Fatemeh Lotfi

AI & ML RESEARCHER · REINFORCEMENT LEARNING · LARGE LANGUAGE MODELS · MULTIMODAL SYSTEMS

Clemson, South Carolina, USA

□ (+1) (719) 639-1298 | ■ flotfi@clemson.edu | 🛅 https://www.linkedin.com/in/fatemeh-lotfi-1a860359/ | Status: U.S. Permanent Resident (Green Card Holder)

Summary.

Experienced AI researcher specializing in reinforcement learning, large language models (LLMs), multimodal systems, and representation learning. Proven expertise developing scalable AI methods for complex decision-making and optimization tasks, with publications in top-tier conferences and journals. Open to roles applying advanced AI techniques across diverse domains.

Education

Doctor of Philosophy in Electrical & Computer Engineering

Clemson University

Aug. 2022 - Nov. 2025 (Expected)

Clemson, SC

Master of Science in Electrical & Computer Engineering

University of Tehran

Skills_

- Programming: Python, MATLAB
- Deep Learning: TensorFlow, PyTorch, Keras
- Data Science: Pandas, Numpy, Scikit-Learn, Jupyter
- · Tools: Git, Docker, OpenAI Gym, MATLAB Simulink
- Scientific Writing and Visualization: Matplotlib, LTEX
- Machine Learning Domains: Reinforcement Learning (DRL, MARL), Foundation Models, LLMs, Prompt Learning, Representation Learning, Transfer Learning
- Mathematics: Probability, Stochastic Process, Statistics, Linear Algebra, and Optimization
- Soft Skills: Collaboration, Communication, Adaptability, Leadership, Critical thinking

Research Projects.

LLM-Augmented Reinforcement Learning for Dynamic Decision-Making

Aug. 2024 - Present

Clemson University

Clemson, SC

- Developed a modular framework integrating domain-specific and general-purpose LLMs to support RL agents through context-aware prompting.
- Designed a dual-prompt learning mechanism that combines static domain-informed inputs with trainable prompt tokens for adaptable decision-making in dynamic environments.
- Implemented transformer-based models, including BERT, to extract contextual embeddings for adaptive prompt tuning and decision-making.
- Investigating improvements in sample efficiency and policy generalization across multi-agent RL tasks.
- The framework enables flexible multi-agent interaction and supports transferability across domains in complex decision-making systems.

Meta-Learning for Generalized Policy Optimization

Aug. 2023 - Present

Clemson University

Clemson, SC

- Designed a Model-Agnostic Meta-Learning (MAML) framework for improving generalization across diverse tasks.
- Applied few-shot learning principles using PyTorch Lightning to boost cross-task adaptability in non-stationary environments
- Utilized Pandas, and PySpark for preprocessing interaction logs and training data streams.

Multi-Agent Deep Reinforcement Learning for Coordinated Decision-Making

Aug. 2022 - Present

Clemson University

Clemson, SC

- Designed a sharpness-aware optimization strategy to stabilize multi-agent DRL training and enhance policy robustness.
- Demonstrated significant improvements in convergence speed and generalization across complex multi-task scenarios.
- Results under review at IEEE Transactions on Machine Learning in Communications and Networking as "Sharpness-Aware O-RAN Resource Management Using Multi-Agent Reinforcement Learning."

Deep Metric Learning for Robust Feature Extraction

Aug. 2022 - May. 2023

Clemson, SC

Clemson University

- Engineered a contrastive loss framework for learning high-quality embeddings in low-data regimes.
- Applied this to imbalanced classification problems and validated improvements in class-wise F1-score and embedding separability.

OCTOBER 14, 2025 FATEMEH · RESUME

Inverse Reinforcement Learning for Reward Modeling

Aug. 2022 - Aug. 2023 Clemson University Clemson, SC

Trained an IRL agent using expert trajectory data to infer optimal reward functions for unknown environments.

Applied to sequential decision-making with real-world-inspired behavior policies.

Attention-Based Multi-Task Learning with Transformer Architectures

Clemson University

Jan. 2023 - Dec. 2023 Clemson, SC

· Applied attention mechanisms for adaptive loss weighting in RL frameworks, enabling dynamic prioritization across tasks in multi-agent settings, and leveraging shared transformer-based encoders for enhanced coordination.

Achieved harmonized task optimization and reduced dominant modality bias.

Time-Series Forecasting using LSTM Networks

Aug. 2022 - Aug. 2023

Clemson, SC

Clemson University

• Implemented LSTM and GRU-based architectures to model user behavior trends and traffic dynamics.

Preprocessed real-world sequence data using pandas and PySpark, optimizing prediction accuracy for long-tail temporal

Semantic-Aware Reinforcement Learning for Contextual Decision Making

Jan. 2021 - Aug. 2022

University of Colorado Colorado Springs

Colorado Springs, CO

 Developed context-aware RL models that improve decision efficiency in dynamic environments through semantic feature extraction.

Work Experience

R&D Engineer

Sep 2013 - Sep 2020

Sepehr Co.

Tehran

- Applied advanced signal processing techniques (noise cancellation, Kalman filtering) to optimize system performance.
- Collaborated across teams and adapted to evolving technical needs.

Publication

- F. Lotfi, H. Rajoli, F. Afghah, "ORAN-GUIDE: RAG-Driven Prompt Learning for LLM-Augmented Reinforcement Learning in O-RAN Network Slicing", Under review at IEEE JSAC 2025.
- F. Lotfi, H. Rajoli, F. Afghah, "Prompt-Tuned LLM-Augmented DRL for Dynamic O-RAN Network Slicing", Under review at IEEE ICASSB P2 2026.
- H. Rajoli, F. Lotfi, H. Kashiani, N. Alipour, & F. Afghah, (2025, Feb.). SAMPLe: Sharpness Aware Minimization based Prompt Learning Р3 for Vision Language Models. Under review at WACV 2025.
- F. Lotfi, H. Rajoli, F. Afghah, "LLM-Augmented Deep Reinforcement Learning for Dynamic O-RAN Network Slicing", IEEE ICC, 2025. P4
- F. Lotfi, H. Rajoli, F. Afghah, "Sharpness-Aware O-RAN Resource Management Using Multi-Agent Reinforcement Learning", Under Review at IEEE TMLCN, 2025.
- P6 F. Lotfi, F. Afghah, "Meta Reinforcement Learning Approach for Adaptive Resource Optimization in O-RAN", IEEE WCNC, 2025.
- F. Lotfi, et al. "Joint path planning and power allocation of a cellular-connected uav using apprenticeship learning via deep inverse reinforcement learning." Computer Networks 254 (2024): 110789.
- F. Lotfi, F. Afghah, "Open RAN LSTM Traffic Prediction and Slice Management using Deep Reinforcement Learning", Asilomar Confer-Р8 ence on Signals, Systems, and Computers, Pacific Grove, CA, 2023.
- F. Lotfi, F. Afghah, J. Ashdown, "Attention-based Open RAN Slice Management using Deep Reinforcement Learning", IEEE GLOBECOM, P9 Kuala Lumpur, Malaysia, 2023.
- H. Rajoli, F. Lotfi, A. Atyabi, and F. Afghah, "Triplet Loss-less Center Loss Sampling Strategies in Facial Expression Recognition Sce-P10 narios." CISS), 2023.
- F. Lotfi, O. Semiari, and F. Afghah, "Evolutionary Deep Reinforcement Learning for Dynamic Slicing Management in O-RAN", IEEE P11 GLOBECOM, 2022.
- F. Lotfi, O. Semiari, and W. Saad, "Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless Cellular Networks", IFFF ICC 2022
- F. Lotfi and O. Semiari, "Performance Analysis and Optimization of Uplink Cellular Networks with Flexible Frame Structure", IEEE VTC P13 2021-Spring.