Integración y diferenciación numérica

Integración y diferenciación numérica

En muchos problemas de ciencias básicas e ingeniería, deben solucionarse ecuaciones que involucran derivadas y/o integrales de funciones. En algunos casos, no es posible hallar una solución analítica exacta y se hace necesario recurrir a aproximaciones numéricas.

La definición de derivada inicia con una aproximación por diferencias:

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

De forma análoga, e el cálculo integral, la definición de la operación inversa a la diferenciación inicia con una suma de productos (sumas de Riemann):

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x_i \to 0} \sum_{i=1}^{n} f(x_i) \Delta x_i \equiv \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i$$

Integración de Newton-Cotes (NC)

Consiste en reemplazar la función dada por un polinomio más facil de integrar:

$$I = \int_{a}^{b} f(x)dx \cong \int_{a}^{b} f_{n}(x)dx$$
$$= \int_{a}^{b} (a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}) dx.$$

Es decir; la función arbitraria es remplazada (aproximada) por un polinomio, $f(x) \to f_n(x)$.

Existen formulas de NC cerradas utilizadas para integrales definidas, y formulas abiertas para integrales indefinidas. A continuación veremos las formulas cerradas.

Formulas cerradas: Regla del trapecio

Primera formula cerrada de NC. El polinomio es de primer orden.

$$I \cong \int_{a}^{b} f_1(x)dx = \int_{a}^{b} \left(f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right) dx,$$

cuya respuesta es simplemente (el resultado de la integral):

$$I \cong (b-a)\frac{f(b)+f(a)}{2} - \frac{1}{12}f''(\eta)(b-a)^3,$$

es decir, la integral es el área del trapecio que aproxima la curva en dos puntos. El tercer término corresponde al error de la aproximación.

Regla del trapecio

S. C. Chapra and R. P Canale. Métodos numéricos para ingenieros. Ed. 5. Mc-Graw-Hill. 2007.

El valor del área rayada, y que aproxima el valor de la integral de la curva entre f(a) y f(b) es:

$$I \cong (b-a)\frac{f(b)+f(a)}{2}.$$

Regla del trapecio de aplicación multiple

Una forma de mejorar la regla del trapecio es implementándola en subintervalos en el dominio de la función; formula de integración de aplicación multiple o compuesta.

Para n+1 puntos igualmente espaciados $(x_0, x_1, ..., x_n)$, el ancho de cada sub-intervalo es:

$$h = \frac{b-a}{n},$$

aplicando la regra del trapecio en cada subintervalo se tiene (la suma de áreas de todos los intervalos):

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$
$$= \frac{h}{2} \left(f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) \right).$$

Implementación algorítmica

a) Un solo segmento

FUNCTION Trap
$$(h, f0, f1)$$

Trap = $h * (f0 + f1)/2$
END Trap

b) Segmentos múltiples

FUNCTION Trapm (h, n, f)

$$sum = f_0$$

 $DOFOR \ i = 1, n - 1$
 $sum = sum + 2 * f_i$
 $END \ DO$
 $sum = sum + f_n$
 $Trapm = h * sum/2$
 $END \ Trapm$

S. C. Chapra and R. P Canale. Métodos numéricos para ingenieros. Ed. 5. Mc-Graw-Hill. 2007.

(a) Es la función de aplicacioón una sola vez de la regla del trapecio.
 (b)
 Corresponde a la aplicación multiple de la regla.

Aquí, f_i es el valor de la función en cada punto x_i (son valores conocidos).

Regla de Simpson 1/3

Integramos un polinomio de interpolación de Lagrange de segundo grado para tres datos (x_0, x_1, x_2) :

$$I \cong \int_{x_0}^{x_2} dx \quad \left(\frac{\overbrace{(x-x_1)(x-x_2)}^{I_1}}{(x_0-x_1)(x_0-x_2)} f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f(x_1) \right)$$

$$+ \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)$$

donde

$$\int_{x_0}^{x_2} I_1 dx = \int_{x_0}^{x_2} dx (x - x_1)(x - x_2)
= (x - x_1) \frac{(x - x_2)^2}{2} - \frac{(x - x_2)^3}{6} \Big|_{x_0}^{x_2}$$

Regla de Simpson 1/3

Después de integrar los tres términos:

$$I \cong (b-a)\frac{f(a) + 4f(x_1) + f(b)}{6}$$
,

donde $x_0 = a$, $x_2 = b$ y $x_1 = (a + b)/2$.

Por supuesto, podemos implementar este método de forma multiple

$$I \cong \int_{x_0}^{x_2} dx f_L(x) + \int_{x_2}^{x_4} dx f_L(x) + \dots + \int_{x_{n-2}}^{x_n} dx f_L(x)$$

que resulta en

$$I \cong (b-a)\frac{f(x_0) + 4f(x_1) + f(x_2)}{3n} + (b-a)\frac{f(x_2) + 4f(x_3) + f(x_4)}{3n} + \dots + (b-a)\frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{3n}$$

$$\cong (b-a)\frac{f(x_0) + 4\sum_{i \text{ impar}}^{n-1} f(x_i) + 2\sum_{j \text{ par}}^{n-2} f(x_j) + f(x_n)}{3n}.$$

Regla de Simpson 3/8

Para obtener esta regla se sigue el mismo procedimiento del caso anterior pero para un polinomio de interpolación de Lagrange de tercer grado con cuatro datos. El resultado final es

$$I \cong (b-a)\frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$$

donde, $x_0 = a$, $x_3 = b$ y $x_1 = (2a + b)/3$ y $x_2 = (a + 2b)/3$.

Interpretación gráfica de las reglas de Simpson

S. C. Chapra and R. P Canale. Métodos numéricos para ingenieros. Ed. 5. Mc-Graw-Hill. 2007.

(a) Simpson 1/3; la aproximación de la integral es el área bajo la función cuadrática para tres datos. (b) Simpson 3/8; el polinomio que aproxima la función real es ahora cúbico.

Observaciones

Simpson $1/3$	Simpson 3/8
Su nombre es por el denominador en la expresión final	Nombre debido a los factores de $3/8$ en el resultado
Error de la aproximación	
$-\frac{(b-a)^5}{2880}f^{(4)}(\zeta)$	$-\frac{(b-a)^5}{6480}f^{(4)}(\zeta)$
Note que tienen el mismo orden de magnitud en el error $ ightarrow (b-a)^5$.	
Por lo tanto, es preferible usar Simpson $1/3$ por alcanzar exactitud de grado tres usando solamente tres datos!	
Aplicación multiple	
Debe usarse un número par de segmentos	Útil para número impar de segmentos
Pueden combinarse ambos métodos de acuerdo al número de datos.	
Es preferible combinarlos que usar solo la apliacación multiple de la regla de Simpson $1/3$.	

Algoritmos de las reglas de Simpson

```
a)
                                                    d)
FUNCTION Simp13 (h, f0, f1, f2)
                                                    FUNCTION SimpInt(a,b,n,f)
                                                      h = (b - a) / n
  Simp13 = 2*h*(f0+4*f1+f2) / 6
END Simp13
                                                      IF n = 1 THEN
                                                         sum = Trap(h, f_{n-1}, f_n)
b)
                                                       ELSE
FUNCTION Simp38 (h. f0, f1, f2, f3)
                                                         m = n
  Simp38 = 3*h* (f0+3*(f1+f2)+f3) / 8
                                                         odd = n / 2 - INT(n / 2)
END Simp38
                                                         IF \ odd > 0 \ AND \ n > 1 \ THEN
                                                            sum = sum + Simp38(h, f_{n-2}, f_{n-3}, f_{n-1}, f_n)
c)
                                                            m = n - 3
FUNCTION Simp13m (h,n,f)
                                                         FND IF
  sum = f(0)
                                                         IF m > 1 THEN
  DOFOR i = 1. n - 2. 2
                                                            sum = sum + Simp13m(h, m, f)
    sum = sum + 4 * f_{i} + 2 * f_{i+1}
                                                         END IF
  END DO
                                                       END IF
  sum = sum + 4 * f_{n-1} + f_n
                                                      SimpInt = sum
  Simp13m = h * sum / 3
                                                    END SimpInt
END Simp13m
```

S. C. Chapra and R. P Canale. Métodos numéricos para ingenieros. Ed. 5. Mc-Graw-Hill. 2007.

(a) Simpson 1/3 aplicación simple. (b) Simpson 3/8 aplicación simple. (c) Simpson 1/3 aplicación multiple. (d) Simpson para número de segmentos tanto pares como impares.

Nota: n es el número de segmentos. Para los algoritmos mostrados $n \geq 1$.

Reglas de NC de orden superior

$$h = (b - a)/n$$

$$n = 5; h \frac{7f(a) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(b)}{18} - \frac{8}{945}h^7\Delta_6,$$

$$n = 6; h \frac{19f(a) + 75f(x_1) + 50f(x_2) + 50f(x_3) + 75f(x_4) + 19f(b)}{48} - \frac{275}{12096}h^7\Delta_6,$$

donde $\Delta_6 = f^{(6)}(\xi)$.

Igual que con las reglas de Simpson, es preferible usar la formula para n=5 por alcanzar la misma exactitud que la formula siguiente.

Formulas de integración abierta

Para estimar integrales cuyos límites están por fuera del intervalo de datos:

$$n = 2; \quad (b - a)f(x_1) + \frac{1}{3}h^3 f^{(2)}(\xi),$$

$$n = 3; \quad (b - a)\frac{f(x_1) + f(x_2)}{2} + \frac{3}{4}h^3 f^{(2)}(\xi),$$

$$n = 4; \quad (b - a)\frac{2f(x_1) + f(x_2) + 2f(x_3)}{3} + \frac{14}{45}h^5 f^{(4)}(\xi),$$

$$n = 5; \quad (b - a)\frac{11f(x_1) + f(x_2) + f(x_3) + 11f(x_4)}{24} + \frac{95}{144}h^5 f^{(4)}(\xi),$$

$$n = 6; \quad (b - a)\frac{11f(x_1) + 14f(x_2) + 26f(x_3) + 14f(x_4) + 11f(x_5)}{20} + \frac{41}{140}h^7 f^{(6)}(\xi),$$

Integración de Romberg - Extrapolación de Richardson

Técnica de corrección; usa dos estimaciones de una integral para encontrar una tercera estimación.

$$\underbrace{I}_{\text{integral exacta}} = \underbrace{I(h)}_{\text{integral aproximada}} + \underbrace{E(h)}_{\text{error}}$$

h; ancho de intervalo: Haciendo dos estimaciones para la regla de trapecio (con distinto ancho h_i):

$$I(h_1) + E(h_1) = I(h_2) + E(h_2); \text{ con } E(h) \sim -\frac{(b-a)}{12} h^2 f''(\xi)$$

$$\to E(h_1) = (\frac{h_1}{h_2})^2 E(h_2),$$

$$\to E(h_2) = \frac{I(h_2) - I(h_1)}{(\frac{h_1}{h_2})^2 - 1}$$

Integración de Romberg - Extrapolación de Richardson

La integral exacta sse puede escribir como:

$$I = I(h_2) + E(h_2)$$

$$\to I = I(h_2) + \frac{I(h_2) - I(h_1)}{(\frac{h_1}{h_2})^2 - 1} + \mathcal{O}(h^4)$$

mejor aproximación de la integral por 2 ordenes de magnitud

Si
$$h_2 = h_1/2$$
;

$$I \cong \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1) \leftarrow \mathsf{Extrapolación} \ \mathsf{de} \ \mathsf{Richardson}$$

La implementación recurrente de esta estimación:

$$I_{j,k} \cong \frac{4^{k-1}I_{j+1,k-1}-I_{j,k-1}}{4^{k-1}-1} \leftarrow \text{Integración de Romberg}$$

k; indica nivel de integración. j; distingue entre las estimaciones al mismo nivel de integración. k=2 y j=1 se reduce a la Extrapolación de Richardson.

Esquema de funcionamiento

Table: Visualización de integración de Romberg.

Parecido a la interpolación de Newton; se necesitan dos estimaciones de un orden inferior para tener una de orden superior.

Diferenciación numérica por diferencias divididas

Consiste en aproximar numéricamente la derivación a una función dada. Esto ya lo trabajamos en la primera parte del curso.

Recordar y estudiar:

- Diferencias divididas hacia a delante
- Diferencias divididas hacia atras
- Diferencias divididas centradas

Analizar las tablas 23.1; 23.2; y 23.3 del texto guía.

Extrapolación de Richardson para derivación

Al igual que para la integración; sea D la función derivar, tenemos:

$$\underbrace{D}_{\text{derivada exacta}} = \underbrace{D(h)}_{\text{diferencia dividida}} + \underbrace{E(h)}_{\text{error}}$$

Para la primera derivada; recordando que $E(h) \sim \frac{f''(\xi)}{2!}h^2$, y haciendo de nuevo $h_2 = h_1/2$;

$$D \cong \frac{4}{3}D(h_2) - \frac{1}{3}D(h_1) \leftarrow \text{Extrapolación de Richardson}$$