RIDUZIONI, INDECIDIBILITA' E RICONOSCIBILITA'

M. Anselmo

12 maggio 2023

È importante riconoscere che un problema P è indecidibile.

È importante riconoscere che un problema P è indecidibile. Come? Tre possibilità:

È importante riconoscere che un problema P è indecidibile.

Come? Tre possibilità:

► Supporre l'esistenza di una MdT che decide *P* e provare che questo conduce a una contraddizione.

È importante riconoscere che un problema P è indecidibile.

Come? Tre possibilità:

- ► Supporre l'esistenza di una MdT che decide *P* e provare che questo conduce a una contraddizione.
- Considerare un problema P' di cui sia nota l'indecidibilità e dimostrare che P' "non è più difficile" del problema in questione P.
- Teorema di Rice.

Riducibilità: definizione informale

- Idea: convertire le istanze di un problema P nelle istanze di un problema P' in modo che un algoritmo per P', se esiste, possa essere utilizzato per progettare un algoritmo per P: P non è più difficile di P'.
- Sia A il linguaggio associato a P, sia B il linguaggio associato a P'. Allora proveremo che: B decidibile ⇒ A decidibile, A indecidibile ⇒ B indecidibile.
- Nota: nulla è detto sulla decidibilità di A o B ma solo sulla decidibilità di A assumendo di disporre di un algoritmo per decidere di B.

Riducibilità mediante funzione

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile mediante funzione a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $\forall w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

La funzione f è chiamata una riduzione da A a B.

Riducibilità mediante funzione

Immagine tratta dalle dispense della Prof.ssa Emanuela Fachini

Una riduzione fornisce un modo per convertire problemi di appartenenza ad A in problemi di appartenenza a B.

Se un problema A è riducibile a B e sappiamo risolvere B allora sappiamo risolvere A cioè A "non è più difficile" di B.

Risultati

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Teorema

Se $A \leq_m B$ e B è decidibile, allora A è decidibile.

Teorema

Se $A \leq_m B$ e B è Turing riconoscibile, allora A è Turing riconoscibile.

Risultati

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Teorema

Se $A \leq_m B$ e B è decidibile, allora A è decidibile.

Teorema

Se $A \leq_m B$ e B è Turing riconoscibile, allora A è Turing riconoscibile.

Corollario

Se $A \leq_m B$ e A è indecidibile, allora B è indecidibile.

Corollario

Se $A \leq_m B$ e A non è Turing riconoscibile, allora B non è Turing riconoscibile.

Riduzioni e indecidibilità

Nei teoremi seguenti proveremo l'esistenza di riduzioni da A_{TM} (o da un altro linguaggio indecidibile) ad alcuni linguaggi B associati a problemi di decisione sulle macchine di Turing.

Una conseguenza importante di tali teoremi è che ognuno di questi linguaggi B è indecidibile.

Inoltre, quando descriviamo una macchina di Turing che calcola una riduzione da A a B, assumiamo che agli input che non sono "della forma corretta" sia associata una stringa al di fuori di B.

Indecidibilità del problema della fermata

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ si arresta su } w \}$$

Teorema

 $A_{TM} \leq_m HALT_{TM}$.

Dimostrazione

Occorre definire una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M', w' \rangle$ e

$$\langle M, w \rangle \in A_{TM}$$
 sse $\langle M', w' \rangle \in HALT_{TM}$

.

Indecidibilità del problema della fermata

Definiamo w' = w e M' come segue:

$$M': x \to \boxed{M} \to \begin{cases} accetta \\ rifiuta \end{cases} \to \begin{cases} accetta \\ cicla \end{cases}$$

La MdT M' si ferma su input $x \Leftrightarrow M$ accetta x.

Indecidibilità del problema della fermata

Definiamo w' = w e M' come segue:

$$M': x \to \boxed{M} \to \left\{ egin{array}{l} \textit{accetta} \\ \textit{rifiuta} \end{array} \right] \to \left\{ egin{array}{l} \textit{accetta} \\ \textit{cicla} \end{array} \right.$$

La MdT M' si ferma su input $x \Leftrightarrow M$ accetta x.

La funzione $f: \langle M, w \rangle \rightarrow \langle M', w \rangle$ è una riduzione:

- ▶ f è calcolabile
- ▶ $\langle M, w \rangle \in A_{TM} \Leftrightarrow M$ accetta $w \Leftrightarrow M'$ si ferma su $w \Leftrightarrow \langle M', w \rangle \in HALT_{TM}$.

Problema del vuoto

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM e } w \in L(M) \}$$

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una } TM \text{ e } L(M) = \emptyset \}$$

$$A_{TM} \leq_m \overline{E_{TM}}$$

Problema del vuoto

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ è una TM e } w \in L(M)\}$$
 $E_{TM} = \{\langle M \rangle \mid M \text{ è una } TM \text{ e } L(M) = \emptyset\}$
 $A_{TM} \leq_m \overline{E_{TM}}$

Consideriamo $f:\Sigma^* o\Sigma^*$ tale che $f(\langle M,w
angle)=\langle M_1
angle$ dove

$$M_1: x \to \boxed{x = ?w} \to \begin{cases} No & \to \\ Si & w \to \boxed{M} \to accetta \end{cases} \to \begin{cases} rifiuta \\ accetta \end{cases}$$

Quindi
$$L(M_1) = \begin{cases} \{w\} & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{altrimenti} \end{cases}$$

Indecidibilità del problema del vuoto

Teorema

E_{TM} è indecidibile.

Infatti $A_{TM} \leq_m \overline{E_{TM}}$ e A_{TM} indecidibile $\Rightarrow \overline{E_{TM}}$ indecidibile.

Corollario E_{TM} è indecidibile.

Infatti la classe dei linguaggi decidibili è chiusa per complemento.

Nota. A_{TM} non è riducibile mediante funzione ad E_{TM} (vedi es. 5.5 di [Sipser]).

$REGULAR_{TM}$

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) \text{ è regolare } \}$$

$$A_{TM} \leq_m REGULAR_{TM}$$

$REGULAR_{TM}$

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) \text{ è regolare } \}$$

$A_{TM} \leq_m REGULAR_{TM}$

Sia $f: \langle M, w \rangle \to \langle R \rangle$ dove R su un input x:

$$x \to \boxed{ \boxed{ M_{\{0^n1^n\}} } } \to \begin{cases} \textit{accetta} & \to \\ \textit{rifiuta} & \textit{w} \to \boxed{\textit{M}} \to \begin{cases} \textit{accetta} \\ \textit{non accetta} \end{cases} } \to \begin{cases} \textit{accetta} \\ \textit{non accetta} \end{cases}$$

(cont.)

$$x \to \boxed{ M_{\{0^n1^n\}} } \to \begin{cases} \textit{accetta} & \to \\ \textit{rifiuta} & \textit{w} \to \boxed{\textit{M}} \to \begin{cases} \textit{accetta} \\ \textit{non accetta} \end{cases} } \to \begin{cases} \textit{accetta} \\ \textit{ann accetta} \end{cases}$$

Indipendentemente da M e w, R accetta sempre le stringhe di $\{0^n1^n\mid n\in\mathbb{N}\}$. Inoltre, accetta anche tutte le altre $x\notin\{0^n1^n\mid n\in\mathbb{N}\}$ sse M accetta w. Quindi:

$$L(R) = egin{cases} \Sigma^* & ext{(regolare)} & ext{se } \langle M, w \rangle \in A_{TM} \\ \{0^n 1^n \mid n \in \mathbb{N}\} & ext{(non regolare)} & ext{altrimenti} \end{cases}$$

(cont.)

$$x \to \boxed{ M_{\{0^n1^n\}} } \to \begin{cases} \textit{accetta} & \to \\ \textit{rifiuta} & \textit{w} \to \boxed{\textit{M}} \to \begin{cases} \textit{accetta} \\ \textit{non accetta} \end{cases} } \to \begin{cases} \textit{accetta} \\ \textit{ann accetta} \end{cases}$$

Indipendentemente da M e w, R accetta sempre le stringhe di $\{0^n1^n\mid n\in\mathbb{N}\}$. Inoltre, accetta anche tutte le altre $x\notin\{0^n1^n\mid n\in\mathbb{N}\}$ sse M accetta w. Quindi:

$$L(R) = \begin{cases} \Sigma^* & \text{(regolare)} & \text{se } \langle M, w \rangle \in A_{TM} \\ \{0^n 1^n \mid n \in \mathbb{N}\} & \text{(non regolare)} & \text{altrimenti} \end{cases}$$

$$\langle M, w \rangle \in A_{TM} \Leftrightarrow L(R)$$
 è regolare $\Leftrightarrow \langle R \rangle \in REGULAR_{TM}$.

La funzione f è calcolabile (perchè?).

Quindi f è una riduzione da A_{TM} a $REGULAR_{TM}$.

Linguaggi indecidibili

Teorema

 A_{TM} , $HALT_{TM}$, E_{TM} , $\overline{E_{TM}}$, $REGULAR_{TM}$ sono linguaggi indecidibili.

EQ_{TM} è indecidibile

$$\begin{split} E_{TM} &= \{ \langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) = \emptyset \} \\ EQ_{TM} &= \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sono MdT e } L(M_1) = L(M_2) \} \\ &\qquad \qquad E_{TM} \leq_m EQ_{TM} \end{split}$$

EQ_{TM} è indecidibile

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) = \emptyset \}$$

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sono MdT e } L(M_1) = L(M_2) \}$

$$E_{TM} \leq_m EQ_{TM}$$

Sia M_1 una macchina di Turing tale che $L(M_1) = \emptyset$. $f: \langle M \rangle \to \langle M, M_1 \rangle$ è una riduzione di E_{TM} a EQ_{TM} .

EQ_{TM} è indecidibile

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) = \emptyset \}$$

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sono MdT e } L(M_1) = L(M_2) \}$

$$E_{TM} \leq_m EQ_{TM}$$

Sia M_1 una macchina di Turing tale che $L(M_1) = \emptyset$. $f: \langle M \rangle \to \langle M, M_1 \rangle$ è una riduzione di E_{TM} a EQ_{TM} . Perchè?

$$A_{TM} \leq_m EQ_{TM}$$

$$A_{TM} \leq_m EQ_{TM}$$

Idea: Data $\langle M, w \rangle$, considerare le MdT M_1 e M_2 tali che

$A_{TM} \leq_m EQ_{TM}$

Idea: Data $\langle M, w \rangle$, considerare le MdT M_1 e M_2 tali che Per ogni input x: $M_1 \text{ accetta } x,$ $M_2 \text{ simula } M \text{ su } w. \text{ Se } M \text{ accetta } w, M_2 \text{ accetta } x.$

$$A_{TM} \leq_m EQ_{TM}$$

Idea: Data $\langle M, w \rangle$, considerare le MdT M_1 e M_2 tali che

Per ogni input x:

 M_1 accetta x,

 M_2 simula M su w. Se M accetta w, M_2 accetta x.

$$f: \langle M, w \rangle \to \langle M_1, M_2 \rangle$$
 è riduzione da A_{TM} a EQ_{TM} .

Perchè?

$$L(M_1) = \Sigma^*; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$$

Riduzione da A_{TM} al complemento di EQ_{TM}

 $f:\langle M,w \rangle \to \langle M_1,M_2 \rangle$ è riduzione che prova $A_{TM} \leq_m EQ_{TM}$.

$$L(M_1) = \Sigma^*; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$$

Riduzione da A_{TM} al complemento di EQ_{TM}

 $f: \langle M, w \rangle \to \langle M_1, M_2 \rangle$ è riduzione che prova $A_{TM} \leq_m EQ_{TM}$.

$$L(M_1) = \Sigma^*; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$$

Possiamo modificare f per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Riduzione da A_{TM} al complemento di EQ_{TM}

 $f: \langle M, w \rangle \to \langle M_1, M_2 \rangle$ è riduzione che prova $A_{TM} \leq_m EQ_{TM}$.

$$L(M_1) = \Sigma^*$$
; $L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$

Possiamo modificare f per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Lasciamo la stessa M_2 e cambiamo M_1 in $\mathbf{M_3}$.

$$\begin{split} g: \langle M, w \rangle &\to \langle M_3, M_2 \rangle \\ \textbf{L}(\textbf{M}_3) &= \emptyset; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases} \end{split}$$

Riepilogo riduzioni e linguaggi indecidibili

Teorema

- $ightharpoonup A_{TM} \leq_m HALT_{TM}$
- $ightharpoonup A_{TM} \leq_m \overline{E_{TM}}$
- $ightharpoonup A_{TM} \leq_m REGULAR_{TM}$
- $ightharpoonup E_{TM} \leq_m EQ_{TM}$
- $ightharpoonup A_{TM} \leq_m EQ_{TM}$
- $ightharpoonup A_{TM} \leq_m \overline{EQ_{TM}}$

Corollario

 A_{TM} , $HALT_{TM}$, E_{TM} , $\overline{E_{TM}}$, $REGULAR_{TM}$, EQ_{TM} , $\overline{EQ_{TM}}$, sono linguaggi indecidibili.

Definizione

Diciamo che un linguaggio L è co-Turing riconoscibile se \overline{L} è Turing riconoscibile.

Definizione

Diciamo che un linguaggio L è co-Turing riconoscibile se \overline{L} è Turing riconoscibile.

Teorema

Un linguaggio L è decidibile se e solo se L è Turing riconoscibile **e** co-Turing riconoscibile.

Definizione

Diciamo che un linguaggio L è co-Turing riconoscibile se \overline{L} è Turing riconoscibile.

Teorema

Un linguaggio L è decidibile se e solo se L è Turing riconoscibile **e** co-Turing riconoscibile.

Esempio A_{TM} è riconoscibile, ma non co-Turing riconoscibile.

Teorema

 EQ_{TM} non è nè Turing riconoscibile nè co-Turing riconoscibile.

Dimostrazione

Supponiamo per assurdo che EQ_{TM} sia Turing riconoscibile.

$$A_{TM} \leq_m \overline{EQ_{TM}} \Rightarrow \overline{A_{TM}} \leq_m EQ_{TM}$$

Quindi $\overline{A_{TM}}$ sarebbe Turing riconoscibile: assurdo.

Supponiamo per assurdo che EQ_{TM} sia co-Turing riconoscibile, cioè che $\overline{EQ_{TM}}$ sia Turing riconoscibile.

$$A_{TM} \leq_m EQ_{TM} \Rightarrow \overline{A_{TM}} \leq_m \overline{EQ_{TM}}$$

Quindi A_{TM} sarebbe Turing riconoscibile: assurdo.

Diagramma delle classi

Diagramma delle classi

Domanda:

E' corretta la posizione di Decidibili?

Ovvero: Decidibili ⊆ Turing riconoscibili ∩ co-Turing riconoscibili ?

Se sì, l'inclusione è stretta?

The right picture

Decidibili = Turing riconoscibili ∩ co-Turing riconoscibili

Esercizio da svolgere

Esercizio (applicabilità Teorema di Rice)

- (a) Enunciare il Teorema di Rice
- (b) E' possibile utilizzare il Teorema di Rice per mostrare che il seguente linguaggio è indecidibile? Giustificare la risposta.
- $\{\langle M \rangle \mid M$ è una MdT che accetta ogni stringa di lunghezza dispari $\}$

Esercizi da svolgere

Esercizio (transitività delle riduzioni)

Dimostrare che se $A \leq_m B$ e $B \leq_m C$ allora $A \leq_m C$. La dimostrazione deve essere costruttiva.

Esercizio (riduzione da A_{TM} a EQ_{TM})

Sia f_{A-NF} la funzione di riduzione esibita per dimostrare che $A_{TM} \leq_m E_{TM}$ e sia f_{E-EQ} la funzione di riduzione esibita per dimostrare che $E_{TM} <_m EQ_{TM}$.

E' possibile utilizzare f_{A-NE} e f_{E-EQ} per esibire una funzione di riduzione f_{A-NEO} per dimostrare che $A_{TM} <_m \overline{EQ_{TM}}$?

Se sì, la funzione f_{A-NEQ} è la stessa di quella esibita nelle slide precedenti per dimostrare che $A_{TM} <_m EQ_{TM}$?

Esercizio da svolgere

Esercizio (Linguaggio diagonale) Sia $L_d = \{\langle M \rangle \mid M \notin L(M)\}$ il linguaggio diagonale e $L_{ne} = \{\langle M \rangle \mid L(M) \neq \emptyset\}$. Si dimostri che

 $\bar{L}_d < L_{no}$