Emergency Deparment Management Problems

Emergency Room @ Maggiore Hospital

We will now consider a problem from the healthcare sector

We will use a dataset for the "Maggiore" hospital in Bologna

- In particular, we will focus on predicting arrivals
- ...To the Emergency Department (Pronto Soccorso)

A Look at the Dataset

We will start as usual by having a look at the dataset

In [2]: data = util.load_ed_data(data_file)
 data

Out[2]:

	year	ID	Triage	TkCharge	Code	Outcome
0	2018	1	2018-01-0100:17:33	2018-01-01 04:15:36	green	admitted
1	2018	2	2018-01-01 00:20:33	2018-01-0103:14:19	green	admitted
2	2018	3	2018-01-01 00:47:59	2018-01-01 04:32:30	white	admitted
51238	2018	51239	2018-01-01 00:49:51	NaT	white	abandoned
51240	2018	51241	2018-01-01 01:00:40	NaT	green	abandoned
•••					•••	
95665	2019	95666	2019-10-31 23:26:54	2019-10-31 23:41:13	yellow	admitted
95666	2019	95667	2019-10-31 23:46:43	2019-11-0109:30:25	green	admitted
108622	2019	108623	2019-10-31 23:54:05	NaT	green	abandoned
95667	2019	95668	2019-10-31 23:55:32	2019-11-01 00:18:46	yellow	admitted
108623	2019	108624	2019-10-31 23:59:21	NaT	green	abandoned

108625 rows × 6 columns

A Look at the Dataset

- Each row refers to a single patient
- Triage is the arrival time of each patient
- TKCharge is the time when a patient starts the first visit
- Code refers to the estimated priority (white < green < yellow < red)
- Outcome discriminates some special conditions (people quitting, fast tracks)

A Look at the Dataset

Let's also have a look at the data types

As we said, we will focus for on predicting arrivals

...Hence, it makes sense to sort rows by increasing triage time:

```
In [5]: data.sort_values(by='Triage', inplace=True)
```


Inter-Arrival Times

Let's check empirically the distribution of the inter-arrival times

- There is a number of very low inter-arrival times
- > This is due to how triage is performed (bursts, rather than a steady flow)

Waiting Time

Here is the distribution of the waiting times

```
In [7]: | tmp = data[~data['TkCharge'].isnull()]
        wait_time = tmp['TkCharge'].dt.round('10min') - tmp['Triage'].dt.round('10min')
        tmp = wait_time.value_counts().sort_index().values
        tmp = pd.Series(index=np.arange(len(tmp)), data=tmp)
        util.plot bars(tmp, tick gap=10, figsize=figsize)
         10000
          8000
          6000
          4000
          2000
```

The distribution is heavy-tailed

I.e. the probability of very long waiting times is non-negligible

Code Distribution

The distribution of the priority codes

- Green code (low severity) form the majority of arrivals
- Yellow and red codes (mid and high severity) are in smaller numbers
- White codes (lowest priority) are also not very frequent

Outcome Distribution

Abandons are infrequent, as are "fast track" patients

Arrival Distribution over Months

Let's look at the arrival distribution over months

- The low values for Nov. and Dec. are due to the 2019 series ending in October
- The distribution seems stable (but we are not plotting standard deviations!)

Arrival Distribution over Weekdays

Let's look at the distribution over weekdays

- Similarly to months, weekdays are likelly to have little predictive power
- ...But it's better not to rush conclusions (we still are not plotting the stddev!)

Arrival Distribution over Hours

Let's see now the arrival distribution over the hours of the day

- There is a clear pattern: the hour of the day will have strong predictive power
- Again, analyzing the standard deviation may provide better insights

Binning

In our considered problem:

- We are not going to revise our decisions continuosly
- We are not interested in predicting the next arrival

Rather:

- We will take decisions at fixed intervals
- We care about the expected arrivals in a given horizon

Overall, we need to choose a meaningful time unit

In other words, we need to perform some kind of binning

- We used binning to downsample high-frequency data
- Here we will use binning to aggregate events with a variable frequency

Code-Based Counts

We will prepare the data to track counts for all priority codes

```
In [13]: codes = pd.get_dummies(data['Code'])
          codes.set index(data['Triage'], inplace=True)
          codes.columns = codes.columns.to list()
          print(f'Number of examples: {len(codes)}')
          codes.head()
          Number of examples: 108625
Out[13]:
                                   red white yellow
                            green
                      Triage
                                 False False False
           2018-01-01 00:17:33 True
           2018-01-0100:20:33 True
                                  False False
                                             False
           2018-01-0100:47:59 False False True
                                             False
           2018-01-01 00:49:51 False False True
                                             False
           2018-01-0101:00:40 True
                                False False False
```

- The get_dummies function applies a one-hot encoding to categorical value
- The method generates a categorial column index (then converted to list)

Resampling

Then, we need to aggregate data with a specified frequency

```
In [14]: codes_b = codes.resample('h').sum()
          print(f'Number of examples: {len(codes_b)}')
          codes b.head()
          Number of examples: 16056
Out [14]:
                            green red white yellow
                      Triage
           2018-01-0100:00:00 2
                                 0
                                      2
                                           0
           2018-01-0101:00:00 7
           2018-01-01 02:00:00 4
           2018-01-01 03:00:00 7
           2018-01-01 04:00:00 3
                                  0
                                     2
                                           ()
```

- We used the resample iterator
- resample generater a dataframe with a dense index
- We chose 1 hours are our time unit

Computing Totals

We also compute the total number of arrivals for each interval

```
In [15]: cols = ['white', 'green', 'yellow', 'red']
         codes_b['total'] = codes_b[cols].sum(axis=1)
         codes b
```

Out[15]:

	green	red	white	yellow	total
Triage					
2018-01-01 00:00:00	2	0	2	0	4
2018-01-01 01:00:00	7	1	1	1	10
2018-01-01 02:00:00	4	1	4	3	12
2018-01-01 03:00:00	7	0	1	1	9
2018-01-01 04:00:00	3	0	2	0	5
•••					
2019-10-31 19:00:00	3	1	0	4	8
2019-10-31 20:00:00	9	0	2	0	11
2019-10-31 21:00:00	3	0	0	2	5
2019-10-31 22:00:00	1	2	3	1	7
2019-10-31 23:00:00	5	0	0	2	7

16056 rows × 5 columns

The total count will be less noisy, if the individual terms are independent

Adding Time Information

Finally, we add time information (for later convenience)

```
In [16]: codes_bt = codes_b.copy()
  codes_bt['month'] = codes_bt.index.month
  codes_bt['weekday'] = codes_bt.index.weekday
  codes_bt['hour'] = codes_bt.index.hour
  codes_bt
```

Out[16]:

	green	red	white	yellow	total	month	weekday	hour
Triage								
2018-01-01 00:00:00	2	0	2	0	4	1	0	0
2018-01-01 01:00:00	7	1	1	1	10	1	0	1
2018-01-01 02:00:00	4	1	4	3	12	1	0	2
2018-01-01 03:00:00	7	0	1	1	9	1	0	3
2018-01-01 04:00:00	3	0	2	0	5	1	0	4
								•••
2019-10-31 19:00:00	3	1	0	4	8	10	3	19
2019-10-31 20:00:00	9	0	2	0	11	10	3	20
2019-10-31 21:00:00	3	0	0	2	5	10	3	21
2019-10-31 22:00:00	1	2	3	1	7	10	3	22
2019-10-31 23:00:00	5	0	0	2	7	10	3	23

16056 rows × 8 columns

Counts over Time

Our resampled series can be plotted easily over time

Let's see the total counts as an example:

Counts over Time

Our resampled series can be plotted easily over time

The same plot, for the red codes (the counts are significanly lower):

Variability

With our binned series, we can assess the count variability

Let's check it over different months:

The variability does not change much over different months

Variability

Here is the standard deviation over weekdays

■ There is a trend, but rather weak

Variability

...And finally over hours

Variance and mean seem to be quite correlated

