

Integración de datos - Esquemas Fernando Berzal, berzal@acm.org

Integración de datos

- Descripción de fuentes de datos
- Integración de esquemas
 - Emparejamiento de esquemas [schema matching]
 - Correspondencias entre esquemas [schema mapping]
 - Gestión de modelos
- Emparejamiento de datos [data matching]
- Wrappers
- Apéndices:
 - Emparejamiento de cadenas [string matching]
 - Procesamiento de consultas

Establecer la correspondencia más adecuada entre distintos esquemas es el problema más difícil en integración de datos (heterogeneidad semántica).

Dados dos esquemas relacionales S y T, una correspondencia semántica es una expresión (una consulta) que relaciona el esquema S con el esquema T.

Integración de esquemas

Ejemplo

DVD-VENDOR

Movies(id, title, year)

Products(mid, releaseDate, releaseCompany, basePrice, rating, saleLocID)

Locations(lid, name, taxRate)

AGGREGATOR

Items(name, releaseInfo, classification, price)

Movies.title SELECT name as title

FROM Items

Items.price SELECT (basePrice * (1 + taxRate)) AS price

FROM Products, Locations

WHERE Products.saleLocID = Locations.lid

Ejemplo

DVD-VENDOR

Movies(id, title, year)

Products(mid, releaseDate, releaseCompany, basePrice, rating, saleLocID)

Locations(lid, name, taxRate)

AGGREGATOR

Items(name, releaseInfo, classification, price)

Items

SELECT title AS name,

releaseDate AS releaseInfo, rating AS classification,

basePrice * (1 + taxRate) AS price

FROM Movies, Products, Locations WHERE Movies.id = Products.mid

AND Products.saleLocID = Locations.lid

Integración de esquemas

Imaginemos que estamos diseñando el esquema integrado de un sistema de integración de datos con varias fuentes de datos:

- **GAV [Global-as-View]:** Describimos el esquema integrado como consultas sobre las fuentes de datos.
- LAV [Local-as-View]: Describimos las fuentes de datos como consultas sobre el esquema integrado.
- GLAV [Global-and-Local-as-View]: Hay que establecer correspondencias en ambos sentidos.

Fase 1: SEMANTIC MATCHING

Relaciones de conjuntos de elementos de un esquema S con conjuntos de elementos de otro esquema T (elicitadas usando conocimiento del dominio).

Emparejamientos uno a uno:

Movies.title = Items.name Products.rating = Items.classification

Emparejamientos uno a muchos:

Items.price = Products.basePrice * (1 + Locations.taxRate)

Integración de esquemas

Fase 2: SEMANTIC MAPPING

A partir de las relaciones funcionales identificadas, se elaboran las consultas necesarias para establecer la correspondencia entre esquemas (p.ej. usando SQL).

Emparejamiento:

Items.price = Products.basePrice * (1 + Locations.taxRate)

Correspondencia:

SELECT (basePrice * (1 + taxRate)) AS price FROM Product, Location WHERE Product.saleLocID = Location.lid

RECORDATORIO: HETEROGENEIDAD SEMÁNTICA

Hay que reconciliar las diferencias entre esquemas:

- Distintos nombres para el mismo concepto.
 rating vs. classification
- Distinta representación en esquemas diferentes.
 basePrice & taxRate vs. Price
- Diferente organización del esquema
 1 tabla en Aggregator vs. 3 tablas en DVD-Vendor
- Distinto grado de detalle en las diferentes fuentes DVD-Vendor incluye releaseDate & releaseCompany

Integración de esquemas

OBSERVACIÓN CLAVE

Se necesitan múltiples heurísticas para establecer el emparejamiento entre dos esquemas:

- Emparejando nombres, podríamos inferir las correspondencias releaseInfo=releaseDate o releaseInfo=releaseCompany, pero no establecer cuál de las dos sería la correcta.
- Emparejando datos, podríamos inferir que releaseInfo=releaseDate o releaseInfo=year, pero sigue existiendo ambigüedad.
- Combinando ambos resultados, se puede inferir que releaseInfo=releaseDate.

realestate.com

listed-price con	tact-name contac	t-phone office	comments
•			6 1822 Fantastic house 2 2315 Great location

 Emparejando nombres, contact-agent puede casar con contact-name o contact-phone.

homes.com

sold-at	contact-agent	extra-info
\$350K	(206) 634 9435	Beautiful yard
\$230K	(617) 335 4243	Close to Seattle

- Emparejando datos, contact-agent puede casar con contact-phone u office.
- Combinando ambos resultados, contact-agent=contact-phone.

Integración de esquemas

Schema matching

Arquitectura de un sistema de emparejamiento

Schema matching

TÉCNICAS DE EMPAREJAMIENTO
Esquemas → Matriz de similitud

Entradas

Dos esquemas S y T

+ Información potencialmente útil (datos reales, descripciones textuales...)

Salida

Matriz de similitud que asigna a cada par de SxT un número entre 0 y 1 en función de su nivel de emparejamiento.

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Match selector Constraint enforcer Combiner Matcher 1 ... Matcher n

Familias de técnicas:

- Emparejamiento de nombres
- Emparejamiento de datos

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de nombres

 Algoritmos sobre cadenas p.ej. Distancia de edición

d("data mining", "data minino") = 1
d("efecto", "defecto") = 1
d("poda", "boda") = 1
d("night","natch") = d("natch","noche") = 3

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de nombres

Técnicas de preprocesamiento

División de términos compuestos:

saleLocID → sale, Loc, ID

Expansión de abreviaturas y acrónimos:

loc → location, cust → customer

Expansión con sinónimos, hipónimos e hiperónimos:

price → cost, product → book, dvd, cd

Eliminación de "stop words" the, a, in, at, of, and...

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de nombres

EJEMPLO

DVD-VENDOR

Movies(id, title, year)

Products(mid, releaseDate, releaseCompany, basePrice, rating, saleLocID)

Locations(lid, name, taxRate)

AGGREGATOR

Items(name, releaseInfo, classification, price)

name-base matcher:

name = <name: 1, title: 0.2>

releaseInfo = <releaseDate: 0.5, releaseCompany: 0.5>

price = <basePrice: 0.8>

Match

selector

Constraint enforcer

Combiner

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Cuando disponemos de datos, éstos pueden ser muy útiles en la integración de esquemas.

Selector Constraint enforcer Combiner Matcher 1 ... Matcher n

Match

Algunas técnicas:

- Reconocedores (diccionarios, regexps y reglas)
- Solapamiento (mismos valores en los atributos)
- Clasificadores (técnicas de aprendizaje supervisado)

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Reconocedores

Uso de diccionarios, expresiones regulares y reglas simples para reconocer valores de ciertos tipos de atributos.

Útiles para nombres propios (países, ciudades, personas...), apellidos, colores, teléfonos, DNIs, direcciones de correo electrónico, URLs, códigos postales, ratings, medicamentos, genes, proteínas...

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Solapamiento

Útil para atributos cuyos valores pertenecen a un dominio finito (p.ej. países, provincias, títulos, ratings...).

Habitualmente se utiliza el coeficiente de Jaccard:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

Match

selector

Constraint enforcer

Combiner

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

EJEMPLO

DVD-VENDOR

Movies(id, title, year)

Products(mid, releaseDate, releaseCompany, basePrice, rating, saleLocID)

Locations(lid, name, taxRate)

AGGREGATOR

Items(name, releaseInfo, classification, price)

data-based matcher:

name = <name: 0.2, title: 0.5>

Matcher 1

releaseInfo = <releaseDate: 0.7>

classification = <rating: 0.6> price = <basePrice: 0.2>

Matcher n

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Clasificadores (I.A.)

Construcción de clasificadores sobre un esquema para clasificar los elementos del otro esquema.

Múltiples técnicas:

Naive Bayes, árboles de decisión, SVMs...

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Clasificadores (I.A.)

Para cada elemento s_i del esquema S, se entrena un clasificador C_i para reconocer instancias de s_i.

Aprendizaje supervisado: Se necesitan ejemplos etiquetados.

- Ejemplos positivos:
 Instancias disponibles de s_i.
- Ejemplos negativos:
 Instancias de otros elementos de S.

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Clasificadores (I.A.)

Una vez creado el clasificador C_i , se utiliza para determinar la similitud entre s_i y cada elemento t_i del esquema T.

- Para cada instancia de t_j, se aplica C_j, que indica con un número [0,1] su confianza en que la instancia sea realmente una instancia de s_i.
- Los valores asociados a las distintas instancias de t_j se agregan para obtener la similitud entre s_i y t_j (p.ej. valor medio sobre todas las instancias de t_i).

Matcher n

Match

selector

Constraint enforcer

Combiner

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Clasificadores (I.A.)

EJEMPLO

SCHEMA S

current-showing	address	phone
Lord of the Rings	Madison WI	(608) 695 2311
	Mountain View CA	(650) 277 1358

SCHEMA T					
name	location	phone			
•••	Milwaukee WI				
	Palo Alto CA				
	Philadelphia PA				

$$s_i$$
 = address
 t_j = location
Sim scores (0.9, 0.7, 0.5)
 $sim(s_i,t_i) = 0.7$

Matcher 1

Integración de esquemas

Schema matching

TÉCNICAS DE EMPAREJAMIENTO

Emparejamiento de datos

Clasificadores (I.A.)

- El diseñador elige qué esquema hace de S (esto es, sobre cuál se construyen los clasificadores).
- Normalmente, será el esquema integrado para poder reutilizar los clasificadores cuando se añadan nuevas fuentes de datos.

NOTA: También se puede hacer en ambos sentidos: Clasificadores sobre S para clasificar instancias de T, y clasificadores sobre T para clasificar instancias de S.

Schema matching

COMBINACIÓN DE PREDICCIONES

Una vez calculada la similitud entre los elementos de los esquemas S y T utilizando distintas técnicas, se pueden combinar las medidas de similitud utilizando distintas funciones de agregación:

- Media aritmética
- Mínimo
- Máximo
- ...

Match

Integración de esquemas

Match selector

Constraint enforcer

Combiner

Schema matching

COMBINACIÓN DE PREDICCIONES

DVD-VENDOR

Movies(id, title, year)

 $\textbf{Products}(mid,\ release Date,\ release Company,\ base Price,\ rating,\ sale Loc ID)$

Locations(lid, name, taxRate)

AGGREGATOR

Items(name, releaseInfo, classification, price)

name-base matcher:

name = <name: 1, title: 0.2>

releaseInfo = <releaseDate: 0.5, releaseCompany: 0.5>

price = <basePrice: 0.8>

data-based matcher:

Matcher 1

name = <name: 0.2, title: 0.5> releaseInfo = <releaseDate: 0.7> classification = <rating: 0.6> price = <basePrice: 0.2>

average-combiner:

name = <name: 0.6, title: 0.5>

releaseInfo = <releaseDate: 0.6, releaseCompany: 0.25>

classification = <rating: 0.3> price = <basePrice: 0.5>

Matcher n

Schema matching

COMBINACIÓN DE PREDICCIONES

¿Cuándo usar cada función de agregación?

Media aritmética:

Cuando no tenemos razones para creer que un algoritmo de emparejamiento es mejor que otro.

Máximo:

Cuando confiemos en una señal "fuerte" de una de las técnicas de emparejamiento.

Mínimo:

Cuando queramos ser conservadores.

Integración de esquemas

Schema matching

COMBINACIÓN DE PREDICCIONES

Alternativas más complejas:

- Criterios "ad hoc", p.ej. utilizar sólo técnicas de emparejamiento de datos cuando se trate de direcciones o números de teléfono.
- Media ponderada (con los pesos ajustados utilizando un conjunto de entrenamiento, p.ej. regresión lineal).
- Algoritmo de aprendizaje (utilizar alguna técnica de I.A. que aprenda cómo combinar las medidas).

Schema matching

RESTRICCIONES DE INTEGRIDAD

Incorporación del conocimiento que tengamos acerca de los esquemas:

Expresamos dicho conocimiento en forma de restricciones de integridad, de forma que se eliminen las combinaciones que no satisfagan dichas restricciones.

Algoritmo de búsqueda, p.ej. A*

Integración de esquemas

Match selector

enforcer

Combiner

Matcher 1

Schema matching

RESTRICCIONES DE INTEGRIDAD

average-combiner:

name = <name: 0.6, title: 0.5>

releaseInfo = <releaseDate: 0.6, releaseCompany: 0.25>

classification = <rating: 0.3>

price = <basePrice: 0.5>

Distintas combinaciones posibles

p.ej.
$$M_1 = \{\text{name} = \text{name}, \\ \text{releaseInfo} = \text{releaseDate}, \\ \text{classification} = \text{rating}, \\ \text{price} = \text{basePrice} \}$$
0.6
0.8

 $score(M_1) = 0.6*0.6*0.3*0.5$

Matcher n

Match

selector

Combiner

Schema matching

RESTRICCIONES DE INTEGRIDAD Ejemplo

Si sabemos que AGGREGATOR.name hace referencia al título de la película y que muchos títulos contienen al menos cuatro palabras, podemos establecer una restricción del tipo:

si un atributo A empareja con AGGREGATOR.name, en cualquier muestra aleatoria de 100 valores de A tiene que haber al menos 10 con 4 palabras o más.

Matcher n

Integración de esquemas

Schema matching

RESTRICCIONES DE INTEGRIDAD ¿Cómo se busca el mejor emparejamiento?

- Idealmente, por orden de preferencia, se van comprobando restricciones hasta encontrar una solución que satisfaga todas las restricciones.
- En la práctica, se debe manejar un conjunto amplio de restricciones, en ocasiones contradictorias, por lo que se debe diseñar un método de búsqueda eficiente...

Schema matching

RESTRICCIONES DE INTEGRIDAD
Tipos de restricciones

Restricciones estrictas [hard]

- Obligatorias.
- Cualquier solución admisible debe respetarlas.

Restricciones flexibles [soft]

- De tipo heurístico.
- Pueden violarse, aunque intentaremos maximizar su grado de cumplimiento

Integración de esquemas

Schema matching

RESTRICCIONES DE INTEGRIDAD

	Restricciones	Coste
c_1	If A = Items.code, then A is a key	00
c ₂	If A = Items.desc, then any random sample of 100 data instances of A must have an average length of at least 10 words	1.5
C ₃	If $A_1 = B_1$, $A_2 = B_2$, B_2 is next to B_1 in the schema, but A_2 is not next to A_1 , then there is no A^* next to A_1 such that $ sim(A^*,B_2) - sim(A_2,B_2) \le t$ for a small pre-specified t	2
C ₄	If more than half of the attributes of Table U match those of Table V, then $U = V$	1

Schema matching

RESTRICCIONES DE INTEGRIDAD

Algoritmos de búsqueda:

Algoritmo A*

(garantiza la solución óptima, de acuerdo con los costes asociados a las diferentes restricciones).

 Propagación local (técnica de búsqueda local, más eficiente)

Integración de esquemas

Schema matching

RESTRICCIONES DE INTEGRIDAD

Algoritmo A*

Técnica de búsqueda heurística:

- g(n)
 Coste de llegar al nodo actual (hacia atrás).
- h(n)
 Coste estimado para llegar a la solución (hacia adelante).

El algoritmo A* guía la búsqueda utilizando la suma:

$$f(n) = g(n) + h(n)$$

Match

selector

Combiner

Schema matching

RESTRICCIONES DE INTEGRIDAD

Algoritmo A*

Para garantizar la solución óptima, la heurística h(n) debe ser admisible (optimista).

- Las heurísticas pesimistas (inadmisibles) impiden la optimalidad del algoritmo A* al descartar buenos planes.
- Las heurísticas optimistas (admisibles) no subestiman la calidad de un buen plan.

Matcher n

Integración de esquemas

Match

selector

Combiner

Matcher 1

Schema matching

RESTRICCIONES DE INTEGRIDAD

Algoritmo A*

Emparejamiento de los esquemas S y T.

atributos(S) =
$$\{s_1, s_2 ... s_n\}$$

atributos(T) = $\{t_1, t_2 ... t_m\}$

Descripción de los estados del espacio de búsqueda:

Tupla de tamaño n, en la que el elemento i-ésimo indica el emparejamiento de s_i

- Un atributo concreto t_i de T, o bien
- Un comodín * si aún no se ha determinado el emparejamiento adecuado para el atributo s_i de S.

Matcher n

Matcher n

Match

selector

Combiner

Schema matching

RESTRICCIONES DE INTEGRIDAD

Algoritmo A*

Un estado, p.ej. (t₂, *, t₁, t₃, t₂), representa un conjunto de emparejamientos consistente con las restricciones de integridad.

- Estado inicial (*, *, ..., *).
- Estados finales: estados concretos, sin comodines.
- Expansión de estados: Seleccionar un comodín (*) y reemplazarlo con todos sus posibles emparejamientos

Integración de esquemas

Match

selector

enforce

Combiner

Matcher 1

Schema matching

RESTRICCIONES DE INTEGRIDAD

Algoritmo A*

Coste asociado a los estados:

$$cost(M) = -LH(M) + \sum cost(M,c_i)$$

- Verosimilitud de M dadas las matrices de similitud [log-likelihood]: LH(M) = log conf(M)
- Confianza en el emparejamiento: conf(M) = score(M) = ∏ sim (s_i, M_i)
- Violaciones de las restricciones de integridad: cost(M,c_i)

Matcher n

Schema matching

RESTRICCIONES DE INTEGRIDAD

Propagación local

Algoritmo de optimización local:

Se propagan las restricciones sobre los elementos de un esquema hasta que se alcanza un "punto fijo" (óptimo local).

Integración de esquemas

Schema matching

RESTRICCIONES DE INTEGRIDAD

	Restricciones	Coste
C ₁	If A = Items.code, then A is a key	00
c ₂	If A = Items.desc, then any random sample of 100 data instances of A must have an average length of at least 10 words	1.5
C ₃	If $A_1 = B_1$, $A_2 = B_2$, B_2 is next to B_1 in the schema, but A_2 is not next to A_1 , then there is no A^* next to A_1 such that $ sim(A^*,B_2) - sim(A_2,B_2) \le t$ for a small pre-specified t	2
C ₄	If more than half of the attributes of Table U match those of Table V, then $U = V$	1

Schema matching

RESTRICCIONES DE INTEGRIDAD

Propagación local

Las restricciones de integridad, p.ej. c₃, y se reescriben como se muestra a continuación:

if $sim(A_1, B_1) \le 0.9$ and A_1 has a neighbor A_2 such that $sim(A_2, B_2) \ge 0.75$, and B_1 is a neighbor of B_2 , then increase $sim(A_1, B_1)$ by α

Integración de esquemas

Schema matching

RESTRICCIONES DE INTEGRIDAD

Propagación local

Algoritmo de optimización local

1. Inicialización

Matriz de similitud calculada a partir de los resultados del emparejamiento.

Schema matching

RESTRICCIONES DE INTEGRIDAD

Propagación local

Algoritmo de optimización local

2. Iteración

Se selecciona un nodo
de S1 y se actualiza la
matriz de similitud de
sus vecinos de acuerdo
con las reglas asociadas
a las restricciones de integridad.

Integración de esquemas

STATISTIST OF THE PROPERTY OF

Schema matching

SELECCIÓN DEL EMPAREJAMIENTO

La solución más simple: Umbralización [thresholding]

- Se seleccionan elementos de la matriz de similitud.
- Todos los pares de atributos con una similitud no inferior a un umbral se dan por válidos.

Schema matching

SELECCIÓN DEL EMPAREJAMIENTO

Umbralización [thresholding]

Match selector Constraint enforcer Combiner Matcher 1 ... Matcher n

EJEMPLO

Dada la matriz de similitud

name = <title: 0.5>

releaseInfo = <releaseDate: 0.6>

classification = <rating: 0.3>

price = <basePrice: 0.5>

y el umbral 0.5, se genera el emparejamiento { (name, title), (releaseInfo,releaseDate) ... }

Integración de esquemas

Schema matching

SELECCIÓN DEL EMPAREJAMIENTO

Una estrategia habitual:

Emparejamientos estables

Dados dos conjuntos de elementos S y T y una matriz que expresa sus preferencias (la matriz de similitud entre S y T), encontrar un emparejamiento estable entre los elementos de S y de T.

Schema matching

SELECCIÓN DEL EMPAREJAMIENTO

Emparejamientos estables

Un emparejamiento es inestable si existe algún par inestable (s_i,t_i) .

Match selector

Constraint enforcer

Combiner

Matcher 1 ... Matcher n

Un par (s_i,t_i) es inestable si:

- s_i prefiere a t_j en lugar del elemento t_k
 al que ha sido asignado: sim(i,j) > sim(i,k)
- t_j prefiere a s_i en lugar del elemento s_k al que ha sido asignado: sim(i,j) > sim(k,j)

Integración de esquemas

Schema matching

SELECCIÓN DEL EMPAREJAMIENTO

Emparejamientos estables

En otros términos (asumiendo n=m):

Dados n hombres y n mujeres, encontrar un emparejamiento estable de hombres con mujeres.

Cada persona "evalúa" a las personas del sexo opuesto.

- Los hombres ordenan a las mujeres según sus preferencias.
- Las mujeres ordenan a los hombres según sus preferencias.

Algoritmo de Gale & Shapley (1962)

Integración de esquemas

Algoritmo de Gale & Shapley (1962)

- Los hombres se declaran a las mujeres en orden decreciente de preferencias.
- Una vez que una mujer se empareja,
 sólo cambia de estado para mejorar de pareja

El algoritmo de Gale-Shapley termina después de, como mucho, n² iteraciones.

El algoritmo de Gale-Shapley devuelve un emparejamiento estable.

Algoritmo de Gale & Shapley (1962)

CURIOSIDADES

Si existen varios emparejamientos estables, ¿cuál devuelve el algoritmo de Gale-Shapley?

Un hombre m es una pareja válida para una mujer w si existe un emparejamiento estable en el que estén emparejados.

El algoritmo de Gale-Shapley obtiene un emparejamiento estable que, además, es una asignación óptima para los hombres:

Todos los hombres consiguen a su mejor pareja válida.

Integración de esquemas

Algoritmo de Gale & Shapley (1962) CURIOSIDADES

Cuando los hombres son los que se declaran, todos consiguen a su mejor pareja válida.

Ahora bien, ¿la asignación óptima para los hombres se consigue a costa de las mujeres?

SÍ

iTodas las mujeres consiguen a su peor pareja válida!

Algoritmo de Gale & Shapley (1962)

CURIOSIDADES

¿Podrían los participantes "engañar" al algoritmo de Gale-Shapley para salir beneficiados?

	Favorita		Menos favo		
	1 st	2 nd	3 rd		
Jorge	Ana	Bea	Clara		
Luis	Bea	Ana	Clara		
Mario	Ana	Bea	Clara		

Preferencias de los hombres

	, d.,	+ Tellist Taren		
	1 st	2 nd	3 rd	
Ana	Luis	Jorge	Mario	
Bea	Jorge	Luis Mario		
Clara	Jorge			

Favorito

Preferencias reales de las mujeres

Los hombres, obviamente, no. Algunas mujeres, sí (si conocen las preferencias de todos los demás).

	1 st	2 nd	3 rd		
Ana	Luis		Jorge		
Bea	Jorge	Luis	Mario		
Clara	Jorge	Luis	Mario		
Ana miente para mejorar					

Menos favorito

Integración de esquemas

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS

- Las tareas de emparejamiento suelen ser repetitivas (p.ej. cuando se añaden nuevas fuentes de datos que han de emparejarse con el esquema integrado).
- El rendimiento de un sistema de emparejamiento puede mejorar a lo largo del tiempo utilizando técnicas de aprendizaje automático [machine learning].

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS

Aprendizaje multi-estrategia

- Dado un conjunto de fuentes de datos S₁..S_n
 y un esquema integrado G.
- Se emparejan manualmente las fuentes $S_1...S_m$ con G, siendo m << n.
- Se generalizan esos emparejamientos para predecir los emparejamientos más adecuados para $S_{m+1}...S_n$ ¿Cómo?

Integración de esquemas

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS

Aprendizaje multi-estrategia

- Se entrenan clasificadores L₁..L_k para los elementos e del esquema integrado G (usando los datos obtenidos de los emparejamientos de las fuentes S₁..S_m con G).
- Se utiliza un algoritmo de aprendizaje para ajustar los pesos w_{e,Li} para cada elemento e del esquema integrado y cada clasificador L_i (lo que permitirá combinar las predicciones de los clasificadores L_i).

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS

Aprendizaje multi-estrategia

Dado un nuevo esquema S con atributos $s_1...s_n$, se utilizan los clasificadores $L_1...L_k$ sobre $s_1...s_n$ y se combinan sus predicciones:

$$score_e(s) = \sum_{i=1}^{k} w_{e,L_i} * score_{e,L_i}(s)$$

Integración de esquemas

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS COMPLEJOS

	Esquema integrado								
			price num-baths add		ldress				
homes.com							→		
	listed-price	agent-id	full-ba	ths	half-bat	hs	city		zipcode
	320K 240K	53211 11578	2 1		1 1		Seattle Miami	Э	98105 23591

Textos: Concatenación de columnas.

Números: Expresiones aritméticas.

Fechas: Combinaciones de meses/años/días.

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS COMPLEJOS

Integración de esquemas

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS COMPLEJOS

Control del proceso de búsqueda:

- Buscadores especializados (textos, números, fechas).
- Búsqueda dirigida [beam search],
 i.e. sólo se consideran los k mejores candidatos.

Ejemplo: **iMAP** [Doan et al., SIGMOD'2004]

Schema matching

BÚSQUEDA DE EMPAREJAMIENTOS COMPLEJOS

Integración de esquemas

Schema mapping

f1: PayRate(HrRate) * WorksOn(Hrs) = Personnel(Sal)

Schema mapping

Posibles consultas:

select P.HrRate * W.hrs from PayRate P, WorksOn W where P.Rank = W.ProjRank

select P.HrRate * W.hrs from PayRate P, WorksOn W, Student S where W.Name=S.Name and S.Yr = P.Rank

f1: PayRate(HrRate) * WorksOn(Hrs) = Personnel(Sal)

Integración de esquemas

Schema mapping

f2: Professor(Sal) → Personnel(Sal)

Schema mapping

select P.HrRate * W.hrs from PayRate P, WorksOn W where P.Rank = W.ProjRank

UNION ALL

select Sal from Professor

Integración de esquemas

Schema mapping

Decisiones de diseño

- ¿Qué reuniones realizar?
 - → Conjuntos de candidatos
- ¿Cómo combinar los resultados de las reuniones?
 - → Unión de conjuntos de candidatos

IBM Clio Project

http://dblab.cs.toronto.edu/project/clio/

Schema mapping

Identificación de conjuntos de candidatos

- Conjuntos de candidatos obtenidos a partir de las claves externas en el esquema (DDL) y de las consultas que se suelen realizar sobre los datos (DML).
- Seleccionar las reuniones aprovechando claves externas, restricciones semánticas y diferencias entre reuniones internas y externas [inner & outer joins].

Integración de esquemas

Schema mapping

Selección de candidatos

- Cobertura:
 Conjunto mínimo de candidatos
 que cubre todas las correspondencias.
- Problema de búsqueda heurística:
 Seleccionar la mejor cobertura (prefiriendo candidatos con menor número de reuniones que cubran el mayor número de atributos del esquema de destino).

NOTA: La interacción con el "usuario" es clave.

Gestión de modelos [model management]

Las correspondencias entre esquemas pueden definirse mediante operadores:

- Operadores de combinación de esquemas.
- Operadores de traducción de esquemas.
- **...**

En este contexto, "modelo" ≈ "esquema".

Más concretamente, un modelo es una descripción específica de un conjunto de datos en un modelo de datos dado.

Integración de esquemas

Gestión de modelos [model management]

EJEMPLO

Integración de dos fuentes de datos S_1 y S_2 :

- **Match**: Un operador de emparejamiento de S_1 con S_2 para establecer la correspondencia entre S_1 y S_2 .
- Merge: Creación de un esquema integrado para S₁ y S₂ (el operador crea el mínimo esquema que incluye tanto a S₁ como a S₂).

RECORDATORIO: En este contexto, "modelo" ≈ "esquema'

Gestión de modelos [model management]

EJEMPLO

Integración de una tercera fuente de datos S₃:

Si S₃ es muy similar a S₁, podemos emparejar S₁ con S₃ para luego componer el emparejamiento de S₃ con el esquema integrado G.

Integración de esquemas

Gestión de modelos [model management]

OPERADORES GENÉRICOS DE GESTIÓN DE MODELOS

- **Match** (establecer una correspondencia M_{12} entre dos modelos S_1 y S_2).
- **Merge** (crear un esquema combinado de los modelos S_1 y S_2 con respecto a la correspondencia M_{12}).
- ModelGen (crear un modelo equivalente utilizando un modelo de datos diferente, p.ej. relacional → XML).
- **Invert** (dada una correspondencia M₁₂, obtener la correspondencia inversa M₂₁).
- Diff (encontrar las diferencias entre dos modelos).

Gestión de modelos [model management]

EL OPERADOR MERGE

Dados

- Dos modelos M₁ y M₂
- Una correspondencia de M₁ a M₂

Crear

- Un modelo combinado M₁₂ que contiene la información de M₁ y M₁ pero no repite lo que está en ambos.
- Correspondencias de M₁ y M₂ a M₁₂.

Integración de esquemas

Gestión de modelos [model management]

EL OPERADOR MERGE

Diferentes representaciones para los mismos atributos.

Gestión de modelos [model management]

EL OPERADOR MERGE

Diferentes codificaciones para los atributos.

Integración de esquemas

Gestión de modelos [model management]

EL OPERADOR MERGE

Problemas prácticos

- Diferentes representaciones para los atributos (la resolución forma parte de la correspondencia).
- Combinación de modelos de distintos modelos de datos (p.ej. atributos compuestos).
- Conflictos irresolubles, p.ej. código postal como entero en un modelo y como cadena en otro (no puede ser ambas cosas en el modelo combinado).

Gestión de modelos [model management]

EL OPERADOR MODELGEN

Transformar un esquema de un metamodelo a otro.

En este contexto, un metamodelo es un modelo de datos (p.ej. modelo de clases en Java, esquema relacional para un RDBMS, esquema XML como DTD o XML Schema...).

Problema práctico: Existen características en el metamodelo fuente que no existen en el de destino.

Integración de esquemas

Gestión de modelos [model management]

EL OPERADOR MODELGEN

De clases en Java a relaciones

```
Name varchar(50),
                                       oid int NOT NULL PRIMARY KEY)
public class Company {
                                      CREATE TABLE Supplier(
  public string name;
                                      oid int NOT NULL PRIMARY KEY,
                                       isSameAs int NOT NULL UNIQUE
public class Supplier
                                       FOREIGN KEY REFERENCES Company
    extends Company {
                                          (oid))
  public item[] parts;
                                      CREATE TABLE PartsArray(
                                      Supplier int NOT NULL
                                       FOREIGN KEY REFERENCES Company
public class Item {
                                          (oid).
  public string ISBN;
                                       itemISBN varchar(50),
  public int Cost;
                                       itemCost int)
```

CREATE TABLE Company(

No existen ni clases ni herencia en el modelo relacional

Gestión de modelos [model management]

EL OPERADOR MODELGEN

- Es posible diseñar transformaciones específicas de un metamodelo a otro, pero sería preferible una solución general...
- Estrategia: Se diseña un "súper metamodelo" que soporta todas las características que existen en los distintos metamodelos (y sabe qué características están presentes en cada metamodelo).

Integración de esquemas

Gestión de modelos [model management]

EL OPERADOR MODELGEN

Se traduce el modelo M_1 al "súper metamodelo" y del "súper metamodelo" ahí al Modelo M_2 .

Gestión de modelos [model management]

EL OPFRADOR MODELGEN

Entrada

Modelo M₁ en el metamodelo MM₁.

Salida

Modelo M₂ en el metamodelo MM₂ equivalente a M₁.

Algoritmo

- Transformar M₁ al supermodelo M'.
- Mientras queden características en M' que no estén presentes en MM₂, aplicar transformaciones sobre M' para eliminar dichas características.
- Transformar el supermodelo M' en M₂.

Integración de esquemas

Gestión de modelos [model management]

EL OPERADOR MODELGEN

De clases en Java a relaciones

```
public class Company {
    public string name;
}

public class Supplier
    extends Company {
    public item[] parts;
}

public class Item {
    public string ISBN;
    public int Cost;
}
```

```
CREATE TABLE Company(
Name varchar(50),
oid int NOT NULL PRIMARY KEY)

CREATE TABLE Supplier(
oid int NOT NULL PRIMARY KEY,
isSameAs int NOT NULL UNIQUE
FOREIGN KEY REFERENCES Company
(oid))

CREATE TABLE PartsArray(
Supplier int NOT NULL
FOREIGN KEY REFERENCES Company
(oid),
itemISBN varchar(50),
itemCost int)
```

No existen ni clases ni herencia en el modelo relacional

Gestión de modelos [model management]

EL OPERADOR DE INVERSIÓN

Normalmente, las correspondencias entre esquemas son direccionales (esquema fuente \rightarrow esquema destino).

¿Se puede encontrar la correspondencia inversa?

La solución dependerá de los metamodelos concretos (no existen algoritmos genéricos).

PROBLEMA:

Distintos modelos pueden tener el mismo destino...

Integración de esquemas

Gestión de modelos [model management]

El uso de operadores genéricos de gestión de modelos:

- Puede ahorrarnos mucho trabajo (eliminan la necesidad de escribir código repetitivo).
- Puede servirnos para ser cuidadosos en el diseño del proceso de integración de datos (los operadores describen formalmente el algoritmo utilizado para integrar datos de distintas fuentes).

Bibliografía recomendada

Hai Doan, Alon Halevy & Zachary Ives: Principles of Data Integration Morgan Kaufmann, 1st edition, 2012. ISBN 0124160441 http://research.cs.wisc.edu/dibook/

Chapter 5: Schema Matching and Mapping

Chapter 6: General Schema Manipulation Operators

