CSE 101 – Nov 8, 2019 (Week 6)

Notes provided by Ben Sihota bsihota@ucsc.edu

Lemma 5

Let G be connected with n vertices and m edges. Assume also m = n - 1. Then G is acyclic, hence a tree

Proof Assume, to get a contradiction, that G is not acyclic, containing a cycle G

Let e be any edge on C and remove it. Call the result:

G - e

Observe G - e is connected.

By lemma 3:

$$|E(G - e) \ge |V(G - e)| - 1$$

 $\therefore m-1 \ge n-1$

 $\therefore m \ge n$

But also: m = n - 1

 $\therefore n-1 \ge n \text{ (contradiction!)}$

This contradiction shows our assumption must be false, so no such cycle exists. $\therefore G$ is acyclic.

Lemma 6

Let G be acyclic with n vertices and medges Suppose also that m = n - 1. Then G is also connected.

Proof Let k be the # of connected components in G. By lemma 2, we have m=n-k. But also, we have m=n-1, so n-1=n-k. Therefore, k=1, hence G is connected.

Lemma 7

Let G be a connected graph with n vertices and m edges. Suppose also m = n. Then G contains exactly 1 cycle. (called **unicyclic**).

Proof Handout:

Consider 3 Properties

- 1. G is connected
- 2. G is acyclic
- 3. m = n 1

Note Lemma 1: (i) and (ii) \rightarrow (iii)

Lemma 5: (i) and (iii) \rightarrow (ii)

Lemma 6: (ii) and (iii) \Rightarrow (i)

Logical possibilities

i	ii	iii	Possible?
F	F	F	?
\mathbf{F}	F	T	?
\mathbf{F}	${\rm T}$	F	?
\mathbf{F}	${\rm T}$	T	No, by Lemma 6
\mathbf{T}	F	F	?
\mathbf{T}	\mathbf{F}	Τ	No, by Lemma 5
\mathbf{T}	${\rm T}$	\mathbf{F}	No, by Lemma 1
Τ	Τ	Τ	Yes, any tree!

Exercise: Show all? are true; find smallest example

Theorem (Treeness theorem)

The following are equivalent.

- a) G is a tree
- **b)** G contains a **unique** x y path for all $x, y \in V(G)$
- c) G is connected, but if any edge e is removed, the result G e is disconnected
- d) G is connected and m = n 1
- e) G is acyclic and m = n 1
- f) G is acyclic, but if any edge e is added (joining any 2 non-adjacent vertices), then the result G+e contains a unique cycle

Read proof in book or handout

Directed graphs

Definition

A directed graph (digraph) is a pair of sets

$$G = (V, E)$$

where

$$V \neq \emptyset$$

$$E \subseteq V^2 = V * V$$

(x origin, y terminus)

Example

Drawing

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1,2), (1,4), (3,1), (4,2), (4,3)\}$$

Now allowed: (x, x),

$$(x,y) \neq (y,x)$$

Representation

- Incidence Matrix
- Adjacency Matrix
- Adjacency List