1 Import Libraries

1.1 Data Processing Libraries

In [1]:

```
# data processing
import numpy as np
import pandas as pd
from scipy.stats.mstats import winsorize
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
```

1.2 Visualization

In [2]:

```
#import visualizing libraries
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

1.3 Utilization

```
In [3]:
```

```
import random
import pickle

random_state = 42
random.seed(random_state)
```

2 Data Loading

```
In [4]:
```

```
wdbc = pd.read_csv('../dataset/data.csv')
```

2.1 Lihat 5 data teratas

In [5]:

wdbc.head()

Out[5]:

	IDNumber	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.
2	84300903	М	19.69	21.25	130.00	1203.0	0.
3	84348301	М	11.42	20.38	77.58	386.1	0.
4	84358402	М	20.29	14.34	135.10	1297.0	0.

5 rows × 32 columns

2.2 Lihat dimensi data

In [6]:

wdbc.shape

Out[6]:

(569, 32)

2.3 Melihat tipe data setiap atribut

float64

float64

float64

float64

float64

float64

In [7]:

13

30

texture_se

15 area_se

perimeter_se

smoothness se

```
wdbc.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):
    Column
                                Non-Null Count Dtype
     _____
_ _ _
                                -----
                                                ----
0
    IDNumber
                                569 non-null
                                                int64
 1
    diagnosis
                                569 non-null
                                                object
 2
    radius_mean
                                569 non-null
                                                float64
 3
                                                float64
    texture mean
                                569 non-null
 4
    perimeter_mean
                                569 non-null
                                                float64
 5
    area mean
                                569 non-null
                                                float64
 6
                                                float64
    smoothness_mean
                                569 non-null
 7
     compactness_mean
                                569 non-null
                                                float64
 8
                                569 non-null
                                                float64
     concavity_mean
 9
     concave_points_mean
                                569 non-null
                                                float64
 10
                                                float64
    symmetry_mean
                                569 non-null
    fractal_dimension_mean
                                                float64
                                569 non-null
 12
                                569 non-null
                                                float64
    radius_se
```

569 non-null

569 non-null

569 non-null

569 non-null

569 non-null

float64 17 compactness_se 569 non-null concavity_se 569 non-null float64 19 concave_points_se 569 non-null float64 symmetry_se 569 non-null float64 21 fractal dimension se float64 569 non-null 22 radius_largest float64 569 non-null 23 texture_largest 569 non-null float64 24 perimeter_largest 569 non-null float64 float64 area_largest 569 non-null 26 smoothness_largest 569 non-null float64 compactness largest 27 569 non-null float64 28 concavity_largest float64 569 non-null concave_points_largest 569 non-null float64

dtypes: float64(30), int64(1), object(1)

memory usage: 142.4+ KB

symmetry_largest

2.4 Mengecek adanya data duplikat

fractal_dimension_largest 569 non-null

```
In [8]:
wdbc[
    wdbc.duplicated()
]
Out[8]:

IDNumber diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_n
0 rows × 32 columns
```

2.5 Menghapus ID pasien pada data

```
In [9]:
wdbc.drop(['IDNumber'], axis=1, inplace=True)
```

2.6 Memisahkan atribut independen (X) dan dependen (Y)

```
In [10]:

target_name = 'diagnosis'
X = wdbc.drop(target_name,axis=1).copy()
y = wdbc[target_name].copy()
features_name = X.columns.tolist()
```

3 Exploratory Data Analysis

Exploratory Data Analysis memungkinkan analyst memahami isi data yang digunakan, mulai dari distribusi, frekuensi, korelasi dan lainnya.

- 1. Mengetahui jumlah nan pada data
- 2. Menampilkan persentase data di setiap kelas
- 3. Visualisasi histogram setiap atribut dan boxplot
- 4. Korelasi setiap atribut
- 5. Menghitung jumlah data outliers di setiap atribut

3.1 Mengetahui jumlah NaN pada data

In [11]:

```
wdbc.isnull().sum()
```

Out[11]:

diagnosis 0 radius_mean 0 texture_mean 0 perimeter_mean 0 area_mean 0 0 smoothness_mean 0 compactness_mean 0 concavity_mean concave_points_mean 0 0 symmetry_mean fractal_dimension_mean 0 radius_se 0 texture_se 0 perimeter_se 0 0 area_se smoothness_se 0 0 compactness_se 0 concavity_se 0 concave_points_se symmetry_se 0 0 fractal dimension se radius_largest 0 texture_largest 0 perimeter_largest 0 area_largest 0 smoothness_largest 0 compactness_largest 0 0 concavity_largest concave_points_largest 0 symmetry_largest 0 fractal_dimension_largest 0 dtype: int64

3.2 Deskriptif Statistik Data

In [12]:

wdbc.describe()

Out[12]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactne
count	569.000000	569.000000	569.000000	569.000000	569.000000	51
mean	14.127292	19.289649	91.969033	654.889104	0.096360	
std	3.524049	4.301036	24.298981	351.914129	0.014064	
min	6.981000	9.710000	43.790000	143.500000	0.052630	
25%	11.700000	16.170000	75.170000	420.300000	0.086370	
50%	13.370000	18.840000	86.240000	551.100000	0.095870	
75%	15.780000	21.800000	104.100000	782.700000	0.105300	
max	28.110000	39.280000	188.500000	2501.000000	0.163400	
8 rows × 30 columns						
4						+

3.3 Persentase data di setiap kelas

In [13]:

3.4 Visualisasi Histogram setiap atribut

In [14]:

```
sns.set_style('dark')
for col in features_name:
    plt.figure(figsize=(15, 4))
    plt.title(col)
    plt.subplot(131)
    sns.histplot(
        wdbc[col][wdbc[target_name] == "B"],
        label="Benign :"+" Skew = " +
        str(np.round(wdbc[col][wdbc[target_name] == "B"].skew(), 2)),
        kde=True,
        color='y',
        stat="density",
        linewidth=0
    )
    sns.histplot(
        wdbc[col][wdbc[target_name] == "M"],
        label="Malignant :"+" Skew = " +
        str(np.round(wdbc[col][wdbc[target_name] == "M"].skew(), 2)),
        kde=True,
        color='r',
        stat="density",
        linewidth=0
    plt.legend()
    plt.subplot(132)
    sns.boxplot(x=wdbc[target_name],
                y=wdbc[col],
                hue=wdbc[target_name])
    plt.subplot(133)
    stats.probplot(x=wdbc[col], plot=plt)
    plt.tight_layout()
    plt.show()
```


3.5 Correlations

3.5.1 Korelasi setiap atribut dengan label kelas

```
In [15]:
```

In [16]:

```
wdbc.corr().loc[target_name].sort_values(ascending=False)
```

Out[16]:

diagnosis	1.000000
concave_points_largest	0.793566
perimeter_largest	0.782914
concave_points_mean	0.776614
radius_largest	0.776454
perimeter_mean	0.742636
area_largest	0.733825
radius_mean	0.730029
area_mean	0.708984
concavity_mean	0.696360
concavity_largest	0.659610
compactness_mean	0.596534
compactness_largest	0.590998
radius_se	0.567134
perimeter_se	0.556141
area_se	0.548236
texture_largest	0.456903
smoothness_largest	0.421465
symmetry_largest	0.416294
texture_mean	0.415185
concave_points_se	0.408042
smoothness_mean	0.358560
symmetry_mean	0.330499
<pre>fractal_dimension_largest</pre>	0.323872
compactness_se	0.292999
concavity_se	0.253730
<pre>fractal_dimension_se</pre>	0.077972
symmetry_se	-0.006522
texture_se	-0.008303
<pre>fractal_dimension_mean</pre>	-0.012838
smoothness_se	-0.067016
Name: diagnosis, dtype: floa	it64

3.5.2 Matrix heatmap correlations

In [17]:

```
plt.figure(figsize=(16, 16))
# Store heatmap object in a variable to easily access it when you want to include more feat
# Set the range of values to be displayed on the colormap from -1 to 1, and set the annotat
heatmap = sns.heatmap(wdbc.corr(), vmin=0, vmax=0.5, annot=True, cmap="gray")
# Give a title to the heatmap. Pad defines the distance of the title from the top of the he
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12);
# save heatmap
# plt.savefig('heatmap.png', dpi=300, bbox_inches='tight')
```


4 Data Splitting

Split dataset into training (80%) and testing (20%)

```
In [18]:
```

```
wdbc = pd.read_csv('../dataset/data.csv')
wdbc.drop(['IDNumber'],axis=1, inplace=True)
target_name = 'diagnosis'
X = wdbc.drop(target_name,axis=1).copy()
y = wdbc[target_name].copy()
features_name = X.columns.tolist()
```

4.1 Label Encoding

```
In [19]:
```

```
targetEncoder = LabelEncoder()
y = targetEncoder.fit_transform(y)
```

```
In [20]:
```

```
targetEncoder.inverse_transform([1,0])
```

```
Out[20]:
```

```
array(['M', 'B'], dtype=object)
```

4.2 Splitting

```
In [21]:
```

```
test_size = 0.2
train_size = 1 - test_size
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state
```

```
In [22]:
```

```
pd.Series(y_train).value_counts(),pd.Series(y_test).value_counts()

Out[22]:

(0    285
    1    170
    dtype: int64,
    0    72
    1    42
    dtype: int64)
```

4.3 Simpan Dataset Hasil Splitting

```
In [23]:
```

```
# simpan dataset hasil splitting awal ke dalam pickle untuk ditampilkan pada website
wdbc_set = {
    'X': X.to_numpy(),
    'y': y
}
training_set = {
    'X_train': X_train.to_numpy(),
    'y_train': y_train,
}
testing_set = {
    'X_test': X_test.to_numpy(),
    'y_test': y_test,
}
```

4.3.1 Simpan Keseluruhan Data sebelum splitting

```
In [24]:
```

```
X = wdbc_set['X']
y = np.reshape(wdbc_set['y'], (-1,1))
wdbc_set = np.concatenate((X, y),axis=1)
```

4.3.2 Simpan Himpunan data latih

```
In [25]:
```

```
X_latih = training_set['X_train']
y_latih = np.reshape(training_set['y_train'], (-1,1))
n_sampel_training = X_latih.shape[0]
persentase_sampel_training = train_size
training_set = np.concatenate((X_latih, y_latih),axis=1)
df_train = pd.DataFrame(training_set, columns=features_name+['diagnosis'])

df_train.to_excel("informations/data_train.xlsx")
```

4.3.3 Simpan Himpunan data uji

```
In [26]:
```

```
X_uji = testing_set['X_test']
y_uji = np.reshape(testing_set['y_test'], (-1,1))
n_sampel_testing = X_uji.shape[0]
persentase_sampel_testing = test_size
testing_set = np.concatenate((X_uji, y_uji),axis=1)
df_testing = pd.DataFrame(testing_set, columns=features_name+['diagnosis'])
df_testing.to_excel("informations/data_testing.xlsx")
```

4.3.4 Simpan ke dalam format pickle

In [27]: