浙江大学实验报告

课程名称:	数字信号处理	指导老师: _	徐元欣	成绩:	
实验名称:	DFT/FFT 的应用之一—	一确定性温显谱的析_	验证	同组学生姓名:_	

一、 实验目的和要求

谱分析即求信号的频谱。本实验采用 DFT/FFT 技术对周期性信号进行谱分析。通过实验,了解用 X(k) 近似地表示频谱 $X(ej\omega)$ 带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔 T、抽样点数 N)。

二、 实验内容和步骤

- 2-1 选用最简单的周期信号:单频正弦信号、频率 f=50 赫兹,进行谱分析。
- 2-2 谱分析参数可以从下表中任选一组(也可自定)。对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?

信号频率 f(赫兹)	谱分析参数	抽样间隔 T	截断长度 N
		(秒)	(抽样个数)
50	第一组参数	0.000625	32
50	第二组参数	0.005	32
50	第三组参数	0.0046875	32
50	第四组参数	0.004	32
50	第五组参数	0.0025	16

- 2-3 对以上几个正弦序列,依次进行以下过程。
- 2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U, V)。
- 2-3-2 分析抽样间隔 T、截断长度 N (抽样个数) 对谱分析结果的影响; 2-3-3 思考 X(k) 与 $X(ej\omega)$ 的关系;
 - 2-3-4 讨论用 X(k) 近似表示 $X(ej\omega)$ 时的栅栏效应、混叠现象、频谱泄漏。

三、 主要仪器设备

MATLAB 编程。

四、 操作方法和实验步骤

(参见"二、实验内容和步骤")

五、 实验数据记录和处理

MATLAB 程序清单

- 1. 各序列主函数
- 六、 实验结果与分析
 - 1. 序列各图像特征与解释