Optimization in higher dimensions

- Theoretical aspects
- Gradient descent methods
- Newton's method
- Other methods

Beniamin Bogosel Computational Maths 2 1/70

Higher dimensions

- \star we consider functions f defined on $K = \overline{O}$ where $O \subset \mathbb{R}^n$ is open, smooth and connected.
- \star the objective is to solve problems of the form

$$\min_{x \in K} f(x)$$

- * most of the theoretical aspects regarding existence and uniqueness of minimizers are similar to the one dimensional case: however, all partial derivatives need to be taken into account, and the notions of gradient and Hessian are essential
- \star once a descent direction is found, we come back to one-dimensional algorithms when looking along this direction in order to decrease f

Beniamin BOGOSEL Computational Maths 2 2/70

Optimization in higher dimensions

- Theoretical aspects
- Gradient descent methods
- Newton's method
- Other methods

Beniamin BOGOSEL Computational Maths 2 3/70

Partial derivatives

- \star for simplicity, some results are stated for $f: \mathbb{R}^n \to \mathbb{R}$, but they apply to f defined on more restricted "nice" domains
- \star as usual, we denote by $e_i, i = 1, ..., n$ the canonical basis of \mathbb{R}^n

$$e_i = (..., 0, 1, 0, ...)$$
 only component i is non-zero equal to 1

Definition 1 (Partial derivatives, gradient, Hessian)

Consider a function $f: \mathbb{R}^n \to \mathbb{R}$. The partial derivative with respect to x_i is

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t}$$

In practice, $\frac{\partial f}{\partial x_i}$ is computed by differentiating f w.r.t x_i , supposing that the other coordinates are constant.

The gradient vector contains all partial derivatives: $\nabla f(x) = (\frac{\partial f}{\partial x_i}(x))_{i=1,\dots,n}$. The Hessian matrix contains all combinations of two successive partial derivatives: $\mathcal{D}^2 f(x) = (\frac{\partial^2 f}{\partial x \partial x_i})_{i,j=1,\dots,n}$.

 \star note that f is of class C^2 then $D^2f(x)$ is a symmetric matrix (result known as Schwarz's theorem)

Beniamin BOGOSEL Computational Maths 2 4/

Basic examples

1.
$$f(x) = ||x||^2 = x_1^2 + ... + x_n^2$$

$$\nabla f(x) = 2x$$
, $D^2 f(x) = 2 \operatorname{Id}$

where Id is the identity matrix.

2.
$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x$$

$$\nabla f(x) = Ax - b, \quad D^2 f(x) = A$$

Beniamin BOGOSEL Computational Maths 2 5/70

Directional and Fréchet derivatives

Definition 2 (Directional (Gateaux) derivative)

 $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at x in direction d if the one dimensional function $t \mapsto f(x + td)$ is differentiable at t = 0.

Definition 3 (Fréchet derivative)

 $f:\mathbb{R}^n \to \mathbb{R}$ is Fréchet differentiable at x if there exists a bounded linear mapping $L:\mathbb{R}^n \to \mathbb{R}$ such that for $h \in \mathbb{R}^n$ with |h| small enough we have

$$f(x+h) = f(x) + Lh + o(h)$$

- \star the application L is denoted by f'(x). When f is C^1 we simply have $f'(x)(h) = \nabla f(x) \cdot h$.
- * in general Fréchet differentiability implies the existence of directional derivatives, but the converse is false
- ★ if the partial derivatives exist and are continuous then the function is Fréchet differentiable
- * for more subtle differences and implications consult a real analysis course: e.g. [Differential Calculus, by Henri Cartan]

Beniamin BOGOSEL Computational Maths 2 6/70

Taylor expansion in higher dimensions

Consider $f: \mathbb{R}^n \to \mathbb{R}$. Then

• if f is of class C^1

$$f(x + h) = f(x) + f'(x)(h) + o(|h|) \text{ as } |h| \to 0$$

 $f(x + h) = f(x) + \nabla f(x) \cdot h + o(|h|) \text{ as } |h| \to 0$

• if f is of class C^2

$$f(x+h) = f(x) + f'(x)(h) + \frac{1}{2!}f''(x)(h,h) + o(|h|^2) \text{ as } |h| \to 0$$
$$f(x+h) = f(x) + \nabla f(x) \cdot h + \frac{1}{2}h^T D^2 f(x)h + o(|h|^2) \text{ as } |h| \to 0$$

* again it is possible to write the remainder in Lagrange form

* recall that the second derivative (in the sense of Fréchet) of a function is a bilinear form. Why? For each differentiation you need to choose a direction...

compute first
$$f'(x)(h_1)$$
 and then $(f'(x)(h_1))'(h_2) \longrightarrow f''(x)(h_1, h_2)$

Beniamin BOGOSEL Computational Maths 2 7

Existence of solutions

In the same way as in dimension one we have the following

Proposition 4

 \star If f is continuous it attains its extremal values on compact sets.

 \star If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and "infinite at infinity" i.e.

$$|f(x)| \to \infty$$
 as $|x| \to \infty$

then f admits minimizers on \mathbb{R}^n .

Beniamin BOGOSEL Computational Maths 2 8/70

Positive (definite) matrices

Definition 5

A matrix $A \in \mathcal{M}_n(\mathbb{R})$ is called:

• **positive definite** if for every vector $x \in \mathbb{R}^n \setminus \{0\}$

$$x^T A x > 0$$

• **positive semi-definite** if for every vector $x \in \mathbb{R}^n$

$$x^T A x \geq 0$$

- ★ these notions are often useful when dealing with optimization problems
- \star when A is also symmetric, it is possible to give a characterization of the above definition in terms of the eigenvalues of A:
 - A is positive definite if all its eigenvalues are positive
 - A is positive semi-definite if all its eigenvalues are non-negative
- * recall that symmetric matrices are diagonalizable and there exists an orthonormal basis made of eigenvectors

Beniamin BOGOSEL Computational Maths 2 9/70

Basic optimality conditions

Proposition 6

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. If x^* is a local minimum (maximum) of f then $\nabla f(x^*) = 0$. Moreover, if f is of class C^2 then the Hessian matrix $D^2 f(x^*)$ is positive (negative) semi-definite.

Conversely, if f is of class C^2 , $\nabla f(x^*) = 0$ and $D^2 f$ is positive semi-definite in a neighborhood of x^* then x^* is a local minimum of f. As a consequence, if f is of class C^2 , $\nabla f(x^*) = 0$ and $D^2 f(x^*)$ is positive definite then x^* is a local minimum of f.

* The proof comes immediately from the Taylor expansion formulas.

Beniamin BOGOSEL Computational Maths 2 10/70

Euler inequalities

 \star what happens when we minimize on a closed convex set $K \subset \mathbb{R}^d$?

Proposition 7

Let K be a convex set and x^* be a minimum of f on K. Suppose that J is differentiable at x^* . Then for every $x \in K$ we have

$$\nabla f(x^*) \cdot (x - x^*) \geq 0.$$

- * Proof: just write the directional derivative at x^* in the direction $x x^*$.
- ★ compare with the 1D case!

Beniamin BOGOSEL Computational Maths 2 11/70

Convex functions again...

 \star In higher dimensions convex functions give the same advantages regarding the existence, unicity and convergence of algorithms as in dimension one.

Definition 8 (Convex functions)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be convex if for every $x, y \in \mathbb{R}^n$ and for every $t \in (0,1)$ we have

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$$

⋆ for strict convexity the inequality is strict.

Equivalent definitions: f is convex iff

- f is below any affine section
 - f is above its tangent planes
 - any 1D "slice" is a convex 1D function

Beniamin BOGOSEL Computational Maths 2 12/70

Useful characterizations

Proposition 9

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. The following statements are equivalent:

- 1 f is convex
- $f(y) \ge f(x) + \nabla f(x) \cdot (y x), \ \forall x, y \in \mathbb{R}^n$
- $(\nabla f(x) \nabla f(y)) \cdot (x y) \ge 0, \ \forall x, y \in \mathbb{R}^n$

Proof: Exercise!

Proposition 10

Let $f : \mathbb{R} \to \mathbb{R}$ be a C^2 function. Then f is convex if and only if the Hessian matrix $\mathcal{D}^2 f$ is positive semi-definite everywhere.

 \star we say that f is α -convex for some $\alpha > 0$ if the Hessian matrix has eigenvalues $> \alpha > 0$.

Beniamin BOGOSEL Computational Maths 2 13/70

Optimality conditions

 \star for convex functions, the usual necessary optimality conditions are also sufficient

Proposition 11

- * Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and x^* be a point such that $\nabla f(x^*) = 0$. Then x^* is a global minimum of f.
- * Let $f: K \to \mathbb{R}$ be a convex function defined on a convex subset K of \mathbb{R}^n . Then if $x^* \in K$ verifies

$$\nabla f(x^*) \cdot (x - x^*) \geq 0$$

for every $x \in K$ then x^* is a global minimum of f on K.

Proof:
$$f(x) \ge f(x^*) + \nabla f(x^*) \cdot (x - x^*), \ \forall x \in K$$

Beniamin BOGOSEL Computational Maths 2 14/70

Optimization without Calculus

[Charles L. Byrne, A first Course in Optimization] [Niven, I. Maxima and Minima Without Calculus]

 \star sometimes, solutions can be found without the need of calculus or algorithms **Basic ingredients.**

- $x^2 \ge 0$: the most basic inequality
- AM-GM:

$$x_i \geq 0 \Rightarrow \frac{x_1 + \ldots + x_n}{n} \geq (x_1 \ldots x_n)^{1/n}$$

• **Generalized AM-GM** (or just convexity of the $-\log$ function):

$$x_i > 0, a_i \ge 0, \sum_{i=1}^n a_i = 1 \Longrightarrow x_1^{a_1} ... x_n^{a_n} \le a_1 x_1 + ... + a_n x_n$$

• Cauchy-Schwarz: $a_i, b_i \in \mathbb{R}$

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) \text{ or } |\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|$$

Beniamin BOGOSEL Computational Maths 2 15/70

Examples

In minimize
$$f(x,y) = \frac{12}{x} + \frac{18}{y} + xy$$
 on $(0,\infty)^2$

2 maximize
$$f(x, y) = xy(72 - 3x - 4y)$$

In minimize
$$f(x,y) = 4x + \frac{x}{y^2} + \frac{4y}{x}$$
 on $(0,\infty)^2$

4 maximize
$$f(x, y, z) = 2x + 3y + 6z$$
 when $x^2 + y^2 + z^2 = 1$

5 maximize
$$f(x, y, z) = 2x + 3y + 6z$$
 when $x^p + y^p + z^p = 1$, $p > 1$.

16/70 Computational Maths 2

Example 1

* minimize
$$f(x,y) = \frac{12}{x} + \frac{18}{y} + xy$$
 on $(0,\infty)^2$

Since we are dealing with positive numbers apply AM-GM:

$$\frac{12}{x} + \frac{18}{y} + xy \ge 3 \cdot \left(\frac{12}{x} \frac{18}{y} xy\right)^{1/3} = 3 \cdot 6 = 18.$$

- \star Therefore the lower bound of the above expression is 18
- \star it is attained when $\frac{12}{x} = \frac{18}{y} = xy$ leading to x = 2, y = 3.
- * the same technique can be applied for Examples 2 and 3

Beniamin BOGOSEL Computational Maths 2 17/70

Example 4

* maximize f(x, y, z) = 2x + 3y + 6z when $x^2 + y^2 + z^2 = 1$ Here it is possible to use Cauchy-Schwarz:

$$(2x+3y+6z)^2 \le (2^2+3^2+6^2)(x^2+y^2+z^2) = 49$$

with equality of (x, y, z) and (2, 3, 6) are colinear.

- * recognize cases when the solution can be found explicitly.
- ★ provide examples on which to test numerical algorithms!

Beniamin BOGOSEL Computational Maths 2 18/70

Optimization in higher dimensions

- Theoretical aspects
- Gradient descent methods
- Newton's method
- Other methods

Beniamin Bogosel Computational Maths 2 19/70

Basic idea

Suppose that f is C^1 (at least). Then the Taylor expansion says $f(x+h)=f(x)+\nabla f(x)\cdot h+o(|h|), |h|\to 0$

Beniamin BOGOSEL Computational Maths 2 20/70

Basic idea

Suppose that f is C^1 (at least). Then the Taylor expansion says

$$f(x + h) \approx f(x) + \nabla f(x) \cdot h$$

With this in mind, the following definition is natural

Definition 12 (Descent direction)

A direction $d \in \mathbb{R}^n$ is called a descent direction for f at x if $\nabla f(x) \cdot d < 0$

This gives the following natural result

Proposition 13

If d is a descent direction for f at x, then going from x along d with a small step increment decreases the value of f.

Equivalently, if q(t) = f(x + td) then q'(0) < 0.

Indeed, by the chain rule, $q'(0) = \nabla f(x) \cdot d < 0$.

Beniamin BOGOSEL Computational Maths 2 20/70

Gradient descent algorithm

 \star the direction which gives (asymptotically) the steepest descent is the opposite of the gradient

Indeed, if $|d| = |\nabla f|$ then by the Cauchy-Schwarz inequality

$$|d \cdot \nabla f| \le |d| |\nabla f| = |\nabla f|^2$$

Therefore

$$d \cdot \nabla f \ge -|\nabla f|^2$$

and the minimum is attained for $d = -\nabla f$

Algorithm 1 (Generic gradient descent)

Initialization: Choose a starting point x_0 and set i = 0**Step** i:

- compute $f(x_i)$ and $\nabla f(x_i)$
- choose a step size t and set

$$x_{i+1} = x_i - t\nabla f(x_i)$$

Beniamin BOGOSEL Computational Maths 2 21/70

Simplest algorithm: fixed step

 \star fix the descent step $t=t_0$, the tolerance $\varepsilon>0$ and run the algorithm

Algorithm 2 (GD with fixed step)

Initialization: Choose a starting point x_0 and set i = 0**Step** i:

- compute $f(x_i)$ and $\nabla f(x_i)$
- set

$$x_{i+1} = x_i - t_0 \nabla f(x_i)$$

- check convergence
 - $|\nabla f(x_i)| < \varepsilon$ (the gradient is too small)
 - $|x_{i+1} x_i| < \varepsilon$ (the position of the optimum does not change much)
 - $|f(x_{i+1}) f(x_i)| < \varepsilon$ (the objective function does not change much)
- \star the algorithm is stopped in one of the following situations
 - convergence is reached
 - maximum number of iterations/function evaluations is reached
- \star the choice of t_0 is essential

Beniamin Bogosel Computational Maths 2 22/70

Quadratic case

- * simple example in where the solution is known
- ★ easy to visualize in 2D

$$f(x) = \frac{1}{2}x^T Ax - b \cdot x$$

with A symmetric positive definite

- \star recall that A is positive semi-definite if $Ax \cdot x \geq 0$ for every x
- \star recall that A is positive definite if $Ax \cdot x \geq 0$ and $Ax \cdot x = 0 \Rightarrow x = 0$.

Compute the gradient: two options

- write down the formulas in terms of $x = (x_1, ..., x_N)$ and compute the partial derivatives (a bit long)
- write f(x+h) for h small and identify the derivative from there as the linear part of the decomposition, proving that what remains is o(h) as $|h| \to 0$
- \star in the end $\nabla f(x) = Ax b$
- \star note that minimizing f amounts to solving the system Ax = b

Beniamin Bogosel Computational Maths 2 23/70

$$A = \begin{pmatrix} 1 & 0.4 \\ 0.4 & 2 \end{pmatrix}, b = (1,1), x_0 = (-0.5,0)$$

Step size t = 0.1: the algorithm converges

Beniamin Bogosel Computational Maths 2 24/70

$$A = \begin{pmatrix} 1 & 0.4 \\ 0.4 & 2 \end{pmatrix}, b = (1,1), x_0 = (-0.5,0)$$

Step size t = 0.001: no convergence before reaching max number of iterations...

Beniamin BOGOSEL Computational Maths 2 24/70

For which steps we have convergence?

* In the quadratic case the GD algorithm is

$$x_{k+1} = x_k - t(Ax_k - b)$$

* subtracting the solution x^* and using $Ax^* = b$ we get

$$(x_{k+1}-x^*)=(I-tA)(x_k-x^*)=(I-tA)^k(x_0-x^*).$$

 \star it is well known that $B^k \to 0$ if and only if $\rho(B) < 1$, where

$$\rho(B) = \max_{i=1,\dots,n} \lambda_i(B)$$
 is the spectral radius of B .

- \star the GD algorithm converges if and only if $\max_{i=1}^{n} |1-t\lambda_i(A)| < 1$
- \star a simple computation shows that GD converges if and only if $t \in (0, 2/\lambda_n(A))$

Beniamin BOGOSEL Computational Maths 2 25/70

The best convergence ratio

 \star the ratio of convergence is $\rho(I - tA)$

Question: Minimize this ratio for $t \in (0, 2/\lambda_n)$

 \star minimize the maximum of $|1-t\lambda_i|,\ i=1,...,n$

* a brief graphical argument shows that

$$\rho(I - tA) = \max\{|1 - t\lambda_1|, |1 - t\lambda_n|\}$$

 \star the spectral radius is minimized when $t=2/(\lambda_1+\lambda_n)$.

Beniamin BOGOSEL Computational Maths 2 26/70

 \star In an ideal world, one would like to minimize $q(t) = f(x_i - t\nabla f(x_i))$

Algorithm 3 (GD with Steepest Descent)

Initialization: Choose a starting point x_0 and set i = 0

Step i:

- compute $f(x_i)$ and $\nabla f(x_i)$
- choose the step size t_{opt} which minimizes the (one-dimensional) function $q(t) = f(x_i t\nabla f(x_i))$ and set

$$x_{i+1} = x_i - t_{opt} \nabla f(x_i)$$

* note that the second step is an optimization problem in itself: if this cannot be solved explicitly, this algorithm is far from optimal

Beniamin BOGOSEL Computational Maths 2 27/70

Back to the quadratic function

$$\star f(x) = \frac{1}{2}x^{T}Ax - b \cdot x, \ \nabla f(x) = Ax - b$$

 \star in the following denote $g_i = \nabla f(x_i)$

$$\star q(t) = f(x_i - tg_i)$$
 is a quadratic function of t

$$\star q'(t) = \nabla f(x_i - tg_i) \cdot (-g_i) = -g_i^T (Ax_i - b) + tg_i^T Ag_i$$

* a simple computation yields

$$q'(t) = 0 \Longrightarrow t_{opt} = \frac{g_i^T g_i}{g_i^T A g_i}$$

- \star in particular the gradient at the next point $x_i t_{opt}g_i$ is orthogonal to the actual gradient g_i
- \star note that the knowledge of the optimal descent step is strictly related to the objective function

Beniamin BOGOSEL Computational Maths 2 28/70

What happens in practice

Proposition 14

When using the Gradient Descent algorithm with optimal descent step, any two consecutive descent directions are orthogonal.

Beniamin BOGOSEL Computational Maths 2 29/70

Orthogonality of consecutive descent directions

Two ideas of proof:

1.
$$q'(t) = 0 \iff \nabla f(x_i - t\nabla f(x_i)) \cdot \nabla f(x_i) = 0$$

- 2. Let $d_i = \nabla f(x_i)$ be the *i*th gradient descent direction. If $d_i \cdot d_{i+1} \neq 0$ then the previous step was not optimal!
 - $d_i \cdot d_{i+1} > 0$: then $-d_i$ is still a descent direction
 - $d_i \cdot d_{i+1} < 0$: then d_i is still a descent direction
- * this brings us to one important idea

Other descent directions

The opposite of the gradient is not the only descent direction! For example, every symmetric positive definite matrix *A* generates a descent direction

$$d = -A\nabla f(x).$$

but more on this fact later on in the course...

Beniamin BOGOSEL Computational Maths 2 30/70

Accelerate convergence: variable step

- \star modify the step at each iteration, making sure that the obj. function decreases
- * trivial line-search algorithm

Algorithm 4 (GD with variable step)

Initialization: Choose a starting point x_0 , starting step $t = t_0$, maximum step t_M , $\eta_+ > 1$, $\eta_- < 1$ and set i = 0

Step i:

- compute $f(x_i)$ and $\nabla f(x_i)$
- set a temporary new point

$$x_{temp} = x_i - t\nabla f(x_i)$$

- If $f(x_{i+1}) < f(x_i)$
 - Accept the iteration: $x_{i+1} = x_{temp}$
 - increase the step size: $t = \min\{t \cdot \eta_+, t_M\}$
- Else
 - Refuse the iteration
 - decrease the step size: $t = t \cdot \eta_-$
- check convergence (additionally you may check if t is too small)

Beniamin Bogosel Computational Maths 2 31/70

Back to the quadratic example

Step size $t=0.5, t_M=10, \eta_+=1.1, \eta_-=0.8, \varepsilon=10^{-6}$: the algorithm converges faster

* a simple trick accelerates the convergence

Beniamin BOGOSEL Computational Maths 2 32/70

GD with Armijo line-search

Algorithm 5 (GD with Armijo line-search)

Initialization: Choose a starting point x_0 , an initial step $t=t_0$, $\eta>1$,

 $m_1 \in (0, 0.5)$ and set i = 0

Step i:

- compute $f(x_i)$ and $\nabla f(x_i)$
- line-search: $q(t) = f(x_i t\nabla f(x_i))$, set $t = t_0$
- while: $m_1 q'(0) < (q(t) q(0))/t$ do $t \leftarrow t/\eta$
- set

$$x_{i+1} = x_i - t\nabla f(x_i)$$

- * the above algorithm is similar to the GD with adaptive step, but is somewhat stronger since it imposes a quantified descent condition
- \star note that q'(0) < 0 so in the end

$$\frac{q(t)-q(0)}{t}\leq m_1q'(0)<0$$

which guarantees that q(t) < q(0)

* as in the lectures regarding the 1D case it is also possible to formulate GD algorithms with Goldstein-Price or Wolfe line-search routines

Beniamin BOGOSEL Computational Maths 2 33/70

Convergence of the GD algorithm

Proposition 15

For a given C^1 function f denote by Γ_f the set of its critical points

$$\Gamma_f = \{ x \in \mathbb{R}^n : \nabla f(x) = 0 \}$$

and suppose that f admits minimizers on \mathbb{R}^n . Furthermore, suppose that the set $S = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$ is bounded.

The trajectory (x_n) of a GD algorithm with Steepest-Descent (Armijo, Goldstein-Price, ...) line-search possesses limiting points and any such limiting point belongs to the set of critical points Γ_f .

Proof idea for Steepest Descent:

- \star we have min $f \leq f(x_{k+1}) \leq f(x_k)$. Therefore $(x_k) \subset \mathcal{S}$
- \star suppose that $\nabla f(x_k)$ does not converge to zero and arrive at a contradiction
- \star this kind of argument could be made rigorous using a point to set definition of the optimization algorithm also in the case where line-search is used

Beniamin BOGOSEL Computational Maths 2 34/7

Limiting points of GD

Consider the ODE $\frac{d}{dt}x(t) = -\nabla f(x(t))$: the trajectory dictated by the gradient

 \star Note that the gradient descent is just a discretization for this ODE!

$$\star \nabla f(x(t)) = \nabla f(x(t)) - \nabla f(x^*) \approx D^2 f(x^*)(x(t) - x^*)$$

$$-\nabla f(x(t)) \cdot (x^* - x(t)) \approx (x(t) - x^*)^T D^2 f(x^*) (x(t) - x^*).$$

We have the following situations:

- A $D^2f(x^*)$ is positive definite: then x^* can be a limiting point for GD as it is a local minimum
- B $D^2 f(x^*)$ is negative definite: then the trajectory x(t) will never get close to x^* provided it does not start there.
- C $D^2f(x^*)$ is indefinite: then x^* is a saddle point of f. In order to reach x^* you need to start in a particular set S of dimension less than n: practically, this is extremely unlikely.

$$f(x,y) = (x^2 - 1)^2(y^2 + 1) + 0.2y^2$$

- \star $f \geq 0$ and f attains its minimum for $(\pm 1, 0)$
- * (0,0) is a saddle point: $\nabla f(0,0) = (0,0), \ D^2 f(0,0) = \begin{pmatrix} -4 & 0 \\ 0 & 2.4 \end{pmatrix}$

Behavior of GD with different initializations

 \star Initializing on the "ridge" that passes through the saddle point: $x_0 = (0, 1.5)$

- \star the algorithm converges to the saddle point
- \star the gradient information "does not see" that there are regions where the value of f is lower

Behavior of GD with different initializations (2)

* A slightly perturbed initialization: $x_0 = (10^{-6}, 1.5)$

- \star the algorithm converges to a local minimum and avoids the saddle point
- * Remember: avoid initializations that may be biased with respect to the function f (e.g. $x_0 = 0$, etc...). You may use a random number generator to add some random noise to your initial condition. Also, repeat simulation with multiple initializations in order to avoid saddle points and local minima

Convergence of GD for quadratic functionals

* Consider $f(x) = \frac{1}{2}x^T A x - b^T x$ with A symmetric positive-definite and denote by $0 < \lambda_{\min} < \lambda_{\max}$ the smallest and largest of its eigenvalues

 \star the gradient is $\nabla f(x) = Ax - b$ and x^* verifies $Ax^* = b$

* inaccuracy in terms of the objective:

$$E(x) = f(x) - f(x^*) = \frac{1}{2}(x - x^*)^T A(x - x^*) = \frac{1}{2}||x - x^*||_A^2$$

 \star denoting $g_i = Ax_i - b$ (the gradient at iteration i) we previously found that the optimal step for the Steepest descent is

$$t_i = \frac{g_i \cdot g_i}{g_i^T A g_i}$$
, which gives $x_{i+1} = x_i - \frac{g_i \cdot g_i}{g_i^T A g_i} g_i$

* explicit computation gives

$$E(x_{i+1}) = \left(1 - \frac{(g_i \cdot g_i)^2}{[g_i^T A g_i][g_i^T A^{-1} g_i]}\right) E(x_i)$$

Lemma: (Kantorovich) if Q is the condition number of a positive definite and symmetric matrix A (ratio largest/smallest eigenvalues) then

$$\frac{(x \cdot x)^2}{[x^T A x][x^T A^{-1} x]} \ge \frac{4Q}{(1+Q)^2}.$$

* Consider the norm given by A: $||x||_A^2 = x^T A x$.

Proposition 16 (Convergence ratio: Steepest Descent, quadratic case)

The Steepest Descent algorithm applied to a strongly convex quadratic form f with condition number Q converges linearly with the convergence ratio at most

$$1 - \frac{4Q}{(1+Q)^2} = \left(\frac{Q-1}{Q+1}\right)^2.$$

More precisely, we have

$$f(x_N) - \min f \le \left(\frac{Q-1}{Q+1}\right)^{2N} [f(x_0) - \min f].$$

Another interpretation is:

$$||x_N - x^*||_A \le \left(\frac{Q-1}{Q+1}\right)^N ||x_0 - x^*||_A.$$

 \star note that if Q is large then the convergence is slow: this is observed in practice

Proposition 17

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is α -convex, i.e.

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x) + \frac{\alpha}{2} |x - y|^2$$

for some $\alpha > 0$. Moreover, suppose that ∇f is Lipschitz, i.e. there exists a constant L > 0 such that

$$|\nabla f(x) - \nabla f(y)| \le L|x - y|.$$

Then, if t_0 is small enough, then the Gradient Descent algorithm with fixed step $t=t_0$ converges linearly to the global optimum.

Proof: As in the one dimensional case, simply define the fixed-point application

$$\mathcal{F}_t(x) = x - t\nabla f(x),$$

which is a contraction for t small enough.

- * therefore, the recurrence $x_{n+1} = \mathcal{F}_t(x_n)$ converges to the fixed point x^* which verifies $\nabla f(x^*) = 0$ and is thus the global minimum.
- \star the hypotheses could be somewhat relaxed, but the theoretical proof gets more involved

Beniamin Bogosel Computational Maths 2 41/70

Interpretation

⋆ it is possible to prove that

$$|\mathcal{F}_t(x) - \mathcal{F}_t(y)| \le (1 - 2\alpha t + L^2 t^2)^{1/2} |x - y|$$

- \star for $t \in (0, 2\alpha/L^2)$ we have $(1 2\alpha t + L^2 t^2) \in (0, 1)$ so \mathcal{F}_t is a contraction
- * in particular $|x_{n+1} x^*| \le (1 2\alpha t + L^2 t^2)^{1/2} |x_n x^*|$
- \star for $t = \alpha/L^2$ the contraction factor is $(1 \alpha^2/L^2)^{1/2}$
- \star the eigenvalues of $D^2 f(x)$ are in $[\alpha, L]$ so the condition number verifies

$$1 \leq Q = rac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}} \leq rac{L}{lpha}.$$

* the convergence is linear, but the ratio of convergence is (roughly) dictated by the condition number of the Hessian $D^2 f(x)$ at x^*

Important observation

Note that in the convergence estimates for the Gradient descent the condition number Q is important for evaluating the speed of convergence!

Proposition 18

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is α -convex, i.e.

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x) + \frac{\alpha}{2} |x - y|^2$$

for some $\alpha > 0$. Moreover, suppose that ∇f is Lipschitz, i.e. there exists a constant L > 0 such that

$$|\nabla f(x) - \nabla f(y)| \le L|x - y|.$$

Then, then the Gradient Descent algorithm with fixed step t converges linearly to the optimum for all initalizations x_0 if and only if $t \in (0, 2/L)$.

Moreover, the optimal convergence speed is attained for the step

 $t_{\rm opt} = 2/(L + \alpha)$ and the optimal convergence ratio $\gamma_{\rm opt}$ verifies

$$\gamma_{\text{opt}} = \frac{1 - \alpha/L}{1 + \alpha/L}, ||x_{n+1} - x^*|| \le \gamma_{\text{opt}} ||x_n - x^*||.$$

- * the proof uses the Taylor remainder theorem with exact remainder
- * see the course MAP435 by G. Allaire!
- * the optimal convergence speed is still bad if the condition number L/α is big.

$$f(x) = x^T A x$$
, $A = \begin{pmatrix} 0.1 & 0 \\ 0 & 2000 \end{pmatrix}$, $x_0 = (-0.5, 1.5)$, $Q = 20000$

Geometry and Initialization:

$$f(x) = x^T A x$$
, $A = \begin{pmatrix} 0.1 & 0 \\ 0 & 2000 \end{pmatrix}$, $x_0 = (-0.5, 1.5)$, $Q = 20000$

Fixed step, 1000 iterations: algorithm seems to converge

Quadratic ill-conditioned problem

$$f(x) = x^T A x$$
, $A = \begin{pmatrix} 0.1 & 0 \\ 0 & 2000 \end{pmatrix}$, $x_0 = (-0.5, 1.5)$, $Q = 20000$
Fixed step, 1000 **iterations**:

$$f(x) = x^T A x$$
, $A = \begin{pmatrix} 0.1 & 0 \\ 0 & 2000 \end{pmatrix}$, $x_0 = (-0.5, 1.5)$, $Q = 20000$

Fixed step, 10^5 iterations:

$$f(x) = x^T A x$$
, $A = \begin{pmatrix} 0.1 & 0 \\ 0 & 2000 \end{pmatrix}$, $x_0 = (-0.5, 1.5)$, $Q = 20000$

Optimal step: good, but not applicable to general functions

$$f(x) = x^T A x$$
, $A = \begin{pmatrix} 0.1 & 0 \\ 0 & 2000 \end{pmatrix}$, $x_0 = (-0.5, 1.5)$, $Q = 20000$

Rescale using the Hessian: look at the function in the right coordinates

Conclusions for GD

- the GD algorithms usually converge to local minimizers under very weak hypothesis
- in the strongly convex case we can prove that the rate of convergence is linear
- the speed of convergence is dictated by the condition number of f: in cases where this condition number is large, the GD algorithm may fail to converge rapidly enough
- when the problem is ill-conditioned GD algorithms look at the optimization
 path in the wrong coordinates: the key to accelerating the convergence is
 to modify the geometry by rescaling some directions with respect to others!
- source of ill conditioning in practice: components of the gradients are orders of magnitude apart, different units of measure for different variables, etc.

Beniamin Bogosel Computational Maths 2 45/70

Before going further: constraints

★ often the minimization is subject to some constraints

$$\min_{x \in K} f(x)$$

where K is defined via some analytic relations or inequalities

- ★ the theory of Lagrange multipliers is presented further on in the course, but there is a simple way to handle basic constraints: projection
- \star suppose that K is closed and convex. Then for every $y \in \mathbb{R}^n$ the projection $P_K y$ is well defined and solves the problem

$$P_K(y) \leftarrow \min_{x \in K} |x - y|$$

Algorithm 6 (Projected GD)

Consider K a closed and convex set in \mathbb{R}^n and let $x_0 \in K$ be an initial point. The solution of the problem

$$\min_{x \in K} f(x)$$

may be approximated using the iterative algorithm

$$x_{i+1} = P_K(x_i - t\nabla f(x_i))$$

Proposition 19 (Convergence of Projected GD)

Suppose that f is α -convex, differentiable and f' is L-Lipschitz. Then if the step t verifies $t \in (0, 2\alpha/L^2)$ then the GD algorithm with fixed step and projection on K converges to the unique solution.

Proof: The same as for the GD algorithm using the fact that the projection is a weak-contraction

$$|P_K x - P_K y| \le |x - y|$$

- \star Projected GD may seem good, but is of limited practical use: the main difficulty is how to compute P_K which is in itself an optimization problem
- * particular cases which are easy:
 - $K = \prod_{i=1}^{n} [a_i, b_i]$: P_K is just the truncation operator on each coordinate
 - K = B(c, r) is a ball in \mathbb{R}^d : $P_K(x) = c + r(x c)/|x c|$
 - $K = \{x : \sum_{i=1}^{n} v_i x_i = c\}$: affine hyperplanes projection can be computed analytically

Beniamin Bogosel Computational Maths 2 47/70

Projection on affine constraints

Suppose $K = \{x : Ax = b\}$ where A is an $m \times n$ matrix of rank m and $b \in \mathbb{R}^m$. We are interested in solving

$$P_K(y) = \operatorname{argmin}_{x \in K} |x - y|^2$$

- Existence, uniqueness: $x \mapsto |x-y|^2$ is " ∞ at infinity" and strictly convex, K is convex
- Euler inequality: $\langle \nabla_x | x^* y |^2, v \rangle \ge 0$ for every $v \in \ker A$
- $x^* y \in (\ker A)^{\perp} = \operatorname{Im} A^T$ (Exercise!)
- $x^* = y + A^T \lambda$ $(\lambda \in \mathbb{R}^m \text{ contains the Lagrange multipliers})$
- $Ax = b \Rightarrow b = Ax^* = Ay + AA^T\lambda$ so finally $\lambda = (AA^T)^{-1}(b Ay)$
- In the end, use λ to find x^* :

$$x^* = y + A^T (AA^T)^{-1} (b - Ay).$$

Constraints: second method

★ we can eliminate the constraints by including them into the function to be minimized

$$\min_{C(x)=0} f(x)$$
 becomes $\min_{x \in \mathbb{R}^n} f(x) + \frac{1}{\varepsilon} |C(x)|^2$ $(\varepsilon > 0)$

* we obtain an optimization problem without constraints for which classical algorithms can be applied

Proposition 20 (Constraints via Penalization)

Consider the problem (P) defined by $\min_{C(x)=0} f(x)$, where C is a continuous

function $C: \mathbb{R}^n \to \mathbb{R}^p$ defining the constraints. Suppose that f is convex, continuous and ∞ at infinity.

Define now for $\varepsilon>0$ the problems (P_{ε}) by $\min_{x\in\mathbb{R}^n}f(x)+\frac{1}{\varepsilon}|C(x)|^2$. The problems

 (P_{ε}) admit minimizers denoted by x_{ε} . Then every limit point of x_{ε} as $\varepsilon \to 0$ converges to a solution of (P).

Proof: Exercise!

Conclusion: constraints

- for simple constraints: projected gradient algorithm works fine
- it is possible to eliminate the constraints using a penalization
 - simple to implement in practice if f and C are smooth
 - theoretical convergence is valid for $\varepsilon \to 0$: in practice we never get to 0...
 - as ε grows, the constraint term $\frac{1}{\varepsilon} |C(x)|^2$ may dominate in (P_{ε}) so we no longer advance in a direction which minimizes (P)
 - in practice we often start with ε large and solve the problem multiple times, diminishing ε and starting from the previous solution.
- we will come back later to the optimality conditions related to constraints related to the Lagrange multipliers

Beniamin Bogosel Computational Maths 2 50/70