

TENTAMEN

ELK202

Elektronik Grundläggande

Salstentamen

Datum 2023-04-29

Tid 9:15 – 13:15

Examinator Eric Windhede

Lärare Nour Almardoud och Eric Windhede

Besök Ja, från kl. 10:30

Telefon 0520-223377

Hjälpmedel Valfri formelsamling samt bifogade blad i slutet. Valfri räknedosa.

Antal uppgifter 13

Antal sidor 5

Max poäng 52

Betygsgränser $\geq 26p \ (50\%) \ 4 \geq 39p \ (75\%) \ 5 \geq 47p \ (90\%)$

Resultat anslås senast 2023-05-20

Ange anonymitetskod och sidnummer på samtliga lösa blad som du lämnar in.

Lycka till!

- 1. Lös uppgifterna nedan med Kirchhoffs lagar.
 - a) Till en knutpunkt går de två strömmarna 12 A och -7,0 A <u>in</u> till knutpunkten. De tre strömmarna 4,0 A och 6,5 A samt strömmen *I* <u>ut</u>ur knutpunkten. Bestäm strömmen *I* till storlek och tecken.
 - b) I figuren till höger finns tre stycken okända spänningar, U_1 , U_2 och U_3 . Vissa spänningar är givna och potentialen i vissa punkter också utsatta. Bestäm de okända spänningarna

(4p)

2. Hur stor ska resistansen, R, var i kretsen nedan för att resistans mellan polerna AB, d.v.s. (4p) R_{AB} .,ska bli 35Ω ? Resistansvärdena i figuren är angivna i enheten Ω . (Ledning. Du kan först kalla parallellkopplingen mellan R och 30 något och först beräkna detta)

3. DC-kretsen till höger har komponentvärden enligt nedan.

$$E = 5.0 V$$

$$R_1 = 100 \,\Omega$$

$$R_2 = 25 \Omega$$

$$R_3 = 70 \Omega$$

- a) Beräkna strömmen, I, och ange svaret i mA.
- b) Beräkna spänningen över resistor R_2 .
- c) Beräkna effekten i resistor R_2 .
- d) Beräkna effekten som spänningsgeneratorn avger.
- 4. Följande gäller DC- kretsen till höger. Notera att två resistorvärden är okända. $I_1=0.20~A,~I_2=0.50~A~och~E=16~V$ Bestäm:
 - a) U1
 - b) U2

5. Följande gäller för AC-kretsen till höger.

$$e(t)$$
 R_1 R_2 R_3 R_4

(4p)

(4p)

(4p)

- $e(t)=100\cdot sin(\omega t)\,V$ (Momentanvärde) $f=50\,Hz$ $R_1=20,0\,\Omega$ $R_2=65,0\,\Omega$ $R_3=42,5\,\Omega$ $R_4=23,5\,\Omega$
- a) Beräkna kretsens ersättningsresistans.
- b) Beräkna strömmen i(t). (dvs. momentanvärdet av strömmen)
- c) Vi vill nu ange resistansen R_2 som en konduktans, G_2 , istället. Beräkna G_2 .
- d) Beräkna effekten som utvecklas i resistor R_3
- 6. Tvåpolen nedan består av en DC-spänningskälla och 5 resistorer.

- a) Bestäm den ekvivalenta spänningstvåpolen till AB.
- b) Anslut nu resistorn $R_L=10~K\Omega$ till AB och beräkna spänningen över R_L
 - 7. Följande frågor handlar om AC-kretsen till höger.

I a) och b) frågorna nedan ska du välja något av alternativen 1-3. För att få poäng på varje delfråga krävs att rätt alternativ är ikryssat <u>och</u> att du kort <u>motiverat</u> ditt val. Motivering kan ges utifrån resonemang med ritad

Motivering kan ges utifrån resonemang med ritad Impedanstriangel eller utifrån lämpliga formler.

- a) Om R ökas gäller följande för fasförskjutningen, φ , mellan e(t) och i(t):
 - 1) Storleken på φ ökar
 - 2) Storleken på φ minskar
 - 3) Storleken φ är oförändrad
- b) Om L ökas gäller följande för fasförskjutningen, φ , mellan e(t) och i(t):
 - 1) Storleken på φ ökar
 - 2) Storleken på φ minskar
 - 3) Storleken φ är oförändrad

8. Nedan ser du en AC-krets med tillhörande komponentvärden.

(4p)

- $e(t) = 20 \cdot \sqrt{2} \cdot \sin(2\pi f \cdot t) V$ $f = 50 \,\mathrm{Hz}$
- L = 20 mH
- $R = 8.0 \Omega$

- b) Beräkna kretsens totala impedans Z.
- c) Beräkna kretsens fasvinkel φ .

Spänningen (effektivvärdet)

- d) Hur mycket reaktiv effekt förbrukar induktorn?
- 9. En växelströmsmotor är märkt med effekten 2,0 kW och effektfaktorn $cos \varphi_1 = 0.68$ (5p) induktiv, Se fig. 1 nedan.

Fig.1

- a) Beräkna strömmen, I_1 , den skenbara effekten, S_1 , och den reaktiva effekten Q_1 i fig. 1 ovan.
- b) Nu faskompenseras motorn genom att kondensatorn, C ansluts enligt figur 2 nedan. Beräkna kondensatorns kapacitans, så att totala effektfaktorn blir 0,95. Beräkna även den ström som nu går till motor plus kondensator, dvs. I_2 i figur 2. Rita även en effekttriangel som förtydligar dina beräkningar.

Fig.2

10. Nedan ser du en krets med en ideal operationsförstärkare med matningsspänningen (3p)

- a) Är OP-kopplingen en komparator-koppling eller en förstärkar-koppling? Motivera <u>hur</u> du avgör detta.
- b) Beräkna V_{ref} om R= 12,0 $k\Omega$

11. Nedan ser du en krets med en ideal operationsförstärkare med matningsspänningen \pm 15 V.

- a) Tag fram det matematiska sambandet mellan u_{ut} och u_{in} , dvs. u_{ut} "som funktion av" u_{in} . OBS att du ska <u>visa med beräkningar</u> hur du kommer fram till sambandet, inte endast skriva sambandet. Använd egenskaperna som ideal OP har.
- b) Beräkna u_{ut} om $u_1=0.5~V$, $u_2=0.2~V$, $u_3=0.5~V$ och $R_1=R_2=12.0~k\Omega$ och $R_3=R_f=10.0~k\Omega$
- 12. a) Rita en helvågs-likriktarbrygga. Kretsen ska innehålla: (4p)
 - En AC-spänningskälla med utsatt referensriktning (+)
 - "Rätt antal" dioder
 - En resistor som den likriktade strömmen går genom (rita även ut positiv riktning på strömmen genom resistorn som stämmer med din referensriktning på AC-källan)
 - En glättningskondensator inkopplad över resistorn.
 - b) I kretsen du ritade i a)-uppgiften gäller följande:

$$\widehat{u_R} = 10 \, V$$
 (spänningskällans toppvärde)

$$f = 100 \, Hz$$

$$R = 2.0 k\Omega$$
 , $C = 200 \mu F$

Beräkna *rippelspänningen*, Δu , över resistorn.

13. Följande frågor handlar om elsäkerhet.

(4p)

- a) Förklara principen för hur en jordfelsbrytare fungerar.
- b) Beskriv principen för vad som får en säkring att lösa ut och bryta en strömkrets.
- c) Om en människa utsätts för strömgenomgång i kroppen kan detta vara farligt. Beskriv kort vad som är "farligast" i detta sammanhang likström eller växelström? Motivera även kort varför.
- d) För en växelspänningsanläggning gäller att om spänningen överstiger 1 000 V kallas detta en högspänningsanläggning och om spänningen är mindre än 1 000 V kallas det för en lågspänningsanläggning. Beskriv vad som gäller för det liknande begreppet "starkström".

Formelblad Elteknik M

Allmänt

Ohms lag:
$$u(t) = R \cdot i(t)$$

Kirchhoffs 1:a lag:
$$\sum i_n = 0$$
 i en förgreningspunkt

Kirchhoffs 2:a lag:
$$\sum u_n = 0$$
 runt en sluten slinga

Effekt [W]:
$$p(t) = u(t) \cdot i(t)$$

Energi [J, Ws]:
$$W = \int_{t}^{t_2} p(t)dt$$

Medeleffekt[W]:
$$P_{medel} = \frac{W}{\Delta t} = \frac{1}{T} \int_{T} p(t) dt$$

Sinusformade växelförlopp

Vinkelfrekvens [rad/s]:
$$\omega = 2 \cdot \pi \cdot f$$
 $f = \frac{1}{T}$

Ström [A]:
$$\begin{cases} i(t) = \hat{i} \cdot \sin(\omega \cdot t + \alpha) \\ \bar{i} = \hat{i} \cdot e^{j\alpha} = \hat{i} \angle \alpha \\ \bar{I} = I \cdot e^{j\alpha} = I \angle \alpha \end{cases}, \quad \hat{i} = \sqrt{2} \cdot I$$

Spänning [V]:
$$\begin{cases} u(t) = \hat{u} \cdot \sin(\omega \cdot t + \beta) \\ \overline{u} = \hat{u} \cdot e^{j\beta} = \hat{u} \angle \beta \\ \overline{U} = U \cdot e^{j\beta} = U \angle \beta \end{cases}, \quad \hat{u} = \sqrt{2} \cdot U$$

Fasvinkel [rad,
$$\circ$$
]: $\varphi = \beta - \alpha$

Impedans [
$$\Omega$$
]:
$$\frac{\overline{U}}{\overline{I}} = \overline{Z} = R + jX = Z \cdot e^{j\varphi} = Z \angle \varphi$$

Reaktans [
$$\Omega$$
]: $|X_L| = \omega \cdot L$, $|X_C| = \frac{1}{\omega \cdot C}$

Serieresonanskrets:
$$Z = \sqrt{R^2 + \left(\omega \cdot L - \frac{1}{\omega \cdot C}\right)^2}, \omega_0 = \frac{1}{\sqrt{L \cdot C}}$$

$$R = Z\cos\varphi$$
, $X = Z\sin\varphi$, $Q = P\tan\varphi$

Enfaseffekt

Medeleffekt [W]:
$$P = UI \cos \varphi = RI^2 = \frac{U_R^2}{R}$$

Reaktiv effekt [VAr]:
$$Q = UI \sin \varphi = XI^2 = \frac{U_X^2}{X}$$

Skenbar effekt [VA]:
$$S^2 = P^2 + Q^2$$

$$P_{tot} = P_1 + P_2 + \square$$

$$\mathbf{Q}_{tot} = \mathbf{Q}_1 + \mathbf{Q}_2 + \square$$

Symmetriska trefassystem

Spänningssamband:
$$U_h = \sqrt{3} \cdot U_f$$

Effekt [VA], [W], [VAr]:
$$S = \sqrt{3} \cdot U_h \cdot I_l \qquad P = S \cdot \cos \varphi \qquad Q = S \cdot \sin \varphi$$

Trefas Y-koppling:
$$I_l = I_{str} = \frac{U_f}{Z}$$

Trefas D-koppling:
$$I_{str} = \frac{U_h}{Z}$$
 $I_l = \sqrt{3} \cdot I_{str}$

D-Y-omvandling:
$$\overline{Z}_D = 3 \cdot \overline{Z}_Y$$

Ytterligare några samband

Parallellkoppling av resistorer:
$$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Specialfall (2 stycken):
$$R_{tot} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Parallellkoppling av 2 impedanser:
$$\overline{Z}_{tot} = \frac{\overline{Z}_1 \cdot \overline{Z}_2}{\overline{Z}_1 + \overline{Z}_2}$$

Spänningsdelning:
$$U_1 = E \frac{R_1}{R_1 + R_2}$$

Strömgrening:
$$I_1 = I \frac{R_2}{R + R_3}$$

Tvåpolsomvandling:
$$E_0 = I_k \cdot R_0$$
 $I_k = \frac{E_0}{R_0}$

Polspänning (aktiv tvåpol):
$$U = E - R_i \cdot I$$

Potentialsamband:
$$U_{AB} = V_A - V_B$$
 $V_A = V_B + U_{AB}$

Likriktare

Rippel vid glättning med kondensator:
$$\Delta U = \frac{I \cdot \Delta t}{C}$$

OP-förstärkare

Inverterande koppling:
$$\frac{u_{ut}}{u_{in}} = -\frac{R_2}{R_1}$$

Icke inverterande koppling:
$$\frac{u_{ut}}{u_{in}} = \frac{R_1 + R_2}{R_1}$$

Summatorkoppling:
$$\frac{u_{ut}}{u_{in}} = -R_0 \left[\frac{u_1}{R_1} + \frac{u_2}{R_2} + \frac{u_3}{R_3} + L \right]$$

$$U_{ut} = -\frac{R_3}{R_1} \cdot U_1 - \frac{R_3}{R_2} \cdot U_2$$

Boolsk algebra

1a.
$$A + 0 = A$$
 1b. $A \cdot 1 = A$

 2a. $A + 1 = 1$
 2b. $A \cdot 0 = 0$

 3a. $A + A = A$
 3b. $A \cdot A = A$

 4a. $A + \overline{A} = 1$
 4b. $A \cdot \overline{A} = 0$

5.
$$\overline{A} = A$$

6a.
$$A + B = B + A$$

7a.
$$(A+B)+C=A+(B+C)$$

8a.
$$A + BC = (A + B)(A + C)$$

9a.
$$A + BC = (A + B)(A + B)$$

10a.
$$A + \overline{A}B = A + B$$

11a.
$$\underline{AB + \overline{A}C + BC} = \underline{AB + \overline{A}C}$$

11a.
$$AB + \overline{A}C + BC = AB + \overline{A}C$$

9b.
$$A(A+B) = A$$

10b. $A(\overline{A}+B) = AB$

7b. $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

A(B+C) = AB + AC

6b. $A \cdot B = B \cdot A$

8b.

$$10b. A(\overline{A} + B) = AB$$

11a.
$$AB + \overline{AC} + BC = AB + \overline{AC}$$
 11b. $(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$
12a. $AB + \overline{AC} + BC = AB + \overline{AC}$ 11b. $AB + \overline{AC} + \overline{AC}$

$$\overline{A_1 \cdot A_2 \cdot \ldots \cdot A_n} = \overline{A_1} + \overline{A_2} + \ldots + \overline{A_n}$$

Transformator

Omsättning:
$$m = \frac{N_1}{N_2} = \frac{U_{1n}}{U_{2n}}$$

Trafo-lagar:
$$\frac{U_1}{U_2} = I$$

$$\frac{U_1}{U_2} = m \qquad \frac{I_1}{I_2} = \frac{1}{m} \qquad Z_{\text{elev}} = m^2 \cdot Z_b$$

$$Z_{ekv} = m^2 \cdot Z_b$$

Allmänt elmotorer

 $\omega = 2 \cdot \pi \cdot \frac{n}{60}$ $M = \frac{P}{\omega}$ Vinkelhastighet och moment:

 $\eta = \frac{P_{\text{ut}}}{P_{\text{in}}} = \frac{P_{\text{in}} - P_f}{P_{\text{in}}} = \frac{P_{\text{ut}}}{P_{\text{ut}} + P_f}$ Verkningsgrad:

Effektomvandling: 1 hk = 735 W

Likströmsmotorn

 $E = k_E \cdot n \cdot \Phi = k_M \cdot \omega \cdot \Phi$ Inducerad spänning:

 $M = k_M \cdot l_a \cdot \Phi$ Elektrodynamiskt moment:

Asynkronmotorn

Synkront varvtal:
$$n_s = \frac{2}{p} \cdot f \cdot 60$$
 $\omega_s = 2 \cdot \pi \cdot \frac{n_s}{60}$

Eftersläpning:
$$\mathbf{s} = \frac{n_{s} - n}{n_{s}} \qquad n = n_{s} \cdot (1 - s)$$

Effektförluster och axeleffekt:
$$P_f = P_{Cul} + P_{Fel} + P_{Cu2} + P_{fr}$$
 $P_{axel} = P_2 - P_{fr}$

Effektsamband:
$$P_{Cu2} = \mathbf{s} \cdot P_{12}$$
 $P_2 = (1-\mathbf{s}) \cdot P_{12}$ $P_2 = \frac{1-\mathbf{s}}{\mathbf{s}} \cdot P_{Cu2}$

Moment:
$$M_{\text{axel}} = \frac{P_{\text{axel}}}{\omega}$$
 $M_{\text{el}} = \frac{P_2}{\omega} = \frac{P_{12}}{\omega}$ $M_{\text{el}} \sim U_1^2$

Kompletterande blad Effekt trefas

$$P=3 \cdot \frac{Uf^2}{R} \ alt P_f = \frac{Uf^2}{R} \ alt \ P_{tot} = 3P_f$$

Impedanstriangel

$$\hat{Z} = \frac{\widehat{U}\sin(\varpi t + \beta)}{\widehat{I}\sin(\varpi t + \alpha)} = \frac{\widehat{U}}{\widehat{I}} \quad \boxed{\varphi}$$

Faskompensering

$$Q_c = Q_2 - Q_1$$

$$Q_c = -\frac{U^2}{X_c} = -U^2 \cdot \omega C$$
$$C = -\frac{Q_c}{U^2 \cdot \omega}$$

Zenerdioden

$$I_{z \text{ maz}} = \frac{P_{z \text{ max}}}{U_{z}}$$

$$I_{\text{max}} = \frac{U_{max} - U_{z}}{R}$$