PhysicsLab

Midiendo la velocidad de un cilindro a lo largo de un plano inclinado con el sensor giroscópico

Materiales:

- 1. Smartphone con sistema operativo Android y con la aplicación *PhysicsLab* instalada.
- **2.** Lata cilíndrica con cabida para el smartphone y papel de reciclable para el relleno.
- 3. Plano inclinado.

Procedimiento:

- Construir el sistema correspondiente al boceto de la izquierda con los materiales previos.
- 2. Mida el radio del cilindro y la altura a la que va a colocar el cilindro para que inicie su descenso.
- 3. Ingrese el radio del cilindro en metros en la aplicación.
- **4.** Coloque el smartphone dentro del cilindro y rellénelo con el papel reciclable. Asegúrese de dejar un espacio para oprimir el botón de *play* de la aplicación.
- **5.** Oprima *play*, deje que el cilindro ruede por el plano inclinado y detenga su movimiento justo cuando toque el suelo.
- **6.** Oprima el botón de *stop* y retire el smartphone. Luego seleccione la opción de exportar datos para hacer su respectivo análisis.
- 7. Los datos que se exportan son el tiempo y la velocidad tangencial del cilindro que registró el sensor giroscópico desde que presionó el botón de *play* hasta que presionó el botón de *stop*.

Nota:

La mayoría de los smartphones tienen un giroscopio de tres ejes con el que se puede medir la rotación del éste en velocidad angular (rad/seg). Junto con el sensor de aceleración, el software del smartphone reconoce el cambio de movimiento y puede reaccionar en consecuencia. Esto se utiliza a veces al navegar, alinear la pantalla o jugar video juegos que requieran este sensor. El sensor es capaz de medir y registrar la rotación alrededor de cada uno de los tres ejes espaciales, x, y, y z. El sensor tiene un tamaño de aproximadamente de dos por dos milímetros y consiste en un sistema oscilante, que está influenciado por la fuerza De Coriolis cuando se gira. Esto se mide por medio de capacitores para obtener la velocidad angular del dispositivo.

Preguntas:

- 1. Explicar cómo la aplicación puede obtener la velocidad tangencial del cilindro utilizando los datos especificados y la velocidad angular medida.
- Transfiera los datos de medición seleccionados de la forma más precisa posible a un gráfico de velocidad vs tiempo, y determine la aceleración del cilindro rodando a lo largo del plano.
 Puede acceder a los valores medidos si los exporta y los visualiza en un programa correspondiente a hojas de cálculo de Google, Excel, Word etc.
- 3. Identifique la velocidad del cilindro al final del plano inclinado.
- 4. Determinar teóricamente la energía cinética y la energía potencial del cilindro en el momento del inicio y final del movimiento. Compare los valores medidos con los calculados y evalúe el resultado.

Consideración: además de la energía cinética traslacional ($E_T=\frac{1}{2}\cdot m\cdot v^2$), el cilindro también tiene energía cinética rotacional que se puede calcular (con $E_R=\frac{1}{2}\cdot I_Z\cdot \omega^2$ $I_Z=\frac{1}{2}\cdot m\cdot r^2$). La energía cinética de un cuerpo rodante se puede calcular utilizando $E_K=E_T+E_R$.