Word2VisualVec++ for Ad-hoc Video Search

Xirong Li¹, Chaoxi Xu¹, Jianfeng Dong², Jing Cao¹, Xun Wang², Yang Gang¹

¹Renmin University of China

²Zhejiang Gongshang University

TRECVID 2018 Workshop 2018-11-13

Task: Ad-hoc Video Search

A natural-language query, no visual example provided

This is zero-shot video retrieval

Find shots of one or more people on a moving boat in the water

Challenge: Cross-modal video-text similarity measure

Our Idea

Compute video-text similarity in a video feature space

As we did in TV16 / TV17 for the VTT task

Build on the top of the Word2VisualVec (W2VV) model

- End-to-end learning
- Concept-free

W2VV **→ W2VV++**

Replace MSE by an improved marginal ranking loss

 v^- denotes the hardest negative video sample of the sentence s

Dataset	Usage	No. videos	No. frames
msrvtt10k	training	10,000	305,462
tgif	training	100,855	1,045,268
TV16 VTT training set	validation	200	5,941

Frame-level features	Dim.
ResNext-101	2,048
ResNet-152	2,048

https://github.com/li-xirong/avs

Three variants of W2VV++

(1) Model for Run 4

Feature concatenation

Sentence s

Two young men with dark glasses are walking around an airport. $max(0, \alpha + S_{\theta}(v^{-}, s) - S_{\theta}(v, s))$

(2) Model for *Run 3*Feature re-learning

Two young men with dark glasses are walking around an airport. $max(0, \alpha + S_{\theta}(v^{-}, s) - S_{\theta}(v, s))$

(3) Model for Run 2

Feature concatenation Feature re-learning

Video v

Overall Evaluation Results

Our submissions top the performance.

- Run 1 equally combines multiple W2VV++ trained with different setups.
- Run 1 > Run 2 > Run 4 > Run 3

Results of individual topics

	Topic	Run4	Run3	Run2	Run1		Topic	Run4	Run3	Run2	Run1
	561	0.049	0.039	0.114	0.080	ſ	575	0.032	0.059	0.060	0.156
	562	0.066	0.076	0.06	0.087		576	0.004	0.005	0.027	0.008
	563	0.456	0.422	0.511	0.492		577	0.343	0.325	0.056	0.381
	564	0.158	0.178	0.224	0.205	E	578	0.323	0.033	0.127	0.011
	565	0.247	0.389	0.319	0.319		579	0.063	0.030	0.026	0.020
	566	0.046	0.036	0.041	0.067	[580	0.011	0.004	0.027	0.005
	567	0.011	0.005	0.012	0.009],	581	0.226	0.229	0.213	0.249
	568	0.068	0.087	0.069	0.075		582	0.007	0.016	0.008	0.020
	569	0.017	0.01	0.018	0.022		583	0.152	0.069	0.192	0.177
	570	0.000	0.011	0.002	0.010		584	0.292	0.296	0.315	0.301
	571	0.090	0.103	0.118	0.096	•	585	0.177	0.240	0.271	0.275
	572	0.046	0.078	0.085	0.137		586	0.043	0.054	0.037	0.057
	573	0.089	0.179	0.172	0.235		587	0.006	0.010	0.014	0.018
	574	0.057	0.02	0.007	0.051	_	588	0.031	0.026	0.037	0.044
						_	589	0.015	0.052	0.027	0.023
	Seven	topics with infAP < 0.02				ן י	590	0.005	0.002	0 003	0 002

590

0.005

0.002

0.003

Case study

567 Find shots of people performing or dancing outdoors at nighttime (infAP: 0.009) Top-10 results

Case study

570 Find shots of a projection screen (infAP: 0.010)

Top-5 results

Case study

576 Find shots of a person holding his hand to his face (infAP: 0.008) Top-10 results

Retrospective experiments

We used our TV18 system, as is, to answer TV16 / TV17 AVS topics.

Run	TV16	TV17	TV18
Previous best run	0.054 [A]	0.206 [B]	-
Our TV18 Runs:			
Run 4	0.149	0.176	0.104
Run 3	0.140	0.171	0.103
Run 2	0.151	0.213	0.106
Run 1	0.149	0.220	0.121

Topic difficulty: TV18 > TV16 > TV17

Conclusions

Word2VisualVec++ is quite effective for the AVS task

Top performer for TV16 / 17 / 18

Model ensemble is a good trick

Improve infAP from 0.106 (single model) to 0.121

Concept-free can be a double-edged sword

- Results might be less interpretable than concept-based methods
- An interesting direction to pursue.