1. Reviewer

neuralix

2. Article

David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

(개인적으로 ICCV1999 제출본을 보조적으로 봄. 이 논문을 필수적으로 함께 보아야 할 것임.)

3. Stage 설명 및 Comment

Local extrema detection

알고리즘 설명

- 1. 입력 이미지를 두배로 키움 (bilinear interpolation)
- 2. sigma = sqrt(2)로 Gaussian smoothing 적용. 이후 sqrt(2)를 sigma에 곱해 Gaussian 적용. 서로 인접한 smoothed 결과끼리 빼주어 DoG 영상 산출

(이상을 수 회 반복해 다수의 DoG를 산출하며 이를 octave라 함)

Gaussian smoothing은 1D convolution을 가로 세로 방향으로 각각 수행하여 연산 시간을 절약.

- 3. 최초 octave의 첫번째 smoothed된 영상을 1.5배 spacing(;인접 4 pixel의 보간)에 따라 sampling하여 level이 다른 영상을 만듦. 이에 대해 2를 반복.
- 4. 각 픽셀에 대해, 한 level 내에서 주변 8 pixel을 검사하여 extrema인지를 검사. extrema일 경우 상하 각 레벨(;서로 다른 레벨에 대해서는 각 레벨 당 9 pixel 모두와 비교)에 대해 검사를 수행. 이를 모두 만족하면 extrema로 인정.

Critique with Questions and Issues

합리적인 방법이라 생각됨. 단, 각 level에서 몇개의 DoG를 산출할 것인지는 fix시키지 못 했음.

Accurate keypoint localization

알고리즘 설명

Quadratic function에 의한 sub-sampling으로 key point의 위치를 보다 정교히 찾음. 이때 D(x)의 절대값이 0.03보다 작으면 위치보정 무시.

Critique with Questions and Issues

이와 같이 SIFT는 local image descriptor 전까지는 최대한 정교하게 찾으려는 노력을 하고 있음. 그러나 이 단계에 들 계산 cost를 고려해 볼 때 과연 이 단계가 필요한지 의문임.

Eliminating edge responses

알고리즘 설명

Hessian matrix을 구하고 이것이 반영한다고 가정하는 ellipse의 장단축 길이비를 이용해 edge response를 test. Ellipse의 길이비는 두 eigen value 값 간의 비가 반영하게 되는데 이를 직접적으로 구하는 것이 계산 cost가 많이 드므로 두 eigen value간의 비를 나타내는 변수 r과 증감성질을 공유하는 함수인 (r+1)^2/r의 최대화를 통해 구함.

Critique with Questions and Issues

알려져 온 내용에 계산효율성을 위한 아이디어를 제안함. 증감성질을 공유하는 함수의 사용은 훌륭함. 단, 어떤 point가 edge의 끊어진 end point일 가능성도 있음. 이는 뒤 단계의 지식을 통한 supervision으로 filtering되어야 할 것이나 현 단계에서는 이에 대한 연구가 별로 진행된 바 없음.

Orientation assignment

알고리즘 설명

각 픽셀의 magnitude(local extrema detection에서 이미 계산되었음)와 orientation을 구함. orientation은 36개의 bin으로 나뉘며, 크기 m을 가진 벡터는 각 bin이 나타내는 방향벡터와의 내적을 통해 decompose됨. 이는 Circular하게 배치된 상태에서 keypoint scale에 1.5배를 곱한 sigma 계수에 의해 smooting됨.

Critique with Questions and Issues

orientation 산출 시 Lowe가 적용한 것처럼 adjacent pixel간의 차분을 사용할지 Sobel처럼 중심픽셀 양쪽간에 차분을 할지는 논란의 여지가 있겠음. 특히 SNR이 낮은 경우는 경험상, Sobel과 같이 서로 멀리 떨어진 위치간에 차분이 수행됨. Noise가 큰 경우에 대한 concerning은 사실 SIFT에서 빠져있는 것으로 보임.

Histogram을 구축하고 이에 대해 smoothing을 수행하는 것은 크게 보아 합리적인 framework이기는 하나 역시 obeject의 boundary 부분에서 나타나는 양상변화(;Lowe도 말하고 있는 artifact적인..)에 영향받을 소지가 있음. 이 역시 개선이 필요한 과제임.

Local image descriptor

알고리즘 설명

각 픽셀은 이를 포함하는 8X8 grid를 가지는데 이때 grid의 각 픽셀에 대해 magnitude와 orientation vector 정보를 알아야 함. (이때 orientation은 중앙값이 일률적으로 빼짐) 이는 다시 2X2 grid로 변환되는데 grid의 각 칸은 4X4 pixel들의 orientation-magnitude 벡터들을 단일의 feature 벡터로 만든 것임. 이 feature vector들은 normalize됨.

Critique with Questions and Issues

Edelman의 논문을 본 적이 있는데 이를 잘 해결한 것으로 보임. out-of-plane motion의 작은 vatation을 suppress하는 방법으로 아주 reasonable함. 그러나 역시 boundary에서의 양상변화에 대한 대처를 고려할 필요는 있겠음.

Nearest neighbor indexing

알고리즘 설명

BBF(Best Bin First) 알고리즘을 사용

Critique with Questions and Issues

BBF 알고리즘을 모름

Feature Clustering

알고리즘 설명

Hough 변환을 사용. 변수는 orientation, scale, location 세가지 임.

Critique with Questions and Issues

Hough 변환의 일반적 성질에 대해 생각해보는 기회가 되었음. 구체적인 구현에 대해서는 아직이해하지 못 함. 단, 보통 Hough 변환이 cost가 비싸다는 점에서 다른 대안이 없을까 하는 생각을 해봄.

그리고 Feature clustering시, 서로 다른 level의 DoG에서 얻은 feautre들도 clustering되는게 상관없는지? 아무튼 supervised indexing이 이뤄지는 것이니 상관은 없다고 보임.

Affine parameter 추정

알고리즘 설명

Least square method를 이용하여 Affine 파라미터를 추정. 3개의 특징점이 찾아지면 그 cluster가 찾아진 것으로 판단.

Critique with Questions and Issues

단순한 방법을 이용했음. 구체적인 구현은 좀 더 이해가 필요.

전체 Critique

Feature detection, construction의 가장 핵심적인 문제인 파라미터의 축소에 큰 진전을 준 연구. Al에 대한 연구자의 concern이 motivation 및 방법 체택에 많은 영향을 끼친 것이 느껴짐. 지금까지 나왔던 많은 연구를 집대성하고.. 자체적으로 개량한 연구연구자 및 연구실의 축적된 연구성과가 있었기에 가능했을 것임..