Descriptive Set Theory: Moschovakis

Jad Damaj

Contents

Ι	Notes		3
II	Exercises		4
1	The Basic Classical Notions		5
	1.1 Perfect Polish Spaces	 	Ę
	1.2 The Borel Pointclasses of Finite Order		
	1.3 Computing with Relations; Closure Properties	 	Ę
	1.4 Parameterization and Hierarchy Theorems	 	Ę
	1.5 The Projective Sets	 	Ę
	1.6 Countable Operations	 	Ę
	1.7 Borel Functions and Isomorphisms	 	Ę
2	κ -Suslin and λ -Borel		6
	2.1 The Cantor-Bendixson Theorem	 	6
	2.2 κ -Suslin Sets	 	6
	2.3 Trees and the Perfect Set Theorem		
	2.4 Wellfounded Trees	 	6
	2.5 The Suslin Theorem	 	6
	2.6 Inductive Analysis of Projective Trees	 	6
	2.7 The Kunen Martin Theorem		c

Part I

Notes

Part II Exercises

Chapter 1

The Basic Classical Notions

- 1.1 Perfect Polish Spaces
- 1.2 The Borel Pointclasses of Finite Order
- 1.3 Computing with Relations; Closure Properties
- 1.4 Parameterization and Hierarchy Theorems
- 1.5 The Projective Sets
- 1.6 Countable Operations
- 1.7 Borel Functions and Isomorphisms

Chapter 2

κ -Suslin and λ -Borel

- 2.1 The Cantor-Bendixson Theorem
- 2.2 κ -Suslin Sets
- 2.3 Trees and the Perfect Set Theorem
- 2.4 Wellfounded Trees
- 2.5 The Suslin Theorem
- 2.6 Inductive Analysis of Projective Trees
- 2.7 The Kunen-Martin Theorem