UNIVERSIDAD DE SAN CARLOS DE GUATEMALA CENTRO UNIVERSITARIO DEL NORTE FACULTAD DE INGENIERÍA ARQUITECTURA DE COMPUTADORES Y ENSAMBLADORES 2 ING. EDWIN MACZ

ACTIVIDAD DE REPASO

INTEGRANTES	CARNET
Harold Steven Catun Guevara	202145353
Juan Carlos Choc Xol	202041390
Henry Otoniel Yalibat Pacay	201941988

1. Arquitecturas del Computador

Ejercicio 1:

Explique las diferencias entre la arquitectura von Neumann y Harvard.

Aspecto	Von Neumann	Harvard
Espacio de memoria	Programa e información comparten el mismo espacio de memoria.	Programa y datos tienen memorias separadas.
Buses	Utiliza un único bus para transmitir instrucciones y datos.	Utiliza buses independientes para las instrucciones y los datos
Acceso a memoria	Puede haber un cuello de botella, ya que no es posible acceder simultáneamente a instrucciones y datos.	Permite el acceso simultáneo a instrucciones y datos, lo que acelera el procesamiento.

Ejercicio 2:

Investigue un procesador moderno y determine qué arquitectura utiliza.

Un ejemplo de procesador moderno es el Intel Core i7. Este procesador combina características de ambas arquitecturas:

- Arquitectura von Neumann: Utiliza un espacio de memoria compartido para las instrucciones y los datos.
- Características de la arquitectura Harvard: Implementa cachés separadas para instrucciones y datos, lo que mejora significativamente la velocidad y el rendimiento al reducir los tiempos de acceso y procesamiento.

Este enfoque híbrido es común en procesadores modernos para aprovechar lo mejor de ambas arquitecturas: la simplicidad de von Neumann y la eficiencia de Harvard.

2. Arquitecturas AVR y ARM:

EJERCICIO 1:

Compare las arquitecturas AVR y ARM en términos de su uso y características principales.

Aspecto	AVR	ARM
Bits	8 bits	32 / 64 bits
Uso	Sistemas embebidos simples, como Arduino	Dispositivos de bajo consumo y alto rendimiento
Conjunto de instrucciones	Simples y optimizadas para tareas específicas	RISC, optimizado para eficiencia y rendimiento
Eficiencia energética	Alta en sistemas de bajo consumo	Alta, con mejor escalabilidad en dispositivos complejos
Aplicaciones	Automatización basica, proyectos DIY	Teléfonos inteligentes, tablets, IoT, etc.

EJERCICIO 2:

Investigue un dispositivo que utilice arquitectura ARM y describa su aplicación.

El Raspberry Pi 4 utiliza un procesador basado en arquitectura ARM, específicamente el Broadcom BCM2711 con núcleos ARM Cortex-A72 de 64 bits.

Aplicación:

El Raspberry Pi 4 se utiliza ampliamente en:

- Educación: Para enseñar programación y electrónica.
- Proyectos IoT: Controlar dispositivos y sensores conectados.
- Medios de entretenimiento: Como servidor multimedia o consola retro.
- Automatización industrial: Monitorizar y controlar procesos automatizados.

3. Microcontrolador

EJERCICIO 1:

Enumere tres aplicaciones comunes de los microcontroladores.

- 1. Automóviles: Controlan sistemas como bolsas de aire, frenos ABS, y el sistema de encendido.
- 2. Electrodomésticos: Usados en lavadoras, microondas y aire acondicionado para gestionar funciones automáticas.
- 3. Dispositivos médicos: En equipos como monitores cardíacos, bombas de insulina y termómetros digitales.

EJERCICIO 2:

Diseñe un diagrama simple que muestre los componentes básicos de un microcontrolador.

4. CPU (Unidad Central de Procesamiento)

EJERCICIO 1:

Describa las funciones principales de la CPU.

Unidad de Control (CU)

- Dirige el flujo de datos entre la memoria, la unidad aritmético-lógica y los dispositivos de entrada/salida.
- Interpreta las instrucciones de los programas y las convierte en señales para otros componentes.

Unidad Aritmético-Lógica (ALU)

- Realiza cálculos matemáticos (suma, resta, multiplicación, división).
- Lleva a cabo operaciones lógicas (comparaciones, decisiones condicionales).

Registro

• Almacena temporalmente datos e instrucciones que están siendo procesados.

Gestión de tareas

- Asigna recursos y controla el tiempo de ejecución de las instrucciones.
- Optimiza la ejecución de procesos mediante técnicas como la segmentación o el manejo de interrupciones.

EJERCICIO 2:

¿Qué impacto tiene el número de núcleos en el rendimiento de una CPU?

Mayor capacidad multitarea:

 Más núcleos permiten ejecutar varias tareas simultáneamente, mejorando el rendimiento en aplicaciones que soportan paralelismo (como edición de video o videojuegos).

Reducción de tiempos de espera:

 Las tareas pueden dividirse entre los núcleos, reduciendo el tiempo de ejecución global.

Eficiencia energética:

 Procesadores con múltiples núcleos pueden operar a frecuencias más bajas, consumiendo menos energía y produciendo menos calor.

Limitaciones:

 No todas las aplicaciones están diseñadas para aprovechar múltiples núcleos. En estos casos, el rendimiento depende más de la velocidad de reloj y la eficiencia del núcleo individual.

5. ALU (Unidad Aritmética y Lógica)

EJERCICIO 1:

Mencione tres operaciones aritméticas y tres operaciones lógicas que puede realizar una ALU.

Operaciones Aritméticas:

- Suma: Ejemplo, 5 + 3 = 8.
- Resta: Ejemplo, 10 4 = 6.
- Multiplicación: Ejemplo, 6 × 2 = 12.

Operaciones Lógicas:

- AND (Y): Devuelve verdadero si ambas entradas son verdaderas.
- OR (O): Devuelve verdadero si al menos una entrada es verdadera.
- NOT (NO): Invierte el valor lógico de la entrada (verdadero a falso y viceversa).

EJERCICIO 2:

Diseñe un circuito lógico para implementar una puerta AND de dos entradas.

6. Jerarquía de Memoria

EJERCICIO 1:

Ordene las siguientes memorias de más rápida a más lenta: RAM, Caché, Disco Duro, Registros.

- 1. Registros
- 2. Caché

- 3. RAM
- 4. Disco Duro

EJERCICIO 2:

Explique por qué la jerarquía de memoria es importante en el diseño de sistemas computacionales.

Balancea velocidad y costo:

Las memorias más rápidas son también las más costosas y limitadas en capacidad. Organizar los datos según la frecuencia de acceso permite minimizar costos y maximizar el rendimiento.

Optimiza el rendimiento:

El uso de cachés y registros evita accesos frecuentes a memorias más lentas, mejorando significativamente la velocidad del sistema.

Aprovecha la localidad de referencia:

Los programas tienden a acceder a las mismas ubicaciones de memoria repetidamente o a ubicaciones cercanas en un corto periodo. La jerarquía maximiza esta ventaja.

Minimiza cuellos de botella:

Al reducir la frecuencia de acceso a memorias más lentas, se evita que el sistema quede limitado por la velocidad de estas.

7. ROM (Memoria de Sólo Lectura)

EJERCICIO 1:

DIFERENCIAS		
RAM	ROM	
Es una memoria volátil; los datos almacenados se pierden cuando el dispositivo se apaga o reinicia.	Es una memoria no volátil; conserva la información incluso sin suministro eléctrico.	
Se utiliza para almacenar temporalmente datos y programas en ejecución, permitiendo un acceso rápido y eficiente por parte del procesador.	Almacena instrucciones permanentes esenciales para el funcionamiento básico del hardware, como el firmware o el proceso de arranque del sistema.	

EJERCICIO 2:

La EEPROM - Electrically Erasable Programmable Read-Only Memory - es un tipo de memoria ROM que puede ser programada y borrada eléctricamente. La EEPROM permite modificar su contenido sin necesidad de retirarla del circuito y sin requerir equipos especiales como luz ultravioleta para su borrado. Sin embargo, las operaciones de escritura en la EEPROM son más lentas en comparación con la lectura, y tiene un límite en el número de ciclos de escritura/borrado que puede soportar, generalmente entre 100,000 y 1,000,000 de ciclos.

8. RAM (Memoria de Acceso Aleatorio)

EJERCICIO 1:

La RAM es volátil porque pierde toda la información almacenada cuando el sistema se apaga o se reinicia, pues la RAM depende de energía constante para mantener los datos.

EJERCICIO 2:

La cantidad de RAM afecta el rendimiento general del sistema, pues entre más RAM permite que el sistema cargue y ejecute más programas simultáneamente sin depender del disco duro o SSD para almacenamiento temporal.

Con poca RAM, el sistema recurre al almacenamiento secundario como memoria virtual, lo cual es mucho más lento y provoca caídas en el rendimiento.

9. Bit y Byte

EJERCICIO 1:

$$5 \rightarrow 101$$

$$10 \to 1010$$

$$255 \rightarrow 111111111$$

EJERCICIO 2:

1024×8=8192 bits en un kilobyte.

10. Sistemas Numéricos (Binario y Hexadecimal)

EJERCICIO 1:

$$\textbf{1010} \rightarrow \mathsf{A}$$

 $\textbf{1101} \rightarrow \mathsf{D}$

 $\textbf{11111111} \rightarrow FF$

EJERCICIO 2:

11. Tarjeta Madre

EJERCICIO 1:

EJERCICIO 2:

Raspberry Pi: Es un microcomputador de bajo costo que utiliza un procesador ARM y se emplea en proyectos educativos, automatización, servidores domésticos, y aplicaciones de IoT. Su diseño eficiente en consumo energético lo hace ideal para dispositivos pequeños y portátiles.

12. Periféricos

EJERCICIO 1:

	Entrada	Salida
Escáner	X	
Pantalla Táctil	X	X
Altavoces		X

EJERCICIO 2:

Los periféricos inalámbricos permiten mayor libertad de movimiento, ya que no están limitados por cables, reducen el desorden en el espacio de trabajo, proporcionando una apariencia más limpia y organizada.

Pueden ser usados a mayor distancia de la computadora, lo que es útil en presentaciones o espacios amplios.

13. Puertos

EJERCICIO 1:

USB:

Transferencia de datos y alimentación de dispositivos. Se utiliza ampliamente para conectar dispositivos como teclados, ratones, discos duros externos, teléfonos móviles y más.

HDMI:

Transmisión de audio y video de alta definición. Es el estándar para conectar computadoras, televisores, proyectores y otros dispositivos multimedia.

Thunderbolt:

Transmisión de datos de alta velocidad, video y alimentación de dispositivos. Se utiliza principalmente en computadoras y estaciones de trabajo para conectar monitores 4K, discos duros externos y otros periféricos.

EJERCICIO 2:

Puerto Serial	Puerto Paralelo
Un puerto que transmite los datos bit a bit en una sola línea, uno tras otro, de forma secuencial. Es más lento, pero más confiable para largas distancias y común en aplicaciones como conexiones con dispositivos industriales o equipos antiguos.	Transmite múltiples bits simultáneamente a través de múltiples líneas en paralelo. Es más rápido que el puerto serial, pero menos eficiente en largas distancias debido a la interferencia electromagnética. Fue común en impresoras y escáneres.