# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский ядерный университет «МИФИ»



## Факультет Кибернетики и информационной безопасности

#### Кафедра кибернетики (№ 22)

Направление подготовки 09.03.02 Информационные системы и технологии

### Расширенное содержание пояснительной записки

к учебно-исследовательской работе студента на тему:

Разработка алгоритма классификации когнитивных состояний по данным фМРТ на основе анализа межиндивидуальных корреляций

| Группа              | Б14-506      |                |
|---------------------|--------------|----------------|
| Студент             |              | Шедько А. Ю.   |
| -                   | (подпись)    | (ФИО)          |
| Руководитель        |              | Трофимов А. Г. |
|                     | (подпись)    | (ФИО)          |
| Научный консультант |              | -              |
|                     | (подпись)    | (ФИФ)          |
| Оценка              | Оценка       |                |
| руководителя        | консультанта | ı <u> </u>     |
|                     | (0-5 баллов) | (0-5 баллов)   |

# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «Национальный исследовательский ядерный университет «МИФИ»

Факультет кибернетики и информационной безопасности



#### КАФЕДРА КИБЕРНЕТИКИ

## Задание на УИР

| Студенту | гр. | Б14-506  |
|----------|-----|----------|
|          |     | (группа) |

| Шедько Андрею Юрьевичу | T |
|------------------------|---|
| (фио)                  |   |

#### ТЕМА УИР

Разработка алгоритма классификации когнитивных состояний по данным фМРТ на основе анализа межиндивидуальных корреляций

#### ЗАДАНИЕ

| №    | Содержание работы                                                                                      | Форма         | Срок     | Отметка о выполне- |
|------|--------------------------------------------------------------------------------------------------------|---------------|----------|--------------------|
| п/п  |                                                                                                        | отчетности    | исполне- | нии                |
|      |                                                                                                        |               | ния      | Дата, подпись рук. |
| 1.   | Аналитическая часть                                                                                    |               |          |                    |
| 1.1. |                                                                                                        | Пункт ПЗ      | 1.03.17  |                    |
|      | ных состояний по данным фМРТ (статическим и динами-                                                    |               |          |                    |
|      | ческим) применительно к задачам медицинской диагно-                                                    |               |          |                    |
|      | стики                                                                                                  |               |          |                    |
| 1.2. | Сравнительный анализ методов классификации много-                                                      | подраздел ПЗ  | 8.03.17  |                    |
|      | мерных данных (линейный дискриминантный анализ, ме-                                                    |               |          |                    |
|      | тод опорных векторов, нейросетевые методы) для выбора                                                  |               |          |                    |
|      | подходящего набора алгоритмов.                                                                         |               |          |                    |
| 1.3. | Сравнительный анализ программных средств визуализа-                                                    | Текст ПЗ      | 8.03.17  |                    |
|      | ции трехмерных данных фМРТ и исследование возмож-                                                      |               |          |                    |
| 1 4  | ности их использования.                                                                                | T. DOTTO      | 27.02.17 |                    |
| 1.4. | Оформление расширенного содержания пояснительной                                                       | Текст РСПЗ    | 27.03.17 |                    |
| 2    | записки (РСПЗ)                                                                                         |               |          |                    |
| 2.   | Теоретическая часть                                                                                    |               | 5.00.15  |                    |
| 2.1. |                                                                                                        | подраздел ПЗ  | 5.03.17  |                    |
| 2.2  | фMPT.                                                                                                  | ъ D           | 10.02.17 |                    |
| 2.2. | Выбор и разработка показателей точности классифика-                                                    | Формулы, Вы-  | 10.03.17 |                    |
| 2.3. | ции когнитивных состояний по фМРТ.                                                                     | ражения       | 14.02.17 |                    |
| 2.3. | Разработка алгоритма выявления значимых для классификации зон головного мозга на основе анализа межин- | подраздел ПЗ  | 14.03.17 |                    |
|      | дивидуальных корреляций.                                                                               |               |          |                    |
| 2.4. | Формальное описание алгоритма классификации когни-                                                     | рабочие мате- | 20.03.17 |                    |
| 2.7. | тивных состояний по фМРТ.                                                                              | риалы         | 20.03.17 |                    |
| 2.5. | Формальное описание схемы применения алгоритма для                                                     | Текст ПЗ      | 20.03.17 |                    |
| 2.0. | классификации когнитивных состояний в режиме реаль-                                                    |               | 20.03.17 |                    |
|      | ного времени.                                                                                          |               |          |                    |
| 3.   | Инженерная часть                                                                                       |               |          |                    |
| 3.1. | Проектирование программного пакета выполняющего                                                        | Текст ПЗ      | 1.04.17  |                    |
|      | классификацию когнитивных состояний по данным фМРТ                                                     |               |          |                    |
|      | на основе анализа межиндивидуальных корреляций                                                         |               |          |                    |
| 3.2. | Результаты проектирования оформить с помощью UML                                                       | UML диа-      | 1.04.17  |                    |
|      | диаграммы модели.                                                                                      | грамма        |          |                    |

| 4.   | Технологическая и практическая часть                                                                                                                                       |                                                               |          |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|--|
| 4.1. | Реализация программных модулей для экспериментальных исследований алгоритма классификации когнитивных состояний по фМРТ. с использованием программных сред MATLAB и Scipy. | Исполняемые файлы, исходный текст, подключаемый модуль для ЯП | 21.03.17 |  |
| 4.2. | Описание типов когнитивных состояний и исходных данных для проведения экспериментальных исследований разработанного алгоритма.                                             | Текст ПЗ                                                      | 15.03.17 |  |
| 4.3. | ^                                                                                                                                                                          | План экспери-<br>мента                                        | 1.04.17  |  |
| 4.4. | ***                                                                                                                                                                        | Схемы, гра-<br>фики, исход-<br>ные тексты                     | 10.04.17 |  |
| 4.5. | Исследование показателей точности классификации, вы-                                                                                                                       | Схемы, гра-<br>фики                                           | 10.04.17 |  |
| 5.   | Оформление пояснительной записки (ПЗ) и иллюстра-<br>тивного материала для доклада.                                                                                        | Текст ПЗ, пре-<br>зентация                                    | 15.05.17 |  |

### ЛИТЕРАТУРА

| [1] | Дьяконов В. П. MATLAB. Полный самоучитель. – М.// ДМК Пресс, 2012. – 768 с.: ил.                           |
|-----|------------------------------------------------------------------------------------------------------------|
| [2] | Pajula Juha, Kauppi Jukka-Pekka, Tohka Jussi. Inter-Subject Correlation in fMRI: Method Validation         |
|     | against Stimulus-Model Based Analysis // PLOS ONE. — 2012. — 08. — Vol. 7, no. 8. — Pp. 1–13.              |
| [3] | Pereira Francisco, Mitchell Tom, Botvinick Matthew. Machine learning classifiers and fMRI: A tu-           |
|     | torial overview // NeuroImage. — 2009. — Vol. 45, no. 1, Supplement 1. — Pp. S199 – S209. —                |
|     | Mathematics in Brain Imaging. http://www.sciencedirect.com/science/article/                                |
|     | pii/S1053811908012263.                                                                                     |
| [4] | Hastie, Trevor, Tibshirani, Robert and Friedman, Jerome. The elements of statistical learning: data min-   |
|     | ing, inference and prediction – 2 edition – Springer, 2009.                                                |
| [5] | ГОСТ Р 7.0.53-2007 Система стандартов по информации, библиотечному и издательскому де-                     |
|     | лу. Издания. Международный стандартный книжный номер. Использование и издательское                         |
|     | оформление. — М.: Стандартинформ, 2007. — 5 с.                                                             |
| [6] | <i>Буч Г., Рамбо Д., Джекобсон А.</i> Язык UML. Руководство пользователя: Пер. с англ. М.// ДМК,           |
|     | 2007                                                                                                       |
| [7] | Kauppi J. P. et al. Clustering inter-subject correlation matrices in functional magnetic resonance imaging |
|     | //Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Con-         |
|     | ference on. – IEEE, 2010. – C. 1-6.                                                                        |
| [8] | Ivezić Ž. et al. Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide      |
|     | for the Analysis of Survey Data. //Princeton University Press, 2014.                                       |
| [9] | Pajula Juha. Inter-Subject Correlation Analysis for Functional Magnetic Resonance Imaging: Prop-           |
|     | erties and Validation. Tampere University of Technology. Publication. — Tampere University of              |
|     | Technology, 2016. — 4. — Awarding institution: Tampere University of Technology.                           |
|     |                                                                                                            |

| Дата выдач | и задания: | Руководитель |           | ( | )     |
|------------|------------|--------------|-----------|---|-------|
|            |            |              | (подпись) |   | (фио) |
| « »        | 2017г.     | Студент      |           | ( | )     |
| <u> </u>   | 20171.     |              | (полпись) |   | (фио) |

### Реферат

Пояснительная записка содержит страниц (из них XX страниц приложений). Количество использованных источников – XX. Количество приложений – X.

Ключевые слова: Межиндивидуальная корреляция, Машинное обучение, классификация, фМРТ, Кластеризация.

Целью данной работы является описание применения Межиндивидуальной корреляции для кластеризации признаков при анализе неестественных стимулов в фМРТ.

В первой главе проводится обзор и анализ ...

Во второй главе описываются использованные и разработанные/модифицированные методы/модели/алгоритмы ....

В третьей главе приводится описание программной реализации и экспериментальной проверки ....

В приложении А приведены исходные тексты некоторых программ

## Содержание

| Di | зеден. | ие                                                                          |    |
|----|--------|-----------------------------------------------------------------------------|----|
| 1  | Ана    | лиз проблематики задач классификации когнитивных состояний                  | 8  |
|    | 1.1    | Изучение и анализ подходов к классификации когнитивных состояний по данным  |    |
|    |        | фМРТ (статическим и динамическим) применительно к задачам медицинской ди-   |    |
|    |        | агностики                                                                   | 8  |
|    | 1.2    | Сравнительный анализ методов классификации многомерных данных               | ç  |
|    |        | 1.2.1 ЛДА                                                                   | Ģ  |
|    |        | 1.2.2 SVM                                                                   | 10 |
|    | 1.3    | Сравнительный анализ программных средств анализа и визуализации трехмерных  |    |
|    |        | данных фМРТ и исследование возможности их использования                     | 11 |
|    |        | 1.3.1 Nilearn                                                               | 11 |
|    |        | 1.3.2 Analyze                                                               | 1  |
|    |        | 1.3.3 MITK                                                                  | 1  |
|    | 1.4    | Выводы и постановка задачи курсового проекта                                | 11 |
| 2  | Алг    | оритм классификации когнитивных состояний по данным фМРТ на основе мето-    |    |
|    | да м   | ежиндувидуальных корреляций                                                 | 13 |
|    | 2.1    | Формальная постановка задачи.                                               | 13 |
|    | 2.2    | Алгоритм определения информативных вокселей фМРТ                            | 13 |
|    | 2.3    | Алгоритм формирования вектора характерных признаков сигналов фМРТ для клас- |    |
|    |        | сификации                                                                   | 13 |
|    | 2.4    | Показатели точности классификации                                           | 13 |
|    | 2.5    | Формальное описание схемы применения алгоритма для классификации когнитив-  |    |
|    |        | ных состояний в режиме реального времени                                    | 14 |
|    | 2.6    | Выводы                                                                      | 14 |
| 3  | Разр   | работка программной системы для классификации сигналов фМРТ                 | 15 |
|    | 3.1    | Проектирование программного пакета выполняющего классификацию когнитив-     |    |
|    |        | ных состояний по данным фМРТ на основе анализа межиндивидуальных корреляций | 15 |
|    | 3.2    | Программная реализация системы классификации                                | 15 |

|    | 3.3  | Состав и структура реализованного программного обеспечения                   | 15 |
|----|------|------------------------------------------------------------------------------|----|
|    | 3.4  | Основные сценарии работы пользователя                                        | 16 |
|    | 3.5  | Сравнение реализованного программного обеспечения с существующими аналогами  | 16 |
|    | 3.6  | Выводы                                                                       | 16 |
| 4  | Эксі | периментальные исследования алгоритма классификации сигналов фМРТ            | 17 |
|    | 4.1  | Описание исходных данных                                                     | 17 |
|    | 4.2  | Составление плана экспериментальных исследований разработанного алгоритма .  | 17 |
|    | 4.3  | Исследование точности классификации при различных способах оценки межинди-   |    |
|    |      | видуальных корреляций                                                        | 17 |
|    | 4.4  | Исследование показателей точности классификации, выявление наименее и наибо- |    |
|    |      | лее разделимых когнитивных состояний и соответствующих зон головного мозга . | 17 |
| 3a | ключ | ение                                                                         | 19 |
| Сп | исок | литературы                                                                   | 20 |
|    | Спи  | сок литературы                                                               | 20 |
| Пр | копи | кения                                                                        | 21 |
| A  | Исхо | одные тексты программ                                                        | 21 |

#### Введение

В настоящее время актуальны проблемы анализа многомерных данных, особенно в медицинских приложениях. Данная работа рассматривает новый подход задаче понижения размерности: матрицу Межиндивидуальных корреляций. Акттивно публикуются в этой области: Juha Pajula из университета Тампере (в 2016 году защитившего диссертацию по данной теме [5]), Jussi Tohka, Jukka-Pekka Kauppi, Юрия Хассона, впервые описавшего данный метод. Первое упоминание применения метода для задачи кластеризации данных фМРТ можно найти в статье Юрия Хассона и других в 2004[2]. Однако в этой работе рассматривались естественные стимулы (просмотр фильмов) что не соотносится с доступными авторам данными (вербальные и пространственные задачи). Из-за разреженности данных без модификации методы предыдущих исследований не применимы без модификаций.

Таким образом, получим задачу данной работы — использование метода межиндивидуальной корреляции для кластеризации данных в задаче понижения размерности. Также проводится сравнение нового метода с традиционными подходами к данной задаче, не использующими множество испытуемых (Метод главных компонент (РСА), Обобщённая линейная модель (GLM)).

Новизна работы состоит в применении метода ISC для кластеризации в условиях неестественных стимулов.

В первой главе подробно рассматриваются теоретические аспекты задачи понижения размерности, задачи классификации (Метод опорных векторов (SVM), нейронные сети, Линейный дискриминантный анализ (ЛДА)) и специфических для проблемной области (фМРТ) подходов к анализу данных. Также описываются программные средства визуализации трёхмерных данных с примерами их использования. (nilearn.plotting[3], matplotlib3d[1], NIFTI, MITK[4])

Во второй главе описаны используемые в работе алгоритмы, а именно: кластеризация на основе ISC, формирование вектора признаков, вычисление показателей точности классификации, классификация в режиме реального времени.

В третьей главе рассматриваются программные аспекты реализации алгоритмов описанных в предыдущей главе.

В заключительной главе описывается характер экспериментальных данных и количественные показатели точности работы системы. Также проводится исследование эффективности различных показателей точности классификации применительно к конкретным экспериментальным данным.

# 1. Анализ проблематики задач классификации когнитивных состояний

Аннотация. В первой главе подробно рассматриваются теоретические аспекты задачи понижения размерности, задачи классификации (Метод опорных векторов (SVM), нейронные сети, Линейный дискриминантный анализ (ЛДА)) и специфических для проблемной области (фМРТ) подходов к анализу данных. Также описываются программные средства визуализации трёхмерных данных с примерами их использования. (nilearn.plotting[3], matplotlib3d[1], NIFTI, MITK[4])

# 1.1 Изучение и анализ подходов к классификации когнитивных состояний по данным фМРТ (статическим и динамическим) применительно к задачам медицинской диагностики

**Аннотация.** Для каждого образца объекта или события с известным классом у рассматривается набор наблюдений x (называемых ещё признаками, переменными или измерениями). Набор таких образцов называется обучающей выборкой (или набором обучения, обучением). Задачи классификации состоит в том, чтобы построить хороший прогноз класса у для всякого так же распределённого объекта (не обязательно содержащегося в обучающей выборке), имея только наблюдения x.

В роли объектов выступают пациенты. Признаки характеризуют результаты обследований, симптомы заболевания и применявшиеся методы лечения. Примеры бинарных признаков: пол, наличие головной боли, слабости. Порядковый признак — тяжесть состояния (удовлетворительное, средней тяжести, тяжёлое, крайне тяжёлое). Количественные признаки — возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата. Признаковое описание пациента является, по сути дела, формализованной историей болезни. Накопив достаточное количество прецедентов в электронном виде, можно решать различные задачи:

- классифицировать вид заболевания (дифференциальная диагностика);
- определять наиболее целесообразный способ лечения;
- предсказывать длительность и исход заболевания;

- оценивать риск осложнений;
- находить синдромы наиболее характерные для данного заболевания совокупности симптомов.

Ценность такого рода систем в том, что они способны мгновенно анализировать и обобщать огромное количество прецедентов — возможность, недоступная специалисту-врачу.

#### 1.2 Сравнительный анализ методов классификации многомерных данных

**Аннотация.** Рассмотрим такие методы как: Метод опорных векторов (SVM), нейронные сети, Линейный дискриминантный анализ (ЛДА)

Вначале дадим общее определение задачи классификации (обучения с учителем).

Существует неизвестная целевая зависимость — отображение  $y^*: X \to Y$ , значения которой известны только на объектах конечной обучающей выборки  $\{(x_i,y_i)|i\in\overline{1,P}\}$ , где P— количество примеров,  $x_i\in X,y_i\in Y,X$ — пространство входных признаков, чаще всего действительное векторное пространство ( $\mathbb{R}^k$ ), Y— конечное множество классов. Часто множество Y является 2 элементным, в этом случае классификация называется бинарной. Требуется построить алгоритм  $\alpha:X\to Y$ , который для каждого  $x\in\mathcal{X}$  построить хороший прогноз класса y.

Говорят также, что алгоритм должен обладать способностью к обобщению эмпирических фактов, или выводить общее знание (закономерность, зависимость) из частных фактов (наблюдений, прецедентов).

Данная постановка является обобщением классических задач аппроксимации функций. В классической аппроксимации объектами являются действительные числа или векторы. В реальных прикладных задачах входные данные об объектах могуть быть неполными, неточными, неоднородными, нечисловыми. Эти особенности приводят к большому разнообразию методов обучения с учителем.

#### 1.2.1 ЛДА

**Линейный дискриминантный анализ** (ЛДА), а также связанный с ним *линейный дискриминант* Фишера — методы статистики и машинного обучения, применяемые для нахождения линейных комбинаций признаков, наилучшим образом разделяющих два или более класса объектов или событий. Полученная комбинация может быть использована в качестве линейного классификатора или для сокращения размерности пространства признаков перед последующей классификацией.

Рассмотрим этот метод для случая 2 классов:

При ЛДА предполагается, что функции совместной плотности распределения вероятностей  $p(\vec{x}|y=1)$  и  $p(\vec{x}|y=0)$  - нормальны. В этих предположениях оптимальное байесовское решение — относить точки ко второму классу если отношение правдоподобия ниже некоторого порогового значения T:

$$(\vec{x} - \vec{\mu}_0)^T \Sigma_{y=0}^{-1} (\vec{x} - \vec{\mu}_0) + \ln |\Sigma_{y=0}| - (\vec{x} - \vec{\mu}_1)^T \Sigma_{y=1}^{-1} (\vec{x} - \vec{\mu}_1) - \ln |\Sigma_{y=0}| < T$$

Если не делается никаких дальнейших предположений, полученную задачу классификации называют квадратичным дискриминантным анализом (англ. quadratic discriminant analysis, QDA). В ЛДА делается дополнительное предположение о гомоскедастичности (т.е. предполагается, что ковариационные матрицы равны,  $\Sigma_{y=0} = \Sigma_{y=1} = \Sigma$ ) и считается, что ковариационные матрицы имеют полный ранг. При этих предположениях задача упрощается и сводится к сравнению скалярного произведения с пороговым значением

$$\vec{\omega} \cdot \vec{x} < c$$

для некоторой константы c, где

$$\vec{\omega} = \Sigma^{-1} (\vec{\mu_1} - \vec{\mu_0}).$$

Это означает, что вероятность принадлежности нового наблюдения х к классу у зависит исключительно от линейной комбинации известных наблюдений.

#### 1.2.2 SVM

Что предпринимать, если данные не гомоскедастичны? Рассмотрим метод опорных векторов, для чего вначале дадим определение метода.

**Метод опорных векторов** (*англ. SVM, support vector machine*) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. SVM в чистом виде — динейный классификатор.

Основная идея метода — перевод исходных векторов в пространство более высокой размерности и поиск разделяющей гиперплоскости с максимальным зазором в этом пространстве. Две параллельных гиперплоскости строятся по обеим сторонам гиперплоскости, разделяющей классы. Разделяющей гиперплоскостью будет гиперплоскость, максимизирующая расстояние до двух параллельных гиперплоскостей. Алгоритм работает в предположении, что чем больше разница или расстояние между этими параллельными гиперплоскостями, тем меньше будет средняя ошибка классификатора.

# 1.3 Сравнительный анализ программных средств анализа и визуализации трехмерных данных фМРТ и исследование возможности их использования

**Аннотация.** В разделе описаны различные программные компоненты для визуализации нейроданных.

#### 1.3.1 Nilearn

Данная библиотека предоставляет с лёгкостью использовать продвинутые техники машинного обучения, распознавания образов и статистики на «нейроданных» для таких задач как MVPA (многовоксельный анализ закономерностей, *англ. Mutli-Voxel Pattern Analysis*), декодирование, предиктивное моделирование и других.

Nilearn может быть использован для анализа данных фМРТ в состоянии покоя и в случае выполнения испытуемым задач.

#### 1.3.2 Analyze

Analyze – ППП, разработанный в *Mayo Clinic* компанией Biomedical Imaging Resource (BIR) для многомерных отображения, обработки и измерения медицинских изображений различного типа. Это коммерческая программа, импользуемая для изучения томорамм, результатов фМРТ, компьютерной томографии, позитрон-эмиссионной томографии (PET).

Автор считает что ПО должно быть свободным и не описывает работу данного пакета.

#### 1.3.3 MITK

Medical Imaging Interaction Toolkit (MITK)— свободная система с открытым исходным кодом для разработки интерактивного ПО для обработки медицинских изображений. Внутри себя, МІТК содержит Insight Toolkit (ITK), Visualization Toolkit (VTK) и набор инструментов для разработки приложений. Разработана в German Cancer Research Center Division of Medical and Biological Informatics

#### 1.4 Выводы и постановка задачи курсового проекта

Это всегда последний пункт. Здесь, по-первых, приводятся, попунктно, основные вывода из проделанного анализа. Например:

1. Выполнен сравнительный анализ таких-то формальных систем с точки зрения применимости к решению такой-то задачи. Ни одна из проанализированных напрямую не подходит, поэтому требуется разработать вариацию на основе системы такой-то.

- 2. Были проанализированы варианты программных архитектур на основе систем. С учетом требований к поддержке больших объемов данных и высоких требований к потенциалу модернизируемости, была выбрана за основу такая-то архитектура.
- 3. Сравнительный анализ таких-то библиотек показал, что библиотека X проще в использовании, но менее производительна, в то время как библиотека Y обеспечивает высокую производительность, но и требует значительных трудозатрат для использования. В связи с такимито соображениями были принято решение использовать такую-то библиотеку.

Далее пишется постановка задачи, на основе выданного задания. Это должен быть связный текст в объеме до 1-1,5 страниц. В этом разделе необходимо раскрыть цели и задачи УИРа/диплома.

# 2. Алгоритм классификации когнитивных состояний по данным фМРТ на основе метода межиндувидуальных корреляций

В этой главе описываются разработанные/модифицированные модели/методы/ алгоритмы, или/и описывается применение известных стандартных методов. Также, в конце главы обычно приводится общая архитектура программной системы, вытекающая из описанной теории. Приведенные ниже заголовки подразделов так же весьма примерные и сильно зависят от особенностей конкретной работы.

Формулы и их части необходимо набирать в математическом режиме (символ \$). Во избежание переноса длинных формул между строками их стоит размещать по центру колонки, например,

$$Sabc = (\lambda xyz.xz(yz))abc = ac(bc),$$

и, если абзац после формулы продолжается, необходимо использовать \noindent.

Для набора правил вывода можно использовать пакет mathpartir.sty. Правила вывода могут быть вынесены в виде рисунка (см. рис. 2.1).

#### 2.1 Формальная постановка задачи.

**Аннотация.** Суть алгоритма: посмотреть какие воксели действуют схожим образом для каждого типа стимулов. Для этого применим метод Межиндивидуальных корреляций.

#### Основные Определения и Описание данных

- 2.2 Алгоритм определения информативных вокселей фМРТ
- 2.3 Алгоритм формирования вектора характерных признаков сигналов фМРТ для классификации
- 2.4 Показатели точности классификации

ROC, AUC

$$\frac{M \to M'}{NM \to NM'} \quad (\mu) \qquad \qquad \frac{M \to M'}{MN \to M'N} \quad (\nu) \qquad \qquad \frac{M \to M'}{\lambda x.M \to \lambda x.M'} \quad (\xi)$$

Рис. 2.1 – Правила редукции

# 2.5 Формальное описание схемы применения алгоритма для классификации когнитивных состояний в режиме реального времени.

#### 2.6 Выводы

Необходимо перечислить, какие теоретические результаты были получены с указанием степени новизны. Например: «Была разработана такая-то модель. Она представляет собой адаптированную версию модели X, в которой уравнение Z заменено на уравнение Z'». Еще пример: «Была предложена такая-то архитектура, она отличается от типовой в том-то и том-то. Это позволяет избежать таких-то проблем.». При этом следует заниматься «высасыванием из пальца»: «Поставленная задача является типовой; для ее решения применены стандартные средства (перечислить, какие).».

# 3. Разработка программной системы для классификации сигналов фМРТ

В этой главе описывается, что и как было запрограммировано, отлажено, протестировано, и что в результате получилось. Большинство работ должны содержать приведенные ниже разделы. Но нужно учитывать, что точный состав этой главы, как и других глав, зависит от специфики работы.

Фрагменты программного кода в тексте необходимо выделять при помощи команды \verb. Многострочные листинги должны оформляться при помощи пакета listings.

# 3.1 Проектирование программного пакета выполняющего классификацию когнитивных состояний по данным фМРТ на основе анализа межиндивидуальных корреляций

#### 3.2 Программная реализация системы классификации

Аннотация. Здесь будет описана реализация

• алгоритмов быстрой (параллельной загрузки) примеров для обучения и кластеризации.

**UML** 

В этом разделе обосновывается выбор инструментальных средств; одним из критериев выбора могут быть какие-либо требования к разрабатываемой системе, и если этих требований много, они могут быть выделены в отдельный раздел, или же в приложение. Этот пункт не пишется, если в аналитической главе был раздел, посвященный сравнительному анализу и выбору инструментальных средств.

#### 3.3 Состав и структура реализованного программного обеспечения

Нужно охарактеризовать реализованное ПО: является ли оно настольной программной для Windows, или веб-приложением в форме сайта/веб-сервиса, или модулем/подключаемой библиотекой, или .... Также нужно перечислить, из чего оно состоит: какие исполняемые файлы и их назначение, конфигурационные файлы, файлы баз данных, требования к программному и аппаратному окружению, и т.п.

Если реализованное приложение достаточно обширно, этот раздел может быть разделен на несколько: один с общим описанием, и по одному на подсистемы самого верхнего уровня.

#### 3.4 Основные сценарии работы пользователя

Нужно помнить, что пользователем может быть не только «менеджер» или «человек в белом халате», но и другой программист. Последнее относится, в первую очередь, к реализованным библиотекам. Для «обычных» приложений нередко бывают пользователи нескольких категорий — например, обычный пользователь и администратор. Для каждой категории нужно описать, как выполняются основные функции, предпочтительно, с помощью серии скрин-шотов. Однако считается плохим тоном вставлять длинную вереницу из скрин-шотов: если их много, большую часть нужно выносить в приложение. Для этого раздела нормальной является плотность скрин-шотов из расчета: 1 страница скрин-шотов на 1-2 страницы текста.

# 3.5 Сравнение реализованного программного обеспечения с существующими аналогами

В сравнении должно быть отражено, чем полученное ПО выгодно (и невыгодно) отличается от прочих ближайших аналогов. Практика показывает, что аналоги есть всегда. А если нет аналогов, значит есть частичные решения, которые реализуют какие-то части функционала вашей системы. Тут тоже может быть относительно много таблиц и графиков.

#### 3.6 Выводы

Следует перечислить, какие практические результаты были получены, а именно: какое программное или иное обеспечение было создано. В число результатов могут входить, например, методики тестирования, тестовые примеры (для проверки корректности/оценки характеристик тех или иных алгоритмов) и др. По каждому результату следует сделать вывод, насколько он отличается от известных промышленных аналогов и исследовательских прототипов.

# 4. Экспериментальные исследования алгоритма классификации сигналов фМРТ

#### 4.1 Описание исходных данных

Воксели и Мозги во времени На рисунке 4.1 представлен результат работы следующего набора команд:??

4.2 Составление плана экспериментальных исследований разработанного алгоритма

Что хотим

Параметры точности

Вопросы, отв на кот хотим получить

При каком числе вокселей лучше точность

- 4.3 Исследование точности классификации при различных способах оценки межиндивидуальных корреляций
- 4.4 Исследование показателей точности классификации, выявление наименее и наиболее разделимых когнитивных состояний и соответствующих зон головного мозга

Графики, таблицы ROC, AUC



Рис. 4.1 – Пример активности локальной окрестности вокселя в течение  $\approx 47$  сек



Рис. 4.2 — Разрезы мозга по z-координате

#### Заключение

В заключении в тезисной форме необходимо отразить результаты работы:

- аналитические (что изучено/проанализировано);
- теоретические;
- инженерные (что спроектировано);
- практические (что реализовано/внедрено).

Примерная формула такая: по каждому указанному пункту приводится по 3-5 результатов, каждый результат излагается в объеме до 5 фраз или предложений.

Также есть смысл привести предполагаемые направления для будущей работы.

Общий объем заключения не должен превышать 1,5 страниц (1 страницы для УИРов).

#### Список литературы

- Hunter J. D. Matplotlib: A 2D graphics environment // Computing In Science & Engineering. 2007.
  Vol. 9, no. 3. Pp. 90–95.
- 2. Intersubject Synchronization of Cortical Activity During Natural Vision / Uri Hasson, Yuval Nir, Ifat Levy et al. // Science. 2004. Vol. 303, no. 5664. Pp. 1634—1640. http://science.sciencemag.org/content/303/5664/1634.
- 3. Machine learning for neuroimaging with scikit-learn / Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg et al. // Frontiers in Neuroinformatics. 2014. Vol. 8. P. 14. http://journal.frontiersin.org/article/10.3389/fninf.2014.00014.
- 4. The Medical Imaging Interaction Toolkit (MITK)—a toolkit facilitating the creation of interactive software by extending VTK and ITK / Ivo Wolf, Marcus Vetter, Ingmar Wegner et al. // Proc. of SPIE Vol. Vol. 5367. 2004. P. 17.
- Pajula Juha. Inter-Subject Correlation Analysis for Functional Magnetic Resonance Imaging: Properties and Validation. Tampere University of Technology. Publication. Tampere University of Technology, 2016. 4. Awarding institution: Tampere University of Technology.

### Приложение А. Исходные тексты программ

Листинг А.1 – Код для иллюстрации