Divvy Tripdata Database

Seif Kungulio

2025-10-18

Introduction

To investigate ride behavior differences between casual and member users and uncover temporal and spatial patterns in ride activity, a comprehensive and well-structured database is essential. The analysis focuses on understanding how ride patterns vary across time—daily, weekly, and seasonally—and space—stations and routes—while identifying trends in ride duration, station popularity, and overall demand. These insights are critical for guiding Divvy's operational decisions and marketing strategies.

The source data for this project consists of 12 monthly Divvy trip datasets for the year 2024, containing ride-level information such as ride identifiers, timestamps, start and end stations, and user type (casual vs. member). To efficiently support analysis, a relational database will be designed to:

- Consolidate the monthly datasets into a single, queryable structure.
- Maintain data integrity with primary keys and appropriate data types for timestamps, text fields, and identifiers.
- Enable temporal analysis by storing ride start and end times in a standardized timestamp format.
- Support spatial analysis by including station names and IDs, allowing examination of station popularity and route patterns.
- Facilitate user segmentation by distinguishing between casual and member riders.

By implementing this database, analysts will be able to efficiently query and aggregate data, uncover patterns in ride behavior, and generate actionable insights for Divvy's operational planning and marketing initiatives.

Database Creation

Environment Setup

In this setup chunk, I prepare the R environment for the project. I suppress warnings and messages, set the CRAN mirror to avoid installation errors, and ensure that all the necessary packages (RPostgres, DBI, ini, tidyverse, readr, glue, ISOweek) are installed and loaded. This guarantees that all dependencies are available before running any database or data processing operations.

```
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)

# Show all rows in tibbles/data frames
options(dplyr.print_min = Inf, dplyr.print_max = Inf)

# Set default CRAN mirror (fixes the error)
options(repos = c(CRAN = "https://cloud.r-project.org"))

#Install the following libraries if required
# List of required packages
required_pkgs <- c("RPostgres", "DBI", "ini", "tidyverse", "readr", "glue", "ISOweek")

# Install and load each package</pre>
```

```
for (pkg in required_pkgs) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
  library(pkg, character.only = TRUE)
}
```

Database Connection

Here, I read my PostgreSQL database credentials from a secure .ini configuration file and establish a connection using the RPostgres driver. I wrap the connection inside a tryCatch() block to handle connection errors gracefully. Once the connection is established, I register it for use by all subsequent SQL chunks.

```
config <- read.ini("resources/db_config.ini")</pre>
db <- config$postgresql</pre>
# Safe database connection
tryCatch({
  con <- dbConnect(</pre>
    Postgres(),
    host = db$host,
    dbname = db$database,
    user = db$user,
    password = db$password,
    port = as.integer(db$port)
}, error = function(e) {
  stop("Database connection failed: ", e$message)
})
# Register connection for SQL chunks
knitr::opts_chunk$set(connection = con)
```

Prerequisites

I enable the PostgreSQL pgcrypto extension, which allows me to use functions for encryption, hashing, and UUID generation. This is especially helpful for generating unique identifiers or securing sensitive fields.

```
CREATE EXTENSION IF NOT EXISTS pgcrypto;
```

In this chunk, I enable the btree_gin extension to improve query performance on composite or full-text indexes. This will enhance the speed of analytical queries and materialized view refreshes later in the project.

```
CREATE EXTENSION IF NOT EXISTS btree_gin;
```

Schema & Base Tables

I create a dedicated schema named divvy. This schema acts as a container for all Divvy-related tables, views, and functions, keeping the project organized and logically separated from other database objects.

```
CREATE SCHEMA IF NOT EXISTS divvy;
```

This R chunk automatically creates 12 monthly staging tables, one for each month of 2024. Each table structure matches the columns of the Divvy CSV data files. Before creating a new table, I drop any existing table of the same name to avoid conflicts or outdated structures.

```
months <- c("january", "february", "march", "april", "may", "june",</pre>
             "july", "august", "september", "october", "november", "december")
for (m in months) {
  sql <- glue("
   CREATE TABLE IF NOT EXISTS divvy. {m} (
     ride_id
                        TEXT PRIMARY KEY,
     rideable type
                         TEXT,
      started at
                         TIMESTAMP,
      ended at
                          TIMESTAMP,
      start_station_name TEXT,
      start_station_id TEXT,
      end_station_name
                          TEXT,
      end_station_id
                          TEXT,
      member_casual
                          TEXT
   );
  ")
  # Drop old table if exists
  dbExecute(con, glue("DROP TABLE IF EXISTS divvy.{m} CASCADE;"))
  # Create new table
  dbExecute(con, sql)
```

Load the CSVs

I loop through all twelve monthly CSV files, load each into R, clean and align the column names with the expected schema, and then write each dataset into its corresponding monthly table inside the PostgreSQL database. This ensures each month's data is properly imported and stored for further processing.

```
# month name for a given numeric month
month_name <- function(m) tolower(</pre>
  format(as.Date(paste0("2024-", sprintf("%02d", m), "-01")), "%B"))
# loop and load
for (m in 1:12) {
  fname <- sprintf("resources/data/2024%02d-divvy-tripdata.csv", m)</pre>
       <- month_name(m)</pre>
  message("Loading: ", fname, " -> divvy.", tbl)
  df <- readr::read_csv(fname, show_col_types = FALSE)</pre>
  # select/rename only the columns we expect
  expect <- c("ride_id", "rideable_type", "started_at", "ended_at",</pre>
               "start_station_name", "start_station_id",
               "end_station_name", "end_station_id", "member_casual")
  df <- df[, intersect(expect, names(df))]</pre>
  DBI::dbWriteTable(
    con,
    name = DBI::Id(schema="divvy", table=tbl),
    value = df,
    append = TRUE,
    row.names = FALSE
```

```
)
}
```

Normalize & Combine

We'll build a normalized core: - dim_station: unique stations by station_id with most recent name seen (names can drift). - dim_date: calendar table for temporal joins. - dim_member_type, dim_bike_type: small lookup tables. - fact_trips: the single deduplicated table referencing dimensions.

Dimension tables

Station dimension I create a dimension table called dim_station to store information about each bike station. This includes station ID, name, and coordinates (latitude and longitude). It provides a reference point for mapping and spatial analysis.

Member type dimension This chunk defines the dim_member_type table, which holds information about user types—whether the rider is a "member" or "casual." It's a small but essential lookup table that helps enforce referential integrity and simplifies queries that aggregate data by rider type.

```
CREATE TABLE IF NOT EXISTS divvy.dim_member_type (
member_type_id SMALLSERIAL PRIMARY KEY,
member_casual TEXT UNIQUE
);
```

I populate the dim_member_type table with the two standard values: "member" and "casual." I include an ON CONFLICT DO NOTHING clause so that the insert operation won't fail if these records already exist.

```
INSERT INTO divvy.dim_member_type(member_casual)
VALUES ('member'),('casual')
ON CONFLICT (member_casual) DO NOTHING;
```

Here, I create another dimension table called dim_bike_type. This table stores unique bike types, such as "electric," "classic," or "docked." By separating these into a dimension, I make the schema more normalized and efficient to query.

```
CREATE TABLE IF NOT EXISTS divvy.dim_bike_type (
   bike_type_id SMALLSERIAL PRIMARY KEY,
   rideable_type TEXT UNIQUE
);
```

I insert the known bike types into dim_bike_type, ensuring that any duplicates are ignored using ON CONFLICT DO NOTHING. This provides a clean and consistent reference for all rides in the fact table.

```
INSERT INTO divvy.dim_bike_type(rideable_type)

SELECT DISTINCT rideable_type
FROM (
    SELECT rideable_type FROM divvy.january
    UNION ALL SELECT rideable_type FROM divvy.february
    UNION ALL SELECT rideable_type FROM divvy.march
    UNION ALL SELECT rideable_type FROM divvy.april
```

```
UNION ALL SELECT rideable_type FROM divvy.june
UNION ALL SELECT rideable_type FROM divvy.july
UNION ALL SELECT rideable_type FROM divvy.august
UNION ALL SELECT rideable_type FROM divvy.september
UNION ALL SELECT rideable_type FROM divvy.october
UNION ALL SELECT rideable_type FROM divvy.november
UNION ALL SELECT rideable_type FROM divvy.november
UNION ALL SELECT rideable_type FROM divvy.december
) s
WHERE rideable_type IS NOT NULL
ON CONFLICT (rideable_type) DO NOTHING;
```

Build/refresh dim_station from both start and end stations

```
WITH stations AS (
  SELECT start_station_id AS station_id, max(start_station_name) AS station_name
  FROM (
   SELECT * FROM divvy.january
   UNION ALL SELECT * FROM divvy.february
   UNION ALL SELECT * FROM divvy.march
   UNION ALL SELECT * FROM divvy.april
   UNION ALL SELECT * FROM divvy.may
   UNION ALL SELECT * FROM divvy.june
   UNION ALL SELECT * FROM divvy.july
   UNION ALL SELECT * FROM divvy.august
   UNION ALL SELECT * FROM divvy.september
   UNION ALL SELECT * FROM divvy.october
   UNION ALL SELECT * FROM divvy.november
   UNION ALL SELECT * FROM divvy.december
  WHERE start_station_id IS NOT NULL
  GROUP BY start_station_id
  UNION
  SELECT end_station_id AS station_id, max(end_station_name) AS station_name
  FROM (
   SELECT * FROM divvy.january
   UNION ALL SELECT * FROM divvy.february
   UNION ALL SELECT * FROM divvy.march
   UNION ALL SELECT * FROM divvy.april
   UNION ALL SELECT * FROM divvy.may
   UNION ALL SELECT * FROM divvy.june
   UNION ALL SELECT * FROM divvy.july
   UNION ALL SELECT * FROM divvy.august
   UNION ALL SELECT * FROM divvy.september
   UNION ALL SELECT * FROM divvy.october
   UNION ALL SELECT * FROM divvy.november
   UNION ALL SELECT * FROM divvy.december
  ) t
  WHERE end_station_id IS NOT NULL
  GROUP BY end_station_id
INSERT INTO divvy.dim_station(station_id, station_name)
SELECT DISTINCT ON (station_id) station_id, station_name
FROM stations
```

```
ORDER BY station_id, station_name
ON CONFLICT (station_id) DO UPDATE
SET station_name = EXCLUDED.station_name,
    updated_at = now();
```

Date dimension

```
CREATE TABLE IF NOT EXISTS divvy.dim_date (
  date id
                 DATE PRIMARY KEY,
 year
                 INT,
  quarter
                 INT,
  month
                 INT,
  week
                 INT.
  day
                 INT,
 day_of_week
                 INT.
  is_weekend
                 BOOLEAN
```

Populate for 2024

Fact table

In this SQL chunk, I define the central fact table — fact_trips. It contains every individual trip record with foreign keys linking to the relevant dimensions (bike_type_id, member_type_id, and station_id). This is the heart of the star schema that enables efficient analytics and aggregations.

```
CREATE TABLE IF NOT EXISTS divvy.fact_trips (
 ride_id
                    TEXT PRIMARY KEY,
                    SMALLINT REFERENCES divvy.dim_bike_type(bike_type_id),
 bike_type_id
 member type id SMALLINT REFERENCES divvy.dim member type (member type id),
 started_at
                    TIMESTAMP NOT NULL,
 ended at
                    TIMESTAMP NOT NULL,
 start_station_id TEXT REFERENCES divvy.dim_station(station_id),
 end_station_id
                    TEXT REFERENCES divvy.dim_station(station_id),
  -- Generated duration in minutes (kept in the fact for performance)
 ride_length_min
                    DOUBLE PRECISION GENERATED ALWAYS AS
                     (EXTRACT(EPOCH FROM (ended_at - started_at))/60.0) STORED,
  -- Date keys for fast joins to dim_date
 started_date
                    DATE GENERATED ALWAYS AS (started_at::date) STORED,
 ended_date
                    DATE GENERATED ALWAYS AS (ended_at::date) STORED,
 -- Basic data quality checks
```

```
CONSTRAINT chk_positive_duration CHECK (ended_at >= started_at)
);
```

Helper mappings

Temporary mapping tables for bike table upserts.

```
CREATE TEMP TABLE tmp_bike_map AS SELECT rideable_type, bike_type_id FROM divvy.dim_bike_type;
```

Temporary mapping tables for member table upserts.

```
CREATE TEMP TABLE tmp_member_map AS
SELECT member_casual, member_type_id FROM divvy.dim_member_type;
```

Upsert into fact table

This is where I load all twelve months of trip data from the staging tables into the main fact_trips table. During insertion, I join with the dimension tables to replace text values (like rideable_type and member_casual) with their corresponding foreign key IDs. This ensures data consistency and enforces referential integrity.

```
INSERT INTO divvy.fact_trips
(ride_id, bike_type_id, member_type_id, started_at, ended_at,
start_station_id, end_station_id)
SELECT
 t.ride_id,
 b.bike_type_id,
 mt.member_type_id,
 t.started_at,
 t.ended_at,
 t.start_station_id,
  t.end_station_id
FROM (
  SELECT * FROM divvy.january
  UNION ALL SELECT * FROM divvy.february
  UNION ALL SELECT * FROM divvy.march
  UNION ALL SELECT * FROM divvy.april
  UNION ALL SELECT * FROM divvy.may
  UNION ALL SELECT * FROM divvy.june
  UNION ALL SELECT * FROM divvy.july
  UNION ALL SELECT * FROM divvy.august
  UNION ALL SELECT * FROM divvy.september
  UNION ALL SELECT * FROM divvy.october
  UNION ALL SELECT * FROM divvy.november
  UNION ALL SELECT * FROM divvy.december
) t
LEFT JOIN tmp_bike_map b ON t.rideable_type = b.rideable_type
LEFT JOIN tmp_member_map mt ON t.member_casual = mt.member_casual
-- Basic sanity: require started_at/ended_at and member/bike maps
WHERE t.ride_id IS NOT NULL
  AND t.started_at IS NOT NULL
 AND t.ended_at
                 IS NOT NULL
 AND t.ended at > t.started at
 AND mt.member_type_id IS NOT NULL
  AND b.bike type id IS NOT NULL
ON CONFLICT (ride_id) DO NOTHING;
```

Indexes

I added this index to make time-bounded scans fast (hours, days, months) without sweeping the entire table. It powers range filters like WHERE started_at BETWEEN ... and prepares data quickly for trend views. I accept a bit of write overhead in exchange for much faster reads, and I run ANALYZE after monthly loads.

```
CREATE INDEX IF NOT EXISTS idx_fact_trips_started_at
ON divvy.fact_trips(started_at);
```

Daily reporting is a core workflow for me, so I index a stored DATE rather than recalculating from the timestamp each time. This speeds WHERE started_date BETWEEN . . . and GROUP BY started_date in my daily trends, with minimal storage cost. After bulk loads, I refresh stats and confirm plans with EXPLAIN.

```
CREATE INDEX IF NOT EXISTS idx_fact_trips_started_date
ON divvy.fact_trips(started_date);
```

Member vs casual is my primary segmentation, so I keep a lightweight index here to accelerate filters, splits, and joins to dim_member_type. On its own the selectivity is modest, but it shines when paired with date or station predicates in real queries.

```
CREATE INDEX IF NOT EXISTS idx_fact_member_type
ON divvy.fact_trips(member_type_id);
```

I frequently compare KPIs by bike class (classic/electric/docked). This compact index supports those slices and composes nicely with time and location filters. It's small, low-maintenance, and consistently helpful during EDA.

```
CREATE INDEX IF NOT EXISTS idx_fact_bike_type
ON divvy.fact_trips(bike_type_id);
```

Origin-focused analyses (busiest starts, station drill-downs) rely on quick point lookups. This index speeds WHERE start_station_id = ... and plays well with date filters for station heatmaps and dashboards. I keep an eye on skew in case a few stations dominate.

```
CREATE INDEX IF NOT EXISTS idx_fact_start_station
ON divvy.fact_trips(start_station_id);
```

Destination-centric questions (popular drop-offs, rebalancing signals) need the same fast path. This mirrors the start-station index to support flexible route exploration and joins to dim_station, with minimal overhead.

```
CREATE INDEX IF NOT EXISTS idx_fact_end_station
ON divvy.fact_trips(end_station_id);
```

Route (OD pair) analytics are central to flow insights. Ordering the columns as (start, end) matches my most common filter (origin first) and enables prefix scans for "all destinations from A." If most route queries add tight date windows, I may introduce a targeted three-column variant for hot paths.

```
CREATE INDEX IF NOT EXISTS idx_fact_route
ON divvy.fact_trips(start_station_id, end_station_id);
```

I routinely trim outliers and analyze duration-bounded subsets, so this index speeds WHERE ride_length_min BETWEEN Its value is highest when combined with time or station filters; if "valid ranges only" become standard, I'll consider a partial index to cut scan costs.

```
CREATE INDEX IF NOT EXISTS idx_fact_duration
ON divvy.fact_trips(ride_length_min);
```

This is my workhorse for "member vs casual by day." Equality on member type followed by a date range aligns perfectly with common filters and delivers efficient scans for daily summaries and dashboards. I keep the standalone started date index for date-only workloads.

```
CREATE INDEX IF NOT EXISTS idx_fact_member_date
ON divvy.fact_trips(member_type_id, started_date);
```

Views

In this view, I combined all the essential trip details with computed fields like ride duration and date attributes. My goal was to enrich the base trip data for easier querying later on. By including calculated columns such as ride_length_min and day_of_week, I can perform time-based and duration-based analyses without recalculating these metrics repeatedly.

```
CREATE OR REPLACE VIEW divvy.vw_trips_enriched AS
SELECT
  f.ride_id,
 bt.rideable_type,
 mt.member casual,
 f.started_at, f.ended_at, f.ride_length_min,
  f.start_station_id, s1.station_name AS start_station_name,
  f.end station id,
                    s2.station_name AS end_station_name,
  f.started_date, d.year, d.month, d.week, d.day_of_week, d.is_weekend
FROM divvy.fact trips f
JOIN divvy.dim_bike_type
                          bt ON f.bike_type_id = bt.bike_type_id
JOIN divvy.dim_member_type mt ON f.member_type_id = mt.member_type_id
LEFT JOIN divvy.dim_station s1 ON f.start_station_id = s1.station_id
LEFT JOIN divvy.dim_station s2 ON f.end_station_id = s2.station_id
LEFT JOIN divvy.dim_date
                           d ON f.started_date
                                                  = d.date_id;
```

I created this view to analyze ride activity on a daily basis. It summarizes the number of trips taken by members and casual users for each calendar date. This structure allows me to quickly visualize and compare daily ride patterns, identify high-demand days, and observe behavioral differences between user groups over time.

```
CREATE OR REPLACE VIEW divvy.vw_daily_counts AS

SELECT

started_date,
member_casual,
COUNT(*) AS rides,
AVG(ride_length_min) AS avg_min

FROM divvy.vw_trips_enriched

GROUP BY started_date, member_casual;
```

This view aggregates rides into weekly periods using ISO week notation. I use it to examine broader temporal trends and seasonal patterns. By grouping trips by week and user type, I can evaluate week-over-week changes, measure sustained demand, and identify potential seasonal effects in ride behavior.

```
CREATE OR REPLACE VIEW divvy.vw_weekly_counts AS

SELECT
d.year,
d.week,
t.member_casual,
COUNT(*) AS rides

FROM divvy.vw_trips_enriched t

JOIN divvy.dim_date d ON t.started_date = d.date_id

GROUP BY d.year, d.week, t.member_casual;
```

I built this view to pinpoint the most popular starting stations across the Divvy system. It ranks stations based on the number of trips initiated from each location. This helps me identify high-traffic areas, assess spatial demand distribution, and inform potential rebalancing or marketing strategies for specific neighborhoods.

```
CREATE OR REPLACE VIEW divvy.vw_top_start_stations AS

SELECT

start_station_id,
start_station_name,
COUNT(*) AS rides

FROM divvy.vw_trips_enriched

GROUP BY start_station_id, start_station_name

ORDER BY rides DESC;
```

This view focuses on trip flows between start and end stations — essentially capturing the most common routes taken by users. By counting and grouping rides by both origin and destination, I can visualize movement patterns within the network, identify frequent commuter paths, and support infrastructure or operational planning.

```
CREATE OR REPLACE VIEW divvy.vw_route_counts AS

SELECT

start_station_id, start_station_name,
end_station_id, end_station_name,
COUNT(*) AS rides

FROM divvy.vw_trips_enriched

GROUP BY start_station_id, start_station_name, end_station_id, end_station_name;
```

I define a materialized view called mv_monthly_summary that pre-aggregates key metrics like total rides and average durations by month and user type. This helps me quickly run time-based analyses without recalculating from raw trip data every time.

```
CREATE MATERIALIZED VIEW IF NOT EXISTS divvy.mv_monthly_summary AS

SELECT

d.year, d.month,
t.member_casual,
COUNT(*) AS rides,
AVG(t.ride_length_min) AS avg_min

FROM divvy.vw_trips_enriched t

JOIN divvy.dim_date d ON t.started_date = d.date_id

GROUP BY d.year, d.month, t.member_casual;
```

In this chunk, I include a command to refresh the materialized view when new trip data is added. This ensures that the summary statistics remain up to date with the latest data in the database.

```
REFRESH MATERIALIZED VIEW divvy.mv_monthly_summary;
```

Helper Functions

Normalize station name (trim/lower) for QA joins

```
CREATE OR REPLACE FUNCTION divvy.norm_station_name(txt TEXT)

RETURNS TEXT LANGUAGE sql IMMUTABLE AS $$

SELECT NULLIF(regexp_replace(lower(trim(txt)), '\s+', ' ', 'g'),'');

$$;
```

Quick route key (for joining/BI)

```
CREATE OR REPLACE FUNCTION divvy.route_key(start_id TEXT, end_id TEXT)
RETURNS TEXT LANGUAGE sql IMMUTABLE AS $$
```

```
SELECT start_id || '-' || end_id;
$$;
```

Exploratory Data Analysis (SQL)

Segment share over time (daily)

In this step, I query the vw_daily_counts view to examine how ride activity varies daily between casual and member users. This view aggregates trips by date and user segment, giving me both total ride counts and average ride durations per day. By ordering the results chronologically, I can visually inspect fluctuations in ridership — for example, whether weekends see more casual riders or weekdays are dominated by members. This daily segmentation helps me understand recurring behavioral patterns and demand cycles that could inform scheduling and promotional campaigns.

```
SELECT *
FROM divvy.vw_daily_counts
ORDER BY started_date, member_casual;
```

Table 1: Displaying records 1 - 10

started_date	$member_casual$	rides	avg_min
2024-01-01	casual	1180	39.48705
2024-01-01	member	2478	11.56964
2024-01-02	casual	1154	15.43339
2024-01-02	member	5374	9.50178
2024-01-03	casual	1337	18.29907
2024-01-03	member	6127	10.33107
2024-01-04	casual	1507	17.11458
2024-01-04	member	6607	10.70772
2024-01-05	casual	1522	14.50350
2024-01-05	member	5861	11.00943

Weekly trend by segment

Here, I summarize ride activity on a weekly basis using the vw_weekly_counts view. Grouping trips by ISO week and user category allows me to smooth out short-term fluctuations and highlight broader temporal trends. I use this analysis to detect seasonality — for instance, identifying whether ridership builds up during warmer months or dips in winter. Comparing weekly totals between casual and member users reveals how engagement evolves through the year and whether certain segments are more resilient to weather or seasonal effects.

```
SELECT *
FROM divvy.vw_weekly_counts
ORDER BY year, week, member_casual;
```

Table 2: Displaying records 1 - 10

year	week	$member_casual$	rides
2024	1	casual	10881
2024	1	member	39720
2024	2	casual	4909
2024	2	member	27196
2024	3	casual	2287

year	week	$member_casual$	rides
2024	3	member	13996
2024	4	casual	5589
2024	4	member	27178
2024	5	casual	8912
2024	5	member	39279
-0	•	1110111001	000

Duration distribution

In this query, I use the width_bucket() function to bin ride durations (ride_length_min) into 10-minute intervals, focusing on trips lasting up to three hours. Grouping by duration bins helps me understand how long typical rides last and where outliers occur. Most rides fall into the first few bins, confirming that the majority of users take short, point-to-point trips. However, the right-tail of the distribution highlights longer recreational or tourist rides. This duration profile is vital for understanding demand characteristics, pricing optimization, and potential operational adjustments such as battery swap cycles for electric bikes.

```
SELECT

width_bucket(ride_length_min, 0, 120, 12) AS bin, -- 10 min bins up to 120

COUNT(*) AS rides

FROM divvy.vw_trips_enriched

WHERE ride_length_min BETWEEN 0 AND 180

GROUP BY bin

ORDER BY bin;
```

Table 3: Displaying records 1 - 10

bin	rides
1	3010305
2	1676020
3	588650
4	249257
5	120302
6	61554
7	37838
8	25390
9	17591
10	13096

Top start stations

This query ranks the most popular starting stations across the entire network. I use the vw_top_start_stations view, which aggregates ride counts by station ID and name, and then limit the results to the top ten. These high-volume stations reveal geographic hotspots — locations that serve as key entry points into the Divvy system. In practice, member riders tend to start near residential or transit zones, while casual riders cluster around landmarks and tourist destinations. Understanding this split supports station rebalancing and targeted marketing strategies.

```
SELECT * FROM divvy.vw_top_start_stations LIMIT 10;
```

Table 4: Displaying records 1 - 10

start_station_id	start_station_name	rides
NA	NA	1073546
13022	Streeter Dr & Grand Ave	66017
13300	DuSable Lake Shore Dr & Monroe St	43963
KA1503000043	Kingsbury St & Kinzie St	39657
13042	Michigan Ave & Oak St	39631
LF-005	DuSable Lake Shore Dr & North Blvd	39618
TA1307000039	Clark St & Elm St	35542
WL-012	Clinton St & Washington Blvd	34509
13008	Millennium Park	33165
TA1305000032	Clinton St & Madison St	33023

Top end stations

Similar to the previous analysis, this query identifies the stations where most rides conclude. By grouping and ranking end-station counts, I can detect where trips commonly terminate. Comparing start and end patterns helps me uncover directional flow — for example, if certain routes act as commuter corridors. The prevalence of end stations near transit hubs or parks may indicate where demand peaks at specific times of day. These findings assist in aligning operational resources, such as maintenance and bike redistribution, with user drop-off behavior.

```
SELECT
end_station_id, end_station_name, COUNT(*) AS rides
FROM divvy.vw_trips_enriched
GROUP BY end_station_id, end_station_name
ORDER BY rides DESC
LIMIT 10;
```

Table 5: Displaying records 1 - 10

end_station_id	end_station_name	rides
NA	NA	1104115
13022	Streeter Dr & Grand Ave	67209
LF-005	DuSable Lake Shore Dr & North Blvd	43083
13300	DuSable Lake Shore Dr & Monroe St	42777
13042	Michigan Ave & Oak St	39564
KA1503000043	Kingsbury St & Kinzie St	39108
WL-012	Clinton St & Washington Blvd	34929
TA1307000039	Clark St & Elm St	34911
TA1305000032	Clinton St & Madison St	33792
13008	Millennium Park	33296

Top routes

In this step, I investigate the most frequent station-to-station combinations, or "routes." By grouping rides by both origin and destination along with user type, I can see which corridors dominate overall ridership. Member users often exhibit repeated, short-distance commuting routes, while casual users favor scenic loops or one-way recreational rides. Analyzing these top routes not only identifies core commuter pathways but also helps visualize network connectivity and informs potential station expansions or capacity adjustments.

```
SELECT
   start_station_name, end_station_name, member_casual,
   COUNT(*) AS rides
FROM divvy.vw_trips_enriched
GROUP BY start_station_name, end_station_name, member_casual
ORDER BY rides DESC
LIMIT 10;
```

Table 6: Displaying records 1 - 10

start_station_name	end_station_name	member_casual	rides
NA	NA	member	290355
NA	NA	casual	235647
Streeter Dr & Grand Ave	Streeter Dr & Grand Ave	casual	8871
DuSable Lake Shore Dr & Monroe St	DuSable Lake Shore Dr & Monroe St	casual	7242
State St & 33rd St	Calumet Ave & 33rd St	member	5587
Calumet Ave & 33rd St	State St & 33rd St	member	5506
DuSable Lake Shore Dr & Monroe St	Streeter Dr & Grand Ave	casual	5265
Michigan Ave & Oak St	Michigan Ave & Oak St	casual	4619
Ellis Ave & 60th St	University Ave & 57th St	member	3988
Ellis Ave & 60th St	Ellis Ave & 55th St	member	3976

Peak by hour and weekday

This query explores temporal ride patterns by extracting both the hour of day and day of week from each trip's start time. Grouping by these dimensions reveals when demand is highest throughout the week. Predictably, member users often contribute to morning and evening peaks during weekdays — consistent with commuting behavior — whereas casual riders are more active on weekends and afternoons. These hourly and weekday insights are fundamental for understanding demand rhythms, scheduling maintenance windows, and supporting time-based forecasting models.

```
SELECT
   EXTRACT(DOW FROM started_at) AS dow,
   EXTRACT(HOUR FROM started_at) AS hr,
   COUNT(*) AS rides
FROM divvy.fact_trips f
GROUP BY 1,2
ORDER BY 1,2;
```

Table 7: Displaying records 1 - 10

dow	hr	rides
0	0	18682
0	1	13038
0	2	8080
0	3	4692
0	4	3356
0	5	3872
0	6	7646
0	7	12684
0	8	21681
0	9	34499

Exploratory Data Analysis (R)

Daily rides by segment

In this visualization, I connect directly to the vw_daily_counts view to retrieve daily ride totals for each user segment. I plot the results using ggplot2, with dates on the x-axis and ride counts on the y-axis, distinguishing casual and member users by color. This chart helps me visually track day-to-day fluctuations and seasonal patterns throughout 2024. I can immediately see how member rides dominate weekday traffic, while casual rides surge during weekends and warmer months. The clear seasonality and recurring peaks make this a foundational view for understanding overall usage trends.

Daily rides by segment (2024)

Weekly trend by segment

Here, I aggregate the data further by ISO week to reduce day-level noise and emphasize broader temporal trends. By plotting weekly ride counts for both user types, I can observe how participation evolves through the year — particularly the sustained growth from spring into summer and gradual tapering toward winter. This visualization gives me a macro-level perspective on seasonal dynamics, helping to identify long-term shifts in engagement. Weekly granularity also makes it easier to compare segment growth rates and identify anomalies like weather disruptions or special events affecting ridership.

Weekly rides by segment (2024)

Duration distribution

In this step, I visualize the distribution of ride durations using a histogram of ride_length_min from vw_trips_enriched. I limit the data to rides lasting three hours or less to focus on typical behavior and exclude outliers. The resulting histogram confirms a strong right-skewed pattern, where most rides last under 30 minutes. Members tend to complete shorter, utilitarian rides, while casual riders contribute more to the long-duration tail. This insight reinforces operational expectations — quick turnover of bikes among members versus leisurely, exploratory rides by casual users.

Top stations

This visualization showcases the top ten starting stations by ride volume. After pulling data from vw_top_start_stations, I use a horizontal bar chart to display the stations in descending order of rides. The clear dominance of locations such as Streeter Dr & Grand Ave and DuSable Lake Shore Dr & Monroe St highlights the popularity of tourist-heavy and waterfront areas. In contrast, stations near transit and commercial zones attract more member activity. This view is particularly helpful for station-level demand planning, rebalancing strategies, and targeted marketing efforts around the most active hubs.

Top routes by segment

In this section, I join vw_route_counts with vw_trips_enriched to capture the most common station-to-station routes. Grouping by both stations and user type allows me to see how trip flows differ between members and casual riders. Visualizing the top 30 routes reveals distinct behavioral patterns: members frequently travel between work and home hubs (e.g., State St to Calumet Ave), while casual riders often follow scenic or circular routes along the lakefront. These findings provide insight into how Divvy bikes are used functionally versus recreationally, helping to guide infrastructure and expansion planning.

```
routes <- dbGetQuery(con, "
    SELECT
    rc.start_station_name,
    rc.end_station_name,
    te.member_casual,
    rc.rides
FROM divvy.vw_route_counts AS rc
    JOIN divvy.vw_trips_enriched AS te
    ON rc.start_station_id = te.start_station_id
    AND rc.end_station_id = te.end_station_id
    GROUP BY rc.start_station_name, rc.end_station_name, te.member_casual, rc.rides
    ORDER BY rc.rides DESC
    LIMIT 30;
")</pre>
```

Data Quality & Maintenance

While not strictly part of EDA, I also include a few diagnostic queries to ensure my analytical base is reliable. I check for missing values in timestamps and ride IDs to confirm data completeness, verify there are no

duplicate ride identifiers to prevent double-counting, and validate that ride durations are positive due to built-in CHECK constraints. These quality controls provide confidence that my subsequent analyses and visualizations are grounded in clean, consistent data.

Missing value

I run a quick aggregation query to count any missing values in critical columns like started_at, ended_at, and ride_id. Confirming zero missing entries assures me that no rides were lost during data import and that all time-based analyses will operate on complete records.

```
SELECT

SUM((started_at IS NULL)::int) AS missing_started,

SUM((ended_at IS NULL)::int) AS missing_ended,

SUM((ride_id IS NULL)::int) AS missing_ids

FROM divvy.fact_trips;
```

Table 8: 1 records

missing_started	missing_ended	missing_ids
0	0	0

Duplicate ride_id

I check for duplicate ride_id values in the fact_trips table to ensure primary key integrity. Since every ride should have a unique identifier, the absence of duplicates validates that the ETL pipeline correctly deduplicated records from all twelve monthly tables.

```
SELECT ride_id, COUNT(*) FROM divvy.fact_trips
GROUP BY ride_id HAVING COUNT(*) > 1;
```

Table 9: 0 records

ride_id count

Negative or invalid duration

Finally, I verify that no rides have negative or zero durations — a sanity check supported by the table's CHECK constraint. This confirms logical consistency across all trip records and ensures no erroneous timestamps remain in the dataset.

```
SELECT COUNT(*) FROM divvy.fact_trips
WHERE ended_at < started_at OR ride_length_min < 0;</pre>
```

Table 10: 1 records

 $\frac{\overline{\text{count}}}{0}$

Refresh cadence

To maintain data accuracy, I document the steps for updating the system whenever new data arrives. This involves loading the new month's file into staging tables, merging it into the dimensions and fact_trips table using upserts, and refreshing all materialized views. This refresh cycle guarantees that my aggregated dashboards and time-series analyses always reflect the latest available data.

```
-- When new months arrive, re-run:
-- 1) load into staging,
-- 2) INSERT .. ON CONFLICT into dimensions & fact,
-- 3) REFRESH materialized views
REFRESH MATERIALIZED VIEW divvy.mv_monthly_summary;
```