TEST REPORT

Reference No. : WTS17S0271459E

FCC ID : 2AEKZ-IHB227B

Applicant...... : RICH FIELD ELECTRONICS COMPANY LIMITED

Dongguan City, Guangdong, China

Manufacturer : RICH FIELD ELECTRONICS COMPANY LIMITED

Dongguan City, Guangdong, China

Product Name...... : Wireless Home Music System

Model No..... : IHB227B

Brand Name..... : GPX

Standards...... FCC CFR47 Part 15 Section 15.247:2016

Date of Receipt sample : Feb. 22, 2017

Date of Test : Feb. 23 – Mar. 16, 2017

Date of Issue...... : Mar. 17, 2017

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

approved by:

Reference No.: WTS17S0271459E Page 2 of 70

2 Test Summary

Test Items	Test Requirement	Result			
	15.205(a)				
Radiated Spurious Emissions	Radiated Spurious Emissions 15.209				
	15.247(d)				
Band edge	15.247(d)	DACC			
Ballu euge	15.205(a)	PASS			
Conduct Emission	15.207	PASS			
20dB Bandwidth	15.247(a)(1)	PASS			
Maximum Peak Output Power	15.247(b)(1)	PASS			
Frequency Separation	15.247(a)(1)	PASS			
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS			
Dwell time	15.247(a)(1)(iii)	PASS			
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS			

Reference No.: WTS17S0271459E

3 Contents

			Page
1		/ER PAGE	
2		T SUMMARY	
3		ITENTS	
4		IERAL INFORMATION	
	4.1 4.2	GENERAL DESCRIPTION OF E.U.T. DETAILS OF E.U.T.	
	4.2	CHANNEL LIST	
	4.4	TEST MODE	
	4.5	TEST FACILITY	
5	EQU	JIPMENT USED DURING TEST	7
	5.1	EQUIPMENT LIST	
	5.2 5.3	MEASUREMENT UNCERTAINTY	
6		IDUCTED EMISSION	
U	6.1	E.U.T. OPERATION	
	6.2	EUT SETUP	
	6.3	MEASUREMENT DESCRIPTION	
	6.4	CONDUCTED EMISSION TEST RESULT	
7	RAD	DIATED SPURIOUS EMISSIONS	
	7.1 7.2	EUT OPERATION	
	7.3	TEST SETUP	
	7.4	TEST PROCEDURE	
	7.5	SUMMARY OF TEST RESULTS	16
8	BAN	ID EDGE MEASUREMENT	
	8.1	TEST PROCEDURE	
	8.2	Test Result	
9		IDWIDTH MEASUREMENT	
	9.1 9.2	Test Procedure Test Result	
10		(IMUM PEAK OUTPUT POWER	
10	10.1	Test Procedure	
	10.2	TEST RESULT	
11	HOP	PPING CHANNEL SEPARATION	38
	11.1	Test Procedure	38
	11.2	TEST RESULT	38
12	NUM	MBER OF HOPPING FREQUENCY	44
	12.1	Test Procedure	
	12.2		
13		T D	
	13.1 13.2	TEST PROCEDURE TEST RESULT	
14		ENNA REQUIREMENT	
15		EXPOSURE	
13	15.1	REQUIREMENTS	
	13.1	NEQUIREMENTS	33

Reference No.: WTS17S0271459E Page 4 of 70

	15.2	THE PROCEDURES / LIMIT	53
	15.3	MPE CALCULATION METHOD	54
16	PHO1	TOGRAPHS – MODEL IHB227B TEST SETUP	55
	16.1	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 1#	55
	16.2	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	55
17	PHO1	TOGRAPHS - CONSTRUCTIONAL DETAILS	58
	17.1	Model IHB227B-External Photos	58
	17.2	MODEL IHB227B-INTERNAL PHOTOS	63

Reference No.: WTS17S0271459E Page 5 of 70

4 General Information

4.1 General Description of E.U.T.

Product Name: Wireless Home Music System

Model No.: IHB227B

Model Difference: N/A

Operation Frequency: 2402MHz ~ 2480MHz, 79 channels in total

Type of Modulation: GFSK, Pi/4DQPSK, 8DPSK

The lowest oscillator: 32.768KHz

Antenna installation: PCB printed antenna

Antenna Gain: 0dBi

4.2 Details of E.U.T.

Technical Data: Input: AC 120V, 60Hz, 23W

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Reference No.: WTS17S0271459E Page 6 of 70

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipment List Conducted Emissions Test Site 1#

2. LISN R&S ENV216 100115 Sep.12, 2016 Sep. 3. 3. Cable Top TYPE16(3.5M) - Sep.12, 2016 Sep. 12, 2016 Apr. 20, 2016	11, 2017 11, 2017 11, 2017 ibration ie Date 11, 2017 11, 2017
3. Cable Top TYPE16(3.5M) - Sep.12, 2016 Sep.	ibration ie Date 11, 2017 11, 2017
Item Equipment Manufacturer Model No. Serial No. Last Calibration Date Calibration Date 1. EMI Test Receiver R&S ESCI 101155 Sep.12, 2016 Sep 2. LISN SCHWARZBECK NSLK 8128 8128-289 Sep.12, 2016 Sep 3. Limiter York MTS-IMP-136 261115-001-0024 Sep.12, 2016 Sep 4. Cable Laplace RF300 - Sep.12, 2016 Sep 3m Semi-anechoic Chamber for Radiation Emissions Test site 1# Hem Equipment Manufacturer Model No. Serial No. Last Calibration Date Calibration Date Calibration Date Diametric Calibration Date Apr. 29, 2016	ibration te Date 11, 2017 11, 2017
Item Equipment Manufacturer Model No. Serial No. Last Calibration Date Calibration Date 1. EMI Test Receiver R&S ESCI 101155 Sep.12, 2016 Sep 2. LISN SCHWARZBECK NSLK 8128 8128-289 Sep.12, 2016 Sep 3. Limiter York MTS-IMP-136 261115-001-0024 Sep.12, 2016 Sep 4. Cable Laplace RF300 - Sep.12, 2016 Sep 3m Semi-anechoic Chamber for Radiation Emissions Test site 1# Item Manufacturer Model No. Serial No. Last Calibration Date Calibration Date 1 Spectrum Analyzer R&S FSP 100091 Apr.29, 2016 Apr. 2 Amplifier Agilent 8447D 2944A10178 Apr.29, 2016 Apr. 3 Active Loop Antenna Beijing Dazhi ZN30900A 0703 Oct.17, 2016 Oct. 4 Trilog Broadband Antenna SCHWARZBECK VULB9163	11, 2017 11, 2017
Item Equipment Manufacturer Model No. Serial No. Calibration Date Calibration Date 1. EMI Test Receiver R&S ESCI 101155 Sep.12, 2016 Sep. 12, 2016 Apr. 20, 2016 Apr. 20	11, 2017 11, 2017
2. LISN SCHWARZBECK NSLK 8128 8128-289 Sep.12, 2016 Sep. 3. Sep. 3. Limiter York MTS-IMP-136 261115-001-0024 Sep. 12, 2016 Sep. 3. Sep.	11, 2017
3. Limiter York MTS-IMP-136 261115-001-0024 Sep.12, 2016 Sep. 12, 2016 Apr. 20, 2016 Apr.	
3. Limiter York MTS-IMP-136 0024 Sep.12, 2016 Sep. 12, 2016 Apr. 20, 2016 </td <td>11, 2017</td>	11, 2017
Item Equipment Manufacturer Model No. Serial No. Last Calibration Date Calibration Date 1 Spectrum Analyzer R&S FSP 100091 Apr.29, 2016 Apr. 29, 2016 Apr.	
Item Equipment Manufacturer Model No. Serial No. Last Calibration Date Calibration Date 1 Spectrum Analyzer R&S FSP 100091 Apr.29, 2016 Apr. 2 Amplifier Agilent 8447D 2944A10178 Apr.29, 2016 Apr. 3 Active Loop Antenna Beijing Dazhi ZN30900A 0703 Oct.17, 2016 Oct. 4 Trilog Broadband Antenna SCHWARZBECK VULB9163 336 Apr.09, 2016 Apr. 5 Coaxial Cable (below 1GHz) Top TYPE16(13M) - Sep.12, 2016 Sep. 6 Broad-band Horn SCHWARZBECK BRHA 9120 D 667 Apr.09, 2016 Apr.	11, 2017
Item Equipment Manufacturer Model No. Serial No. Calibration Date Calibration Date 1 Spectrum Analyzer R&S FSP 100091 Apr.29, 2016 Apr. 2 Amplifier Agilent 8447D 2944A10178 Apr.29, 2016 Apr. 3 Active Loop Antenna Beijing Dazhi ZN30900A 0703 Oct.17, 2016 Oct. 4 Trilog Broadband Antenna SCHWARZBECK VULB9163 336 Apr.09, 2016 Apr. 5 Coaxial Cable (below 1GHz) Top TYPE16(13M) - Sep.12, 2016 Sep. 6 Broad-band Horn SCHWARZBECK RBHA 9120 D 667 Apr.09, 2016 Apr.	
2 Amplifier Agilent 8447D 2944A10178 Apr.29, 2016 Apr. 3 Active Loop Antenna Beijing Dazhi ZN30900A 0703 Oct.17, 2016 Oct. 4 Trilog Broadband Antenna SCHWARZBECK VULB9163 336 Apr.09, 2016 Apr. 5 Coaxial Cable (below 1GHz) Top TYPE16(13M) - Sep.12, 2016 Sep. 6 Broad-band Horn SCHWARZBECK BBHA 9120 D 667 Apr.09, 2016 Apr.	ibration le Date
3	28, 2017
3 Active Loop Antenna Beijing Dazhi ZN30900A 0703 Oct.17, 2016 Oct. 4 Trilog Broadband Antenna SCHWARZBECK VULB9163 336 Apr.09, 2016 Apr. 5 Coaxial Cable (below 1GHz) Top TYPE16(13M) - Sep.12, 2016 Sep. 6 Broad-band Horn SCHWARZBECK BBHA 9120 D 667 Apr.09, 2016 Apr.	28, 2017
4 Antenna SCHWARZBECK VOLB9163 336 Apr.09, 2016 Apr. 5 Coaxial Cable (below 1GHz) Top TYPE16(13M) - Sep.12, 2016 Sep. 6 Broad-band Horn SCHWARZBECK BBHA 9120 D 667 Apr.09, 2016 Apr.	16, 2017
5 (below 1GHz) 10p 1YPE16(13M) - Sep.12, 2016 Sep. 6 Broad-band Horn SCHWARZBECK BRHA 9120 D 667 Apr 09 2016 Apr	08, 2017
I SCHWARZBECK I BBHA 912010 I - 667 I ANTON 2016 I ANT	11, 2017
Antenna	08, 2017
Preamplifier DIRECTION	12, 2017
8 Coaxial Cable (above 1GHz) Top 1GHz-18GHz EW02014-7 Apr.13, 2016 Apr.	12, 2017
3m Semi-anechoic Chamber for Radiation Emissions Test site 2#	
I Itam Fallinment Mighiltactilitat Mighal No Sarial No Calintation	ibration le Date
1 Test Receiver R&S ESCI 101296 Apr.13, 2016 Apr.	
2 Trilog Broadband Antenna SCHWARZBECK VULB9160 9160-3325 Apr.09, 2016 Apr.	12, 2017
3 Amplifier ANRITSU MH648A M43381 Apr.13, 2016 Apr.	12, 2017 08, 2017
4 Cable HUBER+SUHNER CBL2 525178 Apr.13, 2016 Apr.	

Last

Calibration

RF Co	RF Conducted Testing									
Item Equipment		Equipment Manufacturer		Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12, 2016	Sep.11, 2017				
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12, 2016	Sep.11, 2017				
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12, 2016	Sep.11, 2017				

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Effissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS17S0271459E Page 9 of 70

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

Live line:

Neutral line:

12

16.9340

8.18

10.28

18.46

50.00

-31.54

AVG

Reference No.: WTS17S0271459E Page 12 of 70

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

-	Field Stren	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS17S0271459E Page 15 of 70

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTS17S0271459E Page 16 of 70

7.5 Summary of Test Results

Test Frequency: 32.768KHz to 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz to 18GHz

Remark: only the worst data (GFSK modulation mode) were reported.

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Low Channel									
223.54	43.22	QP	183	1.6	Н	-13.35	29.87	46.00	-16.13
223.54	42.65	QP	260	1.0	V	-13.35	29.30	46.00	-16.70
4804.00	45.98	PK	336	1.0	V	-1.06	44.92	74.00	-29.08
4804.00	43.11	Ave	336	1.0	V	-1.06	42.05	54.00	-11.95
7206.00	40.87	PK	343	1.2	Н	1.33	42.20	74.00	-31.80
7206.00	36.33	Ave	343	1.2	Н	1.33	37.66	54.00	-16.34
2348.01	45.49	PK	309	1.7	V	-13.19	32.30	74.00	-41.70
2348.01	37.55	Ave	309	1.7	V	-13.19	24.36	54.00	-29.64
2353.99	43.64	PK	303	1.2	Н	-13.14	30.50	74.00	-43.50
2353.99	36.74	Ave	303	1.2	Н	-13.14	23.60	54.00	-30.40
2493.88	43.20	PK	327	1.5	V	-13.08	30.12	74.00	-43.88
2493.88	37.00	Ave	327	1.5	V	-13.08	23.92	54.00	-30.08

	Receiver		Turn	RX Antenna		Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel								
223.54	43.71	QP	108	1.7	Н	-13.35	30.36	46.00	-15.64
223.54	41.22	QP	264	1.5	V	-13.35	27.87	46.00	-18.13
4882.00	47.13	PK	190	1.7	V	-0.62	46.51	74.00	-27.49
4882.00	44.29	Ave	190	1.7	V	-0.62	43.67	54.00	-10.33
7323.00	41.25	PK	259	1.0	Н	2.21	43.46	74.00	-30.54
7323.00	37.16	Ave	259	1.0	Н	2.21	39.37	54.00	-14.63
2321.88	46.68	PK	291	1.9	V	-13.19	33.49	74.00	-40.51
2321.88	37.03	Ave	291	1.9	V	-13.19	23.84	54.00	-30.16
2368.08	43.66	PK	176	1.7	Н	-13.14	30.52	74.00	-43.48
2368.08	37.23	Ave	176	1.7	Н	-13.14	24.09	54.00	-29.91
2490.34	42.25	PK	165	1.1	V	-13.08	29.17	74.00	-44.83
2490.34	37.87	Ave	165	1.1	V	-13.08	24.79	54.00	-29.21

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected	Corrected		
				Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK High Channel									
223.54	43.78	QP	66	1.9	Н	-13.35	30.43	46.00	-15.57
223.54	39.91	QP	73	1.9	V	-13.35	26.56	46.00	-19.44
4960.00	48.15	PK	337	1.9	V	-0.24	47.91	74.00	-26.09
4960.00	42.88	Ave	337	1.9	V	-0.24	42.64	54.00	-11.36
7440.00	40.97	PK	218	1.2	Н	2.84	43.81	74.00	-30.19
7440.00	36.68	Ave	218	1.2	Н	2.84	39.52	54.00	-14.48
2318.69	46.06	PK	10	1.1	V	-13.19	32.87	74.00	-41.13
2318.69	39.80	Ave	10	1.1	V	-13.19	26.61	54.00	-27.39
2381.50	42.46	PK	304	1.6	Н	-13.14	29.32	74.00	-44.68
2381.50	37.39	Ave	304	1.6	Н	-13.14	24.25	54.00	-29.75
2488.38	43.64	PK	277	1.7	V	-13.08	30.56	74.00	-43.44
2488.38	36.39	Ave	277	1.7	V	-13.08	23.31	54.00	-30.69

Test Frequency: 18GHz to 25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS17S0271459E Page 19 of 70

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see

§15.205(c)).

Test Mode: Transmitting and Hopping

8.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

8.2 Test Result

Test plots

Reference No.: WTS17S0271459E Page 26 of 70

9 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

9.2 Test Result

Modulation	Test Channel	20 dB Bandwidth	99% Bandwidth
GFSK	Low	1.090MHz	0.970MHz
GFSK	Middle	1.090MHz	0.970MHz
GFSK	High	1.090MHz	0.970MHz
Pi/4 DQPSK	Low	1.323MHz	1.293MHz
Pi/4 DQPSK	Middle	1.323MHz	1.293MHz
Pi/4 DQPSK	High	1.323MHz	1.305MHz
8DPSK	Low	1.335MHz	1.263MHz
8DPSK	Middle	1.335MHz	1.293MHz
8DPSK	High	1.335MHz	1.299MHz

Reference No.: WTS17S0271459E Page 32 of 70

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW =3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result

	Doto	Pea			
Test Mode	Data Rate	Low Chanel	Middle Chanel	High Chanel	Limit (dBm)
GFSK	1Mbps	0.17	-1.13	-2.34	20.97
4*π4DQPSK	2Mbps	0.14	-1.16	-2.35	20.97
8DPSK	3Mbps	0.13	-1.18	-2.38	20.97

Test plots

Reference No.: WTS17S0271459E Page 38 of 70

11 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Modulation	Test Channel	Separation (MHz)	Result	
GFSK	Low	1.000	PASS	
GFSK	Middle	1.000	PASS	
GFSK	High	1.000	PASS	
Pi/4 DQPSK	Low	1.006	PASS	
Pi/4 DQPSK	Middle	1.000	PASS	
Pi/4 DQPSK	High	1.000	PASS	
8DPSK	Low	1.000	PASS	
8DPSK	PSK Middle 1.000		PASS	
8DPSK	High	1.000	PASS	

Reference No.: WTS17S0271459E Page 44 of 70

12 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

Test Plots: 79 Channels in total

Reference No.: WTS17S0271459E Page 46 of 70

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)			
DH5	5 1600/79/6*0.4*79*(MkrDelta)/1000			
DH3 1600/79/4*0.4*79*(MkrDelta)/1000				
DH1 1600/79/2*0.4*79*(MkrDelta)/1000				
Remark: Mkr Delta is once pulse time. Only the worst data(DH5)				

Remark: Mkr Delta is once pulse time. Only the worst data(DH5) were show as follow.

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)	
		Low	2.968	0.317	0.4	
GFSK	DH5	middle	2.904	0.310	0.4	
		High	2.952	0.315	0.4	
Pi/4DQPSK	DH5	Low	2.904	0.310	0.4	
		middle	2.960	0.316	0.4	
					High	2.904
8DPSK	DH5	Low	2.960	0.316	0.4	
		middle	2.912	0.311	0.4	
		High	2.904	0.310	0.4	

14 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna, the gain is 0 dBi. meets the requirements of FCC 15.203.

Reference No.: WTS17S0271459E Page 53 of 70

15 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

15.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

15.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS17S0271459E Page 54 of 70

15.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm²)	Limit of Power Density (mW/cm ²)	Result
0.00	1.000	0.17	1.04	0.000207	1	Compliance

16 Photographs – Model IHB227B Test Setup

16.1 Photograph - Conducted Emission Test Setup at Test Site 1#

16.2 Photograph – Radiation Spurious Emission Test Setup

32.768KHz to 30MHz at Test Site 2#

30MHz to 1GHz at Test Site 2#

Above 1GHz at Test Site 1#

Reference No.: WTS17S0271459E Page 57 of 70

17 Photographs - Constructional Details

17.1 Model IHB227B-External Photos

Reference No.: WTS17S0271459E Page 59 of 70

Reference No.: WTS17S0271459E Page 60 of 70

Reference No.: WTS17S0271459E Page 61 of 70

Reference No.: WTS17S0271459E Page 62 of 70

17.2 Model IHB227B-Internal Photos

Reference No.: WTS17S0271459E Page 64 of 70

Reference No.: WTS17S0271459E Page 65 of 70

Reference No.: WTS17S0271459E Page 66 of 70

Reference No.: WTS17S0271459E Page 67 of 70

Reference No.: WTS17S0271459E Page 68 of 70

Reference No.: WTS17S0271459E Page 69 of 70

===== End of Report =====