

Primer examen parcial

Fundamentos de análisis y diseño de algoritmos

Duración: 2 horas Carlos Andres Delgado S, Ing * 9 de Mayo 2017

Nombre:	
Código:	

1. Ecuaciones de recurrencia [15 puntos]

Utilizando el método de árboles, solucione la siguiente ecuación de recurrencia

$$T(n) = 16T(\frac{n}{2}) + n, T(1) = O(n^3)$$

2. Estructuras de datos [15 puntos]

Explique utilizando las operaciones que se vieron en clase los **árboles rojinegros**, que ventajas se obtienen con esta estructura. Exprese el términos de O(f(n)) con el f(n) más pequeño posible, la complejidad de las operaciones en estas estructuras de datos.

3. Computación iterativa [70 puntos]

1. (30 puntos) Indique la complejidad computacional en términos de O(f(n)) con el f(n) más pequeño posible, de los siguientes algoritmos:

2. (20 puntos) Para el siguiente algoritmo indique:

- Forma de estado, estado inicial
- Transformación de estados y estado final
- Invariante de ciclo

```
Algoritmo(int N)
{
    int i, res;
    i = -6;
    res = 1;

    while(i<=N*N){
        res = res + 3*i;

        for(int j=0; j<=2N; j+=2)
        {
            res = 2*res+i;
        }
        i++;
    }
    System.out.println("Resultado=" + Res);
}</pre>
```

3. (20 puntos)Para el siguiente algoritmo, el cual recibe un arreglo A y su tamaño n.

```
Algoritmo2(int A[], int n)
{
   int res = 0;
   for(int i=0; i<n; i++){
      if(A[i] %2 == 0){
        for(int j=i; j<=n*n; j++)}{
           res = res+A[i];
      }
   }
   else{
      for(int j=i; j<=2n; j++)}{
        res = res+2+A[i];
    }
}</pre>
```

En términos de O(f(n)) con el f(n) más pequeño posible, indique la complejidad del algoritmo para:

- Mejor caso
- Peor caso
- Caso promedio

^{*}carlos.andres.delgado@correounivalle.edu.co