Text Retrieval and Search Engines

Probabilistic Retrieval Model: Basic Idea

ChengXiang "Cheng" Zhai Department of Computer Science University of Illinois at Urbana-Champaign

Probabilistic Retrieval Model: Basic Idea

Many Different Retrieval Models

- Probabilistic models: f(d,q) = p(R=1|d,q), $R \in \{0,1\}$
 - Classic probabilistic model → BM25
 - Language model → Query Likelihood
 - Divergence-from-randomness model → PL2

$$p(R=1|d,q)\approx p(q|d,R=1)$$

If a user likes document d, how likely would the user enter query q (in order to retrieve d)?

Probabilistic Retrieval Models: Basic Idea Query Doc Rel

\mathbf{q}	d	\mathbf{R}	count(q,d,R=1)
q1	d1	1	f(Q,Q)=D(R=1 Q,Q)=A
q1	d2	1	count(q,d)
q1	d3	0	
q1	d4	0	P(R=1 q1,d1) = ? 1/2
q1	d5	1	
• • •			P(R=1 q1,d2) = ? 2/2
q1	d1	0	P(R=1 q1,d3) = ? 0/2
q1	d2	1	
q1	d3	0	What about unseen documents?
q2	d3	1	Unseen queries?
\sim	11	1	Oliscon gacinesi

Query Likelihood Retrieval Model

Query	Dog		Rel	User likes d
q	d		R	1 1 1 1 1 1 1 1 1 1
$\overline{q1}$	d1	1		$f(q,d)=p(R=1 d,q)\approx p(q d,R=1)$
q1	d2	1		
q1	d3	0		
q1	d4	0		How likely the user enters q
q1	d5	1		
• • •				Accumption
q1	d1	0		Assumption:
q1	d2	1		A user formulates a query based on an
q1	d3	0		"imaginary relevant document"
q2	d3	1		inaginary relevant document
q3	d1	1		
q4	d2	1		5
<i>1</i>	12	\circ		

Which doc is Most Likely the "Imaginary Relevant Doc"?

Summary

- Relevance(q,d) = $p(R=1|q,d) \rightarrow p(q|d,R=1)$
- Query likelihood ranking function: f(q,d)=p(q|d)
 - Probability that a user who likes d would pose query q
- How to compute p(q|d)? How to compute probability of text in general? \rightarrow Language Model

