Project Design Phase

3.3 Solution Architecture

Date	23 june 2025
Team ID	LTVIP2025TMID41942
Project Name	Traffic telligence: advanced traffic volume estimation with machine
	learning
Maximum	4 Marks
Marks	

Solution Architecture – TrafficTelligence

1. Overview

The solution architecture of TrafficTelligence follows a **three-layered structure** that connects the **user interface**, **backend logic**, and the **machine learning model** for real-time traffic volume prediction.

2. Architectural Layers

✓ A. Presentation Layer (Frontend)

- Built with: HTML, CSS (or React optionally)
- Role: Takes user input (temperature, rain, snow, clouds)
- Interaction: Submits form data to the backend via POST request

☑ B. Application Layer (Backend – Flask)

- Built with: Python + Flask
- Functions:
 - o Receives user input from frontend
 - Loads the trained model (traffic model.pkl)
 - o Prepares the input and calls the model to make predictions
 - o Returns the predicted traffic volume to the frontend

C. Model Layer (ML Engine)

- Built with: scikit-learn (Random Forest Regressor)
- Steps:
 - Preprocesses dataset (traffic volume.csv)
 - Trains and evaluates the model

Saves the model using pickle for deployment

✓ (Optional) D. Data Layer (Future Enhancement)

Possible Tools: MongoDB / MySQL

Use: To store user inputs, prediction logs, analytics

• Status: Not implemented yet, but planned in future versions

② 3. Workflow Summary

pgsql

CopyEdit

User → (Frontend Form)

- → Flask Backend (/predict)
 - → Load ML Model
 - → Predict Traffic Volume
 - → Return Result to UI

☐ 4. Technologies Used

Frontend: HTML, CSS

• Backend: Python, Flask

• **ML Model:** Random Forest Regressor (scikit-learn)

• Data Handling: pandas, numpy

• **Deployment Option:** Localhost (can be extended to Render, Heroku, etc.)

Benefits of the Architecture

- Modular and easy to extend (e.g., switch ML models or frontends)
- Lightweight and fast for real-time prediction
- Compatible with full-stack upgrades (React + Node.js, etc.)

Example - Solution Architecture Diagram:

