Activité 5.3 – Les fonctions organiques

Objectifs:

Connaître les 7 groupes caractéristiques et les 8 familles fonctionnelles associées.

Document 1 - Fonctions organiques

Certaines séquences d'éléments donnent des **propriétés** spécifiques aux molécules organiques que l'on classe en différentes familles ou fonctions organiques ou encore famille fonctionnelle.

En ST2S on étudie 8 familles : alcool, aldéhyde, cétone, acide carboxylique, ester, éther, amine et amide.

 $R_1,\,R_2$ et R_3 sont des chaînes carbonées appelées « radicaux alkyles ».

Groupe caractéristique	Famille organique	Formule	Exemple
Hydroxyle	Alcool	R ₁ -OH	H ₃ C — OH méthanol
Carbonyle	Cétone	R_1 C R_2	O butan-2-one
3 tt = 1 = 1 = 1	Aldéhyde	R_1 C H	$egin{array}{c} \mathrm{O} \\ \parallel \\ \mathrm{H} - \mathrm{C} - \mathrm{H} \\ \mathrm{m\acute{e}thanal} \end{array}$
Carboxyle	Acide carboxylique	R_1 OH	OH O acide propanoïque
Ester	Ester	R_1 C C R_2	o propanoate d'éthyle
Éther-oxyde	Éther	R_1 R_2	${\color{blue} \smile}^{\rm O} {\color{blue} \smile}$ éthoxyéthane
Amine	Amine	R_1 — NH_2	H_3C — CH_2 — NH_2 ethan-1-amine
Amide	Amide	R_1 R_2 R_3 R_2	$\bigcup_{\substack{\text{O}\\ \text{NH}_2\\ \text{propanamide}}}^{\text{O}}$

Pour trouver les groupes caractéristiques d'une molécule, il faut repérer tous les éléments qui ne sont ni des carbones, ni des hydrogènes.

Document 2 - Radicaux alkyle

Les « radicaux alkyles », notés R, sont des morceaux de chaînes carbonées composées de liaisons simples avec des hydrogènes.

Méthyle	Éthyle	Propyle

1 — Identifier les fonctions organiques qui sont présentes dans les molécules suivantes

•	• •	•	 ٠.	٠	 •	• •	•	٠	٠.	•	• •	•	 •	 •	•	• •	•	•	• •	•	•	• •	•	•	•	• •	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	• •	•	•	• •	•	•	• •	•	 •	•	٠.	•	•	• •	•	٠.	•
			 																						•																																								
•	• •		 • •	•	 •			•		•		•	 •	 •	•		•	•		•	•		•	•	•	•		•	•		•	•		•	•	•	•	•		•	•		•	•		•	• •	•	•	•	•		•	•		•	 •	•	• •		•		•	• •	•

Document 3 - Identification des familles organiques

Pour identifier une famille organique dans une molécule, il faut chercher si elle comporte des oxygènes O ou des azotes N.

Si elle comporte un oxygène O doublement lié à un carbone (O==), alors il faut regarder le voisinage du carbone

- s'il y a un groupe hydroxyle OH, on a un acide carboxylique.
- s'il y a un oxygène O, on a un ester.
- s'il y a un azote N, on a un amide.
- s'il y a un hydrogène H, on a un aldéhyde.
- sinon on a une cétone.

Sinon, si elle a un groupe OH, c'est un alcool; si elle a un azote N, c'est un amine; et si elle a un oxygène O, c'est un éther.