Big Data Integration

Dr. Salahuddin Shaikh

What is "Big Data Integration?"

- Big data integration = Big data + data integration
- Data integration: easy access to multiple data sources [DHI12]
 - Virtual: mediated schema, query redirection, link + fuse answers
 - Warehouse: materialized data, easy querying, consistency issues
- ♦ Big data: all about the V's [©]
 - Size: large volume of data, collected and analyzed at high velocity
 - Complexity: huge variety of data, of questionable veracity

What is "Big Data Integration?"

- Big data integration = Big data + data integration
- Data integration: easy access to multiple data sources [DHI12]
 - Virtual: mediated schema, query redirection, link + fuse answers
 - Warehouse: materialized data, easy querying, consistency issues
- ♦ Big data in the context of data integration: still about the V's ☺
 - Size: large volume of sources, changing at high velocity
 - Complexity: huge variety of sources, of questionable veracity

Building web-scale knowledge bases

Google knowledge graph

ProBase

MSR knowledge base

A Little Knowledge Goes a Long Way.

Reasoning over linked data

Geo-spatial data fusion

Geospatial Data Fusion

http://axiomamuse.wordpress.com/2011/04/18/

Scientific data analysis

http://scienceline.org/2012/01/from-index-cards-to-information-overload/

"Small" Data Integration: Why is it Hard?

- Data integration = solving lots of jigsaw puzzles
 - Each jigsaw puzzle (e.g., Taj Mahal) is an integrated entity
 - Each type of puzzle (e.g., flowers) is an entity domain

- "Small" data integration: alignment + linkage + fusion
 - Schema alignment: mapping of structure (e.g., shape)

- "Small" data integration: alignment + linkage + fusion
 - Schema alignment: mapping of structure (e.g., shape)

- "Small" data integration: alignment + linkage + fusion
 - Record linkage: matching based on identifying content (e.g., color)

- "Small" data integration: alignment + linkage + fusion
 - Record linkage: matching based on identifying content (e.g., color)

- "Small" data integration: alignment + linkage + fusion
 - Record linkage: matching based on identifying content (e.g., color)

- "Small" data integration: alignment + linkage + fusion
 - Data fusion: reconciliation of non-identifying content (e.g., dots)

- "Small" data integration: alignment + linkage + fusion
 - Data fusion: reconciliation of non-identifying content (e.g., dots)

- "Small" data integration: alignment + linkage + fusion
 - Data fusion: reconciliation of non-identifying content (e.g., dots)

Data integration = solving lots of jigsaw puzzles

- Number of structured sources: Volume
 - 154 million high quality relational tables on the web [CHW+08]
 - 10s of millions of high quality deep web sources [MKK+08]
 - 10s of millions of useful relational tables from web lists [EMH09]

Challenges:

- Difficult to do schema alignment
- Expensive to warehouse all the integrated data
- Infeasible to support virtual integration

- ◆ Rate of change in structured sources: Velocity
 - 43,000 96,000 deep web sources (with HTML forms) [B01]
 - 450,000 databases, 1.25M query interfaces on the web [CHZ05]
 - 10s of millions of high quality deep web sources [MKK+08]
 - Many sources provide rapidly changing data, e.g., stock prices

Challenges:

- Difficult to understand evolution of semantics
- Extremely expensive to warehouse data history
- Infeasible to capture rapid data changes in a timely fashion

Representation differences among sources: Variety

					Leonardo da Vinci
D	DALMATA, Giovanni	(1440-1510)	Early Renaissan	ce	Italian sculptor
	DANIELE da Volterra	(1509-1566)	High Renaissan	се	Italian painter
	DANTI, Vincenzo	(1530-1576)	Mannerism		Italian sculptor (Florence)
psi	DESIDERIO DA SETTIGNANO	(c. 1428-1464)	Early Renaissan	ce	Italian sculptor (Florence)
orn or	DIANA, Benedetto	(known 1482-1525)	High Renaissan	ce	Italian painter (Venice)
once	DOMENICO DA TOLMEZZO	(c. 1448-1507)	Early Renaissan	ce	Italian painter (Venice)
ed hi	DOMENICO DI BARTOLO	(c. 1400-c. 1447)	Early Renaissan	ce	Italian painter (Siena)
eas ar	DOMENICO DI MICHELINO	(1417-1491)	Early Renaissan	ce	Italian painter (Florence)
st Su	DOMENICO VENEZIANO	(c. 1410-1461)	Early Renaissan	ce	Italian painter (Florence)
enced (DONATELLO	(c. 1386-1466)	Early Renaissan	ce	Italian sculptor
	DONDUCCI, Giovanni Andrea (see MASTELLETTA)	(1575-1675)	Mannerism		Italian painter (Rome)
	DOSIO, Giovanni Antonio	(1533-c. 1609)	Mannerism		Italian graphic artist
	DOSSI, Dosso	(c. 1490-1542)	High Renaissan	се	Italian painter (Ferrara)
	DUCA, Jacopo del	(c. 1520-1604)	Mannerism		Italian sculptor (Sicily)
	DUCCIO, Agostino di	(1418-1481)	Early Renaissan	ce	Italian sculptor (Rimini)
	DURER, Albrecht	(1472-1528)	Northern Renais	sance	German painter/printmaker (Nurnberg)
				Movement Works	High Renaissance Mona Lisa The Last Supper The Vitruvian Man

Lady with an Ermine

◆ Poor data quality of deep web sources [LDL+13]: Veracity

Outline

- ◆ Motivation
- Schema alignment
 - Overview
 - Techniques for big data
- Record linkage
- Data fusion

Schema Alignment

Matching based on structure

Schema Alignment

Matching based on structure

Schema Alignment: Three Steps [BBR11]

- Schema alignment: mediated schema + matching + mapping
 - Enables linkage, fusion to be semantically meaningful

S1	(name, games, runs)
S2	(name, team, score)
S3	a: (id, name); b: (id, team, runs)
S4	(name, club, matches)
S5	(name, team, matches)

Schema Alignment: Three Steps

- Schema alignment: mediated schema + matching + mapping
 - Enables domain specific modeling

S1	(name, games, runs)
S2	(name, team, score)
S3	a: (id, name); b: (id, team, runs)
S4	(name, club, matches)
S5	(name, team, matches)
MS	(n, t, g, s)

Schema Alignment: Three Steps

- Schema alignment: mediated schema + matching + mapping
 - Identifies correspondences between schema attributes

S1	(name, games, runs)
S2	(name, team, score)
S3	a: (id, name); b: (id, team, runs)
S4	(name, club, matches)
S5	(name, team, matches)
MS	(n, t, g, s)
MSAM	MS.n: S1.name, S2.name, MS.t: S2.team, S4.club, MS.g: S1.games, S4.matches, MS.s: S1.runs, S2.score,

Schema Alignment: Three Steps

- Schema alignment: mediated schema + matching + mapping
 - Specifies transformation between records in different schemas

S1	(name, games, runs)
S2	(name, team, score)
S3	a: (id, name); b: (id, team, runs)
S4	(name, club, matches)
S5	(name, team, matches)
MS	(n, t, g, s)
MSSM	∀n, t, g, s (MS(n, t, g, s) → S1(n, g, s) S2(n, t, s) ∃ i (S3a(i, n) & S3b(i, t, s)) S4(n, t, g) S5(n, t, g))

Outline

- ◆ Motivation
- Schema alignment
 - Overview
 - Techniques for big data
- ◆ Record linkage
- ♦ Data fusion

BDI: Schema Alignment

Volume, Variety

- Integrating deep web query interfaces [WYD+04, CHZ05]
- Dataspace systems [FHM05, HFM06, DHY07]
- Keyword search based data integration [TJM+08]
- Crawl, index deep web data [MKK+08]
- Extract structured data from web tables [CHW+08, PS12, DFG+12] and web lists [GS09, EMH09]

Velocity

Keyword search-based dynamic data integration [TIP10]

Space of Strategies

WebTables [CHW+08]

- ◆ Background: Google crawl of the surface web, reported in 2008
 - 154M good relational tables, 5.4M attribute names, 2.6M schemas
- ACSDb
 - (schema, count)

Figure 3: Distribution of frequency-ordered unique schemas in the ACSDb, with rank-order on the x-axis, and schema frequency on the y-axis. Both rank and frequency axes have a log scale.

WebTables: Keyword Ranking [CHW+08]

- Goal: Rank tables on web in response to query keywords
 - Not web pages, not individual records
- Challenges:
 - Web page features apply ambiguously to embedded tables
 - Web tables on a page may not all be relevant to a query
 - Web tables have specific features (e.g., schema elements)

WebTables: Keyword Ranking

- FeatureRank: use table specific features
 - Query independent features
 - Query dependent features
 - Linear regression estimator
 - Heavily weighted features

```
# rows
# cols
has-header?
# of NULLs in table
document-search rank of source page
# hits on header
# hits on leftmost column
# hits on second-to-leftmost column
# hits on table body
```

Result quality: fraction of high scoring relevant tables

k	Naïve	FeatureRank
10	0.26	0.43
20	0.33	0.56
30	0.34	0.66

WebTables: Keyword Ranking

- SchemaRank: also include schema coherency
 - Use point-wise mutual information (pmi) derived from ACSDb
 - p(S) = fraction of unique schemas containing attributes S
 - pmi(a,b) = log(p(a,b)/(p(a)*p(b)))
 - Coherency = average pmi(a,b) over all a, b in attrs(R)
- Result quality: fraction of high scoring relevant tables

k	Naïve	FeatureRank	SchemaRank
10	0.26	0.43	0.47
20	0.33	0.56	0.59
30	0.34	0.66	0.68

Dataspace Approach [FHM05, HFM06]

- Motivation: SDI approach (as-is) is infeasible for BDI
 - Volume, variety of sources → unacceptable up-front modeling cost
 - Velocity of sources → expensive to maintain integration results
- ♦ Key insight: pay-as-you-go approach may be feasible
 - Start with simple, universally useful service
 - Iteratively add complexity when and where needed [JFH08]
- Approach has worked for RDBMS, Web, Hadoop ...

Probabilistic Mediated Schemas [DDH08]

- Mediated schemas: automatically created by inspecting sources
 - Clustering of source attributes
 - Volume, variety of sources → uncertainty in accuracy of clustering

Probabilistic Mediated Schemas [DDH08]

- Example P-mediated schema
 - M1({S1.games, S4.matches}, {S1.runs, S2.score})
 - M2({S1.games, S2.score}, {S1.runs, S4.matches})
 - $M = \{(M1, 0.6), (M2, 0.2), (M3, 0.1), (M4, 0.1)\}$

Probabilistic Mappings [DHY07, DDH09]

Mapping between P-mediated and source schemas

- Example mappings
 - G1({MS.t, S2.team, S4.club}, {MS.g, S4.matches}, {MS.s, S2.score})
 - G2({MS.t, S2.team, S4.club}, {MS.g, S2.score}, {MS.s, S4.matches})
 - $G = \{(G1, 0.6), (G2, 0.2), (G3, 0.1), (G4, 0.1)\}$

Probabilistic Mappings [DHY07, DDH09]

Mapping between P-mediated and source schemas

- ◆ Answering queries on P-mediated schema based on P-mappings
 - By table semantics: one mapping is correct for all tuples
 - By tuple semantics: different mappings correct for different tuples

Keyword Search Based Integration [TJM+08]

- Key idea: information need driven integration
 - Search graph: source tables with weighted associations
 - Query keywords: matched to elements in different sources
 - Derive top-k SQL view, using Steiner tree on search graph

Keyword Search Based Integration [TJM+08]

- Key idea: information need driven integration
 - Search graph: source tables with weighted associations
 - Query keywords: matched to elements in different sources
 - Derive top-k SQL view, using Steiner tree on search graph

Outline

- ◆ Motivation
- ♦ Schema alignment
- ◆ Record linkage
 - Overview
 - Techniques for big data
- ♦ Data fusion

Record Linkage

♦ Matching based on **identifying** content: color, size

Record Linkage

Matching based on identifying content: color, size

Record Linkage: Three Steps [EIV07, GM12]

- Record linkage: blocking + pairwise matching + clustering
 - Scalability, similarity, semantics

Record Linkage: Three Steps

♦ Blocking: **efficiently** create **small** blocks of **similar** records

Record Linkage: Three Steps

Pairwise matching: compares all record pairs in a block

Record Linkage: Three Steps

 Clustering: groups sets of records into entities **Ensures semantics Blocking** Pairwise Matching Clustering

50

Outline

- ◆ Motivation
- ♦ Schema alignment
- ◆ Record linkage
 - Overview
 - Techniques for big data
- ♦ Data fusion

BDI: Record Linkage

- ♦ Volume: dealing with billions of records
 - Map-reduce based record linkage [VCL10, KTR12]
 - Adaptive record blocking [DNS+12, MKB12, VN12]
 - Blocking in heterogeneous data spaces [PIP+12]

Velocity

Incremental record linkage [MSS10]

BDI: Record Linkage

Variety

Matching structured and unstructured data [KGA+11, KTT+12]

Veracity

Linking temporal records [LDM+11]

Record Linkage Using MapReduce [KTR12]

- Motivation: despite use of blocking, record linkage is expensive
 - Can record linkage be effectively parallelized?
- Basic: use MapReduce to execute blocking-based RL in parallel
 - Map tasks can read records, redistribute based on blocking key
 - All entities of the same block are assigned to same Reduce task
 - Different blocks matched in parallel by multiple Reduce tasks

Record Linkage Using MapReduce

◆ Challenge: data skew → unbalanced workload

Record Linkage Using MapReduce

◆ Challenge: data skew → unbalanced workload

- Speedup: 39/36 = 1.083

Load Balancing

- ◆ Challenge: data skew → unbalanced workload
 - Difficult to tune blocking function to get balanced workload
- Key ideas for load balancing
 - Preprocessing MR job to determine blocking key distribution
 - Redistribution of Match tasks to Reduce tasks to balance workload
- Two load balancing strategies:
 - BlockSplit: split large blocks into sub-blocks
 - PairRange: global enumeration and redistribution of all pairs

Small blocks: processed by a single match task (as in Basic)

◆ Large blocks: split into multiple sub-blocks

◆ Large blocks: split into multiple sub-blocks

- ◆ Large blocks: split into multiple sub-blocks
 - Each sub-block processed (like unsplit block) by single match task

- ◆ Large blocks: split into multiple sub-blocks
 - Pair of sub-blocks is processed by "cartesian product" match task

Structured + Unstructured Data [KGA+II]

- Motivation: matching offers to specifications with high precision
 - Product specifications are structured: set of (name, value) pairs
 - Product offers are terse, unstructured text
 - Many similar but different product offers, specifications

Attribute Name	Attribute Value
category	digital camera
brand	Panasonic
product line	Panasonic Lumix
model	DMC-FX07
resolution	7 megapixel
color	silver

Panasonic Lumix DMC-FX07 digital camera [7.2 megapixel, 2.5", 3.6x, LCD monitor]

Panasonic DMC-FX07EB digital camera silver

Lumix FX07EB-S, 7.2MP

- Key idea: optimal parse of (unstructured) offer wrt specification
- Semantic parse of offers: tagging
 - Use inverted index built on specification values
 - Tag all n-grams

- Key idea: optimal parse of (unstructured) offer wrt specification
- Semantic parse of offers: tagging, plausible parse
 - Combination of tags such that each attribute has distinct value

- Key idea: optimal parse of (unstructured) offer wrt specification
- Semantic parse of offers: tagging, plausible parse
 - Combination of tags such that each attribute has distinct value

- Key idea: optimal parse of (unstructured) offer wrt specification
- Semantic parse of offers: tagging, plausible parse
 - Combination of tags such that each attribute has distinct value
 - # depends on ambiguities

- Key idea: optimal parse of (unstructured) offer wrt specification
- Semantic parse of offers: tagging, plausible parse, optimal parse
 - Optimal parse depends on the product specification

- Key idea: optimal parse of (unstructured) offer wrt specification
- Semantic parse of offers: tagging, plausible parse, optimal parse
- Finding specification with largest match probability is now easy
 - Similarity feature vector between offer and specification: {-1, 0, 1}*
 - Use binary logistic regression to learn weights of each feature
 - Blocking 1: use classifier to categorize offer into product category
 - Blocking 2: identify candidates with ≥ 1 high weighted feature

Outline

- ◆ Motivation
- ♦ Schema alignment
- ◆ Record linkage
- Data fusion
 - Overview
 - Techniques for big data

Data Fusion

◆ Reconciliation of conflicting non-identifying content

Data Fusion: Three Components [DBS09a]

- Data fusion: voting + source quality + copy detection
 - Resolves inconsistency across diversity of sources

	S1	S2	S3	S4	S 5
Jagadish	UM	<u>ATT</u>	UM	UM	<u>UI</u>
Dewitt	MSR	MSR	<u>UW</u>	<u>UW</u>	<u>UW</u>
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	<u>ATT</u>	<u>BEA</u>	<u>BEA</u>	<u>BEA</u>
Franklin	UCB	UCB	<u>UMD</u>	<u>UMD</u>	<u>UMD</u>

Data fusion: voting + source quality + copy detection

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

- Data fusion: voting + source quality + copy detection
 - Supports difference of opinion

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

Data fusion: voting + source quality + copy detection

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

- Data fusion: voting + source quality + copy detection
 - Gives more weight to knowledgeable sources

	S1	S2	S3
Jagadish	UM	ATT	UM
Dewitt	MSR	MSR	UW
Bernstein	MSR	MSR	MSR
Carey	UCI	ATT	BEA
Franklin	UCB	UCB	UMD

Data fusion: voting + source quality + copy detection

	S1	S2	S3	S4	S5
Jagadish	UM	ATT	UM	UM	UI
Dewitt	MSR	MSR	UW	UW	UW
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	ATT	BEA	BEA	BEA
Franklin	UCB	UCB	UMD	UMD	UMD

Data fusion: voting + source quality + copy detection

	S1	S2	S3	S4	S5
Jagadish	UM	ATT	UM	UM	UI
Dewitt	MSR	MSR	UW	UW	UW
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	ATT	BEA	BEA	BEA
Franklin	UCB	UCB	UMD	UMD	UMD

- Data fusion: voting + source quality + copy detection
 - Reduces weight of copier sources

	S1	S2	S3	S4	\$ 5
Jagadish	UM	ATT	UM	UM	ŲΙ
Dewitt	MSR	MSR	UW	UW	uw
Bernstein	MSR	MSR	MSR	MSR	MSR
Carey	UCI	ATT	BEA	BEA	BEA
Franklin	UCB	UCB	UMD	UMD	UMD

Outline

- ◆ Motivation
- ♦ Schema alignment
- ◆ Record linkage
- Data fusion
 - Overview
 - Techniques for big data

BDI: Data Fusion

Veracity

- Using source trustworthiness [YJY08, GAM+10, PR11]
- Combining source accuracy and copy detection [DBS09a]
- Multiple truth values [ZRG+12]
- Erroneous numeric data [ZH12]
- Experimental comparison on deep web data [LDL+13]

BDI: Data Fusion

♦ Volume:

Online data fusion [LDO+11]

Velocity

Truth discovery for dynamic data [DBS09b, PRM+12]

Variety

Combining record linkage with data fusion [GDS+10]

Experimental Study on Deep Web [LDL+13]

- Study on two domains
 - Belief of clean data
 - Poor quality data can have big impact

	#Sources	Period	#Objects	#Local- attrs	#Global- attrs	Considered items
Stock	55	7/2011	1000*20	333	153	16000*20
Flight	38	12/2011	1200*31	43	15	7200*31

- Is the data consistent?
 - Tolerance to 1% value difference

- Why such inconsistency?
 - Unit errors

- Why such inconsistency?
 - Pure errors

FlightView FlightAware

Copying between sources?

Copying on erroneous data?

Depen claimed	11	1	00		
1-1-1		1	.99	.99	.92
Depen claimed	2	1	1	.99	.75
Depen claimed	5	0.80	1	1	.71
uery redirection	4	0.83	1	1	.53
endence claimed	3	1	1	1	.92
bedded interface	2	1	1	1	.93
	2	1	1	1	.61
	bedded interface	bedded interface 2	bedded interface 2 1	bedded interface 2 1 1	

- Basic solution: naïve voting
 - 908 voting precision for Stock, .864 voting precision for Flight
 - Only 70% correct values are provided by over half of the sources

Source Accuracy [DBS09a]

- Computing source accuracy: $A(S) = Avg_{v_i(D) \in S} Pr(v_i(D) true \mid \Phi)$
 - $-v_i(D) \in S : S$ provides value v_i on data item D
 - Φ: observations on all data items by sources S
 - Pr(v_i(D) true | Φ) : probability of v_i(D) being true
- How to compute $Pr(v_i(D) \text{ true } | \Phi)$?

Source Accuracy

- Input: data item D, $val(D) = \{v_0, v_1, ..., v_n\}, \Phi$
- Output: $Pr(v_i(D) \text{ true } | \Phi)$, for i=0,..., n (sum=1)
- Based on Bayes Rule, need Pr(Φ | v_i(D) true)
 - Under independence, need $Pr(\Phi_D(S)|v_i(D) \text{ true})$
 - If S provides v_i : $Pr(\Phi_D(S) | v_i(D) \text{ true}) = A(S)$
 - If S does not : $Pr(\Phi_D(S) | v_i(D) \text{ true}) = (1-A(S))/n$
- Challenge:
 - Inter-dependence between source accuracy and value probability?

Source Accuracy

Continue until source accuracy converges

Value Similarity

Continue until source accuracy converges

Value Probability

$$\Pr(v(D) | \Phi) = \frac{e^{C(v(D))}}{\sum_{v_0 \in val(D)}}$$

Source Vote Count

$$A'(S) = \ln \frac{nA(S)}{1 - A(S)}$$

Consider value similarity

$$C^*(v) = C(v) + \rho \sum_{v' \neq v} C(v') \bullet sim(v, v')$$

ValueVote Count

$$C(v(D)) = \sum_{S \in \overline{S}(v(D))} A'(S)$$

- Result on Stock data
 - AccuSim's final precision is .929, higher than other methods

- Result on Flight data
 - AccuSim's final precision is .833, lower than Vote (.857); why?

Copying on erroneous data

	Remarks	Size	Schema	Object	Value	Avg
		0120	sim	sim	sim	accu
Stock	Depen claimed	11	1	.99	.99	.92
Depen claim	Depen claimed	2	1	1	.99	.75
	Depen claimed	5	0.80	1	1	.71
	Query redirection	4	0.83	1	1	.53
Flight	Dependence claimed	3	1	1	1	.92
	Embedded interface	2	1	1	1	.93
	Embedded interface	2	1	1	1	.61

Copy Detection

Are Source 1 and Source 2 dependent? Not necessarily

Source 1 on USA Presidents: Source 2 on USA Presidents:

1st: George Washington

1st: George Washington

2nd: John Adams

2nd: John Adams

3rd: Thomas Jefferson

41st: George H.W. Bush

43rd: George W. Bush

3rd: Thomas Jefferson

4th: James Madison

4th: James Madison

41st: George H.W. Bush

42nd: William J. Clinton 42nd: William J. Clinton

43rd: George W. Bush

44th: Barack Obama 44th: Barack Obama

Copy Detection

Are Source 1 and Source 2 dependent? Very likely

1 st : George Washington	1 st : George Washington	•
2 nd : Benjamin Franklin	2 nd : Benjamin Franklin	\
3 rd : John F. Kennedy	3 rd : John F. Kennedy	.
4 th : Abraham Lincoln	4 th : Abraham Lincoln	•

•••

41st : George W. Bush	41st : George W. Bush	
42 nd : Hillary Clinton	42 nd : Hillary Clinton	
43 rd : Dick Cheney	43 rd : Dick Cheney	
44 th : Barack Obama	44 th : John McCain	

Copy Detection: Bayesian Analysis

- Goal: $Pr(S1 \perp S2 \mid \Phi)$, $Pr(S1 \sim S2 \mid \Phi)$ (sum = 1)
- According to Bayes Rule, we need $Pr(\Phi|S1\bot S2)$, $Pr(\Phi|S1\sim S2)$
- Key: compute $Pr(\Phi_D|S1\bot S2)$, $Pr(\Phi_D|S1\sim S2)$, for each $D \in S1 \cap S2$

Copy Detection: Bayesian Analysis

Pr	Independence	Copying
O _t	A^2	$A \cdot c + A^2(1-c)$
O _f	$\frac{(1-A)^2}{n}$	$(1-A) \bullet c + \frac{(1-A)^2}{n} (1-c)$
O_d	$P_d = 1 - A^2 - \frac{(1 - A)^2}{n}$	$P_d(1-c)$

Discount Copied Values

Continue until convergence

 I(S)- Pr of independently providing value v

- Result on Flight data
 - AccuCopy's final precision is .943, much higher than Vote (.864)

Summary

	Schema alignment	Record linkage	Data fusion
Volume	Integrating deep WebWeb table/lists	 Adaptive blocking 	Online fusion
Velocity	 Keyword-based integration for dynamic data 	 Incremental linkage 	 Fusion for dynamic data
Variety	DataspacesKeyword-based integration	Linking texts to structured data	Combining fusion with linkage
Veracity		 Value-variety tolerant RL 	Truth discovery

Outline

- ◆ Motivation
- ◆ Schema alignment
- ◆ Record linkage
- ♦ Data fusion
- Future work

Future Work

Reconsider the architecture

Future Work

◆ The more, the better?

Future Work

Combining different components

