CMPE 314 Midterm Exam 2

(April 19, 2011)

Problem 1. (15 points) - diaring & disciption

- (a) What are the conditions for the cutoff, forward-active, and saturation modes for a pnp bipolar transistor? Show the structure, biasing connections.
- (b) What are the charge carrier contributions to the emitter, collector and base currents (show directions)?

Problem 2. (20 points) - nuncical answer

The transistor in the circuit has $\beta=50$, $V_{BE}(\text{on})=0.7 \text{ V}$ and $V_{CE}(\text{sat})=0.2 \text{ V}$. Determine I_B , I_C , and the power dissipated in the transistor for $V_I=3.6 \text{ V}$. Is the transistor in the forward-active mode?

$$R_C = 440 \Omega$$

$$R_B = 640 \Omega$$

$$V_I \circ V_O$$

Problem 3. (25 points) - cy antimes

Derive the equations for I_{CQ} and V_{CEQ} . Comment on the role of R_E . What is the maximum collector current under symmetric swing.

Problem 4. (40 points) - cquething

- (a) Assume finite V_A . Draw the AC equivalent circuit, including the hybrid- π model.
- (b) Find the DC load-line lope and the AC load-line slope.
- (c) Find the small-signal voltage gain and input resistance. Comment on the type of amplifier configuration and output resistance.

Problem 1

IE, Ic: Holes contribute most.

IB: Electrons contribute most.

Problem 2

$$V_{I} = I_{B}R_{B} + V_{BE}(on)$$
 $(V_{I} = 3.6V) \rightarrow I_{B} = \frac{3.6 - 0.7}{640} = 4.53 \text{ mA}$

then

not possible.

Transistor is in saturation

$$I_{c} = \frac{V^{+} - V_{CE}(Sat)}{Rc} = \frac{5 - 0.2}{440} = 10.91 \text{ mA}$$

Problem 1

IE, Ic: Holes contribute most.

IB: Electrons contribute most.

Problem 2

$$V_{I} = I_{B}R_{B} + V_{BE}(on)$$
 $(V_{I} = 3.6V) \rightarrow I_{B} = \frac{3.6 - 0.7}{640} = 4.53 \text{ mA}$

then

not possible.

Transistor is in saturation

$$I_c = \frac{V^+ - V_{CE}(Sat)}{Rc} = \frac{5 - 0.2}{440} = 10.91 \text{ mA}$$

Problem 3

$$V_{TH} = \frac{R_2}{R_1 + R_2} (V^{\dagger} - V^{\dagger}) + V^{\dagger}$$

$$V^{\dagger} - V = I_{c}R_{c} + I_{E}R_{E} + V_{cE}$$

$$I_c = \beta I_B = \frac{\beta}{1+\beta} I_E$$

RE is to stablize the Q-pt of the transista circuit.

Problem 4

(a)

(b)
$$DC: V^{\dagger} = I_{E}R_{E} + V_{EC} = \frac{I_{C}}{\alpha}R_{E} + V_{EC}$$

$$S(ope, De = -\frac{\alpha}{R_{E}})$$

(c)
$$V_0 = -\tilde{L}_0$$
 (roll $R_E[IR_L) = -(1+\beta)(roll R_E[IR_L)\tilde{L}_b$ $\beta \tilde{L}_b = \frac{3}{4} \mu U_{\pi}$

$$V^{0} = \frac{\Lambda^{2}}{\Lambda^{2}} = \frac{L^{11} + (1+b)(L^{2}||B^{E}||B^{r})}{(1+b)(L^{2}||B^{E}||B^{r})}$$

$$R_{2b} = -\frac{V_{c}}{L_{b}} = r_{ff} + (1+\beta)(r_{o}||R_{E}||R_{c})$$

It is an emitter-follower circuit.

Nome 21 09 1+ > UA