MA 35300: HW 2

Jason Shipp

September 2, 2016

Problem 1

Question

An $m \times n$ matrix A is called upper triangular if all entries lying below the diagonal entries are zero, that is, $A_{ij} = 0$ if i > j. Prove that the upper triangular matrices form a subspace of $\mathbf{M}_{mxn}(F)$.

Answer

Let $\mathbf{M}_{mxn}(F)$ be denoted as the vector space \mathbf{V} of all $m \times n$ matrices $\mathbf{W} = \{A \in \mathbf{V} | A_{ij} = 0 \text{ when } i > j\} \text{ defines the } upper \ triangular \ \text{matrices}.$

W is a vector subspace if and only if: (a) the $m \times n$ zero matrix $0_{mxn} \in \mathbf{W}$, (b) $A + B \in \mathbf{W}$ whenever $A, B \in \mathbf{W}$, and (c) $cA \in \mathbf{W}$ whenever $c \in F$ and $A \in \mathbf{W}$

- a 0_{mxn} exists natively in **W** because it follows the A_{ij} set rule
- b Let $A, B \in W$: For A_{ij}, B_{ij} when $j \geq i$ is simply the addition defined under the field $A_{ij} + B_{ij}$ which does not violate the set rule.

For times when j < i it is 0 + 0 = 0 which maintains the set rule, so **W** is closed under addition

c For all $c \in F$ and $A \in \mathbf{W}$, cA takes the form of cA_{ij} for some $i, j \in \mathbb{N}$. When $j \geq i$ it follows the multiplication under the field and remains a member of **W**. When i > j it is c0 = 0 by the fact that **V** is a vector space.

Therefore \mathbf{W} is a vector space.

Problem 2

Question

Show that if
$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2 x 2

Answer

 $\mathbf{V} = \mathbf{M}_{2x2}(F)$ is the vector space of 2 x 2 matrices

 $\mathbf{W} = A \in \mathbf{V} | A^t = A$ is the collection of symmetric 2 x 2 matrices

 $\operatorname{span}(\{M_1, M_2, M_3\} \subseteq \mathbf{W})$ because each matrices exists natively in \mathbf{W} as the transpose does not affect their arrangment, and when added in any combination $aM_1 + bM_2 + cM_3 = dM_4$ such that M_4 is also unnaffected by the transpose.

Conversly, by the definition of transpose, $A_{ij} = A_{ji}$, we have few cases under 2 x 2 matrices. $A_{11}, A_{12}, A_{21}, A_{22}$. The transpose does not affect the order of the matrices except in the case of $A_{12} = A_{21}$ so it follows that

 $A^t=A$ if and only if $A_{12}=A_{21}$. In our circumstance we can form any matrices $A=A^t$ with:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = A_{11}M_1 + A_{22}M_2 + A_{12}M_3$$

 $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = A_{11}M_1 + A_{22}M_2 + A_{12}M_3$ As the A stated above is the definition of $A^t = A$ and A is the definition of the span($\{M_1, M_2, M_3\}$ then $\mathbf{W} \subseteq A \to \mathbf{W} \subseteq \operatorname{span}(\{M_1.M_2,M_3\}$ Thus $\operatorname{span}(\{M_1.M_2,M_3\}=W$ the set of all symmetric 2 x 2 matrices.