Operating regions: saturation region

The channel is pinched-off (small channel near D), and the current remains constant

Operating regions: saturation region(2)

Condition: $V_{DS} > V_{GS} - V_{T}$

V/I function: $I_{DS} = K (V_{GS} - V_T)^2$ (Saturation parable)

The channel is *pinched-off*

For a fixed VGS, the current $I_{DS} \approx$ constant, and indep. of V_{DS}

The Mosfet is equivalent to a current source (I_{DS}) controlled by voltage (V_{GS})

I-V curves of the NMOS

Example: NMOS Transistor: $V_T = 0.4V$ $K = 0.12mA/V^2$

I_{DS} versus V_{GS} in saturation region

Saturation parable:

$$I_{DS} = K \left(V_{GS} - V_T \right)^2$$

$$V_{GS}$$

$$V_T = 2V$$

$$V_{GS} \le V_T \rightarrow I_D = 0$$

PMOS Transistor: cross section

PMOS. Characteristic curves

All variables are negative!

$$V_{GS} < 0, V_{DS} < 0,$$

$$I_{DS} < 0 \rightarrow I_{SD} > 0$$

Conduction: $V_{GS} < -V_{T}$

The PMOS transistor: summary

- Cut-off: $V_{GS} \ge -V_T$
- Saturation:

$$V_{DS} < V_{GS} + V_{T}$$

$$I_{SD} = K (V_{GS} + V_{T})^{2}$$

Ohmic:

$$R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} + V_{T})}$$

VDS > V65+VT $R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} + V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS} - V_{DS}^{2}\}}{2 \cdot K(V_{GS} + V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS} - V_{DS}^{2}\}}{2 \cdot K(V_{GS} + V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS} - V_{DS}^{2}\}}{2 \cdot K(V_{GS} + V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS} - V_{DS}^{2}\}}{2 \cdot K(V_{GS} + V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS} - V_{DS}^{2}\}}{2 \cdot K(V_{GS} + V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS} - V_{DS}^{2}\}}{2 \cdot K(V_{SS+}V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS}^{2}\}}{2 \cdot K(V_{SS+}V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS}^{2}}{2 \cdot K(V_{SS+}V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS}^{2}}{2 \cdot K(V_{SS+}V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS}^{2}\}}{2 \cdot K(V_{SS+}V_{T})} \qquad \frac{T_{SD-} \times \{2(V_{SS+}V_{T})V_{DS}^{2}}{2 \cdot K$

(considering K and V_T as absolute values, $V_{GS} < 0$, $V_{DS} < 0$)

- Less use than N-channel MOSFETS, as holes mobility is smaller than electrons mobility:
 - ◆ Slower than the NMOS > (Kp)p= Mp Cox; Mp<Mn; (Kp)p< (Kp)n
 - They need more W/L→ bigger than NMOS (more space occupied)

MOSFET: Summary of some formulas

NMOS		PMOS
$V_{GS} > V_{T}$	CONDUCTS	$V_{GS} < -V_{T}$
$V_{DS} > V_{GS} - V_{T}$	SATURATION condition	$V_{DS} < V_{GS} + V_{T}$
$I_{DS} = K (V_{GS} - V_T)^2$	SATURATION	$I_{SD} = K (V_{GS} + V_T)^2$
$I_{DS} = K \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$ $R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} - V_T)}$	OHMIC or LINEAR	$I_{SD} = K \left[2(V_{GS} + V_T)V_{DS} - V_{DS}^2 \right]$ $R_{ON} \approx \left \frac{1}{2 \cdot K(V_{GS} + V_T)} \right $

(Taking the absolute value of V_T and K in all formulas)

Equivalences and differences between Mosfet-BJTs

Terminals

MOSFET	ВЈТ	
DRAIN	COLLECTOR	
SOURCE	EMITTER	
GATE	BASE	

BJT: $I_B > 0$ for conducting

Mosfet: $I_G = 0$ always!

Working regions

MOSFET	BJT
CUT-OFF REGION	CUT-OFF REGION
SATURATION REGION	ACTIVE REGION
OHMIC \ LINEAR REGIN	SATURATION REGION

Mosfet's Saturation: maximum I_{DS} for a given V_{GS}

BJT's saturation: maximum I_C for a given biass circuit

Enhancement MOSFET Biassing (1)

Equations to analyze the Mosfets biassing circuits

- 1.- Input loop: G-S → loop equation with V_{GS}
- 2.- Assuming saturation \rightarrow saturation equation NMOS: $I_{DS} = K (V_{GS} - V_T)^2$ PMOS: $I_{SD} = K (V_{GS} + V_T)^2$ (With VGS, checkout if MOSFET is conducting)
- 3.- Output loop D-S \rightarrow loop equation with V_{DS}
- 4.- Checkout of saturation NMOS: $V_{DS} > V_{GS} V_{T}$ PMOS: $V_{DS} < V_{GS} + V_{T}$ (If not satisfied, return to step 2, using the equation of the linear region, and redo the calculations)

Enhancement MOSFET. Biassing (2)

Enhancement MOSFET. Biassing (3)

Biassing with resistor divider

2 solutions for $I_{DS} \rightarrow you$ choose the one for which $V_{GS} > V_{T}$

Enhancement MOSFET. Biassing (2)

Fixed biassing

$$V_6 = V_DD \Rightarrow V_{6S} = V_{3D} = 5V > V_T \Rightarrow T_{ON}$$

assume saturation.

 $I_{DS} = K(V_{6S} - V_T)^2 = 0.2(5-3)^2 = 0.8mA$

Output loop:

 $V_{DS} = V_{DD} - I_{DS} P_{D} - 5 - 0.8 \cdot 2 = 3.4V$

as $V_{DS} = 3.4V > V_{6S} - V_T = 2V \Rightarrow T_{iS}$

saturated \Rightarrow
 $Q(V_{6S} - 5V) I_{DS} = 0.8mA, V_{DS} = 3.4V$

Enhancement MOSFET. Biassing (2)

Enhancement MOSFET. Biassing (3)

Biassing with resistor divider

$$I_{G-O} \Rightarrow V_{G-IO} \xrightarrow{P_2} - 5V = V_{GS} > V_{T-O} T_{ON}$$

$$R_{I+R_2}$$

$$R_{SSUMM_2} SAT$$

$$I_{DS} = K (V_{GS} - V_T)^2 = 0.5(5-3)^2 = 2mA$$

$$Output (bop: V_{DS} - V_{DD} - I_{DS}R_3 = I_{D-4} - 6V$$

$$V_{DS} > V_{GS} - V_T = 5-3 \Rightarrow T_{iS} saturated$$

$$R (V_{GS} - 5V_i I_{DS} - 2mA_i V_{DS} - 6V_i)$$