IN THE CLAIMS

The status of each claim in the application is provided below.

Claims 1-124: Canceled.

125. (Currently Amended) A compound represented by formula (I):

$$X \xrightarrow{6} N \xrightarrow{2} NHR^{1} R^{3}$$

$$Y \xrightarrow{5} NHR^{2}$$

$$NHR^{2}$$

$$R^{4}$$

$$NHR^{2}$$

$$NHR^{2}$$

$$NHR^{2}$$

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each
$$R^2$$
 is, independently, $-R^7$, $-(CH_2)_m-OR^8$, $-(CH_2)_m-NR^7R^{10}$,

-(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

 $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}, -(CH_2)_n-C(=O)NR^7R^{10}, -(CH_2)_n-Z_g-R^7, -(CH_2)_m-NR^{10}-R^{10}$

CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂)_n-CO₂R⁷, or

$$-(CH_2)_n$$
 Q
 R^7
 R^7
 R^7

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl- lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

wherein

each R^L is, independently, $-R^7$, $-(CH_2)_n$ -OR⁸, -O- $(CH_2)_m$ -OR⁸, $-(CH_2)_n$ -NR⁷R¹⁰, -O- $(CH_2)_m$ -NR⁷R¹⁰, $-(CH_2)_n$ (CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -O- $(CH_2)_m$ (CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, $-(CH_2CH_2O)_m$ -R⁸, -O- $(CH_2CH_2O)_m$ -R⁸, $-(CH_2CH_2O)_m$ -CH₂CH₂NR⁷R¹⁰, -O- $(CH_2CH_2O)_m$ -CH₂CH₂NR⁷R¹⁰, $-(CH_2)_n$ -C(=O)NR⁷R¹⁰,

$$-O-(CH_2)_m-C(=O)NR^7R^{10}$$
, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

$$-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$$
,

$$-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$$
,

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2$$
 R^7
 R^7
 CH_2
 R^7
 R^7
 R^7
 R^7
 R^7
 R^7

each o is, independently, an integer from 0 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 1 to 10;

each x is, independently, O, NR¹⁰, C(=O), CHOH, C(=N-R¹⁰),

CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O-(CH₂)_m-OR⁸,

$$-(CH_2)_n-NR^7R^{10}$$
, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

$$\hbox{-O-(CH$_2$)_m(CHOR8)(CHOR8)_n-CH$_2OR8, -(CH$_2CH$_2O$)_m-R8,}$$

$$-O-(CH_2CH_2O)_m-R^8$$
, $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$,

$$-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$$
, $-(CH_2)_n-C(=O)NR^7R^{10}$,

$$-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$$

$$-(CH2)n-NR10-CH2(CHOR8)(CHOR8)n-CH2OR8,$$

each R^6 is, independently, $-R^7$, $-OR^{11}$, $-N(R^7)_2$, $-(CH_2)_m$ - OR^8 ,

- $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,
- -(CH₂)_n(CHOR⁸)(CHOR⁸)n-CH₂OR⁸, -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
- $-(CH_2CH_2O)_m-R^8$, $-O-(CH_2CH_2O)_m-R^8$, $-(CH_2CH_2O)m-CH_2CH_2NR^7R^{10}$,
- $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,
- $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$
- -(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,
- $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8,\\$
- -(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2$$
 R^7
 R^7
 CH_2
 R^7
 R^7
 R^7

wherein when two R^6 are $-OR^{11}$ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R^7 is, independently, hydrogen or lower alkyl; each R^8 is, independently, hydrogen, lower alkyl, $-C(=O)-R^{11}$, glucuronide, 2-tetrahydropyranyl, or

each R^9 is, independently, $-CO_2R^7$, $-CON(R^7)_2$, $-SO_2CH_3$, or $-C(=O)R^7$; each R^{10} is, independently, -H, $-SO_2CH_3$, $-CO_2R^7$, $-C(=O)NR^7R^9$,

-C(=O) \mathbb{R}^7 , or -CH₂-(CHOH)_n-CH₂OH;

each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰; each R¹¹ is, independently, lower alkyl;

each g is, independently, an integer from 1 to 6;

each m is, independently, an integer from 1 to 7;

each n is, independently, an integer from 0 to 7;

each Q is, independently, C-R⁵, C-R⁶, or a nitrogen atom, wherein one Q in a ring is a nitrogen atom;

or a pharmaceutically acceptable salt thereof, and inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

126. (Previously Presented) The compound of Claim 125, wherein Y is -NH₂.

- 127. (Previously Presented) The compound of Claim 126, wherein R² is hydrogen.
- 128. (Previously Presented) The compound of Claim 127, wherein R¹ is hydrogen.
- 129. (Previously Presented) The compound of Claim 128, wherein X is chlorine.
- 130. (Previously Presented) The compound of Claim 129, wherein R³ is hydrogen.
- 131. (Previously Presented) The compound of Claim 130, wherein each R^L is hydrogen.
 - 132. (Previously Presented) The compound of Claim 131, wherein o is 4.
 - 133. (Previously Presented) The compound of Claim 132, wherein p is 0.
- 134. (Previously Presented) The compound of Claim 133, wherein x represents a single bond.
- 135. (Previously Presented) The compound of Claim 134, wherein each R⁶ is hydrogen.
- 136. (Previously Presented) The compound of Claim 135, wherein R^5 is $-(CH_2)_{m}$ -OR⁸.

- 137. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-OR⁸.
- 138. (Previously Presented) The compound of Claim 135, wherein R^5 is $-(CH_2)_n$ NR^7R^{10} .
- 139. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-NR⁷R¹⁰.
- 140. (Previously Presented) The compound of Claim 135, wherein R^5 is $(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$.
- 141. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
- 142. (Previously Presented) The compound of Claim 135, wherein R^5 is $(CH_2CH_2O)_m$ - R^8 .
- 143. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂CH₂O)_m- R^8 .
- 144. (Previously Presented) The compound of Claim 135, wherein R^5 is $(CH_2CH_2O)_m$ - $CH_2CH_2NR^7R^{10}$.

- 145. (Previously Presented) The compound of Claim 135, wherein R⁵ is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 146. (Previously Presented) The compound of Claim 135, wherein R^5 is -(CH₂)_n-C(=O)NR⁷R¹⁰.
- 147. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
- 148. (Previously Presented) The compound of Claim 135, wherein R^5 is $-(CH_2)_n$ - $(Z)_g$ - R^7 .
- 149. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-(Z)_g- R^7 .
- 150. (Previously Presented) The compound of Claim 135, wherein R^5 is- $(CH_2)_n$ - NR^{10} - $CH_2(CHOR^8)(CHOR^8)_n$ - CH_2OR^8 .
- 151. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)_n-CH₂OR⁸.
- 152. (Previously Presented) The compound of Claim 135, wherein R^5 is -O-(CH₂)_m-CO₂ R^7 .
 - 153. (Previously Presented) The compound of Claim 135, wherein R⁵ is -OSO₃H.

- 154. (Previously Presented) The compound of Claim 135, wherein R⁵ is -O-glucuronide.
 - 155. (Previously Presented) The compound of Claim 135, wherein R⁵ is -O-glucose.
 - 156. (Previously Presented) The compound of Claim 135, wherein R⁵ is

$$-O \leftarrow CH_2$$
 R^7
 R^7

157. (Previously Presented) The compound of Claim 135, wherein R⁵ is

$$-(CH_2)_n$$
 R^7
 R^7

158. (Previously Presented) The compound of Claim 135, wherein R⁵ is

159. (Previously Presented) The compound of Claim 135, wherein R^5 is $-(CH_2)_n$ - CO_2R^7 .

160. (Previously Presented) The compound of Claim 125, wherein

X is halogen;

Y is $-N(R^7)_2$;

R¹ is hydrogen or C₁-C₃ alkyl;

 R^2 is $-R^7$, $-(CH_2)_m$ - OR^8 , or $-(CH_2)_n$ - CO_2R^7 ;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

161. (Previously Presented) The compound of Claim 160, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R² is hydrogen or C₁-C₃ alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

- 162. (Previously Presented) The compound of Claim 161, wherein Y is -NH₂.
- 163. (Previously Presented) The compound of Claim 162, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

- 164. (Previously Presented) The compound of Claim 125, wherein R^5 is -(CH₂)_m-OR⁸.
- 165. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-OR⁸.
- 166. (Previously Presented) The compound of Claim 125, wherein R^5 is $-(CH_2)_n$ NR^7R^{10} .
- 167. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-NR⁷R¹⁰.
- 168. (Previously Presented) The compound of Claim 125, wherein R⁵ is (CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
- 169. (Previously Presented) The compound of Claim 125, wherein R^5 is $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$.
- 170. (Previously Presented) The compound of Claim 125, wherein R^5 is $(CH_2CH_2O)_m$ - R^8 .
- 171. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂CH₂O)_m- R^8 .

- 172. (Previously Presented) The compound of Claim 125, wherein R^5 is $(CH_2CH_2O)_m$ - $CH_2CH_2NR^7R^{10}$.
- 173. (Previously Presented) The compound of Claim 125, wherein R⁵ is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 174. (Previously Presented) The compound of Claim 125, wherein R^5 is -(CH₂)_n-C(=O)NR⁷R¹⁰.
- 175. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
- 176. (Previously Presented) The compound of Claim 125, wherein R^5 is $-(CH_2)_n$ - $(Z)_g$ - R^7 .
- 177. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-(Z)_g- R^7 .
- 178. (Previously Presented) The compound of Claim 125, wherein R^5 is - $(CH_2)_n$ - NR^{10} - $CH_2(CHOR^8)(CHOR^8)_n$ - CH_2OR^8 .
- 179. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.

- 180. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-(CH₂)_m-CO₂ R^7 .
 - 181. (Previously Presented) The compound of Claim 125, wherein R⁵ is -OSO₃H.
- 182. (Previously Presented) The compound of Claim 125, wherein R^5 is -O-glucuronide.
 - 183. (Previously Presented) The compound of Claim 125, wherein R⁵ is -O-glucose.
 - 184. (Previously Presented) The compound of Claim 125, wherein R⁵ is

$$-O \leftarrow CH_2$$
 R^7
 R^7

185. (Previously Presented) The compound of Claim 125, wherein R⁵ is

$$-(CH_2)_n$$
 Q
 R^7
 R^7

186. (Previously Presented) The compound of Claim 125, wherein R⁵ is

- 187. (Previously Presented) The compound of Claim 125, wherein R^5 is $-(CH_2)_n$ - CO_2R^7 .
 - 188. (Previously Presented) The compound of Claim 125, wherein x is a single bond.
- 189. (Previously Presented) The compound of Claim 125, which is in the form of a pharmaceutically acceptable salt.
- 190. (Previously Presented) The compound of Claim 125, which is in the form of a hydrochloride salt.
- 191. (Previously Presented) The compound of Claim 125, which is in the form of a mesylate salt.
- 192. (Previously Presented) The compound of Claim 125, wherein R⁵ is selected from the group consisting of
 - -O-(CH₂)₃-OH, -NH₂, -O-CH₂-(CHOH)₂-CH₂OH, -O-CH₂-CHOH-CH₂OH,
 - -O-CH₂CH₂-O-tetrahydropyran-2-yl, -O-CH₂CHOH-CH₂-O-glucuronide,
 - $\hbox{-O-CH$_2CH_2$OH, -O-($CH$_2$CH$_2$O)$_4-$CH$_3, -O-CH$_2CH_2OCH_3,}\\$

-O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, -O-(CH₂CH₂O)₂-CH₃, -OCH₂-CHOH-CHOH-CH₂OH, -CH₂OH, -CO₂CH₃,

$$-O + CH_2$$
 R^7
 R^7

and

193. (Previously Presented) The compound of Claim 125, wherein R⁵ is selected from the group consisting of para -O-(CH₂)₃-OH, para -NH₂, para -O-CH₂-(CHOH)₂-CH₂OH, ortho -O-CH₂-CHOH-CH₂OH, meta -O-CH₂-CHOH-CH₂OH, para -O-CH₂CH₂-O-tetrahydropyran-2-yl, para -O-CH₂CHOH-CH₂-O-glucuronide, para -O-CH₂CH₂OH, para -O-(CH₂CH₂O)₄-CH₃, para -O-CH₂CH₂OCH₃, para -O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, para -O-(CH₂CH₂O)₂-CH₃, -OCH₂-CHOH-CHOH-CH₂OH, para -CH₂OH, para -CO₂CH₃, para -SO₃H, para -O-glucuronide, para

$$-O + CH_2$$
 R^7
 R^7

and

para

194. (Previously Presented) The compound of Claim 193, wherein X is chloro or bromo;

Y is $-N(R^7)_2$;

R¹ is hydrogen or C₁-C₃ alkyl;

R² is hydrogen or C₁-C₃ alkyl;

R³ is a group represented by formula (A);

 R^4 is hydrogen, a group represented by formula (A), or lower alkyl; at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

195. (Previously Presented) The compound of Claim 194, wherein R^4 is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

196. (Previously Presented) The compound of Claim 195, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R¹ is hydrogen or C₁-C₃ alkyl;

R² is hydrogen or C₁-C₃ alkyl;

R³ is a group represented by formula (A);

 R^4 is hydrogen, a group represented by formula (A), or lower alkyl; at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

197. (Previously Presented) The compound of Claim 196, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and

at most two R⁶ are other than hydrogen as defined above.

198. (Previously Presented) The compound of Claim 125, wherein formula (A) is

$$---(CH_2)_n$$
 R^5

wherein R⁵ and n are as defined in Claim 125.

199. (Previously Presented) A pharmaceutical composition, comprising the compound of Claim 125 and a pharmaceutically acceptable carrier.

200. (Currently Amended) A composition, comprising:

the compound of Claim 125; and

a P2Y2 receptor agonist inhibitor.

201. (Previously Presented) A composition, comprising:

the compound of Claim 125; and

a bronchodilator.

202. (Previously Presented) A method of blocking sodium channels, comprising contacting sodium channels with an effective amount of the compound of Claim 125.