Лабораторная работа 3.2.3 Резонанс токов в параллельном контуре

Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Исследование резонанса токов в параллельном колебательном контуре с изменяемой индуктивностью, получение амплитудно-частотных и фазово-частотных характеристик контура
- 2) Определение основных параметров контура

2 Оборудование:

- 1) Лабораторный автотрансформатор (ЛАТР)
- 2) Разделительный понижающий трансформатор
- 3) Конденсатор
- 4) Катушка с переменной индуктивностью(дроссель)
- 5) Три амперметра
- 6) Вольтметр
- 7) Реостат
- 8) Электронный осциллограф
- 9) Мультиметр (LCR)
- 10) Мост переменного тока

3 Теоретическая справка

В работе изучается параллельный контур, одна из ветвей которого содержит индуктивность L, другая — ёмкость C. Через rL обозначено активное сопротивление катушки, которое включает в себя как чисто омическое сопротивление витков катушки, так и сопротивление, связанное с потерями энергии при перемагничивании сердечника катушки. Активным сопротивлением емкостной ветви контура можно пренебречь.

4 Экспериментальная установка

Напряжение от сети (220 В, 50 Гц) с помощью ЛАТРа через понижающий трансформатор Тр подаётся на параллельный контур, содержащий конденсатор (С = 120 мкФ) и катушку, индуктивность которой зависит от глубины погружения сердечника. Полный ток в цепи измеряется с помощью амперметра А1; для измерения токов в L- и C-ветвях используются два одинаковых амперметра А2 и А3; напряжение на контуре контролируется вольтметром V. Последовательно с контуром включён резистор-реостат (r = 100 Ом).

Для наблюдения за сдвигом фаз между полным током и напряжением на контуре используется осциллограф. Сигнал, пропорциональный току, снимается с резистора г и подаётся на вход Y осциллографа. На вход X подаётся напряжение непосредственно с контура. При наличии сдвига фаз между этими напряжениями на экране виден эллипс, а при нулевом сдвиге фаз эллипс вырождается в прямую.

5 Измерения, Обработка

5.1 Выполнение

- 1) Подготовим установку к эксперименту: включим все измерительные приборы и питание и опустим сердечник индуктивности до конца.
- 2) При напряжении контура U = 5 В во всем диапазоне индуктивности, ток в контуре не превышает 0.5 А. Будем фиксировать это напряжение при каждом замере.

Результаты измерений приведены в таблице ниже.

$$U = 5 B$$

h, см	$I(A_1)$, MA	$I_L(A_2)$, MA	$I_C(A_3)$, MA
13.1	380	605	220
12	275	490	210
11	215	460	210
10	140	350	210
9	95	320	220
8	25	270	220
7	0	230	220
6	0	200	220
5	25	100	200
4	50	90	210
3	90	60	205
2	110	90	205
1	130	20	205
0	155	0	205

Также приведем сводную таблицу характеристик схемы.

C	120 мкФ	
r	100 Ом	
ν	50 Гц	

Резонанс наблюдается при параметрах(U = 10 B):

U	10 B	
h	71 мм	
I	2.5 мА	
I_L	44.5 мА	
I_C	44 мА	

3-4) Для точного измерения резонанса перейдем на повышенное напряжение, поскольку при U = 5 В улучшение точности более невозможно. Добъемся выпрямления резонансной прямой на осциллографе в центральной точке и поднимем напряжение до 20 В. Полученные значения приведены ниже.

U	20 B	
h	70 мм	
I	80 мА	
I_L	780 мА	
I_C	800 мА	

- 5-8) Отключим питание и подключим мультиметр к катушке.
- 9) Замеры мультиметром сведены в таблицу

ν	1 кГц 50 Г	
L_s , м Γ н	70.77	76.93
R_s , Om	34.2	1.683

10) Добротность контура

$$Q = \frac{I_{\rm C, pe3}}{I_{\rm pe3}} = 10 \pm 1$$

Резонансное сопротивление контура

$$R_{\text{pe3}} = \frac{U_0}{I_{\text{pe3}}} = 250 \pm 30 \text{ Om}$$

Формула для $R_{\text{peз}}$ из теории

$$R_{ ext{T. pe3}} = rac{L/C}{\sqrt{r_L^2 + \left(rac{1}{\omega C} - \omega L
ight)^2}} = 220 \text{ Om}$$

Как видно, результаты весьма близкие в рамках погрешности. Более подробно о различии указано в выводе.

5.2 Обработка

1) График

2-3) Рассчитаем по формулам из источника.

$$L_{
m pes}=rac{1}{\omega^2 C}=84.4~{
m m}\Gamma{
m H}$$

$$r_{
m L} = rac{1}{Q\omega} = 2.7 \pm 0.3~{
m Om}$$

4) И также резонансный ток

$$L_{
m pe3} = rac{U}{I_{
m L\,pe3}\omega} = 80\pm 10$$
 мГн

5) Диаграмма

Итого $U_{\rm L~akt}=2.1~{\rm B},$ а $U_{\rm L~peakt}=20~{\rm B}.$ Наконец $r_L=\frac{U_{\rm L~akt}}{I_{\rm L~pe3}}=2.5~{\rm Om},$ а $L_{\rm pe3}=0.08~{\rm m}$ Гн. Итоговая таблица

	Мультиметр	$f(\omega, C, Q)$	f(U, I)	Диаграмма
r_L , Om	1.683	2.7 ± 0.3	-	2.5
$L_{ m pe3}$, м Γ н	76.93	84.4	80 ± 10	80

6 Вывод

Реактивное сопротивление колебательного контура в резонансе довольно близко с теоретическому расчету. Значения $L_{\rm pe3}$ также оказались довольно близко совпадающими. Напротив, значения r_L разнятся довольно сильно. В основном, все возможные неточности вызваны дифференциальностью метода оценки значений: поскольку резонансная точка довольно трудно уловима, характеристики контура вблизи неё меняются в довольно широких пределах. Также следует заметить, что осциллограмма не вырождалась в математическую прямую, а имела форму тонкой восьмерки с заметными буграми. Это означает не только то, что в цепи могут быть неучтенные сопротивления(например, питания), но и неидеальность компонент, а именно зависимости емкости или индуктивности от тока в контуре. Тем не менее, значения измерений сходятся по порядку, что подтверждает разумность теоретических предположений.