Práctica 4 – Modelos de Computación

Ejercicio 1. Obtener un AFD capaz de aceptar las cadenas u en {0, 1}* que contengan simultáneamente las subcadenas 000 y 111 haciendo uso del autómata producto.

Ejercicio 2. Calcular el autómata finito determinista minimal que acepta el mismo lenguaje que el siguiente autómata:

Ejercicio 3. Indicar si los siguientes lenguajes son o no regulares:

Power
$$j = 2$$
 - 0×10^{-1} of 0×10^{-1} $0 \times 10^{-$

C) $L_3 = \int a^{2n} \in \int a \int_{+}^{+} tq \quad n \ge 0$ Aprilico el lema de bombeo:

Sea $n \in \mathbb{N}$, considera una palabra $2n do L_3 = 2n = 2^n$ Sea 2 = uvw una descomposición tal que $IwP = 1 \quad S \mid V \mid \ge N$ entonco $\begin{cases} v = a^n \\ v = a^2 - l - h \end{cases}$ Para $l = 2^n - l \quad k$ Para $l = 2^n - l \quad k$ Mo co regular

Nombre: Arturo Alonso Carbonero

DNI: 75936665-A Grupo: 3°A - A1