Definição

Para todo M,N,x, [N/x]M é definido como o resultado da substituição de toda ocorrência livre de x em M por N, juntamente com a mudança de variáveis ligadas caso isso seja necessário para evitar colisões.

- a. $[N/x]x \equiv N$;
- b. $[N/x]a \equiv a$, para todo átomo $a \not\equiv x$;
- c. $[N/x](PQ) \equiv ([N/x]P[N/x]Q);$
- d. $[N/x](\lambda x.P) \equiv \lambda x.P$;
- e. $[N/x](\lambda y.P) \equiv \lambda y.P$, se $x \notin FV(P)$;
- f. $[N/x](\lambda y.P) \equiv \lambda y.[N/x]P$, se $x \in FV(P)$ e $y \notin FV(N)$;
- g. $[N/x](\lambda y.P) \equiv \lambda z.[N/x][z/y]P$, se $x \in FV(P)$ e $y \in FV(N)$.

Nos casos (e)-(g), $y \not\equiv x$; no caso (g), z é a primeira variável $\not\in FV(NP)$.

Substituição de variável ligada

Considere (i) $\lambda y.x$ e (ii) $\lambda w.x$. Trata-se da mesma função (função constante que retorna x), porém com diferentes argumentos.

- i. Suponha $[w/x](\lambda y.x)$. Então, $[w/x](\lambda y.x) \equiv \lambda y.w$, pela aplicação da regra (f), pois $x \in FV(x)$ e $y \notin FV(w)$;
- ii. Suponha $[w/x](\lambda w.x)$. Se a substituição fosse feita também pela regra (f), então $[w/x](\lambda w.x) \equiv \lambda w.w$. Mas $\lambda w.w$ é a função identidade, e não a função constante. Para evitar esse problema, a aplicação da regra (g) produz $[w/x](\lambda w.x) \equiv \lambda z.[w/x][z/w]x \equiv \lambda z.[w/x]x \equiv \lambda z.w$, e nesse caso obtemos a mesma função identidade. Observe que, nesse caso, $x \in FV(x)$ e $w \in FV(w)$.

Exercícios

Avaliar as seguintes substituições conforme as regras anteriormente apresentadas:

- $ightharpoonup [(uv)/x](\lambda x.zy)$
- $[(\lambda y.xy)/x](\lambda y.x(\lambda x.x))$
- $\blacktriangleright [(uv)/x](\lambda y.x(\lambda w.vwx))$
- $\blacktriangleright [(\lambda y.vy)/x](y(\lambda v.xv))$

Soluções dos exercícios

$$[(uv)/x](\lambda x.zy)$$

▶ Aplicação da regra (d): $\lambda x.zy$

Soluções dos exercícios

$[(\lambda y.xy)/x](\lambda y.x(\lambda x.x))$

- ▶ Reescrita com todos os parênteses: $[(\lambda y.(xy))/x](\lambda y.(x(\lambda x.x)))$
- ▶ Aplicação da regra (f), pois $x \in FV(x(\lambda x.x))$ e $y \notin FV(x(\lambda x.x))$: $\lambda y.([\lambda y.(xy)/x](x(\lambda x.x)))$
- ▶ Aplicação da regra (c): $\lambda y.([\lambda y.(xy)/x]x)([\lambda y.(xy)/x](\lambda x.x))$
- ▶ Aplicação da regra (a): $\lambda y.(\lambda y.(xy))([\lambda y.(xy)/x](\lambda x.x))$
- ▶ Aplicação da regra (e), pois $x \notin FV(x)$: $\lambda y.((\lambda y.(xy))(\lambda x.x))$
- ▶ Remoção dos parênteses desnecessários: $\lambda y.(\lambda y.xy)(\lambda x.x)$

Soluções dos exercícios

```
[uv/x](\lambda y.x(\lambda w.vwx))
```

- ▶ Reescrita com todos os parênteses: $[uv/x](\lambda y.(x(\lambda w.((vw)x))))$
- ▶ Aplicação da regra (f), pois $x \in FV(x(\lambda w.((vw)x)))$ e $y \notin FV(uv)$: $\lambda y.([uv/x](x(\lambda w.((vw)x))))$
- ▶ Aplicação da regra (c): $\lambda y.([uv/x]x)([uv/x](\lambda w.((vw)x)))$
- ▶ Aplicação da regra (a): $\lambda y.(uv[uv/x](\lambda w.((vw)x)))$
- ▶ Aplicação da regra (f), pois $x \in FV(\lambda w.((vw)x))$ e $w \notin FV(uv)$: $\lambda y.(uv(\lambda w.([uv/x]((vw)x))))$
- ▶ Aplicação da regra (c): $\lambda y.(uv(\lambda w.([uv/x](vw)[uv/x]x)))$
- ▶ Aplicação da regra (b): $\lambda y.(uv(\lambda w.(vw[uv/x]x)))$
- ▶ Aplicação da regra (a): $\lambda y.(uv(\lambda w.(vw)(uv)))$
- ▶ Remoção dos parênteses desnecessários: $\lambda y.uv(\lambda w.vw(uv))$

Soluções dos exercícios

$[\lambda y.vy/x](y(\lambda v.xv))$

- ▶ Aplicação da regra (c): $([\lambda y.vy/x]y)([\lambda y.vy/x](\lambda v.xv))$
- ▶ Aplicação da regra (b): $y([\lambda y.vy/x](\lambda v.xv))$
- ▶ Aplicação da regra (g), pois $x \in FV(xv)$ e $v \in FV(\lambda y.vy)$: $y(\lambda z.[\lambda y.vy/x][z/v](xv))$
- ▶ Aplicação da regra (c): $y(\lambda z.[\lambda y.vy/x](([z/v]x)([z/v]v)))$
- ▶ Aplicação da regra (b): $y(\lambda z.[\lambda y.vy/x](x([z/v]v)))$
- ▶ Aplicação da regra (a): $y(\lambda z.[\lambda y.vy/x](xz))$
- ▶ Aplicação da regra (c): $y(\lambda z.(([\lambda y.vy/x]x)([\lambda y.vy/x]z)))$
- ▶ Aplicação da regra (a): $y(\lambda z.((\lambda y.vy)([\lambda y.vy/x]z)))$
- ▶ Aplicação da regra (b): $y(\lambda z.((\lambda y.vy)z))$
- ▶ Remoção dos parênteses desnecessários: $y(\lambda z.(\lambda y.vy)z)$

Conversão- α

Seja P um termo que contém uma ocorrência de $\lambda x.M$ e suponha que $y \notin FV(M)$. A substituição de $\lambda x.M$ por

$$\lambda y.[y/x]M$$

é chamada troca de variável livre ou ainda conversão- α em P. Se P pode ser transformado em Q por meio de uma série finita de conversões- α , diz-se que P e Q são congruentes ou então que P é α -conversível para Q, denotado

$$P \equiv_{\alpha} Q$$
.

Exemplo de conversão- α

$$\lambda xy.x(xy) \equiv \lambda x.(\lambda y.x(xy))$$

$$\equiv_{\alpha} \lambda x.(\lambda v.x(xv))$$

$$\equiv_{\alpha} \lambda u.(\lambda v.u(uv))$$

$$\equiv \lambda uv.u(uv)$$

Propriedades da conversão- α

Para todos P, Q e R:

- (reflexividade) $P \equiv_{\alpha} P$;
- (transitividade) $P \equiv_{\alpha} Q, Q \equiv_{\alpha} R \Rightarrow P \equiv_{\alpha} R$;
- (simetria) $P \equiv_{\alpha} Q \Rightarrow Q \equiv_{\alpha} P$.