

QUANTUM TELEPORTATION

JOHN DONOHUE

Sending Quantum States

Alice wants to send a quantum state to Bob

But what if:
Alice can't just re-prepare the state if it gets lost on the way?

Alice's state is in a superconducting qubit, and Bob only has an ion trap?

The No-Cloning Theorem

There exists no unitary
which can create a
perfect copy of
an unknown quantum state

W.K. Wootters & W.H. Zurek, Nature 299, 802 (1982) GOAL: $U|\psi\rangle \otimes |0\rangle = |\psi\rangle \otimes |\psi\rangle$ REALITY: $\hat{U}|0\rangle \otimes |0\rangle = |0\rangle \otimes |0\rangle$ $\hat{U}|1\rangle \otimes |0\rangle = |1\rangle \otimes |1\rangle$ $\hat{U}\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle = \frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$ $\neq \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

We can't just make a copy to send it

Solution: Just teleport it instead!

Quick Entanglement Review

Two-Player Quantum Systems

Alice's Qubit $|0\rangle_A$

Separate quantum systems are described by the tensor product of the separate, individual Hilbert spaces.

Alice & Bob's Two-Qubit System

$$|0\rangle_A \otimes |1\rangle_B = |01\rangle$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Bob's Qubit $|1\rangle_B$

Two-Player Quantum Systems

Alice & Bob's Two-Qubit System

$$|\psi\rangle_A\otimes|\phi\rangle_B=|\Psi\rangle_{AB}$$

New Computational Basis

$$|00\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad |01\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

$$|10\rangle = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad |11\rangle = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

Two-Player Quantum Systems

We can use bra-ket notation to simplify composite system problems.

Find the state in the computational basis

$$|+_i\rangle_A\otimes|-\rangle_B$$

$$\frac{|00\rangle - |01\rangle + i|10\rangle - i|11\rangle}{2}$$

What is the quantum state vector for $|+\rangle_A \otimes |-\rangle_B$?

A.
$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$
 B. $\frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$

B.
$$\frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$$

$$\mathbf{G} \cdot \left(\frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2} \right)$$

$$\frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}$$

Two-Player Born's Rule

We can make measurements on both Alice and Bob's systems individually, with outcome probabilities defined by the two-qubit version of Born's rule.

$$|\Psi\rangle_{AB} = |0\rangle_A \otimes \frac{|0\rangle_B + |1\rangle_B}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} (|00\rangle + |01\rangle)$$

$$P(0_A 0_B) = |\langle 00|\Psi\rangle_{AB}|^2 = \frac{1}{2} \left| P(1_A 0_B) = |\langle 10|\Psi\rangle_{AB}|^2 = 0$$

$$P(0_A 1_B) = |\langle 01|\Psi\rangle_{AB}|^2 = \frac{1}{2} | P(1_A 1_B) = |\langle 11|\Psi\rangle_{AB}|^2 = 0$$

Entanglement

Entanglement is defined in reverse If a state is **not** separable, it is entangled

Are they entangled?

Is this state entangled?

$$|\Psi\rangle = \frac{|00\rangle - |01\rangle - |10\rangle + |11\rangle}{2}$$

No

$$|\Psi\rangle = |-\rangle \otimes |-\rangle$$

Is this state entangled?

$$|\Psi\rangle = \frac{|00\rangle - |01\rangle + |10\rangle + |11\rangle}{2}$$

Yes!

Can show by contradiction

$$|\Psi\rangle = \frac{|0\rangle|-\rangle+|1\rangle|+\rangle}{\sqrt{2}}$$

Which of the following states are entangled?

$$\mathbf{A} \cdot \frac{|00\rangle + i|01\rangle}{\sqrt{2}}$$

$$\mathbb{B}_{lackbox{--}}\ket{+}\otimes\ket{+_i}$$

$$\mathbf{G} \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}$$

$$\mathbf{D}_{\bullet} \left(\frac{|01\rangle + i|10\rangle}{\sqrt{2}} \right)$$

The Bell State

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$

This is a maximally entangled state for two qubits.

Bell State Correlations

What are the two-qubit measurement probabilities for the entangled states?

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$

$$P(0_A 0_B) = |\langle 00|\Psi^-\rangle|^2 = 0$$
 $P(1_A 0_B) = |\langle 10|\Psi^-\rangle|^2 = \frac{1}{2}$

$$P(1_A 0_B) = |\langle 10|\Psi^-\rangle|^2 = \frac{1}{2}$$

$$P(0_A 1_B) = |\langle 01|\Psi^-\rangle|^2 = \frac{1}{2}$$
 $P(1_A 1_B) = |\langle 11|\Psi^-\rangle|^2 = 0$

$$P(1_A 1_B) = |\langle 11|\Psi^-\rangle|^2 = 0$$

Alice and Bob's measurement results are individually random, but correlated

Entanglement vs. Correlation

Correlation is nothing "spooky" at all

Entanglement vs. Correlation

What separates

$$|01\rangle$$
 OR $|10\rangle$

from

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$

Entanglement is only distinguishable from classical correlations when measuring in multiple bases

What is the following state?

$$U_{\mathrm{cNOT}}\left(\left|+\right\rangle \otimes \left|0\right\rangle\right)$$

A.
$$\frac{1}{\sqrt{2}} (|00\rangle + |01\rangle)$$

B.
$$\frac{1}{\sqrt{2}} (|01\rangle + |11\rangle)$$

G.
$$\frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

$$\mathbf{D}_{\bullet}\left(\frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right)\right)$$

The cNOT is an entangling gate

Recall:
$$U_{\text{cNOT}}|00\rangle = |00\rangle$$

 $U_{\text{cNOT}}|01\rangle = |01\rangle$
 $U_{\text{cNOT}}|10\rangle = |11\rangle$
 $U_{\text{cNOT}}|11\rangle = |10\rangle$

$$U_{\text{cNOT}}(|+\rangle \otimes |0\rangle) = \frac{1}{\sqrt{2}} \left(U_{\text{cNOT}} |00\rangle + U_{\text{cNOT}} |10\rangle \right)$$

Quantum Teleportation

Teleportation, really?

Remember!

A quantum state is not an object!

It describes a property of an object!

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$

The Tools of Teleportation

Alice has the state $|\psi\rangle$ and the ability to make <u>any</u> measurement Alice and Bob can communicate classical information Alice and Bob share <u>one</u> entangled pair Bob can make any single-qubit rotation

A Recipe for Teleportation

- Alice makes a two-qubit measurement between the unknown state and her half of the entangled state
- 2. Alice communicates the result of the measurement to Bob
- 3. Bob applies a rotation to his state, depending on the measurement result

But what measurement to make?

The Bell Basis

Remember: The Two-Qubit Computational Basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$

Complete set of two-qubit entangled states

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

$$|00\rangle = |00\rangle$$

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right)$$

$$|01\rangle = \frac{1}{\sqrt{2}} \left(|\Psi^+\rangle + |\Psi^-\rangle \right)$$

$$|\Psi^+\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right)$$

$$|10\rangle = \frac{1}{\sqrt{2}} \left(|\Psi^+\rangle - |\Psi^-\rangle \right)$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$

$$|11\rangle = \frac{1}{\sqrt{2}} \left(|\Phi^{+}\rangle - |\Phi^{-}\rangle \right)$$

The Bell Basis

We can also perform measurements in this basis

Joint measurement

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

$$|-\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right)$$

$$|+\rangle \otimes |-\rangle$$
?

In computational basis?
In Bell basis?

We can rewrite the original basis states in this basis...

$$|00\rangle = \frac{1}{\sqrt{2}} \left(|\Phi^{+}\rangle + |\Phi^{-}\rangle \right)$$

$$|01\rangle = \frac{1}{\sqrt{2}} \left(|\Psi^+\rangle + |\Psi^-\rangle \right)$$

$$|10\rangle = \frac{1}{\sqrt{2}} \left(|\Psi^+\rangle - |\Psi^-\rangle \right)$$

$$|11\rangle = \frac{1}{\sqrt{2}} \left(|\Phi^{+}\rangle - |\Phi^{-}\rangle \right)$$

The Bell Basis

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$|+\rangle \otimes |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$= \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

$$= \frac{1}{\sqrt{2}} (|\Phi^-\rangle - |\Psi^-\rangle)$$

How to Build Bell States

$$U_{\text{cNOT}}(|+\rangle \otimes |0\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$U_{\mathrm{cNOT}}\left(\left|+\right\rangle \otimes \left|1\right\rangle\right) =$$

$$U_{\mathrm{cNOT}}\left(\left|-\right\rangle \otimes \left|0\right\rangle\right)=$$

$$U_{\text{cNOT}}(|-\rangle \otimes |1\rangle) = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

This circuit maps the computational basis to the Bell basis

$$U_{cNOT}\left(H\otimes \mathbb{1}
ight)$$

Input	Output
00>	$ \Phi^+\rangle$
01>	$\ket{\Psi^+}$
10>	$ \Phi^-\rangle$
11>	$ \Psi^{-}\rangle$

How to Build Bell *Measurements*

This circuit maps the computational basis to the Bell basis

$$U_{cNOT}\left(H\otimes \mathbb{1}
ight)$$

Input	Output
00>	$ \Phi^+\rangle$
01>	$\ket{\Psi^+}$
10>	$ \Phi^-\rangle$
11>	$ \Psi^{-}\rangle$

What could do the reverse operation?

Bell State Measurement

This circuit maps the Bell basis to the computational basis

$$(H\otimes 1 \hspace{-0.1cm}1)\,U_{cNOT}$$

Input	Output
$ \Phi^+\rangle$	00}
$ \Psi^{+}\rangle$	01>
$ \Phi^-\rangle$	10>
$ \Psi^{-}\rangle$	11>

Computational Basis Measurement

$$|+\rangle \otimes |-\rangle = \frac{1}{2} \left(|00\rangle - |01\rangle + |10\rangle - |11\rangle \right)$$

Bell Basis Measurement

$$|+\rangle \otimes |-\rangle = \frac{1}{\sqrt{2}} \left(|\Phi^-\rangle - |\Psi^-\rangle \right)$$

Alice's State

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Global State: Shared Entangled State
$$|\psi\rangle_{A}\otimes|\Phi^{+}\rangle_{AB} = (\alpha|0\rangle_{A} + \beta|1\rangle_{A})\otimes\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{B} + |1\rangle_{A}|1\rangle_{B}\right)$$

$$\stackrel{\text{expand}}{=\frac{\alpha}{\sqrt{2}}|00\rangle_{A}|0\rangle_{B} + \frac{\alpha}{\sqrt{2}}|01\rangle_{A}|1\rangle_{B} + \frac{\beta}{\sqrt{2}}|10\rangle_{A}|0\rangle_{B} + \frac{\beta}{\sqrt{2}}|11\rangle_{A}|1\rangle_{B}}$$

Next: Rewrite Alice's terms in Bell basis

$$|\psi\rangle_A \otimes |\Phi^+\rangle_{AB} = (\alpha|0\rangle_A + \beta|1\rangle_A) \otimes \frac{1}{\sqrt{2}} (|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$$
$$= \frac{\alpha}{\sqrt{2}} |00\rangle_A|0\rangle_B + \frac{\alpha}{\sqrt{2}} |01\rangle_A|1\rangle_B + \frac{\beta}{\sqrt{2}} |10\rangle_A|0\rangle_B + \frac{\beta}{\sqrt{2}} |11\rangle_A|1\rangle_B$$

Write Alice's state in the Bell basis using...

$$|00\rangle = \frac{1}{\sqrt{2}} (|\Phi^{+}\rangle + |\Phi^{-}\rangle)$$

$$|01\rangle = \frac{1}{\sqrt{2}} (|\Psi^{+}\rangle + |\Psi^{-}\rangle)$$

$$|10\rangle = \frac{1}{\sqrt{2}} (|\Psi^{+}\rangle - |\Psi^{-}\rangle)$$

$$|11\rangle = \frac{1}{\sqrt{2}} (|\Phi^{+}\rangle - |\Phi^{-}\rangle)$$

$$|\psi\rangle_{A} \otimes |\Phi^{+}\rangle_{AB}$$

$$= \frac{1}{2} |\Phi^{+}\rangle_{A} (\alpha|0\rangle_{B} + \beta|1\rangle_{B})$$

$$+ \frac{1}{2} |\Phi^{-}\rangle_{A} (\alpha|0\rangle_{B} - \beta|1\rangle_{B})$$

$$+ \frac{1}{2} |\Psi^{+}\rangle_{A} (\beta|0\rangle_{B} + \alpha|1\rangle_{B})$$

$$+ \frac{1}{2} |\Psi^{-}\rangle_{A} (-\beta|0\rangle_{B} + \alpha|1\rangle_{B})$$

Alice's Bell state measurement collapses the state to one of:

$$|\Phi^{+}\rangle_{A} \otimes (\alpha|0\rangle_{B} + \beta|1\rangle_{B})$$

$$|\psi\rangle$$

$$|\Phi^{-}\rangle_{A} \otimes (\alpha|0\rangle_{B} - \beta|1\rangle_{B})$$

$$Z|\psi\rangle$$

$$|\Psi^{+}\rangle_{A} \otimes (\beta|0\rangle_{B} + \alpha|1\rangle_{B})$$

$$X|\psi\rangle$$

$$|\Psi^{-}\rangle_{A} \otimes (-\beta|0\rangle_{B} + \alpha|1\rangle_{B})$$

$$ZX|\psi\rangle$$

Each with equal probability

Alice measures,
Bob can rotate his qubit
to obtain a perfect copy
of the original state

Alice
measures:
$ \Phi^{+}\rangle$

Bob applies:

Bob ends up with:

$$\alpha|0\rangle + \beta|1\rangle$$

$$Id = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\Phi^{-}\rangle$$
 $\alpha|0\rangle - \beta|1\rangle$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\Psi^{+}\rangle$$
 $\beta|0\rangle + \alpha|1\rangle$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\Psi^{-}
angle$$

$$-\beta|0\rangle + \alpha|1\rangle$$

$$ZX = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

How many copies of the original state $|\psi\rangle$ exist after the teleportation?

None

Alice destroyed her state with the Bell state measurement

One, and Bob has it

B One, and Alice has it

Two, one each for Alice and Bob

An infinite number

The no-cloning theory remains valid

What state does Bob have if he never receives information about Alice's measurement?

The Bell state $|\Phi^+\rangle$

 \mathbf{R} The intended state $|\psi\rangle$

G The rotated version, $ZX|\psi\rangle$

A completely random state

Quantum information is lost with classical communication!

No faster-than-light communication!

The intended state with a random rotation

Experiments!

Quantum teleportation over 143 kilometres using active feed-forward

Xiao-Song Ma^{1,2}†, Thomas Herbst^{1,2}, Thomas Scheidl¹, Daqing Wang¹, Sebastian Kropatschek¹, William Naylor¹, Bernhard Wittmann^{1,2}, Alexandra Mech^{1,2}, Johannes Kofler^{1,3}, Elena Anisimova⁴, Vadim Makarov⁴, Thomas Jennewein^{1,4}, Rupert Ursin¹ & Anton Zeilinger^{1,2}

100

Nature 489, 269-273 (13 September 2012)

Ground-to-satellite quantum teleportation

Ji-Gang Ren^{1,2}, Ping Xu^{1,2}, Hai-Lin Yong^{1,2}, Liang Zhang^{2,3}, Sheng-Kai Liao^{1,2}, Juan Yin^{1,2}, Wei-Yue Liu^{1,2}, Wen-Qi Cai^{1,2}, Meng Yang^{1,2}, Li Li^{1,2}, Kui-Xing Yang^{1,2}, Xuan Han^{1,2}, Yong-Qiang Yao⁴, Ji Li⁵, Hai-Yan Wu⁵, Song Wan⁶, Lei Liu⁶, Ding-Quan Liu³, Yao-Wu Kuang³, Zhi-Ping He³, Peng Shang^{1,2}, Cheng Guo^{1,2}, Ru-Hua Zheng⁷, Kai Tian⁸, Zhen-Cai Zhu⁶, Nai-Le Liu^{1,2}, Chao-Yang Lu^{1,2}, Rong Shu^{2,3}, Yu-Ao Chen^{1,2}, Cheng-Zhi Peng^{1,2}, Jian-Yu Wang^{2,3} & Jian-Wei Pan^{1,2}

Three's a Crowd

What happens if Alice attempts to teleport an entangled qubit?

Entanglement Swapping!

Key technique for quantum repeaters, some quantum computing protocols, and entangling different quantum systems!

Quantum Teleportation

Using one entangled photon and classical communication, Alice can teleport an unknown quantum state to Bob

No-cloning and special relativity restrictions remain valid

An essential tool for quantum communication and computing

