An untyped λ -calculus, UL

Principles of Programming Languages

Mark Armstrong

Fall 2020

1 Preamble

1.1 **TODO** Notable references

:TODO:

1.2 **TODO** Table of contents

• Preamble

2 Introduction

In this section we construct our first simple programming language, an untyped λ -calculus (lambda calculus).

More specifically, we construct a λ -calculus without (static) type checking (enforcement), but including the natural numbers and booleans.

2.1 History

:TODO:

2.2 Descendents of the λ -calculus

:TODO:

3 The basics

:TODO:

- 4 The formal syntax and semantics of $\it UL$:TODO:
- 5 α -conversion, β -reduction and η -conversion :TODO:
- 6 Topics of theoretical interest
- 6.1 The pure λ -calculus :TODO:
- 6.2 Nameless representation of terms

:TODO: