자연어 처리 딥러닝

다음 중 ____ 안에 들어갈 단어는 무엇일까요?

I'm becoming an AI _____.

- 1. were 2. expert
- 3. special 4. going

다음 중 ____ 안에 들어갈 단어는 무엇일까요?

I'm becoming an AI _____.

1. were 2. expert

3. special 4. going

다음 중 ____ 안에 들어갈 단어는 무엇일까요?

I'm becoming an Al _____.

1. were 2. expert

3. special 4. going

영어문장1 --- 빈칸에 들어갈 단어1

영어문장2 ── 빈칸에 들어갈 단어2

영어문장3 ── 빈칸에 들어갈 단어3

•••

I'm becoming an AI _____.

I'm becoming an AI _____.

I'm becoming an Al _____.

I'm 0000 becoming 0000 an 0000 Al 0000

I'm becoming an Al _____.

I'm 1000 becoming 0000 an 0000 Al 0000

I'm becoming an Al _____.

원 핫 인코딩

I'm 1000 becoming 0100 an 0000 Al 0000

I'm becoming an Al _____.

원 핫 인코딩

I'm 1000 becoming 0100 an 0010 Al 0000

I'm becoming an Al _____.

원 핫 인코딩

I'm 1000 becoming 0100 an 0010 Al 0001

I'm becoming an Al _____.

I'm 1000 becoming 0100 an 0010 Al 0001

I'm becoming an Al _____.

원 핫 인코딩

I'm 1000 becoming 0100 an 0010 Al 0001

were 1.5%

expert 55%

special 42%

going 1.5%

I'm becoming an Al _____.

자연어는 순서가 중요함

순서를 기억하는 것에 중점을 둔 모델들

RNN

(Recurrent Neural Network)

기존 모델

RNN

RNN 구조는 순서가 있는 데이터에 많이 사용됩니다

자연어, 시계열 데이터

RNN 구조는 순<mark>서가 있는 데이터에 많</mark>이 사용됩니다

순서, 시간 등의 순차적인 정보가 들어가 있는 데이터

다음 중 ____ 안에 들어갈 단어는 무엇일까요?

탄수화물을 많이 먹으면

1. 근육 2. 스트레스

3. 지방

다음 중 ____ 안에 들어갈 단어는 무엇일까요?

탄수화물을 많이 먹으면 ____이 늘어난다.

- 1. 근육 2. 스트레스
- 3. 지방

다음 중 ____ 안에 들어갈 단어는 무엇일까요?

탄수화물을 많이 먹으면 ____이 늘어난다.

- 1. 근육 2. 스트레스
- 3. 지방

BRNN

(Bidirectional Recurrent Neural Network)

과거 시점과 미래 시점을 모두 고려

현재 시점의 예측을 더욱 정확하게 만듦

RNN 구조의 문제점

RNN구조의 문제점

내가 이번에 일본 교토 여행을 다녀왔는데 건물도 너무 예쁘고 먹을 것도 맛있게 잘 먹었어. 그런데 갑자기 부모님한테 전화가 온거야. 지금 어디냐고 묻더라구 그래서 나는 말했지. 저 여행왔는데요. 여기 ___ 에요.

내가 이번에 일본 교토 여행을 다녀왔는데 건물도 너무 예쁘고 먹을 것도 맛있게 잘 먹었어. 그런데 갑자기 부모님한테 전화가 온거야. 지금 어디냐고 묻더라구 그래서 나는 말했지. 저 여행왔는데요. 여기 일본 교토 에요.

내가 이번에 일본 교토 여행을 다녀왔는데 건물도 너무 예쁘고 먹을 것도 맛있게 잘 먹었어. 그런데 갑자기 부모님한테 전화가 온거야. 지금 어디냐고 묻더라구 그래서 나는 말했지. 저 여행왔는데요. 여기 ????? 에요.

RNN이 충분한 기억력을 가지고 있지 않다면, 예측이 어려움

Long Term dependency Problem (장기 의존성 문제)

LSTM(Long Short Term Memory) 모델

이전에서 연산한

GRU(Gated Recurrent Unit) 모델

LSTM을 단순화한 GRU(Gated recurrent unit)

LSTM을 단순화한 GRU(Gated recurrent unit)

과거 정보와 현재 정보를 얼마나 반영할지 결정

GRU의 구조

GRU 특징

- 일반적으로 LSTM보다 학습 속도가 더 빠름
- 많은 평가 지표에서 LSTM과 비슷한 성능을 보임
- 그러나, LSTM에서 최적의 하이퍼파라미터를 찾았다면, 굳이 모델을 변경할 필 요는 없음

텍스트를 모델이 이해할 수 있도록 숫자로 바꿔주는 작업

Sentence: Word embedding represents a word as numerical data.

벡터형태이므로 좌표공간에 나타낼 수 있음

Sparse embedding vs Dense embedding

Sparse Embedding

- •대부분의 값이 0, 몇몇 위치만 1인 벡터로 표현
- •문장에 나오는 단어의 빈도를 기준으로 벡터를 만든다.
- •tf-idf, BM25 등
- 겹치는 단어가 있다면 유사도가 높게 나오겠지만 단어간 의미적인 관계를 포착하지 못한다.

Dense Embedding

- •의미를 나타내는 실수 값들로 이루어진 벡터로 표현
- BERT와 같은 Pretrained Language Model이 주로 사용

Sparse embedding vs Dense embedding

"아이들이 공원에서 놀고 있다."

"어린이들이 파크에서 뛰어놀고 있어."

- •Sparse Embedding을 하면
 - •위 2개 문장을 전혀 다르게 봄
- Dense Embedding을 하면
 - •위 2개 문장의 유사도가 매우 높게 나옴

따라서 요즘에는 Dense Embedding을 사용하는 추세

Q&A