Projekt

Sterowniki robotów

Założenia projektowe

Wykrywacz kradzieży WK

Skład grupy: Sylwester Kozieja, 235798 Paula Langkafel, 235373

Termin: środa TN 13

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	1 Opis projektu							
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów mikrokontrolera 2.2 Konfiguracja peryferiów	•						
3	Urządzenia zewnętrzne 3.1 Akcelerometr – LSM303Ctr							
4	Założenia projektowe							
5	Harmonogram pracy 5.1 Zakres prac							
В	Bibilografia							

1 Opis projektu

Celem projektu jest stworzenie urządzenia, które poprzez komunikację z akcelerometrem wykrywa niepożądany ruch. Użytkownik będzie miał możliwość wybrania sposobu otrzymywania komunikatów. Jednym z założeń projektu jest wybór opcjonalnego interfejsu audio. Urządzenia ma zawierać menu dające możliwość podstawowej konfiguracji, takiej jak załączenie alarmu i wybór sposobu komunikowania się oraz ustawianie poziomu załączania alarmu. Dodatkową opcją jest wizualizowanie poziomu rejestrowanych przyspieszeń.

Na zakres prac składa się oprogramowanie zewnętrznej pamięci Flash , skonfigurowanie akcelerometru, a także realizacja komunikacji z interfejsami.

2 Konfiguracja mikrokontrolera

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMx

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów mikrokontrolera

Numer pinu	Pin	Tryb pracy	Funkcja/ etykieta
1	PE2	SAI1 MCLK A	SAI1 MCK
$\frac{1}{2}$	PE3	GPIO Output	AUDIO RST
3	PE4	SAI1 FS A	SAI1 FS
4	PE5	SAI1 SCK A	SAI1 SCK
5	PE6	SAI1 SD A	57111_5011
15	PC0	GPIO Output	MAG CS
16	PC1	LCD SEG19	
17	PC2	GPIO Input	MAG DRDY
18	PC3	LCD VLCD	
23	PA0	GPIO EXTI0	JOY CENTER
24	PA1	GPIO EXTI1	JOY LEFT
25	PA2	GPIO EXTI2	JOY RIGHT
26	PA3	GPIO EXTI3	JOY UP
30	PA5	GPIO EXTI5	JOY DOWN
31	PA6	LCD SEG3	
32	PA7	LCD SEG4	
33	PC4	LCD $-SEG22$	
34	PC5	LCD SEG23	
35	PB0	LCD $-SEG5$	
36	PB1	LCD SEG6	
37	PB2	GPIO Output	LED R
38	PE7	SAI1 SD B	AUODIO_DIN
39	PE8	GPIO_Output	LED G
40	PE9*	SAI1 FS B	AOUDIO CLK
41	PE10	QUADSPĪ CLK	QSPI CLK
42	PE11	QUADSPI NCS	QSPI CS
43	PE12	QUADSPI_BK1_IO0	QSPI_D0
44	PE13	QUADSPI_BK1_IO1	QSPI_D1
45	PE14	QUADSPI_BK1_IO2	QSPI_D2
46	PE15	QUADSPI_BK1_IO3	QSPI_D3
47	PB10	LCD_SEG10	
48	PB11	LCD_SEG11	
51	PB12	LCD_SEG12	
52	PB13	LCD_SEG13	
53	PB14	LCD_SEG14	
54	PB15	LCD_SEG15	
55	PD8	LCD_SEG28	
56	PD9	LCD_SEG29	
57	PD10	LCD_SEG30	
58	PD11	LCD_SEG31	
59	PD12	LCD_SEG32	
60	PD13	LCD_SEG33	
61	PD14	LCD_SEG34	
62	PD15	LCD_SEG35	
63	PC6	LCD_SEG24	
64	PC7	LCD_SEG25	
65	PC8	LCD_SEG26	
66	PC9	LCD_SEG27	
67	PA8	LCD_COM0	
68	PA9	LCD_COM1	
69 77	PA10 PA15	LCD_COM2	
78	PC10	(JTDI) LCD_SEG17 LCD_SEG40	
10	L O10	LOD_SEG40	

Tabela 1: Konfiguracja pinów mikrokontrolera

Numer pinu	Pin	Tryb pracy	Funkcja/ etykieta
79	PC11	LCD_SEG41	
80	PC12	LCD_SEG42	
83	PD2	LCD_SEG43	
89	PB3	(JTDO-TRACESWO) LCD_SEG7	
90	PB4	(NJTRST)LCD_SEG8	
91	PB5	LCD_SEG9	
92	PB6	I2C1_SCL	
93	PB7	I2C1_SDA	
95	PB8	LCD_SEG16	
96	PB9	LCD_COM3	
97	PE0	GPIO_Output	$\mathrm{XL}_{-}\mathrm{CS}$
98	PE1	LCD_SEG37	

Tabela 2: Konfiguracja pinów mikrokontrolera

2.2 Konfiguracja peryferiów

Konfiguracja peryferiów

1. QUADSPI

Interfejs użyty do obsługi pamięci Flash zapewniający dużą przepustowość dzięki czterem liniom danych (PE12:15) oraz dwóm liniom sterującym (PE10 i PE11).

2. LCD

Interfejs wyświetlacza umożliwiający komunikację z urządzeniem poprzez zaprojektowane menu. Korzysta z dużej ilości pinów, które opisane są na rysunku z konfiguracją. Ustawienia standardowe, parametr Duty Selection ustawiony na 1/4.

3. GPIO

Prosty interfejs do sterowania cyfrowymi wejściami/wyjściami. Użyty do obsługi LED i joystick'a. 5 pinów dla joystick'a (PA0:3 i PA5) oraz pin dla diody LED (PB2).

4. I2C

//Coś tu mamy? akcelerometr

5. SAI

Interfejs do obsługi wyjścia audio.

6 MEMS

albo tu akcelerometr

3 Urządzenia zewnętrzne

3.1 Akcelerometr – LSM303C

4 Założenia projektowe

- 1. Projekt będzie wykonywany w oparciu o płytkę STM32L476 Discovery wypożyczoną od prowadzącego kurs
- 2. Pomiar przyspieszenia będzie odbywał się przez wbudowany moduł z akcelerometrem
- 3. W przypadku wykrycia alarmu urządzenie podejmie określone kroki.
- 4. Menu sterowane z joystick'iem zapewni możliwość wybór ustawień sygnalizacji alarmu(dioda oraz głośnik).
- 5. Zbieranie danych o alarmach i przechowywanie w pamięci Flash.
- 6. Wykorzystanie zegara RTC do umiejscowienia zdarzenia alarmu w jego lokalnym czasie.
- 7. Badania dotyczące wykrywania progu alarmu i sprawdzenie funkcjonalności zaprojektowanego urządzenia.

5 Harmonogram pracy

5.1 Zakres prac

Zapoznanie się z mikrokontrolerem, konfiguracja peryferiów. Implementacja obsługi zarówno pamięci Flash, jak i akcelerometru. Skonfigurowanie zegara RTC w celu późniejszej implementacji przekazywania godziny nieplanowanego ruchu. Zapoznanie z literaturą i poruszanym problemem. Przeprowadzenie badań na temat progów i optymalizacji działania urządzenia.

5.2 Kamienie milowe

- 1. Oddanie I etapu projektu. Projekt powinien zawierać założenia oraz plan co będzie podstawą do rozpoczęcia prac.
- 2. Oddanie II etapu projektu. Konfiguracja peryferiów powinna być już sfinalizowana, a przynajmniej na etapie pozwalającym rozpoczęcie kolejnego etapu związanego z badaniem przyspieszeń które powinny aktywować alarm.
- 3. Oddanie III etapu gdzie projekt powinien być już kompletny. Wg planu projekt powinien zakończyć się tydzień przed ostatecznym terminem złożenia pracy u prowadzącego.

5.3 Diagram Gantta

Rysunek 3: Diagram Gantta

5.4 Podział pracy

Oboje uczestnicy projektu zajmą się wstępną konfiguracją peryferiów odbywającą się za pomocą programu CubeMx. Zostanie zaimplementowana obsługa pamięci Flash, a także akcelerometru. W tym czasie opracowany zostanie również sposób przechowywania danych na zewnętrznej pamięci Flash. Projekt menu ma zakładać możliwość wyboru sygnału uruchamiającego alarm.

Sylwester Kozieja	%	Paula Langkafel	%
Wstępna konfiguracja peryferiów w programie CubeMx		Wstępna konfiguracja peryferiów w programie CubeMx	
Wstępny projekt menu		Implementacja obsługi akcelerometru	
Konfiguracja zegara RTC			

Tabela 3: Podział pracy – Etap II

Sylwester Kozieja	%	Paula Langkafel	%
Oprogramowanie zewnętrznej pamięci Flash			
oraz opracowanie sposobu przechowywania		Opracowanie kryteriów wykrywania alarmu	
danych			
Implementacja opracowanych rozwiązań		Wykanania tastáw unga dgania	
wykrywania alarmu		Wykonanie testów urządzenia	
Sygnalizacja audiowizualna za pomocą Audio			
DAC oraz diody LED			

Tabela 4: Podział pracy – Etap III

Literatura

- [1] User manual Getting started with STM32L476G discovery kit software development tools, Sierpień 2015.
- [2] UM1928 User manual Getting started with STM32L476G discovery kit software development tools, Wrzesień 2018.
- [3] W. Domski. Sterowniki robotów, Laboratorium Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku. Marzec 2017.
- [4] Marius Bazu, Lucian Galateanu, Virgil Emil Ilian, Jerome Loicq, Serge Habraken, Jean-Paul Collette. Quantitative accelerated life testing of mems accelerometers. *Sensors*, Listopad 2007.
- [5] J. L. Suryadiputra Liawatimena. Vehicle Tracker wih a GPS and Accelerometer Sensor System in Jakarta. *Internetworking Indonesia Journal*, Styczeń 2017.