A polynomial algorithm for the deterministic mean payoff game

Bruno Scherrer

March 21, 2022

Abstract

...

We consider an infinite-horizon game on a directed graph (X, E) between two players, MAX and MIN. For any vertex x, we write $E(x) = \{y; (x, y) \in E\}$ for the set of vertices that can be reached from x by following one edge and we assume $E(x) \neq \emptyset$. The set of vertices $X = \{1, 2, ..., n\}$ of the graph is partitionned into the sets X_+ and X_- of nodes respectively controlled by MAX and MIN. The game starts in some vertex x_0 . At each time step, the player who controls the current vertex chooses a next vertex by following an edge. So on and so forth, the choices generate an infinitely long trajectory $(x_0, x_1, ...)$. In the mean payoff game, the goal of MAX is to maximize

$$\lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t),$$

while that of MIN is to minimize

$$\lim \sup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t).$$

As a proxy to solve the mean payoff game, our technical developments will mainly consider the γ -discounted payoff for some $0 \le \gamma < 1$, where the goal of MAX is to maximize

$$(1-\gamma)\sum_{t=0}^{\infty} \gamma^t r(x_t)$$

while that of MIN is to minimize this quantity. LITERATURE

1 Preliminaries

Let M and N be the set of stationary policies for MAX and MIN:

$$M = \{ \mu : X_+ \to X \; ; \; \forall x \in X_+, \; \mu(x) \in E(x) \},$$

$$N = \{ \nu : X_- \to X \; ; \; \forall x \in X_-, \; \nu(x) \in E(x) \}.$$

For any policies $\mu \in M$ and $\nu \in N$, let us write $P_{\mu,\nu}$ for the transition matrix induced by μ and ν :

$$\forall x \in X_+, \forall y \in X, \quad P_{\mu,\nu}(x,y) = \mathbb{1}_{\mu(x)=y},$$

$$\forall x \in X_-, \forall y \in X, \quad P_{\mu,\nu}(x,y) = \mathbb{1}_{\nu(x)=y}.$$

Seeing the reward $r: X \to 0, 1, \dots, R$ and any function $v: X \to \mathbb{R}$ as vectors of \mathbb{R}^n , consider the following Bellman operators

$$\begin{split} T_{\mu,\nu}v &= (1-\gamma)r + \gamma P_{\mu,\nu}v, \\ T_{\mu}v &= \min_{\nu} T_{\mu,\nu}v, \\ \tilde{T}_{\nu}v &= \max_{\mu} T_{\mu,\nu}v, \\ Tv &= \max_{\mu} T_{\mu}v = \min_{\nu} \tilde{T}_{\nu}v. \end{split}$$

that are γ -contractions with respect to the max-norm $\|\cdot\|$, defined for all $u \in \mathbb{R}^n$ as $\|u\| = \max_{x \in X} |u(x)|$. For any policies $\mu \in M$ and $\nu \in N$, the value $v_{\mu,\nu}(x)$ obtained by following policies μ and ν satisfies

$$v_{\mu,\nu} = (1 - \gamma) \sum_{t=0}^{\infty} (\gamma P_{\mu,\nu})^t r = (1 - \gamma)(I - \gamma P_{\mu,\nu})^{-1} r,$$

and is the only fixed point of the operator $T_{\mu,\nu}$. Given any policy μ for MAX, the minimal value that MIN can obtain

$$v_{\mu} = \min_{\nu} v_{\mu,\nu}$$

is the fixed point of the operator T_{μ} , and it is well known that any policy ν_{+} for MIN such that $T_{\mu,\nu_{+}}v_{\mu}=T_{\mu}v_{\mu}=v_{\mu}$ is optimal. Symmetrically, given any policy ν for MIN, the maximal value that MAX can obtain

$$\tilde{v}_{\mu} = \max_{\nu} v_{\mu,\nu}$$

is the fixed point of \tilde{T}_{ν} , and it is well known that any policy μ_{+} for MAX such that $T_{\mu_{+},\nu}v_{\mu}=\tilde{T}_{\nu}\tilde{v}_{\nu}=\tilde{v}_{\nu}$ is optimal. The optimal value

$$v_* = \max_{\mu} \min_{\nu} v_{\mu,\nu}$$

is the fixed point of the operator T. Let (μ_*, ν_*) be any pair of positional strategies such that $T_{\mu_*, \nu_*} v_* = T v_*$. It is well-known that (μ_*, ν_*) is optimal.

We shall consider policies that are more complicated than usual stationary policies.

2 A local Bellman equation

The system of equations

$$\forall x, v(x) = [Tv](x),$$

that characterizes the optimal value v_* of the game, is global in the sense that it involves the values of all the vertices. We shall begin by describing and prove an approximate-optimality equation that has the virtue of being local in the sense that it involves only one vertex:

Lemma 1. Let v be any value function that satisfies $v \leq Tv$. If for some x, we have

$$[T^n v](x) - v(x) \le \epsilon,$$

Then

$$v_*(x) - [T^n v](x) \le \frac{\epsilon}{1 - \gamma}.$$

Proof. First, observe that by the monotonicity of T, and since $v \leq Tv$, we have

$$v < Tv < T^2v < \dots < T^nv.$$

Let $\vec{\nu} = (\nu_1, \dots, \nu_n)$ be a policy such that

$$T^n v = \tilde{T}_{\vec{v}} v.$$

Assume MIN uses $\vec{\nu}$ to play n steps against the optimal policy μ_* of MAX from x. Consider the n+1 vertices visited:

$$x_0 = x, x_1, x_2, \ldots, x_n$$

Since there are n different vertices, by the pigeonhole principle, there necessarily exists $0 \le i < j \le n$ such that $x_i = x_j$. Let $\vec{\nu}_p = (\nu_1, \dots, \nu_{i-1})$, $\vec{\nu}_c = (\nu_i, \dots, \nu_{j-1})$ and $\vec{\nu}_{p'} = (\nu_j, \dots, \nu_n)$ so that $\vec{\nu} = \vec{\nu}_p \vec{\nu}_c \vec{\nu}_{p'}$.

Now, assume that against μ_* , MIN uses the non-stationary policy $\vec{\nu}' = \vec{\nu}_p(\vec{\nu}_c)^{\infty}$. The trajectory is made of a path followed by a cycle of length j-i that is repeated infinitely often:

$$\underbrace{x_0 = x, \ x_1, \ x_2, \ \dots, x_{i-1}}_{\text{path}}, \underbrace{x_i, \ x_{i+1}, \ \dots, \ x_{j-1}}_{\text{cycle}}, \underbrace{x_i, \ x_{i+1}, \ \dots, x_{j-1}}_{\text{cycle}}, \dots$$

SIMPLIFY!

The value of this game satisfies for any w,

$$\begin{split} v_{\mu_*,\bar{\nu}}(x) - w(x) &= \mathbbm{1}_x (T_{\mu_*,\vec{\nu}_p\vec{\nu}_c} (T_{\mu_*,\vec{\nu}_c})^\infty w - w) \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p\vec{\nu}_c} 0 + \gamma^j \mathbbm{1}_{x_i} \sum_{k=0}^\infty [(T_{\mu_*,\vec{\nu}_c})^{k+1} w - T_{\mu_*,\vec{\nu}_c})^k w] \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p\vec{\nu}_c} w + \gamma^j \mathbbm{1}_{x_i} \sum_{k=0}^\infty \gamma^{(j-i)k} (P_{\mu_*,\vec{\nu}_c})^k (T_{\mu_*,\vec{\nu}_c} w - w) \\ &= \mathbbm{1}_x T_{\mu_*,\vec{\nu}_p\vec{\nu}_c} w + \frac{\gamma^j}{1 - \gamma^{j-i}} \mathbbm{1}_{x_i} (T_{\mu_*,\vec{\nu}_c} w - w) \\ &\leq \mathbbm{1}_x \tilde{T}_{\vec{\nu}_p\vec{\nu}_c} w + \frac{\gamma^j}{1 - \gamma^{j-i}} \mathbbm{1}_{x_i} (\tilde{T}_{\vec{\nu}_c} w - w). \end{split}$$

Taking $w = \tilde{T}_{\vec{\nu}_{n'}}v$, we obtain

$$\begin{split} v_{\mu_*,\bar{\nu}}(x) - [\tilde{T}_{\vec{\nu}_p,v}](x) &\leq \mathbb{1}_x (\tilde{T}_{\vec{\nu}_p\vec{\nu}_c}\tilde{T}_{\vec{\nu}_p,v} v - T_{\vec{\nu}_p,v} v) + \frac{\gamma^j}{1 - \gamma^{j-i}} \mathbb{1}_{x_i} (\tilde{T}_{\vec{\nu}_c}\tilde{T}_{\vec{\nu}_p,v} v - \tilde{T}_{\vec{\nu}_p,v} v) \\ &= \mathbb{1}_x (\tilde{T}_{\vec{\nu}_p\vec{\nu}_c\vec{\nu}_p,v} v - T_{\vec{\nu}_p,v} v) + \frac{\gamma^j}{1 - \gamma^{j-i}} \mathbb{1}_{x_i} (\tilde{T}_{\vec{\nu}_c\vec{\nu}_p,v} v - \tilde{T}_{\vec{\nu}_p,v} v) \\ &= \mathbb{1}_x (T^n v - T^{n-j} v) + \frac{\gamma^j}{1 - \gamma^{j-i}} \mathbb{1}_{x_i} (T^{n-i} v - T^{n-j} v) \\ &\leq \mathbb{1}_x (T^n v - v) + \frac{\gamma^j}{1 - \gamma^{j-i}} \mathbb{1}_x (T^n v - v) \\ &\leq \frac{\epsilon}{1 - \gamma}, \end{split}$$

where we eventually used the facts that $T^nv-v\leq \epsilon,\ j\geq 1$ and $j-i\geq 1$. The result follows by the facts that $v_*(x)=v_{\mu_*,\nu_*}(x)\leq v_{\mu_*,\bar{\nu}}(x)$ and $T^nv\geq T^{n-j}v=\tilde{T}_{\vec{\nu}_{p'}}v$.

3 A Policy Iteration procedure

Consider the extension of the binary relations $(=,<,\leq,>,\geq)$ to $\{0,1\}\times\mathbb{R}$ by using the lexicographic order. For instance,

$$(a,b) < (a',b') \Leftrightarrow a < a' \text{ or } (a=a' \text{ and } b < b').$$

For any $c \in \{0,1\}^n$, consider the following operators on $\{0,1\}^n \times \mathbb{R}^n$

$$\begin{split} U_{c,\mu,\nu}(b,v) &= (& \min(c,P_{\mu,\nu}b), \ T_{\mu,\nu}v \), \\ U_{c,\mu}(b,v) &= \min_{\nu} U_{c,\mu,\nu}(b,v), \\ U_{c}(b,v) &= \max_{\mu} U_{c,\mu}(b,v). \end{split}$$

When solving the *n*-step problem by computing $(U_c)^n(1,v)$, the primary objective of MAX is to only visit nodes x with value c(x) = 1 while that of MIN is to visit at least one node x with value c(x) = 0; the second objective is the usual discounted value with terminal value v (that MAX wants to maximize, and MIN to minimize).

We shall consider a Policy Improvement step that takes as parameters a threshold ρ and a stationary policy μ , and that returns a non-stationary policy (μ_1, \ldots, μ_n) :

1. (Initialization) Set $C = \emptyset$. Compute the value v when MIN plays optimally against μ :

$$v = T_{\mu}v$$
.

2. (*n*-step advantage) For all x, set $c(x) = \mathbb{1}_{x \notin C}$. Solve the *n*-step decision problem and identify (μ_1, \ldots, μ_n) such that:

$$(U_c)^n(1,v) = U_{c,\mu_1} \dots U_{c,\mu_n}(1,v).$$

3. (Identification of converged states) Compute the set

$$D = \{x \in X : [T_{\mu_1} \dots T_{\mu_n} v](x) - v(x) < (1 - \gamma)\rho\},\$$

If D is non empty, set $C = C \cup D$. If $C \neq X$, go to step 2. Otherwise stop.

Since the size of the set C increases at each iteration, it is clear that this procedure halts after at most n iterations.

Lemma 2. The policy μ_1, \ldots, μ_n is such that:

$$\forall x \in X \backslash Y, \quad v_{\mu_1, \dots, \mu_n}(x) > v_{\mu}(x) + \frac{\rho}{n}$$
$$\forall x \in Y, \quad v_{\mu', \nu'}(x) \ge -n(1 - \gamma)R + \rho.$$

Proof. Consider the first inequality. When one gets to step 4 of the procedure, we know that C is empty. In other words, for all $x \in X \setminus Y$, we know that

$$\delta(x) > (1 - \gamma)\rho$$
.

Now, for all $x \in X \setminus Y$,

$$\mathbb{1}_{x}(v_{\mu',\nu'} - v_{\mu}) = \mathbb{1}_{x}(I - \gamma^{n} P_{\mu_{1},\nu'_{1}(x)} \dots P_{\mu_{n},\nu'_{n}(x)})^{-1} (T'_{\mu_{1},\nu'_{1}(x)} \dots T'_{\mu_{n},\nu'_{n}(x)} v_{\mu} - v_{\mu})
\geq \mathbb{1}_{x}(I - \gamma^{n} P_{\mu_{1},\nu'_{1}(x)} \dots P_{\mu_{n},\nu'_{n}(x)})^{-1} (T'_{\mu_{1}} \dots T'_{\mu_{n}} v_{\mu} - v_{\mu})
= \mathbb{1}_{x}(I - \gamma^{n} P_{\mu_{1},\nu'_{1}(x)} \dots P_{\mu_{n},\nu'_{n}(x)})^{-1} ((T')^{n} v_{\mu} - v_{\mu})
= \mathbb{1}_{x}(I - \gamma^{n} P_{\mu_{1},\nu'_{1}(x)} \dots P_{\mu_{n},\nu'_{n}(x)})^{-1} (\delta)
> \frac{1 - \gamma}{1 - \gamma^{n}} \rho
\geq \frac{\rho}{n}.$$

Now consider the second inequality.

Theorem 1. The Policy Iteration procedure stops after at most $n + \frac{n(v_{\mu_*} - v_{\mu_0})}{\rho}$ iterations, the algorithm stops and returns a policy μ such that

$$v_*(x) - v_{\vec{\mu}_x}(x) \le \rho + n(1 - \gamma)R$$

Starting from $\rho_0 = \frac{W}{2}$, let us choose the sequence of parameters

$$\rho_{k+1} = \frac{\rho_k + n(1-\gamma)R}{2}$$

so that each call to the procedure lasts at most 2n iterations.

Then after k iterations, we have

$$v_* - v_{\mu_k} \le \frac{W}{2^k} + \sum_{i=0}^{k-1} \frac{1}{2^i} (1 - \gamma) nR$$

 $\le \frac{W}{2^k} + 2(1 - \gamma) nR$

For the mean payoff game, we have

$$||g_* - g_{\mu_k}|| \le 4n(1 - \gamma)R + ||v_* - v_{\mu_k}||$$

 $\le 6n(1 - \gamma)R + \frac{W}{2^k}$

When this is smaller thant $\frac{1}{n^2}$, we are done!