Hardverska implementacija Viola-Jones algoritma

Risto Pejašinović

Sadržaj

1	Vio	la-Jones algoritam	3
	1.1	Uvod	3
	1.2	Integralna slika	3

1 Viola-Jones algoritam

1.1 Uvod

Namena algoritma je detekcija i lokalizacija objekata na slici. Osmišljen od strane Paul Viola i Michael Jones 2001. godine [1].

Dugo godina je zbog brze i pouzdane detekcije bio standardan način detekcije lica na slici. I danas je prisutan u velikom broju mobilnih telefona i digitalnih kamera, ali danas postaje polako zamenjen konvolucionim neuronskim mrežama.

Pouzdanost i brzina su postignuti uvođenjem tri ključna doprinosa:

- Integralna slika omogućava brzo izračunavanje obeležja.
- AdaBoost algoritam za učenje, odabiranjem obeležja povećava brzinu i pouzdanost detekcije.
- Kaskadni klasifikator Realizovanjem algoritma u kaskadama omogućava brzo odbacivanje pozadine slike kako je mala verovatnoća da će se tu naći lice.

1.2 Integralna slika

Kao jedan od ključnih delova algoritma, integralna slika omogućava izračunavanje površine svakog pravougana obeležja u konstantnom vremenu.

Intenzitet piksela u integralnoj slici na poziciji x,y je zbir svih piksela koji se nalaze gore i levo od pozicije x,y.

$$ii(x,y) = \sum_{x' \le x, y' \le y} i(x',y') \tag{1}$$

Gde je ii(x,y) integralna slika, a i(x,y) originalna slika.

Integralna slika

Slika 1: Primer integralne slike

Piksele integralne slike je moguće računati u paraleli, ili sekvencijalno. Izbor algoritma za računanje integralne slike značajno utiče na performanse i potrebne hardverske resurse.

U paralelnoj implementaciji cena je više pristupa memoriji i više potrebnih sabirača,

dok je kod sekvencijalne implementacije manja brzina.

Osobina koja integralnu sliku čini pogodnu za korišćenje u Viola-Jones algoritmu je da je za računanje bilo koje pravougaone površine unutar integralne slike potrebno 2 sabiranja i 2 oduzimanja.

C	۲iç	jina	alna	a.	Integralna					
5	2	3	4	1	5	7	10	14	15	
1	5	4	2	3	6	13	20	26	30	
2	2	1	3	4	8	17	25	34	42	
3	5	6	4	5	11	25	39	52	65	
4	1	3	2	6	15	30	47	62	81	
		4 + + 3						+ (A) - 5 =	= S = 17	

Slika 2: Primer računanja površine pravougaonika [2]

Na slici (2) je prikazano računanje površine pravougaonika na originalnoj slici i na integralnoj slici. Kao što se može videti za površinu pravougaonika MxN na originalnoj slici nam je potrebno MxN sabiranja.

Dok je kod integralne slike broj operacija 2 sabiranja i 2 oduzimanja i ne zavisi od dimenzija pravougaonika.

$$\sum_{(x,y)\in ABCD} i(x,y) = ii(D) + ii(A) - i(B) - ii(C)$$
[3] (2)

Literatura

- [1] P. A. Viola and M. J. Jones, "Rapid object detection using a boosted cascade of simple features," in CVPR, 2001.
- [2] A. Jain, "Computer vision face detection," 2016. [Online]. Available: https://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
- [3] K. Cen, "Study of viola-jones real time face detector," 2016.