Конспект по алгебре

Содержание

1	Вопрос 1	3
2	Вопрос 2	4
3	Вопрос 3	6
4	Вопрос 4	7
5	Вопрос 5	8

Группа, подгруппа, гомоморфизм групп. Ядро и образ гомоморфизма.

Определение. < G, *, e > - группа, $*: G \times G \to G, e \in G$

- 1. $\forall a, b, c \in G \ (ab)c = a(bc)$
- $2. \ \forall g \in G \ eg = ge = g$
- 3. $\forall g \in G \ \exists g^{-1} \in G \ gg^{-1} = g^{-1}g = e$

Если $\forall a,b \in G \ ab = ba$ то группу называют абелевой

Теорема. $\exists ! e \in G \ eq = qe = q$

Определение. G - группа, тогда $H \subset G$ называют $noderpynno\ddot{u}$, если

- 1. $e \in H$
- 2. $\forall h_1, h_2 \in H \ h_1 h_2 \in H \mid HH \subset H$
- 3. $\forall h \in H \ h^{-1} \in H \mid H^{-1} \subset H$

Определение. G, W - группы.

 $f: G \to W$ называют гомоморфизмом (групп), если $\forall g_1, g_2 \in G \ f(g_1g_2) = f(g_1) * f(g_2)$

Теорема. $f:G \to W$ - гомоморфизм $f(e_G)=e_W$

Определение. $f:G\to W$ - гомоморфизм, тогда $kerf=g\in G|f(g)=e_W$ - называют ядром гомоморфизма f

 $Teopema.\ kerf$ - $noderpynna\ G$

Определение. $f: G \to W$ - гомоморфизм, тогда $Imf = \{w \in W | \exists g \in G \ f(g) = w\}$ - называют *образом гомоморфизма* f

Мономорфизмы, эпиморфизмы и изоморфизмы. Понятие нормального делителя (нормальной подгруппы). Факторгруппа.

Определение. Сюръективный гомоморфизм - эпиморфизм.

Инъективный гомоморфизм - мономорфизм.

Биективный гомоморфизм - изоморфизм.

Изоморфизм $f: G \to G$ - автоморфизм.

Пусть $H \subset G$. Введем отношение эквивалентности \sim соответствующее подгруппе. $g_1, g_2 \in G$. $g_1 \sim g_2$, если $g_1g_2^{-1} \in H$

Определение. $\tilde{g} = \{k \in G | k \sim g\}$ - класс эквивалентности элемента g

Определение. G/H - факторгруппа, левые смежные классы. $\tilde{g}=Hg$

Заметим, что в случае некоммутативной группы можно ввести правые смежные классы gH.

Теорема. Если gH = Hg, то G/H - группа.

Доказательство. Введем умножение: $\forall g_1H, g_2H \in G/H \ (g_1H)(g_2H) \stackrel{def}{=} g_1g_2H$. Проверим корректность умножения: пусть $g_1' \sim g_1, g_2' \sim g_2$. Тогда $g_1' = g_1h_1, g_2' = g_2h_2$, а значит $g_1'g_2' = g_1h_1g_2h_2 = g_1g_2h_1h_2$. То есть $g_1'g_2'H = g_1g_2H$.

Теперь проверим свойства умножения:

- 1. eHqH = qH
- 2. $g_1Hg_2Hg_3H = g_1g_2g_3H$
- 3. $gHg^{-1}H = eH$

Определение. $H\subset G$ назовем нормальной подгруппой, если $\forall g\in G\ gH=Hg$ или $gHg^{-1}=H$ или $ghg^{-1}\in H$

Обозначение: $H \triangleleft G$

Теорема. G - абелева группа, тогда $\forall H \subset G$ - нормальная.

Теорема. Ядра гомоморфизмов и только они суть нормальные подгруппы.

Доказательство. Сперва докажем, что если $f:G\to W$ - гомоморфизм, то $kerf\lhd G.$ $g\in G,h\in kerf$, тогда $f(ghg^{-1})=f(g)f(h)f(g^{-1})=f(g)f(g)^{-1}=e_W.$

Теперь покажем, что $\forall H \triangleleft G \; \exists f$ - гомоморфизм и kerf = H. Введем $\pi_H: G \to G/H$ - канонической гомоморфизм. Пусть $g \in G, h \in H$ тогда $\pi_H(g) = gH, \pi_H(h) = hH = H$. Следовательно $ker\pi_H = H$.

Порой пишут: $\{e\} \subset H \triangleleft G \overset{\pi_H}{\to} G/H$

Характеризация мономорфизмов в терминах ядра. Основная теорема о гомоморфизме.

Теорема. ϕ - мономорфизм $\Leftrightarrow ker\phi = \{e\}$

Доказательство. [\Rightarrow] Пусть $\exists g \neq e \ \phi(g) = e$. Но $\phi(e) = e$. Таким образом $g \neq e, \phi(g) = \phi(e)$. Противоречие инъективности. [\Leftarrow] Пусть $\exists g_1 \neq g_2, \phi(g_1) = \phi(g_2)$. Тогда $\phi(g_1)\phi(g_2)^{-1} = e$, а это значит, что $g_1g_2^{-1} \neq e$ и $g_1g_2^{-1} \in kerf$. Противоречие тривиальности ядра.

Теорема. $G/kerf \stackrel{\sim}{=} Imf$

Доказательство. Пусть $\phi: X \leftarrow Y$. Введем отношение эквивалентности: $x_1 \sim x_2$, если $\phi(x_1) = \phi(x_2)$. Рассмотрим $\tau: X/\sim Jm\,\phi$, $\tau(\tilde{x}) = \phi(x)$.

au - инъекция. Действительно, если $\overset{\sim}{x_1} \neq \overset{\sim}{x_2}$, то x_1 не эквивалентно x_2 и значит $\phi(x_1) \neq \phi(x_2)$.

au - сюръекция. Действительно $\forall y \in Im \, \phi \, \exists x \, \phi(x) = y \, \text{и} \, \tilde{x} : \tau(\tilde{x}) = y.$ Таким образом изоморфизм установлен.

Теперь пусть $f: G \to W$ - гомоморфизм. $g_1 \sim g_2$, если $f(g_1) = f(g_2)$, или $f(g_1)f(g_2)^{-1} = e, f(g_1g_2^{-1}) = e$ это означает, что $g_1g_2^{-1} \in kerf$. То есть отношение \sim совпадает с отношением эквивалентности порождаемым $kerf \triangleleft G$. Можно записать $G/kerf \stackrel{\sim}{=} Imf$.

Группа подстановок (симметрическая группа). Четные и нечетные подстановки. Теорема о том, что всякая группа есть подгруппа симметричской группы (для конечных групп).

Определение. Симметрической группой S_X множества X называется группа автоморфизмов $X \to X$ относительно операции композиции и нейтрального элемента $id_X: \forall x \in X, id_X(x) = x.$

Если $X = \{1, 2, \cdots, n\}$, то симметричскую группу называют группой подстановок и обозначают S_n .

Группа подстановок S_n допускает следующее копредставление:

```
Образующие: \sigma_1, \sigma_2, \cdots, \sigma_{n-1} Соотношения: \sigma_i^2 = 1 \sigma_i \sigma_j = \sigma_j \sigma_i, \text{ если } |i-j| > 1 \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}
```

Вообще, образующие в указанном копредставлении являются *транс-позициями*, то есть это такие подстановки, которые меняют два соседних элемента местами, а остальные элементы оставляют на месте.

Определение. Подстановка называется *четной*, если она представляется в виде произведения четного числа транспозиций и *нечетной* в противном случае.

Теорема. Любая группа - подгруппа симметрической группы.

Доказательство. Необходимо сопоставить каждому элементу $g \in G$ некоторую биекцию $G \to G$, тем самым получив вложение $G \subset S_G$. Рассмотрим $i_g : G \to G, \forall s \in G \ i_G(s) = gs$. Осталось проверить свойства: $i_a \circ i_b = a(bs) = (ab)s = i_{ab}, \ i_q \circ i_{q^{-1}} = g(g^{-1}s) = es = i_e$.

Левые классы смежности по подгруппе (см. вопрос 2). Индекс подгруппы. Теорема об индексе.

Определение. $H \subset G$

[G:H] = #G/H - индекс подгруппы. #G - порядок, мощность группы.

Замечание: индекс тривиальной подгруппы - порядок группы.

Теорема (Теорема об индексе). $K \subset H \subset G$, $mor \partial a [G:K] = [G:H][H:K]$

 \mathcal{A} оказательство. $G=igcup_{i=1}^{[G:H]}g_iH$ при этом $g_iH
eq g_jH, i
eq j$. Аналогично

$$H = \bigcup_{j=1}^{[H:K]} h_j K$$
 при этом $h_i K \neq h_j K, i \neq j$. Запишем $G = \bigcup_{i,j} g_i h_j K$.

Теперь достаточно проверить, что g_ih_jK представляют все различные классы смежности по K. Пусть $g_ih_jK=g_lh_mK$. Умножим на H, получим $g_ih_jKH=g_lh_mKH$, и далее $g_ih_jH=g_lh_mH\Rightarrow g_iH=g_lH\Rightarrow i=l$. Вернемся к исходному равенству $g_ih_jK=g_ih_mK\Rightarrow h_jK=h_mK\Rightarrow j=m$. То есть все классы различны.

Возьмем gK. Ясно, что $g = g_i h, h \in H$ и $h = h_m k, k \in K$. Имеем $g = g_i h_m k, g \in g_i h_m K$. Теперь понятно, что исходное представление G представляло все классы смежности по K.

Следствия:

- 1. Порядок подгруппы всегда делитель порядка группы. Пусть $K = \{e\}$, по теореме об индексе #G = #(G/H)#H
- 2. $\forall G: \#G = p, p \in \mathbb{P}$ циклическая группа порядка р Рассмотрим $G: \#G = p, p \in \mathbb{P}$. Рассмотрим $H \subset G$ циклическая подгруппа, порожденная $g \neq e$. Ясно, что $\#H \geq 2$. Но #H делитель #G = p, а значит #H = p = #G. Также из этого следует $\forall G: \#G = p, p \in \mathbb{P}$ $G \cong \mathbb{Z}/p\mathbb{Z}$