

```
Probabilistic Analysis of an Algorit
                1. Exact (more detailed and challe
                 2. fast and good approximation by
                          Indicator Random Vourta
 France 1 Birthday Paradon
Now many people must
room be fre 50 %
                              2 of them are born
                        - => probabilistic analysis
- lets assign each person in the room an
                  1: 1. .. K.
          h. h= h2
     P(b_i = b_i) = \sum_{i=1}^{n} P(b_i = r) = \sum_{i=1}^{n} (\frac{1}{n^2})
     define a randon r.v. Xije I ghave the same b
      Xij= 80 our.
          X = \( \sum_{\mathbb{r}} \times \times \)
```

Hun (33)	
thu (33) enery.) bs/mj	
ables either 1 or 0	
there be inq chance that	
n on He same	
year.	
n Index.	
i ≤ n	
$=\frac{1}{n}$	
= (N = 1 k	
$\left(\frac{1}{n^2}\right) = \frac{1}{n}$	
and person if]	

The same constants a) ob) 1 d) of $T(n) = Q \cdot T(\frac{n}{b}) + Q(\frac{n}{d})$ The same constants a) ob) 1 d) o $T(n) = \int Q(\frac{n}{d} \log n) \cdot 1 d = \log a \quad \text{case } I$ $Q(\frac{n}{d} \log n) \cdot 1 d = \log a \quad \text{case } II$ $Q(\frac{n}{d} \log n) \cdot 1 d = \log a \quad \text{case } II$ can I, II) an based on the behavior of
geometric sertes.

Sixed increasing and increasing and an armong the series are series. 1/2 ton) = 2T(N/2) + O(n) how to solve this?

Way Tan < 2T(2T(1) + C.1) + C.1. Tal & 2 T(n/e) + LCn. substitude k = log n $T(n) \leq n T(1) + cn log n => O(n log n).$ Apply masters theorem next in will prove the Human.