SYSTEMY CZASU RZECZYWISTEGO PRACOWNIA 11

Synchronizacja procesów-semafory i rendezvous

Proszę wpierw zapoznać się z programami przykładowymi Semaphores.vi oraz Rendezvous.vi. Można je uruchomić albo na komputerze głównym albo na docelowym – to nie ma znaczenia dla ich funkcjonalności.

1. Semaphores.vi

W LabVIEW moduły semaforów znajdują się w zakładce *Functions> Programming> Synchronization> Semaphore*. Prezentowany program generuje **niejednocześnie** trzy różne przebiegi (sinusoidalny, trójkątny i piłokształtny). Każdy z tych przebiegów jest generowany przez 2s, a kolejność generowania kontrolowana jest z wykorzystaniem semaforów. Proszę zapoznać się z własnościami stosowanych funkcji oraz działaniem całego programu. Proszę zwrócić uwagę na nietypową metodę zatrzymywania programu.

Ciekawostka: Inicjalizacja (wymazywanie zawartości) diagramów graficznych dokonuje się w tym programie w inny sposób, niż dotychczas poznaliśmy. Proszę kliknąć w menu File okna panelu i wybrać VI Properties. Następnie w rozwijanym menu Category należy wybrać Execution. Znajdziemy tam zaznaczoną opcję Clear indicators when called, która powoduje czyszczenie wyświetlaczy przy uruchomieniu programu.

2. Rendezvous.vi

Program ten jest bardzo podobny w konstrukcji do poprzedniego. Wykorzystuje on funkcje *Rendezvous*, które wymuszają jednoczesny start wykonywania wybranych części programu. Funkcje te znajdują się w *Functions*> *Programming*> Synchronization> *Rendezvous*. Każdy sygnał generowany jest przez inną ilość czasu: 1s, 2s i 4s. Analogicznie, jak poprzednio, proszę zapoznać się z opisem używanych funkcji oraz z działaniem programu.

3. Własny program z użyciem funkcji synchronizujących

Tworzymy projekt *Nazwisko_Prac_B_sem*, w którym na komputerze docelowym (kontrolerze PXI) umieścimy dwa programy, np. Nazwisko_*B_1.vi* i *Nazwisko_B_2.vi*. Ponieważ oba programy będą bardzo do siebie podobne, więc najlepiej jest je pisać równocześnie. Opis ćwiczenia zakłada taką metodę pisania.

Poniżej przedstawione są po kolei obiekty, które należy umieścić w programie od lewej strony do prawej, **zapewniając przedstawioną kolejność ich wykonywania**:

- 1. Bloczek rozpoczynający śledzenie programu (*TraceTool Start Trace*) z buforem 1e6 i śledzeniem szczegółowym. Ten bloczek będzie obecny tylko w programie *Nazwisko_B_1.vi* śledzenie i tak będzie obejmować oba programy.
- 2. W obu programach tworzymy *Rendezvous* o nazwie np. RenB taki napis podpinamy do wejścia *Name*. Dzięki temu dalsze części obu programów zaczną się wykonywać równocześnie.
 - Nie jest problemem to, że tworzymy Rendezvous (lub semafor) dwukrotnie pierwsza wywołana funkcja utworzy obiekt, a druga nie zrobi nic, bo obiekt już istnieje.
- 3. Bloczek oczekiwania na synchronizację Rendezvous.
- 4. TraceTool Log User Event ze zdarzeniem o ID = 0, a w programie Nazwisko_B_2.vi o ID = 3.
- 5. W obu programach tworzymy semafor o nazwie np. SemB.

SYSTEMY CZASU RZECZYWISTEGO PRACOWNIA 11

6. W obu programach wstawiamy pętlę czasową o nazwie P-1 (odpowiednio P-2) zawierająca trzy wewnętrzne ramki. Okres wykonywania obu pętli ma wynosić 10 μs – odpowiednie źródło czasu wybieramy klikając prawym klawiszem myszki w lewe wejścia pętli i wybierając Configure Input Node. Później będziemy jeszcze zmieniać okres pętli, ich priorytety oraz będziemy wymuszać, by wykonywały się albo na tym samym, albo na różnych procesorach.

Pętla czasowa podzielona jest wewnętrznie na 3 ramki oraz ma się wykonywać czterokrotnie. Jej zawartość jest następująca:

- Lewa ramka zawiera żądanie semafora, a **po nim** zdarzenie *TraceTool Log User Event* o ID = 1 (odpowiednio ID = 4).
- W ramce środkowej znajdują się bloczki, które będą odpowiedzialne za zatrzymanie pętli po wykonaniu 4 iteracji.
- Prawa ramka zawiera zdarzenie *TraceTool Log User Event* o ID = 2 (odpowiednio ID = 5), a **po nim** uwolnienie semafora.
- 7. Za pętlą czasową umieszczamy uwolnienie referencji do semafora, a następnie do Rendezvous.
- 8. Na samym końcu programu *Nazwisko_B_1.vi* umieszczamy bloczek wysyłający prześledzony program na komputer główny (**169.254.148.100**).

Otwieramy *Trace Viewer* i definiujemy kolory zdefiniowanych flag. Wyłączamy wszystkie flagi systemowe (można czasowo włączyć flagi *Loop Done* i zaobserwować kończenie pętli i sekwencji w pętli).

Należy wpierw uruchomić *Nazwisko_B_2.vi*, a po nim *Nazwisko_B_1.vi*, by nie śledzić niepotrzebnie czasu pomiędzy uruchomieniem przez nas programów.

Proszę

- zaobserwować pozycje flag dla różnych okresów wykonywania pętli (10 μs, 100 μs, 200 μs).
- uruchamiać petle bądź na tym samym, bądź na różnych procesorach.
- zmienić priorytety pętli i zaobserwować zachowanie.

4. Podłączenie urządzenia pomiarowego

Teraz wracamy do zadania z pracowni 9 i zmieniamy je zastępując generator sygnału rzeczywistym urządzeniem pomiarowym zainstalowanym w kasecie PXI. Jeżeli nie mamy już tego programu, to można ściągnąć z pegaz.uj.edu.pl pliki Target_9.vi i Host_9.vi, włączyć je do projektu i tylko dodać zmienne współdzielone, by wyświetlić sygnał na wyświetlaczu.

Usuwamy generator z programu **Target_9.vi**. W jego miejsce należy wstawić funkcję obsługującą urządzenia (**DAQ Assist**, czyli Asystent DAQ, który jest najprostszą funkcją umożliwiającą na stworzenie systemu akwizycji danych), która znajduje się w *Functions> Measurement I/O> DAQmx – Data Acquisition* lub w *Functions> Express> Input*.

Po ułożeniu bloczka na diagramie blokowym otworzy się okno umożliwiające jego konfigurację.

a) Konfiguracja DAQ Assistant.

SYSTEMY CZASU RZECZYWISTEGO PRACOWNIA 11

Będziemy odbierać sygnały analogowe przychodzące na pierwsze wejście analogowe karty PXI-6221, więc wybieramy *Acquire Signals> Analog Input> Voltage>* kanał ai0 urządzenia PXI-6221. Klikamy *Finish*. Na następnym oknie, jako *Terminal Configuration* wybieramy RSE (*ground-Referenced Single-Ended*, czyli sygnał mierzony względem wspólnej masy). Jako *Acquisition Mode* wybrać należy *N Samples, Samples to read* = 1000, *rate* (*Hz*) = 1000 lub 1k. Zamykamy okno klikając OK. Parametry próbkowania można też podawać na bloczek z zewnątrz: *rate* (ilość pomiarów, których w ciągu sekundy dokonuje układ ADC na karcie 6221) oraz *number of samples* (ilość próbek przekazana w ciągu sekundy) możemy podpiąć do stałych o wartości równej 1000. Do wejścia *stop* (*F*) zmienną STOP. Wyjście *data* ze zmienną DaneGen.

- b) Odbierany sygnał należy przekazać do programu **Host_9.vi** i wyświetlić na tym samym wykresie, co wcześniej sygnał z generatora. Jeżeli znajduje się tam również pisanie do pliku, co robiliśmy na pracowni 9, to należy je albo usunąć, albo zakomentować.
- c) Można poeksperymentować z reżymem pracy Asystenta DAQ i zmienić go z *N Samples*, na ciągły.