1. マンハッタン関数 $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ を

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i| \quad (\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n))$$

と定義する. このとき (\mathbb{R}^n,d) が距離空間となることを証明せよ. (つまり講義中に行った証明をもう一度自分の手で書き, d が \mathbb{R}^n 上の距離関数であることを示してください.)

(解答例)

(1) マンハッタン距離関数の定義から、任意の $x,y \in \mathbb{R}^2$ に対して

$$d(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} |x_i - y_i| \ge 0$$

が従う. さらに上記式より d(x,y)=0 であることと全ての i $(1 \le i \le n)$ について $x_i=y_i$ であることは同値、すなわち x=y であることは同値である.

(2) マンハッタン距離関数の定義から、任意の $x,y \in \mathbb{R}^2$ に対して

$$d(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} |x_i - y_i| = \sum_{i=1}^{n} |y_i - x_i| = d(\boldsymbol{y}, \boldsymbol{x})$$

が成り立つ.

(3) 任意の $x, y, z \in \mathbb{R}^2$ に対して

$$d(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} |x_i - z_i|$$

$$= \sum_{i=1}^{n} |x_i - y_i| + y_i - z_i|$$

$$\leq \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i|$$

$$= d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$$

が成り立つ.

以上より (\mathbb{R}^n,d) は距離空間である.

2. 次のように定められた関数 d は全て \mathbb{R}^2 上の距離関数ではない. それぞれの d について反例を挙げよ. ただし, ${\pmb x}=(x_1,x_2), {\pmb y}=(y_1,y_2)\in \mathbb{R}^2$ とする.

(a)
$$d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} - 1.$$
(**解答例**)

x = (0,0), y = (0,0) が反例. 実際

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{0^2 + 0^2} - 1 = -1 < 0$$

である.

(b) $d(\mathbf{x}, \mathbf{y}) = |x_1^2 - y_1^2| + |x_2^2 - y_2^2|.$ (解答例)

x = (1,0), y = (-1,0) が反例. 実際, $x \neq y$ であるが

$$d(\mathbf{x}, \mathbf{y}) = |1^2 - (-1)^2| + |0^2 - 0^2| = 0$$

である.

(c) $d(\mathbf{x}, \mathbf{y}) = \sqrt{(2x_1 - y_1)^2 + (2x_2 - y_2)^2}$. (解答例)

x = (0,0), y = (1,0) が反例. 実際

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(0-1)^2 + (0-0)^2} = 1$$
$$d(\mathbf{y}, \mathbf{x}) = \sqrt{(2-0)^2 + (0-0)^2} = 2$$

となって $d(x, y) \neq d(y, x)$ である.

(d) $d(\boldsymbol{x}, \boldsymbol{y}) = (x_1 - y_1)^2 + (x_2 - y_2)^2$. (解答例)

x = (0,0), y = (1,0), z = (2,1) が反例. 実際

$$d(\mathbf{x}, \mathbf{z}) = (0 - 2)^2 + (0 - 1)^2 = 5$$
$$d(\mathbf{x}, \mathbf{y}) = (0 - 1)^2 + (0 - 0)^2 = 1$$
$$d(\mathbf{y}, \mathbf{z}) = (1 - 2)^2 + (0 - 1)^2 = 2$$

なので三角不等式 $d(x, z) \le d(x, y) + d(y, z)$ を満たしていない.

3. 区間 I=[0,1] 上の実数値連続関数全体の集合を C(I) で表す. このとき関数 $d:C(I)\times C(I)\to\mathbb{R}$ を

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx$$

と定める. このとき d は C(I) 上の距離関数であることを証明せよ (したがってこのとき (C(I),d) は距離空間となる).

(解答例)

(1) 任意の $f,g\in C(I)$ に対して $d(f,g)\geq 0$ であることを示す.全ての $x\in I$ に対して $|f(x)-g(x)|\geq 0$ であるから

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx \ge \int_0^1 0 dx = 0$$

となって示された. また、上記式より d(f,g)=0 であることと f=g であることは同値である.

(2) 任意の $f,g \in C(I)$ に対して d(f,g) = d(g,f) であることは

$$d(f,g) = \int_0^1 |f(x) - g(x)| dx = \int_0^1 |g(x) - f(x)| dx = d(g,f)$$

より従う.

(3) 任意の $f, g, h \in C(I)$ に対して

$$\begin{split} d(f,h) &= \int_0^1 |f(x) - h(x)| dx \\ &= \int_0^1 |f(x) - g(x) + g(x) - h(x)| dx \\ &\leq \int_0^1 |f(x) - g(x)| dx + \int_0^1 |g(x) - h(x)| dx \\ &= d(f,g) + d(g,h) \end{split}$$

であるから三角不等式が成り立つ.

以上より, d は C(I) 上の距離関数である.