

Choose certainty.
Add value.

Report On

FCC Testing of the Access Interfacing Solutions BGR135C In accordance with FCC CFR 47 Part 15C

COMMERCIAL-IN-CONFIDENCE

FCC ID: ZERBGR135

Document 75927134 Report 03 Issue 1

July 2014

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON FCC Testing of the

Access Interfacing Solutions BGR135C In accordance with FCC CFR 47 Part 15C

Document 75927134 Report 03 Issue 1

July 2014

PREPARED FOR Access Interfacing Solutions

Unit 18 Suttons Business Park

Suttons Park Avenue

Reading RG6 1AZ

PREPARED BY

Natalie Bennett

Senior Administrator, Technical Solutions

APPROVED BY

Mark Jenkins Authorised Signatory

DATED 04 July 2014

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15C. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

G Lawler M Russell

CONTENTS

Section		Page No
1	REPORT SUMMARY	3
1.1	Introduction	
1.2	Brief Summary of Results	
1.3	Declaration of Build Status	
4.1	Product Information	
4.2	Test Conditions	
4.3	Deviations from the Standard	
4.4	Modification Record	
2	TEST DETAILS	8
5.1	Field Strength of any Emission	Ç
5.2	Occupied Bandwidth	13
5.3	Frequency Stability Under Temperature Variations	
3	TEST EQUIPMENT USED	17
6.1	Test Equipment Used	18
6.2	Measurement Uncertainty	19
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	20
7.1	Accreditation, Disclaimers and Copyright	21

SECTION 1

REPORT SUMMARY

FCC Testing of the Access Interfacing Solutions BGR135C In accordance with FCC CFR 47 Part 15C

1.1 INTRODUCTION

The information contained in this report is intended to show the verification of FCC Testing of the Access Interfacing Solutions BGR135C to the requirements of FCC CFR 47 Part 15C.

Objective To perform FCC Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for

the series of tests carried out.

Manufacturer Access Interfacing Solutions

Model Number(s) BGR135C

Serial Number(s) Golden Sample #2

Number of Samples Tested 1

Test Specification/Issue/Date FCC CFR 47 Part 15C (2013)

Incoming Release Declaration of Build Status

Date 24 June 2014

Disposal Held Pending Disposal

Reference Number Not Applicable
Date Not Applicable

Order Number AKP33425
Date 12 June 2014
Start of Test 24 June 2014

Finish of Test 29 June 2014

Name of Engineer(s) G Lawler

M Russell

Related Document(s) ANSI C63.10: 2009

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 15C is shown below.

Section	Spec Clause	Test Description	Result	Comments/Base Standard	
RFiD/NFC					
2.1	15.225 (a)(b)(c)(d)	Field Strength of any Emission	Pass		
2.2	15.225, 15.215 (c)	Occupied Bandwidth	Pass		
2.3	15.225 (e)	Frequency Stability Under Temperature Variations	Pass		

1.3 DECLARATION OF BUILD STATUS

	MAIN EUT				
MANUFACTURING DESCRIPTION	BGR135C				
MANUFACTURER	Access IS				
TYPE	Boarding Gate Reader				
PART NUMBER	BGR135C				
	BGR135C – Sample #1				
SERIAL NUMBER	BGR135C - Sample #2				
	PCBP3685 B				
HARDWARE VERSION	PCBM3707 01				
HARDWARE VERSION	PCBM2999 04				
	PCBM1641 07				
	RFID FW version – 0.08				
SOFTWARE VERSION	BASE Board FW – 3090				
	Head Board FW - 2090				
TRANSMITTER OPERATING RANGE	Near Field ~5cm				
RECEIVER OPERATING RANGE	Near Field ~5cm				
INTERMEDIATE FREQUENCIES	NA				
EMISSION DESIGNATOR(S):	A2D 8K47				
(i.e. G1D, GXW)	A2D 01(4)				
MODULATION TYPES:	AM				
(i.e. GMSK, QPSK)	ZWI				
HIGHEST INTERNALLY GENERATED	96MHz				
FREQUENCY	OUNI IZ				
HIGHEST INTERNALLY GENERATED	96MHz				
FREQUENCY IN RECEIVE IDLE MODE					
OUTPUT POWER (W or dBm)	300mW				
TECHNICAL DESCRIPTION (a brief description of the intended use and	This unit is a boarding gate reader to be used at primarily at airport				
operation)	check-in desks and at point of boarding				
If unit is SRD being tested to ETS 301					
489-3 please state Class of Equipment					
as defined in Section 6.1					
	BATTERY/POWER SUPPLY				
MANUFACTURING DESCRIPTION					
MANUFACTURER					
TYPE					
PART NUMBER					
VOLTAGE					
SERIAL NUMBER					
ANCILLARIES (if applicable)					
MANUFACTURING DESCRIPTION					
MANUFACTURER					
TYPE					
PART NUMBER					
SERIAL NUMBER					
	<u> </u>				

Signature	Mohamed Ismail Bari
Date	24 June 2014
D of B S Serial No	

4.1 PRODUCT INFORMATION

4.1.1 Technical Description

The Equipment Under Test (EUT) was a Access Interfacing Solutions BGR135C. A full technical description can be found in the manufacturer's documentation.

4.2 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 12.0 V DC supply.

FCC Measurement Facility Registration Number 90987 Octagon House, Fareham Test Laboratory

4.3 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard

4.4 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.

SECTION 2

TEST DETAILS

FCC Testing of the Access Interfacing Solutions BGR135C In accordance with FCC CFR 47 Part 15C

5.1 FIELD STRENGTH OF ANY EMISSION

5.1.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.225 (a)(b)(c)(d)

5.1.2 Equipment Under Test and Modification State

BGR135C S/N: Golden Sample #2 - Modification State 0

5.1.3 Date of Test

29 June 2014

5.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

5.1.5 Test Procedure

The EUT was placed on a remotely controlled turntable within a semi-anechoic chamber. Measurements of the Fundamental Frequency and any Spurious Radiated Emissions were measured as described below.

A preliminary profile of the Spurious Radiated Emissions was obtained over the range 9 kHz to 1 GHz.

During characterisation the turntable azimuth is adjusted from 0 to 360 degrees with the measuring antenna in one polarity. It is then repeated for the other polarity. Any frequencies of interest are noted for formal measurement later. The distance from the measuring antenna to the boundary of the EUT is 3m.

During formal measurement the spectrum analyser is tuned to the frequency of the emission. The turntable azimuth is adjusted from 0 to 360 degrees to determine the point at which the maximum emission level occurs. Once the point of maximum emission has been determined the emission is measured. All emissions over the range 9 kHz to 1 GHz were measured with a CISPR Quasi - Peak detector function.

The measurement bandwidths were as follows: for emissions in the range 9 kHz to 150 kHz a 200 Hz Resolution Bandwidth was used. For emissions in the range 150 kHz to 30 MHz a 9 kHz Resolution Bandwidth was used. For emissions in the range 30 MHz to 1GHz a 120 kHz Resolution Bandwidth was used.

To determine compliance with the specification, the level of the measured spurious emissions was compared to the limits in FCC 15.209. The level of the fundamental was compared to the limits in FCC 15.225.

5.1.6 Environmental Conditions

Ambient Temperature 20.6°C Relative Humidity 51.0%

5.1.7 Test Results

12.0 V DC Supply

Carrier

Date: 29.JUN.2014 13:41:08

Frequency (MHz)	QP Level (dBµV/m) at 3m	QP Level (μV/m) at 3m	QP Limit (dBµV/m) at 3m	QP Limit (μV/m) at 30m	Angle (deg)	Height (m)	Polarity
13.560	56.92	701.46	124	15848.00	212	1.5	Face On
0.833	49.45	296.83	69.19	2880.71	23	1.5	Face On
1.389	50.17	322.48	64.75	1727.83	32	1.5	Face On
1.667	43.41	148.08	63.17	1440.46	32	1.5	Face On
1.944	44.23	162.74	69.54	2999.16	28	1.5	Face On

9 kHz to 150 kHz

Date: 29.JUN.2014 14:20:53

150 kHz to 30 MHz

Date: 29.JUN.2014 14:29:17

30 MHz to 1 GHz

Frequency (MHz)	QP Level (dBuV/m)	QP Level (uV/m)	QP Limit (dBuV/m)	QP Limit (uV/m)	QP Margin (dBuV/m)	QP Margin (uV/m)	Angle (Deg)	Height (m)	Polarity
36.723	33.0	44.7	40.0	100	-7.0	-55.3	165	1.00	Vertical
37.178	34.6	53.7	40.0	100	-5.4	-46.3	360	1.06	Vertical
37.664	34.6	53.7	40.0	100	-5.4	-46.3	243	1.00	Vertical
38.179	34.9	55.6	40.0	100	-5.1	-44.4	0	1.00	Vertical
38.684	34.6	53.7	40.0	100	-5.4	-46.3	168	1.00	Vertical
39.195	33.9	49.5	40.0	100	-6.1	-50.5	360	1.15	Vertical
56.782	32.0	39.8	40.0	100	-8.0	-60.2	2	1.00	Vertical
57.267	32.1	40.3	40.0	100	-7.9	-59.7	25	1.00	Vertical
58.981	31.8	38.9	40.0	100	-8.2	-61.1	290	1.00	Vertical
67.400	28.9	27.9	40.0	100	-11.1	-72.1	222	1.64	Vertical
69.299	29.8	30.9	40.0	100	-10.2	-69.1	311	1.06	Vertical
206.476	31.5	37.6	43.5	150	-12.0	-112.4	38	1.00	Horizontal
213.398	31.1	35.9	43.5	150	-12.4	-114.1	216	1.36	Horizontal
219.274	29.3	29.2	46.0	200	-16.7	-170.8	63	1.00	Horizontal

For any emissions measured below 30 MHz, the following correction factor was applied to extrapolate the limit from 30 metres to 3 metres. 40 Log (30/3) = 40 dB.

5.2 OCCUPIED BANDWIDTH

5.2.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.225, 15.215 (c)

5.2.2 Equipment Under Test and Modification State

BGR135C S/N: Golden Sample #2 - Modification State 0

5.2.3 Date of Test

24 June 2014

5.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

5.2.5 Test Procedure

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.215 (c).

The EUT was connected to a spectrum analyser via a test jig. The EUT was transmitting at maximum power polling between type A and type B modulation. The resultant trace was displayed on screen and the peak point of the trace was measured with the analyser configured to max hold, peak detector. The markers were positioned to give the -20 dBc points of the displayed spectrum and the delta value between these two points was recorded as the 20 dB bandwidth as shown by the plot below.

5.2.6 Environmental Conditions

Ambient Temperature 24.8°C Relative Humidity 47.4%

5.2.7 Test Results

12.0 V DC Supply

Frequency (MHz)	20 dB Bandwidth (Hz)
13.56	153.04

Date: 24.JUN.2014 14:45:51

5.3 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

5.3.1 Specification Reference

FCC CFR 47 Part 15C, Clause 15.225 (e)

5.3.2 Equipment Under Test and Modification State

BGR135C S/N: Golden Sample #2 - Modification State 0

5.3.3 Date of Test

25 June 2014

5.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

5.3.5 Test Procedure

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 15.225(e).

The EUT was connected to a spectrum analyser via a test jig. The EUT was transmitting at maximum power polling between type A and type B modulation. The spectrum analyser was configured with a 10 Hz RBW and video bandwidth of 30 Hz with max hold and peak detector and the peak value was recorded as the frequency error. The measurement was repeated with the temperature adjusted between -20°C and +50°C in 10° steps as per 15.225 (e) and additionally at 20°C for 85% to 115% of the rated supply voltage.

5.3.6 Environmental Conditions

Ambient Temperature 25.1°C Relative Humidity 37.9%

5.3.7 Test Results

<u>RFiD</u>

Temperature Interval (°C)	Voltage	Test Frequency (MHz)	Deviation (%)
-20	12.0 V DC	13.56.0175	0.00129
-10	12.0 V DC	13.560169	0.00125
0	12.0 V DC	13.560147	0.00109
+10	12.0 V DC	13.560130	0.00096
+20	13.8 V DC	13.560108	0.00080
+20	12.0 V DC	13.560107	0.00079
+20	10.2 V DC	13.560107	0.00079
+30	12.0 V DC	13.560091	0.00067
+40	12.0 V DC	13.560093	0.00069
+50	12.0 V DC	13.560099	0.00073

Limit Clause

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency.

SECTION 3

TEST EQUIPMENT USED

6.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 - Field Strength of	any Emission				
Antenna (Active Loop, 9kHz- 30MHz)	Rohde & Schwarz	HFH2-Z2	333	24	30-Oct-2014
Antenna (Dish/Tripod/Adaptor, 1GHz-18GHz)	Rohde & Schwarz	AC-008	334	-	TU
Screened Room (5)	Rainford	Rainford	1545	24	10-Jan-2015
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Antenna (Bilog)	Chase	CBL6143	2904	24	10-Jun-2015
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	22-Oct-2014
9m RF Cable (N Type)	Rhophase	NPS-2303-9000- NPS	3791	-	TU
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	-	TU
Section 2.2 - Occupied Bandw	idth				
RF Coupler	TUV SUD Product Service	RFC1	414	-	TU
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	22-Jul-2014
Programmable Power Supply	California Inst	2001RP	1898	-	TU
Hygrometer	Rotronic	I-1000	3220	12	16-Jul-2014
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	4-Jul-2014
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	22-Jul-2014
Section 2.3 - Frequency Stabil	ity Under Temperature	Variations			
Climatic Chamber	Votsch	VT4002	161	-	O/P Mon
Multimeter	White Gold	WG022	190	12	28-Oct-2014
Digital Temperature Indicator + T/C	Fluke	51	412	12	12-Feb-2015
RF Coupler	TUV SUD Product Service	RFC1	414	-	TU
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	22-Jul-2014
Power Supply	Farnell	LT30-2	2903	-	TU
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	4-Jul-2014
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	22-Jul-2014

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment

6.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	MU
Frequency Stability Under Temperature Variations	± 3.54 Hz
Field Strength of any Emission	9 kHz to 1 GHz: ± 5.1 dB
Occupied Bandwidth	± 16.74 kHz

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

7.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2014 TÜV SÜD Product Service