Wten da matematyki https://moodle3.cs.pollub.pl/pluginfile.php/73589/mod_resource/content/0/fun_tryg_cylkometr_notatka.pdf nin 2 d - 2 m d Cand Can 2 d = cm² d - 2 in L = 2 can 2 d - 1 = 1 - 2 nin d ctg21-12-1 $\gamma in^2 L + con^2 L = 1$ tg (2 + 2 km)= sind cos(d+2ktt)= cosd narrysta nilparyta ty (d+ kT) = tg d f()=tg D: II + LT LE menonyta ty (d+ kT) = tg d D: menonyta P(X,y) ma y CANd = XP(x-4) 92=4 V = //2+92 Mnd= y in-d= y 16 V) = - +(V)

				$\beta =$		10	
	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$
$\sin \beta$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$
$\cos \beta$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$	$\sin \alpha$	$\cos \alpha$
$\operatorname{tg} \beta$	$\operatorname{ctg} \alpha$	$-\operatorname{ctg}\alpha$	$-\operatorname{tg}\alpha$	$\operatorname{tg} \alpha$	$\operatorname{ctg} lpha$	$-\operatorname{ctg}\alpha$	$-\operatorname{tg}\alpha$
$\operatorname{ctg} \beta$	$\operatorname{tg} \alpha$	$-\operatorname{tg}\alpha$	$-\operatorname{ctg} \alpha$	$\operatorname{ctg} lpha$	$\operatorname{tg} lpha$	-tg $lpha$	$-\operatorname{ctg}\alpha$

Na szczęście nie trzeba uczyć się na pamięć powyższej tabeli. Wystarczy zapamiętać poniższy schemat. Niech $\beta \in \langle \frac{\pi}{2}, 2\pi \rangle$. Kąt β przedstawiamy w postaci

$$\beta = n \cdot \frac{\pi}{2} \pm \alpha, \text{ gdzie } \alpha \in \left\langle 0, \frac{\pi}{2} \right) \wedge n \in \{1, 2, 3, 4\}.$$

Wówczas

$$f(\beta) = f(n \cdot \frac{\pi}{2} \pm \alpha) = \begin{pmatrix} \operatorname{znak} \\ \operatorname{Tab\,ela\ nr.\ 1} \end{pmatrix} \cdot \left\{ \begin{array}{l} f(\alpha), & \operatorname{gdy}\ n - \operatorname{parzyste} \\ cf(\alpha), & \operatorname{gdy}\ n - \operatorname{nieparzyste} \end{array} \right.$$

f() - Funkcja trygonometryczna (sin, cos, tg, ctg).
$$2s^2 e^{-s}$$
 - odpowiadająca funkcji f cofunkcja, wyznaczona według schematu $\sin \leftrightarrow \cos : \ tg \leftrightarrow ctg$.

The schematic $tg \to ctg$.

The schematic $tg \to ctg$.

The schematic $tg \to ctg$.

