

Chapter 7

Block Cipher Operation

Padding

- Plaintext is not a multiple of block length
- P → P': P is padded to P' that is a multiple of block length
- P'→P: automatic de-padding without ambiguity
- Padding standards: even though P has multiple block length, it still needs to be padded.

Zeros bit padding

Example

- DD D0010 oo_H oo_H oo_H
- DD DD DD DD DD DD DD DD | 10000000 oo_H oo_H oo_H oo_H oo_H oo_H oo_H oo_H

Zeros byte padding

Example

- DD DD DD DD DD DD DD | OOH OOH OOH OOH OOH OOH OOH OOH

Problem

The original plaintext may not be recovered exactly

PKCS#5, PKCS#7

- PKCS#5 is only used for block size = 8 bytes.
- PKCS#7 is used for block size = 1 byte to 255 bytes

ANSI X9.23, ISO 10126

- ANSI X9.23
 - | DD DD DD DD DD DD DD | DD 00 00 00 00 00 00 07 |
 - The last byte is the number of padded bytes and the rest are oo
- ISO 10126
 - DD 7D 2A 75 EF F8 EF 07
 - The last byte is the number of padded bytes and the rest are random

Double Encryption

 If the key is too short, such as DES's 56-bit key, we can use multiple encryption

Meet-in-the-Middle Attack

Known plaintext attack: given (P, C)

- Naïve attack: try all possible K_1 and K_2 to test $E(E(P, K_1), K_2)=C$.
- Better attack: attack complexity is 2x2⁵⁶, not 2¹¹²

Triple-DES with Two-Keys

- To counter the meet-in-the-middle attack, we can use three stages of encryption with three different keys
 - The cost of the meet-in-the-middle attack is 2¹¹²
 - Drawback: key length is 56 x 3 = 168 bits
- 3DES with two keys has been adopted for use in the key management standards ANSI X9.17 and ISO 8732

Known plaintext attack on 3DES

(a) Two-key Triple Encryption with Candidate Pair of Keys

- Pick a random ciphertext 'a'
 - For each possible key i for K₁, compute P=D(i, a).
 If (P, C) is in the table A, put (D(i, C), i) into table B
 - This "i" is a candidate for K₁
- For each possible j for K₂,
 - If (D(j, a), i) is in table B,
 then (i, j) is a candidate for (K₁, K₂)

Analysis

- For n pairs of given (P, C), a correct guess for a is n/2⁶⁴.
 Thus, the expected number of guesses to get a correct a is 2⁶⁴/n
- 2. For each such correct guess, it takes 2⁵⁶ to search K₂.
- 3. So, the expected time of attack is $(2^{64}/n)x(2^{56}) = 2^{120}/n$.

Modes of Operation

- For a block cipher to encrypt multiple blocks of a message.
- A technique for enhancing security and adapting for applications
- Five modes of operations have been defined by NIST

Mode	Description	Typical Application
Electronic Codebook (ECB)	Each block of plaintext bits is encoded independently using the same key.	•Secure transmission of single values (e.g., an encryption key)
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next block of plaintext and the preceding block of ciphertext.	•General-purpose block- oriented transmission •Authentication
Cipher Feedback (CFB)	Input is processed <i>s</i> bits at a time. Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	•General-purpose stream- oriented transmission •Authentication
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding encryption output, and full blocks are used.	•Stream-oriented transmission over noisy channel (e.g., satellite communication)
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	•General-purpose block- oriented transmission •Useful for high-speed requirements

ECB mode

ECB mode problem

Design Factors

- Performance
 - Overhead
 - Parallelizable
- Error recovery
- Error propagation
- Diffusion
- Security

CBC mode

Original image

Encrypted using ECB mode

Modes other than ECB result in pseudo-randomness

CBC mode properties

- The same plaintext in different locations are encrypted into different ciphertexts
- Encryption cannot be parallelized
- Error propagation: an error in a ciphertext block causes the next decryption error

•
$$C_1 C_2 ... C_{i-1} C'_i C_{i+1} C_{i+2} ... C_n$$

 $\rightarrow P_1 P_2 ... P_{i-1} P'_i P'_{i+1} P_{i+2} ... P_n$

Two types of errors: erasing (missing) and erroneous

Block cipher -> stream cipher

- A block is not 64 -bit (for DES) or 128-bit (for AES)
- We need stream ciphers, in particular, for online communication

CFB mode

CFB: Self-Synchronization

 Limited error propagation: an error in a ciphertext block causes some subsequent decryption errors

•
$$C_1 C_2 ... C_{i-1} C'_i C_{i+1} ... C_k C_{k+1} ... C_n$$

 $\rightarrow P_1 P_2 ... P_{i-1} P'_i P'_{i+1} ... P'_k P_{k+1} ... P_n$

- Example
 - for AES, s=16, the number of propagated decryption errors is 128/16+1=9 blocks
- Cannot be parallelized.

OFB mode

OFB mode

- Can be used as a stream cipher
- No error propagation
- O1, O2, ... can be computed in advance.
 - Not parallelized

CTR mode

CTR mode

- Can be used as a stream cipher
- No error propagation
- Can be parallelized

Feedback Characteristics

(a) Cipher block chaining (CBC) mode

(b) Cipher feedback (CFB) mode

(c) Output feedback (OFB) mode

(d) Counter (CTR) mode

Advantages of CTR

- Hardware efficiency
- Software efficiency
- Pre-processing
- Random access
- Provable security
- Simplicity

Summary

- Padding
- Multiple encryption and triple DES
 - Double DES
 - Triple DES with two keys
 - Triple DES with three keys

- Operation modes
 - Electronic codebook
 - Cipher block chaining mode
 - Cipher feedback mode
 - Output feedback mode
 - Counter mode