

Posts and Telecommunication Institute of Technology Faculty of Information Technology 1

Introduction to Artificial Intelligence

Predicate logic (First-order logic)

Dao Thi Thuy Quynh

Outline

- Predicate logic
- Inference in predicate logic

Outline

- Predicate logic
 - Characteristics
 - Syntax
 - Semantics
- Inference in predicate logic

Characteristics of predicate logic

Propositional logic

Representations are limited to the world of events

Predicate logic

- Allows to describe the world with objects, object properties, and relationships between objects
- Objects: a table, a tree, a person, a house, a number, ...
- Properties: a table with four legs, made of wood, with drawers,...
- Relationships: brothers, friends (between people), inside, outside, above, below (between things),...
- Function: a particular instance of relations, for each input we have a unique function value

Syntax of predicate logic (1/4)

Symbols

- Constants: a, b, c, An, Ba, John, ...
- 。Variables: x, y, z, u, v, w, ...
- Predicates: P, Q, R, S, Like, Friend, ...
 - Each predicate has n variables $(n \ge 0)$
 - Non-variable predicates are propositional symbols
- Functions: f, g, cos, sin, mother, husband, ...
 - Each function has n variables $(n \ge 0)$
- Logical connectives: ∧ (conjunction), ∨ (disjunction), ¬ (negation),
 ⇒ (implication), ⇔ (equivalence)
- Quantifier symbols: ∀ (universal quantifier) , ∃ (existential quantifier)
- Separation symbols: comma, parentheses

Syntax of predicate logic (2/4)

Terms

- Are expressions that describe objects, recursively defined as follows
 - Constants and variables are terms
 - If $t_1, t_2, ..., t_n$ are terms and f denotes a function with n variables, then $f(t_1, t_2, ..., t_n)$ is also a term
- Non-variable terms are called ground terms
- Two terms are equal if they correspond to the same object
 - Father(John) = Mike

Atomic formulas (atoms)

- Representations of an object's properties, or relationships between objects, is determined recursively as follows
 - Non-variable predicate symbols (propositions) are atomic formulas
 - If $t_1, t_2, ..., t_n$ are terms and P denotes a predicate with n variables, $P(t_1, t_2, ..., t_n)$ is also an atomic formula

Syntax of predicate logic (3/4)

Formulas

- Recursively constructed from atoms, using logical connectives and quantifiers as follows
 - Atoms are formulas.
 - If G and H are formulas, the following expressions are formulas
 - \Box $(G \land H)$, $(G \lor H)$, $(\neg G)$, $(G \Rightarrow H)$, $(G \Leftrightarrow H)$
 - If G is a formula and x denotes a variable, the following expressions are formulas
 - \Box $(\forall xG)$, $(\exists xG)$

Conventions

- Non-atomic formulas are called complex formulas
- Non-variable formulas are called specific formulas
- When writing formulas, we can remove unnecessary parentheses

Syntax of predicate logic (4/4)

▶ Universal quantifier (∀)

- Describe the properties of an entire class of objects, without enumerating the objects
- $\forall x(Elephant(x) \Rightarrow Color(x, Gray))$

▶ Existential quantifier (∃)

- Allows creating a sentence referring to a certain object in a class of objects, having properties or satisfying a certain relationship
- $\exists x(Student(x) \land Inside(x, P301))$

Literals

- Are atoms or negation of atoms
- $Play(x, Football), \neg Like(Lan, Rose)$

Clauses

- Disjunction of literals
- \circ $Male(x) \lor \neg Like(x, Football)$

Semantics of predicate logic (1/3)

Interpretation

- A specification of enough information to determine whether that formula is true or false
- The meaning of the formula in a certain world

Semantics of atoms

- In an interpretation, an atom corresponds to a specific event (True or False)
 - Student(Lan)

Semantics of complex formulas

- Are determined based on semantics of atoms and logical connectives
 - $Student(Lan) \land Like(An, Rose)$
 - $Like(An, Rose) \lor \neg Like(An, Tulip)$

Semantics of predicate logic (2/3)

- Semantics of formulas with quantifiers
 - Formula $\forall xG$ is true if and only if every formula obtained from G by replacing X by an object in the object domain is true
 - Example: For object domain $\{An, Ba, Lan\}$, the semantics of formula $\forall xStudent(x)$ is the semantics of the following formula
 - $Student(An) \wedge Student(Ba) \wedge Student(Lan)$
 - Formula $\exists xG$ is true if and only if there exists a formula obtained from G by replacing X by an object in the object domain is true
 - Example: the semantics of formula $\exists xStudent(x)$ is the semantics of the following formula
 - $Student(An) \lor Student(Ba) \lor Student(Lan)$
- Satisfiable formulas, unsatisfiable formulas, valid formulas, models: the same as in propositional logic

Semantics of predicate logic (3/3)

Nested quantifiers

Can use multiple quantifiers in complex formulas

```
\forall x \forall y Sibling(x, y) \Rightarrow Relationship(x, y)
\forall x \exists y Love(x, y)
```

 Multiple quantifiers of the same type can be grouped by usinig a quantifier symbol

$$\forall x, y Sibling(x, y) \Rightarrow Relationship(x, y)$$

Do not change quantifiers of different types

 $\forall x \exists y Love(x, y)$ Everyone has someone to love

 $\exists y \forall x Love(x, y)$ There's someone everyone loves

Logical equivalences

1.
$$\forall x G(x) \equiv \forall y G(y)$$

$$\exists x G(x) \equiv \exists y G(y)$$

3.
$$\neg (\forall x G(x)) \equiv \exists x (\neg G(x))$$

$$4. \quad \neg \big(\exists x G(x)\big) \equiv \forall x \big(\neg G(x)\big)$$

5.
$$\forall x (G(x) \land H(x)) \equiv \forall x G(x) \land \forall x H(x)$$

6.
$$\exists x (G(x) \lor H(x)) \equiv \exists x G(x) \lor \exists x H(x)$$

Examples (1/2)

- Translate the following sentences into predicate logic
 - An không cao
 - An và Ba là anh em
 - Tất cả nhà nông đều thích mặt trời
 - Moi cây nấm đỏ đều có độc
 - Không có nấm đỏ nào độc cả
 - Chỉ có đúng 2 nấm đỏ
 - Một số học sinh vượt qua kỳ thi
 - Tất cả học sinh đều vượt qua kỳ thi trừ một bạn
 - Hai anh em phải cùng cha cùng mẹ

Examples (2/2)

Sentences in predicate logic

- 1. $\neg Tall(An)$
- 2. Sibling(An, Ba)
- 3. $\forall x (Farmer(x) \Rightarrow LikeSun(x))$
- 4. $\forall x (Mushroom(x) \land Red(x) \Rightarrow Poisonous(x))$
- 5. $\forall x (Mushroom(x) \land Red(x) \Rightarrow \neg Poisonous(x))$
- 6. $\exists x, y (Mushroom(x) \land Red(x) \land Mushroom(y) \land Red(y) \land (x \neq y) \land \forall z (Mushroom(z) \land Red(z) \Rightarrow (z = x) \lor (z = y)))$
- 7. $\exists x(Student(x) \land Pass(x))$
- 8. $\exists x((Student(x) \land \neg Pass(x)) \land \forall y(Student(y) \land (y \neq x) \Rightarrow Pass(y)))$
- 9. $\forall x, y (Sibling(x, y) \Rightarrow \exists p, q (Father(p, x) \land Father(p, y) \land Mother(q, x) \land Mother(q, y))$

Outline

- Predicate logic
- Inference in predicate logic
 - Inference rules
 - Forward and backward chaining
 - Reasoning using resolutions

Inference rules (1/5)

- Reasoning with predicate logic is more difficult than propositional logic because variables can take on infinite values
 - Cannot use truth tables
- The inference rules for propositional logic are also true for predicate logic
 - Modus Ponens, Modus Tollens, duouble-negation elimination, andintroduction, or-introduction, and-elimination, or-elimination, resolution
- Besides:
 - There are some inference rules with quantifiers

Inference rules (2/5)

Substitution

Notation: $SUBST(\theta, a)$

Meaning: substitute value θ into formula α

Example

• $SUBST(\{x/Nam, y/An\}, Like(x, y)) = Like(Nam, An)$

Universal elimination

```
\forall x \alpha
SUBST(\{x/g\}, \alpha)
```

Example:

 $\forall x \ Like(x, IceCream)$

 $\{x/Nam\}$

Like(Nam, IceCream)

Inference rules (3/5)

Existential elimination

$$\frac{\exists x \ \alpha}{SUBST(\{x/k\}, \alpha)}$$
 k has not appeared in KB

Example:

$$\exists x \ GoodAtMath(x)$$
 $\{x/C\}$ $GoodAtMath(C)$

k is called a Skolem constant and can be given a name

Existential introduction

$$\frac{\alpha}{\exists x \ SUBST(\{g/x\}, \alpha)}$$
 Example:
$$Like(Nam, IceCream) \quad \{Nam/x\} \qquad \exists x \ Like(x, IceCream)$$

Example of reasoning (1/3)

Problem

Bob là trâu	
Pat là lợn	
Trâu to hơn lợn	
Bob to hon Pat?	

Example of reasoning (2/3)

Problem

Bob là trâu	Buffalo(Bob)	(1)
Pat là lợn	Pig(Pat)	(2)
Trâu to hơn lợn	$\forall x, y \ Buffalo(x) \land Pig(y) \Rightarrow Bigger(x, y)$	(3)
Bob to hon Pat?	Bigger(Bob, Pat)?	

Example of reasoning (3/3)

Problem

Bob là trâu	Buffalo(Bob)	(1)
Pat là lợn	Pig(Pat)	(2)
Trâu to hơn lợn	$\forall x, y \ Buffalo(x) \land Pig(y) \Rightarrow Bigger(x, y)$	(3)
Bob to hon Pat?	Bigger(Bob, Pat)?	

Reasoning

And-Introduction (1)(2)	$Buffalo(Bob) \wedge Pig(Pat)$	(4)
Universal elimination (3)	$Buffalo(Bob) \land Pig(Pat) \Rightarrow Bigger(Bob, Pat)$	(5)
Modus Ponens, (4)(5)	Bigger(Bob, Pat)	

Inference rules (4/5)

Unification

- Unification is a process of making two different atoms identical by finding a substitution
- Notation: $UNIFY(p,q) = (\theta)$ $SUBST(\theta,p) = SUBST(\theta,q)$ θ is called unifier
- If there are multiple unifiers, we often use the most general unifier (MGU), the unifier that uses the fewest substitutions for variables
- Unification can be performed automatically using an algorithm of linear complexity (in term of number of variables)

Unification example

p	q	$oldsymbol{ heta}$
Know(Nam, x)	Know(Nam, Bắc)	$\{x/B dot c\}$
Know(Nam, x)	Know(y, MotherOf(y))	${y/Nam, x/MotherOf(Nam)}$
Know(Nam, x)	Know(y,z)	$\{y/Nam, x/z\}$ $\{y/Nam, x/Nam, z/Nam\}$

Inference rules (5/5)

- General Modus Ponens (GMP)
 - Suppose that we have atoms p_i , p_i , q, and substitution θ such that $UNIFY(p_i, p_i) = \theta$, for all i
 - o Then:

$$\frac{p'_1, p'_2, \dots, p'_n, (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{SUBST(\theta, q)}$$

 GMP allows us to build automatic reasoning algorithms, forward and backward chaining

Forward chaining (1/4)

- When new formula p is added to KB:
 - \circ For each rule q that p can be unified with a left-hand side part:
 - If the remaining parts of the left hand side already exist, add the righthand side to KB and continue

Forward chaining (2/4)

- When new formula p is added to KB:
 - \circ For each rule q that p can be unified with a left-hand side part:
 - If the remaining parts of the left hand side already exist, add the righthand side to KB and continue

Example

Cho KB như sau:

- 1. Mèo thích cá
- 2. Mèo ăn gì nó thích
- 3. Có con mèo tên là Tom

Hỏi: Tom có ăn cá không?

Forward chaining (3/4)

- When new formula p is added to KB:
 - \circ For each rule q that p can be unified with a left-hand side part:
 - If the remaining parts of the left hand side already exist, add the righthand side to KB and continue

Example

Cho KB như sau:

- 1. Mèo thích cá
- 2. Mèo ăn gì nó thích
- 3. Có con mèo tên là Tom Hỏi: Tom có ăn cá không?

Translate into predicate logic:

- 1. $\forall x \ Cat(x) \Rightarrow Like(x, Fish)$
- 2. $\forall x, y \ Cat(x) \land Like(x, y) \Rightarrow Eat(x, y)$
- 3. Cat(Tom)

Hoi: *Eat(Tom, Fish)*?

Forward chaining (4/4)

- When new formula p is added to KB:
 - For each rule q that p can be unified with a left-hand side part:
 - If the remaining parts of the left hand side already exist, add the righthand side to KB and continue

Example

Cho KB như sau:

- 1. Mèo thích cá
- 2. Mèo ăn gì nó thích
- 3. Có con mèo tên là Tom Hỏi: Tom có ăn cá không?

Translate into predicate logic:

- 1. $\forall x \ Cat(x) \Rightarrow Like(x, Fish)$
- 2. $\forall x, y \ Cat(x) \land Like(x, y) \Rightarrow Eat(x, y)$
- 3. Cat(Tom)

Hoi: Eat(Tom, Fish)?

Reasoning:

- 4. GMP (1) (3) \Rightarrow *Like*(*Tom*, *Fish*)
- 5. GMP (2) (3) (4) \Rightarrow Eat(Tom, Fish)

Backward chaining

For question q, if exists q' that can be unified with q, return unifier

For each rule with the right-hand side q' that can be unified with q, try to prove the left-hand side parts using

backward chaining

Reasoning using resolutions

Resolution in predicate logic

- Given two formulas, where P_i and Q_i are literals
 - $P_1 \vee P_2 \vee ... \vee P_n$
 - $Q_1 \vee Q_2 \vee ... \vee Q_m$
- \circ If P_i and $\neg Q_k$ can be unified by θ , we have the following resolution

$$\frac{P_1 \vee P_2 \vee \ldots \vee P_n, Q_1 \vee Q_2 \vee \ldots \vee Q_m}{SUBST(\theta, P_1 \vee \ldots \vee P_{j-1} \vee P_{j+1} \vee \ldots \vee P_n \vee Q_1 \vee \ldots \vee Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_m)}$$

Example:

 $\forall x (Rich(x) \lor Good(x)), \neg Good(Nam) \lor Handsome(Nam)$ $Rich(Nam) \vee Handsome(Nam)$

Resolution and Reductio ad absurdum (1/4)

- ▶ Need to prove $KB \vdash Q$?
- Method:
 - \circ Add $\neg Q$ to KB, prove that there exists a subset of KB that has False value
 - \circ $(KB \vdash Q) \Leftrightarrow (KB \land \neg Q \vdash False)$

Resolution and Reductio ad absurdum (2/4)

Algorithm

- \circ $KB = UNION(KB, \neg Q)$
- while (KB does not contain False) do
 - 1. Select two formulas S_1 , S_2 from KB so that we can apply resolution
 - ☐ Add the result of the resolution to *KB*
 - 2. If does not exist two such formulas
 - return False
- end while
- return Success

Resolution and Reductio ad absurdum (3/4)

Example

```
KB:
\neg A \lor \neg B \lor P \quad (1)
\neg C \lor \neg D \lor P \quad (2)
\neg E \lor C \quad (3)
A \quad (4)
E \quad (5)
D \quad (6)
Prove that: KB \vdash P
```


Resolution and Reductio ad absurdum (4/4)

Example

KB:	
$\neg A \lor \neg B \lor P$	(1)
$\neg C \lor \neg D \lor P$	(2)
$\neg E \lor C$	(3)
\boldsymbol{A}	(4)
E	(5)
D	(6)
Prove that: K	$B \vdash P$

```
Proof:
Add to KB the following formula:
\neg P (7)
Apply resolution to formulas (2) and (7)
\neg C \lor \neg D (8)
Apply resolution to formulas (6) and (8)
\neg C (9)
Apply resolution to formulas (3) and (9)
\neg E (10)
Formula (10) has False value.
Conclusion: KB \vdash P
```


Conjunctive Normal Form (CNF) and Clause Form

- A clause is the disjunction of literals $A_1 \vee A_2 \vee ... \vee A_m$, where A_i are literals
- Conjunctive Normal Form (CNF): conjunction of clauses \circ $A \wedge (B \vee C) \wedge (D \vee E \vee F)$
- We can convert any formula into an equivalent formula that is in CNF

Conversion into CNF and Clause form (1/3)

- Step 1: Eliminate equivalences
 - Replace $P \Leftrightarrow Q$ by $(P \Rightarrow Q) \land (Q \Rightarrow P)$
- Step 2: Eliminate implications
 - Replace $P \Rightarrow Q$ by $\neg P \lor Q$
- Step 3: Move negations close to predicates
 - Apply De Morgan's laws and replace $\neg(\neg A)$ by A:

```
\neg(\neg P) \equiv P
\neg(P \land Q) \equiv \neg P \lor \neg Q
\neg(P \lor Q) \equiv \neg P \land \neg Q
\neg(\forall xQ) \equiv \exists x(\neg Q)
\neg(\exists xQ) \equiv \forall x(\neg Q)
```


Conversion into CNF and Clause form (2/3)

- Step 4: Standardize variable names so that each quantifier has its own variable
 - Example

```
\forall x \neg P(x) \lor Q(x) \\ \forall x \neg R(x) \lor Q(x) \qquad \qquad \forall x \neg P(x) \\ \forall y \neg R(y)
```

- Step 5: Eliminate existential quantifiers by using Skolem constants and Skolem functions
 - Replace $\exists x \ P(x)$ by P(C), where C is a new constant (Skolem)
 - If ∃ is inside ∀, replace by a new function whose variable is a variable of ∀ (Skolem function)
 - Example:

Replace $\forall x \exists y P(x, y)$ by $\forall x P(x, f(x)), f(x)$ is a Skolem function

Conversion into CNF and Clause form (3/3)

- Step 6: Eliminate universal quantifiers (∀)
 - Move universal quantifiers to the left-hand side and remove them
 - Example: transform $\forall x (P(x,y) \lor Q(x))$ into $(x,y) \lor Q(x)$
- Step 7: Apply distributive laws

```
\circ (P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)
```

- $\circ (P \lor Q) \lor R \equiv (P \lor Q \lor R)$
- Step 8: Eliminate conjunctions
 - Eliminate conjunctions to from clauses
 - Example: transform $(P \lor R \lor S) \land (Q \lor R)$ into two formulas: 1) $P \lor R \lor S$ 2) $Q \lor R$
- Step 9: Standardize variable names so that each formula has its own variables

Exercise 1

- Cho các câu sau
- Mọi bé trai đều thích chơi bóng đá
- 2. Ai thích chơi bóng đá đều có giày đá bóng
- Nam là một bé trai

Câu hỏi

- a) Biểu diễn các câu trên ở dạng logic vị từ
- b) Chuyển các câu logic vị từ vừa viết về dạng chuẩn tắc hội
- Viết câu truy vấn "Nam có giày đá bóng" dưới dạng logic vị từ và chứng minh sử dụng phép giải

Exercise 2

- Giả sử ta biết các thông tin sau
- Ông Ba nuôi một con chó
- 2. Hoặc ông Ba hoặc ông Am đã giết con mèo Bibi
- Mọi người nuôi chó đều yêu động vật
- 4. Ai yêu quý động vật cũng không giết động vật
- 5. Chó mèo đều là động vật Hỏi ai đã giết con mèo Bibi?