

数学物理方法

Mathematical Methods in Physics

第三章 无穷级数
Infinite Series

武汉大学

物理科学与技术学院

Wuhan University

§ 3.5单值函数的孤立奇点

一、函数的奇点

1、孤立奇点

若在 $|z-b| < \varepsilon$ 内除b外f(z)别无其他奇点

则
$$z = b$$
是 $f(z)$ 的孤立奇点。

e.g.
$$f(z) = \frac{1}{z(z-1)}$$
 $z = 0, z = 1$

2、非孤立奇点

若在|z-b| < ε 内,f(z)除z=b外还有其它的奇点,

则称b为f(z)的非孤立奇点。

$$e.g. f(z) = \frac{1}{\sin \frac{1}{z}}$$
 $z = 0$

若z = b为f(z)的孤立奇点,则

$$f(z) = \sum_{k=-\infty}^{\infty} C_k (z-b)^k, \quad 0 < |z-b| < R$$

1、可去奇点

若
$$f(z) = \sum_{k=0}^{\infty} C_k (z-b)^k, 0 < |z-b| < R (展开无负幂),$$

则 $z = b \rightarrow f(z)$ 的可去奇点

$$e.g. f(z) = \frac{\sin z}{z}, z = 0 \rightarrow 可去奇点$$

1、可去奇点

注: (1) b为可去奇点的充要条件为

$$i > f(z) = \sum_{k=0}^{\infty} C_k (z-b)^k \Leftrightarrow ii > \lim_{z \to b} f(z) = \widehat{\uparrow} \mathbb{R}$$

 $\Leftrightarrow iii > f(z)$ 在 b 充分小邻域内有界。

(2) 可去奇点常不作奇点看。

e.g.
$$F(z) = \begin{cases} f(z) & z \neq b \\ \lim_{z \to b} f(z) & z = b \end{cases}$$

2、极点

若
$$f(z) = \sum_{k=0}^{\infty} C_k(z-b)^k, 0 < |z-b| < R$$
 (展开有有限项负幂)

则称z = b为f(z)的极点. 当 $C_{-m} \neq 0$ 时,称z = b为

f(z)的m阶极点。1阶极点又称为单极点。

e.g.
$$f(z) = \frac{1}{z^2(z-1)}$$

注: (1) b为极点的充要条件: $\lim_{z\to b} f(z) = \infty$

$$e.g. f(z) = \frac{z}{\sin^2 z}$$

2、极点

(2) b为m阶极点的充要条件为

$$f(z) = \sum_{k=-\infty}^{\infty} C_k (z - b)^k \quad (C_{-m} \neq 0)$$

$$\Leftrightarrow f(z) = \frac{\varphi(z)}{(z-b)^m} \quad [\varphi(z) \in H(|z-b| < R), \varphi(b) \neq 0]$$

$$\Leftrightarrow g(z) = \frac{1}{f(z)}$$
以 $z = b$ 为 m 阶零点。(附)

$$e.g. f(z) = \frac{1}{z^2(z-1)}$$
, 以 $z = 0$ 为二阶极点, $z = 1$ 为单极点。

附:解析函数的零点:

设函数g(z)在解析区域 σ 内一点a的值为零,即g(a)=0,则称a为解析函数的g(z)零点。

若
$$g(a) = g'(a) = g''(a) = \cdots = g^{(m-1)}(a) = 0$$
,

但 $g^{(m)}(a) \neq 0$,则称a为函数g(z)的m级零点。

- 2、极点
- (3) 若z = b为f(z)的奇点,且

$$\lim_{z\to b}[(z-b)^n f(z)]=非零的有限值,$$

则b为f(z)的n阶极点。e.g. $f(z) = \frac{z}{\sin^2 z}$,

$$\lim_{z \to n\pi} (z - n\pi) \frac{z}{\sin^2 z} = \lim_{z \to n\pi} \frac{2z - n\pi}{\sin 2z} = \begin{cases} \lim_{z \to 0} \frac{2z}{\sin 2z} = 1, & n = 0\\ \infty, & n \neq 0 \end{cases}$$

$$e.g. f(z) = \frac{z}{\sin^2 z},$$

2、极点

$$\lim_{z \to n\pi} (z - n\pi)^2 \cdot \frac{z}{\sin^2 z} = \lim_{z \to n\pi} \frac{2(z - n\pi)z - (z - n\pi)^2}{2\sin z \cos z}$$

$$= \lim_{z \to n\pi} \frac{(z - n\pi)(3z - n\pi)}{\sin 2z}$$

$$= \lim_{z \to n\pi} \frac{4z - 2n\pi + z^2 - n^2\pi^2}{2\cos 2z} = \frac{2n\pi}{2\cos 2n\pi} = n\pi \quad (n \neq 0)$$

以
$$z=0$$
为单极点, $z=n\pi(n=\pm 1,\pm 2,...)$ 为二阶极点。

3、本性奇点
$$f(z) = \sum_{k=-\infty}^{\infty} C_k (z-b)^k$$
, $0 < |z-b| < R$

若
$$f(z) = \sum_{k=0}^{-1} C_k (z-b)^k + C_0 + C_1 (z-b)^2 + \cdots, 0 < |z-b| < R$$

(展开有无限项负幂),则称z = b为f(z)的本性奇点。

$$e.g. \ f(z) = e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + ...; 0 < |z| < \infty$$
 $z = 0 \to$ 本性奇点

注意: b为本性极点的充要条件为
$$\lim_{z \to b} f(z) =$$
不定 $e.g.$ $\lim_{z \to 0} e^{\frac{1}{z}} = \begin{cases} 0, & x \to 0^+ \\ y = 0 \end{cases}$ an University

Wuhan University

1、无穷点为解析点

$$e.g.$$
 $f(z) = \frac{1}{z^2(z-1)}$ 在 $z = \infty$ 处解析

2、无穷点为孤立奇点

若 $\exists -R > 0$, 当|z| > R时f(z)除 $z = \infty$ 别无奇点,

即在 $R < |z| < \infty$ 中解析,则 $z = \infty$ 为f(z)的孤立奇点.

e.g.
$$f(z) = \frac{\sin z}{z}$$

在z=∞为孤立奇点

3、无穷远点为孤立奇点的分类

令
$$z = \frac{1}{t}$$
 例 $z = \infty$ \rightarrow $t = 0$

$$f(z) \qquad \rightarrow \qquad f\left(\frac{1}{t}\right) = \varphi(t)$$

$$|z| > R \qquad \rightarrow \qquad |t| < \frac{1}{R} = \delta$$

$$R < |z| < \infty \qquad \rightarrow \qquad 0 < |t| < \delta$$

$$f(z) \div \begin{cases} |z| > R \cdot \delta + T \times \delta \\ R < |z| < \infty \cdot \delta \end{cases}$$

$$f(z) \div \begin{cases} |z| > R \cdot \delta + T \times \delta \\ R < |z| < \infty \cdot \delta \end{cases}$$

3、无穷远点为孤立奇点的分类

(1) 可去奇点:

若
$$f(z) = \sum_{k=0}^{-1} c_k z^k + c_{0,k} R < |z| < \infty (展开无正幂)$$

则 $z = \infty$ 为f(z)的可去奇点。

$$e.g.$$
 $f(z) = z \cdot \sin \frac{1}{z}$ 以 $z = \infty$ 可去奇点。

(2) 极点

则 $z = \infty$ 为f(z)的m阶极点。

$$e.g. P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots a_0$$
 以 $z = \infty$ 为 n 阶极点。

3、无穷远点为孤立奇点的分类

(3) 本性奇点

若
$$f(z) = \sum_{k=0}^{\infty} c_k z^k + c_{-1} \frac{1}{z} + c_{-2} \frac{1}{z^2} + \cdots, R < |z| < \infty$$
 (有无限项正幂)

则 $z = \infty$ 为f(z)的本性奇点。

$$e.g.$$
 $e^z = \sum_{k=0}^{\infty} \frac{1}{k!} z^k |z| < \infty$ 以 $z = \infty$ 为本性奇点。

小结

函数的奇点

(1) 可去奇点
$$\lim_{z \to z} f(z) = 有限$$

(2) 极点
$$\lim_{z \to b} f(z) = \infty$$

$$f(z) = \sum_{k=0}^{\infty} C_k (z - b)^k \quad (C_{-m} \neq 0)$$

(1) 可去奇点
$$\lim_{z \to b} f(z) =$$
有限
(2) 极点 $\lim_{z \to b} f(z) = \infty$

$$f(z) = \sum_{k=-m}^{\infty} C_k (z-b)^k \quad (C_{-m} \neq 0)$$
1、孤立奇点 $\Leftrightarrow f(z) = \frac{\varphi(z)}{(z-b)^m} \quad [\varphi(z) \in H(|z-b| < R), \varphi(b) \neq 0]$

$$\Leftrightarrow g(z) = \frac{1}{f(z)}$$
以 $z = b$ 为 m 阶零点。
$$(3)$$
 本性奇点 $\lim_{z \to b} f(z) =$ 不定

2、非孤立奇点

小结

、孤立奇点的分类

奇点	b	∞
展开 式 类型	$\sum_{k=-\infty}^{\infty} c_k (z-b)^k, 0 < z-b < R$	$\sum_{k=-\infty}^{\infty} c_k z^k, \ R < z < \infty$
可去奇点	无负幂	无正幂
m阶极点	有m项负幂	有m项正幂
本性奇点	有无限项负幂	有无限项正幂

Good-by!

