MEME15203 Statistical Inference

Assignment 3

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2024 Due by: 18/3/2024

- Q1. Suppose that $X_1, ..., X_n$ is a random sample from a Poisson distribution, $X_i \sim POI(\theta)$,
 - (a) Find a complete and sufficient statistic for θ .
 - (b) Find the UMVUE for θ
 - (c) Find the UMVUE of $e^{-7\theta}$ using Lehmann Scheffe Theorem.
 - (d)Find the UMVUE of $e^{-7\theta}$ using Rao Blackwell Theorem.

(20 marks)

Q2. Let $X_1, X_2, ..., X_n$ be random sample of size n from an Exponential distribution with unknown mean θ . Find the UMVUE of $\gamma = e^{-t/\theta}$ using Rao-Blackwell theorem.

(20 marks)

Q3. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pdf

$$f(x;\theta) = 8\theta x^{8\theta-1} I_{(0,1)}(x).$$

Find the UMVUE of θ ,

(20 marks)

Q4. Let $X_1, X_2, ..., X_n$ be random sample of size n from $f(x|\theta) = {k \choose x} \theta^x (1-\theta)^{k-x}, x = 0, 1, ..., k$. Find the uniformly minimum variance unbiased estimator (UMVUE) of $g(\theta) = {k \choose 2} \theta^2 (1-\theta)^{k-x}$.

(20 marks)

Q5. Let X_1, \ldots, X_{30} be a random sample from a distribution with probability density function(p.d.f.)

$$f(x) = \frac{\theta^6}{\Gamma(6)} x^5 e^{-\theta x} I(0, \infty), \theta > 0.$$

- (a) Show that the p.d.f. of X belongs to the regular exponential family.
- (b) Find a complete and sufficient statistic for θ .
- (c) Find the UMVUE for $V(X_1)$.
- (d)Find the UMVUE for θ .

(20 marks)