

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 February 2002 (28.02.2002)

PCT

(10) International Publication Number WO 02/16649 A2

(51) International Patent Classification7:

C12Q 1/68

(21) International Application Number: PCT/US01/26519

(22) International Filing Date: 27 August 2001 (27.08.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

25 August 2000 (25.08.2000) US

60/227,948 60/228,854

29 August 2000 (29.08.2000) US

- (71) Applicant: ILLUMINA, INC. [US/US]; Suite 200, 9390 Towne Centre Drive, San Diego, CA 92121 (US).
- (72) Inventor: GUNDERSON, Kevin; 1543 Juniper Hill Drive, Encinitas, CA 92024 (US).
- (74) Agents: BREZNER, David, J. et al.; Flehr, Hohbach, Test, Albritton & Herbert LLP, Suite 3400, 4 Embarcadero Center, San Francisco, CA 94111-4187 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, FE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV. MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

2/16649 A2

(54) Title: PROBES AND DECODER OLIGONUCLEOTIDES

PROBES AND DECODER OLIGONUCLEOTIDES

This application claims the benefit of U.S.S.N.s 60/227,948 filed August 25, 2000 and 60/228,854, filed August 29, 2001, both of which are expressly incorporated herein by reference.

5

10

FIELD OF THE INVENTION

The present invention is directed to methods and compositions for the use of adapter sequences on arrays in a variety of nucleic acid reactions, including synthesis reactions, amplification reactions, and genotyping reactions.

BACKGROUND OF THE INVENTION

15

The detection of specific nucleic acids is an important tool for diagnostic medicine and molecular biology research. Gene probe assays currently play roles in identifying infectious organisms such as bacteria and viruses, in probing the expression of normal and mutant genes and identifying mutant genes such as oncogenes, in typing tissue for compatibility preceding tissue transplantation, in matching tissue or blood samples for forensic medicine, and for exploring homology among genes from different species.

20

Ideally, a gene probe assay should be sensitive, specific and easily automatable (for a review, see Nickerson, Current Opinion in Biotechnology 4:48-51 (1993)). The requirement for sensitivity (i.e. low detection limits) has been greatly alleviated by the development of the polymerase chain reaction (PCR) and other amplification technologies which allow researchers to amplify exponentially a specific nucleic acid sequence before analysis (for a review, see Abramson et al., Current Opinion in Biotechnology, 4:41-47 (1993)).

25

30

Specificity, in contrast, remains a problem in many currently available gene probe assays. The extent of molecular complementarity between probe and target defines the specificity of the interaction. Variations in the concentrations of probes, of targets and of salts in the hybridization medium, in the reaction temperature, and in the length of the probe may alter or influence the specificity of the

probe/target interaction.

5

10

15

20

25

30

35

It may be possible under some circumstances to distinguish targets with perfect complementarity from targets with mismatches, although this is generally very difficult using traditional technology, since small variations in the reaction conditions will alter the hybridization. New experimental techniques for mismatch detection with standard probes include DNA ligation assays where single point mismatches prevent ligation and probe digestion assays in which mismatches create sites for probe cleavage.

Recent focus has been on the analysis of the relationship between genetic variation and phenotype by making use of polymorphic DNA markers. Previous work utilized short tandem repeats (STRs) as polymorphic positional markers; however, recent focus is on the use of single nucleotide polymorphisms (SNPs), which occur at an average frequency of more than 1 per kilobase in human genomic DNA. Some SNPs, particularly those in and around coding sequences, are likely to be the direct cause of therapeutically relevant phenotypic variants and/or disease predisposition. There are a number of well known polymorphisms that cause clinically important phenotypes; for example, the apoE2/3/4 variants are associated with different relative risk of Alzheimer's and other diseases (see Cordor et al., Science 261(1993). Multiplex PCR amplification of SNP loci with subsequent hybridization to oligonucleotide arrays has been shown to be an accurate and reliable method of simultaneously genotyping at least hundreds of SNPs; see Wang et al., Science, 280:1077 (1998); see also Schafer et al., Nature Biotechnology 16:33-39 (1998). The compositions of the present invention may easily be substituted for the arrays of the prior art.

There are a variety of particular techniques that are used to detect sequence, including mutations and SNPs. These include, but are not limited to, ligation based assays, cleavage based assays (mismatch and invasive cleavage such as Invader™), single base extension methods (see WO 92/15712, EP 0 371 437 B1, EP 0317 074 B1; Pastinen et al., Genome Res. 7:606-614 (1997); Syvänen, Clinica Chimica Acta 226:225-236 (1994); and WO 91/13075), and competitive probe analysis (e.g. competitive sequencing by hybridization; see below).

Oligonucleotide ligation amplification ("OLA", which is referred as the ligation chain reaction (LCR) when two-stranded reactions or nested reactions are done) involves the ligation of two smaller probes into a single long probe, using the target sequence as the template. See generally U.S. Patent Nos. 5,185,243, 5,679,524 and 5,573,907; EP 0 320 308 B1; EP 0 336 731 B1; EP 0 439 182 B1; WO 90/01069; WO 89/12696; WO 97/31256 and WO 89/09835, all of which are incorporated by reference.

Invasive cleavage technology is based on structure-specific nucleases that cleave nucleic acids in a site-specific manner. Two probes are used: an "invader" probe and a "signalling" probe, that adjacently hybridize to a target sequence with a non-complementary overlap. The enzyme cleaves at the overlap due to its recognition of the "tail", and releases the "tail" with a label. This can then be

detected. The Invader[™] technology is described in U.S. Patent Nos. 5,846,717; 5,614,402; 5,719,028; 5,541,311; and 5,843,669, all of which are hereby incorporated by reference.

5

10

15

20

25

30

35

An additional technique utilizes sequencing by hybridization. For example, sequencing by hybridization has been described (Drmanac et al., Genomics 4:114 (1989); Koster et al., Nature Biotechnology 14:1123 (1996); U.S. Patent Nos. 5,525,464; 5,202,231 and 5,695,940, among others, all of which are hereby expressly incorporated by reference in their entirety).

Sensitivity, i.e. detection limits, remain a significant obstacle in nucleic acid detection systems, and a variety of techniques have been developed to address this issue. Briefly, these techniques can be classified as either target amplification or signal amplification. Target amplification involves the amplification (i.e. replication) of the target sequence to be detected, resulting in a significant increase in the number of target molecules. Target amplification strategies include the polymerase chain reaction (PCR), strand displacement amplification (SDA), and nucleic acid sequence based amplification (NASBA).

Alternatively, rather than amplify the target, alternate techniques use the target as a template to replicate a signalling probe, allowing a small number of target molecules to result in a large number of signalling probes, that then can be detected. Signal amplification strategies include the ligase chain reaction (LCR), cycling probe technology (CPT), invasive cleavage techniques such as InvaderTM technology, Q-Beta replicase (QβR) technology, and the use of "amplification probes" such as "branched DNA" that result in multiple label probes binding to a single target sequence.

The polymerase chain reaction (PCR) is widely used and described, and involves the use of primer extension combined with thermal cycling to amplify a target sequence; see U.S. Patent Nos. 4,683,195 and 4,683,202, and PCR Essential Data, J. W. Wiley & sons, Ed. C.R. Newton, 1995, all of which are incorporated by reference. In addition, there are a number of variations of PCR which also find use in the invention, including "quantitative competitive PCR" or "QC-PCR", "arbitrarily primed PCR" or "AP-PCR", "immuno-PCR", "Alu-PCR", "PCR single strand conformational polymorphism" or "PCR-SSCP", allelic PCR (see Newton et al. Nucl. Acid Res. 17:2503 91989); "reverse transcriptase PCR" or "RT-PCR", "biotin capture PCR", "vectorette PCR". "panhandle PCR", and "PCR select cDNA subtraction", among others.

Strand displacement amplification (SDA) is generally described in Walker et al., in Molecular Methods for Virus Detection, Academic Press, Inc., 1995, and U.S. Patent Nos. 5,455,166 and 5,130,238, all of which are hereby incorporated by reference.

Nucleic acid sequence based amplification (NASBA) is generally described in U.S. Patent No. 5,409,818 and "Profiting from Gene-based Diagnostics", CTB International Publishing Inc., N.J., 1996,

both of which are incorporated by reference.

5

10

15

20

25

30

35

Cycling probe technology (CPT) is a nucleic acid detection system based on signal or probe amplification rather than target amplification, such as is done in polymerase chain reactions (PCR). Cycling probe technology relies on a molar excess of labeled probe which contains a scissile linkage of RNA. Upon hybridization of the probe to the target, the resulting hybrid contains a portion of RNA:DNA. This area of RNA:DNA duplex is recognized by RNAseH and the RNA is excised, resulting in cleavage of the probe. The probe now consists of two smaller sequences which may be released, thus leaving the target intact for repeated rounds of the reaction. The unreacted probe is removed and the label is then detected. CPT is generally described in U.S. Patent Nos. 5,011,769, 5,403,711, 5,660,988, and 4,876,187, and PCT published applications WO 95/05480, WO 95/1416, and WO 95/00667, all of which are specifically incorporated herein by reference.

The oligonucleotide ligation assay (OLA) involve the ligation of at least two smaller probes into a single long probe, using the target sequence as the template for the ligase. See generally U.S. Patent Nos. 5,185,243, 5,679,524 and 5,573,907; EP 0 320 308 B1; EP 0 336 731 B1; EP 0 439 182 B1; WO 90/01069; WO 89/12696; and WO 89/09835, all of which are incorporated by reference.

Invader™ technology is based on structure-specific polymerases that cleave nucleic acids in a site-specific manner. Two probes are used: an "invader" probe and a "signalling" probe, that adjacently hybridize to a target sequence with overlap. For mismatch discrimination, the invader technology relies on complementarity at the overlap position where cleavage occurs. The enzyme cleaves at the overlap, and releases the "tail" which may or may not be labeled. This can then be detected. The Invader™ technology is described in U.S. Patent Nos. 5,846,717; 5,614,402; 5,719,028; 5,541,311; and 5,843,669, all of which are hereby incorporated by reference.

"Branched DNA" signal amplification relies on the synthesis of branched nucleic acids, containing a multiplicity of nucleic acid "arms" that function to increase the amount of label that can be put onto one probe. This technology is generally described in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference.

Similarily, dendrimers of nucleic acids serve to vastly increase the amount of label that can be added to a single molecule, using a similar idea but different compositions. This technology is as described in U.S. Patent No. 5,175,270 and Nilsen et al., J. Theor. Biol. 187:273 (1997), both of which are incorporated herein by reference.

U.S.S.N.s 09/189,543; 08/944,850; 09/033,462; 09/287,573; 09/151,877; 09/187,289 and 09/256,943; and PCT applications US98/09163 and US99/14387; US98/21193; US99/04473 and US98/05025, all

of which are expressly incorporated by reference, describe novel compositions utilizing substrates with microsphere arrays, which allow for novel detection methods of nucleic acid hybridization.

The use of adapter-type sequences that allow the use of universal arrays has been described in limited contexts; see for example Chee et al., Nucl. Acid Res. 19:3301 (1991); Shoemaker et al., Nature Genetics 14:450 (1996); U.S. Patent Nos. 5,494,810, 5,830,711, 6,027,889, 6,054,564, and 6,268,148; and EP 0 799 897 A1; WO 97/31256, all of which are expressly incorporated by reference.

Accordingly, it is an object of the present invention to provide methods for detecting nucleic acid reactions, and other target analytes, on arrays using adapter sequences.

SUMMARY OF THE INVENTION

In accordance with the above objects, the invention also provides a method of detecting a target nucleic acid. The method comprises contacting the target nucleic acid with an adapter sequence such that the target nucleic acid is joined to the adapter sequence to form a modified target nucleic acid. In addition, the method comprises contacting the modified target nucleic acid with an array comprising a substrate with a surface comprising discrete sites and a population of microspheres comprising at least a first subpopulation comprising a first capture probe, such that the first capture probe and the modified target nucleic acid form a complex, wherein the microspheres are distributed on the surface, and detecting the presence fo the target nucleic acid. In addition the method comprises adding at least one decoding binding ligand to the array such that the identity of the target nucleic acid is determined. Preferably the adapter nucleic acids include a sequence as set forth in Table Table I, Table II, Table III or Table IV.

25

30

5

10

15

20

In addition the invention provides a method of making an array. The method comprises forming a surface comprising individual sites on a substrate, distributing microspheres on the surface such that the individual sites contain microspheres, wherein the microspheres comprise at least a first and a second subpopulation each comprising a capture probe, wherein the capture probe is complementary to an adapter sequence, the adapter sequence joined to a target nucleic acid, and an identifier binding ligand that will bind at least one decoder binding ligand such that the identification of the target nucleic acid is elucidated. Preferably the adapter nucleic acids include a sequence as set forth in Table I, Table III or Table IV.

35

In addition the invention provides a kit comprising at least one nucleic acid selected from the group consisting of the sequences set forth it Table I, Table II, Table III or Table IV. In one embodiment the invention provides a kit that includes a nucleic acid that includes a sequence as set forth in Table I, Table III or Table IV and at least a first universal priming sequence.

In addition the invention includes an array composition comprising a first population of microspheres comprising first and second subpopulations, wherein the first subpopulation includes a first nucleic acid selected from the sequences set forth in Table II, Table III or Table IV and the second subpopulation includes a second sequence selected from the sequences set forth in Table II, Table III or Table IV.

In addition the invention includes an array composition comprising a first sequence at a known location on a substrate, wherein the first sequence is selected from the sequences set forth in Table I, Table II, Table III or Table IV.

10

15

5

In addition the invention includes a method for making an array. The method includes distributing a population of microspheres on an substrate, wherein the population includes first and second subpopulations, wherein the first subpopulation includes a first sequence selected from the group consisting of the sequences set forth in Table I, Table II, Table III or Table IV and the sequences set forth in Table I, Table II, Table II, Table III or Table IV.

In addition the method includes a method of immobilizing a target nucleic acid. The method includes hybridizing a first adapter probe with a first target nucleic acid, wherein the first adapter probe comprises a first domain that is complementary to the first target nucleic acid and a second domain, comprising a first sequence selected from the sequences set forth in Table I, Table II, Table III or Table IV to form a first hybridization complex. In addition the method includes contacting the first hybridization complex with a first capture probe immobilized on a first substrate, wherein the first capture probe is substantially complementary to the second domain of the first adapter probe.

25

30

20

In addition the invention includes a method of decoding an array composition comprising providing an array composition that includes a substrate with a surface comprising discrete sites and a population of microspheres comprising at least a first and a second subpopulation, wherein each subpopulation comprises a bioactive agent. The microspheres are distributed on the surface. The method further includes adding a plurality of decoding binding ligands to the array composition to identify the location of at least a plurality of the bioactive agents wherein at least a first decoder binding ligand comprises a sequence selected from the group consisting of the sequences of Table I, Table II, Table III or Table IV.

35

A method of detecting a target nucleic acid sequence, said method comprising attaching a first adapter nucleic acid to a first target nucleic acid sequence to form a modified first target nucleic acid sequence, wherein the first adapter nucleic acid includes a sequence selected from the sequences set forth in Table I, Table II, Table III or Table IV. The method further includes contacting the modified first target nucleic acid sequence with an array comprising a substrate with a patterned surface

comprising discrete sites and a population of microspheres comprising at least a first subpopulation comprising a first capture probe, such that the first capture probe and the modified first target nucleic acid sequence form a hybridization complex; wherein the microspheres are distributed on the surface and detecting the presence of the modified first target nucleic acid sequence.

5

DETAILED DESCRIPTION OF THE FIGURES

Figure 1 depicts a method of selecting oligonucleotide sequences.

10

Figure 2 depicts a scheme for selection of probes and decoder oligonucleotides.

Figure 3 demonstrates hybridization intensity comparison of immobilized beads using non-purified oligonucleotides with HPLC purified oligonucleotides.

15

Figure 4 depicts different oligonucleotide sequences immobilized onto silica beads at various salt concentration. Average intensity indicates hybridization intensity of beads in a BeadArray.

Figure 5 depicts immobilization of oligonucleotides in increasing salt concentrations.

20

25

DETAILED DESCRIPTION OF THE INVENTION

This invention is directed to the use of adapter sequences, and optionally capture extender probes, that allow the use of "universal" arrays. That is, a "universal" array is an array with a set of capture probes that will hybridize to adapter sequences, for use in any number of different reactions, including the binding of nucleic acid reactions and other target analytes comprising a nucleic acid adapter sequence that can hybridize to the array. In this way, a manufacturer of arrays can make one type of array that may be used in a variety of applications, thus reducing the manufacturing costs associated with the array. In addition, in the case of bead arrays, the decoding steps as outlined below can be simplified, as one set of decoding probes can be made.

30

In general, the use of adapter sequences can be described as follows for nucleic acid reactions. An adapter sequence can be added exogenously to a target nucleic acid sequence using any number of different techniques, including, but not limited to, amplification reactions as described in U.S.S.N. 09/425,633, filed October 22, 1999; 09/513,362, filed February 25, 2000; 09/517,945, filed March 3, 2000; 09/535,854, filed March 27, 2000; 09/553,993, filed April 20, 2000; 09/556,463, filed April 21, 2000; 60/135,051, filed May 20, 1999; 60/135,053, filed May 20, 1999; 60/135,123, filed May 20, 1999; 60/130,089, filed April 20, 1999; 60/160,917, filed October 22, 1999; 60/160,927, filed October 22,

35

1999; 60/161,148, filed October 22, 1999; and 60/244,119, filed October 26, 2000 all of which are hereby incorporated by reference. In addition, the adapter can be added to an extension probe. The adapter sequence can then be used to target to its complementary capture probe on the surface.

Alternatively, the adapter sequences can be added to other target analytes, to generate unique and reproducible arrays of target analytes in a similar manner. By adding the nucleic acid to the target analyte (for example to an antibody in an immunoassay), the target analytes may then be arrayed.

10

15

20

25

30

35

Accordingly, the present invention provides methods for the detection of target analytes, particularly nucleic acid target sequences, in a sample. As will be appreciated by those in the art, the sample solution may comprise any number of things, including, but not limited to, bodily fluids (including, but not limited to, blood, urine, serum, lymph, saliva, anal and vaginal secretions, perspiration and semen, of virtually any organism, with mammalian samples being preferred and human samples being particularly preferred); environmental samples (including, but not limited to, air, agricultural, water and soil samples); biological warfare agent samples; research samples; purified samples, such as purified genomic DNA, RNA, proteins, etc.; raw samples (bacteria, virus, genomic DNA, etc.; As will be appreciated by those in the art, virtually any experimental manipulation may have been done on the sample.

The present invention provides methods for the detection of target analytes, particularly nucleic acid target sequences, in a sample. By "target analyte" or "analyte" or grammatical equivalents herein is meant any molecule, compound or particle to be detected. As outlined below, target analytes preferably bind to binding ligands, as is more fully described below. As will be appreciated by those in the art, a large number of analytes may be detected using the present methods; basically, any target analyte for which a binding ligand, described below, may be made may be detected using the methods of the invention.

Suitable analytes include organic and inorganic molecules, including biomolecules. In a preferred embodiment, the analyte may be an environmental pollutant (including pesticides, insecticides, toxins, etc.); a chemical (including solvents, polymers, organic materials, etc.); therapeutic molecules (including therapeutic and abused drugs, antibiotics, etc.); biomolecules (including hormones, cytokines, proteins, lipids, carbohydrates, cellular membrane antigens and receptors (neural, hormonal, nutrient, and cell surface receptors) or their ligands, etc); whole cells (including procaryotic (such as pathogenic bacteria) and eukaryotic cells, including mammalian tumor cells); viruses (including retroviruses, herpesviruses, adenoviruses, lentiviruses, etc.); and spores; etc. Particularly preferred analytes are environmental pollutants; nucleic acids; proteins (including enzymes, antibodies, antigens, growth factors, cytokines, etc.); therapeutic and abused drugs; cells; and viruses.

In a preferred embodiment, the target analyte is a protein. As will be appreciated by those in the art.

there are a large number of possible proteinaceous target analytes that may be detected using the present invention. By "proteins" or grammatical equivalents herein is meant proteins, oligopeptides and peptides, derivatives and analogs, including proteins containing non-naturally occurring amino acids and amino acid analogs, and peptidomimetic structures. The side chains may be in either the (R) or the (S) configuration. In a preferred embodiment, the amino acids are in the (S) or L-configuration. As discussed below, when the protein is used as a binding ligand, it may be desirable to utilize protein analogs to retard degradation by sample contaminants.

5

10

15

20

25

30

35

Suitable protein target analytes include, but are not limited to, (1) immunoglobulins, particularly lgEs. lgGs and lgMs, and particularly therapeutically or diagnostically relevant antibodies, including but not limited to, for example, antibodies to human albumin, apolipoproteins (including apolipoprotein E), human chorionic gonadotropin, cortisol, α-fetoprotein, thyroxin, thyroid stimulating hormone (TSH), antithrombin, antibodies to pharmaceuticals (including antieptileptic drugs (phenytoin, primidone, carbariezepin, ethosuximide, valproic acid, and phenobarbitol), cardioactive drugs (digoxin, lidocaine, procainamide, and disopyramide), bronchodilators (theophylline), antibiotics (chloramphenicol, sulfonamides), antidepressants, immunosuppresants, abused drugs (amphetamine, methamphetamine, cannabinoids, cocaine and opiates) and antibodies to any number of viruses (including orthomyxoviruses, (e.g. influenza virus), paramyxoviruses (e.g respiratory syncytial virus, mumps virus, measles virus), adenoviruses, rhinoviruses, coronaviruses, reoviruses, togaviruses (e.g. rubella virus), parvoviruses, poxviruses (e.g. variola virus, vaccinia virus), enteroviruses (e.g. poliovirus, coxsackievirus), hepatitis viruses (including A, B and C), herpesviruses (e.g. Herpes simplex virus, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus), rotaviruses, Norwalk viruses, hantavirus, arenavirus, rhabdovirus (e.g. rabies virus), retroviruses (including HIV, HTLV-I and -II), papovaviruses (e.g. papillomavirus), polyomaviruses, and picornaviruses, and the like), and bacteria (including a wide variety of pathogenic and non-pathogenic prokaryotes of interest including Bacillus; Vibrio, e.g. V. cholerae; Escherichia, e.g. Enterotoxigenic E. coli, Shigella, e.g. S. dysenteriae; Salmonella, e.g. S. typhi; Mycobacterium e.g. M. tuberculosis, M. leprae; Clostridium, e.g. C. botulinum, C. tetani, C. difficile, C.perfringens; Cornyebacterium, e.g. C. diphtheriae; Streptococcus, S. pyogenes, S. pneumoniae; Staphylococcus, e.g. S. aureus; Haemophilus, e.g. H. influenzae; Neisseria, e.g. N. meningitidis, N. gonorrhoeae; Yersinia, e.g. G. lambliaY. pestis, Pseudomonas, e.g. P. aeruginosa, P. putida; Chlamydia, e.g. C. trachomatis; Bordetella, e.g. B. pertussis; Treponema, e.g. T. palladium; and the like); (2) enzymes (and other proteins), including but not limited to, enzymes used as indicators of or treatment for heart disease, including creatine kinase, lactate dehydrogenase, aspartate amino transferase, troponin T, myoglobin, fibrinogen, cholesterol, triglycerides, thrombin, tissue plasminogen activator (tPA); pancreatic disease indicators including amylase, lipase, chymotrypsin and trypsin; liver function enzymes and proteins including cholinesterase, bilirubin, and alkaline phosphotase; aldolase, prostatic acid phosphatase, terminal deoxynucleotidyl transferase, and bacterial and viral enzymes such as HIV protease; (3) hormones and cytokines (many of which serve as ligands for cellular receptors) such as erythropoietin (EPO), thrombopoietin (TPO), the interleukins

(including IL-1 through IL-17), insulin, insulin-like growth factors (including IGF-1 and -2), epidermal growth factor (EGF), transforming growth factors (including TGF-α and TGF-β), human growth hormone, transferrin, epidermal growth factor (EGF), low density lipoprotein, high density lipoprotein, leptin, VEGF, PDGF, ciliary neurotrophic factor, prolactin, adrenocorticotropic hormone (ACTH), calcitonin, human chorionic gonadotropin, cotrisol, estradiol, follicle stimulating hormone (FSH), thyroid-stimulating hormone (TSH), leutinzing hormone (LH), progeterone, testosterone, ; and (4) other proteins (including α-fetoprotein, carcinoembryonic antigen CEA.

5

10

15

20

25

30

35

In addition, any of the biomolecules for which antibodies may be detected may be detected directly as well; that is, detection of virus or bacterial cells, therapeutic and abused drugs, etc., may be done directly.

Suitable target analytes include carbohydrates, including but not limited to, markers for breast cancer (CA15-3, CA 549, CA 27.29), mucin-like carcinoma associated antigen (MCA), ovarian cancer (CA125), pancreatic cancer (DE-PAN-2), and colorectal and pancreatic cancer (CA 19, CA 50, CA242).

In a preferred embodiment, the target analyte (and various adapters and other probes of the invention), comprise nucleic acids. By "nucleic acid" or "oligonucleotide" or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Patent No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Patent Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S.

Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within the definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby expressly incorporated by reference. These modifications of the ribose-phosphate backbone may be done to facilitate the addition of labels, alter the hybridization properties of the nucleic acids, or to increase the stability and half-life of such molecules in physiological environments.

5

15

20

25

30

35

As will be appreciated by those in the art, all of these nucleic acid analogs may find use in the present invention. In addition, mixtures of naturally occurring nucleic acids and analogs can be made.

Alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (Tm) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in Tm for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. This allows for better detection of mismatches. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xathanine hypoxathanine, isocytosine, isoguanine, etc. A preferred embodiment utilizes isocytosine and isoguanine in nucleic acids designed to be complementary to other probes, rather than target sequences, as this reduces non-specific hybridization, as is generally described in U.S. Patent No. 5,681,702. As used herein, the term "nucleoside" includes nucleotides as well as nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occuring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

In general, probes of the present invention (including adapter sequences and capture probes, described below) are designed to be complementary to a target sequence (either the target sequence of the sample or to other probe sequences, for example adapter sequences) such that hybridization of the target and the probes of the present invention occurs. This complementarity need not be perfect;

there may be any number of base pair mismatches that will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under the selected reaction conditions.

When nucleic acids are to be detected, they are referred to herein as "target nucleic acids" or "target sequences". The term "target sequence" or "target nucleic acid" or grammatical equivalents herein means a nucleic acid sequence on a single strand of nucleic acid. The target sequence may be a portion of a gene, a regulatory sequence, genomic DNA, cDNA, RNA including mRNA and rRNA, or others. As is outlined herein, the target sequence may be a target sequence from a sample, or a derivative target such as a product of a reaction such as a detection sequence from an Invader™ reaction, a ligated probe from an OLA reaction, an extended probe from an SBE reaction, etc. It may be any length, with the understanding that longer sequences are more specific. As will be appreciated by those in the art, the complementary target sequence may take many forms. For example, it may be contained within a larger nucleic acid sequence, i.e. all or part of a gene or mRNA, a restriction fragment of a plasmid or genomic DNA, among others. As is outlined more fully below, probes are made to hybridize to target sequences to determine the presence or absence of the target sequence in a sample. Generally speaking, this term will be understood by those skilled in the art. The target sequence may also be comprised of different target domains; for example, a first target domain of the sample target sequence may hybridize to a capture probe, a second target domain may hybridize to a portion of a label probe, etc. The target domains may be adjacent or separated as indicated. Unless specified, the terms "first" and "second" are not meant to confer an orientation of the sequences with respect to the 5'-3' orientation of the target sequence. For example, assuming a 5'-3' orientation of the complementary target sequence, the first target domain may be located either 5' to the second domain, or 3' to the second domain. In addition, as will be appreciated by those in the art, the probes on the surface of the array (e.g. attached to the microspheres) may be attached in either orientation, either such that they have a free 3' end or a free 5' end.

30

35

5

10

15

20

25

As is more fully outlined below, the target sequence may comprise a position for which sequence information is desired, generally referred to herein as the "detection position" or "detection locus". In a preferred embodiment, the detection position is a single nucleotide, although in some embodiments, it may comprise a plurality of nucleotides, either contiguous with each other or separated by one or more nucleotides. By "plurality" as used herein is meant at least two. As used herein, the base which basepairs with a detection position base in a hybrid is termed a "readout position" or an "interrogation position".

In some embodiments, as is outlined herein, the target sequence may not be the sample target

sequence but instead is a product of a reaction herein, sometimes referred to herein as a "secondary" or "derivative" target sequence. Thus, for example, in SBE, the extended primer may serve as the target sequence; similarly, in invasive cleavage variations, the cleaved detection sequence may serve as the target sequence.

5

If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification as needed, as will be appreciated by those in the art.

10

Once prepared, the target sequence can be used in a variety of reactions for a variety of reasons. For example, in a preferred embodiment, genotyping reactions are done. Similarly, these reactions can also be used to detect the presence or absence of a target sequence. Sequencing or amplification reactions are also preferred. In addition, in any reaction, quantitation of the amount of a target sequence may be done.

15

Furthermore, as outlined below for each reaction, many of these techniques may be used in a solution based assay, wherein the reaction is done in solution and a reaction product is bound to the array for subsequent detection, or in solid phase assays, where the reaction occurs on the surface and is detected.

20

25

In general, the present invention provides pairs of capture probes (nucleic acids that are attached to addresses on arrays) and adapter sequences (sequences that are either perfectly or substantially complementary to the capture probe sequences) that can be used in a wide variety of ways, to immobilize target nucleic acids (either primary targets, such as genomic DNA, mRNA or cDNA, or secondary targets such as amplicons from a nucleic acid amplification or extension reaction, as outlined herein) to the addresses of the array. Thus, all the sequences in the Tables include their complements, and either sequence can be used as a capture probe (e.g. spotted onto a surface or attached to a microsphere of an array) or as the adapter sequence that binds to the capture probe.

30

Accordingly, by "adapter sequences" or "adapters" or grammatical equivalents is meant a nucleic acid segment generally non-native or exogenous to a target molecule that is used to immobilize the target molecule to a solid support via binding to a capture probe sequence. In a preferred embodiment the adapter sequences and capture probes are selected from the sequences set forth in Table I, Table II, Table III or Table IV.

35

Table I includes the sequence of the preferred 4000 sequences labeled "Decoder (5'-3')", and inherent in this table are the complementary sequences as well. In addition, the invention includes oligonucleotides that are complementary to those depicted in Table 1.

Table II includes the sequence of the preferred adapter/capture probe sequences and their complementary sequence. Table 2 depicts a preferred subset of 3172 decoder oligonucleotides and their complementary probe oligonucleotides. Accordingly, the invention provides compositions comprising a sequence as outlined in Table 2. In addition, the invention provides a composition comprising a complementary binding pair as outlined in Table 2.

5

10

15

20

25

30

35

Table 3 includes a preferred subset of 768 decoder oligonucleotides and complementary probe sequences. In some embodiments it may be desirable to include a uniform base at a terminus of the oligonucleotide, such as a T at the 5' end as depicted in Table 4. The inclusion of this uniform or constant base facilitates uniform labeling of the oligonucleotides.

These sequences are used as decoder probes, capture probes or adapter sequences as outlined in U.S.S.N. 09/344,526 and PCT/US99/14387, and U.S.S.N.s 60/160,917 and 09/5656,463 all of which are expressly incorporated by reference in their entirety.

As will be appreciated by those in the art, the length of the capture probe/adapter sequences will vary, depending on the desired "strength" of binding and the number of different adapters desired. In a preferred embodiment, adapter sequences range from about 5 to about 500 basepairs in length, with from about 8 to about 100 being preferred, and from about 10 to about 50 being particularly preferred.

As will be appreciated by those in the art, it is desirable to have adapter sequences that do not have significant homology to naturally occurring target sequences, to avoid non-specific or erroneous binding of target sequences to the capture probes. Accordingly, preferred embodiments utilize some method to select useful adapter sequences. In a preferred embodiment the method is outlined in Figure 1. Briefly, random 24-mer (or could be any desired length as outlined herein), sequences were assembled and subjected to certain defined screening procedures including such steps as requiring that the Tm of each of the sequence be within a pre-defined range. In addition the GC content must be balanced with the AT content and the self-complementarity must be minimized. In addition GC runs should be minimized, that is, runs of Gs or Cs should be reduced. In addition, decoder (adapter) to decoder (adapter) complementarity should be reduced so that the adapters do not hybridize with each other. Finally, the sequences are screened against a specified genomic database. In a preferred embodiment the adapters comprise at least one sequence selected from the sequences in Table II. Table III or Table IV.

In a preferred embodiment, the adapter sequences are chosen on the basis of a decoding step. As is more fully outlined below, a decoding step is used to decode random bead arrays. In this embodiment, a set of candidate capture probes is chosen; this may be done in a variety of ways. In a preferred embodiment, the sequences are generated randomly, each of a sufficient length to ensure a

low probability of occurring naturally. In some embodiments, for example when the array will be used with a particular organism's genome (e.g. the human genome, the Drosophila genome, etc.), the sequences are compared to the genome as a first filter, for example to remove sequences that would cross hybridize. Additionally, further filtering may be done using well-known methods, such as known methods for selecting good PCR primers. These techniques generally include steps that remove sequences that may have a propensity to form secondary structures or otherwise to cross-hybridize. Additionally, sequences that have extremes of melting temperatures can be optionally discarded, depending on the planned assay conditions.

5

10

15

20

25

30

35

Once a set of candidate capture probes is obtained, an array comprising the capture probes is made, and a matching set of decoding probes comprising the adapter sequences (e.g. the complements of the capture probes), as more fully outlined below, is made. Decoding then proceeds. Probes that do not hybridize well, for whatever reason, will not decode well, generally due to weak signals, and are generally discarded. Probes that cross-hybridize will also not decode well, as they will give ambiguous or mixed decoding signals. Only probes that hybridize sufficiently strongly and specifically will decode. Thus, by setting suitable thresholds for signal strength and signal purity, adapter sequences that perform according to specified criteria are identified. Additionally, by setting a range on signal strength, capture probe/adapter sequence pairs that perform similarly (but hybridize specifically) are identified. In a preferred embodiment, decoding reactions are repeated, under a variety of conditions, to test the robustness of the sequence pair.

Once identified, the adapter sequences are added to target sequences in a variety of ways, as will be appreciated by those in the art. In a preferred embodiment, nucleic acid amplification reactions are done, as is generally outlined in "Detection of Nucleic Acid Amplification Reactions Using Bead Arrays" and "Sequence Determination of Nucleic Acids using Arrays with Microspheres", both of which were filed on October 22, 1999, (U.S.S.N.'s 60/161,148 and 09/425,633, respectively), both of which are hereby incorporated by reference in their entirety. These may be either target amplification or signal amplification. In general, the techniques can be described as follows. Most amplification techniques require one or more primers hybridizing to all or part the target sequence (e.g. that hybridize to a target domain). The adapter sequences can be added to one or more of the primers (depending on the configuration/orientation of the system and need) and the amplification reactions are run. Thus, for example, PCR primers comprising at least one adapter sequence (and preferably one on each PCR primer) may be used; one or both of the ligation probes of an OLA or LCR reaction may comprise an adapter sequence; the sequencing primers for pyrosequencing, single-base extension, reversible chain termination, etc., reactions may comprise an adapter sequence; either the invader probe or the signalling probe of invasive cleavage reactions can comprise an adapter sequence; etc. Similarly, for signal detection techniques, the probes may comprise adapter sequences, with preferred methods utilizing removal of the unreacted probes. In addition, primers may include universal priming sequences. That is, the adapters may additionally contain universal priming sequences for universal

amplification of products of any of the reactions described herein. Universal priming sequences are further outlined in 09/779376, filed February 7, 2001; 09/779202, filed February 7, 2001; 09/915231, filed July 24, 2001; 60/180810, filed February 7, 2000; and 60/297609, filed June 11, 2001; and 60/311194 filed August 9, 2001, all of which are expressly incorporated herein by reference.

5

10

15

In an alternative embodiment, non-nucleic acid reactions are used to add adapter sequences to the nucleic acid targets. For example, for the direct detection of non-amplified target sequences (e.g. genomic DNA samples, etc.) on universal arrays, non-amplification methods are required. In this embodiment, binding partner pairs or chemical methods may be used. For example, one member of a binding partner pair may be attached to the adapter sequence and the other member attached to the target sequence. For example, the binding partner be a hapten or antigen, which will bind its binding partner. For example, suitable binding partner pairs include, but are not limited to: antigens (such as proteins (including peptides)) and antibodies (including fragments thereof (FAbs, etc.)); proteins and small molecules, including biotin/streptavidin and digoxygenin and antibodies; enzymes and substrates or inhibitors; other protein-protein interacting pairs; receptor-ligands; and carbohydrates and their binding partners, are also suitable binding pairs. Nucleic acid - nucleic acid binding proteins pairs are also useful. In general, the smaller of the pair is attached to the NTP (or the probe) for incorporation into the extension primer. Preferred binding partner pairs include, but are not limited to, biotin (or imino-biotin) and streptavidin, digeoxinin and Abs, and Prolinx™ reagents.

20

25

In a preferred embodiment, chemical attachment methods are used. In this embodiment, chemical functional groups on each of the target sequences and adapter sequences are used. As is known in the art, this may be accomplished in a variety of ways. Preferred functional groups for attachment are amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the two sequences are joined together; for example, amino groups on each nucleic acid may be attached, for example using linkers as are known in the art; for example, homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated herein by reference).

30

In a preferred embodiment, aptamers are used in the system. Aptamers are nucleic acids that can be made to bind to virtually any target analyte; see Bock et al., Nature 355:564 (1992); Femulok et al., Current Op. Chem. Biol. 2:230 (1998); and U.S. Patents 5,270,163, 5,475,096, 5,567,588, 5,595,877, 5,637,459, 5,683,867,5,705,337, and related patents, hereby incorporated by reference.

35

In a preferred embodiment, an array comprising capture probes that hybridize to adapter sequences is made, as outlined herein. In one embodiment aptamers, comprising adapter sequences, can be added. As will be appreciated by those in the art, the aptamers may be preassociated with their binding partners, e.g. target analytes, prior to introduction to the array, or not. In addition, the association between the adapter sequences on the aptamers and the capture probes can be made

covalent, for example through the use of reactive groups (e.g. psoralen) and appropriate activation.

In addition, the present invention is directed to the use of adapter sequences to assemble arrays comprising other target analytes.

5

The adapter sequences may be chosen as outlined above. Preferably the adapters are selected from the sequences set forth in Table I, Table II, Table III or Table IV. These adapter sequences can then be added to the target analytes using a variety of techniques. In general, as described above, non-covalent attachment using binding partner pairs may be done, or covalent attachment using chemical moieties (including linkers).

15

10

Advantages of using adapters include but are not limited to, for example, the ability to create universal arrays. That is, a single array is utilized with each capture probe designed to hybridize with a specific adapter. The adapters are joined to any number of target analytes, such as nucleic acids, as is described herein. Thus, the same array is used for vastly different target analytes. Furthermore, hybridization of adapters with capture probes results in non-covalent attachment of the target nucleic acid to the address of the array (e.g. a microsphere in some embodiments). As such, the target nucleic/adapter hybrid is easily removed, and the microsphere/capture probe can be re-used. In addition, the construction of kits is greatly facilitated by the use of adapters. For example, arrays or microspheres can be prepared that comprise the capture probe; the adapters can be packaged along with the microspheres for attachment to any target analyte of interest. Thus, one need only attach the adapter to the target analyte and disperse on the array for the construction of an array of target analytes.

25

20

Accordingly the present invention provides kits comprising adapters. Preferably the kits include at least 1 nucleic acid sequence as set forth in Table 1. More preferably the kits include at least 10-25 nucleic acids, with at least 50 nucleic acids more preferred. Even more preferable are kits that include at least 100 nucleic acids with more than 1000 even more preferred and more than 2000 even more preferred.

30

It should also be noted that the sequences defined herein can also be used in "sandwich" assay formats, wherein a capture extender probe comprising a first domain that will hybridize to the capture probe and a second domain that has a target specific domain is used. The capture extender probe hybridizes both to the target sequence and the capture probe, thereby immobilizing the target sequence on the array.

35

Once the adapter sequences are associated with the target analyte, including target nucleic acids, the compositions are added to an array comprising addresses comprising capture probes. In one embodiment a plurality of hybrid adapter sequence/target analytes are pooled prior to addition to an

array. All of the methods and compositions herein are drawn to compositions and methods for detecting the presence of target analytes, particularly nucleic acids, using adapter arrays.

5

10

15

20

25

30

35

Accordingly, the present invention provides array compositions comprising at least a first substrate with a surface comprising individual sites. The present system finds particular utility in array formats, i.e. wherein there is a matrix of capture probes (herein generally referred to "pads", "addresses" or "micro-locations"). By "array" or "biochip" herein is meant a plurality of nucleic acids in an array format; the size of the array will depend on the composition and end use of the array. Nucleic acids arrays are known in the art, and can be classified in a number of ways; both ordered arrays (e.g. the ability to resolve chemistries at discrete sites), and random arrays are included. Ordered arrays include, but are not limited to, those made using photolithography techniques (Affymetrix GeneChip™), spotting techniques (Synteni and others), printing techniques (Hewlett Packard and Rosetta), three dimensional "gel pad" arrays, etc. In one embodiment the ordered arrays include arrays that contain nucleic acids at known locations. That is, the adapters or capture probes described herein are immobilized at known locations on a substrate. By "known" locations is meant a site that is known or has been known.

In addition, adapters find use "liquid arrays". By "liquid arrays" is meant an array in solution for analysis, for example, by flow cytometry.

A preferred embodiment utilizes microspheres on a variety of substrates including fiber optic bundles, as are outlined in PCTs US98/21193, PCT US99/14387 and PCT US98/05025; WO98/50782; and U.S.S.N.s 09/287,573, 09/151,877, 09/256,943, 09/316,154, 60/119,323, 09/315,584; all of which are expressly incorporated by reference. While much of the discussion below is directed to the use of microsphere arrays on fiber optic bundles, any array format of nucleic acids on solid supports may be utilized.

Arrays containing from about 2 different bioactive agents (e.g. different beads, when beads are used) to many millions can be made, with very large arrays being possible. Generally, the array will comprise from two to as many as a billion or more, depending on the size of the beads and the substrate, as well as the end use of the array, thus very high density, high density, moderate density, low density and very low density arrays may be made. Preferred ranges for very high density arrays are from about 10,000,000 to about 2,000,000,000, with from about 100,000,000 to about 1,000,000 being preferred (all numbers being in square cm). High density arrays range about 100,000 to about 10,000,000, with from about 1,000,000 to about 5,000,000 being particularly preferred. Moderate density arrays range from about 10,000 to about 100,000 being particularly preferred, and from about 20,000 to about 50,000 being especially preferred. Low density arrays are generally less than 10,000, with from about 1,000 to about 5,000 being preferred. Very low density arrays are less than 1,000, with from about 10 to about 1000 being preferred, and from about 100 to about 500 being particularly preferred. In some embodiments, the compositions of the invention may

not be in array format; that is, for some embodiments, compositions comprising a single bioactive agent may be made as well. In addition, in some arrays, multiple substrates may be used, either of different or identical compositions. Thus for example, large arrays may comprise a plurality of smaller substrates.

5

10

In addition, one advantage of the present compositions is that particularly through the use of fiber optic technology, extremely high density arrays can be made. Thus for example, because beads of 200 µm or less (with beads of 200 nm possible) can be used, and very small fibers are known, it is possible to have as many as 40,000 or more (in some instances, 1 million) different elements (e.g. fibers and beads) in a 1 mm² fiber optic bundle, with densities of greater than 25,000,000 individual beads and fibers (again, in some instances as many as 50-100 million) per 0.5 cm² obtainable (4 million per square cm for 5 µ center-to-center and 100 million per square cm for 1 µ center-to-center).

15

By "substrate" or "solid support" or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of beads and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates is very large. Possible substrates include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, optical fiber bundles, and a variety of other polymers. In general, the substrates allow optical detection and do not themselves appreciably fluoresce.

25

20

Generally the substrate is flat (planar), although as will be appreciated by those in the art, other configurations of substrates may be used as well; for example, three dimensional configurations can be used, for example by embedding the beads in a porous block of plastic that allows sample access to the beads and using a confocal microscope for detection. Similarly, the beads may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Preferred substrates include optical fiber bundles as discussed below, and flat planar substrates such as glass, polystyrene and other plastics and acrylics.

35

30

In a preferred embodiment, the substrate is an optical fiber bundle or array, as is generally described in U.S.S.N.s 08/944,850 and 08/519,062, PCT US98/05025, and PCT US98/09163, all of which are expressly incorporated herein by reference. Preferred embodiments utilize preformed unitary fiber optic arrays. By "preformed unitary fiber optic array" herein is meant an array of discrete individual fiber optic strands that are co-axially disposed and joined along their lengths. The fiber strands are generally individually clad. However, one thing that distinguished a preformed unitary array from other fiber optic formats is that the fibers are not individually physically manipulatable; that is, one strand

generally cannot be physically separated at any point along its length from another fiber strand.

5

10

15

20

25

30

35

At least one surface of the substrate is modified to contain discrete, individual sites for later association of microspheres. These sites may comprise physically altered sites, i.e. physical configurations such as wells or small depressions in the substrate that can retain the beads, such that a microsphere can rest in the well, or the use of other forces (magnetic or compressive), or chemically altered or active sites, such as chemically functionalized sites, electrostatically altered sites, hydrophobically/ hydrophilically functionalized sites, spots of adhesive, etc.

The sites may be a pattern, i.e. a regular design or configuration, or randomly distributed. A preferred embodiment utilizes a regular pattern of sites such that the sites may be addressed in the X-Y coordinate plane. "Pattern" in this sense includes a repeating unit cell, preferably one that allows a high density of beads on the substrate. However, it should be noted that these sites may not be discrete sites. That is, it is possible to use a uniform surface of adhesive or chemical functionalities, for example, that allows the attachment of beads at any position. That is, the surface of the substrate is modified to allow attachment of the microspheres at individual sites, whether or not those sites are contiguous or non-contiguous with other sites. Thus, the surface of the substrate may be modified such that discrete sites are formed that can only have a single associated bead, or alternatively, the surface of the substrate is modified and beads may go down anywhere, but they end up at discrete sites.

In a preferred embodiment, the surface of the substrate is modified to contain wells, i.e. depressions in the surface of the substrate. This may be done as is generally known in the art using a variety of techniques, including, but not limited to, photolithography, stamping techniques, molding techniques and microetching techniques. As will be appreciated by those in the art, the technique used will depend on the composition and shape of the substrate.

In a preferred embodiment, physical alterations are made in a surface of the substrate to produce the sites. In a preferred embodiment, the substrate is a fiber optic bundle and the surface of the substrate is a terminal end of the fiber bundle, as is generally described in 08/818,199 and 09/151,877, both of which are hereby expressly incorporated by reference. In this embodiment, wells are made in a terminal or distal end of a fiber optic bundle comprising individual fibers. In this embodiment, the cores of the individual fibers are etched, with respect to the cladding, such that small wells or depressions are formed at one end of the fibers. The required depth of the wells will depend on the size of the beads to be added to the wells.

Generally in this embodiment, the microspheres are non-covalently associated in the wells, although the wells may additionally be chemically functionalized as is generally described below, cross-linking agents may be used, or a physical barrier may be used, i.e. a film or membrane over the beads.

In a preferred embodiment, the surface of the substrate is modified to contain chemically modified sites, that can be used to attach, either covalently or non-covalently, the microspheres of the invention to the discrete sites or locations on the substrate. "Chemically modified sites" in this context includes. but is not limited to, the addition of a pattern of chemical functional groups including amino groups. carboxy groups, oxo groups and thiol groups, that can be used to covalently attach microspheres, which generally also contain corresponding reactive functional groups; the addition of a pattern of adhesive that can be used to bind the microspheres (either by prior chemical functionalization for the addition of the adhesive or direct addition of the adhesive); the addition of a pattern of charged groups (similar to the chemical functionalities) for the electrostatic attachment of the microspheres, i.e. when the microspheres comprise charged groups opposite to the sites; the addition of a pattern of chemical functional groups that renders the sites differentially hydrophobic or hydrophilic, such that the addition of similarly hydrophobic or hydrophilic microspheres under suitable experimental conditions will result in association of the microspheres to the sites on the basis of hydroaffinity. For example, the use of hydrophobic sites with hydrophobic beads, in an aqueous system, drives the association of the beads preferentially onto the sites. As outlined above, "pattern" in this sense includes the use of a uniform treatment of the surface to allow attachment of the beads at discrete sites, as well as treatment of the surface resulting in discrete sites. As will be appreciated by those in the art, this may be accomplished in a variety of ways.

In a preferred embodiment, the compositions of the invention further comprise a population of microspheres. By "population" herein is meant a plurality of beads as outlined above for arrays. Within the population are separate subpopulations, which can be a single microsphere or multiple identical microspheres. That is, in some embodiments, as is more fully outlined below, the array may contain only a single bead for each capture probe; preferred embodiments utilize a plurality of beads of each type.

By "microspheres" or "beads" or "particles" or grammatical equivalents herein is meant small discrete particles. The composition of the beads will vary, depending on the class of capture probe and the method of synthesis. Suitable bead compositions include those used in peptide, nucleic acid and organic moiety synthesis, including, but not limited to, plastics, ceramics, glass, polystyrene, methylstyrene, acrylic polymers, paramagnetic materials, thoria sol, carbon graphite, titanium dioxide, latex or cross-linked dextrans such as Sepharose, cellulose, nylon, cross-linked micelles and Teflon may all be used. "Microsphere Detection Guide" from Bangs Laboratories, Fishers IN is a helpful quide.

35

5

10

15

20

25

30

The beads need not be spherical; irregular particles may be used. In addition, the beads may be porous, thus increasing the surface area of the bead available for either capture probe attachment or tag attachment. The bead sizes range from nanometers, i.e. 100 nm, to millimeters, i.e. 1 mm, with beads from about 0.2 micron to about 200 microns being preferred, and from about 0.5 to about 5

micron being particularly preferred, although in some embodiments smaller beads may be used.

It should be noted that a key component of this embodiment of the invention is the use of a substrate/bead pairing that allows the association or attachment of the beads at discrete sites on the surface of the substrate, such that the beads do not move during the course of the assay.

Each microsphere comprises a capture probe, although as will be appreciated by those in the art, there may be some microspheres which do not contain a capture probe, depending on the synthetic methods. Alternatively, some have more than one capture probe.

10

15

20

5

Attachment of the nucleic acids may be done in a variety of ways, as will be appreciated by those in the art, including, but not limited to, chemical or affinity capture (for example, including the incorporation of derivatized nucleotides such as AminoLink or biotinylated nucleotides that can then be used to attach the nucleic acid to a surface, as well as affinity capture by hybridization), cross-linking, and electrostatic attachment, etc. In a preferred embodiment, affinity capture is used to attach the nucleic acids to the beads. For example, nucleic acids can be derivatized, for example with one member of a binding pair, and the beads derivatized with the other member of a binding pair. Suitable binding pairs are as described herein for IBL/DBL pairs. For example, the nucleic acids may be biotinylated (for example using enzymatic incorporate of biotinylated nucleotides, for by photoactivated cross-linking of biotin). Biotinylated nucleic acids can then be captured on streptavidincoated beads, as is known in the art. Similarly, other hapten-receptor combinations can be used, such as digoxigenin and anti-digoxigenin antibodies. Alternatively, chemical groups can be added in the form of derivatized nucleotides, that can them be used to add the nucleic acid to the surface.

25

Preferred attachments are covalent, although even relatively weak interactions (i.e. non-covalent) can be sufficient to attach a nucleic acid to a surface, if there are multiple sites of attachment per each nucleic acid. Thus, for example, electrostatic interactions can be used for attachment, for example by having beads carrying the opposite charge to the bioactive agent.

30

Similarly, affinity capture utilizing hybridization can be used to attach nucleic acids to beads. For example, as is known in the art, polyA+RNA is routinely captured by hybridization to oligo-dT beads; this may include oligo-dT capture followed by a cross-linking step, such as psoralen crosslinking). If the nucleic acids of interest do not contain a polyA tract, one can be attached by polymerization with terminal transferase, or via ligation of an oligoA linker, as is known in the art.

35

Alternatively, chemical crosslinking may be done, for example by photoactivated crosslinking of thymidine to reactive groups, as is known in the art.

In a preferred embodiment, each bead comprises a single type of capture probe, although a plurality of

individual capture probes are preferably attached to each bead. Similarly, preferred embodiments utilize more than one microsphere containing a unique capture probe; that is, there is redundancy built into the system by the use of subpopulations of microspheres, each microsphere in the subpopulation containing the same capture probe.

5

10

15

20

25

30

35

In an alternative embodiment, each bead comprises a plurality of different capture probes.

As will be appreciated by those in the art, the capture probes may either be synthesized directly on the beads, or they may be made and then attached after synthesis. In a preferred embodiment, linkers are used to attach the capture probes to the beads, to allow both good attachment, sufficient flexibility to allow good interaction with the target molecule, and to avoid undesirable binding reactions.

In a preferred embodiment, the capture probes are synthesized directly on the beads. As is known in the art, many classes of chemical compounds are currently synthesized on solid supports, such as peptides, organic moieties, and nucleic acids. It is a relatively straightforward matter to adjust the current synthetic techniques to use beads.

In a preferred embodiment, the capture probes are synthesized first, and then covalently attached to the beads. As will be appreciated by those in the art, this will be done depending on the composition of the capture probes and the beads. The functionalization of solid support surfaces such as certain polymers with chemically reactive groups such as thiols, amines, carboxyls, etc. is generally known in the art. Accordingly, "blank" microspheres may be used that have surface chemistries that facilitate the attachment of the desired functionality by the user. Some examples of these surface chemistries for blank microspheres include, but are not limited to, amino groups including aliphatic and aromatic amines, carboxylic acids, aldehydes, amides, chloromethyl groups, hydrazide, hydroxyl groups, sulfonates and sulfates.

In a preferred embodiment the attachment of nucleic acids to substrates includes contacting the oligonucleotide and the solid support in the presence of high salt concentrations. As is appreciated by those skilled in the art, salt includes, but is not limited to sodium chloride, potassium chloride, calcium chloride, magnesium chloride, lithium chloride, rubidium chloride, cesium chloride, barium chloride and the like. In a preferred embodiment, salt as used in the invention includes sodium chloride.

By high salt concentrations is meant salt that is more concentrated than about 0.1 M salt. In a preferred embodiment, by high salt concentrations is meant greater than about 0.2 M salt. In a particularly preferred embodiment, high salt concentrations include from about 0.5 to 3M salt, with about 1M to 2M being most preferred.

By solid support or other grammatical equivalents herein is meant any material that can be modified

to contain oligonucleotides. As will be appreciated by those in the art, the number of possible solid supports is very large. Possible solid supports include, but are not limited to beads, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, optical fiber bundles, and a variety of other polymers.

5

10

15

20

25

30

35

Once formed, the support containing the oligonucleotides finds use in a variety of systems including decoding arrays as described in more detail in U.S.S.N. 09/344,526, and U.S.S.N. 09/574, 117, both of which are expressly incorporated herein by reference. In addition, the support containing the oligonucleotides finds use in microfluidic systems as described in U.S.S.N. 09/306,369 which is expressly incorporated herein by reference. In addition, the support containing the oligonucleotides finds use in composite array systems as described in U.S.S.N. 09/606,369, which is expressly incorporated herein by reference. In addition the support containing the oligonucleotides finds use in a variety of assays as outlined in more detail in U.S.S.N.s 09/513,362, 09/517,945, 09/535,854, 60/160,917, 60/180,810, 60/182,955, and 09/566,463, all of which are expressly incorporated herein by reference in their entirety. In addition, the support containing the oligonucleotides finds use in array based sensors as described in more detail in 09/287,573, 09/260,963, 09/450,829, 09/151,877, 09/187,289 and 08/519,062, all of which are expressly incorporated herein by reference in their entirety.

Accordingly the invention provides a method of attaching oligonucleotides to a solid support. The method includes contacting the oligonucleotides with the support in the presence of high salt as described herein. Once attached, as discussed in the examples, the attached oligonucleotides readily hybridize to targets, probes and the like. Attachment of crude oligonucleotides in the presence of high salt is as efficient as attaching purified oligonucleotides. Thus, the invention also contemplates a method of attachment of oligonucleotides to a solid support without prior purification of the oligonucleotides. Again, the method includes contacting the crude oligonucleotides with a solid support in the presence of high salt as described herein.

The capture probes are designed to be substantially complementary to the adapter sequences, to allow for a minimum of cross reactivity.

When microsphere arrays are used, an encoding/decoding system must be used. That is, since the beads are generally put onto the substrate randomly, there are several ways to correlate the functionality on the bead with its location, including the incorporation of unique optical signatures, generally fluorescent dyes, that could be used to identify the chemical functionality on any particular bead. This allows the synthesis of the candidate agents (i.e. compounds such as nucleic acids and

antibodies) to be divorced from their placement on an array, i.e. the candidate agents may be synthesized on the beads, and then the beads are randomly distributed on a patterned surface. Since the beads are first coded with an optical signature, this means that the array can later be "decoded", i.e. after the array is made, a correlation of the location of an individual site on the array with the bead or candidate agent at that particular site can be made. This means that the beads may be randomly distributed on the array, a fast and inexpensive process as compared to either the in situ synthesis or spotting techniques of the prior art.

5

10

15

20

25

30

35

However, the drawback to these methods is that for a large array, the system requires a large number of different optical signatures, which may be difficult or time-consuming to utilize. Accordingly, the present invention provides several improvements over these methods, generally directed to methods of coding and decoding the arrays. That is, as will be appreciated by those in the art, the placement of the capture probes is generally random, and thus a coding/decoding system is required to identify the probe at each location in the array. This may be done in a variety of ways, as is more fully outlined below, and generally includes: a) the use a decoding binding ligand (DBL), generally directly labeled. that binds to either the capture probe or to identifier binding ligands (IBLs) attached to the beads; b) positional decoding, for example by either targeting the placement of beads (for example by using photoactivatible or photocleavable moieties to allow the selective addition of beads to particular locations), or by using either sub-bundles or selective loading of the sites, as are more fully outlined below; c) selective decoding, wherein only those beads that bind to a target are decoded; or d) combinations of any of these. In some cases, as is more fully outlined below, this decoding may occur for all the beads, or only for those that bind a particular target sequence. Similarly, this may occur either prior to or after addition of a target sequence. In addition, as outlined herein, the target sequences detected may be either a primary target sequence (e.g. a patient sample), or a reaction product from one of the methods described herein (e.g. an extended SBE probe, a ligated probe, a cleaved signal probe, etc.).

Once the identity (i.e. the actual agent) and location of each microsphere in the array has been fixed, the array is exposed to samples containing the target sequences, although as outlined below, this can be done prior to or during the analysis as well. The target sequences can hybridize (either directly or indirectly) to the capture probes as is more fully outlined below, and results in a change in the optical signal of a particular bead.

In the present invention, "decoding" may not rely on the use of optical signatures, but rather on the use of decoding binding ligands that are added during a decoding step. The decoding binding ligands will bind either to a distinct identifier binding ligand partner that is placed on the beads, or to the capture probe itself. In this embodiment the decoding binding ligand either is complementary to the capture probe. In this embodiment the decoding binding ligand has the sequence of the adapter that also binds to the capture probe. In a preferred embodiment the decoder binding ligand is a nucleic acid

that has the sequence of at least one of the nucleic acids set forth in Table 1.

5

10

15

20

25

30

35

The decoding binding ligands are either directly or indirectly labeled, and thus decoding occurs by detecting the presence of the label. By using pools of decoding binding ligands in a sequential fashion, it is possible to greatly minimize the number of required decoding steps.

In some embodiments, the microspheres may additionally comprise identifier binding ligands for use in certain decoding systems. By "identifier binding ligands" or "IBLs" herein is meant a compound that will specifically bind a corresponding decoder binding ligand (DBL) to facilitate the elucidation of the identity of the capture probe attached to the bead. That is, the IBL and the corresponding DBL form a binding partner pair. By "specifically bind" herein is meant that the IBL binds its DBL with specificity sufficient to differentiate between the corresponding DBL and other DBLs (that is, DBLs for other IBLs), or other components or contaminants of the system. The binding should be sufficient to remain bound under the conditions of the decoding step, including wash steps to remove non-specific binding. In some embodiments, for example when the IBLs and corresponding DBLs are proteins or nucleic acids, the dissociation constants of the IBL to its DBL will be less than about 10-4-10-6 M-1, with less than about 10-5 to 10-9 M-1 being preferred and less than about 10-7-10-9 M-1 being particularly preferred.

IBL-DBL binding pairs are known or can be readily found using known techniques. For example, when the IBL is a protein, the DBLs include proteins (particularly including antibodies or fragments thereof (FAbs, etc.)) or small molecules, or vice versa (the IBL is an antibody and the DBL is a protein). Metal ion- metal ion ligands or chelators pairs are also useful. Antigen-antibody pairs, enzymes and substrates or inhibitors, other protein-protein interacting pairs, receptor-ligands, complementary nucleic acids, and carbohydrates and their binding partners are also suitable binding pairs. Nucleic acid - nucleic acid binding proteins pairs are also useful. Similarly, as is generally described in U.S. Patents 5,270,163, 5,475,096, 5,567,588, 5,595,877, 5,637,459, 5,683,867,5,705,337, and related patents, hereby incorporated by reference, nucleic acid "aptamers" can be developed for binding to virtually any target; such an aptamer-target pair can be used as the IBL-DBL pair. Similarly, there is a wide body of literature relating to the development of binding pairs based on combinatorial chemistry methods.

In a preferred embodiment, the IBL is a molecule whose color or luminescence properties change in the presence of a selectively-binding DBL. For example, the IBL may be a fluorescent pH indicator whose emission intensity changes with pH. Similarly, the IBL may be a fluorescent ion indicator, whose emission properties change with ion concentration.

Alternatively, the IBL is a molecule whose color or luminescence properties change in the presence of various solvents. For example, the IBL may be a fluorescent molecule such as an ethidium salt whose

fluorescence intensity increases in hydrophobic environments. Similarly, the IBL may be a derivative of fluorescein whose color changes between aqueous and nonpolar solvents.

In one embodiment, the DBL may be attached to a bead, i.e. a "decoder bead", that may carry a label such as a fluorophore.

5

10

20

25

30

35

In a preferred embodiment, the IBL-DBL pair comprise substantially complementary single-stranded nucleic acids. In this embodiment, the binding ligands can be referred to as "identifier probes" and "decoder probes". Generally, the identifier and decoder probes range from about 4 basepairs in length to about 1000, with from about 6 to about 100 being preferred, and from about 8 to about 40 being particularly preferred. What is important is that the probes are long enough to be specific, i.e. to distinguish between different IBL-DBL pairs, yet short enough to allow both a) dissociation, if necessary, under suitable experimental conditions, and b) efficient hybridization.

In a preferred embodiment, as is more fully outlined below, the IBLs do not bind to DBLs. Rather, the IBLs are used as identifier moieties ("IMs") that are identified directly, for example through the use of mass spectroscopy.

Alternatively, in a preferred embodiment, the IBL and the capture probe are the same moiety; thus, for example, as outlined herein, particularly when no optical signatures are used, the capture probe can serve as both the identifier and the agent. For example, in the case of nucleic acids, the bead-bound probe (which serves as the capture probe) can also bind decoder probes, to identify the sequence of the probe on the bead. Thus, in this embodiment, the DBLs bind to the capture probes.

In one embodiment, the microspheres may contain an optical signature. That is, as outlined in U.S.S.N.s 08/818,199 and 09/151,877, previous work had each subpopulation of microspheres comprising a unique optical signature or optical tag that is used to identify the unique capture probe of that subpopulation of microspheres; that is, decoding utilizes optical properties of the beads such that a bead comprising the unique optical signature may be distinguished from beads at other locations with different optical signatures. Thus the previous work assigned each capture probe a unique optical signature such that any microspheres comprising that capture probe are identifiable on the basis of the signature. These optical signatures comprised dyes, usually chromophores or fluorophores, that were entrapped or attached to the beads themselves. Diversity of optical signatures utilized different fluorochromes, different ratios of mixtures of fluorochromes, and different concentrations (intensities) of fluorochromes.

In a preferred embodiment, the present invention does not rely solely on the use of optical properties to decode the arrays. However, as will be appreciated by those in the art, it is possible in some embodiments to utilize optical signatures as an additional coding method, in conjunction with the

present system. Thus, for example, as is more fully outlined below, the size of the array may be effectively increased while using a single set of decoding moieties in several ways, one of which is the use of optical signatures one some beads. Thus, for example, using one "set" of decoding molecules, the use of two populations of beads, one with an optical signature and one without, allows the effective doubling of the array size. The use of multiple optical signatures similarly increases the possible size of the array.

5

10

15

20

25

30

35

In a preferred embodiment, each subpopulation of beads comprises a plurality of different IBLs. By using a plurality of different IBLs to encode each capture probe, the number of possible unique codes is substantially increased. That is, by using one unique IBL per capture probe, the size of the array will be the number of unique IBLs (assuming no "reuse" occurs, as outlined below). However, by using a plurality of different IBLs per bead, n, the size of the array can be increased to 2ⁿ, when the presence or absence of each IBL is used as the indicator. For example, the assignment of 10 IBLs per bead generates a 10 bit binary code, where each bit can be designated as "1" (IBL is present) or "0" (IBL is absent). A 10 bit binary code has 2¹⁰ possible variants. However, as is more fully discussed below, the size of the array may be further increased if another parameter is included such as concentration or intensity; thus for example, if two different concentrations of the IBL are used, then the array size increases as 3ⁿ. Thus, in this embodiment, each individual capture probe in the array is assigned a combination of IBLs, which can be added to the beads prior to the addition of the capture probe, after, or during the synthesis of the capture probe, i.e. simultaneous addition of IBLs and capture probe components.

Alternatively, the combination of different IBLs can be used to elucidate the sequence of the nucleic acid. Thus, for example, using two different IBLs (IBL1 and IBL2), the first position of a nucleic acid can be elucidated: for example, adenosine can be represented by the presence of both IBL1 and IBL2; thymidine can be represented by the presence of IBL1 but not IBL2, cytosine can be represented by the presence of IBL2 but not IBL1, and guanosine can be represented by the absence of both. The second position of the nucleic acid can be done in a similar manner using IBL3 and IBL4; thus, the presence of IBL1, IBL2, IBL3 and IBL4 gives a sequence of AA; IBL1, IBL2, and IBL3 shows the sequence AT; IBL1, IBL3 and IBL4 gives the sequence TA, etc. The third position utilizes IBL5 and IBL6, etc. In this way, the use of 20 different identifiers can yield a unique code for every possible 10-mer.

In this way, a sort of "bar code" for each sequence can be constructed; the presence or absence of each distinct IBL will allow the identification of each capture probe.

In addition, the use of different concentrations or densities of IBLs allows a "reuse" of sorts. If, for example, the bead comprising a first agent has a 1X concentration of IBL, and a second bead comprising a second agent has a 10X concentration of IBL, using saturating concentrations of the

corresponding labelled DBL allows the user to distinguish between the two beads.

Once the microspheres comprising the capture probes are generated, they are added to the substrate to form an array. It should be noted that while most of the methods described herein add the beads to the substrate prior to the assay, the order of making, using and decoding the array can vary. For example, the array can be made, decoded, and then the assay done. Alternatively, the array can be made, used in an assay, and then decoded; this may find particular use when only a few beads need be decoded. Alternatively, the beads can be added to the assay mixture, i.e. the sample containing the target sequences, prior to the addition of the beads to the substrate; after addition and assay, the array may be decoded. This is particularly preferred when the sample comprising the beads is agitated or mixed; this can increase the amount of target sequence bound to the beads per unit time, and thus (in the case of nucleic acid assays) increase the hybridization kinetics. This may find particular use in cases where the concentration of target sequence in the sample is low; generally, for low concentrations, long binding times must be used.

15

20

25

30

35

preferred.

10

5

In general, the methods of making the arrays and of decoding the arrays is done to maximize the number of different candidate agents that can be uniquely encoded. The compositions of the invention may be made in a variety of ways. In general, the arrays are made by adding a solution or slurry comprising the beads to a surface containing the sites for attachment of the beads. This may be done in a variety of buffers, including aqueous and organic solvents, and mixtures. The solvent can evaporate, and excess beads are removed.

In a preferred embodiment, when non-covalent methods are used to associate the beads with the

array, a novel method of loading the beads onto the array is used. This method comprises exposing the array to a solution of particles (including microspheres and cells) and then applying energy, e.g. agitating or vibrating the mixture. This results in an array comprising more tightly associated particles, as the agitation is done with sufficient energy to cause weakly-associated beads to fall off (or out, in the case of wells). These sites are then available to bind a different bead. In this way, beads that exhibit a high affinity for the sites are selected. Arrays made in this way have two main advantages as compared to a more static loading: first of all, a higher percentage of the sites can be filled easily, and secondly, the arrays thus loaded show a substantial decrease in bead loss during assays. Thus, in a preferred embodiment, these methods are used to generate arrays that have at least about 50% of the sites filled, with at least about 75% being preferred, and at least about 90% being particularly preferred. Similarly, arrays generated in this manner preferably lose less than about 20% of the beads

In this embodiment, the substrate comprising the surface with the discrete sites is immersed into a solution comprising the particles (beads, cells, etc.). The surface may comprise wells, as is described

during an assay, with less than about 10% being preferred and less than about 5% being particularly

herein, or other types of sites on a patterned surface such that there is a differential affinity for the sites. This differential affinity results in a competitive process, such that particles that will associate more tightly are selected. Preferably, the entire surface to be "loaded" with beads is in fluid contact with the solution. This solution is generally a slurry ranging from about 10,000:1 beads:solution (vol:vol) to 1:1. Generally, the solution can comprise any number of reagents, including aqueous buffers, organic solvents, salts, other reagent components, etc. In addition, the solution preferably comprises an excess of beads; that is, there are more beads than sites on the array. Preferred embodiments utilize two-fold to billion-fold excess of beads.

5

15

25

30

35

The immersion can mimic the assay conditions; for example, if the array is to be "dipped" from above into a microtiter plate comprising samples, this configuration can be repeated for the loading, thus minimizing the beads that are likely to fall out due to gravity.

Once the surface has been immersed, the substrate, the solution, or both are subjected to a competitive process, whereby the particles with lower affinity can be disassociated from the substrate and replaced by particles exhibiting a higher affinity to the site. This competitive process is done by the introduction of energy, in the form of heat, sonication, stirring or mixing, vibrating or agitating the solution or substrate, or both.

A preferred embodiment utilizes agitation or vibration. In general, the amount of manipulation of the substrate is minimized to prevent damage to the array; thus, preferred embodiments utilize the agitation of the solution rather than the array, although either will work. As will be appreciated by those in the art, this agitation can take on any number of forms, with a preferred embodiment utilizing microtiter plates comprising bead solutions being agitated using microtiter plate shakers.

The agitation proceeds for a period of time sufficient to load the array to a desired fill. Depending on the size and concentration of the beads and the size of the array, this time may range from about 1 second to days, with from about 1 minute to about 24 hours being preferred.

It should be noted that not all sites of an array may comprise a bead; that is, there may be some sites on the substrate surface which are empty. In addition, there may be some sites that contain more than one bead, although this is not preferred.

In some embodiments, for example when chemical attachment is done, it is possible to attach the beads in a non-random or ordered way. For example, using photoactivatible attachment linkers or photoactivatible adhesives or masks, selected sites on the array may be sequentially rendered suitable for attachment, such that defined populations of beads are laid down.

The arrays of the present invention are constructed such that information about the identity of the

capture probe is built into the array, such that the random deposition of the beads in the fiber wells can be "decoded" to allow identification of the capture probe at all positions. This may be done in a variety of ways, and either before, during or after the use of the array to detect target molecules.

Thus, after the array is made, it is "decoded" in order to identify the location of one or more of the capture probes, i.e. each subpopulation of beads, on the substrate surface.

In a preferred embodiment, pyrosequencing techniques are used to decode the array, as is generally described in "Nucleic Acid Sequencing using Microsphere Arrays", filed October 22, 1999 (no U.S.S.N. received yet), hereby incorporated by reference.

In a preferred embodiment, a selective decoding system is used. In this case, only those microspheres exhibiting a change in the optical signal as a result of the binding of a target sequence are decoded. This is commonly done when the number of "hits", i.e. the number of sites to decode, is generally low. That is, the array is first scanned under experimental conditions in the absence of the target sequences. The sample containing the target sequences is added, and only those locations exhibiting a change in the optical signal are decoded. For example, the beads at either the positive or negative signal locations may be either selectively tagged or released from the array (for example through the use of photocleavable linkers), and subsequently sorted or enriched in a fluorescence-activated cell sorter (FACS). That is, either all the negative beads are released, and then the positive beads are either released or analyzed in situ, or alternatively all the positives are released and analyzed. Alternatively, the labels may comprise halogenated aromatic compounds, and detection of the label is done using for example gas chromatography, chemical tags, isotopic tags mass spectral tags.

25

30

35

5

10

15

20

As will be appreciated by those in the art, this may also be done in systems where the array is not decoded; i.e. there need not ever be a correlation of bead composition with location. In this embodiment, the beads are loaded on the array, and the assay is run. The "positives", i.e. those beads displaying a change in the optical signal as is more fully outlined below, are then "marked" to distinguish or separate them from the "negative" beads. This can be done in several ways, preferably using fiber optic arrays. In a preferred embodiment, each bead contains a fluorescent dye. After the assay and the identification of the "positives" or "active beads", light is shown down either only the positive fibers or only the negative fibers, generally in the presence of a light-activated reagent (typically dissolved oxygen). In the former case, all the active beads are photobleached. Thus, upon non-selective release of all the beads with subsequent sorting, for example using a fluorescence activated cell sorter (FACS) machine, the non-fluorescent active beads can be sorted from the fluorescent negative beads. Alternatively, when light is shown down the negative fibers, all the negatives are non-fluorescent and the the postives are fluorescent, and sorting can proceed. The characterization of the attached capture probe may be done directly, for example using mass

spectroscopy.

Alternatively, the identification may occur through the use of identifier moieties ("IMs"), which are similar to IBLs but need not necessarily bind to DBLs. That is, rather than elucidate the structure of the capture probe directly, the composition of the IMs may serve as the identifier. Thus, for example, a specific combination of IMs can serve to code the bead, and be used to identify the agent on the bead upon release from the bead followed by subsequent analysis, for example using a gas chromatograph or mass spectroscope.

Alternatively, rather than having each bead contain a fluorescent dye, each bead comprises a non-fluorescent precursor to a fluorescent dye. For example, using photocleavable protecting groups, such as certain ortho-nitrobenzyl groups, on a fluorescent molecule, photoactivation of the fluorochrome can be done. After the assay, light is shown down again either the "positive" or the "negative" fibers, to distinguish these populations. The illuminated precursors are then chemically converted to a fluorescent dye. All the beads are then released from the array, with sorting, to form populations of fluorescent and non-fluorescent beads (either the positives and the negatives or vice versa).

In an alternate preferred embodiment, the sites of attachment of the beads (for example the wells) include a photopolymerizable reagent, or the photopolymerizable agent is added to the assembled array. After the test assay is run, light is shown down again either the "positive" or the "negative" fibers, to distinguish these populations. As a result of the irradiation, either all the positives or all the negatives are polymerized and trapped or bound to the sites, while the other population of beads can be released from the array.

25

20

5

In a preferred embodiment, the location of every capture probe is determined using decoder binding ligands (DBLs). As outlined above, DBLs are binding ligands that will either bind to identifier binding ligands, if present, or to the capture probes themselves, preferably when the capture probe is a nucleic acid or protein.

30

35

In a preferred embodiment, as outlined above, the DBL binds to the IBL.

In a preferred embodiment, the capture probes are single-stranded nucleic acids and the DBL is a substantially complementary single-stranded nucleic acid that binds (hybridizes) to the capture probe, termed a decoder probe herein. A decoder probe that is substantially complementary to each candidate probe is made and used to decode the array. In this embodiment, the candidate probes and the decoder probes should be of sufficient length (and the decoding step run under suitable conditions) to allow specificity; i.e. each candidate probe binds to its corresponding decoder probe with sufficient specificity to allow the distinction of each candidate probe.

In a preferred embodiment, the DBLs are either directly or indirectly labeled. In a preferred embodiment, the DBL is directly labeled, that is, the DBL comprises a label. In an alternate embodiment, the DBL is indirectly labeled; that is, a labeling binding ligand (LBL) that will bind to the DBL is used. In this embodiment, the labeling binding ligand-DBL pair can be as described above for IBL-DBL pairs.

Accordingly, the identification of the location of the individual beads (or subpopulations of beads) is done using one or more decoding steps comprising a binding between the labeled DBL and either the IBL or the capture probe (i.e. a hybridization between the candidate probe and the decoder probe when the capture probe is a nucleic acid). After decoding, the DBLs can be removed and the array can be used; however, in some circumstances, for example when the DBL binds to an IBL and not to the capture probe, the removal of the DBL is not required (although it may be desirable in some circumstances). In addition, as outlined herein, decoding may be done either before the array is used to in an assay, during the assay, or after the assay.

In one embodiment, a single decoding step is done. In this embodiment, each DBL is labeled with a unique label, such that the the number of unique tags is equal to or greater than the number of capture probes (although in some cases, "reuse" of the unique labels can be done, as described herein; similarly, minor variants of candidate probes can share the same decoder, if the variants are encoded in another dimension, i.e. in the bead size or label). For each capture probe or IBL, a DBL is made that will specifically bind to it and contains a unique tag, for example one or more fluorochromes. Thus, the identity of each DBL, both its composition (i.e. its sequence when it is a nucleic acid) and its label, is known. Then, by adding the DBLs to the array containing the capture probes under conditions which allow the formation of complexes (termed hybridization complexes when the components are nucleic acids) between the DBLs and either the capture probes or the IBLs, the location of each DBL can be elucidated. This allows the identification of the location of each capture probe; the random array has been decoded. The DBLs can then be removed, if necessary, and the target sample applied.

In a preferred embodiment, the number of unique labels is less than the number of unique capture probes, and thus a sequential series of decoding steps are used. In this embodiment, decoder probes are divided into **n** sets for decoding. The number of sets corresponds to the number of unique tags. Each decoder probe is labeled in **n** separate reactions with **n** distinct tags. All the decoder probes share the same **n** tags. The decoder probes are pooled so that each pool contains only one of the **n** tag versions of each decoder, and no two decoder probes have the same sequence of tags across all the pools. The number of pools required for this to be true is determined by the number of decoder probes and the **n**. Hybridization of each pool to the array generates a signal at every address. The sequential hybridization of each pool in turn will generate a unique, sequence-specific code for each candidate probe. This identifies the candidate probe at each address in the array. For example, if four

tags are used, then 4 X n sequential hybridizations can ideally distinguish 4ⁿ sequences, although in some cases more steps may be required. After the hybridization of each pool, the hybrids are denatured and the decoder probes removed, so that the probes are rendered single-stranded for the next hybridization (although it is also possible to hybridize limiting amounts of target so that the available probe is not saturated. Sequential hybridizations can be carried out and analyzed by subtracting pre-existing signal from the previous hybridization).

5

10

15

20

25

30

35

An example is illustrative. Assuming an array of 16 probe nucleic acids (numbers 1-16), and four unique tags (four different fluors, for example; labels A-D). Decoder probes 1-16 are made that correspond to the probes on the beads. The first step is to label decoder probes 1-4 with tag A, decoder probes 5-8 with tag B, decoder probes 9-12 with tag C, and decoder probes 13-16 with tag D. The probes are mixed and the pool is contacted with the array containing the beads with the attached candidate probes. The location of each tag (and thus each decoder and candidate probe pair) is then determined. The first set of decoder probes are then removed. A second set is added, but this time, decoder probes 1, 5, 9 and 13 are labeled with tag A, decoder probes 2, 6, 10 and 14 are labeled with tag B, decoder probes 3, 7, 11 and 15 are labeled with tag C, and decoder probes 4, 8, 12 and 16 are labeled with tag D. Thus, those beads that contained tag A in both decoding steps contain candidate probe 1; tag A in the first decoding step and tag B in the second decoding step contain candidate probe 2; tag A in the first decoding step and tag C in the second step contain candidate probe 3; etc. In one embodiment, the decoder probes are labeled in situ; that is, they need not be labeled prior to the decoding reaction. In this embodiment, the incoming decoder probe is shorter than the candidate probe, creating a 5' "overhang" on the decoding probe. The addition of labeled ddNTPs (each labeled with a unique tag) and a polymerase will allow the addition of the tags in a sequence specific manner, thus creating a sequence-specific pattern of signals. Similarly, other modifications can be done, including ligation, etc.

In addition, since the size of the array will be set by the number of unique decoding binding ligands, it is possible to "reuse" a set of unique DBLs to allow for a greater number of test sites. This may be done in several ways; for example, by using some subpopulations that comprise optical signatures. Similarly, the use of a positional coding scheme within an array; different sub-bundles may reuse the set of DBLs. Similarly, one embodiment utilizes bead size as a coding modality, thus allowing the reuse of the set of unique DBLs for each bead size. Alternatively, sequential partial loading of arrays with beads can also allow the reuse of DBLs. Furthermore, "code sharing" can occur as well.

In a preferred embodiment, the DBLs may be reused by having some subpopulations of beads comprise optical signatures. In a preferred embodiment, the optical signature is generally a mixture of reporter dyes, preferably flourescent. By varying both the composition of the mixture (i.e. the ratio of one dye to another) and the concentration of the dye (leading to differences in signal intensity), matrices of unique optical signatures may be generated. This may be done by covalently attaching the

dyes to the surface of the beads, or alternatively, by entrapping the dye within the bead.

5

10

15

20

25

30

35

In a preferred embodiment, the encoding can be accomplished in a ratio of at least two dyes, although more encoding dimensions may be added in the size of the beads, for example. In addition, the labels are distinguishable from one another; thus two different labels may comprise different molecules (i.e. two different fluors) or, alternatively, one label at two different concentrations or intensity.

In a preferred embodiment, the dyes are covalently attached to the surface of the beads. This may be done as is generally outlined for the attachment of the capture probes, using functional groups on the surface of the beads. As will be appreciated by those in the art, these attachments are done to minimize the effect on the dye.

In a preferred embodiment, the dyes are non-covalently associated with the beads, generally by entrapping the dyes in the pores of the beads.

Additionally, encoding in the ratios of the two or more dyes, rather than single dye concentrations, is preferred since it provides insensitivity to the intensity of light used to interrogate the reporter dye's signature and detector sensitivity.

In a preferred embodiment, a spatial or positional coding system is done. In this embodiment, there are sub-bundles or subarrays (i.e. portions of the total array) that are utilized. By analogy with the telephone system, each subarray is an "area code", that can have the same tags (i.e. telephone numbers) of other subarrays, that are separated by virtue of the location of the subarray. Thus, for example, the same unique tags can be reused from bundle to bundle. Thus, the use of 50 unique tags in combination with 100 different subarrays can form an array of 5000 different capture probes. In this embodiment, it becomes important to be able to identify one bundle from another; in general, this is done either manually or through the use of marker beads, i.e. beads containing unique tags for each subarray.

In alternative embodiments, additional encoding parameters can be added, such as microsphere size. For example; the use of different size beads may also allow the reuse of sets of DBLs; that is, it is possible to use microspheres of different sizes to expand the encoding dimensions of the microspheres. Optical fiber arrays can be fabricated containing pixels with different fiber diameters or cross-sections; alternatively, two or more fiber optic bundles, each with different cross-sections of the individual fibers, can be added together to form a larger bundle; or, fiber optic bundles with fiber of the same size cross-sections can be used, but just with different sized beads. With different diameters, the largest wells can be filled with the largest microspheres and then moving onto progressively smaller microspheres in the smaller wells until all size wells are then filled. In this manner, the same dye ratio could be used to encode microspheres of different sizes thereby expanding the number of

different oligonucleotide sequences or chemical functionalities present in the array. Although outlined for fiber optic substrates, this as well as the other methods outlined herein can be used with other substrates and with other attachment modalities as well.

5

10

15

20

25

30

35

In a preferred embodiment, the coding and decoding is accomplished by sequential loading of the microspheres into the array. As outlined above for spatial coding, in this embodiment, the optical signatures can be "reused". In this embodiment, the library of microspheres each comprising a different capture probe (or the subpopulations each comprise a different capture probe), is divided into a plurality of sublibraries; for example, depending on the size of the desired array and the number of unique tags, 10 sublibraries each comprising roughly 10% of the total library may be made, with each sublibrary comprising roughly the same unique tags. Then, the first sublibrary is added to the fiber optic bundle comprising the wells, and the location of each capture probe is determined, generally through the use of DBLs. The second sublibrary is then added, and the location of each capture probe is again determined. The signal in this case will comprise the signal from the "first" DBL and the "second" DBL; by comparing the two matrices the location of each bead in each sublibrary can be determined. Similarly, adding the third, fourth, etc. sublibraries sequentially will allow the array to be filled.

In a preferred embodiment, codes can be "shared" in several ways. In a first embodiment, a single code (i.e. IBL/DBL pair) can be assigned to two or more agents if the target sequences different sufficiently in their binding strengths. For example, two nucleic acid probes used in an mRNA quantitation assay can share the same code if the ranges of their hybridization signal intensities do not overlap. This can occur, for example, when one of the target sequences is always present at a much higher concentration than the other. Alternatively, the two target sequences might always be present at a similar concentration, but differ in hybridization efficiency.

Alternatively, a single code can be assigned to multiple agents if the agents are functionally equivalent. For example, if a set of oligonucleotide probes are designed with the common purpose of detecting the presence of a particular gene, then the probes are functionally equivalent, even though they may differ in sequence. Similarly, an array of this type could be used to detect homologs of known genes. In this embodiment, each gene is represented by a heterologous set of probes, hybridizing to different regions of the gene (and therefore differing in sequence). The set of probes share a common code. If a homolog is present, it might hybridize to some but not all of the probes. The level of homology might be indicated by the fraction of probes hybridizing, as well as the average hybridization intensity. Similarly, multiple antibodies to the same protein could all share the same code.

In a preferred embodiment, decoding of self-assembled random arrays is done on the bases of pH titration. In this embodiment, in addition to capture probes, the beads comprise optical signatures, wherein the optical signatures are generated by the use of pH-responsive dyes (sometimes referred to

herein as "ph dyes") such as fluorophores. This embodiment is similar to that outlined in PCT US98/05025 and U.S.S.N. 09/151,877, both of which are expressly incorporated by reference, except that the dyes used in the present ivention exhibits changes in fluorescence intensity (or other properties) when the solution pH is adjusted from below the pKa to above the pKa (or vice versa). In a preferred embodiment, a set of pH dyes are used, each with a different pKa, preferably separated by at least 0.5 pH units. Preferred embodiments utilize a pH dye set of pKa's of 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11, and 11.5. Each bead can contain any subset of the pH dyes, and in this way a unique code for the capture probe is generated. Thus, the decoding of an array is achieved by titrating the array from pH 1 to pH 13, and measuring the fluorescence signal from each bead as a function of solution pH.

5

10

15

20

25

30

35

Thus, the present invention provides array compositions comprising a substrate with a surface comprising discrete sites. A population of microspheres is distributed on the sites, and the population comprises at least a first and a second subpopulation. Each subpopulation comprises a capture probe, and, in addition, at least one optical dye with a given pKa. The pKas of the different optical dyes are different.

In a preferred embodiment, "random" decoding probes can be made. By sequential hybridizations or the use of multiple labels, as is outlined above, a unique hybridization pattern can be generated for each sensor element. This allows all the beads representing a given clone to be identified as belonging to the same group. In general, this is done by using random or partially degenerate decoding probes, that bind in a sequence-dependent but not highly sequence-specific manner. The process can be repeated a number of times, each time using a different labeling entity, to generate a different pattern of singals based on quasi-specific interactions. In this way, a unique optical signature is eventually built up for each sensor element. By applying pattern recognition or clustering algorithms to the optical signatures, the beads can be grouped into sets that share the same signature (i.e. carry the same probes).

In order to identify the actual sequence of the clone itself, additional procedures are required; for example, direct sequencing can be done, or an ordered array containing the clones, such as a spotted cDNA array, to generate a "key" that links a hybridization pattern to a specific clone.

Alternatively, clone arrays can be decoded using binary decoding with vector tags. For example, partially randomized oligos are cloned into a nucleic acid vector (e.g. plasmid, phage, etc.). Each oligonucleotide sequence consists of a subset of a limited set of sequences. For example, if the limites set comprises 10 sequences, each oligonucleotide may have some subset (or all of the 10) sequences. Thus each of the 10 sequences can be present or absent in the oligonucleotide. Therefore, there are 2¹⁰ or 1,024 possible combinations. The sequences may overlap, and minor variants can also be represented (e.g. A, C, T and G substitutions) to increase the number of possible

combinations. A nucleic acid library is cloned into a vector containing the random code sequences. Alternatively, other methods such as PCR can be used to add the tags. In this way it is possible to use a small number of oligo decoding probes to decode an array of clones.

As will be appreciated by those in the art, the systems of the invention may take on a large number of different configurations, as is generally depicted in the Figures. In general, there are three types of systems that can be used: (1) "non-sandwich" systems (also referred to herein as "direct" detection) in which the target sequence itself is labeled with detectable labels (again, either because the primers comprise labels or due to the incorporation of labels into the newly synthesized strand); (2) systems in which label probes directly bind to the target analytes; and (3) systems in which label probes are indirectly bound to the target sequences, for example through the use of amplifier probes.

5

10

15

20

25

30

35

Detection of the reactions of the Invention, including the direct detection of products and indirect detection utilizing label probes (i.e. sandwich assays), is preferably done by detecting assay complexes comprising detectable labels, which can be attached to the assay complex in a variety of ways.

In a preferred embodiment, an array of different and usually artificial capture probes are made; that is, the capture probes do not have complementarity to known target sequences. The adapter sequences can then be added to any target sequences, or soluble capture extender probes are made; this allows the manufacture of only one kind of array, with the user able to customize the array through the use of adapter sequences or capture extender probes. This then allows the generation of customized soluble probes, which as will be appreciated by those in the art is generally simpler and less costly.

When capture extender probes are used, in one embodiment, microsphere arrays containing a single type of capture probe are made; in this embodiment, the capture extender probes are added to the beads prior to loading on the array. The capture extender probes may be additionally fixed or crosslinked, as necessary.

Accordingly, the present invention provides compositions and methods for detecting the presence or absence of target analytes, including nucleic acid sequences, in a sample. As will be appreciated by those in the art, the sample solution may comprise any number of things, including, but not limited to, bodily fluids (including, but not limited to, blood, urine, serum, lymph, saliva, anal and vaginal secretions, perspiration and semen, of virtually any organism, with mammalian samples being preferred and human samples being particularly preferred); environmental samples (including, but not limited to, air, agricultural, water and soil samples); biological warfare agent samples; research samples (i.e. in the case of nucleic acids, the sample may be the products of an amplification reaction, including both target and signal amplification); purified samples, such as purified genomic DNA, RNA, proteins, etc.; raw samples (bacteria, virus, genomic DNA, etc.; As will be appreciated by those in the

art, virtually any experimental manipulation may have been done on the sample.

The present invention provides compositions and methods for detecting the presence or absence of target nucleic acid sequences in a sample.

5

10

15

25

30

35

In a preferred embodiment, several levels of redundancy are built into the arrays of the invention. Building redundancy into an array gives several significant advantages, including the ability to make quantitative estimates of confidence about the data and significant increases in sensitivity. Thus, preferred embodiments utilize array redundancy. As will be appreciated by those in the art, there are at least two types of redundancy that can be built into an array: the use of multiple identical sensor elements (termed herein "sensor redundancy"), and the use of multiple sensor elements directed to the same target analyte, but comprising different chemical functionalities (termed herein "target redundancy"). For example, for the detection of nucleic acids, sensor redundancy utilizes of a plurality of sensor elements such as beads comprising identical binding ligands such as probes. Target redundancy utilizes sensor elements with different probes to the same target: one probe may span the first 25 bases of the target, a second probe may span the second 25 bases of the target, etc. By building in either or both of these types of redundancy into an array, significant benefits are obtained. For example, a variety of statistical mathematical analyses may be done.

In addition, while this is generally described herein for bead arrays, as will be appreciated by those in the art, this techniques can be used for any type of arrays designed to detect target analytes.

Furthermore, while these techniques are generally described for nucleic acid systems, these techniques are useful in the detection of other binding ligand/target analyte systems as well.

In a preferred embodiment, sensor redundancy is used. In this embodiment, a plurality of sensor elements, e.g. beads, comprising identical bioactive agents are used. That is, each subpopulation comprises a plurality of beads comprising identical bloactive agents (e.g. binding ligands). By using a number of identical sensor elements for a given array, the optical signal from each sensor element can be combined and any number of statistical analyses run, as outlined below. This can be done for a variety of reasons. For example, in time varying measurements, redundancy can significantly reduce the noise in the system. For non-time based measurements, redundancy can significantly increase the confidence of the data.

In a preferred embodiment, a plurality of identical sensor elements are used. As will be appreciated by those in the art, the number of identical sensor elements will vary with the application and use of the sensor array. In general, anywhere from 2 to thousands may be used, with from 2 to 100 being preferred, 2 to 50 being particularly preferred and from 5 to 20 being especially preferred. In general, preliminary results indicate that roughly 10 beads gives a sufficient advantage, although for some applications, more identical sensor elements can be used.

Once obtained, the optical response signals from a plurality of sensor beads within each bead subpopulation can be manipulated and analyzed in a wide variety of ways, including baseline adjustment, averaging, standard deviation analysis, distribution and cluster analysis, confidence interval analysis, mean testing, etc.

5

10

15

In a preferred embodiment, the first manipulation of the optical response signals is an optional baseline adjustment. In a typical procedure, the standardized optical responses are adjusted to start at a value of 0.0 by subtracting the integer 1.0 from all data points. Doing this allows the baseline-loop data to remain at zero even when summed together and the random response signal noise is canceled out. When the sample is a fluid, the fluid pulse-loop temporal region, however, frequently exhibits a characteristic change in response, either positive, negative or neutral, prior to the sample pulse and often requires a baseline adjustment to overcome noise associated with drift in the first few data points due to charge buildup in the CCD camera. If no drift is present, typically the baseline from the first data point for each bead sensor is subtracted from all the response data for the same bead. If drift is observed, the average baseline from the first ten data points for each bead sensor is substracted from the all the response data for the same bead. By applying this baseline adjustment, when multiple bead responses are added together they can be amplified while the baseline remains at zero. Since all beads respond at the same time to the sample (e.g. the sample pulse), they all see the pulse at the exact same time and there is no registering or adjusting needed for overlaying their responses. In addition, other types of baseline adjustment may be done, depending on the requirements and output of the system used.

20

25

Once the baseline has been adjusted, a number of possible statistical analyses may be run to generate known statistical parameters. Analyses based on redundancy are known and generally described in texts such as Freund and Walpole, Mathematical Statistics, Prentice Hall, Inc. New Jersey, 1980, hereby incorporated by reference in its entirety.

30

In a preferred embodiment, signal summing is done by simply adding the intensity values of all responses at each time point, generating a new temporal response comprised of the sum of all bead responses. These values can be baseline-adjusted or raw. As for all the analyses described herein, signal summing can be performed in real time or during post-data acquisition data reduction and analysis. In one embodiment, signal summing is performed with a commercial spreadsheet program (Excel, Microsoft, Redmond, WA) after optical response data is collected.

35

Methods for signal summing and analyses are included in U.S.S.N. 08/944,850, filed October 6, 1997; 09/287,573, filed April 6, 1999; and 60/238,866, filed October 6, 2000; an PCT Nos. US98/21193, filed October 6, 1998; and US00/09183, filed April 6, 2000.

Once made, the methods and compositions of the invention find use in a number of applications. In a

preferred embodiment, the compositions are used to probe a sample solution for the presence or absence of a target sequence, including the quantification of the amount of target sequence present. The compositions and methods find utility in the detection of genotyping assays and sequencing assays, and in all sorts of target analyte assays, including immunoassays.

For SNP analysis, the ratio of different labels at a particular location on the array indicates the homozygosity or heterozygosity of the target sample, assuming the same concentration of each readout probe is used. Thus, for example, assuming a first readout probe comprising a first base at the readout position with a first detectable label and a second readout probe comprising a second base at the readout position with a second detectable label, equal signals (roughly 1:1 (taking into account the different signal intensities of the different labels, different hybridization efficiencies, and other reasons)) of the first and second labels indicates a heterozygote. The absence of a signal from the first label (or a ratio of approximately 0:1) indicates a homozygote of the second detection base; the absence of a signal from the second label (or a ratio of approximately 1:0) indicates a homozygote for the first detection base. As is appreciated by those in the art, the actual ratios for any particular system are generally determined empirically.

Generally, a sample containing a target analyte (whether for detection of the target analyte or screening for binding partners of the target analyte) is added to the array, under conditions suitable for binding of the target analyte to at least one of the capture probes, i.e. generally physiological conditions. The presence or absence of the target analyte is then detected. As will be appreciated by those in the art, this may be done in a variety of ways, generally through the use of a change in an optical signal. This change can occur via many different mechanisms. A few examples include the binding of a dye-tagged analyte to the bead, the production of a dye species on or near the beads, the destruction of an existing dye species, a change in the optical signature upon analyte interaction with dye on bead, or any other optical interrogatable event.

In a preferred embodiment, the change in optical signal occurs as a result of the binding of a target analyte that is labeled, either directly or indirectly, with a detectable label, preferably an optical label such as a fluorochrome. Thus, for example, when a proteinaceous target analyte is used, it may be either directly labeled with a fluor, or indirectly, for example through the use of a labeled antibody. Similarly, nucleic acids are easily labeled with fluorochromes, for example during PCR amplification as is known in the art. Alternatively, upon binding of the target sequences, a hybridization indicator may be used as the label. Hybridization indicators preferentially associate with double stranded nucleic acid, usually reversibly. Hybridization indicators include intercalators and minor and/or major groove binding moieties. In a preferred embodiment, intercalators may be used; since intercalation generally only occurs in the presence of double stranded nucleic acid, only in the presence of target hybridization will the label light up. Thus, upon binding of the target analyte to a capture probe, there is a new optical signal generated at that site, which then may be detected.

Alternatively, in some cases, as discussed above, the target analyte such as an enzyme generates a species that is either directly or indirectly optical detectable.

Furthermore, in some embodiments, a change in the optical signature may be the basis of the optical signal. For example, the interaction of some chemical target analytes with some fluorescent dyes on the beads may alter the optical signature, thus generating a different optical signal.

As will be appreciated by those in the art, in some embodiments, the presence or absence of the target analyte may be done using changes in other optical or non-optical signals, including, but not limited to, surface enhanced Raman spectroscopy, surface plasmon resonance, radioactivity, etc.

The assays may be run under a variety of experimental conditions, as will be appreciated by those in the art. A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in any order that provides for the requisite binding. Various blocking and washing steps may be utilized as is known in the art.

20

25

5

10

15

The following examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All references cited herein are incorporated by reference in their entirety.

Examples

Example 1

Immobilization of Crude Oligonucleotides to a Solid Support

- 1. Introduce chemical functional group (such as -NH2, -COOH, -NCO, -NHS, -SH, -CHO, etc.)onto solid support.
- 2. Activate the functional group before oligonucleotide attachment.
- 3. 5'-terminal modified oligonucleotide attachment,

10

5

Crude Oligonucleotides were attached to supports and compared to results from attachment of purified oligonucleotides. As demonstrated in Figure 3, in the presence of 2M salt, crude oligonucleotides were immobilized as efficiently as purified oligonucleotides.

- 15 IN addition, the improved attachment of oligonucleotides to a solid support in the presence of increased salt was sequence and length independent. Thus, the method finds use in attachment of all oligonucleotides to a solid support (see Figure 4).
- In addition, when 0.5 M to 3 M NaCl was used for attachment of oligonucleotides, non-purified oligonucleotides were attached with comparable efficiency when compared to purified oligonucleotides (see Figure 5).

TABLE 1

Seq. ID No.	Decoder (5'-3')
17	GGCTGGTTCGGCCCGAAAGCTTAG
18	GTTCCCAGTGAAGCTGCGATCTGG
19	TACTTGGCATGGAATCCCTTACGC
20	ACTAGCATATTTCAGGGCACCGGC
21	GAACGGTCAATGAACCCGCTGTGA
22	GCGGCCTTGGTTCAATATGAATCG
23	GATCGTTAGAGGGACCTTGCCCGA
24	TGGACCTAGTCCGGCAGTGACGAA
25	ATAAACTACCCAGGACGGGCGGAA
26	CATCGGTTCGCGCCAATCCAGATA
27	GTCGGGCATAGAGCCGACCACCCT
28	CTTGGGTCATGATTCACCGTGCTA
29	TGCCTAACGTGCTAATCAGCAGCG
30	CGCATGTTGGAGCATATGCCCTGA
31	AGCCACTGCATCAGTGCTGTTCAA
32	GGTTGTTTTGAGGCGTCCCACACT
33	TCGACCAAGAGCAAGGGCGGACCA
34	GACATCGCTATTGCGCATGGATCA
35	GAAATACGAAGTCTGCGGGAGTCG
36	TGTCATGAATGATTGATCGCGCGA
37	ATATCGGGATTCGTTCCCGGTGAA
38	GCGAGCGTACCGAAGGGCCTAGAA
39	TTACCGGCAGCGGACTTCCGAATT
40	GTAATCGAGAGCTGCGCGCCGTCT
41	TCCCTGAGGTCGGAAGCTTCCGAC
42	CCTGTTAGCGTAGGCGAGTCGATC
43	TAGCGGACCGGCAGAATGAGTTCC
44	GGTACATGCACTACGCGCACTCGG
45	AATTCATCTCGGACTCCCGCGGTA
46	GCCAAATCTGGATTGGCAGGAATG
47	TGCATTTTCGGTTGAGGCACATCC
48	CCGCTCAATTCACCATGCTTCGCT
49 ·	CTCGGAAAGGTGCAACTTTGGTGT
50	AATTCGACCAGCAGAACGTCCCAT
51	GCCAGAGTCTCAACCTCACGGGAT
52	CCAACAACTGGAACGGGAACCCGC
-53	GAGAACTGATCGCTGAGGGGCATG
54	GGCACACTAGACTTGTGGCACCGA

	55	CTTGGGCAAACGCTTCAGCCACAA
	56	TCACATCCAAATATGGTCCGCGAA
	57	GTCTGCCGGTGTGACCGCTTCATT
	58	CATCGCAGAGCATAAACACCCTCA
5	59	GTTGGTATCTATGGCAGAGGCGGA
	60	ACGAGGTGCCGCTGAGGTTCCATT
	61	GGAATGAGTGGACCCAGGCACATT
	62	TGTCAATATGCGTCCGTGTCGTCT
{	63	TGATGAGCCTCAGGGTACGAGGCA
10	64	CACCGCGGTGTTCCTACAGAATGA
	65	TTGTTGCCAATGGTGTCCGCTCGG
ĺ	66	TTAACCTGCGTCTGCCCCTTTCCT
	67	AGGCGCGTTCCTGCCTTAGTGACG
	68	TAGGGCGATGGCACGAAGCTTCAA
15	69_	TGCATAGAGCCAAAGTCGGCGATG
	70	TTGAGAGGCAGGTGGCCACACGGA
	71	TCCGCATTGTGAGAAAAAACGAGC
	72	GGCGGTTTCCGTAGCTATAGGTGC
	73	GGTGAAAATTTCGTAGCCACGGGC
20	74	CCGACGGAGGATGAAGACAATCAC
	75	CCAGTTTGGCCCAATTCGCCAAAA
	76	GGATCTATTAGGCCGTGCGCACAG
	77	CGGATGTCACCGTTTGGACTTTCA
	78	ATCGCAAATCCTGCTCGTCCCTAA
25	79	CAGGGCATGCAATAATCGAGGTTC
	80	CATGCGTTGATATATGGGCCCAAG
	81	CAGCTGCAGCTTGTGACCAACCAC
	82	TTGTATGTCTGCCGACCGGCGACC
	83	GATGGCGCCCGTTGATAGGTATGG
30	84	ATGAGAATCGCCGGCAATCTGCTA
	85	ATTTGCACTGACCGCAGGCTCGTG
	86	CAGGGAGAACGGTTAAGTTCCCGT
	87	AGGCCGGCGATCGAGGAGTTTGGT
	88	ACACGGTGGTCTCTGATAGCGACC
35	89	GTGCAACGCCGAGGACTTCCATCA
	90	TCGGTGCCTGATAGCCATTCCGAT
	91	TGAAATACCACACAGCCAATTGGC
	92	GCATCGTGTACATGACTGCCGCGA
!	93	CAGTGTTCTAACGGCGCGCGTGAA
40	94	CGCTTGCACGTTGCACCTACTCT
	95	CGAAAAACTAGTGGGCTCGCCGCG
	96	CTTTCAGGGGAACTGCCGGAGTCG

	97	TTGTGGCCTTCTTGTAAAGGCACG
	98	TCCACGAACGGCGACCCGTTGTCT
	99	CGACCTTGCACGAAACCTAACGAG
	100	GTGCAGCTTCACGAGCCAGCCTGA
5	101	CGCTTTCGTGCGAATAGACGATGA
	102	TGCGCTTACAGGCTCCTAGTGGTC
	103	CACGCGCTTAGTCGCGATCGCATA
	104	CGGAGGAGGAGCTAGCCTTCGA
	105	GCATCCGGCCTGTTGATGACGCCT
10	106	AGGCCAATCGATCTTATTGCCGAG
	107	CCTTCCAATGATTGCATACGCCCA
	108	AACACTTGATCAGGCGGGTCGTCT
	109	TGGAATCAAGGCCGTAAAGGACAG
	110	GCTCCCGTAACCTGTCCACCAGTG
15	111	AGTGGTGAATGGCCGCTACCCTGA
	112	TGTTGAAGCGAGCTAAAACGGCCA
	113	CAGCGCTCCAGAATTGACAGCAAT
	114	AAGGTGGTGCCATTCATTTGGCTA
į	115	CGTTAAACCGCAATCCGTTCGGCT
20	116	TGTCTTCCACCTCGAAGGTTTCCA
·	117	CACGAGATACCGGCGTAAGGGTGG
	118	CTACGGCAAACGTGTGGAATGGGT
	119	GTAGGGCGATGACGGGCGAACTAC
	120	AATCGACCTCCGCACACATTCGCA
25	121	GAGTCAGCATGGCGGCGGAGATTC
	122	AGATAAAGACGCTGGCAACACGGG
	123	GGTACCTCAACGCGAACCACTTGT
	124	AAGCGATGGCTACCCAAGAGCGAT
	125	AGAGCTTATGCAGAACCAGGCGCC
30	126	ATCGGTCTCACGCAGGGTTGGATA
ļ	127	TAGGTTGCCCGCCAGAAGAACAT
	128	CGGTGCTGTTGCAAAAGCCTGTAG
	129	TGATGAAAGTTTGCGGCAGGACAC
	130	GTTGAGTGCAGGATAG
35	131	AACATTGCGCGGTCCACCAGGGTT
	132	GGGCAGTTAGAGAGGGCCAGAAGT
	133	TCGAGCTGGTCCCCGTGAACGTGT
	134	GTCTTGGGGGCCGCTTAGTGAAAA
	135	ACTGTTGGCTTGCTCATGTCCA
40	136	AGGACCATTCGGAAGGCGAAGATA
	137	CTTGGGAGGCATCCGCTATAAGGA
	138	AATAAACGGAACGCACCGCTACAG

	139	TTGTACGTGCGGTCCCCATAAGCA
	140	CGCACCAAACTGAGTTTCCCAGAC
	141	ACCTGATCGTTCCCCTATTGGGAA
	142	GGAACAGAGGCGAGGGGACTGAGC
5	143	CCCTGCCTTGGCGTGTCGGCTTAT
	144	ACTCTGACACGCCAACTCCGGAAG
	145	CTGACGGTTTTCATTCGGCGTGCC
	146	TGCGGTGGTTCATTGGAGCTGGCC
	147	GCATGGCCAACTAGTGACTCGCAA
10	148	AGGCCGTAAAGCGAATCTCACCTG
	149	CGAATATTATGCCGAGAATCCGCG
	150	ACAGACGAGCTCCCAACCACATGA
·	151	GGACGGTTTGTGCTGGATTGTCTG
	152	AAAGGCTATTGAGTTGGTTGGGCG
15	153	GATGGCCTATTCGGAGATCGGGCC
	154	GATCCAGTAGGCAGCTTCATCCCA
	155	AATAACTCGCGCGGGTATGCTTCT
	156	GGAGGAGGTTTGTCTCGGAAAGCA
	157	CTTTGGTATGGCACATGCTGCCCG
20	158	AGAAAGGCTCGAGCAACGGGAACT
	159	AATCTACCGCACTGGTCCGCAAGT
	160	CGTGGCGGCCACAGTTTTTGGAGG
	161	TTGCAGTTCAATCCATACGCACGT
	162	GGCCCAAAGCCCCAGACCATTTTA
25	163	CGCCTGTCTTTGTCTCCGGACAAT
	164	TGAGGCAACAGGGGCCAAAAACTA
	165	AGCGGAAGTAGTCCTCGGCTCGTC
•	166	GGCCCCAAGGCTTAGAGATAGTGG
	167	GCACGTGAAGTTTAACCGCGATTC
30	168	AGCGGCAGAAACGTTCCTTGACGG
	169	TCGTCGAGCAGACGAGATTGCACG
	170	TCTTTGCCGCGTAACTGACTGCTT
	171	TTTATGTGCCAAGGGGTTAACCGA
	172	TGTTACTGTGGTTCACGGCAGTCC
35	173	CGCGCCTCGCTAGACCTTTTATTG
	174	ACAAATGCGTGAGAGCTCCCAACT
	175	CGCGCAGATTATAGACCCGAATGT
	176	CAAATAACGCCGCTGAATCGGCGT
	177	CCTTCGTGCATCGGTGATGATGTT
40	178	TGAACACGAGCAACACTCCAACGC
	179	CAGCAGATCCTTCGTAGCGGTCGT
	180	GGAACCTGGTGAGTTGTGCCTCAT

	181	TCATAAGCGACAATCGCGGGCTTA
{	182	CCCAACGTCACTGAAGCTCACAGT
	183	TGTCAGAGCCCGCGACTCAGACGG
	184	TACACGAAGCCTCTCCGTGGTCCA
5	185	CTCAGAAGTCCTCGGCGAACTGGG
	186	ATCCTTTTATCTACTCCGCGGCGA
	187	AGGCGTGCAGCAACAGGATAAACC
	188	ACTCTCGAGGGAGTCTCTGGCACA
	189	TTGCCAGGTCCATCGAGACCTGTT
10	190	TCCACTATAACTGCGGGTCCGTGT
	191	GCCCAGTCGGCTCTAACAAGTTCG
	192	CGGAACGGATAATCGGCGTCAGGT
	193	TAAAATAAGCGCCTGGCGGAGGA
	194	GCGCACTCGTGAAACCTTTCTCGC
15	195	AGTTTGCCAGGTACTGGCAAGTGC
	196	ACAACGAGGGATGTCCAGCGGCAT
	197	TTCGCAGCACCCGCTAGGTACAGT
	198	TAACCCGATTTTTGCGACTCTGCC
	199	CGTCGCATTGCAAGCGTAGGCTTG
20	200	GAGCTGACGTCACCATCAGAGGAA
İ	201	GGAGGCTGGGGTCGCGCTTAAGT
i L	202	TTGTGGGAACCGCACTAGCTGGCT
	203	CCCTCGCACTGTGTTCACCCTCTT
	204	TCATTGACTCGAATCCGCACAACG
25	205 .	ACAGGGGTTGGCCTTCGTACGTAC
	206	AGGCCGTGCAACATCACACAGGAT
	207	GGGCCGTGGTCACGTAATATTGGC
	208	GCGCGGACATGAAACGACAAGGCC
	209	CTTATTGGGTGCCGGTGTCGGATT
30	210	GGGGCGGTTACCAAAAAATCCGAT
	211	GCTAAAGCGTGCTCCGTAACTGCC
	212	ATCTCATGCATCTCGGTTCGTCGT
•	213	ACGAAAAAGTGTGCGGATCCCCT
	214	CCAAGTACACCGCACGCATGTTTA
35	215	ATCGTGCGTGGAGTGTCGCATCTA
	216	TCCAGATACCGCCCGAACTTTGA
	217	TCTGCTGGCAGCACGTGAAGTGGC
·	218	TTGAAATTGCTCTGCCGTCAGTCA
	219	AGTCAGGCGAGATGTTCAGGCAGC
40	220	ACAAGCCGACGTTAAGCCCGCCCA
	221	CCCTAATGAGGCCAGTAACCTGCA
	222	GTGAGACACACCCCCCCCAATG

[223	CGACGGATGCAGAGTTCAGTGGTC
	224	CCCGCATGCCTGGCGGTATTACAA
	225	TTAGCAAAGCGGCGCCGTTAGCAA
	226	CCCGACACGGGTCAGCGTAATAAT
5	227	GCGACGCCCTGAGGTATGTCGTC
	228	CAAAAGTGTGTTCCCTTGCGCTTG
	229	TCTCGAAGCACAGCCCGGTTATTG
{	230	ATGCTAACCGTTGGCCATGGAACT
	231	CTTGCGGAGTGTTAGCCCAGCGGT
10	232	TGCTCCCTAGGCGCTCGGAGGAGT
	233	CCAATGCCTTTGAGTAAGCGATGG
	234	AGCAGATAACGTCCCAATGACGCC
	235	TTGACCATTACGTGTTGCGCCCAT
	236	TCGCGTATTTGCGGAATTCGTCTG
15	237	CTGCGTGTCAACAATGTCCCGCAG
	238	TCTGGTGCCACGCAAGGTCCACAG
	239	CTCCGGGAGGTCACTTAATTGCGG
	240	TTTTCGTGATTGCCCGGAGGAGGC
	241	TCGGGATGTAGCTGGGCTACCGG
20	242	CGAGCCAACGCAAACACGTCCTTG
	243	GCAAAGCCTTTGTGGGGCGGTAGT
	244	ATTCGACCGGAAATGAGGTCTTCG
	245	TTCGCTTGCTGAGTTGCTCTGTTC
	246	CGCGTGAAGACCCCATTCCCGAGT
25	247	AACCGTATTCGCGGTCACTTGTGG
	248	GGGGCCAACCGTTTCGAGGCGTAT
	249	TTCGGCTGGCAGTCCAAACGGCTT
	250	GGGTGTGGTTAGAATGCACGGTTC
	251	GCGAGGACCGAACTAGACAAACGG
30	252	ACGCACGCGTGACCGAAGTTGCTG
	253	TAAAAGGTCGCTTTGAAAGGGGGA
	254	TGCGATCGCTAACTGCTGGGACAA
	255	GGAGGTATAAGCGGAGCGGCCTCA
	256	ATGCTGACATGTCGTGCACCTCGT
35	257	TGTGGTTAAAGCGTCCGTTCAACG
	258	CGTTCACACCGGCGTAAGCTGCGT
	259	CCTATCCCGGCGAGAACTTCTGTG
	260	GTCTGCACTCACGCAGCGGAGGGA
	261	GCACGAGTTGGTGCTCGGCAGATT
40	262	AACGTCGCACGACACGTTCGTC
	263	ATGCGCGCTTATCCTAGCATGGTC
1	264	TCACGTTTTCGTCTCGACATGAGG

	265	TGTGCCTCATCCTTAGGATACGGC
	266	AGGTGGTGGGTCAACCGCTTTA
	267	CTGGATCGAAGGGACTGCAAGCTC
	268	TAGATCAACTCGCGTACGCATGGA
5	269	GATCCTGCGGAGAAGAGAGTGCAG
	270	TACGTGTGGAGATGCCCCGAACCG
	271	GCGCTATGTCAATCGTGGGCGTAG
	272	AGCGAGGTTTCTAGCGTCGACACC
	273	CGATGAAGACAGGTTTGCTGTTGC
10	274	ACCCAGGTTTTGCCGTTGTGGAAT
	275	CCCTGTTAACGGCTGCGTAGTCTC
	276	AGGCCGATTTCACCCGCCAATTGC
	277	GAGCCCTCACTCCTTGCCCTTTGA
į.	278	GGGTGGACATCCGCCTCGCAGTCA
15	279	GATGGCTGAGAACCGTGCTACGAT
	280	TCGACGTTAGGAGTGCTGCCAGAA
Ţ	281	CGAATGGGTCTGGACCTTGCATAG
	282	GTGCACCAGACATTCGAACTCGGA
	283	AGAGGCCCGTATATCCCATCCAT
20	284	AACGCCTGTTCAGAGCATCAGCGG
	285	AAGGCTCAACACGCCTATGTGCGC
	286	AGTCCGTGTTGCCAGATTGGCTCG
	287	ATGTCCCATGTAAAGACGCGTGTG
	288	ATGGAGTCTGCTCACGCCCAAAGG
25	289	CGGCCTCCAACAAGGAGCACTAAC
	290	CAGAGCCGTGGCAACATTGCGAGC
	291	TCATTTGAATGAGGTGCGCACCGG
	292	GACGTACCGGAAGCGCCGTATAAA
	293	ATGCGAGCAATGGGATCCGGATTC
30	294	AGAGTGAGGCCTCCCTGACCAGTG
	295	CGCACCGTAAGTAGATTTGCCCGC
	296	AGGGTATCGGAGCCAGGGCTTACC
	297	TGAACCTTTGAGCACGTCGTGCGC
ļ	298	TCCGCCTTTTTGGTTACCTCGAAG
35	299	GAACGCCAACGGCACTAACACATC
	300	CCGACAGCAGCCAAGACGTCCCAG
	301	TTGTACACCTGGGCCACGCACAGG
·	302	CATAAAAAACCTGGGGCTCTGCG
	303	TGCCAACTGTGCAGACCGGACTTA
40	304	GGCGAAAGAGCGAAACCGGCTCGT
	305	GGGATGCGTATTTTAGCGAACACG
	306	TGGGATTCAGCGACCAGTACGCGA

_		
Ĺ	307	CCCGATATTCGCCCGGCCTATTCG
<u> </u>	308	CGAGAAGATGCCTCACGCAACCAA
	309	AACCTTGACCCGTGGATGACGCTA
	310	GGCTAGACGATGGATACCCGTGCC
5	311	GCCTCTTCTCGACGATGCGATTTT
	312	GCTTCCGGATGAACGGGATGGTTG
	313	CCCTCCATGTTCTTCGAACGGTTT
	314	TTGATGGGCGGCAATGCTCTTGCT
	315	ATTGTGAGATGCGCCAAATTCCCC
10	316	TCAGCACAGCCAGACGGTCAACTT
	317	ACTCCACTCCTCGGTGGCAAACTA
	318	TCTGGGCATGCCTGGACGGAGACG
[319	TCTCAACTCCGGTACGACGAAACA
	320	TTGCGTGGTCAAAGGCGCAACGTG
15	321	AGACAGCGATCCGCGGCTCATGAT
	322	CGCGTCTCTAACTGAGAGCAGCCA
[323	AGGCGCACATGTACGGACATTCAG
	324	GATGAGTGGCACGTCGGTGTGTAA
	325	TGATCCATATTGTCGGACGTTGCG
20	326	ACCTGCCGGGAGTTCATAGGCTAG
	327	AGCATTGGCGTTTTTCCGCAACGA
	328	GGTAATATTCAGCGCGACCGCTCA
	329	ATAGCGTACGACGAGGTGACGCGC
	330	GGGTGAGGGAAAGAGCACCTGCCT
25	331	TAGGTCACGATGCGTTTGACGCTA
	332	ACTGCCCGTACCTCTGGTTCTGGC
į	333	CAAAAATCGGGTGAACATTGGCTG
	334	CCTTTGGCCTGAAGTTGTCGTAGC
	335	GTGCCCACGAGCGTATCGTTGTA
30	336	AGGCGCTACGTGGGCCTGGAGCAA
	337	GGGTGCTACCATTGCATTAGTCCG
	338	ACCACGCGCGTACGTGTAACCGAG
	339	CCATGATGCATTGGGTGCATTTAG
	340	GGTCCGGCCCTACGAAACGTTCGA
35	341	CCGTGTGGCTGGAGATTCGTGTGA
ĺ	342	GTTAGGGCGACGCATATTGGCACA
ļ	343	GGGTCAGTCAGGTGCGTTAGGATC
	344	GCCGTGAAGTCGAATGCAGATCGA
	345	GCCACCACCAGTGCATTCAGGTA
40	346	GAGCTTAGTTTGCGGTCATCGGGC
ļ	347	TGTTTGCCGCCATTAGGGAGTAAC
ļ	348	GCTCCGCTGGATGTGCCGGTTTAG

	349	CGGTAGCATGCGAGATCCCTGTTA
	350	CTACGCTCTACCAGTTGCCTGCGA
	351	GTGCCTCCTGCTGTATTTGCCAAG
{	352	TTGCGACTCGACTTGGACGAGTAG
5	353	TCTGGGAGCTGTTTACTCCAGCCA
{	354	TGCACGCGGAACTCCCTTTACCAT
	355	TGGCAGCAAATGAATCGAAAGCAC
	356	AACTGGTGACGCGGTACAGCGAAG
	357	AGACGATTACGCTGGACGCCGTCG
10	358	ATGCCCTCCTTCATGGAAAGGGTT
	359	ATTCTCGGAGCGTATGCGCCAGAA
	360	ATAGCGGAGTTTGGGTACGCGAAC
	361	ACCTACGCATACCGCTTGGCGAGG
	362	GATTACCTGAATGGCCAAGCGAGC
15	363	CCTGTTAGCATCACGGCGCTTAGG
	364	CGGAATGATGCGCTCGACAACGCT
	365	TGAGAGAGGCGTTGGTTAAGGCAA
	366	AAGCAGGCGAAGGGATACTCCTCG
	367	TCACGACAGACGGGCCGAGATTAC
20	368	AAGCAATTTGGCCTCGTTTTGTGA
	369	GCTGGTTGCGGTAGGATCGCATAT
	370	TTGTGAATCCGTTCTGTCCCCGAC
	371	CTCCGATGACAATTGTGGAGAGCA
	372	TGGGCTCCTCTGAGGCGAGATGGC
25	373	GGATAGAGTGAATCGACCGGCAAC
	374	TGCACCGAACGTGCACGAGTAATT
	375	GCCAGTATTCTCGGGTGTTGGACG
	376	TCGCTACCTAAGACCGGGCCATAC
	377	TGGCATTGACGAGCAGCAGTCAGT
30	378	CGCGTCCCAGCGCCCTTGGAGTAT
	379	ATGAAGCCTACCGGGCGACTTCGT
	380	CCAGACAGATGGCCTGGAACCATG
	381	TGGCGTGGGACCATCTCAAAGCTA
	382	CCGCATGGGAACACGTGTCAAGGT
35	383	GCCCACTCGTCAGCTGGACGTAAT
	384	ATTACGGTCGTGATCCAGAAAGCG
	385	TGCGAGGTGAGCACCTACGAGAGA
	386	GGGCCGCATTCTTGATGTCCATTC
	387	CCTCGGATGTGGGCTCTCGCCTAG
40	388	TAGGCATGTTGGCGTGAGCGCTAT
	389	CGATACGAACGAGGATGTCCGCCT
	390	TACGCCGGTTAGCACGGTGCGCTA

ſ		0474004707000000070707000
	391	CATACGATGTCCGGGCCGTGTCGC
	392	ATCCGCAGTTGTATGGCGCGTTAT
	393	GGGTAAGGGACAAAGATGGGATGG
	394	ATTGGAGTGTTTTGGTGAATCCGC
5	395	GAACCGAGCCAACGTATGGACACG
	396	GCCGTCAAGCTTAAGGTTTTGGGC
	397	ACCTGCTTTTGGGTGGGTGATATG
	398	AATCGTGGGCGCAGCAAACGTATA
	399	GTCGCCGGATTGCTCAGTATAAGC
10	400	ACCCGTCGATGCTTCCTCCTCAGA
	401	ATCCGGGTGGGCGATACAAGAGAT
	402	TTCCGCATGAGTCAGCTTTGAAAA
	403	GCAAAGTCCCACTGGCAAGCCGAT
	404	CGACCTCGGCTTCATCGTACACAT
15	405	CTCATGAGCGCAGTTGTGCGTGAG
	406	CAGATGAAGGATCCACGGCCGGAG
	407	TCAAAGGCTCTTGGATACAGCCGT
	408	TCCGCTAATTTCCAATCAGGGCTC
	409	ACGCACGGCGCTTTTGCCTTAATG
20	410	TGACAACGTCACAAGGAGCAGGAC
	411	CTTAGTTGGGGCGCGGTATCCAGA
	412	GCTCTAATGCCGTGGAGTCGGAAC
	413	CCGATTACAAATTGACTGACCGCA
	414	AGACGTACGTGAGCCTCCCGTGTC
25	415	AATGGAGCGATACGATCCAACGCA
	416	GGAGGCGCTGTACTGATAGGCGTA
	417	TGTTTTTGAATTGACCACACGGGA
	418	CATGTCTGGATGCGCTCAATGAAG
	419	GCCCGCTAATCCGACACCCAGTTT
30	420	CCATTGACAGGAGAGCCATGAGCC
	421	GAATCACCGAATCACCGACTCGTT
	422	AACCAGCCGCAGTAGCTTACGTCG
	423	TTTTCTGAGGGACACGCGGGCGTT
	424	GGTGCTCCGTTTGATCGATCCTCC
35	425	CCGCTTAGGCCATACTCTGAGCCA
	426	TAAGACATACCGACGCCCTTGCCT
	427	GTTCCCGACGCCAGTCATTGAGAC
	428	TAAAAGTTTCGCGGAGGTCGGGCT
	429	CGGTCCAGACGAGCTGAGTTCGGC
40	430	CGGCGTAGCGGCTACGGACTTAAA
	431	GCTTGGATGCCCATGCGGCAAGGT
	432	AGCGGGATCCCAGAGTTTCGAAAA
	, 32	

	433	GAGCTTGAGAGCGAGGTCATCCTC
	434	GCATCGGCCGTTTTGACCATATTC
<u> </u>	435	CATAGCGCTGCACGTTTCGACCGC
	436	ACCCGACAACCACCAATTCAAAAA
5	437	GCGAACACTCATAAGAGCGCCCTG
	438	TTTTGGTGTGGCCGGTTGAAGCTC
	439	CCGCCGAGTGTAGAGAGACTCCGA
	440	GACATCGGGAGCCGGAAACATGAG
	441	TCGTGTAGACTCGGCGACAGGCGT
10	442	ATGCGCATATACTGACTGCGCAGG
	443	ACAAGCGAACCCGAGTTTTGATGA
	444	GCATGAGACTCCGCGAAGACATGT
	445	TCCTACATGTCGCGTCACGATCAC
	446	GACCGATCGCGAAGTCGTACACAT
15	447	GTCGCCAGGACTGGGCCGATGTGA
	448	ACCGATAAGACTTGCATCCGAACG
	449	TCCATAACCAGTCCGAAGTGCCGG
	450	ACGCGCCCTGCATCTCGTATTTAA
	451	AGACCGCATCAATTGGCGCGTACC
20	452	AGAGGCTTGGCAAGTAGGGACCCT
	453	GCAATGGACGCCAGACGATACCGG
	454	GCTGGACTTAGTCGTGTTCGGCGG
	455	GGGGCTCATGAACGAAAGGCCTTT
	456	AGGCATCGTGCCGGATTGCTCCCT
25	457	TGCGCATGTCGACGTTGAACAAAG
	458	ATTGCATTATGCGGTCCCTCAAAC
	459	TTCGGGTCACATCCGATGCCATAC
	460	ACCCATCGCCGGAAAGCGATGTTG
	461	AAGCGCTGACTCGGCTAAGAATCA
30	462	ACTTCCAAGTCCTTGACCGTCCGA
	463	TCTCAATATTCCCGTAGTCGCCCA
	464	AACAGTTCCTCTTTTTCCTGGCGC
	465	CGTCCTCCATGTTGTCACGAACAG
	466_	TGCGCAGACCTACCTGTCTTTGCT
35	467	ATGGACGGCTTCGCAGTCCTCCTT
•	468	TGAACGCTTTCTATGGGCCACGTA
	469	TGAACCCTGCCGCGAGCGATAACC
	470	GTTCTTGCGCGATGAATCAGGACC
	471	AGGGTACGTGTCGCAGCTTCGCGT
40	472	ACCCTTGCTCCGCCATGTCTCTCA
	473	GGGACAAGGATTGAAGCTGGCGTC
	474	TGTCGTTGCTCCCGAGTACCATTG

475	GTGGTTATCTGCGAGGGCTTTTGA
476	GTTGTCCGAGACGTTTGTGTCAGC
477	GCTGGTGAACACTCACGAACCGCT
478	GCAGACAGGCCAAATCGGTGCAAA
479	CCCATCACAACGAGTGGCGACTTT
480	GCTTCTACAGCTGGCGTGCTAGCG
481	GAATGTGTGCCGACCATTCTAGCC
482	CCAGCGGAAGTTAGAGCTCTGTGG
483	TTTTTACCGACCACTCCATGTCGG
484	GCGGCTATGTGATGACGGCCTAGC
485	AGTACACGGGCGTGTTAGCGCTCC
486	TCCTGTGTGGTGGCGCACTCCCAC
487	CCAACTAACCAATCGCGCGGATGA
488	AGTGAGTGACCAAGGCAGGAGCAA
489	CATCTTTCGCGGAGTTTATTGCGG
490	CTTCGTCCGGTTAGTGCGACAGCA
491	CTCACGAAAACGTGGGCCCGAAAT
492	CGCAGCAGCTGAACTCTAGCATTG
493	AGGAGACATACGCCCAAATGGTGC
494	ATTGAGAACTCGTGCGGGAGTTTG
495	CTCTTTGTAGGCCCAGGAGGAGCA
496	GCCGCAGGGTCGATAATTGGTCTA
497	AAACGCCGCCCTGAGACTATTGGG
498	CTGAGTTGCCTGGAACGTTGGACT
499	CGGATGGGTTGCAGAGTATGGGAT
500	CTGACCTTTGGGGGTTAGTGCGGT
501	GGAAATGAGAACCTTACCCCAGCG
502	AACGCATCGTCCGTCAACTCATCA
503	TGGAGAGACTTCGGCCATTGTT
504	ACGGAAGTCACGGCGTCGCTCGAA
505	TTGCGCTCATTGGATCTTGTCAGG
506	AGCGCGTTAAAGCACGGCAACATT
507	AGCCAGTAAACTGTGGGCGGCTGT
508	CGACTGATGTGCAACCAGCAGCTG
509	GGTTGCTCATACGACGAGCGAGTG
510	GCGCAAATCCACGGAACCCGTACC
511	ACGCAGTTTATTCCCCTGGCTTCT
512	AGAACCTCCGCGCCTCCGTAGTAG
513	AAAGGAGCTTTCGCCCAACGTACC
514	AGTGATTGTGCCACTCCACAGCTC
515	GCGATCGTCGAGGGTTGAGCTGAA
516	GGGAGACAGCCATTATGGTCCTCG

5

0

<u>:</u>5

30

35

40

		Taxana Taxana Taxana Anna
	517	GAGACGCTGTCACTCCGGCAGAAC
	518	CCACCGGTCGCTTAAGATGCACTT
	519	CGGCATAACGTCCAGTCCTGGGAC
	520	AAGCGGAACGGGTTATACCGAGGT
	521	TGCACACTAGGTCCGTCGCTTGAT
	522	AGGGAACCGCGTTCAAACTCAGTT
	523	GAATTACAACCACCCGCTCGTGTT
	524	TTCAGTGCTCACGAAGCATGGATT
	525	TTAGTTTGGCGTTGGGACTTCACC
)	526	AATGCGACCTCGACGAGCCTCATA
	527	CCGAAACCGTTAACGTGGCGCACA
	528	TAAAGTAACAAGGCGACCTCCCGC
	529	TAATGATTTTAGTCGCGGGGTGGG
	530	GGCTACTCTAAGTGCCCGCTCAGG
5	531	TGGCGGACGACTCAATATCTCACG
,	532	GGGCGTTAGGCGTAATAGACCGTC
	533	GCCACCTTTAGACGGCGGCTCTAG
	534	GAGATGTGTAAACGTGCAGGCACC
	535	CAACCTCGTTGTCGAGTTTCTCGG
0	536	TAGCTCGTGGCCCTCCAAGCGTGT
0 ·	537	GTGTCGGCGCTATTTGGCCTTACC
	538	CCAGGGAAGCAACTGGTTGCCATT
	539	TTCCGAAACTAAGCCAGAACCGCT
	540	GCAAACCCGGTAACCCGAGAGTTC
	541	GCAAATGGCGTCATGCACGAACGT
25	542	AGTACTTTCGCGCCCAGTTTAGGG
	543	AAGATCTGCGAGGCATCCCGGCTT
	544	GCAAGTGTATCGCACAGTGCGATT
	545	CCGACAAGGCCTCAATTCATTCTG
	546	GTCTCGTCTCAACTTTAAGGCGCG
30	547	ATCCAGAGATCCGTTTTGCAGCGT
	548	GTCACCAGGAGGGAAGTTTCACCC
	549	TATCTTACGCCCCACGGTCGAGCT
		TTCCGTCAGGCGGATCAACGGAAT
	550	ATGCCGGACACGCATTACACAGGC
35	551	TGGGCGCTTGGCGCTTTCATAGA
	552	CCTAGCGCGAGCTTTACTGACCAG
	553	TTGGCCAGGAATATGGTCTCGAGA
	554	GTCTGCGGCCGACTTGCTATGCAT
	555	
40	556	AACTTGCTCATTCTCAAGCCGACG
	557	ACGTCAGCGATTGTGGCGAAATAT
	558	ACGGCCTGCGTCAGCACATGCATC

· -56-

559	ATACCTCCGCAGAACCATTCCGTT
560	AGTTCGCGGTCCCACGATTCACTT
561	TGCTCAATTTGTGCAGAAAACGCC
562	TTATCGCGAGAGACGACCGTGTCC
563	GACGCGACGTGAGTAGTGGAAGCG
564	ATGGTAGGGCATTGGGCTTTCCT
565	CCAAATATAGCCGCGCGGAGAÇAT
566	GCAAACCCTGATTGAATCGTGCCC
567	TAGCGTCTTGCGTGAAACCATGGG
568	CCACCCGACAGCGCTGGACTCTT
569	ACGAGCACTGAAGGCTGCTTTACG
570	CATATCAGCGTCGTCTAGCTCGCG
571	TGATCCCGGACCGGCTAGACTAAT
572	GGCCCGACACTACAGGGTAATCA
573	GGCTCCAGGGCGAGATTATGAATG
574	CAAAATCCGATGGGCGGAAAATTA
575	CACAGGCGCATAGGGAGCAAGCTA
576	TAGCTATTGCCCCGATGGGCTACT
577	TGGTACGCGGTCCATAGCAAGTCG
578	GACGCTGTGGCTCGGAAACTGTTC
579	CCTGGGTTCGCCGCGTGGTAACTG
580	TTCCCGCGTAGCCCAACAGCTATA
581	TTCGCGGATTGCTGCCGCATAACA
582	AAAAATGGCACCGAAGTTGAGGCA
583	CATTCCGCGCGAGTTGAAATCCAG
584	ACGCACGTTTTTTGGCACGGTTAA
585	TGTCCATGACGTCGTTTCTCTGGT
586	TCTCAGTCGGACTCGTATGCCAGA
587	CTCCAAACGCACACATCAAGCATC
588	TTCAACCAAGCGGGGTGTTCGTGA
589	GGTGTCGGAGGGTGGTGACCTCGA
590	AGCGCTTTTGGTCATGATTTGCAA
591	CCGAGGACTTACGTCTGCCCAGGA
592	GCCCAATCCAGTTCTTATGCGCCC
593	AAGCTTTGCGAAAGGTGTGTTGGC
594	CGGGTTAACCCACGCAAGTTATGA
595	TGATTAGCGCTCAATACACGCGTG
596	AAGGGCAGACCTTTGGTTCGACTG
597	GCGCCACAAGATTCACATGTCATT
598	GCCATGTTCAAGGGCCTTTCGAAG
599	CGCGGTGTTTTGTCTAGGTGCCGG
600	CAACATTGTGGTGGCACTCCATCC

-57-

602 GGCTATAAACGTGCGGACTGCTCC 603 TGGGTAAATCACTATTGCGCGGTT 604 GTCTTCATCGGCCCGCGCAAGCTA 5 605 GCGACACACCCTGTACTCTGATGC 606 GTAGCAGGGTCCGCAAGACCAAGC 607 TCGCCAACGCAGGGTAACTGCCAT	
604 GTCTTCATCGGCCCGCGCAAGCTA 5 605 GCGACACCCTGTACTCTGATGC 606 GTAGCAGGGTCCGCAAGACCAAGC	
5 GCGACACCCTGTACTCTGATGC . 606 GTAGCAGGGTCCGCAAGACCAAGC	
606 GTAGCAGGGTCCGCAAGACCAAGC	-
	-
FOZ TOCCCAACGCAGGGTAACTGCCAT	
607 TCGCCAACGCAGGGTAACTGCCAT	1
608 ACTCCGAAGCTTCGAGCGCACGA	
609 TCCCGCCACTAGACTGACTCGTA	
0 610 ACCTTCTGGGGTCGCTCACCAATA	
611 ATCATCCCACGGCAGAGTGAAGAG	
612 CGCTGGACTGGCCTATCCGAGTCG	1
613 CGGTCTCAGCAACACTGTCGCAAA	1
614 CGAACGTTCTCCGATGTAATGGCC	1
15 615 ATACCGTGCGACAAGCCCCTCTGA	
616 AGCTCATTCCCGAGACGGAACACC	
617 TTTCATGCGGCCGTTGCAAATCAT	
618 ACTCGAACGGACGTTCAATTCCCA	1
619 CTGCATGGTGTGGGTGAGACTCCC	_
20 620 CCGCGAGTGTGGATGGCGTGTTGA	4
621 AATGTGTCGGTCCTAAGCCGGGTG	_
622 TAAGACGAGCTTGCG	_
623 GGCGTGGGAGGATAAGACGATGTC	4
624 TGCTCCATGTTAGGAACGCACCAC	4
25 CGGTGTTGGTCGGACTGACGACTG	4
626 CCGCGCGTATCTATCAGATCTGGG	4
627 AAAGCATGCTCCACCTGGAGCGAG	4
628 ACTTGCATCGCTGGGTAGATCCGG	4
629 TGCTTACGCAGTGGATTGGTCAGA	4
30 630 ATGCAGATGAACAAATCGCCGAAT	4
631 GCAATTCTGGGCCATGTATTCGTC	_
632 AGGGTTCCTTACGCGTCGACATGG	4
633 GTGGAGCTAATCGCGAGCCTCAGA	_
634 TCGTAGTCTCACCGGCAATGATCC	4
35 635 TTATAGCAGTGCGCCAATGCTTCG	4
636 CGAACAGTGCTGTCCGTCAA	_
637 TCCGCGTGGACTGTTAGACGCTAT	
638 CATTAGCCCGCTGTCGGTAACTGT	_
639 GGAAAGAACTCAGACGCGCAATG	_
40 CGACTCGCTGGACAGGAGAATCGT	_
641 CATGATCCTCTGTTTCACCCGCGG	
642 GGCGTAGCGCTCTAAAAGCTTCGG	

	643	AGTGATGCCATCAGGCCCGTATAC
	644	TATGGAAAGGGCAACAGCGCTATC
	645	CTGTGGTTGATGGAGGATCCACAC
	646	ACTCGCTGGAATTTGCGCTGACAC
5	647	CAGGCCCGAACCACGCGGTTACAG
	648	GGCGCAATGGGCGCATAAATACTA
Ì	649	GGTCAATTCGCGCTACATGCCCTA
	650	TGAGGGCTGTTTGGTATTTGACCC
	651	GATGGTGGACTGGAGCCCTTCCGC
10	652	CCGCGCATAGCGCAATAGGGGAGA
	653	TCTTCTGGCTGTCCGGCACCCGAA
	654	GCGTTCGCAATTCACGGGCCCTTA
	655	TCGTTTCGGCCTTGGAGAGTATCG
	656	AGGTGCAAGTGCAAGGCGAGAGGC
15	657	CGCCAGTTTCGATGGCTGACGTTT
,	658	GCTTTACCGCCGATCCCAGATATC
	659	GTGCTTGACGAAGAGGCGAAATGT
1	660	CAGTCCGTGCGCTTCATGTCCTCA
	661	TACGCGTAAGAGCCTACCCTCGCG
20	662	GGCGAGTCTTGTGGGGACATGTGT
	663	CCAAAGCGAAGCGAGCGTGTCTAT
	664	GCCGTAGGTTGCTCTTCACCGAAC
	665	AAATCCGCGATGTGCCGTGAGGCT
	666	GGCTTCGCACCCGTACCAATTTAG
25	667	TGTAGAGTCCCACGTAGCCGGCAT
	668	CACTAGTCTGGGGCAAGGTGCATT
	669	TGTACTCGGCAGGCGCAATAGATT
	670	AACGGGTATCGGAAGCGTAAAAGC
	671	CGGACTGCCCGTTTGCAAGTTGAG
30	672	ATCGTTCAGCACTGGAGCCCGTAA
	673	ATGCATCGAACTAGTCGTGACGGC
	674	TTCCAGGCATTAAGGAGAGGGAGC
	675	GTGCGACATCTACTCCACGATCCC
	676	CTCATCGTCCTAACACGAGAGCCC
35	677	AATGGCACTTCGGCGGTGATGCAA
	678	CCGTGGGAGGGAATCCAACCGAGG
	679	AAATTCTCGTTGGTGACGGCTCAT
	680	TTGCTCTTATCCTTGTCCTGGGCG
	681	TTAAGGATCAGGCGGAGCTTGCAG
40	682	CGCGACTAAGGTGCTGCAACTCGA
	683	GCTCGATTTCACGGCCCGTTGTTC
	684	AGCAGAGTGCGTTGCAGAGGCTAA

ſ	685	TGGAGGTGAGGACGTGCACTA
Ī	686	AACCGTTTAGGGTACATTCGCGGT
	687	TATGATCGCTCGGCTCACAGTTTG
	688	GACTTTTTGCGGAAACGTCATGGT
5	689	TGTCGGTTATTCCACCTGCAAGGA
	690	CTATGGTTTGCACTGCGCCGTCGA
	691	AGCAGGGAAATTCAATCGTTCGCA
	692	CCTAACCGAGCGCTTAGCATTTCC
	693	CCCGACCCTAACTCGCATTGAATA
0	694	TTGCTTAATGGTGACGCCACGGAT
	695	GATGCTCGCCGTGTTTAGTTCACG
	696	TCGGATGACGAGTTTCCATGACGG
	697	ATGCGGTCTACTTTCTCGATCGGG
	698	TTGCGAGGCTAAGCACACGGTAAA
5	699	AACTTAATTACCGCCTCTGGCGCC
_	700	GTGACCGCGAACTTGTTCCGACAG
	701	TGCGGATTACCGATTCGCTCTTAA
	702	TGATAGGGGCCACGTTGATCAGA
	703	TCGCTCCGTAGCGATTCATCGTAG
20	704	TGTCAGCTGGTAGCCTCCGTTTGA
	705	AGCGTCGCATGACGCTTACGGCAC
	706	TCACTCAGCGCTGTGACTGCCTGA
	707	GTTTGCGCTATAGTGGGGGACCGT
	708	GTCGCATTCTGCACTGGCTTCGCC
25	709	TGATTAGGTGCGGTCCCGTAGTCC
	710	AAGGGACCTTGGGTGACGGCGAGA
	711	TCAAATGGCCACCGCGTGTCATTC
	712	CTCCGACGACCAATAAATAGCCGC
	713	GGCTATTCCCGTAGAGAGCGTCCA
30	714	TGGATAACCTCTCGGTCCATCCAC
	715	GACCGCTGTACGGGAGTGTGCCTT
	716	GCCACAGAGTTTTAGCAGGGACCC
	717	CCCACGCTTTCCGACCACTGACCT
	718	CATTGACACAATGCGGGGACTGAT
35	719	AGCCACTCGACAGGGTTCCAAAGC
	720	CAGGATGAGCAAAGCGACTCTCCA
	721	CAAGGTATGGTCTGGGGCCTAAGC
	722	GGTGTTCGGCCTAAACTCTTTCGG
	723	TTTAGTCGGACCCTGTGGCAATTC
40	724	CACACGTTTCCGACCAGCCTGAAC
	725	CTGGACGAACTGGCTTCCTCGTAC
	726	TTCACAATCCGCCGAAAACTGACC

ſ	727	AACAGGATATCCGCGATCACGACA
Ī	728	TACGTCGGATCCATTGCGCCGAGT
Ī	729	CATGGATCTCTCGGTTTGATCGCC
[730	AGCCAGGCGCGTATATACGCTCGG
5	731	ATTTGGCACGTGTCGTGCCATGTT
Ī	732	CCGCGTTGCACCACTTTGAGGTGC
7	733	TTGGACGTGACAAGCATGGCGCTC
Ī	734	CTGAATCGCGCAAGTAAATGGGGG
	735	GATAAGGTCCACCAGATTGCGCGC
10	736	CTAACAATTGCCAACCGGGACGGC
Ī	737	GGTAACCTGGGTGCTTGCAGGTTA
	738	ATCGGAGCCACCATTCGCATTGGG
	739	GTGAACTGGCTTGCCCCAGGATTA
	740	AGGCGATAGCATGGTCCCATATGA
15	741	AACGGTATCGTGGCTAATGCACGA
	742	AGTAGTGGTCCTCCAGATCGGCAA
	743	CCGTTGAATTGGACGGGAGGTTAG
	744	GCATAAGTGCGGCATCGCGAAGGG
	745	CGACAAGATGCAGCTGCTACATGC
20	746	TCGCAGTGATTCCCGACCGATAAG
	747	CAAGGCGAGTCCACTCGAGGGGAC
	748	GCAACTTGCACGGCATAAGTGGCC
	749	TCCGAGCTTGACGTTCGCGACGTC
	750	AGCGCTGGGCTGTGCCATCTC
25	751	TTCATGTCGCTGAGTAACCCTCGC
	752	CGAACCGCTAATGCCCATTGTCAG
	753	CACGGAAGGTGGGACAAATCGCCG
	754	CACAGATGGAGACAAACGCGCCTT
	755	TTTTCGCAACTCGCTCCATAACCC
30	756	ACGTTACGTTTCCGGCGCCTCTAA
	757	TATCGGATTGCGTGGGTTTCAATC
	758	CTTCCACAATTGTCTGCGACGCAC
	759	TGCACAAAGGTATGGCTGTCCGGC
	760	ACCGTGGCCGGGCCATAAGCTACG
35	761	TCCGATGCCAGTCCCATCTTAAGA
	762	CTGAAACCGTGCGAATCGAGGTGA
	763	CGGTGTTCCGCGTGTCGAAAAAAT
	764	TCTAGCAGGCCTTTTGAATCGCCA
	765	GAGTCACCTCTGAGACGGACGCCA
40	766	TCTTCTGTCATCCTGCAGCAGCAT
	767	GCGGATGAAACCTGAAAGGGGCCT
	768	GGGGCCCAAACTGGTATCAAGCC

Γ	769	GCATTGGCTTCGGATTCTCCTACA
Ţ	770	AGGCGGCCCAACTGTGAGGTCTTG
	771	ACACCATGTGCTCCGCGCTGCAGT
	772	ACGATGAACATGAATCGGGAGTCG
5	773	CTGCATCCCTGTAGCAGCGCTCCG
Γ	774	GTGCCGTATTTCGACCTGTGCGTT
	775	GCAGTGCGCACTTCAGTTCAAAAG
	776	GCGATTTTAAGCGATGCCTTGACG
	777	TAGGTGACCTAGGCTTGCTTGCGG
10	778	CTGGATACCTTGCCTGTGCGGCGC
	779	CCCCTTACGGCTCGTCGTCTATGC
[780	GCGCTTGCCCGATGCGATGCATTA
[781	TTTCTGTAAGCGGCCTGGGGTTCA
	782	GGCTGAGGTGAGCGGTAAGGATGA
15	783	TCTTGGCCTCCCGATCTAATTTG
	784	GGAGGTAACGCCGTGTACGTAGGA
Ī	785	GTAATCCATTTGTGGCTGCGTCAA
	786	CAAACCCATTCCAGCAGACGCCTG
Ī	787	TAGGAGGAATTTGGCATGCGGGCG
20	788	ATAGGTAGGATGTGCCCGGCGTTG
Ţ	789	GCAAGTGCTTAGCTCGTCAGCCTC
	790	CTGGCTGTCGCATCTCGTTAAC
	791	CTAACGTCGTCTCGCGCAATCACT
	792	TTTTCATAAACGTTGTCCCCGAGC
25	793	AGCAGGAGGACGAACCTCCGCTCC
	794	TTCAAGCACCATCGTGCAATCCAA
İ	795	AGCGTCGCCAGTGATCGCTAGTGG
	796	TACATTCCCTGCCTCCGTGGGCTT
	797	CGCTTCGCGTATTCAGTAGCGGTT
30	798	TCGGACGCGTCGACACTCATTATA
	799	TCTGAGCAGGCCAGCGCTCCAGCT
	800	TTGAATTGCCAAGCCCTGAAAGCC
	801	AGTTTTCGCCTTGATGCGTCGGTG
	802	GTTTCATAGGCCACGCGTGCTAAA
35	803	GGAGCGAAGACTTCGTCTGCCCAA
	804	ATTGGCCGAGGGTGAATGCAGCCT
	805	TGATCCATCCGAATGCTTTTCCAT
•	806	GCACACAGTTGTCTTGGCCCATGA
	807	CTGGCGGCAGTGGAAAAAACAAC
40	808	ATCTCCATGCGTAAGACTGCTCCG
	809	TCTCCTCGTCGCAGTTCGTGGA
	810	TAGCGTATTCACTCTTGCCGAGCA

	•	
Ī	811	CAATCAAAAGCCACGGCGCGATGG
Ţ	812	AGCGTCACGGAATTCAGCAGATCT
	813	GACTCCCTGTTAATGCGCCCAAGG
	814	TAGGCACTGCCGGTTCAGATTCAA
5	815	AACAGGGTGATAACGGTGGCCAAT
	816	CGTGCGTACCATGTGTAAGTGCGT
	817	GACCAATTCTACTTCGGCAGCCCA
	818	ATCGGACCGATTTGCTTTTGGCTG
	819	TCCGCCGAAGCACACGCTTATTCG
0	820	AACGGTACGCATTGTGAGCAGTGT
	821	TGGCGACTACTGTTCCCCTGAATC
	822	CAGAGGGGACAGCCGTATGCCTTA
	823	CGGTGGTTTTATCGGAATCTGCGA
	824	TTGGCCTCCGACCTCACGACATAT
15	825	CGTTTCGCTAGCATCTGGCGCCGA
	826	ACTAAGCGGTGGAGCCGGTGGATG
	827	ATATTGGCTGCGTTTACGGGCCGC
	828	CCGCTATGGTGGCAATCCCGATAC
	829	GTTGCATGTGGCTCAGGCGGCATA
20	830	ATTCTGGGGAGTGACCCAGGGCTT
	831	CTCTCCAAGGAGACGAGCCAATGT
	832	GAAAGGACGGGATTTGGGGGCTAA
	833	TATGTAGTACCTTGGCTCGCGCCA
	834	TCCCTTTCGATGAGCGGCTGTACT
25	835	TAGATCGGGCAGAGCCCGTATCTT
	836	GGAATGCTTTAGGCTGCCGAGCTG
	837	ATGGTAGCAACATTCAACGCCAGG
	838	CTATGAAACGTGTGGCCCAGCAAC
	839	ATGTTGCTAGTGCCTTTCGGGCCT
30	840	CCAATGTGCGCAGACTCAGTCATT
	841	GATAGTGCTCGCAAACGGGCCTTC
•	842	GCACCCTGTTGCCTCATTGAGCGT
	843	GGCGTGAATAGAGTGACCAGGCGG
	844	ACGTGCCAGCTGCGGGCACTTTAT
35	845	AGTGGAATAGTCGCGTCGTGCCGC
	846	ACTCGCCTATTACCGCTGGATTGG
·	847	GAGACCGGATTGAGATGATCCCGT
• •	848	AAAATGGCAGGCGGCAAGCAATTG
	849	CTGGCAGTTTACCACCGAACCAGT
40	850	TTACATTGCCGATTTCGCATGTGA
· -	851	TAAAACTGAAGGGTCGCCTCAGCA
	852	GGCTTCGCATGCCTTTGCAACATT
		

-		
].	853	AAGACCGAAGGTCTCTCTGAGGGC
ļ	854	GCCTATGGCTCCAGCTCAGCAGTA
	855	CGTATCATAGCGTTCGGTGGACAA
1	856	CATGCGCTCGCACTCTGCCTGTCT
5	857	TGGGCAATTCGGAAACGTCGGTCT
	858	TTGCGGAGATGCGACGGTACATTG
	859	ACTTTCGCACGTCGATCTGGACTG
	860	CTAACTGCCGCGGCAAACTGATTA
	861	GGCCGCGATTTTATTCCTTGGAT
0	862	GAATTTGGAACGGTGTTCCGATGA
{	863	GTCCATCCATCTACGGCATCAGGA
	864	TAAACGACCTGGCACATGTGCGTA
	865	CACCATCCAAGAGCCAATCCTAGG
	866	ACTCATATACGATCAGTCCGCCGC
5	867	GTGCCAACCGACGATCAACCGAAC
	868	TGGGGTTCGTACAGGTCGGTTCAT
	869	AACAGTAGAGGCGAGGCCTGCGGG
	870	TGCATCGAATCCGAGATGGATCTT
	871	GCGTCACGTTATGTCCGCTCTGTC
20	872	GGGACATGCGTAGCGCAATATCAC
	873	CACACGTCACACCATCCAAAGTGG
	874	ATGCTCAGGTGCTAAATACGGCCA
	875	AAAAATGTTTAGCGCGCTGACTGG
	876	ATAGTCCGTTCCCGACGA
25	877	TCGATCTTCTGGGTTGCAGACCAG
	878	GTCGGCGCAGCCGATCCTCATGTC
	879	GTTGCGGGGTGTCGAAAAGGATCT
	880	ATCTCTTCCTCGGGTGGATGCCAG
	881	TGATGTGCGTTTCAGCTTTTCGCG
30	882	GTTAAGGGGTGAGAACATCCGGCC
	883	AAGTCGTCTCCCTGCGTCTCGTCC
	884	CCGACCTAATAAGGCGCAACAATG
	885	CATCATTGGCACCGTACCAATGCC
	886	TGGAGAAAGGGAAGTGCAGCAACG
35	887	TGGTACTCCTTGTCATGCCTGCCA
	888	GGCACAGGTTCTCTTGCAGCGCGG
	889	GAATCTGGGCATTGCTACGAGACC
	890	CGAAATGGGAGCGTCCACTACCAC
•	891	ACATATGAGCTCGCGTGCTTGCAT
40	892	TCGAGCACGGTCACTGATAAAGCC
	893	GAGGGTCCCTGCTCAGAGTTGGTT
	894	AAATGCGATCGCCCCTTATGGAAT

	895	CTACCGAATGGATTGCGGATGGC
<u></u>	896	AGGGACTGGCAGGTCTCTGCGCGT
Ī	897	TAACGATCCATTCCACGAATGCAG
Ţ.	898	GGCCGCACGTACGATTACGCCTTG
5	899	TGGGGAATGCATCAGTTGTTGGCT
Γ	900	TATCTGGGAGTAGCAGGCAGGGCC
	901	CCGAAGGTTTCACGCTCAGGTCGC
	902	GAACCCAGCTGGGACATCCTTCAG
	903	TGCATGCGAGCAAATAACCCGGAC
10	904	AATTGTCCGCCAAACGCTTTTCAG
	905	GTCGGCTTCGAGCGATCGAGTGTG
	906	TCGCGTGCTCTACGTAGCCCATGA
	907	GGCTTCCGCGATAACGTAATTCGC
	908	TGTAGCCGACTAGGGCCGAAGCCC
15	909	AAGCGAACGCCCTGGCTGAATATT
	910	TGTCACGCGACGTGCTGCAGATTT
	911	CCGTGTCCGTGTTGTCGACAGGCG
	912	CCCCACACGTTGCGCCTATATGTG
	913	GGCGGGCACAACTCAACACAGATG
20	914	CGACTGCGGATCACCGGTGATTA
[915	TCGGGACATGACCGGTACGGAGTC
	916	TACCTCGAGTGGCCGTTGATCGGG
	917	TAATTCATGGGGCTAGCCGAACCA
	918	ACACTCTAAGCCGATTCCGTTCGA
25	919	GTGGGCGTGAGTGACACGCACAAA
	920	ACGACTCCTCGGGCAAAGTACGTA
	921	TGTGGTCATGGCGCTACTGTTTTC
	922	CTTTCGCTAGCCAGAGCGGGTTCC
	923	ACAGGGCGTGTTAGCGTGTGACAA
30	924	GGTACTTCCGGCGTATCGGGCCAC
	925	GTGGGTTTTGTTCACCCTTCTGGG
	926	ACGCAATTCCGCATTACTTACCCG
	927	CGCCTCGACTGCGGTCAAGCACAA
•	928	GTGAAATGGATCCAGAGAGGGCCA
35	929	TATAAACGCTGCAGGGCTCCGTTA
	930	GTTATTCAGGCGGCTTGTAACGGG
	931	GGGTTCTAGCGTGCGCGTTCAGTT
	932	TTGGGCTCGAGCGGTACACCACTA
	933	CCGTCTTCAGGACAACGGTATGCG
40	934	GGACCCTTTGACAGATTGCGGCAC
	935	TAAATTITATCGCCAGGCGGCGCT
	936	GCCGAACGCAAGATCGCTTGAACT

	937	TAGGCCATTGGTGCCCTAAGACGG
	938	CAAACCACAGCTTACAGGCTGCGT
	939	TAAACGGAGACTGGCACGGTAGCA
	940	TAGCGCGCATCACACTTGGAATCG
5	941	TGCTGACACAACGAGCCGTTTCG
	942	CGCTTAACGGCATTGACTGTCCAC
	943	TTCCACGGCCGTGTATTACGGATA
	944	TTTATGCCGTTGCCGAGGAAGACT
	945	AGTGCCGAGATAGGGGACTGGGCG
10	946	CTAGTCTCCACGCCCTCGGGACGA
	947	CCGCCATTCGGAAGATGGATGATG
	948	TGACGGTGAAAGTCGATTGCGAAG
	949	ATATGCGTCACCACCGGTTCCGA
	950	CCATCAGTGAAGGGGTTGCTGCCA
15	951	CATATGTGCTTGGCTTGCGATGAC
	952	TCTGCTTTGGAAGCCTGAACTGCT
	953	CGATTTGGTCAAGAAGGCGGAAAT
	954	ATCAGAGGCCTTCCCGCCTCGTTA
	955	ATTGTTGTCGTTGCCACATCGCAG
20	956	TGAAATGTGTCTGGACGCGAGTCT
	957	GCGGGCGATGCTCCTTAAAGGGTA
	958	CCGCAATCTCCATGCGTCGACCGT
	959	TGCCGCGTAATCACCTGGAACTTG
	960	TTCCAGTAGCCAGCGGTAGTGTGA
25	961	CTGAATTCCGCCTATTGTTCGGCA
20	962	GCTTGAACCTCGAGGCGATGTTCT
	963	CAAGCGTGGAAGTACGACCCGCCA
	964	GTGTGCACTGGATCCGAGCCCTAG
	965	TCCCTGGGCTAGCATTGCGAGGTT
30	966	AGAACCAAAGACGCTTGTTTGCCG
	967	CGTCACATGCAAACGTTCCCTCCC
	968	TGACCGCATGTGTATTGAGTCGCT
	969	GCGGGCCCAATGAGTATCCGTCAT
	970	TAGTGACTGTGAACGCCCCTGGTT
35	971	GGCACCGTCTGCCGCGCGTATATC
	972	TCGATGCAGTCTTTTTCCCGTCAA
	973	ACCCGTGGGGTTTCGCCATTTTT
	974	CTACACGCGCAGTTGTGACTTGTG .
	975	CGCAGCGACCTCATCTCTGGAGCC
40	976	CGACCCAGCACTCCTAAAATCGGT
	977	ACGCGCCGCTCATCACTACAATCT
	978	CGCAACTTCCTGTGGCAAAGCCAG

	979	TCGTTGGGCACATAAGGCAACTGA
	980	CCGCTTGTAATTGCCATTCTCCGT
	981	GTAACCAGGGAGTCCTGGGCTGTG
	982	AGCGCAAGATCTGGGGGCAGTCAC
5	983	GCGTACATCTGCTCATCAGCATGG
	984	CCTCTGTGGCAGGAAAGAAACCGT
	985	CCTATGCAATGGACCTGCATCGGA
	986	CTCGGTGGATGGCGAATAAGGATA
	987	CCTCACTCGTGATGGCGTGACGCA
10	988	TACGCTCACAGAACGCCATACGCC
	989	CCGGAGAAGTTACGCGGATCGGAC
	990	GCGCCTCACTGCATTTTTGGTAT
	991	ACTITCAGCACGCGAACAGCGCAA
	992	CTAAACGCCCTTGATGCATGAGCA
15	993	GCTTGCCTTTTACGATCGTCGCTA
	994	CAGACATCGTACGCACTCGGCATC
•	995	TAGCCGCGCGCTCCTATGCTCTT
Ī	996	GATGCCCTTTTGGTCCCCATGCCA
	997	TGAGCTGCCTTGCCACGATGCCTC
20	998	CCGCCGTATACGTGCCATAGTTTG
	999	TAGTGCTCTCCGCGCTCATCCAAC
· · · · · · · · · · · · · · · · · · ·	1000	CCCTAGATAAGTTGGGGTGGGACG
Ī	1001	TGAAGGCCACCTGATATGGTTTC
	1002	GCCGCCTCCGACTGGTTAACCCGA
25	1003	CGCACGGCTACTAACAGCGGATCA
	1004	CCGGACCAATTCCAACGAGCATCG
	1005	CATTGAGGTCCACCGTTCACATCC
	1006	AGGACGCAGCATGTCCCAGCCGAG
	1007	TAATCGCGGGCCATACTACCAACG
30	1008	CGCAAATTTCTCCGGTCGGCAAGC
	1009	GTGGCTCGACTAATGCCTTGCGTG
	1010	TGTGGGCGTGTTCCGGCTCACTGT
	1011	GTTCTTCCTTTTCTGCGGTGGGAA
:	1012	ACCTCGAGTCAGATTGTGCGCCTT
35	1013	CAAGTGGACAGACGGTTTGTTCCG
	1014	TCCAGTTGAGTCGCGCCGACGAGG
	1015	CGCAACAGGTCAGCCCTTATTTGC
	1016	GCCGTGACTCCTGCAATGTCGGTA
	1017	ATCAGCGCAAGCTGGTCTGAAACA
40	1018	CCCTGGCCAGAACGAGAGGCCATG
	1019	ACGATCAAGGACTCGTCAGGGTTG
	1020	TTCATGGCACCAAGACCACCGTTA

Γ	1021	ACAGCAAGGAGATGGATTGCGACG
Ì	1022	CGTAAATATCTGCGGCGGTGTGAA
<u></u>	1023	GGAAACACGTGTTCGTCTGTTGGC
	1024	CGATGTTAGGATTCGGATAGGCCA
;	1025	ATCGGACAAGGACAAGTGGATGGT
,	1026	GCCCGGAGGACAAAGTTCGAGTTA
	1027	AAATCCGACAAATGGGCACATGGA
	1028	CAGTTAGGGGATGCGGATGAGTGA
	1029	CGGCAGGTGGAGATTCCGACATTG
3	1030	TAGGGCAGCCAGGTTCACTCATCT
	1031	GCACCGTATTAGCAGTAGGCACGC
	1032	ACGCATTACAGGTGTGCGAAGGGA
	1033	CGTGACTGCACGTGTTCCACAGGG
	1034	GCTGAACTACCGCCTAAAATCGCG
5	1035	AGCACGCCAGGGAGGATCGAGTTA
· ·	1036	ATGAGGCAAGGAATGGGTCATGC
	1037	GGGTCTCTCGTAATCAAAGGCCGA
	1038	TATCTTGCGCAACGCCTCCATTTA
	1039	GGTTACACCTACGGAATCCAGCGG
20	1040	ACACCGAGTTGGTCCGGTCAATAG
.0	1041	TCCCAGATTAAACGCTAGCCACCG
	1042	TTGGTGAAACTGGCCCGTCGGAAG
	1043	CCAGGGGAGTTGACAATGAGGCTG
	1044	TCTGCGTTATTGGACCGTTTGTCG
25	1045	TATGGGATGCTAAACCGGCGTACA
20	1046	CACAGACGTCTGTCGGGCTTGTGT
	1047	AGAATGCCGTTCGCCTACTCCCGT
	1048	CGACGGATAATGCAGGCCTCATGA
	1049	ACCCTCTAAAGCAATAGGTCGGCG
30	1050	CACTCACGGCAGAAGCCTGCTTGT
Q -	1051	ATCAGCCCACATATTCTCGGCCGT
	1052	CAAATCTGGGGTCGTCCTAAACGC
	1053	TGTCGCCCATGGCAGGTTAAATAC
	1054	GGGGCCCATCAATTCATTATCGA
35	1055	GTCGAGCAGCTTTAGTATCGCGGG
	1056	CCGCTAAGCACCGAAGGCTCACAA
	1057	TAGAATTAGCGAACGGTGATCCCG
	1058	CACATGACATTTGGCAAAGGTCCA
	1059	TCAACGCACTGGCGATGACTAGAT
40	1060	CGGGAAATGTCTTTAGCCGTCGAA
	1061	ATCAGAGCAAATCTGCAGCGGGGA
	1062	GGCCTGTTTCTGTCCAACTGGGCT
		•

1073 CTGTCGGCGCTGCTCTCCGAATTT 1074 CTCGCCGGAGTGTTGTAAGCATTG 1075 AGCAATCATGAGAGGTGGCCGGTG 1076 ATTTGCCACCGGCGACAAAAAGAT 1077 CCGCCCGTGTTGGCATGCTTTTG 1078 ATCGGAAGTGCTGACACACG 1079 CCTCAGACCCTATCTGGGTGACG 1080 CTGTGTGGTCTGACGACCG 1080 CTGTGTGGTCTGGCTGACCACCG 1081 GTCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGAGTGCCCCTA 1084 GGTTTACGCCATGACACACG 1085 GTGCAGGCCTTTGTGTGAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACACGG 1088 ACATAAATCTCGCCCGTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGGTAAAGC 1092 CTATGTGGCATCGCTGCACTC 1093 CCTAAGTCGGTTTGCAGAGGG 1095 TAACCCGCGCCCGAAAATTGTCT 1096 GCGTTCGTCCACAGGAACGGAAGG 1095 TATGGTGCCACAGACGAACGAATTGTCT 1096 TATGGTGCCACAGCACGGAAGG 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTGTTGCCAA 1099 AGCGGCAAGGTTAGAGGCCGCCCAAAATTGTCT 1096 TATGGTGCTCAACAGTCAGGGC 1098 TGCTCAAGCTAACGTCAGGGC 1099 AGCGGAAGGTCTGAGAGGAAAATTGCC 1099 AGCGGAAGGTCTGAGAGGAAAATTGCC 1099 AGCGGCAAGGTACGCCCCCAAAAATTGCC 1099 AGCGGCAAGGTCTGAGAGGCAAAATTGCC 1099 AGCGGCAAGGTCTGAGAGGAAAATTGCC 1099 AGCGGCAAGGTCTGAGAGGAAAATTGCC 1099 AGCGGCAAGGTCTGAGAGGCCCCCAAACGTCACGCCCCCAAACTCCCCCCCC		1063	ATTTCACCTCGCTGATCGCTTCCG
1066		1064	AGTGACGCCGAGTCGCGAGGGTTA
1067	Ī	1065	AGTTGTCTCATCCTGTCCGGGACC
1058		1066	CTTCTTTGTGCACACTTGCCAGGG
1069 CCCGTGGAGATGATGTCGCGCTTA 1070 CCCAATAGACGCCACAGCCATGA 1071 AACGACCACGACCCTCGCCGAGTA 1072 GGTGCTTTGTCTGAGGCGAGTGA 1073 CTGTCGGCGCTGCTCCCCAATTT 1074 CTGCCGGAGTGTTGTAAGCATTG 1075 AGCAATCATGAGAGGTGGCCGGTG 1076 ATTTGCCACCGGCGACTCTTTG 1076 ATTTGCCACCGGCGACAAAAAGAT 1077 CCGCCCGTGTTGGCATGTTTTG 1078 ATCGGAAGTGCTGACTCTTTG 1079 ATCGGACCCTATCTGGGTTGACCG 1079 CCTCAGACCCTATCTGGGTTGACCG 1080 CTGTGTGTCTGGTCCGGCTGTTC 1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTACCACGG 1089 GTTTGGTTTTCCACGGGAGCTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCT 1093 CCTAAGTCGGTTTGCAACGCCCGTTGCATGCT 1094 GCGTTCGTCACAAGCACCCCTC 1095 TAACCCGCGCCGAGAAATTGTCT 1096 TATGGTGCTCACAAGCACGAATGGC 1097 TCATCGACCCACTAACGTCCAAC 1098 AGCGGGAAGGTTGCCCAA 1098 TGCTCAACCACCACTAACGTCCCGCCCCCCCCCCCCCCC	5	1067	CACCTCATCGGAGCATAGCAACCC
1070 CCCAATAGACGCCACAGCCAGTGA 1071 AACGACCACGACCCTCGCCGAGTA 1071 AACGACCACGACCCTCGCCGAGTA 1072 GGTGCTTTGTCTGAGGCGAGTGAA 1073 CTGTCGGCGGTGTCTCCCGAATTT 1074 CTCGCCGGAGTGTTGTAAGCATTG 1075 AGCAATCATGAGAGTGGCCGGTG 1076 ATTTGCCACCGGCGACAAAAAGAT 1077 CCGCCCGTGTTGGCATGTCTTTTG 1078 ATCGGAAGTGCCGGTGACACACCG 1079 CCTCAGACCCTATCTGGGTTGACG 1080 CTGTGTGTCTGGCTGACTGACCG 1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAATCCGGTAA 1084 GGTTTACGCCATGACACCG 1085 GTGCAGGCCTTTGTGTGTGAACCG 1086 CTTCGAGGCCTTTGTGTGTGAACCG 1086 CTTCGAGGGTAGGCCTCA 1086 CTTCGAGGGTAGGGCTTCCAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGGTGCACTC 1089 GTTTGGTTTTCCACGGGAGTTTCA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCAACTGCTC 1094 GCGTTCGCAGAGGAACGAACGGAACGGAACGGAACGGAA		1068	ATGCGATCCATGACAAGGGTTGCT
1071 AACGACCACGACCTCGCCGAGTA 1072 GGTGCTTTGTCTGAGGCGAGTGAA 1073 CTGTCGGCGCTGCTCTCCGAATTT 1074 CTCGCCGGAGTGTTAAGCATTG 1075 AGCAATCATGAAGAGTGGCCGGTG 1076 ATTTGCCACCGGCGACAAAAAGAT 1077 CCGCCCGTGTTGGCATGTTTTTG 1078 ATCGGAAGTGTGCACACACG 1079 CCTCAGACCCTATCTGGGTTGACG 1080 CTGTGTGGTCTGGCAGTTC 1081 GTCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCCCCTA 1084 GGTTTACGCACACACCG 1085 GTGCAGGACTTCCGAAACC 1086 CTTCGAGGGTAGGCCCCCTA 1086 CTTCGAGGGTAGGCCCCCTA 1087 AGTCGACACTTGGGTTTACACGG 1088 ACATAAATCTCGCCGCTGCACC 1089 GTTTGGTTTTCCACCGG 1089 GTTTGGTTTTCCACCGG 1090 GCAGGAACCAGATTATCGG 1091 TTTGCTAGAGCGGAGGTTACC 1092 CTAAGTCGGTTTGCAACCC 1093 CCTAAGTCGGTTTGCAACCC 1094 GCGTTCGACACTCCCGTC 1095 TAACCCGCGCCGAGAAATTGTCT 1096 TATGGTGCTCACAGGACACCCCAA 1097 TCATCGACCCACTAACGCACCCCAA 1098 TGCTCAAGCACTTACGTCCCCAA 1099 AGCGGAAGGTTCACCCCCCAA 1099 AGCGGCAAGGTTTGCACCCCCCAA 1099 AGCGGAAGGTTCACCCCCCAA 1099 AGCGGAAGGATCACCCCCCAATGCCCCCCCCCCCCCCCC		1069	CCCGTGGAGATGATGTGCGGCTTA
1072 GGTGCTTTGTCTGAGGCGAGTGAA 1073 CTGTCGGCGCTGCTCTCCGAATTT 1074 CTCGCCGGAGTGTTGTAAGCATTG 1075 AGCAATCATGAGAGGTGGCCGGTG 1076 ATTTGCCACCGGCGACAAAAAGAT 1077 CCGCCCGTTTGGCATGTCTTTG 1078 ATCGGAAGTGTGGACGACACACG 1079 CCTCAGACCCTATCTGGGTGACG 1080 CTGTGTGGTCTGACCACACG 1080 CTGTGTGGTCTGGCTGACCACACG 1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGAGTGCCCCTA 1084 GGTTTACGCCATGACACACG 1085 GTGCAGGCCTTTGTGTGAATCG 1086 CTTCGAGGTAGGGCTTCGAAACG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGGAGGTTC 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCCACAAGGAACGGAAGG 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTGTGCCAA 1099 AGCGGCAAGGTTGAGAACG 1099 AGCGGCAAGGTTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGGAAAA 1100 CCGATGTAGCACCACCGCAGGAAACG 1101 AAGTTCTGGGAATCACACGGCCG 1101 AAGTTCTGGGAATCACACGGCCG 1101 AAGTTCTGGGAATCACACGGCCG 1101 AAGTTCTGGGAATCACACGGCCG 1101 AAGTTCTGGGAATCACACGGCCG 1101 AAGTTCTGGGAATCACACGGCCG 1101 AAGTTCTGGCAATCACCCCCCAATACGCCCCCAATACGTCCCC 1009 AGCGGGAAAGGTCTTACACACGGCCCG 1101 AAGTTCTGGGAATCACACGGCCCG 1101 AAGTTCTGGGAATCACACGGCCCG 1101 AAGTTCTGGCCTCCTCTCCCCAATGCCCCCCCCAATACCTCCCCCCCC		1070	CCCAATAGACGCCACAGCCAGTGA
1073 CTGTCGGCGCTCTCTCCGAATTT 1074 CTCGCCGGAGTGTTGTAAGCATTG 1075 AGCAATCATGAGAGGTGGCCGGTG 1076 ATTTGCCACCGGCGACAAAAAGAT 1077 CCGCCCGTGTTGGCATGTTTTG 1078 ATCGGAAGTGTGACGACACG 1079 CCTCAGACCCTACTGGGTGACG 1080 CTGTGTGGTCGACGTGTC 1081 GTCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAATCGGG 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGAGTGCCCCTA 1084 GGTTTACGCCATGACACCCCTA 1085 GTGCAGGCCTTTGTGTGAATCG 1085 GTGCAGGCTTTGTGTGAATCG 1086 CTTCGAGGGTAGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGCACTC 1093 CCTAAGTCGGTTTGCAAGCG 1094 GCGTTCGTCCACAGGAACGAATTGTCT 1094 GCGTTCGTCCACAGGAACGAATTGTCT 1095 TAACCCGCGCCCGAAAATTGTCT 1096 TATGGTGCCACAACGAACGAACGAACGAACGAACGAACGA		1071	AACGACCACGACCTCGCCGAGTA
1074 CTCGCCGGAGTGTTGTAAGCATTG	ıo	1072	GGTGCTTTGTCTGAGGCGAGTGAA
1075 AGCAATCATGAGAGGTGGCCGGTG 1076	·	1073	CTGTCGGCGCTGCTCTCCGAATTT
1076		1074	CTCGCCGGAGTGTTGTAAGCATTG
1077 CCGCCGTGTTGGCATGTCTTTTG	. [1075	AGCAATCATGAGAGGTGGCCGGTG
1078 ATCGGAAGTGCTGACCACACG 1079 CCTCAGACCCTATCTGGGTTGACG 1080 CTGTGTGGTCTGGCTGTCC 1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGCACTC 1093 CCTAAGTCGGTTTGCAGATGCTC 1094 GCGTTCGTCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCACAGGAACGGAAGG 1097 TCATCGACCACTAACGTCAGGCC 1098 TGCTCAAGCTACGTCAGGGC 1099 AGCGGAAGGTCAGGGCCCCCCAGAGAATTCCCC 1099 AGCGGGAAGGTCTGACGGCCCCCCCCCCCCCCCCCCCCC		1076	ATTTGCCACCGGCGACAAAAGAT
1079 CCTCAGACCCTATCTGGGTTGACG 1080 CTGTGTGGTCTGGTCCGGCTGTTC 1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACCGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATCC 1093 CCTAAGTCGGTTTGCACGTGCTC 1094 GCGTTCGTCCACAGGAACTGGTC 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGC 1098 TGCTCAAGCTACGGTCACTTCCC 1099 AGCGGGAAGGTCTGAGAGGAAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGCCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC	15	1077	CCGCCGTGTTGGCATGTCTTTTG
1080 CTGTGTGGTCCGGCTGTTC 1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGTGCACTC 1089 GTTTGGTTTCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTC 1094 GCGTTCGTCACAGGAACGGAAGG 1095 TAACCCGCCCGAGAAATTGTCT 1096 TATGGTGCTCACAGGAACGGAAGG 1097 TCATCGACCCACTAACGTCAGGC 1098 TGCTCAAGCTACGTCACTTCCC 1099 AGCGGGAAGGTCTAAGAGCACACACCACACACGCACGC 1001 AAGTTCTGGGAATCACACGGCGCG 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCCGAATGCC 1091 CGTTTCGCCTCCTCTCCCGAATGCCCCCCTCTTCCCCAATGCCTCCCTC		1078	ATCGGAAGTGCTGACTGACACACG
1081 GTCCCCATTATCGGTGAGTGCAAC 1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTC 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGCGCGC 1102 CACCAGCCTTACGTGCGGCTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC	[1079	CCTCAGACCCTATCTGGGTTGACG
1082 ACAGGCACGTAAGTGCTCAATCGG 1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCACAGGAACTGTTCC 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGTCACGTGCC 1099 AGCGGAAGGTCACTTCCC 1099 AGCGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC 1103 CGTTTCGCCTCCTTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CACCAGCCTTACGTGCGCGCTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCCGAATGC 1105 CACCAGCCTTACGTGCGCGCTTAA 1106 CGTTTCGCCTCCTCTTCCCGAATGC 1107 CGTTTCGCCTCCTCTTCCCGAATGC 1108 CGTTTCGCCTCCTCTTCCCGAATGC 1109 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTTCCGAATGC 1101 CTTTCTTTTCTTTTTTTTTTTTTTTTTTTTTTTTTT		1080	стететестсетссеттс
1083 AGCAAGATAGCGGGAGTGCCCCTA 1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1081	GTCCCCATTATCGGTGAGTGCAAC
1084 GGTTTACGCCATGACATCCCGTCA 1085 GTGCAGGCCTTTGTGTGTGAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGTCAGGGC 1099 AGCGGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC	20	1082	ACAGGCACGTAAGTGCTCAATCGG
1085 GTGCAGGCCTTTGTGTGTAATCG 1086 CTTCGAGGGTAGGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGTCAGGGCAAA 1099 AGCGGAAAGTCTGAGGAAGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGG 1102 CACCAGCCTTACGTGCGAATGC		1083	AGCAAGATAGCGGGAGTGCCCCTA
1086 CTTCGAGGGTAGGCTTCGAAACG 1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGTCACGTCCC 1099 AGCGGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CGTTTCGCCTCCTCTTCCGAATGC 1106 CGTTTCGCCTCCTCTTCCGAATGC 1107 CGTTTCGCCTCCTCTTCCGAATGC 1108 CGTTTCGCCTCCTCTTCCGAATGC 1109 CGTTTCGCCTCCTCTCCCGAATGC 1109 CGTTTCGCCTCCTCTTCCGAATGC 1109 CGTTTCGCCTCCTCTTCCGAATGC 1109 CGTTTCGCCTCCTCTTCCGAATGC 1109 CGTTTCGCCTCCTCTTCCGAATGC 1109 CGTTTCGCCTCCTCTCTCCGAATGC 1109 CGTTTCGCCTCCTCTCTCCGAATGC 1109 CGTTTCGCCTCCTCTCTCCGAATGC 1109 CGTTTCGCTCCTCTCTCCTCTCTCCGAATGC 1109 CGTTTCGCTCCTCTCTCCCGATGCC 1109 CGTTTCGCTCCTCTTCCGAATGC 1109 CGTTTCGCTCCTCTCTCCCTCTCTCCTCTCTCCCTCTCTCCTC		1084	GGTTTACGCCATGACATCCCGTCA
1087 AGTCGACACTTGGGTTTACCACGG 1088 ACATAAATCTCGCCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CGTTTCGCCTCCTCTTCCGAATGC 1106 CACCAGCCTTCCCCAATGC 1107 CGTTTCGCCTCCTCTTCCGAATGC 1108 CGTTTCGCCTCCTCTTCCGAATGC 1109 CACCAGCCTTCCCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCTCTCTTCCGAATGC 1101 CGTTTCGCTCTCTCTCCTCTCTCCTCTCTCCTCTCTCTC		1085	GTGCAGGCCTTTGTGTGTGAATCG
1088 ACATAAATCTCGCCGCTGCACTC 1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGTCAGGGCAAA 1099 AGCGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CGTTTCGCCTCCTCTTCCGAATGC 1106 CGTTTCGCCTCCTCTTCCGAATGC 1107 CGTTTCGCCTCCTCTTCCGAATGC 1108 CGTTTCGCCTCCTCTTCCGAATGC 1109 CACCAGCCTTCCCGCATGCC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1102 CACCAGCCTTCCCCTCTTCCGAATGC 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CGTTTCGCCTCCTCTTCCGAATGC 1106 CTATGGTCACACGCACTCCCTCTCTCCGAATGC 1107 CACCAGCCTTCCCTCTTCCGAATGC 1108 CGTTTCGCCTCCTCTTCCGAATGC 1109 CACCAGCCTTCCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCTTCTCCTCTCTCCTCTCTCTCCTCTCTCTCT		1086	CTTCGAGGGTAGGGCTTCGAAACG
1089 GTTTGGTTTTCCACGGAGGTTTGA 1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGTCAGGGC 1099 AGCGGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGCGCTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CGTTTCGCCTCCTCTTCCGAATGC 1106 CGTTTCGCCTCCTCTTCCGAATGC 1107 CGTTTCGCCTCCTCTTCCGAATGC 1108 CGTTTCGCCTCCTCTTCCGAATGC 1109 CACCAGCCTTCCCGAATGC 1100 CGTTTCGCCTCCTCTTCCGAATGC 1101 CGTTTCGCCTCCTCTTCCGAATGC 1102 CACCAGCCTTCCCTCTTCCGAATGC 1103 CGTTTCGCCTCCTCTTCCGAATGC 1104 CGTTTCGCCTCCTCTTCCGAATGC 1105 CTATGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	25	1087	AGTCGACACTTGGGTTTACCACGG
1090 GCAGGAACCAGATTAGTGTCCCGG 1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1088	ACATAAATCTCGCCCGCTGCACTC
1091 TTTGCTAGAGCGCGGAGCTAAAGC 1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 35 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGAAGGTCTGAGGAGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1089	GTTTGGTTTTCCACGGAGGTTTGA
1092 CTATGTGGCATCGCTGACATGCTC 1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1090	GCAGGAACCAGATTAGTGTCCCGG
1093 CCTAAGTCGGTTTGCAGCTGCTCT 1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1091	TTTGCTAGAGCGCGGAGCTAAAGC
1094 GCGTTCGTCCACAGGAACGGAAGG 1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC	30	1092	CTATGTGGCATCGCTGACATGCTC
1095 TAACCCGCGCCCGAGAAATTGTCT 1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1093	CCTAAGTCGGTTTGCAGCTGCTCT
1096 TATGGTGCTCAGAGCTGTTGCCAA 1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1094	GCGTTCGTCCACAGGAACGGAAGG
1097 TCATCGACCCACTAACGTCAGGGC 1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1095	TAACCCGCGCCCGAGAAATTGTCT
1098 TGCTCAAGCTACGCGTCACTTCCC 1099 AGCGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1096	TATGGTGCTCAGAGCTGTTGCCAA
1099 AGCGGGAAGGTCTGAGGAGGGAAA 1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC	35	1097	TCATCGACCCACTAACGTCAGGGC
1100 CCGATGTAGCACCACCGCAGTGGC 1101 AAGTTCTGGGAATCACACGGCGCG 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1098	TGCTCAAGCTACGCGTCACTTCCC
1101 AAGTTCTGGGAATCACACGGCGCG 40 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1099	AGCGGGAAGGTCTGAGGAGGGAAA
40 1102 CACCAGCCTTACGTGCGGCGTTAA 1103 CGTTTCGCCTCCTCTTCCGAATGC		1100	
1103 CGTTTCGCCTCTCTCCGAATGC		1101	
	40	1102	
		1103	
1104 GAGGAGGCCAATAGAGCAGCGCGC		1104	GAGGAGGCCAATAGAGCAGCGCGC

-69-

1115 CCTATTTCGGCGGACCTCGATGCC			
1107 TCGTAGAGACGCAGTGCCCATCTC 1108 CGAAGCTACACCCCGAGTGCGGTG 1109 ATGATGTGATCTCCCATGGCTGG 1110 TGTACACGTATCGCCTTAG 1111 GGTGTGCTTTTACGCATGTACGCA 1112 AGGCGGATACGTGGATGCTAGCC 1113 AAATTAGGCACAGCCCTCCCACAG 1114 ATAAGTTTGGTGAGCCATTCGCGA 1115 CCTATTTCGGCGACCTCGATGCC 1116 TTACCGGAATTGCGCA 1117 CCTCTGGGAGGGTCCTTGATCG 1118 CAAGCGAATATGCACTTGGCCG 1118 CAAGCGAATATGCACTTGATCG 1119 GCATTTCCCATGCCAGAACGTTGA 1120 GTTTTGCCATGCCAGAACGTTGA 1120 GTTTTGCCATGCCAGAACGTTGA 1121 AGGTTTTGCCGGGCGAATGATGT 1121 AGGTTTTGCCGGGCGAATGATGT 1122 ATGTCCACAGAGGGTCCGATATC 1123 AGACGCTACGAGGGGTCCGATATC 1124 AATACCGTTCCCATCGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTAGAT 1128 GCGGCCATAGTGCACGAAA 1129 TACGGTGCATGACAGAATCCA 1129 TACGGTGCATGCAGAATACCA 1129 TACGGTGCACGAGAATACTACGACGGAA 1130 CACCAGATGTGGAGGATATGGA 1131 GCTCCTACGACGAGAACTTGGA 1131 GCTCCTACGACGAGAACCTC 1133 CTGCAGTGGCAGCACATCCGA 1134 ATGTCCTGACGAGAGAATCTTCCA 1135 TTCGCCACGAGGCATTATGCACCGC 1134 ATGTCCTGACGAGAATCTTCCA 1135 TTCGCCACGAGGCATTATCCA 1136 ACGTCGTTCCCAGAAGAATCTTACCACCGGTTGACCGC 1134 ATGTCCTGACGAGAGAATCTTTCCA 1135 TTCGCCACGAGGCATTTTCCA 1136 ACGTCGTTCCCAGAGAATCTTTCCA 1137 ATCCGCTGACGAGAATACTCTCCAAAAATCCTA 1137 ATCCGCTGACGAGAAATCTTACCACGGTGGAA 1138 TGAACCAATTCTTACCGCGTGGAA 1139 CACCAGATGGTTCCCAAGAAAACCTAACAAATCCTAACAAATCCTA 1137 ATCCGCTGACGAGAAATCCTACCAACGACCAACTTC 1140 TCGATCCCCCGATTTGCCCAAAAACCAACTTTTACCCGGTGGAATCTTTCCAAAATCCAAATCCTACAAAATCCAAATCCAAATCCTAACAAATCCAAATCCAAATCCAAATCCAACC		1105	AGTAATCTTGCGGCACACAAGCGG
1108		1106	TGAGGACAAACCGCGCGTAGGATA
1109		1107	TCGTAGAGACGCAGTGCCCATCTC
1110 TGTACACGTATCGCCTAG		1108	CGAAGCTACACCCCGAGTGCGGTG
1110 TGTACACGTTCGCCTAG	5	1109	ATGATGTGATCTTCCCATGGCTGG
1112 AGGCGGATACGTGGATGCTAGCC 1113 AAATTAGGCACAGCCTCCCACAG 1114 ATAAGTTTGGTGAGCCATTCGCGA 1115 CCTATTTCGGCGGACCTCGATGCC 1116 TTACCGGAATATGCACTTGGCCGC 1117 CCTCTCGGACGTCCCTTTGATCG 1118 CAAGCGAATGCTGATTTACGGCCT 1119 GCATTTCCCATGCCAGAACGTTGA 1120 GTTTTGGCTACCGTCCTTGCTTG 1121 AGGTTTTGCGGCGAATGATGT 1122 ATGTCCACGAGTGCTCCGATATC 1123 AGACGCGTACCAGAGTGTTCTCCATTGTCCAGCCAGAACGTTGA 1124 AATACCGTTCCCATCTGGCGAGG 1125 ACACAAGGTGCTCTATCGAATGGT 1126 GCCGGCAAAATCCTACGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTACAT 1128 GCGGCCATAATGCATGACACGAA 1129 TACGGTGCATCGAGAATACCA 1129 TACGGTGCATCGAGATATGG 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGACCAGCAGCACCC 1132 AGAATATGGGAACACACCCG 1134 ATGTCCCTGACCGAACACACCC 1135 TTCGCCACGCAGAACACCCC 1136 ACGTCGTTCCCGACAACACACCCT 1137 ATCCGCTGGCGCATTAGTCCGAC 1138 TGAACCAAATTCTTACCGCCTGGA 1139 CACGCGTAGGCTCTTTTTCCA 1130 CACCACAATTCTTACCACCTTTTTCCA 1131 TTCGCCACGAGAATACGGTCT 1132 ATGTCCTGACCGAAATACGGTCT 1134 ATGTCCCTGACGAACACACCCT 1135 TTCGCCACGAGAATACGGTCT 1136 ACGTCGTTCCCGACAACACCCTTTTTCCA 1137 ATCCGCTGGCCATTAGTCCGAC 1138 TGAACCAAATTCTTACCGCCTGGA 1139 CACGCGTAGGCTGTGTCATTC 1141 GAACACTCAACCACCGTGGATCT 1141 GAACACTCAACCACCCTTTTTC 1141 GAACACTCAACCACCCGTGGATCT 1142 TCACAACCAACTGGCCACAACCC 1144 GAACATTAACCCGACCGATTGTCC 1145 GGCACCGAGCCAGTTGTCCACACTAGACCCCTCTTCAACCCACTAGGCCACTCTTCCAACCACCACTAGATTCTCCAACTCTCCAACTAGCACCACCACTAGATTCTCCAACTAGATTCTCCAAC		1110	TGTACACGTATCGCGTTCGCCTAG
1113		1111	GGTGTGCTTTTACGCATGTACGCA
1114		1112	AGGCGGGATACGTGGATGCTAGCC
1115 CCTATTTCGGCGGACCTCGATGCC		1113	AAATTAGGCACAGCCCTCCCACAG
1115 CCTATTTCGGCGGACCTCGATGCC	10	1114	ATAAGTTTGGTGAGCCATTCGCGA
1117 CCTCTCGGACGGTCCCTTTGATCG		1115	CCTATTTCGGCGGACCTCGATGCC
1118		1116	TTACCGGAATATGCACTTGGCCGC
1119 GCATTTCCCATGCCAGAACGTTGA		1117	CCTCTCGGACGGTCCCTTTGATCG
1120 GTTTTGGCTAACCGTCCTGCTTG 1121 AGGTTTTGTCCGGGCGAATGATGT 1122 ATGTCCACGAGTGCGTCCGATATC 1123 AGACGCGTACGAGGGGTTCTGCGCC 1124 AATACCGTTCCCATCTGTGCGAGG 1125 ACACAAGGTGCCTCATCGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTCTGACT 1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGCACGCAGCACTC 1133 CTGCAGTCGCAGCAGCAGCACTC 1134 ATGTCCCTGACCGCAATCTTCCA 1135 TTCGCCACGAGAATACCGTCT 1136 ACGTCGTTCCCGAGAATACCGTCT 1137 ATCCGCTGGCGCTTTGACGAAGA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGCCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCCC 1144 GACATTTAACCCGACCGATTGTCC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1118	CAAGCGAATGCTGTATTACGGCCT
1120 GTTTTGCTAACCGTCCTGCTTG	15	1119	GCATTTCCCATGCCAGAACGTTGA
1122 ATGTCCACGAGTGCGTCCGATATC 1123 AGACGCGTACGAGGGTTCTGCGCC 1124 AATACCGTTCCCATCTGTGCGAGG 1125 ACACAAGGTGCCTCATCGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTCTGACT 1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGGCAGCAGCAGCACTC 1133 CTGCAGTCGCAGCAGCAGCACTC 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1120	GTTTTGGCTAACCGTCCTGCCTTG
1123 AGACGCGTACGAGGGTTCTGCGCC 1124 AATACCGTTCCCATCTGTGCGAGG 1125 ACACAAGGTGCCTCATCGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTCTGACT 1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGCAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGGCAGCAGCACTC 1133 CTGCAGTCGCACGCAGTAGACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTCATTC 1140 TCGATCCCGCGATCTGCCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCACCTGGCACAGATG 1143 TGTGCTTAGGACACACCC 1144 GACATTTAACCCGACCGATTGTCC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1121	AGGTTTTGTCCGGGCGAATGATGT
1124		1122	ATGTCCACGAGTGCGTCCGATATC
1125 ACACAAGGTGCCTCATCGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTCTGACT 1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGCAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGGCAGCAGCAGCACTC 1133 CTGCAGTCGCACGCAGTAGACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGACTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTCTATTC 1140 TCGATCCCGCGATCTGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCACCGTGGATCT 1143 TGTGCTTAGGACACCCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1123	AGACGCGTACGAGGGTTCTGCGCC
1125 ACACAAGGTGCCTCATCGAATGGT 1126 GCCGGCAAAATCCTACAAAATCCA 1127 CTTATCCCATGTGCCGGTCTGACT 1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGCAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGGCAGCAGCACTC 1133 CTGCAGTCGCACGCAGCAGCACTC 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGAATCTTTCCA 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTCTATTC 1140 TCGATCCCGCGATCTGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCACCTGGCCACAGATG 1143 TGTGCTTAGGACACCCCGTGAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA	20	1124	AATACCGTTCCCATCTGTGCGAGG
1127 CTTATCCCATGTGCCGGTCTGACT 1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGCAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGGTATGG 1132 AGAATATGGGCAGCAGCAGCACTC 1133 CTGCAGTCGCACGCAGTAGACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1125	ACACAAGGTGCCTCATCGAATGGT
1128 GCGGCCATAATGCATAGCACGGAA 1129 TACGGTGCATCGCAGTATGGGTAA 1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGGCAGCAGCAGCACTC 1133 CTGCAGTCGCACGCAGTAGACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCACCGTGGATCT 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1126	GCCGGCAAAATCCTACAAAATCCA
1129 TACGGTGCATCGCAGTATGGGTAA	•	1127	CTTATCCCATGTGCCGGTCTGACT
1130 CACCAGATGTCGAGGATCATCGCC 1131 GCTCCTACGCCCAAAGAGGTATGG 1132 AGAATATGGGCAGCAGCAGCACTC 1133 CTGCAGTCGCACGCAGCAGCACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCACGGCAACCC 40 1144 GACATTTAACCCGACCGATTGTC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1128	GCGGCCATAATGCATAGCACGGAA
1130	25	1129	TACGGTGCATCGCAGTATGGGTAA
1132 AGAATATGGGCAGCAGCACCCC 1133 CTGCAGTCGCACGCAGTAGACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCACCTGGCCACCAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1130	
1133 CTGCAGTCGCACGCAGTAGACCCG 1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCACCTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1131	GCTCCTACGCCCAAAGAGGTATGG
1134 ATGTCCCTGACCGGAATCTTTCCA 1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1132	AGAATATGGGCAGCAGCACTC
1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1133	CTGCAGTCGCACGCAGTAGACCCG
1135 TTCGCCACGAGGCATTAGTCCGAC 1136 ACGTCGTTCCCGAGAATACGGTCT 1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA	30	1134	
1137 ATCCGCTGGCGCTTTGACGAAGAA 1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1135	TTCGCCACGAGGCATTAGTCCGAC
1138 TGAACCAAATTCTTACCGCGTGGA 1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1136	ACGTCGTTCCCGAGAATACGGTCT
1139 CACGCGTAGGCTGGTGTCATTC 1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1137	
1140 TCGATCCCGCGATCTGGCCTATTG 1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1138	
1141 GGAACACTCAACCACCGTGGATCT 1142 TCACACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA	35	1139	CACGCGTAGGCTGGTGTCATTC
1142 TCACACCAACTGGCCACAGATG 1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1140	
1143 TGTGCTTAGGACACCAGGCAACCC 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1141	
40 1144 GACATTTAACCCGACCGATTGTGC 1145 GGCACCGAGCCAGTAGGCCTCTGA		1142	
1145 GGCACCGAGCCAGTAGGCCTCTGA		1143	
1145 GGCACCGAGCCAGTAGGCCTCTGA	40	1144	
		1145	
1146 CTCAAGCGTGCATGTTGGTAACCA		1146	CTCAAGCGTGCATGTTGGTAACCA

11	47 A0	GGAAGGCCACCATCCAATATICG
11	148 T	TGGAGCCCTGACTGAACCAAATC
11	149 T	ACGAACGCCAAGGTTATGCCAAT
11	150 C	GCACCAGAGTTATGCAGGCTCAA
11	151 C	CAGCTTGGACGAGGAAGGATGTG
1	152 G	TCACGCCTTTCAAATGACCCACA
1.	153 T	GCTAGACCCAGCCCGAGTCTCGG
1	154 T	ATTGTGGCACTTGGGTCCAGTGC
1	155 C	CACGTGTGAGACCGGAAGTGCATC
1	156 A	ACCTCCAGCAAAACGTCGAGGTT
1	157	GCAGCCTGATGCTACAGCACCGT
1	158	CGGTCCGTCCATCCTTCAGAGTTA
1	159	CTATTCGCGGACCCTACGCAGTTT
1	160	ACCTGTGCAGTCAGCACGAGTGCG
1	161	GAGAACCACAGGTGGTCCACCCTA
1	1162	CCTCGCTAGAGAAATCCACGGGAT
1	1163	TAACATCGGTGCAAACCGTGGCGC
		ACCCAGAAGACATGGCATTCGCCT
		AAAAGCGCTGCTCTAACACCGCCG
		CAAGTCTGTCCATTTCCCAACGGT
		CCGACACATGGTGGGCTTTTTAAG
		ACAGACCAGCTTTTTGCGCAGATT
	1169	CGGCGATCCATTTCACTTCAAAGT
	1170	GACGTTATCATGACACAGGTCGCG
	1171	GGCAGAGTTGGATCGGATCCTCAA
	1172	TTGCTGGCAAACAGCTCCTGAAGA
	1173	CCTCAATGCCACCGAATTCGGTAT
	1174	GGAGTTAGCGTGATTAGTCGCCCA
	1175	GAACTCGACGTGTCACGGAAGGGT
	1176	CACAAGCGACATTTCTGGTGCACG
	1177	CCAGAATGCGTGAATTCGCGTCCT
	1178	CAAGGGAGCCCTGCGAATTAGAGT
	1179	ATTCTTGCTTCGGACGACTAGCCG
	1180	TGCCACTTTGATTTCCAGATTGCC
	1181	GATGGTCGGCAGATAAGTGGTGGG
	1182	GTTCACACGGGTTGACCAACATGT
	1183	GATTCAATTGCCCCATTCCTGCAT
	1184	TACCGGAAACTGAGCCTCGTGCTA
	1185	GGATCTTTACTCAGGGGCAGAGCC
	1186	CGCGAGTGCTTTGTTCTGTGGA
	1187	GTCGTCGCGATGGCGTACATCCTT
	1188	ACGGGAATCTCCCGAAGTGCGAGC

;

)

5

!0

25

30

35

40

Ţ	1189	GGTCGAAATGAGCCAGCAGCAGAT
	1190	CCATTGGAATACTGCGTGCGGCTT
	1191	GGAAGACTTCGCGAGGGCACAATG
	1192	AGGGTGACTTCGAAGGTCCGAACT
5	1193	TCGTCCCTCTGGTGGTCGAATCAC
Ī	1194	TGTGCAAATTATGCTGGGCGTGAG
	1195	GTCGCCAACTGTCATGTGTGCCCA
	1196	CCTCGAACCCTCAAGACGAAACGA
	1197	CTTCATCACGTGACCTTTGTTGCC
,0	1198	CCTTCATTCCCAGCAGGATGGCTT
	1199	CGGGGACCTCAATGGAGCGTCTTA
	1200	CGCCTCTAGCGCTTGTTACGTCGA
	1201	CTGCCAGACTCAAAACAGGGACGG
	1202	CTCCTTACACCGTGTGAGGGAACC
15	1203	TITCATGCCATATCGCCTCGCGCA
	1204	TCTGGCTTTTCCTCGATCAATCGT
	1205	GTCTGACTGTCTGCCCTGTATGCG
1	1206	GGTTAATGGAACGGCGTTAACGCG
	1207	CTTCGCACTGCGGAATCTCAAGCT
20	1208	TGCCAGAGGCGTAGGAGTCCTGGA
	1209	GACGGGCGAGCCAGTATTAACTCA
	1210	GACCTCCAAAGTCAGTCTTGGCGG
	1211	CGTTAGAGCATGACCGAACACGTC
	1212	GTGGGCTCAAAAATTGGGTACGCC
25	1213	GGGGCAGAGATCACGCGTTCCTCT
	1214	TTTCGCCCTACGAAGCGAAGTTTC
	1215	TACGGGGTGATGTTAAGCTACGCG
	1216	CCTGTGAGTCTGAGATCGCCGTGT
	1217	ACTGAAGCTGGAACAGGCCATTCG
30	1218	AGCACTGGTTCACATGGGAGTCCA
	1219	TAAGGAAGATCACACTCCCTGCGC
	1220	CACCACACGCTAAAATTGAAGCCG
	1221	GCTGTCGCCAGGATCATGTATCGT
	1222	TTCGTTCGTGCACTGGATTCTTGA
35	1223	TCAGCTCTCCTTGTGCTTGCAGTG
	1224	ACGACGAGGTGAACTTCGTGGGAA
	1225	AGCATTGCCGCGGGCCTTGGTTTA
	1226	CAGAGGGCAGATGTGACTCCTCAA
	1227	CGATATTTCAGCCTCTCAAACGCG
40	1228	TGCCAGAAATGTTGCCGATTCGAA
	1229	TAGGCCACCGGTGTTCACAATTC
	1230	GAGAGTCAGACCGAGGGACACGAG

1000	CACTOA
1232 CCAGAGAGGCGGCTACT	GACTCA
1233 CACACAGTCCCATCGTAC	GGCAGT
1234 TTACGTTGCGGAAGCGTG	CCTCTA
5 1235 ATGTACACGCTGCAATCG	rgtccc
1236 ACTCGTCGGAAGCGC	CCAGGT
1237 ATGCGAGAGCAGAATTGA	GCCGGT
1238 AAGTTGGTTCGTATTCACC	CGTGC
1239 TGGGCTTATCGCCGAAGA	TTGCTA
10 1240 CAACGGCGAAGACCCAGA	ATTTTA
1241 AGCGTACGGCGAAAGTCT	AGGGAC
1242 ATGCATCCAGCGTCCCCT	TGATTA
1243 ACCGTCATCAGTCGCAGG	CTTCTG
1244 TCTTGACGGCTGGGCATG	ATTGGA
15 1245 TTAACATTCGGACCCAGG	ACCTGG
1246 TGGTGTCGAACTCCCTTG	CGTGTT
1247 TACTCCAGTCGCCTGCGC	GCAAAC
1248 CGCAATGCCGTAAGCATG	CCAAGC
1249 AGTCCGCGCAAATACGA	ACAGTA
20 1250 ATGTTGCACGCGCACTGT	ATCACA
1251 GGGATCAGCATCATTGGA	AAGGAG
1252 ATCGCCTAACTACCCGCC	GCGTGC
1253 TGGCCAGGGAACACAAG	CTCGGTA
1254 AAACATGGGTCGCGTCTC	
25 1255 GCGAGAGCTGCGATTCC	CTTTTAG
1256 CCGGCCAAACAAGAGAC	
1257 AATGGGCACAGTCTCG	CTTGACA
1258 TGTCTCGGGCCTTCAGG	
1259 TCCACCTTCATTAAGTGG	
30 1260 GCTTCGGAATCATCCAC	
1261 GAGCCGATGGGCTATCG	TCGTCGG
1262 CACGAATTACGCACGCA	
1263 GCTGTGACGCTCCCCTC	
1264 CGCTCTGAAAACGCGGG	
35 1265 GAGTGCTGGACACCGTA	
1266 CCAACCCCAGTGTAGGC	
1267 GAAGTAGGGATGTTGG	
1268 CAACGTGGGCACCTGTT	
1269 CTAGCTGCGATCCGAAC	
40 1270 CATTGAACCATCAGCCA	
1271 AGACTGGCAATTTTCG	
1272 CTGGCCGTCCATGAGT	rggtccag

1273	CATGCTGAAACACGGGATTGCCAT
1274	CGATATGTAAGACAGCCGTCGCAA
1275	AGCGTAACCTACTGGGAAGGCACC
1276	GTGCTCGTGGCACGTACAGGCCTT
1277	GTTCGAACCCCGCGATGTTAAATG
1278	GTTGTTAGGAGGCTCGAGGCTGCT
1279	ACTGGTGCTACGCGGGATATTTGA
1280	CTGGGAGCTATCCTCAGCCGAATC
1281	GAACTCGCCGCTGCCGAAGGGTAG
1282	TTCGATCGAGGAGCAAGGAGAGTC
1283	GGGGAAAATTGAGGCCTTAGCCAT
1284	CTAAGGTCAAAGCGCTGTCGCCAG
1285	GTGAGGCTTACCCCGTGCTCTTGG
1286	CCGTAGCGGTGCTCGACCAGGTTC
1287	TGGGGACGAATCCGAATGTAGTGA
1288	GTCATGTAATTGCATCCCACGGGT
1289	CTTTGCGCGGTGGTCAATAAAAAG
1290	CACTCGAGATTCAATGGGCATGGT
1291	CTCGGGGATGCCCTCTTGGCATTA
1292	CGAAACGTGGTGCAGAAACCTGAA
1293	GGAGTTCACGAGTCGAGCAGTCGC
1294	AGCCGTTTTCAAAGATCTCGACGA
1295	TGGCTGGACATTGTCTGCAATGCA
1296	ATCGGCTGCCTCAGTCCCTAATTT
1297	CCAGCATGGAGTTAAGTGAGCGCG
1298	TTCATATTTACGAATGCCGGGTGC
1299	CGAAATCGCACAGGAATTCGCGTC
1300	GGCAATTTCGGGACACTCGTTTCA
1301	TTTGTGATTGGGGGTATAACCCGA
1302	CCCAGCTAATCCAGCTTGGGCTGT
1303	AAAATCGTTTGGCTGTAACGTCGC
1304	AGGAGATTCATCGACTTCCGGGAA
1305	GCACGGGTCTCAATGCTTAGGGT
1306	GCGCAACAAGTAGCCTACCGAGGC
1307	TAGCAGGCTGATGCCGTCTACACA
1308	GCAAGCGGCGATCGTACAACTTGT
1309	GCACCTCTGGTAAGCCTGAAAGGG
1310	CGAGGCGGTGAGTGCATACCGTG
1311	GGATTAACCGGAACTGCCCTTCTG
1312	GATATTGGGTCCGGCGCGCATTAC
1313	GGCCTTTAATCTCCGGTCGCAATG
1314	AACCTTAGTGCGGCTAGGTGGGGT

;

כ

5

<u>?</u>0

25

30

35

40

Ţ.	1315	CACGCTGACGCCAGTGTGGTGAGG
	1316	GGTTCCCTTGACCCACCGAATTGA
	1317	TTCTGACAACATCGACCCTGGCTC
	1318	GCGAGCGAAGATAATCCCCAAACT
5	1319	GTACTCTGTGCAACGGTCCCGAGT
	1320	ACACGCCAGGAACAGTGTCTGTGA
	1321	AAGGGAATTTAGCGCGCGTGACTT
	1322	TGACGTACGCGTTTTAAGTGGGGA
Ī	1323	CTTAGAGGGACGAGGCCATGAATG
10	1324	GGACGACTCCGCAAAAAAGGTCGT
	1325	TCAATCCCAACATCCAAAGCCTCA
	1326	GCACTGGTCTACCAAGCTTGTCCC
Γ	1327	ACTTGTCGGAAACGAGACCGAGCA
Γ	1328	TCAGGAAAGGCCTAAAGGCGAAAG
15	1329	GGAATGTAGTCAAGGAGGACGGGG
ſ	1330	GCACGTGGTAAATGAATTGGCGAG
	1331	GATCATCAGGGGTTATGCGTCGCG
	1332	CTCACTCATTCTGATTGCCCGCGG
	1333	GGGGTGATCTCTCGAACGTCACCC
20	1334	AAGGTTGCTGCTAGCGTACCTCGA
	1335	TATAGATCGCCCAACAGGCAGGAG
[1336	GTTTGGACCTGTTGGGAGTGGGCA
	1337	ATTGGGGAAAACCCGGTCTCAAGG
	1338	TCGACGATAAAGTGCTCACGGGAC
25	1339	CGATAGAATTCAATGCAGGGCGGA
	1340	CGGTTCGCTACGGCGGCTGGTTTC
	1341	CCAGGTTTCGGTTAGTCGCGCTAG
	1342	ACGACCTTACACTCGGATCCGACG
	1343	TCGCGTTAAATGGACCAAGGGGCC
30	1344	CCAGAAAGAAATGGCGCCCGGAT
	1345	GATACATCGCCGCCTGCTAGGCAC
	1346	GAGATCACACTCGGAAACCGGATG
	1347	ACTTCGCGGAAAAAGGCTGGCATT
	1348	CCGAGCTGCACGAGCACAAAGT
35	1349	TTCCACAAGGCGGCATAGTGAGGC
	1350	AGCAAACTGGAATCCGGAAAAACC
	1351	CGCTATGTCGCAGCATGCATTTAC
, .	1352	AGTCACGCCCAACGTCGGTTCTTT
	1353	AGTGGGCGCACTTGGCCTTAAATA
40	1354	ACTTGCAACTTCGGCCGTTTGACT
	1355	CAAACATCAGGTTCATGCCGTACG
	1356	AGCGTGACCACCCTACAATGGCAA

-		
	1357	GCAGGCATCCGGCAGAGATGTCTC
	1358	GAGCGGCTAAGAGGCCAGACCAAA
	1359	CACAGAACAGGGTGTTTCCCGCTA
	1360	ACTTTGCAGAAGGCCCAACACAAG
5	1361	CCTTCCTGGTACTTTGTGGGCGAC
	1362	CTACATGCTCACCCACCAGAGTG
	1363	ATTTTCAGAATAGCCCCGCCTCGA
	1364	CAATTGCTACGTTGACGCCCTCTG
	1365	CTGTCGCCTAATCCTCGGTGGCCG
10	1366	TTTGTGTTGGCTCCGTACATTGGA
	1367	ACGTGACGGGAAGGTGGTTGAATC
	1368	AGTTCTTGCGTTGCACGAAACAGA
	1369	GCTCGCCGCGCGTCTTTATGTCTG
	1370	ATGAACATCGCGAGGCAAGCCTTT
15	1371	CAACCGCGCCCACCAACATTAAGG
	1372	TGATCGAGGACGGCTTGGTAGCCT
	1373	GGAGGCATGCCTTCCGAGAGCAAC
	1374	CACCGATCCTCAACGCAATTGCTA
	1375	GGCCATGAATTGGGAAATCCATGT
20	1376	CTGTTCCAGGCGTAACCAGCGGGC
	1377	TATGTCTGGCTCGCCATCAGAAGA
	1378	GGAGTGACCAGCACAAGCATCGAG
	1379	TCGGACTGGAAGTAACTCGCATGA
	1380	GTAGGGTCAAGCACGATTGAAGCC
25	1381	CACCGGCGGTTCGACTAACGTGAC
	1382	GAATGACGCGCAGTGCATTTGAAC
	1383	GTGCTCGTCTAACCGCGGATAGAG
	1384	GCGGACCTGGGTTAATTGACGCGC
	1385	TTTTTGATGTTGCGCACCGGGCTA
30	1386	TTGCGTCAGCGCATCTGCTCGATT
	1387	ATGAGCACGCCAGTTCGTTCCTTT
	1388	TCAACGGTAAAGAATCGCCCCGCA
	1389	CGCGATTGACTGAACCACACCTCT
	1390	GCGTGAAAGATGACGGCCGGTATA
35	1391	CATGATTCCACCTCGATCGGCTAG
	1392	CTACGACAAGCAACCGTGCAAAA
	1393	ATGCCGTGTTCATCTTGATGGTCC
	1394	TTCGTGGAGGGACTTTGGAGATCC
	1395	GAAGCGCCGTAACGTACACCGTCG
40	1396	AGCGTGCGCTTGGCTATAAGGCTA
	1397	ACAGTCAGGAGTAACGCCGCTCAA
	1398	TTTAGCCGCTGCGACTGTAGGAAA

Γ		ACTGTGTCGCAATCAACCCGCAAA
Γ		TGCAGCCAATGCGGAACTTAGAGG
Γ		CCCGCTATCCCGGTCTTGCAGTTC
	· · · - <u> 1</u>	GAGGGCGCAACATATGCAGTGCTG
5	1403	CGTACGGACATCGATGACGCAACG
	1404	AGTCTCCCGAGAAACGCATAAGGC
Ī	1405	AGGAAGTGGATGAACGCGGCTGCA
	1406	GGGTTGCTCACCCTCGTCATCAGG
	1407	TAGGAATGCGAGTTCCGGCGGTAA
١٥ -	1408	CTCCTCACTTCCAAGCTGCGGATA
· ·	1409	TCAATAGCACCTAGCATGCTCCCG
Ţ	1410	TGATTCCTGCGCTTTCACAGGTCG
Ī	1411	GTATGTGCGGGATGGAAATCACGC
	1412	TACGGCAACTGTCGATACGAGGGC
15	1413	GGTTCCCTATCCAGCACTCCTCGC
	1414	ATAAGCGCGCCACAGGTATGTACC
	1415	GAAAGTCGCCAACAGACTCGAGCA
	1416	CGCTAATGCCTCATAGGCGTGTGC
	1417	ATCCCGCCGCACGAAGTACCAAG
20	1418	GACGCTGCTGATGGCTTTATCGAT
	1419	CTCTCCCCGTCGCTTCAGAGATTA
	1420	TCATGTGGGCCGTCGTATCAGTTT
,	1421	GGCCTGAAGGTGAATGGTTACGTG
	1422	AGCCTCCAAAGCCGGTAGAGTTCC
25	1423	TTGTCGTAGGCGCTCACCTTAGGA
20	1424	GCCTGAGTCCGGGTCGGGAAAGAA
	1425	GGCACTATACCGGTTCTGGACGCG
	1426	CCGTGTATACGGAAAGGTACGCCA
	1427	CCCAAGGCAAGTGTGCATCAGTCC
30	1428	GGAGTGCATCATGGCCAAATCTGG
	1429	CCATGTTACGTCTGCGCACCACAG
	1430	GGCGTTGAGCTTAAAAGCAGCGAC
	1431	TTGGCACTCTGCAAGATACGTGGG
	1432	GATCTGCACTGCAAGGTCTTGGGG
35	1433	CGATCAACTTGCGGCCATTCCTGC
00	1434	CGGCTGGGGTCACAGAAACGAGTA
	1435	GCGGCTAGTTGTACCTAGCGGCTG
	1436	TCGTCACTGTTAGAGAGGCCTCCG
	1437	AGTGTCGTGAGCCCTAGCGGCGCT
40	1438	AGGACGCAGGGATTCAAGTGCAAC
-⊤∨	1439	ACCGATGCGCGGTCGGTCTCATAC
	1440	GGCAGAGGGTTAGGGGGTTTTTTT

. [1441	GGCAAAGGGTGTTTATGGGAGACC
ļ-	1442	ACAAGGCTTCGGCTGGCAGAATAC
-	1443	CATATCCGTTCCTATCGCCAGACG
	1444	AAGCCTTTGTGGCCAAGGCCGCGT
;	1445	CCGAACCATGGCTTTATCCAGTGT
	1446	GTTCAGCAGTAGCTCCCTCCGA
	1447	GCGCAGTGACACCATGATGCTTTC
Ţ	1448	ACGATCCATTTTGCCAGCATGCAA
ļ	1449	TCCCTTCATTTCGGGTTTTTAGCC
o	1450	TCTTCTTGCCCACATTCCCTTTTG
,	1451	TGCCTTTTGATTGGTGGTCACGGT
	1452	GACCCTCACGGTCATCAGAGGGAG
	1453	CCGTTCAACACAGTGATACACGCG
	1454	CACCAGGGGATAGGTGCGGTACGC
5	1455	GGTCGGAACTGATCTGTGCGATCC
	1456	TGCTCCTTCCTAGGGTCATCCGTG
	1457	GTGGACTTTGACGCCGGCTACCGC
'	1458	CTGATCTGTCGGCGGTTACTTGCC
	1459	AGAGGAGCGGAAAAAACCGGACGA
20	1460	GCGACGAAGATCCAGCAAGCTC
.0	1461	GGGACTTCCAGCTGAGGGACGAAA
	1462	GGCGCACTCCAATACCCACTGTTT
	1463	GCGCTTGGAGACTGTCAGGACGTG
	1464	CAAACCGCTGGTTTCTCCACCTGT
25	1465	GCGATTGCTTGGGATCGGTGACTA
	1466	CTCAGCGACATTTTTCTGGTGGCG
	1467	CAGCGGCGTCGTTTACTCAGGACT
	1468	GACAGCCGTGAACGCTCAGCCGTT
	1469	GGGCCGTAGAGGCATCGGGTAAAG .
30	1470	CGCCGCTCACCTGCTTAAAGCATT
	• 1471	TGCCAAATCGCAACTCTTGAGACA
	1472	CCCCGATCGGGTGTAATTCTCCCT
	1473	CAAGGTCCAGGTGACGCAACCACT
	1474	CGAGCCTTCAGTGGTATGCATGCG
35	1475	CAGCAGCGTGCCCATCTCGACTTA
	1476	CGGACCAAGATGGCAGTAATCCAG
	1477	CTACCACGCTCTGCGCGGGCTGTA
	1478	ACGTGGTTAGGCATGAGCTGCGTC
	1479	CGACATATCCGACATGACCGGATG
40	1480	GCGCCCAGGCTGTGTTAGAAAATA
	1481	AGCTGGGACTCCGGACCTTGAGTG
	1482	CGGTCGTAACCGCTGCTACAACTT

	1483	TCGTTCCTCTGGAACAATTCAGCA
	1484	CGGCATCTCCGGACAAAGGTTAAC
	1485	TATCTTGTCGAGCGCCACTCGGAG
	1486	TGCAAGGGAGAAAGCCCCATGAGC
5	1487	ACTGCATAGCCCAGATCCGCTTGC
	1488	TGTGATTCAGTCGAAGCAAGGCCG
	1489	CATCCATCTACAATTCGGGCCAGT
	1490	ATGAGCCGTTCAGAAAGCCAAAGA
	1491	ACACTGGAATTGCTAGACCCCGCG
0	1492	CTGAGCTGCGTGGGACAACTCCGC
	1493	CAGCTACTAGGGCGCGATGTACCC
	1494	ATAATGATGGGACGAGAAGGCCCC
,	1495	CGACCGAGTGTTACGACATGGTGC
	1496	TGCAGTACCCGCCGCTCCACTAGT
15	1497	ATGCTAGCGCGCCTGTCAACGTAC
•	1498	AGACTCACTGCCGGCTGATCAAAT
	1499	GCCTGGTGCGAAGATAGGGATTCC
	1500	GGAAAGTTGGCGGATCCGAGCACT
	1501	GGCAGTGAGCAATGTGTGACGAGG
20	1502	TGAGGTCCTCCCGGCGGACTACGA
	1503	CTCGCCTTAGATCGTGGTTCCGCA
•	1504	GTCGAGGAATATCATCGCAGCCAG
	1505	GCGAATGCAACGAGAAGAAGGA
	1506	TTCGCCACCAAGTCGGCATTTGTT
25	1507	CGGTGGCTGACACTTGCCGGATTC
	1508	CAAGGAGCAATCAGATGGTCGGAG
	1509	GTGACCCGGTCCGTTCTAGCTGTG
	1510	CTCTCGCCCACATAACTGCACAAA
	1511	AAACCTGCCTAAGCAAGCACTGGA
30	1512	TTCCATATTGTACCCCGCGCATGC
	1513	TGCTTGCGATATCACGATACTGCG
	1514	TTAGTGTTCGAGCCTTGAGCCGGC
	1515	CTTGTTGCGCGAGTCCGTCTGGGA
	1516	GTCAGCTGCTGCTGGTGCTCTTC
35	1517	CATCCCTCGAGGTGTAGGCAACAC
	1518	CAGATGCACTCCGACGGGATTCAG
	1519	CTGAGCCTCGCGAAGCTGTGGCAT
• •	1520	GCTATGCCACGCCGCAGATAGAGC
	1521	AACACCAACCATACCGTCCGTTCA
40	1522	GCCCAGAGCTAAAGCATGTCTGGG
 :	1523	AATGCTGCAATGCTAGCGTCGCTA
	1524	TCCGGACGCAGTATCCAATCCGGA

-79-

Ţ.	1525	TAAGACCATGTGGCACCAAGGTGC
	1526	ACAGCCACACACGCGCCCACTA
	1527	TAGAACCGAGCACGGCGCCTTGTA
	1528	TTCGAGTAAGCTGGCAGGACCACT
5	1529	CTTTCGCAGGTTCGCAGACAATCC
Ĭ	1530	TACGTCCTGTGCTGTTGACACCGG
	1531	GTTCGGGTCAATGTTTCGGGGAGA
	1532	CCCTGTTGTGAAGGGGTTTTGTGA
	1533	GGCAGATTGGTGAACCCCAGATAA
0	1534	CCCTCGGTGTGTTCAAGCCAAATC
	1535	CCCGCGAACATTTGAACAGCTTAA
	1536	CCGTGTCAGTTGCTCCCTGGCACG
	1537	TCCGTCTCAGCCGCCTCCCTATCC
	1538	ATAGCTGGGTCACCACAGGCGGTC
15	1539	ATAGGCAAGCGGTGTAGCACAGCG
10	1540	TTAGAAGCCGGTCTGGATTTGCGT
	1541	TGCCGACCTTTACCAGGATCCTCG
	1542	GCCCACACTATAACCAAGCTGGCA
	1543	TTGCGCCACTAGTACGGATCTCAA
20	1544	CTTGCAGTTTATGCTGACCCGTCC
	1545	TGCCTCCAAATTACTTACCGCCGT
	1546	CCCGTATGCGGAAGCTATGGGCTA
	1547	TCGTTCAACCCCACACTTCAGTTG
	1548	CAATGTGGGGGACATTTCAAGGTT
25	1549	TAGCGTCGCACAAATGGCTGACCG
	1550	GGTGGCTTCGTGACAATATCGGCC
	1551	CAGCGGCGTCCGAAATTGGCTCTC
	1552	GGCTTGCTCTCGTTTTTGATTGCA
	1553	ATGCGAGGAGGACACGACCGTTCC
30	1554	CCTGTTCACTACGACCCACGGGAA
	1555	GTGCCACGGAGTGCGACTGTTGCT
	1556	ACACATCCAAGTCTGACGATGGCC
	1557	CAGCCGAAAGGAAAGCCTCCGTG
	1558	AACTGAATGTAGGTGGGCCCCTGT
35	1559	ATTITCGACGATAAGCTGGCCGGT
	1560	TGAGGGAGAACCCGAAATCTGCTT
	1561	GGCGACTACATCCCCAATTGCTTG
• •	1562	GCAGACGCGGCCTTCCATACTTTT
	1563	ACAACCACATGACGTGTAGCTGCA
40	1564	CTGCTGGGCGCGCAAAGCTTGTTG
	1565	AAGCCTTCTTTGGCTTGCTCCGCT
	1566	TACCTGCTGCAGCAAGGCAT

	1567	GACGCCGCAGCCATGAGTGAGTGT
	1568	AGTTGGCCGCTTATTTTGCTCACC
	1569	AGGCGCACGGAGAACATTTGCCAA
	1570	CCAGGCGCCTTCGACAGATCCTCA
5	1571	GTGTCCCCTCCAGCTAGCCAGTTT
	1572	GACAACAAGCCAAGGTGACACGTC
ļ	1573	CTACACCGCTCGTGACTCGGCAAA
	1574	TGGTGCCATCAAAGCACGTTGTAC
	1575	ACAATGCGTGTTGCGAAACGCATA
10	1576	TTGTCCAGCCATTGTATTTTGCGC
	1577	ACGAGAGATAGCGGACTCCTCCGA
	1578	AGCTTTGTCGTCAGGCGAGCTCTT
	1579	GACAGTCGGCGTGCAGTTTGTTGT
	1580	AGCTAGCGACGGCCAACTCACGTA
15	1581	CTCCTGTTCGGGGCCGTTACTGGT
•	1582	ACTGACCGACGCAGTGCCACATAG
	1583	AGGTAGGGTCTGGTTTGACTCGCA
	1584	CCTCCATTTTAGCGCGTTGCCAAT
	1585	TTCTTAGGATCCGCGCACTCTTGG
20	1586	GTCGAAGGTGTCTACCGTGCGCAG
	1587	GTCACTCGGCGGCCCAATCACTCG
	1588	TCTCGGTCACCCGTCTTGACCCTT
	1589	GCCCTCGACGAACTCATCCTGAAC
	1590	TCCGGCGTACTCTGACACGGCGAT
25	1591	AGCCAAATGCTTTCGTGGTTCGGA
	1592	ACTCCACGCCGCATGTTGCTGTGA
	1593	GCTTCGAGTCGGTGGCATCTGTAT
	1594	GGTCTTGGGCCATCGACTTGCTGC
	1595	GGTATCGGACTGCACTAAGGGCAA
30	1596	AGCCCATGCGTTCCGGATGATTTG
	1597	GCCAGGGTTAAAAGTGATGGGCTC
	1598	GACGACGTGCTGGCTACGAAGGGG
	1599	TCCTATTGACCGTGCATCGTGATC
	1600	ACCCGCCTCGACTCCACAACTAAA
35	1601	GATGTGGATCACGACCTGCCAGTA
	1602	GTGCCATTGCCACCCATAATGCGT
	1603	TTAGCCTGTGCACCCAGTCAGGAG
•	1604	TCCGATGGGAGAGGCTGATCTCAC
	1605	CACTACTGAAGTGGCCTGGCGCTG
40	1606	TGCGGCCATAGCGATGTGATAGAT
	1607	GATTGCGCTTAACGGAGATGCACG
	1608	TCACGTTTGACAACGCCAAGCATT
		•

ſ	1609	GCATTGTTTGCTAAAGGCGGCATT
Ţ	1610	AGTCGCTCTACGCGTGCAACGCTG
j	1611	TAGCTCCATGGAGGTCCGAAAGGG
	1612	GACCGGTTGGACCTCACTGGCTTC
5	1613	AAGCCGGACAGTCAATGTGCGTAT
	1614	TGCCTCGCTGAGTTCTTCACCGTG
	1615	TCGTAGACCTTGCTTTTGGGCTCA
	1616	ACCGCTATGCGCCCTACAAAGCAT
	1617	TAGCGTCACCGTAGCTTGGGGCAG
10	1618	CTCTCAGCAACTGATGGCACCGGA
·	1619	AAAGGAAATGTGGTGCTGGTCGGC
	1620	CCGGCTTAGATGGAGAACAAGTGC
	1621	AAGTAAATCGCCTCGCCCAAACCG
	1622	TGGGCTGTTCAGCCTACCGGACGT
15	1623	GTTTCGGTTCAGCCATGGGCCTAC
	1624	GGCCAACATTTCTAGGGGAGTGCC
	1625	TTCTTCGTTGGGATTGTCCTCACC
	1626	TGCACATTGGGGTACGGATCTGAC
	1627	GGCAGTTAGACGGCAAACTGCAGG
20	1628	CGCGTCAGGCTATGAATGGCTCTT
	1629	GCTGAATGCAAACCTCGGAGCCAT
	1630	CGCTCTGGCGGATTCATTGTTTTC
	1631	TTTTCAATCAACCCTCCGGACGTA
	1632	GTGGTGGAGTCTGAAGCACGACAG
25	1633	AAACAGGTCCGGATGATGTCTGGA
	1634	GTACCGCGTGTACGCCACCGTTAG
	1635	TCCAACCTACATTTGCGGAAGGAA
	1636	GACGTACCGTCGTCCCGTGAGTTG
	1637	GGCAATCCTACAACCGACGCTGAT
30	1638	GGCGGCTGCAGGGTCTACATCGAG
	1639	ATACTACGCTGCAGCTGCGCGGC
	1640	GGATCGCAATCCCTCCGATGACGA
	1641	TGGCCTTGCACGGGAGCCGAATCT
	1642	AGGTGCCGACGAAACGACGAATAT
35	1643	GCTGTTTCACCGTCGTCGTTGTTG
	1644	CGGTCCCAATGTTACAACCCAGAC
	1645	GCAATTCCAGCCACTTTTGACCAA
	1646	ACGGGCGAAAGCTCGGTACGGATA
	1647	CGACCCGACTTTTGCTTTCGAGTG
40	1648	AATTCAGTGTTTGCGTCATGGTCG
	1649	CCTGTATGAGGTTCTGGGTCGGCT
	1650	TGGCATACTTGGTGCAAACGCCGT

	1651	TCGCCAGTACAGAAACATGCGGGC
	1652	CCCGCTGTTGCTCTCATCGTGGAG
	1653	GCCACAATCTGACCCTGGGAATCA
<u> </u>	1654	GCTCAGTCTCGGAAGTTTCGGCTA
5	1655	CTTCACGGGCCAACGACGGTCGAG
	1656	CGACAGTTCCGTCCGTCTTGAGGA
	1657	ACGGAGACGCAGTCGAAACGTCCC
	1658	CATGCATCCGATTAAGGGGATCAC
	1659	ATTGCGGGAGTCCCTAGCTTTCTG
10	1660	GTGTGGAAGATGCAATTGGAACGG
	1661	ATACAACGGTAGGTGACAGGGGCG
[1662	GCCGTGGGAGTAAGGGTACAAAGG
	1663	GCACGTAGGTCGGCTACTACTCGG
	1664	ACTGTGATCTCTTGGGCAAAGGGC
15	1665	CATGCCTGAACAATCTCGCATCCC
	1666	GAGCCTGGCTCCACAGCTGTGCTC
[1667	CTTTCGATACCATCGTTGGCGATC
	1668	CCCGGAGGTGAGGCATTGAATATG
	1669	CTCATTCAGCTAAAAGCGGCTGGA
20	1670	GAAATGCCCTGGGGACTTTTTGCC
	1671	TTTGCCTTCACAACAGACGCAGCA
	1672	AAATCCCAAGACGTCGGGGCGTAT
. [1673	CAACGGCCGTAGCTAAACCGTAA
Ī	1674	GGCCAACGACAATGCGAAACCTTC
25	1675	GACATCACGCAAAATCTCAGCGCA
	1676	ACGTTCCGTCCACAACCGTATGTT
	1677	GCTCATAGGTCTTCCGTAGCCCGT
	1678	GAAACGAGTCTCTCGCGCCCTAGA
	1679	CGGGACAGAAGCAAGTTACATCGG
30	1680	TGACCGCTCGATACCAGGAGGGTG
	1681	CTGGCAATAAAGACCTTCCGACCA
	1682	TGCGCGACGTCATGTTGGTGATTA
,	1683	GTTGGTTGTGGGAACACACCCGCT
	1684	TGTGGGTTCGGAAACACAGGAAGT
35	1685	GGAAAAACGGCAATTAGCCGAGT
	1686	TGGTGCGGAGTGCCCTCTATTGGG
	1687	AACCAACAGGCTGCAGCCCAGACT
	1688	AAACAGATCCATCTGCACGCCAGG
	1689	GGAATACCGCGGCGATTATGGCTT
40	1690	TACTGTTCGCGGCAAACCGTCACT
	1691	GATCTCTCGTGGAGCACGTTTTCC
	1692	GGCATAGCAAACCTTGACCTCCAA

.	1693	ATCTGGGATTCGCGAGCCAATATC
	1694	CGATCAGGATATCATTTACGCCCG
Ī	1695	ACGGTACCGAAACGGTCTCAGCGT
5	1696	CTCCCATACCTGCGTTCTTACCGA
5	1697	GCACGAGAACCTAATTGTCGCACA
	1698	GCCACACGATCAAGACAGCGCATG
Ī	1699	CCCGTTAACTCACGAGCGGTCAAT
	1700	AGAGAAGGTCATTGCCTGTCGGTG
	1701	CGGGCCCTCTTAAAGTAGAGCAGG
10	1702	ACATCGCGTCCGAGGGAGTTAGCG
	1703	AATGCCTAATCGAGCCAGCGGATC
	1704	CTCGATCTTTTAAACCGGCGCTT
· [1705	CGTTCCTGGAAGGCAGGGTCTCAC
	1706	CCTGTGCTTACTATCGGCGATCCA
15	1707	GTTAGTCGCCCTATTGGCCTGGTT
	1708	CCGGTGAGATGACTGTAAATGCCA
	1709	CGTGGTTTAAAACATCGCGCTTCG
	1710	TAAGACGCAGAAGATGGGGTCCAC
	1711	CACCACAGCTTCTTTGTTCGACCC
20	1712	TCGGGTCCGTACCACCACTTTTGC
Î	1713	CCAAGCCCCGAGTACCGAAGATTT
	1714	TCCGTGATATGGTCGTGGCGCGGT
	1715	TGTCTGTCATGGCACCTCGCAT
•	1716	AGGACTGCACTGTGCACGTCTGAT
25	1717	CCATCCTCATGTACAGCGCCGCTG
	1718	GTACCCGCGCCTTCCTCGACACAG
	1719	ACGGGTCCTGGTCGACTAAGGCTT
	1720	CGTATCGAAGGCGTGTACAACCGG
	1721	TGCCCGCCCTTTATGCAACGCTCA
30	1722	AAACTTACGAGACGGCGGCTGCCA
	1723	AAGTCTGACAAACGGAACGGGTGT
	1724	TAAGCGCAGACCAAAGTATGCGGC
	1725	GCAGTTTTTCAGATCCTCCGCAAA
	1726	TCGGAAGCATTTACGCGATCTCAG
35	1727	CACAGAAACGGTTGAACGAACGCC
	1728	GCATGCTCAGATGGTCGTGCTCAC
•	1729	AAGGATTCTCGCTTCCGGCATGAT
•	1730	GGTGGGTAGCGCTGGTATGAAAA
	1731	ATTATTACGGGACCGAACCAACGG
40	1732	GCGCGAGTGTCATGATGTTCACGT
	1733	GACATTCGTGACTTGGTCGTCCGC
	1734	TCATTAGTGCAGGCACCGATCAAG

	_	
	1735	GAGTTGTGCGGAGTCATCGGAGTC
	1736	GCCTTTACAGATTTGGCGGGCTAT
	1737	ATGGCGTTTGCGAAGTCGATACAG
	1738	TGCATCGGCCTCAATCAGAGAACT
5	1739	ACAATCATGGCAATCTGGCAAATG
	1740	GACGTGGAAGAGTGCAGATCAGCA
	1741	AGGGCAGGGACGGACAGTAAGTC
	1742	GCATAGGGCGAATCTAGTACGGGC
	1743	TCCGGCGCATCCTCATTAGCAACT
10	1744	TGGCCGCTTCCACTAATATTGGAC
	1745	CCGGCGACGCTCTTGTCAATGA
	1746	CGAGCAACCCAAAAGGAAGCAGTA
	1747	GCGTATGATTCGGCAATCCGCCAG
	1748	AGTACCGCTACAACGCTGGTTCGC
15	1749	GGGCAGGCCAGGTCCACCTGAGAA
	1750	CCACTTCTGTGACCGAACCGTGCT
	1751	CCTGGTACCAGGCAGCAGTTGATT
	1752	TTAGGGTACCGTCGAGAGACGCCA
	1753	GGTTGCTTGTGCGCGTGAGGTAGT
20	1754	TGCTTCGACCGATGAAACTCGAAG
	1755	TGCCACCCATACTATGCCCAGTGG
	1756	TGTGCGGCAACGCGTGAAGACGTT
	1757	TGAGAGAAGCTGGCCTCGGATCAG
	1758	TATTGCGAATTCGAGTACGTGCCC
25	1759	CGAGAGGGTTCCCCAGTGATCGA
	1760	TGCCTGGGGTGTCGTTCTAATTCT
	1761	GTGCGTCATTGTGGGTCATCCCAA
	1762	AGGGCTCCCAGCATACCAACGTTG
	1763	AACTAGCCGCACCTTTGTGCAGAG
30	1764	TTAGCCCAGCCCTTCAATGGGAAC
	1765	CGGCCTCGGTTGTACGGGTAGTCT
	1766	TCTTTGAGGCGCGGACCCGCATAT
	1767	GATGGTTCGCCCTTGTGTCGCAGC
	1768	GAGATTCAATACAGGCCGCGGGTC
35	1769	AGGGCGAAGGAAGGTTCCGTTTTT
	1770	CTCGACCCCTGCCACTACTGGTTC
	1771	TGTTCCGCGGTCTACGCATTACTG
	1772	GAGACGACGTCCTACACCCGCTAA
	1773	AGATTGCGACAGCGACACGTGATT
	1774	GATACCGTTGGGCATTTCTCGGTA
40	L	
40	1775	GATTGGGAGGCATTCAGCGACGGA AGGAGGAAACGAGGGCGTAGGTTC

Γ	1777	GCCAAACAACGTCTGACGCCTAGC
F	1778	TTTAATGCGGAAAGGATGCACGCG
<u> </u>	1779	TTATCGGCCGTTAAAATGGGATGG
	1780	CCTTGGATTCGTTCATCGCTAGCA
5	1781	AAGTGAACGTGCAGTGGTCTTCGA
	1782	TCCTTACCCCTCGTTCAAACGCCT
	1783	ATTCCTGAACCATGCATGCCTGT
Ī	1784	AGCGAGACGCTCGATCACGAACTA
	1785	GCTGGTCTGGCTCGCTGTTTAGAA
10	1786	CGTGCGCGCATAAAGATAGGTCT
·	1787	TCTGGCACTCACATCGGACAGTCT
	1788	ACCATTGGAGGACCACAGAGCTCC
	1789	TCCAGGGTCGGAGTACATGGCGGG
	1790	ATATGCCGTCGGATCGTACACGCA
15	1791	TGCTGGCGTCAACACTTCCCGATT
	1792	CAGGGCGGTGCGGTGAACTAGCCA
	1793	CATGGACTGCCGTACATCAGCTGG
	1794	CCGGCCATACGCTGGCAAGATTAC
	1795	AGCGGACACCTGTACTCTCCTCCA
20	1796	GGAGCCACCAGTCGAAGATGGT
	1797	CGCCACCGGAAATTGAAAAGACTG
	1798	TGAAACGGATGTTGCTTCTTGACG
	1799	TTGAAGCGGTGAAGAGCCTGTCCT
	1800	CGAACCAAGCTGCATTGTCAGTGG
25	1801	GAGTCTGCGCTTGCAATCTTTGCG
	1802	GCTGGGTATAGTTGCCTGGCAATG
	1803	GCAGGCGTTCCATATTCGCAACCC
	1804	GCGCCAACTAATACCTCCACCGCG
	1805	TGGCGTTCAGTGCAACGCTGGTTA
30	1806	CAAAACTGACGGGTATGGGAGCGC
	1807	AGGTGTCGCTGGAACCCGACTTGT
	1808	CTTCCAAAAGCGCAATTGGCTTTG
	1809	TCGGGCTTCTCGCAATTCTGTCAG
	1810	GCCAAAAGAATGCGCTGGGTAGGT
35	1811	TGGTGCCCGCACCGAGAGACTGTA
	1812	CGAGGCCGTAGTGGGGACTGCTCT
	1813	CGATCTGCGCATAGAGGGGACTTT
	1814	TGTGCAATCGGCCTTCTCAGAGCC
	1815	GATCACCTGGACCGCTACCGTTTT
40	1816	ATGGGGAGTTAAGGACCCTGCACC
	1817	CATTGTGGACAGCCAATGGTGGCT
	1818	CCATCACCATGCCACGGTAAGATC

	1819	GCACCGTGTCGTTGGTTAGCAAG
Γ	1820	GGAGTGGGTTCCGCGAATTCACTG
Γ	1821	GGGGATTTCCTTTCGCAGGCTCGA
ſ	1822	CATTGATCATGTGCACTTGCACCA
5	1823	AGCAGCGCTGCGCTTGTTTCGGAT
Γ	1824	CGAGTAACGCGGTTGCTTTGCGAA
Γ	1825	TGGCCTGGAACATAGGTGGAACTC
	1826	CGCACACCAAGCGTTTATTGAGAA
	1827	TCACCTTCACAGTGGGCATACAGC
10	1828	CAAATATCCCTGAGCCCTCGAGCT
	1829	GGGAGCTGGTGAGCAGATGTAACG
	1830	AGGATTGCTTTTGCGTTATGCGGA
	1831	ATCGTTTGGGCGCTACGCAATTGT
	1832	CCGATTTGTCCCAAATGCAACGTT
15	1833	AAGGGTCAAGCTCATGGAGCGGAA
	1834	TCTGACGTCGTTCAAGGGCTCGCT
	1835	CGCACCACTCCGAGGTATTTGTCT
	1836	AAGGGGTGAAAAAGGAGAAGCCGA
	1837	AAACCACGCAAATGGCGATACCAT
20	1838	CAGAAGGGATGACGCCTTAAGTCG
	1839	CATGACGAGAGCGGACCTGAAGTG
	1840	CTGGACATGTTTGTTTCGCCACTG
	1841	AAGACCGACTCTCGTCGTTTGCAC
[1842	GCGCGATTACATACCGTTTCCGTA
25	1843	CACTGACCGGACCCAACCTAACAT
	1844	AGTGCAAGTCTAGACACGCCCGAG
	1845	GGTTGGTGCGAGATCCTGGACTGT
	1846	GGTCGTCCCGAAACGTAAACGAGG
	1847	GACTAGTACGATCACGGGGCGGGT
30	1848	CCGACCTGACCCTGTGTACAGGTT
	1849	TGCTCACTGCCCACACTGTTATGG
	1850	CGAGGAAACACATTTCTTCGGGCC
	1851	TGGCACCGGGTGGATTCTTGTCTA
	1852	GAGGCACGGTGATAGTGGTTGTGC
35	1853	ATGCAGATGGATCTTTTTCGACGC
	1854	TGCGATAGCCAAAGAGTCGAGGAC
	1855	ATGGCGTGTCAGCGAACTGCCTGG
	1856	CAATGCAGCTCGGAAGTCAGGTCG
	1857	AGGATCAGTGCACATGTCCCCTCA
40	1858	CACATCTTGGCTGTCACCCGAGAA
	1859	CGCATTATCACCTCAATGCCAGTG
	1860	ACATCCGCAGACTCCCTATAGCCC

	1861	GTGAACCCGAACGAGGGAGTCTC
Ī	1862	GCGTAGGGAATTTGCCTCACGACT
Ţ	1863	TTTACGCGTCGCTCGGTTGTAGTG
Ī	1864	GAGAGGCGTCTAGGCGGTTCTAGC
5	1865	GCATGCTGATAACGAATGCTTCCC
Ī	1866	CTGAAGCTCGTGTGCGATGAGGGA
Ī	1867	ACAACGGCATGAGGAGGCTTTTTC
	1868	TTTGGAGACGCCAGTACGCGTGGT
Ţ	1869	GCTATCATTTGGTGTAAGCCCGCC
0	1870	TCAACATCCAGGGCGGTGCTTGGT
	1871	TTCGATGTAATCCCCAAAGATGCC
	1872	GGACCTTCGGCAGGTTATCGCCGT
	1873	AGTAAGAAGAGGCAGGCCCCACCT
	1874	AACGGCTCCCCGTCGTACTGCTTA
15	1875	CCTATACCGTCGTGGTTCCACGTT
	1876	CCGCGCAGGCGCTAATACTCAAGG
	1877	AAATGGGCCAGTGAAATCCTTGGT
	1878	ACGGTTTCGAATACTGCTGGGCAG
	1879	CCGCTTGAGGTTCAGGTCAGAGCT
20	1880	ATCGTGCCCGAAGACACTTAAACG
	1881	ACCTGAACCAGGGCGATTGCTTTA
	1882	ACCCTATACGCTGGGCTAAGCGGG
	1883	TGTTTCGCGACTAGAAGCCTTTGC
	1884	GAAGTTGGCGGCTCACCCGTATTA
25	1885	TGGCTACACCGCTTAGGAGGAACC
	1886	CCACAGTTGCGTGACTTACATCGC
	1887	ACTGCCACTGCGTCTGAAGAGTGG
	1888	GCGCCAGCAAATTTCGTGTGGTGT
	1889	TGCCTCCGTCGAGCCGAATAGCCA
30	1890	GTACAAACGGGCGCTATTTCGTCC
	1891	GCTTCCCTGGCTCTGAACGGAAAC
	1892	CGGCTACCCAGGCAGATAAGCTGA
	1893	GGTTGGACCCGACAGGGAATTTCC
	1894	GGGGAATACCCGGCGTTTGTAATA
35	1895	TGGTTCGGTGAGGTTATGTTCGGT
	1896	TCGGTAGGGTTCAGTCGCTGAGGA
	1897	TTCGGAGTGTGCCGGTGCTAGTAC
	1898	TCGTACTGGAATGATGGCCGGGCC
	1899	TCCGTCGACCGTCCAGCGAAGTTT
40	1900	AGGGAATATAACAACACCGCGCAC
	1901	ATGTCCCGGAAACCAGCTACCTCA
	1902	ACCAGCGACTTAGATAGCCGTCCG

1904 ACGTGCGTGCATACCCAAGAGGAC 1905 ACGCCACTTTCCCTAGAACCAACG 1906 CGAAGTACGCAATAGTGCCACCCT 1907 GATCCCGGCGGATCACCTATCAAT 1908 AGAAAGCGACCGTTTCAGGCTAGCC 1909 CGCTCCCTTTCATGTCCTCCG 1910 GTGGGTGGTCATCAACA 1911 CTGGAGGCTGACCACACACACACACACACACACACACACA	Ţ	1903	GGAAAACCTCCTTTGCGTCAACCA
1906 CGAAGTACGCAATAGTGCCACCCT 1907 GATCCCGGCGGATCACCTATCAAT 1908 AGAAAGCGACCGTTTCAGGCTAGC 1909 CGCTCCCTTTCATAGTCCTCCCG 1910 GTGGGTGGTCATAACGACAGCAGA 1911 CTGGAGGCTGCATCGTTCGTAACA 1912 CACCATGAGTTTCGAGAGAGATT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCCTCTGGT 1915 TCCGGCGCTCACCAACAACACACACACACACACACACACA		1904	ACGTGCGTGCATACCCAAGAGGAC
1907 GATCCCGGCGGATCACCTATCAAT 1908 AGAAAGCGACCGTTTCAGGCTAGC 1909 CGCTCCCTTTCATAGTCCTCCCG 1910 GTGGGTGGTCATAACGACAGCAGA 1911 CTGGAGGCTGCATCGTTCGTAACA 1912 CACCATGAGTTTCGGAGCGAGAT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCATCACCACGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTACTACCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCAGCACC 1919 AGTGCGCCGAGAGGAGACAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCTTGCCAAAT 1928 AAACGAACGATGGTCGATGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGAATTACATA 1931 AGTAGAGTGTTGCGCCTCC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCCTGAACCGATCCGATGACCGATGACCGATCCATGACCGATGACCGATCAACACCGCATCCATGACCGATGACCGATCCATCAACACACGCAACCATCATCATCAACACACGCAACCAAC		1905	ACGCCACTTTCCCTAGAACCAACG
1908 AGAAAGCGACCGTTTCAGGCTAGC 1909 CGCTCCCTTTCATAGTCCTCCG 1910 GTGGGTGGTCATAACGACAGCAGA 1911 CTGGAGGCTGCATCGTTCGTAACA 1912 CACCATGAGTTTCGGAGCGAGAT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCATCACCAGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCTACCAAGATGAGAC 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCAGCAGC 1919 AGTGCGCCGAGAGAGCAGC 1919 AGTGCGCCGAGAGAGCACCAT 1921 GGGGCCACATAAGAATTCCGAAC 1921 GGGGCCACATAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGAAC 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCTTGCCAAAT 1928 AAACGAACGATGGTCGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGAATCATA 1931 AGTAGAGTGTTGCGCTGAACACAGGAC 1929 TCAGTTCGATGGCTGCCGATC 1932 AGACACTAGACCGCCGATCCACCGATCACCCGATGACCACCGATCCACCGATGACCACCACCGATCACCACCGATCACCACCGATCCACCGATCACCACCGATCCACCACCGATCCACCACCACCACCACCACCACCACCACCACCACCACC		1906	CGAAGTACGCAATAGTGCCACCCT
1908 AGAAAGCGACCGTTTCAGGCTAGC 1909 CGCTCCTTTCATAGTCCTCTCG 1910 GTGGGTGGTCATAACGACAGCAGA 1911 CTGGAGGCTGCATCGTTCGTAACA 1911 CTGGAGGCTGCATCGTTCGTAACA 1912 CACCATGAGTTTCGGAGCGAGGAT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACTATAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGAATCATA 1931 AGTAGAGTGTTGCGCTGCAACCGATC 1932 AGACACTAACCGCCGATCCAACCGATCACCGATGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGATCAACAGCGACCGAATCATAACAACAGCGACCGAACCGAACTACAACAGCGACCGAACCGAACCGAACCGAACCGAACCAACCGAACCAACAACCA	5	1907	GATCCCGGCGGATCACCTATCAAT
1910 GTGGGTGGTCATAACGACAGCAGA 1911 CTGGAGGCTGCATCGTTCGTAACA 1912 CACCATGAGTTTCGGAGCGAGGAT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCAGTGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCTTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACCGAATCATA 1931 AGTAGAGTGTTCCGCCTTCACCCATCG 1932 AGACACTAGACCGCCTGAACAACAACAACAACAACAACAACAACAACAACAACAAC	-	1908	AGAAAGCGACCGTTTCAGGCTAGC
1911 CTGGAGGCTGCATCGTTCGTAACA 1912 CACCATGAGTTTCGGAGCGAGGAT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTACACACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGCTGAACGCC 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAACCGATTT		1909	CGCTCCCTTTCATAGTCCTCTCCG
1912 CACCATGAGTTTCGGAGCGAGGAT 1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTACACACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCAGCCG 1929 TCAGTTCGATGGCTATGACCC 1930 GGCTCTCAACGGACGCAATCATA 1931 AGTAGAGTGTTGCGCCTC 1932 AGACACTAGACCGCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAATCATACACCCGCGTACCTCC 1934 CCGTGGCCAAATCACACCGCCGTGACCTGACCCCCCCCCC		1910	GTGGGTGGTCATAACGACAGCAGA
1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGAA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1920 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCCTGA 1931 AGTAGAGTGTTGCGCCTGA 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1911	CTGGAGGCTGCATCGTTCGTAACA
1913 CAAGCTGCGTTCGATGAGAGATTG 1914 CCTGGGAGCAATGACCGCTCTGGT 1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCCTGA 1931 AGTAGAGTGTTCCCTGTGC 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	0	1912	
1915 TCCGGCGCTCTACCAAGATGAGAC 1916 CGACCGCGTCGCGTATACTATCCG 1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACACGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGAAGGCC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTACTCACCGATGACCG 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCCTC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	-	1913	CAAGCTGCGTTCGATGAGAGATTG
1916 CGACCGCGTCGCGTATACTATCCG 1917	•	1914	
1917 AACATTCGCTAGTGGGGTCCAACA 1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGAAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATCAACACGAACTT		1915	
1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCCTC 1932 AGACACTAGACCGCTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATTCACCCG		1916	
1918 TGTATGATCATCCGACCGAGCAGC 1919 AGTGCGCCGAGAGGGTGAATAGAC 1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCCTCCATC 1932 AGACACTAGACCGCTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	5	1917	
1920 AGGCTTGTTCTGGACCAGCACCAT 1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCTGA 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1918	
1921 GGGGCCACATAAAGAATTCCGAAC 1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCTGCCGATC 1932 AGACACTAGACCGCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATCACGACCGATT		1919	
1922 TGGTGAAGATAAATCCGCATGGCA 1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1920	
1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1921	
1923 ATTTCCACCACGCTCTTGCCAAAT 1924 CGCGTAAAGCTGTCACCGATGACC 1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	20	1922	
1925 TCCCCAACCGGTAACAACAGCGAC 1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	••	1923	
1926 CCTCTGCTCGCCTTACACCCATGG 1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1924	
1927 CAAGCTGCTCCTGTGCTGAAGGGC 1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1925	
1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1926	
1928 AAACGAACGATGGTCGGTAGACCG 1929 TCAGTTCGATGGCTATTGCGCCTC 1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	25	1927	
1930 GGCTCTCAACGGACGCAAATCATA 1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT	_	1928	
1931 AGTAGAGTGTTGCGGCTGCCGATC 1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1929	
1932 AGACACTAGACCGCCGTGACCTGA 1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1930	
1933 ACCGAGCACCGAATTTCCTTGTCC 1934 CCGTGGCCAAGATACGAACGAATT		1931	
1934 CCGTGGCCAAGATACGAACGAATT	30 ·	1932	
TOTAL CONTROL		1933	
1935 CCTCCTACAGCATCCACATGAGGG		1934	
		1935	
1936 CACTCGGCAAATACGTATGCGCAT		1936	
35 1937 ACCGAGTTGAAGCACGAATTTGGG	35	1937	
1938 GACCACCTCGGAAGATCGTTCTGC		1938	
1939 TCAACTGGGCAAACGAAGAGCACA		1939	
1940 GCTTAGCCTCACACGTGCATACCA		1940	
1941 CTGCGGTCTCCAAGTACCATTTCG		1941	
40 1942 GTTCCGTATTACGGCGGCCATAAG	40	1942	
1943 ATCGACGCAACCGGATAGTCTCTG		1943	
1944 CGCAGATAAACCGGCATCTTTCAG		1944	CGCAGATAAACCGGCATCTTTCAG

	1945	ACCTGCCAATACGGGTCTACGGTT
	1946	ACACCTGTTGCCATGCTGATCCGT
	1947	AAACTGTCTACTGCGCAATTCCGC
	1948	GCAACTAGCCCGTGCTAGGATCGT
5	1949	TCGTAGTGGTGGATTGTTGTGCGT
	1950	GGCTTACTCCTCAATTGCGACACG
	1951	CACGACTCCCTGCCAGATTTGATT
	1952	CTTAGACGTCGGCAATGTCACGTC
	1953	CTCAGAGCACAATCTGCCCTGCCT
0	1954	GCTAGGAAAGTCGGCATTCATGGG
,	1955	AAAGCCCCAAAATTCCGCCTAACC
	1956	GCGCAACGCTAAGGGACTATCAAG
	1957	CGTCCGCTGGGATGAGTCTCCTGC
	1958	ACAGGCCTCGTGATTGGTGTGGGT
15	1959	CATTCTCCTTCCGGGACCACGCCT
	1960	TCGGAGTTGACCAAGCTCAGTGCG
	1961	ACGCGCCACTGCAATTGCAAACAC
	1962	AGTTCATGGAGCCGGCGTATTGTT
	1963	ACGTTTAATGCGGGGCCCGCCTAC
20	1964	TGAGGCTTTAGCCTACGCGCAGGT
	1965	CAGCGTTATGAGCGCGGAGTTTAT
	1966	GTCCACGTGACCACGGATAGTTGG
	1967	GATTATGCTCCTACGCCTGCTCCG
	1968	TCGTCAAGGGCATGATGTGTGGGA
25	1969	GATGGACCGCCAAAGACACCTTGA
	1970	TACACGAGGATGGGGTCAAGCTTT
	1971	ACACGCACAAAACGTTTGAAAGGC
	1972	GTTATCGTGGGCCGATGGTACTGA
	1973	ACATGACCGTATCCGCCTGCTTCG
30	1974	GAAGGCGAACCACTGAAACTACGC
	1975	TGACTTTTGCAACGGGTGGAACCA
	1976	TGAATTCGTAGGTTTTGGGTGCGG
	1977	AGCATTTATGAAGCGGCCATTGCG
	1978	TGCTCCTCGCGTTGGTACCGTGAG
35	1979	CGCAGCAAGAACAGCAACTGTTG
	1980	AGACGCTTGGAGTGAAAACTCGGA
	1981	CATTCGTAGAATGCCCCAAATGGA
	1982	CCAGAAGGTTCGGGACCCGTCGTG
	1983	GAGAAGCCGGTTCTCAGAGCACAT
40	1984	TTGCGTTGCAAGATATCTGGCCCG
-	1985	GGGTTGCATGTTCAGGCAAGACGA
	1986	CTCACGAAGGTGACATATCACGCC

٢	1987	GCCCGAGATACGGGTTCAAAAAGA
+		CATCTTCGCGCTTCTTCACTCCGC
-	1989	TTACACGGTAAGCGTACGGCCGCC
-	1990	ACCTTCGGACAATGTGGCGTTCGC
_	1991	TGAATGGTTCTGCTAGGCCCACAC
5	1992	CACGCCTGTCTGACATATGGATGC
ŀ	1993	CGCCTCAACCCAATCTGAGAACGT
}	1994	TTACGCTTACTGCGAGCTGGGTCC
	1995	GGCTTGTGGGGCAATACGCATCTT
10	1996	CACTCTCCTTTGGATGCGGAACAA
10	1997	CTTCGAAGCACTTCAGACTTGGGC
	1998	GACCAGCCATCACGTAACGGCCCT
	1999	AGGAACCGGATGTGGTTATGGAGC
	2000	ATCCATGGGCAACTGAGCCTATGC
15	2001	GGAACAGCACTTGTTACCGCCCAC
	2002	TGGCTCGCTTCAAGCCTGTTTGCT
	2003	CAAACGTGAGGTCATGACCACCAT
	2004	ACCGATGTCTTGAAGTCCGGAGGT
	2005	CGAAAATGCATGATGATCTCCCCT
20	2006	TTTGGTATTCTCGCTGCACCGTTG
20	2007	GCGTACTCAACCACATTCCCGACC
	2008	AGCAAACAACAGCGGTCCGAGCAT
	2009	GGACTAGGAGCGGGGATAGCTGAG
	2010	CCTTAACGAAAACCTGTCGACCGC
25	2011	CTCGATCGCATAAGCAAGAAACCG
	2012	CCCGTTGTTTGGGCGACAAAAGT
	2013	CGGCGGCTCTCGCATGATCTCGTT
	2014	CGGATGGAGAGGAGTCTACGTCCC
	2015	ACCAAATCAGACTAGCGACTGCGG
30	2016	CAGAACAATATCGTGCGTCAACCG
	2017	CCTTTGCGCGCTCCGAGTAAGGTA
	2018	GGAAACGGCACCTATCTGTCGTGA
	2019	CGACCGACAAAACCAAATGCCGCC
	2020	CCAAGGGTGTGGGAGCTGAAGAGA
35	2021	TTAAGTGCGCATAGTCCTCGTGGG
	2022	GCCTGGTGGGGTAAGTCATGATGC
	2023	GAGCAGCAGATTGATGCGCTTATG
	2024	TGCGCCAACTTCCGGAATATTTGC
	2025	AACCCCATCATGAAATGCTCTCCG
40	2026	GTCCAACGGTACTGGCGTGATGTT
	2027	ACTCGGCTGATCGTGAGATGGTGA
	2028	ATTCGTGGGCGCATCTCGGAATGT

2029	TCCCGTCCTGTAATCCAGGGAACA
2030	CTTCGCTGCACCTACATTGCGCCA
2031	GCGTGTAGATGACTGTGCTTTGGG
2032	CTATGGTATCGAGACATCGGCGGA
2033	CCTCGTACTCCGTCGTATGCACAA
2034	TGGTGCGTCGTAGTGCCTGCACT
2035	CGCGATCCTAGTTGAAAGCTTTGC
2036	ACGATCCAGGTGTTGGGCACTAAG
2037	CCAATCTAGGATACACCACGCCCG
2038	GATACGTGGGGTATAGGCGGGCCC
2039	CATGGAACAAACCGTCGTAGGGGA
2040	ACACTCGCGCAGTATTCGAGTCGT
2041	CTCAGTCTCGAAGGTGATCCGACC
2042	TCCCAATCCCCGTGGTATCGTCGT
2043	AATCAACGTAGTTCCGGTGGTCCG
2044	CTTAACAACCCAGGGGTTTGGGCT
2045	CCATCCTGAGAGTGACGGAGGTGC
2046	CTACCGCTGCATGGCGTTAGATTG
2047	TTATTGGTGGCGGACGGAGTGAGT
2048	TTAAGGGTGAACTCAACCGCGTGA
2049	TTTGATTGAAACGCTGCGCACTAC
2050	TCATGTGTAGGTCGCGGCCGTCAC
2051	CTCCGAACCTTCTGGGCCTCTTTT
2052	CTGTTGCCCATTGGCCCGACACTC
2053	CACGATCGCTGAGCAACACATCAC
2054	CGGATCATAAGCGTCCGCCTTCGT
2055	AGGTTAACGCAACATGTGATCCGC
2056	GGGAAAAACAGCTAAGCCTTGCGA
2057	ACTTATTGCCGGGATCCGTACACA
2058	TGCGGTCTGGAAAGGAAGGGAGGG
2059	GCTGCCACCTGGACATCGCATACA
2060	GCAGGCATGACAGTGGCGTAGTAC
2061	GCGGCCCTGATGGTTTGGCTGAGC
2062	TCCCCATTTAGTCCCCTCCATCAC
2063	GCAACACAAATGCGAGCGTAGGAG
2064	GGCGTTTGTATTCGAGCCACGTAG
2065	GGTAACGTCGCACGTGGAATTCCG
2066	ACTTCACAACGCTCCGTTGGACAC
2067	CCGAATTATAAAGCGCAAGGCACA
2068	GGACCCGATAAGACTCTGACGCCG
2069	ACCCGTTTCTCGTAGGAACCTGCT
2070	CACGTTCGACTGTATCTGGTTGCC

	2071	CCTCGGATGGGCCCATGACCTTGA
	2072	GGACGCCTGCTGTAGGGGTTTGAT
	2073	CTCGAGCGTGGGCTAAAAGAGCAT
	2074	TTTACTTCTTAGGGCGCGTTTGGG
5	2075	ACCACCAACATAGCGCGCACTAGT
	2076	TGGTTACACGGCAGCCCGCGTAAG
	2077	TTATGGTACGTTGCTGCGTGCGGG
	2078	ACCGCGGATCTAACGAATCCCATT
	2079	CATGATCCCGCCCTTAGGTTAAGC
0	2080	TACCGCTTCAAAGGGTTGCCGAAT
	2081	GCACCGCGTCAATATTACCGAGGA
	2082	GTGTCGCGGCTTTACAGAAGGAGA
	2083	GCAAGCCATACCGCAATAAACTCG
	2084	ATGAGGTCGTGCTGCGTTCACGAG
!5	2085	CGAGACTAGTGCCGATGCAGGGTA
	2086	GCCTCATCATAGACGCTGGATGCA
	2087	GACAGGCGTCGGTAAGCTCTCAAG
	2088	GCTACGAATCTTCCCTGTCGCCAC
	2089	TTTGGCAGAACGTACCAGTGGGGT
20	2090	GGACAATAAGCACCGGAGAATGCG
	2091	TCATGAACCTTCTGATGCCGCGAA
	2092	CGCCGCATTACCTTAAAAACGTGC
	2093	ACGAGTCCAACCGCCTCATTGATT
	2094	GCGAAGAGTTGCTACTCTTCCGCC
25	2095	CGTCGGCAACAATCTTTTTCGTGA
	2096	AATCCTGTGCACCCGTGAGACGCG
	2097	AACCTATATGCATCAACGCGAGCC
•	2098	GAACTTGGCAAAACAGCCCGGAAA
	2099	CTCTATGGCCGTTTGCCGTCTGCA
30	2100	AGTGCACCGGGTTGTGGACACAAT
	2101	CCTGGCTTTTCACACGCCAAGAAA
	2102	CACTCAGCGTAGCCTGAAGCCTGG
	2103	GAATTATCGACCGCAGCGGTGTCG
	2104	GTGACATCACATGGTGGCCGAGCG
35	2105	AGCACCTTGCCGAGTCACCAGTGA
	2106	TAGGTTGCAGGAATGGTGGGCACC
	2107	GTCCCATACGTGTGGTACGCGGAT
	2108	TCGGATACTCTCGCGTGCCACGGG
	2109	CAACGTTCGCCCCTAAGCCCAAAT
40	2110	GTTAGGTCACCGCGGCATATCCTA
	2111	GTTCACCGGCCTCTACTTGGGTTT
	2112	AATCCGCGTCTAGGTCATGTGGTC

-		
·	2113	GCTACGCCTCTGGAGGTGGTACCC
	2114	CAGGGAATGCTACAAAGGGTCCAA
	2115	AAGGGTTAGCTGCCCGGTTAACAG
	2116	CCTCGCAAGCGCGATATTTATGCC
5	2117	GCCTCCCGGTCATGGTCAAGGGAA
	2118	GCTGTTGAGCGGCGACCTGTGCAC
	2119	CGCTGACTTAGCTCTGATGTGCCG
	2120	TTCATGGCATTCATCACGAAGGAA
	2121	TAGTGTTATGCCCGCGTGTGAATG
10	2122	CATGTAAGGGCACGGTCGTGGGCA
	2123	CAGGAAGCTCGCTCCGTGATGCAC
	2124	CCTGCTGATAGCAACCTCACTGCA
	2125	ACTACGAGGGCAGGGTCTAGGCG
	2126	CATAATGTGGGTGCTGACGCCGAT
15	2127	TAGCGAATCCACACAGAGCCGCTC
	2128	TCGCGAAATCCTAAATCCTGTGC
	2129	TGGCACGAATCAAGCCACCAACTC
	2130	GCGGACCGTCTTTGCTATCTGACG
	2131	AGGCCCGCCTTGTAATTGGTCAT
20	2132	CTGGTCCCATACGCCGCTGACTAG
	2133	TGCTAACTGCGGCCCTACAGAGTC
	2134	TGGTTTTATGTTCGGTAGCGTCCG
	2135	AGCTCAAACTTCTCCCACGGGATG
	2136	CGCGAAGATAGTGAAATCCGCATC
25	2137	GAGTGAAACCTCTCGCGGGTTGCA
	2138	TCGAATGCTCTGCAGTGACGTCAA
	2139	AGGTGGCAATGATCGACGACCCTG
	2140	ACCTTAACACAGCCGACCAGGTGA
	2141	GTCCGGAGCCGTGCAAAGCAATAA
30	2142	TCTGCCTGACTGCTACATGCTCCC
•	2143	CTTTTGGGGATTAGAGGCCGACAA
	2144	GGCATAAAGGCTTCCGTTCCTGTC
	2145	GCGGACCGTAAAGCGGGCAGATAG
	2146	TTTCAAGAGTGCATCGAATCCACG
35	2147	CCGGCATCCCTTCTCGCTGTTGCC
	2148	ACACAGAGACGCGAACGGAGTGCA
	2149	AGCGGCATTCTCCCACTCGTTACT
	2150	GGAGCGTACTGCGCCTCGCAAGTC
	2151	AAACCCGAATGACACGGCAGATAA
40	2152	GGTCGGGTCCATATCCAAGTAGGG
	2153	AACCAGCGGATCGATAAAACGACA
	2154	GGTGTCCACCCGTTAACGCCGGTA

2155	AGCGCGACGTGGCTTGCCGTTAAA
2156	TCCCACGCTATAGGTCCAACGAC
2157	ATCAACGAACGATGCCGTTAGGTG
2158	GAGGCTAAGCCGTATGGCCGAGGC
2159	ACGGTCCGAAATGGTTAGAGGCAC
2160	ACGCAAACCATTCCTCGAGTAGGC
2161	TTACACGCTCGCTATTGGGCCATA
2162	CTCGGCACGGGTTTAGAACGCCGG
2163	ATTCGGTAAGGTATCGGGCTAGCG
2164	AGCACACCGTTATACATGACGGCG
2165	AGTCCCTGCCGTTCGCTCATGGAA
2166	GGGCTTATGACCAGTCAGGTTGGA
2167	GGTCACCACACGAGTGCCTGGTCT
2168	TTGATCGTGTCTCCCGAAACCCTC
2169	ATTGTCGCGATCGGCATTTCTTAA
2170	GGGTCCAACGACTTCTCGCTGCTG
2171	CAAATTCCTTGGGGGCCATAGTGG
2172	CCAGAGTATCCGCCGTTAGACGGT
2173	TCCTGCAGATCATCTCGTGTCTGG
2174	TGCGGGAGATTTGAACAAGCTGTA
2175	TTAGACGCCGAGCTAGGCAACGTC
2176	TTTCGGCAGAATCTCCGATTCAAC
2177	TGGCGAGCAGACCTACAAGACAGA
2178	GGCGACAGACCGGTACATCGGCCA
2179	TCTAGACCTGCGTTTCGTGGGACC
2180	GCCGAGCGTGGTACCATACGTTCA
2181	TAATCACACCCGCTTTCTGTGGCT
2182	GGCCGGAGCCATTGGACACTTCTT
2183	CCTGTAGACCTGCATGGATCGCTG
2184	GTGTGTGTCTGCGTTGGGGCAC
2185	ATCGCCGTTCCCGCAAAATAAGCA
2186	TGGATCAACGGGGTAGTGAAAACG
2187	AAGCGACGATGCTTTCTTGAGCTG
2188	CACGGGCACGTGTTCTACGCTTGC
2189	ACGGGCTGGGACAAGAGCTAGAAA
2190	GGTAACTGGCTCCGCTCTCACATC
2191	ACTCTGGCTGTTGGCGAACGTGAC
2192	GACCGAGGACCAGTCCTTGCTCTC
2193	AGTAGCTCTTGCGGCCTAACGGCA
2194 2195 2196	TTCTTGTCCTGGGGGAGAGCAGTG TTAGCAGGGAGGGTTGTCGGCTCAT TCGGGAGAGGGCCTTACCAAAAGC

40

)

5

:0

25

30

35

	2197	AGAACGTGGATTGTACGCTCCGCC
	2198	CTTCACAGCCTGGAGCCACCAATG
	2199	GAGATCGATGAAACGCACCAGCGG
	2200	GGGTCCAGAGTTGGTGTGGGATAA
5	2201	CCGTCCACCCCAGATAGGAATCAC
	2202	TGCCTCGCTTCTGTGAATCTACGA
	2203	GATCACAGCGTCCGCGCATAACGG
	2204	ATGACGCCTTACATGACGCACCTT
	2205	GCGTGGAATAACGCCCTTAGTTCA
0 .	2206	GGTCTACCATTTCTCGCCCGACCG
	2207	ACACCTCTCTGGCGTAGACGCTCA
•	2208	GTAGAGGTGCTCAGGACTCGTCGC
	2209	GTAAGCAGGAGGCGAAGGCGCGAA
	2210	TCTAAGGGCCGTTTCAATCGACCT
15	2211	AACCTGATTTCAGGGTCAGCCCGA
	2212	GTCACGCGATTGGCCCACCTATTA
•	2213	ACGATGCCGCGCATGTAACCTAGT
	2214	TGAGAGATGTCTCGTCAACGCCTG
	2215	GCATATCTCGCGGTGACAGACGAA
20	2216	TATCCTGGACCCAGCCTTGGAGGA
20	2217	GACCCAACGTCGAAATTGTGCGAT
	2218	TGAAAATCGGGGCATCTAGTTTGG
	2219	CCGCGAAAAGGATTTGTGTACGCA
	2220	CATTCCATTTATCCGCAGTTCGCT
25	2221	CCTGTCTGTCGAGCCAGCGTCTAT
20	2222	TCAGCGCGGCTAAACAAGTTATGC
	2223	ACGCCTACGAACGACCCAAGAGAG
	2224	TGCGCATCTACCATTGTGTGGATC
	2225	AAGTCCGCGCTCGCTCCTGTAATA
30	2226	GCTGGGTCATTGCTCGAGTAACCA
30	2227	TGGAGCGTTCTGGCAATGACCGAC
•	2228	CAAGTCAATTCTTGGCCAATTCGG
	2229	CGTTCATGCAAGGATCCCAGGTTA
	2230	ATGCCAATAGAAGCTGGGGATGCT
35	2231	CCTAACTCTCCCTTGAGGCCGTTC
33	2232	ATCTCGGCGAAGGTTCCAAACATT
	2233	GCGACAGATTACGCTGCGGTTTTC
	2234	AAGCCCAGACGGCCAACACGTTAC
	2235	TCAAGTTCAAATCACATCCCGTGG
40	2236	GATTGTCGTTCTGTGAGGCG
70	2237	ACCGAACTATGTTCCGGCATGGCA
	2238	CGTCATCGGGTGTGCAATGCCGTT

	2239	CGGACGGAGTCACGTTTGTGCACT
	2240	TAAACAAGTCGTGTGCCTTTGCCG
	2241	TAATTACTGGCCTGTGGAGCAGGC
	2242	GGAGCGGCCGAATGGTGCTCTTA
5	2243	ACTAAGCAAGGCTTGGATGTGCGT
	2244	GGCAGCTCAGCGGCAGTACGCTAC
	2245	GCGAGGCGAATTATCCGCGGATTT
	2246	CATACGACACCTTGGGGTGCTA
•	2247	TGCTTGGGCTTTAAACCCCGTTTT
10	2248	CCGGTTGGAAAACGCAAATATCGG
	2249	AAACTAGCTAGCCGCACCCGCAAG
	2250	GTTGTTCCACCAGTGATCACGCAG
	2251	GCCGCTGACAAGATGATCATCGTT
	2252	CTTTCATAAAGCCAACCGATGCCC
15	2253	CTGACTGCATCTCGAAAGCGGGTG
10	2254	ATTTCTTCGGAGAATCGGCCACGT
	2255	CATTTCGGGCCCTAGCTACTGCGC
	2256	CCGATCCCGCACATCCGTATCCTG
	2257	TATCACCGGGAGCGTCTTATCGTG
20	2258	TAGGGCTCGTGCACCGATTAGAGG
20	2259	GCGTGGCACTCGCTTGTCTAGGTA
	2260	CTCAACGAACTCAAGGGCCGCTAC
	2261	AGCCTGGTATCGACCAATCCTGCA
	2262	TACGCGTTCTAGTTGGCCGGATCC
25	2263	TTTATGGGTTTGTGCCTGATGGGT
20	2264	GGGACCCTAGCAACGTCACCTTA
	2265	CTGCCTCCCAGGAGTCATTGGAT
	2266	AACCCGCAAGACCAGTACCAATC
	2267	GGTCACATACGCGCTAAAAAGCGC
30	2268	AAATGGCTCCGACCAGTTAGGGAC
	2269	AACGCGGCACGCTTAAAGGTGCAT
	2270	GATCGCACGCCGATTAACCTTACA
	2271	CCTCCTGATTGGGAGTGCGGAATT
	2272	CGGAGGGTAATAGGCTCCTCTGCG
35	2273	ACAAGAACTGGACATTACCGCGGG
	2274	TGTCGTCTTAAAGGCCTTTGTGCG
	2275	GGTGACCATGTGGCGTTTTAGCTT
	2276	CACGGTTGCGCACGGTACCAGAAC
	2277	CCTTTATTGTTTGGTCCCCTGCCC
40	2070	GTGCGCCTGCATTCTACCGTCAAT
40	2278	
40	2279	GTTTACGTTGATGGCTTGCCGCCG CCGTCGGTGGTAGGACGTGAATGT

	2281	TGATCGCCCAGAATCCCTGTGCT
	2282	AAGCAGCCAAAAATCGGTTGCTTT
	2283	CGACGGGACTTAGTAGCAGGGCCT
	2284	CCGATTCGCGAAACGACCAAGTAG
5	2285	CCACCCAACTCCAATCTTTCTCA
	2286	GTGCAGTAGACGACTACCGGCGTC
	2287	TTCGCCCATCGTATCAAGCAATTC
	2288	GAATCGCGACTACCCGTCGGGTCA
[2289	CCAGCACTCGCCATCGGTTATAAT
10	2290	CGAACCGTAGAACTCCGGTCGGTG
	2291	GCACCATGACAGAGCCCCAGGATG
	2292	TGGGCTACCGCAGAATAAGGGTGA
	2293	TGGCCTGTCGTGTCGAAGGAAACA
	2294	GCCTCACCGATAGCGAGCGTTTGC
15	2295	GTGCGCCCGGCTAAAACGAGACA
	2296	CCGCAGACGAGTTTCTTGTGACAG
	2297	GTTCGCAATCGCGTGCTAGGAAGC
	2298	TGTTGTACACATGCATCCGGTGAA
	2299	CACTGAACACGATATAAGGGCGCG
20	2300	CGCGATGGTTCTTAGCAAGACGAT
	2301	TACACCAAGGAAGAAATGGGGACG
	2302	CGTGCCTTGCGTTTTAGGTGCAGC
	2303	GTCGTTTGTCTGGGCATTAACGGC
	2304	CAGGCTCTCGTTCGGTACAAACGT
25	2305	CGGACACTGTTTCACCAGAACCCA
	2306	TACCCATGATGCGGAAGAGCGTA
	2307	CTGTCCTTAAGCGGATGAGAACCG
	2308	CGGGAGATGAGAACGGTTTTGTGC
	2309	TAGATCGCGACTGTACTCAGGCCG
30	2310	TAAAACAGTTCGCGCGACTGTCGT
	2311	CGAGGAGCTCCACATAAGCCCAAT
	2312	TGGCTAGGGATGGGGAATCATCTT
	2313	AGGATTGGGTGCCTGGATGCATTG
	2314	TGTATCTACCGGCCTGAAGCAGGT
35	2315	TCCCTACGCGCATGACTCGCTTAC
	2316	TGGTCGATCACCTGTGACAGACGC
	2317	TGGGGGTAGTCCATGCATCAATTG
•	2318	CCCTGCCAGGATTACTATTCCGGA
	2319	TCCCGCACGGGGAATTTAAGTAGA
40	2320	GTGATGTGCAGGAACTTCTGTCGC
	2321	ATTTAGGCATGCATGCGCTTCTCA
	2322	TTCGGCGCTAGTGGACGCCGTCAA

	2323	GAGCTTCATCTCATCAGTTCCGCG
	2324	GACAACTCCACTGCTCCAATCGCA
	2325	GGCCAAGGATGGACCTTACGATGG
	2326	GGTTCCGGAATTTGTCACCGCTTC
5	2327	GCGCTGGATAGTCTGCGAGAAGCC
	2328	TGAGTCCAGTGCTGCCACCATGAA
	2329	TTGAATTGGGTGTCGGAGCGTTCT
	2330	CGGCGGCAGACAATGCTTTGAAC
	2331	GGGTCTGTCAAAGAGGGTGTCTGG
10	2332	CTTTGTGCAAGACGAAGCACCCTT
	2333	ATCGAATTCCGAGGAGGTCTCCAT
	2334	TCCGACCCTCAGAGTCGACTCATT
	2335	ATCAACGGCCACCTCCTCGCCGAG
•	2336	AGCCACGGAATAATTCCGTCCACC
15	2337	GATCGCTTGCGTATCGCAAAGACT
	2338	TCCACGCCTTACCATCAACTGCAA
	2339	GCCAAGCGATAGGCCAGAACTCAG
	2340	AGCGTGTGGGTCATTTTAGCACGA
	2341	GTTATGCGCGGCTTACGAGTTCGA
20 .	2342	TCTGTCCACGTAACTTGCCTGCAG
	2343	TCGGCAGCCAATGATCATACCTCT
	2344	TAAGCCCGATCCGGTCCTGTGTTT
	2345	ACATGGCAGACTAACAGGCCTCGC
	2346	CATGGCTGCACTCTAAGTCGAACG
25	2347	TCTTCAACCCACGCGGAACGATTG
	2348	CTCGTGTCTCCAGAGGATTGTCCC
	2349	TGAAGGCATCAACCCAGAGGATTT
	2350	ACAGCTCGAAGGCAGCCACATTGG
	2351	ACAACGAGTACCGCGACAGAAGGG
30	2352	ATAACCGAAAAACCAGCCTGCGAT
	2353	ACAACTCAGCACTTTCGACGTCCA
	2354	CGGGTTACTGGGTATCACCAATGC
	2355	CATCGGTTATCGCTGCACGCGCGT
	2356	GAAGGAATCCCGGATAGTCCGTGG
35	2357	GCATGGTCTCAGCCAAAGAACCTG
	2358	AGCCTGCGACGTTTCCCGACAGAC
	2359	AAGAAAGGCGCACGGGATCGATAT
	2360	TGTCGCGAAGCCAACTTTCAGTAA
	2361	GCGGCATGCAAGGTAGGTCTGGAT
40	2362	GGTGGCCATCTCCTCGAATTGCAT
	2363	GCGTGCATAAGTTGCACATTGTGC
	2364	TTGAGGTAGCGTTTTCGCGCATAT

Į.	2365	ATCCCACTTGTGAGAGGGCGCATT
}		
}	2366	CGGTCAGCGAGCAGACATCAACCT
	2367	GCGTATCTTCGGGTCGAACACTTG
_	2368	ATGCCATTGAACTCGCACTTTGCG
5	2369	CGATTCCCATCATAATGTGGGTCC
	2370	CAATTTGGATAATCCAGCCACGCC
	2371	CGGCTTACCCTATGATTCCGTGCA
	2372	GGTGGACCATGCGCTGTGGTATGA
	2373	TATTTGTCGAAGATCGCAAGCGCC
10	2374	GTCAGTGGGTTTTGAGAGCCCGCA
Į	2375	AGGGGTCGGGAAATCTGACAAAA
	2376	TGCTTGCTATCCGAAAAAAGCAGG
	2377	TTATCGGATCAAATTCGGCTTCGG
	2378	TGCAGCAACGAGTTACCCGGACTT
15	2379	TATACATGTCCGGAGGGGCACCCA
	2380	TGCAAAACCGGAGGATGAACCCTT
	2381	TCGGTCTAATGTCCACGCAGACAC
	2382	ATGTGTTTGCCACGCGCTCCTATT
	2383	TGGCGAGGCACGGCTCTAATTCGG
20	2384	GCGACGACCGAGCGACTTTTACA
	2385	CTCAGAGAGTCTATCCGGCGCCCT
	2386	GGAACATCTCCTGGGTCCCTCAGA
	2387	GCAACGCAGGGAAGTACTTAGCGA
	2388	TGACTTGGGCGGACAAAGAAACGC
25	2389	AGATCATCGGGACGCTTCATGCTA
:	2390	CCCTTCTGACCGCTAAGGCCATAA
	2391	CGTGAGCCGTGGGGTGTCTCTGTA
	2392	TACCTTGGTCGTCTCCGCTTTTGT
	2393	TCGCCGCAAAATGCTACGTGAAAA
30	2394	GAGTGACCTAATGGCTGCCCGACT
	2395	AAAGGAACTTGGCCAACCCTATGG
	2396	TGTTTTCGCACTCCACCTAATCGC
•	2397	CAATGGGTTTCATAAGGGCAGGCA
	2398	GCCTAACACACAAGGGTCCCTCTG
35	2399	CGTCATGCGGTCCGAGGATCGATC
	2400	CCACACGGGCACGGAGTAATATCT
	2401	CATCAGACATAGGTCGCGTGCCGA
	2402 ·	AGATGAAACCAAGGGAGGACGCAG
	2403	GGCTACCCATAGGCTCAGCAGCAC
40	2404	GGCTTGTGAGGGTGTGTTCTCGAC
	2405	TGTGTTACGGCGAATGCAACAGTC
	2406	CGATAACAGGTCGCGCCGTTACTA

-		
Ĺ	2407	TGATAAAGTGAGGCTCCAGCGCGA
	2408	AATTGTGCACGGATCTGCACGGCG
	2409	GCCGATACTGAGCATTTCACTGCC
	2410	GCAATGTACTGTCACCAGTGGCGA
5	2411	GGCATATCGGTAACACTTGGTCGG
	2412	GGGTCTCAAACCAGCGTGGCCGCT
	2413	GTCTCCGGGACCATTGAGCTGGAG
	2414	GGCCTTCGGCATTCAGACGGGTTG
	2415	CGTGATAGGCCACAGCGCTCAATT
10	2416	GGCAGGCCGCGAGGATGATTAAC
	2417	CGGGTATGGTTGATAACAGCGTGG
	2418	ACGACGTCCTTGGGACCGTATTGT
	2419	CTGATATCGAGCCTGAGCCTTTCG
	2420	TCCCATTGGCCTGTATGCTGGCCT
15	2421	GTGTCGTCGATTGTTTCATCGACG
ĺ	2422	CGAAAGCCAGTAGCCGATTGCGTG
	2423	GGTTCGGCTTATTCCACTGCGACA
	2424	AGCGAGGGCTAACTTTTTAACGCG
	2425	CGGCGCTGATGACGGGACTCGATT
20	2426	TCACAGTGCTCGGCGTAAGGACTA
	2427	CCCATTACGAGCACACCATGGC
	2428	GGCCGCTAATCTTTACGCATCACG
	2429	ACGGCTTCCTAGTGTCCAGCCCTT
	2430	CTGTCAGGTCCTACCCAATGGCTC
25	2431	CACAGCCCATCCCACTGAACTGCT
	2432	ACAAACGATACACGCAACGCTGTG
	2433	TGGCGGCCAGCTAGCAGGCGAAGT
	2434	ATCTCGAAACGATGCGTGCCTAAA
	2435	ATCTCGAGAACAGCGTGCGTGCGG
30	2436	GAAGAAATCCGCCGACATCTACGG
	2437	GCGGAGCAACCTTGGCTGTTTCTA
	2438	CGCGTTCCGAAGACTTGTTGTTTG
	2439	TGACCTGAAGCCCATCCATAAGCA
	2440	TGGTATTCATTCCGGATAAGCGGG
35	2441	GCGTTGCGGGTCATTGATGCAAAC
	2442	ACCGCTTTCTGTGTAGAGCCCTGA
	2443	CAAATAGACAATCGCAGCTTCGGG
•	2444	TGTCCTGACAAATCAAGGTGCAGG
	2445	AAATTGCACTCGCGGAGATTTCCT
40	2446	TGACGCCCATTTCTATATGGTGCA
	2447	TGTTCCGACAGGGCACTGCTAGAC
	2448	TCGCTGGCTTGGGAAGGCCTTCGT

2449 GTECACCTCCGTTGGCGTAGAATG	_		
2451 GCCAGTGTCTGTCAATGGATGGA 2452 TTGCCCGGCAGGTTCTGTAATG 2453 ACCCGGAACCGAGACCCACTTCT 2454 TCCGTGCGATTGATCAATG 2455 AGGCGCTCTCGGTTGAACCTCGGT 2456 TGACCGTTCAAAGACCAACCAACCAACCAACCAACCAACC		2449	GTGCACCTCCGTTGGCGTAGAATG
2452 TTGCCCGCAGGTTCTGTGTATG		2450	CTCATTTGGGACCGATCGGGTTGC
5 2453 ACCCGCGAACCGAGACGCACTTCT 2454 TCCGTGCGATTGGTCAAGGTTGAT 2455 AGGCGTTCGGTTGAACCTCGGT 2456 TGACCGTTCAAAGAGCAAC 2457 ACACTCACCTGCTGTCCCTGCTGA 10 2458 GCGTTTAACTCCTTGGGTGGT 2459 CGCCTGCGAGGTAACTCTCCGCA 2460 AATCCAAGTTCCCAGGGCTGTTT 2461 AAGCAGTGGGATCCTGGGGATCA 2462 AATCCCAGACTCGCTCTTCGTGCT 2463 ACGGTTATAAGGGCCGGCTGCGAC 2464 TACGAGAGCGGGCTTTGAGCGTCGC 2465 GCGATTTTGACCCACTGTTACCGA 2466 AGCTGTATAATTTGGATGGCGCGA 2467 TCCGCGAGTCTTAGCCGATTGAAC 2468 TGTTATTGGCAGTTCGAGCGACAG 2469 TGTTATTGGCAGTTCGAGCGACAG 2470 GCGAGCCTTTTGATTGCAGCACAG 2471 AGAAGAAAAGGTCAGCGTCGAAA 2472 CGGGTCGACCCTTGAAGCATAACC 25 2473 CTCGGTTTTCAAACTTACCGCG 2474 AGAGGTACTCATACCGGACACCTGA 2475 AAGGTGGATATTCCTGCGAGACCTGA 2476 AGTGGAATCCATGCCGAACCTGAT <		2451	GCCAGTGTCTGTCAATGGATGGGA
2454 TCCGTGCGATTGGTCAAGGTTGAT 2455 AGGGCGTCTCGGTTGAACCTCGGT 2456 TGACCGTTCAAAGAGCAAGCCAAC 2457 ACACTCACCTGCTGTCCCTGCTGA 2458 GCGTTAAATCCCTTGGGTGGTG 2459 CGCCTGCGCAGGTAACTCTCCGCA 2460 AATCGAATTCCCAGCAGCTGTTT 2461 AAGCAGGTGGATCCTCGGCA 2462 AATCCCAGACTCGCTCTTCGTGCT 2462 AATCCCAGACTCGCTCTTCGTGCT 2463 ACGGTTATAAGGGCCGGCTGCAC 2464 TACGAGACTCGCTCTTCGTGC 2465 GCGATTTTAAAGGGCCGGCTGCGAC 2466 AGCTGTATAATTTGGATGGCGCGA 2467 TCCGCGAGTCTTAGACCTCGC 2468 GGCATTATAATTTGGATGGCGCGA 2467 TCCGCGAGTCTTAGACCGATGAAC 2469 TGTTATTGGCAGTCGACAG 2470 GCCAGCCTTTTTGCAGCACAGA 2471 AGAAGAAAAGGTCAGCGTCGACGA 2472 CGGTCGACCTTTGAGCCGACGA 2472 CGGTCGACCCTTGAAGCATAACC 2473 CTCGGTTTCACAAACTTACCGCG 2474 GCAGCCTTTTCACAAACTTACCGCG 2474 GCAGTCTATCCGGAGCCTGACAA 2475 AAGGTCGAATTCCTGCGAGGGA 2476 AGTGGAATCCATGCCGACCCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 2478 CCGAAGTCGAACACCTGA 2479 AAGGACGAAAGCACCTCGACCTGA 2479 AAGGACGGTAATCCATGCCGAACCTGA 2479 AAGGACTGGAAGCACCTCATACTGC 2481 AATGGTGTTCGCCGAGACCTCCACCCCCCCCCCCCCCCC		2452	TTGCCCGGCAGGTTCTGTGTAATG
2455 AGGGCGTCTCGGTTGAACCTCGGT 2456 TGACCGTTCAAAGAGCAAGCCAAC 2457 ACACTCACCTGCTGTCCCTGCTGA 2458 GCGTTTAACTCCTTGGGTGGTGT 2459 CGCCTGCGCAGGTAACTCCCCGCA 2460 AATCGAATTTCCCAGCGGCTGTTT 2461 AAGCAGGTGGGATCCTGGGGATCA 2462 AATCCCAGACTCGCTCTTCGTGCT 2463 ACGGTTATAAGGGCCGGCTGCGAC 2464 TACGAGACTCGCTCTTCGTGC 2465 ACGGTTATAAGGGCCGGCTGCGAC 2465 ACGCTATAATTTGGATGCCGCA 2466 AGCTGTAAATTTGGATGCCGCA 2467 TCCGCGAGTCTTTGACCGATTGAAC 2468 GGATCAGCTCCGTAAGCCGATAG 2469 TGTTATTGGCAGTCGACAGA 2470 GCGAGCCTTTTTGCTTGGGAAGAG 2471 AGAAGAAAAGCTCAGCGTCGACGA 2472 CGGGTCGACCTTGAAGCCGAAACC 2473 CTCGGTTTCACAGACATAACC 2474 GCAGCCTTTCACGGAGCCTGACAA 2475 AAGGTGCGTATTCCGGAGCCTGACAA 2475 AAGGTGCGTAATTCCTGCGAGGA 2477 TACAGGCGTAATTCCTGCGAGGA 2477 TACAGGCGTAATTCCTGCGAGGA 2477 TACAGGCGTAATTCCTGCGAGGA 2478 CCGAAGTCATTCCGCGAGCACCTGA 2479 AAGGACCGTATTGTTGTTGTCGC 2480 GGACACCGCAACCTGA 2479 AAGGACGAATCCATGCCGAACCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACCGC 2482 TAGGAAAGCGTACACCGC 2484 CGTGTCCGTGTGACCATGCGACCTCCATGGTCC 2484 CGTGTCCGTGTGACCATGCGAACCTCCATGATGCCCGAACCTCCATGATGCCCCAATGATGAGCACCTCCATGCCCCAATGATGAGACACTCCCATGCCCCAATGATGAGACACCTCCATGCCCCAATGATGAGACACTCCATGCCCCAATGATGAGACACCTCCATGCCCAACCTCCATGCCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACCTGCCATGCCCAACCTCCATGCCAACCCGATTGTGACAACCCGATTGTGACAACCCGATTGGCCCAACCCGATTGGCCCAACCTCCATGGCCCAACCTCCAACCTCTCCATGCCCAACCTCCATGCCAACCTCCATGCCCAACCTCCAACCTCA	5	2453	ACCCGCGAACCGAGACGCACTTCT
2456 TGACCGTTCAAAGAGCCAAC 2457 ACACTCACCTGCTGTCCCTGCTGA 10 2458 GCGTTTAACTCCTTGGGTGGTGT 2459 CGCCTGGGCAGGTAACTCTCCGCA 2460 AATCGAATTTCCCAGCGGCTGTTT 2461 AAGCAGGTGGATCCTTGGGTACA 2462 AATCCAAGCTCGCTCTTCGTGCT 2463 ACGGTTATAAGGGCCGGCTGCGAC 2464 TACGAGACTCGCTCTTCGTGCT 2465 GCGATTTTAACCCACGGTTACAC 2466 AGCTGTAAATTTGGATGCCGAAC 2466 AGCTGTAAATTTGGATGCCGAAC 2467 TCCGCGAGTCTCAGCCGAAC 2468 GGCATCAGCTCCGTAAGCCGATAG 2469 TGTTATTGGCAGTCCGAAC 2470 GCGAGCCTTTTGCTTGGGAACGA 2471 AGAAGAAAAGGTCAGCGAACAC 2472 CGGGTCGACCCTGAAGCCAGA 2472 CGGGTCGACCTTGAAGCCACAC 2474 GCAGTCCTTACCGCGACACAC 2475 AAGGTCCTATCCGGAGCCTGACAA 2475 AAGGTCCATTCCGGAGCCTGACAA 2475 AAGGTCCATTCCGGAGCACCTGA 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 2478 CCGAAGTCCATGCCGACACCTGA 2479 AAGGACTGGTATTCCTGCGAGGGA 2479 AAGGACTGGTATTCCTGCAGGGAA 2479 AAGGACTGGTAATCCTGCAGAGCTTT 2480 GGACACCCCCAACCTCATAGTTGC 2481 AATGGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGAATCCG 2481 AATGGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGAATCCG 2484 CGTGTCCGTTGACACTTGCGAGCACCTGA 2485 TCCAGGCTGTTGCGAACACTTGCCAACCTCATGCCAACCTCATGATTCCGAACCTCATGCCAACCTCATGATCCAC 2484 CGTGTCCCGTTGACACTTGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCCATGCCAACCTCCATGCCAACCTCCATGCCAACCTCCATGCCAACCTCCATGCCAACCTCATGCCAACCACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCCAACCTCATGCAACCATGCCAACCTCATGCCAACCTCATGCAACCATGCCAACCTCAACCATGCAACCATGCCAACCTCAACCATGCAACCATGCAACCA		2454	TCCGTGCGATTGGTCAAGGTTGAT
2457 ACACTCACCTGCTGCCTGA		2455	AGGGCGTCTCGGTTGAACCTCGGT
10	_	2456	TGACCGTTCAAAGAGCAAGCCAAC
2459	·	2457	ACACTCACCTGCTGTCCCTGCTGA
2460	10	2458	GCGTTTAACTCCTTGGGTGGTGGT
2461	,	2459	CGCCTGCGCAGGTAACTCTCCGCA
2462 AATCCCAGACTCGCTCTTCGTGCT		2460	AATCGAATTTCCCAGCGGCTGTTT
15		2461	AAGCAGGTGGGATCCTGGGGATCA
2464 TACGAGAGCGGGCTTAGACGTCGC		2462	AATCCCAGACTCGCTCTTCGTGCT
2465 GCGATTTTGACCCACGGTTATCGA	15	2463	ACGGTTATAAGGGCCGGCTGCGAC
2466 AGCTGTATAATTTGGATGGCGCGA		2464	TACGAGAGCGGGCTTAGACGTCGC
2467 TCCGCGAGTCTTAGCCGATTGAAC		2465	GCGATTTTGACCCACGGTTATCGA
20 2468 GGCATCAGCTCCGTAAGCCGATAG 2469 TGTTATTGGCAGTTCGAGCGACAG 2470 GCGAGCCTTTTTGCTTGGGAAGAG 2471 AGAAGAAAAGGTCAGCGTCGACGA 2472 CGGGTCGACCCTTGAAGCATAACC 25 2473 CTCGGTTTTCACAAACTTACCGCG 2474 GCAGTCCTATCCGGAGCCTGACAA 2475 AAGGTGCGCTATTTGTTGTCGGTC 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 30 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 35 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2466	AGCTGTATAATTTGGATGGCGCGA
2469 TGTTATTGGCAGTTCGAGCGACAG	{	2467	TCCGCGAGTCTTAGCCGATTGAAC
2470 GCGAGCCTTTTTGCTTGGGAAGAG	20	2468	GGCATCAGCTCCGTAAGCCGATAG
2471 AGAAGAAAAGGTCAGCGTCGACGA 2472 CGGGTCGACCCTTGAAGCATAACC 2473 CTCGGTTTTCACAAACTTACCGCG 2474 GCAGTCCTATCCGGAGCCTGACAA 2475 AAGGTGCGCTATTTGTTGTCGGTC 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 30 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2469	TGTTATTGGCAGTTCGAGCGACAG
2472 CGGGTCGACCCTTGAAGCATAACC 2473 CTCGGTTTTCACAAACTTACCGCG 2474 GCAGTCCTATCCGGAGCCTGACAA 2475 AAGGTGCGCTATTTGTTGTCGGTC 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2470	GCGAGCCTTTTTGCTTGGGAAGAG
25 2473 CTCGGTTTTCACAAACTTACCGCG 2474 GCAGTCCTATCCGGAGCCTGACAA 2475 AAGGTGCGCTATTTGTTGTCGTC 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 30 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2471	AGAAGAAAGGTCAGCGTCGACGA
2474 GCAGTCCTATCCGGAGCCTGACAA 2475 AAGGTGCGCTATTTGTTGTCGGTC 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 2477 TACAGGCGTAATTCCTGCGAGGGA 30 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 35 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG	· ·	2472	CGGGTCGACCCTTGAAGCATAACC
2475 AAGGTGCGCTATTTGTTGTCGGTC 2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 2478 CCGAAGTGCGAGAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGGACACCTCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGCC 2489 TTCCGGAAGCGTTTGGTAACTTTG	25	2473	CTCGGTTTTCACAAACTTACCGCG
2476 AGTGGAATCCATGCCGACACCTGA 2477 TACAGGCGTAATTCCTGCGAGGGA 30 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2474	GCAGTCCTATCCGGAGCCTGACAA
2477 TACAGGCGTAATTCCTGCGAGGGA 2478 CCGAAGTGCGAGAAGCACGTTGTT 2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 35 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2475	AAGGTGCGCTATTTGTTGTCGGTC
2478 CCGAAGTGCGAGAAGCACGTTGTT 2479	1	2476	AGTGGAATCCATGCCGACACCTGA
2479 AAGGACTGGTATGGCCGGAGCTTT 2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 35 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2477	TACAGGCGTAATTCCTGCGAGGGA
2480 GGACACCGCCAACCTCATAGTTGC 2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG	30	2478	CCGAAGTGCGAGAAGCACGTTGTT
2481 AATGGTGTTCGCCTGGACTACCAC 2482 TAGGAAAGCGTACACGGGAATCCG 35 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2479	AAGGACTGGTATGGCCGGAGCTTT
2482 TAGGAAAGCGTACACGGGAATCCG 2483 TCTCACCCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2480	GGACACCGCCAACCTCATAGTTGC
2483 TCTCACCCAATGATGAGGACGTC 2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2481	AATGGTGTTCGCCTGGACTACCAC
2484 CGTGTCCGTGTGACACTGTCCATG 2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2482	TAGGAAAGCGTACACGGGAATCCG
2485 TCCAGGCTGTTGCGGATACGGTAG 2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG	35	2483	TCTCACCCCAATGATGAGGACGTC
2486 GTAGGCAAAATGGTCGCGATCAAT 2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2484	CGTGTCCGTGTGACACTGTCCATG
2487 ATCTCCGTGGACCCGATTGTGACA 40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2485	TCCAGGCTGTTGCGGATACGGTAG
40 2488 GAATATGCCGTCAACGCTATGGGC 2489 TTCCGGAAGCGTTTGGTAACTTTG		2486	GTAGGCAAAATGGTCGCGATCAAT
2489 TTCCGGAAGCGTTTGGTAACTTTG		2487	ATCTCCGTGGACCCGATTGTGACA
	40	2488	GAATATGCCGTCAACGCTATGGGC
2490 TTCGATAGGAATACCAGGGCCTGG		2489	TTCCGGAAGCGTTTGGTAACTTTG
		2490	TTCGATAGGAATACCAGGGCCTGG

ſ		
	2491	GGCCATTTGAGGAGGATTATGCAA
·	2492	ACCTTCTGACCTGGACTTTTGGCG
	2493	GACCAATCCGCAGTTGAGCAACAG
	2494	TCGGCCACTCACCATGAGTGTAGG
5	2495	AGCGCTCACATGTTCGAAAACGGG
	2496	TAACGCAAAGGCGCGATCCTCGCT
	2497	TGGGTGGCCAAATATTACTGCAA
	2498	GTCCTCGAAAGGGGCATCCAAACA
	2499	CCCATCTGGTGGGAGGCGTTATCA
10	2500	GTGCGCGGTCTGCAAACTCGCCAT
	2501	TGTGTTGCCAACCCTAGGTCATCA
•	2502	CTGATGCTGTTCTCGTCGGTTGAC
	2503	AAGCTGCAAAAGGTGAGCGTGGCA
	2504	TCTGACGCGTGCTTGGGAGTCTAT
15	2505	GAATTACTTGGAGGCGCCGTGCAA
•	2506	GATTCTTCCCGACCTAGGTTGGCC
	2507	CGCAGCGTATCCCATGTTGCTTGA
	2508	GAGATGGAATTGTTCGCCCAAAGA
	2509	GATGCCTGGATCGGTCTAGCGTCA
20	2510	GCAGCGACTGCTAAGCTATCTCGG
	2511	AGGGCTAATTTACATCGCCTTGCC
	2512	AAGTGCACATCCTCACGAAGCGAT
	2513	TCAGGCAGCCGTAATTAAATGCGC
	2514	CCACTGGGGAAATCGCACTGTTGG
25	2515	TTGTCCAAAGCCACCTACGACAGA
	2516	TGGGCGGAATAGATTGGGTGTCTT
·	2517	TAGAATTCGCCTCTTCTAGCCGCC
	2518	CATTACTTCCTGCAGATGCGATGC
	2519	GGAAATGCTAGCTGGGGTAATCGC
30	2520	GCCGCCACTTGCGAATCTACATCT
	2521	ACAATAGCGGACAGCTCGCCAGAT
	2522	AGTTAGGCTCTCGGTGCGGTCCAT
	2523	TGGGCCTGAGAAGCGGTTAATAGG
	2524	ACGCTCTGAGCGACGCCTATCGTA
35	2525	CCTGGTGATCGTGTCCCAGACTCA
•	2526	GCGTGTCCATTCGCTTGAGGTTTC
	2527	ATCCTGAACGGCGATGACCACCAC
	2528	TTACGTTTCTCACCGATCAACGCC
	2529	GCCGTCTTGAGTGGCTAAAAGGCA
40	2530	ATCTACGATGCGGCTCGAAGTGTT
	2531	AACCAAGACTCGTCCCCAAACGAA
	2532	AACTGCGGTGGTGGAGGCAGGTGC

Ţ.	2533	CCTGAGTGGTCGGGCTGGAAAAAT
	2534	TGCGATCTTCTCCACCTACAGCGC
	2535	AGGCGCTTAGAACCGTGAAGGCAG
	2536	TGGAAAATTTTGGGAAACGCTGGA
5	2537	CCAGCGCCGCACCTTCTCCAATAG
	2538	TAGACGGCTGGCGAATCTTACGGT
	2539	TACCATACAAGAGAACGAGCCGCA
	2540	GTAGCCGAGAGCAATTTTCACCGC
{	2541	GCAAACTCCCCTGCCCTTTAGCCT
10	2542	ATCCCGCTGATAACCGCCAGGATA
	2543	AGTCTCAGTTCGGCGCAACGGTAG
	2544	AACCTACAGTCGCCGCAATGCATT
•	2545	ATACACGTTTCAGCCGGCAACAAT
	2546	ACGACGGACGTGCCCTCGTTGAT
15	2547	AAGTCCAAACTCGAATGGGGCAGT
	2548	GATTTATTGGCGCGGTAACGACCT .
	2549	TGTTTTCAGAGGCTACCCTGCCAT
	2550	ACGGTCTCAGGGAAATGCGATCTC
	2551	GACTTGAAACCGCCTATGCCCACA
20	2552	CGATCGGTTGTGTGCTGTCTTACC
	2553	AGTAGCACAATGCCTCATTTCCGC
	2554	CTCGCTATCTACGCGTCTCCGAAA.
	2555	AGCCCGTTACGGCATCTAGGATTC
	2556	TCGCGATGGCGAGAGTTCAGAATA
25	2557	TTACAGGATTCCAAAACCCGCAAA
	2558	CGGTACCAACGCGCGGGCATATGA
,	2559	TGCCAGTATTATCCGTGCCAGCCG
	2560	ATTTCAGACCTCGGGACAACCTGG
	2561	GAAGTGCGCGTAACTTAGGGAGCC
30	2562	TTGGCCAGGTCATCACTCTGCCAT
	2563	ATCGGCCGGTATTAGCTGCCCTCC
	2564	CGCAGGTAAGGCCGAGCAATGTTT
	2565	TTGGGAACGTGCTAGGCGGCCCTC
	2566	CCGCAAAAGTAGAACAGCCTGGGT
35	2567	CATCTCGGCACACTGGTGCTGTAT
	2568	ACGCGTAAATCAACGACGTGGTCG
	2569	CGTAGGTGGTAAATGTTGGCCCAG
•	2570	GTTGGGATGCTGCTTCACTTTGGG
	2571	TTCGAGCCAGAATAAAACGGTTGG
40	2572	AGAGATATTCGGCCTCGGTCGAGA
	2573	CGACAAAGTTTCTCGCGAGCAACT
	2574	ATTGCCGCGTCTCGTATCAAAAGA

	2575	CGGAGAATGGATGCAGGTTCTTCG
	2576	TATAATCATTTGCGACTCGCCCCA
	2577	AATTTTCCCCGATTTGAAGAAGCG
	2578	TCGCATACTTCGTCGGCGAGTATT
5	2579	CGTGAGCCGTTCTCATCCAAGCGG
	2580	GCAGAATCGAATTGGGGTGGGTTT
	2581	CTCTCGGTTTCTCAACCGAGCTCG
	2582	GACCAGTTAGTGCAATGGTTGGCG
	2583	TTCTCGCACAGCTAGTCAGCCGAT
10	2584	CCAAGTCTTGCGTGAGCGATCCTG
	2585	GCGAAAGTGGCTCGTATTTCTCCA
	2586	CCTCGGGACTGTCCGACTGAAAAA
	2587	AGGCGAGTGTACGGCTCATCCATG
	2588	GCGGCTCTGCCTACGATATTCACA
15	2589	TGCACCTGTCTGTAGATTTGCGGT
	2590	CATAAAGCACGGACGCGACTTGAT
	2591	CCCTCAACGTAGGGCGTGACTTTC
	2592	GGGTCATCGTGCAGTTATGCCGTA
	2593	CCCGGATAATCCTTTGTCCAGCCG
20	2594	TCCGATAAGCGAACTCACATGGGT
	2595	CCTGCTGGTTCGGTCGTAAGCGAA
	2596	GAGGCACCAATCGGTCTGAAAATG
	2597	TACGAAAATGGTTGCGCCGGGTCT
	2598	CCCAAAGATCGTATCACCACCCAA
25	2599	AATTGCCGGAAGCAGTCAGAATCG
	2600	CCGAATCAGCCGTATTTGCTGGAA
	2601	CCCGCTTATCTGTACTCGATCGCA.
	2602	TTTTGGGGATCCCTATTAGGCGCA
	2603	AGTGACAGCGCTCACCACGGTCCC
30	2604	CCATGAGTGTTTCGGGACATCGTA
	2605	GCCACATTCTGCTACCTCCGTGTT
	2606	TCCTGTGCTTTGTGACGTGCTAGG
	2607	GACCGCATATACACCTGATGGGCC
	2608	GTAGGCCCGTCGTTAACCATCTCA
35	2609	CGGCTCGCGAAATGGAGTTTAGCG
	2610	GCTGATCGGCTTTTCACCGCTATA
	2611	TATCAAATCGTTGGCACGCGACTA
	2612	TTGGCGAGGATCCCTAGGCGTACT
ļ	2613	AAGTCCTGAGGCCGTTCGGTTTCT
40	2614	ACTCCGGACATCTCGGCCAGAGAT
	2615	CCAAGGGAACACAGGATCGTAGA
l	2616	GTGGCCTAAATCCGCCTTCTCAAC

	2617	CACTCCGTCTCGTCCATTAATGCG
	2618	TCAAGAACCCAGTGCCGGTCAGCA
	2619	GAATCAATTTTCCAGGGACGGGAC
	2620	GAGAGCATACGCAATGTTCCCTCC
5	2621	ATCGGTGTGCTGGAGCGCCAGAGT
	2622	GCCTCTCCTATGACGATGACCCAC
	2623	TGGGCGCGCTTTTAAGACTACATC
	2624	CGTTGGGTACCGTTCTATCAACCG
	2625	GCAGTGAGCTGGGTTCAATGCTTC
10	2626	CATCATCCACACAGGCAGGTGTGT
	2627	AGACAAAGGTCCCCATTGCGAAAT
	2628	ATACTCGTCGACGAGAGCGGAAA
	2629	GCAGAATGTGTTGTCTTCGCAGCC
	2630	CACCATGCCTTCATCTTGGCCTAG
15	2631	ACTCTTCAACGCCAGGTTAAGCCA
	2632	GCGACCTGCGGCGTGTGTATTCTC
	2633	TCGGTGTATGCACCCTTTCTCCAT
	2634	ACCGTCGAATCTTGCGGCCAATGT
	2635	TAATGCATGCTCCCGGCTCACGTT
20	2636	TCTGTACACACCACGTCGTGCACA
	2637	CATGGGGTTGTCAGACGACACCTA
	2638	AATCTGATGCTCGCTGTAGGACGG
	2639	TCGAAACCGCGGGAAAGGGTAAAA
	2640	CGCTAGGGCCTAGGGGCACAGACA
25	2641	TGGGGGACGGCGTCTAATCCTCC
	2642	AGGCATGCACCCATGCTGCCAGAG
	2643	TCCCAATGGCCTGTCAAGCATAAA
	2644	GAACCTGAGCCTTTGCTAGCACGA
	2645	CGAATTGATAGCGTTACGGGCGAA
30	2646	TTGCACGCGCGCAACGACTATTC
	2647	TGCGGTGAAGCAGTCCAAGGTCAG
	2648	TGAGGACCATCCAATGGATCGGTT
	2649	TCGGTGATTGGTAATTTGGATCCG
	2650	GCGGCAGGTAGTTTGACTGGATG
35	2651	CAAGCACAAGCCCATGAAATTTCA
	2652	CGGTACAGCGGATAGCCAAGGATA
	2653	CCATGCTCTCGCTGCAGCATACT
	2654	CGCGGCAAAGATTAATTCCCGGCG
	2655	GAAGACCCGTCCGGGTTTCCATAC
40	2656	CTGGCAAGGAGGATGTGGCTCGTG
	2657	CTGTGCAGGGGGTGGCTCTGTTGA
Į	2658	TTCAATAATGATCACGAGGCCCCA

	2659	TGGTGATGCGAAGCCTTACCTTTG
	2660	CTGCCACCATCTACGGCGCAGTCT
	2661	TTTGCCCAGCTCTCGCAGAAGTTA
	2662	AATTCAGACGCCACATCGACGGTC
5	2663	CCGTGGTCTGCCTCGATTACCTAC
	2664	GGCGAGGAATTTCGGAACCTTATG
	2665	ATCCGATGATCAGATACCGGCTGG
Ì	2666	CCATAGACTAGCGCCAGAGTGCCC
	2667	TGTGGACCTAGAAAATTGCCAGCC
10	2668	GAATAATCATCGCGGTCCTCATGG
	2669	GGGATTGGCTCTTGGTTGGAAGAA
ĺ	2670	ATTGTGCTTCCTCGAACTGGGAAA
·	2671	TGCCCCACCCGTAAGTCAATAAT
	2672	TCAGGACCGACGGTGCACTTAGTG
15	2673	CCAGCCGTCACAGTGCAATTTCCG
	2674	CTTAAAGAGGCGCGAAGCACA
	2675	TACCGCTCGCGATCACAATGA
	2676	CCGAGTGCGCGAAGTGTCTATGTG
Į	2677	GCACCAGTGCCCGATCAAAACGTA
20	2678	TGCAGGCTTCTCAACGGCTGGGAG
	2679	CTCCGTACGTATCCCGCGTGATAC
	2680	GGAAGTGCAACTTAAAGCCCCGCC
	2681	CGAACCGCAGTCGATCGTTGCAT
	2682	CCGTTAGTGGTCGACAGTTCGGTT
25	2683	TCAGGCTACGCCCTCAGCACTACA
	2684	TATACGGGCCGAGGTCCGTATTCG
	2685	CCAACGTGTGACGAAGGGCCATTG
	2686	CTGCTCAGCGGTGCTTGAAAGACA
į	2687	GGAGATTGACTTCGCGTTTCACCA
30	2688	ATGGTTCAGAAGGTTCGTCGGGTT
	2689	GAGTGGAGCATTCTCGGCCCTCAA
	2690	TGGATTGGAACCAATCCCGCACAA
į	2691	TGCTCTTGTGGTCACTCGAGAGGA
	2692	TTGGGAGCACGGTTACCGCCTGTG
35	2693	CAACGCGAGCTAACGGTAGTTTCG
	2694	AACGCTGAGCGCTCACCTTCACCT
ļ	2695	CCGTCGTAGATCTGGAGGCTTCAA
	2696	GGATGGCATGGCACACTGTAACC
	2697	TCGCTCGTAGATATCCTTCACGCC
40	2698	GGAGCAATACCGCGTCCAAAACAC
	2699	CGGTGTGCTTCAAATGCCAAAGGA
[2700	TTGTTCAGACTTAGGCGCTGCCCA

	2701	CGGCGGTACTCTTTCCACTGTCCT
	2702	AAGACGATTGCCCACGTGCCAGAG
	2703	AGGTGAGCGCAGGCATATTGCAGT
{	2704	CTCGGGCCTGTACAGCAAAGCCGT
5	2705	TGCGCGCTAGTGCTGCCTATGATC
•	2706	CCATCCTTTGCCTTGAGGGTAAGG
	2707	AACAACAGCGTAAGACGGACAGGG
·	2708	GAGGCGGTCGAGGCTCACAATATT
·	2709	CGAGGTTAGACGCCTATGACCCAC
10	2710	AACTTGCTATACCGGGCGCAGCAA
	2711	CGCGGTGAATCGCATACACAGCGC
	2712	CACCGAATCAAGCCATATGGCTCT
	2713	TTCACAGCTATCCTAGGCGCTGCC
	2714	AGAAGCGCGAAGTGTACCCCGCAT
15	2715	TGCATGGTATTTGCGTGCGATAGG
	2716	GGCCGGACCTATGTGAGATGGAAA
	2717	TCAACCTGAGTCCTGATCCCAAGC
	2718	TGCTTACCGTTCAGGGAGGCGTGT
	2719	GGAGAGTTACGCGATGAGCCACCT
20	2720	CGGTATGCGGTGTACAGCTTTCGT
	2721	GTAAGCCGGGTCTCGTGTCGCCGT
	2722	GCGTAGTGCGAACGCCCCGACCTA
	2723	TCCTCGCGGCTTACGTCAAATTCG
	2724	CGACGTTCAAAGCGGGAGAGGAGG
25	2725	CGAGGCACCCGACATGTTGAGAT
	2726	CTATTTCGTGCCGCGTCGGACAAG
	2727	GGCTGCTCAGTGACGTGTCAACTG
	2728	ATCACTCGTGCGTACCCGACCGTC
	2729	CGAGATGTCCTATACCGTGGCGAA
30	2730	TCACACCGAGCCCCATAAATGAAA
	2731	AGCTACGTGTCTCGAGCAAAAGCG
	2732	TCAGGGCGAGTTTTTTCAGCGGCG
	2733	TTCGTTCTGTCTATTTTTGCCCCG
	2734	TGGTATGCCCAGGATCCAGCCTAC
35	2735	TCTCAGTCGTTAGGCCAATGGCGG
	2736	AAAGATCACCGTGGAGCGATCGGC
	2737	TAGCAGGACTTGCACTCGTGATGC
	2738	TGCCCACGGTACCGTTCAAGGCTG
	2739	TGAGGTGCGTCGCCCTAAGTAATG
40	2740	AGCAAGGGTTACAACCCGCAACCC
	2741	CACAACAGCCAGTATTCGCCACAA
	2742	GGCAACACCATACTCGACGAGCTC

. [2743	GGCTGGATTGACAATTTAGCCCCT
	2744	CGTGAGAAATGCTACACGCGTCAG
	2745	CGCATCTGCCCCATTTTGTTCCTT
[2746	GTCGGCCTAGTCGGCAGAACGGTG
5	2747	TCGACACGCGTAGCAGCGTGGACA
	2748	TCCCTCACCTTCCAAAAATGTGCT
	2749	GGGCAAGAACATGAGAACAGACCG
	2750	TCGTCCTGGTACGACTTGCGTAGA
	2751	TGGCGGTTGCATGTGATCAAG
10	2752	CCTCGCGTGAGTAAAAACCGTCCG
	2753	ACTTCCGCCACAGAATGCGGCCAG
	2754	GTGTAGAGCTTGGGTAGCCCCGTT
	2755	CGCAGCATCCGAGTTAACACACAT
	2756	ATGAGCCTGGGATGATCCGCTGGT
15	2757	CCTGGCATAAGTGCCGACATGCTT
	2758	GCGCATGAAAAACTACGACGGACG
	2759	AAAGATGGGTCGATGGGAGCGTCT
	2760	ATCCTGGGCACGAGCGGATTTATC
	2761	TCACCGCATTTGATAGTTACGCGA
20	2762	TGGTGGAGCGGACTCTGGTGTTAT
	2763	CACAATGAAAAAACAATGGCCCCA
	2764	CCTTGCCGCGCTTGTGGTACCAAC
	2765	CCGAGACCTTTGCCACACGAAAGA
	2766	ACCGCGGTGTACACCTGAGCAGGC
25	2767	GTCGTACGCTTACCGCAGCGGAGA
	2768	TCGTAATTTGACCGACACACGCAG
	2769	CCTAGACGGATACCCTGAGCGGAA
	2770	AAGCGACAGCAGAGGTTCAGTCGC
•	2771	GCGTGGACGATATCACCTGGGCGT
30	2772	GTCGGAGAGCCAGTGGTACGGCTT
	2773	TACCCTCCGGACCAGCTGTAATGA
	2774	TATCCGCACGGTATAGCAGTTGCA
	2775	CATCAGTCGGGCTACCTTCAGCCT
	2776	CGGATTAATGCCTTTCCTCGGAAT
35	2777	TTCGTCGTGCCAAGCTAATGCAAG
	2778	CCACTACGGATCAGCACAGGTGTC
	2779	GGCCGAGACCACCAGTAACAGGTT
	2780	CGCGCGGAAGCATTGAAGTTACTA
	2781	TCGGCTTACCGCTTCGTCTGACTT
40	2782	GACTGACGTCAAGGCAAGCACAC
	2783	AGAGGAAGGAGGGCTGTGACAGA
	2784	TTCCAATGCGAGAGATGGCAGGCT

_		
	2785	AAATGGGGTGCTTCGAATATGTCG
	2786	GCTGTCGGATTATTGCACGCCTGT
	2787	CCGACTTTGTTTATGTTGCTGGCG
Ī	2788	GCTGCGATATAACCCGTCCCAGAA
5 ·	2789	TGAGCTGGGCGTCAACTCCGAAGA
	2790	CCCAAGCATCCTAAATCTCCCTCG
	2791	CGACAGCAATCCACATGCATTCTT
	2792	TGAATGGTCGGGAAACCAATGCAT
	2793	CTTTGCATCGAGATGCGGGGTAGC
10	2794	TCCATTTCCTCCGCAACTCTCAGG
{	2795	CCACTACGCCATCCTGACAACGAG
	2796	TAGTAAGGCCAATGTACGCCGTCC
	2797	GTCATGCATATGGGGCCTGTTTTC
	2798	ACCGGTAGACGTTAGCGGGTTCAA
15	2799	TTGGTTCAAACGGCCACACGTCTC
	2800	GACACAAACTGCAAGGGAGGCATG
(2801	CTCGAGCGCTGTCATCATATCGGC
	2802	GCGGCTAAGGCACAAGTAGACGTG
	2803	ACAGCCTAAATGGCGCAAGACCGA
20	2804	GCCAAATGCTTGGAATTTGCTTCG
	2805	CCGATGATGTAAGCCGTCGGCCCT
	2806	AGGAGCAAACAACGCCAGTGACA
	2807	ACGAATTGGGTAGCCGGACTGAGA
	2808	CTGTTCCAGTTCGGCAAGTGCGGC
25	2809	AGACAAGTCAGGAACGCGTTTCCG
	2810	AGACGACGGCCAGATACGCTGCCA
	2811	AGGAAGCGCTTCTTCCGGTTCTTC
	2812	GATGGACGCAAACACAAGGCGATC
	2813	CGCATAGCAGTCTCCGCATCTTGG
30	2814	TGGTTCCGGTGTGCAACAGATAAA
	2815	CCGTATGCCACCTCCAGAACTCAA
	2816	GTAAAGGAACCCCTCGGGAATCCT
	2817	GCCTGATGCTCGTTAAAATTGCGT
	2818	TCGCACTTGGACCATGAGATCTGA
35	2819	TTCTCAGGCTGGGCAAGAGTCTGT
	2820	CGGACCTGGGATGCTGGGATTAC
ļ	2821	TCGAGCCGATAGGGTTGGCATTGC
•	2822	TACGTGTGTCCCACACACGTCGTA
	2823	TGTGAAATTCGCGTTTCGCATCTT
40	2824	TTGCAATGCTCCAAAAAAACTGCC
	2825	TCTCATCATGGCTGTGGCTTTGAC
	2826	ATTACACCGCTTGGTTTGGAGTGG

	2827	GCCGTGCAATGCACAGAGTTCAAG
	2828	GAGATCAGACCGTGTCGGATGCTG
	2829	CCACCTATCTTGATGCGACCTGGA
	2830	CCGATCGCCGTTTATGTCTACGGC
5	2831	GAAAATCACGGTAAGGCACGTTCG
	2832	GATTCTCGCTTCCCAACGAGCATA
	2833	CCAGAGCAGCATTCCACAATGGTG
	2834	TGTGAAATGTGGCAGTCTCAGGGA
	2835	CGATCCTGCGTGCCTCATCCAGGC
10	2836	CCCTCAAGTGGGCGAGGGTTTTCA
	2837	TCGCCTCGCCTCGTGTGTAGAAG
	2838	TTCGCTTTCAGCTCATTGGAACGA
	2839	TGTAATCTGAACAAGCGGACCCCT
	2840	TGGAATCTTTCTTGAGCGCCGTGA
15	2841	GGCTTTCATCTTTAACCGCTCGGT
	2842	TGATCCGAGCCATTCCTAATCACC
	2843	TGGTAGGCGTGATGTCCTACGCAA
	2844	AGGCATCGGTAAGAAGGCCCTATG
	2845	CGCCGCGAGACGATCCTTATTATT
20	2846	ACATGGACGAAATTACGCCCGTCA
	2847	ACAGAAAGGTGGGGAGCCTAGCGT
	2848	AGGCTTGCGAACATGGGTAGTGAC
	2849	GCGTGGGCCTTGCTCCTGTTTAAC
	2850	GAATACAGAGCGTCCGATGTGCCC
25	2851	GCGACTCTGTAGGGAGCGCGATAT
	2852	GGTGCACTCATATGCGTCGCATCG
	2853	CTGTCCCACGGGGAAACCTTACTT
	2854	TGGCTTACTGTCGCAATCTAGGCC
	2855	GCACTCAGTTTCCGGTATCCCATG
30	2856	GTGAGGTTCACGTAAGGCACAGCG
	2857	GTAACGCCTTTGTCCCCAGCGTAT
	2858	GCATTGATATGGTCGGTCTCGCCT
	2859	GTGGGTTTAAGTGACAACGGACGC
	2860	CAAAACCCTGCCGAAGATGTTGGT
35	2861	TCCGAGGAGACTGAACCTGCTACC
	2862	CGGGGAAGAACGGATTCGCTAAAT
	2863	TGGTTAGCTTATGTCGGAGCCACC
	2864	ACGCGTCGATGAACTAAGGCTCGC
	2865	TTCTCCTGACGAGTACGCAGTGGG
40 .	2866	TCCGCGGTTGCCGGTTTGTTAGGA
	2867	TGGCGCATCTTTCAGGGGATGATG
	2868	TCTTTGGTCCTTGGTGTTTACGCG

	2869	GAGAACTCCCGCTACAAAGGAGCC
	2870	TTAACGTGGGAACCGTTGGTGAAT
	2871	GGGACACCATCCTTGGGTTTGTTA
·	2872	CAACAAACCGCCTTGGGAAGTGAC
5	2873	TTGAAGGCCACCGATACTGATCGC
	2874	TCGTAATAGAACTGCGCCCAATGC
	2875	GGCACGTTGCCCAAGTTGGATCCA
	2876	ACATAGCTTGGCCGGACACCCACC
	2877	CTTGCCGCCTTGCGAGTGGCTAAA
10	2878	AGTTCCGCGTCCTACTTCAACGCT
į	2879	AATGGCTCGCCAGATACCGCAGCC
	2880	CAAAAGGCGTGTCCGAACTTTTCA
	2881	CGTCCACTTAGGTGGAGATACGCC
	2882	GAGCCTCTTCGTCCTGAAGACCGA
15	2883	AACATCAAGCGGCAATCTCCCTTC
	2884	CGTCCTGACATTATTAGCGCGTGC
•	2885	TGTGCAGACCCTAACGACCTACGG
	2886	TTAGGTCGGCCTAGACCCTCCGTA
	2887	TCACATCGCTTAACTGAGCGCATT
20	2888	AGACCTTCCCACGCGAGATGCTAC
	2889	TTCTTGCCAAAATGTGTCCAACCA
	2890	CAGTTTTCATTGCAGCGAAAGCAA
	2891	GTGCCGATCCCGAGACAAGTTCCG
	2892	CATCCGGCCTCAGTGATTCTTACC
25	2893	TGCTGGAAGCCACAAACGTTACGT
	2894	GAACGGCCAGGGGACAACTATCGT
	2895	TCATCTAGGTCGAAGCGCAAGACA
	2896	TTTGGTTACCAGCACCCATGTTCC
,	2897	GACAACAGTCTGTCCGCCACATCC
30	2898	GCCAACAGGAGATGCTTGCACCAT
	2899	CTAAGGACGCATTGACCCCTGAAC
	2900	GGTCGCGTAGTGAGTCAGAGGCGT
	2901	TTACCTCATGAACCCTTCGCGGCG
	2902	TATACAGCATCGTCGCCGGGCATA
35	2903	GCTTAGTGGCGTCTTCGTCGTAGG
	2904	TGCACTCCGCAACCTTGTGAAATC
	2905	AACCCGTCATGCCGACTCCATCTA
	2906	AGCACTAGTGGCGTGCGACTTTGC
	2907	TAAAAAGTGCCGCTAACCACGGAG
40	2908	CGCGGAATATTTGTCGTCCGATTC
	2909	TTCTGCTATGCGTATGGGGGCCCG
	2910	CGAACTACTGCGTCAGCCTCTCCC

	2011	ACATCACCAATTACCCCCCTTCCC
	2911	AGATGACGAATTAGCGGGGTTGGG
	2912	AATAACAGTGGCAATGAGCGGGAA
	2913	ATATGTTGATTCCCGTGCTGCACA
	2914	AGAGTGGGCACCACCAGGCAGACA
5	2915	AGGCCTGGGTTTCTGCGTCTTAGT
	2916	ATGACTTCAGGCACCTCAGCACCT
	2917	CGGACGTGACAAACGGACATACCC
	2918	CAAGTGTTTCGGCCCAACTCTCGA
	2919	GAACCCTTATCGGGATAGGCCCAA
10	2920	CAGGACGATACCAAGCAGAACGCC
	2921	GCGTCTTGTGATTCTGCCCTAACC
	2922	AAACAACCATCAATGTCGGGTCCA
	2923	TGTAAAGACCAGTTGGCGGCTCTC
	2924	GCGTTTTGACTCGGTGGTCAGTCC
15	2925	TGTATGGAGGCACGGCAAAGTCTT
	2926	TTACCTAGGTTCCCGCTGACACGC
	2927	CGGCTCGTGGGAATCCTCTGAAGA
	2928	CCGGCTCGGGCATTTCTTGGACCT
	2929	CAACGATGGAATTGTCTCCTTGGG
20	2930	CGGGCTATTATCGGGATTATGGGG
	2931	ACGTACCTGAAGATGCAACGGCGG
	2932	CATGGTGCAGCACGCACAAGTAAC
	2933	CGTCGATATGTCGGGCTATTGCCT
	2934	AAATGCAGGGTTAAGAGGAGGCCC
25	2935	TGCAAGGACTGATTCTCCCGCTGT
	2936	GTTTTCGGAACGCCGCAGAGTTCA
	2937	CCCTCGATGGTTCATTGGGAAGAC
	2938	CCTGTTCGCTCATAATGGTGGGGT
	2939	GAAAGAACGATCGCGGAATAGCTG
30	2940	TCCACCTGTGTGCCTTTATCCTCA
	2941	TCCTCCGTGAACCGCTGTAGCGCA
	2942	GCCCCAGAGAGTCCCTGCTCCCTA
	2943	TTGAGATTTTTACGGTTTCCCCGC
	2944	CGATAGGACGTGGGCATGTCCCAG
35	2945	CCCGAACTTTGAGATCCGAGAACA
	2946	TCACGCAGCTAGAGTCGCGTTACC
	2947	AGATAACGCCCACTGACGACATGC
	2948	ACGCTTAGAGCTCCGATGCCGAAT
	2949	GGGCGATAACTTAAATTGTGCCGC
40		
⊤ ∪	2950	AGGACGTTCATGCGTCTCTTTGCA
	2951	CGGCTGGTAGAACTGTGCATCGTA
	2952	TTCGAAATGTACTTCCCACGCGGA

Γ		
	2953	GCAGGTTGGCTGTCTTGTGGAGTC
].	2954	CGTTTGGTTGCTTCAAGAACCGGT
<u> </u>	2955	CATACTTGGTTGTTGCCCACGC
1	2956	GGGGTCGGCTGAAGTGTTTTATCC
5	2957	GTGACGGTTGATTAACGACCGTGG
·	2958	CTTATGGCAGCGCCAGGGGCACTC
	2959	GTTAGGGGACCCACCTCGTTTGAT
	2960	CAATATAAATGCCGCGCATCGAGT
	2961	TTCTTCATCAGCAGTCCCCGAGAA
10	2962	AGTTGCGTCCCTTGATGGCATTTT
	2963	CCGACTTTCGTCCACGATTCCTCT
ĺ	2964	ACTTGGCCGGACGACAGCAAAGAC
	2965	CACCGCGGTAGATGTATCCCTTCC
	2966	GTTAGCTTTAGCTCGGCACGCCTG
15	2967	GCGCATAAGAAGGTCCGCTAAAGC
	2968	ACATCATCACGCCTGGCGTGACCA
}	2969	CCGGCGAAGTTTGGTGTGATTAGA
	2970	TGGGAAGGCAACATGAAAGTCCTT
•	2971	TGCACCGCCAGATTGTGCTGAGTC
20	2972	ACATGTGAAGTGAGTGCCGTCCAA
	2973	CCTCTGGAGGGGATTAGCCACGCT
	2974	CAATAGCCATGTCACTGGCAACGG
	2975	ACCCATGGTTCCAACGTTCTTTCG
	2976	AATCTGGTCTTGGCATCCTCCAAA
25	2977	GTATACCGGTGCATGCTGAAGCAA
	2978	AGTGTTCTGGTTCGAGTCGACCCG
	2979	CGGGTATTCGACACACGAGGAC.
	2980	AGTGCAACAGAGCGCTTGGTCACG
	2981	TGCACCTATAGTTTGGTGCCGGTG
30	2982	TGCTCACGTACCAGGACACTCGAG
	2983	AGTCCACACCTCGAACGACAGGCG
	2984	CGCCGACCTGGTCAAAGAGCGCTA
	2985	GCCTAAGGGCCTGTCGTTTTCCGA
	2986	TGTGCGTGCTTATGTTCCGGTCTC
35	2987	CAACCGTTGGCCGTAACAAAAATC
	2988	CGAGAATCAAGGCGTACCATCTCG
	2989	GCGTAGGCAGCCTCCAGGGAATGG
	2990	GATGGTGTTTTCGCCAAGACCAAT
	2991	CAAGCTAGGGACAGAATTGCCCAC
40	2992	TAAATAGGCGAAACCGTTCGTGGC
	2993	TCAAGACCCGCAATGTGTTCATGT
	2994	GCGGCTGGTAGACTCTTTGCACAA

Γ	2995	CAGGCGTAAACCTGAACCAAACGG
	2996	GCCGATCTGTGCTGAGGTTCATCA
Ī	2997	GATATCGCGTCGCAATATCACGCG
Ţ	2998	CCCTGCACGATTAAGCCACCTGTA
5	2999	TGACATACAGATTTGTGTGGCCCC
Ī	3000	GTTTGCGGCCGGTATTCACGATGT
	3001	TTTTACCTGGCCATTGGTGAGCTC
	3002	CTCTACTCAATCAGGGTGGGAGCG
Ī	3003	GGGTTGGAGGGAGTCTTGACCATT
10	3004	CGAGGTCGGTAAGGAAAAGCTTGC
	3005	CTTTACGCAGGCACCTCCGAGCTG
	3006	CATTGTATGGCCACGTGATTGACG
[3007	GTACGGTGCGAGAGCGCCTAAGCG
	3008	TTCCATATGCCGAAATGGACACAA
15	3009	TACGCCTTCCGCTATAGCTCGTGA
	3010	CTGGCCGCTCGGCTAGCCATCAAT
	3011	CTGTACGCCACGCATGAAGGGTGA
	3012	CTTACGCGTCCAATGACTGCCACC
	3013	CACATGGTAGAACTCGATCGGCAG
20	3014	CGCACCGGAAACTAGTGGATGTGT
	3015	ACTATGGCAACCGACACTTGGTCC
	3016	CTAGTTTGCGCTACCCACCTGCAA
	3017	TAGTATCGCCCGACAATAGCCTGG
	3018	CCAATATTTACGGCCTGATCAGCG
25	3019	ATGGCTATCCCTTACTGGCTCGCC
	3020	CAAAACTTGGCAGGCTTGGGACTT
	3021	AATGACCGAGGCTGCAAGATTGAC
	3022	ATCATCTTTCGCCACCAGACATGG
	3023	CGTTATTACCGATGCACACGTTGC
30	3024	CACACTGGCAATCGCCTCCCTCGT
	3025	AGGTTGGTAGGAAATCGGAGCGCT
	3026	GCTGAACCACTGTGGTCAAGATGC
	3027	CGTTGAGTACGACACGGTCGAGGT
	3028	TTTTTCCGCCGCAATGTGATCTAA
35	3029	ACAATACCTCGACCGCTCAGCATC
	3030	AGTATCCCTGCTGGCATACACGGG
	3031	TCTTGGGCTCGGTAGTTCAGCACT
	3032	CCCTATATCGAGCCCATAGGGCGA
· [3033	CACGAGTGGCATCAACGGCCTACT
40	3034	TGCAGGGTCCGATGTGTTCAAGTA
ļ	3035	GCTTGACCGCTGCTAACCTCGTAC
	3036	TTTTGCATCTCCACCATCCAGA

_		
	3037	AGAATGTGCACCGGCTTCCATCTT
	3038	TGTTATGACCCGCTCTGTGGCGTG
	3039	GGAGCTCCTGTTTCATCGAGGCTA
Ī	3040	CATTTTGCTGTTTGGGGGTCCCAT
5	3041	CCCGCTCCTTCACGTGAGACGAGA
Ţ	3042	GCGCTCAAGTCGATTGCCACAACC
Ī	3043	CGGTTGACGGAGACCGCAGTACTT
Ī	3044	ACTCAAGACCGGTGCACCTCCAGC
	3045	TGGATGTCGAGCGTGTCTGAGTTT
10	3046	TTTCGTGTGCATGCAAGTAATGGC
	3047	GCGGCGTTAGCTCGAGCTAACAAA
	3048	GGGTATCCTGCCCGAGCAGTAATT
	3049	GGCTCCGAATCTCTTGTCCGGTCT
	3050	AGGATGGCCACGCCGAATCAAAGT
15	3051	GTGCGGGGACGTTTACATAACGAG
[3052	ACTTTTGACCTGAGGCCGCTTGCA
	3053	ACTCCGCTTCAATGGAGACCGTTG
	3054	GATCGGAATTCGCCGCCATATTGA
	3055	ATGCGTGCCCATGGAATGACTTTT
20	3056	CCGCATCGCACGAAGGCAGGTCAT
	3057	CACCCTATGCGTCTCCAATTCCTG
	3058	TGATATGCATCGCTGAGCCTCTGT
	3059	AGCTTCACACGCTCACTGAACCTG
	3060	AACCCGGAACCTCCTCTCACTCGG
25	3061	CTCGTCAAACTTGGCCGAGGAGTC
	3062	GTAGCTGGCAACAGGCAATCAGGA
	3063	CTTGTCACGAATATTCGCCAAGCG
	3064	CAGTATCTGAAACACGGGGTGCTG
	3065	GGCTAAAATGGGCGCCCACGTGTA
30	3066	ATGAGAGCCAAGCGCCTCAACTCC
	3067	TATTGTTAGGCACCGCTTCGCGCT
	3068	GGAACTAGATTGCCAGTGCTCGCC
	3069	AGTCGACCCCAAGGCAACTGGGTC
	3070	GGTACTGTTAGCTCGACGATGGCC
35	3071	CCGCAATACTTGACGGTAACAGGG
	3072	AATTCCGGGTTTGAACGGTTGGAA
	3073	GACACGCAATCGGGTCTATGCGAA
•	3074	GATTTTGGCGTCTCATTGCGTGAT
	3075	TGCCATAGGGAGGAAACGCAATTA
40	3076	GAGGTGCCCATGTTAGTGGTGTCC
	3077	GCTTTAGCGGTCATACGACCACCA
	3078	CCGCTACCAACAATCCGATTAACG

	3079	CATAGTGGGCTGAAACCCCAGGAA
	3080	GAGGATCTGGCCACATCGAGAAAG
	3081	CTCGTTTGGTACCACGTTTTGCCG
	3082	AATACACGCGGCGTAAACAGACGA
5	3083	TGTCATGGGCCAAATGACAGTGGC
	3084	ACAGCACTTCCGACCCGTGTACGA
	3085	CTCCGTAAAGAGCACAGCTTTGCC
	3086	ACGAACAGGTAGGGATCGGTCCTC
	3087	TGGATCCACCTTACCGCGCCATCG
10	3088	AGTATCAAATAGCGGCGCGCAAG
	3089	GAATTACATTGTGGATGGAGGCGG
	3090	CTCCTCGGGGAGTCGAGGAGTACG
	3091	AGTGTCGAGCCAACTCCCACCAAT
	3092	AAATGACATCCGTTTGGCCACAGC
15	3093	CGAATCATATCGCCATCGAACTGG
	3094	TATAATGCACTCGCTTGGTGCGCA
	3095	GCCAAGCAGATGGTAATTATGGCG
	3096	CACGCGGGAAGAGCACGTAGAACT
	3097	TACCCGAGAATTTGGAGAACAGCG
20	3098	TGACGGCAAACTGTGGCATCTATC
	3099	CACAGTGTTCCAGCCCTTGACGAT
	3100	TACCCGCCCACACATGAAAGTTGG
	3101	TGGCATATTTAAGATTCGGCGACG
	3102	ACTGAAAAAAGAACGGGTAGCGGG
25	3103	TCTGACCGCAATAGGTGGTCATTG
	3104	ACTTTTTGGCGGGCCCTCTCTCGT
	3105	CTGCCCAGATCATTGCGCGATCCG.
	3106	CGGAGGTTAAATGCTTTAACCGGC
	3107	AGGCGTCTCCAAACGTCCTTCTGT
30	3108	AGATGCTATCCTGAGTGGGCCTGC
	3109	ACAGGGTGAAGAGACCGTGGGATG
	3110	GACTGTCTAACGGACGACGACG
	3111	AGCTGTTAGGACCCGACAACCGGT
	3112	TTGCGTAGTGTGGGCATTTCCTCT
35	3113	ATGCGCGCTTCTTTCCTTGATGTA
	3114	TTAAGGGCGTCCGCGTCTATTCAG
	3115	ACCTTTAAACTTGTACCGCGGCCC
•	3116	AGGGATGCAGAGGCACCACATGTT
	3117	CGGTTCGACGTATGAGCATCCGCA
40	3118	CAGGGCGATAGTCACATGGAGGTT
	3119	GCTTGACTGCCCCGTTTCATATGT
	3120	CGAAGGGTTGTGCAATTACCCGA

	3121	AAAACGCACCGCAATGACAAAATT
	3122	ATTCCTGGACAAGACCCTCAACCG
	3123	CCTACCTGCCTGCTAGCGGTGAGG
	3124	GCTCGTAAATGGGGAGGAATTGGA
5	3125	ACATGAAAACAGGCTCAATTGGGG
	3126	GTTCCGCACATGGATTGAGGTCTC
	3127	GGCACCCAATACCACGAAGAAGAA
	3128	AGGGGCATTTCGAACTCCATCTTT
	3129	CATCATCACAAAGGAACGTCGGTG
10	3130	TAAAGACCCACCGTCAGCAGCAGC
	3131	CCCCAGGCGTAATGCACCACATAG
	3132	GCAGGTCGAACGCTAGTGGTTGAA
Ī	3133	GGAACTTAGGAGTTCACGTCGCCA
	3134	GCAGATACGGCTAGCTGAGGTGGC
15	3135	CACAGGCCTAGAGCCTCGGCGTTC
	. 3136	GTTTTGCGCGCATGAGGTTCATTA
	3137	TTGCGCCTGATGCCAGCAGTACTA
	3138	GATATCAGGCTTTCCCACTGCCGC
	3139	TGCGCGGAGACGGAGATCTATGAA
20	3140	CATTGGTGTTGGCTGAGAGTGGAC
	3141	GTCGGCACTTGGGCACCATTAATA
	3142	ATCGATCGGTGTCTCACCACGGAG
·	3143	CGTAGCCTTCCACCGTGTCGATAG
	3144	CGCTCTCCGTCTGAGGAAAAGGGG
25	3145	TCGCCCCAGCCAAGGATATATTGC
	3146	TCTCTTGCAAGGAACTCTGCCGTC
	3147	GTCCTGGACAGACGGAGGGTGTTA
'	3148	GCCAAATTAAGCGGGCTCGTAATC
	3149	CCATTTGTTGACCGATGGGAGGGG
30	3150	TGGTCAAAAGAGCACGATCCAGGA
	3151	CGCTACTAAGACGCCCCTGTCCAC
:	3152	CATACCTCCCGCTTGGATTCACTG
	3153	CCGCGGAAGGAATGTCATCTACAA
	3154	CACGGGACATTCATTCACAGGACG
35	3155	ACTAGTGAGGCGTGAGGCGGCGT
	3156	AGGAGTCACCCACTCCGCACAAAA
1	3157	TCATGACAGCGCACCCCATACCAT
•	3158	GGTAGGGGACTATCGATCGTGCTG
	3159	ATGTCTCACTACCGCACGTAGCGG
40	3160	TACTGCTCCGGTCTTCCGCAGCTT
	3161	ACGGAGGAGCGACTCGTTCGCTGC
	3162	GAAGTCTGTCGCCGGTGGACGGAC

ſ	3163	CCGTAACGTGTATTCGGACGAGCG
	3164	CGTGGAAGCGACTTAACCAATCGT
	3165	GGCATGGGCTATGCCTCACACTAG
	3166	GGGTCGTATTTCAGCATCGTTCGT
5	3167	AATGGTCGCGCAAACCGTAAGAAT
	3168	CTGGATTCGGTACGTCCAACGTTT
	3169	CGCAAAAACACCCGTAGCCAAGAA
	3170	TATGGATACGCTTTTGGACTGGGC
i	3171	GCTTCAAACGCGCTTCACGCTGGT
10	3172	TACAGCCCGCTCTACCTCGCCACC
	3173	TCAACCGATGTCAAAATGCACGTT
	3174	AGCTCTCCGAAGTAGGGCGGTA
	3175	ACGCACACATGGAGACTTGGCTCC
	3176	TTCTTGAAAGCTAGTGGGGCGCTA
15	3177	CAATCACGGCTGGGCTATTCTGTG
	3178	GTGGCGACCCGTCGGTGAAAGAGT
	3179	CGTCGAATGCCGAACCAGTTAAGT
	3180	TGCGTATTTGCATGCTCACAGCTG
	3181	CGCAGTTGGTTTGTGCACGGCTGC
20	3182	GTTTTTCCGTGAAAACTGGCATCG
	3183	ACAGGTTCCTCCACCACGATTTGA
	3184	CTAGCGCGCTTTTAGGTCCTTGCG
	3185	CAAAATCAAAGGGATCAACCGGTG
	3186	AACGTAACCCCAGTGAGTCAGGCA
25	3187	TCAACCGGTGCACTTTAGAACGCC
	3188	ATCGCAAAGTTGCAGGCGAATACT
	3189	ATATGTCCCTGGGTGCTGCACAAC
	3190	TGGCACTTTGTAGTGCTGCGGTGG
	3191	ACGCACGACGTCCTTCTAAGCTCG
30	3192	CCCACGTGCACTATAGGGATTTCG
	3193	CCGCGCTTGGTCAGTCATCCTTGC
	3194	AGCGGCTCAGGGAATAACAACAGG
	3195	ACAACGCGATCGGAGGCAACCAGT
	3196	AGCAATTGCCTCCGTAGAAACCCA
35	3197	GAGTCGTGCCATCGCCTATCG
	3198	TCTATGCAAATACTGCGCTTGCGA
	3199	TCAGCTTAAGTTACGGTGTGGCCG
	3200	TCCAAGGTCGAACAGGGATCAGAA
	3201	GTTAGGCTGGCGTCAATAGCGCTT
40	3202	GGTGTCATAAGGAAGAGGGCATCG
	3203	CCGGCGGCTAGATCAATATTTCT
	3204	CTAACGTCAAGTTTTACGCCCCGA

3206 CGCACGCAAGGGGAGGATGACTG 3207 CGGGGCCGAAAAGGACGTCACAAG 3208 TTCTCCAACACGGCTAACCGGTAG	
3208 TTCTCCAACACGGCTAACCGGTAG	
5 3209 TTACAGCCTGGCCCGAGGTAGTTG	
3210 TTTCGGGCAGCATGAGTTATCGAA	
3211 CTACTGGACGCCCTGCTTCGAAGT	
3212 GGTCGTCCGACGTGAAAAGACCAA	
3213 GTTTTCGAGCTCTTTCTCCGCAGG	
10 3214 GCGTGAAGGTACCCAGTGTCACAG	
3215 TTTCTGAACGCTTCGACGCAACAC	
3216 TGCTAATAAGCACGCCTAGCCCGT	
3217 AAATTAATTGTGGTGGCTCCGGCG	
3218 TTACAATCCTCGGGCTCACTGACA	
15 3219 GCTGAAGGACAAGGCGTGGGCAAC	
3220 GGGATAGGAGACCCTCGCAATGGT	
3221 TTGCAGTACGTCCTTGCGCATGAA	
3222 TTGATCACTGGATTGGGTGCGAAC	
3223 TCTGCAGACGTTGCGAGAGATGAT	
20 3224 AGTCTAGCAGGGATCGAAGCGGAT	
3225 GGGGTCCCGCAACAACTAATGAAG	
3226 CAACCTCTTATGTGGTGTGCGCGA	
3227 CTCGCTGGGTTGCTGGAGTAGCAC	
3228 CGTTGTATTGTGCAACGCGAAGTT	
25 3229 GGGCTCAAAGTGCCTGAGTCGAAA	
3230 CTGCTGTGCCCTCTCAGTGAGAGC	
3231 CGGACGTACTGTTCGGAGTCCTCA	·
3232 GTATACCACCATACCGGGACCGCA	
3233 CTGCTGCGAAGGGAGACACGTCCG	
30 3234 AAAGAACGTGGAGGATCCATTGGG	
3235 TCGATTGGCTGATCTCCAGCCTAC	
3236 CTGCGAATTCGAAGGTTGTTACGG	
3237 GCAGGAGGTCAGGAGTACGTGAG	
3238 ACCAACGGAAGGGAACTTAAGGGC	
35 3239 ATGATGGAGGCTGCGTTTTGGTCG	
3240 AAGCCCAATTTACCGCTCCGAATA	
3241 CTAGGCTGTGCGGGACTAGAGGTG	
3242 TGCCATCTGACCTGGTGATTGCGT	
3243 GTCGTCAACTTTTATCGCGCACCT	
40 3244 TTGAATGTAGGCTGCAAGCGC	
3245 CACCTATCGTGGCCTCTGTCCCAG	
3246 GGAGCGCCAGTATAATGAACGTG	

3247 AATGGGGTTCTTAGGGTGCCGTA 3248 GCCATGAGGAAAAGCACTGGGTCT 3249 TCCGGGTCGTACTGTGTATGATCG 3250 GGAGGTTATGTGCTGCTGATGACG 3251 CTTCAGCCGTGAATGGTGTGAAAG 3252 CTTCAAGGGCTTCGTCTGCTCGTCG 3253 TCAGGGGTCACGCATTGGGTTCA 3254 ACGGTCCTCGCATAGTGGTTCA 3255 AGGCGTAAACGCCGGTCATAGTCT 3255 AGGCGTAAACGCCGGTCATAGTCT 3256 GATCTGGTCGCTAATGTCT 10 3256 GATCTGGTGCGCATAATGACCACA 3257 CCCATCGATGATTATTTCCGACGCA 3258 TGTTTCTCCGCATAACGCCGAT 3259 CGGACCCGGATCAACACACACA 3250 AGCCAGACATAACACCGCAT 3250 AGCCAGACATGAACCACGA 3250 AGCCAGAGCATGAACTGGAGCGC 3261 TGGACTTACATCGGAACGCAGGG 3262 TCGACCACCGTACACAACACACACACACACACACACACAC	_		
3249 TCCGGGTCGTACTGTGTATGATCG		3247	AATGGGGTTCTTAGGGTGCCGTA
3250 GGAGGTTATGTGCTGATGACG		3248	GCCATGAGGAAAAGCACTGGGTCT
5 3251 CTTCAGCCGTGAATGGTGAAAG 3252 CTTCAAGGGCTTCGTCTCGTG 3253 TCAGGGGTCACGCATTGGGTTTCA 3254 ACGGTCCTCGCATAATGGACCACT 3255 AGGCGTAAACGCCGGTCATAGTCT 10 3256 GATCTGGTCGGAAAACAGGACGC 3257 CCCATCGATGTTATTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACCGCAT 3259 CGGACCCGGATCAGACTAGGACGCAT 3260 AGCCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGACCGAGGG 3262 TCGACCACCGGTACGATCAATCA 3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATTCGCCTCGCTACA 3266 GCTGTACCACCTACTGAGGCACAA 3267 ATTTCCTCGCAATCGCTCGGATTAAA 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCACACTGTGGATGAGAAAAAAAAAAAAAAAA	[3249	TCCGGGTCGTACTGTGTATGATCG
3252 CTTCAAGGGCTTCGTCGTCGTG		3250	GGAGGTTATGTGCTGCTGATGACG
3253 TCAGGGGTCACGCATTGGGTTTCA	5	3251	CTTCAGCCGTGAATGGTGTGAAAG
3254 ACGGTCCTCGCATAATGGACCACT 3255 AGGCGTAAACGCCGGTCATAGTCT 3256 GATCTGGTCGGAAAACAGGAGCGC 3257 CCCATCGATGTTTTTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACCGCAT 3259 CGGACCCGGATCAGTACCGCAT 3259 CGGACCCGGATCGACAAGTACCGCAT 3259 CGGACCCGGATCGACAAGTACCGCAT 3260 AGCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAATCA 3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGGACGTTTA 3269 AGGGTTGTCGAAACATGGGGTGA 3270 ACGCGACCTGCTGTCACGGAGATGAA 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGGATTTGCTCACGA 3274 GGCGTTCCACTGTTCACTCTTCCCG 3274 GGCGTTCCACTGTTTACTCTCCCG 3275 CGCATCACGATCGTTAATTGGGTCT 3275 CGCATCACGATCGTTAATTGGGTCT 3276 GGGCATTAAGCACGACGCGGG 3278 GACCATGAGATGGTTTTCTTCCCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCTACCCG 3279 CGCGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3278 GACCATGAGATGGTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCTCCCGGTT 3282 AAATGCACAGCGGAACTGACCACACACGGGGACGACCACCACGGGGAATGCTTCTTCTCCCGGAACACCACCACACGCGG 3283 TATCGACCTGGAACACGACCGACCACACACGCGG 3283 TATCGACCTGGAACACGACCGACACACACACACACACACA		3252	CTTCAAGGGCTTCGTCTGCTCGTG
3255 AGGCGTAAACGCCGGTCATAGTCT 3256 GATCTGGTCGGAAAACAGGAGCGC 3257 CCCATCGATGTTATTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACGCAT 3259 CGGACCCGGATCAGTACGTCAC 3259 AGCCAGAGCATGACTAGGTCA 3260 AGCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGAACGGGGG 3262 TCGACCACCGGTACGATCAACAATCA 3263 GCTTGTGGAATTCCAACAACTACA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCCAACAACAACAACAACAACAACAACAACAACAACAA		3253	TCAGGGGTCACGCATTGGGTTTCA
10 3256 GATCTGGTCGGAAAACAGGAGCGC 3257 CCCATCGATGTTATTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACCGCAT 3259 CGGACCCGGATCGACAAGTAGTCA 3260 AGCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGAACGCAGG 3262 TCGACCACGGTACAGATACAACA 3263 GCTTGTGGAATTCCGACAGTACAACA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAACTCGACGAACAACAA 3265 GCCGGATGAATCACAACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGGCATGTCACACATCA 3269 AGGGTTGTCGAAACATCGCTTGGGTG 3269 AGGCTTGTCGAAACATGGCGTTCA 3270 ACCCGACCTGCTGCAGCATTGCACGATGGAGAACGAA 3271 CGCCTAACTAGGGGAGTGAACGAA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGGATTTGCTCACGA 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCTTATTGGGTCT 3276 GGCGTTCCACATGTAATTGGGTCT 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTCCCG 3279 CGCGTCCTCAGAGAATGTTG 3280 TGCTGTGACACTCTTCACCCG 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACAGATGGCTCCTACCCG 3281 GGCGAATGCATCACCACCACACA 3283 TATCGACCTGGAACACGACCACA 3283 TATCGACCTGGAACACGACCACACACACACACACACACAC		3254	ACGGTCCTCGCATAATGGACCACT
3257 CCCATCGATGTTATTTCCGACGCA		3255	AGGCGTAAACGCCGGTCATAGTCT
3258 TGTTTCTCCGCATCAGTACCGCAT 3259 CGGACCCGGATCGACAAGTAGTCA 3260 AGCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAATCA 3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCACCCCTACTGAGGCACAA 3266 GGTTGCAATTACCGCGGGATTAAA 3267 ATTTCCTCGCAATCGTCTGGTG 3268 GCTCCTACGCAATCGTCTGGGTG 3269 AGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGCACACGGTTCA 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATGTTAGATGGGGAG 3276 GGGCATTAAGCACCACCACGCGG 3278 GACCATGATGCTTTTTTTTCCC 3279 CGCGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGTTCCCCG 3281 GGCGAATGCTTTCCCCG 3281 GGCGAATGCTTTCCCCGAATCGTTACCCCG 3281 GGCGAATGCTTTCCCCCGAATCGTTACACCACACACACAC	10	3256	GATCTGGTCGGAAAACAGGAGCGC
3259 CGGACCCGGATCGACAAGTAGTCA		3257	CCCATCGATGTTATTTCCGACGCA
3260 AGCCAGAGCATGAACTGGAGCGTC		3258	TGTTTCTCCGCATCAGTACCGCAT
15 3261 TGGAGTTTACATCGGAACGCAGGG		3259	CGGACCCGGATCGACAAGTAGTCA
3262 TCGACCACCGGTACGATACAATCA		3260	AGCCAGAGCATGAACTGGAGCGTC
3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGGATGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATCGTTACCCG 3279 CGCGGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATCGTTCACCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	15	3261	TGGAGTTTACATCGGAACGCAGGG
3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGCAGCGTGGTG CGCCTAACTAGGGGAGTGAACGGA 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACTATTCACTCTTCCCG 3274 GGCGTTCCACGATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGAG 3276 GGGCATTAAGCACCACTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACCACCAC 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAAATCGCCGGAAGATC		3262	TCGACCACCGGTACGATACAATCA
3265 GCCGGATGAATCTGCCTCGCTACA		3263	GCTTGTGGAATTCCGACGGTTCCA
3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGCACGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3274 GGCGTCATCACTCTTCCCG 3274 GGCGTCACTGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTCAACCGTAGTGGCTTCGGCA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAAGATC		3264	CACATCCACCCTACTGAGGCACAA
3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3265	GCCGGATGAATCTGCCTCGCTACA
3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 25 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	20	3266	GGTTGCAATTACGCCGGGATTAAA
3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACCACGCGG 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAAATCGCCGGAAGATC	·	3267	ATTTCCTCGCAAATCGTCTGGGTG
3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3268	GCTCCTACGCCATGTGCACGTTTA
3271 CGCCTAACTAGGGGAGTGAACGGA		3269	AGGGTTGTCGAAACATGGGGGTGA
3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3270	ACGCGACCTGCTGTCAGCGTGGTG
3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	25	3271	CGCCTAACTAGGGGAGTGAACGGA
3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTAGGCCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	Ì	3272	GTTGACCTCCGGATTTGCTCACGA
3275 CGCATCACGATCGTTAGGAGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 35 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3273	TACCTCCGTCATTCACTCTTCCCG
3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 35 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3274	GGCGTTCCACATGTAATTGGGTCT
3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 35 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3275	CGCATCACGATCGTTAGGAGGGAG
3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	30	3276	GGGCATTAAGCACGCACTTCGTCA
3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 35 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3277	TTTCCATAATTCGACACCACGCGG
3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTAGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3278	GACCATGAGATGCTTTTCTTGCGC
3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3279	CGCGGTCGTCCTCAGAGAATGTTG
3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3280	TGCTGTGACGATGGCTCCTACCCG
3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	35	3281	GGCGAATGCTTCTTCGCATCAAGT
3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3282	AAATGCACAGCGGAACTGACCACA
3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3283	TATCGACCTGGAACACGATCGGTT
40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3284	CATTGAAGTCATGAAGCCTGGTGG
3287 GGATTGAAAAATCGCCGGAAGATC		3285	CTTTCAACCGTAGTGGCTTGGGCA
	40	3286	CCGGTAAGGTCGAATTGGAGCCTA
3288 TGAAATTGTGAGGGAGCCTTAGCG		3287	GGATTGAAAAATCGCCGGAAGATC
		3288	TGAAATTGTGAGGGAGCCTTAGCG

Г	2000	A COORDON TO COMPANY TO COMPANY
ļ.	3289	AGCGGGATCCCAGAGTTTCGAAAA
	3290	CGAGTGTCACTGGTCGGTTGCTCA
	3291	GCAGCATCCGTTCCCCTATAGTGG
j	3292	GTATTCCTGACCGGCTGAGTGTCG
5	3293	GCAGCGTATGGGGTTAGCCAATGA
	3294	CGCCCTGGTGGAGTTGTATGATGA
	3295	AGGTAGACTGCCCGCGGCAGAGCA
	3296	ATGCGTGAGGAACTGACTTCGGAC
	3297	ACGGGAGAGGACAŢGCATTTTCAA
10	3298	ATTCATGCAGGAAGTCCGAGGGAA
	3299	AGCTCTCCGAAGTAGGGCGGTA
	3300	TGGCCCACATGATTGGAGCTCCAA
	3301	GCCCTTTGCTTGCATTGATTGATC
	3302	AGGAGATTCTTCGGCTCATCTCGC
15	3303	GCAGCTCCGCCAACGAACTTATAG
	3304	TGGGTCAGCTTCGGCCAGGCTGAT
	3305	ACGCTCAGCGTGCGCTAGATACGA
	3306	GCAACGAGAGCGAACGGTTAACTC
	3307	GAACACAAACAGAGGTCGTCAGCG
20	3308	CGTGCGTTAGCGTCGGCGTATGTT
	3309	GTGCTAGCCGAAAGTAGCGTGCGA
	3310	CGCGGAGGTTTGCAAGTTGTTAAC
	3311	TACTGCCCGGCCTGAAATGACTTA
•	3312	CATGCGCACATGAGGGTCACCTTT
25	3313	CTCGGGTTCTGAAAGCGATGCTTC
	3314	GGCACACGAAGGCTGATGATA
	3315	GGAGGCCGAGTAACCTTGAGGGTC
	3316	ATTCCTATCGCGCGTGCTTCTAGC
	3317	TTGCCGGTGTGTTCGTGAGCTGTT
30	3318	TTATGGGAATCTACAAAGGGCCGG
	3319	GGGTGATCCAAAATCCACGGAGGC
	3320	GCGAGATGAGCAAATTGTATCCCG
	3321	CCTGCACACATCATGTCTCAATGC
	3322	GGCAGCGTAGGGATTTCCTAGGGG
35	3323	AGAGATTGCTCCTATGTCGGCAGC
	3324	CCAATACCCTGGTGACCACTCCAA
	3325	GACGTCTGTTATGTCGTCGCAAGG
	3326	CCACAACGTCGAAATGACCTACCA
	3327	CTTGGTGGCATGCATGCCTTGCCC
40	3328	TACGTTCGCCCGACGTGGAATAAA
• -	3329	GGAAGAGAAACCGACAGTCGCGA
	3330	GACGAACAAGAATTTGGGGCAACC

[3331	CGTGCCGCGAGTTCATGGTGCTA
	3332	AAGAGAAACCCTTTCCGGAGCTCA
	3333	TTTTAAATCTGCCGCCCTTCCATG
	3334	TCTGAAGCAATTTGGCCTCCTCAA
5	3335	GATGCGCAAGAGGGTATTATGGGC
	3336	GTGAAAATCTCGCAACTTCCTGGC
	3337	ACGGGAAGCGGTGAATTGTTGGTA
	3338	GCCCTACTATTGCCTTGGCAATGA
	3339	GTAAATGGCAGGAAGCGGCTCTCG
10	3340	AGGTGCCAAATAGTGGACTGCGGT
[3341	TCGGATGGTAGGAGGCGAGATCGG
	3342	GAGGTGAAGGAACAGCGACGCTAA
	3343	ACCGTCGTTACCGCTCTGGTGTCG
	3344	TTCCAATGTCCGACATGCTATGCC
15	3345	CGGCTTTATAGGTCCAACATGGCG
	3346	CCGGCCTGGAAAGCAGAGTTATTG
	3347	TTTATCGTTCAACGCTCACGTCCC
	3348	AGACCCGCTGAACGGAGCTTGGAT
	3349	ATCCATCAGGAGAAAGCTGGCTCA
20	3350	TTGCCAATGCGTAAATCGGTTCTC
	3351	GCTTGGCAGAAGGCGTACACTAGG
	3352	AGGCTCCAATGCTTTAGCCGCAAA
	3353	GATACTAGGAGCGAGCCCCTTTGG
	3354	GTCGTGTGCAGCCGCATATGGAGG
25	3355	TACCCCTGTTGCGGATAGATGTCG
	3356	TAGGGTAACAGAATGAGGGGCGCT
	3357	ATCGTGTCGGGGATCGAATTTGAG
	3358	ATCTCTCGTGCGGTCTTGCAGAAG
	3359	AGAAGCCACATGTTAGTGCGGGAG
30	3360	ATCTGCGTTAACTGTCCCGACTGG
	3361	CGCTCACAACGAGCTTACTCATGG
	3362	TCTACGCTACGATCCGTTGCATCA
	3363	TTTAACACCGAAATGGGAGCGTCC
	3364	ACAGGGCGTAGTAGGCCGCTTTCC
35	3365	GTCGACCGTGTTTGTGGGGGATAT
	3366	AGAAGACCTTGGCAATCCGAGTCA
	3367	TTGGGTGCTTAAAATGCGGTCTGA
	3368	AGCGAAGTCGTATTGACGTGCGGT
	3369	ACTTTCAGCTCCCAGTAGCACGCA
40	3370	GCGCATGGTGAGTCCGTATTGCCG
	3371	GGGTCGTGTCAGAGGACAAACACC
	3372	ACAAGAGGACCTCCGGGTGAAAAT

F	0070	TACCOCCACCTATCCCCCTCACT
ŀ	3373	TAGCGGGGACCTATCCGCCTCAGT
}	3374	GCTCTATGCCATGTCCGTGGATTC
<u> </u>	3375	AGCTCATAATGCGCGTTGACCCCG
}	3376	ACAGTGGAAACGTTTCATGCCGAG
5	3377	GGTTTCGACGAAAAGGATGGTCGT
	3378	GCGGTACGTATTCTAACCCGACGG
	3379	GGTATTCGCCATGCTTGGTCTCTG
	3380	GAGCCTCTCCGATTCTGGCCCAGA
	3381	TGGAACGTAATACGAACGCCGAAC
10	3382	GGCAGAAGTGGAACTGAGCTCGAT
	3383	CGGGTAGGCCTTCAGGGTACAGGT
	3384	AGCGATCTTGGACGCCGGCACGAT
	3385	GACCAGGTTGGTACAACGCCTTGG
	3386	GATGTGCTACAGGACCGCCTACGC
15	3387	TGAGGCGCACTCATTAGGAGGTGT
	3388	CACCTTACATCCCGAATCCGCGTA
	3389	CCAAACATAAGGTGTGTCGGTCCA
	3390	GCGTTTGCTAATGGTTGCGATTGC
	3391	CCCTTGCCCTCAATCTGTATTGCA
20	3392	ATAGTCCCGTGGCGACTGTGATCC
	3393	GAAGTTCCCGGCCCGAGTAACATA
	3394	GGGAGCCACGACAGAGCTCCTAGG
	3395	CTGACTCTTACGAAGCGCACTCGC
	3396	AGGTATAGCGGGGCGTCTAGCAAA
25	3397	TAAGACGCATTGCTTGGACCATCC
·	3398	GCCTAGTAGGCCACGGCTTCATGC
	3399	CGTGCCCTAGCATACAACGTTGGG.
	3400	GGGAATGCGGCAGTCTGTCTACCT
	3401	GTTGAAATACTGGCCCCGCGGGAC
30	3402	CGGACAGGTGAACCCAGTCACCTT
	3403	CAACAGCCCGCTCCTTGGATATAA
	3404	TTAAAGGAATCAGGGGGACCCGCC
1	3405	CGGGTTGTAACGCTGTTGGACGAA
	3406	GGTACGCAGCGGGACCAATAGAAA
35	3407	ACTGCAAGCCTCTTAGTTCCTGCG
	3408	TCAATACCACCCAGAAACTGGGCG
	3409	GGCAGTTGACACTCATCGACCATC
	3410	TAGCACGGCCATAAGACGGTTGAA
	3411	TCCACAATGTCAGCTCACTGCAAA
40	3412	CAGGCGAGGGGTTTTACATCCTA
	3413	AGGGCACTCGAAGATCCGACGGC
	3414	CGCAATGCCTTTTGCTGTGGTAAT
	L 37 17	1000/ALOOCLITICOTOTOGIANI

	3415	AGAAACGCAGACGTGGCGTTTTGT
	3416	TGAGCACGAATGTCGAACAGTCAA
	3417	CTCGTTTCCATGGGGTAACCGACT
	3418	CCTCATAGCTACGGGTGGACGACG
5	3419	GTACGCCGTGTATCACCCCATTCA
	3420	ACCCATAGTTCGTCGATAGCGCGA
·	3421	TCTGCAGTGTTGCCCCTCCGACGC
•	3422	TGCACATGCAACTAATAGGTGCGC
	3423	CAGCGCAGTGCCTTACCAATATGA
10	3424	TTACGCGCCGAAAACACCTGAACA
	3425	CTCCCTCGCTTTATATAGGCGGCG
	3426	GTCGGACCCGAGAGTCCTGTTAA
	3427	ATCGACGAACAGGGCCTCCGGCTT
	3428	TGGTTTTTCACCTCCGTCCTCAAG
15	3429	GGAGGGGCCAACTCCTTGACTTG
	3430	TCCTGTCTCGGCCTTTGGGAACTT
	3431	CAAGCCATTACCCGCTAGCTGAAA
	3432	CGCAACCGACATTATATTTCGGCC
	3433	TTGAGGGCGACTGCAACACACAGG
20	3434	GCTCGAGTAACACGGTTGACCCGA
	3435	CAGCCCTAGCGCCACGGTAAAATC
	3436	GTCATTAGCGACTTACCCGCCGTA
	3437	CCCAGTGGCCGGCCCTAGATAATA
	3438	CATTCCGTATGCTACTCGCGAACA
25	3439	AAGTTTTAACGCTCAAGGGGGCCT
	3440	TTGGCGGTTTCGGTACAGGATCCT
	3441	TACTGCGATGATGGGGATTTGACA
	3442	CGGTGAGCGAAGATCATCCCCTTA
	3443	ATGCAAGTCACCGACCGGCACCTC
30	3444	CAAGTGCCGCAATTGGCCTTTTAT
	3445	CCCGTGGTGGATACCTGGGTAAGC
• •	3446	CCGTCAGGGTCTAAGGACCAGGGT
	3447	CTTTCCGTAGGCGGTGATTTCCAA
	3448	GCTGAAACTGAGATGGTATCCGGC
35	3449	CCAACGAGACAGCATGAAGCTCCT
	3450	ATAAGTTCGTGGGCCGGCAAGGTC
	3451	GTGGCCAGGCCATAACTGGTCACT
	3452	CGCTTAGCGCGAGACTCTGAGGGC
	3453	AAGAGCGGCGCCCTAGAACCCAAC
40	3454	CCACGGGAACGTCTACGAAATGAT
	3455	AGTCGTGTATCAGGTGCCGAGAGG
	3456	TGAAGCGGCTGGCGATAAGTAGAT

· ·		· · · · · · · · · · · · · · · · · · ·
	3457	CTGAGGACGTGCGGTTCATGCTGA
	3458	GAAGGCGTTCGGAAAGTTTTTCGT
	3459	AAGAAAACCACGGCTGAGACCTGA
	3460	TCAGCCGCTGTTGCAGGGAGAAAA
5	3461	TTCTGGAAATGGATCGGATAGGCA
	3462	GGGAAATGGTCTTGTTGGCGACCA
	3463	GGTGTCGAAGCCACGATGTATCCC
	3464	CCCCGACTCCCTTCGGGCATAAGT
•	3465	CCAAATGCGATAACGCAGCGTGAT
10	3466	GCTCGCCAACGTACGAGGCTCAGA
	3467	GGCTTATCAGTCGCCACCAGAGAC
	3468	GATGTGACCCATCCATTCCTGGGA
	3469	TCCTGGTTTGGTATCCCCGAATCA
	3470	CGCCCGTATATAGCCGGTAAGAG
15	3471	GGTTCACTGTAACGATCGCGGCAC
	3472	CCGGTATAGAGGAAACCCGGACGT
	3473	CCTCCCAGGAGATCCTACGCAATT
	3474	TGAAACTCGTCACGCTCCTTGCAG
	3475	TGTTGCGTAACCACCAACCCTCCT
20	3476	GCAGCGCAACCTTGTACTTCTTGC
	3477	CGCAAGTGGGAGCCCAAGAGTTTG
	3478	TGCAGGGTAACGAGGGTAAGTGGG
	3479	GAACTGTAGGGTCTCGCCGGTCAA
	3480	CGAGATGTCCAGCAGCGGTTGTTA
25	3481	TTGTGGTTGCTCCGGGTAAAAGGA
	3482	TCTACGCATCCCTGGGTAATTTGC
• •	3483	AGAAGCTGCGAGTCACCGTGACTC
	3484	GGGCGGTGTTGAAGGGCTCTATAC
	3485	TTCCACAACGGGTGAGTAGGACGG
30	3486	GCAGCCAGACTGGCCTACCGATCG
	3487	CCCGCCGAGTTGGTTGGCTAAACA
• •	3488	GCTAGGGTGGTCCTTTCAGTGGGT
	3489	CGTGACTCTCCTTCTTTTCGGCAG
	3490	ACTGCCCATGGGCCACTAGGCTTG
35	3491	GGCGTACGAAAAGGCCAATCACTT
	3492	ACTTGTGGTCGACAACGATGTGGC
	3493	CCACCACCCTGACCCGAAAAAAT
• • • •	3494	TGTTGTGCATCACAACATCAGGCC
	3495	GACCACCGGTAAAGAGGGATGGT
40	3496	GCCACCCTGAAGCACTCGTTATG
	3497	GCTACCAGTTGGAAGACGGGTTGC
	3498	CAACGTTCGCATCCCACAGTTGTA

WO 02/16649

	3499	TATCGGGTCGTAATGGGCAAAGAG
	3500	TCGGTGTGATTGATGGATAACGCC
	3501	AGAGGTCGAGAGCCCGATAACCTG
	3502	GTAGTTAGGCGCGGCCCTGGCTCA
5	3503	TGATTCTCGATGTCACGCCGAACA
	3504	GATGGTTCGCCCTTGTGTCGCAGC
	3505	GCGCAGTTACGTCCATTGTCCCAC
	3506	CCGCCTGATTTAACAAGCCAAGGT
	3507	GACCAAGTGCAGGCGTCAGTCTGG
10	3508	CAAAAAAGCAATTCGCCCTGGACG
	3509	ACTGACCTTCTCGCTCTCCGTG
	3510	CTCGCCGTGTATCGCTAACCCTCT
	3511	CGGCATTTTTCACATGCTGTGTTG
	3512	ACGTAACGCCTGATGGGGTACACC
15	3513	CCCTGTGACCGTGGGAGACACACA
	3514	GCGCATACTCTGGGTAGTCGGCAC
	3515	TCCCCTGCCCATCTCTGAGTTAGG
	3516	TGCAGCGCTAACATAGCGGGTGCA
	3517	GCAGCGTCCACAGGAAACCGCAGC
20	3518	AGCGTACCATCGATGGGGATTCGA
	3519	TGGCCTCGCGATCACCACGATGTT
	3520	TTGGTAATCACTCGGCCAGCGCTA
	3521	CGTTAGTAACGATCGTCGGTGCAA
	3522	AATCGCAGATGGTTCGTGGCACAA
25	3523	TAAAGCGTCTAGAGGCCGGCTGTG
	3524	TGGCTAAACGAAACTGGGAATCGG
	3525	CCTATGCAGCCACTGGTGTCCTTC
	3526	ACGTGAGATCCAAGGGTGGCTCCT
	3527	TAAACGCCAAAAACCACGAGCAGG
30	3528	CCATGGAATGGAAGCATTGGACG
	3529	ATGATCCCTGGGCTTAGTCGCCTT
* **	3530	ACCGTATGCCTCAACAGAGTGGCT
	3531	CCACCAAATCGCATAAGCTCCACC
	3532	TCTCAGTTTAATCCCGTGATCGGG
35	3533	AAAGGACTACGCCCATCGCTCACA
	3534	CGGGAAGAAGGCCTAAAGCTTTG
	3535	TTTTGGACATTTTTCTGCATCGGG
	3536	GCAGGGGTCCTTTTCCACGGTAAT
Ć	3537	TCAAATAGGGCGTAGGCAAGCTTG
40	3538	ATGAAGTTCCATCCTGTCCGGGCC
	3539	AGAATGATTAAGCGCAAACGCAGC
	3540	GGCAGCAGAGAGTGGCCTAGTTCC

	3541	GTGCAGAGCCGGCCTTATGTAAGA
Ī	3542	CATACGGGTATGGCGATGGTTACC
	3543	AAGAACAGGAACCGCTGACAAGGA
Ī	3544	GATGTGTGCGCGTCCTTAAGGGC
5	3545	TATCCATGTAAGGCTCCTGAGGCG
	3546	AGTTTTTCCTAAACGATCCGCGC
[3547	CTGACCGGACGACCCAGAATGTAT
	3548	GCATGTGGTCAAAGCTTGTCGATG
	3549	CAGAAGTGCATGGGTTCGGATGAA
10	3550	ATAGCGTACCGGAGGGCTTACCAG
	3551	AAGACTTGGCGCTTGTGGGTAAGG
	3552	TATTGTGGCGCCTCACGCGCAATC
	3553	TCGGCCATGGGATTTCACAAAGTC
	3554	TGGTCGGTGCCGTTTCACCTTTAC
15	3555	CATTTCCGCGGGCAGGAGAAAGAT
	3556	CCTGAGTCGCGATACGACTCAACA
	3557	AGGTGTACCGCCGTCGGGTTATAC
	3558	TCCTTGTACGAGCCAAGCCTGGGT
	3559	AGAAGCCCGAAGTCCCGTGTAGAC
20	3560	AGAGGGCCCTTAGGCAAATACGT
	3561	ATGCGGCAACATCCGATCGTAGAT
	3562	CGCAGTGGGCAGTAAAGACAGAGG
	3563	TCGGGTAGTGCAAACCTCAATCGT
	3564	TCTTCACTGTGGTGGACTTGGGG
25	3565	GTCCCAGGGCGATTGGTACTAAGG
	3566	GGTAGATCCAGCCATTGGGACCTC
	3567	GGGGATTGTGCGCTCCAAGGACCC
	3568	CTCTGTCCTAGACTGAGCCGTCGC
	3569	CGATGAACAAATGAGTGCGTGTGA
30	3570	GAGGTCGAGCTGCCTGAGAGGAGT
	3571	CAGTGGGACTGCTAACGTGGGTCA
· • ·	3572	GAGTCGCTCGAGGAACTACGGCCG
	3573	CGGCTACGGAATGATGCAGGATGG
	3574	TCGCTCTCGCTATGGCAATTCTGG
35	3575	TGAATCACGGCCCTCTCTGGTACA
	3576	CAGGTGCCATCGAGCGCTTTAGTG
	3577	TGGGAAAATCGAAATCGTCAGGAA
•	3578	CGGGGAGGAGATGTTCCAGCGGT
	3579	TGTGGACCGGTGGTCACGTCTTTT
40	3580	GCACGTCTCGCAATCTGCGATCAG
	3581	CCTAATGCCGTATCAGCGACCAGA
	3582	ATAACGCGGGTGAAGGATTCGTCT

F	3583	TTCAACCTTGTGGGGCGTCCCACT
Ţ	3584	CTACTTCCAAATCTCCGCGTCGGT
	3585	AGCGAACGCACTGCCAGTGGATAC
	3586	GAAAGTGGCGGCGAGGAAAAACAC
5	3587	CAGGGGGCGCATATTTGACAGATT
·	3588	TAACTCGCTGCCCTCAACTCAGGG
Ī	3589	TCGATTGTTGGGTCTACCGTGGTT
	3590	GCTGGGATTAGTGCCGGGTAACCG
·	3591	TGGTTGCAACATCGCGCTATTACG
10	3592	GGGCGTGCTTTGAGCTGAAGCGTG
	3593	ATGTTGAGGTTAGTCCCCGACCGT
	3594	GACCGCGTAGTTAGCAATGTTGCG
	3595	CCAACCCACTGACATCGATGGAAA
	3596	TGCTGCTATTGTCGCACCGATATG
15	3597	TACAAAGAATCGGGACCTGCGACT
	3598	GCGCCTCATCCCGCATCGAATTAT
	3599	CGAGGGATTTTGACCAGTGGATGA
	3600	TGATAGGCATACGCGGAGAAGTCC
	3601	CGAGTTGTCAACGGCCATCGAATT
20	3602	CCCGCACCGGATTATTAACGAACC
	3603	TCGTCCTTGGGTCCCATGTAGAAA
	3604	TCACGAAGCATCTTTGCGACGTAA
	3605	TGTAAGTTGCCAACTTTGCGGGTT
	3606	GCACACCACCGGCAGATATCAAGA
25	3607	GTGTGGTTTGTGAATGCGTGGTGA
	3608	CAGCTGCGGCCCCACCTTCGATAC
	3609	CAGCGAAGGACGACTACTGTGCAC
	3610	CAGCAGTTCGTTGCTTCCTGATTG
	3611	AAACAATGGAGTGTACCTCCCGCA
30	3612	ACTATACGAGCATCATGAGCCGGC
	3613	CTTGATAAGGTGGGATTCCGGGCA
	3614	TTTAGTAGAACGCTGCGCGCGGTG
	3615	AACTGACGTTGAATAAAACCGGCG
	3616	GCTTTGTTCTACCGCGGATCATCA
35	3617	TGATATGCAGCGGCTCGGCCTTAT
	3618	CGGGAGTGCGTTTATGTCCATGAT
	3619	CAAATACCGGGAACGGATCGAAGC
•	3620	GATCAAGCCGAATGCTTTGCAAAG
	3621	AGAGAGGATGCGCTCCGGTTAGAG
40	3622	CTTAGTCAGCATACCCGCGGGCAG
	3623	GTGTCTCGGGGCGCAGGACCTGTA
	3624	AACGCTCCACTGCCGTGATTCACT

	3625	GATCGTTGAGTCATCCCGTGGAGT
	3626	CCTGGCCGGGTGCAATACTACAGT
·	3627	CGTAGCCCGAACGTAAGGGTCAGC
	3628	CTGTGGCTTCAAGAGGATCCGTTG
5	3629	CTTGGGTCGGTGTAATGTCCTCGA
	3630	GCCGTTGTGCGCTATTCTTACGGA
	3631	TCGCACGATGGCTAGAACGAGTAA
	3632	ATTTGTTGCAATGGGATGGCTCTG
	3633	CGAATATCCGCTCGAACCTGACAA
10	3634	AAGTGGCGTGCGTCATAGCGCGAC
	3635	TGATGTCCCTCCACACCGTGAACT
	3636	CAAATGAAGTCGGGGCCAATATTG
	3637	GATGCATAGCGTGATTCCGGTGTA
	3638	GTGACCGTAGAAGCTCACCAGGGC
15	3639	ATAAGGACATATTCGGCCTGGGGA
	3640	AGATCTCACAACCGGAACCGGACG
	3641	GTTGCGTTTGGGGGCGTCATACAA
	3642	TGTGAGGTTTTCCTAAGGCGAACG
	3643	CATCTTGGTTTGCGAACGAACTCA
20	3644	TTCCTGTCACAGATTCGTGGCCTT
	3645	AACTTACCGATCCCTGAACGTGCA
	3646	CCTATTCTGGACATGCGGCCACAT
	3647	GTCGATGGGGAGCTCCAGTTGCAT
	3648	CGACCGTGAGGGTCCATACGTAGA
25	3649	TCTCGTTTGCACGCAACTGGGCCA
	3650	ACTCCGCCGAATGAAGGAATAGCT
	3651	CCTCGACCTGGCGTGATGGAAGGC
	3652	TAACAGCCGTTTTGCGGTTCACAA
	3653	GCCTCCTGCAGTACGGTGTCTGTT
30	3654	GGCAGTCGGTCCCACTTAGTTCGA
	3655	TAATCCACGGCTTTGGTGGAAGTC
· • • ·	3656	CGGTGCAAGATCCTGGTTGTGTGA
	3657	TTTCACCACTACCTTAGGTCGGCG
	3658	CATCCCGTACCGGGAGGACAAGTC
35	3659	ACGAGGTAAAGGGATCCGTGCTGG
	3660	CTAATAGTTTGGCAGAGGGGCGCT
	3661	AGCATGGTAACCCTGAGCCAGCAG
•	3662	GGAATCCTTGTGGGAACAGCCGAT
	3663	CTGATGTGGGAAAGAGGGTGGGAC
40	3664	ACTITITGCAATCCCGGCGTTGTA
	3665	GCGATGACGTGACGAGTTCTCACC
	3666	CCAGGTATTGAGCCCCGCCATATA

ſ	3667	TTGGACGTCCTCCGAATATTGGCA
	3668	GGTAAGTGCGGGAAGTACGCTGAC CCGCCTGAACCGTCGTAGGGATTA
}	3669	
_	3670	CGTTTTTGAGTAAGGATTGGGCGA
5	3671	TGTGGTATTGAGGCATAGGTGGCA
ļ	3672	TCCGGAAGGAAGGCGCGATATGGC
ļ	3673	GTTGAGCGAATCGGACGGCTTTAC
	3674	TGAGTCTCCGAACGACAAGCGATC
	3675	AGTGAAGAGGGAGAGTCCAACCCG
10	3676	GTGAAGCCTGACGAATCCAACGTG
,	3677	GTGCAGGCCTGTATCCCCATGACT
	3678	GTGGGTTTCCTACACACCGGATGA
	3679	GCGCCGTCGACTCTCTTCAGCTGC
	3680	CTAGGCCTGCCATCACTGAGCAAT
15	3681	TTGGTGATGACTCATGGCCAGACC
	3682	TATCTCCCGCGGGGTATATTACCG
	3683	CCGAGGGACACGTATCCCTGTTCG
	3684	TATCCCGCAGCACGCATTCGATCT
	3685	TGATGATAGAGCAGGGTGCCGTCA
20	3686	GTAGGAGCACACATTCGGATTCGG
	3687	CCCTTACTACGCCCAGCCCTTTTG
	3688	GTACCAGGGGTGTGCTCCAAGGG
	3689	TGACCAGGCGGACCAGACGGTTTT
!	3690	CGTAAGCGGCGGTAGGTGTGCTAC
25	3691	CGCGGGAGGGATCAGCAGTTTTG
	3692	AAAGCGTATCCAGAAAGGCCATGG
	3693	AAGAAGAGACGCATGCTTGGACGT
	3694	TGGCCATTTGCGGGAGGTGGCTTA
	3695	AACGCCGAATTGAGGAGGCGGTTA
30	3696	GCCTCATTACGACATTGGCAGCAT
	3697	TCGAACGCGATTTTGGAAATGCCC
· • .	3698	AGGAATTCTAGCCGAAAGCCCTGC
	3699	TCCGCTGGTTGGGTGCTCTGGTTG
	3700	GTCGCGCTCCGTCCGATAGTATGA
35	3701	TGTGCAAGGACGGATGATTGCACT
	3702	GGACAAGCGGCAACCTGGGAGAAG
	3703	ATGCGGTGGCTACGGACTAATCCA
	3704	TGCACGCAGGTGGAAAGCAGGCTT
	3704	AGATTGTGGGAGTTGTCACGCTCC
40	3705	AACAGCAGTGAGGGCTGAAGCTTG
T ∪	3706	
		CTGCCTGTTTCCTTCACGCTCCAT
	3708	CCAATCCACTTGAGTCAACTTGCG

	3709	CATTCTACCGCCCAACTTTTGCAA
	3710	CGGAGAACCATGCTGAGCAGTCCA
	3711	GACTGTTCCTCCAGAAAGGCGCAT
	3712	AAATAATTGCTCCACGCGAAGCGC
5 .	3713	GGGCCTGGAAGACCAACCAAATAC
	3714	ACGACGCGAGCACGTAGATATCAA
	3715	TACGGGATCCTCGTGGCTACATCT
	3716	CAAAGTCTCCCCGACCGAGTTGAC
	3717	CCCGAGGCGAAGATCTCTAGGCAC
10	3718	CAAAATTCTCGCCACGAGACCCTA
	3719	CTGTGCGCATTCCAAACACATCAC
	3720	CATGGAAATGCCAGCTGCCTCCAT
	3721	CGCGAAACCACAGTCCTCGTCGGG
	3722	GTCCGCAGCTGTCCCGACATTGGT
15	3723	GTCTCATTGGGACGATCGTCTCGA
	3724	AGAGCGTTGCATGCTTGGCTGCGG
	3725	CTTCCGCCCTGTTCGCAATGAGG
	3726	TTGCGGTTCATACCGAAGCCAACA
	3727	TGCGCGAGAATCGTTCGTACGACG
20	3728	TGTATACCGTAGGCGTCCGTGGGG
	3729	TGCGGGGTATAGGGCTTCCTTATG
•	3730	ATCCCAGCCCAAGCAGCAGACGCA
	3731	GTTCTTGGCCACAGGAATGGCCGT
	3732	CACATGGGCATTAATTGCTACGGC
25	3733	ATAAGTCGGTCTGCCTGGCAATGA
	3734	ACCTCGAGGCTGAGAACGTCAAAA
	3735	GCGGAACGCTAGCCCCTTATGGTT
	3736	TGCGAGGCTCCTGGAGCAATCCAA
	3737	ACAGAAGGGCGATCGCTCTGGCTG
30	3738	GGTTGGCAAGGGGCCAGCTCCTAC
	3739	ATCGCTTCGCTCTATGGAGTCCGA
	3740	CGTCCCGATAGGCCGCCTTGATCT
	3741	GAATTCTGAGGCGGCATTGTCCAC
	3742	CAGCCCATCAGTATCGGCTGCGTA
35	3743	TGGAGAGTCGGATCCGTAGCGTCA
	3744	TGGATCCAGTGCGAGTCTTGGCCG
	3745	ATGCGGTCGTGCTTGGAATCCTCT
•	3746	ATCGCACTGCCGCGTCATAACAGC
	3747	CACGTCTCCGCCGGAACACAACTG
40	3748	AAGACAGTGGGTGAACGCACGGTA
	3749	ACGCGCATAGGTGGTCAAACATCG
	3750	CCCGGCGGTAGAAATTGACAACCT

	3751	AAGGGATACTCAGGCGCCTGTTTT
	3752	CTTCTCTTGTGCGGGCTCCCGT
	3753	TTGAAGGACCTGCCAAATGGCGA
	3754	ACGCATGACGACGTCCAGTACGGG
5	3755	AAATGGATGTTACGCCGGCAAGCT
	3756	TCGTGCGAGGCCTCTTCGGCATAC
	3757	TACATCGCGTCGAGTCATTCTTGG
	3758	TCACACCACATAATGGCACCACGT
	3759	CAGGTTCACGGTTGAGGAGTGCGA
0	3760	GGTGTTACACCGCTTCGTTGTCCT
	3761	ACAATAATAAGGGAGCATCGGCCG
	3762	TCGGGTCCTATGATCCAGTCCCAA
	3763	ACCCATTCCTCCTGCGGCGATCAA
	3764	TCGCAGGTGTAGACGGACGAAAAG
5	3765	CTCTTGCGTAGTAATCGGCCCGCA
	3766	TTCCGTGTCACGCGAGCCTGCTTT
	3767	ACTCTAAGTAGGGCTGGGTCGCGA
	3768	TTGGTGGCTGTAAAGGTGCTTGGC
	3769	CCGAATTACCCATTCATACGGCAC
:0	3770	GATGGATAGGTTCGCTTCCCGCAA
	3771	ATGACGGAAAGAATGTGATTCGGC
	3772	ACGGTTCGGCTTCTGTTAGTCACG
	3773	GGATCCCGTAATTGAGGCGGCCAC
	3774	ACCCGTTAAGTCGACGCCTGCGGG
25	3775	TTCGATGTGAACGGTTGGCCAACC
	3776	TCGATCGGGAGTCTACCGCCATGT
	3777	AGCAACGAGTTTATGAGCGCAGGA
	3778	TGGGAAACGAATGGGTGGCGGTTG
	3779	TCTGTGTTGCCCCACCTACAGCAA
30	3780	CCTGCATTGGATGTACCCGCGGGT
	3781	GAACGAGGTCCGGGTTTGCATCTC
· -	3782	GGCGCCGAAGCAACGACCATAT
	3783	AGGCATCACGCATCAGGTACTTGG
	3784	TTTACAAAAGCATCGGCCCTGGGA
35	3785	CCCAGGCGGTCAACCAATTGTAGA
	3786	CTGCAGCACGTGCCTGAAATTCGT
	3787	CCGTTTTGCTCCAGCTATGAGCGT
·	3788	ATTTGTGCCGCATTGGGGTTATTC
	3789	TAAGCAGAAAGCCGCAACTCCGGT
40	3790	GCGACTGATATAGTGCTCGGACCG
	3791	AACTCTATTCTGACACCGCCCGAA
	3792	GTGCGCTCCAAGAAGAAACACACC

	3793	ACGACCAGCGGTCTGAGATCTAGG
	3794	ATCCCCTCCTCAGGTCGACGCTGT
	3795	TGACATACGCGTCACCCAGCACAG
	3796	TAACCGCGACTCTGACTCCCTTGT
5	3797	AAGCGGTTTGATCTGTGCAATCGG
	3798	CTGTCAACTCGGTCGTCCGCACAG
	3799	AACTTTGCCGTTTAGGGCAGGTGA
	3800	GCTGAAGAACTCCCAATTCGCTGG
	3801	AAGATGCGATGGGTCAGTCCTCGT
0	3802	ACCCACCTCTGAAGGTTGAGACGG
	3803	AGGCTACGCACCCTCGAGAGTGAC
	3804	CGGTCACGAACGTGGTCCAGTTTT
	3805	CAAAGCAACGCGCGCCACTTAAAA
•	3806	ACGAGGAAGGAACTGATCCCCAGT
15	3807	TTCGCCACTATGGGCTCAGCATTA
	3808	CGCTCGGCAGAGGAGTCCACTCAC
	3809	TGTTGGCACGACTCCGTCCATGAA
	3810	TGCCTACCCGGTGATTGCGACATC
	3811	CAACGGTCGGATCTGAGGAGATCT
20	3812	CGTTACGAAGCGAAGTTCCCGAGT
	3813	AGTGACGCCAAAGTCGCCATTCT
	3814	ATTCAGCTGGGCATAGGCGATGGG
	3815	TAGGACAGCGTGGCTACACA
	3816	AATTTGTCCAGCTCTGCACGACCG
25	3817	TGAGTGGGCTGTGATCCGTTCCAC
	3818	TGTGGTGACACGCCAGAGCTGGTT
	3819	CCTCACAGGTGTGAGAGGAGCCGC
	3820	AGTCCCGCTTCTGCAAATTCCGAA
	3821	TCTGCGCCTACCCGTAAGCTGAAC
30	3822	GCCTCCTGAGTTGATTCATGCATG
	3823	CCTAACGGTTGGTTCGCCGTTTTT
***·	3824	TCGCAAACCCACGAATGAGTCCCG
	3825	AGTGCTAAGGTGGGCGAGCAGAGG
	3826	CTGGAGACTGCGATGGCAGGGTTG
35	3827	AAGGGATAGTGATGGCGATGGACG
	3828	CTATCCACGGTGATGTCCGCCATT
	3829	CGGACTAGAACTTGCCAAGCACGA
	3830	AGAGCCGGATGGCATTGCATGAAC
	3831	AGTTGGCTAGCGGTCGAATGAGCA
40	3832	GCATGCGGTCACCGCTTCATCTAA
	3833	GTGAGATTCCAAGCTCGCCGGTGA
	3834	GCCATCCACCGCACAATGAACGCT

	3835	GGGTGGTCCTCACTGTGGTTGGCA
	3836	AGGCGGCTACGACGAGCGTCGTTA
	3837	GCCAAGTGATCGTGCTTCCGCGTA
	3838	TAGCCGTTTATTCCCTTGATGCGC
5	3839	ACTATGTGGGACGAGCGTCTGCGA
	3840	GCACCTTCGAGAACCCATCAGATG
	3841	ATTTTCTGTACCGATGCTCACCGG
Ţ	3842	CACTGGAGCAATAAATGGCCAGGC
F	3843	GGGTTCACGTATCTCATGGATGCG
0	3844	GCACGCTCCCAGTATGCTCCTTCA
Γ	3845	GAAGGGACTTAGTCCGCGGCCCTC
	3846	TTCGTTACCCTAAGGGCGTTTGCA
,	3847	GTTCCAGGTCACGACGAGCTGCGC
Γ	3848	TCGTACGTAGTCACACCGCGACTT
15	3849	GGGCTGGAGTAGCGGTCTGCTATG
	3850	TAGCGGCACTCGTGTTGCGAGTGG
Ţ	3851	ACGTTGGGTTCTGACACGGCGATT
Ī	3852	TGTTGCTGCGCCCCAAGTGATCTT
Ī	3853	CCCAGGTCGTTACGGTGCATCACA
20	3854	CCTAGTGCACAGGCAAATCGGGCT
[3855	GGCGTTCTCCAAGATAAGGCCAAA
	3856	ACTTCGATACCGTGGACCTCGCCA
	3857	CTGAGCGCGCTAAACGTCCCTAGC
	3858	ATCAGATAAACGATCCGACGCGTC
25	3859	CATGGCTGAATITGTCGACCCTCT
	3860	CGAAAGCGAGCAAATAGAATCCCC
	3861	AGATTGCCCTGCGGCAGGTTGAAT
	3862	AAGAGGCGGCCGATCAGTTAGAAA
	3863	CTGATGCCTGTAAGGAGGCGCTCG
30	3864	AATCGCGAGGTTCGGCAGACAAAG
	3865	CGTTGGGACACGGACCGTTCACTC
	3866	AGATGTGTGCACTCGCGGTCATTT
	3867	CAACTCGAGTGGCGGTAACATCTG
	3868	ACCAAGGTTGCGATTACGGGAAGC
35	3869	CGAAGCGGTAGACGGCTCGCGTTA
	3870	TCTCGCGAACAGGAGGGAAGGCGT
	3871	GTCCCGATTTGCGCTGTGAGGAAA
	3872	TACCACGCGTCGGCACGGAAATGG
	3873	AAATGCTACCCGATTGCGCGGGAT
40	3874	TCGATTCAGGTTTGTGCTGCGGAG
	3875	CCATCTCATCCCACTATGGCATGC
	3876	CTGGCCCGTGTTTGGTTGAGTCGA

	3877	GACACACGTTGCAGGGCTTCCC
	3878	TCGAATCGAGTCGATCGTGAAGGT
	3879	GAAAGCACTCGATCGCGTTGGATT
L	3880	AATTACGCGAACATGGGGCGTCAA
5	3881	GTGCTAACACTGTGGTCGTTCCCA
	3882	GGTAAGCGCCAGCCAGGAGTTGTC
	3883	GGCGATCGTTCAGGAATCGCGTCA
	3884	CTGGCTAGACCTCCGACACAGGCT
	3885	CGGGTTAAACGCCAACTGGCCTAG
0 [3886	ATCGCAGCCTGGCCGCCTAGTTTT
	3887	GGCGTAGCCTAGCAAATTATGCCA
	3888	ATGACGCGACGAGACAATACGGC
	3889	GTTGCATCACGAAAATGCCGTCTT
	3890	GAGTCATGCGTTCCTCGCTTTACC
5	3891	TCTGAACCGGTTATCCCCAACCTC
	3892	TGCCTCTGGTAGGCGCCCAGTTAC
	3893	CTGACGGTTTTCATTCGGCGTGCC
	3894	TGAACACGAGCAACACTCCAACGC
	3895	CGGCGCGAAAGACTTGAACTTG
!0	3896	GCTACGAGTACCCGTCGGAAACGC
1	3897	ATACCCAACAGCATGGAGCGACCA
	3898	ATCGCATCGCATCGTATTCACGGG
	3899	CGGCCTAGAGGTGCGAAAGCTATC
•	3900	TAACGCTTTTCCGAGGCCGATTCT
25	3901	TCTGTCCTAGCACGCCGACCTGCT
	3902	CTCATCGTTCAGTCGGTCGTA
	3903	TCGTCGAGCAGATAGCGGGGTAGG
	3904	TCGACCACAGTCAGGACACTACCG
	3905	TGCGATTCTATGATGTCCGAACGC
30	3906	CAAATGCAATGGCAAGCACTCACC
	3907	TCTAATCCATCGTTTTTTGGGCGA
r - c on-	3908	TCTCAACTCCGGTACGACGAAACA
	3909	CTGAAGAGGGTAGCCTGGGAGCGG
,	3910	GGCACAATTAAAACGCGCCGCGTT
35	3911	CAAAGGAGGTCAAAGGCCAGAAA
	3912	TTTGCGGCCGTGACGAGCAAAAAT
	3913	AGGAATGTGCGTGGCACCTGTGGA
•	3914	TCGTGATGACTGCCTTCCGAATCA
	3915	CACGTCGACATGTTTGGTACCTCG
40	3916	TTGCGGTAGTTTGGTTACCACCGT
	3917	GCAGTGGCGACAAATACAGCTGAG
	3918	ACGGCATGATGGAGGGATAAACGT

	391	9 T	GGGATAATCCGCAAGCGCATAGC
	392	20	CCTAGCTCTGCGTCTTTGCGC
	392	21 7	CCTGGAACTGCTGAAGGCGACTT
	392	22	CGAAGGCGCATGGTGTAGTCTCC
5	392	23	AACATTGTTCCCATCCCAGAGCAC
•	392	24	CCAGGCAAGAACAACCACGCGCT
	392	25	AAATCCACAGGCGCGCCAAAGCTG
	392	26	GCTCACCGCAGACTCCGCGCGATA
	39:	27	TAGGTGGCGAGAGAGCGCCCACAA
0	39	28	GGCGTTGGTGTCGGGACCATGA
J	39	29	TCTGAATGCTTCCGTGCTTTCGTG
	39	30	ACGCTCTGGACCTCGCTCATTCGA
	39	31	TCCTTTATGCGCAGCGCTCGTGTT
	39	32	TTGCCGTCCTGCAGCAGGTAGCTC
5	39	33	GGTCTAGTGGCAGCAAGGAGCGAT
·	39	34	GGTAACGCGACCAGCTTAGACACC
	39	935	GTGGCGATTGGCTTCCTATGCATA
	39	936	TCAAAATACGGCCAGGAAGGGCAA
	39	937	TGCCATGCAGTCAGGTACGATGGT
20	39	938	ACAGGTTACGTCGTGTTCCCGT
.0	3!	939	CTCATGACGAACGAGCGGTCTGCA
	3!	940	GTCGTGCGAGAGGCCAAGACCTTA
	3	941	GCTGGCTGACGCTGTTGTCAGAGG
	3	942	GCTACAGTGCTGCGTCCCGTGCCT
25	3	943	TTTACGAGCACCAAGCTGGCGTAG
10	3	944	ACGAGTTGACGGTCGTAGGGACCG
	3	945	TCGGATGGTAGGAGGCGAGATCGG
	3	946	ATTATGCAGATCCTGTGCATCCGC
	3	947	AGGGATGGAGACGAAGGAAGCATT
30	3	948	ACCCCAGGACCCGTATTCCCTAGC
	3	949	GCACCATCCTGGGGCTTCTCAATG
	3	950	TACAATCCGTGGACGTTTGCTCAG
			GGTAGGCGAATCCGACTGGCATAG
		3952	AGGACCGAACCCATGTGCAGCATC
35		3953	ATACACCGCACAGAAGCACAGCTG
		3954	TCCTTGGCGGCCGTGTGTTTATTG
		3955	CTCCACGCGAAGGGCGCTTGTAAC
	ļ <u>-</u>	3956	TGGCCCTGCCATCCTCGGATTCAG
		3957	TGTCTATTCGCCAGCGTGAGCATC
40	ļ	3958	TGTTGTTGGCACGCCTCTACGGCA
		3959	GTGCCTCAACCGTATCGTGGCGGT
	<u></u>	3960	TCCTCGAAGTAGCGTGACCGAACC

PCT/US01/26519 WO 02/16649

	3961	AAACAATTTCCTGCACTCTCGGCC
	3962	CACAAACTCGTCGAGGCACACAGT
	3963	GACGAAACGCTCGGCAGAAAGCCT
	3964	TCAACTCACACGGGACAGCAGTTC
5	3965	TCACGTGGATGGGCTTAGCTGGGC
	3966	AGGTGTTTGTTCCGACTGGCCACA
	3967	TCAACCCTCTATTCCCGAGCATTG
	3968	ACCTCACACAGCGTTCTCGTCGA
	3969	AACAGCATGCGGTCGCTGGCTTTC
0	3970	CACGGACACGTGTTACATCCGATG
	3971	CTGGGAGCCTGCTGATACATGGTG
	3972	CGTCCTATGGGCCATGGCCAGGAT
	3973	GTCCCCAAATCTCGCTTTACAGGC
	3974	TCACAAACCTGTGCGTGCATTGTC
5	3975	CACACTCGTGGCCTGCGTTGGGAA
	3976	GCCTGCACTTACGGCTATCTCGCC
	3977	TTGGCGTGGCGATTACCTGTTATT
	3978	TTTGCGGCTGAAGTTTACAGGGTG
	3979	CACTTAAGGGGCTGACCGAGCAAC
:0	3980	AGAAAACGTCAATCCGCCACCTTT
	3981	AACAAAACGGCGCTCCAACAAACG
	3982	GCCTCAATATCTGGTTGCCGCCTG
	3983	TTCCACAGTCAATGATGGGCGTGC
	3984	GATTCCCAGTCTACCCGCGAGCAT
25	3985	AGGCCAATTACGACCCTGTCACGG
	3986	CATGCGAACGTTCCGAGGAGACGG
	3987	CACACGCGATGGGTTGTGACGC
	3988	TCCGGTATTGCGCAGGAACCATAG
	3989	AAGATTAGGTGTGCCCGCCTCAGG
30	3990	TCGTTACGCCCCGACTCGACGATG
•	3991	ACTAAAATCGCCAGGTTGCTCCCT
*******	3992	AGGATGGCCACGCCGAATCAAAGT
	3993	TGATGAAGCAGCTCATCGCTGGCG
	3994	CCCCGATGGGTCTTTGTTGGACTC
35	3995	ACACGAGGGCTGCTGGTGAGGGCT
	3996	TGGTCACCAATTTGATGATCCGAG
	3997	AAGGCCGCTTGCATGCGACAAATT
•	3998	CCAGTGTTCGTTCATCGGTGGCGT
	3999	CCGACCGCTACATAGGTGTGCGAA
40	4000	TGTTGAAGCCGTTCCCAGATGACA

-138-

TABLE 2

Seq. ID No.	Decoder Sequence (5'-3')	Probe Sequence (5'-3')
1	TTCGCCGTCGTGTAGGCTTTTCAA	TTGAAAAGCCTACACGACGGCGAA
2	TTCGAAGCGCACGTCCCTTTTCAA	TTGAAAAGGGACGTGCGCTTCGAA
3	AACGCGTGGGGAATGGGACATCAA	TTGATGTCCCATTCCCCACGCGTT
4	CCGTCGCATACCGGCTACGATCAA	TTGATCGTAGCCGGTATGCGACGG
5	ATGGCCGTGCTGGGGACAAGTCAA	TTGACTTGTCCCCAGCACGGCCAT
6	TTGCAACGGCTGGTCAACGTCAA	TTGACGTTGACCAGCCCGTTGCAA
7	CGCATAGGTTGCCGATTTCGTCAA	TTGACGAAATCGGCAACCTATGCG
88	CCGTTTGCGGTCGTCCTTGCTCAA	TTGAGCAAGGACGACCGCAAACGG
9	TTCGCTTTCGTGGCTGCACTTCAA	TTGAAGTGCAGCCACGAAAGCGAA
10	GTCCAACGCGCAACTCCGATTCAA	TTGAATCGGAGTTGCGCGTTGGAC
11	TTGCCGCACCGTCCGTCATCTCAA	TTGAGATGACGGACGGTGCGGCAA
12	CATCGTCCCTTTCGATGGGATCAA	TTGATCCCATCGAAAGGGACGATG
13	GCACGGGAGCTGACGACGTGTCAA	TTGACACGTCGTCAGCTCCCGTGC
14	AGACGCACCGCAACAGGCTGTCAA	TTGACAGCCTGTTGCGGTGCGTCT
15	CGTGTAGGGGTCCCGTGCTGTCAA	TTGACAGCACGGGACCCCTACACG
16	CATCGCTGCAAGTACCGCACTCAA	TTGAGTGCGGTACTTGCAGCGATG
17	GGCTGGTTCGGCCCGAAAGCTTAG	CTAAGCTTTCGGGCCGAACCAGCC
18	GTTCCCAGTGAAGCTGCGATCTGG	CCAGATCGCAGCTTCACTGGGAAC
19	TACTTGGCATGGAATCCCTTACGC	GCGTAAGGGATTCCATGCCAAGTA
20	ACTAGCATATTTCAGGGCACCGGC	GCCGGTGCCCTGAAATATGCTAGT
21	GAACGGTCAATGAACCCGCTGTGA	TCACAGCGGGTTCATTGACCGTTC
22	GCGGCCTTGGTTCAATATGAATCG	CGATTCATATTGAACCAAGGCCGC
23	GATCGTTAGAGGGACCTTGCCCGA	TCGGGCAAGGTCCCTCTAACGATC
24	TGGACCTAGTCCGGCAGTGACGAA	TTCGTCACTGCCGGACTAGGTCCA
25	ATAAACTACCCAGGACGGGCGGAA	TTCCGCCCGTCCTGGGTAGTTTAT
26	CATCGGTTCGCGCCAATCCAGATA	TATCTGGATTGGCGCGAACCGATG
2 7	GTCGGGCATAGAGCCGACCACCCT	AGGGTGGTCGGCTCTATGCCCGAC
28	CTTGGGTCATGATTCACCGTGCTA	TAGCACGGTGAATCATGACCCAAG
29	TGCCTAACGTGCTAATCAGCAGCG	CGCTGCTGATTAGCACGTTAGGCA
3.0	CGCATGTTGGAGCATATGCCCTGA	TCAGGGCATATGCTCCAACATGCG
31	AGCCACTGCATCAGTGCTGTTCAA	TTGAACAGCACTGATGCAGTGGCT
32	GGTTGTTTTGAGGCGTCCCACACT	AGTGTGGGACGCCTCAAAACAACC
33	TCGACCAAGAGCAAGGGCGGACCA	TGGTCCGCCCTTGCTCTTGGTCGA
34	GACATCGCTATTGCGCATGGATCA	TGATCCATGCGCAATAGCGATGTC
35	GAAATACGAAGTCTGCGGGAGTCG	CGACTCCCGCAGACTTCGTATTTC
36	TGTCATGAATGATTGATCGCGCGA	TCGCGCGATCAATCATTCATGACA
37	ATATCGGGATTCGTTCCCGGTGAA	TTCACCGGGAACGAATCCCGATAT

	20.	T000100071000110000071011	
	38	GCGAGCGTACCGAAGGGCCTAGAA	TTCTAGGCCCTTCGGTACGCTCGC
	39	TTACCGGCAGCGGACTTCCGAATT	AATTCGGAAGTCCGCTGCCGGTAA
	40	GTAATCGAGAGCTGCGCGCCGTCT	AGACGGCGCGCAGCTCTCGATTAC
	41	CCTGTTAGCGTAGGCGAGTCGATC	GATCGACTCGCCTACGCTAACAGG
5	42	TAGCGGACCGGCAGAATGAGTTCC	GGAACTCATTCTGCCGGTCCGCTA
	43	GGTACATGCACTACGCGCACTCGG	CCGAGTGCGCGTAGTGCATGTACC
	44	AATTCATCTCGGACTCCCGCGGTA	TACCGCGGGAGTCCGAGATGAATT
	45	GCCAAATCTGGATTGGCAGGAATG	CATTCCTGCCAATCCAGATTTGGC
	46	TGCATTTTCGGTTGAGGCACATCC	GGATGTGCCTCAACCGAAAATGCA
10	47	CCGCTCAATTCACCATGCTTCGCT	AGCGAAGCATGGTGAATTGAGCGG
	48	CTCGGAAAGGTGCAACTTTGGTGT	ACACCAAAGTTGCACCTTTCCGAG
	49	AATTCGACCAGCAGAACGTCCCAT	ATGGGACGTTCTGCTGGTCGAATT
	50	GCCAGAGTCTCAACCTCACGGGAT	ATCCCGTGAGGTTGAGACTCTGGC
	51	CCAACAACTGGAACGGGAACCCGC	GCGGGTTCCCGTTCCAGTTGTTGG
15	52	GAGAACTGATCGCTGAGGGGCATG	CATGCCCCTCAGCGATCAGTTCTC
	53	GGCACACTAGACTTGTGGCACCGA	TCGGTGCCACAAGTCTAGTGTGCC
	54	TCACATCCAAATATGGTCCGCGAA	TTCGCGGACCATATTTGGATGTGA
	55	GTCTGCCGGTGTGACCGCTTCATT	AATGAAGCGGTCACACCGGCAGAC
	56	CATCGCAGAGCATAAACACCCTCA	TGAGGGTGTTTATGCTCTGCGATG
<u>?</u> 0	57	GTTGGTATCTATGGCAGAGGCGGA	TCCGCCTCTGCCATAGATACCAAC
	58	ACGAGGTGCCGCTGAGGTTCCATT	AATGGAACCTCAGCGGCACCTCGT
•	59	GGAATGAGTGGACCCAGGCACATT	AATGTGCCTGGGTCCACTCATTCC
	60	TGTCAATATGCGTCCGTGTCGTCT	AGACGACACGGACGCATATTGACA
	61	TGATGAGCCTCAGGGTACGAGGCA	TGCCTCGTACCCTGAGGCTCATCA
<u>?</u> 5	62	CACCGCGGTGTTCCTACAGAATGA	TCATTCTGTAGGAACACCGCGGTG
	63	TTGTTGCCAATGGTGTCCGCTCGG	CCGAGCGGACACCATTGGCAACAA
	64	TTAACCTGCGTCTGCCCCTTTCCT	AGGAAAGGGCAGACGCAGGTTAA
	65	AGGCGCGTTCCTGCCTTAGTGACG	CGTCACTAAGGCAGGAACGCGCCT
	66	TAGGGCGATGGCACGAAGCTTCAA	TTGAAGCTTCGTGCCATCGCCCTA
; 0	67	TGCATAGAGCCAAAGTCGGCGATG	CATCGCCGACTTTGGCTCTATGCA
	68	TTGAGAGGCAGGTGGCCACACGGA	TCCGTGTGGCCACCTGCCTCTCAA
	69	TCCGCATTGTGAGAAAAAACGAGC	GCTCGTTTTTCTCACAATGCGGA
	70	GGCGGTTTCCGTAGCTATAGGTGC	GCACCTATAGCTACGGAAACCGCC
	71	GGTGAAAATTTCGTAGCCACGGGC	GCCCGTGGCTACGAAATTTTCACC
15	72	CCGACGGAGGATGAAGACAATCAC	GTGATTGTCTTCATCCTCCGTCGG
	73	CCAGTTTGGCCCAATTCGCCAAAA	TTTTGGCGAATTGGGCCAAACTGG
	74	GGATCTATTAGGCCGTGCGCACAG	CTGTGCGCACGGCCTAATAGATCC
	75	CGGATGTCACCGTTTGGACTTTCA	TGAAAGTCCAAACGGTGACATCCG
	76	ATCGCAAATCCTGCTCGTCCCTAA	TTAGGGACGAGCAGGATTTGCGAT
.0	77	CAGGGCATGCAATAATCGAGGTTC	GAACCTCGATTATTGCATGCCCTG
	78	CATGCGTTGATATATGGGCCCAAG	CTTGGGCCCATATATCAACGCATG
1			D. T. D. D. D. C. T.

79	CAGCTGCAGCTTGTGACCAACCAC	GTGGTTGGTCACAAGCTGCAGCTG
80	TTGTATGTCTGCCGACCGGCGACC	GGTCGCCGGTCGGCAGACATACAA
81	GATGGCGCCCGTTGATAGGTATGG	CCATACCTATCAACGGGCGCCATC
82	ATGAGAATCGCCGGCAATCTGCTA	TAGCAGATTGCCGGCGATTCTCAT
83	ATTTGCACTGACCGCAGGCTCGTG	CACGAGCCTGCGGTCAGTGCAAAT
84	CAGGGAGAACGGTTAAGTTCCCGT	ACGGGAACTTAACCGTTCTCCCTG
85	AGGCCGGCGATCGAGGAGTTTGGT	ACCAAACTCCTCGATCGCCGGCCT
86	ACACGGTGGTCTCTGATAGCGACC	GGTCGCTATCAGAGACCACCGTGT
87	GTGCAACGCCGAGGACTTCCATCA	TGATGGAAGTCCTCGGCGTTGCAC
88	TCGGTGCCTGATAGCCATTCCGAT	ATCGGAATGGCTATCAGGCACCGA
89	TGAAATACCACACAGCCAATTGGC	GCCAATTGGCTGTGTGGTATTTCA
90	GCATCGTGTACATGACTGCCGCGA	TCGCGGCAGTCATGTACACGATGC
91	CAGTGTTCTAACGGCGCGCGTGAA	TTCACGCGCGCCGTTAGAACACTG
92	CGCTTGCAACGTTGCACCTACTCT	AGAGTAGGTGCAACGTTGCAAGCG
93	CGAAAAACTAGTGGGCTCGCCGCG	CGCGGCGAGCCCACTAGTTTTCG
94	CTTTCAGGGGAACTGCCGGAGTCG	CGACTCCGGCAGTTCCCCTGAAAG
95	TTGTGGCCTTCTTGTAAAGGCACG	CGTGCCTTTACAAGAAGGCCACAA
96	TCCACGAACGGCGACCCGTTGTCT	AGACAACGGGTCGCCGTTCGTGGA
97	CGACCTTGCACGAAACCTAACGAG	CTCGTTAGGTTTCGTGCAAGGTCG
98	GTGCAGCTTCACGAGCCAGCCTGA	TCAGGCTGGCTCGTGAAGCTGCAC
99	CGCTTTCGTGCGAATAGACGATGA	TCATCGTCTATTCGCACGAAAGCG
100	TGCGCTTACAGGCTCCTAGTGGTC	GACCACTAGGAGCCTGTAAGCGCA
101	CACGCGCTTAGTCGCGATCGCATA	TATGCGATCGCGACTAAGCGCGTG
102	CGGAGGGAGGGAGCTAGCCTTCGA	TCGAAGGCTAGCTCCCTCCG
103	GCATCCGGCCTGTTGATGACGCCT	AGGCGTCATCAACAGGCCGGATGC
104	AGGCCAATCGATCTTATTGCCGAG	CTCGGCAATAAGATCGATTGGCCT
105	CCTTCCAATGATTGCATACGCCCA	TGGGCGTATGCAATCATTGGAAGG
106	AACACTTGATCAGGCGGGTCGTCT	AGACGACCCGCCTGATCAAGTGTT
107	TGGAATCAAGGCCGTAAAGGACAG	CTGTCCTTTACGGCCTTGATTCCA
108	GCTCCCGTAACCTGTCCACCAGTG	CACTGGTGGACAGGTTACGGGAGC
109	AGTGGTGAATGGCCGCTACCCTGA	TCAGGGTAGCGGCCATTCACCACT
110	TGTTGAAGCGAGCTAAAACGGCCA	TGGCCGTTTTAGCTCGCTTCAACA
111	CAGCGCTCCAGAATTGACAGCAAT	ATTGCTGTCAATTCTGGAGCGCTG
112	AAGGTGGTGCCATTCATTTGGCTA	TAGCCAAATGAATGGCACCACCTT
113	CGTTAAACCGCAATCCGTTCGGCT	AGCCGAACGGATTGCGGTTTAACG
114	CACGAGATACCGGCGTAAGGGTGG	CCACCCTTACGCCGGTATCTCGTG
115	CTACGGCAAACGTGTGGAATGGGT	ACCCATTCCACACGTTTGCCGTAG
116	GTAGGGCGATGACGGGCGAACTAC	GTAGTTCGCCCGTCATCGCCCTAC
117	AATCGACCTCCGCACACATTCGCA	TGCGAATGTGTGCGGAGGTCGATT
118	GAGTCAGCATGGCGGCGGAGATTC	GAATCTCCGCCGCCATGCTGACTC
119	AGATAAAGACGCTGGCAACACGGG	CCCGTGTTGCCAGCGTCTTTATCT

	120	GGTACCTCAACGCGAACCACTTGT	ACAAGTGGTTCGCGTTGAGGTACC
	121	AAGCGATGGCTACCCAAGAGCGAT	ATCGCTCTTGGGTAGCCATCGCTT
	122	AGAGCTTATGCAGAACCAGGCGCC	GGCGCCTGGTTCTGCATAAGCTCT
_	123	ATCGGTCTCACGCAGGGTTGGATA	TATCCAACCCTGCGTGAGACCGAT
5	124	TAGGTTGCCCGCCAGAAGAAACAT	ATGTTTCTTCTGGCGGGCAACCTA
	125	CGGTGCTGTTGCAAAAGCCTGTAG	CTACAGGCTTTTGCAACAGCACCG
	126	TGATGAAAGTTTGCGGCAGGACAC	GTGTCCTGCCGCAAACTTTCATCA
	127	GTTGAGTGCAGGATAG	CTATCGCTGCATCCTGCACTCAAC
	128	AACATTGCGCGGTCCACCAGGGTT	AACCCTGGTGGACCGCGCAATGTT
10	· 129	GGGCAGTTAGAGAGGGCCAGAAGT	ACTTCTGGCCCTCTCTAACTGCCC
	130	TCGAGCTGGTCCCCGTGAACGTGT	ACACGTTCACGGGGACCAGCTCGA
	131	GTCTTGGGGGCCGCTTAGTGAAAA	TTTTCACTAAGCGGCCCCCAAGAC
	132	ACTGTTGGCTTGCTCTCATGTCCA	TGGACATGAGAGCAAGCCAACAGT
	133	AGGACCATTCGGAAGGCGAAGATA	TATCTTCGCCTTCCGAATGGTCCT
15	134	CTTGGGAGGCATCCGCTATAAGGA	TCCTTATAGCGGATGCCTCCCAAG
	135	AATAAACGGAACGCACCGCTACAG	CTGTAGCGGTGCGTTCCGTTTATT
	136	TTGTACGTGCGGTCCCCATAAGCA	TGCTTATGGGGACCGCACGTACAA
	137 .	CGCACCAAACTGAGTTTCCCAGAC	GTCTGGGAAACTCAGTTTGGTGCG
	138	ACCTGATCGTTCCCCTATTGGGAA	TTCCCAATAGGGGAACGATCAGGT
20	139	GGAACAGAGGCGAGGGGACTGAGC	GCTCAGTCCCCTCGCCTCTGTTCC
	140	CCCTGCCTTGGCGTGTCGGCTTAT	ATAAGCCGACACGCCAAGGCAGGG
	141	ACTCTGACACGCCAACTCCGGAAG	CTTCCGGAGTTGGCGTGTCAGAGT
	142	CTGACGGTTTTCATTCGGCGTGCC	GGCACGCCGAATGAAAACCGTCAG
	143	TGCGGTGGTTCATTGGAGCTGGCC	GGCCAGCTCCAATGAACCACCGCA
25	144	GCATGGCCAACTAGTGACTCGCAA	TTGCGAGTCACTAGTTGGCCATGC
	145	AGGCCGTAAAGCGAATCTCACCTG	CAGGTGAGATTCGCTTTACGGCCT
	146	CGAATATTATGCCGAGAATCCGCG	CGCGGATTCTCGGCATAATATTCG
	147	ACAGACGAGCTCCCAACCACATGA	TCATGTGGTTGGGAGCTCGTCTGT
	148	GGACGGTTTGTGCTGGATTGTCTG	CAGACAATCCAGCACAAACCGTCC
30	149	AAAGGCTATTGAGTTGGTTGGGCG	CGCCCAACCAACTCAATAGCCTTT
	150	GATGGCCTATTCGGAGATCGGGCC	GGCCCGATCTCCGAATAGGCCATC
	151	GATCCAGTAGGCAGCTTCATCCCA	TGGGATGAAGCTGCCTACTGGATC
	152	AATAACTCGCGCGGGTATGCTTCT	AGAAGCATACCCGCGCGAGTTATT
•	153	GGAGGAGGTTTGTCTCGGAAAGCA	TGCTTTCCGAGACAAACCTCCTCC
35	154	CTTTGGTATGGCACATGCTGCCCG	CGGGCAGCATGTGCCATACCAAAG
	155	AGAAAGGCTCGAGCAACGGGAACT	AGTTCCCGTTGCTCGAGCCTTTCT
	156	AATCTACCGCACTGGTCCGCAAGT	ACTTGCGGACCAGTGCGGTAGATT
	157	CGTGGCGGCCACAGTTTTTGGAGG	CCTCCAAAAACTGTGGCCGCCACG
	158	TTGCAGTTCAATCCATACGCACGT	ACGTGCGTATGGATTGAACTGCAA
40	159	GGCCCAAAGCCCCAGACCATTTTA	TAAAATGGTCTGGGGCTTTGGGCC
	160	CGCCTGTCTTTGTCTCCGGACAAT	ATTGTCCGGAGACAAGACAGGCG
		· · · · · · · · · · · · · · · · · · ·	

	161	TGAGGCAACAGGGGCCAAAAACTA	TAGTTTTTGGCCCCTGTTGCCTCA
	162	AGCGGAAGTAGTCCTCGGCTCGTC	GACGAGCCGAGGACTACTTCCGCT
	163	GGCCCCAAGGCTTAGAGATAGTGG	CCACTATCTCTAAGCCTTGGGGCC
	164	GCACGTGAAGTTTAACCGCGATTC	GAATCGCGGTTAAACTTCACGTGC
5	165	AGCGGCAGAAACGTTCCTTGACGG	CCGTCAAGGAACGTTTCTGCCGCT
	166	TCGTCGAGCAGACGAGATTGCACG	CGTGCAATCTCGTCTGCTCGACGA
	167	TCTTTGCCGCGTAACTGACTGCTT	AAGCAGTCAGTTACGCGGCAAAGA
	168	TTTATGTGCCAAGGGGTTAACCGA	TCGGTTAACCCCTTGGCACATAAA
	169	TGTTACTGTGGTTCACGGCAGTCC	GGACTGCCGTGAACCACAGTAACA
10	170	CGCGCCTCGCTAGACCTTTTATTG	CAATAAAAGGTCTAGCGAGGCGCG
	171	ACAAATGCGTGAGAGCTCCCAACT	AGTTGGGAGCTCTCACGCATTTGT
	172	CGCGCAGATTATAGACCCGAATGT	ACATTCGGGTCTATAATCTGCGCG
	173	CAAATAACGCCGCTGAATCGGCGT	ACGCCGATTCAGCGGCGTTATTTG
	174	CCTTCGTGCATCGGTGATGATGTT	AACATCATCACCGATGCACGAAGG
15	175	TGAACACGAGCAACACTCCAACGC	GCGTTGGAGTGTTGCTCGTGTTCA
	176	CAGCAGATCCTTCGTAGCGGTCGT	ACGACCGCTACGAAGGATCTGCTG
	177	GGAACCTGGTGAGTTGTGCCTCAT	ATGAGGCACAACTCACCAGGTTCC
	178	TCATAAGCGACAATCGCGGGCTTA	TAAGCCCGCGATTGTCGCTTATGA
	179	CCCAACGTCACTGAAGCTCACAGT	ACTGTGAGCTTCAGTGACGTTGGG
20	180	TGTCAGAGCCCGCGACTCAGACGG	CCGTCTGAGTCGCGGGCTCTGACA
	181	TACACGAAGCCTCTCCGTGGTCCA	TGGACCACGGAGAGGCTTCGTGTA
	182	CTCAGAAGTCCTCGGCGAACTGGG	CCCAGTTCGCCGAGGACTTCTGAG
	183	ATCCTTTTATCTACTCCGCGGCGA	TCGCCGCGGAGTAGATAAAAGGAT
	184	AGGCGTGCAGCAACAGGATAAACC	GGTTTATCCTGTTGCTGCACGCCT
25	185	ACTCTCGAGGGAGTCTCTGGCACA	TGTGCCAGAGACTCCCTCGAGAGT
	186	TTGCCAGGTCCATCGAGACCTGTT	AACAGGTCTCGATGGACCTGGCAA
	187	TCCACTATAACTGCGGGTCCGTGT	ACACGGACCCGCAGTTATAGTGGA
	188	GCCCAGTCGGCTCTAACAAGTTCG	CGAACTTGTTAGAGCCGACTGGGC
	189	CGGAACGGATAATCGGCGTCAGGT	ACCTGACGCCGATTATCCGTTCCG
30	190	TAAAATAAGCGCCTGGCGGAGGA	TCCTCCCGCCAGGCGCTTATTTTA
	191	GCGCACTCGTGAAACCTTTCTCGC	GCGAGAAAGGTTTCACGAGTGCGC
	192	AGTTTGCCAGGTACTGGCAAGTGC	GCACTTGCCAGTACCTGGCAAACT
	193	ACAACGAGGGATGTCCAGCGGCAT	ATGCCGCTGGACATCCCTCGTTGT
•	194	TTCGCAGCACCCGCTAGGTACAGT	ACTGTACCTAGCGGGTGCTGCGAA
35	195	TAACCCGATTTTTGCGACTCTGCC	GGCAGAGTCGCAAAAATCGGGTTA
	196	CGTCGCATTGCAAGCGTAGGCTTG	CAAGCCTACGCTTGCAATGCGACG
	197	GAGCTGACGTCACCATCAGAGGAA	TTCCTCTGATGGTGACGTCAGCTC
	198	GGAGGCTGGGGGTCGCGCTTAAGT	ACTTAAGCGCGACCCCCAGCCTCC
	199	TTGTGGGAACCGCACTAGCTGGCT	AGCCAGCTAGTGCGGTTCCCACAA
40	200	CCCTCGCACTGTGTTCACCCTCTT	AAGAGGGTGAACACAGTGCGAGGG
	201	TCATTGACTCGAATCCGCACAACG	CGTTGTGCGGATTCGAGTCAATGA

	202	ACAGGGGTTGGCCTTCGTACGTAC	GTACGTACGAAGGCCAACCCCTGT
	203	AGGCCGTGCAACATCACACAGGAT	ATCCTGTGTGATGTTGCACGGCCT
	204	GGGCCGTGGTCACGTAATATTGGC	GCCAATATTACGTGACCACGGCCC
	205	GCGCGGACATGAAACGACAAGGCC	GGCCTTGTCGTTTCATGTCCGCGC
5	206	CTTATTGGGTGCCGGTGTCGGATT	AATCCGACACCGGCACCCAATAAG
	207	GGGGCGGTTACCAAAAAATCCGAT	ATCGGATTTTTTGGTAACCGCCCC
	208	GCTAAAGCGTGCTCCGTAACTGCC	GGCAGTTACGGAGCACGCTTTAGC
	209	ATCTCATGCATCTCGGTTCGTCGT	ACGACGAACCGAGATGCATGAGAT
	210	ACGAAAAAGTGTGCGGATCCCCT	AGGGGATCCGCACACTTTTTCGT
10	211	CCAAGTACACCGCACGCATGTTTA	TAAACATGCGTGCGGTGTACTTGG
	212	ATCGTGCGTGGAGTGTCGCATCTA	TAGATGCGACACTCCACGCACGAT
	213	TCCAGATACCGCCCGAACTTTGA	TCAAAGTTCGGGGCGGTATCTGGA
	214	TCTGCTGGCAGCACGTGAAGTGGC	GCCACTTCACGTGCTGCCAGCAGA
	215	TTGAAATTGCTCTGCCGTCAGTCA	TGACTGACGGCAGAGCAATTTCAA
15	216	AGTCAGGCGAGATGTTCAGGCAGC	GCTGCCTGAACATCTCGCCTGACT
	217	ACAAGCCGACGTTAAGCCCGCCCA	TGGGCGGCTTAACGTCGGCTTGT
	218	CCCTAATGAGGCCAGTAACCTGCA	TGCAGGTTACTGGCCTCATTAGGG
	219	GTGAGACACACATCCCCTCCAATG	CATTGGAGGGGATGTGTGTCTCAC
	220	CGACGGATGCAGAGTTCAGTGGTC	GACCACTGAACTCTGCATCCGTCG
20	221	CCCGCATGCCTGGCGGTATTACAA	TTGTAATACCGCCAGGCATGCGGG
	222	TTAGCAAAGCGGCGCCGTTAGCAA	TTGCTAACGGCGCCGCTTTGCTAA
	223	CCCGACACGGGTCAGCGTAATAAT	ATTATTACGCTGACCCGTGTCGGG
	224	GCGACGCCCTGAGGTATGTCGTC	GACGACATACCTCAGGGCCGTCGC
	225	CAAAAGTGTGTTCCCTTGCGCTTG	CAAGCGCAAGGGAACACACTTTTG
25	226	TCTCGAAGCACAGCCCGGTTATTG	CAATAACCGGGCTGTGCTTCGAGA
	227	ATGCTAACCGTTGGCCATGGAACT	AGTTCCATGGCCAACGGTTAGCAT
	228	CTTGCGGAGTGTTAGCCCAGCGGT	ACCGCTGGGCTAACACTCCGCAAG
	229	TGCTCCCTAGGCGCTCGGAGGAGT	ACTCCTCCGAGCGCCTAGGGAGCA
	230	CCAATGCCTTTGAGTAAGCGATGG	CCATCGCTTACTCAAAGGCATTGG
30	231	AGCAGATAACGTCCCAATGACGCC	GGCGTCATTGGGACGTTATCTGCT
	232	TTGACCATTACGTGTTGCGCCCAT	ATGGGCGCAACACGTAATGGTCAA
	233	TCGCGTATTTGCGGAATTCGTCTG	CAGACGAATTCCGCAAATACGCGA
	234	CTGCGTGTCAACAATGTCCCGCAG	CTGCGGGACATTGTTGACACGCAG
	235	TCTGGTGCCACGCAAGGTCCACAG	CTGTGGACCTTGCGTGGCACCAGA
35	236	CTCCGGGAGGTCACTTAATTGCGG	CCGCAATTAAGTGACCTCCCGGAG
	237	TTTTCGTGATTGCCCGGAGGAGGC	GCCTCCTCCGGGCAATCACGAAAA
	238	TCGGGATGTAGCTGGGGCTACCGG	CCGGTAGCCCCAGCTACATCCCGA
	239	CGAGCCAACGCAAACACGTCCTTG	CAAGGACGTGTTTGCGTTGGCTCG
	240	GCAAAGCCTTTGTGGGGCGGTAGT	ACTACCGCCCCACAAAGGCTTTGC
40	241	ATTCGACCGGAAATGAGGTCTTCG	CGAAGACCTCATTTCCGGTCGAAT
	242	TTCGCTTGCTGAGTTGCTCTGTTC	GAACAGAGCAACTCAGCAAGCGAA

			
	243	CGCGTGAAGACCCCATTCCCGAGT	ACTCGGGAATGGGGTCTTCACGCG
	244	AACCGTATTCGCGGTCACTTGTGG	CCACAAGTGACCGCGAATACGGTT
•	245	GGGGCCAACCGTTTCGAGGCGTAT	ATACGCCTCGAAACGGTTGGCCCC
	246	TTCGGCTGGCAGTCCAAACGGCTT	AAGCCGTTTGGACTGCCAGCCGAA
5	247	GGGTGTGGTTAGAATGCACGGTTC	GAACCGTGCATTCTAACCACACCC
	248	GCGAGGACCGAACTAGACAAACGG	CCGTTTGTCTAGTTCGGTCCTCGC
	249	ACGCACGCGTGACCGAAGTTGCTG	CAGCAACTTCGGTCACGCGTGCGT
	250	TAAAAGGTCGCTTTGAAAGGGGGA	TCCCCCTTTCAAAGCGACCTTTTA
	251	TGCGATCGCTAACTGCTGGGACAA	TTGTCCCAGCAGTTAGCGATCGCA
10	252	GGAGGTATAAGCGGAGCGGCCTCA	TGAGGCCGCTCCGCTTATACCTCC
	253	ATGCTGACATGTCGTGCACCTCGT	ACGAGGTGCACGACATGTCAGCAT
ı	254	TGTGGTTAAAGCGTCCGTTCAACG	CGTTGAACGGACGCTTTAACCACA
	255	CGTTCACACCGGCGTAAGCTGCGT	ACGCAGCTTACGCCGGTGTGAACG
	256	CCTATCCCGGCGAGAACTTCTGTG	CACAGAAGTTCTCGCCGGGATAGG
15	257	GTCTGCACTCACGCAGCGAGGGA	TCCCTCCGCTGCGTGAGTGCAGAC
	258	GCACGAGTTGGTGCTCGGCAGATT	AATCTGCCGAGCACCAACTCGTGC
	259	AACGTCGCACGACACACGTTCGTC	GACGAACGTGTGTCGTGCGACGTT
	260	ATGCGCGCTTATCCTAGCATGGTC	GACCATGCTAGGATAAGCGCGCAT
	261	TCACGTTTTCGTCTCGACATGAGG	CCTCATGTCGAGACGAAAACGTGA
20	262	TGTGCCTCATCCTTAGGATACGGC	GCCGTATCCTAAGGATGAGGCACA
	263	AGGTGGTGTGGGTCAACCGCTTTA	TAAAGCGGTTGACCCACACCACCT
	264	CTGGATCGAAGGGACTGCAAGCTC	GAGCTTGCAGTCCCTTCGATCCAG
	265	TAGATCAACTCGCGTACGCATGGA	TCCATGCGTACGCGAGTTGATCTA
	266	GATCCTGCGGAGAAGAGAGTGCAG	CTGCACTCTCTCTCCGCAGGATC
25	267	TACGTGTGGAGATGCCCCGAACCG	CGGTTCGGGGCATCTCCACACGTA
	268	GCGCTATGTCAATCGTGGGCGTAG	CTACGCCCACGATTGACATAGCGC
	269	AGCGAGGTTTCTAGCGTCGACACC	GGTGTCGACGCTAGAAACCTCGCT
!	270	ACCCAGGTTTTGCCGTTGTGGAAT	ATTCCACAACGGCAAAACCTGGGT
	271	CCCTGTTAACGGCTGCGTAGTCTC	GAGACTACGCAGCCGTTAACAGGG
30	272	AGGCCGATTTCACCCGCCAATTGC	GCAATTGGCGGGTGAAATCGGCCT
	273	GAGCCCTCACTCCTTGCCCTTTGA	TCAAAGGGCAAGGAGTGAGGGCTC
	274	GGGTGGACATCCGCCTCGCAGTCA	TGACTGCGAGGCGGATGTCCACCC
	275	GATGGCTGAGAACCGTGCTACGAT	ATCGTAGCACGGTTCTCAGCCATC
	276	TCGACGTTAGGAGTGCTGCCAGAA	TTCTGGCAGCACTCCTAACGTCGA
35	277	CGAATGGGTCTGGACCTTGCATAG	CTATGCAAGGTCCAGACCCATTCG
	278	GTGCACCAGACATTCGAACTCGGA	TCCGAGTTCGAATGTCTGGTGCAC
	279	AGAGGCCCCGTATATCCCATCCAT	ATGGATGGGATATACGGGGCCTCT
	280	AACGCCTGTTCAGAGCATCAGCGG	CCGCTGATGCTCTGAACAGGCGTT
	281	AAGGCTCAACACGCCTATGTGCGC	GCGCACATAGGCGTGTTGAGCCTT
40	282	AGTCCGTGTTGCCAGATTGGCTCG	CGAGCCAATCTGGCAACACGGACT
	283	ATGTCCCATGTAAAGACGCGTGTG	CACACGCGTCTTTACATGGGACAT

284 ATGGASTCTGCTCAGGCCCAAAGG CCTTTGGGCGTGAGCAGACTCCAT 285 CGGCCTCCAACAAGGAGCACTAAC GTTAGTGCTCCTTGTTGGAGGCCCG 286 CAGAGCCGTGGCAACATTGCAGC GCTCGCAATGTTGCCACGGCTCTG 287 TCATTTGAATGAGGTGCGCACCGG CCGGTGCGCACCTCATTCAAATGA 288 GACGTACCGGAAGCGCCGTATAAA TTTATACGGCGCTTCCGGTACGTC 289 ATGCGAGCAATGGGATCCGGATTC GAATCCGGATCCCATTGCTCGCAT 290 AGAGTGAGGCCCCGTATAAA TTTATACGGCGCCTCCATTTCACAATGA 291 CGCACCGTAACTGGATTC GAATCCGGATCCCATTGCTCGCAT 292 TGAACCTTTGAGCACGTC CACTGGTCAGGGAGGCCTCACTCT 293 TCCGCCTTTTTGAGCACGTCGCGC GCGGCAAATCTACTTACGGTGCG 294 GAACGCCAACGGCACTAACAAC GATGGTTAAGCCAAAAAGGCGGA 294 GAACGCCAACGGCACTAACAACAT GATGTGTTAGCCCGTTGCGC 295 CCGACAGCAGCACAACAACC GATGTGTTAGCCCGTTGCGC 296 CATAAAAAACCTGGGGCTCTAC CTGGGACGTGTTAGCCCGTTGCGC 297 TGCCAACTSTGCAGACCGGACTTA TAAGTCCGGTTTGACCAAGTTGCCC 298 GGCGAAGAGCGAACACGGCCCTAA 299 GGGATGCGTATTATTAGCGAACAG CGTGTTCGCACAGTTTGCC 299 GGGATGCGTATTTTAGCGAACAG CGTGTTCCGCTGTTTTCGC 299 GGGATGCGTATTTTAGCGAACAG CGTGTTCCCTATTTTTTTTTTTTTC 291 TGCCAACTSTGCAACCAG TCGCTTCCTCTTTTCGCC 300 TGGGATTCAGCCAACCAA TTGGTTCCTAAAATACCCATCCC 301 CCGGATATTTCGCCGGGCCTATTCG CGAATAGGCCGGGAATATCCGC 302 CGAGAAGATGCCTCACCAACCAA TTGGTTCCTAAAATACGCATCCCA 303 AACCTTGACCGCAACCAA TTGGTTCGTAAAATACGCATCCCA 304 GGCTAGACGATGCCTACCCAA TTGGTTCGTAAAATACGCATCCCA 305 GCCTCTTCTCGACGATGACGCTA TAAGCGTCATCCACGGGTTCACGC 306 GCTTCCGGATGACGGATTGCTA TAAGTCCACGGGTTCACGGC 307 CCTCCATGTTCTCGAACGGATTCCAC TGGTTCGCTGAGAACAGGC 308 TTGATGGGCGCAATGCTCTTGCT AAACCGTTCGAAGAACAGGC 309 ATTGTAGAGCGGAATGCTTTTCC AGCAAGAGCATTCCCCAAGGTT 310 TCAGCAACGCAACAACCA TGGTTCCAACCAACCAACCAA 311 ACTCCACTCCTGGTGGCAACACAA TAGTTTGCCCGCAGGAACTACAACAA 312 TCTGGCCATCAACGAACCAACAA TAGTTTGCCCGCAGGAACTACAACAACAACAACAACAACAACAACAACAACAACA				
285	[284	ATGGAGTCTGCTCACGCCCAAAGG	CCTTTGGGCGTGAGCAGACTCCAT
287 TCATTTGAATGAGGTGCGCACCGG 288 GACGTACCGGAAGCGCCGTATTAAA TTTATACGGGGCTTCCGGATACGTC 289 ATGCGAGCATGGGATCCGGATTC 290 AGAGTGAGGCCTCCTGACCAGTG 291 CGCACCGTAACAATGCCGGATTC 291 CGCACCGTAACATGCCCGGACCGTG 292 TGAACCTTTGAGCACCGTGC 293 TCCGCCTTTTTGGTTACCCCGC 292 TGAACCTTTGAGCACCGTGCC 293 TCCGCCTTTTTTGGTTACCTCGAAG 10 293 TCCGCCTTTTTTGGTTACCTCGAAG 294 GAACGCAACGGCAACACACC 295 CCGACAGACGACGTCCTACGC 296 CATAAAAAAACCTGGGGCTCCTACG 297 TGCCAACTGTGCAAG 298 GACGCACAGACGCAACACCAC 298 GACGCACAGCACGACGTCTTTGCCCCGC 298 CATAAAAAAACCTGGGGCTCTCCACG 299 GGGATGCGTATTTTAGCGAACCACTC 299 GGGATGCGTATTTTAGCCACCACCACCACCAGTTTTTCTCTCTTCTCCCACCAGTTTCGCCTTTTCCCCCCCC		285	CGGCCTCCAACAAGGAGCACTAAC	GTTAGTGCTCCTTGTTGGAGGCCG
5 288 GACGTACCGGAAGCGCCGTATAAA TITATACGGCGCTTCCGGTACGTC 289 ATGCGAGCATGGGATCCGGATTC GAATCCGGATCCCATTGCTCGCAT 290 AGAGTGAGGCCTCCCTGACCAGTG CACTGGTCAGGGAGGCCTCACTCT 291 CGCACCGTAAGTAGTTTGCCCGC GCGGGCAAATCTACTTACGGTGCG 292 TGAACCTTTGAGCACGTGGTGCG GCGGCAAATCTACTTACGGGTGCG 293 TCCGCCTTTTTGGTTACCTCGAAG CTTCGAGGTACCCAAAAAGGCGGA 294 GAACGCCAACGGCACTAACACATC GATGTGTAGCCCGTTGGCGTTC 295 CCGACAGCAGCCAACACCATC GATGTGTTAGTGCCGTTGCGGTTC 296 CATAAAAAACCTGGGGCTCTGCG CGCAGAGCCCCAGGTTTTTCGCG 297 TGCCAACTGTGCAGAGCGGCACTAA TAAGTCCGGTTGCGTTCGCG 298 GGCAAAGAGCGACCAACCATC ACAGTC TAAGACCACAGTTTTTCGCC 299 GGGATGCGTATTTTACGCGACACCA 300 TGGGATTCAGCGACCAGCACCAA TAAGACCGGCGAATTCCCCA 300 CCCGCATATTCAGCGACCAGCACCAA TTGGTTCGCTCTTTCGCC 300 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCAATCCCCA 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCGAATCCCCA 302 CCAGAAACACCAA TTGGTTTGCGTAAAAAAACCCGC 204 303 AACCTTGACCCGGCCTATTCG CGAATAGGCCGGGCGAATTCCGG 305 GCCTCTCTCTCGCAACCAA TTGGTTGCGTGAAGCACCA 306 GCTTCCGGATGACCAACCAA TTGGTTGCGTGAAGCACCA 307 CCCCCATATTCGCCCGGCCTATTCG CGCACCAA TAAGCCCGGGCGAAACCAA 308 GCTTCCCGATGAACCAACCAA TAACCCGTTCATCGTCTAGCC 309 GCTTCTCTCGACGATGCGCTATTCT CAACCACCCGTTCATCCTCTGGCC 307 ACCCTCCATGTTCTTCGACCGGTTT AAAATCCCATCGTCAGAAAAAACACTGCACCAACCAA TAACCCATCCCGTTCAACACAA 301 CCCCCATGTTCTTCTGAACGGATGCTTT AAAATCCCATCGTCAACAACAA 302 CCCCCCATGTTCTTCTCGACGGATGCTTTGCT AGCAACAACACTCCCGGAAACCAA 303 TTGATGGGCGCAATGCCTTTGCT AGCACACACCACCACCAACAACAA 304 GGCTACACCAGCACCAACAACAA TAACCCGTTCCAACAACAACAACAACAACAACAACAACAACAACAAC		286	CAGAGCCGTGGCAACATTGCGAGC	GCTCGCAATGTTGCCACGGCTCTG
289 ATGCGAGCATGGGATTC GAATCCGGATCCCATTGCTCGCAT 290 AGAGTGAGGCCTCCCTGACCAGTG CACTGGTCAGGGAGGCCTCACTCT 291 CGCACCGTAAGTAGATTTGCCCCC GCGGGCAAATCTACTTACGGTGCG 292 TGAACCTTTGAGCACGTGCGC GCGGCAAATCTACTTACGGTGCG 293 TCCGCCTTTTTGATCCTCGAAG CTTCGCAGGAGGCTCCAAAAGGTCA 294 GAACGCCAACGGCACTACACACC GCGCCACACGTGCTCACAAAAAGGCGGA 294 GAACGCCAACGGCACTAACACACC GATGTGTAGCCTGCGGCTC 295 CCGACAGCAGCCAAGACCTCCCAG CTGGGACGTCTTGGCTGTCGG 296 CATAAAAAAACCTGGGGCTTCTAC 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTCTGCACAGTTGGCA 298 GGCGAAAGAGCGAACCAGCCGTCAT AAAGTCCGGTTTCGCCCAACTGTGCACAGTTGCAC 299 GGGATGCGTATTTTAGCGAACCG 299 GGGATGCGTATTTTAGCGAACCG 300 TGGGATTCAGCGACCAGTACCGAA 301 CCCGATATTCAGCGAACCAG 301 CCCGATATTCACCCAGCCAACCAA 302 CCAGAAAGAGCCAACCAA TTGGTTGCGTCACAGTTCGCA 303 AACCTTGACCCGGCCTATTCG 304 GGCTAGACGAACCAA TTGGTTGCGTCAGCTCTTCTCGC 305 GCCTCTCTCACCCAACCAA TTGGTTGCGTCAGCGTCTTCTCGC 306 GCTTCCGCAACCAA TTAGCTCATCCACCAGCACCAA 307 GCCTCCTTCTCGACCGATCCACCAA 308 GCTTCCGGATGACCCAGCAACCAA 309 GCTTCCGGATGACGCATTTTT 300 GCTTCCGACTGATGACGCTT 301 CCCCCCATGTTTTTCAACGGATGCTCTCTCGC 302 GCTTCCGAACGAACCAA 303 CCCTCCATGTTTCTCGAACGGATTGC 304 GCTTCCGAACGAACCAA 305 GCTTCCGAACGAACCAA 306 GCTTCCGAACGAACCAA 307 CCCTCCATGTTTCTCGAACGGATTGT 307 CCCTCCATGTTCTTCGAACGGATTGT 308 TTGATGGGCGGCAATGCCCTTGCT 309 ATTGTGAGCACACCAACTAA 310 TCACCACCCAGGGGTCAACTT 310 TCAGCCACAGCCAACACAA 311 ACTCCCATCCTCTGGTGCAAACTA 311 ACTCCCATCCTCGGTGCAAACTA 312 TCTGAGCACAGCCAACACAA 313 TCTCAACTCCCGGTGCAACACTA 314 TTGCGGCATCCCCAGA 315 AGACAGCAACCACGAACCAA 316 CCGCTCTAACTGGAACCAACAA 317 AGCCCCCCACAAGCGCAACCAA 317 AGCCCACCACGACGCCAACCAACAA 318 GATGAGTGCCTCAACACAA 319 TCAACCACCCGAACGCAACCAACAACAA 311 AGCCTCCCGGAACCACAACAACAA 311 AGCACCACCCGAACGCCAACCAACAACAA 311 AGCACCACCCGAACGCAACCAACAACAA 311 AGCACCACCACGACGACGACACAACAA 311 AGCACCACCACGACGACGACCAACAACAA 311 AGCACCACGCCACGCCAACGACGACGCAACCAATACAA 311 AGCACCACACTCACCACAACAACAA 311 AGCACCACACTCCCCCCCCCACAACGCCCCCCCCACAACGCCCCCCCC		287	TCATTTGAATGAGGTGCGCACCGG	CCGGTGCGCACCTCATTCAAATGA
290 AGAGTGAGGCCTCCCTGACCAGTG 291 CGCACCGTAAGTAGATTTGCCCGC GCGGGCAAATCTACTTACGGTGCG 292 TGAACCTTTGAGCACGTCGTGCGC GCGGGCAAATCTACTTACGGTGCG 293 TCCGGCTTTTTTGGTTACCTCGAAG CTTCGAGGTAACCAAAAAGGCGGA 294 CGACGCCAACGGCAAGACGTCGTGCGC GCGCACGACGTGCTCAAAGGTTCA 295 CCGACACGGCCAAGACGTCCCAG CTTCGAGGTAACCAAAAAAGCCGGA 296 CATAAAAAACCTGGGGCTCTGCG CGCAGAGCCCCAGGTTTTTTTATG 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTTGCGCTTTGGCA 298 GGCGAAAGACCGGACTTA TAAGTCCGGTTGCACAGTTTGCA 299 GGGATGCGTATTTTACGCAACCG 300 TGGGATTCAGCGAACCG 301 CCCGATATTCGCCGGCCTATTCG 302 CGAGAGCCCAGGTTTCTCGC 303 TGGGATTCAGCGACCAACCAA TGGTTCGCTCAAAATAACGCATCCCA 304 CCCGATATTCGCCGGCCTATTCG 305 GCCTCTTCTCGACGATCCCAA 306 GCTTCCGGATGACCCAA 307 CCCCCATGTTCTCGCCGGCCTATTCC 306 GCTTCTCTCGACGATGCCGCCA 307 CCCTCCATGTTCTCGCACCCACCAA 308 GCCTTCCGGATGACCGCTA 309 GCTTCCGGATGACCGGTTCTCCCCGCCACCAACCAA 309 CCCTCCATGTTCTCGACCGATCCCCTGCC 300 TGGAATAGCCCTCACCCAACCAA 301 CCCCCCATGTTCTCGCCGGCCTATTCCCCGGCCACCAACCA	5	288	GACGTACCGGAAGCGCCGTATAAA	TTTATACGGCGCTTCCGGTACGTC
291 CGCACCGTAAGTAGATTTGCCCGC GCGGGCAAATCTACTTACGGTGCG 292 TGAACCTTTGAGCACCGTCGTGCGC GCGCACGACGTGCTCAAAGGTTCA 293 TCCGCCTTTTTGGTTACCTCGAAG CTTCGAGGTAACCAAAAAGGCGGA 294 GAACGCCAACGGCACTAACACATC CATGGTTTGGCTGTCGCGTTC 295 CCGACAGCAGCACGGCACTAACACATC CTGGGACGCTCTTGGCCGTTCC 295 CCGACAGCAGCACGGCCCAGACCGTCCCAG CTGGGACCCCCAGGTTTTTTATG 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTCTGCACCAGTTGCCA 298 GGCGAAAGACCGGACCTA TAAGTCCGGTCTGCACCAGTTGCCA 299 GGATGCGTATTTTAGCGAACACG CTGGTACTGGCTGAAACACCC 300 TGGGATTCAGCGACCAGTACCGA TCGCGTACTGGTCGCTAAAATACCCATCCC 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCGAATACCGA 302 CGAGAAGATGCCTCACGCACCCAA TTGGTTGCGTGAATCCCA 303 AACCTTGACCCGTGCACCCAA TTGGTTGCGTGAGCCATCTCCG 304 GGCTAGACGATGACCGA TAGCGTCATCCACGGGTCAAGGTT 305 GCCTCTTCTCGACGACCCAA TTGGTTGCGTGAGGCATCTTCTGC 306 GCTTCCGGATGAACGGGATTGTT AAAATCGCATCCTCACGGGTCAAGGT 307 CCCCCATATTTCGCCAGGGATGTTG CAACCATCCCGTTCATCCGAAGCA 308 ATTGTGGGCGGGCAATGCTTT AAAATCGCATCCGTCAAGAACA 309 ATTGTGGAGATGGCGAATGCTTT AACCATTCCAAGAAACATGAAGAC 309 ATTGTGGAGATGCCCAAATTCCCC GGGAATTTGGCGCCCCATCAA 309 ATTGTGAGATGCGCAAACTA AACCTTCCAGGGATGCCCCCCATCAA 310 TCAGCACAGCCAGACGGTCAACTT AACCTTCCAGGGATGCCCCCCATCAA 311 ACTCCACTCCTCGGTGGCAAACAT AACTTTGCCCGCCCATCACA 312 TCTGGGCATGCCTGGACGAACAA TAGTTTGCCACCGAGATTGCCGAAGAACA 314 TTGCGGTGCAAAGGAGCAACA TAGTTTGCCACCGAGATTGCCAA 315 AGACAGCCATCCCGGGCCAACCTA TAGTTTGCCACCGAGATTGCACAAT 316 CGCGTCTCTAACTGAAGAACA TAGTTTGCCACCGAGATTGCACAAT 317 AGGCGCACATGCCTGGAGAACA TAGTTTGCACCGAGATTGAGA 318 GATGAGTGCACATCATCAA TAGTTTGCACCAAGTTGAACA 319 TGATCCATATTGTCGGACAGAACA TTTTCGCACCGAGATTGACAACA 310 TCACACTCCGGGCTCATGAT TACACACCGACGTGCCTTTTGACTAAGACACA 311 AGCCTCACCGGGCTCATGAT TTTCACACCGAGATTGCCGCCTTTTAACTTGCGACAGTTCACAAT 312 TGTGCGGAATACTCAGCATACAT TTTTCACCACCGACTTGCCCACTTCAT 313 TGTCAAATTTGCGGACA		289	ATGCGAGCAATGGGATCCGGATTC	GAATCCGGATCCCATTGCTCGCAT
TGAACCTITGAGCACGTCGTGCGC GCGCACGACGTGCTCAAAGGTTCA 293 TCCGCCTTTTTGGTTACCTCGAAG CTTCGAGGTAACCAAAAAGGCGGA 294 GAACGCCAACAGCACACACACC GATGTGTTAGTGCCGTTGCGTTC 295 CCGACAGCAGCCACAGACGTCCCAG CTGGAACGTCTGCTGTCGC 296 CATAAAAAACCTGGGGCTCTGCG CGCAGAGCCCCAGGTTTTGTAGTG 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTTCGCACCAGGTTTTGCC 298 GGCGAAAGACGGAACCGGCCTCGT ACGAGCCCCAGGTTTTCGCC 299 GGGATGCGTATTTTAGCGAACACG CGTGTTCGCTAAAATACCCATCCC 300 TGGGATTCAGCGACCAGTACGCGA TCGCGTCTTGCGCACAGTTCCCA 301 CCCGATATTCGCCGGGCCTATTCC CGAATAGCCGGGCATATCCCA 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAGCATCTCCC 303 AACCTTGACCCGGGCCTATTCC 304 GGCTAGACGATGACCACA TTGGTTGCGTGAGCATCTTTCTCG 305 GCCTCTTCTCGACGAGCCAACAA TAGGTGAGGACAAGGTT 306 GCTTCCGGATGAACGGGTTAACACCAA TAGGTCATCCACGGGTCAAGGTT 307 CCCTCCATGTTCTCGACAGGTTT AAAATCCGCTCGAAGAGAGGC 307 CCCTCCATGTTCTCGACAGGTTT AAAATCCGCATCCCCGTCCAGAAGAGAGGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTCGAACAACAAGGGC 308 TTGATGGGCGGCAATGCTCTCCC GGCAACATCCCCGTTCATCCACGAGGAAGAGGC 309 ATTGTGAGATGCGCGAACCAATTCCCC GGGAATTTTGAACAAAACACTTCGAAGAACATGAGGGAAGGAGGCAACATA TAGGTCAACAACAACAAGGGCAACAACAA TAGGTTGAACAACAATTGCACCCCCCCCCATCAAAACAACAATGAACAGAGGCAACAACAA TAGGTTGACCAGAACAACAATGAACAGAGGAACAATGAACAGAGGAACAATGAACAGAGGCAACAACAA TAGGTTGACCAGAGAGGAGGAACAACAACAACAAGAACAATGAACAACAACAACAACAATGAACAACAATGAACAACAATGAACAACAATGAACAACAACAACAATGAACAACAATGAACAACAATGAACAACAATGAACAACAATGAACAACAATGAACAACAATGAACAACAATGAACAACAACAACAACAACAACAACAACAACAACAACAAC		290	AGAGTGAGGCCTCCCTGACCAGTG	CACTGGTCAGGGAGGCCTCACTCT
10 293 TCCGCCTTTTTGGTTACCTCGAAG CTTCGAGGTAACCAAAAAGGCGGA 294 GAACGCCAACGGCACTAACACATC GATGTTTAGTGCCGTTGGCGTTC 295 CCGACAGCCCAAGACGTCCCAG CTGGGACGTCTTGGCTGCTGTCGG 296 CATAAAAAAACCTGGGGCTCTGCG CGCAGAGCCCCAAGGTTTTTTATG 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTCTGCACACAGTTGCCA 298 GGCAAAGAGCGAAACCGGCTCGT ACGAGGCCGGTTCTTCGCC 299 GGCATAGCGAAACCGGCTCGT ACGAGCCGGTTCTCGCC 300 TGGGATTCAGCGACCAGCACCAA TCGCGTTCGCTAAAATACGCATCCC 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCGAATACCCA 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAACATCCCA 303 AACCTTGACCCGTGGATGACCCAA TTGGTTGCGTGAGGCATCTTCTCG 304 GGCTAGACGATGACCCAA TTGGTTGCGTGAGGCATCTTCTCG 305 GCCTCTTCTCGACGATGCGATTT AAAATCGCATCCACGGGTCAAGGTT 306 GCTTCCGACGATGACCCAT AAAATCGCATCCACGGACAAGGT 307 CCCTCCATGTTCTCGACGATGCGATTTT AAAATCGCATCGTCGAGAAGAGGC 307 CCCTCCATGTTCTCGACGATGCATCTT AAAATCGCATCGTCGAGAAGAGGC 307 CCCTCCATGTTCTCGAACGGTTT AAACCGTTCGAAGAAACAAGGGC 308 TTGATGGGCGGCAATGCTCTTGCT AGCAAGAGACATGAGGGG 309 ATTGTGAGATGCGCAATTCCCC GGGGAATTTCCGCCAACAT 310 TCAGCACACGCCAAACTCTCCCTGCCTGCCTTCACAAT 310 TCAGCACCACCCACAACTTCCCC GGGGAATTTTGCCGCCCATCAA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCAGGCATGCCCAGA 312 TCTGGGCATGCCTGGACGAAACA TATTGTTCCACCAGGGATGCCCAGA 313 TCTCAACTCCTGGGTACGAGAACA TGTTTCCTCCGGAATTGCACAAT 314 TTGCGTGGTCAAAGGCGCAACCTG CACGTTCCACCAGCAATGCCCCAGA 315 AGACAGCGATCCCCGGGCTCATGAT ATCATGAGCCGCGATTGCCCAGA 316 CGCGTCTCTAACTGAGAGAAACA TGTTTCCTCCTCCGGCATTGAGA 317 AGCCGCACATGTCCGGGCTCATGAT ATCATGAGCCGCGGATCGCCTGTT 316 CGCGTCTCAACTGAGGAGAACA TGTTCTCCTCCTTAACCACGCAATACCAGCAGAAACA TGTTTCCTCCTAACTTGAGACCACGCAACTGC CACGTTCCACACTTAACACACGACAATACACACACACACA		291	CGCACCGTAAGTAGATTTGCCCGC	GCGGGCAAATCTACTTACGGTGCG
294 GAACGCCAACGGCACTAACACATC GATGTTAGTGCCGTTCGCGTCGC 295 CCGACAGACCCAAGACGTCCCAG CTGGGACGTCTTGGCTGCTGCG 296 CATAAAAAAACCTGGGGCTCTGCG CGCACAGCCCCAGGTTTTTTATG 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTCTGCAACAGTTGGCA 298 GGCGAAAGAGCAAACCGGCTCGT ACGAGCCGGTCTTCGCC 299 GGGATGCGTATTTTAGCGAACACG CGTGTTCGCTTTCGCC 299 GGGATGCGTATTTTAGCGAACACG CGTGTTCGCTAAAATACGCATCCC 300 TGGGATTCAGCGACCAGTACGCGA TCGCGTAATACGCATCCC 301 CCCGATATTCGCCCAGCCAGTACTCC CGAATAGGCCGGGCGAATATCGGG 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCTGAATCCCA 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCGAATATCGGG 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAATCCCA 303 AACCTTGACCCGTGATCACCAACCAA TTGGTTGCGTGAAGCATCTCCG 305 GCCTCTTCTCGCGAACCAACCAA TTGGTTGCGTGAAGCATCTCCGGAACGAACGAA GGCTAGACGAATGAACGAATGACCAATTACGCATCCACGGGATCAACGAACG		292	TGAACCTTTGAGCACGTCGTGCGC	GCGCACGACGTGCTCAAAGGTTCA
295 CCGACAGCAGCCAAGACGTCCCAG CTGGGACGTCTTGGCTGCTGCGG 296 CATAAAAAACCTGGGGCTCTGCG CGCAGAGCCCCAGGTTTTTTTATG 297 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTCTGCACAGTTGGCA 298 GGCGAAAGACCGGAAACCGGCTCGT ACGAGCCGGTTTCGCTCTTTCGCC 299 GGGATTCAGCACACCAG CGTTTCGCTCAAAATACGCATCCC 300 TGGGATTCAGCGACCAGTTCGC ACGATACGCGA TCGCGTACTCCCA 301 CCCGATATTCGCCGGCCTATTCG CGAATAGGCCGGGCGAATACCGG 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGATCCCA 303 AACCTTGACCCGTGGATGACCAA TTGGTTGCGTGATCCCACGAATACTCGGG 304 GGCTAGACGATGACCAA TTGGTTGCGTGAGCCATCTTCTCG 305 GCCTCTTCTCGACCAACCAA TTGGTTGCGTGAGGCATCTTCTCG 306 GCTTCCGGATGATCCCGTGCC GGCACGGGTATCCACGGGTCAAGGTT 307 CCCTCCATGTTCTCGACGATGCTTT AAAATCGCATCGTCAGCAAGACGC 307 CCCTCCATGTTCTTCGACGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAAACCGTCGCAGAAAACATGGAGGC 309 ATTGTGAGATCGCCAAATTCCCC GGGGAATTTGGCCCCCATCAAT 310 TCAGCACAGCCAAATCCCCC GGGGAATTTGGCCCCCATCAAAT 310 TCAGCACAGCCAAATCCCCC GGGGAATTTGGCCCCCATCAAAT 311 ACTCCACTCCTCGGTGGCCAAACTT AAGTTGACCGTCTGGCTGGCTGA 312 TCTGGGCATGCCTGGACGAACAT TAGTTTCCACCGGAGGATGGCGA 313 TCTCAACTCCGGTGGCAAACAT TAGTTTCCACCGGAGGATGCCCAAA 314 TTGCGTGGTCAAAGGCGCAACACA TGTTTCCACCGGAGGATTGAGA 315 AGACAGCGATCCGCGGCTCAACTT AAGTTGCCCCCTTGACCAGAA 316 CGCGTCTTAACTGAGAGCAACA TGTTTCGTCGTACCGGAGTTGAGA 317 AGCCACATCCCGGGTCAACTT ATCATGAGCCGCCGTTGCTCT 316 CGCGTCTTAACTGAGAGCAGCCA TGGCTCTCCAGTTGACCACCAACGCAA 317 AGGCGACATCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 318 GACAAGCGATCCGCGGCTCATGAT ATCATGACCGCCGGATCGCTGTCT 319 TGATCCAATTTGCGGACGTTGAA TTACACACCACCGACATTAGGACACGCA 319 TGATCCAATTTGCGGACGTTGAA TTACACACCACCGACATTACGACACTCACACTCCCGGAACATTCCCGGACATTCACCGAACATTCCCGGACATTACTGAACACCACCACTCCTCCGGCCCTACACTTCCCGACACATTCCCGGACATTACTGAACCGACATTCACCGAACATTCCCGGACATTACTGAACACCACCACTCCTCCGGCCCTTCAACTTGAACACCCACC	10	293	TCCGCCTTTTTGGTTACCTCGAAG	CTTCGAGGTAACCAAAAAGGCGGA
296		294	GAACGCCAACGGCACTAACACATC	GATGTGTTAGTGCCGTTGGCGTTC
15 TGCCAACTGTGCAGACCGGACTTA TAAGTCCGGTCTGCACAGTTGGCA 298 GGCGAAAGAGCGAAACCGGCTCGT ACGAGCCGGTTTCGCTCTTTCGCC 299 GGGATGCGTATTTTAGCGAACACG CGTGTTCGCTAAAATACGCATCCC 300 TGGGATTCAGCGACCAGTACGCGA TCGCGTACTGGTCGCTGAATCCCA 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCGAATATCGGG 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAGGCATCTCTCG 303 AACCTTGACCCGTGAGTGACGCTA TAGCGTCATCCACAGGGTCAAGGTT 304 GGCTAGACCGTGGATGACCGCTA TAGCGTCATCCACAGGGTCAAGGTT 305 GCCTCTTCTCGACGATGACTACTATCATCATCATCATCATCACCCTGACCACGAACAATACCCGTTCCCCAACCAA		295 .	CCGACAGCAGCCAAGACGTCCCAG	CTGGGACGTCTTGGCTGCTGTCGG
15 298 GGCGAAAGAGCGAAACCGGCTCGT ACGAGCCGGTTTCGCTCTTTCGCC 299 GGGATGCGTATTTTAGCGAACACG CGTGTTCGCTAAAATACGCATCCC 300 TGGGATTCAGCGACCAGTACGCGA TCGCGTACTGGTCGCTGAATCCCA 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGGCGAATATCGGG 302 CGAGAAGATGCCTCACCGAACCAA TTGGTTGCGTGAGCATCTTCTCG 303 AACCTTGACCCGTGGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 304 GGCTAGACGATGACACCCAA TTGGTTGCGTGAGGCATCTTCTCG 305 GCCTCTTCTCGACGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 306 GCTTCCGGATGAACGGATTGTT AAAATCGCATCGTCAGCAAGAGAGGC 307 CCCTCCATGTTCTTCGAACGGTTT AAAACCGTTCGAAGAACAACGAGGC 308 TTGATGGGCCGCAAATTCCCC GGGAAACAACATGAAGGG 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGCCGCCCATCAA 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGCCCATCACAAT 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCAGAGAGGGT 312 TCTGAGCACGGCGAACACTA TAGTTTGCCACCAGGAGTGGAGT		296	CATAAAAAACCTGGGGCTCTGCG	CGCAGAGCCCCAGGTTTTTTATG
299 GGGATGCGTATTTTAGCGAACACG CGTGTTCGCTAAAATACGCATCCC 300 TGGGATTCAGCGACCAGTACGCGA TCGCGTACTGGTCGCTGAATCCCA 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGCGAATATCGGG 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAGGCATCTCTCG 303 AACCTTGACCCGTGGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 304 GGCTAGACCGATGGATGACCCTA TAGCGTCATCCACGGGTCAAGGTT 305 GCCTCTTCTCGACGATGCATTTT AAAATCGCATCGTCTAGCC 306 GCTTCCGGATGAACGGGATTGT CAACCATCCGTTCATCCGGAAGA 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGGCGCAAATGCTCTTGCT AGCAAGAGCATTGCCGCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGAATTTGGCGCCATCAAC 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTTGGCTGACAAT 311 ACTCCACTCCTCGTGGCGAAACAT TAGTTTGCCACCAGAGAGGAGG 312 TCTGAGCAGCCGAAACAT TAGTTTGCCACCGAGGATGCCCAGA 313 TCTCAACTCCGGTGCGAAACAA TGTTTCGTCAGGCATGCCCAGA 314 TTGCGTGGTCAAAGGCGCAAACAA TGTTTCGTCGAGGATTGCGCCAAACAAT 315 AGACAGCGATCCGGGGCTCAACGT CACGTTGCGCCGTTTGACCACGCAA 316 CGCGTCTCTAACTGAGAGCAGACA TGTTTCGTCGAGGATTGCCCCAGA 317 AGGCGCACATGTACGGACGACACACT TGCTCAGGTTGAGAACACACACACACACACACACACACAC		297	TGCCAACTGTGCAGACCGGACTTA	TAAGTCCGGTCTGCACAGTTGGCA
300 TGGGATTCAGCGACCAGTACGCGA TCGCGTACTGGTCGCTGAATCCCA 301 CCCGATATTCGCCCGGCCTATTCG CGAATAGGCCGGCGAATATCGGG 302 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAGGCATCTTCTCG 303 AACCTTGACCCGTGGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 304 GGCTAGACGATGGATACCCGTGCC GGCACGGGTATCCATCGTCTAGCC 305 GCCTCTTCTCGACGATGCATTTT AAAATCGCATCGTCGAGAAGAGGC 306 GCTTCCGGATGAACGGGATTGTT CAACCATCCGTTCATCCGGAAGGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGGCGGCAAATTCCCC GGGGAATTTGGCGCCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGGCGCCCATCAA 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGACAAT 311 ACTCCACTCCTCGGTGGCAAACCA TAGTTTGCCACCGAGGAGGTGAGT 312 TCTGGGCATGCCTGGACGAGACC CGTCTCCGTCCAGGCATGCCCAGA 313 TCTCAACTCCGGTACGACGAACCA TGTTTCGTCAGGCATGCCCAGA 314 TTGCGTGGTCAAAGGCGCAACCT CACGTTGCGCCTTTGACCACCGCAA 315 AGACAGCGATCCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGCT 316 CGCGTCTCTAACTGAGAGCAGCCA TGGCTGCTCTCAGTTAGACCGCG 317 AGGCGCACATGTACGGACAGCCA TGGCTGCTCCAGTCACTGCCTGTCT 318 GATGAGTGGCACGTTCAG CTGAATGTCCGTACATTGAGACCCG 319 TGATCCATATTGCGGACGTTGCC 320 ACCTGCCGGGAGTTCACGC 321 AGCATTGCGGACGTTCCACGACGACGT 322 GGTAATATTCAGCCGCACCCTCA TGACCTCCGTCACATGCT 322 GGTAATATTCAGCCGCGCCCCACCTCATCACTCCGCCGCTGAATATTACCCACCGAAAACCCACCC	15	298	GGCGAAAGAGCGAAACCGGCTCGT	ACGAGCCGGTTTCGCTCTTTCGCC
20 CGAGAAGATGCCTCACGACCAA TIGGTTGCGGGAATATCGGG 302 CGAGAAGATGCCTCACGCAACCAA TIGGTTGCGTGAGGCATCTTCTCG 303 AACCTTGACCCGTGGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 304 GGCTAGACGATGGATACCCGTGCC GGCACGGGTATCCATCGTCTAGCC 305 GCCTCTTCTCGACGATGCGATTTT AAAATCGCATCGTCGAGAAGAGGC 306 GCTTCCGGATGAACGGGATGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 25 308 TTGATGGGCGCAAATTCCCC GGGAATTTGCCGCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGCCGCCCATCAA 301 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGCTGA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		299	GGGATGCGTATTTTAGCGAACACG	CGTGTTCGCTAAAATACGCATCCC
20 CGAGAAGATGCCTCACGCAACCAA TTGGTTGCGTGAGGCATCTTCTCG 303 AACCTTGACCCGTGGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 304 GGCTAGACGATGGATACCCGTGCC GGCACGGGTATCCATCGTCTAGCC 305 GCCTCTTCTCGACGATGCGATTTT AAAATCGCATCGTCGAGAAGAGGC 306 GCTTCCGGATGACGGGATGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGGCGGCAATGCTCTTGCT AGCAAGAACATGGAGGG 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGCCGCCCATCAA 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGACAAT 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGAGT 312 TCTGGGCATGCCTGGACGGAGACG CGTCTCCGTCCAGGCATGCCCAGA 313 TCTCAACTCCGGTACGACGAACAA TGTTTCGTCGTCCAGCATGCCCAGA 314 TTGCGTGGTCAAAGGCGCAACGT CACGTTGCGCCTTTGACACGCAA 315 AGACAGCGATCCCCGGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 316 CGCGTCTCTAACTGAGAGCAGCAC TGGCTGCTCTCAGTTAACACACGCG 317 AGGCGCACATGTACGGACGACACA TGGCTGCTCCAGCACTCCT 318 GATGAGTGGCACGTGCCAGCCA TGGCTGCCTACATCCCGCGCTTCAACTCACACCCACCCAC		300	TGGGATTCAGCGACCAGTACGCGA	TCGCGTACTGGTCGCTGAATCCCA
20 303 AACCTTGACCGTGGATGACGCTA TAGCGTCATCCACGGGTCAAGGTT 304 GGCTAGACGATGGATACCCGTGCC GGCACGGGTATCCATCGTCTAGCC 305 GCCTCTTCTCGACGATGCGATTTT AAAATCGCATCGTCGAGAAGAGGC 306 GCTTCCGGATGAACGGGATGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGGCGGCAATGCTCTTGCT AGCAAGAACATGGAGGG 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGCCGCCCATCAA 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGACAAT 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGAGT 312 TCTGGGCATGCCTGGACGAGACG CGTCTCCGTCCAGGCATGCCCAGA 313 TCTCAACTCCGGTACGACGAACA TGTTTCGTCGTCCAGCATGCCCAGA 314 TTGCGTGGTCAAAGGCGCAACCAT CACGTTGCGCCTTTGACCACGCAA 315 AGACAGCGATCCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 316 CGCGTCTCTAACTGAGAGCAGCAC 317 AGGCGCACATGTACGGACAACA TGTTTCGTCGTCCTCAGTTAGAGACGCG 317 AGGCGCACATGTACGGACAATTCAG CTGAATGTCCGTACATGTCCCT 318 GATGAGTGGCACGTGGTGTAA TTACATCAGACCGCACTCATC 319 TGATCCATATTGTCGGACGTTGCC CGCAACGTCCCACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACACCGACGTGCCACATCATC 321 AGCATTGCGGTTTTTCCGCAACGA TCGTTGCGGCAAAAACCCCAACGTCCAACTCCAGCAGTTTCAACTGCGCAATTTCCGCAACGTTCCAACTATATGGATCA 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGCAAAAAACCCCAAGTTCCCGGCAGGT 322 GGTAATATTCAGCGGACCACGCC TGAGCTCACCTCGTCGTACATTTACCC 40 323 ATAGCGTACGACGAGGTGACGCC GCCGCTCACCTCCGTCGTACATATTACCC		301	CCCGATATTCGCCCGGCCTATTCG	CGAATAGGCCGGGCGAATATCGGG
304 GGCTAGACGATGGATACCCGTGCC GGCACGGGTATCCATCGTCTAGCC 305 GCCTCTTCTCGACGATGCGATTTT AAAATCGCATCGTCGAGAAGAGGC 306 GCTTCCGGATGAACGGGATGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGCGGCAATGCTCTTGCT AGCAAGAGCATTGCCGCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGCCGCCCATCACAT 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGGAGT 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		302	CGAGAAGATGCCTCACGCAACCAA	TTGGTTGCGTGAGGCATCTTCTCG
305 GCCTCTTCTCGACGATGCGATTTT AAAATCGCATCGTCGAGAAGAGGC 306 GCTTCCGGATGAACGGGATGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGGCGGCAATGCTCTTGCT AGCAAGAGCATTGCCGCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGGCGCATCTCACAAT 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGCTGA 311 ACTCCACTCCTCGGTGGCAAACCA TAGTTTGCCACCGAGGAGTGGAGT	20	303	AACCTTGACCCGTGGATGACGCTA	TAGCGTCATCCACGGGTCAAGGTT
306 GCTTCCGGATGAACGGGATGGTTG CAACCATCCCGTTCATCCGGAAGC 307 CCCTCCATGTTCTTCGAACGGTTT AAACCGTTCGAAGAACATGGAGGG 308 TTGATGGGCGGCAATGCTCTTGCT AGCAAGAGCATTGCCGCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGCCGCCATCACAT 310 TCAGCACAGCCGGTCAACTT AAGTTGACCGTCTGGCTGTGCTGA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		304	GGCTAGACGATGGATACCCGTGCC	GGCACGGGTATCCATCGTCTAGCC
25 308 TTGATGGGCGCAATGCTCTTGCT AGCAAGAGCATTGCCGCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGGCGCCCATCACAT 310 TCAGCACAGCCAGACGTCAACTT AAGTTGACCGTCTGGCTGGTGGTGA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		305	GCCTCTTCTCGACGATGCGATTTT	AAAATCGCATCGTCGAGAAGAGGC
25 308 TTGATGGCGGCAATGCTCTTGCT AGCAAGAGCATTGCCGCCCATCAA 309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGGCGCCCATCAAT 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGGCTGA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		306	GCTTCCGGATGAACGGGATGGTTG	CAACCATCCCGTTCATCCGGAAGC
309 ATTGTGAGATGCGCCAAATTCCCC GGGGAATTTGGCGCATCTCACAAT 310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGACTGA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		307	CCCTCCATGTTCTTCGAACGGTTT	AAACCGTTCGAAGAACATGGAGGG
310 TCAGCACAGCCAGACGGTCAACTT AAGTTGACCGTCTGGCTGTGCTGA 311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT	25	308	TTGATGGGCGGCAATGCTCTTGCT	AGCAAGAGCATTGCCGCCCATCAA
311 ACTCCACTCCTCGGTGGCAAACTA TAGTTTGCCACCGAGGAGTGGAGT		309	ATTGTGAGATGCGCCAAATTCCCC	GGGGAATTTGGCGCATCTCACAAT
312 TCTGGGCATGCCTGGACGAGACG CGTCTCCGTCCAGGCATGCCCAGA 313 TCTCAACTCCGGTACGACGAAACA TGTTTCGTCGTACCGGAGTTGAGA 314 TTGCGTGGTCAAAGGCGCAACGTG CACGTTGCGCCTTTGACCACGCAA 315 AGACAGCGATCCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 316 CGCGTCTCTAACTGAGAGCAGCCA TGGCTGCTCTCAGTTAGAGACGCG 317 AGGCGCACATGTACGGACATTCAG CTGAATGTCCGTACATGTGCGCCT 318 GATGAGTGGCACGTCGGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCCG GCGCGTCACCTCATC		310	TCAGCACAGCCAGACGGTCAACTT	AAGTTGACCGTCTGGCTGTGCTGA
313 TCTCAACTCCGGTACGACGAAACA TGTTTCGTCGTACCGGAGTTGAGA 314 TTGCGTGGTCAAAGGCGCAACGTG CACGTTGCGCCTTTGACCACGCAA 315 AGACAGCGATCCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 316 CGCGTCTCTAACTGAGAGCAGCCA TGGCTGCTCTCAGTTAGAGACGCG 317 AGGCGCACATGTACGGACATTCAG CTGAATGTCCGTACATGTGCGCCT 318 GATGAGTGGCACGTCGGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCC GCGCGCTCACCTCATC		311	ACTCCACTCCTCGGTGGCAAACTA	TAGTTTGCCACCGAGGAGTGGAGT
314 TTGCGTGGTCAAAGGCGCAACGTG CACGTTGCGCCTTTGACCACGCAA 315 AGACAGCGATCCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 316 CGCGTCTCTAACTGAGAGCAGCCA TGGCTGCTCTCAGTTAGAGACGCG 317 AGGCGCACATGTACGGACATTCAG CTGAATGTCCGTACATGTGCGCCT 318 GATGAGTGGCACGTCGGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCC GCGCGTCACCTCATC		312	TCTGGGCATGCCTGGACGGAGACG	CGTCTCCGTCCAGGCATGCCCAGA
315 AGACAGCGATCCGCGGCTCATGAT ATCATGAGCCGCGGATCGCTGTCT 316 CGCGTCTCTAACTGAGAGCAGCCA TGGCTGCTCTCAGTTAGAGACGCG 317 AGGCGCACATGTACGGACATTCAG CTGAATGTCCGTACATGTGCGCCT 318 GATGAGTGGCACGTCGGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCC GCGCGTCACCTCGTCGTACGCTAT	30	313	TCTCAACTCCGGTACGACGAAACA	TGTTTCGTCGTACCGGAGTTGAGA
316 CGCGTCTCTAACTGAGAGCAGCCA TGGCTGCTCTCAGTTAGAGACGCG 317 AGGCGCACATGTACGGACATTCAG CTGAATGTCCGTACATGTGCGCCT 318 GATGAGTGGCACGTCGGTGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCC GCGCTCACCTCGTCGTACGCTAT		314	TTGCGTGGTCAAAGGCGCAACGTG	CACGTTGCGCCTTTGACCACGCAA
317 AGGCGCACATGTACGGACATTCAG CTGAATGTCCGTACATGTGCGCCT 318 GATGAGTGGCACGTCGGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCC GCGCTCACCTCGTCGTACGCTAT		315	AGACAGCGATCCGCGGCTCATGAT	ATCATGAGCCGCGGATCGCTGTCT
318 GATGAGTGGCACGTCGGTGTAA TTACACACCGACGTGCCACTCATC 319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCG GCGCGTCACCTCGTCGTACGCTAT		316	CGCGTCTCTAACTGAGAGCAGCCA	TGGCTGCTCTCAGTTAGAGACGCG
319 TGATCCATATTGTCGGACGTTGCG CGCAACGTCCGACAATATGGATCA 320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCG GCGCGTCACCTCGTCGTACGCTAT		317	AGGCGCACATGTACGGACATTCAG	CTGAATGTCCGTACATGTGCGCCT
320 ACCTGCCGGGAGTTCATAGGCTAG CTAGCCTATGAACTCCCGGCAGGT 321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCGC GCGCGTCACCTCGTCGTACGCTAT	35	318	GATGAGTGGCACGTCGGTGTGTAA	TTACACACCGACGTGCCACTCATC
321 AGCATTGGCGTTTTTCCGCAACGA TCGTTGCGGAAAAACGCCAATGCT 322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCGC GCGCGTCACCTCGTCGTACGCTAT		319	TGATCCATATTGTCGGACGTTGCG	CGCAACGTCCGACAATATGGATCA
322 GGTAATATTCAGCGCGACCGCTCA TGAGCGGTCGCGCTGAATATTACC 40 323 ATAGCGTACGACGAGGTGACGCGC GCGCGTCACCTCGTCGTACGCTAT		320	ACCTGCCGGGAGTTCATAGGCTAG	CTAGCCTATGAACTCCCGGCAGGT
40 323 ATAGCGTACGACGAGGTGACGCGC GCGCGTCACCTCGTCGTACGCTAT		321	AGCATTGGCGTTTTTCCGCAACGA	TCGTTGCGGAAAAACGCCAATGCT
		322	GGTAATATTCAGCGCGACCGCTCA	TGAGCGGTCGCGCTGAATATTACC
324 TAGGTCACGATGCGTTTGACGCTA TAGCGTCAAACGCATCGTGACCTA	40	323	ATAGCGTACGACGAGGTGACGCGC	GCGCGTCACCTCGTCGTACGCTAT
		324	TAGGTCACGATGCGTTTGACGCTA	TAGCGTCAAACGCATCGTGACCTA

	325	ACTGCCCGTACCTCTGGTTCTGGC	GCCAGAACCAGAGGTACGGGCAGT
	326	CCTTTGGCCTGAAGTTGTCGTAGC	GCTACGACAACTTCAGGCCAAAGG
	327	GTGCCCACGAGCGTATCGTTGTA	TACAACGATACGCTCGTGGGGCAC
	328	AGGCGCTACGTGGGCCTGGAGCAA	TTGCTCCAGGCCCACGTAGCGCCT
5	329	GGGTGCTACCATTGCATTAGTCCG	CGGACTAATGCAATGGTAGCACCC
	330	ACCACGCGCGTACGTGTAACCGAG	CTCGGTTACACGTACGCGCGTGGT
	331	CCATGATGCATTGGGTGCATTTAG	CTAAATGCACCCAATGCATCATGG
	332	GGTCCGGCCCTACGAAACGTTCGA	TCGAACGTTTCGTAGGGCCGGACC
	333	CCGTGTGGCTGGAGATTCGTGTGA	TCACACGAATCTCCAGCCACACGG
10	334	GTTAGGGCGACGCATATTGGCACA	TGTGCCAATATGCGTCGCCCTAAC
	335	GGGTCAGTCAGGTGCGTTAGGATC	GATCCTAACGCACCTGACTGACCC
	336	GCCGTGAAGTCGAATGCAGATCGA	TCGATCTGCATTCGACTTCACGGC
	337	GCCACCACCAGTGCATTCAGGTA	TACCTGAATGCACTGGGTGGTGGC
	338	GAGCTTAGTTTGCGGTCATCGGGC	GCCCGATGACCGCAAACTAAGCTC
15	- 339	TGTTTGCCGCCATTAGGGAGTAAC	GTTACTCCCTAATGGCGGCAAACA
	340	GCTCCGCTGGATGTGCCGGTTTAG	CTAAACCGGCACATCCAGCGGAGC
	341	CGGTAGCATGCGAGATCCCTGTTA	TAACAGGGATCTCGCATGCTACCG
	342	CTACGCTCTACCAGTTGCCTGCGA	TCGCAGGCAACTGGTAGAGCGTAG
	343	GTGCCTCCTGCTGTATTTGCCAAG	CTTGGCAAATACAGCAGGAGGCAC
20	344	TTGCGACTCGACTTGGACGAGTAG	CTACTCGTCCAAGTCGAGTCGCAA
	345	TCTGGGAGCTGTTTACTCCAGCCA	TGGCTGGAGTAAACAGCTCCCAGA
	346	TGCACGCGGAACTCCCTTTACCAT	ATGGTAAAGGGAGTTCCGCGTGCA
	347	TGGCAGCAAATGAATCGAAAGCAC	GTGCTTTCGATTCATTTGCTGCCA
	348	AACTGGTGACGCGGTACAGCGAAG	CTTCGCTGTACCGCGTCACCAGTT
25	349	AGACGATTACGCTGGACGCCGTCG	CGACGGCGTCCAGCGTAATCGTCT
	350	ATGCCCTCCTTCATGGAAAGGGTT	AACCCTTTCCATGAAGGAGGGCAT
	351	ATTCTCGGAGCGTATGCGCCAGAA	TTCTGGCGCATACGCTCCGAGAAT
	352	ATAGCGGAGTTTGGGTACGCGAAC	GTTCGCGTACCCAAACTCCGCTAT
	353	ACCTACGCATACCGCTTGGCGAGG	CCTCGCCAAGCGGTATGCGTAGGT
30	354	GATTACCTGAATGGCCAAGCGAGC	GCTCGCTTGGCCATTCAGGTAATC
	355	CCTGTTAGCATCACGGCGCTTAGG	CCTAAGCGCCGTGATGCTAACAGG
	356	CGGAATGATGCGCTCGACAACGCT	AGCGTTGTCGAGCGCATCATTCCG
	357	TGAGAGAGGCGTTGGTTAAGGCAA	TTGCCTTAACCAACGCCTCTCTCA
	358	AAGCAGGCGAAGGGATACTCCTCG	CGAGGAGTATCCCTTCGCCTGCTT
35	359	TCACGACAGACGGGCCGAGATTAC	GTAATCTCGGCCCGTCTGTCGTGA
	360	AAGCAATTTGGCCTCGTTTTGTGA	TCACAAAACGAGGCCAAATTGCTT
ĺ	361	GCTGGTTGCGGTAGGATCGCATAT	ATATGCGATCCTACCGCAACCAGC
. [362	TTGTGAATCCGTTCTGTCCCCGAC	GTCGGGGACAGAACGGATTCACAA
ļ	363	TGGGCTCCTCTGAGGCGAGATGGC	GCCATCTCGCCTCAGAGGAGCCCA
40	364	GGATAGAGTGAATCGACCGGCAAC	GTTGCCGGTCGATTCACTCTATCC
l	365	TGCACCGAACGTGCACGAGTAATT	AATTACTCGTGCACGTTCGGTGCA

	366	GCCAGTATTCTCGGGTGTTGGACG	CGTCCAACACCCGAGAATACTGGC
	367	TCGCTACCTAAGACCGGGCCATAC	GTATGGCCCGGTCTTAGGTAGCGA
	368	TGGCATTGACGAGCAGCAGTCAGT	ACTGACTGCTGCTCAATGCCA
	369	CGCGTCCCAGCGCCCTTGGAGTAT	ATACTCCAAGGGCGCTGGGACGCG
5	370	ATGAAGCCTACCGGGCGACTTCGT	ACGAAGTCGCCCGGTAGGCTTCAT
	371	CCAGACAGATGGCCTGGAACCATG	CATGGTTCCAGGCCATCTGTCTGG
	372	TGGCGTGGGACCATCTCAAAGCTA	TAGCTTTGAGATGGTCCCACGCCA
	373	CCGCATGGGAACACGTGTCAAGGT	ACCTTGACACGTGTTCCCATGCGG
	374	GCCCACTCGTCAGCTGGACGTAAT	ATTACGTCCAGCTGACGAGTGGGC
10	375	ATTACGGTCGTGATCCAGAAAGCG	CGCTTTCTGGATCACGACCGTAAT
	376	TGCGAGGTGAGCACCTACGAGAGA	TCTCTCGTAGGTGCTCACCTCGCA
	377	GGGCCGCATTCTTGATGTCCATTC	GAATGGACATCAAGAATGCGGCCC
	378	CCTCGGATGTGGGCTCTCGCCTAG	CTAGGCGAGAGCCCACATCCGAGG
•	379	TAGGCATGTTGGCGTGAGCGCTAT	ATAGCGCTCACGCCAACATGCCTA
15	380	CGATACGAACGAGGATGTCCGCCT	AGGCGGACATCCTCGTTCGTATCG
	381	TACGCCGGTTAGCACGGTGCGCTA	TAGCGCACCGTGCTAACCGGCGTA
	382	CATACGATGTCCGGGCCGTGTCGC	GCGACACGGCCCGGACATCGTATG
	383	ATCCGCAGTTGTATGGCGCGTTAT	ATAACGCGCCATACAACTGCGGAT
	384	GGGTAAGGGACAAAGATGGGATGG	CCATCCCATCTTTGTCCCTTACCC
20	385	ATTGGAGTGTTTTGGTGAATCCGC	GCGGATTCACCAAAACACTCCAAT
	386	GAACCGAGCCAACGTATGGACACG	CGTGTCCATACGTTGGCTCGGTTC
	387	GCCGTCAAGCTTAAGGTTTTGGGC	GCCCAAAACCTTAAGCTTGACGGC
•	388	ACCTGCTTTTGGGTGGGTGATATG	CATATCACCCACCCAAAAGCAGGT
	389	AATCGTGGGCGCAGCAAACGTATA	TATACGTTTGCTGCGCCCACGATT
25	390	GTCGCCGGATTGCTCAGTATAAGC	GCTTATACTGAGCAATCCGGCGAC
	391	ACCCGTCGATGCTTCCTCCTCAGA	TCTGAGGAGGAAGCATCGACGGGT
	392	ATCCGGGTGGGCGATACAAGAGAT	ATCTCTTGTATCGCCCACCCGGAT
	393	TTCCGCATGAGTCAGCTTTGAAAA	TTTTCAAAGCTGACTCATGCGGAA
	394	GCAAAGTCCCACTGGCAAGCCGAT	ATCGGCTTGCCAGTGGGACTTTGC
30	395	CGACCTCGGCTTCATCGTACACAT	ATGTGTACGATGAAGCCGAGGTCG
	396	CTCATGAGCGCAGTTGTGCGTGAG	CTCACGCACAACTGCGCTCATGAG
	397	CAGATGAAGGATCCACGGCCGGAG	CTCCGGCCGTGGATCCTTCATCTG
	398	TCAAAGGCTCTTGGATACAGCCGT	ACGGCTGTATCCAAGAGCCTTTGA
	399	TCCGCTAATTTCCAATCAGGGCTC	GAGCCCTGATTGGAAATTAGCGGA
35	400	ACGCACGGCGCTTTTGCCTTAATG	CATTAAGGCAAAAGCGCCGTGCGT
	401	TGACAACGTCACAAGGAGCAGGAC	GTCCTGCTCCTTGTGACGTTGTCA
	402	CTTAGTTGGGGCGCGGTATCCAGA	TCTGGATACCGCGCCCCAACTAAG
	403	GCTCTAATGCCGTGGAGTCGGAAC	GTTCCGACTCCACGGCATTAGAGC
	404	CCGATTACAAATTGACTGACCGCA	TGCGGTCAGTCAATTTGTAATCGG
40	405	AGACGTACGTGAGCCTCCCGTGTC	GACACGGGAGGCTCACGTACGTCT
	406	AATGGAGCGATACGATCCAACGCA	TGCGTTGGATCGTATCGCTCCATT

	407	GGAGGCGCTGTACTGATAGGCGTA	TACGCCTATCAGTACAGCGCCTCC
	408	TGTTTTGAATTGACCACACGGGA	TCCCGTGTGGTCAATTCAAAAACA
	409	CATGTCTGGATGCGCTCAATGAAG	CTTCATTGAGCGCATCCAGACATG
	410	GCCCGCTAATCCGACACCCAGTTT	AAACTGGGTGTCGGATTAGCGGGC
5	411	CCATTGACAGGAGAGCCATGAGCC	GGCTCATGGCTCTCCTGTCAATGG
	412	GAATCACCGAATCACCGACTCGTT	AACGAGTCGGTGATTC
	413	AACCAGCCGCAGTAGCTTACGTCG	CGACGTAAGCTACTGCGGCTGGTT
	414	TTTTCTGAGGGACACGCGGGCGTT	AACGCCCGCGTGTCCCTCAGAAAA
	415	GGTGCTCCGTTTGATCGATCCTCC	GGAGGATCGATCAAACGGAGCACC
10	416	CCGCTTAGGCCATACTCTGAGCCA	TGGCTCAGAGTATGGCCTAAGCGG
	417	TAAGACATACCGACGCCCTTGCCT	AGGCAAGGGCGTCGGTATGTCTTA
	418	GTTCCCGACGCCAGTCATTGAGAC	GTCTCAATGACTGGCGTCGGGAAC
	419	TAAAAGTTTCGCGGAGGTCGGGCT	AGCCCGACCTCCGCGAAACTTTTA
	420	CGGTCCAGACGAGCTGAGTTCGGC	GCCGAACTCAGCTCGTCTGGACCG
15	421	CGGCGTAGCGGCTACGGACTTAAA	TTTAAGTCCGTAGCCGCTACGCCG
	422	GCTTGGATGCCCATGCGGCAAGGT	ACCTTGCCGCATGGGCATCCAAGC
	423	AGCGGGATCCCAGAGTTTCGAAAA	TTTTCGAAACTCTGGGATCCCGCT
	424	GAGCTTGAGAGCGAGGTCATCCTC	GAGGATGACCTCGCTCTCAAGCTC
	425	GCATCGGCCGTTTTGACCATATTC	GAATATGGTCAAAACGGCCGATGC
20	426	CATAGCGCTGCACGTTTCGACCGC	GCGGTCGAAACGTGCAGCGCTATG
	427	ACCCGACAACCACCAATTCAAAAA	TTTTTGAATTGGTGGTTGTCGGGT
	428	GCGAACACTCATAAGAGCGCCCTG	CAGGGCGCTCTTATGAGTGTTCGC
	429	CCGCCGAGTGTAGAGAGACTCCGA	TCGGAGTCTCTCTACACTCGGCGG
	430	GACATCGGGAGCCGGAAACATGAG	CTCATGTTTCCGGCTCCCGATGTC
25	431	TCGTGTAGACTCGGCGACAGGCGT	ACGCCTGTCGCCGAGTCTACACGA
	432	ATGCGCATATACTGACTGCGCAGG	CCTGCGCAGTCAGTATATGCGCAT
	433	ACAAGCGAACCCGAGTTTTGATGA	TCATCAAAACTCGGGTTCGCTTGT
	434	GCATGAGACTCCGCGAAGACATGT	ACATGTCTTCGCGGAGTCTCATGC
	435	TCCTACATGTCGCGTCACGATCAC	GTGATCGTGACGCGACATGTAGGA
30	436	GACCGATCGCGAAGTCGTACACAT	ATGTGTACGACTTCGCGATCGGTC
	437	GTCGCCAGGACTGGGCCGATGTGA	TCACATCGGCCCAGTCCTGGCGAC
	438	ACCGATAAGACTTGCATCCGAACG	CGTTCGGATGCAAGTCTTATCGGT
	439	TCCATAACCAGTCCGAAGTGCCGG	CCGGCACTTCGGACTGGTTATGGA
	440	ACGCGCCCTGCATCTCGTATTTAA	TTAAATACGAGATGCAGGGCGCGT
35	441	AGACCGCATCAATTGGCGCGTACC	GGTACGCGCCAATTGATGCGGTCT
	442	AGAGGCTTGGCAAGTAGGGACCCT	AGGGTCCCTACTTGCCAAGCCTCT
	443	GCAATGGACGCCAGACGATACCGG	CCGGTATCGTCTGGCGTCCATTGC
	444	GCTGGACTTAGTCGTGTTCGGCGG	CCGCCGAACACGACTAAGTCCAGC
	445	AGGCATCGTGCCGGATTGCTCCCT	AGGGAGCAATCCGGCACGATGCCT
40	446	TGCGCATGTCGACGTTGAACAAAG	CTTTGTTCAACGTCGACATGCGCA
	447	TTCGGGTCACATCCGATGCCATAC	GTATGGCATCGGATGTGACCCGAA

	448	ACCCATCGCCGGAAAGCGATGTTG	CAACATCGCTTTCCGGCGATGGGT
	449	AAGCGCTGACTCGGCTAAGAATCA	TGATTCTTAGCCGAGTCAGCGCTT
	450	ACTTCCAAGTCCTTGACCGTCCGA	TCGGACGGTCAAGGACTTGGAAGT
	451	TCTCAATATTCCCGTAGTCGCCCA	TGGGCGACTACGGGAATATTGAGA
5	452	AACAGTTCCTCTTTTTCCTGGCGC	GCGCCAGGAAAAAGAGGAACTGTT
	453	CGTCCTCCATGTTGTCACGAACAG	CTGTTCGTGACAACATGGAGGACG
	454	TGCGCAGACCTACCTGTCTTTGCT	AGCAAAGACAGGTAGGTCTGCGCA
	455	ATGGACGGCTTCGCAGTCCTCCTT	AAGGAGGACTGCGAAGCCGTCCAT
	456	TGAACGCTTTCTATGGGCCACGTA	TACGTGGCCCATAGAAAGCGTTCA
10	457	TGAACCCTGCCGCGAGCGATAACC	GGTTATCGCTCGCGGCAGGGTTCA
	458	GTTCTTGCGCGATGAATCAGGACC	GGTCCTGATTCATCGCGCAAGAAC
	459	AGGGTACGTGTCGCAGCTTCGCGT	ACGCGAAGCTGCGACACGTACCCT
	460	ACCCTTGCTCCGCCATGTCTCTCA	TGAGAGACATGGCGGAGCAAGGGT
	461	GGGACAAGGATTGAAGCTGGCGTC	GACGCCAGCTTCAATCCTTGTCCC
15	462	TGTCGTTGCTCCCGAGTACCATTG	CAATGGTACTCGGGAGCAACGACA
	463	GTTGTCCGAGACGTTTGTGTCAGC	GCTGACACAACGTCTCGGACAAC
	464	GCTGGTGAACACTCACGAACCGCT	AGCGGTTCGTGAGTGTTCACCAGC
	465	GCAGACAGGGCAAATCGGTGCAAA	TTTGCACCGATTTGCCCTGTCTGC
	466	CCCATCACAACGAGTGGCGACTTT	AAAGTCGCCACTCGTTGTGATGGG
20	467	GCTTCTACAGCTGGCGTGCTAGCG	CGCTAGCACGCCAGCTGTAGAAGC
	468	GAATGTGTGCCGACCATTCTAGCC	GGCTAGAATGGTCGGCACACATTC
	469	CCAGCGGAAGTTAGAGCTCTGTGG	CCACAGAGCTCTAACTTCCGCTGG
	470	TTTTTACCGACCACTCCATGTCGG	CCGACATGGAGTGGTCGGTAAAAA
	471	GCGGCTATGTGATGACGGCCTAGC	GCTAGGCCGTCATCACATAGCCGC
25	472	AGTACACGGGCGTGTTAGCGCTCC	GGAGCGCTAACACGCCCGTGTACT
	473	TCCTGTGTGGTGGCGCACTCCCAC	GTGGGAGTGCGCCACACACAGGA
	474	CCAACTAACCAATCGCGCGGATGA	TCATCCGCGCGATTGGTTAGTTGG
	475	AGTGAGTGACCAAGGCAGGAGCAA	TTGCTCCTGCCTTGGTCACTCACT
	476	CATCTTTCGCGGAGTTTATTGCGG	CCGCAATAAACTCCGCGAAAGATG
30	477	CTTCGTCCGGTTAGTGCGACAGCA	TGCTGTCGCACTAACCGGACGAAG
	478	CTCACGAAAACGTGGGCCCGAAAT	ATTTCGGGCCCACGTTTTCGTGAG
	479	CGCAGCAGCTGAACTCTAGCATTG	CAATGCTAGAGTTCAGCTGCTGCG
	480	AGGAGACATACGCCCAAATGGTGC	GCACCATTTGGGCGTATGTCTCCT
	481	ATTGAGAACTCGTGCGGGAGTTTG	CAAACTCCCGCACGAGTTCTCAAT
35	482	CTCTTTGTAGGCCCAGGAGGAGCA	TGCTCCTCGGGCCTACAAAGAG
	483	GCCGCAGGGTCGATAATTGGTCTA	TAGACCAATTATCGACCCTGCGGC
	484	AAACGCCGCCCTGAGACTATTGGG	CCCAATAGTCTCAGGGCGGCGTTT
	485	CTGAGTTGCCTGGAACGTTGGACT	AGTCCAACGTTCCAGGCAACTCAG
	486	CGGATGGGTTGCAGAGTATGGGAT	ATCCCATACTCTGCAACCCATCCG
40	487	CTGACCTTTGGGGGTTAGTGCGGT	ACCGCACTAACCCCCAAAGGTCAG
	488	GGAAATGAGAACCTTACCCCAGCG	CGCTGGGGTAAGGTTCTCATTTCC

	489	AACGCATCGTCCGTCAACTCATCA	TGATGAGTTGACGGACGATGCGTT
	490	TGGAGAGAGACTTCGGCCATTGTT	AACAATGGCCGAAGTCTCTCTCA
	491	TTGCGCTCATTGGATCTTGTCAGG	CCTGACAAGATCCAATGAGCGCAA
	492	AGCGCGTTAAAGCACGGCAACATT	AATGTTGCCGTGCTTTAACGCGCT
5	493	AGCCAGTAAACTGTGGGCGGCTGT	ACAGCCGCCCACAGTTTACTGGCT
	494	CGACTGATGTGCAACCAGCAGCTG	CAGCTGCTGGTTGCACATCAGTCG
	495	GGTTGCTCATACGACGAGCGAGTG	CACTCGCTCGTCGTATGAGCAACC
	496	GCGCAAATCCACGGAACCCGTACC	GGTACGGGTTCCGTGGATTTGCGC
	497	ACGCAGTTTATTCCCCTGGCTTCT	AGAAGCCAGGGGAATAAACTGCGT
10	498	AGAACCTCCGCGCCTCCGTAGTAG	CTACTACGGAGGCGCGGAGGTTCT
	499	AAAGGAGCTTTCGCCCAACGTACC	GGTACGTTGGGCGAAAGCTCCTTT
	500	AGTGATTGTGCCACTCCACAGCTC	GAGCTGTGGAGTGGCACAATCACT
	501	GCGATCGTCGAGGGTTGAGCTGAA	TTCAGCTCAACCCTCGACGATCGC
	502	GGGAGACAGCCATTATGGTCCTCG	CGAGGACCATAATGGCTGTCTCCC
15	503	GAGACGCTGTCACTCCGGCAGAAC	GTTCTGCCGGAGTGACAGCGTCTC
	504	CCACCGGTCGCTTAAGATGCACTT	AAGTGCATCTTAAGCGACCGGTGG
	505	CGGCATAACGTCCAGTCCTGGGAC	GTCCCAGGACTGGACGTTATGCCG
	506	AAGCGGAACGGGTTATACCGAGGT	ACCTCGGTATAACCCGTTCCGCTT
	507	TGCACACTAGGTCCGTCGCTTGAT	ATCAAGCGACGGACCTAGTGTGCA
20	508	AGGGAACCGCGTTCAAACTCAGTT	AACTGAGTTTGAACGCGGTTCCCT
	509	GAATTACAACCACCCGCTCGTGTT	AACACGAGCGGGTGGTTGTAATTC
	510	TTCAGTGCTCACGAAGCATGGATT	AATCCATGCTTCGTGAGCACTGAA
	511	TTAGTTTGGCGTTGGGACTTCACC	GGTGAAGTCCCAACGCCAAACTAA
	512	AATGCGACCTCGACGAGCCTCATA	TATGAGGCTCGTCGAGGTCGCATT
25	513	CCGAAACCGTTAACGTGGCGCACA	TGTGCGCCACGTTAACGGTTTCGG
	514	TAAAGTAACAAGGCGACCTCCCGC	GCGGGAGGTCGCCTTGTTACTTTA
	515	TAATGATTTTAGTCGCGGGGTGGG	CCCACCCGCGACTAAAATCATTA
	516	GGCTACTCTAAGTGCCCGCTCAGG	CCTGAGCGGGCACTTAGAGTAGCC
	517	TGGCGGACGACTCAATATCTCACG	CGTGAGATATTGAGTCGTCCGCCA
30	518	GGGCGTTAGGCGTAATAGACCGTC	GACGGTCTATTACGCCTAACGCCC
	519	GCCACCTTTAGACGGCGGCTCTAG	CTAGAGCCGCCGTCTAAAGGTGGC
	520	GAGATGTGTAAACGTGCAGGCACC	GGTGCCTGCACGTTTACACATCTC
	521	TAGCTCGTGGCCCTCCAAGCGTGT	ACACGCTTGGAGGGCCACGAGCTA
	522	GTGTCGGCGCTATTTGGCCTTACC	GGTAAGGCCAAATAGCGCCGACAC
35	523	CCAGGGAAGCAACTGGTTGCCATT	AATGGCAACCAGTTGCTTCCCTGG
	524	TTCCGAAACTAAGCCAGAACCGCT	AGCGGTTCTGGCTTAGTTTCGGAA
	525	GCAAACCCGGTAACCCGAGAGTTC	GAACTCTCGGGTTACCGGGTTTGC
	526	GCAAATGGCGTCATGCACGAACGT	ACGTTCGTGCATGACGCCATTTGC
	527	AGTACTTTCGCGCCCAGTTTAGGG	CCCTAAACTGGGCGCGAAAGTACT
40	528	AAGATCTGCGAGGCATCCCGGCTT	AAGCCGGGATGCCTCGCAGATCTT
	529	GCAAGTGTATCGCACAGTGCGATT	AATCGCACTGTGCGATACACTTGC

Ć

ſ	530	CCGACAAGGCCTCAATTCATTCTG	CAGAATGAATTGAGGCCTTGTCGG
j	531	GTCTCGTCTCAACTTTAAGGCGCG	CGCGCCTTAAAGTTGAGACGAGAC
	532	ATCCAGAGATCCGTTTTGCAGCGT	ACGCTGCAAAACGGATCTCTGGAT
	533	GTCACCAGGAGGGAAGTTTCACCC	GGGTGAAACTTCCCTCCTGGTGAC
5	534	TTCCGTCAGGCGGATCAACGGAAT	ATTCCGTTGATCCGCCTGACGGAA
ĺ	535	ATGCCGGACACGCATTACACAGGC	GCCTGTGTAATGCGTGTCCGGCAT
	536	TGGGCCGCTTGGCGCTTTCATAGA	TCTATGAAAGCGCCAAGCGGCCCA
	537	CCTAGCGCGAGCTTTACTGACCAG	CTGGTCAGTAAAGCTCGCGCTAGG
	538	TTGGCCAGGAATATGGTCTCGAGA	TCTCGAGACCATATTCCTGGCCAA
10	539	GTCTGCGGCCGACTTGCTATGCAT	ATGCATAGCAAGTCGGCCGCAGAC
	540	AACTTGCTCATTCTCAAGCCGACG	CGTCGGCTTGAGAATGAGCAAGTT
	541	ACGTCAGCGATTGTGGCGAAATAT	ATATTTCGCCACAATCGCTGACGT
	542	ACGGCCTGCGTCAGCACATGCATC	GATGCATGTGCTGACGCAGGCCGT
	543	ATACCTCCGCAGAACCATTCCGTT	AACGGAATGGTTCTGCGGAGGTAT
15	544	AGTTCGCGGTCCCACGATTCACTT	AAGTGAATCGTGGGACCGCGAACT
	545	TGCTCAATTTGTGCAGAAAACGCC	GGCGTTTTCTGCACAAATTGAGCA
	546	TTATCGCGAGAGACGACCGTGTCC	GGACACGGTCGTCTCTCGCGATAA
	547	GACGCGACGTGAGTAGTGGAAGCG	CGCTTCCACTACTCACGTCGCGTC
	548	ATGGTAGGGCATTGGGCTTTCCT	AGGAAAGCCCAATGCCCCTACCAT
20	549	CCAAATATAGCCGCGCGGAGACAT	ATGTCTCCGCGCGGCTATATTTGG
	550	GCAAACCCTGATTGAATCGTGCCC	GGGCACGATTCAATCAGGGTTTGC
:	551	TAGCGTCTTGCGTGAAACCATGGG	CCCATGGTTTCACGCAAGACGCTA
	552	CCACCCGACAGCGCTGGACTCTT	AAGAGTCCAGCGCTGTCGGGGTGG
:	553	ACGAGCACTGAAGGCTGCTTTACG	CGTAAAGCAGCCTTCAGTGCTCGT
25	554	CATATCAGCGTCGTCTAGCTCGCG	CGCGAGCTAGACGACGCTGATATG
	555	TGATCCCGGACCGGCTAGACTAAT	ATTAGTCTAGCCGGTCCGGGATCA
	556	GGCCCGACACTACAGGGTAATCA	TGATTACCCTGTAGTGTCGGGGCC
	557	GGCTCCAGGGCGAGATTATGAATG	CATTCATAATCTCGCCCTGGAGCC
	558	CAAAATCCGATGGGCGGAAAATTA	TAATTTTCCGCCCATCGGATTTTG
30	559	CACAGGCGCATAGGGAGCAAGCTA	TAGCTTGCTCCCTATGCGCCTGTG
	560	TAGCTATTGCCCCGATGGGCTACT	AGTAGCCCATCGGGGCAATAGCTA
	561	TGGTACGCGGTCCATAGCAAGTCG	CGACTTGCTATGGACCGCGTACCA
	562	GACGCTGTGGCTCGGAAACTGTTC	GAACAGTTTCCGAGCCACAGCGTC
i	563	CCTGGGTTCGCCGCGTGGTAACTG	CAGTTACCACGCGGCGAACCCAGG
35	564	TTCCCGCGTAGCCCAACAGCTATA	TATAGCTGTTGGGCTACGCGGGAA
•	565	TTCGCGGATTGCTGCCGCATAACA	TGTTATGCGGCAGCAATCCGCGAA
	566	AAAAATGGCACCGAAGTTGAGGCA	TGCCTCAACTTCGGTGCCATTTTT
	567	CATTCCGCGCGAGTTGAAATCCAG	CTGGATTTCAACTCGCGCGGAATG
	568	ACGCACGTTTTTTGGCACGGTTAA	TTAACCGTGCCAAAAAACGTGCGT
40	569	TGTCCATGACGTCGTTTCTCTGGT	ACCAGAGAAACGACGTCATGGACA
ĺ	570	TCTCAGTCGGACTCGTATGCCAGA	TCTGGCATACGAGTCCGACTGAGA

		· 	· · · · · · · · · · · · · · · · · · ·
	571	CTCCAAACGCACACATCAAGCATC	GATGCTTGATGTGTGCGTTTGGAG
	572	TTCAACCAAGCGGGGTGTTCGTGA	TCACGAACACCCCGCTTGGTTGAA
	573	GGTGTCGGAGGGTGGTGACCTCGA	TCGAGGTCACCACCCTCCGACACC
	574	AGCGCTTTTGGTCATGATTTGCAA	TTGCAAATCATGACCAAAAGCGCT
5	575	CCGAGGACTTACGTCTGCCCAGGA	TCCTGGGCAGACGTAAGTCCTCGG
	576	GCCCAATCCAGTTCTTATGCGCCC	GGGCGCATAAGAACTGGATTGGGC
	577	CGGGTTAACCCACGCAAGTTATGA	TCATAACTTGCGTGGGTTAACCCG
	578	TGATTAGCGCTCAATACACGCGTG	CACGCGTGTATTGAGCGCTAATCA
	579	AAGGGCAGACCTTTGGTTCGACTG	CAGTCGAACCAAAGGTCTGCCCTT
10	580	GCGCCACAAGATTCACATGTCATT	AATGACATGTGAATCTTGTGGCGC
	581	GCCATGTTCAAGGGCCTTTCGAAG	CTTCGAAAGGCCCTTGAACATGGC
	582	CGCGGTGTTTTGTCTAGGTGCCGG	CCGGCACCTAGACAAAACACCGCG
	583	CAACATTGTGGTGGCACTCCATCC	GGATGGAGTGCCACCACAATGTTG
	584	CGATACGCGCCGGTTTGTTAAATC	GATTTAACAAACCGGCGCGTATCG
15	585	GGCTATAAACGTGCGGACTGCTCC	GGAGCAGTCCGCACGTTTATAGCC
	586	TGGGTAAATCACTATTGCGCGGTT	AACCGCGCAATAGTGATTTACCCA
	587	GTCTTCATCGGCCCGCGCAAGCTA	TAGCTTGCGCGGGCCGATGAAGAC
	588	GCGACACCCCTGTACTCTGATGC	GCATCAGAGTACAGGGTGTGTCGC
	589	GTAGCAGGGTCCGCAAGACCAAGC	GCTTGGTCTTGCGGACCCTGCTAC
20	590	TCGCCAACGCAGGGTAACTGCCAT	ATGGCAGTTACCCTGCGTTGGCGA
	591	ACTCCGAAGCTTCGAGCGGCACGA	TCGTGCCGCTCGAAGCTTCGGAGT
	592	TCCCGCCCACTAGACTGACTCGTA	TACGAGTCAGTCTAGTGGGCGGGA
	593	ACCTTCTGGGGTCGCTCACCAATA	TATTGGTGAGCGACCCCAGAAGGT
	594	ATCATCCCACGGCAGAGTGAAGAG	CTCTTCACTCTGCCGTGGGATGAT
25	595	CGCTGGACTGGCCTATCCGAGTCG	CGACTCGGATAGGCCAGTCCAGCG
	596	CGGTCTCAGCAACACTGTCGCAAA	TTTGCGACAGTGTTGCTGAGACCG
	597	CGAACGTTCTCCGATGTAATGGCC	GGCCATTACATCGGAGAACGTTCG
	598	ATACCGTGCGACAAGCCCCTCTGA	TCAGAGGGGCTTGTCGCACGGTAT
	599	AGCTCATTCCCGAGACGGAACACC	GGTGTTCCGTCTCGGGAATGAGCT
30	600	TTTCATGCGGCCGTTGCAAATCAT	ATGATTTGCAACGGCCGCATGAAA
	601	ACTCGAACGGACGTTCAATTCCCA	TGGGAATTGAACGTCCGTTCGAGT
	602	CTGCATGGTGTGGGTGAGACTCCC	GGGAGTCTCACCCACACCATGCAG
	603	CCGCGAGTGTGGATGGCGTGTTGA	TCAACACGCCATCCACACTCGCGG
	604	AATGTGTCGGTCCTAAGCCGGGTG	CACCCGCTTAGGACCGACACATT
35	605	TAAGACGAGCCTGCACAGCTTGCG	CGCAAGCTGTGCAGGCTCGTCTTA
	606	GGCGTGGGAGGATAAGACGATGTC	GACATCGTCTTATCCTCCCACGCC
	607	TGCTCCATGTTAGGAACGCACCAC	GTGGTGCGTTCCTAACATGGAGCA
	608	CGGTGTTGGTCGGACTGACGACTG	CAGTCGTCAGTCCGACCAACACCG
	609	CCGCGCGTATCTATCAGATCTGGG	CCCAGATCTGATAGATACGCGCGG
40	610	AAAGCATGCTCCACCTGGAGCGAG	CTCGCTCCAGGTGGAGCATGCTTT
	611	ACTTGCATCGCTGGGTAGATCCGG	CCGGATCTACCCAGCGATGCAAGT

612 TGCTTACGCAGTGGATTGGTCAGA TCTGACCAATCCACTGCGTAAGCA 613 ATGCAGATGAACAAATCGCCGAAT ATTCGGCGATTTGTTCATCTGCAT 614 GCAATTCTGGGCCATGTTTCTGTC 615 AGGGTTCCTTACGCGTCGACATGG CCATGTCGACGCGTAGGAACCCT 616 GTGGAGCTAATCGCCGAGCCTCAGA TCTGAGGCCGGGAATAGCTCACA 617 TCGTAGTCTCACCGGGCAATGCTCC GGATCATTGCCCGAGACTACGA 618 TTATAGCAGTGCCCAATGCTTCG GCAAGCATTGCCGACACTACACA 619 CGAACAGTGCTCCACATGCTTCG CGAAGCATTGCCACCACCACAATTACCCCACCACAATCCTCACA 620 TCCGCGTGGACTGTTAGACCGTAT ATAGCGTCAACAGTCCACCACACACCACCACACACACACA				
614 GCAATTCTGGGCCATGTATTCGTC GACGATTACATGGCCCAGAATTGC 615 AGGGTTCCTTACGCGTCGACATGG CCATGTCGACGCGTAAGGAACCCT 616 GTGGAACTAATCGCCAGCCTCAGA TCTGAGGCTCGCGATTAGCTCCAC 617 TCGTAGTCTCACCGGCAATGCTCC GGATCATTGCCGGGTAGAGACCACACACACACACACACAC		612	TGCTTACGCAGTGGATTGGTCAGA	TCTGACCAATCCACTGCGTAAGCA
615 AGGGTTCCTTACGCGTCGACATGG CCATGTCGACGCGTAAGGAACCCT 616 GTGGAGCTAATCGCGAGCCTCAGA TCTGAGGCTCGCGATTAGCTCCAC 617 TCGTAGTCTCACCGGCAATGATCC GGATCATTGCCGGTGAGACATCCGA 618 TTATAGCAGTGCGCCAATGATCC GGATCATTGCCGGTGAGACATCACGA 619 CGAACAGTGCTGTCGCTCAA TTGAGCGACGACACTGTTACA 619 CGAACAGTGCTGTCGCTCAA TTGAGCGACGACACCTGTTCG 620 TCCGCGTGGACTGTTAGACGCTAA TTAGCCGTCAACAGTGTTCG 621 CATTAGCCCGCTGTGGTAACTGT ACAGTTACCGACAGGGGGCAACACCTGTTCG 622 GGAAAGAAACTCAGACGCGCAATG ATAGCGTCTAACAGTCCACGCGGA 623 CCACTCGCTGGACAGGAGGAATGC ACAGTTACCGACAGGGGGCTAATG 624 CATGATCCTCTGTTTCACCCGCGG CCGCGGGTGAAACACAGGGGATCATG 625 GGCGTAGCGCTCTAAAAGCTTCGG CCGAGGTTAACAGTCCACGCGCGCC 626 AGTGATGCCATCAAGCCCCGTATAC GTATACGGGCCTGATGGCATCACC 627 TATGGAAAGGGCAACAGCCCGTATAC GTATACGGGCTGATGGCATCACC 628 ACTGTGGTTGATGAGACGCCCGTATAC 629 ACTCGCTGGAACAGCCCGTATC GATACGCCTGTTGCCCTTTCCACCACA 629 ACTCGCTGGAACTACGCCCGTATC 630 CAGGCCCGAACCACCGCGGTTACAC 631 GGCGCAATTGCGCCTACAC 632 CAGGCCCGAACCACCGCGGTTACAC 633 GATGGTGGATATACACACACAC 634 CCGCCGAACCACCGCGGTTACAC 635 GGTCAATTCGCGCTACCCCTACTACCCCCTTCCACCCCATC 634 CCGCGCATTGCGCCTACTACCCCTA TAGGGCATTAGCGCGTGTTCGGCCTG 635 GGTCAATTCGCGCTACACCCCGAA TTCGCCCTATTGCGCCACCCATC 636 CCGCGCATAGCGCAATACACACCCGAA TCCCCCCTATTCGCCCACCACCCACCCGGGTACCCCCATCCCCCC		613	ATGCAGATGAACAAATCGCCGAAT	ATTCGGCGATTTGTTCATCTGCAT
616 GTGGAGCTAATCGCGAGCCTCAGA 617 TCGTAGTCTCACCGGCAATGATCC 618 TTATAGCAGTGCGCCAATGATCC 618 TTATAGCAGTGCGCCAATGATCC 618 TTATAGCAGTGCGCCAATGCTTCG 619 CGAACATTGCCGTCCAA 619 CGAACATGCTCCGTCCAA 619 CGAACATGCTTCGTCAA 619 CGAACATGCTGCTCCAT 620 TCGCGGTGGACTGTTAGACGCTAT 621 CATTAGCCACCGTGTCAA 622 GGAAAGAACTCAGACGCTAT 622 GGAAAGAACTCAGACGCGCAATG 623 CGACTCGCTGCGCTCAACTGT 624 CATGACCCGCTGTCGGTAACTGT 625 GGCAACAGCAGCGCGCAATG 626 CATGATCCTCTGTTTCACCCGCGG 627 CATGATCCTCTGTTTCACCCGCGG 628 AGTGATCCCTCTGTTTCACCCGCGG 629 CATGATCCTCTGTTTCACCCGCGG 620 CATGATCCTCTGTTTCACCCGCGG 621 CATGATCCTCTGTTTCACCCGCGG 622 GCAACAGCAGGAATCGT 623 CGACTGCTGGAAAAGCTTCGG 624 CATGATCCTCTGTTTCACCCGCGG 625 AGTGATCCCACCAGGCCCGTATAC 626 AGTGATCCCACCAGGCCCGTATAC 627 TATGGAAAGGCCACACACGCGCTATC 627 TATGGAAAGGGCAACAGCGCTATC 628 CTGTTGGTTGATGGAGGATCCACAC 629 ACTCGCTGGAATTTGCGCTGACAC 629 ACTCGCTGGAATTTGCGCTGACAC 629 ACTCGCTGGAATTTGCGCTGACAC 629 ACTCGCTGGAATTTGCGCTGACAC 629 ACTCGCTGGAATTTGCGCTGACAC 629 ACTCGCTGGAATTTGCGCTGACAC 631 GGCGCAATTGGGCTGACAC 632 GGTCAATTCGCGCTGACAC 633 GAGGCCCGAACCACGCGGTTACAC 634 CCCGCGCATAGCGCGATAAATACTA 635 GATGGTGGCTGACAC 636 GCGTTAGCGCCTACTCGC 637 CTGTTTCGGCTGAGCCCCTTA 638 CAGGCCCAATGCGCCAATTGCGCCCAACCCCGAA 639 CCCCCGAATTCACGGCCCTTA 639 CCCCCATTTCGGCCTGACCCCGAA 637 TCGTTTGGGCTTGAGCCCCTTA 639 CGCCAATTCCACGCACCCGAA 637 TCGTTTCGGCTTGGAGCCCTTA 639 CGCCAGTTCACCACACGGGCCCTTA 639 CGCCAGTTCACCACACGGCCCTAAACCACCACGCACACACA		614	GCAATTCTGGGCCATGTATTCGTC	GACGAATACATGGCCCAGAATTGC
617 TCGTAGTCTCACCGGCAATGATCC 618 TTATAGCAGTGCGCCAATGCTTCG 619 CGAACAGTGCTGCGTCAA 619 CGAACAGTGCTGCGTCAA 619 CGAACAGTGCTGCGTCAA 619 CGAACAGTGCTGCGTCAA 619 CGAACAGTGCTGCGTCAA 620 TCCGCGTGGACTGCGTCAA 621 TCCGCGTGGACTGCTTAAA 622 TCCGCGTGGACTGCTTAAA 622 GGAAAGAACTCAGACGCGCAATG 622 GGAAAGAACTCAGACGCGCAATG 623 CGACTCGCTGGACAGGAGAATCGT 624 CATTAGCCGAGGAGAATCGT 625 GGCGTAGCGCTCTAAAAGCTTCGG 626 AGTGATCCCTCTGTTTCACCCGCGG 627 CATGATCCCTCTGTTTCACCGCGG 628 AGTGATGCCATCAAAGCTTCGG 629 AGTGATGCCATCAAAGCTTCGG 629 AGTGATGCATCAAGCCCGTATAC 627 TATGGAAAGGGCACACACGCGCTATAC 628 CTGTGGTTGATGAGCCCTACAGC 629 ACTCGCTGGAATTGCGCCGGTTAC 629 ACTCGCTGGAATTGCGCCGAACCACCGGTTTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC 629 ACTCGCTGGAATTTGCGCTGACAC 630 CAGGCCCGAACCACGCGTTACA 631 GGCGCAATGAGGAGATCCTC 632 GGTCAATTCGCGCTGACAC 632 GGTCAATTCGCGCTGACAC 633 GATGGTGACACCACCGGTTACAG 634 CCCGCGAATGAGCACCACCGCGTTACAGCCCAATTCCACCACCAC 635 GGCGCATGAGCCCTTCCGC 636 GCGCATGGGCGCATAAATACTA 637 TCTTCTTGGCTTGAGCCCTTA 638 CCCCCGCAATGACCACCACCACCACCACCACCACCACCACCACCACCACC		615	AGGGTTCCTTACGCGTCGACATGG	CCATGTCGACGCGTAAGGAACCCT
618 TTATAGCAGTGCCCCAATGCTTCG CGAAGCATTGCCGCACTGCTATAA 619 CGAACAGTGCTGTCCGTCCAA TTGAGCGACGGACAGCACTGTTCG 620 TCCGCGTGGACTGTTCGACTCAA TTGAGCGACAGCAGCACTGTTCC 621 CATTAGCCCGCTGTCGGTAACTGT ATAGCGTCTAACAGTCCACGCGGA 622 GGAAAGAACTCAGACGCGCAATG CATTGCGCGTCAGATG 623 CGACTCGCTGGACAGCGGCAATG CATTGCGCGTCAGCGCGGATTCTTTTTTCC 624 CATGATCCTCTGTTTCACCCGCGG CCGCGGGTGAAACAGAGGACTCATG 625 GGCGTAGCGCTCTAAAAGCTTCGG CCGCGGGTGAAACAGAGGAATCATG 626 AGTGATGCCATCAGGCCCGTATAC GTATACGGGCCTGATGCGCC 627 TATGGAAAGGGCACACGCCCTATAC GTATACGGGCCTGATGCCACAC 628 CTGTGGTTGATGGAGGACACACCGCCTATC 629 ACTCGCTGGAATTTCGCCTGACAC GTGTGGATCCACTCACTA 630 CAGGCCCGAACCACGCGCTATCAC GTGTGAACCACACACACACACACACACACACACACACACA	5	616	GTGGAGCTAATCGCGAGCCTCAGA	TCTGAGGCTCGCGATTAGCTCCAC
619 CGAACAGTGCTGTCCGTCGAA 620 TCCGCGTGGACTGTTAGACGCTAT 621 CATTAGCCCGCTGTCGGTAACTGT 622 GGAAAGAACTCAGACGCGCAATG 623 CGACTCGCTGGACAGGCGCAATG 624 CATGCCGGGGACAGGCGCAATG 625 CGACTCGCTGGACAGGAGACGGTACCTTCCGCGGGACAGGACGGGGCTAATG 626 CATGCCTGGACAGGAGAATCGT 627 CATGCGCGTTTAGACCGCGG 628 AGGATGCCTCTAAAAGCTTCGG 629 ACTGCTGGACAGGACGGCGCAATG 629 CTGTGGAATTGCACACGGGCCTATAC 629 ACTCGCTGGACAGGACGCCTATC 629 ACTCGCTGGATTGCACCAC 629 ACTCGCTGGATTTGCACCAC 629 ACTCGCTGGATTTGCACCAC 630 CAGGCCCGAACCACGCGTACA 631 GGCGCAATGCGCTGAAAC 632 GGTCAATTCCGCTGACAC 633 GATGGTGGATTTTCACCACC 633 GATGGTGGACTTCACAC 634 CCGCGCAACCACGCGGTTACA 635 TCTTTCTGGCGCCACCCACACCACGCGCTATGCCCC 636 CCGCCGAACCACGCGGTTACAG 637 CCGCGCCAACCACCACCACCACCACCACCACCACCACCAC		617	TCGTAGTCTCACCGGCAATGATCC	GGATCATTGCCGGTGAGACTACGA
10 621 CATTAGCCGCTGTGGTAACTGT ACAGTTCACAGGGGAATG 622 GGAAAGAACTCAGACGGGCAATG 623 CGACTGCTGGGTAACTGT ACAGTTCCAGCAGGGGGCTAATG 624 CATGATCCTGTTTCACCCGCGG 625 CGACTGCTGGACAGGAGAATCGT ACAGTTCTCCTGTCCAGCAGTCG 626 CATGATCCTCTGTTTCACCCGCGG CCGCGGTGAAACAGAGGATCATG 627 CATGATCCTCTGTTTCACCCGCGG CCGCGGTGAAACAGAGGATCATG 628 CGCGTTAGAGGCCCGTATAC GTATACGGGCTGATGCCACCC 627 TATGGAAAGGGCAACACGCGTATC GATACGGGCCTGATGCCACCC 628 CTGTGGTTGATGGAGGATCACAC GTGTGGATCCTCCATCAGCCACAG 629 ACTCGCTGGAATTGCGGTCACAC GTGTGGATCCTCACCACCAGAGCTTTACAGCCACACAG 629 ACTCGCTGGAATTGCGGTCACAC GTGTGACCCGCGAATTCCACCACAG 630 CAGGCCCGAACCACCGCGTTACAG 631 GGCGCAATTGCGCCTACACC 632 GGTCAATTCGCGCCATACACC 633 GATGGTGGACCCTA 634 CCGCGAACCACCGCGTTACAG 635 GATGGTGGACCCTA 636 CCGCCATTGCGCCCAATTCCGC 637 CTTTCTGGCTTCCGC GCGGAAGGGCTCCAGCACCACC 638 ACTCGCTGGAACACACCCCGAA 639 CCGCCATTGCGCCCCGAA 637 TCGTTTCGGCCACCCCGAA 638 AGGTGCAATTCACGGGGACCTTA 639 CGCCAATTCCGCCTTACAGCCCTTA 639 CGCCAATTCCGCCTTACAGCCCTTA 639 CGCCAGTTTCACGGCCCTTA 639 CGCCAGTTTCACGGCCCTTA 639 CGCCAGTTTCACGGCCCTTA 639 CGCCAGTTCCACACCCTA 639 CGCCAGTTCCACACCCTA 639 CGCCAGTTCCACCCTA 639 CGCCAGTTCCACACCCTA 639 CGCCAGTTCCACACCCTA 640 GCTTTACCGCCCCTA 641 GTGCTTGACAGGCCATCCACACC 642 CAGTCCCTCCCCAATCCCCAACACCACCCCTA 644 GGCGACTCCACACCCCCAACCCCTA 645 CAACCCACCCCACACCCCTA 646 GCTTTCACCACCCCCAACACCCCCACACCCCTCCCCCTTTCCACCTTCCACCCCCC		618	TTATAGCAGTGCGCCAATGCTTCG	CGAAGCATTGGCGCACTGCTATAA
10 621 CATTAGCCCGCTGTCGGTAACTGT ACAGTTACCGACAGCGGGCTAATG 622 GGAAAGAACTCAGACGCGCAATG CATTGCGCTGTGAGTTTCTTTCC 623 CGACTCGCTGGACAGGAGAATCGT ACGATTCTCCTGTCCAGCGAGTCG 624 CATGATCCTCTGTTTCACCCGCGG CCGCGGGTGAAACCAGAGGATCATG 625 GGCGTAGCGCTCTAAAAGCTTCGG CCGAAGCTTTTAGAGCGCGTACGCC 626 AGTGATGCCATCAGGCCCGTATAC GTATACGGGCCTGATGGCATCACT 627 TATGGAAAGGGCAACAGCGCCTATC GATAGCGCTTGTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTGATCCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTGATCCGCCTATCACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTGACCGCAAATTCCAGCGAGT 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGTGTTCGGCCT 631 GGCGCAATTGGCGCACAAATACTA TAGTATTTATGCGCCCAATTGCGCC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGACTCACCACTC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCACACTC 634 CCGCGCATAGCGCGATAAAACTA TAGTATTTATGCGCCCAATTGCGCC 635 TCTTCTGGCTTGCGGCACCCGAA TCCCCCTATTGCGCCCATCCGCG 636 GCGTTCGCCACACCGCAATTCCCCCACACCACCACCACCACCACCACCACCACCA		619	CGAACAGTGCTGTCCGTCGCTCAA	TTGAGCGACGGACAGCACTGTTCG
622 GGAAAGAAACTCAGACGCGCAATG CATTGCGCGTCTGAGTTTCTTTCC 623 CGACTCGCTGGACAGGAGAATCGT ACGATTCTCCTGTCCAGCGAGTCG 624 CATGATCCTCTGTTTCACCCGCGG CCGCGGGTGAAACAGAGGATCATG 625 GGCGTAGCGCTCTAAAAGCTTCGG CCGAAGCTTTTAGAGCGCTACGCC 626 AGTGATGCCATCAAGGCCCGTATAC GTATACGGGCCTGATGGCATCACCC 627 TATGGAAAGGGCACACAC GTATACGGCCCTATGCCC 628 CTGTGGTTGATGGAGGATCACAC GTATACGGCCAAACTTCCATCA 629 ACTCGCTGGAATTTGCGCTGACAC GTGTGATCCCCACACACACG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTGATCCCCACACACACG 629 ACTCGCTGGAATTTGCCCTGACAC GTGTCAGCCAAATTCCAGCGAGT 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGAATTCCAGCGAGT 631 GGCGCAATTGGCGCTACATGCCCTA TAGGATCTACACCACAG 632 GGTCAATTCGCGCTACATGCCCTA TAGGACCACATTGCCC 633 GATGGTGGACCCCTTCCGC GCGAAGGGCTCCACATC 634 CCGCGCATAGCGCAATTGCCCTA TAGGGCCTGAAGCACACACACGGGTTACAGCACACACACA		620	TCCGCGTGGACTGTTAGACGCTAT	ATAGCGTCTAACAGTCCACGCGGA
623 CGACTCGCTGGACAGGAGAATCGT ACGATTCTCCTGTCCAGCGAGTCG 624 CATGATCCTCTGTTTCACCCGCGG CCGCGGGTGAAACAGAGGATCATG 625 GGCGTAGCGCTCTAAAAGCTTCGG CCGAAGCTTTTAGAGCGCTACGCC 626 AGTGATGCCATCAGGCCCGTATAC GTATACGGGCCTGATGCATCACT 627 TATGGAAAGGGCAACAGCGCTATC GATACCGGCCTGTTGCCCTTTCCATA 628 CTGTGGTTGATGAGGAGTCCACAC GTGTCAACCACCAG 629 ACTCGCTGGAATTTGCGCTCACAC GTGTCAACCACCAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTCAACCACCAG 620 CAGGCCCGAACCACGCGTTACAG CTGTAACCGCGTGTTCCGCCTG 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGTGTTCCGGCCTG 631 GGCGCAATGGCGCATAAATACTA TAGTATTTATGCGCCCATTCGCGC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCGCCATTCGCGC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCACCACTC 634 CCGCGCATAGCGCAATAGGGGAGA TCCCCCCTATTCGGCCTAGGAGAGAGAACACGCGCGTGATCAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATAGCGCAATTCGGCCGGAATTCGGCCGGAATTCGGCCGGAATTCGGCCGGAACGCCAACCACACACA	10	[,] 621	CATTAGCCCGCTGTCGGTAACTGT	ACAGTTACCGACAGCGGGCTAATG
624 CATGATCCTCTGTTTCACCCGCGG CCGCGGGTGAAACAGAGGATCATG 625 GGCGTAGCGCTCTAAAAGCTTCGG CCGAAGCTTTTAGAGCGCTACGCC 626 AGTGATGCCATCAGGCCCGTATAC GTATACGGGCCTGATGCATCACT 627 TATGGAAAGGGCAACAGCGCTATC GATAGCGCTGTTGCCCTTTCCATA 628 CTGTGGTTGATGGAGGATCCACAC GTGTGGATCCTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTCAGCGCAAATTCCAGCGAGT 630 CAGGCCCGAACCACCGCGGTTACAG CTGTAACCGCGTGGTTCGGCCTG 631 GGCGCAATGGCGCAAATAATACTA TAGTATTATCGCCCCATTCCACCACTC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCCC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCACTCCA		622	GGAAAGAAACTCAGACGCGCAATG	CATTGCGCGTCTGAGTTTCTTTCC
625 GGCGTAGCGCTCTAAAAGCTTCGG CCGAAGCTTTTAGAGCGCTACGCC 626 AGTGATGCCATCAGGCCCGTATAC GTATACGGGCCTGATGGCATCACT 627 TATGGAAAGGGCAACAGCGCTATC GATACGGGCCTGATGGCATCACT 628 CTGTGGTTGATGGAGGATCCACAC GTGTGGATCCTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTCAGCGCAAATTCCAGCGAGT 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGTGGTTCGGGCCTG 631 GGCGCAATGGGCGCATAAATACTA TAGTATTTATGCGCCCATTGCGCC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTACAGCCAATTGCAGC 633 GATGGTGGACCTTCCGC GCGGAAGGGCTCCACATC 634 CCGCGCATAGACGCCTTCCGC GCGGAAGGGCTCCACCACTC 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGACAGCCAGACGA 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGGACAGCAGAAGA 637 TCGTTTCGGCTGGAGCCCTTA TAAGGGCCCGTAATTGCGCCG 637 TCGTTTCGGCTTGGAGAGCCCTTA TAAGGGCCCGTAATTGCGCAACGC 638 AGGTGCAAGTGCAAGAGGCGAAGAGC GCCTCCACACTC 639 CGCCAGTTTCAGCGGACACCCTAA TAAGGGCCCGTAAATTGCGCACGC 639 CGCCAGTTTCAGAGGCAAGAGC GCCTCTCCCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATACTCTCCAAGCCCGAAACGA 641 GTGCTTGACGAAGAGCCAATATC GATATCTGGGATCGGCGGTAAAGC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGACTG 643 TACGCGTAAGAGCCTACCCTCCGC GCCGAGGGTAAGGCCACGGACTG 644 GGCGAGTCTTGTGGGGACATTGT ACATTTCGCCTCTTTCGTCAAGCAC 645 CAAAGCGAAGCGACCTACCCTCCCC GCCGAGGGTAAGCCACCACAAGACTCGCC 646 GCCGTAGGTTGGTGGGGACATGTT ATAGACACGCTCGCCTTTGGCTTTGGC 647 AAATCCGCGATGTGCCTTAT ATAGACACGCTCGCTTTGGCTTTGGC 648 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTAAGACACCTTCGCG 647 AAATCCGCGATGTGCCTTACCAACAACTTCGCGCAACAGACTCGCCC 648 GCCGTAGGTTGCCTTACCAACAACCTCCCCCAAAGCCTCCGCG 649 TGTAGAGTCCCACCGTACCAATTTAG CTAAATTGGTACCGGGAACCTACAC 649 TGTAGAGTCCCACCGTACCAATTTAG CTAAATTGGTACCGGGAACCTACAC 650 CACTAGTCTGGGGCAAGGTGCATT AATGCCCTTCCCCAGAACCC 649 TGTAGAGTCCCACCGTACCAATTTAG CTAAATTGGTACCGCAGAACCA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCCCTTCCCCAGAACCACACACACCCTACAACCCTCGCG 649 TGTAGAGTCCCACCGTACCAATTAAA AATCCACTTGCCCCAGAACCACACACACACACACACACAC		623	CGACTCGCTGGACAGGAGAATCGT	ACGATTCTCCTGTCCAGCGAGTCG
15 626 AGTGATGCCATCAGGCCCGTATAC GTATACGGGCCTGATGGCATCACT 627 TATGGAAAGGGCAACAGCGCTATC GATAGCGCTGTTGCCCTTTCCATA 628 CTGTGGTTGATGGAGGATCCACAC GTGTGGATCCTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTCAGCGCAAATTCCAGCGAGT 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGGGTTCGGCCTG 631 GGCGCAATGGGCGCATAAATACTA TAGTATTTATGCGCCCATTGCGCC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCCGCAATTGCACCACAC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCAGTCCACCATC 634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCTATTGCGCCGG 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGCCGGACAGCCAGAAGA 636 GCGTTCGCAATTCACGGCCCCTTA TAAGGGCCCGTAATTGCACCATC 637 TCGTTTCGGCCTTGGAAGGAGTATCG CGATACTCTCCAAGGCCAAACGA 638 AGGTGCAAGTCAAGGGGAGAGC CCCTCCACTCCACCATC 639 CGCCAGTTTCGAAGGCGAAGAGC GCCTCTCCACCTTCGACCCT 639 CGCCAGTTTCGAAGGCGAAGAGC 640 GCTTTACCGCCGATCCAAGATATC GATATCTGCGCTCACAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGCTCTCAAGCAC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA 643 TACGCGTAAGAGCCTACCCTCCCG CGCGAGGGTAGGCCTTTACGCGTA 644 GGCGAAGTCTCAAGCACATGTT ACACTTCCCCCACAAGCACC 645 CCAAAGCGAAGGCGAAATGT ACATTTCGCCTTTCGTCAAGCAC 646 GCCGTAGGTTTCATGCCTCA TGAGGACATGAAGCGCACGGACTG 647 AAATCCGCGATGCCCTCCCG CGCGAGGGTAGGCTCTTACGCGT 648 GCCGTAGGTTGCCTTCATCACCAAC 649 GTTGACGACCCGTACCATTTAA CACATGTCCCCACAAGACCTACCGC 649 TGTAGAGTCCCACCGTACCATTTAA CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACCGTACCATTTAA ATGCCCGTTCGCGTGCGAAGCC 649 TGTAGAGTCCCACCGTACCATTTAA ATGCCCGTACCTGCGCGAAGCC 649 TGTAGAGTCCCACCGTACCATTTAA ATGCCCTTCGCCCAGAGCTCACC 649 TGTAGAGTCCCACCGTACCAATTTAA CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACCGTACCAATTTAA ATGCCCCTTCGCCCAGAGCTCACC 640 TGTAGAGTCCCACCGTACCAATTTAA ATGCCCCTCCCCAGAGCTCACA 650 CACTAGTCTGGGGCAAAGGTT AATGCCGGCTACCTGCGCAAGCCC 641 TGTACTCGGCAAGCGAAGCTAACCTTCCCCAAGACCCTACCAGAACCCTACCGGAAGCCAACCCTACCAAGACCACCTACCAGGACCACCTACCAAGACCACCCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAGACCACCTACCAAACCACCCTACCAAACCACCCTACCAAAACACCAC		624	CATGATCCTCTGTTTCACCCGCGG	CCGCGGGTGAAACAGAGGATCATG
627 TATGGAAAGGCAACAGCGCTATC 628 CTGTGGTTGATGGAGGATCCACAC GTGTGGATCCTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTGGATCCTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTCAGCGCAAATTCCAGCGAGT 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGTGTTCCGGCCTG 631 GGCGCAATGGGCGCATAAATACTA TAGTATTTATGCGCCCATTGCGCC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCGCGAATTGACC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCAGTCCACCATC 634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCTATTGCGCTATGCGCGG 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGCCGGACAGCCAGAAGA 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTAAATTGCGAACGC 637 TCGTTTCGGCTGTAGAGAGTATCG CGATACTCTCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAAGGCGAAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCAAACTGGCG 640 GCTTTACCGCCGATCCCAGAATATC GATACTCGGCGGGTAAAGC 641 GTGCTTGACAGAGGCGAAATGT ACACTTCGCCTCTTCTCAAGGCAC 642 CAGTCCGCGATCCCAGAATATC GATACTCGGCGGGTAAAGC 643 TACGCGTAAGAGCCTACCCTCGCC CGCGAGGGTAGGCCTTTACGCGTA 644 GGCGAGTTTCATGCCTCA TGAGGACATGAGCGCACAGAACTG 645 CCAAAGCGAAGCCTACCCTCGCC CGCGAGGGTAGGCCTTTACGCGTA 646 GCCGTAGGTTGCTCAT ATAGACACCGCTCGCTTTACGCGTA 647 AAATCCGCGATGCCGAAC GTTCGGTGAAAGCACCTACGGC 647 AAATCCGCGATGTCCTCAACACCTTCGCCTTCGCTTTGG 648 GGCTTCGACCGTACCAATTTAG CTAAATTGGTACAGGCACCTACGGC 647 AAATCCGCGATGTCCCTCAAACCGCTCGCTCGCTTCGCT		625	GGCGTAGCGCTCTAAAAGCTTCGG	CCGAAGCTTTTAGAGCGCTACGCC
628 CTGTGGTTGATGGAGGATCCACAC GTGTGGATCCTCCATCAACCACAG 629 ACTCGCTGGAATTTGCGCTGACAC GTGTCAGCGCAAATTCCAGCGAGT 630 CAGGCCCGAACCACGCGGTTACAG CTGTAACCGCGTGGTTCGGGCCTG 631 GGCGCAATGGGCGCATAAATACTA TAGTATTTATGCGCCCATTGCGCC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCGCGAATTGACC 633 GATGGTGGACTGCAGCCCTTCCGC GCGGAAGGGCTCCAGTCCACCATC 634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCTATTGCGCCT 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGCCGGACAGCCAGAAGA 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTAATTGCGACGC 637 TCGTTTCGGCTGTCAGGGCCCTTA TAAGGGCCCGTAATTGCGAACGC 638 AGGTGCAAGTGCAAGGGCGAAGGC GCCTCTCGCCTTGCACTCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCCAAGCAC 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCCTTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGGCGAACTGTT ACACATGTCCCCACAAGACTCGCC 646 GCCGTAGGTTGCTCTATT ATAGACACGCTCGCTTTCGCTTTGG 647 AAATCCGCGAAGCGGGGTGTCTAT ATAGACACGCTCGCTTTCGCTTTGG 648 GGCTTCGCCCGTACCAATTTAG CTAAATTGGTACGGGAAGCC 649 TGTAGAGTCCCACGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGCCTACCAGGACTTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATCCACCTTGCCCCAGAACCTACAC 650 CACTAGTCTGGGGCAAGGTGCATT AATCCACCTTGCCCCAGAACCTACCAC 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCAGAACCTACCAC 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCAGAACTACCACACACACACACCTACCACAAATTTAG CTAAATTTGCGCCTGCCAGAACCACCCAGAACACCTACCACAAAACACCACCCTGCGCAAACCACACCACAACACACCCACAACACACAC	15	626	AGTGATGCCATCAGGCCCGTATAC	GTATACGGGCCTGATGGCATCACT
629 ACTCGCTGGAATTTGCGCTGACAC 630 CAGGCCCGAACCACGCGGTTACAG 630 CAGGCCCGAACCACGCGGTTACAG 631 GGCGCAATGGGCGCATAATACTA 632 GGTCAATTCGCGCCTA 632 GGTCAATTCGCGCTA 633 GATGGTGGACCCTTA 634 CCGCGCATAGCGCATAGGGGAAA 635 TCTTCTGGCTACCCGC 635 TCTTCTGGCTACCCGAAA 636 GCGTTCGCAATTCACGGCAAATTGCCCTA 637 TCGTTTCGGCCAATTCACGGGCACCCGAA 638 AGGTGCAATTCACGGGCCCTTA 639 CGCCAGTTCGAATTCACGGGCCCTTA 639 CGCCAGTTCGAAGGCCAGAA 639 CGCCAGTTTCGATGGCTGAACGC 640 GCTTTACCGCCGAACGCCAGAACGC 641 GTGCTTGACGAAGAGACCC 642 CAGTCCGTACGAAAATGC 643 TACGCGTACAGAAGAGAAATGC 644 GGCGAACCTCCCAGAATTCACGGGCAATTCACGCGCAACGC 645 CCAAAGCGAAGAGCCAAATGC 646 GCCGTAGGTCCTACCCTCGCC 647 AAATCCGCGATCCCAGAC 648 GCCGTAGGTTCTACCGAAC 649 TGTAGAGTCCCACGATTTAACCACCCTACCCCCGCAACCCCCACACGCCACCCCCCCC		627	TATGGAAAGGGCAACAGCGCTATC	GATAGCGCTGTTGCCCTTTCCATA
20 631 GGCCCGAACCACGCGGTTACAG CTGTAACCGCGTGGTTCGGGCCTG 632 GGTCAATTCGCGCTACATGCCCTA TAGGACTATGACCC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCAGTCCACCATC 634 CCGCGCATAGCGCATAGGGGAGA TCTCCCCTATTGCGCCACATC 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGCCGGACAGCCAGAAGA 25 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCGTAATTGCGAACGC 637 TCGTTTCGGCTGTCGGAGCCCTTA TAAGGGCCCGTAATTGCGAACGC 638 AGGTGCAAGTGCAGGGAGAGGC GCCCTTACAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGGCTTCTCAAGCAC 642 CAGTCCGTGCGTTCCATGTCCTCA TGAGGACATGAAGCACC 643 TACGCGTAAGAGCCTACCCTCCCC CGCGAGGGTAGGCTTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCCTACCCTCCCC CGCGAGGGTAAGCCCACGACTG 646 GCCGTAGGTTGCTCTAT ATAGACACCGCTCGCTTTCGCTTTTGG 35 646 GCCGTAGGTTGCTCTAT ATAGACACCGCTCGCTTTCGCTTTTGG 647 AAATCCGCGATGTCCCAGAAC GTTCGGTGAAGAGCCACCGGATTT 648 GCCTTCGCCCGTACCAATTTAG CTAAATTGGTACGGGACTTACAC 649 TGTAGAGTCCCACGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTACCACTTACA 650 CACTAGTCTGGGGCAAATGGTT AATGCACCTTGCCCCAGACTACGC 641 TGTACTCGGCCAGACGGCGCAATAGATT AATCTATTGCGCCTGCCGAGCTACA		628	CTGTGGTTGATGGAGGATCCACAC	GTGTGGATCCTCCATCAACCACAG
20 631 GGCGCAATGGGCGCATAAATACTA TAGTATTTATGCGCCCATTGCGCC 632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCGCGAATTGACC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCACCATC 634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCTATTGCGCTGCGC		629	ACTCGCTGGAATTTGCGCTGACAC	GTGTCAGCGCAAATTCCAGCGAGT
632 GGTCAATTCGCGCTACATGCCCTA TAGGGCATGTAGCGCGAATTGACC 633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCAGTCCACCATC 634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCCTATTGCGCTGG 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGCCGGACAGCAGAAGA 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTGAATTGCGAACGC 637 TCGTTTCGGCCTTGGAGAGTATCG CGATACTCTCCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGTTTTGG 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGACCACCTCGCC 647 AAATCCGCGATGTCCCTTCACCGAAC GTTCGGTGAAGACCACCTACGGC 648 GGCTTCGCCCTGTCACCAATTTAG CTAAATTGGTACGGGTGCAAGCC 649 TGTAGAGTCCCACGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTACCAATTTAAC 650 CACTAGTCTGGGGCAAATGGAT AATCCACTTGCCCCAGACTACGAC 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGACTACAC 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGGTACA		630	CAGGCCCGAACCACGCGGTTACAG	CTGTAACCGCGTGGTTCGGGCCTG
633 GATGGTGGACTGGAGCCCTTCCGC GCGGAAGGGCTCCAGTCCACCATC 634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCTATTGCGCTATGCGCGG 635 TCTTCTGGCTGTCCGGCACCCGAA TCGGGTGCCGGACAGCCAGAAGA 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTGAATTGCGAACGC 637 TCGTTTCGGCCTTGGAGAGTATCG CGATACTCTCCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGCCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGTTTGG 35 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGACACCTACGGC 647 AAATCCGCGATGTCCCTTCACCGAAC GTTCGGTGAAGACACCTACGGC 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGCAT ATGCCGGCTACCATGCAGACCC 649 TGTAGAGTCCCACGTAGCCGCAT ATGCCGGCTACCTTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 G51 TGTACTCGGCAGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA	20	631	GGCGCAATGGGCGCATAAATACTA	TAGTATTTATGCGCCCATTGCGCC
634 CCGCGCATAGCGCAATAGGGGAGA TCTCCCCTATTGCGCTATGCGCGG 635 TCTTCTGGCTGTCCGGCACCCGAA TTCGGGTGCCGGACAGCCAGAAGA 25 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTGAATTGCGAACGC 637 TCGTTTCGGCCTTGGAGAGTATCG CGATACTCTCCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGTTTGG 35 646 GCCGTAGGTTGCTCTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACCGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTACAC 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTACAC 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCCGAGTACA		632	GGTCAATTCGCGCTACATGCCCTA	TAGGGCATGTAGCGCGAATTGACC
25 636 GCGTTCGCAATTCACGGCCCCGAA TTCGGGTGCCGGACAGCCAGAAGA 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTGAATTGCGAACGC 637 TCGTTTCGGCCTTGGAGAGTATCG CGATACTCTCCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGCTTTGG 35 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGACCCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCCGCGC 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGCAT ATGCCGGCTACCAGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTACTGC 40 651 TGTACTCGGCAGCCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		633	GATGGTGGACTGGAGCCCTTCCGC	GCGGAAGGGCTCCAGTCCACCATC
25 636 GCGTTCGCAATTCACGGGCCCTTA TAAGGGCCCGTGAATTGCGAACGC 637 TCGTTTCGGCCTTGGAGAGTATCG CGATACTCTCCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTGG 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGACCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTACGTG 40 TGTACTCGGCGAGCGCAATAGATT AATGCACCTTGCCCCAGACTACAC 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		634	CCGCGCATAGCGCAATAGGGGAGA	TCTCCCCTATTGCGCTATGCGCGG
637 TCGTTTCGGCCTTGGAGAGTATCG CGATACTCTCCAAGGCCGAAACGA 638 AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGGACATGTT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTGG 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		635	TCTTCTGGCTGTCCGGCACCCGAA	TTCGGGTGCCGGACAGCCAGAAGA
AGGTGCAAGTGCAAGGCGAGAGGC GCCTCTCGCCTTGCACTTGCACCT 639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGCTTTGG 35 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA	25	636	GCGTTCGCAATTCACGGGCCCTTA	TAAGGCCCGTGAATTGCGAACGC
639 CGCCAGTTTCGATGGCTGACGTTT AAACGTCAGCCATCGAAACTGGCG 640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGCTTTGG 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGGAAGCCC 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGCCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		637	TCGTTTCGGCCTTGGAGAGTATCG	CGATACTCTCCAAGGCCGAAACGA
640 GCTTTACCGCCGATCCCAGATATC GATATCTGGGATCGGCGGTAAAGC 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTCGCTTTGG 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		638	AGGTGCAAGTGCAAGGCGAGAGGC	GCCTCTCGCCTTGCACCT
30 641 GTGCTTGACGAAGAGGCGAAATGT ACATTTCGCCTCTTCGTCAAGCAC 642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTTGG 646 GCCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		639	CGCCAGTTTCGATGGCTGACGTTT	AAACGTCAGCCATCGAAACTGGCG
642 CAGTCCGTGCGCTTCATGTCCTCA TGAGGACATGAAGCGCACGGACTG 643 TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTCGCT		640	GCTTTACCGCCGATCCCAGATATC	GATATCTGGGATCGGCGGTAAAGC
TACGCGTAAGAGCCTACCCTCGCG CGCGAGGGTAGGCTCTTACGCGTA 644 GGCGAGTCTTGTGGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTCGCT	30	641	GTGCTTGACGAAGAGGCGAAATGT	ACATTTCGCCTCTTCGTCAAGCAC
644 GGCGAGTCTTGTGGGGACATGTGT ACACATGTCCCCACAAGACTCGCC 645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTCGCT		642	CAGTCCGTGCGCTTCATGTCCTCA	TGAGGACATGAAGCGCACGGACTG
645 CCAAAGCGAAGCGAGCGTGTCTAT ATAGACACGCTCGCTTCGCT		643	TACGCGTAAGAGCCTACCCTCGCG	CGCGAGGGTAGGCTCTTACGCGTA
35 GCGTAGGTTGCTCTTCACCGAAC GTTCGGTGAAGAGCAACCTACGGC 647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		644	GGCGAGTCTTGTGGGGACATGTGT	ACACATGTCCCCACAAGACTCGCC
647 AAATCCGCGATGTGCCGTGAGGCT AGCCTCACGGCACATCGCGGATTT 648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		645	CCAAAGCGAAGCGAGCGTGTCTAT	ATAGACACGCTCGCTTCGCTTTGG
648 GGCTTCGCACCCGTACCAATTTAG CTAAATTGGTACGGGTGCGAAGCC 649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA	35	646	GCCGTAGGTTGCTCTTCACCGAAC	GTTCGGTGAAGAGCAACCTACGGC
649 TGTAGAGTCCCACGTAGCCGGCAT ATGCCGGCTACGTGGGACTCTACA 650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		647	AAATCCGCGATGTGCCGTGAGGCT	AGCCTCACGGCACATCGCGGATTT
650 CACTAGTCTGGGGCAAGGTGCATT AATGCACCTTGCCCCAGACTAGTG 40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		648	GGCTTCGCACCCGTACCAATTTAG	CTAAATTGGTACGGGTGCGAAGCC
40 651 TGTACTCGGCAGGCGCAATAGATT AATCTATTGCGCCTGCCGAGTACA		649	TGTAGAGTCCCACGTAGCCGGCAT	ATGCCGGCTACGTGGGACTCTACA
The second secon		650	CACTAGTCTGGGGCAAGGTGCATT	AATGCACCTTGCCCCAGACTAGTG
652 AACGGGTATCGGAAGCGTAAAAGC GCTTTTACGCTTCCGATACCCGTT	40	651	TGTACTCGGCAGGCGCAATAGATT	AATCTATTGCGCCTGCCGAGTACA
		652	AACGGGTATCGGAAGCGTAAAAGC	GCTTTTACGCTTCCGATACCCGTT

			
	653	CGGACTGCCCGTTTGCAAGTTGAG	CTCAACTTGCAAACGGGCAGTCCG
	654	ATCGTTCAGCACTGGAGCCCGTAA	TTACGGGCTCCAGTGCTGAACGAT
	655	ATGCATCGAACTAGTCGTGACGGC	GCCGTCACGACTAGTTCGATGCAT
	656	TTCCAGGCATTAAGGAGAGGGAGC	GCTCCCTCCCTTAATGCCTGGAA
5	657	GTGCGACATCTACTCCACGATCCC	GGGATCGTGGAGTAGATGTCGCAC
	658	CTCATCGTCCTAACACGAGAGCCC	GGGCTCTCGTGTTAGGACGATGAG
	659	AATGGCACTTCGGCGGTGATGCAA	TTGCATCACCGCCGAAGTGCCATT
	660	CCGTGGGAGGGAATCCAACCGAGG	CCTCGGTTGGATTCCCTCCCACGG
	661	AAATTCTCGTTGGTGACGGCTCAT	ATGAGCCGTCACCAACGAGAATTT
10	662	TTGCTCTTATCCTTGTCCTGGGCG	CGCCCAGGACAAGGATAAGAGCAA
	663	TTAAGGATCAGGCGGAGCTTGCAG	CTGCAAGCTCCGCCTGATCCTTAA
	664	CGCGACTAAGGTGCTGCAACTCGA	TCGAGTTGCAGCACCTTAGTCGCG
	665	GCTCGATTTCACGGCCCGTTGTTC	GAACAACGGGCCGTGAAATCGAGC
	666	AGCAGAGTGCGTTGCAGAGGCTAA	TTAGCCTCTGCAACGCACTCTGCT
15	667	TGGAGGTGAGGACGACGTGCACTA	TAGTGCACGTCGTCCTCACCTCCA
	668	AACCGTTTAGGGTACATTCGCGGT	ACCGCGAATGTACCCTAAACGGTT
	669	TATGATCGCTCGGCTCACAGTTTG	CAAACTGTGAGCCGAGCGATCATA
	670	GACTTTTTGCGGAAACGTCATGGT	ACCATGACGTTTCCGCAAAAAGTC
	671	TGTCGGTTATTCCACCTGCAAGGA	TCCTTGCAGGTGGAATAACCGACA
20	672	CTATGGTTTGCACTGCGCCGTCGA	TCGACGCCCAGTGCAAACCATAG
	673	AGCAGGGAAATTCAATCGTTCGCA	TGCGAACGATTGAATTTCCCTGCT
	674	CCTAACCGAGCGCTTAGCATTTCC	GGAAATGCTAAGCGCTCGGTTAGG
	675	CCCGACCCTAACTCGCATTGAATA	TATTCAATGCGAGTTAGGGTCGGG
	676	TTGCTTAATGGTGACGCCACGGAT	ATCCGTGGCGTCACCATTAAGCAA
25	677	GATGCTCGCCGTGTTTAGTTCACG	CGTGAACTAAACACGGCGAGCATC
	678	TCGGATGACGAGTTTCCATGACGG	CCGTCATGGAAACTCGTCATCCGA
	679	ATGCGGTCTACTTTCTCGATCGGG	CCCGATCGAGAAAGTAGACCGCAT
	680	TTGCGAGGCTAAGCACACGGTAAA	TTTACCGTGTGCTTAGCCTCGCAA
	681	AACTTAATTACCGCCTCTGGCGCC	GGCGCCAGAGGCGGTAATTAAGTT
30	682	GTGACCGCGAACTTGTTCCGACAG	CTGTCGGAACAAGTTCGCGGTCAC
	683	TGCGGATTACCGATTCGCTCTTAA	TTAAGAGCGAATCGGTAATCCGCA
	684	TGATAGGGGCCACGTTGATCAGA	TCTGATCAACGTGGCCCCCTATCA
	685	TCGCTCCGTAGCGATTCATCGTAG	CTACGATGAATCGCTACGGAGCGA
	686	TGTCAGCTGGTAGCCTCCGTTTGA	TCAAACGGAGGCTACCAGCTGACA
35	687	AGCGTCGCATGACGCTTACGGCAC	GTGCCGTAAGCGTCATGCGACGCT
	688	TCACTCAGCGCTGTGACTGCCTGA	TCAGGCAGTCACAGCGCTGAGTGA
	689	GTTTGCGCTATAGTGGGGGACCGT	ACGGTCCCCCACTATAGCGCAAAC
	690	GTCGCATTCTGCACTGGCTTCGCC	GGCGAAGCCAGTGCAGAATGCGAC
	691	TGATTAGGTGCGGTCCCGTAGTCC	GGACTACGGGACCGCACCTAATCA
40	692	AAGGGACCTTGGGTGACGGCGAGA	TCTCGCCGTCACCCAAGGTCCCTT
	693	TCAAATGGCCACCGCGTGTCATTC	GAATGACACGCGGTGGCCATTTGA

			
	694	CTCCGACGACCAATAAATAGCCGC	GCGGCTATTTATTGGTCGTCGGAG
	695	GGCTATTCCCGTAGAGAGCGTCCA	TGGACGCTCTCTACGGGAATAGCC
	696	TGGATAACCTCTCGGTCCATCCAC	GTGGATGGACCGAGAGGTTATCCA
	697	GACCGCTGTACGGGAGTGTGCCTT	AAGGCACACTCCCGTACAGCGGTC
5	698	GCCACAGAGTTTTAGCAGGGACCC	GGGTCCCTGCTAAAACTCTGTGGC
	699	CCCACGCTTTCCGACCACTGACCT	AGGTCAGTGGTCGGAAAGCGTGGG
	700	CATTGACACAATGCGGGGACTGAT	ATCAGTCCCCGCATTGTGTCAATG
	701	AGCCACTCGACAGGGTTCCAAAGC	GCTTTGGAACCCTGTCGAGTGGCT
	702	CAGGATGAGCAAAGCGACTCTCCA	TGGAGAGTCGCTTTGCTCATCCTG
10	703	CAAGGTATGGTCTGGGGCCTAAGC	GCTTAGGCCCCAGACCATACCTTG
	704	GGTGTTCGGCCTAAACTCTTTCGG	CCGAAAGAGTTTAGGCCGAACACC
	705	TTTAGTCGGACCCTGTGGCAATTC	GAATTGCCACAGGGTCCGACTAAA
	706	CACACGTTTCCGACCAGCCTGAAC	GTTCAGGCTGGTCGGAAACGTGTG
	707	CTGGACGAACTGGCTTCCTCGTAC	GTACGAGGAAGCCAGTTCGTCCAG
15	708	TTCACAATCCGCCGAAAACTGACC	GGTCAGTTTTCGGCGGATTGTGAA
	709	AACAGGATATCCGCGATCACGACA	TGTCGTGATCGCGGATATCCTGTT
	710	TACGTCGGATCCATTGCGCCGAGT	ACTCGGCGCAATGGATCCGACGTA
	711	CATGGATCTCTCGGTTTGATCGCC	GGCGATCAAACCGAGAGATCCATG
	712	AGCCAGGCGCGTATATACGCTCGG	CCGAGCGTATATACGCGCCTGGCT
20	713	ATTTGGCACGTGTCGTGCCATGTT	AACATGGCACGACACGTGCCAAAT
	714	CCGCGTTGCACCACTTTGAGGTGC	GCACCTCAAAGTGGTGCAACGCGG
	715	TTGGACGTGACAAGCATGGCGCTC	GAGCGCCATGCTTGTCACGTCCAA
	716	CTGAATCGCGCAAGTAAATGGGGG	CCCCATTTACTTGCGCGATTCAG
	717	GATAAGGTCCACCAGATTGCGCGC	GCGCGCAATCTGGTGGACCTTATC
25	718	CTAACAATTGCCAACCGGGACGGC	GCCGTCCCGGTTGGCAATTGTTAG
	719	GGTAACCTGGGTGCTTGCAGGTTA	TAACCTGCAAGCACCCAGGTTACC
	720	ATCGGAGCCACCATTCGCATTGGG	CCCAATGCGAATGGTGGCTCCGAT
	721	GTGAACTGGCTTGCCCCAGGATTA	TAATCCTGGGGCAAGCCAGTTCAC
	722	AGGCGATAGCATGGTCCCATATGA	TCATATGGGACCATGCTATCGCCT
30	723	AACGGTATCGTGGCTAATGCACGA	TCGTGCATTAGCCACGATACCGTT
	724	AGTAGTGGTCCTCCAGATCGGCAA	TTGCCGATCTGGAGGACCACTACT
	725	CCGTTGAATTGGACGGGAGGTTAG	CTAACCTCCCGTCCAATTCAACGG
	726	GCATAAGTGCGGCATCGCGAAGGG	CCCTTCGCGATGCCGCACTTATGC
	727	CGACAAGATGCAGCTGCTACATGC	GCATGTAGCAGCTGCATCTTGTCG
35	728	TCGCAGTGATTCCCGACCGATAAG	CTTATCGGTCGGGAATCACTGCGA
	729	CAAGGCGAGTCCACTCGAGGGGAC	GTCCCTCGAGTGGACTCGCCTTG
	730	GCAACTTGCACGGCATAAGTGGCC	GGCCACTTATGCCGTGCAAGTTGC
	731	TCCGAGCTTGACGTTCGCGACGTC	GACGTCGCGAACGTCAAGCTCGGA
	732	AGCGCTGGGCTGTGCCATCTC	GAGATGGCAGCACAGCCCAGCGCT
40	733	TTCATGTCGCTGAGTAACCCTCGC	GCGAGGGTTACTCAGCGACATGAA
	734	CGAACCGCTAATGCCCATTGTCAG	CTGACAATGGGCATTAGCGGTTCG
			<u> </u>

	735	CACGGAAGGTGGGACAAATCGCCG	CGGCGATTTGTCCCACCTTCCGTG
	736	CACAGATGGAGACAAACGCGCCTT	AAGGCGCGTTTGTCTCCATCTGTG
	737	TTTTCGCAACTCGCTCCATAACCC	GGGTTATGGAGCGAGTTGCGAAAA
	738	ACGTTACGTTTCCGGCGCCTCTAA	TTAGAGGCGCCGGAAACGTAACGT
5	739	TATCGGATTGCGTGGGTTTCAATC	GATTGAAACCCACGCAATCCGATA
	740	CTTCCACAATTGTCTGCGACGCAC	GTGCGTCGCAGACAATTGTGGAAG
	741	TGCACAAAGGTATGGCTGTCCGGC	GCCGGACAGCCATACCTTTGTGCA
	742	TCCGATGCCAGTCCCATCTTAAGA	TCTTAAGATGGGACTGGCATCGGA
	743	CTGAAACCGTGCGAATCGAGGTGA	TCACCTCGATTCGCACGGTTTCAG
10	744	CGGTGTTCCGCGTGTCGAAAAAAT	ATTTTTCGACACGCGGAACACCG
	745	TCTAGCAGGCCTTTTGAATCGCCA	TGGCGATTCAAAAGGCCTGCTAGA
	746	GAGTCACCTCTGAGACGGACGCCA	TGGCGTCCGTCTCAGAGGTGACTC
	747	TCTTCTGTCATCCTGCAGCAGCAT	ATGCTGCTGCAGGATGACAGAAGA
	748	GCGGATGAAACCTGAAAGGGGCCT	AGGCCCTTTCAGGTTTCATCCGC
.15	749	GGGGCCCCAAACTGGTATCAAGCC	GGCTTGATACCAGTTTGGGGCCCC
	750	GCATTGGCTTCGGATTCTCCTACA	TGTAGGAGAATCCGAAGCCAATGC
	751	AGGCGGCCCAACTGTGAGGTCTTG	CAAGACCTCACAGTTGGGCCGCCT
	752	ACACCATGTGCTCCGCGCTGCAGT	ACTGCAGCGCGGAGCACATGGTGT
	753	ACGATGAACATGAATCGGGAGTCG	CGACTCCCGATTCATGTTCATCGT
20	754	CTGCATCCCTGTAGCAGCGCTCCG	CGGAGCGCTGCTACAGGGATGCAG
	755	GTGCCGTATTTCGACCTGTGCGTT	AACGCACAGGTCGAAATACGGCAC
	756	GCAGTGCGCACTTCAGTTCAAAAG	CTTTTGAACTGAAGTGCGCACTGC
	757	GCGATTTTAAGCGATGCCTTGACG	CGTCAAGGCATCGCTTAAAATCGC
	758	TAGGTGACCTAGGCTTGCTTGCGG	CCGCAAGCAAGCCTAGGTCACCTA
25	759	CTGGATACCTTGCCTGTGCGGCGC	GCGCCGCACAGGCAAGGTATCCAG
	760	CCCCTTACGGCTCGTCGTCTATGC	GCATAGACGACGAGCCGTAAGGGG
	761	GCGCTTGCCCGATGCGATGCATTA	TAATGCATCGCATCGGGCAAGCGC
	762	TTTCTGTAAGCGGCCTGGGGTTCA	TGAACCCCAGGCCGCTTACAGAAA
	763	GGCTGAGGTGAGCGTAAGGATGA	TCATCCTTACCGCTCACCTCAGCC
30	764	TCTTGGCCTCCCCGATCTAATTTG	CAAATTAGATCGGGGAGGCCAAGA
	765	GGAGGTAACGCCGTGTACGTAGGA	TCCTACGTACACGGCGTTACCTCC
	766	GTAATCCATTTGTGGCTGCGTCAA	TTGACGCAGCCACAAATGGATTAC
	767	CAAACCCATTCCAGCAGACGCCTG	CAGGCGTCTGCTGGAATGGGTTTG
	768	TAGGAGGAATTTGGCATGCGGGCG	CGCCCGCATGCCAAATTCCTCCTA
35	769	ATAGGTAGGATGTGCCCGGCGTTG	CAACGCCGGGCACATCCTACCTAT
	770	GCAAGTGCTTAGCTCGTCAGCCTC	GAGGCTGACGAGCTAAGCACTTGC
	771	CTGGCTGTGTCGCATCTCGTTAAC	GTTAACGAGATGCGACACAGCCAG
	772	CTAACGTCGTCTCGCGCAATCACT	AGTGATTGCGCGAGACGACGTTAG
	773	TTTTCATAAACGTTGTCCCCGAGC	GCTCGGGGACAACGTTTATGAAAA
40	774	AGCAGGAGGACGAACCTCCGCTCC	GGAGCGGAGGTTCGTCCTCCTGCT
	775	TTCAAGCACCATCGTGCAATCCAA	TTGGATTGCACGATGGTGCTTGAA

ſ			
	776	AGCGTCGCCAGTGATCGCTAGTGG	CCACTAGCGATCACTGGCGACGCT
	777	TACATTCCCTGCCTCCGTGGGCTT	AAGCCCACGGAGGCAGGGAATGTA
	778	CGCTTCGCGTATTCAGTAGCGGTT	AACCGCTACTGAATACGCGAAGCG
į	779	TCGGACGCGTCGACACTCATTATA	TATAATGAGTGTCGACGCGTCCGA
5	780	TCTGAGCAGGCCAGCTCCAGCT	AGCTGGAGCGCTGGCTCAGA
	781	TTGAATTGCCAAGCCCTGAAAGCC	GGCTTTCAGGGCTTGGCAATTCAA
(782	AGTTTTCGCCTTGATGCGTCGGTG	CACCGACGCATCAAGGCGAAAACT
	783	GTTTCATAGGCCACGCGTGCTAAA	TTTAGCACGCGTGGCCTATGAAAC
	784	GGAGCGAAGACTTCGTCTGCCCAA	TTGGGCAGACGAAGTCTTCGCTCC
10	785	ATTGGCCGAGGGTGAATGCAGCCT	AGGCTGCATTCACCCTCGGCCAAT
	786	TGATCCATCCGAATGCTTTTCCAT	ATGGAAAAGCATTCGGATGGATCA
	787	GCACACAGTTGTCTTGGCCCATGA	TCATGGGCCAAGACAACTGTGTGC
	788	CTGGCGGCAGTGGAAAAAACAAC	GTTGTTTTTCCACTGCCCGCCAG
	789	ATCTCCATGCGTAAGACTGCTCCG	CGGAGCAGTCTTACGCATGGAGAT
15	790	TCTCCTCGTCGCAGTTCGTGGA	TCCACGAACTGCGACGAGAGGAGA
	791	TAGCGTATTCACTCTTGCCGAGCA	TGCTCGGCAAGAGTGAATACGCTA
	792	CAATCAAAAGCCACGGCGCGATGG	CCATCGCGCCGTGGCTTTTGATTG
	793	AGCGTCACGGAATTCAGCAGATCT	AGATCTGCTGAATTCCGTGACGCT
	794	GACTCCCTGTTAATGCGCCCAAGG	CCTTGGGCGCATTAACAGGGAGTC
20	795	TAGGCACTGCCGGTTCAGATTCAA	TTGAATCTGAACCGGCAGTGCCTA
	796	AACAGGGTGATAACGGTGGCCAAT	ATTGGCCACCGTTATCACCCTGTT
	797	CGTGCGTACCATGTGTAAGTGCGT	ACGCACTTACACATGGTACGCACG
	798	GACCAATTCTACTTCGGCAGCCCA	TGGGCTGCCGAAGTAGAATTGGTC
	799	ATCGGACCGATTTGCTTTTGGCTG	CAGCCAAAAGCAAATCGGTCCGAT
25	800	TCCGCCGAAGCACACGCTTATTCG	CGAATAAGCGTGTGCTTCGGCGGA
	801	AACGGTACGCATTGTGAGCAGTGT	ACACTGCTCACAATGCGTACCGTT
	802	TGGCGACTACTGTTCCCCTGAATC	GATTCAGGGGAACAGTAGTCGCCA
	803	CAGAGGGGACAGCCGTATGCCTTA	TAAGGCATACGGCTGTCCCCTCTG
	804	CGGTGGTTTTATCGGAATCTGCGA	TCGCAGATTCCGATAAAACCACCG
30	805	TTGGCCTCCGACCTCACGACATAT	ATATGTCGTGAGGTCGGAGGCCAA
	806	CGTTTCGCTAGCATCTGGCGCCGA	TCGGCGCCAGATGCTAGCGAAACG
	807	ACTAAGCGGTGGAGCCGGTGGATG	CATCCACCGGCTCCACCGCTTAGT
	808	ATATTGGCTGCGTTTACGGGCCGC	GCGGCCGTAAACGCAGCCAATAT
	809	CCGCTATGGTGGCAATCCCGATAC	GTATCGGGATTGCCACCATAGCGG
35	810	GTTGCATGTGGCTCAGGCGGCATA	TATGCCGCCTGAGCCACATGCAAC
	811	ATTCTGGGGAGTGACCCAGGGCTT	AAGCCCTGGGTCACTCCCCAGAAT
ļ	812	CTCTCCAAGGAGACGAGCCAATGT	ACATTGGCTCGTCTCCTTGGAGAG
;	813	GAAAGGACGGGATTTGGGGGCTAA	TTAGCCCCCAAATCCCGTCCTTTC
	814	TATGTAGTACCTTGGCTCGCGCCA	TGGCGCGAGCCAAGGTACTACATA
40	815	TCCCTTTCGATGAGCGGCTGTACT	AGTACAGCCGCTCATCGAAAGGGA
	816	TAGATCGGGCAGAGCCCGTATCTT	AAGATACGGGCTCTGCCCGATCTA
			

	817	GGAATGCTTTAGGCTGCCGAGCTG	CAGCTCGGCAGCCTAAAGCATTCC
	818	ATGGTAGCAACATTCAACGCCAGG	CCTGGCGTTGAATGTTGCTACCAT
	819	CTATGAAACGTGTGGCCCAGCAAC	GTTGCTGGGCCACACGTTTCATAG
	820	ATGTTGCTAGTGCCTTTCGGGCCT	AGGCCCGAAAGGCACTAGCAACAT
5	821	CCAATGTGCGCAGACTCAGTCATT	AATGACTGAGTCTGCGCACATTGG
	822	GATAGTGCTCGCAAACGGGCCTTC '	GAAGGCCCGTTTGCGAGCACTATC
	823	GCACCCTGTTGCCTCATTGAGCGT	ACGCTCAATGAGGCAACAGGGTGC
	824	GGCGTGAATAGAGTGACCAGGCGG	CCGCCTGGTCACTCTATTCACGCC
	825	ACGTGCCAGCTGCGGGCACTTTAT	ATAAAGTGCCCGCAGCTGGCACGT
10	826	AGTGGAATAGTCGCGTCGTGCCGC	GCGGCACGACGCGACTATTCCACT
	827	ACTCGCCTATTACCGCTGGATTGG	CCAATCCAGCGGTAATAGGCGAGT
	828	GAGACCGGATTGAGATGATCCCGT	ACGGGATCATCTCAATCCGGTCTC
	829	CTGGCAGTTTACCACCGAACCAGT	ACTGGTTCGGTGGTAAACTGCCAG
	830	TTACATTGCCGATTTCGCATGTGA	TCACATGCGAAATCGGCAATGTAA
15	831	TAAAACTGAAGGGTCGCCTCAGCA	TGCTGAGGCGACCCTTCAGTTTTA
	832	GGCTTCGCATGCCTTTGCAACATT	AATGTTGCAAAGGCATGCGAAGCC
	833	AAGACCGAAGGTCTCTCTGAGGGC	GCCCTCAGAGAGACCTTCGGTCTT
	834	GCCTATGGCTCCAGCTCAGCAGTA	TACTGCTGAGCTGGAGCCATAGGC
	835	CGTATCATAGCGTTCGGTGGACAA	TTGTCCACCGAACGCTATGATACG
20	836	CATGCGCTCGCACTCTGCCTGTCT	AGACAGGCAGAGTGCGAGCGCATG
	837	TGGGCAATTCGGAAACGTCGGTCT	AGACCGACGTTTCCGAATTGCCCA
	838	TTGCGGAGATGCGACGGTACATTG	CAATGTACCGTCGCATCTCCGCAA
	839	ACTTTCGCACGTCGATCTGGACTG	CAGTCCAGATCGACGTGCGAAAGT
	840	CTAACTGCCGCGGCAAACTGATTA	TAATCAGTTTGCCGCGGCAGTTAG
25	841	GGCCGCGGATTTTATTCCTTGGAT	ATCCAAGGAATAAAATCCGCGGCC
	842	GAATTTGGAACGGTGTTCCGATGA	TCATCGGAACACCGTTCCAAATTC
	843	GTCCATCCATCTACGGCATCAGGA	TCCTGATGCCGTAGATGGATGGAC
	844	TAAACGACCTGGCACATGTGCGTA	TACGCACATGTGCCAGGTCGTTTA
	845	CACCATCCAAGAGCCAATCCTAGG	CCTAGGATTGGCTCTTGGATGGTG
30	846	ACTCATATACGATCAGTCCGCCGC	GCGGCGGACTGATCGTATATGAGT
	847	GTGCCAACCGACGATCAACCGAAC	GTTCGGTTGATCGTCGGTTGGCAC
	848	TGGGGTTCGTACAGGTCGGTTCAT	ATGAACCGACCTGTACGAACCCCA
	849	AACAGTAGAGGCGAGGCCTGCGGG	CCCGCAGGCCTCGCCTCTACTGTT
	850	TGCATCGAATCCGAGATGGATCTT	AAGATCCATCTCGGATTCGATGCA
35	851	GCGTCACGTTATGTCCGCTCTGTC	GACAGAGCGGACATAACGTGACGC
	852	GGGACATGCGTAGCGCAATATCAC	GTGATATTGCGCTACGCATGTCCC
	853	CACACGTCACACCATCCAAAGTGG	CCACTTTGGATGGTGTGACGTGTG
	854	ATGCTCAGGTGCTAAATACGGCCA	TGGCCGTATTTAGCACCTGAGCAT
	855	AAAAATGTTTAGCGCGCTGACTGG	CCAGTCAGCGCGCTAAACATTTTT
40	856	ATAGTCCGTTCCCAACGA	TCGTTGGGAACGGAAACGGACTAT
	857	TCGATCTTCTGGGTTGCAGACCAG	CTGGTCTGCAACCCAGAAGATCGA

			
	858	GTCGGCGCAGCCGATCCTCATGTC	GACATGAGGATCGGCTGCGCCGAC
	859	GTTGCGGGGTGTCGAAAAGGATCT	AGATCCTTTTCGACACCCCGCAAC
	860	ATCTCTTCCTCGGGTGGATGCCAG	CTGGCATCCACCCGAGGAAGAGAT
	861 .	TGATGTGCGTTTCAGCTTTTCGCG	CGCGAAAAGCTGAAACGCACATCA
5	862	GTTAAGGGGTGAGAACATCCGGCC	GGCCGGATGTTCTCACCCCTTAAC
	863	AAGTCGTCTCCCTGCGTCTCGTCC	GGACGAGACGCAGGGAGACGACTT
•	864	CCGACCTAATAAGGCGCAACAATG	CATTGTTGCGCCTTATTAGGTCGG
	865	CATCATTGGCACCGTACCAATGCC	GGCATTGGTACGGTGCCAATGATG
	866	TGGAGAAAGGGAAGTGCAGCAACG	CGTTGCTGCACTTCCCTTTCTCCA
10	867	TGGTACTCCTTGTCATGCCTGCCA	TGGCAGGCATGACAAGGAGTACCA
	868	GGCACAGGTTCTCTTGCAGCGCGG	CCGCGCTGCAAGAGAACCTGTGCC
	869	GAATCTGGGCATTGCTACGAGACC	GGTCTCGTAGCAATGCCCAGATTC
	870	CGAAATGGGAGCGTCCACTACCAC	GTGGTAGTGGACGCTCCCATTTCG
	871	ACATATGAGCTCGCGTGCTTGCAT	ATGCAAGCACGCGAGCTCATATGT
15	872	TCGAGCACGGTCACTGATAAAGCC	GGCTTTATCAGTGACCGTGCTCGA
	873	GAGGGTCCCTGCTCAGAGTTGGTT	AACCAACTCTGAGCAGGGACCCTC
	874	AAATGCGATCGCCCCTTATGGAAT	ATTCCATAAGGGGCGATCGCATTT
	875	CTACCGAATGGATTGCGGATGGC	GCCATCCGCAATCCATTCGGGTAG
	876	AGGGACTGGCAGGTCTCTGCGCGT	ACGCGCAGAGACCTGCCAGTCCCT
20	877	TAACGATCCATTCCACGAATGCAG	CTGCATTCGTGGAATGGATCGTTA
	878	GGCCGCACGTACGATTACGCCTTG	CAAGGCGTAATCGTACGTGCGGCC
	879	TGGGGAATGCATCAGTTGTTGGCT	AGCCAACAACTGATGCATTCCCCA
	880	TATCTGGGAGTAGCAGGCAGGCC	GGCCTGCTGCTACTCCCAGATA
	881	CCGAAGGTTTCACGCTCAGGTCGC	GCGACCTGAGCGTGAAACCTTCGG
25	882	GAACCCAGCTGGGACATCCTTCAG	CTGAAGGATGTCCCAGCTGGGTTC
	883	TGCATGCGAGCAAATAACCCGGAC	GTCCGGGTTATTTGCTCGCATGCA
	884	AATTGTCCGCCAAACGCTTTTCAG	CTGAAAAGCGTTTGGCGGACAATT
	885	GTCGGCTTCGAGCGATCGAGTGTG	CACACTCGATCGCTCGAAGCCGAC
	886	TCGCGTGCTCTACGTAGCCCATGA	TCATGGGCTACGTAGAGCACGCGA
30	887	GGCTTCCGCGATAACGTAATTCGC	GCGAATTACGTTATCGCGGAAGCC
	888	TGTAGCCGACTAGGGCCGAAGCCC	GGGCTTCGGCCCTAGTCGGCTACA
	889	AAGCGAACGCCCTGGCTGAATATT	AATATTCAGCCAGGGCGTTCGCTT
	890	TGTCACGCGACGTGCTGCAGATTT	AAATCTGCAGCACGTCGCGTGACA
	891	CCGTGTCCGTGTTGTCGACAGGCG	CGCCTGTCGACACACGGACACGG
35	892	CCCCACACGTTGCGCCTATATGTG	CACATATAGGCGCAACGTGTGGGG
	893	GGCGGCACAACTCAACACAGATG	CATCTGTGTTGAGTTGTGCCCGCC
	894	CGACTGCGGGATCACCGGTGATTA	TAATCACCGGTGATCCCGCAGTCG
	895	TCGGGACATGACCGGTACGGAGTC	GACTCCGTACCGGTCATGTCCCGA
	896	TACCTCGAGTGGCCGTTGATCGGG	CCCGATCAACGGCCACTCGAGGTA
40	897	TAATTCATGGGGCTAGCCGAACCA	TGGTTCGGCTAGCCCCATGAATTA
	898	ACACTCTAAGCCGATTCCGTTCGA	TCGAACGGAATCGGCTTAGAGTGT

_			
	899	GTGGGCGTGAGTGACACGCACAAA	TTTGTGCGTGTCACTCACGCCCAC
	900	ACGACTCCTCGGGCAAAGTACGTA	TACGTACTTTGCCCGAGGAGTCGT
[901	TGTGGTCATGGCGCTACTGTTTTC	GAAAACAGTAGCGCCATGACCACA
	902	CTTTCGCTAGCCAGAGCGGGTTCC	GGAACCCGCTCTGGCTAGCGAAAG
5	903	ACAGGGCGTGTTAGCGTGTGACAA	TTGTCACACGCTAACACGCCCTGT
	904	GGTACTTCCGGCGTATCGGGCCAC	GTGGCCCGATACGCCGGAAGTACC
	905	GTGGGTTTTGTTCACCCTTCTGGG	CCCAGAAGGGTGAACAAAACCCAC
Ī	906	ACGCAATTCCGCATTACTTACCCG	CGGGTAAGTAATGCGGAATTGCGT
	907	CGCCTCGACTGCGGTCAAGCACAA	TTGTGCTTGACCGCAGTCGAGGCG
10	908	GTGAAATGGATCCAGAGAGGGCCA	TGGCCCTCTCTGGATCCATTTCAC
	909	TATAAACGCTGCAGGGCTCCGTTA	TAACGGAGCCCTGCAGCGTTTATA
	910	GTTATTCAGGCGGCTTGTAACGGG	CCCGTTACAAGCCGCCTGAATAAC
	911	GGGTTCTAGCGTGCGCGTTCAGTT	AACTGAACGCGCACGCTAGAACCC
Í	912	TTGGGCTCGAGCGGTACACCACTA	TAGTGGTGTACCGCTCGAGCCCAA
.15	913	CCGTCTTCAGGACAACGGTATGCG	CGCATACCGTTGTCCTGAAGACGG
	914	GGACCCTTTGACAGATTGCGGCAC	GTGCCGCAATCTGTCAAAGGGTCC
	915	TAAATTTTATCGCCAGGCGCGCT	AGCGCCGCCTGGCGATAAAATTTA
	916	GCCGAACGCAAGATCGCTTGAACT	AGTTCAAGCGATCTTGCGTTCGGC
	917	TAGGCCATTGGTGCCCTAAGACGG	CCGTCTTAGGGCACCAATGGCCTA
20	918	CAAACCACAGCTTACAGGCTGCGT	ACGCAGCCTGTAAGCTGTGGTTTG
	919	TAAACGGAGACTGGCACGGTAGCA	TGCTACCGTGCCAGTCTCCGTTTA
	920	TAGCGCGCATCACACTTGGAATCG	CGATTCCAAGTGTGATGCGCGCTA
	921	TGCTGACACAAACGAGCCGTTTCG	CGAAACGGCTCGTTTGTGTCAGCA
	922	CGCTTAACGGCATTGACTGTCCAC	GTGGACAGTCAATGCCGTTAAGCG
25	923	TTCCACGGCCGTGTATTACGGATA	TATCCGTAATACACGGCCGTGGAA
	924	TTTATGCCGTTGCCGAGGAAGACT	AGTCTTCCTCGGCAACGGCATAAA
	925	AGTGCCGAGATAGGGGACTGGGCG	CGCCCAGTCCCCTATCTCGGCACT
	926	CTAGTCTCCACGCCCTCGGGACGA	TCGTCCCGAGGGCGTGGAGACTAG
	927	CCGCCATTCGGAAGATGGATGATG	CATCATCCATCTTCCGAATGGCGG
30	928	TGACGGTGAAAGTCGATTGCGAAG	CTTCGCAATCGACTTTCACCGTCA
	929	ATATGCGTCACCACCCGGTTCCGA	TCGGAACCGGGTGGTGACGCATAT
	930	CCATCAGTGAAGGGGTTGCTGCCA	TGGCAGCAACCCCTTCACTGATGG
	931	CATATGTGCTTGGCTTGCGATGAC	GTCATCGCAAGCCAAGCACATATG
	932	TCTGCTTTGGAAGCCTGAACTGCT	AGCAGTTCAGGCTTCCAAAGCAGA
35	933	CGATTTGGTCAAGAAGGCGGAAAT	ATTTCCGCCTTCTTGACCAAATCG
	934	ATCAGAGGCCTTCCCGCCTCGTTA	TAACGAGGCGGGAAGGCCTCTGAT
	935	ATTGTTGTCGTTGCCACATCGCAG	CTGCGATGTGGCAACGACAACAAT
	936	TGAAATGTGTCTGGACGCGAGTCT	AGACTCGCGTCCAGACACATTTCA
	937	GCGGCGATGCTCCTTAAAGGGTA	TACCCTTTAAGGAGCATCGCCCGC
40	938	CCGCAATCTCCATGCGTCGACCGT	ACGGTCGACGCATGGAGATTGCGG
	939	TGCCGCGTAATCACCTGGAACTTG	CAAGTTCCAGGTGATTACGCGGCA

	940	TTCCAGTAGCCAGCGGTAGTGTGA	TCACACTACCGCTGGCTACTGGAA
	941	CTGAATTCCGCCTATTGTTCGGCA	TGCCGAACAATAGGCGGAATTCAG
	942	GCTTGAACCTCGAGGCGATGTTCT	AGAACATCGCCTCGAGGTTCAAGC
	943	CAAGCGTGGAAGTACGACCCGCCA	TGGCGGGTCGTACTTCCACGCTTG
5	944	GTGTGCACTGGATCCGAGCCCTAG	CTAGGGCTCGGATCCAGTGCACAC
	945	TCCCTGGGCTAGCATTGCGAGGTT	AACCTCGCAATGCTAGCCCAGGGA
	946	AGAACCAAAGACGCTTGTTTGCCG	CGGCAAACAAGCGTCTTTGGTTCT
	947	CGTCACATGCAAACGTTCCCTCCC	GGGAGGGAACGTTTGCATGTGACG
	948	TGACCGCATGTGTATTGAGTCGCT	AGCGACTCAATACACATGCGGTCA
10	949	GCGGCCCAATGAGTATCCGTCAT	ATGACGGATACTCATTGGGCCCGC
	950	TAGTGACTGTGAACGCCCCTGGTT	AACCAGGGGCGTTCACAGTCACTA
	951	GGCACCGTCTGCCGCGCGTATATC	GATATACGCGCGGCAGACGGTGCC
	952	TCGATGCAGTCTTTTTCCCGTCAA	TTGACGGGAAAAAGACTGCATCGA
	953 .	ACCCCGTGGGGTTTCGCCATTTTT	AAAAATGGCGAAACCCCACGGGGT
15	954	CTACACGCGCAGTTGTGACTTGTG	CACAAGTCACAACTGCGCGTGTAG
	955	CGCAGCGACCTCATCTCTGGAGCC	GGCTCCAGAGATGAGGTCGCTGCG
	956	CGACCCAGCACTCCTAAAATCGGT	ACCGATTTTAGGAGTGCTGGGTCG
	957	ACGCGCCGCTCATCACTACAATCT	AGATTGTAGTGATGAGCGGCGCGT
	958	CGCAACTTCCTGTGGCAAAGCCAG	CTGGCTTTGCCACAGGAAGTTGCG
20	959	TCGTTGGGCACATAAGGCAACTGA	TCAGTTGCCTTATGTGCCCAACGA
•	960	CCGCTTGTAATTGCCATTCTCCGT	ACGGAGAATGGCAATTACAAGCGG
	961	GTAACCAGGGAGTCCTGGGCTGTG	CACAGCCCAGGACTCCCTGGTTAC
	962	AGCGCAAGATCTGGGGGCAGTCAC	GTGACTGCCCCCAGATCTTGCGCT
	963	GCGTACATCTGCTCATCAGCATGG	CCATGCTGATGAGCAGATGTACGC
25	964	CCTCTGTGGCAGGAAAGAAACCGT	ACGGTTTCTTTCCTGCCACAGAGG
	965	CCTATGCAATGGACCTGCATCGGA	TCCGATGCAGGTCCATTGCATAGG
	966	CTCGGTGGATGGCGAATAAGGATA	TATCCTTATTCGCCATCCACCGAG
•	967	CCTCACTCGTGATGGCGTGACGCA	TGCGTCACGCCATCACGAGTGAGG
	968	TACGCTCACAGAACGCCATACGCC	GGCGTATGGCGTTCTGTGAGCGTA
30	969	CCGGAGAAGTTACGCGGATCGGAC	GTCCGATCCGCGTAACTTCTCCGG
	970	GCGCCCTCACTGCATTTTTGGTAT	ATACCAAAAATGCAGTGAGGGCGC
	971	ACTTTCAGCACGCGAACAGCGCAA	TTGCGCTGTTCGCGTGCTGAAAGT
	972	CTAAACGCCCTTGATGCATGAGCA	TGCTCATGCATCAAGGGCGTTTAG
	973	GCTTGCCTTTTACGATCGTCGCTA	TAGCGACGATCGTAAAAGGCAAGC
35	974	CAGACATCGTACGCACTCGGCATC	GATGCCGAGTGCGTACGATGTCTG
	975	TAGCCGCGCGCTCCTATGCTCTT	AAGAGCATAGGAGCCGCGCGCTA
	976	GATGCCCTTTTGGTCCCCATGCCA	TGGCATGGGGACCAAAAGGGCATC
	977	TGAGCTGCCTTGCCACGATGCCTC	GAGGCATCGTGGCAAGGCAGCTCA
	978	CCGCCGTATACGTGCCATAGTTTG	CAAACTATGGCACGTATACGGCGG
40	979	TAGTGCTCTCCGCGCTCATCCAAC	GTTGGATGAGCGCGGAGAGCACTA
	980	CCCTAGATAAGTTGGGGTGGGACG	CGTCCCACCCCAACTTATCTAGGG

•	981	TGAAGGCCACCTGATATGGTTTC	GAAACCATATCAGGTGGCCCTTCA
	982	GCCGCCTCCGACTGGTTAACCCGA	TCGGGTTAACCAGTCGGAGGCGGC
	983	CGCACGGCTACTAACAGCGGATCA	TGATCCGCTGTTAGTAGCCGTGCG
	984	CCGGACCAATTCCAACGAGCATCG	CGATGCTCGTTGGAATTGGTCCGG
5	· 985	CATTGAGGTCCACCGTTCACATCC	GGATGTGAACGGTGGACCTCAATG
	986	AGGACGCAGCATGTCCCAGCCGAG	CTCGGCTGGGACATGCTGCGTCCT
	987	TAATCGCGGGCCATACTACCAACG	CGTTGGTAGTATGGCCCGCGATTA
	988	CGCAAATTTCTCCGGTCGGCAAGC	GCTTGCCGACCGGAGAAATTTGCG
	989	GTGGCTCGACTAATGCCTTGCGTG	CACGCAAGGCATTAGTCGAGCCAC
10	990	TGTGGCGTGTTCCGGCTCACTGT	ACAGTGAGCCGGAACACGCCCACA
	991	GTTCTTCCTTTTCTGCGGTGGGAA	TTCCCACCGCAGAAAAGGAAGAAC
	992	ACCTCGAGTCAGATTGTGCGCCTT	AAGGCGCACAATCTGACTCGAGGT
	993	CAAGTGGACAGACGGTTTGTTCCG	CGGAACAAACCGTCTGTCCACTTG
	994	TCCAGTTGAGTCGCGCCGACGAGG	CCTCGTCGGCGCGACTCAACTGGA
15	995	CGCAACAGGTCAGCCCTTATTTGC	GCAAATAAGGGCTGACCTGTTGCG
	996	GCCGTGACTCCTGCAATGTCGGTA	TACCGACATTGCAGGAGTCACGGC
	997	ATCAGCGCAAGCTGGTCTGAAACA	TGTTTCAGACCAGCTTGCGCTGAT
	998	CCCTGGCCAGAACGAGAGGCCATG	CATGGCCTCTCGTTCTGGCCAGGG
	999	ACGATCAAGGACTCGTCAGGGTTG	CAACCCTGACGAGTCCTTGATCGT
20	1000	TTCATGGCACCAAGACCACCGTTA	TAACGGTGGTCTTGGTGCCATGAA
	1001	ACAGCAAGGAGATGGATTGCGACG	CGTCGCAATCCATCTCCTTGCTGT
	1002	CGTAAATATCTGCGGCGGTGTGAA	TTCACACCGCCGCAGATATTTACG
	1003	GGAAACACGTGTTCGTCTGTTGGC	GCCAACAGACGAACACGTGTTTCC
	1004	CGATGTTAGGATTCGGATAGGCCA	TGGCCTATCCGAATCCTAACATCG
25	1005	ATCGGACAAGGACAAGTGGATGGT	ACCATCCACTTGTCCTTGTCCGAT
	1006	GCCCGGAGGACAAAGTTCGAGTTA	TAACTCGAACTTTGTCCTCCGGGC
	1007	AAATCCGACAAATGGGCACATGGA	TCCATGTGCCCATTTGTCGGATTT
	1008	CAGTTAGGGGATGCGGATGAGTGA	TCACTCATCCGCATCCCCTAACTG
	1009	CGGCAGGTGGAGATTCCGACATTG	CAATGTCGGAATCTCCACCTGCCG
30	1010	TAGGGCAGCCAGGTTCACTCATCT	AGATGAGTGAACCTGGCTGCCCTA
	1011	GCACCGTATTAGCAGTAGGCACGC	GCGTGCCTACTGCTAATACGGTGC
	1012	ACGCATTACAGGTGTGCGAAGGGA	TCCCTTCGCACACCTGTAATGCGT
	1013	CGTGACTGCACGTGTTCCACAGGG	CCCTGTGGAACACGTGCAGTCACG
	1014	GCTGAACTACCGCCTAAAATCGCG	CGCGATTTTAGGCGGTAGTTCAGC
35	1015	AGCACGCCAGGGAGGATCGAGTTA	TAACTCGATCCTCCCTGGCGTGCT
	1016	ATGAGGGCAAGGAATGGGTCATGC	GCATGACCCATTCCTTGCCCTCAT
	1017	GGGTCTCTCGTAATCAAAGGCCGA	TCGGCCTTTGATTACGAGAGACCC
	1018	TATCTTGCGCAACGCCTCCATTTA	TAAATGGAGGCGTTGCGCAAGATA
	1019	GGTTACACCTACGGAATCCAGCGG	CCGCTGGATTCCGTAGGTGTAACC
40	1020	ACACCGAGTTGGTCCGGTCAATAG	CTATTGACCGGACCAACTCGGTGT
	1021	TCCCAGATTAAACGCTAGCCACCG	CGGTGGCTAGCGTTTAATCTGGGA

	1022	TTGGTGAAACTGGCCCGTCGGAAG	CTTCCGACGGGCCAGTTTCACCAA
	1023	CCAGGGGAGTTGACAATGAGGCTG	CAGCCTCATTGTCAACTCCCCTGG
	1024	TCTGCGTTATTGGACCGTTTGTCG	CGACAAACGGTCCAATAACGCAGA
	1025	TATGGGATGCTAAACCGGCGTACA	TGTACGCCGGTTTAGCATCCCATA
5	1026	CACAGACGTCTGTCGGGCTTGTGT	ACACAAGCCCGACAGACGTCTGTG
	1027	AGAATGCCGTTCGCCTACTCCCGT	ACGGGAGTAGGCGAACGGCATTCT
	1028	CGACGGATAATGCAGGCCTCATGA	TCATGAGGCCTGCATTATCCGTCG
	1029	ACCCTCTAAAGCAATAGGTCGGCG	CGCCGACCTATTGCTTTAGAGGGT
	1030	CACTCACGGCAGAAGCCTGCTTGT	ACAAGCAGGCTTCTGCCGTGAGTG
10	1031	ATCAGCCCACATATTCTCGGCCGT	ACGGCCGAGAATATGTGGGCTGAT
	1032	CAAATCTGGGGTCGTCCTAAACGC	GCGTTTAGGACGACCCCAGATTTG
	1033	TGTCGCCCATGGCAGGTTAAATAC	GTATTTAACCTGCCATGGGCGACA
	1034	GGGGCCCATCAATTCATTATCGA	TCGATAATGAATTGATGGGCCCCC
	1035	GTCGAGCAGCTTTAGTATCGCGGG	CCCGCGATACTAAAGCTGCTCGAC
15	1036	CCGCTAAGCACCGAAGGCTCACAA	TTGTGAGCCTTCGGTGCTTAGCGG
	1037	TAGAATTAGCGAACGGTGATCCCG	CGGGATCACCGTTCGCTAATTCTA
	1038	CACATGACATTTGGCAAAGGTCCA	TGGACCTTTGCCAAATGTCATGTG
	1039	TCAACGCACTGGCGATGACTAGAT	ATCTAGTCATCGCCAGTGCGTTGA
•	1040	CGGGAAATGTCTTTAGCCGTCGAA	TTCGACGGCTAAAGACATTTCCCG
20	1041	ATCAGAGCAAATCTGCAGCGGGGA	TCCCCGCTGCAGATTTGCTCTGAT
	1042	GGCCTGTTTCTGTCCAACTGGGCT	AGCCCAGTTGGACAGAAACAGGCC
	1043	ATTTCACCTCGCTGATCGCTTCCG	CGGAAGCGATCAGCGAGGTGAAAT
	1044	AGTGACGCCGAGTCGCGAGGGTTA	TAACCCTCGCGACTCGGCGTCACT
	1045	AGTTGTCTCATCCTGTCCGGGACC	GGTCCCGGACAGGATGAGACAACT
25	1046	CTTCTTTGTGCACACTTGCCAGGG	CCCTGGCAAGTGTGCACAAAGAAG
	1047	CACCTCATCGGAGCATAGCAACCC	GGGTTGCTATGCTCCGATGAGGTG
	1048	ATGCGATCCATGACAAGGGTTGCT	AGCAACCCTTGTCATGGATCGCAT
	1049	CCCGTGGAGATGATGTGCGGCTTA	TAAGCCGCACATCATCTCCACGGG
	1050	CCCAATAGACGCCACAGCCAGTGA	TCACTGGCTGTGGCGTCTATTGGG
30	1051	AACGACCACGACCCTCGCCGAGTA	TACTCGGCGAGGGTCGTGGTCGTT
	1052	GGTGCTTTGTCTGAGGCGAGTGAA	TTCACTCGCCTCAGACAAAGCACC
	1053	CTGTCGGCGCTGCTCCGAATTT	AAATTCGGAGAGCAGCGCCGACAG
	1054	CTCGCCGGAGTGTTGTAAGCATTG	CAATGCTTACAACACTCCGGCGAG
	1055	AGCAATCATGAGAGGTGGCCGGTG	CACCGGCCACCTCTCATGATTGCT
35	1056	ATTTGCCACCGGCGACAAAAGAT	ATCTTTTGTCGCCGGTGGCAAAT
	1057	CCGCCCGTGTTGGCATGTCTTTTG	CAAAAGACATGCCAACACGGGCGG
	1058	ATCGGAAGTGCTGACTGACACACG	CGTGTGTCAGTCAGCACTTCCGAT
	1059	CCTCAGACCCTATCTGGGTTGACG	CGTCAACCCAGATAGGGTCTGAGG
•	1060	CTGTGTGGTCTGGTCCGGCTGTTC	GAACAGCCGGACCAGACCACAG
40	1061	GTCCCCATTATCGGTGAGTGCAAC	GTTGCACTCACCGATAATGGGGAC
	1062	ACAGGCACGTAAGTGCTCAATCGG	CCGATTGAGCACTTACGTGCCTGT
		 -	

	1063	AGCAAGATAGCGGGAGTGCCCCTA	TAGGGGCACTCCCGCTATCTTGCT
	1064	GGTTTACGCCATGACATCCCGTCA	TGACGGGATGTCATGGCGTAAACC
	1065	GTGCAGGCCTTTGTGTGTGAATCG	CGATTCACACACAAAGGCCTGCAC
•	1066	CTTCGAGGGTAGGGCTTCGAAACG	CGTTTCGAAGCCCTACCCTCGAAG
5	1067	AGTCGACACTTGGGTTTACCACGG	CCGTGGTAAACCCAAGTGTCGACT
	1068	ACATAAATCTCGCCCGCTGCACTC	GAGTGCAGCGGGCGAGATTTATGT
	1069	GTTTGGTTTTCCACGGAGGTTTGA	TCAAACCTCCGTGGAAAACCAAAC
	1070	GCAGGAACCAGATTAGTGTCCCGG	CCGGGACACTAATCTGGTTCCTGC
	1071	TTTGCTAGAGCGCGGAGCTAAAGC	GCTTTAGCTCCGCGCTCTAGCAAA
10	1072	CTATGTGGCATCGCTGACATGCTC	GAGCATGTCAGCGATGCCACATAG
	1073	CCTAAGTCGGTTTGCAGCTGCTCT	AGAGCAGCTGCAAACCGACTTAGG
	1074	GCGTTCGTCCACAGGAACGGAAGG	CCTTCCGTTCCTGTGGACGAACGC
	1075	TAACCCGCGCCCGAGAAATTGTCT	AGACAATTTCTCGGGCGCGGGTTA
	1076	TATGGTGCTCAGAGCTGTTGCCAA	TTGGCAACAGCTCTGAGCACCATA
15	1077	TCATCGACCCACTAACGTCAGGGC	GCCCTGACGTTAGTGGGTCGATGA
	1078	TGCTCAAGCTACGCGTCACTTCCC	GGGAAGTGACGCGTAGCTTGAGCA
	1079	AGCGGGAAGGTCTGAGGAGGGAAA	TTTCCCTCCTCAGACCTTCCCGCT
	1080	CCGATGTAGCACCACCGCAGTGGC	GCCACTGCGGTGGTGCTACATCGG
	1081	AAGTTCTGGGAATCACACGGCGCG	CGCGCCGTGTGATTCCCAGAACTT
20	1082	CACCAGCCTTACGTGCGGCGTTAA	TTAACGCCGCACGTAAGGCTGGTG
	1083	CGTTTCGCCTCCTCTTCCGAATGC	GCATTCGGAAGAGGAGGCGAAACG
	1084	GAGGAGGCCAATAGAGCAGCGCGC	GCGCGCTGCTCTATTGGCCTCCTC
	1085	AGTAATCTTGCGGCACACAAGCGG	CCGCTTGTGTGCCGCAAGATTACT
	1086.	TGAGGACAAACCGCGCGTAGGATA	TATCCTACGCGCGGTTTGTCCTCA
25	1087	TCGTAGAGACGCAGTGCCCATCTC	GAGATGGGCACTGCGTCTCTACGA
	1088	CGAAGCTACACCCCGAGTGCGGTG	CACCGCACTCGGGGTGTAGCTTCG
	1089	ATGATGTGATCTTCCCATGGCTGG	CCAGCCATGGGAAGATCACATCAT
	1090	TGTACACGTATCGCGTTCGCCTAG	CTAGGCGAACGCGATACGTGTACA
	1091	GGTGTGCTTTTACGCATGTACGCA	TGCGTACATGCGTAAAAGCACACC
30	1092	AGGCGGGATACGTGGATGCTAGCC	GGCTAGCATCCACGTATCCCGCCT
	1093	AAATTAGGCACAGCCCTCCCACAG	CTGTGGGAGGGCTGTGCCTAATTT
	1094	ATAAGTTTGGTGAGCCATTCGCGA	TCGCGAATGGCTCACCAAACTTAT
	1095	CCTATTTCGGCGGACCTCGATGCC	GGCATCGAGGTCCGCCGAAATAGG
	1096	TTACCGGAATATGCACTTGGCCGC	GCGGCCAAGTGCATATTCCGGTAA
35	1097	CCTCTCGGACGGTCCCTTTGATCG	CGATCAAAGGGACCGTCCGAGAGG
	1098	CAAGCGAATGCTGTATTACGGCCT	AGGCCGTAATACAGCATTCGCTTG
	1099	GCATTTCCCATGCCAGAACGTTGA	TCAACGTTCTGGCATGGGAAATGC
	1100	GTTTTGGCTAACCGTCCTGCCTTG	CAAGGCAGGACGGTTAGCCAAAAC
	1101	AGGTTTTGTCCGGGCGAATGATGT	ACATCATTCGCCCGGACAAACCT
40	1102	ATGTCCACGAGTGCGTCCGATATC	GATATCGGACGCACTCGTGGACAT
	1103	AGACGCGTACGAGGGTTCTGCGCC	GGCGCAGAACCCTCGTACGCGTCT

	1104	AATACCGTTCCCATCTGTGCGAGG	CCTCGCACAGATGGGAACGGTATT
	1105	ACACAAGGTGCCTCATCGAATGGT	ACCATTCGATGAGGCACCTTGTGT
	1106	GCCGGCAAAATCCTACAAAATCCA	TGGATTTTGTAGGATTTTGCCGGC
	1107	CTTATCCCATGTGCCGGTCTGACT	AGTCAGACCGGCACATGGGATAAG
5	1108	GCGGCCATAATGCATAGCACGGAA	TTCCGTGCTATGCATTATGGCCGC
	1109	TACGGTGCATCGCAGTATGGGTAA	TTACCCATACTGCGATGCACCGTA
	1110	CACCAGATGTCGAGGATCATCGCC	GGCGATGATCCTCGACATCTGGTG
	1111	GCTCCTACGCCCAAAGAGGTATGG	CCATACCTCTTTGGGCGTAGGAGC
	1112	AGAATATGGGCAGCAGCACTC	GAGTGCTGCTGCCCATATTCT
10	′ 1113	CTGCAGTCGCACGCAGTAGACCCG	CGGGTCTACTGCGTGCGACTGCAG
	1114	ATGTCCCTGACCGGAATCTTTCCA	TGGAAAGATTCCGGTCAGGGACAT
	1115	TTCGCCACGAGGCATTAGTCCGAC	GTCGGACTAATGCCTCGTGGCGAA
	1116	ACGTCGTTCCCGAGAATACGGTCT	AGACCGTATTCTCGGGAACGACGT
	1117	ATCCGCTGGCGCTTTGACGAAGAA	TTCTTCGTCAAAGCGCCAGCGGAT
15	1118	TGAACCAAATTCTTACCGCGTGGA	TCCACGCGGTAAGAATTTGGTTCA
	1119	CACGCGTAGGCTGGTGTCATTC	GAATGACACCAGCCTACGCGTG
	1120	TCGATCCCGCGATCTGGCCTATTG	CAATAGGCCAGATCGCGGGATCGA
	1121	GGAACACTCAACCACCGTGGATCT	AGATCCACGGTGGTTGAGTGTTCC
	1122.	TCACACACCAACTGGCCACAGATG	CATCTGTGGCCAGTTGGTGTGA
20	1123	TGTGCTTAGGACACCAGGCAACCC	GGGTTGCCTGGTGTCCTAAGCACA
	1124	GACATTTAACCCGACCGATTGTGC	GCACAATCGGTCGGGTTAAATGTC
	1125	GGCACCGAGCCAGTAGGCCTCTGA	TCAGAGGCCTACTGGCTCGGTGCC
	1126	CTCAAGCGTGCATGTTGGTAACCA	TGGTTACCAACATGCACGCTTGAG
	1127	AGGAAGGCCACCATCCAATATTCG	CGAATATTGGATGGTGGCCTTCCT
25	1128	TACGAACGCCAAGGTTATGCCAAT	ATTGGCATAACCTTGGCGTTCGTA
	1129	CGCACCAGAGTTATGCAGGCTCAA	TTGAGCCTGCATAACTCTGGTGCG
	1130	CCAGCTTGGACGAGGAAGGATGTG	CACATCCTTCCTCGTCCAAGCTGG
	1131	GTCACGCCTTTCAAATGACCCACA	TGTGGGTCATTTGAAAGGCGTGAC
	1132	TGCTAGACCCAGCCCGAGTCTCGG	CCGAGACTCGGGCTGGGTCTAGCA
30	1133	TATTGTGGCACTTGGGTCCAGTGC	GCACTGGACCCAAGTGCCACAATA
	1134	CACGTGTGAGACCGGAAGTGCATC	GATGCACTTCCGGTCTCACACGTG
	1135	GGCAGCCTGATGCTACAGCACCGT	ACGGTGCTGTAGCATCAGGCTGCC
	1136	CGGTCCGTCCATCCTTCAGAGTTA	TAACTCTGAAGGATGGACGGACCG
	1137	CTATTCGCGGACCCTACGCAGTTT	AAACTGCGTAGGGTCCGCGAATAG
35	1138	ACCTGTGCAGTCAGCACGAGTGCG	CGCACTCGTGCTGACTGCACAGGT
	1139	GAGAACCACAGGTGGTCCACCCTA	TAGGGTGGACCACCTGTGGTTCTC
	1140	CCTCGCTAGAGAAATCCACGGGAT	ATCCCGTGGATTTCTCTAGCGAGG
	1141	TAACATCGGTGCAAACCGTGGCGC	GCGCCACGGTTTGCACCGATGTTA
	1142	ACCCAGAAGACATGGCATTCGCCT	AGGCGAATGCCATGTCTTCTGGGT
40	1143	AAAAGCGCTGCTCTAACACCGCCG	CGGCGGTGTTAGAGCAGCGCTTTT
	1144	CAAGTCTGTCCATTTCCCAACGGT	ACCGTTGGGAAATGGACAGACTTG

	1145	CCGACACATGGTGGGCTTTTTAAG	CTTAAAAAGCCCACCATGTGTCGG
	1146	ACAGACCAGCTTTTTGCGCAGATT	AATCTGCGCAAAAAGCTGGTCTGT
	1147	CGGCGATCCATTTCACTTCAAAGT	ACTTTGAAGTGAAATGGATCGCCG
	1148	GACGTTATCATGACACAGGTCGCG	CGCGACCTGTGTCATGATAACGTC
5	1149	GGCAGAGTTGGATCGGATCCTCAA	TTGAGGATCCGATCCAACTCTGCC
	1150	CCTCAATGCCACCGAATTCGGTAT	ATACCGAATTCGGTGGCATTGAGG
	1151	GGAGTTAGCGTGATTAGTCGCCCA	TGGGCGACTAATCACGCTAACTCC
	1152	GAACTCGACGTGTCACGGAAGGGT	ACCCTTCCGTGACACGTCGAGTTC
	1153	CACAAGCGACATTTCTGGTGCACG	CGTGCACCAGAAATGTCGCTTGTG
10	1154	CCAGAATGCGTGAATTCGCGTCCT	AGGACGCGAATTCACGCATTCTGG
	1155	CAAGGGAGCCCTGCGAATTAGAGT	ACTCTAATTCGCAGGGCTCCCTTG
	1156	ATTCTTGCTTCGGACGACTAGCCG	CGGCTAGTCGTCCGAAGCAAGAAT
	1157	TGCCACTTTGATTTCCAGATTGCC	GGCAATCTGGAAATCAAAGTGGCA
	1158	GATGGTCGGCAGATAAGTGGTGGG	CCCACCACTTATCTGCCGACCATC
15	1159	GTTCACACGGGTTGACCAACATGT	ACATGTTGGTCAACCCGTGTGAAC
	1160	GATTCAATTGCCCCATTCCTGCAT	ATGCAGGAATGGGGCAATTGAATC
	1161	TACCGGAAACTGAGCCTCGTGCTA	TAGCACGAGGCTCAGTTTCCGGTA
	1162	GGATCTTTACTCAGGGGCAGAGCC	GGCTCTGCCCCTGAGTAAAGATCC
	1163	CGCGAGTGCTTTGTTCTGTGGA	TCCACACAGAACAAAGCACTCGCG
20	1164	GTCGTCGCGATGGCGTACATCCTT	AAGGATGTACGCCATCGCGACGAC
	1165	ACGGGAATCTCCCGAAGTGCGAGC	GCTCGCACTTCGGGAGATTCCCGT
	1166	GGTCGAAATGAGCCAGCAGCAGAT	ATCTGCTGCTGGCTCATTTCGACC
	1167	CCATTGGAATACTGCGTGCGGCTT	AAGCCGCACGCAGTATTCCAATGG
	1168	GGAAGACTTCGCGAGGGCACAATG	CATTGTGCCCTCGCGAAGTCTTCC
25	1169	AGGGTGACTTCGAAGGTCCGAACT	AGTTCGGACCTTCGAAGTCACCCT
	. 1170	TCGTCCCTCTGGTGGTCGAATCAC	GTGATTCGACCACCAGAGGGACGA
	1171	TGTGCAAATTATGCTGGGCGTGAG	CTCACGCCCAGCATAATTTGCACA
	1172	GTCGCCAACTGTCATGTGTGCCCA	TGGGCACACATGACAGTTGGCGAC
	1173	CCTCGAACCCTCAAGACGAAACGA	TCGTTTCGTCTTGAGGGTTCGAGG
30	1174	CTTCATCACGTGACCTTTGTTGCC	GGCAACAAAGGTCACGTGATGAAG
	1175	CCTTCATTCCCAGCAGGATGGCTT	AAGCCATCCTGCTGGGAATGAAGG
	1176	CGGGGACCTCAATGGAGCGTCTTA	TAAGACGCTCCATTGAGGTCCCCG
	1177	CGCCTCTAGCGCTTGTTACGTCGA	TCGACGTAACAAGCGCTAGAGGCG
	1178	CTGCCAGACTCAAAACAGGGACGG	CCGTCCCTGTTTTGAGTCTGGCAG
35	1179	CTCCTTACACCGTGTGAGGGAACC	GGTTCCCTCACACGGTGTAAGGAG
-	1180	TTTCATGCCATATCGCCTCGCGCA	TGCGCGAGGCGATATGGCATGAAA
	1181	GTCTGACTGTCTGCCCTGTATGCG	CGCATACAGGGCAGACAGTCAGAC
[1182	GGTTAATGGAACGGCGTTAACGCG	CGCGTTAACGCCGTTCCATTAACC
	1183	CTTCGCACTGCGGAATCTCAAGCT	AGCTTGAGATTCCGCAGTGCGAAG
40	1184	TGCCAGAGGCGTAGGAGTCCTGGA	TCCAGGACTCCTACGCCTCTGGCA
	11,85	GACGGCCAGCAGTATTAACTCA	TGAGTTAATACTGGCTCGCCCGTC

		T	T
	1186	GACCTCCAAAGTCAGTCTTGGCGG	CCGCCAAGACTGACTTTGGAGGTC
	1187	CGTTAGAGCATGACCGAACACGTC	GACGTGTTCGGTCATGCTCTAACG
	1188	GTGGGCTCAAAAATTGGGTACGCC	GGCGTACCCAATTTTTGAGCCCAC
	1189	GGGCAGAGATCACGCGTTCCTCT	AGAGGAACGCGTGATCTCTGCCCC
5	1190	TTTCGCCCTACGAAGCGAAGTTTC	GAAACTTCGCTTCGTAGGGCGAAA
	1191	TACGGGGTGATGTTAAGCTACGCG	CGCGTAGCTTAACATCACCCCGTA
	1192	CCTGTGAGTCTGAGATCGCCGTGT	ACACGGCGATCTCAGACTCACAGG
	1193	ACTGAAGCTGGAACAGGCCATTCG	CGAATGGCCTGTTCCAGCTTCAGT
	1194	AGCACTGGTTCACATGGGAGTCCA	TGGACTCCCATGTGAACCAGTGCT
10	1195	TAAGGAAGATCACACTCCCTGCGC	GCGCAGGGAGTGTGATCTTCCTTA
	1196	CACCACACGCTAAAATTGAAGCCG	CGGCTTCAATTTTAGCGTGTGGTG
	1197	GCTGTCGCCAGGATCATGTATCGT	ACGATACATGATCCTGGCGACAGC
	1198	TTCGTTCGTGCACTGGATTCTTGA	TCAAGAATCCAGTGCACGAACGAA
	1199	TCAGCTCTCCTTGTGCTTGCAGTG	CACTGCAAGCACAAGGAGAGCTGA
15	1200	ACGACGAGGTGAACTTCGTGGGAA	TTCCCACGAAGTTCACCTCGTCGT
	1201	AGCATTGCCGCGGGCCTTGGTTTA	TAAACCAAGGCCCGCGGCAATGCT
	1202	CAGAGGCAGATGTGACTCCTCAA	TTGAGGAGTCACATCTGCCCTCTG
	1203	CGATATTTCAGCCTCTCAAACGCG	CGCGTTTGAGAGGCTGAAATATCG
	1204	TGCCAGAAATGTTGCCGATTCGAA	TTCGAATCGGCAACATTTCTGGCA
20	1205	TAGGCCACCCGGTGTTCACAATTC	GAATTGTGAACACCGGGTGGCCTA
	1206	GAGAGTCAGACCGAGGGACACGAG	CTCGTGTCCCTCGGTCTGACTCTC
	1207	GAGGCGATCCTGGAACCACGCAAC	GTTGCGTGGTTCCAGGATCGCCTC
	1208	CCAGAGAGGCGGGCTACTGACTCA	TGAGTCAGTAGCCCGCCTCTCTGG
	1209	CACACAGTCCCATCGTACGGCAGT	ACTGCCGTACGATGGGACTGTGTG
25	1210	TTACGTTGCGGAAGCGTGCCTCTA	TAGAGGCACGCTTCCGCAACGTAA
	1211	ATGTACACGCTGCAATCGTGTCCC	GGGACACGATTGCAGCGTGTACAT
	1212	ACTCGTCGTCGGAAGCGCCCAGGT	ACCTGGGCGCTTCCGACGACGAGT
	1213	ATGCGAGAGCAGAATTGAGCCGGT	ACCGGCTCAATTCTGCTCTCGCAT
	1214	AAGTTGGTTCGTATTCACGCGTGC	GCACGCGTGAATACGAACCAACTT
30	1215	TGGGCTTATCGCCGAAGATTGCTA	TAGCAATCTTCGGCGATAAGCCCA
	1216	CAACGGCGAAGACCCAGAATTTTA	TAAAATTCTGGGTCTTCGCCGTTG
:	1217	AGCGTACGGCGAAAGTCTAGGGAC	GTCCCTAGACTTTCGCCGTACGCT
	1218	ATGCATCCAGCGTCCCCTTGATTA	TAATCAAGGGGACGCTGGATGCAT
	1219	ACCGTCATCAGTCGCAGGCTTCTG	CAGAAGCCTGCGACTGATGACGGT
35	1220	TCTTGACGGCTGGGCATGATTGGA	TCCAATCATGCCCAGCCGTCAAGA
	. 1221	TTAACATTCGGACCCAGGACCTGG	CCAGGTCCTGGGTCCGAATGTTAA
	1222	TGGTGTCGAACTCCCTTGCGTGTT	AACACGCAAGGGAGTTCGACACCA
	1223	TACTCCAGTCGCCTGCGCGCAAAC	GTTTGCGCGCAGGCGACTGGAGTA
	1224	CGCAATGCCGTAAGCATGCCAAGC	GCTTGGCATGCTTACGGCATTGCG
40	1225	AGTCCGCGCGAAATACGAACAGTA	TACTGTTCGTATTTCGCGCGGACT
	1226	ATGTTGCACGCGCACTGTATCACA	TGTGATACAGTGCGCGTGCAACAT
•			

		T	T
	1227	ATCGCCTAACTACCCGCGGCGTGC	GCACGCCGCGGGTAGTTAGGCGAT
	1228	TGGCCAGGGAACACAAGCTCGGTA	TACCGAGCTTGTGTTCCCTGGCCA
	1229	AAACATGGGTCGCGTCTGAGATCA	TGATCTCAGACGCGACCCATGTTT
	1230	GCGAGAGCTGCGATTCCCTTTTAG	CTAAAAGGGAATCGCAGCTCTCGC
5	1231	CCGGCCAAACAAGAGACGAGCGGA	TCCGCTCGTCTCTTGTTTGGCCGG
	1232	AATGGGGCACAGTCTCGCTTGACA	TGTCAAGCGAGACTGTGCCCCATT
	1233	TGTCTCGGGCCTTCAGGACACACT	AGTGTGTCCTGAAGGCCCGAGACA
	1234	TCCACCTTCATTAAGTGGTTCGGC	GCCGAACCACTTAATGAAGGTGGA
	1235	GCTTCGGAATCATCCACCTGTCAT	ATGACAGGTGGATGATTCCGAAGC
10	1236	GAGCCGATGGGCTATCGTCGG	CCGACGACGATAGCCCATCGGCTC
	1237	CACGAATTACGCACGCACAGAGGA	TCCTCTGTGCGTGCGTAATTCGTG
	1238	GCTGTGACGCTCCCCTCAACTAGG	CCTAGTTGAGGGGAGCGTCACAGC
	1239	CGCTCTGAAAACGCGGGCTACGTT	AACGTAGCCCGCGTTTTCAGAGCG
	1240	GAGTGCTGGACACCGTAGCCAGGA	TCCTGGCTACGGTGTCCAGCACTC
15	1241	CCAACCCCAGTGTAGGCGCAAATG	CATTTGCGCCTACACTGGGGTTGG
	1242	GAAGTAGGGGATGTTGGCCGGCGG	CCGCCGGCCAACATCCCCTACTTC
	1243	CAACGTGGGCACCTGTTTTAGCAG	CTGCTAAAACAGGTGCCCACGTTG
•	1244	CTAGCTGCGATCCGAACCTCTACG	CGTAGAGGTTCGGATCGCAGCTAG
	1245	CATTGAACCATCAGCCAAGCTGCG	CGCAGCTTGGCTGATGGTTCAATG
20	1246	AGACTGGCAATTTTTCGAGGCCAA	TTGGCCTCGAAAAATTGCCAGTCT
	1247	CTGGCCGTCCATGAGTTGGTCCAG	CTGGACCAACTCATGGACGGCCAG
	1248	CATGCTGAAACACGGGATTGCCAT	ATGGCAATCCCGTGTTTCAGCATG
	1249	CGATATGTAAGACAGCCGTCGCAA	TTGCGACGGCTGTCTTACATATCG
	1250	AGCGTAACCTACTGGGAAGGCACC	GGTGCCTTCCCAGTAGGTTACGCT
25	1251 ⁻	GTTCGAACCCCGCGATGTTAAATG	CATTTAACATCGCGGGGTTCGAAC
	1252	GTTGTTAGGAGGCTCGAGGCTGCT	AGCAGCCTCGAGCCTCCTAACAAC
	1253	ACTGGTGCTACGCGGGATATTTGA	TCAAATATCCCGCGTAGCACCAGT
	1254	CTGGGAGCTATCCTCAGCCGAATC	GATTCGGCTGAGGATAGCTCCCAG
	1255	GAACTCGCCGCTGCCGAAGGGTAG	CTACCCTTCGGCAGCGGCGAGTTC
30	1256	TTCGATCGAGGAGCAAGGAGAGTC	GACTCTCCTTGCTCCTCGATCGAA
	1257	GGGGAAAATTGAGGCCTTAGCCAT	ATGGCTAAGGCCTCAATTTTCCCC
	1258	CTAAGGTCAAAGCGCTGTCGCCAG	CTGGCGACAGCGCTTTGACCTTAG
	1259	CCGTAGCGGTGCTCGACCAGGTTC	GAACCTGGTCGAGCACCGCTACGG
	1260	TGGGGACGAATCCGAATGTAGTGA	TCACTACATTCGGATTCGTCCCCA
35	1261	GTCATGTAATTGCATCCCACGGGT	ACCCGTGGGATGCAATTACATGAC
	1262	CTTTGCGCGGTGGTCAATAAAAAG	CTTTTTATTGACCACCGCGCAAAG
	1263	CTCGGGGATGCCCTCTTGGCATTA	TAATGCCAAGAGGGCATCCCCGAG
	1264	CGAAACGTGGTGCAGAAACCTGAA	TTCAGGTTTCTGCACCACGTTTCG
	1265	GGAGTTCACGAGTCGAGCAGTCGC	GCGACTGCTCGACTCGTGAACTCC
40	1266	AGCCGTTTTCAAAGATCTCGACGA	TCGTCGAGATCTTTGAAAACGGCT
	1267	TGGCTGGACATTGTCTGCAATGCA	TGCATTGCAGACAATGTCCAGCCA

	1268	ATCGGCTGCCTCAGTCCCTAATTT	AAATTAGGGACTGAGGCAGCCGAT
	1269	CCAGCATGGAGTTAAGTGAGCGCG	CGCGCTCACTTAACTCCATGCTGG
	1270	TTCATATTTACGAATGCCGGGTGC	GCACCCGGCATTCGTAAATATGAA
	1271	CGAAATCGCACAGGAATTCGCGTC	GACGCGAATTCCTGTGCGATTTCG
5	1272	GGCAATTTCGGGACACTCGTTTCA	TGAAACGAGTGTCCCGAAATTGCC
	1273	TTTGTGATTGGGGGTATAACCCGA	TCGGGTTATACCCCCAATCACAAA
	1274	CCCAGCTAATCCAGCTTGGGCTGT	ACAGCCCAAGCTGGATTAGCTGGG
	1275	AAAATCGTTTGGCTGTAACGTCGC	GCGACGTTACAGCCAAACGATTTT
	1276	AGGAGATTCATCGACTTCCGGGAA	TTCCCGGAAGTCGATGAATCTCCT
10	1277	GCACGGGTCTCAATGCTTAGGGT	ACCCTAAGCATTGAGACCCCGTGC
	1278	GCGCAACAAGTAGCCTACCGAGGC	GCCTCGGTAGGCTACTTGTTGCGC
	1279	TAGCAGGCTGATGCCGTCTACACA	TGTGTAGACGGCATCAGCCTGCTA
	1280	GCAAGCGGCGATCGTACAACTTGT	ACAAGTTGTACGATCGCCGCTTGC
	1281	GCACCTCTGGTAAGCCTGAAAGGG	CCCTTTCAGGCTTACCAGAGGTGC
15	1282	CGAGGCGGTGAGTGCATACCGTG	CACGGTATGCACTCACCGCCCTCG
	1283	GGATTAACCGGAACTGCCCTTCTG	CAGAAGGCAGTTCCGGTTAATCC
	1284	GATATTGGGTCCGGCGCGCATTAC	GTAATGCGCGCCGGACCCAATATC
	1285	GGCCTTTAATCTCCGGTCGCAATG	CATTGCGACCGGAGATTAAAGGCC
	1286	AACCTTAGTGCGGCTAGGTGGGGT	ACCCCACCTAGCCGCACTAAGGTT
20	1287	CACGCTGACGCCAGTGTGGTGAGG	CCTCACCACACTGGCGTCAGCGTG
	1288	GGTTCCCTTGACCCACCGAATTGA	TCAATTCGGTGGGTCAAGGGAACC
	1289	TTCTGACAACATCGACCCTGGCTC	GAGCCAGGGTCGATGTTGTCAGAA
	1290	GCGAGCGAAGATAATCCCCAAACT	AGTTTGGGGATTATCTTCGCTCGC
	1291	GTACTCTGTGCAACGGTCCCGAGT	ACTCGGGACCGTTGCACAGAGTAC
25	1292	ACACGCCAGGAACAGTGTCTGTGA	TCACAGACACTGTTCCTGGCGTGT
	1293	AAGGGAATTTAGCGCGCGTGACTT	AAGTCACGCGCGCTAAATTCCCTT
	1294	TGACGTACGCGTTTTAAGTGGGGA	TCCCCACTTAAAACGCGTACGTCA
	1295	CTTAGAGGGACGAGGCCATGAATG	CATTCATGGCCTCGTCCCTCTAAG
	1296	GGACGACTCCGCAAAAAAGGTCGT	ACGACCTTTTTTGCGGAGTCGTCC
30	1297	TCAATCCCAACATCCAAAGCCTCA	TGAGGCTTTGGATGTTGGGATTGA
	1298	GCACTGGTCTACCAAGCTTGTCCC	GGGACAAGCTTGGTAGACCAGTGC
	1299	ACTTGTCGGAAACGAGACCGAGCA	TGCTCGGTCTCGTTTCCGACAAGT
	1300	TCAGGAAAGGCCTAAAGGCGAAAG	CTTTCGCCTTTAGGCCTTTCCTGA
	1301	GGAATGTAGTCAAGGAGGACGGGG	CCCCGTCCTCCTTGACTACATTCC
35	1302	GCACGTGGTAAATGAATTGGCGAG	CTCGCCAATTCATTTACCACGTGC
	1303	GATCATCAGGGGTTATGCGTCGCG	CGCGACGCATAACCCCTGATGATC
	1304	CTCACTCATTCTGATTGCCCGCGG	CCGCGGCAATCAGAATGAGTGAG
	1305	GGGGTGATCTCTCGAACGTCACCC	GGGTGACGTTCGAGAGATCACCCC
	1306	AAGGTTGCTGCTAGCGTACCTCGA	TCGAGGTACGCTAGCAGCAACCTT
40	1307	TATAGATCGCCCAACAGGCAGGAG	CTCCTGCCTGTTGGGCGATCTATA
	1308	GTTTGGACCTGTTGGGAGTGGCA	TGCCCACTCCCAACAGGTCCAAAC

	1309	ATTGGGGAAAACCCGGTCTCAAGG	CCTTGAGACCGGGTTTTCCCCAAT
	1310	TCGACGATAAAGTGCTCACGGGAC	GTCCCGTGAGCACTTTATCGTCGA
	1311	CGATAGAATTCAATGCAGGGCGGA	TCCGCCCTGCATTGAATTCTATCG
	1312	CGGTTCGCTACGGCGGCTGGTTTC	GAAACCAGCCGCCGTAGCGAACCG
5	1313	CCAGGTTTCGGTTAGTCGCGCTAG	CTAGCGCGACTAACCGAAACCTGG
	1314	ACGACCTTACACTCGGATCCGACG	CGTCGGATCCGAGTGTAAGGTCGT
	1315	TCGCGTTAAATGGACCAAGGGGCC	GGCCCCTTGGTCCATTTAACGCGA
	1316	CCAGAAAGAAAATGGCGCCCGGAT	ATCCGGGCGCCATTTTCTTTCTGG
	1317	GATACATCGCCGCCTGCTAGGCAC	GTGCCTAGCAGGCGGCGATGTATC
10	1318	GÁGATCACACTCGGAAACCGGATG	CATCCGGTTTCCGAGTGTGATCTC
	1319	ACTTCGCGGAAAAAGGCTGGCATT	AATGCCAGCCTTTTTCCGCGAAGT
	1320	CCGAGCTGCACGAGCACACAAGT	ACTITGTGTGCTCGTGCAGCTCGG
	1321	TTCCACAAGGCGGCATAGTGAGGC	GCCTCACTATGCCGCCTTGTGGAA
	1322	AGCAAACTGGAATCCGGAAAAACC	GGTTTTTCCGGATTCCAGTTTGCT
15	1323	CGCTATGTCGCAGCATGCATTTAC	GTAAATGCATGCTGCGACATAGCG
	1324	AGTCACGCCCAACGTCGGTTCTTT	AAAGAACCGACGTTGGGCGTGACT
	1325	AGTGGGCGCACTTGGCCTTAAATA	TATTTAAGGCCAAGTGCGCCCACT
	1326	ACTTGCAACTTCGGCCGTTTGACT	AGTCAAACGGCCGAAGTTGCAAGT
	1327	CAAACATCAGGTTCATGCCGTACG	CGTACGGCATGAACCTGATGTTTG
20	1328	AGCGTGACCACCCTACAATGGCAA	TTGCCATTGTAGGGTGGTCACGCT
	1329	GCAGGCATCCGGCAGAGATGTCTC	GAGACATCTCTGCCGGATGCCTGC
	1330	GAGCGGCTAAGAGGCCAGACCAAA	TTTGGTCTGGCCTCTTAGCCGCTC
	1331	CACAGAACAGGGTGTTTCCCGCTA	TAGCGGGAAACACCCTGTTCTGTG
•	1332	ACTTTGCAGAAGGCCCAACACAAG	CTTGTGTTGGGCCTTCTGCAAAGT
25	1333	CCTTCCTGGTACTTTGTGGGCGAC	GTCGCCCACAAAGTACCAGGAAGG
	1334	CTACATGCTCACCCCACCAGAGTG	CACTCTGGTGGGGTGAGCATGTAG
	1335	ATTTTCAGAATAGCCCCGCCTCGA	TCGAGGCGGGGCTATTCTGAAAAT
	1336	CAATTGCTACGTTGACGCCCTCTG	CAGAGGGCGTCAACGTAGCAATTG
	1337	CTGTCGCCTAATCCTCGGTGGCCG	CGGCCACCGAGGATTAGGCGACAG
30	1338	TTTGTGTTGGCTCCGTACATTGGA	TCCAATGTACGGAGCCAACACAAA
	1339	ACGTGACGGGAAGGTGGTTGAATC	GATTCAACCACCTTCCCGTCACGT
	1340	AGTTCTTGCGTTGCACGAAACAGA	TCTGTTTCGTGCAACGCAAGAACT
	1341	GCTCGCCGCGCGTCTTTATGTCTG	CAGACATAAAGACGCGCGGCGAGC
	1342	ATGAACATCGCGAGGCAAGCCTTT	AAAGGCTTGCCTCGCGATGTTCAT
35	1343	CAACCGCGCCCACCAACATTAAGG	CCTTAATGTTGGTGGGCGCGGTTG
	1344	TGATCGAGGACGGCTTGGTAGCCT	AGGCTACCAAGCCGTCCTCGATCA
	1345	GGAGGCATGCCTTCCGAGAGCAAC	GTTGCTCTCGGAAGGCATGCCTCC
	1346	CACCGATCCTCAACGCAATTGCTA	TAGCAATTGCGTTGAGGATCGGTG
	1347	GGCCATGAATTGGGAAATCCATGT	ACATGGATTTCCCAATTCATGGCC
40	1348	CTGTTCCAGGCGTAACCAGCGGGC	GCCCGCTGGTTACGCCTGGAACAG
	_1349	TATGTCTGGCTCGCCATCAGAAGA	TCTTCTGATGGCGAGCCAGACATA

	1350	GGAGTGACCAGCACAAGCATCGAG	CTCGATGCTTGTGCTGGTCACTCC
	1351	TCGGACTGGAAGTAACTCGCATGA	TCATGCGAGTTACTTCCAGTCCGA
	1352	GTAGGGTCAAGCACGATTGAAGCC	GGCTTCAATCGTGCTTGACCCTAC
	1353	CACCGGCGGTTCGACTAACGTGAC	GTCACGTTAGTCGAACCGCCGGTG
5	1354	GAATGACGCGCAGTGCATTTGAAC	GTTCAAATGCACTGCGCGTCATTC
	1355	GTGCTCGTCTAACCGCGGATAGAG	CTCTATCCGCGGTTAGACGAGCAC
	1356	GCGGACCTGGGTTAATTGACGCGC	GCGCGTCAATTAACCCAGGTCCGC
	1357	TTTTGATGTTGCGCACCGGGCTA	TAGCCCGGTGCGCAACATCAAAAA
	1358	TTGCGTCAGCGCATCTGCTCGATT	AATCGAGCAGATGCGCTGACGCAA
10	1359	ATGAGCACGCCAGTTCGTTCCTTT	AAAGGAACGAACTGGCGTGCTCAT
	1360	TCAACGGTAAAGAATCGCCCCGCA	TGCGGGGCGATTCTTTACCGTTGA
	1361	CGCGATTGACTGAACCACACCTCT	AGAGGTGTGGTTCAGTCAATCGCG
	1362	GCGTGAAAGATGACGGCCGGTATA	TATACCGGCCGTCATCTTTCACGC
	1363	CATGATTCCACCTCGATCGGCTAG	CTAGCCGATCGAGGTGGAATCATG
15	1364	CTACGACAAGCAACCGTGCAAAA	TTTTGCACGGTTGCTTTGTCGTAG
	1365	ATGCCGTGTTCATCTTGATGGTCC	GGACCATCAAGATGAACACGGCAT
	1366	TTCGTGGAGGGACTTTGGAGATCC	GGATCTCCAAAGTCCCTCCACGAA
	1367	GAAGCGCCGTAACGTACACCGTCG	CGACGGTGTACGTTACGGCGCTTC
	1368	AGCGTGCGCTTGGCTATAAGGCTA	TAGCCTTATAGCCAAGCGCACGCT
20	1369	ACAGTCAGGAGTAACGCCGCTCAA	TTGAGCGGCGTTACTCCTGACTGT
	1370	TTTAGCCGCTGCGACTGTAGGAAA	TTTCCTACAGTCGCAGCGGCTAAA
	1371	ACTGTGTCGCAATCAACCCGCAAA	TTTGCGGGTTGATTGCGACACAGT
	1372	TGCAGCCAATGCGGAACTTAGAGG	CCTCTAAGTTCCGCATTGGCTGCA
	1373	CCCGCTATCCCGGTCTTGCAGTTC	GAACTGCAAGACCGGGATAGCGGG
25	1374	GAGGCCCAACATATGCAGTGCTG	CAGCACTGCATATGTTGCGCCCTC
	1375	CGTACGGACATCGATGACGCAACG	CGTTGCGTCATCGATGTCCGTACG
	1376	AGTCTCCCGAGAAACGCATAAGGC	GCCTTATGCGTTTCTCGGGAGACT
	1377	AGGAAGTGGATGAACGCGGCTGCA	TGCAGCCGCGTTCATCCACTTCCT
	1378	GGGTTGCTCACCCTCGTCATCAGG	CCTGATGACGAGGGTGAGCAACCC
30	1379	TAGGAATGCGAGTTCCGGCGGTAA	TTACCGCCGGAACTCGCATTCCTA
	1380	CTCCTCACTTCCAAGCTGCGGATA	TATCCGCAGCTTGGAAGTGAGGAG
	1381	TCAATAGCACCTAGCATGCTCCCG	CGGGAGCATGCTAGGTGCTATTGA
	1382	TGATTCCTGCGCTTTCACAGGTCG	CGACCTGTGAAAGCGCAGGAATCA
	1383	GTATGTGCGGGATGGAAATCACGC	GCGTGATTTCCATCCCGCACATAC
35	1384	TACGGCAACTGTCGATACGAGGGC	GCCCTCGTATCGACAGTTGCCGTA
	1385	GGTTCCCTATCCAGCACTCCTCGC	GCGAGGAGTGCTGGATAGGGAACC
	1386	ATAAGCGCGCCACAGGTATGTACC	GGTACATACCTGTGGCGCGCTTAT
	1387	GAAAGTCGCCAACAGACTCGAGCA	TGCTCGAGTCTGTTGGCGACTTTC
	1388	CGCTAATGCCTCATAGGCGTGTGC	GCACACGCCTATGAGGCATTAGCG
40	1389	ATCCCCGCCGCACGAAGTACCAAG	CTTGGTACTTCGTGCGGCGGGGAT
	1390	GACGCTGCTGATGGCTTTATCGAT	ATCGATAAAGCCATCAGCAGCGTC

	1391	CTCTCCCGTCGCTTCAGAGATTA	TAATCTCTGAAGCGACGGGGAGAG
	1392	TCATGTGGGCCGTCGTATCAGTTT	AAACTGATACGACGGCCCACATGA
	1393	GGCCTGAAGGTGAATGGTTACGTG	CACGTAACCATTCACCTTCAGGCC
	1394	AGCCTCCAAAGCCGGTAGAGTTCC	GGAACTCTACCGGCTTTGGAGGCT
5	1395	TTGTCGTAGGCGCTCACCTTAGGA	TCCTAAGGTGAGCGCCTACGACAA
	1396	GCCTGAGTCCGGGTCGGGAAAGAA	TTCTTTCCCGACCCGGACTCAGGC
	1397	GGCACTATACCGGTTCTGGACGCG	CGCGTCCAGAACCGGTATAGTGCC
	1398	CCGTGTATACGGAAAGGTACGCCA	TGGCGTACCTTTCCGTATACACGG
	1399	CCCAAGGCAAGTGTGCATCAGTCC	GGACTGATGCACACTTGCCTTGGG
10	1400	GGAGTGCATCATGGCCAAATCTGG	CCAGATTTGGCCATGATGCACTCC
	1401	CCATGTTACGTCTGCGCACCACAG	CTGTGGTGCGCAGACGTAACATGG
	1402	GGCGTTGAGCTTAAAAGCAGCGAC	GTCGCTGCTTTTAAGCTCAACGCC
	1403	TTGGCACTCTGCAAGATACGTGGG	CCCACGTATCTTGCAGAGTGCCAA
	1404	GATCTGCACTGCAAGGTCTTGGGG	CCCCAAGACCTTGCAGTGCAGATC
15	1405	CGATCAACTTGCGGCCATTCCTGC	GCAGGAATGGCCGCAAGTTGATCG
	1406	CGGCTGGGGTCACAGAAACGAGTA	TACTCGTTTCTGTGACCCCAGCCG
	1407	GCGGCTAGTTGTACCTAGCGGCTG	CAGCCGCTAGGTACAACTAGCCGC
	1408	TCGTCACTGTTAGAGAGGCCTCCG	CGGAGGCCTCTCTAACAGTGACGA
	1409	AGTGTCGTGAGCCCTAGCGGCGCT	AGCGCCGCTAGGGCTCACGACACT
20	1410	AGGACGCAGGGATTCAAGTGCAAC	GTTGCACTTGAATCCCTGCGTCCT
	1411	ACCGATGCGCGGTCGGTCTCATAC	GTATGAGACCGACCGCGCATCGGT
•	1412	GGCAGAGGGTTAGGGGGTTTTTTT	AAAAAAACCCCCTAACCCTCTGCC
	1413	GGCAAAGGGTGTTTATGGGAGACC	GGTCTCCCATAAACACCCTTTGCC
	1414	ACAAGGCTTCGGCTGGCAGAATAC	GTATTCTGCCAGCCGAAGCCTTGT
25	1415	CATATCCGTTCCTATCGCCAGACG	CGTCTGGCGATAGGAACGGATATG
	1416	AAGCCTTTGTGGCCAAGGCCGCGT	ACGCGGCCTTGGCCACAAAGGCTT
	1417	CCGAACCATGGCTTTATCCAGTGT	ACACTGGATAAAGCCATGGTTCGG
	1418	GTTCAGCAGTAGCTCCCTCCGA	TCGAGGAGGGAGCTACTGCTGAAC
	1419	GCGCAGTGACACCATGATGCTTTC	GAAAGCATCATGGTGTCACTGCGC
30	1420	ACGATCCATTTTGCCAGCATGCAA	TTGCATGCTGGCAAAATGGATCGT
	1421	TCCCTTCATTTCGGGTTTTTAGCC	GGCTAAAAACCCGAAATGAAGGGA
	1422	TCTTCTTGCCCACATTCCCTTTTG	CAAAAGGGAATGTGGGCAAGAAGA
•	1423	TGCCTTTTGATTGGTGGTCACGGT	ACCGTGACCACCAATCAAAAGGCA
	1424	GACCCTCACGGTCATCAGAGGGAG	CTCCCTCTGATGACCGTGAGGGTC
35	1425	CCGTTCAACACAGTGATACACGCG	CGCGTGTATCACTGTGTTGAACGG
	1426	CACCAGGGGATAGGTGCGGTACGC	GCGTACCGCACCTATCCCCTGGTG
	1427	GGTCGGAACTGATCTGTGCGATCC	GGATCGCACAGATCAGTTCCGACC
	1428	TGCTCCTTCCTAGGGTCATCCGTG	CACGGATGACCCTAGGAAGGAGCA
	1429	GTGGACTTTGACGCCGGCTACCGC	GCGGTAGCCGGCGTCAAAGTCCAC
40	1430	CTGATCTGTCGGCGGTTACTTGCC	GGCAAGTAACCGCCGACAGATCAG
	1431	AGAGGAGCGGAAAAAACCGGACGA	TCGTCCGGTTTTTTCCGCTCCTCT

			
	1432	GCGACGAAGAGATCCAGCAAGCTC	GAGCTTGCTGGATCTCTTCGTCGC
	1433	GGGACTTCCAGCTGAGGGACGAAA	TTTCGTCCCTCAGCTGGAAGTCCC
	1434	GGCGCACTCCAATACCCACTGTTT	AAACAGTGGGTATTGGAGTGCGCC
	1435	GCGCTTGGAGACTGTCAGGACGTG	CACGTCCTGACAGTCTCCAAGCGC
5	1436	CAAACCGCTGGTTTCTCCACCTGT	ACAGGTGGAGAAACCAGCGGTTTG
	1437	GCGATTGCTTGGGATCGGTGACTA	TAGTCACCGATCCCAAGCAATCGC
	1438	CTCAGCGACATTTTTCTGGTGGCG	CGCCACCAGAAAAATGTCGCTGAG
	1439	CAGCGGCGTCGTTTACTCAGGACT	AGTCCTGAGTAAACGACGCCGCTG
	1440	GACAGCCGTGAACGCTCAGCCGTT	AACGGCTGAGCGTTCACGGCTGTC
10	1441	GGGCCGTAGAGGCATCGGGTAAAG	CTTTACCCGATGCCTCTACGGCCC
	1442	CGCCGCTCACCTGCTTAAAGCATT	AATGCTTTAAGCAGGTGAGCGGCG
	1443	TGCCAAATCGCAACTCTTGAGACA	TGTCTCAAGAGTTGCGATTTGGCA
	1444	CCCCGATCGGGTGTAATTCTCCCT	AGGGAGAATTACACCCGATCGGGG
	1445	CAAGGTCCAGGTGACGCAACCACT	AGTGGTTGCGTCACCTGGACCTTG
15	1446	CGAGCCTTCAGTGGTATGCATGCG	CGCATGCATACCACTGAAGGCTCG
	1447	CAGCAGCGTGCCCATCTCGACTTA	TAAGTCGAGATGGGCACGCTGCTG
	1448	CGGACCAAGATGGCAGTAATCCAG	CTGGATTACTGCCATCTTGGTCCG
	1449	CTACCACGCTCTGCGCGGGCTGTA	TACAGCCCGCGCAGAGCGTGGTAG
	1450	ACGTGGTTAGGCATGAGCTGCGTC	GACGCAGCTCATGCCTAACCACGT
20	1451	CGACATATCCGACATGACCGGATG	CATCCGGTCATGTCGGATATGTCG
	1452	GCGCCCAGGCTGTGTTAGAAAATA	TATTTTCTAACACAGCCTGGGCGC
	1453	AGCTGGGACTCCGGACCTTGAGTG	CACTCAAGGTCCGGAGTCCCAGCT
	1454	CGGTCGTAACCGCTGCTACAACTT	AAGTTGTAGCAGCGGTTACGACCG
	1455	TCGTTCCTCTGGAACAATTCAGCA	TGCTGAATTGTTCCAGAGGAACGA
25	1456	CGGCATCTCCGGACAAAGGTTAAC	GTTAACCTTTGTCCGGAGATGCCG
	1457	TATCTTGTCGAGCGCCACTCGGAG	CTCCGAGTGGCGCTCGACAAGATA
	1458	TGCAAGGGAGAAAGCCCCATGAGC	GCTCATGGGGCTTTCTCCCTTGCA
	1459	ACTGCATAGCCCAGATCCGCTTGC	GCAAGCGGATCTGGGCTATGCAGT
	1460	TGTGATTCAGTCGAAGCAAGGCCG	CGGCCTTGCTTCGACTGAATCACA
30	1461	CATCCATCTACAATTCGGGCCAGT	ACTGGCCCGAATTGTAGATGGATG
	1462	ATGAGCCGTTCAGAAAGCCAAAGA	TCTTTGGCTTTCTGAACGGCTCAT
į	1463	ACACTGGAATTGCTAGACCCCGCG	CGCGGGGTCTAGCAATTCCAGTGT
	1464	CTGAGCTGCGTGGGACAACTCCGC	GCGGAGTTGTCCCACGCAGCTCAG
	1465	CAGCTACTAGGGCGCGATGTACCC	GGGTACATCGCGCCCTAGTAGCTG
35	1466	ATAATGATGGGACGAGAAGGCCCC	GGGGCCTTCTCGTCCCATCATTAT
	1467	CGACCGAGTGTTACGACATGGTGC	GCACCATGTCGTAACACTCGGTCG
	1468	TGCAGTACCCGCCGCTCCACTAGT	ACTAGTGGAGCGGCGGGTACTGCA
	1469	ATGCTAGCGCGCCTGTCAACGTAC	GTACGTTGACAGGCGCGCTAGCAT
	1470	AGACTCACTGCCGGCTGATCAAAT	ATTTGATCAGCCGGCAGTGAGTCT
40	1471	GCCTGGTGCGAAGATAGGGATTCC	GGAATCCCTATCTTCGCACCAGGC
	1472	GGAAAGTTGGCGGATCCGAGCACT	AGTGCTCGGATCCGCCAACTTTCC

	1473	GGCAGTGAGCAATGTGTGACGAGG	CCTCGTCACACATTGCTCACTGCC
	1474	TGAGGTCCTCCCGGCGGACTACGA	TCGTAGTCCGCCGGGAGGACCTCA
	1475	CTCGCCTTAGATCGTGGTTCCGCA	TGCGGAACCACGATCTAAGGCGAG
	1476	GTCGAGGAATATCATCGCAGCCAG	CTGGCTGCGATGATATTCCTCGAC
5	1477	GCGAATGCAACGAGAAGAAGGA	TCCTTCTTGTCTCGTTGCATTCGC
	1478	TTCGCCACCAAGTCGGCATTTGTT	AACAAATGCCGACTTGGTGGCGAA
	1479	CGGTGGCTGACACTTGCCGGATTC	GAATCCGGCAAGTGTCAGCCACCG
	1480	CAAGGAGCAATCAGATGGTCGGAG	CTCCGACCATCTGATTGCTCCTTG
	1481	GTGACCCGGTCCGTTCTAGCTGTG	CACAGCTAGAACGGACCGGGTCAC
10	1482	CTCTCGCCCACATAACTGCACAAA	TTTGTGCAGTTATGTGGGCGAGAG
	1483	AAACCTGCCTAAGCAAGCACTGGA	TCCAGTGCTTGCTTAGGCAGGTTT
	1484	TTCCATATTGTACCCCGCGCATGC	GCATGCGCGGGGTACAATATGGAA
	1485	TGCTTGCGATATCACGATACTGCG	CGCAGTATCGTGATATCGCAAGCA
	1486	TTAGTGTTCGAGCCTTGAGCCGGC	GCCGGCTCAAGGCTCGAACACTAA
15	1487	CTTGTTGCGCGAGTCCGTCTGGGA	TCCCAGACGGACTCGCGCAACAAG
	1488	GTCAGCTGCCTGCTGGTGCTCTTC	GAAGAGCACCAGCAGCAGCTGAC
	1489	CATCCCTCGAGGTGTAGGCAACAC	GTGTTGCCTACACCTCGAGGGATG
	1490	CAGATGCACTCCGACGGGATTCAG	CTGAATCCCGTCGGAGTGCATCTG
	1491	CTGAGCCTCGCGAAGCTGTGGCAT	ATGCCACAGCTTCGCGAGGCTCAG
20	1492	GCTATGCCACGCCGCAGATAGAGC	GCTCTATCTGCGGCGTGGCATAGC
	1493	AACACCAACCATACCGTCCGTTCA	TGAACGGACGGTATGGTTGGTGTT
	1494	GCCCAGAGCTAAAGCATGTCTGGG	CCCAGACATGCTTTAGCTCTGGGC
	1495	AATGCTGCAATGCTAGCGTCGCTA	TAGCGACGCTAGCATTGCAGCATT
	1496	TCCGGACGCAGTATCCAATCCGGA	TCCGGATTGGATACTGCGTCCGGA
25	1497	TAAGACCATGTGGCACCAAGGTGC	GCACCTTGGTGCCACATGGTCTTA
	1498	ACAGCCACACACGCGCCCACTA	TAGTGGGCGCGTGTGTGTGGCTGT
	1499	TAGAACCGAGCACGGCGCCTTGTA	TACAAGGCGCCGTGCTCGGTTCTA
	1500	TTCGAGTAAGCTGGCAGGACCACT	AGTGGTCCTGCCAGCTTACTCGAA
	1501	CTTTCGCAGGTTCGCAGACAATCC	GGATTGTCTGCGAACCTGCGAAAG
30	1502	TACGTCCTGTGCTGTTGACACCGG	CCGGTGTCAACAGCACAGGACGTA
	1503	GTTCGGGTCAATGTTTCGGGGAGA	TCTCCCGAAACATTGACCCGAAC
	1504	CCCTGTTGTGAAGGGGTTTTGTGA	TCACAAAACCCCTTCACAACAGGG
	1505	GGCAGATTGGTGAACCCCAGATAA	TTATCTGGGGTTCACCAATCTGCC
	1506	CCCTCGGTGTGTTCAAGCCAAATC	GATTTGGCTTGAACACACCGAGGG
35	1507	CCCGCGAACATTTGAACAGCTTAA	TTAAGCTGTTCAAATGTTCGCGGG
	1508	CCGTGTCAGTTGCTCCCTGGCACG	CGTGCCAGGGAGCAACTGACACGG
	1509	TCCGTCTCAGCCGCCTCCCTATCC	GGATAGGGAGGCGGCTGAGACGGA
	1510	ATAGCTGGGTCACCACAGGCGGTC	GACCGCCTGTGGTGACCCAGCTAT
	1511	ATAGGCAAGCGGTGTAGCACAGCG	CGCTGTGCTACACCGCTTGCCTAT
40	1512	TTAGAAGCCGGTCTGGATTTGCGT	ACGCAAATCCAGACCGGCTTCTAA
	1513	TGCCGACCTTTACCAGGATCCTCG	CGAGGATCCTGGTAAAGGTCGGCA

	1514	GCCCACACTATAACCAAGCTGGCA	TGCCAGCTTGGTTATAGTGTGGGC
	1515	TTGCGCCACTAGTACGGATCTCAA	TTGAGATCCGTACTAGTGGCGCAA
	1516	CTTGCAGTTTATGCTGACCCGTCC	GGACGGGTCAGCATAAACTGCAAG
	1517	TGCCTCCAAATTACTTACCGCCGT	ACGGCGGTAAGTAATTTGGAGGCA
5	1518	CCCGTATGCGGAAGCTATGGGCTA	TAGCCCATAGCTTCCGCATACGGG
	1519	TCGTTCAACCCCACACTTCAGTTG	CAACTGAAGTGTGGGGTTGAACGA
ı	1520	CAATGTGGGGGACATTTCAAGGTT	AACCTTGAAATGTCCCCCACATTG
	1521	TAGCGTCGCACAAATGGCTGACCG	CGGTCAGCCATTTGTGCGACGCTA
	1522	GGTGGCTTCGTGACAATATCGGCC	GGCCGATATTGTCACGAAGCCACC
10	1523	CAGCGGCGTCCGAAATTGGCTCTC	GAGAGCCAATTTCGGACGCCGCTG
	1524	GGCTTGCTCTCGTTTTTGATTGCA	TGCAATCAAAAACGAGAGCAAGCC
	1525	ATGCGAGGAGGACACGACCGTTCC	GGAACGGTCGTGTCCTCCTCGCAT
	1526	CCTGTTCACTACGACCCACGGGAA	TTCCCGTGGGTCGTAGTGAACAGG
	1527	GTGCCACGGAGTGCGACTGTTGCT	AGCAACAGTCGCACTCCGTGGCAC
15	1528	ACACATCCAAGTCTGACGATGGCC	GGCCATCGTCAGACTTGGATGTGT
	1529	CAGCCCGAAAGGAAAGCCTCCGTG	CACGGAGGCTTTCCTTTCGGGCTG
	1530	AACTGAATGTAGGTGGGCCCCTGT	ACAGGGCCCACCTACATTCAGTT
	1531	ATTTTCGACGATAAGCTGGCCGGT	ACCGGCCAGCTTATCGTCGAAAAT
	1532	TGAGGGAGAACCCGAAATCTGCTT	AAGCAGATTTCGGGTTCTCCCTCA
20	1533	GGCGACTACATCCCCAATTGCTTG	CAAGCAATTGGGGATGTAGTCGCC
	1534	GCAGACGCGGCCTTCCATACTTTT	AAAAGTATGGAAGGCCGCGTCTGC
	1535	ACAACCACATGACGTGTAGCTGCA	TGCAGCTACACGTCATGTGGTTGT
	1536	CTGCTGGGCGCGCAAAGCTTGTTG	CAACAAGCTTTGCGCGCCCAGCAG
	1537	AAGCCTTCTTTGGCTTGCTCCGCT	AGCGGAGCAAGCCAAAGAAGGCTT
25	1538	TACCTGCTGCCTGGAGCAAGGCAT	ATGCCTTGCTCCAGGCAGCAGGTA
	1539	GACGCCGCAGCCATGAGTGAGTGT	ACACTCAGTCATGGCTGCGGCGTC
	1540	AGTTGGCCGCTTATTTTGCTCACC	GGTGAGCAAAATAAGCGGCCAACT
	1541	CCAGGCGCCTTCGACAGATCCTCA	TGAGGATCTGTCGAAGGCGCCTGG
	1542	GTGTCCCCTCCAGCTAGCCAGTTT	AAACTGGCTAGCTGGAGGGGACAC
30	1543	GACAACAAGCCAAGGTGACACGTC	GACGTGTCACCTTGGCTTGTTGTC
	1544	CTACACCGCTCGTGACTCGGCAAA	TTTGCCGAGTCACGAGCGGTGTAG
	1545	TGGTGCCATCAAAGCACGTTGTAC	GTACAACGTGCTTTGATGGCACCA
	1546	ACAATGCGTGTTGCGAAACGCATA	TATGCGTTTCGCAACACGCATTGT
	1547	TTGTCCAGCCATTGTATTTTGCGC	GCGCAAAATACAATGGCTGGACAA
35	1548	ACGAGAGATAGCGGACTCCTCCGA	TCGGAGGAGTCCGCTATCTCTCGT
	1549	AGCTTTGTCGTCAGGCGAGCTCTT	AAGAGCTCGCCTGACGACAAAGCT
	1550	GACAGTCGGCGTGCAGTTTGTTGT	ACAACAAACTGCACGCCGACTGTC
	1551	AGCTAGCGACGGCCAACTCACGTA	TACGTGAGTTGGCCGTCGCTAGCT
	1552	CTCCTGTTCGGGGCCGTTACTGGT	ACCAGTAACGGCCCCGAACAGGAG
40	1553	ACTGACCGACGCAGTGCCACATAG	CTATGTGGCACTGCGTCGGTCAGT
ļ	1554	AGGTAGGGTCTGGTTTGACTCGCA	TGCGAGTCAAACCAGACCCTACCT

	1555	CCTCCATTTTAGCGCGTTGCCAAT	ATTGGCAACGCGCTAAAATGGAGG
	1556	TTCTTAGGATCCGCGCACTCTTGG	CCAAGAGTGCGCGGATCCTAAGAA
	1557	GTCGAAGGTGTCTACCGTGCGCAG	CTGCGCACGGTAGACACCTTCGAC
	1558	GTCACTCGGCGGCCCAATCACTCG	CGAGTGATTGGGCCGCCGAGTGAC
5	1559	TCTCGGTCACCCGTCTTGACCCTT	AAGGGTCAAGACGGGTGACCGAGA
	1560	GCCCTCGACGAACTCATCCTGAAC	GTTCAGGATGAGTTCGTCGAGGGC
	1561	TCCGGCGTACTCTGACACGGCGAT	ATCGCCGTGTCAGAGTACGCCGGA
	1562	AGCCAAATGCTTTCGTGGTTCGGA	TCCGAACCACGAAAGCATTTGGCT
	1563	ACTCCACGCCGCATGTTGCTGTGA	TCACAGCAACATGCGGCGTGGAGT
10	1564	GCTTCGAGTCGGTGGCATCTGTAT	ATACAGATGCCACCGACTCGAAGC
	1565	GGTCTTGGGCCATCGACTTGCTGC	GCAGCAAGTCGATGGCCCAAGACC
	1566	GGTATCGGACTGCACTAAGGGCAA	TTGCCCTTAGTGCAGTCCGATACC
	1567	AGCCCATGCGTTCCGGATGATTTG	CAAATCATCCGGAACGCATGGGCT
	1568	GCCAGGGTTAAAAGTGATGGGCTC	GAGCCCATCACTTTTAACCCTGGC
15	1569	GACGACGTGCTGGCTACGAAGGGG	CCCCTTCGTAGCCAGCACGTCGTC
	1570	TCCTATTGACCGTGCATCGTGATC	GATCACGATGCACGGTCAATAGGA
	1571	ACCCGCCTCGACTCCACAACTAAA	TTTAGTTGTGGAGTCGAGGCGGGT
	1572	GATGTGGATCACGACCTGCCAGTA	TACTGGCAGGTCGTGATCCACATC
	1573	GTGCCATTGCCACCCATAATGCGT	ACGCATTATGGGTGGCAATGGCAC
20	1574	TTAGCCTGTGCACCCAGTCAGGAG	CTCCTGACTGGGTGCACAGGCTAA
	1575	TCCGATGGGAGAGGCTGATCTCAC	GTGAGATCAGCCTCTCCCATCGGA
	1576	CACTACTGAAGTGGCCTGGCGCTG	CAGCGCCAGGCCACTTCAGTAGTG
	1577	TGCGGCCATAGCGATGTGATAGAT	ATCTATCACATCGCTATGGCCGCA
	1578	GATTGCGCTTAACGGAGATGCACG	CGTGCATCTCCGTTAAGCGCAATC
25	1579	TCACGTTTGACAACGCCAAGCATT	AATGCTTGGCGTTGTCAAACGTGA
	1580	GCATTGTTTGCTAAAGGCGGCATT	AATGCCGCCTTTAGCAAACAATGC
	1581	AGTCGCTCTACGCGTGCAACGCTG	CAGCGTTGCACGCGTAGAGCGACT
	1582	TAGCTCCATGGAGGTCCGAAAGGG	CCCTTTCGGACCTCCATGGAGCTA
	1583	GACCGGTTGGACCTCACTGGCTTC	GAAGCCAGTGAGGTCCAACCGGTC
30	1584	AAGCCGGACAGTCAATGTGCGTAT	ATACGCACATTGACTGTCCGGCTT
	1585	TGCCTCGCTGAGTTCTTCACCGTG	CACGGTGAAGAACTCAGCGAGGCA
	1586	TCGTAGACCTTGCTTTTGGGCTCA	TGAGCCCAAAAGCAAGGTCTACGA
	· 1587	ACCGCTATGCGCCCTACAAAGCAT	ATGCTTTGTAGGGCGCATAGCGGT
	1588	TAGCGTCACCGTAGCTTGGGGCAG	CTGCCCAAGCTACGGTGACGCTA
35	1589	CTCTCAGCAACTGATGGCACCGGA	TCCGGTGCCATCAGTTGCTGAGAG
	1590	AAAGGAAATGTGGTGCTGGTCGGC	GCCGACCAGCACCACATTTCCTTT
	1591	CCGGCTTAGATGGAGAACAAGTGC	GCACTTGTTCTCCATCTAAGCCGG
	1592	AAGTAAATCGCCTCGCCCAAACCG	CGGTTTGGGCGAGGCGATTTACTT
	1593	TGGGCTGTTCAGCCTACCGGACGT	ACGTCCGGTAGGCTGAACAGCCCA
40	1594	GTTTCGGTTCAGCCATGGGCCTAC	GTAGGCCCATGGCTGAACCGAAAC
	1595	GGCCAACATTTCTAGGGGAGTGCC	GGCACTCCCCTAGAAATGTTGGCC

	1596	TTCTTCGTTGGGATTGTCCTCACC	GGTGAGGACAATCCCAACGAAGAA
	1597	TGCACATTGGGGTACGGATCTGAC	GTCAGATCCGTACCCCAATGTGCA
	1598	GGCAGTTAGACGGCAAACTGCAGG	CCTGCAGTTTGCCGTCTAACTGCC
	1599	CGCGTCAGGCTATGAATGGCTCTT	AAGAGCCATTCATAGCCTGACGCG
5	1600	GCTGAATGCAAACCTCGGAGCCAT	ATGGCTCCGAGGTTTGCATTCAGC
	1601	CGCTCTGGCGGATTCATTGTTTTC	GAAAACAATGAATCCGCCAGAGCG
	1602	TTTTCAATCAACCCTCCGGACGTA	TACGTCCGGAGGGTTGATTGAAAA
	1603	GTGGTGGAGTCTGAAGCACGACAG	CTGTCGTGCTTCAGACTCCACCAC
	1604	AAACAGGTCCGGATGATGTCTGGA	TCCAGACATCATCCGGACCTGTTT
10	1605	GTACCGCGTGTACGCCACCGTTAG	CTAACGGTGGCGTACACGCGGTAC
	1606	TCCAACCTACATTTGCGGAAGGAA	TTCCTTCCGCAAATGTAGGTTGGA
	1607	GACGTACCGTCGTCCCGTGAGTTG	CAACTCACGGGACGACGGTACGTC
	1608	GGCAATCCTACAACCGACGCTGAT	ATCAGCGTCGGTTGTAGGATTGCC
	1609	GGCGGCTGCAGGGTCTACATCGAG	CTCGATGTAGACCCTGCAGCCGCC
15	1610	ATACTACGCTGCAGCTGCGCGGC	GCCCGCGCAGCTGCAGCGTAGTAT
	1611	GGATCGCAATCCCTCCGATGACGA	TCGTCATCGGAGGGATTGCGATCC
	1612	TGGCCTTGCACGGGAGCCGAATCT	AGATTCGGCTCCCGTGCAAGGCCA
	1613	AGGTGCCGACGAAACGACGAATAT	ATATTCGTCGTTTCGTCGGCACCT
	1614	GCTGTTTCACCGTCGTCGTTGTTG	CAACAACGACGACGGTGAAACAGC
20	1615	CGGTCCCAATGTTACAACCCAGAC	GTCTGGGTTGTAACATTGGGACCG
	1616	GCAATTCCAGCCACTTTTGACCAA	TTGGTCAAAAGTGGCTGGAATTGC
	1617	ACGGGCGAAAGCTCGGTACGGATA	TATCCGTACCGAGCTTTCGCCCGT
	1618	CGACCCGACTTTTGCTTTCGAGTG	CACTCGAAAGCAAAAGTCGGGTCG
	1619	AATTCAGTGTTTGCGTCATGGTCG	CGACCATGACGCAAACACTGAATT
25	1620	CCTGTATGAGGTTCTGGGTCGGCT	AGCCGACCCAGAACCTCATACAGG
	1621	TGGCATACTTGGTGCAAACGCCGT	ACGGCGTTTGCACCAAGTATGCCA
	1622	TCGCCAGTACAGAAACATGCGGGC	GCCCGCATGTTTCTGTACTGGCGA
	1623	CCCGCTGTTGCTCTCATCGTGGAG	CTCCACGATGAGAGCAACAGCGGG
	1624	GCCACAATCTGACCCTGGGAATCA	TGATTCCCAGGGTCAGATTGTGGC
30	1625	GCTCAGTCTCGGAAGTTTCGGCTA	TAGCCGAAACTTCCGAGACTGAGC
	1626	CTTCACGGGCCAACGACGGTCGAG	CTCGACCGTCGTTGGCCCGTGAAG
	1627	CGACAGTTCCGTCCGTCTTGAGGA	TCCTCAAGACGGACGGAACTGTCG
	1628	ACGGAGACGCAGTCGAAACGTCCC	GGGACGTTTCGACTGCGTCTCCGT
	1629	CATGCATCCGATTAAGGGGATCAC	GTGATCCCCTTAATCGGATGCATG
35	1630	ATTGCGGGAGTCCCTAGCTTTCTG	CAGAAAGCTAGGGACTCCCGCAAT
•	1631	GTGTGGAAGATGCAATTGGAACGG	CCGTTCCAATTGCATCTTCCACAC
	1632	ATACAACGGTAGGTGACAGGGGCG	CGCCCTGTCACCTACCGTTGTAT
	1633	GCCGTGGGAGTAAGGGTACAAAGG	CCTTTGTACCCTTACTCCCACGGC
	1634	GCACGTAGGTCGGCTACTACTCGG	CCGAGTAGTAGCCGACCTACGTGC
40	1635	ACTGTGATCTCTTGGGCAAAGGGC	GCCCTTTGCCCAAGAGATCACAGT
	1636	CATGCCTGAACAATCTCGCATCCC	GGGATGCGAGATTGTTCAGGCATG

1637	GAGCCTGGCTCCACAGCTGTGCTC	GAGCACAGCTGTGGAGCCAGGCTC
1638	CTTTCGATACCATCGTTGGCGATC	GATCGCCAACGATGGTATCGAAAG
1639	CCCGGAGGTGAGGCATTGAATATG	CATATTCAATGCCTCACCTCCGGG
1640	CTCATTCAGCTAAAAGCGGCTGGA	TCCAGCCGCTTTTAGCTGAATGAG
1641	GAAATGCCCTGGGGACTTTTTGCC	GGCAAAAAGTCCCCAGGGCATTTC
1642	TTTGCCTTCACAACAGACGCAGCA	TGCTGCGTCTGTTGTGAAGGCAAA
1643	AAATCCCAAGACGTCGGGGCGTAT	ATACGCCCGACGTCTTGGGATTT
1644	CAACGGGCGGTAGCTAAACCGTAA	TTACGGTTTAGCTACCGCCCGTTG
1645	GGCCAACGACAATGCGAAACCTTC	GAAGGTTTCGCATTGTCGTTGGCC
1646	GACATCACGCAAAATCTCAGCGCA	TGCGCTGAGATTTTGCGTGATGTC
1647	ACGTTCCGTCCACAACCGTATGTT	AACATACGGTTGTGGACGGAACGT
1648	GCTCATAGGTCTTCCGTAGCCCGT	ACGGGCTACGGAAGACCTATGAGC
1649	GAAACGAGTCTCTCGCGCCCTAGA	TCTAGGGCGCGAGAGACTCGTTTC
1650	CGGGACAGAAGCAAGTTACATCGG	CCGATGTAACTTGCTTCTGTCCCG
1651	TGACCGCTCGATACCAGGAGGGTG	CACCCTCCTGGTATCGAGCGGTCA
1652	CTGGCAATAAAGACCTTCCGACCA	TGGTCGGAAGGTCTTTATTGCCAG
1653	TGCGCGACGTCATGTTGGTGATTA	TAATCACCAACATGACGTCGCGCA
1654	GTTGGTTGTGGGAACACACCCGCT	AGCGGGTGTGTTCCCACAACCAAC
1655	TGTGGGTTCGGAAACACAGGAAGT	ACTTCCTGTGTTTCCGAACCCACA
1656	GGAAAAACGGCAATTAGCCGAGT	ACTCGGCTAATTGCCGTTTTTTCC
1657	TGGTGCGGAGTGCCCTCTATTGGG	CCCAATAGAGGGCACTCCGCACCA
1658	AACCAACAGGCTGCAGCCCAGACT	AGTCTGGGCTGCAGCCTGTTGGTT
1659	AAACAGATCCATCTGCACGCCAGG	CCTGGCGTGCAGATGGATCTGTTT
1660	GGAATACCGCGGCGATTATGGCTT	AAGCCATAATCGCCGCGGTATTCC
1661	TACTGTTCGCGGCAAACCGTCACT	AGTGACGGTTTGCCGCGAACAGTA
1662	GATCTCTCGTGGAGCACGTTTTCC	GGAAAACGTGCTCCACGAGAGATC
1663	GGCATAGCAAACCTTGACCTCCAA	TTGGAGGTCAAGGTTTGCTATGCC
1664	ATCTGGGATTCGCGAGCCAATATC	GATATTGGCTCGCGAATCCCAGAT
1665	CGATCAGGATATCATTTACGCCCG	CGGGCGTAAATGATATCCTGATCG
1666	ACGGTACCGAAACGGTCTCAGCGT	ACGCTGAGACCGTTTCGGTACCGT
1667	CTCCCATACCTGCGTTCTTACCGA	TCGGTAAGAACGCAGGTATGGGAG
1668	GCACGAGAACCTAATTGTCGCACA	TGTGCGACAATTAGGTTCTCGTGC
1669	GCCACACGATCAAGACAGCGCATG	CATGCGCTGTCTTGATCGTGTGGC
1670	CCCGTTAACTCACGAGCGGTCAAT	ATTGACCGCTCGTGAGTTAACGGG
1671	AGAGAAGGTCATTGCCTGTCGGTG	CACCGACAGGCAATGACCTTCTCT
1672	CGGGCCCTCTTAAAGTAGAGCAGG	CCTGCTCTACTTTAAGAGGGCCCG
1673	ACATCGCGTCCGAGGGAGTTAGCG	CGCTAACTCCCTCGGACGCGATGT
1674	AATGCCTAATCGAGCCAGCGGATC	GATCCGCTGGCTCGATTAGGCATT
1675	CTCGATCTTTTTAAACCGGCGCTT	AAGCGCCGGTTTAAAAAGATCGAG
1676	CGTTCCTGGAAGGCAGGGTCTCAC	GTGAGACCCTGCCTTCCAGGAACG
1677	CCTGTGCTTACTATCGGCGATCCA	TGGATCGCCGATAGTAAGCACAGG
	1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676	1638 CTTTCGATACCATCGTTGGCGATC 1639 CCCGGAGGTGAGGCATTGAATATG 1640 CTCATTCAGCTAAAAGCGGCTGGA 1641 GAAATGCCCTGGGGACTTTTTGCC 1642 TTTGCCTTCACAACAGACGCAGCA 1643 AAATCCCAAGACGTCGGGGCGTAT 1644 CAACGGGCGGTAGCTAAACCGTAA 1645 GGCCAACGACAATGCGAAACCTTC 1646 GACATCACGCAAAATCTCAGCGCA 1647 ACGTTCCGTCCACAACCGTATGTT 1648 GCTCATAGGTCTTCCGTAGCCCGT 1649 GAAACGAGTCTCGCGCCCTAGA 1650 CGGGACAGAAGCATTCCAGCGCCTAGA 1651 TGACCGCTCGATACCAGGAGGGTG 1652 CTGGCAATAAAGACTTCCGACCA 1653 TGCGCGACGTCATGTTGGTGATTA 1654 GTTGGTTGTGGGAACACACCCGCT 1655 TGTGGGTTCGGAAACACACCCGCT 1656 GGAAAAAACGGCAATTAGCCGAGT 1657 TGGTGCGAGCCAATTAGCCGAGT 1658 AACCAACAGGCTGCAGCCCAGCT 1659 AAACAGATCCATCTGCACCACT 1660 GGAATACCGCGCCATTATGGCTT 1661 TACTGTTCGCGGCCAACCT 1662 GATCTCCGTGGAGCCCAGCT 1663 GGCATAGCAACCCTCCACT 1664 ATCTGGGATTCCGGAGCCCAACCT 1665 CGATCAGGATATCCCGCGTT 1666 CGACTAGCAAACCTTGCACCCCAA 1667 CTCCCATACCTGCACCCCAACT 1668 GCACGAACCACCCTCTATTCCCGACCCCAACT 1669 GCCACACGAACCACCCCGCT 1667 CTCCCATACCTGCACCCCCAACT 1667 CTCCCATACCTGCAACCGCCACAT 1667 CTCCCATACCTGCAACCGCCACAT 1667 CTCCCCATACCTGCACCCCCACACT 1667 CTCCCATACCTGCGGTTCTTACCGA 1668 GCACGAGAACCTTAATTGCCCCG 1669 GCCACACGATCAAGACAGGCCACACT 1670 CCCGTTAACTCACGAGCGGTCAAT 1671 AGAGAAGGTCATTGCCTGCACGC 1671 ACTGCTCCGAGGGGAGTTAGCCG 1672 CGGGCCCTCTTAAAGTAGACAGCGCATG 1673 ACATCCGCTCCGAGGGGAGTTAGCCG 1674 AATGCCTAATCGAGCCAGCGGATC 1675 CTCGATCTTTTTAAACCGGCGGTTT 1676 CGTTCCTGGAAGGCAGGGTCTCACC 1677 ACATCCTGCAGCCAGCGGATC 1677 AATGCCTTAATTGACCCGGCGATC 1677 ACATCCGCGTCCGAGGGGAGTTAGCG 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTAACTCACGAGCGGATC 1677 AATGCCTTATTTTAAACCGGCGGTTT 1677 AATGCCTTATTTTTAAACCGGCGGTTT 1677 AATGCCTTATCTGAGCCACACCCCACACCGTCACCACACCACCACCACCACCACCACCACCACCACCACC

	1678	GTTAGTCGCCCTATTGGCCTGGTT	AACCAGGCCAATAGGGCGACTAAC
	1679	CCGGTGAGATGACTGTAAATGCCA	TGGCATTTACAGTCATCTCACCGG
	1680	CGTGGTTTAAAACATCGCGCTTCG	CGAAGCGCGATGTTTTAAACCACG
	1681	TAAGACGCAGAAGATGGGGTCCAC	GTGGACCCCATCTTCTGCGTCTTA
5	1682	CACCACAGCTTCTTTGTTCGACCC	GGGTCGAACAAAGAAGCTGTGGTG
	1683	TCGGGTCCGTACCACCACTTTTGC	GCAAAAGTGGTGGTACGGACCCGA
	1684	CCAAGCCCCGAGTACCGAAGATTT	AAATCTTCGGTACTCGGGGCTTGG
	1685	TCCGTGATATGGTCGTGGCGCGGT	ACCGCGCCACGACCATATCACGGA
	1686	TGTCTGTGTCATGGCACCTCGCAT	ATGCGAGGTGCCATGACACAGACA
10	1687	AGGACTGCACTGTGCACGTCTGAT	ATCAGACGTGCACAGTGCAGTCCT
	1688	CCATCCTCATGTACAGCGCCGCTG	CAGCGGCGCTGTACATGAGGATGG
	1689	GTACCCGCGCCTTCCTCGACACAG	CTGTGTCGAGGAAGGCGCGGGTAC
	1690	ACGGGTCCTGGTCGACTAAGGCTT	AAGCCTTAGTCGACCAGGACCCGT
	1691	CGTATCGAAGGCGTGTACAACCGG	CCGGTTGTACACGCCTTCGATACG
15	1692	TGCCGCCCTTTATGCAACGCTCA	TGAGCGTTGCATAAAGGGCGGGCA
	1693	AAACTTACGAGACGGCGGCTGCCA	TGGCAGCCGCCGTCTCGTAAGTTT
	1694	AAGTCTGACAAACGGAACGGGTGT	ACACCCGTTCCGTTTGTCAGACTT
	1695	TAAGCGCAGACCAAAGTATGCGGC	GCCGCATACTTTGGTCTGCGCTTA
	1696	GCAGTTTTTCAGATCCTCCGCAAA	TTTGCGGAGGATCTGAAAAACTGC
20	1697	TCGGAAGCATTTACGCGATCTCAG	CTGAGATCGCGTAAATGCTTCCGA
	1698	CACAGAAACGGTTGAACGAACGCC	GGCGTTCGTTCAACCGTTTCTGTG
	1699	GCATGCTCAGATGGTCGTGCTCAC	GTGAGCACGACCATCTGAGCATGC
	1700	AAGGATTCTCGCTTCCGGCATGAT	ATCATGCCGGAAGCGAGAATCCTT
	· 1701	GGTGGGTAGCGCTGGTATGAAAA	TTTTCATACCAGCGCTACCCCACC
25	1702	ATTATTACGGGACCGAACCAACGG	CCGTTGGTTCGGTCCCGTAATAAT
	1703	GCGCGAGTGTCATGATGTTCACGT	ACGTGAAGATCATGACACTCGCGC
	1704	GACATTCGTGACTTGGTCGTCCGC	GCGGACGACCAAGTCACGAATGTC
	1705	TCATTAGTGCAGGCACCGATCAAG	CTTGATCGGTGCCTGCACTAATGA
	1706	GAGTTGTGCGGAGTCATCGGAGTC	GACTCCGATGACTCCGCACAACTC
30	1707	GCCTTTACAGATTTGGCGGGCTAT	ATAGCCCGCCAAATCTGTAAAGGC
	1708	ATGGCGTTTGCGAAGTCGATACAG	CTGTATCGACTTCGCAAACGCCAT
	1709	TGCATCGGCCTCAATCAGAGAACT	AGTTCTCTGATTGAGGCCGATGCA
	1710	ACAATCATGGCAATCTGGCAAATG	CATTTGCCAGATTGCCATGATTGT
	1711	GACGTGGAAGAGTGCAGATCAGCA	TGCTGATCTGCACTCTTCCACGTC
35	1712	AGGGCAGGGGACGGACAGTAAGTC	GACTTACTGTCCGTCCCCTGCCCT
	1713	GCATAGGGCGAATCTAGTACGGGC	GCCCGTACTAGATTCGCCCTATGC
	1714	TCCGGCGCATCCTCATTAGCAACT	AGTTGCTAATGAGGATGCGCCGGA
	1715	TGGCCGCTTCCACTAATATTGGAC	GTCCAATATTAGTGGAAGCGGCCA
	1716	CCGGCGGACGGCTCTTGTCAATGA	TCATTGACAAGAGCCGTCCGCCGG
40	1717	CGAGCAACCCAAAAGGAAGCAGTA	TACTGCTTCCTTTTGGGTTGCTCG
	1718	GCGTATGATTCGGCAATCCGCCAG	CTGGCGGATTGCCGAATCATACGC

	1719	AGTACCGCTACAACGCTGGTTCGC	GCGAACCAGCGTTGTAGCGGTACT
	1720	GGGCAGGCCAGGTCCACCTGAGAA	TTCTCAGGTGGACCTGGCCTGCCC
	1721	CCACTTCTGTGACCGAACCGTGCT	AGCACGGTTCGGTCACAGAAGTGG
	1722	CCTGGTACCAGGCAGCAGTTGATT	AATCAACTGCTGCCTGGTACCAGG
5	1723	TTAGGGTACCGTCGAGAGACGCCA	TGGCGTCTCTCGACGGTACCCTAA
	1724	GGTTGCTTGTGCGCGTGAGGTAGT	ACTACCTCACGCGCACAAGCAACC
	1725	TGCTTCGACCGATGAAACTCGAAG	CTTCGAGTTTCATCGGTCGAAGCA
	1726	TGCCACCCATACTATGCCCAGTGG	CCACTGGGCATAGTATGGGTGGCA
	1727	TGTGCGGCAACGCGTGAAGACGTT	AACGTCTTCACGCGTTGCCGCACA
10	1728	TGAGAGAAGCTGGCCTCGGATCAG	CTGATCCGAGGCCAGCTTCTCTCA
	1729	TATTGCGAATTCGAGTACGTGCCC	GGGCACGTACTCGAATTCGCAATA
	1730	CGAGAGGGGTTCCCCAGTGATCGA	TCGATCACTGGGGAACCCCTCTCG
	1731	TGCCTGGGGTGTCGTTCTAATTCT	AGAATTAGAACGACACCCCAGGCA
	1732	GTGCGTCATTGTGGGTCATCCCAA	TTGGGATGACCCACAATGACGCAC
15	1733	AGGGCTCCCAGCATACCAACGTTG	CAACGTTGGTATGCTGGGAGCCCT
	1734	AACTAGCCGCACCTTTGTGCAGAG	CTCTGCACAAAGGTGCGGCTAGTT
	1735	TTAGCCCAGCCCTTCAATGGGAAC	GTTCCCATTGAAGGGCTGGGCTAA
	1736	CGGCCTCGGTTGTACGGGTAGTCT	AGACTACCCGTACAACCGAGGCCG
	1737	TCTTTGAGGCGCGGACCCGCATAT	ATATGCGGGTCCGCGCCTCAAAGA
20	1738	GATGGTTCGCCCTTGTGTCGCAGC	GCTGCGACACAAGGGCGAACCATC
	1739	GAGATTCAATACAGGCCGCGGGTC	GACCCGCGGCCTGTATTGAATCTC
	1740	AGGGCGAAGGAAGGTTCCGTTTTT	AAAAACGGAACCTTCCTTCGCCCT
	1741	CTCGACCCCTGCCACTACTGGTTC	GAACCAGTAGTGGCAGGGGTCGAG
	1742	TGTTCCGCGGTCTACGCATTACTG	CAGTAATGCGTAGACCGCGGAACA
25 .	1743	GAGACGACGTCCTACACCCGCTAA	TTAGCGGGTGTAGGACGTCGTCTC
	1744	AGATTGCGACAGCGACACGTGATT	AATCACGTGTCGCTGTCGCAATCT
	1745	GATACCGTTGGGCATTTCTCGGTA	TACCGAGAAATGCCCAACGGTATC
	1746	GATTGGGAGGCATTCAGCGACGGA	TCCGTCGCTGAATGCCTCCCAATC
	1747	AGGAGGAAACGAGGCGTAGGTTC	GAACCTACGCCCTCGTTTCCTCCT
30	1748	GCCAAACAACGTCTGACGCCTAGC	GCTAGGCGTCAGACGTTGTTTGGC
	1749	TTTAATGCGGAAAGGATGCACGCG	CGCGTGCATCCTTTCCGCATTAAA
	1750	TTATCGGCCGTTAAAATGGGATGG	CCATCCCATTTTAACGGCCGATAA
	1751	CCTTGGATTCGTTCATCGCTAGCA	TGCTAGCGATGAACGAATCCAAGG
	1752	AAGTGAACGTGCAGTGGTCTTCGA	TCGAAGACCACTGCACGTTCACTT
35	1753	TCCTTACCCCTCGTTCAAACGCCT	AGGCGTTTGAACGAGGGGTAAGGA
	1754	ATTCCTGAACCATGCATGGCCTGT	ACAGGCCATGCATGGTTCAGGAAT
	1755	AGCGAGACGCTCGATCACGAACTA	TAGTTCGTGATCGAGCGTCTCGCT
	1756	GCTGGTCTGGCTCGCTGTTTAGAA	TTCTAAACAGCGAGCCAGACCAGC
	1757	CGTGCGCGCATAAAGATAGGTCT	AGACCTATCTTTATGCCGCGCACG
40	1758	TCTGGCACTCACATCGGACAGTCT	AGACTGTCCGATGTGAGTGCCAGA
	1759	ACCATTGGAGGACCACAGAGCTCC	GGAGCTCTGTGGTCCTCCAATGGT

			
	1760	TCCAGGGTCGGAGTACATGGCGGG	CCCGCCATGTACTCCGACCCTGGA
•	1761	ATATGCCGTCGGATCGTACACGCA	TGCGTGTACGATCCGACGGCATAT
	1762	TGCTGGCGTCAACACTTCCCGATT	AATCGGGAAGTGTTGACGCCAGCA
	1763	CAGGGCGGTGCGGTGAACTAGCCA	TGGCTAGTTCACCGCACCGCCCTG
5	1764	CATGGACTGCCGTACATCAGCTGG	CCAGCTGATGTACGGCAGTCCATG
	1765	CCGGCCATACGCTGGCAAGATTAC	GTAATCTTGCCAGCGTATGGCCGG
	1766	AGCGGACACCTGTACTCTCCCA	TGGAGGAGAGTACAGGTGTCCGCT
	1767	GGAGCCACACCAGTCGAAGATGGT	ACCATCTTCGACTGGTGTGGCTCC
	1768	CGCCACCGGAAATTGAAAAGACTG	CAGTCTTTTCAATTTCCGGTGGCG
10	1769	TGAAACGGATGTTGCTTCTTGACG	CGTCAAGAAGCAACATCCGTTTCA
	1770	TTGAAGCGGTGAAGAGCCTGTCCT	AGGACAGGCTCTTCACCGCTTCAA
	1771	CGAACCAAGCTGCATTGTCAGTGG	CCACTGACAATGCAGCTTGGTTCG
	1772	GAGTCTGCGCTTGCAATCTTTGCG	CGCAAAGATTGCAAGCGCAGACTC
	1773	GCTGGGTATAGTTGCCTGGCAATG	CATTGCCAGGCAACTATACCCAGC
15	1774	GCAGGCGTTCCATATTCGCAACCC	GGGTTGCGAATATGGAACGCCTGC
	1775	GCGCCAACTAATACCTCCACCGCG	CGCGGTGGAGGTATTAGTTGGCGC
	1776	TGGCGTTCAGTGCAACGCTGGTTA	TAACCAGCGTTGCACTGAACGCCA
	1777	CAAAACTGACGGGTATGGGAGCGC	GCGCTCCCATACCCGTCAGTTTTG
	1778	AGGTGTCGCTGGAACCCGACTTGT	ACAAGTCGGGTTCCAGCGACACCT
20	1779	CTTCCAAAAGCGCAATTGGCTTTG	CAAAGCCAATTGCGCTTTTGGAAG
	1780	TCGGGCTTCTCGCAATTCTGTCAG	CTGACAGAATTGCGAGAAGCCCGA
	1781	GCCAAAAGAATGCGCTGGGTAGGT	ACCTACCCAGCGCATTCTTTTGGC
	1782	TGGTGCCCGCACCGAGAGACTGTA	TACAGTCTCTCGGTGCGGGCACCA
	1783	CGAGGCCGTAGTGGGGACTGCTCT	AGAGCAGTCCCCACTACGGCCTCG
25	1784	CGATCTGCGCATAGAGGGGACTTT	AAAGTCCCCTCTATGCGCAGATCG
	1785	TGTGCAATCGGCCTTCTCAGAGCC	GGCTCTGAGAAGGCCGATTGCACA
	1786	GATCACCTGGACCGCTACCGTTTT	AAAACGGTAGCGGTCCAGGTGATC
	1787	ATGGGGAGTTAAGGACCCTGCACC	GGTGCAGGGTCCTTAACTCCCCAT
	1788	CATTGTGGACAGCCAATGGTGGCT	AGCCACCATTGGCTGTCCACAATG
30	1789	CCATCACCATGCCACGGTAAGATC	GATCTTACCGTGGCATGGTGATGG
	1790	GCACCCGTGTCGTTGGTTAGCAAG	CTTGCTAACCAACGACACGGGTGC
	1791	GGAGTGGGTTCCGCGAATTCACTG	CAGTGAATTCGCGGAACCCACTCC
	1792	GGGGATTTCCTTTCGCAGGCTCGA	TCGAGCCTGCGAAAGGAAATCCCC
	1793	CATTGATCATGTGCACCA	TGGTGCAAGTGCACATGATCAATG
35	1794	AGCAGCGCTGCGCTTGTTTCGGAT	ATCCGAAACAAGCGCAGCGCTGCT
	1795	CGAGTAACGCGGTTGCTTTGCGAA	TTCGCAAAGCAACCGCGTTACTCG
	1796	TGGCCTGGAACATAGGTGGAACTC	GAGTTCCACCTATGTTCCAGGCCA
	1797	CGCACACCAAGCGTTTATTGAGAA	TTCTCAATAAACGCTTGGTGTGCG
	1798	TCACCTTCACAGTGGGCATACAGC	GCTGTATGCCCACTGTGAAGGTGA
40	1799	CAAATATCCCTGAGCCCTCGAGCT	AGCTCGAGGGCTCAGGGATATTTG
	1800	GGGAGCTGGTGAGCAGATGTAACG	CGTTACATCTGCTCACCAGCTCCC

	1801	AGGATTGCTTTTGCGTTATGCGGA	TCCGCATAACGCAAAAGCAATCCT
	1802	ATCGTTTGGGCGCTACGCAATTGT	ACAATTGCGTAGCGCCCAAACGAT
	1803	CCGATTTGTCCCAAATGCAACGTT	AACGTTGCATTTGGGACAAATCGG
	1804	AAGGGTCAAGCTCATGGAGCGGAA	TTCCGCTCCATGAGCTTGACCCTT
5	1805	TCTGACGTCGTTCAAGGGCTCGCT	AGCGAGCCCTTGAACGACGTCAGA
	1806	CGCACCACTCCGAGGTATTTGTCT	AGACAAATACCTCGGAGTGGTGCG
	1807	AAGGGTGAAAAAGGAGAAGCCGA	TCGGCTTCTCCTTTTTCACCCCTT
	1808	AAACCACGCAAATGGCGATACCAT	ATGGTATCGCCATTTGCGTGGTTT
	1809	CAGAAGGGATGACGCCTTAAGTCG	CGACTTAAGGCGTCATCCCTTCTG
10	1810	CATGACGAGAGCGGACCTGAAGTG	CACTTCAGGTCCGCTCTCGTCATG
	1811	CTGGACATGTTTGTTTCGCCACTG	CAGTGGCGAAACAACATGTCCAG
	1812	AAGACCGACTCTCGTCGTTTGCAC	GTGCAAACGACGAGAGTCGGTCTT
	1813	GCGCGATTACATACCGTTTCCGTA	TACGGAAACGGTATGTAATCGCGC
	1814	CACTGACCGGACCCAACCTAACAT	ATGTTAGGTTGGGTCCGGTCAGTG
15	1815	AGTGCAAGTCTAGACACGCCCGAG	CTCGGGCGTGTCTAGACTTGCACT
	1816	GGTTGGTGCGAGATCCTGGACTGT	ACAGTCCAGGATCTCGCACCAACC
	1817	GGTCGTCCCGAAACGTAAACGAGG	CCTCGTTTACGTTTCGGGACGACC
	1818	GACTAGTACGATCACGGGGCGGGT	ACCCGCCCGTGATCGTACTAGTC
	1819	CCGACCTGACCCTGTGTACAGGTT	AACCTGTACACAGGGTCAGGTCGG
20	1820	TGCTCACTGCCCACACTGTTATGG	CCATAACAGTGTGGGCAGTGAGCA
	1821	CGAGGAAACACATTTCTTCGGGCC	GGCCCGAAGAAATGTGTTTCCTCG
•	1822	TGGCACCGGGTGGATTCTTGTCTA	TAGACAAGAATCCACCCGGTGCCA
	1823	GAGGCACGGTGATAGTGGTTGTGC	GCACAACCACTATCACCGTGCCTC
	1824	ATGCAGATGGATCTTTTTCGACGC	GCGTCGAAAAAGATCCATCTGCAT
25	1825	TGCGATAGCCAAAGAGTCGAGGAC	GTCCTCGACTCTTTGGCTATCGCA
	1826	ATGGCGTGTCAGCGAACTGCCTGG	CCAGGCAGTTCGCTGACACGCCAT
	1827	CAATGCAGCTCGGAAGTCAGGTCG	CGACCTGACTTCCGAGCTGCATTG
•	1828	AGGATCAGTGCACATGTCCCCTCA	TGAGGGGACATGTGCACTGATCCT
	1829	CACATCTTGGCTGTCACCCGAGAA	TTCTCGGGTGACAGCCAAGATGTG
30	1830	CGCATTATCACCTCAATGCCAGTG	CACTGGCATTGAGGTGATAATGCG
	1831	ACATCCGCAGACTCCCTATAGCCC	GGGCTATAGGGAGTCTGCGGATGT
	1832	GTGAACCCGAACGAGGGGAGTCTC	GAGACTCCCCTCGTTCGGGTTCAC
	1833	GCGTAGGGAATTTGCCTCACGACT	AGTCGTGAGGCAAATTCCCTACGC
	1834	TTTACGCGTCGCTCGGTTGTAGTG	CACTACAACCGAGCGACGCGTAAA
35	1835	GAGAGGCGTCTAGGCGGTTCTAGC	GCTAGAACCGCCTAGACGCCTCTC
	1836	GCATGCTGATAACGAATGCTTCCC	GGGAAGCATTCGTTATCAGCATGC
	1837	CTGAAGCTCGTGTGCGATGAGGGA	TCCCTCATCGCACACGAGCTTCAG
	1838	ACAACGCATGAGGAGGCTTTTTC	GAAAAAGCCTCCTCATGCCGTTGT
	1839	TTTGGAGACGCCAGTACGCGTGGT	ACCACGCGTACTGGCGTCTCCAAA
40	1840	GCTATCATTTGGTGTAAGCCCGCC	GGCGGGCTTACACCAAATGATAGC
	1841	TCAACATCCAGGGCGGTGCTTGGT	ACCAAGCACCGCCCTGGATGTTGA

ī			[]
[1842	TTCGATGTAATCCCCAAAGATGCC	GGCATCTTTGGGGATTACATCGAA
	1843	GGACCTTCGGCAGGTTATCGCCGT	ACGGCGATAACCTGCCGAAGGTCC
	1844	AGTAAGAAGAGGCAGGCCCCACCT	AGGTGGGCCTGCCTCTTCTTACT
	1845	AACGGCTCCCCGTCGTACTGCTTA	TAAGCAGTACGACGGGGAGCCGTT
5	1846	CCTATACCGTCGTGGTTCCACGTT	AACGTGGAACCACGACGGTATAGG
	1847	CCGCGCAGGCGCTAATACTCAAGG	CCTTGAGTATTAGCGCCTGCGCGG
	1848	AAATGGGCCAGTGAAATCCTTGGT	ACCAAGGATTTCACTGGCCCATTT
•	1849	ACGGTTTCGAATACTGCTGGGCAG	CTGCCCAGCAGTATTCGAAACCGT
	1850	CCGCTTGAGGTTCAGGTCAGAGCT	AGCTCTGACCTGAACCTCAAGCGG
10	1851	ATCGTGCCCGAAGACACTTAAACG	CGTTTAAGTGTCTTCGGGCACGAT
	1852	ACCTGAACCAGGGCGATTGCTTTA	TAAAGCAATCGCCCTGGTTCAGGT
	1853	ACCCTATACGCTGGGCTAAGCGGG	CCCGCTTAGCCCAGCGTATAGGGT
	1854	TGTTTCGCGACTAGAAGCCTTTGC	GCAAAGGCTTCTAGTCGCGAAACA
	1855	GAAGTTGGCGGCTCACCCGTATTA	TAATACGGGTGAGCCGCCAACTTC
15	1856	TGGCTACACCGCTTAGGAGGAACC	GGTTCCTCCTAAGCGGTGTAGCCA
	1857	CCACAGTTGCGTGACTTACATCGC	GCGATGTAAGTCACGCAACTGTGG
	1858	ACTGCCACTGCGTCTGAAGAGTGG	CCACTCTTCAGACGCAGTGGCAGT
	1859	GCGCCAGCAAATTTCGTGTGGTGT	ACACCACACGAAATTTGCTGGCGC
	1860	TGCCTCCGTCGAGCCGAATAGCCA	TGGCTATTCGGCTCGACGGAGGCA
20	1861	GTACAAACGGGCGCTATTTCGTCC	GGACGAAATAGCGCCCGTTTGTAC
	1862	GCTTCCCTGGCTCTGAACGGAAAC	GTTTCCGTTCAGAGCCAGGGAAGC
	1863	CGGCTACCCAGGCAGATAAGCTGA	TCAGCTTATCTGCCTGGGTAGCCG
	1864	GGTTGGACCCGACAGGGAATTTCC	GGAAATTCCCTGTCGGGTCCAACC
	1865	GGGGAATACCCGGCGTTTGTAATA	TATTACAAACGCCGGGTATTCCCC
25	1866	TGGTTCGGTGAGGTTATGTTCGGT	ACCGAACATAACCTCACCGAACCA
	1867	TCGGTAGGGTTCAGTCGCTGAGGA	TCCTCAGCGACTGAACCCTACCGA
	1868	TTCGGAGTGTGCCGGTGCTAGTAC	GTACTAGCACCGGCACACTCCGAA
	1869	TCGTACTGGAATGATGGCCGGGCC	GGCCGGCCATCATTCCAGTACGA
	1870	TCCGTCGACCGTCCAGCGAAGTTT	AAACTTCGCTGGACGGTCGACGGA
30	1871	AGGGAATATAACAACACCGCGCAC	GTGCGCGGTGTTGTTATATTCCCT
	1872	ATGTCCCGGAAACCAGCTACCTCA	TGAGGTAGCTGGTTTCCGGGACAT
	1873	ACCAGCGACTTAGATAGCCGTCCG	CGGACGCTATCTAAGTCGCTGGT
	1874	GGAAAACCTCCTTTGCGTCAACCA	TGGTTGACGCAAAGGAGGTTTTCC
	1875	ACGTGCGTGCATACCCAAGAGGAC	GTCCTCTTGGGTATGCACGCACGT
35	1876	ACGCCACTTTCCCTAGAACCA'ACG	CGTTGGTTCTAGGGAAAGTGGCGT
	1877	CGAAGTACGCAATAGTGCCACCCT	AGGGTGGCACTATTGCGTACTTCG
	1878	GATCCCGGCGGATCACCTATCAAT	ATTGATAGGTGATCCGCCGGGATC
	1879	AGAAAGCGACCGTTTCAGGCTAGC	GCTAGCCTGAAACGGTCGCTTTCT
	1880	CGCTCCCTTTCATAGTCCTCTCCG	CGGAGAGGACTATGAAAGGGAGCG
40	1881	GTGGGTGGTCATAACGACAGCAGA	TCTGCTGTCGTTATGACCACCCAC
	1882	CTGGAGGCTGCATCGTTCGTAACA	TGTTACGAACGATGCAGCCTCCAG

	1883	CACCATGAGTTTCGGAGCGAGGAT	ATCCTCGCTCCGAAACTCATGGTG
	1884	CAAGCTGCGTTCGATGAGAGATTG	CAATCTCTCATCGAACGCAGCTTG
	1885	CCTGGGAGCAATGACCGCTCTGGT	ACCAGAGCGGTCATTGCTCCCAGG
	1886	TCCGGCGCTCTACCAAGATGAGAC	GTCTCATCTTGGTAGAGCGCCGGA
5	1887	CGACCGCGTCGCGTATACTATCCG	CGGATAGTATACGCGACGCGGTCG
	1888	AACATTCGCTAGTGGGGTCCAACA	TGTTGGACCCCACTAGCGAATGTT
	1889	TGTATGATCATCCGACCGAGCAGC	GCTGCTCGGTCGGATGATCATACA
	1890	AGTGCGCCGAGAGGGTGAATAGAC	GTCTATTCACCCTCTCGGCGCACT
	1891	AGGCTTGTTCTGGACCAGCACCAT	ATGGTGCTGGTCCAGAACAAGCCT
10	1892	GGGCCACATAAAGAATTCCGAAC	GTTCGGAATTCTTTATGTGGCCCC
	1893	TGGTGAAGATAAATCCGCATGGCA	TGCCATGCGGATTTATCTTCACCA
	1894	ATTTCCACCACGCTCTTGCCAAAT	ATTTGGCAAGAGCGTGGTGGAAAT
	1895	CGCGTAAAGCTGTCACCGATGACC	GGTCATCGGTGACAGCTTTACGCG
	1896	TCCCCAACCGGTAACAACAGCGAC	GTCGCTGTTGTTACCGGTTGGGGA
15	1897	CCTCTGCTCGCCTTACACCCATGG	CCATGGGTGTAAGGCGAGCAGAGG
	1898	CAAGCTGCTCCTGTGCTGAAGGGC	GCCCTTCAGCACAGGAGCAGCTTG
	1899	AAACGAACGATGGTCGGTAGACCG	CGGTCTACCGACCATCGTTCGTTT
	1900	TCAGTTCGATGGCTATTGCGCCTC	GAGGCGCAATAGCCATCGAACTGA
	1901	GGCTCTCAACGGACGCAAATCATA	TATGATTTGCGTCCGTTGAGAGCC
20	1902	AGTAGAGTGTTGCGGCTGCCGATC	GATCGGCAGCCGCAACACTCTACT
	1903	AGACACTAGACCGCCGTGACCTGA	TCAGGTCACGGCGGTCTAGTGTCT
	1904	ACCGAGCACCGAATTTCCTTGTCC	GGACAAGGAAATTCGGTGCTCGGT
	1905	CCGTGGCCAAGATACGAACGAATT	AATTCGTTCGTATCTTGGCCACGG
	1906	CCTCCTACAGCATCCACATGAGGG	CCCTCATGTGGATGCTGTAGGAGG
25	1907	CACTCGGCAAATACGTATGCGCAT	ATGCGCATACGTATTTGCCGAGTG
	1908	ACCGAGTTGAAGCACGAATTTGGG	CCCAAATTCGTGCTTCAACTCGGT
	1909	GACCACCTCGGAAGATCGTTCTGC	GCAGAACGATCTTCCGAGGTGGTC
	1910	TCAACTGGGCAAACGAAGAGCACA	TGTGCTCTTCGTTTGCCCAGTTGA
	1911	GCTTAGCCTCACACGTGCATACCA	TGGTATGCACGTGTGAGGCTAAGC
30	1912	CTGCGGTCTCCAAGTACCATTTCG	CGAAATGGTACTTGGAGACCGCAG
	1913	GTTCCGTATTACGGCGGCCATAAG	CTTATGGCCGCCGTAATACGGAAC
	1914	ATCGACGCAACCGGATAGTCTCTG	CAGAGACTATCCGGTTGCGTCGAT
	1915	CGCAGATAAACCGGCATCTTTCAG	CTGAAAGATGCCGGTTTATCTGCG
	1916	ACCTGCCAATACGGGTCTACGGTT	AACCGTAGACCCGTATTGGCAGGT
35	1917	ACACCTGTTGCCATGCTGATCCGT	ACGGATCAGCATGGCAACAGGTGT
	1918	AAACTGTCTACTGCGCAATTCCGC	GCGGAATTGCGCAGTAGACAGTTT
	1919	GCAACTAGCCCGTGCTAGGATCGT	ACGATCCTAGCACGGGCTAGTTGC
	. 1920	TCGTAGTGGTGGATTGTTGTGCGT	ACGCACAACAATCCACCACTACGA
	1921	GGCTTACTCCTCAATTGCGACACG	CGTGTCGCAATTGAGGAGTAAGCC
40	1922	CACGACTCCCTGCCAGATTTGATT	AATCAAATCTGGCAGGGAGTCGTG
	1923	CTTAGACGTCGGCAATGTCACGTC	GACGTGACATTGCCGACGTCTAAG
			-

	1924	CTCAGAGCACAATCTGCCCTGCCT	AGGCAGGCAGATTGTGCTCTGAG
	1925	GCTAGGAAAGTCGGCATTCATGGG	CCCATGAATGCCGACTTTCCTAGC
	1926	AAAGCCCCAAAATTCCGCCTAACC	GGTTAGGCGGAATTTTGGGGCTTT
	1927	GCGCAACGCTAAGGGACTATCAAG	CTTGATAGTCCCTTAGCGTTGCGC
5	1928	CGTCCGCTGGGATGAGTCTCCTGC	GCAGGAGACTCATCCCAGCGGACG
	1929	ACAGGCCTCGTGATTGGTGTGGGT	ACCCACACCAATCACGAGGCCTGT
	1930	CATTCTCCTTCCGGGACCACGCCT	AGGCGTGGTCCCGGAAGGAGAATG
	1931	TCGGAGTTGACCAAGCTCAGTGCG	CGCACTGAGCTTGGTCAACTCCGA
	1932	ACGCGCCACTGCAATTGCAAACAC	GTGTTTGCAATTGCAGTGGCGCGT
10	1933	AGTTCATGGAGCCGGCGTATTGTT	AACAATACGCCGGCTCCATGAACT
	1934	ACGTTTAATGCGGGGCCCGCCTAC	GTAGGCGGGCCCCGCATTAAACGT
	1935	TGAGGCTTTAGCCTACGCGCAGGT	ACCTGCGCGTAGGCTAAAGCCTCA
	1936	CAGCGTTATGAGCGCGGAGTTTAT	ATAAACTCCGCGCTCATAACGCTG
	1937	GTCCACGTGACCACGGATAGTTGG	CCAACTATCCGTGGTCACGTGGAC
15	1938	GATTATGCTCCTACGCCTGCTCCG	CGGAGCAGGCGTAGGAGCATAATC
	1939	TCGTCAAGGGCATGATGTGTGGGA	TCCCACACATCATGCCCTTGACGA
	1940	GATGGACCGCCAAAGACACCTTGA	TCAAGGTGTCTTTGGCGGTCCATC
	1941	TACACGAGGATGGGGTCAAGCTTT	AAAGCTTGACCCCATCCTCGTGTA
	1942	ACACGCACAAAACGTTTGAAAGGC	GCCTTTCAAACGTTTTGTGCGTGT
20	1943	GTTATCGTGGGCCGATGGTACTGA	TCAGTACCATCGGCCCACGATAAC
	1944	ACATGACCGTATCCGCCTGCTTCG	CGAAGCAGGCGGATACGGTCATGT
	1945	GAAGGCGAACCACTGAAACTACGC	GCGTAGTTTCAGTGGTTCGCCTTC
	1946	TGACTTTTGCAACGGGTGGAACCA	TGGTTCCACCCGTTGCAAAAGTCA
	1947	TGAATTCGTAGGTTTTGGGTGCGG	CCGCACCCAAAACCTACGAATTCA
25	1948	AGCATTTATGAAGCGGCCATTGCG	CGCAATGGCCGCTTCATAAATGCT
	1949	TGCTCCTCGCGTTGGTACCGTGAG	CTCACGGTACCAACGCGAGGAGCA
	1950	CGCAGCAAGAAACAGCAACTGTTG	CAACAGTTGCTGTTTCTTGCTGCG
	1951	AGACGCTTGGAGTGAAAACTCGGA	TCCGAGTTTTCACTCCAAGCGTCT
	1952	CATTCGTAGAATGCCCCAAATGGA	TCCATTTGGGGCATTCTACGAATG
30	1953	CCAGAAGGTTCGGGACCCGTCGTG	CACGACGGGTCCCGAACCTTCTGG
	1954	GAGAAGCCGGTTCTCAGAGCACAT	ATGTGCTCTGAGAACCGGCTTCTC
	1955	TTGCGTTGCAAGATATCTGGCCCG	CGGGCCAGATATCTTGCAACGCAA
	1956	GGGTTGCATGTTCAGGCAAGACGA	TCGTCTTGCCTGAACATGCAACCC
	1957	CTCACGAAGGTGACATATCACGCC	GGCGTGATATGTCACCTTCGTGAG
35	1958	GCCCGAGATACGGGTTCAAAAAGA	TCTTTTGAACCCGTATCTCGGGC
	1959	CATCTTCGCGCTTCTTCACTCCGC	GCGGAGTGAAGAAGCGCGAAGATG
	1960	TTACACGGTAAGCGTACGGCCGCC	GGCGGCCGTACGCTTACCGTGTAA
	1961	ACCTTCGGACAATGTGGCGTTCGC	GCGAACGCCACATTGTCCGAAGGT
	1962	TGAATGGTTCTGCTAGGCCCACAC	GTGTGGGCCTAGCAGAACCATTCA
40	1963	CACGCCTGTCTGACATATGGATGC	GCATCCATATGTCAGACAGGCGTG
	1964	CGCCTCAACCCAATCTGAGAACGT	ACGTTCTCAGATTGGGTTGAGGCG
			* · · · · · · · · · · · · · · · · · · ·

	1965	TTACGCTTACTGCGAGCTGGGTCC	GGACCCAGCTCGCAGTAAGCGTAA
	1966	GGCTTGTGGGGCAATACGCATCTT	AAGATGCGTATTGCCCCACAAGCC
	1967	CACTCTCTTTGGATGCGGAACAA	TTGTTCCGCATCCAAAGGAGAGTG
	1968	GACCAGCCATCACGTAACGGCCCT	AGGGCCGTTACGTGATGGCTGGTC
5	1969	AGGAACCGGATGTGGTTATGGAGC	GCTCCATAACCACATCCGGTTCCT
	1970	ATCCATGGGCAACTGAGCCTATGC	GCATAGGCTCAGTTGCCCATGGAT
	1971	GGAACAGCACTTGTTACCGCCCAC	GTGGGCGGTAACAAGTGCTGTTCC
	1972	TGGCTCGCTTCAAGCCTGTTTGCT	AGCAAACAGGCTTGAAGCGAGCCA
	1973	CAAACGTGAGGTCATGACCACCAT	ATGGTGGTCATGACCTCACGTTTG
10	1974	ACCGATGTCTTGAAGTCCGGAGGT	ACCTCCGGACTTCAAGACATCGGT
	1975	CGAAAATGCATGATGATCTCCCCT	AGGGGAGATCATCATGCATTTTCG
	1976	TTTGGTATTCTCGCTGCACCGTTG	CAACGGTGCAGCGAGAATACCAAA
	1977	GCGTACTCAACCACATTCCCGACC	GGTCGGGAATGTGGTTGAGTACGC
	1978	AGCAAACAACAGCGGTCCGAGCAT	ATGCTCGGACCGCTGTTGTTTGCT
15	1979	GGACTAGGAGCGGGGATAGCTGAG	CTCAGCTATCCCCGCTCCTAGTCC
	1980	CCTTAACGAAAACCTGTCGACCGC	GCGGTCGACAGGTTTTCGTTAAGG
	1981	CTCGATCGCATAAGCAAGAAACCG	CGGTTTCTTGCTTATGCGATCGAG
	1982	CCCGTTGTTTGGGCGACAAAAGT	ACTTTTGTCGCCCAAACAACGGG
	1983	CGGCGCTCTCGCATGATCTCGTT	AACGAGATCATGCGAGAGCCGCCG
20	1984	CGGATGGAGAGGAGTCTACGTCCC	GGGACGTAGACTCCTCTCCATCCG
	1985	CAGAACAATATCGTGCGTCAACCG	CGGTTGACGCACGATATTGTTCTG
	1986	CCTTTGCGCGCTCCGAGTAAGGTA	TACCTTACTCGGAGCGCGCAAAGG
	1987	GGAAACGGCACCTATCTGTCGTGA	TCACGACAGATAGGTGCCGTTTCC
	1988	CGACCGACAAAACCAAATGCCGCC	GGCGGCATTTGGTTTTGTCGGTCG
25	1989	CCAAGGGTGTGGGAGCTGAAGAGA	TCTCTTCAGCTCCCACACCCTTGG
	1990	TTAAGTGCGCATAGTCCTCGTGGG	CCCACGAGGACTATGCGCACTTAA
	1991	GCCTGGTGGGGTAAGTCATGATGC	GCATCATGACTTACCCCACCAGGC
	1992	GAGCAGCAGATTGATGCGCTTATG	CATAAGCGCATCAATCTGCTGCTC
	1993	TGCGCCAACTTCCGGAATATTTGC	GCAAATATTCCGGAAGTTGGCGCA
30	1994	AACCCCATCATGAAATGCTCTCCG	CGGAGAGCATTTCATGATGGGGTT
	1995	GTCCAACGGTACTGGCGTGATGTT	AACATCACGCCAGTACCGTTGGAC
	1996	ACTCGGCTGATCGTGAGATGGTGA	TCACCATCTCACGATCAGCCGAGT
	1997	ATTCGTGGGCGCATCTCGGAATGT	ACATTCCGAGATGCGCCCACGAAT
	1998	TCCCGTCCTGTAATCCAGGGAACA	TGTTCCCTGGATTACAGGACGGGA
35	1999	CTTCGCTGCACCTACATTGCGCCA	TGGCGCAATGTAGGTGCAGCGAAG
	2000	GCGTGTAGATGACTGTGCTTTGGG	CCCAAAGCACAGTCATCTACACGC
	2001	CTATGGTATCGAGACATCGGCGGA	TCCGCCGATGTCTCGATACCATAG
	2002	CCTCGTACTCCGTCGTATGCACAA	TTGTGCATACGACGGAGTACGAGG
	2003	TGGTGCGTCCGTAGTGCCTGCACT	AGTGCAGGCACTACGGACGCACCA
40	2004	CGCGATCCTAGTTGAAAGCTTTGC	GCAAAGCTTTCAACTAGGATCGCG
	2005	ACGATCCAGGTGTTGGGCACTAAG	CTTAGTGCCCAACACCTGGATCGT
		•	

	2006	CCAATCTAGGATACACCACGCCCG	CGGGCGTGGTGTATCCTAGATTGG
	2007	GATACGTGGGGTATAGGCGGGCCC	GGGCCGCCTATACCCCACGTATC
	2008	CATGGAACAAACCGTCGTAGGGGA	TCCCCTACGACGGTTTGTTCCATG
Γ	2009	ACACTCGCGCAGTATTCGAGTCGT	ACGACTCGAATACTGCGCGAGTGT
5	2010	CTCAGTCTCGAAGGTGATCCGACC	GGTCGGATCACCTTCGAGACTGAG
	2011	TCCCAATCCCCGTGGTATCGTCGT	ACGACGATACCACGGGGATTGGGA
	2012	AATCAACGTAGTTCCGGTGGTCCG	CGGACCACCGGAACTACGTTGATT
	2013	CTTAACAACCCAGGGGTTTGGGCT	AGCCCAAACCCCTGGGTTGTTAAG
	2014	CTACCGCTGCATGGCGTTAGATTG	CAATCTAACGCCATGCAGCGGTAG
10	2015	TTATTGGTGGCGGACGGAGTGAGT	ACTCACTCCGTCCGCCACCAATAA
	2016	TTAAGGGTGAACTCAACCGCGTGA	TCACGCGGTTGAGTTCACCCTTAA
	2017	TTTGATTGAAACGCTGCGCACTAC	GTAGTGCGCAGCGTTTCAATCAAA
	2018	TCATGTGTAGGTCGCGGCCGTCAC	GTGACGGCCGCGACCTACACATGA
	2019	CTCCGAACCTTCTGGGCCTCTTTT	AAAAGAGGCCCAGAAGGTTCGGAG
15	2020	CTGTTGCCCATTGGCCCGACACTC	GAGTGTCGGGCCAATGGGCAACAG
	2021	CACGATCGCTGAGCAACACATCAC	GTGATGTGTTGCTCAGCGATCGTG
	2022	CGGATCATAAGCGTCCGCCTTCGT	ACGAAGGCGGACGCTTATGATCCG
	2023	AGGTTAACGCAACATGTGATCCGC	GCGGATCACATGTTGCGTTAACCT
	2024	GGGAAAAACAGCTAAGCCTTGCGA	TCGCAAGGCTTAGCTGTTTTTCCC
20	2025	ACTTATTGCCGGGATCCGTACACA	TGTGTACGGATCCCGGCAATAAGT
	2026	TGCGGTCTGGAAAGGAAGGGAGGG	CCCTCCCTTCCTTTCCAGACCGCA
	2027	GCTGCCACCTGGACATCGCATACA	TGTATGCGATGTCCAGGTGGCAGC
	2028	GCAGGCATGACAGTGGCGTAGTAC	GTACTACGCCACTGTCATGCCTGC
	2029	GCGGCCCTGATGGTTTGGCTGAGC	GCTCAGCCAAACCATCAGGGCCGC
25	2030	TCCCCATTTAGTCCCCTCCATCAC	GTGATGGAGGGGACTAAATGGGGA
L	2031	GCAACACAAATGCGAGCGTAGGAG	CTCCTACGCTCGCATTTGTGTTGC
_	2032	GGCGTTTGTATTCGAGCCACGTAG	CTACGTGGCTCGAATACAAACGCC
Ĺ	2033	GGTAACGTCGCACGTGGAATTCCG	CGGAATTCCACGTGCGACGTTACC
	2034	ACTTCACAACGCTCCGTTGGACAC	GTGTCCAACGGAGCGTTGTGAAGT
30	2035	CCGAATTATAAAGCGCAAGGCACA	TGTGCCTTGCGCTTTATAATTCGG
1	2036	GGACCCGATAAGACTCTGACGCCG	CGGCGTCAGAGTCTTATCGGGTCC
	2037	ACCCGTTTCTCGTAGGAACCTGCT	AGCAGGTTCCTACGAGAAACGGGT
<u> </u>	2038	CACGTTCGACTGTATCTGGTTGCC	GGCAACCAGATACAGTCGAACGTG
<u> </u>	2039	CCTCGGATGGGCCCATGACCTTGA	TCAAGGTCATGGGCCCATCCGAGG
35	2040	GGACGCCTGCTGTAGGGGTTTGAT	ATCAAACCCCTACAGCAGGCGTCC
	2041	CTCGAGCGTGGGCTAAAAGAGCAT	ATGCTCTTTTAGCCCACGCTCGAG
	2042	TTTACTTCTTAGGGCGCGTTTGGG	CCCAAACGCGCCCTAAGAAGTAAA
1	2043	ACCACCAACATAGCGCGCACTAGT	ACTAGTGCGCGCTATGTTGGTGGT
	2044	TGGTTACACGGCAGCCCGCGTAAG	CTTACGCGGGCTGCCGTGTAACCA
40	2045	TTATGGTACGTTGCTGCGTGCGGG	CCCGCACGCAGCAACGTACCATAA
	2046	ACCGCGGATCTAACGAATCCCATT	AATGGGATTCGTTAGATCCGCGGT

	2047	CATGATCCCGCCCTTAGGTTAAGC	GCTTAACCTAAGGGCGGGATCATG
	2048	TACCGCTTCAAAGGGTTGCCGAAT	ATTCGGCAACCCTTTGAAGCGGTA
•	2049	GCACCGCGTCAATATTACCGAGGA	TCCTCGGTAATATTGACGCGGTGC
	2050	GTGTCGCGGCTTTACAGAAGGAGA	TCTCCTTCTGTAAAGCCGCGACAC
5	2051	GCAAGCCATACCGCAATAAACTCG	CGAGTTTATTGCGGTATGGCTTGC
	2052	ATGAGGTCGTGCTGCGTTCACGAG	CTCGTGAACGCAGCACCTCAT
	2053	CGAGACTAGTGCCGATGCAGGGTA	TACCCTGCATCGGCACTAGTCTCG
	2054	GCCTCATCATAGACGCTGGATGCA	TGCATCCAGCGTCTATGATGAGGC
	2055	GACAGGCGTCGGTAAGCTCTCAAG	CTTGAGAGCTTACCGACGCCTGTC
10	2056	GCTACGAATCTTCCCTGTCGCCAC	GTGGCGACAGGGAAGATTCGTAGC
	2057	TTTGGCAGAACGTACCAGTGGGGT	ACCCACTGGTACGTTCTGCCAAA
	2058	GGACAATAAGCACCGGAGAATGCG	CGCATTCTCCGGTGCTTATTGTCC
	2059	TCATGAACCTTCTGATGCCGCGAA	TTCGCGGCATCAGAAGGTTCATGA
	2060	CGCCGCATTACCTTAAAAACGTGC	GCACGTTTTTAAGGTAATGCGGCG
15	2061	ACGAGTCCAACCGCCTCATTGATT	AATCAATGAGGCGGTTGGACTCGT
	2062	GCGAAGAGTTGCTACTCTTCCGCC	GGCGGAAGAGTAGCAACTCTTCGC
	2063	CGTCGGCAACAATCTTTTTCGTGA	TCACGAAAAAGATTGTTGCCGACG
	2064	AATCCTGTGCACCCGTGAGACGCG	CGCGTCTCACGGGTGCACAGGATT
	2065	AACCTATATGCATCAACGCGAGCC	GGCTCGCGTTGATGCATATAGGTT
20	2066	GAACTTGGCAAAACAGCCCGGAAA	TTTCCGGGCTGTTTTGCCAAGTTC
	2067	CTCTATGGCCGTTTGCCGTCTGCA	TGCAGACGGCAAACGGCCATAGAG
	2068	AGTGCACCGGGTTGTGGACACAAT	ATTGTGTCCACAACCCGGTGCACT
	2069	CCTGGCTTTTCACACGCCAAGAAA	TTTCTTGGCGTGTGAAAAGCCAGG
	2070	CACTCAGCGTAGCCTGAAGCCTGG	CCAGGCTTCAGGCTACGCTGAGTG
25	2071	GAATTATCGACCGCAGCGGTGTCG	CGACACCGCTGCGGTCGATAATTC
	2072	GTGACATCACATGGTGGCCGAGCG	CGCTCGGCCACCATGTGATGTCAC
	2073	AGCACCTTGCCGAGTCACCAGTGA	TCACTGGTGACTCGGCAAGGTGCT
	2074	TAGGTTGCAGGAATGGTGGGCACC	GGTGCCCACCATTCCTGCAACCTA
	2075	GTCCCATACGTGTGGTACGCGGAT	ATCCGCGTACCACACGTATGGGAC
30	2076	TCGGATACTCTCGCGTGCCACGGG	CCCGTGGCACGCGAGAGTATCCGA
	2077	CAACGTTCGCCCCTAAGCCCAAAT	ATTTGGGCTTAGGGGCGAACGTTG
	2078	GTTAGGTCACCGCGGCATATCCTA	TAGGATATGCCGCGGTGACCTAAC
	2079	GTTCACCGGCCTCTACTTGGGTTT	AAACCCAAGTAGAGGCCGGTGAAC
	2080	AATCCGCGTCTAGGTCATGTGGTC	GACCACATGACCTAGACGCGGATT
35	2081	GCTACGCCTCTGGAGGTGGTACCC	GGGTACCACCTCCAGAGGCGTAGC
	2082	CAGGGAATGCTACAAAGGGTCCAA	TTGGACCCTTTGTAGCATTCCCTG
	2083	AAGGGTTAGCTGCCCGGTTAACAG	CTGTTAACCGGGCAGCTAACCCTT
	2084	CCTCGCAAGCGCGATATTTATGCC	GGCATAAATATCGCGCTTGCGAGG
	2085	GCCTCCCGGTCATGGTCAAGGGAA	TTCCCTTGACCATGACCGGGAGGC
40	2086	GCTGTTGAGCGGCGACCTGTGCAC	GTGCACAGGTCGCCGCTCAACAGC
	2087	CGCTGACTTAGCTCTGATGTGCCG	CGGCACATCAGAGCTAAGTCAGCG

	2088	TTCATGGCATTCATCACGAAGGAA	TTCCTTCGTGATGAATGCCATGAA
	2089	TAGTGTTATGCCCGCGTGTGAATG	CATTCACACGCGGGCATAACACTA
	2090	CATGTAAGGGCACGGTCGTGGGCA	TGCCCACGACCGTGCCCTTACATG
	2091	CAGGAAGCTCGCTCCGTGATGCAC	GTGCATCACGGAGCGAGCTTCCTG
5	2092	CCTGCTGATAGCAACCTCACTGCA	TGCAGTGAGGTTGCTATCAGCAGG
	2093	ACTACGAGGGCAGGGTCTAGGCG	CGCCTAGACCCTGCCCCTCGTAGT
i	2094	CATAATGTGGGTGCTGACGCCGAT	ATCGGCGTCAGCACCCACATTATG
	2095	TAGCGAATCCACACAGAGCCGCTC	GAGCGGCTCTGTGTGGATTCGCTA
	2096	TCGCGAAATCCCTAAATCCTGTGC	GCACAGGATTTAGGGATTTCGCGA
10	2097	TGGCACGAATCAAGCCACCAACTC	GAGTTGGTGGCTTGATTCGTGCCA
	2098	GCGGACCGTCTTTGCTATCTGACG	CGTCAGATAGCAAAGACGGTCCGC
	2099	AGGCCCGCCTTGTAATTGGTCAT	ATGACCAATTACAAGGCGGGGCCT
	2100	CTGGTCCCATACGCCGCTGACTAG	CTAGTCAGCGGCGTATGGGACCAG
	2101	TGCTAACTGCGGCCCTACAGAGTC	GACTCTGTAGGGCCGCAGTTAGCA
15	2102	TGGTTTTATGTTCGGTAGCGTCCG	CGGACGCTACCGAACATAAAACCA
	2103	AGCTCAAACTTCTCCCACGGGATG	CATCCCGTGGGAGAAGTTTGAGCT
	2104	CGCGAAGATAGTGAAATCCGCATC	GATGCGGATTTCACTATCTTCGCG
	2105	GAGTGAAACCTCTCGCGGGTTGCA	TGCAACCGCGAGAGGTTTCACTC
	2106	TCGAATGCTCTGCAGTGACGTCAA	TTGACGTCACTGCAGAGCATTCGA
20	2107	AGGTGGCAATGATCGACGACCCTG	CAGGGTCGTCGATCATTGCCACCT
	2108	GTCCGGAGCCGTGCAAAGCAATAA	TTATTGCTTTGCACGGCTCCGGAC
-	2109	CTTTTGGGGATTAGAGGCCGACAA	TTGTCGGCCTCTAATCCCCAAAAG
	2110	GGCATAAAGGCTTCCGTTCCTGTC	GACAGGAACGGAAGCCTTTATGCC
	2111	GCGGACCGTAAAGCGGGCAGATAG	CTATCTGCCCGCTTTACGGTCCGC
25	2112	TTTCAAGAGTGCATCGAATCCACG	CGTGGATTCGATGCACTCTTGAAA
	2113	CCGGCATCCCTTCTCGCTGTTGCC	GGCAACAGCGAGAAGGGATGCCGG
	2114	ACACAGAGACGCGAACGGAGTGCA	TGCACTCCGTTCGCGTCTCTGTGT
	2115	AGCGGCATTCTCCCACTCGTTACT	AGTAACGAGTGGGAGAATGCCGCT
	2116	GGAGCGTACTGCGCCTCGCAAGTC	GACTTGCGAGGCGCAGTACGCTCC
30	2117	AAACCCGAATGACACGGCAGATAA	TTATCTGCCGTGTCATTCGGGTTT
	2118	AACCAGCGGATCGATAAAACGACA	TGTCGTTTTATCGATCCGCTGGTT
	2119	GGTGTCCACCCGTTAACGCCGGTA	TACCGGCGTTAACGGGTGGACACC
	2120	AGCGCGACGTGGCTTGCCGTTAAA	TTTAACGGCAAGCCACGTCGCGCT
	2121	TCCCACGCTATAGGTCCAACGAC	GTCGTTGGACCTATAGCCGTGGGA
35	2122	ATCAACGAACGATGCCGTTAGGTG	CACCTAACGCCATCGTTCGTTGAT
	2123	GAGGCTAAGCCGTATGGCCGAGGC	GCCTCGGCCATACGGCTTAGCCTC
	2124	ACGGTCCGAAATGGTTAGAGGCAC	GTGCCTCTAACCATTTCGGACCGT
	2125	ACGCAAACCATTCCTCGAGTAGGC	GCCTACTCGAGGAATGGTTTGCGT
Í	2126	TTACACGCTCGCTATTGGGCCATA	TATGGCCCAATAGCGAGCGTGTAA
40	2127	CTCGGCACGGGTTTAGAACGCCGG	CCGGCGTTCTAAACCCGTGCCGAG
	2128	ATTCGGTAAGGTATCGGGCTAGCG	CGCTAGCCCGATACCTTACCGAAT

_			
	2129	AGCACACCGTTATACATGACGGCG	CGCCGTCATGTATAACGGTGTGCT
	2130	AGTCCCTGCCGTTCGCTCATGGAA	TTCCATGAGCGAACGGCAGGGACT
	2131	GGGCTTATGACCAGTCAGGTTGGA	TCCAACCTGACTGGTCATAAGCCC
	2132	GGTCACCACACGAGTGCCTGGTCT	AGACCAGGCACTCGTGTGGTGACC
5	2133	TTGATCGTGTCTCCCGAAACCCTC	GAGGGTTTCGGGAGACACGATCAA
	2134	ATTGTCGCGATCGGCATTTCTTAA	TTAAGAAATGCCGATCGCGACAAT
	2135	GGGTCCAACGACTTCTCGCTGCTG	CAGCAGCGAGAAGTCGTTGGACCC
	2136	CAAATTCCTTGGGGGCCATAGTGG	CCACTATGGCCCCCAAGGAATTTG
	2137	CCAGAGTATCCGCCGTTAGACGGT	ACCGTCTAACGGCGGATACTCTGG
10	2138	TCCTGCAGATCATCTCGTGTCTGG	CCAGACACGAGATGATCTGCAGGA
	2139	TGCGGGAGATTTGAACAAGCTGTA	TACAGCTTGTTCAAATCTCCCGCA
	2140	TTAGACGCCGAGCTAGGCAACGTC	GACGTTGCCTAGCTCGGCGTCTAA
	2141	TTTCGGCAGAATCTCCGATTCAAC	GTTGAATCGGAGATTCTGCCGAAA
	2142	TGGCGAGCAGACCTACAAGACAGA	TCTGTCTTGTAGGTCTGCTCGCCA
15	2143	GGCGACAGACCGGTACATCGGCCA	TGGCCGATGTACCGGTCTGTCGCC
	2144	TCTAGACCTGCGTTTCGTGGGACC	GGTCCCACGAAACGCAGGTCTAGA
	2145	GCCGAGCGTGGTACCATACGTTCA	TGAACGTATGGTACCACGCTCGGC
	2146	TAATCACACCGCTTTCTGTGGCT	AGCCACAGAAAGCGGGTGTGATTA
	2147	GGCCGGAGCCATTGGACACTTCTT	AAGAAGTGTCCAATGGCTCCGGCC
20	2148	CCTGTAGACCTGCATGGATCGCTG	CAGCGATCCATGCAGGTCTACAGG
	2149	ATCGCCGTTCCCGCAAAATAAGCA	TGCTTATTTTGCGGGAACGGCGAT
	2150	TGGATCAACGGGGTAGTGAAAACG	CGTTTTCACTACCCCGTTGATCCA
	2151	AAGCGACGATGCTTTCTTGAGCTG	CAGCTCAAGAAAGCATCGTCGCTT
	2152	CACGGCACGTGTTCTACGCTTGC	GCAAGCGTAGAACACGTGCCCGTG
25	2153	ACGGGCTGGGACAAGAGCTAGAAA	TTTCTAGCTCTTGTCCCAGCCCGT
	2154	GGTAACTGGCTCCGCTCTCACATC	GATGTGAGAGCGGAGCCAGTTACC
	2155	ACTCTGGCTGTTGGCGAACGTGAC	GTCACGTTCGCCAACAGCCAGAGT
	2156	GACCGAGGACCAGTCCTTGCTCTC	GAGAGCAAGGACTGGTCCTCGGTC
	2157	AGTAGCTCTTGCGGCCTAACGGCA	TGCCGTTAGGCCGCAAGAGCTACT
30	2158	TTCTTGTCCTGGGGGAGAGCAGTG	CACTGCTCTCCCCAGGACAAGAA
	2159	TTAGCAGGGAGGTTGTCGGCTCAT	ATGAGCCGACAACCTCCCTGCTAA
	2160	AGAACGTGGATTGTACGCTCCGCC	GGCGGAGCGTACAATCCACGTTCT
	2161	CTTCACAGCCTGGAGCCACCAATG	CATTGGTGGCTCCAGGCTGTGAAG
	2162	GAGATCGATGAAACGCACCAGCGG	CCGCTGGTGCGTTTCATCGATCTC
35	2163 ·	GGGTCCAGAGTTGGTGTGGGATAA	TTATCCCACACCAACTCTGGACCC
	2164	CCGTCCACCCCAGATAGGAATCAC	GTGATTCCTATCTGGGGTGGACGG
`.	2165	TGCCTCGCTTCTGTGAATCTACGA	TCGTAGATTCACAGAAGCGAGGCA
	2166	GATCACAGCGTCCGCGCATAACGG	CCGTTATGCGCGGACGCTGTGATC
	2167	ATGACGCCTTACATGACGCACCTT	AAGGTGCGTCATGTAAGGCGTCAT
40	2168	GCGTGGAATAACGCCCTTAGTTCA	TGAACTAAGGGCGTTATTCCACGC
	2169	GGTCTACCATTTCTCGCCCGACCG	CGGTCGGCCGAGAAATGGTAGACC

	2170	ACACCTCTCTGGCGTAGACGCTCA	TGAGCGTCTACGCCAGAGAGGTGT
	2171	GTAGAGGTGCTCAGGACTCGTCGC	GCGACGAGTCCTGAGCACCTCTAC
	2172	GTAAGCAGGAGGCGAAGGCGCGAA	TTCGCGCCTTCGCCTCCTGCTTAC
	2173	TCTAAGGGCCGTTTCAATCGACCT	AGGTCGATTGAAACGGCCCTTAGA
5	2174	AACCTGATTTCAGGGTCAGCCCGA	TCGGGCTGACCCTGAAATCAGGTT
	2175	GTCACGCGATTGGCCCACCTATTA	TAATAGGTGGGCCAATCGCGTGAC
	2176	ACGATGCCGCGCATGTAACCTAGT	ACTAGGTTACATGCGCGGCATCGT
	2177	TGAGAGATGTCTCGTCAACGCCTG	CAGGCGTTGACGAGACATCTCTCA
	2178	GCATATCTCGCGGTGACAGACGAA	TTCGTCTGTCACCGCGAGATATGC
10	2179	GACCCAACGTCGAAATTGTGCGAT	ATCGCACAATTTCGACGTTGGGTC
	2180	TGAAAATCGGGGCATCTAGTTTGG	CCAAACTAGATGCCCCGATTTTCA
	2181	CCGCGAAAAGGATTTGTGTACGCA	TGCGTACACAAATCCTTTTCGCGG
	2182	CATTCCATTTATCCGCAGTTCGCT	AGCGAACTGCGGATAAATGGAATG
	2183	CCTGTCTGTCGAGCCAGCGTCTAT	ATAGACGCTGGCTCGACAGACAGG
15	2184	TCAGCGCGGCTAAACAAGTTATGC	GCATAACTTGTTTAGCCGCGCTGA
	2185	ACGCCTACGAACGACCCAAGAGAG	CTCTCTTGGGTCGTTCGTAGGCGT
	2186	TGCGCATCTACCATTGTGTGGATC	GATCCACACAATGGTAGATGCGCA
	2187	AAGTCCGCGCTCGCTCCTGTAATA	TATTACAGGAGCGAGCGCGGACTT
	2188	GCTGGGTCATTGCTCGAGTAACCA	TGGTTACTCGAGCAATGACCCAGC
20	2189	TGGAGCGTTCTGGCAATGACCGAC	GTCGGTCATTGCCAGAACGCTCCA
	2190	CAAGTCAATTCTTGGCCAATTCGG	CCGAATTGGCCAAGAATTGACTTG
	2191	CGTTCATGCAAGGATCCCAGGTTA	TAACCTGGGATCCTTGCATGAACG
	2192	ATGCCAATAGAAGCTGGGGATGCT	AGCATCCCCAGCTTCTATTGGCAT
	2193	CCTAACTCTCCCTTGAGGCCGTTC	GAACGCCTCAAGGGAGAGTTAGG
25	2194	ATCTCGGCGAAGGTTCCAAACATT	AATGTTTGGAACCTTCGCCGAGAT
	2195	GCGACAGATTACGCTGCGGTTTTC	GAAAACCGCAGCGTAATCTGTCGC
	2196	AAGCCCAGACGCCAACACGTTAC	GTAACGTGTTGGCCGTCTGGGCTT
	2197	TCAAGTTCAAATCACATCCCGTGG	CCACGGGATGTGATTTGAACTTGA
	2198	GATTGTCGTTCTGTCTGAGGCG	CGCCTCACAGACAGAACGACAATC
30	2199	ACCGAACTATGTTCCGGCATGGCA	TGCCATGCCGGAACATAGTTCGGT
	2200	CGTCATCGGGTGTGCAATGCCGTT	AACGGCATTGCACACCCGATGACG
	2201	CGGACGGAGTCACGTTTGTGCACT	AGTGCACAAACGTGACTCCGTCCG
	2202	TAAACAAGTCGTGTGCCTTTGCCG	CGGCAAAGGCACACGACTTGTTTA
	2203	TAATTACTGGCCTGTGGAGCAGGC	GCCTGCTCCACAGGCCAGTAATTA
35	2204	GGAGCGGCCCGAATGGTGCTCTTA	TAAGAGCACCATTCGGGCCGCTCC
	2205	ACTAAGCAAGGCTTGGATGTGCGT	ACGCACATCCAAGCCTTGCTTAGT
	2206	GGCAGCTCAGCGGCAGTACGCTAC	GTAGCGTACTGCCGCTGAGCTGCC
	2207	GCGAGGCGAATTATCCGCGGATTT	AAATCCGCGGATAATTCGCCTCGC
	2208	CATACGACACCCTTGGGGTGCTA	TAGCACCCAAGGTGTGTCGTATG
40	2209	TGCTTGGGCTTTAAACCCCGTTTT	AAAACGGGGTTTAAAGCCCAAGCA
	2210	CCGGTTGGAAAACGCAAATATCGG	CCGATATTTGCGTTTTCCAACCGG

			T
	2211	AAACTAGCTAGCCGCACCCGCAAG	CTTGCGGGTGCGGCTAGCTAGTTT
	2212	GTTGTTCCACCAGTGATCACGCAG	CTGCGTGATCACTGGTGGAACAAC
	2213	GCCGCTGACAAGATGATCATCGTT	AACGATGATCATCTTGTCAGCGGC
	2214	CTTTCATAAAGCCAACCGATGCCC	GGGCATCGGTTGGCTTTATGAAAG
5	2215	CTGACTGCATCTCGAAAGCGGGTG	CACCCGCTTTCGAGATGCAGTCAG
	2216	ATTTCTTCGGAGAATCGGCCACGT	ACGTGGCCGATTCTCCGAAGAAAT
	2217	CATTTCGGGCCCTAGCTACTGCGC	GCGCAGTAGCTAGGGCCCGAAATG
	2218	CCGATCCCGCACATCCGTATCCTG	CAGGATACGGATGTGCGGGATCGG
	2219	TATCACCGGGAGCGTCTTATCGTG	CACGATAAGACGCTCCCGGTGATA
10	2220	TAGGGCTCGTGCACCGATTAGAGG	CCTCTAATCGGTGCACGAGCCCTA
	2221	GCGTGGCACTCGCTTGTCTAGGTA	TACCTAGACAAGCGAGTGCCACGC
•	2222	CTCAACGAACTCAAGGGCCGCTAC	GTAGCGGCCCTTGAGTTCGTTGAG
	2223	AGCCTGGTATCGACCAATCCTGCA	TGCAGGATTGGTCGATACCAGGCT
	2224	TACGCGTTCTAGTTGGCCGGATCC	GGATCCGGCCAACTAGAACGCGTA
15	2225	TTTATGGGTTTGTGCCTGATGGGT	ACCCATCAGGCACAAACCCATAAA
	2226	GGGACCCCTAGCAACGTCACCTTA	TAAGGTGACGTTGCTAGGGGTCCC
	2227	CTGCCTCCCAGGAGTCATTGGAT	ATCCAATGACTCCTGGGGAGGCAG
	2228	AACCCCGCAAGACCAGTACCAATC	GATTGGTACTGGTCTTGCGGGGTT
	2229	GGTCACATACGCGCTAAAAAGCGC	GCGCTTTTTAGCGCGTATGTGACC
20	2230	AAATGGCTCCGACCAGTTAGGGAC	GTCCCTAACTGGTCGGAGCCATTT
	2231	AACGCGGCACGCTTAAAGGTGCAT	ATGCACCTTTAAGCGTGCCGCGTT
	2232	GATCGCACGCCGATTAACCTTACA	TGTAAGGTTAATCGGCGTGCGATC
	2233	CCTCCTGATTGGGAGTGCGGAATT	AATTCCGCACTCCCAATCAGGAGG
	2234	CGGAGGGTAATAGGCTCCTCTGCG	CGCAGAGGAGCCTATTACCCTCCG
25	2235	ACAAGAACTGGACATTACCGCGGG	CCCGCGGTAATGTCCAGTTCTTGT
	2236	TGTCGTCTTAAAGGCCTTTGTGCG	CGCACAAAGGCCTTTAAGACGACA
	2237	GGTGACCATGTGGCGTTTTAGCTT	AAGCTAAAACGCCACATGGTCACC
	2238	CACGGTTGCGCACGGTACCAGAAC	GTTCTGGTACCGTGCGCAACCGTG
	2239	CCTTTATTGTTTGGTCCCCTGCCC	GGGCAGGGGACCAAACAATAAAGG
30	2240	GTGCGCCTGCATTCTACCGTCAAT	ATTGACGGTAGAATGCAGGCGCAC
	2241	GTTTACGTTGATGGCTTGCCGCCG	CGGCGGCAAGCCATCAACGTAAAC
	2242	CCGTCGGTGGTAGGACGTGAATGT	ACATTCACGTCCTACCACCGACGG
	2243	TGATCGCCCAGAATCCCTGTGCT	AGCACAGGGATTCTGGGGCGATCA
	. 2244	AAGCAGCCAAAAATCGGTTGCTTT	AAAGCAACCGATTTTTGGCTGCTT
35	2245	CGACGGGACTTAGTAGCAGGGCCT	AGGCCCTGCTACTAAGTCCCGTCG
	2246	CCGATTCGCGAAACGACCAAGTAG	CTACTTGGTCGTTTCGCGAATCGG
	2247	CCACCCAACTCCAATCTTTCTCA	TGAGAAAGATTGGAGTTGGGGTGG
	2248	GTGCAGTAGACGACTACCGGCGTC	GACGCCGGTAGTCGTCTACTGCAC
	2249	TTCGCCCATCGTATCAAGCAATTC	GAATTGCTTGATACGATGGGCGAA
40	2250	GAATCGCGACTACCCGTCGGGTCA	TGACCCGACGGGTAGTCGCGATTC
	2251	CCAGCACTCGCCATCGGTTATAAT	ATTATAACCGATGGCGAGTGCTGG

	2252	CGAACCGTAGAACTCCGGTCGGTG	CACCGACCGGAGTTCTACGGTTCG
	2253	GCACCATGACAGAGCCCCAGGATG	CATCCTGGGGCTCTGTCATGGTGC
	2254	TGGGCTACCGCAGAATAAGGGTGA	TCACCCTTATTCTGCGGTAGCCCA
	2255	TGGCCTGTCGTGTCGAAGGAAACA	TGTTTCCTTCGACACGACAGGCCA
· 5	2256	GCCTCACCGATAGCGAGCGTTTGC	GCAAACGCTCGCTATCGGTGAGGC
	2257	GTGCGCCCGGCTAAAACGAGACA	TGTCTCGTTTTAGCCGGCGCGCAC
	2258	CCGCAGACGAGTTTCTTGTGACAG	CTGTCACAAGAAACTCGTCTGCGG
	2259	GTTCGCAATCGCGTGCTAGGAAGC	GCTTCCTAGCACGCGATTGCGAAC
	2260	TGTTGTACACATGCATCCGGTGAA	TTCACCGGATGCATGTGTACAACA
10	2261	CACTGAACACGATATAAGGGCGCG	CGCGCCCTTATATCGTGTTCAGTG
	2262	CGCGATGGTTCTTAGCAAGACGAT	ATCGTCTTGCTAAGAACCATCGCG
	2263	TACACCAAGGAAGAAATGGGGACG	CGTCCCCATTTCTTCCTTGGTGTA
	2264	CGTGCCTTGCGTTTTAGGTGCAGC	GCTGCACCTAAAACGCAAGGCACG
	2265	GTCGTTTGTCTGGGCATTAACGGC	GCCGTTAATGCCCAGACAAACGAC
15	2266	CAGGCTCTCGTTCGGTACAAACGT	ACGTTTGTACCGAACGAGAGCCTG
	2267	CGGACACTGTTTCACCAGAACCCA	TGGGTTCTGGTGAAACAGTGTCCG
	2268	TACCCATGATGCGGAAGAAGCGTA	TACGCTTCTTCCGCATCATGGGTA
	2269	CTGTCCTTAAGCGGATGAGAACCG	CGGTTCTCATCCGCTTAAGGACAG
	2270	CGGGAGATGAGAACGGTTTTGTGC	GCACAAAACCGTTCTCATCTCCCG
20	2271	TAGATCGCGACTGTACTCAGGCCG	CGGCCTGAGTACAGTCGCGATCTA
	2272	TAAAACAGTTCGCGCGACTGTCGT	ACGACAGTCGCGCGAACTGTTTTA
	2273	CGAGGAGCTCCACATAAGCCCAAT	ATTGGGCTTATGTGGAGCTCCTCG
•	2274	TGGCTAGGGATGGGGAATCATCTT	AAGATGATTCCCCATCCCTAGCCA
	2275	AGGATTGGGTGCCTGGATGCATTG	CAATGCATCCAGGCACCCAATCCT
25	2276	TGTATCTACCGGCCTGAAGCAGGT	ACCTGCTTCAGGCCGGTAGATACA
	2277	TCCCTACGCGCATGACTCGCTTAC	GTAAGCGAGTCATGCGCGTAGGGA
	2278	TGGTCGATCACCTGTGACAGACGC	GCGTCTGTCACAGGTGATCGACCA
	2279	TGGGGTAGTCCATGCATCAATTG	CAATTGATGCATGGACTACCCCCA
	2280	CCCTGCCAGGATTACTATTCCGGA	TCCGGAATAGTAATCCTGGCAGGG
30	2281	TCCCGCACGGGGAATTTAAGTAGA	TCTACTTAAATTCCCCGTGCGGGA
	2282	GTGATGTGCAGGAACTTCTGTCGC	GCGACAGAAGTTCCTGCACATCAC
	2283	ATTTAGGCATGCATGCGCTTCTCA	TGAGAAGCGCATGCATGCCTAAAT
	2284	TTCGGCGCTAGTGGACGCCGTCAA	TTGACGGCGTCCACTAGCGCCGAA
	2285	GAGCTTCATCTCATCAGTTCCGCG	CGCGGAACTGATGAGGTGAAGCTC
35	2286	GACAACTCCACTGCTCCAATCGCA	TGCGATTGGAGCAGTGGAGTTGTC
	2287	GGCCAAGGATGGACCTTACGATGG	CCATCGTAAGGTCCATCCTTGGCC
	2288	GGTTCCGGAATTTGTCACCGCTTC	GAAGCGGTGACAAATTCCGGAACC
	2289	GCGCTGGATAGTCTGCGAGAAGCC	GGCTTCTCGCAGACTATCCAGCGC
	2290	TGAGTCCAGTGCTGCCACCATGAA	TTCATGGTGGCAGCACTGGACTCA
40	2291	TTGAATTGGGTGTCGGAGCGTTCT	AGAACGCTCCGACACCCAATTCAA
	2292	CGGCGGCAGACAATGCTTTGAAC	GTTCAAAGCATTGTCTGCCCGCCG

	2293	GGGTCTGTCAAAGAGGGTGTCTGG	CCAGACACCCTCTTTGACAGACCC
	2294	CTTTGTGCAAGACGAAGCACCCTT	AAGGGTGCTTCGTCTTGCACAAAG
	2295	ATCGAATTCCGAGGAGGTCTCCAT	ATGGAGACCTCCTCGGAATTCGAT
	2296	TCCGACCCTCAGAGTCGACTCATT	AATGAGTCGACTCTGAGGGTCGGA
5	2297	ATCAACGGCCACCTCCTCGCCGAG	CTCGGCGAGGAGGTGGCCGTTGAT
· ·	2298	AGCCACGGAATAATTCCGTCCACC	GGTGGACGGAATTATTCCGTGGCT
	2299	GATCGCTTGCGTATCGCAAAGACT	AGTCTTTGCGATACGCAAGCGATC
	2300	TCCACGCCTTACCATCAACTGCAA	TTGCAGTTGATGGTAAGGCGTGGA
	2301	GCCAAGCGATAGGCCAGAACTCAG	CTGAGTTCTGGCCTATCGCTTGGC
0	2302	AGCGTGTGGGTCATTTTAGCACGA	TCGTGCTAAAATGACCCACACGCT
-	2303	GTTATGCGCGGCTTACGAGTTCGA	TCGAACTCGTAAGCCGCGCATAAC
	2304	TCTGTCCACGTAACTTGCCTGCAG	CTGCAGGCAAGTTACGTGGACAGA
	2305	TCGGCAGCCAATGATCATACCTCT	AGAGGTATGATCATTGGCTGCCGA
	2306	TAAGCCCGATCCGGTCCTGTGTTT	AAACACAGGACCGGATCGGGCTTA
5	2307	ACATGGCAGACTAACAGGCCTCGC	GCGAGGCCTGTTAGTCTGCCATGT
	2308	CATGGCTGCACTCTAAGTCGAACG	CGTTCGACTTAGAGTGCAGCCATG
	2309	TCTTCAACCCACGCGGAACGATTG	CAATCGTTCCGCGTGGGTTGAAGA
	2310	CTCGTGTCTCCAGAGGATTGTCCC	GGGACAATCCTCTGGAGACACGAG
	2311	TGAAGGCATCAACCCAGAGGATTT	AAATCCTCTGGGTTGATGCCTTCA
<u>:</u> 0	2312	ACAGCTCGAAGGCAGCCACATTGG	CCAATGTGGCTGCCTTCGAGCTGT
	2313	ACAACGAGTACCGCGACAGAAGGG	CCCTTCTGTCGCGGTACTCGTTGT
	2314	ATAACCGAAAAACCAGCCTGCGAT	ATCGCAGGCTGGTTTTTCGGTTAT
	2315	ACAACTCAGCACTTTCGACGTCCA	TGGACGTCGAAAGTGCTGAGTTGT
	2316	CGGGTTACTGGGTATCACCAATGC	GCATTGGTGATACCCAGTAACCCG
25	2317	CATCGGTTATCGCTGCACGCGCGT	ACGCGCGTGCAGCGATAACCGATG
	2318	GAAGGAATCCCGGATAGTCCGTGG	CCACGGACTATCCGGGATTCCTTC
	2319	GCATGGTCTCAGCCAAAGAACCTG	CAGGTTCTTTGGCTGAGACCATGC
	2320	AGCCTGCGACGTTTCCCGACAGAC	GTCTGTCGGGAAACGTCGCAGGCT
	2321	AAGAAAGGCGCACGGGATCGATAT	ATATCGATCCCGTGCGCCTTTCTT
30	2322	TGTCGCGAAGCCAACTTTCAGTAA	TTACTGAAAGTTGGCTTCGCGACA
	2 32 3	GCGGCATGCAAGGTAGGTCTGGAT	ATCCAGACCTACCTTGCATGCCGC
	2324	GGTGGCCATCTCCTCGAATTGCAT	ATGCAATTCGAGGAGATGGCCACC
	2325	GCGTGCATAAGTTGCACATTGTGC	GCACAATGTGCAACTTATGCACGC
	2326	TTGAGGTAGCGTTTTCGCGCATAT	ATATGCGCGAAAACGCTACCTCAA
35	2327	ATCCCACTTGTGAGAGGGCGCATT	AATGCGCCCTCTCACAAGTGGGAT
	2328	CGGTCAGCGAGCAGACATCAACCT	AGGTTGATGTCTGCTCGCTGACCG
	2329	GCGTATCTTCGGGTCGAACACTTG	CAAGTGTTCGACCCGAAGATACGC
	2330	ATGCCATTGAACTCGCACTTTGCG	CGCAAAGTGCGAGTTCAATGGCAT
	2331	CGATTCCCATCATAATGTGGGTCC	GGACCCACATTATGATGGGAATCG
40	2332	CAATTTGGATAATCCAGCCACGCC	GGCGTGGCTGGATTATCCAAATTG
	2333	CGGCTTACCCTATGATTCCGTGCA	TGCACGGAATCATAGGGTAAGCCG

	2334	GGTGGACCATGCGCTGTGGTATGA	TCATACCACAGCGCATGGTCCACC
	2335	TATTTGTCGAAGATCGCAAGCGCC	GGCGCTTGCGATCTTCGACAAATA
İ	2336	GTCAGTGGGTTTTGAGAGCCCGCA	TGCGGGCTCTCAAAACCCACTGAC
	2337	AGGGGTCGGGAAATCTGACAAAA	TTTTGTCAGATTTCCCGACCCCCT
5	2338	TGCTTGCTATCCGAAAAAAGCAGG	CCTGCTTTTTTCGGATAGCAAGCA
	2339	TTATCGGATCAAATTCGGCTTCGG	CCGAAGCCGAATTTGATCCGATAA
	2340	TGCAGCAACGAGTTACCCGGACTT	AAGTCCGGGTAACTCGTTGCTGCA
	2341	TATACATGTCCGGAGGGGCACCCA	TGGGTGCCCCTCCGGACATGTATA
	2342	TGCAAAACCGGAGGATGAACCCTT	AAGGGTTCATCCTCCGGTTTTGCA
10	2343	TCGGTCTAATGTCCACGCAGACAC	GTGTCTGCGTGGACATTAGACCGA
•	2344	ATGTGTTTGCCACGCGCTCCTATT	AATAGGAGCGCGTGGCAAACACAT
	2345	TGGCGAGGCACGGCTCTAATTCGG	CCGAATTAGAGCCGTGCCTCGCCA
	2346	GCGACGACCGAGCGACTTTTACA	TGTAAAAGTCGCTCGGGTCGTCGC
	2347	CTCAGAGAGTCTATCCGGCGCCCT	AGGGCGCCGGATAGACTCTCTGAG
15	2348	GGAACATCTCCTGGGTCCCTCAGA	TCTGAGGGACCCAGGAGATGTTCC
	2349	GCAACGCAGGGAAGTACTTAGCGA	TCGCTAAGTACTTCCCTGCGTTGC
	2350	TGACTTGGGCGGACAAAGAAACGC	GCGTTTCTTTGTCCGCCCAAGTCA
	2351	AGATCATCGGGACGCTTCATGCTA	TAGCATGAAGCGTCCCGATGATCT
	2352	CCCTTCTGACCGCTAAGGCCATAA	TTATGGCCTTAGCGGTCAGAAGGG
20	2353	CGTGAGCCGTGGGGTGTCTCTGTA	TACAGAGACACCCCACGGCTCACG
!	2354	TACCTTGGTCGTCTCCGCTTTTGT	ACAAAAGCGGAGACGACCAAGGTA
	2355	TCGCCGCAAAATGCTACGTGAAAA	TTTTCACGTAGCATTTTGCGGCGA
	2356	GAGTGACCTAATGGCTGCCCGACT	AGTCGGGCAGCCATTAGGTCACTC
	2357	AAAGGAACTTGGCCAACCCTATGG	CCATAGGGTTGGCCAAGTTCCTTT
25	2358	TGTTTTCGCACTCCACCTAATCGC	GCGATTAGGTGGAGTGCGAAAACA
	2359	CAATGGGTTTCATAAGGGCAGGCA	TGCCTGCCCTTATGAAACCCATTG
	2360	GCCTAACACACAAGGGTCCCTCTG	CAGAGGGACCCTTGTGTGTTAGGC
	2361	CGTCATGCGGTCCGAGGATCGATC	GATCGATCCTCGGACCGCATGACG
	2362	CCACACGGGCACGGAGTAATATCT	AGATATTACTCCGTGCCCGTGTGG
30	2363	CATCAGACATAGGTCGCGTGCCGA	TCGGCACGCGACCTATGTCTGATG
	2364	AGATGAAACCAAGGGAGGACGCAG	CTGCGTCCTCCCTTGGTTTCATCT
	2365	GGCTACCCATAGGCTCAGCAGCAC	GTGCTGCTGAGCCTATGGGTAGCC
	2366	GGCTTGTGAGGGTGTGTTCTCGAC	GTCGAGAACACACCCTCACAAGCC
	2367	TGTGTTACGGCGAATGCAACAGTC	GACTGTTGCATTCGCCGTAACACA
35	2368	CGATAACAGGTCGCGCCGTTACTA	TAGTAACGGCGCGACCTGTTATCG
	2369	TGATAAAGTGAGGCTCCAGCGCGA	TCGCGCTGGAGCCTCACTTTATCA
	2370	AATTGTGCACGGATCTGCACGGCG	CGCCGTGCAGATCCGTGCACAATT
	2371	GCAATGTACTGTCACCAGTGGCGA	TCGCCACTGGTGACAGTACATTGC
	2372	GGCATATCGGTAACACTTGGTCGG	CCGACCAAGTGTTACCGATATGCC
40	2373	GGGTCTCAAACCAGCGTGGCCGCT	AGCGGCCACGCTGGTTTGAGACCC
	2374	GTCTCCGGGACCATTGAGCTGGAG	CTCCAGCTCAATGGTCCCGGAGAC

		·	· · · · · · · · · · · · · · · · · · ·
	2375	GGCCTTCGGCATTCAGACGGGTTG	CAACCGTCTGAATGCCGAAGGCC
	2376	CGTGATAGGCCACAGCGCTCAATT	AATTGAGCGCTGTGGCCTATCACG
	2377	GGCAGGCCCGCGAGGATGATTAAC	GTTAATCATCCTCGCGGGCCTGCC
	2378	CGGGTATGGTTGATAACAGCGTGG	CCACGCTGTTATCAACCATACCCG
5	2379	ACGACGTCCTTGGGACCGTATTGT	ACAATACGGTCCCAAGGACGTCGT
	2380	CTGATATCGAGCCTGAGCCTTTCG	CGAAAGGCTCAGGCTCGATATCAG
	2381	TCCCATTGGCCTGTATGCTGGCCT	AGGCCAGCATACAGGCCAATGGGA
	2382	GTGTCGTCGATTGTTTCATCGACG	CGTCGATGAAACAATCGACGACAC
	2383	CGAAAGCCAGTAGCCGATTGCGTG	CACGCAATCGGCTACTGGCTTTCG
10	2384	GGTTCGGCTTATTCCACTGCGACA	TGTCGCAGTGGAATAAGCCGAACC
	2385	AGCGAGGGCTAACTTTTTAACGCG	CGCGTTAAAAAGTTAGCCCTCGCT
	2386	CGGCGCTGATGACGGGACTCGATT	AATCGAGTCCCGTCATCAGCGCCG
	2387	TCACAGTGCTCGGCGTAAGGACTA	TAGTCCTTACGCCGAGCACTGTGA
	2388	CCCATTACGAGCACACACCATGGC	GCCATGGTGTGTGCTCGTAATGGG
15	2389	GGCCGCTAATCTTTACGCATCACG	CGTGATGCGTAAAGATTAGCGGCC
	2390	ACGGCTTCCTAGTGTCCAGCCCTT	AAGGGCTGGACACTAGGAAGCCGT
	2391	CTGTCAGGTCCTACCCAATGGCTC	GAGCCATTGGGTAGGACCTGACAG
	2392	CACAGCCCATCCCACTGAACTGCT	AGCAGTTCAGTGGGATGGGCTGTG
	2393	ACAAACGATACACGCAACGCTGTG	CACAGCGTTGCGTGTATCGTTTGT
20	2394	TGGCGCCAGCTAGCAGGCGAAGT	ACTTCGCCTGCTAGCTGGCCGCCA
	2395	ATCTCGAAACGATGCGTGCCTAAA	TTTAGGCACGCATCGTTTCGAGAT
	2396	ATCTCGAGAACAGCGTGCGTGCGG	CCGCACGCACGCTGTTCTCGAGAT
	2397	GAAGAAATCCGCCGACATCTACGG	CCGTAGATGTCGGCGGATTTCTTC
	2398	GCGGAGCAACCTTGGCTGTTTCTA	TAGAAACAGCCAAGGTTGCTCCGC
25	2399	CGCGTTCCGAAGACTTGTTGTTTG	CAAACAACAAGTCTTCGGAACGCG
	2400	TGACCTGAAGCCCATCCATAAGCA	TGCTTATGGATGGGCTTCAGGTCA
	2401	TGGTATTCATTCCGGATAAGCGGG	CCCGCTTATCCGGAATGAATACCA
	2402	GCGTTGCGGGTCATTGATGCAAAC	GTTTGCATCAATGACCCGCAACGC
	2403	ACCGCTTTCTGTGTAGAGCCCTGA	TCAGGGCTCTACACAGAAAGCGGT
30	2404	CAAATAGACAATCGCAGCTTCGGG	CCCGAAGCTGCGATTGTCTATTTG
	2405	TGTCCTGACAAATCAAGGTGCAGG	CCTGCACCTTGATTTGTCAGGACA
	2406	AAATTGCACTCGCGGAGATTTCCT	AGGAAATCTCCGCGAGTGCAATTT
	2407	TGACGCCCATTTCTATATGGTGCA	TGCACCATATAGAAATGGGCGTCA
	2408	TGTTCCGACAGGGCACTGCTAGAC	GTCTAGCAGTGCCCTGTCGGAACA
35	2409	TCGCTGGCTTGGGAAGGCCTTCGT	ACGAAGGCCTTCCCAAGCCAGCGA
	2410	GTGCACCTCCGTTGGCGTAGAATG	CATTCTACGCCAACGGAGGTGCAC
	2411	CTCATTTGGGACCGATCGGGTTGC	GCAACCCGATCGGTCCCAAATGAG
	2412	GCCAGTGTCTGTCAATGGATGGGA	TCCCATCCATTGACAGACACTGGC
	2413	TTGCCCGGCAGGTTCTGTGTAATG	CATTACACAGAACCTGCCGGGCAA
40	2414	ACCCGCGAACCGAGACGCACTTCT	AGAAGTGCGTCTCGGTTCGCGGGT
	2415	TCCGTGCGATTGGTCAAGGTTGAT	ATCAACCTTGACCAATCGCACGGA

			
	2416	AGGGCGTCTCGGTTGAACCTCGGT	ACCGAGGTTCAACCGAGACGCCCT
	2417	TGACCGTTCAAAGAGCAAGCCAAC	GTTGGCTTGCTCTTTGAACGGTCA
	2418	ACACTCACCTGCTGTCCCTGCTGA	TCAGCAGGACAGCAGGTGAGTGT
	2419	GCGTTTAACTCCTTGGGTGGTGGT	ACCACCACCAAGGAGTTAAACGC
5	2420	CGCCTGCGCAGGTAACTCTCCGCA	TGCGGAGAGTTACCTGCGCAGGCG
	2421	AATCGAATTTCCCAGCGGCTGTTT	AAACAGCCGCTGGGAAATTCGATT
	2422	AAGCAGGTGGGATCCTGGGGATCA	TGATCCCAGGATCCCACCTGCTT
	2423	AATCCCAGACTCGCTCTTCGTGCT	AGCACGAAGAGCGAGTCTGGGATT
	2424	ACGGTTATAAGGGCCGGCTGCGAC	GTCGCAGCCGGCCCTTATAACCGT
10	2425	TACGAGAGCGGGCTTAGACGTCGC	GCGACGTCTAAGCCCGCTCTCGTA
	2426	GCGATTTTGACCCACGGTTATCGA	TCGATAACCGTGGGTCAAAATCGC
	2427	AGCTGTATAATTTGGATGGCGCGA	TCGCGCCATCCAAATTATACAGCT
	2428	TCCGCGAGTCTTAGCCGATTGAAC	GTTCAATCGGCTAAGACTCGCGGA
	2429	GGCATCAGCTCCGTAAGCCGATAG	CTATCGGCTTACGGAGCTGATGCC
15	2430	TGTTATTGGCAGTTCGAGCGACAG	CTGTCGCTCGAACTGCCAATAACA
	2431	GCGAGCCTTTTTGCTTGGGAAGAG	CTCTTCCCAAGCAAAAAGGCTCGC
	2432	AGAAGAAAGGTCAGCGTCGACGA	TCGTCGACGCTGACCTTTTCTTCT
	2433	CGGGTCGACCCTTGAAGCATAACC	GGTTATGCTTCAAGGGTCGACCCG
	2434	CTCGGTTTTCACAAACTTACCGCG	CGCGGTAAGTTTGTGAAAACCGAG
20	2435	GCAGTCCTATCCGGAGCCTGACAA	TTGTCAGGCTCCGGATAGGACTGC
	2436	AAGGTGCGCTATTTGTTGTCGGTC	GACCGACAACAAATAGCGCACCTT
	2437	AGTGGAATCCATGCCGACACCTGA	TCAGGTGTCGGCATGGATTCCACT
	2438	TACAGGCGTAATTCCTGCGAGGGA	TCCCTCGCAGGAATTACGCCTGTA
	2439	CCGAAGTGCGAGAAGCACGTTGTT	AACAACGTGCTTCTCGCACTTCGG
25	2440	AAGGACTGGTATGGCCGGAGCTTT	AAAGCTCCGGCCATACCAGTCCTT
	2441	GGACACCGCCAACCTCATAGTTGC	GCAACTATGAGGTTGGCGGTGTCC
	2442	AATGGTGTTCGCCTGGACTACCAC	GTGGTAGTCCAGGCGAACACCATT
	2443	TAGGAAAGCGTACACGGGAATCCG	CGGATTCCCGTGTACGCTTTCCTA
	2444	TCTCACCCCAATGATGAGGACGTC	GACGTCCTCATCATTGGGGTGAGA
30	2445	CGTGTCCGTGTGACACTGTCCATG	CATGGACAGTGTCACACGGACACG
	2446	TCCAGGCTGTTGCGGATACGGTAG	CTACCGTATCCGCAACAGCCTGGA
	2447	GTAGGCAAAATGGTCGCGATCAAT	ATTGATCGCGACCATTTTGCCTAC
	2448	ATCTCCGTGGACCCGATTGTGACA	TGTCACAATCGGGTCCACGGAGAT
	2449	GAATATGCCGTCAACGCTATGGGC	GCCCATAGCGTTGACGGCATATTC
35	2450	TTCCGGAAGCGTTTGGTAACTTTG	CAAAGTTACCAAACGCTTCCGGAA
	2451	TTCGATAGGAATACCAGGGCCTGG	CCAGGCCCTGGTATTCCTATCGAA
	2452	GGCCATTTGAGGAGGATTATGCAA	TTGCATAATCCTCCTCAAATGGCC
	2453	ACCTTCTGACCTGGACTTTTGGCG	CGCCAAAAGTCCAGGTCAGAAGGT
	2454	GACCAATCCGCAGTTGAGCAACAG	CTGTTGCTCAACTGCGGATTGGTC
40	2455	TCGGCCACTCACCATGAGTGTAGG	CCTACACTCATGGTGAGTGGCCGA
	2456	AGCGCTCACATGTTCGAAAACGGG	CCCGTTTTCGAACATGTGAGCGCT

	2457	TAACGCAAAGGCGCGATCCTCGCT	AGCGAGGATCGCGCCTTTGCGTTA
	2458	TGGGTGGCCAAATATTACTGCAA	TTGCAGTAATATTTGGCCCACCCA
	2459	GTCCTCGAAAGGGGCATCCAAACA	TGTTTGGATGCCCCTTTCGAGGAC
	2460	CCCATCTGGTGGGAGGCGTTATCA	TGATAACGCCTCCCACCAGATGGG
5	2461	GTGCGCGGTCTGCAAACTCGCCAT	ATGGCGAGTTTGCAGACCGCGCAC
:	2462	TGTGTTGCCAACCCTAGGTCATCA	TGATGACCTAGGGTTGGCAACACA
	2463	CTGATGCTGTTCTCGTCGGTTGAC	GTCAACCGACGAGAACAGCATCAG
	2464	AAGCTGCAAAAGGTGAGCGTGGCA	TGCCACGCTCACCTTTTGCAGCTT
	2465	TCTGACGCGTGCTTGGGAGTCTAT	ATAGACTCCCAAGCACGCGTCAGA
10	2466	GAATTACTTGGAGGCGCCGTGCAA	TTGCACGGCGCCTCCAAGTAATTC
1	2467	GATTCTTCCCGACCTAGGTTGGCC	GGCCAACCTAGGTCGGGAAGAATC
	2468	CGCAGCGTATCCCATGTTGCTTGA	TCAAGCAACATGGGATACGCTGCG
	2469	GAGATGGAATTGTTCGCCCAAAGA	TCTTTGGGCGAACAATTCCATCTC
	2470	GATGCCTGGATCGGTCTAGCGTCA	TGACGCTAGACCGATCCAGGCATC
15	2471	GCAGCGACTGCTAAGCTATCTCGG	CCGAGATAGCTTAGCAGTCGCTGC
	2472	AGGGCTAATTTACATCGCCTTGCC	GGCAAGGCGATGTAAATTAGCCCT
	2473	AAGTGCACATCCTCACGAAGCGAT	ATCGCTTCGTGAGGATGTGCACTT
	2474	TCAGGCAGCCGTAATTAAATGCGC	GCGCATTTAATTACGGCTGCCTGA
	2475	CCACTGGGGAAATCGCACTGTTGG	CCAACAGTGCGATTTCCCCAGTGG
20	2476	TTGTCCAAAGCCACCTACGACAGA	TCTGTCGTAGGTGGCTTTGGACAA
	2477	TGGGCGGAATAGATTGGGTGTCTT	AAGACACCCAATCTATTCCGCCCA
	2478	TAGAATTCGCCTCTTCTAGCCGCC	GGCGGCTAGAAGAGGCGAATTCTA
	2479	CATTACTTCCTGCAGATGCGATGC	GCATCGCATCTGCAGGAAGTAATG
	2480	GGAAATGCTAGCTGGGGTAATCGC	GCGATTACCCCAGCTAGCATTTCC
25	2481	GCCGCCACTTGCGAATCTACATCT	AGATGTAGATTCGCAAGTGGCGGC
	2482	ACAATAGCGGACAGCTCGCCAGAT	ATCTGGCGAGCTGTCCGCTATTGT
	2483	AGTTAGGCTCTCGGTGCGGTCCAT	ATGGACCGCACCGAGAGCCTAACT
	2484	TGGGCCTGAGAAGCGGTTAATAGG.	CCTATTAACCGCTTCTCAGGCCCA
	2485	ACGCTCTGAGCGACGCCTATCGTA	TACGATAGGCGTCGCTCAGAGCGT
30	2486	CCTGGTGATCGTGTCCCAGACTCA	TGAGTCTGGGACACGATCACCAGG
	2487	GCGTGTCCATTCGCTTGAGGTTTC	GAAACCTCAAGCGAATGGACACGC
	2488	ATCCTGAACGGCGATGACCACCAC	GTGGTGGTCATCGCCGTTCAGGAT
	2489	TTACGTTTCTCACCGATCAACGCC	GGCGTTGATCGGTGAGAAACGTAA
	2490	GCCGTCTTGAGTGGCTAAAAGGCA	TGCCTTTTAGCCACTCAAGACGGC
35	2491	ATCTACGATGCGGCTCGAAGTGTT	AACACTTCGAGCCGCATCGTAGAT
	2492	AACCAAGACTCGTCCCCAAACGAA	TTCGTTTGGGGACGAGTCTTGGTT
	2493	AACTGCGGTGGTGGAGGCAGGTGC	GCACCTGCCTCCACCACCGCAGTT
	2494	TGCGATCTTCTCCACCTACAGCGC	GCGCTGTAGGTGGAGAAGATCGCA
	2495	AGGCGCTTAGAACCGTGAAGGCAG	CTGCCTTCACGGTTCTAAGCGCCT
40	2496	TGGAAAATTTTGGGAAACGCTGGA	TCCAGCGTTTCCCAAAATTTTCCA
	2497	CCAGCGCCGCACCTTCTCCAATAG	CTATTGGAGAAGGTGCGGCGCTGG

r-			
	2498	TAGACGGCTGGCGAATCTTACGGT	ACCGTAAGATTCGCCAGCCGTCTA
	2499	TACCATACAAGAGAACGAGCCGCA	TGCGGCTCGTTCTCTTGTATGGTA
	2500	GTAGCCGAGAGCAATTTTCACCGC	GCGGTGAAAATTGCTCTCGGCTAC
	2501	GCAAACTCCCCTGCCCTTTAGCCT	AGGCTAAAGGGCAGGGGAGTTTGC
5	2502	ATCCCGCTGATAACCGCCAGGATA	TATCCTGGCGGTTATCAGCGGGAT
	2503	AGTCTCAGTTCGGCGCAACGGTAG	CTACCGTTGCGCCGAACTGAGACT
	2504	AACCTACAGTCGCCGCAATGCATT	AATGCATTGCGGCGACTGTAGGTT
	2505	ATACACGTTTCAGCCGGCAACAAT	ATTGTTGCCGGCTGAAACGTGTAT
	2506	ACGACGGGACGTGCCCTCGTTGAT	ATCAACGAGGGCACGTCCCGTCGT
10	2507	AAGTCCAAACTCGAATGGGGCAGT	ACTGCCCCATTCGAGTTTGGACTT
. [2508	GATTTATTGGCGCGGTAACGACCT	AGGTCGTTACCGCGCCAATAAATC
[2509	TGTTTCAGAGGCTACCCTGCCAT	ATGGCAGGGTAGCCTCTGAAAACA
	2510	ACGGTCTCAGGGAAATGCGATCTC	GAGATCGCATTTCCCTGAGACCGT
	2511	GACTTGAAACCGCCTATGCCCACA	TGTGGGCATAGGCGGTTTCAAGTC
15	2512	CGATCGGTTGTGTGCTGTCTTACC	GGTAAGACAGCACAACCGATCG
	2513	AGTAGCACAATGCCTCATTTCCGC	GCGGAAATGAGGCATTGTGCTACT
	2514	CTCGCTATCTACGCGTCTCCGAAA	TTTCGGAGACGCGTAGATAGCGAG
	2515	AGCCCGTTACGGCATCTAGGATTC	GAATCCTAGATGCCGTAACGGGCT
	2516	TCGCGATGGCGAGAGTTCAGAATA	TATTCTGAACTCTCGCCATCGCGA
20	2517	TTACAGGATTCCAAAACCCGCAAA	TTTGCGGGTTTTGGAATCCTGTAA
	2518	CGGTACCAACGCGCGGGCATATGA	TCATATGCCCGCGCGTTGGTACCG
	2519	TGCCAGTATTATCCGTGCCAGCCG	CGGCTGGCACGGATAATACTGGCA
	2520	ATTTCAGACCTCGGGACAACCTGG	CCAGGTTGTCCCGAGGTCTGAAAT
	2521	GAAGTGCGCGTAACTTAGGGAGCC	GGCTCCCTAAGTTACGCGCACTTC
25	2522	TTGGCCAGGTCATCACTCTGCCAT	ATGGCAGAGTGATGACCTGGCCAA
	2523	ATCGGCCGGTATTAGCTGCCCTCC	GGAGGCAGCTAATACCGGCCGAT
	2524	CGCAGGTAAGGCCGAGCAATGTTT	AAACATTGCTCGGCCTTACCTGCG
	2525	TTGGGAACGTGCTAGGCGGCCCTC	GAGGGCCGCCTAGCACGTTCCCAA
	2526	CATCTCGGCACACTGGTGCTGTAT	ATACAGCACCAGTGTGCCGAGATG
30	2527	ACGCGTAAATCAACGACGTGGTCG	CGACCACGTCGTTGATTTACGCGT
	2528	CGTAGGTGGTAAATGTTGGCCCAG	CTGGGCCAACATTTACCACCTACG
	2529	TTCGAGCCAGAATAAAACGGTTGG	CCAACCGTTTTATTCTGGCTCGAA
L	2530	AGAGATATTCGGCCTCGGTCGAGA	TCTCGACCGAGGCCGAATATCTCT
	2531	CGACAAAGTTTCTCGCGAGCAACT	AGTTGCTCGCGAGAAACTTTGTCG
35	2532	ATTGCCGCGTCTCGTATCAAAAGA	TCTTTTGATACGAGACGCGGCAAT
. [2533	CGGAGAATGGATGCAGGTTCTTCG	CGAAGAACCTGCATCCATTCTCCG
	2534	TATAATCATTTGCGACTCGCCCCA	TGGGGCGAGTCGCAAATGATTATA
	2535	AATTITCCCCGATTTGAAGAAGCG	CGCTTCTTCAAATCGGGGAAAATT
	2536	TCGCATACTTCGTCGGCGAGTATT	AATACTCGCCGACGAAGTATGCGA
40	2537	CGTGAGCCGTTCTCATCCAAGCGG	CCGCTTGGATGAGAACGGCTCACG
1 -	2538	GCAGAATCGAATTGGGGTGGGTTT	AAACCCACCCCAATTCGATTCTGC

			,
	2539	CTCTCGGTTTCTCAACCGAGCTCG	CGAGCTCGGTTGAGAAACCGAGAG
	2540	GACCAGTTAGTGCAATGGTTGGCG	CGCCAACCATTGCACTAACTGGTC
	2541	TTCTCGCACAGCTAGTCAGCCGAT	ATCGGCTGACTAGCTGTGCGAGAA
	2542	CCAAGTCTTGCGTGAGCGATCCTG	CAGGATCGCTCACGCAAGACTTGG
5	2543	GCGAAAGTGGCTCGTATTTCTCCA	TGGAGAAATACGAGCCACTTTCGC
	2544	CCTCGGGACTGTCCGACTGAAAAA	TTTTCAGTCGGACAGTCCCGAGG
	2545	AGGCGAGTGTACGGCTCATCCATG	CATGGATGAGCCGTACACTCGCCT
	2546	GCGGCTCTGCCTACGATATTCACA	TGTGAATATCGTAGGCAGAGCCGC
	2547	TGCACCTGTCTGTAGATTTGCGGT	ACCGCAAATCTACAGACAGGTGCA
10	2548	CATAAAGCACGGACGCGACTTGAT	ATCAAGTCGCGTCCGTGCTTTATG
	2549	CCCTCAACGTAGGGCGTGACTTTC	GAAAGTCACGCCCTACGTTGAGGG
	2550	GGGTCATCGTGCAGTTATGCCGTA	TACGGCATAACTGCACGATGACCC
	2551	CCCGGATAATCCTTTGTCCAGCCG	CGGCTGGACAAAGGATTATCCGGG
	2552	TCCGATAAGCGAACTCACATGGGT	ACCCATGTGAGTTCGCTTATCGGA
15	2553	CCTGCTGGTTCGGTCGTAAGCGAA	TTCGCTTACGACCGAACCAGCAGG
	2554	GAGGCACCAATCGGTCTGAAAATG	CATTTTCAGACCGATTGGTGCCTC
	2555	TACGAAAATGGTTGCGCCGGGTCT	AGACCCGGCGCAACCATTTTCGTA
	2556	AATTGCCGGAAGCAGTCAGAATCG	CGATTCTGACTGCTTCCGGCAATT
	2557	CCGAATCAGCCGTATTTGCTGGAA	TTCCAGCAAATACGGCTGATTCGG
20	2558	CCCGCTTATCTGTACTCGATCGCA	TGCGATCGAGTACAGATAAGCGGG
	2559	TTTTGGGGATCCCTATTAGGCGCA	TGCGCCTAATAGGGATCCCCAAAA
	2560	AGTGACAGCGCTCACCACGGTCCC	GGGACCGTGGTGAGCGCTGTCACT
	2561	CCATGAGTGTTTCGGGACATCGTA	TACGATGTCCCGAAACACTCATGG
	2562	GCCACATTCTGCTACCTCCGTGTT	AACACGGAGGTAGCAGAATGTGGC
25	2563	TCCTGTGCTTTGTGACGTGCTAGG	CCTAGCACGTCACAAAGCACAGGA
	2564	GACCGCATATACACCTGATGGGCC	GGCCCATCAGGTGTATATGCGGTC
	2565	GTAGGCCCGTCGTTAACCATCTCA	TGAGATGGTTAACGACGGGCCTAC
	2566	CGGCTCGCGAAATGGAGTTTAGCG	CGCTAAACTCCATTTCGCGAGCCG
	2567	GCTGATCGGCTTTTCACCGCTATA	TATAGCGGTGAAAAGCCGATCAGC
30	2568	TATCAAATCGTTGGCACGCGACTA	TAGTCGCGTGCCAACGATTTGATA
	2569	TTGGCGAGGATCCCTAGGCGTACT	AGTACGCCTAGGGATCCTCGCCAA
	2570	AAGTCCTGAGGCCGTTCGGTTTCT	AGAAACCGAACGGCCTCAGGACTT
	2571	ACTCCGGACATCTCGGCCAGAGAT	ATCTCTGGCCGAGATGTCCGGAGT
	2572	CCAAGGGAACACAGGATCGTAGA	TCTACGATCCTGTGTTCCCCTTGG
35	2573	GTGGCCTAAATCCGCCTTCTCAAC	GTTGAGAAGGCGGATTTAGGCCAC
	. 2574	CACTCCGTCTCGTCCATTAATGCG	CGCATTAATGGACGAGACGGAGTG
	2575	TCAAGAACCCAGTGCCGGTCAGCA	TGCTGACCGGCACTGGGTTCTTGA
	2576	GAATCAATTTTCCAGGGACGGGAC	GTCCCGTCCCTGGAAAATTGATTC
:	2577	ATCGGTGTGCTGGAGCGCCAGAGT	ACTCTGGCGCTCCAGCACACCGAT
40	2578	GCCTCTCCTATGACGATGACCCAC	GTGGGTCATCGTCATAGGAGAGGC
	2579	TGGGCGCGCTTTTAAGACTACATC .	GATGTAGTCTTAAAAGCGCGCCCA

2580 CGTTGGGTACCGTTCTATCAACCG CGGTTGATAGAACGGTACCCAACG 2581 GCAGTGACCTGGGTTCATTCCTTC GAAGCATTGAACCCAGCTCACTGC 2582 CATCATCACACAGGCAGGTGTGT ACACACCTGCCTGTGTGGATGATG 2583 AGACAAAGGTCCCATTGCGAAAT ATTTCGCAATGGGAACCATTGTGCTACTGC 2584 ATACTCGTCGACGAGAAGCGGAAA TTTTCGCAATGGGAACCATTCTGC 2586 CACCATGCCTTCATCTTGCCCACCC GGCTGCGAAGAACAACACTTCTGC 2587 ACTCTTCAACGCCAGGTTAAGCCA TGGCTAAGAGCAACACATTCTGC 2588 GCAGCATGCGTCACCTTGGCCTAG CTAGGCCAAGATGAAGGCATGGTG 2589 TACTCTCAACGCCAGGTTAAGCCA TGGCTTAACCTGGCGTGAAGAACAACACATTCTGC 2589 TCGGTGTATGCACCCTTTCTCCAT TGGCCAAGATGAAGGCATGGCG 2599 ACCGTCGATTTTCCCAT TGGCACAAGATCAACACGCGCAAGGTCACCAACACCACCCCTTCACCTCACGCCAAGATTCAACCCGA C2590 ACCGTCGAATTTCCCAATGT AACGTGACCCAAGATTCAACCCGA C2590 ACCGTCGAATTTCCCAGCCCATGTT AACGTGACCCAAGATTCAACCCGA C2591 TAATGCATGCTCCCGGCTCACGTT AACGTGACCCAAGATTCAACCCAA C2592 TCTGTACACACCCACGTCGTGCACA TGTGCACCAAGATTCAACCCAA C2593 CATGGGGTTGTCAACACACACCTA TACGTGTCCTGACAACCCCATTA C2594 AATCTGATGCTCCCGTGTAGGACGA CCTATCACACCCAGGTGTGTACAACCCCATG C2594 AATCTGATGCTCCGCTGAAGACACCCTA TACGTGTCTGCACAACCCCATGT C2594 AATCTGATGCTCCGCTGAGAACGACCCAT TACGTGTCTGCACAACCCCATGCTACACCCATGCTGCCACAAC C2599 TGGGGGACCGGGAACAACACATA TTTTACCCTTTCCCGCGGTTTCGAA 2599 TGGGTACACCCATGCTGCCAAGA CTCTTGCCACAGCCATGCGTTCCACACCCATGCTGCCACAAC C2599 TCCCAATGCCCTTGCTGCAAGAA TTTTACCCTTTCCCGCGGTTTCGAA 2599 TGGGGGACGGCGTAACAACA TTTTACCCTTTCCCGCGGTTTCCAA 2599 TGCAATGCCCTTGCTGCAGAAA TTTTTACCCTTTCCCAGCACTCCCCCA 2599 GAACCTGAGCCTTTGCTAAGCATAAA TTTTACCCTTTCCCGCGGTTTCAACCCATGCTGCCACAACCAAC				
2582 CATCATCCACAGAGCAGGTGTGT ACACACCTGCCTGTGTGGATGATG 2583 AGACAAAGGTCCCATTGCGAAAT ATTTCGCATGGGACATTGTCT 2584 ATACTCGTCGACCAGAAGCGGAAA TTTCCGCTTCTCGTCGACGAGTAT 2585 GCAGAATGTGTTGTCTTCGCAGCC 2586 CACCATGCCTTCATCTTGGCCTAG 2587 ACTCTTCAACGCCAGGTTAAGCCA TGGCTAAGATGAGGCACACACTTCTGC 2588 GCGACCTGCGGCGTGTGTATTCTC GAGAAAAGAGCACACACACTGTGG 2589 TCGGTGTATGCACCAT TGGCTTAACCTGGCGTTGAAGAGT 2589 TCGGTGTATGCACCCTTTCTCCAT ATGGAGCAAAAGGGTGCAACACACCACCGA 2590 ACCGTCGAATCTTGCGGCCAATGT ACATTGGCCGCAAGATTCGACCGA 2591 TAATGCATGCTCCCGGCGTCACCAT ACGGCCGAAGATTCGACCGGT 2591 TAATGCATGCTCCCGGCGTCACCAT ACGTGCAGACACACCCATT 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGAGATTCGACGGT 2593 CATGGGGTTGTCAGACGACACCTA TAGGTGCCGCAAGATTCGACCGATTAA 2594 AATCTGATGCTCCCGGCTACCAT TAGGTGTCGTCTGACAACCCCATG 2595 TCGAAACCGCGGGAAAAAGGGTAAAA TTTTACCCTTTCCCAGGGTTTCGAC 2596 TGGGGGACGGGGACACCCTA TAGGTGTCTCTCACACCGAGCTTCCCCA 2597 AGGCATGCACCCATGCTGCCACAGA CTCTTCCCCGCGGTTTCGAC 2598 TCCCAATGGCTGTCAAGCACACCAA TTTACCCTTCCCGCGGTTTCGAC 2599 GAACCTGAGCCTTTCAAGCATAAA TTTTACCCTTTCCCGCGGTTTCGAC 2599 GAACCTGAGCCTTTGCTAAGCACAAA TTTTACCTTTCCCGCGGTTTCGAC 2599 GAACCTGAGCCTTTGCTAAGCACAAA TTTTACCTTTCCCGCGGTTCCCCCA 2599 TCCCAATGCCCTTTCAAGCATAAA TTTTATGCTTGACAAGCCCTTCACCCCA 2599 TCCCAATGCCCTTTCAAGCATAAA TTTTATGCTTGACAAGCCCTCACGCT 2590 TTGCGAGTGAACACCAATTC GAATAGATCTTCACACGCCATCACCCATTCGCACCAATTCCCACCAATTCCACCAATTCCACCAATTCCACCA		2580	CGTTGGGTACCGTTCTATCAACCG	CGGTTGATAGAACGGTACCCAACG
2583		2581	GCAGTGAGCTGGGTTCAATGCTTC	GAAGCATTGAACCCAGCTCACTGC
5 2584 ATACTCGTCGACGAGAAGCGGAAA TTTCCGCTTCGTCGACGAGTAT 2585 GCAGAATGTTTGTCTTCGCAGCC GGCTGCGAAGACAACACATTCTGC 2586 CACCATGCCTTCATCTTGGCCTAG 2587 ACTCTTCAACGCCAGGTTAAGCCA TGGCCTGACGAGATGAAGCCATGGTG 2588 GCGACCTGCGGCGTGTGTATTCTC GGCTTAACCCGACGAGGTGAAGACGACGCCTGCAGGTTAAGCCA TGGCTTAACCTGCCAGGTTCGACGCAGTTCGACGCAGATCGAGAGTTCGACCGAC		2582	CATCATCCACACAGGCAGGTGTGT	ACACACCTGCCTGTGTGGATGATG
2585 GCAGAATGTGTTCTCTCGCAGCC GGCTGCGAAGACAACACATTCTGC 2588 CACCATGCCTTCATCTTGGCCTAG CTAGGCCAAGATGAAGGCATGGTG 2587 ACTCTTCAACGCCAAGATTAAGCCCA TGGCTTAACCTGGCGTTGAAGAGT 2588 GCGACCTGCGGCGTGTGTATTCTC GAGAATACACACGCCGCAGGTCGC 2589 TCGGTGTATGCACCCTTTCTCCAT ATGGAGAAAGGGTGCATACACCGA 2590 ACCGTCGAATCTTGCGGCCAATGT ACATGGCCGAAGATTCAACCGA 2591 TAATGCATGCTCCCGGGCTCACGTT AACATGGCCGCAGGATCAACACGCCCATGACACCCCATG 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGAGATTCGACGATACACCGA 2593 CATGGGGTTGTCAGACGACCACCTA TAGGTGTCGCTGACAACCCCATG 2594 AATCTGATGCTCCCGGCTCACGTT AACGTGACGCAGCACGTGTGTACACCCACTG 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGGGGTCTAATCCTCC GGAGGATTAGACGCCCCATG 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCACGACTTGGGTG 2598 TCCCAATGGCCTGTCAAGCATAAA TTTTACCCTTTCCCGCGGTTTCGA 2599 TCCCAATGGCCTGTCAAGCATAAA TTTTACCTTTTCCCGCGGTTTCGA 2599 TCCCAATGGCCTGTCAAGCATAAA TTTTACCTTTTCCCGCGGTTTCGA 2599 TCCCAATGGCCTGTCAAGCATAAA TTTTACCTTTCCCGCGGTTTCGA 2599 TCCCAATGGCCTGTCAAGCATAAA TTTTACCTTTCCCGCGGTTCCCCCA 2597 AGGCATGACCCTTTGCTAGCACGAA TCGTTGCTAGACAGCCACTTGGGG 2599 TCCCAATGGCCTGTCAAGCATAAA TTTCACTTGCAAGGCCATTGGGTA 2600 CGAATTGATAGCGTTACGCACGA TCGTGCTACACGCTATCAATTCC 2601 TTGCACGCGCGCGAACGACTATTC AACTGCTTGCACGCCACACGCTTCAATTCCA 2602 TGCGGTGAACCATCAAATGGATCGGTT AACCGATCCAATGGACTGCTTCACCCCA 2603 TGAGGACCATCCAATGGATTCGTT AACCGATCCATTGCATTG		2583	AGACAAAGGTCCCCATTGCGAAAT	ATTTCGCAATGGGGACCTTTGTCT
2586 CACCATGCCTTCATCTTGGCCTAG CTAGGCCAAGATGAAGGCATGGTG 2587 ACTCTTCAACGCCAGGTTAAGCCA TGGCTTAACCTGGCGTTGAAGAGT 2588 GCGACCTGCGGCGTGTGTATTCTC GAGAATTACACAGCCCGAGGTCGC 2589 TCGGTGTATGCACCCTTTCTCCAT ATGGAGAAAGGGTCATACACCGA 2590 ACCGTCGAATCTTGCGGCCAATGT ACATTGGCCGCAAGATTCGACCGA 2591 TAATGCATCCTCCCGGCTCACGTT AACGTGAGCAGGAGCATGCATTA 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGAGGTGGTGTACAGA 2593 CATGGGGTTGTCAGACGACACCTA TAGGTGCGCGGAGCATGCATTA 2593 CATGGGGTTGTCAGACGACACCTA TAGGTGTCTGACAACCCCATG 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCAGGAGCATCAGATT 2595 TCGAAACCGCGGGGAAAGGGTAAAA TTTTACCCTTTCCCGGGTTTCGA 2596 TGGGGGACGGGCGTCTAATCCTCC GGAGGATTAGACGCCCGTCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCAGCATCAGATT 2598 TCCCAATGGCCTGTCAAGCATAAA TTTATCCTTTCCCGGGTTTCGA 2598 TCCCAATGGCTTTCAAGCACGA TCGTGCAAGACGCCCTTCCCCCA 2597 AGGCATGACCCTTTCCTCAGCACGA TCTTGACAGCCCCTTCCCCCA 2598 TCCCAATGGCTTTCAAGCACGA TCGTGCAAGACGCATTAGGAC 2599 GAACCTGAGCCTTTGCTAGCACGA TCTTGACAAGGCCATTGGGA 2600 CGAATTGATAGCGTTACCGGCCAA TTTCCCCCGTAACCATAGGTTC 2600 CGAATTGATAGCGTTACCGGCCAA TTCCCCCGTAACCATTCAATTCC 2601 TTGCACGCGCGCGCAACGACTATTC GAATAGCTGTTCACCGCACA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGCTCCCA 2604 TCGGTGAAGCATCCAATGGATCGGTT AACCGATCCAATTGATCACTCCCCAC 2605 CAAGCACAAGCCCATGAATTTC GAATACACTACCTGCCCGCA 2605 CAAGCACAAGCCCATGAATTTCA TGAAATTTCATGGGCTTGACCGCA 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTCACCGA 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTCCCCGC 2607 CAAGACCAAGCCCATGAAATTTCA TGAAATTTACTGGCTTGTCCTGCAG 2608 CCATGCTCTTCGCTGCAGCATAAC TATCCTTTGCCCGCGCGTTACCGC 2609 CGGGCAAAGATTAATTCCCCGGCC CCCGGGAATTAATCTTTTTCCCCGCG 2610 GAAGACCCGTCCCGGTTTCCATAC GTATGGAATCACTCCCCTTTGCCAG 2611 CTGCCAAGGAGGATTAGCCAAGGATA TATCCTTGGCTTACCGCGCGAAGAGCCACCCCCTTGCCAAG 2612 TCAGGCAAGAGAGCAACCTCTTCTTTGCAACAGAGCCCCCCTTGCCAAG 2613 TCAATAATGATCACGAGGCCCCA TGGGGCTCGTGTACCAA 2611 CTGCCAAGGAGGATTTCCATCTTTG CAACAGAGCCACCCCCTTGCCACAG 2612 TCTGCCACCATCTACCTTTG CAACGGCCCCCTTGGATGTTGCCACCAA 2613 TTCAATAATGATCACGAGGCCCCAATCCTCCTTTTGCCAG 2616 TTTGCCCAGCTTCTTCACTCC GTAGGCCTCG	5	2584	ATACTCGTCGACGAGAGCGGAAA	TTTCCGCTTCTCGTCGACGAGTAT
2587 ACTCTTCAACGCCAGGTTAAGCCA 2588 GCGACCTGCGGCGTGTATTCTC 2589 TCGGTGTATGCACCCTTTCTCCAT 2590 ACCGTCGAATCTTGCGGCCAATGT 2591 TAATGCATGCCCTTTGCCAT 2591 TAATGCATGCCCCGCCAAGGT 2591 TAATGCATGCCCCGGCCAAGGT 2591 TAATGCATGCCCCGGCCAAGGT 2592 ACCGTCGAATCTTGCGGCCAATGT 2592 TCTGTACACACCACCACGTC 2593 CATGGGGTTGTCAGACCACACTA 2593 CATGGGGTTGTCAGACCACACTA 2594 AATCTGATGCTCCCGGCTGACACA 2595 TCGAAACCGCGGGAAAGGGTCACACT 2596 TGGGGAACGCTGGTGCACA 2597 AGCCATGCACCACTGTTAGGACGG 2598 TCGAAACCGCGGGAAAGGGTAAAA 2599 TCGAAACCGCGGGAAAGGGTAAAA 2599 TAGGAACCCCATGCTGCAAGA 2599 GAACCTGACCCCATGCTGCAAGA 2599 GAACCTGACCCCATGCTGCCAAGA 2599 GAACCTGACCCCATGCTGCAAGA 2600 CGAATTGATAGCCCTTTGCTAGCACGA 2600 CGAATTGATAGCGTTCAAGCACAAA 2601 TTGCACGCGGGGAACGACTATTC 2600 CGAATTGATAGCGTTCAAGCACAA 2601 TTGCACGCGGGGAACGACTATTC 2602 TGCGGTGAAGCACTAATTC 2603 TGAGGACCATCCAATGGACCAA 2603 TGAGGACCATCCAATGGACACAA 2604 TCGGTGAAGCACTAAA 2605 TGAGGACCACCATGCTGGCAA 2606 CAAGCACAACCACTCCAAGGCACTAACACCACCAATTGCACCACACACCCCACACACCACACACA		2585	GCAGAATGTGTTGTCTTCGCAGCC	GGCTGCGAAGACAACACATTCTGC
2588 GCGACCTGCGGCGTGTGTATTCTC GAGAATACACACGCCGCAGGTCGC 2589 TCGGTGTATGCACCCTTTCTCCAT ATGGAGAAAGGGTGCATACACCGA 2590 ACCGTCGAATCTTGCGGCCAATGT ACATTGGCCGCAAGGTTCGACGGT 2591 TAATGCATGCTCCCGGCTCACGTT ACATTGGCCGCAAGATTCGACGGT 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGTGGTGTGTACAGA 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGTGGTGTGTACAGA 2593 CATGGGGTTGTCAGACGACACCTA TAGGTGTCGTCTCACACACCCCCGTG 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCGAGCATCAGATT 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGCGTCTAATCCTCC GGAGGATTAGACGCCCCTCCCCCA 2597 AGGCATGCACCCATGCTGCAAGGA CTCTGGCAGCATGGGTCATGGCT 2598 TCCCAATGGCTGTCAAGCATAAA TTTTATGCTTGACAGGCCATTGGGA 2598 GAACCTGAGCCTTTTGCTAGCACGA TCGTGCAACACCCATTGGA 2600 CGAATTGATAGCGTTACGGACAAA TTTTATGCTTGACAAGGCCATTGGA 2601 TTGCACGCGCGCGAACGACTATTC GAATAGCTTACACAGCCCATTCCACCACA 2603 TGAGGACCATCCAATGGATCAG CTGACCATGGATGCTACACTCACACACACACACACACACA		2586	CACCATGCCTTCATCTTGGCCTAG	CTAGGCCAAGATGAAGGCATGGTG
10 2589 TCGGTGTATGCACCCTTTCTCAT ATGGAGAAAGGGTGCATACACCGA 2590 ACCGTCGAATCTTGCGGCCAATGT ACATTGGCCGCAAGATTCGACGGT 2591 TAATGCATGCTCCCGGCTCACGTT ACCGTGGCCGAAGATTCGACGGT 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGTGGTGTACAGA 2593 CATGGGGTTGTCAGACGACCTA TAGGTGTCGTCTGACAACCCCATG 2594 AATCTGATGCTCCCGTGTAGGACGG CCGTCCTCACAGCGAGCATCAGATT 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGCGTCTAATCCTCC GGAGGATTGACGCCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCATGCCCCCCA 2598 TCCCAATGGCCTGTCAGCACACA TTTATGCTTGACAGCCCGTCCCCCA 2599 GAACCTGACCCTTTGCTAGCACGA CTCTGGCAGCATTGGGA 2600 CGAATTGATAGCGTTACGGCGAA TTCGTCCCGCAGTTCCCCCACACGCGACATCAATTCC 2601 TTGCACGCGCGCGACACGACTATTC CACACGACGCACATCACTCCCCCACACGCACACCACAC		2587	ACTCTTCAACGCCAGGTTAAGCCA	TGGCTTAACCTGGCGTTGAAGAGT
2590 ACCGTCGAATCTTGCGGCCAATGT ACATTGGCCGCAAGATTCGACGGT 2591 TAATGCATGCTCCCGGCTCACGTT AACGTGAGCCGGAAGATTCGACGAT 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGTGGTGTACAGA 2593 CATGGGGTTGTCAGACGACACCCTA TAGGTGTCGTCTGACACACCCCATG 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCGACCCCATG 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTACCCTTTCCCGCGGGTTTCGA 2596 TGGGGGACGGCGTCTAATCCTCC GGAGGATTAGACGCCCCACA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCAGATTCACCCCCCA 2598 TCCCAATGGCCTGTCAAGCATAAA TTTATGCTTGACAGGCCATTGGGA 2598 TCCCAATGGCCTTTGCTAGCACGA CTCTGGCAGCATGGGTGCATGCCT 2598 TCCCAATGGCCTTTGCTAGCACGA TCGTGCTAGCAGGCCATTGGGA 2600 CGAATTGATAGCGTTACGGCGAA TTCGTCCTACAGCGCCATTCGCAGCATTCG 2601 TTGCACGCCGCGCAACGACTATTC GAATAGTCGTTCCGCCGCATCCCCA 2602 TGCGGTGAAGCACTCCAATGGTCA 2602 TGCGGTGAAGCATTATCA GAATAGTCGTTCCGCCGCATCCCCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGACTGCTCCACA 2604 TCGGTGATTGGTAATTTGGATCGGTT AACCGATCCATTGCATCGCAC 2605 GCGGCAAGGATTTACATGCGTTACCGCACATCACTCACCGA 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTACCG 2607 CGGTACAAGCCATGAAATTTCA TGAAATTTCATGGGCTTGTACCG 2608 CCATGCTCTTCCCTGCAGCATACT AACTCACCGACTTGACCACACACACACACACACACACACA		2588	GCGACCTGCGGCGTGTGTATTCTC	GAGAATACACACGCCGCAGGTCGC
2591 TAATGCATGCTCCCGGCTCACGTT AACGTGAGCCGGGAGCATGCATTA 2592 TCTGTACACACCACGTCGTGCACA TGTGCACGACGTGGTGTACAGA 2593 CATGGGGTTGTCAGACGACACCTA TAGGTGTCTGTACAGACCCCATG 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCGAGCATCAGATT 2595 TCGAAACCGCGGGAAAGGGTAAAA TITTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGGCGTCTAATCCTCC GGAGGATTAGACCCCCCCA 2597 AGGCATGCACCATGCTGCAGAG CTCTGGCAGCATGGAGTCCCCCA 2598 TCCCAATGGCCTGTCAAGCATAAA TITTATGCTTGACAGCCCCGTCCCCCA 2599 GAACCTGAGCCTTTCGTAGCACGA CTCTGGCAGCATGGGAGCATTGGGA 2599 GAACCTGAGCCTTTCGCTAGCACGA TCGTGCCAGAGGCCATTGGGA 2600 CGAATTGATAGCGTTACGGCCGAA TTCGCCCGTAACGCTATCAATTCC 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCACCGCA 2602 TGCGGTGAAGCAGTCCAAGGTCAG CTGACCTTGGACTGCTCCACA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGACTGCTCCACACACGATCAATTACCAATCACCGA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAATTACCAATCACCGA 2605 GCGGCAGGTAGTTTGACTGGATC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGATCCTCCACCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGCGCTTTGCTTGCTGCCGC 2607 CCGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGTTGACCGC 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCACCGCAACACTACCTGCCCGC 2609 CGCGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTTGCCCCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAACCCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTTCATAC GTATGGAACCCCGGACGGGTCTTC 2612 CTGTGCAGGAGGATGTTCATAC TCACCGGACCACCCCCTGCACAG 2613 TTCAATAATGATCACCAGAGCCCCA TGAAATTACCATTCGCCTGTACCG 2614 TGGTGATGGGGTGCTTCTTTGA TCAACAGAGCCACCCCCTTGCACAG 2615 CTGCCACCATCTACCTTTG CAACAGACCCACCCCCTGCACAG 2616 TTTGCCCAGCTACCTTTTG CAACAGAGCCACACCCCCTGCACAG 2617 CAATAATATACCATTCCTTTG CAACAGAGCCACACCCCCTGCACAG 2616 TTTGCCCAGCTACACTTACCTTTT CAACAGAGCCACACCCCCTGCACAG 2617 CATTCAGCGCGCAGTCT AGACTTACCTTTC CAACAGACCCACCACCATCATCACTACCACACCAC	10	2589	TCGGTGTATGCACCCTTTCTCCAT	ATGGAGAAAGGGTGCATACACCGA
2592 TCTGTACACACCAGTCGTGCACA TGTGCACGACGTGGTGTGTACAGA 2593 CATGGGGTTGTCAGACGACACCTA TAGGTGTCGTCTGACACACCCCATG 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCGAGCATCAGATT 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGGCGTCTAATCCTCC GGAGGATTAGACGCCCGTCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCATGGGTGCATGCCT 2598 TCCCAATGGCTGTCAAGCATAAA TTTATGCTTGACAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCACAGGCCATTGGGA 2600 CGAATTGATAGCGTTACGGGCGAA TCGCCTACACAGGCCTAGGTTCC 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGACGACTATTC GAATAGTCGTTCGCCGCGCGTGCAA 2603 TGAGGACCATCCAATGGATCGGT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGAAGCAGTCCAATGGATCCG CGGATCCAATTACCAGCA 2605 GCGGGCAGGATATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTTGACCGC 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGGACATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTACCTTCCCCCGC 2600 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAAGACATGG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGCCAAGGAGATGTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGCCAAGGAGGATTGCTTGTG CACAGAGCCACACCCCCCTGCACAG 2612 CTGTGCAGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCCCAATCCTTTCTCCTCCCAG 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACCGAGCCCCA TGGGGCCTCGGTAATGTATTGAA 2617 AATTCAGACCCCACATCCACCGGTC GACCGCCGAAAGTTATTTTGAA 2617 AATTCAGACCCCACATCGACGGTC GACCGTCGAAATTCCTCCCCCC 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGGTAACCGAGACCACCCCCTGCACAG 2619 GGCGAGGAATTTCCGCAGAGCCCCCCTGCACAG 2611 CTGCCACCACTCTCCCAGAGCCCCCCCTGCACAG 2612 CTGTGCAGCACCCCCCTCGCAGAGCTCT AGACTCACCAA 2613 AATTCAGACCCCACATCCACCCCCCTGCACAG 2614 TGGTGATGCGAAGCCTTACCTTTC CAAAGGTTACGAGACCACCCCCTGAAATTCCTCCCCCCCTGACAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTCCGCAGAGCTCGAAATTCCTCCCCCCCTCGACAACCCCCCCTGAAATTCCTCCCCCCCTCGACAACCCCCCCTGAAATTCCTCCCCCCCTCGAAATTCCTCCCCCCCTCGAAATTCCTCCCCCCCTCGAAATTC		2590	ACCGTCGAATCTTGCGGCCAATGT	ACATTGGCCGCAAGATTCGACGGT
2593 CATGGGGTTGTCAGACGACACCTA TAGGTGTCGTCTGACAACCCCATG 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCGAGCATCAGATT 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGCGTCTAATCCTCC GGAGGATTAGACGCCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCATGGGTGCATGCCT 2598 TCCCAATGGCCTGTCAAGCATAAA TTTATGCTTGACAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAACACATTGCACAGAG CAATTGCTTCACAAGGCCATTGGGA 2600 CGAATTGATAGCGTTACCGACGAA TTCGCCCGTAACACATTCC 2601 TTGCACGGCGCGAACGACCAATTTC GAATAGTCGTTCACCAGCA 2602 TGCGGTGAAGCAGTCCAAGGTCAAGCTTCACCGCACACACA		2591	TAATGCATGCTCCCGGCTCACGTT	AACGTGAGCCGGGAGCATGCATTA
15 2594 AATCTGATGCTCGCTGTAGGACGG CCGTCCTACAGCGAGCATCAGATT 2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGGCGTCTAATCCTCC GGAGGATTAGACGCCCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCATGGGTGCATGCCT 2598 TCCCAATGGCCTGTCAAGCATAAA TTTATGCTTGACAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCTCAGGTTC 2600 CGAATTGATAGCGGTTACGGGCGAA TTCGCCCGTAACGCTATCAATTCG 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCATCCAAGGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCAATTGGATGGTCCTCA 2604 TCGGTGATTTTGATTTGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTTTGACTGGATC CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTTGACCGC 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTACCGCTTTTCCCGCC 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCACGAAAGGACCATGC 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGCTGCAGCAAAGGACAAGGCATGC 2611 CTGGCAAGGAGGATGGCTCGTG CACGAAGCCAATCCTCCTTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTCA 2613 TTCAATAATGATCACGAGCCCCA TGGGGCCACAATCATCTCCCTTGCCAG 2614 TGGTGAAGGGGGTGGCTCTTTC CAACAGAGCCACCCCCTGCACAG 2615 CTGCCACCATCTACCTTTG CAACAGAGCCACCCCCTGCACAG 2616 TTTCACTCAGCGAAGGTTA TAACTTCTCGCGCG 2617 AATTCAGACGCCACATCCTCGCAGAAGTTA TAACTTCTCGCAGGAACGCACCCCCTGCACAA 2617 AATTCAGACGCCCACATCACCACCACCACCACCACCACCACCACCACCAC		2592	TCTGTACACACCACGTCGTGCACA	TGTGCACGACGTGGTGTGTACAGA
2595 TCGAAACCGCGGGAAAGGGTAAAA TTTTTACCCTTTCCCGCGGTTTCGA 2596 TGGGGGACGGCGTCTAATCCTCC GGAGGATTAGACGCCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCATGCGTC 2598 TCCCAATGGCCTGTCAAGCATAAA TTTATGCTTGACAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCTCAGGTTC 2600 CGAATTGATAGCGTTACGGGCGAA TCGTGCTAGCAAAGGCTCAGGTTC 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCGCCGCGTGCAA 2602 TGCGGTGAAGCAGTCCAATGGTTC GAATAGTCGTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGATAGTTTGACTGGATG 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTG 2607 CGGTACAGCGATAGCATAGAT 2608 CCATGCTCTCGCTGCAGCATACT AGCTATCACCGCGCGCGCGAAAGATCACCGGCGCGAAAGATCACCGGCGATAGCATTACCGCGCGCG		2593	CATGGGGTTGTCAGACGACACCTA	TAGGTGTCGTCTGACAACCCCATG
2596 TGGGGGACGGCGTCTAATCCTCC GGAGGATTAGACGCCCGTCCCCCA 2597 AGGCATGCACCCATGCTGCCAGAG CTCTGGCAGCATGGGTGCATGCCT 2598 TCCCAATGGCCTGTCAAGCATAAA TTTATGCTTGACAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCTCAGGTTC 2600 CGAATTGATAGCGTTACGGGCGAA TTCGCCCGTAACGCTATCAATTCG 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGTCCAAGGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGT AACCGATCCAATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGACCATCG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATAGTCAAC GTATGGAAACCCGGACGGGTCTTC 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCACATCCTCCTTGCCAG 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGACTACCAC 2617 AATTCAGACGCCCACATCGACGGTC GACCGTCGATGATCATTATTGAA 2618 CCGTGGTCTCGCAGAAGTTA TAACTTCTGCGAGAGCCACCCCCTGCACAG 2619 GGCGAGGAATTTCCGACGGTC GACCGTCGATGATCGACCACACCAC	15	2594	AATCTGATGCTCGCTGTAGGACGG	CCGTCCTACAGCGAGCATCAGATT
2597 AGGCATGCACCATGCTGCCAGAG CTCTGGCAGCATGGGTGCATGCCT 2598 TCCCAATGGCCTGTCAAGCATAAA TITATGCTTGACAGGCCATTGGGA TCCCAATGGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCTCAGGTTC 2600 CGAATTGATAGCGTTACGGGCGAA TCGCCCGTAACGCTATCAATTCG 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGTCCAAGGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGACTCGC CGGATCCAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATC CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGACATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACA 2615 CTGCCACCATCTACCGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTCGCGAGAGAGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCCACAGGCCACACCGG 40 2619 GGCGAGGAATTTCCTCTATG CATAAGGTTCCGAAATTCCTCCCCC		2595	TCGAAACCGCGGGAAAGGGTAAAA	TTTTACCCTTTCCCGCGGTTTCGA
2598 TCCCAATGGCCTGTCAAGCATAAA TITATGCTTGACAGGCCATTGGGA 2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCTCAGGTTC 2600 CGAATTGATAGCGTTACGGGCGAA TCGTCCCGTAACGCTATCAATTCG 2601 TTGCACGCGCGCGCACGACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGTCCAAGGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAATTACCAATCACCGA 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGGCTCGTG CACCAAGACCACCCCTTGCAAG 2612 CTGTGCAGGGGTGGCTCTGTG CACCAGAGCCACACCCCTTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTTACGCATCACCA 2615 CTGCCACCATCTACCGGCGAGAGTTA TAACTTCTCGCAGCAAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGAAGGCCACCCC 401 CTGCCACCATCTACCGCGCGAAGTTA TAACTTCTCGCAGAACACACACACACACACACCACAC		2596	TGGGGACGGCGTCTAATCCTCC	GGAGGATTAGACGCCCGTCCCCA
2599 GAACCTGAGCCTTTGCTAGCACGA TCGTGCTAGCAAAGGCTCAGGTTC 2600 CGAATTGATAGCGTTACGGGCGAA TTCGCCCGTAACGCTATCAATTCG 2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGTCCAAGGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTTGGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 30 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAACCCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGCTCGTG CACGAGCCACACCCCCTGCACAG 2612 CTGTGCAGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTGGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAACAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGACTGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGAATGTGCCACAG 40 2619 GGCGAGGAATTTCCGCACCCC GTAGAGGCACACCCCCGGAAATTCCTCGCCC 40 2619 GGCGAGGAATTTCCGGAACCCTTATG CATAAGGTTCCGAAATTCCTCGCC		2597	AGGCATGCACCCATGCTGCCAGAG	CTCTGGCAGCATGGGTGCATGCCT
2600 CGAATTGATAGCGTTACGGGCGAA TTCGCCCGTAACGCTATCAATTCG 2601 TTGCACGCGCGCGCAACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGTCCAAGGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCG CGGATCCAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCGGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACACCCCCTTGCACAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAACAGAGCCACCCCCTGCACAG 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTCGCAGAGCCAAA 2617 AATTCAGACCCCACATCACCACGGCC GACCGTCGATGTGGCCACAC 40 2619 GGCGAGGAATTTCCTACC GTAGGTAATCCACCACGGCAAACCCCCCCCCC		2598	TCCCAATGGCCTGTCAAGCATAAA	TTTATGCTTGACAGGCCATTGGGA
2601 TTGCACGCGCGCGAACGACTATTC GAATAGTCGTTCGCGCGCGTGCAA 2602 TGCGGTGAAGCAGTCAG CTGACCTTGGACTGCTTCACCGCA 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCCGCC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCCACA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCCACAAC 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCCTCTGAATT 2618 CCGTGGTCTGCCTCCATTACCTAC GTAGGTAATCGAGGCACCACCGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC	20	2599	GAACCTGAGCCTTTGCTAGCACGA	TCGTGCTAGCAAAGGCTCAGGTTC
TGCGGTGAAGCAGTCCAAGGTCAG 2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAACAGGAGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGATTGTGGCAGCAA 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGCCACCCCGGAAATTCCTCGCCG 40 2619 GGCGAGGAATTTCCGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2600	CGAATTGATAGCGTTACGGGCGAA	TTCGCCCGTAACGCTATCAATTCG
2603 TGAGGACCATCCAATGGATCGGTT AACCGATCCATTGGATGGTCCTCA 2604 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGCCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGATTGGCGAAATTCCTCGCC 40 2619 GGCGAGGAATTTCCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2601	TTGCACGCGCGCGAACGACTATTC	GAATAGTCGTTCGCGCGCGTGCAA
2504 TCGGTGATTGGTAATTTGGATCCG CGGATCCAAATTACCAATCACCGA 2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 GGCGAGGAATTTCCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC	* * *	2602	TGCGGTGAAGCAGTCCAAGGTCAG	CTGACCTTGGACTGCTTCACCGCA
2605 GCGGGCAGGTAGTTTGACTGGATG CATCCAGTCAAACTACCTGCCCGC 2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCATCACTGATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 GGCGAGGAATTTCCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2603	TGAGGACCATCCAATGGATCGGTT	AACCGATCCATTGGATGGTCCTCA
2606 CAAGCACAAGCCCATGAAATTTCA TGAAATTTCATGGGCTTGTGCTTG 2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACACCCCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGCCACGG 40 GGCGAGGAATTTCCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC	25	2604	TCGGTGATTGGTAATTTGGATCCG	CGGATCCAAATTACCAATCACCGA
2607 CGGTACAGCGGATAGCCAAGGATA TATCCTTGGCTATCCGCTGTACCG 2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCAAGAGCATGG 30 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2605	GCGGCAGGTAGTTTGACTGGATG	CATCCAGTCAAACTACCTGCCCGC
2608 CCATGCTCTTCGCTGCAGCATACT AGTATGCTGCAGCGAAGAGCATGG 2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2606	CAAGCACAAGCCCATGAAATTTCA	TGAAATTTCATGGGCTTGTGCTTG
2609 CGCGGCAAAGATTAATTCCCGGCG CGCCGGGAATTAATCTTTGCCGCG 2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2607	CGGTACAGCGATAGCCAAGGATA	TATCCTTGGCTATCCGCTGTACCG
2610 GAAGACCCGTCCGGGTTTCCATAC GTATGGAAACCCGGACGGGTCTTC 2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2608	CCATGCTCTTCGCTGCAGCATACT	AGTATGCTGCAGCGAAGAGCATGG
2611 CTGGCAAGGAGGATGTGGCTCGTG CACGAGCCACATCCTCCTTGCCAG 2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC	30	2609	CGCGGCAAAGATTAATTCCCGGCG	CGCCGGGAATTAATCTTTGCCGCG
2612 CTGTGCAGGGGGTGGCTCTGTTGA TCAACAGAGCCACCCCCTGCACAG 2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 35 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2610	GAAGACCCGTCCGGGTTTCCATAC	GTATGGAAACCCGGACGGGTCTTC
2613 TTCAATAATGATCACGAGGCCCCA TGGGGCCTCGTGATCATTATTGAA 2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2611	CTGGCAAGGAGGATGTGGCTCGTG	CACGAGCCACATCCTCCTTGCCAG
2614 TGGTGATGCGAAGCCTTACCTTTG CAAAGGTAAGGCTTCGCATCACCA 2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2612	CTGTGCAGGGGGTGGCTCTGTTGA	TCAACAGAGCCACCCCCTGCACAG
2615 CTGCCACCATCTACGGCGCAGTCT AGACTGCGCCGTAGATGGTGGCAG 2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2613	TTCAATAATGATCACGAGGCCCCA	TGGGCCTCGTGATCATTATTGAA
2616 TTTGCCCAGCTCTCGCAGAAGTTA TAACTTCTGCGAGAGCTGGGCAAA 2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC	35	2614	TGGTGATGCGAAGCCTTACCTTTG	CAAAGGTAAGGCTTCGCATCACCA
2617 AATTCAGACGCCACATCGACGGTC GACCGTCGATGTGGCGTCTGAATT 2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2615	CTGCCACCATCTACGGCGCAGTCT	AGACTGCGCCGTAGATGGTGGCAG
2618 CCGTGGTCTGCCTCGATTACCTAC GTAGGTAATCGAGGCAGACCACGG 40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2616	TTTGCCCAGCTCTCGCAGAAGTTA	TAACTTCTGCGAGAGCTGGGCAAA
40 2619 GGCGAGGAATTTCGGAACCTTATG CATAAGGTTCCGAAATTCCTCGCC		2617	AATTCAGACGCCACATCGACGGTC	GACCGTCGATGTGGCGTCTGAATT
		2618	CCGTGGTCTGCCTCGATTACCTAC	GTAGGTAATCGAGGCAGACCACGG
2620 ATCCGATGATCAGATACCGGCTGG CCAGCCGGTATCTGATCATCGGAT	40	2619	GGCGAGGAATTTCGGAACCTTATG	CATAAGGTTCCGAAATTCCTCGCC
		2620	ATCCGATGATCAGATACCGGCTGG	CCAGCCGGTATCTGATCATCGGAT

2621 CCATAGACTAGCGCCAGAGTGCCC GGGCACTTCTGGCCTAGTCTATGG 2622 TGTGGACCTAGAAAAATTGCCAGCC GGCTGGCAATTTTCTAGGTCCACCA 2623 GAATAATCATCGCGGTCCTCATGG CCATGAGCACGCGATGATTATTC 2624 GGGATTGGCTCTTGGTTGGAAGAA TTCTTCCAACCAAGAGCCAATCCC 5 2625 ATTGTGCTTCCTCGAACTGGGAAA TTCTTCCAACCAAGAGCCAATCCC 2626 TGCCCCACCCGTAAGTCAATAAT ATTATTGACTTACGGGGTGGGGCA 2627 TCAGGACCGACGGTGCACTTAGTG CACTAAGTGCACCGTCTGGGCCAA 2628 CCAGCCGTCACAGTGCAATTAGTG CACTAAGTGCACCGTCGGTCCTGA 2628 CCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACCGTCGGTCCTGA 2629 CTTAAAGAGGCCGAAGCACAA TGTTGTGCTTCGGCCCTCTTAAG 2630 TACCGGCTGGTGGGAAGCACAACA TGTTGTGCTTCGGCCCTCTTAAG 2631 CCGAGTGCCGCAAGTCACAATGA TCATTTGCAGTGCACCGACGGGGTG 2632 GCACCAGTGCCCGAATCACAATGA TCATTTGTAGCGGCACCGGGCGAAGCACAACA TGTTGTGCTTCGGCCCTCTTTAAG 2633 TGCAGGCTCGACGAAGCACAACA TGTTGTGCTTCGGCCCCTCTTAAG 2634 CTCCGTGTGGCGAATCACAATGA TCATTTGTATCGGGCACTGCGG 2633 TGCAGGCTCGAAAAACGTA TACGTTTTTGATCGGGCACTGCGA 2634 CTCCGTAGGAATCCCCGCC GGCGGGCATTAAGCACCTTCGGGCACTGCAA 2635 GGAAGTGCACCTAAAAACGTA TACGTTTTGATCGGGCACTGCAA 2635 GGAAGTGCACCTAAAACCTCCCGC GGCGGGCTTTAAAGTTCCGCA 2636 CCGACCGGCAGTCGATCCGTTGCAT ATGCAACCACTGCACTG				
2623 GAATAATCATCGCGGTCCTCATGG CCATGAGGACCGCGATGATTATTC 2624 GGGATTGGCTCTTGGTTGGAAGAA TTCTTCCAACCAAGAGCCAATCCC 2625 ATTGTGCTTCCTCGAACTGGGAAA TTCTTCCAACCAAGAGCCAATCCC 2626 TGCCCCACCCGTAAGTCAATAAT ATTATTGACTTACGGGGTGGGGCA 2627 TCAGGACCGACGGTGCACTTGTG CACTAAGTCCACTGTGACGGAAGCCACAAT 2628 CCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACTGTGACGGCTGGCACACACACACACACA		2621	CCATAGACTAGCGCCAGAGTGCCC	GGGCACTCTGGCGCTAGTCTATGG
2624 GGGATTGGCTCTTGGTTGGAAGAA TTCTCCAACCAAGAGCCAATCCC 2625 ATTGTCCTCCTCGAACTGGGAAA TTTCCCAGTTCGAGGAAGCACAAT 2628 TGCCCACCCGTAAGTCAATAAT ATTATTGACTTACGGGGTGGGGCA 2627 TCAGGACCGACGGTGCAACTTAGTG CACTAAGTGCACCGTCGGTCCTCA 2628 CCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACTGTGAGCGGTGG 2629 CTTAAAGAGGCGCGAAGCACAACA TGTTGTGCTCTGACGGGTGG 2629 CTTAAAGAGGCGCGAAGCACAACA TGTTTGTGATCGCGACCAGCGGTGA 2630 TACCGCTCGTGCGCATCACAATGA TCATTGTGATCGCGACCAGCGGTA 2631 CCGAGTGCCGCGATCAAAACGA TCATTGTGATCGCGACCAGCGGTA 2631 CCGAGTGCCCGATCAAAACGA TCATTGTGATCGCGACCAGCGGTA 2633 TGCAGGCTTCTAACGGCTGGAG 2633 TGCAGGCTTCTAACGGCTGGAG 2634 CTCCCTACGGATCACAATCA TCATTGTCATCGCGACCTGGG 2635 GGAACTGCAACTTAAAGCCCCCGC GGCGGGGTTTAAGTTCGCACTTCC 2636 CGAACCGGCAGTCGATACA GTATCACGCGGGATACGTACGAG 2637 CCGTTAGTGATCCCGCGTGATAC GTATCACGCGGGATACGTACGAG 2638 TCAGGCTACCACATTCGAT ATGCAACCATCGACTGCACCTCCA 2639 TATACCGGCCGATCGAACAATTCG 2639 TATACGGCCCACTACAA TGTAACCGACCACTTAACGG 2639 TATACCGGCCGACGTCCGATTCGAT ATGCAACCGATCGACCACTTAACGG 2639 TATACCGGCCGACGTCCGATTCG 2630 TATACCGGCCGAAGGGCCATTCG 2631 CCCAACCGTGTGACAAGACAA TGTAATGCACCACTTACCGGTTCG 2632 CCACACGTGTGACAAGACAA TGTAATGCCCCTCGACCCGTTAA 2634 CTCCTAAGCGGTGCTTTCACAA TGTAATGCCCCTTCACACCGTTGGACAA 2634 CTCCTCAGCGGTGCTTTCACAA TGTAATGCCCCTTCACACCGTTGGACAA 2634 TGGTCTAAGAGGACATTCCCCCCTCAA TGGCCCTTTCAACCAGTTGCACACTTTCCACACCGTTGACAACATTCCCCCCCC		2622	TGTGGACCTAGAAAATTGCCAGCC	GGCTGGCAATTTTCTAGGTCCACA
5 2625 ATTGTGCTTCCTCGAACTGGGAAA TTTCCCAGTTCGAGGAAGCACAAT 2628 TGCCCCACCCGTAAGTCAATTAAT ATTATTGACTTACGGGGTGGGCA 2627 TCAGGACCAGCAGTGCAATTACT ATTATTGACTTACGGGGTGGGCA 2628 CCCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACCGTCGACCGTGGACCACACA 2628 CCTAAAGAGGGCGCGAAGCACACA TGTTGTGCACTGTGACCGGTGG 2629 CTTAAAGAGGGGCGAAGCACACA TGTTGTGCTTCGCGCCTCTTTAAG 2630 TACCGCTCGTCGCGATCAAAACGTA TCATTGTGATCGGCACGACGCGTG 2631 CCGAGTGCCGATCAAAACGTA TCATTGTGATCGGCACTGCG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGCACTTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGCG 2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAAAACGTA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGGCGGGATACGTACGGAGGAGCACCACACA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGGCGGGATACGTACGGAGGAGCACCACACACAC		2623	GAATAATCATCGCGGTCCTCATGG	CCATGAGGACCGCGATGATTATTC
2628 TGCCCACCCGTAAGTCAATAAT ATTATTGACTTACGGGGTGGGCA 2627 TCAGGACCGACGGTGCACTTAGTG CACTAAGTGCACCGTCGGTCCTGA 2628 CCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACTGTGACGGCTGG 2629 CTTAAAAGAGGCGCGAAGCACAACA TGTTGTGCTTCGCGCCTCTTTAAG 2630 TACCGCTCGTCGCGATCACAATGA TCATTGTGTCTTCGCGCCCCTTTTAAG 2631 CCGAGTGCCGGATCACAATGA TCATTGTGATCGCGACGACGGGTA 2631 CCGAGTGCCCGATCACAATGA TCATTGTGATCGCGACCACGGGTA 2632 GCACCAGTGCCCGATCACAACGTA TACGTTTTGATCGGCACCTCGG 2633 TGCAGGCTTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAAGCCTGC 2633 TGCAGGCTTCACAGGCTGGGAG CTCCCAGCCGTTGAGAAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACACTACG 2637 CCGTTAGTGGTCACAACGTTCGTTT 2637 TCAGGCTACGCCCTCAGCACTACA TACGGACCTGCACCACTAACGG 2638 TCAGGGCTACCCCCCCACCACATACA TAGGACCACTGCACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGGACCTGCACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGGACCTTCGCACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGGACCTTCGCACCACTACACG 2634 CTGCTCAGCGGTGCTTGAAAAGACA TGTCTTCAACCACCTTGG 2634 CTGCTCAGCGGTGCTTCAACACACTACACGCACCACACACTTCCCCCCCC		2624	GGGATTGGCTCTTGGTTGGAAGAA	TTCTTCCAACCAAGAGCCAATCCC
2627 TCAGGACCGACGGTGCACTTAGTG 2628 CCAGCCGTCACAGTGCAATTTCCC CGGAAATTGCACTGTGACGGCTGG 2629 CTTAAAGAGGCGCGAAAGCACACAC TGTTGTGCTTCGCGCCTCTTTAAG 2630 TACCGCTCGTCGCGATCACAATGA TCATTGTGATCGCGACGACGGGGTA 2631 CCGAGGTGCGCGAATGATACACAATGA TCATTGTGATCGCGACGACGGGTA 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGCCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGCCACTCGG 2633 TGCAGGCTTCTCAACAGGTA TACGTTTTGATCGGCCACTGGTGC 2634 CTCCCTACGTATCCCGCGTGATAC GTATCACGGGGATACGTTACGAC 2635 GGAAGTGCAACTTAAAACCCCCGCC GGCGGGGATTACGTTACG	5	2625	ATTGTGCTTCCTCGAACTGGGAAA	TTTCCCAGTTCGAGGAAGCACAAT
2628 CCAGCCGTCACAGTGCAATTTCCG 2629 CTTAAAGAGGCGCGAAGCACACA TGTTGTGCTGCGCCTCTTTAAG 2629 CTTAAAGAGGCGCGAAGCACACACA TGTTGTGCTTCCGCGCTCTTTAAG 2630 TACCGGCTGTTGCGCATCACAATGA TCATTGTGATCGCGACGAGCGGTA 2631 CCGAGTGCCGCGAAGTGTCTATGTG CACATAGACACTTCGCGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGCGCACTCGG 2632 TGCAGGCTTCTCAACAGCTA TACGTTTTGATCGCGCACTCGG 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGACACTCCGACCGTTGAGAAGCCTCCAA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGGAC 2635 GGAAGTGCAACTTAAAGCCCCGC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACCACTAACGG 2637 CCGTTAGTGGTCCACACTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTTCG 2638 TCAGGCTACGCCCTCAACATTCGG 2639 TATACGGCCCGCAGTCGATTCG 2640 CCAACGTGTGACAGACGCCATTACA TGTAGTGCTGAGGCCTGACCACTAACGG 2641 CTGCTCAGCGGTTCGAAAGACA TGTCTTCAAGCACCTCGACCAGC 2642 GGAGATTGACTTCGGCCTTAACA TGTCTTCAAGCACCTCCACCGTTGA 2644 GAGTGGACCATTCGCGCCTCAACA TGTCTTCAAGCACCTCCACCACTCCACCACTCCACCACTCCACCACTCCACCA		2626	TGCCCACCCGTAAGTCAATAAT	ATTATTGACTTACGGGGTGGGCA
2629 CTTAAAGAGGCGCAAGCACAACA TGTTGTGCTCGCGCCTCTTTAAG 2630 TACCGCTCGTCGCGATCACAATGA TCATTGTGATCGCGACGAGCGGTA 2631 CCGAGTGCGCGAAGTGTCTATGTG CACATAGACACTTCGGGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGCGCACTCGG 2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTTGCA 2634 CTCCGTACGTATCCCGCGTGGAG CTCCCAGCCGTTGAGAAGCCTTGCA 2635 GGAAGTGCAACTTAAAGCCCCGC GGCGGGGTATACTGTTCCCCGGAGTCGTTCCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGACTGCACCTTCCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGACTGCACCACTAACGG 2637 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGCCACTAACGG 2638 TATACGGCCCGCAGTCGATCGTTCG 2639 TATACGGGCCGAGGTCCATACA TGTAGTGCTGAGCCCTGA 2639 TATACGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCTGA 2639 CCAACGTGTGACGAAGGGCCATTG 2641 CTGCTCAGCAGTTCGAAAGACA TGTCTTTCAAGCACCGCTGACAG 2642 GGAGATTGACCGCTTCACACTTG 2643 ATGGTTCAGCAGGTCCGTTTCACCA TGTGTGAAACGCACCTCTGACCACT 2644 GAGTGAAACGTTCGCCGTTTCACCA TGTGTAAACGCACCGCTGAACCAT 2644 GAGTGAAACGTTCGCCGTTTCACCA TGTGGAAACGCAACCTTCTGAACCAT 2644 GAGTGAAACCAATCCCGCACAA TTGTGCGGGAATCGTCCAATCCC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGCTCCACTC 2646 TGCTCTTGTGGTCACTCGAAGAGA TCCTCTCAGCACGTT 2647 TTGGGAGCACCAATCCCGCACAA TTGTGCGGGATTGCTCCACTC 2648 CAACGCGAGCTAACGGTTACCGCTTGG CACACGGGGGTAACCGTCCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCC 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACCACAAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTTCCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCC 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACGTAGCCCCCGCTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACGTGACCACAAGAGCA 2650 CCGTCGTAACTGTGACC GGCGTTAACCGGTTAGCTCCCGTTG 2650 CCGTCGTAACTTGGACGCC GGCGTAACCGTTAGCTCCAACCGGTTGCCCCAACCTTCAACCGGTTAACC GGTTACCGGCTTAACC GGTTACCGGCTCAACCGGT 2651 TGGCTCGTAACTTGGACGCC GGCGTAACCGTTACCAGCGGA 2652 TGGCTCGTAACTTGGACGCC GGCGTGAAGGATATCTACCAGCGGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGCACCTCCCAACCTTTCACCC GGCGTGAAGGATATCTACCAGCGGA 2653 GGAGCAATACCGCGCCCAACCTTCAACC GGCCGTGAAGAACATTCTACCAGCGGA 2654 TTGTTCAAGCACAAGCACTTCACCT AGGCCAGACCCTAAGCCCCAACCCCCACCCCA		2627	TCAGGACCGACGGTGCACTTAGTG	CACTAAGTGCACCGTCGGTCCTGA
10 2630 TACCGCTCGTCGCGATCACAATGA TCATTGTGATCGCGACGAGCGGTA 2631 CCGAGTGCGCGAAGTGTCTATGTG CACATAGACACTTCGCGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGTGC 2633 TGCAGGCTTCTACACGGCTGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATACC GGCGGGGCTTTAAGTTGCACTTCC 2637 CCGTTAGTGGTCGACACTTCGGT AACCAACCATCGACTGCCGTTCG 2638 TCAGGCTACGACCACTACA TGTAGTCCTGCACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGTTGACAAAGACA TGTCTTTCAACACCGTTGG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACCACGTCGACCAC 2643 ATGGTTCAGAAGACA TGTCTTCAACACGTTGGACAG 2644 GAGTGGAGCACTCCGCCTCAA TTGTGTAAACCACGTCGACCAC 2645 TGGATTGACTACGCCTTCAAC TTGTGAACACCGCTGAACCAC 2646 TGCTCTTGTGCTCGGGTT AACCCGACGAACCTCTCGAACCAT 2647 TTGGGAACCAATCCCGCCTCAA TTGAGGCCGAGAATGCTCCACTC 2648 CAACCCGACCAACCCACTACA TTGTGCGGGTTGACCAACGACACACCACT 2649 AACCCTGAGCACTACCGCCTCAA TTGTGCGGGTTGACCAACGACACACCACT 2648 CAACCCGAGCATACCGTACCTC CAACACACACCGTCCCCAAC 2649 AACCCTGAGCACTACCGTTCACCT AGGTGACCACAAGAGCA 2647 TTGGGAGCACCGTTTACCCC CGAACAACCCGTTAGCTCCCGGTTG 2648 CAACGCGAGCTAACGGTTACCCT AGGTGAACCGTTAGCTCCCGGTTG 2659 GGATGGCATGGGCCTCACCTTCACCT AGGTGAACGTTACCGCTGCCTTCACCT AGGTGAACGTTAACCGTTACGACGG 2651 GGATGGCATGGGCCTCACCTTCACCT AGGTGAACGTTACCACCGGTT 2652 TCCCTCGTAGATCTGGAGGCTTCAAC TTGAACCCTCAGCCTTACCACCGCGT 2653 GGAGCAATACCGCGTCCAAACAC GTGTTTTGACCCCCAGACTTTCCCACTCC 2655 TCGCTCGTAGATTCTGGCGCTCCAA 2656 AAGCCATTGACCCTTCACCT AGGCACGCCCTAACGTTCACCACAAAACAC GTGTTTTCGACCCTTCACCACTTCCCACCTTCACCT AGGCACGCCCTAACCGTTTCACCACCTTCCCACCTTCACCTTCCCACCTTCACCTTCCCACCTTCACCTTCCCACCTTCACCTTCACCAC		2628	CCAGCCGTCACAGTGCAATTTCCG	CGGAAATTGCACTGTGACGGCTGG
2631 CCGAGTGCGCGAAGTGTCTATGTG CACATAGACACTTCGCGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGTGC 2633 TGCAGGCTTCTAACGGCTGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGGCGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGGCTTAAGTTACACTTCC 2636 CCGACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACGATCGACTGCCGGTTCG 2638 TCAGGCTACGCCCTCAGCACTACA TGCAACGATCGACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGGACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGACCCCTCAGCACTTAC 2640 CCAACGTGTACGAAGGGCCATTG CAATGCCCTTCGTCAACACGTTGG 2641 CTGCTCAGCAGTTTCACCA TGTTTTCAAGCACCACTGACACGTTGG 2642 GGAGATTTCGCTTTAAACACA TGTTTTCAAGCACCGCTGAACCACG 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTTCCCGCCCTCAA TTGAGGGCCGAGAATTCCCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAACCAATCCCGCACAA TTGTGCGCCCTCAA TGGGGCCGAGAATGCCCACTCC 2645 TGGATTGGACCACTCCGACCAA TTGTGCGGCCCGAGAATGCCCACCTC 2646 TGCTCTTGTGTCACCACCACA TTGTGCGGCCCTCAA 2646 TGCTCTTGTGGTCACTCGACGAGA TCCTCCCACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTTCAC CAACGCGGTAACCGTTCCCAA 2648 CAACGCGAGCATACCGTTCACCT CAACACCACCGGTTGCCCCAA 2649 AACCCTGAGCGTCACCTTCACCT AGGTGAACGCGCTCACCGCTTC 2659 GGATGGCATACGGTTCAA TTGAAGCCCTCAGATTCCCCACC 2652 TCGCTCGTAGATCTGGAGCTTCAAC GGTTAACGCTCCAGCGTT 2651 GGATGGCATGGGCCTCAACCTTCACCT AGGTCAACGAGCGCTTAACGACGG 2652 TCGCTCGTAGATCTTGACCC GGCTTAACGTTGCCCCTCC 2652 TCGCTCGTAGATCTTGACCC GGCTTAACGCCCCTACCCTTCCCCACCTTCCCCCACCCTTCCCCACCTTCCCCCACCTTCCCCCACCCTTCCCCCACCCTTCCCCCACCCTCCCCCC		2629	CTTAAAGAGGCGCGAAGCACAACA	TGTTGTGCTTCGCGCCTCTTTAAG
2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGTGC 2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACCGCGGGATACGTACGAG 2635 GGAAGTGCAACTTAAAGCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCAGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACCACACACACACACACACACACA	10	2630	TACCGCTCGTCGCGATCACAATGA	TCATTGTGATCGCGACGAGCGGTA
2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGCACCACCTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCCGAGGTCCGATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAGGGCCATTGC CAATGGCCCTTCGTCAACGTTGA 2641 CTGCTCAGCAGTGTGAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACGGTTTCACCA TGGTGAACACCCGCTGACCAG 2643 ATGGTTCAGAAGGTTCGTCGGTT 2644 GAGTGGAGCATTCTCGGCCTTCAA 2644 GAGTGGAGCATTCTCGGCCTCAA TTGAGGGCCGAGAACTCTCCACTTC 2645 TGGATTGGACAATCCCGCACAA TTGTGCGGAACATCCCAT 2646 TGCTCTTGTGGTCACCACAT TTGTGCGGAACACCTTCCAATCCA 2647 TTGGGAGCACTCCGCACAA TTGTGCGGGTTACCCACTC 2648 CAACGCGAGCTTACCGCCTGTG CACAGGCGGTAACCGTCCCAAT 2649 AACGCTGAGCGTTACCGCCTGTG CACAGGCGGTAACCGTCCCCAA 2648 CAACGCGAGCTTACCGCCTGTG CACAGGCGGTAACCGTCCCCAA 2649 AACGCTGAGCGTTACCGCCTGTG CACAGGCGGTAACCGTCCCCAA 2649 AACGCTGAGCGTCACCTTCACCT AGGTGAACGCACAAGAGCA 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCCTCCAGATCTACGACGG 2651 GGATGGCATTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 TCGCTCCTAGATATCCTTCACCC GGCGTGAAGGTTACCCACTGCATCC 2652 TCGCTCGTAGATCTTCACCC GGCGTGAAGGATACTCACGACGG 2653 GGACAATACCGCGTCCCAAACAC GTGTTTTGGACCGGGTATGCTCCC 2654 TTGTTCAGACTTTACCGC GGCGTAAGGATATCTACGACGG 2655 TCGCTCGTAGATCTCTTCACCC GGCGTGAAGGATATCACGACGG 2656 CAGCACATACCGCGTCCCAAACAC GTGTTTTGGACCGCGTAACCACAAACAC 2657 TCGCTCCTAGACTTTCCCCC GGCGTGAAGGATATTCTCACACCT 2658 CAGCGGTACTCTTTTCCACTGCCT AGGACAGGCCCTAAGCTTGAACA 2656 CAGCGGTACTCTTTTCCACTGCCT AGGACAGGCACTAAGCCCCG 2657 AGGCACATTAGCCCCCAAACAC GTGTTTTTGGACCGCGGTATTGCTCC 2658 CTCGGCCTTATGCCCCCAAACAC GTGTTTTTGCACCGC 2659 TGCCCCTAAGCTTTTCCACTTC AGGACAGTGCACCCCTACCTT 2658 CTCGGCCTTATGCCCCCAAACAC CTCTTGGCACGGCCAAACACAC 2659 TGCGCGCTAACCTTTTCCACTGCCACCT ACGCCTCACCT 2659 TGCGCCTTACACGCGCCCAAACACC CTCTTGCCACCT 2659 TGCGCCTTACACCTCAAACAC CTCTTGCCACCTCACCT		2631	CCGAGTGCGCGAAGTGTCTATGTĢ	CACATAGACACTTCGCGCACTCGG
2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACAGAAGGCCCATTG CAATACGGACCTCGGCCCGTATA 2641 CTGCTCAGCGGTTCTGAAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCAACACA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACTCTCGAACCAT 2644 GAATGGAACGATTCTCGGCCTCAA TTGAGGGCCGAAGTCATCCA 2645 TGGATTGGAACCAATCCCGCACAA TTGTGGGGGAATTGCTCCACTC 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGCAGAACTCCAACAACACA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCCCAC 2649 AACGCTGAGCGTCACCTTCACCT AGGTGAAAGCCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGTCACCTTCACCT AGGTGAAGGTGAGCGCTCACGGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATACCGTCCAAACAC GTGTTTTGCACCATGCCATCC 2652 TCGCTCGTAGATCTGAGGCTCACAC GGGTTACAGTGTGCCCATGCCATCC 2653 GGAGCAATACCGCTCCAAAACAC GTGTTTTGGACGAGCGAACGGAACG		2632	GCACCAGTGCCCGATCAAAACGTA	TACGTTTTGATCGGGCACTGGTGC
15 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACAGTTACCGCCTGTG CACAGGCGGTAACCACAAGAGCA 2648 CAACGCGAGCTAACCGCTGTG CACAGGCGGTAACCGTCCCCAA 2648 CAACGCGAGCTAACGGTTACCCT AGGTGAAGGTGACCACAAGAGCA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGACCACCGGTTCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGACCACAAGAGCA 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGAGTCTACCAGCGT 2651 GGATGGCATGGGCACACTGTAACC 2652 TCGCTCGTAGATCTCACC GGTTAACCAGTGTGCCCATGCCATCC 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGGCGTAACCAA 35 GGAGCAATACCGCGTCCAAAACAC GTGTTTTTGGACGGCGAACCACAAAA 36 AGACGATTACCGCCTCCAAAACAC GTGTTTTTGGACGGCGAACAAAAACAC 2656 AAGACGATTACCGCCTCCCAAACACAC GTGTTTTTGGACGGCGAACCACTTCCCCCCAGATCTTTACCACCCC 2654 TTGTTCAGACTTTAGCGCCCCAAAACAC GTGTTTTTTTTTT		2633	TGCAGGCTTCTCAACGGCTGGGAG	CTCCCAGCCGTTGAGAAGCCTGCA
2636 CGAACCGGCAGTCGATCGTTGCAT 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGCGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCAGCGCTGAGCAG 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATCGTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGTGCGGGATTGGTTCCACTC 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCCGAGAACCACAAGAGCA 2647 TTGGGAGCACCATCCACAA TCCTCCGAGAACCACAAGAGCA 2648 CAACGCCGAGCACACCTTCACCC CGCACAACCACCGTTGCTCCCAA 2648 CAACGCCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCCTCACCTTCACCT AGGTGAACGCGCTCAGCGGT 2650 CCGTCGTAGATCTGGAGGGTTCAA TTGAAGCCTCCAGAGCCTCAGCGGT 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGGCGCTCAGCGGA 2652 TCGCTCGTAGATACCGTCCAAACAC GTGTTTTGAAGCCTCCAGGCGA 2653 GGAGCAATACCGCGTCCCAAACAC GTGTTTTGGACCGCGTATCCCCCGCGAACTTCACCGCGGACCACACCACACACA		2634	CTCCGTACGTATCCCGCGTGATAC	GTATCACGCGGGATACGTACGGAG
2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGGCCCATCC 2652 TCGCTCGTAGATCTTCACCC GGCGTGAAGGATATCTACGACGG 2653 GGAGCAATACCGCTCCAAAACAC GTGTTTTGGACGCGCTATCCC 2654 TTGTTCAGACTTAGGCGCTCCCAAACACC GTGTTTTGGACGCGGTATTGCTCC 2655 CGGCGGTACTCTTTCACCCT AGGCAGCGCCTAAGCTCCCCGCGT 2656 AGACCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGCGTATTGCTCC 2657 AGGTGAGCTTAGGCGCTCCCA TGGCAACGGGCAATGCTCCCCCG 2656 AAGACGATTGCCCACGTGCCCA TGGGCAACGTGGAAAGAAGATACCGCCG 2657 AGGTGAGCGCTCACTTTCCACTT AGGACAGTGGAAAGAAGATACCGCCG 2658 CTCGGCGTTACCTTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2658 CTCGGCGCTGACAGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCCTTTGCTGTACAGGCCCAGG 2659 TGCGCGCTGTACAGCAAAGCCGT ACGCCTTTGCTTGCTGTACAGGCCCAAG	15	2635	GGAAGTGCAACTTAAAGCCCCGCC	GGCGGGCTTTAAGTTGCACTTCC
2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCCGAGAATCCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTCCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGCAG 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCCGTGCCACA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGACCACAGAGCA 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGGCCCATCC 2652 TCGCTCGTAGATCTCTCACGCC GGCGTGAAGGATATCTACGACGGA 2653 GGAGCAATACCGCGTCCCAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTCCCA TGGGCAGCGCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGCCT AGGACAGAGAGAACAC 2656 AAGACGATTGCCCACGTGCCCA TGGGCACGCCCTAAGTCTGAACAA 36 2656 CGGCGGTACTCTTTCCACTGCCT AGGACAGTGGGAACAACAC 37 TGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 36 2657 AGGTGAGCGCAGGCATATTGCAGT ACTCGCACTGGCAACACACACACACACACACACACACACA		2636	CGAACCGGCAGTCGATCGTTGCAT	ATGCAACGATCGACTGCCGGTTCG
2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCCGAGATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAACGAA TCCTCTCAGACCAT 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCATACCGCTGTG CACAGGCGGTAACCGTGCTCCCAA 2649 AACGCTGAGCGCTTCACCTTCACCT AGGTGAAGCGCTTCAGCGTT 2650 CCGTCGTAGATCTGGAGGGTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATCGGAGGTTCAA TTGAAGCCTCCAGATCTACGACGG 2652 TCGCTCGTAGATCTGAACCACGGTGAACCATCCCATCC 2652 TCGCTCGTAGATCTCACCC GGCGTGAAGGATATCTACAGACGA 2653 GGAGCAATACCGCTTCACCT TGGCACGTGTTTCCCC 2654 TTGTTCAGACTTAGCCCCCAACACACGGGAATATCTACCACACAA 35 CGCCGGTACTCTTTCCACTCC AGGCACCCCTAAGTCTGAACAA 36 AAGACGATTGCCCACGTGCCCAAACACC GTGTTTTGGACGCCGTAACAA 36 AAGACGATTGCCCACGTGCCCAAACACC TGGGCACGCCTAAGTCTGAACAA 36 CGCGGGAACTACCGCGTCCCAAAACAC CTCTGGCACGTGGAACAACAC 2656 AAGACGATTGCCCACGTGCCCAAACACAC AGGCAATATCCTCCCACCTCCCGCGCCCCAACACACACAC		2637	CCGTTAGTGGTCGACAGTTCGGTT	AACCGAACTGTCGACCACTAACGG
2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGACCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCACA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGC GGCGTAACGGTATCTACGACGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTCCCA TGGGCAGCGCTAAGTCTGAACAA 35 2655 CGGCGGTACTTTCACTCT AGGACAGTGGAAAGACACAC 2656 AAGACCATTGCCCACGTCCCAAACACC GTCTTTCACCTC 2657 AGGTGAGCCCACGTGCCAAACAC CTCTGGCACGTGGAAAGAACACCGCGCAACACACACCGCGCAACACACAC		2638	TCAGGCTACGCCCTCAGCACTACA	TGTAGTGCTGAGGGCGTAGCCTGA
2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACCGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCCA TGGGCAACGTGGAACAA 36 CGGCGGTACTCTTTCCACTGCCT AGGACAGTGGAAAGAGTACCGCCG 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCCCTCACCTT 2658 CTCGGCCTGTACAGCAAAGCCGT ACGCCTTTACCGCCAG 2659 TGCGCCTAGTGCTCTTAGACC GATCATAGGCAGCACCACCGCAAAACAC 2659 TGCGCCTAGTGCTCAAAAGCC CTTTACCCTCAAGGCCACCACCCAAAACAC CTCTTTGCCTTTACAGGCAAAACCCGT ACTGCAATATGCCTGCGCCCACCTCACGCCCAGGCCACCTTACACCACCCCAGGCCAAAACACCGT ACTGCAATATGCCTGCCCCACCTCACTCTTCACCTCAAGACAAACACCGCGCAAAAACACCGTAACACACAC	•	2639	TATACGGGCCGAGGTCCGTATTCG	CGAATACGGACCTCGGCCCGTATA
2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACCGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGCAATCGCCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGCACAG 2659 TGCGCGCTAGTGCTGCCTAGATC GATCATAGGCAGCACAAGGCCCAA	20	2640	CCAACGTGTGACGAAGGGCCATTG	CAATGGCCCTTCGTCACACGTTGG
2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2545 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGACGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAACACA 36 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGCAATCCCCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCCAAAGCCGT ACGCTTTGCTGACCAGG 2659 TGCGCGCTAGTGCCTATGATC GATCATAGGCAGCACACGCCCAA		2641	CTGCTCAGCGGTGCTTGAAAGACA	TGTCTTTCAAGCACCGCTGAGCAG
2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGGCGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCCTTTGCTGACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGCCCAAAGGCACACTAGCCCCGAG CCATCCTTTGCCTTGAGGGGTAAGG CCTTACCCTCAAGGCCACAAGGATGG 40 2660 CCATCCTTTGCCTTGAGGGGTAAGG CCTTACCCTCAAGGCCAAAGGATGG 40 CCATCCTTTGCCTTGAGGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2642	GGAGATTGACTTCGCGTTTCACCA	TGGTGAAACGCGAAGTCAATCTCC
2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGATGG 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2643	ATGGTTCAGAAGGTTCGTCGGGTT	AACCCGACGAACCTTCTGAACCAT
2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCCCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATAG		2644	GAGTGGAGCATTCTCGGCCCTCAA	TTGAGGGCCGAGAATGCTCCACTC
2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCTTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGCCCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG	25	2645	TGGATTGGAACCAATCCCGCACAA	TTGTGCGGGATTGGTTCCAATCCA
2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2646	TGCTCTTGTGGTCACTCGAGAGGA	TCCTCTCGAGTGACCACAAGAGCA
2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2647	TTGGGAGCACGGTTACCGCCTGTG	CACAGGCGGTAACCGTGCTCCCAA
2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCCCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2648	CAACGCGAGCTAACGGTAGTTTCG	CGAAACTACCGTTAGCTCGCGTTG
2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2649	AACGCTGAGCGCTCACCTTCACCT	AGGTGAAGGTGAGCGCTCAGCGTT
2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACATAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG	30	2650	CCGTCGTAGATCTGGAGGCTTCAA	TTGAAGCCTCCAGATCTACGACGG
2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2651	GGATGGCATGGGCACACTGTAACC	GGTTACAGTGTGCCCATGCCATCC
2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2652	TCGCTCGTAGATATCCTTCACGCC	GGCGTGAAGGATATCTACGAGCGA
2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2653	GGAGCAATACCGCGTCCAAAACAC	GTGTTTTGGACGCGGTATTGCTCC
2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2654	TTGTTCAGACTTAGGCGCTGCCCA	TGGGCAGCGCCTAAGTCTGAACAA
2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG	35	2655	CGGCGGTACTCTTTCCACTGTCCT	AGGACAGTGGAAAGAGTACCGCCG
2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2656	AAGACGATTGCCCACGTGCCAGAG	CTCTGGCACGTGGGCAATCGTCTT
2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2657	AGGTGAGCGCAGGCATATTGCAGT	ACTGCAATATGCCTGCGCTCACCT
40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2658	CTCGGGCCTGTACAGCAAAGCCGT	ACGGCTTTGCTGTACAGGCCCGAG
		2659	TGCGCGCTAGTGCTGCCTATGATC	GATCATAGGCAGCACTAGCGCGCA
2661 AACAACAGCGTAAGACGGACAGGG CCCTGTCCGTCTTACGCTGTTGTT	40	2660	CCATCCTTTGCCTTGAGGGTAAGG	CCTTACCCTCAAGGCAAAGGATGG
		2661	AACAACAGCGTAAGACGGACAGGG	CCCTGTCCGTCTTACGCTGTTGTT

	2662	GAGGCGGTCGAGGCTCACAATATT	AATATTGTGAGCCTCGACCGCCTC
Ţ	2663	CGAGGTTAGACGCCTATGACCCAC	GTGGGTCATAGGCGTCTAACCTCG
	2664	AACTTGCTATACCGGGCGCAGCAA	TTGCTGCGCCCGGTATAGCAAGTT
	2665	CGCGGTGAATCGCATACACAGCGC	GCGCTGTGTATGCGATTCACCGCG
5	2666	CACCGAATCAAGCCATATGGCTCT	AGAGCCATATGGCTTGATTCGGTG
	2667	TTCACAGCTATCCTAGGCGCTGCC	GGCAGCGCCTAGGATAGCTGTGAA
	2668	AGAAGCGCGAAGTGTACCCCGCAT	ATGCGGGGTACACTTCGCGCTTCT
	2669	TGCATGGTATTTGCGTGCGATAGG	CCTATCGCACGCAAATACCATGCA
	2670	GGCCGGACCTATGTGAGATGGAAA	TTTCCATCTCACATAGGTCCGGCC
10	2671	TCAACCTGAGTCCTGATCCCAAGC	GCTTGGGATCAGGACTCAGGTTGA
	2672	TGCTTACCGTTCAGGGAGGCGTGT	ACACGCCTCCCTGAACGGTAAGCA
	2673	GGAGAGTTACGCGATGAGCCACCT	AGGTGGCTCATCGCGTAACTCTCC
	2674	CGGTATGCGGTGTACAGCTTTCGT	ACGAAAGCTGTACACCGCATACCG
	2675	GTAAGCCGGGTCTCGTGTCGCCGT	ACGGCGACACGAGACCCGGCTTAC
15	2676	GCGTAGTGCGAACGCCCCGACCTA	TAGGTCGGGGCGTTCGCACTACGC
	2677	TCCTCGCGGCTTACGTCAAATTCG	CGAATTTGACGTAAGCCGCGAGGA
	2678	CGACGTTCAAAGCGGGAGAGGAGG	CCTCCTCCCGCTTTGAACGTCG
	2679	CGAGGCACCCCGACATGTTGAGAT	ATCTCAACATGTCGGGGTGCCTCG
	2680	CTATTTCGTGCCGCGTCGGACAAG	CTTGTCCGACGCGCACGAAATAG
20	2681	GGCTGCTCAGTGACGTGTCAACTG	CAGTTGACACGTCACTGAGCAGCC
	2682	ATCACTCGTGCGTACCCGACCGTC	GACGGTCGGGTACGCACGAGTGAT
	2683	CGAGATGTCCTATACCGTGGCGAA	TTCGCCACGGTATAGGACATCTCG
	2684	TCACACCGAGCCCCATAAATGAAA	TTTCATTTATGGGGCTCGGTGTGA
	2685	AGCTACGTGTCTCGAGCAAAAGCG	CGCTTTTGCTCGAGACACGTAGCT
25	2686	TCAGGGCGAGTTTTTTCAGCGGCG	CGCCGCTGAAAAAACTCGCCCTGA
	2687	TTCGTTCTGTCTATTTTTGCCCCG	CGGGGCAAAAATAGACAGAACGAA
	2688	TGGTATGCCCAGGATCCAGCCTAC	GTAGGCTGGATCCTGGGCATACCA
	2689	TCTCAGTCGTTAGGCCAATGGCGG	CCGCCATTGGCCTAACGACTGAGA
	2690	AAAGATCACCGTGGAGCGATCGGC	GCCGATCGCTCCACGGTGATCTTT
30	2691	TAGCAGGACTTGCACTCGTGATGC	GCATCACGAGTGCAAGTCCTGCTA
	2692	TGCCCACGGTACCGTTCAAGGCTG	CAGCCTTGAACGGTACCGTGGGCA
	2693	TGAGGTGCGTCGCCCTAAGTAATG	CATTACTTAGGGCGACGCACCTCA
	2694	AGCAAGGGTTACAACCCGCAACCC	GGGTTGCGGGTTGTAACCCTTGCT
	2695	CACAACAGCCAGTATTCGCCACAA	TTGTGGCGAATACTGGCTGTTGTG
35	2696	GGCAACACCATACTCGACGAGCTC	GAGCTCGTCGAGTATGGTGTTGCC
	2697	GGCTGGATTGACAATTTAGCCCCT	AGGGGCTAAATTGTCAATCCAGCC
	2698	CGTGAGAAATGCTACACGCGTCAG	CTGACGCGTGTAGCATTTCTCACG
	2699	CGCATCTGCCCCATTTTGTTCCTT	AAGGAACAAAATGGGGCAGATGCG
	2700	GTCGGCCTAGTCGGCAGAACGGTG	CACCGTTCTGCCGACTAGGCCGAC
40	2701	TCCCTCACCTTCCAAAAATGTGCT	AGCACATTTTTGGAAGGTGAGGGA
	2702	GGGCAAGAACATGAGAACAGACCG	CGGTCTGTTCTCATGTTCTTGCCC

_	2703 2704 2705	TCGTCCTGGTACGACTTGCGTAGA TGGCGGTTGCATGTGATGATCAAG	TCTACGCAAGTCGTACCAGGACGA CTTGATCATCACATGCAACCGCCA
_		TGGCGGTTGCATGTGATGATCAAG	CTTGATCATCACATGCAACCGCCA
_	2705		0.10.10.10.10.10.00.00.00.00.00.00.00.00
_		CCTCGCGTGAGTAAAAACCGTCCG	CGGACGGTTTTTACTCACGCGAGG
	2706	ACTTCCGCCACAGAATGCGGCCAG	CTGGCCGCATTCTGTGGCGGAAGT
5	2707	GTGTAGAGCTTGGGTAGCCCCGTT	AACGGGGCTACCCAAGCTCTACAC
	2708	CGCAGCATCCGAGTTAACACACAT	ATGTGTGTTAACTCGGATGCTGCG
	2709	ATGAGCCTGGGATGATCCGCTGGT	ACCAGCGGATCATCCCAGGCTCAT
i	2710	CCTGGCATAAGTGCCGACATGCTT	AAGCATGTCGGCACTTATGCCAGG
	2711	GCGCATGAAAAACTACGACGGACG	CGTCCGTCGTAGTTTTTCATGCGC
10	2712	AAAGATGGGTCGATGGGAGCGTCT	AGACGCTCCCATCGACCCATCTTT
	2713	ATCCTGGGCACGAGCGGATTTATC	GATAAATCCGCTCGTGCCCAGGAT
	2714	TCACCGCATTTGATAGTTACGCGA	TCGCGTAACTATCAAATGCGGTGA
	2715	TGGTGGAGCGGACTCTGGTGTTAT	ATAACACCAGAGTCCGCTCCACCA
	2716	CACAATGAAAAAACAATGGCCCCA	TGGGCCATTGTTTTTCATTGTG
15	2717	CCTTGCCGCGCTTGTGGTACCAAC	GTTGGTACCACAAGCGCGGCAAGG
	2718	CCGAGACCTTTGCCACACGAAAGA	TCTTTCGTGTGGCAAAGGTCTCGG
	2719	ACCGCGGTGTACACCTGAGCAGGC	GCCTGCTCAGGTGTACACCGCGGT
	2720	GTCGTACGCTTACCGCAGCGGAGA	TCTCCGCTGCGGTAAGCGTACGAC
	2721	TCGTAATTTGACCGACACACGCAG	CTGCGTGTGTCGGTCAAATTACGA
20	2722	CCTAGACGGATACCCTGAGCGGAA	TTCCGCTCAGGGTATCCGTCTAGG
	2723	AAGCGACAGCAGAGGTTCAGTCGC	GCGACTGAACCTCTGCTGTCGCTT
	2724	GCGTGGACGATATCACCTGGGCGT	ACGCCCAGGTGATATCGTCCACGC
	2725	GTCGGAGAGCCAGTGGTACGGCTT	AAGCCGTACCACTGGCTCTCCGAC
	2726	TATCCGCACGGTATAGCAGTTGCA	TGCAACTGCTATACCGTGCGGATA
25	2727	CATCAGTCGGGCTACCTTCAGCCT	AGGCTGAAGGTAGCCCGACTGATG
	2728	CGGATTAATGCCTTTCCTCGGAAT	ATTCCGAGGAAAGGCATTAATCCG
]	2729	TTCGTCGTGCCAAGCTAATGCAAG	CTTGCATTAGCTTGGCACGACGAA
ļ	2730	GGCCGAGACCACCAGTAACAGGTT	AACCTGTTACTGGTGGTCTCGGCC
ļ	2731	CGCGCGGAAGCATTGAAGTTACTA	TAGTAACTTCAATGCTTCCGCGCG
30	2732	TCGGCTTACCGCTTCGTCTGACTT	AAGTCAGACGAAGCGGTAAGCCGA
	2733	GACTGACGTCAAGGCAAGCACAC	GTGTTGCTTGCCTTGACGTCAGTC
	2734	AGAGGAAGGAGGGCTGTGACAGA	TCTGTCACAGCCCCTCCTTCCTCT
	2735	TTCCAATGCGAGAGATGGCAGGCT	AGCCTGCCATCTCTCGCATTGGAA
	2736	AAATGGGGTGCTTCGAATATGTCG	CGACATATTCGAAGCACCCCATTT
35	2737	GCTGTCGGATTATTGCACGCCTGT	ACAGGCGTGCAATAATCCGACAGC
	2738	CCGACTTTGTTTATGTTGCTGGCG	CGCCAGCAACATAAACAAAGTCGG
	2739	GCTGCGATATAACCCGTCCCAGAA	TTCTGGGACGGGTTATATCGCAGC
ļ	2740	TGAGCTGGGCGTCAACTCCGAAGA	TCTTCGGAGTTGACGCCCAGCTCA
l	2741	CCCAAGCATCCTAAATCTCCCTCG	CGAGGGAGATTTAGGATGCTTGGG
40	2742	CGACAGCAATCCACATGCATTCTT	AAGAATGCATGTGGATTGCTGTCG
Į	2743	TGAATGGTCGGGAAACCAATGCAT	ATGCATTGGTTTCCCGACCATTCA

	2744	CTTTGCATCGAGATGCGGGGTAGC	GCTACCCGCATCTCGATGCAAAG
	2745	TCCATTTCCTCCGCAACTCTCAGG	CCTGAGAGTTGCGGAGGAAATGGA
	2746	CCACTACGCCATCCTGACAACGAG	CTCGTTGTCAGGATGGCGTAGTGG
	2747	TAGTAAGGCCAATGTACGCCGTCC	GGACGGCGTACATTGGCCTTACTA
5	2748	GTCATGCATATGGGGCCTGTTTTC	GAAAACAGGCCCCATATGCATGAC
	2749	ACCGGTAGACGTTAGCGGGTTCAA	TTGAACCCGCTAACGTCTACCGGT
	2750	TTGGTTCAAACGGCCACACGTCTC	GAGACGTGTGGCCGTTTGAACCAA
	2751	GACACAAACTGCAAGGGAGGCATG	CATGCCTCCCTTGCAGTTTGTGTC
	2752	CTCGAGCGCTGTCATCATATCGGC	GCCGATATGATGACAGCGCTCGAG
10	2753	GCGGCTAAGGCACAAGTAGACGTG	CACGTCTACTTGTGCCTTAGCCGC
	2754	ACAGCCTAAATGGCGCAAGACCGA	TCGGTCTTGCGCCATTTAGGCTGT
	2755	CCGATGATGTAAGCCGTCGGCCCT	AGGGCCGACGGCTTACATCATCGG
•	2756	AGGAGCAAACAAACGCCAGTGACA	TGTCACTGGCGTTTGTTTGCTCCT
	2757	ACGAATTGGGTAGCCGGACTGAGA	TCTCAGTCCGGCTACCCAATTCGT
15	2758	CTGTTCCAGTTCGGCAAGTGCGGC	GCCGCACTTGCCGAACTGGAACAG
	2759	AGACAAGTCAGGAACGCGTTTCCG	CGGAAACGCGTTCCTGACTTGTCT
	2760	AGACGACGCCAGATACGCTGCCA	TGGCAGCGTATCTGGCCGTCGTCT
	2761	AGGAAGCGCTTCTTCCGGTTCTTC	GAAGAACCGGAAGAAGCGCTTCCT
	2762	GATGGACGCAAACACAAGGCGATC	GATCGCCTTGTGTTTGCGTCCATC
20	2763	CGCATAGCAGTCTCCGCATCTTGG	CCAAGATGCGGAGACTGCTATGCG
	2764	TGGTTCCGGTGTGCAACAGATAAA	TTTATCTGTTGCACACCGGAACCA
	2765	CCGTATGCCACCTCCAGAACTCAA	TTGAGTTCTGGAGGTGGCATACGG
	2766	GTAAAGGAACCCCTCGGGAATCCT	AGGATTCCCGAGGGGTTCCTTTAC
	2767	GCCTGATGCTCGTTAAAATTGCGT	ACGCAATTTTAACGAGCATCAGGC
25	2768	TCGCACTTGGACCATGAGATCTGA	TCAGATCTCATGGTCCAAGTGCGA
	2769	TTCTCAGGCTGGGCAAGAGTCTGT	ACAGACTCTTGCCCAGCCTGAGAA
	2770	CGGACCTGGGGATGCTGGGATTAC	GTAATCCCAGCATCCCCAGGTCCG
	2771	TCGAGCCGATAGGGTTGGCATTGC	GCAATGCCAACCCTATCGGCTCGA
	2772	TACGTGTGTCCCACACACGTCGTA	TACGACGTGTGTGGGACACACGTA
30	2773	TGTGAAATTCGCGTTTCGCATCTT	AAGATGCGAAACGCGAATTTCACA
	2774	TTGCAATGCTCCAAAAAAACTGCC	GGCAGTTTTTTTGGAGCATTGCAA
	2775	TCTCATCATGGCTGTGGCTTTGAC	GTCAAAGCCACAGCCATGATGAGA
	2776	ATTACACCGCTTGGTTTGGAGTGG	CCACTCCAAACCAAGCGGTGTAAT
	2777	GCCGTGCAATGCACAGAGTTCAAG	CTTGAACTCTGTGCATTGCACGGC
35	2778	GAGATCAGACCGTGTCGGATGCTG	CAGCATCCGACACGGTCTGATCTC
	2779	CCACCTATCTTGATGCGACCTGGA	TCCAGGTCGCATCAAGATAGGTGG
	2780	CCGATCGCCGTTTATGTCTACGGC	GCCGTAGACATAAACGGCGATCGG
	2781	GAAAATCACGGTAAGGCACGTTCG	CGAACGTGCCTTACCGTGATTTTC
	2782	GATTCTCGCTTCCCAACGAGCATA	TATGCTCGTTGGGAAGCGAGAATC
40	2783	TGTGAAATGTGGCAGTCTCAGGGA	TCCCTGAGACTGCCACATTTCACA
	2784	CGATCCTGCGTGCCTCATCCAGGC	GCCTGGATGAGGCACGCAGGATCG

	2785	CCCTCAAGTGGGCGAGGGTTTTCA	TGAAAACCCTCGCCCACTTGAGGG
	2786	TCGCCTCCGCCTCGTGTGTAGAAG	CTTCTACACACGAGGCGAGGCGA
	2787	TTCGCTTTCAGCTCATTGGAACGA	TCGTTCCAATGAGCTGAAAGCGAA
	2788	TGTAATCTGAACAAGCGGACCCCT	AGGGGTCCGCTTGTTCAGATTACA
5	2789	TGGAATCTTTCTTGAGCGCCGTGA	TCACGGCGCTCAAGAAAGATTCCA
	2790	GGCTTTCATCTTTAACCGCTCGGT	ACCGAGCGGTTAAAGATGAAAGCC
	2791	TGATCCGAGCCATTCCTAATCACC	GGTGATTAGGAATGGCTCGGATCA
	2792	TGGTAGGCGTGATGTCCTACGCAA	TTGCGTAGGACATCACGCCTACCA
	2793	AGGCATCGGTAAGAAGGCCCTATG	CATAGGGCCTTCTTACCGATGCCT
10	2794	CGCCGCGAGACGATCCTTATTATT	AATAATAAGGATCGTCTCGCGGCG
	2795	ACATGGACGAAATTACGCCCGTCA	TGACGGCGTAATTTCGTCCATGT
	2796	ACAGAAAGGTGGGGAGCCTAGCGT	ACGCTAGGCTCCCCACCTTTCTGT
	2797	AGGCTTGCGAACATGGGTAGTGAC	GTCACTACCCATGTTCGCAAGCCT
	2798	GCGTGGGCCTTGCTCCTGTTTAAC	GTTAAACAGGAGCAAGGCCCACGC
15	2799	GAATACAGAGCGTCCGATGTGCCC	GGGCACATCGGACGCTCTGTATTC
	. 2800	GCGACTCTGTAGGGAGCGCGATAT	ATATCGCGCTCCCTACAGAGTCGC
•	2801	GGTGCACTCATATGCGTCGCATCG	CGATGCGACGCATATGAGTGCACC
	2802	CTGTCCCACGGGGAAACCTTACTT	AAGTAAGGTTTCCCCGTGGGACAG
	2803	TGGCTTACTGTCGCAATCTAGGCC	GGCCTAGATTGCGACAGTAAGCCA
20	2804	GCACTCAGTTTCCGGTATCCCATG	CATGGGATACCGGAAACTGAGTGC
	2805	GTGAGGTTCACGTAAGGCACAGCG	CGCTGTGCCTTACGTGAACCTCAC
	2806	GTAACGCCTTTGTCCCCAGCGTAT	ATACGCTGGGGACAAAGGCGTTAC
	2807	GCATTGATATGGTCGGTCTCGCCT	AGGCGAGACCGACCATATCAATGC
	2808	GTGGGTTTAAGTGACAACGGACGC	GCGTCCGTTGTCACTTAAACCCAC
25	2809	CAAAACCCTGCCGAAGATGTTGGT	ACCAACATCTTCGGCAGGGTTTTG
	2810	TCCGAGGAGACTGAACCTGCTACC	GGTAGCAGGTTCAGTCTCCTCGGA
	2811	CGGGGAAGAACGGATTCGCTAAAT	ATTTAGCGAATCCGTTCTTCCCCG
	2812.	TGGTTAGCTTATGTCGGAGCCACC	GGTGGCTCCGACATAAGCTAACCA
	2813	ACGCGTCGATGAACTAAGGCTCGC	GCGAGCCTTAGTTCATCGACGCGT
30	2814	TTCTCCTGACGAGTACGCAGTGGG	CCCACTGCGTACTCGTCAGGAGAA
	2815	TCCGCGGTTGCCGGTTTGTTAGGA	TCCTAACAAACCGGCAACCGCGGA
	2816	TGGCGCATCTTTCAGGGGATGATG	CATCATCCCCTGAAAGATGCGCCA
	2817	TCTTTGGTCCTTGGTGTTTACGCG	CGCGTAAACACCAAGGACCAAAGA
	2818	GAGAACTCCCGCTACAAAGGAGCC	GGCTCCTTTGTAGCGGGAGTTCTC
35	2819	TTAACGTGGGAACCGTTGGTGAAT	ATTCACCAACGGTTCCCACGTTAA
	2820	GGGACACCATCCTTGGGTTTGTTA	TAACAAACCCAAGGATGGTGTCCC
	2821	CAACAAACCGCCTTGGGAAGTGAC	GTCACTTCCCAAGGCGGTTTGTTG
	2822	TTGAAGGCCACCGATACTGATCGC	GCGATCAGTATCGGTGGCCTTCAA
	2823	TCGTAATAGAACTGCGCCCAATGC	GCATTGGGCGCAGTTCTATTACGA
40	2824	GGCACGTTGCCCAAGTTGGATCCA	TGGATCCAACTTGGGCAACGTGCC
	2825	ACATAGCTTGGCCGGACACCCACC	GGTGGGTGTCCGGCCAAGCTATGT
			<u> </u>

	2826	CTTGCCGCCTTGCGAGTGGCTAAA	TTTAGCCACTCGCAAGGCGGCAAG
	2827	AATGGCTCGCCAGATACCGCAGCC	GGCTGCGGTATCTGGCGAGCCATT
	2828	CAAAAGGCGTGTCCGAACTTTTCA	TGAAAAGTTCGGACACGCCTTTTG
	2829	CGTCCACTTAGGTGGAGATACGCC	GGCGTATCTCCACCTAAGTGGACG
5	2830	GAGCCTCTTCGTCCTGAAGACCGA	TCGGTCTTCAGGACGAAGAGGCTC
	2831	AACATCAAGCGGCAATCTCCCTTC	GAAGGGAGATTGCCGCTTGATGTT
	2832	CGTCCTGACATTATTAGCGCGTGC	GCACGCGCTAATAATGTCAGGACG
	2833	TGTGCAGACCCTAACGACCTACGG	CCGTAGGTCGTTAGGGTCTGCACA
	2834	TTAGGTCGGCCTAGACCCTCCGTA	TACGGAGGGTCTAGGCCGACCTAA
10	2835	TCACATCGCTTAACTGAGCGCATT	AATGCGCTCAGTTAAGCGATGTGA
	2836	AGACCTTCCCACGCGAGATGCTAC	GTAGCATCTCGCGTGGGAAGGTCT
	2837	TTCTTGCCAAAATGTGTCCAACCA	TGGTTGGACACATTTTGGCAAGAA
	2838	CAGTTTTCATTGCAGCGAAAGCAA	TTGCTTTCGCTGCAATGAAAACTG
	2839	GTGCCGATCCCGAGACAAGTTCCG	CGGAACTTGTCTCGGGATCGGCAC
15	2840	CATCCGGCCTCAGTGATTCTTACC	GGTAAGAATCACTGAGGCCGGATG
	2841	TGCTGGAAGCCACAAACGTTACGT	ACGTAACGTTTGTGGCTTCCAGCA
	2842	GAACGCCAGGGGACAACTATCGT	ACGATAGTTGTCCCCTGGCCGTTC
	2843	TCATCTAGGTCGAAGCGCAAGACA	TGTCTTGCGCTTCGACCTAGATGA
	2844	TTTGGTTACCAGCACCCATGTTCC	GGAACATGGGTGCTGGTAACCAAA
20	2845	GACAACAGTCTGTCCGCCACATCC	GGATGTGGCGGACAGACTGTTGTC
	2846	GCCAACAGGAGATGCTTGCACCAT	ATGGTGCAAGCATCTCCTGTTGGC
	2847	CTAAGGACGCATTGACCCCTGAAC	GTTCAGGGGTCAATGCGTCCTTAG
	2848	GGTCGCGTAGTGAGTCAGAGGCGT	ACGCCTCTGACTCACTACGCGACC
	2849	TTACCTCATGAACCCTTCGCGGCG	CGCCGCGAAGGGTTCATGAGGTAA
25	2850	TATACAGCATCGTCGCCGGGCATA	TATGCCCGGCGACGATGCTGTATA
ì	2851	GCTTAGTGGCGTCTTCGTCGTAGG	CCTACGACGAAGACGCCACTAAGC
	2852	TGCACTCCGCAACCTTGTGAAATC	GATTTCACAAGGTTGCGGAGTGCA
	2853	AACCCGTCATGCCGACTCCATCTA	TAGATGGAGTCGGCATGACGGGTT
	2854	AGCACTAGTGGCGTGCGACTTTGC	GCAAAGTCGCACGCCACTAGTGCT
30	2855	TAAAAAGTGCCGCTAACCACGGAG	CTCCGTGGTTAGCGGCACTTTTTA
	2856	CGCGGAATATTTGTCGTCCGATTC	GAATCGGACGACAAATATTCCGCG
	2857	TTCTGCTATGCGTATGGGGGCCCG	CGGGCCCCCATACGCATAGCAGAA
	2858	CGAACTACTGCGTCAGCCTCTCCC	GGGAGAGGCTGACGCAGTAGTTCG
	2859	AGATGACGAATTAGCGGGGTTGGG	CCCAACCCCGCTAATTCGTCATCT
35	2860	AATAACAGTGGCAATGAGCGGGAA	TTCCCGCTCATTGCCACTGTTATT
	2861	ATATGTTGATTCCCGTGCTGCACA	TGTGCAGCACGGGAATCAACATAT
	2862	AGAGTGGGCACCACCAGGCAGACA	TGTCTGCCTGGTGGTGCCCACTCT
	2863	AGGCCTGGGTTTCTGCGTCTTAGT	ACTAAGACGCAGAAACCCAGGCCT
	2864	CGGACGTGACAAACGGACATACCC	GGGTATGTCCGTTTGTCACGTCCG
40	2865	CAAGTGTTTCGGCCCAACTCTCGA	TCGAGAGTTGGGCCGAAACACTTG
[2866	GAACCCTTATCGGGATAGGCCCAA	TTGGGCCTATCCCGATAAGGGTTC

	2867	CAGGACGATACCAAGCAGAACGCC	GGCGTTCTGCTTGGTATCGTCCTG
	2868	GCGTCTTGTGATTCTGCCCTAACC	GGTTAGGGCAGAATCACAAGACGC
	2869	AAACAACCATCAATGTCGGGTCCA	TGGACCCGACATTGATGGTTGTTT
	2870	TGTAAAGACCAGTTGGCGGCTCTC	GAGAGCCGCCAACTGGTCTTTACA
5	2871	GCGTTTTGACTCGGTGGTCAGTCC	GGACTGACCACCGAGTCAAAACGC
	2872	TGTATGGAGGCACGGCAAAGTCTT	AAGACTTTGCCGTGCCTCCATACA
	2873	TTACCTAGGTTCCCGCTGACACGC	GCGTGTCAGCGGGAACCTAGGTAA
	2874	CGGCTCGTGGGAATCCTCTGAAGA	TCTTCAGAGGATTCCCACGAGCCG
	2875	CCGGCTCGGGCATTTCTTGGACCT	AGGTCCAAGAAATGCCCGAGCCGG
10	2876	CAACGATGGAATTGTCTCCTTGGG	CCCAAGGAGACAATTCCATCGTTG
	2877	CGGGCTATTATCGGGATTATGGGG	CCCCATAATCCCGATAATAGCCCG
	2878	ACGTACCTGAAGATGCAACGGCGG	CCGCCGTTGCATCTTCAGGTACGT
	2879	CATGGTGCAGCACGCACAAGTAAC	GTTACTTGTGCGTGCTGCACCATG
	2880	CGTCGATATGTCGGGCTATTGCCT	AGGCAATAGCCCGACATATCGACG
15	2881	AAATGCAGGGTTAAGAGGAGGCCC	GGGCCTCCTCTTAACCCTGCATTT
	2882	TGCAAGGACTGATTCTCCCGCTGT	ACAGCGGGAGAATCAGTCCTTGCA
	2883	GTTTCGGAACGCCGCAGAGTTCA	TGAACTCTGCGGCGTTCCGAAAAC
	2884	CCCTCGATGGTTCATTGGGAAGAC	GTCTTCCCAATGAACCATCGAGGG
	2885	CCTGTTCGCTCATAATGGTGGGGT	ACCCACCATTATGAGCGAACAGG
20	2886	GAAAGAACGATCGCGGAATAGCTG	CAGCTATTCCGCGATCGTTCTTTC
	2887	TCCACCTGTGTGCCTTTATCCTCA	TGAGGATAAAGGCACACAGGTGGA
	2888	TCCTCCGTGAACCGCTGTAGCGCA	TGCGCTACAGCGGTTCACGGAGGA
	2889	TTGAGATTTTTACGGTTTCCCCGC	GCGGGAAACCGTAAAAATCTCAA
	2890	CGATAGGACGTGGGCATGTCCCAG	CTGGGACATGCCCACGTCCTATCG
25	2891	CCCGAACTTTGAGATCCGAGAACA	TGTTCTCGGATCTCAAAGTTCGGG
	2892	TCACGCAGCTAGAGTCGCGTTACC	GGTAACGCGACTCTAGCTGCGTGA
	2893	AGATAACGCCCACTGACGACATGC	GCATGTCGTCAGTGGGCGTTATCT
	2894	ACGCTTAGAGCTCCGATGCCGAAT	ATTCGGCATCGGAGCTCTAAGCGT
	2895	GGGCGATAACTTAAATTGTGCCGC	GCGGCACAATTTAAGTTATCGCCC
30	2896	AGGACGTTCATGCGTCTCTTTGCA	TGCAAAGAGACGCATGAACGTCCT
	2897	CGGCTGGTAGAACTGTGCATCGTA	TACGATGCACAGTTCTACCAGCCG
	2898	TTCGAAATGTACTTCCCACGCGGA	TCCGCGTGGGAAGTACATTTCGAA
	2899	GCAGGTTGGCTGTCTTGTGGAGTC	GACTCCACAAGACAGCCAACCTGC
	2900	CGTTTGGTTGCTTCAAGAACCGGT	ACCGGTTCTTGAAGCAACCAAACG
35	2901	CATACTTGGTTGTTGTGCCCACGC	GCGTGGGCACAACAACCAAGTATG
	2902	GGGGTCGGCTGAAGTGTTTTATCC	GGATAAAACACTTCAGCCGACCCC
	2903	GTGACGGTTGATTAACGACCGTGG	CCACGGTCGTTAATCAACCGTCAC
	2904	CTTATGGCAGCGCCAGGGGCACTC	GAGTGCCCCTGGCGCTGCCATAAG
	2905	GTTAGGGGACCCACCTCGTTTGAT	ATCAAACGAGGTGGGTCCCCTAAC
40	2906	CAATATAAATGCCGCGCATCGAGT	ACTCGATGCGCGGCATTTATATTG
	2907	TTCTTCATCAGCAGTCCCCGAGAA	TTCTCGGGGACTGCTGATGAAGAA

	2908	AGTTGCGTCCCTTGATGGCATTTT	AAAATGCCATCAAGGGACGCAACT
	2909	CCGACTTTCGTCCACGATTCCTCT	AGAGGAATCGTGGACGAAAGTCGG
	2910	ACTTGGCCGGACGACAGCAAAGAC	GTCTTTGCTGTCGTCCGGCCAAGT
	2911	CACCGCGGTAGATGTATCCCTTCC	GGAAGGGATACATCTACCGCGGTG
5	2912	GTTAGCTTTAGCTCGGCACGCCTG	CAGGCGTGCCGAGCTAAAGCTAAC
	2913	GCGCATAAGAAGGTCCGCTAAAGC	GCTTTAGCGGACCTTCTTATGCGC
	2914	ACATCATCACGCCTGGCGTGACCA	TGGTCACGCCAGGCGTGATGATGT
	2915	CCGGCGAAGTTTGGTGTGATTAGA	TCTAATCACACCAAACTTCGCCGG
	2916	TGCACCGCCAGATTGTGCTGAGTC	GACTCAGCACAATCTGGCGGTGCA
10	2917	ACATGTGAAGTGAGTGCCGTCCAA	TTGGACGGCACTCACTTCACATGT
	2918	CCTCTGGAGGGGATTAGCCACGCT	AGCGTGGCTAATCCCCTCCAGAGG
	2919	CAATAGCCATGTCACTGGCAACGG	CCGTTGCCAGTGACATGGCTATTG
	2920	ACCCATGGTTCCAACGTTCTTTCG	CGAAAGAACGTTGGAACCATGGGT
	2921	AATCTGGTCTTGGCATCCTCCAAA	TTTGGAGGATGCCAAGACCAGATT
15	2922	GTATACCGGTGCATGCTGAAGCAA	TTGCTTCAGCATGCACCGGTATAC
	2923	AGTGTTCTGGTTCGAGTCGACCCG	CGGGTCGACTCGAACCAGAACACT
	2924	CGGGTATTCGACACACACGAGGAC	GTCCTCGTGTGTGTCGAATACCCG
	2925	AGTGCAACAGAGCGCTTGGTCACG	CGTGACCAAGCGCTCTGTTGCACT
	2926	TGCACCTATAGTTTGGTGCCGGTG	CACCGGCACCAAACTATAGGTGCA
20	2927	TGCTCACGTACCAGGACACTCGAG	CTCGAGTGTCCTGGTACGTGAGCA
	2928	AGTCCACACCTCGAACGACAGGCG	CGCCTGTCGTTCGAGGTGTGGACT
	2929	CGCCGACCTGGTCAAAGAGCGCTA	TAGCGCTCTTTGACCAGGTCGGCG
	2930	GCCTAAGGGCCTGTCGTTTTCCGA	TCGGAAAACGACAGGCCCTTAGGC
	2931	TGTGCGTGCTTATGTTCCGGTCTC	GAGACCGGAACATAAGCACGCACA
25	2932	CAACCGTTGGCCGTAACAAAAATC	GATTTTTGTTACGGCCAACGGTTG
	2933	CGAGAATCAAGGCGTACCATCTCG	CGAGATGGTACGCCTTGATTCTCG
	2934	GCGTAGGCAGCCTCCAGGGAATGG	CCATTCCCTGGAGGCTGCCTACGC
	2935	GATGGTGTTTTCGCCAAGACCAAT	ATTGGTCTTGGCGAAAACACCATC
	2936	CAAGCTAGGGACAGAATTGCCCAC	GTGGGCAATTCTGTCCCTAGCTTG
30	2937	TAAATAGGCGAAACCGTTCGTGGC	GCCACGAACGGTTTCGCCTATTTA
	2938	TCAAGACCCGCAATGTGTTCATGT	ACATGAACACATTGCGGGTCTTGA
	2939	GCGGCTGGTAGACTCTTTGCACAA	TTGTGCAAAGAGTCTACCAGCCGC
	2940	CAGGCGTAAACCTGAACCAAACGG	CCGTTTGGTTCAGGTTTACGCCTG
	2941	GCCGATCTGTGCTGAGGTTCATCA	TGATGAACCTCAGCACAGATCGGC
35	2942	GATATCGCGTCGCAATATCACGCG	CGCGTGATATTGCGACGCGATATC
	2943	CCCTGCACGATTAAGCCACCTGTA	TACAGGTGGCTTAATCGTGCAGGG
	2944	TGACATACAGATTTGTGTGGCCCC	GGGGCCACACAATCTGTATGTCA
	2945	GTTTGCGGCCGGTATTCACGATGT	ACATCGTGAATACCGGCCGCAAAC
	2946	TTTTACCTGGCCATTGGTGAGCTC	GAGCTCACCAATGGCCAGGTAAAA
40	2947	CTCTACTCAATCAGGGTGGGAGCG	CGCTCCCACCCTGATTGAGTAGAG
	2948	GGGTTGGAGGGAGTCTTGACCATT	AATGGTCAAGACTCCCTCCAACCC

	2949	CGAGGTCGGTAAGGAAAAGCTTGC	GCAAGCTTTTCCTTACCGACCTCG
	2950	CTTTACGCAGGCACCTCCGAGCTG	CAGCTCGGAGGTGCCTGCGTAAAG
	2951	CATTGTATGGCCACGTGATTGACG	CGTCAATCACGTGGCCATACAATG
	2952	GTACGGTGCGAGAGCGCCTAAGCG	CGCTTAGGCGCTCTCGCACCGTAC
5	2953	TTCCATATGCCGAAATGGACACAA	TTGTGTCCATTTCGGCATATGGAA
	2954	TACGCCTTCCGCTATAGCTCGTGA	TCACGAGCTATAGCGGAAGGCGTA
	2955	CTGTACGCCACGCATGAAGGGTGA	TCACCCTTCATGCGTGGCGTACAG
	2956	CTTACGCGTCCAATGACTGCCACC	GGTGGCAGTCATTGGACGCGTAAG
	2957	CACATGGTAGAACTCGATCGGCAG	CTGCCGATCGAGTTCTACCATGTG
10	2958	CGCACCGGAAACTAGTGGATGTGT	ACACATCCACTAGTTTCCGGTGCG
	2959	ACTATGGCAACCGACACTTGGTCC	GGACCAAGTGTCGGTTGCCATAGT
	2960	CTAGTTTGCGCTACCCACCTGCAA	TTGCAGGTGGGTAGCGCAAACTAG
	2961	TAGTATCGCCCGACAATAGCCTGG	CCAGGCTATTGTCGGGCGATACTA
	2962	CCAATATTTACGGCCTGATCAGCG	CGCTGATCAGGCCGTAAATATTGG
15	2963	ATGGCTATCCCTTACTGGCTCGCC	GGCGAGCCAGTAAGGGATAGCCAT
	2964	CAAAACTTGGCAGGCTTGGGACTT	AAGTCCCAAGCCTGCCAAGTTTTG
	2965	AATGACCGAGGCTGCAAGATTGAC	GTCAATCTTGCAGCCTCGGTCATT
	2966	ATCATCTTTCGCCACCAGACATGG	CCATGTCTGGTGGCGAAAGATGAT
•	2967	CGTTATTACCGATGCACACGTTGC	GCAACGTGTGCATCGGTAATAACG
20	2968	CACACTGGCAATCGCCTCCTCGT	ACGAGGGAGGCGATTGCCAGTGTG
	2969	AGGTTGGTAGGAAATCGGAGCGCT	AGCGCTCCGATTTCCTACCAACCT
	2970	GCTGAACCACTGTGGTCAAGATGC	GCATCTTGACCACAGTGGTTCAGC
	2971	CGTTGAGTACGACACGGTCGAGGT	ACCTCGACCGTGTCGTACTCAACG
	2972	TTTTTCCGCCGCAATGTGATCTAA	TTAGATCACATTGCGGCGGAAAAA
25	2973	ACAATACCTCGACCGCTCAGCATC	GATGCTGAGCGGTCGAGGTATTGT
	2974	AGTATCCCTGCTGGCATACACGGG	CCCGTGTATGCCAGCAGGGATACT
	2975	TCTTGGGCTCGGTAGTTCAGCACT	AGTGCTGAACTACCGAGCCCAAGA
	2976	CCCTATATCGAGCCCATAGGGCGA	TCGCCCTATGGGCTCGATATAGGG
	2977	CACGAGTGGCATCAACGGCCTACT	AGTAGGCCGTTGATGCCACTCGTG
30	2978	TGCAGGGTCCGATGTGTTCAAGTA	TACTTGAACACATCGGACCCTGCA
	2979	GCTTGACCGCTGCTAACCTCGTAC	GTACGAGGTTAGCAGCGGTCAAGC
	2980	TTTTGCATCTCTCCACCATCCAGA	TCTGGATGGTGGAGAGATGCAAAA
	2981	AGAATGTGCACCGGCTTCCATCTT	AAGATGGAAGCCGGTGCACATTCT
	· 2982	TGTTATGACCCGCTCTGTGGCGTG	CACGCCACAGAGCGGGTCATAACA
35	2983	GGAGCTCCTGTTTCATCGAGGCTA	TAGCCTCGATGAAACAGGAGCTCC
	2984	CATTTTGCTGTTTGGGGGTCCCAT	ATGGGACCCCCAAACAGCAAAATG
	2985	CCCGCTCCTTCACGTGAGACGAGA	TCTCGTCTCACGTGAAGGAGCGGG
	2986	GCGCTCAAGTCGATTGCCACAACC	GGTTGTGGCAATCGACTTGAGCGC
	2987	CGGTTGACGGAGACCGCAGTACTT	AAGTACTGCGGTCTCCGTCAACCG
40	2988	ACTOMACACCCC	GCTGGAGGTGCACCGGTCTTGAGT
	2989	T	GCCATTACTTGCATGCACACGAAA

	2990	GCGGCGTTAGCTCGAGCTAACAAA	TTTGTTAGCTCGAGCTAACGCCGC
	2991	GGGTATCCTGCCCGAGCAGTAATT	AATTACTGCTCGGGCAGGATACCC
	2992	GGCTCCGAATCTCTTGTCCGGTCT	AGACCGGACAAGAGATTCGGAGCC
	2993	AGGATGGCCACGCCGAATCAAAGT	ACTTTGATTCGGCGTGGCCATCCT
5	2994	GTGCGGGGACGTTTACATAACGAG	CTCGTTATGTAAACGTCCCCGCAC
	2995	ACTTTGACCTGAGGCCGCTTGCA	TGCAAGCGGCCTCAGGTCAAAAGT
	2996	ACTCCGCTTCAATGGAGACCGTTG	CAACGGTCTCCATTGAAGCGGAGT
	2997	GATCGGAATTCGCCGCCATATTGA	TCAATATGGCGGCGAATTCCGATC
	2998	ATGCGTGCCCATGGAATGACTTTT	AAAAGTCATTCCATGGGCACGCAT
10	2999	CCGCATCGCACGAAGGCAGGTCAT	ATGACCTGCCTTCGTGCGATGCGG
	3000	CACCCTATGCGTCTCCAATTCCTG	CAGGAATTGGAGACGCATAGGGTG
	3001	TGATATGCATCGCTGAGCCTCTGT	ACAGAGGCTCAGCGATGCATATCA
	3002	AGCTTCACACGCTCACTGAACCTG	CAGGTTCAGTGAGCGTGTGAAGCT
	3003	AACCCGGAACCTCCTCTCACTCGG	CCGAGTGAGAGGAGGTTCCGGGTT
15	3004	CTCGTCAAACTTGGCCGAGGAGTC	GACTCCTCGGCCAAGTTTGACGAG
	3005	GTAGCTGGCAACAGGCAATCAGGA	TCCTGATTGCCTGTTGCCAGCTAC
	3006	CTTGTCACGAATATTCGCCAAGCG	CGCTTGGCGAATATTCGTGACAAG
	3007	CAGTATCTGAAACACGGGGTGCTG	CAGCACCCCGTGTTTCAGATACTG
	3008	GGCTAAAATGGGCGCCCACGTGTA	TACACGTGGGCGCCCATTTTAGCC
20	3009	ATGAGAGCCAAGCGCCTCAACTCC	GGAGTTGAGGCGCTTGGCTCTCAT
	3010	TATTGTTAGGCACCGCTTCGCGCT	AGCGCGAAGCGGTGCCTAACAATA
	3011	GGAACTAGATTGCCAGTGCTCGCC	GGCGAGCACTGGCAATCTAGTTCC
	3012	AGTCGACCCCAAGGCAACTGGGTC	GACCCAGTTGCCTTGGGGTCGACT
	3013	GGTACTGTTAGCTCGACGATGGCC	GGCCATCGTCGAGCTAACAGTACC
25	3014	CCGCAATACTTGACGGTAACAGGG	CCCTGTTACCGTCAAGTATTGCGG
	3015	AATTCCGGGTTTGAACGGTTGGAA	TTCCAACCGTTCAAACCCGGAATT
	3016	GACACGCAATCGGGTCTATGCGAA	TTCGCATAGACCCGATTGCGTGTC
	3017	GATTTTGGCGTCTCATTGCGTGAT	ATCACGCAATGAGACGCCAAAATC
	3018	TGCCATAGGGAGGAAACGCAATTA	TAATTGCGTTTCCTCCCTATGGCA
30	3019	GAGGTGCCCATGTTAGTGGTGTCC	GGACACCACTAACATGGGCACCTC
	3020	GCTTTAGCGGTCATACGACCACCA	TGGTGGTCGTATGACCGCTAAAGC
	3021	CCGCTACCAACAATCCGATTAACG	CGTTAATCGGATTGTTGGTAGCGG
	3022	GAGGATCTGGCCACATCGAGAAAG	CTTTCTCGATGTGGCCAGATCCTC
	3023	CTCGTTTGGTACCACGTTTTGCCG	CGGCAAAACGTGGTACCAAACGAG
35	3024	AATACACGCGGCGTAAACAGACGA	TCGTCTGTTTACGCCGCGTGTATT
	3025	TGTCATGGGCCAAATGACAGTGGC	GCCACTGTCATTTGGCCCATGACA
	3026	ACAGCACTTCCGACCCGTGTACGA	TCGTACACGGGTCGGAAGTGCTGT
	3027	CTCCGTAAAGAGCACAGCTTTGCC	GGCAAAGCTGTGCTCTTTACGGAG
	3028	ACGAACAGGTAGGGATCGGTCCTC	GAGGACCGATCCCTACCTGTTCGT
40	3029	TGGATCCACCTTACCGCGCCATCG	CGATGGCGCGGTAAGGTGGATCCA
	3030	AGTATCAAATAGCGGCGCGGCAAG	CTTGCCGCGCCGCTATTTGATACT

	3031	GAATTACATTGTGGATGGAGGCGG	CCGCCTCCATCCACAATGTAATTC
	3032	CTCCTCGGGGAGTCGAGGAGTACG	CGTACTCCTCGACTCCCCGAGGAG
	3033	AGTGTCGAGCCAACTCCCACCAAT	ATTGGTGGGAGTTGGCTCGACACT
	3034	AAATGACATCCGTTTGGCCACAGC	GCTGTGGCCAAACGGATGTCATTT
5	3035	CGAATCATATCGCCATCGAACTGG	CCAGTTCGATGGCGATATGATTCG
	3036	TATAATGCACTCGCTTGGTGCGCA	TGCGCACCAAGCGAGTGCATTATA
	3037	GCCAAGCAGATGGTAATTATGGCG	CGCCATAATTACCATCTGCTTGGC
	3038	CACGCGGGAAGAGCACGTAGAACT	AGTTCTACGTGCTCTTCCCGCGTG
	3039	TACCCGAGAATTTGGAGAACAGCG	CGCTGTTCTCCAAATTCTCGGGTA
10	3040	TGACGCAAACTGTGGCATCTATC	GATAGATGCCACAGTTTGCCGTCA
	3041	CACAGTGTTCCAGCCCTTGACGAT	ATCGTCAAGGGCTGGAACACTGTG
•	3042	TACCCGCCCACACATGAAAGTTGG	CCAACTITCATGTGTGGGCGGGTA
	3043	TGGCATATTTAAGATTCGGCGACG	CGTCGCCGAATCTTAAATATGCCA
	3044	ACTGAAAAAAGAACGGGTAGCGGG	CCCGCTACCCGTTCTTTTTCAGT
15	3045	TCTGACCGCAATAGGTGGTCATTG	CAATGACCACCTATTGCGGTCAGA
	.3046	ACTITITGGCGGGCCCTCTCTCGT	ACGAGAGAGGGCCCGCCAAAAAGT
	3047	CTGCCCAGATCATTGCGCGATCCG	CGGATCGCGCAATGATCTGGGCAG
	3048	CGGAGGTTAAATGCTTTAACCGGC	GCCGGTTAAAGCATTTAACCTCCG
	3049	AGGCGTCTCCAAACGTCCTTCTGT	ACAGAAGGACGTTTGGAGACGCCT
20	3050	AGATGCTATCCTGAGTGGGCCTGC	GCAGGCCCACTCAGGATAGCATCT
	3051	ACAGGGTGAAGAGACCGTGGGATG	CATCCCACGGTCTCTTCACCCTGT
	3052	GACTGTCTAACGGACGACGACG	CGTCGTGTCGTCCGTTAGACAGTC
	3053	AGCTGTTAGGACCCGACAACCGGT	ACCGGTTGTCGGGTCCTAACAGCT
	3054	TTGCGTAGTGTGGGCATTTCCTCT	AGAGGAAATGCCCACACTACGCAA
25	3055	ATGCGCGCTTCTTTCCTTGATGTA	TACATCAAGGAAAGAAGCGCGCAT
	3056	TTAAGGGCGTCCGCGTCTATTCAG	CTGAATAGACGCGGACGCCCTTAA
	3057	ACCTTTAAACTTGTACCGCGGCCC	GGGCCGCGGTACAAGTTTAAAGGT
	3058	AGGGATGCAGAGGCACCACATGTT	AACATGTGGTGCCTCTGCATCCCT
	3059	CGGTTCGACGTATGAGCATCCGCA	TGCGGATGCTCATACGTCGAACCG
30	3060	CAGGGCGATAGTCACATGGAGGTT	AACCTCCATGTGACTATCGCCCTG
	3061	GCTTGACTGCCCCGTTTCATATGT	ACATATGAAACGGGGCAGTCAAGC
	3062	CGAAGGGTTGTGCAATTACCCGA	TCGGGTAATTGCACAACCCCTTCG
	3063	AAAACGCACCGCAATGACAAAATT	AATTTTGTCATTGCGGTGCGTTTT
	3064	ATTCCTGGACAAGACCCTCAACCG	CGGTTGAGGGTCTTGTCCAGGAAT
35	3065	CCTACCTGCCTGCTAGCGGTGAGG	CCTCACCGCTAGCAGGCAGGTAGG
	3066	GCTCGTAAATGGGGAGGAATTGGA	TCCAATTCCTCCCCATTTACGAGC
	3067	ACATGAAAACAGGCTCAATTGGGG	CCCCAATTGAGCCTGTTTTCATGT
	3068	GTTCCGCACATGGATTGAGGTCTC	GAGACCTCAATCCATGTGCGGAAC
	3069	GGCACCCAATACCACGAAGAAGAA	TTCTTCTTCGTGGTATTGGGTGCC
40	3070	AGGGCATTTCGAACTCCATCTTT	AAAGATGGAGTTCGAAATGCCCCT
	3071	CATCATCACAAAGGAACGTCGGTG	CACCGACGTTCCTTTGTGATGATG

	3072	TAAAGACCCACCGTCAGCAGCAGC	GCTGCTGACGGTGGGTCTTTA
	3073	CCCCAGGCGTAATGCACCACATAG	CTATGTGGTGCATTACGCCTGGGG
	3074	GCAGGTCGAACGCTAGTGGTTGAA	TTCAACCACTAGCGTTCGACCTGC
	3075	GGAACTTAGGAGTTCACGTCGCCA	TGGCGACGTGAACTCCTAAGTTCC
5	3076	GCAGATACGGCTAGCTGAGGTGGC	GCCACCTCAGCTAGCCGTATCTGC
	3077	CACAGGCCTAGAGCCTCGGCGTTC	GAACGCCGAGGCTCTAGGCCTGTG
	3078	GTTTTGCGCGCATGAGGTTCATTA	TAATGAACCTCATGCGCGCAAAAC
	3079	TTGCGCCTGATGCCAGCAGTACTA	TAGTACTGCTGGCATCAGGCGCAA
	3080	GATATCAGGCTTTCCCACTGCCGC	GCGGCAGTGGGAAAGCCTGATATC
10	3081	TGCGCGGAGACGGAGATCTATGAA	TTCATAGATCTCCGTCTCCGCGCA
	3082	CATTGGTGTTGGCTGAGAGTGGAC	GTCCACTCTCAGCCAACACCAATG
	3083	GTCGGCACTTGGGCACCATTAATA	TATTAATGGTGCCCAAGTGCCGAC
	3084	ATCGATCGGTGTCTCACCACGGAG	CTCCGTGGTGAGACACCGATCGAT
	3085	CGTAGCCTTCCACCGTGTCGATAG	CTATCGACACGGTGGAAGGCTACG
15	3086	CGCTCTCCGTCTGAGGAAAAGGGG	CCCCTTTCCTCAGACGGAGAGCG
	3087	TCGCCCAGCCAAGGATATATTGC	GCAATATATCCTTGGCTGGGGCGA
	3088	TCTCTTGCAAGGAACTCTGCCGTC	GACGCAGAGTTCCTTGCAAGAGA
	3089	GTCCTGGACAGACGGAGGGTGTTA	TAACACCCTCCGTCTGTCCAGGAC
	3090	GCCAAATTAAGCGGGCTCGTAATC	GATTACGAGCCCGCTTAATTTGGC
20	3091	CCATTTGTTGACCGATGGGAGGGG	CCCCTCCCATCGGTCAACAAATGG
	3092	TGGTCAAAAGAGCACGATCCAGGA	TCCTGGATCGTGCTCTTTTGACCA
	3093	CGCTACTAAGACGCCCCTGTCCAC	GTGGACAGGGGCGTCTTAGTAGCG
	3094	CATACCTCCCGCTTGGATTCACTG	CAGTGAATCCAAGCGGGAGGTATG
	3095	CCGCGGAAGGAATGTCATCTACAA	TTGTAGATGACATTCCTTCCGCGG
25	3096	CACGGGACATTCATTCACAGGACG	CGTCCTGTGAATGAATGTCCCGTG
	3097	AGGAGTCACCCACTCCGCACAAAA	TTTTGTGCGGAGTGGGTGACTCCT
	3098	TCATGACAGCGCACCCCATACCAT	ATGGTATGGGGTGCGCTGTCATGA
	3099	GGTAGGGGACTATCGATCGTGCTG	CAGCACGATCGATAGTCCCCTACC
	3100	ATGTCTCACTACCGCACGTAGCGG	CCGCTACGTGCGGTAGTGAGACAT
30	3101	ACGGAGGAGCGACTCGTTCGCTGC	GCAGCGAACGAGTCGCTCCTCCGT
	3102	GAAGTCTGTCGCCGGTGGACGGAC	GTCCGTCCACCGGCGACAGACTTC
	3103	CCGTAACGTGTATTCGGACGAGCG	CGCTCGTCCGAATACACGTTACGG
	3104	CGTGGAAGCGACTTAACCAATCGT	ACGATTGGTTAAGTCGCTTCCACG
	3105	GGCATGGGCTATGCCTCACACTAG	CTAGTGTGAGGCATAGCCCATGCC
35	3106	GGGTCGTATTTCAGCATCGTTCGT	ACGAACGATGCTGAAATACGACCC
-	3107.	AATGGTCGCGCAAACCGTAAGAAT	ATTCTTACGGTTTGCGCGACCATT
	3108	CTGGATTCGGTACGTCCAACGTTT	AAACGTTGGACGTACCGAATCCAG
	3109	CGCAAAAACACCCGTAGCCAAGAA	TTCTTGGCTACGGGTGTTTTTGCG
	3110	TATGGATACGCTTTTGGACTGGGC	GCCCAGTCCAAAAGCGTATCCATA
40	3111	GCTTCAAACGCGCTTCACGCTGGT	ACCAGCGTGAAGCGCGTTTGAAGC
	3112	TACAGCCCGCTCTACCTCGCCACC	GGTGGCGAGGTAGAGCGGGCTGTA

ſ	3113	TCAACCGATGTCAAAATGCACGTT	AACGTGCATTTTGACATCGGTTGA
ļ	3114	AGCTCTCTCCGAAGTAGGGCGGTA	TACCGCCCTACTTCGGAGAGAGCT
Ì	3115	ACGCACACATGGAGACTTGGCTCC	GGAGCCAAGTCTCCATGTGTGCGT
ļ	3116	TTCTTGAAAGCTAGTGGGGCGCTA	TAGCGCCCCACTAGCTTTCAAGAA
5	3117	CAATCACGGCTGGGCTATTCTGTG	CACAGAATAGCCCAGCCGTGATTG
	3118	GTGGCGACCCGTCGGTGAAAGAGT	ACTCTTTCACCGACGGGTCGCCAC
	3119	CGTCGAATGCCGAACCAGTTAAGT	ACTTAACTGGTTCGGCATTCGACG
	3120	TGCGTATTTGCATGCTCACAGCTG	CAGCTGTGAGCATGCAAATACGCA
	3121	CGCAGTTGGTTTGTGCACGGCTGC	GCAGCCGTGCACAACCAACTGCG
10	3122	GTTTTCCGTGAAAACTGGCATCG	CGATGCCAGTTTTCACGGAAAAAC
	3123	ACAGGTTCCTCCACCACGATTTGA	TCAAATCGTGGTGGAGGAACCTGT
	3124	CTAGCGCGCTTTTAGGTCCTTGCG	CGCAAGGACCTAAAAGCGCGCTAG
	3125	CAAAATCAAAGGGATCAACCGGTG	CACCGGTTGATCCCTTTGATTTTG
	3126	AACGTAACCCCAGTGAGTCAGGCA	TGCCTGACTCACTGGGGTTACGTT
15	3127	TCAACCGGTGCACTTTAGAACGCC	GGCGTTCTAAAGTGCACCGGTTGA
	3128	ATCGCAAAGTTGCAGGCGAATACT	AGTATTCGCCTGCAACTTTGCGAT
	3129	ATATGTCCCTGGGTGCTGCACAAC	GTTGTGCAGCACCCAGGGACATAT
	3130	TGGCACTTTGTAGTGCTGCGGTGG	CCACCGCAGCACTACAAAGTGCCA
	3131	ACGCACGACGTCCTTCTAAGCTCG	CGAGCTTAGAAGGACGTCGTGCGT
20	3132	CCCACGTGCACTATAGGGATTTCG	CGAAATCCCTATAGTGCACGTGGG
	3133	CCGCGCTTGGTCAGTCATCCTTGC	GCAAGGATGACTGACCAAGCGCGG
	3134	AGCGGCTCAGGGAATAACAACAGG	CCTGTTGTTATTCCCTGAGCCGCT
	3135	ACAACGCGATCGGAGGCAACCAGT	ACTGGTTGCCTCCGATCGCGTTGT
	3136	AGCAATTGCCTCCGTAGAAACCCA	TGGGTTTCTACGGAGGCAATTGCT
25	3137	GAGTCGTGGCATCGCCTGCTATCG	CGATAGCAGGCGATGCCACGACTC
	3138	TCTATGCAAATACTGCGCTTGCGA	TCGCAAGCGCAGTATTTGCATAGA
	3139	TCAGCTTAAGTTACGGTGTGGCCG	CGGCCACACCGTAACTTAAGCTGA
	3140	TCCAAGGTCGAACAGGGATCAGAA	TTCTGATCCCTGTTCGACCTTGGA
	3141	GTTAGGCTGGCGTCAATAGCGCTT	AAGCGCTATTGACGCCAGCCTAAC
30	3142	GGTGTCATAAGGAAGAGGGCATCG	CGATGCCCTCTTCCTTATGACACC
	3143	CCGGCGGCTAGATCAATATTTCT	AGAAATATTGATCTAGCCCGCCGG
	3144	CTAACGTCAAGTTTTACGCCCCGA	TCGGGGCGTAAAACTTGACGTTAG
	3145	GCAGCACAGTTTTCCGATTTGCGG	CCGCAAATCGGAAAACTGTGCTGC
	3146	CGCACGCAAGGGGAGGGATGACTG	CAGTCATCCCTCCCCTTGCGTGCG
35	3147	CGGGGCCGAAAAGGACGTCACAAG	CTTGTGACGTCCTTTTCGGCCCCG
	3148	TTCTCCAACACGGCTAACCGGTAG	CTACCGGTTAGCCGTGTTGGAGAA
	3149	TTACAGCCTGGCCCGAGGTAGTTG	CAACTACCTCGGGCCAGGCTGTAA
	3150	TTTCGGGCAGCATGAGTTATCGAA	TTCGATAACTCATGCTGCCCGAAA
	3151	CTACTGGACGCCCTGCTTCGAAGT	ACTTCGAAGCAGGGCGTCCAGTAG
40	3152	GGTCGTCCGACGTGAAAAGACCAA	TTGGTCTTTTCACGTCGGACGACC
l	3153	GTTTTCGAGCTCTTTCTCCGCAGG	CCTGCGGAGAAAGAGCTCGAAAAC

	3154	GCGTGAAGGTACCCAGTGTCACAG	CTGTGACACTGGGTACCTTCACGC
	3155	TTTCTGAACGCTTCGACGCAACAC	GTGTTGCGTCGAAGCGTTCAGAAA
	3156	TGCTAATAAGCACGCCTAGCCCGT	ACGGCTAGGCGTGCTTATTAGCA
	3157	AAATTAATTGTGGTGGCTCCGGCG	CGCCGGAGCCACCACAATTAATTT
	3158	TTACAATCCTCGGGCTCACTGACA	TGTCAGTGAGCCCGAGGATTGTAA
	3159	GCTGAAGGACAAGGCGTGGGCAAC	GTTGCCCACGCCTTGTCCTTCAGC
	3160	GGGATAGGAGACCCTCGCAATGGT	ACCATTGCGAGGGTCTCCTATCCC
	3161	TTGCAGTACGTCCTTGCGCATGAA	TTCATGCGCAAGGACGTACTGCAA
l	3162	TTGATCACTGGATTGGGTGCGAAC	GTTCGCACCCAATCCAGTGATCAA
	3163	TCTGCAGACGTTGCGAGAGATGAT	ATCATCTCTCGCAACGTCTGCAGA
	3164	AGTCTAGCAGGGATCGAAGCGGAT	ATCCGCTTCGATCCCTGCTAGACT
	3165	GGGGTCCCGCAACAACTAATGAAG	CTTCATTAGTTGTTGCGGGACCCC
	3166	CAACCTCTTATGTGGTGTGCGCGA	TCGCGCACACCACATAAGAGGTTG
	3167	CTCGCTGGGTTGCTGGAGTAGCAC	GTGCTACTCCAGCAACCCAGCGAG
	3168	CGTTGTATTGTGCAACGCGAAGTT	AACTTCGCGTTGCACAATACAACG
l	3169	GGGCTCAAAGTGCCTGAGTCGAAA	TTTCGACTCAGGCACTTTGAGCCC
	3170	CTGCTGTGCCCTCTCAGTGAGAGC	GCTCTCACTGAGAGGGCACAGCAG
	3171	CGGACGTACTGTTCGGAGTCCTCA	TGAGGACTCCGAACAGTACGTCCG
	3172	GTATACCACCATACCGGGACCGCA	TGCGGTCCCGGTATGGTGGTATAC

5

10

TABLE 3

	Seq. ID No.	Decoder Sequence (5'-3')	Probe Sequence (5'-3')
	17	TTCGCCGTCGTGTAGGCTTTTCAA	TTGAAAAGCCTACACGACGGCGAA
	18	GTTCCCAGTGAAGCTGCGATCTGG	CCAGATCGCAGCTTCACTGGGAAC
5	19	TACTTGGCATGGAATCCCTTACGC	GCGTAAGGGATTCCATGCCAAGTA
	20	ACTAGCATATTTCAGGGCACCGGC	GCCGGTGCCCTGAAATATGCTAGT
Į.	21	GAACGGTCAATGAACCCGCTGTGA	TCACAGCGGGTTCATTGACCGTTC
ĺ	22	GCGGCCTTGGTTCAATATGAATCG	CGATTCATATTGAACCAAGGCCGC
[23	GATCGTTAGAGGGACCTTGCCCGA	TCGGGCAAGGTCCCTCTAACGATC
10	24	TGGACCTAGTCCGGCAGTGACGAA	TTCGTCACTGCCGGACTAGGTCCA
. [25	ATAAACTACCCAGGACGGGCGGAA	TTCCGCCCGTCCTGGGTAGTTTAT
į	26	CATCGGTTCGCGCCAATCCAGATA	TATCTGGATTGGCGCGAACCGATG
	27	GTCGGGCATAGAGCCGACCACCCT	AGGGTGGTCGGCTCTATGCCCGAC
l	28	CTTGGGTCATGATTCACCGTGCTA	TAGCACGGTGAATCATGACCCAAG
15	29	TGCCTAACGTGCTAATCAGCAGCG	CGCTGCTGATTAGCACGTTAGGCA
[30	CGCATGTTGGAGCATATGCCCTGA	TCAGGGCATATGCTCCAACATGCG
	31	AGCCACTGCATCAGTGCTGTTCAA	TTGAACAGCACTGATGCAGTGGCT
[32	GGTTGTTTTGAGGCGTCCCACACT	AGTGTGGGACGCCTCAAAACAACC
	33	TCGACCAAGAGCAAGGGCGGACCA	TGGTCCGCCCTTGCTCTTGGTCGA
20	34	GACATCGCTATTGCGCATGGATCA	TGATCCATGCGCAATAGCGATGTC
	35	GAAATACGAAGTCTGCGGGAGTCG	CGACTCCCGCAGACTTCGTATTTC
	36	TGTCATGAATGATTGATCGCGCGA	TCGCGCGATCAATCATTCATGACA
ļ	37	ATATCGGGATTCGTTCCCGGTGAA	TTCACCGGGAACGAATCCCGATAT
]	38	GCGAGCGTACCGAAGGGCCTAGAA	TTCTAGGCCCTTCGGTACGCTCGC
25	39	TTACCGGCAGCGGACTTCCGAATT	AATTCGGAAGTCCGCTGCCGGTAA
	40	GTAATCGAGAGCTGCGCGCCGTCT	AGACGGCGCGCAGCTCTCGATTAC
	41	CCTGTTAGCGTAGGCGAGTCGATC	GATCGACTCGCCTACGCTAACAGG
	42	TAGCGGACCGGCAGAATGAGTTCC	GGAACTCATTCTGCCGGTCCGCTA
į	43	GGTACATGCACTACGCGCACTCGG	CCGAGTGCGCGTAGTGCATGTACC
30	44	AATTCATCTCGGACTCCCGCGGTA	TACCGCGGGAGTCCGAGATGAATT
ļ	45	GCCAAATCTGGATTGGCAGGAATG	CATTCCTGCCAATCCAGATTTGGC
	46	TGCATTTTCGGTTGAGGCACATCC	GGATGTGCCTCAACCGAAAATGCA
1	47	CCGCTCAATTCACCATGCTTCGCT	AGCGAAGCATGGTGAATTGAGCGG
.	48	CTCGGAAAGGTGCAACTTTGGTGT	ACACCAAAGTTGCACCTTTCCGAG
35	49	AATTCGACCAGCAGAACGTCCCAT	ATGGGACGTTCTGCTGGTCGAATT
	50	GCCAGAGTCTCAACCTCACGGGAT	ATCCCGTGAGGTTGAGACTCTGGC
ļ	51	CCAACAACTGGAACGGGAACCCGC	GCGGGTTCCCGTTCCAGTTGTTGG
	52	GAGAACTGATCGCTGAGGGGCATG	CATGCCCCTCAGCGATCAGTTCTC
	53	GGCACACTAGACTTGTGGCACCGA	TCGGTGCCACAAGTCTAGTGTGCC

1	54	TCACATCCAAATATGGTCCGCGAA	TTCGCGGACCATATTTGGATGTGA
	55	GTCTGCCGGTGTGACCGCTTCATT	AATGAAGCGGTCACACCGGCAGAC
	56	CATCGCAGAGCATAAACACCCTCA	TGAGGGTGTTTATGCTCTGCGATG
	57	GTTGGTATCTATGGCAGAGGCGGA	TCCGCCTCTGCCATAGATACCAAC
5	58	ACGAGGTGCCGCTGAGGTTCCATT	AATGGAACCTCAGCGGCACCTCGT
	59	GGAATGAGTGGACCCAGGCACATT	AATGTGCCTGGGTCCACTCATTCC
	60	TGTCAATATGCGTCCGTGTCGTCT	AGACGACACGGACGCATATTGACA
	61	TGATGAGCCTCAGGGTACGAGGCA	TGCCTCGTACCCTGAGGCTCATCA
	62	CACCGCGGTGTTCCTACAGAATGA	TCATTCTGTAGGAACACCGCGGTG
10	63	TTGTTGCCAATGGTGTCCGCTCGG	CCGAGCGGACACCATTGGCAACAA
	64	TTAACCTGCGTCTGCCCCTTTCCT	AGGAAAGGGGCAGACGCAGGTTAA
	65	AGGCGCGTTCCTGCCTTAGTGACG	CGTCACTAAGGCAGGAACGCGCCT
	66	TAGGGCGATGGCACGAAGCTTCAA	TTGAAGCTTCGTGCCATCGCCCTA
	67	TGCATAGAGCCAAAGTCGGCGATG	CATCGCCGACTTTGGCTCTATGCA
15	68	TTGAGAGGCAGGTGGCCACACGGA	TCCGTGTGGCCACCTGCCTCTCAA
	69	TCCGCATTGTGAGAAAAAACGAGC	GCTCGTTTTTTCTCACAATGCGGA
	70	GGCGGTTTCCGTAGCTATAGGTGC	GCACCTATAGCTACGGAAACCGCC
	71	GGTGAAAATTTCGTAGCCACGGGC	GCCCGTGGCTACGAAATTTTCACC
	72	CCGACGGAGGATGAAGACAATCAC	GTGATTGTCTTCATCCTCCGTCGG
20	73	CCAGTTTGGCCCAATTCGCCAAAA	TTTTGGCGAATTGGGCCAAACTGG
	74	GGATCTATTAGGCCGTGCGCACAG	CTGTGCGCACGGCCTAATAGATCC
	75	CGGATGTCACCGTTTGGACTTTCA	TGAAAGTCCAAACGGTGACATCCG
	76	ATCGCAAATCCTGCTCGTCCCTAA	TTAGGGACGAGCAGGATTTGCGAT
	77	CAGGGCATGCAATAATCGAGGTTC	GAACCTCGATTATTGCATGCCCTG
25	78	CATGCGTTGATATATGGGCCCAAG	CTTGGGCCCATATATCAACGCATG
	79	CAGCTGCAGCTTGTGACCAACCAC	GTGGTTGGTCACAAGCTGCAGCTG
	80	TTGTATGTCTGCCGACCGGCGACC	GGTCGCCGGTCGGCAGACATACAA
	81	GATGGCGCCCGTTGATAGGTATGG	CCATACCTATCAACGGCCCCATC
	82	ATGAGAATCGCCGGCAATCTGCTA	TAGCAGATTGCCGGCGATTCTCAT
30	83	ATTTGCACTGACCGCAGGCTCGTG	CACGAGCCTGCGGTCAGTGCAAAT
,	84	CAGGGAGAACGGTTAAGTTCCCGT	ACGGGAACTTAACCGTTCTCCCTG
	85	AGGCCGCCGATCGAGGAGTTTGGT	ACCAAACTCCTCGATCGCCGGCCT
	86	ACACGGTGGTCTCTGATAGCGACC	GGTCGCTATCAGAGACCACCGTGT
	87	GTGCAACGCCGAGGACTTCCATCA	TGATGGAAGTCCTCGGCGTTGCAC
35	88	TCGGTGCCTGATAGCCATTCCGAT	ATCGGAATGGCTATCAGGCACCGA
	. 89	TGAAATACCACACAGCCAATTGGC	GCCAATTGGCTGTGTGGTATTTCA
	90	GCATCGTGTACATGACTGCCGCGA	TCGCGGCAGTCATGTACACGATGC
	91	CAGTGTTCTAACGGCGCGCGTGAA	TTCACGCGCGCCGTTAGAACACTG
	92	CGCTTGCAACGTTGCACCTACTCT	AGAGTAGGTGCAACGTTGCAAGCG
40	93	CGAAAAACTAGTGGGCTCGCCGCG	CGCGGCGAGCCCACTAGTTTTCG
l	94	CTTTCAGGGGAACTGCCGGAGTCG	CGACTCCGGCAGTTCCCCTGAAAG

ټ

ſ	95	TTGTGGCCTTCTTGTAAAGGCACG	CGTGCCTTTACAAGAAGGCCACAA
<u> </u>	96	TCCACGAACGGCGACCCGTTGTCT	AGACAACGGGTCGCCGTTCGTGGA
Ī	97	CGACCTTGCACGAAACCTAACGAG	CTCGTTAGGTTTCGTGCAAGGTCG
<u> </u>	98	GTGCAGCTTCACGAGCCAGCCTGA	TCAGGCTGGCTCGTGAAGCTGCAC
5	99	CGCTTTCGTGCGAATAGACGATGA	TCATCGTCTATTCGCACGAAAGCG
Ţ	100	TGCGCTTACAGGCTCCTAGTGGTC	GACCACTAGGAGCCTGTAAGCGCA
	101	CACGCGCTTAGTCGCGATCGCATA	TATGCGATCGCGACTAAGCGCGTG
Ī	102	CGGAGGGAGGAGCTAGCCTTCGA	TCGAAGGCTAGCTCCCTCCG
Ī	103	GCATCCGGCCTGT.TGATGACGCCT	AGGCGTCATCAACAGGCCGGATGC
10	104	AGGCCAATCGATCTTATTGCCGAG	CTCGGCAATAAGATCGATTGGCCT
	105	CCTTCCAATGATTGCATACGCCCA	TGGGCGTATGCAATCATTGGAAGG
	106	AACACTTGATCAGGCGGGTCGTCT	AGACGACCCGCCTGATCAAGTGTT
	107	TGGAATCAAGGCCGTAAAGGACAG	CTGTCCTTTACGGCCTTGATTCCA
Ī	108	GCTCCCGTAACCTGTCCACCAGTG	CACTGGTGGACAGGTTACGGGAGC
15	109	AGTGGTGAATGGCCGCTACCCTGA	TCAGGGTAGCGGCCATTCACCACT
	110	TGTTGAAGCGAGCTAAAACGGCCA	TGGCCGTTTTAGCTCGCTTCAACA
	111	CAGCGCTCCAGAATTGACAGCAAT	ATTGCTGTCAATTCTGGAGCGCTG
	2	TTCGAAGCGCACGTCCCTTTTCAA	TTGAAAAGGGACGTGCGCTTCGAA
	3	AACGCGTGGGGAATGGGACATCAA	TTGATGTCCCATTCCCCACGCGTT
20	114	CACGAGATACCGGCGTAAGGGTGG	CCACCCTTACGCCGGTATCTCGTG
·	115	CTACGGCAAACGTGTGGAATGGGT	ACCCATTCCACACGTTTGCCGTAG
	116	GTAGGGCGATGACGGCGAACTAC	GTAGTTCGCCCGTCATCGCCCTAC
	117	AATCGACCTCCGCACACATTCGCA	TGCGAATGTGTGCGGAGGTCGATT
	118	GAGTCAGCATGGCGGCGGAGATTC	GAATCTCCGCCGCCATGCTGACTC
25	119	AGATAAAGACGCTGGCAACACGGG	CCCGTGTTGCCAGCGTCTTTATCT
	120	GGTACCTCAACGCGAACCACTTGT	ACAAGTGGTTCGCGTTGAGGTACC
	121	AAGCGATGGCTACCCAAGAGCGAT	ATCGCTCTTGGGTAGCCATCGCTT
	122	AGAGCTTATGCAGAACCAGGCGCC	GGCGCCTGGTTCTGCATAAGCTCT
	123	ATCGGTCTCACGCAGGGTTGGATA	TATCCAACCCTGCGTGAGACCGAT
30	124	TAGGTTGCCCGCCAGAAGAAACAT	ATGTTTCTTCTGGCGGGCAACCTA
	125	CGGTGCTGTTGCAAAAGCCTGTAG	CTACAGGCTTTTGCAACAGCACCG
	126	TGATGAAAGTTTGCGGCAGGACAC	GTGTCCTGCCGCAAACTTTCATCA
	127	GTTGAGTGCAGGATGCAGCGATAG	CTATCGCTGCATCCTGCACTCAAC
	128	AACATTGCGCGGTCCACCAGGGTT	AACCCTGGTGGACCGCGCAATGTT
35	129	GGGCAGTTAGAGAGGGCCAGAAGT	ACTTCTGGCCCTCTCTAACTGCCC
	130	TCGAGCTGGTCCCCGTGAACGTGT	ACACGTTCACGGGGACCAGCTCGA
	131	GTCTTGGGGGCCGCTTAGTGAAAA	TTTTCACTAAGCGGCCCCCAAGAC
	132	ACTGTTGGCTTGCTCTCATGTCCA	TGGACATGAGAGCAAGCCAACAGT
	133	AGGACCATTCGGAAGGCGAAGATA	TATCTTCGCCTTCCGAATGGTCCT
40	134	CTTGGGAGGCATCCGCTATAAGGA	TCCTTATAGCGGATGCCTCCCAAG
1	135	AATAAACGGAACGCACCGCTACAG	CTGTAGCGGTGCGTTCCGTTTATT

F			TOOTTATOOCCACOCCACOTACAA
ŀ	136		TGCTTATGGGGACCGCACGTACAA
	137	CGCACCAAACTGAGTTTCCCAGAC	GTCTGGGAAACTCAGTTTGGTGCG
].	138	ACCTGATCGTTCCCCTATTGGGAA	TTCCCAATAGGGGAACGATCAGGT
1	139	GGAACAGAGGCGAGGGGACTGAGC	GCTCAGTCCCCTCGCCTCTGTTCC
5	140	CCCTGCCTTGGCGTGTCGGCTTAT	ATAAGCCGACACGCCAAGGCAGGG
	141	ACTCTGACACGCCAACTCCGGAAG	CTTCCGGAGTTGGCGTGTCAGAGT
	142	CTGACGGTTTTCATTCGGCGTGCC	GGCACGCCGAATGAAAACCGTCAG
	143	TGCGGTGGTTCATTGGAGCTGGCC	GGCCAGCTCCAATGAACCACCGCA
	144	GCATGGCCAACTAGTGACTCGCAA	TTGCGAGTCACTAGTTGGCCATGC
10	145	AGGCCGTAAAGCGAATCTCACCTG	CAGGTGAGATTCGCTTTACGGCCT
	146	CGAATATTATGCCGAGAATCCGCG	CGCGGATTCTCGGCATAATATTCG
	147	ACAGACGAGCTCCCAACCACATGA	TCATGTGGTTGGGAGCTCGTCTGT
[148	GGACGGTTTGTGCTGGATTGTCTG	CAGACAATCCAGCACAAACCGTCC
[149	AAAGGCTATTGAGTTGGTTGGGCG	CGCCCAACCAACTCAATAGCCTTT
15	150	GATGGCCTATTCGGAGATCGGGCC	GGCCCGATCTCCGAATAGGCCATC
	151	GATCCAGTAGGCAGCTTCATCCCA	TGGGATGAAGCTGCCTACTGGATC
	152	AATAACTCGCGCGGGTATGCTTCT	AGAAGCATACCCGCGCGAGTTATT
	153	GGAGGAGGTTTGTCTCGGAAAGCA	TGCTTTCCGAGACAAACCTCCTCC
Ī	154	CTTTGGTATGGCACATGCTGCCCG	CGGGCAGCATGTGCCATACCAAAG
20	155	AGAAAGGCTCGAGCAACGGGAACT	AGTTCCCGTTGCTCGAGCCTTTCT
	156	AATCTACCGCACTGGTCCGCAAGT	ACTTGCGGACCAGTGCGGTAGATT
	157	CGTGGCGCCACAGTTTTTGGAGG	CCTCCAAAAACTGTGGCCGCCACG
	158	TTGCAGTTCAATCCATACGCACGT	ACGTGCGTATGGATTGAACTGCAA
	159	GGCCCAAAGCCCCAGACCATTTTA	TAAAATGGTCTGGGGCTTTGGGCC
25	160	CGCCTGTCTTTGTCTCCGGACAAT	ATTGTCCGGAGACAAGACAGGCG
	161	TGAGGCAACAGGGGCCAAAAACTA	TAGTTTTTGGCCCCTGTTGCCTCA
	162	AGCGGAAGTAGTCCTCGGCTCGTC	GACGAGCCGAGGACTACTTCCGCT
	163	GGCCCCAAGGCTTAGAGATAGTGG	CCACTATCTCTAAGCCTTGGGGCC
Ī	164	GCACGTGAAGTTTAACCGCGATTC	GAATCGCGGTTAAACTTCACGTGC
30	<u>.1</u> 65	AGCGGCAGAAACGTTCCTTGACGG	CCGTCAAGGAACGTTTCTGCCGCT
Ī	166	TCGTCGAGCAGACGAGATTGCACG	CGTGCAATCTCGTCTGCTCGACGA
Ī	167	TCTTTGCCGCGTAACTGACTGCTT	AAGCAGTCAGTTACGCGGCAAAGA
Ţ	168	TTTATGTGCCAAGGGGTTAACCGA	TCGGTTAACCCCTTGGCACATAAA
	169	TGTTACTGTGGTTCACGGCAGTCC	GGACTGCCGTGAACCACAGTAACA
35	170	CGCGCCTCGCTAGACCTTTTATTG	CAATAAAAGGTCTAGCGAGGCGCG
Ī	171	ACAAATGCGTGAGAGCTCCCAACT	AGTTGGGAGCTCTCACGCATTTGT
Ī	172	CGCGCAGATTATAGACCCGAATGT	ACATTCGGGTCTATAATCTGCGCG
	173	CAAATAACGCCGCTGAATCGGCGT	ACGCCGATTCAGCGGCGTTATTTG
ļ	174		AACATCATCACCGATGCACGAAGG
40	175	TGAACACGAGCAACACTCCAACGC	GCGTTGGAGTGTTGCTCGTGTTCA
	176	CAGCAGATCCTTCGTAGCGGTCGT	ACGACCGCTACGAAGGATCTGCTG
L			<u></u>

	177	GGAACCTGGTGAGTTGTGCCTCAT	ATGAGGCACAACTCACCAGGTTCC
	178	TCATAAGCGACAATCGCGGGCTTA	TAAGCCCGCGATTGTCGCTTATGA
	179	CCCAACGTCACTGAAGCTCACAGT	ACTGTGAGCTTCAGTGACGTTGGG
	180	TGTCAGAGCCCGCGACTCAGACGG	CCGTCTGAGTCGCGGGCTCTGACA
5	181	TACACGAAGCCTCTCCGTGGTCCA	TGGACCACGGAGAGGCTTCGTGTA
	182	CTCAGAAGTCCTCGGCGAACTGGG	CCCAGTTCGCCGAGGACTTCTGAG
	183	ATCCTTTTATCTACTCCGCGGCGA	TCGCCGCGGAGTAGATAAAAGGAT
	_ 184	AGGCGTGCAGCAACAGGATAAACC	GGTTTATCCTGTTGCTGCACGCCT
	185	ACTCTCGAGGGAGTCTCTGGCACA	TGTGCCAGAGACTCCCTCGAGAGT
10	186	TTGCCAGGTCCATCGAGACCTGTT	AACAGGTCTCGATGGACCTGGCAA
	187	TCCACTATAACTGCGGGTCCGTGT	ACACGGACCCGCAGTTATAGTGGA
	188	GCCCAGTCGGCTCTAACAAGTTCG	CGAACTTGTTAGAGCCGACTGGGC
	189	CGGAACGGATAATCGGCGTCAGGT	ACCTGACGCCGATTATCCGTTCCG
	190	TAAAATAAGCGCCTGGCGGGAGGA	TCCTCCGCCAGGCGCTTATTTTA
15	191	GCGCACTCGTGAAACCTTTCTCGC	GCGAGAAAGGTTTCACGAGTGCGC
	192	AGTTTGCCAGGTACTGGCAAGTGC	GCACTTGCCAGTACCTGGCAAACT
	193	ACAACGAGGGATGTCCAGCGGCAT	ATGCCGCTGGACATCCCTCGTTGT
	194	TTCGCAGCACCCGCTAGGTACAGT	ACTGTACCTAGCGGGTGCTGCGAA
	195	TAACCCGATTTTTGCGACTCTGCC	GGCAGAGTCGCAAAAATCGGGTTA
20	196	CGTCGCATTGCAAGCGTAGGCTTG	CAAGCCTACGCTTGCAATGCGACG
	197	GAGCTGACGTCACCATCAGAGGAA	TTCCTCTGATGGTGACGTCAGCTC
	198	GGAGGCTGGGGGTCGCGCTTAAGT	ACTTAAGCGCGACCCCCAGCCTCC
	199	TTGTGGGAACCGCACTAGCTGGCT	AGCCAGCTAGTGCGGTTCCCACAA
	200	CCCTCGCACTGTGTTCACCCTCTT	AAGAGGGTGAACACAGTGCGAGGG
25	201	TCATTGACTCGAATCCGCACAACG	CGTTGTGCGGATTCGAGTCAATGA
	202	ACAGGGGTTGGCCTTCGTACGTAC	GTACGTACGAAGGCCAACCCCTGT
	203	AGGCCGTGCAACATCACACAGGAT	ATCCTGTGTGATGTTGCACGGCCT
	204	GGGCCGTGGTCACGTAATATTGGC	GCCAATATTACGTGACCACGGCCC
	205	GCGCGGACATGAAACGACAAGGCC	GGCCTTGTCGTTTCATGTCCGCGC
30	206	CTTATTGGGTGCCGGTGTCGGATT	AATCCGACACCGGCACCCAATAAG
i	207	GGGGCGGTTACCAAAAAATCCGAT	ATCGGATTTTTTGGTAACCGCCCC
	4	CCGTCGCATACCGGCTACGATCAA	TTGATCGTAGCCGGTATGCGACGG
	5	ATGGCCGTGCTGGGGACAAGTCAA	TTGACTTGTCCCCAGCACGGCCAT
	210	ACGAAAAAGTGTGCGGATCCCCT	AGGGGATCCGCACACTTTTTCGT
35	211	CCAAGTACACCGCACGCATGTTTA	TAAACATGCGTGCGGTGTACTTGG
	212	ATCGTGCGTGGAGTGTCGCATCTA	TAGATGCGACACTCCACGCACGAT
	213	TCCAGATACCGCCCGAACTTTGA	TCAAAGTTCGGGGCGGTATCTGGA
	214	TCTGCTGGCAGCACGTGAAGTGGC	GCCACTTCACGTGCTGCCAGCAGA
	215	TTGAAATTGCTCTGCCGTCAGTCA	TGACTGACGGCAGGCAATTTCAA
40	216	AGTCAGGCGAGATGTTCAGGCAGC	GCTGCCTGAACATCTCGCCTGACT
	217	ACAAGCCGACGTTAAGCCCGCCCA	TGGGCGGCTTAACGTCGGCTTGT

			·
	218	CCCTAATGAGGCCAGTAACCTGCA	TGCAGGTTACTGGCCTCATTAGGG
	219	GTGAGACACACATCCCCTCCAATG	CATTGGAGGGGATGTGTGTCTCAC
	220	CGACGGATGCAGAGTTCAGTGGTC	GACCACTGAACTCTGCATCCGTCG
	221	CCCGCATGCCTGGCGGTATTACAA	TTGTAATACCGCCAGGCATGCGGG
5	222	TTAGCAAAGCGGCGCCGTTAGCAA	TTGCTAACGGCGCCGCTTTGCTAA
1	223	CCCGACACGGGTCAGCGTAATAAT	ATTATTACGCTGACCCGTGTCGGG
	224	GCGACGCCCTGAGGTATGTCGTC	GACGACATACCTCAGGGCCGTCGC
	225	CAAAAGTGTGTTCCCTTGCGCTTG	CAAGCGCAAGGGAACACACTTTTG
	226	TCTCGAAGCACAGCCCGGTTATTG	CAATAACCGGGCTGTGCTTCGAGA
10	227	ATGCTAACCGTTGGCCATGGAACT	AGTTCCATGGCCAACGGTTAGCAT
	228	CTTGCGGAGTGTTAGCCCAGCGGT	ACCGCTGGGCTAACACTCCGCAAG
	229	TGCTCCCTAGGCGCTCGGAGGAGT	ACTCCTCCGAGCGCCTAGGGAGCA
	230	CCAATGCCTTTGAGTAAGCGATGG	CCATCGCTTACTCAAAGGCATTGG
	231	AGCAGATAACGTCCCAATGACGCC	GGCGTCATTGGGACGTTATCTGCT
15	232	TTGACCATTACGTGTTGCGCCCAT	ATGGGCGCAACACGTAATGGTCAA
	233	TCGCGTATTTGCGGAATTCGTCTG	CAGACGAATTCCGCAAATACGCGA
•	234	CTGCGTGTCAACAATGTCCCGCAG	CTGCGGGACATTGTTGACACGCAG
	235	TCTGGTGCCACGCAAGGTCCACAG	CTGTGGACCTTGCGTGGCACCAGA
	236	CTCCGGGAGGTCACTTAATTGCGG	CCGCAATTAAGTGACCTCCCGGAG
20	237	TTTTCGTGATTGCCCGGAGGAGGC	GCCTCCTCCGGGCAATCACGAAAA
	238	TCGGGATGTAGCTGGGGCTACCGG	CCGGTAGCCCCAGCTACATCCCGA
	239	CGAGCCAACGCAAACACGTCCTTG	CAAGGACGTGTTTGCGTTGGCTCG
	240	GCAAAGCCTTTGTGGGGCGGTAGT	ACTACCGCCCCACAAAGGCTTTGC
	241	ATTCGACCGGAAATGAGGTCTTCG	CGAAGACCTCATTTCCGGTCGAAT
25	242	TTCGCTTGCTGAGTTGCTCTGTTC	GAACAGAGCAACTCAGCAAGCGAA
	243	CGCGTGAAGACCCCATTCCCGAGT	ACTCGGGAATGGGGTCTTCACGCG
	244	AACCGTATTCGCGGTCACTTGTGG	CCACAAGTGACCGCGAATACGGTT
	245	GGGGCCAACCGTTTCGAGGCGTAT	ATACGCCTCGAAACGGTTGGCCCC
	246	TTCGGCTGGCAGTCCAAACGGCTT	AAGCCGTTTGGACTGCCAGCCGAA
30	247	GGGTGTGGTTAGAATGCACGGTTC	GAACCGTGCATTCTAACCACACCC
	248	GCGAGGACCGAACTAGACAAACGG	CCGTTTGTCTAGTTCGGTCCTCGC
	249	ACGCACGCGTGACCGAAGTTGCTG	CAGCAACTTCGGTCACGCGTGCGT
1	250	TAAAAGGTCGCTTTGAAAGGGGGA	TCCCCCTTTCAAAGCGACCTTTTA
	251	TGCGATCGCTAACTGCTGGGACAA	TTGTCCCAGCAGTTAGCGATCGCA
35	252	GGAGGTATAAGCGGAGCGGCCTCA	TGAGGCCGCTCCGCTTATACCTCC
	253	ATGCTGACATGTCGTGCACCTCGT	ACGAGGTGCACGACATGTCAGCAT
	254	TGTGGTTAAAGCGTCCGTTCAACG	CGTTGAACGGACGCTTTAACCACA
	255	CGTTCACACCGGCGTAAGCTGCGT	ACGCAGCTTACGCCGGTGTGAACG
	256	CCTATCCCGGCGAGAACTTCTGTG	CACAGAAGTTCTCGCCGGGATAGG
40	257	GTCTGCACTCACGCAGCGGAGGGA	TCCCTCCGCTGCGTGAGTGCAGAC
	258	GCACGAGTTGGTGCTCGGCAGATT	AATCTGCCGAGCACCAACTCGTGC

	259	AACGTCGCACGACACACGTTCGTC	GACGAACGTGTGTCGTGCGACGTT
	260	ATGCGCGCTTATCCTAGCATGGTC	GACCATGCTAGGATAAGCGCGCAT
	261	TCACGTTTTCGTCTCGACATGAGG	CCTCATGTCGAGACGAAAACGTGA
	262	TGTGCCTCATCCTTAGGATACGGC	GCCGTATCCTAAGGATGAGGCACA
5	263	AGGTGGTGTGGGTCAACCGCTTTA	TAAAGCGGTTGACCCACACCACCT
	264	CTGGATCGAAGGGACTGCAAGCTC	GAGCTTGCAGTCCCTTCGATCCAG
	265	TAGATCAACTCGCGTACGCATGGA	TCCATGCGTACGCGAGTTGATCTA
	266	GATCCTGCGGAGAAGAGAGTGCAG	CTGCACTCTCTTCTCCGCAGGATC
	267	TACGTGTGGAGATGCCCGAACCG	CGGTTCGGGGCATCTCCACACGTA
10	268	GCGCTATGTCAATCGTGGGCGTAG	CTACGCCCACGATTGACATAGCGC
	269	AGCGAGGTTTCTAGCGTCGACACC	GGTGTCGACGCTAGAAACCTCGCT
	270	ACCCAGGTTTTGCCGTTGTGGAAT	ATTCCACAACGGCAAAACCTGGGT
	271	CCCTGTTAACGGCTGCGTAGTCTC	GAGACTACGCAGCCGTTAACAGGG
	272	AGGCCGATTTCACCCGCCAATTGC	GCAATTGGCGGGTGAAATCGGCCT
15	273	GAGCCCTCACTCCTTGCCCTTTGA	TCAAAGGGCAAGGAGTGAGGGCTC
	274	GGGTGGACATCCGCCTCGCAGTCA	TGACTGCGAGGCGGATGTCCACCC
	275	GATGGCTGAGAACCGTGCTACGAT	ATCGTAGCACGGTTCTCAGCCATC
	276	TCGACGTTAGGAGTGCTGCCAGAA	TTCTGGCAGCACTCCTAACGTCGA
	277	CGAATGGGTCTGGACCTTGCATAG	CTATGCAAGGTCCAGACCCATTCG
20	278	GTGCACCAGACATTCGAACTCGGA	TCCGAGTTCGAATGTCTGGTGCAC
	279	AGAGGCCCCGTATATCCCATCCAT	ATGGATGGGATATACGGGGCCTCT
!	280	AACGCCTGTTCAGAGCATCAGCGG	CCGCTGATGCTCTGAACAGGCGTT
•	281	AAGGCTCAACACGCCTATGTGCGC	GCGCACATAGGCGTGTTGAGCCTT
	282	AGTCCGTGTTGCCAGATTGGCTCG	CGAGCCAATCTGGCAACACGGACT
25	283	ATGTCCCATGTAAAGACGCGTGTG	CACACGCGTCTTTACATGGGACAT
	284	ATGGAGTCTGCTCACGCCCAAAGG	CCTTTGGGCGTGAGCAGACTCCAT
	285	CGGCCTCCAACAAGGAGCACTAAC	GTTAGTGCTCCTTGTTGGAGGCCG
	286	CAGAGCCGTGGCAACATTGCGAGC	GCTCGCAATGTTGCCACGGCTCTG
	287	TCATTTGAATGAGGTGCGCACCGG	CCGGTGCGCACCTCATTCAAATGA
30	288	GACGTACCGGAAGCGCCGTATAAA	TTTATACGGCGCTTCCGGTACGTC
	289	ATGCGAGCAATGGGATCCGGATTC	GAATCCGGATCCCATTGCTCGCAT
	290	AGAGTGAGGCCTCCCTGACCAGTG	CACTGGTCAGGGAGGCCTCACTCT
	291	CGCACCGTAAGTAGATTTGCCCGC	GCGGGCAAATCTACTTACGGTGCG
	292	TGAACCTTTGAGCACGTCGTGCGC	GCGCACGACGTGCTCAAAGGTTCA
35	293	TCCGCCTTTTTGGTTACCTCGAAG	CTTCGAGGTAACCAAAAAGGCGGA
	294	GAACGCCAACGGCACTAACACATC	GATGTGTTAGTGCCGTTGGCGTTC
	295	CCGACAGCAGCCAAGACGTCCCAG	CTGGGACGTCTTGGCTGCTGTCGG
	296	CATAAAAAACCTGGGGCTCTGCG	CGCAGAGCCCCAGGTTTTTTATG
	297	TGCCAACTGTGCAGACCGGACTTA	TAAGTCCGGTCTGCACAGTTGGCA
40	298	GGCGAAAGAGCGAAACCGGCTCGT	ACGAGCCGGTTTCGCTCTTTCGCC
	299	GGGATGCGTATTTTAGCGAACACG	CGTGTTCGCTAAAATACGCATCCC

	300	TGGGATTCAGCGACCAGTACGCGA	TCGCGTACTGGTCGCTGAATCCCA
	301	CCCGATATTCGCCCGGCCTATTCG	CGAATAGGCCGGGCGAATATCGGG
	302	CGAGAAGATGCCTCACGCAACCAA	TTGGTTGCGTGAGGCATCTTCTCG
	303	AACCTTGACCCGTGGATGACGCTA	TAGCGTCATCCACGGGTCAAGGTT
5	6	TTGCAACGGGCTGGTCAACGTCAA	TTGACGTTGACCAGCCCGTTGCAA
	7	CGCATAGGTTGCCGATTTCGTCAA	TTGACGAAATCGGCAACCTATGCG
	306	GCTTCCGGATGAACGGGATGGTTG	CAACCATCCCGTTCATCCGGAAGC
	307	CCCTCCATGTTCTTCGAACGGTTT	AAACCGTTCGAAGAACATGGAGGG
	308	TTGATGGGCGGCAATGCTCTTGCT	AGCAAGAGCATTGCCGCCCATCAA
10	309	ATTGTGAGATGCGCCAAATTCCCC	GGGGAATTTGGCGCATCTCACAAT
	310	TCAGCACAGCCAGACGGTCAACTT	AAGTTGACCGTCTGGCTGTGCTGA
	311	ACTCCACTCCTCGGTGGCAAACTA	TAGTTTGCCACCGAGGAGTGGAGT
	312	TCTGGGCATGCCTGGACGGAGACG	CGTCTCCGTCCAGGCATGCCCAGA
	313	TCTCAACTCCGGTACGACGAAACA	TGTTTCGTCGTACCGGAGTTGAGA
15	314	TTGCGTGGTCAAAGGCGCAACGTG	CACGTTGCGCCTTTGACCACGCAA
	315	AGACAGCGATCCGCGGCTCATGAT	ATCATGAGCCGCGGATCGCTGTCT
	316	CGCGTCTCTAACTGAGAGCAGCCA	TGGCTGCTCTCAGTTAGAGACGCG
	317	AGGCGCACATGTACGGACATTCAG	CTGAATGTCCGTACATGTGCGCCT
	318	GATGAGTGGCACGTCGGTGTGTAA	TTACACACCGACGTGCCACTCATC
20	319	TGATCCATATTGTCGGACGTTGCG	CGCAACGTCCGACAATATGGATCA
	320	ACCTGCCGGGAGTTCATAGGCTAG	CTAGCCTATGAACTCCCGGCAGGT
	321	AGCATTGGCGTTTTTCCGCAACGA	TCGTTGCGGAAAAACGCCAATGCT
	322	GGTAATATTCAGCGCGACCGCTCA	TGAGCGGTCGCGCTGAATATTACC
	323	ATAGCGTACGACGAGGTGACGCGC	GCGCGTCACCTCGTCGTACGCTAT
25	324	TAGGTCACGATGCGTTTGACGCTA	TAGCGTCAAACGCATCGTGACCTA
	325	ACTGCCCGTACCTCTGGTTCTGGC	GCCAGAACCAGAGGTACGGGCAGT
	326	CCTTTGGCCTGAAGTTGTCGTAGC	GCTACGACAACTTCAGGCCAAAGG
	327	GTGCCCACGAGCGTATCGTTGTA	TACAACGATACGCTCGTGGGGCAC
	328	AGGCGCTACGTGGGCCTGGAGCAA	TTGCTCCAGGCCCACGTAGCGCCT
30	329	GGGTGCTACCATTGCATTAGTCCG	CGGACTAATGCAATGGTAGCACCC
	330	ACCACGCGCGTACGTGTAACCGAG	CTCGGTTACACGTACGCGCGTGGT
	331	CCATGATGCATTGGGTGCATTTAG	CTAAATGCACCCAATGCATCATGG
	332	GGTCCGGCCCTACGAAACGTTCGA	TCGAACGTTTCGTAGGGCCGGACC
. [333	CCGTGTGGCTGGAGATTCGTGTGA	TCACACGAATCTCCAGCCACACGG
35	334	GTTAGGGCGACGCATATTGGCACA	TGTGCCAATATGCGTCGCCCTAAC
	335	GGGTCAGTCAGGTGCGTTAGGATC	GATCCTAACGCACCTGACTGACCC
[336	GCCGTGAAGTCGAATGCAGATCGA	TCGATCTGCATTCGACTTCACGGC
	337	GCCACCACCAGTGCATTCAGGTA	TACCTGAATGCACTGGGTGGTGGC
	338	GAGCTTAGTTTGCGGTCATCGGGC	GCCGATGACCGCAAACTAAGCTC
40	339	TGTTTGCCGCCATTAGGGAGTAAC	GTTACTCCCTAATGGCGGCAAACA
	340	GCTCCGCTGGATGTGCCGGTTTAG	CTAAACCGGCACATCCAGCGGAGC

341 CGGTAGCATGCGAGATCCCTGTTA TAACAGGGATCTCGCATGCTACCG 342 CTACGCCTCTACCAGTTGCCTGCGA TCGCAGGCAACTGGTAGAGCGTAG 343 GTGCCTCCTGCTGTATTTTGCCAAG CTTGGCAAATACAGCAGGAGGCAC 344 TTGCGACTCGACTTGGACGAGTAG CTACTCGTCCAAGTCGAGTCG	7			
343 GTGCTCCTGCTGTATTTGCCAAG CTTGGCAAATACAGCAGAGGGCAC 344 TTGCGACTGGACTTGGACGAGTAG CTACTCGTCCAAGTCGAGTCGAAA TTGCGACTCGACTTGGACGAGTAG CTACTCGTCCAAGTCGAGTCGAAA TTGCAGCGCGAACTCCCTTTACCAAT ATGGTAAAAGGGAGTCCCCAGA 348 TTGCACGCGGAACTCCCTTTACCAAT ATGGTAAAAGGGAGTCCCCAGA 348 AACTGGTGACGCGGTTACACAGCGCGTCG GTGCTTTGCATTCATTTGCTGCCA 349 AGACGATTACGCTGGACGCGTGC GACGGGGTCCACGCGTAATCGTT 349 AGACGATTACGCTGGACGCGTCG CGACGGGGTCCACGCGTAATCGTT 350 ATGCCCTCCTTCATGGAAAGGGT AACCCTTTCCATGAAAGGAGGCAA 351 AATTCTCGGAGCGTTAGGCCAAGAA TTCTGGCGGACACGACAT TTCTGGCGGACACACACCCCCTTAT 353 ACCTACGACTACCGCTTGGCAAGAC GTTCGCTTACAGGACATACCGCTTGGACAAGCAGC GTTCGCTTACAGGTACCGACAAATTCCGCTTAGAAAGAGAGGAGAAT ACCTACGACATACCGCTTGGCAAGC GTTCGCTTACAGGTACCAAAATCCGCTTAGAAAGAGAGGAGAAA ACCTACGACATCACCGCTTGGCAAGC GTTCGCTTACAGGTACACAGG 354 GATTACCTGAATGGCCAAAGCAGCC CTTAGCCGCATACAGGTAATCAGGT AGCGTTGTCGACACACGC AGCGTTGTCGACAACGC AGCGTTGTCGACACACGC AGCGTTGTCGACACACCACGC AGCGTTGTCGACACACCACCCCGTCTCTCCCCGACACACAC		341	CGGTAGCATGCGAGATCCCTGTTA	TAACAGGGATCTCGCATGCTACCG
344 TTGCGACTTGACTTGACGAGTAG 345 TCTGGGAGGTGTTTACTCCAGCCA 346 TGCACGCGGAACTCCTTTACCAT 347 TGGCAGCGGAACTCCCTTTACCAT 347 TGGCAGCGGAACTCCCTTTACCAT 348 ACTGGTGACACCAGCCA 348 ACTGGTGACACCACCAGCCACCAGCACCAGCCCCCACA 348 ACTGGTGACGCGGTACAGCCACC 348 ACTGGTGACGCGGTACAGCCACC 348 ACTGGTGACGCGGTACAGCACC 348 ACTGGTGACGCGGTACAGCACCACCTTCGCTTCATTGCACCACCACTT 349 AGACGATTACGCTGGACGCCGTCG 349 AGACCATTACGCTGGACGCCGTCG 340 ATGCCCTCCTTCATGGAAAGGGTT 351 ATTCTCGGAGGGGTACAGCCAGAA 351 ATTCTCGGAGGGGTATGCGCCAGAA 352 ATAGCGGAGTTTGGGTACGCCAGAA 353 ACCTACGCATACCGCTTGGCGAGA 353 ACCTACGCATACCGCTTGGCGAGA 354 GATTACCTGATACGCCGCAGAA 355 CCTGGTTAGCATACCGCCTTAGG 355 CCTGTTACCATCACGGCCGTTAGG 356 CAGAATGATGCGCAACCGCT 357 TGAGACAGCGGTTGGTAAGGCAA 358 AAGCAGGCGATGGTGAACCGCT 358 AAGCAGGCGAAGGGAATACCCTCCGCAACCGCTTCTCCA 358 AAGCAGGCGAAGGGAATACCCTCCGCAACCGCTTCTCCACACGCCTTCTCCACCACACCACCACCACCACCACCACCACCACC		342	CTACGCTCTACCAGTTGCCTGCGA	TCGCAGGCAACTGGTAGAGCGTAG
5 345 TCTGGGAGCTGTTTACTCCAGCCA 346 TGCACGGGAACTCCCTTTACCAT 346 TGCACGGGAACTCCCTTTACCAT 347 TGGCAGCAAATGAATCGAAAGCAC 348 AACTGGTGACGCGGTACAGCGAAG 348 AACTGGTGACGCGGTACAGCGAAG 348 AACTGGTGACGCGGTACAGCGAAG 348 AACTGGTGACGCGGTACAGCGAAG 348 AACTGGTGACGCGGTCACGCGTCACCACAGTT 349 AGACGATTACGCTGGACGCCGTCG 349 AGACGATTACGCTGGACGCCGTCG 349 AGACGATTACGCTGGACGCCGTCG 340 ATGCCCTCCTTCATGGAAAGGGTT 341 ATTCTCGGAGCGTATGCGCCAGAA 352 ATAGCGGAGTTTGGGCAGAA 352 ATAGCGGAGTTTGGGCAGAA 353 ACCTACGCATACCGCTTGGCGAGA 354 GATTACCTGAATGGGCAAC 355 CCTGTTAGCATACCGGTTGGCGAGA 355 CCTGTTAGCATCACGGCCCTTAGG 356 CGGAATGATCGCCAACACCCTCGCAAACTCCGCTAT 357 TGAGAAGAGGCGTTAGGCCAACCCCTGCCAAACTCCGCTACCCAAACTCCGTTGGCAAGCGAGACTTCAGGTAACAGG 357 TGAGAAGAGGCGTTGAGAAGCAACCCCCCGCAACCCCCGTCGTCCCAAACCCCTCTCTCA 358 AAGCAGGCGAAGGGATACTCCTCCG 357 TGAGACAGAGCGACCCCCCCCCACACCCCCTGCCCAACCCCCTGCTCTCACACACCCCCCCC		343	GTGCCTCCTGCTGTATTTGCCAAG	CTTGGCAAATACAGCAGGAGGCAC
346 TGCACCGGAACTCCCTTTACCAT ATGGTAAAGGGAGTTCCGCTGCA 347 TGGCAGCAAATGAATCGAAAGCAC GTGCTTTCGATTCATTTGCTGCCA 348 AACTGGTGACGCGGTACAGCGAAG CTTCGCTGTACCGCGTCACCAGTT 349 AGACGATTACGCTGGACGCCGTCG CGACGGCGTCCAGCGTAATCGTCT 350 ATGCCCTCCTTCATGGAAAGGGTT AACCCTTTCCATGAAGGAGGGCAT 351 ATTCTCGGAGCGTTAGCGCAGAA TTCTGCGCGAAAGAGGGGCAT 352 ATAGCGGAGTTTGGGTACGCAGAA TTCTGCGGCATAGCGTCAGACAT 353 ACCTACGCATACCGCTTGGCGAGG CCTCGCCAAACCTCCGCTAT 353 ACCTACGCATACCGCTTGGCGAGG CCTCGCCAAGCGGTATCGGTAGGT 354 GATTACCTGAATGGCCAAGCAGC GCTCGCCAAGCGGTATCGGTAGGT 355 CCTGTTAGCATCACGGCCGTTAGG CCTAACCGCCGTGATCCGTAATC 355 CCGGATGATGCGCCAAGCAGC GCTCGCCAAGCGGTATCCGTAATC 356 CGGAATGATGCGCCAACCGCT AGCGCTGGCCATCCAGGTAATC 357 TGAGAAGAGCGGTTGGTTAAGGCAA TTGCCTTCAACCACCGCTACTCCGC 357 TGAGACAGCGCGTTAGGCAACCGCT AGCGTCTTCCACGGTAATCCG 358 AAGCAGGCGAAGGGATTACCTCTCG CGAGGAGTATCCCTTCCACGGTAGATTACCACACACCCTCTCTCA 359 TCACGACAGACGGGCCGAGATTAC GTAATCTCGGCCCCTCTCTCACGGCCCACCAGCACTCTCTCCACACACCACCACCACCACCACCACCACCAC		344	TTGCGACTCGACTTGGACGAGTAG	CTACTCGTCCAAGTCGAGTCGCAA
347 TGGCAGCAAATGAATCGAAAGCAC 348 AACTGGTGACGCGGTACAGCGAAG 348 AACTGGTGACGCGGTACAGCGAAG 349 AGACGATTACGCTGGACGCCGTCG CGACGGCGTCCAGCGTATCGTCT 349 AGACGATTACGCTGGACGCCGTCG CGACGGCGTCCAGCGTAATCGTCT 350 ATGCCCTCCTTCATGGAAAGGGT 351 ATTCTCGGAGCGTATGCGCCAGAA 352 ATAGCGGAGCTTTGGGTACGCCAGAA 353 ACCTACCGATACCGCTTGGCCAGAA 353 ACCTACCGATACCGCTTGGCCAGAA 354 GATTACCTGAATGGCCAGAC 355 CCTGGTAGCATACCGCTTGGCGAAC 355 CCTGGTAGCATACCGCTTGGCGAAC 356 CGGAATGATGCCCAAGCCT 357 TGAGAGAGGCGTCGAACGCT 358 AAGCAGGCGTGGTTAAGGCAACGCT 358 AAGCAGGCGGTGGTTAAGGCAA 359 TCACGACAGCGGTGGTTAAGCCAACGCCTTCTCCA 358 AAGCAGGCGAAGGGAACACCT 359 TCACGACAGACGGAGCAACCT 350 TCACGACAGACGGAGCAACCT 350 TCACGACAGACGGAGCAACCT 350 TCACGACAGACGGAGCAACCT 351 TCACGACAGACGGAGCAACCT 352 TCACGACAGACGGAGCAACCT 353 TCACGACAGACGGAGAACACCACCACCACCACCACCACCAC	5	345	TCTGGGAGCTGTTTACTCCAGCCA	TGGCTGGAGTAAACAGCTCCCAGA
348 AACTGGTGACGCGGTACAGCGAAG 349 AGACGATTACGCTGGACGCCGTCG 349 AGACGATTACGCTGGACGCCGTCG 349 AGACGATTACGCTGGACGCCGTCG 350 ATGCCCTCTTCATGGAAAGGGTT 351 ATTCTCGGAGCGTATGCGCCAGAA TICTGGCGCATACGCTCCATACGCTCCAGAAT 352 ATAGCGGAGTTGGGTACGCACAA 353 ACCTACGCATACGCTCGGAAC 354 GATTACCTGAATGCGCCAGAG 355 ACCTACGCATACGCTTGGCAGG 355 GCTCGCTTAGGCATACGCTCAGAGAT 355 CCTGTTAGCATCACGGCGCTTAGG 356 CGGAATGATGCGCCAAGCGGC 357 TGAGAGAGGCGTTGGTCAAGCCA 358 AAGCAGCCAACACGCT 359 TGAGAGAGGCGTTGGTTAAGCAA 358 AAGCAGGCGAACACGCT 359 TCACGACAGCGGTTGGTTAAGCAA 358 AAGCAGGCGAACACGCT 359 TCACGACAGAGGGATACTCCTCG 350 AAGCAATTTGGCCTCGTTTTTGTAA 361 GCTGGTTTGCGGAGAAACGCT 362 TTGTGAATCCGTTGTTCCCCGAC 363 TGGGCTCCTCTGAGCGCAAATTAC 363 TGGGCTCCTCTGAGCGCAAATTAC 364 GGAATAGATCCGCCGAAATTAC 365 TGCACCAAAACGAGGAACGCCAAATTGCCT 25 365 TGCACCGAACGCACACGCC 366 GCCACTTCTCGCCTCGACACCAC 367 TCGCTACCTAAGACACGCCACACACCACGCCTTCCCCCAACCACACACA		346	TGCACGCGGAACTCCCTTTACCAT	ATGGTAAAGGGAGTTCCGCGTGCA
349 AGACGATTACCCTGGACGCCGTCG CGACGGCGTCCAGCGTAATCGTCT 350 ATGCCCTCCTTCATGGAAAGGGTT AACCCTTTCCATGAAGAGAGGCAT 351 ATTCTCGGAGCGTATGCGCCAGAA TTCTGGCGCATACGCTCCAGAAAT 352 ATAGCGGAGTTTGGGTACGCAGAA GTTCGGGTACCCAAACTCCGCTAT 353 ACCTACGCATTGCGCAGAG GTTCGCGTACGCTACGCTA		347	TGGCAGCAAATGAATCGAAAGCAC	GTGCTTTCGATTCATTTGCTGCCA
10 350 ATGCCTCCTTCATGGAAAGGGTT AACCCTTTCCATGAAAGAGGGCAT 351 ATTCTCGAGCGCTATGCGCCAGAA TTCTGGCGCATACGCTCCGAGAAT 352 ATAGCGGAGTTTGGGTACGCCAGAA TTCTGGCGCATACGCTCCGAGAAT 353 ACCTACGCATACCGCTTGGCGAGG CTTCGCCAAGCGGTATGCCGTAT 353 ACCTACGCATACCGCTTGGCGAGG CCTCGCCAAGCGGTATGCCGTATGCGATACCGCTTGGCGAGG GTTCGCCTATCAGGTAATC 354 GATTACCTGAATGCCCAAGCGAGG GCTCGCTTGGCCATTCAGGTAATC 355 CCTGTTAGCATCACGGCGCTTAGG CCTAAGCGCCCGTGATGCCAAACAGGT 355 CGGAATGATGCGCTCGACAACGCT AGCGTTGCCAATCACGG 356 CGGAATGATGCGCTCGACAACGCT AGCGTTGTCGAGAGCGCATCATTCCG 357 TGAGAGAGGCGTTGGTTAAGGCAA TTGCCTTAACCAACGCCTCTCTCA 358 AAGCAGGCGAAGGGGATACCCTCC GAGGAGTATCCCTTCGCCTGCTT 359 TCACGACAGACGGGCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 361 GCTGGTTGCGTTAGGCTCGTTTTTGTA TCACAAAACCAGGCCAACCAGC 361 GCTGGTGCGATACCCAACCAGC GTAATCTCACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAACAGACCAGA 363 TGGGCTCCTCTGAGGCGCAATGCC GTCGGGGACAAACAGAACGAGATCACAAC 363 TGGACCTACTCTGCGCCAACACCAGC GTCGGGGACAAAACACAACAC		348	AACTGGTGACGCGGTACAGCGAAG	CTTCGCTGTACCGCGTCACCAGTT
351 ATTCTGGAGGGTATGCGCCAGAA TTCTGGCGCATACGCTCGAGAAT 352 ATAGCGGAGTTTGGGTACGCGAAC GTTCGCGATACGCTCCGAGAAT 353 ACCTACGCATACCGCTTGGCGAGG CCTCGCCAAGCGGTATGCGTAGGT 354 GATTACCTGAATGGCCAAGCGAGC GCTCGCTTGGCCATTCAGGTAGT 355 CCTGTTAGCATCACGGCGCTTAGG CCTAGCGCGTTAGTACAGG 356 CGGAATGATGCGCCAAGCGAC CCTCGCCTAGTCCTAACAGG 357 TGAGAGAGGCGTTGGTTAAGCGA CCTAACCGCCGTGATGCTAACAGG 358 AAGCAGGCGTTGGTTAAGGCAA TTGCCTTCACAGAGGCCCATCATTCCG 359 TCACGACAGACGGGCCGAGATTAC GTAATCCCTCGCCTGCTT 359 TCACGACAGACGGGCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 361 GCTGGTTGCGGTAGGATCCCATAT ATATCGCACCGCCAACCAGC 362 TTGTGAATCCGTTCTTGTCCCCGAC 363 TGGGCTCCTCTGAGGAGATGGC GCCATCTACCGCAACCAGC 364 GGATAGATCCGTTCTCCCGAC 365 TGCACCGAACGGGAACGACTGCTCTCAAAGACGAGACGA		349	AGACGATTACGCTGGACGCCGTCG	CGACGCGTCCAGCGTAATCGTCT
352 ATAGCGGAGTTTGGGTACGCGAAC 353 ACCTACGCATACCGCTTGGCAGG 354 GATTACCTGAATGGCCAAGCGAGC 355 GATTACCTGAATGGCCAAGCGAGC 356 CCTGGTTAGCATCACGGCGCTTAGG 357 TGAGAAGGCGTTCGGCAACACGCT 358 AAGCAGGCGTTAGGCAACACGCT 358 AAGCAGGCGTTAGGCAACACGCT 359 TCACGACAGAGGGATTACCGCCTCGACAACCCT 359 TCACGACAGAGGGATTACCCCTCG 360 AAGCAAGCGGCGCTTAGG 361 GCTGGTTGGCCTCTGTTTTTGTA 361 GCTGGTTGGCTCGTTTTTTTGA 362 TTGTGAATCGCTCGTTTTTTGA 363 TGGGCTCCTCTGTTTTTGTA 364 GGATAGATCCCTTCTCCCCAC 365 TGCACCGAGGCGAGATTAC 25 365 TGCACCGACCGACACCGCT 366 GCCAGTATTCCGTCTTTTCCCCCAC 367 TGGCACCGACCGACCACC 368 GCCAGTATTCCGGCCAACCGCCCAACCAGC 369 CCCAGTATTCCGGCCAACCACC 360 GCCAGTATTCCGGCCAACCACC 361 GCCAGTATTCCCCCACC 362 TTGTGAATCCGTTCTTCCCCCAC 363 TGGCCTCCTTGAGGCGAGATGC 364 GGATAGAGTGAACCGGCCAAC 365 TCCACCGAACGTGCACCACC 366 GCCAGTATTCCGGTGTTGACCC 367 TCGCTACCTAAGACCGGCCAAC 368 TGGCCTCCTCGAGGCGCAAC 368 TGGCACCGAACGTGCACC 367 TCGCTACCTAAGACCGGCCATAC 368 TGGCATTGAGCAGCAGACTAAT 368 TGGCATTGAGCAGCGCCAACC 369 CCCGTCCCAGCGCCATAC 369 CGCGTCCCAGCAGCTCACT 369 CGCGTCCCAGCGCCCTTGGAGTAT 370 ATGAAGCCTACCGGCCAACC 371 CCAGACAGATGGCCCTTGAACCACC 372 TGGCGTGGGACCACCCTTGAACCACC 373 CCCCATGGGACCACCTCAAGCT 374 GCCCACTCGTCAAGACCA 375 ATTACGGTCGTGAACCAT 376 TGCGGAGCAGCACTACT 377 GGCCCGCCTTTGAACCCC 378 CCCCCTCCAGACACCCAGAGAACCCTACC 379 TAGGCATGTTGCACCTTCCAACCCCAACCCCACACCCACACCCACC	10	350	ATGCCCTCCTTCATGGAAAGGGTT	AACCCTTTCCATGAAGGAGGGCAT
353 ACCTACGCATACCGCTTGGCGAGG CCTCGCCAAGCGGTATGCGTAGGT 354 GATTACCTGAATGGCCAAGCGAGC GCTCGCTTGGCCATTCAGGTAATC 355 CCTGTTAGCATCACGGCGCTTAGG CCTAAGCGCCGTGATGCTAACAGG 356 CGGAATGATGCGCTCGACAACGCT AGCGTTGTCGAGCGCATCATTCCG 357 TGAGAGAGGCGTTGGTTAAGGCAA TTGCCTTAACCAACGCCTCTCTCA 358 AAGCAGCGAAGGGATACTCCTCG CGAGGAGTATCCCTTCGCCTGCTT 359 TCACGACAGACGGCCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 361 GCTGGTTTGGGCTCGATTAC TCACAAAACGAGCCCAACTGCTT 362 TTGTGAATCCGTTCGTTTTGTGA TCACAAAACGAGCCAACTGCTT 363 TGGGCTCCTCTGAGGGCAGAGTGCC GCCGTCTCACCACCAGC 364 GGATAGAGTGAATCGCCTAAT ATATGCGATCCTACCGCAACCAGC 365 TGCACCGAACGTGCACGACAC GTCCCGCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTCCCGCTCAGAGGAGCCCA 365 TGCACCGAACGTGCACGACAC GTTCCCGGTCAGAGGAGCCCA 366 GCCAGTATTCTCGGGTGTTGGACC 367 TCGCTACCTAAGACCGGCCAAC GTTCCCGGTCCATTCGCT 368 TGGCATTCACGACCGGCCAAC GTTATCCCGCACCGCGCAACACCCGAGAATACTGCC 369 CCCGTCCACACACCCGAGATAC ACTGACCCGAGAATACTGGC 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGCGCGCAACGCGAACACCCGAGAATACTGGC 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGCGCGCTCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGCGCGCTGGAACCGC 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATT 372 TGGCGTGGGACCATTCCAAAGCTA TACTTTCAGGTGGCCCACACCCCAACACCCCAGCAACACCCGAGAATACTTCAAGACCTAACACACCCGGCCCATCTGTCTG		351	ATTCTCGGAGCGTATGCGCCAGAA	TTCTGGCGCATACGCTCCGAGAAT
354 GATTACCTGAATGGCCAAGCGAGC GCTCGCTTGGCCATTCAGGTAATC 355 CCTGTTAGCATCACGGCGCTTAGG CCTAAGCGCCGTGATGCTAACAGG 356 CGGAATGATGCGCTCGACAACGCT AGCGTTGTCGAGCGCCATCATTCCG 357 TGAGAGAGGCGTTGGTTAAGGCAA TTGCCTTAACCAACGCCTCTCTCA 358 AAGCAGGCGAAGGGATACTCCTCG CGAGGAGTATCCCTTCGCTGCTT 359 TCACGACAGACGGGCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 360 AAGCAATTTGGCCTCGTTTTGTGA TCAAAAACGAAGGCCAAATTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTCCCCGAC GTCGGGGACAGAACGGATTCACAA 363 TGGGCTCCTCTGAGGCGGAGATTGACTAT ATATGCGATCCTACCGCAACCAGC 364 GGATAGAGTGAATCGACCGGCAAC GTTGGCCGCTCAGAGGAGCCCA 365 TGCACCGAACGTGCACAGATGATT AATTACTCGTGCACGTTCACCAC 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGGAAATACTGGC 367 TCGCTACCTAAGACCGGCCATAC GTTGGCCCGGTCTTAGGTAGCA 368 TGGCATTGACGAGCAGACAGTCAGT ACTGACTGCCCGAACGAACGAAACGA		352	ATAGCGGAGTTTGGGTACGCGAAC	GTTCGCGTACCCAAACTCCGCTAT
15 355 CCTGTTAGCATCACGGCGCTTAGG CCTAAGCGCCGTGATGCTAACAGG 356 CGGAATGATCACGGCGCTCGACAACGCT AGCGTTGTCAGACCGCATCATTCCG 357 TGAGAGAGGCGTTGGTTAAGGCAA TTGCCTTAACCAACGCCTCTCTCA 358 AAGCAGGCGAAGGGATACTCCTCG CGAGGAGTATCCCTTCGCCTGCTT 359 TCACGACAGACGGGCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 20 360 AAGCAATTTGGCCTCGTTTTGTGA TCACAAAACGAGGCCAAACTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAACCAGC 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCACTATCC 366 GCCAGTATTCTCGGGTTGTTGGACC 367 TCGCTACCTAAGACCGGCCATAC GTTGCCCGGACAATACTGGC 368 TGGCATTTCTCGGGTGTTTGGACC 369 CGCGTCCCAGCGCCCATAC GTATGCCCACCCCGAGAATACTGGC 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAACGGCCGTCATAGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCCGCTCATAGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCCGCTCATTAGCA 370 ATGAAGCCTACCGGGCCGACTTCGT ACGAACTGCCCGGTCAATGCCA 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCCGGTCATTCGT 372 TGGCGTGGGACCATCCTAAAGCT ACGAAGTCGCCCGGTAGGCTTCAT 373 CCGCATGGGACCATCCAAAGCT ACGTTCCAAGGCCCATCTGTCTGG 374 GCCCACTCGTCAGCGTGAACCATG CATGGTTCCAAGGCCCATCCGCGCAATACTGCCACGCCAACATCCGGGCCATACTTCAAGACCGGCCCATCTGTTCTGG 375 ATTACGGTCGTGGACCATC CATGGTTCCAAGCCCAACCCCAACACCCCAACACCCCAACACCCCAACACCCC		353	ACCTACGCATACCGCTTGGCGAGG	CCTCGCCAAGCGGTATGCGTAGGT
356 CGGAATGATGCGCTCGACAACGCT AGCGTTGTCGAGCGACTCATTCCG 357 TGAGAGAGGCGTTGGTTAAGGCAA TTGCCTTAACCAACGCCTCTCTCA 358 AAGCAGGCGAAGGGATACTCCTCG CGAGGAGTATCCCTTCGCTGCTT 359 TCACGACAGACGGGCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 20 360 AAGCAATTTGGCCTCGTTTTGTGA TCACAAAACGAGGCCAAATTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAGAACCAGC 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTATCACTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTCCACGAGAATACTCACA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTACACACCGGGCAAC GTTGCCGGTCTTAGGTAGCA 368 TGGCATTGACGAGCAGAGCAGTCAGT ATTACTCCAACACCCGAGAATACTGGC 369 CGCGTCCCAACGACCAGTCAGT ACTGACTGCTCGTCACATGCCA 369 CGCGTCCCAACGACCAGTCAT ATACTCCAAGGGCGCTGGAACCCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGACTGCTCGTCATTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCAGTCAT 372 TGGCGTGGGACCATCCTCAAAGCTA TAGCTTTCAGGCCAGTTCAT 373 CCGCATGGGAACCATCTCAAAGCTA TAGCTTTGAGATGGCCCAGTCCAACACCCGCCAACACCCCACGCCAACACCCGCCAACACCCGCCAACACCCCGCCAACACACCCGGCCAACACACCCGGCCAACACACCCGCCAACACACCCGCCAACACACCCGCCAACACACCCGAACACACCAC		354	GATTACCTGAATGGCCAAGCGAGC	GCTCGCTTGGCCATTCAGGTAATC
357 TGAGAGAGGCGTTGGTTAAGGCAA TTGCCTTAACCAACGCCTCTCTCA 358 AAGCAGGCGAAGGGATACTCCTCG CGAGGAGTATCCCTTCGCTGCTT 359 TCACGACAGACGGCCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 360 AAGCAATTTGGCCTCGTTTTGTGA TCACAAAACGAGGCCAAACTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAGAACCAGC 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACC GTCCAACACCCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTATGGTAGCA 368 TGGCATTGACGAGCAGCAGTAAT ATTACTCCTGCTCCGTCAATGCCA 369 CGCGTCCCAGCGCCCTTTGGAGTAT ATACTCCAAGGGCGCTTCAATGCCA 369 CGCGTCCCAGCGCCCTTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACCATGTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACAGGCGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCCAGGCGCAATAC 376 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGCC 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAGAAGTGGCCCCAACACCTGCAA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAGAATGCGCCC 378 CCTCGGATGTGGGCTCACTCCAACACGCCTAT ATTACGTCAACACACCTCCGCAA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCACCTCCCAGC 379 TAGGCATGTGGCGTGACCCTTA ATTACGCCCACCCCAACACTCCGAGG 379 TAGGCATGTTGGCGTGACCCTTA ATTACGCCCACCCCAACACTCCCAACCCTACCAACACGCCCTACCCAACACACGCCCAACACACGCCCAACACACGCCCAACACACGCCCAACACACGCCCAACACACGCCCAACACACACGCCCAACACACACACACACACACACACACACACACCCCCAACAC	15	355	CCTGTTAGCATCACGGCGCTTAGG	CCTAAGCGCCGTGATGCTAACAGG
358 AAGCAGGCGAAGGGATACTCCTCG CGAGGAGTATCCCTTCGCCTGCTT 359 TCACGACAGACGGCCCAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 360 AAGCAATTTGGCCTCGTTTTGTGA TCACAAAACGAGGCCAAATTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAGAACGGATTCACAA 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTTCGATTCACTCTATCC 365 TGCACCGAACGTGCACCAGCTAATT AATTACTCGTCCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACC CGTCCAACACCCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTCGTCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGCGCTGGACGCG 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGCGCCTGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCACACCCCA 372 TGGCGTGGGACCATCCAAAGCTA ATACTTCAGGCCCACCCCA 373 CCGCATGGGAACACGTGTCAAAGCT ACCTTGACACGTGTCCCACGCCA 374 GCCCACTCGTCAGCTGGACCATA ATTACGTCCAGCTGACGACGCG 375 ATTACGGTCGTGATCCAGAAGCT ACCTTGACACGTGTTCCCATGCGG 376 TGCGAGGTGATCCAGAAAGCC CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGACCACTCCAGAAAGCC CGCTTTCTGGATCACCACCCCCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGCCC 378 CCTCGGATGTGGGCTCACCTTCGCTAG CTAGGCGAGAGCCCCACACCCCA 379 TAGGCATGTTGGCGTGACCCTTA ATAGCGCCACACACACCCCAACTCCGAGG 379 TAGGCATGTTGGCGTGACCCCTAC CTAGGCGAACACCCCCAACACCCCAACACCCCAACACACAC		356	CGGAATGATGCGCTCGACAACGCT	AGCGTTGTCGAGCGCATCATTCCG
20 369 TCACGACAGACGGCCGAGATTAC GTAATCTCGGCCCGTCTGTCGTGA 360 AAGCAATTTGGCCTCGTTTTGTGA TCACAAAACGAGGCCAAATTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAGAACCAGC 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTATCC 365 TGCACCGAACGTGCACGACAC GTTGCCGGTCGATTCACTATCC 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACCCCGGTCTTAGGTAGCGA 369 CGCGTCCCAGCGCCCTTTGGAGTAT ATACTCCAAGGCGCTTGATGCCA 369 CGCGTCCCAGCGCCCTTTGGAGTAT ATACTCCAAGGCGCTGGAACGCG 370 ATGAAGCCTACCGGGCGATTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTCAGGTTCCCACGCCA 373 CCGCATGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACCCCA 374 GCCCACTCGTCAGCTGGACGTAAT ATACCTCAGCTGTCCCACCGCA 375 ATTACGGTCGTGACCATAA ATTACGTCCAGCTGACCAGCGC 376 CCCCACTCGTCAGCTGGACGATAAT ATTACGTCCAGCTGACCAGCGC 377 GCCCACTCGTCAGCTGGACGAACCA TCTCTCGATCCAGCTGACCACCTCACACCACAC		357	TGAGAGAGGCGTTGGTTAAGGCAA	TTGCCTTAACCAACGCCTCTCTCA
20 360 AAGCAATTTGGCCTCGTTTTGTGA TCACAAAACGAGGCCAAATTGCTT 361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAGACGGATTCACAA 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTCTATCC 25 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTAAGTACGAC 368 TGGCATTGACGACCAGGCCATAC GTATGGCCCGGTCTAAGTACGAC 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCACTCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACCATG CATGGTTCCAGGCCATTCTGGG 374 GCCCACTCGTCAGACGTA ACCTTGACACGTGTTCCCATGCGG 375 ATTACGGTCGTGACCTAAT ATTACGTCCAGCTGACGATGCCA 376 TGCGAGGTGACCATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 377 GGGCCCCATTCTTGATGTCCATTC 378 CCTCGGATGTGGCCTTAG 379 TAGGCATGTTGGCGTAAT ATACGCCCCACACCACCCCA 379 TAGGCATGTTGGCGTTAACCACACCCCCAACACCCCAACCCCCAACCCCCAACCCC		358	AAGCAGGCGAAGGGATACTCCTCG	CGAGGAGTATCCCTTCGCCTGCTT
361 GCTGGTTGCGGTAGGATCGCATAT ATATGCGATCCTACCGCAACCAGC 362 TTGTGAATCCGTTCTGTCCCCGAC GTCGGGGACAGAACGGATTCACAA 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTCTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTAAT ATACTCCAACGGGCGTCTTAGGTAGCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGACGCG 360 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCGCCA 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGAGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGGATCACGACCGTAAT 377 GGCCGCATTCTTGATGTCCATTC GAATGGACACATCACCACCCCA 377 GGCCCGCATTCTTGATGTCCATTC GAATGGACACTCAAGAATGCGCCC 378 CCTCGGATGTGGCCTTCGCCTAG CTAGGCGAACACCCCCAACACCCCCA 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCCCACACCCCCAACACCCTACCAGGG 379 TAGGCATGTTGGCGTGAGCGCCTA ATAGCGCCCAACATCCCTACCACCCTACCACCCCAACACCCCCAACACCCCCC		359	TCACGACAGACGGGCCGAGATTAC	GTAATCTCGGCCCGTCTGTCGTGA
TIGTGAATCCGTTCTGTCCCGAC GTCGGGGACAGACGGATTCACAA 363 TGGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTCTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTCGTCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTCGAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACCATGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACGTGGCC 376 TGCGAGGTGACCACTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGACCGCTA ATAGCCCTCACCCCAACATGCCTA 40 380 CGATACGAACGAGATGTCCGCCT AGGCGACATCCTCGTATCG	20	360	AAGCAATTTGGCCTCGTTTTGTGA	TCACAAAACGAGGCCAAATTGCTT
TGGCTCCTCTGAGGCGAGATGGC GCCATCTCGCCTCAGAGGAGCCCA 364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTCTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTCGTCCTCATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACCAGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCACGACCGTAAT 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATACCGCTCACCCCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGACACTCCTCGTATCG		361	GCTGGTTGCGGTAGGATCGCATAT	ATATGCGATCCTACCGCAACCAGC
364 GGATAGAGTGAATCGACCGGCAAC GTTGCCGGTCGATTCACTCTATCC 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTCCTCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACCGTAAT 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCACGACCGTAAT 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGACCGCTA ATACCGCTCACCCCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG		362	TTGTGAATCCGTTCTGTCCCCGAC	GTCGGGACAGAACGGATTCACAA
25 365 TGCACCGAACGTGCACGAGTAATT AATTACTCGTGCACGTTCGGTGCA 366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTCCTCCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCAACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATCCCTA 40 380 CGATACGAACGAGAGTTCCCGCCT AGGCGGACACTCCTCGTATCG		363	TGGGCTCCTCTGAGGCGAGATGGC	GCCATCTCGCCTCAGAGGAGCCCA
366 GCCAGTATTCTCGGGTGTTGGACG CGTCCAACACCCGAGAATACTGGC 367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCAA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTCGTCGATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGCGCCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACCGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG		364	GGATAGAGTGAATCGACCGGCAAC	GTTGCCGGTCGATTCACTCTATCC
367 TCGCTACCTAAGACCGGGCCATAC GTATGGCCCGGTCTTAGGTAGCGA 368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTGCTCGTCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACCAGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG	25	365	TGCACCGAACGTGCACGAGTAATT	AATTACTCGTGCACGTTCGGTGCA
368 TGGCATTGACGAGCAGCAGTCAGT ACTGACTGCTCGTCAATGCCA 369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACACTCCTGTATCG	į	366	GCCAGTATTCTCGGGTGTTGGACG	CGTCCAACACCCGAGAATACTGGC
369 CGCGTCCCAGCGCCCTTGGAGTAT ATACTCCAAGGGCGCTGGGACGCG 370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACACTCCTGTATCG	[367	TCGCTACCTAAGACCGGGCCATAC	GTATGGCCCGGTCTTAGGTAGCGA
370 ATGAAGCCTACCGGGCGACTTCGT ACGAAGTCGCCCGGTAGGCTTCAT 371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG	ĺ	368	TGGCATTGACGAGCAGCAGTCAGT	ACTGACTGCTGCTCGTCAATGCCA
371 CCAGACAGATGGCCTGGAACCATG CATGGTTCCAGGCCATCTGTCTGG 372 TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG		369	CGCGTCCCAGCGCCCTTGGAGTAT	ATACTCCAAGGGCGCTGGGACGCG
TGGCGTGGGACCATCTCAAAGCTA TAGCTTTGAGATGGTCCCACGCCA 373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG	30	370	ATGAAGCCTACCGGGCGACTTCGT	ACGAAGTCGCCCGGTAGGCTTCAT
373 CCGCATGGGAACACGTGTCAAGGT ACCTTGACACGTGTTCCCATGCGG 374 GCCCACTCGTCAGCTGGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG		371	CCAGACAGATGGCCTGGAACCATG	CATGGTTCCAGGCCATCTGTCTGG
374 GCCCACTCGTCAGCTGACGTAAT ATTACGTCCAGCTGACGAGTGGGC 375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTATCG		372	TGGCGTGGGACCATCTCAAAGCTA	TAGCTTTGAGATGGTCCCACGCCA
375 ATTACGGTCGTGATCCAGAAAGCG CGCTTTCTGGATCACGACCGTAAT 376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTTCGTATCG		373	CCGCATGGGAACACGTGTCAAGGT	ACCTTGACACGTGTTCCCATGCGG
376 TGCGAGGTGAGCACCTACGAGAGA TCTCTCGTAGGTGCTCACCTCGCA 377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTTCGTATCG		374	GCCCACTCGTCAGCTGGACGTAAT	ATTACGTCCAGCTGACGAGTGGGC
377 GGGCCGCATTCTTGATGTCCATTC GAATGGACATCAAGAATGCGGCCC 378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTTCGTATCG	35	375	ATTACGGTCGTGATCCAGAAAGCG	CGCTTTCTGGATCACGACCGTAAT
378 CCTCGGATGTGGGCTCTCGCCTAG CTAGGCGAGAGCCCACATCCGAGG 379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTTCGTATCG		376	TGCGAGGTGAGCACCTACGAGAGA	TCTCTCGTAGGTGCTCACCTCGCA
379 TAGGCATGTTGGCGTGAGCGCTAT ATAGCGCTCACGCCAACATGCCTA 40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTTCGTATCG		377	GGGCCGCATTCTTGATGTCCATTC	GAATGGACATCAAGAATGCGGCCC
40 380 CGATACGAACGAGGATGTCCGCCT AGGCGGACATCCTCGTTCGTATCG	l	378	CCTCGGATGTGGGCTCTCGCCTAG	CTAGGCGAGAGCCCACATCCGAGG
		379	TAGGCATGTTGGCGTGAGCGCTAT	ATAGCGCTCACGCCAACATGCCTA
381 TACGCCGGTTAGCACGGTGCTA TAGCGCACCGTGCTAACCGGCGTA	40	380	CGATACGAACGAGGATGTCCGCCT	AGGCGGACATCCTCGTTCGTATCG
]	381	TACGCCGGTTAGCACGGTGCGCTA	TAGCGCACCGTGCTAACCGGCGTA

	382	CATACGATGTCCGGGCCGTGTCGC	GCGACACGGCCCGGACATCGTATG
	383	ATCCGCAGTTGTATGGCGCGTTAT	ATAACGCGCCATACAACTGCGGAT
	384	GGGTAAGGGACAAAGATGGGATGG	CCATCCCATCTTTGTCCCTTACCC
	385	ATTGGAGTGTTTTGGTGAATCCGC	GCGGATTCACCAAAACACTCCAAT
5	386	GAACCGAGCCAACGTATGGACACG	CGTGTCCATACGTTGGCTCGGTTC
	387	GCCGTCAAGCTTAAGGTTTTGGGC	GCCCAAAACCTTAAGCTTGACGGC
	388	ACCTGCTTTTGGGTGGGTGATATG	CATATCACCCACCCAAAAGCAGGT
	389	AATCGTGGGCGCAGCAAACGTATA	TATACGTTTGCTGCGCCCACGATT
	390	GTCGCCGGATTGCTCAGTATAAGC	GCTTATACTGAGCAATCCGGCGAC
10	391	ACCCGTCGATGCTTCCTCCTCAGA	TCTGAGGAGGAAGCATCGACGGGT
	392	ATCCGGGTGGGCGATACAAGAGAT	ATCTCTTGTATCGCCCACCCGGAT
	393	TTCCGCATGAGTCAGCTTTGAAAA	TTTTCAAAGCTGACTCATGCGGAA
	394	GCAAAGTCCCACTGGCAAGCCGAT	ATCGGCTTGCCAGTGGGACTTTGC
	395	CGACCTCGGCTTCATCGTACACAT	ATGTGTACGATGAAGCCGAGGTCG
15	396	CTCATGAGCGCAGTTGTGCGTGAG	CTCACGCACAACTGCGCTCATGAG
	397	CAGATGAAGGATCCACGGCCGGAG	CTCCGGCCGTGGATCCTTCATCTG
	398	TCAAAGGCTCTTGGATACAGCCGT	ACGGCTGTATCCAAGAGCCTTTGA
	399	TCCGCTAATTTCCAATCAGGGCTC	GAGCCCTGATTGGAAATTAGCGGA
•		CCGTTTGCGGTCGTCCTTGCTCAA	TTGAGCAAGGACGACCGCAAACGG
20	9	TTCGCTTTCGTGGCTGCACTTCAA	TTGAAGTGCAGCCACGAAAGCGAA
	· 402	CTTAGTTGGGGCGCGGTATCCAGA	TCTGGATACCGCGCCCCAACTAAG
	403	GCTCTAATGCCGTGGAGTCGGAAC	GTTCCGACTCCACGGCATTAGAGC
	404	CCGATTACAAATTGACTGACCGCA	TGCGGTCAGTCAATTTGTAATCGG
	405	AGACGTACGTGAGCCTCCCGTGTC	GACACGGGAGGCTCACGTACGTCT
25	406	AATGGAGCGATACGATCCAACGCA	TGCGTTGGATCGTATCGCTCCATT
	407	GGAGGCGCTGTACTGATAGGCGTA	TACGCCTATCAGTACAGCGCCTCC
	408	TGTTTTTGAATTGACCACACGGGA	TCCCGTGTGGTCAATTCAAAAACA
	409	CATGTCTGGATGCGCTCAATGAAG	CTTCATTGAGCGCATCCAGACATG
	410	GCCCGCTAATCCGACACCCAGTTT	AAACTGGGTGTCGGATTAGCGGGC
30	411	CCATTGACAGGAGAGCCATGAGCC	GGCTCATGGCTCTCCTGTCAATGG
	412	GAATCACCGAATCACCGACTCGTT	AACGAGTCGGTGATTC
	413	AACCAGCCGCAGTAGCTTACGTCG	CGACGTAAGCTACTGCGGCTGGTT
	414	TTTTCTGAGGGACACGCGGGCGTT	AACGCCCGCGTGTCCCTCAGAAAA
	415	GGTGCTCCGTTTGATCGATCCTCC	GGAGGATCGATCAAACGGAGCACC
35	416	CCGCTTAGGCCATACTCTGAGCCA	TGGCTCAGAGTATGGCCTAAGCGG
	. 417	TAAGACATACCGACGCCCTTGCCT	AGGCAAGGGCGTCGGTATGTCTTA
	418	GTTCCCGACGCCAGTCATTGAGAC	GTCTCAATGACTGGCGTCGGGAAC
-	419	TAAAAGTTTCGCGGAGGTCGGGCT	AGCCCGACCTCCGCGAAACTTTTA
	420	CGGTCCAGACGAGCTGAGTTCGGC	GCCGAACTCAGCTCGTCTGGACCG
40	421	CGGCGTAGCGGCTACGGACTTAAA	TTTAAGTCCGTAGCCGCTACGCCG
-	422	GCTTGGATGCCCATGCGGCAAGGT	ACCTTGCCGCATGGGCATCCAAGC

ſ	423	AGCGGGATCCCAGAGTTTCGAAAA	TTTTCGAAACTCTGGGATCCCGCT
.	424	GAGCTTGAGAGCGAGGTCATCCTC	GAGGATGACCTCGCTCTCAAGCTC
ļ	425	GCATCGGCCGTTTTGACCATATTC	GAATATGGTCAAAACGGCCGATGC
Ī	426	CATAGCGCTGCACGTTTCGACCGC	GCGGTCGAAACGTGCAGCGCTATG
5	427	ACCCGACAACCACCAATTCAAAAA	TTTTGAATTGGTGGTTGTCGGGT
	428	GCGAACACTCATAAGAGCGCCCTG	CAGGGCGCTCTTATGAGTGTTCGC
Ī	429	CCGCCGAGTGTAGAGAGACTCCGA	TCGGAGTCTCTCTACACTCGGCGG
	430	GACATCGGGAGCCGGAAACATGAG	CTCATGTTTCCGGCTCCCGATGTC
	431	TCGTGTAGACTCGGCGACAGGCGT	ACGCCTGTCGCCGAGTCTACACGA
10	432	ATGCGCATATACTGACTGCGCAGG	CCTGCGCAGTCAGTATATGCGCAT
	433	ACAAGCGAACCCGAGTTTTGATGA	TCATCAAAACTCGGGTTCGCTTGT
	434	GCATGAGACTCCGCGAAGACATGT	ACATGTCTTCGCGGAGTCTCATGC
	435	TCCTACATGTCGCGTCACGATCAC	GTGATCGTGACGCGACATGTAGGA
	436	GACCGATCGCGAAGTCGTACACAT	ATGTGTACGACTTCGCGATCGGTC
15	437	GTCGCCAGGACTGGGCCGATGTGA	TCACATCGGCCCAGTCCTGGCGAC
	438	ACCGATAAGACTTGCATCCGAACG	CGTTCGGATGCAAGTCTTATCGGT
	439	TCCATAACCAGTCCGAAGTGCCGG	CCGGCACTTCGGACTGGTTATGGA
	440	ACGCGCCTGCATCTCGTATTTAA	TTAAATACGAGATGCAGGGCGCGT
	441	AGACCGCATCAATTGGCGCGTACC	GGTACGCGCCAATTGATGCGGTCT
20	442	AGAGGCTTGGCAAGTAGGGACCCT	AGGGTCCCTACTTGCCAAGCCTCT
	443	GCAATGGACGCCAGACGATACCGG	CCGGTATCGTCTGGCGTCCATTGC
	444	GCTGGACTTAGTCGTGTTCGGCGG	CCGCCGAACACGACTAAGTCCAGC
	445	AGGCATCGTGCCGGATTGCTCCCT	AGGGAGCAATCCGGCACGATGCÇT
	446	TGCGCATGTCGACGTTGAACAAAG	CTTTGTTCAACGTCGACATGCGCA
25	447	TTCGGGTCACATCCGATGCCATAC	GTATGGCATCGGATGTGACCCGAA
	448	ACCCATCGCCGGAAAGCGATGTTG	CAACATCGCTTTCCGGCGATGGGT
	449	AAGCGCTGACTCGGCTAAGAATCA	TGATTCTTAGCCGAGTCAGCGCTT
	450	ACTTCCAAGTCCTTGACCGTCCGA	TCGGACGGTCAAGGACTTGGAAGT
	451 .	TCTCAATATTCCCGTAGTCGCCCA	TGGGCGACTACGGGAATATTGAGA
30	452	AACAGTTCCTCTTTTTCCTGGCGC	GCGCCAGGAAAAAGAGGAACTGTT
	453	CGTCCTCCATGTTGTCACGAACAG	CTGTTCGTGACAACATGGAGGACG
	454	TGCGCAGACCTACCTGTCTTTGCT	AGCAAAGACAGGTAGGTCTGCGCA
	455	ATGGACGCTTCGCAGTCCTCCTT	AAGGAGGACTGCGAAGCCGTCCAT
	456	TGAACGCTTTCTATGGGCCACGTA	TACGTGGCCCATAGAAAGCGTTCA
35	457	TGAACCCTGCCGCGAGCGATAACC	GGTTATCGCTCGCGGCAGGGTTCA
	458	GTTCTTGCGCGATGAATCAGGACC	GGTCCTGATTCATCGCGCAAGAAC
	459	AGGGTACGTGTCGCAGCTTCGCGT	ACGCGAAGCTGCGACACGTACCCT
	460	ACCCTTGCTCCGCCATGTCTCTCA	TGAGAGACATGGCGGAGCAAGGGT
	461	GGGACAAGGATTGAAGCTGGCGTC	GACGCCAGCTTCAATCCTTGTCCC
40	462	TGTCGTTGCTCCCGAGTACCATTG	CAATGGTACTCGGGAGCAACGACA
į	463	GTTGTCCGAGACGTTTGTGTCAGC	GCTGACACAAACGTCTCGGACAAC

	464	GCTGGTGAACACTCACGAACCGCT	AGCGGTTCGTGAGTGTTCACCAGC
Γ	465	GCAGACAGGGCAAATCGGTGCAAA	TTTGCACCGATTTGCCCTGTCTGC
<u> </u>	466	CCCATCACAACGAGTGGCGACTTT	AAAGTCGCCACTCGTTGTGATGGG
	467	GCTTCTACAGCTGGCGTGCTAGCG	CGCTAGCACGCCAGCTGTAGAAGC
5	468	GAATGTGTGCCGACCATTCTAGCC	GGCTAGAATGGTCGGCACACATTC
Ī	469	CCAGCGGAAGTTAGAGCTCTGTGG	CCACAGAGCTCTAACTTCCGCTGG
ſ	470	TTTTTACCGACCACTCCATGTCGG	CCGACATGGAGTGGTCGGTAAAAA
Ī	471	GCGGCTATGTGATGACGGCCTAGC	GCTAGGCCGTCATCACATAGCCGC
[472	AGTACACGGGCGTGTTAGCGCTCC	GGAGCGCTAACACGCCCGTGTACT
10	·473	TCCTGTGTGGTGGCGCACTCCCAC	GTGGGAGTGCGCCACACACAGGA
	474	CCAACTAACCAATCGCGCGGATGA	TCATCCGCGCGATTGGTTAGTTGG
	475	AGTGAGTGACCAAGGCAGGAGCAA	TTGCTCCTGCCTTGGTCACTCACT
	476	CATCTTTCGCGGAGTTTATTGCGG	CCGCAATAAACTCCGCGAAAGATG
Ī	477	CTTCGTCCGGTTAGTGCGACAGCA	TGCTGTCGCACTAACCGGACGAAG
15	478	CTCACGAAAACGTGGGCCCGAAAT	ATTTCGGGCCCACGTTTTCGTGAG
	479	CGCAGCAGCTGAACTCTAGCATTG	CAATGCTAGAGTTCAGCTGCTGCG
	480	AGGAGACATACGCCCAAATGGTGC	GCACCATTTGGGCGTATGTCTCCT
Ī	481	ATTGAGAACTCGTGCGGGAGTTTG	CAAACTCCCGCACGAGTTCTCAAT
	482	CTCTTTGTAGGCCCAGGAGGAGCA	TGCTCCTCGGGCCTACAAAGAG
20	483	GCCGCAGGGTCGATAATTGGTCTA	TAGACCAATTATCGACCCTGCGGC
	484	AAACGCCGCCCTGAGACTATTGGG	CCCAATAGTCTCAGGGCGGCGTTT
1	485	CTGAGTTGCCTGGAACGTTGGACT	AGTCCAACGTTCCAGGCAACTCAG
ĺ	486	CGGATGGGTTGCAGAGTATGGGAT	ATCCCATACTCTGCAACCCATCCG
	487	CTGACCTTTGGGGGTTAGTGCGGT	ACCGCACTAACCCCCAAAGGTCAG
25	488	GGAAATGAGAACCTTACCCCAGCG	CGCTGGGGTAAGGTTCTCATTTCC
	489	AACGCATCGTCCGTCAACTCATCA	TGATGAGTTGACGGACGATGCGTT
	490	TGGAGAGAGACTTCGGCCATTGTT	AACAATGGCCGAAGTCTCTCCA
	491	TTGCGCTCATTGGATCTTGTCAGG	CCTGACAAGATCCAATGAGCGCAA
	492	AGCGCGTTAAAGCACGGCAACATT	AATGTTGCCGTGCTTTAACGCGCT
30	493	AGCCAGTAAACTGTGGGCGGCTGT	ACAGCCGCCCACAGTTTACTGGCT
	494	CGACTGATGTGCAACCAGCAGCTG	CAGCTGCTGGTTGCACATCAGTCG
Ì	495	GGTTGCTCATACGACGAGCGAGTG	CACTCGCTCGTCGTATGAGCAACC
	1	0 GTCCAACGCGCAACTCCGATTCAA	TTGAATCGGAGTTGCGCGTTGGAC
	1	1 TTGCCGCACCGTCCGTCATCTCAA	TTGAGATGACGGACGGTGCGGCAA
35	498	AGAACCTCCGCGCCTCCGTAGTAG	CTACTACGGAGGCGCGGAGGTTCT
	499	AAAGGAGCTTTCGCCCAACGTACC	GGTACGTTGGGCGAAAGCTCCTTT
ĺ	500	AGTGATTGTGCCACTCCACAGCTC	GAGCTGTGGAGTGGCACAATCACT
	501	GCGATCGTCGAGGGTTGAGCTGAA	TTCAGCTCAACCCTCGACGATCGC
	502	GGGAGACAGCCATTATGGTCCTCG	CGAGGACCATAATGGCTGTCTCCC
40	503	GAGACGCTGTCACTCCGGCAGAAC	GTTCTGCCGGAGTGACAGCGTCTC
	504	CCACCGGTCGCTTAAGATGCACTT	AAGTGCATCTTAAGCGACCGGTGG

·	505	CGGCATAACGTCCAGTCCTGGGAC	GTCCCAGGACTGGACGTTATGCCG
	506	AAGCGGAACGGGTTATACCGAGGT	ACCTCGGTATAACCCGTTCCGCTT
	507	TGCACACTAGGTCCGTCGCTTGAT	ATCAAGCGACGGACCTAGTGTGCA
	508	AGGGAACCGCGTTCAAACTCAGTT	AACTGAGTTTGAACGCGGTTCCCT
5	509	GAATTACAACCACCCGCTCGTGTT	AACACGAGCGGGTGGTTGTAATTC
	510	TTCAGTGCTCACGAAGCATGGATT	AATCCATGCTTCGTGAGCACTGAA
	511	TTAGTTTGGCGTTGGGACTTCACC	GGTGAAGTCCCAACGCCAAACTAA
	512	AATGCGACCTCGACGAGCCTCATA	TATGAGGCTCGTCGAGGTCGCATT
	513	CCGAAACCGTTAACGTGGCGCACA	TGTGCGCCACGTTAACGGTTTCGG
10	514	TAAAGTAACAAGGCGACCTCCCGC	GCGGGAGGTCGCCTTGTTACTTTA
	515	TAATGATTTTAGTCGCGGGGTGGG	CCCACCCGCGACTAAAATCATTA
	516	GGCTACTCTAAGTGCCCGCTCAGG	CCTGAGCGGGCACTTAGAGTAGCC
	517	TGGCGGACGACTCAATATCTCACG	CGTGAGATATTGAGTCGTCCGCCA
	518	GGGCGTTAGGCGTAATAGACCGTC	GACGGTCTATTACGCCTAACGCCC
15	519	GCCACCTTTAGACGGCGGCTCTAG	CTAGAGCCGCCGTCTAAAGGTGGC
	520	GAGATGTGTAAACGTGCAGGCACC	GGTGCCTGCACGTTTACACATCTC
,	521	TAGCTCGTGGCCCTCCAAGCGTGT	ACACGCTTGGAGGGCCACGAGCTA
	522	GTGTCGGCGCTATTTGGCCTTACC	GGTAAGGCCAAATAGCGCCGACAC
	523	CCAGGGAAGCAACTGGTTGCCATT	AATGGCAACCAGTTGCTTCCCTGG
20	524	TTCCGAAACTAAGCCAGAACCGCT	AGCGGTTCTGGCTTAGTTTCGGAA
	525	GCAAACCCGGTAACCCGAGAGTTC	GAACTCTCGGGTTACCGGGTTTGC
ı	526	GCAAATGGCGTCATGCACGAACGT	ACGTTCGTGCATGACGCCATTTGC
	527	AGTACTTTCGCGCCCAGTTTAGGG	CCCTAAACTGGGCGCGAAAGTACT
	528	AAGATCTGCGAGGCATCCCGGCTT	AAGCCGGGATGCCTCGCAGATCTT
25	529	GCAAGTGTATCGCACAGTGCGATT	AATCGCACTGTGCGATACACTTGC
	530	CCGACAAGGCCTCAATTCATTCTG	CAGAATGAATTGAGGCCTTGTCGG
	531	GTCTCGTCTCAACTTTAAGGCGCG	CGCGCCTTAAAGTTGAGACGAGAC
	532	ATCCAGAGATCCGTTTTGCAGCGT	ACGCTGCAAAACGGATCTCTGGAT
	533	GTCACCAGGAGGGAAGTTTCACCC	GGGTGAAACTTCCCTCCTGGTGAC
30	534	TTCCGTCAGGCGGATCAACGGAAT	ATTCCGTTGATCCGCCTGACGGAA
	535	ATGCCGGACACGCATTACACAGGC	GCCTGTGTAATGCGTGTCCGGCAT
	536	TGGGCCGCTTGGCGCTTTCATAGA	TCTATGAAAGCGCCAAGCGGCCCA
	537	CCTAGCGCGAGCTTTACTGACCAG	CTGGTCAGTAAAGCTCGCGCTAGG
	538	TTGGCCAGGAATATGGTCTCGAGA	TCTCGAGACCATATTCCTGGCCAA
35	539	GTCTGCGGCCGACTTGCTATGCAT	ATGCATAGCAAGTCGGCCGCAGAC
	540	AACTTGCTCATTCTCAAGCCGACG	CGTCGGCTTGAGAATGAGCAAGTT
İ	541	ACGTCAGCGATTGTGGCGAAATAT	ATATTTCGCCACAATCGCTGACGT
	542	ACGGCCTGCGTCAGCACATGCATC	GATGCATGTGCTGACGCAGGCCGT
	543	ATACCTCCGCAGAACCATTCCGTT	AACGGAATGGTTCTGCGGAGGTAT
40	544	AGTTCGCGGTCCCACGATTCACTT	AAGTGAATCGTGGGACCGCGAACT
	545	TGCTCAATTTGTGCAGAAAACGCC	GGCGTTTTCTGCACAAATTGAGCA
•			

!	546	TTATCGCGAGAGACGACCGTGTCC	GGACACGGTCGTCTCTCGCGATAA
	547	GACGCGACGTGAGTAGTGGAAGCG	CGCTTCCACTACTCACGTCGCGTC
	548	ATGGTAGGGCATTGGGCTTTCCT	AGGAAAGCCCAATGCCCCTACCAT
	549	CCAAATATAGCCGCGCGGAGACAT	ATGTCTCCGCGCGGCTATATTTGG
5	550	GCAAACCCTGATTGAATCGTGCCC	GGGCACGATTCAATCAGGGTTTGC
	551	TAGCGTCTTGCGTGAAACCATGGG	CCCATGGTTTCACGCAAGACGCTA
	552	CCACCCGACAGCGCTGGACTCTT	AAGAGTCCAGCGCTGTCGGGGTGG
	553	ACGAGCACTGAAGGCTGCTTTACG	CGTAAAGCAGCCTTCAGTGCTCGT
	554	CATATCAGCGTCGTCTAGCTCGCG	CGCGAGCTAGACGACGCTGATATG
10	555	TGATCCCGGACCGGCTAGACTAAT	ATTAGTCTAGCCGGTCCGGGATCA
	556	GGCCCGACACTACAGGGTAATCA	TGATTACCCTGTAGTGTCGGGGCC
	557	GGCTCCAGGGCGAGATTATGAATG	CATTCATAATCTCGCCCTGGAGCC
	558	CAAAATCCGATGGGCGGAAAATTA	TAATTITCCGCCCATCGGATTITG
	559	CACAGGCGCATAGGGAGCAAGCTA	TAGCTTGCTCCCTATGCGCCTGTG
15	560	TAGCTATTGCCCCGATGGGCTACT	AGTAGCCCATCGGGGCAATAGCTA
	561	TGGTACGCGGTCCATAGCAAGTCG	CGACTTGCTATGGACCGCGTACCA
	562	GACGCTGTGGCTCGGAAACTGTTC	GAACAGTTTCCGAGCCACAGCGTC
	563	CCTGGGTTCGCCGCGTGGTAACTG	CAGTTACCACGCGGCGAACCCAGG
	564	TTCCCGCGTAGCCCAACAGCTATA	TATAGCTGTTGGGCTACGCGGGAA
20	565	TTCGCGGATTGCTGCCGCATAACA	TGTTATGCGGCAGCAATCCGCGAA
•	566	AAAAATGGCACCGAAGTTGAGGCA	TGCCTCAACTTCGGTGCCATTTTT
	567	CATTCCGCGCGAGTTGAAATCCAG	CTGGATTTCAACTCGCGCGGAATG
	568	ACGCACGTTTTTTGGCACGGTTAA	TTAACCGTGCCAAAAAACGTGCGT
	569	TGTCCATGACGTCGTTTCTCTGGT	ACCAGAGAAACGACGTCATGGACA
25	570	TCTCAGTCGGACTCGTATGCCAGA	TCTGGCATACGAGTCCGACTGAGA
	571	CTCCAAACGCACACATCAAGCATC	GATGCTTGATGTGTGCGTTTGGAG
:	572	TTCAACCAAGCGGGGTGTTCGTGA	TCACGAACACCCCGCTTGGTTGAA
	573	GGTGTCGGAGGGTGGTGACCTCGA	TCGAGGTCACCACCCTCCGACACC
	574	AGCGCTTTTGGTCATGATTTGCAA	TTGCAAATCATGACCAAAAGCGCT
30	575	CCGAGGACTTACGTCTGCCCAGGA	TCCTGGGCAGACGTAAGTCCTCGG
	576	GCCCAATCCAGTTCTTATGCGCCC	GGGCGCATAAGAACTGGATTGGGC
	577	CGGGTTAACCCACGCAAGTTATGA	TCATAACTTGCGTGGGTTAACCCG
	578	TGATTAGCGCTCAATACACGCGTG	CACGCGTGTATTGAGCGCTAATCA
	579	AAGGCAGACCTTTGGTTCGACTG	CAGTCGAACCAAAGGTCTGCCCTT
35	580	GCGCCACAAGATTCACATGTCATT	AATGACATGTGAATCTTGTGGCGC
	581	GCCATGTTCAAGGGCCTTTCGAAG	CTTCGAAAGGCCCTTGAACATGGC
İ	582	CGCGGTGTTTTGTCTAGGTGCCGG	CCGGCACCTAGACAAAACACCGCG
	583	CAACATTGTGGTGGCACTCCATCC	GGATGGAGTGCCACCACAATGTTG
	584	CGATACGCGCCGGTTTGTTAAATC	GATTTAACAAACCGGCGCGTATCG
40	585	GGCTATAAACGTGCGGACTGCTCC	GGAGCAGTCCGCACGTTTATAGCC
	586	TGGGTAAATCACTATTGCGCGGTT	AACCGCGCAATAGTGATTTACCCA

PCT/US01/26519

_			
	587	GTCTTCATCGGCCCGCGCAAGCTA	TAGCTTGCGCGGGCCGATGAAGAC
	588	GCGACACCCTGTACTCTGATGC	GCATCAGAGTACAGGGTGTGTCGC
	589	GTAGCAGGGTCCGCAAGACCAAGC	GCTTGGTCTTGCGGACCCTGCTAC
	590	TCGCCAACGCAGGGTAACTGCCAT	ATGGCAGTTACCCTGCGTTGGCGA
5	591	ACTCCGAAGCTTCGAGCGGCACGA	TCGTGCCGCTCGAAGCTTCGGAGT
	12	CATCGTCCCTTTCGATGGGATCAA	TTGATCCCATCGAAAGGGACGATG
	13	GCACGGGAGCTGACGACGTGTCAA	TTGACACGTCGTCAGCTCCCGTGC
[594	ATCATCCCACGGCAGAGTGAAGAG	CTCTTCACTCTGCCGTGGGATGAT
	595	CGCTGGACTGGCCTATCCGAGTCG	CGACTCGGATAGGCCAGTCCAGCG
10	596	CGGTCTCAGCAACACTGTCGCAAA	TTTGCGACAGTGTTGCTGAGACCG
	597	CGAACGTTCTCCGATGTAATGGCC	GGCCATTACATCGGAGAACGTTCG
	598	ATACCGTGCGACAAGCCCCTCTGA	TCAGAGGGGCTTGTCGCACGGTAT
	599	AGCTCATTCCCGAGACGGAACACC	GGTGTTCCGTCTCGGGAATGAGCT
	600	TTTCATGCGGCCGTTGCAAATCAT	ATGATTTGCAACGGCCGCATGAAA
15	601	ACTCGAACGGACGTTCAATTCCCA	TGGGAATTGAACGTCCGTTCGAGT
	602	CTGCATGGTGTGGGTGAGACTCCC	GGGAGTCTCACCCACACCATGCAG
	603	CCGCGAGTGTGGATGGCGTGTTGA	TCAACACGCCATCCACACTCGCGG
	604	AATGTGTCGGTCCTAAGCCGGGTG	CACCCGGCTTAGGACCGACACATT
	605	TAAGACGAGCCTGCACAGCTTGCG	CGCAAGCTGTGCAGGCTCGTCTTA
20	606	GGCGTGGGAGGATAAGACGATGTC	GACATCGTCTTATCCTCCCACGCC
	607	TGCTCCATGTTAGGAACGCACCAC	GTGGTGCGTTCCTAACATGGAGCA
	608	CGGTGTTGGTCGGACTGACGACTG	CAGTCGTCAGTCCGACCAACACCG
	609	CCGCGCGTATCTATCAGATCTGGG	CCCAGATCTGATAGATACGCGCGG
	610	AAAGCATGCTCCACCTGGAGCGAG	CTCGCTCCAGGTGGAGCATGCTTT
25	611	ACTTGCATCGCTGGGTAGATCCGG	CCGGATCTACCCAGCGATGCAAGT
	612	TGCTTACGCAGTGGATTGGTCAGA	TCTGACCAATCCACTGCGTAAGCA
	613	ATGCAGATGAACAAATCGCCGAAT	ATTCGGCGATTTGTTCATCTGCAT
	614	GCAATTCTGGGCCATGTATTCGTC	GACGAATACATGGCCCAGAATTGC
	615	AGGGTTCCTTACGCGTCGACATGG	CCATGTCGACGCGTAAGGAACCCT
30	616	GTGGAGCTAATCGCGAGCCTCAGA	TCTGAGGCTCGCGATTAGCTCCAC
	617	TCGTAGTCTCACCGGCAATGATCC	GGATCATTGCCGGTGAGACTACGA
	618	TTATAGCAGTGCGCCAATGCTTCG	CGAAGCATTGGCGCACTGCTATAA
	619	CGAACAGTGCTGTCCGTCGCTCAA	TTGAGCGACGGACAGCACTGTTCG
	620	TCCGCGTGGACTGTTAGACGCTAT	ATAGCGTCTAACAGTCCACGCGGA
35	621	CATTAGCCCGCTGTCGGTAACTGT	ACAGTTACCGACAGCGGGCTAATG
	622	GGAAAGAAACTCAGACGCGCAATG	CATTGCGCGTCTGAGTTTCTTTCC
	623	CGACTCGCTGGACAGGAGAATCGT	ACGATTCTCCTGTCCAGCGAGTCG
	624	CATGATCCTCTGTTTCACCCGCGG	CCGCGGGTGAAACAGAGGATCATG
	625	GGCGTAGCGCTCTAAAAGCTTCGG	CCGAAGCTTTTAGAGCGCTACGCC
40	626	AGTGATGCCATCAGGCCCGTATAC	GTATACGGGCCTGATGGCATCACT
	627	TATGGAAAGGGCAACAGCGCTATC	GATAGCGCTGTTGCCCTTTCCATA
1	· · · · · · · · · · · · · · · · · · ·		•

_			
. [628	CTGTGGTTGATGGAGGATCCACAC	GTGTGGATCCTCCATCAACCACAG
	629	ACTCGCTGGAATTTGCGCTGACAC	GTGTCAGCGCAAATTCCAGCGAGT
	630	CAGGCCCGAACCACGCGGTTACAG	CTGTAACCGCGTGGTTCGGGCCTG
	631	GGCGCAATGGGCGCATAAATACTA	TAGTATTTATGCGCCCATTGCGCC
5	632	GGTCAATTCGCGCTACATGCCCTA	TAGGGCATGTAGCGCGAATTGACC
	633	GATGGTGGACTGGAGCCCTTCCGC	GCGGAAGGGCTCCAGTCCACCATC
	634	CCGCGCATAGCGCAATAGGGGAGA	TCTCCCCTATTGCGCTATGCGCGG
	635	TCTTCTGGCTGTCCGGCACCCGAA	TTCGGGTGCCGGACAGCCAGAAGA
	636	GCGTTCGCAATTCACGGGCCCTTA	TAAGGCCCGTGAATTGCGAACGC
10	637	TCGTTTCGGCCTTGGAGAGTATCG	CGATACTCTCCAAGGCCGAAACGA
	638	AGGTGCAAGTGCAAGGCGAGAGGC	GCCTCTCGCCTTGCACTTGCACCT
	639	CGCCAGTTTCGATGGCTGACGTTT	AAACGTCAGCCATCGAAACTGGCG
	640	GCTTTACCGCCGATCCCAGATATC	GATATCTGGGATCGGCGGTAAAGC
	641	GTGCTTGACGAAGAGGCGAAATGT	ACATTTCGCCTCTTCGTCAAGCAC
15	642	CAGTCCGTGCGCTTCATGTCCTCA	TGAGGACATGAAGCGCACGGACTG
	643	TACGCGTAAGAGCCTACCCTCGCG	CGCGAGGGTAGGCTCTTACGCGTA
	644	GGCGAGTCTTGTGGGGACATGTGT	ACACATGTCCCCACAAGACTCGCC
	645	CCAAAGCGAAGCGAGCGTGTCTAT	ATAGACACGCTCGCTTCGCTTTGG
ĺ	646	GCCGTAGGTTGCTCTTCACCGAAC	GTTCGGTGAAGAGCAACCTACGGC
20	647	AAATCCGCGATGTGCCGTGAGGCT	AGCCTCACGGCACATCGCGGATTT
	648	GGCTTCGCACCCGTACCAATTTAG	CTAAATTGGTACGGGTGCGAAGCC
{	649	TGTAGAGTCCCACGTAGCCGGCAT	ATGCCGGCTACGTGGGACTCTACA
	650	CACTAGTCTGGGGCAAGGTGCATT	AATGCACCTTGCCCCAGACTAGTG
	651	TGTACTCGGCAGGCGCAATAGATT	AATCTATTGCGCCTGCCGAGTACA
25	652	AACGGGTATCGGAAGCGTAAAAGC	GCTTTTACGCTTCCGATACCCGTT
	653	CGGACTGCCCGTTTGCAAGTTGAG	CTCAACTTGCAAACGGGCAGTCCG
	654	ATCGTTCAGCACTGGAGCCCGTAA	TTACGGGCTCCAGTGCTGAACGAT
	655	ATGCATCGAACTAGTCGTGACGGC	GCCGTCACGACTAGTTCGATGCAT
	656	TTCCAGGCATTAAGGAGAGGGAGC	GCTCCCTCTCCTTAATGCCTGGAA
30	657	GTGCGACATCTACTCCACGATCCC	GGGATCGTGGAGTAGATGTCGCAC
	658	CTCATCGTCCTAACACGAGAGCCC	GGGCTCTCGTGTTAGGACGATGAG
	659	AATGGCACTTCGGCGGTGATGCAA	TTGCATCACCGCCGAAGTGCCATT
	660	CCGTGGGAGGGAATCCAACCGAGG	CCTCGGTTGGATTCCCTCCCACGG
	661	AAATTCTCGTTGGTGACGGCTCAT	ATGAGCCGTCACCAACGAGAATTT
35	662	TTGCTCTTATCCTTGTCCTGGGCG	CGCCCAGGACAAGGATAAGAGCAA
	. 663	TTAAGGATCAGGCGGAGCTTGCAG	CTGCAAGCTCCGCCTGATCCTTAA
į	664	CGCGACTAAGGTGCTGCAACTCGA	TCGAGTTGCAGCACCTTAGTCGCG
	665	GCTCGATTTCACGGCCCGTTGTTC	GAACAACGGGCCGTGAAATCGAGC
	666	AGCAGAGTGCGTTGCAGAGGCTAA	TTAGCCTCTGCAACGCACTCTGCT
40	667	TGGAGGTGAGGACGTGCACTA	TAGTGCACGTCGTCCTCACCTCCA
	668	AACCGTTTAGGGTACATTCGCGGT	ACCGCGAATGTACCCTAAACGGTT

	669	TATGATCGCTCGGCTCACAGTTTG	CAAACTGTGAGCCGAGCGATCATA
	670	GAOTITICO CONTROLICO	ACCATGACGTTTCCGCAAAAAGTC
Ī	671	TGTCGGTTATTCCACCTGCAAGGA	TCCTTGCAGGTGGAATAACCGACA
	672	CTATGGTTTGCACTGCGCCGTCGA	TCGACGCCCAGTGCAAACCATAG
5	673	AGCAGGGAAATTCAATCGTTCGCA	TGCGAACGATTGAATTTCCCTGCT
	674	CCTAACCGAGCGCTTAGCATTTCC	GGAAATGCTAAGCGCTCGGTTAGG
	675	CCCGACCCTAACTCGCATTGAATA	TATTCAATGCGAGTTAGGGTCGGG
	676	TTGCTTAATGGTGACGCCACGGAT	ATCCGTGGCGTCACCATTAAGCAA
Ī	677	GATGCTCGCCGTGTTTAGTTCACG	CGTGAACTAAACACGGCGAGCATC
10	678	TCGGATGACGAGTTTCCATGACGG	CCGTCATGGAAACTCGTCATCCGA
	679	ATGCGGTCTACTTTCTCGATCGGG	CCCGATCGAGAAAGTAGACCGCAT
	680	TTGCGAGGCTAAGCACACGGTAAA	TTTACCGTGTGCTTAGCCTCGCAA
	681	AACTTAATTACCGCCTCTGGCGCC	GGCGCCAGAGGCGGTAATTAAGTT
	682	GTGACCGCGAACTTGTTCCGACAG	CTGTCGGAACAAGTTCGCGGTCAC
15	683	TGCGGATTACCGATTCGCTCTTAA	TTAAGAGCGAATCGGTAATCCGCA
	684	TGATAGGGGGCCACGTTGATCAGA	TCTGATCAACGTGGCCCCCTATCA
	685	TCGCTCCGTAGCGATTCATCGTAG	CTACGATGAATCGCTACGGAGCGA
	686	TGTCAGCTGGTAGCCTCCGTTTGA	TCAAACGGAGGCTACCAGCTGACA
	687	AGCGTCGCATGACGCTTACGGCAC	GTGCCGTAAGCGTCATGCGACGCT
20 '	14	AGACGCACCGCAACAGGCTGTCAA	TTGACAGCCTGTTGCGGTGCGTCT
	15	CGTGTAGGGGTCCCGTGCTGTCAA	TTGACAGCACGGGACCCCTACACG
	690	GTCGCATTCTGCACTGGCTTCGCC	GGCGAAGCCAGTGCAGAATGCGAC
	691	TGATTAGGTGCGGTCCCGTAGTCC	GGACTACGGGACCGCACCTAATCA
	692	AAGGGACCTTGGGTGACGGCGAGA	TCTCGCCGTCACCCAAGGTCCCTT
25	693	TCAAATGGCCACCGCGTGTCATTC	GAATGACACGCGGTGGCCATTTGA
	694	CTCCGACGACCAATAAATAGCCGC	GCGGCTATTTATTGGTCGTCGGAG
	695	GGCTATTCCCGTAGAGAGCGTCCA	TGGACGCTCTCTACGGGAATAGCC
	696	TGGATAACCTCTCGGTCCATCCAC	GTGGATGGACCGAGAGGTTATCCA
	697	GACCGCTGTACGGGAGTGTGCCTT	AAGGCACACTCCCGTACAGCGGTC
30	698	GCCACAGAGTTTTAGCAGGGACCC	GGGTCCCTGCTAAAACTCTGTGGC
	699	CCCACGCTTTCCGACCACTGACCT	AGGTCAGTGGTCGGAAAGCGTGGG
	700	CATTGACACAATGCGGGGACTGAT	ATCAGTCCCCGCATTGTGTCAATG
	701	AGCCACTCGACAGGGTTCCAAAGC	GCTTTGGAACCCTGTCGAGTGGCT
	702	CAGGATGAGCAAAGCGACTCTCCA	TGGAGAGTCGCTTTGCTCATCCTG
35	703	CAAGGTATGGTCTGGGGCCTAAGC	GCTTAGGCCCCAGACCATACCTTG
	704	GGTGTTCGGCCTAAACTCTTTCGG	CCGAAAGAGTTTAGGCCGAACACC
	705	TTTAGTCGGACCCTGTGGCAATTC	GAATTGCCACAGGGTCCGACTAAA
	706	CACACGTTTCCGACCAGCCTGAAC	GTTCAGGCTGGTCGGAAACGTGTG
	707	CTGGACGAACTGGCTTCCTCGTAC	GTACGAGGAAGCCAGTTCGTCCAG
40	708	TTCACAATCCGCCGAAAACTGACC	GGTCAGTTTTCGGCGGATTGTGAA
	709	AACAGGATATCCGCGATCACGACA	TGTCGTGATCGCGGATATCCTGTT

710 TACGTCGGATCCATTGCGCCGAGT ACTCGGCGCAATGGATCCC 711 CATGGATCTCTCGGTTTGATCGCC GGCGATCAAACCGAGAGAT 712 AGCCAGGCGCGTATATACGCTCGG CCGAGCGTATATACGCGCC 713 ATTTGGCACGTGTCGTGCCATGTT AACATGGCACGACACGTGC 714 CCGCGTTGCACCACTTTGAGGTGC GCACCTCAAAGTGGTGCAA 715 TTGGACGTGACAAGCATGGCGCTC GAGCGCCATGCTTGTCACC 716 CTGAATCGCGCAAGTAAATGGGGG CCCCCATTTACTTGCGCGA 717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACC 718 CTAACAATTGCCAACCGGGACGGC GCCGTCCCGGTTGGCAAT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAC 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATC 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGGTA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA 725 CCGTTGAATTGGACGGGAGGTTAG CTAACCTCCCGTCCAATTCCA	CCATG CTGGCT CCAAAT ACGCGG CTCCAA TTCAG CTTATC TGTTAG CTCGAT CCGAT CCGCTT CCGCTT
712 AGCCAGGCGCGTATATACGCTCGG CCGAGCGTATATACGCGCC 713 ATTTGGCACGTGTCGTGCCATGTT AACATGGCACGACACGTGC 714 CCGCGTTGCACCACTTTGAGGTGC GCACCTCAAAGTGGTGCAA 715 TTGGACGTGACAAGCATGGCGCTC GAGCGCCATGCTTGTCACC 716 CTGAATCGCGCAAGTAAATGGGGG CCCCCATTTACTTGCGCGAA 717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACC 718 CTAACAATTGCCAACCGGGACGGC GCCGTCCCGGTTGGCAAT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCACG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATC 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCACA	CTGGCT CCAAAT ACGCGG ETCCAA TTCAG CTTATC TGTTAG ETTACC TCCGAT ETTCAC CGCCT CCGTT
713 ATTTGGCACGTGTCGTGCCATGTT AACATGGCACGACACGTGC 714 CCGCGTTGCACCACTTTGAGGTGC GCACCTCAAAGTGGTGCAA 715 TTGGACGTGACAAGCATGGCGCTC GAGCGCCATGCTTGTCACC 716 CTGAATCGCGCAAGTAAATGGGGG CCCCCATTTACTTGCGCGA 717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACC 718 CTAACAATTGCCAACCGGGACGGC GCCGTCCCGGTTGGCAAT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAC 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATC 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCAC	CCAAAT ACGCGG BTCCAA TTCAG CTTATC TGTTAG BTTACC TCCGAT BTTCAC CCGCT CCGCTT
5 714 CCGCGTTGCACCACTTTGAGGTGC GCACCTCAAAGTGGTGCAA 715 TTGGACGTGACAAGCATGGCGCTC GAGCGCCATGCTTGTCACC 716 CTGAATCGCGCAAGTAAATGGGGG CCCCCATTTACTTGCGCGA 717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACC 718 CTAACAATTGCCAACCGGGACGGC GCCGTCCCGGTTGGCAATT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCACC 722 AGGCGATAGCATGGTCCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCACCACCACCACCACCACCACCACCACCACCAC	CGCGG ETCCAA TTCAG CTTATC EGTTAG ETTACC ECCGAT ETTCAC CGCCT CCGTT
715 TTGGACGTGACAAGCATGGCGCTC GAGCGCCATGCTTGTCACG 716 CTGAATCGCGCAAGTAAATGGGGG CCCCCATTTACTTGCGCGA 717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACG 718 CTAACAATTGCCAACCGGGACGGC GCCGTCCCGGTTGGCAAT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	ETCCAA TTCAG ETTATC EGTTAG ETTACC ECCGAT ETTCAC ECCGCT ECCGTT
716 CTGAATCGCGCAAGTAAATGGGGG CCCCCATTTACTTGCGCGA 717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACC 718 CTAACAATTGCCAACCGGGACGC GCCGTCCCGGTTGGCAATT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATC 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	TTCAG CTTATC TGTTAG STTACC TCCGAT STTCAC CGCCT CCGTT
717 GATAAGGTCCACCAGATTGCGCGC GCGCGCAATCTGGTGGACG 718 CTAACAATTGCCAACCGGGACGGC GCCGTCCCGGTTGGCAAT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	CTTATC GTTAG GTTACC CCGAT GTTCAC CCGCT CCGTT
718 CTAACAATTGCCAACCGGGACGC GCCGTCCCGGTTGGCAATT 10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	GTTAG GTTACC CCGAT GTTCAC CGCCT CCGTT
10 719 GGTAACCTGGGTGCTTGCAGGTTA TAACCTGCAAGCACCCAGG 720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	CCGAT CCGAT CCCCT CCCCT
720 ATCGGAGCCACCATTCGCATTGGG CCCAATGCGAATGGTGGCT 721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	CCGAT CGCCT CCGTT
721 GTGAACTGGCTTGCCCCAGGATTA TAATCCTGGGGCAAGCCAG 722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	CGCCT
722 AGGCGATAGCATGGTCCCATATGA TCATATGGGACCATGCTATG 723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	CGCCT
723 AACGGTATCGTGGCTAATGCACGA TCGTGCATTAGCCACGATA 15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	CCGTT
15 724 AGTAGTGGTCCTCCAGATCGGCAA TTGCCGATCTGGAGGACCA	
	0716-
725 CCGTTGAATTGGACGGGAGGTTAG CTAACCTCCCGTCCAATTC	CTACT
720 000110/01100/00000100017/00 01/00/00/00/00/00/00/00/00/00/00/00/00/0	4ACGG
726 GCATAAGTGCGGCATCGCGAAGGG CCCTTCGCGATGCCGCACT	TATGC
727 CGACAAGATGCAGCTGCTACATGC GCATGTAGCAGCTGCATCT	TGTCG
728 TCGCAGTGATTCCCGACCGATAAG CTTATCGGTCGGGAATCAC	TGCGA
20 729 CAAGGCGAGTCCACTCGAGGGGAC GTCCCCTCGAGTGGACTCC	CCTTG
730 GCAACTTGCACGGCATAAGTGGCC GGCCACTTATGCCGTGCAA	GTTGC
731 TCCGAGCTTGACGTTCGCGACGTC GACGTCGCGAACGTCAAGC	TCGGA
732 AGCGCTGGGCTGTGCCATCTC GAGATGGCAGCACAGCCC	AGCGCT
733 TTCATGTCGCTGAGTAACCCTCGC GCGAGGGTTACTCAGCGAC	ATGAA
25 734 CGAACCGCTAATGCCCATTGTCAG CTGACAATGGGCATTAGCG	GTTCG
735 CACGGAAGGTGGGACAAATCGCCG CGGCGATTTGTCCCACCTT	CCGTG
736 CACAGATGGAGACAAACGCGCCTT AAGGCGCGTTTGTCTCCAT	CTGTG
737 TTTTCGCAACTCGCTCCATAACCC GGGTTATGGAGCGAGTTGC	GAAAA
738 ACGTTACGTTTCCGGCGCCTCTAA TTAGAGGCGCCGGAAACGT	AACGT
30 739 TATCGGATTGCGTGGGTTTCAATC GATTGAAACCCACGCAATC	CGATA
740 CTTCCACAATTGTCTGCGACGCAC GTGCGTCGCAGACAATTGT	GGAAG
741 TGCACAAAGGTATGGCTGTCCGGC GCCGGACAGCCATACCTTT	GTGCA
742 TCCGATGCCAGTCCCATCTTAAGA TCTTAAGATGGGACTGGCA	TCGGA
743 CTGAAACCGTGCGAATCGAGGTGA TCACCTCGATTCGCACGGT	TTCAG
35 744 CGGTGTTCCGCGTGTCGAAAAAAT ATTTTTTCGACACGCGGAA	CACCG
745 TCTAGCAGGCCTTTTGAATCGCCA TGGCGATTCAAAAGGCCTG	CTAGA
746 GAGTCACCTCTGAGACGGACGCCA TGGCGTCCGTCTCAGAGGT	GACTC
747 TCTTCTGTCATCCTGCAGCAGCAT ATGCTGCTGCAGGATGACA	GAAGA
748 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAGGTTTCA	rccgc
40 749 GGGGCCCCAAACTGGTATCAAGCC GGCTTGATACCAGTTTGGG	GCCCC
750 GCATTGGCTTCGGATTCTCCTACA TGTAGGAGAATCCGAAGCC	

	751	AGGCGCCCAACTGTGAGGTCTTG	CAAGACCTCACAGTTGGGCCGCCT
Ţ	752	ACACCATGTGCTCCGCGCTGCAGT	ACTGCAGCGCGGAGCACATGGTGT
	753	ACGATGAACATGAATCGGGAGTCG	CGACTCCCGATTCATGTTCATCGT
	754	CTGCATCCCTGTAGCAGCGCTCCG	CGGAGCGCTGCTACAGGGATGCAG
5	755	GTGCCGTATTTCGACCTGTGCGTT	AACGCACAGGTCGAAATACGGCAC
	756	GCAGTGCGCACTTCAGTTCAAAAG	CTTTTGAACTGAAGTGCGCACTGC
	757	GCGATTTTAAGCGATGCCTTGACG	CGTCAAGGCATCGCTTAAAATCGC
Î	758	TAGGTGACCTAGGCTTGCTTGCGG	CCGCAAGCAAGCCTAGGTCACCTA
	759	CTGGATACCTTGCCTGTGCGGCGC	GCGCCGCACAGGCAAGGTATCCAG
10	760	CCCCTTACGGCTCGTCGTCTATGC	GCATAGACGACGAGCCGTAAGGGG
	761	GCGCTTGCCCGATGCGATGCATTA	TAATGCATCGCATCGGGCAAGCGC
	762	TTTCTGTAAGCGGCCTGGGGTTCA	TGAACCCCAGGCCGCTTACAGAAA
	763	GGCTGAGGTGAGCGGTAAGGATGA	TCATCCTTACCGCTCACCTCAGCC
Ì	764	TCTTGGCCTCCCCGATCTAATTTG	CAAATTAGATCGGGGAGGCCAAGA
15	765	GGAGGTAACGCCGTGTACGTAGGA	TCCTACGTACACGGCGTTACCTCC
ĺ	766	GTAATCCATTTGTGGCTGCGTCAA	TTGACGCAGCCACAAATGGATTAC
ĺ	767	CAAACCCATTCCAGCAGACGCCTG	CAGGCGTCTGCTGGAATGGGTTTG
	768	TAGGAGGAATTTGGCATGCGGGCG	CGCCCGCATGCCAAATTCCTCCTA
	769	ATAGGTAGGATGTGCCCGGCGTTG	CAACGCCGGGCACATCCTACCTAT
20	770	GCAAGTGCTTAGCTCGTCAGCCTC	GAGGCTGACGAGCTAAGCACTTGC
	771	CTGGCTGTGTCGCATCTCGTTAAC	GTTAACGAGATGCGACACAGCCAG
	772	CTAACGTCGTCTCGCGCAATCACT	AGTGATTGCGCGAGACGACGTTAG
	773	TTTTCATAAACGTTGTCCCCGAGC	GCTCGGGGACAACGTTTATGAAAA
	774	AGCAGGAGGACGAACCTCCGCTCC	GGAGCGGAGGTTCGTCCTCCTGCT
25	775	TTCAAGCACCATCGTGCAATCCAA	TTGGATTGCACGATGGTGCTTGAA
	776	AGCGTCGCCAGTGATCGCTAGTGG	CCACTAGCGATCACTGGCGACGCT
	777	TACATTCCCTGCCTCCGTGGGCTT	AAGCCCACGGAGGCAGGGAATGTA
	778	CGCTTCGCGTATTCAGTAGCGGTT	AACCGCTACTGAATACGCGAAGCG
	779	TCGGACGCGTCGACACTCATTATA	TATAATGAGTGTCGACGCGTCCGA
30	780	TCTGAGCAGGCCAGCTCCAGCT	AGCTGGAGCGCTGGCTCAGA
	781	TTGAATTGCCAAGCCCTGAAAGCC	GGCTTTCAGGGCTTGGCAATTCAA
	782	AGTTTTCGCCTTGATGCGTCGGTG	CACCGACGCATCAAGGCGAAAACT
	783	GTTTCATAGGCCACGCGTGCTAAA	TTTAGCACGCGTGGCCTATGAAAC
•	16	CATCGCTGCAAGTACCGCACTCAA	TTGAGTGCGGTACTTGCAGCGATG

TABLE 4

	<u> </u>	(510) 517	T = 1 0 (510) 515
	Seq. ID No.	Decoder Sequence (5'-3') + 5' T	Probe Sequence (5'-3') + 5' T
	17	TTTCGCCGTCGTGTAGGCTTTTCAA	TTTGAAAAGCCTACACGACGGCGAA
	18	TGTTCCCAGTGAAGCTGCGATCTGG	TCCAGATCGCAGCTTCACTGGGAAC
5	19	TTACTTGGCATGGAATCCCTTACGC	TGCGTAAGGGATTCCATGCCAAGTA
	20	TACTAGCATATTTCAGGGCACCGGC	TGCCGGTGCCCTGAAATATGCTAGT
	21	TGAACGGTCAATGAACCCGCTGTGA	TTCACAGCGGGTTCATTGACCGTTC
	22	TGCGGCCTTGGTTCAATATGAATCG	TCGATTCATATTGAACCAAGGCCGC
	23	TGATCGTTAGAGGGACCTTGCCCGA	TTCGGGCAAGGTCCCTCTAACGATC
10	24	TTGGACCTAGTCCGGCAGTGACGAA	TTTCGTCACTGCCGGACTAGGTCCA
	25	TATAAACTACCCAGGACGGGCGGAA	TTTCCGCCCGTCCTGGGTAGTTTAT
	26	TCATCGGTTCGCGCCAATCCAGATA	TTATCTGGATTGGCGCGAACCGATG
	27	TGTCGGGCATAGAGCCGACCACCCT	TAGGGTGGTCGGCTCTATGCCCGAC
	28	TCTTGGGTCATGATTCACCGTGCTA	TTAGCACGGTGAATCATGACCCAAG
15	29	TTGCCTAACGTGCTAATCAGCAGCG	TCGCTGCTGATTAGCACGTTAGGCA
	30	TCGCATGTTGGAGCATATGCCCTGA	TTCAGGGCATATGCTCCAACATGCG
	31	TAGCCACTGCATCAGTGCTGTTCAA	TTTGAACAGCACTGATGCAGTGGCT
	32	TGGTTGTTTTGAGGCGTCCCACACT	TAGTGTGGGACGCCTCAAAACAACC
	33	TTCGACCAAGAGCAAGGGCGGACCA	TTGGTCCGCCCTTGCTCTTGGTCGA
20	34	TGACATCGCTATTGCGCATGGATCA	TTGATCCATGCGCAATAGCGATGTC
	35	TGAAATACGAAGTCTGCGGGAGTCG	TCGACTCCCGCAGACTTCGTATTTC
	36	TTGTCATGAATGATTGATCGCGCGA	TTCGCGCGATCAATCATTCATGACA
	37	TATATCGGGATTCGTTCCCGGTGAA	TTTCACCGGGAACGAATCCCGATAT
	38	TGCGAGCGTACCGAAGGGCCTAGAA	TTTCTAGGCCCTTCGGTACGCTCGC
25	39	TTTACCGGCAGCGGACTTCCGAATT	TAATTCGGAAGTCCGCTGCCGGTAA
	40	TGTAATCGAGAGCTGCGCGCCGTCT	TAGACGCCCCCAGCTCTCGATTAC
	41	TCCTGTTAGCGTAGGCGAGTCGATC	TGATCGACTCGCCTACGCTAACAGG
	42	TTAGCGGACCGGCAGAATGAGTTCC	TGGAACTCATTCTGCCGGTCCGCTA
	43	TGGTACATGCACTACGCGCACTCGG	TCCGAGTGCGCGTAGTGCATGTACC
30	44	TAATTCATCTCGGACTCCCGCGGTA	TTACCGCGGGAGTCCGAGATGAATT
	45	TGCCAAATCTGGATTGGCAGGAATG	TCATTCCTGCCAATCCAGATTTGGC
	46	TTGCATTTTCGGTTGAGGCACATCC	TGGATGTGCCTCAACCGAAAATGCA
	47	TCCGCTCAATTCACCATGCTTCGCT	TAGCGAAGCATGGTGAATTGAGCGG
	48	TCTCGGAAAGGTGCAACTTTGGTGT	TACACCAAAGTTGCACCTTTCCGAG
35	49	TAATTCGACCAGCAGAACGTCCCAT	TATGGGACGTTCTGCTGGTCGAATT
	50	TGCCAGAGTCTCAACCTCACGGGAT	TATCCCGTGAGGTTGAGACTCTGGC
	51	TCCAACAACTGGAACGGGAACCCGC	TGCGGGTTCCCGTTCCAGTTGTTGG
•	52	TGAGAACTGATCGCTGAGGGGCATG	TCATGCCCCTCAGCGATCAGTTCTC
	53	TGGCACACTAGACTTGTGGCACCGA	TTCGGTGCCACAAGTCTAGTGTGCC
		· · · · · · · · · · · · · · · · · · ·	

Ţ	54	TTCACATCCAAATATGGTCCGCGAA	TTTCGCGGACCATATTTGGATGTGA
	55	TGTCTGCCGGTGTGACCGCTTCATT	TAATGAAGCGGTCACACCGGCAGAC
	56	TCATCGCAGAGCATAAACACCCTCA	TTGAGGGTGTTTATGCTCTGCGATG
Ī	57	TGTTGGTATCTATGGCAGAGGCGGA	TTCCGCCTCTGCCATAGATACCAAC
5	58	TACGAGGTGCCGCTGAGGTTCCATT	TAATGGAACCTCAGCGGCACCTCGT
1	59	TGGAATGAGTGGACCCAGGCACATT	TAATGTGCCTGGGTCCACTCATTCC
Ī	60	TTGTCAATATGCGTCCGTGTCGTCT	TAGACGACACGGACGCATATTGACA
	61	TTGATGAGCCTCAGGGTACGAGGCA	TTGCCTCGTACCCTGAGGCTCATCA
	62	TCACCGCGGTGTTCCTACAGAATGA	TTCATTCTGTAGGAACACCGCGGTG
10	63	TTTGTTGCCAATGGTGTCCGCTCGG	TCCGAGCGGACACCATTGGCAACAA
	64	TTTAACCTGCGTCTGCCCCTTTCCT	TAGGAAAGGGGCAGACGCAGGTTAA
İ	65	TAGGCGCGTTCCTGCCTTAGTGACG	TCGTCACTAAGGCAGGAACGCGCCT
	66	TTAGGGCGATGGCACGAAGCTTCAA	TTTGAAGCTTCGTGCCATCGCCCTA
	67	TTGCATAGAGCCAAAGTCGGCGATG	TCATCGCCGACTTTGGCTCTATGCA
15	68	TTTGAGAGGCAGGTGGCCACACGGA	TTCCGTGTGGCCACCTGCCTCTCAA
	69	TTCCGCATTGTGAGAAAAAACGAGC	TGCTCGTTTTTTCTCACAATGCGGA
[70	TGGCGGTTTCCGTAGCTATAGGTGC	TGCACCTATAGCTACGGAAACCGCC
	71	TGGTGAAAATTTCGTAGCCACGGGC	TGCCCGTGGCTACGAAATTTTCACC
ĺ	72	TCCGACGGAGGATGAAGACAATCAC	TGTGATTGTCTTCATCCTCCGTCGG
20	73	TCCAGTTTGGCCCAATTCGCCAAAA	TTTTTGGCGAATTGGGCCAAACTGG
	74	TGGATCTATTAGGCCGTGCGCACAG	TCTGTGCGCACGGCCTAATAGATCC
ĺ	75	TCGGATGTCACCGTTTGGACTTTCA	TTGAAAGTCCAAACGGTGACATCCG
	76	TATCGCAAATCCTGCTCGTCCCTAA	TTTAGGGACGAGCAGGATTTGCGAT
{	77	TCAGGGCATGCAATAATCGAGGTTC	TGAACCTCGATTATTGCATGCCCTG
25	78	TCATGCGTTGATATATGGGCCCAAG	TCTTGGGCCCATATATCAACGCATG
ĺ	79	TCAGCTGCAGCTTGTGACCAACCAC	TGTGGTTGGTCACAAGCTGCAGCTG
	80	TTTGTATGTCTGCCGACCGGCGACC	TGGTCGCCGGTCGGCAGACATACAA
	81	TGATGGCGCCCGTTGATAGGTATGG	TCCATACCTATCAACGGGCGCCATC
ĺ	82	TATGAGAATCGCCGGCAATCTGCTA	TTAGCAGATTGCCGGCGATTCTCAT
30	83	TATTTGCACTGACCGCAGGCTCGTG	TCACGAGCCTGCGGTCAGTGCAAAT
	84	TCAGGGAGAACGGTTAAGTTCCCGT	TACGGGAACTTAACCGTTCTCCCTG
ĺ	85	TAGGCCGGCGATCGAGGAGTTTGGT	TACCAAACTCCTCGATCGCCGGCCT
	86	TACACGGTGGTCTCTGATAGCGACC	TGGTCGCTATCAGAGACCACCGTGT
	87	TGTGCAACGCCGAGGACTTCCATCA	TTGATGGAAGTCCTCGGCGTTGCAC
35 .	88	TTCGGTGCCTGATAGCCATTCCGAT	TATCGGAATGGCTATCAGGCACCGA
Í	89	TTGAAATACCACACAGCCAATTGGC	TGCCAATTGGCTGTGTGGTATTTCA
	90	TGCATCGTGTACATGACTGCCGCGA	TTCGCGGCAGTCATGTACACGATGC
į	91	TCAGTGTTCTAACGGCGCGCGTGAA	TTTCACGCGCGCCGTTAGAACACTG
	92	TCGCTTGCAACGTTGCACCTACTCT	TAGAGTAGGTGCAACGTTGCAAGCG
40	93	TCGAAAAACTAGTGGGCTCGCCGCG	TCGCGGCGAGCCCACTAGTTTTCG
	94	TCTTTCAGGGGAACTGCCGGAGTCG	TCGACTCCGGCAGTTCCCCTGAAAG

	95		TTTGTGGCCTTCTTGTAAAGGCACG	TCGTGCCTTTACAAGAAGGCCACAA
ı	96		TTCCACGAACGCCGACCCGTTGTCT	TAGACAACGGGTCGCCGTTCGTGGA
	97		TCGACCTTGCACGAAACCTAACGAG	TCTCGTTAGGTTTCGTGCAAGGTCG
	98		TGTGCAGCTTCACGAGCCAGCCTGA	TTCAGGCTGGCTCGTGAAGCTGCAC
5	99		TCGCTTTCGTGCGAATAGACGATGA	TTCATCGTCTATTCGCACGAAAGCG
	100		TTGCGCTTACAGGCTCCTAGTGGTC	TGACCACTAGGAGCCTGTAAGCGCA
	101		TCACGCGCTTAGTCGCGATCGCATA	TTATGCGATCGCGACTAAGCGCGTG
	102		TCGGAGGGAGGGAGCTAGCCTTCGA	TTCGAAGGCTAGCTCCCTCCG
	103		TGCATCCGGCCTGTTGATGACGCCT	TAGGCGTCATCAACAGGCCGGATGC
10	104		TAGGCCAATCGATCTTATTGCCGAG	TCTCGGCAATAAGATCGATTGGCCT
	105		TCCTTCCAATGATTGCATACGCCCA	TTGGGCGTATGCAATCATTGGAAGG
	106		TAACACTTGATCAGGCGGGTCGTCT	TAGACGACCCGCCTGATCAAGTGTT
	107		TTGGAATCAAGGCCGTAAAGGACAG	TCTGTCCTTTACGGCCTTGATTCCA
	108		TGCTCCCGTAACCTGTCCACCAGTG	TCACTGGTGGACAGGTTACGGGAGC
15	109		TAGTGGTGAATGGCCGCTACCCTGA	TTCAGGGTAGCGGCCATTCACCACT
	110		TTGTTGAAGCGAGCTAAAACGGCCA	TTGGCCGTTTTAGCTCGCTTCAACA
	111		TCAGCGCTCCAGAATTGACAGCAAT	TATTGCTGTCAATTCTGGAGCGCTG
		2	TTTCGAAGCGCACGTCCCTTTTCAA	TTTGAAAAGGGACGTGCGCTTCGAA
		3	TAACGCGTGGGGAATGGGACATCAA	TTTGATGTCCCATTCCCCACGCGTT
20	114		TCACGAGATACCGGCGTAAGGGTGG	TCCACCCTTACGCCGGTATCTCGTG
	115		TCTACGGCAAACGTGTGGAATGGGT	TACCCATTCCACACGTTTGCCGTAG
	116		TGTAGGGCGATGACGGGCGAACTAC	TGTAGTTCGCCCGTCATCGCCCTAC
	117		TAATCGACCTCCGCACACATTCGCA	TTGCGAATGTGTGCGGAGGTCGATT
	118		TGAGTCAGCATGGCGGCGGAGATTC	TGAATCTCCGCCGCCATGCTGACTC
25	119		TAGATAAAGACGCTGGCAACACGGG	TCCCGTGTTGCCAGCGTCTTTATCT
	120		TGGTACCTCAACGCGAACCACTTGT	TACAAGTGGTTCGCGTTGAGGTACC
	121		TAAGCGATGGCTACCCAAGAGCGAT	TATCGCTCTTGGGTAGCCATCGCTT
	122		TAGAGCTTATGCAGAACCAGGCGCC	TGGCGCCTGGTTCTGCATAAGCTCT
	123		TATCGGTCTCACGCAGGGTTGGATA	TTATCCAACCCTGCGTGAGACCGAT
30	124		TTAGGTTGCCCGCCAGAAGAAACAT	TATGTTTCTTCTGGCGGGCAACCTA
	125		TCGGTGCTGTTGCAAAAGCCTGTAG	TCTACAGGCTTTTGCAACAGCACCG
	126		TTGATGAAAGTTTGCGGCAGGACAC	TGTGTCCTGCCGCAAACTTTCATCA
City was	127		TGTTGAGTGCAGGATGCAGCGATAG	TCTATCGCTGCATCCTGCACTCAAC
	128		TAACATTGCGCGGTCCACCAGGGTT	TAACCCTGGTGGACCGCGCAATGTT
35	129		TGGGCAGTTAGAGAGGGCCAGAAGT	TACTTCTGGCCCTCTCTAACTGCCC
	130		TTCGAGCTGGTCCCCGTGAACGTGT	TACACGTTCACGGGGACCAGCTCGA
	131		TGTCTTGGGGGCCGCTTAGTGAAAA	TTTTCACTAAGCGGCCCCCAAGAC
	132		TACTGTTGGCTTGCTCTCATGTCCA	TTGGACATGAGAGCAAGCCAACAGT
	133	_	TAGGACCATTCGGAAGGCGAAGATA	TTATCTTCGCCTTCCGAATGGTCCT
40	134_		TCTTGGGAGGCATCCGCTATAAGGA	TTCCTTATAGCGGATGCCTCCCAAG
	135	╝	TAATAAACGGAACGCACCGCTACAG	TCTGTAGCGGTGCGTTCCGTTTATT

	136	TTTGTACGTGCGGTCCCCATAAGCA	TTGCTTATGGGGACCGCACGTACAA
	137	TCGCACCAAACTGAGTTTCCCAGAC	TGTCTGGGAAACTCAGTTTGGTGCG
	138	TACCTGATCGTTCCCCTATTGGGAA	TTTCCCAATAGGGGAACGATCAGGT
	139	TGGAACAGAGGCGAGGGGACTGAGC	TGCTCAGTCCCCTCGCCTCTGTTCC
5	140	TCCCTGCCTTGGCGTGTCGGCTTAT	TATAAGCCGACACGCCAAGGCAGGG
	141	TACTCTGACACGCCAACTCCGGAAG	TCTTCCGGAGTTGGCGTGTCAGAGT
	142	TCTGACGGTTTTCATTCGGCGTGCC	TGGCACGCCGAATGAAAACCGTCAG
	143	TTGCGGTGGTTCATTGGAGCTGGCC	TGGCCAGCTCCAATGAACCACCGCA
	144	TGCATGGCCAACTAGTGACTCGCAA	TTTGCGAGTCACTAGTTGGCCATGC
10	145	TAGGCCGTAAAGCGAATCTCACCTG	TCAGGTGAGATTCGCTTTACGGCCT
	146	TCGAATATTATGCCGAGAATCCGCG	TCGCGGATTCTCGGCATAATATTCG
	147	TACAGACGAGCTCCCAACCACATGA	TTCATGTGGTTGGGAGCTCGTCTGT
	148	TGGACGGTTTGTGCTGGATTGTCTG	TCAGACAATCCAGCACAAACCGTCC
	149	TAAAGGCTATTGAGTTGGTTGGGCG	TCGCCCAACCAACTCAATAGCCTTT
15	150	TGATGGCCTATTCGGAGATCGGGCC	TGGCCGATCTCCGAATAGGCCATC
	151	TGATCCAGTAGGCAGCTTCATCCCA	TTGGGATGAAGCTGCCTACTGGATC
	152	TAATAACTCGCGCGGGTATGCTTCT	TAGAAGCATACCCGCGCGAGTTATT
	153	TGGAGGAGGTTTGTCTCGGAAAGCA	TTGCTTTCCGAGACAAACCTCCTCC
	154	TCTTTGGTATGGCACATGCTGCCCG	TCGGGCAGCATGTGCCATACCAAAG
20	155	TAGAAAGGCTCGAGCAACGGGAACT	TAGTTCCCGTTGCTCGAGCCTTTCT
	156	TAATCTACCGCACTGGTCCGCAAGT	TACTTGCGGACCAGTGCGGTAGATT
	157	TCGTGGCGGCCACAGTTTTTGGAGG	TCCTCCAAAAACTGTGGCCGCCACG
	158	TTTGCAGTTCAATCCATACGCACGT	TACGTGCGTATGGATTGAACTGCAA
	159	TGGCCCAAAGCCCCAGACCATTTTA	TTAAAATGGTCTGGGGCTTTGGGCC
25	160	TCGCCTGTCTTTGTCTCCGGACAAT	TATTGTCCGGAGACAAGACAGGCG
	161	TTGAGGCAACAGGGGCCAAAAACTA	TTAGTTTTTGGCCCCTGTTGCCTCA
	162	TAGCGGAAGTAGTCCTCGGCTCGTC	TGACGAGCCGAGGACTACTTCCGCT
	163	TGGCCCAAGGCTTAGAGATAGTGG	TCCACTATCTCTAAGCCTTGGGGCC
	164	TGCACGTGAAGTTTAACCGCGATTC	TGAATCGCGGTTAAACTTCACGTGC
30	165	TAGCGGCAGAAACGTTCCTTGACGG	TCCGTCAAGGAACGTTTCTGCCGCT
	166	TTCGTCGAGCAGACGAGATTGCACG	TCGTGCAATCTCGTCTGCTCGACGA
	167	TTCTTTGCCGCGTAACTGACTGCTT	TAAGCAGTCAGTTACGCGGCAAAGA
	168	TTTTATGTGCCAAGGGGTTAACCGA	TTCGGTTAACCCCTTGGCACATAAA
	169	TTGTTACTGTGGTTCACGGCAGTCC	TGGACTGCCGTGAACCACAGTAACA
35 .	170	TCGCGCCTCGCTAGACCTTTTATTG	TCAATAAAAGGTCTAGCGAGGCGCG
	171	TACAAATGCGTGAGAGCTCCCAACT	TAGTTGGGAGCTCTCACGCATTTGT
	172	TCGCGCAGATTATAGACCCGAATGT	TACATTCGGGTCTATAATCTGCGCG
	173	TCAAATAACGCCGCTGAATCGGCGT	TACGCCGATTCAGCGGCGTTATTTG
	174	TCCTTCGTGCATCGGTGATGATGTT	TAACATCATCACCGATGCACGAAGG
40	175	TTGAACACGAGCAACACTCCAACGC	TGCGTTGGAGTGTTGCTCGTGTTCA
	176	TCAGCAGATCCTTCGTAGCGGTCGT	TACGACCGCTACGAAGGATCTGCTG

	177	TGGAACCTGGTGAGTTGTGCCTCAT	TATGAGGCACAACTCACCAGGTTCC
	178	TTCATAAGCGACAATCGCGGGCTTA	TTAAGCCCGCGATTGTCGCTTATGA
	179	TCCCAACGTCACTGAAGCTCACAGT	TACTGTGAGCTTCAGTGACGTTGGG
Ī	180	TTGTCAGAGCCCGCGACTCAGACGG	TCCGTCTGAGTCGCGGGCTCTGACA
5	181	TTACACGAAGCCTCTCCGTGGTCCA	TTGGACCACGGAGAGGCTTCGTGTA
	182	TCTCAGAAGTCCTCGGCGAACTGGG	TCCCAGTTCGCCGAGGACTTCTGAG
	183	TATCCTTTTATCTACTCCGCGGCGA	TTCGCCGCGGAGTAGATAAAAGGAT
ľ	184	TAGGCGTGCAGCAACAGGATAAACC	TGGTTTATCCTGTTGCTGCACGCCT
	185	TACTCTCGAGGGAGTCTCTGGCACA	TTGTGCCAGAGACTCCCTCGAGAGT
10	186	TTTGCCAGGTCCATCGAGACCTGTT	TAACAGGTCTCGATGGACCTGGCAA
	187	TTCCACTATAACTGCGGGTCCGTGT	TACACGGACCCGCAGTTATAGTGGA
	188	TGCCCAGTCGGCTCTAACAAGTTCG	TCGAACTTGTTAGAGCCGACTGGGC
	189	TCGGAACGGATAATCGGCGTCAGGT	TACCTGACGCCGATTATCCGTTCCG
	190	TTAAAATAAGCGCCTGGCGGGAGGA	TTCCTCCCGCCAGGCGCTTATTTTA
15	191	TGCGCACTCGTGAAACCTTTCTCGC	TGCGAGAAAGGTTTCACGAGTGCGC
	192	TAGTTTGCCAGGTACTGGCAAGTGC	TGCACTTGCCAGTACCTGGCAAACT
	193	TACAACGAGGGATGTCCAGCGGCAT	TATGCCGCTGGACATCCCTCGTTGT
	194	TTTCGCAGCACCCGCTAGGTACAGT	TACTGTACCTAGCGGGTGCTGCGAA
	195	TTAACCCGATTTTTGCGACTCTGCC	TGGCAGAGTCGCAAAAATCGGGTTA
20	196	TCGTCGCATTGCAAGCGTAGGCTTG	TCAAGCCTACGCTTGCAATGCGACG
	197	TGAGCTGACGTCACCATCAGAGGAA	TTTCCTCTGATGGTGACGTCAGCTC
	198	TGGAGGCTGGGGGTCGCGCTTAAGT	TACTTAAGCGCGACCCCCAGCCTCC
i	199	TTTGTGGGAACCGCACTAGCTGGCT	TAGCCAGCTAGTGCGGTTCCCACAA
	200	TCCCTCGCACTGTGTTCACCCTCTT	TAAGAGGGTGAACACAGTGCGAGGG
25	201	TTCATTGACTCGAATCCGCACAACG	TCGTTGTGCGGATTCGAGTCAATGA
	202	TACAGGGGTTGGCCTTCGTACGTAC	TGTACGTACGAAGGCCAACCCCTGT
	203	TAĞĞCCGTGCAACATCACACAGGAT	TATCCTGTGTGATGTTGCACGGCCT
	204	TGGGCCGTGGTCACGTAATATTGGC	TGCCAATATTACGTGACCACGGCCC
	205	TGCGCGGACATGAAACGACAAGGCC	TGGCCTTGTCGTTTCATGTCCGCGC
30	206	TCTTATTGGGTGCCGGTGTCGGATT	TAATCCGACACCGGCACCCAATAAG
	207	TGGGGCGGTTACCAAAAATCCGAT	TATCGGATTTTTTGGTAACCGCCCC
	4	TCCGTCGCATACCGGCTACGATCAA	TTTGATCGTAGCCGGTATGCGACGG
	5	TATGGCCGTGCTGGGGACAAGTCAA	TTTGACTTGTCCCCAGCACGGCCAT
	210	TACGAAAAAGTGTGCGGATCCCCT	TAGGGGATCCGCACACTTTTTCGT
35	211	TCCAAGTACACCGCACGCATGTTTA	TTAAACATGCGTGCGGTGTACTTGG
	. 212	TATCGTGCGTGGAGTGTCGCATCTA	TTAGATGCGACACTCCACGCACGAT
	213	TTCCAGATACCGCCCGAACTTTGA	TTCAAAGTTCGGGGCGGTATCTGGA
	214	TTCTGCTGGCAGCACGTGAAGTGGC	TGCCACTTCACGTGCTGCCAGCAGA
	215	TTTGAAATTGCTCTGCCGTCAGTCA	TTGACTGACGGCAGGCAATTTCAA
40	216	TAGTCAGGCGAGATGTTCAGGCAGC	TGCTGCCTGAACATCTCGCCTGACT
	217	TACAAGCCGACGTTAAGCCCGCCCA	TTGGGCGGGCTTAACGTCGGCTTGT
	 		

	218	TCCCTAATGAGGCCAGTAACCTGCA	TTGCAGGTTACTGGCCTCATTAGGG
	219	TGTGAGACACACATCCCCTCCAATG	TCATTGGAGGGGATGTGTGTCTCAC
	220	TCGACGGATGCAGAGTTCAGTGGTC	TGACCACTGAACTCTGCATCCGTCG
	221	TCCGCATGCCTGGCGGTATTACAA	TTTGTAATACCGCCAGGCATGCGGG
5	222	TTTAGCAAAGCGGCGCCGTTAGCAA	TTTGCTAACGGCGCCGCTTTGCTAA
	223	TCCCGACACGGGTCAGCGTAATAAT	TATTATTACGCTGACCCGTGTCGGG
	224	TGCGACGCCCTGAGGTATGTCGTC	TGACGACATACCTCAGGGCCGTCGC
	225	TCAAAAGTGTGTTCCCTTGCGCTTG	TCAAGCGCAAGGGAACACACTTTTG
	226	TTCTCGAAGCACAGCCCGGTTATTG .	TCAATAACCGGGCTGTGCTTCGAGA
10	227	TATGCTAACCGTTGGCCATGGAACT	TAGTTCCATGGCCAACGGTTAGCAT
	228	TCTTGCGGAGTGTTAGCCCAGCGGT	TACCGCTGGGCTAACACTCCGCAAG
	229	TTGCTCCCTAGGCGCTCGGAGGAGT	TACTCCTCCGAGCGCCTAGGGAGCA
	230	TCCAATGCCTTTGAGTAAGCGATGG	TCCATCGCTTACTCAAAGGCATTGG
	231	TAGCAGATAACGTCCCAATGACGCC	TGGCGTCATTGGGACGTTATCTGCT
15	232	TTTGACCATTACGTGTTGCGCCCAT	TATGGGCGCAACACGTAATGGTCAA
	233	TTCGCGTATTTGCGGAATTCGTCTG	TCAGACGAATTCCGCAAATACGCGA
ł	234	TCTGCGTGTCAACAATGTCCCGCAG	TCTGCGGGACATTGTTGACACGCAG
	235	TTCTGGTGCCACGCAAGGTCCACAG	TCTGTGGACCTTGCGTGGCACCAGA
	236	TCTCCGGGAGGTCACTTAATTGCGG	TCCGCAATTAAGTGACCTCCCGGAG
20	237	TTTTCGTGATTGCCCGGAGGAGGC	TGCCTCCTCCGGGCAATCACGAAAA
,	238	TTCGGGATGTAGCTGGGGCTACCGG	TCCGGTAGCCCCAGCTACATCCCGA
	239	TCGAGCCAACGCAAACACGTCCTTG	TCAAGGACGTGTTTGCGTTGGCTCG
	240	TGCAAAGCCTTTGTGGGGGGGTAGT	TACTACCGCCCCACAAAGGCTTTGC
	241	TATTCGACCGGAAATGAGGTCTTCG	TCGAAGACCTCATTTCCGGTCGAAT
25	242	TTTCGCTTGCTGAGTTGCTCTGTTC	TGAACAGAGCAACTCAGCAAGCGAA
	243	TCGCGTGAAGACCCCATTCCCGAGT	TACTCGGGAATGGGGTCTTCACGCG
	244	TAACCGTATTCGCGGTCACTTGTGG	TCCACAAGTGACCGCGAATACGGTT
	245	TGGGGCCAACCGTTTCGAGGCGTAT	TATACGCCTCGAAACGGTTGGCCCC
	246	TTTCGGCTGGCAGTCCAAACGGCTT	TAAGCCGTTTGGACTGCCAGCCGAA
30	247	TGGGTGTGGTTAGAATGCACGGTTC	TGAACCGTGCATTCTAACCACACCC
	248	TGCGAGGACCGAACTAGACAAACGG	TCCGTTTGTCTAGTTCGGTCCTCGC
	249	TACGCACGCGTGACCGAAGTTGCTG	TCAGCAACTTCGGTCACGCGTGCGT
	250	TTAAAAGGTCGCTTTGAAAGGGGGA	TTCCCCCTTTCAAAGCGACCTTTTA
	251	TTGCGATCGCTAACTGCTGGGACAA	TTTGTCCCAGCAGTTAGCGATCGCA
35	252	TGGAGGTATAAGCGGAGCGGCCTCA	TTGAGGCCGCTCCGCTTATACCTCC
	253	TATGCTGACATGTCGTGCACCTCGT	TACGAGGTGCACGACATGTCAGCAT
	254	TTGTGGTTAAAGCGTCCGTTCAACG	TCGTTGAACGGACGCTTTAACCACA
	255	TCGTTCACACCGGCGTAAGCTGCGT	TACGCAGCTTACGCCGGTGTGAACG
	256	TCCTATCCCGGCGAGAACTTCTGTG	TCACAGAAGTTCTCGCCGGGATAGG
40	257	TGTCTGCACTCACGCAGCGGAGGGA	TTCCCTCCGCTGCGTGAGTGCAGAC
	258	TGCACGAGTTGGTGCTCGGCAGATT	TAATCTGCCGAGCACCAACTCGTGC

_			
	259	TAACGTCGCACGACACGTTCGTC	TGACGAACGTGTGTCGTGCGACGTT
	260	TATGCGCGCTTATCCTAGCATGGTC	TGACCATGCTAGGATAAGCGCGCAT
	261	TTCACGTTTTCGTCTCGACATGAGG	TCCTCATGTCGAGACGAAAACGTGA
	262	TTGTGCCTCATCCTTAGGATACGGC	TGCCGTATCCTAAGGATGAGGCACA
5	263	TAGGTGGTGGGTCAACCGCTTTA	TTAAAGCGGTTGACCCACACCACCT
	264	TCTGGATCGAAGGGACTGCAAGCTC	TGAGCTTGCAGTCCCTTCGATCCAG
	265	TTAGATCAACTCGCGTACGCATGGA	TTCCATGCGTACGCGAGTTGATCTA
	266	TGATCCTGCGGAGAGAGAGTGCAG	TCTGCACTCTCTTCTCCGCAGGATC
	267	TTACGTGTGGAGATGCCCCGAACCG	TCGGTTCGGGGCATCTCCACACGTA
10	268	TGCGCTATGTCAATCGTGGGCGTAG	TCTACGCCCACGATTGACATAGCGC
	269	TAGCGAGGTTTCTAGCGTCGACACC	TGGTGTCGACGCTAGAAACCTCGCT
	270	TACCCAGGTTTTGCCGTTGTGGAAT	TATTCCACAACGGCAAAACCTGGGT
	271	TCCCTGTTAACGGCTGCGTAGTCTC	TGAGACTACGCAGCCGTTAACAGGG
	272	TAGGCCGATTTCACCCGCCAATTGC	TGCAATTGGCGGGTGAAATCGGCCT
15	273	TGAGCCCTCACTCCTTGCCCTTTGA	TTCAAAGGGCAAGGAGTGAGGGCTC
	274	TGGGTGGACATCCGCCTCGCAGTCA	TTGACTGCGAGGCGGATGTCCACCC
	275	TGATGGCTGAGAACCGTGCTACGAT	TATCGTAGCACGGTTCTCAGCCATC
	276	TTCGACGTTAGGAGTGCTGCCAGAA	TTTCTGGCAGCACTCCTAACGTCGA
	277	TCGAATGGGTCTGGACCTTGCATAG	TCTATGCAAGGTCCAGACCCATTCG
20	278	TGTGCACCAGACATTCGAACTCGGA	TTCCGAGTTCGAATGTCTGGTGCAC
	279	TAGAGGCCCCGTATATCCCATCCAT	TATGGATGGGATATACGGGGCCTCT
	280	TAACGCCTGTTCAGAGCATCAGCGG	TCCGCTGATGCTCTGAACAGGCGTT
	281	TAAGGCTCAACACGCCTATGTGCGC	TGCGCACATAGGCGTGTTGAGCCTT
	282	TAGTCCGTGTTGCCAGATTGGCTCG	TCGAGCCAATCTGGCAACACGGACT
25	283	TATGTCCCATGTAAAGACGCGTGTG	TCACACGCGTCTTTACATGGGACAT
	284	TATGGAGTCTGCTCACGCCCAAAGG	TCCTTTGGGCGTGAGCAGACTCCAT
	285	TCGGCCTCCAACAAGGAGCACTAAC	TGTTAGTGCTCCTTGTTGGAGGCCG
	286	TCAGAGCCGTGGCAACATTGCGAGC	TGCTCGCAATGTTGCCACGGCTCTG
	287	TTCATTTGAATGAGGTGCGCACCGG	TCCGGTGCGCACCTCATTCAAATGA
30	288	TGACGTACCGGAAGCGCCGTATAAA	TTTTATACGGCGCTTCCGGTACGTC
	289	TATGCGAGCAATGGGATCCGGATTC	TGAATCCGGATCCCATTGCTCGCAT
	290	TAGAGTGAGGCCTCCCTGACCAGTG	TCACTGGTCAGGGAGGCCTCACTCT
	291	TCGCACCGTAAGTAGATTTGCCCGC	TGCGGCAAATCTACTTACGGTGCG
	292	TTGAACCTTTGAGCACGTCGTGCGC	TGCGCACGACGTGCTCAAAGGTTCA
35 .	293	TTCCGCCTTTTTGGTTACCTCGAAG	TCTTCGAGGTAACCAAAAAGGCGGA
	294	TGAACGCCAACGGCACTAACACATC	TGATGTGTTAGTGCCGTTGGCGTTC
	295	TCCGACAGCAGCCAAGACGTCCCAG	TCTGGGACGTCTTGGCTGCTGTCGG
	296	TCATAAAAAACCTGGGGCTCTGCG	TCGCAGAGCCCCAGGTTTTTTATG
	297	TTGCCAACTGTGCAGACCGGACTTA	TTAAGTCCGGTCTGCACAGTTGGCA
40	298	TGGCGAAAGAGCGAAACCGGCTCGT	TACGAGCCGGTTTCGCTCTTTCGCC
	299	TGGGATGCGTATTTTAGCGAACACG	TCGTGTTCGCTAAAATACGCATCCC

i	300	TTGGGATTCAGCGACCAGTACGCGA	TTCGCGTACTGGTCGCTGAATCCCA
	301	TCCCGATATTCGCCCGGCCTATTCG	TCGAATAGGCCGGGCGAATATCGGG
	302	TCGAGAAGATGCCTCACGCAACCAA	TTTGGTTGCGTGAGGCATCTTCTCG
	303	TAACCTTGACCCGTGGATGACGCTA	TTAGCGTCATCCACGGGTCAAGGTT
5		TTTGCAACGGGCTGGTCAACGTCAA	TTTGACGTTGACCAGCCCGTTGCAA
		TCGCATAGGTTGCCGATTTCGTCAA	TTTGACGAAATCGGCAACCTATGCG
1	306	TGCTTCCGGATGAACGGGATGGTTG	TCAACCATCCCGTTCATCCGGAAGC
	307	TCCCTCCATGTTCTTCGAACGGTTT	TAAACCGTTCGAAGAACATGGAGGG
	308	TTTGATGGGCGGCAATGCTCTTGCT	TAGCAAGAGCATTGCCGCCCATCAA
10	309	TATTGTGAGATGCGCCAAATTCCCC	TGGGGAATTTGGCGCATCTCACAAT
	310	TTCAGCACAGCCAGACGGTCAACTT	TAAGTTGACCGTCTGGCTGTGCTGA
	311	TACTCCACTCCTCGGTGGCAAACTA	TTAGTTTGCCACCGAGGAGTGGAGT
	312	TTCTGGGCATGCCTGGACGGAGACG	TCGTCTCCGTCCAGGCATGCCCAGA
	313	TTCTCAACTCCGGTACGACGAAACA	TTGTTTCGTCGTACCGGAGTTGAGA
15	314	TTTGCGTGGTCAAAGGCGCAACGTG	TCACGTTGCGCCTTTGACCACGCAA
	315	TAGACAGCGATCCGCGGCTCATGAT	TATCATGAGCCGCGGATCGCTGTCT
	316	TCGCGTCTCTAACTGAGAGCAGCCA	TTGGCTGCTCTCAGTTAGAGACGCG
	317	TAGGCGCACATGTACGGACATTCAG	TCTGAATGTCCGTACATGTGCGCCT
	318	TGATGAGTGGCACGTCGGTGTGTAA	TTTACACACCGACGTGCCACTCATC
20	319	TTGATCCATATTGTCGGACGTTGCG	TCGCAACGTCCGACAATATGGATCA
•	320	TACCTGCCGGGAGTTCATAGGCTAG	TCTAGCCTATGAACTCCCGGCAGGT
	321	TAGCATTGGCGTTTTTCCGCAACGA	TTCGTTGCGGAAAAACGCCAATGCT
	322	TGGTAATATTCAGCGCGACCGCTCA	TTGAGCGGTCGCGCTGAATATTACC
	323	TATAGCGTACGACGAGGTGACGCGC	TGCGCGTCACCTCGTCGTACGCTAT
25	324	TTAGGTCACGATGCGTTTGACGCTA	TTAGCGTCAAACGCATCGTGACCTA
	325	TACTGCCCGTACCTCTGGTTCTGGC	TGCCAGAACCAGAGGTACGGGCAGT
	326	TCCTTTGGCCTGAAGTTGTCGTAGC	TGCTACGACAACTTCAGGCCAAAGG
	327	TGTGCCCACGAGCGTATCGTTGTA	TTACAACGATACGCTCGTGGGGCAC
	328	TAGGCGCTACGTGGGCCTGGAGCAA	TTTGCTCCAGGCCCACGTAGCGCCT
30	329	TGGGTGCTACCATTGCATTAGTCCG	TCGGACTAATGCAATGGTAGCACCC
	330	TACCACGCGCGTACGTGTAACCGAG	TCTCGGTTACACGTACGCGCGTGGT
	331	TCCATGATGCATTGGGTGCATTTAG	TCTAAATGCACCCAATGCATCATGG
	332	TGGTCCGGCCCTACGAAACGTTCGA	TTCGAACGTTTCGTAGGGCCGGACC
	333	TCCGTGTGGCTGGAGATTCGTGTGA	TTCACACGAATCTCCAGCCACACGG
35	334	TGTTAGGGCGACGCATATTGGCACA	TTGTGCCAATATGCGTCGCCCTAAC
	335	TGGGTCAGTCAGGTGCGTTAGGATC	TGATCCTAACGCACCTGACTGACCC
	336	TGCCGTGAAGTCGAATGCAGATCGA	TTCGATCTGCATTCGACTTCACGGC
	337	TGCCACCACCAGTGCATTCAGGTA	TTACCTGAATGCACTGGGTGGC
	338	TGAGCTTAGTTTGCGGTCATCGGGC	TGCCCGATGACCGCAAACTAAGCTC
40	339	TTGTTTGCCGCCATTAGGGAGTAAC	TGTTACTCCCTAATGGCGGCAAACA
	340	TGCTCCGCTGGATGTGCCGGTTTAG	TCTAAACCGGCACATCCAGCGGAGC

_			
	341	TCGGTAGCATGCGAGATCCCTGTTA	TTAACAGGGATCTCGCATGCTACCG
	342	TCTACGCTCTACCAGTTGCCTGCGA	TTCGCAGGCAACTGGTAGAGCGTAG
	343	TGTGCCTCCTGCTGTATTTGCCAAG	TCTTGGCAAATACAGCAGGAGGCAC
Ĺ	344	TTTGCGACTCGACTTGGACGAGTAG	TCTACTCGTCCAAGTCGAGTCGCAA
5	345	TTCTGGGAGCTGTTTACTCCAGCCA	TTGGCTGGAGTAAACAGCTCCCAGA
[346	TTGCACGCGGAACTCCCTTTACCAT	TATGGTAAAGGGAGTTCCGCGTGCA
	347	TTGGCAGCAAATGAATCGAAAGCAC	TGTGCTTTCGATTCATTTGCTGCCA
	348	TAACTGGTGACGCGGTACAGCGAAG	TCTTCGCTGTACCGCGTCACCAGTT
	349	TAGACGATTACGCTGGACGCCGTCG	TCGACGCCGTCCAGCGTAATCGTCT
10	350	TATGCCCTCCTTCATGGAAAGGGTT	TAACCCTTTCCATGAAGGAGGGCAT
	351	TATTCTCGGAGCGTATGCGCCAGAA	TTTCTGGCGCATACGCTCCGAGAAT
	352	TATAGCGGAGTTTGGGTACGCGAAC	TGTTCGCGTACCCAAACTCCGCTAT
	353	TACCTACGCATACCGCTTGGCGAGG	TCCTCGCCAAGCGGTATGCGTAGGT
	354	TGATTACCTGAATGGCCAAGCGAGC	TGCTCGCTTGGCCATTCAGGTAATC
15	355	TCCTGTTAGCATCACGGCGCTTAGG	TCCTAAGCGCCGTGATGCTAACAGG
	356	TCGGAATGATGCGCTCGACAACGCT	TAGCGTTGTCGAGCGCATCATTCCG
	357	TTGAGAGAGGCGTTGGTTAAGGCAA	TTTGCCTTAACCAACGCCTCTCTCA
	358	TAAGCAGGCGAAGGGATACTCCTCG	TCGAGGAGTATCCCTTCGCCTGCTT
	359	TTCACGACAGACGGGCCGAGATTAC	TGTAATCTCGGCCCGTCTGTCGTGA
20	360	TAAGCAATTTGGCCTCGTTTTGTGA	TTCACAAAACGAGGCCAAATTGCTT
	361	TGCTGGTTGCGGTAGGATCGCATAT	TATATGCGATCCTACCGCAACCAGC
	362	TTTGTGAATCCGTTCTGTCCCCGAC	TGTCGGGGACAGAACGGATTCACAA
	363	TTGGGCTCCTCTGAGGCGAGATGGC	TGCCATCTCGCCTCAGAGGAGCCCA
	364	TGGATAGAGTGAATCGACCGGCAAC	TGTTGCCGGTCGATTCACTCTATCC
25	365	TTGCACCGAACGTGCACGAGTAATT	TAATTACTCGTGCACGTTCGGTGCA
	366	TGCCAGTATTCTCGGGTGTTGGACG	TCGTCCAACACCCGAGAATACTGGC
	367	TTCGCTACCTAAGACCGGGCCATAC	TGTATGGCCCGGTCTTAGGTAGCGA
	368	TTGGCATTGACGAGCAGCAGTCAGT	TACTGACTGCTGCTCAATGCCA
	369	TCGCGTCCCAGCGCCCTTGGAGTAT	TATACTCCAAGGGCGCTGGGACGCG
30	370	TATGAAGCCTACCGGGCGACTTCGT	TACGAAGTCGCCCGGTAGGCTTCAT
	371	TCCAGACAGATGGCCTGGAACCATG	TCATGGTTCCAGGCCATCTGTCTGG
	372	TTGGCGTGGGACCATCTCAAAGCTA	TTAGCTTTGAGATGGTCCCACGCCA
	373	TCCGCATGGGAACACGTGTCAAGGT	TACCTTGACACGTGTTCCCATGCGG
	374	TGCCCACTCGTCAGCTGGACGTAAT	TATTACGTCCAGCTGACGAGTGGGC
35	375	TATTACGGTCGTGATCCAGAAAGCG	TCGCTTTCTGGATCACGACCGTAAT
. [376	TTGCGAGGTGAGCACCTACGAGAGA	TTCTCTCGTAGGTGCTCACCTCGCA
[377	TGGGCCGCATTCTTGATGTCCATTC	TGAATGGACATCAAGAATGCGGCCC
	378	TCCTCGGATGTGGGCTCTCGCCTAG	TCTAGGCGAGAGCCCACATCCGAGG
	379	TTAGGCATGTTGGCGTGAGCGCTAT	TATAGCGCTCACGCCAACATGCCTA
40	380	TCGATACGAACGAGGATGTCCGCCT	TAGGCGGACATCCTCGTTCGTATCG
	381	TTACGCCGGTTAGCACGGTGCGCTA	TTAGCGCACCGTGCTAACCGGCGTA

_			<u></u>
	382	TCATACGATGTCCGGGCCGTGTCGC	TGCGACACGGCCCGGACATCGTATG
Ī	383	TATCCGCAGTTGTATGGCGCGTTAT	TATAACGCGCCATACAACTGCGGAT
Ī	384	TGGGTAAGGGACAAAGATGGGATGG	TCCATCCCATCTTTGTCCCTTACCC
	385	TATTGGAGTGTTTTGGTGAATCCGC	TGCGGATTCACCAAAACACTCCAAT
5	386	TGAACCGAGCCAACGTATGGACACG	TCGTGTCCATACGTTGGCTCGGTTC
Ī	387	TGCCGTCAAGCTTAAGGTTTTGGGC	TGCCCAAAACCTTAAGCTTGACGGC
	388	TACCTGCTTTTGGGTGGGTGATATG	TCATATCACCCACCCAAAAGCAGGT
	389	TAATCGTGGGCGCAGCAAACGTATA	TTATACGTTTGCTGCGCCCACGATT
	390	TGTCGCCGGATTGCTCAGTATAAGC	TGCTTATACTGAGCAATCCGGCGAC
10	391	TACCCGTCGATGCTTCCTCCTCAGA	TTCTGAGGAGGAAGCATCGACGGGT
	392	TATCCGGGTGGGCGATACAAGAGAT	TATCTCTTGTATCGCCCACCCGGAT
	393	TTTCCGCATGAGTCAGCTTTGAAAA	TTTTTCAAAGCTGACTCATGCGGAA
Ī	394	TGCAAAGTCCCACTGGCAAGCCGAT	TATCGGCTTGCCAGTGGGACTTTGC
`	395	TCGACCTCGGCTTCATCGTACACAT	TATGTGTACGATGAAGCCGAGGTCG
15	396	TCTCATGAGCGCAGTTGTGCGTGAG	TCTCACGCACAACTGCGCTCATGAG
ĺ	397	TCAGATGAAGGATCCACGGCCGGAG	TCTCCGGCCGTGGATCCTTCATCTG
	398	TTCAAAGGCTCTTGGATACAGCCGT	TACGGCTGTATCCAAGAGCCTTTGA
	399	TTCCGCTAATTTCCAATCAGGGCTC	TGAGCCCTGATTGGAAATTAGCGGA
	8	TCCGTTTGCGGTCGTCCTTGCTCAA	TTTGAGCAAGGACGACCGCAAACGG
20	9	TTTCGCTTTCGTGGCTGCACTTCAA	TTTGAAGTGCAGCCACGAAAGCGAA
	402	TCTTAGTTGGGGCGCGGTATCCAGA	TTCTGGATACCGCGCCCCAACTAAG
i	403	TGCTCTAATGCCGTGGAGTCGGAAC	TGTTCCGACTCCACGGCATTAGAGC
	404	TCCGATTACAAATTGACTGACCGCA	TTGCGGTCAGTCAATTTGTAATCGG
	405	TAGACGTACGTGAGCCTCCCGTGTC	TGACACGGGAGGCTCACGTACGTCT
25	406	TAATGGAGCGATACGATCCAACGCA	TTGCGTTGGATCGTATCGCTCCATT
	407	TGGAGGCGCTGTACTGATAGGCGTA	TTACGCCTATCAGTACAGCGCCTCC
	408	TTGTTTTTGAATTGACCACACGGGA	TTCCCGTGTGGTCAATTCAAAAACA
	409	TCATGTCTGGATGCGCTCAATGAAG	TCTTCATTGAGCGCATCCAGACATG
	410	TGCCCGCTAATCCGACACCCAGTTT	TAAACTGGGTGTCGGATTAGCGGGC
30	411	TCCATTGACAGGAGAGCCATGAGCC	TGGCTCATGGCTCTCCTGTCAATGG
	412	TGAATCACCGAATCACCGACTCGTT	TAACGAGTCGGTGATTC
	413	TAACCAGCCGCAGTAGCTTACGTCG	TCGACGTAAGCTACTGCGGCTGGTT
	414	TTTTTCTGAGGGACACGCGGGCGTT	TAACGCCCGCGTGTCCCTCAGAAAA
	415	TGGTGCTCCGTTTGATCGATCCTCC	TGGAGGATCGATCAAACGGAGCACC
35	416	TCCGCTTAGGCCATACTCTGAGCCA	TTGGCTCAGAGTATGGCCTAAGCGG
	417	TTAAGACATACCGACGCCCTTGCCT	TAGGCAAGGGCGTCGGTATGTCTTA
	418	TGTTCCCGACGCCAGTCATTGAGAC	TGTCTCAATGACTGGCGTCGGGAAC
	419	TTAAAAGTTTCGCGGAGGTCGGGCT	TAGCCCGACCTCCGCGAAACTTTTA
	420	TCGGTCCAGACGAGCTGAGTTCGGC	TGCCGAACTCAGCTCGTCTGGACCG
40	421	TCGGCGTAGCGGCTACGGACTTAAA	TTTTAAGTCCGTAGCCGCTACGCCG
	422	TGCTTGGATGCCCATGCGGCAAGGT	TACCTTGCCGCATGGGCATCCAAGC

	423	TAGCGGGATCCCAGAGTTTCGAAAA	TTTTTCGAAACTCTGGGATCCCGCT
	424	TGAGCTTGAGAGCGAGGTCATCCTC	TGAGGATGACCTCGCTCTCAAGCTC
	425	TGCATCGGCCGTTTTGACCATATTC	TGAATATGGTCAAAACGGCCGATGC
	426	TCATAGCGCTGCACGTTTCGACCGC	TGCGGTCGAAACGTGCAGCGCTATG
5	427	TACCCGACAACCACCAATTCAAAAA	TTTTTTGAATTGGTGGTTGTCGGGT
	428	TGCGAACACTCATAAGAGCGCCCTG	TCAGGGCGCTCTTATGAGTGTTCGC
	429	TCCGCCGAGTGTAGAGAGACTCCGA	TTCGGAGTCTCTCTACACTCGGCGG
	430	TGACATCGGGAGCCGGAAACATGAG	TCTCATGTTTCCGGCTCCCGATGTC
	431	TTCGTGTAGACTCGGCGACAGGCGT	TACGCCTGTCGCCGAGTCTACACGA
10	432	TATGCGCATATACTGACTGCGCAGG	TCCTGCGCAGTCAGTATATGCGCAT
	433	TACAAGCGAACCCGAGTTTTGATGA	TTCATCAAAACTCGGGTTCGCTTGT
	434	TGCATGAGACTCCGCGAAGACATGT	TACATGTCTTCGCGGAGTCTCATGC
	435	TTCCTACATGTCGCGTCACGATCAC	TGTGATCGTGACGCGACATGTAGGA
	436	TGACCGATCGCGAAGTCGTACACAT	TATGTGTACGACTTCGCGATCGGTC
15	437	TGTCGCCAGGACTGGGCCGATGTGA	TTCACATCGGCCCAGTCCTGGCGAC
•	438	TACCGATAAGACTTGCATCCGAACG	TCGTTCGGATGCAAGTCTTATCGGT
	439	TTCCATAACCAGTCCGAAGTGCCGG	TCCGGCACTTCGGACTGGTTATGGA
	440	TACGCGCCCTGCATCTCGTATTTAA	TTTAAATACGAGATGCAGGGCGCGT
	441	TAGACCGCATCAATTGGCGCGTACC	TGGTACGCGCCAATTGATGCGGTCT
20	442	TAGAGGCTTGGCAAGTAGGGACCCT	TAGGGTCCCTACTTGCCAAGCCTCT
	443	TGCAATGGACGCCAGACGATACCGG	TCCGGTATCGTCTGGCGTCCATTGC
	444	TGCTGGACTTAGTCGTGTTCGGCGG	TCCGCCGAACACGACTAAGTCCAGC
	445	TAGGCATCGTGCCGGATTGCTCCCT	TAGGGAGCAATCCGGCACGATGCCT
	446	TTGCGCATGTCGACGTTGAACAAAG	TCTTTGTTCAACGTCGACATGCGCA
25	447	TTTCGGGTCACATCCGATGCCATAC	TGTATGGCATCGGATGTGACCCGAA
	448	TACCCATCGCCGGAAAGCGATGTTG	TCAACATCGCTTTCCGGCGATGGGT
	449	TAAGCGCTGACTCGGCTAAGAATCA	TTGATTCTTAGCCGAGTCAGCGCTT
	450	TACTTCCAAGTCCTTGACCGTCCGA	TTCGGACGGTCAAGGACTTGGAAGT
a symmetry of the	451	TTCTCAATATTCCCGTAGTCGCCCA	TTGGGCGACTACGGGAATATTGAGA
30	452	TAACAGTTCCTCTTTTTCCTGGCGC	TGCGCCAGGAAAAAGAGGAACTGTT
	453	TCGTCCTCCATGTTGTCACGAACAG	TCTGTTCGTGACAACATGGAGGACG
	454	TTGCGCAGACCTACCTGTCTTTGCT	TAGCAAAGACAGGTAGGTCTGCGCA
	455	TATGGACGCTTCGCAGTCCTCCTT	TAAGGAGGACTGCGAAGCCGTCCAT
	456	TTGAACGCTTTCTATGGGCCACGTA	TTACGTGGCCCATAGAAAGCGTTCA
35	457	TTGAACCCTGCCGCGAGCGATAACC	TGGTTATCGCTCGCGGCAGGGTTCA
	458	TGTTCTTGCGCGATGAATCAGGACC	TGGTCCTGATTCATCGCGCAAGAAC
. •	459	TAGGGTACGTGTCGCAGCTTCGCGT	TACGCGAAGCTGCGACACGTACCCT
	460	TACCCTTGCTCCGCCATGTCTCTCA	TTGAGAGACATGGCGGAGCAAGGGT
	461	TGGGACAAGGATTGAAGCTGGCGTC	TGACGCCAGCTTCAATCCTTGTCCC
40	462	TTGTCGTTGCTCCCGAGTACCATTG	TGAATGGTACTCGGGAGCAACGACA
	463	TGTTGTCCGAGACGTTTGTGTCAGC	TGCTGACACAACGTCTCGGACAAC

_			
	382	TCATACGATGTCCGGGCCGTGTCGC	TGCGACACGGCCCGGACATCGTATG
	383	TATCCGCAGTTGTATGGCGCGTTAT	TATAACGCGCCATACAACTGCGGAT
	384	TGGGTAAGGGACAAAGATGGGATGG	TCCATCCCATCTTTGTCCCTTACCC
	385	TATTGGAGTGTTTTGGTGAATCCGC	TGCGGATTCACCAAAACACTCCAAT
5	386	TGAACCGAGCCAACGTATGGACACG	TCGTGTCCATACGTTGGCTCGGTTC
	387	TGCCGTCAAGCTTAAGGTTTTGGGC	TGCCCAAAACCTTAAGCTTGACGGC
	388	TACCTGCTTTTGGGTGGGTGATATG	TCATATCACCCACCCAAAAGCAGGT
[389	TAATCGTGGGCGCAGCAAACGTATA	TTATACGTTTGCTGCGCCCACGATT
	390	TGTCGCCGGATTGCTCAGTATAAGC	TGCTTATACTGAGCAATCCGGCGAC
10	391	TACCCGTCGATGCTTCCTCCTCAGA	TTCTGAGGAGGAAGCATCGACGGGT
	392	TATCCGGGTGGGCGATACAAGAGAT	TATCTCTTGTATCGCCCACCCGGAT
	393	TTTCCGCATGAGTCAGCTTTGAAAA	TTTTTCAAAGCTGACTCATGCGGAA
	394	TGCAAAGTCCCACTGGCAAGCCGAT	TATCGGCTTGCCAGTGGGACTTTGC
`	395	TCGACCTCGGCTTCATCGTACACAT	TATGTGTACGATGAAGCCGAGGTCG
15	396	TCTCATGAGCGCAGTTGTGCGTGAG	TCTCACGCACAACTGCGCTCATGAG
[397	TCAGATGAAGGATCCACGGCCGGAG	TCTCCGGCCGTGGATCCTTCATCTG
Ì	398	TTCAAAGGCTCTTGGATACAGCCGT	TACGGCTGTATCCAAGAGCCTTTGA
	399	TTCCGCTAATTTCCAATCAGGGCTC	TGAGCCCTGATTGGAAATTAGCGGA
[8	TCCGTTTGCGGTCGTCCTTGCTCAA	TTTGAGCAAGGACGACCGCAAACGG
20	9	TTTCGCTTTCGTGGCTGCACTTCAA	TTTGAAGTGCAGCCACGAAAGCGAA
	402	TCTTAGTTGGGGCGCGGTATCCAGA	TTCTGGATACCGCGCCCCAACTAAG
	403	TGCTCTAATGCCGTGGAGTCGGAAC	TGTTCCGACTCCACGGCATTAGAGC
	404	TCCGATTACAAATTGACTGACCGCA	TTGCGGTCAGTCAATTTGTAATCGG
	405	TAGACGTACGTGAGCCTCCCGTGTC	TGACACGGGAGGCTCACGTACGTCT
25	406	TAATGGAGCGATACGATCCAACGCA	TTGCGTTGGATCGTATCGCTCCATT
	407	TGGAGGCGCTGTACTGATAGGCGTA	TTACGCCTATCAGTACAGCGCCTCC
	408	TTGTTTTTGAATTGACCACACGGGA	TTCCCGTGTGGTCAATTCAAAAACA
	409	TCATGTCTGGATGCGCTCAATGAAG	TCTTCATTGAGCGCATCCAGACATG
	410	TGCCCGCTAATCCGACACCCAGTTT	TAAACTGGGTGTCGGATTAGCGGGC
30	411	TCCATTGACAGGAGAGCCATGAGCC	TGGCTCATGGCTCTCCTGTCAATGG
	412	TGAATCACCGAATCACCGACTCGTT	TAACGAGTCGGTGATTC
	413	TAACCAGCCGCAGTAGCTTACGTCG	TCGACGTAAGCTACTGCGGCTGGTT
	414	TTTTTCTGAGGGACACGCGGGCGTT	TAACGCCCGCGTGTCCCTCAGAAAA
	415	TGGTGCTCCGTTTGATCGATCCTCC	TGGAGGATCGATCAAACGGAGCACC
35	416	TCCGCTTAGGCCATACTCTGAGCCA	TTGGCTCAGAGTATGGCCTAAGCGG
	417	TTAAGACATACCGACGCCCTTGCCT	TAGGCAAGGGCGTCGGTATGTCTTA
	418	TGTTCCCGACGCCAGTCATTGAGAC	TGTCTCAATGACTGGCGTCGGGAAC
	419	TTAAAAGTTTCGCGGAGGTCGGGCT	TAGCCCGACCTCCGCGAAACTTTTA
	420	TCGGTCCAGACGAGCTGAGTTCGGC	TGCCGAACTCAGCTCGTCTGGACCG
40	421	TCGGCGTAGCGGCTACGGACTTAAA	TTTTAAGTCCGTAGCCGCTACGCCG
	422	TGCTTGGATGCCCATGCGGCAAGGT	TACCTTGCCGCATGGGCATCCAAGC
		_	

	423	TAGCGGGATCCCAGAGTTTCGAAAA	TTTTCGAAACTCTGGGATCCCGCT
	424	TGAGCTTGAGAGCGAGGTCATCCTC	TGAGGATGACCTCGCTCTCAAGCTC
	425	TGCATCGGCCGTTTTGACCATATTC	TGAATATGGTCAAAACGGCCGATGC
	426	TCATAGCGCTGCACGTTTCGACCGC	TGCGGTCGAAACGTGCAGCGCTATG
5	427		
3	428	TACCCGACACCCACTATACACCCCCTC	TTTTTGAATTGGTGGTTGTCGGGT
		TGCGAACACTCATAGAGCGCCCTG	TCAGGGCGCTCTTATGAGTGTTCGC
	429	TCCGCCGAGTGTAGAGAGACTCCGA	TTCGGAGTCTCTCTACACTCGGCGG
	430	TGACATCGGGAGCCGGAAACATGAG	TCTCATGTTTCCGGCTCCCGATGTC
40	431	TTCGTGTAGACTCGGCGACAGGCGT	TACGCCTGTCGCCGAGTCTACACGA
10	432	TATGCGCATATACTGACTGCGCAGG	TCCTGCGCAGTCAGTATATGCGCAT
	433	TACAAGCGAACCCGAGTTTTGATGA	TTCATCAAAACTCGGGTTCGCTTGT
	434	TGCATGAGACTCCGCGAAGACATGT	TACATGTCTTCGCGGAGTCTCATGC
	435	TTCCTACATGTCGCGTCACGATCAC	TGTGATCGTGACGCGACATGTAGGA
	436	TGACCGATCGCGAAGTCGTACACAT	TATGTGTACGACTTCGCGATCGGTC
15	437	TGTCGCCAGGACTGGGCCGATGTGA	TTCACATCGGCCCAGTCCTGGCGAC
	438	TACCGATAAGACTTGCATCCGAACG	TCGTTCGGATGCAAGTCTTATCGGT
	439	TTCCATAACCAGTCCGAAGTGCCGG	TCCGGCACTTCGGACTGGTTATGGA
	440	TACGCGCCCTGCATCTCGTATTTAA	TTTAAATACGAGATGCAGGGCGCGT
	441	TAGACCGCATCAATTGGCGCGTACC	TGGTACGCGCCAATTGATGCGGTCT
20	442	TAGAGGCTTGGCAAGTAGGGACCCT	TAGGGTCCCTACTTGCCAAGCCTCT
	443	TGCAATGGACGCCAGACGATACCGG	TCCGGTATCGTCTGGCGTCCATTGC
	444	TGCTGGACTTAGTCGTGTTCGGCGG	TCCGCCGAACACGACTAAGTCCAGC
	445	TAGGCATCGTGCCGGATTGCTCCCT	TAGGGAGCAATCCGGCACGATGCCT
	446	TTGCGCATGTCGACGTTGAACAAAG	TCTTTGTTCAACGTCGACATGCGCA
25	447	TTTCGGGTCACATCCGATGCCATAC	TGTATGGCATCGGATGTGACCCGAA
	448	TACCCATCGCCGGAAAGCGATGTTG	TCAACATCGCTTTCCGGCGATGGGT
	449	TAAGCGCTGACTCGGCTAAGAATCA	TTGATTCTTAGCCGAGTCAGCGCTT
	450	TACTTCCAAGTCCTTGACCGTCCGA	TTCGGACGGTCAAGGACTTGGAAGT
	451	TTCTCAATATTCCCGTAGTCGCCCA	TTGGGCGACTACGGGAATATTGAGA
30	452	TAACAGTTCCTCTTTTTCCTGGCGC	TGCGCCAGGAAAAAGAGGAACTGTT
	453	TCGTCCTCCATGTTGTCACGAACAG	TCTGTTCGTGACAACATGGAGGACG
	454	TTGCGCAGACCTACCTGTCTTTGCT	TAGCAAAGACAGGTAGGTCTGCGCA
	455	TATGGACGGCTTCGCAGTCCTCCTT	TAAGGAGGACTGCGAAGCCGTCCAT
	456	TTGAACGCTTTCTATGGGCCACGTA	TTACGTGGCCCATAGAAAGCGTTCA
35	457	TTGAACCCTGCCGCGAGCGATAACC	TGGTTATCGCTCGCGGCAGGGTTCA
	458	TGTTCTTGCGCGATGAATCAGGACC	TGGTCCTGATTCATCGCGCAAGAAC
	459	TAGGGTACGTGTCGCAGCTTCGCGT	TACGCGAAGCTGCGACACGTACCCT
	460	TACCCTTGCTCCGCCATGTCTCTCA	TTGAGAGACATGGCGGAGCAAGGGT
	461	TGGGACAAGGATTGAAGCTGGCGTC	TGACGCCAGCTTCAATCCTTGTCCC
40	462	TTGTCGTTGCTCCCGAGTACCATTG	TCAATGGTACTCGGGAGCAACGACA
	463	TGTTGTCCGAGACGTTTGTGTCAGC	TGCTGACACAAACGTCTCGGACAAC

_				
	464		TGCTGGTGAACACTCACGAACCGCT	TAGCGGTTCGTGAGTGTTCACCAGC
	465		TGCAGACAGGGCAAATCGGTGCAAA	TTTTGCACCGATTTGCCCTGTCTGC
	466		TCCCATCACAACGAGTGGCGACTTT	TAAAGTCGCCACTCGTTGTGATGGG
	467		TGCTTCTACAGCTGGCGTGCTAGCG	TCGCTAGCACGCCAGCTGTAGAAGC
5	468		TGAATGTGTGCCGACCATTCTAGCC	TGGCTAGAATGGTCGGCACACATTC
	469		TCCAGCGGAAGTTAGAGCTCTGTGG	TCCACAGAGCTCTAACTTCCGCTGG
	470		TTTTTACCGACCACTCCATGTCGG	TCCGACATGGAGTGGTCGGTAAAAA
	471		TGCGGCTATGTGATGACGGCCTAGC	TGCTAGGCCGTCATCACATAGCCGC
	472		TAGTACACGGGCGTGTTAGCGCTCC	TGGAGCGCTAACACGCCCGTGTACT
10	473		TTCCTGTGTGGTGGCGCACTCCCAC	TGTGGGAGTGCGCCACCACACAGGA
	474		TCCAACTAACCAATCGCGCGGATGA	TTCATCCGCGCGATTGGTTAGTTGG
	475		TAGTGAGTGACCAAGGCAGGAGCAA	TTTGCTCCTGCCTTGGTCACTCACT
	476		TCATCTTTCGCGGAGTTTATTGCGG	TCCGCAATAAACTCCGCGAAAGATG
	477		TCTTCGTCCGGTTAGTGCGACAGCA	TTGCTGTCGCACTAACCGGACGAAG
15	478		TCTCACGAAAACGTGGGCCCGAAAT	TATTTCGGGCCCACGTTTTCGTGAG
	479		TCGCAGCAGCTGAACTCTAGCATTG	TCAATGCTAGAGTTCAGCTGCTGCG
	480		TAGGAGACATACGCCCAAATGGTGC	TGCACCATTTGGGCGTATGTCTCCT
	481		TATTGAGAACTCGTGCGGGAGTTTG	TCAAACTCCCGCACGAGTTCTCAAT
	482		TCTCTTTGTAGGCCCAGGAGGAGCA	TTGCTCCTCCTGGGCCTACAAAGAG
20	483		TGCCGCAGGGTCGATAATTGGTCTA	TTAGACCAATTATCGACCCTGCGGC
	484		TAAACGCCGCCCTGAGACTATTGGG	TCCCAATAGTCTCAGGGCGCGTTT
	485		TCTGAGTTGCCTGGAACGTTGGACT	TAGTCCAACGTTCCAGGCAACTCAG
	486		TCGGATGGGTTGCAGAGTATGGGAT	TATCCCATACTCTGCAACCCATCCG
	487		TCTGACCTTTGGGGGTTAGTGCGGT	TACCGCACTAACCCCCAAAGGTCAG
25	488		TGGAAATGAGAACCTTACCCCAGCG	TCGCTGGGGTAAGGTTCTCATTTCC
	489		TAACGCATCGTCCGTCAACTCATCA	TTGATGAGTTGACGGACGATGCGTT
	490		TTGGAGAGAGACTTCGGCCATTGTT	TAACAATGGCCGAAGTCTCTCCA
	491		TTTGCGCTCATTGGATCTTGTCAGG	TCCTGACAAGATCCAATGAGCGCAA
	492		TAGCGCGTTAAAGCACGGCAACATT	TAATGTTGCCGTGCTTTAACGCGCT
30	493		TAGCCAGTAAACTGTGGGCGGCTGT	TACAGCCGCCCACAGTTTACTGGCT
	494		TCGACTGATGTGCAACCAGCAGCTG	TCAGCTGCTGGTTGCACATCAGTCG
	495		TGGTTGCTCATACGACGAGCGAGTG	TCACTCGCTCGTCGTATGAGCAACC
		10	TGTCCAACGCGCAACTCCGATTCAA	TTTGAATCGGAGTTGCGCGTTGGAC
•		.11	TTTGCCGCACCGTCCGTCATCTCAA	TTTGAGATGACGGACGGTGCGGCAA
35	498		TAGAACCTCCGCGCCTCCGTAGTAG	TCTACTACGGAGGCGCGGAGGTTCT
	499		TAAAGGAGCTTTCGCCCAACGTACC	TGGTACGTTGGGCGAAAGCTCCTTT
	500		TAGTGATTGTGCCACTCCACAGCTC	TGAGCTGTGGAGTGGCACAATCACT
	501		TGCGATCGTCGAGGGTTGAGCTGAA	TTTCAGCTCAACCCTCGACGATCGC
	502		TGGGAGACAGCCATTATGGTCCTCG	TCGAGGACCATAATGGCTGTCTCCC
40	503		TGAGACGCTGTCACTCCGGCAGAAC	TGTTCTGCCGGAGTGACAGCGTCTC
•	504		TCCACCGGTCGCTTAAGATGCACTT	TAAGTGCATCTTAAGCGACCGGTGG

_			
[505	TCGGCATAACGTCCAGTCCTGGGAC	TGTCCCAGGACTGGACGTTATGCCG
	506	TAAGCGGAACGGGTTATACCGAGGT	TACCTCGGTATAACCCGTTCCGCTT
	507	TTGCACACTAGGTCCGTCGCTTGAT	TATCAAGCGACGGACCTAGTGTGCA
	508	TAGGGAACCGCGTTCAAACTCAGTT	TAACTGAGTTTGAACGCGGTTCCCT
5	509	TGAATTACAACCACCCGCTCGTGTT	TAACACGAGCGGGTGGTTGTAATTC
	510	TTTCAGTGCTCACGAAGCATGGATT	TAATCCATGCTTCGTGAGCACTGAA
į	511	TTTAGTTTGGCGTTGGGACTTCACC	TGGTGAAGTCCCAACGCCAAACTAA
	512	TAATGCGACCTCGACGAGCCTCATA	TTATGAGGCTCGTCGAGGTCGCATT
	513	TCCGAAACCGTTAACGTGGCGCACA	TTGTGCGCCACGTTAACGGTTTCGG
10	514	TTAAAGTAACAAGGCGACCTCCCGC	TGCGGGAGGTCGCCTTGTTACTTTA
	515	TTAATGATTTTAGTCGCGGGGTGGG	TCCCACCCGCGACTAAAATCATTA
	516	TGGCTACTCTAAGTGCCCGCTCAGG	TCCTGAGCGGGCACTTAGAGTAGCC
	517	TTGGCGGACGACTCAATATCTCACG	TCGTGAGATATTGAGTCGTCCGCCA
	518	TGGGCGTTAGGCGTAATAGACCGTC	TGACGGTCTATTACGCCTAACGCCC
15	519	TGCCACCTTTAGACGGCGGCTCTAG	TCTAGAGCCGCCGTCTAAAGGTGGC
	520	TGAGATGTGTAAACGTGCAGGCACC	TGGTGCCTGCACGTTTACACATCTC
i	521	TTAGCTCGTGGCCCTCCAAGCGTGT	TACACGCTTGGAGGGCCACGAGCTA
	522	TGTGTCGGCGCTATTTGGCCTTACC	TGGTAAGGCCAAATAGCGCCGACAC
	523	TCCAGGGAAGCAACTGGTTGCCATT	TAATGGCAACCAGTTGCTTCCCTGG
20	524	TTTCCGAAACTAAGCCAGAACCGCT	TAGCGGTTCTGGCTTAGTTTCGGAA
	525	TGCAAACCCGGTAACCCGAGAGTTC	TGAACTCTCGGGTTACCGGGTTTGC
	526	TGCAAATGGCGTCATGCACGAACGT	TACGTTCGTGCATGACGCCATTTGC
·	527	TAGTACTTTCGCGCCCAGTTTAGGG	TCCCTAAACTGGGCGCGAAAGTACT
	528	TAAGATCTGCGAGGCATCCCGGCTT	TAAGCCGGGATGCCTCGCAGATCTT
25	529	TGCAAGTGTATCGCACAGTGCGATT	TAATCGCACTGTGCGATACACTTGC
	530	TCCGACAAGGCCTCAATTCATTCTG	TCAGAATGAATTGAGGCCTTGTCGG
	531	TGTCTCGTCTCAACTTTAAGGCGCG	TCGCGCCTTAAAGTTGAGACGAGAC
	532	TATCCAGAGATCCGTTTTGCAGCGT	TACGCTGCAAAACGGATCTCTGGAT
	533	TGTCACCAGGAGGGAAGTTTCACCC	TGGGTGAAACTTCCCTCCTGGTGAC
30	534	TTTCCGTCAGGCGGATCAACGGAAT	TATTCCGTTGATCCGCCTGACGGAA
	535	TATGCCGGACACGCATTACACAGGC	TGCCTGTGTAATGCGTGTCCGGCAT
	536	TTGGGCCGCTTGGCGCTTTCATAGA	TTCTATGAAAGCGCCAAGCGGCCCA
	537	TCCTAGCGCGAGCTTTACTGACCAG	TCTGGTCAGTAAAGCTCGCGCTAGG
	538	TTTGGCCAGGAATATGGTCTCGAGA	TTCTCGAGACCATATTCCTGGCCAA
35	539	TGTCTGCGGCCGACTTGCTATGCAT	TATGCATAGCAAGTCGGCCGCAGAC
	540	TAACTTGCTCATTCTCAAGCCGACG	TCGTCGGCTTGAGAATGAGCAAGTT
	541	TACGTCAGCGATTGTGGCGAAATAT	TATATTTCGCCACAATCGCTGACGT
	542	TACGGCCTGCGTCAGCACATGCATC	TGATGCATGTGCTGACGCAGGCCGT
	543	TATACCTCCGCAGAACCATTCCGTT	TAACGGAATGGTTCTGCGGAGGTAT
40	544	TAGTTCGCGGTCCCACGATTCACTT	TAAGTGAATCGTGGGACCGCGAACT
	545	TTGCTCAATTTGTGCAGAAAACGCC	TGGCGTTTTCTGCACAAATTGAGCA

			· · · · · · · · · · · · · · · · · · ·
	546	TTTATCGCGAGAGACGACCGTGTCC	TGGACACGGTCGTCTCTCGCGATAA
	547	TGACGCGACGTGAGTAGTGGAAGCG	TCGCTTCCACTACTCACGTCGCGTC
	548	TATGGTAGGGCATTGGGCTTTCCT	TAGGAAAGCCCAATGCCCCTACCAT
	549	TCCAAATATAGCCGCGCGGAGACAT	TATGTCTCCGCGCGGCTATATTTGG
5	550	TGCAAACCCTGATTGAATCGTGCCC	TGGGCACGATTCAATCAGGGTTTGC
	551	TTAGCGTCTTGCGTGAAACCATGGG	TCCCATGGTTTCACGCAAGACGCTA
	552	TCCACCCGACAGCGCTGGACTCTT	TAAGAGTCCAGCGCTGTCGGGGTGG
	553	TACGAGCACTGAAGGCTGCTTTACG	TCGTAAAGCAGCCTTCAGTGCTCGT
	554	TCATATCAGCGTCGTCTAGCTCGCG	TCGCGAGCTAGACGACGCTGATATG
10	555	TTGATCCCGGACCGGCTAGACTAAT	TATTAGTCTAGCCGGTCCGGGATCA
	556	TGGCCCGACACTACAGGGTAATCA	TTGATTACCCTGTAGTGTCGGGGCC
	557	TGGCTCCAGGGCGAGATTATGAATG	TCATTCATAATCTCGCCCTGGAGCC
	558	TCAAAATCCGATGGGCGGAAAATTA	TTAATTTTCCGCCCATCGGATTTTG
	559	TCACAGGCGCATAGGGAGCAAGCTA	TTAGCTTGCTCCCTATGCGCCTGTG
15	560	TTAGCTATTGCCCCGATGGGCTACT	TAGTAGCCCATCGGGGCAATAGCTA
	561	TTGGTACGCGGTCCATAGCAAGTCG	TCGACTTGCTATGGACCGCGTACCA
	562	TGACGCTGTGGCTCGGAAACTGTTC	TGAACAGTTTCCGAGCCACAGCGTC
	563	TCCTGGGTTCGCCGCGTGGTAACTG	TCAGTTACCACGCGGCGAACCCAGG
	564	TTTCCCGCGTAGCCCAACAGCTATA	TTATAGCTGTTGGGCTACGCGGGAA
20	565	TTTCGCGGATTGCTGCCGCATAACA	TTGTTATGCGGCAGCAATCCGCGAA
	566	TAAAAATGGCACCGAAGTTGAGGCA	TTGCCTCAACTTCGGTGCCATTTTT
	567	TCATTCCGCGCGAGTTGAAATCCAG	TCTGGATTTCAACTCGCGCGGAATG
	568	TACGCACGTTTTTTGGCACGGTTAA	TTTAACCGTGCCAAAAAACGTGCGT
	569	TTGTCCATGACGTCGTTTCTCTGGT	TACCAGAGAAACGACGTCATGGACA
25	570	TTCTCAGTCGGACTCGTATGCCAGA	TTCTGGCATACGAGTCCGACTGAGA
	571	TCTCCAAACGCACACATCAAGCATC	TGATGCTTGATGTGTGCGTTTGGAG
	572	TTTCAACCAAGCGGGGTGTTCGTGA	TTCACGAACACCCCGCTTGGTTGAA
	573	TGGTGTCGGAGGGTGGTGACCTCGA	TTCGAGGTCACCACCCTCCGACACC
	574	TAGCGCTTTTGGTCATGATTTGCAA	TTTGCAAATCATGACCAAAAGCGCT
30	575	TCCGAGGACTTACGTCTGCCCAGGA	TTCCTGGGCAGACGTAAGTCCTCGG
	576	TGCCCAATCCAGTTCTTATGCGCCC	TGGGCGCATAAGAACTGGATTGGGC
	577	TCGGGTTAACCCACGCAAGTTATGA	TTCATAACTTGCGTGGGTTAACCCG
	578	TTGATTAGCGCTCAATACACGCGTG	TCACGCGTGTATTGAGCGCTAATCA
	579	TAAGGCAGACCTTTGGTTCGACTG	TCAGTCGAACCAAAGGTCTGCCCTT
35	580	TGCGCCACAAGATTCACATGTCATT	TAATGACATGTGAATCTTGTGGCGC
	581	TGCCATGTTCAAGGGCCTTTCGAAG	TCTTCGAAAGGCCCTTGAACATGGC
	582	TCGCGGTGTTTTGTCTAGGTGCCGG	TCCGGCACCTAGACAAAACACCGCG
	583	TCAACATTGTGGTGGCACTCCATCC	TGGATGGAGTGCCACCACAATGTTG
•	584	TCGATACGCGCCGGTTTGTTAAATC	TGATTTAACAAACCGGCGCGTATCG
40	585	TGGCTATAAACGTGCGGACTGCTCC	TGGAGCAGTCCGCACGTTTATAGCC
	586	TTGGGTAAATCACTATTGCGCGGTT	TAACCGCGCAATAGTGATTTACCCA

			
	587	TGTCTTCATCGGCCCGCGCAAGCTA	TTAGCTTGCGCGGGCCGATGAAGAC
	588	TGCGACACCCTGTACTCTGATGC	TGCATCAGAGTACAGGGTGTGTCGC
	589	TGTAGCAGGGTCCGCAAGACCAAGC	TGCTTGGTCTTGCGGACCCTGCTAC
	590	TTCGCCAACGCAGGGTAACTGCCAT	TATGGCAGTTACCCTGCGTTGGCGA
5	591	TACTCCGAAGCTTCGAGCGGCACGA	TTCGTGCCGCTCGAAGCTTCGGAGT
	12	TCATCGTCCCTTTCGATGGGATCAA	TTTGATCCCATCGAAAGGGACGATG
	13	TGCACGGGAGCTGACGACGTGTCAA	TTTGACACGTCGTCAGCTCCCGTGC
	594	TATCATCCCACGGCAGAGTGAAGAG	TCTCTTCACTCTGCCGTGGGATGAT
	595	TCGCTGGACTGGCCTATCCGAGTCG	TCGACTCGGATAGGCCAGTCCAGCG
10	596	TCGGTCTCAGCAACACTGTCGCAAA	TTTTGCGACAGTGTTGCTGAGACCG
	597	TCGAACGTTCTCCGATGTAATGGCC	TGGCCATTACATCGGAGAACGTTCG
	598	TATACCGTGCGACAAGCCCCTCTGA	TTCAGAGGGGCTTGTCGCACGGTAT
	599	TAGCTCATTCCCGAGACGGAACACC	TGGTGTTCCGTCTCGGGAATGAGCT
	600	TTTTCATGCGGCCGTTGCAAATCAT	TATGATTTGCAACGGCCGCATGAAA
15	601	TACTCGAACGGACGTTCAATTCCCA	TTGGGAATTGAACGTCCGTTCGAGT
	602	TCTGCATGGTGTGGGTGAGACTCCC	TGGGAGTCTCACCCACACCATGCAG
	603	TCCGCGAGTGTGGATGGCGTGTTGA	TTCAACACGCCATCCACACTCGCGG
	604	TAATGTGTCGGTCCTAAGCCGGGTG	TCACCCGGCTTAGGACCGACACATT
	605	TTAAGACGAGCCTGCACAGCTTGCG	TCGCAAGCTGTGCAGGCTCGTCTTA
20	606	TGGCGTGGGAGGATAAGACGATGTC	TGACATCGTCTTATCCTCCCACGCC
	607	TTGCTCCATGTTAGGAACGCACCAC	TGTGGTGCGTTCCTAACATGGAGCA
	608	TCGGTGTTGGTCGGACTGACGACTG	TCAGTCGTCAGTCCGACCAACACCG
	609	TCCGCGCGTATCTATCAGATCTGGG	TCCCAGATCTGATAGATACGCGCGG
	610	TAAAGCATGCTCCACCTGGAGCGAG	TCTCGCTCCAGGTGGAGCATGCTTT
25	611	TACTTGCATCGCTGGGTAGATCCGG	TCCGGATCTACCCAGCGATGCAAGT
	612	TTGCTTACGCAGTGGATTGGTCAGA	TTCTGACCAATCCACTGCGTAAGCA
	613	TATGCAGATGAACAAATCGCCGAAT	TATTCGGCGATTTGTTCATCTGCAT
	614	TGCAATTCTGGGCCATGTATTCGTC	TGACGAATACATGGCCCAGAATTGC
	615	TAGGGTTCCTTACGCGTCGACATGG	TCCATGTCGACGCGTAAGGAACCCT
30	616	TGTGGAGCTAATCGCGAGCCTCAGA	TTCTGAGGCTCGCGATTAGCTCCAC
	617	TTCGTAGTCTCACCGGCAATGATCC	TGGATCATTGCCGGTGAGACTACGA
	618	TTTATAGCAGTGCGCCAATGCTTCG	TCGAAGCATTGGCGCACTGCTATAA
	619	TCGAACAGTGCTGTCCGTCGAA	TTTGAGCGACGGACAGCACTGTTCG
	620	TTCCGCGTGGACTGTTAGACGCTAT	TATAGCGTCTAACAGTCCACGCGGA
35	621	TCATTAGCCCGCTGTCGGTAACTGT	TACAGTTACCGACAGCGGGCTAATG
	622	TGGAAAGAAACTCAGACGCGCAATG	TCATTGCGCGTCTGAGTTTCTTTCC
	623	TCGACTCGCTGGACAGGAGAATCGT	TACGATTCTCCTGTCCAGCGAGTCG
	624	TCATGATCCTCTGTTTCACCCGCGG	TCCGCGGGTGAAACAGAGGATCATG
	625	TGGCGTAGCGCTCTAAAAGCTTCGG	TCCGAAGCTTTTAGAGCGCTACGCC
40	626	TAGTGATGCCATCAGGCCCGTATAC	TGTATACGGGCCTGATGGCATCACT
	627	TTATGGAAAGGGCAACAGCGCTATC	TGATAGCGCTGTTGCCCTTTCCATA

628 TCTGTGGTTGATGGAGGATCCACAC TGTGTGGATCCTCCATCAACCACAG 629 TACTCGCTGAANTTGCGCTGACAC TGTGTCAGCGCAAATTCAGCGCAGT 630 TAGGCCCGAACCACGCGGTTACAG TCTGTAACCGCGTGTTCGGCCCTG 631 TGGCGCAATGGCCCAAATACTAA TTAGTATTTATGCGCCCATTGCGCC 632 TGGTCAATTCGCGCTACATGCCCTA TTAGGGCATGAGCCCGCAATTGACC 633 TGATGGTGGACCCTTCCGC TGCGGAAAGGCCTCACATGCCCCA 634 TCCGCGCATAGCGCAATTGCCCCA TTAGGGCCAAGTCACCACATC 635 TTCTTCTGGCTGTCCGGCACCCGAA TTTCCGCCTATTGCGCCACACACACACACACACACACACA				
530 TCAGGCCGAACCACGGGGTTACAG TCTGTAACCGGTGGTTCGGCCTG 631 TGGCGCAATGGGCGCATAAATACTA TTAGTATTTATGCGCCCATTGCGCC 532 TGGTCAATTCGCGCTACATGCCCTA TTAGGGCATGTAGCGCGAATTGAGC 633 TGATGGTGGACTGGAGCCCTTCCGC TGCGGAAGGGCTCCACCATC 634 TCCGCGCATAGCGCAATTAGGGGAGA TTCTCCCCTATTGCGCTGGGAAGAGACTCACCATC 635 TTCTTCTGGCTGCCGCACCCGAA TTCCGCCTATTGCGCCAGAGA 636 TGCGTTCGCAATTCACGGCCCTTA TTAGGGCCCGTGAATTGCGCAGG 637 TTCGTTTCGGCTTGGAGAGTATCC TCGATACTCTCCAAGGCCAAACGA 638 TAGGTGCAAGTGCAAGGCGAGAGGC 639 TCCCCAGTTCGACGCCCTTA TTAGGGCCCGTGAATTGCACCCT 639 TCCCCAGTTTCGACGCGCACTACGAAGACGC 640 TGCTTTACCGCCGATCCACAGTTT TAAACGCCAGCACCACCAACGA 641 TGTGCTTGACGAGGCGAGAGGC 642 TCAGTCCGCGTCCAGATATC TGATACTCTCCAAGGCCGTAAACGA 643 TTACGCGTAAGAGGCGAAGGC 644 TGGCCTTGCACTTTTATTCCCCCTTTTCGTCAAGCAC 645 TCCACAAGGCACAGAGCCTACAATTC TGATACTCGCCTTTCGTCAAGCAC 646 TGCCGTACGACAGAGGCGAAATGT TACATTTCGCCTTTCGTCAAGCAC 647 TCAGTCCGTCCCTTCATGTCCTCA TTGAGGACATGAAGCCCACCGACTG 648 TTCCACAAGCACAAGAGCGAAATGT TACACTTTCGCCTTTAGGCGTT 649 TCCCGAAGGAGAGCGAGCGTGTCTAT TAAACACACGCTCCCTCTTCGCTTTGG 646 TGCCGTAAGAGCCTACCAATTTA TAAACACACGCTCGCGTTTCGCTTTGG 647 TAAATCCGCGATGTGCCGTGACAATTTA TAAACACACGCTCGCGGATTT 648 TGCCTTAGGGACAACCTACCAATTTA TAAACACACGCTCGCGATTT 648 TGCCTTAGGCACCAGTACCAATTTA TAATGACACCGCCCAGAACCC 649 TTGTAGAGTCCCCCGTACCAATTTAG TCTAAATTGGTACGGGTGCGAAACCC 649 TTGTAGAGTCCCACCGTACCAATTTAG TCTAAATTGCACCCCAGACACCTACCA 650 TCACTAGTCTGGGGCAAGGAGTAATT TAATCAACTTGCCCCAAGACCTACCA 651 TTGTACTCGGACCAGGAGCCTTA TAATCCACGGCACATCCCGGTT 652 TAACGGGTATCGGAAGCGAAGACT TAACCCTTTCCCCAAACCGACACCACGACGACACCTACCAGACCACACTACCAGGCCAATACCACGTCCCCCAAACACACAC		628	TCTGTGGTTGATGGAGGATCCACAC	TGTGTGGATCCTCCATCAACCACAG
631 TGGCGCATTGGCGCATAAATACTA 632 TGGTCAATTCGCGCTACATGCCCTA 633 TGATGGTGACTGCGCTACATGCCCTA 634 TCCGCGCATAGCGCATAGGGGAGA 635 TTCTTCTGGCTGTCCGCACCCGAA 636 TGCGTTCGCAATTGGCGCACCCGAA 637 TTCTTCTGGCTGTCCGCACCCCGAA 638 TGCGTTCGCAATTCACGGCACCCGAA 639 TTCTTCTGGCTGTCCGGCACCCCGAA 630 TGCGTTCGCAATTCACGGGCCCTTA 631 TTCGTTTCGGCTTTCGGCACCCCGAA 632 TTCGTTTCGGCTTTGGAGAGGTATTCG 633 TAGGTGCAAGCCGAAGCCGACCCGAAA 634 TGCGTTCGCAATTCACGGGCCCTTA 717AAGGGCCCGTGAATTGCACGACCCGAAACGA 635 TGCGTTCGCAATTCACGGGCCCTTA 717AAGGGCCCGTGAATTGCACGACGC 637 TCGCTTTGGATGGCTGACGTT 638 TAGGTGCAAGCCGAGAGGC 639 TCGCCAGTTTCGATGGCTGACGTT 717AACGTCAGCCATGCACAACCCGAACCC 640 TGCTTTACCGCCGATCCCAGATATC 641 TGTGCTTGACGAAGAGGCGAAATCT 717AACGTCAGCACACCACCCGACCCCGACCCCGACCCGACACCCACGACCCGCACCCGCCCGACCCCGACCCCGACCCCGCCCCCC		629	TACTCGCTGGAATTTGCGCTGACAC	TGTGTCAGCGCAAATTCCAGCGAGT
5 632 TGGTCAATTCGCGCTACATGCCCTA 634 TGATGGTGGACTGGAGCCCTTCCGC 634 TCCGCGCATAGCGGACCCTTCCGC 634 TCCGCGCATAGCGGACCCGAA 636 TTCTTCTGCTTGCCGCAATAGCGGAGAA 636 TGCGTTCGCAATAGCGGACAAT 637 TTCTTCTGCTTTCGCAATTCACGGACAATTTCACCGAAGA 636 TGCGTTCGCAATTCACGGGCCCTTA 637 TTCGTTTCGGCTTGGAGAGTATCG 638 TAGGTGCAAGTCCAAGACCAAGACCAACCAAACCAA 639 TCGCCAGTTTCGATGGCTGACGTTT 640 TGCTTTACCGCCCGAATATC 641 TGTCTTCACCCCGAATATC 641 TGTCTTCACCCCGAATATC 641 TGTCTTCACCCCGAATATC 642 TCAGTCCCGCAATCCCAATATC 643 TTACGGCTGACGCTTCATTCTTCACCCTTTCGACCTTTCGACCT 644 TGGCGTAAGAGCGCAAATATC 645 TCCAAAGCGAAGCCGAATATC 646 TGCCTTACCGCCTTCCCC 647 TACAGCCAACGACGCGAATATC 646 TGCCCTACGCATATC 647 TGACCACCCGATATC 648 TGCCGTAAGACCCCCCTCCCC 647 TACATCCGCCTTTCACCCACCCTCCCC 648 TGCCCTACGGTTCATCTTTCACCCCACACACCCTCGCCTTTCCCCTTTCGCCTT 648 TGCCTAGGCTTCACCCTCACCCTCCCC 649 TGTCACACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		630	TCAGGCCCGAACCACGCGGTTACAG	TCTGTAACCGCGTGGTTCGGGCCTG
633 TGATGGTGGACTGGAGCCCTTCCGC 634 TCCGCGCATAGCGCAATAGGGGAGA TTCTCCCCTATTGCGCTATGCGCG 635 TTCTTCTGGCTGTCCGGCACCCCGAA 636 TGCGTTCCGGCACCCCGAA 637 TTCTTCTGGCTGTCCGGCACCCCGAA 638 TGCGTTCGCAATTCACGGGCCCTTA 1TTAGGGCCCGTAATTCCAGAGCC 639 TGCGCTTGGAGAGTATC 639 TGGCCAGTTTCGATGGCTGACGGTT 640 TGCTTTACCGCGCAATACC 641 TGTGCTTTACCGCGAATACC 641 TGTGCTTTACCGCGCAATACC 641 TGTGCTTGAAGAGGAATATC 642 TCAGTCCGTGAAGAGCAATATC 643 TTACGCTGAAGAGCGAAATAC 644 TGGCCAGATTCCACGATATC 645 TTACAGTCCGTGCAAACTGGAAGC 646 TGCTTTACCGCCGATTCCACAATATC 647 TCAGTCCGTGCGCTTCATGTCCTCA 648 TGGCCAGTTCATGTCCTCA 649 TCCAAAGCGAAGAGCCGAAATGT 7ACACTTCGCCCACAGACTG 640 TGCATAGAGCCTACCCTCGCG 7ACACAGGCCACACACACCCCTCGCG 641 TGGCGAGAGCCGAAATGT 7ACACTTCGCCCACACACACTCGC 642 TCCAAAGCGAAGCCTACCCTCGCG 7ACACATGTCCCCACACACACTCGCC 643 TTACGCGTAAGAGCCTACCCTCGCG 644 TGGCGAGGTGTCTAT 7ACACATGTCCCCACACAGACTTGCC 645 TCCAAAGCGAAGCGAGCTTTTAT 7ATAGACACGCTCGCTTCGCTTTGC 646 TGCCGTAGGTTCTTTTCACCGGAC 647 TAAATCCGCGATGTCCCACACACTTAC 648 TGGCTTCGCACCCGTACCAATTTAC 648 TGGCTTCGCACCCGTACCAATTTAC 648 TGGCTTCGCACCCGTACCAATTTAC 650 TCACTAGTTCGGGCAAGGCT 649 TTGTAAGAGCCACGTACCATTTAC 651 TTGTACTCGGCACAGCTGCCATT 651 TTGTACTCGGCACAGTACCATT 651 TTGTACTCGGCACAGCTGCCATT 651 TTGTACTCGGCACAGGCCCGTAA 652 TAACGGGTATCGGAGCCCGTAA 653 TCGGACTGCCCGTTTGCAAGTTGAG 654 TACGTTCACACATGGAGCCCGTAA 655 TATCGATCCACACTGGAGCCCGTAA 656 TATCGATCCACACTGAGCCGCAATTAGAT 657 TGTGCGACACTAGCTGGAGCCCGTAA 658 TTCCATCGACACTAGAGTT 7AATGCACCTTCCCCACAGCATTCCC 658 TTCCATCGCACACTAGATT 7AATGCACCTTCCCCACAGCATTCCC 658 TTCCATCGCACCATTACTCCACGACCCCTTACACACACAC		631	TGGCGCAATGGGCGCATAAATACTA	TTAGTATTTATGCGCCCATTGCGCC
634 TCCGCGCATAGCGCAATAGGGGAGA TTCTCCCCTATTGCGCTATGCGCGG 635 TTCTTCTGGCTGTCCGGCACCCGAA TTTCGGGTGCCGGAAGCAGAAGA 636 TGCGTTCGCAATTCACCGGCCCCTTA TTAAGGGCCCGTGAATTGCGAAGCA 637 TTCGTTTCGGCTTTGGAGAGTATCG TCGATACTCTCCAAGGCCGGAAACGA 638 TAGGTGCAAGTGCAAGGCGAGAGGC TCGCTCTCGCCTTGCACTTGCACCT 639 TCGCCAGTTTCGATGGCTGACGTTT TAAACGTCAGCCATCGAAACTGGCG 639 TCGCCAGTTTCGATGCCTGACGTTT TAAACGTCAGCCATCGAAACTGGCG 640 TGCTTTACCGCCGATCCCAGATATC TGATATCTGGGATCGGCGGTAAAGC 641 TGTGCTTGACGAAGAGGCGAAATGT TACATTTCGGCATCGAAACTGGCG 642 TCAGTCCGTCGCGTTCATGTCCTCA TGAGGACAGGACTG 643 TTACGCGTAAGAGCCCATCCCCGC TCGCGAGGGTAGAGCCCACAGACTG 644 TGGCGATGTTGTGGGGACATGTT TACACATGTCCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGGACATGTT TACACATGTCCCCACAAGACTCGCC 646 TGCCGTAGGTTGCTCTTCACCGAAC TGTTCGGTGAAGAGCCACACAGACTCGCC 647 TAAATCCGCGATGTCCCTCAACACACTTCGCGTTTCGCTTTCG 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTGGTACACCACACACACACACACACACACACAC	5	632	TGGTCAATTCGCGCTACATGCCCTA	TTAGGGCATGTAGCGCGAATTGACC
635 TICTTCTGGCTGTCCGGCACCCGAA TITCGGGTGCCGGACAGCAGAGA 636 TGCGTTCGCAATTCACGGGCCCTTA TTAAGGGCCCGTGAATTGCGAACGC 637 TTCGTTTCGGCCTTGAGAGGTATCG TCGATACTCTCCAAGGCCGAAACGA 638 TAGGTGCAAGTGCAAGGCCGAAAGGC TGCCTCTCGCCTTGCACTTGCACCT 639 TCGCCAGTTTCGATGGCTGACGTTT TAAACGTCAGCCATCGAAACTGGCC 639 TCGCCAGTTTCGATGGCTGACGTTT TAAACGTCAGCCATCGAAACTGGCC 640 TGCTTTACCGCCGATATC TGATATCTGGGATCGGCGGTAAAGC 641 TGTGCTTGACGAAAGAGGCCGAAATCT TAAATTCTGGGATCGGCGGTAAAGC 642 TCAGTCCGTGCGCTTCATGTCCTCA TTGAGGACATGAGCCCCGCACAGACTCGCC 643 TTACGCGTAAGAGCCTACCCTCGCG TCGCGAGGGTAGAGCCCGGACTG 644 TGGCGAAGCGAAGGCGAACTGTT TACACATGCCCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGAACGTGTCT TACACATGCCCCCACAAGACTCGCC 646 TGCCGTAGGTTGCTCTAT TATAGACACCGCTCTTCGCTTTCG 647 TAAATCCGCGATGTCCTAT TATAGACACCGCTCGCTTCGCT		633	TGATGGTGGACTGGAGCCCTTCCGC	TGCGGAAGGGCTCCAGTCCACCATC
636 TGCGTTCGCAATTCACGGGCCCTTA TTAAGGGCCCGTGAATTGCGAACGC 637 TTCGTTTCGGCCTTGGAGAGTATCG TCGATACTCTCCAAGGCCGAAACGA 638 TAGGTGCAAGTGCAAGGCGAGGC TGCCTCTCGCCTTGCACTTGCACCT 639 TCGCCAGTTTCGATGCTGACGGTT TAAACGTCAGCAACTGGCG 640 TGCTTTACCGCCGATCCCAGATATC TGATATCTGGGATCGGCGGTAAACGA 641 TGTGCTTGACGAGAGGCGGAAATGT TACATTTCGGCTCTTCGTCAAGCAC 642 TCAGTCCGTGCGGTTCATGTCCTCA TGAGGACAGGACTGGCACGGACTG 643 TTACGCGTAAGAGCCTACCCTCGCG TCGCGAGGGTAAGACCGCACGGACTG 644 TGGCGTAAGAGCCTACCCTCGCG TCGCGAGGGTAGGCTCTTACCGCGTA 645 TCCAAAGCGAAGCGGACATGTGT TACACATGTCCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCTCCGCTTGG 646 TGCGTAGGTTGCTTCACCGAAC TGTTCGGTGAAGACCACCTCGCC 647 TAAATCCGCGATGTGCCTTAATTCTCACGAAC TGTTCGGTGAAGACCACCCCGGAATTTGG 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTGGTACGGGGATTT 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTGGTACGGGGACTTCACA 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTCGCCCAGACACTACGG 649 TTGTAGAGTCCCACGTACCAATTTAG TCTAAATTGGTACGGGGACTCTACA 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTCCCCACAACTACG 651 TTGTACTCGGAAGCGCAATAGATT TAATTCACCCTTCCCCACAACTACG 652 TAACGGGTATCGAGCGCAATAGATT TAATCACTTCCCCCACAACTACGTG 653 TCGGACTGCCCGTTTCCAAGTTGAG TCTCAACTTGCCCTCCCAGACTACCA 654 TATCGTTCAGCACTGGAGCCCATAA TTTACCGCTCCCAGACCAGCAC 655 TATGCATCCGAACTAGTCGTGAACGG TCCCCTCCCAGACTACCA 656 TTTCCAGCACTTGAACACGAGACCC TGCCCGAACTAGTG 657 TGTGCAACTTAAGGAAGAGGAGCC TGCCCTCCCCATACCAGAC 658 TCTCATCGACACTGGAGCCCTAA TTTACGGCTCCCATTACCCGCC 659 TAATGCCACTTGCACACGAACCC TGCCCTCCCCTTCCTTAATGCCTGGAA 660 TCCCTGGGAAGCAATACAACCGAGACCC TGGGCTCTCGTGTAAGAACACGGCAATAGAT 661 TTAATCTCTGTCCAACCACGAGACCC TGGGCTCTCGTGTTAAGACAACGAATAGAT 662 TTTCCAGGCATTACACACGAGACCC TGGGCTCTCGTGTTAAGACAACGAAATAGAT 71TAAGGCCACTTCGGCGGTGATGCAA TTTACAGCCCCCCAAACAAGAATTT 71ATGAGCCCTCCCCCCTTAAATTCCACACCGAGCC 71ATGAGCACTTCCTGTGTGTGAACCACTACAACAACGAAAGAATTTCCCTCCC		634	TCCGCGCATAGCGCAATAGGGGAGA	TTCTCCCCTATTGCGCTATGCGCGG
10 637 TITCGTTTCGGCCTTGGAGAGTATCG TCGATACTCTCCAAGGCCGAAACGA 638 TAGGTGCAAGTGCAAGGCGAGAGGC TGCCTCTCGCCTTGCACTTGCACCT 639 TCGCCAGTTTCGATGGCTGACGTTT TAAACGTCAGCCATCGAAACTGGCG 640 TGCTTTACCGCCGATCCCAGATATC TGATATCTGGGCTGCGGTAAAGC 641 TGTGCTTGACGAAGAGGCGAAATGT TAAATCTGGGATCAGCACAGCA		635	TTCTTCTGGCTGTCCGGCACCCGAA	TTTCGGGTGCCGGACAGCCAGAAGA
638 TAGGTGCAAGTGCAAGGCGAGAGGC 639 TCGCCAGTTTCGATGGCTGACGTTT 639 TCGCCAGTTTCGATGGCTGACGTTT 640 TGCTTTACCGCCGATCCCAGATATC 641 TGTGCTTGACGAGAGGCGAAATGT 76ATATCTGGGATCGCGGGTAAAGC 641 TGTGCTTGACGAAGAGGCGAAATGT 642 TCAGTCCGTGCGCTTCATGTCCTCA 643 TTACGCGTAAGAGCCTACCCTCGCG 644 TGGCGAAGAGCCTACCCTCGCG 645 TCCAAAGCGACCTACCCTCGCG 646 TGCCGTAGGAGCCTACCCTCGCG 647 TAAATCCGCGAAGAGCGACTGTT 648 TGCCGTAGGTTGCTTCACCGAAC 649 TGCCGTAGGTTGCTTCACCGAAC 649 TGCCGTAGGTTGCTCTAT 648 TGGCTTCGCACCCTTCACCAATTTAG 649 TTGTAGAGTCCCACCAGAGACCTACCGCT 649 TTGTAGAGTCCCACCGTACCAATTTAG 650 TCACTAGTCTGGGGCAAGGCT 651 TTGTACTCGCACCCGTACCAATTTAG 651 TTGTACTCGCACCCGTACCAATTTAG 652 TAACGGGTACGCCGAAC 653 TCGGACTGCCCGTACCAATTTAG 654 TTGTACTCGCACCCGTACCAATTTAG 655 TAACGGGTACGCCGAAT 655 TAACGGGTACGAGCCCTACAATTTAG 656 TTGTACTCGCACCCGTACCAATTTAG 657 TGGGACTGCCCGTACCAATTTAG 658 TCACTAGTCTGGGGCAAGGCCT 659 TAACGGGTACAAGGT 651 TTGTACCGCACCGTACCAATTTAG 652 TAACGGGTACGAGCCCGTAAAAAGC 765 TAACGGGTACCACGTACCAATTTAGCCCCTACCAAGACACCCTTACA 655 TAACGGGTACCGAAGAGCCAATAGATT 76ATCTTGCCCCCCAGAACACCGT 765 TAACGGGTACCACGTAAAAAGC 765 TATCCATCCACACTGGACCCCGTAA 776 TAACGGGTACCCGTTACAACTGGACCCCGTAA 777 TAACGACTTCAACCAGAGAGCC 777 TAACGACTTCAACCACGAGAGCCC 777 TAACGGACTCCCAACCACAACCACAACGAACACCACCACACCACACACACACACACACACACACACAC		636	TGCGTTCGCAATTCACGGGCCCTTA	TTAAGGCCCGTGAATTGCGAACGC
639 TCGCCAGTTTCGATGGCTGACGTTT 640 TGCTTTACCGCCGATCCCAGATATC 641 TGTGCTTGACGAAGAGGCGAAATGT 641 TGTGCTTGACGAAGAGGCGAAATGT 642 TCAGTCCGTGCGTTCATGTCCTCA 643 TTACGCGTACGAGAGGCGAAATGT 644 TGGCGAGCACTCACTCCACGT 645 TCCAAAGCCGACCTACCCTCGCG TCGCGAGGGTAGGCCTCTTCACGCAC 646 TGGCGAGCTTGTGGGGACATGTGT 646 TGCCGAAGCGAGCGTGTCATT 647 TAAATCCGCGAAGCCGACTGTCATT 648 TGGCTTGGTCTCTCACTCTCACT 649 TTAAATCCGCGAACCTTCCCTCACGACCTCGCTTCACGCGCACAGACACCCCTACGGC 649 TGACCCCCGTACCAATTTAG 650 TCACTAGTCCCACCGTACCAATTTAG 651 TTGTACTCGGGCACACCGCACTTCACCGCACACCCCTACCACGCCCACACCACCGCCCTACCAAGTCCCCCACACCACCCCTACCAATTTAG 651 TTGTACTCGGCACCCGTACCAATTTAG 652 TAACCGGTACGAGCGCATT TAATGCACCCTTGCCCCAGACTACCCCTTCCACGCCACACCCCGTACCAATTTAG 653 TCGGACTGCCCGTTTGCACAGTTT 654 TAATCCACTTGCCCCAGACCACTTCCACGCCACACCCCGTACCAATTTAG 655 TACCGACTACCACTTTACACCCGCCATTTTACCCCCCAGACCACTCCCCGTACCAATTTACCCTTTCCCCCAGACCACTTCCCCCAGACCACTTCCCCCAGACCACTTCCCCCCAGACCACTCCCCGTACCAATTTAGCACCCTTTCCCCCAGACCACTTCCCCCAGACCACTTCCCCCAGACCACTTCCCCCAGACCACTTCCCCCCAGACCACTCCCCGTTTCCCCCAAGCCCGTTTTACCCCCCAGACCACTTCCCCCAGACCACTCCCCTTTCCCCCAGACCACCCCTTTTCACACCCCCTTTTCACACCTTGCCCCAGACCACCCCTTTTCACACCTTGCCCCAGACCACCCCTTTTACCCCCCCAGACCACCCCTTTTCACACCAGACCACCCCGACCACCCCTTTTCACACCTTGCACACCACCACCACCACCACCACCACCCAC	10	637 [.]	TTCGTTTCGGCCTTGGAGAGTATCG	TCGATACTCTCCAAGGCCGAAACGA
640 TGCTTTACCGCCGATCCCAGATATC 641 TGTGCTTGACGAAGAGGCGAAATGT 642 TCAGTCCGTGCGCTTCATGTCCTCA 643 TTACGCTCGTGCGCTTCATGTCCTCA 644 TGGCGAAGAGGCCTACCCTCGCG TCGCGAGGGTAGGCTCTTACGCGTA 644 TGGCGAAGAGCCTACCCTCGCG TCGCGAGGGTAGGCTCTTACGCGTA 644 TGGCGAAGCGAGCGAGCGTGTCTAT TATAGACACGCTCGCC 645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCGCCTTTGG 646 TGCCGTAGGTTGCTCTTCACCGAAC TGTTCGGTGAAGACACCTACGGC 647 TAAATCCGCGATGTGCCGTAGGCT TAGCCTCACGGCACATCACGGC 648 TGGCTTCGCACCCGTACCAATTTAG 649 TTGTAGAGTCCCACGATATTAG TCTAAATTGGTACGGGTGCGAACTC 650 TCACTAGTCTGGGGCAAGGTGCAT TATGCCGCTACGTGGGACTCTACA 650 TCACTAGTCTGGGGCAAGGTGCAT TAATCCACGTGCCCAGACTACTAC 651 TTGTACTCGGCAAGGTGCAT TAATCCACCTTGCCCCAGACTACTAC 652 TAACGGGTATCGAAGCATT TAATCTATTGCGCCTGCCGAGTACA 653 TCGGACTGCCCGTTTGCAAGTTGAG 654 TATCGTTCAGCACCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 655 TATGCATCGAACCAGTAGAGT TAATCCACCTTGCAACACGGCACTACTAC 656 TTCCAGCACTTGCAAGTTGAG TCTCAACTTGCAACAGGGCAGTACA 657 TGTGCGACACTAGTCGTGACGC TGCCGTACACACGGCAACGAT 658 TATCCATCGAACTAGTCGTGACGC TGCCGTCACGACTAGTTCCAACTGCACGACTAGTTCCACACTGCACCACTAGTTCCACACTGCACCACTAGTTCCACACTGCACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCACGACCACTAGTTCCACCCCCACGACCACCACGACCACTAGTTCCACCCCCCACGACCACACGACGACACGACGACACGACGA		638	TAGGTGCAAGTGCAAGGCGAGAGGC	TGCCTCTCGCCTTGCACTTGCACCT
641 TGTGCTTGACGAAGAGGCGAAATGT TACATTTCGCCTCTCGTCAAGCAC 642 TCAGTCCGTGCGCTTCATGTCCTCA TTGAGGACATGAAGCGCACGGACTG 643 TTACGCGTAAGAGCCTACCCTCGCG TCGCGAGGGTAGGCTCTTACGCGTA 644 TGGCGAGTCTTGTGGGGACATGTGT TACACATGTCCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCGCTTTGG 646 TGCCGTAGGTTGCTCTTCACCGAAC TGTTCGGTGAAGAGCACCTACGGC 647 TAAATCCGCGATGTGCCGTAAGCT TAGCCTCACGGCACATCGCGGATTT 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTTGGTACCGGGTGCGAAGCC 649 TTGTAGAGTCCCACCGTACCAATTTAG TCTAAATTTGGTACCGGTGCGAAGCC 650 TCACTAGTCTGGGGCAAGCGGCAT TAGCCCGCTACCAGACTACTACA 651 TTGTACTCGGCGCAGAGCGCAT TAATCCACTTGCCCCAGACTACTACA 652 TAACGGGTATCGGAAGCCGCAT TAATCCACTTGCCCCAGACTACTACA 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCACCGGTACCAGTACCA 654 TATCGTTCAGCACTGGAGCCGCAT TTACCCGTTCCGATACCCGTT 655 TATGCATCGAACTAGTCGAAGCTAAAAGC TGCTTTTACACCTTCCGATACCCGTT 655 TATGCATCGAACTAGTCGTGACGCC TGCCGTCACGACTAGTCGAACACGGCAGTACA 656 TTTCCAGGCATTAAGGAGAGCCCGTAA TTTACGGGCTCCAGTGCAGA 656 TTTCCAGCACTAGTCGTGACGCC TGCCGTCACGACTAGTTCGAACGAT 657 TGTGCGACATCTACCCACGACCC TGCCGTCACGACTAGTTCGAAC 658 TCTCATCGTCCTAACACGAGAGCC TGCGCTCCCTCTCTTTATGCCTGGAA 659 TAATGCACTTCCACCGATCCC TGGGATCGTGGAGTACAC 659 TAATGCACTTCGACGAGGCCCTAA TTTGCATCACCCCCGAAGTACA 650 TCCGTGGGAGGAATCCAACCAGAGCC TCGGGTTGGATTCCCCCCCGAACTGCCAT 660 TCCGTGGGAGGAATCCAACCAGAG TCCTCCGGTTGAGACGATT 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCACCGAGAATTT 662 TTTGCTCTTATCCTTTGTCCTGGCG TCCCCCAGGACACACAGAAATTT 663 TTTAAGGATCAGGGGAATCCAACCAGAG 664 TCCGCGACTAAGGGCGCAATTCCA 665 TGCCCAAGACACCCTTAACACCACCACCAGACACACACAC		639	TCGCCAGTTTCGATGGCTGACGTTT	TAAACGTCAGCCATCGAAACTGGCG
15 642 TCAGTCCGTGCGCTTCATGTCCTCA TTGAGGACATGAAGCGCACGGACTG 643 TTACGCGTAAGAGCCTACCCTCGCG TCGCGAGGGTAGGCTCTTACCGCGTA 644 TGGCGAGTCTTGTGGGGACATGTT TACACATGTCCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCGCTTCGCT		640	TGCTTTACCGCCGATCCCAGATATC	TGATATCTGGGATCGGCGGTAAAGC
643 TTACGCGTAAGAGCCTACCCTCGCG TCGCGAGGGTAGGCTCTTACGCGTA 644 TGGCGAGTCTTGTGGGGACATGTGT TACACATGTCCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCGCTTTCGG 646 TGCCGTAGGTTGCTCTTCACCGAAC TGTTCGGTGAAGAGCAACCTACGGC 647 TAAATCCGCGATGTGCCGTAGGCCT TAGCCTCACGGCACATCGCGGATTT 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTGGTACGGGTGCGAAGCC 649 TTGTAGAGTCCCACGTAGCCGGCAT TATGCCGGCTACGTGGGACTCTACA 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTGCCCCAGACTAGTG 651 TTGTACTCGGCAGGCGCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 652 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAACAGTGGACACT 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCAACAT 655 TATGCATCGAACTAGTCGTGACGGC TGCCGTCACGACTATGCAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCCCTCCCTCTCTTAATGCCTGGAA 657 TGTGCGACATCTACTCCACGATCC TGGGATCGTGGAGTAGCAT 658 TCTCATCGTCCTAACACGAGAGCC TGGCCTTCGTTTAGGACGATTGGAC 659 TAATGGCACTTCGCGCGTGATCCA TTTGCATCACCGCCGAAGTAGGA 659 TAATGGCACTTCGCCAGATCCA TGGCATCGTGTTAGGACGATT 660 TCCGTGGGAGGGAGC TCCTCGTTTTAGGACGATTGCAT 661 TAAATTCTCGTTGGTGACGGC TGGCCTCACGACAACGAAGAATTT 662 TTTGCATCCACACGAGAGCC TGGCCTCACCACCAACGAAATTT 663 TTTAAGGACTCAGCGGGGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 664 TCCGTGGGAGGGGAGCTCAT TATGAGCCGTCACCAACGAGAATTT 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		641	TGTGCTTGACGAAGAGGCGAAATGT	TACATTTCGCCTCTTCGTCAAGCAC
644 TGGCGAGTCTTGTGGGGACATGTGT TACACATGTCCCACAAGACTCGCC 645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCGCTTCGCT	15	642	TCAGTCCGTGCGCTTCATGTCCTCA	TTGAGGACATGAAGCGCACGGACTG
645 TCCAAAGCGAAGCGAGCGTGTCTAT TATAGACACGCTCGCTTCGCT		643	TTACGCGTAAGAGCCTACCCTCGCG	TCGCGAGGGTAGGCTCTTACGCGTA
20 646 TGCCGTAGGTTGCTCTTCACCGAAC TGTTCGGTGAAGAGCAACCTACGGC 647 TAAATCCGCGATGTGCCGTGAGGCT TAGCCTCACGGCACATCGCGGATTT 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTGGTACGGGTGCGAAGCC 649 TTGTAGAGTCCCACGTAGCCGGCAT TATGCCGGCTACCTGCGAAGCC 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTGCCCCAGACTACTACA 651 TTGTACTCGGCAGGCGCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 652 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAA TTTACGGCTTCCGATACCCGTT 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCTGACGAT 655 TATGCATCGAACTAGTCGTGACGGC TGCCGTCCAGTGCTGAACGAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 657 TGTGCGACATCTACTCCACGATCCC TGGGATCCTGTAAGATGTCGCAC 658 TCTCATCGTCCTAACCAGAGACCC TGGGCTCCGTTTAGGACGATT 660 TCCGTGGGAGGGAATCCACCGAGG TCCTCGGTTGAATGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGTGACGGC TCCTCGGTTGGATTCCCTCCACGG 662 TTTGCATCATCCTCTGCACGAGTCCA TATGAGCCGTCACCAACGAGAATTT 663 TTTAAGGAATCAACCGAGGCCC TGGCCCAAGGACAAGGATAAGACAA 664 TCCGCGACTAAGGTGCTGCAG TCCTCGGTTGGATTCCTCCCACGG 665 TGCTCGATTTACCTTGCCTGGAG 666 TAACAGGAGCGCGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 667 TTGGAGGTTAAGGAGCGCCGTTGTTC TGAACAACCGGCCCTGAACCTTAA 668 TGCCGACTAAGGTGCTGCAACTCGA TCCGACCACCGACCACCTTACCGCG 669 TAGCAGAGTGCCTTTCCACACCGACCCTTCGCT 7000000000000000000000000000000000000		644	TGGCGAGTCTTGTGGGGACATGTGT	TACACATGTCCCCACAAGACTCGCC
20 647 TAAATCCGCGATGTGCCGTGAGGCT TAGCCTCACGGCACATCGCGGATTT 648 TGGCTTCGCACCCGTACCAATTTAG TCTAAATTGGTACGGGTGCGAAGCC 649 TTGTAGAGTCCCACGTAGCCGGCAT TATGCCGGCTACGTGGGACTCTACA 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTGCCCCAGACTAGTG 651 TTGTACTCGGCAGGCGCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 25 652 TAACGGGTACCAGTTGCAAGTTGAG TCTCAAACTTGCACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGGCAGTCCG 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGCTCCAATACCCGTT 655 TATGCATCGAACTAGTGGAAGCCCGTAA 656 TTTCCAGGCATTAAGGAGAGGCCCGTAA 657 TGTGCGACACTTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 658 TCTCATCGTCCTACACACGAGAGCC TGGGATCGTGAAGTTCGCAC 658 TCTCATCGTCCTAACACGAGAGCC TGGGCTCCGTGTAGAGTTCGCAC 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGAATCCAACCGAGG TCCTCGGTTTAGGACGATGAG 651 TAAATTCTCGTTGGTGACGGC TCCTCGGTTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 662 TTTGCTCTTATCCTTGCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TCTGCAAGCTCCGCCTGATCCTTAA 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAACTCGA TTTAGCCTCTCCAACGCACCTTAGTCGCG 667 TTGGAGGTGAGGACGACGATGCAA TTTAGCCTCTCCAACCGCCTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAAGTGCAACTTATTAGCCTCTCCAACGCACCTTTAGTCCGCG 667 TTGGAGGTGAGGACGACGATGCAAT TTTAGCCTCTCCAACCGACTCTCTCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTTAGCCTCTCCAACCCACCCCCCACGCACTCTCCCCCCCACGCACTCCCCCCCACCCCCCCC		645	TCCAAAGCGAAGCGAGCGTGTCTAT	TATAGACACGCTCGCTTCGCTTTGG
648 TGGCTTCGCACCGTACCAATTTAG TCTAAATTGGTACGGGTGCGAAGCC 649 TTGTAGAGTCCCACGTAGCCGGCAT TATGCCGGCTACGTGGGACTCTACA 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTGCCCCAGACTAGTG 651 TTGTACTCGGCAGCGCCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 652 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGGCAGTCCG 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCACGAT 655 TATGCATCGAACTAGTCGTGACGC TGCCGTCACGACTAGTCGATACAC 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGAAGATGTCGACAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCCGCGAAGTGCCAT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTTAGGACGATTGAG 661 TAAATTCTCGTTGGTGACGGC TCCTCGGTTGGATTCCTCCCACGG 662 TTTGCTCTTATCCTTGTCCTGGGCG TCCCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTCCAAGCACAAGGATAAGAGCAA 664 TCGCGACTAAGGTGCTGCAACTCGA TCTCCAAGCTCCGCCTGATCCTTAA 665 TGCTCGATTTCACGGCGGAGCTTGCAG TCTCCAAGCACCCTTAGTCCGCG 665 TGCTCGATTTCACGGCCGCTTGTTC TGAACAACGGGCCCTTAATCCGCG 666 TAGCAGAGTGCTTGCAG TCTCAACACGGGCCGTGAAATCGAGC 667 TGGCAGGTGAGGGCTAA TTTAGCCTCTGCAACCCACCGCG 666 TAGCAGAGTGCTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGCTCAT TTAGTGCACGCCCTCACCTCA		646	TGCCGTAGGTTGCTCTTCACCGAAC	TGTTCGGTGAAGAGCAACCTACGGC
649 TTGTAGAGTCCCACGTAGCCGGCAT TATGCCGGCTACGTGGGACTCTACA 650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTGCCCCAGACTAGTG 651 TTGTACTCGGCAGGCGCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 652 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGCCAGTCCG 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCTGAACGAT 655 TATGCATCGAACTAGTCGTGACGGC TGCCGTCACGACTAGTTCGATGCAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 30 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGAGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAAGGCTAA TTTAGCCTCTGCAACGACCATCTGCT 40 667 TTGGAGGTGAGGACGACTTA TTTAGCCTCTCCCACCGC TTGCAACGACGACCCTTCGCT TTTAGCCTCTCACCTCCACTCCA	20	647	TAAATCCGCGATGTGCCGTGAGGCT	TAGCCTCACGGCACATCGCGGATTT
650 TCACTAGTCTGGGGCAAGGTGCATT TAATGCACCTTGCCCCAGACTAGTG 651 TTGTACTCGGCAGGCGCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 25 652 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGGCAGTCCG 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCTGAACGAT 655 TATGCATCGAACTAGTCGTGACGGC TGCCGTCACGACTAGTTCGATGCAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 30 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGAGAGTAGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAAGTTCCACCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGCTAA TTTAGCCTCTGCAACGCACCTTCGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTCCACGCCCTCACCTCCCACGAGACCCCTCCCCCCCC		648	TGGCTTCGCACCCGTACCAATTTAG	TCTAAATTGGTACGGGTGCGAAGCC
25 TAACGGCAGCGCGCAATAGATT TAATCTATTGCGCCTGCCGAGTACA 25 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 26 TACGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGGCAGTCCG 26 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCTGAACGAT 26 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCTGAACGAT 26 TATCCATCGAACTAGTCGTGACGC TGCCGTCACGACTAGTTCGATGCAT 27 TGTGCGACATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 28 TCTCATCGTCCTAACACGAGAGCCC TGGGATCGTGGAGTAGATGTCGCAC 28 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 29 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCCGCCGAAGTGCCATT 20 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCTCCCACGG 20 TAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 27 TAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 28 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 29 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 29 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 20 TTTAAGGATCAGGCCGGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 20 TTGCAGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 21 TTGCAGGTGAGGACGACGTTGCAACTCGA TTTAGCCTCTCCACCA		649	TTGTAGAGTCCCACGTAGCCGGCAT	TATGCCGGCTACGTGGGACTCTACA
25 TAACGGGTATCGGAAGCGTAAAAGC TGCTTTTACGCTTCCGATACCCGTT 653 TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGGCAGTCCG 654 TATCGTTCAGCACTGGAGCCCGTAA TTTACGGGCTCCAGTGCTGAACGAT 655 TATGCATCGAACTAGTCGTGACGGC TGCCGTCACGACTAGTTCGATGCAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCTTAATGCCTGGAA 30 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCACCTCCA		650	TCACTAGTCTGGGGCAAGGTGCATT	TAATGCACCTTGCCCCAGACTAGTG
TCGGACTGCCCGTTTGCAAGTTGAG TCTCAACTTGCAAACGGGCAGTCCG 654 TATCGTTCAGCACTGAGCCCGTAA TTTACGGGCTCCAGTGCTGAACGAT 655 TATGCATCGAACTAGTCGTGACGGC TGCCGTCACGACTAGTTCGATGCAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 30 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA TTAGTGCACGTCCTCCACCTCCA		651	TTGTACTCGGCAGGCGCAATAGATT	TAATCTATTGCGCCTGCCGAGTACA
654 TATCGTTCAGCACTGGAGCCCGTAA TITACGGGCTCCAGTGCTGAACGAT 655 TATGCATCGAACTAGTCGTGACGC TGCCGTCACGACTAGTTCGATGCAT 656 TITCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCCTTAATGCCTGGAA 30 657 TGTGCGACATCTACTCCACGATCC TGGGATCGTGGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TITGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TITGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCACCTCCA	25	652	TAACGGGTATCGGAAGCGTAAAAGC	TGCTTTTACGCTTCCGATACCCGTT
TATGCATCGAACTAGTCGTGACGGC TGCCGTCACGACTAGTTCGATGCAT 656 TTTCCAGGCATTAAGGAGAGGGAGC TGCTCCCTCTCTTAATGCCTGGAA 30 657 TGTGCGACATCTCCACGATCCC TGGGATCGTGGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCACCTCCA		653	TCGGACTGCCCGTTTGCAAGTTGAG	TCTCAACTTGCAAACGGGCAGTCCG
30 656 TTTCCAGGCATTAAGGAGAGGAGC TGCTCCCTCTCTTAATGCCTGGAA 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCACCTCCA		654	TATCGTTCAGCACTGGAGCCCGTAA	TTTACGGGCTCCAGTGCTGAACGAT
30 657 TGTGCGACATCTACTCCACGATCCC TGGGATCGTGGAGTAGATGTCGCAC 658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA TTAGTGCACGTCCTCCCAC		655	TATGCATCGAACTAGTCGTGACGGC	TGCCGTCACGACTAGTTCGATGCAT
658 TCTCATCGTCCTAACACGAGAGCCC TGGGCTCTCGTGTTAGGACGATGAG 659 TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA		656	TTTCCAGGCATTAAGGAGAGGGAGC	TGCTCCCTCCCTTAATGCCTGGAA
TAATGGCACTTCGGCGGTGATGCAA TTTGCATCACCGCCGAAGTGCCATT 660 TCCGTGGGAGGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTCCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCCCCACTCCA	30	657	TGTGCGACATCTACTCCACGATCCC	TGGGATCGTGGAGTAGATGTCGCAC
660 TCCGTGGGAGGAATCCAACCGAGG TCCTCGGTTGGATTCCCTCCCACGG 661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 35 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA TTAGTGCACGTCCTCCCA		658	TCTCATCGTCCTAACACGAGAGCCC	TGGGCTCTCGTGTTAGGACGATGAG
661 TAAATTCTCGTTGGTGACGGCTCAT TATGAGCCGTCACCAACGAGAATTT 662 TTTGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCCA		659	TAATGGCACTTCGGCGGTGATGCAA	TTTGCATCACCGCCGAAGTGCCATT
35 662 TITGCTCTTATCCTTGTCCTGGGCG TCGCCCAGGACAAGGATAAGAGCAA 663 TITAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA TTAGTGCACGTCCTCCCA		660	TCCGTGGGAGGGAATCCAACCGAGG	TCCTCGGTTGGATTCCCTCCCACGG
663 TTTAAGGATCAGGCGGAGCTTGCAG TCTGCAAGCTCCGCCTGATCCTTAA 664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCCTCCCA		661	TAAATTCTCGTTGGTGACGGCTCAT	TATGAGCCGTCACCAACGAGAATTT
664 TCGCGACTAAGGTGCTGCAACTCGA TTCGAGTTGCAGCACCTTAGTCGCG 665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTGCACTA TTAGTGCACGTCGTCCTCACCTCCA	35	662	TTTGCTCTTATCCTTGTCCTGGGCG	TCGCCCAGGACAAGGATAAGAGCAA
665 TGCTCGATTTCACGGCCCGTTGTTC TGAACAACGGGCCGTGAAATCGAGC 666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA TTAGTGCACGTCGTCCTCACCTCCA		663	TTTAAGGATCAGGCGGAGCTTGCAG	TCTGCAAGCTCCGCCTGATCCTTAA
666 TAGCAGAGTGCGTTGCAGAGGCTAA TTTAGCCTCTGCAACGCACTCTGCT 40 667 TTGGAGGTGAGGACGACGTCACTA TTAGTGCACGTCGTCCTCACCTCCA		664	TCGCGACTAAGGTGCTGCAACTCGA	TTCGAGTTGCAGCACCTTAGTCGCG
40 667 TTGGAGGTGAGGACGTGCACTA TTAGTGCACGTCGTCCTCACCTCCA		665	TGCTCGATTTCACGGCCCGTTGTTC	TGAACAACGGGCCGTGAAATCGAGC
		666	TAGCAGAGTGCGTTGCAGAGGCTAA	TTTAGCCTCTGCAACGCACTCTGCT
668 TAACCGTTTAGGGTACATTCGCGGT TACCGCGAATGTACCCTAAACGGTT	40	667	TTGGAGGTGAGGACGACGTGCACTA	TTAGTGCACGTCGTCCTCACCTCCA
	ł	668	TAACCGTTTAGGGTACATTCGCGGT	TACCGCGAATGTACCCTAAACGGTT

_				
	669		TTATGATCGCTCGGCTCACAGTTTG	TCAAACTGTGAGCCGAGCGATCATA
	670		TGACTTTTTGCGGAAACGTCATGGT	TACCATGACGTTTCCGCAAAAAGTC
	671		TTGTCGGTTATTCCACCTGCAAGGA	TTCCTTGCAGGTGGAATAACCGACA
	672		TCTATGGTTTGCACTGCGCCGTCGA	TTCGACGCGCAGTGCAAACCATAG
5	673		TAGCAGGGAAATTCAATCGTTCGCA	TTGCGAACGATTGAATTTCCCTGCT
ļ	674		TCCTAACCGAGCGCTTAGCATTTCC	TGGAAATGCTAAGCGCTCGGTTAGG
	675		TCCCGACCCTAACTCGCATTGAATA	TTATTCAATGCGAGTTAGGGTCGGG
[676		TTTGCTTAATGGTGACGCCACGGAT	TATCCGTGGCGTCACCATTAAGCAA
	677		TGATGCTCGCCGTGTTTAGTTCACG	TCGTGAACTAAACACGGCGAGCATC
10	678		TTCGGATGACGAGTTTCCATGACGG	TCCGTCATGGAAACTCGTCATCCGA
	679		TATGCGGTCTACTTTCTCGATCGGG	TCCCGATCGAGAAAGTAGACCGCAT
	680		TTTGCGAGGCTAAGCACACGGTAAA	TTTTACCGTGTGCTTAGCCTCGCAA
	681		TAACTTAATTACCGCCTCTGGCGCC	TGGCGCCAGAGGCGGTAATTAAGTT
	682		TGTGACCGCGAACTTGTTCCGACAG	TCTGTCGGAACAAGTTCGCGGTCAC
15	683		TTGCGGATTACCGATTCGCTCTTAA	TTTAAGAGCGAATCGGTAATCCGCA
	684		TTGATAGGGGGCCACGTTGATCAGA	TTCTGATCAACGTGGCCCCCTATCA
	685		TTCGCTCCGTAGCGATTCATCGTAG	TCTACGATGAATCGCTACGGAGCGA
	686		TTGTCAGCTGGTAGCCTCCGTTTGA	TTCAAACGGAGGCTACCAGCTGACA
	687		TAGCGTCGCATGACGCTTACGGCAC	TGTGCCGTAAGCGTCATGCGACGCT
20		14	TAGACGCACCGCAACAGGCTGTCAA	TTTGACAGCCTGTTGCGGTGCGTCT
		15	TCGTGTAGGGGTCCCGTGCTGTCAA	TTTGACAGCACGGGACCCCTACACG
	690		TGTCGCATTCTGCACTGGCTTCGCC	TGGCGAAGCCAGTGCAGAATGCGAC
	691		TTGATTAGGTGCGGTCCCGTAGTCC	TGGACTACGGGACCGCACCTAATCA
	692		TAAGGGACCTTGGGTGACGGCGAGA	TTCTCGCCGTCACCCAAGGTCCCTT
25	693		TTCAAATGGCCACCGCGTGTCATTC	TGAATGACACGCGGTGGCCATTTGA
	694		TCTCCGACGACCAATAAATAGCCGC	TGCGGCTATTTATTGGTCGTCGGAG
	695		TGGCTATTCCCGTAGAGAGCGTCCA	TTGGACGCTCTCTACGGGAATAGCC
	696		TTGGATAACCTCTCGGTCCATCCAC	TGTGGATGGACCGAGAGGTTATCCA
	697		TGACCGCTGTACGGGAGTGTGCCTT	TAAGGCACACTCCCGTACAGCGGTC
30	698		TGCCACAGAGTTTTAGCAGGGACCC	TGGGTCCCTGCTAAAACTCTGTGGC
	699		TCCCACGCTTTCCGACCACTGACCT	TAGGTCAGTGGTCGGAAAGCGTGGG
	700		TCATTGACACAATGCGGGGACTGAT	TATCAGTCCCCGCATTGTGTCAATG
	701		TAGCCACTCGACAGGGTTCCAAAGC	TGCTTTGGAACCCTGTCGAGTGGCT
	702		TCAGGATGAGCAAAGCGACTCTCCA	TTGGAGAGTCGCTTTGCTCATCCTG
35	703		TCAAGGTATGGTCTGGGGCCTAAGC	TGCTTAGGCCCCAGACCATACCTTG
	704		TGGTGTTCGGCCTAAACTCTTTCGG	TCCGAAAGAGTTTAGGCCGAACACC
	705		TTTTAGTCGGACCCTGTGGCAATTC	TGAATTGCCACAGGGTCCGACTAAA
	706		TCACACGTTTCCGACCAGCCTGAAC	TGTTCAGGCTGGTCGGAAACGTGTG
	707		TCTGGACGAACTGGCTTCCTCGTAC	TGTACGAGGAAGCCAGTTCGTCCAG
40	708		TTTCACAATCCGCCGAAAACTGACC	TGGTCAGTTTTCGGCGGATTGTGAA
	709		TAACAGGATATCCGCGATCACGACA	TTGTCGTGATCGCGGATATCCTGTT

	710	TTACGTCGGATCCATTGCGCCGAGT	TACTCGGCGCAATGGATCCGACGTA
	711	TCATGGATCTCTCGGTTTGATCGCC	TGGCGATCAAACCGAGAGATCCATG
	712	TAGCCAGGCGCGTATATACGCTCGG	TCCGAGCGTATATACGCGCCTGGCT
	713	TATTTGGCACGTGTCGTGCCATGTT	TAACATGGCACGACACGTGCCAAAT
5	714	TCCGCGTTGCACCACTTTGAGGTGC	TGCACCTCAAAGTGGTGCAACGCGG
	715	TTTGGACGTGACAAGCATGGCGCTC	TGAGCGCCATGCTTGTCACGTCCAA
	716	TCTGAATCGCGCAAGTAAATGGGGG	TCCCCCATTTACTTGCGCGATTCAG
	717	TGATAAGGTCCACCAGATTGCGCGC	TGCGCGCAATCTGGTGGACCTTATC
	718	TCTAACAATTGCCAACCGGGACGGC	TGCCGTCCCGGTTGGCAATTGTTAG
10	719	TGGTAACCTGGGTGCTTGCAGGTTA	TTAACCTGCAAGCACCCAGGTTACC
	720	TATCGGAGCCACCATTCGCATTGGG	TCCCAATGCGAATGGTGGCTCCGAT
	721	TGTGAACTGGCTTGCCCCAGGATTA	TTAATCCTGGGGCAAGCCAGTTCAC
	722	TAGGCGATAGCATGGTCCCATATGA	TTCATATGGGACCATGCTATCGCCT
	723	TAACGGTATCGTGGCTAATGCACGA	TTCGTGCATTAGCCACGATACCGTT
15	724	TAGTAGTGGTCCTCCAGATCGGCAA	TTTGCCGATCTGGAGGACCACTACT
	725	TCCGTTGAATTGGACGGGAGGTTAG	TCTAACCTCCCGTCCAATTCAACGG
	726	TGCATAAGTGCGGCATCGCGAAGGG	TCCCTTCGCGATGCCGCACTTATGC
	727	TCGACAAGATGCAGCTGCTACATGC	TGCATGTAGCAGCTGCATCTTGTCG
ı	728	TTCGCAGTGATTCCCGACCGATAAG	TCTTATCGGTCGGGAATCACTGCGA
20	729	TCAAGGCGAGTCCACTCGAGGGGAC	TGTCCCCTCGAGTGGACTCGCCTTG
	730	TGCAACTTGCACGGCATAAGTGGCC	TGGCCACTTATGCCGTGCAAGTTGC
	731	TTCCGAGCTTGACGTTCGCGACGTC	TGACGTCGCGAACGTCAAGCTCGGA
	732	TAGCGCTGGGCTGTGCCATCTC	TGAGATGGCAGCACAGCCCAGCGCT
	733	TTTCATGTCGCTGAGTAACCCTCGC	TGCGAGGGTTACTCAGCGACATGAA
25	734	TCGAACCGCTAATGCCCATTGTCAG	TCTGACAATGGGCATTAGCGGTTCG
	735	TCACGGAAGGTGGGACAAATCGCCG	TCGGCGATTTGTCCCACCTTCCGTG
	736	TCACAGATGGAGACAAACGCGCCTT	TAAGGCGCGTTTGTCTCCATCTGTG
	737	TTTTTCGCAACTCGCTCCATAACCC	TGGGTTATGGAGCGAGTTGCGAAAA
	738	TACGTTACGTTTCCGGCGCCCTCTAA	TTTAGAGGCGCCGGAAACGTAACGT
30	. 739	TTATCGGATTGCGTGGGTTTCAATC	TGATTGAAACCCACGCAATCCGATA
	740	TCTTCCACAATTGTCTGCGACGCAC	TGTGCGTCGCAGACAATTGTGGAAG
	741	TTGCACAAAGGTATGGCTGTCCGGC	TGCCGGACAGCCATACCTTTGTGCA
	742	TTCCGATGCCAGTCCCATCTTAAGA	TTCTTAAGATGGGACTGGCATCGGA
	743	TCTGAAACCGTGCGAATCGAGGTGA	TTCACCTCGATTCGCACGGTTTCAG
35	744	TCGGTGTTCCGCGTGTCGAAAAAAT	TATTTTTCGACACGCGGAACACCG
	745	TTCTAGCAGGCCTTTTGAATCGCCA	TTGGCGATTCAAAAGGCCTGCTAGA
	746	TGAGTCACCTCTGAGACGGACGCCA	TTGGCGTCCGTCTCAGAGGTGACTC
	747	TTCTTCTGTCATCCTGCAGCAGCAT	TATGCTGCTGCAGGATGACAGAAGA
	748	TGCGGATGAAACCTGAAAGGGGCCT	TAGGCCCCTTTCAGGTTTCATCCGC
40	749	TGGGGCCCCAAACTGGTATCAAGCC	TGGCTTGATACCAGTTTGGGGCCCC
l	750	TGCATTGGCTTCGGATTCTCCTACA	TTGTAGGAGAATCCGAAGCCAATGC
		State of the State	

PCT/US01/26519 WO 02/16649

_			
	751	TAGGCGGCCCAACTGTGAGGTCTTG	TCAAGACCTCACAGTTGGGCCGCCT
	752	TACACCATGTGCTCCGCGCTGCAGT	TACTGCAGCGCGGAGCACATGGTGT
	753	TACGATGAACATGAATCGGGAGTCG	TCGACTCCCGATTCATGTTCATCGT
	754	TCTGCATCCCTGTAGCAGCGCTCCG	TCGGAGCGCTGCTACAGGGATGCAG
5	755	TGTGCCGTATTTCGACCTGTGCGTT	TAACGCACAGGTCGAAATACGGCAC
	756	TGCAGTGCGCACTTCAGTTCAAAAG	TCTTTGAACTGAAGTĞCGCACTGC
	757	TGCGATTTTAAGCGATGCCTTGACG	TCGTCAAGGCATCGCTTAAAATCGC
	758	TTAGGTGACCTAGGCTTGCTTGCGG	TCCGCAAGCAAGCCTAGGTCACCTA
	759	TCTGGATACCTTGCCTGTGCGGCGC	TGCGCCGCACAGGCAAGGTATCCAG
10	760	TCCCCTTACGGCTCGTCGTCTATGC	TGCATAGACGACGAGCCGTAAGGGG
	761	TGCGCTTGCCCGATGCGATGCATTA	TTAATGCATCGCATCGGGCAAGCGC
	762	TTTCTGTAAGCGGCCTGGGGTTCA	TTGAACCCCAGGCCGCTTACAGAAA
	763	TGGCTGAGGTGAGCGGTAAGGATGA	TTCATCCTTACCGCTCACCTCAGCC
	764	TTCTTGGCCTCCCCGATCTAATTTG	TCAAATTAGATCGGGGAGGCCAAGA
15	765	TGGAGGTAACGCCGTGTACGTAGGA	TTCCTACGTACACGGCGTTACCTCC
	766	TGTAATCCATTTGTGGCTGCGTCAA	TTTGACGCAGCCACAAATGGATTAC
	767	TCAAACCCATTCCAGCAGACGCCTG	TCAGGCGTCTGCTGGAATGGGTTTG
	768	TTAGGAGGAATTTGGCATGCGGGCG	TCGCCCGCATGCCAAATTCCTCCTA
	769	TATAGGTAGGATGTGCCCGGCGTTG	TCAACGCCGGGCACATCCTACCTAT
20	770	TGCAAGTGCTTAGCTCGTCAGCCTC	TGAGGCTGACGAGCTAAGCACTTGC
	771	TCTGGCTGTGTCGCATCTCGTTAAC	TGTTAACGAGATGCGACACAGCCAG
	772	TCTAACGTCGTCTCGCGCAATCACT	TAGTGATTGCGCGAGACGACGTTAG
	773	TTTTTCATAAACGTTGTCCCCGAGC	TGCTCGGGGAGAACGETTATGAAAA
	774	TAGCAGGAGGACGAACCTCCGCTCC	TGGAGCGGAGGTTCGTCCTCCTGCT
25	775	TTTCAAGCACCATCGTGCAATCCAA	TTTGGATTGCACGATGGTGCTTGAA
	776	TAGCGTCGCCAGTGATCGCTAGTGG	TCCACTAGCGATCACTGGCGACGCT
į	777	TTACATTCCCTGCCTCCGTGGGCTT	TAAGCCCACGGAGGCAGGGAATGTA
	778	TCGCTTCGCGTATTCAGTAGCGGTT	TAACCGCTACTGAATACGCGAAGCG
	779	TTCGGACGCGTCGACACTCATTATA	TTATAATGAGTGTCGACGCGTCCGA
30	780	TTCTGAGCAGGCCAGCGCTCCAGCT	TAGCTGGAGCGCTGGCCTGAGA
	781	TTTGAATTGCCAAGCCCTGAAAGCC	TGGCTTTCAGGGCTTGGCAATTCAA
	782	TAGTTTTCGCCTTGATGCGTCGGTG	TCACCGACGCATCAAGGCGAAAACT
	783	TGTTTCATAGGCCACGCGTGCTAAA	TTTTAGCACGCGTGGCCTATGAAAC
	16	TCATCGCTGCAAGTACCGCACTCAA	TTTGAGTGCGGTACTTGCAGCGATG

-254-

CLAIMS

We claim:

5

- An oligonucleotide array comprising an array of at least 25 different addresses, each address
 comprising a different capture probe selected from the group consisting of the sequences set forth
 in Table 1, Table 2, Table 3 and Table 4.
- 10 2. An array according to claim 1, wherein said capture probes are microspheres.
 - 3. An array according to claim 1 or 2 wherein said array is a liquid array.
 - 4. An array according to claim 1, 2 or 3, wherein said array further comprises a solid support.

15

- 5. An array according to claim 1, 2, 3 or 4, wherein said addresses are microspheres and wherein said solid support comprises wells into which said microspheres are individually distributed.
- An array according to claim 1, 2, 3 or 4, wherein each address is a different known location, and said wherein each capture probe is attached to one of said known locations.
 - 7. An array according to claim 1, 2, 3, 4, 5 or 6, wherein said array comprises at least 50 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4.

25

- 8. An array according to claim 1,2, 3, 4, 5 or 6 wherein said array comprises at least 100 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4.
- 30 9. A kit comprising at least twenty-five nucleic acids selected from the group consisting of sequences substantially complementary to the sequences set forth in Table I, Table II, Table III and Table IV or their complement.
- 10. A kit according to claim 9, wherein said kit comprises at least 50 nucleic acids selected from the
 35 group consisting of the sequences substantially complementary to the sequences set forth in
 Table II, Table III and Table IV or their complement.

11. A kit according to claim 9 or 10, wherein said kit comprises at least 100 nucleic acids selected from the group consisting of the sequences substantially complementary to the sequences set forth in Table II, Table III and Table IV or their complement.

- 5 12. A kit according to claim 9, 10 or 11, wherein said nucleic acids further comprise at least a first universal priming sequence.
 - 13. A kit according to claim 9, 10, 11 or 12, wherein said nucleic acid sequence further comprises a sequence substantially complementary to a target domain.

14. A method of immobilizing a target nucleic acid sequence, said method comprising:

10

15

20

25

- a) attaching a first adapter nucleic acid to a first target nucleic acid sequence to form a modified first target nucleic acid sequence, wherein said first adapter nucleic acid comprises a sequence substantially complementary to a sequence selected from the sequences set forth in Table I, Table III, Table III, and Table IV;
- b) contacting said modified first target nucleic acid sequence with an array comprising an array of at least 25 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4, whereby said target nucleic acid sequence is immobilized.
- 15. A method of detecting a target nucleic acid sequence, said method comprising:
 - a) attaching a first adapter nucleic acid to a first target nucleic acid sequence to form a modified first target nucleic acid sequence, wherein said first adapter nucleic acid comprises a sequence substantially complementary to a sequence selected from the sequences set forth in Table I, Table III, and Table IV;
 - b) contacting said modified first target nucleic acid sequence with an array comprising: an array of at least 25 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4; and
- 30 c) detecting the presence of said modified first target nucleic acid sequence.
 - 16. A method of detecting a target nucleic acid, said method comprising:
 - a) hybridizing a first adapter probe with a first target nucleic acid, said first adapter probe comprising a first domain that is complementary to said first target nucleic acid and a second domain, said second domain comprising a first sequence substantially complementary to a selected from the group consisting of the sequences set forth in Table I, Table III and Table IV to form a first hybridization complex;

b) contacting said first hybridization complex with an enzyme such that when said first domain
of said adapter probe is perfectly complementary with said first target nucleic acid, said
first adapter probe is altered resulting in a modified first adapter probe;

- c) contacting said modified first adapter probe with a population of microspheres comprising
 at least a first subpopulation comprising a first capture probe, such that said first capture
 probe and said modified first adapter probe form a second hybridization complex; and
- d) detecting the presence of said modified first adapter probe as an indication of the presence of said target nucleic acid.

1/3

Description of algorithm to select "best" oligonucleotide adapter sequences.

Requirements for good sequences:

- Generates adequate hybridization signal intensity when employed in an experiment.
- Exhibits minimal cross-reactivity with other adapter sequences.
- Unique within the human genome sequence. This requirement can be extended to the genomic sequence of other organisms such as the fruit fly, the mouse, etc.

One method of generating sequences that meet the above requirements is to randomly generate sequences of given lengths and then pass these filters through a set of heuristic acceptance filters. In particular, the 24-mer Illumina Adapter sequences (IllumaCodes) were chosen as follows.

FIG._1

FIG._2

