Université de Bourgogne

SOFTWARE ENGINEERING

MID TERM REPORT

Mid Term Report for Software Engineering Project

Authors: Tewodros W. AREGA Vamshi Kodipaka Hardik

Supervisor: Prof. Yohan FOUGEROLLE

November 11, 2018

Contents

1	Inti	duction		
2		nodology Tools Used		
		Modules		
3	Progress			
	3.1	Works done		
	3.2	Works to be done		
\mathbf{R}	efere	ces		

1 Introduction

With the growing number of 3D data and the tendency of capture devices to develop competitively priced multimedia data, the willingness to select appropriate information is becoming an fascinating field of research. In Digital models, the purpose is to monitor a few salient structures which can be used for applications like those for object registration, retrieval and mesh reorganization rather than the whole object.

An interest point simulator for 3D objects based on the Harris operator that were used in computer vision applications mostly with positive results. Just as intimated in the paper, an adaptive method for evaluating the neighbourhood of a vertex is being used to calculate the Harris riposte to that same vertex. The technique is rigorous with a very huge number of evolutions, that can be seen in the extremely high repeatability values acquired by using the SHREC function detection and description reference.

From paper we comprehended that the calculation of interest points with the level of projection of remarkable local structures. So, vertices on smooth or almost planar segments of a surface will have low interest, as opposite to vertices in places with remarkable local structure. 3D mesh topology is randomly given as input. That is, an arbitrary number of directly adjacent vertices will have a vertex. It makes it difficult to select a local neighbourhood around a vertex. Furthermore, this downside causes completely different tessellations to represent the same coordinates

The magnitude of a remote location in which a vertex is an interest point is totally unknown or hard to compute without a well - clearly defined topological structure for meshes. Finally, no further information exists except for the position of the whole vertices and the connectivity information.

First always, the adjustment is not direct only because the structure of 3D meshes is quite different from the images. Furthermore, the transformations needed to be rigorous in 3D domains (isometry, topology, sampling, etc.) are also distinct. We chose primarily the Harris operator to calculate which is easy. From Loog and Lauze experiments, the authors concluded that Harris method has the low probability in other locations of the same image.

2 Methodology

2.1 Tools Used

We are using the following tools to implement the project. The programming language is C++, the IDE (Integrated Development Environment) is QT creator and the operating system is Windows 10.

2.2 Modules

We have divided the project into modules. The modules are evenly distributed between the team members. Here are the modules of the project:

- Creating Internal data structure of the 3D mesh using STL (Standard Template Library)
- 3D rending of the mesh using Opengl
- Determining the local neighborhood of each vertex
- Fitting Quadratic surface to neighborhood
- Calculating the Derivatives of the surface and smoothing the derivative using Gaussian function
- Calculating Harris response
- Selecting Interest Points using both methods
- Developing GUI (graphical user interface) for the system
- Testing the system (unit testing and integration testing)
- Documentation (Report writing)

3 Progress

3.1 Works done

We have started the project one month ago. In one month, we have completed the following tasks:

- Installed important libraries like Opengl(to render the 3D mesh), Cmake(to compile the project), GSL (to solve eigen value problem)
- Read and understood the Paper
- Studied how to use Github and Trello
- Created Trello and Github team account for project management and code sharing
- Studied some important topics in C++ like STL
- Started implementing the internal data structure of 3D mesh

3.2 Works to be done

As for the rest of the tasks, we will implement them according to the following project schedule:

Project Schedule				
Milestone	Description	Time Allotted		
Creating Internal data structure	Face, Vertices, Mesh	1 Week		
of the 3D mesh	using STL			
Rending the 3D mesh	Using Opengl	2 Days		
Determining the local neighborhood	Using ring	3 Days		
of each vertex	neighborhood	3 Days		
Citting Quadratic surface to neighborhood	After normalizing	4 Days		
	the neighborhood			
Calculating the derivatives of the surface		2 Days		
and smoothing the derivative				
Calculating Harris response of each vertex		5 Days		
	Using highest Harris	4 Days		
Selecting Interest Points using both methods	response and			
	Clustering method			
Developing GUI (graphical user interface)	To adjust internal			
for the system	parameters and	3 Days		
for the system	move the object			
Testing the system	Using different	2 Days		
resumg the system	testing methods			
Documentation (Report writing)	Using latex	5 Days		

Table 1: Project Schedule

References

- [1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion. Addison-Wesley, Reading, Massachusetts, 1993.
- [2] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. Annalen der Physik, 322(10):891–921, 1905.
- [3] Knuth: Computers and Typesetting, http://www-cs-faculty.stanford.edu/~uno/abcde.html