Cooperative Game Theory: More Solution concepts

Fall 2020

Other solution concepts

Banzhaf index

The Banzhaf index of player i in game $\Gamma = (N, v)$ is

$$\beta_i(\Gamma) = \frac{1}{2^{n-1}} \sum_{C \subseteq N - \{i\}} [\nu(C \cup \{i\}) - \nu(C)]$$

Banzhaf index

The Banzhaf index of player i in game $\Gamma = (N, v)$ is

$$\beta_i(\Gamma) = \frac{1}{2^{n-1}} \sum_{C \subseteq N - \{i\}} [\nu(C \cup \{i\}) - \nu(C)]$$

Dummy player, symmetry, additivity, but not efficiency.

- The nucleolus is a solution concept that defines a unique outcome for a superadditive game.
- Consider $\Gamma = (N, v)$, $C \subseteq N$ and a payoff vector x.

- The nucleolus is a solution concept that defines a unique outcome for a superadditive game.
- Consider $\Gamma = (N, v)$, $C \subseteq N$ and a payoff vector x.
 - The deficit of C with respect to x is defined as d(x,C) = v(C) x(C).

- The nucleolus is a solution concept that defines a unique outcome for a superadditive game.
- Consider $\Gamma = (N, v)$, $C \subseteq N$ and a payoff vector x.
 - The deficit of C with respect to x is defined as d(x,C) = v(C) x(C).
 - Any payoff vector x defines a 2^n deficit vector $\mathbf{d}(x) = (d(x, C_1), \dots, d(x, C_{2^n}))$.

- The nucleolus is a solution concept that defines a unique outcome for a superadditive game.
- Consider $\Gamma = (N, v)$, $C \subseteq N$ and a payoff vector x.
 - The deficit of C with respect to x is defined as d(x,C) = v(C) x(C).
 - Any payoff vector x defines a 2^n deficit vector $\mathbf{d}(x) = (d(x, C_1), \dots, d(x, C_{2^n}))$.
 - Let \leq_{lex} denote the lexicographic order

- The nucleolus is a solution concept that defines a unique outcome for a superadditive game.
- Consider $\Gamma = (N, v)$, $C \subseteq N$ and a payoff vector x.
 - The deficit of C with respect to x is defined as d(x,C) = v(C) x(C).
 - Any payoff vector x defines a 2^n deficit vector $\mathbf{d}(x) = (d(x, C_1), \dots, d(x, C_{2^n}))$.
 - Let $\leq_{\textit{lex}}$ denote the lexicographic order
- The nucleolus $\mathcal{N}(\Gamma)$ is the set $\mathcal{N}(\Gamma) = \{x \mid \mathbf{d}(x) \leq_{lex} \mathbf{d}(y) \text{ for all imputation } y\}.$

- The nucleolus is a solution concept that defines a unique outcome for a superadditive game.
- Consider $\Gamma = (N, v)$, $C \subseteq N$ and a payoff vector x.
 - The deficit of C with respect to x is defined as d(x,C) = v(C) x(C).
 - Any payoff vector x defines a 2^n deficit vector $\mathbf{d}(x) = (d(x, C_1), \dots, d(x, C_{2^n}))$.
 - Let \leq_{lex} denote the lexicographic order
- The nucleolus $\mathcal{N}(\Gamma)$ is the set $\mathcal{N}(\Gamma) = \{x \mid \mathbf{d}(x) \leq_{lex} \mathbf{d}(y) \text{ for all imputation } y\}.$
- Can be computed by solving a polynomial number of exponentially large LPs.

Banzhaf index Nucleolus Kernel Stable set

• The kernel consists of all outcomes where no player can credibly demand a fraction of another player's payoff.

- The kernel consists of all outcomes where no player can credibly demand a fraction of another player's payoff.
- Consider $\Gamma = (N, v)$, $i \in N$ and a payoff vector x. the surplus of i over the player j with respect to x is

$$S_{i,j}(x) = \max\{v(C) - x(C) \mid C \subseteq N, i \in C, j \notin C\}$$

- The kernel consists of all outcomes where no player can credibly demand a fraction of another player's payoff.
- Consider $\Gamma = (N, v)$, $i \in N$ and a payoff vector x. the surplus of i over the player j with respect to x is

$$S_{i,j}(x) = \max\{v(C) - x(C) \mid C \subseteq N, i \in C, j \notin C\}$$

- The kernel of a superadditive game Γ , $\mathcal{K}(\Gamma)$ is the set of all imputations x such that, for any pair of players (i,j) either:
 - $S_{i,j}(x) = S_{j,i}(x)$, or
 - $S_{i,j}(x) > S_{j,i}(x)$ and $x_j = v(\{j\})$, or
 - $S_{i,j}(x) < S_{j,i}(x)$ and $x_i = v(\{i\})$.

- The kernel consists of all outcomes where no player can credibly demand a fraction of another player's payoff.
- Consider $\Gamma = (N, v)$, $i \in N$ and a payoff vector x. the surplus of i over the player j with respect to x is

$$S_{i,j}(x) = \max\{v(C) - x(C) \mid C \subseteq N, i \in C, j \notin C\}$$

- The kernel of a superadditive game Γ , $\mathcal{K}(\Gamma)$ is the set of all imputations x such that, for any pair of players (i,j) either:
 - $S_{i,j}(x) = S_{j,i}(x)$, or
 - $S_{i,j}(x) > S_{j,i}(x)$ and $x_j = v(\{j\})$, or
 - $S_{i,j}(x) < S_{j,i}(x)$ and $x_i = v(\{i\})$.
- The kernel always contains de nucleolus, thus it is non-empty.

Banzhaf index Nucleolus Kernel Stable set

• Consider $\Gamma = (N, v)$ superadditive and two imputations y, z.

- Consider $\Gamma = (N, v)$ superadditive and two imputations y, z.
 - y dominates z via coalition C if $y(C) \le v(C)$ and $y_i > z_i$, for any $i \in C$

- Consider $\Gamma = (N, v)$ superadditive and two imputations y, z.
 - y dominates z via coalition C if $y(C) \le v(C)$ and $y_i > z_i$, for any $i \in C$
 - y dominates z (y dom z) if there is a coalition C such that y dominates z via coalition C

- Consider $\Gamma = (N, \nu)$ superadditive and two imputations y, z.
 - y dominates z via coalition C if $y(C) \le v(C)$ and $y_i > z_i$, for any $i \in C$
 - y dominates z (y dom z) if there is a coalition C such that y dominates z via coalition C
 - For a set of imputations J
 Dom(J) = {z | there exists y ∈ J, y dom z}.

- Consider $\Gamma = (N, v)$ superadditive and two imputations y, z.
 - y dominates z via coalition C if $y(C) \le v(C)$ and $y_i > z_i$, for any $i \in C$
 - y dominates z (y dom z) if there is a coalition C such that y dominates z via coalition C
 - For a set of imputations J
 Dom(J) = {z | there exists y ∈ J, y dom z}.
- A set of imputations J is a stable set of Γ if $\{J, \text{Dom}(J)\}$ is a partition of the set of imputations.

- Consider $\Gamma = (N, v)$ superadditive and two imputations y, z.
 - y dominates z via coalition C if $y(C) \le v(C)$ and $y_i > z_i$, for any $i \in C$
 - y dominates z (y dom z) if there is a coalition C such that y dominates z via coalition C
 - For a set of imputations J
 Dom(J) = {z | there exists y ∈ J, y dom z}.
- A set of imputations J is a stable set of Γ if $\{J, \text{Dom}(J)\}$ is a partition of the set of imputations.
- Stable sets form the first solution proposed for cooperative games [von Neuwmann, Morgensten, 1944].

- Consider $\Gamma = (N, v)$ superadditive and two imputations y, z.
 - y dominates z via coalition C if $y(C) \le v(C)$ and $y_i > z_i$, for any $i \in C$
 - y dominates z (y dom z) if there is a coalition C such that y dominates z via coalition C
 - For a set of imputations J
 Dom(J) = {z | there exists y ∈ J, y dom z}.
- A set of imputations J is a stable set of Γ if $\{J, \text{Dom}(J)\}$ is a partition of the set of imputations.
- Stable sets form the first solution proposed for cooperative games [von Neuwmann, Morgensten, 1944].
- There are games that have no stable sets [Lucas, 1968].

