Von Restoring Division Start $A \leftarrow 00...0$ (n+1)bits Q - Dividend M Divisor (n+1) bits Count = n Left Shift A, Q Z A < 0 $A \leftarrow A - M$ M+A>A > Qo AMSB Count - Count -1 count=0 $A \leftarrow A + M$ STOP

The algorithm of restoring division can be improved by avoiding restoring after an unsuccessful subtraction.

Subtraction is said to be unsuccessful if the result is negative.

Algorithm

Step 1: Do the following n times:
If the sign of A is positive,
i.e C=0, then shift A & Q

left one bit and subtract M

=> Else shift C, A and Q left one bit position & add M to A

> If the sign of A is positive then set go to 1 else set go to 0.

Step2: If the sign of A is negative, then add M to A.

This step is needed to leave the proper positive remainder in A at the end of n cycles.

<u> 2.1:</u> Perform 15/4

A Q Count Action 00000 1111 4 Initialize 5L $A \leftarrow A - M$

11101 1110 3 Count --

SL

11011 1100

+ 00100 A < A + M

1111 1100 2 Count --

Remain der =
$$00011 = (3)_{10}$$

Quotient = $0011 = (3)_{10}$

Q:2 Perform 10/4

Q:3 Perform 12/3

Q:4: Perform the division of the following numbers using non-sestoring division 1100 ÷ 11

$$Sol: Q.4$$
 $M = 00011$
 $Q = 1100$
 $A = 11101$

+ 00011

1 0 1 1

A	0	C	Action
00000	1100	4	Initialize
00001	1000		SL. A ← A — M
- [] [0]		0	
11110	1000	3	Count
11101	0001		S·L
+ 00011			A < A + M
00000	000	2	Count
00000	0010		S·L.
+ 11101			$A \leftarrow A - M$
1011	0010		Count
11010	0100		S·L

0100

0

 $A \leftarrow A + M$

count -

Since at the end of 4 ycles,

A is negative.

Hence we perform the operation

$$A \leftarrow A + M$$
 $A \leftarrow A + M$
 $A \leftarrow$

$$\frac{12}{3} = 4$$