# Sea level rise: model variability and community impact

Kosmoceratops\_Banghra



# Sea Level is Projected to Increase with Climate Change

 Initial question: sea level rise and geographical / social consequences

#### Other guiding questions:

- O How does the coastline shift with respect to time?
- How does the variability of sea level rise develop with time?
- O How does the mean sea level evolve over time?
- How much area is lost?
- O How many people have to move with respect to time?

## Roadmap

- Methodology
- Preliminary results
- Problems faced
- Open questions



#### Methodologies - Computational tools

- CMIP6 Models
  - Zos variable (long name = Sea Surface Height Above Geoid [m])

Intake-ESM for accessing data

```
[5]: col = intake.open esm datastore(
         "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
     ) # open an intake catalog containing the Pangeo CMIP cloud data
[6]: col
```

pangeo-cmip6 catalog with 7674 dataset(s) from 514818 asset(s):

```
unique
        activity_id
                         18
      institution_id
                        36
         source id
                        88
    experiment_id
                        170
        member_id
                        657
           table id
                         37
        variable id
                        700
         grid label
                         10
            zstore 514818
    dcpp_init_year
                         60
                        736
            version
derived_variable_id
                          0
```

```
#create a subset using facet search
cat = col.search(
    source_id= ["ACCESS-CM2", "MPI-ESM1-2-LR",
                "NorESM2-LM", "NorESM2-MM",
                "MRI-ESM2-0", "BCC-CSM2-MR"],
    variable id="zos",
    member id="r1i1p1f1",
    table id="Omon",
    grid_label="gn",
    experiment_id=["historical", "ssp126",
                   "ssp585" "ssp245"].
    require_all_on=[
        "source id"
    ],
```

### Preliminary results: Global analysis - present/future



Projection using the BCC-CSM2-MR Model and the ssp245 scenario



# Global analysis: model comparison





Intermodel comparisonShared social pathwayssp245



#### Local analysis: population vs sea level rise



Source for the population map

#### Local analysis: population vs sea level rise









Source for the population map

#### **Canadian coastline**

Very high predicted sea level rise VS low population density

#### **Bay of Bengal coastline**

High predicted sea level rise VS high population density



#### Problems faced: different models \_\_\_\_\_ different results







### Open questions / Summary

- Where we struggled
  - Different results based on different models
  - Finding data for future population density
- Future developments
  - Analysis on different models results
  - Socioeconomic consequences
  - Local effects on coastlines
- What could we have done differently: any suggestions?

