矩阵论期末考试笔记

PPAP

2020年12月11日

写在前面的话

- (1) 做初等行变换的时候一定要化为行最简型。行最简型就是非 0 行的首非 0 元是 1, 并且所在的列只有这一个非 0 元素。
- (2) 对于齐次方程而言,从左往右非0行的第一个非0元作为非自由未知量,剩下作为自由未知量。
- (3) 非齐次方程而言,自由未知量全部取 0。
- (4) 结果当中尽可能不出现分数。
- (5) 关于特征值和特征向量的话只需要注意对应就可以了,不一定特征值非得要从小到大排列。
- (6) 该笔记大部分采用的记号和线代里面的记号一致,例如,做初等变换时,我们采用以下记号:
 - ① r 表示行, c 表示列
 - ② $r_1 \leftrightarrow r_2$ 表示第一行和第二行交换
 - ③ $r_1 \times (-1)$ 表示第一行乘以 -1 倍
 - ④ $r_2 + 2r_1$ 表示第一行的两倍加到第二行
 - ⑤ $r_3 r_2 r_1$ 表示第一行的 (-1) 倍加到第三行,并且第二行的 (-1) 倍加到第三行
 - ⑥ $r_1 \leftrightarrow r_3 \leftrightarrow r_2$ 表示先第一行和第三行交换,后第三行和第二行交换
 - ⑦ $\stackrel{r_1 \mapsto r_2}{\to}$ 当中的 $r_2 + 2r_1$ 和 $r_1 \leftrightarrow r_2$ 表示先将第一行的 2 倍加到第二行上,变换之后第一行和第二行 交换
- (7) 求解 A 的最小多项式当中,A 的余式 $r(\lambda)$ 最少是常数项,最多是比 A 的最小多项式的次数低一次。
- (8) 求解 A 的最小多项式当中,一定要体现出矩阵的相乘这个过程。
- (9) 试卷的填空题的答案会用蓝色标记。

目录

第一部分	分 《矩阵论》以及《矩阵分析》历年试题参考答案	1
1.1	2019-2021-1《矩阵论》试题及其参考解答	1
1.2	《矩阵分析》2018年试题及其参考解答	9
1.3	《矩阵论》2017 年试题 (A 卷) 及其参考解答	18
1.4	《矩阵分析》2016 年 (A 卷) 试题及其参考解答	25
第二部分	分 课后重点习题答案	34
2.1	第一章 线性空间和线性变换课后习题	34
2.2	第二章 内积空间课后习题	43
2.3	第三章 矩阵的标准形课后习题	48
2.4	第四章 矩阵的分解课后习题	55
2.5	第五章 范数理论及其应用课后习题	60
2.6	第六章 矩阵分析及其应用课后习题	63
第三部分 计算过程中用到的线性代数知识		68
3.1	可逆矩阵的逆矩阵的求解	68
3.2	矩阵的乘法	68
3.3	矩阵的 k 次方的计算	69
3.4	秩为1的矩阵拥有的结论	69
3.5	特征值、特征向量、二次型	69
	3.5.1 内积	69
	3.5.2 特征值如何求解	70
	3.5.3 施密特正交化公式	70

第一部分《矩阵论》以及《矩阵分析》历年试题参考答案

1.1 2019-2021-1《矩阵论》试题及其参考解答

一、 填空题 (每小题 3 分, 共 15 分)

(1). 已知线性空间
$$F[t]_3 = \{f(t) = a_0 + a_1t + a_2t^2; a_0, a_1, a_2 \in F\}$$
 的两组基

(I):
$$1, t, t^2$$
 (II): $2, t + 1, (t + 1)^2$

则由基 (I) 到基 (II) 的过渡矩阵为 _____.

解析:

注意到
$$(2, t+1, (t+1)^2) = (2, 1+t, 1+2t+t^2) = (1, t, t^2)$$

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

所以由基 (I) 到基 (II) 的过渡矩阵为 2 1 1 0 1 2 0 0 1

(2). 已知矩阵
$$A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ 0 & 1 \end{bmatrix}$$
,则矩阵 A 的奇异值为 _____.

解析:

$$A^HA = \begin{bmatrix} 2 & 4 \\ 4 & 9 \end{bmatrix}$$
,所以 A^HA 的特征多项式为 $\lambda^2 - (2+9)\lambda + 2 = \lambda^2 - 11\lambda + 2$

也就是
$$A^HA$$
 的特征值为 $\lambda_1=\frac{11+\sqrt{113}}{2}=, \lambda_2=\frac{11-\sqrt{113}}{2}$

所以
$$A$$
 的奇异值为 $d_1 = \sqrt{\lambda_1} = \sqrt{\frac{11 + \sqrt{113}}{2}}, \ d_2 = \sqrt{\lambda_2} = \sqrt{\frac{11 + \sqrt{113}}{2}}$

(3). 已知矩阵
$$A = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
,则 A 的 LU 分解为 ______.

我们将
$$(A, E) = \begin{bmatrix} 5 & -2 & 0 & 1 & 0 & 0 \\ -2 & 3 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_2 + \frac{2}{5} \times r_1} \begin{bmatrix} 5 & -2 & 0 & 1 & 0 & 0 \\ 0 & \frac{11}{5} & -1 & \frac{2}{5} & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

所以
$$L = P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{2}{5} & 1 & 0 \\ 0 & -\frac{5}{11} & 1 \end{bmatrix}$$
, 所以 A 的 LU 分解为
$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{2}{5} & 1 & 0 \\ 0 & -\frac{5}{11} & 1 \end{bmatrix} \begin{bmatrix} 5 & -2 & 0 \\ 0 & \frac{11}{5} & -1 \\ 0 & 0 & \frac{6}{11} \end{bmatrix}$$

(4). 已知矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, 则 \mathbf{A} 的 \mathbf{QR} 分解为 ______.

取 *A* 的列向量为 $\alpha_1 = (1, -1, 1, 1)^T$, $\alpha_2 = (1, 1, 1, 1)^T$

于是正交化得
$$\begin{cases} \beta_1 = \alpha_1 = (1, -1, 1, 1)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{1}{2} (1, 3, 1, 1)^T \end{cases}$$

所以单位化得
$$\gamma_1 = \frac{1}{2}(1, -1, 1, 1)^T, \gamma_2 = \frac{1}{2\sqrt{3}}(1, 3, 1, 1)^T$$

所以
$$\mathbf{Q} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2\sqrt{3}} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2\sqrt{3}} \\ \frac{1}{2} & \frac{1}{2\sqrt{3}} \end{bmatrix}$$
, 于是 $\mathbf{R} = \begin{bmatrix} ||\beta_1|| & (\alpha_2, \gamma_1) \\ 0 & ||\beta_2|| \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2\sqrt{3} \end{bmatrix}$

(5). 己知矩阵 \boldsymbol{A} 如第 (4) 题,则 $\boldsymbol{B} = \boldsymbol{E} - \boldsymbol{A}^T \boldsymbol{A}$ 的范数为:

$$||B||_{m_1} =$$
______; $||B||_{m_\infty} =$ ______; $||B||_F =$ ______

曲于
$$A^T A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$$
,所以 $B = E - A^T A = \begin{bmatrix} -3 & -2 \\ -2 & -3 \end{bmatrix}$

所以
$$||\mathbf{B}||_{m_1} = |-3| + |-2| + |-2| + |-3| = 10$$
, $||\mathbf{B}||_{m_\infty} = 2 \cdot \max |a_{ij}| = 2 \cdot 3 = 6$

$$||\boldsymbol{B}||_F = ||\boldsymbol{B}||_{m_2} = \sqrt{|-3|^2 + |-2|^2 + |-2|^2 + |-3|^2} = \sqrt{26}$$

二、
$$(15 分)$$
 设 $A = \begin{bmatrix} 2 & 6 & -15 \\ 1 & 1 & -5 \\ 1 & 2 & -6 \end{bmatrix}$

- (1) 求A的行列式因子,不变因子,初等因子;
- (2) 求 A 的 Jordan 标准形和 $\lambda E A$ 的 Smith 标准形;
- (3) 求 *A* 的最小多项式.

(1) 注意到
$$\lambda E - A = \begin{bmatrix} \lambda - 2 & -6 & 15 \\ -1 & \lambda - 1 & 5 \\ -1 & -2 & \lambda + 6 \end{bmatrix}$$
, 注意到存在一阶非零子式 $|15| = 15$, 所以 $D_1(\lambda) = 1$

并且注意到
$$D_3(\lambda) = |\lambda E - A| = \lambda^3 + 3\lambda^2 + (-6 - (-10) + (-12) - (-15) + 2 - 6)\lambda - (-1) = (\lambda + 1)^3$$

注意到
$$\begin{vmatrix} \lambda - 2 & -6 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 4)(\lambda + 1), \begin{vmatrix} -6 & 15 \\ \lambda - 1 & 5 \end{vmatrix} = -15(\lambda + 1), \begin{vmatrix} \lambda - 2 & 15 \\ -1 & 5 \end{vmatrix} = 5(\lambda + 1)$$

$$\begin{vmatrix} \lambda - 2 & -6 \\ -1 & -2 \end{vmatrix} = -2(\lambda + 1), \quad \begin{vmatrix} -6 & 15 \\ -2 & \lambda + 6 \end{vmatrix} = -6(\lambda + 1), \quad \begin{vmatrix} \lambda - 2 & 15 \\ -1 & \lambda + 6 \end{vmatrix} = (\lambda + 1)(\lambda + 3)$$

$$\begin{vmatrix} -1 & \lambda - 1 \\ -1 & -2 \end{vmatrix} = \lambda + 1, \quad \begin{vmatrix} \lambda - 1 & 5 \\ -2 & \lambda + 6 \end{vmatrix} = (\lambda + 1)(\lambda + 4), \quad \begin{vmatrix} -1 & 5 \\ -1 & \lambda + 6 \end{vmatrix} = -(\lambda + 1)$$

所以 $D_2(\lambda) = \lambda + 1$,所以行列式因子为 $D_1(\lambda) = 1$, $D_2(\lambda) = \lambda + 1$, $D_3(\lambda) = (\lambda + 1)^2$

所以不变因子为
$$d_1(\lambda) = 1$$
, $d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda + 1$, $d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda + 1)^2$

所以初等因子为 $\lambda+1$, $(\lambda+1)^2$

(2) 由 (1) 知
$$\boldsymbol{A}$$
 的 Jordan 标准型为 $\boldsymbol{J} = \begin{bmatrix} -1 & & & \\ & -1 & 1 \\ & & -1 \end{bmatrix}$,所以 $\lambda \boldsymbol{E} - \boldsymbol{A}$ 的 Smith 标准形为
$$\begin{bmatrix} 1 & & & \\ & \lambda + 1 & & \\ & & (\lambda + 1)^2 \end{bmatrix}$$

- (3) 由 (1)(2) 知 A 的最小多项式为 $(\lambda + 1)^2 = \lambda^2 + 2\lambda + 1$
- 三、 (15 分) 对于 $\alpha = (x_1, x_2, x_3) \in \mathbb{R}^3$,定义

$$T(\alpha) = (x_1 + x_2, x_1 - x_3, 0)$$

(1) 证明 $T \in \mathbb{R}^3$ 上的线性变换;

- (2) 设 \mathbb{R}^3 上的一组基为 $\alpha_1 = (1,0,0), \alpha_2 = (1,1,0), \alpha_3 = (1,1,1),$ 求线性变换 T 在这组基下的矩阵;
- (3) 求 T 的核空间的一组基和维数。

(1) 设 $\alpha = (x_1, x_2, x_3)$, $\beta = (y_1, y_2, y_3)$, $k \in \mathbb{R}$, 所以 $\alpha + \beta = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ 由于

$$T(\alpha + \beta) = (x_1 + y_1 + x_2 + y_2, x_1 + y_1 - x_3 + y_3, 0) = (x_1 + x_2, x_1 - x_3, 0) + (y_1 + y_2, y_1 - y_3, 0)$$
$$= T(\alpha) + T(\beta)$$

并且 $T(k\alpha) = (kx_1 + kx_2, kx_1 - kx_3, 0) = k(x_1 + x_2, x_1 - x_3, 0) = kT(\alpha)$,所以 T 是 \mathbb{R}^3 上的线性变换

(2) 注意到
$$T(\alpha_1) = (1, 1, 0) = \alpha_2 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$T(\alpha_2) = (2, 1, 0) = \alpha_1 + \alpha_2 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad T(\alpha_3) = (2, 0, 0) = 2\alpha_1 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

所以
$$T(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(3) 设
$$\alpha = (x_1, x_2, x_3) \in \mathbb{R}$$
。由于 T 的核空间为 $T(\alpha) = 0$,于是就会有:
$$\begin{cases} x_1 + x_2 = 0 \\ x_1 - x_3 = 0 \end{cases}$$

于是
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$
 $\xrightarrow{r_1-r_2}$ $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ $\xrightarrow{r_1 \leftrightarrow r_2}$ $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$, 所以该方程的解为 $k(1, -1, 1)$

所以 T 的核空间的一组基为 (1,-1,1), T 的核空间的维数为 1

四、(15分)已知微分方程组

$$\begin{cases} \frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}, \quad A = \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

- (1) 求 $\sin A$;
- (2) 求 e^{At} , 并求微分方程组的解.

注意到
$$A$$
 的特征多项式为 $|\lambda E - A| = \begin{vmatrix} \lambda + 2 & -1 & 0 \\ 4 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda^2 (\lambda - 1)$,并且注意到 $R(A) = 2$

所以 0 特征值所对应的特征向量个数为 3-2=1,所以 A 不可对角化,所以 $m_A(\lambda) = \lambda^2(\lambda-1)$

$$(1)$$
 令 $f(\lambda) = \sin \lambda$ 以及 $r(\lambda) = a_0 \lambda^2 + a_1 \lambda + a_2$

由题意知
$$\begin{cases} f(0) = r(0) \\ f'(0) = r'(0) \end{cases} \Rightarrow \begin{cases} 0 = a_2 \\ 1 = a_1 \\ \sin 1 = a_0 + a_1 + a_2 \end{cases} \Rightarrow \begin{cases} a_0 = \sin 1 - 1 \\ a_1 = 1 \\ a_2 = 0 \end{cases}$$

并且注意到
$$\mathbf{A} = \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, $\mathbf{A}^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}$, $\mathbf{A} - \mathbf{E} = \begin{bmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

所以
$$\sin A = (\sin 1 - 1)A^2 + A = (\sin 1)A^2 + A - A^2 = \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 2 - \sin 1 & -1 + \sin 1 & \sin 1 \end{bmatrix}$$

$$(2) \diamondsuit f(\lambda) = e^{\lambda t} 以及 r_1(\lambda) = a_0 \lambda^2 + a_1 \lambda + a_2$$

由题意知
$$\begin{cases} 1 = r(0) \\ t = r'(0) \end{cases} \Rightarrow \begin{cases} 1 = a_2 \\ t = a_1 \\ e^t = r(1) \end{cases} \Rightarrow \begin{cases} a_0 = -1 - t + e^t \\ a_1 = t \\ a_2 = 1 \end{cases}$$

所以
$$e^{At} = (e^t - t - 1)A^2 + tA + E = e^t A^2 + t(A - A^2) + E - A^2 = \begin{bmatrix} -2t + 1 & t & 0 \\ -4t & 2t + 1 & 0 \\ -e^t + 2t + 1 & e^t - t - 1 & e^t \end{bmatrix}$$

所以微分方程组的解
$$\mathbf{x} = e^{\mathbf{A}t}\mathbf{x}_0 = \begin{bmatrix} -2t+1 & t & 0 \\ -4t & 2t+1 & 0 \\ -e^t+2t+1 & e^t-t-1 & e^t \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -t+1 \\ -2t+1 \\ -e^t+t \end{bmatrix}$$

五、
$$(20 \, \%)$$
 设 $\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

(1) 求 A 的满秩分解;

- (2) 求 A 的广义逆 A+;
- (3) 求 Ax = b 的最小二乘解;
- (4) 求 Ax = b 的极小范数最小二乘解;

$$(1) 注意到 \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \xrightarrow{r_3 + r_4 \\ r_3 + r_4 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \xrightarrow{r_3 + r_4 \\ r_3 + r_4 \\ -1 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 \times \frac{1}{2} \\ r_1 - r_2 \\ -1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 \times \frac{1}{2} \\ r_1 - r_2 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_3 - r_2 \\ r_3 + r_1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}} \xrightarrow{r_3 - r_2 \\ r_3 + r_1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_4 \leftrightarrow r_2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

于是
$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$$
, $\mathbf{C} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$, 所以 \mathbf{A} 的满秩分解为 $\mathbf{A} = \mathbf{BC}$

(2) 由 (1) 知
$$C^H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $B^H = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix}$, 所以 $CC^H = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $B^H B = \begin{bmatrix} 7 & -1 \\ -1 & 3 \end{bmatrix}$, 所以

$$A^{+} = C^{H} (CC^{H})^{-1} (B^{H}B)^{-1} B^{H} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix} \cdot \frac{1}{20} \begin{bmatrix} 3 & 1 \\ 1 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix}$$

$$= \frac{1}{40} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix}$$

$$= \frac{1}{40} \begin{bmatrix} 3 & 1 \\ 2 & 14 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 2 & 3 & -1 & 1 \\ 8 & 2 & 6 & -6 \\ -2 & -3 & 1 & -1 \end{bmatrix}$$

(3) (方法一) 注意到
$$A^{+}A = \frac{1}{20} \begin{bmatrix} 2 & 3 & -1 & 1 \\ 8 & 2 & 6 & -6 \\ -2 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$x = A^{+}b + (E - A^{+}A)C_{1} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} C_{1} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + k \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, 其中 k 为任意常数$$

(方法二)

由于
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$
,所以 $A^T = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & -2 & 1 & -1 \end{bmatrix}$

所以
$$A^{T}A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 7 & -1 & -7 \\ -1 & 3 & 1 \\ -7 & 1 & 7 \end{bmatrix}, A^{T}b = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix}$$

所以
$$(\boldsymbol{A}^T\boldsymbol{A}, \boldsymbol{A}^T\boldsymbol{b}) = \begin{bmatrix} 7 & -1 & -7 & 3 \\ -1 & 3 & 1 & 1 \\ -7 & 1 & 7 & -3 \end{bmatrix} \xrightarrow{r_3+r_1} \begin{bmatrix} -1 & 3 & 1 & 1 \\ 7 & -1 & -7 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 \times (-1)} \begin{bmatrix} 1 & -3 & -1 & -1 \\ 0 & 20 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(4)
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 的极小范数最小二乘解为 $\mathbf{x} = \mathbf{A}^{+}\mathbf{b} = \frac{1}{20} \begin{bmatrix} 2 & 3 & -1 & 1 \\ 8 & 2 & 6 & -6 \\ -2 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$

六、(20 分)设 $\mathbb{R}^{2\times 2}$ 的子空间

$$V_{1} = \left\{ \begin{bmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{bmatrix} | x_{1} + x_{2} - x_{3} = 0, x_{1} + x_{2} + x_{3} - x_{4} = 0 \right\}$$

$$V_{2} = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

- (1) 求 V_1 的基和维数;
- (2) 证明: $V_1 + V_2$ 是直和;

(3) 对于
$$\mathbf{A} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} y_1 & y_2 \\ y_3 & y_4 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$, 定义内积

$$(A, B) = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$$

求 V_1 的正交补 V_1^{\perp} 的一组标准正交基。

(1) 由题意知需要求解
$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ x_1 + x_2 + x_3 - x_4 = 0 \end{cases}$$

于是系数矩阵为
$$A_1 = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & 1 & -1 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} \end{bmatrix} \xrightarrow{r_1 + r_2} \begin{bmatrix} 1 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} \end{bmatrix}$$

于是
$$A_1 \mathbf{x} = \mathbf{0}$$
 的通解为 $\mathbf{x} = k_1 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$,于是 V_1 的基为 $X_1 = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$, $X_2 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$,维数为 2

(2) 证明: 记
$$\mathbf{B}_1 = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$
, 由于 $R(\mathbf{B}) = 3$, 所以 $V_1 \cap V_2 = \{\mathbf{0}\}$, 所以 $V_1 + V_2$ 是直和

$$(3) 设 \mathbf{Y} = \begin{bmatrix} y_1 & y_2 \\ y_3 & y_4 \end{bmatrix} \in V_1^{\perp},$$
 于是有
$$\begin{cases} (\mathbf{Y}, \mathbf{X}_1) = 0 \\ (\mathbf{Y}, \mathbf{X}_2) = 0 \end{cases},$$
 解得 V^{\perp} 的一组基为 $\mathbf{Y}_1 = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, \mathbf{Y}_2 = \begin{bmatrix} -2 & -2 \\ 0 & 1 \end{bmatrix}$

但是 $(Y_1, Y_2) = 4 \neq 0$,所以我们接下来需要正交化,单位化

首先我们做正交化:
$$\begin{cases} Y_{11} = Y_1 = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \\ Y_{21} = Y_2 - \frac{(Y_2, Y_{11})}{(Y_{11}, Y_{11})} Y_{11} = \frac{1}{3} \begin{bmatrix} -2 & -2 \\ -4 & 3 \end{bmatrix} \end{cases}$$

然后我们做单位化: 注意到 $||Y_{11}|| = \sqrt{(Y_{11},Y_{11})} = \sqrt{3}$,并且 $||Y_{21}|| = \sqrt{(Y_{21},Y_{21})} = \frac{\sqrt{33}}{3}$

所以
$$Y_{11}^{\circ} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, Y_{21}^{\circ} = \frac{1}{\sqrt{33}} \begin{bmatrix} -2 & -2 \\ -4 & 3 \end{bmatrix}$$

所以 V_1 的正交补 V_1^{\perp} 的一组标准正交基为 $\frac{1}{\sqrt{3}}\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$, $\frac{1}{\sqrt{33}}\begin{bmatrix} -2 & -2 \\ -4 & 3 \end{bmatrix}$

【注意】

- 1. 第二问当中,证明直和的方式有多种多样。比如说也可以考虑证明 $\dim(V_1+V_2)=\dim V_1+\dim V_2$ 这个等式成立。
- 2. 第三问当中我们注意要把此时的矩阵当作一个"向量",然后即可套用施密特正交化的公式。

1.2 《矩阵分析》2018年试题及其参考解答

一、 填空题 (每小题 3 分, 共 15 分)

1. 在
$$\mathbf{R}^4$$
 中,设解空间 $V_1 = \{(x_1, x_2, x_3, x_4)^T | x_1 + x_2 + x_3 = 0\}$ 和 $V_2 = \{(x_1, x_2, x_3, x_4)^T | x_1 + x_2 + x_4 = 0\}$,则 $\dim(V_1 + V_2) = \underline{\hspace{1cm}}$

解析:

显然
$$\dim V_1 = \dim V_2 = 3$$
,并且注意到 $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_4 = 0 \end{cases}$ 的系数矩阵 $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$ 的秩为 2

所以 Ax = 0 的解空间的维数为 n - r(A) = 4 - 2 = 2

所以由维数定理知 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2) = 3 + 3 - 2 = 4$

2. 设 $\mathbf{R}_n[x]$ 表示次数小于 n 的 x 实系数多项式全体构成的线性空间,

$$W = \{ f(x) \in \mathbf{R}_n[x] | f''(0) = 0 \}$$

则 $\dim W =$ _____

解析:

设
$$f(x) \in W$$
,注意到 $f''(0) = 0$,所以 $f(x) = \sum_{i=3}^{n-1} a_i x^i + a_1 x + a_0$

所以 W 的基为 $1, x, x^3, x^4, x^5, \dots, x^{n-1}$, 所以 dim W = n - 1

3. 已知矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
,则 $A^5 - 2A^4 - A^2 + 4A + 3E =$ ______

解析:

注意到
$$A$$
 的特征多项式为 $|\lambda E - A| = \lambda^3 - 3\lambda^2 + (1 + 0 + 1)\lambda = \lambda^3 - 3\lambda^2 + 2\lambda = \lambda(\lambda - 1)(\lambda - 2) = 0$

于是解得 $\lambda_1 = 0, \lambda_1 = 1, \lambda_1 = 2$ 。注意到 **A** 的特征值互异

所以
$$A$$
 的最小多项式一定是 $m_A(\lambda) = \lambda(\lambda-1)(\lambda-2) = \lambda^3 - 3\lambda^2 + 2\lambda$

由于
$$\lambda^5 - 2\lambda^4 - \lambda^2 + 4\lambda + 3 = (\lambda^3 - 3\lambda^2 + 2\lambda)(\lambda^2 + \lambda + 1) - 2\lambda + 3$$

所以
$$A^5 - 2A^4 - A^2 + 4A + 3E = -2A + 3E = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

4. 若矩阵的初级因子为 $\lambda, \lambda^3, (\lambda-2)^3, (\lambda-2)^2$,则 A 的最小多项式为 ______

注意到 A 的最小多项式为 A 的最后一个不变因子,并且注意到最后一个不变因子能整除所有的初级 因子,所以 A 的最小多项式为 $\lambda^3(\lambda-2)^3$

5. 矩阵
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 7 & 0 & 6 \\ 5 & 2 & 0 \end{bmatrix}$$
 的 LU 分解为 _____

解析:

注意到
$$\begin{bmatrix} 2 & 3 & 4 & 1 & 0 & 0 \\ 7 & 0 & 6 & 0 & 1 & 0 \\ 5 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_2-r_1} \begin{bmatrix} 2 & 3 & 4 & 1 & 0 & 0 \\ 5 & -3 & 2 & -1 & 1 & 0 \\ 5 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_3-r_2} \begin{bmatrix} 2 & 3 & 4 & 1 & 0 & 0 \\ 5 & -3 & 2 & -1 & 1 & 0 \\ 0 & 5 & -2 & 1 & -1 & 1 \end{bmatrix}$$

所以
$$U = \begin{bmatrix} 2 & 3 & 4 \\ 0 & -\frac{21}{2} & -8 \\ 0 & 0 & -\frac{122}{21} \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{7}{2} & 1 & 0 \\ -\frac{2}{3} & -\frac{11}{21} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{7}{2} & 1 & 0 \\ \frac{5}{2} & \frac{11}{21} & 1 \end{bmatrix}$

所以
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{7}{2} & 1 & 0 \\ \frac{5}{2} & \frac{11}{21} & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \\ 0 & -\frac{21}{2} & -8 \\ 0 & 0 & -\frac{122}{21} \end{bmatrix}$$

二、 $(15 \, \text{分})$ 在 \mathbb{R}^3 中有两个基:

I:
$$\alpha_1 = (1, 0, 0)^T$$
, $\alpha_2 = (1, 1, 0)^T$, $\alpha_3 = (1, 1, 1)^T$;

II:
$$\beta_1 = (1,0,1)^T$$
, $\beta_2 = (0,1,1)^T$, $\beta_3 = (0,0,1)^T$

若 \mathbf{R}^3 上的线性变换 T,使得 $T(\alpha_1) = (1,4,7)^T$, $T(\alpha_2) = (2,5,8)^T$, $T(\alpha_3) = (3,6,9)^T$

试回答下列问题:

- (1) 求T在基I下的矩阵A;
- (2) 求 T 在基 II 下的矩阵 B;
- (3) 已知向量 $\alpha = (1,5,9)^T$, 求向量 $T(\alpha)$ 在基 II 下的坐标

(1) 注意到
$$T(\alpha_1) = -3\alpha_1 - 3\alpha_2 + 7\alpha_3 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} -3 \\ -3 \\ 7 \end{bmatrix}$$
;

$$T(\alpha_2) = -3\alpha_1 - 3\alpha_2 + 8\alpha_3 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} -3 \\ -3 \\ 8 \end{bmatrix}; \ T(\alpha_3) = -3\alpha_1 - 3\alpha_2 + 9\alpha_3 = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} -3 \\ -3 \\ 9 \end{bmatrix}$$

所以
$$T(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} -3 & -3 & -3 \\ -3 & -3 & -3 \\ 7 & 8 & 9 \end{bmatrix}$$
, 所以 T 在基 I 下的矩阵 $A = \begin{bmatrix} -3 & -3 & -3 \\ -3 & -3 & -3 \\ 7 & 8 & 9 \end{bmatrix}$

(2) 注意到
$$(\alpha_1, \alpha_2, \alpha_3) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
,并且 $(\beta_1, \beta_2, \beta_3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

以及
$$T(\beta_1, \beta_2, \beta_3) = (\beta_1, \beta_2, \beta_3)$$
B 和 $T(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3)$ **A**

记
$$(\alpha_1, \alpha_2, \alpha_3) = (\beta_1, \beta_2, \beta_3)$$
P, 由于 $(\alpha_1, \alpha_2, \alpha_3) = (\beta_1, \beta_2, \beta_3)$ $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -2 & -1 \end{bmatrix}$

所以
$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -2 & -1 \end{bmatrix}$$
, 并且 $\mathbf{P}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$

于是有
$$T(\alpha_1, \alpha_2, \alpha_3) = T(\beta_1, \beta_2, \beta_3)$$
P = $(\beta_1, \beta_2, \beta_3)$ **BP** = $(\alpha_1, \alpha_2, \alpha_3)$ **P**⁻¹**BP**

所以 $P^{-1}BP = A$,于是 T 在基 II 下的矩阵

$$\mathbf{B} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & -2 & -1 \end{bmatrix} \begin{bmatrix} -3 & -3 & -3 \\ -3 & -3 & -3 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 2 & 1 \\ 5 & 2 & 1 \\ 1 & -2 & -1 \end{bmatrix}$$

(3) 注意到
$$\alpha = (1,5,9)^T = 1\beta_1 + 5\beta_2 + 3\beta_3 = (\beta_1,\beta_2,\beta_3)(1,5,3)^T$$

于是
$$T(\alpha) = T[(\beta_1, \beta_2, \beta_3) \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}] = T(\beta_1, \beta_2, \beta_3) \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix} = (\beta_1, \beta_2, \beta_3) \boldsymbol{B} \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix} = (\beta_1, \beta_2, \beta_3) \boldsymbol{B} \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$$

所以向量
$$T(\alpha)$$
 在基 II 下的坐标为 $\begin{bmatrix} 15\\18\\-12 \end{bmatrix}$

三、 (15 分) 在 \mathbf{R}^3 中对于任意的 $\alpha = (x_1, x_2, x_3)^T, \beta = (y_1, y_2, y_3)^T \in \mathbf{R}^3$, 定义

$$(\alpha, \beta) = 2x_1y_1 + x_2y_2 + x_3y_3$$

- (1) 证明: \mathbf{R}^3 关于这里的 (α, β) 构成内积空间。
- (2) 设 $\varepsilon_1 = \frac{1}{2}(1,1,1)^T$, 求 \mathbf{R}^3 的含有 ε_1 的一个规范正交基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 。
- (3) 设向量 $\delta = (3,6,9)^T$, 求向量 δ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标。

解析:

对称性:
$$(\alpha, \beta) = 2x_1y_1 + x_2y_2 + x_3y_3 = 2y_1x_1 + y_2x_2 + y_3x_3 = (\beta, \alpha)$$

线性性:

$$(k\alpha + l\beta, \gamma) = 2(kx_1 + ly_1)z_1 + (kx_2 + ly_2)z_2 + (kx_3 + ly_3)z_3$$
$$= k(2x_1z_1 + x_2z_2 + x_3z_3) + l(2y_1z_1 + y_2z_2 + y_3z_3)$$
$$= k(\alpha, \gamma) + l(\beta, \gamma)$$

正定性: $(\alpha, \alpha) = 2x_1^2 + x_2^2 + x_3^2 \ge 0$,并且当且仅当 $\alpha = \mathbf{0}$ 时, $(\alpha, \alpha) = 0$

(2) 设
$$\mathbf{x} = (x_1, x_2, x_3)^T \in \mathbf{R}^3$$
, 于是就有 $(\mathbf{x}, \varepsilon_1) = 0$

于是 $2x_1 + x_2 + x_3 = 0$, 所以 $\mathbf{x} = k_1(-1, 2, 0)^T + k_2(-1, 0, 2)^T$, 其中 k_1, k_2 为任意常数

于是可以取 $\alpha_1 = (-1, 2, 0)^T$, $\alpha_2 = (-1, 0, 2)^T$

于是我们来正交化
$$\begin{cases} \beta_1 = \alpha_1 = (-1, 2, 0)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{2}{3} (-1, -1, 3)^T \end{cases}$$

于是
$$||\beta_1|| = \sqrt{(\beta_1, \beta_1)} = \sqrt{6}$$
, $||\beta_2|| = \sqrt{(\beta_2, \beta_2)} = 2\sqrt{3}$, $\varepsilon_2 = \frac{1}{\sqrt{6}}(-1, 2.0)^T$, $\varepsilon_3 = \frac{1}{2\sqrt{3}}(-1, -1, 3)^T$

于是
$$\varepsilon_1 = \frac{1}{2}(1,1,1)^T$$
, $\varepsilon_2 = \frac{1}{\sqrt{6}}(-1,2,0)^T$, $\varepsilon_3 = \frac{1}{2\sqrt{3}}(-1,-1,3)^T$

(3) 注意到
$$\begin{bmatrix} 1 & -1 & -1 & 3 \\ 1 & 2 & -1 & 6 \\ 1 & 0 & 3 & 9 \end{bmatrix} \xrightarrow{r_3-r_1} \begin{bmatrix} 1 & -1 & -1 & 3 \\ 0 & 3 & 0 & 3 \\ 0 & 1 & 4 & 6 \end{bmatrix} \xrightarrow{r_2 \times \frac{1}{3}} \begin{bmatrix} 1 & -1 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 4 & 6 \end{bmatrix} \xrightarrow{r_1+r_2 \\ r_3-r_2} \begin{bmatrix} 1 & 0 & -1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 4 & 5 \end{bmatrix}$$

$$\xrightarrow{r_3 \times \frac{1}{4}} \left[\begin{array}{cccc|c} 1 & 0 & -1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & \frac{5}{4} \end{array} \right] \xrightarrow{r_1 + r_3} \left[\begin{array}{cccc|c} 1 & 0 & 0 & \frac{21}{4} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & \frac{5}{4} \end{array} \right]$$

所以向量 $\delta = (3,6,9)^T$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标为 $(2 \cdot \frac{21}{4}, \sqrt{6} \cdot 1, 2\sqrt{3} \cdot \frac{5}{4})^T = (\frac{21}{2}, \sqrt{6}, \frac{5}{2}\sqrt{3})^T$ 。

【注意】

- 1. 这道题目里面内积被重新定义了,所以向量的模长需要按照重新定义之后的算法来计算,包括正交化公式的时候内积也是需要用重新定义之后的算法来计算。
- 2. 第三问的做法的理论如下:

本来按照坐标的定义应该是: $\delta = \varepsilon_1 x_1 + \varepsilon_2 x_2 + \varepsilon_3 x_3 = (\varepsilon_1, \varepsilon_2, \varepsilon_3)(x_1, x_2, x_3)^T$

但是注意到一个大问题: 带着根号不方便计算。所以我们可以转化为

$$\delta = 2\varepsilon_1 y_1 + \sqrt{6}\varepsilon_2 y_2 + 2\sqrt{3}\varepsilon_3 y_3 = (2\varepsilon_1, \sqrt{6}\varepsilon_2, 2\sqrt{3}\varepsilon_3)(y_1, y_2, y_3)^T$$

前面的系数表示的是第二问当中求出来的标准正交基当中的分母。

于是就转化为了求 $(y_1, y_2, y_3)^T$, 然后 $(x_1, x_2, x_3)^T = (2y_1, \sqrt{6}y_2, 2\sqrt{3}y_3)^T$

3. 第三问还有一个做法,注意到 $\delta = \varepsilon_1 x_1 + \varepsilon_2 x_2 + \varepsilon_3 x_3 = (\varepsilon_1, \varepsilon_2, \varepsilon_3)(x_1, x_2, x_3)^T$

并且注意到
$$\varepsilon_1, \varepsilon_2, \varepsilon_3$$
 是规范正交基。 于是
$$\begin{cases} x_1 = (\delta, \varepsilon_1) = \frac{1}{2}(2 \cdot 3 \cdot 1 + 6 \cdot 1 + 9 \cdot 1) = \frac{21}{2} \\ x_2 = (\delta, \varepsilon_2) = \frac{1}{\sqrt{6}}[2 \cdot (-1) \cdot 3 + 2 \cdot 6] = \sqrt{6} \\ x_3 = (\delta, \varepsilon_3) = \frac{1}{2\sqrt{3}}[2 \cdot 3 \cdot (-1) + 6 \cdot (-1) + 9 \cdot 3] = \frac{5}{2}\sqrt{3} \end{cases}$$

注意: 这个时候的内积是重新定义的, 需要用重新定义的内积来算

四、
$$(15 分)$$
 设 $A = \begin{bmatrix} -1 & 0 & 3 \\ 0 & 2 & 0 \\ -3 & 0 & 5 \end{bmatrix}$

- (1) 求A的行列式因子、不变因子以及初级因子;
- (2) 求A的最小多项式;
- (3) 求 \boldsymbol{A} 的 Jordan 标准型矩阵 \boldsymbol{J} ,并求可逆矩阵 \boldsymbol{P} ,使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{J}$

(1) 注意到
$$\lambda E - A = \begin{bmatrix} \lambda + 1 & 0 & -3 \\ 0 & \lambda - 2 & 0 \\ 3 & 0 & \lambda - 5 \end{bmatrix}$$
, 由于存在一阶非 0 子式 $|3| = 3 \neq 0$, 所以 $D_1(\lambda) = 1$.

并且
$$D_3(\lambda) = |\lambda E - A| = (\lambda - 2)^3$$
,并且存在一个二阶非 0 子式 $\begin{vmatrix} \lambda + 1 & 0 \\ 0 & \lambda - 2 \end{vmatrix} = (\lambda + 1)(\lambda - 2)$

于是
$$D_2(\lambda)$$
 只有可能是 1 或者 $\lambda - 2$ 。并且由于 $\begin{vmatrix} 0 & -3 \\ \lambda - 2 & 0 \end{vmatrix} = 3(\lambda - 2), \begin{vmatrix} 0 & \lambda - 2 \\ 3 & 0 \end{vmatrix} = -3(\lambda - 2)$

$$\begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 5 \end{vmatrix} = (\lambda - 2)(\lambda - 5), \begin{vmatrix} \lambda + 1 & -3 \\ 3 & \lambda - 5 \end{vmatrix} = (\lambda - 2)^2, \text{ MUD}_2(\lambda) = \lambda - 2$$

所以 A 的行列式因子为 $D_1(\lambda) = 1$, $D_2(\lambda) = \lambda - 2$, $D_3(\lambda) = (\lambda - 2)^3$

所以
$$A$$
 的不变因子为 $d_1(\lambda) = 1$, $d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda - 2$, $d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda - 2)^2$

所以 A 的初级因子为 $\lambda = 2$, $(\lambda = 2)^2$

(2) \boldsymbol{A} 矩阵的最小多项式就是 \boldsymbol{A} 的最高阶不变因子,也就是 $(\lambda-2)^2=\lambda^2-4\lambda+4$

(3) 由 (1) 知
$$\boldsymbol{A}$$
 的约当标准型为 $\boldsymbol{J} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$,于是我们设 $\boldsymbol{P} = (\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3)$,于是就有 $\boldsymbol{AP} = \boldsymbol{PJ}$

于是我们可以得到
$$\begin{cases} Ap_1 = 2p_1 \\ Ap_2 = 2p_2 \\ Ap_3 = p_2 + 2p_3 \end{cases}$$

于是我们可以由 (A-2E)x=0 解得 $x=k_1(0,1,0)^T+k_2(1,0,1)^T$, 其中 k_1,k_2 为任意常数

所以 $\boldsymbol{p}_1 = (k_2, k_1, k_2)^T$, $\boldsymbol{p}_2 = (k_4, k_3, k_4)^T$, 其中 k_1, k_2, k_3, k_4 为常数

所以
$$(A-2E, p_2) = \begin{bmatrix} -3 & 0 & 3 & k_4 \\ 0 & 0 & 0 & k_3 \\ -3 & 0 & 3 & k_4 \end{bmatrix} \xrightarrow{r_3-r_1} \begin{bmatrix} 3 & 0 & -3 & -k_4 \\ 0 & 0 & 0 & k_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
,于是 $k_3 = 0$, $p_3 = -\frac{k_4}{3}(1, 0, 0)$

所以
$$\mathbf{P} = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \begin{bmatrix} k_2 & -3k_5 & k_5 \\ k_1 & 0 & 0 \\ k_2 & -3k_5 & 0 \end{bmatrix}$$
, 其中 k_1, k_2, k_5 是任意常数并且满足 $k_1k_5^2 \neq 0$ 。

【注意】

1. 最后一步的 $k_1k_5^2\neq 0$ 是因为 $|\boldsymbol{P}|=-3k_1k_5^2\neq 0$

2. 求解 $P^{-1}AP = J$ 当中 J 的顺序没有要求,P 只需要求解出满足其中的一个 P 就可以了/

五、 (15 分) 设矩阵

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 \\ 2 & 0 & 2 \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix} \ \ \downarrow \downarrow \ \ \mathcal{D} \mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- (1) 求 A 的满秩分解;
- (2) 求A的广义逆矩阵 A^+ ;
- (3) 由 A 的广义逆矩阵 A^+ ,求不相容的线性方程组 Ax = b 的最小二乘解以及最优最小二乘解;

解析:

$$(1) 注意到 A \xrightarrow{r_1 - 2r_3} \begin{bmatrix} 2 & 4 & 6 \\ 2 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 \times \frac{1}{2}} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ r_2 - r_1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

所以
$$\mathbf{B} = \begin{bmatrix} 2 & 4 \\ 2 & 0 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$$
, $\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

(2) 由 (1) 得
$$C^H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B^H = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 4 & 0 & 2 & 0 \end{bmatrix}$, 所以 $CC^H = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $B^H B = 10 \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, 所以

$$A^{+} = C^{H} (CC^{H})^{-1} (B^{H}B)^{-1} B^{H} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \cdot \frac{1}{10} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 & 1 \\ 4 & 0 & 2 & 0 \end{bmatrix}$$
$$= \frac{1}{30} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 & 1 \\ 4 & 0 & 2 & 0 \end{bmatrix}$$
$$= \frac{1}{30} \begin{bmatrix} 5 & -3 \\ -4 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 & 1 \\ 4 & 0 & 2 & 0 \end{bmatrix} = \frac{1}{30} \begin{bmatrix} -2 & 10 & -1 & 5 \\ 4 & -8 & 2 & -4 \\ 2 & 2 & 1 & 1 \end{bmatrix}$$

(3) 求最小二乘解有两种方法,这里都写一下。

(方法一) 注意到
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 \\ 2 & 0 & 2 \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$
, 所以 $\mathbf{A}^T = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 4 & 0 & 2 & 0 \\ 6 & 2 & 3 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$

所以
$$\mathbf{A}^T \mathbf{A} = 10 \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix}, \ \mathbf{A}^T \mathbf{b} = \begin{bmatrix} 9 \\ 14 \\ 23 \end{bmatrix}$$

所以
$$(A^T A, A^T b) = \begin{bmatrix} 10 & 10 & 20 & 9 \\ 10 & 20 & 30 & 14 \\ 20 & 30 & 50 & 23 \end{bmatrix} \xrightarrow{r_3 - r_2 - r_1} \begin{bmatrix} 10 & 10 & 20 & 9 \\ 0 & 10 & 20 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 10 & 0 & 0 & 4 \\ 0 & 10 & 20 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{r_1 \times \frac{1}{10}} \begin{bmatrix} 1 & 0 & 0 & \frac{2}{5} \\ 0 & 1 & 2 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{所以最小二乘解为} \ \mathbf{x} = k \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{2}{5} \\ \frac{1}{2} \\ 0 \end{bmatrix}, \quad \text{其中 } k \text{ 为任意常数}.$$

 $(方法二)x = A^+b + (E - A^+A)C_1$, 其中 C_1 为任意的列向量

于是
$$\mathbf{x} = \frac{1}{10} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \mathbf{C}_1 = \frac{1}{10} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} k \\ k \\ -k \end{bmatrix}$$
, 其中 k 为任意常数

所以极小范数最小二乘解 (也叫最优最小二乘解) 为
$$\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} = \frac{1}{30} \begin{bmatrix} -2 & 10 & -1 & 5 \\ 4 & -8 & 2 & -4 \\ 2 & 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

六、(10分)判断矩阵级数

$$\sum_{n=0}^{+\infty} \frac{1}{10^n} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 6 & 0 & 1 \end{bmatrix}^n$$

的敛散性, 若收敛, 求其和。

解析:

记
$$A = \frac{1}{10} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 6 & 0 & 1 \end{bmatrix}$$
,注意到 A 矩阵的 $1 - 范数 ||A||_1 = \frac{7}{10} < 1$,所以该矩阵级数收敛

或者注意到 A 矩阵的特征值为 $\frac{3}{10}$, $\frac{1\pm2\sqrt{3}}{10}$

于是 A 的特征值的绝对值的最大值 (也叫谱半径) 为 $\frac{1+2\sqrt{3}}{10}$ < 1 所以该矩阵级数收敛。

于是矩阵级数的和为
$$(\mathbf{E} - \mathbf{A})^{-1} = 10$$

$$\begin{bmatrix} \frac{3}{23} & 0 & \frac{2}{69} \\ 0 & \frac{1}{7} & 0 \\ \frac{2}{23} & 0 & \frac{3}{23} \end{bmatrix} = \begin{bmatrix} \frac{30}{23} & 0 & \frac{20}{69} \\ 0 & \frac{10}{7} & 0 \\ \frac{20}{23} & 0 & \frac{30}{23} \end{bmatrix}$$

【注意】

- 1.A 的特征值的绝对值的最大值也叫做谱半径 $\rho(A)$
- 2. 若 $\rho(A) < 1$,则纽曼级数 $\sum_{n=0}^{+\infty} A^n$ 收敛,且值为 $(E A)^{-1}$
- 3. 若存在一种范数使得 $||A||_X$ < 1,其中 X 表示 1,2,∞, m_1 , m_∞ ,F,这是因为是矩阵范数。
- 七、(15分)已知初值条件的方程组:

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

其中
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$
, $x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, 试回答下列问题:

- (1) 求 e^A ;
- (2) 求 e^{At} ;
- (3) 求该微分方程的通解。

解析:

由于(2)出来了,(1)也就出来了,所以这里直接求第二问和第三问。

令 $f(\lambda) = e^{\lambda t}$,并且注意到 A 的特征多项式为 $|\lambda E - A| = (\lambda - 1)^2 (\lambda - 2)$

并且注意到
$$\mathbf{A} - \mathbf{E} = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \ \mathbf{A} - 2\mathbf{E} = \begin{bmatrix} -2 & 0 & -2 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

所以 (A-E)(A-2E)=0,于是 A 的最小多项式为 $(\lambda-1)(\lambda-2)=\lambda^2-3\lambda+2$

所以设 $f(\lambda) = m_A(\lambda)q(\lambda) + r(\lambda)$, 其中 $r(\lambda) = a_0\lambda + a_1$

于是
$$\begin{cases} f(1) = r(1) \\ f(2) = r(2) \end{cases}$$
,也就是 $\begin{cases} e^t = a_0 + a_1 \\ e^{2t} = 2a_0 + a_1 \end{cases}$,于是 $\begin{cases} a_0 = -e^t + e^{2t} \\ a_1 = 2e^t - e^{2t} \end{cases}$

所以
$$e^{\mathbf{A}t} = f(\mathbf{A}) = a_0 \mathbf{A} + a_1 \mathbf{E} = (-e^t + e^{2t})\mathbf{A} + (2e^t - e^{2t})\mathbf{E} = \begin{bmatrix} 2e^t - e^{2t} & 0 & 2e^t - 2e^{2t} \\ 0 & e^t & 0 \\ -e^t + e^{2t} & 0 & -e^t + 2e^{2t} \end{bmatrix}$$

所以
$$e^{A}$$

$$\begin{bmatrix} 2e - e^{2} & 0 & 2e - 2e^{2} \\ 0 & e & 0 \\ -e + e^{2} & 0 & -e + 2e^{2} \end{bmatrix}$$

该微分方程的通解为
$$\mathbf{x} = e^{\mathbf{A}t}\mathbf{x}_0 = \begin{bmatrix} 4e^t - 3e^{2t} \\ e^t \\ -2e^t + 3e^{2t} \end{bmatrix}$$

1.3 《矩阵论》2017 年试题 (A 卷) 及其参考解答

一、 填空题 (每小题 3 分, 共 15 分)

1. 已知矩阵
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
,则 $A^4 - 8A^3 - 2A^2 + 2A =$ ______.

解析:

(方法一) 注意到 A 的特征多项式为 $\lambda^2 - 2\lambda$,并且 $\lambda^4 - 8\lambda^3 - 2\lambda^2 + 2\lambda = (\lambda^2 - 2\lambda)(\lambda^2 - 6\lambda - 14) - 26\lambda$

所以原式 =
$$-26A$$
 = $\begin{bmatrix} -26 & -26 \\ -26 & -26 \end{bmatrix}$

(方法二) 注意到 $A^2 = 2A$,所以 $A^3 = 2A^2 = 4A$,所以 $A^4 = 4A^2 = 8A$

所以原式 =
$$8A - 8 \cdot 4A - 2 \cdot 2A + 2A = -26A = \begin{bmatrix} -26 & -26 \\ -26 & -26 \end{bmatrix}$$

2. 若矩阵
$$A$$
 相似于对角阵 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, 则 A 的最小多项式为 ______.

解析:

注意到 A 的特征多项式为 $(\lambda-1)(\lambda-2)^2$,所以 A 的最小多项式为 $(\lambda-1)(\lambda-2)$ 或者是 $(\lambda-1)(\lambda-2)^2$ 由于 (A-E)(A-2E)=0,所以 A 的最小多项式为 $(\lambda-1)(\lambda-2)$

3. 已知矩阵
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 2 & 1 \\ 5 & 5 & 6 \end{bmatrix}$$
, 则 A 的 LU 分解为 ______.

注意到 $|A| = -5 \neq 0$,于是 A 可逆,所以

$$\begin{bmatrix} 2 & 3 & 4 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 5 & 5 & 6 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 2 & 3 & 4 & 1 & 0 & 0 \\ 0 & -\frac{5}{2} & -5 & -\frac{3}{2} & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix}$$

所以
$$U = \begin{bmatrix} 2 & 3 & 4 \\ 0 & -\frac{5}{2} & -5 \\ 0 & 0 & 1 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & 1 & 0 \\ \frac{5}{2} & 1 & 1 \end{bmatrix}$

所以矩阵
$$\boldsymbol{A}$$
 的 $\boldsymbol{L}\boldsymbol{U}$ 分解为
$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & 1 & 0 \\ \frac{5}{2} & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \\ 0 & -\frac{5}{2} & -5 \\ 0 & 0 & 1 \end{bmatrix}$$

$$||A||_F = \underline{\hspace{1cm}};$$

解析:

由题意知
$$||A||_{m_1} = \sum_{i=1}^{3} \sum_{j=1}^{3} |a_{ij}| = \sqrt{2} + 3 + 5 + 4 + 2 + 3 + 1 = 18 + \sqrt{2}$$

$$||A||_{m_{\infty}} = 3 \cdot \max_{i,j} |a_{ij}| = 3 \cdot 5 = 15$$

$$||A||_F = \sqrt{\sum_{i=1}^3 \sum_{j=1}^3 |a_{ij}|^2} = \sqrt{2+9+25+16+4+9+1} = \sqrt{66}$$

5. 已知
$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 & 0 & 1 \\ 1 & -1 & 3 & 7 \end{bmatrix}$, 设 V_1 和 V_2 分别为齐次线性方程组 $Ax = \mathbf{0}$ 和 $Bx = \mathbf{0}$ 的解空间,则 $\dim(V_1 + V_2) = \underline{\hspace{1cm}}$.

所以 Ax = 0 的解空间维数为 2, Bx = 0 的解空间维数为 2。 $\dim(V_1 \cap V_2) = 1$

所以由维数定理知 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2) = 2 + 2 - 1 = 3$

【注意】

第一步的理由是,你需要通过 $\begin{cases} Ax = 0 \\ Bx = 0 \end{cases}$ 求 $\dim(V_1 \cap V_2)$,之后方便使用维数定理。

二、
$$(15 分)$$
 设 $A = \begin{vmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{vmatrix}$

- (1) 求A的行列式因子,不变因子,初等因子;
- (2) 求 A 的 Jordan 标准形;
- (3) 求 A 的最小多项式。

解析:

注意到
$$\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda - 3 & -1 & 1 \\ 2 & \lambda & -2 \\ 1 & 1 & \lambda - 3 \end{bmatrix}$$

所以
$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda - 3 & -1 & 1 \\ 2 & \lambda & -2 \\ 1 & 1 & \lambda - 3 \end{vmatrix} = \lambda^3 - 6\lambda^2 + 12\lambda - 8 = (\lambda - 2)^3$$

(1) 行列式因子 $D_3(\lambda) = (\lambda - 2)^3$, 注意到 $|2| = 2 \neq 0$, 所以 $D_1(\lambda) = 1$

并且由于
$$\begin{vmatrix} \lambda - 3 & -1 \\ 2 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 2), \begin{vmatrix} \lambda - 3 & 1 \\ 2 & -2 \end{vmatrix} = -2(\lambda - 2), \begin{vmatrix} -1 & 1 \\ \lambda & -2 \end{vmatrix} = -(\lambda - 2)$$

$$\begin{vmatrix} 2 & \lambda \\ 1 & 1 \end{vmatrix} = -(\lambda - 2), \quad \begin{vmatrix} 2 & -2 \\ 1 & \lambda - 3 \end{vmatrix} = 2(\lambda - 2), \quad \begin{vmatrix} \lambda & -2 \\ 1 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 2)$$

$$\begin{vmatrix} \lambda - 3 & -1 \\ 1 & 1 \end{vmatrix} = -(\lambda - 2), \quad \begin{vmatrix} \lambda - 3 & 1 \\ 1 & \lambda - 3 \end{vmatrix} = (\lambda - 2)(\lambda - 4), \quad \begin{vmatrix} -1 & 1 \\ 1 & \lambda - 3 \end{vmatrix} = -(\lambda - 2)$$

所以 $D_2(\lambda) = (\lambda - 2)$,所以行列式因子为 $D_1(\lambda) = 1$, $D_2(\lambda) = (\lambda - 2)$, $D_3(\lambda) = (\lambda - 2)^3$

所以不变因子为
$$d_1(\lambda) = 1$$
, $d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda - 2$, $d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda - 2)^2$

所以初级因子为 $\lambda-2$, $(\lambda-2)^2$

(2) 由 (1) 知
$$A$$
 的 Jordan 标准形为 $J = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

(3) 由于
$$\mathbf{A} - 2\mathbf{E} = \begin{bmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} (1, 1, -1), 所以 $(\mathbf{A} - 2\mathbf{E})^2 = \mathbf{0}$$$

所以 A 的最小多项式为 $m_A(\lambda) = (\lambda - 2)^2 = \lambda^2 - 4\lambda + 4$

三、
$$(15 分)$$
 设 $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$, 并记

$$V = \left\{ X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \middle| AX = XA \right\}$$

为线性空间,对于任意的 $X \in V$,定义: T(X) = XB。

- (1) 证明: $T \in V$ 上的线性变换;
- (2) 求 V 的一组基,并求 T 在所求基下的矩阵。

解析:

(1) 证明: 设 $X_1, X_2 \in V$, $k \in \mathbb{R}$, 于是就会有:

$$T(X_1 + X_2) = (X_1 + X_2)B = X_1B + X_2B = T(X_1) + T(X_2)$$

$$T(kX_1) = (kX_1)B = kX_1B = kT(X_1)$$

所以T是V上的线性变换

(2) 由于 AX = XA

所以
$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$
,也就是 $\begin{bmatrix} x_{11} & x_{11} + 2x_{12} \\ x_{21} & x_{21} + 2x_{22} \end{bmatrix} = \begin{bmatrix} x_{11} + x_{21} & x_{12} + x_{22} \\ 2x_{21} & 2x_{22} \end{bmatrix}$

于是
$$\begin{cases} x_{11} = x_{11} + x_{21} \\ x_{11} + 2x_{12} = x_{12} + x_{22} \\ x_{21} = 2x_{21} \\ x_{21} + 2x_{22} = 2x_{22} \end{cases},$$
 于是
$$\begin{cases} x_{21} = 0 \\ x_{11} + x_{12} = x_{22} \end{cases},$$
 所以 $X = \begin{bmatrix} x_{11} & x_{12} \\ 0 & x_{11} + x_{12} \end{bmatrix}$

所以
$$V$$
的一组基为 $X_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $X_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

所以
$$T(X_3) = X_3 \boldsymbol{B} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} = 2X_3 - X_4 = (X_3, X_4) \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$T(X_4) = X_4 \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = X_4 = (X_3, X_4) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

所以
$$T(X_3, X_4) = (X_3, X_4) \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}$$
,也就是 T 在基 X_3, X_4 下的矩阵为 $\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}$

四、(15分)已知微分方程组

$$\begin{cases} \frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t) \\ \mathbf{x}(0) = x_0 \end{cases}, \quad A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- (1) (7 分) 求 e^A ;
- (2) (8 分) 求 e^{At} , 并求微分方程组的解。

解析:

由于第一问是第二问的特殊情况,所以我们接下来只求解第二问。

由于 A 的特征多项式为 $|\lambda E - A| = 0$,也就是 $\lambda^3 - 6\lambda^2 + (2 + 8 + 2)\lambda - 8 = 0$,也就是 $(\lambda - 2)^3 = 0$

并且注意到
$$\mathbf{A} - 2\mathbf{E} = \begin{bmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} (1, 1, -1)$$

所以
$$(A-2E)^2 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} (1,1,-1) \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} (1,1,-1) = \mathbf{0}$$

所以 A 的最小多项式为 $m_A(\lambda) = (\lambda - 2)^2 = \lambda^2 - 4\lambda + 4$

由于
$$f(\lambda) = e^{\lambda t}$$
, 所以设 $r(\lambda) = a_0 \lambda + a_1$ 于是我们就有
$$\begin{cases} f(2) = r(2) \\ f'(2) = r'(2) \end{cases}$$

也就是
$$\begin{cases} e^{2t} = 2a_0 + a_1 \\ te^{2t} = a_0 \end{cases}, \quad \text{于是} \begin{cases} a_0 = te^{2t} \\ a_1 = (1 - 2t)e^{2t} \end{cases}$$

所以
$$e^{At} = f(A) = r(A) = te^{2t}A + (1-2t)e^{2t}E = te^{2t}\begin{bmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{bmatrix} + (1-2t)e^{2t}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$= te^{2t} \begin{bmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ -1 & -1 & 1 \end{bmatrix} + e^{2t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} (t+1)e^{2t} & te^{2t} & -te^{2t} \\ -2te^{2t} & (1-2t)e^{2t} & 2te^{2t} \\ -te^{2t} & -te^{2t} & (t+1)e^{2t} \end{bmatrix}$$

所以
$$e^{A} = e^{At}|_{t=1} = \begin{bmatrix} 2e^2 & e^2 & -e^2 \\ -2e^2 & -e^2 & 2e^2 \\ -e^2 & -e^2 & 2e^2 \end{bmatrix}$$
,所以该微分方程组的解为 $\mathbf{x}(t) = e^{At}\mathbf{x}(0) = \begin{bmatrix} (t+1)e^{2t} \\ (1-2t)e^{2t} \\ (1-t)e^{2t} \end{bmatrix}$

五、
$$(20 \, \mathcal{A})$$
 设 $A = \begin{bmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- (1) 求 A 的满秩分解;
- (2) 求 A 的广义逆 A+;
- (3) 求 Ax = b 的最小二乘解;
- (4) 求 Ax = b 的极小范数最小二乘解。

所以
$$\mathbf{B} = \begin{bmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$$
, $\mathbf{C} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{bmatrix}$, 所以 $\mathbf{A} = \mathbf{BC}$

(2) 由于
$$C^{H} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ -2 & \frac{3}{2} \end{bmatrix}$$
, $B^{H} = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix}$, 所以 $B^{H}B = \begin{bmatrix} 6 & 6 \\ 6 & 8 \end{bmatrix} = 2\begin{bmatrix} 3 & 3 \\ 3 & 4 \end{bmatrix}$

所以
$$CC^H = \begin{bmatrix} 6 & -3 \\ -3 & \frac{13}{4} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 24 & -12 \\ -12 & 13 \end{bmatrix}$$
,所以

$$A^{+} = C^{H} (CC^{H})^{-1} (B^{H}B)^{-1} B^{H} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ -2 & \frac{3}{2} \end{bmatrix} \cdot 4 \cdot \frac{1}{12 \times 14} \begin{bmatrix} 13 & 12 \\ 12 & 24 \end{bmatrix} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \begin{bmatrix} 4 & -3 \\ -3 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

$$= \frac{1}{252} \begin{bmatrix} 13 & 12 \\ 12 & 24 \\ -13 & -12 \\ -8 & 12 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix} = \frac{1}{252} \begin{bmatrix} 16 & -3 \\ -24 & 36 \\ -16 & 3 \\ -68 & 60 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix} = \frac{1}{126} \begin{bmatrix} -8 & 5 & 13 \\ 12 & 24 & 12 \\ 8 & -5 & -13 \\ 34 & 26 & -8 \end{bmatrix}$$

(3) 由题意得 Ax = b 的最小二乘解为

$$x = A^+b + (E - A^+A)C_1 = \frac{1}{63} \begin{bmatrix} 5\\24\\-5\\26 \end{bmatrix} + \frac{1}{42} \begin{bmatrix} 29 & -12 & 13 & 8\\-12 & 18 & 12 & -12\\13 & 12 & 29 & -8\\8 & -12 & -8 & 8 \end{bmatrix} C_1$$
,其中 C_1 为任意列向量

(4)
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 的极小范数最小二乘解为 $\mathbf{x} = \mathbf{A}^{+}\mathbf{b} = \frac{1}{126} \begin{bmatrix} 10 \\ 48 \\ -10 \\ 52 \end{bmatrix} = \frac{1}{63} \begin{bmatrix} 5 \\ 24 \\ -5 \\ 26 \end{bmatrix}$

六、 (20 分) 对 \mathbf{R}^3 中任意的 $\alpha = (x_1, x_2, x_3)^T$, $\beta = (y_1, y_2, y_3)^T$, 定义:

$$(\alpha, \beta) = x_1 y_1 + x_2 y_2 + 2x_3 y_3$$

- (1) (5 分) 证明 (α, β) 为 \mathbb{R}^3 的内积;
- (2) $(10 \, \text{分})$ 已知 $\gamma = \frac{1}{\sqrt{3}} (1, 1, 1)^T$,求 $W = \text{Span}\{\gamma\}$ 的正交补 W^{\perp} 的一组标准正交基;
- (3) (5 分) 设 $\delta = (3,6,9)^T$, 求满足 $\min_{x \in W} ||x \delta||$ 的 x;

解析:

(1) 证明: 设
$$\alpha = (x_1, x_2, x_3)^T, \beta = (y_1, y_2, y_3)^T, \gamma' = (z_1, z_2, z_3)^T, k, l \in \mathbf{R}$$

对称性: 由于
$$(\alpha,\beta) = x_1y_1 + x_2y_2 + 2x_3y_3$$
,所以 $(\beta,\alpha) = y_1x_1 + y_2x_2 + 2y_3x_3$,所以 $(\alpha,\beta) = (\beta,\alpha)$

线性性:由于

$$(k\alpha + l\beta, \gamma') = (kx_1 + ly_1)z_1 + (kx_2 + ly_2)z_2 + (kx_3 + ly_3)z_3 = k(x_1z_1 + x_2z_2 + x_3z_3) + l(y_1z_1 + y_2z_2 + y_3z_3)$$
$$= k(\alpha, \gamma') + l(\beta, \gamma')$$

正定性: 由于 $(\alpha,\alpha)=x_1^2+x_2^2+2x_3^2\geqslant 0$,并且当且仅当 $\alpha=\mathbf{0}$ 时, $(\alpha,\alpha)=0$

(2) 首先我们来求解与γ正交的向量

设
$$\mathbf{x}_1 = (a_1, a_2, a_3)^T \in \mathbf{W}^{\perp}$$
, 由 $(\mathbf{x}, \gamma) = 0$, 得 $a_1 + a_2 + 2a_3 = 0$, 于是得到

$$\mathbf{x}_1 = k_1(-1,1,0)^T + k_2(-2,0,1)^T$$
, 其中 k_1, k_2 为任意常数

然后我们来正交化

$$i \exists \alpha_1 = (-1, 1, 0)^T, \ \alpha_2 = (-2, 0, 1)^T$$

于是
$$\beta_1 = \alpha_1 = (-1, 1, 0)^T$$
, 于是 $\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = (-2, 0, 1)^T - \frac{2}{2} (-1, 1, 0)^T = (-1, -1, 1)^T$

最后我们来单位化

$$||\beta_1|| = \sqrt{(\beta_1, \beta_1)} = \sqrt{2}, \ ||\beta_2|| = \sqrt{(\beta_1, \beta_1)} = \sqrt{1 + 1 + 2} = 2$$

所以
$$W^{\perp}$$
 的一组标准正交基为 $\gamma_1 = \frac{1}{\sqrt{2}}(-1,1,0)^T$, $\gamma_2 = \frac{1}{2}(-1,-1,1)^T$

(3) 设
$$x \in W$$
, 于是 $x = (k, k, k)^T$, 于是 $x - \delta = (k - 3, k - 6, k - 9)$

由于 ||
$$x - \delta$$
|| = $\sqrt{(x - \delta, x - \delta)}$ = $\sqrt{(k - 3)^2 + (k - 6)^2 + 2(k - 9)^2}$

所以等价于求解 k 使得 $f(k) = (k-3)^2 + (k-6)^2 + 2(k-9)^2$ 最小,所以我们就会有:

$$f'(k) = 2(k-3) + 2(k-6) + 4(k-9) = 8k - 54 = 0$$
, 于是解得 $k = \frac{27}{4}$

于是满足
$$\min_{x \in W} ||x - \delta||$$
 的 $x = \frac{27}{4} (1, 1, 1)^T$

【注意】

本题第三问当中 f'(k) 其实就相当于 $2(x - \delta, (1, 1, 1)^T) = 0$,所以我们也可以考虑 $(x, \delta) = 0$ 时的 k 的 求解。

1.4 《矩阵分析》2016年(A卷)试题及其参考解答

(必做题全做,选做题按要求选择3题。答题时不必抄题,标明题目序号)

一、必做题

1. (15 分) 设三阶矩阵
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

- (1) 求 $\lambda E A$ 的 Smith 标准形; (7 分)
- (2) 求 A 的 Jordan 标准型.(8 分)

(1) 由题意知
$$\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{bmatrix} \xrightarrow{r_2 + 4r_3} \begin{bmatrix} 0 & -1 & (\lambda + 1)(\lambda - 2) \\ 0 & \lambda - 3 & 4(\lambda - 2) \\ -1 & 0 & \lambda - 2 \end{bmatrix}$$

$$\xrightarrow{r_2 + (\lambda - 3)r_1} \begin{bmatrix} 0 & -1 & (\lambda + 1)(\lambda - 2) \\ 0 & 0 & (\lambda - 1)^2(\lambda - 2) \\ -1 & 0 & \lambda - 2 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_3 \leftrightarrow r_2} \begin{bmatrix} -1 & 0 & \lambda - 2 \\ 0 & -1 & (\lambda + 1)(\lambda - 2) \\ 0 & 0 & (\lambda - 1)^2(\lambda - 2) \end{bmatrix}$$

$$\stackrel{c_{3}+(\lambda-2)c_{1}}{\longrightarrow} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & (\lambda-1)^{2}(\lambda-2) \end{bmatrix} \stackrel{c_{1}\times(-1)}{\longrightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda-1)^{2}(\lambda-2) \end{bmatrix}$$

所以
$$\lambda E - A$$
 的 Smith 标准形为 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)^2 (\lambda - 2) \end{bmatrix}$

- (2) 由 (1) 知 \boldsymbol{A} 的初级因子为 $(\lambda 1)^2$, $\lambda 2$, 于是 \boldsymbol{A} 的 Jordan 标准型为 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
- 2. (10 分) 设 $|| \bullet ||_m$ 是 $\mathbf{R}^{n \times n}$ 上的矩阵范数, $\mathbf{y} = (y_1, y_2, \cdots, y_n)^T \in \mathbf{R}^n$ 且 $\mathbf{y} \neq \mathbf{0}$,对于任意的 $\mathbf{x} \in \mathbf{R}^n$,定义 $||\mathbf{x}||_v = ||\mathbf{x}\mathbf{y}^T||_m$

证明 $\| \bullet \|_{\nu}$ 是 \mathbb{R}^n 上的向量范数,且与矩阵范数 $\| \bullet \|_m$ 相容解析:

(1) 正定性: 注意到 $x \neq 0$ 时, $R(xy^T) = 1$, 于是 $||x||_v = ||xy^T||_m > 0$;

$$x = 0$$
 时, $R(xy^T) = 0$,于是 $||x||_v = ||xy^T||_m = 0$

- (2) 齐次性: 注意到 $||kx||_{v} = ||(kx)y^{T}||_{m} = ||kxy^{T}||_{m} = |k|||xy^{T}||_{m} = |k|||x||_{v}$
- (3) 三角不等式: 注意到 $||x+z||_v = ||(x+z)y^T||_m = ||xy^T + zy^T||_m \leq ||xy^T||_m + ||zy^T||_m = ||x||_v + ||z||_v$

所以 $|| \bullet ||_v$ 是 \mathbf{R}^n 上的向量范数。接下来我们来证明 $||A\mathbf{x}||_v \leq ||A||_m ||\mathbf{x}||_v$

由于 $||Ax||_{v} = ||Axy^{T}||_{m} = ||Axy^{T}||_{m} \leq ||A||_{m}||xy^{T}||_{m} = ||A||_{m}||x||_{v}$

【注意】

- 1. 最后一行的几个等号和不等号的说明:第一个等号用的是题目当中的定义,第二个等号是利用的矩阵乘法的结合律,然后不等号是因为矩阵范数的相容性,最后一个等号用的是反用题目当中的定义。
- 2. 有同学可能会疑惑: 为什么 Ax 那个地方是 v 不是 m 呢? 你要注意: x 是列向量, A 是 n 阶矩阵。

3. (15分)已知

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{bmatrix}$$

- (1) 求 A 的最小多项式; (5 分)
- (2) 计算 e^{At} 以及 $\cos A$ 。(10 分)

解析:

(1) 注意到 \boldsymbol{A} 的特征多项式为 $|\lambda \boldsymbol{E} - \boldsymbol{A}| = \lambda^3 - 3\lambda^2 + (3 + 2 + (-2))\lambda - 1 = (\lambda - 1)^3$

并且由于
$$\mathbf{A} - \mathbf{E} = \begin{bmatrix} -2 & -2 & 6 \\ -1 & -1 & 3 \\ -1 & -1 & 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix} (1, 1, -3), 所以 (\mathbf{A} - \mathbf{E})^2 = \mathbf{0}$$

所以 A 的最小多项式为 $(\lambda - 1)^2 = \lambda^2 - 2\lambda + 1$

$$(2)$$
 令 $f_1(\lambda) = e^{\lambda t}$, $f_2(\lambda) = \cos(\lambda t)$,于是我们有

$$f_1(\lambda) = m_A(\lambda)q_1(\lambda) + r_1(\lambda), \quad f_2(\lambda) = m_A(\lambda)q_2(\lambda) + r_2(\lambda)$$

于是
$$r_1(\lambda) = a_0\lambda + a_1$$
 以及 $r_2(\lambda) = b_0\lambda + b_1$

于是
$$\begin{cases} f_1(1) = r_1(1) \\ f_1'(1) = r_1'(1) \end{cases}$$
,也就是 $\begin{cases} e^t = a_0 + a_1 \\ te^t = a_0 \end{cases}$,于是 $\begin{cases} a_0 = te^t \\ a_1 = (1-t)e^t \end{cases}$

所以
$$e^{\mathbf{A}t} = a_0 \mathbf{A} + a_1 \mathbf{E} = te^t \mathbf{A} + (1-t)e^t \mathbf{E} = e^t \mathbf{E} + te^t (\mathbf{A} - \mathbf{E}) = \begin{bmatrix} e^t - 2te^t & -2te^t & 6te^t \\ -te^t & e^t - te^t & 3te^t \\ -te^t & -te^t & 3te^t + e^t \end{bmatrix}$$

以及
$$\begin{cases} f_2(1) = r_2(1) \\ f_2'(1) = r_2'(1) \end{cases}$$
 , 也就是
$$\begin{cases} \cos t = b_0 + b_1 \\ -t \sin t = b_0 \end{cases}$$
 , 于是
$$\begin{cases} b_0 = -t \sin t \\ b_1 = \cos t + t \sin t \end{cases}$$

所以
$$\cos(\mathbf{A}t) = b_0 \mathbf{A} + b_1 \mathbf{E} = -(t \sin t) \mathbf{A} + (\cos t + t \sin t) \mathbf{E} = \cos t \mathbf{E} - (t \sin t) (\mathbf{A} - \mathbf{E})$$

$$= \begin{bmatrix} 2t\sin t + \cos t & 2t\sin t & -6t\sin t \\ t\sin t & t\sin t + \cos t & -3t\sin t \\ t\sin t & t\sin t & -3t\sin t + \cos t \end{bmatrix}$$

所以
$$\cos A = \cos(At)|_{t=1} = \begin{bmatrix} 2\sin 1 + \cos 1 & 2\sin & -6\sin 1 \\ \sin 1 & \sin 1 + \cos 1 & -3\sin 1 \\ \sin 1 & \sin 1 & -3\sin 1 + \cos 1 \end{bmatrix}$$

4. (10分) 求下列矩阵的满秩分解:

解析:

- 二、选做题 (在第5、6题中任选1题;在第7至第10题任选2题)
 - 5. (20 分) 设 $V = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in \mathbf{R}^{2\times 2} | a_{11} = a_{22} \right\}$ 是 $\mathbf{R}^{2\times 2}$ 的一个线性子空间,对于任意的 $X \in V$,定义: T(X) = PX + XP,其中 $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - (1) 求 V 的一组基和维数; (5 分)
 - (2) 证明 $T \in V$ 上的线性变换,并求 ker(T) 的基; (5 分)
 - (3) 确定 V 的一组基, 使得 T 在这组基下的矩阵为对角矩阵。(10 分)

(1) 由于
$$a_{11}=a_{12}$$
,所以 V 的一组基为 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, 维数为 3;

并且
$$T(kX) = P(kX) + (kX)P = kPX + kXP = k(PX + XP) = kT(X)$$

所以
$$T \in V$$
 上的线性变换。并且注意到 $X \in V$,所以 $X = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix}$

由于
$$ker(T) = \{X \in V | T(X) = \mathbf{0}\},$$
 所以 $PX + XP = \mathbf{0}$

所以
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
,于是我们就得到了 $a_{12} + a_{21} = 0$, $a_{11} = 0$

所以
$$X = \begin{bmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{bmatrix}$$
,所以 $\ker(T)$ 的基为 $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

(3) 由 (1) 知
$$V$$
 的一组基为 $\mathbf{E}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{E}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbf{E}_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

(方法一) 此时我们就会有:
$$T(\mathbf{E}_1) = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = 2\mathbf{E}_2 + 2\mathbf{E}_3 = (\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3) \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$

$$T(\boldsymbol{E}_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \boldsymbol{E}_1 = (\boldsymbol{E}_1, \boldsymbol{E}_2, \boldsymbol{E}_3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; T(\boldsymbol{E}_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \boldsymbol{E}_1 = (\boldsymbol{E}_1, \boldsymbol{E}_2, \boldsymbol{E}_3) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

所以
$$T$$
在 E_1, E_2, E_3 下的矩阵为 $A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

所以A的特征值为0,2,-2(别忘了第三章那个秒杀公式哦)

特征值为 0 的一个特征向量为 $(0,-1,1)^T$,特征值为 2 的一个特征向量为 $(1,1,1)^T$,特征值为 -2 的

一个特征向量为
$$(-1,1,1)^T$$
,所以令 $\mathbf{P} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$,于是 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 2 & -2 \end{bmatrix}$

于是我们可以令 $(A_1, A_2, A_3) = (E_1, E_2, E_3)P = (-E_2 + E_3, E_1 + E_2 + E_3, -E_1 + E_2 + E_3)$

于是我们找到了一组基
$$A_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

(方法二) 我们假定
$$X = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix}$$
,并假定对角线元素为 k ,于是我们需要满足 $T(X) = kX$

于是我们就有:
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix}$$

所以我们就可以得到
$$\begin{bmatrix} a_{12} + a_{21} & 2a_{11} \\ 2a_{11} & a_{12} + a_{21} \end{bmatrix} = k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{11} \end{bmatrix}, \text{ 所以 } \begin{cases} a_{12} + a_{21} = ka_{11} \\ 2a_{11} = ka_{12} = ka_{21} \end{cases}$$

解得
$$\begin{cases} k = 0 \\ a_{11} = 0 \\ a_{12} + a_{21} = 0 \end{cases}$$
 或者
$$\begin{cases} k = -2 \\ a_{11} = -a_{21} = -a_{12} \end{cases}$$
 或者
$$\begin{cases} k = 2 \\ a_{21} = a_{11} = a_{12} \end{cases}$$

于是
$$X_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, X_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, X_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
,于是对应的对角矩阵为 $= \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

6. (20 分) 设函数矩阵 $A(t) = (a_{ij}(t))_{m \times n}$, **B** 是适当阶的常数矩阵。试证:

(1) 当
$$\boldsymbol{A}(t)$$
 在区间 [a,b] 上连续时,有 $\int_a^b \boldsymbol{A}(t)\boldsymbol{B}dt = \left(\int_a^b \boldsymbol{A}(t)dt\right)\boldsymbol{B}$; (10分)

(2) 当
$$A(t)$$
 在区间 $[a,b]$ 上连续可微时,有 $\int_a^b A'(t)dt = A(b) - A(a)$ 。 (10 分)

解析:

(1) 证明:由于 $A(t) = (a_{ij}(t))_{m \times n}$, $B = (b_{ij})_{n \times s}$,于是 $a_{ij}(t)$ 在区间[a,b]上连续

并且我们知道
$$A(t)$$
B = $(c_{ij}(t))_{m \times s}$,其中 $c_{ij}(t) = \sum_{k=1}^{n} a_{ik}(t)b_{kj}$

并且由于
$$\int_a^b A(t)dt = \left(\int_a^b a_{ij}(t)dt\right)_{m \times n}$$
, 所以
$$\int_a^b A(t)Bdt = \left(\int_a^b c_{ij}(t)dt\right)_{m \times s} = \left(\int_a^b \sum_{k=1}^n a_{ik}(t)b_{kj}dt\right)_{m \times s}$$

$$= \left(\sum_{k=1}^n \int_a^b a_{ik}(t)b_{kj}dt\right)_{m \times s} = \left[\sum_{k=1}^n \left(\int_a^b a_{ik}(t)dt\right)b_{kj}\right]_{m \times s} = \left(\int_a^b A(t)dt\right)B$$

(2) 证明:由于 $A(t) = (a_{ij}(t))_{m \times n}$,并且 $A'(t) = (a'_{ij}(t))_{m \times n}$,于是 $a_{ij}(t)$ 在区间 [a,b] 上连续可微

并且由于
$$\int_a^b A'(t) dt = \left(\int_a^b a'_{ij}(t) dt \right)_{m \times n}$$
, 所以

$$\int_{a}^{b} A'(t) dt = \left(\int_{a}^{b} a'_{ij}(t) dt \right)_{m \times n} = \left[a_{ij}(b) - a_{ij}(a) \right]_{m \times n} = \left[a_{ij}(b) \right]_{m \times n} - \left[a_{ij}(a) \right]_{m \times n} = A(b) - A(a)$$

7. (15 分) 已知线性方程组
$$\begin{cases} x_1 + x_2 + x_4 = 1 \\ x_1 + x_2 + x_3 + 2x_4 = 1 \end{cases}$$
,试回答下列问题:
$$x_3 + x_4 = 1$$

- (1) 求广义逆矩阵 A+; (8 分)
- (2) 求该线性方程组的极小模最小二乘解。(7分)

由题意知系数矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(1) 注意到
$$A \xrightarrow{r_2-r_1} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$
于是 $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix},$ $C = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

所以
$$C^H = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B^H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, $CC^H = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$, $B^H B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, 所以

$$A^{+} = C^{H} (CC^{H})^{-1} (B^{H}B)^{-1} B^{H} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{5} \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$= \frac{1}{15} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & -4 \\ -5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= \frac{1}{15} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & -4 \\ -5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- (2) 极小范数最小二乘解为 $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} = \frac{1}{15} (2, 2, 4, 6)^T$
- 8. (15 分) 求下列矩阵的 QR 分解, $A = \begin{bmatrix} 3 & 14 & 9 \\ 6 & 43 & 3 \\ 6 & 22 & 15 \end{bmatrix}$

$$\alpha_1 = (3,6,6)^T, \alpha_2 = (14,43,22)^T, \alpha_3 = (9,3,15)^T$$

于是我们可以利用施密特正交化公式得
$$\begin{cases} \beta_1 = \alpha_1 = (3,6,6)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)} \beta_1 = (-2,11,-10)^T \\ \beta_3 = \alpha_3 - \frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)} \beta_1 - \frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)} \beta_2 = \frac{1}{5} (14,-2,-5)^T \end{cases}$$

于是我们将 β_1,β_2,β_3 单位化之后,得

$$\gamma_1 = \frac{1}{3}(1,2,2)^T$$
, $\gamma_2 = \frac{1}{15}(-2,11,-10)^T$, $\gamma_3 = \frac{1}{15}(14,-2,-5)^T$

所以
$$\mathbf{Q} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{15} & \frac{14}{15} \\ \frac{2}{3} & \frac{11}{15} & -\frac{2}{15} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$
, 于是 $\mathbf{R} = \begin{bmatrix} 9 & 48 & 15 \\ 0 & 15 & -9 \\ 0 & 0 & 3 \end{bmatrix}$

9. (15 分) 设 C[-1,1] 表示实数域 R 上所有在 [-1,1] 上连续的函数构成的线性空间, $\mathbf{R}[x]_3$ 表示实数域 R 上次数小于 3 的多项式在添上零多项式构成的线性子空间。在 C[-1,1] 中定义

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx, \quad \forall f(x), g(x) \in C[-1,1].$$

- (1) 证明 (f,g) 是 C[-1,1] 上的内积; (5分)
- (2) 求 $\mathbf{R}[x]_3$ 的一组标准正交基; (5 分)
- (3) 求 x^3 在 **R**[x]₃ 上的正交投影。(5 分)

解析:

(1) 设 f(x), g(x), h(x) 是 [-1,1] 上的连续函数,并设 k, $l \in \mathbf{R}$

对称性:
$$(f,g) = \int_{-1}^{1} f(x)g(x)dx = \int_{-1}^{1} g(x)f(x)dx = (g,f)$$

线性性:
$$(kf+lg,h) = \int_{-1}^{1} [kf(x)+lg(x)]h(x)dx = \int_{-1}^{1} kf(x)h(x)dx + \int_{-1}^{1} lg(x)h(x)dx = k(f,h)+l(g,h)$$

正定性: 注意到 f(x) 是 [-1,1] 上的连续函数, 并且 $(f,f) = \int_{-1}^{1} f^2(x) dx \ge 0$

所以
$$(f, f) = \int_{-1}^{1} f^{2}(x) dx = 0$$
 当且仅当 $f(x) \equiv 0$ 时成立。

(2) 我们已经知道了 $\mathbf{R}[x]_3$ 的一组基为 $1, x, x^2$,分别记为 $\alpha_1, \alpha_2, \alpha_3$

然后我们需要做的事情就是正交化。

$$\begin{cases} \beta_1 = \alpha_1 = 1 \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = x - \frac{(x, 1)}{(1, 1)} 1 = x \\ \beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = x^2 - \frac{(x^2, 1)}{(1, 1)} 1 - \frac{(x^2, x)}{(x, x)} x = x^2 - \frac{1}{3} \end{cases}$$

然后我们需要做的事情就是单位化。

注意到
$$||\beta_1|| = \sqrt{(\beta_1, \beta_1)} = \sqrt{2}$$
, $||\beta_2|| = \sqrt{(\beta_2, \beta_2)} = \sqrt{\int_{-1}^1 x \cdot x dx} = \sqrt{\frac{2}{3}}$

$$||\beta_3|| = \sqrt{(\beta_3, \beta_3)} = \sqrt{\int_{-1}^{1} \left(x^2 - \frac{1}{3}\right)^2 dx} = \sqrt{\int_{-1}^{1} \left(x^4 - \frac{2}{3}x^2 + \frac{1}{9}\right) dx} = \frac{2\sqrt{2}}{3\sqrt{5}}$$

于是 **R**[x]₃ 的一组标准正交基为 $\gamma_1 = \frac{1}{\sqrt{2}}, \gamma_2 = \frac{\sqrt{3}}{\sqrt{2}}x, \gamma_3 = \frac{3\sqrt{5}}{2\sqrt{2}}\left(x^2 - \frac{1}{3}\right)$

(3) 由于
$$(x^3, \gamma_1) = 0$$
, $(x^3, \gamma_2) = \frac{\sqrt{6}}{5}$, $(x^3, \gamma_3) = 0$, 所以 x^3 在 $\mathbf{R}[x]_3$ 上的正交投影为 $\frac{\sqrt{6}}{5}\gamma_2 = \frac{3}{5}x$

【注意】

- 1. 第一问有个非常坑人的点:如果 f(x) 不给连续函数,而是 f(x) 在 [-1,1] 上可积,那么由 $\int_{-1}^{1} f^{2}(x) dx =$
- 0 并不能推出 $f(x) \equiv 0$,因为存在反例: $f(x) = \begin{cases} 0, x \neq 0 \\ 1, x = 0 \end{cases}$, 其中 $n = 1, 2, \cdots$
- 2. 第三问,正交投影的定义。就是一个向量在一组标准正交基下的坐标。用表达式表示就是: 设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是 \mathbf{R}^n 的一组标准正交基,并设 $\alpha \in \mathbf{R}^n$, $x_1, x_2, \cdots, x_n \in \mathbf{R}$,则形如

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$$

我们称作是 α 在 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的正交投影。

10. (15 分) 求下列矩阵的奇异值分解: $A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 2 & 4 \end{bmatrix}$

解析:

注意到
$$A^H A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$$

于是 $A^H A$ 的特征值为 $\lambda_1 = 25$, $\lambda_2 = 0$

所以
$$A$$
 的奇异值为 $d_1 = \sqrt{\lambda_1} = 5$, $d_2 = \sqrt{\lambda_2} = 0$, 所以 $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

于是 A^HA 的对应于 $\lambda_1=25$ 的单位特征向量为 $\frac{1}{\sqrt{5}}(1,2)^T$,对应于 $\lambda_2=0$ 的单位特征向量为 $\frac{1}{\sqrt{5}}(2,-1)^T$

所以
$$V = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$
, 所以 $V_1 = \frac{1}{\sqrt{5}} (1, 2)^T$, $V_2 = \frac{1}{\sqrt{5}} (2, -1)^T$

所以
$$U_1 = AV_1D^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 2 & 4 \end{bmatrix} \frac{1}{\sqrt{5}} (1, 2)^T \cdot \frac{1}{5} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, 所以 $U_2 = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 \\ 0 & 1 \\ \frac{-1}{\sqrt{5}} & 0 \end{bmatrix}$$$

于是
$$U = (U_1, U_2) = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ 0 & 0 & 1\\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \end{bmatrix}$$

所以
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ 0 & 0 & 1\\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \end{bmatrix} \begin{bmatrix} 5 & 0\\ 0 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

第二部分 课后重点习题答案

2.1 第一章 线性空间和线性变换课后习题

- (1) 证明 $W \in \mathbf{R}^{2\times2}$ 的子空间;
- (2) 试求 W 的一组基;

(3) 试求
$$A = \begin{bmatrix} 3 & 2 \\ 5 & -3 \end{bmatrix}$$
 在所求的基下的坐标;

解析:

(1) 设 $A_1 \in W, A_2 \in W, k \in \mathbb{R}$,由于 $A_1 \in W, A_2 \in W$

所以设
$$A_1 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & -a_{11} \end{bmatrix}, A_2 = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & -b_{11} \end{bmatrix}$$

$$A_1 + A_2 = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & -a_{11} - b_{11} \end{bmatrix} \in W$$
,所以该运算对加法封闭

由于
$$kA_1 = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & -ka_{11} \end{bmatrix} \in W$$
,所以该运算对数乘封闭

并且由于 $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in W$,所以W是一个非空集合。所以W是 $\mathbf{R}^{2\times 2}$ 的子空间。

(2) 由于
$$W$$
 当中满足 $a_{11}+a_{22}=0$,所以设 $\textbf{X}=\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \in W$

于是
$$X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & -x_{11} \end{bmatrix}$$
,所以存在三个自由未知量

所以令
$$x_{11} = 1, x_{12} = 0, x_{21} = 0$$
,于是可以得出 $X_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

所以令
$$x_{11} = 0, x_{12} = 1, x_{21} = 0$$
,于是可以得出 $X_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

所以令
$$x_{11} = 0, x_{12} = 0, x_{21} = 1$$
,于是可以得出 $X_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

于是
$$W$$
的一组基为 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

(3) 由于
$$A = \begin{bmatrix} 3 & 2 \\ 5 & -3 \end{bmatrix} = 3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 5 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
,所以 A 在 X_1, X_2, X_3 下的坐标为 $(3, 2, 5)^T$

【注意】

- 1. 第三问里面的基的顺序和坐标的顺序要对应一致就可以
- 2. 注意: 证明数域 F 当中,U 是 V 的子空间 (V 是 F 上的向量空间) 的方法是,证明 U 满足下面几个条件:
 - ① U 是一个非空集合。
 - ② 对于任意的向量 α , $\beta \in U$, 恒有 $\alpha + \beta \in U$
 - ③ 对于任意的"向量" $\alpha \in U$ 以及数 $k \in F$,恒有 $k\alpha \in U$
- 3. 上述解释当中的②和③可以合称为:对于U中的"向量"满足加法和数乘运算封闭
- 4. 在第 2 点当中的这个"向量"不一定指的就是列向量,也可以是矩阵,也可以是多项式函数,一定要学会广义化

(1) 证明
$$C(\mathbf{A}) = \{\mathbf{B} \in \mathbf{R}^{2\times 2} | \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}\}$$
 是 $\mathbf{R}^{2\times 2}$ 的子空间

(2) 求 C(A) 的维数与一组基

解析:

(1) $\ \ \mathcal{B}_1, \mathbf{B}_2 \in C(\mathbf{A}), k \in \mathbf{R}$

由于 $AB_1 = B_1A$,并且 $AB_2 = B_2A$

所以
$$A(B_1 + B_2) = AB_1 + AB_2 = B_1A + B_2A = (B_1 + B_2)A$$

所以 $B_1 + B_2 \in C(A)$,也就是该集合对加法运算封闭。

由于 $AB_1 = B_1A$,并且 $k \in \mathbf{R}$

所以 $A(kB_1) = kAB_1 = kB_1A = (kB_1)A$,所以 $kB_1 \in C(A)$,也就是该集合对数乘运算封闭。

由于 $\mathbf{B} = \mathbf{E} \in C(\mathbf{A})$, 所以 $C(\mathbf{A})$ 是非空集合

所以 $C(A) = \{B \in \mathbb{R}^{2\times 2} | AB = BA\}$ 是 $\mathbb{R}^{2\times 2}$ 的子空间

(2) 设
$$\mathbf{B} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \in C(\mathbf{A})$$
,于是我们就有 $\mathbf{AB} = \mathbf{BA}$

也就是
$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$
,于是 $\begin{bmatrix} x_{11} & x_{11} + x_{12} \\ x_{21} & x_{21} + x_{22} \end{bmatrix} = \begin{bmatrix} x_{11} + x_{21} & x_{12} + x_{22} \\ x_{21} & x_{22} \end{bmatrix}$

所以我们就会有:
$$\begin{cases} x_{11} = x_{11} + x_{21} \\ x_{11} + x_{12} = x_{12} + x_{22} \\ x_{21} = x_{21} \\ x_{21} + x_{22} = x_{22} \end{cases},$$
 于是有
$$\begin{cases} x_{11} = x_{22} \\ x_{21} = 0 \end{cases}$$

于是
$$\mathbf{B} = \begin{bmatrix} x_{11} & x_{12} \\ 0 & x_{11} \end{bmatrix}$$
,所以你会发现有两个自由未知量,所以

令
$$x_{11} = 1, x_{12} = 0$$
,于是有 $\mathbf{B}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$;令 $x_{11} = 0, x_{12} = 1$,于是有 $\mathbf{B}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

所以 C(A) 的维数为 2, 一组基为 B_1, B_2

【注意】

和第一道题一样,需要注意子空间的证明方法,以及子空间的维数与一组基。

3. 在
$$\mathbf{R}^{2\times2}$$
 当中, $\varepsilon_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\varepsilon_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\varepsilon_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\varepsilon_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 与 $\boldsymbol{\eta}_1 = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$, $\boldsymbol{\eta}_2 = \begin{bmatrix} 0 & 3 \\ -1 & 4 \end{bmatrix}$, $\boldsymbol{\eta}_3 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, $\boldsymbol{\eta}_4 = \begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}$ 是两组基。

- (1) 试求 ε_1 , ε_2 , ε_3 , ε_4 到 η_1 , η_2 , η_3 , η_4 下的过渡矩阵;
- (2) 试求 $\eta_1, \eta_2, \eta_3, \eta_4$ 到 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的过渡矩阵;
- (3) 试求 $\mathbf{A} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$ 在这两组基下的坐标。

解析:

我们考虑将题目的两组基进行重组可以得到:

基
$$\varepsilon_1' = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\varepsilon_2' = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\varepsilon_3' = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\varepsilon_4' = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $\varepsilon_4' = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $\eta_1' = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 2 \end{bmatrix}$, $\eta_2' = \begin{bmatrix} 0 \\ 3 \\ -1 \\ 4 \end{bmatrix}$, $\eta_3' = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\eta_4' = \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix}$

(1) 由题意知 $(\eta_1', \eta_2', \eta_3', \eta_4') = (\varepsilon_1', \varepsilon_2', \varepsilon_3', \varepsilon_4')$ **P**

由于
$$(\varepsilon_1', \varepsilon_2', \varepsilon_3', \varepsilon_4') = E$$
,所以 $P = (\eta_1', \eta_2', \eta_3', \eta_4') = \begin{bmatrix} -1 & 0 & 2 & 1 \\ 0 & 3 & 1 & -3 \\ 0 & -1 & 0 & 0 \\ 2 & 4 & 1 & 2 \end{bmatrix}$

所以
$$\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$$
 到 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的过渡矩阵为 $\mathbf{P} = (\eta'_1, \eta'_2, \eta'_3, \eta'_4) = \begin{bmatrix} -1 & 0 & 2 & 1 \\ 0 & 3 & 1 & -3 \\ 0 & -1 & 0 & 0 \\ 2 & 4 & 1 & 2 \end{bmatrix}$

(2) 由题意知 $(\varepsilon'_1, \varepsilon'_2, \varepsilon'_3, \varepsilon'_4) = (\eta'_1, \eta'_2, \eta'_3, \eta'_4) P_1$; 由于 $(\varepsilon'_1, \varepsilon'_2, \varepsilon'_3, \varepsilon'_4) = E$,所以 $P_1 = P^{-1}$ 于是我们来求出 P^{-1} ,做初等行变换得

$$\begin{bmatrix} -1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & -3 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 4 & 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & 0 & 0 & -\frac{5}{19} & \frac{3}{19} & \frac{37}{19} & \frac{7}{19} \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & \frac{6}{19} & \frac{4}{19} & \frac{24}{19} & \frac{3}{19} \\ 0 & 0 & 0 & 1 & \frac{2}{19} & -\frac{5}{19} & -\frac{11}{19} & \frac{1}{19} \end{bmatrix}$$

所以
$$\mathbf{P}_1 = \frac{1}{19} \begin{vmatrix} -5 & 3 & 37 & 7 \\ 0 & 0 & -19 & 0 \\ 6 & 4 & 24 & 3 \\ 2 & -5 & -11 & 1 \end{vmatrix}$$

所以
$$\eta_1, \eta_2, \eta_3, \eta_4$$
 到 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ 下的过渡矩阵为 $\mathbf{P}_1 = \frac{1}{19} \begin{bmatrix} -5 & 3 & 37 & 7 \\ 0 & 0 & -19 & 0 \\ 6 & 4 & 24 & 3 \\ 2 & -5 & -11 & 1 \end{bmatrix}$

(3)
$$\oplus$$
 $\exists A = -\varepsilon_1 + 3\varepsilon_2 + 2\varepsilon_4 = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)(-1, 3, 0, 2)^T$

所以 A 在 ε_1 , ε_2 , ε_3 , ε_4 下的坐标为 $(-1,3,0,2)^T$

我们设A在 $\eta_1, \eta_2, \eta_3, \eta_4$ 下的坐标为 $(x_1, x_2, x_3, x_4)^T$

于是就有
$$(\eta_1, \eta_2, \eta_3, \eta_4)(x_1, x_2, x_3, x_4)^T = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)(-1, 3, 0, 2)^T$$

所以
$$(x_1, x_2, x_3, x_4)^T = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3, \boldsymbol{\eta}_4)^{-1} (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3, \boldsymbol{\varepsilon}_4) (-1, 3, 0, 2)^T = \boldsymbol{P}_1 (-1, 3, 0, 2)^T = \frac{1}{19} (28, 0, 12, -15)^T$$

【注意】

- 1. 对应的分量拼起来的时候位置必须要完全一致
- 2. 过渡矩阵的定义需要熟练记忆。

(1) 证明 $T \in F^{2\times 2}$ 上的线性变换;

(2) 试求
$$T$$
 在基 $\boldsymbol{E}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \boldsymbol{E}_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \boldsymbol{E}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \boldsymbol{E}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 下的矩阵。

解析:

(1) 设
$$X_1, X_2 \in F^{2 \times 2}$$
, $k \in \mathbf{R}$

$$T(kX) = (kX)B = k(XB) = kT(X)$$
,所以 $T \neq F^{2\times 2}$ 上的线性变换

(2) 由于线性变换 T 在 E_{11} , E_{12} , E_{21} , E_{22} 下的像为

$$T(\mathbf{E}_{11}) = \mathbf{E}_{11}\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \mathbf{E}_{11} + \mathbf{E}_{12} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(1, 1, 0, 0)^{T}$$

$$T(\mathbf{E}_{12}) = \mathbf{E}_{12}\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \mathbf{E}_{11} - \mathbf{E}_{12} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(1, -1, 0, 0)^{T}$$

$$T(\mathbf{E}_{21}) = \mathbf{E}_{21}\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \mathbf{E}_{21} + \mathbf{E}_{22} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(0, 0, 1, 1)^{T}$$

$$T(\mathbf{E}_{22}) = \mathbf{E}_{22}\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} = \mathbf{E}_{21} - \mathbf{E}_{22} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(0, 0, 1, -1)^{T}$$

所以
$$T(\boldsymbol{E}_{11}, \boldsymbol{E}_{12}, \boldsymbol{E}_{21}, \boldsymbol{E}_{22}) = (\boldsymbol{E}_{11}, \boldsymbol{E}_{12}, \boldsymbol{E}_{21}, \boldsymbol{E}_{22})$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

所以
$$T$$
在基 $\mathbf{E}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{E}_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbf{E}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\mathbf{E}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 下的矩阵为 $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

【注意】

1. 证明线性变换的方法: 保持加法和数乘不变。

也就是证明对于任意的 $\alpha, \beta \in V$, $k \in \mathbb{R}$, 恒有: $T(\alpha + \beta) = T(\alpha) + T(\beta)$ 以及 $T(k\alpha) = kT(\alpha)$

- 2. 已知一个线性变换 T 以及一组基 $\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$,如何求解该线性变换在该基下的矩阵? $\frac{\text{分两}}{\text{步走}}$:
 - ① 求出这个线性变换 T 在这个基 $\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$ 当中的每一个"向量"下的"像",也就是得出 $T(\alpha_i)$,并将得出的这个"像"变成这个基当中的向量的线性组合,也就是

$$T(\alpha_i) = (\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n)(x_1, x_2, \cdots, x_n)^T$$

- ② 利用 $T(\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n) = (\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n)A$ 即可得出题目当中所要求该线性变换矩阵 A
- 5. 设 $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} \in \mathbf{R}^{2\times 2}$,在 $\mathbf{R}^{2\times 2}$ 上定义线性变换 $T(\mathbf{X}) = \mathbf{X}\mathbf{B}$ 。试求 $\mathbf{R}^{2\times 2}$ 的一个基,使得 T 在所求的基 F 的矩阵为对角矩阵

解析:

$$\mathbf{R}^{2\times 2}$$
 的标准基为 $\mathbf{E}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\mathbf{E}_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbf{E}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\mathbf{E}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$T(\mathbf{E}_{11}) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \mathbf{E}_{12} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(0, 1, 0, 0)^{T}$$

$$T(\boldsymbol{E}_{12}) = \begin{vmatrix} 4 & 0 \\ 0 & 0 \end{vmatrix} = 4\boldsymbol{E}_{11} = (\boldsymbol{E}_{11}, \boldsymbol{E}_{12}, \boldsymbol{E}_{21}, \boldsymbol{E}_{22})(4, 0, 0, 0)^{T}$$

$$T(\mathbf{E}_{21}) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{E}_{22} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(0, 0, 0, 1)^{T}$$

$$T(\mathbf{E}_{22}) = \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix} = 4\mathbf{E}_{21} = (\mathbf{E}_{11}, \mathbf{E}_{12}, \mathbf{E}_{21}, \mathbf{E}_{22})(0, 0, 4, 0)^{T}$$

所以
$$T(\boldsymbol{E}_{11}, \boldsymbol{E}_{12}, \boldsymbol{E}_{21}, \boldsymbol{E}_{22}) = (\boldsymbol{E}_{11}, \boldsymbol{E}_{12}, \boldsymbol{E}_{21}, \boldsymbol{E}_{22})$$

$$\begin{bmatrix}
0 & 4 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

所以
$$T$$
 在基 $\boldsymbol{E}_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \boldsymbol{E}_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \boldsymbol{E}_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \boldsymbol{E}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 下的矩阵为 $\begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

由于
$$\mathbf{A} = \begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, 于是 \mathbf{A} 的特征值为 2, 2, -2, -2

所以特征值 2 对应的特征向量为 $(2,1,0,0)^T$ 和 $(0,0,2,1)^T$

特征值 -2 对应的特征向量为 $(-2,1,0,0)^T$ 和 $(0,0,-2,1)^T$

所以令
$$\mathbf{P} = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
, 于是 $\mathbf{P}^{-1}A\mathbf{P} = \Lambda = \begin{bmatrix} 2 & & & \\ & 2 & & \\ & & -2 & \\ & & & -2 \end{bmatrix}$

所以令

$$(A_{11}, A_{12}, A_{21}, A_{22}) = (E_{11}, E_{12}, E_{21}, E_{22})P$$

$$= (E_{11}, E_{12}, E_{21}, E_{22})\begin{bmatrix} 2 & 0 & -2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$= (2E_{11} + E_{12}, 2E_{21} + E_{22}, -2E_{11} + E_{12}, -2E_{21} + E_{22})$$

也就是
$$A_{11} = 2E_{11} + E_{12} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$$
, $A_{12} = 2E_{21} + E_{22} = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$

$$A_{21} = -2E_{11} + E_{12} = \begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}, A_{22} = -2E_{21} + E_{22} = \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix}$$

所以 A_{11} , A_{12} , A_{21} , A_{22} 是V的一组基,并且T在这个基下的矩阵为对角矩阵 Λ

(方法二: 王博提供,感谢王博同学。)

假定基为 A_{11} , A_{12} , A_{21} , A_{22} , 并设对角矩阵当中的元素为 k_1, k_2, k_3, k_4

因为在这组基下的矩阵为对角矩阵,所以我们可以取基当中的一个向量 $\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$

并且在题目对应的线性变换下,这个向量对应于对角矩阵当中的k

于是就有
$$\mathbf{XB} = k\mathbf{X}$$
,也就是 $\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} = k \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$,也就是 $\begin{bmatrix} 4x_{12} & x_{11} \\ 4x_{22} & x_{21} \end{bmatrix} = \begin{bmatrix} kx_{11} & kx_{12} \\ kx_{21} & kx_{22} \end{bmatrix}$

于是我们就有 $\begin{cases} 4x_{12} = kx_{11} \\ x_{11} = kx_{12} \\ 4x_{22} = kx_{21} \\ x_{21} = kx_{22} \end{cases}$,解得 $k = \pm 2$,这个时候你会发现,本来应该是 4 个不一样的 k

但是你只解出了两个不一样的k,说明对角矩阵当中有重的特征值

于是
$$k = 2$$
 时, $x_{11} = 2x_{12}$, $x_{21} = 2x_{22}$,于是 $X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} 2x_{12} & x_{12} \\ 2x_{22} & x_{22} \end{bmatrix}$

$$k = -2$$
 时, $x_{11} = -2x_{12}$, $x_{21} = -2x_{22}$,于是 $X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} -2x_{12} & x_{12} \\ -2x_{22} & x_{22} \end{bmatrix}$

所以基为
$$\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} -2 & -1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ -2 & -1 \end{bmatrix}$, 此时对应的矩阵为 $\begin{bmatrix} 2 & & & \\ & 2 & & \\ & & -2 & \\ & & & -2 \end{bmatrix}$

【注意】

- 1. 初等变换之后选取每一行的首非零元所在的列作为非自由变量
- 2. 线性变换在不同基的矩阵之间的转换关系推导过程如下:

假定
$$(A_{11}, A_{12}, A_{21}, A_{22}) = (E_{11}, E_{12}, E_{21}, E_{22})P$$

此时
$$T(A_{11}, A_{12}, A_{21}, A_{22}) = T(E_{11}, E_{12}, E_{21}, E_{22})$$
P = $(E_{11}, E_{12}, E_{21}, E_{22})$ **AP** = $(A_{11}, A_{12}, A_{21}, A_{22})$ **P**⁻¹**AP**

3. 一定要注意: 怎么才叫线性变换 T 在基 $\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$ 下的矩阵呢? 定义如下:

 $T(\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n) = (\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n)A$,注意: 标红色的这俩东西要一模一样才行呢。

4. 王博同学这么做的理由是这样的:

由于线性变换 T 在基 $\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$ 下的矩阵为 Λ

于是
$$T(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n) = (T(\alpha_1), T(\alpha_2), T(\alpha_3), \dots, T(\alpha_n)) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)\Lambda$$

6. 在多项式空间 $F[t]_3$ 中,设 $f(t) = x_1 + x_2 t + x_3 t^2$,定义变换

$$T[f(t)] = (x_2 + x_3) + (x_1 + x_3)t + (x_1 + x_2)t^2$$

- (1) 证明 $T \in F[x]$ 3 的线性变换;
- (2) 试求 T 在基 $1, t, t^2$ 下的矩阵;
- (3) 试求 F[x]3 的一组基,使得 T 在该基下的矩阵为对角矩阵。

解析:

(1) 假定
$$f_1(t) = x_{11} + x_{12}t + x_{13}t^2$$
, $f_2(t) = y_{11} + y_{12}t + y_{13}t^2$, $k \in \mathbb{R}$

此时
$$f_1(t) + f_2(t) = (x_{11} + y_{11}) + (x_{12} + y_{12})t + (x_{13} + y_{13})t^2$$

此时

$$T[f_1(t) + f_2(t)] = (x_{12} + y_{12} + x_{13} + y_{13}) + (x_{11} + y_{11} + x_{13} + y_{13})t + (x_{11} + y_{11} + x_{12} + y_{12})t^2$$

$$= [(x_{12} + x_{13}) + (x_{11} + x_{13})t + (x_{11} + x_{12})t^2] + [(y_{12} + y_{13}) + (y_{11} + y_{13})t + (y_{11} + y_{12})t^2]$$

$$= T[f_1(t)] + T[f_2(t)]$$

说明该变换保持加法不变

由于 $kf(t) = kx_1 + kx_2t + kx_3t^2$

所以 $T[kf(t)] = (kx_2 + kx_3) + (kx_1 + kx_3)t + (kx_1 + kx_2)t^2 = k[(x_2 + x_3) + (x_1 + x_3)t + (x_1 + x_2)t^2] = kT[f(t)]$ 说明该变换保持数乘不变。所以 T 是一个线性变换。

所以
$$T(1) = t + t^2 = (1, t, t^2)(0, 1, 1)^T$$
, $T(t) = 1 + t^2 = (1, t, t^2)(1, 0, 1)^T$, $T(t^2) = 1 + t = (1, t, t^2)(1, 1, 0)^T$

所以
$$T(1,t,t^2) = (1,t,t^2) \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, 所以 T 在基 $1,t,t^2$ 下的矩阵是 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

(3)
$$\exists A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, $\exists A \text{ in the partial of } A \text{ in the part$

于是 A 的特征值为 -1 对应的特征向量为 $(-1,1,0)^T$ 和 $(-1,0,1)^T$

于是A的特征值为2对应的特征向量为 $(1,1,1)^T$

于是令
$$\mathbf{P} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
,于是 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \Lambda = \begin{bmatrix} -1 & & \\ & -1 & \\ & & 2 \end{bmatrix}$

于是我们可以得出基
$$(\beta_1,\beta_2,\beta_3)=(1,t,t^2)\begin{bmatrix} -1 & -1 & 1\\ 1 & 0 & 1\\ 0 & 1 & 1 \end{bmatrix}=(-1+t,-1+t^2,1+t+t^2)$$

于是 $F[x]_3$ 在基 -1+t, $-1+t^2$, $1+t+t^2$ 下的对角矩阵为 Λ

【注意】

- $1.F[t]_3$ 表示的是次数小于 3 的多项式,但是更多的时候写的是 $\mathbf{R}[t]_3$
- 2. 线性变换具有保持加法和数乘不变的性质,保持加法和数乘不变的性质的也只有线性变换。

2.2 第二章 内积空间课后习题

1. 对 \mathbb{R}^3 中任意向量

$$\alpha = (x_1, x_2, x_3)^T, \quad \beta = (y_1, y_2, y_3)^T$$

定义

$$(\alpha, \beta) = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3$$

证明: 这是 \mathbb{R}^3 上的内积: 并求 \mathbb{R}^3 的一组标准正交基。

解析:

证明:
$$\alpha = (x_1, x_2, x_3)^T$$
, $\beta = (y_1, y_2, y_3)^T$, $\gamma = (z_1, z_2, z_3)^T$

注意到
$$(\alpha, \beta) = x_1y_1 + 2x_2y_2 + 3x_3y_3$$
,所以 $(\beta, \alpha) = y_1x_1 + 2y_2x_2 + 3y_3x_3 = (\alpha, \beta)$

并且
$$(k\alpha, \beta) = (kx_1)y_1 + 2(kx_2)y_2 + 3(kx_3)y_3 = k(x_1y_1 + 2x_2y_2 + 3x_3y_3) = k(\alpha, \beta)$$

由于

$$(\alpha + \beta, \gamma) = (x_1 + y_1)z_1 + 2(x_2 + y_2)z_2 + 3(x_3 + y_3)z_3$$
$$= (x_1z_1 + 2x_2z_2 + 3x_3z_3) + (y_1z_1 + 2y_2z_2 + 3y_3z_3)$$
$$= (\alpha, \gamma) + (\beta, \gamma)$$

并且 $(\alpha,\alpha)=x_1^2+2x_2^2+3x_3^2\geq 0$,并且 $\alpha\neq \mathbf{0}$ 时 $(\alpha,\alpha)>0$ 。

所以这是 \mathbb{R}^3 上的内积

我们显然能够找到一组正交基为 $\mathbf{p}_1 = (1,0,0)^T, \mathbf{p}_2 = (0,1,0)^T, \mathbf{p}_3 = (0,0,1)^T$

于是我们需要做的事情就是将 p_1, p_2, p_3 单位化

由于
$$||p_1|| = \sqrt{(p_1, p_1)} = \sqrt{1} = 1$$
, $||p_2|| = \sqrt{(p_2, p_2)} = \sqrt{2}$, $||p_3|| = \sqrt{(p_3, p_3)} = \sqrt{3}$

所以 **R**³ 的一组标准正交基为
$$\boldsymbol{p}_1^{\circ} = (1,0,0)^T$$
, $\boldsymbol{p}_2^{\circ} = \frac{1}{\sqrt{2}}(0,1,0)^T$, $\boldsymbol{p}_3^{\circ} = \frac{1}{\sqrt{3}}(0,0,1)^T$

【注意】

1. 证明内积的方法需要证明以下东西全部成立:

$$\textcircled{1}:(\alpha,\beta)=(\beta,\alpha) \qquad \textcircled{2}:(\alpha+\beta,\gamma)=(\alpha,\gamma)+(\beta,\gamma) \qquad \textcircled{3}:(k\alpha,\beta)=k(\alpha,\beta) \qquad \textcircled{4}:(\alpha,\alpha)\geqslant 0$$

其中 α , β , γ 任意并且都 \in V, k \in \mathbb{R}

- 2. 如果内积没有重新定义的话,默认采用线性代数里面的定义,但是如果重新定义了的话就要采用新的定义来做。
- 2. 设A是一个n阶实对称矩阵,然而

$$\alpha = (x_1, x_2, \dots, x_n)^T, \qquad \beta = (y_1, y_2, \dots, y_n)^T \in \mathbf{R}^n$$

定义 $(\alpha, \beta) = \alpha^T A \beta$, 证明 \mathbb{R}^n 对所定义的 (α, β) 构成欧氏空间的充要条件是 A 为正定矩阵。

解析:

设 $\alpha, \beta, \gamma \in \mathbf{R}^n, k \in \mathbf{R} \perp \alpha, \beta, \gamma, k$ 均任意。

①: 证明 \mathbf{R}^n 对所定义的 (α, β) 构成欧氏空间 $\Rightarrow A$ 为正定矩阵

由于这个式子对于任意的 α 和 β 都成立,所以只能让 $A^T = A$

由于 $(\alpha, \beta) = \alpha^T A \beta$,并且 $(\beta, \alpha) = \beta^T A \alpha$,由于 $(\alpha, \beta) = (\beta, \alpha)$,所以 $\alpha^T A \beta = \beta^T A \alpha$ 由于 $\alpha^T A \beta$ 的本质是一个数,所以 $(\alpha^T A \beta)^T = \alpha^T A \beta$,也就是 $\beta^T A^T \alpha = \beta^T A \alpha$

为什么只能让 $A^T = A$ 呢?参见后面的【注意】,这里就不再讲了,我们直接往下走由于对于任意的 $\alpha \neq \mathbf{0}$,恒有 $(\alpha,\alpha) = \alpha^T A \alpha > 0$ (这里用的是欧氏空间的内积的定义) 所以A为正定矩阵。

②:证明 A 为正定矩阵 $\Rightarrow \mathbf{R}^n$ 对所定义的 (α, β) 构成欧氏空间

由于A为正定矩阵,所以A为对称矩阵。

由于 $(\alpha, \beta) = \alpha^T A \beta$ 从本质上是一个数,所以 $\alpha^T A \beta = (\alpha^T A \beta)^T$

也就是
$$(\alpha, \beta) = \alpha^T A \beta = \beta^T A^T \alpha = \beta^T A \alpha = (\beta, \alpha)$$

并且
$$(\alpha + \beta, \gamma) = (\alpha + \beta)^T A \gamma = (\alpha^T + \beta^T) A \gamma = \alpha^T A \gamma + \beta^T A \gamma = (\alpha, \gamma) + (\beta, \gamma)$$

并且
$$(k\alpha, \beta) = (k\alpha)^T A\beta = k\alpha^T A\beta = k(\alpha, \beta)$$

并且 $(\alpha, \alpha) = \alpha^T A \alpha$,由于 A 正定,所以 $\alpha \neq 0$ 时, $\alpha^T A \alpha > 0$

所以 \mathbb{R}^n 对所定义的 (α,β) 构成欧氏空间

【注意】

1. 为什么对于任意的 α 和 β 都有 $\beta^T A^T \alpha = \beta^T A \alpha$ 成立,那就只能让 $A^T = A$ 呢?理由如下:

令 $\alpha = \varepsilon_i = (0, 0, \dots, 0, 1, 0, \dots, 0)^T$ (表示的是第 i 个分量为 1, 其他分量为 0)

 $\beta = \varepsilon_i = (0, 0, \dots, 0, 1, 0, \dots, 0)^T (表示的是第 j 个分量为 1, 其他分量为 0)$

于是就会有 $\beta^T A \alpha = a_{ji}$,于是 $\beta^T A^T \alpha = a_{ij}$,由 $\beta^T A^T \alpha = \beta^T A \alpha$ 知 $a_{ji} = a_{ij}$,所以 A 是一个对称矩阵 2. 证明 A 为正定矩阵分为两步:

① 证明 A 是对称矩阵

- ② 证明 A 正定 (可考虑顺序主子式、正定的定义等等,这些在第三章会有讲)
- 3. 和第二题一样,证明内积的方法需要证明四个东西全部成立:
- 3. 求齐次线性方程组 $\begin{cases} 2x_1 + x_2 x_3 + x_4 3x_5 = 0 \\ x_1 + x_2 x_3 + x_5 = 0 \end{cases}$ 的解空间的一组标准正交基。

解析:

设
$$A = \begin{bmatrix} 2 & 1 & -1 & 1 & -3 \\ 1 & 1 & -1 & 0 & 1 \end{bmatrix}$$
,于是 $A = \begin{bmatrix} 2 & 1 & -1 & 1 & -3 \\ 1 & 1 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 0 & 0 & 1 & -4 \\ 0 & 1 & -1 & -1 & 5 \end{bmatrix}$,于是 $R(A) = 2$

于是 x_1,x_2 作为非自由未知量,所以 x_3,x_4,x_5 作为自由未知量

$$\Rightarrow x_3 = 1, x_4 = 0, x_5 = 0 \ \text{#} \ x_1 = 0, x_2 = 1$$

$$\Rightarrow x_3 = 0, x_4 = 1, x_5 = 0 \ \text{#} \ x_1 = -1, x_2 = 1$$

$$x_3 = 0, x_4 = 0, x_5 = 1$$
 $x_1 = 4, x_2 = -5$

所以解空间为 $\mathbf{x} = k_1(0,1,1,0,0)^T + k_2(-1,1,0,1,0)^T + k_3(4,-5,0,0,1)^T$,其中 k_1,k_2,k_3 为任意常数现在只是解出了线性无关的三个向量 $\alpha_1 = (0,1,1,0,0)^T$, $\alpha_2 = (-1,1,0,1,0)^T$, $\alpha_3 = (4,-5,0,0,1)^T$ 所以接下来要做的事情就是正交化,单位化。

于是用施密特正交化公式得

$$\begin{cases} \beta_1 = \alpha_1 = (0, 1, 1, 0, 0)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = (-1, 1, 0, 1, 0)^T - \frac{1}{2} (0, 1, 1, 0, 0)^T = (-1, \frac{1}{2}, -\frac{1}{2}, 1, 0)^T \\ \beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = \frac{1}{5} (7, -6, 6, 13, 5) \end{cases}$$

于是我们将 β_1,β_2,β_3 单位化,得 $\beta_1^\circ = \frac{1}{\sqrt{2}}(0,1,1,0,0)^T$, $\beta_2^\circ = \frac{1}{\sqrt{7}}(-2,1,-1,1,0)$, $\beta_3^\circ = \frac{1}{3\sqrt{35}}(7,-6,6,13,5)$

所以齐次线性方程组
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 - 3x_5 = 0 \\ x_1 + x_2 - x_3 + x_5 = 0 \end{cases}$$
 的解空间的一组标准正交基为

$$\beta_1^\circ = \frac{1}{\sqrt{2}}(0,1,1,0,0)^T, \quad \beta_2^\circ = \frac{1}{\sqrt{7}}(-2,1,-1,1,0), \quad \beta_3^\circ = \frac{1}{3\sqrt{35}}(7,-6,6,13,5)$$

【注意】

施密特正交化公式在第三章有详细的说明,需要自己查看哦

4. 设T是欧氏空间V上的正交变换,V的两个子空间分别为:

$$V_1 = \{x | Tx = x, x \in V\}$$

 $V_2 = \{y | y = x - Tx, x \in V\}$

证明: $V_1 = V_2^{\perp}$

解析:

设 $\forall p \in V_1$, $\forall q \in V_2$, 则会有 Tp = p, q = x - Tx

所以 $\mathbf{p} \in V_2^{\perp}$,也就是 $V_1 \subset V_2^{\perp}$

对于 $\forall x \in V_2^{\perp}$,我们可以取 $x - Tx \in V_2$

于是我们就会有: (x,x-Tx) = 0(这一步利用的是正交补的定义),于是 (x,x) = (x,Tx)

又因为 (x,x) = (Tx,Tx)(正交变换的保内积性)

所以 (Tx, Tx) = (x, Tx) = (Tx, x) (第二个等号用的是内积的对称性),所以 (Tx, x - Tx) = 0

又由于 (x, x - Tx) = 0,所以 (x - Tx, x - Tx) = 0

于是x - Tx = 0, 也就是Tx = x, 也就是 $x \in V_1$, 也就是 $V_2^{\perp} \subset V_1$

于是 $V_1 = V_2^{\perp}$

【注意】

- 1. 证明两个集合相等的方法就是: 证明这两个集合互为子集
- 2. 正交变换保持内积不变。 意思就是: T 是一个正交变换, α 和 β 是任意的两个相同维数的向量, (α,β) 定义为内积的时候,一定有 $(T\alpha,T\beta)=(\alpha,\beta)$
- 3. 正交补的定义:设 V_1 和 V_2 都是欧氏空间的两个子集,设 $\alpha \in V_1$,且 $\beta \in V_2$,若对于任意的 $\alpha = \beta$,使得 $\alpha = \beta$ 的内积为 0 的时候,我们把 V_2 叫做 V_1 的正交补, V_1 也叫做 V_2 的正交补。
- 4. 在一开始的过程里面q 不能写为p-Tp,这是因为 V_2 表示的是里面的向量可以写为x-Tx 的形式,但是这个x 不一定是 V_1 里面的,更不一定就是 V_1 里面的p
- 5. 正交变换的保内积性是 (Tx, Ty) = (x, y)
- 6. 每一个等号都要有充分的理由说明。

2.3 第三章 矩阵的标准形课后习题

1. 利用凯莱——哈密尔顿定理证明: 任意可逆矩阵 A 的逆矩阵 A^{-1} 都可以表示为 A 的多项式。

解析:

由题意知
$$f(\lambda) = |\lambda E - A| = \lambda^n + a_1 \lambda^{n-1} + \dots + (-1)^n |A| = 0$$

所以由凯莱——哈密尔顿定理知 f(A) = 0

于是
$$A^n + a_1A^{n-1} + \cdots + (-1)^n|A|E = \mathbf{0}$$

由于 A 可逆,所以 $|A| \neq 0$,所以 $A^n + a_1 A^{n-1} + \cdots + a_{n-1} A = -(-1)^n |A| E$

所以
$$A^{-1} = \frac{1}{(-1)^{n-1}|A|} (A^{n-1} + a_1 A^{n-2} + \dots + a_{n-1} E)$$

【注意】

- 1. 凯莱——哈密尔顿定理: 若 λ 表示复方阵 A 的特征值,并且有 $f(\lambda) = |\lambda E A|$,其中 $f(\lambda)$ 表示 A 的特征多项式,则 $f(A) = \mathbf{0}$
- 2. 设 $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & 5 \end{bmatrix}$ 。证明: $\mathbf{B} = 2\mathbf{A}^4 12\mathbf{A}^3 + 19\mathbf{A}^2 29\mathbf{A} + 37\mathbf{E}$ 是可逆矩阵,并把 \mathbf{B}^{-1} 表示 \mathbf{A} 的多项式

解析:

由于 A 的特征多项式为 $f(\lambda) = |\lambda E - A| = \lambda^2 - 6\lambda + 7$

所以由凯莱——哈密尔顿定理知 $A^2 - 6A + 7E = 0$

由于
$$2\lambda^4 - 12\lambda^3 + 19\lambda^2 - 29\lambda + 37 = (\lambda^2 - 6\lambda + 7)(2\lambda^2 + 5) + \lambda + 2$$

所以 $\mathbf{B} = \mathbf{A} + 2\mathbf{E}$

由于 $A^2 - 6A + 7E = 0$,所以 (A + 2E)(A - 8E) + 12E = 0,也就是 B(A - 8E) = -23E

所以两边取行列式得 $|\mathbf{B}||\mathbf{A} - 8\mathbf{E}| = (-23)^2 \neq 0$,所以 \mathbf{B} 可逆,并且 $\mathbf{B}^{-1} = -\frac{1}{23}(\mathbf{A} - 8\mathbf{E})$

【注意】

证明 B 可逆的方式有很多,因为这道题目是一个二阶矩阵,所以可以考虑把 B 表示出来。

3. 试在复数域内,求下列矩阵的 Jordan 标准形;

(1)
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{bmatrix}$$
 (2) $A = \begin{bmatrix} 3 & 7 & -3 \\ -2 & -5 & 2 \\ -4 & -10 & 3 \end{bmatrix}$

解析:

(1) 注意到 A 是一个秩为 1 的矩阵, 并且 $1 + (-3) + 4 = 2 \neq 0$

所以
$$\boldsymbol{A}$$
 的 Jordan 标准形为 $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$,此时对应的可逆矩阵 $\boldsymbol{P} = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$

(2) 由
$$|\lambda E - A| = 0$$
,得 $\lambda^3 - (3 - 5 + 3)\lambda^2 + (5 + (-3) - 1)\lambda - 1 = 0$,于是 $\lambda^3 - \lambda^2 + \lambda - 1 = 0$ 也就是 $(\lambda - 1)(\lambda + i)(\lambda - i) = 0$

(本来在实数域内 $(\lambda - 1)(\lambda^2 + 1) = 0$, 但是题目要求复数域内求解,所以在复数范围内需要再次分解)

由于三个特征值不一样,所以
$$A$$
 的 Jordan 标准形为 $\begin{bmatrix} 1 & & \\ & i & \\ & & -i \end{bmatrix}$

(3) 由
$$|\lambda E - A| = 0$$
,得 $\lambda^3 - (3 - 1 - 5)\lambda^2 + (5 + 1 - 3)\lambda - (-1) = 0$,于是 $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = 0$ 解得特征值为 3 个 -1 ,此时我们可以考虑利用行列式因子的方法

于是
$$\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda - 3 & 0 & -8 \\ -3 & \lambda + 1 & -6 \\ 2 & 0 & \lambda + 5 \end{bmatrix}$$

由于 $D_1(\lambda) = 1$ (因为 |2| = 2),并且 $D_3(\lambda) = (\lambda + 1)^3$

曲于
$$\begin{vmatrix} \lambda - 3 & 0 \\ -3 & \lambda + 1 \end{vmatrix} = (\lambda - 3)(\lambda + 1)$$
,并且 $\begin{vmatrix} \lambda - 3 & -8 \\ -3 & -6 \end{vmatrix} = -6(\lambda + 1)$,并且 $\begin{vmatrix} 0 & -8 \\ \lambda + 1 & -6 \end{vmatrix} = 8(\lambda + 1)$

所以 $D_2(\lambda) = \lambda + 1$

所以
$$A$$
 矩阵的不变因子为 $d_1(\lambda) = D_1(\lambda) = 1$, $d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda + 1$, $d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda + 1)^2$

所以
$$A$$
矩阵的初级因子为 $\lambda+1$, $(\lambda+1)^2$,所以 A 的 Jordan 标准型为 $\begin{bmatrix} -1 & & \\ & -1 & 1 \\ & & -1 \end{bmatrix}$

(4) 由
$$|\lambda E - A| = 0$$
,得 $\lambda^3 - (4 - 2 + 1)\lambda^2 + (-1 + 2 + 2)\lambda - (1) = 0$,于是 $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = 0$ 解得特征值为 $3 \land -1$,此时我们考虑利用变为史密斯标准型的方法。

于是
$$\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda - 4 & -5 & 2 \\ 2 & \lambda + 2 & -1 \\ 1 & 1 & \lambda - 1 \end{bmatrix}$$

于是对特征矩阵做初等变换得

$$\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda - 4 & -5 & 2 \\ 2 & \lambda + 2 & -1 \\ 1 & 1 & \lambda - 1 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{bmatrix} 1 & 1 & \lambda - 1 \\ 2 & \lambda + 2 & -1 \\ \lambda - 4 & -5 & 2 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 1 & \lambda - 1 \\ 0 & \lambda & -2\lambda + 1 \\ 0 & -1 - \lambda & -\lambda^2 + 5\lambda - 2 \end{bmatrix}$$

$$\xrightarrow{c_{2}-c_{1}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & -2\lambda + 1 \\ 0 & -1 - \lambda & -\lambda^{2} + 5\lambda - 2 \end{bmatrix} \xrightarrow{r_{3}+r_{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & -1 & -\lambda^{2} + 3\lambda - 3 \end{bmatrix} \xrightarrow{r_{2}\leftrightarrow r_{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & -1 & -\lambda^{2} + 3\lambda - 3 \end{bmatrix} \xrightarrow{r_{2}\leftrightarrow r_{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -\lambda^{2} + 3\lambda - 3 \\ 0 & \lambda & 1 \end{bmatrix}$$

$$\stackrel{r_3 + \lambda r_2}{\longrightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 - 3\lambda + 3 \\ 0 & 0 & 1 - \lambda^3 + 3\lambda^2 - 3\lambda \end{bmatrix} \stackrel{c_3 - (\lambda^2 - 3\lambda + 3)c_2}{\longrightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)^3 \end{bmatrix}$$

所以 \boldsymbol{A} 的不变因子为 $d_1(\lambda)=d_2(\lambda)=1$, $d_3(\lambda)=(\lambda-1)^3$, 所以 \boldsymbol{A} 的初级因子为 $(\lambda-1)^3$

所以
$$\boldsymbol{A}$$
 的 Jordan 标准型为
$$\begin{bmatrix} 1 & 1 \\ & 1 & 1 \\ & & 1 \end{bmatrix}$$

(5) 注意到这是一个分块矩阵,我们可以记
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_2 \end{bmatrix}$$

其中
$$A_1 = \begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$, \boldsymbol{o} 表示 2 阶 0 矩阵

并且注意到
$$A_1$$
 的特征矩阵为 $\lambda E - A_1 = \begin{bmatrix} \lambda - 3 & -1 \\ 4 & \lambda + 1 \end{bmatrix}$

所以 A_1 的行列式因子为 $D_1(\lambda)=1$ (因为存在一个一阶非 0 子式 |4|=4), $D_2(\lambda)=(\lambda-1)^2$

所以
$$A_1$$
 的不变因子为 $d_1(\lambda) = D_1(\lambda) = 1$, $d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = (\lambda - 1)^2$

所以
$$A_1$$
 的初级因子为 $(\lambda - 1)^2$,所以 A_1 的 Jordan 标准型为 $\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$

同理注意到
$$\mathbf{A}_2$$
 的特征矩阵为 $\lambda \mathbf{E} - \mathbf{A}_1 = \begin{bmatrix} \lambda - 2 & -1 \\ 1 & \lambda \end{bmatrix}$

所以 A_2 的行列式因子为 $D_1(\lambda) = 1$ (因为存在一个一阶非 0 子式 |1| = 1), $D_2(\lambda) = (\lambda - 1)^2$

所以
$$A_2$$
 的不变因子为 $d_1(\lambda) = D_1(\lambda) = 1$, $d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = (\lambda - 1)^2$

所以 A_2 的初级因子为 $(\lambda - 1)^2$,所以 A_2 的 Jordan 标准型为 $\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$

【注意】

1. 如果只是知道一个三阶矩阵的特征值是 1,1,0,那么这个矩阵的 Jordan 标准型可能为 $\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & & 0 \end{bmatrix}$ 或 $\begin{bmatrix} 1 & & & \\ & & & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 \\ & 1 \\ & & 0 \end{bmatrix}$$
,此时需要看不变因子才能决定,特别的对于三阶矩阵可以看秩。

- 2. 更为高阶的矩阵较为一般的方法是看不变因子组。
- 3. 求解约当标准型的方法:
- (1) 求解行列式因子、不变因子、初级因子;
- (2) 求解史密斯标准型、不变因子、初级因子;

4. 设
$$A = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix}$$
, 试求 A^k

解析:

注意到 A 的特征多项式为 $|\lambda E - A| = 0$, 于是 $\lambda^3 - 4\lambda^2 + 5\lambda - 2 = 0$

于是 $(\lambda - 1)^2(\lambda - 2) = 0$,于是 A 特征值为 1, 1, 2

由于
$$A$$
 的特征矩阵为 $\lambda E - A = \begin{bmatrix} \lambda + 1 & 0 & -1 \\ -1 & \lambda - 2 & 0 \\ 4 & 0 & \lambda - 3 \end{bmatrix}$

所以行列式因子 $D_1(\lambda) = 1$ (因为存在一阶非零子式 |4| = 4), $D_3(\lambda) = (\lambda - 1)^2(\lambda - 2)$

所以
$$D_2(\lambda) = 1$$
(因为存在一个二阶非零子式 $\begin{vmatrix} \lambda + 1 & -1 \\ -1 & 0 \end{vmatrix} = -1$)

所以不变因子为 $d_1(\lambda)=d_2(\lambda)=1$, $d_3(\lambda)=(\lambda-1)^2(\lambda-2)$, 所以初级因子为 $(\lambda-1)^2$ 和 $\lambda-2$

于是
$$A$$
 的约当标准型为 $J = \begin{bmatrix} 1 & 1 \\ & 1 \\ & & 2 \end{bmatrix}$,也就是 $P^{-1}AP = J$,接下来我们要找到 P

注意到 A 的特征值为 2 的特征向量为 $(0,1,0)^T$

A 的特征值为 1 的全部特征向量为 $k_1(1,-1,2)^T$

设
$$P = (p_1, p_2, p_3)$$
,于是 $AP = PJ$,也就是 $A(p_1, p_2, p_3) = (p_1, p_1 + p_2, 2p_3)$

所以
$$\begin{cases} Ap_1 = p_1 \\ Ap_2 = p_1 + p_2 \end{cases}, \text{ 所以 } p_3 = (0, 1, 0)^T, p_1 = k_1(1, -1, 2)^T, \text{ 此时 } (A - E)p_2 = p_1 \\ Ap_3 = 2p_3 \end{cases}$$

于是
$$(\boldsymbol{A} - \boldsymbol{E}, \boldsymbol{p}_1) = \begin{bmatrix} -2 & 0 & 1 & k_1 \\ 1 & 1 & 0 & -k_1 \\ -4 & 0 & 2 & 2k_1 \end{bmatrix} \xrightarrow{r} \begin{bmatrix} 1 & 1 & 0 & -k_1 \\ 0 & 2 & 1 & -k_1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$
于是解得 $\boldsymbol{p}_2 = \frac{k_1}{2}(-1, -1, 0)^T$

所以
$$\mathbf{P} = \begin{bmatrix} 2 & -1 & 0 \\ -2 & -1 & 1 \\ 4 & 0 & 0 \end{bmatrix}$$
,于是 $\mathbf{P}^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{4} \\ -1 & 0 & \frac{1}{2} \\ -1 & 1 & 1 \end{bmatrix}$

由于
$$P^{-1}AP = J$$
,所以 $P^{-1}A^kP = J^k$,由于 $J^k = \begin{bmatrix} 1 & k \\ & 1 \\ & & 2^k \end{bmatrix}$

于是
$$\mathbf{A}^{k} = \mathbf{P}\mathbf{J}^{k}\mathbf{P}^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -2 & -1 & 1 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & k \\ & 1 \\ & & 2^{k} \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{1}{4} \\ -1 & 0 & \frac{1}{2} \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1-2k & 0 & k \\ 2k+1-2^{k} & 2^{k} & 2^{k}-k-1 \\ -4k & 0 & 2k+1 \end{bmatrix}$$

解析:

- 1. 求解的 P 当中 p_1 和 p_2 的系数是有一定的关系的,所以拼起来的时候一定要注意
- 2. 求解 A^n 的一些方法:
- (1) 若 R(A) = 1,则 $A^n = [tr(A)]^{n-1}A$,其中 tr(A)表示 A 矩阵当中主对角线的元素之和
- (2) (利用矩阵相似) 若存在可逆矩阵 P(P 可以求出),使得 $P^{-1}AP = J$ (若 A 可对角化,则化为对角矩阵; 若 A 不可对角化,则化为 Jordan 标准型),则需要考虑变为 $P^{-1}A^nP = J^n$,于是根据 J 以及 P 就可以求出。
- (3) (二项式定理) 若 A = B + C,并且需要满足B 和 C 可交换以及B 或者 C 是一个幂 0 矩阵(也就是存在一个正整数 m,使得 $B^m = O$ 或者 $C^m = O$)
- (4) 尝试乘法,也就是计算 A^2 , A^3 , 然后找到和原来的矩阵的关系或者是和特殊矩阵的关系。

5. 求
$$A = \begin{bmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{bmatrix}$$
 的最小多项式

解析:

注意到 A 的特征多项式为 $|\lambda E - A| = \lambda^3 - 3\lambda^2 + (0 + 3 + 0)\lambda - (1) = (\lambda - 1)^3$

由于
$$A - E = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -2 & 1 \\ -1 & -2 & 1 \end{bmatrix}$$
,所以 $(A - E)^2 = O$

所以 A 的最小多项式为 $(\lambda - 1)^2$

【注意】

1. 一个矩阵的最小多项式从本质上是一个多项式,并且需要满足:

$$m_A(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i)^{k_i}$$

当中 k_i 至少为 1,至多为该矩阵的特征多项式当中 $(\lambda - \lambda_i)$ 的次数。

2. 对于这道题目而言,需要注意到 A - E 是一个秩为 1 的矩阵,并且注意到 $A - E = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ (1, 2, -1),

于是
$$(A - E)^2 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} (1, 2, -1) \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} (1, 2, -1) = \mathbf{0}$$

- 6. 设矩阵 *A* 的特征多项式为 $f(\lambda) = |\lambda E A| = (\lambda 2)^2 (\lambda 3)^2$
 - (1) 给出 A 的所有可能的最小多项式;
 - (2) 给出A的所有可能的Jordan矩阵。

解析:

由题意知 A 是一个 4 阶矩阵。

(1) 根据上一题的【注意】可以知道 A 的所有可能最小多项式为

$$m_{A_1}(\lambda) = (\lambda - 2)(\lambda - 3)$$

$$m_{A_2}(\lambda) = (\lambda - 2)^2(\lambda - 3)$$

$$m_{A_3}(\lambda) = (\lambda - 2)(\lambda - 3)^2$$

$$m_{A_4}(\lambda) = (\lambda - 2)^2(\lambda - 3)^2$$

(2) 由 (1) 知所有可能的 Jordan 矩阵为

$$J_{1} = \begin{bmatrix} 2 & & & \\ & 2 & & \\ & & 3 & \\ & & & 3 \end{bmatrix}, J_{2} = \begin{bmatrix} 2 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & 3 \end{bmatrix}, J_{3} = \begin{bmatrix} 2 & & & \\ & 2 & & \\ & & 3 & 1 \\ & & & 3 \end{bmatrix}, J_{4} = \begin{bmatrix} 2 & 1 & & \\ & 2 & & \\ & & 3 & 1 \\ & & & 3 \end{bmatrix}$$

【注意】

1. 如何根据特征多项式写出所有可能的最小多项式?

注意到最小多项式是特征多项式的因式,并且最小多项式是最后一个不变因子。对于这道题而言 $\lambda = 2$ 和 $\lambda = 3$ 是 A 的特征值,最小多项式是最后一个不变因子,包含了 $(\lambda - 2)(\lambda - 3)$ 这个因式。

2.4 第四章 矩阵的分解课后习题

1. 试求下列矩阵的 LU 分解:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 1 & 0 \\ -2 & 2 & 1 \end{bmatrix}$$

解析:

注意到A的各阶顺序主子式均不为0,所以A矩阵存在LU分解并且这样的LU分解唯一

并且注意到

$$(A, E) = \begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & 1 & 0 & 0 & 1 & 0 \\ -2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_3 + r_1} \begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & 3 & 2 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{r_3 + 3r_2} \begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & 0 & -4 & -5 & 3 & 1 \end{bmatrix}$$

所以
$$U = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & -4 \end{bmatrix}$$
, $P = \begin{bmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -5 & 3 & 1 \end{bmatrix}$, 于是 $L = P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -5 & 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix}$

所以
$$A$$
 的 LU 分解为 $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix}$, $U = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & -4 \end{bmatrix}$, 此时 $A = LU$

【注意】

- 1. 复方阵 A 的 LU 分解 (三角分解) 的定义: A = LU
- (1)**L** 表示主对角线元素全为 1的下三角矩阵和 U 表示上三角矩阵。所谓的上三角矩阵和下三角矩阵指的是非零元素的排列呈三角形状。所以 **L** 和 U 必然可逆。
- (2) 如何判定复方阵 A 能否 LU 分解, 并且 LU 分解是否唯一呢?

若A 的各阶顺序主子式均不为0,则A 必然存在LU 分解,并且LU 分解必然唯一。

- 2. 复方阵 A 的 LU 分解当中,L 和 U 如何求解呢?
- (1) 求解 U 和 P,方法是: $(A,E) \xrightarrow{r} (U,P)$,这个 r 指的是初等行变换,而这里的初等行变换指的是只能做第一行的某个倍数加到二三行或者第二行的某个倍数加到第三行。
- (2) 求解 L,方法是: $L = P^{-1}$,于是就回到了 P 的逆矩阵的求解问题了。
- 2. 试求下列矩阵的 OR 分解:

$$(1)\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \qquad (2)\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}; \qquad (3)\begin{bmatrix} 0 & 4 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \end{bmatrix}$$

解析:

(1) 注意到这是一个可逆方阵,所以令 $\alpha_1 = (1,0)^T$,于是 $\alpha_2 = (1,1)^T$

于是利用施密特正交化公式得
$$\begin{cases} \beta_1 = \alpha_1 = (1,0)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)} \beta_1 = (0,1)^T \end{cases}, \ \text{单位化得} \ \gamma_1 = (1,0)^T, \ \gamma_2 = (0,1)^T \end{cases}$$

于是
$$\mathbf{Q} = (\gamma_1, \gamma_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{R} = \begin{bmatrix} ||\beta_1|| & (\alpha_2, \gamma_1) \\ 0 & ||\beta_2|| \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, 于是 $\mathbf{A} = \mathbf{Q}\mathbf{R}$

(2) 注意到这不是一个方阵,但是列满秩,所以令 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (0,1,1)^T$

于是利用施密特正交化公式得
$$\begin{cases} \beta_1 = \alpha_1 = (1, 1, 0)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{1}{2} (-1, 1, 2)^T \end{cases}$$

单位化得
$$\gamma_1 = \frac{1}{\sqrt{2}}(1,1,0)^T$$
, $\gamma_2 = \frac{1}{\sqrt{6}}(-1,1,2)^T$

于是
$$\mathbf{Q} = (\gamma_1, \gamma_2) = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$
, $\mathbf{R} = \begin{bmatrix} ||\beta_1|| & (\alpha_2, \gamma_1) \\ 0 & ||\beta_2|| \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{\sqrt{6}}{2} \end{bmatrix}$, 于是 $\mathbf{A} = \mathbf{Q}\mathbf{R}$

(3) 注意到这是一个可逆方阵,所以令 $\alpha_1 = (0,1,0)^T$,于是 $\alpha_2 = (4,1,3)^T$, $\alpha_3 = (1,1,2)^T$

于是利用施密特正交化公式得
$$\begin{cases} \beta_1 = \alpha_1 = (0, 1, 0)^T \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = (4, 0, 3)^T \\ \beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = \frac{1}{5} (-3, 0, 4)^T \end{cases}$$

单位化,得
$$\gamma_1 = (0, 1, 0)^T$$
, $\gamma_2 = \frac{1}{5}(4, 0, 3)^T$, $\gamma_3 = \frac{1}{5}(-3, 0, 4)^T$

于是
$$\mathbf{Q} = (\gamma_1, \gamma_2, \gamma_3) = \begin{bmatrix} 0 & \frac{4}{5} & -\frac{3}{5} \\ 1 & 0 & 0 \\ 0 & \frac{3}{5} & \frac{4}{5} \end{bmatrix}$$
, $\mathbf{R} = \begin{bmatrix} ||\beta_1|| & (\alpha_2, \gamma_1) & (\alpha_3, \gamma_1) \\ 0 & ||\beta_2|| & (\alpha_3, \gamma_2) \\ 0 & 0 & ||\beta_3|| \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 5 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

【注意】

- 1. 施密特正交化公式,参见最后一章里面的特征值、特征向量这一节
- 2. 复矩阵 A 的 QR 分解的定义: A = QR

- (1) 如何判定复矩阵 A 能否进行 QR 分解? 若 A 列满秩,则 QR 分解必然可以进行
- (2) 复矩阵 A 的 QR 分解当中 Q 和 R 如何求解?

step1: 取出 A 的所有列向量 α

step2:对于A的列向量进行正交化得到 β ,单位化得到 γ 。(注意:如果非0向量的话直接用正交化公式;若是0向量,则用正交化公式的时候 β 要换成 γ)

step3: \boldsymbol{Q} 就是 step2 当中的 γ 拼成的矩阵, \boldsymbol{R} 就是 $\begin{bmatrix} ||\beta_1|| & (\alpha_2, \gamma_1) & \cdots & (\alpha_n, \gamma_1) \\ 0 & ||\beta_2|| & \cdots & (\alpha_3, \gamma_2) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & ||\beta_n|| \end{bmatrix}$

3. 试对下列矩阵作满秩分解

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & -1 \\ -2 & 4 & -2 & -4 \end{bmatrix}$$

并求 A^+

解析:

对A矩阵做初等行变换,得

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & -1 \\ -2 & 4 & -2 & -4 \end{bmatrix} \xrightarrow{r_3 + 2r_1} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 8 & 4 & -4 \end{bmatrix} \xrightarrow{r_3 - 4r_2} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{0.5 \times r_2} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以
$$C = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
, 并且 $B = \begin{bmatrix} 1 & 2 \\ 0 & 2 \\ -2 & 4 \end{bmatrix}$; 所以 $C^H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & \frac{1}{2} \\ 1 & -\frac{1}{2} \end{bmatrix}$, 并且 $B^H = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \end{bmatrix}$

所以
$$CC^H = \begin{bmatrix} 6 & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 12 & 1 \\ 1 & 3 \end{bmatrix}, \quad \mathbf{B}^H \mathbf{B} = \begin{bmatrix} 5 & -6 \\ -6 & 24 \end{bmatrix}$$

所以
$$\mathbf{A}^{+} = \mathbf{C}^{H} (\mathbf{C}\mathbf{C}^{H})^{-1} (\mathbf{B}^{H}\mathbf{B})^{-1}\mathbf{B}^{H} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & \frac{1}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} \cdot 2 \cdot \frac{1}{35} \begin{bmatrix} 3 & -1 \\ -1 & 12 \end{bmatrix} \cdot \frac{1}{84} \begin{bmatrix} 24 & 6 \\ 6 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \end{bmatrix}$$

$$= \frac{1}{35} \cdot \frac{1}{42} \begin{bmatrix} 92 & 26 & -80 \\ 156 & 108 & 120 \\ 262 & 106 & -100 \\ 14 & -28 & -140 \end{bmatrix} = \frac{1}{1470} \begin{bmatrix} 92 & 26 & -80 \\ 156 & 108 & 120 \\ 262 & 106 & -100 \\ 14 & -28 & -140 \end{bmatrix}$$

【注意】

- 1. 复矩阵 A 满秩分解 A = BC 的定义: A = BC
- (1) 如何判定复矩阵 A 能否进行满秩分解? 若 A 的秩非零,则 A 必然可以满秩分解
- (2) 复矩阵 A 的满秩分解当中 B 和 C 如何求解?

对 A 做初等行变换,变为行最简型H,然后化为行最简型之后,记住 H 的非 0 行的首 1 元 (每一行的第一个非 0 元素是 1) 所在的列的序号。此时 B 就是 H 当中非 0 行的首 1 元 (每一行的第一个非 0 元素是 1) 所在的列的序号。C 就是 H 当中去掉了 0 行之后的矩阵。

- 2.*A* 的加号逆矩阵,也就是 A^+ 的求解公式: $A^+ = C^H (CC^H)^{-1} (B^H B)^{-1} B^H$ 。其中 B 和 C 是 A = BC,也就是满秩分解当中的那个矩阵。
- $3.A^H$ 表示的是复矩阵 A 的共轭转置,也就是 A 矩阵当中给的元素先全部变成他的共轭复数,然后取转置。当然,对于实矩阵 A 而言, $A^H=A^T$ 。
- 4. 试求矩阵

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$$

的奇异值分解

解析:

由题意知
$$A^H = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
,于是 $A^H A = \begin{bmatrix} 3 & 6 \\ 6 & 12 \end{bmatrix}$,所以 $A^H A$ 的特征值为 $\lambda_1 = 15$, $\lambda_2 = 0$

于是
$$A$$
 的奇异值 $d_1 = \sqrt{\lambda_1} = \sqrt{15}$, $d_2 = \sqrt{\lambda_2} = 0$

于是 $A^H A$ 的对应于 $\lambda_1 = 15$ 和 $\lambda_2 = 0$ 特征值对应的标准正交的特征向量为

$$\gamma_1 = \frac{1}{\sqrt{5}} (1, 2)^T$$
, $\gamma_2 = \frac{1}{\sqrt{5}} (2, -1)^T$

于是令
$$V = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$
,于是 $V_1 = \gamma_1$, $V_2 = \gamma_2$

所以
$$U_1 = AV_1 D^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \frac{1}{\sqrt{15}} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
,所以可以取 $U_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$

所以
$$U = (U_1, U_2) = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$$
, 所以 $U^H A V = \Sigma = \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

所以也就可以得到
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix}$$

【注意】

- 1. 复矩阵 A 的奇异值分解的定义: $A = U \Sigma V^H$
- 2. 复矩阵 A 的奇异值分解当中 U, Σ , V 怎么求解呢?
- (1) 首先求解 $A^H A$ 以及 $A^H A$ 的特征值 λ_i ,然后需要注意<mark>特征值从大到小排列</mark>
- (2) 于是 A 的奇异值为 $d_i = \sqrt{\lambda_i}$,并求出 $A^H A$ 的特征值 λ_i 对应的相互正交的单位向量。得到正交矩阵 V
- (3) 将 (2) 得到的 V 矩阵当中的非 0 特征值所对应的特征向量按照特征值的顺序拼成 V_1 ,0 特征值所对应的特征向量按照特征值的顺序拼成 V_2
- (4) 此时 $U_1 = AV_1D^{-1}$,其中 A 就是题目当中的矩阵, V_1 就是 (2)(3) 当中得到的正交矩阵,D 指的是非 0 特征值 d_i 从大到小排列成的对角矩阵。
- (5) 由 (4) 得出了 U_1 ,于是我们需要找到 U_2 当中一组向量,使得 U_2 的向量与 U_1 构成标准正交基。于是 $U = (U_1, U_2)$
- (6) 根据 (5) 当中得到的 U 和 (2) 当中的 V,利用 $U^HAV = \Sigma$ 得出 Σ ,别直接计算,因为 Σ 是一个与 A 一模一样维数的矩阵,主对角线元素放的是 d_i 。
- (7) 最后写为 $A = U\Sigma V^H$ 的形式
- 5. 设

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 3 \end{bmatrix}$$

求 A^+ 。

解析:

由于
$$\mathbf{A}$$
 列满秩,所以 $\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 3 \end{bmatrix}$

所以
$$\mathbf{B}^H = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 3 \end{bmatrix}$$
,所以 $\mathbf{B}^H \mathbf{B} = \begin{bmatrix} 6 & -2 \\ -2 & 10 \end{bmatrix}$

所以
$$A^+ = C^H (CC^H)^{-1} (B^H B)^{-1} B^H = \frac{1}{56} \begin{bmatrix} 10 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 3 \end{bmatrix} = \frac{1}{56} \begin{bmatrix} 12 & 20 & -4 \\ 8 & 4 & 16 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 3 & 5 & -1 \\ 2 & 1 & 4 \end{bmatrix}$$

【注意】

- 1.*A* 的加号逆矩阵,也就是 A^+ 的求解公式: $A^+ = C^H (CC^H)^{-1} (B^H B)^{-1} B^H$ 。其中 B 和 C 是 A = BC,也就是满秩分解当中的那个矩阵。
- $2.A^H$ 表示的是复矩阵 A 的共轭转置,也就是 A 矩阵当中给的元素先全部变成他的共轭复数,然后取转置。当然,对于实矩阵 A 而言, $A^H = A^T$ 。
- 3. $\frac{E}{A}$ 列满秩,则 E 可以取与 E 的列数相同维数的单位矩阵。 E 可以取 E 矩阵。

2.5 第五章 范数理论及其应用课后习题

1. 设 $||\boldsymbol{B}||_m$ 是 $\mathbf{C}^{n\times n}$ 上的 \boldsymbol{B} 矩阵的范数, \boldsymbol{P} 是 n 阶可逆矩阵,对于任意的 $\boldsymbol{A} \in \mathbf{C}^{n\times n}$,定义 $||\boldsymbol{A}|| = ||\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}||_m$,求证: $||\boldsymbol{A}||$ 是 $\mathbf{C}^{n\times n}$ 上的一种矩阵范数。

解析:

- (1) 正定性:由于 $A \neq O$ 时, $||A|| = ||P^{-1}AP||_m = ||J||_m$,因为 $A \neq O$,所以 $J \neq O$,所以 $||J||_m > 0$ 并且A = O时,J = O,所以 $||J||_m > 0$
- (2) 齐次性: $||kA|| = ||P^{-1}(kA)P||_m = ||kP^{-1}AP||_m = |k|||P^{-1}AP||_m = |k|||A||$
- (3) 三角不等式: $||A + B|| = ||P^{-1}AP + P^{-1}BP||_m \le ||P^{-1}AP||_m + ||P^{-1}BP||_m = ||A|| + ||B||$
- (4) 相容性: $||AB|| = ||P^{-1}ABP||_m = ||P^{-1}AP \cdot P^{-1}BP||_m \leq ||P^{-1}AP||_m \cdot ||P^{-1}BP||_m = ||A||||B||$ 所以 ||A|| 是 $\mathbb{C}^{n \times n}$ 上的一种矩阵范数。

【注意】

- 1. 证明是矩阵范数的方法就是证明如下四个性质全部满足:
- (1) 正定性: 也就是证明 ||A|| = 0 当且仅当 A = 0 成立

- (2) 齐次性: 也就是证明对于任意的 A 矩阵以及数 k,恒有 ||kA|| = |k|||A||
- (3) 三角不等式: 也就是证明对于任意的 A 矩阵和任意的 B 矩阵,恒有 $||A + B|| \le ||A|| + ||B||$
- (4) 相容性: 也就是证明对于任意的 A 矩阵和任意的 B 矩阵, 恒有 $||AB|| \le ||A|| \cdot ||B||$
- 2. 己知

$$\mathbf{A} = \begin{bmatrix} 1+i & 0 & -3 \\ 5 & 4i & 0 \\ -2 & 3 & 1 \end{bmatrix}$$

试求 $||A||_{m_1}$, $||A||_F$, $||A||_{m_\infty}$, $||A||_1$, $||A||_{\infty}$

解析:

对于此题, n=3

由題意知
$$||A||_{m_1} = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}| = \sqrt{2} + 3 + 5 + 4 + 2 + 3 + 1 = 18 + \sqrt{2}$$

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2} = \sqrt{2+9+25+16+4+9+1} = \sqrt{66}$$

$$||A||_{m_\infty}=3\cdot 5=15$$

$$||A||_1 = \max{\{\sqrt{2} + 5 + 2, 4 + 3, 3 + 1\}} = 7 + \sqrt{2}$$

$$||A||_{\infty} = \max\{\sqrt{2} + 3, 5 + 4, 2 + 3 + 1\} = 9$$

【注意】

1. 注意前提条件: n 阶复方阵 A 里面的常用范数: (里面的绝对值的理解是取模)

(1)
$$m_1$$
- 范数: $||A||_{m_1} = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|$

(2)
$$m_2$$
- 范数 (也叫 F - 范数): $||A||_{m_2} = ||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$

(3)
$$m_{\infty}$$
- 范数: $||A||_{m_{\infty}} = n \cdot \max_{i,j} |a_{ij}|$

(4) 1- 范数 (列范数):
$$||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

(5)
$$\infty$$
- 范数 (行范数): $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$

(6) 2- 范数:
$$||A||_2 = \sqrt{\lambda_n} = \sqrt{\max_i \lambda_i(A^H A)}$$

3. 设 $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, 定义

$$||A|| = n \cdot \max_{i,j} |a_{ij}|$$

则 ||A|| 是 $\mathbb{C}^{n \times n}$ 上的一种矩阵范数

解析:

(1) 正定性:由于 $A \neq 0$ 时,||A|| > 0;并且A = 0时,||A|| = 0

(2) 齐次性: 由于 $||kA|| = n \cdot \max_{i,j} |ka_{ij}| = |k| \cdot n \cdot \max_{i,j} |a_{ij}| = |k| \cdot ||A||$

(3) 三角不等式: 由于

$$||A + B|| = n \cdot \max_{i,j} |a_{ij} + b_{ij}| \le n \cdot (\max_{i,j} |a_{ij}| + \max_{i,j} |b_{ij}|) = ||A|| + ||B||$$

(4) 相容性: 由于
$$||AB|| = n \cdot \max_{i,j} |c_{ij}|$$
, 其中 $c_{ij} = \sum_{k=1}^{n} a_{ki} b_{kj}$

$$\leq n \cdot \max_{i,j} \sum_{k=1}^{m} |a_{ki}| |b_{kj}| \leq n \cdot \max_{i,j} (n \max_{k} \{|a_{ki}| |b_{kj}|\}) = n \cdot n \max_{i,j} (\max_{1 \leq k \leq m} \{|a_{ki}| |b_{kj}|\}) \leq n \cdot n \cdot \max_{i,j} (|a_{ij}| |b_{ij}|)$$

$$\leq (n \cdot \max_{i,j} |a_{ij}|) \cdot (n \cdot \max_{i,j} |b_{ij}|) = ||\mathbf{A}^{T}|| \cdot ||\mathbf{B}||$$

4. 求解下列方程组的极小范数最小二乘解:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ x_1 + x_3 = 0 \\ 2x_1 + 2x_3 = 1 \\ 2x_1 + 4x_2 + 6x_3 = 3 \end{cases}$$

解析:

注意到
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \\ 2 & 4 & 6 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 3 \end{bmatrix}, \quad$$
并且 $\mathbf{A} \stackrel{r}{\longrightarrow} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

所以
$$\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 2 & 0 \\ 2 & 4 \end{bmatrix}$$
, $\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, 所以 $\mathbf{CC}^H = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $\mathbf{B}^H \mathbf{B} = 10 \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

所以
$$A^+ = C^H (CC^H)^{-1} (B^H B)^{-1} B^H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \cdot \frac{1}{10} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 0 & 0 & 4 \end{bmatrix}$$

$$= \frac{1}{30} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 0 & 0 & 4 \end{bmatrix} = \frac{1}{30} \begin{bmatrix} 5 & -3 \\ -4 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 0 & 0 & 4 \end{bmatrix} = \frac{1}{30} \begin{bmatrix} -1 & 5 & 10 & -2 \\ 2 & -4 & -8 & 4 \\ 1 & 1 & 2 & 2 \end{bmatrix}$$

所以最小二乘解为
$$\mathbf{x} = \mathbf{A}^{+}\mathbf{b} + (\mathbf{E} - \mathbf{A}^{+}\mathbf{A})\mathbf{C}_{1} = \frac{1}{10}\begin{bmatrix} 1\\2\\3 \end{bmatrix} + \frac{1}{3}\begin{bmatrix} 1 & 1 & -1\\1 & 1 & -1\\-1 & -1 & 1 \end{bmatrix}\mathbf{C}_{1}$$
,其中 \mathbf{C}_{1} 为任意列向量

所以极小范数最小二乘解就是 $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} = \frac{1}{10} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

【注意】

求解非齐次方程组 Ax = b 的极小范数二乘解的步骤:

- (1) 求出 A 的满秩分解 A = BC
- (2) 由 (1) 求解 $A^+ = C^H (CC^H)^{-1} (B^H B)^{-1} B^H$
- (3) 得出最小二乘解为 $x = A^+b + (E A^+A)C_1$,其中 C_1 为任意列向量。(也可以考虑求解 $A^TAx = A^Tb$)
- (4) 得出极小范数最小二乘解就是 $\hat{x} = A^+b$

2.6 第六章 矩阵分析及其应用课后习题

1. 设

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

求 e^A , e^{At} , $\sin A$

解析:

A 的特征多项式为 $|\lambda E - A| = (\lambda - 2)^3$

并且
$$\mathbf{A} - 2\mathbf{E} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
,所以 $(\mathbf{A} - 2\mathbf{E})^2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \mathbf{O}$

所以 A 的最小多项式为 $m_A(\lambda) = a_0 + a_1 \lambda$,令 $f_1(\lambda) = e^{\lambda t}$, $f_2(\lambda) = \sin \lambda$

首先我们求解 e^A 与 e^{At} , 于是就有

$$\begin{cases} f_1(2) = r(2) \\ f'_1(2) = r'(2) \end{cases}, \text{ \(\pu \), \(\p$$

所以
$$f_1(A) = e^{At} = e^{2t} \mathbf{E} + te^{2t} (A - 2\mathbf{E}) = e^{2t} \begin{bmatrix} 1 & 0 & 0 \\ t & 1 - t & t \\ t & -t & 1 + t \end{bmatrix}$$
, 所以 $A = e^2 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$

然后我们求解 $\sin A$,于是就有

$$\begin{cases} f_2(2) = r(2) \\ f_2'(2) = r'(2) \end{cases}$$
, 也就是
$$\begin{cases} \sin 2 = a_0 + 2a_1 \\ \cos 2 = a_1 \end{cases}$$
, 解得
$$\begin{cases} a_0 = \sin 2 - 2\cos 2 \\ a_1 = \cos 2 \end{cases}$$

所以
$$f_2(A) = \sin A = \sin 2 \cdot E + \cos 2 \cdot (A - 2E) = \begin{bmatrix} \sin 2 & 0 & 0 \\ \cos 2 & \sin 2 - \cos 2 & \cos 2 \\ \cos 2 & -\cos 2 & \sin 2 + \cos 2 \end{bmatrix}$$

【注意】

 e^{At} 的求解也可以考虑 $\mathcal{L}^{-1}[(sI - A)^{-1}]$

2. 设

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$

求 e^{At} 以及 $\sin(At)$

解析:

$$A$$
 的特征多项式为 $|\lambda E - A| = (\lambda - 2)^2 (\lambda - 1)$,由于 $A - 2E = \begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{bmatrix}$,并且 $A - E = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix}$

所以
$$(A - 2E)^2 = \begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 12 & -4 \\ 0 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$

所以
$$(A-2E)^2(A-E) = \begin{bmatrix} 0 & 12 & -4 \\ 0 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix} = \mathbf{0}$$

所以 A 的最小多项式为 $m_A(\lambda) = (\lambda - 2)^2(\lambda - 1)$

$$f_1(\lambda) = e^{\lambda t}$$
 和 $f_2(\lambda) = \sin(\lambda t)$

于是设 $r_1(\lambda) = a_0 + a_1\lambda + a_2\lambda^2$, $r_2(\lambda) = b_0 + b_1\lambda + b_2\lambda^2$

首先我们来求解 e^{At}

那么就会有:
$$\begin{cases} f_1(1) = r_1(1) \\ f_1(2) = r_1(2) \end{cases} \Rightarrow \begin{cases} e^t = a_0 + a_1 + a_2 \\ e^{2t} = a_0 + 2a_1 + 4a_2 \end{cases} \Rightarrow \begin{cases} a_0 = 4e^t - 3e^{2t} + 2te^{2t} \\ a_1 = -4e^t + 4e^{2t} - 3te^{2t} \\ a_2 = e^t - e^{2t} + te^{2t} \end{cases}$$

所以
$$f(A) = r(A) = (4e^t - 3e^{2t} + 2te^{2t})E + (-4e^t + 4e^{2t} - 3te^{2t})A + (e^t - e^{2t} + te^{2t})A^2$$

$$= e^{t} (4E - 4A + A^{2}) - e^{2t} (3E - 4A + A^{2}) + te^{2t} (2E - 3A + A^{2})$$

注意到
$$(A - E)(A - 3E) = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 4 \\ 0 & -1 & 0 \\ 0 & 3 & -2 \end{bmatrix} = \begin{bmatrix} -1 & 12 & -4 \\ 0 & -1 & 0 \\ 0 & -3 & 0 \end{bmatrix}$$

以及
$$(A - E)(A - 2E) = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 13 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\text{Figs.} e^{At} = e^t \begin{bmatrix} 0 & 12 & -4 \\ 0 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} - e^{2t} \begin{bmatrix} -1 & 12 & -4 \\ 0 & -1 & 0 \\ 0 & -3 & 0 \end{bmatrix} + te^{2t} \begin{bmatrix} 0 & 13 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} e^{2t} & 12e^t - 12e^{2t} + 13te^{2t} & -4e^t + 4e^{2t} \\ 0 & e^{2t} & 0 \\ 0 & -3e^t + 3e^{2t} & e^t \end{bmatrix}$$

于是
$$\sin(At) = \begin{bmatrix} \sin(2t) & 12\sin t - 12\sin(2t) + 13t\cos 2t & -4\sin t + 4\sin(2t) \\ 0 & \sin(2t) & 0 \\ 0 & -3\sin t + 3\sin(2t) & \sin t \end{bmatrix}$$

【注意】

判断 A 的最小多项式的时候,如果出现了重复的特征值,也可以通过 $R(A - \lambda E)$ 来判定最小多项式。这是因为若特征值 λ 对应的几何重数小于代数重数时,A 不可对角化,所以最小多项式必然有重根。

3. 设

$$A(t) = \begin{bmatrix} e^{2t} & te^{t} & 1\\ e^{-t} & 2e^{2t} & 0\\ 3t & 0 & 0 \end{bmatrix}$$

$$\overrightarrow{\mathcal{R}}(1)\frac{\mathrm{d}}{\mathrm{d}t}A(t), \ \frac{\mathrm{d}}{\mathrm{d}t}|A(t)|; \ (2)\int A(t)\mathrm{d}t; \ \int_0^1 A(t)\mathrm{d}t$$

解析:

$$(1)\frac{\mathrm{d}}{\mathrm{d}t}A(t) = \begin{bmatrix} 2e^{2t} & (t+1)e^t & 0\\ -e^{-t} & 4e^{2t} & 0\\ 3 & 0 & 0 \end{bmatrix}, \quad \frac{\mathrm{d}}{\mathrm{d}t}|A(t)| = \frac{\mathrm{d}(6e^{3t})}{\mathrm{d}t} = 18e^{3t}$$

$$(2)\int A(t)dt = \begin{bmatrix} \frac{1}{2}e^{2t} & (t-1)e^{t} & t \\ -e^{-t} & e^{2t} & 0 \\ \frac{3}{2}t^{2} & 0 & 0 \end{bmatrix} + C, 其中 C = (C_{ij})_{3\times3} 为任意常数矩阵,并且 C_{ij} 之间互不影响$$

所以
$$\int_0^1 A(t) dt = \begin{bmatrix} \frac{e^2 - 1}{2} & 1 & 1\\ 1 - e^{-1} & e^2 - 1 & 0\\ \frac{3}{2} & 0 & 0 \end{bmatrix}$$

4. 试求微分方程组 $\frac{\mathrm{d} x(t)}{\mathrm{d} t} = A x(t)$ 满足初始条件 $x(0) = x_0$ 的解,其中

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix}, \quad \mathbf{x}(0) = (1, 0, 0)^T$$

解析:

注意到 A 的特征多项式为

$$|\lambda \mathbf{E} - \mathbf{A}| = \lambda^3 - \lambda^2 + (-1 + 1 - 2 + (-1) - 2)\lambda - 3 = \lambda^3 - \lambda^2 - 5\lambda - 3 = (\lambda + 1)^2(\lambda - 3)$$

注意到
$$\mathbf{A} + \mathbf{E} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix}$$
,所以 $R(\mathbf{A} + \mathbf{E}) = 2$,此时 $\lambda = -1$ 对应的线性无关特征向量只有一个。

所以 A 一定不可对角化,所以 $m_A(\lambda) = (\lambda + 1)^2(\lambda - 3)$

所以设 $f(\lambda) = e^{\lambda t}$, $r(\lambda) = a_0 + a_1 \lambda + a_2 \lambda^2$, 于是

$$\begin{cases} f(-1) = r(-1) \\ f'(-1) = r'(-1) \\ f(3) = r(3) \end{cases} \Rightarrow \begin{cases} e^{-t} = a_0 - a_1 + a_2 \\ te^{-t} = a_1 - 2a_2 \\ e^{3t} = a_0 + 3a_1 + 9a_2 \end{cases} \Rightarrow \begin{cases} a_0 = \frac{1}{16} (15e^{-t} + 12te^{-t} + e^{3t}) \\ a_1 = \frac{1}{8} (-e^{-t} + 4te^{-t} + e^{3t}) \\ a_2 = \frac{1}{16} (-e^{-t} - 4te^{-t} + e^{3t}) \end{cases}$$

于是
$$f(\lambda) = \frac{1}{16}(15e^{-t} + 12te^{-t} + e^{3t})E + \frac{1}{8}(-e^{-t} + 4te^{-t} + e^{3t})A + \frac{1}{16}(-e^{-t} - 4te^{-t} + e^{3t})A^2$$

$$= \frac{1}{16}\left[-e^{-t}(A + 5E)(A - 3E) - 4te^{-t}(A - 3E)(A + E) + e^{3t}(A + E)^2\right]$$

曲于
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$
,所以 $A + 5E = \begin{bmatrix} 6 & 2 & 1 \\ 1 & 4 & 1 \\ 2 & 0 & 6 \end{bmatrix}$, $A - 3E = \begin{bmatrix} -2 & 2 & 1 \\ 1 & -4 & 1 \\ 2 & 0 & -2 \end{bmatrix}$, $A + E = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix}$

所以
$$e^{At} = \frac{1}{16} \begin{bmatrix} 8e^{-t} + 8e^{3t} & -4e^{-t} + 16te^{-t} + 4e^{3t} & -6e^{-t} - 8te^{-t} + 6e^{3t} \\ -4e^{-t} + 4e^{3t} & 14e^{-t} - 8te^{-t} + 2e^{3t} & -3e^{-t} + 4te^{-t} + 3e^{3t} \\ -8e^{-t} + 8e^{3t} & -4e^{-t} - 16te^{-t} + 4e^{3t} & 10e^{-t} + 8te^{-t} + 6e^{3t} \end{bmatrix}$$

所以
$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) = \begin{bmatrix} \frac{1}{2}e^{-t} + \frac{1}{2}e^{3t} \\ -\frac{1}{4}e^{-t} + \frac{1}{4}e^{3t} \\ -\frac{1}{2}e^{-t} + \frac{1}{2}e^{3t} \end{bmatrix}$$

5. 试求解微分方程组初值问题

$$\begin{cases} \frac{dx_1}{dt} = -x_1 + x_3 + 1\\ \frac{dx_2}{dt} = x_1 + 2x_2 - 1\\ \frac{dx_3}{dt} = -4x_1 + 3x_3 + 2\\ x_1(0) = 1, x_2(0) = 0, x_3(0) = 1 \end{cases}$$

解析:

由题意知原式可写为

$$\frac{1}{\mathrm{d}t} = A\mathbf{x}(t) + \mathbf{f}(t)$$

$$\sharp \div \mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix}, \quad \mathbf{f}(t) = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \sharp \div \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

由题意知 A 的特征多项式为 $|\lambda E - A| = (\lambda - 2)(\lambda - 1)^2$

并且注意到 $A - E = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 1 & 0 \\ -4 & 0 & 2 \end{bmatrix}$,所以 R(A - E) = 2,故特征值 1 对应的线性无关的特征向量是 1 个

所以 A 不可对角化,所以 $m_A(\lambda) = (\lambda - 1)^2(\lambda - 2)$,所以设 $g(\lambda) = e^{\lambda t}$, $r(\lambda) = a_0 + a_1\lambda + a_2\lambda^2$

于是
$$\begin{cases} g(1) = r(1) \\ g'(1) = r'(1) \end{cases} \Rightarrow \begin{cases} e^t = a_0 + a_1 + a_2 \\ te^t = a_1 + 2a_2 \\ e^{2t} = a_0 + 2a_1 + 4a_2 \end{cases} \Rightarrow \begin{cases} a_0 = -2te^t + e^{2t} \\ a_1 = 2e^t + 3te^t - 2e^{2t} \\ a_2 = -e^t - te^t + e^{2t} \end{cases}$$

所以
$$e^{At} = (-2te^t + e^{2t})E + (2e^t + 3te^t - 2e^{2t})A + (-e^t - te^t + e^{2t})A^2$$

$$= -e^{t}A(A - 2E) - te^{t}(A - E)(A - 2E) + e^{2t}(A - E)^{2}$$

注意到
$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix}$$
,所以 $\mathbf{A} - \mathbf{E} = \begin{bmatrix} -2 & 0 & 1 \\ 1 & 1 & 0 \\ -4 & 0 & 2 \end{bmatrix}$,所以 $\mathbf{A} - 2\mathbf{E} = \begin{bmatrix} -3 & 0 & 1 \\ 1 & 0 & 0 \\ -4 & 0 & 1 \end{bmatrix}$

所以
$$e^{At} = \begin{bmatrix} e^t - 2te^t & 0 & te^t \\ e^t + 2te^t - e^{2t} & e^{2t} & -e^t - te^t + e^{2t} \\ -4te^t & 0 & e^t + 2te^t \end{bmatrix}$$

所以微分方程组的解为 $\mathbf{x}(t) = e^{A(t-0)}\mathbf{x}(0) + e^{At} \int_0^t e^{-As} \mathbf{f}(s) ds$

也就是
$$\mathbf{x}(t) = \begin{bmatrix} e^t - te^t \\ te^t \\ e^t - 2te^t \end{bmatrix} + \begin{bmatrix} e^t - 1 \\ -e^t + 1 \\ 2e^t - 2 \end{bmatrix} = \begin{bmatrix} 2e^t - te^t - 1 \\ -e^t + te^t + 1 \\ 3e^t - 2te^t - 2 \end{bmatrix}$$

【注意】

注意到f(t) 是一个常数向量,所以我们在求解 $\int_0^t e^{A(t-s)}f(s)\mathrm{d}s$ 的时候我们可以考虑区间再现公式变成 $\int_0^t e^{As}f(t-s)\mathrm{d}s$,这么做会使得计算得到大大的简化。

第三部分 计算过程中用到的线性代数知识

3.1 可逆矩阵的逆矩阵的求解

一般从考试的角度而言,求的是三阶可逆矩阵,那么三阶可逆矩阵 A 的逆矩阵如何计算呢? 方法是: 初等行变换。也就是什么意思呢? $(A, E) \xrightarrow{r} (E, A^{-1})$,这里的初等行变换可以做线代里面的初等行变换

特别的,我们对于二阶矩阵有:
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,并且 \mathbf{A} 可逆时, $\mathbf{A}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

有的同学可能会说,这不好记啊!自己弄了一个小口诀(仅供参考,如果有更好的方法可以私信):

撇上元素乘 -1, 捺上元素来交换, 除上一个行列式, 逆矩阵即可出来。

当然有的口诀是"主换副反,除行列式",先解释一下上面这句话吧,这话啥意思呢?就是观察 A 这个矩阵,b 和 c 相当于是在"撇"上,a 和 d 相当于是在"捺"上。

3.2 矩阵的乘法

矩阵的乘法首先需要满足: 左边矩阵的列数等于右边矩阵的行数。然后矩阵乘法规则如下:

左边矩阵的第i行乘右边矩阵的第j列就是新矩阵当中的第i行第j列元素。

3.3 矩阵的 k 次方的计算

假定A为n阶矩阵,则有

- (1) 若 R(A) = 1, 则 $A^k = [tr(A)]^{k-1}A$, 其中 tr(A) 表示 A 矩阵当中主对角线的元素之和
- (2) (利用矩阵相似) 若存在可逆矩阵 P(P 可以求出),使得 $P^{-1}AP = J(若 A \text{ 可对角化,则化为对角矩阵; 若 A 不可对角化,则化为 Jordan 标准型),则需要考虑变为 <math>P^{-1}A^kP = J^k$,于是根据 J 以及 P 就可以求出。
- (3) (二项式定理) 若 A = B + C,并且需要满足B 和 C 可交换以及B 或者 C 是一个幂 0 矩阵(也就是存在一个正整数 m,使得 $B^m = O$ 或者 $C^m = O$)
- (4) 尝试乘法,也就是计算 A^2 , A^3 ,然后找到和原来的矩阵的关系或者是和特殊矩阵的关系。
- (5) 考虑利用 A 的最小多项式来化简计算

3.4 秩为1的矩阵拥有的结论

说起这个秩为1的矩阵,拥有比较多的结论,我们首先说一下大条件吧。

大条件: $A = \alpha \beta^T$, 其中 α 和 β 是非 0 向量的 n 维列向量

于是我们有以下结论:

- (1). R(A) = 1
- (2). $\forall m \in \mathbb{N}^+$,一定有 $A^m = (tr(A))^{m-1}A$
- (3). A 的特征值为 n-1 个 0 和 1 个 $tr(A) = \alpha^T \beta = \beta^T \alpha = (\alpha, \beta)$
- (4). 若 $tr(A) = \alpha^T \beta = \beta^T \alpha = (\alpha, \beta) = 0$, 则特征值为 0 的特征向量当中必然有 α
- (5). 若 $tr(A) = \alpha^T \beta = \beta^T \alpha = (\alpha, \beta) \neq 0$,则特征值为 $tr(A) = \alpha^T \beta = \beta^T \alpha = (\alpha, \beta)$ 的特征向量必然是 α
- (6). 若 $tr(A) = \alpha^T \beta = \beta^T \alpha = (\alpha, \beta) = 0$,则 A 不可对角化,但可以化为 Jordan 标准型
- (7). 若 $tr(A) = \alpha^T \beta = \beta^T \alpha = (\alpha, \beta) \neq 0$,则 A 可对角化。
- (8). Ax = 0 的求解等价于 $\beta^T x = 0$ 的求解

3.5 特征值、特征向量、二次型

3.5.1 内积

设 $\alpha = (x_1, x_2, \dots, x_n)^T$ 和 $\beta = (y_1, y_2, \dots, y_n)^T$ 是一个 n 维列向量,于是 α 与 β 的内积为 $(\alpha, \beta) = x_1y_1 + x_2y_2 + \dots + x_ny_n$,在没有重新定义的情况下才用这个定义。

3.5.2 特征值如何求解

设 A 是一个 n 阶矩阵,于是求解 A 的特征值的方法就是令 $|\lambda E - A| = 0$,然后解关于 λ 的方程就可以了。特别的,若 A 是三阶矩阵,则有

$$\lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 + (A_{11} + A_{22} + A_{33})\lambda - |A| = 0$$

其中
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
,并且 \mathbf{A}_{ii} 表示 \mathbf{A} 矩阵当中的 \mathbf{a}_{ii} 元的代数余子式, $|\mathbf{A}|$ 表示 \mathbf{A} 的行列式

3.5.3 施密特正交化公式

对于任意的 m 个 n 维 (其中 $m \le n$) 线性无关的特征向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$,都可以做施密特正交化,正交化公式如下:

$$\begin{cases} \beta_{1} = \alpha_{1} \\ \beta_{2} = \alpha_{2} - \frac{(\alpha_{2}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} \\ \beta_{3} = \alpha_{3} - \frac{(\alpha_{3}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{3}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} \\ \dots \\ \beta_{m} = \alpha_{m} - \frac{(\alpha_{m}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{m}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} - \frac{(\alpha_{m}, \beta_{3})}{(\beta_{3}, \beta_{3})} \beta_{3} - \dots - \frac{(\alpha_{m}, \beta_{m-1})}{(\beta_{m-1}, \beta_{m-1})} \beta_{m-1} = \alpha_{m} - \left[\sum_{i=1}^{m-1} \frac{(\alpha_{m}, \beta_{i})}{(\beta_{i}, \beta_{i})} \beta_{i} \right] \end{cases}$$