Barcast Model

March 24, 2014

1 Barcast Model

1.1 Data Model

$$\boldsymbol{W}_{t} = \boldsymbol{H}_{t}\boldsymbol{T}_{t} + \boldsymbol{B}_{t} + \boldsymbol{\eta}_{t} \quad \boldsymbol{\eta}_{t} \sim \mathrm{N}(\boldsymbol{0}, \boldsymbol{\Sigma}_{t}) \quad \boldsymbol{\Sigma}_{t} = \begin{pmatrix} \tau_{I}^{2}\boldsymbol{I}_{N_{It}} & \boldsymbol{0} \\ \boldsymbol{0} & \tau_{P}^{2}\boldsymbol{I}_{N_{Pt}} \end{pmatrix} \quad (1)$$

$$, \boldsymbol{H}_{t} = \begin{pmatrix} \boldsymbol{H}_{It} \\ \beta_{1}\boldsymbol{H}_{Pt} \end{pmatrix}, \boldsymbol{B}_{t} = \begin{pmatrix} \boldsymbol{0}_{N_{It}} \\ \beta_{0}\boldsymbol{1}_{N_{Pt}} \end{pmatrix}, \text{ and } \boldsymbol{\Sigma}_{t} = \begin{pmatrix} \tau_{I}^{2}\boldsymbol{I}_{N_{It}} & \boldsymbol{0} \\ \boldsymbol{0} & \tau_{P}^{2}\boldsymbol{I}_{N_{Pt}} \end{pmatrix}$$

1.2 Process Model

$$T_t - \mu \mathbf{1} = \alpha (T_{t-1} - \mu \mathbf{1}) + \epsilon_t \quad \epsilon_t \sim N(\mathbf{0}, \Sigma_{\epsilon}) \quad \Sigma_{\epsilon} = \sigma^2 \exp(-\phi \mathbf{D})$$
 (2)
where \mathbf{D} is the distance matrix between observation points

1.3 Parameter Model

$oldsymbol{T}_0 \sim \mathrm{N}\left(ilde{oldsymbol{\mu}}_0, ilde{oldsymbol{\Sigma}}_0 ight)$	$ ilde{m{\mu}}_0 = 0$	$ ilde{m{\Sigma}}_0 = ilde{\sigma}_0^2 m{I}$	(3)
$\alpha \sim \mathrm{U}\left(0,1,\right)$			(4)
$\mu \sim N\left(\mu_0, \sigma_0^2\right)$	For PDSI $\mu_0 = 0$	$\sigma_0^2 = 1$	(5)
$\sigma^2 \sim \mathrm{IG}\left(\alpha_{\sigma^2}, \beta_{\sigma^2}\right)$			(6)
$\phi \sim \mathrm{IG}\left(\alpha_{\phi}, \beta_{\phi}\right)$			(7)
$\tau_I \sim \mathrm{IG}\left(\alpha_I, \beta_I\right)$			(8)
$\tau_P \sim \mathrm{IG}\left(\alpha_P, \beta_P\right)$			(9)
$\beta_1 \sim \mathrm{N}\left(\mu_{\beta_1}, \sigma_{\beta_1}^2\right)$	$\mu_{\beta_1} = \left(\frac{(1 - \tau_p^2)(1 - \alpha^2)}{\sigma^2}\right)^{-\frac{1}{2}}$	$\sigma_{\beta_1}^2 = 8$	(10)
$\beta_0 \sim \mathrm{N}\left(\mu_{\beta_0}, \sigma_{\beta_0}^2\right)$	$\mu_{eta_0} = -\mu eta_1$	$\sigma_{\beta_1}^2 = 8$	(11)
			(12)