Holomorphia Functions

(1) Canchy 7km:

O Goursat's 7hm:

 $\Lambda \in \Phi$. $ft\theta(n)$. Then $\forall T$ triangle h h. We have: $\int_{T} f(z) dz = 0$.

Pf: By Contradiction: $\exists T_0 \subseteq \Lambda. \int_{T_0} f(z) = C_0 \pm 1.$

T. "7."

by Drawer Theory we can construct:

1) Toko fiziki | > 1 Co. 320 En To Crested les

Since ft 8(N). - flz) = f(Z0) + f(z)(z-zn+que)

max $|\phi(z)| = E_n \rightarrow 0$. When $n \rightarrow 0$. $z \in T_n^{(4)}$

Then it will antradict by estimate co!

Cor. febens. For any rectangle REA.

Then In fly =0.

1) local existence of primitive:

7hm. ft 800). Then f has a primitive in D.

Pf: F(2) = Syz f(2) AZ

where Yz = [0, Rez]x(0) U [Rez] x [0, Im 2]

(WLOG. Rez. Im 2 >0)

(4) Wed- sug

of holomorphic time. "

Check: F(Z+h)-F(Z)/h -> f(Z). h-). FLZTH) - FLZ) = fizidz, by cancellation of hoursar 7hm. Where n is segment of Z to Zth By unti. f(w) = f(z) + q(w), q(w) > 0(w)==)

Cor. Clarchy Thm in Disc) f & OLDI. Y is chosen curve in D. Then & fle = 0

(3) Lauchy 's integral Formula:

Thm fequer. DEA. C= DO with positive oriention. Then f(z) = \frac{1}{22i} \oint_0 \frac{funds}{3-z}, \frac{7}{2} \in D.

> 11: \frac{1}{22i} \oint_0 \frac{fisias}{4-2} - fize = \frac{1}{22i} \oint_0 \frac{fisi-fize}{3-2} As = 1 frez (5) - frez (5) + 170.

> > Since fig)-fix) & OCP/DIZIS). Let 2-10.

Permot: It can be extended (to any Jordan curve $y \subseteq \Lambda \cdot \frac{1}{22i} \oint_{\gamma} f(\xi)/g - \epsilon \ d\xi = f(\xi)$

Cor. $f \in \theta(n)$. $f^{(n)}(z) = \frac{n!}{22i} \oint_{C} \frac{f(s)As}{(s-z)^{n+1}} \cdot \forall n \in \mathbb{Z}$ Pf: Induction on n.

Check on $f^{(n)}(z+h) - f^{(n)}(z)/h$

Cor. Clarity Trequality) $f \in \theta(n)$. $\overline{D}(Z_0, R) \subseteq \Lambda$. $C = \partial D$. $||f||_{c} = \sup_{z \in C} |f_{(z)}|$ Then we have: $||f'(Z_0)|| = \frac{n! ||f||_{c}}{R^n}$

Cor. (Lionville Thm) $f \in \theta(C)$. bounded. Then f = const. $Pf: \forall Z_0 \in C. |f(z_0)| \leq \frac{m}{R}$. Let $k \to \infty$.

a) Well-def primitive
of holomorphic Func. 1

Recall: A is Simply connected (=)

Curve Yo. Y. E.A. St. Your: Y. (a)

Y. (b) = Y. (b). On In. b]. Then Yo is

homotopic to Y. on In. b].

Then Sy, fles At = Sy, fles At

Pf: There exist $Y_s(t) = F(s,t)$, $0 \le s \le 1$, $n \le t \le b$. $Y_s \xrightarrow{\text{Green }} Y_s$, when $s: o \to 1$. by def of homotopic

1°) Denote $k = F(x_0, 1] \times (x_0, b_0)$ Upt.

1°) List $(k, n') \stackrel{d}{=} (k > 0)$. Let $k < \frac{k}{3}$

2') Since exists 8>0. St. 15.-5.1<8. Then: $5 + p \mid Y_{5}, (4) - Y_{5}(4) \mid < \xi$. By upt of $\xi_{0}, 1J$. Prove: $\int_{Y_{5}} f(\xi) d\xi = \int_{Y_{5}} f(\xi) d\xi$

3°) Simu Ys. Ys. are closed enough.

Y. 24 25 I Dil, with Y < E.

We ze ze ze ze ze ver Ys. Ys.

We ys.

Note that on the intersection of Pi the primitive of feet only differs by a constant.

cire. Fi. Fix, is primetive on Pi. Din respectively. Then Fix, (2) - Fice) = constant.

for \ Z & Di \ Di+1)

Partition Ys. Ys. into [Zi]. [wi].

Zi. Wi & Di N Din. Zo=Wo. ZN=WN.

femore: 20's well-def that let Fiz; = Jy fizikz.

in simply consuter homain s.

(2) Expansion of suries:

1hm. feben. = fizit Ain).

Pf: (=). $\forall Z_0 \in \Lambda$. $D(Z_0) \in \Lambda$. $C=\partial D$.

Note that $f(Z_0) = \frac{1}{2Z_0} \oint_C \frac{f(S_0)A_S}{S-Z_0}$ $= \frac{1}{2Z_0} \oint_C \frac{1}{S-Z_0} \frac{f(S_0)A_S}{1-\frac{2-Z_0}{S-Z_0}}$ $= \frac{1}{2Z_0} \oint_C \frac{1}{S-Z_0} \sum_{j=1}^{N} \left(\frac{Z_0-Z_0}{S-Z_0}\right)^{j} f(S_0)A_S.$ $\stackrel{A}{=} \sum_{j=1}^{N} f_j \left(\frac{1}{S_0-Z_0}\right)^{j} , \text{ Theorem } A_n = \frac{f_{j=1}^{(n)}}{n!}$ $(\Leftarrow) \quad f(Z_0) = \lim_{j \to \infty} \sum_{j=1}^{N} A_n \left(Z_0-Z_0\right)^{j} \in \theta(n),$ $Sim \text{ If } f(Z_0) = \sum_{j=1}^{N} A_n \left(Z_0-Z_0\right)^{j} \in \theta(n),$

Thm. (Uniqueness) $f \in \theta(\Lambda)$. If $\exists 124 \} \in f'(0) \subseteq \Lambda$ $\{2\mu\} \rightarrow 20$ in \mathcal{U} open $\subseteq \Lambda$ (Connected)

Then $f \equiv 0$. $\forall 2 \in \Lambda$.

Pf: Expand f at $z_0 \in D(z_0, 1) \subseteq U$: $f = Z \text{ An } (z-z_0)^2 = \text{ Am } (z-z_0)^2 (1+1)(z-z_0)$ Where $a_m \neq 0$. $(m \neq 0)$ the least integer)

This a contradiction. Since $\exists N. \ n > N. \ [\exists k]_N \leq D(\exists_k.s)$ But $f(\exists k) = A_m(\exists k-\exists_0)^m (1+g(\exists k-z_0)) \pm 0$.

(N smissfus: $|g(\exists k-\exists_0)| < \frac{1}{2}$. $\forall k > N$. Since $g(\exists k-z_0) = 0$.)

if 50 in $D(\exists_0.1)$.

Let U = 1 f = 0. it's open from above.

And in is closed too. ... U = n. Since $u \neq \emptyset$.

Cor. All zeros of analytic functions are isolated.

Lor. f = g on a set with accumulation $\in \Lambda$.

Then f = g, or Λ .

(3) Applications:

1) Morera 7hm:

f & C(A). H triangle T & A. S. f Azzo.

Then f & O(A).

Pf: It "s ensy to Mf Fit) = Sy fill At.

where y is consist of polylines

2. It's well-dof. since Ix fat =0.

Check: FEBEN. by fECEN,

Permuk: i) $\frac{1}{Z}$ has no primitive. Sim: $\phi_{p(0,1)} = 22i \mp 0$.

(i) For $f \in \theta \cup P/\Sigma$) 2 is a segment.

By Moreon. Approxi by sevaral cite (COD)

Cite (COD)

Winngles \Rightarrow $f \in \theta \in D$)

O Limit Seg:

Thm. If $n \leq \theta(n)$. $f_n \xrightarrow{\mu.o.o} f$. Then $f \in \theta(n)$ Moreover. $f_n \xrightarrow{\mu.o.o} f_n'$

If: By Mirera: $\int_{T} f_{n} \lambda \tilde{z} \rightarrow \int_{T} f_{n} \lambda \tilde{z} = 0$.

Checking $f_{n} \xrightarrow{n} f$ on T. Upt set C.

By Cauchy Formular for the Latter.

7hm. $F(z_{15}): \mathcal{N} \times \mathcal{E}_{0,1} \longrightarrow \mathcal{C}. \mathcal{N} \xrightarrow{\text{opm}} \mathcal{C}$ $F \in \mathcal{C}(\mathcal{N} \times \mathcal{E}_{1,1}). F(z_{15}) \in \theta \in \mathcal{N} \text{ for}$ $every s \in \mathcal{E}_{1,1}. \text{ Then } \int_{0}^{t} F(z_{15}) ds \in \theta \in \mathcal{N}$ $Pf: \frac{1}{N} \stackrel{n}{\Sigma} F(z_{1,N}) \in \theta \in \mathcal{N} \xrightarrow{\text{max}} \int_{0}^{t} F(z_{2,5}) ds$

Permit: Not every $f \in C(n)$ can be approximated by polynomials. Simu $\tilde{\Xi}$ an $Z^n \in \Theta(C)$.

Then $\exists \tilde{x}, n \in \tilde{x}, f \in C(\tilde{x})$

 $\frac{\partial C}{\partial s} = \frac{1}{22i} \int_{\mathbb{R}^{2}} \frac{ds}{s} ds$ $\frac{1}{5} (z_{0}) = \frac{1}{22i} \int_{\mathbb{R}^{2}} \frac{ds}{s} ds$ $\frac{1}{5} (z_{0}) = \frac{1}{22i} \int_{\mathbb{R}^{2}} \frac{ds}{s} ds$ $\frac{1}{5} (z_{0}) = \lim_{z \to z_{0}} \frac{1}{5} (z_{0}) = \mathcal{E} C.$

Then. $f_{+}(z_{0}) = f_{p}(z_{0}) + \frac{1}{2}f(z_{0})$. $f(z_{0}) = f_{p}(z_{0}) - \frac{1}{2}f(z_{0})$ Where $f_{p}(z_{0}) = p.v. \frac{1}{27i} \int_{C} \frac{f(s_{0})As}{s-z} = \lim_{s \to 0} \frac{1}{27i} \int_{I_{c}} \frac{f(s_{0})As}{s-z}$.

Pf: 1) $f \in \theta \in \overline{C}$.

Then $\tilde{f} = f$. $\forall z \in C$. $\tilde{f} = 0$. $\forall z \notin C$.

By write $\tilde{f}_{+}(z_{0}) = \tilde{f}(z_{0})$ Calculate: $\tilde{f}_{+} = f(z_{0}) = f(z_{0})$ $Calculate: \tilde{f}_{+} = f(z_{0}) = f(z_{0})$ $\int_{\mathbb{T}_{C}} \frac{f(z_{0})dJ}{z-\overline{z}} = -\int_{CL} \frac{f(z_{0})Az}{z-\overline{z}} dy \quad Canchy.$ Cleat $Z = \sum_{i=0}^{\infty} \theta_{i} = \theta_{i} = \theta_{i}$. $\theta_{i} = \theta_{i} = \theta_{i}$.

2') $f \in \mathcal{B}(\mathcal{U}(Z_0))$ only. $\widetilde{f}(Z) = \int_{Z_0+1} + \int_{P-1} + \int_{P-1} \int_{\mathbb{R}^2} \int$

femore: For $f \in C^{0,\beta}(\overline{C})$. $\forall 0 < \beta \leq 1$.

The conclusion still holds.

(4) Runge's Approximation 7hm:

Thm. If fe tens. I fear to can be approxi.

uniformly on k by see of rational functions. Whose singularities in k.

If k' is unnevered. Then f can be approxi. uniformly by polynomials

Pf: ① $f \in O(D)$. $k \in D$. Then exists $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum$

Pf: Green k by almostly Assjoint cubes $Soising Work length <math>N < Asster, ni) \stackrel{.}{=} .$ $f = \frac{1}{2\pi i} \stackrel{.}{=} \oint_{Vi} \frac{f(y)ds}{3-2} \quad \forall \ Z \in k.$ Where $Y_i = \partial Oi$, $1 \le i \le N$.

Pf: $\tilde{\Xi} \partial \phi_i = \tilde{\Xi} \beta_i$, since they will concert the segments form in k.

11: By Matin. Let Bi: [1.1] -> Bi · · Spi = So file) Picto At ZEK. fupicts) Bich / Bich- Z & Ocks. & telo. 17. Then approxi. is so fished by Rionen Som.

(4) If k is innected. Zo & k. Then Z-Zo can be approxi. by polynomials on k. uniformly.

 $\frac{Pf:}{z_1 \cdot x_2} \xrightarrow{\text{tix}} z_1 \cdot y_2 \cdot z_1 \cdot y_2 \cdot z_2 \cdot y_3 \cdot z_4 \cdot y_4 \cdot z_1 \cdot$ Fix Z. St. /= 1<1.

 $\frac{1}{1} \frac{1}{z-z_1} = \frac{-1}{z_1} \cdot \frac{1}{1-\frac{z}{z_1}} = -\frac{1}{z_1} \cdot \frac{1}{\left(\frac{z}{z_1}\right)^n}$

===== con be approxi. by polynomials

ii) Let e= { / Lck. 4). [wish on y. opt.

St. IWi - With < C. W= Z. With = Z0

Note that $\overline{Z-Wi+1} = \overline{Z-Wi} = \overline{I-Wi+1-Wi}$

= \frac{Z-Wi}{Z-Wi}\n^2

Z-With Can be approximing Z-wi

 $\frac{1}{Z-Z_1} \xrightarrow{\text{Albion}} \frac{1}{Z-W_1} \xrightarrow{\text{---}} \frac{1}{Z-Z_2}$

femore: If k' isn't consum. Then If EDUN. KEUEN. St. f can't be approxime by polynomials uniformly on k.