Computer Networks and Internets, 5e Chapter 7 Transmission Media

Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

1

Guided and Unguided Transmission

- · How should we categorize transmission media?
- · Two broad approaches:
 - Type of path: communication can follow an exact path such as a wire, or can have no specific path, such as a radio transmission
 - Form of energy: electrical energy is used on wires, radio transmission is used for wireless, and light is used for optical fiber
- We use the terms guided (wired) and unguided (wireless) transmission to distinguish between physical media
 - Term wired is used even when the physical medium is an optical fiber

A Taxonomy by Forms of Energy

- Figure 7.1 illustrates how physical media can be classified according to the form of energy used to transmit data.
- Like most taxonomies, the categories are not perfect and exceptions exist.
 - For example: a space station in orbit around the earth might employ non-terrestrial communication that does not involve a satellite
- Nevertheless, our taxonomy covers most communications

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

3

Background Radiation and Electrical Noise

- · Electrical current flows along a complete circuit
 - all transmissions of electrical energy need two wires to form a circuit; a wire to the receiver and a wire back to the sender
- The simplest form of wiring consists of a cable that contains two copper wires
- Each wire is wrapped in a plastic coating
 - it insulates the wires electrically
- The outer coating on the cable holds related wires together to make it easier for humans who connect equipment

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Background Radiation and Electrical Noise

To understand the wiring used in Computer networks three facts must be understood:

- Random electromagnetic radiation, called noise, permeates the environment
 - In fact, communication systems generate minor amounts of electrical noise as a side-effect of normal operation
- 2. When it hits metal, electromagnetic radiation produces a small signal
 - random noise can interfere with signals used for communication
- 3. Because it absorbs radiation, metal acts as a shield
 - Thus, placing enough metal between a source of noise and a communication medium can prevent noise from interfering

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

5

Twisted Pair Copper Wiring

There are three forms of wiring that help reduce interference from electrical noise

- Unshielded Twisted Pair (UTP)
 - · also known as twisted pair wiring
- Coaxial Cable
- Shielded Twisted Pair (STP)

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Twisted Pair Copper Wiring

Figure 7.2 Unwanted electromagnetic radiation affecting (a) two parallel wires, and (b) twisted pair wiring.

<u>Note</u>: Twisting two wires makes them less susceptible to electrical noise than leaving them parallel

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

7

Twisted Pair Copper Wiring

- · When two wires run in parallel:
 - there is a high probability that one of them is closer to the source of electromagnetic radiation than the other
 - one wire tends to act as a shield that absorbs some of the electromagnetic radiation
 - Thus, because it is hidden behind the first wire, the second wire receives less energy
- In the figure, a total of 32 units of radiation strikes each of the two cases
 - In Figure 7.2a,
 - the top wire absorbs 20 units, and the bottom wire absorbs 12, producing a difference of 8
 - In Figure 7.2b
 - each of the two wires is on top one-half of the time, which means each wire absorbs the same amount of radiation

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Shielding: Coaxial Cable & STP

- Although it is immune to most background radiation, twisted pair wiring does not solve all problems
- Twisted pair tends to have problems with:
 - strong electrical noise, close physical proximity to the source of noise
 - high frequencies used for communication
- If the intensity is high or cables run close to the source of electrical noise, even twisted pair may not be sufficient
 - (e.g., in a factory that uses electric arc welding equipment)
 - if a twisted pair runs above the ceiling in an office building on top of a fluorescent light fixture, interference may result
- Sometimes, it is difficult to build equipment that can distinguish between valid signals and noise
 - means that even a small amount of noise can cause interference when high frequencies are used
 - © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

9

Shielding: Coaxial Cable and STP

- Forms of wiring are available that have extra metal shielding
- The most familiar form is the wiring used for cable television
 - known as coaxial cable (coax)
 - the wiring has a thick metal shield formed from braided wires that completely surround a center (inner) wire that carries the signal
- A coaxial cable can be placed adjacent to sources of electrical noise and other cables, and can be used for high frequencies

Shielding: Coaxial Cable and STP

Figure 7.3 illustrates the concept

The shield in a coaxial cable forms a flexible cylinder around the inner wire

that provides a barrier to electromagnetic radiation from any direction

The barrier also prevents signals Figure 7.3 Illustration of coaxial cable with a shield surrounding the signal on the inner wire from radiating electromagnetic energy

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

11

Shielding: Coaxial Cable and STP

- Using braided wire instead of a solid metal shield keeps coaxial cable flexible
 - but the heavy shield does make coaxial cable less flexible than twisted pair
- Variations of shielding have been invented that provide a compromise
 - the cable is more flexible, but has slightly less immunity to electrical noise
- One popular variation is known as shielded twisted pair (STP)
 - The cable has a thinner, more flexible metal shield surrounding one or more twisted pairs of wires
 - In most versions of STP cable, the shield consists of metal foil, similar to the aluminum foil used in a kitchen

Categories of Twisted Pair Cable

- Standards organizations worked together to create standards for twisted pair cables used in computer networks
 - American National Standards Institute (ANSI)
 - Telecommunications Industry Association (TIA)
 - Electronic Industries Alliance (EIA)

Category	Description	Data Rate (in Mbps)
CAT 1	Unshielded twisted pair used for telephones	< 0.1
CAT 2	Unshielded twisted pair used for T1 data	2
CAT 3	Improved CAT2 used for computer networks	10
CAT 4	Improved CAT3 used for Token Ring networks	20
CAT 5	Unshielded twisted pair used for networks	100
CAT 5E	Extended CAT5 for more noise immunity	125
CAT 6	Unshielded twisted pair tested for 200 Mbps	200
CAT 7	Shielded twisted pair with a foil shield around the entire cable plus a shield around each twisted pair	600

Figure 7.4 Twisted pair wiring categories and a description of each.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

13

Media Using Light Energy and Optical Fibers

- Three forms of media use light energy to carry information:
 - Optical fibers
 - InfraRed transmission
 - Point-to-point lasers
- · Optical fiber (or fibre) is most important and widely used
- Each fiber consists of a thin strand of glass or transparent plastic encased in a plastic cover
 - Communication is uni-directional
 - One end of the fiber connects to a laser or LED used to transmit light
 - The other end of the fiber connects to a photosensitive device used to detect incoming light
- To provide two-way communication
 - two fibers are used; one to carry information in each direction

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Media Using Light Energy and Optical Fibers

- · Why does light travel around a bend in the fiber?
 - when light encounters the boundary between two substances
 - its behavior depends on the density of the two substances and the angle at which the light strikes the boundary
- For a given pair of substances:
 - There exists a critical angle, θ
 - · measured with respect to a line that is perpendicular to the boundary
 - If the angle of incidence is exactly equal to the critical angle
 - · light travels along the boundary
 - When the angle of incidence is less than θ
 - · light crosses the boundary and is refracted
 - When the angle is greater than θ degrees
 - · light is reflected as if the boundary were a mirror

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

15

Media Using Light Energy and Optical Fibers

Figure 7.5 Behavior of light at a density boundary when the angle of incidence is (a) less than the critical angle θ , (b) equal to the critical angle, and (c) greater than the critical angle.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Media Using Light Energy and Optical Fibers

- Reflection in an optical fiber is not perfect
 - Reflection absorbs a small amount of energy
 - If a photon takes a zig-zag path that reflects from the walls of the fiber many times
 - the photon will travel a slightly longer distance than a photon that takes a straight path
 - The result is that a pulse of light sent at one end of a fiber emerges with less energy and is dispersed (i.e., stretched) over time
 - Dispersion is a serious problem for long optical fibers

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

17

Option

Media Using Light Energy and Optical Fibers

Figure 7.6 A light pulse as sent and received over an optical fiber.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Types of Fiber and Light Transmission

- Three forms of optical fibers have been invented that provide a choice between performance and cost:
 - Multimode, Stepped Index
 - · the least expensive and used when performance is unimportant
 - the boundary between the fiber and the cladding is abrupt, which causes light to reflect frequently
 - · dispersion is high
 - Multimode, Graded Index
 - · fiber is slightly more expensive than the step index fiber
 - it has the advantage of making the density of the fiber increase near the edge, which reduces reflection and lowers dispersion
 - Single Mode
 - · fiber is the most expensive, and provides the least dispersion
 - the fiber has a smaller diameter and other properties that help reduce reflection.
 Single mode is used for long distances and higher bit rates

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

19

Types of Fiber and Light Transmission

- Single mode fiber and the equipment used at each end are designed to focus light
 - A pulse of light can travel long distances without becoming dispersed
 - Minimal dispersion helps increase the rate at which bits can be sent
 - because a pulse corresponding to one bit does not disperse into the pulse that corresponds to a successive bit
- How is light sent and received on a fiber?
 - The key is that the devices used for transmission must match the fiber
- Transmission: LED or Injection Laser Diode (ILD)
- · Reception: photo-sensitive cell or photodiode
 - LEDs and photo-sensitive cells are used for short distances and slower bit rates common with multimode fiber;
 - single mode fiber, used over long distance with high bit rates, generally requires ILDs and photodiodes
 - © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Optical Fiber Compared to Copper Wiring

- Optical fiber has several properties that make it more desirable than copper wiring
 - Optical fiber
 - · is immune to electrical noise
 - · has higher bandwidth
 - and light traveling across a fiber does not attenuate as much as electrical signals traveling across copper
 - · Is harder to tap into
 - However, copper wiring is less expensive
 - Ends of an optical fiber must be polished before they can be used
 - Installation of copper wiring does not require as much special equipment or expertise as optical fiber
 - Copper wires are less likely to break if accidentally pulled or bent

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

21

Optical Fiber Compared to Copper Wiring

Optical Fiber

- · Immune to electrical noise
- Less signal attenuation
- · Higher bandwidth

Copper

- Lower overall cost
- · Less expertise/equipment needed
- · Less easily broken

Figure 7.7 Advantages of optical fiber and copper wiring.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.