PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech. Winter 2021-22 Examination

Semester: 1

Date: 29/10/2021

Subject Code: 03191101

Time: 02:00pm to 04:30pm

Subject Name: Mathematics - 1 Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Objective Type Questions - (Each of one mark)

(15)

- 1. The series $1 + r + r^2 + r^3 + \dots \infty$ is converges if
- A. |r| < 1 B. $|r| \le -1$ C. $r \ge 1$
- D. not possible.
- 2. Eigen value of $\begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}$

- B. 0, 9 C. 9, 9 D. 0, 9, 0.
- 3. If f(x, y) = c then $\frac{dy}{dr}$ is _____.

- A. $\frac{f_x}{f_y}$ B. $-\frac{f_x}{f_y}$ C. $\frac{f_y}{f_x}$ D. $-\frac{f_y}{f_x}$
- 4. If eigen value of a matrix A is λ , then eigen value of A^3 is
- B. $\frac{3}{1}$ C. λ^3 D. None of the given
- 5. For the function z = f(x, y), the point (a, b) is stationary point if
- A. $f_{r} = 0$
- B. $f_x = 0$ and $f_y = 0$ C. $f_y = 0$
- D. None of the above
- 6. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $x^3 + y^3 + z^3 + 6xyz = 1$
- 7. Find the Arg(Z), Z = -1 i
- 8. Check Convergence $\sum_{n=0}^{\infty} \frac{n+1}{n}$
- 9. Evaluate $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$
- 10. Find the limit $\lim_{(x,y)\to(1,2)} \frac{5x^2y}{x^2+y^2}$
- 11. If f'(c) = 0 and f''(c) < 0, then f has a local _____.
- 12. The Jacobian $\frac{\partial(x, y)}{\partial(r, \theta)}$ where $x = r \cos \theta$ and $y = r \sin \theta$.
- 13. Find the Rank of the following matrix: $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$
- 14. Obtain Maclaurin Series of e^x .
- 15. (2+3i)(1+2i) =______.

Q.2 Answer the following questions. (Attempt any three)

(15)

- A) Discuss the convergence of $\sum_{n=1}^{\infty} \frac{|\sin nx|}{n^2}$
- B) Find the Taylor's series expansion of $f(x) = x^3 2x + 4$ about a = 2.
- C) If $u = \cos ec^{-1} \frac{x + y}{x^2 + y^2}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.
- D) Find inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$
- Q.3 A) Test the convergence of $\sum_{n=1}^{\infty} \frac{n^3 + 2}{2^n + 2}$ (07)
 - B) Investigate for what values of λ and μ the equations (08)

x + 2y + z = 8, 2x + 2y + 2z = 13, $3x + 4y + \lambda z = \mu$ have (1) no solution, (2) a unique solution and (3) many solutions.

OR

- B) Solve $z^4 + 1 = 0$ and locate the roots in the argand diagram. (08)
- **Q.4** A) Find the area of the region bounded below by $y = e^x$, bounded above by y = x, and bounded on the sides by x = 0 and x = 1

OR

- A) Find maximum and minimum values of $2(x^2 y^2) x^4 + y^4$. (07)
- B) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (08)