# Predicting Bitcoin's Big Days using Machine Learning

Mark Scott Ran Dong

# Goals of this Analysis

- Make insights into the role of bitcoin (and other virtual currencies) in the global market
- Apply machine learning techniques to predict the price movement of bitcoin the following day
- Make money!
- Create an informative up-to-date app that assists the speculator in making decisions

# Pipeline and Modeling Techniques

- R (VIM) and MySQL
- Time Series Modeling (quantmod, tseries, forecast)
- Support Vector Machines
- Random Forest
- Shiny App (dygraphs/Streaming twitter wordcloud)

## Outline

- Introduction (where are we now?)
- Classification Problem
- EDA + Feature Extraction + Time Series
- Classification Problem
- Random Forest and SVM
- Arbitrage Opportunities
- Future Directions (Twitter Sentiment Analysis)

# Since the Web Scraping Project



#### The Problem

- How to forecast the price?
  - This is very difficult
- How about forecasting the return rate?
  - More feasible because it is a stationary time series using the Augmented Dickey-Fuller Test
- Predict if the bitcoin return rate will be greater than a certain threshold (3%) tomorrow

#### Days Greater than a 3% Return Rate



## Features

| 1 Day Return Rate                 | 2 Day Return Rate                                   | 3 Day Return Rate                              | 4 Day Return Rate                    |
|-----------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------|
| 5 Day Return Rate                 | 10 Day Return Rate                                  | 15 Day Return Rate                             | 30 Day Return Rate                   |
| Maximum 1 Day<br>Return Rate      | Intra Day<br>Fluctuation                            | Daily US<br>Transactions                       | US Volume                            |
| Russian Volume                    | Chinese Volume                                      | Brazilian Volume                               | XCI (Arca<br>Computer Tech<br>Index) |
| EEM (iShares<br>Emerging Markets) | EFA (Developed<br>Market Equities<br>Large/Mid Cap) | VTWSX (Vanguard<br>Total World Stock<br>Index) |                                      |

Missingness

- Missingness
   highly dependent
   on time
- Bitcoin never stops trading
- Markets close on weekends
- Start from early 2012
- Impute the rest with KNN and na.interp from forecast package



## Removing Trend from Time Series Features w/ auto.arima



## **SVM** motivation



# Machine Learning Recipe

- 1. Impute with KNN and na.interp() function from forecast package
- 2. Split the data into 80/20 train to test
- 3. Find the OOB error for Random Forest by moving variables one by one according to Accuracy Feature Importance (repeat multiple times)
- 4. Using the optimal number of features, cross validate the number of variables at each split and the number of trees
- 5. Train the optimal Random Forest and make predictions
- 6. Train the SVM with the linear kernel and make predictions

## Random Forest Feature Selection

#### Random Forest OOB Error vs. # of Variables (Accuracy Metric)



#### Random Forest OOB Error vs. # of Variables (Gini Metric)



## Random Forest Cross Validation



### Random Forest OOB Error Rates by # of Trees





## **SVM** Results

#### Radial Kernel

| Predicted | True        | Frequency   |  |
|-----------|-------------|-------------|--|
| consider  | consider    | 310         |  |
| buy       | consider    | 15          |  |
| consider  | buy         | 63          |  |
| buy       | buy         | 24          |  |
| Accuracy  | Sensitivity | Specificity |  |
| 81.1%     | 27.6%       | 61.5%       |  |

#### Linear Kernel

| Predicted | True        | Frequency   |  |
|-----------|-------------|-------------|--|
| consider  | consider    | 323         |  |
| buy       | consider    | 2           |  |
| consider  | buy         | 78          |  |
| buy       | buy         | 9           |  |
| Accuracy  | Sensitivity | Specificity |  |
| 80.6%     | 10.3%       | 81.8%       |  |

## Random Forest Results

| Predicted | True        | Frequency   | Predicted | True        | Frequency   |
|-----------|-------------|-------------|-----------|-------------|-------------|
| consider  | consider    | 883         | consider  | consider    | 312         |
| buy       | consider    | 287         | buy       | consider    | 13          |
| consider  | buy         | 167         | consider  | buy         | 56          |
| buy       | buy         | 308         | buy       | buy         | 31          |
| Accuracy  | Sensitivity | Specificity | Accuracy  | Sensitivity | Specificity |
| 72.4%     | 64.8%       | 51.8%       | 83.2%     | 35.6%       | 72.1%       |

# Arbitrage Opportunities (shiny app)



Bitcoin USA: \$2600

Bitcoin China: \$19450

Bitcoin Exchange rate = 7.48

USA/CNY: 6.9

7.48/6.9 = 1.08

\$1 USD Dollar is turned into \$1.08

## Future To Dos

- PCA on the various return rates and better handle missingness
- Get better data/streaming data
- Migrate away from daily data and process trade by trade
- A full-fledged real time app that gives users the ability to decide whether or not to buy bitcoin given the SVM predictions and current sentiment analysis from Twitter
  - Sends out notifications
- Better understand the discrepancy in exchange rates
- Expand analysis to other cryptocurrencies
- Cryptocurrency portfolio management
- Country case studies (eg: Venezuela, Great Britain)

# Thank you!

- TA's
- Instructors
- Fellow Students
- NYC Data Science Academy