11 класс.

Задание 1. Электрическое поле Земли

Между поверхностью Земли и ионосферой существует электрическое поле, которое можно считать примерно однородным. Напряженность поля Земли

$$E_0 = 100 \frac{B}{M}$$
, а его направление

соответствует отрицательному заряду Земли. Будем считать, что отрицательный заряд равномерно распределен по поверхности нашей планеты несмотря на то, что физические свойства суши и воды заметно различаются. На высоте $h \approx 50 \, \text{км}$ в атмосфере находится однородный слой положительно заряженных частиц, называемых *ионосферой*. Суммарный электрический заряд Земли и ионосферы равен нулю. Радиус Земли $R_3 = 6.4 \cdot 10^6 \, \text{м}$, ускорение свободного падения $g = 9.8 \frac{\text{м}}{c^2}$. Диэлектрическую проницаемость воздуха примите равной диэлектрической проницаемости вакуума $\varepsilon \approx 1$.

1.1 Для измерения электрического заряда Земли предлагается следующий эксперимент. Подвесим незаряженный проводящий шарик массы $m=2,0\,\varepsilon$ и радиуса $r=1,0\,\varepsilon$ м на проводящей пружине малой электроемкости. При этом шарик растянул пружину на $\Delta l_1=2,5\,\varepsilon$ м. После установления равновесия шарик при помощи ключа K подключили к источнику постоянного напряжения $U=20\,\kappa B$. Вычислите удлинение пружины Δl_2 после замыкания ключа K в новом положении равновесия. Найдите относительное

изменение удлинения пружины $\varepsilon = \frac{\Delta l_2 - \Delta l_1}{\Delta l_1}$ после замыкания ключа K. Сделайте

выводы о возможности измерения заряда планеты подобным способом. Считайте, что в этом пункте на шарик действует только электрическое поле Земли.

1.2 Для более точного измерения напряженности поля Земли использовали электрометра, основной частью которого служат два небольших одинаковых шарика массой $m=1,5\,c$ каждый, подвешенных на легких проводящих нитях длины $l=50\,c$ м каждая. Проводящий корпус электрометра заземлен и экранирует поле Земли. На стержне электроскопа укреплен проводящий диск радиусом $R=1,0\, M$.

$$|\vec{g}|_{B}^{A}$$

Два таких же проводящих параллельных диска, соединенные проводником AB, для зарядки посредством электростатической индукции в поле Земли сблизили на

малое расстояние d. После разрыва проводника AB верхний диск A подносят на малое расстояние к диску электроскопа, не касаясь его. Затем аналогичным образом заряжают следующий диск A' и кладут его на диск A. Процесс зарядки повторяют N=10 раз. Оцените расстояние a, на которое разойдутся лепестки электроскопа после зарядки. Укажите знак электрического заряда шариков электроскопа в описанном эксперименте.

- **1.3** Предполагая, что удельное сопротивление воздуха постоянно и равно $\rho = 2.9 \cdot 10^{13} \ Om \cdot m$, найдите силу тока I утечки с поверхности Земли через атмосферу к ионосфере. Оцените время разрядки τ Земли вследствие существования тока утечки.
- **1.4** Удивительно, но, несмотря на ток утечки, электрический заряд Земли с течением времени практически не меняется. Следовательно, должен существовать ток подзарядки планеты, который компенсирует ее разрядку с течением времени. Основной механизм подзарядки Земли осуществляется в результате грозовой активности в атмосфере.

При зарождении грозового фронта в результате электризации капелек воды в восходящих потоках воздуха в атмосфере образуются области положительного (в верхней части облака) и отрицательного (в его нижней части) зарядов . Считайте, что эти области накопления зарядов имеют форму шара радиуса $r \approx 0.10 \, \kappa M$. Расстояние между этими областями примите равным $H = 5.0 \, \kappa M$, а расстояние от нижнего края грозового облака до земли $h \approx 1.0 \, \kappa M$. Известно, что при напряженности электрического

поля $E_{\rm l}=3.0\frac{\kappa B}{c_{M}}$ (и более) наступает пробой воздуха, при котором

он становится проводником. Примем, что в этот момент ударяет молния. Оцените, при каком минимальном заряде q_{\min} заряженной области облака в Землю может ударить молния? В данном пункте считайте поверхность Земли хорошим

проводником.

1.5 Считая, что при ударе мощной молнии, длящемся $\tau_2 = 40\,\text{мc}$ средняя сила тока $I_2 = 200\,\text{кA}$, и что грозы на планете в течение года происходят равномерно, оцените среднее количество ударов молний в Землю на Земле в течение суток.

Подсказка. Потенциал заряженного шара радиуса R и имеющего заряд д равен

$$\varphi = \frac{q}{4\pi\varepsilon_0 R}.$$

<u>Задание 2.</u> «Ваттметр»

Существует множество хитроумных устройств, измеряющих мощность в цепи постоянного тока. Принцип их работы сводится к тому, чтобы каким-либо способом перемножить ток и напряжение на нагрузке. Мы предлагаем Вам рассмотреть наиболее простую схему такого устройства, состоящую из резисторов, вольтметра и двух диодов.

2.1. Сначала разберемся с диодом. Этот полупроводниковый прибор является нелинейным элементом, т.е. сила тока не пропорциональна напряжению. В данной задаче диоды будут включаться в прямом направлении. В этом случае можно считать, что сила тока пропорциональна квадрату напряжения:

$$I_D = kU_D^2,$$

где k – известный коэффициент.

_

 $^{^{1}}$ Механизм разделения зарядов в восходящих потоках очень сложен и в данной задаче не рассматривается.