PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Clas	ssification 7:		(11) International Publication Number:	WO 00/18904
C12N 15/00		A2	(43) International Publication Date:	6 April 2000 (06.04.00
(63) Related by Continuation (CIP) to Earlier App US Filed on US Filed on (71) Applicant (for all design NIUM BIOTHERAPE rial Drive, Cambridge, (72) Inventor; and (75) Inventor/Applicant (for [AU/US]; 22 Hanson (74) Agent: MEIKLEJOHN,	a: 30 September 1999 30 September 1998 (30.09. 2 October 1998 (02.10.98) a (CON) or Continuation- lications 09/164,2 30 September 1998 09/164,1 2 October 1998 mated States except US): EUTICS, INC. [US/US]; 6: MA 02139 (US). US only): BARNES, The Street #2, Boston, MA 021	98) U in-Part 220 (CO (30.09.9 69 (CO (02.10.9 MILLE 20 Mem	BR, BY, CA, CH, CN, CR, Cl ES, FI, GB, GD, GE, GH, GM, KE, KG, KP, KR, KZ, LC, LK, MG, MK, MN, MW, MX, NO, SE, SG, SI, SK, SL, TJ, TM, T UZ, VN, YU, ZA, ZW, ARIPO MW, SD, SL, SZ, TZ, UG, ZW) BY, KG, KZ, MD, RU, TI, TM) CH, CY, DE, DK, ES, FI, FR, NL, PT, SE), OAPI patent (BF, GN, GW, ML, MR, NE, SN, TI Published With declaration under Article title not checked by the Internation	U, CZ, DE, DK, DM, EE HR, HU, ID, IL, IN, IS, JF LR, LS, LT, LU, LV, ME NZ, PL, PT, RO, RU, SE TR, TT, TZ, UA, UG, US patent (GH, GM, KE, LS, Eurasian patent (AM, AZ, European patent (AT, BE GB, GR, IE, IT, LU, MC BJ, CF, CG, CI, CM, GA D, TG).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain ·	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithnania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	13	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PŁ	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	L	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
ER	Estonia	LR	Liberia	. SG	Singapore		

SECRETED PROTEINS AND NUCLEIC ACIDS ENCODING THEM

Related Application Information

This application is a continuation-in-part of application serial number 09/164,169, filed October 2, 1998, which is a continuation-in-part of application serial number 09/164,220, filed September 30, 1998.

Background of the Invention

10 Many secreted proteins, for example, cytokines and cytokine receptors, play a vital role in the regulation of cell growth, cell differentiation, and a variety of specific cellular responses. A number of medically useful proteins, including erythropoietin, granulocyte15 macrophage colony stimulating factor, human growth hormone, and various interleukins, are secreted proteins. Thus, an important goal in the design and development of new therapies is the identification and characterization of secreted and transmembrane proteins and the genes
20 which encode them.

Many secreted proteins are receptors which bind a ligand and transduce an intracellular signal, leading to a variety of cellular responses. The identification and characterization of such a receptor enables one to identify both the ligands which bind to the receptor and the intracellular molecules and signal transduction pathways associated with the receptor, permitting one to identify or design modulators of receptor activity, e.g., receptor agonists or antagonists and modulators of signal transduction.

Summary of the Invention

The present invention is based, at least in part, on the discovery of cDNA molecules encoding TANGO 180, TANGO WO 00/18904

- 2 -

181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 187, TANGO 188, TANGO 189, and TANGO 215, all of which are predicted to be either wholly secreted or transmembrane proteins. These proteins, fragments, 5 derivatives, and variants thereof are collectively referred to as "polypeptides of the invention" or "proteins of the invention." Nucleic acid molecules encoding polypeptides of the invention are collectively

The nucleic acids and polypeptides of the present 10 invention are useful as modulating agents in regulating a variety of cellular processes. Accordingly, in one aspect, the present invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or 15 a biologically active portion thereof. The present invention also provides nucleic acid molecules which are suitable as primers or hybridization probes for the detection of nucleic acids encoding a polypeptide of the invention.

referred to as "nucleic acids of the invention."

The invention features nucleic acid molecules which are 20 at least 45% (or 55%, 65%, 75%, 85%, 95%, or 98%) identical to the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43 and ____ or the nucleotide sequence of the cDNA of a clone deposited with ATCC as any of 25 Accession Numbers 98899, 98900 and 98901 (the "cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001"), or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 300 (325, 350, 375, 400, 30 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1200) nucleotides of the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43 and ___ -_ or the nucleotide sequence of the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 45% (or 55%, 65%, 75%, 85%, 95%, or 98%) identical to the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or the amino acid sequence encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof.

In preferred embodiments, the nucleic acid molecules

10 have the nucleotide sequence of any of SEQ ID NOs:1-22,

34-43 and __ - __ or the nucleotide sequence of the cDNA

of a clone deposited as any of ATCC 98899, 98900, and

989001.

Also within the invention are nucleic acid molecules

which encode a fragment of a polypeptide having the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and

the fragment including at least 15 (25, 30, 50, 100, 150, 300, or 400) contiguous amino acids of any of SEQ ID Nos:23-33, 54-63, and

or the polypeptide encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001.

The invention includes nucleic acid molecules which encode a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, wherein the nucleic acid molecule hybridizes under stringent conditions to a nucleic acid molecule having a nucleic acid sequence

30 encoding any of SEQ ID NOs:22-33, 54-63, and _____, or a complement thereof.

Also within the invention are: isolated polypeptides or proteins having an amino acid sequence that is at least about 65%, preferably 75%, 85%, 95%, or 98% identical to

- 4 -

the amino acid sequence of any of SEQ ID NOs: 22-33, 54-63, and ____-

Also within the invention are: isolated polypeptides or proteins which are encoded by a nucleic acid molecule

5 having a nucleotide sequence that is at least about 65%, preferably 75%, 85%, or 95% identical the nucleic acid sequence encoding any of SEQ ID Nos:22-33, 54-63, and _____ and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide

10 sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the sequence of any of SEQ ID NOs:1-22, 34-43, and _____, and a complement thereof or the non-coding strand of the cDNA of a clone deposited as any of ATCC 98899, 98900, and

15 989001.

Also within the invention are polypeptides which are naturally occurring allelic variants of a polypeptide that includes the amino acid sequence of any of SEQ ID NOs:22-33, 54-63, and __ - __ or an amino acid sequence encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes under stringent conditions to a nucleic acid molecule having the sequence of any of SEQ ID NOs:1-22, 34-43, and __ - _ or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and __ - __, of the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 300 (325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1290) nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the

- 5 -

nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and

of the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof. In preferred embodiments, the isolated nucleic acid molecules encode a cytoplasmic, transmembrane, or extracellular domain of a polypeptide of the invention. In another embodiment, the invention provides an isolated nucleic acid molecule which is antisense to the coding strand of a nucleic acid of the invention.

Another aspect of the invention provides vectors, e.g., recombinant expression vectors, comprising a nucleic acid molecule of the invention. In another embodiment the invention provides host cells containing such a vector. The invention also provides methods for producing a polypeptide of the invention by culturing, in a suitable medium, a host cell of the invention containing a recombinant expression vector encoding a polypeptide of the invention such that the polypeptide of the invention is produced.

Another aspect of this invention features isolated or 20 recombinant proteins and polypeptides of the invention. Preferred proteins and polypeptides possess at least one biological activity possessed by the corresponding naturally-occurring human polypeptide. An activity, a 25 biological activity, and a functional activity of a polypeptide of the invention refers to an activity exerted by a protein or polypeptide of the invention on a responsive cell as determined in vivo, or in vitro, according to standard techniques. Such activities can be 30 a direct activity, such as an association with or an enzymatic activity on a second protein or an indirect activity, such as a cellular signaling activity mediated by interaction of the protein with a second protein. Thus, such activities include, e.g., (1) the ability to 35 form protein-protein interactions with proteins in the

- 6 -

signaling pathway of the naturally-occurring
polypeptide; (2) the ability to bind a ligand of the
naturally-occurring polypeptide; (3) the ability to bind
to an intracellular target of the naturally-occurring
polypeptide. Other activities include: (1) the ability
to modulate cellular proliferation; (2) the ability to
modulate cellular differentiation; and (3) the ability to
modulate cell death.

In one embodiment, a polypeptide of the invention has
an amino acid sequence sufficiently identical to an
identified domain of a polypeptide of the invention. As
used herein, the term "sufficiently identical" refers to
a first amino acid or nucleotide sequence which contains
a sufficient or minimum number of identical or equivalent
(e.g., with a similar side chain) amino acid residues or
nucleotides to a second amino acid or nucleotide sequence
such that the first and second amino acid or nucleotide
sequences have a common structural domain and/or common
functional activity. For example, amino acid or
nucleotide sequences which contain a common structural
domain having about 65% identity, preferably 75%
identity, more preferably 85%, 95%, or 98% identity are
defined herein as sufficiently identical.

In one embodiment, the isolated polypeptide of the
invention lacks both a transmembrane and a cytoplasmic domain. In another embodiment, the polypeptide lacks both a transmembrane domain and a cytoplasmic domain and is soluble under physiological conditions.

The polypeptides of the present invention, or

30 biologically active portions thereof, can be operably
linked to a heterologous amino acid sequence to form
fusion proteins. The invention further features
antibodies that specifically bind a polypeptide of the
invention such as monoclonal or polyclonal antibodies.

35 In addition, the polypeptides of the invention or

- 7 -

biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.

In another aspect, the present invention provides

5 methods for detecting the presence of the activity or
expression of a polypeptide of the invention in a
biological sample by contacting the biological sample
with an agent capable of detecting an indicator of
activity such that the presence of activity is detected

10 in the biological sample.

In another aspect, the invention provides methods for modulating activity of a polypeptide of the invention comprising contacting a cell with an agent that modulates (inhibits or stimulates) the activity or expression of a polypeptide of the invention such that activity or expression in the cell is modulated. In one embodiment, the agent is an antibody that specifically binds to a polypeptide of the invention.

In another embodiment, the agent modulates expression

20 of a polypeptide of the invention by modulating
transcription, splicing, or translation of an mRNA
encoding a polypeptide of the invention. In yet another
embodiment, the agent is a nucleic acid molecule having a
nucleotide sequence that is antisense to the coding

25 strand of an mRNA encoding a polypeptide of the
invention.

The present invention also provides methods to treat a subject having a disorder characterized by aberrant activity of a polypeptide of the invention or aberrant 30 expression of a nucleic acid of the invention by administering an agent which is a modulator of the activity of a polypeptide of the invention or a modulator of the expression of a nucleic acid of the invention to the subject. In one embodiment, the modulator is a protein of the invention. In another embodiment, the

- 8 -

modulator is a nucleic acid of the invention. In other embodiments, the modulator is a peptide, peptidomimetic, or other small molecule.

The present invention also provides diagnostic assays

5 for identifying the presence or absence of a genetic
lesion or mutation characterized by at least one of: (i)
aberrant modification or mutation of a gene encoding a
polypeptide of the invention, (ii) mis-regulation of a
gene encoding a polypeptide of the invention, and (iii)

10 aberrant post-translational modification of a polypeptide
of the invention wherein a wild-type form of the gene
encodes a polypeptide having the activity of the
polypeptide of the invention.

In another aspect, the invention provides a method for identifying a compound that binds to or modulates the activity of a polypeptide of the invention. In general, such methods entail measuring a biological activity of the polypeptide in the presence and absence of a test compound and identifying those compounds which alter the activity of the polypeptide.

The invention also features methods for identifying a compound which modulates the expression of a polypeptide or nucleic acid of the invention by measuring the expression of the polypeptide or nucleic acid in the presence and absence of the compound.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

Brief Description of the Drawings

Figure 1 depicts the cDNA sequence (SEQ ID NO:1) and predicted amino acid sequence (SEQ ID NO:23) of human TANGO 180.

- 9 -

Figure 2 depicts the cDNA sequence (SEQ ID NO:34) and predicted amino acid sequence (SEQ ID NO:54) of murine TANGO 180.

Figure 3 depicts the cDNA sequence (SEQ ID NO:2) and 5 predicted amino acid sequence (SEQ ID NO:24) of human TANGO 181.

Figure 4 depicts the partial cDNA sequence (SEQ ID NO:35; partial) and predicted amino acid sequence (SEQ ID NO:55; partial) of murine TANGO 181.

10 Figure 5 depicts the cDNA sequence (SEQ ID NO:3) and predicted amino acid sequence (SEQ ID NO:25) of human TANGO 182.

Figure 6 depicts the partial cDNA sequence (SEQ ID NO:36; partial) and predicted amino acid sequence (SEQ ID NO:56; partial) of murine TANGO 182.

Figure 7 depicts the cDNA sequence (SEQ ID NO:4) and predicted amino acid sequence (SEQ ID NO:26) of human TANGO 183.

Figure 8 depicts the cDNA sequence (SEQ ID NO:37) and 20 predicted amino acid sequence (SEQ ID NO:57) of murine TANGO 183.

Figure 9 depicts the cDNA sequence (SEQ ID NO:5) and predicted amino acid sequence (SEQ ID NO:27) of human TANGO 184.

25 Figure 10 depicts the cDNA sequence (SEQ ID NO:38) and predicted amino acid sequence (SEQ ID NO:58) of murine TANGO 184.

Figure 11 depicts the cDNA sequence (SEQ ID NO:6) and predicted amino acid sequence (SEQ ID NO:28) of human 30 TANGO 185.

Figure 12 depicts the cDNA sequence (SEQ ID NO:39) and predicted amino acid sequence (SEQ ID NO:59) of murine TANGO 185.

Figure 13 depicts the cDNA sequence (SEQ ID NO:7) and predicted amino acid sequence (SEQ ID NO:29) of human TANGO 186.

Figure 14 depicts the cDNA sequence (SEQ ID NO:40) and 5 predicted amino acid sequence (SEQ ID NO:60) of murine TANGO 186.

Figure 15 depicts the cDNA sequence (SEQ ID NO:8) and predicted amino acid sequence (SEQ ID NO:30) of human TANGO 188.

10 Figure 16 depicts the cDNA sequence (SEQ ID NO:41) and predicted amino acid sequence (SEQ ID NO:61) of murine TANGO 188.

Figure 17 depicts the cDNA sequence (SEQ ID NO:9) and predicted amino acid sequence (SEQ ID NO:31) of human 15 TANGO 189.

Figure 18 depicts the cDNA sequence (SEQ ID NO:42) and predicted amino acid sequence (SEQ ID NO:62) of murine TANGO 189.

Figure 19 depicts the cDNA sequence (SEQ ID NO:10) and 20 predicted amino acid sequence (SEQ ID NO:32) of human TANGO 215.

Figure 20 depicts the cDNA sequence (SEQ ID NO:11) and predicted amino sequence of human TANGO 187-1/3 (SEQ ID NO:22).

Figure 21 depicts the cDNA sequence (SEQ ID NO:43; partial) and predicted amino acid sequence of murine TANGO 187 (SEQ ID NO:63; partial).

Figure 22 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:23) and murine (SEQ ID NO:54) TANGO 180.

Figure 23 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:24) and murine (SEQ ID NO:55; partial) TANGO 181.

Figure 24 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:25) and murine (SEQ ID NO:5; partial) TANGO 182.

Figure 25 depicts an alignment of the predicted amino 5 acid sequences of human (SEQ ID NO:26) and murine (SEQ ID NO:57) TANGO 183.

Figure 26 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:27) and murine (SEQ ID NO:58) TANGO 184.

10 Figure 27 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:28) and murine (SEQ ID NO:59) TANGO 185.

Figure 28 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:29) and murine (SEQ ID NO:60) TANGO 186.

Figure 29 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:30) and murine (SEQ ID NO:61) TANGO 188.

Figure 30 depicts an alignment of the predicted amino 20 acid sequences of human (SEQ ID NO:31) and murine (SEQ ID NO:62) TANGO 189.

Figure 31 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:33) and murine (SEQ ID NO:63; partial) TANGO 187.

25 Figure 32 depicts an alignment of the cDNA sequences of human (SEQ ID NO:1) and murine (SEQ ID NO:34) TANGO 180.

Figure 33 depicts an alignment of the cDNA sequences of human (SEQ ID NO:2) and murine (SEQ ID NO:35; partial)
TANGO 181.

Figure 34 depicts an alignment of the cDNA sequences of human (SEQ ID NO:3) and murine (SEQ ID NO:36; partial)
TANGO 182.

Figure 35 depicts an alignment of the cDNA sequences of human (SEQ ID NO:4) and murine (SEQ ID NO:37) TANGO 183.

Figure 36 depicts an alignment of the cDNA sequences of human (SEQ ID NO:5) and murine (SEQ ID NO:38) TANGO 184.

Figure 37 depicts an alignment of the cDNA sequences of human (SEQ ID NO:6) and murine (SEQ ID NO:39) TANGO 185.

Figure 38 depicts an alignment of the cDNA sequences of human (SEQ ID NO:7) and murine (SEQ ID NO:40) TANGO 186.

Figure 39 depicts an alignment of the cDNA sequences of human (SEQ ID NO:8) and murine (SEQ ID NO:41) TANGO 188.

Figure 40 depicts an alignment of the cDNA sequences of 10 human (SEQ ID NO:9) and murine (SEQ ID NO:42) TANGO 189.

Figure 41 depicts an alignment of the cDNA sequences of human (SEQ ID NO:11) and murine (SEQ ID NO:43; partial) TANGO 187.

Figure 42 depicts an alignment of the amino acid
15 sequences of human TANGO 181 (SEQ ID NO:24), murine TANGO
181 (SEQ ID NO:55; partial), human TANGO 182 (SEQ ID
NO:25), and murine TANGO 182 (SEQ ID NO:56; partial).

Figure 43 depicts an alignment of the amino acid sequences of human TANGO 184 (SEQ ID NO:27) and human 20 TANGO 183 (SEQ ID NO:26).

Figure 44 depicts an alignment of the amino acid sequences of murine TANGO 184 (SEQ ID NO:58) and murine TANGO 183 (SEQ ID NO:57).

Figure 45 depicts and alignment of the amino acid
25 sequences of human TANGO 180 (SEQ ID NO:23), murine TANGO
180 (SEQ ID NO:54), agkistrodon PLA2 (SQ ID NO:109),
acanthahis PLA2 (SEQ ID NO:110), and bovine PLA2 (SEQ ID
NO:111).

Figure 46 depicts the cDNA sequence (SEQ ID NO:__) and 30 predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1.

Figure 47 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-2/3.

- 13 -

Figure 48 depicts the cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of TANGO 187-1/2/3.

Figure 49 depicts the cDNA sequence (SEQ ID NO:) and 5 predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1/2.

Figure 50 depicts the cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of TANGO 187-2.

Figure 51 depicts the cDNA sequence (SEQ ID NO:) and 10 predicted amino acid sequence (SEQ ID NO:) of TANGO 187-3.

Figure 52 depicts the cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of TANGO 15 187.

Figure 53 depicts a complete cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of murine TANGO 181.

Figure 54 depicts a complete cDNA sequence (SEQ ID 20 NO:) and predicted amino acid sequence (SEQ ID NO:) of murine TANGO 182.

Figure 55 depicts a complete cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of murine TANGO 187.

Figure 56 depicts a complete cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of murine TANGO 215.

Detailed Description of the Invention

The present invention is based on the discovery of cDNA 30 molecules encoding TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189, TANGO 215, and TANGO 187, all of which are predicted to be either wholly secreted or transmembrane proteins.

- 14 -

TANGO 180

The human TANGO 180 cDNA of SEQ ID NO:1 has a 567 nucleotide open reading frame (SEQ ID NO:12) encoding a 189 amino acid protein (SEQ ID NO:23). The cDNA and 5 protein sequences of human TANGO 180 are shown in Figure 1.

Human TANGO 180 is predicted to be a wholly secreted protein having a 22 amino acid signal sequence (amino acids 1 - 22 of SEQ ID NO:23; SEQ ID NO:64) followed by a 10 167 amino acid mature protein (amino acids 23 - 189 of SEQ ID NO:23; SEQ ID NO:76). TANGO 180 is predicted to have a molecular weight of 21.0 kDa prior to cleavage of its signal peptide and a molecular weight of 18.5 kDa subsequent to cleavage of its signal peptide.

The murine TANGO 180 of SEQ ID NO:34 has a 576 nucleotide open reading frame (SEQ ID NO:44) encoding a 192 amino acid protein (SEQ ID NO:54). The cDNA and protein sequences of murine TANGO 180 are shown in Figure 2.

Figure 22 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:23) and murine (SEQ ID NO:54) TANGO 180 (88.7% identity). Figure 32 depicts an alignment of the cDNA sequences of human (SEQ ID NO:1) and murine (SEQ ID NO:34) TANGO 180 (55% identity).

Northern analysis of human TANGO 180 mRNA expression revealed the presence of two major transcripts (1.3 and 5.25 kb) and three minor transcripts (0.95, 1.8, and 4.15 kb). This analysis also revealed that all five transcripts are expressed at a low level in placenta, lung, and liver; that the 1.3 and the 5.25 kb transcripts are expressed at a moderate level in brain and kidney; that the 5.25 kb transcript is expressed at a moderate level in heart, skeletal muscle, and pancreas; and that the 1.3 kb transcript is expressed at a high level in heart, skeletal muscle, and pancreas.

In situ expression analysis of TANGO 180 in adult murine tissue revealed no significant expression in bladder, pancreas, heart, thymus, kidney, brain, colon, placenta, eye, liver, spleen, lung, skeletal
5 muscle/diaphram, or small intestine. In situ expression analysis of murine embryonic tissue revealed expression

analysis of murine embryonic tissue revealed expression in the liver at E13.5 through E16.5. Liver expression was also observed, although at a lower level, at E17.5 and P1.5.

TANGO 180 maps to human chromosome location 4q25.

TANGO 180 is predicted to have a phospholipase A2
histidine active site domain at amino acids 106-113 of
SEQ ID NO:23 and a phospholipase A2 aspartic acid active
site-like domain at amino acids 124-131 of SEQ ID NO:23.

An apparent genomic sequence of TANGO 180 appears at GenBank Accession Number AC004067.

Human TANGO 180 bears some similarity to a number of C. elegans proteins.

TANGO 180 bears some similarity to a number of known
20 phospholipase A2 (PLA2) proteins (Lambeau et al. (1994)

J. Biol. Chem. 269:1575-78; Lambeau et al. (1995) J.

Biol. Chem. 270:5534-40). TANGO 180 may play a role
similar to that of a phospholipase A2. Figure 45
depicts and alignment of the amino acid sequences of
25 human TANGO 180 (SEQ ID NO:23), murine TANGO 180 (SEQ ID
NO:54) ackistrodon PLA2 (SO ID NO:109) acanthabis PLA2

NO:54), agkistrodon PLA2 (SQ ID NO:109), acanthahis PLA2 (SEQ ID NO:110), and bovine PLA2 (SEQ ID NO:111). There are thought to be at least two important regions within many PLA2's: CCXXHCCX (hisitidine at active site) and

Our Division of at least some phospholipase A2 proteins are thought to be involved in inflammation. Moreover, it appears that the expression and synthesis of at least some phospholipase A2 proteins are induced by pro-inflammatory modulators

35 such as interleukin-1, interleukin-6, and tumor necrosis

- 16 -

factor. Thus, TANGO 180 may be involved in inflammation, e.g., arthritis, endotoxic shock, peritonitis, psoriasis, acute pancreatitis, and respiratory distress syndrome.

Accordingly, TANGO 180 nucleic acid molecules and

5 polypeptides as well as anti-TANGO 180 antibodies and modulators of TANGO 180 expression or activity may be useful in the treatment of such disorders. Moreover, PLA2's have been implicates in digestion, airway contraction, smooth muslce contraction, fertilization,

10 and cell proliferation. Thus, TANGO 180 nucleic acid molecules and polypeptides as well as anti-TANGO 180 antibodies and modulators of TANGO 180 expression or activity may be useful in the treatment of disorders of digestion, airway contraction, smooth muslce contraction, fertilization, and cell proliferation.

TANGO 181

The human TANGO 181 cDNA of SEQ ID NO:2 has a 1017 nucleotide open reading frame (SEQ ID NO:12) encoding a 339 amino acid protein (SEQ ID NO:23). The cDNA and 20 protein sequences of human TANGO 181 are shown in Figure

Human TANGO 181 is predicted to be a secreted protein having a 22 amino acid signal sequence (amino acids 1 - 22 of SEQ ID NO:24; SEQ ID NO:65) followed by a 317 amino acid mature protein (amino acids 23 - 339 of SEQ ID NO:24; SEQ ID NO:77). TANGO 181 is predicted to have a molecular weight of 37.8 kDa prior to cleavage of its signal peptide and a molecular weight of 35.2 subsequent to cleavage of its signal peptide.

The murine TANGO 181 partial cDNA of SEQ ID NO:35 has a 747 nucleotide open reading frame (SEQ ID NO:45) encoding a 249 amino acid protein (SEQ ID NO:55). The partial cDNA and protein sequences of murine TANGO 181 are shown in Figure 4.

- 17 -

Figure 23 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:24) and murine (SEQ ID NO:55; partial) TANGO 181 (72.1% identity). Figure 33 depicts an alignment of the cDNA sequences of human (SEQ ID NO:2) and murine (SEQ ID NO:35; partial) TANGO 181 (65.4% identity). The pair of cysteines at amino acids 76 and 129 might be important for disulfide bond formation. The single cysteine at amino acid 262 might enable TANGO 181 to form homodimers (or heterodimers with 10 TANGO 182).

The cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of a full-length murine TANGO 181 clone are shown in Figure 53.

Northern analysis of human TANGO 181 mRNA expression 15 revealed the presence of two transcripts (4.3 and 4.5 kb) expressed at a low level in heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas, with the level of expression in the pancreas being higher than in the other tissues.

Murine in situ expression analysis revealed that TANGO
181 is weakly expressed in adult brain (choroid plexus
and olfactory bulb). This analysis also revealed TANGO
180 expression in the liver and kidney (medulla). High
level TANGO 180 expression was observed in testis. This
25 analysis detected little or no expression of TANGO 181 in
adult liver, ovary, heart, lung, spleen, fat, muscle,
skin, stomach, duodenum, colon, pancreas, thymus,
pituitary, and eye. In situ expression analysis of
embryos revealed that TANGO 181 is ubiquitously expressed
30 at stages E12.5, E13.5, and E14.5.

TANGO 181 maps to human chromosome location 8p12. WI-5768 and AFMB057WG5 are markers which flank TANGO 181.

Nearby loci include WRN (Werner Syndrome) and SPG5A

(Spastic Paraplegia 5A), and nearby known genes include

35 FGFR1 (fibroblast growth factor receptor), STAR

- 18 -

(Steroidogenic acute regulatory protein), ANK1 (abkyrin 1), CALB1 (calbindin 1), CHRNB3 (cholinergic receptor, nicotinic). The human chromosomal location corresponds to a position on mouse chromosome 8 near fgfri 5 (fibroblast growth factor receptor), cyrn (cyritesin 1), tissue plasminogen activator, and ank (ankyrin 1).

Within the 3' untranslated region of the human TANGO 181 cDNA described above is a 260 base pair sequence (Genbank Accession Number Z36802) previously identified as part of a gene that appears to be preferentially expressed in pancreatic cancer and chronic pancreatitis (Gress et al. (1996) Oncogene 13:1819-30). Thus, TANGO 181 nucleic acids and polypeptides may be useful for the diagnosis and/or treatment of chronic pancreatitis and pancreatic cancer (as well as other cancers). In addition, modulators of TANGO 181 expression or activity may be useful in the treatment of such disorders.

TANGO 181 and TANGO 182 are highly homologous to teh C. elegans protein C42C1.9

20 TANGO 182

The human TANGO 182 cDNA of SEQ ID NO:3 has a 1044 nucleotide open reading frame (SEQ ID NO:14) encoding a 348 amino acid protein (SEQ ID NO:25). The cDNA and protein sequences of human TANGO 182 are shown in Figure 25 5.

Human TANGO 182 is predicted to be a secreted protein having a 23 amino acid signal sequence (amino acids 1 - 23 of SEQ ID NO:25; SEQ ID NO:66) followed by a 325 amino acid mature protein (amino acids 24 - 348 of SEQ ID NO:25; SEQ ID NO:78). TANGO 182 is predicted to have a molecular weight of 39.2 kDa prior to cleavage of its signal peptide and a molecular weight of 36.1 kDa subsequent to cleavage of its signal peptide.

- 19 -

The murine TANGO 182 partial cDNA of SEQ ID NO:36 has an 825 nucleotide open reading frame (SEQ ID NO:46) encoding a 275 amino acid protein (SEQ ID NO:56). The partial cDNA and protein sequences of murine TANGO 182 5 are shown in Figure 6. Figure 24 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:25) and murine (SEQ ID NO:56; partial) TANGO 182 (75.1% identity). Figure 34 depicts an alignment of the cDNA sequences of human (SEQ ID NO:3) and murine (SEQ ID 10 NO:36; partial) TANGO 182 (67.6% identity). The pair of cysteines at amino acids 78 and 130 might be important for disulfide bond formation. The single cysteine at amino acid 312 might enable TANGO 182 to form homodimers (or heterodimers with TANGO 181).

The cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of a full-length murine TANGO 182 clone are shown in Figure 54.

TANGO 182 maps to human chromosomal location 10q24 between markers D10S566 and D10S540. In mice, TANGO 182 20 maps to chromosome 10 bwtween D10S198 and D10S192 (129.8 to 131.2 cM).

Northern analysis of human TANGO 182 mRNA expression revealed the presence of a 2.8 kb transcript that is expressed at a high level placenta and a somewhat lower level in liver, kidney, and pancreas. This transcript is expressed at a low level in heart, brain, lung, and skeletal muscle.

Murine in situ expression analysis revealed that TANGO
182 is expressed at a high level in testis in adult mice.
30 Little or no expression was detected in adult brain,
liver, kidney, ovary, heart, lung, spleen, fat, muscle,
skin, stomach, duodenum, colon, pancreas, thymus,
pituitary, or eye by in situ analysis. In situ

- 20 -

expression analysis of embryos revealed ubiquitous, low level expression at stages E12.5, E13.5, and E14.5.

Both human and mouse TANGO 182 are quite similar to human and murine TANGO 181 at the amino acid level 5 (Figure 42). Thus, TANGO 182, like TANGO 181, may be useful for the diagnosis and/or treatment of pancreatic cancer and chronic pancreatitis as well as other cancers. In addition, TANGO 182 bears some similarity to a C. elegans protein C42C1.9 (Genbank Accession Number 10 AF043695) that is encoded by a gene that is present in the same operon as a gene encoding a mitochondrial carrier protein. Since genes within the same operon are often co-regulated and encode proteins involved in the same physiological state, TANGO 182 may play a role in 15 metabolism. Thus, TANGO 182 nucleic acids and polypeptides as well as antibodies directed against TANGO 182 may be useful in the diagnosis and treatment of metabolic disorders. In addition, modulators of TANGO 182 expression or activity may be useful in the treatment

20 of such disorders.

TANGO 183

The human TANGO 183 cDNA of SEQ ID NO:4 has a 549 nucleotide open reading frame (SEQ ID NO:15) encoding a 183 amino acid protein (SEQ ID NO:26). The cDNA and 25 protein sequences of human TANGO 183 are shown in Figure 7.

Human TANGO 183 is predicted to be a transmembrane protein having a 20 amino acid signal sequence (amino acids 1 - 20 of SEQ ID NO:26; SEQ ID NO:67) followed by a 30 163 amino acid mature protein (amino acids 21 - 183 of SEQ ID NO:26; SEQ ID NO:79) having a 69 amino acid extracellular domain (amino acids 21 - 89 of SEQ ID NO:26; SEQ ID NO:88), a 23 amino acid transmembrane domain (amino acids 90 - 112 of SEQ ID NO:26; SEQ ID

- 21 -

NO:94), and a 71 amino acid cytoplasmic domain (amino acids 113 - 183 of SEQ ID NO 26; SEQ ID NO: 102). There are 8 conserved cysteines in the extracellular domain. TANGO 183 has a high porportion of charged amino acids in the predicted extracellular (18%, not including histidines) and cytoplasmic (32%) domains. Human TANGO 183 is predicted to have a molecular weight of 20.6 kDa prior to cleavage of its signal peptide and a molecular weight of 18.1 kDa subsequent to cleavage of its signal peptide.

The murine TANGO 183 cDNA of SEQ ID NO:37 has a 549 nucleotide open reading frame (SEQ ID NO:47) encoding a 183 amino acid protein (SEQ ID NO:57). The cDNA and protein sequences of murine TANGO 183 are shown in Figure 15 8.

Figure 25 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:26) and murine (SEQ ID NO:57) TANGO 183 (97.3% identity). Figure 35 depicts an alignment of the cDNA sequences of human (SEQ ID NO:4) and murine (SEQ ID NO:37) TANGO 183 (71.7% identity). The conserved cysteine residues are particularly important and are preferably retained in functional variants.

Northern analysis of human TANGO 183 mRNA expression 25 revealed the presence of a 1.6 kb transcript that is expressed at a high level in brain, kidney, pancreas, and heart; at a moderate level in liver and skeletal muscle, and at a low level in placenta and lung.

The nucleic acid sequence of TANGO 183 is related to a 30 sequence tagged site at chromosomal location 11p15.4, and TANGO may map to this site.

The predicted cytoplasmic domain of TANGO 183 has a relatively high number of charged residues (32%). This suggests that TANGO 183 may non-covalently, e.g.,

35 electrostatically, associate with an intracellular

- 22 -

molecule such as a cytoskeletal component. Accordingly, TANGO 183 may itself be involved in maintaining the structural integrity of cells in which it is expressed. If so, aberrant TANGO 183 protein or aberrantly regulated 5 TANGO 183 could be involved in alterations in cellular morphology, e.g., alterations associated with metastasis. Accordingly, TANGO 183 nucleic acid molecules and polypeptides as well as anti-TANGO 183 antibodies and modulators of TANGO 183 expression or activity may be 10 useful in the treatment of disorders associated with aberrant cell development or cell differentiation, e.g., cancer, or cell migration, e.g., tumor metastasis.

TANGO 183 and TANGO 184 are related and may play similar functional roles. Figure 43 depicts an alignment of the amino acid sequences of human TANGO 184 (SEQ ID NO:27) and human TANGO 183 (SEQ ID NO:26). Figure 44 depicts an alignment of the amino acid sequences of murine TANGO 184 (SEQ ID NO:58) and murine TANGO 183 (SEQ ID NO:57).

TANGO 183 is related to C. elegans R12C12.6 (GenBank Accession NO. U23510).

TANGO 184

The human TANGO 184 cDNA of SEQ ID NO:5 has a 594 nucleotide open reading frame (SEQ ID NO:16) encoding a 25 198 amino acid protein (SEQ ID NO:27). The cDNA and protein sequences of human TANGO 184 are shown in Figure 9.

Human TANGO 184 is predicted to be a transmembrane protein having a 28 amino acid signal sequence (amino 30 acids 1 - 28 of SEQ ID NO:27; SEQ ID NO:68) followed by a 170 amino acid mature protein (amino acids 29 - 198 of SEQ ID NO:27; SEQ ID NO:80) having a 74 amino acid extracellular domain (amino acids 29 - 102 of SEQ ID NO: 27; SEQ ID NO:89), a 23 amino acid transmembrane domain

- 23 -

(amino acids 103 - 125 of SEQ ID NO:27; SEQ ID NO:95),
and a 73 amino acid cytoplasmic domain (amino acids 126 198 of SEQ ID NO 27; SEQ ID NO:103). TANGO 184 has a
high porportion of charged amino acids in the predicted
5 extracellular (31%) and cytoplasmic (29%) domains.
Notably, the transmembrane regions include charged
residues. Human TANGO 184 is predicted to have a
molecular weight of 22.5 kDa prior to cleavage of its
signal peptide and a molecular weight of 18.9 kDa
10 subsequent to cleavage of its signal peptide.

The murine TANGO 184 cDNA of SEQ ID NO:38 has a 357 nucleotide open reading frame (SEQ ID NO:48) encoding a 199 amino acid protein (SEQ ID NO:58). The cDNA and protein sequences of murine TANGO 184 are shown in Figure 15 10.

Figure 26 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:27) and murine (SEQ ID NO:58) TANGO 184 (94.5% identity). Figure 36 depicts an alignment of the cDNA sequences of human (SEQ ID NO:5) and murine (SEQ ID NO:38) TANGO 184 (63.8% identity).

Northern analysis of human TANGO 184 mRNA expression revealed the presence of a 2 kb transcript that is expressed at a high level in heart brain, placenta, skeletal muscle, kidney, and pancreas; and at a low level in lung and liver. There are two alternative polyA sites: nucleotide 1000 and nucleotide 2000.

In situ analysis of TANGO 184 expression in adult mice revel expression in the brain (moderate, ubiquitous expression), spinal cord (weak expression in the region of the grey matter) submandibular gland (strong, ubiquitous expression), stomach (weak expression in the muscle region), Kidney (weak, ubiquitous expression in the cortex and medulla, stronger expression in papilla), adrenal gland (weak ubiquitous expression), thymus (weak expression in cortex), lymph node (moderate ubiquitous

- 24 -

expression) spleen (weak expression in follicles), skeletal muscle/smooth muscle (diaphragm), testis (strong expression in the area surrounding the seminiferous tubules), ovaries (weak expression) placenta (moderate, 5 ubiquitous expression). This analysis did not reveal significant expression in white fat, brown fat, heart, lung, liver, pancreas, colon, small intestine, and bladder. In embryonic tissue, this analysis revealed expression at E13.5 (weak to moderate ubiquitous 10 expression with higher expression in the brain and liver), E14.5 (weak to moderate ubiquitous expression with higher expression in the brain and liver), E15.5 (moderate ubiquitous expression with higer expression in the brain), E16.5 (weak to moderate ubiquitous expression 15 with higher expression in the brain, spinal cord, brown fat, submandibular gland, lung, stomach, and intestines), E18.5 (weak to moderate ubiquitous expression with higher expression in the brain, spinal cord, brown fat, submandibular gland, lung, stomach, and intestines), and 20 P1.5 (weak ubiquitous expression with higer expression in brain, submandibular gland, olfactory epithelium, and stomach).

The predicted cytoplasmic domain of TANGO 184 has a relatively high number of charged residues (29%). This 25 suggests that TANGO 184 may non-covalently, e.g., electrostatically, associate with an intracellular molecule such as a cytoskeletal component. Accordingly, TANGO 184 may itself be involved in maintaining the structural integrity of cells in which it is expressed. 30 If so, aberrant TANGO 184 protein or aberrantly regulated TANGO 184 could be involved in alterations in cellular morphology, e.g., alterations associated with metastasis. Accordingly, TANGO 184 nucleic acid molecules and polypeptides as well as anti-TANGO 184 antibodies and 35 modulators of TANGO 184 expression or activity may be

- 25 -

useful in the treatment of disorders associated with aberrant cell development or cell differentiation, e.g., cancer, or cell migration, e.g., tumor metastasis.

TANGO 185

The human TANGO 185 cDNA of SEQ ID NO:6 has a 579 nucleotide open reading frame (SEQ ID NO:17) encoding a 193 amino acid protein (SEQ ID NO:28). The cDNA and protein sequences of human TANGO 185 are shown in Figure 11

11. Human TANGO 185 is predicted to be a transmembrane 10 protein having a 24 amino acid signal sequence (amino acids 1 - 24 of SEQ ID NO:28; SEQ ID NO:69) followed by a 169 amino acid mature protein (amino acids 25 - 193 of SEQ ID NO:28; SEQ ID NO:81) having two extracellular 15 domains, one having 51 amino acids (amino acids 25 - 75 of SEQ ID NO:28; SEQ ID NO:90), and a second having 19 amino acids (amino acids 132 - 150 of SEQ ID NO:28; SEQ ID NO:91); three transmembrane domains, one having 27 amino acids (amino acids 76 - 102 of SEQ ID NO:28; SEQ ID 20 NO:96), a second having 22 amino acids (amino acids 110-131 of SEQ ID NO:28; SEQ ID NO:97), the third having 24 amino acids (amino acids 151 - 174 of SEQ ID NO:28; SEQ ID NO:98); and two cytoplasmic domains, one having 7 amino acids (amino acids 103 - 109 of SEQ ID NO:28; SEQ 25 ID NO:104), and a second having 19 amino acids (amino acids 175 - 193 of SEQ ID NO:28; SEQ ID NO:105). predicted 22 amino acid transmembrane domain and the predicted 24 amino acid domain, along with the predicted 7 amino acid cytoplasmic domain may form one hydrophobic 30 domain that passes through the membrane twice. TANGO 185 is predicted to have a molecular weight of 21.4 kDa prior

to cleavage of its signal peptide and a molecular weight of 18.8 kDa subsequent to cleavage of its signal peptide. Notably, the transmembrane regions have charged residues.

- 26 -

The murine TANGO 185 cDNA of SEQ ID NO:39 has a 579 nucleotide open reading frame (SEQ ID NO:49) encoding a 193 amino acid protein (SEQ ID NO:59). The cDNA and protein sequences of murine TANGO 185 are shown in Figure 5 12.

Figure 27 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:28) and murine (SEQ ID NO:59) TANGO 185 (90.7% identity). Figure 37 depicts an alignment of the cDNA sequences of human (SEQ ID NO:6) and murine (SEQ ID NO:39) TANGO 185 (71.1% identity).

Human TANGO 185 maps to chromosome 6.

Northern analysis of human TANGO 185 mRNA expression revealed the presence of 2.2 kb major transcript and a 4.2 kb minor transcript. This analysis also revealed 15 that the 2.3 kb transcript is expressed at a high level in heart, placenta, and pancreas; at a moderate level in lung, liver, and kidney; and at a very low level, if at all, in brain and skeletal muscle. The 4.2 kb transcript is expressed at a low level in placenta.

In situ analysis of TANGO 185 expression in adult mice revealed expression in the brain (choroid plexus), submamandibular gland (ubiquitous expression), white fat (weak expression, possible mammary gland expression), stomach (mucosal epithelium), kidney (medulla-cortex transition and medullary rays), colon (weak expression in the epithelium), small intestine (villi), thymus (low level expression), bladder (mucosal epithelium), and placenta (ubiquitous expression in decidua region). This analysis did not reveal significant expression in adult eye and harderian gland, brown fat, heart, lung, liver,

spleen, pancreas, skeletal muscle, testes, and ovaries.

In situ analysis of TANGO 185 embryonic expression in mice revealed expression at E13.5 (high level expression the skin and submaxillary gland and low level ubiquitous

35 expression in the liver); E14.5 (high level expression in

- 27 -

the choroid plexus of the lateral and fourth ventricles, skin, epithelium of the oral cavity, follicles of vibrissa, submaxillary gland, stomach, and heart; expression in lung (especially the developing large 5 airways) and liver (ubiquitous expression)). At E15.5 the observed expression pattern is nearly identical to that at E14.5 except that there is expression in the region outlining the intestinal tract and lung expression is ubiguitous with higher expression in the region outlining the large airways.

At E16.5 high level expression is observed in skin choroid plexus, the lining of the oral and nasal cavity, esophagus, bladder, stomach, intestine, large vessels of the heart, large airways of the lung, and the region outlining the vertebrae. Lower ubiquitous expression is present in the heart, lung and thymus. A somewhat higher, multifocal expression is present in the thymus.

At E18.5 the expression pattern is identical to that observed at E16.5 except that expression is also observed 20 in developing hair follicles.

At P1.5 the expression pattern is identical to that observed at E16.5 except that there is no long significant expression in the region outlining the vertebrae.

The expression pattern of TANGO 185 during eubryonic development suggests that TANGO 185 expression is strongly associated with squamous and mucosal epithelial cells.

The expression pattern of TANGO 185 suggests that it is involved in cell development and/or cell differentiation. Accordingly, TANGO 185 nucleic acid molecules and polypeptides as well as anti-TANGO 185 antibodies and modulators of TANGO 185 expression or activity may be useful in the treatment of disorders associated with aberrant cell development or cell differentiation, e.g.,

- 28 -

cancer. There is evidence that TANGO 185 is expressed in prostate cells. Thus, TANGO 185 nucleic acid molecules and polypeptides as well as anti-TANGO 185 antibodies and modulators of TANGO 185 expression or activity may be 5 useful in the treatment of prostate cancer.

TANGO 186

The human TANGO 186 cDNA of SEQ ID NO:7 has a 1149 nucleotide open reading frame (SEQ ID NO:18) encoding a 383 amino acid protein (SEQ ID NO:29). The cDNA and 10 protein sequences of human TANGO 186 are shown in Figure 13.

Human TANGO 186 is predicted to be a secreted protein having a 20 amino acid signal sequence (amino acids 1 - 20 of SEQ ID NO:29; SEQ ID NO:70) followed by a 363 amino acid mature protein (amino acids 21 - 383 of SEQ ID NO:29; SEQ ID NO:82). There are eight cysteines in mature TANGO 186. Some or all of these might be involved in disulfide bond formation. Human TANGO 186 is predicted to have a molecular weight of 43.0 kDa prior to cleavage of its signal peptide and a molecular weight of 40.3 kDa subsequent to cleavage of its signal peptide.

The murine TANGO 186 cDNA of SEQ ID NO:40 has a 1146 nucleotide open reading frame (SEQ ID NO:50) encoding a 382 amino acid protein (SEQ ID NO:60). The cDNA and 25 protein sequences of murine TANGO 186 are shown in Figure 14. Conserved cysteine residues are particularly important and are preferably retained in functional variants

Figure 28 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:29) and murine (SEQ ID NO:60) TANGO 186 (90.9% identity). Figure 38 depicts an alignment of the cDNA sequences of human (SEQ ID NO:7) and murine (SEQ ID NO:40) TANGO 186 (41.6% identity). The human and murine TANGO 186 proteins are highly

- 29 -

similar except within three portions: the signal sequence, a hinge region at amino acids 108-123, and a hinge region at amino acids 198-216. Within these three portions the proteins are only about 50% identical.

5 Outside of these three portions the proteins are about 97.3% identical.

TANGO 186 maps to human chromosome 11q14.

Northern analysis of human TANGO 186 mRNA expression revealed the presence of a 1.8 kb transcript and a 4 kb 10 transcript. Both transcripts are expressed at a low level in heart, lung, liver, skeletal muscle, kidney, and pancreas and at a very low level in brain.

In situ analysis of TANGO 186 in adult mice revealed that TANGO 186 is expressed in brain (olfactory bulb),

15 spleen (low level ubiquitous signal), small intestine (very strong signal in villi and submucosa), colon (ubiquitous signal), kidney (cortical and medullary region), lung (bronchial epithelium), eye (iris and cornea), placenta (strong signal in the outer membrane).

20 This analysis did not detect expression in adult pancreas, heart, skeletal muscle, diaphragm, esophagus, liver, and thymus.

In situ expression analysis of murine embryonic sagittal sections revealed expression at stage E13.5 in epithelium of the lower and upper lip, cartilage primordium of basisphenoid bone, cartilage condensation of sacral vertebral body (centrum), small intestine, and heart. At stage E14.5, in addition to the expression observed at stage E13.5, expression was also observed in:

30 eye (or cartilage around eye), Meckel's cartilage, and cartilage of the limb digits. At stage E15.5 expression was observed in vibrissae of the snout, kidney (embryonic glomeruli), cartilage of the limb digits, cartilage of the vertebral column, heart, eye, and small intestine.

35 At stage E16.5 the observed expression pattern was

- 30 -

similar to that observed at E15.5, but there was a notable reduction in signal from cartilage, epithelium of upper and lower lip, and heart. Also at stage E16.5 low level signal was observed in the lung, and a strong 5 signal was still observed in the small intestine. At stage E17.5 expression of TANGO 186 was observed to be more ubiquitous. However, expression in cartilage was observed to decrease with the exception of ossification within cartilage primordium of body of mandible. At 10 stage E17.5 strong expression continued to be observed in the small intestine. The expression pattern at stage P1.5 was observed to be very similar to that observed at stage E17.5 with expression being nearly ubiquitous with the notable exceptions of the brain and spinal cord in 15 which little or no expression was observed. At stage P1.5 the highest expression observed was in the in the small intestine, lung, and kidney.

Overall, the in situ expression analysis of adult and embryonic tissue revealed that expression is first 20 observed in the developing cartilage, small intestine, and heart with the cartilage expression being most striking in the developing vertebral column and jaw area. Strong expression in the cartilage of the vertebral column and developing digits was observed through stage 25 E16.5. Subsequently, cartilage expression was observed to decrease with some exceptions in the jaw area. Other embryonic tissue in which the observed expression was notable include the kidney, specifically the embryonic glomeruli, and the lung. These tissues continue to have 30 strong expression in the adult with expression in the kidney also being observed in the medullary region and lung expression becoming restricted to the bronchial epithelium. Expression of TANGO 186 becomes more ubiquitous through P1.5 with the most noticeable

- 31 -

exception being the brain and spinal cord. In the adult, however, signal is observed in the olfactory bulb.

In a murine LPS disease model, increasaed TANGO 186 expression was observed in the brain 2 and 8 hours after 5 LPS treatment. Decrease TANGO 186 expression was observed at these same time points in the kidney. TANGO 186 expression was also observed in the gastric mucosa.

As discussed above, murine in situ expression analysis demonstrates that TANGO 186 is expressed in cartilage 10 throughout the embryo, suggesting that TANGO 186 is a regulatory molecule that plays a role in a bone formation (e.g., condensation of cartilage). Accordingly, TANGO 186 nucleic acid molecules and polypeptides as well as anti-TANGO 186 antibodies and modulators of TANGO 186 15 expression or activity may be useful in the diagnosis and treatment of bone and cartilage disorders (e.g., osteogenesis imperfecta and broken bones, cartilage degradation, and bone degradation). Moreover, many bone morphogenic proteins and TGF- β family members are 20 regulated by extracellular proteins, e.g., noggin and chordin. Thus, TANGO 186, which is expressed in the heart, may play a role in heart development, and TANGO 186 nucleic acid molecules and polypeptides as well as anti-TANGO 186 antibodies and modulators of TANGO 186 25 expression or activity may be useful in the diagnosis and treatment of developmental disorders of the heart, e.g., valve malformation.

There is some sequence similarity between TANGO 186 and a Bacillus serine protease. Thus, TANGO 186 may have 30 serine protease activity.

TANGO 188

The human TANGO 188 cDNA of SEQ ID NO:8 has a 792 nucleotide open reading frame (SEQ ID NO:19) encoding a 264 amino acid protein (SEQ ID NO:30). The cDNA and

- 32 -

protein sequences of human TANGO 188 are shown in Figure 15.

Human TANGO 188 is predicted to be a secreted protein having a 23 amino acid signal sequence (amino acids 1 - 5 23 of SEQ ID NO:30; SEQ ID NO:71) followed by a 241 amino acid mature protein (amino acids 24 - 264 of SEQ ID NO:30; SEQ ID NO:83). Human TANGO 188 is predicted to have a molecular weight of 29.5 kDa, prior to cleavage of its signal peptide.

- The murine TANGO 188 cDNA of SEQ ID NO:41 has an 807 nucleotide open reading frame (SEQ ID NO:51) encoding a 269 amino acid protein (SEQ ID NO:61). The cDNA and protein sequences of murine TANGO 188 are shown in Figure 16.
- Figure 29 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:30) and murine (SEQ ID NO:61) TANGO 188 (80.5% identity). Figure 39 depicts an alignment of the cDNA sequences of human (SEQ ID NO:8) and murine (SEQ ID NO:41) TANGO 188 (71.8% identity).
- TANGO 188 maps to human chromosome 16p13.3.

Northern analysis of human TANGO 188 mRNA expression revealed the presence of 2.0 kB transcript that is expressed at a low level in heart and pancreas and at a very low level, if at all, in brain, placenta, lung,

25 liver, skeletal muscle, and kidney.

In situ analysis of TANGO 188 expression in adult mice did not detect significant expression in in the bladder, placenta, pancreas, eye, heart, liver, thymus, spleen, kidney, lung, brain, skeletal muscle/diaphragm, colon, or small intestine. In situ analysis of TANGO 188 expression in embryos revealed no significant expression at 13.5, E14.5, E15.5, E16.5, E17.5, or P1.5. However, in the case of both adult mice and embryos, expression of TANGO 188 may have been obscured by a high background signal.

- 33 -

TANGO 188 is transcribed in an anti-sense relationship to NY-CO-7 (Scanlon et al. (1998) Int. J. Cancer 76:652-58). Accordingly, TANGO 188 may have utility as a marker for colon cancer, and TANGO 188 nucleic acid molecules and polypeptides as well as anti-TANGO 188 antibodies and modulators of TANGO 188 expression or activity may be useful in the diagnosis and treatment of colon cancer or other types of cancer.

The gene encoding the *C. elegans* homologue of NY-CO-7

10 is present in the same operon as a gene encoding a
mitochondrial import protein. Since genes within the
same operon are often co-regulated and encode proteins
involved in the same physiological state, TANGO 188 may
be a mitochondrial import protein or may be involved in

15 some other mitochondrial function. Thus, TANGO 188
nucleic acids and polypeptides as well as antibodies
directed against TANGO 188 and modulators of TANGO 188
expression or activity may be useful in the diagnosis and
treatment of disorders associated with defects in

20 mitochondrial function.

protein that is present in the same operon as a gene encoding a protein that bears some similarity to SnF8p, a yeast zinc finger protein that is likely a transcription factor involved in expression of genes encoding certain proteins involved in respiration and metabolism. Since genes within the same operon are often co-regulated and encode proteins involved in the same physiological state, TANGO 188 may play a role in respiration or metabolism.

Thus, TANGO 188 nucleic acids and polypeptides as well as antibodies directed against TANGO 188 and modulators of TANGO 188 expression or activity may be useful in the diagnosis and treatment of disorders associated with defects in cell respiration or metabolism.

- 34 -

TANGO 189

The human TANGO 189 cDNA of SEQ ID NO:9 has a 759 nucleotide open reading frame (SEQ ID NO:20) encoding a 253 amino acid protein (SEQ ID NO:31). The cDNA and 5 protein sequences of human TANGO 189 are shown in Figure 17.

The human TANGO 189 cDNA described above (SEQ ID NO:9; Figure 17) represents one splice variant of TANGO 189 (splice variant 1A). There exists a second splice

10 variant of human TANGO 189 (splice variant 1B). The cDNA sequence of this splice variant is the same the cDNA sequence of human TANGO 189 described above, except that nucleotides 674-1087 are missing. This splice variant cDNA encodes a 184 amino acid protein having a predicted

15 molecular weight of 21.1 kDa prior to cleavage of the predicted signal sequence. Both splice variant 1A and splice variant 1B appear to arise from a 2.1 kB transcript which is 2055 nucleotides long, not including the polyA sequence. This transcript encodes a 253 amino 20 acid protein having a predicted molecular weight of 28.6 kDa, not including the predicted signal sequence.

The 2.1 kb TANGO 189 transcript encodes a human TANGO 189 protein that is predicted to be a transmembrane protein having a 24 or 25 amino acid signal sequence

25 (amino acids 1- 24 or 1-25 of SEQ ID NO:31; SEQ ID NO:72 and SEQ ID NO:73) followed by a 227 or 226 amino acid mature protein (amino acids 25 - 251 or 26 - 251 of SEQ ID NO:31; SEQ ID NO:84 and SEQ ID NO:85) having a first extracellular domain of 114 or 115 amino acids (amino acids 25 - 138 or 26 - 138 of SEQ ID NO:31; SEQ ID NO:92 and SEQ ID NO:93), followed by a first transmembrane domain (amino acids 139 - 164 of SEQ ID NO:31; SEQ ID NO:99), a first cytoplasmic domain (amino acids 165 - 177 of SEQ ID NO:31; SEQ ID NO:106), a second transmembrane domain (amino acids 178 - 195 of SEQ ID NO:31; SEQ ID

- 35 -

NO:100), a second extracellular domain (amino acids 196 - 211 of SEQ ID NO:31; SEQ ID NO:108), a third transmembrane domain (amino acids 212 - 237 of SEQ ID NO:31; SEQ ID NO:101), and a second cytoplasmic domain (amino acids 238 - 253 of SEQ ID NO:31; SEQ ID NO:107). The protein encoded by this 2.1 kb TANGO 189 transcript is predicted to have a molecular weight of 21.8 kDa prior to cleavage of its signal peptide and a molecular weight of 25.2 kDa subsequent to cleavage of its signal peptide.

10 The predicted domain structure of the protein encoded splice variant 1A is identical to that of the protein encoded by the 2.1 kb transcript up to amino acid 181. The predicted domain structure of the protein encoded splice variant 1B is identical to that of the protein encoded by the 2.1 kb transcript up to amino acid 180.

The murine TANGO 189 cDNA of SEQ ID NO:42 has a 759 nucleotide open reading frame (SEQ ID NO:52) encoding a 253 amino acid protein (SEQ ID NO:62). The cDNA and protein sequences of murine TANGO 189 are shown in Figure 20 18.

Figure 30 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:31; splice variant 1A) and murine (SEQ ID NO:62) TANGO 189 (91.7% idenity). Figure 40 depicts an alignment of the cDNA sequences of 25 human (SEQ ID NO:9; splice variant 1A) and murine (SEQ ID NO:42) TANGO 189 (51.8% identity).

Northern analysis of human TANGO 189 mRNA expression revealed the presence of one major transcript (2.1 kb) and four minor transcripts (3.4. kb, 4.2 kb, 6 kb, and 7 kb). The 2.1 kB transcript is expressed at a high level in brain, spinal cord, and testis; expressed at a low level in heart, placenta, skeletal muscle, kidney, pancreas, lung, thyroid, lymph node, trachea, adrenal, bone marrow, spleen, ovary, and prostate; and expressed at a very low level in liver, stomach, thymus, small

- 36 -

intestine, colon, peripheral blood lymphocytes. The 3.4. kb, 4.2 kb, 6 kb, and 7 kb transcripts are expressed at a moderate level in brain and spinal cord; and are not expressed in testis. The 4.6 and 7 kb transcripts are expressed at a moderate level in peripheral blood lymphocytes.

Murine in situ expression analysis revealed that TANGO 189 is expressed strongly and almost ubiquitously expressed in the mouse embryo. Tissues with the highest 10 expression during embryogenesis are the brain, spinal chord, and small intestine. Expression decreases in most if not all tissues by postnatal day 1.5 but tissues of highest expression remain the brain, spinal chord, and small intestine. This pattern continues into the adult 15 mouse with expression in most tissues decreasing even more, some to background levels. Of the adult tissue tested, the brain, spleen, small intestine, and retina, have the highest signal. High level expression is observed in the following adult tissues: placenta 20 (ubiquitous), small intestine (except villi), eye (retina), brain (ubiquitous). Lower expression is observed in: bladder (stronger signal in the transitional epithelium), kidney, thymus, liver, placenta, spleen, and colon. Expression was not observed in: heart, skeletal 25 muscle, diaphragm, lung, and pancreas. Embryonic expresion was observed at stages E13.5 through E17.5 (high ubiquitous signal, brain, spinal chord, small intestine have the strongest signal) and P1.5 (ubiquitous signal decreased in intensity, brain, spinal chord, small 30 intestine, and kidney have the strongest signal).

TANGO 189 is useful as a tissue-specific marker. The expression of TANGO 189 may be altered in a variety of disease states (e.g., cancer). Thus, TANGO 189 nucleic acid molecules and polypeptides as well as anti-TANGO 189

- 37 -

antibodies and modulators of TANGO 189 disorders cell proliferation and differentiation.

TANGO 215

The human TANGO 215 cDNA of SEQ ID NO:10 has a 2160 nucleotide open reading frame (SEQ ID NO:21) encoding a 720 amino acid protein (SEQ ID NO:32). The cDNA and protein sequences of human TANGO 215 are shown in Figure 19.

The cDNA sequence (SEQ ID NO:__) and predicted amino 10 acid sequence (SEQ ID NO:__) of a full-length murine TANGO 181 clone are shown in Figure 56.

Human TANGO 215 is predicted to be a wholly secreted protein having a 21 amino acid signal sequence (amino acids 1 - 21 of SEQ ID NO:32; SEQ ID NO:74) followed by a 15 699 amino acid mature protein (amino acids 22 - 720 of SEQ ID NO:32; SEQ ID NO:86). TANGO 215 is predicted to have a molecular weight of 80.3 kDa prior to cleavage of its signal peptide and a molecular weight of 77.6 kDa subsequent to cleavage of its signal peptide.

TANGO 215 is related to Clr/Cls (Clq) and MASP1/MASP2 (mannose-binding lectin-associated serine protease) proteases, all of which are involved in the alternative pathway pathway of immune response.

TANGO 215 may be a theronine protease. There is a
25 threonine in the sequence TGG at amino acid 664-666 of
human and murine TANGO 215. This sequence is within a
region having similarity to the active site of certain
proteases. Human TANGO 215 is predicted to have CUB
domain (amino acids 128 - 236 of SEQ ID NO:32), an EGF
30 domain (amino acids 239 - 271 of SEQ ID NO:32), a small
consensus repeat (SCR) domain (amino acids 280 - 342 of
SEQ ID NO:32), a partial SCR domain (amino acids 408 -

- 38 -

442 of SEQ ID NO:32), and a serine protease domain (amino acids 461 - 720 of SEQ ID NO:32).

Northern analysis of human TANGO 215 mRNA expression revealed the presence of a 2.7 kb transcript in heart, 5 brain, and placenta.

In situ analysis of TANGO 215 expression in adult mice revealed expression in the brain (cortex and caudate putamen), kidney (cortex, most likely within the glomeruli), bladder (ubiquitous expression), liver (possibly within vessels), and placenta (outer membrane region). This analysis did not detect expression in the lung, small intestine, pancreas, thymus, eye, heart, or muscle/diaphragm.

In situ analysis of TANGO 215 in embryos revealed
expression at E13.5 in developing limbs and vertebrae.
At E14.5 the observed expression pattern was similar to that at E13.5 except that expression was observed in the muscle surrounding abdomen, the skin, and the jaw. At E15.5 expression was observed in the developing kidney
and bladder and outer layer of the tongue. At later ages, E16.5 through P1.5, expression is observed in the smooth muscle layer of the small intestine, the portal regions of the liver, and the large airways of the lungs. Expression in the brain is absent until E18.5 when expression is apparent in the caudate putamen.
Expression remains strong at P1.5 in the vertebrae, tail, and sternum and possibly the muscle between developing bones.

The region of human TANGO 215 from amino acid 280 to
30 the end is predicted to be the human homologue of Limilus
Factor C (27% identity). Thus, this region of TANGO 215
is predicted to include an effector domain (serine
protease domain) and, perhaps, an LPS sensing domain.
Thus, TANGO 215 may sense and respond to LPS with the
35 response to the presence of LPS being activation of

- 39 -

serine protease activity. Accordingly, TANGO 215 nucleic acids and polypeptides as well as antibodies directed against TANGO 215 and modulators of TANGO 215 expression or activity may be useful in the diagnosis and treatment 5 sepsis.

CUB domains are extracellular domains of about 110 amino acids. CUB domains are found in functionally diverse, mostly developmentally regulated proteins. Most contain four cysteines that are involved in two disulfide-10 bonds (C1-C2 and C3-C4). SCR domains are also known as complement control protein (CCP) modules. EGF domains are commonly involved in receptor-ligand interactions. CUB, EGF, and SCR domains are commonly involved in protein-protein interaction. Because these domains are 15 present in TANGO 215, it is predicted to interact with one or more other proteins. The presence of these domains in TANGO 215 suggests that TANGO 215 is involved in development, perhaps bone and cartilage morphogenesis. TANGO 215 nucleic acid molecules and polypeptides as well 20 as anti-TANGO 215 antibodies and modulators of TANGO 215 expression or activity may be useful in the treatment of developmental disorders.

TANGO 187

The human TANGO 187-1/3 cDNA of SEQ ID NO:11 has a 1032 nucleotide open reading frame (SEQ ID NO:22) encoding a 343 amino acid protein (SEQ ID NO:33). The cDNA and 5 protein sequences of human TANGO 187-1/3 are shown in Figure 20.

Human TANGO 187-1/3 is predicted to be a wholly secreted protein having a 20 amino acid signal sequence (amino acids 1 - 20 of SEQ ID NO:33; SEQ ID NO:75)

10 followed by a 323 amino acid mature protein (amino acids 21 - 343 of SEQ ID NO:33; SEQ ID NO:87). Human TANGO 187-1/3 is predicted to have a molecular weight of 37.5 kDa prior to cleavage of its signal peptide and a molecular weight of 35.9 kDa subsequent to cleavage of 15 its signal peptide.

The TANGO 187-1/3 cDNA described upon actually represents one of 8 different TANGO 187 splice variants. Each variant contains none, one, two or three of three variant regions. These regions are referred to as region 20 1, region 2, and region 3, and each of the various forms of TANGO 187 is referred to by including a reference to the variant regions present. Thus, the form of TANGO 187 described above is TANGO 187-1/3 because it includes regions 1 and 3.

25 Figure 46 depicts the cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1.

Figure 47 depicts the cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 30 187-2/3.

Figure 48 depicts the cDNA sequence (SEQ ID NO:) and predicted amino acid sequence (SEQ ID NO:) of TANGO 187-1/2/3.

Figure 49 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1/2.

Figure 50 depicts the cDNA sequence (SEQ ID NO:__) and 5 predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-2.

Figure 51 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-3.

10 Figure 52 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187. This form does not include any of the three variant regions.

The murine TANGO 187 cDNA of SEQ ID NO:43 is only a 15 partial sequence. This cDNA has an open reading frame extending from nucleotide 73 to the end of the available sequence (SEQ ID NO:53) encoding a 152 amino acid protein (SEQ ID NO:63). The partial cDNA and protein sequences of murine TANGO 187 are shown in Figure 21.

Figure 31 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:33) and murine (SEQ ID NO:63; partial) TANGO 187 (50.4% identity). Figure 41 depicts an alignment of the cDNA sequences of human (SEQ ID NO:11) and murine (SEQ ID NO:43; partial) TANGO 187 (66.0% identity).

Northern analysis of human TANGO 187 mRNA expression revealed the presence of 1.3 and 2.4 kb transcripts that are approximately equally expressed at a low level in heart, brain, lung, liver, and smooth muscle and at a 30 moderate level in kidney and placenta.

In situ analysis of TANGO 187 expression in adult mice revealed that TANGO 187 is expressed in brain (weak, ubiquitous signal), eye and harderian gland (weak signal in the retina), submandibular gland (weak, ubiquitous signal), stomach (weak, ubiquitous signal), kidney (weak,

- 42 -

ubiquitous signal), adrenal gland (low level, ubiquitous expression), colon (low level, ubiquitous expression), small intestine (low level, ubiquitous expression), thymus (moderate level, ubiquitous expression in the cortical region with lower expression in the medulla), lymph node (ubiquitous expression), spleen (low level ubiquitous expression with lower expression in the follicles, bladder (moderate expression in the mucosal epithelium), testes (moderate, ubiquitous expression signal that defines the seminiferous vesicles). In this analysis, TANGO 187 expression was not detectable in the spinal cord, brown fat, heart, lung, liver, pancreas, skeletal muscle, and ovaries.

In situ analysis of TANGO 187 expression in embryos at 15 E13.5 revealed ubiquitous expression with the strongest expression in the brain and spinal cord. A punctate expression pattern was observed in the lungs suggestive of higher expression in the developing large airways. At E14.5 the expression pattern was similar to that observed 20 at E13.5 except that expression was observed in the developing olfactory system and the eye at a level similar to that observed in the brain and spinal cord. Expression is also present at E14.5 in the epithelium of the tongue, the dermis of the snout, the kidneys and the 25 stomach. At E15.5 low level ubiquitous expression was observed with the highest expression in the brain, spinal cord, eye, and olfactory system. Slightly lower expression was observed in the lung (ubiquitous expression) and kidney (cortical region) than in the 30 aforementioned neuronal tissues. At E16.5 the observed expression pattern is identical to that seen at E15.5 except TANGO 187 expression is observed in the thymus and the mucosal portion of the stomach. At E18.5 TANGO 187 continues to be highest in neuronal tissue with lower 35 expression in the hind brain and spinal cord than in the

- 43 -

forebrain with the neopallial cortex having the highest signal. At E16.5 expression is observed in the thymus and small intestine. At P1.5 the observed expression pattern is nearly identical to that at E18.5 except that expression in the the lung and stomach has decreased. At P1.5 expression is highest in the brain, eye, olfactory epithelium and kidney.

Tango 187 contain a region moderately similar to an armadillo/beta-catenin repeat. Such repeats are thought to be involved in protein-protein interactions.

- 44 -

TABLE 1: Summary of Human TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 187, TANGO 188, TANGO 189, and TANGO 215 Sequence Information.

5	Gene	CDNA	ORF	Protein	Pig.	Accession
	TANGO 180	SEQ ID NO:1	SEQ ID NO:12	SEQ ID NO:23	Fig. 1	ATCC 98900
	TANGO 181	SEQ ID NO:2	SEQ ID NO:13	SEQ ID NO:24	Fig. 3	ATCC 98900
	TANGO 182	SEQ ID NO:3	SEQ ID NO:14	SEQ ID NO:25	Fig. 5	ATCC 98900
	TANGO 183	SEQ ID NO:4	SEQ ID NO:15	SEQ ID NO:26	Fig. 7	ATCC 98900
10	TANGO 184	SEQ ID NO:5	SEQ ID NO:16	SEQ ID NO:27	Fig. 9	ATCC 98900
	TANGO 185	SEQ ID NO:6	SEQ ID NO:17	SEQ ID NO:28	Fig. 11	ATCC 98901
	TANGO 186	SEQ ID NO:7	SEQ ID NO:18	SEQ ID NO:29	Fig. 13	ATCC 98901
	TANGO 188	SEQ ID NO:8	SEQ ID NO:19	SEQ ID NO:30	Fig. 15	ATCC 98901
	TANGO 189	SEQ ID NO:9	SEQ ID NO:20	SEQ ID NO:31	Fig. 17	ATCC 98901
15	TANGO 215	SEQ ID NO:10	SEQ ID NO:21	SEQ ID NO:32	Fig. 19	ATCC 98899
	TANGO 187- 1/3	SEQ ID NO:11	SEQ ID NO:22	SEQ ID NO:33	Fig. 20	ATCC 98901
	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 46	ATCC
20	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 47	ATCC
	2/3			•		
	TANGO 187- 1/2/3	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 48	ATCC
25	TANGO 187- 1/2	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 49	ATCC
	TANGO 187- 2	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 50	ATCC
	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 51	ATCC

- 45 -

Summary of Domains of Human TANGO 180, TANGO TABLE 2: 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 187, TANGO 188, TANGO 189, and TANGO 215.

5	Protein	Signal Sequence	Mature Protein	Extracellula r	Transmembran e	Cytoplasmic Domain
				Domain	Domain	•
9	TANGO 180	aa 1-22 SEQ ID NO:64	aa 23-189 SEQ ID NO:76	-	-	-
	TANGO 181	aa 1-22 SEQ ID NO:65	aa 23-339 SEQ ID NO:77	-	-	-
	TANGO 182	aa 1-23 SEQ ID NO:66	aa 24-348 SEQ ID NO:78	-	-	-
	TANGO 183	aa 1-20 SEQ ID NO:67	aa 21-183 SEQ ID NO:79	aa 21-89 SEQ ID NO:88	aa 90-112 SEQ ID NO:94	aa 113-183 SEQ ID NO:102
10	TANGO 184	aa 1-28 SEQ ID NO:68	aa 29-198 SEQ ID NO:80	aa 29-102 SEQ ID NO:89	aa 103-125 SEQ ID NO:95	aa 126-198 SEQ ID NO:103
	TANGO 185	aa 1-24 SEQ ID NO:69	aa 25-193 SEQ ID NO:81	aa 25-75 SEQ ID NO:90 and aa 131-150 SEQ ID NO:91	aa 76-102 SEQ ID NO:96 and aa 110-131 SEQ ID NO:97 and aa 151-174 SEQ ID NO:98	NO:104 and
	TANGO 186	aa 1-20 SEQ ID NO:70	aa 21-383 SEQ ID NO:82	-	-	-
	TANGO 188	aa 1-23 SEQ ID NO:71	aa 24-264 SEQ ID NO:83	-	-	-

- 46 -

TANGO 189	aa 1-24 SEQ ID NO:72 or aa 1-25 SEQ ID NO:73	aa 25-251 SEQ ID NO:84 or aa 26-251 SEQ ID NO:85	aa 25-138 SEQ ID NO:92 or aa 26-138 SEQ ID NO:93 and aa 196-211 SEQ ID NO:108	aa 139-164 SEQ ID NO:99 and aa 178-195 SEQ ID NO:100 and aa 212-237 SEQ ID NO:101	aa 165-177 SEQ ID NO:106 and aa 238-253 SEQ ID NO:107
TANGO 215	aa 1-21 SEQ ID NO:74	aa 22-720 SEQ ID NO:86	-	-	-
TANGO 187-1/3	aa 1-20 SEQ ID NO:75	aa 21-343 SEQ ID NO:87	-	-	-

PCT/US99/22817

- 47 -

TABLE 3: Summary of Murine TANGO 180, TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189, and TANGO 187 Sequence Information

5	Gene	CDNA	ORF	Protein	Figure	AA align. with human	NA align. with human
	TANGO 180	SEQ ID NO:34	SEQ ID NO:44	SEQ ID NO:54	Fig. 2	Fig. 22	Fig. 32
10	TANGO 181 (partia 1)	SEQ ID NO:35	SEQ ID NO:45	SEQ ID NO:55	Fig. 4	Fig. 23	Fig. 33
15	TANGO 182 (partia 1)	SEQ ID NO:36	SEQ ID NO:46	SEQ ID NO:56	Fig. 6	Fig. 24	Fig. 34
	TANGO 183	SEQ ID NO:37	SEQ ID NO:47	SEQ ID NO:57	Fig. 8	Fig. 25	Fig. 35
	TANGO 184	SEQ ID NO:38	SEQ ID NO:48	SEQ ID NO:58	Fig. 10	Fig. 26	Fig. 36
20 \	TANGO 185	SEQ ID NO:39	SEQ ID NO:49	SEQ ID NO:59	Fig. 12	Fig. 27	Fig. 37
	TANGO 186	SEQ ID NO:40	SEQ ID NO:50	SEQ ID NO:60	Fig. 14	Fig. 28	Fig. 38
25	TANGO 188	SEQ ID NO:41	SEQ ID NO:51	SEQ ID NO:61	Fig. 16	Fig. 29	Fig. 39
	TANGO 189	SEQ ID NO:42	SEQ ID NO:52	SEQ ID NO:62	Fig. 18	Fig. 30	Fig. 40
30	TANGO 187 (partia 1)	SEQ ID NO:43	SEQ ID NO:53	SEQ ID NO:63	Fig. 21	Fig. 31	Fig. 41

- 48 -

TANGO 181	SEQ ID	SEQ ID	SEQ ID NO:	Fig. 53	
TANGO 182	SEQ ID	SEQ ID	SEQ ID NO:	Fig. 54	
TANGO 187	SEQ ID	SEQ ID	SEQ ID	Fig. 55	
TANGO 215	SEQ ID	SEQ ID	SEQ ID	Fig. 56	

Various aspects of the invention are described in 10 further detail in the following subsections

I. Isolated Nucleic Acid Molecules

5

One aspect of the invention pertains to isolated nucleic acid molecules that encode a polypeptide of the invention or a biologically active portion thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding a polypeptide of the invention and fragments of such nucleic acid molecules suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Preferably, an "isolated" nucleic acid molecule is free of sequences (preferably protein encoding sequences) which naturally flank the nucleic

acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule 5 can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA 10 molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., 15 a nucleic acid molecule having the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43, and - or the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof, can be isolated using standard molecular biology techniques and the sequence 20 information provided herein. Using all or a portion of the nucleic acid sequences of any of SEQ ID NOs:1-22, 34-43, and __ - __ or the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001 as a hybridization probe, nucleic acid molecules of the invention can be 25 isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

A nucleic acid molecule of the invention can be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore,

oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

5 In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NOs:1-22, 34-43, and - or the cDNA of a clone deposited as ATCC 98899, 98900, and 10 989001, or a portion thereof. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex. Moreover, a nucleic acid molecule of the invention can 15 comprise only a portion of a nucleic acid sequence encoding a full length polypeptide of the invention for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active 20 portion of a polypeptide of the invention. The nucleotide sequence determined from the cloning one gene allows for the generation of probes and primers designed for use in identifying and/or cloning homologues in other cell types, e.g., from other tissues, as well as homologues 25 from other mammals. The probe/primer typically comprises substantially purified oligonucleotide. oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, 30 more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350 or 400 consecutive nucleotides of the sense or anti-sense sequence of any of SEQ ID NOs:1-22, 34-43,

and __ - __ or the cDNA of a clone deposited as ATCC 98899, 98900, and 989001 or of a naturally occurring 35 mutant of any of SEQ NOs:1-22, 34-43, and __ - __ or

the cDNA of a clone deposited as ATCC 98899, 98900, and 989001.

Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences encoding the same protein molecule encoded by a selected nucleic acid molecule. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein 15 has been mutated or deleted.

A nucleic acid fragment encoding a "biologically active portion" of a polypeptide of the invention can be prepared by isolating a portion of any of SEQ ID NOs:1-22, 34-43, and ____ or the nucleotide sequence of the cDNA of a clone deposited as ATCC 98899, 98900, and 989001 which encodes a polypeptide having a biological activity, expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the polypeptide.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of SEQ ID NOs:1-22, 34-43, and __ - __ or the cDNA of a clone of ATCC 98899, 98900, and 989001 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence shown in any of SEQ ID NOs:1-22, 34-43, and __ - _ or the cDNA of a clone deposited as ATCC 98899, 98900, and 989001.

In addition to the nucleotide sequences shown in SEQ ID 35 NOs:1-22, 34-43, and ___ - __ and present in cDNA's of

- 52 -

the clones deposited of ATCC 98899, 98900, and 989001, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence may exist within a population (e.g., the 5 human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus. As used herein, the phrase "allelic variant" refers to a 10 nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention. Such natural 15 allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. be readily carried out by using hybridization probes to 20 identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within 25 the scope of the invention.

Moreover, nucleic acid molecules encoding proteins of the invention from other species (homologues), which have a nucleotide sequence which differs from that of the human protein described herein are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of a cDNA of the invention can be isolated based on their identity to the human nucleic acid molecule disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization

- 53 -

techniques under stringent hybridization conditions. For example, a cDNA encoding a soluble form of a membrane-bound protein of the invention isolated based on its hybridization to a nucleic acid molecule encoding all or part of the membrane-bound form. Likewise, a cDNA encoding a membrane-bound form can be isolated based on its hybridization to a nucleic acid molecule encoding all or part of the soluble form.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 300 (325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1290) nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of any of SEQ ID NOs:1-22, 34-43, and ____ - ___ the cDNA of a clone deposited as ATCC 98899, 98900, and 989001, or a complement thereof.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for 20 hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols 25 in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 30 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of any of SEQ ID NOs:1-22, 34-43, and ____ - ___, the cDNA of ATCC 98899, 98900, and 989001, or the complement thereof, corresponds to a 35 naturally-occurring nucleic acid molecule. As used

- 54 -

herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In addition to naturally-occurring allelic variants of a nucleic acid molecule of the invention sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation thereby leading to changes in the amino acid 10 sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues. A "non-essential" amino acid residue is a residue that can 15 be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologues of various species 20 may be non-essential for activity and thus would be likely targets for alteration. Alternatively, amino acid residues that are conserved among the homologues of various species (e.g., murine and human) may be essential for activity and thus would not be likely targets for 25 alteration. Conserved cysteine residues are particularly important and are preferably retained in functional variants

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NOs:23-33, 54-63, and ___ yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a

- 55 -

protein that includes an amino acid sequence that is at least about 45% identical, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of any of SEO ID Nos:23-3, 54-63, and ___ - __. An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NOs:1-22, 34-43, and the cDNA of a clone deposited of ATCC 98899, 98900, 10 and 989001 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative 15 amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino 20 acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., 25 glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains 30 (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that 35 retain activity. Following mutagenesis, the encoded

- 56 -

protein can be expressed recombinantly and the activity of the protein can be determined.

In a preferred embodiment, a mutant polypeptide that is a variant of a polypeptide of the invention can be

5 assayed for: (1) the ability to form protein:protein interactions with proteins in a signalling pathway of the polypeptide of the invention; (2) the ability to bind a ligand of the polypeptide of the invention; or (3) the ability to bind to an intracellular target protein of the polypeptide of the invention. In yet another preferred embodiment, the mutant polypeptide can be assayed for the ability to modulate cellular proliferation or cellular differentiation.

The present invention encompasses antisense nucleic 15 acid molecules, i.e., molecules which are complementary to a sense nucleic acid encoding a polypeptide of the invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can 20 hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can be antisense to all 25 or part of a noncoding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The noncoding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino 30 acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.

- 57 -

For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological 5 stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to 10 generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5carboxymethylaminomethyl-2-thiouridine, 5-15 carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2methyladenine, 2-methylguanine, 3-methylcytosine, 5methylcytosine, N6-adenine, 7-methylguanine, 5-20 methylaminomethyluracil, 5-methoxyaminomethyl-2thiouracil, beta-D-mannosylqueosine, 5'methoxycarboxymethyluracil, 5-methoxyuracil, 2methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-25 thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the

(acp3)w, and 2,6-diaminopurine. Alternatively, the 30 antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of 35 interest, described further in the following subsection).

- 58 -

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide 5 of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which 10 binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid 15 molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by 20 linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the 25 antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

An antisense nucleic acid molecule of the invention can 30 be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641).

35 The antisense nucleic acid molecule can also comprise a

- 59 -

2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

The invention also encompasses ribozymes. Ribozymes 5 are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature

- 10 334:585-591)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding a polypeptide of the invention can be designed based upon the nucleotide
- 15 sequence of a cDNA disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a Cech et al. U.S. Patent No. 4,987,071;

20 and Cech et al. U.S. Patent No. 5,116,742.

Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 25 261:1411-1418.

The invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991)

Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N.Y.

- 60 -

Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.

In preferred embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar 5 moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal 10 Chemistry 4(1): 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are 15 retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. 20 (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup

(1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675).

In another embodiment, PNAs can be modified, e.g., to 35 enhance their stability or cellular uptake, by attaching

PCT/US99/22817 WO 00/18904

- 61 -

lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may 5 combine the advantageous properties of PNA and DNA. chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using 10 linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 15 24(17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite 20 can be used as a link between the PNA and the 5' end of DNA (Mag et al. (1989) Nucleic Acids Res. 17:5973-88).

PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) Nucleic Acids Res.

25 24(17):3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119-11124).

In other embodiments, the oligonucleotide may include 30 other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. 35 Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or

- 62 -

the blood-brain barrier (see, e.g., PCT Publication No. W0 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

10 II. Isolated Proteins and Antibodies

One aspect of the invention pertains to isolated proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a

15 polypeptide of the invention. In one embodiment, the native polypeptide can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides of the invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide of the invention can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" protein or biologically
25 active portion thereof is substantially free of cellular
material or other contaminating proteins from the cell or
tissue source from which the protein is derived, or
substantially free of chemical precursors or other
chemicals when chemically synthesized. The language
30 "substantially free of cellular material" includes
preparations of protein in which the protein is separated
from cellular components of the cells from which it is
isolated or recombinantly produced. Thus, protein that
is substantially free of cellular material includes

preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein"). When the protein or biologically active portion thereof is 5 recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably 10 substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry 15 weight) of chemical precursors or compounds other than the polypeptide of interest.

Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the 20 amino acid sequence of the protein (e.g., the amino acid sequence shown in any of SEQ ID Nos:23-33, 54-63, and - which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, 25 biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, 30 other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.

Preferred polypeptides have the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ______. Other useful proteins are substantially identical (e.g., at least about 45%, preferably 55%, 65%, 75%, 85%, 95%, or 99%) to any of SEQ ID Nos:22-33, 54-63, and _____ and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

To determine the percent identity of two amino acid 10 sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second 15 amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in 20 the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., 25 overlapping positions) x 100). Preferably, the two sequences are the same length.

The determination of percent homology between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J.

WO 00/18904

- 65 -

Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST 5 protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in 10 Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402.

Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. Id. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of

15 the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17.

20 Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 25 can be used.

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

The invention also provides chimeric or fusion 30 proteins. As used herein, a "chimeric protein" or "fusion protein" comprises all or part (preferably biologically active) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a 35 polypeptide other than the same polypeptide of the

- 66 -

invention). Within the fusion protein, the term
"operably linked" is intended to indicate that the
polypeptide of the invention and the heterologous
polypeptide are fused in-frame to each other. The
heterologous polypeptide can be fused to the N-terminus
or C-terminus of the polypeptide of the invention.

One useful fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the Cterminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.

In another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus. For example, the native signal sequence of a polypeptide of 15 the invention can be removed and replaced with a signal sequence from another protein. For example, the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., 20 John Wiley & Sons, 1992). Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California). another example, useful prokaryotic heterologous signal 25 sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).

In yet another embodiment, the fusion protein is an immunoglobulin fusion protein in which all or part of a 30 polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound)

- 67 -

and a protein on the surface of a cell (receptor), to thereby suppress signal transduction in vivo. The immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of 5 the invention. Inhibition of ligand/receptor interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g. promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the 10 invention can be used as immunogens to produce antibodies directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.

Chimeric and fusion protein of the invention can be 15 produced by standard recombinant DNA techniques. another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene 20 fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, 25 many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide 30 of the invention.

A signal sequence of a polypeptide of the invention (SEQ ID NOs:64-75) can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which

- 68 -

are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass 5 through the secretory pathway. Thus, the invention pertains to the described polypeptides having a signal sequence, as well as to the signal sequence itself and to the polypeptide in the absence of the signal sequence (i.e., the cleavage products). In one embodiment, a 10 nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the 15 protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal 20 sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

In another embodiment, the signal sequences of the present invention can be used to identify regulatory

25 sequences, e.g., promoters, enhancers, repressors. Since signal sequences are the most amino-terminal sequences of a peptide, it is expected that the nucleic acids which flank the signal sequence on its amino-terminal side will be regulatory sequences which affect transcription.

30 Thus, a nucleotide sequence which encodes all or a portion of a signal sequence can be used as a probe to identify and isolate signal sequences and their flanking regions, and these flanking regions can be studied to identify regulatory elements therein.

The present invention also pertains to variants of the polypeptides of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be 5 generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of 10 the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a 15 variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein. Variants of a protein of the invention which function 20 as either agonists (mimetics) or as antagonists can be

Variants of a protein of the invention which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity. In one
25 embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the

- 70 -

polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477).

In addition, libraries of fragments of the coding sequence of a polypeptide of the invention can be used to 10 generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under 15 conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes 20 by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal and internal fragments of various sizes of the protein of interest.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates

- 71 -

isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the invention (Arkin and Yourvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).

An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. The antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30) amino acid residues of the amino acid sequence shown in any of SEQ ID Nos:23-33, 54-64, and ____ and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein.

Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions, rather than

25 hydrophobic regions, e.g., transmembrane domains. The hydrophilicity of a protein sequence can be easily determined using readily available programs.

An immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal). An appropriate immunogenic preparation can contain, for example, recombinantly expressed chemically synthesized polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.

- 72 -

Accordingly, another aspect of the invention pertains to antibodies directed against a polypeptide of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active 5 portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention. A molecule which specifically binds to a given polypeptide of the invention is a molecule which binds 10 the polypeptide, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab'), fragments which can be 15 generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only 20 one species of an antigen binding site capable of immunoreacting with a particular epitope.

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the specific antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques,

PCT/US99/22817

WO 00/18904

- 73 -

such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al.

- 5 (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al. (eds.) John Wiley & Sons, Inc., New York, NY).
- 10 Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.

Alternative to preparing monoclonal antibody-secreting 15 hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for

- 20 generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP™ Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents
- 25 particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO
- 30 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science

- 74 -

246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both 5 human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in 10 PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 15 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and 20 Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S. Patent 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 25 141:4053-4060.

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice which are incapable of expressing endogenous immunoglobulin 30 heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The

- 75 -

human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible 5 to produce therapeutically useful IgG, IgA and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and 10 human monoclonal antibodies and protocols for producing such antibodies, see, e.g., U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be 15 engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as 20 "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope.

An antibody directed against a polypeptide of the
invention (e.g., monoclonal antibody) can be used to
isolate the polypeptide by standard techniques, such as
affinity chromatography or immunoprecipitation.

Moreover, such an antibody can be used to detect the
protein (e.g., in a cellular lysate or cell supernatant)
in order to evaluate the abundance and pattern of
expression of the polypeptide. The antibodies can also
be used diagnostically to monitor protein levels in
tissue as part of a clinical testing procedure, e.g., to,
for example, determine the efficacy of a given treatment
regimen. Detection can be facilitated by coupling the

- 76 -

antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. 5 Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials 10 include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, 15 and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.

III. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid 20 encoding a polypeptide of the invention (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double 25 stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced 30 (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are

- 77 -

replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors 15 include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide 20 sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term 25 "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, 30 San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory 35 sequences). It will be appreciated by those skilled in

- 78 -

the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as *B. coli*, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in B. coli with vectors containing 20 constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve 25 three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a 30 proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition 35 sequences, include Factor Xa, thrombin and enterokinase.

- 79 -

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione Stransferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

A, respectively, to the target recombinant protein.
 Examples of suitable inducible non-fusion E. coli
 expression vectors include pTrc (Amann et al., (1988)
 Gene 69:301-315) and pET 11d (Studier et al., Gene
 Expression Technology: Methods in Enzymology 185,
 Academic Press, San Diego, California (1990) 60-89).
 Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d
vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ
 prophage harboring a T7 gn1 gene under the

20 transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression

in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, Gene Expression

25 Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those

30 preferentially utilized in *E. coli* (Wada et al. (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the expression vector is a yeast 35 expression vector. Examples of vectors for expression in

- 80 -

yeast S. cerivisae include pYepSecl (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).

Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. 10 Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.

In another embodiment, the recombinant mammalian
25 expression vector is capable of directing expression of
the nucleic acid preferentially in a particular cell type
(e.g., tissue-specific regulatory elements are used to
express the nucleic acid). Tissue-specific regulatory
elements are known in the art. Non-limiting examples of
30 suitable tissue-specific promoters include the albumin
promoter (liver-specific; Pinkert et al. (1987) Genes
Dev. 1:268-277), lymphoid-specific promoters (Calame and
Eaton (1988) Adv. Immunol. 43:235-275), in particular
promoters of T cell receptors (Winoto and Baltimore
35 (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et

- 81 -

al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific
5 promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the
10 murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned 15 into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a Regulatory sequences 20 polypeptide of the invention. operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or 25 enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense 30 nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al. 35 (Reviews - Trends in Genetics, Vol. 1(1) 1986).

- 82 -

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein.

5 It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used

A host cell can be any prokaryotic (e.g., *E. coli*) or eukaryotic (e.g., an insect cell, a yeast cell or a 15 mammalian cell) cell.

herein.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs,

- 83 -

such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, 5 while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide of 10 the invention using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one 20 embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a sequences encoding a polypeptide of the invention have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous sequences 25 encoding a polypeptide of the invention have been introduced into their genome or homologous recombinant animals in which endogenous encoding a polypeptide of the invention sequences have been altered. Such animals are useful for studying the function and/or activity of the 30 polypeptide and for identifying and/or evaluating modulators of polypeptide activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes 35 a transgene. Other examples of transgenic animals

include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by 15 introducing nucleic acid encoding a polypeptide of the invention (or a homologue thereof) into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the 20 oocyte to develop in a pseudopregnant female foster animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissuespecific regulatory sequence(s) can be operably linked to 25 the transgene to direct expression of the polypeptide of the invention to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for 30 example, in U.S. Patent NOS. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic 35 founder animal can be identified based upon the presence

of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene.

5 Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.

To create an homologous recombinant animal, a vector is prepared which contains at least a portion of a gene 10 encoding a polypeptide of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene. a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous gene is 15 functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes 20 functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein). In the homologous recombination vector, the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to 25 allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell. The additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous 30 gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi (1987) Cell 51:503 for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line 35 (e.g., by electroporation) and cells in which the

- 86 -

introduced gene has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form 5 aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the 10 embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing 15 homologous recombination vectors and homologous recombinant animals are described further in Bradley (1991) Current Opinion in Bio/Technology 2:823-829 and in PCT Publication NOS. WO 90/11354, WO 91/01140, WO 92/0968, and WO 93/04169.

In another embodiment, transgenic non-human animals can 20 be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP 25 recombinase system, see, e.g., Lakso et al. (1992) Proc. Natl. Acad. Sci. USA 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355. If a cre/loxP recombinase system is used 30 to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one

- 87 -

containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810-813 and PCT Publication NOS. WO 97/07668 and WO 97/07669.

IV. Pharmaceutical Compositions

The nucleic acid molecules, polypeptides, and antibodies (also referred to herein as "active 10 compounds") of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language 15 "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and 20 agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated 25 into the compositions.

The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid of the invention. Such methods comprise formulating a 30 pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention. Such compositions can further include additionl active agents. Thus, the invention further includes methods for preparing a

- 88 -

pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention and one or more additional active compounds.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, 10 subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for 15 injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as 20 ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral 25 preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL^M (BASF; Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition

- 89 -

must be sterile and should be fluid to the extent that
easy syringability exists. It must be stable under the
conditions of manufacture and storage and must be
preserved against the contaminating action of

5 microorganisms such as bacteria and fungi. The carrier
can be a solvent or dispersion medium containing, for
example, water, ethanol, polyol (for example, glycerol,
propylene glycol, and liquid polyetheylene glycol, and
the like), and suitable mixtures thereof. The proper

10 fluidity can be maintained, for example, by the use of a
coating such as lecithin, by the maintenance of the
required particle size in the case of dispersion and by
the use of surfactants. Prevention of the action of
microorganisms can be achieved by various antibacterial

15 and antifungal agents, for example, parabens,
chlorobutanol, phenol, ascorbic acid, thimerosal, and the

chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the

20 composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by

25 incorporating the active compound (e.g., a polypeptide or
antibody) in the required amount in an appropriate
solvent with one or a combination of ingredients
enumerated above, as required, followed by filtered
sterilization. Generally, dispersions are prepared by

30 incorporating the active compound into a sterile vehicle
which contains a basic dispersion medium and the required
other ingredients from those enumerated above. In the
case of sterile powders for the preparation of sterile
injectable solutions, the preferred methods of

35 preparation are vacuum drying and freeze-drying which

yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or 5 an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can 10 also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the 15 composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating 20 agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange 25 flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, 30 or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include,

- 91 -

for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases 10 such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled 15 release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods 20 for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal 25 antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; seach unit containing a predetermined quantity of active

- 92 -

compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

For antibodies, the preferred dosage is 0.1 mg/kg to 10 100 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate.

Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible.

Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.

25 Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470) or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g.

- 93 -

include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions 5 for administration.

V. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screening 10 assays; b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and d) methods of treatment (e.g., therapeutic and prophylactic). 15 example, polypeptides of the invention can to used to (i) modulate cellular proliferation; (ii) modulate cellular differentiation; and (iii) modulate cell survival. The isolated nucleic acid molecules of the invention can be used to express proteins (e.g., via a recombinant 20 expression vector in a host cell in gene therapy applications), to detect mRNA (e.g., in a biological sample) or a genetic lesion, and to modulate activity of a polypeptide of the invention. In addition, the polypeptides of the invention can be used to screen drugs 25 or compounds which modulate activity or expression of a polypeptide of the invention as well as to treat disorders characterized by insufficient or excessive production of a protein of the invention or production of a form of a protein of the invention which has decreased. 30 or aberrant activity compared to the wild type protein. In addition, the antibodies of the invention can be used to detect and isolate a protein of the invention and modulate activity of a protein of the invention.

- 94 -

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

A. Screening Assays

5 The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.

In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or 15 modulate the activity of the membrane-bound form of a polypeptide of the invention or biologically active portion thereof. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the 20 art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity 25 chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).

20 Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et

WO 00/18904

- 95 -

al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and Gallop et al. (1994) J. Med. Chem. 37:1233.

Libraries of compounds may be presented in solution (e.g., Houghten (1992) Bio/Techniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (Patent NOS. 5,571,698; 5,403,484; and 10 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or phage (Scott and Smith (1990) Science 249:386-390; Devlin (1990) Science 249:404-406; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382; and Felici (1991) J. Mol. Biol.

15 222:301-310). In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a 20 test compound and the ability of the test compound to bind to the polypeptide determined. The cell, for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, 25 by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 30 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, test compounds can be enzymatically

labeled with, for example, horseradish peroxidase, 35 alkaline phosphatase, or luciferase, and the enzymatic

- 96 -

label detected by determination of conversion of an appropriate substrate to product. In a preferred embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or a biologically active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished, for example, by determining the ability of the polypeptide protein to bind to or interact with a target molecule.

Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by one of the methods described above 30 for determining direct binding. As used herein, a "target molecule" is a molecule with which a selected polypeptide (e.g., a polypeptide of the invention binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected

- 97 -

protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A target molecule can be a 5 polypeptide of the invention or some other polypeptide or protein. For example, a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a 10 polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling molecules with a polypeptide of the invention. Determining the ability of 15 a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the 20 target (e.g., intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention 25 operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation.

In yet another embodiment, an assay of the present
invention is a cell-free assay comprising contacting a
polypeptide of the invention or biologically active
portion thereof with a test compound and determining the
ability of the test compound to bind to the polypeptide
or biologically active portion thereof. Binding of the
test compound to the polypeptide can be determined either

- 98 -

directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the 5 polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises 10 determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-free assay comprising contacting a polypeptide of the invention or 15 biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate 20 the activity of the polypeptide can be accomplished, for example, by determining the ability of the polypeptide to bind to a target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound 25 to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to further modulate the target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate 30 substrate can be determined as previously described.

In yet another embodiment, the cell-free assay comprises contacting a polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, 35 contacting the assay mixture with a test compound, and

- 99 -

determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the polypeptide to preferentially bind to or modulate the activity of a target molecule.

The cell-free assays of the present invention are amenable to use of both a soluble form or the membranebound form of a polypeptide of the invention. 10 case of cell-free assays comprising the membrane-bound form of the polypeptide, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution. Examples of such solubilizing agents include non-ionic detergents 15 such as n-octylglucoside, n-dodecylglucoside, ndodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-Nmethylglucamide, Triton X-100, Triton X-114, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3cholamidopropyl)dimethylamminio]-1-propane sulfonate 20 (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N,Ndimethyl-3-ammonio-1-propane sulfonate.

In more than one embodiment of the above assay methods of the present invention, it may be desirable to

25 immobilize either the polypeptide of the invention or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that

- 100 -

allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase fusion proteins or glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma 5 Chemical; St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or A polypeptide of the invention, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above.

15 Alternatively, the complexes can be dissociated from the

15 Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.

Other techniques for immobilizing proteins on matrices 20 can also be used in the screening assays of the invention. For example, either the polypeptide of the invention or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated polypeptide of the invention or target 25 molecules can be prepared from biotin-NHS (N-hydroxysuccinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, 30 antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptidede of the invention 35 trapped in the wells by antibody conjugation.

- 101 -

for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the polypeptide of the invention or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.

In another embodiment, modulators of expression of a polypeptide of the invention are identified in a method 10 in which a cell is contacted with a candidate compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein corresponding to a polypeptide or nucleic acid of the invention) in the cell is determined. The level of expression of the selected mRNA or protein 15 in the presence of the candidate compound is compared to the level of expression of the selected mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of expression of the polypeptide of the invention based on 20 this comparison. For example, when expression of the selected mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of the selected mRNA or 25 protein expression. Alternatively, when expression of the selected mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the selected mRNA or 30 protein expression. The level of the selected mRNA or protein expression in the cells can be determined by methods described herein.

In yet another aspect of the invention, a polypeptide of the inventions can be used as "bait proteins" in a 35 two-hybrid assay or three hybrid assay (see, e.g., U.S.

- 102 -

Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No. WO 94/10300), to identify other proteins, which bind to or interact with the polypeptide of the invention and modulate activity of the polypeptide of the invention. Such binding proteins are also likely to be involved in the propagation of signals by the polypeptide of the inventions as, for example, upstream or downstream elements of a signaling pathway involving the polypeptide of the invention.

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

B. <u>Detection Assays</u>

herein (and the corresponding complete gene sequences)
can be used in numerous ways as polynucleotide reagents.

20 For example, these sequences can be used to: (i) map
their respective genes on a chromosome and, thus, locate
gene regions associated with genetic disease; (ii)
identify an individual from a minute biological sample
(tissue typing); and (iii) aid in forensic identification

Portions or fragments of the cDNA sequences identified

25 of a biological sample. These applications are described in the subsections below.

1. Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map 30 the location of the gene on a chromosome. Accordingly, nucleic acid molecules described herein or fragments thereof, can be used to map the location of the corresponding genes on a chromosome. The mapping of the

- 103 -

sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Briefly, genes can be mapped to chromosomes by

5 preparing PCR primers (preferably 15-25 bp in length)
from the sequence of a gene of the invention. Computer
analysis of the sequence of a gene of the invention can
be used to rapidly select primers that do not span more
than one exon in the genomic DNA, thus complicating the

10 amplification process. These primers can then be used
for PCR screening of somatic cell hybrids containing
individual human chromosomes. Only those hybrids
containing the human gene corresponding to the gene
sequences will yield an amplified fragment. For a review

15 of this technique, see D'Eustachio et al. ((1983) Science
220:919-924).

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be 20 assigned per day using a single thermal cycler. Using the nucleic acid sequences of the invention to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to 25 map a gene to its chromosome include in situ hybridization (described in Fan et al. (1990) Proc. Natl. Acad. Sci. USA 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries. 30 Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. For a review of this technique, see Verma et al., (Human Chromosomes: A Manual of Basic Techniques 35 (Pergamon Press, New York, 1988)).

- 104 -

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes.

5 Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland et al. (1987) Nature 325:783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with a gene of the invention can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

2. Tissue Typing

The nucleic acid sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for 5 example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).

Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the nucleic acid sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals,
25 prepared in this manner, can provide unique individual
identifications, as each individual will have a unique
set of such DNA sequences due to allelic differences.
The sequences of the present invention can be used to
obtain such identification sequences from individuals and
30 from tissue. The nucleic acid sequences of the invention
uniquely represent portions of the human genome. Allelic
variation occurs to some degree in the coding regions of
these sequences, and to a greater degree in the noncoding
regions. It is estimated that allelic variation between
35 individual humans occurs with a frequency of about once

- 106 -

per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. For example, the noncoding sequences of SEQ ID NO:1 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

If a panel of reagents from the nucleic acid sequences
15 described herein is used to generate a unique
identification database for an individual, those same
reagents can later be used to identify tissue from that
individual. Using the unique identification database,
positive identification of the individual, living or
20 dead, can be made from extremely small tissue samples.

3. Use of Partial Gene Sequences in Forensic Biology
DNA-based identification techniques can also be used in
forensic biology. Forensic biology is a scientific field
employing genetic typing of biological evidence found at
25 a crime scene as a means for positively identifying, for
example, a perpetrator of a crime. To make such an
identification, PCR technology can be used to amplify DNA
sequences taken from very small biological samples such
as tissues, e.g., hair or skin, or body fluids, e.g.,
30 blood, saliva, or semen found at a crime scene. The
amplified sequence can then be compared to a standard,
thereby allowing identification of the origin of the
biological sample.

- 107 -

The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic 5 identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns 10 formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. 15 Examples of polynucleotide reagents include the nucleic acid sequences of the invention or portions thereof, e.g., fragments derived from noncoding regions having a

The nucleic acid sequences described herein can further

20 be used to provide polynucleotide reagents, e.g., labeled
or labelable probes which can be used in, for example, an
in situ hybridization technique, to identify a specific
tissue, e.g., brain tissue. This can be very useful in
cases where a forensic pathologist is presented with a

25 tissue of unknown origin. Panels of such probes can be
used to identify tissue by species and/or by organ type.

C. <u>Predictive Medicine</u>

length of at least 20 or 30 bases.

The present invention also pertains to the field of predictive medicine in which diagnostic assays,

30 prognostic assays, pharmacogenomics, and monitoring clinical trails are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates

- 108 -

to diagnostic assays for determining expression of a polypeptide or nucleic acid of the invention and/or activity of a polypeptide of the invention, in the context of a biological sample (e.g., blood, serum, 5 cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant expression or activity of a polypeptide of the invention. The invention also provides for prognostic (or 10 predictive) assays for determining whether an individual is at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, mutations in a gene of the invention can be assayed in a biological sample. 15 assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with aberrant expression or activity of a polypeptide of the invention.

Another aspect of the invention provides methods for expression of a nucleic acid or polypeptide of the invention or activity of a polypeptide of the invention in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics").

Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent).

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs or other compounds) on the expression or activity of a polypeptide of the invention in clinical trials.

These and other agents are described in further detail in the following sections.

1. Diagnostic Assays

An exemplary method for detecting the presence or 5 absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of 10 the invention such that the presence of a polypeptide or nucleic acid of the invention is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA encoding a polypeptide of the invention is a labeled nucleic acid probe capable of hybridizing to 15 mRNA or genomic DNA encoding a polypeptide of the invention. The nucleic acid probe can be, for example, a full-length cDNA, such as the nucleic acid of SEQ ID NOs:1-22, 34-43, and ___ - ___ or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 20 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention. Other suitable probes for use in the diagnostic assays of the invention are described herein.

A preferred agent for detecting A polypeptide of the invention is an antibody capable of binding to A polypeptide of the invention, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')₂) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as

- 110 -

indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody 5 and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present 10 within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of mRNA include Northern hybridizations and in situ 15 hybridizations. In vitro techniques for detection of A polypeptide of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic DNA include Southern 20 hybridizations. Furthermore, in vivo techniques for detection of a polypeptide of the invention include introducing into a subject a labeled antibody directed against the polypeptide. For example, the antibody can be labeled with a radioactive marker whose presence and 25 location in a subject can be detected by standard imaging

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

In another embodiment, the methods further involve 35 obtaining a control biological sample from a control

techniques.

- 111 -

subject, contacting the control sample with a compound or agent capable of detecting a polypeptide of the invention or mRNA or genomic DNA encoding a polypeptide of the invention, such that the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide is detected in the biological sample, and comparing the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the control sample with the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.

The invention also encompasses kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample (a test sample). kits can be used to determine if a subject is suffering 15 from or is at increased risk of developing a disorder associated with aberrant expression of a polypeptide of the invention (e.g., an immunological disorder). For example, the kit can comprise a labeled compound or agent capable of detecting the polypeptide or mRNA encoding the 20 polypeptide in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits can also include 25 instruction for observing that the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level.

For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.

- 112 -

For oligonucleotide-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide of the invention or 5 (2) a pair of primers useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention.

The kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide.

20 2. <u>Prognostic Assays</u>

The methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing such a disease or disorder. Thus, the present invention provides a method in which a test sample is obtained from a subject and a

- 113 -

polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention is detected, wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder sassociated with aberrant expression or activity of the polypeptide. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

10 Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or 15 disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, such methods can be used to determine whether a subject can be effectively treated with a specific agent or class of agents (e.g., agents of a type which decrease activity of 20 the polypeptide). Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant expression or activity of a polypeptide of the invention in which a test sample is 25 obtained and the polypeptide or nucleic acid encoding the polypeptide is detected (e.g., wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant expression or activity 30 of the polypeptide).

The methods of the invention can also be used to detect genetic lesions or mutations in a gene of the invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized aberrant

35 expression or activity of a polypeptide of the invention.

- 114 -

In preferred embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of 5 a gene encoding the polypeptide of the invention, or the mis-expression of the gene encoding the polypeptide of the invention. For example, such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: 1) a deletion of one or more 10 nucleotides from the gene; 2) an addition of one or more nucleotides to the gene; 3) a substitution of one or more nucleotides of the gene; 4) a chromosomal rearrangement of the gene; 5) an alteration in the level of a messenger RNA transcript of the gene; 6) an aberrant modification 15 of the gene, such as of the methylation pattern of the genomic DNA; 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; 8) a non-wild type level of a the protein encoded by the gene; 9) an allelic loss of the gene; and 10) an inappropriate 20 post-translational modification of the protein encoded by the gene. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a gene.

In certain embodiments, detection of the lesion

25 involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and

30 Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a gene (see, e.g., Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g.,

- 115 -

genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the selected gene under conditions such that hybridization and

5 amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (Guatelli et al. (1990)

15 Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the

20 detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a selected gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction

30 endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent

35 No. 5,498,531) can be used to score for the presence of

- 116 -

specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations can be identified by hybridizing a sample and control nucleic 5 acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753-759). example, genetic mutations can be identified in two-10 dimensional arrays containing light-generated DNA probes as described in Cronin et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear 15 arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all 20 variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of

25 sequencing reactions known in the art can be used to
directly sequence the selected gene and detect mutations
by comparing the sequence of the sample nucleic acids
with the corresponding wild-type (control) sequence.
Examples of sequencing reactions include those based on

30 techniques developed by Maxim and Gilbert ((1977) Proc.
Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc.
Natl. Acad. Sci. USA 74:5463). It is also contemplated
that any of a variety of automated sequencing procedures
can be utilized when performing the diagnostic assays

35 ((1995) Bio/Techniques 19:448), including sequencing by

- 117 -

mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).

- Other methods for detecting mutations in a selected gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the technique of "mismatch
- 10 cleavage" entails providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded
- 15 regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. RNA/DNA duplexes can be treated with RNase to digest mismatched regions, and DNA/DNA hybrids can be treated with S1 nuclease to digest mismatched regions.
- 20 In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions.

 After digestion of the mismatched regions, the resulting material is then separated by size on denaturing
- 25 polyacrylamide gels to determine the site of mutation.
 See, e.g., Cotton et al. (1988) Proc. Natl. Acad. Sci.
 USA 85:4397; Saleeba et al. (1992) Methods Enzymol.
 217:286-295. In a preferred embodiment, the control DNA
 or RNA can be labeled for detection.
- In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells. For example, the mutY enzyme of

- 118 -

E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).

According to an exemplary embodiment, a probe based on a selected sequence, e.g., a wild-type sequence; is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like.

10 See, e.g., U.S. Patent No. 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in

- 15 electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144; Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control
- 20 nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, and the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA
- 25 fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex
- 30 analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).

In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing

- 119 -

gradient gel electrophoresis (DGGE) (Myers et al. (1985)

Nature 313:495). When DGGE is used as the method of
analysis, DNA will be modified to insure that it does not
completely denature, for example by adding a 'GC clamp of
approximately 40 bp of high-melting GC-rich DNA by PCR.

In a further embodiment, a temperature gradient is used
in place of a denaturing gradient to identify differences
in the mobility of control and sample DNA (Rosenbaum and
Reissner (1987) Biophys. Chem. 265:12753).

10 Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the 15 known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology
25 which depends on selective PCR amplification may be used
in conjunction with the instant invention.
Oligonucleotides used as primers for specific
amplification may carry the mutation of interest in the
center of the molecule (so that amplification depends on
30 differential hybridization) (Gibbs et al. (1989) Nucleic
Acids Res. 17:2437-2448) or at the extreme 3' end of one
primer where, under appropriate conditions, mismatch can
prevent or reduce polymerase extension (Prossner (1993)
Tibtech 11:238). In addition, it may be desirable to
35 introduce a novel restriction site in the region of the

- 120 -

mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene encoding a polypeptide of the invention.

Furthermore, any cell type or tissue, preferably
20 peripheral blood leukocytes, in which the polypeptide of
the invention is expressed may be utilized in the
prognostic assays described herein.

3. Pharmacogenomics

Agents, or modulators which have a stimulatory or inhibitory effect on activity or expression of a polypeptide of the invention as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant activity of the polypeptide. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics

- 121 -

can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens.

10 Accordingly, the activity of a polypeptide of the invention, expression of a nucleic acid of the invention, or mutation content of a gene of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic
15 treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-20 266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as "altered drug action." Genetic conditions transmitted as single factors altering the way 25 the body acts on drugs are referred to as "altered drug metabolism". These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical 30 complication is haemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of

- 122 -

genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or 5 show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different 10 among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience 15 exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite 20 morphine. The other extreme are the so called ultrarapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of a polypeptide of the invention, expression of a nucleic acid encoding the polypeptide, or mutation content of a gene encoding the polypeptide in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic

30 treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions

- 123 -

or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a modulator of activity or expression of the polypeptide, such as a modulator identified by one of the exemplary 5 screening assays described herein.

Monitoring of Effects During Clinical Trials 4. Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of a polypeptide of the invention (e.g., the ability to modulate aberrant 10 cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent, as determined by a screening assay as described herein, to increase gene expression, protein levels or protein 15 activity, can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or protein activity. Alternatively, the effectiveness of an agent, as determined by a screening assay, to decrease gene expression, protein levels or protein activity, can 20 be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or protein activity. In such clinical trials, expression or activity of a polypeptide of the invention and preferably, that of other polypeptide that have been 25 implicated in for example, a cellular proliferation disorder, can be used as a marker of the immune responsiveness of a particular cell.

For example, and not by way of limitation, genes, including those of the invention, that are modulated in 30 cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates activity or expression of a polypeptide of the invention (e.g., as identified in a screening assay described herein) can be identified. Thus, to study the effect of agents on cellular

- 124 -

proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of a gene of the invention and other genes implicated in the disorder. 5 The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels 10 of activity of a gene of the invention or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during,

15 treatment of the individual with the agent.

In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic 20 acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of the polypeptide or nucleic acid of 25 the invention in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level the of the polypeptide or nucleic acid of the invention in the postadministration samples; (v) comparing the level of the 30 polypeptide or nucleic acid of the invention in the preadministration sample with the level of the polypeptide or nucleic acid of the invention in the postadministration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.

35 For example, increased administration of the agent may be

- 125 -

desirable to increase the expression or activity of the polypeptide to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of the polypeptide to lower levels than detected, i.e., to decrease the effectiveness of the agent.

C. Methods of Treatment

The present invention provides for both prophylactic

10 and therapeutic methods of treating a subject at risk of

(or susceptible to) a disorder or having a disorder

associated with aberrant expression or activity of a

polypeptide of the invention.

1. Prophylactic Methods

screening assays described herein.

In one aspect, the invention provides a method for 15 preventing in a subject, a disease or condition associated with an aberrant expression or activity of a polypeptide of the invention, by administering to the subject an agent which modulates expression or at least 20 one activity of the polypeptide. Subjects at risk for a disease which is caused or contributed to by aberrant expression or activity of a polypeptide of the invention can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. 25 Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of aberrancy, for example, an agonist or 30 antagonist agent can be used for treating the subject. The appropriate agent can be determined based on

- 126 -

2. Therapeutic Methods

Another aspect of the invention pertains to methods of modulating expression or activity of a polypeptide of the invention for therapeutic purposes. The modulatory 5 method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the polypeptide. An agent that modulates activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of the 10 polypeptide, a peptide, a peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more of the biological activities of the polypeptide. Examples of such stimulatory agents include the active polypeptide of the invention and a nucleic acid molecule 15 encoding the polypeptide of the invention that has been introduced into the cell. In another embodiment, the agent inhibits one or more of the biological activities of the polypeptide of the invention. Examples of such inhibitory agents include antisense nucleic acid 20 molecules and antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an 25 individual afflicted with a disease or disorder characterized by aberrant expression or activity a polypeptide of the invention. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or 30 combination of agents that modulates (e.g., upregulates or downregulates) expression or activity. In another embodiment, the method involves administering a polypeptide of the invention or a nucleic acid molecule of the invention as therapy to compensate for reduced or 35 aberrant expression or activity of the polypeptide.

- 127 -

Stimulation of activity is desirable in situations in which activity or expression is abnormally low downregulated and/or in which increased activity is likely to have a beneficial effect. Conversely, inhibition of activity is desirable in situations in which activity or expression is abnormally high or upregulated and/or in which decreased activity is likely to have a beneficial effect.

This invention is further illustrated by the following 10 examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference.

EXAMPLES

- TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189 and TANGO 187, were identified in a human prostate epithelial cell library. TANGO 215 was identified in a human prostate stromal cell library.
- TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184,
 TANGO 185, TANGO 186, TANGO 188, TANGO 189, TANGO 215,
 and TANGO 187 were identified by first analyzing clones
 present in the two libraries to identify EST sequences
 which potentially encode a signal peptide having at least
- 25 15 amino acids. Selected clones which include an EST sequence that appeared to encode a signal peptide having at least 15 amino acids were used to assemble additional EST sequences to form potential full-length gene sequences. The assembled full-length gene sequences were
- 30 then used to identify actual full-length clones in the two libraries.

Deposit of Clones

Clones containing cDNA molecules encoding TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185,

- 128 -

TANGO 186, TANGO 188, TANGO 189, TANGO 215 and TANGO 187 were deposited with the American Type Culture Collection (Manassas, VA) as composite deposits.

Clones encoding TANGO 180, TANGO 181, TANGO 182 and 5 TANGO 183, and TANGO 184 were deposited on September 25, 1998 with the American Type Culture Collection under accession number ATCC 98901, from which each clone comprising a particular cDNA clone is obtainable. This deposit is a mixture of five strains, each carrying one 10 recombinant plasmid harboring a particular cDNA clone. To distinguish the strains and isolate a strain harboring a particular cDNA clone, one can first streak out an aliquot of the mixture to single colonies on nutrient medium (e.g., LB plates) supplemented with 100μg/ml 15 ampicillin, grow single colonies, and then extract the plasmid DNA using a standard minipreparation procedure. Next, one can digest a sample of the DNA minipreparation with a combination of the restriction enzymes Sal I and Not I and resolve the resultant products on a 0.8% 20 agarose gel using standard DNA electrophoresis

The digest will liberate fragments as conditions. follows:

TANGO 180 (EpT180) 1.2 kb and 2.7 kb

TANGO 181 (EpT181) 4.5 kb and 2.7 kb

25 TANGO 182 (EpT182) two 2.7 kb fragments

TANGO 183 (EpT183) 1.6 kb and 2.7 kb

4.5 kb TANGO 184 (EpT184)

The identity of the strains can be inferred from the fragments liberated.

Clones encoding TANGO 185, TANGO 186, TANGO 187, TANGO 30 188 and TANGO 189 (splice variant 1) were deposited on September 25, 1998 with the American Type Culture Collection under accession number ATCC 98900, from which each stain comprising a particular cDNA clone is 35 obtainable. The deposit is a mixture of five strains,

- 129 -

each carrying one recombinant plasmid harboring a particular cDNA clone. To distinguish the strains and isolate a strain harboring a particular cDNA clone, one can first streak out an aliquot of the mixture to single colonies on nutrient medium (e.g., LB plates) supplemented with 100µg/ml ampicillin, grow single colonies, and then extract the plasmid DNA using a standard minipreparation procedure. Next, one can digest a sample of the DNA minipreparation with a combination of the restriction enzymes Sal I and Not I and resolve the resultant products on a 0.8% agarose gel using standard DNA electrophoresis conditions. The digest will liberate one vector fragment of 2.7 kb common to all strains, and one insert-specific fragment as follows:

15	TANGO	185	(EpT185)	2.1	kb
	TANGO	186	(EpT186)	3.7	kb
	TANGO	187	(EpT187)	2.6	kb
	TANGO	188	(EpT188)	2.0	kb
	TANGO	189	(EpT189sv1)	1.3	kb

20 The identity of the strains can be inferred from the fragments liberated.

A clone encoding TANGO 215 and four other clones were deposited on September 25, 1998 with the American Type Culture Collection under accession number ATCC 98899, 25 from which the srrain comprising the TANGO 215 cDNA clone is obtainable. To distinguish the strains and isolate a strain harboring the TANGO 215 cDNA clone, one can first streak out an aliquot of the mixture to single colonies on nutrient medium (e.g., LB plates) supplemented with 100μg/ml ampicillin, grow single colonies, and then extract the plasmid DNA using a standard minipreparation procedure. Next, one can digest a sample of the DNA minipreparation with a combination of the restriction

enzymes Sal I and Not I and resolve the resultant

- 130 -

products on a 0.8% agarose gel using standard DNA electrophoresis conditions.

The digest will liberate one vector fragment of 2.7 kb common to all strains, and one insert-specific fragment 5 as follows:

TANGO 215 (EpT215) 2.8 kb

The identity of the strain harboring the TANGO 215 cDNA clone can be inferred from the fragments liberated.

Equivalents

The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed is:

- 131 -

An isolated nucleic acid molecule selected from the group consisting of: a nucleic acid molecule comprising a nucleotide sequence which is at least 55% identical to the 5 nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and - ___, the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, or a complement thereof; a nucleic acid molecule comprising a fragment of 10 at least 300 nucleotides of the nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and ____ - ___, the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, or a complement thereof; a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ - ___ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 20 98899, 98900, and 98901; a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs:23-33, 54-63, and ___ - __ wherein the fragment comprises at least 15 contiguous amino acids of 25 any of SEQ ID NOs:23-33, 54-63, and - or the polypeptide encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901; and

15

a nucleic acid molecule which encodes a naturally 30 occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs:23-33, 54-63, and __ - __ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the

- 132 -

nucleic acid molecule hybridizes to a nucleic acid molecule comprising any of SEQ ID Nos:1-22, 34-43, and ____ or a complement thereof under stringent conditions.

- 5 .2. The isolated nucleic acid molecule of claim 1, which is selected from the group consisting of:
- a) a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NO:1-22 and 34-43, the cDNA insert of a plasmid deposited with the ATCC as any of
 10 Accession Numbers 98899, 98900, and 98901, or a complement thereof; and
- b) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid 15 sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901.
 - 3. The nucleic acid molecule of claim 1 further comprising vector nucleic acid sequences.
- 20 4. The nucleic acid molecule of claim 1 further comprising nucleic acid sequences encoding a heterologous polypeptide.
 - 5. A host cell which contains the nucleic acid molecule of claim 1.
- 25 6. The host cell of claim 5 which is a mammalian host cell.
 - 7. A non-human mammalian host cell containing the nucleic acid molecule of claim 1.

- 133 -

	8. An isolated polypeptide selected from the group
	consisting of:
	a) a fragment of a polypeptide comprising the amino
	acid sequence of any of SEQ ID Nos:23-33, 54-63, and
5	, wherein the fragment comprises at least 15
	contiguous amino acids of any of SEQ ID Nos:23-33 and 54-
	63, and;
	b) a naturally occurring allelic variant of a
	polypeptide comprising the amino acid sequence of any of
10	SEQ ID Nos:23-33, 54-63, and or an amino acid
	sequence encoded by the cDNA insert of a plasmid
	deposited with the ATCC as any of Accession Numbers
	98899, 98900, and 98901, wherein the polypeptide is
	encoded by a nucleic acid molecule which hybridizes to a
15	nucleic acid molecule comprising any of SEQ ID Nos:1-22,
	34-43, and or a complement thereof under
	stringent conditions; and
	c) a polypeptide which is encoded by a nucleic acid
	molecule comprising a nucleotide sequence which is at
20	least 55% identical to a nucleic acid comprising the
	nucleotide sequence of any of SEQ ID Nos:1-22, 34-43, and
	or a complement thereof.
	9. The isolated polypeptide of claim 8 comprising the
	amino acid sequence of any of SEQ ID Nos:23-33, 54-63,
25	and or an amino acid sequence encoded by the
	cDNA insert of a plasmid deposited with the ATCC as any

- 10. The polypeptide of claim 8 further comprising heterologous amino acid sequences.
- 30 11. An antibody which selectively binds to a polypeptide of claim 8.

of Accession Numbers 98899, 98900, and 98901.

- 12. A method for producing a polypeptide selected from the group consisting of:
- a) a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an
 5 amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901;
- b) a polypeptide comprising a fragment of the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and _____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the fragment comprises at least 15 contiguous amino acids of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901; and
- c) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID Nos:1-22, 54-63, and ____ or a complement thereof under stringent conditions;

comprising culturing the host cell of claim 5 under conditions in which the nucleic acid molecule is 30 expressed.

13. A method for detecting the presence of a polypeptide of claim 8 in a sample, comprising:

- a) contacting the sample with a compound which selectively binds to a polypeptide of claim 8; and
- b) determining whether the compound binds to the polypeptide in the sample.
- 5 14. The method of claim 13, wherein the compound which binds to the polypeptide is an antibody.
 - 15. A kit comprising a compound which selectively binds to a polypeptide of claim 8 and instructions for use.
- 10 16. A method for detecting the presence of a nucleic acid molecule of claim 1 in a sample, comprising the steps of:
- a) contacting the sample with a nucleic acid probe or primer which selectively hybridizes to the nucleic acid
 15 molecule; and
 - b) determining whether the nucleic acid probe or primer binds to a nucleic acid molecule in the sample.
- 17. The method of claim 16, wherein the sample comprises mRNA molecules and is contacted with a nucleic 20 acid probe.
 - 18. A kit comprising a compound which selectively hybridizes to a nucleic acid molecule of claim 1 and instructions for use.
- 19. A method for identifying a compound which binds to 25 a polypeptide of claim 8 comprising the steps of:
 - a) contacting a polypeptide, or a cell expressing a polypeptide of claim 8 with a test compound; and
 - b) determining whether the polypeptide binds to the test compound.

- 20. The method of claim 19, wherein the binding of the test compound to the polypeptide is detected by a method selected from the group consisting of:
- a) detection of binding by direct detecting of the5 binding of the test compound to the polypeptide binding;and
 - b) detection of binding using a competition binding assay.
- 21. A method for modulating the activity of a
 10 polypeptide of claim 8 comprising contacting a
 polypeptide or a cell expressing a polypeptide of claim 8
 with a compound which binds to the polypeptide in a
 sufficient concentration to modulate the activity of the
 polypeptide.
- 15 22. A method for identifying a compound which modulates the activity of a polypeptide of claim 8, comprising:
 - a) contacting a polypeptide of claim 8 with a test compound; and
- 20 b) determining the effect of the test compound on the activity of the polypeptide to thereby identify a compound which modulates the activity of the polypeptide.

O LEMES CONTROL OF THE CONTROL OF TH	JG /9
MALI	,
GGACTCTGTGGGGACGCGCCGCGCGCGCGCGCGCGCGCGACCCGTAGAGCCCGGGCGCTGCGCGC ATG GCC CTG CT	'C 15
S R P A L T L L L L M A A V V R C Q E	
TCG CGC CCC GCG CTC ACC CTC CTC CTC CTC ATG GCC GCT GTT GTC AGG TGC CAG GA	G 21
Q A Q T T D W R A T L K T I R N G V H K CAG GCC CAG ACC ACC GAC GAC ACC CTG AAG ACC ATC CGG AAC GGC GTT CAT AA	
•	•
I D T Y L N A A L D L L G G E D G L C Q ATA GAC ACG TAC CTG AAC GCC GCC TTG GAC CTC CTG GGA GGC GAG GAC GGT CTC TGC CAC	64 2 334
Y K C S D G S K P F P R Y G Y K P S P P TAT AAA TGC AGT GAC GGA TCT AAG CCT TTC CCA CGT TAT GGT TAT AAA CCC TCC CCA CCC	
N G C G S P L F G V H L N I G I P S L T AAT GGA TGT GGC TCT CCA CTG TTT GGT GTT CAT CTT AAC ATT GGT ATC CCT TCC CTG ACA	
K C C N Q H D R C Y E T C G K S K N D C	124
AAG TOT TOC AAC CAA CAC GAC AGG TOC TAT GAG ACC TOT CGC AAA AGC AAG AAT GAC TOT	
DEEFQYCLS KICRD V QKTLG	144
GAT GAA GAA TTC CAG TAT TGC CTC TCC AAG ATC TGC CGA GAT GTA CAG AAA ACA CTA GGA	
L T Q H V Q A C E T T V E L L F D S V I	164
CTA ACT CAG CAT GTT CAG GCA TGT GAA ACA ACA GTG GAG CTC TTG TTT GAC AGT GTT ATA	634
H L G C K P Y L D S Q R A A C R C H Y E	184
CAT TTA GGT TGT AAA CCA TAT CTG GAC AGC CAA CGA GCC GCA TGC AGG TGT CAT TAT GAA	694
E K T D L •	190
GAA AAA ACT GAT CTT TAA	712
AGGAGATGCCGACAGCTAGTGACAGATGAAGATGGAAGAACATACCTTTGACAAATAACTAATGTTTTTACAACATAAA	791
${\tt ACTGTCTTATTTTGTGAAAGGATTATTTTGAGACCTTAAAATAATTTATATCTTGATGTTAAAACCTCAAAGCAAAAA}$	870
AAGTGAGGGAGATAGTGAGGGGAGGGCACGCTTGTCTTCTCAGGTATCTTCCCCAGCATTGCTCCCTTACTTA	949
CAAATGTCTTGACCAATATCAAAAACAAGTGCTTGTTTAGCGGAGAATTTTGAAAAGAGGAATATATAACTCAATTTTC	1028
ACAACCACATTTACCAAAAAAAGAGATCAAATATAAAATTCATCATAATGTCTGTTCAACATTATCTTATTTGGAAAAT	1107
GGGGAAATTATCACTTACAAGTATTTGTTTACTATGAAATTTTAAATACACATTTATGCCTAGAAAAAAAA	1186
AAAAAAGGGCGGCCGC	1203

M V T P R P A P A R G P A L L L L L 18 GCAG ATG GTG ACT CCG CGG CCC GCC CCC GCC CCC CTC CTC C
L L A T A R G Q E Q D Q T T D W R A T L 38 CTG CTG GCC ACT GCG CGC GGG CAG GAA CAG GAC CAG ACC ACC
K T I R N G I H K I D T Y L N A A L D L 58 AAG ACC ATC CGC AAC GGC ATC CAC AAG ATA GAC ACG TAC CTC AAC GCC GCG CTG GAC CTG 257
L G G E D G L C Q Y K C S D G S K P V P 78 CTG GGC GGG GAG GAC GGG CTC TGC CAG TAC AAG TGC AGC GAC GGA TCG AAG CCT GTT CCA 317
R Y G Y K P S P P N G C G S P L F G V H 98 CGC TAT GGA TAT AAA CCA TCT CCA CCA AAT GGC TGT GGC TCT CCA CTG TTT GGC GTT CAT 377
L N I G I P S L T K C C N Q H D R C Y E 118 CTG AAC ATA GGT ATC CCT TCC CTG ACC AAG TGC TGC AAC CAG CAC GAC AGA TGC TAT GAG 437
T C G K S K N D C D E E F Q Y C L S K I 138 ACC TGC GGG AAA AGC AAG AAC GAC TGT GAC GAG GAG TTC CAG TAC TGC CTC TCC AAG ATC 497
C R D V Q K T L G L S Q N V Q A C E T T 158 TGC AGA GAC GTG CAG AAG ACG CTC GGA CTA TCT CAG AAC GTC CAG GCA TGT GAG ACA ACG 557
V E L L F D S V I H L G C K P Y L D S Q 178 GTG GAG CTC CTC TTT GAC AGC GTC ATC CAT TTA GGC TGC AAG CCA TAC CTG GAC AGC CAG 617
R A A C W C R Y E E K T D L • 193 CGG GCT GCA TGC TGG TGT CGT TAT GAA GAA AAA ACA GAT CTA TAA 662
AGACCCTGACTGCTGGAGAGCAGGCGAGAATGGAGGATCATCCTTGCCAAAGATCGGATGCTTTAACAGCCTAATGTTG 741
CCTTAGTTTTCTGTCGATGGGTCATTTTGAGACCTTTCTATACTGTGTCTTTTTTTAGAACCTCAAAGTGAAAACGGTG 820 CCGCGCCAGGAGAAACAGACGGAGGAGCATGCTTGGGATGGGGAGGAGGAGGACATCCAAGAGCATGCCTTCCTGAGA 899
CTCGCTGTCTTCGTGGCTCCCCCAAACTGCGAAGAAAAGCTTAAGCTCGTGTGACTTGGTGTTCATAGTTGTACTTAAC 978
ANTANANTGANAGCANATGTANANTTCATTGTANGGACTTTTCAGCATTATTTTATT
CCTTAGAACTATTATTTTGAAATTTCAGATGTACATTTATACCTGGAAAAACTATTAATTCTCCATTTTTATTAT 1136 ACATAATGTGTTOTTTCTCTGAAGCCCACTAAGATAGGTATAAATATGTTACTCAAAACTACACGGTTTCCAAAATGTGC 1215
ATCTCTTGTACAGTTGGAATCACGGTTGGTACTTCTCTGGAGAGACGCCCCCAGGACATCTGAGTGTTGGGATGTGCACA 1294
GAATTCAGAAGCCCAGCTTCCTGTCTCACAAACCGCTTAGAGTGAATGTCCTTCCT
GACGGGTTTAACGGGCCCAAGCCGAGCTCTGAATCAGTGCGCTATCTGCTGAGGTTGTGGTTACTCCCTCATCCCCG 1452
TITTCCATCTTCTATCCTGGAGTAGTGTTAAAAGTCTGACATTTTCTAATGGAGGTCTTAATAAAAGCTATTTACTTCT 1531 TGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGG

M A Q L G A V V A V 10 AGCGCCTGCAGGGACAGCCTGGATAAAGGCTCACTG ATG GCT CAG TTG GGA GCA GTT GTG GCT GTG 145 A S S F F C A S L F S A V H K I E E G H 30 GCT TCC AGT TTC TTT TGT GCA TCT CTC TTC TCA GCT GTG CAC AAG ATA GAA GAG GGA CAT 205

ACCACCGTCCGCCCACGCGTCCGGTCGCGTGCTGAGGGGTGTGACGGTTTTCTTGCTCGTGGGCTCGGACGAGTACGG 79

I G V Y Y R G G A L L T S T S G P G F H .50 ATT GGG GTA TAT TAC AGA GGC GGT GCC CTG CTG ACT TCG ACC AGC GGC CCT GGT TTC CAT 265

L M L P F I T S Y K S V Q T T L Q T D E 70 CTC ATG CTC CCT TTC ATC ACA TCA TAT AAG TCT GTG CAG ACC ACA CTC CAG ACA GAT GAG 325

V K N V P C G T S G G V M I Y F D R I E 90 GTG AAG AAT GTA CCT TGT GGG ACT AGT GGT GGT GTG ATG ATC TAC TTT GAC AGA ATT GAA 385

V V N F L V P N A V Y D I V K N Y T A D 110 GTG GTG GTC CCG AAC GCA GTG TAT GAT ATA GTG AAG AAC TAT ACT GCT GAC . 445

Y D K A L I F N K I H H E L N Q F C S V 130 TAT GAC AAG GCC CTC ATC TTC AAC AAG ATC CAC CAC GAA CTG AAC CAG TTC TGC AGT GTG 505

H T L Q E V Y I E L F D Q I D E N L K L 150 CAC ACG CTT CAA GAG GTC TAC ATT GAG CTG TTT GAT CAG ATT GAT GAA AAT CTC AAA CTG 565

A L Q Q D L T S M A P G L V I Q A V R V 170 GCT TTG CAA CAG GAC CTG ACC TCC ATG GCC CCT GGG CTG GTC ATT CAA GCT GTG CGG GTA 625

T K P N I P E A I R R N Y E L M E S E K 190 ACA AAG CCC AAC ATA CCA GAG GCA ATC CGC AGA AAC TAC GAG TTG ATG GAA AGT GAG AAG 685

T K L L I A A Q K Q K V V E K E A E T E 210 ACA AAG CTT CTC ATT GCC GCC CAG AAA CAG AAG GTG GTG GAA AAG GAA GCA GAG ACA GAG 745

R K K A L I E A E K V A Q V A E I T Y G 230 CGG AAG AAG GCG CTC ATT GAG GCA GAA AAA GTG GCC CAG GTG GCT GAG ATC ACC TAC GGG 805

Q K V M E K E T E K K I S E I E D A A F 250 CAG AAG GTG ATG GAG AAG GAG ACT GAG AAG AAG ATT TCA GAA ATT GAA GAT GCT GCA TTT 865

L A R E K A K A D A E C Y T A M K I A E 270 CTG GCC CGG GAG AAG GCA AAG GCA GAT GCT GAG TGC TAC ACT GCT ATG AAA ATA GCC GAA 925

A N K L K L T P E Y L Q L M K Y K A I A 290 GCC AAT AAG CTG AAG CTA ACC CCT GAA TAT CTG CAG CTG ATG AAG TAC AAG GCC ATT GCT 985

S N S K I Y F G K D I P N M F M D S A G 310 TCC AAC AGC AAG ATT TAC TTT GGC AAA GAC ATT CCT AAC ATG TTC ATG GAC TCT GCG GGC 1045

S V S K Q F E G L A D K L S F G L E D E 330 AGT GTG AGC AAG CAG TTT GAG GGG CTA GCT GAC AAG CTA AGC TTT GGC TTA GAA GAT GAA 1105

P L E T A T K E N * 340
CCC TTG GAG ACG GCC ACT AAG GAG AAT TGA . 1135

AAAAAACTTGATATGACTGCAAATGATACTTAAGCAGATCTTTATTTTTTAAGATGAATCAGAATGTTCCTCCCTC	CC 121
GACTACCTTCTCTGACTGTCTTCCAGTTACTGTGGTGAAAAAGAAGAAATGAACTTAAATCCACTCCCTTTCTAGGG	AA 129
AGGAGGGTGGGGACTGATGATGGGGGGTTTTATTTCAGGTAAGCAGTTTATATGACTTCCAATAAGATTTGTAAATC	AT 1372
GGGCTTGACCTCTAGACACTAATTTTATCCTTTGAGGCTGGCT	GG 1451
GAGAAATGTAGAGTGTTACCTCCAACTCATTTGATTTCCCTTACTTGGGAAAATGCAGTCCAGTGTTCTCACCTCTG	CC 1530
TCCAAGGTAGGAGATGTCTGTGGGTGAGGCTCAGCCAACTGAGCAAATATGTGCCTGTGAGTTTGCCAGTAGAGCTGTC	GA 1609
AGAAACAGCTGCAGAGAACATTTGACCTTCCTGGCATTCTTGTCTGCATGTGTGAGTTATTTTAGAGGTGTGCTT	rc 1688
TTGAGCCCTCATAAGGAAGTACTGGTGCTAGGTTTTGCAAGATTTTGTATACACTTTGCTCCTTGCCCTAGGGCTCAG	SA 1767
GTGGTGGTTTCTGACTACATTTCTAGAGTCAGAGCTTGATCACCACAACTCAATTATTTCGGCATCTTTTCACCTATG	C 1846
TGTGATTTGTTTTTTTTTTTTCTCCAAAAATTCTGTTCATTGGTTCCACTCAGCATCAAGAAGACAGGGACAAACA	A 1925
CTCAAGTGTCTTAACAGCTGCTGGAGTGGGATCCTTGTTATCTCTTAGCCACTGCAGGACCTGCCTG	G 2004
TGCACCTCGAGATGAAGTGTCTTTCTATTATTGTAGAGATTCTGTAGTGAAGAGGTCTGACACCATGTGTGGAGGAGG	A 2083
GGAACGATCAGTCAAGAGATGTCCTGGTCTTAATGCCTGTGGCTTGTGCTGGGAGTGGGTCTGACTTAGTGATAAAAG	G 2162
ACTCTATTCACTAAGTAGCCTGTGTTTTTAAATCCAGGGCTGCAGGCAG	2241
CAGAGACAGCTGTGTGGAGCAAATCAGAGTTCATGCCCAAGTCCCCAGGTTGGAATGGCTGTGCCAAAATCCATTCAAA	A 2320
GGGTTTCTTTTCATTACTAGGTCAGAACATTTTGAGTCACCTTGGGAGATTCAGGATGGGGAGAGCAAATTTGAACA	2399
AAAGGTTTTCTTATATCCTGAGATTGAGGGGGTAGGGGGTGTCCAACCTGTATAGCCCATGGGTTGTCTAGAATTAA	2478
GTGGAGGGCAGCTATCTGGAGTTAACTTGCAAGCATATTGGTGCCCTCCATGAUCACCTCTGGCTTAGGACTTGGCCCT	2557
GTTATGAGCTGACCCCCACCCCCCACCCCCCCCCCCCCC	2636
TGAATGGTCCTTTCTGGCAGCAATCCCTGCCTTCTTTTTGGGCCCATGCCCAGACTTCTGGTTTAAGGAATGGTCCCAG	2715
AGCTTGGGCCAGCTTGCTCAGAAGTTTTGGGAGCATTGAGCCTGCCT	2794
AAGTTGCCCTTCTCTGTTCWGACTCCTGGGACTTCTGGTCCTGGGCACACTTTTTGCAGGCAACAAAATGTGCCTGGGA	2873
GTGATGGATTTTAATGTGCTCCAGAGTCCTTTCAGAAGGTGGTCATTTCCCTTGGCCGGGCGCGGGCGCTCACACCTGT	2952
AATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACCTGAGGTTAGGAGTTCGAGACCACCCTGGCCAACATGCGAA	3031
ACCCCATCTCTACGAAAAATAGAAATATTAGCCGGGCATGGTGTCAGGCACCTGTAATCCCAGCTACTTGGGAGGCTGA	3110
GGCAGGAGAATTGCTTGAACTCGGGAGGCAGACGTTGCAGTGAGCCAAGATCATGCCATCCCACTCTAGCTTGGGCAAT	3189
AGAGCAAGGCTCCGTCTCAAGAAAAGAAGGTCATTTCCCAAGACTAGCATAGGGAGTATCCATTTAAAATACATTCATC	3268
TTCCTCCCATTTCCGTGCTATTAATCACTTGTTAGAGCAACATGACAATGCCCAGCATCCCACTTCCCGAAAATGTCTA	3347
CTCCTTCTACTCTGAGCTCTTGTTGCCTAGACCTCAGAAAACACCAATTCACCACAGTAGAACCGGGAGCAGGGATAGC	3426
TCAJCTTCTCTGAATAGCACACTTTGCTCAGGTCTTAACTTGAGGGCCTCTCCGGTACTAACATCCTGCGATAGCTTGT	3505

-5/112

CCCATGAGCACAGAAGAGCCTCAGTAGAGTCAAGTCCTGCTGCAGCTGCCCCAAGTTTCTATCATTTCCTCTTT	3584
${\tt AAACAAAAAATATGTTATCCTACACATTAGTGTCAATCCAATGGTTGTCTTTATCTGCTAAATAGCAAAATCATGAAA}$	3663
${\tt ATCAGCTGTTTTATTTGCATAGGCAACTAACCTGTCTGTGTAACTTTGTTTTTATTTTAACTCTTACTAGAAAATCTAA}$	3742
${\tt TCTTAAAACATTTGAATTCTAAACATGTAAAATGTGACAGCCTGCAATTTTGTAGACAGTGAAGTAATGGCTGCTATTT}$	3821
${\tt ATAAACAGTTACTTATTTGATAGATGTTCCATTTATCAAAATAAGTAACTGTTTATAAAATTCAGTTTTTGTAGGGTT}$	3900
TTCCAAGGAAAATCACCTTGGTTGAATGTTTCTCACTCATTAAACTTTGCAGAAGTGATTCATATTCAGTACTGTTTT	3979
TAATCACTTTTTAAAATATAAGGACCGAATGCAAGGAAACCAAAGTTTATTAATAATTTTTATATAACTAAAATAAAAT	4058
AGATGTGGAGGGATCTGTGATCATATAAAAAGGGAGGGTTACTGAAAGAATTTTAGCAATATATTGATTCAGGAAAAGG	4137
AGCTGTTTTATAAATGATCATTCACTGTTCCTATGGTTCTATGTATCTTTCAAACCGATACCTTTACTATTTAAAGAGC	4216
GTAAATAGTGAAAGTAAGATGGTCATACTTACTGACTTTATCTATTTAAGTTTGATGGAGATAAACTATATCTTGGCTA	4295
STOGCTACTGTGTGTGTGAATGTAACCAGTACTTCTTTAAGCTCTATTCAGTAGGGTTCCAGCCACTGCTTTTTTGTTG	4374
TTCTAGCCACTGTTTTTTTTTTTTCTTGTTTCCTTATAAAACAGGTAATAACCAAAAAAAA	4451

GTCGACCCACGCGTCCGCGGACGCGTGGGCGCGGACTGATGGC	GTCATCGAAGCGACTGGCCCGGAAGGAAGTAGGGTG 7	3

CTGAGGGTTTGGCCGTTTCTACGGTTGCACGGGGGTTCGGCTGTACGGAGGGGCGCCTGGAGGCGACAGCCTGGATACAG 158

M A Q L G A V V A V A S S F F C A 17 GTTCACTG ATG GCT CAG TTG GGA GCT GTT GTG GCC GTG GCT TCC AGT TTC TTT TGT GCA S L F S A V H K I E E G H I G V Y Y R G 37 TCT CTC TCA GCT GTG CAC AAG ATA GAA GAG GGA CAT ATT GGA GTA TAT TAC AGA GGT 277 T S T S G P G F H L M L 57 GGT GCC CTG CTG ACC TCC ACC AGT GGC CCG GGT TTC CAT CTC ATG CTC CCG TTC ATC ACA 337 S Y K S V Q T T L Q T D E V K N V P C G TCC TAT AAG TCT GTA CAG ACC ACT CTC CAA ACT GAT GAA GTG AAG AAC GTA CCA TGT GGA 397 TSGGVM IYFDRIEVVNF ACC AGT GGT GGT GTG ATG ATC TAC TTT GAC AGA ATT GAA GTG GTG AAC TTC CTG GTC CCA 457 N A V Y D I V K N Y T A D Y D K A L I F AAT GCA GTG TAT GAT ATA GTG AAG AAC TAT ACT GCA GAC TAT GAC AAG GCC CTC ATC TTC 517 N K I H H E L N O F C S V H T L O E V Y 137 AAC AAG ATC CAT CAT GAG CTT AAC CAG TTC TGC AGC GTT CAT ACT CTT CAG GAA GTC TAT 577 I E L F D Q I D E N L K L A L Q Q D L T ATC GAG CTG TTT GAT CAA ATT GAT GAA AAC CTC AAG TTG GCT TTG CAG CAG GAC CTG ACT 637 R V 177 GLVIO A V T К P TCC ATG GCC CCT GGG CTG GTT ATC CAA GCT GTG CGA GTG ACA AAG CCC AAT ATA CCT GAG 697 AIRRNYELMESEKT KLLI AA 197 GCA ATC CGC AGG AAC TAT GAG CTG ATG GAA AGC GAG AAG ACG AAG CTT CTC ATT GCA GCC 757 217 V V E K E A E T E R K K A A E K V A Q V A E I T Y G Q K V M E K E

GCA GAA AAA GTG GCA CAG GTT GCA GAA ATC ACC TAT GGG CAA AAG GTG ATG GAG AAG GAG 877

T E K
ACA GAG AAG .

M N M T Q A R V GTCGACCCACGCGTCCGGCGCTGGGCTTCTTCTCAGAGGAACGAGA ATG AAT ATG ACT CAA GCC CGG GTT	8 71
L V A A V V G L V A V L L Y A S I H K I CTG GTG GCT GCA GTG GGG TTG GTG GCT GTC CTC CTC TAC GCC TCC ATC CAC AAG ATT	28 131
E E G H L A V Y Y R G G A L L T S P S G	48
GAG GAG GGC CAT CTG GCT GTG TAC TAC AGG GGA GGA GCT TTA CTA ACT AGC CCC AGT GGA P G Y H I M L P F I T T F R S V Q T T L	191 68
CCA GGC TAT CAT ATC ATG TTG CCT TTC ATT ACT ACG TTC AGA TCT GTG CAG ACA ACA CTA Q T D E V K N V P C G T S G G V M I Y I	251 88
CAA ACT GAT GAA GTT AAA AAT GTG CCT TGT GGA ACA AGT GGT GGG GTC ATG ATC TAT ATT D R I E V V N M L A P Y A V F D I V R N	311
D R I E V V N M L A P Y A V F D I V R N GAC CGA ATA GAA GTG GTT AAT ATG TTG GCT CCT TAT GCA GTG TTT GAT ATC GTG AGG AAC	108 371
Y T A D Y D K T L I F N K I H H E L N Q TAT ACT GCA GAT TAT GAC AAG ACC TTA ATC TTC AAT AAA ATC CAC CAT GAG CTG AAC CAG	128 431
	148 491
	168 551
	188 511
	208 571
A E T E R K K A V I E A E K I A Q V A K 2	:28 '31
IRFQQKVMEKETEKRISEIE 2	48
	91 68
GAT GCT GCA TTC CTG GCC CGA GAG AAA GCG AAA GCA GAT GCT GAA TAT TAT GCT GCA CAC 8	51
	88 11
Q A I A S N S K I Y F G S N I P N M F V 30 CAG GCC ATT GCT TCT AAC AGT AAG ATC TAT TTT GGC AGC AAC ATC CCT AAC ATG TTC GTG 97	08 71
D S S C A L K Y S D I R T G R E S S L P 32 GAC TCC TCA TGT GCT TTG AAA TAT TCA GAT ATT AGG ACT GGA AGA GAA AGC TCA CTC CCC 103	
S K E A L E P S G E N V I Q N K E S T G 34 TCT AAG GAG GCT CTT GAA CCC TCT GGA GAG AAC GTC ATC CAA AAC AAA GAG AGC ACA GGT 109	
* 34 TGA 109	

8/1.12

TGCAAGAGGTGGAAATGTTCTCCATATCAAGATGTGGCCCAAGGGTTAAGTGGGAACAATCATTATACGGACTC	TTC	1 117
GATTTACAGAGAACTTACACTTCATCTGTTCCACCTCTCCTGCGATAGTCCTGGGTGCTCCACTGATTGGAGGAT	AGAG	125
CCAGCTGTCTGACACAAATGGTCTTTTCAGCCACAGTCTTATCAAGTATCCTATATGTATTCCTTTCTAAACT	GCTA	133
CTCATGAATGAGGAAAGTCTGATGCTAAGATACTGCCTGC	rgcc	1410
GCAGGCCATGCTTGACTAAGGTACCTGGTTTTAGCCACAGCCACCTCCTTGTATGTTACCTTTCAGCTCTGGCCA	IGA G	1465
TGGGACAGGGTTTTAACCACAAATAGGAGCAGCATGCAATTCCTAGTGACTTGCTGCACAGTATTGTATCATAATT	'ACA	1568
GGAAGTTTTTATTTTTAAAACTGGATCTGGGGTATATTCATTTGCCCCATCACCTCTGTCTAAAGGCCCAAGTCCT	'AGG	1647
GCTGCCATGGTCACAAGCACACTGATGCTCCTTAAGATTGTTTATCTGGAGCCCACATAGTGTGGAACAAAAAGTC	ACC	1726
TAGAAAGCATCCTTGGTCATCATTGTCTCCTTCCCACCTGGCCCAGAGATGCTTAAATCCAAGTTGTTTCTCCAGC	TGT	1805
CACCTCCCCCAGGAGATCAGGATTCCACTGACGTCCTGGGCAGCCAGTGAATTTAATTTTCCATGAGAAACAACAG	agt	1884
TAACCTGTGGCATTAGGAGACCTACTTCATGTGGACCCTTTTTTTCCTTCAGTTTAACTTTTCTGGAGCAGTGTGC	rgc	1963
GTAGTTCGGCCTGAGTTTGTGCAGCTTGTTAAGACAACTCTTGTGTACACTATGTTGAAGCTCAACAAAAAAGTCA	rgg	2042
$. \ {\tt GACCACITCTAGAAATCTTTCAGCTGTCAGGCCTGTCAGTCTCATGACAGTTTGTTGGTTG$	TG	2121
GGAAAGGAAAGCCCAGATTTGAATGGGTCTTTCCCCTGGGCCTTATCCTATAGAGGCATTTGTAATATGGAGAAAAT	'AA	2200
TTTTTCATTTTTGCTCATTTAATTCTATAAATTCTCTTTATAAATGAATTTTGTGTTCTTTAGTTCTCCTTAAAAGA	AC	2279
TTTTGAATTATAAAAATAAAATCTTTACCTGTCGAATTGTTGCTGCAGATGATTGTTGTGGAAAATCTGGATCATTG	AC	2358
CTCTGTGCTTTCATTCCTAGAGATGTTTTATAGTTACATGAGCAAAAGCTGTTGCCCCAAAGTGATGGCCCTGGAGG	CG	2437
GGGCTGAGGAACAGGGAAATGCCGCTGTGAAGTCTTAAAGCACTTCTGCTTAAACTCCATGTGTGAGGAGTGTGCCTC	3C	2516
CTGTGCCCTCTCAGCTCTGAGGCTGGCCGTCTTTCGGGGTGTTCCTTTTGGCAAATATACACTGTAATCTTGAGTCTA	IA :	2595
ATTTATATGTTGAAATGCTACCTTTTTTAAAATAAGAAACTAAATAAA	a :	2674
АЛ	;	2704

YIDRI GTCGACCCACGCGTCCGTAAAAATGTGCCTTGTGGAACAAGTGGTGGAGTC ATG ATC TAT ATT GAC CGA ATA V V N M L A P Y A V F D I V R N Y T A GAA GTG GTT AAT ATG TTG GCT CCT TAT GCA GTG TTT GAC ATT GTG AGG AAC TAT ACT GCA 132 DYDKTLIFNKIHHEL N 47 GAC TAC GAC AAG ACT TTA ATC TTC AAT AAA ATC CAC CAT GAG CTG AAC CAG TTT TGC AGT 192 AHTLQEVYIELFDQI GCC CAC ACA CTT CAA GAA GTT TAC ATA GAA TTG TTT GAT CAA ATA GAT GAA AAC CTG AAG 252 Q A L Q K D L N T M A P G L T I 87 CAG GCC CTG CAA AAA GAT TTA AAC ACC ATG GCC CCA GGT CTC ACT ATC CAG GCT GTG CGT 312 V T K P K I P E A I R R N F E L M E A E GTT ACA AAA CCC AAA ATC CCA GAA GCC ATA AGA AGA AAT TTT GAA TTA ATG GAG GCA GAG 372 K T K L L I A A Q K Q K V V E K E A AAG ACA AAA CTT CTC ATA GCT GCA CAG AAA CAA AAG GTG GTG GAG AAA GAA GCT GAG ACG 432 ERKRAVI EAEKIAQVAKIRF 147 GAG AGG AAA AGG GCT GTT ATA GAA GCA GAG AAG ATT GCA CAA GTA GCA AAA ATT CGA TTT 492 Q Q K V M E K E T E K R I S E I E D 167 CAA CAG AAA GTG ATG GAG AAA GAA ACT GAA AAA CGC ATT TCT GAG ATT GAA GAT GCT GCG 552 FLAREKAKADAEYYAAHKYA TTC CTG GCC CGA GAG AAG GCA AAA GCA GAT GCC GAG TAT TAC GCT GCA CAC AAA TAC GCC 612 T S N K H K L T P E Y L E L K K Y Q A ACC TCA AAC AAG CAC AAA CTG ACC CCA GAG TAT CTG GAG CTC AAG AAA TAC CAG GCC ATT 672 A S N S K I Y F G S N I P S M F V D S S GCC TCA AAC AGT AAG ATC TAC TTT GGC AGC AAC ATC CCC AGC ATG TTT GTG GAC TCC TCC 732 A L K Y S D G R T G. R E D S L TGT GCT CTG AAA TAC TCT GAT GGT AGG ACT GGG AGA GAA GAC TCC CTT CCC CCA GAG GAG 792 AREPSGESPIQNKENAG GCC CGT GAG CCC TCT GGA GAG AGC CCC ATC CAA AAC AAG GAG AAC GCA GGT TGA 846 TGCAAGAGGTGGAAATGTTCTCCCATATCAAGATGCGACCCAAGGGGCTAAGTGGGAACAGTGGTTATGTGGACTCGTA 925 AGATTCACAGAGAATGTGTGTCTCTTGTTCATTCTCATAGTCCTGGTTTGCCAGCTGACTACAGGATAGACCCA 1004 GCTGTCTCGCACTCAAACGGTCTCTGCAGCCACAGTTTTATCAAGTATCCTGTATGTGTTCCTTTGTAAACCGGTACTC 1083 ATGAATGAGGGAAAGTCTGATGCTAAGATACTGCCTGCACTGGAATGTCAAACACTATATAACAAGCTGTGGTTTTTTAA 1162 AAGCTATTGAATAATGTTTACATTGGTCCCTGAGGACATGTGTGCTCAGACATTCAAGAGCCTAGGAGGCCAGAGAGAAG 1241 ACCTTCAGAAAACGGTAAGTTAAAGAAGACAAGTGTCATCAGACACTTGGGACCCGGGCTCTCTTTAAAGTCTAGTCCC 1320 GGCATTCCTCCATGTGATTGACAGCCAGACCTCTGGGTTCCCAGGAAATTATCTTCCAGTTGAATGACCATTTACTTGA 1199

TACAAATTGTACCTTTCTGTTTTTCTAGTCAGGTTGGTGGCCTGCAGGGACGGTACTTTGCCACCCGACCAGAGGTTC 1478 CTCGAAGATATTCCCAATCACTAGTTTATTGCGTTAGGAGACTCAGAGATATAGAAAGCAGCTGAAATTTAAGGGAGAT 1557 AAAGCCTGCACTACACCAAAGCTACGGGTCCCTGTGTTTCCTCTATTCAGTGATGTCATCAACCTCACTGTCCCAGCCC 1636 ATGTGTGACTAAAGTGCCCGGTTTTAGCCACAGACAACTGCTTAGATGTCACCTCTTGGCTGACCAAAGCTGCGACAGG 1715 GCTTTAACCAGACATAGGAGCAGTGTGCAATTCCTGATTCACTGCACAGTATTATGTCATAATTGCAGGAATTATTTTT 1794 GTCACTAACACTGATTCTCCTTAAAGTAATTCTCGAAGTGTGGAACAAAGTGACCGAGACAGCATCCTCAGTCATCT 1952 GTGACTTCCTGGGCAGCCATTGAATTCATTTTCCATGAGAAGATGACAGAGTTAGCCTGTGGCTATAGGAGATCATGTC 2110 ATCCAGACCTTTTTGCCCATCACATTAACTTTCCTGGAATATTGTGCTGCACAGGTAGACCTGAATCTGCCCAGCTTGT 2189 TGACAGCTCTTGTGTATACTGTGTTGAAGCCAGACAGAAAAGTAATGGGGCCACTTCTGAAACCTCTCAGCTGTTGATC 2268 TCACAGCAGCTAAAGGGTTGTGCCAAACATTTTATTAAGAAAGTAAAGCCCAGATTTGAATAGGGGTTTTCCCTAGGCC 2347 TTATAGTATAGAGGCATTTGTAATATGGAGAAAATAATTTTTCTCATTT AATTATAGAAATTACCTTCAAACAGATTTT 2426 GTGTTCTTTGGCCCTTCAAATACTGGTGTTACATTGTTGCTGCAGATAAATGATGATGTCGTGGGATATCTGGATCAC 2505 TGAGCTCTGTGCTTTCATTCCTAGAGATGTTTCTCATTCCCATTTAGTGAAATGCTGTTGCCCCAAAGTGATGCTTGTG 2584 AGCTCCTTATGGAGTGAGCTTCCCTGTGCCCACTCAGTGAACTAAGTCTGACCATCCTTCAGGGACGTTCCTTTTGGTA 2742 2851 TATCAAAAAAAAAAAAAAAAAGGGCGCCG

	GT	CGAC	CCAC	CCGT	CCCG	CGGG	GACA	ACTG	GTC	TTT	GCGG	CTGC	AGCG	GGCT	TGTA	GGTG	TCCG	GCTT	TGCT	GGCC	79
	AGO	CAAG	CCTG	ATAA			K AG CT				_					_	-	-	_	rg V	15 140
	P	_		_	A A GCC		K : AAG	S			-	_	R CGC		K : AA#	_	I ATC	_	e CC3	P A CCI	35 200
	Y		N	I	s	G	н	I	Y	N	Q	N	v	S	Q	K	D	С	N	·c	55
	_		_	: ATC	AGI	GGG	CAC	ATT	TAC	AAC	CAG	AAT	GTA	TCC	CAG	AAG	GAC	TGC	: AAC	TGC	260
		H CAC		v GTG	E GAG	P CCC	M ATG	P CCA	V GTG	P CCT	G GGC	H CAT	D GAC	V GTG	E GAG	A GCC	Y TAC	C TGC	L CTG	L CTG	75 320
	С	E	С	R	Y	E	E	R	Ş	т	T	T	r	к	v	I	I	v	I	Y	95
		GAG	TGC	AGG	TAC	GAG	GAG	CGC	AGC	ACC	ACC	ACC	ATC	AAG	GTC	ATC	ATT	GTC	ATC	TAC	380
	L CTG	S TCC	V GTG	V GTG	G GGT	A GCC	L CTG	L TTG	L CTC	Y TAC	M ATG	A GCC	F TTC		M ATG	L CTG	V GTG	D GAC	P CCT	L CTG	115 440
	I	R	ĸ	P	D	A,	Y	T	E	Q	L	н	N	E	E	E	N	Ε	D	A	135
	ATC	CGA	AAG	ccs	GAT	GCA	TAC	ACT	GAG	CAA	CTG	CAC	AAT	GAG	GAG	GAG	AAT	GAG	GAT	GCT	500
	R CGC	S TCT	M ATG	A GCA	A GCA	A GCT	A GCT	A GCA	S TCC	L CTC	G GGG	G GGA	CCC	R CGA	A GCA	N AAC	T ACA	V GTC	L CTG	E GAG	155 560
		V	E	G	A	Q	Q CAG		N TCG		L CTG	Q	V GTG	Q CAG	E GAG	Q CAG	R CGG	K AAG	T ACA	V GTC	175 620
	F	D	R	н	ĸ	м	L CTC	s	•	740		CA10									184 647
							GCCC			TCCC	TCCC	ACCT.	TCCA	ccm	CCAC	AAAG	CAGG	GGGC	TACT	TCT	726
							CTTT/														805
							GATO														884
							VGACA														963
																				rct 1	
																				CA 1	
																				CT 1	
																				CT 1	
																				AC 1	
																				CC 1	
													•		TGTG	TAAA'	rcaa	GGAA	GCCA	TC 1	516
21	TAA	TTC	TTT	ATTT	ובחדה		AAAA	AAA	تممما	LAAC (CCC	ccc	156	5							

GTCGACCCACGCGTCCGGCCTGATCAGTCGCCGCTGCGGCTGAGCTTGCAGGCATCTAGTCTTGCTGGCTCAGCAA												
M K L L C L V A V V G C L L V P P 1 GCCCGATAAGC ATG AAG CTG CTG TGT TTG GTG GCT GTG GTG GGG TGC TTG CTG GTG CCC CCA 14												
A Q A N K S S E D I R C K C I C P P Y R 3 GCT CAA GCC AAC AAG AGC TCT GAA GAT ATC CGG TGC AAA TGC ATC TGT CCG CCT TAC AGA 20												
N I S G H I Y N Q N V S Q K D C N C L H 5 AAC ATC AGC GGG CAC ATT TAC AAC CAG AAT GTG TCT CAG AAG GAC TGC AAC TGC CTG CAT 26												
V V E P M P V P G H D V E A Y C L L C E 77 GTG GTG GAG CCC ATG CCA GTG CCT GGC CAC GAT GTG GAA GCC TAC TGC CTG CTC TGC GAG 321												
C R Y E E R S T T T I K V I I V I Y L S 97 TGT AGG TAC GAG GAG CGT AGC ACC ACA ACC ATC AAG GTC ATT ATT GTC ATC TAC CTG TCT 381												
V V G A L L L Y M A F L M L V D P L I R 117 GTG GTG GGG GCC CTC TTA CTC TAC ATG GCC TTC CTG ATG CTG GTG GAC CCG CTC ATC CGG 441												
K P D A Y T E Q L H N E E E N E D A R T 137 AAG CCA GAT GCC TAT ACT GAG CAG CTG CAC AAT GAA GAG GAG AAT GAG GAT GCT CGC ACC 501												
M A T A A A S I G G P R A N T V L E R V 157 ATG GCA ACA GCC GCT GCG TCC ATT GGA GGA CCC CGG GCA AAC ACT GTC CTG GAG CGG GTG 561												
E G A Q Q R W K L Q V Q E Q R K T V F D 177 GAA GGC GCT CAG CGG TGG AAG CTG CAG GTG CAG GAG CAG CGG AAG ACG GTC TTC GAC 621												
R H K M L S * 184 CGA CAC AAG ATG CTC AGT TAG 642												
ATGGTTGCCATGATTGCATCAGAGACCTGGGCCATGGCTACCAGCTTCTGGGGCTCACTGCAGTCTTCCCTGGGTCTTC 721												
CCTTCAAATGCCCATGGCGTTTATCCTTCTCCCTCTCTAGAAATGTACTCGACTGTTATAACGAGGGAGTGTGATTGGG 800												
TCTCTGTAGGTCTCTGGGGGGTAGAGGGGAGGGGAGGGG												
TGGGTGGAATTCATCCCTCTGTCTTCACCATTCCTCCCAGCTCCACATCTTAAGGATGCTTACGGGAGACGAAGCTGT 958												
GTCATCAAGAGCTCAGTGGGTGCGAGGAAAGTATGATCCAGCGCTCAGCCTTCGCTCTAGGATGCTGTGGTCCCCATTC 1037												
CCAGTTCCTTCAGTGCCAGTACTTTAACTTGGCCTACCCCAGTCTCAGGAACTGTTGTGGTGCCCCTGAGCCCACAGTC 1116												
ATCTCCAGAGTCCACCTGGAAGCCTGTTCCCCTCTCCTCCGCTCCTGGTCCACCAGTGCATGGCAGTGCCCATGCATG												
CGGCATATTCAGCAGCTGTCACCTTACTCCCATCCCAGGAGGCCGTAAGGCCTCCCACCTCTCCCTGTGACTGCAGCT 1274												
GCTGAGCCATAAAGTTGGACCATATGACACAAGGCCAATGGGGACCGGAGTACCATGGCTCCTTGGATGGTCTC 1353												
TTGTCCCTGAATTTCATTGTATCATGCATGGAGAGAAAAAAAA												
0121 TETETETETETETETETETETETETETETETETETETE												

GAATTCGGCACGAGGGGATCCCCAGCCGGGTCCCAAGCCTGTGCCTGAGCCTGAGCCTGAGCCTGAGCCTGAGCCCGAG 79
MATLWG 6
CCGGGAGCCGGTCGCGGGGCTCTGGGACCGCTGGGCCCCCAGCG ATG GCG ACC CTG TGG GGA 149
G L L R L G S L L S L S C L A L S V L L 26 GGC CTT CTT CGG CTT GGC TCC TTG CTC AGC CTG TCG TGC CTG GCG CTT TCC GTG CTG C
L A Q L S D A A K N F E D V R C K C I C 46 CTG GCG CAG CTG TCA GAC GCC GCC AAG AAT TTC GAG GAT GTC AGA TGT AAA TGT ATC TGC 269
PPYKENSGHIYNKNISQKDC 66 CCT CCC TAT AAA GAA AAT TCT GGG CAT ATT TAT AAT AAG AAC ATA TCT CAG AAA GAT TGT 329
D C L H V V E P M P V R G P D V E A Y C 86 GAT TGC CTT CAT GTC GTG GAG CCC ATG CCT GTG CGG GGG CCT GAT GTA GAA GCA TAC TGT 389
L R C E C K Y E E R S S V T I K V T I I 106 CTA CGC TGT GAA TGC AAA TAT GAA GAA AGA AGC TCT GTC ACA ATC AAG GTT ACC ATT ATA 449
I Y L S I L G L L L Y M V Y L T L V E 126 ATT TAT CTC TCC ATT TTG GGC CTT CTA CTT CTG TAC ATG GTA TAT CTT ACT CTG GTT GAG 509
PILKRRLFGHAQLIQSDDDI146
G D H Q P F A N A H D V L A R S R S R A 166
N V L N K V E Y A Q Q R W K L Q V Q E Q 186
AAC GTG CTG AAC AAG GTA GAA TAT GCA CAG CAG CGC TGG AAG CTT CAA GTC CAA GAG CAG 689 R K S V F D R H V V L S • 199
CGA AAG TCT GTC TTT GAC CGG CAT GTT GTC CTC AGC TAA 728
TTGGGAATTGAATTCAAGGTGACTAGAAAGAAACAGGCAGACAACTGGAAAGAACTGACTG
TTTAATACCTTGTTGATTTCACCAACTGTTGCTGGAAGATTCAAAACTGGAAGCAAAAACTTGCTTG
TGTTAACGTAATAATAGAGACATTTTTAAAAGCACACAGCTCAAAGTCAGCCAATAAGTCTTTTCCTATTTGTGACTTT 965
TACTAATAAAAATAAATCTGCCTGTAAATTATCTTGAAGTCCTTTACCTGGAACAAGCACTCTCTTTTCACCACATAG 1044
TTTTAACTTGACTTTCAAGATAATTTTCAGGGTTTTTGTTGTTGTTTTTTTT
ATTTCGAGTTTCATTTATATTTTGCAGTGTAGCCAGCCTCATCAAAGAGCTGACTTACTCATTTGACTTTTTGCACTGA 1281
CTGTGTTATCTGCGTATCTGCTGTGTCTCCACTTCATGGTAAACGGGATCTAAAATGCCTGGTGGCTTTTCACAAAAAG 1360
CAGATTTTCTTCATGTACTGTGATGCTATGCAATGCATCCTAGAACAAACTGGCCATTTGCTAGTTTACTCTAAAGA 1439
CTANACATAGTCTTGGTGTGTGTGTCTCTACTCATCTTCTAGTACCTTTAAGGACAAATCCTAAGGACTTGGACACTTG 1518
CAATAAAJAAATTTTATTTTAAAAAAAAAAAAAAAAAAA

															M	A	S	L	W	
GT	CGAC	CCAC	CCGT	CCCG	GCGCC	GGGG	TCC	GGCT	rccc	GGAC	CGGC	TGG	TCCC	CCC	ATG	GCG	AGC	CTA	TGG	7
																			v	
TGC	: GG	A AAG	con	s cro	s ccc	CTG	GGC	TCG	GGG	CTC	AGC	: ATG	TCC	TGC	CTG	GCG	CIC	TCC	GTG	13
L	L	L	A	Q	L	T	G	A	A	К	N	F	Е	D	v	R	С	K	С	4
. CTG	CTC	CTC	GCC	3 CAG	CTG	ACA	GGC	GCC	GCC	AAG	AAT	TTT	GAA	GAT	GTG	AGA	TGT	' AAA	TGC	19:
																			K	
, AIC	IGC			. IAI	AAA	GAG	AAT	CCI	GGG	CAC	AIT	TAT	AAT	AAG	AAT	ATA	TCT	CAG	AAA	25.
D GAT	-		C		Н Сат	V CTC	-	E E	_				R						A GCA	
						•												GAA	GCA	313
					E GAA													ديت. ۷		105 373
							•											J. .	ALC.	3/3
					S TCT												_	_	L TTA	125 433
					K AAG .															145 493
n	v	c	ח	u	Q	D	F	Δ	N	a	u		v	•		D		_		1.00
GAC (165 553
R	A	N	v	Ľ.	N	ĸ	v	E	Y	A	O	a	R	w	ĸ	T.	0	ν	0	185
CGA (613
E	0	R	κ	s	v .	F	D	R	н	v	v	L	S	•						200
GAG C	AG (CGA A	AAG :	rcr c	TC T	TC G	AC C	GA C	AC C	TT C	TC C	TC A	GC T	'AA						658
CTGGG	AAC1	rggaj	ATCAC	GTGA	CTAG	GAAG	AACA	CGCA	GACA	ACTG	GGAA	GAAT	TGTC	TCCC	TGTC	CGTG	CGTT	TTAA	TG	737
CCATG	1110	,,,,,	. 1	MAIC	CTIC	C100	AIGG	AUUA	ALAC	ICCA	AACT	GGAA	GCAA	ACCCI	CATG	CITG	GTAT	TTTC	CT (816
CTTAA	TATA	TTAA	TAGA	GACA	TTTT	raca(CAC	ACAG"	TTCC.	AACT	CAAC	CAGT	AAGT	CTTT	rcc r	ACTTO	STGA	CTTT	TA 8	895
CTAAT	AAAA	TTAA	GCTG	CCTG	TGAGT	TATO	TTG/	NAGCO	ccc	rcc:	rgga/	ACAA	CTC	CTCI	TTC	TGC	CACAC	CAGT	rc s	74
TAACT	ncer	CTTC	3363	T3.8/~	PTCC 8	CCTC	اسلت اطت		·——		ساساسا	········		***				~~~	··· 14	
inci		0110	MUM	inne			,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ici	10100	,,,,,,,	MUNU	MUM		WW.	IGCC.	11 10	153
CCCACT	GCT	TGAG	rage"	TTCTC	CAAGT	GTCT	TTTC	CAGA	CAGA	CTTA	TGA	TACT	TCAC	ACCC	TCTA	CTTC	ACAC	TIG	T 11	.32
AATGTC	CCA	JTGT?	AGCTO	CCTT	GTCA	GCGT	CCTC	GCCT	cccc	ACTI	GACT	TTTC	CACT	GACT	ACAT	TACC	TAAG	ATTO	T 12	11
GGTTAG	CCT	rrece	TGC	TTTC	ATGA	CCAG	TTCC	ATCT	GAAA	TCCC	TCCC	CCCT	CCTC	2022	AATC.	2202	TTTC	······································	'A 12	90
TGCACT	GTGA	rgtc	TGAC	.GCAA	CATC	TTCT	AGAA	CAGA	CTGG	CCAT	CTCC	TAGT	TTAC	ACTG	ATAC	CTAA	ACAC	AGTC	T 130	69
CAGTGT	GTGT	CUTC	TTCC	TCAT	CITC	rtct/	AGTA	CTC	TAAC	CACT	TGAA	CATT	TAGA	ATA	AGAC	ATTT.	CTC	TTAA	G 144	48
CCCAAG	CCTC	CCTG	GATG	ATTG	ACGT#	CAA	ATAC1	rgate	CAGCO	TTT	rc rc	CTT	CTC:	GAGC	CAGT	لتت	TTGA!	ACTG:	A 152	27
TGTGGGG	7.7.	interior.	3.3C3.	ኋርር:እና	T2("		*A(*) A *			-	2000	CTC	TAAC:	-			~~~		P 100	

681

GTCGACCCACGCGTCCGCTCTGAGTCACCGGAATCTACGTGGGGCCGCCCGGAGCGGCGTCCTCGGGAGCCGCCTCCCC	79
GCGGCCTCTTCGCTTTTGTGGCGGCGCCCGCGCTCGCAGGCCACTCTCTGCTGTCGCCCGTCCCGCGCGCTCCTCCGAC	158
MIRCGLACE	
CCGCTCCGCTCCGCTCCGCCCCCCCCCCCCCCCCCCCC	
R C R W I L P L L L S A I A F D I I A CGC TGC CGC TGG ATC CTG CCC CTG CTC CTA CTC AGC GCC ATC GCC TTC GAC ATC ATC GCG	
L A G R G W L Q S S D H G Q T S S L W W CTG GCC GGC C3C GGC TGG TTG CAG TCT AGC GAC CAC GGC CAG ACG TCC TCG CTG TGG TGG	4: 34
K C S Q E G G G S G S Y E E G C Q S L M AAA TGC TCC CAA GAG GGC GGC GGC AGC GGG TCC TAC GAG GAG GGC TGT CAG AGC CTC ATG	
E Y A W G R A A A A M L F C G F I I L V GAG TAC GCG TGG GGT AGA GCA GCG GCT GCC ATG CTC TTC TGT GGC TTC ATC ATC CTG GTG	
I C F I L S F F A L C G P Q M L V F L R ATC TGT TTC ATC CTC TTC TTC GCC CTC TGT GGA CCC CAG ATG CTT GTC TTC CTG AGA	109 527
	129 587
	149 647
	169 707
PCCLPNYEDDLLGNAKPRYFI	189 767
Y T S A +	194 782
CTTGCGAATGAATGTGGGAGAAAATCGCTGCTGCTGAGATGGACTCCAGAAGAAGAAGAACTGTTTCTCCAGGCGACTTTG 8	361
	40
AGTGTTATAGTTTCATGTTTATCTTTTATTATGTTTTGTGAAGTTGTGTCTTTTCACTAATTACCTATACTATGCCAAT 10	19
ATTTCCTTATATCTATCCATAACATTTATACTACATTTGTAAGAGAATATGCACGTGAAACTTAACACTTTATAAGGTA 10	98
AAAATGAGGTTTCCAAGATTTAATAATCTGATCAAGTTCTTGTTATTTCCAAATAGAATGGACTCGGTCTGTTAAGGGC 11	77
TAAGGAGAAGAGGAAGATAAGGTTAAAAGTTGTTAATGACCAAACATTCTAAAAGAAATGCAAAAAAAA	56
CAAGCCTTCGAACTATTTAAGGAAAGCAAAATCATTTCCTAAATGCATATCATTTGTGAGAATTTCTCATTAATATCCT 133	35
GAATCATTCATTTAGCTAAGGCTTCATGTTGACTCGATATGTCATCTAGGAAAGTACTATTTCATGGTTCAAACCTGT 141	14
TGCCATAGTTGGTAAGGCTTTCCTTTAAGTGTGAAATATTTAGATGAAATTTTCTCTTTTTAAAGTTCTTTATAGGGTTA 149)3
GGGTGTGGGAAAATGCTATATTAATAAATCTGTAGTGTTTTGTGTTTATATGTTCAGAACCAGAGTAGACTGGATTGAA 157	′2
AGATGGACTGGGTCTAATTTATCATGACTGATAGATCTGGTTAAGTTGTGTAGTAAAGCATTAGGACGGTCATTCTTGT 165	1

WO 00/18904 PCT/US99/22817

. GI	rcga	CCCA	CC	CGTC	CGG	CCCI	CTGA	GTCA	CCGG	AATO	AAGO	TGT	GCT	GAG	CCCC	CTC	cca	CCG	CAGO	CCGG	G 79
GC	ccc	CGTC	TT	:GGG	GGA	GCCG	CCTC	TTCC	TTTA	GTCG	CGGT	GTC	GCGC	TCG	AGGA	CCAC	TCT	rece	GCTC	CTCC	r 158
												М	L	R	С	G	L	A	С	E	9
GC	CCGC	CCT	TCC	TCC	CCT	CCGC	GĊCC	GCCG	CCAC	CGAC	GAC	ATG	CTG	CGC	TGC	GGC	CTG	GCC	TGC	GAG	226
	C TG		R GG	W TGG			p G CCC											I C AT	I C AT	A C GCG	29 286
					G	W TGC		Q CAG					I TAT		T G AC					W F TGG	·49 346
R				D	E	G	G	G	s		s						0			M	69
AGG	TG	rTI	C (AC	GAG	GGC	GGC	GGC	AGC	GGC	TCC	TAC	GAC	GA1	GGC	TGO				ATG	406
E GAG		A GC		W GG	g Gga	R CGA									GGC					C TGC	89 466
							F													R AGA	109
		G				L	A								I					AGA Y	526 129
GTC	ATT	GC/					GCA														586
		K AAG		r NC A			T ACC							P CCT		V GTT	n aat		I ATC		149 646
N	W	A			G GC '	F	G GGA 1	W TGG (A		T	I	I	L	I ATT	G	C	S		F	169 706
	c		L		P	N	Y	E	ם	ם	L	L	G	A	А.	K	P	R		F	189
TTC	TGC	TGC	CT	CC	CC A	AC '	TAC (GAG C	GAT (GAC (CTT	TTG	GGG	GCC	GCC .	AAG	CCC	AGG	TAC	TTC	766
Y TAT (-	-			AA																194 781
TCTC	GAG	GAAC	AG	CTC	GAGA	AAAC	CCTC	CTCC	AAGA	NTGG/	TCT	CAGG	AGGA	N CT	TTC	CCA	AGGC.	ACAA	GAAC	CT	860
ACGTT	TGG	GCAA	TG	TCA	TAT	GATO	AGAA	ATGC	TAGA	ata;	ATG	TAA	\GAA/	ATT	TTC	TAA	TTAG:	IGTT/	WGTT	TC :	939
ATGTA	TCT	CTG	TGC	AGT	TAA	AAAG	ACTT	GAAT	TCTG	TTTG	CTAA	GTAT	TATGO	TAAT	1111	CCTT	TATG1	CAAT	TCTA	TA 1	018
CCATT	TAAC	CTT	CAT	TTG	TTA	L AGA	ATATO	CCT	CTGA	AACT	TGAT	AAGG	TAGA	AATO	TAGC	AGCC	TCTC	ATTT	AATA	AT 10	97
CTGAT	GGGG	CTT	CTG	TTT	TTC	'ACA'	raga/	\TGG(TIC	TTTC	TGCT	AAGG	GCTA	CAGA	GGAG	GAAA	GTCA	CTGG	CAAA	AC 11	.76
TTCCG	TGAC	CAA	ATA	TCC	rgaa	ATT;	CTAT	TITI	TTA	AAAA	CACC	TTAT	TTTG	AGTT	TTCA	GTTA	CATA	AAAA	AGCA	GA 12	55
AGCAG																					
TCGTGT																				-	
GAATTT																					
GTATGC	TTAC	JAAC	CYC	CCT	AGA	CCC.	ATGG(CACC	atcc	ACTA	GGCC	TAAT	CCCI	CCC	ACTO	CTCC	ATG	CAAC	ACCT	C 15	71

AGGTAGGAAGGCACAGGAGGGTCACCACTGTCACAGCAGTGCCATGCAGACATCCTAGGAGAAGACATGCCAGTGTTTC	1650
TTCTCAGTGCTTCTTCCCTTAACTGAGCTCTGCTCACAGACAG	1729
TAATTAAAACCTGGTCTTCCTTGGTAAGCAGACTTAAAATATCTGTATAGTACATGCAAGTGGAAAATTTGGGAATGCG	1808
TGTCTCTGAATACATACCGGAAGGGCTACTATTACCTTTTCCTTACCATTTATACTTACCTAATGGAAACGAGCTTGTT	1827
TTAACTATCAGAACACTATTTTGTAAGGTGCTGCAAAGACAGTTGAAGTTTTCATTACCAACTTCCCCAATAAACCAGG	1966
TGTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2030

GTCGACCCACGCGTCCGGCGCGCTCTCTCCCGGGCGCCCACACCTGTCTGAGCGGGGCAGCGAGCCGGGCCCGGGC	79
M A G I P G L L F L L F GGGCTGCTCGGCGGAACAGTGCTCGGC ATG GCA GGG ATT CCA GGG CTC CTC TTC CTT CTC TTC	12 144
F L L C A V G Q V S P Y S A P W K P T W TTT CTG CTC TGT GCT GTT GGG CAA GTG AGC CCT TAC AGT GCC CCC TGG AAA CCC ACT TGG	32 204
PAYRLPVVLPQSTLNLAKPD CCT GCA TAC CGC CTC CCT GTC GTC GTC TTG CCC CAG TCT ACC CTC AAT TTA GCC AAG CCA GAC	52 264
F G A E A, K L E V S S S C G F .Q C H K G TTT GGA GCC GAA GCC AAA TTA GAA GTA TCT TCT TCA TGT GGA CCC CAG TGT CAT AAG GGA	72 324
T P L P T Y E E A K Q Y L S Y E T L Y A ACT CCA CTG CCC ACT TAC GAA GAG GCC AAG CAA TAT CTG TCT TAT GAA ACG CTC TAT GCC	92 384
110 000 100 000 101 010 100 010 000 000	112 444
	132 504
	152 64
	.72 324
	92 84
	12 44
M P E Q M K F Q W I R V K R T H V P K G 2: ATG CCC GAG CAG ATG AAA TTT CAG TGG ATC CGG GTG AAA CGC ACC CAT GTG CCC AAG GGT 80	32 34
W I K G N A N D I G M D Y D Y A L L E L 25 TGG ATC AAG GGC AAT GCC AAT GAC ATC GGC ATG GAT TAT GAT TAT GCC CTC CTG GAA CTC 86	
K K P H K R K F M K I G V S P P A K Q L 27 AAA AAG CCC CAC AAG AGA AAA TTT ATG AAG ATT GGG GTG AGC CCT CCT GCT AAG CAG CTG 92	
P G G R I H F S G Y D N D R P G N L V Y 29 CCA GGG GGC AGA ATT CAC TTC TCT GGT TAT GAC AAT GAC CGA CCA GGC AAT TTG GTG TAT 98	_
R F C D V K D E T Y D L L Y Q Q C D A Q 31: CGC TTC TGT GAC GTC AAA GAC GAG ACC TAT GAC TTG CTC TAC CAG CAA TGC GAT GCC CAG 104-	
P G A S G S G V Y V R M W K R Q Q Q K W 333 CCA GGG GCC AGC GGG TCT GGG GTC TAT GTG AGG ATG TGG AAG AGA CAG CAG CAG AAG TGG 1104	
E R K I I G I F S G H Q W V D M N G S P 352 GAG CGA AAA ATT ATT GGC ATT TTT TCA GGG CAC CAG TGG GTG GAC ATG AAT GGT TCC CCA 1164	!

Q CAG	D GAT	F TTC	N AAC	V GTG	A GCT	V GTC	R AGA		T AÇT		CIC		Y TAT	A GCC	Q CAG	I ATT	C TGC	Y TAT	W TGG	372 1224
I			N AAC								• TGA									384 1260
CAC	AGTG	rrcco	TCCI	rGGCA	GCAA	AATT.	GGGT	CTTC	ATGT	тстт	ATTT	TAGG	AGAG	GCCA	AATT	GIII	TTTG	TCAT	TGG	1339
CGT	CAC	CGTC	TGTG	TGTG	TGTG	TGTG	TGTA	aggt	GTCT	TATA	ATCT	TTTA	CCTA'	ITTC	TTAC	AAIT	GCAA	GATG	ACT	1418
GGCT	TTAC	TATT	TGAA	AACT	GGTT	TGTG	TATC	ATAT	CATA	TATC	ATTT	AAGC	AGIT.	rgaac	GGCA:	TACT	TTTG	CATA	GAA	1497
ATA	AAAA	AATA	CTGA	TTTG	GGGC	AATG	AGGA	TATA	rtga(CAAT	TAAG:	TAA:	CTT	CACG	rri r	rgca	NACT:	rtga:	П	1576
TTAT	TTCA	TCTG	AACT	IGTT	rcaa,	AGAT.	TAT:	ATTA:	ATA:	TTG	CAT	CAAC	AGAI	ATG	ATTO	TTA	ratg:	rgtg	CAT	1655
GTGT	GTTT	TCTT(CTGA	GATTO	CATC	rTGG7	CCTC	GGT		TGT	TITI	TAAT	TCAC	TGCC	TGAT	CITI	TAATO	CTTC	CA	1734
TAAG	GCAG:	GTT	CCA1	TTAC	GAAC	TITE	ACAC	CATT	TGIT	AGGC	AGAA	TATI	TTGG	ATTT	GGAG	GCAT	TTGC	ATGG	TA	1813
GTCT	rtga:	ACAG1	'AAAA	NTGAT	GTGI	TGAC	TATA	CTGA	TACA	CATA	TTAA	ACTA	TACC	TTAT	agta	AACC	agta	TCCC	AA	1892
GCTG		AGTI	CCAA	AAAT	AGTT	TCTT	TTCC	AAAG	GTTG	TTGC	TCTA	CTTT	GTAG	GAAG	ICIT	TGCA	TATG	GCCC	TC	1971
CCAAC	TITA	aagt	CATA	CCAG	agtg	GCCA	AGAG	TGTT	TATC	CCAA	CCCT	TCCA	TTTA	ACAG	GATT	TCAC	TCAC	ATTT	CI	2050
GGAAC	TAGO	TATT	TTTC	AGAA	GACA	ATAA'	TCAG	GGCT	TAAT	TAGA	ACAG	CTG	ratt:	CCT	CCAC	CAA	ACAG:	rtgte	GG	2129
CCACA	CTAA	AAAC	AATC	ATAG	CATT	TAC	CCT	GGAT	CATA	GCAC	ATCT	CATG	TTTA	TCA1	TTG	ATG	JAGT/	LATT:	CA.	2208
AAATG	aatt.	AAAT"	rccad	GAGAJ	CAA1	rggaz	AGCA1	rrgco	TCC	CAGAT	GTCA	CAAC	AGAA	TAAC	CACI	TGT	TGGA	IGCC1	rc :	2287
GCACA	GTCC:	rccad	CCT	SATCA	AAAA	TTAT	TCTC	CATA	GTT	TCAC	TGTG	CTTI	CIGG	GAGC	TATG	TACT	TCTT	CAAI	T :	2366
TGGAA	ACTT	TCT	тстс	ATTI	ATAC	TGAA	AATA	CTTC	GAAC	TTAC	TTTA	AGAA	AACC	agtg	TGGC	CITI	TTCC	CTCT	Ά :	2445
GCTTT	****	GGCC	GCTT	TTGC	TGGA	ATGC	TCTA	CCTT	ATAG	ATAA	ACAA	TTAG	GTAT.	AATA	GCAA	AAAT	GAAA	ATTG	G 2	1524
AAGAAT	CCAA	AATG	GATC	'AGAA	TCAT	GCCT	TCCA	ATAA	AGGC	CTTT	ACAC	ATGT	TTTA:	rcaa:	ratg:	ATTA	TCAA	ATCA	C 2	603
AGCATA	TACA	gaaa	AGAC	TTGG	ACTT	ATTG	TATG	rrr	TATT	TTAT	ccri	CTCG	SCCT;	VAGC!	CTT	CTTT	CTAA	ATGT	A 2	682
TCGGAG	AAAA	AATC	AAAT	GGAC	raca.	AGCA	CTC	rttc	TOTO	CTT	CAC	CCA	GTA	ACCI	rgca1	TCT	AGCA:	ATTTO	3 2	761
TAAGGA	TATT	CAGA	TGGA	GCAC1	CTC	CTT;	GACI	ATTC	CTG	GGG;	1777	CTG	TIGI	CITI	CTTO	AGCT		rcga:	۹ 2	840
GGATAA	TTCT	CATA	AGGC!	ACTCA	AGAA	ACGI	'ACA	CCAC	AGTO	CTT	CTT	:AAA1	CATA	TGAG	AAAT	'ACTA	TGCA	TAGO	2	919
AAGGAG	ATGC	AGAGO	cccc	CAGGA	AAAT	TCTC	AGTI	CCAC	CACA	ATTI	TCTT	TGGA	ATCT	AACA	CCAA	TCTA	.GCCT	GAGO	2:	98
AAGAAG	GAGO	тстс	CATT	TCTA	TCTC	TCCT	ATTT	CCCC	CTT	TCTT	TCTT	TTTC	CTTT.	AGCT	TGGT	Gaaa	AAAA	GTTC	30	77
ACTGAAG	CACCA	AGAC	CAGA	ATGG.	ATTT	TTTT.	аааа	aaat	agat	GTTC	CTTT	TGTG	AAGC	ACCT	TGAT	TCCT	TGAT	TTTG	31	.56
ATTITI	GCAA	AGTT	AGAC	AATG	GCAC	aaac'	TCAA	aatg.	AAAT	CAAT	GTTT.	actt	CACA	AGTA	CATG	TAAT	TTAC	Гааа	32	35
GAATGAT	ACAC	CCAT.	ATGC	TATA	raca	CTT	WCT	CACA	GAAC	TCTA	AAAG:	ww.	ITAT!	LAAA1	TAATT	CAAC	CATG	CCA	33	14
TCTTTT	AGTG	ATAA'	TAAA	AGAA:	AGCA1	rccti	\TTA	NCT/	ATCA:	ragaj	AGTAC	JACAC	BAAAS	LAÇAX	بممم	GGAC	TCAT	rccc	33	93

WO 00/18904 PCT/US99/22817

ATTATTAATATAATTAGTGCTTTACATGTGTTAGTATACATATTAGAAGCATATTTGCCTAGTAAGGCTAGTAGAACC	3472
ACATTTCCCAAAGTGTGCTCCTTAAACACTCATGCCTTATGATTTTCTACCAAAAGTAAAAAGGGTTGTATTAAGTCAG	3551
AGGAAGATGCCTCTCCATTTTCCCTCTCTTTATCAGAGGTTCACATGCCTGTCTGCACATTAAAAGCTCTGGGAAGACC	3630
TGTTGTAAAGGGACAAGTTGAGGTTGTAAAATCTGCATTTAAATAAA	3709
GGCCG	3714

GTCGACCCACGCGTCCGCGGACGCCTCGGCCACTCTGCGGAGCAGGCATGGGAGCCGCGCGCG	79
M A CGCCCACACCTGTCTGAGCGGCGCACGGCCGGGCCGGG	2 153
CC1 1MG 000 000 000 000 100 000 000 000 000 00	22 213
Y T V P W K P T W P A Y R L P V V L P Q	42
STLNLAKADFDAKAKLEVSS'	62
S C G P Q C H K G T P L P T Y E E A K Q	33 82
Y L S Y E T L Y A N G S R T E T R V G I 10	93 02
TAC CTT TCC TAT GAA ACC CTT TAT GCC AAT GGC AGC CGC ACA GAG ACT CGG GTG GGC ATC 45 Y I L S N G E G R A R G R D S E A T G R 12	
TAC ATC CTC AGC AAT GGT GAA GGC AGG GCA CGA GGC AGA GAC TCG GAG GCC ACA GGG AGA 51	.3
S R R K R Q I Y G Y D G R F S I F G K D 14 TCT CGC AGG AAG AGG CAG ATT TAT GGC TAC GAT GGC AGG TTT AGC ATT TTT GGG AAG GAC. 57.	
F L L N Y P F S T S V K L S T G C T G T 16: TTC CTG CTC AAT TAT CCT TTC TCA ACA TCG GTG AAG TTG TCT ACT GGC TGC ACT GGC ACC 63:	
L V A E K H V L T A A H C I H D G K T Y 187 CTG GTG GCA GAG AAG CAC GTC CTC ACT GCT GCC CAC TGC ATA CAC GAT GGG AAA ACC TAT 693	
V K G T Q K L R V G F L K P K Y K D G A 202 GTG AAA GGG ACA CAG AAA CTC CGA GTG GGC TTC CTG AAG CCC AAG TAT AAA GAT GGT GCC 753	
E G D N S S S S A M P D K M K F Q W I R 222 GAA GGG GAC AGC TCG AGC TCA GCC ATG CCA GAC AAG ATG AAG TTT CAG TGG ATC CGC 813	
V K R T H V P K G W I K G N A N D I G M 242 GTG AAA CGC ACC CAT GTG CCC AAG GGG TGG ATC AAG GGC AAT GCC AAT GAC ATC GGC ATG 873	
DYDYALLELKKPHKRQFMKI 262	
G V S P P A K Q L P G G R I H F S G Y D 282	
GGT GTG AGT CCT CCA GCG AAG CAG CTC CCA GGG GGC AGG ATC CAC TTC TCT GGT TAT GAC 993	
N D R P G N L V Y R F C D V K D E T Y D 302 AAT GAC CGG CCC GGC AAT TTG GTG TAC CGC TTC TGT GAT GTC AAA GAT GAG ACC TAC GAC 1053	
L L Y Q Q C D A Q P G A S G S C V Y V R 322 CTT CTC TAC CAG CAG TGT GAC GCC CAG CCC GGG GCC AGT GGT TCA GGG GTC TAT GTG AGG 1113	
M W K R P Q Q K W E R K I I G I F S G H 342 ATG TGG AAG AGA CCA CAG CAG AAA TGG GAA AGA AAA ATT ATC GGC ATC TTT TCA GGG CAC 1173	
Q W V D M N G S P Q D F N V A V R I T P 362 CAG TGG GTG GAC ATG AAT GGC TCT CCA CAG GAT TTC AAC GTG GCA GTT AGA ATC ACG CCT 1233	

-24/112

L	K	Y	A	Q	I	C	Y	W	I	K	G	N	Y	L	D	C	R	E	G	383
CTT	AAA	TAT	GCC	CAG	ATT	TGC	TAT	TGG	ATT	AAA	GGA	AAC	TAC	CTA	GAT	TGC	AGG	GAG	GGG	129:
•																				383
TGA																				1296
CATG	CCTC	TTCI	TGCC	AGCA	CCAA	TGGI	CTT!	TTGC	ACTO	ATTO	TAGG	AGAG	GCTA	GCTT	TITA	TCAI	TGAC	TCTI	GTG	1375
GIGI	GAGT	CACA	TAGT	ATCT	TITA	CCTA	GTAT	TCIT	CAAA	TGGC	AAAA	ATTA	TTGG	CTAT	ATTA	1111	AAAA'	CTGT	TGT	1454
GTGC	GTTA	TAGC	ATTT	AAGC	AGTC	TGAA	AGCA	TACT	TTTG	CATA	GAGA	CTTT	aaag	TATT	CGGG	TAAT	aggg	CCTA	TTT	1533
GACA	AGGA	AGTT	AAAC	TTTC	AGTT	TTG	GAGA	ATTC	TAAT	IIII	GTCT	GATC	CAAA	CTTG	CTTC	AGAG	GTTT.	ATAT	CAA	1512
ATAC	TGAC	CACAC	CAGG	GAATI	ATGA/	ATTC:	PTATE	JITT.	STAT	ATGT	TAT	GTTT.	CTT	TGA	GAGT	CATA:	TATTO	GATA:	ш	1691
TTGT;	ATGI	GTGC	TTAT	TATO	CTT	CAG	TAA?	rgat <i>i</i>	AGCA:	AAGT	TTC	AATAC	GCAZ	TTI	\TAAT	CIT	rtgg;	VTTC2	AAA	1770
CATTI	'ACGT	AGTA	GTCC	TTGA	VAGAC	AACA	ATA	TTT?	TTC	CTAI	ATTO	ATAC	CCAI	KATA'	GACT	GTA1	CTTA	CAGT	rGC	1849
ACAGA	ATTC	CCAC	CCTC	CTT	TAGT	TTTG	AAAA	TAAA	ACTI	TCCC	TTGI	:AAAA	AAAA	KASA	AAAA	AAAA	AGGG	CGGC	:CG	1928
CAGA	ATTC	CCAC	CCTC	CITI	TAGT	TTTG	AAAA	TAAAT.	ACTI	TCCC	TIGI	AAAA	AAAA	аааа	AAAA	AAAA	AGGG	CGGC	CG	1928

GTCGACCCACGCGTCCGGGCTC	M A	-		-			L CTC	A GCG	L CTC	w TGG	A GCG	L CTG	A GCG	14 64
A V A L P G	_		E GAG	GGC	D GAC	G GGC	G GGG	W	R CGC	P	G GGC	G CGC	p CCG	34 124
G A V A E E	E R GAG CG		T ACG	V GTG	E GAG	R CGT	R CGG	A GCC	D GAC	L CTC	T	Y TAC	A GCG	54 184
E F V Q Q Y GAG TTC GTG CAG CAG TAC	A F		R AGG	P CCC	V GTC	I ATC	L CTG	Q CAG	G GGA	L CTC	T ACG	D GAC	N AAC	74 244
S R F R A L TCG AGG TTC CGG GCC CTG	c s	R	D	R	L	L	A	s	F	G	D	R	v	94 304
V R L S T A	N T	Y	s	Y	н	к	v	D	L	P	F	Q	E	114
GTC CGG CTG AGC ACC GCC	AAC ACC		TCC D	TAC P	CAC T	AAA S	GTG L	GAC G	TTG	D	TTC	CAG L	gag Y	364 134
TAT GTG GAG CAG CTG CTG	CAC CCC	CAG E	GAC W	CCC	ACC S	TCC L	CTG F	GGC R	AAT H	GAC Y	ACC S	CTG P	TAC P	424 154
TTC TTC-GGG GAC AAC AAC	TTC ACC	GAG	TGG (GCC	TCT	CTC	TTT	CGG	CAC	TAC	TCC	CCA	CCC	484
P F G L L G CCA TTT GGC CTG CTG GGA	T A ACC GCT	CCA (A GCT 1	Y TAC	S AGC '	F TTT (G GGA 1	I ATC (A SCA (G GGA (A GCT	G GGC	s TCG	174 544
G V P F H W GGG GTG CCC TTC CAC TGG	H G CAT GGA	CCC (G 366 1	Y TAC T	S ICA (E Gaa (V STG #	I NTC 1	Y C	_	R CCT	K AAG (R CGC	194 604
W F L Y P P TGG TTC CTT TAC CCA CCT	E K GAG AAC	T ACG C		e ag 1	F TC (H CAC C	-	N AC A		T CC A	CC (L CTG (214 664
W L R D T Y TGG CTC CGG GAC ACA TAC	P A	L CTG C	-	P CG T	S CT G			-	_	_	C GT A	T ACC A		234 724
R A G E V L CGG GCT GGT GAG GTG CTG T	Y F	_	_	R GC T					-	_	• •	_	_	254 784
T S V F I S	T F	_	G GC T	• AG										265 117
CCAAAACAGCTGGCAGGACTGCCGG					CCTC	GTGC	TCACC	GAT	· FITA:	rtac.	ACAG	ATAG	rc e	96
GCGGCAATGGCCTCAGCCCAGCCCA	CCCTCAC	TGCT	rttco	CAGC	CAC	AAAG	CCCC	ACGA1	CACC	ccc	CAGC	AAAA	SC 9	75
GATGCTGAGAGGGGAAACAGTCCAG. TGTATAGGGGCCGGGGGTTCTGCCG														
CACCCAGCCATTCTCAGAGATGAATC											•			
GGGCTCCGGGTCACGGGGTCAAAATC	BACCCACA	ссстс	CAGT	GACA	agaa	cccc	AGAG	GGCA	GTCA	TGGG	GCCC	AGGA	C 12	91
CATGCCACTGCCCTGCTCCCCCAGC														70

M A A A G R R G L L L F V 14 GTCGACCCACGCGTCCGGTTC ATG GCG GCG GCT GGG CGG CGC GGT CTG CTT TTG CTC TTT GTA LPASGEGGW CTA TGG ATG ATG GTG ACT GTG ATT CTG CCT GCC TCT GGC GAA GGG GGA TGG AAA CAG AAT 123 G L G I A A A V M E E E R C T V E R R A GGG CTG GGA ATT GCA GCA GCA GTA ATG GAG GAG GAG CGT TGC ACA GTG GAG CGT CGG GCA 183 H I T Y S E F M Q H Y A F L K CAC ATC ACG TAC TCC GAA TTC ATG CAG CAC TAT GCC TTC CTC AAG CCC GTC ATC TTG CAA 243 G L T D N S K F R A L C S R E N L L A S GGA CTC ACG GAC AAC TCG AAG TTC CGG GCC CTG TGT TCC CGG GAA AAC CTG CTA GCC TCG 303 F G D N I V R L S T A N TYSYQ κv TTC GGG GAC AAC ATT GTT CGC TTG AGT ACA GCC AAC ACC TAC TCC TAC CAG AAA GTG GAC 363 L P F O E Y V E Q L L Q P Q D P A S L G CTG CCC TTC CAG GAA TAT GTG GAA CAG CTG CTG CAG CCC CAG GAT CCT GCA TCC CTA GGC 423 Y F F G D N N F T AAT GAC ACC CTG TAC TIT TIT GGA GAC AAC AAC TIC ACT GAG TGG GCA TCC CTC TTC CAG 483 HYSPPFRLLGT T P A Y S F G I 174 CAC TAC TCT CCG CCA CCA TTC CCT CTC CTG GGA ACC ACC CCT GCT TAC AGC TTT GGA ATT 543 A G A G S G V P FHWHGPGFS GCA GGA GCT GGA TCT GGG GTA CCC TTC CAC TGG CAT GGG CCT GGT TTC TCA GAG GTT ATC 603 YGRKRWFLYPPEKTPEFHP TAT GGT CGG AAG CGC TGG TTC CTC TAC CCT CGT GAG AAG ACA CCT GAG TTC CAC CCT AAC 663 K T T L A W L L E I Y P S L A L AAG ACC ACA TTG GCC TGG CTG CTG GAA ATA TAC CCA TCT CTA GCC CTG TCA GCA CGG CCT 723 LECTIQAGEVLYFPDRW CTA GAA TGT ACC ATC CAG GCT GGT GAA GTA CTG TAT TTT CCT GAT CGG TGG TGG CAT GCC 783 270 TLNLDTSVFISTFLG ACA CTC AAT CTG GAC ACC AGT GTC TTC ATT TCT ACC TTC CTT GGC TAG CCAGACAGGCAACTGGCAAGCCCACTGCACCAGCACATGCCAATGTAGTGCTCACAGACTTTATTACAGGACAGTGGCA 910 GCAGCAGCAACCTCAGCCCACCCTCACCCACTCTCCAGCCCAGAAGGGGGACAAGGGAGGCTCATGGTCCAGCAAGGGG 989 TATGCTGAGAAGGGGAGCAGTTCAGAACCCATCAGCAGGGCCGATGGGGGCAGGGCCCAGGGACACAAACTATACAGGGA 1068 TTCTCAGAGATGAAAGCGTCAATGACTTCCTTCATGGCCAAGTTGGGGATGAGCTGTTCCTGGGTCAAAGGGCTCCGGG 1226 TCACAGGGTCAAAGTGGCCCACACGCTGCAACAGGGTCAAGAGTGTTCAATGGCCTGAGTATACCGATCCGGGTACCAA 1305 CGCTCTCCATGGCCCGGTCTCCATGGGCCCTCCTTACCTGCAGGTGCTCCTCAATGTCCTTGCGGTCATAGGTGATACC 1384 ACTGGGTGTAATGCAGGGTTCCCGCATCAGGTCAAGCTAATCTTGCCACACAAGTAGTCAGGGATATCTCGCTTCTAT 1463

AGCACAAGGGGAAAATGTCTAGAACTGGAGGGGGTTGTGGGGGTCACCATACCAGCAGCAGCCGATGAGCTTCCGGGG	G 1542
TCCTCACCTTTCT:TCTCGTCCACCTGAGAGAGGGCTCATCCATATCTGCCATGTATTTATCCTGCAGAGTTGAGT	G 1621
CCATGTGTGGGCAACTCCTGTCTCCACACAGACACACACA	C 1700
AGATCCACCAAAGGCTGGGGCACTTTTCATGCCACACACA	C 1779
TCACGTGCTTGGCCTCAATGCAGGCCTGCTGGGCCCGGATGTGGCCATCATCTTCATGACCCTCGTGGTTCCGCTGA	1858
ACTECTECAGTTECETGAGGGTTAACCAGAAGETAGTTGGTGATGGCCCTGACCAGGAAATCACAGAGCCCGCCC	1937
CAGGCCTCTTTCCTCCTGGGCTTCCCATGTACCGGTTGTTGTCCTTCAATAAAAACACTTGTGCTGGTGACTCAGTGT	2016
TGCTGGGGGAGGGACCCACCTCTCTCGCTCAGCAGCAATGAGCCTGGTGAGATATGAATGCAAAAAAAA	2095
CGGCCG	
102	

CAC	GCG1	rcccc	CTGC	:CGG;	AGCAC	GAGO	CATGO	:GCG;	AGCA(TCT	CAATO	GCCA			D I			F . IT G		7
			v																	
ACA	GCA	TTT	GTA	ATI	GCT	TGI	GIG	CT	. AGC	CTC	: ATI	TCC	ACC	: ATC	TAC	ATC	G GC	A GCC	TCC	: 13
_	-	T	D GAC	-		_	E GAA						_						_	4 19
			I ATC															N AAT	_	6 25
A GCA	L CTT	F TTT	R CGA	Y TAC	N AAT	G GGC	T,	V GTG	G GGA	L TTG	W TGG	R AGA	R CGG	C TGT	I ATC	T ACC	I ATA	D D	K AAA	8(31(
			W TGG																	
	s	F	T	L	т	E	Q	F	м	E	к	F	v	D	p	G	N	н	N	126
s	G	I	D	L	L	R	т	Y	L	W	R	С	. Q	F	L	L	P	F	v	146
AGC (
AGT T																				
L TTA 1																				186 610
w rgg c	_		E Gaa 1	*																191 625
ITTTA	ATG/	TCTI	CTAC	ATTA	NTCC1	TCAT	CAATT	'ACTO	ATT	CTC	LATA	ATCT:	TTA	ATTTO	CATC	CATO	SACT	TGA	GGA	704
TAGCT	TCCA	AGCT	CTTT	'AAAT	ccc	TTAC	AAAC	TCAT	TCC	AAGT	TCT	\TAC7	CTCAC	GCAC	CACTO	CACCI	TTT	GTT	TT	783
CAGT	GGGC	CATO	CCTA	TCCT	AGTT	TAAA	AACA	TGGC	CTTA	AAAT	CCTI	CGA1	CAAT	CTTC	CATI	GAGA	TTC	CATO	cc	862
TTGA	ATCT	AGGC	TGGC	TIGI	GATG	GTTT	TGAC	CAAT	AGAG	TGTC	ccro	AAAT	CACA	ctct	TCTC	ATGA	GGTC	CTA	AG	941
TCATO	STGT	CCTT	AAAC	CAGT	TCTC	TTGG	AACA	CTCA	GTCT	TAGA	ACAT	TCCC	тстс	CAAA	.CCCA	GATA	CCAT	CCTC	TG 1	.020
AGTC	CAGG	CCAC	ATGG/	ACCT	CTCC	icic	TAGAT	IGCT	CCAG	CTGA	AATC	CCAA	GCTA	AGCT	CCCA	ACTG.	ACAG	CCAA	CA 1	099
CATTI	CCA	CCA	GTG	rccci	NGCC	ATCC	rgga1	CTC	CACC	CTTA	ACAA	GCCT	TCAG	AGGA	CTTC	AGCC.	ACAG	CTAT	TA 1	178
CTTAC	TAC	ATCCT	TGTC	iagac	TCT	WTW	VAGAV	CCA	ACTA	CCTG	AGCC	CAAT	CAAC	CTAT	GGAA(CTGA	TAGA	AATA	AA 1.	257
rcaat	TGT:	نسلنار	TOTO	ירריי	тааз			AAA:	AAAA		نممم	a.a							1	308

																					1		N		
Až	ATTC	'GG'	WC	чкки	(GVV	GGVV	/GCC	:GG7	rgga	GTG	AGAC	GA:	TGGC	CGA	GCAG	TCT	GAA	TGC	CAG	A A	rg (AT	AA	C CG	79
E		A	T	А	. 1	F	v	I	А		:	v	L	s	L	. :	r	s	T	1		Y	M	A	24
T	T G	CT	AC1	r GC	GT	TT G	TG	ATT	GC	TT	T G	TG	CTT	AG	T CT	G A	T	TCC	: AC	C AI	יכ ז	AC	ATO	GCC	; 135
		S	I												s				_	E		N	s	s	44
GC	C T	CC .	ATA	GG	CAC	G G	AC	TTC	TG	G TA	T G	AG	TAT	. CC	A AG	T CC	C.	ATT	CA	A GA	G A	AT	TCA	AG1	195
							A	W	E		1			G		Ε		A	D	E		K	T	Y	64
GA	C TO	CG /	AAT	AA	A AT	C G	cc '	TGG	GA	A GA	TT	rc	CTC	GGT	GA(C GA	.G (GCG	GA1	GA.	G A	AG	ACT	TAC	255
)	v	L			2	Y	N			5	L					R	R	C		I	T	I	84
AA	CG	T (TT	CTC	TT	ca	SA 7	rac	AAC	GG	CAC	C	TTG	GGG	CIC	TG	G A	AGA	CGG	TG	C A	rc	ACC	ATA	315
	X														T			s	F	-		,	v	T	104
CC	C AA	A A	AC	ACT	. CA	CTO	G 1	AT	GCG	CC	A CC	G (GAA	AGG	ACA	GA	G 1	CA	TIT	GA?	G	C	GIT	ACC	375
	C		М	_	_	-					_				E					D	2		G	N	124
AAA	TG	C A	TG	AGT	TT	: AC	A C	TA	AAC	GAC	; CA	G 1	rtc	ATG	GAG	AAC	T	AT	GTG	GAC	: cc	C (GGC	AAC	435
н				G	r										W									P	144
CAC	: AA	T A	GC	GGC	ATC	: GA	CC	TG	CTT	CGC	: AC	C I	CAC	CTG	TGG	CGC	: T	GC	CAG	TTC	CT	T:	TA	CCC	495
	v		s	L	G	L		M	C		G		A	L	I	G		L	С	A	С		I	С	164
TTC	GT	C AC	GC	TTG	GGC	TI	G A	TG '	TGC	TTT	GG	GG	CG	TTG	ATT	GGC	: C	TC '	TGT	GCC	TG	T· }	ATC	TGC	555
R	_			Y	P	T		ւ	A						H						L		С	T	184
CGC	AGO	: C1	C.	TAT	CCC	ACC	c c	רכ (GCC	ACT	GG	: A	TT	CTC	CAT	CTC	<u> </u>	rr (GCA	GGT	CT	3 1	GC	ACA	615
				v											L			ł.	Q	К	٧		E	L	204
CIG	GGC	TC	:C (GTG	AGT	TGC	: TA	AT C	TT	GCC	GGC	: A	TT (GAA	CTC	TTA	CA	AT (ZAG	AAA	GTA	A G	AG	CTG	675
P		D		V											С	_		١	_	V	s		A	P	224
CCC	AAG	GA	TC	STA	TCT	GGA	GA	A T	TT	GGA	TGG	T	CC 1	CTC	TGC	CTG	GC	:C 1	GC	GTC	TCC	G	CT (CCC	735
L		F		M											A				N	R	ĸ		E	Y	244
TTA	CAG	TT	C A	TG	GCG	GCC	GC	T C	TC	TTC	ATC	TO	GC C	ict (GCC	CAC	AC	C A	AC (CGG	AAA	G	AG 1	TAC	795
T	L	М		K	A	Y	R		v	A	•														254
ACC	TTA	ATC	g A	AG (GCT	TAT	CC	TG	TG (GCA	TGA														825
AGGG	AGG	TG	CT	GCT	FAAT	GAT.	raa'	TAT	III	TCAT	ACA	111	TII	T											871

F1G. 18

HUMAN TANGO 215

Input file tag215; Output File tag215.pat Sequence length 2747

$ \hbox{M} \hbox{E} \hbox{L} \hbox{G} \hbox{C} \hbox{W} \hbox{T} \hbox{Q} \hbox{L} \hbox{G} \\ \hbox{TCCCCAGTAGACGCTCCGGCACCAGCCGCGCAAGG ATG GAG CTG GGT TGC TGG ACG CAG TTG GGG } $	10 66
L T F L Q L L L I S S L P R E Y T V I N CTC ACT TIT CIT CAG CTC CTT CTC ATC TCG TCC TTG CCA AGA GAG TAC ACA GTC ATT AAT	30 126
E A C P G A E W N I M C R E C C E Y D Q GAA GCC TGC CCT GGA GCA GAG TGG AAT ATC ATG TGT CGG GAG TGC TGT GAA TAT GAT CAG	50 186
I E C V C P G K R E V V G Y T I P C C R ATT GAG TGC GTC TGC CCC GGA AAG AGG GAA GTC GTG GGT TAT ACC ATC CCT TGC TGC AGG	70 246
N E E N E C D S C L I H P G C T I F E N AAT GAG GAG AAT GAG TOT GAC TCC TGC CTG ATC CAC CCA GGT TGT ACC ATC TTT GAA AAC	90 306
C K S C R N G S W G G T L D D F Y V K G TGC AAG AGC TGC CGA AAT GGC TCA TGG GGG GGT ACC TTG GAT GAC TTC TAT GTG AAG GGG	110 366
F Y C A E C R A G W Y G G D C M R C G Q TTC TAC TGT GCA GAG TGC CGA GCA GGC TGG TAC GGA GAC TGC ATG CGA TGT GGC CAG	130 426
V L R A P K G Q I L L E S Y P L N A H C GTT CTG CGA GCC CCA AAG GGT CAG ATT TTG TTG GAA AGC TAT CCC CTA AAT GCT CAC TGT	150 486
E W T I H A K P G F V I Q L R F V M L S GAA TGG ACC ATT CAT GCT AAA CCT GGG TTT GTC ATC CAA CTA AGA TTT GTC ATG TTG AGC	170 546
L E F D Y M C Q Y D Y V E V R D G D N R CTG GAG TTT GAC TAC ATG TGC CAG TAT GAC TAT GTT GAG GTT CGT GAT GGA GAC AAC CGC	190 606
	210 666
	230 726
	250 786
	270 846
	290 906
	110 966
V S F F C Y N S Y V L S G N E K R T C Q 3 GTG TCT TTC TTT TGT TAC AAC TCC TAT GTT CTT AGT GGC AAT GAG AAA AGA ACT TGC CAG 10	30 26
Q N G E W S G K Q P I C I K A C R E P K 3 CAG AAT GGA GAG TGG TCA GGG AAA CAG CCC ATC TGC ATA AAA GCC TGC CGA GAA CCA AAG 10	-
I S D L V R R R V L P M Q V Q S R E T P 3 ATT TCA GAC CTG GTG AGA AGG AGA GTT CTT CCG ATG CAG GTT CAG TCA AGG GAG ACA CCA 11	

L TT	H A CA	(C C	Q 'AG	L CTA	Y TA	c TC	S ZAG	A CG C	A CC	F	S AG	C A	K NG ·	Q CAG	K AA	L CT	G CA	G A	ड जा	A CC	P	T AC	r C	K AAC	390 1206
K AAC	P CC	A G	A CC	L CII	CCC	E TI	T G	G GA G	D AT	L CTG	P	A C A	(NG (G GGA	Y TAC	CA	H A CA	I I CI	TG C	H AT	ACC	C C2	ig	L CTC	410 1266
Q CAG	Y TA	T G	e Ag	C TGC	I	s TC	A CC	c T	F TC	Y TAC	R CG(F CC	: :C (L TG	G GGC	S AGO	S AG	R C AC			T AC			L CTG	430 1326
R AGG	T	r GC	3 3G .	K AAG	w TGC	S AG	T GG		R GG (S A TC			I ATC	P CCT	I ATC			G GG	K AAA			e gag	450 1386
N AAC	I	1 AC	r .T (A GCT	P CCA	K AA	T G AC	c c	Q AA (G GGG	L TTC	R CG	с 1	W 'GG	P CCG	W TGG	Ç CAC	A GC	A G	A CC	I ATC	Y TA	c z		·470 1446
R AGG	T ACC	S AG	ic (G GGG	V GTG		D GA										W TCG				V GTC			S VGC	490 1506
G GGT	A GCC	L CT	G C	V STG	N AAT	E GAC	R CG	7 C AC	T G	V TG	V GTG	V	; G	A CT	A GCC	H CAC	C TGT	V GT	T AC	: .T (D GAC	L CT	3 G	G CGG	510 1566
K AAG	V GTC	T AC	C A	M ATG	I ATC	K AAG	T AC	A GC									G GGG								530 1626
D GAT	D GAC	R CG	G G	D AT (E GAG	K AAG	T	I TA:	c c	Q AG .	S AGC	L CTA	(Q AG J	I ATT	S TCT	A GCT	I			L TG	H CAT		P CC	550 1686
N AAC	Y TAT	D GAG	: c	CC 1	I ATC	L CTG	L CTI	D GA	r G	A CT (D GAC	I ATC	G	a CC #	I NTC	L CTG	K Aag	L CTC			D AC		G		570 1746
R CGT	I ATC	S AGO	: A	r cc c	R CGA	v GTC	Q CAG	P		t rc 1		L CTC			A CC		R CGG		L CT		s GC	T ACT	_	s CC	590 1806
F TTC (Q CAG	E GAG	: T(s CC C	H LAC	I ATC	T ACT	V	; ; G0	, T (G	W TGG	N AA	T G	v TC (L CTG	A GCA	D GAC	V GTC	; A			CC		610 1866
G GGC 1	F FTC	K Aag	ı A	i NC G	D AC	T ACA		R CGC		; T C							V CTC				l TG (TC		630 1926
E BAG C	E JAG	Q CAG	H	i T G	E AG (D SAC										T CT (N AAC			F TC :				650 · 1986
	W	Ε	Đ	, ,	T	A	P	s	D		I	С	т		A	E	T	G	G	1	τ	A	A		670 2046
V TG T	s	F	P	(G	R	A	s	P		E	P	R	ï	×	Н	L	м	G	I		v	s		690 2106
W CG A	s	Y	ם	ı	(T	С	s	н	1	R	L	s	7	Γ.	A	F	т	ĸ	v	,	L	P		710 2166
F	ĸ	D	W	1		E	R	N	М	1	c	•													721 2199
TT A.													TCT	'ACC	TGT	STCA	TTGC	CTG	ANO	Cag	TGT	CCC	CCT		2278
aacto	CTGA	TT	CCC	CTG	TGA	ACTI	ccc	rcro	CCA	CCC	стт	CTG	ACT	TCA	GGG;	ACAA	AACT	CAG	rga;	\GG	CTG	AGT	AG#	A 2	2357

TTTCTTCAAAGAAGACCATATACAAAACCTCTCCACTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAAT	2519
GCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGG	2594
GACAGCCCAGGGCAGCAGAGCTGGGATGTGGTGCATGCCTTTGTGTACATGGCCACAGTACAGTCTGGTCCTTTTCCTT	2673
CCCCATCTCTTGTACACATTTTAATAAAATAAGGGTTGGCTTCTGAACTACAAAAAAAA	2747

G	CGA	CCC	ACC	GCG.	rccc	GCC	GC1	rage	CCC	GCG	rgc	GCT	GGAC	ACC	TCCU	CG	CIG	GCCC	:CCG	CGAC	iCC:	rcc	rgcc	CTGG	C 79
										,	4	G	G	P	F		G	A	G	K	,	v	A	A	
CC	:GGC	GCT	GCG	GC	CTG	ccc	CGC	CGG	CAG	C AI	rg (GGT	GGC	: cc	c co	G	GC.	GCG	GG	C TO	G C	TG	GCG	GCG	14
G	;	L	L	I	,	G .	A	G		A	С	Y	c	:	ľ	Y	R	L	. 1	r	R	G	R	R	3
GG	c c	TG (CTG	: כז	C G	GC	GCG	GG	CG	CC I	GC	TAC	TG	C A	r T	AC	AGC	CI	G AC	cc c	GG	GGT	' CG	G CG	G 20
R		3	D	R		E	L	G		ī	R	s	s	1	C	s	A	G	P	١	L	E	E	G	5
CG	GG	GC (AC	CG	C G	AG	CTC	GG	G A	rà C	GC	TCT	TC	G A	AG T	CC	GCA	GG	T GC	C C	TG	GAA	. GAJ	A GG	G 26
т			F	G		0	r.	c	(;	R	s	А	F	t :	p	Q	т	G	;	G	T	W	E	7
ACC	G TO	, :A G	AG	GG	TC	AG :	TTG	TG	C GC	G C	GC	TCG	GC	c co	G C	CT	CAG	AC	G GG	A G	GT .	ACC	TGC	GAC	3 32
s	,		w	۰	,		T	c	c	• 1	p	E	D	I		г	D	G	s	,	•	D	D	v	9
TC	, C	G T	GG	TC	C A	ig ;	ACC	TCC	s ca	G C	CT ·	GAA	GA	: 11	A A	CT (GAT	GGT	TC	A T	AT (GAT	GAT	GII	
t.	N	•	Δ	E	_)	T.	o	ĸ	. 1	L.	L	Y	L	. 1		Е	s	T	E		D	p	v	11:
CTA	KA A	TG	CI	GAZ	C	a c	TT	CAG	ÄÄ	A C	rc (CTT	TAC	CT	c c	rg (GAG	TCA	AC	G G?	NG (3at	CCT	GTA	44
7		1		D	2		т.	T	т	ſ		G	N	N	4		A	F	s	v	,	N	Q	A	13:
ATT	AT	T G	AA	λGA	GC	тт	TG	ATT	AC	r TI	rg (GGT	AAC	: AA	r GC	'A C	3CC	TTT	TC	A GT	T A	IAC	CAA	GCT	505
I		,	,	F	T.		c	G	T	P	,	r	v	А	Ń	•	ĸ	I	N	н		s	N	Q	152
ATT	AT	r co	TT.	GĀA	TT	GG	GT	GCT	AT.	r cc	A A	ATT	GTT	GC	A AA	C A	LAA	ATC	AAC	CA	TI	CC	AAC	CAG	565
c	7		,	F	ĸ		3	t.	N	A		t.	N	N	L		s	v	N	v		E	N	Q	172
AGT	AT	r AF	ù i	CAG	AA	A G	CI.	TTA	AAT	GC	A C	Tλ	AAT	AAG	CT	G A	GT	GTG	AAT	GT	T G	AA .	AAT	CAA	625
T	ĸ	7)	к	7		Y	T	s	o		v	С	E	D		v	F	s	G		P	L	N	192
ATC	AAC	; AT	'A	aac	AT	A T	AC A	ATC	AG1	CA	A G	TA	TGT	GAC	GA'	T G	TC	TTC	TCT	GC	rc	CT	CTG	AAC	685
e	A	υ		0	r.	,	.	c	ī.	т		L	L	т	N	1	M	T	v	т	1	N	D	н	212
TCT	GCT	GT	G	CAG	CTC	G	T	GGA	CTG	AC	A T	TG	TTG	ACA	AA	C A	TG	ACT	GTT	ACC	: A	AT (JAC	CAC	745
0	и	M		r.	ш			v	т	T		D	L	F	0	,	v	L	L	T	(3	N	G	232
CAG	CAC	AT	G	H	CAC	: AC	T 1	CAC	ATT	AC	A G	AC	cīc	TTC	CAC	G	TC '	TTA	CTT	ACT	G	JA A	LAT	GGA	805
AT	~	1/		, .	_	7.1	,		v	τ.	1	t.	f.	N	L		S	E	N	P	,		м	т	252
AAC	ACG	AA	3 0	TG	CAA	GT	T 1	TG	AAA	CTC	; c	TT '	TTG	AAT	TTC	; TC		GAA							865
_	_							^	1,	n			e	E	7.		2	L	v	В	9		н	v	272
GAA	GGA	CT	r c	TC	CCT	GC	c c	AA I	GTG	GAT	T	CA 1	TCA	TTC	CIT	TC	c c	TT	TAT	GAC	AC	ic c	AC (925
																		r						к	292
GCA	K AAG	GAC	; A	I TT	L CTT	CT	ro	R GA (V GTA	CTT	' AC	י מסו	TA.	TTT	CAG	AA	' \T A	NTA .	AAG	AAC	TG	c c	TC /		985
I ATA (E GAA	GGC	. c	H at '	L TTA	A GC	י דומי	V TG (Q CAG	CCT	AC	י דד	F TC	T ACT	GAA	GG	T I	CA :	TTG	TTT	TT	cc	tg 1		312 1045
H CAT (G	CAA	G	22 . E	C	A CCC) - ح:	מ מכיני	K AAA	I ATA	R AG	ia c	A CT '	L TTA	CTT	GA ^r	TC	H AC (H CAT				e ag c		332 1105
<i></i>	.un	J					,	,				•							-						
K					V					P			I TC -	· rca											344 1141
AAG C	AA	JAA	G	(ATA	AÇA	· A7	A A	MA	CCC	M	м А		LUM											1141
TTGGT	CAT	ATT	T::	CC	W	AGT	'AAT	CCA	GTC	TCG;	\TA	TAA	ATG	TATT	TTC	rcr	CTT	CCTI	TATA	AGGG	GA:	רדכז	ccc	'AG	1220

CTGCTAAATTTAAACAGTAAATATCACATTTTGTCATTAACACAGCTATAACTTGCCGTGGTTCTCAGATTTATTT	G 129
ACTATTTTGATGCCAAGTGAATATAAGAGCTTGTACTGAAACCATTTATTT	T 1378
GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGT	r 1457
ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGA	1536
${\tt ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAGTAGAATCTAGAATCTAGAATCAGAATCTAGAATCAGAATCTAGAATCTAGAATCTAGAATCTAGAATCTAGAATCTAGAATCTAGAATCTAGAATAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATCAGAATAGAATCAGA$	1615
${\tt TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTAGAGAGAG$	1694
TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1773
CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA	1852
GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	1931
GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2010
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2089
retecttaagtegaaagatatctatgaaatategtegttttttaaaacacaaaaattatagaatateggatcecetete	2168
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	2247
TAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2326
ATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2403

TC	CGGT	CCAN	GAAA	AAGC	TGCT	TGCA	CTAG	GGGC	ATCC	CGCC.	rgcc:	rccr	GAAA	GGAA	CCGC	AGCA	CACA	GGT	GGAG	79
GGG	TTC	CGAT	TTTA	GCAG	GGCG	GCTT	CCGG	/YCC(CGGA	CTC	CAACO	CCA:	rtrc	CTTT	ici	GGC	TGGT	CTG	CCCA	158
														-	-		3 8	-		5
GCI	GCA	CTG	CGTG	rgġc	CCTG	GCTC	TCGC	CTCC	CTG	AGCT	CCGA	(GGC)	IGCA	SC AT	rg go	T G	GC GC	cs co	G	. 229
ם	v	G	W	v	A	·A	G	L	v	L	G	A	G	A	С	Y	С	1	Y	25
GAC	GTC	GGG	TGC	GTC	G GC/	A GC	GGG	CTC	GTC	CTG	GGC	GCC	GGC	GCC	TGC	TAC	: IGI	ATC	TAC	289
R	t.	т	R	G	P	R	R	G	v	A	T	м	R	P	s	R	s	A	E	45
CGG	CTG	ACT	ccc	GG?	CCC	CGG	CGA	GGC	GTC	GCG	ACC	ATG	CGC	CCI	TCG	CGA	TCC	GCA	GAA	349
n	7.	т	n	G	s	v	D	D	I	L	N	А	E	0	L	к	ĸ	L	L	65
GAC	CTA	ACC	GAT	. eec	TCC	TAT	GAC	GAT	ATC	TTA	AAT	GCA	GAG	CAG	CIT	AAG	AAA	CTT	CTG	409
v	,		-	c	т	n	n	p	v	T	т	E	к	A	L	v	т	L	G	85
TAT	CIG	CTG	GAG	TCA	ACC	GAC	GAT	CCT	GTC	ATT	ACT	GAA	AÁG	GCC	TTG	GTC	ACC	TTG	GGA	469
	••				_	~	N	^	a	T	T	ט	P	ť.	G	G	Ŧ	D	т	105
AAT	N AAT	GCA	GCC	TTC	TCC	ACT	AAC	CAG	GCC	ATT	ATT	CGT	GAG	TTC	GGT	GGT	ATC	CCA	ATT	529
V -TT	GCA	N	K AAA	ATC	N AAC	TCC	CIG	AAC	CAA	AGT	ATT	AAA	GAG	AAA	GCT	TTA	AAT	GCA	CTG	125 589
N	N	L	S	V	N	V	E	N.	Q Caa	T.	K	I	K	I	Y TAC	CTC	CC.L.	CAA	V GTC	145
LAT.	AAC	CIG	AGT	GIG	AAT	GII	ψ.Α.Α.	wi	~~·	AC1	~~0	~*×	~~0	~~~	·vc	0.0		ww	•••	,
_	_	_	V																	152
GT	GAG	GAC	GTC	TTT	GCT	GAC														670

		10	20	30	40	50
HUMAN	MALLSRP	ALTLL	LLLMAAVVRC	QEQAQTTDWRA	TLKTIRNGV	HKIDTYLNAALDLL
MURINE	::: M-VTPRP	: . :: APARGPALLI	::::::::::::::::::::::::::::::::::::::			KIDTYLNAALDLL
		10	20	30	40	50
	60	70	80	90	100	110
	GGEDGLC	QYKCSDGSKE	FPRYGYKPSE	PNGCGSPLFG	VHLNIGIPSI	TKCCNQHDRCYET
	:::::::	::::::::::	::::::::	DMCCCCDI ECT	::::::::::	TKCCNQHDRCYET
	60	70	80	90	100	110
	120 CGKSKNDC	130 DEEFQYCLS	140 KICRDVQKTL	150 GLTQHVQACET	160 TVELLFDSV	170 IHLGCKPYLDSQR
	CGKSKNDC	DEEFQYCLS	:::::::: KICRDVQKTL	::.::::: GLSQNVQACET	TVELLFDSV	::::::::::::::::::::::::::::::::::::::
1		130	140	150	160	170
	180	190				
;	AACRCHYE	EKTDL				
	:::.::					
	AACWCRYE					
1	.80	190				

	10	20	30	40	50	60			
HURIDE	MAQLGAVVAVASSF	FCASLFSAV	'HKIEEGHIGV'	rrggallts'	TSGPGFHLML	PFITSYK			
	::::::::::::	::::::::	:::::::::	:::::::	:::::::	::::::			
HUMAN	MAQLGAVVAVASSF	FCASLFSAV	HKIEEGHIGVY	YRGGALLTS'	rsgigfhlml	PFITSYK			
•	10	20	30	40	50	60			
	70	80	90	100	110	120			
	SVQTTLQTDEVKNIVE	CGTSGGVM	IYFDRIEVVNF	LVPNAVYDIV	/KNLATYDK?	ALIFNKI			
	:::::::::::::::::::::::::::::::::::::::	:::::::	:::::::::::	:::::::::		::::::			
	SVQTTLQTDEVKNVP	CCTSGGVM	IYFDRIEVVNF	LVPNAVYDIV	KNYTADYDKI				
	70	80	90	100	110	120			
	130	140	150	160	170	180			
	HHELNQFCSVHTLQEVYIELFDQIDENLKLALQQDLTSMAPGLVIQAVRVTKPNIPEAIR								
	:::::::::::::::::::::::::::::::::::::::	:::::::		:::::::::	::::::::	:::::			
•	HHELNQFCSVHTLQE	VYIELFDQ1	(DENLKLALQQ)	OLTSMAPGLV	IQAVRVTKPN	IPEAIR			
	130	140	150	160	170	180			
	190	200	210	220	230	240			
	RNYELMESEKTKLLIAAQKQKVVEKEAETERKKALIEAEKVAQVAEITYGQKVMEKET								
	::::::::::	:::::::	::::::::::	::::::::	::::::::	:::::			
1	rnyelmesektkiliaaqkqkvvekeaeterkkalieaekvaqvaeitygqkvmeketek								
	190	200	210	220	230	240			

		10	20	30	40	50	60			
HUMAN	MNMTC)ARVLVAAV\	GLVAVLLYAS	IHKIEEGHLA	VYYRGGALLI	SPSGPGYHIM	LPFITT			
MURINE										
		70	80	90	100	110	120			
	FRSVQTTLQTDEVKNVPCGTSGGVMIYIDRIEVVNMLAPYAVFDIVRNYTADYDKTLIFN									
		-		MIYIDRIEVVI 20						
	KIHHEI	130 LNQFCSAHTI	140 LQEVYIELFD	150 QIDENLKQALQ	160 XXDLNLMAPGI	170 LTIQAVRVTKE	190 KIPEA			
				DIDENLKQALQ 80						
	IRRNFE	190 LMEAEKTKL	200 LIAXQKQKVV	210 EKEAETERKK	220 AVIEAEKIAO	230 VAKIRFQQKV	240 MEKET			
				:::::: EKEAETERKR 140						
	EKRISE:	250 IEDAAFLARI	260 EKAKADAEYY	270 AAHKYATSNKI	280 HKLTPEYLEL	290 KKYQAIASNSI	300 CIYFG			
				::::::::: AAHKYATSNKI 200						
	310 320 330 340 SNIPNMFVDSSCALKYSDIRTGRESSLPSKEALEPSGENVIQNKESTG-									
				LPPEEAREPS 260						

	10	20	. 30	40	50	60		
MURINE	MKLLCLVAVVGCL	LVPPAQANKS	SEDIRCKCIC	PPYRNISGHI	YNQNVSQKDC	NCLHVVE		
HUMAN	MKLLSLVAVVGCL	Lvppaeanks	SEDIRCKCIC	PPYRNISGHI				
	10	20	30	40	50	60		
	70	80	90	100	110	120		
	PMPVPGHDVEAYCI	LCECRYEER	STTTIKVIIV	[YLSVVGALLI	LYMAFLMLVDI	PLIRKPD		
	:::::::::::::::::::::::::::::::::::::::							
	PMPVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPD							
•	70	80	90	100	110	120		
	130	140	150	160	170	180		
	AYTEQLHNEEENED	artmataaas	IGGPRANTVL	ERVEGAQQRW	KLQVQEQRKT	VFDRHK		
	:::::::::::::::::::::::::::::::::::::::	::::::::	.:::::::	::::::::	:::::::::	:::::		
	AYTEQLHNEEENED.	arsmaaaaas	LGGPRANTVL	ERVEGAQQRW	KLQVQEQRKT	VFDRHK		
	130	140	150	160	170	180		

MLS

::: MLS

		10	20	30	40	50			
HUMAN	MAT	LW-GGLLRLGS	LLSLSCLALS	VLLLAQLSDA	AAKNFEDVRC	KCICPPYKEN.	SGHIYNK		
MURINE	::. Masi	:: ::::::: .WCGNLLRLGS	:::::::: GLSMSCLALS	::::::::::::::::::::::::::::::::::::::	AAKNFEDVRCI	CICPPYKEN	.::::: PGHIYNK		
		10	20	30	40	50	60		
	60	70	80	90	100	, 110			
	NISQ	KDCDCLHVVE	PMPVRGPDVE	AYCLRCECKY	TEERSSVTIKV	TIIIYLSILO	LLLLYM		
	::::	::::::::	:::::::::		:::::::::	::::::::	:::::		
	NISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYM								
		70	80	90	100	110	120		
	120 VYLTI	130 LVEPILKRRLF	140 GHAQLIQSDD	150 DIGDHQPFAI	160 NAHDVLARSR	170 SRANVLNKVE	YAQQRW		
	VYLTLVEPILKRRLFGHSQLLQSDDDVGDHQPFANAHDVLARSRSRANVLNKVEYAQQRW								
		130	140	150	160	170	180		
	180 KLOVO	190 EQRKSVFDRH	vvr.s						
	KLQVQEQRKSVFDRHVVLS KLQVQEQRKSVFDRHVVLS								
		190							

HUMAN MIRCGLACERCRWILPLLLLSAIAFDIIALAGRGWLQSSDHGQTSSLWWKCSQEGGGSGS MURINE MLRCGLACERCRWILPLLLLSAIAFDIIALAGRGWLQSSNHIQTSSLWWRCFDEGGGSGS YEEGCQSLMEYAWGRAAAMLFCGFIILVICFILSFFALCGPQMLVFLRVIGGLLALAAV YDDGCQSLMEYAWGRAAAATLFCGFIILCICFILSFFALCGPQMLVFLRVIGGLLALAAI FQIISLVIYPVKYTQTFTLHANPAVTYIYNWAYGFGWAATIILIGCAFFFCCLPNYEDDL FQIISLVIYPVKYTQTFRLHDNPAVNYIYNWAYGFGWAATIILIGCSFFFCCLPNYEDDL

MURINE	MAG	10 IPGL-FILLV	20 LLCVFMQVSP	30 YTVPWKPTWP.	40 AYRLPVVLPQ	50 STLNLAKADF	DAKAKLE
HUMAN		:::: :.:: IPGLLFLLFFI 10		: : : : : : : : : : : : : : : : : :			
		70 SCGPQCHKGTE		90 CLSYETLYANO			
				LSYETLYANG 90			
		_		150 LLNYPFSTSV			
				LLNYPFSTSV 150			
	::::	: : : : : : : : : :		210 GDNSSSSAMPI :::: GANDSTSAMPI 210			:::::
	:::::	::::::::	:::::::::	270 /SPPAKQLPGG :::::::: /SPPAKQLPGG 270	::::::::	:::::::::	:::::
	:::::		::::::::	330 KRPQQKWERK :::::::: KRQQQKWERK 330	::::::::	:::::::::	:::::
	:::::	370 YAQICYWIKGN ::::::::: YAQICYWIKGN 370	::::::				

		10	20	30		40 50
MAMUH	Mapasr	LLALW	ALAAVALPG S	GAEGDGGWR	PGGPGAVA	LEEERCTVERRADLT
	::.::	:::	: ::::		: : ::	:::::::::::::::::::::::::::::::::::::::
MURINE	MAAAGRRO				-	EEERCTVERRAHIT
		10	20	30	40	50
	-	_		00		00 110
·	60		_	80		00 110
	YAEFVQQY	YE AKBATPO	GLIDNSRFR	ALCSKUKLLA	ASFGDRVVRLS	TANTYSYHKVDLPF
	VCEEMOUV		CI TONSKER	AT CODENT.F.S	SECONTVALS	TANTYSYQKVDLPF
	60	70	80	90	100	110
	00		00	٥,٠		
	120	13	0 1	40 1	150 10	50 170
	QEYVEQLLI	HPQDPTSLG	NDTLYFFGDI	NNFTEWASLF	RHYSPPPFGLI	LGTAPAYSFGIAGA
·	::::::::		:::::::	:::::::::		
	QEYVEQLLO	PODPASLG	NDTLYFFGDI	nftewaslf	QHYSPPPFRLI	<i>C</i> TTPAYSFGIAGA
	120	130	140	150	160	170
	190	190		-	10 22	
	GSGVPFHWH	GPGYSEVIY	GRKRWFLYE	PEKTPEFHP	nkttlawlrdi	YPALPPSARPLEC
			:::::::::			******
			200	210	NKTTLAWLLEI 220	YPSLALSARPLEC 230
	180	190	200	210	220	230
	240	250	26	n		
	TIRAGEVLY			-		
	TIOAGEVLY	PDRWWHAT	LNLDTSVFI	STFLG		
	240	250	260			
	•					

HOMAN MDNRFATAFVIACVLSLISTIYMAASIGTDFWYEYRSPVQENSSDLNKSIWDEFISDEAD MURING MDNRFATAFVIACVLSLISTIYMAASIGTDFW/EYRSPIQENSSDSNKIAWEDFLGDEAD EKTYNDALFRYNGTVGLWRRCITIPKNMHWYSPPERTESFDVVTKCVSFTLTEQFMEKFV EKTYNDVLFRYNGSLGLWRRCITIPKNTHWYAPPERTESFDVVTKCMSFTLNEQFMEKYV DPGNHNSGIDLLRTYLWRCQFLLPFVSLGLMCFGALIGLCACICRSLYPTIATGILHLLA DPGNHNSGIDLLRTYLWRCQFLLPFVSLGLMCFGALIGLCACICRSLYPTLATGILHLLA GLCTLGSVSCYVAGIELLHQKLELPDNVSGEFGWSFCLACVSAPLQFMASALFIWAAHTN GLCTLGSVSCYVAGIELLHQKVELPKDVSGEFGWSFCLACVSAPLQFMAAALFIWAAHTN RKEYTLMKAYRVA RKEYTLMKAYRVA

MURINE HUMAN	:::::		.:::::::	::::::	40 VATMRPSF . :.:. DRELGIRSSK 40		:::::
	:::::	::::::::	::::::::	::::::::	100 NQAIIRELGG :::::::: NQAIIRELGG 100	:::::::	:::::
	:::::	130 ALNNLSVNVE	140 NQTKIKIYVI	150 PQVCEDVFA-		LTLLTNMTVI	NDHQHM 180
	LHSYIT	DLFQVVLTG	NGNTKVQXLK 200	LLLNLAENPA 210	MTEGLLRAQV 220	DSSFLFLYD 230	XHVAXE 240
	XLLQYL	•					

```
ALIGN calculates a global alignment of two sequences
  version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
                                      1570 aa vs. > hut180
  > mut180
                     1203 as scoring matrix: paml20.mat, gap penalties: -12/-4
  55.0% identity;
                   Global alignment score: 2219
                  30
                             40
                                    50
  GTCGACCCACGCGTCCG---GGCCGGGGTCCTGA----GCCGGAGCCGGAGCGCGCGCCC
  ..... .... ....
  GTCGACCCACGCGTCGCGTGGATATGGAGCTGGCTGCCAAGTCCGGGGCCCGCGCC
         20
               30
                       40
                              50
                      70
                             80
  GCTGCCCAGC----CG-----CGCG-GCCCGCAGAT-GGTGACT
  ****** ** ***** * ** ***
  80
               90
                     100
                             110
                                    120
           110
                   120
                            130
 C------CGCGGCCCGC---GCCC-GCCCGGG-GCCCGCGCTC---CTCCTCCT
          CGTAGAGCCCGGCGCTGCGCGCATGGCCCTGCTCTCGCGCCCCGCGCTCACCCTCCTGCT
 130
               150
                      160
                        170
 140
        150
                 160
                                180
                                       190
 1.11 111111111 111111111111111111111
 ::: :: :::::::
 CCTCCTCATGGCCGCTGTTGTCAGGTGCCAGGAGCAGGCCCAGACCACCGACTGGAGAGC
        200
               210
                      220
                             230
 200
        210
               220
                      230
                             240
                                    250
 CACCCTCAAGACCATCCGCAACGCCATCCACAAGATAGACACGTACCTCAACGCCGCGCT
 CACCCTGAAGACCATCCGGAACGCCGTTCATAAGATAGACACGTACCTGAACGCCGCCTT
250
       260
               270
                      280
260
       270
               280
                      290
                             300
                                    310
GGACCTGCTGGGGGGGGGGGGGGCTCTGCCAGTACAAGTGCAGCGACGGATCGAAGCC
GGACCTCCTGGGAGGCGACGGTCTCTGCCAGTATAAATGCAGTGACGGATCTAAGCC
310
       320
              330
                      340
                             350
                                    360
320
              340
                     350
                             360
TGTTCCACGCTATGGATATAAACCATCTCCACCAAATGGCTGTGGCTCTCCACTGTTTGG
TTTCCCACGTTATGGTTATAAACCCTCCCCACCGAATGGATGTGGCTCTCCACTGTTTGG
370
       380
              390
                     400
                            410
       390
              400
                     410
                            420
CGTTCATCTGAACATAGGTATCCCTTCCCTGACCAAGTGCTGCAACCAGCACGACAGATG
430
       440
              450
                     460
                            470
                                   480
440
       450
              460
                     470
                            490
                                   490
CTATGAGACCTGCGGGAAAAGCAAGAACGACTGTGACGAGGAGTTCCAGTACTGCCTCTC
-TATGAGACCTGTGGCAAAAGCAAGAATGACTGTGATGAAGAATTCCAGTATTGCCTCTC
      500
             510
                     520
                           530
```

FIG. 32 (10F3)

	510	520	530	540	550
500 CAAGAT	510 CTGCAGAGA	520 CGTGCAGAAC		540 TATCTCAGAA	.CGTCCAGGCATGTGA
:::::				:	:: :::::::::::::::::::::::::::::::::::
550	560	570	580	590	600
	670	580	590	600	610
560 GACAAC	570 GGTGGAGCT				CAAGCCATACCTGGA
.::::			:: :: :: ::		
					TAAACCATATCTGGA
610	620	630	640	650	660
620	630	640	650	660	
					CTATAAAGACC
					CTTTAAAGGAGATG
670	680	690	700	710	720
670	680	690	700	710	720
- · -				_	AAGATCGGATGCTT
					AATAACTAATGTTT
730	740	750	760	770	
730	740	750	760	770	780
					SACCTTTCTATACT
					:::::::::
780	790	800	810	.11A11111GAC 820	B30
700	750	000	0.00	020	
		810		830	840
GTGTCTT1	TTTTAGAAC	CTCAAAGTGA	AAAACGGTGGG	GGGCCAGGCA	GAAACAGAGGGAG
GTGTCTTT	TTTTAGAAC	CTCAAAGTG/	AAAACGGTGGG	GGGCCAGGCA	=
GTGTCTTT	TTTTAGAAC	CTCAAAGTG/ :: ::::::::::::::::::::::::::::::::::	AAAACGGTGGG	GGGCCAGGCA	GAAACAGAGGGAG
GTGTCTTI .:: ATT 840	TTTTAGAAC ::::. TATAT 850	CTCAAAGTG/ :: .:.:: : CTTGATGTT/	AAAACGGTGGG ::::: AAAACCT 860	GGGCCAGGCA : ::::: CAAAGCA 870	GAAACAGAGGGAG .::: :::::: AAAAAAGTGAGGG
GTGTCTTT .:: ATT 840	TTTTAGAAC :.: TATAT 850	CTCAAAGTG/ :: .:.:: CTTGATGTT/ 870	AAAACGTTGGG ::::: AAAACCT 860	GGGCCAGGCA : ::::: CAAAGCA 870	GAAACAGAGGGAG .::: :::::::::::::::::::::::::::::::::
GTGTCTTT .:: ATT 840	TTTTAGAAC ::: TATAT(850 860 TGGGATGGG	CTCAAAGTG/ :: .:.:: CTTGATGTT/ 870	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG	GGGCCAGGCA : ::::: CAAAGCA 870	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT :: .:: AGATAG	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGGG :::::	CTCAAAGTG/ :: .:.:: : CTTGATGTT/ 870 :: .:::: ::::::::::::::::::::::::::::	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT :: .::	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGGG :::::	CTCAAAGTG/ II	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/	GGGCCAGGCA CAAAGCA 870 890 AGCATGCCTTO	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT :: .:: AGATAG	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGG :::::	CTCAAAGTG/ :: .:.:: : CTTGATGTT/ 870 :: .:::: ::::::::::::::::::::::::::::	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAGA :	GGGCCAGGCA I I I I I I I I I I I I I I I I I I I	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT :: .:: AGATAG 880 910	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGG :::::TGAGG	870 BAGCGAGCAG CITCAAGTGTA	AAAACGTGGG ::::: AAAACCT 860 880 GGACATCCAAGA :	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC ::::::: GCTTGTCTTC 900	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT :: .:: AGATAG 880 910 GTCTTGGTC :: :::	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGG ::::::TGAGG 8 920 GGCTCCCCCA	870 BAGCGAGCAG CITCGATGTTA 870 BAGCGAGCAG CITCGAGCAG AGCAGGAGAGAGAGAGAGAGAGAGAAGAGAA	AAAACGTGGG ::::: AAAACCT 860 880 GGACATCCAAGA :C	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC :::::::: GCTTGTCTTC 900 950 GCTCGTGTGTG	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT ::: AGATAG 880 910 GTCTTGGTG ::.:: -TCA-GGTA	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGGG :::::TGAGG	870 BAGCGAGCAG CITCGATGTTA 870 BAGCGAGCAG CITCGAGCAG AGCAGGAGAGAGAGAGAGAGAGAGAAGAGAA	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAGA :C	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC :::::::: GCTTGTCTTC 900 950 GCTCGTGTGTGA	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT :: .:: AGATAG 880 910 GTCTTGGTC :: :::	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGG ::::::TGAGG 8 920 GGCTCCCCCA	870 BAGCGAGCAG CITCGATGTTA 870 BAGCGAGCAG CITCGAGCAG AGCAGGAGAGAGAGAGAGAGAGAGAAGAGAA	AAAACGTGGG ::::: AAAACCT 860 880 GGACATCCAAGA :C	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC :::::::: GCTTGTCTTC 900 950 GCTCGTGTGTGA	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### GTGTCTTT ### ### ### ### ### ### ### ### ###	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGG ::::::TGAGG 8 920 GGCTCCCCCA :::::: ATCTTCCCCA 920 980	870 BAGCGAGCAG SINGER BY BAGCGAGCAG BY BAGCGAGGAAG BY BACTGGGAAG 990	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAGA :C 940 GAAAAGCTTAA :::::: 930	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC :::::::: GCTTGTCTTC 900 950 GCTCGTGTGA ::::::::::: GCTCC	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
GTGTCTTT .::ATT 840 850 AGCATGCT ::: AGATAG 880 910 GTCTTGGTG ::.:: -TCA-GGTA 910 970 AGTTGTACT	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGGG ::::::TGAGG 8 920 GGCTCCCCCA ::::::: ATCTTCCCCA 920 980 TAACAATAA	870 BAGCGAGGAG 930 BACTGGAAG 990 AAATGAAAGG	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAGA ::C 940 GAAAAGCTTAA ::::: 930 1000 CAAATGTAAAA	GGGCCAGGCA : :::::CAAAGCA 870 890 AGCATGCCTTC :::::::: GCTTGTCTTC 900 950 GCTCGTGTGA ::::::::::: GCTCC	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### GTGTCTTT ###############################	TTTTTAGAAC ::: TATAT 850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA 920 980 TAACAATAA	870 870 SAGCGAGCAG SILLILI SGGAGGGCA- 90 930 AACTGGGAAG	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAGJ :C 940 GAAAAGCTTAA :::::: 930 1000 CAAATGTAAAA	GGGCCAGGCA :::::::CAAAGCA 870 890 AGCATGCCTT ::::::: GCTTGTCTT 900 950 GCTCGTGTGA :::::::::::::::::::::::::::::::::	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### GTGTCTTT ###############################	TTTTTAGAAC ::: TATAT 850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA 920 980 TAACAATAA	870 870 SAGCGAGCAG SILLILI SGGAGGGCA- 90 930 AACTGGGAAG	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAGJ :C 940 GAAAAGCTTAA :::::: 930 1000 CAAATGTAAAA	GGGCCAGGCA :::::::CAAAGCA 870 890 AGCATGCCTT ::::::: GCTTGTCTT 900 950 GCTCGTGTGA :::::::::::::::::::::::::::::::::	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### GTGTCTTT ### 11	TTTTTAGAAC ::: TATAT(850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA ::::::: ATCTTCCCCA 920 980 TAACAATAA	870 870 RAGCGAGCAG SAGCGAGCAG 930 AACTGGGAAG	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/ :C 940 GAAAAGCTTAA ::::: 930 1000 CAAATGTAAAA	GGGCCAGGCA ::::::CAAAGCA 870 890 AGCATGCCTTC 900 950 GCTCGTGTGA ::: GCTCC	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### GTGTCTTT ###############################	TTTTTAGAAC ::: TATAT 850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA 920 980 TAACAATAA	870 870 SAGCGAGCAG SISSISSISSISSISSISSISSISSISSISSISSISSIS	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/ :	GGGCCAGGCA :::::::CAAAGCA 870 890 AGCATGCCTTC :::::::: GCTTGTCTTC 900 950 GCTCGTGTGA ::::::::: 1010 FTCATTGTAA	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### GTGTCTTT ###############################	TTTTTAGAAC ::: TATAT 850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA 920 980 TAACAATAA	870 870 RAGCGAGCAG SAGCGAGCAG 930 AACTGGGAAG AAATGAAAGG 1050 CAGGCCAAT	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/ :	GGGCCAGGCA ::::::CAAAGCA 870 890 AGCATGCCTTC 900 950 GCTCGTGTGA :::::::: GCTTCC	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### STOTCTTT ### STO ### STO ### STO ### STO ### STO ### STOTCTT ### STOTCTT ### STOTCTT ### STOTCT	TTTTTAGAAC ::: TATAT 850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA 920 980 TAACAATAA	870 870 BAGCGAGCAG SACTGGAAA 930 AACTGGGAAA 1050 CAGGCCAAT SCAGGCCAAT	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/ :C 940 GAAAAGCTTAA ::::: 930 1000 CAAATGTAAAA' :::::: AAATGT	GGGCCAGGCA ::::::CAAAGCA 870 890 AGCATGCCTTC 900 950 GCTCGTGTGA ::: ::::::: 1010 ITCATTGTAA 1070 ACTATTATT	GAAACAGAGGGAG .::::::::::::::::::::::::::::::
### STOTCTTT ### STO ### STO ### STO ### STO ### STO ### STOTCTT ### STOTCTT ### STOTCTT ### STOTCT	TTTTTAGAAC ::: TATAT 850 860 TGGGATGGGC ::::: 920 EGCTCCCCCA 920 980 TAACAATAA	870 870 BAGCGAGCAG SACTGGAAA 930 AACTGGGAAA 1050 CAGGCCAAT SCAGGCCAAT	AAAACGTGGG ::::: AAAACCT 860 880 GACATCCAAG/ :C 940 GAAAAGCTTAA ::::: 930 1000 CAAATGTAAAA' :::::: AAATGT	GGGCCAGGCA ::::::CAAAGCA 870 890 AGCATGCCTTC 900 950 GCTCGTGTGA ::: ::::::: 1010 ITCATTGTAA 1070 ACTATTATT	GAAACAGAGGGAG .::::::::::: AAAAAAGTGAGGG 900 CCTGAGACTCGCT :::::::::::::::::::::::::::::::::

FIG 32 (20F3)

	1100 IGTACATITAT			1130 CTCCATTTT	1140 ATTATACATAATGT
	GAATTTTGAAA			CTCAATTTT-	
990	1000	1010	1	020	
	1160 TCTCTGAAGCC				1200 NAACTACACGGTTT
		:::			::: ::: ::.
1030		CAC		1040	AACCACATITA
	1220 GTGCATCTCTT				1260 TGGAGAGACGCCC
:::::		! :		:	
CCAAA		aaaag;	\GATCAAATAT	AAAATT	
1050	1060				
1270 CAGGACA	1280 ATCTGAGTGTTG	1290 GGATGTGCA		1310 AAGCCCAGCT	1320 ICCTGTCTCACAA
	::. :.:::			::.:.	
CA	TCATAATGT		CTG	TTCAACA:	rtatct
1070			1080	1090	
1330	1340	1350	1360	1370	1380
ACCGCTT	agagtgaatgt	CCTTCCTCT	CCTGCTGTGAG	CTCTAGGAA1	GACGGGTTTAAC
	::				:. ::::::
	TATTTG				GGGGAAATTATC
1100			111		
	1400				
GGGCCAAC	CCCACCTCTGA	ATCAGTGCC	CTATCTGCTG		GGTTACTCCCTC
•			:::.	:: .: :	
			CTTACA		TTTACT
1120				1130	1140
	1460 TTTCCATCTTC			1490 AAGTCTGACA1	1500 PTTTCTAATGGA
	•			:: .: ::::	::
		AT	GAAAT-TTTA:	aatacacat	TT
1150	1160				
1510	1520	1530	1540	1550	1560
GUTCTTAAT	FAAAAGCTATTT	CACTTCTTGC	KAAAAAAA T	KAAAAAAAA	AAAAAAAGGGC
	:.::				:::::::::
	·ATGC			KAKAKANAN	AAAAAAGGGC
1170	1180	1190			
1570					
GCCCG-					
:::::					
GGCCGC					
1200					

FIG 32 (3 oF3)

FIG 33 (10F4)

CTGATG 370	AAGTGAAGAAC 380	GTACCATGT 390	GGAACCAGTG 400	GTGGTGTGAT0 410	SATCTACTTTGACA 420
390	400	410	420	430	440
	AAGTGGTGAAC	TTCCTGGTC	CCGAACGCAG	rgtatgatata	GTGAAGAACTATA
:::::				::::::::::	::::::::::
GAATTG	AAGTGGTGAAC	TTCCTGGTCC	CAAATGCAG?	rgtatgatata	GTGAAGAACTATA
430	440	450	460	470	480
450	460	470	480	490	500
					CTGAACCAGTTCT
					:: :::::::::
	·				CTTAACCAGTTCT
490	500	510	520	530	540
510	520	530	E40	550	560
510	520	530	540		
				•	ATTGATGAAAATC
					TTGATGAAAACC
550	560	570	580	590	600
330	300	3.0	300	330	
570	580	590	600	610	620
		AGGACCTGAC		CCTGGGCTGG	TCATTCAAGCTG
					: :: ::::::
TCAAGTTC	GCTTTGCAGC.	AGGACCTGAC	TTCCATGGC	CCTGGGCTGG	TTATCCAAGCTG
610	620	630	640	650	660
•					
· 630	640	650	660	670	680
TGCGGGTA	ACAAAGCCCA	ACATACCAGA	GGCAATCCGC	AGAAACTACG	agttgatggaaa
					:: ::::::::
TGCGAGTG					AGCTGATGGAAA
670	680	690	700	710	720
44.4	=	510	200	770	740
690	700	710	720	730	740
					AAAGGAAGCAG
					AAAGGAGGCAG
730		750 ·	760	770	780
730	740	, , , ,	700	,,,	
750	760	770	780	790	800
		· · -			GGCTGAGATCA
	:::::::::				
					TGCAGAAATCA
790	800	810	820	830	840
	•				
810	820	830	840	850	860
CCTACGGGC	AGAAGGTGATO	GAGAAGGAG	ACTGAGAAGA	AGATTTCAGA	AATTGAAGATG
:::: ::::			:::::::::	: .: . :	: :::::
CCTATGGGC	AAAAGGTGATG	GAGAAGGAG	ACAGAGAAGA	ATGTGAAAAG	ATGTGTAG-TC
850	860 8	170	880	890 9	000
870	880	890	900	910	920
CTGCATTT-	CTGGCCCGGGA	CAACGCAAA	GCAGATGCT	GAGTGCTACAC	TGCTATGA
::: .::.					
CTGAGTTAA	CAGTT TGAC	AAGAGCCTA	AGCATGGCCT		
910	920	930	940	950	960

930		950		970		
					CTGATGAAGTAC	
CAGAAGG					AAGCCCTGGGTAC	
970	980	99		1000	1010	_
	1000				0 1040	
					TAACATGTTCATG	į
: :::.		::.	:::::	: ::::	: :. :. :	
	AGCACGGTG	CCTTTTCATG	CTTGATIG	ACACTCAACC	rcgggaggaaa 1070	
1020	1030	1040	1030	1000	1070	
1050	1060	1070	108	0 1090	1100	
					CTAAGCTTTGGC	
:::::				::. ::		
CCCTCTGC	:ACGTG				CTATGGAC	
1080	;	1090	1100	1110	1120	
		_		1140	1160	
1110					AAAAAACTTGAT	
	: :::					
					TTATAGCTAGCC	
		10 115			70 1180	
1160				1200		
					CAGAATGTTCCT	
					::::::::::::::::::::::::::::::::::::::	
		1200			1230	
	1190	1200	,	1220	2230	
1220	1230	1240	1250	1260	1270	
CCCTCCCCC	ACTACCTTCT	CTGACTGTCT	TCCAGTTAC	rgtggtgaaa/	L AGAAGAAATGA	
: :: : :	::. ::	: . : . : :	:::::	:. : :::		
					GCCTGGACGTC	
1240	1250) 1:	260	1270	1280	
1200	1290	1300	1310	1320	1330	
					GGGGGTTTTAT	
	:. : : ::::				. :: ::	
				TCTGTAGTTG	CACGGCTTAGA	
		1310			1340	
		/ ·				
	1350					
					CTTGACCTTTG	
: .:. ::.		. :::: ::	::			
1350 1350		1370			TTAGAC-TTCG 390	
1350	1360	1370	130		,,,,	
1.100	1410	1420	1430	1440	1450	
	ACTAATTTA					
	.::. : :					
TCAATAT	TCTTCTAA-A	rcctctgaca.	AATGATCTA	ЧТТАСААСАА		
1400	1410	1420	1430	1440	1450	
	1470					
	AGAAATGTAGA					
:.: :	::	:.`:::	: ::::		: . : : . : :	

FIG 33 (3 of 4)

TTC	TGTGTGCATT	GCTGGGACA	AATGCCTC	CATTAGA	aaattca	AAGAAA
14	160 14	170 1	480	1490	150	0
	1520	1530	1540	1550	1560	
AATO	CAGTCCAGTG	TTCTCACCT	CTGCCTCC	AAGGTAGGAGA	TGTCTGTGGG:	I GAGGC
	: . : : : :	: V::.	:: ::::	:::: .::.	::: : : :	::.:
					TGTTTTTCAAT	
151	0 152	0 19	530 1	540	1550 1	1560
		4500		1610	1620	
1570	1580	1590	1600	1610	1620	3 C C T C
TYWK	CAACIGAGCA		TGTGAGTTT	CCAGTAGAGC	TGTGAAGAAAC	MGCTG
:	concern	: ::: PCC>CCTC>>			ITTTAGGAAAT	. :.
16-1	1570	1580	1590	1600	1610	IIAIA
	1370	1380	1390	1000	1010	
1630	1640	1650	1660	1670	1680	
	AA-CATTTGA	CCTTCCTGG	CATTCTTGTC	TGCATGTGTG1	GAGTTATTTT.	AGAGG
::.::	:: :.:::.:	:.	.: .:::	::::		: . : : :
CAAAC	AAACTTTTAA	ATAAAGTAT.	ATTGAATGT-	GCCATGAAAA	SARARAKAA	AAAGG
1620	1630	1640	165	0 1660	1670	
)	•			•		
1690	1700	1710	1720	1730	1740	
TGTGC	TTTCTTGAGC	CCTCATAAG	SAAGTACTGG	TGCTAGGTTTT	GCAAGATTTKO	TATA
::						
GCGGC	CG					
1680						

FIG 34 (10F6)

PCT/US99/22817

AAATTITGAG 600	ettaatggagg 610	CTGAGAAGACA 620	AAAACTCCTTA 630	TAGCTGCACI 640	AGAAACAAAA 650
•••••			430 BAAAAGGGCTGT		
GGTTGTGGAA 660	AAAGAAGCTGA 670	GACAGAGAGA 680	AAAAAGGCAGT 690	TATAGAAGC 700	AGAGAAGAT 710
			490 AAAGTGATGGA		
			AAAGTGATGGA 750		
520 CATTTCTGAGA	530 ATTGAAGATGCT	540 rgcgttcctg	550 GCCCGAGAGAAG	560 GCAAAAGCA	570 GATGCCGA
CATTTCTGAAA 780			CCCGAGAGAAA 810 8		
580 GTATTACGCTG	590 CACACAAATAC	600 GCCACCTCAA	610 ACAAGCACAAA	620 CTGACCCCA	630 GAGTATCT
ATATTATGCTG	CACACAAATAT	GCCACCTCAA		TTGACCCCG	
640 GGAGCTCAAGA					
GGAGCTCAAAA 900	AGTACCAGGCC	ATTGCTTCTA	ACAGTAAGATC	TATTTTGGCA	
700 CCCCAGCATGTT	710 TGTGGACTCCT	720 CCTGTGCTCT	730 GAAATACTCTC	740 GATGGTAGGA	750 CTGGGAG
::: :.::::: CCCTAACATGTT 960	CGTGGACTCCT	CATGTGCTTI	GAAATATTCAC 90 100	atattagga	
760 AGAAGACTCCCT	770 TCCCCCAGAGG	780 AGGCCCGTGA	790 GCCCTCTGGAG	800 AGAGCCCCA	910 ГССАААА
AGAAAGCTCACTC	::: ::: CCCCTCTAAGG	AGGCTCTTGA		AGAACGTCAT	
820 CAAGGAGAACGCA	830 KGGTTGATGCA	840 \GAGGTGGAA	850 ATGTTCTCCCA	860 PATCAAGATO	870 SCGACCC
THE STATE OF THE S		ngaugtogaa:	ATGTTCTCC -AT	ratcaaga ig	
088 OTDAATODDDDAAA					
AAGGGGTTAAGTG	GGAACAATCAT	TATACCGACT		CAGAGAACT	TACACT

FIG 34 (2 of 6)

	940	950	960	970	98	20
	CTGTTGTGAT					
	::::: .					
	CTGTTCCACC' 00 12:	LO 12				ATAGAGCC 1250
					- 10	1230
	1000					
	GTCTGGCACT(::::::::::					
	STCTGACACAC					
126	50 127	0 128	10 12	90 13	300	1310
1050	1060	1070	1080	1090	1100	1
	TGTAAACCGG					
	: :::::::::::::::::::::::::::::::::::::					
TCCTT 132	TCTAAACTGC	ractcatgaa 134			'AAGATACTO 360	
132	0 133	, 134	0 13	130 I	300	1370
1110	1120	1130	1140	1150	1160	
TGGAA	TGTCAAACAC1	ATATAACAA	GCTGTGGTTI	TTAAAAGCT.	attgaataa	TGTTTAC
			• • • • • • • • • • • • • • • • • • • •			
	1180 CCCTGAGGAC					1011010
	:::::	AIGIGIGEIC	.AUACATICA	MUMUL I MUUM	NOCCAGAGA	ACAACAC
	CCCTG					
1230	1240	1250	. 1260	1270	1200	
	AAAACGGTAA					GGCTCT
	· :. ::	::: ::::	:: :::::	::		::.
	CATTGG(TCA
	1380	1390	140	U		
1290	1300	1310	1320	1330	1340	
CTTTAA	AGTCTAGTCCC	GGCATTCCT	CATGTGATT	GACAGCCAG	ACCTCTGGG	TTCCCA
::	::				.::.	
CIG	1410			CAG(CCA	
	1410				•	
1350	1360	1370	1380	1390	1400	
CGAAATT	ATCTTCCAGT	rgaatgacca				TTTTT
				::.:: :: - ACTA AC - CT		
			100110 1420	1430	MCC I	
			- 100	2130		
	1420					
	CCTTCCTCCCC	TGCAGGGAC				CTCGA
	: : : : ::::::::::::::::::::::::::::::			::: ::		:::
	.611 [413		T.I.Y.C	CCA CAGCO 1450	-AC	C1C
•	• •			.430		
1479	1440	1490	1500	1510	1520	
AGATAPTO	CCAATCACTA	GTTTATTGCC	TTAGGAGAC	TCAGAGATAT	TAGAAAGCAG	CTGA
	::.	::::				

		TCTAT			
	146				
1530	1540	1550	1560	1570	1580
					GTGTTTCCTCTAT
	٠				:::::::::::::::::::::::::::::::::::::::
					GTTACCTT
•					1470
	1600				
	ATGTCATCAACC			GIGACIAAAC :::	TGCCCGGTTTTAG
:::: TCAG		:::::: ᲔᲔᲔᲔᲔᲚᲔᲚ			
		1480			
1650	1660	1670	1680	1690	1700
CCACAG	CAACTGCTTAG	ATGTCACCT	CTTGGCTGAC	CAAAGCTGGGA	CAGGGCTTTAAC
				:::::	
					CAGGGTTTTAAC
				1490	1500
1710	1720	1730	1740	1750	1760
CAGACAT				GCACAGTAT1	ATGTCATAATTG
:: : ::		:::::::::	.: .:. ::		
					GTATCATAATTA
1510	1520	1530	1540	1550	1560
1770	1780	1790	1800	1810	1920
CAGGAAT	rattttttgtt1	TTAAAACTG	GATTTGGGGC.	ACATTCATTC	ACCCCAACACTT
:::::	::::::::	::::::::	• • • • • • • • • • • • • • • • • • • •		
	-				CCCCATCACCT
1570	1580	1590	1600	1610	1620
1830	1840	1850	1860	1870	1980
CTATCTAA	AGGCCAAGGTT	CTAGGGCTG	TATGGTCACT	raacacactga	TTCTCCTTAAA
	:::::				
	AGGCCCAAGTC				
1630	1640	1650	1660	1670	1680
1890	•	1900	1910	1920	1930
CTAATT	CTC	CAAGTGTGG	AACAAAGTG-	-ACCGAGACA	GCATCCTCAGT
.::					::::::
	rctggagcccad	CATAGTGTGG	ААСАААААСТ	CACCTAGAAA	
1690	1700	1710	1720	1730	.1740
1940			1960	1970	1990
CATCTTTGT	CTCCTTCCC'r -		JGATGCAGAT.	ACCGAAGTTGC	TTTTCCAACT
	::::::::			: ::::::	
	CTCCTTCCCAC		•		
1750	1760	1770	1780	1790	1800
1559	2000	2010	2020	2030	2040
TTCCCCTCC	UCTAGGAGATCA	асаласаатт	CTTGTGACTT	CCTGGGCAGC	CATTGAATTC
	: :::::::				
	CCAGGAGATCA				
1313	1920	193	0 184	0 185	U

FIG 34 (40F6)

		2060	2070	2080	2090 2100
					GATCAT-GTCATCCAG
					GACCTACTTCATGTGG
1960	1870	1880	1890	1900	1910
	2110	2120	2130	2140	2150
					CACAGGTAGACCTGAA
	1930	1940	1950	1960	CGTAGTTCGGCCTGAG 1970
1920	1930	1940	1330	1900	1970
2160	2170	2180	2190	2200	2210
				CTGTGTTGAAG	CCAGACAGAAAAGTA
: ::		::::::	:::::::		: .:::.::::
TTTGT	GCAGCTTGTTA	AGACAACTC:	PTGTGTACA	CTATGTTGAAG	CTCAACAAAAAAGTC
1980	1990	2000	2010	2020	2030
2220	2230	2240		2250	2260
					TCACAGCAGCTAAAG
	.:::::::::::::::::::::::::::::::::::::				:::::: : TCATGACAGTTTGTT
2040	2050	2060	2070	2080	2090
2270	2280	2290	2300	2310	2320
GGTTGT	rgccaaaca-tt	PTTATTAAGA	AAGTAAAGC	CCAGATTTGA	NTGGGGGTTTTCCCT
					TGGGTCTTTCCCCT
2100	2110	2120	2130	2140	2150
2270	2340	2350	2360	2370	
233 <u>0</u>					TCTCAT
	::: ::::::				
					TCATTTTTGCTCAT
2160	2170	2180	2190	2200	2210
2380	2390	2400	2410	2420	2430
TTAATT	ATAGAAATTAC	CTTCAAACA -	-GATTTTGT	GTTCTTTGG-	-C-CCTTCAAA-TA
					: :::: ::: .:
					rctccttaaaagaa
2220	2230	2240	2250	2260	2270
244			450	2460	. 2470
					ATGATTGTCGT
					:::::::::::::
					AGATGATTGTTGT
2290	2290	2300	2310	2320	2330
2480	2490	2500	2510	2520	2530
GCCATAT	CTGGATCACTG	AGCTCTGTGC	TTTCATTCC	TAGAGATGTT	TCTCATTCCCATT
::.::::		: :::::::	:::::::		: . : : :::
					TTATAGTTACATG
2340	2350	2360	2370	2380	2390
	2550				
					GCTCATAGGCCCC
:: .:::		::::::::	• • • • • • • • • • • • • • • • • • • •	. ::	::::

FIG 34 (50F6)

-AGCA/	AA-GCT	GTTGCCCC	AAAGTGAT	GCCCTGGAGG	CGG-	GGC
2400			2420	2430		2440
	10	2610	2620	2630	2640	2650
GGTGAG	GAGCAG	GAAGCGCC	CATTGTGAA	AGATTAAAGA	AAGCACTTCCA	CTTGAGCTCC
::::	::.:::	::::: :::		. :::::	::::::: .	:::::::
TGAG	GAACAGO	GAAATGCC	GCTGTGAA	GTCTTAAA	GCACTTCTG	CTTAAACTCC
	2450	2460		70	2480	2490
	2660				90 270	
TTATG-	GAGI	GAGCTTCC	CTGTGCCC.	ACTCAGTGAA0	TAAGTCTGAC	CATCCTTCAG
.:.::	::::		::::::			: . : : _ : : : . :
ATGTGT	GAGGAGT	GTGCCTCC	CTGTGCCC'	rctcagctc	TGAGGCTGGC	CGTCTTTCGG
2500	25	10	2520	2530	2540	2550
						_
2710	2720	2730	27:	10 275	0 276)
GGACGT	CCTTTT	GGTAAATA'	TACACTGT	latetttaagt	CTAAATTTAT	ATGTGAAAGT
::. :::	::::::	:: :::::			:::::::::::::::::::::::::::::::::::::::	
GGT-GT1	CCTTTT	GGCAAATA'			CTAAATTTAT?	
256	0	2570	2580	2590	2600	2610
2770		2780	2790	2800	2810	2820
TAACT					CCTATCAAAAA	AAAAAAAA
		::::::		::::::::::		:::::::
CCTACCT	Talahahaha Talahahaha				ACTATCAAAAA	AAAAAAAA
26				2650	2660	2670
-					•	
2830						
AAAGGGC	GGCC					
:::	v					
AAAAAA	аааааа	ААААААА	AAAAAAA	AAA		
268	30	2690	2700			

		10	20		30	40		50
HUMAN								-GGCTTGTAG
MUISINE								IGAGCTTGCAG
		10		20		30	40	50
	60 GTGTC	70 CGGCTTTGC	80 TGGCCC		90 CTGATAA	100 GCATGAA		lo TTTGGTGGCT
	GCATC							TTTGGTGGCT
	6		70	80		90	100	110
	120	130	140		150	160	17	=
•								AGATATCCGG
								AGATATCCGG
	120	13	10	140	15	50	160	170
	180	190	200		210	220 ·	230	·
								CAGAATGTA
								CAGAATGTG
	180	19 19		200	21		220	230
			_					
	240		260	יחיירי א ריכי		280	290	GGCCATGAC
		:::::::						
	TCTCAGA 240	AGGACTGC/ 250		TGCATG 260	rggtgga 27		CAGTGCCT 280	GGCCACGAT 290 ·
:	300	310	320	(3	30	340	350	
	GTGGAGG	CCTACTGCC	TGCTGT	GCGAGTC	CAGGTA	CGAGGAGC	GCAGCACC	ACCACCATC
		::::::::						
	GTGGAAG 300	CCTACTGCC 310		320	TAGGTAC 330		GTAGCACC2 340	ACAACCATC 350
	300	310		320	330	,	340	330
3	60	370	380	3	90	400	410	
		rcattgtca [.]			-			
	360	TATTGTCA 370		380	390		IOO	410
	300	370		3.10	370	"		410
4:	20	430	440		50	460	470	
		GGTGGACCC						
		GGTGGACCC						
	420	430		440	450		6'0	470
	, = =			. •		•		- · · -
48	10	490	500	51	.O	520	530	
	GAGGAGGA	GAATGAGGA	TGCTCCC	ም	GCAGCAG	CTCCTCC	NTCCCTCG	DUUGAUCC

FlG 35 (10=3)

WO 00/18904 PCT/US99/22817

61/112

				61/112			
	::.:			:::	::.:::: ::		: . : : : : :
	GAAG	AGGAGAATGA	GGATGCTC	GCACCATGG	CAACAGCCGC	TGCGTCCATTC	GAGGACCC
			90	500	510	520	530
	540	550	560	570	580	590	
						GCGGTGGAAGC	TCCACCTC
						::::::::::	
	-					GCGGTGGAAGC	
				560	570	580	590
	54	0 55	10	360	570	360	330
	600	610	630	630	640	650	
	600	610	620	630	640	650	
						CAGCTAGATGG	
							:: .:
						AGTTAGATGGT	
	600	61	0	620	630	640 .	650
	660	670	680	690	700	710	
	GGTTGC	GTCAAGGCC	CAACACC	ATGGCTGCC	AGCTTCCAGG	CTGGACAAAGC	AGGGGGC
	:.:::	.::::	:::	:::::::::	:::::: .::	::	. :
	GATTGO	ATCAGAGACO	TGG-GCC	ATGGCTACC	AGCTTCTG GG	GC	TC
	66	67	70	680	690		
	720	730	740	750	760	770	
	TACTTC	TCCCTTCCCT	CGGTTCC	AGTCTTCCC	TTAAAAGCC	TGTGGCATTTT	TCCTCCT
	::::					.::::::	
	-ACTGC					CATGGCGTTTA	
	700	710		720	730	740	-
	,,,,						
	780	790	800	810	820	830	
						GGAAGAGGGAT	CTCCTC
	::::::					::: :::	
						GGA-GTGTGAT	
	750	760	MIGI	770	780	790	800
	750	760		,,,	780	750	800
	040	850	860	870	990	890	
	840				880		555353
						GGGGAAGGCAG	
	::::	::::				::: :::: ::	
	TCTGTA-					GGG-AGGGAAG	GC-AGA .
		810		820	830	840	
9	000	910	920	930	940	950	
	AGGGAAT	GGAGACATTC	GAGGCGG	CTCAGGAGT	rggatgcgat(CTGTCTCTCCTC	GCTCC
	:::::	.::::::	:::: :::	::::: :: :		.:: :::::	: :: :
	AGGGAACA	AGAGACATTT	GAGGTGGG	CACATGATI	GGGTGGAAT1	CATCCCTCCTC	STCTTC
	850	860	870	880	890	900	
9	60	970	980	990	1000	1010	
•						CTTGGAAGATA	AACCT
							•
	:: :.: :					::.:::	
						GGGAGACG	WIGC I
	910	920	1	910	940	950	
10:	20 1	030 1	040	1050	1060	1070	
	GGGTCTTC	<mark>ი</mark> ნნაგილი	TCTCTGG	CODAAADCA	ATGGCCCAGC.	ATTCAGCATGT	CTTCC
	: :::::	: . : : . : : : : :	:: ::	:::::::	:::: :::::	. ::::: :	: ::
	GTGTCATC.	AAGAGCTCAG	TGGGTGGG	JAGGAAAGTA	NTGATCCAGC	CCTCAGCCTTC	JCTCT
	960	970	980	990	1000	1010	
		•			3		

FIG 35 (2 of 3)

1080	1090	1100	1110	1120	1130	
TTTC	TGCAGTGGTTC					
•	:::.:::::::::::::::::::::::::::::::::::					
	TGCTGTGGTCC					
1020	1030	1040	1	050	1060	1070
1140	1150	1160	1170	1180	1190	
CAGC	rccagcctgag					ACTGG-GT
	: : ::				:::::::	
-TACC	CCAGTC-TCAG	GAACTC	TTG	TGGTGCC	CTGAGCCC	ACAGTCAT
	1080	1090		1100	1110	
1200	1210	1220	1230	1240	125	0
	.GGGTGCAC-TG					
	:.:: ::: ::					
	GAGTCCACCTG					
1120	1130	1140	1150	1160	13	170
1260	1270	1	280	1290	130	0
ATGG-	AGTGCCCATGC	TACT	CTGCTGC	CGGTCCCCT	CACC-TG	CACTTGA
::::		::::	: :::	: ::: :::	:.:: .	: :. ::
ATGGC	AGTGCCCATGC?					
1180	1190	1200	1210	1220) 12	30
1310	1320	1330	1340	1350	136	0
	TGGGCAGTCCC		AGTGTCCAC	CAGTCACTG	GCCAGACG	GTCGGTT
::	::: ::::					
GGCCGT	'AAGGCC-TCCC	ACCTCTCCCC	TGTGACTG	CAGCTGCTGA	GCCATAA-	AGTT
1240	1250	1260	1270	128	0	1290
. 170	1300	1200	1400	1410	1420	,
1370	1380 TGAGACTCGAG	1390 	1400 CATCTCAAC			
	::::::::					
	TATGACACAAG					
	1300 13	310	1320	1330	1340	
1430	1440	1450	1460	1470	1480	
	STCCCTGAACT1				rttgtcctc	TIGICT
	TCCCTGAATTI					AAAAAA
1350	1360 1	370	1380	1390	1400	
1490	1500	1510	1520	1530	1540	
	GTGTGTAAATC					AAAAAA
						:::::
	AAAAAAAAAA					AAAAA
1410	1420	1430	1440	1450	1460	
1550				60		
AAAAAAA	AAA		GC	CCCCCC		
::::::				: :::		
	$\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}$					
1470	1480 1	.490	1500	1510		

FIG 36 (10+4)

400	CTTCTGCTTCT	GTACATGGTAT 420	430	AGTTGAGCCCA 440	TCCTGAAGAG 450
540	550	560	570	580 !	590
GCGCCTC	TTTGGACATGC	ACAGTTGATAC	AGAGTGATGAT	rgatattgggg <i>i</i>	TCACCAGCC
::::::	:::::::::::::::::::::::::::::::::::::::		:::: :::::		
GCGCCTC	TTTGGACACTC	CCAGCTGTTGC	agagcgatga1	rgacgttgggga	TCACCAGCC
460	470	480	490	500	510
600	610	620	630	640 6	50
TTTTGCA	ATGCACACGAT	TGTGCTAGCCCG	CTCCCGCAGT		
	::::: :: :::	•			
520	ATGCCCATGAT 530	540			
. 520	330	340	550	560	570
660	670	680	690 .	700 7:	10
GGTAGAAT	ATGCACAGCAG				
	: ::.:::::				
GGTGGAGT	ACGCTCAGCAG	CGCTGGAAGCT	CAGGTCCAGG	AGCAGCGAAAG	TCTGTCTT
580	590	600	610	620	630
720	730			60 77	~
	ATGTTGTCCTC#				
	CGTTGTCCTCA		•		
640	650	660	670	680	690
780	790	800 8	10 8:	20 83	•
- -	CTGGAAAGAAC	• •			-
	::::::::			CATTITAATAC	
	CTGGGAAGAAT				
700	710	720		730 74	
		•			
840	850	860	870	880	
TTTCA-	CCAA-CTG-1	TTGCTGGAAGA1	TCAAAACTGG	AAGCAAAAAC-	TTGCTTG
::: ::					
TTTTTACAA	\TCCTTGCTGGA	TGGAGGAAGAC	TCCAAACTGG	AAGCAAACCCC	ATGCTTG
750	760	770 7	780 7	90 80	0
•	00 91			940	
	CTTGTTAACGT				
. : . : : : :				:::::::::::::::::::::::::::::::::::::::	
	CCTGTTAATAT.				
810	820	830	840	850	860
950 96	50 970	980	000	1000	
•	CTTTTCCTAT		990	1000	~~~
	::::::::::				
	CTTTTCCTACT				
970	880	890	900	910	930
.,,,	900	13.70	,,,,	710	950
1010 102	0 1030	1040	1050	1060	
	CCTTTACCTGG				CTPTPTP
::::: ::::				::: :: :: ::	
	CCCGTGCCTGG				
930	240	950	960	270	980
, , ,	240	, , ,	200	, . u	740

FIG 36 (20F4)

1070			90 11		
	GGAAATGTC				
	::: :: GATAACTTCCAG	GTGTGTTTTTC	CTTCTCTTTC	ITGTGGTGGG	
99	0 1000	1010	1020	1030	1040
1120	1130		1140	1150	
AAA	-CAAATGAGGG-1	TGGGTAG	GAG-C1	TCCAGGC	CTGGGA
	: ::: : :			: :::::	
	CTTGGGAGTGCT				
1050	1060	1070	1080	1090	1100
	1170				
	CGCCTAGCCC				
	GACCCTCTACTT				
	1120				1160
	2200	2230	1140	11.50	1100
1210		1220	1230		1240
AG	TGACA1	TTTGCT-TGA-	GGCTTATACA-	CTGG	rG
.:			.:.: :.		
	CCCACTTGACTT				
1170	1180	1190	1200	1210	1220
1250	,	260	1270		
	, GCTTGCAG			CTC3C3	
	:::: :::				
	TCATGACCAGTT				ATGAAGA
1230		1250	1260	1270	1280
128	-	1290		1310	
	GCTGG(
			.: :::		
1290	GCACTGTGATGTC				
1290	1300	1310	1320	1330	1340
1330	1340	1350		1360	
	GGTGGATTCT				
	:.:. ::.				
	GATACCTAAACA				CTTCTA
1350	1360	1370	1380	1390	1400
13				1380	
	GACC				
GTACCTCTAAC	::: Gacttgaacatii	raca ama a aca		: :::	
1410			1440		1460
	2.447	1130	2140	1430	1400
1390	1400	1410	1420	1430)
TTTCTAGTT	-TGCATTTCCTG				
: :::	:.::: :::		:: :: :::	.:::	. : . :
	GTACAAATACTG				TTCTT
1470	1480	1490	1500	1510	
1440					30
TCATCCCTT-TG	GTTTG GGATG	TT CAGGA	WTACACT	CC -CATCCAA	AGAT-

: TG	:.: .:	::: TGGGCAGCT			: . : . : : : : : : : : : : : : : : : :	::::. TGCCTCTCTY	: : : : . TGAGAAG
1520	153			.550	1560	1570	
	1490	1500	1510		1520	1530	1540
TCT	CTGGTTT	TATGGCTTTI	TTCCCTTT	CT-TTA	CACCATCCT	CTCCCATAAC	CACCCAT
		::: : ATTGGATAAC			:. ::::: CTACATCCT		
1580	1590	160	0 1	610	1620	1630	
	1550	1560	157	0			
GTC	TTTGAATA	TGAATGTAT	ltgtaaaa'	PAAAAA	A		
	. : : :	.::	: : : :	.::::	•		
AAA	ATAATTTA	CAAAACCCA	AAAAAAA	LAAAAG (GCGGCCG		
1640	1650	1660	1	570	1680		

	10		20 3		40	50
HUHAN	GTCGACCCACG	CGTCCGCI	CTGAGTCACC	GAATCTAC	GTGGGGC	CGCC-CG
MURINE	GTCGACCCACGC					::::::
HUKKE	10	20	30	40	50	AGCGCCGCT 60
					30	00
	60	70	80	·	90	100
	GAGCGGCGTCCT	CGGGAGC	CGCCTCCCCG-	CGG	CCTCTTCGCT	TTGTGGCG
	: :: ::.		::: :: ::			
	CCCCCGCCCA					TAGTCGCG
	70	80	90	100	110	
	110	120	130	140	150	160
	GCGCCCGCGCTCC	CAGG-CCACT	CTCTGCTGTC	GC-CCGTC	CGCGCGCTCC	
	: : : ::::::					
	GTGTCAGCGCTCC				CG-GCGTTCC	TCCG
12	20 130	140	150	160	170	
	170	180	190	200	210	220
•	GCTCCGCTCCGCT					
	::::::	::::			: : ::::::	
	-CTCCGCGC	CCGC	CGCCACC-	GACGACAT	GCTGCGCTGC	GCCTGGC
	180		190	200	210	
	770	2.0	250	2.64		
	230 CTGCGAGCGCTGC	240 "CCTCCATCC	250 PGCCCCTGCTC	260 CTACTCAC	270 ************************************	280 TCC3C3T
	:::::::::::::					
	CTGCGAGCGCTGC					
220		240	250	260	270	
			•			
	290	300	310	320	330 .	340
	ATCGCGCTGGCCG					•
	:::::::::::::::::::::::::::::::::::::::					
280	ATCGCGCTGGCCG 290	300	310	320	330	CGTCGCT
	2,0	300	320	340	330	
	350	360	370	380	390	400
G	TGGTGGAAATGCT	CCCAAGAGGG	CGGCGGCAGCG	GGTCCTAC	GAGGAGGGCTC	TCAGAG
	:::::::::::::::::::::::::::::::::::::::	: : :::::		: :::::	:: :: :::::	:::::
	TGGTGGAGGTGTT				GACGATGGCTC	CCAGAG
340	350	360	370	380	390	
	410	420	430	440	150	160
CC	TCATGGAGTACGC				450 TCTCTCCCTT	460 Catcat
•	:::::::::::::::::::::::::::::::::::::::					
	TCATGGAGTACGC					TATCAT
400	410	420	430	440	450	
					- 11	
			FIG	37 (10541	

	470	480	490	500	97.	
CCI		TTCATCCTCT				
		TTCATTCTCT				
460	470	480	490	500	510	
CCT	530 GAGAGTGATT	540 GGAGGTCTCC	550	560	570 CAGATCATCT	580 CCCTGGT
:::		::::: ::::	: :: ::::			
CCTC	BAGAGTCATT	GGAGGCCTCC				CCCTGGT
520	530	540	550	560	570	
	590	. 600	610	620	630	640
		AAGTACACCCA			:::::::::	
		AAGTACACACA				
580	590	600	610	620	630	,
CB Tree	650	660 CCTACGGCTT	670	680 AGCCACGATT	690	700 CTGTGC
CATC	TATAACTGGG	CCTATEGCTT	CGGATGGGC	GCCACCATCA	TCTTGATTGG	TTGTTC
640	650	660	670	680	690	
	710	720	730	740	750	760
		GCCTCCCCAAC				
		CCTCCCAAC				
700	710	720	730	740	750	
	770	780	790	800	810	820
GTACT		TGCCTAACTT	GGGAATGAA	TGTGGGAGAA;	ATCCCTGCTG	CTGAG
:::::			:::::.		: : ::::::	
GTACT		AGCCTAATGT				CA-AG
760	770	780	790	800	810	
	830	840	850	860	87¢	880
ATGGAC	TCCAGAAGA	AGAAACTGTT	CTCCAGGC	CACTTTGAACC	CATTTTTTGG	CAGTG
:::::						
ATGGAT		GGAAACTGTT-				
820	830	840	85	0 86	0 870)
	890	900	910	920	930	
TTCATA		PAGTCAAAAAT		-	AAAATATTTT	TAAG
:::::	: ::	::.:::	::::::	::	::::: :: .	:::
TTCATA	TGAT	CAGAAAT	GCTAGAATA	aatgctaaagj	AAAATTCTTCA	TAAT
880		890	900	910	920	
940	950	960	970	980	990	
	TATAGTTTCA	TGTTTATCTT	TATTATGT	TTGTGAAGTT	GTGTCTTTTC	ACTA
::::::		:::::::::::::::::::::::::::::::::::::::	.:::		::	.::.
TAGTGT	ra-agtitca	TCTATCTCCT-				TCTG
930	940	950	9	960 9	70	
1000	1010	1020	1030	1040	1050	
~ ~ ~ ~ ~ ~ ~		CAATATTTCCT	TATATCTAT	CC-ATAACAT	TTATACTACA:	TTG
	ATACTATCC	CAATATTTCCT				
.::.: .	ATACTATGC			: ::: :::		::::
.::.: .	ATACTATGC	:::.::::		: ::: :::		::::
TTTGCTA 980	ATACTATGC	::::::::: TAATTTTTCCT	1010 1010	TCTATACCAT	TTAAGCTTCAT	::::

					LA A ATTORCOT	
		::	::::::::		. : : : : . 😂:	7748
	TTAAAGA 1040	ATATGCCTGT 1050	GAAACTTGA 1060	TAAGGTAC 1070	1080	.GCCTCTCAT)
	1120	1130	1140	1150 13 TCCAAATAGAATG	.60 11	
			: :::: ::	:::: :::::::	:.:	: ::::::
	TTAATAA	CTGATGGGG	CTTCTGTT-TI	TCCACATAGAATG	GGTTGTTTC	GCTAAGGGC
10	90 1				,	
	1180	1190	1200	1210 12 STIGITAATGACC	20 12 AAACATTCTA	30 AAAGAA
inputs	:: .:::.	:: :::::	: : ::::	: : .::::	::: :: ::.	::: :::
1				TTCCGTGACC 1180		1200
	1240	1250	1260	1270	1280	1290
	ATGCAAAA	AAAAAGTTTA	TTTTCAAGCC1	TCGAACTATT	raaggaaa	GCAAAATCA
	·: ···:	:::: :. AAAAGACETT	.::: .:: ATTTTGAGTTT	TCAGTTACATAA	AAAGCAGAA	GCAGATTGG
•	1210		1230	1240	1250	1260
	130	0 13	10 132	0 1330	1340	
	TTTCCTAA	ATGCATATCA	TTTGTGAGAAT	TTCTCATTAATAT	CCTGAATCAT	TCAT-TIT
				::::::::::::::::::::::::::::::::::::::	TTTGAACAAT	TATIGITI
	1270	1280	1290	1300 1	310	.320
135	13	60 13	370 13	80 1390		CCCCC BAA
	. ::::: :	:::::::::		CATCTAGGAAAGT		::::::
	TTCTAAG-C	TICGIGITG	CTTTCTCTGA	rgcgtagaaaagt		-GTTCTAA 1370
	1330	1340	1350	1360		1370
141	0 14	20 14	30 144			A A THEFT
			::: :: :	TAAGTGTGAAAT.	. : . : : : : : : : : : : : : : : : : :	::::
(CGTAGCC	aaggttaa-g	CCCCTGTCACT	ACTGAAAT		ATTITCCT
	1380	139	0 1400	143	LO	1420
1470	0 14			0 1510		
	CTTTTAAAC	TCTTTATAC	CCTTACCCTCT	CGGAAAATGCTAT	TATTAATAAA	::::::::
	TTTTCCCG	CAGTGTAGAG	CGGTAGGGTGT	GGGAAGAAGCCC7	CTTACCACAT	CTGTAGT
	1430	1440	1450	1460	1470	1480
1530	154	0 159	30 156	0 1570	1580	
C	TITIGIGIT	TATATGTTC	AGAACCAGAGT.	AGACTGGATTGAA	AGATGGACTO	GGTCTAA
A	:: :::: ATTCTGTG	TGTATGCTTA	GAACCAGCGT	AGACCGGATCGGA	GGATGGACTA	GCCTAA
	1490	1500		1520	1530	1540
1590	160			1630		
т	TTATCATGA	CTGATAGATC		CTGTAGTAAAGCA		
:	:: :: CCCTCCC33	:::.:: CTCCTCGATG	TCAAGAGGTC	. :::: :::::: AGGTAGGAAGGCA	C-AGGAGGGT	CACCACT
	1550	1560		1580	1590	1600
1650			0 1680		17	-
				AGAATAAATGAC		
::	:::::. ::				_	
			FI	16 37 L	5 OF Y)	

د دمخت	الالياليين المالي		**************************************		سجفت لاماتات	TTCTTCTCAGTG
GICAL	1610	1620 [.]	1630	1640	_	8
	2020					-
1710	172	0 17	30 :	L740	1750	1760
TCTCAC	GT-TTATCI	GGGCTCTAT	CATATAGA	AGGCTTCT	GATAGIT	TGCAACTGTAAG
11.						: :::::::
					AATAGAT 700	TTTAACTGTAA- 1710
1660	1670	1680	1690	1	/00	1/10
1770	178	0 17	90 1	800	1810	1820
CAGAAA	CCTACATAT	AGTTAAAAT			AACAGAT	ITTAAATGTCTG
::::::				::::::	: . : : :	::.:::::
CAGAAA	CCTAAATGT	AATTAAAA - (CIGGICII	CCTTGGTA		TAAAATATCTG
1720	1730	174	10 1	750	1760	1770
1830	1840		iO 1:	860	1070	1880
			-			GCATATATATG
	111111					
						-CATACCGGAA
1780	179	0 18	00	1810	1820	1830
1890		191		20		
ATGCATC	GGATAGGTC					GAAAACCAATT
. :::						1.:::: :. :
	TATTAC B40				ACCIAAN 1870	GGAAACGAGCT 1880
1	540	10:	, I	860	1870	1000
1950	1960	1970	19	80 1	1990	2000
		TATTATTT	GTAAGTTG	TGGAAAAAC	CTAATTO	TAGTTTTCAT
				: :::		
TGTTTTA	CTATCAGAA	CACTATTTT	GTAAGGTG	CTGCAAAGA	C-AGTTC	AAGITTTCAT
1890	1900	191	0 1	920	1930	1940
2010	2020	2030			050	
	TTTCCCAAT					
-						АААААААА
195		50 1			1990	2000
-73		••				
		2060				
		AGGGCGGC	CCC			
	::::	::::::::	::	•		
AAAAAAA	AAAAAAAA		CC			
2010	202	0 20	30			

		10					
HUMUH	4444	CCACGCGTCC	_				
بربويلاذ		:::::::: CCACGCGTCC		GGGCACTCGG	CCACTCTGCG	GAGCAGGCAT	GGGA
		10	20	30	40	50	60
	20	30	40	50	60	70	
	GCCGCGC				GCGGCGCAGCG		
					GCGCGCA-CG		
		70	80	90	100	110	
	80	90	100	110	120	130	
					AGGGATTCCAG		
					CGAATCCCGG		
	120	130	140	150	160	170	
	140	150	160	170	180	190	
	TCTCTTC	TTTCTGCTCT			CCTTACAGTG		ACC
	::: ::	::::::			:: :::: :		
	180	CIGCICI 190	GIGIGITCAT 200		CCCTACACCG1 220	PICCGIGGAA 230	
	180	190	200	210	. 220	230	
	200	210	220	230	240	250	
					CAGTCTACCCT		
					CAGTCTACCCT		
	240	250	260	270	280	290	
	260	270	280	290	300	310	
			AGCCAAATTA		CTTCATGTGG	ACCCCAGTGT	CA.
	: :::::	: :. :::.:	::: :::::	::.:::::	: :::::::	::: ::::::	::
					CCTCATGTGG		CA
	300	310	320	330	340	350	
	320	330	340	350	360	370	
'		•			AATATCTGTC1		
					:.:: :: ::		
,	360	ACCACTOCCC 370	AACCTACGAA 380	390	AGTACCTTTCC 400	.TATGAAACCI 410	-T
	360	370	300	330	400	410	
	380 Tatcicaa	390 TCCCACCCCC	400	410	420 ICTACATCCTC	430 AGCAGTAGTG	30
•					: : : : : : : : : : : :		
τ					TCTACATCCTC		
	420	430	440	450	460	470	
1	40	450	450	470	480	400	
Α	GATGGGGG	CCAACACCGA	CACTUAGGGT	CTTCAGGAAA	GTCTCGAAGG	N AGCCCCAGA	T

F16 38 (10 F7)

		, _ ,			
					:::::::
480		7000 TOWN			AGGAAGAGGCAGAT
400	430	200	31	0 32	0 330
500	510	520	530	540	550
	TATGACAGCAG	GTTCAGCAT		GACTTCCTG	CTCAACTACCCTTT
					::::: :: :::::
TTATGGC	TACGATGGCAG	GTTTAGCAT!	TTTGGGAAC	GACTTCCTG	CTCAATTATCCTTT
540	550	560	570	58	590
560	570	580	590	600	610
					CAGAGAAGCATGT
					CAGAGAAGCACGT
600	610	620	630	640	
			030	• • • • • • • • • • • • • • • • • • • •	030
620	630 .	640	650	660	670
CCTCACAG	CTGCCCACTGC.	ATACACGAT	GGAAAAACC	PATGTGAAAC	GAACCCAGAAGCT
					:::::::
					GGACACAGAAACT
660	670	680	690	700	710
680	690	700	710	720	730
					CAACGACTCCAC
	::::::::::				:::::::::
					CAACAGCTCGAG
720	730	740	750	760	770
740	750	760	770	780	790
					CACCCATGTGCC
::::::::					
780	GCCAGACAAGA 790	1GAAGTTTC	AGTGGATCC 810	SCGTGAAACG 820	CACCCATGTGCC 830
700	,,,,	-000	. 810	020	830
100	810 8	320	830	840	850
:AAGGGTTGC	CATCAAGGGCAA	ATGCCAATGA	•		TATGCCCTCCT
					:: ::::: ::
AAGGGGTGG	ATCAAGGGCAA	TGCCAATG A	CATCGGCAT	GGATTATGAG	TACGCCCTGCT
840	850	860	870	880	890
44					
	-		890	900	910
					CCTCCTGCTAA
					CCTCCAGCGAA
900	910	920	930	940	950
,00	710	720	,,,,	340	930
0 9	930 9.	10) 50	960	970
		• •			CCAGGCAATTT .
	GGGGCAGGATO				
960	970	980	990	1000	1010
					•
	90 100				.030
TOTATOGCT	TCTGTGACGTC	AAAGACGAG	ACCTATGAC	TTGCTCTACC	AGCAATGCGA
	:::::::::::::::::::::::::::::::::::::::				
	TCTGTGATGTC				
1020	1030	1040	1050	1060	1070

FIG 38 (20F7)

1040	1050	1060	1070	1080	1090
					AGAGACAGCAGCA
					AGAGACCACAGCA
1080	1090	1100	1110	1120	1130
2000	2070				
1100	1110	1120	1130	1140	1150
					TGGACATGAATGG
					GGACATGAATGG
1140	1130	1160	1170	1100	1130
1160	1170	1180	1100	1200	1210
					TGCCCAGATTTG

					TGCCCAGATTTG
1200	1210	1220	1230	1240	1250
		1240			4000
					1270
					IGTTCCCTCCTG
					:: :: ::
CTATTGGA!					CGTCTTCTTG
1260	1270	1280	1290	1300	1310
		1300			
GCAGCAATT	PAAGGGTCTTC	ATGTTCTTAT	TTTAGGAGAC	GCCAAATTGT	TTTTTGTCATT
::::: .		.:: .:: ::	: :::::::	::: :::	::::::::
CCAGCACCA	ATGG-TCTTT	TTGCACTCAT	rctaggagac	GCTAGO	TTTTTATCATT
132	0 13	30 134	40 13	50	1360
1340	1350	1360	L370	1380	1390
GGCGTGCAC	ACGTGTGTGT	GTGTGTGTGTC	STGTAAGGTG	TCTTATAATC	TTTTACCTA
: ::	.: ::::	:::::			:::::::
GAC	TCTTGTG	GTGTG	AGTCA	-CATAGTATC	TTTTACCTAGT
13				1390	
	_				
1400	1410	1420	1430	1440	1450
					CTCTATCATAT
		: :::::::			
		TATTGGCTAT			
		1430		1450	1460
1410	1440	2130	2	2130	
1460	1470	1480	1490	1500	1510 .
		TGAAGGCATAG			
		TGAAAGCATAG			
14	70 14	80 149	10 15	00	1510
1520	1530	1540	1550	1560	1570
ITGGGGCAAT	GAGGAATATT	TGACAATTAAC	TTAATCTTC	ACGTTTTTGC	AAACTT-TGA
		::::: :::			:.: :: :.:
PTCGGGTAAT	AGGGCCTATT	PGACAAGGAAG	TTAAACTTT	CAGTTTTTGG.	AGAATTCTAA
1520	1530	1540	1550	1560	1570
1580	1590	1600	1610	1620	1639
TTTTATTT		TTTCAAAGAT	TTATATTAA	ATATTTGGCA	TAGAGAGAT

FIG 38 (3 0, F7)

			74/112			
::::	: . : :	:: .:::::	::::::::	::::::	:: :::::	:::.:::
TTTT	TGTCTGA'	rccaaacttg(TTCAGAGGT	TTATATCAAA	TACGTGACAC	ACAGGGAAT
;	1580	1590	1600	1610	1620	1630
		1650				1690
		PATGTGTGCAT				GTGGTGGGT
		· · · · · · · · · · · · · · · · · · ·				
ATGAA	TTCTTAT	GTTTGTATAT			AGTCAT	
1	.640	1650	1660	1670		
	1700	1710	1720	1730	1740	1750
TTTTT	TGTTTTT	TTAATTCAGT	GCCTGATCTT	TAATGCTTC	CATAAGGCAGT	GTTCCCAT
.:.:	::.::	:::. .::	: ::.: :.		::	
-ATAT	TGATATT	TTTGTAATGT			:A	
1680	1690	1700	1	710		•
	1760	1770	1780	1790	1800	1810
TTAGG	VACTTTG/	ACAGCATTTG'	TAGGCAGAA	TATTTTGGAT	TTGGAGGCAT	TTGCATGG
				:	.:::::	
				GATA	ATGATAGCA-	
				1720	1730	
1	820	1830	1840	1850	1860	1870
		GTAAAATGAT				
1	880	1890	1900	1910	1920	1930
		PATCCCAAGCT				
19	140	1950	1960	1970	1980	1990
		GTAGGAAGTC				
1011001	CINCII		:: ::			
		AAGTC				
			1740	300		
			1740			
20	00	2010	2020	2030	2040	2050
		GTTTATCCCA				
ONO LOGC	CWIONO	GIIIMICCCM	nccc i iccn	I I IAACAGOA	I I I CAC I CACA	· · · · · · · · · · · · · · · · · · ·
	• -				2.00	
		2070				
GAACTAGO	TATTT	でみられみられてみご	NTAATCAGGG	СТТААТТАСА	ACAGGCTGTA	TTTCCT
- 212	0	2130	2140	2150	2160	2170
		TOGCCACACT				
						_
· -	· · · ·					

F1G 38 (4 OF 7)

2180	2190	2200	2210	2220	2230
				7220 TGAATTAAATT	
				::::::	•
				IGTTTTGGATI	.c
			1750	1760	
2240	2250	2260	2270	2280	2290
AATGGAAGCA:	TGCCTGGCA	GATGTCACAAC	CAGAATAACCA	CTTGTTTGGA	GCCTGGCAC
::.::	_				
AAACA1 1770	(T				
				2340	
AGTCCTCCAGC	CTGATCAAAA		ATAGTTTTCA	GIGIGCIIIC	rgggagcta
			780		•
2360	2370	2380	2390	2400	2410
TGTACTTCTTC					
					: . : :
				CTT	
				179	0
2420	2430	2440	2450	2460	2470
CTTTAAGAAAAC	CAGTGTGGCC	TTTTTCCCTC	TAGCTTTAAA	AGGGCCGCTT	PTGCTGGA
:::					
CAATAA					
1800					
2480	2490	2500	2510	2520	2530
ATGCTCTAGGTT	ATAGATAAAC.	AATTAGGTAT.	aatagcaaaai	ATGAAAATTGG	AAGAATG
			ATTGGCTATAT	PTGATA 1820	
	•	•	.010	.020	
2540	2550	2560	2570	2580	2590
CAAAATGGATCAG	AATCATGCC1	TCCAATAAAC	GCCTTTACAC	ATGTTTTATC	aatatga
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
				2640	
TTATCAAATCACA	GCATATACAG	AAAAGACTTG	GACTTATTGT.	atgttttatt	TTATGG
			2690		2710
CTCTCGGCCTAAGC	ACTTCTTTC	PAAATGTATCO	GGAGAAAAA1	CAAATGGACT	ACAAGC
					
		•			
2720	2730	2740	2750	2760	2770
ACGTGTTTGCTGTG	CTTGCACCCC	AGGTAAACCT	GCATTGTAGC	AATTTGTAAG(CATATT

	::::				:.:::: TATAAG		
		cca			30		
			2810				
			TGGGGGATTT	rctgcttgtct	TTCTTGAC		
	 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				_		
	1840	A					
2840 TTTTTGGAAGO			2870				
ITTIIGGAAGC	MIAMICIG	MINAGGENET	·	::::			
					850		
2900	2910	2920	2930 ⁻	2940	2950		
AAATCATATGA	GAAATACTAT	GCATAGCAAC	GAGATGCAGA	GCCGCCAGGA			
					:::: CAGA		
					сда		
			2990				
GTTCCAGCACA	ATTTTCTTTG	GAATCTAACA		TGAGGAAGAA	GGGAGGTC		
ATTCCCAC			:: <i>CC</i> -				
1860							
3020	3030	3040	3050	3060	3070		
TCCATTTCTATG	TCTGGTATTI	GGGGGTTTTC	STTTGTTTTTG	CTTTAGCTTG	CTGAAAAA		
				::::			
			·TG(CTTT 1870			
. 3000	2000	3100	3110	2120	2120		
AAGTTCACTGAAG							
					CITTIGI		
3140	3150	3160	3170	3180	3190		
GAAGCACCTTGAT	TCCTTGATT1	TGATTTTTT	CAAAGTTAGA	CAATGGCACA	MGTCAA		
	:::	:::					
	TAGTTT	*TGA			•		
3200	3210	3220	3230	3240	3250		
AATGAAATCAATG							
		· 					
			3290				
TGCTATATACAGCT	TAACTCACAC	ЗАЛСТСТАЛА .	л саллагт ата		ACATOT		
				· · ·	· · · · · ·		

FIG 38 (6, OF 7)

3320	3330	3340	3350	3360	3370
CCATCTTTT	TAGTGATAATA	AAAGAAAGCA	TGGTATTAAA	TATCATAGA	AGTAGACAG
	-				
		4			
3380	3390	3400	3410	3420	3430
AAAAGAAAAA	LAGGACTCATGO	-CATTATTAA	rataat tagig	CTTTACATGT	GTTAGTTAT
2442	2.55				
	3450 AGCATATTTGC				
ACATATTAGA	AGCATATTIGC	CIAGIAAGGC	TAGTAGAACCA	CATTICCCA	
				1890	
3500	3510	3520	3530	3540	3550
CCTTAAACACI	CATGCCTTATO	SATTTTCTAC	CAAAAGTAAAA	AGGGTTGTAT	TAAGTCAG
					.::.
				1900	
3560	3570	3580	3590	3600	3610
AGGAAGATGCC					
3620	3630	3640	3650	3660	3670
raaaagctctgo	GAAGACCTGT	rgtaaaggga	CAAGTTGAGGT	TGTAAAATCT	GCATTTA
3680	3690	3700	3710		
ATAAACATCTT	TGATCACAAAA	AAAAAAAAA	AGGCCGCCG		
			:::::::::::::::::::::::::::::::::::::::		
		AAAAAAAA A			

		10	20	30	40		
HUMAN						rTGCTC	
			:::: ::::				
WIEHE	GTCGA					CIGCITIIGCIC	TT
		10	20	30	40	50	
	50	60	7	0 80	. 90	100	
						GGAGGGCGACGG	cc
						:::::::::::::::::::::::::::::::::::::::	
•						GGGGGATGGAAAC	
	50	70	80	90	100	110	
	110						
						CACGGTGGAGCGT	
		:: ::: .					
	120	130	140	150	160	CACAGTGGAGCGT 170	C
	120	130	140	130	100	170	
	170	180	19	0 200	210	220	
			CGCGGAGTT	CGTGCAGCAGT	ACGCCTTCGTC	AGGCCCGTCATC	С
	GGGCAC	ACATCACGTA	CTCCGAATT	CATGCAGCACT	ATGCCTTCCTC	AAGCCCGTCATC	r
	180	190	200	210	220	230	
	230					280	_
						GACAGGTTGCTGG	
					:::: ::::: ****************************	:: :. :::::: GAAAACCTGCTAG	
	240	250	260	270	280	290	,
	240	230	200		200	270	
	290	300	310	320	330	340	
	: CTTCGTT	TGGGGACAG	AGTGGTCCGG	CTGAGCACCGC	CAACACCTACT	CCTACCACAAAG	
	: :::::		.: :: ::	:::: :: ::		:::::::	
	CCTCGTT	CGGGGACAAC	CATTGTTCGC		CAACACCTACT	CCTACCAGAAAG	
	300 .	310	320	330	340	350	
			÷				
	350	360	370		390	400	
						ACCCCACCTCCC	
						: :: .: ::::	
	360	370	380	390	400	410	
	300	3.0	300	370	400	410	
	410	420	430	4.10	450	460	
				• • •		GGCCTCTCTCT	
						:::: :: ::::	
						GGCATCCCTCT	
	120	430	440	450	460	470	
	470	480	490	500	510	520	
	TTCGGCAC	FACTCCCCAC	CCCCATTTC	GCCTGCTGGGA	ACCGCTCCAG	TTACAGCTTTG	

FIG 39 (10F4)

					.::::::::::::::::::::::::::::::::::::::
					IGCTTACAGCTTTG
480	490	500	510	520	530
530	540	550	560	570	580
GAATCG	CAGGAGCTGGCT	CGGGGGTGC	CCTTCCACTG	GCATGGACCC	GGGTACTCAGAAG
					:: :.::::::::
					GGTTTCTCAGAGG
540	550	560	570	580	590
590	600	610	620	630	640
					CCAGAGTTCCACC
					:::::::::::::::::::::::::::::::::::::::
TTATCTA	TGGTCGGAAGC	SCTGGTTCCT	CTACCCTCCT	rgagaagaca(CCTGAGTTCCACC
600	610	620	630	640	650
656	660	670	600	500	
650 CCA3CA30	660 33CC3CGCTGGC	670 "CTCCCTCCC	680 CC3C3C3T3C	690 CCXCCCCTC	700 CACCGTCTGCAC
					CACCUICITICAC
					CCCTGTCAGCAC
660	670	680	690	700	710
710	720	730	740	750	760
					ACCGCTGGTGGC
					: :: :::::::
720			GAAGTACTG. 750	760	ATCGGTGGTGGC 770
720	730	740	730	760	770
770	780	790	800	810	820
ATGCTACG	TCAACCTTGAC	ACCAGCGTC			CTAGCCAAAAC
:::: ::.	::::: :: :::		::::: :: :		
	CTCAATCTGGAC				CTAGCCAGA-C
780	790 8	00	810	820	830
830	840	850	860	970	900
	GACTGCCGGTC			870 CC-TCCTCCT	880 CACCC3 TTTTT
:::.:			::::::		CACGOAIIIA
	GCAAGCCC				
840	850	860	870	880	890
890	900	910	920	930	940
TTACACAGA'	TAGTGGCGGCA:	NTGGCCTCAG	CCCAGCCCAC	CCTCACCTG	CTTTTCCAGCC
:::::					
	CAGTGGCAGCAG				
900	910	920	930	940	950
950		960	970	980	990
	GACGA				
:: .::::::				::::::::	
	GACAAGGGAGG				
96		980			
				- 7 7	
1000	1010	1020	1030	1040	1050
TCCAGAGTCC	AACAGCAGAAC1	MGGGGGAAG	CGGTCGGGG	TGGCCAGGAA	Cataaactat
		:. :::			:: :::::::
	ATCAGCAGGGC				
1020	1030	104	o .	1050	1050

FIG 39 (2054)

1010

	1070	10	90	1090	1100	1110
1060 CTATAC						CGCCAGGTAGGGC

ACAC	GGACTGGAGC					rGCCAGGCAGGAC
	1070	1080	. 1090		1100	1110
1120	1130	114	40	1150	1160	1170
						TCAATAACCTCC
	+					:::::::
ATGGGGC	CTCAATAGTC					TCAATGACTTCC
1120	1130	1140	1150	1	160	1170
1180	1190	120	10 :	1210	1220	1230
						GTCACGGGGTCA
						:::::::::
						STCACAGGGICA
1180	1190	1200	1210	I.	220	1230
1240	1250		1260	1270	0 1:	280
			CAAGAAGG			TGGGGCCCA
•						
						ATACCGATCCG
1240	1250	1260	1270	12	280	1290
1290	1300	13	310	1320	1330	1340
						TGCAGGTGCTC
						:::::::::::::::::::::::::::::::::::::::
		GCCCGGTC 1320	TCCATGG 1330	GCC-CT-	-CCTTACC 1340	TGCAGGTGCTC 1350
1300	1310	1320	1330		1240	1330
1350	1360	13	70	1380	1390	1400
CTCGATGTC	CTTGCGGTCG	TAGGTGAT	GCCACTG	GCGTGA	TGCACGGC	rccgcatcag
						::::::::::
1360		1380				rcccgcatcag 1410
1360	1370	1300	13.	, 0	1400	1410
1410	1420	14.	30	1440	1450	1460
	GATCTTGCCA					
	. : : : : : : : :					
CTCAAAGCT 1420	AATCTTGCCA 1430	CACAAGTAC 1440	JTCAGGGA 145		1460	IGCACAAGGGG 1470
1420	1450	1440	143	•	1400	1470
1470	1480	149	90	1500	1510	
	GAGGCTGAAAA					
	AGAACTGGAG-	GGGGCTGT		CACCATA 510	CCAGC-AG 1520	CAGCCGATGA 1530
1480	1490	1300	T.	310	1350	1330
1520	1530	1540	1550	1	560	1570
GCAAGCGACA	CACACTCACC	TTCCTCTT	CTCATCC	ACCTGAG.	AAAAAAGC	CCTCCATCT
	.: :::::					
	GTC-CTCACC					
1540	1550	15	60	1570	1580	1590
1541	1590	1600	1610	17	520	1630
	CTICICCICI					

FIG 39 (3 of 4)

	1600	1610	1620	1630	1640
			1650		1660
					CCAACACA
::	:.: :		:: .:.::		:::::: ::
1650	1660	1670	JGCACTCATC	1690	GCCAACAGATCCA(1700
1630	1000	1070	1000	1030	1700
	1670	1680	1690	1700	1710
AG	GCGGGGATGC	TCCCA	CGCCACGTGC	ACACACACA-	-GACCCACATGTGG
					:::::::::::::::::::::::::::::::::::::::
					TGACCCACATGTGG
1710	1720	1730	1740	1750	1760
17	20 173	30 174	0 175	0 176	0 1770
					CCCGGACGTGGCTG
:					
ACTAG	GGGCACCCTCA				CCCGGATGTGGCCA
1770	1780	1790	1800	1810	1820
170	20 170	0 1800	1017	192	1830
) 1830 NGGGGGTTGACCAG
					::::::::::
					GAGGGTTAACCAG
1830		1850		1870	1880
		1860			880
					AATCTCAGAGC
		: ::::::::			
1890		1910		1930	A-TCTCAGGCCTC 1940
1030	1300	1310	1320	1930	1740
890	1900				1910
TAACATO	CACA-CTTCC	:C			CACATTT-C
:: ::	: :::::	:			:::::
TTTCCTC	CTGGGCTTCC	CATGTACCGGT	PTGTTGTCCT1	CAATAAAA	CACTTGTGCTGGT
1950	1960	1970	1980	1990	2000
	1000		103		1040
	1920		193	-	1940 ATAAAC
GACTCAG					ATGAGCCTGGTG
2010	2020	2030	2040	2050	2060
		-	-		
	1950	1960	1970		
	~~~~~~~~	OAAAAAAAA	GGCGGCCG		
		::::::::			
		:::::::: AAAAAAAAAAG 2090			

FIG 40 (10F3)

::::: CAGTTC 480	::::::::: CTTTTACCTT 490	: :: :: :: TTGTGAGTIT 500	AGGTTTGATG	TGCTTTGGGG	CTTTGATCGGACȚT 530
	550	560	570	580	590 600
	TGTATCTGCC	CAGCCTGTA	TCCCACCCTC	GCCACTGGCA	TTCTCCATCTCCTT
					:::::::::::::::::::::::::::::::::::::::
					TTCTCCATCTCCTT
540	550	560	570	580	590
			630	640	650 CCGGCATTGA
					: : :::::
					CTTCTACATTATCC
600	610	620		640	650
			•		
				60	670
					AGAAAGTAG
		ርመር እ አመን ንሞር			.::: TCTGAGGATAGCT
11GATAA:			690		710
. 000.	0,0	000	030		. 20
			680)	690
				AGGATGT	ATCTGG
::::	:	:::	:::	:: ::.	
					TTCAGGCACACTG
720	730	740	750	760	770
	7	00			
A	GAATTT	-GG	ATGGT		C
	:::				:
					rggccttaaaatc
780	790	800	810	820	830
710					
710	TGC			CTC	:GC
::::	:::			:::	
		rgagattcc	ATCCCCTTGA		GCTTGTGATGGT
840	850			880	890
		20		730	
					TC
			: ::::		
	TAGAGTGTGC 910	920	930	940	AAAGATCATGTG 950
900	310	740	230	540	750
7	40				•
	CAGTTC				
:::::	::::::				
		GGAACACTC	AGTCTTAGAAC	ATTCCCTCTC	CAAACCCAGAT
960	970	980	990	1000	1010
	750			760	
	ATGGCG	GCCGCT	CT	CT1	CATCTG
		:::::	::		:: :::
					CAGCTGAAATC
1929	1030	1040	1050	1060	1070

FIG 40 (2 0F3)

GGCGGCCGC 1320

		770		780	790	
		GGCTGCC	CACA	-CCAACCG-G	AAAGAGTAC	
		: . : . : : :	:::	:::::::		
CCAAGC	TAAGCTCCCA	ACTGACAGCC	AACATCATI	TCCAGCCATG	TGTGGGAGCCAT	CCT
1080	1090	1100	1110	1120	1130	
	800	•	810			
					ATC	
GGATGTC					ATTATCTTACTA	САТ
				1180		
	820	8	130		840	
GTG	TGGCAT	GAAGGG	-AGGCTG		CTGCT	
:::	.:.: ::	.:::	::::	:	::. ::	
CCTTGTG	AGACTCTAAT	AAAGAACCAA	CTAGCTGAG	CCCAATCAAC	CTATGGAACTGA	TA
1200	1210	1220	1230	1240	1250	
	850		860	870		
T	AATGATTAAT	TTTTT	CATACAT	TTTTTT		
	: : : : : . : : .		:: :.			
GAAATAA!	LATGAATTGTT	GTTTTGTGC	CGCTAAAAA	АААААААА	AAAAAAAAAAA	AG
1260	1270	1280	1290	1300	1310	
	-					

FIG 40 (3 of 3)

		10		30		Ś0	
HUMAD	GTCGAC	CCACGCGTC	CGGCGGCTAC	GCCCGCGTGC	GCTGGAGACC	TCCGCGCTG	GCCCC-
MURINE				^: v: :::			
140~116		TCCG-GTC		GCT-GCTTGC	ACTAGGGGCA 30	TCC-CGCCT 40	GCCTGG
				20	30	40	
		70	80	90	100	110	
				GCTGCGGCTC			STGGCC
				: : : :			
				GTGGGAGGGC			
	50	60	70	. 80	90	10)0
	120	130	140	150	160	170	
	CCCGGGG	CCCCG-CCT		CGGG-CCTGCT			TAC
	::::		:	:	::: : ::	:: : ::	:
				ATTTCCT1		GGTTCTGGC	CCAGC
	110	120	1	.30	140	150	160
	180	190	200	210	220	230	
	TGCATTT			GCGGCGGGC			
	:::: :		:: :: ::	:::: :	: :: :::	:: : :	::. :
				TCGGCTC	-CCTGC-AGC	TCCGAGGCAG	CAGC
		170	180	190	200	210)
	240	250	260	0 270) :	280	290
				GAAGGGACGTG			GCCG
	.: ::	: ::::::	: :::.	: :.:.		: ::	::::
		CCCCCCGGA	CGTGGGC1	rGGGTGGCAGC	CAGGGCTGGTC	CTGGGCGCC	CCCC
	220	230	24	10 25	30 26	0 2	70
		300	310	320	330	3.	40
	CTCGGC			GGAGGTACCT			
				:.:: :::			
				CGGGG-ACCG			
	28					320	330
		350		370			
	CCTCGC			TGATGGTTCA			
	:: ::::	:: .::	:::: ::::	::::: ::	: : : : : _: : : : : :	: ::::::	.::

FIG 41 (10F2)

CCCTTC	CCCATCCC	AGAAGACCT.	AACCGATGGC	TCCTATGACG	ATATCTTA	ATGCAG
CCCIIC	340	350	360	370	380	390
						_
400	410			440		
. ACAACT	TCAGAAACT	CCTTTACCTC	CTGGAGTCA		CTGTAATTA	TTGAAAG
	: ::::::		*********			:::::
		TCTGTATCTG				
	400	410	420	430	440	450
460	470	480	490	500	51	0
. AGCTTT	GATTACTTT	GGGTAACAAT	GCAGCCTTT1	CAGTTAACC	AAGCTATTA	PTCGTGA
.:: ::		::::::		: . :::::		::::::
GGCCTT	GCTCACCTTC	GGAAATAAT	GCAGCCTTCT	CCACTAACC	AGGCCATTA?	TCGTGA
	460	470	480	490	500	510
520	530	540	550	56	-	70
ATTGGGT	GGTATTCCA	ATTGTTGCA	AACAAAATC A	ACCATTCC	AACCAGAGT	AAATTAA
.:::::		:::::::		:: :::	:::::::	:::::
GTTGGGT	GGTATCCCA	ATTGTTGGA:	ACAAAATCA	ACTCCCTG	AACCAAAGT	ATTAAA
	520	530	540	550	560	
580	590	600	61	62	0.6	30
GAGAAAG	CTTTAAATG	CACTAAATAA	CCTGAGTGT	Gaatgttgaa	AATCAAATC	aagata
::::::		::::::::	::::::::	::::::::	::::::	:::::
GAGAAAG	CTTTAAATG	CACTGAATAA	CCTGAGTGT(AATGTTGAA.	AATCAAACT.	aagata
570	580	590	600	610	620	
			•			
640	650	660				90
AAGATATA	ACATCAGTC/	LAGTATGTGA	CGATCTCTTC	TCTGGTCCT	CTGAACTCTY	CTGTG
:::::::	::.:: :::	:::: :::::	::: :::::	::X.		
AAGATATA	ACGTCCCTCA	LAGTCTGTGA	GGACGTCTTT	GCTGAC		
30	640	650	660	670		
700	710	720	730	740	75	0
		ATTGTTGAC	AAACATGACT	GTTACCAATG	ACCACCAGO	ACATG

T182.hum.p T192.mus.p T191.hum.p T181.mus.p	ep MNMTQARLLVAAVVGLVAILLYASIHKIEEGHLAVYYRGGALLTSPSGPGYHIMLPFITTFRSVQT ep MAQLGAVVAVASSFFCASLFSAVHKIEEGHIGVYYRGGALLTSTSGPGFHLMLPFITSYKSVQT
T132.hum.pe T182.mus.pe T181.hum.pe T181.mus.pe	TLQTDEVKNVPCGTSGGVMTYIDRIEVVNMLAPYAVFDIVRNYTADYDKTLIFNKIHHELNQFCSA TLQTDEVKNVPCGTSGGVMTYFDRIEVVNFLVPNAVYDIVKNYTADYDKALIFNKIHHELNQFCSV
T132.hum.pe T132.mus.pe T131.hum.pe T131.mus.pe	HTLQEVYIELFTQIDENLKQALQKDLNIMAPGLTIQAVRVTKPKIPEAIRRNFELMEAEKTKLLIA HTLQEVYIELFTQIDENLKLALQQDLTSMAPGLVIQAVRVTKPNIPEAIRRNYELMESEKTKLLIA
•	*
T182.hum.pep T182.mus.pep T181.hum.pep T181.mus.pep	
T182.hum.pep T182.mus.pep T181.hum.pep C42C1.a	YAAHKYATSNKHKLTPEYLELKKYQAIASNSKIYFGSNIPNMFVDSSCALKYSDIRTGRESSLPSK YAAHKYATSNKHKLTPEYLELKKYQAIASNSKIYFGSNIPSMFVDSSCALKYSDGRTGREDSLPPE YTAMKIAEANKLKLTPEYLQLMKYKAIASNSKIYFGKDIPNMFMDSAGSVSKQFEGLADK YKAQKQADSNKILLTKEYLELQKIRAIASNNKIYYGDSIPQAFVNGTTQQTV
T192.hum.pep T192.mus.pep T191.hum.pep	EALEPSGENVIQNKESTC EAREPSGESPIQNKENAG LSFGLE-DEPLETATKEN

inputs MATLWGGLLRLGSLLSLSCLALSVLLLAQLSDAAKNFEDVRCKCICPPYKENSGHIYNKN MK-----LLSLVAVV--GCL-----LVPPAEANKSSEDIRCKCICPPYRNISGHIYNQN inputs ISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYMV VSQKDCNCLHVVEPMPVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMA - 60 inputs YLTLVEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAQQRWK FLMLVDP-LIRKPDAYTEQLHNEEENEDARSMAAAAASLGGPRA-NTVLERVEGAQQRWK inputs LOVQEQRKSVFDRHVVLSN LQVQEQRKTVFDRHKMLSN

inputs MASLWCGNLLRLGSGLSMSCLALSVLLLAQLTGAAKNFEDVRCKCICPPYKENPGHIYNK .:: : . . .:: M-----KLLCLVAVV--GCL-----LVPPAQANKSSEDIRCKCICPPYRNISGHIYNQ inputs NISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYM NVSQKDCNCLHVVEPMPVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYM inputs VYLTLVEPILKRRLFGHSQLLQSDDDVGDHQPFANAHDVLARSRSRANVLNKVEYAQQRW AFLMLVDP-LIRKPDAYTEQLHNEEENEDARTMATAAASIGGPRA-NTVLERVEGAQQRW inputs KLQVQEQRKSVFDRHVVLSN KLOVQEQRKTVFDRHKMLSN

PLA agkistrodon PLAA.acanthophis PLAZ.cow P180.hum P180.mus	PLA2 _H agkistrodon PLA3 _H acanthophis PLA5 cow PLA5 cow I'180 hum I'1801 mus	PLA2.agkistrodon PLA2.acanthophis PLA2,cow T1804 hum T1801 mus
		n

Input file T187human1; Output File T187human1.pat Sequence Length 2490 CCACGCGTCCGGCCAGGGGCGGGAGGGAGGGATGGTTGCTTCACGCCCCGGGGGAAGAGACGGGAAGCTCGGCTCTGGG 79 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GGT GCC CTG GAA GAA GGG ACG TCA GAG GGT CAN TTG TGC GGG CGC TCG 571 GCC CGG CCT CAG ACN GGA GGT ACC TGG GAG TCA CAG TGG TCC AAG ACC TCG CAN CCT GAA 631 GAC ITA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT 691 TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT 751 AAC AAT GCA GCC TTT TCA GTT AAC CAA GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT 811 GTT GCA AAC AAA ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA 871 E AAT AAC CTG AGT GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG GTG CAA GTT TTG AAA CTG 931 CTT TTG AAT TTG NCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT 991 TCA TCA TTC CTT TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT 1051 ACG CTA TIT CAG AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT 1111 ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA 1171 AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC 1231 285 AAA ATC TGA 1240 FIGGICATATITITCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1319 CIGCIAAATTIAAACAGTAAATATCACATTITGTCATTAACACAGCTATAACTIGCCGTGGTTCTCAGATTTATTTTGG 1398 GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1556 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1635

FIG 46 (10=2)

ATECTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1714

PCT/US99/22817

WO 00/18904

TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1793
${\tt TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA$	1872
${\tt CCGTGCTGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGG$	1951
${\tt GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT}$	2030
CCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2109
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2188
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2267
TG	2346
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2425
NATATGAGCCCAAATTGTATAATCTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2490

93/112 CotanInput file T187human23; Output File T187human23.pat Sequence length 2595

CCACCCGTCCGGCCAGGGGGGGGGGGGGGGATGGTTGCTTCACGCCCCGGGGGAAGAGAGGGGGAAGCTCGGCTCTGGG 79 TTGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCGCCCCTCCCGGTTGCAGGGCCCCGGCACCGCCCCGC 158 CTCGCCTGGGAGAAGCCGCCGGGGCGGGCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 CTT CAG AMA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC 691 ACT GGC ATC ACA TTC GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA 751 ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT 811 GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG ATA TAC ATC AGT CAA GTA TGT GAG CAT GTC 871 TTC TCT GGT CCT CTG AAC TCT GCT GTG CAG CTG GCT GGA CTG ACA TTG TTG ACA AAC ATG 931 ACT GTT ACC AAT GAC CAC CAG CAC ATG CTT CAC AGT TAC ATT ACA GAC CTG TTC CAG GTG 991 KTA CTT ACT GGA AAT GGA AAC ACG AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG NCT 1051 AMTEGLLRAOVDSSF GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC 1111 CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT 1171 G ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT 1231 G EECAQKI TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT 1291 320 CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA 1345 TTGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1424 GFFAFETTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1661 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1740 ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1819

TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	189
${\tt TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA$	1977
${\tt CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA}$	2056
${\tt GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT}$	2135
${\tt GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGGAGGAGGAGGTTGCAGGTGAGGGTGAGGAG$	2214
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2293
TGTGCTTAAGTGGAAAGATAYCTAYGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2372
TG	2451
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2530
NATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAĞAAAAATCAAAAAAAAAA	2595

Input file T187human123; Output File T187human123.pat Sequence Length 2700 CHACGCGTCCGGCCAGGGCGGAGGGAGGAATGGTTGCTTCACGCCCCGGGGGAAGACGGGGAAGCTCGGCTCTGGG 79 TTGCCGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCCCC 158 CTCGCCTGGGAGAAGCCGCCGGGACGCGCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 391 451 G. TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT AGALEEGTSEGQL TCG AAG TCC GCA GGT GCC CTG GAA GAA GGG ACG TCA GAG GGT CAN TTG TGC GGG CGC TCG 82 GCC CGG CCT CAG ACN GGA GGT ACC TGG GAG TCA CAG TGG TCC AAG ACC TCG CAN CCT GAA 631 102 S Y D D M GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT 691 122 TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT N Q 142 AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC ACT GGC ATC ACA TTC GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC 182 CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT 931 202 CAA ATC AAG ATA AAG ATA TAC ATC AGT CAA GTA TGT GAG GAT GTC TTC TGT GGT CCT CTG 991 222 AAC TCT GCT GTG CAG CTG GCT GGA CTG ACA TTG TTG ACA AAC ATG ACT GTT ACC AAT GAC 1051 CAC CAG CAC ATG CTT CAC AGT TAC ATT ACA GAC CTG TTC CAG GTG KTA CTT ACT GGA AAT 1111 GGA AAC ACG AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG HCT GAA AAT CCA GCC ATG 1171 0 V D S S F ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC CAC 1231 GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC CTC 1291 AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG 1351 TTA CAT GGA GAA TAT GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG 1411 GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA 1450 FTGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1529

FIG. 48 (10=2)

GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT	176
ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA	184
ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT	1924
TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	2003
${\tt TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA$	2082
$\tt CCGTGCTGGGCGGGGGGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA$	2161
GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	2240
${\tt GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGGAGATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG$	2319
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2398
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2477
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	2556
TAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2635
ATATGAGCCCAAATTGTATAATCTTTTTTAATAAAGGGGGAGAAAAATCAAAAAAAA	2700

Input file T187human12; Output File T187human12.pat Sequence Length 2523 CCACGCGTCCGGCCAGGGGGGGGGGGGGAATGGTTGCTTCACGCCCCGGGGGAAGACGGGGAAGCTCGGCTCTGGG 79 CTCGCCTGGGAGAAGCCGCCGGGACGCCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG CGC GAC CGC GAG CTC GGG ATA CGC TCT 511 AGALEEGTSEGQLCGR TCG AAG TCC GCA GGT GCC CTG GAA GAA GGG ACG TCA GAG GGT CAN TTG TGC GGG CGC TCG 571 GCC CGG CCT CAG ACN GGA GGT ACC TGG GAG TCA CAG TGG TCC AAG ACC TCG CAN CCT GAA 631 GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT 691 STEDP TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT 751 AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC ACT GGC ATC ACA TTC 811 GG GET ATT ATT COT GAA TTG GET GET ATT CCA ATT GTT GEA AAC AAA ATC AAC CAT TEC AAC 871 CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT 931 CAA ATC AAG ATA AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG NCT GAA AAT CCA GCC 991 AQVDSSFL ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC 1051 CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC 1111 CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC 1171 CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA 1231 296 GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA 1273 FIGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1352 GITATETTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1589 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1668

ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1747

TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1826
TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1905
${\tt CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA}$	1984
$\tt GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT$	2063
${\tt GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG$	2142
ATAGCGCCATTGCACTCCAGCCTGGGCÁACAAGAGCAAAACTCTGTCTCAAAAAAAAAA	2221
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2300
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTT	2379
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2458
AATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2523

Input file T187human2; Output File Thuman2.pat Sequence Length 2418 CCACGCGTCCGGCCAGGGCGGGGGGGGGGGGATGGTTGCTTCACGCCCCGGGGGAAGAGACGGGGAAGCTCGGCTCTGGG 79 CTCGCCTGGGAGAAGCCGCCGGGACGCCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 AGACCTCCGCGCTGGCCCCGGGGGCCTCCTGCCCTGGCCCGGCGCTGCGGCTCTGCCGCGGGGGCAGC ATG GGT C I Y R L T R G R R R G D R E L G I R S 42 IGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG CGC CAC CGC GAG CTC GCG ATA CGC TCT 511 D D G TCG AÃG TCC GCA GÃA GÁC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 CTT CAG ANA CTC CTT TAC CTG CTG CAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC 691. T G I T F A I I R E L G G I P I V A N K 122 ACT GGC ATC ACA TTC GCT ATT ATT CGT GAA TTG GGT ATT CCA ATT GTT GCA AAC AAA 751 ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT 811 GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG 871 S E N P A M T E G L L R A Q V D S S F L 182 NCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT 931 TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG 991 AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA 1051 GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT 1111 261 GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA 1168 TIGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGGATTCTCCCAG 1247 GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1484 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1563 ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1642 TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT 1721 CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA 1879 GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT 1958

GCETGTAATCCCAGCTACTTGGGAGGCCGAGGCAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2037
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2116
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2195
TG	2274
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2353
NATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2418

Input file T187human3; Output File T187human3.pat

Sequence Length 2562 CCACGCCTCCGGCCAGGGGGGGGGGGGGGGAATGGTTGCTTCACGCCCCGGGGGAAGAGAGGGGAAGCTCGGCTCTGGG 79 TTGCCGGCCCCGGCGTCTCCGCGTGGGGGCGCACCGTCCGACCCGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCGC CTCGCCTGGGAGAAGCCGCCGGGACGCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGGGTGCGCTGG 316 G A G TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC CAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 E D E CTT CAG AMA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA GCT ATT ATT CGT GAA TTG 691 GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA 751 GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG ATA 811 TAC ATC AGT CAA GTA TGT GAG GAT GTC TTC TCT GGT CCT CTG AAC TCT GCT GTG CAG CTG 871 GCT GGA CTG ACA TTG TTG ACA AAC ATG ACT GTT ACC AAT GAC CAC CAG CAC ATG CTT CAC 931 G N o v AGT TAC ATT ACA GAC CTG TTC CAG GTG KTA CTT ACT GGA AAT GGA AAC ACG AAG GTG CAA 991 L N GTT TTG AAA CTG CTT TTG AAT TTG NCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT 1051 D GCC CAA GTG GAT TOA TOA TTC CTT TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT 1111 CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA 1171 GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT 1231 GCC. CAG AMA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA 1291 309 1312 ACA ATA ATA CCC AAA ATC TGA TTGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1391 GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1628 ACTEATETGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTTAGTAGCAATGAA 1707

F10.51 (1.-2)

PCT/US99/22817

ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT	1786
TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1865
TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1944
$\tt CCGTGCTGGGCGGGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA$	2023
$\tt GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT$	2102
GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2181
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2260
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2339
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTT	2418
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2497
NATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2562

Input file T187human; Output File T187human.pat Sequence Length 2385 CCACGCGTCCGGCCAGGGGGGGGGGGGGAGGAATGGTTGCTTCACGCCCCGGGGGGAAGACACGGGAAGCTCGGCTCTGGG 79 CTCGCCTGGGAGAAGCCGCCGGGACGCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGGGGGGCTAGGCCCGGGTGGGGTGG 316 A G TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 D TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 E D CTT CAG AMA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA GCT ATT ATT CGT GAA TTG 691 GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA 751 GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG GTG 811 CAA GTT TTG AAA CTG CTT TTG AAT TTG HCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC 871 R A Q V D S S F L S L Y D S H V A K E I 182 CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT 931 TLFONIKNCL CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TEC CTC AAA ATA GAA GGC CAT 991 FTEGSL TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA 1051 TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT 1111 250 1135 GTA ACA ATA ATA CCC AAA ATC TGA FIGGTCATATTITTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGGATTCTCCCAG 1214 GITATETTECCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1451 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1530 AFECTAAGETETTGAGGECATTGACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1609 TITGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT 1688 CCGTGCTGGCCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGGCAGATCACCTGAGATCGGGA 1846 GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT 1925

GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGTTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2004
ATAGEGECATTGEACTECAGEETGGGCAACAAGAGEAAAACTETGTETCAAAAAAAAAA	2083
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2162
TG	2241
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2320
NATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2385

Input file T181AtmX181a; Output File T181Ats Sequence length 3919

GGGGTGTGGCGGTTTCTACGGTTGCACGGGGGTTCGGCTGTGTA

M A Q L G A V V A V ACTG ATG GCT CAG TTG GGA GCT GTT GTG GCC GTG L F S A V H K I E E G CTC TTC TCA GCT GTG CAC AAG ATA GAA GAG GGA A L L T S T S G P G F GCC CTG CTG ACC TCC ACC ACT GGC CCG GGT TTC | VQTT TAT AAG TET GTA CAG ACE ACT CTC CAA ACT GAT I AGT GGT GGT GTG ATG ATC TAC TTT GAC AGA ATT (GCA GTG TAT GAT ATA GTG AAG AAC TAT ACT GCA C K I H H E L N O F C S AAG ATC CAT CAT GAG CTT AAC CAG TTC TGC AGC G E L F D O I D E N L K GAG CTG TTT GAT CAA ATT GAT GAA AAC CTC AAG T M A P G L V I Q A V R ATG GCC CCT GGG CTG GTT ATC CAA GCT GTG CGA G YFL ATC CGC AGG AAC TAT GAG CTG ATG GAA AGC GAG A AAG CAG AAG GTG GTG GAA AAG GAG GCA GAA ACA GI E K V A Q V A E I T Y G GAG AAG AAG ATC TCA GAA ATT GAA GAT GCT GCG TT D A E C Y T A L K I A E GAC GCT GAG TGC TAC ACA GCG CTG AAG ATC GCA GA E Y L O L M K Y K A I A GAA TAC CTG CAG CTG ATG AAG TAC AAG GCC ATT GC K D I P N N F M D S A G L S D D K L G F G L E D CTG AGC GAC GAC AAG CTG GGC TTT GGC CTA GAA GA1

E N ...

PCT/US99/22817

12 x181a.pat

CGGAGCGCCTGGAGGGACAGCCTGGATACAGGTT	: 79
A S S F F C A S GCT TCC AGT TTC TTT TGT GCA TCT	18 137
H I G V Y Y R G G CAT ATT GGA GTA TAT TAC AGA GGT GGT	38 197
H L M L P F I T S AT CTC ATG CTC CCG TTC ATC ACA TCC	58 257
E V K N V P C G T AA GTG AAG AAC GTA CCA TGT GGA ACC	78 317
E V V N F L V P N AA GTG GTG AAC TYC CTG GTC CCA AAT	
D Y D K A L I F N AC TAT GAC AAG GCC CTC ATC TTC AAC	118 437
V H T L Q E V Y I	-138 497
L A L G G D L T S	158 557
T K P N I P E A	178 617
T X L L I A A Q	198 677
R K K A L I E A G AGG AAG AAG GCC CTC ATT GAG GCA	218 737
G K V M E K E T	238 797
L A R E K A K A C CTG GCC CGG GAG AAG GCC	258 857
A N K L K L T P A GCA AAT AAG CTC AAG CTG ACT CCA	278 917
S N S K I Y F G I TCC AAC AGC AAG ATT TAC TTC GGC	298 977
G L G K Q F E G GGG CTG GGC AAG CAG TTT GAG GGG	318 1037
E P L E A P T K	338 1097
	341 1106
ATTCTTTAAGATGAGACAGAGCAAAGCGCTCC	1185
GAAGAAATGGACACAAACTTACCCCCTTCTGG	1264
	1343
	1422
	501
GCCGTCTGCTGCGGAACATGAGCTGCAGAGAG 1	580
GCTGTCTTGAGCCCTTTTTTAGGAAGAACTTGG 1	659
recitederale teachers accases tie 1	71 8

GTCACACCACACACCTCCTTTTCCGTACTTTGACCTGATCTGTGATTTCATTTCTTCTTGAATAATCTATTCATGAGTT	rg 181
CACTCAGCGTTAAGATGGGAACAAACAAGTGCTGTTAGCTGATGACGTAGCTCCTTATACCCCTTAGCACTGTGGTGC	T 189
GTGTGGCTAATTATGCGTATGCTTTTGAGACCAAACATCTTTATCATTATGGAGATTCTTCATTGAAGAGCCCTTAAC	A 197
CTGTGGAGAAGGGCCCAGCCAGATGACACCCAAGTAGTAGTGCCTGTGGCCTGTGCTGGGGCTTTGTCTGACACTGAT	G 2054
AAGAGAGCAGCCAGCCACTTGAGAGTCGGCTCCAGTGAGTCACCCTAGGAAACTGAGAATGCGAAGAATAGATATGAG	A 2133
GAAAGGGATTTCTTATCCTGAAATTGCACTGGGGGTGGGGGTCTACCATGGCCTGTGAGTGCACACAGAATGCCTCTG	T 2212
GGAGGGCAGCTCTGCAGGTAATCTGCAGACATGGCAGTACCCTGTGCAACCATGACTGGCTTAGGTTAGGACTTGGC	C 2291
TTGTTAGCTGGTCCCCTACCTCATCCTCCCCCCACACACA	T 2370
ATTTTCTGGCATCAATTCCCACCTCAGTTTTGGTTTTGTAAGTCGGCCCAGTTTGCTCCTAAGTGGCACCAGACTTGT	C 2449
AGGTATTTGGGAAGCATTCAGCCGACCCAAAAAGAGGGCAGGGTTCACTGTGCTTACTTCAGATGTTCCCTTCTCTGTCC	2528
TGACTCCTCAGGCCACTGACCCTGGCCACACTGTACAAACTACAAAATGTTCCTGAAAAGGACATTTTAATGTGCTCAA	2607
AAGCTCTTGCAAAAGTGGGTTTTTTTTCCCCAAGACCAACTCATCTTCTTCTCATTTGTTGCTECTAACCACTTGTTGA	2686
GAGCAACGTGCTATACCCAGCATCCTCTTGTACGTGCACCTGAGAAAACACTACTTCAGTGGAGTCGGTGCAGGAGG	2765
GAGGGTACCCCGCCATCCAGCGCCCTCCTAGCCCGAGAGGCTCTGTAACTAGCATTCTGAGAGCTCATCCCTCCATTAC	2844
AAAGAGCCACAGTAAAGTCCTGCTGCAGCTGCTCCTTCCCTGCCCCTTTAATGTCACTTCTTTAACAGAACAGAAATGT	2923
CCCCATGTCATAGCATAAATTCAGTAGCTATTGGTATCTGTCCCAGCAGTAAAATCATGGAACTCAGATGTCTTTTTAG	3002
CATGGGATGCCTAGCCCATCTGTCTTTATGACCTTGTTTTTTGTAATACTATAAAATCTGACTTAGGCATTTGAATTCT	3081
AAACATGTAAAATGTGATAAGCCTGCAGTTTTGTAGGCAGTGAATTCATAGCTGCTATTTTTAAGTAGAACTTCTATCA	3160
MATACGTTAACCGTTTGTAAAATTCAGTTTTTGTAGGACTTTCCCAAGGCCCAGCCAG	3239
TCACTAAATGTTGCAGAAGCAATTTATATTCCATATAGGTTTTTAATCACTTTTCAATATATGGTTAGAATGTTTGTAA	3318
GGAAGCCTAAGTTTAATAATTTTTATATAACTAAAAATAGGTGTGGAGGACTCAGTGTGGGTACTGAGGAGGAATGAAG	3397
CCTCTGAAAAGGGAGGTGTATAAACGGCCTGTGGGGCCGTGTGTCTTGTGAAAGTGAGATAGCCGTGCTTACTGACCT	3476
GGCTGTCGTCAGCTGGCCGTCGGTAAACTACCTGGACAATAGCCCCTCTGTCTG	3555
CAGTGGGCTTCTAGCCACTGTTTGTTTCCTTATAAAAGCTGTAATGGGCAATCATGTGTTTGTACTTCCATTCCTTTT	3634
ATCTCTACTTCTGTGTAAACTGGTGATTGAATAGTTAAAGCAATTTTTTCAGTGTGCCCCAAGGGCATTAATGAGCCT	3713
TATAACTGAGAAATGATTCTTGTTATAGTAATTATTCCATAAATGATACCACTAGATAAATTACCTTGGGTTAATAGC	3792
CCAGGATTTGTTTCAGACAACAAAAAAAGGTCTCAATGTGAATATACTTACATTTTGGATTTAATTTCAGTCTTGCTA	3871
***************************************	3919

107/112 Input file T182mouse; Output File T182mouse.put Sequence length 3087

GGAACCCCGGGTCCGGHGATGCGTCACTGACCGGAGGAACAAGG ATG AAT ATG ACT CAA GCC CGG CTT 68
L V A A V V G L V A I L L Y A S I H K I 28 CTG GTG GCT GCA GTG GTG GGG TTG GTG GCG ATC CTC CTG TAC GCC TCC ATC CAC AAG ATC 128
E E G H L A V Y Y R G G A L L T S P S G 48 GAA GAG GGA CAC TTG GCC GTG TAC TAC AGG GGA GCT TTG CTA ACG AGC CCC AGT GGA 188
P G Y H I M L P F I T T F R S V Q T T L 68 CCA GGC TAT CAT ATC ATG TTG CCT TTC ATT ACA ACA TTC AGA TCT GTG CAG ACA ACA CTA 248
Q T D E V K N V P C G T S G G V H 1 Y I 88 CAA ACG GAT GAA GTT AAA AAT GTG CCT TGT GGA ACA AGT GGT GGA GTC ATG ATC TAT ATT 308
D R I E V V N N L A P Y A V F D I V R N 108 GAC CGA ATA GAA GTG GTT AAT ATG TTG GCT CCT TAT GCA GTG TTT GAC ATT CTG AGG AAC 368
Y T A D Y D K T L I F N K I H H E L N G 128 TAT ACT GCA GAC TAC GAC AAG ACT TTA ATC TTC AAT AAA ATC CAC CAT GAG CTG AAC CAG 428
F C S A H T L Q E V Y I E L F D Q I D E 148 TTT TGC AGT GCC CAC ACA CTT CAA GAA GTT TAC ATA GAA TTG TTT GAT CAA ATA GAT GAA 488
N L K Q A L Q K D L N T N A P G L T I Q 168 AAC CTG AAG CAG GCC CTG CAA AAA GAT ITA AAC ACC ATG GCC CCA GGT CTC ACT ATC CAG 548
A V R V T K P K I P E A I R R N F E L M 188 GCT GTG CGT GTT ACA AAA CCC AAA ATC CCA GAA GCC ATA AGA AGA AAT TTT GAA TTA ATG 608
E A E K T K L L I A A Q K Q K V V E K E 208 GAG GCA GAG AAG ACA AAA CTT CTC ATA GCT GCA CAG AAA CAA AAG GTG GTG GAG AAA GAA 668
A E T E R K R A V I E A E K I A Q V A K 228 GCT GAG AGG AGG AGG AGG AGG AGG AGG AGG AG
I R F Q Q K V M E K E T E K R I S E I E 248 ATT CGA TIT CAA CAG AAA GTG ATG GAG AAA GAA ACT GAA AAA CGC ATT TCT GAG ATT GAA 788
D A A F L A R E K A K A D A E Y Y A A H 268 GAT GCT GCG TTC CTG GCC CGA GAG AAA GCA GAT GCC GAG TAT TAC GCT GCA CAC 848
K Y A T S N K H K L T P E Y L E L K K Y 288 AAA TAC GEC ACC TCA AAC AAG CAC AAA CTG ACC CCA GAG TAT CTG GAG CTC AAG AAA TAC 908
Q A I A S N S K I Y F G S N I P S N F V 308 CAG GCC ATT GCC TCA AAC AGT AAG ATC TAC TTT GGC AGC AAC ATC CCC AGC ATG TTT GTG 968
D S S C A L K Y S D G R T G R E D S L P 328 GAC TCC TCC TCT CCT CCT AAA TAC TCT CAT GGT AGG ACT GGG AGA GAA GAC TCC CTT CCC 1028
PEEAREPS GESPIGNKEN AG 348 CCA GAG GAG GCC CGT GAG GAG AGC CCC ATC CAA AAC AAG GAG AAC GCA GGT 1088
* 349 TGA 1091
TGCAAGAGGTGGAAATGTTCTCCCATATCAAGATGCGACCCAAGGGGGCTAAGTGGGAACAGTGGTTATGTGGACTCGTA 1170
AGATTCACAGAGAATGTGTGTCTCTTGTGATTCTCTTGTCATAGTCCTGGTTTGCCAGCTGACTACAGGATAGACCCA 1249
GCTGTCTGGCACTCAAACGGTCTCTGCAGCCACAGTTTTATCAAGTATCCTGTATGTGTTCCTTTGTAAACCGGTACTC 1328
ATGAATGAGGGAAAGTCTGATGCTAAGATACTGCCTGCACTGGAATGTCAAACACTATATAACAAGCTGTGGTTTTTAA 1407
AAGCTATTGAATAATGTTTACATTGGTCCCTGAGGACATGTGTGCTCAGACATTCAAGAGCTAGGAGGCCAGAGAGAG
ACCTTCAGAAAACGGTAAGTTAAAGAAGACAAGTGTCATCAGACACTTGGGACCCGGGCTCTCTTTAAAGTCTAGTCCC 1565 GGCATTCCTCCATGTGATTGACAGCCAGACCTCTGGGTTCCCAGGAAATTATCTTCCAGTTGAATGACCATTTACTTGA 1644
TACAMATTGTACCTTTCTGTTTTTCTAGTCAGGTTGGTGGCCTGCAGGGGACGGGTACTTTGCCACCCGACCAGAGGTTC 1723
INPANTIBLE IN THE FILL FILL FILL FUND FOUND IN ASSESSMENT OF THE FOUND

CTCGAAGATATTCCCAATCACTAGTTTATTGCGTTAGGAGACTCAGAGATATAGAAAGCAGCTGAAATTTAAGGGAGA	T 1802
${\tt AAAGCCTGCACCAAAGCTACGGGTCCCTGTGTTTCCTCTATTCAGTGATGTCATCAACCTCACTGTCCCAGCCCTGTCCAGCCCTGTCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCAGCCCAGCCCAGCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCAGCCCCAGCCCAGCCCCAGCCCAGCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCAGCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCCAGCCCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCAGCCCCCAGCCCCCAGCCCCAGCCCCAGCCCCCAGCCCCCC$	C 1881
ATGTGTGACTAAAGTGCCCGGTTTTAGGCACAGACAACTGETTAGATGTCACCTCTTGGCTGACCAAAGCTGGGACAG	G 1960
GCTTTAACCAGACATAGGAGCAGTGTGCAATTCCTGATTCACTGCACAGTATTATGTCATAATTGCAGGAATTATTTT	r 2039
TGTTTTTAAAACTGGATTTGGGGCACATTCATTCACCCCAACACTTCTATCTA	2118
GTCACTAACACTGATTCTCCTTAAAGTAATTCTCGAAGTGTGGGAACAAAGTGACCGAGACAGCATCCTCAGTCATCT	2197
TTGTCTCCTTCCCTGGGATGCAGATACCGAAGTTGCTTTTCCAACTTTCGCCTCCGCTAGGAGATCAGAAAGAA	2276
gtgacttcctgggcagccattgaattcattttccatgagaagatgaeagagttageetgtggctataggagatcatgtc	2355
ATCCAGACCTTTTTGCCCATCACATTAACTTTCCTGGAATATTGTGCTGCACAGGTAGACCTGAATCTGCCCAGCTTGT	2434
TGACAGCTCTTGTGTATACTGTGTTGAAGCCAGACAGAAAAGTAATGGGGCCACTTCTGAAACCTCTCAGCTGTTGATC	2513
TCACAGCAGCTAAAGGGTTGTGCCAAACATTTTATTAAGAAAGTAAAGCCCAGATTTGAATGGGGGTTTTCCCTAGGCC	2592
TATAGTATAGAGGCATTTGTAATATGGAGAAAATAATTTTTCTCATTTAATTATAGAAATTACCTTCAAACAGATTTT	2671
TGTTCTTTGGCCCTTCAAATACTGGTGTTACATTGTTGCTGCAGATAAATGATGATTGTCGTGGGATATCTGGATCAC	2750
GAGCTCTGTGCTTTCATTCCTAGAGATGTTTCTCATTCCCATTTAGTGAAATGCTGTTGCCCCAAAGTGATGGTTGTG	2829
GATTTCTTACCGGTCATAGGCCCCGGTGAGGAGCAGGGAAGCGCCATTGTGAAAGATTAAAGAAAG	2908
GCTCCTTATGGAGTGAGCTTCCCTGTGCCCACTCAGTGAACTAAGTCTGACCATCCTTCAGGGACGTTCCTTTTGGTA	2987
ATATACACTGTAATCTTTAAGTCTAAATTTATATGTGAAAGTTAACTTTTTTTAAAAACCTAAATAAA	3066
ATCAMAAAAAAAAAAAA	3087

Input file T187Aymue064g11; Output File T187Aymue064g11.pat Sequence length 2883

ICCCATTITAGCAGGCCGGCTTCCGGAAGGCCGGAGCTCCAACCCCATTTCCTTTCTCTGGGCTGGTTCTGGCCCAGCTG 158 CACCTGCGTGTGGCCCTGGCTCCTCGGCTCCCTGCAGCTCCGAGGCAGCAGC ATG GGT GGC GCG CGG GAC 228 GTG GGC TGG GTG GCA GGG CTG GTC CTG GGC GCC GGC GCC TGC TAC TGT ATC TAC CGG 288 L T R G P R R G G R R L R P S R S A E D 46
CTG ACT CGG GGA CCG CGG CGG GGC GGT CGC CGA CTG CGC CCT TCG CGA TCC GCA GAA GAC 348 CTA ACC GAT GGC TCC TAT GAC GAT ATC ITA AAT GCA GAG CAG CTT AAG AAA CTT CTG TAT 408 CTG CTG GAG TCA ACC GAC GAT CCT GTC ATT ACT GAA AAG GCC TTG GTC ACC TTG GGA AAT 468 0 AAT GCA GCC TTC TCC ACT AAC CAG GCC ATT ATT CGT GAG TTG GGT GGT ATC CGA ATT GTT 528 GGA AAC AAA ATC AAC TCC CTG AAC CAA AGT ATT AAA GAG AAA GCT TTA AAT GCA CTG AAT 588 AAC CTG AGT GTG AAT GTT GAA AAT CAA ACT AAG ATA AAG ATA TAC GTC CCT CAA GTC TGT 648 . GAG GAC GTC TTT GCT GAC CCC CTG AAC TCT GCG GTG CAG CTG GCC GGA CTG AGG CTG CTG 708 186 ACA AAC ATG ACG GTC ACC AAC GAC TAT CAG CAC CTG CTC AGC GGC TCC GTC GCT GGC CTG 768 G N G S T ĸ TTC CAC CTG CTG CTG CTG GGA AAC GGA AGC ACC AAG GTC CAG GTT TTG AAG CTG CTT TTG 828 AAT TTG TCT GAG AAT TCA GCC ATG ACA GAA GGA CTA CTG AGT GTC CAA GTA AGT AGA TTA 888 239 н CCT ACC CGG TTC ATT AGT GCA CAC ATA CAG AGA TTT TGA CAAATAGATCTGCAAAGGTATGCCCAAAAACATTCACAGGAATTATTCTGAAGATGAGTATTAAGCATATTTTGTTTT 1006 TTAAAACTTCTCTGTGGCACCAGCAGCATTTCCATCTCTGGCCACTTTGCAGTATTTTTCTGTCACTGCATTTTAAAGT 1085 TTGTTTTTTTTGTGCATGTGTACCTCAGCATTTGCTGAAACAACTGTACTGAGTGGGTCCCCTGTGTGGGCTCGGTCCT 1164 GAGCATTCAGCCAGCAGCAGCAGGTTCTTAGTGTTCCCATGGAACTTAGGAGAACCATGTAACAAATTAGCAAGA CTGTTGAAAACATGTAACAAACCATTGAAACAGTCCCTGTGCTCTGAAGAAGGCCAGGCGGTGTGAGCCGTCTGCAGAA 1322 ATEGAGERATETGETECTGTTGTTACCAGAACTGTGTGTAAGAGETAATGCTGATTGAACTAATGTTGTTCTTACAAAA 1401 ACTGGATAGATCCTAAAGGGGTTGGTTTCCCAAATGGCTACACTCTGGAGTTCCAAAGAAATCTTAGTTTTTCCCCTAA 1480 CAAAACGTCATTTTCACTTGTAACATGGAATAAAAATGAAACATGTCCCTTACGCTTGCCTGGAGTCAGACTTTTACAG 1559 TGTTAACTAATGGATGCTGTTTTAAAATAGGACAGTGACGCTGTTTCCTCTTTCAGGTGGATTCTTCATTCCTTTCCCT 1638 TTATGACGGCCAAGTAGCAAATGAGATTCTTCTTCGGGCTCTTACACTGTTTCAGAATATAAACAACTGCCTCAAAGTG 1717 GAAGGCCGGTTAGCTAATCAGATTCCTTTTGCTAAAGGGTCATTGTTTTTTTCTGTTATACGGAGAAGAATGTGCCCAGA 1796 AAATGAGAGCTTTAGCCTGTCATCATGATGTGGATGTGAAAGAGAAAGCTTTAGCAATAAAGCCGAAATTCTGATCGGT 1875 TTGGAGTAGTTCAGATTTGGGGTTTGGGGATTGAGTAGAGTCTGGAACCTTCCGAGGATGTGGATCATTTACGGGGCAA 2112

ACCITTGGTTATGATCGTGGACAGACTGGCCATGCTCTTCAGGACTATTTGAAGGATTCTAGTGCTAGTGAATAT	219
${\tt GAGGGGCTGTACTGAAGATACTTGCTGAGGGTATTTAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATC}$	2270
$\tt ctaactcctgggagcatttgcagttgctcatgagacagcgttaagtgctgagttgaagtctgttactgccacagcaagg$	2349
ACCTTGTGCCTCAAACCAGTGAATACTGCAAGCTCGAGTCCACCACCACCATGCCGCCATGCTGCAAGTCTGAGCTC	2428
ATCGTGAGACACTGCCTGCAGCATTTCTGATCAGTAGGACTGTACTCCCATTYACATGGAAAGCGTTTTCTTACTGCTT	2507
ACCCCCTTGTGTAAGATACTGCAGAGCACTCCAAGCTTCCACCCAC	2586
TAAGTCCAGATGGATACATGGAGAAACATACCCATGAGATGGCTGCTTTGAAAGCATGCTGGGAAGCAATGTATTAGGG	2665
TCCCGTGTCTTTTTTTTCTCCAGTAATGATAAATACACTTATACATGGACAGAACATTTCTAGAACGATTCAGAAAAC	2744
TTCTGGGACTGGGACTAGGGTACATAGATTTCTTTGTGTTCCTGTTTCTACCGTTTGGATTTGTACTGAGCATAAATTG	2823
TATAATTYYTTAATAAAAAGGAAAAATGCAAGGTGTACATAAAAAAAAA	2883

111/112
Input file T215AtmX215; Output File T215AtmX215.pat

Sequence Length 2744

HELDRW CTCGGTACCGACACAGCAACGGAAACG ATG GAG CTA GAC AGA TGG GCG CAG TTG GGG CTG GTG THE CTG CAG CTC CTT CTC ATC TCA TCG TTG CCA AGA GAG TAC ACG GTC ATT AAT GAA GCC TGT CCC GGA GCT GAG TGG AAC ATC ATG TGT AGA GAA TGT TGT GAA TAT GAT CAG ATT GAA TOC CTC TOC CCA GGA ANG ANG GAN GTG GTG GGT TAC ACC ATC CCA TGC TGC AGG ANT GAG GAT ANT GAN TOT GAC TOC TOT CTA ATT CAC CCA GOT TOT ACC ATC TIT GAN AAC TOC ANG S C R N G S W G G T L D D F Y V K G F Y AGC TGC CGC AAT GGC TCC TGG GGC GGA ACT CTG GAT GAC TTC TAC GTG AAG GGA TTC TAC C A E C R A G W Y. G G D C M R C G Q V L
TGC GCA GAG TGC AGG GCA GGC TGG TAC GGA GAC TGC ATG CGA TGT GGC CA3 GTT CTT 152 CGA GCC TCA AAG GGT CAG ATC TTG TTG GAG AGC TAT CCC TTA AAC GCT CAC TGT GAA TGG ACT ATT CAT GEC AGA CCT GGG TTT ATC ATC CAG TTG AGG TTT GGT ATG CTG AGC CTA GAG F D Y M C O Y D Y V E V R D G D N S D S TIT GAC TAC ATG TGC CAA TAT GAC TAT GTG GAG GTC CGC GAT GGG GAT AAT AGT GAC AGC 604 PIIKRFCGNERPAPIRSTGSCCTATC ATC AGG CGT TTC TGT GGC AAC GAG AGG CCA GCT CCC ATC AGG AGC ACT GGC TCT 212 A S D TCA CTC CAT GTC CTT TTC CAT TCT GAT GGC TCC AAG AAC TTC GAT GGC TTC CAC GCT GTC TIT GAG GAG ATC ACA GCG TGC TCC TCA TCC CCT TGT TTC CAT GAT GGC ACA TGC CTC CTT CAC ACC ACT GGG TCT TTC AAG TGT GCC TGC CTG GCT GGC TAC ACT GGG CAG CGC TGT GAA AAT CTA CTT GAA GAA AGA AAC TGC TCA GAC CTT GGG GGG CCA GTC AAT GGG TAC AAG AAA ATC ACA SAN GOT COT GGA CTT CTC AAT GAG CGC CAT GTA AAA ATT GGC ACG GTT GTG TCT TIC TIT TGT AAC GGC TCA TAC GTT CTG AGT GGC AAT GAG AAA CGA ACT TGC CAG CAG AAT 1024 GGA GAG TGG TCA GGA AAG CAA CCT GTC TGC ATG AAA GCC TGC CGG GAA CCG AAG ATC TCA 1084 CAC CTG GTG AGA AGG AGA GTC CTT TCG ATG CAG GTT CAG TCA AGG GAG ACA CCA TTA CAT 1144 SKOKL **Q** D CAG CTT TAT TCC ACG GCT TTC AGC AAG CAG AAA TTG CAG GAT GCC TCT ACC AAA AAG CCA 1204 GCC CTT CCA TIT GGA GAC CTG CCC CCT GGA TAC CAA CAT CTG CAC ACC CAA GTC CAG TAT 1264 GAG TGC ATC TCG CCC TTC TAC CGC CGC CTG GGA AGC AGG AGG AGA TGC CTG AGA ACT 1324 G K W S G R A P S C I P I C G K I E S T 452 GGG AAG TGG AGT GGG CGG CCC CCG TCC TGT ATC CCA ATC TGT GGA AAA ATC GAG AGC ACT 1384 CCT TCT CCA AAG ACC CAA GGC ACC CGC TGG CCA TGG CAG GCA GCC ATC TAC CGG AGG ACC 1444

S G V H D G G L H K G A W F L V C S G A 492 AGT GGT GTA CAC GAT GGT GGT CTG CAC AAA GGT GCA TGG TTC TTG GTC TGC AGT GGT GCC 1504 L V N E R T V V V A A H C V T E L G K A 512 CTG GTG AAT GAA CGG ACT GTG GTT GTG GCC CAC TGT GTG ACT GAG CTG GGG AAG GCC 1564 T I I K T A D L K V V L G K F Y R D D D 532 ACC ATC AAG ACA GCA GAC CTC AAG GTT GTC TTG GGA AAA TTC TAC AGG GAC GAT GAT 1624 COG CAT CAG AAG AGC ATC CAG AAT TTA COG GTT TCT GCT ATC ATT CTG CAC CCC AAC TAT 1684 D P I L L D T D I A V L K L L D K A R I 572 GAC CCT ATC CTG CTT GAC ACT GAC ATC GCT GTT CTG AAG CTC CTA GAC AAA GCT CGC ATC 1744 S T R V Q P I C L A T T R D L S T S F Q 592 AGT ACC CGT GTC CAA CCC ATC TGC CTG GCT ACC ACT CGG GAC CTC AGC ACC TCT TTC CAG 1804 GAA TOO CAC ATC ACT GTG GCT GGC TGG AAC ATC CTG GCA GAT GTG AGG AGC CCT GGC TTT 1864 ANG ANT GAT ACC TTA CAT TAT GGA ATG GTC AGA GTG GTA GAC CCA ATG CTT TGT GAG GAA 1924 Q H E D H G I P V S V T D N M F C A S K 652 CAG CAT GAA GAC CAT GGC ATT CCA GTT AGT GTC ACT GAC AAC ATG TTC TGT GCC AGC AAA 1984 D P S 'T P S D I C T A E T G G I A A L S 672 GAT CCC AGT ACC CCT TCT GAC ATC TGC ACT GCA GAG ACA GGG GGC ATC GCT CCT TTG TCC 2044 TTC CCA GGC CGA GCA TCC CCC GAG CCA CGC TGG CAT TTG GTG GGG CTG GTC AGC TGG AGC 2104 TAT GAC ANG ACA TOT AGE ANT GGC CTA TCC ACA GCC TTC ACA ANG GTG TTG CCG TTC ANA 2164 2191 GAC TGG ATT GAG AGA AAC ATG AAA TGA ACCAGCCACAAGGCCACTGAGAAGCCTTTTCCTAGCATCCGTCTGTACATATGTTGTATAGAACAATGCGGGCCTGAAG 2270 TGTAATTTTGCCCACCATCTTGGCTACTGAAAGGCTCCTGGTTTCAGGGACTTATCTCAATAGAGGGTGAACAGAGTTT 2349 ACTICATCAGGGAACTGTCTCCCTGACTGCTTGGGAATCATCTAAAAGATGCCAGGTCTTGCAACAACTGGATTTCTTC 2428 AAAGAAGACCATGTGACTAGAAGGAGAACCTCTTGCTCCTGCTCCACTCAGAGTGATGTGACTGTCAATCAGTTTGGGT 2507 TGAGAAGGTTGATTTGGGGAGGCCTGGGCTGCACCTGGCTTCTGTCAAAGTTCCAAAGAACAACAACAACTAGACCTAGCC 2586 CAGGGCAAAGGAGATTGGGTGTGGCACCCTGTGTAAATTGTCACAAGATTGTCTGATCCTTTCCCATCCTTTCCCATCTTCTG 2665