汎化リスク

名前:松島完忠

学籍番号:t211d070 日付:7/18

[演習 240] 閾値関数の汎化リスク

1.定数 σ =0.5おき、分布 D_z から 1000 点mpデータ $(x_1,y_1),\dots,(x_{1000},y_{1000})$ を生成し、頻度分布のプロット結果を図 1 に示す。

図 1:分布 Dzの頻度分布

2. $\theta \in \{-5.0, -4.9, \dots, 4.9, 5.0\}$ それぞれに対する閾値関数の汎化リスクを、期待値を プロットした結果を示す。このとき、定数 $\sigma = 0.5$ 、1000000 点のデータを作成し、それ元 に汎化リスクを求めた。

図 2:sigma=0.5、経験リスクのプロット

図 2 より陰性データと陽性データの分布関数が重なる部分で経験リスクが 0 に近い値となった。

 $3.\sigma = 2,1,0.25$ のときの経験リスクを図 3、図 4、図 5 にプロット結果を示す。

図 3:sigma=2 のときの経験リスク

図 4:sigma=1 のときの経験リスク

図 5:sigma=0.25 のときの経験リスク

図3、図4,図5から陽性データと陰性データの分布関数が重なる部分が大きいほど 経験リスクの最小値は大きくなる。

作成プログラム

図6に作成したプログラムを示す。

1	import numpy as np
2	from scipy import stats
3	import matplotlib.pyplot as plt
4	import scipy.stats
5	import matplotlib.ticker as ticker

```
6
     def Genrisk(a,b,theta,N):
8
         sum=0
9
10
         for (x, y) in zip(a, b):
             f=x-theta
             if(y*f<=0):
12
13
                 sum+=1
14
         return float(sum)/float(N)
15
16
17
     size = 1000000
18
     sigma = 2
19
20
     pe=[]
21
     ne=[]
22
     genrisk=[]
23
     x=[]
24
25
     y=stats.uniform.rvs(0, scale=1, size=size)
26
     Y=[]
27
28
29
     for s in y:
```

30	if s<0.5:
31	t=stats.norm.rvs(loc=-1,scale=sigma)
32	x. append (t)
33	ne. append (t)
34	Y. append (-1. 0)
35	else:
36	t=stats.norm.rvs(loc=1,scale=sigma)
37	x. append (t)
38	pe. append (t)
39	Y. append (1. 0)
40	
41	
42	xx = np. linspace (-5, 5, 10000)
43	theta = np. linspace (-5, 5, 100)
44	
45	for th in theta:
46	genrisk. append (Genrisk (x, Y, th, size))
47	
48	fig = plt.figure()
49	ax=fig.add_subplot(211, xlabel='x', ylabel='Density')
50	ax.plot(xx, scipy.stats.norm.pdf(xx, -1 , sigma), c='blue', linewidth = 5. 0)
51	ax. plot(xx, scipy. stats. norm. pdf(xx, 1, sigma), $c='red'$, linewidth = 5.0)
52	
53	

54	
55	ax2=fig. add_subplot(212, xlabel=' θ ', ylabel='Generalization Risk', ylim= (0, 0. 6))
56	ax2. plot (theta, genrisk, c='black', linewidth=5.0)

図 6:作成したプログラム