Algorithms for Convex Optimization Assignment 3 Part II

- 11. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and L-smooth, $g: \mathbb{R}^n \to \mathbb{R}$ be closed convex. Let $X^* = \arg \min \{F(x) := f(x) + g(x) : x \in \mathbb{R}^n\}$ and $F_{\text{opt}} = \min \{F(x) : x \in \mathbb{R}^n\}$. Suppose we are familiar with the notations $T_L(x)$ and $G_L(x)$. We say
 - (a) the α -error bound property holds if for any $x \in \mathbb{R}^n$

$$||G_L(x)|| \ge \alpha \operatorname{dist}(x, X^*).$$

(b) the β -strong convexity holds if for any $x \in \mathbb{R}^n$

$$\langle G_L(x), x - \operatorname{proj}(x; X^*) \rangle \ge \beta \operatorname{dist}^2(x, X^*).$$

Show that

(1). For any $x, y \in \mathbb{R}^n$,

$$F(y) \ge F(T_L(x)) + \langle G_L(x), y - x \rangle + \frac{1}{2L} \|G_L(x)\|^2.$$

- (2). $(a) \to (b)$;
- (3). $(b) \to (a)$;
- 12. Let both $h, f : \mathbb{R}^n \to \mathbb{R}$ be convex and L-smooth. The sequence $\{x^k\}_{k \geq 0}$ is denoted by:

$$x^{k+1} = x^k - \frac{1}{L} \left[\mu_k \nabla h(x_k) + (1 - \mu_k) \nabla f(x^k) \right].$$

where $\mu^k = \frac{1}{k^{1-\alpha}}$ with $0 < \alpha < 1$. Let x^* minimizes h and f over \mathbb{R}^n . Show that

(a)

$$\min_{i=0,1,\cdots,k-1} \left\{ f(x^k) \right\} - f(x^*) \le O\left(\frac{1}{k}\right),$$

(b)

$$\min_{i=0,1,\cdots,k-1} \left\{ \digamma(x^k) \right\} - \digamma(x^*) \leq O\left(\frac{1}{k^\alpha}\right).$$

Hint: fundamental prox-grad inequality.