06026125: Machine Learning	Lab 02: Linear Regression
Name: ID Number	:
1 Linear Regression	
1. Randomly generate 50 samples with seed number $= 10$).
$X = \mbox{np.random.rand}(y = 4 + 5X + \mbox{np.random.r})$	
2. Plot scatter graph of the generated samples.	
3. Write a function to calculate a cost function of Linear (J) —in the following format:	Regression—Mean Squared Error
$J = {\tt computeCostFunction}($	(X,y, heta)
where θ is a weight value.	

1	where α is a learning rate, $n_{iteration}$ is the number of iteration, and $J_{History}$ is a vec
	that store J for every iteration.
	Demonstrate the equation of Linear Regression by using Gradient Descent Algorith. The number of iterations $(n_{iteration})$ is 100 and the Learning Rate (α) is 0.1.
	The number of iterations $(n_{iteration})$ is 100 and the Learning Rate (α) is 0.1. Plot the convergence curve of the algorithm and report what you see. (Hint: Cost funct
	The number of iterations $(n_{iteration})$ is 100 and the Learning Rate (α) is 0.1.
	The number of iterations $(n_{iteration})$ is 100 and the Learning Rate (α) is 0.1. Plot the convergence curve of the algorithm and report what you see. (Hint: Cost funct
	Plot the convergence curve of the algorithm and report what you see. (Hint: Cost funct)
	The number of iterations $(n_{iteration})$ is 100 and the Learning Rate (α) is 0.1. Plot the convergence curve of the algorithm and report what you see. (Hint: Cost funct
	The number of iterations $(n_{iteration})$ is 100 and the Learning Rate (α) is 0.1. Plot the convergence curve of the algorithm and report what you see. (Hint: Cost funct

 $4.\,$ Write a function to find the optimal theta of Linear Regression by using Gradient Descent

near equation o	on the graph	created in Q	uestion 2.		
e Learning rate	α to 0.01 an	nd 0.001, resp	pectively, and	l observe the	results.
nvergence curv	res correspond	ds to Questi	on 9.		
	e Learning rate	e Learning rate $lpha$ to 0.01 an	e Learning rate α to 0.01 and 0.001, respectively.	near equation on the graph created in Question 2. e Learning rate α to 0.01 and 0.001, respectively, and onvergence curves corresponds to Question 9.	e Learning rate α to 0.01 and 0.001, respectively, and observe the n

1		
(Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
(Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	
	Change the number of iterations to 1000 and observe the result.	

2 Linear Regression—Multi-Variable

Each residence in Boston is described by 13 features $(I_1 - I_{13})$. The task is to employ the linear regression algorithm to predict the value of owner-occupied home in Boston (O_{14}) . The dataset-Boston Housing Data-can be download at https://bit.ly/2NBaO7e. The details of the data are as follows:

- I_1 : CRIM—per capita crime rate by town
- I_2 : ZN—-Proportion of residential land zoned for lots over 25,000 sq.ft.
- I_3 : INDUS—Proportion of non-retail business acres per town
- I_4 : CHAS—Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- I₅: NOX—Nitric Oxides Concentration (parts per 10 million)
- I₆: RM—Average number of rooms per dwelling
- I₇: AGE—Proportion of owner-occupied units built prior to 1940
- \bullet I_8 : DIS—Weighted distances to five Boston employment centres
- I₉: RAD—Index of accessibility to radial highways
- I_{10} : TAX—full-value property-tax rate per \$10,000
- I_{11} : PTRATIO—Pupil-teacher ratio by town
- I_{12} : Black— $1000(Bk-0.63)^2$ where Bk is the proportion of blacks by town
- I_{13} : LSTAT—% lower status of the population
- O_{14} : MEDV—Median value of owner-occupied homes in \$1000's

1.	Import regression-datasets-housing.csv file to python
2.	Assign values from column 1 to column 13 to X and value from column 14 to y , the convert both variables to numpy.

cise 3 to 7 in Section	-	

	Normalise this data to zero-mean & unit standard deviation
5.	Train a model with normalised data and compare the result with Question 3.
	Re-write the Gradient Descent function in vector format in order to decrease the number
	of loops

7.	Plot a graph to compare predicted output and actual output