Hyperedge Prediction using Tensor Eigenvalue Decomposition

Deepak Maurya, Balaraman Ravindran, Shankar Narasimhan

Robert Bosch Centre for Data Science and Artificial Intelligence,
Indian Institute of Technology Madras, India

Hyperedge Prediction

Objective

Given a **k-uniform undirected hypergraph** G=(V,E), predict the **new hyperedges** which are most likely to be formed.

Hyperedge Prediction

Objective

Given a **k-uniform undirected hypergraph** G=(V,E), predict the **new hyperedges** which are most likely to be formed.

Hyperedge Prediction

Objective

Given a **k-uniform undirected hypergraph** G=(V,E), predict the **new hyperedges** which are most likely to be formed.

Hypergraph Reduction

Reduce a given hypergraph H

Hypergraph Reduction

Reduce a given hypergraph H to graph G using clique expansion

Hypergraph Reduction

Hypergraph Reduction

Hypergraph Reduction

Hypergraph Reduction

A natural representation of hypergraphs is a k-order n-dimensional tensor \mathcal{A} , which consists of n^k entries:

$$a_{i_1i_2...i_k} = \begin{cases} w_{e_j} \frac{1}{(k-1)!} & \text{if } (i_1,i_2,\ldots,i_k) = \{e_j\} & e_j \in E \\ 0 & \text{otherwise} \end{cases}$$

It should be noted that ${\cal A}$ is a "super-symmetric" tensor.

The Laplacian tensor \mathcal{L} is defined as:

$$\mathcal{L} = \mathcal{D} - \mathcal{A}$$

Spectral decomposition using

$$\mathcal{L}\mathbf{x}^{k-1} = \lambda\mathbf{x}$$
$$\mathbf{x}^T\mathbf{x} = 1$$

where $(\lambda, \mathbf{x}) \in (\mathbb{R}, \mathbb{R}^n \setminus \{0\}^n)$ is called the Z-eigenpair.

Construction cost for a new edge e_j :

$$\begin{split} l_{e_j}(\mathbf{x}) &= w_{e_j} \left(\sum_{i_k \in e_j} x_{i_k}^k - k \prod_{i_k \in e_j} x_{i_k} \right) \\ &= w_{e_j} k \left(\mathsf{A.M} \left(x_{i_k}^k \right) - \mathsf{G.M} \left(\left| x_{i_k} \right|^k \right) (-1)^{n_s} \right) \end{split}$$

where $n_s = |\{i_j: x_{i_j} < 0\}|$, A.M and G.M denote arithmetic and geometric means, respectively.

Construction cost for a new edge e_j :

$$\begin{split} l_{e_j}(\mathbf{x}) &= w_{e_j} \left(\sum_{i_k \in e_j} x_{i_k}^k - k \prod_{i_k \in e_j} x_{i_k} \right) \\ &= w_{e_j} k \left(\mathsf{A.M} \left(x_{i_k}^k \right) - \mathsf{G.M} \left(\left| x_{i_k} \right|^k \right) (-1)^{n_s} \right) \end{split}$$

where $n_s=|\{i_j:x_{i_j}<0\}|$, A.M and G.M denote arithmetic and geometric means, respectively.

Given the hypergraph H

Remove the hyperedge $\{7,8,9\}$ and predict new hyperedges

First most likely hyperedge among 78 potential hyperedge: $\{1,3,4\}$

Second most likely hyperedge among 78 potential hyperedge: $\{7,8,9\}$

For More Information

Hyperedge Prediction using Tensor Eigenvalue Decomposition

<u>Venue</u>: Summit 9, ground floor of Egan Center (555 W 5th Ave)

<u>Time</u>: 11:30 AM to 12:00

Bibliography

- Qi L, Luo Z. Tensor analysis: spectral theory and special tensors. Siam; 2017 Apr 19.
- Banerjee A, Char A, Mondal B. Spectra of general hypergraphs. Linear Algebra and its Applications. 2017 Apr 1;518:14-30.