What is claimed is:

1. A compound having a structure according to Formula (I)

$$R^{10}$$
 R^{10}
 R^{10}

wherein:

- (A) (1) A^1 is selected from -N- and -C(R^8)-, where R^8 is selected from hydrogen, halo, C_1 to about C_6 alkoxy, C_1 to about C_6 alkylthio, C_1 to about C_6 alkylene and alkyne;
 - (2) (a) X is selected from -C- and -N-, where (i) if X is -C-, a is a double bond and b is a single bond, and (ii) if X is -N-, a is a single bond and b is a double bond; and
 (b) Y is selected from -N(R¹)- and -C(R¹)-;
 - (c) provided that Y is N(R¹) only if X is -C- and Y is -C(R¹)- only if X is -N-;
 - (3) R¹ is selected from C₃ to about C₆ cycloalkyl, C₄ to about C₆ heterocycloalkyl, C₁ to about C₆ alkyl, C₁ to about C₆ alkene, a 6-membered aryl and a 6-membered heteroaryl;
 - (4) R² is hydrogen;
 - (5) R³ is selected from hydrogen and hydroxy;
 - (6) R⁵ is selected from hydrogen, hydroxy, amino, halo, C₁ to about C₆ alkyl, C₁ to about C₆ alkene-and C₁ to about C₆ alkoxy;
 - (7) R⁶ is selected from fluoro and chloro;
 - (8) R⁷ is -Q-C(R¹¹)(R^{11'})(R^{11''}), where Q is selected from -S-, -O- and -C(R¹²)(R^{12'})-, where R¹² and R^{12'} are each independently selected from hydrogen and fluoro; where R¹¹, R^{11'} and R^{11''} are each independently selected from hydrogen, hydroxy and halo; and where R¹¹ and R¹² may also both be nil, such that a double bond is formed between the respective carbon atoms;

- (9) R⁹ and R⁹ are each independently selected from hydrogen and C₁ to about C₁₅ alkyl, or R⁹ and R⁹ join to form a heterocyclic ring containing the nitrogen atom to which they are bonded; and
- (10) R^{10} represents the moieties on the piperidine ring other than R^7 and $-NR^9R^{9'}$, where each R^{10} is independently selected from hydrogen, C_1 to about C_6 alkyl and fluoro;
- (B) if A¹ is -C(R⁸)-, X is -C- and Y is -N(R¹)-, then R⁸ and R¹ can join to form a 6-membered heterocyclic ring, where R², R³, R⁵, R⁶, R⁷, R⁸, R⁹, R^{9'} and R¹⁰ are as described in (A); or
- (C) if A¹ is -C(R⁸)-, X is -C- and Y is -N(R¹)-, then R¹ and R² can join to form a monocyclic or bicyclic heterocyclic ring, where R³, R⁵, R⁶, R⁷, R⁸, R⁹, R^{9'} and R¹⁰ are as described in (A); or
- (D) if A¹ is -C(R⁸)-, X is -C- and Y is -N(R¹)-, then R² and R³ can join to form a 5-membered heterocycloalkyl that is substituted with a carbonyl moiety, where R¹, R⁵, R⁶, R⁷, R⁸, R⁹, R⁹ and R¹⁰ are as described in (A);

or an optical isomer, diastereomer or enantiomer thereof; a pharmaceutically-acceptable salt, hydrate, or biohydrolyzable ester, amide or imide thereof.

- 2. A compound of Claim 1 wherein R^1 is selected from C_3 to about C_6 cycloalkyl, C_3 to about C_6 heterocycloalkyl, C_1 to about C_4 alkyl and C_2 to about C_4 alkene.
- 3. A compound of Claim 2 wherein R¹ is selected from cyclopropyl, methyl, ethyl, t-butyl, 4-hydroxyphenyl and 2,4-difluorophenyl.
- 4. A compound of Claim 1 wherein R³ is hydroxy.
- 5. A compound of Claim 1 wherein R⁵ is selected from hydrogen, hydroxy, chloro, bromo, amino, methyl, monofluoromethyl, difluoromethyl and trifluoromethyl.
- 6. A compound of Claim 1 wherein each of R¹¹, R^{11'} and R^{11"} is hydrogen.
- 7. A compound of Claim 1 wherein R⁷ is selected from methoxy, thiomethoxy and ethyl.

- 8. A compound of Claim 7 wherein R^7 is ethyl.
- 9. A compound of Claim 1 wherein R^9 and $R^{9'}$ are each independently selected from hydrogen and methyl.
- 10. A compound of Claim 9 wherein R⁹ and R^{9'} are both hydrogen and each R¹⁰ is hydrogen.
- 11. A compound having a structure according to Formula (II)

wherein:

- (A) (1) A^1 is selected from -N- and -C(R^8)- where R^8 is selected from hydrogen, halo, C_1 to about C_6 alkoxy, C_1 to about C_6 alkylthio, C_1 to about C_6 alkyle, C_1 to about C_6 alkyne;
 - (2) R¹ is selected from C₃ to about C₆ cycloalkyl, C₄ to about C₆ heterocycloalkyl, C₁ to about C₆ alkyl, C₁ to about C₆ alkene, a 6-membered aryl and a 6-membered heteroaryl;
 - (5) R⁵ is selected from hydrogen, hydroxy, amino, halo, C₁ to about C₆ alkyl, C₁ to about C₆ alkene-and C₁ to about C₆ alkoxy;
 - (6) R⁶ is selected from fluoro and chloro; and
 - (7) R⁷ is -Q-C(R¹¹)(R^{11'})(R^{11''}), where Q is selected from -S-, -O- and -C(R¹²)(R^{12'})-, where R¹² and R^{12'} are each independently selected from hydrogen and fluoro; where R¹¹, R^{11'} and R^{11''} are each independently selected from hydrogen, hydroxy and halo; and where R¹¹ and R¹² may also both be nil, such that a double bond is formed between the respective carbon atoms; or
- (B) R⁸ and R¹ join to form a 6-membered heterocyclic ring, where R⁵, R⁶ and R⁷ are as described in part (A);

or an optical isomer, diastereomer or enantiomer thereof, or a pharmaceutically-acceptable salt, hydrate, or biohydrolyzable ester, amide or imide thereof.

- 12. A compound of Claim 11 wherein A^1 is $-C(R^8)$ -.
- 13. A compound of Claim 12 wherein R⁶ is fluoro.
- 14. A compound of Claim 12 wherein R⁸ and R¹ do not join to form a 6-membered heterocyclic ring.
- 15. A compound of Claim 14 wherein R¹ is selected from cyclopropyl, methyl, ethyl, t-butyl, 4-hydroxyphenyl and 2,4-difluorophenyl.
- 16. A compound of Claim 13 wherein R⁵ is selected from hydrogen, hydroxy, chloro, bromo, amino, methyl, monofluoromethyl, difluoromethyl and trifluoromethyl.
- 17. A compound of Claim 13 wherein R⁷ is selected from methoxy, thiomethoxy and ethyl.
- 18. A compound of Claim 17 wherein R⁷ is ethyl.
- 19. A compound having a structure according to Formula (III)

$$R^{6}$$
 R^{5}
 OH
 R^{7}
 NH_{2}
 $(IIII)$

wherein:

(A) (1) R^8 is selected from hydrogen, halo, C_1 to about C_6 alkoxy, C_1 to about C_6 alkylthio, C_1 to about C_6 alkyl, C_1 to about C_6 alkyne;

- (2) R¹ is selected from C₃ to about C₆ cycloalkyl, C₄ to about C₆ heterocycloalkyl, C₁ to about C₆ alkyl, C₁ to about C₆ alkene, a 6-membered aryl and a 6-membered heteroaryl;
- (5) R⁵ is selected from hydrogen, hydroxy, amino, halo, C₁ to about C₆ alkyl, C₁ to about C₆ alkene-and C₁ to about C₆ alkoxy;
- (6) R⁶ is selected from fluoro and chloro;
- (7) R⁷ is -Q-C(R¹¹)(R^{11'})(R^{11''}), where Q is selected from -S-, -O- and -C(R¹²)(R^{12'})-, where R¹² and R^{12'} are each independently selected from hydrogen and fluoro; where R¹¹, R^{11'} and R^{11''} are each independently selected from hydrogen, hydroxy and halo; and where R¹¹ and R¹² may also both be nil, such that a double bond is formed the respective carbon atoms;

or an optical isomer, diastereomer or enantiomer thereof, or a pharmaceutically-acceptable salt, hydrate, or biohydrolyzable ester, amide or imide thereof.

- 20. A compound of Claim 19 wherein R⁶ is fluoro.
- 21. A compound of Claim 20 wherein R¹ is selected from cyclopropyl, methyl, ethyl, t-butyl, 4-hydroxyphenyl and 2,4-difluorophenyl.
- 22. A compound of Claim 20 wherein R⁵ is selected from hydrogen, hydroxy, chloro, bromo, amino, methyl, monofluoromethyl, difluoromethyl and trifluoromethyl.
- 23. A compound of Claim 20 wherein R⁷ is selected from methoxy, thiomethoxy and ethyl.
- 24. A compound of Claim 23 wherein R⁷ is ethyl.
- 25. A pharmaceutical composition comprising:
 - (a) a safe and effective amount of a compound of Claim 1; and
 - (b) a pharmaceutically-acceptable excipient.
- 26. A pharmaceutical composition comprising:
 - (a) a safe and effective amount of a compound of Claim 11; and

- (b) a pharmaceutically-acceptable excipient.
- 27. A pharmaceutical composition comprising:
 - (a) a safe and effective amount of a compound of Claim 19; and
 - (b) a pharmaceutically-acceptable excipient.
- 28. A method for treating microbial infection comprising administering to a host in need of such a treatment a safe and antimicrobially effective amount of a compound of Claim 1.
- 29. A method for treating microbial infection comprising administering to a host in need of such a treatment a safe and antimicrobially effective amount of a compound of Claim 11.
- 30. A method for treating microbial infection comprising administering to a host in need of such a treatment a safe and antimicrobially effective amount of a compound of Claim 19.
- 31. A compound having a structure according to Formula (IV):

$$\begin{array}{c|c}
H & O \\
N & O \\
N & O \\
N & O \\
IV
\end{array}$$

wherein R¹³ is selected from methyl, fluoro, and hydroxy; or an optical isomer, diastereomer or enantiomer thereof, or a pharmaceutically-acceptable salt, hydrate, or biohydrolyzable ester, amide or imide thereof.

32. A method of using a compound having a structure according to Formula (IV):

$$\begin{array}{c|c}
H \\
N \\
N \\
N \\
M
\end{array}$$
(IV)

wherein R¹³ is selected from methyl, fluoro, and hydroxy;

in a process of making a compound having a structure according to Formula (I):

wherein:

- (A) (1) A^1 is selected from -N- and -C(R^8)-, where R^8 is selected from hydrogen, halo, C_1 to about C_6 alkoxy, C_1 to about C_6 alkylthio, C_1 to about C_6 alkyle, C_1 to about C_6 alkene and alkyne;
 - (2) (a) X is selected from -C- and -N-, where (i) if X is -C-, a is a double bond and b is a single bond, and (ii) if X is -N-, a is a single bond and b is a double bond; and
 (b) Y is selected from -N(R¹)- and -C(R¹)-;
 - (c) provided that Y is N(R¹) only if X is -C- and Y is -C(R¹)- only if X is -N-;
 - (3) R¹ is selected from C₃ to about C₆ cycloalkyl, C₄ to about C₆ heterocycloalkyl, C₁ to about C₆ alkyl, C₁ to about C₆ alkene, a 6-membered aryl and a 6-membered heteroaryl;
 - (4) R² is hydrogen;
 - (5) R³ is selected from hydrogen and hydroxy;
 - (6) R⁵ is selected from hydrogen, hydroxy, amino, halo, C₁ to about C₆ alkyl, C₁ to about C₆ alkene-and C₁ to about C₆ alkoxy;
 - (7) R⁶ is selected from fluoro and chloro;
 - (8) R⁷ is -Q-C(R¹¹)(R^{11'})(R^{11''}), where Q is selected from -S-, -O- and -C(R¹²)(R^{12'})-, where R¹² and R^{12'} are each independently selected from hydrogen and fluoro; where R¹¹, R^{11'} and R^{11''} are each independently selected from hydrogen, hydroxy and halo; and where R¹¹ and R¹² may also both be nil, such that a double bond is formed between the respective carbon atoms;

- (9) R⁹ and R^{9'} are each independently selected from hydrogen and C₁ to about C₁₅ alkyl, or R⁹ and R^{9'} join to form a heterocyclic ring containing the nitrogen atom to which they are bonded; and
- (10) R¹⁰ represents the moieties on the piperidine ring other than R⁷ and -NR⁹R^{9'}, where each R¹⁰ is independently selected from hydrogen, C₁ to about C₆ alkyl and fluoro; or
- (B) if A¹ is -C(R⁸)-, X is -C- and Y is -N(R¹)-, then R⁸ and R¹ can join to form a 6-membered heterocyclic ring, where R², R³, R⁵, R⁶, R⁷, R⁸, R⁹, R^{9'} and R¹⁰ are as described in (A); or
- (C) if A¹ is -C(R⁸)-, X is -C- and Y is -N(R¹)-, then R¹ and R² can join to form a monocyclic or bicyclic heterocyclic ring, where R³, R⁵, R⁶, R⁷, R⁸, R⁹, R^{9'} and R¹⁰ are as described in (A); or
- (D) if A¹ is -C(R⁸)-, X is -C- and Y is -N(R¹)-, then R² and R³ can join to form a 5-membered heterocycloalkyl that is substituted with a carbonyl moiety, where R¹, R⁵, R⁶, R⁷, R⁸, R⁹, R⁹ and R¹⁰ are as described in (A);

or an optical isomer, diastereomer or enantiomer thereof; a pharmaceutically-acceptable salt, hydrate, or biohydrolyzable ester, amide or imide thereof.