Dynamic Programming 2

Knapsack Problem

- 1. Input: n objects with integer weights w1,...,wn and integer values v1,...,vn
 - Total capacity B
- 2. Goal: Find subset S of objects that:
 - Fit in backpack with total weight <= B
 - Sum of weights in subset \le B
 - Maximizes total value
 - Sum of values is maximal

Knapsack Problem Variants

- 1. Two versions:
 - One copy of each object without repetition
 - Unlimited supply with repetition
 - Subset is a multiset

Greedy Algorithm

1. Consider the following problem with a total capacity B=22:

Object	Value	Weight
1	15	15
2	10	12
3	8	10
4	1	5

- 2. Optimal weight is 22 with a value of 18 using objects 2 and 3
- 3. Greedy: Sort objects by ri = vi / wi = value per unit of weight
 - r1 > r2 > r3 > r4
 - Greedy approach would use objects 1 and 4 for a total weight of 20 with a value of 16

Knapsack: No repetition

- 1. Define subproblem:
 - $K(i) = \max$ value achievable using a subset of objects $1, \ldots, i$
- 2. Express K(i) in terms of $K(1), \ldots, K(i-1)$

Knapsack: Recurrence 1

- 1. Example:
 - B = 22
 - Values = [15, 10, 8, 1]
 - Weights = [15, 12, 10, 5]
 - K = [15, 15, 18, 18]
 - We can't obtain K=3 with our current subproblem because we're only tracking the optimal solution
 - * Need to limit capacity available
 - We need to take a suboptimal solution when K = 2
 - * Take optimal solution where capacity \leq B wi

Knapsack: Subproblem 2

- 1. To solve K(i): Couldn't use K(i-1)
 - Needed K(i-1) with the additional restriction total weight \leq B wi
- 2. Two parameters: i and b
 - i specifies the prefix of the object to consider
 - b specifies the total weight available
- 3. Subproblem definition:
 - For i and b where $0 \le i \le n$ and $0 \le b \le B$:
 - Let $K(i,b) = \max$ value achievable using a subset of objects $1, \ldots, i$ and total weight $\leq b$
 - Our goal: Compute k(n,B)

Knapsack: Recurrence 2

- 1. If wi \leq b:
 - then $K(i,b) = \max\{vi + K(i-1,b-wi), K(i-1,b)\}$
 - else K(i,b) = K(i-1,b)
- 2. Base cases: K(0,b) = 0 and K(i,0) = 0
- 3. 2D table filled row by row

Knapsack: DP Pseudocode

- 1. Time complexity:
 - O(nB)

Knapsack in Poly-time?

- 1. Is the algorithm efficient:
 - Efficient: Is the running time polynomial in the input size?
 - Answer: No
 - To represent the $\mathbf{number} \; B$ takes space $O(\log(B))$
 - Goal: Running time poly(n, log(B))
 - Knapsack problem is NP-complete
 - If we design a polynomial-time algorithm for this problem, then every problem in NP will have a polynomial time algorithm

Knapsack Repetition

- 1. Unlimited supply: Can use an object as many times as we'd like
- 2. Define subproblem:
 - $K(i,b) = \max \text{ value attainable from a multiset of objects } \{1,\ldots,i\} \text{ with weight } <= b$

Knapsack2: Recurrence

- 1. $K(i,b) = \max\{K(i-1,b), vi + K(i,b-wi)\}$
 - Two scenarios:
 - Include no more copies of object i
 - Include another copy of object i
 - We don't use i-1 in vi + K(i,b-wi) to because we can reuse the object
- 2. This is a valid recurrence because the necessary previous solutions will already be computed if we go row by row
- 3. Time complexity: O(nB)

Knapsack2: Recap

- 1. When we get a solution with a 2D or 3D table, it's useful check if the solution can be simplified
 - Faster, less space, simpler, ...
- 2. Point of parameter i in the original problem is to track which objects are included or not
 - We don't need to track this for the repeated knapsack problem

Knapsack2: Simpler Subproblem

- 1. Define subproblem:
 - For b where $0 \le b \le B$:
 - K(b) = max value attainable using weight $\leq b$
- 2. Write recurrence:
 - Try all possibilities for last object to add
 - $K(b) = \max\{vi + K(b-wi): 1 \le i \le n, wi \le b\}$

Knapsack2: Pseudocode

```
KnapsackRepeat(w1,...,wn, v1,...,vn, B):
    for b = 0 -> B:
        K(B) = 0
        for i = 1 -> n:
            if wi <= b and K(b) < vi + K(b-wi):
              K(b) = vi + K(b-wi)
        return K(B)</pre>
```

Knapsack2: Running Time

- 1. Time complexity: O(nB)
 - Same runtime as original solution, but space is lesser and solution is simpler

Knapsack2: Traceback

- 1. What if we want to output the multiset?
 - Make a separate array S and initialize it to 0
 - When we update the solution, set S(b) = i
 - Can use S to backtrack and get the multiset
 - Backtrack is similar to LCS

```
KnapsackRepeat(w1,...,wn, v1,...,vn, B):
    for b = 0 -> B:
        K(B) = 0
        S(b) = 0
        for i = 1 -> n:
            if wi <= b and K(b) < vi + K(b-wi):</pre>
```

$$K(b) = vi + K(b-wi)$$

 $S(b) = i$

return K(B)

Chain Matrix Multiply

- 1. Goal: Compute A * B * C * D where A, B, C, D, are matrices most efficiently
 - A is 50 x 20
 - B is 20 x 1
 - C is 1 x 10
 - D is 10 x 100

Order of Operation

- 1. Which parenthesization?
 - ((A x B) x C) x D
 - (A x B) x (C x D)
 - $(A \times (B \times C) \times D)$
 - $A \times (B \times (C \times D))$

Cost for Matrix Multiply

- 1. Take W of size a x b and Y of size b x c
 - $Z = W \times Y$ is of size a $\times c$
 - acb multiplications
 - ac(b-1) additions
 - Cost is abc

General Problem

- 1. For n matrics $A_1,\,A_2,\,\ldots,\,A_n$ where A_i is $m_{i\text{--}1}$ x m_i
- 2. Goal: What is the minimum cost for computing $A_1 \times A_2 \times \ldots \times A_n$
- 3. Input: $m_0, m_1, ..., m_n$
- 4. Goal: Find minimum cost for computing $A_1 \times A_2 \times \ldots \times A_n$

Graphical View

1. Represent as binary tree

Binary Tree Representation

Chain Multiply: Prefixes

- 1. Define subproblem:
 - Let $C(i) = \min \text{ cost for computing } A_1 \times A_2 \times \ldots \times A_i$
 - This will cause us to look at suffixes instead of prefixes
 - This means intermediate computations correspond to substrings

Chain Multiply: Substrings

- 1. For i and j where $1 \le i \le j \le n$
 - Let $C(i,j) = \min$ cost for computing $A_1 \times A_2 \times ... \times A_i$
- 2. Recurrence for C(i,j):
 - C(i,i) = 0
 - Only computing where $j \ge i$ which is the upper diagonal of the matrix

Chain Multiply: Recurrence

- 1. To compute C(i,j):
 - Total cost for split at index 1:
 - Root: $m_{i-1} * m_l * m_j$
 - Left subtree: C(i,l)
 - Right subtree: C(l+1,j)

Chain Multiply: Summary

- 1. To compute C(i,j):
 - $C(i,j) = \min\{C(i,l) + C(l+1,j) + m_{i-1} * m_l * m_j : i <= l <= j-1\}$

Filling the Table

- 1. C(i,i+1) uses C(i,i) and C(i+1,i+1)
 - C(i,i) is the base case (0)
 - Width S = j i
 - S = 0 to n-1

Chain Multiply: DP Pseudocode

- 1. Time complexity: O(n^3)
 - Instead of using prefixes we had to use substrings
 - Have to start at diagonal and work our way up instead of going row by row

DP2: Practice Problems

- 1. Practice Problems:
 - DPV 6.17 (change making)
 - DPV 6.18 (change making)
 - DPV 6.19 (change making)
 - DPV 6.20 (optimal BST)
 - DPV 6.7 (palindrome subsequence)
 - Also try variant of palindrome substring
- 2. Try prefixes first, then substrings
 - If you use substrings, go back and look at whether using prefixes is possible