See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51244125

ChemInform Abstract: Organocatalyzed Regioand Enantioselective Allylic Trifluoromethylation of Morita-Baylis-Hillman Adducts Using Ruppert-Prakash Reagent.

ARTICLE in ORGANIC LETTERS · JUNE 2011

Impact Factor: 6.36 · DOI: 10.1021/ol201490e · Source: PubMed

CITATIONS

53

READS

35

6 AUTHORS, INCLUDING:

Takayuki Nishimine

Nagoya Institute of Technology

9 PUBLICATIONS 209 CITATIONS

SEE PROFILE

Kimiko Hasegawa

Rigaku

29 PUBLICATIONS 481 CITATIONS

SEE PROFILE

Norio Shibata

Nagoya Institute of Technology

408 PUBLICATIONS 8,004 CITATIONS

SEE PROFILE

2011 Vol. 13, No. 15 3972–3975

Organocatalyzed Regio- and Enantioselective Allylic Trifluoromethylation of Morita—Baylis—Hillman Adducts Using Ruppert—Prakash Reagent

Tatsuya Furukawa,[#] Takayuki Nishimine,[#] Etsuko Tokunaga,[#] Kimiko Hasegawa,[§] Motoo Shiro,[§] and Norio Shibata*,[#]

Department of Frontier Materials, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan

nozshiba@nitech.ac.jp

Received June 2, 2011

ABSTRACT

$$RO_{2}C$$

$$A_{r}$$

$$RO_{2}C$$

$$A_{r}$$

$$RO_{2}C$$

$$A_{r}$$

The organocatalyzed regioselective allylic trifluoromethylation of Morita—Baylis—Hillman adducts using Ruppert—Prakash reagent was achieved in high to excellent yields via a successive $S_N 2'/S_N 2'$ mode for the first time. The reaction was extended to the asymmetric allylic trifluoromethylation by the use of a bis-cinchona alkaloid catalyst with high enantioselectivities up to 94% ee.

Ruppert's reagent,¹ (trifluoromethyl)trimethylsilane (Me₃SiCF₃), later renamed as the Ruppert–Prakash reagent, is now firmly established as a powerful tool for direct construction of C–CF₃ bond formation. The Ruppert–Prakash reagent has been extensively studied for the synthesis of trifluoromethyl-containing compounds,² particularly in the fields of medicinal chemistry and material

science ever since the first report on the trifluoromethylation of aldehydes by using tetrabutylammonium fluoride by Prakash and Olah.³ A large number of nucleophilic trifluoromethylation of carbonyls and imines using Me₃SiCF₃ have been investigated;² however, the addition of Me₃SiCF₃ to electron-deficient alkenes as represented by the Michael addition reaction remains a challenge, even in a racemic, nonstereoselective fashion (Scheme 1).

Scheme 1. Nucleophilic Trifluoromethylation of Electron-Deficient Alkenes

(3) Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111, 393.

^{**}Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.

**Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

^{(1) (}a) Ruppert, I.; Shlich, K; Volbach, W. Tetrahedron Lett. 1984, 24, 2195. (b) Pawelke, G. J. J. Fluorine Chem. 1989, 42, 429.

^{(2) (}a) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757. (b) Billard, T.; Langlois, B. R. Eur. J. Org. Chem. 2007, 891. (c) Shibata, N.; Mizuta, S.; Kawai, H. Tetrahedron: Asymmetry 2008, 19, 2633. (d) Gritsenko, R. T.; Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. Tetrahedron Lett. 2009, 50, 2994. (e) Levin, V. V.; Kozlov, M. A.; Song, Y. H.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. Tetrahedron Lett. 2008, 49, 3108. (f) Eisenberger, P.; Gischig, S.; Togni, A. Chem.—Eur. J. 2006, 12, 2597. (g) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 4986. (h) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947. (i) Prakash, G. K. S.; Mandal, M. J. Am. Chem. Soc. 2002, 124, 6538.

Only a few examples of Michael and Michael-type reactions have been reported, but their substrate generalities are quite narrow. 4 Dilman and co-workers reported a Michaeltype addition of Me₃SiCF₃ to highly electrophilic alkenes bearing either two germinal nitrile groups or Meldrum' acids. 5a,b The reactions were then extended to the addition of C₆F₅-substituted silanes to acylated Morita-Baylis-Hillman adducts 1 using catalytic amounts of tetrabutylammonium acetate affording C₆F₅-substituted products 2 via the S_N2' substitution mode at the terminal double bond in good yields; moreover, the reaction of acylated Morita-Baylis-Hillman adduct 1 using Me₃SiCF₃ instead is poor^{5c,6} (Scheme 2, from 1 to 2). Our laboratory has been engaged for several years in a program that utilizes Me₃SiCF₃ for the efficient synthesis of trifluoromethylated compounds. We disclose herein the first example of regio-selective nucleophilic allylic trifluoromethylation of acylated Morita-Baylis-Hillman adducts 1 with Me₃SiCF₃ catalyzed by tertially amine via a successive $S_N 2'/S_N 2'$ mode, addition-elimination/ addition-elimination, to provide medicinally attractive synthons, α -methylene β -trifluoromethyl esters 3 in high to excellent yields (Scheme 2, from 1 to 3). We also achieved an organocatalyzed enantioselective allylic trifluoromethylation of Morita-Baylis-Hillman adducts with Me₃SiCF₃ by commercially available cinchona alkaloid, (DHQD)2PHAL, to furnish chiral 3 in high enantioselectivities up to 94% ee, for the first time. The β -trifluoromethyl esters 3 obtained here can be efficiently converted into interesting carbocyclic and heterocyclic compounds without any loss of the enantiomeric purities of the starting substrates (Scheme 2).

Scheme 2. Two Modes of Allylic Trifluoromethylation of Morita–Baylis–Hillman Adducts, S_N2' Mode (from 1 to 2 known 5c,6) and Successive S_N2'/S_N2' Mode (from 1 to 3, unknown, this work), and Its Application to the Enantioselective Synthesis of Carbo- and Heterocyles 6, 7

Our initial investigation started with finding out a suitable catalyst on the successive S_N2'/S_N2' allylic trifluoromethylation of Morita-Baylis-Hillman acetate 1a with Me₃SiCF₃ (Table 1). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), Et₃N, PPh₃, and 4-dimethylaminopyridine (DMAP) were found to be ineffective in the trifluoromethylation reaction in THF (entries 1-4). In contrast, the use of a catalytic amount of quinuclidine proceeded readily at room temperature to give trifluoromethylated product 3a in 75% yield (entry 5). The trifluoromethyl substituent was regioselectively introduced at the benzylic position via successive S_N2'/S_N2' substitution and an addition to the terminal alkene via the S_N2' mode was not observed. The yield of 3a improved to 77% when 1,4-diazabicyclo-[2.2.2]octane (DABCO) was used (entry 6). Solvent optimization was performed next. We attempted to use CH₂Cl₂, toluene or DMF as the solvent, but the results did not improve (Table 1, entries 7-9). The use of 2 equivalents of Me₃SiCF₃ improved the yield of 3a to 96% (Table 1, entry 10).

With the optimized conditions established, the scope of substrates in regioselective, successive S_N2'/S_N2' allylic trifluoromethylation was investigated (Table 2). A series of Morita-Baylis-Hillman acetates 1b-i with a variety of substituents on the aromatic ring, such as chloro, bromo, methyl, methoxy, and nitro group were nicely converted into the corresponding successive S_N2'/S_N2' mode trifluoromethylated products 3b-j in up to 99% yields (entries 1–9). The reaction of sterically demanding naphthyl moiety and heteroaryl moieties also proceeded well in 85–92% yields (entries 10−13). Multiply substituted aryl substrates such as 10 and 1p gave allylic trifluoromethylated products 30 and 3p regioselectively in 93% yields (entries 14 and 15). A series of sterically less demanding methyl esters 1q-s were also converted to the desired compounds 3q-s in excellent yields, without any adducts from a nucleophilic CF₃ attack on the carbonyl carbon observed in the previous report. ^{5c,6} A substrate with alkyl substitution instead of the aryl substitution, that is, tert-butyl 3-acetoxy-2-methylenebutanoate, was also examined for

(7) (a) Mizuta, S.; Shibata, N.; Hibino, M.; Nagano, S.; Nakamura, S.; Toru, T. Tetrahedron 2007, 63, 8521. (b) Mizuta, S.; Shibata, N.; Akiti, S.; Fujimoto, H.; Nakamura, S.; Toru, T. Org. Lett. 2007, 9, 3707. (c) Kawai, H.; Kusuda, A.; Nakamura, S.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2009, 48, 6324. (d) Kawai, H.; Kusuda, A.; Mizuta, S.; Nakamura, S.; Funahashi, Y.; Masuda, H.; Shibata, N. J. Fluorine Chem. 2009, 130, 762. (e) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata, N. Org. Lett. 2010, 12, 5104. (f) Kusuda, A.; Kawai, H.; Nakamura, S.; Shibata, N. Green Chem. 2009, 11, 1733.

Org. Lett., Vol. 13, No. 15, 2011

^{(4) (}a) Sevenard, D. V.; Sosnovskikh, V. Y.; Kolomeitsev, A. A.; Knigsmann, M. H.; Roschenthaler, G. V. *Tetrahedron Lett.* **2003**, *44*, 7623. (b) Sosnovskikh, V. Y.; Usachev, B. I.; Sevenard, D. V.; Roschenthaler, G. V. *J. Org. Chem.* **2003**, *68*, 7747. (c) Sosnovskikh, V. Y.; Sevenard, D. V.; Usachev, B. I.; Roshenthler, G. V. *Tetrahedron Lett.* **2003**, *44*, 2097. (d) Large, S.; Roques, N.; Langlois, B. R. *J. Org. Chem.* **2000**, *65*, 8848.

^{(5) (}a) Dilman, A. D.; Levin, V. V.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. *Tetrahedron Lett.* **2008**, 49, 4352. (b) Zemtsov, A. A.; Levin, V. V.; Dilman, A. D.; Struchkova, M. I.; Belyakov, P. A. *Tetrahedron Lett.* **2009**, 50, 2998. (c) Zemtsov, A. A.; Levin, V. V.; Dilman, A. D.; Struchkova, M. I.; Belyakov, P. A.; Tartakovsky, V. A.; Hu., J. *Eur. J. Org. Chem.* **2010**, 6779.

⁽⁶⁾ Reaction of 1q with Me_3SiCF_3 inefficiently provides an 1/1 mixture of $S_N2^\prime\text{-substitution}$ adduct and 1,2-adduct in 30% combined yield.

Table 1. Optimization of the Reaction Conditions^a

entry	catalyst	solvent	yield (%)
1	DBU	THF	0
2	$\mathrm{Et_{3}N}$	THF	0
3	PPh_3	THF	0
4	DMAP	THF	Trace
5	Quinuclidine	THF	75
6	DABCO	THF	77
7	DABCO	$\mathrm{CH_2Cl_2}$	32
8	DABCO	Toluene	27
9	DABCO	DMF	0
10^b	DABCO	THF	96

^a Reactions were carried out using **1a** (1.0 equiv), Me₃SiCF₃ (1.2 equiv), catalyst (10 mol %) in solvent at room temperature for 12 h unless otherwise noted. ^b Me₃SiCF₃ (2.0 equiv) was used.

allylic trifluoromethylation under the same reaction conditions, but complex mixture was resulted. To our knowledge, this is the first example of allylic trifluoromethylation of Morita–Baylis–Hillman adducts via the successive $S_N 2'/S_N 2'$ mode.

Next, a preliminary investigation of asymmetric catalysis was conducted (Table 3). Asymmetric allylic alkylation (AAA)⁸ is one of the most powerful tools for making enantiomeric compounds and for developing creative synthetic methodologies in the synthesis of optically active natural products. Such a reaction is in general most actively investigated by transition-metal catalysts represented by the Tsuji—Trost reaction.⁸ On the other hand, recent advances in asymmetric organocatalysis have induced another strategy for the asymmetric allylic alkylation or substitution of Morita—Baylis—Hillman adducts using various carbon-or heterocentered nucleophiles.⁹ For the organocatalyzed asymmetric allylic alkylation based

Table 2. Trifluoromethylation of Morita—Baylis—Hillman Acetates^a

entry	1	R	Ar	3	yield ^b (%)
1	1b	^t Bu	3-ClC ₆ H ₄	3b	98
2	1c	t Bu	$4-ClC_6H_4$	3c	95
3	1d	t Bu	$2\text{-BrC}_6\mathrm{H}_4$	3d	67
4	1e	t Bu	$3-\mathrm{BrC_6H_4}$	3e	99
5	1f	t Bu	$4\text{-BrC}_6\mathrm{H}_4$	3f	98
6	1g	t Bu	$3\text{-MeC}_6\mathrm{H}_4$	3g	99
7	1h	t Bu	$4\text{-MeC}_6\mathrm{H}_4$	3h	91
8	1i	t Bu	$3\text{-MeOC}_6\mathrm{H}_4$	3i	92
9	1j	$^t\mathrm{Bu}$	$4-NO_2C_6H_4$	3j	87
10	1k	t Bu	1-Naphthyl	3k	85
11	11	$^t\mathrm{Bu}$	2-Naphthyl	31	92
12	1m	t Bu	2-Furyl	3m	87
13	1n	t Bu	2-Pyridyl	3n	85
14	1o	t Bu	$3,4\text{-Cl}_2\text{C}_6\text{H}_3$	3o	93
15	1p	t Bu	3,5-Br ₂ -4-MeOC ₆ H ₂	3p	93
16	1q	Me	Ph	3q	96
17	1r	Me	$4\text{-MeOC}_6\mathrm{H}_4$	3r	90
18	1s	Me	$4\text{-BrC}_6\mathrm{H}_4$	3s	96

 a Reactions were carried out using 1a (1.0 equiv), Me₃SiCF₃ (2.0 equiv), DABCO (10 mol %) in THF at room temperature for 12 h unless otherwise noted. b Isolated yield.

on carbon-carbon bond-formation, allylic alkylations with soft nucleophiles, including 1,3-dicarbonyl compounds and dicyanoalkenes, have been reported; however, organocatalyzed allylic alkylations with a hard nucleophile, the CF₃ anion, have not been reported. In this context, we first attempted our allylic trifluoromethylation reaction of 1a with Me₃SiCF₃ in the presence of a catalytic amount of bis-cinchona alkaloid, (DHQD)₂PHAL.¹⁰ Unfortunately, even after heating, no reaction was observed (Table 3, entry 1). After a brief survey of the reaction conditions, Morita-Baylis-Hillman carbonates 4a-d were found to be effective substrates for the asymmetric allylic trifluoromethylation reaction to furnish the desired chiral α -methylene β -trifluoromethyl esters in high enantioselectivities up to 94% ee, although the conversion was lower than that of racemic condition (entries 2—5). The short list of the enantioselective version of this transformation, however, was carefully chosen to demonstrate sufficient diversity of the present chemistry, which included nonsubstituted aromatic, o- or p-substituted aromatics with halogenyl moiety, sterically demanding or a sterically less demanding ester group. These results indicated that the substitution of the aromatic ring and ester moiety did not significantly affect the reactivity and enantioselectivity.

3974 Org. Lett., Vol. 13, No. 15, 2011

^{(8) (}a) Trost, B. M. *Chem. Rev.* **1996**, *96*, 395. (b) Trost, B. M.; Crawley, M. L. *Chem. Rev.* **2003**, *103*, 2921.

^{(9) (}a) Zhang, S. J.; Cui, H. L.; Jiang, K.; Li, R.; Ding, Z. Y.; Chen, Y. C. *Eur. J. Org. Chem.* **2009**, 5804. (b) Huang, J. R.; Cui, H. L.; Lei, J.; Sun, X. H.; Chen, Y. C. Chem. Commun. 2011, 47, 4784. (c) Hong, L.; Sun, W.; Liu, C.; Zhao, D.; Wang, R. Chem. Commun. 2010, 46, 2856. (d) Cui, H. L.; Huang, J. R.; Lei, J.; Wang, Z. F.; Chen, S.; Wu, L.; Chen, Y. C. Org. Lett. **2010**, 12, 720. (e) Peng, J.; Huang, X.; Cui, H. L.; Chen, Y. C. Org, Lett. **2010**, 12, 4260. (f) Cui, H. L.; Peng, J.; Feng, X.; Du, W.; Jiang, K.; Chen, Y. C. Chem.—Eur. J. 2009, 15, 1574. (g) Jiang, K.; Peng, J.; Cui, H. L.; Chen, Y. C. Chem. Commun. 2009, 45, 3955. (h) Du, Y.; Han, X.; Lu, X. Tetrahedron Lett. 2004, 45, 4967. (i) Steenis, D. J. V. C. Marcelli, T.; Lutz, M.; Spek, A. L.; Maarseveen, J. H.; Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281. (j) Sun, W.; Kim, L. H. J. N.; Lee, H. J.; Gong, J. H. Tetrahedron Lett. 2002, 43, 9141. (k) Zhang, T. Z.; Dai, L. X.; Hou, X. L. Tetrahedron: Asymmetry 2007, 18, 1990. (1) Jiang, Y. Q.; Shi, Y. L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202. (m) Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003. (n) Bengoa, E. G.; Landa, A.; Lizarranga, A.; Mielgo, A.; Oiarbide, M.; Palomo, C. Chem. Sci. 2011, 2, 353. (o) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. *Chem.*—*Eur. J.* **2010**, *16*, 1365. (p) Cui, H. L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y. C. Angew. Chem., Int. Ed. 2009, 48, 5737.

⁽¹⁰⁾ Catalyst and solvent screening are shown in Tables S1 and S2 in the Supporting Information.

The absolute stereochemistry of (S)-3f was confirmed by X-ray crystallographic analysis of the derivative (1R,2S)-7 described in the later part of the text (Figure 1 and Scheme 3) and the absolute stereochemistry of other trifluoromethylated compounds 3 was tentatively assumed by analogy.

Table 3. Enantioselective Trifluoromethylation of Morita—Baylis—Hillman Carbonates^a

entry	1/4	\mathbb{R}^1	\mathbb{R}^2	Ar	3	$\mathrm{yield}^b\left(\%\right)$	ee (%)
1	1a	Ac	^t Bu	C_6H_5	3a	Trace	ND
2	4a	Boc	$^t\mathrm{Bu}$	C_6H_5	3a	39	92
3	4b	Boc	$^t\mathrm{Bu}$	$2\text{-BrC}_6\mathrm{H}_4$	3d	37	88
4	4c	Boc	$^t\mathrm{Bu}$	$4\text{-BrC}_6\mathrm{H}_4$	3f	60	90
5	4d	Boc	Me	C_6H_5	3q	52	94

^a Reactions were carried out using **1a** (1.0 equiv), Me₃SiCF₃ (5.0 equiv), (DHQD)₂PHAL (10 mol %) in THF at 60 °C for 120 h unless otherwise noted. ^b Isolated yield.

Figure 1. X-ray Crystallographic analysis of (1*R*,2*S*)-7 (CCDC 827782).

The chiral α -methylene β -trifluoromethyl esters 3 obtained here could be smoothly transformed into biologically attractive carbo- and heterocycles 6 and 7. Two examples were performed (Scheme 3). First, intramolecular radical cyclization of the allylic trifluoromethylated product 3d

proceeded efficiently in the presence of "Bu₃SnH and AIBN to stereoselectively afford Indane derivative **6**. The relative stereochemistry of **6** was tentatively assigned to be a thermodynamically stable *trans*-configuration by the NMR analysis of **6**. Heterocycle **7**, having a spiro center, was also synthesized as a mixture of diastereoisomers by the 1,3-dipolar cycloaddition reaction of trifluoromethylated product **3f** with chlorobenzaldoxime in the presence of triethylamine in CH₂Cl₂ in 88% yield. In both cases, enantiopurities of the starting substrates **3** were retained.

Scheme 3. Conversion of Chiral α -Methylene β -Trifluoromethyl Esters 3 into Carbo- and Heterocycles 5 and 6

In summary, the organocatalyzed regioselective allylic trifluoromethylation of Morita–Baylis–Hillman adducts using Ruppert's reagent was achieved in high to excellent yields via a successive S_N2'/S_N2' mode for the first time. The reaction was extended to the asymmetric allylic trifluoromethylation by the use of bis-cinchona alkaloid catalyst with high enantioselectivities up to 94% ee. This should be a powerful protocol for accessing enantiomeric α -methylene β -trifluoromethyl esters that are useful synthetic building blocks for further transformation.

Acknowledgment. This study was financially supported in part by Grants-in-Aid for Scientific Research (21390030, 22106515, Project No. 2105: Organic Synthesis Based on Reaction Integration). We also thank TOSOH F-TECH INC. and the Asahi Glass Foundation.

Supporting Information Available. Experimental procedures and characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 13, No. 15, 2011