

## Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

#### «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

#### ОТЧЕТ

по Лабораторной работе №2 по курсу «Анализ Алгоритмов»

на тему: «Алгоритмы умножения матриц»

| Студент группы ИУ7-51Б |                 | Савинова М. Г. |  |
|------------------------|-----------------|----------------|--|
|                        | (Подпись, дата) | (Фамилия И.О.) |  |
| Преподаватель          |                 | Волкова Л. Л.  |  |
|                        | (Подпись, дата) | (Фамилия И.О.) |  |
| Преподаватель          |                 | Строганов Ю. В |  |
|                        | (Подпись, дата) | (Фамилия И.О.) |  |

## Содержание

| 1  | Ана | алитическая часть                                        | 4  |
|----|-----|----------------------------------------------------------|----|
|    | 1.1 | Матрица                                                  | 4  |
|    | 1.2 | Классический алгоритм                                    | ۷  |
|    | 1.3 | Алгоритм Винограда                                       | ļ  |
|    | 1.4 | Оптимизированный алгоритм Винограда                      | (  |
| 2  | Koı | нструкторская часть                                      | 8  |
|    | 2.1 | Требования к программному обеспечению                    | 8  |
|    | 2.2 | Разработка алгоритмов                                    | 8  |
|    | 2.3 | Описание используемых типов данных                       | 14 |
|    | 2.4 | Модель вычислений для проведения оценки трудоемкости ал- |    |
|    |     | горитмов                                                 | 1  |
|    | 2.5 | Трудоемкость алгоритмов                                  | 14 |
| 3  | Tex | нологическая часть                                       | 15 |
|    | 3.1 | Средства реализации                                      | 15 |
|    | 3.2 | Сведения о модулях программы                             | 15 |
|    | 3.3 | Реализация алгоритмов                                    | 16 |
|    | 3.4 | Функциональные тесты                                     | 22 |
| 4  | Исс | следовательская часть                                    | 23 |
|    | 4.1 | Технические характеристики                               | 23 |
|    | 4.2 | Демонстрация работы программы                            | 23 |
|    | 4.3 | Временные характеристики                                 | 25 |
|    | 4.4 | Характеристики по памяти                                 | 2  |
|    | 4.5 | Вывод                                                    | 29 |
| 38 | клю | очение                                                   | 30 |

## Введение

Умножение матриц является основным инструментом линейной алгебры и имеет многочисленные применения в математике, физике, программировании [1].

**Целью** данной лабораторной работы является описание, реализация и исследование алгоритмов умножения матриц.

Для достижения поставленной цели необходимо выполнить следующие **задачи**:

- 1) описать следующие алгоритмы умножения матриц:
  - классический алгоритм умножения;
  - алгоритм Винограда;
  - оптимизированный алогритм Винограда;
- 2) релизовать описанные алгоритмы;
- 3) дать оценку трудоемкости алгоритмов;
- 4) провести замеры времени выполнения алгоритмов;
- 5) провести сравнительный анализ между алгоритмами.

### 1 Аналитическая часть

В данном разделе будут рассмотрены классический алгоритм умножениям матриц, алгоритм Винограда и его же оптимизированная версия.

#### 1.1 Матрица

Mampuueй размером  $m \times n$  называют прямоугольную числовую таблицу, состоящую из  $m \cdot n$  чисел, которые расположены в m строках и n столбцах. Состовляющие матрицу числа называют элементами этой матрицы [2].

Матрицу обозначают

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \vdots & \ddots & a_{mn} \end{pmatrix} . \tag{1.1}$$

Над матрицами возможны следующие операции:

- сложение матриц одинакового размера;
- произведение матрицы на число;
- произведение матриц, которое определено лишь в случае, когда количество столбцов первого сомножителя равно количеству стольство (2).

#### 1.2 Классический алгоритм

Пусть даны матрица  $A=(a_{ij})$  типа  $m\times n$  и матрица  $B=(b_{ij})$  типа  $n\times p$ . Произведением матриц A и B называют матрицу  $C=(c_{ij})$  типа  $m\times p$  с элементами

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \quad (i = \overline{1, m}, j = \overline{1, p}),$$
 (1.2)

которую обозначают C = AB.

Классический алгоритм реализует формулу 1.2.

#### 1.3 Алгоритм Винограда

Одним из самых эффективных по времени алгоритмов умножения матриц является алгоритм Винограда, имеющий асимптотическую сложность  $O(n^{2,3755})$  [1].

Рассмотрим два вектора:

$$U = (u_1, u_2, u_3, u_4), (1.3)$$

$$V = (v_1, v_2, v_3, v_4). (1.4)$$

Их скалярное произведение равно:

$$U \times V = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4, \tag{1.5}$$

что равносильно

$$U \times V = (u_1 + v_2)(u_2 + v_1) + (u_3 + v_4)(u_4 + v_3). \tag{1.6}$$

Возьмем упомянутые раннее матрицы A, B и . Скалярное произведение, по замыслу Винограда, 1.5 можно свести к следующему выражению:

$$c_{ij} = \sum_{k=1}^{n/2} (a_{i,2k-1} + b_{j,2k})(a_{i,2k} + b_{j,2k-1}) - \sum_{k=1}^{n/2} a_{i,2k-1}a_{i,2k} - \sum_{k=1}^{n/2} b_{2k-1,j}b_{2k,j}. \quad (1.7)$$

В целях экономии количества арифметических операций Виноград предложил находить второе и третье слагаемое в 1.7 заранее для каждой строки матрицы A и каждого столбца матрицы B.

Так, единожды вычислив для i-ой строки матрицы A значение выражения  $\sum_{k=1}^{n/2} a_{i,2k-1} a_{i,2k}$ , его можно использовать далее n раз для нахож-

дения элементов i-ой строки матрицы .

Аналогично, единожды вычислив для j-ой столбца матрицы B значение выражения  $\sum_{k=1}^{n/2} b_{2k-1,j} b_{2k,j}$ , его можно использовать далее n раз для нахождения элементов j-ой столбца матрицы [3].

Для примера, приведенного в формуле 1.6, в классическом умножении производится четыре умножения и три сложения; в алоритме Винограда — шесть умножений и девять сложений [3]. Но, несмотря на увеличение количества операций, выражение в правой части можно вычислить заранее и запомнить для каждой строки первой матрицы и каждого столбца второй матрицы. Это позволит выполнить лишь два умножения и пять сложений, складывая затем только лишь с двумя предварительно вычисленными суммами соседних элементов текущих строк и столбцов. Операция сложения выполняется быстрее, поэтому на практике алгоритм должен работать быстрее классического алгоритма умножения матриц.

При условии нечетного размера матрицы необходимо дополнительно добавить произведения крайних элементов соответствующих строк и столбцов.

## 1.4 Оптимизированный алгоритм Винограда

Для программной реализации алгоритма, рассмотренного в предыдущем пункте, можно выполнить следующие оптимизации:

- 1) значение n/2, используемое в качестве ограничения цикла подсчета предварительных данных, можно кэшировать;
- 2) операция умножения на 2 эффективнее реализовать как побитовый сдвиш влево на 1;
- 3) при условии существования операторов +=, -= в выбранном языке программирования, соответсвующие операции сложения и вычитания с присваиванием следует реализовывать с помощью данных операторов.

#### Вывод

В данном разделе были рассмотрены алгоритмы умножения матриц: классический, алгоритм Винограда. Также были рассмотрены оптимизации, которые можно учесть при програмной реализации алгоритма Винограда.

Основным отличием этих алгоритмов является наличие предварительных вичислений — как следствие, количество операций умножения и сложения также различно.

## 2 Конструкторская часть

В данном разделе будут реализованы схемы алгоритмов умножения матриц, приведено описание используемых типов данных, а также описана структура программного обеспечения.

## 2.1 Требования к программному обеспечению

К программе предъявлен ряд функциональных требований:

- 1) на вход подаются две матрицы;
- 2) матрицы располагаются в файлах, с расширением \*.txt.
- на выходе матрица, являющаяся результатом умножения матриц.
   К программе предъявлен ряд требований:
- 1) наличие интерфейса для выбора действия;
- 2) наличие функциональных замеров процессорного времени выполнения алгоритмов умножения матриц;
- 3) замеры процессорного времени выполнятся только для квадратных матриц.

## 2.2 Разработка алгоритмов

#### TODO

На вход алгоритмов подаются строки  $S_1$  и  $S_2$ .

На рисунке 2.1 представлена схема алгоритма поиска расстояния Левенштейна.

На рисунках 2.2—2.5 представлены схемы алгоритмов поиска Дамерау — Левенштейна.



Рисунок 2.1 – Схема нерекурсивного алгоритма нахождения расстояния Левенштейна



Рисунок 2.2 — Схема нерекурсивного алгоритма нахождения расстояния Дамерау — Левенштейна



Рисунок 2.3 — Схема рекурсивного алгоритма нахождения расстояния Дамерау — Левенштейна



Рисунок 2.4 — Схема алгоритма вызова рекурсивного алгоритма нахождения расстояния Дамерау — Левенштейна с кешированием



Рисунок 2.5 — Схема рекурсивного алгоритма нахождения расстояния Дамерау — Левенштейна с кешированием

#### 2.3 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие структуры данных:

- $cmpo\kappa a$  массив символов типа  $wchar_t;$
- $\partial$ лина  $cmpo\kappa u$  целое число типа int;
- матрица двумерный массив значений типа int.

# 2.4 Модель вычислений для проведения оценки трудоемкости алгоритмов

#### 2.5 Трудоемкость алгоритмов

Классический алгоритм

Алгоритм Винограда

Оптимизированный алгоритм Винограда

#### Вывод

В данном разделе на основе теоретических данных были перечислены требования к ПО, а также были построены схемы требуемых алгоритмов на основе теоретических данных, полученных на этапе анализа.

#### 3 Технологическая часть

В данном разделе будут приведены средства реализации, листинг кода и функциональные тесты.

#### 3.1 Средства реализации

Для реализации данной лабораторной работы был выбран язык C++ [4], так как в нем есть стандартная библиотека ctime [5], которая позволяет производить замеры процессорного времени выполнения программы; тип данных std::wstring, позволяющий хранить как кириллические символы, так и латинские;

В качестве среды разработки был выбран *Visual Studio Code*: он является кроссплатформенным и предоставляет полный функционал для проектирования и отладки кода.

#### 3.2 Сведения о модулях программы

Данная программа разбита на следующие модули:

- main.cpp файл, содержащий точку входа в программу, из которой происходит вызов алгоритмов по разработанному интерфейсу;
- algorithms.cpp файл содержит функции поиска расстояния Левенштейна и Дамерау Левенштейна;
- matrix.cpp файл содержит функции динамического выделения и очищения памяти для матрицы, а так же ее вывод на экран;
- measure.cpp файл содержит функции, замеряющие процессорное время выполнения алгоритмов поиска расстояния Левенштейна и Дамерау Левенштейна;

#### 3.3 Реализация алгоритмов

В листингах 3.2–3.7 приведены реализации алгоритмов поиска расстояний Левенштейна (только нерекурсивный алгоритм) и Дамерау — Левенштейна (нерекурсивный, рекурсивный и рекурсивный с кешированием).

Листинг 3.1 – Функция нахождения расстояния Левенштейна с использованием матрицы (начало)

```
1 int Algs::notRecursiveLev(wstring &word1, wstring &word2, bool
     print) {
2
3
      int len1 = word1.length();
      int len2 = word2.length();
 4
      int** mtr = Matrix::allocate(len2 + 1, len1 + 1);
6
8
      if (!mtr)
9
           return 0;
10
      for (int i = 0; i \le len2; ++i) {
11
12
           for (int j = 0; j \le len1; ++j) {
13
14
               if (i == 0)
15
                   mtr[i][j] = j;
16
               else if (j == 0)
17
                   mtr[i][j] = i;
18
               else {
19
                   int dif = (word1[j-1] = word2[i-1]) ? 0 :
20
                      1:
21
22
                   mtr[i][j] = min(mtr[i-1][j] + 1,
23
                                   min(mtr[i][j-1]+1, mtr[i-
                                      1|[j-1]+dif);
24
               }
          }
25
26
      }
```

Листинг 3.2 — Функция нахождения расстояния Левенштейна с использованием матрицы (конец)

Листинг 3.3 — Функция нахождения расстояния Дамерау — Левенштейна с использованием матрицы (начало)

```
1 int Algs::notRecursiveDamLev(wstring &word1, wstring &word2,
     bool print) {
3
      int len1 = word1.length();
      int len2 = word2.length();
4
5
6
       int** mtr = Matrix::allocate(len2 + 1, len1 + 1);
7
8
       if (!mtr)
9
           return 0;
10
      for (int i = 0; i \le len2; ++i) {
11
12
           for (int j = 0; j \le len1; ++j) {
13
14
               if (i == 0)
15
                   mtr[i][j] = j;
16
17
               else if (j = 0)
18
                   mtr[i][j] = i;
19
               else {
20
                   int dif = (word1[j - 1] = word2[i - 1]) ? 0 :
21
                      1;
22
                   mtr[i][j] = min(mtr[i-1][j] + 1,
23
24
                                    min(mtr[i][j-1]+1, mtr[i-1]
                                       1][j - 1] + dif);
```

Листинг 3.4 – Функция нахождения расстояния Дамерау — Левенштейна с использованием матрицы (конец)

```
if (word1[j-2] = word2[i-1] \&\& word1[j-
 1
                      1] = word2[i - 2])
                       mtr[i][j] = min(mtr[i][j], mtr[i - 2][j -
2
                           2] + 1);
               }
3
          }
 4
      }
 5
 6
7
      if (print)
8
           Matrix::print(mtr, word1, word2);
9
      int res = mtr[len2][len1];
10
       Matrix::release(mtr, len2 + 1);
11
12
13
       return res;
14 }
```

Листинг 3.5 – Функция нахождения расстояния Дамерау — Левенштейна рекурсивно

```
1 int Algs::recursive(wstring &word1, wstring &word2, int ind1,
     int ind2) {
2
      if (\min(\inf 1, \inf 2) = 0)
3
           return max(ind1, ind2);
 4
5
      int dif = (word1[ind1 - 1] = word2[ind2 - 1]) ? 0 : 1;
6
      int res = min(recursive(word1, word2, ind1 - 1, ind2 - 1) +
8
          dif,
                     min(recursive(word1, word2, ind1 - 1, ind2) +
9
                         1,
                          recursive (word1, word2, ind1, ind2 -1) +
10
                             1));
11
12
      if (ind1 > 1 \&\& ind2 > 1 \&\& word1[ind1 - 1] == word2[ind2 -
          2] \&\& word1[ind1 - 2] = word2[ind2 - 1])
           res = min(res, recursive(word1, word2, ind1 - 2, ind2 - 1)
13
              2) + 1);
14
15
      return res;
16 }
```

Листинг 3.6 – Функция вызова рекурсивного алгоритма с кешированием для поиска расстояния Дамерау — Левенштейна

```
1 int Algs::recursiveCash Decor(wstring& word1, wstring& word2,
     bool print) {
 2
 3
      int len1 = word1.length();
       int len2 = word2.length();
 4
 6
      int** cash = Matrix::allocate(len2 + 1, len1 + 1, true);
 7
8
       if (!cash)
9
           return 0;
10
      int res = recursiveCash(word1, word2, len1, len2, cash);
11
12
      if (print)
13
           Matrix::print(cash, word1, word2);
14
15
       Matrix:: release(cash, len2 + 1);
16
17
18
       return res;
19 }
```

Листинг 3.7 – Функция нахождения расстояния Дамерау — Левенштейна рекурсивно с кешированием

```
1 int Algs::recursiveCash(wstring &word1, wstring &word2, int
     ind1, int ind2, int** cash) {
2
3
      if (cash[ind2][ind1])
           return cash[ind2][ind1];
 4
5
       if (\min(\inf 1, \inf 2) = 0)
6
7
           return cash [ind2][ind1] = max(ind1, ind2);
8
      int dif = (word1[ind1 - 1] = word2[ind2 - 1]) ? 0 : 1;
9
10
11
      int res = min(recursiveCash(word1, word2, ind1 - 1, ind2 - 1)
          1, cash) + dif,
                     min(recursiveCash(word1, word2, ind1 - 1,
12
                        ind2, cash) + 1,
                          recursiveCash(word1, word2, ind1, ind2 -
13
                             1, cash) + 1));
14
      if (ind1 > 1 \&\& ind2 > 1 \&\& word1[ind1 - 1] == word2[ind2 -
15
          2] && word1[ind1 - 2] == word2[ind2 - 1])
           res = min(res, recursiveCash(word1, word2, ind1 - 2,
16
              ind2 - 2, cash) + 1);
17
      cash[ind2][ind1] = res;
18
19
20
      return res;
21|}
```

## 3.4 Функциональные тесты

Таблица 3.1 – Функциональные тесты

| Входные данные |          | Расстояние и алгоритм |                       |             |         |
|----------------|----------|-----------------------|-----------------------|-------------|---------|
|                |          | Левенштейна           | Дамерау — Левенштейна |             |         |
| Строка 1       | Строка 2 | Итеративный           | Итеративный           | Рекурсивный |         |
|                |          |                       |                       | Без кеша    | С кешем |
| a              | b        | 1                     | 1                     | 1           | 1       |
| a              | a        | 0                     | 0                     | 0           | 0       |
| КОТ            | скат     | 2                     | 2                     | 2           | 2       |
| КОТ            | KTO      | 2                     | 1                     | 1           | 1       |
| Австралия      | Австрия  | 2                     | 2                     | 2           | 2       |
| КОТ            | ток      | 2                     | 2                     | 2           | 2       |
| слон           | слоны    | 1                     | 1                     | 1           | 1       |

## Вывод

Были реализованы и протестированы алгоритмы поиска расстояния Левенштейна итеративно, а также поиска расстояния Дамерау—Левенштейна итеративно, рекурсивно и рекурсивного с кеширования. Проведено тестирование реализаций алгоритмов.

## 4 Исследовательская часть

#### 4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры по времени, представлены далее.

- Процессор: AMD Ryzen 5 5500U-2.10 ГГц;
- Оперативная память: 16 ГБайт;
- Операционная система: Windows 10 Pro 64-разрядная система версии 22H2.

При замерах времени ноутбук был включен в сеть электропитания и был нагружен только системными приложениями.

#### 4.2 Демонстрация работы программы

На рисунке 4.1 представлена демонстрация работы разработанного ПО, а именно показаны результаты работы алгоритмов поиска расстояний Левенштейна и Дамерау — Левенштейна на примере двух строк *«секста»* и *«септима»*.

```
Меню
1. Запуск алгоритмов поиска расстояния Левенштейна:
  1) Нерекурсивный Левенштейна;
  2) Нерекурсивный Дамерау-Левенштейна;
  3) Рекурсивный Дамерау-Левенштейна без кэша;
  4) Рекурсивный Дамерау-Левенштейна с кэшом;
2. Замерить время и память для реализованных алгоритмов;
0. Выход
Выберете пункт (0-2): 1
Введите 1е слово: секста
Введите 2е слово: септима
Минимальное кол-во операций:
             секста
          0 1 2 3 4 5 6
       c 1 0 1 2 3 4 5
       e 2 1 0 1 2 3 4
       п 3 2 1 1 2 3 4
       т 4 3 2 2 2 2 3
       и 5 4 3 3 3 3 3
       m 6 5 4 4 4 4 4
          7 6 5 5 5 5 4
  1) Нерекурсивный Левенштейна:
                                         4
                 кст
            1 2 3 4 5 6
          0
       c 1 0 1 2 3 4 5
       e 2 1 0 1 2 3 4
       п 3 2 1 1 2 3 4
       т 4 3 2 2 2 2 3
       и 5 4 3 3 3 3 3
       m 6 5 4 4 4 4 4
       a 7 6 5 5 5 5 4
  2) Нерекурсивный Дамерау-Левенштейна:
  3) Рекурсивный Дамерау-Левенштейна без кэша: 4
  4) Рекурсивный Дамерау-Левенштейна с кэшом: 4
```

Рисунок 4.1 – Демонстрация работы программы

#### 4.3 Временные характеристики

Все реализации алгоритмов сравнивались на случайно сгенерированных строках длиной:

- -0-10 с шагом 1 для всех алгоритмов;
- 10–200 с шагом 10 для нерекурсивных и рекурсивного с кешированием.

Поскольку замеры по времени имеют некоторую погрешность, для каждой строки и каждой реализации алгоритма замеры производились 1000 раз, а затем вычислялось среднее арифметическое значение.

На рисунке 4.2 представлен график, иллюстрирующий зависимость времени работы от длины строк для рекурсивных реализаций алгоритмов поиска расстояния Дамерау — Левенштейна с кешем и без.



Рисунок 4.2 – Сравнение по времени рекурсивных реализаций алгоритмов поиска расстояния Дамерау — Левенштейна с кешем и без

На рисунке 4.3 представлен график, иллюстрирующий зависимость времени работы от длины строк для итеративных реализаций алгоритмов поиска расстояний Левенштейна и Дамерау — Левенштейна.



Рисунок 4.3 — Сравнение по времени итеративных реализаций алгоритмов поиска расстояний Левенштейна и Дамерау — Левенштейна

На рисунке 4.4 представлен график, иллюстрирующий зависимость времени работы от длины строк для итеративной реализации и рекурсивной реализации с использованием кеша алгоритма поиска расстояния Дамерау — Левенштейна.



Рисунок 4.4 — Сравнение по времени итеративной реализации и рекурсивной реализации с использованием кеша алгоритма поиска расстояния Дамерау — Левенштейна

## 4.4 Характеристики по памяти

Введем следующие обозначения:

- -n длина строки  $S_1$ ;
- m длина строки  $S_2$ ;
- -size() функция вычисляющая размер в байтах;
- *char* тип, используемый для хранения символа строки;
- -int целочисленный тип.

Использование памяти при **итеративной реализации** алгоритма поиска расстояния Левенштейна теоретически равно:

$$M_{iter} = (m+1) \cdot (n+1) \cdot size(int) + (n+m) \cdot size(char) + +5 \cdot size(int) + size(int*) + (n+1) \cdot size(int*),$$

$$(4.1)$$

где  $(n+1) \cdot (m+1) \cdot size(int)$  — хранение матрицы;

 $(n+m) \cdot size(char)$  — хранение двух строк;

 $2 \cdot size(int)$  — хранение размеров строк;

 $3 \cdot size(int)$  — дополнительные переменные;

 $size(int**) + (n+1) \cdot size(int*)$  — указатель на матрицу.

Использование памяти при **итеративной реализации** алгоритма поиска расстояния Дамерау — Левенштейна идентично формуле (4.1).

Рассчитаем затраты по памяти для **рекурсивного** алгоритма поиска расстояния Дамерау — Левенштейна (для кажсдого вызова):

$$M_{call} = (m+n) \cdot size(char) + 4 \cdot size(int) + 8, \tag{4.2}$$

где  $(n+m) \cdot size(char)$  — хранение двух строк;

 $2 \cdot size(int)$  — хранение размеров строк;

 $2 \cdot size(int)$  — дополнительные переменные;

8 байт — адрес возврата.

Макисмальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящий строк, поэтому макисмальный расход памяти равен:

$$M_{rec} = (n+m) \cdot M_{call}, \tag{4.3}$$

где n+m — максимальная глубина стека;

 $M_{call}$  — затраты по памяти для одного рекурсивного вызова.

Для рекурсивного алгоритма поиска расстояния Дамерау — Левенштейна с использованием кеша необходимо подсчитать размер самого кеша:

$$M_{cash} = (m+1) \cdot (n+1) \cdot size(int) + size(int **) + (n+1) \cdot size(int *),$$
 (4.4)

где  $(m+1)\cdot (n+1)$  — количество элементов в кеше;

 $size(int**) + (n+1) \cdot size(int*)$  — хранение указателей.

Затраты по памяти для рекурсивного алгоритма поиска расстояния Дамерау — Левенштейна с учетом кеша:

$$M_{recCash} = M_{rec} + M_{cash}. (4.5)$$

#### 4.5 Вывод

По времени выполнения:

- 1) при малых длинах строк (< 5) рекурсивные реализации с кешем и без для поиска расстояния Дамерау Левенштейна имеют приблизительно одинаковое время работы, но с увеличением длины строки реализация без кеша выполняется на порядок дольше, поскольу не происходит повторное вычисление значений (см рис. 4.2);
- 2) разница между итеративными реализацими алгоритмов поиска расстояний Левенштейна и Дамерау — Левенштейна незначительна, и обусловлена она дополнительным условием на проверку равенства соседних символов для расстояния Дамерау — Левенштейна (см рис. 4.3);
- 3) итеративная реализация работает на порядок быстрее рекурсивной с кешем для поиска расстояния Дамерау Левенштейна (см рис. 4.4).

По затрачиваемой памяти итеративные алгоритмы проигрывают рекурсивным: максимальный размер используемой памяти в итеративной реализации растет как произведение длин строк, в то время как у рекурсивного алгоритма — как сумма длин строк.

#### Заключение

Цель данной лабораторной работы была достигнута, а именно были изучены, реализованы и исследованы алгоритмы поиска расстояний Левенштейна и Дамерау — Левенштейна.

В результате выполнения лабораторной работы для достижения этой цели были выполнены следующие задачи:

- 1) описаны алгоритмы поиска расстояния Левенштейна и Дамерау Левенштейна;
- 2) разработаны и реализованы соответствующие алгоритмы;
- 3) создан программный продукт, позволяющий протестировать реализованные алгоритмы;
- 4) проведен сравнительный анализ процессорного времени выполнения реализованных алгоритмов;
- 5) проведен сравнительный анализ затрачиваемой алгоритмами памяти.

### Список использованных источников

- 1 С. Анисимов Н., В. Строганов Ю. Реализация умножения матриц по Винограду на языке Haskell. // Новые информационные технологии в автоматизированных системах. 2018. URL: Режим доступа: https://cyberleninka.ru/article/n/realizatsiya-algoritma-umnozheniya-matrits-po-vinogradu-na-yazyke-h (дата обращения 22.10.2023).
- 2 Н. Канатников А., П. Крищенко А. Аналитическая геометрия. Конспект лекций. 2009. Т. 132.
- 3 Головашкин Д. Л. Векторные алгоритмы вычислительной линейной алгебры: учеб. пособие. Самара: Изд-во Самарского университета, 2019. С. 28–35.
- 4 Документация по Microsoft C++ [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/?view=msvc-170& viewFallbackFrom=vs-2017 (дата обращения: 25.09.2023).
- 5 C library function clock() [Электронный ресурс]. Режим доступа: https://www.tutorialspoint.com/c\_standard\_library/c\_function\_clock.htm (дата обращения: 25.09.2023).