CPSY 501: Advanced Statistics

10 Sep 2010

Instructor: Dr. Sean Ho

TA: Kafui Sawyer

cpsy501.seanho.com

- No food/drink in the computer lab, please!
- Please pick-up:
 - Syllabus
 - Project Handout
 - HW 1

Outline for today

- Welcome, devotional, introductions
- Administrative details: syllabus, schedule
 - MyCourses, SPSS, textbook
- Stats review:
 - Purpose, research questions
 - Linear models
 - Correlation, Spearman's ρ, χ²,
 - Comparing means (t-test): RM vs. groups
- Data Analysis Project, HW Assignment 1
 - Kafui's SPSS tutorials

Stats review: purpose

- What is the purpose of statistical analysis in counselling psychology research?
 - → Research questions!
- Statistics allows us to (1) pose new questions and (2) answer them – decision-making tool
 - Is an effect/relationship real? How strong?
- Possible limitations, assumptions:
 - Danger of extreme reductionism
 - Neutrality of observation, objectivity
 - Looking at groups, not individuals

Cycles in statistical analysis

- Formulate research question
- Data prep: input errors/typos, missing data, univariate outliers
- Explore variables: IV, DV, descriptives
- Model building: choose a model based on RQ
- Model testing: are assumptions met?
 - If not, either clean data or change model
 - May need to modify RQ!
- Run final model and interpret results

CPSY501: Intro 10 Sep 2010

Research question: example

- RQ: are men taller than women?
 - Is this relationship real? How strong is it?
- What are the variables? IV/DV? Level of meas?
 - Levels of measurement: categorical, ordinal, scale (interval, ratio)
 - IV: gender (dichot), DV: height (scale)
- What type of test should we use?
 - Independent samples: t-test
- Limitations/assumptions of this test?

CPSY501: Intro 10 Sep 2010

Model-building process

- Operationally define a phenomenon: variables
- Measure it (collect data)
- Build a model: verify data meet assumptions and input data into model
- Draw conclusions and/or predictions about the phenomenon in the "real world" population
 - e.g., if child A holds 2 apples, B:6 apples, and C:1, how many apples is a child most likely to have?
 - Individual vs. group

Statistical model: example

- RQ: does self-esteem correlate with school performance?
- How do we measure / gather data?
 - Questionnaire and marks
- Choose model: correlation
- Assumptions! Measures, procedures, model
- Make conclusions: based on assumptions
 - Objectivity, individual vs. group,
 - Linearity is a big assumption!

Linear modelling

- A linear model is a straight "line" that best fits the observed data
 - Minimizes error (least-squares) of model
- Use analytic techniques to derive the equation of the linear model directly from the data, or
- Use optimization techniques to try to find the line that maximizes the goodness of fit between model and data:
 - Test statistic = (variance due to model) / (due to error)

CPSY501: Intro 10 Sep 2010

Linear modelling: summary

- Statistics are used to build models of psychological phenomena out of observations gathered from specific samples of individuals
- The most common type of statistical model is linear – straight "line" (or plane, hyperplane, ...) that minimizes distance from model to data
- The adequacy of the model to explain the data can be calculated through test statistics
 - If there is a poor fit, the model may need to be revised, or to consider additional confounding variables

Linear modelling: limitations

- What if vars are not related in a linear way?
- Many common procedures (some ANOVA, some regression) depend strongly on linearity
 - If linearity is violated, results are only very approximate
 - Even non-parametric models are often approximations using group patterns
- Reifying models: "correct" the data to better fit the assumptions of the model!
- Examples of psychological phenomena vars that are related non-linearly?

Linear Correlation

- A measure of the strength of the linear relationship between two variables
- Relies on measuring covariance between vars
 - When one var deviates from mean, does the other var also deviate?
 - Does it deviate in the same direction?
- Correlation is a value between -1 and +1
 - Close to +1: positive relationship
 - Close to -1: negative relationship
 - Close to 0: no relationship

CPSY501: Intro 10 Sep 2010

Measuring correl: Pearson's r

- The most common way to measure correlation is Pearson's product-moment correlation coefficient, named r:
- Requires parametric data:
 - Indep obs, scale level, normally distrib!
- Example: ExamAnxiety.sav
 - Measured anxiety before exam, time spent reviewing before exam, and exam performance (% score)

Pearson's correlation coeff

Name of Correlation Statistic

Significance Value (p)

		Correlations			
			Exam performance (%)	Exam Anxiety	Time spent revising
Exam performance (%)	Pearson	Correlation	1	441**	.397**
	Sig. (1-tailed)			.000	.000
	N		103	103	103
Exam Anxiety	Pearson Correlation		441**	1	709**
	Sig. (1-tailed)		.000		.000
	N		103	103	103
Time spent revising Pearson Corr Sig. (1-tailed)		Correlation	.397**	709**	(1)
		ailed)	.000	.000	
	N		103	103	103

^{**.} Correlation is significant at the 0.01 level (1-tailed).

Each variable is perfectly correlated with itself!

Spearman's Rho (p or r_s)

- Another way of calculating correlation
- Non-parametric: can be used when data violate parametricity assumptions
- No free lunch: loses information about data
- Spearman's works by first ranking the data, then applying Pearson's to those ranks
- Example: grades.sav
 - grade on a national math exam (GCSE)
 - grade in a univ. stats course (STATS)
 - coded by "letter" (A=1, B=2, C=3, ...)

TRINITY WESTERN LINIVERSITY

CPSY501: Intro 10 Sep 2010

14

Spearman's Rho (p or r_s): ex

Name of Correlation Statistic

	Correlations		
		Statistics Grade	GCSE Maths Grade
Spearman's rho Statistics	Grade Correlation Coefficient	1.000	.455*
	Sig. (1-tailed)		.011
	N	25	25
GCSE M	aths Grade Correlation Coefficient	.455*	1.000
	Sig. (1-tailed)	.011	
	N	25	25
*. Correlation is significant	at the 0.05 level (1-tailed).		

Sample Size

Correlation is positive

Chi-Square test (x²)

- Evaluates whether there is a relationship between two categorical variables
- The Pearson chi-square statistic tests whether the two variables are independent
- If the significance is small enough $(p < \alpha, usually \alpha = .05)$, we reject the null hypothesis that the two variables are independent (unrelated)
 - i.e., we think that they are in some way related.

CPSY501: Intro 10 Sep 2010

16

t-Tests: comparing two means

- Moving beyond correlational research...
- We often want to look at the effect of one variable on another by systematically changing some aspect of that variable
- That is, we want to manipulate one variable to observe its effect on another variable.
- t-tests are for comparing two means
- Two types of application of t-tests:
 - Related/dependent measures
 - Independent groups

CPSY501: Intro 10 Sep 2010

Related/dependent t-tests

- A repeated measures experiment that has 2 conditions (levels of the IV)
- The <u>same subjects</u> participate in both conditions
- We expect that a person's behaviour will be the same in both conditions
 - External factors kept same in both:
 - e.g., Age, gender, IQ, motivation, ...
- Experimental Manipulation: we change the environment between the two conditions:
 - The only difference between conditions is the manipulation the experimenter made
 - e.g., Control vs. test

CPSY501: Intro 10 Sep 2010

18

Independent samples t-tests

- We still have 2 conditions (levels of the IV), but different subjects participate in each condition – i.e., different groups
- So, differences between the two group means might reflect:
 - The manipulation (i.e., systematic variation)
 - Differences between characteristics of the people allotted to each group (i.e., unsystematic variation)
 - Question: what is one way we can try to keep the "noise" in an experiment to a minimum?

t-Tests

- t-tests work by identifying sources of systematic and unsystematic variation, and then comparing them.
- The comparison lets us see whether the experiment created considerably more variation than we would have got if we had just tested the participants without the experimental manipulation.

Example: dependent samples

- SpiderRM.sav
- "Paired" samples t-test
- 12 'spider phobes' exposed to a picture of a spider (picture), and on a separate occasion, a real live tarantula (real)
- Their anxiety was measured at each time (i.e., in each condition).
- What are the variables? IV/DV?
- Is the predictor a grouping variable or a repeated-measures variable?

CPSY501: Intro 10 Sep 2010

21

Example: paired t-Tests

Degrees of freedom (=N-1 for repeated measures)

Paired Samples Test

Standard deviation of pairwise differences between conditions

Standard error of the pairwise differences

Probability that the given value of 't' might have occurred by chance

Example: indep samples t-test

Used in situations where there are 2
 experimental conditions – and different
 participants are used in each condition

Example: SpiderBG.sav

- 12 spider phobes exposed to a picture of a spider (picture)
- 12 different spider phobes exposed to a real-life tarantula
- Anxiety was measured in each condition

Group	Statistics
-------	-------------------

					Std. Error
	Condition	Ν	Mean	Std. Deviation	Mean
Anxiety	Picture	12	40.0000	9.29320	2.68272
	Real Spider	12	47.0000	11.02889	3.18377

Summary statistics for both groups

$$(N_1 + N_2) - 2 = 22$$

t-test is parametric: assumes variances in both groups are similar

If Levene's test is sig., the assumption of homogeneity of variance has been violated

Significance (p-value): > α =.05, so there is no significant difference between the means of the 2 samples

24

CPSY501: Intro 10 Sep 2010

Outline for today

- Welcome, devotional, introductions
- Administrative details: syllabus, schedule
 - MyCourses, SPSS, textbook
- Stats review:
 - Purpose, research questions
 - Linear models
 - Correlation, Spearman's ρ , χ^2 ,
 - Comparing means (t-test): RM vs. groups
- Data Analysis Project, HW Assignment 1

Kafui's SPSS tutorials

Data Analysis Project

- Half of this course is your semester-long data analysis project:
 - Find suitable existing data
 - Propose a new statistical analysis of it
 - Get approval by Research Ethics Board
 - Go through "spiral" of statistical analysis
 - Write it up in an APA-style manuscript
- Groups of up to 3 people
 - Can also be done individually
 - Email me when you have your group

Project step 1: Finding data

- It must be existing data you are not allowed to collect data for this course! (no time!)
 - No simulated (made-up) data
- Minimum sample size: 50
- Minimum of 3 variables (2 IV, 1 DV)
- Analysis: multiple regression or ANOVA
 - Non-parametric only with permission
- Possible sources: your own data, faculty members, CPSY dept thesis data, publicly available / government data (WHO, NIH, etc.)

Dataset description: due 10ct

- Written description of the dataset you will be using and the particular variables you consider
- Preliminary explorations of the data
 - Descriptives, histograms, boxplots, etc.
 - Include as figures in your write-up
- APA manuscript style not needed, but please format it neatly in a document (Word, etc.)
- Upload your document to myCourses
 - One person can submit for whole group

Project step 2: Proposal/meeting

- Written proposal of the particular analysis you plan to do on the dataset
 - Old data, but new analysis
 - State specific research questions
 - Check sample size is sufficient (GPower3)
 - Anticipate possible problems, plan
- Book an appointment with me (Neu 5) by 8Oct
 - All team members there
 - Send me your proposal >24hrs before
 - Upload or bring your dataset on USB key

CPSY501: Intro 10 Sep 2010

29

Project step 3: REB (due 150ct)

- Approval by TWU Research Ethics Board is required before any new analysis may be done!
 - Cursory exploration as in dataset description and proposal is okay
- You are not allowed to start your new analysis until you get REB approval
- Use the "Analysis of Existing Data" form
- You need written permission from the original owner of the data
 - For CPSY theses, the faculty supervisor
 - None needed for publicly available data

Project step 4: Manuscript

- Focus is to demonstrate statistical analysis, not to deal with the subject area in question
 - It's okay if you don't find groundbreaking results for all of counselling psychology
 - Methodology and statistics will be more detailed than a "real" research paper
- Full APA manuscript format is required!
 - Include tables/figures
- Max length 15 pages + annotated SPSS output
- Due Sat 18 Dec at noon

TRINITY
WESTERN
LINIVERSITY

HW Assignment 1: Stats review

- Four homework assignments over the semester will give you practice on the concepts in lecture
- HW assignment 1 (due 24Sep, in two weeks):
 - Review of undergrad statistics
 - Practice with SPSS
- Download from our website: "Assignments"
 - Assignment: HW1-Review.html
 - SPSS Dataset: HW1-ADD.sav

Practice reading for next week

- For practice, try reading this journal article, focusing on their statistical methods
- Missirlian, et al., "Emotional Arousal, Client Perceptual Processing, and the Working Alliance in Experiential Psychotherapy for Depression", Journal of Consulting and Clinical Psychology, Vol. 73, No. 5, pp. 861-871, 2005.
- Download from website, under today's lecture
- Much of it you might not understand, but see how much you can get!

For discussion next time:

- What research questions do the authors state that they are addressing?
- What analytical strategy was used, and how appropriate is it for addressing their questions?
- What were their main conclusions, and are these conclusions warranted from the actual results /statistics /analyses that were reported?
- How might you adjust the methods for a more complete picture of the phenomenon of interest (e.g., sampling, description of analysis process, effect sizes, handling multiple comparisons)?

SPSS tutorials by Kafui

- Our TA, Kafui, has graciously agreed to do tutorials on getting started with SPSS
 - If there is interest, at 4pm Tues or next Fri in the Wong Centre (is there interest?)
- Kafui.Sawyer@mytwu.ca

