MATRIZ DE ADYACENCIA PARA UNA GRÁFICA NO DIRIGIDA

Las consideraciones importantes que permiten hacer ciertas inferencias sobre las gráficas son las siguientes:

- 1. La matriz es cuadrada de n renglones y n columnas.
- 2. Los renglones y las columnas corresponden a los **nodos** (n).
- Para un grafo no dirigido la matriz de adyacencia es simétrica (una matriz es simétrica si es una matriz cuadrada, la cual tiene la característica de ser igual a su transpuesta).
 Con esta propiedad se puede verificar si una matriz corresponde con una de adyacencia.
- 4. Existe una matriz de adyacencia única para cada grafo.
- 5. Si la gráfica tiene **líneas paralelas** entonces se coloca un r en el elemento que contemple las líneas paralelas entre los dos nodos, donde r corresponde al número de líneas paralelas.
- 6. Generalmente en la diagonal hay únicamente cero, a menos que se tenga un **bucle**, entonces x_{ii}=1 o en su caso el número de bucles que tenga el nodo.
- 7. Si una matriz no contiene elementos con el valor de más de 1 (líneas paralelas) y en la diagonal solo se tienen valor de 0 entonces se tiene una **gráfica simple**, en caso contrario es una **gráfica general**.
- 8. Se puede tener una **multigráfica** si hay valor de más de 1 en sus elementos para líneas paralelas sin 1's en la diagonal o una **pseudográfica** si al menos existe un 1 en la diagonal que indica bucles y el resto de los valores puede ser más 1.
- 9. Si la gráfica no contiene bucles (1's en la diagonal) el **grado** de los nodos es igual a la suma de los unos en el renglón o columna. De tener bucles, para obtener el grado de ese nodo con bucles, será necesario sumar un 1 más por cada bucle que tenga el vértice.
- 10. Si la suma de los unos de cada renglón o columna es igual entonces se tiene **gráfica regular** en una gráfica simple.
- 11. Si G es simple el **número de líneas** es igual a la suma de los unos de la matriz dividida entre dos. Si no se tiene una gráfica simple, el número de líneas será la suma de los grados dividido entre dos.
- 12. Un **nodo aislado** produce un renglón y su correspondiente columna de ceros.
- 13. Un **nodo colgante** tendrá un renglón con un 1 y su correspondiente columna con un 1 y el resto con valor de ceros.
- 14. Una gráfica es **desconectada** con G_1 y G_2 si y solo si la matriz de adyacencia X(G) puede particionarse como:

$$X(G) = \begin{bmatrix} X(G_1) & 0 \\ 0 & X(G_2) \end{bmatrix}$$

- 15. Si es una **gráfica completa** se tendrán ceros en la diagonal y unos en el resto de los elementos.
- 16. Una **gráfica fuertemente conectada** tiene una matriz de adyacencia unitaria, donde todos sus elementos son 1.
- 17. La **potencia de la matriz** X(G)^k=x_{ij}^k corresponde al número de los caminos atravesando k aristas desde el nodo i al nodo j, viene dado por un elemento de la potencia k-ésima de la matriz de adyacencia.
- 18. Si se obtienen matrices a las k-potencias y se suman las k potencias en una matriz P, donde k debe elevarse a máximo a la n potencia y se obtiene una matriz con:

∀pij≥1⇒Es una **gráfica conectada**.

MATRIZ DE ADYACENCIA PARA UNA GRÁFICA DIRIGIDA

Las inferencias que se pueden hacer de la matriz de adyacencia de una digráfica son:

- 1. La matriz es cuadrada de n renglones y n columnas.
- 2. Los renglones y las columnas corresponden a los **nodos** (n).
- 3. Existe una matriz de adyacencia única para cada digráfica.
- 4. Para las **líneas paralelas** en la matriz de adyacencia se coloca un r en el elemento (i, j) que indica r líneas en la dirección de i a j.
- 5. Un renglón de ceros únicamente y su columna correspondiente de al menos un elemento mayor a cero indica que es un **nodo terminal**.
- 6. Una columna de ceros únicamente y su renglón correspondiente de al menos un elemento mayor a cero indica que es un **nodo inicial**.
- 7. Si tanto un renglón como su columna correspondiente no son únicamente de ceros, entonces se tiene un **nodo intermedio**.
- 8. Si una columna y su correspondiente renglón tienen valores de cero únicamente en sus elementos entonces es un **nodo aislado**.
- 9. Si la matriz de adyacencia es simétrica (una matriz es simétrica si es una matriz cuadrada, la cual tiene la característica de ser igual a su traspuesta) entonces el grafo dirigido es **simétrico** (además no debe tener en los elementos (i,i) valores de 1). Sin embargo, si la matriz es no simétrica, entonces el digrafo es **asimétrico** a menos que tenga líneas paralelas o bucles. En las digráficas es común que las matrices de adyacencia no sean simétricas como ocurre en las gráficas.
- 10. Generalmente en la diagonal hay únicamente cero, a menos que se tenga un **bucle** entonces en x_{ii}=1, se debe colocar en ese elemento el número de bucles que tenga el nodo que puede ser más de 1.
- 11. Si la matriz no contiene valores de más de 1 (líneas paralelas) y en la diagonal solo contempla valor de 0, entonces es una **digráfica simple**, en caso contrario es una **multidigráfica** (si tiene valores de más de 1 en la matriz con valores iguales a 0 en la diagonal) o **pseudigráfica** (si en la diagonal tiene al menos un 1, que corresponde a bucles y puede tener valores de más de 1 en la matriz).
- 12. La suma de los 1's en la matriz corresponde con el **número de líneas** en la digráfica.
- 13. La suma de los 1's por renglón representan el **grado externo**.
- 14. La suma de los 1's por columna representan el **grado interno**.
- 15. Si la suma de los unos por renglón es igual a la suma de los unos de su columna correspondiente y este valor es igual para los otros renglones y columnas entonces se tiene una digráfica regular, cabe mencionar que no debe tener unos en la diagonal y que los valores no deben ser de más de 1 en el resto de los elementos.
- 16. Si la suma de los unos de cada renglón es igual a la suma de los unos de su columna correspondiente, entonces se tiene una digráfica balanceada, cabe mencionar que no debe tener unos en la diagonal y que los valores no deben ser de más de 1 en el resto de los elementos.
- 17. Si en la matriz se contempla únicamente unos con excepción en la diagonal que contiene valor de 0, entonces se tiene una **digráfica completa**, tanto la suma de los 1 es igual a n-1, por columna y por renglón.
- 18. Si la suma de los 1 por renglón y los 1 por columna son en total n-1, donde n corresponde con el número de nodos y en la diagonal solo tiene 0 y sus elementos son no mayores a 1, entonces es una **digráfica asimétrica completa**.
- 19. Una digráfica es **desconectada** con G_1 y G_2 si y solo, si la matriz de adyacencia X(G) puede particionarse como:

$$X(G) = \begin{bmatrix} X(G_1) & 0 \\ 0 & X(G_2) \end{bmatrix}$$

- 20. La **potencia** de la matriz X(G)^k=X_{ij}^k corresponde al número de los paseos atravesando k aristas desde el nodo i al nodo j, viene dado por un elemento de la potencia k-ésima de la matriz de adyacencia.
- 21. Si se obtienen matrices a las k-potencias y se suman las k potencias en una matriz P, donde k debe elevarse a máximo a la n potencia y si se obtiene una matriz con:

 ∀p_{ii}≥1⇒Es una **digráfica conectada**.

MATRIZ DE INCIDENCIA DE UNA GRÁFICA NO DIRIGIDA

Las consideraciones de la matriz de incidencia para una gráfica no dirigida son:

- En cada columna hay dos 1's dado que toda línea es incidente exactamente en dos nodos. Se puede hacer la suma por columna y verificar que es una matriz de incidencia, si suma dos por columna.
- 2. En el caso de un **bucle** aparece un 2 en elemento de un renglón que corresponde con el nodo, ya que la línea incide dos veces en el vértice.
- 3. La suma de los unos por renglón es igual al **grado** de cada nodo.
- 4. Un renglón con únicamente cero indica un nodo aislado.
- 5. Si el renglón contempla un solo 1 y el resto es 0, entonces un **nodo colgante**.
- 6. Dos columnas o más iguales indica líneas paralelas.
- 7. Si se intercambian renglones y/o columnas y se reetiquetan los nodos y los arcos, se obtiene la misma matriz, se tendrán grafos iguales o en su caso **gráficas isomórficas**.
- 8. Si la matriz no contiene 2 o columnas iguales, entonces se tiene una **gráfica simple**, en otro caso será una **gráfica general**.
- 9. Si la matriz tiene elementos con valor de 2 y con posibles columnas iguales, entonces se tendrá un **pseudografo**.
- 10. Si la matriz tiene dos o más columnas iguales sin elementos de valor 2 (bucles) entonces se tiene una **multigráfica**.
- 11. Si la suma de los 1 por renglón es igual para todos los renglones considerando que la matriz no tenga columnas iguales o 2 en algún elemento, entonces la gráfica es **regular**.
- 12. Si la gráfica tiene n nodos y la suma de cada renglón de la matriz es n-1 y no contiene valores de 2 o columnas iguales, entonces el grafo es **completo**.
- 13. Si por renglón la suma es n+1 y no contiene columnas iguales, entonces la **gráfica es fuertemente conectada**.
- 14. Una gráfica es desconectada con G_1 y G_2 si y solo, si la matriz de incidencia A(G) puede particionarse como:

$$A(G) = \begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}$$

MATRIZ DE INCIDENCIA DE UNA GRÁFICA DIRIGIDA

Las consideraciones importantes por mencionar son:

- 1. Cada columna tendrá un 1 y un -1, con este elemento se puede verificar que efectivamente es una **matriz de incidencia**.
- 2. La suma por columna debe ser cero.
- 3. Un renglón de ceros corresponde a un nodo aislado.
- 4. Dos columnas iguales indica líneas paralelas.
- 5. La suma de 1 por renglón indica el grado externo.
- 6. La suma de -1 por renglón indica el **grado interno**.
- 7. Si por renglón se tienen únicamente valores de 1 y 0, entonces significa que es un **nodo** inicial.
- 8. Si por renglón se tienen únicamente valores de -1 y 0, entonces representa un **nodo terminal**.
- 9. Si por renglón se tiene +1, -1 y 0 entonces se tiene un **nodo intermedio**.
- 10. Si se tiene un solo valor de 1 o bien -1 y el resto es cero en el renglón, entonces se tiene un **nodo colgante**.
- 11. Un ±1 indica un **bucle**.
- 12. Si se intercambian renglones y/o columnas, y se reetiquetan los nodos y los arcos, entonces se obtiene la misma digráfica. En el caso de **digráficas isomórficas**, se tendrá la misma matriz haciendo ajustes pertinentes.
- 13. Si la matriz no contiene ±1 y columnas iguales, entonces se tiene una **digráfica simple**. En el caso que contenga ±1 y posibles columnas iguales se tendrá una **pseudodigráfica**, y si incluye solamente columnas iguales entonces se tendrá una **multidigráfica**.
- 14. Si cada renglón tiene al menos 1 o un -1, sin dos columnas iguales, y para cada línea (columna) se tiene en el renglón i un 1 y un -1 en renglón j, no debe existir para otra columna (línea) en el renglón j un 1 y en el renglón i un -1 (recurrentes) para todas las columnas, entonces se tiene una **digráfica asimétrica**. Cabe mencionar que no debe tener ±1 en sus elementos.
- 15. Si existe para cada línea (columna) un renglón i un 1 y un -1 en el renglón j, entonces en otra columna (línea) en el renglón j un 1 y en el renglón i un -1 (recurrentes) entonces la **digráfica es simétrica**. Cabe mencionar que no debe existir ±1 en las casillas y columnas iguales.
- 16. Si se tiene n renglones, y por renglón se tiene n-1 unos y n-1 menos uno, sin casillas ±1y columnas iguales, entonces se tiene una **digráfica completa**.
- 17. Si cada renglón tiene al menos 1 o un -1, sin dos columnas iguales, y la suma de los grados internos y externos es n-1 para cada nodo, entonces se tiene una **digráfica asimétrica completa**. Cabe mencionar que no debe tener ±1.
- 18. Si para cada renglón, la suma de los 1 es igual a la suma de los -1 para todos los renglones, entonces se tiene una **digráfica regular**.
- 19. Si para cada renglón, la suma de los 1 es igual a la suma de los -1 por renglón, entonces se tiene una **digráfica balanceada**.
- 20. Una digráfica es desconectada con G_1 y G_2 si y solo si la matriz de incidencia A(G) puede particionarse como:

$$A(G) = \begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}$$

TRANSFORMAR UNA MATRIZ DE ADYACENCIA A ÎNCIDENCIA

La intención es pasar de la matriz de adyacencia a la matriz de incidencia, siguiendo ciertas reglas básicas. Se tienen dos casos para un grafo no dirigido y para una digráfica.

Grafo no Dirigido

Para pasar de una matriz de adyacencia a una matriz de incidencia en un grafo no dirigido será necesario:

- 1. Considerar los 1 en la parte triangular superior derecha de la matriz o la parte inferior izquierda (no importa cuál parte triangular sea, ya que es una gráfica no dirigida y la matriz de adyacencia es simétrica).
- 2. Será importante colocar una etiqueta a cada 1 que representa la etiqueta de la línea. Si existen líneas paralelas se tendrán un valor de 2 o más y se deben colocar dos etiquetas o más etiquetas dependiendo del número de líneas paralelas.
- 3. En la nueva matriz de incidencia A(G) se colocará un 1 para el nodo i y otro 1 para el nodo j, donde en X(G) se tenía en (i,j) un 1, y el resto queda con 0. Si la diagonal (i,i) en X(G) tiene un 1 entonces se coloca se coloca también una etiqueta al 1 y en la matriz de incidencia en la columna de la etiqueta en el nodo i se coloca un 2 para el bucle.

Digráfica

Para pasar de una matriz de adyacencia a una matriz de incidencia en un digrafo será necesario:

- 1. Considerar los 1 en toda la matriz.
- 2. Será importante colocar una etiqueta a cada 1.
- 3. En la nueva matriz de incidencia A(G) se coloca un 1 para el nodo i y un -1 para el nodo j, donde en X(G) se tenía en (i, j) un 1, y el resto queda con 0. Si la diagonal (i,i) en X(G) tiene un 1 entonces se coloca también una etiqueta al 1 y en la matriz de incidencia en la columna de la etiqueta en el nodo i se coloca un ±1 (bucle). Si se tiene un valor de 2 o más esto significa que existen líneas paralelas, entonces se tendría que colocar el número etiquetas correspondientes a las líneas paralelas.

Transformar una Matriz de Incidencia a Adyacencia

La idea es pasar de una matriz de incidencia a una matriz de adyacencia siguiendo ciertos pasos. El análisis se puede realizar para una gráfica no dirigida y para una digráfica.

Gráfica no Dirigida

En la matriz de incidencia cada columna representa la línea, y se le asocia dos 1 a cada columna, la ubicación de un 1 corresponde a i y la ubicación del otro 1 corresponde a j. En la matriz de adyacencia se colocará un 1 en la posición (i, j). Los valores de (j, i) se coloca también 1 ya que es una gráfica no dirigida (matriz simétrica). En el resto de las casillas se coloca 0. Si la matriz de incidencia tiene el valor de 2 en una columna, esto significa que se tiene un bucle y por tanto en la diagonal se deberá colocar un 1. Si existen líneas paralelas será necesario ir sumando las líneas paralelas en la respectiva casilla de la matriz de adyacencia.

Digráfica

En la matriz de incidencia cada columna representa la línea, y se le asocia 1 y - 1 a cada columna, la ubicación de un 1 corresponde a i y la ubicación del -1 corresponde a j. En la matriz de adyacencia se colocará un 1 en la posición (i, j). En el resto de las casillas se coloca 0. Si la matriz de incidencia tiene el valor de ± 1 en una columna, esto significa que se tiene un bucle y por tanto en la diagonal se deberá colocar un 1. Si existen líneas paralelas será necesario ir sumando las líneas paralelas en la respectiva casilla de la matriz de adyacencia.

MATRIZ DE ACCESIBILIDAD

Algunas consideraciones son:

- 1. Para obtener la matriz M(G) se puede elevar la **matriz de adyacencia** X(G) a las potencias sucesivas y por cada elemento de la matriz a la potencia que sea distinto de cero se coloca un + en la matriz M(G). Será necesario elevar la matriz hasta $\frac{n^2+n}{2}$ potencias de ser necesario, con n siendo el número de nodos.
- 2. Si la matriz tiene en todos sus elementos + entonces es conectada.
- 3. Si tanto el renglón como en la columna correspondiente, se tiene al menos un "+", entonces es un **nodo intermedio** en una digráfica.
- 4. Si bien el renglón o columna contiene únicamente 0's y su correspondiente incluye al menos un "+", entonces es un **nodo colgante**.
- 5. Existen tres formas de tener un nodo aislado en los digrafos:
 - Nodo terminal: Cuando pueden llegar al nodo, pero de él no se puede pasar a otro. En la matriz de accesibilidad el renglón correspondiente es únicamente de ceros y su columna tiene al menos un "+".
 - Nodo inicial: Cuando el nodo puede ir a otros nodos, pero ninguno puede llegar a él. En la matriz de accesibilidad la columna correspondiente es únicamente de ceros y el renglón tiene al menos un +.
 - Nodo aislado: ningún nodo puede llegar a él y él no puede llegar a ninguno.
 En la matriz de accesibilidad tanto el renglón como la columna contiene únicamente ceros.
- 6. Esta matriz también existe para las digráficas.
- 7. Una digráfica o gráfica es desconectada con G_1 y G_2 si y solo, si la matriz de accesibilidad M(G) puede particionarse como:

$$M(G) = \begin{bmatrix} M(G_1) & 0 \\ 0 & M(G_2) \end{bmatrix}$$

- 8. Como todas las gráficas y digráficas completas son conectadas su matriz de accesibilidad es de únicamente "+".
- 9. Para gráficas o digráficas isomórficas, se tendrán las mismas matrices de accesibilidad haciendo los ajustes pertinentes a la matriz.

MATRIZ CIRCUITO

Algunas consideraciones son:

- 1. Se tiene su equivalente para una digráfica.
- 2. En la matriz se trabaja con las aristas, sin embargo, también es posible colocar los **nodos** en las columnas y hacer la interpretación correspondiente como se verá más adelante.
- 3. Una columna de ceros corresponde a una línea que no pertenece a ningún circuito.
- 4. Cada renglón de B(G) se llama **vector circuito**.
- 5. Jamás habrá un renglón de ceros, ya que cada renglón representa un circuito.
- 6. Si en un renglón hay un sólo 1 y el resto es 0, entonces se tiene un bucle.
- 7. Si en un renglón hay solo dos 1's estas son **líneas paralelas** (gráfica) o **recurrentes** (digráfica).
- 8. La suma de 1's en un renglón es la **longitud de un circuito** (número de líneas del circuito).
- 9. La matriz no contiene renglones iguales, ya que esto implica dos **circuitos iguales**. Dos o más circuitos son iguales si contienen las mismas líneas (ubicaciones de los 1 en los renglones).
- 10. Para toda **pseudodigráfica o pseudográfica**, existe siempre la matriz circuito.
- 11. En las **gráficas o digráficas completas** siempre existirá una matriz circuito para n > 2 ya que contienen al menos uno.
- 12. En las **gráficas fuertemente conectadas**, siempre existirá la matriz circuito.
- 13. Dos **gráficas o digráficas isomórficas** tendrán las mismas matrices circuito, haciendo las reetiquetas pertinentes.
- 14. Para toda digráfica simétrica con n>2, existirá la matriz circuito.
- 15. Para una **gráfica k-regular**, existirá la matriz circuito, si k≥2.
- 16. En una **digráfica k- regular**, existirá la matriz circuito, si k≥1.
- 17. Una **digráfica balanceado** tendrá matriz circuito si todos los nodos tienen grado interno y externo mayor igual a 1.
- 18. En un árbol o arborescencia no existe la matriz circuito.
- 19. Si se suma por columna se obtiene el número de veces que se utilizó la arista en los diferentes circuitos. Se puede obtener la **proporción de uso** de la arista en los circuitos:

Proporción de uso de la línea j =
$$\frac{\sum_{j=1}^{q} b_{ij}}{q}$$
.

MATRIZ TRAYECTORIA

Algunas consideraciones para la matriz trayectoria son:

- 1. De una **gráfica** se pueden obtener $\frac{n(n-1)}{2}$ diferentes matrices trayectorias máximo. Para una **digráfica** se pueden obtener n(n-1) diferentes matrices trayectorias máximo.
- 2. Si la gráfica o digráfica incluye al menos una arista, entonces se tendrá al menos una matriz trayectoria. La arista no puede ser un bucle.
- 3. Se tiene su equivalente para una **digráfica** sólo que se analiza trayectorias dirigidas de v_i a v_i.
- 4. Se puede trabajar con las aristas para la matriz, sin embargo, también es posible colocar los **nodos** para elaborar la matriz y realizar su interpretación correspondiente.
- 5. Cada renglón de P(v_i, v_j) se llama **vector trayectoria**.
- 6. En las trayectorias nunca se incluirá un bucle ya que no forman una trayectoria pues repite nodos.
- 7. Una columna de ceros implica que una línea no se incluye en ninguna trayectoria entre v_i y v_j .
- 8. Una columna de 1's implica que la línea se incluye en todas las trayectorias entre vi y vi.
- 9. No se puede tener un renglón de ceros pues corresponde a una trayectoria y debe existir al menos una arista en la trayectoria.
- 10. La matriz no contiene renglones iguales ya que esto implica dos trayectorias iguales.
- 11. Si se trabaja con un **árbol o arborescencia**, se tendrá una sola trayectoria de v_i a v_i .
- 12. La suma de los 1's por renglón corresponde con la **longitud de la trayectoria**. La **ruta más corta** es la que contempla la longitud más pequeña. Y la **ruta más larga** es aquella que contempla la longitud más larga.
- 13. Si se suma por columna se obtiene el número de veces que se utilizó la arista en las diferentes trayectorias. Se puede obtener la **proporción de uso de la arista** en las trayectorias:

Proporción de uso de la línea j= $\frac{\sum_{i=1}^{r} p_{ij}}{r}$.