P1 Chapter 11: Vectors

Position Vectors

Position Vectors

Suppose we started at a point (3,2) and translated by the vector $\binom{4}{0}$:

You might think we can do something like:

$$(3,2) + \binom{4}{0} = (7,2)$$

But only vectors can be added to other vectors. If we treated the point (3, 2) as a vector, then this solves the problem:

$$\binom{3}{2} + \binom{4}{0} = \binom{7}{2}$$

A vector used to represent a position is unsurprisingly known as a **position vector**. A position can be thought of as a translation from the origin, as per above. It enables us to use positions in all sorts of vector (and matrix!) calculations.

The position vector of a point A is the vector \overrightarrow{OA} , where O is the origin. \overrightarrow{OA} is usually written as \boldsymbol{a} .

Example

The points A and B have coordinates (3,4) and (11,2) respectively. Find, in terms of i and j:

- a) The position vector of *A*
- b) The position vector of *B*
- c) The vector \overrightarrow{AB}

$$\overrightarrow{OA} = 3\mathbf{i} + 4\mathbf{j}$$

$$\overrightarrow{OB} = 11\mathbf{i} + 2\mathbf{j}$$

$$\overrightarrow{AB} = 8i - 2j$$

You can see this by inspection of the change in x and the change in y:

More formally:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
$$= {11 \choose 2} - {3 \choose 4} = {8 \choose -2}$$

Further Example

$$\overrightarrow{OA} = 5i - 2j$$
 and $\overrightarrow{AB} = 3i + 4j$. Find:

- a) The position vector of B.
- b) The exact value of $|\overrightarrow{OB}|$ in simplified surd form.

$$\overrightarrow{OB} = ?$$

$$|\overrightarrow{OB}| = ?$$

Either a quick sketch will help you see this, or thinking of \overrightarrow{OA} as the original position and \overrightarrow{AB} as the translation.

Further Example

$$\overrightarrow{OA} = 5i - 2j$$
 and $\overrightarrow{AB} = 3i + 4j$. Find:

- a) The position vector of B.
- b) The exact value of $|\overrightarrow{OB}|$ in simplified surd form.

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = {5 \choose -2} + {3 \choose 4} = {8 \choose 2}$$

$$|\overrightarrow{OB}| = \sqrt{8^2 + 2^2} = 2\sqrt{17}$$

Either a quick sketch will help you see this, or thinking of \overrightarrow{OA} as the original position and \overrightarrow{AB} as the translation.

Exercise 11.4

Pearson Pure Mathematics Year 1/AS Pages 88-89

Homework Exercise

- 1 The points A, B and C have coordinates (3, -1), (4, 5) and (-2, 6) respectively, and O is the origin. Find, in terms of i and j:

 - **a** i the position vectors of \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} ii \overrightarrow{AB} iii \overrightarrow{AC} **b** Find, in surd form: i $|\overrightarrow{OC}|$ ii $|\overrightarrow{AB}|$ iii $|\overrightarrow{AC}|$
- 2 $\overrightarrow{OP} = 4\mathbf{i} 3\mathbf{j}, \overrightarrow{OQ} = 3\mathbf{i} + 2\mathbf{j}$
 - a Find \overrightarrow{PQ}
 - **b** Find, in surd form: $\mathbf{i} |\overrightarrow{OP}|$ $\mathbf{ii} |\overrightarrow{OQ}|$ $\mathbf{iii} |\overrightarrow{PQ}|$
- 3 $\overrightarrow{OQ} = 4\mathbf{i} 3\mathbf{j}, \overrightarrow{PQ} = 5\mathbf{i} + 6\mathbf{j}$
 - a Find \overrightarrow{OP}
 - ii $|\overrightarrow{OQ}|$ **b** Find, in surd form: $\mathbf{i} \mid \overrightarrow{OP} \mid$
- 4 OABCDE is a regular hexagon. The points A and B have position vectors a and b respectively, where O is the origin.

Find, in terms of a and b, the position vectors of

a C

b D

c E.

Homework Exercise

5 The position vectors of 3 vertices of a parallelogram are $\binom{4}{2}$, $\binom{3}{5}$ and $\binom{8}{6}$. Find the possible position vectors of the fourth vertex.

Problem-solving

Use a sketch to check that you have considered all the possible positions for the fourth vertex.

- 6 Given that the point A has position vector $4\mathbf{i} 5\mathbf{j}$ and the point B has position vector $6\mathbf{i} + 3\mathbf{j}$,
 - a find the vector \overrightarrow{AB} . (2 marks)
 - **b** find |AB| giving your answer as a simplified surd. (2 marks)
- 7 The point A lies on the circle with equation $x^2 + y^2 = 9$. Given that $\overrightarrow{OA} = 2k\mathbf{i} + k\mathbf{j}$, find the exact value of k. (3 marks)

Challenge

The point B lies on the line with equation 2y = 12 - 3x. Given that $|OB| = \sqrt{13}$, find possible expressions for \overrightarrow{OB} in the form $p\mathbf{i} + q\mathbf{j}$.

Homework Answers

1 **a i**
$$\overrightarrow{OA} = 3\mathbf{i} - \mathbf{j}, \overrightarrow{OB} = 4\mathbf{i} + 5\mathbf{j}, \overrightarrow{OC} = -2\mathbf{i} + 6\mathbf{j}$$
ii $\mathbf{i} + 6\mathbf{j}$
iii $-5\mathbf{i} + 7\mathbf{j}$
b i $\sqrt{40} = 2\sqrt{10}$
ii $\sqrt{37}$
iii $\sqrt{74}$

2 **a** $-\mathbf{i} + 5\mathbf{j}$ or $\begin{pmatrix} -1\\5 \end{pmatrix}$
b i 5
ii $\sqrt{13}$
iii $\sqrt{26}$

3 **a** $-\mathbf{i} - 9\mathbf{j}$ or $\begin{pmatrix} -1\\-9 \end{pmatrix}$
b i $\sqrt{82}$
ii 5
iii $\sqrt{61}$

4 **a** $-2\mathbf{a} + 2\mathbf{b}$
b $-3\mathbf{a} + 2\mathbf{b}$
c $-2\mathbf{a} + \mathbf{b}$

5 $\begin{pmatrix} 7\\9 \end{pmatrix}$ or $\begin{pmatrix} 9\\3 \end{pmatrix}$

6 **a** $2\mathbf{i} + 8\mathbf{j}$
b $2\sqrt{17}$

7 $\frac{3\sqrt{5}}{5}$

Challenge
 $\overrightarrow{OB} = 2\mathbf{i} + 3\mathbf{j}$ or $\overrightarrow{OB} = \frac{46}{13}\mathbf{i} + \frac{9}{13}\mathbf{j}$