1.1 Memory Map of Development Board

4.0 GB		
	DECEDITED ADDRESS SDACE	OxFFFF FFFF
3.75 GB	RESERVED ADDRESS SPACE	0xF000 0000
		OxEFFF FFFF
	PERIPHERALS	
3.5 GB		0xE000 0000
3.3 00		OxDFFF FFFF
	RESERVED ADDRESS SPACE	
		0x4000 8000
		0x4000 7FFF
1.0 GB	32 kB ON-CHIP STATIC RAM	0x4000 0000
1.0 00		0x3FFF FFFF
	RESERVED ADDRESS SPACE	
		0x0008 0000
		0x0007 FFFF
	512 kB ON-CHIP NON-VOLATILE MEMORY	
		0x0000 0000
0.0 GB		

1.2 Detail View of Peripheral Memory Map

3.75 GB

ŝΒ		
		OxEFFF FFFF
	NOT USED	
	1101 0025	
		0xE020 0000
	System Control Block	
		0xE01F C000 0xE01F 8000
		OXLOTI 8000
	NOT USED	
		0xE002 0000
	TIMER1	
		0xE001 C000
	TIMERO	
		0xE001 8000
	Interrupt Controller	
		0xE001 4000
	BUTTON0-9	0xE001 0000
		OXEOUT OOOO
	LCD	0xE000 C000
		0X2000 C 000
	LED0-7	0xE000 8000
	LIADT4	
	UART1	0xE000 4000
	UARTO	
	UANTU	0xE000 0000

1.3 Memory-Mapped Hardware Registers

1.3.1 UARTO

The UARTs are 64-byte versions of the *standard* National Semiconductor UARTs. The model is 16750. For an in-depth explanation of the various registers and how to configure them, check out <u>this article</u>.

U0RBR	UARTO Receiver Buffer	0xE000	0000
U0THR	UARTO Transmitter Holding Buffer	0xE000	0000
U0DLL	UARTO Devisor Latch Low Byte	0xE000	0000
U0DLH	UARTO Devisor Latch High Byte	0xE000	0004
U0IER	UARTO Interrupt Enable Register	0xE000	0004
U0IIR	UARTO Interrupt Identification Register	0xE000	8000
U0FCR	UARTO FIFO Control Register	0xE000	8000
U0LCR	UARTO Line Control Register	0xE000	000C
UOLSR	UARTO Line Status Register	0xE000	0014
U0SCR	UARTO Scratch Register	0xE000	001C

1.3.2 UART1

The UARTs are 64-byte versions of the *standard* National Semiconductor UARTs. The model is 16750. For an in-depth explanation of the various registers and how to configure them, check out this article.

U1RBR	UART1 Receiver Buffer	0xE000	4000
U1THR	UART1 Transmitter Holding Buffer	0xE000	4000
U1DLL	UART1 Devisor Latch Low Byte	0xE000	4000
U1DLH	UART1 Devisor Latch High Byte	0xE000	4004
U1IER	UART1 Interrupt Enable Register	0xE000	4004
U1IIR	UART1 Interrupt Identification Register	0xE000	4008
U1FCR	UART1 FIFO Control Register	0xE000	4008
U1LCR	UART1 Line Control Register	0xE000	400C
U1LSR	UART1 Line Status Register	0xE000	4014
U1SCR	UART1 Scratch Register	0xE000	401C

1.3.3 LED0-7

The status of the LEDs can be queried by polling the respective bit of the LED Status Register. To enable LED n set the n-th bit of the LED Status Register. Likewise to disable LED n clear the n-th bit of the LED Status Register.

1.3.4 LCD

The LCD is modeled after the Hitachi HD44780, although a bit simplified. Check out the *Instruction Description* in the HD44780.pdf file and then look at the provided assembler and C example code. It should be pretty self explainatory then. The exposed HW registers are:

LCDC_IOCTL	LCD I/O Control Register	0xE000	C000
LCDC_DATA	LCD Data Transfer Register	0xE000	C001

1.3.5 BUTTON0-9

The status of the Push Buttons can be queried by polling the respective bit of the Button Status Register. If the button is pressed the bit will be set, otherwise it will be cleared. The least significant bit (LSB) corresponds to button 0.

BTNSTATUS	Button Status Register	0xE001	0000
-----------	------------------------	--------	------

1.3.6 Programmable Interrupt Controller

The PIC is modeled after the PIC used in Samsung's S3C4510B microcontroller (also known as KS32C50100). For a detailed description of the exposed HW registers and how to configure the PIC, take a look at the S3C4510B Datasheet, Chapter 13 (Interrupt Controller).

INTMOD	Interrupt Mode Register	0xE001	4000
INTPND	Interrupt Pending Register	0xE001	4004
INTMSK	Interrupt Mask Register	0xE001	4008
INTPRIO	Interrupt Priority Register 0	0xE001	400C
INTPRI1	Interrupt Priority Register 1	0xE001	4010
INTPRI2	Interrupt Priority Register 2	0xE001	4014
INTPRI3	Interrupt Priority Register 3	0xE001	4018
INTPRI4	Interrupt Priority Register 4	0xE001	401C
INTPRI5	Interrupt Priority Register 5	0xE001	4020
INTOFFSET	Interrupt Offset Register	0xE001	4024
INTOSET_FIQ	FIQ Interrupt Offset Register	0xE001	4028

INTOSET_IRQ	IRQ Interrupt Offset Register	0xE001 402C
INTPNDPRI	Interrupt Pending By Priority Register	0xE001 4030
INTPNDTST	Interrupt Pending Test Register	0xE001 4034

1.3.7 TIMERO

Each timer has a 16-bit counter. The cpu clock (CPUCLK, 1/16 CPUCLK and 1/256 CPUCLK) performs counting. Timer interrupts occur when the counter value reaches a certain value specified as the reference value, or when it overflows. The status register flag indicates which of the above has caused the interrupt.

T0_MODE	Mode Setting and Status Register	0xE001	8000
T0_COUNT	Counter Value Register (upper 16 bit fixed to 0)	0xE001	8004
T0_COMP	Compare Value Register (upper 16 bit fixed to 0)	0xE001	8008

1.3.8 TIMER1

Each timer has a 16-bit counter. The cpu clock (CPUCLK, 1/16 CPUCLK and 1/256 CPUCLK) performs counting. Timer interrupts occur when the counter value reaches a certain value specified as the reference value, or when it overflows. The status register flag indicates which of the above has caused the interrupt.

T1_MODE	Mode Setting and Status Register	0xE001	C000
T1_COUNT	Counter Value Register (upper 16 bit fixed to 0)	0xE001	C004
T1_COMP	Compare Value Register (upper 16 bit fixed to 0)	0xE001	C008

1.3.9 System Control Block

The System Control Block includes several system features and control registers for a number of functions that are not related to specific peripheral devices.

PCON Power Control Register 0xE01F C000

Setting the least significant bit (LSB) of the *Power Control Register* will power down the development board and return control to the calling JavaScript code.