HD14051B

8-channel Analog Multiplexer/Demultiplexer

The HD14051B analog multiplexer is digitally controlled analog switch effectively implements an SP8T electronic switch and features low ON impedance and very low OFF leakage current, Control of analog signals up to the complete supply voltage range can be achieved.

■ FEATURES

- High On/Off Output Voltage Ratio = 65dB typ.
- Quiescent Current = 5nA/pkg typ. @5V
- Low Crosstalk Between Switches = 80dB typ.
- Supply Voltage Range = 3 to 18V
- Linearized Transfer Characteristics, $\Delta R_{ON} < 60\Omega$ for Vin = V_{DD} to V_{EE} @ 15V
- Pin-for-Pin Replacement for CD4051 and MC14051B

■ BLOCK DIAGRAM

■SWITCH CIRCUIT SCHEMATIC

■ PIN ARRANGEMENT

TRUTH TABLE

Cont	ON			
Inhibit	С	В	Α	Switch
0	0	0	0	Χo
0	0	0	1	Xı
0	0	1	0	X2
0	0	1	1	X3
0	I	0	0	Χ,
0	1	0	1	X5
0	1	1	0	Хs
0	I	1	1	X,
1	х	×	×	_

x=Don't Care

MAXIMUM RATINGS (Voltages referenced to V_{ss})

Characteristic	Symbol	Value	Unit
DC Supply Voltage	$V_{DD} - V_{EE}$	-0.5~+18	VDC
Controol Input Voltage	Vix	$V_{ss} = 0.5 \sim V_{DD} + 0.5$	Voc
Signal Voltage	Vsig	$V_{EE} = 0.5 \sim V_{DD} + 0.5$	V _{P-P}
Control Input Current	I_{i*}	±10	mA
Signal Current	Isis	25	mA
Operating Temperature Range	T_A	-40~+85	°C
Storage Temperature Range	Teta	-65~+150	۳.
Power Dissipation -	P_{D}	300	mW

■ ELECTRICAL CHARACTERISTICS

C)	Symbol		Test Conditions		−40°C		25°C			85°C		Unit
Characteristic	Symbol	$V_{DD}(V)$			min	max	min	typ	max	min	max	Onit
	VIL	5.0	$R_L = 10 \text{ k} \Omega$	$V_o = 0.5 \text{V}$	-	1.5	_	2.25	1.5	_	1.5	V.
		10	SW入力 = V _{DD}	$V_o = 1.0 \text{ V}$	_	3.0		4.50	3.0	-	3.0	
7 77).		15	$V_{EE} = V_{SS}$	$V_o = 1.5 \text{V}$		4.0	-	6.75	4.0	_	4.0	
Input Voltage		5.0	$R_L = 10 \text{ k}\Omega$	$V_o = 4.0 \text{V}$	3.5	_	3.5	2.75	-	3.5	_	v
	V_{IH}	10	SW入力=VDD	V _o -9.0V	7.0	_	7.0	5.50		7.0	_	
		15	$V_{\mathcal{E}\mathcal{E}} = V_{SS}$	$V_o = 13.5 \text{V}$	11.0	-	11.0	8.25	- 1	11.0		
Input Current	I _{in}		Control, Inhib	oit	-	_		10			_	рA
Input Control, Inhibit	Cin		$V_{in}=0$		_	_	-	5.0	_	-	_	pF
Capacitance Switch Inputs					-	_	-	10	_	-		
Output Capacitance	Cour	10			-		-	60		_	_	рF
Feedthrough Capacitance Cin-out 10			_	-	-	0.18	_		-	рF		
	IDD	5.0	7 0:)	_	20	_	0.005	20	_	150	
Quiescent Current		10	Zero Signal,		_	40	-	0.010	40	_	300	μA
		15	per Packag	_	80		0.015	80	-	600		
112 2 211 2	I_T	5.0	Dynamic+I	DD.	_	-		0.07	-	_	_	μA
Total Supply Current		10	per Gate	,	_	-	_	0.20	_	_	_	
		15	$f = 1 \mathrm{kHz}$		_		_	0.36	_	_		1
	Ron	5.0			_	880	_	250	1050	_	1200	
ON Resistance		10	*		_	450		120	500	_	520	Ω
		15				250	_	80	280	_	300]]
△ON Resistance	△Ron	5.0	Two Channels		_	_	_	25	_	_	_	Ω
Between Any		10			_	_	-	10	-	_	_	
Two Channels		15			_		5.0		_	_		
OFF Channel Leakage		1,,	Each Chann	nel	-	1000	_	±0.01	1000	_	3000	n A
Current		15	All Channels OFF			1000	-	±0.08	1000	-	3000	7 RA

^{*} To calculate total supply current at frequency other than 1kHz.

 $[@]V_{DD} = 5.0 \, \text{V} \\ I_T = (0.07 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.20 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 15 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu \text{A/kHz}) f + I_{DD} \\ @V_{DD} = 10 \, \text{V} \\ I_T = (0.36 \mu$

■SWITCHING CHARACTERISTICS. (C_L =50pF, Ta=25°C)

		Ī				I		
Characteristic		Symbol	$V_{DD}(V)$	Test Conditions	min	typ	max	Unit
	Switch Input to Switch Output	łрін	5.0			35	90	
			10			15	40	ns
			15			12	30	
		tpHL	5.0		_	35	90	ns
,			10		_	15	40	
Propagation			15	n 4010		12	30	
Delay Time	Control Input to Output	t _{PLH}	5.0	$R_L = 10 \text{k}\Omega$		1400	2000	ns
ļ			10		-	450	700	
			15		-	260	500	
		tPHL	5.0		-	1400	2500	ns
			10			450	700	
			15	1 - -		260	500	
Output Enable Time t. Output Disable Time			5.0		_	850	2125	
		tzH.	10		-	300	750	ns
		tzL	15	P. = 101-0	_	250	625	
		tHZ.	5.0	$R_L = 10 \text{k}\Omega$	-	850	2125	ns
			10		-	300	750	
			15		<u> </u>	250	625	
Sine Wave(Distortion)			10	$R_L = 1 \text{k}\Omega, f = 1 \text{kHz}$	-	0.04	_	%
Bandwidth BW		BW	10	$R_L = 1 k\Omega$, $V_{in} = \frac{1}{2} (V_{DD} - V_{SS})_{p-p}$, $20 \log_{10} V_{out} / V_{in} = -3 dB$	1 -	20	_	MHz
Feedthrough			10	$R_L = 1 \text{k}\Omega$, $20 \log_{10} V_{\text{out}} / V_{\text{in}} = -50 \text{dB}$	-	4.5	_	MHz
Channel Separation		10	$R_L = 1k\Omega \cdot V_{in} = \frac{1}{2} (V_{DD} - V_{SS})_{P-P} \cdot 20 \log_{10} V_{set(B)} / V_{in(A)} = -50 dB$	-	3.0	_	MHz	
Feedthrough Control		10	$R_1 = 1 \text{k}\Omega$, $R_L = 10 \text{k}\Omega$, Control, Inhibit $t_r = tf = 20 \text{ns}$	 -	30	_	mV	
Maximum Control Frequency		10	$R_L = 1 k\Omega$, $V_{out} = \frac{1}{2} V_{is}$	 	10	_	MHz	

■ DC CHARACTERISTIC TEST CIRCUIT

1. Input Voltage

2. Propagation Delay Time

3. Bandwidth, Feedthrough

4. Crosstalk

5. Feedthrough

6. Maximum Control Frequency

7. Ron "

Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

Unit: mm

Hitachi Code	FP-16DA
JEDEC	_
EIAJ	Conforms
Weight (reference value)	0.24 g

*Dimension including the plating thickness
Base material dimension

Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica URL Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http:semiconductor.hitachi.com/

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666

Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.