Mecánica Estadística

Borja Diez

 $Universidad\ Arturo\ Prat$

E-mail: borjadiez1014@gmail.com

ABSTRACT: Notas sobre Mecánica Estadistica

Contents

1	Clas	se 1	1
	1.1	Introducción: Estados microscópicos y entropía	1
	1.2	Probabilidad de una configuración y factor de Boltzmann	
2	Clas	se 2	4
	2.1	Entropía, ignorancia y teorema ergódico	4
3	Cla	m se~3	7
	3.1	Principio fundamental de la termodinámica	7
	3.2	Conservación de energía y carga Q	
	3.3	Ensambles, funciones de partición y potenciales termodinámicos	11
4	Cla	se 4	12
	4.1	Ensamble micro-canónico	12
	4.2	Ensamble canónico	12
	4.3	Ensamble Gran Canónico	13
	4.4	Ensamble isobárico-isotérmico	14

1 Clase 1

1.1 Introducción: Estados microscópicos y entropía

La termodinámica describe sistemas formados por una colección de elementos (muchos, $N \sim N_A = 6.02 \times 10^{23}$) en términos de variables que capturan el comportamiento colectivo del sistema. Por ejemplo, presión, volumen, energía, número de elementos potencial químico, entropía, temperatura.

En mecánica estadística, las variables se dividen en 2 tipos principales:

- Extensivas: La magnitud es proporcional al tamaño o escala del sistema:
 - Volúmen (V)
 - Energía (U)
 - Número de elementos (N)
 - Entropía (S)
- Intensivas: La magnitud no es proporcional al tamaño del sistema:
 - Presión (P)
 - Temperatura (T)
 - Potencial químico (μ)

Estas variables corresponden a características (conceptos) atribuibles a los sistemas de forma colectiva (sin hacer mención a su estructura microscópica).

La mecánica estadística considera los microestados de un sistema dado por las **configuraciones cuánticas** en los que puede existir.

Una configuración microscópica (en términos de las cantidades termodinámicas) corresponde a michos microsestados diferentes, indistinguibles macroscópicamente. De lo anterior surgen las nociones de **degenerancia** y **entropía**.

La entropía mide el número de estados cuánticos accesibles a un sistema.

Es un postulado que un sistema cerrado puede estar en cada microestado accesible con igual probabilidad.

Dado Ω estados accesibles, la entropía S se define como

$$S = k \log \Omega \tag{1.1}$$

donde k es la constante de Boltzman.

En general $\Omega = \Omega(u, V, N)$. Los microsestados son accesibles para el sistema si tienen la misma energía U.

 Ω es el número de microestados caracterizados por (U, V, N). Luego, son la **degenerancia** del estados microscópico representado por (U, V, N). A esta entropía se le llama **entropía de grano** fino.

También son importantes nociones que describen cambios de equilibrio entre sistemas. Por ejemplo, temperatura y calor.

Cuando 2 sistemas cerrados, cada uno con cierta energía se ponen en contacto, la energía total se preserva, pero hay un flujo de energía de un sistema a otro (intercambio de calor).

Otro *postulado* establece que el número de estados accesibles al sistema combinado *aumenta*. (**Aumento de entropía**).

Ejemplo 1.1. Si inicialmente hay Ω_{1i} estados accesibles al primer sistema y Ω_{2i} estados accesibles al segundo sistema

entonces hay $\Omega_{\text{tot},i} = \Omega_{1i} \cdot \Omega_{2i}$ estados accesibles al sistema combinado. Luego, la transferencia de calor (ΔQ) hay $\Omega_{tot,f} = \Omega_{if} \cdot \Omega_{2f}$ estados accesibles al sistema combinado

$$\Omega_{tot,f} > \Omega_{tot,i}$$
 (1.2)

En términos de la entropia:

$$S_{1i} = k \log \Omega_{1i}, \qquad S_{2i} = k \log \Omega_{2i} \tag{1.3}$$

Luego,

$$S_{tot,i} = k \log \Omega_{tot,i} \tag{1.4}$$

$$= k \log(\Omega_{1i} \cdot \Omega_{2i}) \tag{1.5}$$

$$= k \log(\Omega_{1i}) + k \log(\Omega_{2i}) \tag{1.6}$$

Así,

$$S_{tot,i} = S_{1i} + S_{2i} \tag{1.7}$$

Se concluye que la entropía es extensiva.

Notemos ademas que

$$\Omega_{tot,f} > \Omega_{tot,i} \quad \Rightarrow \quad S_{tot,f} > S_{tot,i}$$
 (1.8)

es decir, la entropía aumenta en un proceso de transferencia de calor.

¿Cuál es la condición de equilibrio para que termine un proceso de transferencia de calor?

Cuando ambos sistemas quedan a la misma **temperatura**. Para definir temperatura, consideremos que en el nuevo equilibrio térmico:

$$\left(\frac{\partial S_1}{\partial U}\right)_{N,V} = -\left(\frac{\partial S_2}{\partial U}\right)_{N,V}$$
(1.9)

- $\bullet\,$ La energía interna U cambia en ambos sistemas
- La ganancia ΔU_1 en el sistema 1 es igual a la perdida ΔU_2 en el sistema 2 (conservación de la energía).

$$\Delta U_1 + \Delta U_2 = 0 \tag{1.10}$$

- La entropía total aumenta, al cambiar U. Luego, ΔU deja de fluir cuando S_{tot} deja de cambiar.
- Se puede demostrar que el proceso continua hasta que (de lo anterior)

$$\left(\frac{\partial S_1}{\partial U}\right)_{N,V} = -\left(\frac{\partial S_2}{\partial U}\right)_{N,V} \tag{1.11}$$

Cuando

$$\left(\frac{\partial S_1}{\partial U}\right)_{N,V} = -\left(\frac{\partial S_2}{\partial U}\right)_{N,V}$$
(1.12)

entonces

$$\left(\frac{\partial S_{tot}}{\partial U}\right)_{N,V} = \left(\frac{\partial (S_1 + S_2)}{\partial U}\right)_{N,V} = \left(\frac{\partial S_1}{\partial U}\right)_{N,V} + \left(\frac{\partial S_2}{\partial U}\right)_{N,V} = 0$$
(1.13)

Luego,

$$\left[\left(\frac{\partial S_{tot}}{\partial U} \right)_{N,V} = 0 \right]$$
(1.14)

y la entropía de
ja de aumentar con la transferencia de calor. Luego, el proceso se detiene. Así, conviene definir la temperatura T:

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{N,V} \qquad \text{Al aumentar } T \text{ aumenta } U. \tag{1.15}$$

Notamos que

$$T_1 = T_2 \quad \Rightarrow \quad \frac{1}{T_1} = \frac{1}{T_2} \quad \Rightarrow \quad \left(\frac{\partial S_1}{\partial U}\right)_{NV} = \left(\frac{\partial S_2}{\partial U}\right)_{NV}$$
 (1.16)

Corolario 1.1. La transferencia de calor ocurre por gradiente de temperatura (el calor fluye desde e sistema de mayor temperatura hacia el de menor temperatura, asta que las temperaturas sean iguales).

1.2 Probabilidad de una configuración y factor de Boltzmann

De la definición clásica de probabilidad, se tiene

$$P = \frac{\text{\#casos favorables}}{\text{\#casos posibles}}$$
 (1.17)

El cuociente entre la probabilidad de dos estados macroscópicos es igual al cociente de sus degeneraciones

Considere un sistema "pequeño" de 2 estados, S_p y un sistema "grande" o reservorio térmico S_r . Sea U_0 la energía del sistema combinado y U_p la energía del sistema pequeño. Suponga que la energía del sistema U_p puede ser $U_p = \epsilon$ y $U_p = 0$.

- Para $U_p = 0$, $U_r = U_0$ (U_r energía del reservorio térmico)
- Para $U_p = \epsilon$, $U_r = U_0 \epsilon$

El cociente entre las probabilidades esta dado por

$$\frac{P(\epsilon)}{P(0)} = \frac{\Omega(U_0 - \epsilon)}{\Omega(U_0)} = \frac{e^{\frac{S}{k}(U_0 - \epsilon)}}{e^{\frac{S}{k}(U_0)}} = \frac{\text{Prob. del } S_p \text{ con energía } \epsilon}{\text{Prob. del } S_p \text{ con energía } 0}$$
(1.18)

Luego, $\Omega(U)$ es la degeneración del reservorio térmico con energía U.

Expandiendo en serie de Taylor

$$S(U_0 - \epsilon) \approx S(U_0) - \epsilon \left(\frac{\partial S}{\partial U_0}\right) = S(U_0) - \frac{\epsilon}{T}$$
 (1.19)

Reemplazando en la exponencial de (1.18),

$$\boxed{\frac{P(\epsilon)}{P(0)} \approx e^{-\frac{\epsilon}{kT}}} \tag{1.20}$$

Conocido como el factor de Boltzmann.

La probabilidad relativa entre 2 estados escala como la exponencial de menos la diferencia de energía dividida por kT.

2 Clase 2

2.1 Entropía, ignorancia y teorema ergódico

Principio de máxima entropía: La configuración de un sistema desde el punto de vista macroscópico, es tal que maximiza la entropía, dada una serie de restricciones.

Considere un número grande de sistemas idéntcos $(N_s \to \infty)$, cada uno de los cuales puede estar en un estado específico.

Sea n_i el número de sistemas que están en el estado i. Definimos la ignorancia I (o la degeneración Ω) como el número de formas de arreglar el sistema conjunto dado $\{n_i\}$ (factor multinomial)

$$I = \frac{N_s!}{n_0! n_1! \dots}, \qquad \sum_i n_i = N_s$$
 (2.1)

Ejemplo 2.1. 10 dados, cada uno puede estar en 6 estados. Luego, de tirarlos se obtiene que

$$n_1 = 4 \tag{2.2}$$

$$n_2 = 3 \tag{2.3}$$

$$n_3 = 0 (2.4)$$

$$n_4 = 0 (2.5)$$

$$n_5 = 0 (2.6)$$

$$n_6 = 3 \tag{2.7}$$

entonces la configuración del sistema dada esta ignorancia es

$$I = \frac{10!}{4!3!3!} \tag{2.8}$$

Esta ignorancia considera que sólo se conocen las poblaciones de los estados (cuantos sistemas hay en cada estado) y el número total de sistemas, pero que *no es posible distinguir* entre sistemas que están en un mismo estado.

Buscamos una configuración (conjunto de poblaciones de estados) que maximice la ignorancia, sujeto a la restricción

$$\sum_{i} n_i = N_s \tag{2.9}$$

Definimos¹

$$S = k \ln I \tag{2.10}$$

Entonces

$$S = k \ln \left(\frac{N_s!}{n_0! n_i \cdots} \right) = k [\ln(N_s!) - \sum_i \ln(n_i!)]$$
 (2.11)

sujeto a (2.9).

Aproximación de Stirling:

$$\ln(n!) \approx n \ln(n) - n \tag{2.12}$$

En efecto,

$$\ln(n!) = \ln(1 \cdot 2 \cdot \dots \cdot n) = \sum_{i=1}^{n} \ln(i) \approx \int_{1}^{n} \ln(x) dx$$
 (2.13)

$$= \left. x \ln x - x \right|_1^n \tag{2.14}$$

$$= (n \ln n - n) - (\ln(1)^{-0} - 1)$$
 (2.15)

$$= n \ln n - n + 1 \tag{2.16}$$

$$= n \ln n - (n-1) \tag{2.17}$$

$$\approx n \ln n - n, \quad \text{para } n \gg 1$$
 (2.18)

Usando la aproximación de Sterling en (2.11)

$$S \approx k \left[(N_s \ln(N_s) - \mathcal{N}_s) - \sum_i (n_i \ln(n_i) - \mathcal{N}_s) \right]$$
(2.19)

$$= k \left[N_s \ln(N_s) - \sum_i n_i \ln(n_i) \right]$$
(2.20)

 $^{^1{\}rm Cantidad}$ extensiva. Maximizar Iimplica maximizar S (ya que el ln es monótono.) ln $I\uparrow=S\uparrow$

donde usamos que $N_s = \sum_i n_i$.

Dado N_s fijo, buscamos $\{n_i\}$ que maximice S sujeto a (2.9). Como queremos maximizar utilizamos **multiplicadores de Lagrange**².

$$S_{\{\sum_{i} n_{i}=N\}} = k \left[N_{s} \ln(N_{s}) - \sum_{i} n_{i} \ln(n_{i}) + \lambda \left(\sum_{i} n_{i} - N_{s} \right) \right]$$

$$(2.21)$$

Ahora

$$L = \frac{S}{N_s k}, \qquad \mu = \frac{\lambda}{k} \tag{2.22}$$

Nos queda

$$L = \ln(N_s) - \sum_{i} \left(\frac{n_i}{N_s}\right) \ln(n_i) + \mu \left[\sum_{i} \left(\frac{n_i}{N_s}\right) - 1\right]$$
 (2.23)

Definimos la probabilidad de que en la configuración total, un sistema cualquiera este en el estado $i\ {\rm como}$

$$P_i = \frac{n_i}{N_c} \tag{2.24}$$

Reescribimos

$$\ln(n_i) = \ln\left(\frac{n_i}{N_s}N_s\right) = \ln(P_i) + \ln(N_s)$$
(2.25)

Reemplazamos

$$L = \ln(N_s) - \sum_{i} P_i \left(\ln(P_i) + \ln(N_s) \right) + \mu \left[\sum_{i} P_i - 1 \right]$$
 (2.26)

$$= \ln(N_s) - \sum_{i} P_i \ln(P_i) - \sum_{i} P_i \ln(N_s) + \mu \left[\sum_{i} P_i - 1 \right], \qquad \sum_{i} P_i = 1$$
 (2.27)

$$= \ln(\mathcal{N}_s) - \sum_i P_i \ln(P_i) - \ln(\mathcal{N}_s) + \mu \left[\sum_i P_i - 1 \right]$$
(2.28)

Nos queda

$$L = -\sum_{i} P_{i} \ln(P_{i}) + \mu \left[\sum_{i} P_{i} - 1 \right]$$
 (2.29)

Las variables dinámicas son $\{P_i, \lambda\}$. Maximizando L

$$\frac{\partial L}{\partial P_i} = 0 \tag{2.30}$$

$$\frac{\partial L}{\partial \mu} = 0 \tag{2.31}$$

Ahora, de (2.29),

$$\frac{\partial L}{\partial P_i} = -(\ln P_i + 1) + \mu = 0 \tag{2.32}$$

$$\frac{\partial L}{\partial \mu} = \sum_{i} P_i = 1 \tag{2.33}$$

donde μ es constante. De (2.32),

$$P_i = e^{\mu - 1} = P, \qquad \sum_i P = 1$$
 (2.34)

²Recordar que para una restricción holonómica $f(\{n_i\}) = 0$ se incluye λf .

es decir, en la configuración que maximiza la entropía, cada estado es igualmente probable (la probabilidad es igual a una constante que no depende de i).

Hay s estados posibles, luego

$$sP = 1 \quad \Rightarrow \qquad P = \frac{1}{s} \tag{2.35}$$

Esto implica que la probabilidad de cada estado en la configuración de máxima entropía es

$$\frac{1}{\text{\# estados posibles}} \tag{2.36}$$

luego,

$$\boxed{n_i = N_s P = \frac{N_s}{s}}, \qquad \Rightarrow \qquad \sum_{i=1}^s n_i = N_s \tag{2.37}$$

La ocupación de cada estado, en la configuración que maximiza la entropía (y que maximiza la ignorancia o degeneración) es igual al número de sistemas presentes dividido en el número de estados posibles.

3 Clase 3

3.1 Principio fundamental de la termodinámica

La configuración total **maximiza la entropía**, sujeta a restricciones macroscópicas que dependen de las cantidades fluctuantes conservadas.

En la Clase 2 vimos que si suponemos una configuración N_s sistemas los que pueden existir en m estados diferentes, siendo sus ocupaciones el conjunto:

$$\{n_i\}_{i=1}^m \tag{3.1}$$

la ignorancia I, o degenerancia Ω esta dada por

$$I = \frac{N_s!}{\prod_{i=1}^m n_i} \tag{3.2}$$

Se define la entropía S como

$$S = \kappa \ln I \tag{3.3}$$

Usando Stearling, se tiene

$$\frac{S}{\kappa} = N_s \ln(Ns) - Ns - \left[\sum_{i=1}^{m} (n_i \ln(n_i) - n_i) \right]$$
 (3.4)

Usando que $\sum_{i=1}^{m} = N_s$,

$$\frac{S}{\kappa} = N_s \ln(N_s) - \sum_{i=1}^{m} n_i \ln(n_i) / \frac{1}{N_s}$$
 (3.5)

$$\frac{S}{\kappa N_s} = \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln(n_i) \tag{3.6}$$

Usando que

$$\ln(n_i) = \ln\left(\frac{n_i}{N_s}N_s\right) = \ln\left(\frac{n_i}{N_s}\right) + \ln(N_s)$$
(3.7)

reemplazando en (3.6),

$$\frac{S}{\kappa N_s} = \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \left[\ln\left(\frac{n_i}{N_s}\right) + \ln(N_s)\right]$$
(3.8)

$$= \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln(N_s)$$
(3.9)

pero usando (2.24)

$$\sum_{i=1}^{m} \left(\frac{n_i}{N_s} \right) = \sum_{i=1}^{m} P_i = 1 \tag{3.10}$$

así,

$$\frac{S}{\kappa N_s} = \ln(N_s) - \sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right) - \ln(N_s)$$
(3.11)

$$= -\sum_{i=1}^{m} \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right) \tag{3.12}$$

$$\Rightarrow \boxed{\frac{S}{\kappa N_s} = -\sum_{i=1}^m \left(\frac{n_i}{N_s}\right) \ln\left(\frac{n_i}{N_s}\right)}$$
(3.13)

Definimos la probabilidad de que un sistema esté en el estado i como (2.24)

$$P_i = \frac{n_i}{N_s} \tag{3.14}$$

y la entropia de Shannon como

$$\frac{S}{\kappa N_s} = -\sum_{i=1}^m P_i \ln(P_i)$$
(3.15)

Por el principio fundamental del termodinámica, sin imponer conservación de las cantidades conservadas. Pero considerando

$$\sum_{i=1}^{m} P_i = 1 \tag{3.16}$$

maximizamos la entropía

$$L = -\sum_{i=1}^{m} P_i \ln(P_i) + \lambda \left(\sum_{i=1}^{m} P_i - 1\right)$$
(3.17)

donde λ son los multiplicadores de Lagrange y $\sum_{i=1}^m P_i - 1$ es una restricción holonómica.

$$\left(\frac{\partial L}{\partial P_i}\right)_{P_i,\lambda} = 0, \qquad \forall i \neq j \tag{3.18}$$

$$\left(\frac{\partial L}{\partial \lambda}\right)_{P_i} = 0 \tag{3.19}$$

De (3.18)

$$-\ln(P_i) - P_i \frac{1}{P_i} + \lambda = 0 \tag{3.20}$$

$$\Rightarrow \ln(P_i) = \lambda - 1 \tag{3.21}$$

obtenemos

$$P_i = e^{\lambda - 1} \tag{3.22}$$

notemos que esta expresión es independiente de i. De (3.19),

$$\sum_{i=1}^{m} P_i - 1 = 0 (3.23)$$

$$\Rightarrow \sum_{i=1}^{m} P_i = 1 \tag{3.24}$$

$$\Rightarrow \sum_{i=1}^{m} P_i = mP = me^{\lambda - 1} = 1 \tag{3.25}$$

luego

$$P_i = \frac{1}{m} \quad \Rightarrow \quad n_i = \frac{N_s}{m} \quad \Rightarrow \quad \lambda = -\ln(n) + 1$$
 (3.26)

Sin imponer restricciones de conservación, excepto que la suma de las probabilidades de los estados es igual a 1, obtenemos que la configuración que maximiza la entropía es la distribución uniforme de estados equiprobables. La ocupación de cada uno de los m estados es:

$$n_i = \frac{N_s}{m} \tag{3.27}$$

Si imponemos conservación de la energía,

- Cada estado i tiene energía E_i
- ullet Si las ocupaciones de dichos estados son n_i , la energía total de la configuración es

$$E = \sum_{i=1}^{m} E_i n_i \tag{3.28}$$

 \bullet Agregamos la conservación de E como una restricción al funcional de entropía.

Sea S_E la restricción

$$S_E = \beta \kappa \left(E - \sum_{i=1}^m E_i n_i \right) \tag{3.29}$$

con β un multiplicador de Lagrange. Consideremos

$$L_E = \frac{S_E}{\kappa N_s} = \beta \left(\bar{E} - \sum_{i=1}^m E_i P_i\right) \tag{3.30}$$

donde

$$\bar{E} = \frac{E}{N_s} \tag{3.31}$$

es la energía promedio del sistema.

Luego, nuestro Lagrangeano queda

$$L = -\sum_{i=1}^{m} P_i \ln(P_i) - \lambda \left(\sum_{i=1}^{m} P_i - 1 \right) - \beta \left(\sum_{i=1}^{m} E_i P_i - \bar{E} \right)$$
 (3.32)

Ahora,

$$\left(\frac{\partial L}{\partial P_i}\right)_{P_i \lambda} = \ln(P_i) - 1 - \lambda - \beta E_i \tag{3.33}$$

$$\left(\frac{\partial L}{\partial \beta}\right)_{P_i,\lambda} = \sum_{i=1}^{m} E_i P_i = \bar{E}$$
(3.34)

$$\left(\frac{\partial L}{\partial \lambda}\right)_{P_i,\beta} = \sum_{i=1}^{m} P_i = 1 \tag{3.35}$$

$$ln(P_i) = -\lambda - \beta E_i - 1$$
(3.36)

entonces

$$P_i = e^{-\lambda - \beta E_i - 1} \tag{3.37}$$

$$P_i = e^{-\lambda - 1} e^{\beta E_i} \tag{3.38}$$

$$\sum_{i=1}^{m} P_i = 1 \Rightarrow \sum_{i=1}^{m} e^{-\lambda - 1} e^{-\beta E_i} = 1$$
 (3.39)

$$\Rightarrow (e^{-\lambda - 1}) \sum_{i=1}^{m} e^{\beta E_i} = 1 \tag{3.40}$$

$$\Rightarrow e^{-\lambda - 1} = \frac{1}{\sum_{i=1}^{m} e^{-\beta E_i}} \tag{3.41}$$

tenemos

$$\boxed{P_i = \frac{e^{-\beta E_i}}{\sum_{i=1}^m e^{-\beta E_i}}} \quad \Rightarrow \quad \boxed{z = \sum_{i=1}^m e^{-\beta E_i}} \quad \Rightarrow \quad \boxed{P_i = \frac{e^{-\beta E_i}}{z}} \tag{3.42}$$

En el caso de imponer conservación de la energía, la configuración solo puede explorar conjuntos de ocupaciones $\{n_i\}_{i=1}^n$ que tengan la misma energía total.

En general, la configuración equiporbable no es alcanzable necesariamente, ya que tiene una energá total particular, que puede ser diferente a la energía inicial dada.

En particular, la energía de la configuración equiprobable es

$$E_{\text{equi}} = \sum_{i=1}^{m} E_i n_i \tag{3.43}$$

$$=\sum_{i=1}^{m} E_i \frac{N_s}{n} \tag{3.44}$$

esto implica

$$E_{\text{equi}} = \frac{N_s}{n} \sum_{i=1}^{m} E_i$$
(3.45)

Si $E \neq E_{\rm equi}$, la configuración equiprobable es inalcanzable. Para E consevado, la probabilidad de que un sistema esté en el estado i es

$$P_i = \frac{e^{-\beta E_i}}{z} \tag{3.46}$$

donde

$$z = \sum_{i=1}^{m} e^{-\beta E_i}$$

$$(3.47)$$

se conoce como la función de partición y $e^{-\beta E_i}$ se llama factor de Boltzmann y tiene la interpretación de un peso estadistico.

- ullet z es la suma de todos los pesos
- La ocupación del estado i es

$$n_i = N_s P_i = N_s \frac{e^{-\beta E_i}}{z} \tag{3.48}$$

3.2 Conservación de energía y carga Q

Q puede ser número de partículas, carga eléctrica, momento angular, magnetización, etc...

Q es una cantidad macroscópica, extensiva, diferente de (E,V,S) que caracteriza la configuración macroscópica y que se conserva entre las distintas configuraciones.

El Lagrangeano se verá

$$L = -\sum_{i=1}^{m} P_i \ln(P_i) - \underbrace{\lambda \left(\sum_{i=1}^{m} P_i - 1\right)}_{\sum_{i=1}^{m} P_i = 1} - \underbrace{\beta \left(\sum_{i=1}^{m} E_i P_i - \bar{E}\right)}_{\text{Conservación de la energía}} - \underbrace{\beta \mu \left(\sum_{i=1}^{m} Q_i P_i - \bar{Q}\right)}_{\text{Conservación de la carga}}$$
(3.49)

con \bar{Q} la carga promedio del sistema.

Ahora

$$-\ln(P_i) - 1 - \lambda - \beta E_i - \beta \mu Q_i = 0 \tag{3.50}$$

$$P_i = e^{\lambda - 1 - \beta E_i - \beta \mu Q_i} = 0 \tag{3.51}$$

$$P_i = e^{-\lambda - 1} e^{-\beta (E_i + \mu Q_i)} \tag{3.52}$$

usando $\sum_{i=1}^{m} P_i = 1$,

$$\sum_{i=1}^{m} e^{-\beta(E_i + \mu Q_i)} = \frac{1}{e^{-\lambda - 1}}$$
(3.53)

Definimos

$$Z_{GC} = \sum_{i=1}^{m} e^{-\beta(E_i + \mu Q_i)}$$
 (3.54)

entonces

$$P_i = \frac{e^{-\beta(E_i + \mu Q_i)}}{Z_{GC}}$$
(3.55)

donde Z_{GC} es la función partición Gran Canónica y corresponde a la suma de los pesos estadisticos $e^{-\beta(E_i + \mu Q_i)}$. $n_i = N_s P_i$ es la ocupación de los estados.

3.3 Ensambles, funciones de partición y potenciales termodinámicos

- Maximizando la entropía, sujeto a diferentes restricciones, hemos encontrado la probabilidad de ocupación de los estados posibles de los sistemas.
- Dichas probabilidades pueden interprearse como pesos estadisticos para cada estado, normalizados por una función partición.
- Dependiendo de las cantidades conservadas las funciones partición son ditintas.
- El conjunto de configuraciones posibles dadas las restricciones, definen la noción de ensamble.

• A cada tipo de ensamble, especificado por ciertas cantidades conservadas, le corresponde una función partición.

Ensamble	Can. fluctuantes conservadas	Can. fijas	Función partición	Pot. termodinámico
Microcanónico		E, V, Q	I	S
Canónico	E	T, V, Q	$z = \sum_{i=1}^{m} e^{-\beta E_i}$	F
Gran Canónico	E,Q	T, V, μ	$z = \sum_{i=1}^{m} e^{-\beta(E_i + \mu Q_i)}$	$\Omega_{ m GC}$
Isobárico	E, V	T, P, Q		

donde

$$\beta = \frac{1}{T} \tag{3.56}$$

Notas que β, μ y P son intensivas.

 $T = \frac{1}{\beta}$ viene dado por el multiplicador de Lagrange asociado a la conservación de energía.

4 Clase 4

4.1 Ensamble micro-canónico

De la Clase 3 vimos que en el ensamble micro-canónico

$$P_i = \frac{n}{N_s} \tag{4.1}$$

cada estado equiprobable. (E, V, Q) están fijos.

4.2 Ensamble canónico

$$P_i = \frac{1}{z_{\rm C}} e^{-\beta E_i} \tag{4.2}$$

$$z_{\rm C} = \sum_{i=1}^{\infty} e^{-\beta E_i} \tag{4.3}$$

$$\bar{E} = \sum_{i=1}^{m} P_i E_i \quad \text{(restricción)} \tag{4.4}$$

$$\beta = \frac{1}{T} \tag{4.5}$$

(T,V,Q) están fijos. \bar{E} es fluctuante.

Ensamble Gran Canónico

$$P_i = \frac{1}{z_{\rm GC}} e^{-\beta E_I - \alpha Q_i} \tag{4.6}$$

$$z_{\rm GC} = \sum_{i=1}^{m} e^{-\beta E_i - \alpha Q_i} \tag{4.7}$$

$$\bar{E} = \sum_{i=1}^{m} P_i E_i \tag{4.8}$$

$$\bar{Q} = \sum_{i=1}^{m} P_i Q_i \tag{4.9}$$

$$\beta = \frac{1}{\kappa T}$$

$$\alpha = -\frac{\mu}{\kappa T}$$
(4.10)

$$\alpha = -\frac{\mu}{\kappa T} \tag{4.11}$$

Aquí (4.8) y (4.9) son restricciones. (T, V, μ) están fijos. \bar{E} y \bar{Q} son fluctuantes.

La configuración de cada ensamble maximiza la entropía sujeta a las restricciones correspondientes, implementadas mediante multiplicadores de Lagrange.

A partir de ahora introduciremos la siguiente notación,

- ullet T: temperatura
- \bullet μ : potencial químico
- z: función partición
- \bullet κ : Constante de Boltzmann

Partiendo de la función partición (considerando el ensamble Gran Canónico por generalidad), se tiene

$$\bar{E} = \sum_{i=1}^{m} P_i E_i = \frac{\sum_{i=1}^{m} E_i e^{-\beta E_i - \alpha Q_i}}{z}$$
(4.12)

$$= -\left(\frac{\partial}{\partial\beta}\ln(z)\right)_{\alpha} \tag{4.13}$$

$$\bar{E} = \kappa T^2 \left(\frac{\partial}{\partial T} \ln(z) \right)_{\mu/T}$$
(4.14)

con

$$\beta = \frac{1}{\kappa T} \quad \Rightarrow \quad \frac{\partial}{\partial \beta} = -T^2 \kappa \frac{\partial}{\partial T}$$
 (4.15)

también tenemos

$$\bar{Q} = \frac{\sum_{i=1}^{m} Q_i e^{-\beta E_i - \alpha Q_i}}{z} \tag{4.16}$$

$$= -\left(\frac{\partial}{\partial\alpha}\ln(z)\right)_{\beta} \tag{4.17}$$

$$\bar{Q} = \kappa T \left(\frac{\partial}{\partial \mu} \ln(z) \right)_T \tag{4.18}$$

con

$$\alpha = \frac{\mu}{\kappa T} \quad \Rightarrow \quad \frac{\partial}{\partial \alpha} = \kappa T \frac{\partial}{\partial \mu}$$
 (4.19)

También es posible relacionar la función con la entroía

$$S = -\kappa \sum_{i=1}^{m} P_i \ln(P_i) \tag{4.20}$$

$$= \kappa \sum_{i=1}^{m} P_i(\ln(z) + \beta E_i + \alpha Q_i)$$

$$\tag{4.21}$$

$$= \kappa \ln(z) + \beta \bar{E} + \alpha \hat{Q} \tag{4.22}$$

luego

$$S = \kappa \ln(z) + \frac{\bar{E}}{T} - \frac{\mu \bar{Q}}{T} \quad \Rightarrow \quad \boxed{-\kappa T \ln(z) = \bar{E} - TS - \mu Q}$$
(4.23)

Para los diferentes ensambles, existen potenciales termodinámicos definidos en términos de $\ln(z)$.

Potencial Gran Canónico

$$\Omega_{\rm GC} = -\kappa T \ln(z_{\rm GC}) = \bar{E} - TS - \mu \bar{Q} \tag{4.24}$$

Energía libre de Hemholtz

$$F = -\kappa T \ln(z_{\rm C}) = \bar{E} - TS \quad (Q_i = 0) \tag{4.25}$$

Existen relaciones entre los potenciales termodinámicos de los diferentes ensambles. Por ejemplo, definiendo la densidad de estados

$$\rho(Q, E) = \frac{e^{S(Q, E)/\kappa}}{\delta E} \tag{4.26}$$

 $\rho(Q,E)$ cuenta el número de estados con carga Q y energía entre E y $E+\delta E$. De aquí podemos obtener la energía libre de Hemholtz como

$$F(Q,T) = -\kappa T \ln(z_{\rm C}) = -\kappa T \ln \int dE \rho(Q,E) e^{-E/\kappa T}$$
(4.27)

Finalmente el potencial Gran Canónico, puede calcularse como

$$\Omega_{\rm GC}(\mu, T) = \kappa T \ln(z_{\rm GC}) = -T \ln\left(\sum_{Q} e^{-F(Q, T)/\kappa T} e^{\mu Q/\kappa T}\right)$$
(4.28)

4.4 Ensamble isobárico-isotérmico

En el ensamble isobárico-isotérmico (T,P,Q) son constantes y (\bar{E},\bar{V}) son fluctuantes.

Notemos que V es una cantidad extensiva (proporcional al número total de sistemas N_s). Si no hay restricciones entre sistemas, el potencial Gran Canónico por unidad de volumen es independiente del volumen (cada región es igual a cualquier otra).

Por último, la presión se define como menos la derivada del potencial termodinámico (Gran Canónico) con respecto al volumen. Luego,

$$\Omega_{\rm GC} = \omega_{\rm GC} V \tag{4.29}$$

donde $\omega_{\rm GC}$ es el potencial Gran Canónico por unidad de volumen. Se sigue que

$$\frac{\partial \omega_{\rm GC}}{\partial V} = 0 \tag{4.30}$$

así,

$$P = \frac{\partial}{\partial V} \Omega_{\rm GC} = -\omega_{\rm GC} = -\frac{\Omega_{\rm GC}}{V}$$
 (4.31)

Entonces

$$\Omega_{GC} = -PV = -\kappa T \ln(z_{GC}) = E - TS - \mu Q$$
(4.32)

$$PV = TS - E + \mu Q \tag{4.33}$$

Se define G, la **enegía libre de Gibbs**, como³

$$G = \mu Q = E - TS + PV \tag{4.34}$$

 ${\cal G}$ es el potencial termodinámico del ensamble isobárico-isotérmico. Además, podemos obtener la siguiente relación

$$E = TS - PV + \mu Q \tag{4.35}$$

conocida como la relación de Euler.

 $^{^3 \}mathrm{se}$ deriva de (4.33)