实验四 模型机时序部件的实现(实验报告格式案例)

班级 __ 计科 2305__ 姓名 ___ 刘良锐 ___ 学号 __ 202308010524__

一、实验目的

- 1.了解模型机中 SM 的作用。
- 2.熟悉指令寄存器、状态寄存器、指令计数器、寄存器的工作原理。
- 3.学会使用 VERILOG 语言设计时序电路。

二、实验内容

- 1.使用 VERILOG 语言设计 SM。
- 2.使用 VERILOG 语言设计一个 8 位的指令寄存器 IR。
- 3.使用 VERILOG 语言设计一个 8 位的状态寄存器 PSW。
- 4.使用 VERILOG 语言设计一个 8 位的指令计数器 PC。
- 5.使用 VERILOG 语言设计 4 个 8 位寄存器组成的寄存器组,实现读写操作;

三、实验过程

1、SM

A)源代码

```
module sm(clk, sm_en, sm);
2
        input clk, sm en;
3
         output sm;
4
         reg status=1'b0;
5
    always @ (negedge clk)
6
    begin
8
         if (sm_en==1'bl)
9
        begin
10
             status<=~status;
11
         end
12
    end
13
    assign sm=status;
    endmodule
14
```

B)编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗) (选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

警告信息:

```
Type | Message |
```

资源消耗

```
Successful - Thu Dec 05 20:48:16 2024
Flow Status
Quartus II Version
                                    9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Revision Name
Top-level Entity Name
                                    SM
                                    Cyclone II
Family
Met timing requirements
Total logic elements
                                    1 / 4,608 ( < 1 % )
   Total combinational functions
                                    1 / 4,608 ( < 1 % )
                                    1 / 4,608 ( < 1 % )
   Dedicated logic registers
Total registers
Total pins
                                    3 / 89 (3%)
Total virtual pins
                                    0 / 119,808 ( 0 % )
Total memory bits
Embedded Multiplier 9-bit elements 0 / 26 (0 %)
Total PLLs
                                    0/2(0%)
Device
                                    EP2C5T144C6
Timing Models
                                    Final
```

C) RTL 视图

D)功能仿真波形

E)时序仿真波形

F) 结果分析及结论

对于功能仿真,可以看到在 SM_EN 有效时, SM 在时钟下降沿发生翻转;对于时序仿真,结果与功能仿真大致相似,但是存在一定延迟。

元件设计符合要求,由于元件实际上存在延迟,故时序仿真结果有些许差别。

2、指今寄存器 IR

A)源代码

```
module ir(clk, ld ir, a, x);
          input clk, ld ir;
 2
 3
          input [7:0] a;
 4
          output reg [7:0] x=8'b0000 0000;
 5
      always @ (negedge clk)
 6
    begin
 7
          if(ld ir==l'bl)
 8
          begin
 9
              x=a;
10
          end
11
      end
12
      endmodule
```

B)编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗) (选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

警告信息

```
Type Message

Marining Road plus describing as undefined blocks and/or memory cambles

Marining Road plus describes an described blocks and/or memory cambles

May Info: see for separate "follower" (see a plus " tight", clock plus " click");

May Info: memory come clock "click" to describation pin "dig", clock plus " click", class plus " dig", click plus " click", class plus " follower " click plus " click" as 1,446 ms

May Info: macross clock "click" to describation pin " click", click pin " " click", los 0,526 ms

May Info: Observed IT Classic Timing Analyzes was successful, o errors, i warning

Marining Compared IT Click Compilation was successful, o errors, i warning

Marining Compared IT Click Compilation was successful, o errors, i warning
```

资源消耗

```
Flow Status
                                   Successful - Thu Dec 05 20:59:10 2024
Quartus II Version
                                   9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Revision Name
                                   ir
Top-level Entity Name
                                   ir
                                   Cyclone II
                                   Yes
8 / 4,608 ( < 1 % )
Met timing requirements
Total logic elements
   Total combinational functions
   Dedicated logic registers
                                   8 / 4,608 ( < 1 % )
Total registers
                                   18 / 89 ( 20 % )
Total virtual pins
                                   0
Total memory bits
                                   0 / 119,808 ( 0 % )
Embedded Multiplier 9-bit elements 0 / 26 ( 0 \% )
Total PLLs
                                   0/2(0%)
                                   EP2C5T144C6
Device
Timing Models
```

C) RTL 视图

D) 功能仿真波形

B	Master T	ime Bar:		25.65 ns	◆ Pointer:	40.8	ō ns	Interval:	15.2	! ns	Start:	0 ps	Enc	i:	0 ps
A ⊛		Name	Value 25.6E	0 ps 10.0		30.0 ns	40.0 ns	50.0 ns	60.0 ns	70.0 ns	80.0 ns	90.0 ns	100. ₀ ns	110. ₀ ns	120.
€.	₽ 0	# a	B 0000		00000111			00000001		X	10000011	X	111100	000	x
	№ 9 № 10	clk ld_ir	B I												
# <u>*</u>		# x	B 000C	000000	00	00000111	X		00000001		X		10000	011	
_															

E) 时序仿真波形

F) 结果分析及结论

对于功能仿真,在前 100ns 之内使能信号有效,在时钟的下降沿将 a 写入 x,在之后使能禁止,不再执行写入操作;对于时序仿真,基本功能与功能仿真相似,存在些许不同。 仿真波形与要求功能相同,电路符合要求。

3、状态寄存器 PSW

A)源代码

```
module psw(clk, g, g_en, gf);
1
2
          input clk, g, g en;
3
          output reg gf=1'b0;
 4
      always @ (negedge clk)
 5
    ■begin
 6
          if (g_en==1'bl)
7
          begin
8
              gf=g;
9
          end
10
      end
      endmodule
11
```

B)编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗) (选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

警告信息

```
| Wessage | Wess
```

资源消耗

```
Flow Status
                                   Successful - Thu Dec 05 21:16:48 2024
                                   9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Quartus II Version
Revision Name
                                   psw
Top-level Entity Name
                                   psw
Family
                                   Cyclone II
Met timing requirements
                                   Yes
Total logic elements
                                   1 / 4,608 ( < 1 % )
   Total combinational functions
                                  1 / 4,608 ( < 1 % )
    Dedicated logic registers
                                   1 / 4,608 ( < 1 % )
Total registers
                                   1
Total pins
                                   4 / 89 (4%)
Total virtual pins
                                   0
Total memory bits
                                   0 / 119,808 ( 0 % )
Embedded Multiplier 9-bit elements 0 / 26 ( 0 % )
Total PLLs
                                   0/2(0%)
Device
                                   EP2C5T144C6
Timing Models
                                   Final
```

C) RTL 视图

D) 功能仿真波形

E) 时序仿真波形

F) 结果分析及结论

对于功能仿真,在 70ns 之前使能信号有效,时钟信号下降沿时将 g 写入 gf,在 70ns 之后使能禁止,不再执行写入操作;对于时序仿真,基本功能与功能仿真相似,存在些许不同。 仿真波形与要求功能相同,电路符合要求。

4、指令计数器 PC

A)源代码

```
module pc(ld_pc, in_pc, clk, a, c);
2
          input ld pc, in pc, clk;
3
         input [7:0] a;
 4
         output reg [7:0] c=8'b0000 0000;
 5
     always @ (negedge clk)
 6
    begin
 7
          if (in pc==1'b1 && ld pc==1'b0)
8
         begin
9
              c=c+8'b0000 0001;
10
          end
11
          else if (in pc==1'b0 && ld pc==1'b1)
12
          begin
13
              c=a;
14
          end
15
      end
16
     endmodule
```

B)编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗) (选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

警告信息

```
Type | Message | Marning Found pins functioning as undefined clocks and/or memory enables | Starting Found pins functioning as undefined clocks and/or memory enables | Starting Found | Third Clock "cit" Internal finat is restricted to 40.17 MED between source register "o[0]-reg0" and destination register "c[7]-reg0" | Starting Found | Third Clock | T
```

资源消耗

Flow Status Successful - Thu Dec 05 21:22:47 2024 Quartus II Version 9.0 Build 184 04/29/2009 SP 1 SJ Web Edition Revision Name pc Top-level Entity Name pc Family Cyclone II Met timing requirements Yes Total logic elements 10 / 4,608 (< 1 %) Total combinational functions 10 / 4,608 (< 1 %) Dedicated logic registers 8 / 4,608 (< 1 %) Total registers Total pins 19 / 89 (21 %) Total virtual pins 0 0 / 119,808 (0 %) Total memory bits Embedded Multiplier 9-bit elements 0 / 26 (0%) Total PLLs 0/2(0%) Device EP2C5T144C6 Timing Models Final

C) RTL 视图

D)功能仿真波形

E) 时序仿真波形

F) 结果分析及结论

对于功能仿真,IN_PC==0, LD_PC==1 时进行写入操作,在时钟信号的下降沿将 a 写入 c, 当 IN_PC==1, LD_PC==0 进行自增操作, c 中的数自增 1; 对于时序电路,仿真波形与功能仿真基本相似,不同点由元器件之间的延迟产生。

元件设计符合要求,实际电路中存在一定的延迟。

5、通用寄存器组

A)源代码

```
module reg_group(we, clk, sr, dr, i, s, d);
          input we, clk;
          input [1:0] sr, dr;
          input [7:0] i;
          output reg [7:0] s, d;
          reg [7:0] r0=8'b00000001, r1=8'b00000001, r2=8'b00000001, r3=8'b00000001;
      always @ (*)
   ■begin
          if(sr==2'b00)
          s=r0;
else if(sr==2'bl0)
10
11
12
              s=r2;
          else if(sr==2'b01)
13
14
              s=rl;
15
          else
              s=r3:
16
17
18
          if(dr==2'b00)
19
              d=r0;
          else if(sr==2'b10)
20
21
              d=r2;
22
          else if(sr==2'b01)
23
              d=rl;
24
          else
25
              d=r3;
26
27
      always @ (negedge clk)
28
    ■begin
29
          if(we==1'b1)
30
          begin
              if (dr==2'b00)
31
              r0=i;
else if(sr==2'bl0)
32
33
34
                  r2=i;
              else if(sr==2'b01)
35
36
                  rl=i;
37
              else
38
                  r3=i;
39
         end
      end
40
```

B)编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗) (选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

```
Flow Status
                                  Successful - Thu Dec 05 21:32:00 2024
Quartus II Version
                                 9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Revision Name
                                 reg_group
Top-level Entity Name
                                  reg_group
Family
                                  Cyclone II
Met timing requirements
                                  Yes
Total logic elements
                                  52 / 4,608 (1%)
   Total combinational functions 45 / 4,608 ( < 1 % )
   Dedicated logic registers 32 / 4,608 ( < 1 % )
Total registers
                                  32
Total pins
                                  30 / 89 ( 34 % )
Total virtual pins
Total memory bits
                                  0 / 119,808 ( 0 % )
Embedded Multiplier 9-bit elements 0 / 26 ( 0 % )
Total PLLs
                                  0/2(0%)
                                  EP2C5T144C6
Device
Timing Models
                                  Final
```

C) RTL 视图

D) 功能仿真波形

E)时序仿真波形

faster Ti	me Bar:			25.65 ns		1	Pointe	r:		26.85 ns		Interval:		1.2 ns		Start:			End:	
	Na	me	Value 25.6E	O ps	10.0) ns	20. 0	25.6) ns	40.0 ns	50. Q	ns 60.	0 ns	70. Q ns	: 80	. O ns 90. O	ns 1	00. ₀ ns	110.0 ns
№ 0	o.	1k	В								一			1						
№ 1	*	e	В																	
¥ 2	■ s:	r	ВС			00)				01	X		10	$=$ \times		11 X		10	$\overline{}$
≫ 3		-sr[1]	В١																	\neg _
▶4		- sr[0]	В١																	
> 5	■ d		ВС			00	0				01	X		10	\rightarrow X		11 X		10	
№ 6		- dr[1]		<u> </u>																
≥ 7		- dr [0]		_																
8	∄ i		B 000C	<u> </u>					- 1/-		00000111			\A4===	- 21/		X	00000001	1.000	X
17	∄ d		B 000C	<u> </u>		000000			<u> </u>	0000011		00000001	00000111			00000111	00000001	000001		0000
26	± 5		B 000C			0000000	101		_1	0000011	1 10	0000001 💥	00000111	*000000	IUIX U	0000111	00000001	00000101	X	0000

F) 时序分析

操作方法是:编译后,在 compilation report 中选择【timing analysis】-【summary】

	Туре	Slack	Required Time	Actual Time	From	То	From Clock	To Clock	Failed Paths
1	Worst-case tsu	N/A	None	6.911 ns	dr[1]	r2[5]		clk	0
2	Worst-case too	N/A	None	10.681 ns	r1[4]	d[4]	clk		0
3	Worst-case tpd	N/A	None	14.540 ns	sr[0]	d[4]			0
ŀ	Worst-case th	N/A	None	0.393 ns	i[0]	r3[0]		clk	0
5	Total number of failed paths								0

G) 结果分析及结论

对于功能仿真,当 WE=1 时进行写入操作,在时钟信号的下降沿根据 DR 的值将 i 写入寄存器(R0、R2、R1、R0,在波形中未体现),当 DR=00 时将 R0 的值从 d 中输出,DR=01 时将 R1 的值从 d 中输出,DR=10 时将 R2 的值从 d 中输出,DR=11 时将 R3 的值从 d 中输出。当 SR=00 时将 R0 的值从 s 中输出,SR=01 时将 R1 的值从 s 中输出,SR=10 时将 R2 的值从 s 中输出,SR=11 时将 R3 的值从 s 中输出。对于时序仿真,基本功能与波形和功能仿真类似,但输出存在 10s 左右的延迟,同时其中较多变化出现冒险。

元件设计符合要求, 元件内部存在一定的的延迟。

四、思考题

1. 时钟周期的上升沿实现对 RAM 的读写操作,为何 PC、SM、IR、PSW 以及寄存器组的操作是下降沿完成?

我们需要保证取址操作在同一个周期内完成,同时也要保证 RAM 优先级较高,如果同时处理,可能因为延迟导致数据无法及时处理。

2. 采用 VERILOG 语言描述时序部件应该采用阻塞赋值语句还是非阻塞赋值语句?

采用非阻塞语句。

3、通用寄存器组只有 WE 的控制信号,实现通用寄存器组读操作的电路是组合电路还是时序电路?请大致画出对寄存器组进行读操作的电路部分。

五、实验总结、必得体会及建议

1、从需要掌握的理论、遇到的困难、解决的办法以及经验教训等方面进行总结。 需要掌握模型机中 ir、pc 等模块的基本结构、功能和原理,同时学会使用 VERILOG 语 言对模块进行程序编写和电路设计。

因为这次的寄存器组较为复杂,我对寄存器基本原理的认识还较为浅薄,在 VERILOG 代码的编写上也遇到了困难。通过在网上查询资料和向同学请教,最终还是完成了对该模块的实现。

2、对本实验内容、过程和方法的改进建议(可选项)。