3. Sentential logic

Here we discuss some more components of our final first-order logic: the logic surrounding words like "not", "and", etc. The language here is simpler than what we have dealt with so far. We have only the following symbols:

n, a symbol for negation.

a, a symbol for conjunction ("and").

Symbols S_0, S_2, \ldots , called *sentential variables*.

Symb is the collection of all of these symbols. An *expression* is a finite nonempty sequence of members of Symb. We define operations \neg and \land on the set of expressions:

$$\neg \varphi = \langle \mathbf{n} \rangle \widehat{\ } \varphi; \quad \varphi \wedge \psi = \langle \mathbf{a} \rangle \widehat{\ } \varphi \widehat{\ } \psi.$$

The collection of sentential formulas is the smallest collection C of expressions such that $\langle S_i \rangle$ is in C for each $i \in \omega$, and C is closed under the operations \neg , \wedge . Frequently we write S_i instead of $\langle S_i \rangle$.

In analogy to Proposition 2.1 we have:

Proposition 3.1. (i) No proper initial segment of a sentential formula is a formula.

- (ii) If φ is a sentential formula, then exactly one of the following holds:
 - (a) φ is a sentential variable.
 - (b) φ is $\neg \psi$ for some sentential formula ψ .
 - (c) φ is $\psi \wedge \chi$ for some sentential formulas ψ, χ .
- (iii) If φ and ψ are sentential formulas and $\neg \varphi = \neg \psi$, then $\varphi = \psi$.
- (iv) If $\varphi, \psi, \varphi', \psi'$ are sentential formulas and $\varphi \wedge \psi = \varphi' \wedge \psi'$, then $\varphi = \varphi'$ and $\psi = \psi'$.

Now we define satisfaction and truth for this special language. A sentential assignment is a function mapping ω into $\{0,1\}$. We think of 0 as "false" and 1 as "true". Then the value of an arbitrary formula φ under a sentential assignment f is denoted by $\varphi[f]$ and is defined as follows:

$$S_{i}[f] = f(i);$$

$$(\neg \varphi)[f] = 1 - \varphi[f];$$

$$(\varphi \wedge \psi)[f] = \varphi[f] \cdot \psi[f].$$

We say that f satisfies φ , or that φ is true under f iff $\varphi[f] = 1$. A sentential formula is a tautology iff it is true under every assignment.

We introduce some further logical notions:

$$\varphi \to \psi = \neg(\varphi \land \neg \psi);$$

$$\varphi \lor \psi = \neg(\neg \varphi \land \neg \psi);$$

$$\varphi \leftrightarrow \psi = (\varphi \to \psi) \land (\psi \to \varphi).$$

Here are some common tautologies:

- (T1) $S_0 \rightarrow S_0$.
- (T2) $S_0 \leftrightarrow \neg \neg S_0$.
- (T3) $(S_0 \rightarrow \neg S_0) \rightarrow \neg S_0$.
- $(T4) (S_0 \to \neg S_1) \to (S_1 \to \neg S_0).$
- (T5) $S_0 \rightarrow (\neg S_0 \rightarrow S_1)$.
- (T6) $(S_0 \to S_1) \to [(S_1 \to S_2) \to (S_0 \to S_2)].$
- (T7) $[S_0 \to (S_1 \to S_2)] \to [(S_0 \to S_1) \to (S_0 \to S_2)].$
- (T8) $(S_0 \wedge S_1) \to (S_1 \wedge S_0)$.
- (T9) $(S_0 \wedge S_1) \rightarrow S_0$.
- (T10) $(S_0 \wedge S_1) \to S_1$.
- (T11) $S_0 \to [S_1 \to (S_0 \land S_1)].$
- (T12) $S_0 \to (S_0 \vee S_1)$.
- (T13) $S_1 \to (S_0 \vee S_1)$.
- (T14) $(S_0 \to S_2) \to [(S_1 \to S_2) \to ((S_0 \lor S_1) \to S_2)].$
- (T15) $\neg (S_0 \land S_1) \leftrightarrow (\neg S_0 \lor \neg S_1)$.
- (T16) $S_0 \wedge S_1 \leftrightarrow \neg(\neg S_0 \vee \neg S_1)$.
- $(T17) \neg (S_0 \lor S_1) \leftrightarrow (\neg S_0 \land \neg S_1).$
- $(T18) [S_0 \lor (S_1 \lor S_2)] \leftrightarrow [(S_0 \lor S_1) \lor S_2].$
- (T19) $[S_0 \wedge (S_1 \wedge S_2)] \leftrightarrow [(S_0 \wedge S_1) \wedge S_2].$
- (T20) $[S_0 \wedge (S_1 \vee S_2)] \leftrightarrow [(S_0 \wedge S_1) \vee (S_0 \wedge S_2)].$
- (T21) $[S_0 \lor (S_1 \land S_2)] \leftrightarrow [(S_0 \lor S_1) \land (S_0 \lor S_2)].$
- (T22) $S_0 \wedge S_1 \leftrightarrow \neg (S_0 \rightarrow \neg S_1)$ l.

Some of these tautologies show that we could have selected different primitive notions for the sentential part of first-order logic. Thus:

- \neg and \lor suffice, by (T16).
- \neg and \rightarrow suffice, by (T22).

We now define general conjunctions and disjunctions:

$$\bigwedge_{i \leq 0} \varphi_i = \varphi_0;$$

$$\bigwedge_{i \leq m+1} \varphi_i = \left(\bigwedge_{i \leq m} \varphi_i\right) \wedge \varphi_{m+1};$$

$$\bigvee_{i \leq 0} \varphi_i = \varphi_0;$$

$$\bigvee_{i \leq m+1} \varphi_i = \left(\bigvee_{i \leq m} \varphi_i\right) \vee \varphi_{m+1}.$$

We also might write $\varphi_0 \wedge \ldots \wedge \varphi_m$ in place of $\bigwedge_{i \leq m} \varphi_i$; similarly for \bigvee . Sometimes we will not explicitly give an order; for example we might write $\bigvee_{i \in I} \varphi_i$. In such a case, any order should be ok.

For any sentential formula φ , let $\varphi^1 = \varphi$ and $\varphi^0 = \neg \varphi$.

Lemma 3.2. If f and g are sentential assignments which agree on every i such that S_i occurs in φ , then $\varphi[f] = \varphi[g]$.

Proof. By induction on
$$\varphi$$
.

Theorem 3.3. (Disjunctive normal form) If φ is a sentential formula which is true under some sentential assignment, and if every sentential variable S_i occurring in φ has i < m, then there is a nonempty set $M \subseteq {}^{m}2$ such that the following formula is a tautology:

$$\varphi \leftrightarrow \bigvee_{\varepsilon \in M} \bigwedge_{i < m} S_i^{\varepsilon(i)}.$$

Proof. Let

$$M = \{ \varepsilon \in {}^{m}2 : \varphi[f] = 1 \text{ for some } f \supseteq \varepsilon \}.$$

Note that M is nonempty, since φ is true under some assignment. Now take any sentential assignment f. Note that

$$\left(\bigwedge_{i < m} S_i^{f(i)}\right)[f] = 1.$$

Hence the right side of the formula in the Theorem is true under f iff $f \upharpoonright m \in M$, and this is true by Lemma 3.2 iff $\varphi[f] = 1$.

EXERCISES

Exc. 3.1. Define $\varphi|\psi = \neg \varphi \wedge \neg \psi$. (The Sheffer stroke.). Show that \neg and \wedge can be defined in terms of |.

Exc. 3.2. A formula φ involving only S_0, \ldots, S_m determines a function $t_{\varphi}: {}^{m+1}2 \to 2$ defined by $t_{\varphi}(x) = \varphi[x]$ for any $x \in {}^{m+1}2$. Show that any member of $\bigcup_{0 < m < \omega} {}^{(m_2)}2$ can be obtained in this way.

Exc. 3.3. Show that the following formula is a tautology:

$$(\{[(\varphi \to \psi) \to (\neg \chi \to \neg \theta)] \to \chi\} \to \tau) \to [(\tau \to \varphi) \to (\theta \to \varphi)]$$

(This formula can be used as a single axiom in an axiomatic development of sentential logic.)