Math 347: Homework 3

Due on: Sep. 26, 2018

- 1. (*) Use induction to prove that a set of n elements has 2^n subsets.
- 2. (*) A function $f: \mathbb{R} \to \mathbb{R}$ is called a derivation if it satisfies the following

$$f(xy) = xf(y) + yf(x)$$
, and $f(x+y) = f(x) + f(y)$.

(i) Prove that any derivation f satisfies

$$f(1) = 0 \quad \text{and} \quad f(u^n) = nu^{n-1}f(u)$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$.

(ii) Given two functions $f, g : \mathbb{R} \to \mathbb{R}$, one can define a new function

$$[f, g](x) = f(g(x)) - g(f(x)).$$

Check that if f and g are derivations so is [f, g].

- (iii) Suppose that f_1, \ldots, f_n are derivations from \mathbb{R} to \mathbb{R} . Is $[f_1, [f_2, \cdots [f_{n-1}, f_n] \cdots]$ a derivation?
- 3. (*) Let $f(n) = n^2 8n + 18$. For which $n \in \mathbb{N}$ is f(n) > f(n-1)? (State and prove your result.)
- 4. Use induction on n to prove that a polynomial f(x) of degree n with real coefficients has at most n roots².
- 5. (*) Prove that any integer number n is a prime³ or the product of primes.
- 6. A subset S of \mathbb{R}^2 is *convex* if for every two points $x, y \in S$, the line segment joining x and y is contained in S.

Prove that for any $n \ge 3$, the sum of the internal angles of a convex polygon with n vertices is $180 \cdot (n-2)$ degrees.

7. Starting with 0, two players alternatively add 1, 2 or 3 to a single running total. The player who first brings the total to at least 1000 wins. Prove that the second player has a strategy to win against any strategy for the first player.

 $^{^{1}}$ This is not exactly the meaning of derivation you learned in Calculus, though it is related. The identity imposed on f is called the Leibniz rule.

²Recall that a root of f(x) is any real number $a \in \mathbb{R}$, s.t. f(a) = 0.

³Recall that a prime number is one that is only divisible by 1 and itself.