Let K/F be an extension, $\alpha \in K$. p is conjugate of α iff \exists embedding $F(\alpha) \longrightarrow K$

> K L ~ L'

Defn An algebraic extension K/F is normal

if $\forall \alpha \in K$, $m_{\alpha,F}$ splits completely in K.

(all conjugates of α one in K).

(Y extension E/K, any conjugate of α in E is in K.)

Equivalently, if $f \in F(x)$ is irreducible of how a root in K,

trum f splits completely in K.

Theorem if K/F is normal, tun & subextension L/F,

nen K/L is normal.

Therem if Li, L2 \(\int\), L1/\(\beta\), L2/\(\beta\) are normal,
them \((\Lin\)\)/\(\beta\) is normal.

Theren (Finite) K/F is normal iff Y extension E/k, any embedding $K/F \xrightarrow{\varphi} E/F$ is an automorphism of K ($\varphi(K) = K$).

Proof let K/F be normal. $\forall \alpha \in K$, $\forall \varphi : K/F \rightarrow E/F$, $\forall (\alpha)$ is a conjugate of α so $\varphi(\alpha) \in K$. So $\varphi(K) \subseteq K$, so $\varphi(K) = K$, $\varphi(A) = K$.

Now assume $\alpha \in K$, $\alpha' \in E$, α' is conjugate of α , $\alpha' \notin K$.

Let $K = F(\alpha, \alpha_1, \alpha_2, ..., \alpha_k)$. Let $f = \prod m_{\alpha_{i,i}, F}$.

let E be the splitting field of f over F.

 $F(\alpha,\alpha_{2},...,\alpha_{k}) \xrightarrow{\varphi_{k}} E$ $\downarrow \qquad \qquad \downarrow$ $\vdots \qquad \qquad \downarrow$ $F(\alpha_{1},\alpha_{2}) \xrightarrow{\varphi_{1}} F(\alpha_{1},\alpha_{1}')$

 $\mu_{\alpha,F(\alpha)} = f_i, \quad f'_i = \varphi(f_i).$ Let α'_i be a voot of f'_i $\exists \ \varphi_i : F(\alpha,\alpha_i) \longrightarrow \hat{E}$ $\alpha_i \longmapsto \alpha_i!$

$$F(\alpha_{1} \alpha_{2}) \xrightarrow{\varphi_{1}} F(\alpha_{1}, \alpha_{1}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\varphi \colon F(\alpha) \longrightarrow F(\alpha')$$

$$\varphi'_{F(\kappa)} = \varphi'_{F(\kappa)}$$

If
$$f = m_{x_i, F}$$
 then $f_i | f$ and So $\varphi(f_i) | \varphi(f) = f$
 f_i'
So f_i' splits in \hat{E}

so t, splits in Ê so «l∈Ê.

by induction, \ni embedding $Y_k: K \to \hat{E}$ Such that $(Y_k(x) = x' \notin K)$, so $(Y_k + Aut)$.

Corollary (et $K = F(x_1,...,x_k)$ and assume that $\forall i$, all conjugates of x_i are in K. then K/F is normal.

proof $\forall \varphi \colon K/F \longrightarrow E/F$, $\forall i, \forall (\alpha_i) \in K$,

So
$$\varphi(K) \subseteq K$$
, so $\varphi(K) = K$.
So K is normal.

So a finite extension is normal iff it is a Splitting field of some polynomial.

If $K = F(\alpha_1,...,\alpha_n)$ and K/F is normal, then K is the Splitting field of $F = \prod_{k \in K} f(k)$.

If K is the Splitting field of F, let f(k) be the roots of f(k), then f(k) and all conjugates of each f(k) are in f(k).

Corollary If L, , L₂ \subseteq K, L,/F, L₂/F are normal,

then l_1l_2/F is normal.

Proof $L_1 = F(\alpha_1,...,\alpha_k)$, $L_2 = F(\beta_1,...,\beta_k)$.

then $L_1l_2 = F(\alpha_1,...,\alpha_k,\beta_1,...,\beta_k)$. α_i and β_i are all "good" (their conjugates are in l_1l_2)

So L. Lz is normal.

Det if L/F is algebraic, a normal closine
of L/F is the minute normal extension K/F with LEK
It exists & is unique up to isomorphism:

Proof wing Listmite K is the splitting field of I'm mai, F where L= F(x,,,,xx).

of (assume K is finite)

et cetera

since fi = maje | maje .

Deh A finite normal separable extension is called

a Galois Extension

If K/F is Galois, Aut(K/F) is called the Galois group of K/F, denoted Gal(K/F). |Gal(K/F)| = [K:F].