Teori Bahasa dan Automata

Pertemuan 6 Regular Expression

Regular Expression (1)

- ϵ menyatakan bahasa mengandung empty string. (L (ϵ) = { ϵ })
- φ menunjukkan bahasa kosong (L (φ) = { })
- x adalah Regular Expression (RE) dimana L = {x}

Regular Expression (2)

- Jika X adalah RE yang menunjukkan bahasa L (X) dan Y adalah RE yang menunjukkan bahasa L (Y), maka
 - X + Y adalah RE yang sesuai dengan bahasa L (X) ∪ L (Y) dimana L (X + Y) = L (X) ∪ L (Y).
 - X. Y adalah RE yang sesuai dengan bahasa L (X). L (Y) di mana L (X.Y) = L (X). L (Y)
 - R * adalah RE yang sesuai dengan bahasa L (R *) di mana L (R *) = (L (R)) *

Contoh RE (1)

Regular Expressions	Regular Set
(0 + 10*)	L = { 0, 1, 10, 100, 1000, 10000, }
(0*10*)	L = {1, 01, 10, 010, 0010,}
$(0+\epsilon)(1+\epsilon)$	$L = \{\epsilon, 0, 1, 01\}$

Contoh RE (2)

Regular Expressions	Regular Set
(a+b)*	Kumpulan string a dan b dengan panjang berapa pun termasuk string nol. Jadi L = $\{\epsilon, a, b, aa, ab, bb, ba, aaa\}$
(a+b)*abb	Kumpulan string a dan b yang diakhiri dengan string abb. Jadi L = {abb, aabb, babb, aaabb, ababb,
(11)*	Set terdiri dari bilangan genap 1 termasuk string kosong, Jadi L = $\{\epsilon, 11, 1111, 111111, \dots\}$

Contoh RE (3)

Regular Expressions	Regular Set
(aa)*(bb)*b	Kumpulan string yang terdiri dari bilangan genap a diikuti bilangan ganjil b, jadi L = {b, aab, aabbb, aabbbbb, aaaab, aaaabbb,
(aa + ab + ba + bb)*	String a dan b yang panjangnya genap dapat diperoleh dengan menggabungkan sembarang kombinasi string aa, ab, ba, dan bb termasuk null, jadi L = {aa, ab, ba, bb, aaab, aaba,

Properti dari Regular Sets

- Union : Penyatuan
- Intersection : Perpotongan
- Complement : Pelengkap
- Differential: Perbedaan

- Reversal : Pembalikan
- Closure : Penutupan
- Concatenation :
 Rangkaian

Union: Penyatuan

- RE1 = $a(aa)^*$ dan RE2 = $(aa)^*$
 - L1 = {a, aaa, aaaaa,.....} (Ganjil tanpa null)
 - L2 ={ ε, aa, aaaa, aaaaaaa,.....} (Genap dengan null)
- RE (L1 \cup L2) = a*

Intersection: Perpotongan

- RE1 = $a(a^*)$ dan RE2 = $(aa)^*$
 - L1 = { a,aa, aaa, aaaa,} (semua kelipatan a tanpa null)
 - L2 ={ ε, aa, aaaa, aaaaaaa,.....} (Genap dengan null)
 - L1 \cap L2 = { aa, aaaa, aaaaaaa,.....} (Genap tanpa null)
- RE (L1 \cap L2) = aa(aa)*

Complement : Pelengkap

- RE = (aa)*
 - L = $\{\varepsilon, aa, aaaa, aaaaaa,\}$ (Genap dengan null)
 - Komplemen L adalah semua string yang tidak ada di L.
 - L' = {a, aaa, aaaaa,}
- RE (L') = a(aa)*

Differential: Perbedaan

- RE1 = $a(a^*)$ dan RE2 = $(aa)^*$
 - L1 = {a, aa, aaa, aaaa,} (Semua kelipatan a tanpa null)
 - $L2 = \{ \epsilon, aa, aaaa, aaaaaaa, \}$ (Genap dengan null)
 - L1 L2 = {a, aaa, aaaaaa, aaaaaaaa,} (Genap tanpa null)
- RE (L1 L2) = a (aa)*

Reversal: Pembalikan

- L = {01, 10, 11, 10}
 RE (L) = 01 + 10 + 11 + 10
 LR = {10, 01, 11, 01}
- RE (LR) = 10 + 01 + 11 + 01

Closure: Penutupan

- Jika L = {a, aaa, aaaaa,} (Ganjil tanpa null)
 - RE (L) = a (aa)*
 - L* = {a, aa, aaa, aaaa, aaaaa,} (Semua kelipatan a tanpa null)
- RE $(L^*) = a (a)^*$

Concatenation: Rangkaian

- RE1 = (0+1)*0 dan RE2 = 01(0+1)*
 L1 = {0, 00, 10, 000, 010,} (semua string yang diakhiri 0)
 L2 = {01, 010,011,.....} (semua string yang diawali 01)
 L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010,.....}
- RE = (0 + 1)*001(0 + 1)* (Semua string yang mengandung 001)

Identitas hubungan Regular Expressions (1)

- ∅* = ε
- **3** = *3 •
- RR* = R*R
- R*R* = R*

- $(R^*)^* = R^*$
- RR* = R*R
- (PQ)*P =P(QP)*

Identitas hubungan Regular Expressions (2)

- $(a+b)^* = (a*b^*)^* = (a*+b^*)^* = (a+b^*)^* = a^*(ba^*)^*$
- $R + \emptyset = \emptyset + R = R$ (Union)
- R $\varepsilon = \varepsilon$ R = R (Concatenation)
- \varnothing L = L \varnothing = \varnothing (Annihilator (pemisah) Concatenation)

Identitas hubungan Regular Expressions (3)

- R + R = R (Idempotent law)
- L (M + N) = LM + LN (Left distributive law)
- (M + N) L = ML + NL (Right distributive law)
- $\epsilon + RR^* = \epsilon + R^*R = R^*$