Dynamics 2

Power Method (Work – Energy Approach)

'Power' Method for Systems

- The 'power' method provides an alternative to the classical Newtonian approach for linked systems
- Can give quick answers in many cases
- Views system as a whole
 - Gives acceleration but FBD needed for internal forces
- Based on concepts of work, energy and power
- Requires the identification of power sources and sinks for the system

Required Understanding

- Kinetic energy
- Potential energy
- Work done by forces and torques / moments
- Power of forces and torques / moments

- Energy
 - Scalar quantity (not a vector)
 - The capacity of a system for doing work
 - J, Nm or Ws
- Kinetic energy
 - Particle

$$KE = \frac{1}{2}mv^2$$

- System

∑ particles

- Potential energy
 - Gravitational PE

PE = Mgh

- Potential energy
 - Spring (Elastic Strain energy)

$$PE = \frac{1}{2}k x^2$$

- Work
 - done by forces (& torques) when the mass particles on which they act move some distance
- Work done by a force

Force × distance moved by particle in direction of force

$$W = F \times d$$

Work done by a torque

Torque × angle of rotation of body in direction of torque

$$W = \tau \times \theta$$

Can be +ve or -ve

- Power
 - Work rate or work done/sec by force/torque (W,J/s,Nm/s)
- Power of a force

Force × velocity of mass at point of application in direction of force

$$P = F \times v$$

Power of a Torque

Torque × angular velocity of body in direction of torque

$$P = \tau \times \Omega$$

- Power can be +ve or -ve
 - Positive means energy is flowing into the system
 - Negative means energy is flowing out of the system
- Electric motor
 - Armature torque in same direction as rotor motion
 - Power +ve
- Disc brake
 - Frictional torque from disc pads is in opposite direction to motion
 - Power -ve

Kinetic Energy of Rigid Bodies

Pure translation

$$KE_{BODY} = \frac{1}{2}M v^2$$

Fixed axis rotation

$$KE_{BODY} = \frac{1}{2}I_O \Omega^2$$

General plane motion

$$KE_{BODY} = \frac{1}{2}Mv^2 + \frac{1}{2}I_O\Omega^2$$

Summary

- revision of concepts of work and energy
- derivation of Work-Energy Principle

Power Theorems

- Two shown here
 - KE only
 - KE + PE
- Conservative forces

Dynamics 2

Power Method: The Power Theorems (Work – Energy Approach)

Power Theorem (ex PE)

- Define states 1 and 2 occurring a short time apart
- Energy Balance

$$\begin{array}{c} {\sf KE}_1 \\ + \\ ({\sf Work\ done\ 1} \rightarrow {\sf 2\ on\ system\ by\ all\ system\ forces}) \\ = {\sf KE}_2 \end{array}$$

Work done includes weight forces

This is the Work-Energy Principle

Power Theorem (ex PE)

Re-write as:

Work done on system by all system forces/torques in a time interval = Increase in system KE

- Let 1 and 2 be close and separated by ∆t
 - Dividing by Δt and letting $\Delta t \rightarrow 0$ gives
- Basic System Power Theorem

work done/sec by all system forces/torques

$$= \frac{d}{dt} (System KE)$$

Conservative Forces

• Weights are main example of conservative forces

 Work done by the weight force of a mass in any closed path of movement is zero

Conservative Forces

 Work done by weight during a change of position

Work done
$$(1 \rightarrow 2)$$

= $-mg(h_2 - h_1)$
= $mgh_1 - mgh_2$
= $PE_1 - PE_2$

- i.e. Work done = $PE_1 PE_2 = -$ (Increase in PE)
- Weight (& 'field' forces) are Conservative Forces
 - Not dependent on path followed

Power Theorem (inc PE)

• Earlier result Basic System Power Theorem

Net power of all system forces/torques =
$$\frac{d}{dt}$$
(System KE)

- implicitly accounted for PE through system weight forces
 - can modify to explicitly include system PE

Power Theorem (inc PE)

- It was shown that Work done by system weights (1 \rightarrow 2) = PE $_1$ PE $_2$
- Let 1 and 2 be close & separated by $\triangle t$ Work done by weights in $\triangle t = -\triangle(PE)$
- Dividing by Δt and $\Delta t \rightarrow 0$ gives the net power supply from weight forces as:

Power of system weight forces
$$=-\frac{d}{dt}$$
 (System PE)

Power Theorem (inc PE)

The LHS of original power theorem is split into

Net power of all system forces/torques

plus power of system weight forces = $\frac{d}{dt}$ (System KE)

• or

Net power of system forces/torques (excl. weight)

plus -
$$\frac{d}{dt}$$
 (System PE) = $\frac{d}{dt}$ (System KE)

Which finally becomes:

Net power of system forces/torques = $\frac{d}{dt}$ (System KE + PE)

Power Theorems

- Implicitly including PE Net power of system forces/torques = $\frac{d}{dt}$ (System KE)
- Explicitly including PE Net power of system forces/torques = $\frac{d}{dt}$ (System KE + PE)
- 2nd includes PE and follows from the simpler 1st
 often simpler to use the 1st in problems
- 2nd applies to all types of conservative forces in systems not just weight

Worked Power Examples

- Assume system velocities (v, Ω , etc.)
- Write down the KE for each component
- Sum these and use kinematics to get system KE in terms of v or Ω , e.g.

System KE =
$$\frac{1}{2}$$
 (B) Ω^2

- Identify what is putting energy in and out of the system and the work rates (power) to calculate net power in
- Work out d/dt (system KE)
 - Quick way is to use $d/dt(KE) = (B) \Omega \alpha$
- Use power theorem to calculate variables of interest
 - d/dt(KE) = net power

Summary

- developed the Power Theorems
- Identified a procedure for applying these

Dynamics 2

Power Method: Worked Example (Work – Energy Approach)

Example 3.1 (same as 2.5?)

- Double pulley loaded by 2 masses
- If the masses are released from rest, determine
 - pulley angular acceleration
 - accelerations of the masses
- Data
 - Pulley $I_0 = 22 \text{ kgm}^2$
 - $-M_1 = 24 \text{ kg}, M_2 = 50 \text{ kg}$
 - $-R_1 = 0.45 \text{ m}, R_2 = 0.32 \text{m}$
- Use power method

Example 3.2

- M₁ is on a 20° incline
 - coefficient of friction = 0.28
- If the masses are released determine
 - Mass accelerations
 - Cable tensions
- Data (as 3.1)
 - Pulley $I_0 = 22 \text{ kgm}^2$
 - $-M_1 = 24 \text{ kg}, M_2 = 50 \text{ kg}$
 - $-R_1 = 0.45 \text{ m}, R_2 = 0.32 \text{m}$
- Use power method

Example 3.3 (rpt 2.9)

- Motor operated cable drum (Ø 1.2 m) raises 850 kg load
- Motor's gear has 34 teeth
- Drum gear G has 164 teeth
- $I_{Motor/Gear} = 1.8 \text{ kgm}^2$
- $I_{Drum/Gear} = 72 \text{ kgm}^2$
- Motor armature torque 850 Nm
- Calculate the upwards acceleration of the load
 - Ignore cable/pulley masses
- Use power method

Example 3.4

- Loaded 4 wheel trolley runs on rails down incline (⊖°)
 - Total mass 400 kg
 - Wheels as uniform discs of R = 350 mm and mass 35 kg
- If released on a 15° incline what is acceleration?
- If wheel bearings rusty and resist rotation with friction torque of 8.5 Nm what is the acceleration?
 - What is minimum incline for trolley to roll?

Example 3.5

- Electric motor driven via chain drive with a 5/1 reduction.
 - Neglect system masses and MMI's not listed
- Acceleration up a 6° incline (neglect air resistance)?
- Max speed on the level (including air resistance)

