Linear Algebra

Chapter 7: Distance and Approximation

University of Seoul School of Computer Science Minho Kim

Table of contents

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition

Best Approximation

lacktriangle Which vector in a subspace W best approximates (or is closest to) the vector $oldsymbol{v}$ outside W?

Definition: The Best Approximation

If W is a subspace of a normed linear space V (e.g., \mathbb{R}^n) and if v is a vector in V, then the **best approximation to** v in W is the vector \bar{v} in W such that

$$\|\boldsymbol{v} - \bar{\boldsymbol{v}}\| < \|\boldsymbol{v} - \boldsymbol{w}\|$$

for every vector ${\boldsymbol w}$ in W different from ${ar v}.$

"shortest distance", "perpendicular distance"

Best Approximation (cont'd)

Theorem 7.8: The Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V (e.g., \mathbb{R}^n) and if \boldsymbol{v} is a vector in V, then $\mathrm{proj}_W(\boldsymbol{v})$ is the best approximation to \boldsymbol{v} in W.

▶ What is the **error**? $\| \boldsymbol{v} - \operatorname{proj}_W(\boldsymbol{v}) \|$ (distance from \boldsymbol{v} to W)

Least Squares Approximation

- Given data points, (usually obtained from experiments) which function best approximates them? "best fit"
- ▶ How to minimize the **error**? (See Figure 7.13 (a) on p.587)

$$ightarrow$$
 error vector $oldsymbol{e} := egin{bmatrix} \epsilon_1 \ dots \ \epsilon_n \end{bmatrix}$

► How to define the error?

"p-norm"
$$\|e\|_p := (\sum_{i=1}^n |\epsilon_i|^p)^{rac{1}{p}}$$

- $\|e\|_1 := \sum_{i=1}^n |\epsilon_i|$
- $\|e\|_2 := \sqrt{\sum_{i=1}^n |\epsilon_i|^2} = \|e\|$
- $||e||_{\infty} := \max(|\epsilon_1|, \dots, |\epsilon_n|)$
- Least square approximation: Which function best approximates the data points minimizing the **least squares** error $\|e\|$?

Least Squares Approximation (cont'd)

Definition

If A is an $m \times n$ matrix and ${\pmb b}$ is in \mathbb{R}^m , a least squares solution of $A{\pmb x} = {\pmb b}$ is a vector $\bar{{\pmb x}}$ in \mathbb{R}^n such that

$$\|\boldsymbol{b} - A\bar{\boldsymbol{x}}\| \le \|\boldsymbol{b} - A\boldsymbol{x}\|$$

for all x in \mathbb{R}^n .

Solving Least Squares Problem

- ▶ $A\bar{x} \in col(A)$, therefore, the solution is the closest vector in col(A) to b.
- **>** By the "Best Approximation Theorem", $A\bar{x} = \mathrm{proj}_{\mathrm{col}(A)}(b)$.
- ▶ $b A\bar{x} = b \text{proj}_{col(A)}(b) = \text{perp}_{col(A)}(b)$ is orthogonal to col(A)
 - $\Rightarrow b A\bar{x}$ is orthogonal to all the columns of A.
 - $\Rightarrow A^T(\boldsymbol{b} A\bar{\boldsymbol{x}}) = \boldsymbol{0}$
 - $\Rightarrow A^T A \bar{x} = A^T b$: A system of **normal equations** for \bar{x}

The Least Squares Theorem

Theorem 7.9: The Least Squares Theorem

Let A be an $m \times n$ matrix and let \boldsymbol{b} be in \mathbb{R}^m . Then $A\boldsymbol{x} = \boldsymbol{b}$ always has at least one least squares solution $\bar{\boldsymbol{x}}$. Moreover,

- a. \bar{x} is a least squares solution of Ax = b if and only if \bar{x} is a solution of the normal equations $A^T A \bar{x} = A^T b$.
- b. A has linearly independent columns if and only if A^TA is invertible. In this case, the least squares solution of Ax = b is unique and is given by

$$\bar{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}$$

▶ Least squares error: $\|e\| = \|b - A\bar{x}\|$

Least Squares via the QR Factorization

When $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = n$,

$$A^{T}A\bar{\boldsymbol{x}} = A^{T}\boldsymbol{b}$$

$$\Rightarrow (QR)^{T}QR\bar{\boldsymbol{x}} = (QR)^{T}\boldsymbol{b} \qquad (A = QR)$$

$$\Rightarrow R^{T}Q^{T}QR\bar{\boldsymbol{x}} = R^{T}Q^{T}\boldsymbol{b}$$

$$\Rightarrow R^{T}R\bar{\boldsymbol{x}} = R^{T}Q^{T}\boldsymbol{b} \qquad (Q^{T} = Q^{-1})$$

$$\Rightarrow \bar{\boldsymbol{x}} = R^{-1}Q^{T}\boldsymbol{b} \qquad (R \text{ is invertible})$$

Theorem 7.10

Let A be an $m \times n$ matrix with linearly independent columns and let \boldsymbol{b} be in \mathbb{R}^m . If A = QR is a QR factgorization of A, then the unique least squares solution $\bar{\boldsymbol{x}}$ of $A\boldsymbol{x} = \boldsymbol{b}$ is

$$\bar{\boldsymbol{x}} = R^{-1}Q^T\boldsymbol{b}$$

► Example 7.30 (p.592) → Don't compute R^{-1} , but solve $R\bar{x} = Q^T b$.

Orthogonal Projection Revisited

Theorem 7.11

Let W be a subspace of \mathbb{R}^m and let A be an $m \times n$ matrix whose columns form a basis for W. If v is any vector in \mathbb{R}^n , then the orthogonal projection of v onto W is the vector

$$\operatorname{proj}_{W}(\boldsymbol{v}) = A(A^{T}A)^{-1}A^{T}\boldsymbol{v}$$

The linear transformation $P: \mathbb{R}^m \to \mathbb{R}^n$ that projects \mathbb{R}^m onto W has $A(A^TA)^{-1}A^T$ as its standard matrix.

Proof:

1. By the Least Squares Theorem, the unique least squares solution to Ax = v is

$$\bar{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{v}$$

- 2. And since $A\bar{x} = \operatorname{proj}_{\operatorname{col}(A)}(v) = \operatorname{proj}_W(v)$
- 3. Therefore,

$$\operatorname{proj}_{W}(\boldsymbol{v}) = A((A^{T}A)^{-1}A^{T}\boldsymbol{v}) = (A(A^{T}A)^{-1}A^{T})\boldsymbol{v}$$

Pseudoinverse of a Matrix

- $x = A^{-1}b$ is the unique solution of Ax = b
- $\bar{x} = (A^TA)^{-1}A^Tb$ is the unique least squares solution of Ax = b
- $ightarrow (A^TA)^{-1}A^T$ plays the role of an "inverse of A"

Definition: Pseudoinverse

If A is a matrix with linearly independent columns, then the **pseudoinverse** of A is the matrix A^+ defined by

$$A^+ = (A^T A)^{-1} A^T$$

▶ What if *A* is a square matrix?

Pseudoinverse of a Matrix (cont'd)

Which properties do they have?

Theorem 7.12

Let A be a matrix with linearly independent columns. Then the pseudoinverse A^+ of A satisfies the following properties, called the **Penrose conditions** for A:

- a. $AA^+A = A$
- b. $A^{+}AA^{+} = A^{+}$
- c. AA^+ and A^+A are symmetric.

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition

Introduction: Taxicab Geometry

Inner Product Spaces

Norms and Distance Functions

Least Squares Approximation

The Singular Value Decomposition