Yancong Lin

http://yanconglin.github.io/

Postdoc, Computer Vision Lab, Delft University of Technology, The Netherlands Office: $5.E.040 \star Building 28 \star Van Mourik Broekmanweg 6 \star 2628 XE Delft \star the Netherlands Phone: (+31)6.5555.4608 \star E-mail: y.lin-1@tudelft.nl$

Summary

Job intention: Researcher on Computer Vision and its Applications in Industry. Interested in Data and Compute Efficient Learning by Adding Inductive Priors.

EXPERIENCE	
1/2022 - Now	Postdoc, Delft University of Technology, The Netherlands Working on pixel-free deep learning and vision for industrial inspection.
EDUCATION	
9/2017-4/2022	PhD, Delft University of Technology, The Netherlands
Dissertation:	Data-efficient learning of geometric structures from single-view images
References:	Dr. Jan van Gemert and Dr. Silvia L. Pintea
9/2014 - 6/2017	MEng in Computer Science, Tianjin Univ, China
9/2010 - 6/2014	BSc in Physics, Southwest Jiaotong Univ, China
RESEARCH	
1/2022 - Now	Vision for Industrial Inspection - aircraft engines Generating synthetic data and transfer learning to the real-world. Using NeRFs for 3D reconstruction of engine blades from a single video.
3/2021 - 9/2021	3D mirror plane detection from single-view images Incorporated mirror geometry into learning for data- and compute- efficiency.
3/2020 - 3/2021	Geometric priors for deep vanishing point detection Investigated perspective geometry: map pixels to spherical point clouds. Proposed a detector robust to domain shifts (synthetic - real) / data reduction.
9/2017 - 3/2020	Deep Hough-Transform line priors (wireframes/traffic lanes) Proposed (Inverse) Hough Transform layers with gradient backpropagation. Validated its superiority in small-data regime and in semi-supervised learning.
9/2015 - 1/2016	Engineering: Multi-view 3D video capture system Implemented real-time 3D display (16 cameras, 30 FPS, 1920×1080).

KEY PUBLICATIONS

- 1. Deep vanishing point detection: Geometric priors make dataset variations vanish. Y. Lin, R. Wiersma, S. Pintea, K. Hildebrandt, E. Eisemann and J. C. van Gemert. CVPR 2022.
- 2. Deep Hough-Transform line priors. Y. Lin, S. Pintea, and J. C. van Gemert. ECCV 2020.
- 3. Investigating transformers in the decomposition of polygonal shapes as point collections. A. Alfieri, Y. Lin, and J. C. van Gemert. ICCV-workshop 2021, Best Student Paper.

SKILLS				
Teaching	Seminar Computer Vision by Learning (MSc, 2018-2021)			
Reviewing	CVPR/ICCV/ECCV, IEEE Transactions on Image Processing			
Programming	Python, C++, CUDA (implemented Conv2d from scratch in PyTorch)			
Social	Reporter/editor for school newspaper			
Awards				
National Sch	olarship	Ministry of Education, China	2016	
Interests				
Dt. D	1 1 10 .	T NID A		

Fitness, Formula 1, Premier League, NBA