An=ei

Theorem

Let A be an $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- . A is an invertible matrix.
- \triangle A is row equivalent to the $n \times n$ identity matrix.
- A has n pivot positions.
- \mathbf{T} The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- **f.** There is an $n \times n$ matrix C such that CA = I.
- $\forall_{\mathbf{g}}$ There is an $n \times n$ matrix D such that AD = I.
 - \mathbf{h} . A^T is an invertible matrix.

Proof of Theorem (parts listed)

We already know that (a) is equivalent to (b), and that (a) is equivalent to (h).

We will show that

$$(b) \iff (c)$$

$$(a) \implies (d)$$

$$(d) \implies (c)$$

$$4$$
 (a) \Longrightarrow (e)

(e)
$$\implies$$
 (c) (equivalently, not (c) \implies not (e))

- (b) \implies (c) is obvious.
- (c) \implies (b): If there are *n* pivot positions, they must be on the diagonal.
- (a) \implies (d): Multiply both sides by A^{-1} .

(d) \implies (c): By the Existence and Uniqueness theorem, a consistent system has a unique solution if and only if there are no free variables.

(a) \implies (e): Multiply both sides by A^{-1} .

not (c) \implies not (e): If A does not have n pivot positions, then the RREF of A must have at least one row which does not contain a pivot. This can only happen if it is a row of zeros.

Let A' be the RREF of A. Suppose the i-th row of A' consists of zeros. Then the equation

$$A'\mathbf{x} = \mathbf{e}_i$$

has no solution.

(e) \implies (g): The columns of D are solutions of

$$A\mathbf{x} = \mathbf{e}_i, \quad i = 1, \dots, n.$$

(g)
$$\implies$$
 (e): Conversely, if

$$\mathbf{b} = b_1 \mathbf{e}_1 + \ldots + b_n \mathbf{e}_n$$

and if
$$D = [\mathbf{d}_1 \quad \dots \quad \mathbf{d}_n]$$
, then

$$A(b_1\mathbf{d}_1 + \ldots + b_n\mathbf{d}_n) = b_1A\mathbf{d}_1 + \ldots + b_nA\mathbf{d}_n$$

= $b_1\mathbf{e}_1 + \ldots + b_n\mathbf{e}_n$
= \mathbf{b} .

(e) = (q). let di be any one solution of The equation /- X = C; $\frac{1}{2} = \frac{1}{2} \cdot \frac{1}$ When i.e. Adi-li Vi=1,...,n. D = [d, ... - dn

$$AD = A [d, ... dn]$$

$$= [e, ... en]$$

$$= I.$$

$$(g) \Rightarrow (e): Suppose a matrix $D \in X_i \text{ sts}$

$$\text{Suppose a matrix } D \in X_i \text{ sts}$$

$$\text{Such that } AD = I.$$

$$\text{Let } D = [d, ... dn], \text{ where } d \in \mathbb{R}_i \text{ for } i=1,...,n.$$$$

e,=(1,0,.--,0) $=) \quad \mathcal{H}\left[d_1 \cdot \cdot \cdot \cdot \cdot d_n\right] = \left[e_1 \cdot \cdot \cdot \cdot \cdot e_n\right]$ =) [Adn = [e1 - - en] =) fd:= li, \(\frac{1}{i}=1,-\cdots,\n\). We are given that bER. let b., --., bn). Then b = b,e, + b, e, + . . - - 1 bnen

$$= (AD)b$$

$$= (AD)b$$

$$A = [a_1 ... an]$$

$$= A(Db)$$

$$b = (b_1 ... b_n)$$

$$Ab = [a_1 ... an]$$

$$b = (b_1 ... b_n)$$

$$Ab = [a_1 + ... + b_n]$$

$$AD = [Ad_1 ... Ad_n]$$

Alternatively, we could proceed as Hows: f(t)

 $\frac{1}{2} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^$

$$A^{T}D = I \Rightarrow (A^{T}D) = I$$

$$D^{T}A = I.$$

(h) \Longrightarrow (f): By what we have just shown, there exists a matrix D such that $A^TD = I$. Hence $D^TA = I$.

(f) \Longrightarrow (h): If CA = I then $A^T C^T = I$. So by the equivalence of parts (a) and (g), which we have already shown, A^T is invertible.

$$(h) \Rightarrow (f)$$
: A is invertible

Definition

If $\mathbf{v}_1,\ldots,\mathbf{v}_p\in\mathbb{R}^n$, then the set of all linear combinations of $\mathbf{v}_1,\ldots,\mathbf{v}_p$ is denoted by $Span\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\mathbf{v}_1,\ldots,\mathbf{v}_p$. That is, $Span\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1+\ldots+c_p\mathbf{v}_p$$

with c_1, \ldots, c_p scalars.

If we look at this in \mathbb{R}^2 , linear combinations with positive weights can be thought of as the region enclosed between the rays going out from the origin in the directions of \mathbf{v}_1 and \mathbf{v}_2 .

• gradyan

We row reduce the matrix

$$\left[\begin{array}{ccccc}
1 & 5 & -3 & -4 \\
-1 & -4 & 1 & 3 \\
-2 & -7 & 0 & h
\end{array}\right]$$

Add row 1 to row 2 : $R_2 \rightarrow R_2 + R_1$.

$$\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
-2 & -7 & 0 & h
\end{array}\right]$$

Add row 1 multiplied by 2 to row 3 : $R_3 \rightarrow R_3 + 2R_1$.

$$\left[\begin{array}{cccc}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 3 & -6 & h - 8
\end{array}\right]$$

Subtract row 2 multiplied by 5 from row 1 : $R_1 \rightarrow R_1 - 5R_2$.

$$\begin{bmatrix}
1 & 6 & -7 & -1 \\
0 & 1 & -2 & -1 \\
0 & 3 & -6 & h - 8
\end{bmatrix}$$

Subtract row 2 multiplied by 3 from row 3 : $R_3 \rightarrow R_3 - 3R_2$.

$$\left[\begin{array}{ccccc}
1 & 0 & 7 & 1 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & h-5
\end{array}\right]$$

Definition

An indexed set of vectors $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}\in\mathbb{R}^n$ is said to be *linearly independent* if the vector equation

$$x_1\mathbf{v}_1+\ldots+x_p\mathbf{v}_p=0$$

has only the trivial solution. The set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is said to be linearly dependent if there exist weights c_1,\ldots,c_p , not all zero,

such that

$$c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p = 0$$
| ima dependence velation.

t xample: Are vectors 1, 12, and vz on the Premon slide independent on dependent. Don the equation (1V, + C2V2+ C3 V3 = 0 rave hon trivial solutions? Does the matrix [v, vz V3] have a

Pour reduction 5 V1, V2, V3 y one linearly dependent

 $\mathcal{H}_{1} + \mathcal{H}_{3} = 0$ M2 - 2M3 - 0

VC = 0 has a Solution.

Product of matrix (Product of matrices used industrial matrices used industrial matrices as Solution. X avd m Same. Any multiple of (-7,2,1) gives me à linear dependence velation. -7 V, + 2 V2 + 1/2 = 0

Velation.