

Quantifying Root Trait Responses to Lethal Drought: Does Range Size Play

a Role in Variability?

Humboldt.

Minicuci, L.¹, Krause, A.², Braun, N.², Brito-Bersi, T.¹, Byrne, K.¹, Chavez-Velasco, C.¹, Edwards, T.¹, Foster, E.³, Freitas, J.¹, Garcia, A.², Shea, M.¹, Pressler, Y.⁴, Wilkey-Burrell, T.¹, Griffin-Nolan, R.², Luong, J.¹

lm502@humboldt.edu

¹California State Polytechnic University, Humboldt, 1 Harpst St, Arcata, CA 95521
²California State University, Chico, 400 W 1st St, Chico, CA 95929

³Point Blue Conservation Science, 3820 Cypress Drive, Suite #11, Petaluma, CA 94954 ⁴California Polytechnic State University, San Luis Obispo, 1 Grand Ave, San Luis Obispo, CA 93407 CSU The California State University

1 Introduction

- Plant traits are quantifiable properties of plants that influence growth, reproduction, and survival¹.
- Plant traits generally occur along spectrums and gradients related to trade-offs, natural selection, and symbiotic relationships^{2,3}.
- Drought is projected to increase in frequency and intensity¹²; root traits responses to drought are variable, difficult to generalize, and underrepresented in plant trait research^{4,5,6,7,8}.
- Range size is defined by the area that a species occupies⁹.
- While plant traits are thought to have a part in determining range size⁹, there is relatively little research relating range size to trait variation^{10,11}.
- Understanding the mechanisms that influence range size is important for identifying conservation priorities and predicting species range shifts⁹.
- Utilizing root traits in restoration has the potential to create drought resilient restoration outcomes¹³.
- We aim to measure root trait responses to lethal drought¹⁴ in 20 California grassland species, relating trait variation to the size of each species geographic range.

Fig 1: Root scan of *Chlorogalum pomeridianum*, which has a notably larger root diameter as a bulb-forming species

2 Hypotheses

- 1. Common, widespread species will be more tolerant to drought.
- 2. Species with larger geographic ranges will exhibit more variability than species with smaller ranges.

3 Methods

1) Lethal Drought¹⁴ Protocol

- Grow 20* native plant species, subject them to lethal drought conditions, and quantify root response by measuring 5 traits:
- Specific root length
- Root diameter (Fig 1.)
- Root:Shoot ratio
- Root dry matter content
- Lethal Drought Index- soil moisture content that results in 50% population mortality

2) Establishing Size of Geographic Range

- Utilize the Global Information Biodiversity Facility to acquire occurrence data.
- Use Area of Occupancy (AOO)¹⁵ to define geographic range size.
- AOO is determined by placing known occurrence data into a defined grid system (i.e. 2x2km cells) and multiplying the number of occupied cells by the area of each cell ¹⁶.

4 Study Species

Table 1: 20 native grassland species across 4 functional groups that will be studied

Annual Grasses	Perennial Grasses
Muhlenbergia microsperma	Bromus carinatus
Deschampsia danthanoides	Danthonia californica
Festuca microstachys	Elymus glaucus (Fig. 3)
Hordeum intercedens	Melica californica
Hordeum depressum	Stipa pulchra
Annual Forbs	Perennial Forbs
Clarkia rubicunda	Chlorogalum pomeridianum (Fig. 1)
Trifolium wildenovii (Fig. 2)	Phacelia californica
Plantago erecta	Achillea millefolium
Nemophilla maculata	Asclepias fascicularis
Collinsia heterophylla	Sisyrinchium bellum

Next Steps

- Create species distribution maps
- Analyze root scan data
- One-way ANOVA to test differences within and between:
 - Functional groups
 - Species
 - Range sizes
 - Treatments (pre-drought, drought)

References

- 1. Violle et al. 2015, Oikos
- 2. Reich, 2014, Journal of Ecology
- 3. Weigelt et al. 2021, New Phytologist
- 4. McCormack et al. 2014, New Phytologist
- 5. Bardgett et al. 2014, Trends in Ecology & Evolution
- 6. Lozano et al. 2020, Functional Ecology
- 7. Weemstra et al. 2021, Functional Ecology
- 8. Reinelt et al. 2023, Functional Ecology
- 9. Sheth et al. 2020, New Phytologist
- 10. Midolo, 2024, Global Ecology and Biogeography
- 11. Geng et al. 2021, Global Ecology and Biogeography
- 12. Harrison et al. 2018, Global Change Biology
- 13. Funk, 2021, Journal of Ecology
- 14. Barkaoui and Volaire, 2023, Plant, Cell and Environment
- 15. Gaston and Fuller, 2009, Journal of Applied Ecology
- 16. IUCN, 2001, IUCN Species Survival Commission

Acknowledgements

This project is funded by UC Climate Action Seed Award #R02CP7122. Thank you to members of the Luong Lab for all your hard work collecting data and processing samples and Veronica Klenk for providing feedback on this poster!