

THE GOAL OF THIS PROJECT IS TO CREATE A PYTHON MODEL THAT USES MACHINEE LEARNING TECHNIQUES TO PREDICT WITH THE HIGHEST AMOUNT OF ACCURACY IF AN ONLINE COSTUMER WILL BUY OR NOT A PRODUCT

INS AND OUTS OF THE PROBLEM

• We are given quite a "RAW" dataset, meaning that is full of unnecessary data that can compromise the learning and training of our model.

Online Shoppers Purchasing Intention Dataset Data Set

Download: Data Folder, Data Set Description

Abstract: Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class samples that did not end with shopping, and the rest (1908) were positive class samples ending with shopping.

Data Set Characteristics:	Multivariate	Number of Instances:	12330	Area:	Business
Attribute Characteristics:	Integer, Real	Number of Attributes:	18	Date Donated	2018-08-31
Associated Tasks:	Classification, Clustering	Missing Values?	N/A	Number of Web Hits:	163333

 The first thing we need to do is to look at the data to see whether it has a positive or negative impact (or no impact at all) on our model, and also to do some processing and harmonisation of the format of the data.

INITIAL ANALYSIS

 In the first diagram we see that two months are missing and 6 out of thee 10 months that we have very low entry counts.

- As with the second diagram most people use Google, this could create a bias in our model that favors the data that he is Abundant in. Knowing that is cand of variables are not important (using Google does not impact your shopping intention).
- We will remove this variables from the dataframe.

INS AND OUTS OF THE PROBLEM

- The next problem is way more "problematic", the Disproportionality off our labels is very concerning, this may create a bias in our model the favors a statistical approach rather than a feature's one, reducing the overwhelming data labeled "False" will reduce the Generalization capacity of our model.
- To solve this, we will use an ROC/AUC metric to include The false positives and negatives, and also used a "stratified shuffle split"method.

(See code for details)

ANALYSIS AND SELECTION OF VARIABLES

- It is true that we are given a multitude of variables to help in the training of our model, but reading their description.
- We notice that some of them are just useless in the context of This project, so removing them is advised.

	Importance	
PageValues	0.693368	
ExitRates	0.086168	
ProductRelated_Duration	0.058875	
BounceRates	0.042850	
ProductRelated	0.040776	
Administrative_Duration	0.022842	
Administrative	0.020969	
Visitor_Type_Returning_Visitor	0.017604	
Informational_Duration	0.008162	
Informational	0.005109	
SpecialDay	0.003008	
Visitor_Type_Other	0.000269	

MODELS AND TRAINING

Given that this project is about a classification problem we will use :

- Gaussian naïve bayes
- Random Forest
- Extra Trees
- Logstic Model
- Support Vector Machines (SVM)
- Deep Learning

```
Gaussian Naive Bayes model accuracy(in %): 84.63
Random Forest Classifier model accuracy(in %): 90.23
Extra Trees Classifier model accuracy(in %): 89.5
Logstic model accuracy(in %): 88.36
svm model accuracy(in %): 88.12
```

A good model is not only determined by the model itself, but also by the setting of the parameters. For model types with a large number of parameters and a large impact on the model, we use <u>GridSearch</u> to automatically adjust the parameters to select the best ones.

EVALUATION OF THE MODEL

- we will not consider the accuracy metric because of the severe disproportionality of the data's labels but will rather refer to the area under the ROC curve score.
- Also add a dummy model to compare with only guessing (stratified dataset)

RESULTS

- The model seems to be much more accurate than guessing by using a random forest classifier, it is able to achieve approximately 90% accuracy.
- The dummy classifier seems to be right about 50% of the time, which was expected to see, as it is making guesses based on the distribution of a stratified dataset. If we were to deploy this model, the most efficient model to select would be our simple model.
- The simple model performs similarly to our other models, and only bases its classification by five features.

