1.

a) Solve the optimization problem

$$\min_{\mathbf{x}} f(x_1, x_2) := 2x_1 + 3x_2, \quad s.t. \quad \sqrt{x_1} + \sqrt{x_2} = 5,$$

using Lagrange multipliers.

- b) Visualize the contour lines of f as well as the set of feasible points, and mark the optimal solution  $\mathbf{x}^*$ .
- c) Find all its KKT points. Do they all correspond to local minima?
- d) Find all the saddle points of its Lagrangian function. Do they all correspond to local minima?

2. With  $f(\mathbf{x}) := x_1^2 + x_2^2$  for  $\mathbf{x} \in \mathbb{R}^2$  consider

$$(P) \begin{cases} \min_{\mathbf{x}} f(\mathbf{x}) \\ -x_2 \le 0 \\ x_1^3 - x_2 \le 0 \\ x_1^3 (x_2 - x_1^3) \le 0 \end{cases}.$$

- a) Determine the linearizing cone, the tangent cone and the feasible direction cones at the (strict global) minimal point  $\mathbf{x}_0 := (0,0)^T$ .
- b) Find all its KKT points. Do they all correspond to local minima?
- c) Find all the saddle points of its Lagrangian function. Do they all correspond to local minima?

- 3. Determine a triangle with minimal area containing two disjoint disks with radius 1. Without loss of generalization, let (0,0),  $(x_1,0)$  and  $(x_2,x_3)$  with  $x_1,x_3 \geq 0$  be the vertices of the triangle;  $(x_4,x_5)$  and  $(x_6,x_7)$  denote the centers of the disks.
  - a) Formulate this problem as a minimization problem in terms of seven variables and nine constraints.
  - b)  $\mathbf{x}^* = (4 + 2\sqrt{2}, 2 + \sqrt{2}, 2 + \sqrt{2}, 1 + \sqrt{2}, 1, 3 + \sqrt{2}, 1)^T$  is a solution of this problem; calculate the corresponding Lagrange multipliers  $\boldsymbol{\lambda}^*$ , such that the KKT conditions are fulfilled.



4. Find local extremizers (either minimizer or maximizer) for the following optimization problems:

1) 
$$\min_{\mathbf{x}} \quad x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 + 6x_3$$
  
s.t.  $x_1 + 2x_2 = 3$   
 $4x_1 + 5x_3 = 6$ .

2) 
$$\max_{\mathbf{x}} 4x_1 + x_2^2$$
  
s.t.  $x_1^2 + x_2^2 = 9$ .

3) 
$$\min_{\mathbf{x}} x_1 x_2$$
  
s.t.  $x_1^2 + 4x_2^2 = 1$ .

5. Let  $g: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{x}_0 \in \mathbb{R}^n$  be given, where  $g(\mathbf{x}_0) \geq 0$ . Consider the problem

minimize 
$$\frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$$
  
subject to  $g(\mathbf{x}) \leq 0$ .

Suppose that  $\mathbf{x}^*$  is a solution to the problem and  $g \in \mathcal{C}^1$ . Use the KKT theorem to decide which of the following equations/inequalities hold:

- 1.  $g(\mathbf{x}^*) \leq 0$ .
- 2.  $g(\mathbf{x}^*) = 0$ .
- 3.  $(\mathbf{x}^* \mathbf{x}_0)^T \nabla g(\mathbf{x}^*) \leq 0$ .
- 4.  $(\mathbf{x}^* \mathbf{x}_0)^T \nabla g(\mathbf{x}^*) = 0$ .
- 5.  $\left(\mathbf{x}^* \mathbf{x}_0\right)^T \nabla g\left(\mathbf{x}^*\right) \ge 0$ .

6. Consider the problem with equality constraint

minimize 
$$f(\mathbf{x})$$
  
subject to  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ 

We can convert the above into the equivalent optimization problem

minimize 
$$f(\mathbf{x})$$
  
subject to  $\frac{1}{2} \|\mathbf{h}(\mathbf{x})\|^2 \le 0$ .

Write down the KKT condition for the equivalent problem (with inequality constraint) and explain why the KKT theorem cannot be applied in this case.