

Detecting Invasive Ductal Carcinoma (IDC) **Presence in Breast** Histopathological **Images**

Building a binary image classification model to detect IDC presence

Presentation Outline

01

Introduction & Problem Statement

02

Dataset Pre-processing

03

Model Evaluation & Summary

04

Conclusion & Next Step

Introduction to Invasive Ductal Carcinoma (IDC)

- IDC accounts for 80% of all breast cancer diagnoses
- IDC grows in the milk duct and invades breast tissues outside the duct

 Pathologists identify IDC through biopsy, and examine the tissue for spread of IDC to assign it an aggressiveness grade

Difficulty in Analysing Histopathological Images

- The analysis of breast cancer histopathological image is time-consuming and inaccurate
- Barriers to accurate image analysis:
 - Go through swathes of benign regions to identify areas with IDC
 - Variability of appearance in H&E stained areas
- Machine learning approach will increase efficiency in detecting IDC

A research firm has hired a team of data scientists to use deep learning methods to help diagnose the presence of IDC in breast histopathology images. The objective is to be to classify IDC presence/absence and obtain a reasonably high Balanced Accuracy and Recall Score.

Data Pre-processing

Image Patch Extraction

- Dataset consist relevant coloured image patches (50 by 50) extracted from Whole Slide Images
- Image are either annotated "IDC-positive" or "normal"
- Each patient had a mix of "IDC-positive" and normal image patches

Class Imbalance

- Number of Scans with IDC is
 39.6% that of scans with no IDC
- Downsampling was chosen:
 - Large dataset
- Randomly sampled equal number of patches from both classes and shuffled them before splitting and training the model

Normal Image Patches

20 40 20

IDC Patches

Model Evaluation

Model Workflow

Model Comparison

(Chosen Model)

Baseline

Balanced Accuracy

Custom Model

Balanced Accuracy

VGG16

73.2% 81.5% 80.2% 70.0%

Balanced Accuracy

Resnet50

Balanced Accuracy

- Recall: 0.49
- Specificity: 0.97

Best recall: 0.76

Specificity: 0.87

Recall: 0.66

Specificity: 0.94

Worst recall: 0.43

Best specificity: 0.97

Model Evaluation

Best scores were obtained when:

- Image was augmented slightly
- Dropout rate for last dropout layer increased from 0.25 to 0.5
- Dense layers = 3 as opposed to 2 or 4
- Absence of Batch Normalization
- Batch size = 512

Model Predictions

Correctly classified as normal patches

Correctly classified as IDC-present patches

Misclassification Analysis

Predicted normal when IDC is present

Predicted IDC-present when image patch is normal

Conclusion & Next Steps

Conclusion and Limitations

- Model achieved a **81.5% balanced accuracy score** and a 76.0% recall score
- Improve productivity
 - < than 1 minute to predict for IDC-presence in 39,000 images

Challenges

- Dataset Limitations
 - Unable to train on features connecting image patches
 - Absence of data on normal patients

Next Steps

- Other state-of-the-art models (ensemble CNN)
- Image Segmentation (segmenting regions of image for meaningful analysis)

Whole Slide Imagery

Utilise whole slide imagery as opposed to relevant fragments

Aggressiveness Rating

 Automatically assign ratings after determining IDC presence

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik.**

Appendix

Custom VGG16

Consists of:

- 5 convolutional layers
- 3 fully connected dense layers
- Epochs = 10
- Steps per epoch = 300

Resnet50

Consists of:

- 48 convolutional layers
- 1 max pool
- 1 fully connected dense layer
- Steps per epoch = 300
- 15 epochs

Baseline

Consists of:

- 1 convolutional layer
- 1 max pool
- 2 fully connected dense layer
- Steps per epoch = 200
- 60 epochs

Fine-tuning Custom Model

Model Versions	Image Augmentation	Dropout Layer Value	Hidden Layer Node	Batch Normalization	Balanced Accuracy	Specificity	Recall	Remarks
v0	No	[0.25,0.25]	[128,64,2]	No	0.806	0.889	0.722	
v1	Yes	[0.25,0.25]	[128,64,2]	No	0.812	0.843	0.781	
v2	Yes	[0.5,0.5]	[128,64,2]	No	0.727	0.514	0.940	Large number of False Positives
v3	Yes	[0.25,0.5]	[128,64,2]	No	0.815	0.869	0.761	Chosen model
v4	Yes	[0.25,0.5]	[128,64,2]	Yes (after conv 2)	0.535	0.971	0.098	
v5	Yes	[0.25,0.5]	[64,2]	No	0.807	0.883	0.731	
v6	Yes	[0.25,0.5]	[32,16,2]	No	0.815	0.852	0.778	Large number of False Positives
v7	Yes	[0.25,0.5]	[64,32]	No	0.818	0.843	0.793	Large number of False Positives
v8	Yes	[0.25,0.5]	[128,64,32,2]	No	0.802	0.777	0.828	
v9	Yes	[0.25,0.5]	[128,64,2]	Yes (before pooling)	0.792	0.880	0.704	

Confusion Matrix

