzając numerem pytania.

Zadanie 8.1. (0–2)

Ilu kandydatów deklarujących 7. profil przyjęto do szkoły w modelu A? Podaj liczbę i nazwę tego profilu.

Zadanie 8.2. (0–2)

Ilu uczniów przyjętych w modelu A nie dostało się do szkoły w modelu B?

Zadanie 8.3. (0-2)

Jaka jest minimalna liczba punktów (suma, egzamin, świadectwo) na profilach w modelu B?

Do oceny oddajesz:

Plik tekstowy wyniki8.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem) oraz plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie (nazwach):

(uwaga: brak tych plików jest równoznaczny z brakiem rozwiązania zadania)				

Wypełnia egzaminator	Numer zadania	8.1	8.2	8.3	Suma
	Maksymalna liczba punktów	2	2	2	6
	Uzyskana liczba punktów				

BRUDNOPIS (nie podlega ocenie)