

UNIVERSITÀ DEGLI STUDI DI CAGLIARI

Facoltà di Scienze

Corso di Laurea Magistrale in Matematica

Il Primo Teorema di Incompletezza di Gödel

Relatore

Prof. Dott.

Andrea Loi

Tesi di Laurea di

Dott. Massimiliano

Mutzu Martis

Introduzione

Nell'ambito della logica i due teoremi di incompletezza di Gödel sono tra i risultati più esaltanti del XX secolo. Nel primo teorema Gödel afferma che la teoria formale della aritmetica, se coerente, deve contenere una proposizione né dimostrabile né rifiutabile, mentre nel secondo teorema che all'interno della stessa teoria non è possibile dimostrare la sua stessa coerenza, utilizzando cioè i suoi stessi simboli e regole.

Soffermandoci all'interno di questa tesi esclusivamente sul primo teorema, vedremo come costruendo un sistema di assiomi da cui non si possano dedurre contraddizioni bisogna rinunciare all'idea che si possano derivare tutte le proposizioni vere dell'aritmetica.

Nel primo capitolo daremo un'idea generale e più intuitiva del primo teorema di Gödel attraverso il semplice linguaggio di una macchina, arrivando a mostrare alcune affermazioni logiche vere ma non dimostrabili all'interno del sistema costruito basandosi su alcune semplici regole di base. Mostreremo come ogni sistema matematico di assiomi che abbia delle caratteristiche molto generali è soggetto al ragionamento di Gödel.

Il secondo capitolo è incentrato sull'implementazione delle basi logiche utili a dimostrare il teorema di Tarski, necessario per la dimostrazione più semplice possibile del teorema di Gödel per i sistemi da noi più conosciuti, ossia quelli costruiti a partire da un linguaggio basato su addizione, moltiplicazione ed esponenziale. Verranno introdotte le nozioni di verità, insiemi e relazioni a partire dal linguaggio generale preso in considerazione. Si noterà poi la trasposizione del linguaggio simbolico in uno numerico per un miglior trattamento delle espressioni costruibili, fino ad arrivare al teorema di Tarski e alla sua dimostrazione.

Nei successivi due capitoli si costruiranno due sistemi di assiomi per l'aritmetica di Peano, uno con esponenziale e uno senza. Aritmetizzando tutti i passaggi logici utilizzati per la costruzione del sistema e della sua sintassi,

arriveremo a dimostrare il teorema di incompletezza di Gödel per entrambi i sistemi, utilizzando il teorema di Tarski precedentemente dimostrato.

Indice

1	Ide	a generale dietro il Primo Teorema di Gödel	4
	1.1	Il puzzle Gödeliano	4
	1.2	Variante del Puzzle	6
	1.3	Forme astratte dei teoremi di Gödel e Tarski	7
	1.4	Numerazione di Gödel e Diagonalizzazione	8
	1.5	Forma astratta del teorema di Gödel	8
	1.6	Frasi di Gödel	10
	1.7	Frasi non decidibili	11
2	Teo	rema di Tarski per l'Aritmetica	13
	2.1	Il Linguaggio \mathcal{L}_E	13
	2.2	La Nozione di Verità in \mathcal{L}_E	16
		2.2.1 Insiemi e Relazioni Aritmetiche	17
	2.3	Concatenazione e Numerazione di Gödel	18
		2.3.1 Concatenazione con Base b	18
		2.3.2 Numerazione di Gödel	20
	2.4	Il Teorema di Tarski	21
3	L'ir	ncompletezza dell'Aritmetica di Peano con Esponenziale	23
	3.1	Il Sistema di Assiomi di Peano con Esponenziale	23
	3.2	Aritmetizzazione del Sistema di Assiomi	25
	3.3	Aritmetizzazione della sintassi di P.E	28
4	L'ir	acompletezza dell'Aritmetica di Peano senza Esponenziale	32
	4.1	Relazioni e formule della classe Σ	32
	4.2	Concatenazione con Base Prima	34
	4.3	Aritmetizzazione dell'Esponenziale in P.A	37
	4.4	Incompletezza del Sistema di Assiomi P.A	39
5	Cor	nclusioni	40

Capitolo 1

Idea generale dietro il Primo Teorema di Gödel

In questo capitolo vedremo la generalizzazione più veloce e accessibile utilizzata da Gödel stesso per introdurre i suoi studi sul suo documento ufficiale.

Nei primi paragafi si descriverà una macchina semplice che con poche regole e utilizzando pochi simboli, descrivendo il suo stesso comportamento, presenterà obbligatoriamente un'affermazione vera e non dimostrabile, fulcro del primo teorema di Gödel e inizieremo a vederne una sua generalizzazione matematica attraverso un linguaggio binario.

Nei paragrafi successivi analizzeremo gli insiemi di frasi vere, dimostrabili e non dimostrabili e le loro caratteristiche rispetto al linguaggio utilizzato, fino all'introduzione della numerazione di Gödel, utile per studiare queste caratteristiche rispetto a insiemi a noi più congeniali, ossia insiemi numerici.

Infine introdurremo i concetti di frasi non decidibili e di conseguenza di incompletezza di un dato linguaggio.

1.1 Il puzzle Gödeliano

Consideriamo una macchina che stampa i seguenti simboli

 $\sim PN()$

e consideriamo le seguenti definizioni.

Definizione 1.1. Un'espressione è una stringa finita non vuota dei cinque simboli $\sim PN()$.

Definizione 1.2. Diremo che una espressione X è stampabile se la macchina prima o poi è in grado di stamparla.

Definizione 1.3. La norma di un'espressione X, è l'espressione X(X).

Per esempio la norma dell'espressione " $P \sim$ " è l'espressione " $P \sim (P \sim)$ ".

Definizione 1.4. Per *frase* si intende un'espressione compresa tra queste tipologie:

- 1. P(X);
- 2. PN(X);
- 3. $\sim P(X)$;
- 4. $\sim PN(X)$

dove la P sta per "stampabile", N "la norma di" e \sim "non".

Quindi

- P(X) è vera se X è stampabile;
- PN(X) è vera se la norma di X è stampabile;
- $\sim P(X)$ è vera se X non è stampabile;
- $\sim PN(X)$ è vera se la norma di X non è stampabile.

La macchina stampa varie frasi rispetto a quello che può o non può stampare, descrivendo così il suo stesso comportamento. Tutte le frasi stampate sono vere. Quindi se la macchina stampa $P(X) \Longrightarrow X$ è stampabile, se stampa $PN(X) \Longrightarrow X(X)$ è stampabile.

Osservazione 1.0.1. Ora analizzando il viceversa, se X è stampabile non è detto che P(X) sia stampabile perchè significa solamente che P(X) è vero ma la macchina non è detto che stampi tutte le frasi vere. Semplicemente tutto quello che stampa non è falso.

Ci si chiede se la macchina possa stampare tutte le frasi vere. La risposta è no. Infatti se consideriamo la frase " $\sim PN(\sim PN)$ " per la definizione di verità avremo che è vera se la norma di $\sim PN$ non è stampabile. Ma la norma di $\sim PN$ è la frase presa in considerazione inizialmente. Le opzioni possibili sono:

- 1. $\sim PN(\sim PN)$ è vera $\iff \sim PN(\sim PN)$ non è stampabile;
- 2. $\sim PN(\sim PN)$ non è vera $\iff \sim PN(\sim PN)$ è stampabile;

ma la seconda opzione non è possibile per la regola della macchina che impone che tutto ciò che è stampabile sia vero. Pertanto l'unica opzione possibile è che sia vera e non stampabile.

1.2 Variante del Puzzle

Ora consideriamo i simboli

$$\sim P N 1 0.$$

Ci serviranno per l'introduzione della nozione di numerazione di Gödel. Ad ogni espressione assoceremo un numero di Gödel in forma binaria seguendo la seguente notazione:

- $\sim \longrightarrow 10$;
- $P \longrightarrow 100$;
- $N \longrightarrow 1000;$
- $1 \longrightarrow 10000$;
- $0 \longrightarrow 100000$;

Per esempio $PNP \longrightarrow 1001000100$. Quindi in questa maniera si possono scrivere in binario le frasi PX, PNX, $\sim PX$ e $\sim PNX$ dove X è qualsiasi espressione e di conseguenza un qualsiasi numero binario. Quindi PX è vera se X è il numero di Gödel di una espressione stampabile e PNX è vera se X è il numero di Gödel di una espressione la cui norma è stampabile. Come nell'esempio del paragrafo precedente abbiamo che $\sim PN$ 101001000 è vera ma non stampabile.

Se in un nuovo sistema, al posto di stampabile intendiamo la P come dimostrabile, abbiamo che $\sim PN(\sim PN)$ è vera e non dimostrabile per la stessa logica del sistema precedente. Osserviamo che $PN(\sim PN)$ è falsa, di conseguenza nella stessa maniera la frase è non dimostrabile (assunto che il sistema sia "preciso"). La frase $PN(\sim PN)$ è un esempio di frase "non decidibile" in un sistema.

1.3 Forme astratte dei teoremi di Gödel e Tarski

La tesi di Gödel è applicabile a ciascun linguaggio \mathcal{L} che contiene almeno questi oggetti:

- 1. Un insieme numerabile ε di elementi chiamati espressioni di \mathcal{L} ;
- 2. Un sottoinsieme $S \subset \varepsilon$ di elementi chiamate frasi di \mathcal{L} ;
- 3. Un sottoinsieme $\mathcal{P} \subset \mathcal{S}$ di elementi chiamate frasi dimostrabili (provabili);
- 4. Un sottoinsieme $\mathcal{R} \subset \mathcal{S}$ di elementi chiamate frasi rifiutabili (non dimostrabili);
- 5. Un insieme \mathfrak{X} di espressioni chiamate predicati di \mathcal{L} (vengono anche chiamate nomi delle classi e sono il nome di un insieme di numeri naturali);
- 6. Una funzione Φ che assegni ad ogni espressione E e numero naturale n un'espressione E(n). La funzione deve soddisfare la condizione che per ogni predicato H e per ogni numero naturale n allora H(n) è una frase.
- 7. Un insieme \mathcal{T} di frasi che sono chiamate frasi vere di \mathcal{L} .

Nella prima dimostrazione dell'incompletezza avremo un sistema particolare \mathcal{L} e utilizzeremo concetti base resi precisi da Tarski come la nozione di frase vera. Per numeri d'ora in avanti intenderemo numeri naturali.

Tali definizioni prendono in considerazione solo l'insieme \mathcal{T} delle frasi vere e non \mathcal{P} o \mathcal{R} rispettivamente delle frasi dimostrabili e frasi rifiutabili.

Definizione 1.5. Diremo che un predicato H è *vero* per un numero n se H(n) è una frase vera ossia $H(n) \in \mathcal{T}$.

Con l'insieme espresso da H intendiamo l'insieme delle n (numeri) che soddisfano H, ossia H(n) è vera (oppure diremo che H è soddisfatta da n). Quindi per qualche insieme A di numeri si ha:

$$H(n) \in \mathcal{T} \iff n \in A$$

Definizione 1.6. L'insieme A è detto esprimibile o nominabile in \mathcal{L} se A è espresso da alcuni predicati di \mathcal{L} .

Finchè c'è solo una quantità numerabile di espressioni di \mathcal{L} allora c'è solo una quantità finita o numerabile di predicati di \mathcal{L} . Ma per il ben noto teorema

di Cantor¹ c'è una quantità di insiemi di numeri naturali non-numerabile, di conseguenza non ogni insieme di numeri è esprimibile in \mathcal{L}^2 .

Definizione 1.7. Il sistema \mathcal{L} è *corretto* se ogni frase dimostrabile è vera e ogni frase confutabile è falsa (non vera). Questo significa che $\mathcal{P} \subset \mathcal{T}$ e $\mathcal{R} \cap \mathcal{T} = \emptyset$.

Quindi siamo interessati alle condizioni sufficienti in \mathcal{L} , se corretto, che deve avere una frase vera non dimostrabile in \mathcal{L} .

1.4 Numerazione di Gödel e Diagonalizzazione

Definiamo alcuni strumenti di cui necessiteremo in seguito.

Definizione 1.8. Sia g una funzione biettiva che assegna ad ogni espressione E un numero naturale g(E) chiamato numero di Gödel di E. Conviene assumere che ogni numero è il numero di Gödel di un'espressione unica, pertanto possiamo chiamare E_n tale espressione, perciò abbiamo che $g(E_n) = n$.

Definizione 1.9. Per diagonalizzazione di E_n intendiamo l'espressione $E_n(n)$, quindi se E_n è un predicato allora $E_n(n)$ è una frase. Questa frase è vera se e solo se E_n è soddisfatto dal suo stesso numero di Gödel.

Definizione 1.10. Chiamiamo d(n) il numero di Gödel di $E_n(n)$ e chiameremo d la funzione diagonale.

Se A è un insieme di numeri, A^* saranno tutti gli n tali che $d(n) \in A$, pertanto:

$$n \in A^* \iff d(n) \in A$$
.

Volendo possiamo considerare $A^* = d^{-1}(A)$.

1.5 Forma astratta del teorema di Gödel

Sia P l'insieme dei numeri di Gödel delle frasi dimostrabili. Per ogni insieme di numeri A, sia \bar{A} il suo complementare rispetto a \mathbb{N} .

 $^{^1}$ Il teorema di Cantor afferma che, dato un insieme di qualsiasi cardinalità (numero di elementi), esiste sempre un insieme di cardinalità maggiore. In particolare, dato un insieme X, l'insieme delle parti di $\mathcal{P}(X)$ (cioè l'insieme formato da tutti i possibili sottoinsiemi di X) ha sempre cardinalità maggiore di quella di X. Il teorema di Cantor è ovvio per insiemi finiti, ma continua a valere anche per insiemi infiniti. In particolare, l'insieme delle parti di un insieme numerabile è non numerabile.

 $^{^2}$ Le espressioni sono sottoinsiemi dei numeri naturali, quindi l'insieme di tutte le possibili espressioni è l'insieme delle parti di $\mathbb N$ che per Cantor è non-numerabile.

Teorema 1.1 (Teorema di Gödel-Tarski - GT). Se \bar{P}^* è esprimibile in \mathcal{L} e \mathcal{L} è corretto \Longrightarrow esiste una frase vera di \mathcal{L} , non dimostrabile in \mathcal{L} .

Dimostrazione. Sia H un predicato che esprime \bar{P}^* in \mathcal{L} e sia h il numero di Gödel di H. Sia G la diagonalizzazione di H (ossia H(h)). Dimostriamo che G è vera ma non dimostrabile in \mathcal{L} .

Se H esprime \bar{P}^* in \mathcal{L} allora $\forall n$

$$H(n) \ vera \iff n \in \bar{P}^*.$$

Se è valida $\forall n$ allora sarà valida in particolare per h. Pertanto

$$H(h) \ vera \iff h \in \bar{P}^*.$$

Ma abbiamo anche che

$$h \in \bar{P}^* \iff d(h) \in \bar{P} \iff d(h) \notin P$$

e d(h) è il numero di Gödel di H(h) pertanto

$$d(h) \in P \iff H(h) \ dimostrabile \ in \ \mathcal{L}$$

di conseguenza

$$d(h) \notin P \iff H(h) \text{ non dimostrabile.}$$

Quindi abbiamo due possibilità

- 1. H(h) vera \iff H(h) non è dimostrabile;
- 2. H(h) falsa $\iff H(h)$ è dimostrabile.

La seconda non è possibile perchè \mathcal{L} è corretto pertanto abbiamo dimostrato la tesi.

Ora quando vedremo casi particolari di linguaggi $\mathcal L$ verificheremo che $\bar P^*$ è esprimibile in $\mathcal L$ verificando separatamente:

- G_1 : Per ogni insieme A esprimibile in $\mathcal{L} \Longrightarrow A^*$ è esprimibile in \mathcal{L} ;
- G_2 : Per ogni insieme A esprimibile in $\mathcal{L} \implies \bar{A}$ è esprimibile in \mathcal{L} ;
- G_3 : L'insieme P è esprimibile in \mathcal{L} .

Le prime due $(G_1 \in G_2)$ implicano che $\forall A$ esprimibile $\Longrightarrow \bar{A}^*$ è esprimibile e la terza (G_3) serve affinchè a P si possano applicare le prime due condizioni.

1.6 Frasi di Gödel

Definizione 1.11. Diremo che E_n è una frase di Gödel per un insieme A se E_n è vera e $n \in A$ oppure E_n è falsa e $n \notin A$. Pertanto E_n è una frase di Gödel se e solo se si verifica

$$E_n \in T \iff n \in A$$
.

Lemma 1.2 (Lemma Diagonale - D).

- 1. Per ogni insieme A, se A^* è esprimibile in $\mathcal{L} \implies$ esiste una frase di Gödel per A.
- 2. Se \mathcal{L} soddisfa la proprietà $G_1 \implies per$ ogni insieme A esprimibile in \mathcal{L} allora esiste una frase di Gödel per A.

Dimostrazione.

1. Supponiamo H un predicato che esprime A^* e sia h il suo numero di Gödel. Allora d(h) è il numero di Gödel di H(h). Ricordiamo che per ogni n

$$H(n) \ vera \iff n \in A^*$$

pertanto

$$H(h) \ vera \iff h \in A^* \iff d(h) \in A.$$

Quindi per la definizione di frase di Gödel abbiamo che $d(h) \in A$ è il numero di Gödel con H(h) frase di Gödel.

2. Per la proprietà G_1 essendo A esprimibile allora A^* è esprimibile pertanto, riportandoci al punto 1 del Lemma, la tesi è dimostrata.

Un'importante conseguenza di questo lemma è il seguente Teorema di Tarski.

Teorema 1.3 (Teorema di Tarski - T). Sia T un insieme di numeri di Gödel delle frasi vere di \mathcal{L} . Possiamo dire:

- 1. L'insieme \bar{T}^* non è esprimibile in \mathcal{L} ;
- 2. Se verificata la proprietà $G_1 \Longrightarrow \bar{T}$ non è esprimibile in \mathcal{L} ;
- 3. Se verificate G_1 e $G_2 \Longrightarrow T$ non è esprimibile in \mathcal{L} .

Dimostrazione. Per prima cosa notiamo come non possa esistere una frase di Gödel nell'insieme \bar{T} perchè una frase è vera se e solo se il numero di Gödel non è un numero di Gödel delle frasi vere e questo è chiaramente un assurdo.

- 1. Per assurdo se \bar{T}^* fosse esprimibile in \mathcal{L} per il Lemma D, deve esserci una frase di Gödel per l'insieme \bar{T} ma abbiamo appena visto che questo è un assurdo, pertanto \bar{T}^* non è esprimibile.
- 2. Se \bar{T} fosse esprimibile per la G_1 avremmo \bar{T}^* esprimibile ma è assurdo per il punto 1.
- 3. Se anche G_2 fosse rispettata, se T fosse esprimibile avremmo \bar{T} esprimibile ma è assurdo per il punto 2.

1.7 Frasi non decidibili

Fino ad ora non abbiamo usato l'insieme \mathcal{R} delle frasi rifiutabili.

Definizione 1.12. Il lunguaggio \mathcal{L} viene detto *consistente* se non esistono frasi appartenenti a \mathcal{P} e a \mathcal{R} ossia $\mathcal{P} \cap \mathcal{R} = \emptyset$, in caso contrario si dice *inconsistente*.

Notiamo come \mathcal{L} corretto implichi \mathcal{L} consistente ma il viceversa non è necessariamente vero.

Definizione 1.13. Una frase X è detta decidibile se è dimostrabile o rifiutabile, altrimenti è indecidibile. \mathcal{L} è detto completo se ogni frase è decidibile, altrimenti viene detto incompleto.

Adesso supponiamo che \mathcal{L} soddisfi le ipotesi del Teorema GT, allora perlomeno una frase G è vera e non dimostrabile. Se G è vera, non è rifiutabile perchè \mathcal{L} è corretto pertanto G è indecidibile, da qui il teorema:

Teorema 1.4. Se \mathcal{L} è corretto e se \bar{P}^* è esprimibile $\Longrightarrow \mathcal{L}$ è incompleto.

Duale del precedente teorema è il seguente:

Teorema 1.5. Se \mathcal{L} è corretto e l'insieme \mathcal{R}^* è esprimibile $\Longrightarrow \mathcal{L}$ è incompleto.

Più specifico, se \mathcal{L} è corretto e K è un predicato che esprime $\mathcal{R}^* \implies la$ diagonalizzazione K(k) è indecidibile in \mathcal{L} .

Dimostrazione. Se K esprime \mathbb{R}^* per il punto 1 del Lemma D allora K(k) è una frase di Gödel per l'insieme K. Pertanto K(k) è vera $\iff k \in R \iff K(k) \in \mathbb{R}$ ossia rifiutabile in \mathcal{L} .

11

Questo significa che K(k) è vera e rifiutabile o falsa e non rifiutabile. Per la correttezza di \mathcal{L} non può essere il primo caso, pertanto è falsa e non rifiutabile. Il fatto che sia falsa, sempre per la correttezza, implica che non sia dimostrabile, di conseguenza K(k) è non dimostrabile e non rifiutabile.

Corollario 1.6. Supponiamo ora che \mathcal{L} sia corretto e che soddisfi G_1 e G_3 le quali implicano che R^* sia esprimibile, di conseguenza, per il teorema appena enunciato, \mathcal{L} è incompleto.

Capitolo 2

Teorema di Tarski per l'Aritmetica

In questo capitolo introdurremo l'Aritmetica di Peano utilizzando un linguaggio un po' più complesso, attraverso l'utilizzo di tredici simboli, quattro funzioni basilari e alcuni connettivi logici.

Vedremo le varie condizioni di verità delle frasi e riporteremo la loro analisi sempre nell'ambito degli insiemi numerici introducendo le caratteristiche di insieme, formula e relazione aritmetica. Definiremo e analizzeremo la funzione di concatenazione di due numeri rispetto ad una data base e le sue proprietà.

Per finire attraverso l'introduzione di una numerazione associata ai simboli utilizzati nel linguaggio, attraverso la cosidetta numerazione di Gödel, viene enunciato il teorema di Tarski che starà alla base delle dimostrazioni riguardanti l'incompletezza dell'aritmetica di Peano.

2.1 Il Linguaggio \mathcal{L}_E

Prendiamo come sistema particolare la ben nota Aritmetica di Peano che è un linguaggio \mathcal{L}_E basato su addizione, moltiplicazione ed esponenziale.

Si possono usare i seguenti 13 simboli per descriverlo:

$$0$$
 ' () f , v \sim \supset \forall $=$ \leq \sharp

dove ' è la funzione successore e $\{0, 0', 0'', 0''' \ldots\}$ sono $\{0, 1, 2, 3 \ldots\}$ detti anche numerali. La f indica una funzione e f indica la somma + usuale, f indica il prodotto · e f l'esponenziale Exp. Come in precedenza \sim indica la negazione, inoltre abbiamo \supset che è il nostro \Longrightarrow "allora", \forall , = e \leq indicano rispettivamente il "per ogni", l'uguaglianza e il "minore o uguale" usuali in matematica.

Abbiamo anche bisogno di espressioni con quantità numerabili $v_1, v_2, \ldots, v_n, \ldots$ chiamate variabili. Tali variabili v_1, v_2, v_3, \ldots saranno rappresentate da v_1, v_2, v_3, \ldots dove quindi chiaramente la variabile v_n sarà una v seguita da n.

Definizione 2.1. Chiameremo *termine* le espressioni che seguono le seguenti regole:

- Ogni variabile e numerale è un termine;
- Se t_1 e t_2 sono termini, allora lo sono anche $(t_1 + t_2), (t_1 \cdot t_2), t_1^{t_2}$ e t_1' (dove ricordiamo che 'indica il successivo).

Definizione 2.2. Un termine si dice *chiuso* o *costante* se non contiene variabili.

Definizione 2.3. Una formula atomica è un'espressione in una delle forme $t_1 = t_2$ o $t_1 \le t_2$ dove t_1 e t_2 sono termini.

L'insieme delle formule è definito dalle seguenti regole:

- Ogni formula atomica è una formula;
- Se F e G sono formule $\Longrightarrow \sim F$ e $F \supset G$ sono formule;
- Per ogni variabile v_i l'espressione $\forall v_i F$ è una formula.

In logica matematica per occorrenza si intende la presenza di una variabile, di una costante, di un operatore in una data formula, oppure anche la presenza di una formula in un calcolo. Va tenuta presente la distinzione, che si opera nel calcolo dei predicati, tra occorrenza libera e occorrenza vincolata di una variabile. Si dice che si ha occorrenza libera di una variabile quando questa non è soggetta all'azione di nessun quantificatore (nel nostro caso \forall). Per ogni termine t tutte le occorrenze di v_i in t sono libere. Anche per tutte le formule atomiche t tutte le occorrenze di t in t sono libere. Per qualsiasi formula t e t di t cocorrenze libere di t in t sono quelle di t assieme a quelle di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere in t sono le stesse di t cocorrenze libere t sono le stesse di t cocorrenze t sono le stesse di t cocorrenze t sono le stesse t cocorrenze t sono le stesse t cocorrenze t co

Nel caso di $\forall v_i F$ si ha che v_i abbia solo occorrenze vincolate. Per ogni $j \neq i$, tutte le occorrenze libere di v_i in $\forall v_j F$ sono tutte quelle di F.

Definizione 2.4. Per *frase* in questo caso si intende una qualsiasi formula dove non ci sono variabili con occorrenze libere. Le frasi vengono anche chiamate formule chiuse. Per formula aperta si intende una formula non chiusa, cioè almeno una variabile possiede un'occorrenza libera.

Per ogni numero naturale n, con \bar{n} si intende la scrittura nell'alfabeto dell'aritmetica di Peano (4 = 0''''). Per ogni variabile v_i , a volte si scrive $F(v_i)$ per indicare qualsiasi formula dove v_i è l'unica variabile libera, in quel caso con $F(\bar{n})$ indichiamo il risultato della sostituzione del numerale \bar{n} per ogni occorrenza libera di v_i in $F(v_i)$.

Più in generale $F(v_{i_1}, \ldots, v_{i_n})$ per qualsiasi formula dove v_{i_1}, \ldots, v_{i_n} sono le uniche variabili libere e per ogni numero k_1, \ldots, k_n avremo che $F(\bar{k}_1, \ldots, \bar{k}_n)$ è il risultato della sostituzione di \bar{k}_i con tutte le occorrenze libere della variabile v_i .

Definizione 2.5. Chiameremo $F(\bar{k}_1,\ldots,\bar{k}_n)$ un'*istanza* della formula $F(v_{i_1},\ldots,v_{i_n})$. Diremo che una formula $F(v_{i_1},\ldots,v_{i_n})$ è *regolare* se $i_1=1,\ldots,i_n=n$ e quindi può essere scritta come $F(v_1,\ldots,v_n)$.

Definizione 2.6. Per *grado* di una formula si intende il numero di occorrenze dei connettivi logici \sim e \supset e del quantificatore \forall , pertanto:

- Le formule atomiche hanno grado 0;
- Per ogni formula $F \in G$ di grado rispettivamente $d_1 \in d_2$, la formula $\sim F$ ha grado $d_1 + 1$, la formula $F \supset G$ ha grado $d_1 + d_2 + 1$ e per ogni variabile v_i la formula $\forall v_i F$ ha grado $d_1 + 1$.

Ora si può implementare il nostro "vocabolario" implementando i simboli e mostrando come questi possono essere descritti utilizzando combinazioni dei simboli del nostro linguaggio. In questa maniera ci sarà possibile utilizzare una simbologia familiare a livello matematico ma che possiamo sempre ricondurre al linguaggio iniziale e ridurre la scrittura che diventerebbe appesantita anche omettendo le parentesi nel caso in cui non siano presenti ambiguità. Degli esempi sono:

- $(F_1 \vee F_2) =_{df} (\sim F_1 \supset F_2);$
- $(F_1 \wedge F_2) =_{df} \sim (F_1 \supset \sim F_2);$
- $F_1 \equiv F_2 =_{df} ((F_1 \supset F_2) \land (F_2 \supset F_1));$
- $\exists v_i F =_{df} \sim \forall v_i \sim F;$
- $t_1 \neq t_2 =_{df} \sim t_1 = t_2$;
- $t_1 < t_2 =_{df} ((t_1 \le t_2) \land (\sim t_1 = t_2));$
- $t_1^{t_2} =_{df} t_1 Exp t_2;$

- $(\forall v_i \leq t)F =_{df} \forall v_i (v_i \leq t \supset F);$
- $(\exists v_i \leq t)F =_{df} \sim (\forall v_i \leq t) \sim F.$

Per termine costante intendiamo un termine senza variabili. Ogni termine costante c rappresenta un unico numero naturale secondo le seguenti regole:

- Un numero naturale \bar{n} rappresenta n.
- Se c_1 e c_2 rappresentano rispettivamente n_1 e n_2 , allora $(c_1 + c_2)$ la somma di n_1 e n_2 ; $(c_1 \cdot c_2)$ rappresenta il prodotto di n_1 e n_2 ; $(c_1 \ Exp \ c_2)$ rappresenta il numero $n_1^{n_2}$; il termine costante c_1' rappresenta $n_1 + 1$.

2.2 La Nozione di Verità in \mathcal{L}_E

Ora vogliamo definire cosa è una frase *vera*. La definizione può essere fatta per induzione sul grado della frase. Le seguenti condizioni servono a tale scopo:

- T₀: Una frase atomica c₁ = c₂ (ricordiamo che c₁ e c₂ sono termini costanti) è vera ⇔ c₁ e c₂ rappresentano lo stesso numero naturale (secondo le regole di rappresentanza fatte precedentemente).
 Una frase atomica c₁ ≤ c₂ è vera ⇔ il numero rappresentato da c₁ è minore o uguale a quello rappresentato da c₂.
- T_1 : Una frase della forma $\sim X$ è vera $\iff X$ è non vera.
- T_2 : La frase $X \supset Y$ è vera \iff la X è non vera oppure se entrambe X e Y sono vere.
- T_3 : La frase $\forall v_i F$ è vera \iff per ogni numero n, la frase $F(\bar{n})$ è vera.

La T_0 serve per dettare le condizioni di veridicità delle frasi atomiche, mentre T_1 , T_2 e T_3 per tutte le frasi non atomiche in relazione alla veridicità di frasi di grado inferiore¹.

Una formula aperta $F(v_{i_1}, \ldots, v_{i_k})$ non può definirsi vera o falsa, ma possiamo definirla *corretta* se per ogni n_1, \ldots, n_k , la frase $F(\bar{n}_1, \ldots, \bar{n}_k)$ è vera.

Consideriamo la formula $F(v_1)$ con v_1 una variabile libera. Per ogni variabile v_i con $(i \neq 1)$, definiamo $F(v_i)$ come segue:

1. Se v_i non ha occorrenze come variabile vincolata di F, allora $F(v_i)$ è il risultato della sostituzione di v_1 con v_i in F.

¹Da notare che nella T_3 , F è di grado inferiore rispetto a $\forall v_i F$, pertanto per ogni n si ha che $F(\bar{n})$ è di grado inferiore rispetto a $\forall v_i F$. Finché $\forall v_i F$ è una frase, nessun altra variabile oltre a v_i è libera in F di conseguenza anche $F(\bar{n})$ è una frase.

2. Se v_i ha occorrenze come variabile vincolata di F, prendiamo il più piccolo j tale che v_j non abbia occorrenze in F e sostituiamo tutte le occorrenze di v_i con v_j in F, chiamiamo questa formula $F'(v_j)$, in seguito sostituiamo v_i per tutte le occorrenze libere di v_1 in $F'(v_j)$ e questa la chiameremo $F(v_i)$.

Per esempio, sia $F(v_1)$ la formula $\exists v_2(v_2 \neq v_1)$. Questa formula è corretta. Con $F(v_2)$ intendiamo non la formula $\exists v_2(v_2 \neq v_2)$, ma la formula corretta $\exists v_3(v_3 \neq v_2)$. Per le formule a più variabili libere si applicano le stesse regole.

Definizione 2.7. Due frasi sono dette *equivalenti* se e solo se sono entrambe vere o entrambe false. Due formule aperte $F(v_{i_1}, \ldots, v_{i_k})$ e $G(v_{i_1}, \ldots, v_{i_k})$ con le stesse variabili libere sono equivalenti se e solo se per tutti i numeri n_1, \ldots, n_k , le frasi $F(\bar{n}_1, \ldots, \bar{n}_k)$ e $G(\bar{n}_1, \ldots, \bar{n}_k)$ sono equivalenti.

2.2.1 Insiemi e Relazioni Aritmetiche

Per ogni formula $F(v_1)$ con v_1 unica variabile libera, diciamo che $F(v_1)$ esprime l'insieme di tutti i numeri n tali che $F(\bar{n})$ sia una frase vera. Allora $F(v_1)$ esprime l'insieme A se e solo se per tutti i numeri n

$$F(\bar{n}) \ vera \iff n \in A.$$

Una formula regolare $F(v_1, \ldots, v_n)$ diremo che esprime l'insieme di tutte le nuple (k_1, \ldots, k_n) di numeri naturali tali che $F(\bar{k}_1, \ldots, \bar{k}_n)$ sia una frase vera, pertanto $F(v_1, \ldots, v_n)$ esprime la relazione $R(x_1, \ldots, x_n)$ se e solo se per tutti i numeri k_1, \ldots, k_n risulta vera la seguente condizione:

$$F(\bar{k}_1,\ldots,\bar{k}_n) \ vera \iff R(k_1,\ldots,k_n).$$

Per esempio l'insieme dei numeri pari è espresso dalla formula $\exists v_2(v_1 = 0'' \cdot v_2)$.

Un insieme o una relazione sono detti Aritmetici se sono espressi da qualche formula in \mathcal{L}_E (normalmente si denotano con la lettera "A" maiuscola), vengono anche chiamati aritmetici se espressi da una qualche formula di \mathcal{L}_E senza l'utilizzo della funzione esponenziale "Exp". Pertanto se sono espresse tramite le funzioni somma e moltiplicazione allora sono aritmetiche, se si utilizza anche la funzione esponenziale allora sono Aritmetiche. Non vengono prese in considerazione le relazioni \leq o = perchè possono essere descritte tramite la somma e la moltiplicazione, per esempio $x_1 \leq x_2$ si può esprimere con la formula $\exists v_3(v_1 + v_3 = v_2)$.

Una funzione $f(x_1, \ldots, x_n)$ sarà detta Aritmetica se la relazione

$$f(x_1,\ldots,x_n)=y$$

è Aritmentica, ossia se e solo se c'è una formula $F(v_1, \ldots, v_n, v_{n+1})$ tale che per tutti i numeri x_1, \ldots, x_n, y , allora la frase $F(\bar{x}_1, \ldots, \bar{x}_n, \bar{y})$ è vera se e solo se $f(x_1, \ldots, x_n) = y$.

Diremo anche più in generale che una proprietà P è Aritmetica quando l'insieme dei numeri che rispettano tale proprietà è Aritmetico. Indicheremo con condizione una qualsivoglia relazione o proprietà.

2.3 Concatenazione e Numerazione di Gödel

2.3.1 Concatenazione con Base b

Per ogni numero $b \ge 2$ definiamo una certa funzione $x *_b y$ chiamata concatenazione con base b.

Per prima cosa definiamo la concatenazione con base 10. Per ogni numero m e n, definiamo $m*_{10}n$ come il numero m seguito da n nella ordinaria base 10. Per esempio, $53*_{10}792 = 53792$ che può anche essere scritto come $53792 = 53000 + 792 = 53 \cdot 10^3 + 792$. Si può notare come il numero di cifre di 792 (ossia 3 cifre quando scritto in base 10) viene chiamato lunghezza di 792. Più in generale $m*_{10}n = m\cdot 10^{l(n)} + n$, dove l(n) è la lunghezza di n (scritto in base 10).

Ancora più in generale rispetto alla base, per ogni numero $b \geq 2$, definiamo $m *_b n = m \cdot b^{l_b(n)} + n$, dove $l_b(n)$ (numero con cifre in base b) è la lunghezza di n (scritto in base b).

Proposizione 2.1. Per ogni $b \ge 2$, la relazione $x *_b y = z$ è Aritmetica.

Dimostrazione. Per prima cosa consideriamo la base 10. Per ogni numero positivo n, il numero $l_{10}(n)$ è il più piccolo numero k tale che $10^k > n$ e $10^{l_{10}(n)}$ è la più piccola potenza di 10 maggiore di n (per esempio $10^{l_{10}(5368)} = 10^4 = 10000$ che è la più piccola potenza di 10 maggiore di 5368). Generalizzando per ogni base $b \geq 2$ e per ogni numero n, $b^{l_b(n)}$ è la più piccola potenza di b maggiore di n se n > 0 altrimenti è b.

Ora sia b un qualunque numero maggiore di 2.

1. Sia $Pow_b(x)$ la condizione per cui x sia una potenza di b. Allora questa condizione è Aritmetica, infatti $Pow_b(x)$ può essere espressa dalla formula

$$\exists y(x=b^y)^2.$$

2. La relazione $b^{l_b(x)}=y$ (come la relazione tra x e y) è equivalente alla condizione

$$(x = 0 \land y = b) \lor (x \neq 0 \land s(x, y)),$$

dove s(x,y) è la relazione "y è la più piccola potenza di b maggiore di x". Tale relazione è Aritmetica perchè s(x,y) può essere espressa dalla formula

$$Pow_b(y) \land x < y \land \forall z ((Pow_b(z) \land x < z) \supset y \leq z).$$

che è Aritmetica³.

3. Infine la relazione $x \cdot b^{l_b(y)} + y = z$, che è esattamente $x *_b y = z$, si può esprimere con la formula

$$\exists z_1 \exists z_2 (b^{l_b(y)} = z_1 \land x \cdot z_1 = z_2 \land z_2 + y = z)$$

che è Aritmetica.

Siano $x,\ y$ e z degli interi positivi, allora per $y\neq 0$ la concatenazione è associativa, ossia:

$$(x *_b y) *_b z = x *_b (y *_b z).$$

Infatti $(5*_{10}0)*_{10}3 = 50*_{10}3 = 503$, mentre invece $5*_{10}(0*_{10}3) = 5*_{10}3 = 53$. Quindi è giusto specificare che quando ometteremo le parentesi si intende $(x*_by)*_bz$.

Corollario 2.2. Per ogni $n \ge 2$ (e ogni $b \ge 2$) la relazione

$$x_1 *_b x_2 *_b \dots *_b x_n = y$$

(vista come una relazione tra x_1, \ldots, x_n, y) è Aritmetica.

Dimostrazione. Per induzione su $n \ge 2$. Abbiamo visto già il caso per n = 2. Supponiamo $n \ge 2$ tale che la relazione $x_1 *_b x_2 *_b \dots *_b x_n = y$ sia Aritmetica.

²L'insieme delle potenze di b può essere espresso tramite la formula $\exists v_2(v_1 = (\bar{b} \ Exp \ v_2)),$ pertanto la formula è da considerarsi Aritmetica.

 $^{^3{\}rm La}$ condizione x < y è equivalente alla $x \le y \, \wedge \, \sim (x = y)$ che è Aritmetica.

Ora la relazione $x_1 *_b x_2 *_b \dots *_b x_n *_b x_{n+1} = y$ si può esprimere con la formula

$$\exists z (x_1 *_b x_2 *_b \dots *_b x_n = z \land z *_b x_{n+1} = y)$$

che è Aritmetica.

2.3.2 Numerazione di Gödel

Le frasi Aritmetiche in \mathcal{L}_E parlano di numeri e non di espressioni. Il fatto di assegnare alle espressioni un numero di Gödel serve per poter trattare indirettamente le espressioni attraverso tale numerazione. Il nostro linguaggio \mathcal{L}_E utilizza tredici simboli e quindi dovremo prendere in considerazione la concatenazione in base 13 anzichè in base 10. I numeri di Gödel dei tredici simboli sono:

Per esempio il numero di Gödel della stringa ")v(" è il numero 362 in base 13 ossia $2 + (6 \cdot 13) + (3 \cdot 13^2)$.

Per ogni n sia E_n l'espressione tale che il suo numero di Gödel sia proprio n. Pertanto una stringa di accenti sarà il numero di Gödel 0 e possiamo definire in generale che E_0 è esattamente la stringa con un solo accento. Pertanto adesso possiamo utilizzare la parola espressione per qualsiasi stringa che non inizi con l'accento a meno che non sia proprio E_0 .

Per qualsiasi espressione E_x e E_y intendiamo con $E_x E_y$ l'espressione che ha come stringa E_x seguito dalla stringa E_y e chiaramente questa espressione avrà come numero di Gödel $x *_{13} y$.

La motivazione dell'utilizzo del simbolo 0 per l'accento è dovuta al fatto che per qualsiasi numero n, il numerale \bar{n} , come ogni altra espressione, ha un numero di Gödel. Pertanto vogliamo che la nostra numerazione di Gödel sia tale che il numero di Gödel del numerale \bar{n} sia una funzione Aritmentica di n. Sappiamo che il numerale \bar{n} è il simbolo "0" seguito da n accenti, pertanto il suo numero di Gödel è "1" seguito da n occorrenze di "0", quindi sarà semplicemente rappresentato dal numero 13^n .

D'ora in avanti quando utilizzeremo la concatenazione in base b staremo sottointendendo b=13, base che darà alcuni vantaggi dati dal lavorare con base numero primo.

2.4 Il Teorema di Tarski

Sia T l'insieme dei numeri di Gödel delle frasi vere di \mathcal{L}_E . Questo è un insieme perfettamente ben definito dei numeri naturali. Vogliamo far vedere che questo insieme non è Aritmetico grazie al Teorema di Tarski. Abbiamo visto nel primo capitolo che una frase X è una frase di Gödel per un insieme A quando o X è vera e il suo numero di Gödel sta in A oppure se X è falsa e il suo numero di Gödel non si trova in A. Adesso possiamo mostrare che per ogni insieme A Aritmetico esiste una frase di Gödel. Esistono varie maniere per costruire una frase di Gödel a partire da un insieme dato. Ne vediamo uno in particolare.

In maniera non formale possiamo dire che data una proprietà P per un certo numero n è equivalente a dire che per ogni numero x uguale a n, P vale per x. Formalmente data una qualunque formula $F(v_1)$ con v_1 unica variabile libera, la frase $F(\bar{n})$ è equivalente alla frase $\forall v_1(v_1 = \bar{n} \supset F(v_1))$. Resta da far vedere che il numero di Gödel della frase $\forall v_1(v_1 = \bar{n} \supset F(v_1))$ è una funzione Aritmetica del numero di Gödel di $F(v_1)$ e del numero n.

Per ogni formula $F(v_1)$ e ogni n, scriveremo $F[\bar{n}]$ per indicare la frase $\forall v_1(v_1 = \bar{n} \supset F(v_1))$. Da notare che $F(\bar{n})$ e $F[\bar{n}]$ non sono la stessa cosa ma sono frasi equivalenti (ossia entrambe vere o entrambe false).

Per ogni espressione E, che sia o non sia una formula, $E[\bar{n}]$ è ben definita. Se E è una formula lo sarà anche $E[\bar{n}]$ ma non necessariamente una frase. Se E è una formula con v_1 unica variabile libera, allora $E[\bar{n}]$ è una frase, ma in tutti i casi è un'espressione ben definita.

Per ogni copia di numeri (e, n), con r(e, n) indichiamo il numero di Gödel dell'espressione $E[\bar{n}]$ dove E è l'espressione il cui numero di Gödel è e. Più in generale scrivere che per ogni coppia (x, y), il numero r(x, y) è il numero di Gödel di $E_x[\bar{y}]$.

Proposizione 2.3. La funzione rappresentazione r(x,y) è Aritmetica.

Dimostrazione. Sia k il numero di Gödel dell'espressione " $\forall v_1(v_1 = ", il numero di Gödel di "<math>\subset$ " è 8 mentre quello di ")" è 3, il numerale \bar{y} ha 13^y e l'espressione E_x ha x. Pertanto il numero di Gödel di $E_x[\bar{y}]$ è:

$$r(x,y) = k * 13^y * 8 * x * 3.$$

La relazione r(x,y)=z è Aritmetica infatti può essere scritta come

$$\exists w(w = 13^y \land z = k * w * 8 * x * 3).$$

Ora prendiamo d(x) = r(x, x) e chiamiamo d(x) la funzione diagonale. Chiaramente se r(x, y) è Aritmetica allora, essendo d(x) un suo caso particolare, è Aritmetica. Per ogni n, d(n) è il numero di Gödel di $E_n[\bar{n}]$. Per ogni insieme di numeri A, avremo che A^* è l'insieme di tutti gli n tali che $d(n) \in A$.

Lemma 2.4. Se $A \stackrel{.}{e} Aritmetico \Longrightarrow A^* \stackrel{.}{e} Aritmetico.$

Dimostrazione. A^* è l'insieme di tutti i numeri x tali che $\exists y(d(x) = y \land y \in A)$. Dato che la funzione diagonale d(x) è Aritmetica, c'è una formula $D(v_1, v_2)$ che esprime la relazione d(x) = y. Supponiamo ora che $F(v_1)$ sia una formula che esprime l'insieme A, allora A^* è espresso dalla formula $\exists v_2(D(v_1, v_2) \land F(v_2))$.

Teorema 2.5. Per ogni insieme Aritmetico A esiste una frase di Gödel per A.

Dimostrazione. Supponiamo quindi A sia Aritmetico allora per il Lemma precedente A^* è Aritmetico. Sia $H(v_1)$ una formula che esprime A^* e sia h il suo numero di Gödel. Allora $H[\bar{h}]$ è vera $\iff h \in A^* \iff d(h) \in A$. Ma d(h) è il numero di Gödel di $H[\bar{h}]$ che pertanto è una frase di Gödel per A.

La classe degli insiemi Aritmetici è chiusa rispetto all'operazione complementare, infatti se $F(v_1)$ esprime A allora il suo negativo $\sim F(v_1)$ esprime \bar{A} . Le condizioni G_1 e G_2 valgono anche per il linguaggio \mathcal{L}_E , perciò per il Teorema G_1 , l'insieme G_2 dei numeri di Gödel delle frasi vere di G_2 non è esprimibile in G_2 e quindi non è Aritmetico.

Teorema 2.6. L'insieme T dei numeri di Gödel delle frasi Aritmetiche vere non è Aritmetico.

Dimostrazione. Per ripetere la dimostrazione del Teorema di Tarski per il caso del linguaggio \mathcal{L}_E , non può esserci una frase di Gödel per \bar{T} , perchè altrimenti avremmo una frase che sarebbe vera se e solo se non fosse vera. Ma se \bar{T} fosse Aritmetico, ci sarebbe una frase di Gödel per \bar{T} per il teorema precedente. Pertanto, l'insieme \bar{T} non è Aritmetico. Di conseguenza nemmeno l'insieme T è Aritmetico.

Capitolo 3

L'incompletezza dell'Aritmetica di Peano con Esponenziale

In questo terzo capitolo vedremo la costruzione del sistema di assiomi di Peano attraverso anche l'utilizzo della funzione esponenziale. Faremo l'elenco di tutte le tipologie di assiomi e vedremo le loro scritture attraverso il linguaggio introdotto nel capitolo precedente, analizzandone così le loro prorietà.

Utilizzeremo gli assiomi e le loro proprietà e introdurremo delle relazioni tra numeri di Gödel e loro sequenze per mostrare la proprietà aritmetica dell'insieme delle formule dimostrabili nel sistema preso in considerazione.

Termineremo il capitolo descrivendo tutti gli assiomi utilizzando sempre formule con proprietà aritmetiche che ci consentiranno di utilizzare il teorema di Tarski precedentemente introdotto per dimostrare il teorema di Gödel, quindi l'incompletezza del sistema di assiomi di Peano comprendente la funzione esponenziale.

3.1 Il Sistema di Assiomi di Peano con Esponenziale

Un assioma è una proposizione o un principio che è assunto come vero perché fornisce il punto di partenza di una determinata teoria deduttiva. L'insieme

degli assiomi e dei concetti primitivi che prenderemo in essere, costituiscono il fondamento dell'Aritmetica di Peano includendo l'esponenziale (d'ora in avanti chiameremo questo sistema P.E.).

Gli assiomi di questo caso saranno di numero infinito, ma saranno tutti di una forma riconoscibile tra diciannove tipologie che chiameremo schema di assiomi e saranno divisi in quattro gruppi. I primi due gruppi saranno chiamati schemi di assiomi logici mentre gli altri due gruppi saranno chiamati schemi di assiomi aritmetici.

Con le lettere maiuscole F, G e H indicheremo qualsiasi formula, con v_i e v_i qualsiasi variabile e con la lettera t qualsiasi termine.

Il primo gruppo di schemi di assiomi è quello delle proposizioni logiche:

 $L_1: (F\supset (G\supset F));$

 $L_2: (F\supset (G\supset H))\supset ((F\supset G)\supset (F\supset H));$

 $L_3: ((\sim F \supset \sim G) \supset (G \supset F)).$

Il secondo gruppo sono gli schemi di assiomi addizionali di primo ordine logico con identità:

 $L_4: (\forall v_i(F\supset G)\supset (\forall v_iF\supset \forall v_iG));$

 $L_5: (F \supset \forall v_i F)$ a patto che v_i non si verifichi in F;

 $L_6: \exists v_i(v_i=t)$ a patto che v_i non si verifichi in t;

 $L_7: (v_i=t\supset (X_1v_iX_2\supset X_1tX_2))$ dove X_1 e X_2 sono qualsiasi espressione tale che $X_1v_iX_2$ sia una formula atomica.

Il terzo gruppo sono undici schemi di assiomi aritmetici:

 $N_1: (v_1'=v_2'\supset v_1=v_2);$

 $N_2: \sim \bar{0} = v_1';$

 $N_3: (v_1+\bar{0})=v_1;$

 $N_4: (v_1+v_2')=(v_1+v_2)';$

 $N_5: (v_1 \cdot \bar{0}) = \bar{0};$

 $N_6: (v_1 \cdot v_2') = ((v_1 \cdot v_2) + v_1);$

 $N_7: (v_1 \leq \bar{0} \equiv v_1 = \bar{0});$

 $N_8: (v_1 \leq v_2' \equiv (v_1 \leq v_2 \vee v_1 = v_2'));$

 $N_9: ((v_1 \leq v_2) \vee (v_2 \leq v_1));$

 $N_{10}: (v_1 Exp \bar{0}) = \bar{0}');$

 $N_{11}: (v_1 \ Exp \ v_2') = ((v_1 \ Exp \ v_2) \cdot v_1).$

Il quarto gruppo è di un'unica tipologia, è uno schema di assiomi di induzione matematica ed è il seguente:

$$N_{12}: (F[\overline{0}] \supset (\forall v_1(F(v_1) \supset F[v_1']) \supset \forall v_1F(v_1)))$$

dove $F(v_1)$ può essere qualsiasi formula anche contente altre variabili oltre a v_i . Con $F[v'_1]$ si intende una formula del tipo

$$\forall v_i(v_i = v_1' \supset \forall v_1(v_1 = v_i \supset))$$

dove v_i è una qualunque variabile che non appare in F. Le regole di inferenza in P.E. sono:

Regola 1 Modus Ponens - Dalle formule F e $(F \supset G)$ si può dedurre la formula G:

Regola 2 Generalizzazione - Dalla formula F si può dedurre la formula $\forall v_i F$.

Definizione 3.1. Per dimostrazione in P.E. si intende una sequenza di formule tali che ogni membro della sequenza sia un assioma oppure è direttamente derivabile da altre due tramite la Regola 1 o la Regola 2. Una formula F è detta dimostrabile se esiste una dimostrazione dove l'ultimo membro è F, allora quella sequenza è chiamata dimostrazione di F. Una formula viene detta rifiutabile se la sua negazione è dimostrabile.

3.2 Aritmetizzazione del Sistema di Assiomi

Adesso vogliamo dimostrare che l'insieme dei numeri di Gödel delle formule dimostrabili di P.E. è un insieme Aritmetico.

Diremo che un numero x inizia un numero y in base b se la rappresentazione in base b di x è un segmento iniziale della rappresentazione di y^1 . Il numero 0 inizia solamente il numero 0 stesso. Scriveremo xB_by con il significato di "x inizia y in base b". Diciamo che x finisce y in base b se x è un segmento finale di y e scriveremo in notazione xE_by^2 . Diremo inoltre che x è parte di y se x termina un qualche numero che inizia y, in simboli xP_by^3 .

Riguardo la relazione xB_by , se 0 non è parte di y allora la relazione è verificata se e solo se x=y oppure $x\neq 0$ e $x*_bz=y$ per qualche z. Nel caso

¹Per esempio in base 10 diremo che il numero 217 inizia 21734.

 $^{^2\}mathrm{Per}$ esempio in base 10 diremo che 734 finisce 21734.

 $^{^3\}mathrm{Per}$ esempio in base 10 diremo che 173 è parte di 21734.

più generale (ossia nel caso in cui 0 possa essere parte di y), x inizia y se e solo se x = y oppure $x \neq 0$ e $(x \cdot w) *_b z = y$ per qualche z e per qualche w potenza di b^4 . Da notare che z e w devono essere chiaramente minori o uguali a y.

Proposizione 3.1. Per ogni $b \ge 2$ e ogni $n \ge 2$, le relazioni

- 1. xB_by ;
- 2. xE_by ;
- $3. xP_by;$
- $4. x_1 *_b \cdots *_b x_n P_b y$

sono Aritmetiche.

Dimostrazione. Possiamo descrivere le quattro relazioni con le seguenti equivalenze:

- 1. $xB_b y \iff x = y \lor (x \neq 0 \land (\exists z \leq y)(\exists w \leq y)(Pow_b(w) \land (x \cdot y) *_b z = y));$
- 2. $xE_by \iff x = y \lor (\exists z \le y)(z *_b x = y);$
- 3. $xP_by \iff (\exists z \leq y)(zE_by \wedge xB_bz);$
- 4. $x_1 *_b \cdots *_b x_n P_b y \iff (\exists z \leq y) x_1 *_b \cdots *_b x_n = z \land z P_b y$.

Per come sono descritte, le relazioni sono tutte Aritmetiche.

Ora per il resto del capitolo la nostra base sarà 13 di conseguenza elimineremo nella simbologia b=13 da tutte le scritture, ossia xBy, xEy, xPy e per finire xy al posto di $x*_{13}y$.

Ora utilizzeremo per la prima volta il carattere \sharp . Siano X_1, \ldots, X_n un insieme di espressioni, allora l'espressione $\sharp X_1\sharp X_2\sharp \ldots X_n\sharp$ serve come il corrispettivo formale della n-upla (X_1,\ldots,X_n) e il suo numero di Gödel sarà chiamato numero sequenza.

In altre parole, se prendiamo K_{11} come l'insieme dei numeri n per i quali δ (che in base 13 ha la cifra 12) non compare nella loro rappresentazione. Tutte le espressioni nelle quali il simbolo \sharp non compare hanno il loro numero di Gödel compreso nell'insieme K_{11} (include tutti i numerali, le variabili, i termini e le formule). Per ogni sequenza finita (a_1, \ldots, a_n) di numeri in K_{11} , assegniamo il numero $\delta a_1 \delta \ldots \delta a_n \delta$ che chiameremo sequenza numerica della sequenza (a_1, \ldots, a_n) . Diremo che x è una sequenza numerica se x è la sequenza numerica di un qualche numero finito di elementi di K_{11} .

 $^{^4}$ Per esempio in base 10, il numero 3 inizia 30004 dove nel caso generale z=4 e w=1000. Il numero 3 inizia anche 34 dove z=4 e w=1.

Sia $\mathrm{Seq}(x)$ la proprietà per il quale x è una sequenza numerica. Prendiamo $x \in y$ come la relazione "y è una qualche sequenza di numeri di cui x è un membro".

Osservazione 3.1.1. Se $y = \delta x_1 \delta \dots \delta x_n \delta$ con x_1, \dots, x_n numeri in K_{11} , allora $x \in y \iff x$ è uno dei numeri x_1, \dots, x_n .

Sia $x \prec y$ la relazione "z è la sequenza numerica di una sequenza in cui x e y sono membri tali che la prima occorrenza di x avviene prima della prima occorrenza di y nella sequenza".

Proposizione 3.2. Ognuna delle condizioni Seq(x), $x \in y$ e $x \prec y$ è Aritmetica.

Dimostrazione.

- 1. Seq(x) $\iff \delta Bx \wedge \delta Ex \wedge \delta \neq x \wedge \delta \delta \tilde{P}x \wedge (\forall y \leq x)(\delta 0y Px \supset \delta By);$
- 2. $x \in y \iff \operatorname{Seq}(y) \wedge \delta x \delta P y \wedge \delta \tilde{P} x;$
- $3. \ x \underset{z}{\prec} y \Longleftrightarrow x \in z \land y \in z \land (\exists w \leq z)(wBz \land x \in w \land \sim y \in w).$

Per abbreviazione d'ora in poi scriveremo $(\forall x \in y)(A)$ per abbreviare $\forall x(x \in y \supset (A))$ e $(\exists x, y \prec z)(A)$ per abbreviare $\exists x \exists y(x \prec z \land y \prec z \land (A)).$

Le definizione date precedentemente di termini e formule erano induttive. Ora porremo delle regole di costruzioni di nuove termini e formule.

Definizione 3.2. Per ogni espressione X, Y e Z definiamo $\mathcal{R}_t(X,Y,Z)$ la formazione di relazioni per termini se e solo se Z è una delle espressioni (X+Y), $(X \cdot Y)$, $(X \cdot Exp \ Y)$ o X'. Per formazione di sequenze per termini intendiamo una sequenza finita X_1, \ldots, X_n di espressioni tali che per ogni X_i della sequenza, X_i è una variabile o un numerale oppure ci sono membri X_j e X_k precedenti (j, k < i) tali che $\mathcal{R}_t(X_j, X_k, X_i)$. Allora possiamo dire che una espressione X è un termine se e solo se esiste una formazione di sequenze per termini del quale X è un membro.

Definizione 3.3. Definiamo $\mathcal{R}_f(X,Y,Z)$ come formazione di relazioni per formule se Z è una delle espressioni $\sim X, \ (X\supset Y)$ o è l'espressione $\forall v_iX$ per qualche variabile v_i . Allora definiamo una sequenza X_1,\ldots,X_n come formazione di sequenze per formule se per ogni $i\leq n,\ X_i$ è una formula atomica oppure esistono j,k< i tali che $\mathcal{R}_f(X_j,X_k,X_i)$. Potremo quindi dire che X è una formula se e solo se esiste una formazione di sequenze per formule di cui X è membro.

3.3 Aritmetizzazione della sintassi di P.E.

Per ogni sequenza E_{x_1}, \ldots, E_{x_n} di espressioni dove x_1, \ldots, x_n sono tutti in K_{11} , per numero di Gödel della sequenza $(E_{x_1}, \ldots, E_{x_n})$ intendiamo la sequenza (x_1, \ldots, x_n) di numeri (è il numero di Gödel dell'espressione $\sharp E_{x_1} \sharp \ldots \sharp E_{x_n} \sharp$).

Ora elencheremo una catena di condizioni (insiemi e relazioni) che ci porteranno alle principali, ossia la dimostrabilità o meno delle formule di P.E. mostrando ogni volta che ognuna di esse è Aritmetica.

Per ogni coppia di numeri x e y, faremo riferimento ai numeri di Gödel di alcune espressioni semplificando le loro simbologie:

$$(E_x \supset E_y) \qquad x imp \ y$$

$$\sim E_x \qquad neg \ (x)$$

$$(E_x + E_y) \qquad x pl \ y$$

$$(E_x \cdot E_y) \qquad x tim \ y$$

$$(E_x \ Exp \ E_y) \qquad x exp \ y$$

$$E'_x \qquad s(x)$$

$$E_x = E_y \qquad x id \ y$$

$$E_x \le E_y \qquad x le \ y.$$

Per esempio seguendo i numeri di Gödel del linguaggio \mathcal{L}_E si ottiene x impy=2x8y3, oppure $\operatorname{neg}(x)=7x$.

Ora faremo la lista delle condizioni e mostreremo che ognuna di esse è Aritmetica:

1. Sb(x) - E_x è una stringa di pedici:

$$(\forall y \leq x)(yPx \supset 5Py);$$

2. Var(x) - E_x è una variabile:

$$(\exists y \le x)(Sb(y) \land x = 26y3);$$

3. Num(x) - E_x è un numerale:

$$Pow_{13}(x);$$

4. $R_1(x, y, z)$ - La relazione $\mathcal{R}_t(E_x, E_y, E_z)$ è verificata:

$$z = x \ pl \ y \lor z = x \ tim \ y \lor z = x \ exp \ y \lor z = s(x);$$

5. Seqt(x) - E_x è una formazione di sequenze per termini:

$$Seq(x) \wedge (\forall y \in x)(Var(y) \vee Num(y) \vee (\exists z, w \underset{z}{\prec} y)R_1(z, w, y));$$

6. tm(x) - E_x è un termine:

$$\exists y (Seqt(y) \land x \in y);$$

7. $f_0(x)$ - E_x è una formula atomica:

$$(\exists y \leq x)(\exists z \leq x)(tm(y) \land tm(z) \land (x = y \ id \ z \lor x = y \ le \ z));$$

8. $\operatorname{Gen}(x,y)$ - $E_y = \forall w E_x$ per qualche variabile w:

$$(\exists z \leq y)(Var(z) \land y = 9zx);$$

9. $R_2(x, y, z)$ - $\mathcal{R}_f(E_x, E_y, E_z)$ è verificata:

$$z = x imp \ y \lor z = neg(x) \lor Gen(x, z);$$

10. $\operatorname{Seqf}(x)$ - E_x è una formazione di sequenze per formule:

$$Seq(x) \wedge (\forall y \in x)(f_0(y) \vee (\exists z, w \underset{z}{\prec} y)R_2(z, w, y));$$

11. fm(x) - E_x è una formula:

$$\exists y (Seqf(y) \land x \in y);$$

12. A(x) - E_x è un assioma di P.E.:

 $Si\ veda\ l'osservazione\ successiva.$

13. M.P.(x, y, z) - E_z è derivabile da E_x e E_y tramite la Regola 1:

$$y = x imp z;$$

14. $\operatorname{Der}(x,y,z)$ - E_z è derivabile da E_x e E_y tramite la Regola 1, o è derivabile

da E_x tramite la Regola 2:

$$M.P.(x, y, z) \vee Gen(x, z);$$

15. Pf(x) - E_x è una dimostrazione in P.E.:

$$Seq(x) \wedge (\forall y \in x) (A(y) \vee (\exists z, w \prec y) Der(z, w, y));$$

16. $P_E(x)$ - E_x è dimostrabile in P.E.:

$$\exists y (Pf(y) \land x \in y)$$

17. $R_E(x)$ - E_x è rifiutabile in P.E.:

$$P_E(neg(x)).$$

Osservazione 3.2.1. Per dimostrare che A(x) è Aritmetico, suddividiamo tutto in 19 parti (una per ogni schema di assiomi). Per ogni $n \leq 7$ avremo che $L_n(x)$ sia la condizione per cui E_x è un assioma dello schema L_n . Per ogni $n \leq 12$ avremo che $N_n(x)$ sia la condizione per cui E_x sia un assioma dello schema N_n . Daremo alcuni esempi delle loro dimostrazioni.

Proposizione 3.3. A(x) è Aritmetico.

Dimostrazione. Per $L_1(x)$ abbiamo che E_x è un assioma $L_1 \iff \exists E_y, E_z$ tali che $E_x = (E_y \supset (E_z \supset E_y))$. Pertanto la $L_1(x)$ è la seguente condizione:

$$(\exists y \leq x)(\exists z \leq x)(fm(y) \land fm(z) \land x = y \ imp \ (z \ imp \ y)).$$

Le condizioni $L_2(x)$ e $L_3(x)$ sono similari.

Per $L_4(x)$ sia $\phi(y,z,w)$ il numero di Gödel di $\forall E_y((E_z \supset E_w) \supset (\forall E_y E_z \supset \forall E_y E_w))$. La funzione $\phi(x,y,z)$ è quindi chiaramente Aritmetica. Allora $L_4(x)$ si verifica se e solo se ci sono numeri $y,z,w \leq x$ tali che $\mathrm{Var}(y)$, $\mathrm{fm}(z)$, $\mathrm{fm}(w)$ e $x = \phi(y,z,w)$.

Per quanto riguarda il terzo gruppo, gli schemi N_i con $i=1,\ldots,11$ contengono un solo assioma a testa, pertanto $N_i(x)$ è la condizione $x=g_i$ dove g_i è il numero di Gödel dell'assioma N_i .

Lo schema di assiomi N_{12} comprende tutti gli assiomi di induzione. Per dimostrare che $N_{12}(x)$ è Aritmetica, notiamo che $E_x[v_1']$ è una relazione Aritmetica tra x e y. Pertanto questo implica che $N_{12}(x)$ è Aritmetica.

Ora possiamo concludere con il Teorema di Incompletezza di Gödel per P.E.

Teorema 3.4. Il sistema di assiomi P.E. è incompleto.

Dimostrazione. Sia P_E l'insieme dei numeri di Gödel delle formule dimostrabili di P.E. e R_E l'insieme dei numeri di Gödel delle formule rifiutabili di P.E. Sappiamo anche che entrambi gli insiemi sono Aritmetici. Siano $P(v_1)$ e $R(v_1)$ le formule che le esprimono nel linguaggio \mathcal{L}_E . Allora la formula $\sim P(v_1)$ esprime il complementare $\bar{P_E}$ di P_E . Come visto nel capitolo precedente, possiamo trovare una formula $H(v_1)$ che esprima l'insieme $\bar{P_E}^*$. Allora, come nella dimostrazione del capitolo precedente, la sua diagonalizzazione $H[\bar{h}]$ è una frase di Gödel per l'insieme $\bar{P_E}$, questo implica che è vera se e solo se non è dimostrabile in P.E. Poichè P.E. è un sistema corretto allora $H[\bar{h}]$ deve essere vera e non dimostrabile in P.E. e inoltre $\sim H[\bar{h}]$ è falsa e non dimostrabile.

Capitolo 4

L'incompletezza dell'Aritmetica di Peano senza Esponenziale

In questa ultima parte della tesi ridefiniremo il sistema di assiomi di Peano introdotto nel capitolo precedente escludendo gli schemi di assiomi che utilizzano la funzione esponenziale, dando così a tutte le frasi, formule e relazioni altre prorietà.

Utilizzaremo le caratteristiche della concatenazione con base prima e descriveremo la relazione di esponenziale in termini aritmetici tali da conservare le proprietà introdotte ad inizio capitolo.

Infine analizzeremo gli insiemi dei numeri di Gödel delle frasi aritmetiche vere, di quelle dimostrabili e di quelle rifiutabili, grazie ai quali potremo, sempre utilizzando il teorema di Tarski, dimostrare anche il teorema di incompletezza di Gödel per il sistema di assiomi di Peano senza l'utilizzo della funzione esponenziale.

4.1 Relazioni e formule della classe Σ

Ricordiamo che per termine o formula aritmetica intendiamo un termine o una formula in cui non appare il simbolo dell'esponenziale Exp, mentre per relazione o insieme aritmetico intendiamo che sia esprimibile tramite una formula aritmetica.

Per sistema di assiomi di Peano senza esponenziale (che chiameremo d'ora in avanti P.A.), indichiamo il sistema P.E. presentato nel precedente capitolo ma senza gli schemi di assiomi N_{10} e N_{11} e nei restanti schemi di assiomi, i termini e le formule sono sono intesi come aritmetici.

Per prima cosa definiamo le classi di Σ_0 -formule e Σ_0 -relazioni.

Definizione 4.1. Con Σ_0 -formula atomica indichiamo una formula che sia in una delle seguenti forme:

- $c_1 + c_2 = c_3$;
- $\bullet \ c_1 \cdot c_2 = c_3;$
- $c_1 = c_2$;
- $c_1 \le c_2$.

dove ognuna delle c_1, c_2, c_3 sono variabili o numerali.

Ora definiamo tutti gli elementi appartenenti alla classe delle Σ_0 -formule

Definizione 4.2.

- 1. Ogni Σ_0 -formula atomica è Σ_0 .
- 2. Se $F \in G$ sono $\Sigma_0 \Longrightarrow \sim F \in F \supset G$ sono Σ_0 ;
- 3. Per ogni variabile v_i l'espressione, ogni Σ_0 -formula F e ogni c che è un numerale o una variabile distinta da $v_i \Longrightarrow$ l'espressione $\forall v_i (v_i \le c \supset F)^1$ è una Σ_0 -formula.

I quantificatori $(\forall v_i \leq c)$ e $(\exists v_i \leq c)$ sono chiamati anche quantificatori limitati. Nelle Σ_0 -formule tutti i quantificatori sono limitati.

Definizione 4.3. Una relazione è detta Σ_0 se e solo se è esprimibile tramite Σ_0 -formula. Sono anche chiamate relazioni di *costruzioni aritmetiche*.

Dobbiamo notare come data una qualsiasi Σ_0 -frase (ossia una Σ_0 -formula senza variabili libere), possiamo vedere quali sono vere e quali false. Le Σ_0 -frasi atomiche sono facilmente constatabili. Inoltre date due frasi X e Y se conosciamo i loro valori di verità, possiamo determinare i valori di verità di $\sim X$ o $X \supset Y$.

Ora supponiamo di avere una formula $F(v_i)$ tale che per ogni n possiamo determinare se $F(\bar{n})$ sia vera o falsa. Nel caso della frase $\exists v_i F(v_i)$ possiamo esaminare sistematicamente $F(\bar{0})$, $F(\bar{1})$, $F(\bar{2})$, ... ma se non è vera potremmo dover cercare senza fine.

¹questa espressione verrà scritta per abbreviazione $(\forall v_i \leq c)F$, inoltre sempre per un carico minore di notazione l'espressione $\sim (\forall v_i \leq c) \sim F$ la scriveremo $(\exists v_i \leq c)F$.

Differente se consideriamo la frase $(\exists v_i \leq \bar{k})F(v_i)$, dove \bar{k} è un qualsiasi numerale. Prendiamo per esempio il caso k=3. Possiamo determinare se la frase è vera o falsa prendendo in considerazione $F(\bar{0})$, $F(\bar{1})$, $F(\bar{2})$ e $F(\bar{3})$. Il discorso inverso vale per la frase $\forall v_i F(v_i)$.

Definizione 4.4. Per Σ_1 -formula intendiamo una formula della forma $\exists v_{n+1} F(v_1, \ldots, v_n, v_{n+1})$, dove $F(v_1, \ldots, v_n, v_{n+1})$ è una Σ_0 -formula. Diremo che una relazione o insieme è Σ_1 se e solo se è esprimibile come una Σ_1 -formula.

Pertanto possiamo dire che $R(x_1, \ldots, x_n)$ è una Σ_1 -relazione se e solo se esiste una Σ_0 -relazione $S(x_1, \ldots, x_n, y)$ tale che per ogni x_1, \ldots, x_n si verifica che $R(x_1, \ldots, x_n) \iff \exists y S(x_1, \ldots, x_n, y)$

Ora definiamo la classe delle Σ -formule.

Definizione 4.5.

- 1. Ogni Σ_0 -formula e una Σ -formula;
- 2. Se F è una Σ -formula allora per ogni variabile v_i , l'espressione $\exists v_i F$ è una Σ -formula;
- 3. Se F è una Σ -formula allora per ogni coppia di variabili distinte v_i e v_j , le formule $(\exists v_i \leq v_j)F$ e $(\forall v_i \leq v_j)F$ sono Σ -formule e per ogni numerale n, le formule $(\exists v_i \leq \bar{n})F$ e $(\forall v_i \leq \bar{n})F$ sono Σ -formule.
- 4. Per ogni Σ -formule F e G, le formule $F \vee G$ e $F \wedge G$ sono Σ -formule. Se F è una Σ_0 -formula e G è una Σ -formula, allora $F \supset G$ è una Σ -formula.

Una Σ -formula può contenere un qualsiasi numero di quantificatori esistenziali illimitati, ma tutti i quantificatori universali devono essere limitati. Una relazione o insieme sarà una Σ -relazione se è espresso da una qualche Σ -formula.

Ora l'intento sarà dimostrare che la relazione esponenziale $x^y=z$ è non solo aritmetica ma anche Σ_1 .

Osservazione 4.0.1. La relazione $x < y \in \Sigma_0$ considerando che $x < y \iff x \le y \land x \ne y$. Inoltre per ogni Σ_0 -relazione $R(x,y,z_1,\ldots,z_n)$, la relazione $(\forall x < y)R(x,y,z_1,\ldots,z_n)$ è Σ_0 , poiché può essere scritta come $(\forall x \le y)(x \ne y)$ $(\forall x,y,z_1,\ldots,z_n)$

4.2 Concatenazione con Base Prima

Abbiamo visto come la concatenazione in base $b \geq 2$ è Aritmetica. Abbiamo utilizzato la funzione esponenziale nella definizione di concatenazione $x *_b y = z$ quando abbiamo definito $Pow_b(x)$. Per ovviare a questo problema notiamo

come per ogni p numero primo, possiamo definire $Pow_p(x)$ senza l'utilizzo dell'esponenziale. Infatti x è una potenza di p se e solo se ogni divisore proprio di x è divisibile da p.

Lemma 4.1. Per ogni numero primo p, le condizioni

- 1. x div y x divide y
- 2. $Pow_p(x)$ $x \ e$ una potenza di p
- 3. $y = p^{l_p(x)}$ $y \in la \ più \ piccola \ potenza \ positiva \ di \ p > x$

sono Σ_0 .

Dimostrazione. 1. $x \text{ div } y \iff (\exists z \leq y)(x \cdot z = y).$

- 2. $Pow_p(x) \iff (\forall z \leq x)((z \text{ div } x \land z \neq 1) \supset p \text{ div } z).$
- 3. $y = p^{l_p(x)} \iff (Pow_p(y) \land y > x \land y > 1) \land (\forall z < y) \sim (Pow_p(z) \land z > x \land z > 1).$

Proposizione 4.2 (A). Per ogni numero primo p, la relazione $x *_p y = z \ \dot{e} \ \Sigma_0$.

Dimostrazione. $x *_p y = z \iff x \cdot p^{l_p(y)} + y = z \iff (\exists w_1 \leq z)(\exists w_2 \leq z)(w_1 = p^{l_p(y)} \land w_2 = x \cdot w_1 \land w_2 + y = z).$

Proposizione 4.3 (B). Per ogni numero primo p, le relazioni

- 1. Le relazioni xB_py , xE_pY e xP_py (x inizia y, x finisce y e x è parte di y tutte in base p).
- 2. Per ogni $n \geq 2$, la relazione $x_1 *_p \cdots *_p x_n = y$.
- 3. Per ogni $n \geq 2$, la relazione $x_1 *_p \cdots *_p x_n P_p y$.

sono tutte Σ_0 .

Dimostrazione.

1. $xB_p y \iff x = y \lor (x \neq 0 \land (\exists z \leq y)(\exists w \leq y)(Pow_p(w) \land (x \cdot y) *_p z = y));$ $xE_p y \iff x = y \lor (\exists z \leq y)(z *_p x = y);$ $xP_p y \iff (\exists z \leq y)(zE_p y \land xB_p z);$

Chiaramente ciascuna di esse è Σ_0 .

2. La dimostrazione è tramite induzione su $n \geq 2$. Sappiamo già che la relazione $x_1 *_p x_2 = y$ è Σ_0 . Ora supponiamo vera $x_1 *_p \cdots *_p x_n = y$ con $n \geq 2$. Allora la relazione $x_1 *_p \cdots *_p x_n *_p x_{n+1} = y$ è Σ_0 infatti possiamo scriverla come

$$(\exists z \le y)(x_1 *_p \cdots *_p x_n = z \land z P_p y).$$

3. La relazione $x_1 *_p \cdots *_p x_n P_p y$ può essere scritta come

$$(\exists z \le y)(x_1 *_p \cdots *_p x_n = z \land zP_p y).$$

Nel caso visto nei capitoli precedenti, il numero 13 è un numero primo, pertanto le proposizioni viste adesso sono valide anche per il linguaggio \mathcal{L}_E . Da questo segue che gli insiemi P_E e R_E del capitolo precedente sono anche aritmetici. La stessa cosa si può dire per tutte le condizioni (insiemi e relazioni) nelle proposizioni del capitolo precedente, perchè nella maggior parte non viene utilizzata la funzione esponenziale e dove viene usata, la condizione utilizza potenze in base p primo che abbiamo appena dimostrato essere aritmetiche.

Constatato che P_E sia aritmetico, allora lo è anche \bar{P}_E . Tutto ciò però è molto diverso dal concludere che \bar{P}_E^* sia aritmetico, che è ciò che ci serve per avere una frase di Gödel per \bar{P}_E . Per passare da un insieme A ad un insieme A^* si utilizza la relazione $13^x = y$ pertanto dobbiamo dimostrare che questa relazione è aritmetica.

Per dimostrarlo necessitiamo della definizione di frame e di un lemma:

Definizione 4.6. Per frame intendiamo un numero della forma 2t2, dove t è una stringa di 1.

Sia 1(x) la condizione per cui la x sia una stringa di 1.

Lemma 4.4 (K). Esiste una relazione costruttiva aritmetica K(x, y, z) che ha le sequenti proprietà:

- 1. Per ogni sequenza finita $(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)$ di coppie ordinate di numeri naturali, esiste un numero z tale che per ogni numero x e y, la relazione K(x,y,z) si verifica se e solo se (x,y) è una delle coppie $(a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)$.
- 2. Per ogni terna di numeri x,y e z, se K(x,y,z) si verifica allora $x \le z$ e $y \le z$.

Dimostrazione. Ricordiamo che le proposizioni A e B sono valide per qualsiasi p primo, quindi in particolar modo per p=13, quindi daremo per scontato l'utilizzo della base 13.

La condizione 1(x) è Σ_0

$$1(x) \iff x \neq 0 \land (\forall y \leq x)(yPx \supset 1Py).$$

Ora sia θ una sequenza finita $((a_1,b_1),\ldots,(a_n,b_n))$ di coppie ordinate di numeri e sia f un qualunque frame più lungo rispetto a qualsiasi frame che sia parte di uno dei numeri a_1,b_1,\ldots,a_n,b_n . Per un dato f, chiameremo il numero $ffa_1fb_1ff\cdots ffa_nfb_nff$ un numero sequenza di θ .

Chiameremo x frame massimale di y se x è un frame, è parte di y ed è lungo quanto qualunque frame che è parte di y. Chiamiamo tale relazione "x mf y" e asseriamo che questa sia Σ_0 . Infatti

$$x \ mf \ y \iff xPy \land (\exists z < y)(1(z) \land x = 2z2 \land \sim (\exists w < y)(1(w) \land 2zw2Py)).$$

Ora possiamo definire la Σ_0 -relazione K(x, y, z)

$$K(x,y,z) := (\exists w \leq z)(w \ mf \ z \wedge wwxwywwPz \wedge w\bar{P}x \wedge w\bar{P}y).$$

Notiamo che per qualsiasi sequenza θ di coppie ordinate di numeri, se z è un numero sequenza di θ , allora K(x,y,z) si verifica se e solo se la coppia ordinata (x,y) è un membro della sequenza θ . Quindi è ovvio dalla definizione di K(x,y,z) che per qualsiasi x,y e z, se si verifica K(x,y,z) allora $x \leq z$ e $y \leq z$ dimostrando così il lemma.

4.3 Aritmetizzazione dell'Esponenziale in P.A.

Teorema 4.5 (E). La relazione $x^y = z \ \dot{e} \ \Sigma_1$.

Dimostrazione. Notiamo che $x^y=z$ se e solo se esiste un insieme S di coppie ordinate tale che:

- 1. $(y, z) \in S$;
- 2. Per ogni coppia $(a,b) \in S$, o (a,b) = (0,1) oppure esiste una coppia $(c,d) \in S$ tale che $(a,b) = (c+1,d\cdot x)$.

Se abbiamo $x^y = z$ possiamo prendere S come l'insieme

$$\{(0,1),(1,x),(2,x^2),\ldots,(y,x^y)\}.$$

Al contrario, supponiamo S sia un qualsiasi insieme di coppie ordinate che soddisfano le proprietà citate precedentemente. Dalla (2) si ottiene che per una qualsiasi coppia $(a,b) \in S$ si avrà che $x^a = b$ per induzione su a, pertanto per la (1) si avrà che $x^y = z$.

Pertanto otteniamo che $x^y=z$ se e solo se esiste un numero w tale che K(y,z,w) e per ogni numero $a \le w$ e $b \le w$, se K(a,b,w) si verifica allora o a=0 e b=1, oppure esistono numeri $c \le a$ e $d \le b$ tale che K(c,d,w) con a=c+1 e $b=d\cdot x$. Otteniamo quindi che $x^y=z$ si verifica se e solo se si verifica la seguente condizione:

$$\exists w (K(x,y,w) \land (\forall a \le w)(\forall b \le w)(K(a,b,w) \supset ((a=0 \land b=1) \lor (\exists c \le a)(\exists d \le b)(K(c,d,w) \land a=c+1 \land b=d \cdot x)))).$$

Possiamo quindi enunciare tre corollari del teorema:

Corollario 4.6 (1). Per ogni insieme aritmetico A, l'insieme A^* è aritmetico. Se A è Σ allora lo è anche A^* .

Dimostrazione. Dal fatto che la relazione $x^y = z$ sia Σ_1 segue che sia Σ . Di conseguenza la relazione $13^x = y$ (come relazione tra $x \in y$) è Σ . Questo implica che anche la funzione diagonale d(x) sia Σ^2 . Per questo motivo esiste una Σ -formula $D(v_1, v_2)$ che esprime la relazione d(x) = y. Allora per ogni formula $A(v_1)$ che esprime l'insieme A, la formula $\exists v_2(D(v_1, v_2) \land A(v_2))$ esprime l'insieme A^* . Quindi se A è aritmetico, lo è anche A^* . Se $A(v_1)$ dovesse essere una Σ -formula, allora lo è anche la formula $\exists v_2(D(v_1, v_2) \land A(v_2))$.

Corollario 4.7 (2). L'insieme dei numeri di Gödel delle frasi aritmetiche vere non è aritmetico.

Dimostrazione. Sia T_A l'insieme dei numeri di Gödel delle frasi aritmetiche vere. Se T_A fosse aritmetico, allora anche $\bar{T_A}$ sarebbe aritmetico. Pertanto per il Corollario 1 anche $\bar{T_A}^*$ sarebbe aritmetico e avremo la stessa contraddizione del Teorema di Tarski. Esisterebbe quindi una formula aritmetica $H(v_1)$ tale

 $[\]overline{\ ^2\text{Ricordiamo che }d(x)=y\Longleftrightarrow\exists z(z=13^x\wedge kz8x3=y),\text{ dove }k\text{ è il numero di G\"{o}del dell'espressione "}\forall v_1(v_1=".$

che per qualsiasi $n, H(\bar{n})$ è vera $\iff n \in \bar{T_A}^*$. Quindi $H[\bar{h}]$ è vero $\iff h \in \bar{T_A}^* \iff H[\bar{h}]$ non è vera, quindi abbiamo la contraddizione.

Corollario 4.8. Gli insiemi P_E^* e R_E^* sono Σ . L'insieme $\bar{P_E}^*$ è aritmetico.

Dimostrazione. Abbiamo dimostrato che gli insiemi P_E e R_E sono Σ , quindi per il Corollario 1 anche gli insiemi P_E^* e R_E^* sono Σ .

Considerando che l'insieme P_E è aritmetico allora lo è anche $\bar{P_E}$. Sempre per il Corollario 1 $\bar{P_E}^*$ è aritmetico.

4.4 Incompletezza del Sistema di Assiomi P.A.

Possiamo ora dimostrare l'incompletezza dell'aritmetica di Peano senza esponenziale.

Teorema 4.9. Il sistema di assiomi P.A. è incompleto.

Dimostrazione. Per il fatto che $\bar{P_E}^*$ sia aritmetico allora esiste una formula aritmetica $H(v_1)$ che esprime $\bar{P_E}^*$. La sua diagonalizzazione $H[\bar{h}]$ è una frase di Gödel aritmetica $\bar{P_E}$ ed è quindi vera e non dimostrabile in P.E.

Il fatto che non sia dimostrabile in P.E. implica che non sia certamente dimostrabile in P.A. considerando il fatto che l'insieme degli schemi degli assiomi di P.A. è un sottoinsieme degli schemi degli assiomi di P.E.

Abbiamo quindi che $H[\bar{h}]$ è vera e non dimostrabile in P.A. di conseguenza $\sim H[\bar{h}]$ è falsa, allora $\sim H[\bar{h}]$ è anche non dimostrabile in P.A.

Abbiamo trovato quindi $H[\bar{h}]$ come frase né dimostrabile né rifiutabile nel sistema di assiomi P.A.

Conclusioni

Con quanto mostrato fino ad ora possiamo dedurre che il teorema di incompletezza di Gödel può essere parafrasato come se in ogni formalizzazione coerente della matematica che sia sufficientemente potente da poter assiomatizzare la teoria elementare dei numeri naturali, ossia sufficientemente potente da definire la struttura dei numeri naturali dotati delle operazioni di somma e prodotto usuali, è possibile costruire una proposizione sintatticamente corretta che non può essere né dimostrata né confutata all'interno dello stesso sistema.

I teoremi di incompletezza di Gödel vanno ad influenzare la filosofia della matematica, rigurdando principalmente il formalismo delle sue strutture, che basa la definizione dei suoi principi sulla logica formale. L'impossibilità di poter costruire un sistema assiomatico che sia in grado di provare tutte le verità matematiche risulta quindi essere uno dei risultati più sconvolgenti della logica. C'è da notare come però tale visione formale, presuppone che la "verità" e la "falsità" matematiche siano concetti ben definiti in senso assoluto, non relativi a ciascun specifico sistema formale.

In linea di principio i teoremi di Gödel però lasciano qualche speranza riguardante la possibilità di determinare se un dato enunciato sia indecidibile o meno, dando così la possibilità di evitare del tutto tali proposizioni.

Bibliografia

- [1] Boolos G. and R. J., **Computability and Logic**, Cambridge University Press, 1980
- [2] Church A., Introduction to Mathematical Logic, vol. 1, Princeton University Press, 1956
- [3] Henkin L., **J. Symbolic Logic**, vol.17, A problem concerning provability, 1952, p. 160
- [4] Kleene S. C., Introduction to Metamathematics, D. Van Nostrand Company, Inc., 1952
- [5] Löb M. H., J. Symbolic Logic, Solution to a problem of Leon Henkin, 1955, p. 115-118
- [6] Mostowski A., Sentences Undecidable in Formalized Arithmetic, North Holland Publishing Company, 1952
- [7] Robinson R. M., **Proceedings of the International Congress of Mathematicians**, An essentially undecidable axiom system, vol. 1, 1950, p. 729-730
- [8] Schoenfield J. R., Fundamenta Mathematica, Undecidable and creative theories, vol. XLIX, 1961, p. 171-179

- [9] Schoenfield J. R., Mathematical Logic, Addison Wesley, 1967
- [10] Shepherdson J., Archiv für Mathematische Logik und Grundlagenforshung, Representability of recursively enumerable sets in formal theories, vol. 1, 1961, p. 119-127
- [11] Smullyan R. M., Forever undecided: A Puzzle Guide to Gödel, Alfred A. Knopf, 1987
- [12] Smullyan R. M., Gödel's Incompleteness Theorems, Oxford University Press, 1992
- [13] Smullyan R. M., Recursion Theory for Metamathematics, Oxford University Press, 1992