Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha} \ \tau_{1}^{\#1}{}_{\alpha} \ \tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}\alpha\beta$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1+\alpha\beta}^{\#1}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

~							
$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{lpha}$.	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+ \alpha eta$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) + \frac{2 t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

$\omega_{2}^{\#1}_{+} g f_{2}^{\#1}_{+} \omega_{2}^{\#1}_{-} a \beta \chi$	0	0	0	
$f_2^{\#1}$	0	0	0	
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0	
·	$\omega_{2+}^{\#1} +^{\alpha\beta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{*1} +^{lphaeta\chi}$	

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} == 0$	1			
$\sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5			
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5			
Total constraints:	25			

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2-\alpha\beta}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_{0}^{#1}$	$\tau_{0}^{#1}$	$\tau_{0}^{#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	0	0	0	0
$r_{0}^{\#1}$ †	0	0	0	0
$r_{0}^{\#2} +$	0	0	0	0
7 ^{#1} †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive and massless spectra

Massive particle			
Pole residue:	$-\frac{1}{r_2} > 0$		
Polarisations:	1		
Square mass:	$-\frac{t_2}{r_2} > 0$		
Spin:	0		
Parity:	Odd		

Quadratic pole				
Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$			
Polarisations:	2			

Unitarity conditions

 $r_2 < 0 \,\&\&\, r_3 < 0 \,\&\&\, r_5 < -\frac{r_3}{2} \,\&\&\, t_2 > 0 \,\|\, r_2 < 0 \,\&\&\, r_3 < 0 \,\&\&\, r_5 > -2 \,r_3 \,\&\&\, t_2 > 0 \,\|\, r_2 < 0 \,\&\&\, r_3 > 0 \,\&\&\, -2 \,r_3 < r_5 < -\frac{r_3}{2} \,\&\&\, t_2 > 0$