

Facultad de Ingeniería Universidad de Buenos Aires

66.44 Instrumentos Electrónicos

Trabajo Práctico N°3: Impedancímetro, RLC, Q-metro y puente de impedancias

Integrantes:

Padrón	Nombre	Email	
92903	Sanchez, Eduardo Hugo	hugo_044@hotmail.com	
91227	Soler, José Francisco	franciscotw@hotmail.com	
xxx	Wawrynczak, Claudio	claudiozak@gmail.com	

Índice

1.	Obj	etivo	3
2.	Des	arrollo	4
	2.1.	Mediciones con el Q-metro	4
		2.1.1. Inductancia de una bobina con núcleo de aire	4
	2.2.	Mediciones con el RLC	4
		2.2.1. Inductancia de una bobina con núcleo de aire	4
		2.2.2. Capacidad de un capacitor electroítico	5
		2.2.3. Capacidad de un capacitor cerámico	5
	2.3.	Mediciones con el puente de impedancias	5
		2.3.1. Inductancia de una bobina con núcleo de aire	5
	2.4.	Mediciones con el impedancímetro	5
		2.4.1. Frecuencia de resonancia de una bobina con núcleo de aire	5
		2.4.2. Inductancia de una bobina con nucleo de ferrite	5
		2.4.3. Paramétros de una línea de transmisición	5
		2.4.4. Parámetros de un cristal	6
		2.4.5. Mediciones en un circuito activo	6
3.	Con	clusiones	6

1. Objetivo

2. Desarrollo

Para llevar a cabo las mediciones, se utilizan los siguientes instrumentos:

- algo
- algo
- algo
- Cable coaxil para realizar las distintas conexiones entre instrumentos.

2.1. Mediciones con el Q-metro

2.1.1. Inductancia de una bobina con núcleo de aire

El circuito simplificado de un Q-metro se muestra en la Figura 1

Figura 1: Esquema simplificado del Q-metro

Donde el valor máximo obtenido de tensión para un determinado inductor L_x de inductancia L se da cuando $f=\frac{1}{2\pi\sqrt{LC}}$. Por otra parte puede mostrarse que el valor de Q es $Q=\frac{\omega L}{R}$.

Conocidos los valores de la capacidad, C, y la frecuencia, f, puede obtenerse el valor de la inductancia de L_x y también su resistencia serie equivalente con las siguientes expresiones

$$L = \frac{1}{(2\pi)^2 f^2 C}$$

$$L = \frac{2\pi f L}{Q}$$

En la tabla 1 se muestran los resultados obtenidos para un inductor haciendo un barrido de frecuencias

2.2. Mediciones con el RLC

2.2.1. Inductancia de una bobina con núcleo de aire

En la Tabla 2 se puede observar los resultados obtenidos de la medición de una bobina con nucleo de aire a diferentes frecuencias.

Frecuencia	С	Q	L (calculado)	R (calculado)
$13,3 \ MHz$	25 pF	182	$5,73~\mu Hy$	$2,63 \Omega$
$10,7 \ MHz$	40 pF	200	$5,54~\mu Hy$	1,86 Ω
9,6 MHz	50 pF	200	$5,50~\mu Hy$	$1,66 \Omega$
6.9 MHz	100 pF	195	$5,33~\mu Hy$	1,18 Ω
4,0 MHz	305 pF	170	$5,20~\mu Hy$	$0,77 \Omega$
3,2 MHz	470~pF	155	$5,17~\mu Hy$	$0,68 \Omega$

Cuadro 1: Mediciones con el Q-metro

Frecuencia	Q	L	R (calculado)
$100 \ kHz$	36.58	$5,23 \mu Hy$	$25,5~m\Omega$
$66,66 \ kHz$	29.44	$5,26 \mu Hy$	$31.8~m\Omega$
50 kHz	25.11	$5,29 \mu Hy$	$42,1~m\Omega$
40 kHz	22.42	$5,31~\mu Hy$	$50,4~m\Omega$
28,572~kHz	19.07	$5,35 \mu Hy$	$59,5 \ m\Omega$
20 kHz	16.1	$5,40~\mu Hy$	$66,2 \ m\Omega$
10 kHz	10.78	$5,46~\mu Hy$	$74.8 \ m\Omega$
1 kHz	1.36	$5,53~\mu Hy$	$89.8 \ m\Omega$

Cuadro 2: Mediciones con el RLC

2.2.2. Capacidad de un capacitor electroítico

2.2.3. Capacidad de un capacitor cerámico

2.3. Mediciones con el puente de impedancias

En la Tabla 3

Frecuencia	Q	L	R (calculado)
$20 \ kHz$	20	$5,10~\mu Hy$	$32 m\Omega$
1 kHz	1.8	$6,30~\mu Hy$	$22 m\Omega$

Cuadro 3: Mediciones con el RLC

2.3.1. Inductancia de una bobina con núcleo de aire

2.4. Mediciones con el impedancímetro

2.4.1. Frecuencia de resonancia de una bobina con núcleo de aire

2.4.2. Inductancia de una bobina con nucleo de ferrite

2.4.3. Paramétros de una línea de transmisición

Como la impedancia de entrada de una línea de transmisión (la que mide el impedancímetro) está dada por

$$Z_{in} = Z_0 \frac{Z_L + Z_0 \tanh(\gamma L)}{Z_0 + Z_L \tanh(\gamma L)}$$

Suponiendo que la línea es de bajas pérdidas $\gamma = \alpha + j\beta = j\frac{2\pi}{\lambda}$ y si además se impone la condición de que $L=\frac{\lambda}{8}$ entonces la expresión de la impedancia de entrada se reduce a la siguiente

$$Z_{in} = Z_0 \frac{Z_L + jZ_0}{Z_0 + jZ_L}$$

Si $Z_L=0$ entonces $Z_{in}=jZ_0$ Si $Z_L\to\infty$ entonces $Z_{in}\to -jZ_0$ Entonces conectando una línea al impedancímetro a una frecuencia adecuada y dejando el extremo libre de la línea cortocircuitado o abierto se obtiene el valor de la impedancia de la línea, la cual es de $Z_0 = 75 \Omega (f = 7.9 MHz L = 3 m)$

Por otra parte se si se elije $L = \frac{\lambda}{2}, 3\frac{\lambda}{2}, 5\frac{\lambda}{2}...$ y que $Z_L \to \infty$, entonces puede obtenerse la atenuación de la línea

$$Z_{in} = Z_0 \frac{Z_L + Z_0 \alpha L}{Z_0 + Z_L \alpha L} = \frac{Z_0}{\alpha L}$$

Despejando la atenuación de la línea se obtiene

$$\alpha = \frac{Z_0}{Z_{in}L}$$

o la atenuación en decibles cada $100\ m$

$$\alpha = \frac{Z_0 \cdot 8,69 \ dB}{100 Z_{in} L}$$

Con la misma línea de 3 m con una frecuencia de 32 MHz se obtuvo una $Z_{in} = 2750 \ \Omega \ \text{con lo cual } \alpha = 80 mdB/m$

2.4.4. Parámetros de un cristal

2.4.5. Mediciones en un circuito activo

3. Conclusiones

Viva Venezuela!