IL2239 - Course Project Design of a SAR ADC

J. Altayó B. Sunedahl

March of 2019

Outline

Comparator Project Description Digital-to-Analog Converter Roles and Responsibilities Layout Design Flow Comparator System-level Design Digital-to-Analog Converter Problem Statement Simulations **Proposed Solution** Sinusoidal Stimulus Behavioral Modeling Ramp Stimulus Comparator Spectrum Digital-to-Analog Converter Figures of Merit Successive Approximation Register Conclusions Transistor-level Design References

Project Description

Design of a single-ended SAR ADC with the following specifications.

- Comparator clock frequency: 100 MHz
- ► SNDR > 28 dB and SFDR > 37 dB
- ► Technology: 150 nm CMOS
- Supply voltage: 1.8 V
- ▶ Input amplitude (V_{in}) : $0.5 V_{pp}$
- ▶ Input common-mode voltage: $0 \ge V_{\rm in,cm} \ge 1.8 \text{ V}$
- ightharpoonup Voltage reference: $V_{
 m ref} \leq 1.8~{
 m V}$
- ightharpoonup Switghing enegy below 30 pJ for $V_{
 m in}=$ 300 mV

Roles and Responsibilities

Jordi:

- Comparator
- Successive Approximation Register
- ► Comparator Layout

Björn:

- Digital-to-Analog Converter
- ► Sample & Hold
- ► DAC Layout

Design Flow

We used a top-down design approach:

- 1. System-level design
- 2. Behavioral modeling using Verilog-AMS
- 3. Transistor level mddeling
- 4. Layout

Design Flow

We used a top-down design approach:

- 1. System-level design
- 2. Behavioral modeling using Verilog-AMS
- 3. Transistor level mddeling
- 4. Layout

Co-simulations where also used to test individual blocks functionality

Problem Statement

The basic block diagram of a SAR ADC looks as follows

Proposed Solution

We choosed to use the following topology:

- ► Comparator: Strong ARM Latch
 - Reduced power consumption
 - Fast operation
 - Small area

Proposed Solution

We choosed to use the following topology:

- ► Comparator: Strong ARM Latch
 - Reduced power consumption
 - Fast operation
 - Small area
- ► DAC: Charge redistribution weighted capacitors
 - Suitable for CMOS technology
 - Integrates the Sample & Hold

Behavioral Modeling I

Comparator modeling:

```
always @(posedge CLK) begin
        #5
2
        outn = 0; outp = 0;
3
    end
    always @(negedge CLK) begin
      if(V(inp) > V(inn)) begin
        #50
7
        outp = 1; outn = 0;
8
      end else begin
9
        #50
10
        outp = 0; outn = 1;
11
      end
12
    end
13
```

Some delay was added to the behavioral model.

Behavioral Modeling II

Digital-to-Analog Converter modeling:

```
analog begin
always @(posedge CLK) begin
for(i=0, i < 5, i++) begin
result += input[5-i] * Vref/5;
end
V(out) <+ transition(result, 1ns, 0.1ns, 0.1ns)
end
end</pre>
```

Behavioral Modeling III

SAR	Algori	ithm	
	_		$-\frac{15V_{\text{ref}}}{16}$
			7V _{ref} 8
			13V _{ref}
V			$\frac{3V_{\text{ref}}}{4}$
V _{in}			$\frac{11V_{\rm ref}}{16}$
			5V _{ref} 8
			9V _{ref} 16
			$\frac{V_{\text{ref}}}{2}$
			$\frac{7V_{\text{ref}}}{16}$
			3V _{ref} 8
			5V _{ref} 16
			$\frac{1V_{\text{ref}}}{4}$
			$\frac{3V_{\text{ref}}}{16}$
			1V _{ref} 8
			1V _{ref}

Assume $V_{\mathrm{in}} = 0.7\,\text{V}$ and $V_{\mathrm{ref}} = 1\,\text{V}$

Behavioral Modeling III

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

Behavioral Modeling III

SAR Algorithm

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} X$$

Behavioral Modeling III

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} X$$

3.
$$V_{\rm in} \stackrel{?}{\geq} \frac{5V_{\rm ref}}{8} \checkmark$$

Behavioral Modeling III

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} X$$

3.
$$V_{\rm in} \stackrel{?}{\geq} \frac{5V_{\rm ref}}{8} \checkmark$$

4.
$$V_{\rm in} \stackrel{?}{\geq} \frac{11V_{\rm ref}}{16} \checkmark$$

Behavioral Modeling III

SAR Algorithm

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} X$$

3.
$$V_{\rm in} \stackrel{?}{\geq} \frac{5V_{\rm ref}}{8}$$
 \checkmark

4.
$$V_{\rm in} \stackrel{?}{\geq} \frac{11V_{\rm ref}}{16} \checkmark$$

Out = 0b1011
$$(\frac{11V_{\mathrm{ref}}}{16})$$

Transistor-level Design I

Comparator

Transistor-level Design II

Digital-to-Analog Converter

Comparator

- Use itemizzze a lot.
- ▶ Use itemizzze a lot.
- Use itemizzze a lot.

Digital-to-Analog Converter I

To ensure good matching we used:

Common centroid technique

Digital-to-Analog Converter I

To ensure good matching we used:

- Common centroid technique
- ► Base unit of half the capacitance

Digital-to-Analog Converter I

To ensure good matching we used:

- Common centroid technique
- ► Base unit of half the capacitance
- Dummy capacitors at the edges

Digital-to-Analog Converter I

To ensure good matching we used:

- Common centroid technique
- Base unit of half the capacitance
- Dummy capacitors at the edges

Digital-to-Analog Converter II

Simulations I

Sinusoidal Stimulus

Simulations II

Ramp Stimulus

Simulations III

Spectrum

Figures of Merit

Sample rate	14.29 MHz	
ENOB	4.78	
SNDR	30.55 dB	
SFDR	38.16 dB	
THD	1.44%	
INL	$10.22\mathrm{mV}$	
DNL	$8.32\mathrm{mV}$	
Energy per cycle	4.31 pJ	

References

- T.C. Carusone, D. Johns, and K. Martin, *Analog integrated circuit design*, Analog Integrated Circuit Design, Wiley, 2011.
- Franco Maloberti, *Analog design for cmos vlsi systems*, vol. 646, Springer Science & Business Media, 2006.
- Behzad Razavi, *Principles of data conversion system design*, 1 ed., McGraw-Hill, Inc., New York, NY, USA, 2001.
- N. Ivanisevic P. Chaourani M. Wakar T. Chen S. Rodriguez, J. Katic, *Course tutorials*, 2011-2018.
- C. Saint and J. Saint, *Ic mask design: Essential layout techniques*, McGraw-Hill professional engineering, McGraw-Hill, 2002.