Symplectic geometry: Final report 2024 autumn

1. Basic definitions

Definition 1.1 (symplectic form & symplectic manifold). Let M be a C^{∞} manifold,

- (1) $\omega \in \Omega^2(M)$ is called a symplectic form if
 - (a) ω is closed;
 - (b) ω is non-degenerate;
- (2) a pair (M, ω) is called a symplectic manifold.

Remark 1.2. (1) a means $d\omega = 0$, and (1) b means the matrix of ω w.r.t. some basis of $T^*M \otimes T^*M$ is invertible, or equivalently, $\iota_X \omega \neq 0 \in \Omega^1(M)$ for $X \neq 0$.

There are 2 quick observations:

- (1) the existence of such ω implies that dim M=2n is even(since the matrix of M is anti-symmetric & invertible);
- (2) $\omega^n \neq 0 \in \Omega^{2n}(M)$ (by taking a basis of $\Omega^2(M)$), and is thus a non-zero top form.

Example 1.3 (2 canonical models for symplectic manifolds).

- (1) Take $M = \mathbb{R}^{2n}$ with coordinates $(x_1, \dots, x_n, y_1, \dots, y_n)$, then $\omega_{std} = \sum_i \mathrm{d}x_i \wedge \mathrm{d}y_i$ is a symplectic form(since the matrix w.r.t. such basis is $J_0 = \begin{pmatrix} I \\ -I \end{pmatrix} \in GL(2n, \mathbb{R})$, which is invertible);
- (2) Take $M = T^*X$, for dim X = n, with coordinates (q_1, \dots, q_n) on X and (p_1, \dots, p_n) on T_q^*X . Then $\omega_{can} = \sum_i dq_i \wedge dp_i$ is a symplectic form. (ω_{can} is well-defined since $\lambda_{can} = \sum_i p_i \wedge dq_i$ is globally defined and $\omega_{can} = d\lambda_{can}$).
- **Remark 1.4.** (1) The example (2) is related to classical mechanics, where q means position and p means momentum.
- (2) The Darboux's theorem shows that a symplectic manifold is locally diffeomorphic to $(\mathbb{R}^{2n}, \omega_{std})$. And the Weinstein's neighborhood theorem shows for a compact Lagrangian submanifold L, there exists

some neighborhood which is diffeomorphic to (T^*L, ω_{can}) . Thus we say: **Symplectic** geometry does not have any local deformations, which is in sharp contrast to **Riemannian** geometry. (These results can be proved with Moser's trick, which we ommit)

(3) There are **contact** analogous of these theorems. A contact manifold(roughly speaking, the boundary of a symplectic manifold) is locally diffeomorphic to $(\mathbb{R}^{2n+1}, \xi = \ker(\mathrm{d}z - \sum y_i \mathrm{d}x_i))$, and for a Legendrian submanifold Λ , there exists some neighborhood which is diffeomorphic to $(J^1\Lambda = T^*\Lambda \times \mathbb{R}_z, \xi = \ker(\mathrm{d}z - \lambda_{can}))$. There are abundant materials on Legendrian submanifold, especially Legendrian knots.

2. Symplectic linear algebra

Definition 2.1. $Sp(2n) := \{ A \in GL(2n, \mathbb{R}) \, | \, A^T J A = J \}.$

Lemma 2.2. $U(n) = Sp(2n) \cap GL(n, \mathbb{C}) \cap O(2n)$, and the intersection of any 2 terms is U(n).

 $(A \in GL(n, \mathbb{C}) \iff AJ_0 = J_0A, A \in Sp(2n) \iff A^TJ_0A = J_0, A \in O(2n) \iff A^TA = I$, so 2 of them implies the other. By calcultion, we can see $A \in U(n) \iff A \in Sp(2n)\&A \in O(2n)$.

Lemma 2.3. $\exists a \text{ homotopy equivalence between } Sp(2n)\&U(n).$

(The map $f: [0,1] \times Sp(2n) \to Sp(2n), (t,A) \to A(A^TA)^{-t/2}$ gives a such equivalence. Now that we have $f_1: Sp(2n) \to U(n)$).

Lemma 2.4. U(n) is a maximal compact subgroup of Sp(2n).

(The idea is: for $A \in Sp(2n)\backslash U(n)$, $P = (A^TA) \in Sp(2n)$ and has an eigenvalue $\lambda \neq 1$, thus the iteration $\{P^i\}_{i=1}^{\infty}$ is divergent).

Lemma 2.5. $\pi_1(U(n)) = \mathbb{Z}$.

(Using the fibration $SU(n) \to U(n) \xrightarrow{\det_{\mathbb{C}}} S^1$, we get an exact sequence $\pi_1(SU(n) \to \pi_1(U(n)) \to \pi_1(S^1) \to \pi_0(SU(n))$, since $\pi_1(SU(n)) = 0$, we have $\pi_1(U(n)) = \mathbb{Z}$).

We can thus define the Maslov index.

Definition 2.6 (Maslov index). The maslov index is a function μ : $\pi_1(Sp(2n)) \to \mathbb{Z}$, i.e. $\mu : \Gamma : S^1 \to Sp(2n) \to \mu(\Gamma) \in \mathbb{Z}$, s.t.

(1) if
$$\Gamma_1 \xrightarrow{homotopy} \Gamma_2$$
, then $\mu(\Gamma_1) = \mu(\Gamma_2)$;

- (2) $\mu(\Gamma_1 \cdot \Gamma_2) = \mu(\Gamma_1) + \mu(\Gamma_2);$
- (3) for n = n' + n'', consider $Sp(2n') \oplus Sp(2n'') = Sp(2n)$, then $\mu(\Gamma_1 \oplus \Gamma_2) = \mu(\Gamma_1) + \mu(\Gamma_2)$;

(4) for
$$\Gamma = \begin{pmatrix} \cos 2\pi t & \sin 2\pi t \\ -\sin 2\pi t & \cos 2\pi t \end{pmatrix}, \mu(\Gamma) = 1.$$

Proposition 2.7. There exists uniquely a such function.

 $(\mu \text{ can be defined from } S^1 \xrightarrow{\Gamma} Sp(2n) \xrightarrow{f_1} U(n) \xrightarrow{\det_{\mathbb{C}}} S^1, \text{ by } \mu = \deg(\det_{\mathbb{C}} \circ f_1 \circ \Gamma).$ It's well defined and satisfies all the conditions. The uniqueness follows from (4).

- **Remark 2.8.** (1) We can define Maslov index for LGr(n) (the Lagrangian Grassmannian, i.e. the space of Lagrangians in \mathbb{R}^{2n}) through a similar procedure;
- (2) The Maslov index is used in the construction of Floer homology.
 - 3. Symplectic manifolds and its relation to Kälher manifolds

Definition 3.1 (exact symplectic manifold). A symplectic manifold (M, ω) is called exact if $\omega = d\lambda$ for some $\lambda \in \Omega^1(M)$.

Example 3.2. (1) The examples in 1.3 are both exact.

(2) For some closed surface $\Sigma \subset \mathbb{R}^3$, take $\omega_p(v_1, v_2) = \langle N_p, v_1 \times v_2 \rangle$, then (Σ, ω) is a non-exact symplectic manifold. This follows from the following proposition.

Proposition 3.3. If (M^{2n}, ω) is closed, then M can not be exact.

(Using Poincaré duality, $H^{2n}(M) \neq 0$, thus ω^n can not be exact). The example (2) is critical, since we have the following result.

Proposition 3.4. S^{2n} is not symplectic for n > 1.

(Note that for closed (M^{2n}, ω) , ω^k is not exact for $k = 1, \dots, n$).

Definition 3.5 (Kähler manifold). A Kähler manifold is a manifold with a symplectic form ω and an almost complex structure J, s.t.

- (1) $\omega(Ju, Jv) = \omega(u, v);$
- (2) $\omega(v, Jv) > 0 \text{ for } v \neq 0.$

- **Remark 3.6.** (1) The conditions in 3.5 can be replaced by the bilinear form $g(u, v) = \omega(u, Jv)$ is symmetric and positive definite.
- (2) There are some direct results from the definition.
 - (a) ω is a (1,1)-form and $\partial \omega = 0, \bar{\partial} \omega = 0$;
 - (b) write $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\bar{z}_k$, then $(h_{jk})(p)$ is an Hermitian and positive definite (thus invertible) matrix at any point $p \in M$.

There are some examples of complex yet not symplectic manifolds, symplectic yet not complex manifolds, and symplectic & complex yet not Kähler manifolds. These gaps are of their own interests.

4. Morse homology and Floer homology

The Morse theory is about the critical point of smooth functions. A classical example is the flat torus with the height function.

Definition 4.1 (Morse function & index, pseudo-gradient vector field). Let $f: M \to \mathbb{R}$ be a smooth function,

- (1) f is a Morse function if all its critical points are non-degenerate.
- (2) By a lemma of Morse, we can write $f(x_1, \dots, x_n) = f(p) (x_1)^2 \dots (x_i)^2 + (x_{i+1})^2 + \dots + (x_n)^2$ for some chart (x_1, \dots, x_n) around a critical point p, the number i is invariant under coordinate change. So we define the Morse index ind(p) = i.
- (3) A vector field X is pseudo-gradient for some Morse function f if
 - (a) $df(X) \leq 0$ on M, and the equality holds for critical points;
 - (b) X = grad f in the charts described as in (2).

Given a pseudo-gradient vector field, we can define the stable & unstable submanifolds for a critical point p, as we shall do for dynamic systems.

Definition 4.2. $M(p,q) := \{x \in M \mid \lim_{t \to \infty} \varphi^t(x) = q, \lim_{t \to -\infty} \varphi^t(x) = q\},$ where φ^t is the flow of X, and p,q are critical points.

We assume Smale's condition, i.e. $W^u(p) \cap W^s(q)$ for any 2 critical points p, q, which implies that $\dim(W^u(p) \cap W^s(q)) = \operatorname{ind} p - \operatorname{ind} q$. So directly, we have $\dim M(p,q) = \operatorname{ind} p - \operatorname{ind} q$. Let $\widetilde{M}(p,q) = M(p,q)/\mathbb{R}$.

Thus we can define the Morse complex and $(\mathbb{Z}_2$ -)homology:

$$CM_{\cdot}(f) := \operatorname{span}_{\mathbb{Z}_{2}} \{\operatorname{crit}(f)\}$$

$$\partial(p) := \sum_{\substack{q \in \operatorname{crit}(f), \\ \operatorname{ind}p - \operatorname{ind}q = 1}} |\widetilde{M}(p, q)|q$$

$$HM_{k}(f) := H_{k}(CM_{\cdot}(f), \partial)$$

Remark 4.3. (1) $\partial^2 = 0$, since

$$\partial^2 p = \sum_q |\widetilde{M}(p,q)| \partial q = \sum_q \sum_r |\widetilde{M}(p,q)| |\widetilde{M}(q,r)| r$$

where $\operatorname{ind} p = \operatorname{ind} q + 1$, $\operatorname{ind} q = \operatorname{ind} r + 1$. In this case $\dim \widetilde{M}(p,r) = 1$ and $\partial \widetilde{M}(p,r)$ consists of a even number of points. Thus $\partial^2 p = \sum_{\substack{r \in \operatorname{crit}(f), \\ \operatorname{ind} p = \operatorname{ind} r + 2}} |\partial \widetilde{M}(p,r)| r = 0 \mod 2$.

(2) Similar to mapping degree, if we take an orientation for M(p,q), then we can elevate this complex to be over \mathbb{Z} .

Roughly speaking, Floer homology is infinite analogous of Morse homology, where the Morse index is replaced by Maslov index.

$$CF_{\cdot}(L_0, L_1) := \operatorname{span}_{\mathbb{Z}_2} \{ \varphi^1(L_0) \pitchfork L_1 \}$$
$$d(p) := \sum_{q} |\widetilde{M}(p, q)| q$$
$$HF_k(f) := H_k(CF_{\cdot}(L_0, L_1), d)$$

The function M(p,q) here is obtained from the Floer's equations.

Example 4.4 (easy example, cylinder). Let $M = T^*S^1$, $\omega = \omega_{can} = d\theta \wedge d\xi$, take $L_0 = L_1 = T_0^*S^1$, and $H(\theta, \xi) = \frac{\xi^2}{2}$. Then the flow of H is $\varphi^t(\theta, \xi) = (\theta + t\xi, \xi)$, so $\varphi^1(L_0) \pitchfork L_1 = \{(0, n) \mid n \in \mathbb{Z}\}$. As a result, $CF(L_0, L_1) = \mathbb{Z}_2[x, \frac{1}{x}]$ (consider the degree). In this case there's no complicate intersection relation, in fact d = 0, and $HF(L_0, L_1) = \mathbb{Z}_2[x, \frac{1}{x}]$.

5.
$$A_{\infty}$$
 algebra

Definition 5.1 (A_{∞} algebra). An A_{∞} algebra over a field k is a graded vector space $V = \bigoplus_{p \in \mathbb{Z}} V^p$ with homogeneous k-linear maps: $\mu^n : V^{\otimes n} \to \mathbb{Z}$

 $V^{2-n}, n \ge 1, s.t.$

$$\sum_{\substack{r+s+t=n\\r+1+t=d}} (-1)^{r+st} \mu^d (\mathrm{id}^{\otimes r} \otimes \mu^s \otimes \mathrm{id}^{\otimes t}) = 0$$

Remark 5.2. (1) If chark = 2, we can ignore the sign $(-1)^{r+st}$;

- (2) Take n = 1, $(\mu^1)^2 = 0$, so (V, μ^1) becomes a complex;
- (3) Take n = 2, $\mu^1 \circ \mu^2 = \mu^2 \circ (id \otimes \mu^1) + \mu^2 \circ (\mu^1 \otimes id)$, so μ^2 can be understood as a multiplication, with μ^1 as a derivation;
- (4) Take n = 3, $\mu^2 \circ (id \otimes \mu^2) \mu^2 \circ (\mu^2 \otimes id) = \mu^1 \circ \mu^3 + \mu^3 \circ (id^{\otimes 2} \otimes \mu^1 + id \otimes \mu^1 \otimes id + \mu^1 \otimes id^{\otimes 2})$, so μ^3 compensates for the associativity;
- (5) If $V^p = 0$ for $p \neq 0$, then it reduces to an associate algebra.

For an exact symplectic manifold (M, ω) , the Fukaya category is an A_{∞} -category, where the objects are exact Lagrangian submanifolds, and the morphisms are given by Floer complex via intersection.

6. Legendrian knots

Take a Legendrian $\Lambda \subset (\mathbb{R}^3_{xyz}, \alpha = \mathrm{d}z - y\mathrm{d}x)$, we can take two different projections

- (1) front projection: $\pi_F : \mathbb{R}^3_{xyz} \to \mathbb{R}^2_{xz}$;
- (2) Lagrangian projection: $\pi_L : \mathbb{R}^3_{xyz} \to \mathbb{R}^2_{xy}$.

Example 6.1 (2 kinds of projections).

(1) unknot;

(2) right trefoil.

Reidemeister's theorem tells us, the isotopy of Legendrian knots are given by Reidemeister's moves of knots.

There are several invariants for the Legendrian knots, like Thurston-Bennequin number, rotiaion number and Chekanov's dg algebra $(\mathcal{A}(\Lambda), \partial)$. $\mathcal{A}(\Lambda)$ is generated by $\langle a_1, \cdots, a_n, t^{\pm 1} \rangle$, where a_i represent the Reeb chords for the knot, t represent the base point we choose, and t^{-1} is the formal inverse of t. The grading is obtained from rotation number, and it varies as the crossings \times , \times changes.

7. Microlocal sheaves

Definition 7.1 (presheaves & sheaves). Let X be a topological space,

- (1) a presheaf \mathcal{F} on X is a contravariant functor from $\mathrm{Open}(X) \to \mathbf{Ab}$;
- (2) a sheaf \mathcal{F} on X is a presheaf, s.t. if $U, V_i \in \text{Open}(X), U = \bigcup_i V_i$,
 - (a) $(factorizing)if \ s \in \mathcal{F}(U) \ s.t. \ s|_{V_i} = 0, \forall i, \ then \ s = 0;$
 - (b) (glueing)if $s_i \in \mathcal{F}(V_i)$, $s_i = s_j$ on $V_i \cap V_j, \forall i, j$, then $\exists s \in \mathcal{F}(U)$, $s|_{V_i} = s_i, \forall i$.

The definition of micro-support is not easy.

Definition 7.2 (micro-support). For a sheaf \mathcal{F} on X,

- (1) we say \mathcal{F} propagates at $(x,p) \in T^*X$, if $\forall \varphi \in C^1(X), \varphi(x) = 0, d\varphi(x) = p$, we have $\varinjlim_{x \in U} H^j(U; \mathcal{F}) \cong \varinjlim_{x \in U} H^j(U \cap \{\varphi < 0\}; \mathcal{F}), \forall j$;
- (2) $\mu \operatorname{supp}(\mathcal{F})$ is the closure of all $(x, p) \in T^*X$, at where \mathcal{F} does not propagate;
- (3) for a Legendrian Λ , $\operatorname{Sh}_{\Lambda}(X) := \{ \mathcal{F} \in \operatorname{Sh}(X) \mid \mu \operatorname{supp}(\mathcal{F}) \cap \partial_{\infty} T^*X \subset \Lambda \}$.

Remark 7.3. (1) $\mu \text{supp}(\mathcal{F})$ is conical for p;

- (2) $(x, p) \in \mu \text{supp}(\mathcal{F})$ means that (x, p) is singular for \mathcal{F} in some sense;
- (3) $\operatorname{Sh}_{\Lambda}(X)$ is a **Legendrian isotopy invariant**, by Guillermou-Kashiwara-Schapira.

Example 7.4. Let $X = \mathbb{R}, \mathcal{F} = \mathbb{C}_{[0,\infty)}$ on X. Obviously, $(x,0) \in \mu \operatorname{supp}(\mathcal{F})$ only for $x \geq 0$. Take f(x) = x, then $f(0) = 0, df_0 = dx_0$, then

$$R\Gamma(\{f < \delta\}; \mathcal{F}) = \varinjlim \Gamma((-\varepsilon, \delta), \mathcal{F}) = \mathbb{C},$$

$$R\Gamma(\{f < -\delta\}; \mathcal{F}) = \varinjlim \Gamma((-\varepsilon, -\delta), \mathcal{F}) = 0,$$

where $R(\Gamma)$ is the right derived functor of Γ . So $(0, dx) \in \mu \operatorname{supp}(\mathcal{F})$, similarly, $(0, -dx) \notin \mu \operatorname{supp}(\mathcal{F})$. Thus $\mu \operatorname{supp}(\mathcal{F})$ looks like \square . In the same way, we have

$$\mathbb{C}_{[0,\infty)} \to \bigsqcup \quad \mathbb{C}_{(0,\infty)} \to \boxed{\quad \mathbb{C}_{(-\infty,0]} \to \boxed{\quad \mathbb{C}_{(-\infty,0)} \to \bot}$$

In general, we consider the constructible objects in the derived category of Sh(X). A theorem of Nadler-Zaslow gives an equivalence between such category of constructible objects and the derived Fukaya category, which builds the bridge between Lagrangian intersection theory and microlocal sheaf theory.