

Model Development Phase Template

Date	July 2024
Team ID	739865
Project Title	Prosperity Prognosticator : Machine Learning for Startup success Prediction
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

```
#importing and building the random forest classifier model
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier()

rf.fit(X_train._get_numeric_data(),y_train)

y_pred_rf = rf.predict(X_test._get_numeric_data())

print("Training Accuracy :", rf.score(X_train._get_numeric_data(), y_train))

print("Testing Accuracy :", rf.score(X_test._get_numeric_data(), y_test))
```



```
#Importing and building the XGBClassifier
from xgboost import XGBClassifier
#train

xgb = XGBClassifier()

xgb.fit(X_train,y_train)

#predict

y_predicted_xgb = xgb.predict(X_test)

print("Training Accuracy :", xgb.score(X_train, y_train))

print("Testing Accuracy :", xgb.score(X_test, y_test))
```

```
#importing and building the AdaBoostClassifier model
from sklearn.ensemble import AdaBoostClassifier
#train
ada = AdaBoostClassifier()
ada.fit(X_train,y_train)
#predict
y_predicted_ab = ada.predict(X_test)
print("Training Accuracy :", ada.score(X_train, y_train))
print("Testing Accuracy :", ada.score(X_test, y_test))
```

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
Model 1	Gradient Boosting Classifier model typically include accuracy, precision, recall, F1 score to evaluate its predictive performance and generalization capability.	* cathering accuracy score for each model scores = { "Radamontclassifier": { "Accuracy_Score(y_test, y_predicted_ab) } "Accuracy_Score(s_test, y_predicted_ab) Score(s_test, y_predicted_a
Model 2	AdaBoost classifier model commonly include accuracy, precision, recall, F1 score which help assess the model's prediction accuracy and generalizability	from allows around insert additional and for a constant and a subsectable from the constant and a subsectable from () ada = Subsectable from () subsectable from () subsectable from () print('(r) print('(r) from and and predict(X test) print('(r) false position rate, true position rate, thresholds = rue curve(y test, y predicted_sb) print('(r) false position rate, true position rate, thresholds = rue curve(y test, y predicted_sb) print('(r) false position rate, true position rate, thresholds = rue curve(y test, y predicted_sb) print('(r) false position rate, true position rate, thresholds = rue curve(y test, y predicted_sb) print('(true) from the curve = "rue gen') print('(true) from the curve
Model 3	Random forest classifier model often encompass accuracy, precision, recall, F1 score to measure its prediction quality and robustness.	from shiourn, entered import Bandon transitions of - Bandon restriction() of file(K leats, pp. numeric data(), y leats) y_peak_f = of prodict(K text_gst_numeric data()) prist("residing Accoming (", of Accom(K leat_gst_numeric data(), y_leat)) prist("residing Accoming (", of Accom(K leat_gst_numeric data(), y_leat)) an = contains_matric(, leat_g, peak_gst_numeric data(), y_leat_) nut_reform ("Nigner-Ripher") = (0, 0) nut_residing(numer to from, unspecific file prist(") prist(") prist(") false position_rate, true_position_rate, thresholds = rec_position_rate) prist(") prist("No terror of the position_rate, true_position_rate) prist("No terror of the position_rate) prist("No terror of the position_rate) prist("No terror of the position_rate) prist("No terror of the position_position_rate) prist("No terror of the position_rate) prist("No terror of the position_rate) prist("No terror of the position_position position] prist("No terror of the position_rate) prist("No terror of the position_position position] prist("No terror of the position_position position position_rate) ### No terror of the position_rate of the position_position_rate precision_rated file_rate = ", precision_position_rated file_rate = ", procision_position_rated

XGB Classifier model typically include accuracy, precision, recall, F1 score to evaluate its prediction performance and generalization ability

```
from aghost input Wol(lestifier

first

agh = XXXIsSifier()

agh.fit(X train,y train)

infact

y predicted agh = XX0.predict(X test)

print("Testing Account ", XX0.score(X train, y train))

print("Testing Account ", XX0.score(X test, y train))

print("Testing Account ", XX0.score(X test, y test))

tr = classification report(y test, y predicted agh)

print(")

false positive rate, true positive rate, therebooks = no curve(y test, y predicted agh)

for an = Act(false positive rate, true positive rate)

protision, recall, thresholds = protision recall curve(y test, y predicted agh)

fi = fi nowe(y test, y predicted agh)

Precision, metall agh = act(recall, precision)

print("Testing heal Curves - Precision Benall agh)

/ th

Training Accouncy | 1.0

Training Accouncy | 1.0

Testing Accouncy | 0.75  0.72  0.75  127

accounce | 0.723777220483000

Precision-Recall Curves | 0.7
```