

	Physique: Interrogation n°2 du 3 décembre 2015 - corrigé - barème
Exerci	
Q1	- Modèle équivalent au <u>condensateur</u> cylindrique infini
4 pts	 On utilise un système de coordonnées cylindriques pour la topographie de E : Tout plan passant par l'axe zz' est plan de symétrie des charges et des milieux, donc plan de symétrie de E, qui est contenu dans chacun de ces plans Tout plan perpendiculaire à l'axe zz' est plan de symétrie des charges_et des milieux, donc plan de symétrie de E, qui est contenu dans chacun de ces plans Invariance de la distribution selon z et selon θ =>: \$\vec{E} = E(r)\vec{u_r}\$. Enlever 0,5 aux élèves qui ne mentionnent qu'un seul type de plan de symétrie et concluent quand même!
	 On applique le théorème de Gauss pour établir l'expression du champ : Surface fermée <u>cylindrique d'axe zz'</u> de rayon r compris entre r_i et r_e, de hauteur avec les <u>normales</u> dirigées vers l'extérieur Le champ E est perpendiculaire aux normales \$\overline{u_z}\$ et -\$\overline{u_z}\$ des bases du cylindre, dans le flux sortant par ces faces est nul. Le champ E est colinéaire à la normale \$\overline{u_r}\$ de la paroi latérale du cylindre et uniforme sur toute cette surface : ∫∫ εE(r)\$\overline{u_r}\$ · \$\overline{u_r}\$ dS = ∑Q_{int} E(r) = \$\frac{Q}{2πεhr}\$.
	- Le champ s'exprime en fonction de la tension grâce à la circulation :
Q2	$U_0 = V_{\hat{a}me} - V_{ecran} = \int_{r_i}^{r_e} E(r) \overrightarrow{u_r} \cdot \overrightarrow{u_r} dr$ $\operatorname{donc} U_0 = \frac{Q}{2\pi\varepsilon h} \ln\left(\frac{r_e}{r_i}\right) = rE(r) \ln\left(\frac{r_e}{r_i}\right), \ \operatorname{donc} E(r) = \frac{U_0}{r \cdot \ln\left(\frac{r_e}{r_i}\right)}$ - L'âme et l'écran restant chacun équipotentiels, les symétries et invariances du champ électrique restent inchangées $\vec{E} = E(r) \overrightarrow{u_r}$ Ajouter un bonus de 0.25 points si la topographie de E est déduite de $E = -gradV$ - La conductivité γ de l'isolant est non nulle donc il existe une densité volumique de courant \vec{j} telle que $\vec{j} = \gamma(r) \vec{E} = j(r) \overrightarrow{u_r}$
2,5 pts	Méthode 1 :
	$\vec{J} \text{ est à flux conservatif donc constant à travers une surface cylindrique d'axe zz' de hauteur h et de rayon r compris entre r_i et r_e: I = \iint j(r) \overrightarrow{u_r} \cdot \overrightarrow{u_r} dS \circ I = 2\pi h r j(r) \text{ ou encore } j(r) = \frac{I}{2\pi h r} \circ \text{Donc } E(r) = \frac{I}{2\pi h r \gamma(r)} = \frac{C}{r \gamma(r)} \mathbf{Méthode 2:} \operatorname{div} \vec{j} = \operatorname{div} \left(\gamma(r) E(r) \overrightarrow{u_r} \right) = 0 \Rightarrow \frac{1}{r} \frac{\partial r(\gamma E)}{\partial r} = 0 \Rightarrow E(r) = \frac{C}{r \gamma(r)} U_0 = V_{\hat{a}me} - V_{ecran} = \int_{r_i}^{r_e} E(r) \overrightarrow{u_r} \cdot \overrightarrow{u_r} dr \operatorname{Donc}, U_0 = C \int_{r_i}^{r_e} \frac{dr}{r * \gamma(r)} = C\beta = r \gamma(r) E(r) \beta, \operatorname{donc} E(r) = \frac{U_0}{r \gamma(r) \beta}$

Exer	cice 2 : Circuits magnétiques
Q1	a) Symétrie des courants et des milieux :
	$\forall P$ considéré, le plan $(\vec{u}_r, P, \vec{u}_z)$ est plan de symétrie de la distribution de courant et des milieux
	$\Rightarrow \vec{B_1}$ est toujours perpendiculaire à ce plan : $\vec{B_1} = B_1 \cdot \vec{u_\theta}$
3 pts	Invariance par rapport à la rotation d'angle θ : $\vec{B}_1 = B_1(r, z) \cdot \vec{u}_{\theta}$
	<u>Calcul de</u> $\underline{\vec{B}_1}$: application du théorème d'Ampère généralisé: $\oint_{\Gamma^+} \frac{\vec{B}_1}{\mu} \cdot \overrightarrow{d\ell} = \sum I_{enlacés}$
	Le contour orienté doit être clairement défini avec la normale à la surface (sinon, 0)
	• Si P est à l'intérieur du tore : $\vec{B}_1 = \frac{\mu_0 \mu_r \cdot NI}{2\pi r} \cdot \vec{u}_{\theta}$
	• Si P est à l'extérieur du tore : $\sum I_{enclosed} = 0 \implies \vec{B}_1 = \vec{0}$
1 pt	$ \vec{B}_1 \approx \frac{\mu_0 \mu_r . NI}{2\pi a} . \vec{u}_\theta $ $ \Phi = L.I \text{et} \Phi = \iint_S \vec{B} . \vec{dS} = N.B.S \qquad \text{donc} L_1 = \frac{NB_1 S}{I} \approx \frac{\mu_0 \mu_r N^2 S}{2\pi a} \approx \frac{\mu_0 \mu_r N^2 R^2}{2a} $
1 pt	A. N. : $B_1 \approx 1.4 \text{ T}$; $L_1 \approx 65.8 \text{ mH}$
1,5 pts	Tore rempli d'air : $ \vec{B}_{2} = \frac{\vec{B}_{1}}{\mu_{r}} \approx \frac{\mu_{0}.NI}{2\pi a}.\vec{u}_{\theta} $ • Inductance : $L_{2} = \frac{NB_{1}S}{I} = \frac{\mu_{0}N^{2}S}{2\pi a} = \frac{\mu_{0}N^{2}R^{2}}{2a} = \frac{L_{1}}{\mu_{r}}$ • A. N. : $B_{2} = 0.2 \text{ mT}$; $L_{2} = 9.4 \mu\text{H}$ • Commentaires : B_{1} (avec mat. magn.) >> B_{2} (sans mat. magn.) puisque $\mu_{r} >> 1$.

Q2	Equation 1: Théorème d'Ampère: $\oint_{\Gamma^+} \frac{\vec{B}}{\mu} . \overrightarrow{d\ell} = \sum I_{enlac\acute{e}s} \implies \oint_{\Gamma^+_1} \frac{\vec{B}_1}{\mu_1} . \overrightarrow{d\ell} + \oint_{\Gamma_2^+} \frac{\vec{B}_2}{\mu_2} . \overrightarrow{d\ell} = NI$
	$\frac{B_1}{\mu_1}.(2\pi a - \ell) + \frac{B_2}{\mu_2}.\ell = NI$
2,5	Equation 2: Conservation du flux : $B_1 \cdot S = B_2 \cdot S$ $\Rightarrow B_1 = B_2 = B$
pts	$\frac{B}{\mu_0} \left[\frac{2\pi a - \ell}{\mu_{r1}} + \frac{\ell}{\mu_{r2}} \right] = NI \qquad \Rightarrow \qquad \mu_{r2} = \frac{\ell}{\frac{\mu_0 NI}{B} - \frac{(2\pi a - \ell)}{\mu_{r1}}}$
	A. N.: $\mu_{r2} \approx 1171$
Q3	a) $\vec{j} = \overrightarrow{Rot} \vec{M} = \vec{0}$ car \vec{M}_0 uniforme.
1,5 pts	$\vec{k}' = \vec{M}_0 \wedge \vec{n} = M_0 \cdot \vec{u}_\theta$ + Schéma
Bonus	b) Φ conservé $\Rightarrow \vec{B}_a \cdot \vec{S} = \vec{B}_f \cdot \vec{S} = \vec{B}_e \cdot \vec{S} \Rightarrow \vec{B}_a = \vec{B}_e = \vec{B}_f = \vec{B}$ (non noté)
1,5 pts	Théorème d'Ampère : $\frac{B}{\mu_0} \cdot \ell_a + \frac{B}{\mu_0 \cdot \mu_r} \cdot (2\pi a - \ell_a - e) + \frac{B}{\mu_0} \cdot e = M_0 \cdot \ell_a$
	Donc $B = \frac{M_0 \cdot \ell_a}{\frac{\ell_a}{\ell_a + \frac{2\pi a - \ell_a - e}{\ell_a + \frac{e}{\ell_a}}}$
	$\mu_0 \qquad \mu_0.\mu_r \qquad \mu_0$

Total: 10,5 + 1,5 (bonus)