

Casos confirmados de intentos de suicidio en Córdoba, 2016 - 2023

Series de Tiempo

Santiago Enamorado Espitia

Universidad de Córdoba Departamento de Matemáticas y Estadística

3 de diciembre de 2024

Índice

- Introducción
- 2. Estado del arte
- 3. Descripción de los datos
- 4. Análisis de la serie temporal
- 4.1 Tendencia
- 4.2 Estacionalidad
- 4.3 Verificación de estacionareidad

- 5. Transformación de la serie
- 6. Seleción de modelos candidatos
- 7. Evaluación y diágnostico del modelo
- 8. Desempeño del modelo
- 9. Modelo final
- 9.1 Pronósticos
- 10. Conclusiones
- 11. Bibliografías

Introducción

El suicidio es un problema de salud pública alarmante, con alrededor de 700,000 muertes anuales según la OMS. Sus causas son complejas, incluyendo factores como trastornos mentales, problemas socioeconómicos, entre otros.

En Colombia, la falta de muchos recursos y los desafíos socioeconómicos agravan esta situación. Especificamente en Córdoba, el acceso limitado a servicios en zonas rurales, los altos índices de violencia, pobreza y desplazamiento forzado, aumentan el riesgo de generar emociones negativas en las personas.

Este estudio busca analizar los comportamientos sobre los casos confirmados de intentos de suicidio en Córdoba (2016-2023) a través de una serie temporal, con la finalidad de identificar el modelo más adecuado para fines de pronóstico.

Estado del arte

Se realizó un estudio para analizar el impacto del atentado a las Torres Gemelas el 11 de septiembre de 2001 sobre las tasas de suicidio en Estados Unidos. Inicialmente, se probaron modelos ARMA (15,0) y (0,6), pero su efectividad fue cuestionada debido a que no cumplían con los requisitos de estacionariedad y presentaban órdenes demasiado altos, lo que dificultaba una interpretación adecuada.

Para abordar estas limitaciones, los analistas ajustaron un modelo ARIMA (1,1,2) que incluyó una diferenciación en la serie temporal. Este modelo permitió corregir problemas de autocorrelación en los residuos y proporcionó mejores resultados para evaluar el aumento temporal en las tasas de suicidio tras el trágico evento del 11 de septiembre de 2001, destacando la relevancia de una validación estadística adecuada en el análisis de series de tiempo.

Descripción de los datos

Los datos de los intentos de suicidio (2016-2023), fueron importados de las bases de datos que nos ofrece Sivigilia.

Procedimiento y depuración de los datos: Después de haber importado todas las bases de datos una a una desde 2016 a 2023, proseguimos a abrir los respectivos archivos en excel, aquí nos encontramos con muchas variables en cada archivo, pero nos enfocamos solo en el departamento de ocurrencia y los intentos de suicidio confirmados de forma diaria. Filtramos el departamento para obtener solo los confirmados de Córdoba. Al hacer esto, sumamos todos los casos confirmados por mes para poder importar estos datos en un archivo más accesible en R. Y así, se pudo empezar el respectivo análisis de la serie temporal.

Figura 1: Serie temporal de los intentos de suicidio (2016 - 2023). Fuente: Elaboración propia

Análisis de la serie temporal

Figura 2: Estacionalidad de los intentos de suicidio. Fuente: Elaboración propia

Verificación de estacionareidad

Prueba KPSS (Kwiatkowski-Phillips-Schmidt-Shin):

 H_0 :La serie temporal es estacionaria H_1 :La serie temporal no es estacionaria

Estadísticas	KPSS	P-valor
Resultado	1.6168	0.01

Cuadro 1: Resultado de la prueba KPSS

► Transformación de BoxCox:

$$\lambda = 0.5559948$$

- ► Validación cruzada:
 - **Para** h = 12:

Para	h	_	6.
гага	11	-	υ.

Conjunto	Entrenamiento	Prueba	
Fecha	2016, 1 - 2022, 12	2023, 1 - 2023, 12	

Cuadro 2: Validación cruzada para h = 12

Cuadro 3: Validación cruzada para h = 6

Diferenciación regular:

$$d = 1$$

▶ Prueba de ADF (Dickey-Fuller aumentada) para h = 12 y h = 6:

 H_0 :La serie temporal no es estacionaria

 \mathcal{H}_1 :La serie temporal es estacionaria

h	Dickey-Fuller	P-valor
12	-5.8209	0.01
6	-6.2557	0.01

Cuadro 4: Resultado de la prueba ADF.

Figura 3: Serie transformada y diferenciada para h=12. Fuente: Elaboración propia

Año

2020

2016

2017

2023

Figura 4: Serie transformada y diferenciada para h=6. Fuente: Elaboración propia

- ► Fase 1:
 - **Para** h = 12:

Figura 5: EACF para el modelo ARIMA, h = 12. Fuente: Elaboración propia

ϕ_1	$ heta_1$	<i>c</i> ₀	AIC
0.4318	-0.8264	0.1417	362.39

Cuadro 5: Coeficientes del modelo (1,1,1) con c_0 para h=12

Parámetro	Z	P-valor
ϕ_1	2.5802	0.009874
$ heta_1$	-7.6890	1.483e-14
<i>c</i> ₀	1.9301	0.053596

Cuadro 6: Prueba de significancia de los coeficientes del modelo (1,1,1) con c_0 para h=12

ϕ_1	$ heta_1$	AIC
0.4024	-0.7573	363.41

Cuadro 7: Coeficientes del modelo (1,1,1) sin c_0 para h=12

Figura 6: ACF y PACF para el modelo SARIMA con h = 12. Fuente: Elaboración propia

Fase 2:

Para h = 12:

Modelo	ϕ_1	$ heta_1$	θ_2	<i>c</i> ₀	AIC
ARIMA(1,1,1)	0.4318	-0.8264	0	0.1417	362.39
ARIMA(1,1,1)	0.4024	-0.7573	0	0	363.41
ARIMA(0,1,2)	0	-0.3932	-0.2698	0.1451	362.14

Cuadro 8: Coeficientes de los modelos ARIMA para h=12

Modelo	θ_1	AIC
$SARIMA(0,1,1)(0,0,0)_{[12]}$	-0.3950	365.9

Cuadro 9: Coeficientes del modelo SARIMA para h = 12

Para h = 6:

Modelo	ϕ_1	$ heta_1$	<i>c</i> ₀	AIC
ARIMA(1,1,1)	0.4382	-0.8490	0.1345	392.53

Cuadro 10: Coeficientes del modelo ARIMA para h = 6

Modelo	θ_1	Φ ₁	Θ_1	Θ_2	AIC
SARIMA $(0,1,1)(0,0,0)_{[12]}$	-1.0000	0	0	0	475.21
$SARIMA(0,1,1)(1,0,2)_{[12]}$	-0.4303	0.8178	-0.7897	0.3251	387.21

Cuadro 11: Coeficientes de los modelos SARIMA para h = 6

- **F**ase 3:
 - **Para** h = 12

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.8404
	H ₁ : Residuales no homogéneos	
Ljung-Box	H_0 : $\rho_k = 0$	0.6118
	$H_1: p_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.1821
Darling	H_1 : Residuales no normales	
t-student	$H_0: E(e_t) = 0$	0.6471
	H_1 : $E(e_t) \neq 0$	

Cuadro 12: Diagnóstico del modelo ARIMA(1,1,1) con c_0

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.9606
	H ₁ : Residuales no homogéneos	
Ljung-Box	$H_0: p_k = 0$	0.6102
	$H_1: p_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.2494
Darling	H ₁ : Residuales no normales	
t-student	$H_0: E(e_t) = 0$	0.0574
	H_1 : $E(e_t) \neq 0$	

Cuadro 13: Diagnóstico del modelo ARIMA(1,1,1) sin c_o

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.9093
	H ₁ : Residuales no homogéneos	
Ljung-Box	$H_0: p_k = 0$	0.5812
	$H_1: \rho_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.1914
Darling	H ₁ : Residuales no normales	
t-student	H_0 : $E(e_t) = 0$	0.6813
	H_1 : $E(e_t) \neq 0$	

Cuadro 14: Diagnóstico del modelo **ARIMA(0,1,2)**

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.9132
	H ₁ : Residuales no homogéneos	
Ljung-Box	$H_0: p_k = 0$	0.1074
	$H_1: p_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.08967
Darling	H_1 : Residuales no normales	
t-student	H_0 : $E(e_t) = 0$	0.1935
	H_1 : $E(e_t) \neq 0$	

Cuadro 15: Diagnóstico del modelo SARIMA(0,1,1)(0,0,0)[12]

Para h = 6:

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.8797
	H ₁ : Residuales no homogéneos	
Ljung-Box	$H_0: \rho_k = 0$	0.7655
	$H_1: \rho_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.05726
Darling	H_1 : Residuales no normales	
t-student	H_0 : $E(e_t) = 0$	0.6227
	H_1 : $E(e_t) \neq 0$	

Cuadro 16: Diagnóstico del modelo ARIMA(1,1,1)

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.1573
	H ₁ : Residuales no homogéneos	
Ljung-Box	$H_0: p_k = 0$	0.00003518
	$H_1: p_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.217
Darling	H_1 : Residuales no normales	
t-student	H_0 : $E(e_t) = 0$	0.9375
	H_1 : $E(e_t) \neq 0$	

Cuadro 17: Diagnóstico del modelo SARIMA(0,1,1)(0,0,0)[12]

Prueba	Hipótesis	P-valor
ARCH	H ₀ : Residuales homogéneos	0.4908
	H_1 : Residuales no homogéneos	
Ljung-Box	$H_0: p_k = 0$	0.8684
	H_1 : $p_k \neq 0$	
Anderson-	H ₀ : Residuales normales	0.1997
Darling	H_1 : Residuales no normales	
t-student	H_0 : $E(e_t) = 0$	0.4709
	H_1 : $E(e_t) \neq 0$	

Cuadro 18: Diagnóstico del modelo SARIMA(0,1,1)(1,0,2)[12]

Desempeño del modelo

Para h = 12:

Modelo	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
ARIMA $(1,1,1)$ con c_0	0.5727	12.5039	9.662	-0.9363	16.2064	0.0306	0.9476
ARIMA(1,1,1) sin c_0	2.6414	12.7280	9.8942	2.3135	16.1507	-0.0082	0.9782
ARIMA(0,1,2)	0.5163	12.4551	9.7858	-1.0890	16.5191	0.0220	0.9380
SARIMA(0,1,1)(0,0,0) _[12]	1.8153	13.1235	9.9758	0.9898	16.1562	0.0714	0.9962

Cuadro 19: Métricas de desempeño del conjunto de entrenamiento de los modelos para h=12

Modelo	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
ARIMA(1,1,1) con c_0	-8.1170	19.7085	16.2581	-12.6397	19.1937	0.1842	0.9075
ARIMA(1,1,1) sin c_0	2.2806	17.9558	13.3182	-1.2702	14.4830	0.1632	0.8008
ARIMA(0,1,2)	-9.1503	20.2334	16.9145	-13.8192	20.0575	0.1936	0.9369
SARIMA(0,1,1)(0,0,0) _[12]	3.9709	18.6535	13.9903	0.4890	15.0105	0.1748	0.8293

Cuadro 20: Métricas de desempeño del conjunto de prueba de los modelos para h=12

Desempeño del modelo

Para h = 6:

Modelo	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
ARIMA(1,1,1)	0.6590	13.1894	10.1287	-0.9567	16.3903	0.00893	0.9441
SARIMA(0,1,1)(0,0,0)[12]	68.5828	71.5472	68.5828	98.5860	98.5860	0.7354	4.7645
SARIMA(0,1,1)(1,0,2) [12]	0.9440	12.4238	9.5019	-0.2403	14.7468	0.0179	0.8623

Cuadro 21: Métricas de desempeño del conjunto de entrenamiento de los modelos para h=6

Modelo	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
ARIMA(1,1,1)	-9.1288	19.7606	17.3353	-13.3716	20.5439	0.2390	1.0978
SARIMA(0,1,1)(0,0,0)[12]	92.7539	94.1320	92.7539	98.9958	98.9958	0.1489	4.7510
SARIMA(0,1,1)(1,0,2) [12]	-14.5664	23.1624	18.6481	-19.3791	22.9354	0.2149	1.2742

Cuadro 22: Métricas de desempeño del conjunto de prueba de los modelos para h=6

Desempeño del modelo

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Entrenamiento	2.6414	12.7280	9.8942	2.3135	16.1507	-0.0082	0.9782
Prueba	2.2806	17.9558	13.3182	-1.2702	14.4830	0.1632	0.8008

Cuadro 23: Métricas de ARIMA(1,1,1) sin c_0 para h=12

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Entrenamiento	0.6590	13.1894	10.1287	-0.9567	16.3903	0.00893	0.9441
Prueba	-9.1288	19.7606	17.3353	-13.3716	20.5439	0.2390	1.0978

Cuadro 24: Métricas de ARIMA(1,1,1) para h=6

Modelo final

Recordemos:

ϕ_1	θ_1
0.4024	-0.7573

Cuadro 25: Coeficientes del modelo ARIMA(1,1,1) sin c_0 para h=12

Se construye el modelo a partir de:

$$\phi_p(B)\nabla^d y_t = c_0 + \theta_q(B)a_t$$

$$\Rightarrow \phi_{1}(B)\nabla^{1}y_{t} = c_{0} + \theta_{1}(B)a_{t}$$

$$\Rightarrow \phi_{1}(B)(1-B)^{1}y_{t} = c_{0} + \theta_{1}(B)a_{t}$$

$$\Rightarrow (1-\phi_{1}B)(y_{t}-y_{t-1}) = c_{0} + (1+\theta_{1}B)a_{t}$$

$$\Rightarrow y_{t} - y_{t-1} - \phi_{1}By_{t} + \phi_{1}By_{t-1} = c_{0} + a_{t} + \theta_{1}Ba_{t}$$

$$\Rightarrow y_{t} - y_{t-1} - \phi_{1}y_{t-1} + \phi_{1}y_{t-2} = c_{0} + a_{t} + \theta_{1}a_{t-1}$$

$$\Leftrightarrow y_{t} = c_{0} + y_{t-1} + \phi_{1}y_{t-1} - \phi_{1}y_{t-2} + \theta_{1}a_{t-1} + a_{t}; c_{0} = 0$$

$$\Rightarrow y_{t} = y_{t-1} + \phi_{1}y_{t-1} - \phi_{1}y_{t-2} + \theta_{1}a_{t-1} + a_{t}$$

Modelo final

El modelo final es:

$$y_t = y_{t-1} + 0.4024y_{t-1} - 0.4024y_{t-2} - 0.7573a_{t-1} + a_t$$

Pronósticos

Figura 7: Pronóstico de los intentos de suicidio. Fuente: Elaboración propia

Conclusiones

A través del respectivo análisis de la serie temporal hecho, se determinó que el modelo ARIMA(1,1,1) sin c_0 para un pronóstico de a lo mucho 12 meses es el más adecuado, entre todos los modelos comparados.

Se encontró una tendencia ascendente a lo largo del tiempo, y patrones estacionales en los intentos de suicidio, lo que sugiere realizar un análisis más profundo a futuro, donde se tengan en cuenta la presencia de factores y variables en común que estén afectando al aumento significativo y la estacionalidad presentada.

Bibliografías

- Infobae. (2024, septiembre 10). Alarmante panorama para la salud mental en Colombia: Intentos de suicidio van en aumento desde la pandemia. Infobae.
- Ministerio de Justicia. (2024, julio 07). *MinJusticia presenta relevante informe sobre el fenómeno de la violencia intrafamiliar en Colombia (2016-2023)*. Ministerio de Justicia.
- Revista Colombiana de Psiquiatría. (2023, abril 04). Caracterización del suicidio en el departamento de Córdoba (Colombia), en el periodo 2015-2020. Revista Colombiana de Psiquiatría.
- Instituto Nacional de Salud. (2022). *Informe de Evento Intento de Suicidio, 2022*. Instituto Nacional de Salud.
- (2023). Informe de evento. Intento de suicidio a periodo epidemológico I de 2023.

Bibliografías

- El espectador. (2019, marzo 31). La violencia está despoblando el sur de Córdoba. EL Espectador.
- World Health Organization. (2021, junio 17). One in 100 deaths is by suicide. World Health Organization.
- ResearchGate. (2013, junio). Effect of 9/11 on suicide: appropriateness of a time series model. ResearchGate.
- Universidad De Córdoba. (2023, febrero). ESTRUCTURAS HÍBRIDAS PARA EL MODELADO Y PRONÓSTICO DE SERIES TEMPORALES: METODOLOGÍAS Y APLICACIONES. Universidad De Córdoba.
- Link de la base de datos: https://portalsivigila.ins.gov.co/Paginas/Buscador.aspx#

Conéctate con sentido

www. unicordoba .edu.co

Reacreditados Institucionalmente, resolución Nº 000020 del 11 de enero de 2023 por el Ministerio de Educación Nacional, certificados en: ISO: 9001 – ISO: 45001 e ISO: 14001 ICONTEC Unicórdoba, calidad, innovación e inclusión para la transformación del territorio

