Note Title	Class 7: Digital signatures, VI
	RSA digital signatures (signing whole message)
•	Nevall from last time: NSA uses public exponent and modulus . p. Nate exponent
	to encrupt: giphertext = plantext (mod public modulus)
	to decrypt: plantext = caphertext of (mod public modulus)
	the recipient's exponent o modulus
	Very similar scheme to sign messages: to sign: Signature = plantext private exponet (mod public module)
	to verify signature: signal text = signature modulic modulic
	the render's exponent a modulus
	i.e. to sign instead of energpt, use sender's private lay, not recipient's public lay. to verty instead of decrypt, use sender's public lay, not recipient's private lay.

Example, using lays on handout:
(a) A wants to sign the (unencrypted) wessage 13, and send to B.
Send to B.
- signature = $13 \mod 22 = 7 = 07$
- signature = 13 mod 22 = 7 = 07 - complete unencrypted message is 1307
(b) Same, but A wants to also encrypt.
(b) Save, but A wants to also encrypt. - first sign unencrypted message, obtaining 1307.
- now encrypt the result (block by block):
- now encrypt the result (block by block): 1st block aphertext = 13 mod 34 = 13
Znd block aphertext = 75 md 34 = 11
-> transmit 1311.
(c) After receiving the unencrypted, signed wessage (1307) from A, B wants to verty—the rightner. - signedtext = 7 mod 22 = 3
from A. B wants to verty the righthme.
- signedtext = 73 mod 22 = 3
- signedtext matches plaintext, - so signature is
valid.
(d) After receiving the unencrypted, signed wessage (1705) from A, B warts to verty the signature. - signedtext = 53 mod 22 = 15 - signedtext doesn't match plaintext; so signature is
from A, B warts to verty the rightwe.
- signedtext = 5 3 mod 22 = 13
- signedtext doesn't match plaintext; so signature is
invalid.

	2) Digital signature for long message using hash function
_	
	So far ow signatures are the sque length as ow
	So far our signatures are the sque length as our ressages - not good for signing, say, a 20GB software package.
	package.
	Solution: Sign a cryptographic hash of the message
	Solution: Sign a cryptographic hash of the message thestead of the whole message
	Note: Our examples will use the "sum of digits" hash function he described on the hardout. (t's not a cryptographic hash; we pretend it is.
	function is described on the hardout.
	It's not a cryptographic harh ; we pretend it is.
	Examples:
9	B wants to sign nessage 3126.
)	B wants to sign message 3126. - fint compute h (3126) =
	- now sign: signature =
	- transmit
6)	B receives signed, unexcapted message 131415, ourpotedly
9)	B receives signed, uneverypted message 131415, purpotedly from A. Was it really from A?
	$ \langle \alpha \alpha \alpha \rangle = \langle \alpha \langle 13100 \rangle = 9$
	- unsign 15 obtaining 153 mod 22 = 9
	- unsign 15, obtaining 153 mod 22 = 9 - the two valves match, so A sent the nessage.
	y y y y y y y y y y y y y y y y y y y

(3)	Message integrity via digital signature
	Note that a digital signature verifies both the identity of the message
	of the sender and the integrity of the message
	~ °
	bi.e. the nessage wasn't altered
	Why? Because the signature depends on the wessage!
	Example: (a) Some as example (b) on nowm page.
	Example: (a) Save as example (b) or previous page. Has the nessage from A been tampered with?
	Answer: No. The matching signature vertices
	Answer: No. The matching signature vertices A's identity and the integrity of the
	ressage.
	V
_	

	(4) Neal-life he of cyptography
(a)	Implementation details and applications
	NSA, and other pullic key schemes, are much more computationally expensive than symmetric key schemes.
	Typically, therefore, an encrypted connection first establishes a shared secret (via Diffie-Hellman or USA, for example), then uses that secret as the Key for symmetric encryption (using chained-block AES, for example).
	Some typical settings:
	symmetric: 128-bit key
	Diffie-Hellman: 1024-bit base and modulus
	RSA: 1024-bit exponents and modulus
	Some typical applications:
	symmetric: any encrypted session (remote login, remote desletop, web page with https in the address)
	Diffre-Hellman: establish lay for summetric ression
	NSA: sign software, verity identity of a server
	Diffre-Hellman: establish læy for symmetric session NSA: sign software, venty identity of a server (e-g-Amazon)

In recent years, there have been many problems with CAs mistakenly issuing keys to criminals, so this system is far from perfect.
see, for example:
http://googleonlinesecurity.blogspot.com/2013/01/enhancing-digital- certificate-security.html