- 1. Install SUMO
- 2. Make sure the SUMO_HOME system variable is set and points to the SUMO installation path
- 3. Download TAPAS Cologne and git clone LuST datasets
- 4. Execute "netconvert -s lust.net.xml --plain-output-prefix" and "netconvert -s cologne2.net.xml --plain-output-prefix" in the scenario folders
- 5. Open clustering_code/dataset-import.py and correct the xml file paths at the bottom of the code
- 6. Run python dataset-import.py, two csv files should be created dataset-cgn-tl.csv and dataset-lust-tl.csv
- 7. Fire up Jupyter Notebook and open clustering_code/clustering.ipynb
- 8. Run all cells, two additional csv files should be created dataset-cgn-tl-clusters.csv and dataset-lust-tl.clusters
- 9. Run either python pycharm-project\pybrain_learner\dqn_main.py –help to see available parameters or look them up in the code. The file will create a json file containing all rewards of the simulation and dump the neural net's weights in an h5 file.
- 10. For repeated runs I created simple shell scripts in the shell_scripts folder
- 11. Run script.sh 2>&1 | tee log.txt to get the simulation output in a text file. The execution is endless and runs simulations with 500, 1000, 1500, 2000... iterations
- 12. Parse the output using the pycharm-project\pybrain_learner\traci_result_parser.py file. It will convert the log output to a pandas dataframe compatible csv file.
- 13. Run the rl-analysis.ipynb notebook to create charts and reward function evaluation

Filename	Path	Explanation
Dqn_main	pycharm-	Main code, run this to start a
	project\pybrain_learner	learning process
Run_sumo_nolearner	pycharm-	Executes a plain sumo
	project\pybrain_learner	simulation run that uses the
		scenarios own traffic light
		control
Run_sumo_random	pycharm-	Executes the scenario with
	project\pybrain_learner	random traffic lights
Test_gpu	pycharm-	To see if theano successfully
	project\pybrain_learner	uses the gpu
Traci_result_parser	pycharm-	Use this to parse simulation log
·	project\pybrain_learner	output
Dqn_brain,agent,memory,	pycharm-	Part of the dqn
fulldqn_brain,	project\pybrain_learner	implementation, see their
reward_functions		comments
Dataset-import	Clustering_code	Used for converting sumos xml
		files to a dataset
Clustering.ipynb	Clustering_code	Jupyter Notebook containing
		the clustering analysis
Renders	Clustering_code	Some Code i took from
		another udacity project ☺
Colormap	Clustering_code	A colormap
*	Shell_scripts	Simple linux shell scripts to run
		simulations with 500
		simulation step increments
		(see step 11.)

rl-analysis.ipynb	reinforcement-result-analysis/	Jupyter notebook for evaluating the simulation results
		resuits