UNIVERSIDAD NACIONAL DE LA MATANZA INTELIGENCIA DE NEGOCIOS

Tecnologías Inteligentes para Explotación de Información

Introducción a KNIME

Docentes: Ing. Lorena R. Matteo

KNIME = **KoN**stanz Information **MinEr**

http://www.knime.org/

- o es un entorno totalmente gratuito para el desarrollo y ejecución de técnicas de minería de datos.
- fue desarrollado en 2004 el Dpto de Bioinformática y Minería de Datos de la Universidad de Konstanz (Constanza), Alemania, bajo la supervisión del profesor Michael Berthold.
- o en la actualidad, la empresa KNIME.com GmbH, radicada en Zúrich, Suiza, continúa su desarrollo, además de prestar servicios de formación y consultoría.

KNIME:

- o desarrollado sobre la plataforma Eclipse y programado, esencialmente, en Java.
- su uso se basa en el diseño de un flujo de ejecución que plasme las distintas etapas de un proyecto de minería de datos.
- o el proceso de análisis de datos, utilizado por KNIME, consiste en un pipeline de nodos, conectados a través de puentes que transportan datos o modelos.
- cada nodo procesa la llegada de datos y/o modelo(s) y produce resultados como salida.
- es posible explorar los datos en forma visual, a través de vistas.

- Es una herramienta para análisis, manipulación, visualización y generación de informes de datos.
- Basado en el paradigma de programación gráfica.
- Proporciona una amplia gama de extensiones:
- Text Mining
- Network Mining
- Cheminformatics
- Many integrations, such as Java, R, Python, Weka, Keras, Plotly, H2O, etc.

KNIME proporciona distintos nodos agrupados en fichas, como por ejemplo:

- Entrada de datos [10 > Read].
- b) Salida de datos [IO > Write].
- Preprocesamiento [Data Manipulation], para filtrar, discretizar, normalizar, filtrar, seleccionar variables...
- Minería de datos [Analytics/Mining], para construir modelos (reglas de asociación, clustering, clasificación, MDS, PCA...).
- e) Salida de resultados [Data Views] para mostrar resultados en pantalla (ya sea de forma textual o gráfica).
- f) WEKA: Bayes, Trees, Rules.

USO: Drag & Drop sobre el Editor Windows

Introducción a KNIME – Entorno de trabajo de 槸

Introducción a KNIME Interfase clásica de usuario

INTRODUCCIÓN A KNIME NUEVA INTERFAZ DE USUARIO

Introducción a KNIME NUEVA INTERFAZ DE USUARIO

KNIME Modern UI

Introducción a KNIM Nueva interfaz de usuario

Introducción a KNIME Nueva interfaz de usuario

KNIME Modern UI

Introducción a KNIME

Provee más de 4000 rutinas de análisis de datos, tanto nativas como a través de Python, R o Weka, algunos de los nodos se muestran en la siguiente imagen:

- Instalar la versión de 64 bits configurando # acceso a la RAM.
- Extensiones útiles:

☐ KNIME & Extensions

- KNIME Data Generation
- KNIME Distance Matrix
- KNIME File Handling Notes
- KNIME HTML/PDF Writer
- KNIME Interactive R Statistics Integration
- KNIME Itemset Mining
- KNIME JavaScript Views
- KNIME JFreeChart
- KNIME Optimization extension
- KNIME Python Integration
- KNIME Report Designer
- KNIME Textprocessing
- KNIME Weka Data Mining Integration

☐ KNIME Community Contributions — Other

- KNIME Python Scripting extension
- ☐ KNIME Labs Extensions
 - KNIME JavaScript Views (Labs)
 - KNIME Machine Learning Interpretability Extension
 - KNIME Plotly
 - KNIME Rule Viewer
 - KNIME Statistics Nodes (Labs)
 - KNIME XGBoost Integration

Introducción a KNIME – Ejemplo Workflow

- Un flujo de trabajo es una secuencia de nodos, cada uno de los cuales se puede configurar para realizar una tarea específica.
- Los datos fluyen a través de los nodos de izquierda a derecha.

14

Introducción a KNIME – Crear Workflows

- Para crear un flujo de ejecución, las salidas de unos nodos se utilizan como entradas de otros.
 Por ejemplo, un flujo básico podría ser de la forma:
- Nodo de lectura de datos
 - → Nodo de preprocesamiento
 - → Nodo de salida de resultados.
 - → Nodo de modelado (por ejemplo, modelo de clasificación)
- File Reader

 Row Filter

 Tree Learner

 PMML Writer

 Node 1

 Node 2

 Node 3

 Node 4

 Place | Post | P

- Flujo de datos
 - → Se construye arrastrando y soltando los nodos desde el repositorio de nodos al Editor Windows y conectándolos entre sí.
 - → Los datos se transportan entre los nodos a través de los puertos de entrada y salida.
 - → Después de colocar los nodos en el Editor Windows, es necesario conectar la entrada de cada nodo con la salida del nodo predecesor.

Introducción a KNIME – Resumen

Funcionalidades:

- Software libre bajo licencia GNU.
- Combinación de datos y herramientas.
- Analíticas poderosas.
- Más de 4000 módulos y creciendo.
- Conectores para todos los formatos de archivos y bases de datos más utilizadas.
- Soporte para una gran variedad de tipos de datos.
- Combinación y transformación de datos nativa y en la base de datos.
- Funciones matemáticas y estadísticas.
- Algoritmos de predicción avanzados y de Machine Learning.
- Control de flujo.
- Herramienta de unión para R, Python, SQL, Java, Weka, etc.
- Vistas de datos y reportes interactivos.
- Licenciamiento: GNU GPL 3

Para más información consultar los siguientes enlaces:

- Página oficial: https://www.knime.com/
- Documentación: https://www.knime.com/documentation
- Comunidad: https://www.knime.com/knime-community
- Tutoriales: https://www.knime.com/resources
- Videos: https://www.youtube.com/user/KNIMETV

CUADRANTE MÁGICO DE GARTNER PARA DATA SCIENCE Y ML PLATFORMS (ABR 2025)

Gartner.

Fuente: The 2025 Gartner Magic Quadrant for Data Science & Machine Learning Platforms

CUADRANTE MÁGICO DE GARTNER PARA DATA SCIENCE Y ML PLATFORMS (ENE 2021)

TOP 10 HERRAMIENTAS LÍDERES ML & AI SEGÚN LLMS

Herramienta	Descripción	Plataformas Soportadas	Características Clave
TensorFlow	Ideal para redes neuronales y aprendizaje profundo, con soporte para múltiples plataformas	Servidores, Nube, Web, Android, iOS	APIs de alto nivel, ejecución distribuida, integración con Keras.
PyTorch	Popular en investigación por su flexibilidad, especialmente en aprendizaje profundo.	Linux, Windows, macOS	Ejecución inmediata, soporte GPU, comunidad activa, ideal para investigación.
Scikit-learn	Biblioteca de Python para aprendizaje automático tradicional, basada en SciPy y NumPy.	Windows, Linux, macOS	Algoritmos de clasificación, regresión, clustering, preprocesamiento de datos.
Keras	API de alto nivel para redes neuronales, ahora parte de TensorFlow, fácil de prototipar.	Nube (Google, Azure, AWS), Desktop, Móvil	Interfaz amigable, soporte multi-GPU, modularidad, ideal para principiantes.
Microsoft Azure ML	Plataforma en la nube para desarrollar, entrenar y desplegar modelos, con AutoML y MLOps.	Nube (Azure)	Interfaz drag-and-drop, soporte para Python, R, integración con servicios Azure.
Amazon SageMaker	Servicio de AWS para todo el ciclo de vida del aprendizaje automático, con AutoML y algoritmos integrados.	Nube (AWS)	Escalabilidad empresarial, integración con AWS, soporte para PyTorch, TensorFlow.
Google Cloud Vertex Al	Plataforma unificada para desarrollo y despliegue de modelos de IA, con AutoML y notebooks.	Nube (Google Cloud)	Integración con TensorFlow, escalabilidad, herramientas automatizadas para colaboración.
H2O.ai	Plataforma de código abierto para aprendizaje automático, conocida por AutoML y procesamiento distribuido.	Nube, Desktop, Integración con R, Python	AutoML, interpretabilidad de modelos, soporte para Jupyter, seguridad empresarial.
XGBoost	Biblioteca para gradient boosting, optimizada para modelos predictivos, con alta precisión.	Cross-platform	Alto rendimiento, manejo de datos diversos, ideal para clasificación y regresión.
Apache Spark MLlib	Biblioteca de aprendizaje automático para grandes volúmenes de datos, parte de Apache Spark.	Distribuido, Nube	Algoritmos escalables, integración con Spark SQL, ideal para big data.

Fuente: Grok 3 (2025). DeeperSearch (versión 31/03/2025) [LLM]. https://grok.com/

Material de Consulta Recomendado

- Página oficial: https://www.knime.com/
 - Documentación: https://www.knime.com/documentation
 - Comunidad: https://www.knime.com/knime-community
 - Tutoriales: https://www.knime.com/resources
 - Videos: https://www.youtube.com/user/KNIMETV

Recursos sugeridos:

- Spaces of knime KNIME Community Hub. Teaching Materials | KNIME Previo registro en el sitio.
 - o <u>knime/Education Courses KNIME Community Hub</u>
 - stervis/Public E-Learning KNIME Community Hub
 - o knime/Education L4-ML Machine Learning Algorithms KNIME Community Hub
 - o <u>knime/Examples 04_Analytics KNIME Community Hub</u>
 - o knime/Educators Alliance Guide to Intelligent Data Science KNIME Community Hub

Trabajo Práctico de Minería de Datos

CASO: CRÉDITOS BANCARIOS

ENTREGA 18/06/2025

- Utilice la herramienta KNIMNE para desarrollar los procesos de explotación de información identificados en el Caso de Estudio; incluyendo tareas de Preprocesamiento, Modelos Predictivos, Descriptivos y Evaluación.
- Entregue un informe que contenga resultados, conclusiones obtenidas, gráficos, una tabla comparativa de métodos aplicados, y las recomendaciones que daría, de acuerdo con lo requerido en el enunciado del trabajo práctico.

