Consult Materials

1. Christofides algorithm

- a. https://en.wikipedia.org/wiki/Christofides_algorithm, from this wiki I know the meaning and steps of this algorithm, which is the core theory of my code.
- b. https://en.wikipedia.org/wiki/Minimum_spanning_tre
 e, this page contains the detailed information of minimum spanning tree, including the properties and several algorithms. I write the method minimum_spanning_tree with lots of help of this page.
- c. https://en.wikipedia.org/wiki/Matching (graph theor y),

Computing Minimum-Weight Perfect Matchings, by WilliamCook

From the wiki of graph perfect matching, I know the basic theoretical knowledge of perfect matching, then I read a paper about computing minimum weight perfect matchings. These materials contribute a lot to my min_weight_m method.

d. https://en.wikipedia.org/wiki/Eulerian_path,

https://www.geeksforgeeks.org/eulerian-path-and-circuit/,

https://www.geeksforgeeks.org/mathematics-euler-hamiltonian-paths/

Above three web pages describe clearly about the Eulerian path and Hamiltonian path. I understand the meaning of Hamiltonian path and know how to find it by these materials. Then, I implement my method find_eul_path.

2. Multiplicative Weight Updates

I tried, but I don't know how to do it.

3. Data Structures

3.1 Fibonacci Heaps

a. https://en.wikipedia.org/wiki/Fibonacci_heap
From this page I know the definition and structure of Fibonacci heap. My code was written step by step followed the instruction in this article.

b. https://www.geeksforgeeks.org/fibonacci-heap-insertion-and-union/

I also got lots of help from this tutorial, especially in the content of insert and union functions.

3.2 Hollow Heaps

I tried, but I don't know how to do it.