Inelastic Cross Section Measurement at $\sqrt{s}=13~{\rm TeV}$

Youngwan Kim

Seoul National University SNUCMS arXiv Seminar

April 28, 2022

Introduction

- Hadronic cross sections can be decomposed into ...
 - Elastic: initial and final states are identical
 - Diffractive: rapidity gaps, (virtual) meson exchange
 - Inelastic : hard QCD contribution
- Precise measurement of hadronic cross section has some importance :
 - MC generator tuning parameters as input to phenomenological models
 - Controlling the PU contribution in pp collision events

Introduction

- Previous measurements of σ_{inel} (mb) :
 - CMS (7 TeV) : $60.2 \pm 0.2_{\rm stat.} \pm 1.1_{\rm sys.} \pm 2.4_{\rm lum.}$
 - TOTEM (8 TeV) : 74.7 ± 1.7
 - ATLAS (13 TeV) : $73.1 \pm 0.9_{\text{exp.}} \pm 6.6_{\text{lum.}} \pm 3.8_{\text{ext.}}$

Introduction

- 13 TeV σ_{inel} measurement in CMS :
 - Data collected using HFCAL and CASTOR
 - Provides sensitivity to a large part of σ_{inel} including diffractive ones, leaving particles at forward rapidity
 - Pseudorapidity region covering :

•
$$-6.6 < \eta < -3.0$$
, $+3.0 < \eta < +5.2$

- Phase space region corresponding to :
 - $\xi_X > 10^{-7}$. $\xi_Y > 10^{-6}$
 - \bullet $M_X > 4.1 \text{ GeV}$, $M_Y > 13 \text{ GeV}$

$$\xi_X = \frac{M_X^2}{s} \text{ , } \xi_Y = \frac{M_Y^2}{s}$$

$$\xi = \max(\xi_X, \xi_Y)$$

Detectors: Overview

Detectors: HFCAL

- HFCAL (Hadron Forward CALorimeter)
 - Resides on each side of the detector, covering the region of $3.0 < |\eta| < 5.2$
 - 18 iron azimuthal wedges, embedded with quartz fibers running along the beam direction
 - Each wedges are subdivided into 13 η segments (towers)

Detectors: CASTOR

- CASTOR (Centauro And STrange Object Research)
 - Installed in one end of the CMS detector, covering the very forward region of $-6.6 < \eta < -5.2$
 - ullet Tungsten and quartz layers located \sim 14 m away from IP
 - 16 ϕ -sectors and 14 z-modules, in total 224 cells.
 - Was only partially included in the detector setup during the run periods considered on this analysis.

Event Selection and Reconstruction

- Based on 2015 pp collision data at $\sqrt{s}=13~{\rm TeV}$
 - B = 0 T: larger acceptance with CASTOR
 - B = 3.8 T (nominal run)
- Integrated luminosity measurement :
 - B = 0 T: obtained using HF or BCM1F detector (12%)
 - B = 3.8 T: pixel tracker + Van der Meer scan (2.7%)
- Triggers used : ZeroBias , SingleBunch, EmptyBunch
- Offline Selection
 - Requiring an energy deposit > 5 GeV in any of the 2 HF calorimeters. (CASTOR included for $B=0~{\rm T}$ events)

Event Selection and Reconstruction

• The corrected number of interactions N_{cor} is then obtained :

$$N_{cor} = N_{ZB} [(F_{ZB} - F_{EB}) + F_{EB}(F_{ZB} - F_{EB})]$$

- N_{ZB} , N_{EB} : number of events triggered by ZeroBias, EmptyBunch
- ullet F_{ZB} , F_{EB} : fraction of events selected offline after passing the triggers
- The second term gives a first order correction for signal events overlayed with noise.

Event Selection and Reconstruction

• The reconstructed number of events is further corrected for the effect of pileup :

$$f_{PU} = \frac{\sum_{n=0}^{\infty} nP(n,\lambda)}{\sum_{n=1}^{\infty} P(n,\lambda)} = \frac{\lambda}{1 - P(0,\lambda)}$$

- The observed number of pp collisions per bunch crossing n, follows a Poisson distribution $P(n,\lambda)$ with the average value λ
- From $P(0,\lambda)=e^{-\lambda}=1-N_{cor}/N_{ZB}$, one could extract λ from the data.
- ullet Then the total reconstructed number of interactions N_{int} , is given by

$$N_{int} = \sum_{\text{bunches}} N_{cor}^b \times f_{PU}^b$$

where the corrections are applied bunch by bunch.

Visible σ_{inel} Extraction

- Data are corrected for various detector effects
- Detector level selections are chosen to select a sample of inelastic events in the largest possible phase space domain.
 - Some low-mass diffractive dissociation might escape the detector acceptance
 - Adpating the selected phase space to the detector acceptance results in a smaller correction, leading to smaller model dependence of the correction factors.

Visible σ_{inel} Extraction

- System setup :
 - Collection of stable final-state particles $(c\tau>1$ cm) with the largest η gap is divided into 2 parts X,Y
 - Negative rapidity side is assigned to X (CASTOR side) and vice versa.
- \bullet Phase space cut by giving limits on $\xi_{X/Y}$:
 - $\xi > 10^{-6}$ when HF is used alone
 - $\xi_X > 10^{-7}$ and $\xi_Y > 10^{-6}$ when CASTOR is on. (CASTOR lowers the ξ limit)

$$\xi_X = \frac{M_X^2}{s} \text{ , } \xi_Y = \frac{M_Y^2}{s}$$

$$\xi = \max(\xi_X, \xi_Y)$$

$$\Delta y \sim \ln(1/\xi)$$

Visible σ_{inel} Extraction

• The fully corrected cross section σ is calculated as,

$$\sigma = \frac{N_{int}(1 - b_{\xi})}{\epsilon_{\xi} \int \mathcal{L}dt}$$

where additional ϵ_{ξ} and b_{ξ} factors are involved. Such factors connect the stable-particle phase space definition and the detector level offline selection.

- Efficiency ϵ_{ξ} : fraction of selected stable-particle level events that fulfill the detector-level offline selection criteria
- Contamination b_{ξ} : fraction of detector-level offline selected events that are not part of the considered phase space

Systematic Uncertainties

- Model Dependence
- HF and CASTOR energy scale uncertainty
- CASTOR alignment
- Run-to-run variation
- Luminosity

Systematic Uncertainties

	$\sigma(\xi > 10^{-6})$	$\sigma(\xi_{ m X}>10^{-7}~{ m or}~\xi_{ m Y}>10^{-6})$
	(mb)	(mb)
Model dependence	0.66	0.38
HF energy scale uncertainty	0.34	0.13
CASTOR energy scale uncertainty	-	0.04
CASTOR alignment	-	0.03
Run-to-run variation	0.15	0.14
Total	0.76	0.44
Luminosity	1.78	1.96

results

B = 3.8 TParticle level Run Purity Pileup (%) (%)cross section (mb) $\xi > 10^{-6}$ 254989 98.54 52.29 65.60 ± 0.05 255019 99.18 53.72 65.89 ± 0.04 255029 65.74 ± 0.04 99.25 53.95

$B=0~\mathrm{T}$				
Run	Purity	Pileup	Particle level	
	(%)	(%)	cross section (mb)	
			$\xi_{\rm X} > 10^{-7} \ { m or} \ \xi_{\rm Y} > 10^{-6}$	
247324	98.53	5.14	67.08 ± 0.46	
247920	98.85	34.18	66.84 ± 0.07	
247934	98.78	31.99	66.84 ± 0.09	

Results

- \bullet For the B=3.8 T phase space, $\sigma(\xi>10^{-6})=\\65.77\pm0.03_{\rm stat.}\pm0.76_{\rm sys.}\pm1.78_{\rm lum.}~{\rm mb}$
- For the extended phase space, $\sigma(\xi_X>10^{-7} \text{ or } \xi_Y>10^{-6})=\\66.85\pm0.06_{\text{stat.}}\pm0.44_{\text{sys.}}\pm1.96_{\text{lum.}} \text{ mb}$

Results

Model	Extrapolation factor
EPOS LHC	1.096
QGSJETII	1.092
Рнојет	1.019
Рүтніа6 Z2*	1.052
PYTHIA8 Monash	1.047
Pythia8 DL	1.101
Pythia8 MBR	1.054
Average	1.066

• Model dependent extrapolation factors are applied, thus giving σ_{inel} as,

$$\begin{split} \sigma_{inel} &= 71.26 \pm 0.06_{\rm stat.} \pm 0.47_{\rm sys.} \pm \\ &2.09_{\rm lum.} \pm 2.72_{\rm ext.} \ \rm mb \end{split}$$

• Lower than the ATLAS 13 TeV result.

Summary

- A measurement of σ_{inel} for pp collisions at $\sqrt{s}=13$ TeV with the CMS detector has been presented.
- For two phase space regions, visible cross sections were obtained and extrapolated to the total full inelastic phase space domaine, yielding σ_{inel} to be

$$\sigma_{inel} = 71.26 \pm 0.06_{
m stat.} \pm 0.47_{
m sys.} \pm 2.09_{
m lum.} \pm 2.72_{
m ext.} \;
m mb$$

 The measure cross section is significantly lower than predicted by models for hadronic scattering.

Thank You