De la combinatoire aux graphes (HLIN201) – L1 Graphes II : cheminement non orienté

Sèverine Bérard

Université de Montpellier

2e semestre 2017-18

Graphes II: cheminement non orienté

- Marche et chemin
- Connexité
- 3 Cycles
- 4 Arbres
- Pour aller plus loin

Cheminement non orienté

FIGURE – Graphe du plan des pistes de Montpellier sans orientation

- cheminement pour aller de A à L?
- (A,B,C,D,E,G,F,D,E,K,J,L,M,J,I,H) va bien de A à H. Mais le trajet n'a pas l'air optimal. On peut faire mieux?
- Si on coupe la piste du Verdanson, on supprime l'arête {D, E}. Peut-on toujours aller de A à H?
- Un cycliste convaincu cherche un itinéraire uniquement cyclable, qui utiliserait toutes les jonctions. C'est possible?

- cheminement pour aller de A à L?
- (A,B,C,D,E,G,F,D,E,K,J,L,M,J,I,H) va bien de A à H. Mais le trajet n'a pas l'air optimal. On peut faire mieux?
- Si on coupe la piste du Verdanson, on supprime l'arête {D, E}. Peut-on toujours aller de A à H?
- Un cycliste convaincu cherche un itinéraire uniquement cyclable, qui utiliserait toutes les jonctions. C'est possible?

- cheminement pour aller de A à L?
- (A,B,C,D,E,G,F,D,E,K,J,L,M,J,I,H) va bien de A à H. Mais le trajet n'a pas l'air optimal. On peut faire mieux?
- Si on coupe la piste du Verdanson, on supprime l'arête {D, E}. Peut-on toujours aller de A à H?
- Un cycliste convaincu cherche un itinéraire uniquement cyclable, qui utiliserait toutes les jonctions. C'est possible?

- cheminement pour aller de A à L?
- (A,B,C,D,E,G,F,D,E,K,J,L,M,J,I,H) va bien de A à H. Mais le trajet n'a pas l'air optimal. On peut faire mieux?
- Si on coupe la piste du Verdanson, on supprime l'arête {D,E}. Peut-on toujours aller de A à H?
- Un cycliste convaincu cherche un itinéraire uniquement cyclable, qui utiliserait toutes les jonctions. C'est possible?

Graphes II: cheminement non orienté

- Marche et chemin
- Connexité
- 3 Cycles
- 4 Arbres
- Pour aller plus loin

- Une marche de G est une suite $w = (x_0, ..., x_h), h \ge 0$ de sommets de G Chaque $\{x_i, x_{i+1}\} \in E$
- La marche w passe par l'arête $\{x_i, x_{i+1}\}$, x_i et x_{i+1} consécutifs dans w
- x₀ et x_h sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

- Une marche de G est une suite $w = (x_0, ..., x_h), h \ge 0$ de sommets de G Chaque $\{x_i, x_{i+1}\} \in E$
- La marche w passe par l'arête $\{x_i, x_{i+1}\}, x_i$ et x_{i+1} consécutifs dans w
- x₀ et x_b sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

- Une marche de G est une suite $w = (x_0, ..., x_h), h \geqslant 0$ de sommets de G Chaque $\{x_i, x_{i+1}\} \in E$
- La marche w passe par l'arête $\{x_i, x_{i+1}\}$, x_i et x_{i+1} consécutifs dans w
- x₀ et x_h sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

- Une marche de G est une suite $w = (x_0, ..., x_h), h \geqslant 0$ de sommets de G Chaque $\{x_i, x_{i+1}\} \in E$
- La marche w passe par l'arête $\{x_i, x_{i+1}\}$, x_i et x_{i+1} consécutifs dans w
- x₀ et x_h sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

- Une marche de G est une suite $w = (x_0, ..., x_h), h \geqslant 0$ de sommets de G Chaque $\{x_i, x_{i+1}\} \in E$
- La marche w passe par l'arête $\{x_i, x_{i+1}\}$, x_i et x_{i+1} consécutifs dans w
- x₀ et x_h sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

- Une marche de G est une suite w = (x₀,...,x_h), h ≥ 0 de sommets de G
 Chaque {x_i, x_{i+1}} ∈ E
- La marche w passe par l'arête $\{x_i, x_{i+1}\}$, x_i et x_{i+1} consécutifs dans w
- x₀ et x_h sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

- Une marche de G est une suite $w = (x_0, ..., x_h), h \geqslant 0$ de sommets de G Chaque $\{x_i, x_{i+1}\} \in E$
- La marche w passe par l'arête $\{x_i, x_{i+1}\}$, x_i et x_{i+1} consécutifs dans w
- x₀ et x_h sont les extrémités de w
- h est la longueur de w. C'est aussi le nombre d'arêtes par lesquelles elle passe
- La marche de longueur 0 est réduite à un sommet
- Une marche d'extrémités les sommets a et b est dite ab-marche
- La marche w est dite extraite de la marche w' si toutes les arêtes de w sont dans w' et y apparaissent dans le même ordre

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait,

- Une marche est partois appelée chaîne
- Une marche, ou chaîne, est dite

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, ...

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, ...

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, . . .

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, ...

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite
 - simple : si ses arêtes sont distinctes
 - elementaire : si ses sommets sont distincts (=
 - hamiltanianna e ai alla set álámentaire, et passe par toutes les aretes de c
 - hamiltonienne : si elle est élémentaire, et passe par tous les sommets de

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, . . .

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite
 - simple : si ses arêtes sont distinctes
 - élémentaire : si ses sommets sont distincts (= chemin)
 - hamiltonienne : si elle est élémentaire, et passe par tous les sommets de

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, ...

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite
 - simple : si ses arêtes sont distinctes
 - élémentaire : si ses sommets sont distincts (= chemin)
 - eulérienne : si elle est simple, et passe par toutes les arêtes de G

Définition G = (X, E) est un graphe non orienté.

- Un chemin est une marche qui ne passe pas 2 fois par le même sommet (donc pas 2 fois par la même arête non plus)
- Mêmes notions d'extrémité, longueur, xy-chemin, chemin extrait, ...

- Une marche est parfois appelée chaîne
- Une marche, ou chaîne, est dite
 - simple : si ses arêtes sont distinctes
 - élémentaire : si ses sommets sont distincts (= chemin)
 - eulérienne : si elle est simple, et passe par toutes les arêtes de G
 - hamiltonienne : si elle est élémentaire, et passe par tous les sommets de G

• $w_2 = (A, B, C, D, E, K, J, I, H)$ est un AH-chemin extrait de w_1 et de longueur 8

- (A, C, B, D) n'est pas une marche de G
- W₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- $w_2 = (A, B, C, D, E, K, J, I, H)$ est un AH-chemin extrait de w_1 et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- W₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

• $w_1 = (A, B, C, D, E, G, F, D, E, K, J, I, H)$ est une AH-marche, de longueur 12. Elle passe par l'arête (D, E) (même 2 fois)

- (A, C, B, D) n'est pas une marche de G
- W₃ = (E, K, J, L, W, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

• $w_1 = (A, B, C, D, E, G, F, D, E, K, J, I, H)$ est une AH-marche, de longueur 12. Elle passe par l'arête $\{D, E\}$ (même 2 fois)

- $W_2 = (A, B, C, D, E, K, J, I, H)$ est un AH-chemin extrait de w_1 et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- $w_2 = (A, B, C, D, E, K, J, I, H)$ est un AH-chemin extrait de w_1 et de longueur
- ullet (A,C,B,D) n'est pas une marche de C
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? nor

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- ullet (A,C,B,D) n'est pas une marche de G
- W₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- ullet (A,C,B,D) n'est pas une marche de C
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
 - ullet (A,C,B,D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- W₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? out : J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? out au
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non par le même sommet? non

Exemples

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

Exemples

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet?

Exemples

- w₁ = (A, B, C, D, E, G, F, D, E, K, J, I, H) est une AH-marche, de longueur 12. Elle passe par l'arête {D, E} (même 2 fois)
- w₂ = (A, B, C, D, E, K, J, I, H) est un AH-chemin extrait de w₁ et de longueur 8
- (A, C, B, D) n'est pas une marche de G
- w₃ = (E, K, J, L, M, J, I, H) passe plusieurs fois par la même arête? non; par le même sommet? oui: J
- w₂ passe plusieurs fois par la même arête? non; par le même sommet? non

- Le graphe G = (X, E).
- (a, g, f, j, c) est une marche de G mais
- (b, c, y, x, a, g) est une marche de G mais
- (x, a, b, c, i, j, c, y) est une xy-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais pass

- Le graphe G = (X, E). w =
 (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y
 une xy-marche de C.
- (a, g, f, j, c) est une marche de G mais
- (b, c, y, x, a, g) est une marche de G mais
- (x, a, b, c, i, j, c, y) est une xv-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais passures

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais
- (b, c, y, x, a, g) est une marche de G mais
- (x, a, b, c, i, j, c, y) est une xv-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais passures

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de
- (b, c, y, x, a, g) est une marche de G mais
- (x, a, b, c, i, j, c, y) est une xy-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais passures

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y) une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de W
- (b, c, y, x, a, g) est une marche de G mais
- (x, a, b, c, i, j, c, y) est une xv-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de w
- (b, c, y, x, a, g) est une marche de G mais pas une marche extraite de w
- (x, a, b, c, i, j, c, y) est une xv-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais passante

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de W
- (b, c, y, x, a, g) est une marche de G mais pas une marche extraite de w
- (x, a, b, c, i, j, c, y) est une xv-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais massume

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de w
- (b, c, y, x, a, g) est une marche de G mais pas une marche extraite de w
- (x, a, b, c, i, j, c, y) est une xy-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais y

- Le graphe G = (X, E). w = (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de w
- (b, c, y, x, a, g) est une marche de G mais pas une marche extraite de w
- (x, a, b, c, i, j, c, y) est une xy-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une
 xy-marche de G mais pas une

marche extraite de w

- Le graphe G = (X, E). w =
 (x, d, y, x, a, g, f, e, a, b, c, i, j, c, h, k, c, y)
 une xy-marche de G.
- (a, g, f, j, c) est une marche de G mais pas une marche extraite de W
- (b, c, y, x, a, g) est une marche de G mais pas une marche extraite de w
- (x, a, b, c, i, j, c, y) est une xy-marche extraite de w.
- (x, a, b, c, k, h, c, y) est une xy-marche de G mais pas une marche extraite de w

Soient x et y deux sommets de G = (X, E). De toute xy-marche w, on peut extraire un xy-chemin.

- Version constructive : par extraction récursive d'une xy- marche extraite de w et possédant strictement moins de répétitions de sommet que w. À la fin, plus de répétition, donc xy-chemin.
- Version non constructive : considérons l'ensemble des xy-marches extraites de w. Leurs longueurs forment un ensemble d'entiers qui possède donc un plus petit élément k. Toutes ces xy-marches de longueur k sont nécessairement des chemins. Sinon ...

Soient x et y deux sommets de G = (X, E). De toute xy-marche w, on peut extraire un xy-chemin.

- Version constructive : par extraction récursive d'une xy- marche extraite de w et possédant strictement moins de répétitions de sommet que w. À la fin, plus de répétition, donc xy-chemin.
- Version non constructive : considérons l'ensemble des xy-marches extraites de w. Leurs longueurs forment un ensemble d'entiers qui possède donc un plus petit élément k. Toutes ces xy-marches de longueur k sont nécessairement des chemins. Sinon ...

Soient x et y deux sommets de G = (X, E). De toute xy-marche w, on peut extraire un xy-chemin.

- Version constructive : par extraction récursive d'une xy- marche extraite de w et possédant strictement moins de répétitions de sommet que w. À la fin, plus de répétition, donc xy-chemin.
- Version non constructive : considérons l'ensemble des xy-marches extraites de w. Leurs longueurs forment un ensemble d'entiers qui possède donc un plus petit élément k. Toutes ces xy-marches de longueur k sont nécessairement des chemins. Sinon ...

Soient x et y deux sommets de G = (X, E). De toute xy-marche w, on peut extraire un xy-chemin.

- Version constructive : par extraction récursive d'une xy- marche extraite de w et possédant strictement moins de répétitions de sommet que w. À la fin, plus de répétition, donc xy-chemin.
- Version non constructive: considérons l'ensemble des xy-marches extraites de w. Leurs longueurs forment un ensemble d'entiers qui possède donc un plus petit élément k. Toutes ces xy-marches de longueur k sont nécessairement des chemins. Sinon ...

Soient x et y deux sommets de G = (X, E). De toute xy-marche w, on peut extraire un xy-chemin.

- Version constructive : par extraction récursive d'une xy- marche extraite de w et possédant strictement moins de répétitions de sommet que w. À la fin, plus de répétition, donc xy-chemin.
- Version non constructive : considérons l'ensemble des xy-marches extraites de w. Leurs longueurs forment un ensemble d'entiers qui possède donc un plus petit élément k. Toutes ces xy-marches de longueur k sont nécessairement des chemins. Sinon ...

Remarque

Il n'y a pas unicité des xy-chemins extraits d'une même xy-marche

w' = (x, d, y) et w'' = (x, a, b, c, y) sont 2 chemins extraits de w

Remarque

Il n'y a pas unicité des xy-chemins extraits d'une même xy-marche

w' = (x, d, y) et w'' = (x, a, b, c, y) sont 2 chemins extraits de w

Graphes II: cheminement non orienté

- Marche et chemin
- Connexité
- 3 Cycles
- 4 Arbres
- Pour aller plus loin

Connexité

FIGURE – Graphe du plan des pistes de Montpellier sans orientation

- On peut rejoindre A et M : ils sont en relation de connexité
- On ne peut aller de A à R, ils ne sont pas connexes
- Tous les sommets en connexité avec O sont O, P et Q

Connexité

FIGURE – Graphe du plan des pistes de Montpellier sans orientation

- On peut rejoindre A et M : ils sont en relation de connexité
- On ne peut aller de A à R, ils ne sont pas connexes
- Tous les sommets en connexité avec O sont O, P et Q

Connexité

FIGURE – Graphe du plan des pistes de Montpellier sans orientation

- On peut rejoindre A et M : ils sont en relation de connexité
- On ne peut aller de A à R, ils ne sont pas connexes
- Tous les sommets en connexité avec O sont O, P et Q

- La relation de connexité ≈ sur X est :
 x ≈ y ssi il existe un xy-chemin dans G
 - La relation \approx est une relation d'équivalence sur X
 - Les composantes connexes de G = (X, E) sont les classes d'équivalence de \approx
- Un graphe est dit connexe s'il possède une seule composante connexe.

La relation de connexité ≈ sur X est :
 x ≈ y ssi il existe un xy-chemin dans G
 La relation ≈ est une relation d'équivalence sur X

- Les composantes connexes de G=(X,E) sont les classes d'équivalence de \approx
- Un graphe est dit connexe s'il possède une seule composante connexe.

- La relation de connexité ≈ sur X est :
 x ≈ y ssi il existe un xy-chemin dans G
 La relation ≈ est une relation d'équivalence sur X
 - Les composantes connexes de G = (X, E) sont les classes d'équivalence de \approx
- Un graphe est dit connexe s'il possède une seule composante connexe.

- La relation de connexité \approx sur X est : $x \approx y$ ssi il existe un xy-chemin dans GLa relation \approx est une relation d'équivalence sur X
- Les composantes connexes de G = (X, E) sont les classes d'équivalence de ≈ c
- Un graphe est dit connexe s'il possède une seule composante connexe.

La relation de connexité ≈ sur X est :
 x ≈ y ssi il existe un xy-chemin dans G
 La relation ≈ est une relation d'équivalence sur X

- Les composantes connexes de G = (X, E) sont les classes d'équivalence de ≈
- Un graphe est dit connexe s'il possède une seule composante connexe.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z \ {J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
- Les autres points d'articulations sont B, C, D, E, K et I.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z\{J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
- Les autres points d'articulations sont B. C. D. F. K et I.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z \ {J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
- Les autres points d'articulations sont B, C, D, E, K et I.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z\{J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
- Les autres points d'articulations sont B, C, D, E, K et I.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z\{J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
- Les autres points d'articulations sont B, C, D, E, K et I.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z\{J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
 - Les autres points d'articulations sont B, C, D, E, K et I.

- Dans Nord le sommet F n'est pas point d'articulation.
- Par contre le sommet J est un point d'articulation, car Nord(Z\{J}) devient non connexe.
- Rmq: dans le graphe Nord, le sommet J « voit » chacune de ces 3 composantes, au sens où chacune de ces 3 composantes possède au moins un sommet « relié à » J.
- Les autres points d'articulations sont B, C, D, E, K et I.

Lemme fondamental

Lemme

Désigné sous le nom de **Lemme fondamental des graphes connexes** : Tout graphe connexe d'ordre \geqslant 2 contient au moins deux sommets qui ne sont pas des points d'articulation.

Lemme fondamental

Lemme

Désigné sous le nom de **Lemme fondamental des graphes connexes** : Tout graphe connexe d'ordre \geqslant 2 contient au moins deux sommets qui ne sont pas des points d'articulation.

Exemple

Dans le graphe *Nord*, les sommets qui ne sont pas points d'articulation sont A, H, F, G, L et M. Dans la preuve qui suit, on va considérer un chemin de longueur maximale. Il n'y en a qu'un dans notre exemple, c'est ch = (A, B, C, D, F, G, E, K, J, I, H).

Et ses extrémités A et H ne peuvent pas être points d'articulation.

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum. Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}, 1 \le i < h$ n'a pour extrémité x_0

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \le i < h$ est conservée dans $G(X \setminus \{x_0\})$. Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante conservé X de G(X)

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 . D'après la remarque de l'exemple précédent : x_0 voit chacune des composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 . Donc X_2 contient au moins un sommet y relié à x_0 dans G.

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h + 1 ce qui contredit l'hypothèse.

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

On prouverait de même pour l'autre extrémité x_h

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x₀.

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \le i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \le i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 D'après la remarque de l'exemple précédent : x_0 voit chacune des composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 . Donc X_2 contient au moins un sommet v relié à x_0 dans G.

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h+1 ce qui contredit l'hypothèse.

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \leq i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 .

Diapres la remarque de l'exemple precedent : x_0 voit chacune de

Donc X_2 contient au moins un sommet y relié à x_0 dans G.

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h + 1 ce qui contredit l'hypothèse

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

On prouverait de même pour l'autre extrémité x_h

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \leqslant i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 .

D'après la remarque de l'exemple précédent : x_0 voit chacune des composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 .

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

On prouverait de même pour l'autre extrémité x_h

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \leq i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_0

connexe. Il possède donc au moins une autre composante connexe : X_2 . D'après la remarque de l'exemple précédent : X_0 voit chacune des

D après la remarque de l'exemple precedent : x_0 voit chacune des

composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 .

Donc X_2 contient au moins un sommet y relié à x_0 dans G.

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \leq i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 .

D'après la remarque de l'exemple précédent : x₀ voit chacune des

composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 .

Donc X_2 contient au moins un sommet y relié à x_0 dans G.

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h + 1 ce qui contredit l'hypothèse.

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

On prouverait de même pour l'autre extrémité x_h .

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}, 1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \leq i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 .

D'après la remarque de l'exemple précédent : x₀ voit chacune des

composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 .

Donc X_2 contient au moins un sommet y relié à x_0 dans G.

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h+1 ce qui contredit l'hypothèse.

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

On prouverait de même pour l'autre extrémité x₆

Soit $ch = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum.

Supposons que x_0 soit un point d'articulation.

Puisque *ch* est un chemin, aucune arête $\{x_i, x_{i+1}\}$, $1 \le i < h$ n'a pour extrémité x_0 .

Donc chaque arête $\{x_i, x_{i+1}\}, 1 \leq i < h$ est conservée dans $G(X \setminus \{x_0\})$.

Donc les sommets $x_1, ..., x_h$ se trouvent tous dans une même composante connexe X_1 de $G(X \setminus \{x_0\})$.

Comme x_0 est point d'articulation de G, le graphe $G(X \setminus \{x_0\})$ n'est pas connexe. Il possède donc au moins une autre composante connexe : X_2 .

D'après la remarque de l'exemple précédent : x₀ voit chacune des

composantes connexes de $G(X \setminus \{x_0\})$, en particulier x_0 voit X_2 .

Donc X_2 contient au moins un sommet y relié à x_0 dans G.

Donc $(y, x_0, x_1, ..., x_h)$ est un chemin dans G et de longueur h+1 ce qui contredit l'hypothèse.

Conclusion, l'extrémité x_0 n'est pas un point d'articulation.

On prouverait de même pour l'autre extrémité x_h .

Règle de construction de G + x

G = (X, E) un graphe non orienté.

- $\mathbf{0} \quad \mathbf{x} \notin X$
- $X' = X \cup \{x\}$
- E' est E auquel on adjoint un ensemble d'arêtes ayant toutes une extrémité x, et qui contient au moins une arête qui « relie » x à X, c'est à dire une arête de la forme $\{x,y\}, y \in X$.

Règle de construction de G + x

G = (X, E) un graphe non orienté.

- **1** *x* ∉ *X*
- E' est E auquel on adjoint un ensemble d'arêtes ayant toutes une extrémité x, et qui contient au moins une arête qui « relie » x à X, c'est à dire une arête de la forme {x, y}, y ∈ X.

Règle de construction de G + x

G = (X, E) un graphe non orienté.

- **2** $X' = X \cup \{x\}$
- **Solution** E' est E auquel on adjoint un ensemble d'arêtes ayant toutes une extrémité x, et qui contient au moins une arête qui « relie » x à X, c'est à dire une arête de la forme $\{x,y\}, y \in X$.

Règle de construction de G - X

G = (X, E) un graphe non orienté.

- **①** *x* ∉ *X*
- **2** $X' = X \cup \{x\}$
- **1** E' est E auquel on adjoint un ensemble d'arêtes ayant toutes une extrémité x, et qui contient au moins une arête qui « relie » x à X, c'est à dire une arête de la forme $\{x,y\},y\in X$.

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

Base : Les graphes à un seul sommet sont dans GC

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- Base : Les graphes à un seul sommet sont dans GC
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- Base : Les graphes à un seul sommet sont dans GC
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de \mathcal{GC} est connexe

- Preuve par induction structurelle : soit P(G) : "G est connexe"
- Rase : les 2 granhes de la hase sont conneves
 - Dase . les 2 graphes de la Dase sont connexes
 - Règle : soit $G \in \mathcal{GC}$ tel que P(G) est vraie.

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de $\overline{\mathcal{GC}}$ est connexe

Preuve par induction structurelle : soit P(G) : "G est connexe"

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de $\overline{\it GC}$ est connexe

Preuve par induction structurelle : soit P(G) : "G est connexe"

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de \mathcal{GC} est connexe

- Base : les 2 graphes de la base sont connexes
- Règle : soit $G \in \mathcal{GC}$ tel que P(G) est vraie.

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de \mathcal{GC} est connexe

- Base : les 2 graphes de la base sont connexes
- Règle : soit $G \in \mathcal{GC}$ tel que P(G) est vraie.

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de GC est connexe

- Base : les 2 graphes de la base sont connexes
- Règle : soit $G \in \mathcal{GC}$ tel que P(G) est vraie. G a donc une seule

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- Base : Les graphes à un seul sommet sont dans GC
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de \mathcal{GC} est connexe

- Base : les 2 graphes de la base sont connexes
- Règle : soit G∈ GC tel que P(G) est vraie. G a donc une seule composante connexe. Par construction, dans tous les graphes G → X

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de ${\it { ilde {GC}}}$ est connexe

Preuve par induction structurelle : soit P(G) : "G est connexe" Montrons que P(G) est vraie $\forall G \in \mathcal{GC}$

- Base : les 2 graphes de la base sont connexes
- Règle : soit G∈ GC tel que P(G) est vraie. G a donc une seule composante connexe. Par construction, dans tous les graphes G+x, x est en relation de connexité avec au moins un sommet de G. Donc Gere

est connexe.

• Conclusion : P(G) est vraie $\forall G \in \mathcal{GC}$

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de ${\it GC}$ est connexe

Preuve par induction structurelle : soit P(G) : "G est connexe" Montrons que P(G) est vraie $\forall G \in \mathcal{GC}$

- Base : les 2 graphes de la base sont connexes
- Règle : soit G∈ GC tel que P(G) est vraie. G a donc une seule composante connexe. Par construction, dans tous les graphes G+x, x est en relation de connexité avec au moins un sommet de G. Donc G+x est connexe.

• Conclusion : P(G) est vraie $\forall G \in GC$

Proposition

L'ensemble des graphes connexes est défini par le schéma inductif :

- ullet Base : Les graphes à un seul sommet sont dans ${\cal GC}$
- Règle : Soit $G = (X, E) \in \mathcal{GC}$. Tout graphe G + x est dans \mathcal{GC} .

Tout graphe de ${\it GC}$ est connexe

- Base : les 2 graphes de la base sont connexes
- Règle : soit G∈ GC tel que P(G) est vraie. G a donc une seule composante connexe. Par construction, dans tous les graphes G+x, x est en relation de connexité avec au moins un sommet de G. Donc G+x est connexe.
- Conclusion : P(G) est vraie $\forall G \in \mathcal{GC}$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soil Proposition de la graphes connexes de la graphes de la graphes

- out graphe connexe a ordre 17 ost dans get
- Base : n = 1.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \ge 1$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soit P(n): "tout graphe connexe d'ordre n est dans \mathcal{GC} "

- Base : n = 1.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \ge 1$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soit P(n): "tout graphe connexe d'ordre n est dans \mathcal{GC} "

- Base: n = 1. Tout graphe à un sommet est dans la base de GC. Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soit P(n): "tout graphe connexe d'ordre n est dans \mathcal{GC} "

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \ge 1$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soit P(n): "tout graphe connexe d'ordre n est dans \mathcal{GC} "

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$ **HR** : supposons que P(n) est vraie pour un $n \ge 1$

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soit P(n): "tout graphe connexe d'ordre n est dans \mathcal{GC} "

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \forall n \ge 1$ **HR** : supposons que P(n) est vraie pour un $n \ge 1$
 - G possède un sommet x qui n'est pas point d'articulation (lemme
 - a Dana $H = G(V \setminus \{v\})$ and compare d'ardra.
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - Dapres Inn, Hest dans 90
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur l'ordre $n \ge 1$ des graphes connexes. Soit P(n): "tout graphe connexe d'ordre n est dans \mathcal{GC} "

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors G = (X, E) un graphe connexe d'ordre n+1
 - G possède un sommet x qui n'est pas point d'articulation (lemme
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'HR, H est dans GC
 - o Or Gost up graphs H I v
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors G = (X, E) un graphe connexe d'ordre $n+1 \geqslant 2$
 - G possede un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'HR. H est dans GC
 - \bullet Or Gost un graphe $H \perp v$
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors G = (X, E) un graphe connexe d'ordre n + 1 ≥ 2
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'HR, H est dans GC
 - \bullet Or Gest up graphe $H \perp v$
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors G = (X, E) un graphe connexe d'ordre n + 1 ≥ 2
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc H = G(X \ {x}) est connexe d'ordre n
 D'après l'HR, H est dans ga
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors G = (X, E) un graphe connexe d'ordre n + 1 ≥ 2
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'**HR**, H est dans GC

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors G = (X, E) un graphe connexe d'ordre n + 1 ≥ 2
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'**HR**, H est dans GC
 - Or G est un graphe H + x, donc d'après la règle de construction de GC, G

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors G = (X, E) un graphe connexe d'ordre n + 1 ≥ 2
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'**HR**, H est dans GC
 - Or G est un graphe H+x, donc d'après la règle de construction de \mathcal{GC} , G est dans \mathcal{GC} .
 - Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors G = (X, E) un graphe connexe d'ordre n + 1 ≥ 2
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'HR, H est dans GC
 - Or G est un graphe H + x, donc d'après la règle de construction de \mathcal{GC} , G est dans \mathcal{GC} . Donc P(n+1) vraie
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \ge 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors G = (X, E) un graphe connexe d'ordre $n+1 \geqslant 2$
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'HR, H est dans GC
 - Or G est un graphe H + x, donc d'après la règle de construction de \mathcal{GC} , G est dans \mathcal{GC} . Donc P(n+1) vraie
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \ge 1$

- Base : n = 1. Tout graphe à un sommet est dans la base de \mathcal{GC} . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors G = (X, E) un graphe connexe d'ordre $n+1 \geqslant 2$
 - G possède un sommet x qui n'est pas point d'articulation (lemme fondamental)
 - Donc $H = G(X \setminus \{x\})$ est connexe d'ordre n
 - D'après l'HR, H est dans GC
 - Or G est un graphe H + x, donc d'après la règle de construction de \mathcal{GC} , G est dans \mathcal{GC} . Donc P(n+1) vraie
- Conclusion: on a montré P(1) vraie et P(n) ⇒ P(n+1) ∀n ≥ 1, donc par le principe de récurrence on a P(n) vraie ∀n ≥ 1
 c.-à-d. que tout graphe connexe est dans GC

Graphes II: cheminement non orienté

- Cycles

Dans ces cheminements non orientés, on visite des sommets le long d'une marche. Il s'agit de partir d'un sommet et de revenir à ce même sommet. Dans la variante que nous utilisons (une parmi bien d'autres), un cycle est un chemin fermé (n'utilise pas deux fois le même sommet).

 $c_1 = (1, 2, 3, 1)$ et $c_2 = (4, 6, 5, 2, 4)$ sont des cycles $c_3 = (1, 2, 4, 5, 2, 3, 1)$ est une marche fermée

Dans ces cheminements non orientés, on visite des sommets le long d'une marche. Il s'agit de partir d'un sommet et de revenir à ce même sommet. Dans la variante que nous utilisons (une parmi bien d'autres), un cycle est un chemin fermé (n'utilise pas deux fois le même sommet).

 $c_1 = (1, 2, 3, 1)$ et $c_2 = (4, 6, 5, 2, 4)$ sont des cycles

Dans ces cheminements non orientés, on visite des sommets le long d'une marche. Il s'agit de partir d'un sommet et de revenir à ce même sommet. Dans la variante que nous utilisons (une parmi bien d'autres), un cycle est un chemin fermé (n'utilise pas deux fois le même sommet).

 $c_1 = (1, 2, 3, 1)$ et $c_2 = (4, 6, 5, 2, 4)$ sont des cycles

Dans ces cheminements non orientés, on visite des sommets le long d'une marche. Il s'agit de partir d'un sommet et de revenir à ce même sommet. Dans la variante que nous utilisons (une parmi bien d'autres), un cycle est un chemin fermé (n'utilise pas deux fois le même sommet).

 $c_1 = (1,2,3,1)$ et $c_2 = (4,6,5,2,4)$ sont des cycles $c_3 = (1,2,4,5,2,3,1)$ est une marche fermée

Dans ces cheminements non orientés, on visite des sommets le long d'une marche. Il s'agit de partir d'un sommet et de revenir à ce même sommet. Dans la variante que nous utilisons (une parmi bien d'autres), un cycle est un chemin fermé (n'utilise pas deux fois le même sommet).

 $c_1 = (1, 2, 3, 1)$ et $c_2 = (4, 6, 5, 2, 4)$ sont des cycles $c_3 = (1, 2, 4, 5, 2, 3, 1)$ est une marche fermée

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle)
 - commencant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts
- Les cycles (et les marches fermées) restent invariants par rotation et retournement : $(x_1, x_2, x_3, x_1), (x_2, x_3, x_1, x_2)$ et (x_3, x_1, x_2, x_3) sont des suites de sommets qui définissent un même cycle, à une rotation des sommets près, tout comme (x_1, x_2, x_3, x_1) et (x_1, x_3, x_2, x_1) à un retournement des sommets près.

- $c_3 = (1, 2, 4, 6, 6, 5, 2, 3, 1)$ est une marche fermé
- $c_3 = (4,6,6,5,2,3,1,2,4) =$
 - (3, 2, 5, 6, 6, 4, 2, 1, 3)
- (1, 2, 6, 5, 2, 1) est ...
- (1, 2, 3, 1) cycle extrait de *c*₃

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),

- $c_3 = (4, 6, 6, 5, 2, 3, 1, 2, 4)$
 - (3, 2, 5, 6, 6, 4, 2, 1, 3)
- (1,2,6,5,2,1) est ..
- (1, 2, 3, 1) cycle extrait de €

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,

- $c_3 = (1, 2, 4, 6, 6, 5, 2, 3, 1)$ est une marche fermé
- \bullet $c_3 = (4, 6, 6, 5, 2, 3, 1, 2, 4)$
- (3, 2, 5, 6, 6, 4, 2, 1, 3)
- (1,2,6,5,2,1) est ...
- (1, 2, 3, 1) cycle extrait de *c*₃

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts.

- \bullet $c_3 = (4, 6, 6, 5, 2, 3, 1, 2, 4)$
 - (3, 2, 5, 6, 6, 4, 2, 1, 3)
 - (1, 2, 6, 5, 2, 1) est ...
 - (1, 2, 3, 1) cycle extrait de c₃

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts.
- Les cycles (et les marches fermées) restent invariants par rotation et retournement: (x₁, x₂, x₃, x₁), (x₂, x₃, x₁, x₂) et (x₃, x₁, x₂, x₃) sont des suites de sommets qui définissent un même cycle, à une rotation des sommets près, tout comme (x₁, x₂, x₃, x₁) et (x₁, x₃, x₂, x₁) à un retournement des sommets près.

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts.
- Les cycles (et les marches fermées) restent invariants par rotation et retournement: (x₁, x₂, x₃, x₁), (x₂, x₃, x₁, x₂) et (x₃, x₁, x₂, x₃) sont des suites de sommets qui définissent un même cycle, à une rotation des sommets près, tout comme (x₁, x₂, x₃, x₁) et (x₁, x₃, x₂, x₁) à un retournement des sommets près.

- $c_3 = (1, 2, 4, 6, 6, 5, 2, 3, 1)$ est une marche fermée
- $c_3 = (4,6,6,5,2,3,1,2,4)$
- (3,2,5,6,6,4,2,1,3)
- (1, 2, 6, 5, 2, 1) est ...
- (1, 2, 3, 1) cycle extrait de c_3

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts.
- Les cycles (et les marches fermées) restent invariants par rotation et retournement : (x₁, x₂, x₃, x₁), (x₂, x₃, x₁, x₂) et (x₃, x₁, x₂, x₃) sont des suites de sommets qui définissent un même cycle, à une rotation des sommets près, tout comme (x₁, x₂, x₃, x₁) et (x₁, x₃, x₂, x₁) à un retournement des sommets près.

- $c_3 = (1, 2, 4, 6, 6, 5, 2, 3, 1)$ est une marche fermée
- $c_3 = (4,6,6,5,2,3,1,2,4) = (3,2,5,6,6,4,2,1,3)$
- (1, 2, 6, 5, 2, 1) est ...
- (1,2,3,1) cycle extrait de c_3

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts.
- Les cycles (et les marches fermées) restent invariants par rotation et retournement: (x₁, x₂, x₃, x₁), (x₂, x₃, x₁, x₂) et (x₃, x₁, x₂, x₃) sont des suites de sommets qui définissent un même cycle, à une rotation des sommets près, tout comme (x₁, x₂, x₃, x₁) et (x₁, x₃, x₂, x₁) à un retournement des sommets près.

- $c_3 = (1, 2, 4, 6, 6, 5, 2, 3, 1)$ est une marche fermée
- $c_3 = (4,6,6,5,2,3,1,2,4) = (3,2,5,6,6,4,2,1,3)$
- (1, 2, 6, 5, 2, 1) est ...

• (1,2,3,1) cycle extrait de c_3

- Un cycle est un chemin :
 - comportant au moins une arête (longueur non nulle),
 - commençant et finissant au même sommet x. C'est donc un xx-chemin,
 - dont les sommets, sauf les extrémités, sont deux à deux distincts.
- Les cycles (et les marches fermées) restent invariants par rotation et retournement : (x₁, x₂, x₃, x₁), (x₂, x₃, x₁, x₂) et (x₃, x₁, x₂, x₃) sont des suites de sommets qui définissent un même cycle, à une rotation des sommets près, tout comme (x₁, x₂, x₃, x₁) et (x₁, x₃, x₂, x₁) à un retournement des sommets près.

- $c_3 = (1, 2, 4, 6, 6, 5, 2, 3, 1)$ est une marche fermée
- $c_3 = (4,6,6,5,2,3,1,2,4) = (3,2,5,6,6,4,2,1,3)$
- (1, 2, 6, 5, 2, 1) est ...
- (1,2,3,1) cycle extrait de c₃

Un cycle de G est donc un sous-graphe G' de G qui est connexe et dont les sommets sont de degré 2.

Un cycle de G est donc un sous-graphe G' de G qui est connexe et dont les sommets sont de degré 2.

La propriété est-elle caractéristique ? OU

Un cycle de G est donc un sous-graphe G' de G qui est connexe et dont les sommets sont de degré 2.

La propriété est-elle caractéristique ? OUI

- Un cycle est hamiltonien s'il contient tous les sommets du graphe
 - Une marche fermée est eulérienne si elle contient toutes les arêtes du graphe. (on peut trouver le terme de cycle eulérien)

Un cycle de G est donc un sous-graphe G' de G qui est connexe et dont les sommets sont de degré 2.

La propriété est-elle caractéristique ? OUI

- Un cycle est hamiltonien s'il contient tous les sommets du graphe.

Un cycle de G est donc un sous-graphe G' de G qui est connexe et dont les sommets sont de degré 2.

La propriété est-elle caractéristique ? OUI

- Un cycle est hamiltonien s'il contient tous les sommets du graphe.
- Une marche fermée est eulérienne si elle contient toutes les arêtes du graphe. (on peut trouver le terme de cycle eulérien)

Graphes II: cheminement non orienté

- Marche et chemin
- Connexité
- 3 Cycles
- 4 Arbres
- Pour aller plus loin

Sommets pendants

Définition

On appelle sommet pendant d'un graphe, tout sommet de degré 1.

Sommets pendants de graphes connexes :

Sommets pendants

Définition

On appelle sommet pendant d'un graphe, tout sommet de degré 1.

Sommets pendants de graphes connexes : 1,2,5 et 6 pour G_1 et G_2 , 1 et 5 pour G_3 .

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle. entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

 x_0 , et de même x_n , les extrémités d'un tel chemin de longueur maximum, sont deux sommets pendants. —

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle. entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): *G* est sans cycle donc toute marche est un chemin.

in existe au moins un chemin de longueur non nulle, car G est connexe $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

 x_0 , et de même x_n , les extrémités d'un tel chemin de longueur maximum, son deux sommets pendants.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (i) : G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

 x_0 , et de même x_n , les extrémités d'un tel chemin de longueur maximum, sont deux sommets pendants.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle. entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant

 x_0 , et de même x_n , les extrémités d'un tel chemin de longueur maximum, sont deux sommets pendants.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (i) : G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x_0 a donc au moins un voisin y différent de x_1 .
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un
- Contradiction

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x₀ a donc au moins un voisin y différent de x₁.
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un
- Contradiction

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x₀ a donc au moins un voisin y différent de x₁.
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un chemin de longueur supérieure à celle de w.
- Contradiction

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x_0 a donc au moins un voisin y différent de x_1 .
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un chemin de longueur supérieure à celle de w.

Contradiction

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x₀ a donc au moins un voisin y différent de x₁.
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un chemin de longueur supérieure à celle de w.
- Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (i): G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x₀ a donc au moins un voisin y différent de x₁.
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un chemin de longueur supérieure à celle de w.
- Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

(i) G est connexe et sans cycle.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (i) : G est sans cycle donc toute marche est un chemin. Il existe au moins un chemin de longueur non nulle, car G est connexe et $n \ge 2$.

Soit $w = (x_0, x_1, ..., x_h)$ un chemin de longueur maximum (longueur non nulle d'après les hypothèses).

Supposons x_0 sommet non pendant :

- x₀ a donc au moins un voisin y différent de x₁.
- y n'est pas dans w (pas de cycle),
- donc $(y, x_0, x_1, ..., x_n)$ est un chemin de longueur supérieure à celle de w.
- Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car

le reste est identique avec la preuve de (i

(iii): G est connexe donc chaque sommet a un degré strictement positif.Supposons qu'il existe au plus un sommet pendant.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve: (ii): Il existe au moins un chemin de longueur non nulle, car

m = n

e reste est identique avec la preuve de (i

(iii) : G est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

le reste est identique avec la preuve de (i

(iii): G est connexe donc chaque sommet a un degré strictement positif.Supposons qu'il existe au plus un sommet pendant.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

le reste est identique avec la preuve de (i)

(iii) : G est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

le reste est identique avec la preuve de (i)

(iii): G est connexe donc chaque sommet a un degré strictement positif.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

le reste est identique avec la preuve de (i)

(iii) : *G* est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : *G* est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 :
 - ou bien tous les sommets de degré au moins 2
 - dans tous les cas $m \ge n$
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : G est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2
 - dans tous les cas $m \ge n$
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : *G* est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2 :
 - dans tous les cas $m \ge n$
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : *G* est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2 : $2 m = \sum d(x) \ge 2n$.
 - dans tous les cas m > n
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : G est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2 : $2 m = \sum d(x) \ge 2n$.
 - dans tous les cas $m \ge n$
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : *G* est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2 : $2 m = \sum d(x) \ge 2n$.
 - dans tous les cas $m \ge n$
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : *G* est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2 : $2 m = \sum d(x) \ge 2n$.
 - dans tous les cas $m \ge n$
 - Contradiction.

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes.

- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Preuve : (ii) : Il existe au moins un chemin de longueur non nulle, car $m = n - 1 \ge 1$.

- (iii) : G est connexe donc chaque sommet a un degré strictement positif. Supposons qu'il existe au plus un sommet pendant.
 - 1 sommet de degré 1, et n-1 sommets de degré au moins 2 : $2m = \sum d(x) \ge 1 + 2(n-1) = 2n-1$.
 - ou bien tous les sommets de degré au moins 2 : $2 m = \sum d(x) \ge 2n$.
 - dans tous les cas $m \ge n$
 - Contradiction.

Lemme (Existence Sommets Pendants - ESP)

Soit G = (X, E) un graphe contenant n sommets avec $n \ge 2$, comptant m = |E| arêtes. L'une ou l'autre des conditions qui suivent :

- (i) G est connexe et sans cycle.
- (ii) G est sans cycle et m = n 1.
- (iii) G est connexe et m = n 1.

entraîne l'existence dans G d'au moins deux sommets pendants.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe. Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G: (x, y, ..., z). Le successeur de x dans chacun de ces chemins est nécessairement y.

Le chemin extrait (y,...,z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$.

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ qui est connexe.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe. Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G: (x, y, ..., z). Le successeur de x dans chacun de ces chemins est nécessairement y.

Le chemin extrait (y,...,z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$.

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ qui est connexe.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe. Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G: (x, y, ..., z). Le successeur de x dans chacun de ces chemins est

Le chemin extrait (y,...,z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$.

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ qui est connexe.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe. Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

z ... y $G(X\setminus\{x\})$

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G:(x,y,...,z). Le successeur de x dans chacun de ces chemins est nécessairement y.

Le chemin extrait (y, ..., z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ qui est connexe.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe.

Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G: (x, y, ..., z). Le successeur de x dans chacun de ces chemins est nécessairement y.

Le chemin extrait (y,...,z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$.

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ aui est connexe.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe.

Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G: (x, y, ..., z). Le successeur de x dans chacun de ces chemins est nécessairement y.

Le chemin extrait (y,...,z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$.

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ qui est connexe.

Soit G = (X, E) un graphe connexe, d'ordre au moins 2, et contenant un sommet pendant x. Alors $G(X \setminus \{x\})$ est connexe.

Si de plus G est sans cycle alors $G(X \setminus \{x\})$ est aussi sans cycle.

Preuve:

x a un exactement un voisin $y \neq x$ dans G.

Comme G est connexe, il existe un xz-chemin pour tout sommet z différent de x dans G: (x, y, ..., z). Le successeur de x dans chacun de ces chemins est nécessairement y.

Le chemin extrait (y,...,z) ne contient pas x, c'est donc un chemin de $G(X \setminus \{x\})$.

Donc y est en relation de connexité avec chaque sommet dans $G(X \setminus \{x\})$ qui est connexe.

Arbres

Définition

Un arbre est un graphe connexe sans cycle. Une forêt est un graphe sans cycle.

Les graphes G_1 et G_2 sont des arbres. G_3 n'est pas un arbre

Arbres

Définition

Un arbre est un graphe connexe sans cycle. Une forêt est un graphe sans cycle.

Les graphes G_1 et G_2 sont des arbres. G_3 n'est pas un arbre.

Soit T = (X, E) un arbre. S'il est d'ordre au moins 2, il possède, d'après le lemme $\mathsf{ESP}(i)$, au moins deux sommets pendants, appelons un de ces sommets x.

Et, d'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle. C'est donc un arbre.

D'où le schéma d'induction et les preuves par récurrence qui suivent

Construction inductive des arbres : les arbres T + x et $T_2 + y$

Soit T = (X, E) un arbre. S'il est d'ordre au moins 2, il possède, d'après le lemme $\mathsf{ESP}(i)$, au moins deux sommets pendants, appelons un de ces sommets x.

Et, d'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle. C'est donc un arbre.

D'où le schéma d'induction et les preuves par récurrence qui suivent

Construction inductive des arbres : les arbres T + x et $T_2 + v$

Soit T = (X, E) un arbre. S'il est d'ordre au moins 2, il possède, d'après le lemme $\mathsf{ESP}(i)$, au moins deux sommets pendants, appelons un de ces sommets x.

Et, d'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle. C'est donc un arbre.

D'où le schéma d'induction et les preuves par récurrence qui suivent.

Construction inductive des arbres : les arbres T + x et $T_2 + v$

Soit T = (X, E) un arbre. S'il est d'ordre au moins 2, il possède, d'après le lemme $\mathsf{ESP}(i)$, au moins deux sommets pendants, appelons un de ces sommets x.

Et, d'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle. C'est donc un arbre.

D'où le schéma d'induction et les preuves par récurrence qui suivent.

Construction inductive des arbres : les arbres T + x et $T_2 + y$

Proposition

La classe \mathcal{T} des arbres est définie par le schéma inductif :

- Base : K₁, le graphe sans boucle à un sommet, est dans '
- Règle : Si T ∈ T, alors tout graphe T + x dans lequel x est un somme pendant, est dans T.

Proposition

La classe $\mathcal T$ des arbres est définie par le schéma inductif :

• Base : K_1 , le graphe sans boucle à un sommet, est dans \mathcal{T}

• Règle : Si T ∈ T, alors tout graphe T + x dans lequel x est un somme pendant, est dans T.

Proposition

La classe $\mathcal T$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans \mathcal{T}
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Proposition

La classe $\mathcal T$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans \mathcal{T}
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de \mathcal{T} est un arbre.

- Province par industion attructurally a soit P/T)
- V(I) = V(I) =
 - Base : K_1 est un arbre, donc $P(K_1)$ vraie
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) est vraie.
 - Conclusion : P(T) est vraie $\forall T \in T$

Proposition

La classe $\mathcal T$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans \mathcal{T}
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de \mathcal{T} est un arbre.

Preuve par induction structurelle : soit P(T) : "T est un arbre"

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de \mathcal{T} est un arbre.

Preuve par induction structurelle : soit P(T) : "T est un arbre"

- Base : K. est un arbre donc P(K.) vraie
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) est vraie.

• Conclusion : P(T) est vraie $\forall T \in T$

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de T est un arbre.

Preuve par induction structurelle : soit P(T) : "T est un arbre" Montrons que P(T) est vraie $\forall T \in T$

- Base : K_1 est un arbre, donc $P(K_1)$ vraie
- Règle : soit $T \in \mathcal{T}$ tel que P(T) est vraie.

• Conclusion : P(T) est vraie $\forall T \in T$

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans \mathcal{T}
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de T est un arbre.

- Base : K_1 est un arbre, donc $P(K_1)$ vraie

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : Si $T \in \mathcal{T}$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans \mathcal{T} .

Preuve

Tout graphe de T est un arbre.

- Base : K_1 est un arbre, donc $P(K_1)$ vraie
- Règle : soit $T \in T$ tel que P(T) est vraie. T est donc connexe et sans

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : Si $T \in \mathcal{T}$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans \mathcal{T} .

Preuve

Tout graphe de T est un arbre.

- Base : K_1 est un arbre, donc $P(K_1)$ vraie
- Règle : soit T ∈ T tel que P(T) est vraie. T est donc connexe et sans cycle. Par construction, T est connexe, et un cycle de T ex devrait
- contenir x qui serait donc de degre au moins 2 impossible.

 Conclusion : P(T) est vraie $\forall T \in T$

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de T est un arbre.

- Base : K_1 est un arbre, donc $P(K_1)$ vraie
- Règle : soit $T \in \mathcal{T}$ tel que P(T) est vraie. T est donc connexe et sans cycle. Par construction, T + x est connexe, al un cycle de T and deviate

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : Si $T \in \mathcal{T}$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans \mathcal{T} .

Preuve

Tout graphe de T est un arbre.

- Base : K_1 est un arbre, donc $P(K_1)$ vraie
- Règle : soit $T \in \mathcal{T}$ tel que P(T) est vraie. T est donc connexe et sans cycle. Par construction, T + x est connexe, et un cycle de T + x devrait contenir x qui serait donc de degré au moins 2 impossible.

Proposition

La classe ${\mathcal T}$ des arbres est définie par le schéma inductif :

- Base : K_1 , le graphe sans boucle à un sommet, est dans $\mathcal T$
- Règle : $Si T \in T$, alors tout graphe T + x dans lequel x est un sommet pendant, est dans T.

Preuve

Tout graphe de \mathcal{T} est un arbre.

- Base : K_1 est un arbre, donc $P(K_1)$ vraie
- Règle : soit $T \in \mathcal{T}$ tel que P(T) est vraie. T est donc connexe et sans cycle. Par construction, T + x est connexe, et un cycle de T + x devrait contenir x qui serait donc de degré au moins 2 impossible.
- Conclusion : P(T) est vraie $\forall T \in T$

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans T".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans T".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$

• Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans T".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans
 - $T(X \setminus \{x\})$ est un arbre d'ordre n, qui est dans T par **HR**.
 - On en déduit que T, qui se construit à partir de T(X \ {x}) avec la règle c schéma d'induction est lui aussi dans T. Donc P(n + 1) est vraie.
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc pa le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans T".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans T. Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$
 - D'après le lemme ESP(i) T contient un sommet pendant x
 - D apres le lemme PRSP, $I(X \setminus \{x\})$ est connexe et sans c
 - $T(X \setminus \{x\})$ est un arbre d'ordre n, qui est dans T par **HR**.
 - On en déduit que I, qui se construit à partir de $I(X \setminus \{x\})$ avec la règle d schéma d'induction est lui aussi dans T. Donc P(n+1) est vraie.
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \ge 1$, donc pa le principe de récurrence on a P(n) vraie $\forall n \ge 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans \mathcal{T} ".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$.
 - D'après le lemme ESP(i) T contient un sommet pendant x.

S. Bérard (Université de Montpellier)

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans \mathcal{T} ".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$.
 - D'après le lemme ESP(i) T contient un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle.

S. Bérard (Université de Montpellier)

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans \mathcal{T} ".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$.
 - D'après le lemme ESP(i) T contient un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle.
 - $T(X \setminus \{x\})$ est un arbre d'ordre n, qui est dans T par **HR**.
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n) : "tout arbre d'ordre n est dans \mathcal{T} ".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$.
 - D'après le lemme ESP(i) T contient un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle.
 - $T(X \setminus \{x\})$ est un arbre d'ordre n, qui est dans T par **HR**.
 - On en déduit que T, qui se construit à partir de T(X \ {x}) avec la règle du schéma d'induction est lui aussi dans T. Donc P(n+1) est vraie.
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n): "tout arbre d'ordre n est dans T".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$.
 - D'après le lemme ESP(i) T contient un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle.
 - $T(X \setminus \{x\})$ est un arbre d'ordre n, qui est dans T par **HR**.
 - On en déduit que T, qui se construit à partir de T(X \ {x}) avec la règle du schéma d'induction est lui aussi dans T. Donc P(n+1) est vraie.
- Conclusion : on a montré P(1) vraie et $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 1$

Preuve par récurrence sur le nombre n de sommets. Soit P(n): "tout arbre d'ordre n est dans T".

- Base : n = 1, K_1 est le seul arbre d'ordre 1, et il est dans \mathcal{T} . Donc P(1) est vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors T = (X, U) un arbre d'ordre $n+1 \geqslant 2$.
 - D'après le lemme ESP(i) T contient un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ est connexe et sans cycle.
 - $T(X \setminus \{x\})$ est un arbre d'ordre n, qui est dans T par **HR**.
 - On en déduit que T, qui se construit à partir de T(X \ {x}) avec la règle du schéma d'induction est lui aussi dans T. Donc P(n+1) est vraie.
- Conclusion: on a montré P(1) vraie et P(n) ⇒ P(n+1) ∀n ≥ 1, donc par le principe de récurrence on a P(n) vraie ∀n ≥ 1
 c.-à-d. que tout arbre est dans T

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

```
(i) T est un arbre.
```

(ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n - 1

(iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n - 1

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

(i) T est un arbre.

(ii) T est un graphe sans cycle d'ordre n ≥ 1 et m = n

(III) T est un graphe connexe à orare n > 1 et m =

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1

(iii) T ast un graphe conneve d'ordre n > 1 et m = n

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

Preuve

 \bullet (i) \Rightarrow (ii) et (i) \Rightarrow (iii).

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

- (i) \Rightarrow (ii) et (i) \Rightarrow (iii). On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m=n-1" est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie.
 - Conclusion : T vérifie $m = n 1 \ \forall T$

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

Preuve

• $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe.

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

Preuve

• $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n - 1 " est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :

```
• Base : K_1 vérifie bien m = n - 1
```

• Conclusion : T vérifie $m = n - 1 \ \forall T \in T$

[•] Règle : soit $T \in \mathcal{T}$ tel que P(T) vrais

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

- $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n - 1 " est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1.
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie.
 - Conclusion : T vérifie $m = n 1 \ \forall T \in T$

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

- $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n - 1 " est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1.
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie. On a donc m = n 1, alors $T \to \infty$

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

- $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n 1" est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1.
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie. On a donc m = n 1, alors $T + \infty$

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

Preuve

- $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n - 1" est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1.
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie. On a donc m = n 1, alors T + x dans lequel x est pendant a n + 1 sommets et m + 1 arêtes. Donc

• Conclusion : T vérifie $m = n - 1 \ \forall T \in T$

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

Preuve

- $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n 1 " est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1.
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie. On a donc m = n 1, alors T + x dans lequel x est pendant a n + 1 sommets et m + 1 arêtes. Donc (m + 1) = (n + 1) 1.

• Conclusion : T vérifie $m = n - 1 \ \forall T \in T$

Théorème (Petit théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

- $(i) \Rightarrow (ii)$ et $(i) \Rightarrow (iii)$. On a directement T sans cycle et connexe. Montrons que P(T): " T vérifie m = n - 1" est vraie $\forall T \in T$ en utilisant l'induction structurelle définissant les arbres :
 - Base : K_1 vérifie bien m = n 1.
 - Règle : soit $T \in \mathcal{T}$ tel que P(T) vraie. On a donc m = n 1, alors T + x dans lequel x est pendant a n + 1 sommets et m + 1 arêtes. Donc (m + 1) = (n + 1) 1.
 - Conclusion : T vérifie $m = n 1 \ \forall T \in T$

Preuve

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): " tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$

• Conclusion : P(n) vraie $\forall n \ge 1$.

Preuve

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): " tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1

• Conclusion : P(n) vraie $\forall n \ge 1$.

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): " tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors un graphe 7 sans cycle d'ordre $n' = n + 1 \ge 2$ et verifiant m' = n' 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle
 - Or $T(X \setminus \{x\})$ vérifie l'**HR**. C'est donc un arbre
 - Et T est construit à partir de l'arbre T(X \ {x}) avec la règle de constructior des arbres. C'est donc aussi un arbre. D'où P(n+1) est vraie.
 - Conclusion : P(n) vraie $\forall n \ge 1$.

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): "tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que P(n) ⇒ P(n+1) ∀n ≥ 1
 HR : supposons que P(n) est vraie pour un n ≥ 1
 Soit alors un graphe T sans cycle d'ordre n' = n+1 ≥ 2 et vérifiant m' = n' 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle
 - Or T(X \ {x}) vérifie l'HR. C'est donc un arbr
 - Et T est construit à partir de l'arbre T(X \ {x}) avec la règle de construction des arbres. C'est donc aussi un arbre. D'où P(n+1) est vraie.
 - Conclusion : P(n) vraie $\forall n \ge 1$.

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): "tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors un graphe T sans cycle d'ordre $n' = n + 1 \geqslant 2$ et vérifiant m' = n' - 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant x.

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): " tout graphe T sans cycle d'ordre $n \ge 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors un graphe T sans cycle d'ordre $n' = n + 1 \geqslant 2$ et vérifiant m' = n' - 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle.

Preuve

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): " tout graphe T sans cycle d'ordre $n \ge 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors un graphe T sans cycle d'ordre $n' = n + 1 \geqslant 2$ et vérifiant m' = n' - 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle.
 - Or $T(X \setminus \{x\})$ vérifie l'**HR**. C'est donc un arbre.

S. Bérard (Université de Montpellier)

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): " tout graphe T sans cycle d'ordre $n \ge 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors un graphe T sans cycle d'ordre $n' = n + 1 \geqslant 2$ et vérifiant m' = n' - 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle.
 - Or $T(X \setminus \{x\})$ vérifie l'**HR**. C'est donc un arbre.
 - Et T est construit à partir de l'arbre $T(X \setminus \{x\})$ avec la règle de construction des arbres. C'est donc aussi un arbre. D'où P(n+1) est vraie.

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): "tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors un graphe T sans cycle d'ordre $n' = n + 1 \geqslant 2$ et vérifiant m' = n' - 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle.
 - Or $T(X \setminus \{x\})$ vérifie l'**HR**. C'est donc un arbre.
 - Et T est construit à partir de l'arbre T(X \ {x}) avec la règle de construction des arbres. C'est donc aussi un arbre. D'où P(n+1) est vraie.
 - Conclusion : P(n) vraie $\forall n \ge 1$.

- (ii) \Rightarrow (i). Par récurrence sur l'ordre n de T. Soit P(n): "tout graphe T sans cycle d'ordre $n \geqslant 1$ avec m = n 1 est un arbre".
 - Base : n = 1, m = n 1 = 0 : c'est le graphe K_1 qui est un arbre. Donc P(1) est vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$ Soit alors un graphe T sans cycle d'ordre $n' = n + 1 \geqslant 2$ et vérifiant m' = n' - 1.
 - D'après le lemme ESP(ii), T possède au moins un sommet pendant x.
 - D'après le lemme PRSP, $T(X \setminus \{x\})$ reste sans cycle.
 - Or $T(X \setminus \{x\})$ vérifie l'**HR**. C'est donc un arbre.
 - Et T est construit à partir de l'arbre T(X \ {x}) avec la règle de construction des arbres. C'est donc aussi un arbre. D'où P(n+1) est vraie.
 - Conclusion : P(n) vraie $\forall n \ge 1$.
- $(iii) \Rightarrow (i)$. Idem, en utilisant ESP(iii) au lieu de ESP(ii).

Graphes II: cheminement non orienté

- Pour aller plus loin

Arbre couvrant

FIGURE – Deux arbres T_1 et T_2 couvrants le même graphe connexe G

Définition

Un arbre couvrant d'un graphe G est un sous-graphe couvrant de G qui est un arbre.

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

=: immédiat. Un arbre est connexe.

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

- \Rightarrow : Par récurrence sur l'ordre n de G. Soit P(n) : "tout graphe connexe d'ordre n admet un arbre couvrant".
 - Base: n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant: K₁. Donc P(1) vraie.
 - Recurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

- \Rightarrow : Par récurrence sur l'ordre n de G. Soit P(n): "tout graphe connexe d'ordre n admet un arbre couvrant".
 - Base: n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant: K₁. Donc P(1) vraie.
 - **HR**: supposons que $P(n) \Rightarrow P(n+1) \forall n \geqslant 1$

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

- Base : n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant : K_1 . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors G un graphe connexe d'ordre n + 1, il possède au moins deu points qui ne sont pas d'articulation (lemme fondamental).
 - On choisit x l'un de ces points qu'on enlève. Le sous-graphe induit obtenu G(X \ {x}), est connexe. On obtient ce sous-graphe en ôtant au moins ur arête {x, y}, car le graphe initial est connexe.
 - Par HR, $G(X \setminus \{x\})$, qui est d'ordre n, possède un arbre couvrant T
 - On ajoute a 1 le sommet x et une arête {x, y} enlevee. Le graphe obtenu est tel que x est un sommet pendant. Utilisant le schéma inductif des arbre c'est un arbre, et un sous-graphe couvrant de G. Donc P(n+1) vraie

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

- Base : n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant : K_1 . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors G un graphe connexe d'ordre n+1, il possède au moins deux points qui ne sont pas d'articulation (lemme fondamental).

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

- Base : n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant : K_1 . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors G un graphe connexe d'ordre n+1, il possède au moins deux points qui ne sont pas d'articulation (lemme fondamental).
 - On choisit x l'un de ces points qu'on enlève. Le sous-graphe induit obtenu, G(X \ {x}), est connexe. On obtient ce sous-graphe en ôtant au moins une arête {x, y}, car le graphe initial est connexe.

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

- Base : n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant : K_1 . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors G un graphe connexe d'ordre n+1, il possède au moins deux points qui ne sont pas d'articulation (lemme fondamental).
 - On choisit x l'un de ces points qu'on enlève. Le sous-graphe induit obtenu, G(X \ {x}), est connexe. On obtient ce sous-graphe en ôtant au moins une arête {x, y}, car le graphe initial est connexe.
 - Par **HR**, $G(X \setminus \{x\})$, qui est d'ordre n, possède un arbre couvrant T.

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

- Base : n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant : K_1 . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors G un graphe connexe d'ordre n+1, il possède au moins deux points qui ne sont pas d'articulation (lemme fondamental).
 - On choisit x l'un de ces points qu'on enlève. Le sous-graphe induit obtenu, G(X\{x}), est connexe. On obtient ce sous-graphe en ôtant au moins une arête {x, y}, car le graphe initial est connexe.
 - Par **HR**, $G(X \setminus \{x\})$, qui est d'ordre n, possède un arbre couvrant T.
 - On ajoute à *T* le sommet *x* et une arête {*x*, *y*} enlevée. Le graphe obtenu est tel que *x* est un sommet pendant. Utilisant le schéma inductif des arbres, c'est un arbre, et un sous-graphe couvrant de *G*. Donc *P*(*n* + 1) vraie

Un graphe G est connexe si et seulement si il admet un arbre couvrant.

Preuve

- Base : n = 1, les deux graphes connexes à 1 sommet admettent un arbre couvrant : K_1 . Donc P(1) vraie.
- Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 1$ **HR** : supposons que P(n) est vraie pour un $n \geqslant 1$
 - Soit alors G un graphe connexe d'ordre n+1, il possède au moins deux points qui ne sont pas d'articulation (lemme fondamental).
 - On choisit x l'un de ces points qu'on enlève. Le sous-graphe induit obtenu, G(X\{x}), est connexe. On obtient ce sous-graphe en ôtant au moins une arête {x, y}, car le graphe initial est connexe.
 - Par **HR**, $G(X \setminus \{x\})$, qui est d'ordre n, possède un arbre couvrant T.
 - On ajoute à *T* le sommet *x* et une arête {*x*, *y*} enlevée. Le graphe obtenu est tel que *x* est un sommet pendant. Utilisant le schéma inductif des arbres, c'est un arbre, et un sous-graphe couvrant de *G*. Donc *P*(*n* + 1) vraie
- Conclusion : P(n) vraie $\forall n \ge 1$

Théorème (Grand théorème des arbres)

- (iii) T est un graphe
- (iii) I est un graphe connexe a orare $n \ge 1$ et m = n 1
- (iv) T est maximal sans cycle (maximal en terme d'arêtes pour la propriét d'être sans cycle. C'est à dire. T = (X, E) est sans cycle et
 - $\forall x, y \in X, \{x, y\} \notin E \Rightarrow (X, E \cup \{\{x, y\}\})$ contient un cycle
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.
- vi) I est minimal connexe (minimal en terme d'aretes pour la proprieté d'être connexe C'est à dire T (X E) est connexe et
 - $\forall x, y \in X, \{x, y\} \in E \Rightarrow (X, E \setminus \{\{x, y\}\})$) n'est pas connexe

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1

S. Bérard (Université de Montpellier)

Théorème (Grand théorème des arbres)

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1
- (iv) T est maximal sans cycle (maximal en terme d'arêtes pour la propriété d'être sans cycle. C'est à dire, T = (X, E) est sans cycle et $\forall x, y \in X, \{x, y\} \notin E \Rightarrow (X, E \cup \{\{x, y\}\})$ contient un cycle.

Théorème (Grand théorème des arbres)

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1
- (iv) T est maximal sans cycle (maximal en terme d'arêtes pour la propriété d'être sans cycle. C'est à dire, T = (X, E) est sans cycle et $\forall x, y \in X, \{x, y\} \notin E \Rightarrow (X, E \cup \{\{x, y\}\})$ contient un cycle.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.

Théorème (Grand théorème des arbres)

- (i) T est un arbre.
- (ii) T est un graphe sans cycle d'ordre $n \ge 1$ et m = n 1
- (iii) T est un graphe connexe d'ordre $n \ge 1$ et m = n 1
- (iv) T est maximal sans cycle (maximal en terme d'arêtes pour la propriété d'être sans cycle. C'est à dire, T = (X, E) est sans cycle et $\forall x, y \in X, \{x, y\} \notin E \Rightarrow (X, E \cup \{\{x, y\}\})$ contient un cycle.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.
- (vi) T est minimal connexe (minimal en terme d'arêtes pour la propriété d'être connexe. C'est à dire, T = (X, E) est connexe et $\forall x, y \in X, \{x, y\} \in E \Rightarrow (X, E \setminus \{\{x, y\}\}))$ n'est pas connexe.

Théorème (Grand théorème des arbres)

- (i) T est un arbre
- (iv) T est maximal sans cycle
 - (v) Entre deux sommets quelconques de T il existe un et un seul chemin.

Théorème (Grand théorème des arbres)

- (i) T est un arbre.
- (iv) T est maximal sans cycle.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (iv) T est maximal sans cycle.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (iv) T est maximal sans cycle.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.

Preuves

 $(i) \Rightarrow (iv)$ Comme T est connexe. Si on ajoute l'arête $\{x, y\}$, comme il existe un xy-chemin dans T, on a un cycle dans le nouveau graphe.

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (iv) T est maximal sans cycle.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.

- $(i) \Rightarrow (iv)$ Comme T est connexe. Si on ajoute l'arête $\{x, y\}$, comme il existe un xy-chemin dans T, on a un cycle dans le nouveau graphe.
- $(iv) \Rightarrow (v)$ Contraposée. On a 0 (non connexe) ou au moins deux xy-chemins distincts. On peut en extraire deux x_1y -chemins dont la première arête est différente (on en enlève le préfixe commun le plus long, qui est un xx_1 -chemin). On recherche le premier sommet commun qui existe. On construit alors un cycle. Non connexe ou cycle donc pas maximal sans cycle.

Théorème (Grand théorème des arbres)

- (i) T est un arbre
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin
- (vi) I est minimal connexe.

Théorème (Grand théorème des arbres)

- (i) T est un arbre.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.
- (vi) T est minimal connexe.

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.
- (vi) T est minimal connexe.

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.
- (vi) T est minimal connexe.

Preuves

 $(v)\Rightarrow (vi)$ Contraposée. On enlève l'arête $\{x,y\}$ et le graphe reste connexe. Il existe donc un xy-chemin, ne contenant pas $\{x,y\}$. On aurait alors dans le graphe deux xy-chemins.

Théorème (Grand théorème des arbres)

Les conditions suivantes sont équivalentes :

- (i) T est un arbre.
- (v) Entre deux sommets quelconques de T il existe un et un seul chemin.
- (vi) T est minimal connexe.

Preuves

 $(v)\Rightarrow (vi)$ Contraposée. On enlève l'arête $\{x,y\}$ et le graphe reste connexe. Il existe donc un xy-chemin, ne contenant pas $\{x,y\}$. On aurait alors dans le graphe deux xy-chemins.

 $(vi) \Rightarrow (i)$ Soit T = (X, E). Si T a un cycle, alors soit $\{x, y\}$ une arête de ce cycle. Le graphe $(X, E \setminus \{\{x, y\}\})$ reste connexe, donc T n'a pas cycle. Donc T est un arbre.