Lab 4: Synchronous Sequential Circuits

Frederick Meneses

February 6, 2023

Part I

2. Export the subcircuit schematic as an image and include it in your report.

Figure 1: A schematic of the gated D-latch.

Figure 2: A schematic of the D flip-flop.

- 3. For the D latch and the flip flop, are there any input combinations of Clk and D that should NOT be the first you test with the *Poke* tool? List them if applicable.
 - D = 0, Clk = 0
 - D = 1, Clk = 1

Part IIa

2. Export the subcircuit schematic as an image and include it in your report.

Figure 3: A schematic of op5.

Figure 4: A schematic of op6.

Figure 5: A schematic of op7.

3. Include a screenshot of your simulated test vectors for op5, op6, and op7.

	Test Vector op5 of lab4_part2					
	Passed	d: 9 Fa	iled: 0			
Status	A	В	OP	out		
pass	0000	0000	0000	0000		
pass	0001	0000	0000	0000		
pass	0010	0000	0000	0000		
pass	0111	0000	0000	0000		
pass	0001	1111	1111	1110		
pass	0100	1111	1111	0000		
pass	0111	1111	1000	0000		
pass	1000	1111	0000	0000		
pass	1111	1111	0000	0000		

Figure 6: A simulation of op5.

Part IIb

- 3. Include a screen shot of your simulated timing diagram demonstrating ALUreg starting at 0x0 and increasing by 1 until 0x0f.
- 4. Include a screenshot of your simulated timing diagram demonstrating a shifting operation where ALUreg goes from at 0x01 and doubling until 0x00.

	Passed	d: 9 Fa	iled: 0	
Status	atus A B OPout			
pass	0000	0000	0000	0000
pass	0001	0000	0000	0000
pass	0010	0000	0000	0000
pass	0111	0000	0000	0000
pass	0001	1111	0111	1111
pass	0100	1111	0000	1111
pass	0111	1111	0000	0001
pass	1000	1111	0000	0000
pass	1111	1111	0000	0000

Figure 7: A simulation of op6.

Test Vector op7 of lab4_part2								
Passed: 14 Failed: 0								
Status	A	В	OP	out				
pass	0000	0000	0000	0000				
pass	0001	0000	0000	0000				
pass	0010	0000	0000	0000				
pass	0100	0000	0000	0000				
pass	1111	0000	0000	0000				
pass	0001	0001	0000	0001				
pass	0010	0001	0000	0010				
pass	0100	0001	0000	0100				
pass	1111	0001	0000	1111				
pass	1111	0010	0001	1110				
pass	1111	0100	0011	1100				
pass	1111	1000	0111	1000				
pass	1111	0101	0100	1011				
pass	1111	1111	1110	0001				

Figure 8: A simulation of op7.

Figure 9: A timing simulation demonstrating incrementing.

Part III

2. What is the behaviour of the 8-bit shift register when $Load_n = 1$ and ShiftRight = 0? Briefly explain in your prelab.

Figure 10: A timing simulation demonstrating doubling.

Export the subcircuit schematic as an image and include it in your report.

Since $Load_n = 1$, the bits from the previous clock cycle is parallel loaded into the register. However, since ShiftRight = 0, the flip flop in each bit is not changing it's value for the bit on it's right to load.

ShiftRight 13
ShiftRight 13
Load_val
Used_val
Us

Figure 11: A schematic of the 8-bit shift register.

Figure 12: 8-bit shift register's shift right one bit.

Figure 13: 8-bit shift register's shift right as one bit with reset.

Figure 14: 8-bit shift register's no shift load n one bit.