Importing necessary modules

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
1 df = pd.read_csv("cars.csv")
2 df.head()
```

Out[2]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type
0	3	?	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc
1	3	?	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc
2	1	?	alfa- romero	gas	hatchback	rwd	front	65.5	52.4	ohcv
3	2	164	audi	gas	sedan	fwd	front	66.2	54.3	ohc
4	2	164	audi	gas	sedan	4wd	front	66.4	54.3	ohc
4										>

Exploratory Data Analysis

In [3]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	normalized-losses	205 non-null	object
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	body-style	205 non-null	object
5	drive-wheels	205 non-null	object
6	engine-location	205 non-null	object
7	width	205 non-null	float64
8	height	205 non-null	float64
9	engine-type	205 non-null	object
10	engine-size	205 non-null	int64
11	horsepower	205 non-null	object
12	city-mpg	205 non-null	int64
13	highway-mpg	205 non-null	int64
14	price	205 non-null	int64
44	C1+C4/3\	C4/E) - L-1+/O)	

dtypes: float64(2), int64(5), object(8)

memory usage: 24.1+ KB

In [4]:

1 df.describe()

Out[4]:

	symboling	width	height	engine- size	city-mpg	highway- mpg	price
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000
mean	0.834146	65.907805	53.724878	126.907317	25.219512	30.751220	13227.478049
std	1.245307	2.145204	2.443522	41.642693	6.542142	6.886443	7902.651615
min	-2.000000	60.300000	47.800000	61.000000	13.000000	16.000000	5118.000000
25%	0.000000	64.100000	52.000000	97.000000	19.000000	25.000000	7788.000000
50%	1.000000	65.500000	54.100000	120.000000	24.000000	30.000000	10345.000000
75%	2.000000	66.900000	55.500000	141.000000	30.000000	34.000000	16500.000000
max	3.000000	72.300000	59.800000	326.000000	49.000000	54.000000	45400.000000

In [5]:

```
1 df.isna().sum()
```

Out[5]:

normalized-losses make	0 0 0
make	_
	0
fuel-type	
body-style	0
drive-wheels	0
engine-location	0
width	0
height	0
engine-type	0
engine-size	0
horsepower	0
city-mpg	0
highway-mpg	0
price	0
dtype: int64	

```
In [6]:
```

```
1 df["horsepower"].value_counts()
```

Out[6]	 :
68 70 69 116 110 95 114 62 88 101 160 102 76 145 82 84 97 111 92 86 123 73 182 90 121 207 152 85	19 11 10 9 8 7 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 3 3 3 3 3 3 2 2 2 2
176 ? 184 100 162 155 112 94 156 161 52 56 72 60 58 135 142 288 64 134 175 78 115 120 262	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

48

1

Name: horsepower, dtype: int64

```
In [7]:
```

```
1 df["normalized-losses"].value_counts()
Out[7]:
?
       41
161
       11
91
        8
150
        7
134
        6
104
        6
128
        6
168
        5
        5
95
        5
94
        5
85
103
        5
        5
102
        5
65
74
        5
        4
118
        4
122
        4
93
148
        4
106
        4
154
        3
        3
125
137
        3
        3
83
115
        3
        3
101
        2
87
        2
153
        2
81
129
        2
        2
113
        2
192
        2
110
158
        2
        2
194
        2
188
        2
164
        2
145
        2
108
        2
89
        2
119
        2
197
        1
186
        1
256
142
        1
        1
107
        1
90
121
        1
        1
98
77
        1
231
        1
```

Name: normalized-losses, dtype: int64

In [8]:

```
#replacing the missing values with their mean value

df["horsepower"].replace("?", np.nan, inplace=True)

df["horsepower"] =df["horsepower"].astype("float")

npmean = df["horsepower"].mean()

df["horsepower"].fillna(npmean, inplace=True)

df["horsepower"].value_counts()
```

Out[8]:

```
19
68.000000
70.000000
               11
               10
69.000000
116.000000
                9
                8
110.000000
                7
95.000000
                6
88.000000
114.000000
                6
62.000000
                6
160.000000
                6
101.000000
                6
97.000000
                5
                5
102.000000
82.000000
                5
76.000000
                5
                5
84.000000
145.000000
                5
                4
86.000000
111.000000
                4
                4
123.000000
92.000000
                4
                3
207.000000
85.000000
                3
152.000000
                3
                3
73.000000
182.000000
                3
121.000000
                3
90.000000
                3
56.000000
                2
                2
155.000000
                2
162.000000
                2
94.000000
52.000000
                2
104.256158
                2
                2
176.000000
                2
112.000000
100.000000
                2
                2
161.000000
156.000000
                2
                2
184.000000
                1
288.000000
                1
140.000000
175.000000
                1
                1
78.000000
48.000000
                1
134.000000
                1
                1
120.000000
60.000000
                1
```

106.000000	1	
142.000000	1	
58.000000	1	
72.000000	1	
64.000000	1	
135.000000	1	
262.000000	1	
154.000000	1	
143.000000	1	
55.000000	1	
200.000000	1	
115.000000	1	

Name: horsepower, dtype: int64

In [9]:

```
df["normalized-losses"].replace("?", np.nan, inplace=True)
df["normalized-losses"] =df["normalized-losses"].astype("float")
npmean = df["normalized-losses"].mean()
df["normalized-losses"].fillna(npmean, inplace=True)
df["normalized-losses"].value_counts()
```

```
Out[9]:
122.0
          45
161.0
          11
91.0
           8
           7
150.0
134.0
           6
104.0
           6
128.0
           6
103.0
           5
           5
102.0
           5
74.0
65.0
           5
           5
168.0
           5
85.0
           5
95.0
           5
94.0
           4
118.0
93.0
           4
106.0
           4
           4
148.0
           3
101.0
           3
115.0
125.0
           3
83.0
           3
154.0
           3
137.0
           3
108.0
           2
           2
145.0
188.0
           2
           2
81.0
158.0
           2
129.0
           2
           2
197.0
153.0
           2
           2
192.0
164.0
           2
           2
194.0
           2
110.0
           2
113.0
           2
89.0
119.0
           2
87.0
           2
256.0
           1
90.0
           1
142.0
           1
78.0
           1
186.0
           1
231.0
           1
107.0
           1
98.0
           1
121.0
           1
```

77.0 1

Name normalized-losses dtvne int64

Visualization of the Data

In [10]:

```
plt.bar("make","price", data = df, color = "red")
plt.xticks(rotation=70)
plt.xlabel("Make of the Car")
plt.ylabel("price of the car")
plt.title("Make Vs Price")
plt.grid()
plt.show()
```


- By the above visualtization it is seen that Mercedes Benz has the highest price above \$45000.
- · BMW, Audi and Porsche comes after that

In [11]:

```
plt.bar("make","horsepower", data = df, color = "blue")
plt.xticks(rotation=70)
plt.xlabel("Make of the Car")
plt.ylabel("horsepower of the car")
plt.title("Make Vs Horsepower")
plt.grid()
plt.show()
```


· By this Visulaization it shows that the Brand with Highest Horsepower are Porshce, Jaguar and BMWW

Handling the Outlier

In [12]:

```
1 sns.boxplot(data = df, x = "price", y = "make")
2 plt.grid(True)
```



```
In [13]:
```

```
1 df[(df["make"]=="dodge") & (df["price"]>11000)]
```

Out[13]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	•
29	3	145.0	dodge	gas	hatchback	fwd	front	66.3	50.2	ohc	
4)	•

In [14]:

```
1 df[(df["make"]=="honda") & (df["price"]>11000)]
```

Out[14]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	engi s
41	0	85.0	honda	gas	sedan	fwd	front	65.2	54.1	ohc	
4											

In [15]:

```
1 df[(df["make"]=="mitsubishi") & (df["price"]>13000)]
```

Out[15]:

		symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine typ
8	33	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50.2	oh
8	34	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50.2	oh
4											•

In [16]:

```
1 df[(df["make"]=="isuzu") & (df["price"]>15000)]
```

Out[16]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	engii s
45	0	122.0	isuzu	gas	sedan	fwd	front	63.6	52.0	ohc	
4											>

In [17]:

```
1 df[(df["make"]=="plymouth") & (df["price"]>10000)]
```

Out[17]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine typ
124	3	122.0	plymouth	gas	hatchback	rwd	front	66.3	50.2	oh
4										•

In [18]:

```
1 df[(df["make"]=="toyota") & (df["price"]>12000)]
```

Out[18]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type
172	2	134.0	toyota	gas	convertible	rwd	front	65.6	53.0	ohc
178	3	197.0	toyota	gas	hatchback	rwd	front	67.7	52.0	dohc
179	3	197.0	toyota	gas	hatchback	rwd	front	67.7	52.0	dohc
180	-1	90.0	toyota	gas	sedan	rwd	front	66.5	54.1	dohc
181	-1	122.0	toyota	gas	wagon	rwd	front	66.5	54.1	dohc
4										>

In [19]:

1 df.drop([29,41,83,84,45,124,172,178,179,180,181], inplace = True)

In [20]:

```
sns.boxplot(data = df, x = "price", y = "make")
plt.grid(True)
```


In [21]:

```
1 df.head()
```

Out[21]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type
0	3	122.0	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc
1	3	122.0	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc
2	1	122.0	alfa- romero	gas	hatchback	rwd	front	65.5	52.4	ohcv
3	2	164.0	audi	gas	sedan	fwd	front	66.2	54.3	ohc
4	2	164.0	audi	gas	sedan	4wd	front	66.4	54.3	ohc
4										•

Label encoding the Data

In [22]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 194 entries, 0 to 204
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	symboling	194 non-null	int64
1	normalized-losses	194 non-null	float64
2	make	194 non-null	object
3	fuel-type	194 non-null	object
4	body-style	194 non-null	object
5	drive-wheels	194 non-null	object
6	engine-location	194 non-null	object
7	width	194 non-null	float64
8	height	194 non-null	float64
9	engine-type	194 non-null	object
10	engine-size	194 non-null	int64
11	horsepower	194 non-null	float64
12	city-mpg	194 non-null	int64
13	highway-mpg	194 non-null	int64
14	price	194 non-null	int64

dtypes: float64(4), int64(5), object(6)

memory usage: 28.3+ KB

In [23]:

```
1 df_cat = df.select_dtypes(object)
2 df_num = df.select_dtypes(["int64","float64"])
```

In [24]:

1 df_cat

Out[24]:

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	alfa-romero	gas	convertible	rwd	front	dohc
1	alfa-romero	gas	convertible	rwd	front	dohc
2	alfa-romero	gas	hatchback	rwd	front	ohcv
3	audi	gas	sedan	fwd	front	ohc
4	audi	gas	sedan	4wd	front	ohc
200	volvo	gas	sedan	rwd	front	ohc
201	volvo	gas	sedan	rwd	front	ohc
202	volvo	gas	sedan	rwd	front	ohcv
203	volvo	diesel	sedan	rwd	front	ohc
204	volvo	gas	sedan	rwd	front	ohc

194 rows × 6 columns

In [25]:

1 df_num

Out[25]:

	symboling	normalized- losses	width	height	engine- size	horsepower	city- mpg	highway- mpg	price
0	3	122.0	64.1	48.8	130	111.0	21	27	13495
1	3	122.0	64.1	48.8	130	111.0	21	27	16500
2	1	122.0	65.5	52.4	152	154.0	19	26	16500
3	2	164.0	66.2	54.3	109	102.0	24	30	13950
4	2	164.0	66.4	54.3	136	115.0	18	22	17450
200	-1	95.0	68.9	55.5	141	114.0	23	28	16845
201	-1	95.0	68.8	55.5	141	160.0	19	25	19045
202	-1	95.0	68.9	55.5	173	134.0	18	23	21485
203	-1	95.0	68.9	55.5	145	106.0	26	27	22470
204	-1	95.0	68.9	55.5	141	114.0	19	25	22625

194 rows × 9 columns

```
In [26]:
```

```
1 df_cat["fuel-type"]
Out[26]:
          gas
1
          gas
2
          gas
3
          gas
          gas
200
          gas
201
          gas
202
          gas
       diesel
203
204
          gas
Name: fuel-type, Length: 194, dtype: object
In [27]:
 1 pd.get_dummies(df_cat["fuel-type"])
```

Out[27]:

194 rows × 2 columns

```
In [28]:
```

```
1 df["make"].nunique()
```

Out[28]:

22

In [29]:

pd.get_dummies(df_cat["make"])

Out[29]:

	alfa- romero	audi	bmw	chevrolet	dodge	honda	isuzu	jaguar	mazda	mercedes- benz	 nissa
0	1	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	0	
3	0	1	0	0	0	0	0	0	0	0	
4	0	1	0	0	0	0	0	0	0	0	
200	0	0	0	0	0	0	0	0	0	0	
201	0	0	0	0	0	0	0	0	0	0	
202	0	0	0	0	0	0	0	0	0	0	
203	0	0	0	0	0	0	0	0	0	0	
204	0	0	0	0	0	0	0	0	0	0	

194 rows × 22 columns

In [30]:

1 df_cat

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	alfa-romero	gas	convertible	rwd	front	dohc
1	alfa-romero	gas	convertible	rwd	front	dohc
2	alfa-romero	gas	hatchback	rwd	front	ohcv
3	audi	gas	sedan	fwd	front	ohc
4	audi	gas	sedan	4wd	front	ohc
200	volvo	gas	sedan	rwd	front	ohc
201	volvo	gas	sedan	rwd	front	ohc
202	volvo	gas	sedan	rwd	front	ohcv
203	volvo	diesel	sedan	rwd	front	ohc
204	volvo	gas	sedan	rwd	front	ohc

In [31]:

1 from sklearn.preprocessing import LabelEncoder
2

In [32]:

```
for col in df_cat:
le = LabelEncoder()
df_cat[col] = le.fit_transform(df_cat[col])
```

In [33]:

1 df_cat

Out[33]:

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	0	1	0	2	0	0
1	0	1	0	2	0	0
2	0	1	2	2	0	5
3	1	1	3	1	0	3
4	1	1	3	0	0	3
200	21	1	3	2	0	3
201	21	1	3	2	0	3
202	21	1	3	2	0	5
203	21	0	3	2	0	3
204	21	1	3	2	0	3

194 rows × 6 columns

In [34]:

```
1 df = pd.concat([df_cat, df_num], axis=1)
```

In [35]:

```
1 df
```

Out[35]:

	make	fuel- type	body- style	drive- wheels	engine- location	engine- type	symboling	normalized- losses	width	height	eng
0	0	1	0	2	0	0	3	122.0	64.1	48.8	
1	0	1	0	2	0	0	3	122.0	64.1	48.8	
2	0	1	2	2	0	5	1	122.0	65.5	52.4	
3	1	1	3	1	0	3	2	164.0	66.2	54.3	
4	1	1	3	0	0	3	2	164.0	66.4	54.3	
200	21	1	3	2	0	3	-1	95.0	68.9	55.5	
201	21	1	3	2	0	3	-1	95.0	68.8	55.5	
202	21	1	3	2	0	5	-1	95.0	68.9	55.5	
203	21	0	3	2	0	3	-1	95.0	68.9	55.5	
204	21	1	3	2	0	3	-1	95.0	68.9	55.5	

194 rows × 15 columns

Dividing the Data into x and y

```
In [36]:
```

```
1 x = df.iloc[:,:-1].values
2 y = df.iloc[:,-1].values
```

Preprocessing

In [37]:

```
from sklearn.model_selection import train_test_split, cross_val_score
xtrain,xtest,ytrain,ytest = train_test_split(x,y, test_size = 0.25, random_state = 0)
```

In [38]:

```
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR

from sklearn.metrics import r2_score, mean_squared_error,mean_absolute_error
```

In [39]:

```
def mymodel(model):
    model.fit(xtrain, ytrain)
    ypred = model.predict(xtest)
    ac = r2_score(ytest, ypred)
    mse = mean_squared_error(ytest, ypred)
    rmse = np.sqrt(mse)
    mae = mean_absolute_error(ytest, ypred)
    print(f"Accuracy -: {ac}\n\nMSE -:\n{mse}\n\nRMSE -:\n{rmse}\n\nMAE -: {mae}")
```

```
In [40]:
```

```
models = []
 2
   3
                                 -: ", KNeighborsRegressor()))
-: ", SVR(kernel="linear"))
 5
 7
 8
 9
    for name, model in models:
10
        print(name)
11
        mymodel(model)
        print("\n\n")
12
Linreg
             -:
Accuracy -: 0.773730267617807
MSE -:
17164264.09263911
RMSE -:
4142.97768430378
MAE -: 2862.978078671882
             -:
Accuracy -: 0.7354891230067488
MSE -:
20065143.04979592
RMSE -:
4479.413248383757
MAE -: 2706.922448979592
SVM-1
Accuracy -: 0.7093560754688115
MSE -:
22047531.612173293
RMSE -:
4695.479912870813
MAE -: 2890.666286906662
SVM-r
Accuracy -: -0.2003478916136967
MSE -:
91055431.92979647
```

RMSE -:

9542.296994424167

MAE -: 5634.141088793915

Hyperparameter Tuning

```
In [41]:
```

```
1 from sklearn.linear_model import Ridge, Lasso
```

In [42]:

0.72866626766047

```
In [43]:
```

```
1 12.coef_
```

Out[43]:

```
array([ -161.67047158, -1091.95994427, -246.0053102 , 1914.71315327, 1301.48308582, 138.14429355, 329.09419219, -13.78251147, 691.31719053, 327.07563574, 80.726493 , 60.81704185, -32.4908748 , 38.91463197])
```

In [44]:

```
plt.scatter(ytest, ypred)
```

Out[44]:

<matplotlib.collections.PathCollection at 0xb121803160>

In [45]:

0.7699917962869316

In [46]:

```
1 11.coef_
```

Out[46]:

```
array([-1.82882236e+02, -1.37192271e+03, 0.00000000e+00, 2.34944314e+03, 9.60029642e+03, 1.18880452e+02, 2.46574540e+02, -1.50827921e+01, 8.61970657e+02, 2.20130885e+02, 7.63189726e+01, 4.18553427e+01, -3.22662797e+01, -6.55632273e-01])
```

In [47]:

```
plt.scatter(ytest, ypred)
```

Out[47]:

<matplotlib.collections.PathCollection at 0xb121871a60>


```
In [48]:
```

```
1
    for i in range(100):
 2
        12 = Ridge(alpha=i)
 3
        12.fit(xtrain, ytrain)
        print(f"{i} -: {12.score(xtest, ytest)}")
 4
0 -: 0.7737302676178046
 -: 0.7518429340867678
 -: 0.7420411306793002
3 -: 0.7368470556772466
4 -: 0.7337956083458914
 -: 0.7318874901164595
 -: 0.7306478376489106
7 -: 0.7298247335534228
 -: 0.7292735249807932
9 -: 0.7289060949022612
10 -: 0.72866626766047
11 -: 0.7285169219002868
   -: 0.7284328085314543
13 -: 0.7283963430433417
14 -: 0.7283950366881593
15 -: 0.7284198732095152
16 -: 0.7284642526981494
17 -: 0.7285232870611238
18 -: 0.7285933198013379
  -: 0.7286715924905208
20 -: 0.7287560092842165
21 -: 0.7288449682307082
22 -: 0.7289372388654709
   -: 0.729031872369603
24 -: 0.7291281349518193
25 -: 0.7292254579964018
26 -: 0.7293234004494682
   -: 0.7294216202283965
28 -: 0.7295198523446351
29 -: 0.7296178920629219
30 -: 0.7297155818674592
31 -: 0.7298128013256695
32 -: 0.7299094591713355
33 -: 0.7300054870975232
   -: 0.7301008348736873
35 -: 0.7301954664932812
36 -: 0.7302893571268732
37 -: 0.7303824907074551
38 -: 0.7304748580137008
39 -: 0.730566455146755
40 -: 0.7306572823189402
   -: 0.73074734289034
42 -: 0.7308366426028301
43 -: 0.7309251889716829
44 -: 0.7310129908031402
45 -: 0.7311000578128213
46 -: 0.7311864003249158
47 -: 0.7312720290361475
48 -: 0.7313569548316801
   -: 0.7314411886426517
50 -: 0.7315247413370864
```

51 -: 0.7316076236374853 52 -: 0.7316898460597525 53 -: 0.7317714188691146

```
54 -: 0.731852352049531
55 -: 0.7319326552837777
56 -: 0.7320123379419254
57 -: 0.7320914090763702
58 -: 0.7321698774219316
59 -: 0.7322477513998271
60 -: 0.7323250391245606
61 -: 0.7324017484129535
62 -: 0.7324778867947026
63 -: 0.732553461523975
64 -: 0.7326284795916513
65 -: 0.7327029477379087
66 -: 0.7327768724649046
   -: 0.732850260049378
68 -: 0.7329231165550272
69 -: 0.7329954478445551
70 -: 0.7330672595913075
   -: 0.7331385572904479
72 -: 0.7332093462696369
73 -: 0.7332796316991876
74 -: 0.7333494186016976
   -: 0.7334187118611335
76 -: 0.733487516231415
77 -: 0.733555836344458
   -: 0.7336236767177338
78
79 -: 0.7336910417613379
80 -: 0.7337579357846
81 -: 0.7338243630022505
82 -: 0.7338903275401653
83 -: 0.7339558334407138
84 -: 0.734020884667731
85 -: 0.7340854851111358
86 -: 0.7341496385912114
87 -: 0.7342133488625817
88 -: 0.7342766196178858
89 -: 0.7343394544911861
90 -: 0.7344018570611182
91 -: 0.7344638308538001
92 -: 0.7345253793455276
93 -: 0.7345865059652559
94 -: 0.7346472140968923
95 -: 0.7347075070814149
96 -: 0.7347673882188213
97 -: 0.7348268607699286
98 -: 0.7348859279580308
99 -: 0.7349445929704248
```

In [49]:

0.7737302676178046

```
In [50]:
```

```
for i in range(0,1000,50):
 2
        11 = Lasso(alpha=i)
 3
        11.fit(xtrain, ytrain)
 4
        print(f"{i} -: {l1.score(xtest, ytest)}")
0 -: 0.7737302676178069
50 -: 0.7506461701495694
100 -: 0.7189785263379442
150 -: 0.7163098206915988
200 -: 0.7207591756859897
250 -: 0.7211609660172624
300 -: 0.7207342085673817
350 -: 0.7217125685528865
400 -: 0.7222711582449708
450 -: 0.7218732080868915
500 -: 0.7212772634035048
550 -: 0.7220728998633944
600 -: 0.723172604920933
650 -: 0.7242078927282716
700 -: 0.7251752855488806
750 -: 0.7260748167816642
800 -: 0.7269135026336293
850 -: 0.7276826592903824
900 -: 0.7283856994270395
950 -: 0.7290228559971043
In [51]:
    11 = Lasso(alpha=0)
 2 | l1.fit(xtrain, ytrain)
    ypred = 11.predict(xtest)
   print(r2_score(ytest, ypred))
0.7737302676178069
In [52]:
    cvs = cross_val_score(12, x,y,cv=4)
 2
   cvs
Out[52]:
array([ 7.51352795e-01, 8.57869101e-01, -1.61916999e+27, 3.81584948e-01])
In [53]:
     cvs.mean()
Out[53]:
```

-4.0479249637304396e+26

```
In [54]:
1    cvs1 = cross_val_score(11, x,y,cv=4)
2    cvs1

Out[54]:
array([0.75135279, 0.8578691 , 0.37303229, 0.38158495])

In [55]:
1    cvs1.mean()
Out[55]:
```

CONCLUSION

0.590959782108395

- As we can deduce the best fit model for this Dataset is LinearRegression
- The accuracy of this model is 77%