Complex Functions

Lecture 6, Wednesday May 17, 2023 Ari Feiglin

Recall that for a function analytic in a rectangle, disk, or the entire complex plane:

- There exists an analytic antiderivative.
- (2) The integral over every closed smooth curve is zero.
- (3) The integral over a smooth curve is dependent only on its endpoints.

Theorem 6.1 (Cauchy's Integral Formula):

Suppose f is analytic in an open set \mathcal{U} , and let $a \in \mathcal{U}$. If C is a closed, positive-oriented curve contained in \mathcal{U} and whose interior contains a, then

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - a} \, dz$$

Proof:

Since \mathcal{U} is open and C is contained within \mathcal{U} , then there exists an r > 0 small enough such that

$$C_r(a) = \{ \gamma(\theta) = a + re^{-i\theta} \mid 0 \le \theta \le 2\pi \}$$

contained in the interior of C and \mathcal{U} .

The function $\frac{f}{z-a}$ is analytic in $\mathcal{U}\setminus\{a\}$. So we can take \mathcal{O} to be the domain equal to the interior of C minus the interior of $C_r(a)$. Then $\partial \mathcal{O} = C \cup C_r(a)$, then f is analytic in \mathcal{O} . We can parameterize $C_r(a)$ by γ (in the definition of $C_r(a)$). Then since $\frac{f}{z-a}$ is analytic in \mathcal{O} , since $C_r(a)$ is negatively-oriented, by the last theorem from the previous lecture:

$$\int_{C} \frac{f}{z-a} + \int_{C_{r}} \frac{f}{z-a} = 0 \implies \int_{C} \frac{f}{z-a} = -\int_{C_{r}} \frac{f}{z-a} = \int_{-C_{r}} \frac{f}{z-a} = \int_{-C_{r}} \frac{f(z) - f(a)}{z-a} + \int_{-C_{r}} \frac{f(a)}{z-a} = \int_{-C$$

 $-C_r$ is parameterized by $\gamma_1(\theta) = \gamma(2\pi - \theta) = a + re^{i\theta}$, so

$$\int_{-C_a} \frac{f(a)}{z-a} = f(a) \cdot \int_0^{2\pi} \frac{rie^{i\theta}}{re^{i\theta}} = 2\pi i f(a)$$

Thus we have

$$\int_{C} \frac{f(z)}{z - a} = 2\pi i f(a) + \int_{-C_{\pi}} \frac{f(z) - f(a)}{z - a}$$

so we will show that the rightmost integral is zero.

Let $\varepsilon > 0$, then since f is continuous, there exists a $\delta > 0$ such that if $|z - a| < \delta$ then $|f(z) - f(a)| < \varepsilon$. We will choose r > 0 such that $0 < r < \delta$, then $\left| \frac{f(z) - f(a)}{z - a} \right| = \frac{|f(z) - f(a)|}{r} < \frac{\varepsilon}{r}$, and so

$$\left| \int_{-C_r} \frac{f(z) - f(a)}{z - a} \right| \le \frac{\varepsilon}{r} \cdot 2\pi r = 2\pi \varepsilon$$

and since $\varepsilon > 0$ is arbitrary, this means that the integral is indeed zero.

So we have

$$\int_C \frac{f(z)}{z-a} = 2\pi i f(a)$$

or in other words

$$\frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} = f(a)$$

We will use the notation $C_r(a) = \{z \in \mathbb{C} \mid |z - a| = r\}$, and we will give it the parameterization of $\gamma \colon [0, 2\pi] \longrightarrow \mathbb{C}$ by $\gamma(t) = a + re^{i\theta}$ (this was used as $-C_r$ in the previous proof). This is a positive-oriented Jordan curve. Notice that for $k \in \mathbb{Z}$:

$$\int_{C_r(a)} \frac{dz}{(z-a)^k} = \int_0^{2\pi} \frac{rie^{i\theta}}{r^k e^{ki\theta}} = ir^{1-k} \int_0^{2\pi} e^{i\theta(1-k)}$$

If k = 1 then this is equal to $2\pi i$. Otherwise

$$\int_{0}^{2\pi} e^{i\theta(1-k)} = \frac{i(1-k)}{e}^{i\theta(1-k)} \Big|_{0}^{2\pi} = 0$$

So

$$\int_{C_r(a)} \frac{dz}{(z-a)^k} = \begin{cases} 2\pi i & k=1\\ 0 & k \neq 1 \end{cases}$$

Lemma 6.2:

If $a \in D_r(x)$ then

$$\int_{C_r(x)} \frac{dz}{z - a} = 2\pi i$$

Proofs

For $w = \frac{a-x}{z-x}$ we have

$$\frac{1}{z-a} = \frac{1}{z-x} \cdot \frac{1}{1-w}$$

And for $z \in C_r(x)$ we have that

$$|w| = \frac{|a-x|}{|z-a|} = \frac{|a-x|}{r} < 1$$

since $a \in D_r(x)$ so |a - x| < r. Thus we have that

$$\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n = \sum_{n=0}^{\infty} \left(\frac{a-x}{z-x}\right)^n$$

Thus for every $z \in C_r(x)$ and $a \in D_r(x)$

$$\frac{1}{z-a} = \sum_{k=0}^{\infty} \frac{(a-x)^n}{(z-x)^{n+1}}$$

Thus

$$\int_{C_r(x)} \frac{dz}{z-a} = \int_{C_r(x)} \frac{dz}{z-x} + \sum_{n=1}^{\infty} \int_{C_r(x)} \frac{(a-x)^n}{(z-x)^{n+1}}$$

Since we showed that

$$\int_{C_r(a)} \frac{dz}{(z-a)^n} = 0$$

for $n \neq 1$, this means that the right sum is zero, and we also showed that

$$\int_{C_r(x)} \frac{dz}{z - x} = 2\pi i$$

as required.

Theorem 6.3:

Suppose f is analytic in $D_R(x)$ then there exist constants $c_k \in \mathbb{C}$ such that

$$f(z) = \sum_{k=0}^{\infty} c_k (z - x)^k$$

for every $z \in D_R(x)$.

Proof:

Since $C_R(x)$ is not contained in $D_R(x)$, we first focus on r > 0 such that 0 < r < R. Recall that

$$f(a) = \frac{1}{2\pi} \int_{C_r(a)} \frac{f(z)}{z - a}$$

and we showed that

$$\frac{1}{z-a} = \sum_{k=0}^{\infty} \frac{(a-x)^k}{(z-x)^{k+1}}$$

uniformly for $a \in D_r(x)$ and $z \in C_r(x)$. Thus

$$f(a) = \frac{1}{2\pi} \int_{C_r(a)} f(z) \cdot \sum_{k=0}^{\infty} \frac{(a-x)^k}{(z-x)^{k+1}} = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C_r(x)} \frac{f(z)}{(z-x)^{k+1}} \right) (a-x)^k$$

where the final equality is due to the uniform convergence. Thus if we set

$$c_k(r) = \frac{1}{2\pi i} \int_{C_r(x)} \frac{f(z)}{(z-x)^{k+1}}$$

we have found the constants satisfying our condition in $D_r(x)$.

If $r_1, r_2 > 0$, f can be written as a powerseries with $c_k(r_1)$ and $c_k(r_2)$, but since $D_{r_1}(x) \subseteq D_{r_2}(x)$ and powerseries are unique, this means $c_k(r_1) = c_k(r_2)$. So $c_k(r)$ is independent of r, we can write them as c_k . And for every $z \in D_R(x)$ there is a 0 < r < R where $z \in D_r(x)$, we have that

$$f(z) = \sum_{k=0}^{\infty} c_k (z - x)^k$$

as required.

As we know, power series are infinitely differentiable, and we can differentiate and find that

$$\frac{f^{(k)}}{k!} = c_k = \frac{1}{2\pi i} \int_{C_r(x)} \frac{f(z)}{(x-z)^{k+1}}$$

Theorem 6.4:

If f is analytic on an open set \mathcal{U} then for every $k \in \mathbb{N}_0$ and every $x \in \mathcal{U}$, and every positive-oriented Jordan curve C contained in \mathcal{U} , if x is in the interior of C:

$$f^{(k)}(x) = \frac{k!}{2\pi i} \int_C \frac{f(z)}{(x-z)^{k+1}}$$

Corollary 6.5:

If $f: \mathbb{C} \longrightarrow \mathbb{C}$ is analytic at $\alpha \in \mathbb{C}$, then so is $f^{(k)}$ for $k \in \mathbb{N}_0$.

Proof:

If f is analytic at α then there exists a disk $D_R(\alpha)$ in which f is differentiable. So there exist $c_k \in \mathbb{C}$ such that

$$f(z) = \sum_{k=0}^{\infty} c_k (z - \alpha)^k$$

for every $z \in D_R(\alpha)$. Inductively we see that

$$f^{(m)}(z) = \sum_{k=0}^{\infty} k(k-1)\cdots(k-m+1)\cdot c_k\cdot(z-\alpha)^{k-m}$$

All of these powerseries have the same radius of convergence (using limsup), and thus define analytic functions in $D_R(\alpha)$.

If \mathcal{U} is open and f is analytic in it, then for every $x \in \mathcal{U}$ there exists a $D_r(x) \subseteq \mathcal{U}$, and so f can be written as a powerseries in $D_r(x)$. But in general f may not be a powerseries in all of $D_r(x)$.

Proposition 6.6:

If f is analytic in a domain D such that there exists a sequence $z_n \in D$ such that $z_n \longrightarrow z_0 \in D$ where all z_n are distinct from z_0 , and $f(z_n) = 0$, then f is identically zero on D.

Proof:

There exists an R > 0 such that $D_R(z_0) \subseteq D$. And there exists an N > 0 such that for every $n \ge N$, $z_n \in D_R(z_0)$. Since f can be written as a powerseries in $D_R(z_0)$, we use the similar theorem for powerseries to conclude that f = 0 on $D_R(z_0)$.

Let us define

$$A = \{ z \in D \mid \exists \{x_n\}_{n=1}^{\infty} \in D, x_n \longrightarrow z, f(x_n) = 0 \}$$

A is non-empty by assumption, and it is open since if $z \in A$ then by above there exists a r > 0 such that f is zero in $D_r(z)$, and so $D_r(z) \subseteq A$. We define $B = D \setminus A$, and if $b \in B$ then there must be an r > 0 such that in $D_r(b)$, $f \neq 0$ as otherwise you could take a sequence to b of zeros of f. And $D_r(b) \subseteq B$ for this same reason, so B is open. So $D = A \cup B$, but A and B are open and D is connected, so A or B must be empty. Since A is non-empty, $B = \emptyset$ and so A = D. And since for every $z \in A$, f(z) = 0, f = 0 in D.

Thus if f and g are two analytic functions in a domain D which agree on a convergent sequence of distinct numbers, then f = g in D (f - g is equal to zero in this sequence). So analytic functions are defined uniquely by their values on convergent sequences.

Proposition 6.7:

Let f(z) be an entire function, then for any $a \in \mathbb{C}$

$$g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & z \neq a \\ f'(a) & z = a \end{cases}$$

q(z) is entire.

Proof:

Since

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} \cdot (z - a)^k$$

for all $z \neq a$ we have

$$g(z) = \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} \cdot (z - a)^{k-1}$$

And for z = a, we have that this powerseries is equal to $\frac{f^{(1)}(a)}{1!} = f'(a)$, so the above equation holds for all $z \in \mathbb{C}$. Thus g is a powerseries which is convergent on all of \mathbb{C} and is therefore entire.

If a is a root of f, the definition of g simplifies to $\frac{f(z)}{z-a}$ for $z \neq a$. We can continue this inductively on g if $\alpha_1, \ldots, \alpha_n$ are roots of f and define

$$g(z) = \frac{f(z)}{(z - \alpha_1) \cdots (z - \alpha_n)}$$

for $z \neq \alpha_i$, and if $z = \alpha_i$ then the limit of g(z) as z approaches α_i exists (and is equal to $f'(\alpha_i)$ divided by the product of $\alpha_i - \alpha_j$ for $j \neq i$). This is done inductively and at every step the function is entire.

Theorem 6.8 (Liouville's Theorem):

Any bound entire function is constant.

Proof:

Let $a, b \in \mathbb{C}$ and let $R \ge 1 + \max\{|a|, |b|\}$. Then by Cauchy's Integral Formula, since a and b are contained within the interior of $C_R(0)$

$$f(b) - f(a) = \frac{1}{2\pi i} \left(\int_{C_R(0)} \frac{f(z)}{z - a} - \frac{f(z)}{z - b} \, dz \right) = \frac{1}{2\pi i} \left(\int_{C_R(0)} \frac{f(z)(b - a)}{(z - a)(z - b)} \, dz \right)$$

Since f(z) is bound, suppose by M, and since $|z-a| \ge |R-|a||$, we have that

$$|f(b) - f(a)| \le \frac{M|b - a| \cdot 2\pi R}{2\pi \cdot |R - |a|| \cdot |R - |b||} = \frac{M|b - a| \cdot R}{|R - |a|| \cdot |R - |b||}$$

As we let $R \longrightarrow \infty$, this converges to 0 and so |f(b) - f(a)| = 0, meaning f(b) = f(a) for any $a, b \in \mathbb{C}$, meaning f is constant.

Theorem 6.9 (Generalized Liouville's Theorem):

Suppose f is an entire function such that there exist $A, B \in \mathbb{C}$ and $k \in \mathbb{N}_0$ where $|f| \leq A + B|z|^k$, then f is a polynomial of degree at most k.

Proof:

For k = 0 this is simply **Liouville's Theorem**. If we assume that this is true for $k \le n$, we will show that this is true for k = n + 1. Suppose $|f| \le A + B|z|^{n+1}$ (we can assume that $A, B \ge 0$, which is true in any case), then we define

$$g(z) = \begin{cases} \frac{f(z) - f(0)}{z} & z \neq 0\\ f'(0) & z = 0 \end{cases}$$

we have shown above that such a g is entire. If $z \neq 0$ then

$$|g(z)| = \frac{|f(z) - f(0)|}{|z|} \le \frac{|f(z)| + |f(0)|}{|z|} = \frac{2A + B|z|^{n+1}}{|z|} = \frac{2A}{|z|} + B|z|^n$$

if |z| > 1 then this is less than

$$\leq 2A + B|z|^n$$

and if $|z| \le 1$ then since g is analytic and therefore continuous, it is bound by some M, which we can assume without loss of generality is equal to 2A (by taking the maximum between M and 2A). So we have that

$$|g(z)| \le 2A + B|z|^n$$

and therefore g is a polynomial of degree $\leq n$. And since f(z) = zg(z) + f(0) for every $z \in \mathbb{C}$ (for z = 0 this is trivial), and so f is a polynomial of degree one more than g's, which is less than or equal to n + 1.

Theorem 6.10 (Fundamental Theorem of Algebra):

Every non-constant polynomial $p(z) \in \mathbb{C}[z]$ has a root in \mathbb{C} .

Proof:

If we assume that $p(z) \neq 0$ for every $z \in \mathbb{C}$ then $f(z) = \frac{1}{p(z)}$ is an entire function in \mathbb{C} . Since p is non-constant, $|p(z)| \xrightarrow[z \to \infty]{} \infty$ and so $|f(z)| \xrightarrow[z \to \infty]{} 0$, and so f is bound. But then by **Liouville's Theorem**, f is constant and therefore p is as well, in contradiction.