4.1 Definitions, Diagrams, and Inverses

4.1.1 Function Terminology

Function: We use the notation $f:A\to B$ to specify a function f, which has inputs from the set A, and outputs from the set B. The function associates each input in A to one and only one output in B. ^a The notation $f:A\to B$ can be read as "f is a function from A to B".

Domain: The Domain is the set of inputs (A).

Codomain: The Codomain is the set of outputs (B).

^aDiscrete Mathematics, Ensley and Crawley

Question 1

Given the function:

$$g: \mathbb{Z} \to \mathbb{N}$$
 ...with the rule... $g(x) = x^2$

- a. What is the function name?
- b. What is the domain?
- c. What is the codomain?
- d. Is 2 a valid domain value?
- e. Is -2 a valid domain value?
- f. Is 4 a valid codomain value?
- g. Is -4 a valid codomain value?

To describe a function, you need four items: a (1) Give the function a name, such as f, g, and h, (2) Describe the **domain**, (3) Describe the **codomain**, (4) Describe the **rule**.

Example: Function f, with Domain: $\{1, 2, 3\}$ and Codomain: $\{2, 4, 6\}$ and the Rule: f(x) = 2x.

Function diagram: With a diagram, arrows start at an element in the domain, and point to an element in the codomain.

^aDiscrete Mathematics, Ensley and Crawley

Question 2

- a. Define a function where the inputs and outputs are integers, and the relationship is that the output is the *square* of the input provided to the function.
- b. Draw a diagram of the function. Include 5 values in the domain and in the co-domain.

4.1.2 Binary Relations

A binary relation R consists of three components: a domain A, a codomain B, and a subset of $A \times B$ called the "rule" for the relation. ^a

Example: Domain = $\{1, 2\}$, Codomain = $\{2, 3\}$, and the Rule is $\{(1, 2), (1, 3), (2, 2), (2, 3)\}$.

^aDiscrete Mathematics, Ensley and Crawley

Question 3

Finish the arrow diagram for the following Binary Relation.

Domain: $\{1, 2, 3, 4, 5\}$ Codomain: $\{1, 2, 3, 4, 5\}$

Rule: $\{ (1,5), (2,3), (3,3), (4,2), (5,1) \}$

Domain

Question 4

Finish the arrow diagram for the following Binary Relation.

Domain: $\wp(\{1,2,3\})$, the Power Set of $\{1,2,3\}$.

Codomain: The set $B = \{0, 1, 2, 3, 4, 5, 6, 7\}.$

Rule: $(S, n) \in \mathbb{R}$

This means that n is the **sum** of elements in the set S given as an input. For example, with the input set $\{1, 2\}$, the output will be 1 + 2, or 3.

A function $f: A \to B$ is a binary relation with domain A and codomain B with the property that for every $x \in A$, there is **exactly one** element $y \in B$ for which $(x, y) \in f$.

Bluntly, the pair (x, y) denotes that a line begins at element x from the domain, and points to the element y in the codomain.

^aDiscrete Mathematics, Ensley and Crawley

Question 5

Identify which of the following relations are also functions. Explain why not, if the relation is not a function. Also complete the diagrams given.

a. Relation R_1

Domain: The set $\mathbb S$ of all students at your college this semester.

Codomain: The set $\mathbb C$ of all classes offered at your college this semester.

Rule: (x, y) is in R_1 if student x is enrolled in class y this semester.

Let's use a small sample set. Fill it out to help you figure out if this is a function.

• ENGL 108
• MATH 241
• CS 210
• CS 200

Codomain

b. Relation R_2

Domain: The set $A = \{1, 2, 3\}$. Codomain: The set $B = \{2, 4, 6\}$.

Rule: (x, y) is in R_2 if 2x = y.

Domain $\begin{array}{c|cccc} 1 & 2 & 3 \\ \bullet & \bullet & \bullet \end{array}$

Question 6

Identify which of the following relations are also functions. Explain why not, if the relation is not a function. Also complete the diagrams given.

a. Relation R_3

Domain: The set $A = \{1, 2, 3\}$. Codomain: The set $B = \{2, 4, 6\}$. Rule: $\{ (1,6), (2,2), (3,4) \}$

Let's use a small sample set. Fill it out to help you figure out if this is a function.

Domain	1.	2	3	
--------	----	---	---	--

b. Relation R_4

Domain: The set $A=\{1,\,2,\,3,\,4,\,5,\,6\}.$ Codomain: The same set A. Rule: (x,y) is in R_3 if x-1=y.

Domain	1.	2	3	4	5	6	

4.1.3 Inverse Relations

Given a relation R with domain A and codomain B, the relation R_{-1} (read "R inverse") with domain B and codomain A is called the **inverse** of R, and is defined so that

$$(x,y) \in R$$
 if and only if $(y,x) \in R^{-1}$

Also note that the inverse of \mathbb{R}^{-1} is \mathbb{R} . a

^aDiscrete Mathematics, Ensley and Crawley

Question 7

Draw the inverse of each diagram. Identify if the original, and/or the inverse, are functions.

