## NP-completeness

Sipser 7.4 (pages 271 – 283)

## The classes P and NP



## A famous NP problem

CNF satisfiability (CNFSAT):

 Given a boolean formula B in conjunctive normal for (CNF), is there a truth assignment that satisfies B?

$$(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2})$$

## A famous NP problem

CNF satisfiability (CNFSAT):

Given a boolean formula B in conjunctive normal for (CNF), is there a truth assignment that satisfies B?

$$(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2})$$
 Yes! 
$$x_1 = T$$
 
$$x_2 = F$$

### $CNFSAT \subseteq NP$

#### Verifier:

V = "On input  $\langle B, c \rangle$ :

- 1. Test whether c is a truth assignment for B's variables. If not, reject.
- 2. Evaluate B using c. If B evaluates to true, accept; otherwise, reject."

#### · NTM:

*N* = "On input <*B*>:

- 1. Nondeterministically assign true or false to each of B's variables.
- 2. Evaluate B using c. If B evaluates to true, accept; otherwise, reject."

### · CLIQUE:

Given a graph G = (V, E) and an integer t, does G contain  $K_t$  as a subgraph?

- Is <*G*,3> $\in$  *CLIQUE*?



### · CLIQUE:

Given a graph G = (V, E) and an integer t, does G contain  $K_t$  as a subgraph?

- Is <*G*,3> $\in$  *CLIQUE*?



### · CLIQUE:

Given a graph G = (V, E) and an integer t, does G contain  $K_t$  as a subgraph?

- Is <*G*,4 $> <math>\in$  *CLIQUE*?



### · CLIQUE:

Given a graph G = (V, E) and an integer t, does G contain  $K_t$  as a subgraph?

- Is < G, 4 >  $\in$  CLIQUE?



### · CLIQUE:

Given a graph G = (V, E) and an integer t, does G contain  $K_t$  as a subgraph?

- Is <*G*,5 $> <math>\in$  *CLIQUE*?



## $CLIQUE \subseteq NP$

Verifier:

V = "On input << G, t>, S>:

- 1. Test whether S is a set of t nodes of G
- 2. Test whether G contains all edges connecting nodes in S
- If both pass, accept; otherwise, reject."
- NTM:

N = "On input < G, t>:

- Nondeterministically select a subset S of t nodes of G
- 2. Test whether G contains all edges connecting nodes in S
- If yes, accept; otherwise, reject."

## Which problem is harder?



### Recall...

• Definition 5.17: A function  $f: \Sigma^* \to \Sigma^*$  is a **computable function** if  $\exists$  some Turing machine M, on every input w, halts with just f(w) on its tape.

# Polynomial time computable functions

• Definition 7.28: A function  $f: \Sigma^* \to \Sigma^*$  is a **polynomial time computable function** if  $\exists$  some polynomial time Turing machine M, on every input w, halts with just f(w) on its tape.

### Recall...

• Definition 5.20:

Language A is mapping reducible to language B, written  $A \leq_m B$ , if there is a computable function  $f: \Sigma^* \to \Sigma^*$ , where for every w,

$$w \in A \Leftrightarrow f(w) \in B$$



# Polynomial time mapping reducibility

### Definition 7.29:

Language A is polynomial time mapping reducible to language B, written  $A \leq_p B$ , if there is a polynomial time computable function  $f: \Sigma^* \to \Sigma^*$ , where for every w,

$$w \in A \Leftrightarrow f(w) \in B$$



CS 311 Mount Holyoke College

## Intuitively, A is no harder than B

· Theorem 7.31:

If  $A \leq_p B$  and  $B \in P$ , then  $A \in P$ .

Proof:



# $CNF \leq_p CLIQUE$

- Given a boolean formula B in CNF, we show how to construct a graph G and an integer t such that G has a clique of size t
  ⇔ B is satisfiable.
- Given  $(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2})$ the construction would yield



## NP's hardest problems

• Definition 7.34:

A language B is **NP-complete** if

- 1.  $B \subseteq NP$
- 2.  $A \leq_p B$ , for all  $A \in NP$



### P=NP?

• Theorem 7.35: If *B* is NP-complete and  $B \subseteq P$ , then P = NP.



### Cook-Levin Theorem

• SAT is NP-complete. (If  $A \in NP$ , then  $A \leq_p SAT$ .)



## But that's not the only one!

CLIQUE is NP-complete (why?)



## Hierarchy of languages



## The classes P and NP



### P=NP?

• Theorem 7.35: If *B* is NP-complete and  $B \in P$ , then P = NP.



## Hamiltonian paths

•  $HAMPATH = \{ \langle G, s, t \rangle \mid \exists Hamiltonian \ path \ from \ s \ to \ t \}$ 



## And...if that's not enough

 There are more than 3000 known NP-complete problems!

http://en.wikipedia.org/wiki/List\_of\_NP-complete\_problems

## Other types of complexity

- Space complexity
- Circuit complexity
- Descriptive complexity
- Randomized complexity
- Quantum complexity

•



Images by Lydia Cheah '20

### I can't solve the Halting Problem.





Images by Lydia Cheah '20

CS 311 Mount Holyoke College



## WHAT ARE THE FUNDAMENTAL CAPABILITIES & LIMITATIONS OF COMPUTING?