D

Definición 4.2.2

Vectores paralelos

Dos vectores diferentes de cero \mathbf{u} y \mathbf{v} son **paralelos** si el ángulo entre ellos es cero o π . Observe que los vectores paralelos tienen la misma dirección o direcciones opuestas.

EJEMPLO 4.2.2 Dos vectores paralelos

Demuestre que los vectores $\mathbf{u} = (2, -3)$ y $\mathbf{v} = (-4, 6)$ son paralelos.

SOLUCIÓN
$$\blacktriangleright$$
 $\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{-8 - 18}{\sqrt{13}\sqrt{52}} = \frac{-26}{\sqrt{13}(2\sqrt{13})} = \frac{-26}{2(13)} = -1.$

Por lo tanto, $\varphi = \pi$ (de manera que **u** y v tienen direcciones opuestas).

Teorema 4.2.3

Si $\mathbf{u} \neq \mathbf{0}$, entonces $\mathbf{v} = \alpha \mathbf{u}$ para alguna constante α si y sólo si \mathbf{u} y v son paralelos.

Demostración

La prueba se deja como ejercicio (vea el problema 42 de esta sección).

Definición 4.2.3

Vectores ortogonales

Los vectores **u** y **v** diferentes de cero son **ortogonales** (o **perpendiculares**) si el ángulo entre ellos es $\frac{\pi}{2}$.

© EJEMPLO 4.2.3 Dos vectores ortogonales

Demuestre que los vectores $\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$ y $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j}$ son ortogonales.

SOLUCIÓN • $\mathbf{u} \cdot \mathbf{v} = 3 \cdot -44 \cdot 3 = 0$. Esto implica que $\cos \varphi = \frac{(\mathbf{u} \cdot \mathbf{v})}{|\mathbf{u}| |\mathbf{v}|} = 0$, y como φ está en el intervalo $[0, \pi], \varphi = \frac{\pi}{2}$.

Teorema 4.2.4

Los vectores \mathbf{u} y \mathbf{v} diferentes de cero son ortogonales si y sólo si $\mathbf{u} \cdot \mathbf{v} = 0$.

Demostración

Esta prueba también se deja como ejercicio (vea el problema 43 de esta sección).

Muchos problemas interesantes se refieren a la noción de la proyección de un vector sobre otro. Antes de definir esto se demuestra el siguiente teorema.