

Singular Value Decomposition (SVD)

• Given a rectangular matrix $A \in \mathbb{R}^{m \times n}$, its singular value decomposition is written as $A = II\Sigma V^T$

where

- $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$: matrices with orthonormal columns, providing an orthonormal basis of Col A and Row A, respectively
- $\Sigma \in \mathbb{R}^{m \times n}$: a diagonal matrix whose entries are in a decreasing order, i.e., $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)}$

Basic Form of SVD

• Given a matrix $A \in \mathbb{R}^{m \times n}$ where $m \ge n$, SVD gives

160

SVD as Sum of Outer Products

• A can also be represented as the sum of outer products

Reduced Form of SVD

• A can also be represented as the sum of outer products

