

Why Condo?

Can we predict condominium prices based on its features/location?

Lamudi.com

An Online Real Estate Marketplace

- Expanded in Philippines in 2014
- 6.6 Million Monthly
 Pageviews
- 140,000 Monthly Leads
- Currently Operates in 34
 Countries

Dataset

6,521 Unique Residential Condominium Listings

Preprocessing

- a) Drop Null Values
- b) Drop Anomalous Rows
- c) No Scaling

FEATURES

- 1. City
- 2. No. of Bedrooms
- 3. No. of Bathrooms
- 4. Floor Area
- 5. No. of Amenities
- 6. Latitude Coordinate
- 7. Longitude Coordinate
- 8. Floor Number
- 9. Price/Amount Target

ML Models Fitting the Data to the applicable models

ML MODEL W/ Optimized Parameters	Train Accuracy (R2 Score)	Test Accuracy (R2 Score)	MAE (in millions)	RMSE (in millions)
Linear	62.25 %	63.05 %	2.45	3.55
KNN	69.40 %	64.54 %	2.32	3.52
Decision Tree	83.52 %	75.58 %	1.78	2.87
Random Forest	89.99 %	83.34 %	1.53	2.20
Gradient Boosting	93.73 %	85.31 %	1.42	2.17
Extra Trees	90.44 %	83.14 %	1.58	2.21
XGB	90.56 %	84.45 %	1.48	2.24
Lightboost	90.79 %	84.93 %	1.44	2.24
Catboost	89.02%	84.00 %	1.51	2.22

ML Models Fitting the Data to the applicable models

ML MODEL W/ Optimized Parameters	Train Accuracy (R2 Score)	Test Accuracy (R2 Score)	MAE (in millions)	RMSE (in millions)
Linear	62.25 %	63.05 %	2.45	3.55
KNN	69.40 %	64.54 %	2.32	3.52
Decision Tree	83.52 %	75.58 %	1.78	2.87
Random Forest	89.99 %	83.34 %	1.53	2.20
Gradient Boosting	93.73 %	85.31 %	1.42	2.17
Extra Trees	90.44 %	83.14 %	1.58	2.21
XGB	90.56 %	84.45 %	1.48	2.24
Lightboost	90.79 %	84.93 %	1.44	2.24
Catboost	89.02%	84.00 %	1.51	2.22

ML Models Fitting the Data to the applicable models

ML MODEL W/ Optimized Parameters	Train Accuracy (R2 Score)	Test Accuracy (R2 Score)	MAE (in millions)	RMSE (in millions)
Linear	62.25 %	63.05 %	2.45	3.55
KNN	69.40 %	64.54 %	2.32	3.52
Decision Tree	83.52 %	75.58 %	1.78	2.87
Random Forest	89.99 %	83.34 %	1.53	2.20
Gradient Boosting	<mark>93.73 %</mark>	<mark>85.31 %</mark>	<mark>1.42</mark>	<mark>2.17</mark>
Extra Trees	90.44 %	83.14 %	1.58	2.21
XGB	90.56 %	84.45 %	1.48	2.24
Lightboost	<mark>90.79 %</mark>	<mark>84.93 %</mark>	<mark>1.44</mark>	<mark>2.24</mark>
Catboost	89.02%	84.00 %	1.51	2.22

ML Models

Fitting the Data to the applicable models

ML MODEL W/ Optimized Parameters	Train Accuracy (R2 Score)	Test Accuracy (R2 Score)	MAE (in millions)	RMSE (in millions)
Linear	62.25 %	63.05 %	2.45	3.55
KNN	69.40 %	64.54 %	2.32	3.52
Decision Tree	83.52 %	75.58 %	1.78	2.87
Random Forest	89.99 %	83.34 %	1.53	2.20
Gradient Boosting	93.73 %	85.31 %	1.42	2.17
Extra Trees	90.44 %	83.14 %	1.58	2.21
XGB	90.56 %	84.45 %	1.48	2.24
Lightboost	90.79 %	84.93 %	1.44	2.24
Catboost	89.02%	84.00 %	1.51	2.22
Voting	92.58 %	85.46 %	<mark>1.41</mark>	2.14

Voting Regressor Method
Using GBM and LB as the Base Estimators

Who can benefit from this model?

Thank you

