Generated on 2024-10-28 10:24:18 by gEcon version 1.2.1 (2023-01-18) Model name: RSW_RP

1 HIGHREGIME

1.1 Optimisation problem

$$\begin{split} &\max_{p:H_t, y:H_t, i:H_t} \mathit{UH}_t = -0.5 \left(\mathit{pitH} - \mathit{pitCB} + \mathit{piH}_t \right)^2 + \beta \mathbf{E}_t \left[\mathit{UH}_{t+1} \right] + \beta \left(-\mathbf{E}_t \left[\mathit{UH}_{t+1} \right] + \mathbf{E}_t \left[\mathit{UL}_{t+1} \right] \right) \left(1 - \mathit{pHss} - \tau \left(- \mathit{pitCB} + \mathit{piH}_t \right)^2 \right) - 0.5 \kappa \theta^{-1} \mathit{yH}_t^2 \\ &\text{s.t.}: \\ &\mathit{piH}_{t-1} = \log \mathit{etapi}_{t-1} + \kappa \mathit{yH}_{t-1} + \beta \mathit{piH}_t \left(\mathit{pHss} + \tau \left(- \mathit{pitCB} + \mathit{piH}_t \right)^2 \right) + \beta \left(- \mathit{piH}_t + \mathit{piL}_t \right) \left(1 - \mathit{pHss} - \tau \left(- \mathit{pitCB} + \mathit{piH}_t \right)^2 \right) \left(\lambda_t^{\mathrm{HIGHREGIME}^1} \right) \\ &\mathit{yH}_{t-1} = \mathit{yH}_t - \sigma \left(\mathit{iH}_{t-1} - \mathit{piH}_t \right) + \left(- \mathit{yH}_t + \mathit{yL}_t \right) \left(1 - \mathit{pHss} - \tau \left(- \mathit{pitCB} + \mathit{piH}_t \right)^2 \right) + \beta \left(- \mathit{piH}_t + \mathit{piL}_t \right) \left(1 - \mathit{pHss} - \tau \left(- \mathit{pitCB} + \mathit{piH}_t \right)^2 \right) \left(\lambda_t^{\mathrm{HIGHREGIME}^2} \right) \end{aligned} \tag{1.3}$$

1.2 First order conditions

$$\beta - \lambda_t^{\mathrm{HIGHREGIME^{UH}}} - \beta \left(1 - p\!H\!s\!s - \tau \left(- p\!i\!l\!C\!B + p\!i\!H_{t-1} \right)^2 \right) = 0 \quad (U\!H_t)$$

$$- p\!i\!t\!H + p\!i\!t\!C\!B - p\!i\!H_t + \lambda_t^{\mathrm{HIGHREGIME^{I}}} \left(\beta \left(p\!H\!s\!s + \tau \left(- p\!i\!t\!C\!B + p\!i\!H_t \right)^2 \right) - \beta \left(1 - p\!H\!s\!s - \tau \left(- p\!i\!t\!C\!B + p\!i\!H_t \right)^2 \right) + 2\beta\tau p\!i\!H_t \left(- p\!i\!t\!C\!B + p\!i\!H_t \right) - 2\beta\tau \left(- p\!i\!t\!C\!B + p\!i\!H_t \right) \left(- p\!i\!H_t + p\!i\!L_t \right) \right) + \lambda_t^{\mathrm{HIGHREGIME^{II}}} \right)$$

$$(1.5)$$

$$\lambda_{t}^{\mathrm{HIGHREGIME^{2}}}\left(p\!H\!s\!s+\tau\left(-p\!i\!t\!C\!B+p\!i\!H_{t}\right)^{2}\right)-\kappa\theta^{-1}y\!H_{t}+\mathrm{E}_{t}\left[\lambda_{t+1}^{\mathrm{HIGHREGIME^{UH}}}\left(-\lambda_{t+1}^{\mathrm{HIGHREGIME^{2}}}+\kappa\lambda_{t+1}^{\mathrm{HIGHREGIME^{1}}}\right)\right]=0 \quad (y\!H_{t}) \tag{1.6}$$

$$-\sigma \mathbf{E}_{t} \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^{\mathrm{UH}}} \lambda_{t+1}^{\mathrm{HIGHREGIME}^{2}} \right] = 0 \quad (iH_{t})$$

$$(1.7)$$

2 LOWREGIME

2.1 Optimisation problem

$$\max_{pL_{t}, yL_{t}, iL_{t}} UL_{t} = -0.5 \left(-pitCB + pitL + piL_{t} \right)^{2} + \beta E_{t} \left[UL_{t+1} \right] + \beta \left(E_{t} \left[UH_{t+1} \right] - E_{t} \left[UL_{t+1} \right] \right) \left(1 - pLs + \tau \left(-pitCB + piL_{t} \right)^{2} \right) - 0.5\kappa \theta^{-1} yL_{t}^{2}$$

$$(2.1)$$

s.t.:

$$p\!i\!L_{t-1} = \log \textit{etapi}_{t-1} + \kappa \textit{y}L_{t-1} + \beta \textit{pi}L_t \left(\textit{pLss} - \tau \left(- \textit{pitCB} + \textit{pi}L_t \right)^2 \right) + \beta \left(\textit{piH}_t - \textit{pi}L_t \right) \left(1 - \textit{pLss} + \tau \left(- \textit{pitCB} + \textit{pi}L_t \right)^2 \right) \quad \left(\lambda_t^{\text{LOWREGIME}^1} \right) \tag{2.2}$$

$$yL_{t-1} = yL_t - \sigma\left(iL_{t-1} - piL_t\right) + \left(yH_t - yL_t\right)\left(1 - pLss + \tau\left(-pitCB + piL_t\right)^2\right) + \sigma\left(piH_t - piL_t\right)\left(1 - pLss + \tau\left(-pitCB + piL_t\right)^2\right) \quad \left(\lambda_t^{\text{LOWREGIME}^2}\right) \tag{2.3}$$

2.2 First order conditions

$$\beta - \lambda_{t}^{\text{LOWREGIME}^{\text{UL}}} - \beta \left(1 - pLss + \tau \left(- pitCB + piL_{t-1} \right)^{2} \right) = 0 \quad (UL_{t})$$

$$pitCB - pitL - piL_{t} + \lambda_{t}^{\text{LOWREGIME}^{1}} \left(\beta \left(pLss - \tau \left(- pitCB + piL_{t} \right)^{2} \right) - \beta \left(1 - pLss + \tau \left(- pitCB + piL_{t} \right)^{2} \right) - 2\beta\tau piL_{t} \left(- pitCB + piL_{t} \right) + 2\beta\tau \left(- pitCB + piL_{t} \right) \left(piH_{t} - piL_{t} \right) \right) + \lambda_{t}^{\text{LOWREGIME}^{2}} \left(\sigma \right)$$

$$\lambda_{t}^{\text{LOWREGIME}^{2}} \left(pLss - \tau \left(- pitCB + piL_{t} \right)^{2} \right) - \kappa\theta^{-1}yL_{t} + \text{E}_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{\text{UL}}} \left(- \lambda_{t+1}^{\text{LOWREGIME}^{2}} + \kappa\lambda_{t+1}^{\text{LOWREGIME}^{2}} \right) \right] = 0 \quad (yL_{t})$$

$$-\sigma \text{E}_{t} \left[\lambda_{t+1}^{\text{LOWREGIME}^{\text{UL}}} \lambda_{t+1}^{\text{LOWREGIME}^{2}} \right] = 0 \quad (iL_{t})$$

$$(2.4)$$

3 EXOG

3.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{3.1}$$

(4.10)

4 Equilibrium relationships (after reduction)

$$-\operatorname{dipt}_{t} + \operatorname{e^{e_{t}^{T} + \phi \log \operatorname{dipt}_{t-1}}} = 0 \tag{4.1}$$

$$\lambda_{t}^{\mathrm{HIGHREGIME^{2}}} \left(pHss + \tau \left(-pitCB + piH_{t} \right)^{2} \right) + \left(\beta - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) \right) \operatorname{E}_{t} \left[-\lambda_{t+1}^{\mathrm{HIGHREGIME^{2}}} + \kappa \lambda_{t+1}^{\mathrm{HIGHREGIME^{1}}} \right] - \kappa \theta^{-1}yH_{t} = 0 \tag{4.2}$$

$$\lambda_{t}^{\mathrm{LOWREGIME^{2}}} \left(pHss + \tau \left(-pitCB + piL_{t} \right)^{2} \right) + \left(\beta - \beta \left(1 - pHss + \tau \left(-pitCB + piL_{t} \right)^{2} \right) \right) \operatorname{E}_{t} \left[-\lambda_{t+1}^{\mathrm{HIGHREGIME^{2}}} + \kappa \lambda_{t+1}^{\mathrm{HIGHREGIME^{1}}} \right] - \kappa \theta^{-1}yH_{t} = 0 \tag{4.3}$$

$$-piH_{t-1} + \log \operatorname{dipt}_{t-1} + \kappa yH_{t-1} + \beta piH_{t} \left(pHss + \tau \left(-pitCB + piH_{t} \right)^{2} \right) + \beta \left(-piH_{t} + piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) = 0 \tag{4.4}$$

$$-piL_{t-1} + \log \operatorname{dipt}_{t-1} + \kappa yH_{t-1} + \beta piH_{t} \left(pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) + \beta \left(piH_{t} - piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piL_{t} \right)^{2} \right) = 0 \tag{4.5}$$

$$-yH_{t-1} + yH_{t} - \sigma \left(iH_{t-1} - piH_{t} \right) + \left(-yH_{t} + yL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) + \sigma \left(piH_{t} + piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) = 0 \tag{4.6}$$

$$-yL_{t-1} + yL_{t} - \sigma \left(iL_{t-1} - piL_{t} \right) + \left(yH_{t} - yL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piL_{t} \right)^{2} \right) + \sigma \left(piH_{t} - piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piL_{t} \right)^{2} \right) = 0 \tag{4.7}$$

$$-yL_{t-1} + yL_{t} - \sigma \left(iL_{t-1} - piL_{t} \right) + \left(yH_{t} - yL_{t} \right) \left(1 - pLss + \tau \left(-pitCB + piL_{t} \right)^{2} \right) + \sigma \left(piH_{t} - piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piL_{t} \right)^{2} \right) = 0 \tag{4.8}$$

$$-yL_{t-1} + yL_{t} - \sigma \left(iL_{t-1} - piL_{t} \right) + \left(yH_{t} - yL_{t} \right) \left(1 - pLss + \tau \left(-pitCB + piH_{t} \right)^{2} \right) + \sigma \left(piH_{t} - piL_{t} \right) \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) + 0.5\kappa\theta^{-1}yH_{t}^{2} = 0 \tag{4.8}$$

$$-yL_{t-1} + yL_{t} - \sigma \left(iL_{t-1} - piL_{t} \right) - \beta E_{t} \left[UL_{t+1} \right] - \beta \left(E_{t} \left[UL_{t+1} \right] \right) \left(1 - pHss - \tau \left(-pitCB + piH_{t} \right)^{2} \right) + 0.5\kappa\theta^{-1}yH_{t}^{2} = 0 \tag{4.8}$$

$$-piH_{t} + piCB - piH_{t} + \lambda_{t}^{HiGHREGIME^{1}} \left(\beta \left(pHss + \tau \left(-piCB + piH_{t} \right)^{2} \right) - \beta \left(1 - pHss -$$

5 Steady state relationships (after reduction)

Steady state relationships (after reduction)
$$-dq\dot{p}_{ss} + e^{\phi \log cdq\dot{p}_{ss}} = 0 \tag{5.1}$$

$$\lambda_{ss}^{\text{HIGHREGIME}^2} \left(pHss + \tau \left(-piCB + pH_{ss} \right)^2 \right) + \left(\beta - \beta \left(1 - pHss - \tau \left(-piCB + pH_{ss} \right)^2 \right) \right) \left(-\lambda_{ss}^{\text{HIGHREGIME}^2} + \kappa \lambda_{ss}^{\text{HIGHREGIME}^1} \right) - \kappa \theta^{-1}yH_{ss} = 0 \tag{5.2}$$

$$\lambda_{ss}^{\text{LOWREGIME}^2} \left(pLss - \tau \left(-piCB + pL_{ss} \right)^2 \right) + \left(\beta - \beta \left(1 - pLss + \tau \left(-piCB + pL_{ss} \right)^2 \right) \right) \left(-\lambda_{ss}^{\text{LOWREGIME}^2} + \kappa \lambda_{ss}^{\text{LOWREGIME}^1} \right) - \kappa \theta^{-1}yL_{ss} = 0 \tag{5.3}$$

$$-piH_{ss} + \log dq\dot{p}_{ss} + \kappa yH_{ss} + \beta pH_{ss} \left(pHss + \tau \left(-piCB + pH_{ss} \right)^2 \right) + \beta \left(-pH_{ss} + pL_{ss} \right) \left(1 - pHss - \tau \left(-piCB + pH_{ss} \right)^2 \right) = 0 \tag{5.4}$$

$$-pL_{ss} + \log dq\dot{p}_{ss} + \kappa yL_{ss} + \beta pL_{ss} \left(pLss - \tau \left(-piCB + pL_{ss} \right)^2 \right) + \beta \left(piH_{ss} - pL_{ss} \right) \left(1 - pLss + \tau \left(-piCB + pL_{ss} \right)^2 \right) = 0 \tag{5.5}$$

$$\left(-yH_{ss} + yL_{ss} \right) \left(1 - pHss - \tau \left(-piCB + pH_{ss} \right)^2 \right) - \sigma \left(iH_{ss} - piH_{ss} \right) + \sigma \left(-piH_{ss} + pL_{ss} \right) \left(1 - pLss + \tau \left(-piCB + piH_{ss} \right)^2 \right) = 0 \tag{5.6}$$

$$\left(yH_{ss} - yL_{ss} \right) \left(1 - pLss + \tau \left(-piCB + pL_{ss} \right)^2 \right) - \sigma \left(iL_{ss} - pL_{ss} \right) + \sigma \left(pH_{ss} - pL_{ss} \right) \left(1 - pLss + \tau \left(-piCB + pL_{ss} \right)^2 \right) = 0 \tag{5.7}$$

$$UH_{ss} + 0.5 \left(piH - piCB + pH_{ss} \right)^2 - \beta UH_{ss} - \beta \left(-UH_{ss} + UL_{ss} \right) \left(1 - pHss - \tau \left(-piCB + pH_{ss} \right)^2 \right) + 0.5\kappa\theta^{-1}yH_{ss}^2 = 0 \tag{5.8}$$

$$UL_{ss} + 0.5 \left(-piCB + piL + pL_{ss} \right)^2 - \beta UL_{ss} - \beta \left(UH_{ss} - UL_{ss} \right) \left(1 - pLss + \tau \left(-piCB + piL_{ss} \right)^2 \right) + 0.5\kappa\theta^{-1}yL_{ss}^2 = 0 \tag{5.8}$$

 $\textit{pitCB} - \textit{pitL} - \textit{pitL} + \lambda_t^{\text{LOWREGIME}^1} \left(\beta \left(\textit{pLss} - \tau \left(-\textit{pitCB} + \textit{piL}_t\right)^2\right) - \beta \left(1 - \textit{pLss} + \tau \left(-\textit{pitCB} + \textit{piL}_t\right)^2\right) - 2\beta \tau \textit{piL}_t \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right) \left(\textit{piH}_t - \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right) + 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{\text{LOWREGIME}^2} \left(\sigma \left(-\textit{pitCB} + \textit{piL}_t\right)\right) + \lambda_t^{$

$$-\textit{pitH} + \textit{pitCB} - \textit{pitH}_{\text{ss}} - \lambda_{\text{ss}}^{\text{HIGHREGIME}^1} \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right)\right) + \lambda_{\text{ss}}^{\text{HIGHREGIME}^1} \left(\beta \left(\textit{pHss} + \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) - \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + 2\beta\tau \textit{piH}_{\text{ss}} \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) + \beta \left(1 - \textit{p$$

$$-\sigma \lambda_{\rm ss}^{\rm HIGHREGIME^2} \left(\beta - \beta \left(1 - pHss - \tau \left(-pitCB + piH_{\rm ss} \right)^2 \right) \right) = 0 \tag{5.12}$$

(4.11)

(4.12)

(4.13)

(5.11)

$$-\sigma \lambda_{\rm ss}^{\rm LOWREGIME^2} \left(\beta - \beta \left(1 - pLss + \tau \left(-pitCB + piL_{\rm ss} \right)^2 \right) \right) = 0 \tag{5.13}$$

6 Parameter settings

$\beta = 0.99$	(6.1)
$\kappa = 0.2465$	(6.2)
$\phi = 0.95$	(6.3)
pitH = 0	(6.4)
pitCB = 0	(6.5)
pitL=2	(6.6)
pHss = 0.99	(6.7)
pLss = 0.99	(6.8)
$\sigma = 1$	(6.9)
$\tau = 0.001$	(6.10)
$\theta = 6$	(6.11)

4

7 Steady-state values

	Steady-state value
etapi	1
$i\!H$	-0.024
iL	-1.9653
$\lambda^{ m HIGHREGIME^1}$	0.0136
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{ ext{LOWREGIME}^1}$	-0.0522
$\lambda^{ ext{LOWREGIME}^2}$	0
piH	-0.0001
piL	-1.9987
$y\!H$	0.0803
yL	-0.3057
UH	-0.0657
UL	-0.1187

8 The solution of the 1st order perturbation

Matrix P

	$etapi_{t-1}$	iH_{t-1}	iL_{t-1}	piH_{t-1}	$p\!i\!L_{t-1}$	yH_{t-1}	yL_{t-1}
$etapi_t$	(0.95)	0	0	0	0	0	0 \
$i\!H_t$	-552.0559	-1.9792	1.8507	0.034	-6.3402	-11.5989	0.527
$i\!L_t$	-6.9292	0.0004	-2.0164	0	6.4225	0.0025	-0.5559
piH_t	-7548.9355	0	0	1.0309	-159.4846	-150.917	6.0139
piL_t	-0.5212	0	0	0	1.0567	0.0001	-0.0398
yH_t	12.7119	0.3019	-0.2509	-0.0017	0.266	1.2644	-0.0491
yL_t	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	-0.0011	6.52	0	-6.8409	-0.0047	1.2723

Matrix Q

$$\begin{array}{c} \epsilon^{\pi} \\ \text{etapi} \\ iH \\ iL \\ piH \\ piL \\ yL \\ 0 \\ 0 \\ \end{array} \begin{pmatrix} 1 \\ -319.7266 \\ -3.971 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

Matrix R

Matrix S

$$\begin{array}{c} & \epsilon^{\pi} \\ \lambda^{\rm HIGHREGIME^{1}} \\ \lambda^{\rm HIGHREGIME^{2}} \\ \lambda^{\rm LOWREGIME^{1}} \\ \lambda^{\rm LOWREGIME^{2}} \\ UH \\ UL \\ \end{array} \begin{array}{c} -202.3331 \\ 0.5351 \\ -56.2586 \\ 0.5592 \\ 1.5203 \\ -5.7413 \\ \end{array}$$

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$i\!H$	-0.024	32.5638	1060.4038	Y
iL	-1.9653	0.4057	0.1646	Y
$\lambda^{ ext{HIGHREGIME}^1}$	0.0136	22.2918	496.9225	Y
$\lambda^{ m HIGHREGIME^2}$	0	0.0516	0.0027	N
$\lambda^{ ext{LOWREGIME}^1}$	-0.0522	6.1676	38.0394	Y
$\lambda^{ m LOWREGIME^2}$	0	0.0539	0.0029	N
$pi\!H$	-0.0001	736.7328	542775.1587	Y
piL	-1.9987	0.0509	0.0026	Y
$y\!H$	0.0803	8.6925	75.5595	Y
yL	-0.3057	2.3131	5.3505	Y
UH	-0.0657	0.2097	0.044	Y
UL	-0.1187	0.7703	0.5934	Y

9.2 Correlation matrix

	etapi	$i\!H$	iL	$\lambda^{\mathrm{HIGHREGIME^1}}$	$\lambda^{ m HIGHREGIME^2}$	$\lambda^{\mathrm{LOWREGIME^1}}$	$\lambda^{ m LOWREGIME^2}$	piH	piI
etapi	1	-0.298	-0.293	-0.821	0.436	-0.812	0.436	-0.486	-0.4
iН		1	1	0.57	-0.977	0.581	-0.977	-0.324	-0.3
iL			1	0.563	-0.975	0.574	-0.975	-0.332	-0.3
$\lambda^{ m HIGHREGIME^1}$				1	-0.73	1	-0.73	0.563	0.56
$\lambda^{ m HIGHREGIME^2}$					1	-0.739	1	0.113	0.10
$\lambda^{ ext{LOWREGIME}^1}$						1	-0.739	0.556	0.55
$\lambda^{ m LOWREGIME^2}$							1	0.113	0.10
рiН								1	1
piL									1
yН									
yL									
UH									
UL									

9.3 Cross correlations with the reference variable (*iH*)

or cross correlations with the reference variable (#1)											
	$\sigma[\cdot]$ rel. to $\sigma[iH]$	iH_{t-5}	iH_{t-4}	iH_{t-3}	iH_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH_{t+4}
$etapi_t$	0.004	0.097	0.13	0.176	0.258	0.446	-0.298	-0.252	-0.208	-0.168	-0.131
$i\!H_t$	1	-0.027	-0.035	-0.05	-0.093	-0.221	1	-0.221	-0.093	-0.05	-0.035
$i\!L_t$	0.012	-0.027	-0.034	-0.05	-0.092	-0.219	1	-0.228	-0.094	-0.05	-0.034
$\lambda_t^{ ext{HIGHREGIME}^1}$	0.685	-0.077	-0.099	-0.133	-0.203	-0.387	0.57	0.468	0.149	0.041	0.002
$\lambda_t^{ m HIGHREGIME^2}$	0.002	0.04	0.051	0.071	0.122	0.273	-0.977	0.043	0.042	0.041	0.038
$\lambda_t^{ ext{LOWREGIME}^1}$	0.189	-0.076	-0.097	-0.131	-0.201	-0.384	0.581	0.466	0.144	0.037	-0.001
$\lambda_t^{ ext{LOWREGIME}^2}$	0.002	0.04	0.051	0.071	0.122	0.273	-0.977	0.043	0.042	0.041	0.038
$pi\!H_t$	22.624	-0.045	-0.055	-0.07	-0.095	-0.155	-0.324	0.853	0.233	0.037	-0.024
$p\!i\!L_t$	0.002	-0.044	-0.054	-0.068	-0.093	-0.152	-0.32	0.858	0.229	0.033	-0.027
yH_t	0.267	-0.068	-0.091	-0.12	-0.162	-0.244	-0.445	0.552	0.271	0.162	0.109
yL_t	0.071	-0.068	-0.09	-0.119	-0.162	-0.243	-0.445	0.561	0.271	0.16	0.107
$U\!H_t$	0.006	0.097	0.129	0.174	0.254	0.438	-0.248	-0.32	-0.22	-0.164	-0.123
UL_t	0.024	-0.097	-0.129	-0.175	-0.256	-0.442	0.272	0.292	0.215	0.165	0.126

9.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
$i\!H$	-0.221	-0.093	-0.05	-0.035	-0.027
iL	-0.226	-0.093	-0.05	-0.034	-0.026
$\lambda^{ ext{HIGHREGIME}^1}$	0.506	0.077	-0.068	-0.118	-0.134
$\lambda^{ m HIGHREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ ext{LOWREGIME}^1}$	0.498	0.069	-0.073	-0.12	-0.134
$\lambda^{ ext{LOWREGIME}^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
piH	0.217	-0.025	-0.096	-0.11	-0.107
piL	0.212	-0.029	-0.097	-0.111	-0.106
$y\!H$	0.5	0.257	0.113	0.015	-0.055
yL	0.491	0.25	0.108	0.012	-0.056
UH	0.738	0.445	0.239	0.084	-0.034
UL	0.728	0.455	0.252	0.094	-0.027

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to ϵ^π shock

Figure 2: Impulse response $(y\!L)$ to ϵ^π shock