Module 3

Submitted by: Anirban Nath

Register number: 20242019

Question 1.

```
PS E:\computational_physics> cd "e:\computation al_physics\Module_3\"; if ($?) { gfortran 3d_i sing.f90 -0 3d_ising }; if ($?) { .\3d_ising }

Total magnetic moment (L = 20) when all spins are -1 = -8000.00000

Total energy of the lattice (L = 20) when all spins are -1 = -24000.0000
```

Question 2.

```
PS E:\computational_physics\Module_3> cd "e:\computational_physics\Module_3\"; if ($?) { gfor tran 3d_ising.f90 -o 3d_ising }; if ($?) { .\3 d_ising }

Total magnetic moment (L = 10) when all spins are +1 = 1000.00000

Total energy of the lattice (L = 10) when all spins are +1 = -3000.00000
```

Question 3.

```
PS E:\computational_physics> cd "e:\computational_physics\Module_3\"; if ($?) { gfortran question_3.f90 - o question_3 }; if ($?) { .\question_3 }

The instantaneous magnetisation per spin fluctuates around the value: 2.36583152E-03

The instantaneous magnetisation (abs value) per spin fluctuates around the value: 0.127448484

The instantaneous energy per spin fluctuates around the value: -0.794960916
```


Question 4.

```
PS E:\computational_physics\Module_3> cd "e:\computational_physics\Module_3\"; if ($?) { gfortran question_4.f90 -o question_4 }; if ($?) { .\question_4 }

The instantaneous magnetisation per spin fluctuates around the value: -0.784768045

The instantaneous magnetisation (abs value) per spin fluctuates around the value: 0.784768045

The instantaneous energy per spin fluctuates around the value: -2.02331972
```


Question 5.

```
PS E:\computational_physics\Module_3> cd "e:\computational_physics\Module_3\"; if ($?) { gfortran question_5.f90 -o question_5 }; if ($?) { .\question_5 }

The instantaneous magnetisation per spin fluctuates around the value: 0.731482983

The instantaneous magnetisation (abs value) per spin fluctuates around the value: 0.731482983

The instantaneous energy per spin fluctuates around the value: -1.84677601
```


Question 6.

```
PS E:\computational physics\Module 3> cd "e:\computat
ional_physics\Module_3\" ; if ($?) { gfortran questio
n 6b.f90 -o question 6b } ; if ($?) { .\question 6b }
 For L = 9
 The instantaneous magnetisation per spin fluctuates
around the value: -0.785614252
 The instantaneous magnetisation (abs value) per spin
 fluctuates around the value: 0.785614252
 The instantaneous energy per spin fluctuates around
the value: -2.02714849
PS E:\computational physics\Module 3> cd "e:\computat
ional physics\Module 3\" ; if ($?) { gfortran questio
n 6c.f90 -o question 6c } ; if ($?) { .\question 6c }
 For L = 10
 The instantaneous magnetisation per spin fluctuates
around the value: -0.786130309
The instantaneous magnetisation (abs value) per spin
fluctuates around the value: 0.786130309
The instantaneous energy per spin fluctuates around
the value: -2.02698302
PS E:\computational physics\Module 3> cd "e:\computat
ional physics\Module_3\" ; if ($?) { gfortran questio
n_6a.f90 -o question_6a } ; if ($?) { .\question_6a }
For L = 8
The instantaneous magnetisation per spin fluctuates
around the value: -0.785530627
The instantaneous magnetisation (abs value) per spin
fluctuates around the value: 0.785530627
The instantaneous energy per spin fluctuates around
the value: -2.02623844
```

Magnetisation per spin vs MCS for different Lattice Sizes

Question 7.

Question 8. and Question 9.

Question 10.

The value of Magnetisation per spin for L = 7 at temperature 3.8 is **0.8148**

Extra Plots.

We see that the Critical Temperature is 4.503 (in simulation units).

Question 11.

At equilibrium, we expect no net current in the system, i.e. no net transfer of particles from one state to another. Therefore, if 10 particles/sec are jumping from E_5 to E_{10} ; then to make sure that no net current is there in the system, we need to have 10 particles/sec jumping from E_{10} to E_5 .

Comparisons Between Model with upto 1st, 2nd and 3rd Nearest Neighbours

