

HUM. N V DNA (CD: 2225-87)

HIMMEL & PROTEIN

FFPH II. STYAHYL.FNAFDTTQTSVFKFEDFTALSIILRGTVHEKLRTWTFNLYDINKDGYINKEEMDIVKAIYDMNGK

YTYI !: EDTTPRQHVDVFFQKMDKNKDGIIVTLDEFFLESQEDDNIMRSLQQLFQNVM

卷之三

RAT 1vN (r1vN) DNA (CD: 339-1037)

GGCACACAACCCCTGGATTCTCGGAGAATATGCCGTGAGGTGTTGCCAATTATTAGTTCTTGGCTAGCAGATGTTA
 GGGACTGGTtaaGCCTTGGAGAAATTACCTTAGGAAAACGGGAAATAAAAGCAAAGATTACCATGAATTGCAAGATTA
 CCTAGCAATTGCAAGGtagGAGGAGAGAGGTGGAGGGCGGAGTAGACAGGAGGGAGGGAGAAAGtgaGAGGAAGCTAGGC
 TGGTGGAAATAACCTGCACTTGGAACAGCGGAAAGAAGCGCGATTTCCAGCTTaaATGCCTGCCCGCTCTGCTT
 GCCTACCCGGAACGGAGATGTTGACCCAGGGCGAGTCTGAAGGGCTCCAGACCTGGGGATAGTAGTGGTCTGTGTC
 CTCTGAAACTACTGCACTACCTCGGGCTGATTGACTTGTGGATGACAAGATCGAGGATGATCTGGAGATGACCAGG
 TTTGCCATCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACCAAGAGAGAACTGCAAGTCCTTACCGG
 GGATTCAAAAACGAGTGCCCCAGTGGTGTGTTAACGAAGAGACATTCAAGCAGATCTACGCTCAGTTTCCCTCATGG
 AGATGCCAGCACATACGACATTACCTCTCAATGCCCTCGACACCACCCAGACAGGCTCTGAAAGTTGAGGACTTG
 TGACTGCTCTGTCGATTTACTGAGAGGAACGGTCCATGAAAACGTGAGGTGGACGTTAATTGTACGACATCAATAAA
 GACGGCTACATAACAAAGAGGAGATGATGGACATAGTGAAAGCCATCTATGACATGATGGGAAATACACCTATCCTGT
 GCTCAAAGAGGACACTCCCAGGCAGCACGTGGACGTCTTCCAGAAAATGGATAAAATAAGATGGCATTGTAACGT
 TAGACGAATTCTCGAGTCCTGTCAGGAGGATGACAACATCATGAGGTCTCTACAGCTGTTCCAAATGTCATGTAACGT
 AGGACACTGGCCATCCTGCTCTCAGAGACACTGACAAACACCTCAATGCCCTGATCTGCCCTGTTCCAGTTACACAT
 CAACTCTGGGACAGAAATACCTTTACACTTGGAAAGAATTCTCTGCTGAAGACTTCTACAAACCTGGCACCGAGTG
 GCTCAGTCTCTGATTGCCAACTCTCCTCCCTCCTCTTGAGAGGGACGAGCTGAAATCCGAAGTTGTTGGAAAGC
 ATGCCCATCTCTCCATGCTGCTGCCCTGTGGAAGGCCCTCTGCTTGAAGCTTAAACAGTAGTGCACAGTTCTGCG
 TATACAGATCCCCAACTCACTGCCCTCAAGTCAGGCAGACCCCTGATCAATCTGAACCAATGTGCACCCTCCCGATGG
 CCTCCCAAGCCAATGTGCCTGCTCTCTGGTGGAAAGAAAGAACGCTCTACAGAGCACTTAGAGCTTACCATGA
 AAATACTGGGAGAGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGGTATCAGATGATGCAAACA
 GCCCATGTCATTTTTCCAGAGGTAGGGACTAATAATTCTCCCACACTAGCACCTACGATCATAGAACAGTCTTCTGCG
 AACACATCCAGGAGGGAAACCGCTGCCAGTGGCTATCCCTCTCCATCCCTGCTCAAGGCCAGCACTGCATGTC
 CTCCCGGAAGGTCCAGAATGCCGTGAAATGCTGTAACCTTATACCTGTTATAATCAATAAACAGAACTATTCGTAC
 AAAAAA

Fig. 2

RAT 1vN (r1vN) PROTEIN

MLTQGESEGLQTLGIVVVLCSSLKLLHYLGLIDLSDDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNEC
PSGVVNEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINK
EEMMDIVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDDEFLESCQEDDNIMRSIQLFQNVM

Fig. 2 Continued

MOUSE 1 V (CD:477-1127)

CGGGCCCCCTGAGATCCAGCCCCGAGCGCGGGGGCGAGCGGCCGGGTGGCAGCAGGGCGGCAGCGCAGCTCCCG
 CACCGCACGCAGCGCGGGCTCGCAGCCTCGCCGTGCAGGCACGCCGGCCCCTGTCAACATCAGGAGGCTTGGGG
 CTCGGGGCTCGGGCTCGGAGAAGCCAGTGGCCGGCTGGGTGCCGCACCGGGGGCGCTGTCAAGGCTCCCGCAGC
 CTCTGGCCCTGGGAGTCAGTGCATGTGCCTGGCTGAAGAAGGCAGCAGCCACGAGCTCCAGGCGCCCGGCCCCACGTT
 TCTGAATACCAAGCTGCAGGCAGCTGCTCGGGCTTTTGCTTCTCGCTTCTCCTCCAATTCAAAGTGGGCA
 ATCCACACCGATTCTTTCAGGGAGGGAAAGAGACAGGGCTGGGTCCAAAGACGCACACAAGTCTCGCTGCCATGG
 GGGCCGTCACTGGCCTTCTCCCTGCAGACCAAAACAAAGGCACCCCTAAAGACAAGATTGAGGATGAGCTAGAG
 ATGACCATGGTTGCCACCGGCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACCTCACCAAGAGAGAACTGCAAGT
 CTTGTACCGGGGATTCAAAAACGAGTGCCTAGCGGTGTGGTCAATGAAGAACATTCAAGCAGATCTACGCTCAGTTT
 TCCCTCACGGAGATGCCAGCACATATGCACATTACCTCTCAATGCCTTCGACACCACCCAGACAGGCTCTGTAAAGTTC
 GAGGACTTTGTGACTGCTCTGTCGATTTACTGAGAGGGACAGTCCATGAAAAACTAAGGTGGACGTTAATTGTATGA
 CATCAATAAGACGGTACATAAACAAAGAGGAGATGATGGACATAGTCAAAGCCATCTATGACATGATGGGAAATACA
 CCTATCCTGTGCTCAAAGAGGACACTCCAGGCAGCATGTGGATGTCTTCTCCAGAAAATGGATAAAATAAGATGGC
 ATTGTAACGTTAGATGAATTCTGAATCATGTCAGGAGGATGACAACATCATGAGATCTACAGCTGTTCAAATGT
 CATGTAACTGAGGACACTGGCATTCTGCTCTCAGAGACACTGACAAACACCTTAATGCCCTGATCTGCCCTGTTCAA
 TTTTACACACCAACTCTGGGACAGAAACCTTACACTTGAAGAATTCTCTGCTGAAGACTTCTACAAAACCTG
 GCACCACGTGGCTGTCTCTGAGGGACGAGCGGAGATCCGACTTGGTGGACATGCCATCTCTCATGCTGCTG
 CCCTGTGGAAGGCCCTCTGCTTGAGCTTAATCAATAGTCACAGTTATGCTTACACATATCCCAACTCACTGCC
 CAAGTCAGGCAGACTCTGATGAATCTGAGCAAATGTGACCATCCTCCGATGCCCTCCAAGCCAATGTGCCCTGCT
 CTTCCCTGGTGGAGAAAGAGTGTCTACGGAACAATTAGAGCTTACCATGAAAATATTGGGAGAGGCAGCACCTAAC
 ACATGTAGAATAGGACTGAATTATTAAGCATGGTATATCAGATGATGCAAATTGCCATGTCATTTTCAAAGGTAG
 GGACAAATGATTCTCCACACTAGCACCTGTGGTCATAGAGCAAGTCTCTAACATGCCAGAAGGGAAACCACTGTCCA
 GTGGTCTATCCCTCTCCATCCCTGCTCAAACCCAGCACTGCATGCCCTCCAAGAAGGTCCAGAATGCCCTGCGAAA
 CGCTGTACTTTATACCTGTTCAATCAATAACAGAACTATTGTAaaaaaaaaaaaaaaa

MOUSE 1. PROTEIN.

AGAVMGTSSLQTKQRRPSKDKIEDELEMTVCHRPEGLEQLEAQTNFTKRELQVLVRGFKNECPSGVVNEETFKQIYAQ
 FFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMDIVKAIYDMMGK
 VTYPVLKEDTPRQHVDFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNV

Fig. 3

RAT 1VL DNA (CD:31-714)

GTCCCAAGTCGACACAAGTCTCGCTGCCATGGGGCGTCATGGTACCTCTCGTCCCTGCAGACCAAACAAAGGCG
 ACCCTCTAAAGACATCGCCTGGTGGTATTACAGTATCAGAGAGACAAGATCGAGGATGATCTGGAGATGACCATGGTT
 GCCATCGGCCTGAGGGACTGGAGCAGCTGAGGCACAGACGAACCTCACCAAGAGAGAACTGCAAGTCCTTACCGGGGA
 TTCAAAAACGAGTGCCCCAGTGGTGTGGTTAACGAAGAGACATTCAAGCAGATCTACGCTCAGTTTCCCTCATGGAGA
 TGCCAGCACATACGCACATTACCTCTCAATGCCTCGACACCACCCAGACAGGCTCTGTAAGTCAGGACTTGTGA
 CTGCTCTGTCGATTTACTGAGAGGAACGGTCCATGAAAAACTGAGGTGGACGTTAATTGTACGACATCAATAAAGAC
 GGCTACATAAAACAAAGAGGAGATGATGGACATAGTGAAAGCCATCTATGACATGATGGGAAATACACCTATCCTGTGCT
 CAAAGAGGACACTCCCAGGCAGCACGTGGACGTCTCTCCAGAAAATGGATAAAATAAGATGGCATTGTAACGTTAG
 ACGAATTCTCGAGTCCTGTCAGGAGGATGACAACATCATGAGGTCTCTACAGCTGTTCCAAAATGTCATGTAACGAGG
 ACACGGCCATCCTGCTCTCAGAGACACTGACAAACACCTCAATGCCCTGATCTGCCCTGTTCCAGTTTACACATCAA
 CTCTCGGGACAGAAATACCTTTACACTTGGAAAGAATTCTCTGCTGAAGACTTCTACAAACCTGGCACCGCGTGGCT
 CAGTCTCTGATTGCCAACTCTTCCCTCCCTCTGAGAGGGACGAGCTGAAATCGAAGTTGTTGGAAAGCATG
 CCCATCTCTCCATGCTGCTGCCCTGGAAGGCCCTCTGCTTGGAGCTAAACAGTAGTGCACAGTTCTGCGTAT
 ACAGATCCCCAACTCACTGCCTCTAACAGTCAAGCAGACCCGATCAATCTGAACCAATGTCACCCTCCGATGGCCT
 CCCAAGCCAATGTGCTGCTTCTCTGAGGGAAAGAAAGAACGCTCTACAGAGCACTTAGAGCTTACCATGAAAA
 TACTGGGAGAGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGGTACAGATGATGCAAACAGCC
 CATGTCATTTTTCCAGAGGTAGGGACTAATAATTCTCCCACACTAGCACCTACGATCATAGAACAAAGTCTTTAACAA
 CATCCAGGAGGGAAACCGCTGCCAGTGGCTATCCCTCTCCATCCCTGCTCAAGCCAGCACTGCATGCTCTCC
 CGGAAGGTCCAGAATGCCGTGAAATGCTGTAACTTTATACCCGTTATAATCAATAAACAGAACTATTCGTACAAAA
 AAAAAAAAAAAAAA

RAT 1VL PROTEIN

MGAVMGTFSSLQTKQRRPSKDIWWYYQYQRDKIEDDLEMTVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPGVV
 NEETFKQIYAQFFPHGDASTYAHYLNFADTTQTGSVKFEDFVTALSILLRGTVHEKLWTFNLYDINKDGYINKEEMMD
 TVKAJYDMMGKYTYPVLKEDTPRQHVDPVFQKMDKNKDGIVTIDEFIESCOFDDNIMRSIQLFQNV

Fig. 4

MOUSE 1VL DNA (CD:77-760)

ATCCACACCGATTCTTTCAGGGGAGGAAGAGACAGGGCTGGGTCCAAGACGCACACAAGTCTCGCTGCCATGG
 GGGCGTCATGGCCTTCTCCCTGCAGACCAAAAGGCACCCCTAAAGACATGCCCTGGTGGTATTACCAAG
 TATCAGAGAGACAAGATTGAGGATGAGCTAGAGATGACCATGGTTGCCACCGGCTGAGGGACTGGAGCAGCTTGAGGC
 ACAGACGAACCTCACCAAGAGAGAACTGCAAGTCTGTACCGGGATTCAAAAAGAGTGCCTAGCGGTGGTCAATG
 AAGAACATTCAAGCAGATCTACGCTCAGTTTCCCTACGGAGATGCCAGCACATATGCACATTACCTCTCAATGCC
 TTCGACACCACCCAGACAGGCTCTGTAAAGTCGAGGACTTGTGACTGCTCTGTCGATTTACTGAGAGGGACAGTCCA
 TGAAAAACTAAGGTGGACGTTAATTGTATGACATCAATAAGACGGCTACATAACAAAGAGGAGATGATGGACATAG
 TCAAAGCCATCTATGACATGATGGGAAATACACCTATCCTGTGCTCAAAGAGGACACTCCCAGGCAGCATGTGGATGTC
 TTCTTCCAGAAAATGGATAAAAATAAGATGGCATTGTAACGTAGATGAATTCTTGAATCATGTCAGGAGGATGACAA
 CATCATGAGATCTCTACAGCTGTTCAAATGTATGTAACACTGAGGACACTGGCATTCTGCTCTCAGAGACACTGACAA
 ACACCTTAATGCCCTGATCTGCCCTGTTCCAATTACACACCAACTCTGGACAGAAATACCTTTACACTTGGAA
 GAATTCTCTGCTGAAGACTTCTACAAACCTGGCACCACGTGGCTCTGTCGAGGGACGAGCGGAGATCCGACTTG
 TTTTGGAAAGCATGCCCATCTCTCATGCTGCTGCCCTGTGGAAGGCCCCCTGCTGAGCTTAATCAATAGTCACAGTT
 TTATGCTTACACATATCCCCAACTCACTGCCTCCAAGTCAGGCAGACTCTGATGAATCTGAGCCAAATGTGACCATCCT
 CCGATGCCCTCCAAAGCCAATGTGCCTGCTCTTCCCTGGTGGAAAGAAAGACTGTTCTACGGAACAATTAGAGCTT
 ACCATGAAAATATTGGAGAGGCAGCACCTAACACATGTAGAAATAGGACTGAATTATTAAGCATGGTATATCAGATGAT
 GCAAATTGCCCATGTCATTTTTCAAAGGTAGGGACAAATGATTCTCCACACTAGCACCTGTGGTCATAGAGCAAGTC
 TCTTAACATGCCAGAAGGGAAACACTGTCCAGTGGCTATCCCTCCATCCCTGCTCAAACCCAGCACTGCAT
 GTCCCTCCAAGAAGGTCCAGAATGCCCTGCGAAACGCTGTACTTTATACCCGTTCTAATCAATAACAGAACTATTCG
 TACAAAAAAAAAAAAAAA

MOUSE 1VL PROTEIN

MGAVMGTSSLQTKQRPSKDIAWWYYQYQRDKIEDELEMTVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPGVV
 NEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLWTFNLYDINKDGYINKEEMMD
 LUKATIVDMMGKYTVPII KEDTPRQHVDFEFQKMDKNKDGTVTI DEFLFSCQEDDNIMRSLOLQFQNVM

Fig. 5

RAT 1VN DNA (FIRST-PASS, PARTIAL; CD: 345-955)

GTCCGGGCACACAACCCCTGGATTCTCGAGAATATGCCGTACGGTGTGCCAATTATTAGTTCTCTGGCTAGCAGA
TGTTTAGGGACTGGTTAACGCTTGGAGAAATTACCTAGGAAAACGGGAAATAAGCAAAGATTACCATGAATTGCA
AGATTACCTAGCAATTGCAAGGTAGGAGGAGAGGTGGAGGGCGGAGTAGACAGGAGGGAGGGAGAAAGTGAAGAGGAAG
CTAGGCTGGTGGAAATAACCTGCACCTGGAACAGCGCAAAGAACGCGATTTCAGCTTAAATGCCTGCCCGCGTT
CTGCTTGCTACCCGGAACGGAGATGTTGACCCAGGGCGAGTCAGGGCTCCAGACCTTGGGATAGTAGTGGTCT
GTGTTCCCTCTGAAACTACTGCACTACCTCGGGCTGATTGACTTGTGGATGACAAGATCGAGGATGATCTGGAGATGA
CCATGGTTGCCATCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACCAAGAGAGAACTGCAAGTCCTT
TACCGGGATTCAAAAACGAGTCCCCAGTGGTGTGGTTAACGAAGAGACATTCAAGCNGATCTACGTCAGTTTCCC
TCATGGAGATGCCAGCACATACGCACATTACCTCTTCAATGCCCTCGACACCACCCAGACAGGCTCTGTAAGTTGAGG
ACTTTGTGACTGCTCTGCGATTTACTGAGAGGAACGGTCCATGAAAAACTGAAGTGGACGTTAATTGTACGACATC
AATAAAAGACGGCTACATAAACAAAGAGGAGATGGACATAGTGAAGCCATCTATGACATGATGGGAAATAACACCTA
TCTTGTGCTAAAGAGGACACTCCAGGCAGCACGTGGACGTCTCTTCCAGAAAATGGATAAAATAAGATGG

RAT 1VN PROTEIN (PARTIAL)

MLTQGESEGLQTLGIVVVLCSSLKLLHYLGLIDLSDDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNEC
PSGVVNEETFKXIYAQFFPHGDASTYAHYLNFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLWTFNLYDINKDGYINK
EEMMDIVKAIYDMMGKYTYLVLEDTSRQHVDVFFQKMDKNKD

Fig. 6

HUMAN 9QL DNA (CD:207-1019)

CTCACCTGCTGCCTAGTGTCCCTCTCCTGCTCCAGGACCTCCGGTAGACCTCAGACCCCCGGGCCATTCCCAGACTCA
 GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGCGCGTGTGAGCGCCCTATCCCGGCCACC
 CGGCGCCCCCTCCCACGGCCCGGGAGCGGGGCCGGGGCATGCGGGGCCAGGGCGCAAGGAGAGTTGTCCG
 ATTCCCAGACCTGGACGGCTCCTACGACCAGCTCACGGCCACCCCTCAGGGCCACTAAAAAGCGCTGAAGCAGCGA
 TTCCTCAAGCTGCTGCCGTGCTGGGGCCCAAGCCCTGCCCTCAGTCAGTGAACATTAGCCGCCAGCCTCCCTCCG
 CCCCCACAGACCCCCGCCCTGCTGGACCCAGACAGCGTGGACGATGAATTGAATTGTCCACCGTGTGTCACCGGCCGTGAGG
 GTCTGGAGCAGCTGCAGGAGCAAACCAAATTACGCGCAAGGAGTTGCAGGTCTGTACCGGGCTTCAAGAACGAATGT
 CCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTACTCCAGTTCTTCCTCAAGGAGACTCCAGCACCTATGC
 CACTTTCTCTTAATGCCCTTGACACCAACCATGATGGCTCGGTCAAGTTTGAGGACTTTGTGGCTGGTTGTCCGTGA
 TTCTTCGGGAACTGTAGATGACAGGCTTAATTGGGCTTCAACCTGTATGACCTTAACAAGGACGGCTGCATCACCAAG
 GAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGCAAGTACACGTACCCCTGCACTCCGGAGGAGGCC
 AAGGGAACACGTGGAGAGCTTCCAGAAGATGGACAGAAACAAGGATGGTGTGGTACCTTGAATTGAGGAATTGAGT
 CTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTGACAATGTCATCTAGCCCCCAGGAGAGGGGTCAGT
 GTTCTGGGGGACCATGCTCTAACCTAGTCCAGGCGGACCTCACCCCTCTCTCCAGGTCTATCCTCATCCTACGC
 CTCCCTGGGGCTGGAGGGATCCAAGAGCTTGGGATTCACTGAGCTCTCACCCCTTCTGCCTGACACCCAGTGTGAGAGTGG
 CAGAGTGCATCTGGGGGTGTTCCAACTCCCACCAGCTCTCACCCCTTCTGCCTGACACCCAGTGTGAGAGTGG
 CCTCCTGTAGGAATTGAGGGTCTCCACCTCCTACCCACTCTAGAAACACACTAGAGCGATGTCCTGCTATGGTGC
 TTCCCCCATCCCTGACCTCATAAACATTCCCTAAGACTCCCCTCAGAGAGAATGCTCCATTCTGGCACTGGCTGG
 CTTCTCAGACCAGCCATTGAGAGCCCTGTTGGAGGGGACAAGAATGTATAGGGAGAAATCTGGCCTGAGTCATGG
 TAGGTCTAGGAGGTGGGTGGGTTGAGAATAGAAGGGCTGGACAGATTATGATTGCTCAGGCATACCAGGTTAGCT
 CCAAGTCCACAGGCTGCTACCACAGGCCATCAAATATAAGTTCCAGGCTTGAGAAGACCTTGTCTCCTTAGAAA
 TGCCCCAGAAATTTCACACCCCTCCTCGGTATCCATGGAGAGCCTGGGGCAGATATCTGGCTCATCTGGCATTGCT
 TGGCTGCTGGCTGGCTGCTGCTGCTGGCTGGGGAAATGCTGGATGGGGATGCTGCTGGCTGATGGCTG
 AAAATTCTCATCCACCCCTCCTGCTTATCGTCCCTGTTGAGGGCTATGACTTGAGTTTGTGCTG
 TAGACTTGGGACCTTCCCTGAACCTGGGCTATCACTCCCCACAGTGGATGCCCTAGAAGGGAGAGGGAGGGAGGC
 AGGCATAGC

Fig. 7

HUMAN 9QL PROTEIN

MRGQGRKESLSDSRDLDGSYDQLTGPPGPTKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRLLPDHSVDE
FELSTVCHRPEGLEQLQEQTKFTRKELQVLYRGFKNECPGIVNEENFKQIYSQFFPQGDSSTYATFLNAFDTNHDGSV
SFEDFVAGLSVILRGTVDDRLNWAFNLYDLNKDGCTKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNK
DGVVTIEEFIESCQKDENIMRSMQLFDNVI

Fig. 7 Continued

RAT 9QL DNA (PARTIAL; CD:2-775)

CCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCACCCCTCCAGGGCCAGTAAAAAGCCCTGAAGCAGCGTTCC
 TCAAGCTGCTGCCGTGCTGCCCTAAGCCCTGCCCTCAGTCAGTGAAACATTAGCTGCCCAAGCCTCCGCC
 CACAGACCCCGCCCCCTGGACCCAGACAGCGTAGAGGATGAGTTGAATTATCCACGGTGTGTACCGACCTGAGGGCCT
 GGAACAACCTCAGGAACAGACCAAGTTCACACGCAGAGAGCTGCAGGTCTGTACCGAGGCTTAAGAACGAATGCCCA
 GTGGGATTGTCAACGAGGAGAACTTCAAGCAGATTATTCTCAGTTCTTCCCAAGGAGACTCCAGCAACTATGCTACT
 TTTCTCTCAATGCCCTTGACACCAACCACGATGGCTCTGTCAAGTTGAGGACTTGTGGCTGGTTGTGGTGTGATTCT
 TCAGGGGACCATAGATGATAGACTGAGCTGGCTTCAACTTATATGACCTAACAGGACGGCTGTATCACAAAGGAGG
 AAATGCTTGACATTATGAAGTCCATCTATGACATGATGGCAAGTACACATACCCCTGCCCTCCGGGAGGAGGCCCAAGA
 GAACACGTGGAGAGCTTCCAGAAGATGGACAGGAACAGGACGGCGTGGTACCATCGAGGAATTATCGAGTCTTG
 TCAACAGGACGAGAACATCATGAGGTCCATGCAGCTTTGATAATGTCATCTAGCTCCCAGGGAGAGGGTTAGTGTG
 TCCTAGGGTGACCAGGCTGTAGTCCTAGTCCAGACGAACCTAACCCCTCTCCAGGCCTGTCCATCTTACCTGTAC
 CCTGGGGCTGTAGGGATTCAATATCCTGGGCTTCAGTAGTCAGATCCAGTCAAGTCACAAAGTAGGCAAGAGT
 AGGCAAGCTAAATCTGGGGCTCCAAACCCCGACAGCTCACCCCTCTCAACTGATACTAGTGCTGAGGACACCC
 CTGGTGTAGGGACCAAGTGGTCTCCACCTCTAGTCCCCTCTAGAAACCACATTAGACAGAAGGTCTCTGCTATGGT
 GCTTCCCCATCCCTAATCTTAGATTTCTCAAGACTCCCTCTCAGAGAACACCGCTGTCCATGTCCCCAGCTGG
 GGACATGGACAGAGCGTGTCTAGTTCTAGATCGCAGCGGCCGC

RAT 9QL PROTEIN (PARTIAL)

RDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRPLPDSVEDEFELSTVCHRPEGL
 EQLQEQTKFTRRELQVLYRGFKNECP PSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVIL
 RGTIDDRLSWAFNLYDLNKDGCIKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKGVVIEEFIESC
 .QDENIMRSMQLFDN.

Fig. 8

MOUSE 90L DNA (CD:181-993)

CGGGACTCTGAGGTGGGCCCTAAAATCCAGCCTCCCCAGAGAAAAGCCTTGCAGCCCTACTCCCAGCCCCAGCCCC
AGCAGGTCGCTGCCGCCAGGGGGCACTGTGTAGCGCCCTATCCTGCCACCCGGCGCCCCCTCCACGGCCAGGCG
GGAGCGGGCGCCGGGGCATGGGGCAAGGCCAAAGGAGAGTTGTCCGAATCCCAGATTTGGACGGCTCCATT
GACCAGCTTACGGCCACCCCTCAGTCAGTGAAACATTAGCTGCCAGCCTCCCTCCGCCAACAGACCCGCCGCTGGACC
CAGACAGCGTGGAGGATGAGTTGAACTATCCACGGTGTGCCACCGGCCAGGGCTGGAAACAACCTCCAGGAACAAACC
AAGTTCACACGAGAGAGTTGCAGGTCTGTACAGAGGCTCAAGAACGAATGTCCAGCGGAATTGTCAACAGGAGAA
CTTCAAGCAAATTATTCTCAGTTCTTCCCCAAGGAGACTCAGCAACTACGCTACTTTCTTCATGCCCTTGACA
CCAACCATGATGGCTCTGTCAGTTGAGGACTTGTGGCTGGTTGTCAGTATTCTCGGGAACATAGATGATAGA
CTGAACCTGGGCTTCAACTTATATGACCTCAACAAGGATGGCTGTACGAAGGAGGAAATGCTGACATCATGAAGTC
CATCTATGACATGATGGCAAGTACACCTACCCCTGCCCTCCGGGAGGAGGCCCGAGGGAACACGTGGAGAGCTTCTCC
AGAAGATGGACAGAAACAAGGACGGCGTGGTACCATTGAGGAATTCTAGTGTCAACAGGACGAGAACATCATG
AGGTCCATGCAACTCTTGATAATGTCATCTAGCTCCCCAGGGAGAGGGTTAGTGTGTCCAGGGTAACCATGCTGTAG
CCCTAGTCCAGGCAAACCTAACCTCCTCCCCGGGCTGTCCCTACCTGTACCCCTGGGGCTGTAGGGATTCA
ACATCCTGGCGCTCAGTAGTCCAGATCCCTGAGCTAAGTGGCAGAGTAGGCAAGCTAAGTCTTGGAGGGTGGGTGGG
GGCGCGAGATTCCAACCCCGACGACTCTCACCCCTTCTGACTGATAACCCAGTGCTGAGGCTACCCCTGGTGTGG
GAACGACCAAAGTGGTCTCTGCCCTCCCCAGCCACTCTAGAGACCCACACTAGACGGGAATATCTCCTGCTATGGTGT
TTCCCCATCCCTGACCGCAGATTTCCTCTAAGACTCCCTCTCAGAGAATATGCTTTGTCCCTGTCCCTGGCTGGC
TTTCAGCCTAGCCTTGAGGACCTGTGGAGGGAGAATAAGAAAGCAGACAAATCTGGCCCTGAGCCAGTGGTTA
GGTCCCTAGGAATCAGGCTGGAGTGGAGACAGAAAGCCTGGGAGGCTATGAGAGCCCCAGGGTGGCTTCACCGCAG
GTTCCACAGGGCTGCTCTGGTCAGCAGAGTATGAGTTCCAGACTTCCAGAAGGCCTATGTCCTAGCAATGTC
CCAGAAATTCAACCATACTTCTCAGTGTCTAGGATCCAGATGTCCGGCCATCCCTGAAACCTCTCCCTCCTG
TCCTATGGTGGAGTGGTGGCCAGGGAGCATGAGTGAGCCGGTGTCCCTGGATGATGCTGTCAAGGTCCACCTACCC
CCGGCTGTCAAGCCGTTCTGGTACCCCTGTTGATTCTCCATGACCCCTGTCTAGATGTAGAGGTGTGGAGTGA
TGGCAGCCTAGGGAAATGGGAAGAACGAGAGGGGCACTCCATCTGAACCCAGTGTGGGGCATCCATTGAATCTTGC
CTGGCTCCCCACAATGCCCTAGGATCCTCTAGGGTCCCCACCCACTCTTAGTCTACCCAGAGATGCTCCAGAGCTA
CCTAGAGGGCAGGGACCATAGGATCCAGGTCCAACCTGTCTAGCATCCGGCCATGCTGCTGCTGTTATTAATAAAC
TGCTTGTGTTCAAGGCCCTTCCAGTCAGCCAGGGTGTAGGGAGGGAAAGGCCCCACTTCCCGCTCTGTCAGACATT
GTTGACTGCTTGATTTGGCTTACCTATTTGTATAATAAGAAAGACACCAGATCCAATAAAACACATGGC
TATGCACAAAAAAAAAAAAAA

HOUSE 90L PROTEIN

MRGQGRKESLSESRLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRPLDPDSVEDE
FELSTVCHRPEGLEQLQEQTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPGDSSNYATFLFNADTNHDGSV
SFEDFVAGLSVILRGTIDDRNLWAFNLYDLNKDGCGITKEEMLDIMKSIYDMMGKYTTYPALREEAPREHVESFFQKMDRNK
DGVVTIEEFIESCOODENIMRSMOLFNDNVI

Fig. 9

12/48

HUMAN 9QM DNA (CD:207-965)

CTCACCTGCTGCCTAGTGTCCCTCTCCTGCTCCAGGACCTCCGGTAGACCTCAGACCCCCGGGCCATTCCCAGACTCA
GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGCGCCGTGTGAGGCCCTATCCGGCCACC
CGCGCCCCCTCCCACGGCCGGGGAGCGGGGCCATGCGGGGCCAGGGCGCAAGGAGAGTTGTCCG
ATTCCCGAGACCTGGACGGCTCCTACGACCAGCTACGGGCCACCCCTCCAGGGCCCCTAAAGCGCTGAAGCAGCGA
TTCCTCAAGCTGCTGCCGTGCTGGGGCCCAAGCCCTGCCCTCAGTCAGTGAAAACAGCGTGGACGATGAATTGAATT
GTCCACCGTGTGTACCGGCCTGAGGGCTGGAGCAGCTGCAGGAGCAAACCAATTACGCGCAAGGAGTTGCAGGTCC
TGTACCGGGCTTCAAGAACGAATGTCCCAGCGGAATTGTCAATGAGGAGAACTTAAGCAGATTACTCCAGTTCTT
CCTCAAGGAGACTCCAGCACCTATGCCACTTTCTCTCAATGCCCTTGACACCAACCATGATGGCTGGTCAGTTGA
GGACTTTGTGGCTGGTTGTCCGTATTCTCGGGAACTGTAGATGACAGGTTAATTGGCCTAACCTGTATGACC
TTAACAAAGGACGGCTGCATACCAAGGAGGAAATGCTTGACATCATGAAGTCATCTATGACATGATGGCAAGTACACG
TACCCCTGCACTCCGGAGGAGGCCAAGGAAACACGTGGAGAGCTTCCAGAAGATGGACAGAAACAAGGATGGTGT
GGTGACCATTGAGGAATTCATGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTGACAATGTCA
TCTAGCCCCAGGAGAGGGGTCAGTGTTCCTGGGGGACCATGCTCTAACCTAGTCCAGGGGACCTCACCTTCTC
TTCCCAGGTCTATCCTCATCCTACGCCCTGGGGCTGGAGGGATCCAAGAGCTTGGGATTCAAGTGTCCAGATCTC
TGGAGCTGAAGGGCCAGAGAGTGGCAGAGTGCATCTGGGGGTGTTCCAACCTCCACCAGCTCTCACCCCTTCCT
GCCTGACACCCAGTGTGAGAGTGCCTCTGTAGGAATTGAGCGGTTCCCCACCTCTAACCTACTCTAGAAACACAC
TAGAGCGATGTCTCCTGCTATGGTGTCTCCCTGACCTCATAAACATTCCCTAAGACTCCCTCAGAGAG
AATGCTCATTCTGGCACTGGCTGGCTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGACAAGAATGTATAGGG
AGAAATCTGGGCTGAGTCAATGGATAGGTCTAGGAGGTGGGTGGGTGAGAATAGAAGGGCTGGACAGATTATGA
TTGCTCAGGCATACCAAGGTTAGCTCCAAGTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTCCAGGCT
TGCAGAACCTTGTCTCCTAGAAATGCCCAAGAAATTCTCACACCCTCTCGGTATCCATGGAGAGCCTGGGGCAG
ATATCTGGCTCATCTCTGGCATTGCTCCTCTCCTGCTGTGGTGGTGGTGGGGAAATGTGGA
TGGGGGATGTCTGGCTGATGCCAAATTCATCCCACCCCTCTGCTTATGCTCCCTGTTGAGGGCTATGACT
TAGAGTTTTGTTCCATGTTCTCTAGACTTGGGACCTTGAACTTGGGCCTATCACTCCCCACAGTGGATGCT
TAGAAGGGAGAGGAAGGAGGGAGGCAGGCATAGC

Fig. 10

HUMAN 9QM PROTEIN

MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFLKLLPCCGPQALPSVSENSVDDEFELSTVCHRPEGLEQLQE
QTKFTRKELQVLYRGFKNECPGIVNEENFKQIYSQFFPQGDSSTYATFLNAFDTNHDGSVSFEDFVAGLSVILRGTVD
DRLNWAFNLYDLNKDGCTKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQKDEN
IMRSMQLFDNVI

Fig. 10 Continued

RAT 9QM DNA (CD:214-972)

CTCACTTGCTGCCAAGGCTCCTGCTCCGGCCAGGACTCTGAGGTGGGCCCTAAACCCAGCGCTCTAAAGAAAAG
 CCTTGCAGCCCTACTCCCAGCCCCAACCCAGCAGGTGCGTGCAGGCCAGGGGGCGCTGTGAGCGCCATTCT
 GGCCACCCGGCGCCCCCTCCACGGCCAGGGAGCGGGGCCATGCGGGCCAAGGCAGAAAGGAGAGT
 TTGTCGAATCCCAGAGATCTGGACGGCTCTATGACCAGCTTACGGCCACCCCTCAGGGCCAGTAAAAAGCCCTGAA
 GCAGCGTTCTCAAGCTGCTGCCGTGCGGGCCCAAGCCCTGCCCTCAGTCAGTAAAACAGCGTAGAGGATGAGT
 TTGAATTATCCACGGTGTGTCACCGACCTGAGGGCTGGAACAACACTCCAGGAACAGACCAAGTTCACACGAGAGCTG
 CAGGTCTGTACCGAGGCTCAAGAACGAATGCCAGTGGATTGTCAACGAGGAGAACTTCAAGCAGATTATTCTCA
 GTTCTTCCCAAGGAGACTCCAGCAACTATGCTACTTTCTCTCAATGCCATTGACACCAACCACGATGGCTGTCA
 GTTTGAGGACTTGTGGCTGGTTGCGTATTCTCGGGGACCATAGATGATAGACTGAGCTGGCTTCAACTTA
 TATGACCTCAACAAGGACGGCTGTATCACAAAGGAGGAATGCTTGCACATTATGAAGTCCATCTATGACATGATGGCAA
 GTACACATAACCTGCCCTCCGGAGGAGGCCCAAGAGAACACGTGGAGAGCTTCCAGAAGATGGACAGGAACAAGG
 ACGCGTGGTACCATCGAGGAATTCATCGAGTCTGTCAACAGGACGAGAACATCATGAGGTCCATGCAGCTTTGAT
 AATGTCATCTAGCTCCCAGGGAGAGGGGTTAGTGTCTAGGGTGACCAGGCTGTAGTCCTAGTCAGACGAACCTAA
 CCCTCTCTCCAGGCCTGTCCTCATCTTACCTGTACCCCTGGGCTGTAGGGATTCAATATCTGGGCTTCAAGTAGTC
 CAGATCCCTGAGCTAACAAAGTAGGCAAGAGTAGGCAAGCTAAATCTGGGCTTCAACCCGACAGCTCTC
 ACCCTCTCAACTGATACCTAGTGTGAGGACACCCCTGGTGTAGGGACCAAGTGGTCTCACCTCTAGTCCCAC
 TAGAAACCACATTAGACAGAACGGCTCTGTCATGTCCCAGCTGGCTCTCAGCCTAGCCTTGAAGGGCCTGTGGGAGGCCGG
 TTCTCAGAGAACACCGCTCTGTCATGTCCCAGCTGGCTCTCAGCCTAGCCTTGAAGGGCCTGTGGGAGGCCGG
 AAGAAAGCAGAAAAGTCTGGGCCCCGAGCCAGTGGTAGGTCTAGGAATTGGCTGGAGTGGAGGCCAGAAAGCCTGGG
 AGATGATGAGAGGCCAGCTGGCTGTCACTGCAGGTTCCGGGCTACAGCCCTGGTCAGCAGAGTATGAGTTCCCAGA
 CTTCCAGAAGGTCTTAGCAATGTCCCAGAAATTACCGTACACTCTCAGTGTCTTAGGAGGGCCGGATCCAGATG
 TCTGGTCATCCCTGAATCTCTCCCTTCTGCTCGTATGGTGGAGTGGTGCCAGGGAAAGATGAGTGGTGTCCC
 GGATGATGCTGTCAAGGTCCCACCTCCCCCTCCGGCTGTTCTCATGACAGCTGGTCTCCATGACCCCTATCTAGA
 TGTAGAGGCATGGAGTGAATCAGGGATTCCCGAACCTTGAGTTTACCACTCTCTAGTGGCTGCCTTAGGGAAATGGG
 AAGAACCCAGTGTGGGGCACCCATTAGAATCTTGCCCGCTCTCACAAATGCCCTAGGGTCCCCTAGGGTACCCGCTC
 CCTCTGTTAGTCTACCCAGAGATGCTCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCTCCAG
 GTCAGCACCTGCCATGCTGCTCCTCATTAACAAACCTGCTGTCTCTGCCCTCTCAGTCAGCCAGGGT
 CTGAGGGGAAGGGCTCCCGTTCCCATCCGTAGACATGGTGACTGCTTGCAATTGGCTCTTCTATCTATTG
 TAAAAATAAGACATCAGATCCAATAAACACACGGCTATGCACAAAAAAAAAAAAAA

RAT 9QM PROTEIN

MRQQRKESLSESRLDGSDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSENSVEDEFELSTVCHRPEGLEQLQE
 QTKFTRRELQVLYRGFKNECPGIVNEENFKQIYSQFFPQGDSSNYATFLNAFDTNHDGSVSFEDFVAGLSVILRGTI
 DRLSWAFNLYDLNKDGCTKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQQDEN
 IMRSMQLFDNVI

Fig. 11

HUMAN 9QS DNA (CD:207-869)

CTCACCTGCTGCCTAGTGTCCCTCTCCTGCTCCAGGACCTCCGGTAGACCTCAGACCCCCGGGCCATTCCCAGACTCA
 GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGCGCGTGTGAGCGCCCTATCCCGGCCACC
 CGGCGCCCCCTCCCACGGCCCGGGAGCGGGGCCGGGGCATGCGGGGCCAGGGCGCAAGGAGAGTTGTCC
 ATTCCCGAGACCTGGACGGCTCTACGACCAGCTCACGGACAGCGTGGACGATGAATTGAATTGTCCACC GTGTGTAC
 CGGCCTGAGGGTCTGGAGCAGCTGCAGGAGCAAACCAATTACCGCGCAAGGAGTTGCAGGTCTGTACCGGGCTTCAA
 GAACGAATGTCCCAGCGGAATTGTCATGAGGAGAACTTCAAGCAGATTACTCCCAGTTCTTCCTCAAGGAGACTCCA
 GCACCTATGCCACTTTCTTCAATGCCTTGACACCAACCATGATGGCTCGGTAGTTGAGGACTTGTGGCTGGT
 TTGTCGTGATTCTCGGGAACTGTAGATGACAGGCTTAATTGGCCTTCAACCTGTATGACCTAACAGGACGGCTG
 CATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGCAAGTACACGTACCGTGCACCTCGGG
 AGGAGGCCAAGGAAACACGTGGAGAGCTTCTCCAGAAGATGGACAGAAACAAGGATGGTGTGGTACCAATTGAGGAA
 TTCATTGAGTCTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTTTGACAATGTCATCTAGCCCCCAGGAGA
 GGGGTCAGTGTCTGGGGGACCATGCTCTAACCTAGTCCAGGCGGACCTCACCCCTCTTCCAGGTCTATCCT
 CATCCTACGCCTCCCTGGGGCTGGAGGGATCCAAGAGCTTGGGATTCACTAGTCCAGATCTCTGGAGCTGAAGGGCC
 AGAGAGTGGCAGAGTGCATCTGGGGGTGTTCCCAACTCCCACCAGCTCTCACCCCTTGCCTGACACCCAGTGT
 TGAGAGTGCCTCTGTAGGAATTGAGCGGTTCCCACCTCCTACCCCTACTCTAGAAACACACTAGAGCGATGTCTCCT
 GCTATGGTGTCTCCCCATCCCTGACCTCATAAACATTCCCTAAGACTCCCCTCTCAGAGAGAATGCTCCATTCTGG
 CACTGGCTGGCTCTCAGACCAGCCATTGAGAGGCCGTGGGAGGGGACAAGAATGTATAGGGAGAAATCTGGCCTG
 AGTCAATGGATAGGTCTAGGAGGTGGTGGGTTGAGAATAGAAGGGCTGGACAGATTATGATTGCTCAGGCATACCA
 GGTTATAGCTCCAAGTCCACAGGTCTGCTACCACAGGCCATAAAATAAGTTCCAGGCTTGAGAAGACCTTGT
 TCCTTAGAAATGCCAGAAATTCCACACCCCTCCTCGGTATCCATGGAGAGCCTGGGGCAGATATCTGGCTCATCTC
 TGGCATTGCTCCTCCTCCCTGCTATGTGTTGGTGGTGGTGGGGAAATGTGGATGGGATGTCTGG
 ^GATGCCTGCCAAAATTCTACCCACCCCTCTGCTATCGTCCCTGTTGAGGGCTATGACTTGAGTTGTCTGG
 ATGTTCTCTATAGACTTGGACCTTCTGAACTTGGGGCTATCACTCCCCACAGTGGATGCCTAGAAGGGAGAGGGAA
 GGAGGGAGGCAGGCATAGC

Fig. 12

MONKEY 9QS DNA (CD:133-795)

CCACCGCGTCCGCCACCGTCCGGACCGTGGGTGCACTAGGCCAGGGGCCGTGTAGCGCCCTATCCCC
 GCCACCCGGGCCCTCCCACGGACCGGGAGCGGGGCCATGCCAGGGCAGGGCAAGGAGAGTT
 TGTCCGATTCCCAGAACCTGGACGGATCCTACGACCAGTCACGGACAGCGTGGAGGATGAATTGAATTGTCACCGTG
 TGTCACCGGCCTGAGGGCTGGAGCAGTCAGGAGAAACCAAATTACCGCAAGGAGTTGCAGGTCTGTACCGGG
 CTTCAAGAACGAATGTCCGAGCGGAATTGCAATGAGGAGAACTCAAGCAAATTACTCCAGTTCTTCCTCAAGGAG
 ACTCCAGCACCTATGCCACTTTCTCTCAATGCCCTTGACACCAACCATGATGGCTCGGTAGTTGAGGACTTTGTG
 GCTGGTTGTCCGTGATTCTGGGGAACTGTAGATGACAGGCTTAATTGGCCTCAACTTGTATGACCTAACAGGA
 CGGCTGCATCACCAAGGAGGAAATGCTGACATCATGAAGTCCATCTATGACATGATGGCAAGTACACATACCCCTGCAC
 TCCGGGAGGAGGCCCCAAGGAAACATGTGGAGAACTCTCCAGAAGATGGACAGAAACAAGGATGGCGTGGTACCCATT
 GAGGAATTCAATTGAGTCTGTCAAAAGGATGAGAACATCATGAGGTCCATGCCAGCTTTGACAATGTCATCTAGCCCC
 AGGAGAGGGGTCAGTGTTCCTGGGGGACCATGCTCTAACCTAGTCCAGGTGGACCTCACCCCTCTTCCAGGTC
 TATCCTGTCCTAGGCCTCCCTGGGGCTGGAGGGATCCAAGAGCTGGGATTCAAGTCCAGATCTCTGGAGCTGAA
 GGGGCCAGAGAGTGGCAGAGTGCATCTGGGGGTGTTCCAACCTCCACCCAGCTTCACCCGCTTCGCTGACACC
 CAGTGTGAGAGTGCCTCTGTAGGAACGTGAGTGGTCCCCACCTCCTACCCCCACTCTAGAAACACACTAGACAGAT
 GTCTCGTGTATGGTGTCTCCCCATCCCTGACTTCATAAACATTCCCTAAAACCTCCCTCTCAGAGAGAATGCTCCA
 TTCTGGCACTGGCTGGCTCTCAGACCAGCCTTGAGAGCCCTGTGGAGGGGACAAGAATGTATAGGGAGAAATCT
 TGGGCTGAGTCATGGATAGGTCTAGGAGGTGGCTGGGTTGAGAATAGAAAGGCCTGGACACAATGTGATTGTCAG
 GCATACCAAGTTAGCTCCAAGTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTCCAGGCTTGAGAAG
 ACCTTGTCTCCTGGAAATGCCAGATATTTCATACCCCTCTCGATATCCATGGAGAGCCTGGGCTAGATATCTGG
 CATATCCCTGGCATTGCTCCTCTCCCTCGATGTGTTGGTGGTGTGGCAGGGAAATGTGGTAGGAGAT
 GTCCTGGCAGATGCCAGTCAAGTTCATCCACCCCTCGCTCATGCCCTGTTGAGGGCTGTGACTTGAGTTT
 TGTTCCCATGTTCTATAGACTGGACCTCTGAACCTGGGCTATCACTCCCCACAGTGGATGCCTAGAAGGG
 AGAGGGAAGGAGGGAGGCAGGCATAGCATGAAACCAAGTGTGGGGCATTCACTAGGATCTCAATCAACCCGGCTCT
 CCCAACCCCCCAGATAACCTCCTCAGTTCCCTAGAGTCTCTTGCTCTACTCAATCTACCCAGAGATGCCCTTAGC
 ACACTCAGAGGGCAGGGACCATAGGACCCAGGTTCAACCCATTGTCAGCACCCAGGCCATGCTGCCATCCCTAGCAC
 ACCTGCTCGTCCCATTGCTTACCCCTCCAGTCAGCCAGAATCTGAGGGGAGGGCCCCAGAGAGCCCCCTCCCCATC
 AGAAGACTGTTGACTGCTTGCATTTGGCTCTCTATATTTGTAAAATAAGAACTATACCAGATCTAATAAAACA

.....

MONKEY 9QS PROTEIN

MRGQGRKESLSDRDLDSYDQLTDSVEDEFELSTVCHRPEGLEQLQEQTFRKELQVLYRGFKNECPGIVNEENFKQ
 IYSQFFPQGDSSTYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTVDDRLNWAFNLYDLNKDGCIKEEMLDIMKSIYD
 MNGKYTYPALREEAPREHVENFFQKMDRNKGWVTIEEFIESCQKDENIMRSRSMQLFDNVI

Fig. 13

RAT 9QC DNA (CD:208-966)

TGCTGCCCAAGGCTCTGCTCTGCCCAAGGACTCTGAGGTGGGCCTAAAACCCAGCGCTCTCTAAAGAAAGCCTTGC
 CAGCCCCCTACTCCCAGGCCCCAACCCAGCAGGTGCGTGCAGGCCAGGGGGCGCTGTGAGGCCCTATTCTGGCAC
 CGGGCGCCCCCTCCCACGGCCCAGGCGGGAGCGGGGCCGGGGCATGGGGCCAAGGCAGAAAGGAGAGTTGTCC
 GAATCCCAGAGATCTGGACGGCTCTATGACCAGCTTACGGCCACCCCTCCAGGGCCAGTAAAAAGCCCTGAAGCAGCG
 TTTCTCAAGCTGCTGCCGTGCGGGCCCCAAGCCCTGCCCTCAGTCAGTGAAAACAGCGTAGAGGATGAGTTGAAT
 TATCCACGGTGTGTCACCGACCTGAGGGCTGGAACAACACTCCAGGAACAGACCAAGTTCACACGAGAGCTGCAGGTC
 CTGTACCGAGGCTTCAAGAACGAATGCCCAAGTGGATTGTCAACGAGGAGAACTTCAAGCAGATTATTCTCAGTTCTT
 TCCCCAAGGAGACTCCAGCAACTATGCTACTTTCTCTCAATGCCCTTGACACCAACGATGGCTCTGTCAGTTTG
 AGGACTTTGTGGCTGGTTGTGGTATTCTCGGGGACCATAGATGATACTGAGCTGGCTTCAACTTATATGAC
 CTCAACAAGGACGGCTGTATCAAAGGAGGAAATGCTGACATTATGAAGTCCATCTATGACATGATGGCAAGTACAC
 ATACCCCTGCCCTCCGGGAGGAGGCCAAGAGAACACGTGGAGAGCTTCCAGAAGATGGACAGGAACAAGGACGGCG
 TGGTGACCATCGAGGAATTCATCGAGTCTGTCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTCACCCCTCTC
 AACTGATACTAGTGTGAGGACACCCCTGGTGTAGGGACCAAGTGGTCTCCACCTCTAGTCCACTCTAGAAACCAC
 ATTAGACAGAACGGTCTCCTGCTATGGCTTCCCCATCCCTAACTCTTAGATTTCTCAAGACTCCCTCAGAGA
 ACACGCTCTGTCCATGTCCCCAGCTGGCTCTCAGCCTAGCCTTGAGGGCCCTGTGGGGAGGCGGGACAAGAACAG
 AAAAGTCTGGCCCCAGCCAGTGGTTAGGTCTAGGAATTGGCTGGAGTGGAGGCCAGAACGCTGGCAGATGATGAG
 AGCCCAGCTGGCTGTCACTGCAGGTTCCGGGCCTACAGCCCTGGTCAGCAGAGTATGAGTTCCAGACTTCCAGAA
 GGTCTTAGCAATGTCCCAGAAATTACCGTACACTCTCAGTGTCTTAGGAGGGCCGGATCCAGATGTCGGTTCAT
 CCTGAATCCTCTCCCTCTTGTCTGCTGCTATGGTGGAGTGGTGCCAGGGGAAGATGAGTGGTGTCCGGATGATGCC
 TGTCAAGGTCCCACCTCCCTCCGGCTGTCTCATGACAGCTGTTGGTCTCCATGACCCCTATCTAGATGTAGAGGCA
 TGGAGTGAGTCAGGGATTCCGAATTGAGTTTACCACTCCTCTAGTGGCTGCCTAGGGGAATGGGAAGAACCCAG
 TGTGGGGCACCCATTAGAATCTTGCCCCGCTCCTCACAAATGCCCTAGGGTCCCTAGGGTACCCGCTCCCTGTGTTA
 GTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCTCCAGGTAGCACCC
 TGCCATGCTGCTGCTCTCATTAACAAACCTGCTTGTCTCCTCTGCGCCCTCTCAGTCAGCCAGGTCTGAGGGAA
 GGGCCTCCGTTCCCCATCCGTAGACATGGTTGACTGCTTGCATTTGGCTCTATCTATTTGTAAAATAAGA
 CATCAGATCCAATAAACACACGGCTATGCACAAAAAAAAAAAAAA

RAT 9QC PROTEIN

.RGQGRKESLSESRDLDGSIDQLEIGHPPGPSKKALKQRFLKLLPCCGPQALPSVSENSVEDEFELSTVCHRPEGLEQLQE
 QTKFTRRELQVLYRGFKNECPGSGIVNEENFKQIYSQFFPGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTIID
 DRLSWAFNLYDLNKDGCTKEEMLDIMKSIYDMMGKYTYPALREEAPRHVESFFQKMDRNKGVTIEEFIESCQQDEN
 IMRSMQLSPLLN

Fig. 14

RAT 8T (9Q SPLICE VARAIANT) DNA (MAY NOT BE FULL LENGTH, CD: 1-678)

ATGAACCAC TGCCTCGCAGGTGCCGGAGCCGTTGGGCAGGCAGTCATCTCTACCACTGGTAACGGTCGCT
 GTCGCCAGACAGCGTAGAGGATGAGTTGAATTATCCACGGTGTGTCACCGACCTGAGGGCTGGAACAACTCCAGGAAC
 AGACCAAGTTCACACCGCAGAGAGCTGCAGGTCTGTACCGAGGCTCAAGAACGAATGCCCAAGTGGGATTGTCAACGAG
 GAGAACTTCAAGCAGATTATTCTCAGTTCTCCCAGGAGACTCCAGCAACTATGCTACTTTCTCTCAATGCCCT
 TGACACCAACCACGATGGCTGTGTCAGTTGAGGACTTGAGGCTGGTGTGGTGAATTCTCGGGGGACCATAGATG
 ATAGACTGAGCTGGCTTCAACTTATATGACCTAACAAAGGACGGCTGTATCACAAAGGAGGAATGCTGACATTATG
 AAGTCCATCTATGACATGATGGCAAGTACACATA CCTGCCCTCCGGAGGGCCCCAAGAGAACACGTGGAGAGCTT
 CTTCCAGAAGATGGACAGGAACAAGGACGGCGTGGTACCATCGAGGAATTCATCGAGTCTGTCAACAGGACGAGAAC
 TCATGAGGTCCATGCAGCTCTTGATAATGTCATCTAGCTCCCAGGGAGAGGGTTAGTGTGTCTAGGGTACCGAGGC
 TGTAGTCTCTAGTCCAGACGAACCTAACCTCTCTCCAGGCCTGTCTCATCTTACCTGTACCCCTGGGCTGTAGGG
 TTCAATATCCTGGGCTTCAGTAGTCCAGATCCCTGAGCTAACGTACAAAAGTAGGCAAGAGTAGGCAAGCTAAATCTGG
 GGGCTTCCAACCCCCGACAGCTCACCCTCTCAACTGATAACCTAGTGCTGAGGACACCCCTGGTGTAGGGACCAAG
 TGGTTCTCACCTCTAGTCCCACCTAGAAACCACATTAGACAGAACGGTCTCTGCTATGGTCTTCCCCATCCCTAA
 TCTCTTAGATTTCTCAAGACTCCCTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGGCTCTCAGCCTAGCCTT
 TGAGGGCCCTGTGGGAGGCAGAACAGCTGGCAGATGATGAGAGGCCAGCTGGCTGTCACTGCAGGTTCCAGGGCTACAGCCT
 GGGTCAGCAGAGTATGAGTCCCAGACTTCCAGAAGGTCTTAGCAATGTCCCAGAAATTACCCATACACTCTCAGTG
 TCCCAGGATGATGCCTGTCAAGGTCCCACCTCCCCTCCGGCTGTTCTCATGACAGCTGTTGGTTCTCCATGACCCCTATC
 TAGATGTAGAGGCATGGAGTGAGTCAGGGATTCCAGAACGGTCTTAGCAATGTCCCAGAAATTACCCATACACTCTCAGTG
 TGGGAAGAACCCAGTGTGGGGCACCCATTAGAATCTTGCCCGGTTCTCACAAATGCCCTAGGGTCCCAGGTCAACCTCT
 GCTCCCTCTGTTAGTCTACCCAGAGATGCTCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCAACCTCT
 CCAGGGTCAAGCACCTGCCATGCTGCTCTCATTAAACAAACCTGCTGTCTCTCGCGCCCTCTCAGTCAGCCA
 GGGTCTGAGGGGAAGGGCTCCCGTTCCCCATCCGTCAAGACATGGTTGACTGCTTGCATTTGGCTCTTCTATCTAT
 TTTGTAAAATAAGACATCAGATCCAATAAAACACACGGCTATGCACAAAAAAAAAAAAAA

RAT 8T (9Q SPLICE VARAIANT) PROTEIN (MAY NOT BE FULL LENGTH)

MNHCPRRCRSPLGQAARSLYQLVTGSLSPDSVEDEFELSTVCHRPEGLEQLQEQTFRRELQVLYRGFKNECPGIVNE
 ENFKQIISQFFFPGDSSNYIAIFLFNAFDINHDGSVSFEDFVAGLSVIERGIIIDRLESWAFNLIDBNKDGCFREEMD...
 KSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQQDENIMRSMQLFDNVI

Fig. 16

```
>human KChIP3
MQPAKEVTKASDGSLLGDLGHTPLSKKEGIKWQRPRLSRQALMRCCLVWILSSTAPQGS
DSSDSELELSTVRHQPEGLDQLQAQTKFTKKELQSLYRGFKNECPTGLVDEDTFKL
IYAQFFPQGDATTYAHFLFNAFDADGNGAIHFEDFVVGLSILLRGTVHEKLKWAFNLYDINKDGYITKEEMLA
IMKSIYDMMGRHTYPILREDAPAEHVERFFEKMDRNQDGVVTIEEFLEACQKDENIMSSMQLFENVI
```

Fig.16 Continued

RAT P19 DNA (FIRST PASS, PARTIAL; CD:1-330)

TTTGAGGACTTGTGGTTGGGCTCTCCATCCTGCTCGAGGGACCGTCCATGAGAAGCTCAAGTGGCCTTCAATCTCTA
CGACATCAACAAGGACGGTTACATCACCAAAGAGGAGATGCTGCCATCATGAAGTCCATCTACGACATGATGGGCCGCC
ACACCTACCCATCCTGCGGGAGGACGCACCTCTGGAGCATGTGGAGAGGTTCTCCAGAAAATGGACAGGAACCAGGAT
GGAGTAGTGAATTGATGAATTCTGGAGACTTGTCAAGGACGAGAACATCATGAGCTCCATGCAGCTGTTGAGAA
CGTCATCTAGGACATGTAGGAGGGGACCCCTGGGTGCCATGGTTCTCAACCCAGAGAAGCCTCAATCCTGACAGGAGAA
GCCTCTATGAGAACATTTCTAATATATTTGCAAAAGTG

RAT P19 PROTEIN (PARTIAL)

FEDFVVGSLILLRGTVHEKLKWAFNLYDINKGYITKEEMLAIMKSIYDMMGRHTYPILREDAPLEHVERFFQKMDRNQD
GVVTIDEFLETCKDENIMSSMQLFENVI

Fig. 17

MOUSE P19 DNA (CD: 49-819)

CGGGCTGAAAGCGGAAAGSTTAGTGACGGTCCCTTCAGCAGCAGAGATGCAGAGGACCAAGGAAGCCGTGAAGGCATC
 AGATGGCAACCTCCTGGGAGATCCTGGGCATACCACTGAGCAAGAGGGAAAGCATCAAGTGGCAAAGGCCACGGTCA
 CCCGCCAGGCCCTGATGCGTTGCTGCTTAATCAAGTGGATCCTGCTGCCCCACAAGGCTCAGACAGCAGTGAC
 AGTGAACCTGGAGTTATCCACGGTGC GCCATCAGCCAGAGGGCTGGACCAGCTACAAGCTCAGACCAAGTTACCAAGAA
 GGAGCTGCAGTCCCTTACCGAGGCTCAAGAATGAGTGTCCCACAGGCCTGGTGGATGAAGACACCTCAAACCTCATT
 ATTCCCAGTTCTCCCTCAGGGAGATGCCACACCTATGCACACTTCCTCAATGCCTTGATGCTGATGGAACGGG
 GCCATCCACTTGAGGACTTGTGGTTGGCTCTCCATCCTGCTCGAGGGACGGTCCATGAGAAGCTCAAGTGGCCTT
 CAATCTCTATGACATTAACAAGGATGGTGCATCACCAAGGAGGAGATGCTGGCCATCATGAAGTCCATCTACGACATGA
 TGGGCCACACCTACCCATCCTGGGGAGGATGCACCCCTGGAGCATGTGGAGAGGTTCTTCAGAAAATGGACAGG
 AACCAGGATGGAGTGGTGACCATTGATGTATTCTGGAGACTTGTCAAGGATGAGAACATCATGAACCTCATGCAGCT
 GTTGAGAACGTCTAGGACATGTGGAGGGACCCAGTGGTCAATTGCTCAACCCAGAGSAGCCTCAATCCTGA
 CAGGAGAACGCTCTATGAGAAACATTCTAATATATTGAAAAAGTGGAGACTTCAAGAACACAGCCACCGT
 CACACACAGACACAGACATACAGACACACACACACACACACATGGTCCTCTGGCCAGGGTAGGCTACCCACA
 AGAAGGCACCCCGCCTATTCTAGGTCAATAAAAAGGCTGCCTCTGGGATGGCCAGGGTAGGCTAGATGTTACCCACA
 AGGAACCTCAGAGATCGAGAGGACCAAGGTCTACAAAGCTAAGGTCCTGTGTCTTTCTACCACTCGGGAGATCAAACACTAC
 TCCCTGCCTATGGACCCATGCTCTAGGAAGCTCCAGAAACTCCAAGGGACAAAGAGGGAGAGGTCTATAGGAAGAA
 ATGGTTTGGAGCTGGCTTGCAGCCTATGCTAATGATCACCTGGGTCCTGGAACCCAGTGGCAGGCTACCTACTA
 TGCCGTGAGCTTAGATAGTGAGGGCCATTGGACTAAGACCTCTGTAAGAGTGGGAGGATTGAGGTTTGGAGAAA
 CTGAGGAAACAATTGTCCATACCACTGGGTGAAGACTGCTGGCAGTGGGAATGTGGCTGGAGATTCCAACTTC
 CAGCACCAGGATGGCTCTCCAAGGTCTTGTGATCCCTGGGAGATCACCTGGCTCATAGACTGACAACCAGGGAAC
 TGGGCTGAAATGGAGGTCTGGTAGGGGCATCCCCCTCCTTCCCTGGCAGTGGCAGGGTAGTCCCTTAACACAGTG
 GATCGGCCACACCTCTGGCTGCCCTGAAACAGACTCATCCCACCAAGACAAAAAGCACTAACTCCTAGCAGCTCAG
 GCCAAGCCCACAAGGAAGGCCCTGGTCCCTGCAGCCCTGATTCAAGTGGCGAGGAAGACGCTCAGACATCCATCCTGTA
 CCTCGGAGCCTGGGGTCTCACAGCCCTTCCCAGCCAGCTGCCAACATTCTAAAGCACAAACCTGCGGATTCTGCT
 TGCTTGGCTGCGCCCTGGGATTGAAGGCCACTGTTAACCTAAGCTGGAGCTAGCCCTGAGGGCTGGGACCTGTGAC
 CAGGCAACAGGTCAAGCAGACCCCTCAGGAGGAGAGAGCTGTTCTGCCTCCCCAGGCCTGCCAGAAGGAACAGTG
 CCAAGAACATGTTCTGGAGGAACATCCCCACAAAAGTACATTCCATCATCTGAAGCCCGTCTGCTCAGGCTGC
 CTCTGAAAGTCCACGTGTGTTCCCAGAAGGCCAGCCCCAAGATAAGGGAGGTCTAGAGGAAGGACAGGGTGACAACA
 AAAAA
 TCTATACACACGGGACCCCCCTCTGAGGACTGTACTGACCCATCTCCATCCTGACCGGGCCTTCTTACCCGA
 TCTACAGACCACCAAGTTCTCCCTGGCTCAGGGACCCCTGTCCCCAGTCTGACTCTTCCATCGAGGTCCCTGTCTTGT
 GAAAAGCCAAGGCCACGGAAAAGGCCACCACTCTAACCTGCTGCATCCCTAGCCTCTGGCTGCACGCCAACCTGGAG
 GGGTCTGCCCCCTTGCAGGGACACAGACTGGCGCATGTCCGCATGGCAGAAGCGTCTCCCTGGGTGCAGGCTGGAAAG
 GGTGGTTCTGTCTAGCGCCCACCAATATTCAAGTCTATATTTAATAAAAAGAAACTTGACAAAGGAAAAAA
 AAAA

Fig. 18

>AI 352454 (partial) cds = 1-339

CACGAGGTGGAAAGCATT CGGCTCAGCTGGAGGAGGCCAGCTCTACAGGC GGTTCCCTGT
ACGCTCAGAACAGCACCAA
GCGCAGCATTAAAGAGCGGCTCATGAAGCTCTGCCCTGCTCAGCTGCCAAAACGTCGTCTC
CTGCTATTCAAAACAGCG
TGGAAAGATGAACTGGAGATGGCCACCGTCAGGCATCGGCCCGAAGCCCTTGAGCTCTGGA
AGCCCAGAGCAAATTAC
AAGAAAGAGCTTCAGATCCTTACAGAGGATTAAAGAACGTAAGAACCTTCTTTGACTTT
ACCTTCACACAATTCCA
GAGGAGCATTGAGAAATGAGagggaaaaggggaaaatccattctatgagaagccccatcatatgtatattcact
gatccttcccagataggaatataatcagtatctgtggacttgaatctctgtggcacacccatgctggcatactgtaatt
gcccataaacaaanagtttgagaaaaaaaaaaaaaaaaaaaaaaa

>AI352454

HEVESISAQLEEAASSTGGFLYAQNSTKRSIKERLMKLLPCSAAKTSSPAIQNSVEDELEMATVRHR
PEALELLEAQSKFT
KKELQILYRGFKNVRTFFLTLPSHNSQRSIEK

Fig. 19

P193 (AA349365) DNA (CD:2-127, partial)

TGAAAGGTTCTCGAGAAAATGGACCGAACCGAGATGGGTAGTGACCATTGAAGAGTTCCCTGGAGG
CTGTCAGAAGGATGAGAACATCATGAGCTCCATGCAGCTGTTGAGAATGTCATCTAGGACACGTCCAAA
GGAGTGCATGGCACAGCACCTCCACCCCCAAGAAACCTCCATCTGCCAGGAGCAGCCTCCAAGAAA
CTTTAAAAAAATAGATTGCAAAAGTAGACAGATTGCTACACACACACACACACACACACACAC
ACACACACACAGCATTCACTGGGCTGGCAGAGGGACAGAGTCAAGGAGGGCTGAGTCTGGCTAG
GGCCGAGTCCAGGAGCCCAGCCAGCCAGCAGCGAGGCGAGGCTGCCTCTGGTGAATGG
CTGACAGAGCAGGTCTGCAGGCCACCAGCTGCTGGATGTCAACCAAGAAGGGGCTCGAGTGCACACTGCAG
GGGAGGGTCCAATCTCCGGTGTGAGCCACCTCGTCCATTCTGCTTCTTGCCACACAGTGGG
CCGGCCCCAGGCTCCCTGGCTCCTCCCCGTAGCCACTCTCTGCCACTACCTATGCTTCTAGAAAGCC
CTCACCTCAGGACCCCAGAGGGACAGCTGGGGGCAGGGGGAGAGGGGTAATGGAGGCCAAGCCT
GCAGCTTCTGGAAATTCTCCCTGGGGTCCCAGGATCCCCTGCTACTCCACTNACCTGGAAGAGCTGG
GTACCAGGCCACCCACTGTGGGCAAGCCTGAGTGGTGAAGGGCCACTGGGCCATTCTCCCTCCATGG
CAGGAAGGCAGGGGATTCAAGTTAGGGATTGGGCTGTGGTGGAGAATCTGAGGGCACTCTGCCAG
CTCCACAGGGTGGGATGAGCCTCTCCTGGCCAGTCTGGTCAGTGGGAATGCAGTGGTGGGCIGT
ACACACCCTCAGCACAGACTGTCCCTCAAGGTCTTCTAGGTCCGGAGGAACGTGGTCAAGAC
TGGCAGCCAGGGAGGCCGGGCAGAGCTCAGAGGAGTCTGGGAAGGGCGTGTCCCTCTTCTGTA
GTGCCCTCCCATGGCCCAGCAGCTGGCTGAGCCCCCTCTCTGAAGCAGTGTGCGCGTCCCTCTGCCCT
GCACAAAAGACAAGCATTCTAGCAGCTCAGGCCAGCCTAGTGGGAGGCCAGCACACTGCTTCT
CGGAGGCCAGGCCCTCTGCTGGCTGAGGCTTGGGCCAGTAGCCCCAATATGGTGGCCCTGGGAAGA
GGCCTGGGGTCTGCTCTGCTGGCTGGATCAGTGGGCCAAAGGCCAGCCGGCTGACCAACATTCA
AAAGCACAAACCTGGGACTCTGCTGGCTGTCCCCTCCATCTGGGATGGAGAATGCCAGCCAAAG
CTGGAGCCAATGGTGAAGGGCTGAGAGGGCTGTGGCTGGTCAAGCAGAAACCCCCAGGAGGAGAGA
GATGCTGCTCCGCCTGATTGGGCCTCACCCAGAACGGAACCCGGTCCAGGCCGATGGCCCTCCAGG
AACATTCCCACATAATACATTCCATCACAGCCAGCCAGCTCCACTCAGGGCTGGCCGGGAGTCCCCG
TGTGCCCAAGAGGCTAGCCCCAGGGTGAGCAGGCCCTCAGAGGAAGGCAGTATGGCGAGGCCATG
GGGCCCTCGGCATTCACACACAGCTGGCTCCCTGCGGAGCTGCATGGACGCCCTGGCTCCAGGCTC
CAGGCTGACTGGGGCCTCTGCCCTCAGGAGGCCATCAGCTTCCCTGGCTCAGGGATCTCTCCCTCC
CTCACCCGCTGCCAGCCCTCCAGCTGGTGTCACTCTGCCCTAAGGCCAAGGCCCTCAGGAGAGCATTCA
CCACCAACCCCCGCCCTGGCCTGGGCCAGACTGGCTGCACAGCCAAACCAAGGAGGGGTCTGC
CTCCACGCTGGGACACAGACGCCATGTCATGGCAGAAGCGTCTCCCTGGCACGCCCTGGG
AGGGTGGTCTGTTCTCAGCATCCACTAATATTCAAGTCAGTCTGTATTTAATAAAACTTGACAAAG
AAAAAAAAAAAAAA

P193 PROTEIN (PARTIAL)

ERFFEKMDRNQDGVVTIEFLEACQKDENIMSSMQLFENV

Fig. 20

Fig. 21

Human 9q genomic DNA sequences:

A. exon1 sequence (with introns included):

CGGGAGGAGAGAGGGCAGCTGGCTCGGCTCCGCCTCAGCTCCGCTCTGCCCTCCGGCTCTGCCTCACCTGCTGCC
AGTGTTCCTCTCTTGCTCCAGGACCTCCGGTAGACCTCAGACCCCCGGGCAATTCCCAGACTCAGCCTCAGCCCC
GACTTCCCCAGCCCCGACAGCACAGTAGGCCAGGGGGCGCCGTGTAGGCCCTATCCCGGCCACCCGGCGCCCC
CCTCCCA CGGGCCGGGGAGCGGGGCCATGCCGGGCCAGGGCGCAAGGAGAGTTGTCCGATTCC
CGAGACCTGGACGGCTCTACGACCAGCTCACGGGTGAGTCAGTGACGTGGGGTCGCGGAGGGAGGGTGGATTCC
ATTCCCTCAGACCCCTTCCGCCTCTCCGACCCCGGCCACCAACACTCTGCCCAATTCCAGGCACCTTTA
TGGCCGGTCTGGGCGGCAGGA CACTGGGGTTCAAAGCCTGGTCCCGCAGGGTTGGGAGGAACAGAAGAGGCA
GGTGTGGAGAGGCAGCAGGTGTGGCGTATGTACACAGGGCTGAGAGGGTGTCTGGAGTGGAGGTGTTACCGTGC
GTGAGCACCTGTCATTCTGTGTGTGTGTGTGCGCGCAGCTCCACAGCTGGTTGCCATGTGCCCTGGG
TTGGTGCAGCTAGGGTAGGTGTATTGTATGTGGCAGTGCACATTGTATGGTCTCGTCAGATGTTGAGTTGCGTA
GGACCCCTGGTTGTACTGTGAAGTTGTTGACCATGTGTCTYATGTGCAACGATGTGTTGAGTGTGTAATTCT
GTATGAAAGTGGTGTGTAAC TACAGAATGTGTCAGGGCTCTACTTTAGGGTGGCTTGTCTTTG

B. Exon 2-11 sequence (with introns included):

AGCCNANTGGTCNCATGTATGCATCCTGTTACTTAGGTACATTGTATATGTTGTAAAGGAGTACCAAGGT
CAATGTGTGTGTGAGCATGNATAAACGCCANCAGGTGTGAGTTANTGAATATCAAGCTGTCACTGGCACCC
ATCACTGTATGTATTGTCATACATGTCACNAACACGGCCTGTCAGTGAGGTGTGTRAGAGAGGTGTTCTT
ACCCAGGCAATCCTGGGTTGGACATCATCNTGAGAGGTCCAGCCATGGCACTTGAGCCAAGGGTACTAGGTCAAGCA
AAGACATTGAGGCCACTGCCACCTCATCCTGCCCTCGCTGTCACCGGCCACGCCATTAAACCAAGTGCNTGA
GCCTCACCTCATGGACTCACTGGGCTCCCCTAACCGATTCCAACCACCCCTGCCATTCCCTCCCTCCCTTAATT
CCTCCCCCAGCCGGTCCCCAGATGGGGTTGATTGTACTGGGGGGAGGGGACAGGAAACAGAGGGACCCCCGGGA
GTTAATGTGCCTCTGGGTTCTCTTCNCAGGCCACCCAGGGCCACTAAAAAGCGCTGAAGCAGCGA
TTCCTCAAGCTGCTGCCAGCTGCCGGGCCCCAAGCCCTGCCCTAGTCAGTGAAAGCAAGTGCCTCTCATGTGCTTC
CCGGGGCGGGGCTCGATGTGCGTGTGCGATGANTGTGCGCGTGTGCCAGGCCGCRAGTGTKCS
CATGYTCCAGGCTTGCATGTGCGGGGGCGTGCCCAAGCCTSGTGTGTTGGGGTGGGCTGCCCAVGCGTGT
GCGTGTATGTGCGCATGCGCRCAGCGTRCCCCAGACCGCGTGTGTTGCGTGGGGCGTGCCTACCCC
TGCATGTGTTGGAGGGCGTGCCCAKGCCCKCGCGNGTTGTTGTTGATGGAAAGGCGTACCGCACGCCCTGC
GTGTGGGGAGGGCGTGCCTGGGAGGCTGGCAAGGCTGGACATAAGNGGGCGNNGCTACATGTTGNGTGTACGNCTGAAGCCAGCG
TGGCGAGGGGGGGTGTGGCAAGGCTGGACATAAGNGGGCGNNGCTACATGTTGNGTGTACGNCTGAAGCCAGCG
TGTGTGGCGTGGTCAAGTGGNAGCGGGTGTGTCACCGCTCCCGCAAACACTGTGGACCCGAGAGTGTGGTGTG
ACCATTGTGACCAGGNTGAGGCCCTGAGCCTGTAAGCTGTGGCGGCCCTGTAGACCAAGGCGCCGTGAGGGTCTGT
ATGTGGCTTAGCTGGGTTAGTGTCTCACTCCGTGCGGCCGCCCTTCCCCACCGTGTGTTGGACCCCTGATGTG
TGTGCTATGCCCGACAGGATGGTACAGGTGTAGAGGATGGCGCTGCCCTCTCCAGACGCCAGGGTATTGG
GTTTCTGTGCCAGCCTGGTCCCTGCTGAAGTGATCTCAGTGAGTGACCTCGCTTGTCTCTAGGTCTCCATT
CTCAGTTGGCCTGCCACCTCATAGGATCATACTGCATTGCAAAACATAAAGGCCGCTTGTAGTTATTG
AGCATGCTGTGTTGGACTAGATGGTCCACACGGGGTGGATTGCGARAAGGACAGGCGTGAAGTCCCGCAAG
CTTGTGTGCATGGGGTCCGTTCTGTTGCTGTGCTGGTGGGTGTGCCCTTGACCGGCTGGGTGTCAAGGTT
GCTCTGAGTGTGAGGGGCCAGGTGTGTTGATGCAAGTTGGCCGGGTCTTCCGCTTCTCGGTGWCAAGTTCGCTCCCTT
CAGCATTAGCCGCCAGCCTCCCTCCGGCCCCACAGACCCCGCTGCTGACCCAGGTGACTTACGCTCTGGTGG
GGCGGGGGGGCAGGGCGGTTGCCATCTGGGGTGGGGGCACGGTCTGGGCTGGACGAGGGTGGGCTGGGCGGGGG
CAGGATTGAGATGGGGCCGGGGTGGGTCTGGATGGAGGTTGGCTGAGCTGGCGGGGACATGGCTCAGGCAGGCTGG
GGGATAGATGGGGCTGGGCGGGGGAGGGGAGGGCTGGGTGGGAGGGTTGGGCGGGGCAAGGCTGGGCGGG
CTGGGGGGATCTGAGTTGGTCCCGAAGGCCGGAGCTGACCCCTCAGACGCCCTCTTGAACCTGGCTTTCC
ACTCCTCCCTTCTAAACGAAGATGCCCTGGGGCCTCCCTCCACAGAGGGATGCCGAGGGCGGGGG
GTGAGTCGGATCCCTGGCTCTGGGCCAGGCCAGGCTTGGCCGCTGATAGACCTCGAAGATGCCCATCATTTT
CTCCTTACCTCAGTGTCTTGCTCGGGGCCAGGAACGGCAGCTGGCAGCTGGCTCCGGCATCGGATGGGACCGGGGG
GGGGAGGGGGTGAATGGGGCAGTGAATTGAAGAGGGTGCAGGCTGGGATGAGGCGCGGCTGTGCTC
TCCCGAGACAGCGTGGACGATGAATTGAATTGTCACCGTGTGTCACGGGCTGAGGGTCTGGAGCAGCTGCAGG
AGCAAACCAAAATTCAACGCGAAGGAGTTGCAAGGCTGTACCGGGCTTCAAGAACGTTGAGTGCAGCTGCAGG
AGCGAAC

Fig. 22

AACTCAGCGNGGGTGGGACAGGAGGACCAANCCGGTCCANATTTCCCANAAGCATGGCTTNGATGCTTGAGGNG
 CGGGCGGAAGGGAGGCAGGCCCTGAGACTGAACCTCTAGCTGGAGGTTCTGGGGGGGGCCAGAACGRAAGTGGCG
 CCTGTAGACTGTCAGTTCTGTTCATGTTTTATTGTGCACTGGAAAGAAGTCTTCCCTCCCATCACATGAGCC
 ACGTGGTGAATCTGGAGGCTTGAAGATTATCCCCCTCCCTGGGAGTCTGGGCATGGAGGGTGGGGCGGTGA
 ACGGAAGGGGATTGTCTCTGCCCTCAGCTGGGCCCTCCTCCAGGAATGTCCCAGCAGGAATTGTCAATGAG
 GAGAACCTCAAGCAGATTACTCCAGTTCTTCCCAAGGAGGTGAGGGACAAGGCCAAGGGAAAGCAGTTGTC
 CTTCTCTAGGCTGAGGGAGGGATCTGGAGGAGCTGGGAATGCCAAGGTGATGGGGGTATGGGAGCTCC
 AGAGGGAGGAAGTCTCTCTGTGTGAAAGCCAACCTCTCCACACTCACCTGCAAGTCCAGCACCTATGCCACTT
 TTCTCTCAATGCCCTTGACACCAACCATGATGGCTGGTCAGTTGAGGTGAGCTGGCGAGGTGGGCCAGGGAA
 GCCTGTTCTGGAGTTCAAGGCCAGGATCTCAGGCCAAACCCAGAGAAGGAGTTGGTGAAGAGKACCCGAGGAC
 ACAGCTCCCTNCTGCCCTCTCCCAAGGACTTTGTGGCTGGTTGYCCGTATTCTCGGGAACTGTAGATGACAGG
 CTTAATTGGGCCTCAACCTGTATGACCTTAACAAGGACGGCTGCATCACCAGGAGGTGCAGGCCAACTGAAGGGC
 TGGGGGTCTGTGGCGGTGATGGGGGTGGCGTGCAGGGTGTGGAGGGAAATATGACCCACATATGCCACAAGC
 AATGGGATCAAGGGAGGCTGGAGGCTTGAGGAAGGATCCTCTCTCTTGGCCTAACAGGAATGCTTGAACATCA
 TGAAGTCATCTATGACATGATGGCAAGTACACGTACCCCTGCACCTCCGGAGGAGGCCAAGGAAACACGTGGAG
 AGCTTCTCCAGGTACTTGGAGTGGGTATGGCTGGAGGGCCCTGGAGTGAAGGGAAAGAAGGCCAAGAACAGCAGG
 GAACTCACCTGACTTCTGTCGCCCTCTTGCCATCCCTCTGTCTCCCTGCCCTGACCCACCTCTGAGAAGA
 TGGACAGAAACAAGGATGGTGTGGTACCTTGAGGAATTGAGTCATTGAGTCATTGCAAAAGGTACAGCTCCCTGCCCTC
 TACATTACCTGACCTGGACTCAGGCTGATTAGTAATGCAGGGAAAGCTTCTTGGGAGAATACCACCTTCCC
 ACCTCACCCCCATATTCACCTATTCCCTTGAGGCTTACCCCTCCCTACCTCAGGTCTCTGGGCATCT
 CCTTCCCTGTGCTTTGAATGTCCTCTGTGACTCAAGTGTCCCTCACTGTCCTGTGATAAGCTCCTTCT
 TTCTCTCTTCAATCTGCCCTGCTCACATCATGCCACAGGATGAGAACATCATGAGGTCCATGCAGCTCTTGC
 AATGTCATCTAGCCCCCAGGAGAGGGGGTCAGTGTTCCTGGGGGACCATGCTTAACCTAGTCCAGGGGACCT
 CACCCCTCTTCCCTAGGTCTATCCTCATCCTACCCCTGGGGCTGGAGGGATCCAAGAGCTGGGATTCAAG
 TAGTCAGATCTGGAGCTGAAGGGGCCAGAGAGTGGCAGAGTGCATCTGGGGGTGTTCCAACCTCCACCAG
 CTCTCACCCCCCTCCCTGCCCTGACACCCAGTGTGAGAGTCCCTGTAGGAATTGAGGGTCCACCTCCTA
 CCCCTACTCTAGAAAACACACTAGACAGATGTCCTGCTATGGTGTCTCCCCATCCCTGACCTCATAAACATTCC
 CCTAAGACTCCCCCTCAGAGAGAATGTCCTATTGTCAGTGGCTGGCTCTCAGACCAGCATTGAGAGCCCTG
 TGGGAGGGGGACAAGAATGTATAGGGAGAAATCTGGGCTGAGTCATTGAGTCATTGAGTCAGRAGGTGGCTGGGTT
 GAGAATAGAAGGGCTGGACAGATTATGATTGCTCAGGCATACCAAGGTATAGCTCCAAGTCCACAGGTCTGCTAC
 CACAGGCCATAAAAATAAGTTCCAGGCTTGAGAAGACCTGTCTCCCTAGAAATGCCAGAAATTTCAC
 ACCCTCCTCGGTATCCATGGAGAGCCTGGGCCAGATATCTGGCTCATCTGGCATTGCTCCTCTTCT
 TGCACTGTTGGTGGTGTGGTGGGAAATGTGGATGGGGATGTCCTGGCTGATGCCAAAATTCTCATCC
 CACCCCTCTGCTTACGTCCTGTTTGAGGGCTATGACTTGTGAGTTTGTTCCATGTTCTCTATAGACTTGG
 ACCTCCTGAACTTGGGGCTATCACTCCCCACAGTGGATGCCCTAGAAGGGAGAGGGAGGGAGGCAGGCATA
 GCATCTGAACCCAGTGTGGGGCATTCACTAGAAATCTTCATCAACCTGGCTCTCCCCACCCACCCAGATAACC
 TCCTCAGKTCCTAGGTCTTCTYGTGACTCAATCTACCCAGAGATGCCCTAGCACACCTAGAGGGCAGGG
 ACCATAGGACCCAGGTTCCAACCCCATGTCAGCACCCAGCCATGCCACCCCTTAGCACACCTGCTCGTCCCA
 TTTAGCTTACCCCTCCAGTGGCCAGAATCTGAGGGAGAGCCCCCAGAGAGGCCCCCTCCCTAGAAGACTGTT
 GACTGCTTGCATTGGCTCTCTATATATTGTAAAGAAATATACAGATC:TAATAAAACACAATGGC
 TATGCACAGGCTGCCGTCTGCCCTTGTCCCTCCACCTACAATACACACCCCTAACGAATGCAACCTGCA
 GCCTTTAGATCCCCAAGAAAGTGGCTTCTTCCATAGTGGCCATACCTGGCATGAGACTGAGACACAGGCTC
 TGGAAATGGTTGGAAACCCACCAACCTCAGGCCACATGAATCTCCCTCCACACAGCCTGAGAGGGAGACAAGGA
 AGGAAGGACAGGACACTGATGCTGGAGACTGTGCCAAGCAAGCTGTTTAGCTGACATTCTAACAGTTGAAT
 AACAGATTCTAACAGACTTTAGTTAATCTAACAGTGTCTTCTTTGAGGGGCTCCTTAAGTTCYTTCT
 TTTTTTTTTTTTTT

Fig. 22 Continued

>monkey KChIP4 cds = 265
gtcgaccacgcgtccggtgctgtggagcggggggagccccgcccagccaaatgcaggatcagcatgagaggctgg
actttagtccaggctgtcttccccggggaccgcggcttgcagggtgcagctgcgaggaactgctacttttc
cccttgcagaactttgttccaagcctgacgttgcatacgattcttaactcccccactccaaagggtctggaggc
tgggatgtctgcagactcaggAGTTGACTCTGGAGTGGAGTCGAAGGACTGCAAACAGTGGGTA
TTGTTGTGAT
TATATGTGCATCTCTGAAGCTGCTTCATTGCTGGACTGATTGATTTTCGGAAGACAGCGT
GGAAGATGAACCTGGAGA
TGGCCACTGTCAGGCATCGGCCCTGAGGCCCTTGAGCTTCTGGAAGCCCAGAGCAAATTAC
AAGAAAGAGCTTCAGATC
CTTIACAGAGGATTAAAGAACGAATGCCCAAGTGGTGTGTTAATGAAGAACCTCAAAGA
GATTTACTCGCAGTCTT
TCCACAGGGAGACTCTACAACATATGCACATTCTGTTCAATGCGTTGATAACGGACCACA
ATGGAGCTGTGAGTTCG
AGGATTTCATCAAAGGTCTTCCATTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGG
GCATTTAATCTGTATGAT
ATAAAATAAAAGATGGCTACATCACTAAAGAGGAAATGCTGATATAATGAAAGCAATATACG
ACATGATGGGTAAATGTAC
ATATCCTGCTCTAAAGAACAGATGCACCCAGACAACACGTCGAAACATTTCAGAAAATGG
ACAAAAATAAAAGATGGGG
TTGTTACCATAGATGAGTTCTTGAAGCTGCCAAAAGATGAAAACATAATGCGCTCCATG
CAGCTCTTGAAAATGTG
ATTTAAcgtcaactagatcctgaatccaacagacaatgtgaactatttaccaccctaaagtggagctaccactt
ttagcatagattgtcagcttgcactgaagcatattatgc当地aaacaagcttgc当地tatataaagcaatccccaaaaga
tttgc当地ttctc当地ttgc当地ttccataatgc当地actgacttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
tgtgaatattccaaagtaatagaatctggcatatagtttatttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
tc当地gtatccaaataccgtgttttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
actgacatctgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
aaacaataagattactacaatccaaacacatagttccagtttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
tttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
agc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
gtttccattgtatcatcaagtggagttcaagacggcatccaaacaaaacaaggatgttacagacatgtccaaagggtct
aggatatctatccttccaggatgttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
ccctgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
aacaacaaaacagcaagccaaatttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
gaaaataagtgtcaacaactaatccagattacaatgttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
aatcatctc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
gccaagaggctacagaaggaggaaatttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
gtatgttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地
tggttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地ttgc当地

>monkey KChIP4
MLTLEWESEGLQTVGIVVIICASLKLHLLGLIDFSEDSVEDELEMATVRHRPEALELLEAQSKFT
^KELQIYLRYGFKNF
PSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVOEKLNW
^FNLYDINKDGYT
KEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKGVTIDEFIESCQKDENIM
RSMOLFENVI

Fig. 23

>monkey KChIP4 C terminal splice variant cds = 265-966

gtcgaccacgcgtccgggtgcgtgtggggggggagccccccagccaaatgccaggatcagcatgagaggctgg
 acttttagtcgggtctgtcctcacccggggggaccgcggcttgcagggtgcagctgcgaggaactgctacttttc
 cccttgcagaactttttcaagcctgacgttgctacgattctgttaattaactccctcactccaaagggtctggaggc
 tgggatgctctgccagctcagaggATGTTGACTCTGGAGTGGACTCCGAAGGACTGCAAACAGTGGTA
 TTGTTGTGAT
 TATATGTGCATCTCTGAAGCTGTTCAATTGCTGGACTGATTGATTTTCGGAAGACAGCGT
 GGAAGATGAAGTGGAGA
 TGGCCACTGTCAGGCATCGGCCTGAGGCCCTTGAGCTCTGGAAGCCCAGAGCAAATTAC
 AAGAAAGAGCTTCAGATC
 CTTTACAGAGGATTTAAGAACGAATGCCCAAGTGGTGTGTTAATGAAGAACCTCAAAGA
 GATTTACTCGCAGTTCTT
 TCCACAGGGAGACTCTACAACATATGCACATTTCTGTTCAATGCGTTGATAACGGACCACA
 ATGGAGCTGTGAGTTCG
 AGGATTTCATCAAAGGTCTTCCATTGCTCCGGGGACAGTACAAGAAAAACTCAATTGG
 GCATTTAATCTGTATGAT
 ATAATAAAAGATGGCTACATCACTAAAGAGGAAATGCTGATATAATGAAAGCAATATACG
 ACATGATGGGTAATGTAC
 ATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTCAGGCTGTT
 TCCATTGTTATCATCAAGT
 GGAAGTTCAAGACGGCATCAAACAAAACAAGGATGTTACAGACATATGCAAAGGGTCAGG
 ATATCTATCCTCCAGTATA
 TGTTAAAtgctaataacaagtaatcctaacagcattaaaggccaaatctgtcctttccctgacttccttacagcatg
 ttatattacaaggcattcagggacaaagaaaaccttgcattaccccactgtctacttaggaacaacaaacagcaagcaaaa
 ttcaactttgaaaggcaccagtggccattacattgacaactactaccaagattcagtagaaaataagtgcataacaacta
 atccagattacaatatgatttagtgcattacaaaattccacaattcagattatTTTaatcatctcagccacaactgta
 aagttgccacattactaaagacacacacatcgccctgtttgtagaaatatcacaagaccaagaggctacagaaggag
 gaaatttgcaactgtcttgcacaataatcaggtatctattctggtagagataggatgtgaaagctgcctgcta
 tcaccagtgtagaaattaagagtagtacaatacatgtacactgaaatttgcattcgcgtttgtaaactcaatgtgc
 acattttgtattcaaaaagaaaaataaaagccaaataatgttwawaamwaaaaaaaaaaaaaaa

>monkey KChIP4 C terminal splice variant

MLTLEWESEGLQTVGIVVIICASLKLHLLGLIDFSEDSVEDELEMATVRHRPEALELLEAQSKFT
 KKELQILYRGFKNE
 CPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLNW
 AFNLYDINKDGYIT
 KEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQAVFHCIIKWKFKTASNKTRMFTDICK
 GSGYLSSSIC

Fig. 24

KChIP1_1v	-----MGAVMGT-----SSLQTKQ-----RKP-----
KChIP2_9q1	MRGQGRKESLSDSRDLDDGSYDQLTGHPGPDKALKQRFKLLPCCGPQALPSVSETLAA
KChIP3_p19	--MQPAKEVTKAS--DGSLLGDLGH-----TPLSKKEGLKWQRPRLSRQALMRCCLVKWI
KChIP4_352	---MLTLEWESEGLQTVGIVVIICAS---LKLLHLLGLIDFSE-----
KChIP4_231	---MLTLEWESEGLQTVGIVVIICAS---LKLLHLLGLIDFSE-----
hsncspara	---HEVESISAQLEEASSTGGFLYAQN-STKRSIKERLMKLLPCS-----
KChIP1_1v	-----SKDKIEDELEMVCHRPEGLEOLEAQTNFTKRELQVLYRGFKNECPS
KChIP2_9q1	PASLRPHRPRLLDPDSVDDEFELSTVCHRPEGLEOLQEQTFTKRELQVLYRGFKNECPS
KChIP3_p19	LSSTAPQ-----GSDSSDSELELSTVRHOPEGLDOLQAQTKFTKELQSLYRGFKNECPT
KChIP4_352	-----DSVEDELEMATVRHRPEALELLEAQSKFTKELQILYRGFKNECPS
KChIP4_231	-----DSVEDELEMATVRHRPEALELLEAQSKFTKELQILYRGFKNECPS
hsncspara	-AAKTSSP---AIQNSVEDELEMATVRHRPEALELLEAQSKFTKELQILYRGFKNVRTF
KChIP1_1v	GVVNEDTFKQIYAQFFPHGDASTYAHYLNAFDTTQTGSKFEDFVTLAISILLRGTVHEK
KChIP2_9q1	GIVNEENFKQIYSQFFFQGDSSTYATFLNAFDTNHDGSVSFEDFVAGLSVILRGTVDDR
KChIP3_p19	GLVDEDFTFKLIYAQFFPQGDATTYAHFLNAFDADNGAIIHFEDFVVGSLILLRGTVHEK
KChIP4_352	GVVNEETFKEIYSQFFFQGDSTTYAHFLNAFDTDHNGAVSFEDFIKGLSILLRGTVQEK
KChIP4_231	GVVNEETFKEIYSQFFFQGDSTTYAHFLNAFDTDHNGAVSFEDFIKGLSILLRGTVQEK
hsncspara	FLTLPSHNSQRSIEK-----
KChIP1_1v	LRWTFNLYDINKDGYINKEEMMDIVKAIYDMMGKYTPVLKEDTPRQHVDVFFQKMD-----
KChIP2_9q1	LNWAFNLYDLNKDGCIITKEEMLDIMKSIYDMMGKYTPALREEAPREHVESFFQKMD-----
KChIP3_p19	LKWAFNLYDINKDGYITKEEMLAIMKSIYDMMMGRHTYPILREDAPAEHVERFFEKMD-----
KChIP4_352	LNWAFNLYDINKDGYITKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMD-----
KChIP4_231	LNWAFNLYDINKDGYITKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQAVFHCI-----
hsncspara	-----
KChIP1_1v	---KNKDGIVTLDEFLESCQEDDNIMRSIQLFQNV
KChIP2_9q1	---RNKDGVVTIIEEFIESCQKDENIMRSMQLFDNV
KChIP3_p19	---RNQDGVVTIIEEFLEACQKDENIMSSMQLFENV
KChIP4_352	---KNKDGVVTIDEFIESCQKDENIMRSMQLFENV
KChIP4_231	IWKFKTASNKTRMFTDICKGSGYLSSSIC-----
hsncspara	-----

Rat 33b07 protein

MNGVEGNNELPLANTSTSALVPEDDLKQDQPLSEETDTVREMEAAGEAGAEGGASPDSEHCDPQLCLRVAENGCAAAG
EGLEDGLSSSKCGDAPLASVAANDSNKGQLAGPLSPAKPKTLEASGAVGGLGSQMMPGPKTKVMTTKGAISATTGKEG
EAGAACQEKKGVQKEKKAAGGGKDETRPRAPKINNCMDSLEAIDQELSNVNAQADRAFLQLERKFGRMRLHMQRRSFII
QNIPGFWVTAFRNHPQLSPMISQDEDMMRYMINLEVEELKHPRAGCKFKFIQSNPYFRNEGLVKEYERRSSGRVVSL
TPIRWHRGQEPQAHHRNREGNTIPSFFNWFSDHSLLFDRIAEIKGELWSNPLQYYLMGDGPRRGVRVPPRQPVESPR
SFRFQSG.

Rat 33b07 DNA (coding: 85-1308)

GGTGGAGCTAACACTCACTGCGGTGCTGCCCTGCGTCTGCAGAGAACAGGAAAGCTCTCTGCAGGGCTGTCAGCTGC
CAAATGAACGGCGTGGAAAGGAAACAACGAGCTCCCTCGTAAACACCTCGACCTCCGCCCTGTCCCGGAAGATCTGG
ATCTGAAGCAAGACCAGCCGCTAGCGAGGAAACTGACACGGTGCAGGAGATGGAGGCTGCAGGTGAGGCCGGTCCGGAG
GGAGGGCGCTCCCCCATTGGAGCACTGCGACCTGCACCCCCAGCTCTGCCTCCGAGTGGCTGAGAATGGCTGTGCTGCCGAGC
GGGAGAGGGCTGGAGGATGGCTGTCTCATCAAAGTGTGGGGACGCACCCCTGGCGTCTGGCAGCCAACGACAGCA
ATAAAAATGGCTGTCAAGCTGCAGGGCCGCTCAGCCCTGCTAACGCAAAACTCTGGAAGCCAGTGGTGCAGTGGCCTG
GGGTCGAGATGATGCCAGGGCCGPAAGAACCAAGGTAATGACTACCAAGGGGCCATCTCTGCAGTACAGGCAAGA
AGGAGAACAGGGGGCGGCAATGCAGGAAAGAACAGGGGTGCAGAAAGAAAAAGGCAGCTGGAGGAGGGAAAGACGAGA
CTCGCCTAGAGCCCCTAAGATCAATAACTGCATGGACTCCCTGGAAGGCCATCGATCAAGAGCTGTCAAATGTAATGCG
CAAGCTGACAGGGCTTCCTCCAGCTGGAACGCAAATTGGCGGATGAGAACGGCTCCACATGCAGGCCGAAGTTTCAT
CATCCAAAACATCCCAGGTTCTGGGTACAGCGTTCCGAAACCAACCGCAACTGTCACCGATGATGGCCAAGATG
AAGACATGATGAGGTACATGATCAAATTAGAGGTGGAGGAGCTTAAGCACCCAAGAGCAGGGTGCAAATTAAAGTTCATC
TTCCAAAGCAACCCCTACTTCCGAAATGAGGGCTGGTCAAAGAGTACGAGCGCAGATCTCAGGTGAGTGGTGTGCGCT
CTCTACGCAATCCGCTGGCACGGGGTCAAGAACCCAGGCCATATCCACAGGAATAGAGAGGGGAACACGATTCCCA
GTTTCTTCATTGGTCTCAGACCACAGCCTCTAGAATTGACAGAAATAGCTGAAATTATCAAAGGGGAGCTTGGTCC
AATCCCCTACAATACTACACTGATGGCGATGGGCCACCGAGAGGAGTTCGAGTCCCACCAAGGCAGCCAGTGGAGAGTCC
CAGGTCTTCAGGTTCCAGTCTGGTAAAGCTCTGCCCTCGTGGAGAACAGCTCTTACAGAACAGTCCTTACCCACCTTCAGC
TTGGCTAGCAGCATGCAGCCTCTGTCTGCTTCTCTGGATTGTCTTGGTTCTTAAGTCTCCGGTAGTT
TCAAGGTTGTGGCTTCAAGTCTTGCTCTCTGGCCATCACGATGTCCTGCATAGTGTAAATGGTGTCAA
GTGCATGGCTCCAACTGCTTCTATGCCAAGCTCACGTGCTGTAGTTGACTGCTTTCTTGATGGCTTGGTTCC
GTCTGTGATCTCTAGGTTTTGTTCTTTAAAAGTGGTCTCTATCAAAGAACAGCTTGACATATCCTTACCAA
GAACATGCCAGATTCTAATCTGTGTTCCGATATCTATGTACTGTGAAGAACAGTGTGAGTTCGCCACTGCAAGATGGAC
TGTATCCCAATCCAGCCATCAGGCCAACAGGACATTCCAAGCTGTCACCAACTGATCCTAGTGTCTCCTGGGCTTTG
CCATTACCTGCTTTATCTATAGAATGAGCAGGTGGCTGGTAGGTGACTACTAGGTAAGAGTGAAGTATTAGGTGAG
GAGTGTGTTCTGTCAACCACATTGTTCTGTACCAATGCATCATGATCAGCTGGATCAGCTACTGACTGTCTGATATTTC
TAACCCCCAACACAAAAAAAAAAAAAAAAAAAAAA

Fig. 26

Human 33b7 (106d5) DNA (coding: 88-1332)

GGGGTGGTGTAGACGTTCCGGcAGAGCTGGCGCTGCGGAGGACAAGGAACACTCCCTCTCCACTAGTCTGACTTC
 TTCCAAAATGAGCGCCCTGGATGGGGCAACAAAGCTCCCTCTGCCCAAACCGGGGCTGGCTGCTCCGACCATGCCT
 CAGGAGATCCGGACCTAGACCAGTGCAAGGGCTCCGTGAAGAAACCGAGGGCACACAGGTGATGGCGAACACAGGTGGG
 GGCAGCCTGGAGACCGTTGCAGGGGGGGTGCATCCCAGGATCCTGCACTGTGGCCCCGCTCCGCTCCAGTTGC
 CGGGAGTCGGCGGGTGCAGCGACCAAGCCGGGAGGAGGATGCTCCACCTTCTACGAAAGGTCTGGAAGCAGCCTCTG
 CCCCCGAGGCTGCTGACAGCAGCCAGAAAAATGGCTGTCAGCTGGAGAGGCCCCGCTGCTGGGAGAAGGGCT
 GAAGCCTGTGGCGAGGGGGCTTGGGGTCTCAGATGATAACCGGGGAGAAGGGCAAGGAAGTGAACGACTAAAAAACGCGC
 CATCTCGGCAGCAGTGGAAAAGGAGGGAGAAGCAGGGCGGGCATGGAGAAAAGAAGGTAGTGCAGAAGGAAAAAGG
 TGGCAGGAGGGGTGAAAGAGGAGACAGGCCAGGGGCCAGGATCAAAACTGCATGGACTCACTGGAGGCCATCGAT
 CAAGAGTTGTCAAACGTAATGCCAGGCTGACAGGGCTTCTTCAGCTTGAGGCCAAGGTTGGCCATGCGAAGGCT
 CCACATGCAGCGCAGAAGTTCTTCAATTATCCAGAATATCCAGGTTCTGGGTTACTGCCTTCTGAAACACCACCCAGCTGT
 CACCTATGATCAGTGGCCAAGATGAAGACATGCTGAGGTACATGATCAATTGGAGGTGGAGGAGCTAAACACCCAGA
 GCAGGCTGCAAATTCAAGTTCATTTCAAGGGCAACCCCTACTTCGAAATGAGGGCTTGTCAAGGAATATGAACGCG
 ATCCTCTGCCGGGGTGTCTCTTCACTCCAATCCGCTGGCACCGAGGCCAAGACCCCAAGGCTCATATCCACAGA
 ACCGGGAAGGAAACACTATCCCTAGTTCTCAACTGGTTTCAGACCACAGGCTTCTAGAAATTGACAGAATTGAG
 ATTATCAAAGGAGAACTGTGGCCCAATCCCTACAATACTACCTGATGGCTGAGGGCCCTAGAGGAATTGAG
 ACCAAGGCAGCAGTGGAGAGGCCAGATCCTCAGGTTCCAGTCTGGCTAATCTGTCTGTGAGAAGCTCTGCAC
 AGTTTCTTACCAACCTCTTGGACCTATGCTTGGCCAACAGCATGCACTGAGTCTCCATCTGCTTCTTCATACTGTG
 ATTATCTTCTTGGTCTAAATCTCAGTAATCGGTTGCAAGATTGTTGCTTACCTGCTGTGCCATTCTCCCT
 GGGCCTCATGCTTCTGATTGTGTTAACATGTTCAAGTGCATGGCTTACGGCTCTATGCAAGCGTATGATA
 CTATAGATATAGTGTACCATACTGCCTTCTTGATGGCTTACGGCTTACGGCTCTATCTGACCATGCTCTCCAAATTAAAG
 TGGTCTGTACCAACAAAGAATCTGATACATTTCACAAATAACTGATTGGGCTTCATACTTTATGCTGGCTGTGCT
 ATACCCATGACTTATGGTAAGCTATTGGTATTACCACTGCAAGACAAAATGATATCTTAACCCGGCATCAACCCA
 AATTGGACATTCCAGACTACCACCAACTGGATCCCAGCTGCTTCTGGGCTTGTGCCATCCACCCACTGGTTATCTGA
 TAGAACAGCTGGTGGCTGATGGGTGACTGCTAGGCGTGAETGAGGTAATAGTGAAGAAGTGTCTATGTTATCACATTG
 GTTTCTGTACCTTGGTTACTCTACGTACAGGAGCTGCTGGTGAAGTATGGGCTTCATACTGGGCTTCTTCATTTCT
 CACTCTCACCTCTGGTGAACCTTGTCTAGGCCACCATGCTGCCATCAGGAACATCTGTAGACGTAGCTCCAG
 GGAGCTCACAGCAACACCCCTACCAACAGGATGGGAGTAATATGTGACAGGCCAACGAGCTGGAACCGAGTC
 CTTCCAGCTTAGTCTGACTCTAGCCAACAAACCATCTTAATGTGAGCACTCTTACGGCTTCTTCATTTCT
 CCGCCTGCACCCACTCTGAACATGACAAAGTGGCAGAGTTGGGCATTGAGGAAGAGATATTCTGGAATGTGAG
 TGTTATGCCTGTCTTCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCC
 CTCTGAAGCAGTTAGTTAGCTTAAACAGAAAACAAACTGGCAAAGCAGGCTTTGTTAATTGCTCTTCCCTGATT
 GTGTTCAAGAGAGAAAGGTTATGATTAATGGGCTCAGATCTCTTATGCCCTTATCCTCCACCCACTCTTTAGCA
 AGGTCTGAAAGTTCAAAGGAGACCTATAGGTTAATTGTTAGTATAGGAGTAAATTAGGAGTAAATTAGGAG
 TTTATCTTTACCCATCCATTCTACAAAACCTGTGATTCTGAGTTTGTGAGAAGCTGGAAAGAGAGAG
 AGGGCCTCACAGTGTGGTTAGGACGGGCAAAGGAAAGGCTTGTGATGTGAGCAAAGGCAACCAAAACTAGCC
 TCACTCCACTTTCTAAAGATGGAATTCTTTGGGCTTGGACTGCTCTAGGGTAGCATTGTAGGTCACTCTTC
 TCCTTGTACTATTTGTTCTGCCCTGATGCCCTGGTCTCATCCTACTGCCCTGGCTTCTTGCCCTCATTTCTC
 AGCTCTGCATTCCCTGCTCTAACAAATGAAGAACGAGGCTGCAGCTGCATTGGAAGATCTCCAGCCTCC
 TGTAGGGATAAGGGATGTGAGCATCTGTGTTACGGACAAGTCCAGTAGGTGGACAGTGTGCGTCAA
 GGCTTAGTTAGCATGTGTTGATAAAGACCATCCACCATCACCCTTCCCTTGTGTTGAAGGCTTGGCT
 AGCTACCTGAGGGTTAGGAGGCTGAAACACACAGTGGAGAGGTTAATCTAGGTTGGAAACTGAGTAAAGTCCAGA
 GCAGGAATGAGCCTGTTGGGTTGGAAAGGCTCACAGGAAGAACCTGCAAGGATCAGGGTGGGAGGGAGGC
 CCCTGAGGTGCTCCAGGAAGAGGGCTGGGTTAAATAGCATGCTGGAGGAAAGATTCTCAATTCTTCTAA
 GTCCCTGAAATTCAACAGTAGATTGTAAACAAATGTAAGTCGATGTTCTCTCAATTATCCTAGGAGTGACCTTA
 TATGTGAGAAGATTAGGTTATGCTCTTATGTCACTGTTGAGTAAATCCATTCTCTGTGTTAGCCT
 ATGACAAAATTGATGTTACAGGCCCTGCTTGTGTTATAATTGACAACATGCAAAATACCAAAATTGTC
 CAGTATGAGAATTCACTGAAATTCAATTAGTATTAGCTTGTGTTCTCTGTTCATATATGGCTCTATTCTAGAA
 ATATAATTGAAATGTGATCTTCAATAGTCGAATATTGAGTATGCTCTGTGAAATAACCTCAAAAG
 AAAAATACGACTCTGTTACTGATATTCTGCCCTAGTAATGACTTGTACATTGACATTATGTTCTAAGCAGTGAAG
 "ACCACTGAGAATTCTGTCAAACATGATCAATTAGTACTTTGTCTCTCCATGTGCTGAGGAAAAATAAAAG
 "GTCACTACCGTATTCTGTTCATCAAAAATAATTAAAAACAAAAAAATAAAAG

Human 33b7 (106d5) protein

MSGLDGGNKLPLAQTCGGLAAPDHASGDPDLQCQGLREETEATQVMANTGGSLETVAEGGASQDPVDCGPALRVPVAGS
 RGGAATKAGQEDAPPSTKGLEAAASAAEADSSQKNGCQLGEPRGPAGQKALEACGAGGLGSQMIPGKKAKEVTTKRAIS
 AAVEKEGEAGAAMEEKVVQKEKKVAGGVKEETRPRAPKINNCMDSLEAIDQELSNNVAQADRAFLQLERKFGRMRLHM
 ORRSFIIQNIQPGFWTAFRNHPQLSPMI SGQDEDMRLRYMINLEVEELKPRAGCKFKFIFQGNPYFRNEGLVKEYERRSS
 GRVVSLSLSTPIRWHRGQDPQAHIHRNREGNTIPSFFNWFSDHSLLEFDRIAEEIKGELWPNPQLQYYLMGEGRGIRGPPR
 QPVESARSFRFQSG

Fig. 27

Rat 1p protein (partial)

LKGARPRVNSTCSDFNHGSALHIAASNLCLGAAKCLLEHGANPALRNRKGQVPAEVVPDPMDMSLDKAEEAALVAKELRT
LLEEAVPLSCTLPKVTLPNYDNPGNMLSLAGLRLGDRVLLDGQKTGTLRFCGTTEFASGQWVGVELDEPEGKNDGSVG
GVRYFICPPKQGLFASVSKVSKAVDAPPSSVTSTPRTPRMDFSRTGKRREHKGKKSPSSPSLGLQQREGAKAEVGD
QLVAGQNRDCAFLWEDRLCSRLLVWH

Rat 1p DNA (partial, coding:1-804)

CTGAAAGGGCGAGGCCAGGGTGGTAACCTCACCTGCAGTACTCAACCAGGCTCAGCTCTGCACATCGCTGCCCTC
GAATCTGTGCCCTGGCGCCGCAAATGTTACTGGAGCATGGTCCAACCCAGCGCTGAGGAATCGAAAAGGACAGGTAC
CAGCGGAAGTGGTCCCAGACCCATGGACATGTCCTGACAAGGCAGAGGCAAGGCTGGCCAGGAATTGCGGACG
CTGCTAGAACAGGCTGTGCCACTGTCCTGCACCCCTCTAAAGTCACACTACCCAACATGACAACGTCCCAGGCAATCT
CATGCTCAGCGCGCTGGCCTGCGTCTAGGAGACCGAGTGCTCCATGGCAGAACAGGGCACGCTGAGGTCTGCG
GGACCACCGAGTTCGCCAGTGGCCAGTGGGTGGCGTGGAGCTAGATGAACCGGAAGGAACGACGGCAGCGTGG
GGTGTCCGGTACTTCATCTGCCCTCCAAAGCAGGGTCTCTTGCACTGTGTCCAAGGTCTCAAGGCAGTGGATGCACC
CCCCATCTGTTACCTCACGCCCGACTCCCCGATGGACTCTCCGTGTAACGGCAAAGGCCGGAGGGAAACACA
AAGGAAAGAAGAACGCCCCATCTTCCCCATCTCTGGGCAGCCTGAGCAGCGTAAGGGCCAAGCTGAAGTGGAGAC
CAAGTCCTTGTGGCAGGCCAGAACAGGGATTGTGCGTTCTATGGGAAGACAGACTTGTCCAGGTTACTGGTATGGCA
TTGAACTGGACCAGCCCACGGCAAGCATGACGGCTCTGTGTTGGTGTCCGGTACTTACCTGTGCCCGAGGCACGGG
GTCTTGACCAAGCATCTGATCCAGAGGATTGGTGGATCCACTGATCCCCCTGGAGACAGTGTGGAGCAAAAAAAAGT
GCATCAAGTGACAATGACACAGCCAAACGCACCTCACAACAGTCCGGACCCCAAAGGACATTGCATCAGAGAACTCTA
TCTCCAGGTTACTCTCTGCTGCTGGTTCTGGATGCTGAGGGCGGAGATGCACTTAGAGACCTGGATACTGACA
CAGAGACAGAGTCCCCCTAGCATCTCTGACACAAGGAGACCCAGTCACCTAACAGATAGAGATTCCAGTGACACCTC
CAGAATAGAAACCCCGTTAGCCAGCCCTCGATTACTGAGGTCCCATTATTAACAGATCTCCATGACGACTCCCCAAAT
ACAGACCTCATGTTACCCAAAGAGATTCCCTGAGTAGCACCTCAGGCTAGTCCCTGCCCCCTACCCCTCAGAGCAGA
TTTCCCCAATAAACATTTCACATACCCAAAGGGATGCTGACCCCTCTCACGACAGGACGTTGAGTTACAGTGG
ATTAGAGTCCCAGTGAATGAAGACCCCCCCACCCCGTTCTCTTAAGCATAGGTACATACCTCCAGAATAGCCAGCCACA
TCACTATCCCCATGTAACATCAGTCTCCTCAAATGGCGTAGGTCACTAGAAAGACCTATACTCTCTCTCCTCTCA
GAGATGCCCTCCATTCACTTAAGTCCCTGTTCTCACCCCTGAACAAGACACCTAACCAACGGGCCACTCACCTCAATT
CAAACACAAAATGCTCTGGAAAGCATGAATTACAGGACAGCAAGTCTCTGCCCTGCAACCTTGAGAAACCCCCAG
TGCCTGTATGAAGCCCACCCACATGGCCCACAGTCCCTGTGCTGGCCAAGGCTCCAGAAAATTCTATTTTAAA
GTAATAACTCCCCCTTGGGGGATCCCAAATTGGAGACCCATTCTAGAACACTGGGAGTTCAAATTCCAGAG
AGAATATATATTATATAATCCCCAATTCCCATGCTTCAAGCCCTACAACTCTAGAACAGCCAAATTCTAATT
CCAGGACTCCCTACCCAAAGTCACAGAACATCTCAAATCCCCAGGAAATCCAAACTTAAGATACCAATCCAAACCC
AGGAAATCCCCAACACAAGGTCTTAGGACCGGGAGGAAGGAACCTGTTGCCAGGAGAACATCCCAGGCTCTCAGGGCA
TCTCAAACCTGACTCCAGGCACCAGGAGACCCCAAACAGAAAGTCCCACCTGGAACAAAGGATAGGACTCTAATACCC
TTAGTCCATGGATCTTAATTCCCCAACCTCCAAACTCCATGGGCCCACCCCTCAAGGAAACCCCCAAGATCCAAATCTC
TGATAACTATATGTCAGGGCCCAGGGCTCTAACAGGACCCAAATCATGGAGTCCCTACTTCATACCTCTGGT
CACAGGTCCAAGACACTAAATCTGAGTCATTGGCCCCAAAGGACTTCACAGCACCTGGGCCAGACTAACAGCCTGAGGG
GAACCTGAGGGCCCCGTGGTCAAGGCAGACCTGGGCCCTGACCACCAAGGACAGCTCACGACTGCCCTTCACTGC
GAA
GAA

Fig. 28

Rat 7s Protein (partial)

ADSTSRWAEALREISGRLAEMPADSGYPAYL GARLASFYERAGR V KCLGNPEREGSVSIVGAVSPPGGDFSDPVT SATLG
IVQVF WGLDKKLAQRKHFP SVNWLISYSKYMRALDEYYDKHTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKI
TLEVAKLIKDDFLQQNGYTPYDRFCPFYKTVGMLSNMISFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFK
DPVKDGEAKIKADYAQLLEDMQNAFRSLED

Rat 7s DNA (partial, coding: 1-813)

GCTGACTCTACCTCTAGATGGGCTGAGGCCCTCAGAGAAATCTCTGGTCGCTTAGCTGAAATGCCTGCAGATAGTGGATA
CCCTGCATACCTTGGTGCCGACTGGCTTCTTCTATGAGCGAGGAGCAGAGTGAAATGTCTTGGAAACCCCTGAGAGAG
AAGGGAGTGTCA GCAATTGTAGGAGCAGTTCTCCACCTGGTGGTATTTCTGATCCAGTCACATCTGCTACTCTGGGT
ATTGTTCA GGTGTTCTGGGCTGGATAAGAACAGCTAGCTCAGCGCAAGCACCTCCGTCGTCAACTGGCTATTAGCTA
CAGCAAGTACATGCCGCCCTGGACGAGTACTATGACA AACTC ACAGAGTCTGTCGCTCTGGAGACCAAGCTAAGG
AGATTCTGCA GGAAGAGGAGATCTGGCGAAATCGTCAGCTCGTGGAAAGGCGTCTTAGCAGAGACAGATAAAATC
ACCCGGAGGTAGAAAATCTAAAGATGACTTCTACAACAAAATGGGTACACTCCTTATGACAGGTTCTGTCATT
CTATAAGACGGTGGGGATGCTGTCACATGATTCTATGATATGGCCCGCCGGCTGTGGAGACCACGCCAGA
GTGACAATAAGATCACATGGTCATTATCGTGAGCACATGGGGAGATTCTCTATAAACTTCCATGAAATTCAAG
GATCCAGTGAAGGATGGCAGGCAAAGATCAAGGCCACTACGCACAGCTTCTGAAGATA TGCAAGAACGCATCCGTAG
CCTGGAAGATTAGAACACTGTGACTTCTCTCTCTCCAGCAGCTCATATGTGTATATTTCTGAATTCTCATCTCCA
ACCCTTGCTTCCATATTGTGCA GCTT GAGACTAGTGCCTCGTGC GTCTCGTCATTGCTGTTCTTGGTAGGTC
TTATAAAACACACATT CCTGTGCTCCGCTGTGAAGGAGCTCTGACCTTGTCTGAAGTGGTAATGTAGTCATATG
ATACACAGTGAACATACACATTGTAACATATACGTTCTGTAACCTGTATGTAAGGTGACTACCCCTCCCTCTCC
AGTAAACTGTAAACAGGACTACTGCATGTGCTCTATTGGGATGGAAGGCCAGATCTCCATACCGTGGACAGGTACATAA
GGAAACTAGACCACTTGA CACTTAGTGTGTTGAGTAACCATTGCA GGAAGTATTCCATTAAAAA CAAAAGATT
AATGTTCAATTATTGTAGCTCCCCAGTATCAATCAGGACTGTTGTGGCCACTTGGGA ACTATTGTTCTCAA
CAGACGTTGCAAGGCTGAACGTAATAGATAAAATCAGTCCCTCTGAAAGTGTGAAAGTAAAAGAGAGCTAGGTGGTCA
GACTTAATTGACATCGTCTTGAAGCATATTTCAGTGAAGGAGTTAATATCAAGGACTTTATACTCAAT
TACTAGGAAATCTTTTAAGTACAATTAAAATCATTGAAATGTGATCCACATCATGCCATTCTTATATT
GTCAGATGAGCTCAGAGTGGGAGGGTGTGGTTAGAATACCACAAGGACACGCAGCAGTGCCTGCAGGAGTGTGGCG
GGGGCCAGCGGCATTGTTTCAGAGGTACGTGTGGCGTGTGTTGCTTGACACTCTGAAAACAGCAAGCT
TACCA GTTCCAGGAAATATTGTTCTTCACTGGCTCAGAAAGCTCTCAAAGTACCTGGCCCTGAAGCTTCTAT
CTGTTAATAGAGACGAGAGAGGTTCTAAATTAACTGGTGA CAAAACAAAAAGAAAAAGATCGATTGTTGTCTTGC
TGTTTGGTGTGTTAAATAATTCCATATTGCAACAGAGGCTCGCTCTGAGAGCTGGAGATCGTCCCT
TCACTCTCCGGGTGATAATGCTGGCGCATGCTACCTCTCAGGAGGGAGGGATTGAACATGGCTAACACTCTCAA
GTACACAAGCGTAACGACA AAGTATT TAAAGCCTGGTATGTTAAATTATTAGGTGGTGCATTCTTATGGT
CTTTGGTAGACATAGTACACTCAGATGTAATGTGAAATCCTGCTAGTGCATGTCTACAGATAGACTGCTATT
CAAGAAGGATATTCTCCACATAACAATTAAAATATTAAATCAGATATGGATTATGCAATGACTGTTGAGAGGTGG
ATTAACGGTGCTGCTTAATCAGTTGCTTCAATATGGCTCGTATCCAGAACGCTGACTAGTGGAGATGAGAAAGATT
TCAAAACCTGTCTGCCAACCTACCA CAGCAACCTAGGCTTGTGATCAGAATGAATGATCCAAAGAAACTACTGACCAAG
TGTGTTTGTGCTGGATTGAGATGTGCGTTCTCCTCCCTCTGAGAGCTGTTGATGAGTGTGAAGAAGTTACA
GAAACAACGCTCAGATTTCACGGTAACCTTCCCTCTGCCAACACTGTAGAGTTCAGATTGTCACTGATAGTGCTTCT
TTCGTAAGGATGTGTTAAATATAGCAGTCTTTAAAGATTATGCA GTTCTCTATTATTGTCGTGCTGGTCTA
ATGCAAGCCGGTTAACAAAGTTCATATGTTATTCCAGTGTAAATCTCATACCTATGCCCTTGGAAAGCTCCATCT
GAAACAATGAATAGAAGAGGCTATATAAAATTGCCCTTATCCTTAAGATTCACTATCTTATGTTAAGAGTAATGTAT
AATTATTAAAATCTATGAAAATAAAAAGTGGATTAAATTAAAGAGATC

Fig. 29

Rat 29x protein

ARLPAPEHARQQPLLSGPEPGSSARVPVPGVASRRQPRGGKPPSGDLESGPSRPLLHARGEAGLHRQSGRVPHGTAY
FADEPTEAQAPGGFCVSPSLLGVRWPACATRTPGSLPSPPSAQPRTLWPTPPAGPSSRMVARNQVAADNAISPASEPRR
RPEPSSSSSSSSPAAPARPRCPVVPAPAPGDTHFRSHSDYRRITRTSALLDACGFYWGPLSVGAHERLRAEPVGT
FLVRDSRQRNCFFALSVKMASGPTSIRVFQAGRFLDGSRETFDCLFELLEHYVAAPRRLGAPLRQRRVRPLQELCQ
RIVAAVGRENLARIPLNPVLRDYLSSFPFQI

Rat 29x DNA (coding: 433-1071)

GCACGGCTCCGGCCCCGGAGCATGCGCAGACAGCAGCCCCCTCCTtCCGGCCCTGAGCCGGATCGTCCGCCGGGTTC
AGTTCCGGCGTGGCCAGTAGGCAGCAGCCGGAGGGCTCCACCGCAGTCTGGAAAGGGTCCACATACAGGAACGGCCTAC
CACGCCCCCTCTCCACGCGCGGGGAGGCAGGGCTCCACCGCAGTCTGGAAAGGGTCCACATACAGGAACGGCCTAC
TTCGCAGATGAGCCCACCGAGGCTCAGGCCTCCGGGGATTCTGCCTGTCACCCTCGCTCCTGGGTCCGCTGGCCGG
CTGTGCCACCCGGACGCCGGCTCACTGCCTCTGTCTCCCCATCAGCGCAGCCCCGGACGCTATGCCAACCCCTCCAG
CTGGCCCCCTCGAGTAGGATGGTAGCACGTAACCAGGTGGCAGCCGACAATGCGATCTCCCGCATCAGAGCCCCGACGG
CGGCCAGAGCCATCTCGTCTCGTCTCGCCGGCCCGCGCTCCGGCCCTGCCGGTGGTCCCG
CCCCGGCTCCGGGCGACACTCACCTCCGACCTTCCGCTCCACTCTGATTACCGGCGATCACGCGGACCAGCGCTCTCC
TGGACGCTCGCGCTTCACTGGGACCCCTGAGCGTGCATGGGCGCACGAACGGCTCGTGCCGAGCCGTGGCACC
TTCTTGGTGCAGCAGTCGCCAGCGGAACCTGCTTCTCGCGTCAGCGTGAAGATGGCTTCGGGCCACGAGCATTG
TGTGCACCTCCAGGGCGGCCGCTTCCACCTGGACGGCAGCCGAGACCTTCGACTGCCCTTCGAGCTGCTGGAGCACT
ACGTGGGGCGCCGCCGCGCATGTTGGGGCCCACTGCGCCAGCGCCGCTGCGGCCGCTGCAGGAGCTGTCGCCAG
CGCATCGTGGCCGGCTGGGTCCGAGAACCTGGCACGCATCCCTCTTAACCCGTACTCCGTGACTACCTGAGTTCTT
CCCCCTCCAGATCTGACCGGCTGCCGCCGTGCCGAGAACCTGGCACGCATTAAGTGGGAGGCCCTATTATTTCTTATT
ATTATTTTcTGGAACCAACGTGGAGCCCTCCCCGCTAGGTCGGAGGGAGTGGGTGTGGAGGGTGA
TGTGGCTGGAGACCTTATCCGCCCTCGGGGGCCTCCCTGGTGTCCCTCCGGTCCCCCTGGTTGAGCAGCT
TGTGTCTGGGGCCAGGACCTGAACCTCCACGCCCTACCTCTCCATGTTACATGTTCCAGTATCTTGAC
TGGGGAGGGTCTGGCTTCTTCTGCTGTGAGAATATTCTATTATTTACATCCAGTTAGATAATAAAA
CTTTATTATGAAAGTTTTTTAAAGAAAAAAAAAAAAAAA

Fig. 30

Rat 25r DNA (coding 130-

GGCACGGCTCCGGCCCCGGAGCATGCGCAGACAGCAGCCCCGGAACCCCCAGCCGCGGGCCCCCGGTCCCCGCCAGC
GCAGCCCCGGACGCTATGGCCCACCCCTCAGCTGGCCCTCGAGTAGGATGGTAGCACGTAACCAGGTGGCAGCCGACA
ATGCGATCTCCCCGGCATCAGAGCCCCGACGGCGGCCAGAGCCATCCTCGTCCCTCGTCTCGCCCTCGCCGGCCCG
GCGCGTCCCCGGCCCTGCCGGTGGTCCCGGCCCCGGCTCCGGCGACACTCACTTCCGACCTTCCGCTCCACTCTGA
TTACCGGCGCATCAGCGGACCGAGCGCTTCCTGGACGCCCTGCCGTTCTACTGGGGACCCCTGAGCGTGCAATGGGCGC
ACGAACGGCTGCGTGCCGAGCCCGTGGCACCTCTGGTGCGCGACAGTCGCCAGCGGAACGTGCTCTCGCGCTCAGC
GTGAAGATGGCTCGGGCCCCACGAGCATCGTGTGCACTTCCAGGCCGCCGCTTCCACCTGGACGGCAGCCGGAGAC
CTTCGACTGCCTCTCGAGCTGCTGGAGCACTACGTGGCGGCCGCATGTTGGGGCCCCACTGCGCCAGCGCC
GCGTGCGGCCGCTGAGGAGCTGTGCGCAGCGCATCGTGGCCGCGTGGTGCGCGAGAACCTGGACGCATCCCTT
AACCGGTACTCCGTGACTACCTGAGTTCTCCCTCCAGATCTGACC GGCTGCCGCCGTGCCCGCAGCATAAGTGG
GAGCGCCTTATTATTTCTTATTATTAATTATTTCTGGAACCACGTGGGAGCCCTCCCGCCTAGGTGGAGG
GAGTGGGTGTGGAGGGTGAGATGCCTCCACTTCTGGCTGGAGACCTTATCCCGCCTCTGGGGGGCCCTCCCTGGT
GCTCCCTCCGGTCCCCCTGGTTGAGCAGCTTGTGCTGGGGCCAGGACCTGAACCTCCACGCCTACCTCTCCATGTTA
CATGTTCCCAGTATTTGCACAAACCAGGGTGGGGAGGGTCTGGCTCATTGCTGCTGAGAATATTCTAT
TTTATTTTACATCCAGTTAGATAATAACTTATTATGAAAGTTTTAAAAAAA

Fig. 31

Rat 5p protein

MPSQMEHAMETMMLTFHRFAGEKNYLTKEDLRVLMERFPGLENQKDPLAVDKIMKLDQCRDGKVGFQSFLSLVAGLI
IACNDYFVVHMKQKK

Rat 5p DNA (coding: 52-339)

CTTCCAAAGACTGCAGCGCTCAGGGCCCAGGTTCAACAGATTCTTCAAATGCCATCCAAATGGAGCATGCCATGGA
AACCATGATGCTTACATTCACAGGTTGCAGGGAAAAAAACTACTTGACAAAGGAGGACCTGAGAGTGCTCATGGAAA
GGGAGTTCCCTGGGTTTTGGAAAATCAAAGGACCTCTGGCTGTGGACAAAATAATGAAAGACCTGGACCAGTGCCGA
GATGGAAAAGTGGGCTTCCAGAGCTTCTATCACTAGTGGCGGGCTCATCATTGCATGCAATGACTATTTGTAGTACA
CATGAAGCAGAAGAAGTAGGCCAAGTGGAGCCCTGGTACCCACACCTTGATGCGTCCTCTCCATGGGGTCAACTGAGGA
ATCTGCCCACTGCTTCCCTGTGAGCAGATCAGGACCCCTAGGAAATGTGCAAATAACATCCAATTCGACAAGCA
GAGAAAGAAAAGTTAATCCAATGACAGAGGAGCTTCGAGTTTATATTGTTGCATCCGGTTGCCCTCAATAAAGAAAG
TCTTTTTTTAAGTCCGAAAAAAAAAAAAAA

Fig. 32

Rat 7q protein

MAYAYLFKYIIIGDTGVGKSCLLQFTDKRFQPVHDLTIGVEFGARMITIDGKQIKLQIWDTAGQESFRSITRSYYRGAA
GALLVYDITRRDTFNHLTTWLEDARQHSNSNMVIMLIGNKSDESRREVKEEGEAFAREHGLIFMETSAKTASNVEEAF
INTAKEIYEKIQEJVFDINNEANGIKIGPQHAATNASHGGNQGGQQAGGGCC

Rat 7q DNA (coding 1-639)

ATGGCGTACGCCATCTCTCAAGTACATCATCGGCACACAGGTGTTGTAATCGTCTATTGCTACAGTTAC
AGACAAGAGGTTTCAGCCGGTGCATGACCTCACAATTGGTAGAGTTGGCTCGAATGATAACCATTGATGGAAAC
AGATAAAACTCCAGATCTGGGATACAGCAGGGCAGGAGTCCTTCGTTCTACAAAGGTCAATTACAGAGGTGCAGCG
GGGGCTTACTAGTGATATTACAAGGAGAGACACGTTCAACCACTTGACAACCTGGTTAGAACGCCCCTCAGCA
TTCCAATTCCAACATGGTCATCATGTTATTGGAAATAAAAGTAGCTTAGAATCTAGGAGAGAAGTGAAGAAGAAG
GTGAAGCTTTGCACGAGAGCATGGACTTATCTCATGGAAACTCTGCCAAGACTGCTTCTAATGTAGAGGAGGCATT
ATTAACACAGCAAAAGAAATTATGAAAAATCCAAGAAGGGCTTTGACATTAATAATGAGGCAAACGGCATCAAAAT
TGGCCCTCAGCATGCTACCAATGCATCTCACGGAGGCAACCAAGGAGGGCAGCAGGCAGGGGAGGCTGCTGCTGA

Fig. 33

Rat 19r protein

MVLLKEYRVLPVSVDEYQVGQLYSVAEASKNETGGGEGVEVLVNEPYEKDDGEKGQYTHK1YHLQSKVPTFVRMLAPEG
ALNIHEKAQNAYPYCRTVITNEYMKEDFLIKETWHKPDLGTQENVHKEPEAWKHVEAIYIDIADRSQVLSKDYKAEED
PAKFKS1KTGRGPLGPNWKQELVNQKDCPYMCAYKLVTVKFKWWGLQNKVENFIHKQEKRIFTNFHRQLFCWLKDVKWDLT
MDDIRRMEEETKRQLDEMQRQKDPVKGMTADD

Rat 19r DNA (coding 1-816)

ATGGTGCTGCTCAAGGAATATCGGGTCATCCTGCCGTGTCTGTAGATGAGTATCAAGTGGGCAGCTGTACTCTGTGGC
TGAAGCCAGTAAAAATGAAACTGGTGGTGGGAAGGTGTGGAGGTCCCTGGTGAACGAGCCCTACGAGAAGGTGATGGCG
AGAAAGGCCAGTACACACACAAGATCTACCACTTACAGAGCAAAGTTCCCACGTTGTTGAATGCTGGCCCCAGAACGGC
GCCCTGAATATACTGAGAAAGCCTGGAATGCCTACCCCTACTGCGAGAACGTTATTACAAATGAGTACATGAAGGAAGA
CTTTCTCATTAATGAAACCTGGCACAGCCAGACCTTGGCACCCAGGACAATGTGCATAAAACTGGAGCCTGAGGCAT
GGAAACATGTGGAAGCTATATATAGACATCGCTGATCGAAGCCAAGTACTTAGCAAGGATTACAAGGCAGAGGAAGAC
CCAGCAAATTTAAATCTATCAAACAGGACGAGGACCATTGGGCCGAATTGGAAGCAAGAACTTGTCAATCAGAAGGA
CTGCCCATATATGTGTGCATACAAACTGGTTACTGTCAAGTTCAAGTGGTGGGCTTGCAGAACAAAGTGGAAAACCTTA
TACATAAGCAAGAGAAGCGTCTGTTACAAACTTACAGGCAGCTGTTCTGGCTTGATAAATGGGTTGATCTGACT
ATGGATGACATTGGAGGATGGAAGAAGAGACGAAGAGACAGCTGGATGAGATGAGACAAAAGGACCCGTAAAGGAAT
GACAGCAGATGACTAG

Fig. 34

Monkey KChIP4c (jlkxa053c02) DNA sequence (CD: 122-811)

CGCTCTCCTCCCTTCTAGCAGTAGCCTTAATGTTAATGGCTTACAAAGAAAGCCAGGCAGAGGAG
 CACTTCTAGGGCTGTGGTCGGACATGACCATGACCTAGCTGACCAGTGAACATTGGAAGGGCTTGAAATGATAGCAGTCTGATC
 GTCATTGTGCTTTGTTAAATTATTGGAACAGTTGGGCTGATTGAAGCAGGTTAGAAGACAGCGTGGAAAGATGAAC
 GGAGATGCCACTGTCAGGCATGGCCTGAGGCCCTGAGCTCTGGAAGGCCAGAGCAAATTACAAGAAAGAGCTTC
 AGATCCTTACAGAGGATTTAAGAACGAATGCCCACTGGTGTGTTAATGAAGAAACCTCAAAGAGATTACTCGCAG
 TTCTTCCACAGGGAGACTCTACAACATATGCACATTCTGTTCAATGCGTTGATACGGACCACAATGGAGCTGTGAG
 TTTCGAGGATTTCATCAAAGGCTTCCATTGCTCCGGGGACAGTACAAGAAAACCAATTGGGATTTAATCTGT
 ATGATATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTGATATAATGAAAGCAATATACGACATGATGGTAAA
 TGTACATATCCTGTCCTCAAAGAACATGCAACAGCACGTCGAAACATTTCAGAAAATGGACAAAATAAAGA
 TGGGTTGTTACCATAGATGAGTCATTGAAAGCTGCCAAAAGATGAAAACATAATGCGCTCATGAGCTTTGAAA
 ATGTGATTTAACTTGTCAACTAGATCCTGAATCCAACAGACAAATGTGAACATTCTACCACCCCTAAAGTCGGAGCTAC
 CACTTTAGCATAGATTGCTCAGCTGACACTGAAGCATAATTGCAAACAAGCTTGTAAATATAAAGCAATCCCCA
 AAAGATTGAGTTCTCAGTTAAATTGCTCATCCTTCATAATGCCACTGAGTTCATGGATGTTCAACTCATTCA
 TACTCTGTGAATATTCAAAGTAATAGAATCTGGCATATAGTTTATTGATCCTAGCCATGGGATTATTGAGGTTTC
 ACATATCAGTGAATTAAAATACCAGTGTGTTTGCTACTCATTGTATGATTGAGTCTAGGATTGAAATGGTTTC
 TAATATACTGACATCTGCATTAAATTCCAGAAATTAAATTAAATTTCATGCTGAATGCTGTAATTCCATTATATACT
 TTAAGTAAACAATAAGATTACTACAATTAAACACATAGTCCAGTTCTATGGCCTTCACTCCCACCTCTATTAGAA
 ATTAATTATCTGGTATTAAACATTAAAAATTATCATCAGATATCAGCATATGCCATTATGCCATTATGAAAC
 TTAATAAGCATTAAATTTCATCATACTTATAGTCAGGCCTATATACTATATATAATTGGATTGTTAAATCTTA
 CAGGCTTTCCATTGTATCATCAAGTGAAGTCAAGACGGCATCAAACAAAAGGATGTTACAGACATATGCAA
 AGGGTCAGGATATCTATCCTCAGTATGTTAATGCTTAATAACAAGTAATCCTAACAGCATTAAAGGCCAATCTGC
 CTCTTCCCCTGACTCCTACAGCATGTTATATTACAAGCCATTAGGGACAAGAAACCTTGACTACCCACTGTCT
 ACTAGGAACAAACACAGCAAGCAAAATTCACTTGAAGCACCAGTGGTCCATTACATTGACAACACTACCAAGAT
 TCAGTAGAAAATAAGTGTCAACAACATTACAGATTACAATATGATTAGTGCATCATAAAATTCAACAATTCAAGATT
 ATTGTTAATCACCTCAGCCACAACGTAAAGTGTGCCACATTACTAAAGACACACACATCGTCCCTGTTGAGAAATAT
 CACAAAGACCAAGAGGCTACAGAAGGAGGAAATTGCAACTGTTGCAACAATAATCAGGTATCTATTCTGGTGTAG
 AGATAGGATGTTGAAAGCTGCCCTGCTATCACCAGTGTAGAAATTAAAGAGTAGTACAATACATGTACACTGAAATTGCC
 ATCGCGTGTGTTGTGAAACTCAATGTGCACATTGTTGATTTCAAAAAGAAAAATAAGCAAAATAATGTTATAAC
 TCTAAAAAAAAAAAAAA

Monkey KChIP4c protein sequence

MNLEGLEMIAVLIVLIVLFVKLLEQFGLIEAGLEDSEDELEMATVRHRPEALELLEAQSKFTKKELOILYRGFKNECPG
 VVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLNWAFNLIDINKDGYITKEEM
 LDIMKAIYDMMGKCTYPVLKEDAPRQHETFFQKMDKNKDGVVTIDEFIESCQKDENIMRSMQLFENVI.

Fig. 35

Monkey KChIP4d (jlkx015b10) DNA sequence (CD:64-816)

GTCGACAGACGCCCTGGCCGGTGGACTCTGAGTCTTACTCCTGCACCCCTGCGTCCCCAGACATGAATGTGAGGAGAGT
 GGAAAGCATTTCGGCTCAGCTGGAGGAGGCCAGCTCACAGGCAGGTTCTGTATGCTAGAACAGCACCAAGCGCAGCA
 TTAAAGAGCGGCTCATGAAGCTCTGCCCTGCTCAGCTGCCAAAACATCGTCTCTGCTATTCAAACAGCGTGGAAAGAT
 GAACTGGAGATGGCACTGTCAAGGCATGCCCTGAGGCCCTTGAGCTTCTGGAAGGCCAGAGCAAATTACCAAGAAAGA
 GCTTCAGATCCTTACAGAGGATTAAGAACGAATGCCAGTGGTGTATGAAGAACCTCAAAGAGATTTACT
 CGCAGTTCTTCCACAGGGAGACTCTACAACATATGCACATTCTGTTCAATGCCTTGATACGGACCACAATGGAGCT
 GTGAGTTCGAGGATTTCATCAAAGGTCTTCCATTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGGCATTAA
 TCTGTATGATAATAAAAGATGGCTACATCACTAAAGAGGAATGCTTGTATGAAAGCAATATACGACATGATGG
 GTAAATGTACATATCCTGCTCAAAGAACATGCAACCCAGACAACACGTCGAAACATTTCAGAAAATGGACAAAAAT
 AAAGATGGGGTTGTACCATAGATGAGTTCATTGAAAGCTGCCAAAAGATGAAAACATAATGCGCTCCATGCAGCTTT
 TGAAAATGTGATTTAACTGTCAACTAGATCCTGAATCCAACAGACAAATGTGAACTATTCTACCAACCTTAAAGTCGGA
 GCTACCACCTTACAGATTGCTCAGCTGACACTGAAGCATATTATGCAAACAAGCTTGTAAATATAAGCAAT
 CCCCCAAAGATTTGAGTTCTCAGTTAAATTGCACTCCTTCATAATGCCACTGAGTTCATGGGATGTTCTGACTCA
 TTTCATACTCTGTGAATATTCAAAGTAATAGAATCTGGCATATAGTTTATTGATTCCCTTAGCCATGGGATTATTGAGG
 CTTTCACATATCAGTGAATTTAAACAGTGTGCTACTCATTGATGTATTGACTCCTAGGATTGATGG
 TTTTCTAATATACTGACATCTGCATTAAATTCCAGAAATTAAATTAAATTTCATGTCGAAATGCTGTAATTCCATTAT
 ATACTTTAAGTAAACAAATAAGATTACTACAATTAAACACATAGTCCAGTTCTATGCCCTACTTCCCACCTCTAT
 TAGAAATTAAATTATCTGGTATTTAAACATTAAATTATCATCAGATATCAGCATATGCCATTATGCCATTATGCCATT
 GAAACTTAAAGCATTAAATTCCATCATACTTATAGTCAGGCCTATATACTATATAATTGGATTGTTAA
 TCTTACAGGCTGTTCCATTGTATCATCAAGTGGAGTTCAAGACGGCATAAACAAAAGGATGTTACAGACATA
 TGCAAAGGGTCAGGATATCTACCTCCAGTATATGTTAATGCTTAAACAAGTAATCTAACAGCATTAAAGCCAAAT
 CTGCTCTTCCCTGACTCCTACAGCATGTTATATTACAAGCCATTAGGGACAAAGAACCTGACTACCCAC
 TGTCTACTAGGAACAAACAGCAAGCAAAATTCACTTGTAAAGCACCAGTGGTCCATTACATTGACAACACTACC
 AAGATTCACTAGAAAATAAGTGTCAACAACATAATCCAGATTACAATATGTTAGTGCATCATAAAATTCCACAAATTC
 AGATTATTAAATCACCTCAGGCCACAACGTAAAGITGCCACATTACTAAAGACACACACATCGTCCCTGTTGTAGA
 AATATCACAAAGCCAAGAGGCTACAGAAGGAGGAATTGCAACTGTCTTGCAACAATAATCAGGTATCTATTCTGG
 TGTAGAGATAGGATGTTGAAAGCTGCCCTGCTATCACCAGTGTAGAAATTAAAGAGTAGTACAATACATGTACACTGAAAT
 TTGCCATCGCGTGGTGTAAACTCAATGTGCACATTGTGATTTCAAAAAGAAAAATAAGCAAAATAATGTTA
 AAAAAAAAAAAAAAAA

Monkey KChIP4d protein sequence

MNVRRVESISAQLEASSTGGFLYAQNSTKRSIKERLMKLLPCSAAKTSSPAIQNSVEDELEMATVRHRPEALELLEAQ
 KFTKKELOQILYRGFKNECPGVVNEETFKEIYSQFFFQGDSTTYAHFLNFAFDTDHNGAVSFEDFIKGLSILLRGTVQEK
 LNWFNLYDINKDGYITKEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKGVTIDDEFIESCQKDENTW
 DSMQI FENV

Fig. 36

Alignment of sequence KChIP4

	20	30	40	
	60	70	80	
	120	130	140	
1	M	L T L E W E S E G L O T V G I V V I C A S L K L L H L G	L I D F S . E D S V E D E	KChIP4N1
1	M	L T L E W E S E G L Q T V G I V V I C A S L K L L H L G	L I D F S . E D S V E D E	KChIP4C
1	M	N V E E V E S T S A T E A S S T T G E N V A T N S T V E S T K E S S L Y K L L E F F S A V T S S D A I P N S V E D E	L I E A G I E D S V E D E	KChIP4N2
1	M		K C H I P 4 N 3	KChIP4N3
44	E M A T V R :	E A L E L L E A Q S K F T K K E L Q I L Y R G F K N E C P S G V V N E E T F K E I Y S Q F F P Q G D	KChIP4N1	
44	E M A T V R : F	E A L E L L E A Q S K F T K K E L Q I L Y R G F K N E C P S G V V N E E T F K E I Y S Q F F P Q G D	KChIP4C	
40	E M A T V R : F	E A L E L L E A Q S K F T K K E L Q I L Y R G F K N E C P S G V V N E E T F K E I Y S Q F F P Q G D	KChIP4N2	
61	E M A T V R : F	E A L E L L E A Q S K F T K K E L Q I L Y R G F K N E C P S G V V N E E T F K E I Y S Q F F P Q G D	KChIP4N3	
104	S T T Y A H F :	A F D T D H N G A V S F E D F I K G L S I L L R G T V Q E K L N W A F N L Y D I N K D G Y I T K E E	KChIP4N1	
104	S T T Y A H F : F	A F D T D H N G A V S F E D F I K G L S I L L R G T V Q E K L N W A F N L Y D I N K D G Y I T K E E	KChIP4C	
100	S T T Y A H F : F	A F D T D H N G A V S F E D F I K G L S I L L R G T V Q E K L N W A F N L Y D I N K D G Y I T K E E	KChIP4N2	
121	S T T Y A H F : F	A F D T D H N G A V S F E D F I K G L S I L L R G T V Q E K L N W A F N L Y D I N K D G Y I T K E E	KChIP4N3	
164	M L D I M K A I :	I M G K C T Y P V L K E D A P R Q H V E T F F Q K M D	K N K J G V V T I D E F I E S C Q	KChIP4N1
164	M L D I M K A I :	M M G K C T Y P V L K E D A P R Q H V E T F F Q A V F H C I I K W K F K T A S N K T S V F T D T C	K N K J G V V T I D E F I E S C Q	KChIP4C
160	M L D I M K A I :	M M G K C T Y P V L K E D A P R Q H V E T F F Q K M D	K N K J G V V T I D E F I E S C Q	KChIP4N2
181	M L D I M K A I :	M M G K C T Y P V L K E D A P R Q H V E T F F Q K M D	K N K J G V V T I D E F I E S C Q	KChIP4N3
218	K D E N I M R S :	F E N V I		
223	K T S T V :	I S S		
214	K D E N I K R S :	Q F E N V I		
235	K D E N I N R S :	F E N V I		

Fig. 37

43/48

rKv4.2

rKv4.2 + KChIP2

VOLTAGE-DEPENDENCE

CURRENT PARAMETER	CHO	
	rKv4.2	rKv4.2 + KChIP2
PEAK CURRENT (nA/cell, at 50 mV)	0.51 ±0.098	3.3 ±0.45
PEAK CURRENT DENSITY (pA/pF, at 50 mV)	18.6 ±2.8	196.6 ±26.6
INACTIVATION TIME CONSTANT (ms, at 50 mV)	28.47 ±3.5	95.14 ±8.3
RECOVERY FROM INACTIVATION TIME CONSTANT	257.0	10.7

VOLTAGE (mV)	rKv4.2	rKv4.2 + KChIP2
STEADY-STATE INACTIVATION V _{1/2} (mV)	-47.1	-45.7

Fig. 38

44/48

CURRENT PARAMETER	CHO	
	rKv4.2 +RBG4	rKv4.2 +KChIP3
PEAK CURRENT (nA/cell, at 50 mV)	0.46 ±0.084	3.5 ±0.99
PEAK CURRENT DENSITY (pA/pF, at 50 mV)	29.7 ±11.2	161.7 ±21.8
INACTIVATION TIME CONSTANT (ms, at -80 mV)	430.9	130.8
ACTIVATION V _{1/2} (mV)	4.1	6.1

Fig. 39

Fig. 40A

Fig. 40B

Fig. 40C

Fig. 40D

Fig. 40E

Fig. 40F

h KChIP1 M G A -
 h KChIP2 M R G C G -
 h KChIP3 M - Q P A I S V -
 h HIP M G K Q N S P
 r NCS1 M G K S N S

h KChIP1 Q I Y A Q -
 h KChIP2 Q I Y S Q -
 h KChIP3 L I Y A Q F
 h HIP K I Y A N H F
 r NCS1 K I Y K Q F

h KChIP1 I N K D 3 -
 h KChIP2 L N K D 3 -
 h KChIP3 I N K D 3 -
 h HIP L D G N G 3 -
 r NCS1 L D N D G 3

EF1
 X Y Z -Y -X -Z
 E D E L E M T M V C H R P E G L E Q L E A Q T N F T K R E L Q V L Y R G F K N E C P S G V V N E D T F K
 D D E F E L S T V C H R P E G L E Q L O E Q T K F T K E L Q V L Y R G F K N E C P S G V V N E E N F K
 D S E L E L S T V R H Q P E G L D Q L Q A Q T K F T K E L Q S L Y R G F K N E C P T G I V D E D T F K
 D - L R P E M L Q D L R E F S E K E L Q E L T R K T Y F T E K E V Q Q W Y K G F L K D C P T G I L N V D E F K
 D - L K P E V V E L T R K T Y F T E K E V Q Q W Y K G F I K D C P S G Q L D A G F Q

EF2
 X Y Z -Y -X -Z
 H G D A S T Y A H Y L F N A F D T T Q T G S V K F E D F V T A L S I I L I R G T V H E K L R W T F N L Y D
 Q G D S S N Y A T F L F N A F D T N H D G S V S F E D F V A G L S V I I L R G T V D D R L N W A F N L Y D
 Q G D A T T Y A H F L F N A F D A D G N G A I H F E D F V V Y G L S I I L R G T V H E K L K W A F N L Y D
 Y G D A S S K F A E H V F R T F D T N S D G T I D F R E F I I A L S V T S F G R L E Q R L M W A F S M Y D
 F G D P T K F A T F V F N V F D E N K D G R I E F S E F I Q A L S V T S R G T I D E K L R W A F K L Y D

EF4
 X Y Z -Y -X -Z
 K E E M M D I V K A I Y D M M G K Y T Y P V L K E D T P R Q H V D V F F Q K M D K N K D G I V T L D E F
 K E E M L D I M K S I Y D M M G K Y T Y P A I R E E A P R E H V E S F F Q K M D R N K D G V V T I E E F
 K E E M L A I M K S I Y D M M G R H T Y P I L R E D A P A E H V E R F F E K M D R N Q D G V V T I E E F
 K E E M L E I V Q A I Y K M V S S V M K M P E D E S T P E K R T E K I F R Q M D T N N D G K L S L E E F
 R N E M L D I V D A I Y Q M V G N T V E L P E E N T P E K R V D R I F A M M D K N A D G K L T L Q E F

EF
 Y Z -
 N I M R S L Q - - L F Q N V M .
 N I M R S M Q - - L F D N V I .
 N I M S S M Q - - L F E N V I .
 S I V R L L Q C D P S S R S Q F .
 S I V Q A I - - S L Y D G L V .

Fig. 41

Fig. 42

Fig. 43