Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then $\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$

Theorem 2 (Maximum Modulus). Let G be a bounded open set in $\mathbb C$ and suppose that f is a continuous function on G^- which is analytic in G. Then

continuous function on
$$G^-$$
 which is analytic in G . Then
$$\max\{|f(z)|:z\in G^-\}=\max\{|f(z)|:z\in\partial G\}.$$

 $a\alpha b\beta c dd\delta e \epsilon \epsilon f \zeta \xi g \gamma h h h i i i j k κ κ l \ell \lambda m n η θ θ ο σ σ φ φρρρης s t π u μνυυ w ω α χ γ ψ z <math>\infty \propto \emptyset \varnothing d \eth$ \ni