Wspomaganie Decyzji Laboratorium 4 Wielokryterialny wybór dyskretny

Treść zadania

Dany jest zbiór przedmiotów $i \in I$. Każdy przedmiot opisywany jest przez zbiór cech $j \in J$ o wartościach równych K_{ij} . Używając agregacji przedziałową metodą punktu odniesienia, wykonać analizę wielokryterialną problemu wyboru jednego z tych przedmiotów.

Zadania do wykonania:

- 1. Przygotować dane o przedmiotach, tzn. wartości poszczególnych kryteriów dla każdego przedmiotu. Liczba przedmiotów >= 30, liczba kryteriów: 5. Dane powinny być numeryczne: rzeczywiste, całkowitoliczbowe lub binarne.
- 2. Utworzyć model rzeczowy wielokryterialnego problemu decyzyjnego.
- 3. Zrobić 4 wykresy wybranych par kryteriów z naniesionymi wartościami każdego kryterium.
- 4. Określić utopię i oszacować nadir.
- 5. Rozszerzyć model rzeczowy o agregację kryteriów przedziałową metodą punktu odniesienia (PMPO)
- 6. Na utworzone wykresy dla wybranej pary aspiracja-rezerwacja nanieść poziomice funkcji celu PMPO.
- 7. Dokonać analizy wielokryterialnej wykonać przynajmniej 10 kroków dla różnych par aspiracja-rezerwacja. Przed każdym krokiem opisać w jednym zdaniu, co zmieniamy i dlaczego. Wynik analizy zapisać w tabeli. Tabela ma zawierać kolumny: aspiracja, rezerwacja, wartości kryteriów, indeks wybranego przedmiotu, nazwa wybranego przedmiotu.

Dane o przedmiotach

Zdecydowałem się na analizę laptopów.

Ich atrybutami beda:

- 1) cena (zł),
- 2) ilość pamięci RAM (GB),
- 3) ilość pamięci na dysku (GB)
- 4) długość przekątnej ekranu (cale)
- 5) częstotliwość taktowania procesora (GHz)

Dla przejrzystości, umieszczam również nazwę dla każdego laptopa.

Dane o laptopach zamieszczono w poniższej tabeli (dane pobierałem ze strony euro.com.pl). Dodatkowo, w danych laptopów, podałem minimalną deklarowaną częstotliwość (na stronie internetowej podawany był przedział częstotliwości).

<u>Lp.</u>	<u>Nazwa</u>	<u>Cena</u> (<u>zł)</u>	<u>RAM</u> (GB)	<u>Dysk</u> (GB)	<u>Przekątna</u> (cale)	<u>Procesor</u> (GHz)	
1	Kiano Elegance 14.2	899	4	152	14,1	1,1	
2	Acer Spin 1	1299	4	32	11,6	1,1	
3	ASUS X541SA- DM690	1899	4	1024	15,6	1,6	
4	HP 14-dk0042nw	2099	4	128	14	2,6	
5	Acer Aspire 3 A315-56-33RC	2299	4	256	15,6	1,02	
6	Lenovo IdeaPad 3 15ADA05	2999	8	256	15,6	2,6	
7	ASUS TUF Gaming FX505GT- BQ018	3599	8	512	15,6	2,2	
8	Lenovo IdeaPad Gaming 3 15IMH05	3799	8	256	15,6	2,6	
9	Apple Macbook Air 13	3999	8	128	13,3	1,8	
10	Lenovo Legion Y540-17IRH	4299	8	512	17,3	2,4	
11	Lenovo Legion Y540-15IRH	4699	8	512	15,6	2,4	
12	Acer Nitro 5 AN515-44-R7WZ	5199	16	512	15,6	2,9	
13	Acer Nitro 5 AN515-54-5719	5399	16	512	15,6	2,4	
14	Huawei MateBook X Pro 2019	5762	8	512	13,9	1,8	

15	Huawei MateBook 13 2020	5999	16	512	13	1,8
16	Huawei MateBook X Pro	6749	16	512	13,9	1,8
17	Dell XPS 13 7390- 8421	7127	8	512	13,3	1,6
18	Acer Predator Helios 300 PH317- 54	7799	16	1024	17,3	2,6
19	Dell XPS 15 9575	7999	8	256	15,6	2,8
20	Acer Predator Helios 300	8612	32	1024	15,6	2,6
21	Apple Macbook Pro 13 2020 z Touch Bar	9899	16	512	13,3	2
22	ASUS ROG Strix SCAR 17 G732LWS-HG029	10394	16	1024	17,3	2,3
23	Lenovo Legion 7 15IMH05H	11384	16	1024	15,6	2,6
24	Acer Predator Triton 500 PT515- 52	12299	32	1024	15,6	2,3
25	Apple Macbook Pro 16 z Touch Bar 2019	12499	16	1024	16	2,3
26	Dell XPS 15 9500- 7169	14899	16	1024	15,6	2,6
27	ASUS ROG Strix SCAR 17 G732LXS-HG074T	15499	32	1024	17,3	2,4
28	ASUS ROG Zephyrus Duo 15 GX550LXS- HF088T	16829	32	1024	15,6	2,4
29	ASUS ROG Zephyrus Duo 15 GX550LXS- HC060T	18999	32	2048	15,6	2,4
30	ASUS ProArt StudioBook Pro X W730G5T	19999	32	2048	17	2,6

Model rzeczowy sytuacji decyzyjnej

Parametry:

Macierz K_{30x5} , gdzie K_{ij} oznacza wartość j-tej cechy dla i-tego przedmiotu

Zmienne decyzyjne:

```
x_i - zmienne binarne oznaczające, czy wybraliśmy i-ty laptop (x_i = 1), czy nie (x_i = 0)
(i = 1..30)
```

Wyjścia modelu:

 q_1 – cena (zł)

 q_2 – ilość pamięci RAM (GB)

 q_3 – ilość pamięci dyskowej (GB)

 q_4 – długość przekątnej ekranu (cale)

 q_5 – częstotliwość taktowania procesora (GHz)

Kryteria optymalizacji:

```
\min_{1 \le i \le 30} q_1 = K_{i,1}(\text{minimalizacja ceny})
```

 $\max_{1 \le i \le 30} q_2 = K_{i,2}$ (maksymalizacja ilości pamięci RAM)

 $\max_{1 \leq i \leq 30} q_3 = K_{i,3}$ (maksymalizacja ilości pamięci dyskowej)

 $\max_{1 \leq i \leq 30} q_4 = K_{i,4}$ (maksymalizacja długości przekątnej ekranu)

 $\max_{1 \leq i \leq 30} q_5 = K_{i,5}$ (maksymalizacja częstotliwości taktowania procesora)

Ograniczenia:

$$\sum_{i=1}^{30} x_i = 1$$
 (wybieramy tylko 1 laptop)

$$x_i \ge 0 \text{ dla } i = 1..30$$

Wykresy wybranych par kryteriów

W tym punkcie sprawozdania zamieszczam 2 typy wykresów:

- 1) bez skalowania danych i bez rysowania poziomic
- 2) ze skalowaniem danych i bez rysowania poziomic

Na początek wykresy typu 1).

Możemy zauważyć, że na przedstawionych wykresach, parametry mają (generalnie) tendencję wzrostową – im większa wartość jednego parametru, tym większa wartość drugiego parametru.

A teraz zaprezentuję wykresy typu 2).

Możemy zauważyć, że na przedstawionych wykresach, parametry mają (generalnie) tendencję wzrostową – im większa wartość jednego parametru, tym większa wartość drugiego parametru.

Punkt utopii i oszacowanie nadiru

<u>Punkt utopii</u> jest wyznaczony przez optymalne wartości każdej z cech laptopa, spośród wszystkich naszych laptopów. I tak:

- minimalna cena wynosi q_1 = 899 (zł)
- maksymalna ilość pamięci RAM wynosi q_2 = 32 (GB)
- maksymalna ilość pamięci dyskowej wynosi q_3 = 2048 (GB)
- maksymalna długość przekątnej ekranu wynosi q_4 = 17.3 (cale)
- maksymalna częstotliwość taktowania procesora wynosi q_5 = 2.9 (GHz)

Zatem punkt utopii $U = [q_1 \ q_2 \ q_3 \ q_4 \ q_5]^T = [899 \ 32 \ 2048 \ 17.3 \ 2.9]^T.$

Oszacowanie nadiru wyznaczymy następująco:

- sprawdzimy, który laptop ma zoptymalizowaną wartość pewnego kryterium (wybrałem kryterium ceny)
- następnie przyjmiemy parametry tego właśnie laptopa za oszacowanie nadiru

Widzimy, że tabela laptopów jest posortowana niemalejąco względem ceny. A zatem laptop nr 1 ma najmniejszą wartość ceny. Biorąc wszystkie parametry laptopa nr 1, dostajemy oszacowanie nadiru: $N = \begin{bmatrix} 899 & 4 & 152 & 14.1 & 1.1 \end{bmatrix}^T$.

Model rzeczowy, rozszerzony o agregację kryteriów przedziałową metodą punktu odniesienia

Parametry:

macierz K_{30x5} , gdzie K_{ij} oznacza wartość j-tej cechy dla i-tego przedmiotu

 $\varepsilon = 0.001$ – parametr w przedziałowej metodzie punktu odniesienia

 $\xi = 0.001$ - parametr w przedziałowej metodzie punktu odniesienia

arphi=1000 - parametr w przedziałowej metodzie punktu odniesienia

 R_i – wartość j-tej cechy punktu rezerwacji (j = 1..5)

 A_i – wartość j-tej cechy punktu aspiracji (j = 1..5)

Zmienne decyzyjne:

 x_i - zmienne binarne oznaczające, czy wybraliśmy i-ty laptop ($x_i = 1$), czy nie ($x_i = 0$) (i = 1..30)

Zmienne pomocnicze:

$$\begin{aligned} \text{Przypomnienie:} \, \eta_{ij} &= \begin{cases} \frac{\frac{\phi \cdot (K_{ij} - R_j)}{A_j - R_j}}{A_j - R_j} \;\; dla \; K_{ij} < R_j \\ \frac{(K_{ij} - R_j)}{A_j - R_j} \;\;\; dla \; R_j \leq K_{ij} \leq A_j \\ 1 + \frac{\xi \cdot (K_{ij} - A_j)}{A_j - R_j} \;\;\; dla \; K_{ij} > A_j \end{cases}$$

 z_{ij} – wartości funkcji η_{ij} (i-ty laptop, j-ta cecha) ($i=1..30,\ j=1..5$) zz_i – minima wartości z_{ij} (i = 1..30, j = 1..5)

Wyjścia modelu:

 q_1 – cena (zł)

 q_2 – ilość pamięci RAM (GB)

 q_3 – ilość pamięci dyskowej (GB)

 q_4 – długość przekątnej ekranu (cale)

 q_5 – częstotliwość taktowania procesora (GHz)

Wyjścia modelu będą odpowiadały parametrom wybranego laptopa.

$$\begin{aligned} & \underbrace{\text{Kryterium optymalizacji:}}_{1 \leq i \leq 30} S = \sum_{i=1}^{30} x_i \cdot zz_i + \frac{\varepsilon}{5} \cdot \sum_{i=1}^{30} \sum_{j=1}^{5} x_i \cdot z_{ij} \end{aligned}$$

Ograniczenia:

- $\sum_{i=1}^{30} x_i = 1$ (wybieramy tylko 1 laptop)
- $x_i \ge 0 \ (i = 1..30)$
- $zz_i \le z_{ij} \ (i = 1..30, \ j = 1..5)$

- $z_{ij} \le \frac{\varphi(K_{ij} R_j)}{A_j R_j}$ (i = 1..30, j = 1..5)• $z_{ij} \le \frac{\varphi(K_{ij} R_j)}{A_j R_j}$ (i = 1..30, j = 1..5)• $z_{ij} \le \frac{(K_{ij} R_j)}{A_j R_j}$ (i = 1..30, j = 1..5)

<u>Przeskalowane wykresy z poziomicami funkcji celu</u> <u>oraz punktem rezerwacji i aspiracji</u>

Na zamieszczonych wykresach punkt rezerwacji oznaczony jest literą R, natomiast punkt aspiracji oznaczony jest literą A.

Analiza wielokryterialna

Na początek przedstawię programy w języku AMPL, realizujące analizę wielokryterialną.

Plik Lab5v2.mod, z modelem zadania

```
# Parametry modelu
param M; # Liczba laptopow
param N; # Liczba cech laptopow i kryteriow optymalizacji
# Cechy laptopow:
# 1 - cena laptopa (zl)
# 2 - ilosc pamieci RAM (GB)
# 3 - ilosc pamieci dyskowej (GB)
# 4 - dlugosc przekatnej ekranu (cale)
# 5 - czestoliwosc taktowania procesora (GHz)
# Macierz wartosci cech dla laptopow:
# K[i,j] -> wartosc j-tej cechy dla i-tego laptopa
param K{1..M, 1..N};
param eps; # Parametr w przedzialowej metodzie punktu odniesienia
param fi; # Parametr w przedzialowej metodzie punktu odniesienia
param ksi; # Parametr w przedzialowej metodzie punktu odniesienia
param R{1..N}; # Punkt rezerwacji
param A{1..N}; # Punkt aspiracji
# Zmienne decyzyjne
var x{1..M} binary; # zmienne binarne oznaczajace, czy wybralismy i-ty laptop (x_i
= 1), czy nie (x i = 0)
# Zmienne pomocnicze
var zz{1..M}; # minima funkcji ni (dla kazdego laptopa)
var z{1..M, 1..N}; # funkcje ni (dla kazddego laptopa, dla kazdej cechy)
# Cel optymalizacji
# Chcemy zminimalizowac cene (tj. ceche nr 1), przy jednoczesnej maksymalizacji
pozostalych cech laptopa (tj. cechy 2-5)
# Kryterium optymalizacji
maximize S: sum{i in 1..M}(x[i] * zz[i]) + eps/N * sum{i in 1..M, j in 1..N} (
x[i] * z[i,j] );
# Ograniczenia
# Wybieramy dokladnie 1 laptop
subject to o1: sum{i in 1..M} ( x[i] ) = 1;
```

```
# Przedzialowa metoda punktu odniesienia
subject to o2 {i in 1..M, j in 1..N}: zz[i] <= z[i,j];
subject to o3 {i in 1..M, j in 1..N}: z[i,j] <= fi * ( K[i,j] - R[j] ) / ( A[j] - R[j] );
subject to o4 {i in 1..M, j in 1..N}: z[i,j] <= ( K[i,j] - R[j] ) / ( A[j] - R[j] );
subject to o5 {i in 1..M, j in 1..N}: z[i,j] <= ( 1 + ksi * ( K[i,j] - A[j] ) / ( A[j] - R[j] ) );</pre>
```

Plik Lab5v2.dat, z danymi modelu

```
# Opisy parametrow modelu znajduja sie w pliku Lab5v2.mod
param M := 30;
param N := 5;
```

param K :

	1	2	3	4	5 :=
	200		450		
1	899	4	152	14.1	1.1
2	1299	4	32	11.6	1.1
3	1899	4	1024	15.6	1.6
4	2099	4	128	14	2.6
5	2299	4	256	15.6	1.02
6	2999	8	256	15.6	2.6
7	3599	8	512	15.6	2.2
8	3799	8	256	15.6	2.6
9	3999	8	128	13.3	1.8
10	4299	8	512	17.3	2.4
11	4699	8	512	15.6	2.4
12	5199	16	512	15.6	2.9
13	5399	16	512	15.6	2.4
14	5762	8	512	13.9	1.8
15	5999	16	512	13	1.8
16	6749	16	512	13.9	1.8
17	7127	8	512	13.3	1.6
18	7799	16	1024	17.3	2.6
19	7999	8	256	15.6	2.8
20	8612	32	1024	15.6	2.6
21	9899	16	512	13.3	2
22	10394	16	1024	17.3	2.3
23	11384	16	1024	15.6	2.6
24	12299	32	1024	15.6	2.3
25	12499	16	1024	16	2.3
26	14899	16	1024	15.6	2.6
27	15499	32	1024	17.3	2.4
28	16829	32	1024	15.6	2.4
29	18999	32	2048	15.6	2.4
30	19999	32	2048	17	2.6;

```
param eps := 0.001;
param fi := 1000;
param ksi := 0.001;
param A :=
                                 6000
                           1
                           2
                                  12
                           3
                                  400
                           4
                                  14
                           5
                                  2.3;
param R :=
                                  10000
                           1
                           2
                                  8
                           3
                                  256
                           4
                                  13
                                  1.8;
```

Teraz rozważymy 10 przypadków, dla różnych punktów rezerwacji i aspiracji (tj. dla rożnych preferencji klienta, chcącego kupić laptopa). Korzystając z powyższego programu w AMPL (zmieniając wartości punktów rezerwacji i aspiracji), wyznaczymy rozwiązanie dla każdego przypadku.

```
1) \mathbf{R} = [30000 \ 8 \ 256 \ 13 \ 1.8]^T, \mathbf{A} = [20000 \ 12 \ 400 \ 14 \ 2.3]^T
```

Z analizy punktu rezerwacji **R** wynika, że chcemy kupić laptop o poniższych ("minimalnych") własnościach:

- cena nieprzekraczająca 30000 zł
- co najmniej 8 GB pamięci RAM
- co najmniej 256 GB pamięci dyskowej
- co najmniej 13-calowa przekątna ekranu
- częstotliwość taktowania procesora co najmniej 1.8 GHz

Z analizy punktu aspiracji **A** wynika, że chcemy kupić laptop o poniższych (oczekiwanych) własnościach:

- cena nieprzekraczająca 20000 zł
- co najmniej 12 GB pamięci RAM

- co najmniej 400 GB pamięci dyskowej
- co najmniej 14-calowa przekątna ekranu
- częstotliwość taktowania procesora co najmniej 2.3 GHz

W kolejnych przypadkach, analiza punktów R oraz A będzie analogiczna.

Oto uzyskane wyniki:

- indeks wybranego przedmiotu: 12
- nazwa wybranego przedmiotu: Acer Nitro 5 AN515-44-R7WZ
- wartości kryteriów:
 - Cena: 5199 złRAM: 16 GBDysk: 512 GB
 - Przekątna: 15.6 calaProcesor: 2.9 GHz
- 2) $\mathbf{R} = [2000 \ 16 \ 512 \ 15.6 \ 1.1]^T$, $\mathbf{A} = [1000 \ 32 \ 1024 \ 17.3 \ 1.8]^T$

Oto uzyskane wyniki:

- indeks wybranego przedmiotu: 3
- nazwa wybranego przedmiotu: ASUS X541SA-DM690
- wartości kryteriów:
 - Cena: 1899 zł
 - > RAM: 4 GB
 - > Dysk: 1024 GB
 - Przekatna: 15.6 cala
 - Procesor: 1.6 GHz
- 3) $\mathbf{R} = [5000 \ 2 \ 16 \ 12 \ 0.8]^T$, $\mathbf{A} = [200 \ 4 \ 32 \ 13 \ 1]^T$

Oto uzyskane wyniki:

- indeks wybranego przedmiotu: 1
- nazwa wybranego przedmiotu: Kiano Elegance 14.2
- wartości kryteriów:
 - > Cena: 899 zł
 - RAM: 4 GB

> Dysk: 152 GB

Przekatna: 14.1 cala Procesor: 1.1 GHz

4) $\mathbf{R} = [40000 \ 16 \ 512 \ 14 \ 1.8]^T$, $\mathbf{A} = [30000 \ 32 \ 1024 \ 15.6 \ 2.3]^T$

Oto uzyskane wyniki:

• indeks wybranego przedmiotu: 30

• nazwa wybranego przedmiotu: ASUS ProArt StudioBook Pro X W730G5T

wartości kryteriów:

> Cena: 19999 zł > RAM: 32 GB > Dysk: 2048 GB Przekątna: 17 cali Procesor: 2.6 GHz

5) $\mathbf{R} = [11000 \ 8 \ 256 \ 12 \ 1.4]^T$, $\mathbf{A} = [10000 \ 12 \ 320 \ 12.5 \ 1.6]^T$

Oto uzyskane wyniki:

• indeks wybranego przedmiotu: 20

• nazwa wybranego przedmiotu: Acer Predator Helios 300

wartości kryteriów:

> Cena: 8612 zł > RAM: 32 GB > Dysk: 1024 GB > Przekątna: 15.6 cala

Procesor: 2.6 GB

6) $\mathbf{R} = [4500 \ 8 \ 192 \ 14 \ 1.6]^T$, $\mathbf{A} = [3200 \ 16 \ 256 \ 15 \ 2]^T$

Oto uzyskane wyniki:

• indeks wybranego przedmiotu: 6

nazwa wybranego przedmiotu: Lenovo IdeaPad 3 15ADA05

• wartości kryteriów:

> Cena: 2999 zł > RAM: 8 GB > Dysk: 256 GB

Przekątna: 15.6 calaProcesor: 2.6 GHz

7) $\mathbf{R} = [13000 \ 4 \ 512 \ 15 \ 1.9]^T$, $\mathbf{A} = [9000 \ 8 \ 768 \ 16 \ 2.1]^T$

Oto uzyskane wyniki:

- indeks wybranego przedmiotu: 18
- nazwa wybranego przedmiotu: Acer Predator Helios 300 PH317-54
- wartości kryteriów:

Cena: 7799 złRAM: 16 GBDysk: 1024 GB

Przekątna: 17.3 calaProcesor: 2.6 GHz

8) $\mathbf{R} = [4200 \ 2 \ 768 \ 15.1 \ 2.3]^T$, $\mathbf{A} = [4000 \ 4 \ 1024 \ 16 \ 2.6]^T$

Oto uzyskane wyniki:

- indeks wybranego przedmiotu: 7
- nazwa wybranego przedmiotu: ASUS TUF Gaming FX505GT-BQ018
- wartości kryteriów:

> Cena: 3599 zł

> RAM: 8 GB

> Dysk: 512 GB

Przekątna: 15.6 cala

Procesor: 2.2 GHz

9) $\mathbf{R} = [16500 \ 24 \ 768 \ 15.6 \ 2]^T$, $\mathbf{A} = [16000 \ 32 \ 1024 \ 16.5 \ 2.1]^T$

Oto uzyskane wyniki:

- indeks wybranego przedmiotu: 27
- nazwa wybranego przedmiotu: ASUS ROG Strix SCAR 17 G732LXS-HG074T
- wartości kryteriów:

Cena: 15499 zł

➤ RAM: 32 GB

> Dysk: 1024 GB

Przekątna: 17.3 cala

Procesor: 2.4 GHz

10) $\mathbf{R} = [5050 \ 8 \ 64 \ 15.6 \ 1]^T$, $\mathbf{A} = [5000 \ 12 \ 80 \ 16 \ 1.6]^T$

Oto uzyskane wyniki:

• indeks wybranego przedmiotu: 10

• nazwa wybranego przedmiotu: Lenovo Legion Y540-17IRH

• wartości kryteriów:

Cena: 4299 zł
RAM: 8 GB
Dysk: 512 GB
Przekątna: 17.3 cala
Procesor: 2.4 GHz

Wyniki zbiorcze analizy wielokryterialnej prezentuje poniższa tabela.

<u>Nr</u>	<u>Punkt rezerwacji R</u>	Punkt aspiracji A	<u>Indeks</u>	<u>Nazwa</u>	<u>Cena</u>	RAM	<u>Dysk</u>	<u>Przekątna</u>	<u>Procesor</u>
przypadku			<u>wybranego</u>	<u>wybranego</u>	<u>(zł)</u>	(GB)	(GB)	<u>(cale)</u>	<u>(GHz)</u>
			<u>laptopa</u>	<u>laptopa</u>					
1	$[30000 \ 8 \ 256 \ 13 \ 1.8]^T$	[20000 12 400 14 2.3] ^T	12	Acer Nitro				4-0	
				5 AN515- 44-R7WZ	5199	16	512	15,6	2,9
2	$[2000 \ 16512 \ 15.6 \ 1.1]^T$	$[1000 \ 32 \ 1024 \ 17.3 \ 1.8]^T$	3	ASUS					
				X541SA- DM690	1899	4	1024	15,6	1,6
3	[5000 2 16 12 0.8] ^T	[200 4 32 13 1] ^T	1	Kiano					
				Elegance 14.2	899	4	152	14,1	1,1
4	$[40000 \ 16 \ 512 \ 14 \ 1.8]^T$	$[30000 \ 32 \ 1024 \ 15.6 \ 2.3]^T$	30	ASUS					
				ProArt StudioBook	19999	32	2048	17	2.6
				Pro X	19999	32	2048	17	2,6
				W730G5T					
5	$[11000 \ 8 \ 256 \ 12 \ 1.4]^T$	$[10000 \ 12 \ 320 \ 12.5 \ 1.6]^T$	20	Acer					
				Predator Helios 300	8612	32	1024	15,6	2,6
6	[4500 8 192 14 1.6] ^T	[3200 16 256 15 2] ^T	6	Lenovo					
	[1000 0 172 11 1.0]	[0200 10 200 10 2]		IdeaPad 3	2999	8	256	15,6	2,6
				15ADA05				,	,
7	$[13000 \ 4 \ 512 \ 15 \ 1.9]^T$	[9000 8 768 16 2.1] ^T	18	Acer					
				Predator Helios 300	7799	16	1024	17,3	2,6
				PH317-54					
8	$[4200 \ 2 \ 768 \ 15.1 \ 2.3]^T$	$[4000 \ 4 \ 1024 \ 16 \ 2.6]^T$	7	ASUS TUF					
				Gaming	3599	8	512	15,6	2,2
				FX505GT- BQ018				-,-	,
9	[16500 24 768 15.6 2] ^T	[16000 32 1024 16.5 2.1] ^T	27	ASUS ROG					
				Strix SCAR					
				17	15499	32	1024	17,3	2,4
				G732LXS- HG074T					
10	[5050 8 64 15.6 1] ^T	[5000 12 80 16 1.6] ^T	10	Lenovo					
				Legion Y540-17IRH	4299	8	512	17,3	2,4

Wnioski. Różne preferencje klienta mogą implikować wybór różnych laptopów.