Derivations of Equations for The Elements of Statistical Learning

by

Soong Lee

August, 2024

This document is a collection of derivations of non-trivial equations and statements from ESL (Second Edition). I did not include the equations that were assigned as exercises, since the solutions of them are available from the resources in the internet.

- 1. ESL Solutions by Yuhang Zhou (github/YuhangZhou88)
- 2. A Solution Manual and Notes for ESL by J. L. Weatherwax and D. Epstein
- 3. A Guide and Solution Manual to ESL by J. C. Ma

I used the same mathematical notation as in ESL. However, on a few occasions I used boldface lower characters for vector notation, like when referring Wikipedia or Matrix Cookbook.

References:

- 1. The Matrix Cookbook (Nov 2012) by K. B. Peterson and M. S. Pederson (https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html)
- A Solution Manual and Notes for ESL (October 2021) by J. L. Weatherwax and D. Epstein
- 3. Pattern Recognition and Machine Learning (February 2006) by C. M. Bishop

Chapter 2. Overview of Supervised Learning

Eq 2.16: (ESL p.19)

$$\beta = [\mathrm{E}(XX^T)]^{-1}\mathrm{E}(XY)$$

Proof:

Utilizing Matrix Cookbook Eq (78):

$$\frac{\partial (\mathbf{B}\mathbf{x} + \mathbf{b})^T \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{d})}{\partial \mathbf{x}} = \mathbf{B}^T \mathbf{C} (\mathbf{D}x + \mathbf{d}) + \mathbf{D}^T \mathbf{C}^T (\mathbf{B}\mathbf{x} + \mathbf{b})$$

$$EPE(f) = E(Y - f(X))^{2}$$
$$= E[(Y - X^{T}\beta)^{T}(Y - X^{T}\beta)]$$

$$\frac{\partial}{\partial \beta}[(Y - X^T \beta)^T (Y - X^T \beta)] = (-X^T)^T (-X^T \beta + Y) + (-X^T)^T (Y - X^T \beta)$$

$$= -2X(Y - X^T \beta) = 0$$

$$\Rightarrow \quad \mathbf{E}(XY) = \mathbf{E}(XX^T)\beta$$

$$\therefore \quad \beta = [\mathbf{E}(XX^T)]^{-1}\mathbf{E}(XY)$$

Eq 2.22: (ESL p.21)

$$\hat{G}(x) = \operatorname{argmin}_{g \in \mathcal{G}}[1 - \Pr(g|X = x)]$$

Proof:

$$\hat{G}(x) = \operatorname{argmin}_{g \in \mathcal{G}} \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x)$$
(2.21)

0-1 loss function means that

$$L(\mathcal{G}_k, g) = \begin{cases} 1 & \text{when } \mathcal{G}_k \neq g \\ 0 & \text{else} \end{cases}$$

$$\sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x) = \Pr(\mathcal{G}_1 | X = x) + \Pr(\mathcal{G}_2 | X = x) + \dots + 0 \cdot \Pr(g | X = x)$$
$$+ \Pr(\mathcal{G}_{g+1} | X = x) + \dots + \Pr(\mathcal{G}_k | X = x)$$

Since

$$\sum_{k=1}^{K} \Pr(\mathcal{G}_k | X = x) = 1$$

$$\therefore \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k | X = x) = 1 - \Pr(g | X = x)$$

Eq 2.25: (ESL p.24)

$$MSE(x_0) = E_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2$$

= $E_{\mathcal{T}}[\hat{y}_0 - E_{\mathcal{T}}(\hat{y}_0)]^2 + [E_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2$

Proof:

$$\begin{split} \mathbf{E}_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2 &= \mathbf{E}_{\mathcal{T}}[f(x_0) - \hat{y}_0 + \mathbf{E}_{\mathcal{T}}(\hat{y}_0) - \mathbf{E}_{\mathcal{T}}(\hat{y}_0)]^2 \\ &= \mathbf{E}_{\mathcal{T}}[(\mathbf{E}_{\mathcal{T}}(\hat{y}_0) - \hat{y}_0) + (f(x_0) - \mathbf{E}_{\mathcal{T}}(\hat{y}_0))]^2 \\ &= \mathbf{E}_{\mathcal{T}}[\hat{y}_0 - \mathbf{E}_{\mathcal{T}}(\hat{y}_0)]^2 + \mathbf{E}_{\mathcal{T}}[\mathbf{E}_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2 \\ &+ 2\mathbf{E}_{\mathcal{T}}[\mathbf{E}_{\mathcal{T}}(\hat{y}_0) - \hat{y}_0] \cdot \mathbf{E}_{\mathcal{T}}[f(x_0) - \mathbf{E}_{\mathcal{T}}(\hat{y}_0)] \\ &(\text{Since } \mathbf{E}_{\mathcal{T}}[\mathbf{E}_{\mathcal{T}}(\hat{y}_0) - \hat{y}_0] = \mathbf{E}_{\mathcal{T}}(\hat{y}_0) - \mathbf{E}_{\mathcal{T}}(\hat{y}_0) = 0) \\ &= \mathbf{E}_{\mathcal{T}}[\hat{y}_0 - \mathbf{E}_{\mathcal{T}}(\hat{y}_0)]^2 + \mathbf{E}_{\mathcal{T}}[\mathbf{E}_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2 \end{split}$$

ESL p.24

"For an arbitray test point x_0 , we have $\hat{y}_0 = x_0^T \hat{\beta}$, which can be written as $\hat{y}_0 = x_0^T \beta + \sum_{i=1}^N l_i(x_0) \epsilon_i$, where $l_i(x_0)$ is the i-th element of $\mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} x_0$."

Proof:

$$\hat{y}_0 = x_0^T \beta$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \leftarrow \text{from the method of least squares}$$
 (2.6)

$$Y = X\beta + \epsilon \tag{2.26}$$

Since $X^T = [X_1 X_2, \cdots, X_p]$ (\leftarrow see ESL p.10.)

$$[X_1, X_2, \cdots, X_p]\beta = X^T \beta \quad \Rightarrow \quad Y = X^T \beta$$

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & & & & \\ X_{N1} & X_{N2} & \cdots & X_{Np} \end{bmatrix} \quad \Rightarrow \quad \mathbf{y} = \mathbf{X}\boldsymbol{\beta}$$

 β becomes,

$$\beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X}\beta + \epsilon) = \beta + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$
$$\hat{y}_0 = x_0^T \hat{\beta} = x_0^T \beta + x_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

To match the dimension compared to the sum notation, the second term is transposed,

$$[x_0^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T]^T = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x_0$$

Chapter 3. Linear Methods for Regression

Eq 3.12: (ESL p.48)

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}}$$

Proof:

$$z_{j} = \frac{\hat{\beta}_{j} - 0}{\sqrt{\operatorname{Var}(\hat{\beta}_{j})}} \quad (\leftarrow z = \frac{\overline{x} - m}{\sigma / \sqrt{n}})$$

$$\operatorname{Var}(\hat{\beta}) = (\mathbf{X}^{T} \mathbf{X})^{-1} \sigma^{2}$$
(3.8)

where σ^2 is the variance of the observations y_i 's.

$$\Rightarrow z_j = \frac{\hat{\beta}_j}{\sqrt{(\mathbf{X}^T \mathbf{X})_{jj}^{-1} \hat{\sigma}^2}} = \frac{\hat{\beta}_j}{\hat{\sigma} \sqrt{(\mathbf{X}^T \mathbf{X})_{jj}^{-1}}}$$

where

$$\hat{\sigma} = \frac{1}{N - P - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \quad \leftarrow \text{ estimate of } \sigma^2$$

 $v_j = \text{j-th diagonal element of } (\mathbf{X}^T \mathbf{X})^{-1}$

$$\therefore z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_j}}$$

ESL p.53:

"Then it is easy to check that the multiple least squares estimates $\hat{\beta}_j$ are equal to $\langle \mathbf{x}_j, \mathbf{y} \rangle / \langle \mathbf{x}_j, \mathbf{x}_j \rangle$ - the univariate estimates."

Proof:

 $X: N \times p \text{ matrix}$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{3.6}$$

Since $\mathbf{X}^T\mathbf{X}$ is $\mathbf{p} \times \mathbf{p}$ dimension, and $\mathbf{X}^T\mathbf{y}$ is $\mathbf{p} \times 1$, so $\hat{\beta}$ is $\mathbf{p} \times 1$.

$$\mathbf{x}_1 = \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{N1} \end{bmatrix} \qquad : \quad \text{N data collection of first component of } \mathbf{x}$$

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & & & & \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_1 & \cdots & \mathbf{x}_p \end{bmatrix} \quad : \quad \mathbf{N} \times \mathbf{p}$$

$$\mathbf{X}^T = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_p^T \end{bmatrix} : \mathbf{p} \times \mathbf{N}$$

$$\mathbf{X}^T\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_p^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_1 & \cdots & \mathbf{x}_p \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T\mathbf{x}_1 & \mathbf{x}_1^T\mathbf{x}_2 & \cdots & \mathbf{x}_1^T\mathbf{x}_p \\ \mathbf{x}_2^T\mathbf{x}_1 & \mathbf{x}_2^T\mathbf{x}_2 & \cdots & \mathbf{x}_2^T\mathbf{x}_p \\ \vdots & & & \\ \mathbf{x}_p^T\mathbf{x}_1 & \mathbf{x}_p^T\mathbf{x}_2 & \cdots & \mathbf{x}_p^T\mathbf{x}_p \end{bmatrix}$$

$$\mathbf{X}^T\mathbf{y} = egin{bmatrix} \mathbf{x}_1^T \ \mathbf{x}_1^T \ dots \ \mathbf{x}_p^T \end{bmatrix} \mathbf{y} \ = egin{bmatrix} \mathbf{x}_1^T \mathbf{y} \ \mathbf{x}_2^T \mathbf{y} \ dots \ \mathbf{x}_p^T \mathbf{y} \end{bmatrix}$$

If $\langle \mathbf{x}_j, \mathbf{x}_k \rangle = 0$ for $j \neq k$,

$$\mathbf{X}^T\mathbf{X} = egin{bmatrix} \mathbf{x}_1^T\mathbf{x}_1 & & & & \\ & \mathbf{x}_2^T\mathbf{x}_2 & & & & \\ & & \ddots & & & \\ & & & \mathbf{x}_p^T\mathbf{x}_p \end{bmatrix}$$

$$(\mathbf{X}^T \mathbf{X})^{-1} = \begin{bmatrix} (\mathbf{x}_1^T \mathbf{x}_1)^{-1} & & & \\ & (\mathbf{x}_2^T \mathbf{x}_2)^{-1} & & & \\ & & \ddots & & \\ & & & (\mathbf{x}_p^T \mathbf{x}_p)^{-1} \end{bmatrix}$$

Now $\hat{\beta}$ can be calculated using the above equations,

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$= \begin{bmatrix} \frac{\mathbf{x}_1^T \mathbf{y}}{\mathbf{x}_1^T \mathbf{x}_1} & & \\ & \frac{\mathbf{x}_2^T \mathbf{y}}{\mathbf{x}_2^T \mathbf{x}_2} & & \\ & & \ddots & \\ & & \frac{\mathbf{x}_p^T \mathbf{y}}{\mathbf{x}_p^T \mathbf{x}_p} \end{bmatrix}$$

$$\therefore \hat{\beta}_j = \frac{\langle \mathbf{x}_j, \mathbf{y} \rangle}{\langle \mathbf{x}_j, \mathbf{x}_j \rangle}$$

Eq 3.27: (ESL p.53)

$$\hat{\beta}_1 = \frac{\langle \mathbf{x} - \overline{x} \mathbf{1}, \mathbf{y} \rangle}{\langle \mathbf{x} - \overline{x} \mathbf{1}, \mathbf{x} - \overline{x} \mathbf{1} \rangle}$$

Proof:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta)$$
(3.3)

When there is an intercept,

$$Y = X\beta + \beta_0 + \epsilon$$

For univariate case

$$y = \mathbf{x}_1 \beta_1 + \mathbf{x}_0 \beta_0 + \epsilon$$

where

$$\mathbf{x}_0 = 1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \qquad \leftarrow N \times 1$$

$$RSS(\beta) = (y - \mathbf{x}_0 \beta_0 - \mathbf{x}_1 \beta_1)^T (\mathbf{y} - \mathbf{x}_0 \beta - \mathbf{x}_1 \beta_1)$$

To find minimum RSS w.r.t. β_0 and β_1 ,

$$\frac{\partial \text{RSS}(\beta)}{\partial \beta_0} = -2\mathbf{x}_0^T (\mathbf{y} - \mathbf{x}_0 \beta_0 - \mathbf{x}_1 \beta_1) = 0$$

$$\Rightarrow -\sum_{i=1}^N y_i + N\beta_0 + \sum_{i=1}^N x_{1i} \beta_1 = 0$$

$$\frac{\partial \text{RSS}(\beta)}{\partial \beta_1} = -2\mathbf{x}_1^T (\mathbf{y} - \mathbf{x}_0 \beta_0 - \mathbf{x}_1 \beta_1) = 0$$

$$\Rightarrow -\mathbf{x}_1^T \mathbf{y} + \sum_{i=1}^N x_{1i} \beta_0 + \sum_{i=1}^N x_{1i}^2 \beta_1 = 0$$
(2)

Defining
$$\overline{x} = \frac{1}{N} \sum_{1}^{N} x_{1i}$$

Eq (1) becomes
$$-\sum_{1}^{N} y_i + N\beta_0 + N\overline{x}\beta_1 = 0$$
 (3)

Eq (2) becomes
$$-\mathbf{x}_1^T \mathbf{y} + N \overline{x} \beta_0 + \sum_{1}^{N} x_{1i}^2 \beta_1 = 0$$
 (4)

To eliminate β_0 from Eqs (3) and (4),

Eq (3) $\times \overline{x}$ – Eq (4):

$$\Rightarrow -\mathbf{x}_{1}^{T}\mathbf{y} + \sum_{1}^{N} \overline{x}y_{i} + \sum_{1}^{N} x_{1i}^{2}\beta_{1} - N\overline{x}^{2}\beta_{1} = 0$$

$$\Rightarrow \beta_{1} = \frac{x_{1}^{T}\mathbf{y} - \sum_{1}^{N} \overline{x}y_{i}}{\sum_{1}^{N} x_{1i}^{2} - N\overline{x}^{2}}$$

$$= \frac{\sum_{1}^{N} x_{1i}y_{i} - \sum_{1}^{N} \overline{x}y_{i}}{\sum_{1}^{N} x_{1i}^{2} - \sum_{1}^{N} \overline{x}^{2}}$$

$$= \frac{\sum_{1}^{N} (x_{1i} - \overline{x})y_{i}}{\sum_{1}^{N} (x_{1i}^{2} - \overline{x}^{2})}$$

To show
$$< \mathbf{x}_1 - \overline{x} \mathbf{1}, \mathbf{x}_1 - \overline{x} \mathbf{1} > = \sum_{1}^{N} (x_{1i}^2 - \overline{x}^2),$$

$$<\mathbf{x}_1-\overline{x}\,\mathbf{1},\mathbf{x}_1-\overline{x}\,\mathbf{1}>=(\mathbf{x}_1-\overline{x}\,\mathbf{1})^T\cdot(\mathbf{x}_1-\overline{x}\,\mathbf{1})$$

$$= (x_{11} - \overline{x}, x_{12} - \overline{x}, \dots, x_{1N} - \overline{x}) \begin{pmatrix} x_{11} - \overline{x} \\ x_{12} - \overline{x} \\ \vdots \\ x_{1N} - \overline{x} \end{pmatrix}$$

$$= (x_{11} - \overline{x})^2 + (x_{12} - \overline{x})^2 + \dots + (x_{1N} - \overline{x})^2$$

$$= (x_{11}^2 + x_{12}^2 + \dots + x_{1N}^2) - 2\overline{x}(x_{11} + x_{12} + \dots + x_{1N}) + \overline{x}^2 N$$

$$= \sum_{1}^{N} x_{1i}^2 - N\overline{x}^2$$

$$= \sum_{1}^{N} (x_{1i}^2 - \overline{x}^2)$$

$$\therefore \hat{\beta}_1 = \frac{\langle \mathbf{x} - \overline{x} \mathbf{1}, \mathbf{y} \rangle}{\langle \mathbf{x} - \overline{x} \mathbf{1}, \mathbf{x} - \overline{x} \mathbf{1} \rangle}$$
(Here \mathbf{x} is \mathbf{x}_1 above.)

Eq 3.31: (ESL p.55)

$$\mathbf{X} = \mathbf{Z}\mathbf{D}^{-1}\mathbf{D}\boldsymbol{\Gamma} = \mathbf{Q}\mathbf{R}$$
 where $\mathbf{Q} = \mathbf{Z}\mathbf{D}^{-1},\,\mathbf{R} = \mathbf{D}\boldsymbol{\Gamma}$

Proof:

$$\mathbf{X} = \mathbf{Z}\,\mathbf{\Gamma} \tag{3.30}$$

 Γ : upper triangular matrix

$$D_{jj} = \|\mathbf{z}_j\|$$

 $\mathbf{R} = \mathbf{D}\mathbf{\Gamma}$ an upper triangular matrix, since $\mathbf{\Gamma}$ is an upper triangular matrix and \mathbf{D} is a diagonal matrix.

We need to show $\mathbf{Q} = \mathbf{Z}\mathbf{D}^{-1}$ is an orthonormal matrix.

$$\mathbf{Q}^T\mathbf{Q} = (\mathbf{Z}\mathbf{D}^{-1})^T(\mathbf{Z}\mathbf{D}^{-1}) = \mathbf{D}^{-1}\mathbf{Z}^T\mathbf{Z}\mathbf{D}^{-1}$$

$$\mathbf{Z} = (\mathbf{z}_0, \mathbf{z}_1, \cdots, \mathbf{z}_p) \qquad (\leftarrow N \times (p+1))$$

where
$$\mathbf{z}_i = egin{bmatrix} z_{1i} \\ z_{2i} \\ \vdots \\ z_{Ni} \end{bmatrix}$$

$$\mathbf{D}^{-1} = \begin{bmatrix} |\mathbf{z}_0|^{-1} & & & & \\ & |\mathbf{z}_1|^{-1} & & & \\ & & \ddots & & \\ & & |\mathbf{z}_p|^{-1} \end{bmatrix} \leftarrow (p+1) \times (p+1)$$

Using the above two equations for \mathbf{D}^{-1} and $\mathbf{Z}^{T}\mathbf{Z}$,

$$\mathbf{D}^{-1}(\mathbf{Z}^T\mathbf{Z}) = \begin{bmatrix} |\mathbf{z}_0|^{-1} & & & & \\ & |\mathbf{z}_1|^{-1} & & \\ & & |\mathbf{z}_p|^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{z}_0^T\mathbf{z}_0 & \mathbf{z}_0^T\mathbf{z}_1 & \cdots & \mathbf{z}_0^T\mathbf{z}_p \\ \mathbf{z}_1^T\mathbf{z}_0 & \mathbf{z}_1^T\mathbf{z}_1 & \cdots & \mathbf{z}_1^T\mathbf{z}_p \\ \vdots & & & \\ \mathbf{z}_p^T\mathbf{z}_0 & \mathbf{z}_p^T\mathbf{z}_1 & \cdots & \mathbf{z}_p^T\mathbf{z}_p \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{z}_0^T\mathbf{z}_0 & & & & \\ |\mathbf{z}_0| & & & & \\ & |\mathbf{z}_1| & & & \\ & |\mathbf{z}_p| \end{bmatrix}$$

Finally,

$$(\mathbf{D}^{-1}\mathbf{Z}^T\mathbf{Z})\mathbf{D}^{-1} = \begin{bmatrix} |\mathbf{z}_0| & & & \\ & |\mathbf{z}_1| & & \\ & & \ddots & \\ & & & |\mathbf{z}_p| \end{bmatrix} \begin{bmatrix} |\mathbf{z}_0|^{-1} & & & \\ & |\mathbf{z}_1|^{-1} & & \\ & & \ddots & \\ & & & |\mathbf{z}_p|^{-1} \end{bmatrix}$$

$$= \mathbf{I}$$

Eq 3.32 & 3.33: (ESL p.55)

$$\hat{\beta} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{y}$$
$$\hat{\mathbf{y}} = \mathbf{Q} \mathbf{Q}^T \mathbf{y}$$

 $\mathbf{Proof}:$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{3.6}$$

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \tag{3.7}$$

$$\mathbf{X} = \mathbf{QR} \tag{3.31}$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$= [(\mathbf{Q} \mathbf{R})^T \mathbf{Q} \mathbf{R}]^{-1} (\mathbf{Q} \mathbf{R})^T \mathbf{y}$$

$$= (\mathbf{R}^T \mathbf{Q}^T \mathbf{Q} \mathbf{R})^{-1} \mathbf{R}^T \mathbf{Q}^T \mathbf{y}$$

$$(\text{since } \mathbf{Q}^T \mathbf{Q} = \mathbf{I})$$

$$= (\mathbf{R}^T \mathbf{R})^{-1} \mathbf{R}^T \mathbf{Q}^T \mathbf{y}$$

$$= \mathbf{R}^{-1} (\mathbf{R}^T)^{-1} \mathbf{R}^T \mathbf{Q}^T \mathbf{y}$$

$$(\text{since } (\mathbf{R}^T)^{-1} \mathbf{R}^T = \mathbf{I})$$

$$= \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{y}$$

$$\therefore \hat{\mathbf{y}} = \mathbf{X} \hat{\beta} = (\mathbf{Q} \mathbf{R}) \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{y} = \mathbf{Q} \mathbf{Q}^T \mathbf{y}$$

Eq 3.46: (ESL p.66)

$$\mathbf{X}\hat{\beta}^{\text{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
$$= \mathbf{U}\mathbf{U}^T\mathbf{y}$$

Proof:

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

$$\mathbf{U}: N \times p \text{ orthonormal } \rightarrow \mathbf{U}^T \mathbf{U} = \mathbf{I}$$

 $\mathbf{D}: p \times p$ diagonal

$$\mathbf{V}: p \times p \text{ orthonormal } \rightarrow \mathbf{V}^T \mathbf{V} = \mathbf{I}$$

$$\mathbf{X}^{T}\mathbf{X} = (\mathbf{U}\mathbf{D}\mathbf{V}^{T})^{T}\mathbf{U}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{V}\mathbf{D}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{D}\mathbf{V}^{T}$$

$$(\text{since } \mathbf{U}^{T}\mathbf{U} = \mathbf{I})$$

$$= \mathbf{V}\mathbf{D}^{T}\mathbf{D}\mathbf{V}^{T}$$

If **A** and **B** are square matrices, $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

Since $\mathbf{V}\mathbf{D}^T$ and $\mathbf{D}\mathbf{V}^T$ are square matrices,

$$(\mathbf{X}^T\mathbf{X})^{-1} = (\mathbf{V}\mathbf{D}^T\mathbf{D}\mathbf{V}^T)^{-1} = (\mathbf{D}\mathbf{V}^T)^{-1}(\mathbf{V}\mathbf{D}^T)^{-1}$$

Eq 3.47: (ESL p.66)

$$\mathbf{X}\hat{\beta}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$
$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda \mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

Proof:

Using $\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{D}^T \mathbf{D} \mathbf{V}^T$ from the derivation of Eq (3.46),

$$\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I} = \mathbf{V}\mathbf{D}^{T}\mathbf{D}\mathbf{V}^{T} + \lambda \mathbf{I}\mathbf{V}\mathbf{V}^{T}$$
$$= \mathbf{V}(\mathbf{D}^{T}\mathbf{D} + \lambda \mathbf{I})\mathbf{V}^{T}$$

Since all three matrices have $p \times p$ dimension; \mathbf{V} , $(\mathbf{D}^T \mathbf{D} + \lambda \mathbf{I})$, \mathbf{V}^T .

$$\Rightarrow$$
 $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1} = (\mathbf{V}^T)^{-1}(\mathbf{D}^T\mathbf{D} + \lambda \mathbf{I})^{-1}\mathbf{V}^{-1}$

$$\therefore \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y} = (\mathbf{U}\mathbf{D}\mathbf{V}^T)[(\mathbf{V}^T)^{-1}(\mathbf{D}^T\mathbf{D} + \lambda \mathbf{I})^{-1}\mathbf{V}^{-1}](\mathbf{V}\mathbf{D}^T\mathbf{U}^T)\mathbf{y}$$

$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda \mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

Eq 3.49: (ESL p.66)

$$\operatorname{Var}(\mathbf{z}_1) = \operatorname{Var}(\mathbf{X}v_1) = \frac{d_1^2}{N}$$

Proof:

We know that

$$Covar(X) = \frac{\mathbf{X}^T \mathbf{X}}{N} = \frac{\mathbf{V} \mathbf{D}^2 \mathbf{V}^T}{N}$$

Let's calculate $Var(v_1^T \mathbf{X})$ instead of $Var(\mathbf{X}v_1)$, since they are the same.

$$\operatorname{Var}(v_{1}\mathbf{X}) = \operatorname{E}[(v_{1}^{T}\mathbf{X} - v_{1}^{T}\mathbf{X})(v_{1}^{T}\mathbf{X} - v_{1}^{T}\mathbf{X})^{T}]$$

$$= v_{1}^{T}\operatorname{E}[(\mathbf{X} - \mathbf{X})(\mathbf{X} - \mathbf{X})^{T}]v_{1}$$

$$= v_{1}^{T}\operatorname{Covar}(\mathbf{X})v_{1}$$

$$= v_{1}^{T}\frac{\mathbf{V}\mathbf{D}^{2}\mathbf{V}^{T}}{N}v_{1}$$

$$= (v_{1}^{T}\mathbf{V})\frac{\mathbf{D}^{2}}{N}(\mathbf{V}^{T}v_{1})$$

$$= \frac{1}{N}\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} d_{1}^{2} & & & \\ & d_{2}^{2} & & \\ & & \ddots & \\ & & & d_{p}^{2} \end{bmatrix} \begin{bmatrix} 1 & & \\ 0 & & \\ \vdots & & \\ 0 & & \\ \vdots & & \\ 0 & & \end{bmatrix}$$

$$= \frac{1}{N}\begin{bmatrix} d_{1}^{2} & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 1 & & \\ 0 & & \\ \vdots & & \\ 0 & & \\ \vdots & & \\ 0 & & \\ \vdots & & \\ 0 & & \\ \end{bmatrix}$$

Chapter 5. Basis Expansions and Regularization

Eq 5.18: (ESL p.154)

$$RSS = (\mathbf{y} - \mathbf{f})^T (\mathbf{y} - \mathbf{f}) + \lambda \mathbf{f}^T \mathbf{K} \mathbf{f}$$

Proof:

From Exercise 5.9,

$$\mathbf{K} = \mathbf{N}^{-1} \mathbf{\Omega}_N \mathbf{N}^{-1}$$

 $\Rightarrow \mathbf{\Omega}_N = \mathbf{N}^T \mathbf{K} \mathbf{N}$

$$RSS = (\mathbf{y} - \mathbf{N}\theta)^T (\mathbf{y} - \mathbf{N}\theta) + \lambda \theta^T \mathbf{\Omega}_N \theta$$
 (5.11)

Since $\mathbf{f} = \mathbf{N}\theta$ (Eq 5.13),

RSS =
$$(\mathbf{y} - \mathbf{f})^T (\mathbf{y} - \mathbf{f}) + \lambda \theta^T (\mathbf{N}^T \mathbf{K} \mathbf{N}) \theta$$

= $(\mathbf{y} - \mathbf{f})^T (\mathbf{y} - \mathbf{f}) + \lambda (\mathbf{N} \theta)^T \mathbf{K} (\mathbf{N} \theta)$
 $\therefore \text{RSS} = (\mathbf{y} - \mathbf{f})^T (\mathbf{y} - \mathbf{f}) + \lambda \mathbf{f}^T \mathbf{K} \mathbf{f}$

Eq 5.31 & 5.32: (ESL p.162)

$$\begin{split} \frac{\partial l(\theta)}{\partial \theta} &= \mathbf{N}^T (\mathbf{y} - \mathbf{p}) - \lambda \mathbf{\Omega} \theta \\ \frac{\partial^2 l(\theta)}{\partial \theta \ \partial \theta^T} &= - \mathbf{N}^T \mathbf{W} \mathbf{N} - \lambda \mathbf{\Omega} \end{split}$$

Proof:

$$l(f;\lambda) = \sum_{i=1}^{N} [y_i f(x_i) - \log(1 + e^{f(x_i)})] - \frac{1}{2} \lambda \int \{f''(t)\}^2 dt$$

$$\Rightarrow l(\theta) = \mathbf{y} \mathbf{N} \theta - \log(1 + e^{\mathbf{N} \theta}) - \frac{1}{2} \lambda \int \theta^T \mathbf{N}''^T \mathbf{N} \theta dt$$

$$\frac{\partial l(\theta)}{\partial \theta} = \mathbf{y} \mathbf{N} - \frac{N e^{N \theta}}{1 + e^{\mathbf{N} \theta}} - \lambda \int \theta^T \mathbf{N}''^T \mathbf{N}'' dt$$
(5.30)

Since
$$\mathbf{p} = \frac{e^{\mathbf{N}\theta}}{1 + e^{\mathbf{N}\theta}}$$
,

$$\frac{\partial l(\theta)}{\partial \theta} = \mathbf{y}^{T} \mathbf{N} - \mathbf{N} \mathbf{p} - \lambda \mathbf{\Omega} \theta$$

$$= \mathbf{N}^{T} (\mathbf{y} - \mathbf{p}) - \lambda \mathbf{\Omega} \theta$$
where $\mathbf{\Omega} = \int \mathbf{N}''^{T} \mathbf{N}'' dt$ (see Eq 5.11)
$$\frac{\partial^{2} l(\theta)}{\partial \theta \partial \theta^{T}} = -\mathbf{N} \frac{\mathbf{N} \theta e^{\mathbf{N} \theta}}{1 + e^{\mathbf{N} \theta}} + \frac{\mathbf{N} e^{\mathbf{N} \theta} \mathbf{N} e^{\mathbf{N} \theta}}{(1 + e^{\mathbf{N} \theta})^{2}} - \lambda \mathbf{\Omega}$$

$$= -\mathbf{N}^{2} \mathbf{p} + \mathbf{N}^{2} \mathbf{p} \mathbf{p}^{T} - \lambda \mathbf{\Omega}$$

$$= -\mathbf{N}^{T} \mathbf{p} (1 - \mathbf{p})^{T} \mathbf{N} - \lambda \mathbf{\Omega}$$

$$= -\mathbf{N}^{T} \mathbf{W} \mathbf{N} - \lambda \mathbf{\Omega}$$
where $\mathbf{W} = \mathbf{p} (1 - \mathbf{p})^{T}$

Eq 5.33: (ESL p.162)

$$\theta^{new} = (\mathbf{N}^T \mathbf{W} \mathbf{N} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}^T \mathbf{W} (\mathbf{N} \theta^{old} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}))$$

Proof:

We want to find θ for $\frac{\partial l(\theta)}{\partial \theta} = 0$ (Eq 5.31).

The Newton-Raphson method is to find f(x) = 0, so in our case $f(x) = \frac{\partial l(\theta)}{\partial \theta}$.

The Newton-Raphson method for f(x) says,

$$\mathbf{w}_1 = \mathbf{w}_0 - \frac{f(\mathbf{w}_0)}{f'(\mathbf{w}_0)}$$

So in our case it will be

$$\begin{split} \theta^{new} &= \theta^{old} - \frac{\left(\frac{\partial l(\theta)}{\partial \theta}\right)}{\left(\frac{\partial^2 l(\theta)}{\partial \theta \partial \theta^T}\right)} \\ &= \theta^{old} + \frac{\mathbf{N}^T(\mathbf{y} - \mathbf{p}) - \lambda \mathbf{\Omega} \theta^{old}}{\mathbf{N}^T \mathbf{W} \mathbf{N} - \lambda \mathbf{\Omega}} \\ &= \frac{\theta^{old}(\mathbf{N}^T \mathbf{W} \mathbf{N} - \lambda \mathbf{\Omega}) + \mathbf{N}^T(\mathbf{y} - \mathbf{p}) - \lambda \mathbf{\Omega} \theta^{old}}{\mathbf{N}^T \mathbf{W} \mathbf{N} - \lambda \mathbf{\Omega}} \end{split}$$

Numerator =
$$\mathbf{N}^T \mathbf{W} [\theta^{old} (\mathbf{N} - (\mathbf{N}^T \mathbf{W})^{-1} \lambda \mathbf{\Omega}) + (\mathbf{N}^T \mathbf{W})^{-1} \mathbf{N}^T (\mathbf{y} - \mathbf{p}) - (\mathbf{N}^T \mathbf{W})^{-1} \lambda \mathbf{\Omega} \theta^{old}]$$

= $\mathbf{N}^T \mathbf{W} [\theta^{old} (\mathbf{N} - \mathbf{W}^{-1} (\mathbf{N}^T)^{-1} \lambda \mathbf{\Omega}) + \mathbf{W}^{-1} (\mathbf{N}^T)^{-1} \mathbf{N}^T (\mathbf{y} - \mathbf{p})$
 $- \mathbf{W}^{-1} (\mathbf{N}^T)^{-1} \lambda \mathbf{\Omega} \theta^{old}]$
= $\mathbf{N}^T \mathbf{W} (\mathbf{N} \theta^{old} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}))$
 $\therefore \theta^{new} = (\mathbf{N}^T \mathbf{W} \mathbf{N} + \lambda \mathbf{\Omega})^{-1} \mathbf{N}^T \mathbf{W} (\mathbf{N} \theta^{old} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}))$

ESL p.187:

"If we adopt the convention that $B_{i,1}=0$ if $\tau_i=\tau_{i+1}$, then by induction $B_{i,m}=0$ if $\tau_i=\tau_{i+1}=\cdots=\tau_{i+m}$."

Proof: (Ref: Wikipedia/B-Spline)

$$B_{i,m}(x) = \frac{x - \tau_i}{\tau_{i+m-1} - \tau_i} B_{i,m-1}(x) + \frac{\tau_{i+m} - x}{\tau_{i+m} - \tau_{i+1}} B_{i+1,m-1}(x)$$
(5.78)

To prove this, the notation at the Wiki is more convenient.

$$B_{i,k+1}(x) = w_{i,k}B_{i,k}(x) + [1 - w_{i+1,k}(x)]B_{i+1,k}(x)$$
where $w_{i,k}(x) = \begin{cases} \frac{x - \tau_i}{\tau_{i+k} - \tau_i} & \text{if } \tau_{i+k} \neq \tau_i \\ 0 & \text{otherwise} \end{cases}$ (1)

Let's show Eq (5.78) and Eq (1) are equivalent.

If we use m = k + 1 in Eq (5.78), it becomes

$$B_{i,k+1} = \frac{x - \tau_i}{\tau_{i+k} - \tau_i} B_{i,k} + \frac{\tau_{i+k+1} - x}{\tau_{i+k+1} - \tau_{i+1}} B_{i+1,k}$$
 (2)

If we define
$$\frac{x - \tau_i}{\tau_{i+k} - \tau_i} \equiv w_{i,k}$$
, then

$$1 - w_{i+1,k} = 1 - \frac{x - \tau_{i+1}}{\tau_{i+k+1} - \tau_{i+1}} = \frac{\tau_{i+k+1} - x}{\tau_{i+k+1} - \tau_{i+1}}$$

This is the same as the second term in Eq (2). Therefore Eq (5.78) and Eq (1) are equivalent. Now let's prove $B_{i,m}=0$ if $\tau_i=\tau_{i+1}=\cdots=\tau_{i+m}$. We already have $B_{i,1}=0$ if $\tau_i=\tau_{i+1}$ from convention.

Let's show $B_{i,2} = 0$ if $\tau_i = \tau_{i+1} = \tau_{i+2}$.

From Eq (1), when k = 1,

$$B_{i,2} = w_{i,1}B_{i,1} + [1 - w_{i+1,1}]B_{i+1,1} = 0$$

 $B_{i+1,1} = 0$ if $\tau_i = \tau_{i+1}$. This is simply from $B_{i,1} = 0$ if $\tau_i = \tau_{i+1}$. (Since i is any number.) We keep doing this until k = m - 1.

$$B_{i,m} = w_{i,m-1}B_{i,m-1} + [1 - w_{i+1,m-1}]B_{i+1,m-1}$$

where we know $B_{i,m-1} = 0$.

We have to show $B_{i+1,m-1}=0$ if $\tau_i=\tau_{i+1}=\cdots=\tau_{i+m}$. So far we have $B_{i,m-1}=0$ if $\tau_i=\tau_{i+1}=\cdots=\tau_{i+m-1}$. If we simply use $i\to i+1$, then $B_{i+1,m-1}=0$ if $\tau_i=\tau_{i+1}=\cdots=\tau_{(i+1)+m-1}$.

$$\therefore B_{i,m} = 0 \text{ if } \tau_i = \tau_{i+1} = \dots = \tau_{i+m}$$

Chapter 7. Model Assessment and Selection

Eq 7.10: (ESL p.223)

$$\operatorname{Err}(x_0) = \operatorname{E}[(Y - \hat{f}_k(x_0))^2 | X = x_0]$$

$$= \sigma_{\epsilon}^2 + \left[f(x_0) - \frac{1}{k} \sum_{l=1}^k f(x_{(l)}) \right]^2 + \frac{\sigma_{\epsilon}^2}{k}$$

Proof:

This is a K-Nearest Neighbor problem. The important thing to understand about this problem is that the inputs x_i are fixed for simplicity. When x_i 's are fixed in KNN, there will be only y_i differences due to the intrinsic noise ϵ .

$$Y = f(X) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

$$\Rightarrow y_i = f(x_i) + \epsilon$$

where Y is a random variable and x_i is an input.

The prediction per a sample will be

$$\hat{f}(x_i) = \frac{1}{k} \sum_{l=1}^{k} y_{(l)}$$
 (*l* is NN for x_i)
$$= \frac{1}{k} \sum_{l=1}^{k} [f(x_{(l)}) + \epsilon_{(l)}]$$

Expected prediction over the samples (\mathcal{T}) will be,

$$\mathbf{E}_{\mathcal{T}}\hat{f}(x_i) = \frac{1}{k} \sum_{l=1}^{k} f(x_{(l)})$$

This solves the second term in Eq (7.10).

As for the third term σ_{ϵ}^2/k ,

$$\operatorname{Var}_{\mathcal{T}}(\hat{f}(x_{i})) = \operatorname{Var}_{\mathcal{T}} \left[\frac{1}{k} \sum_{l=1}^{k} f(x_{(l)}) + \frac{1}{k} \sum_{l=1}^{k} \epsilon_{(l)} \right]$$

$$= \operatorname{Var}_{\mathcal{T}} \left(\frac{1}{k} \sum_{l=1}^{k} \epsilon_{(l)} \right)$$

$$= \frac{1}{k^{2}} \operatorname{Var}_{\mathcal{T}}(\epsilon_{(1)} + \epsilon_{(2)} + \dots + \epsilon_{(k)})$$

$$= \frac{1}{k^{2}} (k \sigma_{\epsilon}^{2}) \qquad (\leftarrow \operatorname{Var}_{\mathcal{T}}(\epsilon_{(l)}) = \sigma_{\epsilon}^{2})$$

$$= \frac{1}{k} \sigma_{\epsilon}^{2}$$

Eq 7.11: (ESL p.224)

$$\operatorname{Err}(x_0) = \operatorname{E}[(Y - \hat{f}_p(x_0))^2 | X = x_0]$$

$$= \sigma_{\epsilon}^2 + [f(x_0) - \operatorname{E}\hat{f}_p(x_0)]^2 + \|\mathbf{h}(x_0)\|^2 \sigma_{\epsilon}^2$$
where $\mathbf{h}(x_0) = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} x_0$

Proof:

For a linear model, we have $y = X\beta + \epsilon$.

$$\hat{f}_p(x) = x^T \hat{\beta}$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y \qquad \text{(from least squares)}$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} \beta + \epsilon)$$

$$= \beta + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$
(3.6)

We have $E_{\mathcal{T}}(\epsilon) = 0$ and $E(\epsilon \epsilon^T) = \sigma^2 \mathbf{I}$.

$$\Rightarrow \quad \mathrm{E}_{\mathcal{T}}(\hat{\beta}) = \beta$$

$$\operatorname{Var}_{\mathcal{T}}(\hat{\beta}) = \operatorname{E}_{\mathcal{T}}(\hat{\beta}\hat{\beta}^{T}) - \operatorname{E}_{\mathcal{T}}(\hat{\beta})\operatorname{E}_{\mathcal{T}}(\hat{\beta}^{T})$$

$$= (\mathbf{X}^{T}\mathbf{X})^{-1}\sigma^{2} \qquad (\text{See Weatherwax p.9})$$

$$\operatorname{Var}_{\mathcal{T}}(\hat{y_{0}}) = \operatorname{Var}_{\mathcal{T}}(x_{0}^{T}\hat{\beta})$$

$$= x_{0}^{T}\operatorname{Var}_{\mathcal{T}}(\hat{\beta})x_{0}$$

$$= x_{0}^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\sigma^{2}x_{0}$$

Let's calculate $\mathbf{h}(x_0)^T \cdot \mathbf{h}(x_0)$,

$$[\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x_0]^T [\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}x_0] = x_0^T [(\mathbf{X}^T\mathbf{X})^{-1}]^T \mathbf{X}^T \mathbf{X} (\mathbf{X}^T\mathbf{X})^{-1}x_0$$
(Since $[(\mathbf{X}^T\mathbf{X})^{-1}]^T = [(\mathbf{X}^T\mathbf{X})^T]^{-1} = (\mathbf{X}^T\mathbf{X})^{-1}$)
$$= x_0^T (\mathbf{X}^T\mathbf{X})^{-1}x_0$$

$$\therefore \operatorname{Var}_{\mathcal{T}}(\hat{y_0}) = \operatorname{Var}_{\mathcal{T}}(\hat{f_p}(x_0)) = \|\mathbf{h}(x_0)\|^2 \sigma_{\epsilon}^2$$

Eq 7.41: (ESL p.235)

$$p(\mathcal{M}_m|\mathbf{Z}) \approx \frac{e^{-\frac{1}{2}\mathrm{BIC}_m}}{\sum_{l=1}^{M} e^{-\frac{1}{2}\mathrm{BIC}_l}}$$

Proof:

$$\log p(\mathbf{Z}|\mathcal{M}_m) = \log p(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) - \frac{d_m}{2}\log N + O(1)$$
(7.40)

$$BIC = -2 \log lik + (\log N)d \tag{7.35}$$

If we define our loss function to be $-2 \log p(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m)$, Eq (7.40) becomes after dropping O(1), (multiply by -2)

$$-2\log p(\mathbf{Z}|\mathcal{M}_m) = -2\log p(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) + d_m \log N$$

where $\log p(\mathbf{Z}|\mathcal{M}_m) = \text{BIC}$, and $\log p(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) = \text{loglik}$.

$$\Rightarrow$$
 BIC_m = $-2 \log \text{lik} + d_m \log N$

This is same as Eq (7.35).

Since $BIC_m = -2\log p(\mathbf{Z}|\mathcal{M}_m)$,

$$p(\mathbf{Z}|\mathcal{M}_m) = \exp\left(-\frac{1}{2}\mathrm{BIC}_m\right)$$
Posterior =
$$\frac{p(\mathcal{M}_m) \cdot \exp\left(-\frac{1}{2}\mathrm{BIC}_m\right)}{p(\mathbf{Z})}$$

$$p(\mathcal{M}_m) \cdot \exp\left(-\frac{1}{2}\mathrm{BIC}_m\right)$$

$$= \frac{p(\mathcal{M}_m) \cdot \exp\left(-\frac{1}{2}BIC_m\right)}{\sum_{l=1}^{M} p(\mathbf{Z}|\mathcal{M}_l)}$$
$$= \frac{p(\mathcal{M}_m) \cdot \exp\left(-\frac{1}{2}BIC_m\right)}{\sum_{l=1}^{M} \exp\left(-\frac{1}{2}BIC_l\right)}$$

Eq 7.59: (ESL p.252)

$$\hat{\gamma} = \hat{p}_1(1 - \hat{q}_1) + (1 - \hat{p}_1)\hat{q}_1$$

Proof:

$$\hat{\gamma} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{i'=1}^{N} L(y_i, \hat{f}(x_{i'}))$$

$$= \frac{1}{N^2} \left[\sum_{i \in p_1} \sum_{i' \in q_0} L(y_i, \hat{f}(x_{i'})) + \sum_{i \in p_0} \sum_{i' \in q_1} L(y_i, \hat{f}(x_{i'})) \right]$$

In the above equation, L=0 for the cases of i and i' other than the values defined in the equation. Since L=1 in the above equation,

$$\hat{\gamma} = \frac{1}{N^2} \left[\sum_{i \in p_1} \sum_{i' \in q_0} 1 + \sum_{i \in p_0} \sum_{i' \in q_1} 1 \right]$$

$$= \frac{1}{N} \sum_{i \in p_1} \left(\sum_{i' \in q_0} \frac{1}{N} \right) + \frac{1}{N} \sum_{i \in p_0} \left(\sum_{i' \in q_1} \frac{1}{N} \right)$$

Since
$$\sum_{i' \in q_0} \frac{1}{N} = 1 - \hat{q}_1$$
, and $\sum_{i' \in q_1} \frac{1}{N} = \hat{q}_1$,

$$\hat{\gamma} = \frac{1}{N} \sum_{i \in p_1} (1 - \hat{q}_1) + \frac{1}{N} \sum_{i \in p_0} (\hat{q}_1)$$

Since
$$\frac{1}{N} \sum_{i \in p_1} = \hat{p}_1$$
, and $\frac{1}{N} \sum_{i \in p_0} = 1 - \hat{p}_1$,

$$\hat{y} = \hat{p}_1(1 - \hat{q}_1) + (1 - \hat{p}_1)(\hat{q}_1)$$

Chapter 8. Model Inference and Averaging

Eq 8.30: (ESL p.271)

$$p(\theta|z) \sim \mathcal{N}\left(\frac{z}{1+1/\tau}, \frac{1}{1+1/\tau}\right)$$

Proof:

$$p(z) \sim \mathcal{N}(\theta, 1)$$
 (8.29)

Since Eq (8.29) is equivalent to $p(z|\theta)$,

$$\Rightarrow \quad p(z|\theta) = \frac{1}{(2\pi)^{1/2}} \cdot \exp\left\{-\frac{1}{2}(z-\theta)^2\right\} \qquad \text{likelihood}$$
 Posterior $p(\theta|z) = \frac{p(z|\theta) \cdot p(\theta)}{p(z)}$

$$\begin{split} p(\theta|z) &\sim p(z|\theta) \cdot p(\theta) \\ &= \frac{1}{(2\pi)^{1/2}} \cdot \exp\left\{-\frac{1}{2}(z-\theta)^2\right\} \frac{1}{(2\pi)^{1/2}\tau^{1/2}} \exp\left(-\frac{1}{2\tau}\theta^2\right) \\ &= \frac{1}{2\pi\,\tau^{1/2}} \cdot \exp\left\{-\frac{1}{2}(z-\theta)^2 - \frac{\theta^2}{2\tau}\right\} \\ &= \frac{1}{2\pi\,\tau^{1/2}} \cdot \exp\left\{-\frac{1}{2}\left[(z-\theta)^2 + \frac{\theta^2}{2\tau}\right]\right\} \end{split}$$

$$(z-\theta)^2 + \frac{\theta^2}{2\tau} = z^2 - 2z\theta + \theta^2 + \frac{\theta^2}{\tau}$$

$$= \left(1 + \frac{1}{\tau}\right)\theta^2 - 2z\theta + z^2$$

$$= \left(1 + \frac{1}{\tau}\right)\left[\left(\theta - \frac{z}{1+1/\tau}\right)^2 + \frac{z^2}{(1+1/\tau)} - \frac{z^2}{(1+1/\tau)^2}\right]$$

$$\therefore p(\theta|z) \sim \mathcal{N}\left(\frac{z}{1+1/\tau}, \frac{1}{1+1/\tau}\right)$$

Eq 8.54: (ESL p.289)

$$E(\zeta|\mathbf{Z}) = \sum_{m=1}^{M} E(\zeta|\mathcal{M}_m, \mathbf{Z}) p(\mathcal{M}_m|\mathbf{Z})$$

Proof:

$$E(\zeta|\mathbf{Z}) = \int \zeta p(\zeta|\mathbf{Z}) d\zeta$$

$$= \int \zeta \sum_{m} p(\zeta|\mathcal{M}_{m}, \mathbf{Z}) \cdot p(\mathcal{M}_{m}|\mathbf{Z}) d\zeta$$

$$= \sum_{m} \int \zeta p(\zeta|\mathcal{M}_{m}, \mathbf{Z}) d\zeta \cdot p(\mathcal{M}_{m}|\mathbf{Z})$$
(Since
$$\int \zeta p(\zeta|\mathcal{M}_{m}, \mathbf{Z}) d\zeta = E(\zeta|\mathcal{M}_{m}, \mathbf{Z})$$

$$= \sum_{m} E(\zeta|\mathcal{M}_{m}, \mathbf{Z}) \cdot p(\mathcal{M}_{m}|\mathbf{Z})$$

Chapter 9. Additive Models, Trees

Eq 9.11: (ESL p.307)

$$\hat{c}_m = \operatorname{ave}(y_i | x_i \in R_m)$$

Proof:

$$L = \sum_{i} (y_i - f(x_i))^2$$

$$\frac{\partial L}{\partial c_m} = \sum_{i} 2(y_i - f(x_i)) \cdot \left(-\frac{\partial f(x_i)}{\partial c_m}\right)$$

$$f(x_i) = \sum_{m=1}^{M} c_m I(x_i \in R_m)$$

$$\frac{\partial f(x_i)}{\partial c_m} = I(x_i \in R_m)$$

$$\frac{\partial L}{\partial c_m} = \sum_{i} 2(y_i - f(x_i)) \cdot (-I(x_i \in R_m)) = 0$$

$$(9.10)$$

 \Rightarrow Two conditions:

1.
$$I(x_i \in R_m) = 1$$

2.
$$\sum_{i} (y_i - f(x_i)) = \sum_{i} \left[y_i - \sum_{m=1}^{M} c_m I(x_i \in R_m) \right] = 0$$

$$\Rightarrow \sum_{i} [y_i | x_i \in R_m - C_m I(x_i \in R_m)] = 0$$

$$\Rightarrow \sum_{i} [y_i | x_i \in R_m] = C_m \sum_{i} I(x_i \in R_m)$$

where $\sum_{i} I(x_i \in R_m) = \#$ of x_i 's belonging to R_m .

$$\therefore c_m = \frac{\sum_i [y_i | x_i \in R_m]}{\text{# of } x_i \text{'s belonging to } R_m}$$
$$= \text{ave}(y_i | x_i \in R_m)$$

ESL p. 309:

"For example, in a two-class problem with 400 observations in each class (denote this by (400, 400)), suppose one split created nodes (300, 100) and (100, 300), while the other created nodes (200, 400) and (200, 0). Both splits produce a mis-classification rate of 0.25."

Proof:

1. First case

Misclassification error:

$$\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)}$$

Let's calculate \hat{p}_{mk} 's,

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{i \in R_m} I(y_i = k)$$

 n_1 : node 1, and n_2 : node 2

$$\hat{p}_{n_1c_1} = \frac{1}{400} \sum_{x_i \in R_1} I(y_i = c_1) = \frac{1}{400} \cdot 300 = \frac{3}{4}$$

$$\hat{p}_{n_1c_2} = \frac{1}{400} \sum_{x_i \in R_1} I(y_i = c_2) = \frac{1}{400} \cdot 100 = \frac{1}{4}$$

$$\hat{p}_{n_2c_1} = \frac{1}{400} \sum_{x_i \in R_2} I(y_i = c_1) = \frac{100}{400} = \frac{1}{4}$$

$$\hat{p}_{n_2c_2} = 1 - \hat{p}_{n_2c_1} = \frac{3}{4}$$

ME:

For node 1: $k(n_1) = c_1$

$$\frac{1}{N_{n_1}} \sum_{x_i \in R_1} I(y_i \neq k(n_1)) = \frac{1}{400} \sum_{x_i \in R_1} I(y_i \neq c_1) = \frac{1}{4}$$

For node 2: $k(n_2) = c_2$

$$\frac{1}{N_{n_2}} \sum_{x_i \in R_1} I(y_i \neq c_2) = \frac{1}{400} \cdot 100 = \frac{1}{4}$$

We can calculate this from $1 - \hat{p}_{mk(m)}$.

For node 1,
$$ME_1 = 1 - \hat{p}_{n_1 k(n_1)} = 1 - \frac{3}{4} = \frac{1}{4}$$

For node 2, $ME_2 = 1 - \hat{p}_{n_2 k(n_2)} = 1 - \frac{3}{4} = \frac{1}{4}$

Now to calculate the combined ME, we use the suggestion given in p.309, saying that we need to weight the node impurity measures by the number N_{m_L} and N_{m_R} of observations in the two child nodes.

$$\begin{aligned} \text{ME}_{combined} &= \frac{N_{n_1}}{N_{n_1} + N_{n_2}} \cdot \text{ME}_1 + \frac{N_{n_2}}{N_{n_1} + N_{n_2}} \cdot \text{ME}_2 \\ &= \frac{400}{800} \cdot \frac{1}{4} + \frac{400}{800} \cdot \frac{1}{4} = \frac{1}{4} \end{aligned}$$

2. Second case

$$N_{n_1} = 600$$

$$N_{n_2} = 200$$

$$\hat{p}_{n_1c_1} = \frac{1}{600} \sum_{x_i \in R_1} I(y_i = c_1) = \frac{1}{600} \cdot 200 = \frac{1}{3}$$

$$\hat{p}_{n_1c_2} = \frac{2}{3}$$

$$\hat{p}_{n_2c_1} = \frac{1}{200} \sum_{x_i \in R_2} I(y_i = c_1) = \frac{1}{200} \cdot 200 = 1$$

$$\hat{p}_{n_2c_2} = 0$$

For node 1: $k(n_1) = c_2$

$$ME_1 = 1 - \frac{2}{3} = \frac{1}{3}$$

For node 2: $k(n_2) = c_1$

$$ME_2 = 1 - 1 = 0$$

$$ME_{combined} = \frac{600}{800} \cdot \frac{1}{3} + \frac{200}{800} \times 0 = \frac{1}{4}$$

where $\frac{600}{800}$ is from weight $=\frac{N_{n_1}}{N_{n_1} + N_{n_2}}$.

Chapter 10. Boosting and Additive Trees

Eq 10.11: (ESL p.344)

$$\sum_{i=1}^{N} w_i^{(m)} \exp\left(-\beta y_i G(x_i)\right) = \left(e^{\beta} - e^{-\beta}\right) \cdot \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G(x_i)) + e^{-\beta} \sum_{i=1}^{N} w_i^{(m)}$$

Proof:

$$\begin{split} \sum_{i=1}^{N} w_{i}^{(m)} \exp\left(-\beta y_{i} G(x_{i})\right) &= e^{-\beta} \sum_{y_{i} = G(x_{i})} w_{i}^{(m)} + e^{\beta} \sum_{y_{i} \neq G(x_{i})} w_{i}^{(m)} \\ &= e^{-\beta} \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} = G(x_{i})) + e^{\beta} \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G(x_{i})) \\ &= e^{-\beta} \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} = G(x_{i})) + \left\{ e^{-\beta} \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G(x_{i})) - e^{-\beta} \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G(x_{i})) \right\} + e^{\beta} \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G(x_{i})) \\ &= e^{-\beta} \sum_{i=1}^{N} w_{i}^{(m)} [I(y_{i} = G(x_{i})) + I(y_{i} \neq G(x_{i}))] \\ &+ (e^{\beta} - e^{-\beta}) \sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G(x_{i})) \end{split}$$

Since $I(y_i = G(x_i)) + I(y_i \neq G(x_i)) = 1$,

$$\therefore \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\beta y_i G(x_i)\right) = e^{-\beta} \sum_{i=1}^{N} w_i^{(m)} + (e^{\beta} - e^{-\beta}) \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G(x_i))$$

Eq 10.12: (ESL p.344)

$$\beta_m = \frac{1}{2} \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m}$$
where $\operatorname{err}_m = \frac{\sum_{i=1}^N w_i^{(m)} I(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i^{(m)}}$

Proof:

$$f(\beta) = (e^{\beta} - e^{-\beta}) \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G_m(x_i)) + e^{-\beta} \sum_{i=1}^{N} w_i^{(m)}$$

$$\frac{\partial f(\beta)}{\partial \beta} = \beta (e^{\beta} + e^{-\beta}) \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G_m(x_i)) - \beta e^{-\beta} \sum_{i=1}^{N} w_i^{(m)}$$

$$= 0$$

$$(e^{2\beta} + 1) \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G_m(x_i)) - \sum_{i=1}^{N} w_i^{(m)} = 0$$

$$(e^{2\beta} + 1) = \frac{1}{\text{err}_m}$$

$$\therefore \beta_m = \frac{1}{2} \log \frac{1 - \text{err}_m}{\text{err}_m}$$

Eq 10.18: (ESL p.346)

$$-l(Y, f(x)) = \log(1 + e^{-2Yf(x)})$$

Proof:

$$l(Y, f(x)) = Y' \log p(x) + (1 - Y') \log(1 - p(x))$$

where $Y' \in \{0, 1\}$ and $Y \in \{1, -1\}$

$$p(x) = p(Y = 1|x) = \frac{1}{1 + e^{-2f(x)}} = \sigma(2f(x))$$
(10.17)

And we know

$$1 - p(x) = 1 - \frac{1}{1 + e^{-2f(x)}} = \frac{1}{1 + e^{2f(x)}} = \sigma(-2f(x))$$

$$l(Y, f(x)) = \begin{cases} \log(p(x)) & \text{if } Y' = 1\\ \log(1 - p(x)) & \text{if } Y' = 0 \end{cases}$$

$$\log p(x) = -\log(1 + e^{-2f(x)}) \qquad \leftarrow \mathbf{Y} = 1 \text{ case}$$
$$\log (1 - p(x)) = -\log(1 + e^{2f(x)}) \qquad \leftarrow \mathbf{Y} = -1 \text{ case}$$

If we write both cases in one equation with $Y \in \{1, -1\}$,

$$-l(Y, f(x)) = \log(1 + e^{-2Yf(x)})$$

Eq 10.19: (ESL p.348)

$$E(Y|x) = 2p(Y = 1|x) - 1$$

Proof:

From PRML Eq (1.89),

$$\begin{split} E(Y|x) &= \sum_{Y \in \{1,-1\}} Y p(Y|x) \\ &= 1 \cdot p(Y=1|x) + (-1) \cdot p(Y=-1|x) \\ &= p(Y=1|x) - [1 - p(Y=1|x)] \\ &= 2p(Y=1|x) - 1 \end{split}$$

Eq 10.52: (ESL p.370)

$$f_k(X) = \ln p_k(X) - \frac{1}{K} \sum_{l=1}^K \ln p_l(X)$$

 $\mathbf{Proof}:$

$$p_k(x) = \frac{e^{f_k(x)}}{1 + \sum_{l=1}^K e^{f_l(x)}}$$
 with constraint $\sum_{k=1}^K f_k(x) = 0$. (10.21)

Using Eq (10.21), let's prove the RHS of Eq (10.52) becomes $f_k(X)$.

$$\ln p_k(X) - \frac{1}{K} \sum_{l=1}^K \ln p_l(X)$$

$$= f_k(X) - \ln \left(1 + \sum_{l=1}^K e^{f_l(x)} \right) - \frac{1}{K} \sum_{l=1}^K \left\{ f_k(X) - \ln \left(1 + \sum_{k=1}^K e^{f_k(x)} \right) \right\}$$

$$= f_k(X) - \ln \left(1 + \sum_{l=1}^K e^{f_l(x)} \right) - \frac{1}{K} \sum_{l=1}^K f_k(X) + \frac{1}{K} \sum_{l=1}^K \ln \left(1 + \sum_{k=1}^K e^{f_k(x)} \right)$$

In the above equation, the third term = 0 since from the constraint , $\sum_{l=1}^{K} f_k(X) = 0$.

The fourth term's sum over l does not affect inside the bracket.

$$\Rightarrow \ln p_k(X) - \frac{1}{K} \sum_{l=1}^K \ln p_l(X) = f_k(X) - \ln \left(1 + \sum_{l=1}^K e^{f_l(x)} \right) + \frac{K}{K} \ln \left(1 + \sum_{l=1}^K e^{f_l(x)} \right)$$
$$= f_k(X)$$

Eq 10.54: (ESL p.376)

$$E(Y|X) = E(Y|Y > 0, X) \cdot p(Y > 0|X)$$

Proof:

$$p(Y|X) = \frac{p(Y,X)}{p(X)}$$

$$p(Y,X) = p(Y,X|Y>0) \cdot p(>0) + p(Y,X|Y=0) \cdot P(Y=0) \quad \leftarrow \text{sum rule}$$

$$\Rightarrow \quad p(Y|X) = \frac{p(Y,X|Y>0) \cdot p(Y>0)}{p(X)} + \frac{p(Y,X|Y=0) \cdot p(Y=0)}{p(X)}$$

$$= p(Y|Y>0,X) \cdot p(Y>0) + p(Y|Y=0,X) \cdot p(Y=0)$$

$$\begin{split} \mathbf{E}(Y|X) &= \int Y p(Y)X)dY \\ &= \int p(Y|Y>0,X) \cdot p(Y>0)dY + \int p(Y|Y=0,X) \cdot p(Y=0)dY \\ &\text{(second term = 0, since Y = 0)} \\ &= \int p(Y|Y>0,X) \cdot p(Y>0)dY \\ &\text{(since p(Y>0) is a constant,)} \\ &= \int p(Y|Y>0,X)dY \cdot p(Y>0) \\ &= \mathbf{E}(Y|Y>0,X) \cdot p(Y>0) \end{split}$$

Chapter 12. Support Vector Machines

Eq 12.33: (ESL p.433)

$$\beta_{\lambda} = \frac{1}{\lambda} \sum_{i=1}^{N} \alpha_i y_i x_i$$

Proof:

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i$$
 (12.8)

subject to $\xi_i \geq 0$, $y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i \quad \forall_i$

$$\min_{\beta,\beta_0} \sum_{i=1}^{N} [1 - y_i f_i(x_i)]_+ + \frac{\lambda}{2} \|\beta\|^2$$
 (12.25)

Since the solutions of β are identical for both Eqs (12.8) and (12.25), we can write Eq (12.25) in the form of (12.8) with λ instead of C. $(\frac{1}{\lambda} \leftrightarrow c)$

$$\min_{\beta,\beta_0} \frac{\lambda}{2} \|\beta\|^2 + \sum_{i=1}^{N} \xi_i$$
 (12.8a)

Then the new Lagrange function is

$$L'_{p} = \frac{\lambda}{2} \|\beta\|^{2} + \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} [y_{i}(x_{i}^{T}\beta + \beta_{0}) - (1 - \xi_{i})] - \sum_{i=1}^{N} \mu_{i} \xi_{i}$$

$$\frac{\partial L'_{p}}{\partial \beta_{0}} = 0 \quad \rightarrow \quad \beta = \frac{1}{\lambda} \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}$$
(This proves Eq (12.33))
$$\frac{\partial L'_{p}}{\partial \beta_{0}} = 0 \quad \rightarrow \quad 0 = \sum_{i=1}^{N} \alpha_{i} y_{i}$$

$$\frac{\partial L'_{p}}{\partial \xi_{i}} = 0 \quad \rightarrow \quad \alpha_{i} = 1 - \mu_{i} \quad \forall_{i}$$
and $\alpha_{i}, \mu_{i}, \xi_{i} \geq 0 \quad \forall_{i}$

From $\alpha_i = 1 - \mu_i$, $\alpha_i \leq 1$,

$$\Rightarrow 0 \le \alpha_i \le 1.$$

Chapter 14. Unsupervised Learning

Eq 14.58: (ESL p.540)

$$\min_{\beta, \mathbf{R}} \| \mathbf{X}_2 - \beta \mathbf{X}_1 \mathbf{R} \|_F$$

Solutions: $\hat{\mathbf{R}} = \mathbf{U} \mathbf{V}^T$, $\hat{\beta} = \frac{\text{Tr}(\mathbf{D})}{\| \mathbf{X}_1 \|_F^2}$

Proof:

 β is a positive scalar.

Based on Eq (14.58), Lagrangian will be

$$L(\beta, \mathbf{R}, \mathbf{A}) = \text{Tr}[(\mathbf{X}_2 - \beta \mathbf{X}_1 \mathbf{R})^T (\mathbf{X}_2 - \beta \mathbf{X}_1 \mathbf{R})] + \text{Tr}[\mathbf{A}(\mathbf{R}^T \mathbf{R} - \mathbf{I})]$$

First term:

$$(\mathbf{X}_2 - \beta \mathbf{X}_1 \mathbf{R})^T (\mathbf{X}_2 - \beta \mathbf{X}_1 \mathbf{R}) = (\mathbf{X}_2^T - \beta \mathbf{R}^T \mathbf{X}_1^T) (\mathbf{X}_2 - \beta \mathbf{X}_1 \mathbf{R})$$
$$= \mathbf{X}_2^T \mathbf{X}_2 - \mathbf{X}_2^T \beta \mathbf{X}_1 \mathbf{R} - \beta \mathbf{R}^T \mathbf{X}_1^T \mathbf{X}_2 + \beta^2 \mathbf{R}^T \mathbf{X}_1^T \mathbf{X}_1 \mathbf{R}$$

$$\frac{\partial}{\partial \beta} \operatorname{Tr}(\beta \mathbf{X}_{2}^{T} \mathbf{X}_{1} \mathbf{R}) = \operatorname{Tr}(\mathbf{X}_{2}^{T} X_{1} \mathbf{R})$$

$$\frac{\partial}{\partial \beta} \operatorname{Tr}(\beta \mathbf{R}^{T} \mathbf{X}_{1}^{T} \mathbf{X}_{2}) = \operatorname{Tr}(\mathbf{R}^{T} \mathbf{X}_{1}^{T} \mathbf{X}_{2})$$

$$\frac{\partial}{\partial \beta} \operatorname{Tr}(\beta^{2} \mathbf{R}^{T} \mathbf{X}_{1}^{T} \mathbf{X}_{1} \mathbf{R}) = 2\beta \operatorname{Tr}(\mathbf{R}^{T} \mathbf{X}_{1}^{T} \mathbf{X}_{1} \mathbf{R})$$

Using the trace relations; $\operatorname{Tr}(\mathbf{A}^T\mathbf{B}) = \operatorname{Tr}(\mathbf{B}^T\mathbf{A}) = \operatorname{Tr}(\mathbf{A}\mathbf{B}^T) = \operatorname{Tr}(\mathbf{B}\mathbf{A}^T),$

$$Tr(\mathbf{X}_2^T \mathbf{X}_1 \mathbf{R}) = Tr(\mathbf{X}_2 \mathbf{R}^T \mathbf{X}_1^T) \tag{1}$$

$$\operatorname{Tr}(\mathbf{R}^T \mathbf{X}_1^T \mathbf{X}_2) = \operatorname{Tr}(\mathbf{X}_2^T \mathbf{X}_1 \mathbf{R}) = \operatorname{Tr}(\mathbf{X}_2 \mathbf{R}^T \mathbf{X}_1^T)$$
 (2)

To maximize L w.r.t. β ,

$$\Rightarrow \frac{\partial L(\beta, \mathbf{R}, A)}{\partial \beta} = -\text{Tr}(\mathbf{X}_2^T \mathbf{X}_1 \mathbf{R}) - \text{Tr}(R^T \mathbf{X}_1^T \mathbf{X}_2) + 2\beta \text{Tr}(\mathbf{R}^T \mathbf{X}_1^T \mathbf{X}_1 \mathbf{R}) = 0$$

Utilizing Eqs (1) and (2),

$$\begin{split} \frac{\partial L(\beta, \mathbf{R}, A)}{\partial \beta} &= -2 \text{Tr}(\mathbf{X}_2 \mathbf{R}^T \mathbf{X}_1^T) + 2\beta \text{Tr}(\mathbf{R}^T \mathbf{X}_1^T \mathbf{X}_2 \mathbf{R}) \\ &= -2 \text{Tr}(\mathbf{X}_2 \mathbf{R}^T \mathbf{X}_1^T) + 2\beta \text{Tr}(\mathbf{X}_1^T \mathbf{X}_2) \\ &= 0 \end{split}$$

Therefore we have

$$\hat{\beta} = \frac{\text{Tr}(\mathbf{R}^T \mathbf{X}_1^T \mathbf{X}_2)}{\|\mathbf{X}_1\|_F}$$
 (3)

 $\frac{\partial L}{\partial \mathbf{R}} = 0$ will produce the same solution for \mathbf{R} as in Eq (14.57), since the only change is $\hat{\beta} \tilde{\mathbf{X}}_1$ instead of $\tilde{\mathbf{X}}_1$. So $\hat{\mathbf{R}} = \mathbf{U} \mathbf{V}^T$.

Plugging this into Eq (3), (and $\mathbf{X}_1^T \mathbf{X}_2 = \mathbf{U} \mathbf{D} \mathbf{V}^T$)

$$\hat{\beta} = \frac{\text{Tr}[\mathbf{V}\mathbf{U}^T \cdot \mathbf{U}\mathbf{D}\mathbf{V}^T]}{\|\mathbf{X}_1\|_F} = \frac{\text{Tr}[\mathbf{V}\mathbf{D}\mathbf{V}^T]}{\|\mathbf{X}_1\|_F}$$
$$= \frac{\text{Tr}[\mathbf{V}^T\mathbf{V}\mathbf{D}]}{\|\mathbf{X}_1\|_F} = \frac{\text{Tr}[\mathbf{D}]}{\|\mathbf{X}_1\|_F}$$

where $\mathbf{V}^T\mathbf{V} = \mathbf{I}$ is used.

Chapter 17. Undirected Graphical Models

Eq 17.6: (ESL p.630)

$$p(Y|Z=z) \sim \mathcal{N}(\mu_Y + (z - \mu_Z)^T \Sigma_{ZZ}^{-1} \sigma_{ZY}, \sigma_{YY} - \sigma_{ZY}^T \Sigma_{ZZ}^{-1} \sigma_{ZY})$$
where $\mathbf{\Sigma} = \begin{pmatrix} \Sigma_{ZZ} & \sigma_{ZY} \\ \sigma_{ZY}^T & \sigma_{YY} \end{pmatrix}$

Proof:

Let's use the method described in §2.3.1 Conditional Gaussian Distributions in PRML. In the book, the derivations are based on the condition on x_b .

$$egin{aligned} x &= egin{pmatrix} x_a \ x_b \end{pmatrix}, & \Sigma &= egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix} \ oldsymbol{\Lambda} &= egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix} \end{aligned}$$

where $\mathbf{\Lambda} = \mathbf{\Sigma}^{-1}$.

But here, the order is reversed; conditioned on x_a . So if we rearrange Σ to match PRML's, we can use the same equations.

$$oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{zz} & \sigma_{zy} \ \sigma_{zy}^T & \sigma_{yy} \end{pmatrix} & \longrightarrow & oldsymbol{\Sigma}' = egin{pmatrix} \sigma_{yy} & \sigma_{zy}^T \ \sigma_{zy} & oldsymbol{\Sigma}_{zz} \end{pmatrix} \ oldsymbol{\Lambda}' = egin{pmatrix} oldsymbol{\Lambda}_{yy} & oldsymbol{\Lambda}_{yz} \ oldsymbol{\Lambda}_{zy} & oldsymbol{\Lambda}_{zz} \end{pmatrix}$$

We know that

$$(\mathbf{\Sigma}')^{-1} = egin{pmatrix} \sigma_{yy} & \sigma_{zy}^T \ \sigma_{zy} & \mathbf{\Sigma}_{zz} \end{pmatrix}^{-1} = egin{pmatrix} \mathbf{\Lambda}_{yy} & \mathbf{\Lambda}_{yz} \ \mathbf{\Lambda}_{zy} & \mathbf{\Lambda}_{zz} \end{pmatrix}$$

From PRML Eq (2.76),

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{M} & -\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{M} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \end{pmatrix}$$

where $\mathbf{M} = (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}$.

Using PRML Eq (2.96),

$$p(x_a|x_b) = \mathcal{N}(x_a|\mu_{a|b}, \mathbf{\Lambda}_{aa}^{-1})$$
 (PRML Eq 2.96)
$$p(Y|Z) = \mathcal{N}(\mu_{y|z}, \mathbf{\Lambda}_{yy}^{-1})$$

Using PRML Eq (2.97),

$$\mu_{a|b} = \mu_{a} - \mathbf{\Lambda}_{aa}^{-1} \mathbf{\Lambda}_{ab}(x_{b} - \mu_{b}) \qquad (PRML Eq 2.97)$$

$$\mu_{y|z} = \mu_{y} - \mathbf{\Lambda}_{yy}^{-1} \mathbf{\Lambda}_{yz}(z - \mu_{z})$$

$$\mathbf{\Lambda}_{yy}^{-1} = \mathbf{M}^{-1} = (\sigma_{yy} - \sigma_{zy}^{T} \mathbf{\Sigma}_{zz}^{-1} \sigma_{zy})$$

$$\mathbf{\Lambda}_{yz} = -\mathbf{M}\mathbf{B}\mathbf{D}^{-1} = -\mathbf{M}\sigma_{zy}^{T} \mathbf{\Sigma}_{zz}^{-1}$$

$$\Rightarrow \mu_{y|z} = \mu_{y} + \mathbf{M}^{-1} \cdot \mathbf{M}\sigma_{zy}^{T} \mathbf{\Sigma}_{zz}^{-1}(z - \mu_{z})$$

$$= \mu_{y} + \sigma_{zy}^{T} \mathbf{\Sigma}_{zz}^{-1}(z - \mu_{z})$$

By taking transpose on the second term,

$$\mu_{y|z} = \mu_y + (z - \mu_z)^T \mathbf{\Sigma}_{zz}^{-1} \sigma_{zy}$$
 (2)

Eqs (1) and (2) prove Eq (17.6).

Eq 17.8: (ESL p.631)

$$\begin{aligned} \theta_{zy} &= -\theta_{yy} \cdot \boldsymbol{\Sigma}_{zz}^{-1} \sigma_{zy} \\ \text{where } \frac{1}{\theta_{yy}} &= \sigma_{yy} - \sigma_{zy}^T \boldsymbol{\Sigma}_{zz}^{-1} \sigma_{zy} \end{aligned}$$

Proof:

Referring to §2.3.1 Conditional Gaussian Distributions in PRML, Θ here corresponds to Λ in PRML.

Using

$$oldsymbol{\Sigma}' = egin{pmatrix} \sigma_{yy} & \sigma_{zy}^T \ \sigma_{zy} & oldsymbol{\Sigma}_{zz} \end{pmatrix}^{-1} \quad ext{and} \quad oldsymbol{\Theta}' = egin{pmatrix} heta_{yy} & heta_{yz} \ heta_{zy} & heta_{zz} \end{pmatrix}$$

$$\theta_{zy} = -\mathbf{D}^{-1}\mathbf{CM}$$

$$= -\mathbf{\Sigma}_{zz}^{-1}\sigma_{zy}\theta_{yy}$$
where $\theta_{yy}^{-1} = \mathbf{M}^{-1} = \sigma_{yy} - \sigma_{zy}^T\mathbf{\Sigma}_{zz}^{-1}\sigma_{zy}$

Eq 17.33: (ESL p.639)

$$\frac{\partial \Phi(\mathbf{\Theta})}{\partial \theta_{jk}} = \sum_{x \in \mathcal{X}} x_j x_k \cdot p(x, \mathbf{\Theta})$$

Proof:

$$\Phi(\Theta) = \log \sum_{x \in \chi} \left[\exp \left(\sum_{(j,k) \in E} \theta_{jk} x_j x_k \right) \right]$$
 (17.29)

$$\frac{\partial \Phi(\Theta)}{\partial \theta_{jk}} = \frac{\sum_{x \in \chi} \exp\left(\sum_{(j,k) \in E} \theta_{jk} x_j x_k\right) \cdot x_j x_k}{\sum_{x \in \chi} \left[\exp\left(\sum_{(j,k) \in E} \theta_{jk} x_j x_k\right)\right]}$$

$$= \sum_{x \in \chi} x_j x_k \cdot \frac{\exp\left(\sum_{(j,k) \in E} \theta_{jk} x_j x_k\right)}{\sum_{x \in \chi} \left[\exp\left(\sum_{(j,k) \in E} \theta_{jk} x_j x_k\right)\right]} \tag{1}$$

$$p(X, \mathbf{\Theta}) = \exp\left[\sum_{(j,k)\in E} \theta_{jk} x_j x_k - \mathbf{\Phi}(\mathbf{\Theta})\right]$$

$$= \frac{\exp\left[\sum_{(j,k)\in E} \theta_{jk} x_j x_k\right]}{\exp\left[\mathbf{\Phi}(\mathbf{\Theta})\right]}$$

$$= \frac{\exp\left[\sum_{(j,k)\in E} \theta_{jk} x_j x_k\right]}{\exp\left\{\log\sum_{x\in\chi} \left[\exp\left(\sum_{(j,k)\in E} \theta_{jk} x_j x_k\right)\right]\right\}}$$

$$= \frac{\exp\left[\sum_{(j,k)\in E} \theta_{jk} x_j x_k\right]}{\sum_{x\in\chi} \left[\exp\left(\sum_{(j,k)\in E} \theta_{jk} x_j x_k\right)\right]}$$
(2)

Eq (2) is equal to the fraction part of Eq (1).

$$\therefore \frac{\partial \Phi(\Theta)}{\partial \theta_{jk}} = \sum_{x \in \chi} x_j x_k \cdot p(x, \Theta)$$

Chapter 18. High-Dimensional Problems

Eq 18.52: (ESL p.692)

$$p(t_i) \sim \pi_0 \cdot F_0 + (1 - \pi_0)F_1$$

 $\mathbf{Proof}:$

$$p(t_{j}, z_{j}) = p(z_{j}) \cdot [(t_{j}|z_{j})]$$

$$p(t_{j}) = \int p(t_{j}, z_{j}) dz_{j}$$

$$= \int p(z_{j}) \cdot p(t_{j}|z_{j}) dz_{j}$$

$$= \pi_{0}p(t_{j}|z_{j} = 0) + (1 - \pi_{0})p(t_{j}|z_{j} = 1)$$

Since $F_0 = p(t_j|z_j = 0)$ and $F_1 = p(t_j|z_j = 1)$,

$$p(t_i) \sim \pi_0 \cdot F_0 + (1 - \pi_0) F_1$$