Diciembre de 2011 Final (A)						
ÁLGEBRA (27) (Cs Exactas-Ingeniería) EXAMEN FINAL DICIEMBRE 2011 TEMA 4						
APELLIDO: NOMBRES: D.N.I:						
AI ELLIDO NOMBRES.						
Bien Mal NC NOTA INSCRIPTO EN: Días						
SedeAulaCuatrimestre:						
Para aprobar el examen es necesario tener por lo menos 8 respuestas correctas, y más respuestas						
correctas que incorrectas. En cada ejercicio marque la única respuesta correcta.						
$(1 \ 0 \ -2)$ $(2 \ 3 \ 1)$						
1. Si $A = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 0 \\ 2 & 1 & 3 \end{pmatrix}$, entonces $det(A^3B^{-1})$ es igual a						
□ -1 □ -32 □ 2 □ 1						
2. Sea $A = \begin{pmatrix} a & -1 \\ 2 & 1 \end{pmatrix}$. El conjunto de los $a \in \mathbb{R}$ tales que el sistema $A^2x = 2Ax$ es indeterminado es						
3. Sean $B = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ y $B' = \{\mathbf{v}_1 + \mathbf{v}_2; \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3; \mathbf{w}\}$ bases de \mathbb{R}^3 . Si las coordenadas de \mathbf{v}_1 en bas						
B' son $(2,2,-1)$ entonces w es						
4. Dados $\mathbf{v} = (2, 4, 3)$ y $\mathbf{w} = (1, 0, 0)$, un vector unitario perpendicular a \mathbf{v} y a \mathbf{w} es						
5. Sean $\Pi: x-2y+2z=4$ y $\mathbb{L}: \lambda(2,1,0)+(0,3,-1)$. Si $P \in \mathbb{L}$, entonces $d(P,\Pi)$ es igual a						
12 4/3 4						
6. Sean $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 + x_2 - x_3 + 3x_4 = 0 \}$ y $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_4 = x_2 - x_3 - x_4 = 0 \}$. Si \mathbb{W} es un						
subespacio de \mathbb{R}^4 tal que $\mathbb{T} \cap \mathbb{W} = \langle (-2, 2, 1, 1) \rangle$ y $\mathbb{T} + \mathbb{W} = \mathbb{S}$, entonces la dimensión de \mathbb{W} es igual a						
2 3 4 1						
7. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que $f(1,0,0) = (2,0,0)$, $f(1,1,0) = (-1,-1,0)$ y $f(1,1,-1) = (3,3,-3)$.						
Un autovector de f de autovalor 3 es						
$\left(1_{\text{opt}}, k^2_{\text{opt}}\right)_{\text{opt}} = \left(1_{\text{opt}}, k^2_{\text{opt}}\right)_{\text{opt}}$						
8. Si $f: \mathbb{R}^2 \to \mathbb{R}^3$ es la t.l. tal que $M(f) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ entonces el conjunto de valores de k para los						
8. Si $f: \mathbb{R}^2 \to \mathbb{R}^3$ es la t.l. tal que $M(f) = \begin{pmatrix} 1 & k^2 \\ 1 & 2k-3 \end{pmatrix}$ entonces el conjunto de valores de k para los						
cuales f es monomorfismo es						
9. Si $\mathbb{T} = \langle (1, 2, 1, -1) \rangle$ y $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_2 + x_3 + x_4 = 0 \}$, entonces $\mathbb{T}^{\perp} \cap \mathbb{S}$ es igual a						

10. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2; $	v_3 } base de un e.v.	$\mathbb{V}, \ \mathbb{S} = \left\langle \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3; k \mathbf{v}_4 \right\rangle$	$\mathbf{v}_2 - 2\mathbf{v}_3 \rangle \mathbf{y} \mathbf{T} = \langle 3\mathbf{v}_1 - 2\mathbf{v}_2 + k\mathbf{v}_3 \rangle.$
El conjunto de los k	∈ R para los cuales S	$\mathbb{S} \oplus \mathbb{T} = \mathbb{V}$ es	
	$\mathbb{R}-\{1;2\}$	$ \mathbb{R} - \{0;1;2\} $	$\mathbb{R}-\{0\}$
EXAMEN FINAL	- DICIEMBRE 201	1-	TEMA 4
11. Si $B = \{(1, -1, 0)\}$;(-1,1,1);(0,1,0)} y	$f: \mathbb{R}^3 \to \mathbb{R}^3$ es la t.l. ta	al que $M_B(f) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 0 & 0 \end{pmatrix}$, entonces
f(1,1,1) - f(1,0,0)	es igual a	[] (0,1,0)	[] (0,1,1)
12. Sean $A, B \in \mathbb{R}^{n \times n}$	" tales que $\det(AB) =$	1. Dadas	
l es V y II es V	I es F y II es F	puede asegurar que A	I es V y II es F
13. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2 \}$	$\{\mathbf{v}_3\}$ base de un e.v.	$\mathbb{V} \ \ \mathbf{y} \ f : \mathbb{V} \to \mathbb{V} \ \ \mathbf{la} \ \mathbf{t}.\mathbf{l}$	tal que $M_B(f) = \begin{pmatrix} 1 & -1 & 1 \\ -3 & 8 & 2 \\ 2 & 1 & 5 \end{pmatrix}$.
Una base de $\operatorname{Im} f$ e	S		
	$1 + \mathbf{v}_2 + 5\mathbf{v}_3$ $\left[5\mathbf{v}_2 \right]$	$\left\{ +3\mathbf{v}_{3}; -\mathbf{v}_{1}+8\mathbf{v}_{2}+\mathbf{v}_{3} \right\}$	
14. Sea $z \in \mathbb{C}$ tal qu	$e z = 3$ y arg $z = \frac{\pi}{4}$.	Si $w = -iz^2$ entonces	
	,		$\arg w = 0 \boxed{ w = 9 \text{ y arg } w = \frac{\pi}{2}}$
15. Si i es raíz dobl	$le de P(x) = x^3 - ax^2$	+x-a, entonces	- manufacture and the second s
eren.	Account .	a=0	
16. Si $f: \mathbb{R}^3 \to \mathbb{R}^3$ e $\begin{bmatrix} 2 & -1 & 2/3 \\ 2 & -1 & 2/3 \\ 2 & -1 & 2/3 \end{bmatrix}$	s la t.l. tal que $f(1,1,$ $\begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$	$0) = (1,1,1), f(0,-1,0)$ $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	$ = (1,1,1) \text{ y } f(0,1,3) = (1,1,1), M(f) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} $
17. Sean $B = \{(1,1,0)\}$); $(0,1,-1)$; \mathbf{v} } $\mathbf{y} f: \mathbb{R}$	$^3 \to \mathbb{R}^3$ la t.l. tal que Λ	$M_{EB}(f) = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$
Si $f(1,3,2) = (10,3,$	−3), entonces v es ig	ual a	
(5,-15,10)		[] (1,3,2)	[(5,13,5)
solución de $Ax = b$	que tiene las tres coor		homogéneo $Ax = b$, entonces una
19. Si $f: \mathbb{R}^4 \to \mathbb{R}^4$ entonces $f(1,2,3,4)$	es la t.l. tal que $f(1,1)$	f(0,0,0) = (0,0,1,1), f(0,0,0) = (0,0,1,1), f(0,0,0)	1,1,0) = (0,0,-1,1) y Nu $f = Im f$,
(0,0,3,0)	[0,0,0,0]	(0,2,1,3)	0,0,0,2
20. El conjunto $\{z \in$	$\mathbb{C}/ z-i = z+1 $ es i	igual a	

— СЭ,

		[] {0}	
			i ph. in angli
FIDMA DEL ALUMNO			