Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring Spatially Varying Kernels

Charles Laroche, Andrés Almansa, Eva Coupeté, Matias Tassano

Abstract

Convergence proof.

A Convergence of linearized-ADMM

In this section, we prove Theorem 1, without loss of generality we suppose that $\lambda = 1$ in our MAP estimator defined in ().

Lemma 1. Under assumption 1, the following inequality holds for the x-update:

$$\mathcal{L}_{\beta}(x_k, z_k, w_k) - \mathcal{L}_{\beta}(x_{k+1}, z_k, w_k) \ge \frac{L_x - \beta \|H\|^2}{2} \|x_k - x_{k+1}\|^2$$

with $\|H\|^2$ the largest singular value of H^TH .

Proof. Using the notation of ??, we define $\overline{f}^k(x) = \tilde{\mathcal{L}}^k_{\beta}(x, z_k, w_k)$ and by definition of the x-update, we have:

$$\overline{f}^k(x_k) \ge \overline{f}^k(x_{k+1}) \tag{1}$$

$$\Leftrightarrow \langle x_k - x_{k+1}, H^T w_k + \beta H^T (H x_k - z_k) \rangle$$

$$+ f(x_k) - f(x_{k+1}) \ge \frac{L_x}{2} ||x_{k+1} - x_k||^2$$
 (2)

We also have that:

$$\mathcal{L}_{\beta}(x_{k}, z_{k}, w_{k}) - \mathcal{L}_{\beta}(x_{k+1}, z_{k}, w_{k})$$

$$= f(x_{k}) - f(x_{k+1}) + \langle w_{k}, H(x_{k} - x_{k+1}) \rangle$$

$$+ \frac{\beta}{2} \|Hx_{k} - z_{k}\|^{2} - \frac{\beta}{2} \|Hx_{k+1} - z_{k}\|^{2}$$

$$= f(x_{k}) - f(x_{k+1}) - \frac{\beta}{2} \|H(x_{k+1} - x_{k})\|^{2}$$
(3)

$$= J(x_k) - J(x_{k+1}) - \frac{1}{2} \|H(x_{k+1} - x_k)\| + \langle x_k - x_{k+1}, H^T w_k + \beta H^T (H x_k - z_k) \rangle$$

$$\geq \frac{L_x}{2} \|x_{k+1} - x_k\|^2 - \frac{\beta}{2} \|H(x_{k+1} - x_k)\|^2 \tag{5}$$

$$\geq \frac{L_x - \beta \|H\|^2}{2} \|x_{k+1} - x_k\|^2 \tag{6}$$

where the inequality (5) is obtained using (2).

Lemma 2.
$$\mathcal{L}_{\beta}(x_{k+1}, z_k, w_k) - \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_k) \ge m \|z_k - z_{k+1}\|^2$$

Proof. From Assumption 1, we have that \mathcal{L}_{β} is strongly convex in z with parameter m. The strong convexity of \mathcal{L}_{β} implies that:

$$\mathcal{L}_{\beta}(x, z_k, u) - \mathcal{L}_{\beta}(x, z_{k+1}, u) \tag{7}$$

$$\geq \nabla_z \mathcal{L}_{\beta}(x, z_{k+1}, u)(z_k - z_{k+1}) + m \|z_k - z_{k+1}\|^2$$
(8)

However, the z-update of Algorithm 1 is such that

$$\nabla_z \mathcal{L}_\beta(x_{k+1}, z_{k+1}, w_k) = 0 \tag{9}$$

which leads to the results.

Lemma 3. Under Assumption 1, the following equality holds:

$$w_k = \nabla_z h(z_k) \tag{10}$$

Proof. From the definition of the Lagrangian:

$$\nabla_z \mathcal{L}_{\beta}(x,z,w) = \nabla h(z) - w - \beta(Hx-z)$$

Using the fact that

$$w_{k+1} = w_k + \beta (Hx_{k+1} - z_{k+1})$$
 and $\nabla_z \mathcal{L}_\beta(x_{k+1}, z_{k+1}, w_k) = 0$ (11)

We have:

$$0 = \nabla h(z_{k+1}) - w_k - \beta(Hx_{k+1} - z_{k+1})$$
(12)

$$\Leftrightarrow \nabla h(z_{k+1}) = w_{k+1} \tag{13}$$

(4)

Lemma 4. Under assumption 1,

$$\mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k+1}) - \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_k) \tag{14}$$

$$= \frac{1}{\beta} \|w_{k+1} - w_k\|^2 \le C_1 \|z_{k+1} - z_k\|^2 \tag{15}$$

with $C_1 = L_h^2/\beta$.

Proof. By definition of the augmented Lagrangian we have that:

$$\begin{split} \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k+1}) &- \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k}) \\ &= \langle w_{k+1} - w_{k}, H x_{k+1} - z_{k+1} \rangle \\ &= \frac{1}{\beta} \|w_{k+1} - w_{k}\|^{2} \\ &= \frac{1}{\beta} \|\nabla_{z} h(z_{k+1}) - \nabla_{z} h(z_{k})\|^{2} \quad \text{from Lemma 3} \\ &\leq \frac{L_{h}^{2}}{\beta} \|z_{k+1} - z_{k}\|^{2} \quad \text{from Assumption 1} \end{split}$$

Lemma 5. Let g is L_g -Lipschitz differentiable then:

$$g(y_2) - g(y_1) \ge \nabla g(s)(y_2 - y_1) - \frac{L_g}{2} ||y_2 - y_1||^2$$
 (16)

where s denotes y_1 or y_2

Proof.

$$g(y_2) - g(y_1) = \int_0^1 \nabla g(ty_2 + (1-t)y_1) \cdot (y_2 - y_1) dt$$

$$= \int_0^1 \nabla g(s) \cdot (y_2 - y_1) dt + \int_0^1 (\nabla g(y_2 + (1-t)y_1) - \nabla g(s)) \cdot (y_2 - y_1) dt,$$
(18)

where $\nabla g(\cdot)$ defines the gradient of $g(\cdot)$. If we take $s=y_1$, then by inequality

$$\|\nabla g(ty_2 + (1-t)y_1) - \nabla g(y_1)\| \le L_q \|t(y_2 - y_1)\| \tag{19}$$

we have

$$\int_0^1 \nabla g(y_1) \cdot (y_2 - y_1) dt + \int_0^1 (\nabla g(ty_2 + (1 - t)y_1) - \nabla g(y_1)) \cdot (y_2 - y_1) dt$$
(20)

$$\geq \nabla g(y_1) \cdot (y_2 - y_1) - \int_0^1 L_g t \|y_2 - y_1\|^2 dt$$
 (21)

$$= \nabla g(y_1) \cdot (y_2 - y_1) - \frac{L_g}{2} \|y_2 - y_1\|^2.$$
 (22)

Therefore, we get

$$g(y_2) - g(y_1) \ge \nabla g(y_1) \cdot (y_2 - y_1) - \frac{L_g}{2} ||y_2 - y_1||^2.$$
 (23)

Similarly, if we take $s = y_2$, we can get

$$g(y_2) - g(y_1) \ge \nabla g(y_2) \cdot (y_2 - y_1) - \frac{L_g}{2} ||y_2 - y_1||^2.$$
 (24)

Lemma 6. Under Assumption 1, if we choose the hyper-parameters β and L_x satisfying (??) and (??), then the sequence $\{m_k\}$ defined by

$$m_k = \mathcal{L}_\beta(x_k, z_k, w_k) \tag{25}$$

is convergent.

Proof. 1) Monotonicity: By using Lemma 1, Lemma 2 and Lemma 4 we have:

$$m_k - m_{k+1} = \mathcal{L}_{\beta}(x_k, z_k, w_k) - \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k+1})$$
 (26)

$$\geq \mathcal{L}_{\beta}(x_{k+1}, z_k, w_k) - \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k+1}) \tag{27}$$

$$+\frac{L_x - \beta ||H||^2}{2} ||x_k - x_{k+1}||^2 \tag{28}$$

$$\geq \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_k) - \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k+1}) \tag{29}$$

$$+\frac{L_x - \beta \|H\|^2}{2} \|x_k - x_{k+1}\|^2 + m\|z_k - z_{k+1}\|^2$$
(30)

$$\geq \frac{L_x - \beta \|H\|^2}{2} \|x_k - x_{k+1}\|^2 + (m + \frac{L_h^2}{\beta}) \|z_k - z_{k+1}\|^2$$
 (31)

Since we chose L_x such that:

$$L_x \ge \beta \|H\|^2 \tag{32}$$

$$\Leftrightarrow \quad \frac{L_x - \beta \|H\|^2}{2} > 0 \tag{33}$$

we obtain the monotonocity of $\{m_k\}$.

2) Lower bound:

$$m_k = h(z_k) + f(x_k) + \langle w_k, Hx_k - z_k \rangle + \frac{\beta}{2} ||Hx_k - z_k||^2$$
 (34)

Let $z'_k = Hx_k$, from Lemma 3 we have:

$$\langle w_k, Hx_k - z_k \rangle = \langle w_k, z_k' - z_k \rangle \tag{35}$$

$$= \langle \nabla h(z_k), z_k' - z_k \rangle \tag{36}$$

so we can rewrite:

$$m_k = h(z_k) + f(x_k) + \langle \nabla h(z_k), z'_k - z_k \rangle + \frac{\beta}{2} ||z'_k - z_k||^2$$
 (37)

(38)

We chose β such that $\beta \geq L_h$ so:

$$m_k \ge h(z_k) + f(x_k) - \langle \nabla h(z_k), z_k - z_k' \rangle + \frac{L_h}{2} ||z_k - z_k'||^2$$
 (39)

$$\geq h(z_k') + f(x_k)$$
 from Lemma 5. (40)

Following Assumption 1, $h(z'_k)+f(x_k)$ is lower bounded so m_k is lower bounded. m_k is monotonically decreasing and lower bounded which ensure the convergence.

Lemma 7. Suppose we have a differentiable function f_1 , a possibly non differentiable function f_2 , and a point x. If there exist $d2 \in \partial f_2(x)$, then we have:

$$d = d_2 - \nabla f_1(x) \in \partial (f_2(x) - f_1(x))$$

Proof. From the subgradient definition we have that:

$$f_2(y) \ge f_2(x) + \langle d_2, y - x \rangle + o(\|y - x\|)$$
 (41)

From the fact that f_1 is differentiable we have that:

$$-f_1(y) = -f_1(x) - \langle \nabla f_1(x), y - x \rangle + o(\|y - x\|)$$
(42)

Combining the two leads to:

$$f_2(y) - f_1(y) \ge f_2(x) - f_1(x) + \langle d_2 - \nabla f_1(x), y - x \rangle + o(\|y - x\|)$$
 (43)

Proof of Theorem 1:

Convergence of the residuals:

From Lemma 6 and its proof we have that:

$$m_{k+1} - m_k \ge a \|x_k - x_{k+1}\|^2 + m\|z_{k-1} - z_k\|^2 \ge 0$$
 (44)

with $(m + \frac{L_h^2}{\beta}) > 0$, $a = \frac{L_x - \beta ||H||^2}{2} > 0$ (according to Assumption 1) and that m_k converges. This implies that $||x_k - x_{k+1}||^2$ and $||y_k - y_{k+1}||^2$ converge to 0 as k approaches infinity. Lemma 4 ensure the convergence of $||w_k - w_{k+1}||^2$ to 0. The convergence of m_k directly implies the convergence of $\mathcal{L}_{\beta}(x_k, z_k, w_k)$.

Convergence of the gradients:

For the convergence of $\lim_{k\to\infty} \nabla_u \mathcal{L}_{\beta}(x_k, z_k, w_k)$, we have that:

$$\lim_{k \to \infty} \nabla_u \mathcal{L}_{\beta}(x_k, z_k, w_k) = \lim_{k \to \infty} Hx_k - z_k = \lim_{k \to \infty} \frac{1}{\beta} (w_{k+1} - w_k) = 0.$$
 (45)

On the other side, we have using Lemma 3 that:

$$\nabla_z \mathcal{L}_\beta(x_k, z_k, w_k) = \nabla h(z_k) - w_k - \beta(Hx_k - z_k) \tag{46}$$

$$= w_k - w_k - (w_{k+1} - w_k) = -(w_{k+1} - w_k) \to 0$$
 (47)

Finally, we want to show that there exists

$$d^k \in \partial_x \mathcal{L}_\beta(x_k, z_k, w_k) \quad \text{s.t.} \quad \lim_{k \to \infty} d^k = 0.$$
 (48)

Since x^{k+1} is the minimum point of $\tilde{\mathcal{L}}^k_{\beta}(x, z_k, w_k)$, we have that $0 \in \partial \tilde{\mathcal{L}}^k_{\beta}(x, z_k, w_k)$. Using Lemma 7 and the definition of $\tilde{\mathcal{L}}_{\beta}^k$ we have:

$$\exists d_{k+1} \in \partial f(x_{k+1}) \tag{49}$$

$$s.t H^T w_k + L_x(x_{k+1} - x_k) + \beta H^T (Hx_k - z_k) + d_{k+1} = 0 (50)$$

Lets us define:

$$\tilde{d}_{k+1} = H^T w_{k+1} + \beta H^T (H x_{k+1} - z_{k+1}) + d_{k+1}$$
(51)

we can easily verify that $\tilde{d}_{k+1} \in \partial_x \mathcal{L}_{\beta}(x_{k+1}, z_{k+1}, w_{k+1})$. We arready showed that the primal residues $||x_{k+1} - x_k||$, $||z_{k+1} - z_k||$, $||w_{k+1} - z_k||$ w_k converge to 0 as k approaches infinity, therefore:

$$\lim_{k \to \infty} \tilde{d}_{k+1} = \lim_{k \to \infty} H^T w_{k+1} + \beta H^T (H x_{k+1} - z_{k+1}) + d_{k+1}$$

$$= \lim_{k \to \infty} H^T w_k + L_x (x_{k+1} - x_k) + \beta H^T (H x_k - z_k) + d_{k+1} = 0$$
 (53)

$$= \lim_{k \to \infty} H^T w_k + L_x(x_{k+1} - x_k) + \beta H^T (H x_k - z_k) + d_{k+1} = 0$$
 (53)

where the last equality is obtained using 50.

Application to PnP-LADMM \mathbf{B}

B.1 Proof of Proposition 1

Proximal Gradient Step Denoiser.

Proof. Let \mathcal{D}_{σ_d} be the proximal gradient step denoiser defined in [?] as \mathcal{D}_{σ_d} := $Id - \nabla g_{\sigma_d}$ where $g_{\sigma_d}(x) = \frac{1}{2} ||x - N_{\sigma_d}||^2$ and N_{σ_d} is a neural network. According to [?, Proposition 3.1] there exists ϕ_{σ_d} such that $\mathcal{D}_{\sigma_d} = \operatorname{prox}_{\phi_{\sigma_d}}$.

In addition [?, Equation (26)] states that $\phi_{\sigma_d} \geq g_{\sigma_d}$, and by definition $g_{\sigma_d} \geq$ 0.

Hence, $f = \phi_{\sigma_d}/\sigma_d^2$ is lower bounded by 0 and $\mathcal{D}_{\sigma_d} = \text{prox}_{\sigma_d^2 f}$ as indicated by Proposition 1.

B.1.2 MMSE Denoiser.

Proof. Let $\mathcal{D}_{\sigma_d}(y) = E[X|Y=y]$ be an MMSE denoiser, where $Y = X + \sigma_d N$ and $N \sim \mathcal{N}(0, \sigma_d^2 Id)$, and $X \sim p_X$, p_X being a probability measure.

We want to show that there exists a lower bounded ϕ_{σ_d} such that $\mathcal{D}_{\sigma_d}(x) = \text{prox}_{\phi_{\sigma_d}}(x)$.

For $\sigma_d = 1$ according to [?] there exists $f(x) \ge -\log p_Y(x)$, such that $\mathcal{D}_1 = \operatorname{prox}_f$. f is lower bounded because the noisy density $p_Y(x) = (p_X * g_1)(x) \le 1/\sqrt{2\pi}$ is upper-bounded by the maximum value of g_1 (the gaussian pdf with identity covariance matrix).

For $\sigma_d \neq 1$ the problem can be reduced to the previous case via the following scaling: Consider $\mathcal{P}(x) = \frac{1}{\sigma_d} \mathcal{D}_{\sigma_d}(\sigma_d x)$. Then $\mathcal{P}(y) = E[\tilde{X} | \tilde{Y} = y]$ is an MMSE denoiser with variance 1 with $\tilde{X} = X/\sigma_d$ and $\tilde{Y} = \tilde{X} + N$. So we can find (according to the previous argument for $\sigma_d = 1$) f such that $\mathcal{P} = \operatorname{prox}_f$. Applying a change of variables in the proximal operator we obtain

$$\mathcal{D}_{\sigma_d}(y) = \sigma_d \mathcal{P}(y/\sigma_d) = \operatorname{prox}_{\phi_{\sigma_d}}(y)$$

where

$$\phi_{\sigma_d}(x) = \sigma_d^2 f(x/\sigma_d)$$

Finally, since f is lower-bounded ϕ_{σ_d} is lower bounded too.

C Convergence to critical point

Since we are optimizing

$$E(x) = g(Hx) + f(x)$$

we would like to show that

$$\lim_{k \to \infty} \nabla E(x_k) = 0$$

We can almost conclude this from Theorem 1. Indeed

$$\nabla E(x_k) = H^* \nabla g(Hx) + \nabla f(x)$$

From Theorem 1 we have that

$$\nabla_w \mathcal{L}_\beta = z_k - Hx_k \to 0$$

$$\nabla_z \mathcal{L}_\beta = w_k + \beta(z - Hx) + \nabla g(z) \to 0$$

$$\nabla_x \mathcal{L}_\beta = \nabla f(x_k) - H^* w_k + \beta H^* (Hx_k - z_k) \to 0$$

Putting all together we have:

$$z_k - Hx_k \to 0$$
$$\nabla g(z_k) + w_k \to 0$$
$$\nabla f(x_k) - H^* w_k \to 0$$

Since ∇g is continuous we get that

$$\nabla g(Hx_k) + w_k \to \nabla g(z_k) + w_k \to 0$$

This means that

$$\nabla E(x_k) = H^* \nabla g(Hx_k) + \nabla f(x_k)$$

$$= H^* \nabla g(Hx_k) + H^* w_k + \nabla f(x_k) - H^* w_k$$

$$= H^* (\nabla g(Hx_k) + w_k) + (\nabla f(x_k) - H^* w_k)$$

$$\to 0$$

Conclusion: If f is differentiable, then Theorem 1 implies that the Linearized ADMM converges to a critical point of the original objective E(x).