

all col with two 1. [6] add all X's rows into first row add all X's rows into first row. There than two is impossible. There there is impossible. There is in X, one is in Y add all X's rows into first row. First row = (ast row =) det = 0.
Dual min \geq ui $u \in \mathbb{R}^{n+m}$ $i \in x \cup y$ S.t. $u : + u_j \geq l$, $(i,j) \in E$
U > 0 U describing a set of S: it S when Ui=1, i&S. when Ui=0. Vertex cover: Set of vertices that cover every edge linclude at least one edpoint of each edge.
looking for smallest S that covers every edge.
S is a vertex cover, M is a matching. 1-to-1.
edge in M < # Vertices in S. (Weak duality).
Mevren: # edge in Maximum matching

= # vertices in min vertex cover.
Proof: Strong duality, total unimodularlity.
General Form: (V, E).
Matching: Share no endpoints.
Vetex cover: Set of vertices covering all edges.
there is no bipartiteness => may not totally unimodular.
Example: (a,b) , (c,d)
Min vertex cover is 3 vertices
{a, c, d}
Max matching LP => opt value = 2. I
Min vertex cover => opt value = 2.5