Stochastic Resonance and Negative Inductance in Square-loop FM Core

Midterm Presentation

Manikantan R S

(122101046)

Kevin R Jacob

(122101018)

Under the guidance of

Dr. Arvind Ajoy

Continuation from the previous semester OELP ...

Key words

FM – Ferro Magnet

FE – Ferro Electric

NI – Negative Inductance

NC – Negative Capacitance

SR – Stochastic Resonance

VCCS – Voltage controlled Current source

PCB – Printed Circuit Board

SMU – Source Meter Unit

What is Negative Inductance?

- In recent years, negative capacitance has risen in popularity with its effect manifesting in ferroelectric materials
- This discovery holds promise for paving the way to create more energy-efficient electronics.
- This prompts the question of existence of a dual, which is negative inductance (NI)

Source link: https://doi.org/10.1038/s41586-018-0854-z

What is Negative Inductance?

$$\epsilon = L \frac{dI}{dt} \Rightarrow L = \frac{\varepsilon}{\frac{dI}{dt}} = \frac{\frac{d\phi}{dt}}{\frac{dI}{dt}} = \frac{d\phi}{dI}$$

$$\frac{d\phi}{dI} < 0$$

If L is negative, this implies that for an **increase in flux**, the **change in current** is **negative**.

OR,

this implies that for an increase in current, the change in flux is negative.

What is Stochastic Resonance?

Observed in Subthreshold systems and Double well systems

Image source:

https://www.researchgate.net/publication/245537925_Modelling_Non-Invasive_Brain_Stimulation_in_Cognitive_Neuroscience/figures?lo=1

Image source :

https://demonstrations.wolfram.com/StochasticResonance/

Stochastic Resonance Using FM Inductor

Double well system, Origin of NI and SR

Ferromagnetic Toroid - the "CORE" of this Project

• Ferrite toroid (TN/9/6/3) from Ferroxcube

SYMBOL	PARAMETER	VALUE	UNIT
$\Sigma(I/A)$	core factor (C1)	5.17	mm ⁻¹
V _e	effective volume	102	mm ³
l _e	effective length	22.9	mm
A _e	effective area	4.44	mm ²
m	mass of core	≈ 0.5	g

Ferromagnetic Toroid - the "CORE" of this Project

• The core has this characteristic square loop hysteresis which is critical for observing NI and SR

Landau Theory

• FM energy landscape proposed by Landau

$$U = \alpha \phi^2 + \beta \phi^4 - \phi I_L$$

• Time dependent Landau-Ginzburg equation

$$\rho \frac{d\phi}{dt} = -\frac{dU}{dt}$$

Landau Theory

The B-H loop when plotted will trace the S-curve

The region with negative slope we expected to see negative inductance

Ising Model for FM materials

• Ising model is a multi-domain model for ferromagnetic materials which consider each dipole in the FM to be an individual entity.

• A 3D Ising model with circular boundary condition is used to simulate the toroid used in the work.

Hamiltonian of the system

$$\widehat{H}(\sigma) = \sum_{i} \sum_{\langle i,j \rangle} J_{(i,j)} \, \sigma_i \, \sigma_j + \sum_{i} H \sigma_i$$

Ising Model Results which Shows NI

• Simulation results...

Switching Behaviour of the Ising Spin Structure

• Simulation result from The Ising Model

Experimental Results which Confirms NI

• Experiment setup

Experimental Results Which Confirms NI

A variety of parameters such as the Parallel resistance, Number of turns and Current Amplitude were varied. Measurement are taken using Keysight DSO_x1102G.

I = 1 A, Rp = 0.25, t = 4e-3, N = 20

I = 0.5 A, Rp = 0.25, t = 4e-3, N = 20

Comparison with Simulation Results

Comparison with NC Results

Our SMU results & Asif Khan's paper (NC)

FM - Inductor response in input square current waveform

FE Capacitor response in square Voltage waveform

Comparison with NC Results

• We tried one switching and non switching pulse..

Trying to apply the similar check done by the NC experiment

Source link: https://www.youtube.com/watch?v=jIaxc1RfNM0&t=538s

Comparison with NC Results

Benchmarking the Results with the Experiment Data

Tuning the Ising model hysteresis to the inductor hysteresis

Experimentally verified hysteresis loop

Tuned the model parameters to match the core's hysteresis loop

Benchmarking the Results with the Experiment Data

Now used the updated model to run the Ising simulation

More Robust Setup to Clean Up the Results

Voltage controlled Current Source - a design from TI

Schematic designed in KiCAD

Tested in Breadboard

• Voltage controlled Current Source - a design from TI

VCCS PCB

• PCB design and the printed board

Layout in KiCAD

PCB ordered from Lionscircuit

Modification in the current source for SR measurement & Future Plans

- PCB population and testing
- Measure S Curve that characterise the NI
- A additional input to add noise to the input
- The characteristics of noise will vary at the output so the we need to find a way to get the desired noise induced current in the output
- We will try to experimentally obtain SR with our setup, and then move to simulation for benchmarking

Thanks to ...

Priyankka G. R. S. Harivignesh Madhav Ramesh Rekha S. S. Abhinav Rajeev & our faculty advisor Dr. Arvind Ajoy

For helping us in this project