Dynamic Programming Fibonacci Example

Example

• Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, ... *Recurrence*:

$$F(n)=F(n-1)+F(n-2)$$
 for $n>1$
 $F(0)=0$, $F(1)=1$

ALGORITHM F(n)if $n \le 1$ return nelse return F(n-1)+F(n-2)

Recursive Computation

$$F(n) = F(n-1) + F(n-2)$$
; $F(0) = 0$, $F(1) = 1$

Recursive Solution: F(6) = 8F(4) F(5) F(3) F(1) F(1) F(3) F(2) F(2) F(1) F(2) F(0) F(1) F(0)F(1) F(0) F(1) F(0)

Bottom-up computation

We can calculate F(n) in linear time by storing small values.

```
F[0] = 0

F[1] = 1

for i = 2 to n

F[i] = F[i-1] + F[i-2]

return F[n]
```

Moral: We can sometimes trade space for time.

Efficiency Example: Fibonacci numbers

- F(n) = F(n-1) + F(n-2)
 - F(0) = 0
 - F(1) = 1
- Top-down recursive computation is very inefficient
 - Many F(i) values are computed multiple times
- Bottom-up computation is much more efficient
 - Compute F(2), then F(3), then F(4), etc. using stored values for smaller F(i) values to compute next value
 - Each F(i) value is computed just once

- Footprints in the sand show where one has been
- Use *additional memory* to save computation time

The End