RDFS Entailment

G. Falquet

Semantic web technologies

• RDF is intended for use as a base notation for a variety of extended notations such as RDFS, OWL, RIF, ... whose expressions can be encoded as RDF graphs which use a particular vocabulary with a specially defined meaning. [1]

```
# OWL

:VegPizza rdf:type owl:Class;

owl:equivalentClass [ rdf:type

owl:Restriction;

:VegPizza rdfs:subClassOf :Pizza

owl:onProperty :hasTopping;

owl:allValuesFrom :VegTopping

]
```

1. https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative

Semantics

- For each notation there is a notion of interpretation
 - associates IRIs and blank nodes to domain objects
 - associates literals to values in a datatype domain
 - associates the interpretation of properties to binary relations over domain objects (extensions)
- An interpretation a graph is true if it satisfies
 - some semantic conditions
 - e.g. the extension of the interpretation of rdfs:subClassOf is a transitive relation
 - some axiomatic triples

RDF Interpretations

rdf:type

rdfs:subClassOf

A simple interpretation I is a structure consisting of:

an interpretation domain IR (set of resources)

a set of properties IP

an **extension mapping** IEXT associates a binary relation over IR to each p in IP

an IRI interpretation mapping IS from IRIs to IR union IP

a **litterals mapping** IL from typed literals to IR

RDF Interpretations

Interpretation (denotation) I of a ground graph (no blank nodes)

- if E is a typed literal then I(E) = IL(E)
 - non typed literals are interpreted as the string itself
- if E is an IRI then I(E) = IS(E)
- the interpretation of a **triple** s p o is a value in {true, false}

```
I(s p o) = true if
```

- I(p) is in IP
- (I(s), I(o)) is in IEXT(I(p)) otherwise I(s p o) =**false**.

• if E is a ground RDF graph then I(E) = false if I(E') = false for some triple E' in E, otherwise I(E) = true.

Graphs with blank nodes

Semantic condition for a graph E with blank nodes

- I(E) = true if
 - there is a mapping A from the blank nodes of E to IR
 - I augmented with A is a true interpretation of E
- otherwise I(E)= false.

A true interpretation

Another choice for A

A graph may have several true interpretation

General Notion of Entailment

A relation X between RDF graphs

Represents the notion of logical consequence

X-Entailment for a graph

A graph E **X-entails** a graph F iff

Each true X-interpretation of E is also a true X-interpretation of F.

 $(X \text{ is a notation such as RDF, RDFS, OWL, } \dots)$

= The usual notion of logical consequence

RDFS Interpretations

Additional semantic conditions for classes

Define IC as the set of class interpretation = $\{I(x) \mid \text{there is a triple } x \text{ rdf:type rdfs:Class}\}$

- If (x,y) is in the interpretation of rdfs:subClassOf (in IEXT(I(rdfs:subClassOf))) then x and y are in IC and ICEXT(x) is a subset of ICEXT(y)
 - ICEXT(y) is defined to be $\{x : \langle x,y \rangle \text{ is in IEXT}(I(rdf:type))\}$
- IEXT(I(rdfs:subClassOf)) is transitive and reflexive on IC
- etc.

RDFS-Entailments

Université de Genève - G. Falquet

Computing RDFS-Entailment

RDFS entailment can be computed by

- 1. adding the axiomatic triples to the graph
- 2. applying inference patterns

Some axiomatic triples

```
rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .
rdf:first rdfs:domain rdf:List .
rdf:rest rdfs:domain rdf:List .
rdfs:seeAlso rdfs:domain rdfs:Resource .
rdfs:isDefinedBy rdfs:domain rdfs:Resource .
rdfs:comment rdfs:domain rdfs:Resource .
rdfs:label rdfs:domain rdfs:Resource .
rdf:value rdfs:domain rdfs:Resource .
rdf:type rdfs:range rdfs:Class .
```

Inference patterns (rules)

	If S contains:	then S RDFS entails recognizing D:
rdfs1	any IRI t in D	t rdf:type rdfs:Datatype .
rdfs2	p rdfs:domain x . y p z .	y rdf:type x .
rdfs3	p rdfs:range x . y p z .	z rdf:type x .
rdfs4a	хру.	x rdf:type rdfs:Resource .
rdfs4b	хру.	y rdf:type rdfs:Resource .
rdfs5	x rdfs:subPropertyOf y . y rdfs:subPropertyOf z .	x rdfs:subPropertyOf z . (transitivity)
rdfs6	x rdf:type rdf:Property .	x rdfs:subPropertyOf x . (reflexivity)

(cont)

	If S contains:	then S RDFS entails recognizing D:
rdfs6	x rdf:type rdf:Property .	x rdfs:subPropertyOf x . (reflexivity)
rdfs7	p rdfs:subPropertyOf q . x p y .	xqy.
rdfs8	x rdf:type rdfs:Class .	x rdfs:subClassOf rdfs:Resource .
rdfs9	x rdfs:subClassOf y . z rdf:type x .	z rdf:type y .
rdfs10	x rdf:type rdfs:Class .	x rdfs:subClassOf x . (reflexivity)
rdfs11	x rdfs:subClassOf y . y rdfs:subClassOf z .	x rdfs:subClassOf z . (transitivity)
rdfs12	x rdf:type rdfs:ContainerMembershipProperty .	x rdfs:subPropertyOf rdfs:member .
rdfs13	x rdf:type rdfs:Datatype .	x rdfs:subClassOf rdfs:Literal .

Example

- 1. :q rdfs:range :d .
- 2. :p rdfs:subPropertyOf :q .
- 3. :d rdfs:subClassOf e .
- 4. :a :p :b

RDFS Entails

- 5. :a :q :b by 4. and 2. and rdfs7
- 6. :b rdf:type :d by 5. and 1. and rdfs3
- 7. :b rdf:type :e by 6. and 3. and rdfs9

The rules are not complete

```
:p rdfs:subPropertyOf _:b .
  _:b rdfs:domain :c .
:d :p :e .
entails
:d rdf:type :c .
```

But cannot be obtained by applying the rules

rdfs7 would produces

:d _:b :e

which is not legal in RDF (blanks not allowed as predicates)

The rules become complete on generalized RDF graphs with

- blanks allowed as predicates
- literals allowed as subjects

Entailment and tools

Triple stores

- may automatically generate the entailed triples when new triples are added
- and retract them when triples are removed
- the entailment regime is usually selected at repository creation

Reasoners

- tools that perform entailment (or other reasoning tasks) on existing graphs
- SPARQL engines
 - either make use of the entailed triples during the querying process
 - or call a reasoner before (or while) executing queries

Entailment and Other Vocabularies

- The shared vocabularies may contain rdf triples that can be used in entailments
- A vocabulary must be physically imported into the working graph (there is no "import" statement in RDF)

```
My Graph

©prefix time: ...
...
:worldCup19 time:hasBeginning :t1
...
...
```