Hao

Probabilit

Evente

Joint Events

Conditional and
marginal probability

andom Variable

Discrete R\

Momonto

Multivariate

Distribution

conditional

Independence

Conditional

Expectation

related

C . . !!

Large-Sample Approximation

Approximatio to Sampling Distributions

References

Review of Probability ¹

Jasmine(Yu) Hao

Faculty of Business and Economics Hong Kong University

August 31, 2021

¹This section is based on Stock and Watson (2020), Chapter 2.4 3 b 3

Joint Events

marginal probability

Random Variable

Continuous R

Moments

Distributio

conditional distributions

Independent

Conditional Expectation

Normal ar

distribut

Samplin

Large-Sample Approximation to Sampling

References

Probabilities and Outcomes

- ▶ An outcomes is a specific result:
 - ♦ Coin toss: either H or T.
 - ⋄ Roll of dice: 1,2...,6.
- ▶ The probability of an outcome is the proportion of the time that the outcome occurs in the long run.
 - Fair coin toss: 50 % chance of heads.
- ▶ The **sample space** is the set of all possible outcomes.
 - \diamond In a coin flip the sample space is $S = \{H, T\}$.
 - ♦ If two coins are flipped the sample space is
 S = {HH, HT, TH, TT}.
- ▶ An event is a subset of the sample space.
 - \diamond Roll a die $A = \{1, 2\}$.

Events

Definition 1 (Probability Function)

A function \mathbb{P} which assigns a numerical value to events is called a probability function if it satisfies the following Axioms of Probability:

- 1. $\mathbb{P}(A) > 0$.
- 2. $\mathbb{P}(S) = 1$.
- 3. If A_1, A_2, \ldots are disjoint then $\mathbb{P}[\bigcup_{i=1}^N A_i] = \sum_{i=1}^N \mathbb{P}(A_i)$.

Discrete R\
Continuous

Moments

Multivariat Distribution

conditional distributions

Independent Conditional

Expectation

related distributi

Sampling

Large-Sample Approximation to Sampling Distributions

References

Conditional Probability

Definition 2 (Conditional Probability)

If $\mathbb{P}(B) > 0$, then the **conditional probability** of A given B is given by

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $\mathbb{P}(B)$ is the **marginal probability** of event B.

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B).$$

Hao

robabilit

Events

Joint Events

Conditional and marginal probability

Discrete RV

Continuous R' Moments

Multivariat Distribution

Marginal and conditional distributions

Independence

Conditional

Normal a

Sampling

Large-Sampl

Approximatio to Sampling Distributions

References

Joint Events

Take two events H and M.

- \triangleright let be H the event that an individual's monthly wage exceeds HKD 20000,
- \triangleright let M be the event that the individual has a master's degree.

Table: Joint Distribution

	Master degree	Non-master degree	Any education
High wage	0.19	0.12	0.31
Low wage	0.17	0.52	0.69
Any wage	0.36	0.64	1.00

Hao

Probabilit

Event

Joint Events

Conditional and
marginal probability

Discrete RV

Moments 1

Multivariat Distribution

conditional distributions

Conditional

Expectation

related distribut

Sampling

Large-Sample Approximation to Sampling Distributions

References

Conditional Probability - Example

The probability of earning a high wage conditional on high education is

 $\mathbb{P}(\mathsf{High\ wage}|\mathsf{Master\ degree})$

$$\mathbb{P}(\mathsf{High\ wage}\cap\mathsf{Master\ degree})$$

 $\mathbb{P}(\mathsf{High}\;\mathsf{wage}\cap\mathsf{Master}\;\mathsf{degree})+\mathbb{P}(\mathsf{Low}\;\mathsf{wage}\cap\mathsf{Master}\;\mathsf{degree})$

$$= \frac{0.19}{0.36} = 0.53.$$

Similarly, the probability of earning a high wage conditional on non-master degree is

$$\mathbb{P}(\mathsf{High\ wage}|\mathsf{Non\text{-}master\ degree}) = \frac{0.12}{0.64} = 0.19.$$

Joint Events

Conditional and marginal probability

Kandom Variabi

Continuous

Moments

Multivariat

Distributio

conditional

distributions Independenc

Conditiona

Expectation

related distributions

Samplin

Large-Sample Approximation to Sampling

References

▶ The events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ Some facts:

- ▶ When events are independent then joint probabilities can be calculated by multiplying individual probabilities.
- ▶ If A and B are disjoint then they cannot be independent.

Conditional and

marginal probability

Theorem 3 (Bayes Rule)

If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$ then

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c)}.$$

Hao

Probabili

FTODADIII

LVCIICS

Conditional and marginal probability

Discrete RVs Continuous R

Moments

Multivariat Distributio

Marginal and conditional distributions

Conditional Expectation

Normal ar

Samplin

Large-Sample Approximation to Sampling

References

Bayes Rule-Example I

Consider the PCR test for Covid-19:

- ▶ If actual infected: 0.9 positive, 0.1 negative.
- ▶ If not infected: 0.05 positive, 0.95 negative.
- ▶ 1 % population is infected.

What is the chance of being infected given the test is positive? Let *A* denote being infected, let *B* denote test result positive.

$$P(B|A) = 0.9, P(B|A^c) = 0.05, P(A) = 0.01.$$

$$\triangleright P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)} = \frac{0.05*0.9}{0.05*0.9 + 0.95*0.01} \approx 0.8256.$$

What is the chance of not infected given the test is negative?

$$P(A^c|B^c) = \frac{P(B^c|A^c)P(A^c)}{P(B^c|A)P(A) + P(B^c|A^c)P(A^c)} = \frac{0.95*0.99}{0.95*0.99 + 0.05*0.1} \approx 0.9947.$$

References

Random Variables

Definition 4 (Random variable)

A random variable is a real-valued outcome; a function from the sample space S to the real line \mathbb{R} .

For example, X is a mapping from the coin flip sample space to the real line, with \mathcal{T} mapped to 0 and \mathcal{H} mapped to 1.

$$X = \begin{cases} 1 & \text{if H} \\ 0 & \text{if T.} \end{cases}$$

Properties of random variables.

- ▶ The expected value is the long-run average of the random variable.
- ▶ The standard deviation measures the spread of a probability distribution.

Joint Events

Conditional and
marginal probability

rtandoni variab

Discrete RVs

Continuous F Moments

Multivariat Distribution

Marginal and conditional distributions

Conditiona Expectatio

Normal ar

Sampling

Large-Sample Approximation to Sampling

References

Discrete Random Variables

- ▶ The set X is discrete if it has a finite or countably infinite number of elements.
- ▷ If there is a discrete set \mathcal{X} such that $\mathbb{P}(X \in \mathcal{X}) = 1$ then X is a discrete random variable.
- ▶ The **probability mass function** of a random variable is $\pi(x) = \mathbb{P}(X = x)$, the probability that X equals the value x.
- ▶ The probability distribution of a discrete random variable is the list of all possible values of the variable and the probability that each value will occur.

Events

Conditional and marginal probability

Discrete RVs

Continuous F

Multivariat Distribution

Marginal and

Independent

Conditional Expectation

Normal and related distributions

Sampling

Approximation to Sampling Distributions

References

For a dsicrete variable X with the support of \mathcal{X} , the expectation is computed as

$$\mathbb{E}(X) = \sum_{x \in \mathcal{X}} \pi(x)x.$$

X=1 with the probability of p and X=0 with probability 1-p. The expected value is $\mathbb{E}(X)=1*p+0*(1-p)=p$.

The expectation of the function of X, g(X) is computed as

$$\mathbb{E}(g(X)) = \sum_{x \in \mathcal{X}} \pi(x)g(x).$$

Discrete RVs

Continuous

Multivariat

Marginal an

distribution Independen

Conditional

Normal an

distribut

Sampling

Large-Sample Approximatio to Sampling Distributions

References

Cumulative distribution function

The **cumulative probability distribution**(*CDF*) is the probability that the random variable is less than or equal to a particular value,

$$F(x) = \mathbb{P}(X \le x),$$

where the probability event is $X \leq x$.

Properties of a CDF If F(x) is a distribution function, then

- 1. F(x) is non-decreasing.
- $2. \lim_{x\to -\infty} F(x) = 0.$
- 3. $\lim_{x\to\infty} F(x) = 1.$
- 4. F(x) is right-continuous, $\lim_{x\downarrow x_0} F(x) = F(x_0)$.

Hao

Probabili

Event

Joint Events
Conditional and

Random Variables

Discrete RVs

Continuous | Moments

Multivariate Distribution

Marginal and conditional distributions

Independent

Expectatio

Normal ar

distributio

Large-Sample Approximation to Sampling

References

Example-Probability mass function

Some examples for discrete variables.

- ▶ For a fair dice toss, the support is $\mathcal{X} = \{1, 2, ..., 6\}$ with the probability mass function is $\pi(x) = \frac{1}{6}$ for $x \in \mathcal{X}$.
- $\,\triangleright\,$ An example of infinite countable random variable is the Poisson distribution, the probability mass function is

$$\pi(x) = \frac{e^{-1}}{x!}, x = 0, 1, \dots$$

(c) Education

Event

Joint Events

Conditional and
marginal probability

Discrete RVs

Continuous R

Multivariat

Distribution

conditional distributions

Independence

Conditiona Expectatio

Normal a

distribut

Jamping

Approximation to Sampling Distributions

References

Example-Probability function

Some examples for discrete variables.

- ▶ For a fair dice toss, the support is $\mathcal{X} = \{1, 2, ..., 6\}$ with the probability mass function is $\pi(x) = \frac{1}{6}$ for $x \in \mathcal{X}$.
- ▷ An example of infinite countable random variable is the Poisson distribution, the probability mass function is

$$\pi(x) = \frac{e^{-1}}{x!}, x = 0, 1, \dots$$

Continuous RVs

Moments

Distributio

conditional distribution

Independer

Expectation

distribut

Sampling

Large-Sample Approximation to Sampling Distributions

References

Continuous Random Variables

- The probability density function(p.d.f) area under the probability density function between any two points is the probability that the random variable falls between those two points.
 - \diamond the probability for a continous variable to take any value is 0.
 - definition is different from discrete random variables.
- ightharpoonup When F(x) is differentiable, the density function is $f(x) = \frac{dF(x)}{dx}$.

Theorem 5 (Properties of density function)

A function f(x) is a density function if and only if

$$f(x) \ge 0 \forall x.$$

$$\triangleright \int_0^\infty f(x)dx = 1.$$

Joint Events

Conditional and
marginal probability

Discrete RVs

Continuous RVs

Multivariate

Marginal and

distributions

Independenc

Conditiona Expectatio

Normal and related

distributions

Large-Sample Approximation to Sampling

References

Example - Continuous Variables

▶ Uniform distribution. The CDF is

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

Exponential distribution. The CDF is

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - \exp(-x) & \text{if } x \ge 0 \end{cases}$$
. The PDF is
$$f(x) = \exp(-x), x \ge 0.$$

References

If X is a continuous random variable with the density function f(x), its expectation is defined as

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$

when the integral is convergent.

The expectation of the function of X, g(X) is computed as

$$\mathbb{E}(g(X)) = \sum_{x \in \mathcal{X}} \int_{-\infty}^{\infty} g(x) f(x) dx.$$

Some examples:

$$f(x) = 1 \text{ if } 0 \le x \le 1, \ \mathbb{E}(X) = \int_0^1 x f(x) = 0.5.$$

$$f(x) = \exp(-x) \text{ if } x \ge 0,$$

$$\mathbb{E}(X) = \int_0^\infty x \exp(-x) dx = 1 \text{(integration by part)}.$$

Joint Events

Conditional and marginal probability

Discrete F

Moments

Multivaria

Distribution

conditional distributions

Independenc

Conditional Expectation

Normal a

Samplin

Large-Sample Approximatio

to Sampling Distributions

References

Mean, variance and Higher Moment

Suppose X is a random variable(either discrete or continous).

- \triangleright The **mean** of X is $\mu = \mathbb{E}(X)$.
- ▶ The **variance** of X is $\sigma^2 = var(X) = \mathbb{E}((X \mathbb{E}(X))^2)$.
 - \diamond The **standard deviation** of X is the positive root of the variance, $\sigma = \sqrt{\sigma^2}$.
- ▶ The m-th moment of X is $\mu'_m = \mathbb{E}(X^m)$ and the m-th central moment of X is $\mu_m = \mathbb{E}((X \mathbb{E}(X))^m)$.
 - ♦ The skewness of X is defined as $skewness = \frac{\mathbb{E}((X \mathbb{E}(X))^3)}{\sigma^3}$. If the distribution is symmetric, the skewness is 0.
 - ♦ The **kurtosis** of *X* is defined as $skewness = \frac{\mathbb{E}((X \mathbb{E}(X))^4)}{\sigma^4}$.

Hao

Probabilit

E.....

Joint Events Conditional and

Discrete RVs

Moments

Multivariate Distributions

conditional distributions

Independence

Expectation

related distribution

Sampling

Large-Sample Approximation to Sampling Distributions

References

Bivariate random variables

A pair of **bivariate random variables** is a pair of numerical outcomes; a function from the sample space to \mathbb{R}^2 .

A pair of bivariate random variables are typically represented by a pair of uppercase Latin characters such as (X, Y). Specific values will be written by a pair of lower case characters, e.g. (x, y).

Figure: Tossing two coins

Hao

robabili:

Joint Events

Conditional and
marginal probability

Discrete RVs

Continuous R\

Multivariate Distributions

conditional distributions

Independent

Expectation

related distributi

Sampling

Large-Sample Approximation to Sampling Distributions

References

Joint distribution functions

The **joint distribution function(Joint CDF)** of (X, Y) is defined as $F(x, y) = \mathbb{P}(X \le x, Y \le y) = \mathbb{P}(\{X \le x\} \cap \{Y \le y\}).$

- ▶ A pair of random variables is **discrete** if there is a discrete set $(P) \in \mathbb{R}^2$ such that $\mathbb{P}((X, Y) \in \mathscr{P}) = 1$.
 - ♦ The set \mathcal{P} is the support of (X, Y) and consists of a set of points in \mathbb{R}^2 .
 - ♦ The **joint probability mass function** is defined as $p(x, y) = \mathbb{P}(X = x, Y = y)$.
- ▶ The pair (X, Y) has a continuous distribution if the joint distribution function F(x, y) is **continuous** in (x, y).
 - \diamond When F(x,y) is continuous and differentiable its **joint density** (joint PDF) f(x,y) equals $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$.

Multivariate Distributions

The **expected value** of real-valued g(X, Y) is

$$\mathbb{E}(g(X,Y)) = \sum_{(x,y)\in\mathbb{R}^2, \pi(x,y)>0} g(x,y)\pi(x,y),$$

and

$$\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy.$$

Marginal and conditional

distributions

The marginal distribution (marginal CDF) of X is

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(X \le x, Y \le \infty) = \lim_{y \to \infty} F(x, y).$$

In the continuous case.

$$F_X(x) = \lim_{y \to \infty} \int_{-\infty}^y \int_{-\infty}^x f(u, v) du dv = \int_{-\infty}^\infty \int_{-\infty}^x f(u, v) du dv.$$

The marginal densities (marginal PDF) of X is the derivative of the marginal CDF of X,

$$f_X(x) = \frac{d}{dx}F_X(x) = \frac{d}{dx}\int_{-\infty}^{\infty}\int_{-\infty}^{x}f(u,v)dudv = \int_{-\infty}^{\infty}f(x,y)dy.$$

References

Conditional distributions I

The conditional cumulative distributions:

 \triangleright The **conditional distribution function** of Y given X = x is

$$F_{Y|X}(y|x) = \mathbb{P}(Y \le y|X = x)$$

for any x such that $\mathbb{P}(X = x) > 0$, If X has a discrete distribution.

 \triangleright For continous X, Y, the **conditional distribution** of Y given X = x is

$$F_{Y|X}(y|x) = \lim_{\epsilon \downarrow 0} \mathbb{P}(Y \le y|x - \epsilon \le X \le x + \epsilon).$$

The conditional density:

▶ For continuous variable (X, Y), the conditional density function (conditional PDF) is defined by $f_{Y|X}(y|x) = \frac{d}{dy} f_{Y|X}(y|x)$.

Joint Events Conditional and

Random Va Discrete RVs

Continuous R'

Multivariate Distribution

conditiona distributio

Independence

Conditional Expectation

Normal an

related distributi

Sampling

Large-Sample Approximation to Sampling Distributions

References

- $ightharpoonup \operatorname{Recall}$ that two events A and B are independent if the probability that they both occur equals the product of their probabilities, thus $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- ▷ Consider the events $A = \{X \le x\}$ and $B = \{Y \le y\}$.
- ▶ The probability that they both occur is $\mathbb{P}(A \cap B) = \mathbb{P}(X \leq x, Y \leq y) = F(x, y).$
- $F(x,y) = F_X(x)F_Y(y) \text{ then } \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$
- ▶ The random variables X and Y are **statistically independent** if for all x, y, $F(x, y) = F_X(x)F_Y(y)$.
- ▷ If X, Y have differentiable density function, X, Y are statistically independent if $f(x, y) = f_X(x)f_Y(y)$.
- ▶ The discrete random variables X and Y are **statistically** independent if for all $x, y, \pi(x, y) = \pi_X(x)\pi_Y(y)$.

Random Variabl

Continuous

Multivariate

Distribution

Marginal and conditional

Independence

Conditional

Expectation

Normal an

distribut

Large-Sample Approximation

Approximation to Sampling Distributions

References

Independence II

 \triangleright If X, Y are independent and continuously distributed, then

$$f_{Y|X}(y|x) = f(y),$$

$$f_{X|Y}(x|y) = f(x).$$

▶ If X and Y are independent then for any functions, $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ such that $\mathbb{E}|g(X)| < \infty$ and $\mathbb{E}|h(Y)| < \infty$, then

$$\mathbb{E}(g(X)h(G)) = \mathbb{E}_X(g(X))\mathbb{E}_Y(h(Y)).$$

Theorem 6

(Bayes Theorem for Continuous Variables)

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)} = \frac{f_{X|Y}(x|y)f_Y(y)}{\int_{-\infty}^{\infty} f(x,y)dy}.$$

Random Variable

Discrete RVs

Momente

Multivariat

Distribution

Marginal an conditional

Independence

Conditional

Conditional Expectation

Normal an

distribution

Sampling

Large-Sample Approximation to Sampling

References

Covariance and correlation I

 \triangleright If X and Y have finite variances, the **covariance** between X and Y is

$$cov(X, Y) = \mathbb{E}(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

▶ The **correlation** between *X* and *Y* is

$$corr(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}.$$

Event

Joint Events

Conditional and
marginal probability

Random Variab

Continuous R

Multivariate Distribution

Marginal and

distributions

Independe

Expectation

Normal an

distributi

Large-Sam

Approximation to Sampling Distributions

References

Covariance and correlation II

- ▷ If X and Y are independent with finite variances, then X and Y are uncorrelated.
 - \diamond The reverse is not true. For example, suppose that $X \sim U[-1,1]$. Since it is symmetrically distributed about 0 we see that $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^3] = 0$. Set $Y = X^2$. Then $cov(X,Y) = \mathbb{E}[X^3] \mathbb{E}[X^2]\mathbb{E}[X] = 0$. Thus X and Y are uncorrelated yet are fully dependent!
- ▶ If X and Y have finite variances, var(X + Y) = var(X) + var(Y) + 2cov(X, Y).
- | f(X) | and Y are independent, var(X + Y) = var(X) + var(Y).

Discrete RVs

Continuous RV Moments

Multivariate Distribution

conditional distributions

Conditional Expectation

Expectation

related distribut

Sampling

Large-Sample Approximation to Sampling Distributions

References

Conditional Expectation

Just as the expectation is the central tendency of a distribution, the conditional expectation is the central tendency of a conditional distribution.

The conditional expectation(conditional mean) of Y given X = x is the expected value of the conditional distribution $F_{Y|X}(y|x)$ and is written as $\mathbb{E}(Y|X=x)$.

▶ For discrete random variables, it is defined as

$$\mathbb{E}(Y|X=x) = \frac{\sum_{y} y \pi(x,y)}{\pi_X(x)}.$$

▶ For continuous random variables, it is defined as

$$\mathbb{E}[Y|X=x] = \frac{\int_{y} y f(x,y)}{f_{X}(x)}.$$

Event

Joint Events

Conditional and

landom Variable

Discrete RVs

Moments

Multivariat

Distribution

conditional

distribution

Conditional

Expectation

related distribution

C----1:--

Large-Sample Approximation

Approximatio to Sampling Distributions

References

Law of Iterated Expectations I

- ▷ Consider $m(X) = \mathbb{E}[Y|X]$ a transformation of X.
- \triangleright We can take expectation with respect to m(X)

Theorem 7 (Law of Iterated Expectations(LIE)) If $\mathbb{E}[Y] < \infty$, then $\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y]$.

Events

Conditional and marginal probability

Discrete RVs Continuous RV

Moments

Distribution

conditional distributions

Conditional

Normal and related

Samplin

Large-Sample Approximation to Sampling Distributions

References

Definition 8 (Standard Normal Dist.)

A random variable Z has the **standard normal distribution**, write $Z \sim N(0,1)$, if it has the density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}), x \in \mathbb{R}.$$

Note the standard normal density is typically written as $\phi(x)$. The CDF does not have closed form but is written as $\Phi(x)$. If $X \sim N(\mu, \sigma^2)$ and $\sigma > 0$ then X has the density

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2}), x \in \mathbb{R}.$$

Random Variable

Discrete RVs

Moments

Multivariat

Distribution

conditional

distributions

Conditional

Normal and related

distributions Sampling

Large-Sample Approximation to Sampling

References

Multivariate Normal I

Let Z_1, \ldots, Z_m be i.i.d N(0,1). The joint density is the product of the marginal densities:

$$f(x_1, ..., x_m) = f(x_1) ... f(x_m)$$

= $\frac{1}{(2\pi)^{m/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^m x_i^2\right)$.

Kandom variable

Continuous I

Multivariate

Marginal and conditional distributions

Conditional Expectation

Normal and related

distributions

Large-Sample Approximation

Approximation to Sampling Distributions

References

Multivariate Normal II

Let $\mathbf{Z} = [Z_1, \dots, Z_m]^{\top}$ be an m-component random vector following standard normal distribution $\mathbf{Z} \sim \mathcal{N}(0, \mathbf{I}_m)$ and $\mathbf{X} = \mu + \mathbf{B}\mathbf{Z}$ for $q \times m$ matrix \mathbf{B} , then \mathbf{X} has the **multivariate normal distribution**, written as $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$, where $\Sigma = \mathbf{B}\mathbf{B}^{\top}$. The PDF of \mathbf{X} is given by

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{q/2} (\det \Sigma)^{1/2}} \exp\left(-\frac{(x-\mu)^{\top} \Sigma^{-1} (x-\mu)}{2}\right).$$

marginal probability

Discrete RVs

Continuous

Multivariat

Distribution

Marginal an conditional distributions

Conditional Expectation

Normal and

related distributions

Samplin

Large-Sample Approximation to Sampling Distributions

References

Multivariate Normal III

Properties of multivariate normal distributions.

- 1. Any linear combination of X_1, \ldots, X_m is normally distributed.
- 2. The marginal distribution of each random variable is normal.
- 3. If the covariance of X_1 and X_2 is 0, then X_1 and X_2 are independent. The reverse is true.
- 4. If X_1 and X_2 are normally distributed with the joint density of $f(x_1, x_2)$, then the marginal distribution of X_1 given X_2 is a linear function of X_2 : $\mathbb{E}[X_1|X_2=x_2]=a+bx_2$.

Random Variable

Continuous | Moments

Multivariate Distribution

Marginal and conditional distributions

Conditional Expectation

Normal and related distributions

Samplin

Large-Sample Approximation to Sampling Distributions

References

χ -squared, t and F distribution

The **chi-squared distribution** is the distribution of the sum of m squared independent standard normal distributed variables.

- ▶ Let $\mathbf{Z} \sim N(0, \mathbf{I}_m)$ be multivariate standard normal, then $\mathbf{Z}^{\top}\mathbf{Z} \sim \chi_m^2$.
- $\quad \quad \text{ If } \boldsymbol{X} \sim \textit{N}(0, \Sigma) \text{ with } \boldsymbol{\Sigma} \text{ positive definite, then } \boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}.$
- ightarrow Let $Q_m \sim \chi_m^2$ and $Q_r \sim \chi_r^2$ be independent. Then $rac{Q_m/m}{Q_r/r} \sim F_{m,r}$.
- ▶ Let $Z \sim N(0,1)$ and $Q_m \sim \chi_m^2$ be independent, then $\frac{Z}{\sqrt{Q_r/r}}$ follows the *t*-distribution with *m* degree of freedom, t_m .

Probabili

Joint Events

Conditional and marginal probability

Italiuolli valiabi

Discrete RVs
Continuous RV

Moments K

Multivariat

Marginal an

Independent

Conditional Expectation

related

Sampling

Large-Sample Approximation to Sampling

References

Almost all the statistical and econometric procedures used in this text involve averages or weighted averages of a sample of data.

- ▶ Characterizing the distributions of sample averages.
- ▶ The act of random sampling is a random variable, its distribution is sampling distribution.

Events

Joint Events

Conditional and
marginal probabilit

Random Variable

Discrete RV Continuous

Moments

Multivariate

Distribution

Marginal and

conditional distributions

Conditional

Conditional Expectation

distributio

Sampling

Approximation to Sampling

References

Sampling II

- 1. **Simple random sampling**. e.g. A commuting student record daily traffic time.
- 2. **i.i.d.** draws. e.g. Y_1, \ldots, Y_n are randomly drawn from the same population.

гторарш

Joint Events

Conditional and
marginal probability

Random Variab

Discrete RVs
Continuous R

Multivariate Distribution

Marginal and conditional distributions

Conditional

Expectatio

Sampling

Large-Sam

Approximation to Sampling Distributions

References

Definition 9 (independent and identically distributed(i.i.d))

The collection of random vectors $\{X_1, \ldots, X_n\}$ are **independent and identically distributed(i.i.d)** if they are mutually independent with identical marginal distributions.

- ▶ A collection of random vectors $\{X_1, ..., X_n\}$ is a **random** sample from the population F if X_i are i.i.d with distribution F.
- \triangleright The distribution F is called the **population distribution**. We refer to the distribution as the **data generating process(DGP)**.
- \triangleright The **sample size** n is the number of individuals in the sample.

Hao

LELENSE.

Events

Joint Events

Conditional and
marginal probability

Kandom Variable

Discrete RV

Moments

Multivariat

Marginal and

conditional distributions

Independen

Expectation

Normal ar

distributi

Sampling

Approximation to Sampling Distributions

References

i.i.d II

Figure: Sampling and Inference

Probabili

Joint Events

Conditional and marginal probability

Random Variables
Discrete RVs

Continuous R Moments

Multivariate Distribution

Marginal and conditional distributions

Conditional

Expectation

related distributions

Large-Sample Approximations to Sampling

Distributions

There are two approaches to characterizing sampling distributions:

- the exact approach derives: the exact distribution or finite-sample distribution of Y.
- the approximate approach uses approximations to the sampling distribution that rely on the sample size being large, often called the asymptotic distribution.

Event

Joint Events

Conditional and
marginal probability

Discrete RVs Continuous R

Continuous R' Moments

Multivariat Distribution

conditional distributions

Conditional Expectation

Normal and related

distribution

Large-Sample Approximations to Sampling Distributions

References

Two useful tools when the sample size is large: **the law of large numbers** and the **central limit theorem**.

- ▶ The law of large numbers says that when the sample size is large, \bar{Y} will be close to μ_Y with very high probability.
- ▶ The central limit theorem says that when the sample size is large, the sampling distribution of the standardized sample average, $(\bar{Y} \mu_Y)/\sigma_Y$, is approximately normal.

Evente

Joint Events

Conditional and
marginal probability

Random Variable

Discrete RVs

Manage

Multivariat

Distribution

Marginal an conditional

distribution

Independen

Conditional

Normal and related

distribution

Large-Sample Approximations to Sampling

Distributions
References

▷ A sequence of random variables $Z_n \in \mathbb{R}$ converges in **probability** to c as $n \to \infty$, denoted by $Z_n \to_p c$ or $plim_{n\to\infty}Z_n = c$, if for all $\delta > 0$,

$$\lim_{n\to\infty}\mathbb{P}(|Z_n-c|\leq\delta)=1.$$

References

Law of Large Numbers I

Theorem 10 (Weak Law of Large Numbers(WLLN))

If X_i are independent and identically distributed and $\mathbb{E}(X) < \infty$, then as $n \to \infty$,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to_{\rho} \mathbb{E}(X).$$

An estimator $\hat{\theta}$ of a parameter θ is **consistent** if $\hat{\theta} \to_p \theta$ as $n \to \infty$. Counter examples:

- $\triangleright X_i = Z + U_i$, Z is common component and $\mathbb{E}[U] = 0$, $\bar{X}_i \rightarrow_p Z$ but not the sample mean.
- ▷ Suppose $var(X_i) = 1$ for $i \le n/2$ and $var(X_i) = n$ for i > n/2. $var(\bar{X}_n) \to 1/2$, \bar{X}_n does not converge in probability.

Hao

Probabilit

FTODADIII

Joint Events
Conditional and

Random Variable

Discrete R

M-----

woments

Multivariat

Marginal an

conditional distribution

Independen

Conditiona Expectatio

Normal ar

related distribution

distribution

Large-Sample Approximations to Sampling Distributions

References

Continuous Mapping Theorem

Theorem 11 (Continuous Mapping Theorem)

If $Z_n \to_p c$ as $n \to \infty$ and $h(\cdot)$ is continuous at c then $h(Z_n) \to_p h(c)$ as $n \to \infty$.

Joint Events
Conditional and

Random Variable

Discrete R\

Continuou

ivioments

Multivariat Distributio

Distributio

conditional distributions

Independent

Conditional

Expectation

distribution

Sampling

Large-Sample Approximations to Sampling Distributions

References

Theorem 12 (Central Limit Theorem(CLT))

If X_i are i.i.d. and $\mathbb{E}(X^2) < \infty$ then as $n \to \infty$

$$\sqrt{n}(\bar{X}_n \to \mu) \to_d N(0, \sigma^2),$$

where $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{E}[(X - \mu)^2]$.

Large-Sample Approximations to Sampling Distributions

Theorem 13 (Slutsky's Theorem)

If $Z_n \to_d Z$ and $c_n \to_p c$ as $n \to \infty$, then

- 1. $Z_n + c_n \rightarrow_d Z + c$
- 2. $Z_n c_n \rightarrow_d Z_c$
- 3. $\frac{Z_n}{C_n} \rightarrow_d \frac{Z}{C}$ if $c \neq 0$.

_

Joint Events

Conditional and
marginal probabili

ndom Variable

Discrete RVs

Momente

Multivariat

Distribution

conditional distributions

Independence

Conditiona Expectatio

related distribution

Sampling

Approximation to Sampling

References

Hansen, B. (2021). Introduction to econometrics. madison: University of wisconsin.

Stock, J. H. and Watson, M. W. (2020). *Introduction to econometrics*, volume 4. Pearson New York.