Step-1

Consider P is a projection matrix.

The projection matrix has two properties:

- 1. P is a symmetric matrix.
- 2. Its square is itself: $P^2 = P$.

Step-2

Use the second condition to show that P is not invertible.

Consider,

$$P^2 = P$$

Take determinant on both sides

$$\det P^2 = \det P$$

$$\det^2 P - \det P = 0$$

$$\det P(\det P - 1) = 0$$

$$\det P = 0 \text{ or } \det P = 1.$$

Step-3

Case 1: If $\det P = 0$. In this case P is called singular matrix.

Thus, P is not invertible.

Step-4

Case2: If $\det P = 1$.

In this case $\,P\,$ is called non-singular matrix.

Thus, P is invertible.

So, clearly projection matrices are usually singular.

Therefore, projection matrix P is not invertible.