(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 10. April 2003 (10.04.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/029162 A2

(51) Internationale Patentklassifikation⁷:

- (21) Internationales Aktenzeichen: PCT/DE02/03528
- (22) Internationales Anmeldedatum:

20. September 2002 (20.09.2002)

(25) Einreichungssprache:

Deutsch

C04B

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 48 378.3 29. September 2001 (29.09.2001) DE 102 29 086.5 28. Juni 2002 (28.06.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CERAMTEC AG [DE/DE]; Innovative Ceramic Engineering, Fabrikstrasse 23 29, 73207 Plochingen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HELKE, Günter [DE/DE]; Sonnenstrasse 28, 91207 Lauf-Heuchling (DE).
- (74) Anwälte: UPPENA, Franz usw.; Dynamit Nobel Aktiengesellschaft, Patente, Marken & Lizenzen -, Kaiserstrasse 1, 53840 Troisdorf (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE (Gebrauchsmuster), DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: PIEZOELECTRIC CERAMIC MATERIALS BASED ON LEAD ZIRCONATE TITANATE (PZT) HAVING THE CRYSTAL STRUCTURE OF PEROVSKITE

(54) Bezeichnung: PIEZOELEKTRISCHE KERAMISCHE WERKSTOFFE AUF DER BASIS VON BLEIZIRKONATTITANAT (PZT) MIT KRISTALLSTRUKTUR DES PEROWSKITS

(57) Abstract: The invention relates to piezoelectric ceramic materials based on the system Pb(Zr,Ti)O₃, i.e. solid solutions of lead zirconate PbTiO₃, characterized by having very good dielectric and electromechanical properties that can be adapted for different uses by modifying the composition. The piezoelectric ceramic materials based on the system Pb(Zr,Ti)O₃ are modified in order to obtain a high level of piezoelectric activity. The invention provides piezoelectric ceramic materials based on lead zirconate titanate (PZT) having the crystal structure of perovskite with formula A²⁺B⁴⁺O₃²⁻, which are characterized by a substitution of heterovalent acceptor and donator ions at Zr/Ti sites.

(57) Zusammenfassung: Piezoelektrische keramische Werkstoffe auf der Basis von Bleizirkonattitanat (PZT) mit der Kristallstruktur des Perowskits Piezokeramische Werkstoffe auf der Basis des Systems Pb(Zr,Ti)O3, d.h. feste Lösungen von Bleizirkonat PbTiO3, zeichnen sich durch sehr gute dielektrische und elektromechanische Eigenschaften aus, die durch Modifikation der Zusammensetzung für unterschiedliche Anwendungen angepasst werden können. Die piezoelektrischen keramischen Werkstoffe auf der Basis des Systems Pb(Zr,Ti)O3 sind so zu modifizieren, dass ein hoher Level der piezoelektrischen Aktivität eingestellt wird. Erfindungsgemäß werden piezoelektrische keramische Werkstoffe auf der Basis von Bleizirkonattitanat (PZT) mit der Kristallstruktur des Perowskits mit der Formel A2+B4+O32- vorgeschlagen, die durch eine Substitution von heterovalenten Akzeptor- und Donator-Ionen an Zr/Ti-Plätzen gekennzeichnet sind.

WO 03/029162 PCT/DE02/03528 - 1 -

Piezoelektrische keramische Werkstoffe auf der Basis von Bleizirkonattitanat (PZT) mit der Kristallstruktur des Perowskits

Die Erfindung betrifft Piezoelektrische keramische Werkstoffe auf der Basis von Bleizirkonattitanat (PZT) mit der Kristallstruktur des Perowskits mit der Formel 5 A²+B⁴+O₃²-.

Piezokeramische Werkstoffe auf der Basis des Systems Pb(Zr,Ti)O₃, d.h. feste Lösungen von Bleizirkonat PbZrO₃ und Bleititanat PbTiO₃, zeichnen sich durch sehr gute dielektrische und elektromechanische Eigenschaften aus, die durch Modifikation der Zusammensetzung für unterschiedliche Anwendungen angepasst werden können.

Zur Erfüllung strenger Anforderungen bei speziellen Anwendungen wurden unterschiedliche Techniken zur Modifikation der Zusammensetzung entwickelt. Die Modifikation der Zusammensetzung ergibt sich durch teilweise Substitution von Ionen gleicher Wertigkeit an Pb-Plätzen und Zr/Ti-Plätzen und durch Dotierung mit Ionen abweichender Wertigkeit ebenso wie durch Substitution von Ionen-Komplexen.

Durch die Dotierung mit Ionen abweichender Wertigkeit werden in Abhängigkeit von Ionenradius und Wertigkeit unterschiedliche Effekte erzielt. Durch "Donator-Ionen" wie La³⁺ und Nd³⁺ auf Pb²⁺-Plätzen oder Nb⁵⁺ auf (Zr/Ti)⁴⁺-Plätzen ergeben sich sogenannte "weiche" Piezokeramiken, die sich insbesondere durch eine große Dielektrizitätskonstante und eine hohe piezoelektrische Aktivität auszeichnen. Durch "Akzeptor-Ionen" wie K⁺ und Na⁺ auf Pb²⁺-Plätzen oder Fe³⁺ auf (Zr/Ti)⁴⁺-Plätzen ergeben sich sogenannte "harte" Piezokeramiken, die sich insbesondere durch geringe dielektrische und mechanische Verluste, also eine hohe Güte, und hohe Koerzitivfeldstärke auszeichnen.

WO 03/029162 PCT/DE02/03528 - 2 -

Die durch die jeweilige Ionenart erzeugten Ladungsdefizite werden durch Bildung von, einfach geladenen, Blei- beziehungsweise Sauerstoff-Fehlstellen kompensiert.

Eine gekoppelte Substitution heterovalenter Ionen kann für die Steuerung der Effekte von Donator- und Akzeptor-Ionen in Anspruch genommen werden. Dadurch wird es beispielsweise möglich, die durch Akzeptor-Dotierung hervorgerufenen Ladungs-Defizite mittels durch Donator-Dotierung entstehenden Ladungsüberschuss vollständig oder mindestens teilweise zu kompensieren. Durch die gekoppelte Substitution von Donator- und Akzeptor-Ionen ist es möglich, die Stabilität von Piezokeramiken auf der Basis von Bleizirkonattitanat bei Aufrechterhaltung der piezoelektrischen Aktivität und der hohen Dielektrizitätskonstante deutlich zu erhöhen, wie aus der DE 198 40 488 A1 bekannt ist.

Vielfältige Möglichkeiten der Modifikation von festen Lösungen des Systems 15 Pb(Zr,Ti)O₃ ergeben sich mit der, teilweisen, Substitution von komplexen valenzkompensierte als Zusammensetzungen Verbindungen Vielkomponenten-Systemen mit der allgemeinen Schreibweise PbTiO₃-PbZrO₃- $\textstyle\sum_n A'_{\alpha} A''_{\beta} B'_{\chi} B''_{\delta} O_3. \ \ \text{Bei Zugabe nur einer dieser komplexen Verbindungen zu dem}$ binären System der festen Lösungen PbZrO₃-PbTiO₃[Pb(Zr,Ti)O₃] können 20 "ternäre" feste Lösungen mit einer großen Variationsbreite der dielektrischen und elektromechanischen Eigenschaften gebildet werden. Zu solchen komplexen Verbindungen gehören auch solche mit der chemischen Formel A²⁺(B³⁺_{1/2} $B^{5+}_{1/2}O_3$ mit $A^{2+} = Pb^{2+}$, Sr^{2+} oder Ba^{2+} . Mit dem lonenpaar B^{3+}/B^{5+} ist auch eine gekoppelte Substitution von 3-wertigen Akzeptor-Ionen und 5-wertigen Donatorlonen, beispielsweise von Fe³⁺/Nb⁵⁺ in einem Komplex Pb(Fe³⁺_{1/2} Nb⁵⁺_{1/2})O₃, an (Zr/Ti)⁴⁺ -Plätzen im System Pb(Zr,Ti)O₃ gegeben. In diesem Fall bewirkt die gekoppelte Substitution eine Ladungsneutralität, so dass Ladungsdefizite, die durch Bildung geladener Fehlstellen ausgeglichen werden müssen, nicht WO 03/029162 PCT/DE02/03528 - 3 -

auftreten können. Trotzdem erfolgt mit der gekoppelten Substitution des lonenpaares Fe³⁺/Nb⁵⁺ eine Änderung der dielektrischen und elektromechanischen Eigenschaften der in dieser Weise modifizierten PZT-Keramiken.

5 Es ist die Aufgabe der vorliegenden Erfindung, die piezoelektrischen keramischen Werkstoffe auf der Basis des Systems Pb(Zr,Ti)O₃ so zu modifizieren, dass ein hoher Level der piezoelektrischen Aktivität eingestellt wird.

Die Lösung der Aufgabe erfolgt mit Hilfe der kennzeichnenden Merkmale des ersten Anspruchs. Vorteilhafte Ausgestaltungen der Erfindung werden in den Unteransprüchen beansprucht.

Erfindungsgemäß sind Bleizirkonattitanat-Werkstoffe auf der Basis des Systems Pb(Zr,Ti)O₃ durch Substitution von heterovalenten Akzeptor- und Donator-Ionen an Zr/Ti-Plätzen modifiziert. Durch gekoppelte Substitution von heterovalenten Akzeptor- und Donator-Ionen an Zr/Ti-Plätzen, d.h. an B⁴⁺-Plätzen im Perowskit mit der allgemeinen Formulierung A²⁺B⁴⁺O₃²⁻, zur Bildung von nur partiell valenzkompensierten Zusammensetzungen des Systems PZT wird ein hoher Level der piezoelektrischen Aktivität eingestellt. Werkstoffe eines solchen Systems zeichnen sich durch eine hohe Curietemperatur und insbesondere auch durch eine gesteuerte Sinteraktivität aus, so dass unterschiedliche Formgebungs- und Sinterverfahren für piezokeramische Bauteile aus Werkstoffen dieses Systems zum Einsatz kommen können.

Im modifizierten System PZT kommt beispielsweise eine gekoppelte Substitution von Al³⁺-Akzeptor-Ionen und Nb⁵⁺-Donator-Ionen in Zusammensetzungen mit der allgemeinen Formulierung [Pb_{0.995}Sr_{0.02}][Al_{0.005}(Zr_xTi_{1-x})_{0.975}Nb_{0.02}]0₃ in Betracht.

Für den direkten Vergleich wurde die Zusammensetzung 0,98Pb(Zr _{0,52} Ti_{0,48})O₃ –0,02Sr(Al_{0,5} Nb_{0,5})O₃, eine valenzkompensierte gekoppelte Substitution von Akzeptor- und Donator-lonen, herangezogen.

- 4 -

Die Eigenschaften der Zusammensetzung 0,98Pb(Zr_{0,52}Ti_{0,48})O₃–0,02Sr(Al_{0,5} Nb_{0,5})O₃ als Modellsubstanz mit dem hypothetischen Akzeptor-Donator-Komplex (AL_{0,5} Nb_{0,5})O₃ zeigen, dass es nicht möglich ist, durch Valenzkompensation bei Substitution des Ionen-Paares Al³⁺ Nb⁵⁺ im Ionenkomplex Sr(AL_{0,5} Nb_{0,5})O₃ Werkstoffe mit einer hohen piezoelektrischen Aktivität und gesteuerter Sinteraktivität herzustellen. Die dielektrischen und elektromechanischen Kenngrößen von Zusammensetzungen mit valenzkompensierter gekoppelter Substitution sind wesentlich geringer als die der Zusammensetzung mit partieller Valenzkompensation.

Die Sintertemperaturen der Piezokeramiken des Systems [Pb $Sr_{0,02}$][Al_{0,005}(Zr_x Ti_{1-x})_{0,995} Nb_{0,02}]0₃ liegen bei 1100 bis 1200°C und damit etwa 50 bis 70°C unterhalb der Sintertemperaturen von Piezokeramiken des Systems 0,98Pb ($Zr_{0.52}$ $Ti_{0.48}$)O₃–0,02Sr(AL_{0,5} Nb_{0,5})O₃.

Weitere Beispiele für eine gekoppelte Substitution von heterovalenten Akzeptorund Donator-Ionen an Zr/Ti-Plätzen, d.h. B⁴⁺-Plätzen, sind Zusammensetzungen des Systems mit der allgemeinen Formulierung [Pb_{0,995}Sr_{0,02}][Fe_{0,005}(Zr_x Ti_{1-x})_{0,975} Nb_{0,02}]0₃.

Es folgen drei Beispiele für die erfindungsgemäßen Zusammensetzungen sowie ein Beispiel für eine Vergleichszusammensetzung:

 Piezoelektrischer keramischer Werkstoff der Zusammensetzung [PbSr_{0,02}][Al_{0,005}(Zr_{0,53}Ti_{0,47})_{0,995} Nb_{0,02}]0₃ Formgebung: Trockenpressen

25

40

		Sintertemperatur: 1200°C	
		Werkstoffdaten:	
		Dielektrizitätskonstante $\varepsilon_{33}^{1}/\varepsilon_{0}$	1980
		dielektrischer Verlustfaktor tan δ, 10 ⁻⁴	155
5		planarer elektromechanischer Kopplungsfaktor kp	0,66
		longitudinaler elektromechanischer	
		Kopplungsfaktor k ₃₃	0,74
		Piezomodul d ₃₃ , 10 ⁻¹² C/N	495
		mechanischer Gütefaktor Q	70
10		Curietemperatur, °C	345
	2.	Piezoelektrischer keramischer Werkstoff der Zusammens	etzung
		[PbSr _{0,02}][Al _{0,005} (Zr _{0,53} Ti _{0,47}) _{0,995} Nb _{0,02}]0 ₃	
		Formgebung: Foliengießen	
15		Sintertemperatur: 1180°C	
		Werkstoffdaten:	
		Dielektrizitätskonstante $\varepsilon_{33}^{-1}/\varepsilon_{0}$	1860
		dielektrischer Verlustfaktor tan δ, 10 ⁻⁴	160
		planarer elektromechanischer Kopplungsfaktor k _p	0,64
20		Piezomodul d ₃₃ , 10 ⁻¹² C/N	450
		mechanischer Gütefaktor Q	65
		Curietemperatur, °C	343
	3.	Piezoelektrischer keramischer Werkstoff der Zusammens	etzung
25		$[PbSr_{0,02}][Fe_{0,005}(Zr_{0,53}Ti_{0,47})_{0,995} Nb_{0,02}]O_3$	
		Formgebung: Trockenpressen	
		Sintertemperatur: 1200°C	
		Werkstoffdaten:	
		Dielektrizitätskonstante $\varepsilon_{33}^{-1}/\varepsilon_{0}$	2010
30		dielektrischer Verlustfaktor tan δ, 10 ⁻⁴	170
		planarer elektromechanischer Kopplungsfaktor k _p	0,66
		longitudinaler elektromechanischer	
		Kopplungsfaktor k ₃₃	0,73
35		Piezomodul d ₃₃ , 10 ⁻¹² C/N	495
		mechanischer Gütefaktor Q	70
		Curietemperatur, °C	349

4. Piezoelektrischer keramischer Werkstoff der Zusammensetzung 0,98Pb(Zr _{0,52} Ti_{0,48})O₃ –0,02Sr(AL_{0,5} Nb_{0,5})O₃ als Modellsubstanz

WO 03/029162 PCT/DE02/03528

-6-

Formgebung: Foliengießen Sintertemperatur: 1250°C

Werkstoffdaten:

Dielektrizitätskonstante $\varepsilon_{33}^{1}/\varepsilon_{0}$		
dielektrischer Verlustfaktor tan δ, 10 ⁻⁴	45	
planarer elektromechanischer Kopplungsfaktor k _p		
Piezomodul d ₃₃ , 10 ⁻¹² C/N	305	
mechanischer Gütefaktor Q	125	
Curietemperatur, °C	355	

10

5

Die erfindungsgemäßen piezoelektrischen keramischen Werkstoffe, die nach der Mischoxid-Technik hergestellt sind, eignen sich insbesondere zur Herstellung von Folien, die im metallisierten und polarisierten Zustand in Sensoren eingesetzt werden. Aus den Folien lassen sich mehrlagige Aktoren, insbesondere mit monolithischen Strukturen, herstellen. Die Sintertemperatur liegt vorteilhaft im Bereich von 1100 bis 1200°C.

WO 03/029162 PCT/DE02/03528 - 7 -

Patentansprüche

1. Piezoelektrische keramische Werkstoffe auf der Basis von Bleizirkonattitanat (PZT) mit der Kristallstruktur des Perowskits mit der Formel A²⁺B⁴⁺O₃²⁻, gekennzeichnet durch eine Substitution von heterovalenten Akzeptor- und Donator-Ionen an Zr/Ti-Plätzen.

5

10

15

- 2. Piezoelektrische keramische Werkstoffe nach Anspruch 1, gekennzeichnet durch eine Substitution von partiell valenzkompensierenden Akzeptor- und Donator-Ionen-Paaren B^{3+}_{y}/B^{5+}_{z} zur Bildung von nur partiell valenzkompensierten Zusammensetzungen des Systems Pb(Zr,Ti)O₃, wobei y < z und $y \le 0,05$ ist.
- Piezoelektrische keramische Werkstoffe nach Anspruch 1 oder 2, dadurch 3. gekennzeichnet, dass in den Zusammensetzungen eines Systems der mit der allgemeinen Formulierung festen Lösungen $Pb_{1-w}Sr_{z}[B^{3+}_{v}(Zr_{x}Ti_{1-x})_{1-v-z}Nb_{z}]O_{3}$ eine gekoppelte Substitution heterovalenten Akzeptor- und Donator-Ionen an Zr/Ti-Plätzen vorliegt, wobei w = 0,00 bis 0,05, x = 0,50 bis 0,55 ist und der B^{4+} -Platz mit Al^{3+} oder Fe³⁺-Ionen besetzt ist.
- 4. Piezoelektrische keramische Werkstoffe nach Anspruch 3, dadurch gekennzeichnet, dass das System eine Zusammensetzung nach der Formel $[Pb_{0.995}Sr_{0.02}][Al_{0.005}(Zr_xTi_{1-x})_{0.975}Nb_{0.02}]0_3$ mit x = 0,50 bis 0,55 aufweist.
 - 5. Piezoelektrische keramische Werkstoffe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Werkstoff des Systems einer Zusammensetzung von PbSr_{0.02} [Al_{0.005}(Zr_{0.53}Ti_{0.47})_{0.995}Nb_{0.02}]0₃ entspricht.

- 6. Piezoelektrische keramische Werkstoffe nach Anspruch 3, dadurch gekennzeichnet, dass das System eine Zusammensetzung nach der Formel [Pb_{0.995}Sr_{0.02}][Fe_{0.005}(Zr_xTi_{1-x})_{0.975} Nb_{0.02}]0₃ mit x=0,50 bis 0,55 aufweist.
- 7. Piezoelektrische keramische Werkstoffe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Werkstoff des Systems einer Zusammensetzung von PbSr_{0,02}[Fe_{0,005}(Zr_{0,53}Ti_{0,47})_{0,995}Nb_{0,02}]0₃ entspricht.

5

- 8. Piezoelektrische keramische Werkstoffe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Werkstoffe nach der Mischoxid-Technik hergestellt sind.
- Piezoelektrische keramische Werkstoffe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Werkstoffe bei Temperaturen im Bereich von 1100°C bis 1200°C gesintert sind.
- 10. Piezoelektrische keramische Werkstoffe nach einem der Ansprüche 1 bis 9,
 dadurch gekennzeichnet, dass die Werkstoffe zur Herstellung
 piezokeramischer Folien verwendbar sind.
 - 11. Piezoelektrische keramische Werkstoffe nach Anspruch 10, dadurch gekennzeichnet, dass die Folien im metallisierten und polarisierten Zustand in Sensoren eingesetzt sind.
- 12. Piezoelektrische keramische Werkstoffe nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Folien in mehrlagigen Strukturen in Aktoren eingesetzt sind.
 - 13. Piezoelektrische keramische Werkstoffe nach Anspruch 12, dadurch gekennzeichnet, dass die Strukturen monolithisch sind.