Chương 3:

1. Cho mặt trụ tròn bánh kính $\rho=8$ cm có hàm mật độ điện tích mặt $\rho_S=5e^{-20|z|}$ nC/m²

a. Tính tổng điện tích Q chứa trong mặt tru tròn.

$$D/S: Q = 0.25nC$$

b. Tính tổng thông lượng Φ đi ra khỏi mặt cong giới hạn bởi: $\rho = 8$ cm, 1cm < z < 5cm, $30^0 < \phi < 90^0$

$$θ/S: Φ = 9,45pC$$

2. Xét ba mặt trụ tròn có bán kính là $\rho=1,2$ và 3cm, các mặt tròn này có mật độ điện tích mặt lần lượt là $\rho_S=20,$ -8, và 5 nC/m²

a. Tính tổng thông lượng Φ đi qua mặt kín giới hạn bởi $\rho=5\text{cm},\,0\leq z\leq 1\text{m}$

$$θ/S: Φ = 1,2nC$$

b. Tính D tại điểm P(1cm, 2cm, 3cm)

Đ/S:

$$\mathbf{D}_P = (0.8\mathbf{a}_x + 1.6\mathbf{a}_y) \text{ nC/m}^2$$

3. Trong chân không, xét một vật mang điện dang hình cầu 0 < r < 1mm có mật độ điện tích

khối
$$\rho_V = 2e^{-1000r} \text{ nC/m}^3$$

Ngoài khoảng không gian trên, không có vật mang điện nào khác.

a. Tính tổng điện tích của vật mang điện bao bởi mặt cầu có bán kính r = 1mm.

$$D/S: Q = 4.10^{-9}nC$$

b. Sử dụng luật Gauss để tính giá trị D_r trên mặt cong có bán kính r = 1mm

$$D/S: D_r = 3,2.10^{-4} nC/m^2$$

4. Xét môt tru tròn biết: $\rho_V = 0$ với $\rho < 1$ mm, và $\rho_V = 2\sin 2000\pi \rho$ nC/m³

với 1mm < ρ < 1,5mm, và ρ_V = 0 với ρ > 1,5mm. Tính vector mật độ dịch chuyển điện D trong không gian với:

a. $\rho < 1$ mm

$$D/S: D_{\rho} = 0$$

b. $1 \text{mm} < \rho < 1.5 \text{mm}$

Đ/S:

$$D_{\rho} = \frac{10^{-15}}{2\pi^{2}\rho} \left[\sin(2000\pi\rho) + 2\pi \left[1 - 10^{3}\rho \cos(2000\pi\rho) \right] \right] \text{C/m}^{2}$$

c. $\rho > 1.5 \text{ mm}$

Đ/S:

$$D_{\rho} = \frac{2.5 \times 10^{-15}}{\pi \rho} \text{ C/m}^2$$

5. Xét ba mặt cầu có bán kính r = 2, 4, 6m, có hàm mật độ điện tích mặt lần lượt là

 $20nC/m^2$, $-4nC/m^2$, và ρ_{S0} .

Tính vector mật độ dịch chuyển điện D tại r = 1m, r = 3m và r = 5m

Đ/S:

Tại r = 1m: $D_r = 0$

Tại r = 3m: $D_r = 8.9.10^{-9} \text{C/m}^2$

Tai r = 5m: $D_r = 6.4.10^{-10}$ C/m²

b. Xác định ρ_{S0} để vector mật độ dịch chuyển điện D=0 tại r=7m

 $D/S: \rho_{S0} = -0.44.10^{-9} \text{ C/m}^2$

6. Một vật mang điện có $\rho_V=0$ khi $\rho<1$ mm, $\rho>2$ mm, và $\rho_V=4\rho$ $\mu C/m^3$ khi $1<\rho<2$ mm.

a. Tính tổng điện tích Q của vật mang điện trong không gian giới hạn bởi $0 < \rho < \rho_1, \, 0 < z < L$ trong đó $1 < \rho_1 < 2mm$

Đ/S:

$$\frac{8\pi L}{3} [\rho_1^3 - 10^{-9}] \mu C$$

b. Áp dụng luật Gauss xác định D_{ρ} tại $\rho = \rho_1$

Đ/S:

$$\frac{4(\rho_1^3-10^{-9})}{3\rho_1} \, \mu\text{C/m}^2$$

c. Tính D_{ρ} tại $\rho = 0.8$ mm, $\rho = 1.6$ mm và $\rho = 2.4$ mm

Đ/S:

$$3.9 \times 10^{-6} \ \mu\text{C/m}^2$$

7. Một hình lập phương giới hạn bởi các mặt phẳng 1 < x, y, z < 1.2, biết vector mật độ dịch chuyển điện $\mathbf{p} = 2x^2y\mathbf{a}_x + 3x^2y^2\mathbf{a}_y$ C/m²

Áp dụng luật Gauss để tính tổng thông lượng Φ đi ra khỏi mặt kín của hình lập phương.

 Φ /S: Φ = 0,1028C

8. Tính giá trị div D nếu biết:

a.

$$\mathbf{D} = \frac{1}{z^2} \left[10xyz\mathbf{a}_x + 5x^2z\mathbf{a}_y + (2z^3 - 5x^2y)\mathbf{a}_z \right]$$

tại điểm P(-2, 3, 5)

Ð/S: 8,96

b.

$$\mathbf{D} = 5z^2 \mathbf{a}_{\rho} + 10\rho z \mathbf{a}_{z}$$

tại điểm $P(3, -45^0, 5)$

Ð/S: 71,67

c.

 $\mathbf{D} = 2r\sin\theta\sin\phi\mathbf{a}_{r} + r\cos\theta\sin\phi\mathbf{a}_{\theta} + r\cos\phi\mathbf{a}_{\phi}$

tại điểm P(3, 45⁰, -45⁰)

Ð/S: -2

9). Bên trong mặt trụ có bán kính $3<\rho<4m$, hàm mật độ dịch chuyển điện $D=5(\rho$ - $3)^3{\bf a}_{\rho}$ C/m^2

a. Tính hàm mật độ điện tích khối ρ_V tại $\rho=4m$

Đ/S: $\rho_V = 16,25$ C/m³

b. Tính hàm mật độ dịch chuyển điện tích D tại $\rho=4m$

 $D/S: D = 5a_r C/m^2$

10. Trong chân không, xét một vật mang điện có kích thước giới hạn bởi 2 < x, y, z < 3, biết vector mật độ dịch chuyển điện

$$\mathbf{D} = \frac{2}{z^2} (yz \, \mathbf{a}_x + xz \, \mathbf{a}_y - 2xy \, \mathbf{a}_z) \, \mathbf{C/m}^2$$

a. Tính tích phân khối

$$\int_{vol} \nabla \cdot \mathbf{D} \, dv$$

Ð/S: 3,47C

b. Tính tích phân mặt

$$\oint \mathbf{D} \cdot d\mathbf{S}$$

Ð/S: 3,47C