Introductory Econometrics I

Multiple Regression: Qualitative Information

Yingjie Feng

School of Economics and Management

Tsinghua University

April 27, 2024

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- 5 The Linear Probability Model

Describing Qualitative Information

- Describe binary qualitative information
 - male or female
 - urban or rural
 - vaccinated or not vaccinated
- It can be captured by defining a binary variable (or dummy variable, zero-one variable)
 - ▶ We must decide which outcome is assigned zero, which is one. Choose the variable name to be descriptive.
 - ► For example, to indicate gender, a variable female= 1 if the person is female; female = 0 if the person is male (better name than gender or sex)

Describing Qualitative Information

list wage educ female married in 1/5

wage	educ	female	married
3.1	11	1	0
3.2	12	1	1
3	11	0	0
6	8	0	1
5.3	12	0	1

- Any two different values would distinguish different types. But "0-1" are convenient for use in regression analysis.
- Define more than two categories with two pieces of qualitative information (say, gender *female* and marital status *married*)
 - married male (marrmale), married female (marrfem), single male (singmale), and single female (singfem)

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- 5 The Linear Probability Model

• How do we interpret a simple regression model with a binary explanatory variable?

$$wage = \beta_0 + \delta_0 female + u$$

• We assume SLR.4:

$$\mathbb{E}[u|female] = 0,$$

$$\Leftrightarrow \mathbb{E}[wage|female] = \beta_0 + \delta_0 female$$

• There are only two values of female, 0 and 1. So

$$\mathbb{E}\left[wage|female = 0\right] = \beta_0 + \delta_0 \cdot 0 = \beta_0$$

$$\mathbb{E}\left[wage|female = 1\right] = \beta_0 + \delta_0 \cdot 1 = \beta_0 + \delta_0$$

• The average wage for men is β_0 ; the average wage for women is $\beta_0 + \delta_0$.

• The difference in average wage between women and men in **population**:

$$\delta_0 = \mathbb{E}[wage|female = 1] - \mathbb{E}[wage|female = 0]$$

- δ_0 is not really a slope
 - ▶ It is just a difference in average outcomes between the two groups
- The population relation is mimicked by the regression estimates.

$$\hat{\beta}_0 = \overline{wage}_m, \qquad \hat{\beta}_0 + \hat{\delta}_0 = \overline{wage}_f, \qquad \hat{\delta}_0 = \overline{wage}_f - \overline{wage}_m$$

- $ightharpoonup \overline{wage}_m$ is the average wage for men in the sample
- $ightharpoonup \overline{wage}_f$ is the average wage for women in the sample
- $\hat{\delta}_0$: the difference in average wage between women and men in the **sample**

sum wage female exper

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	526	5.896103	3.693086	.53	24.98
female	526	.4790875	.500038	0	1
exper	526	17.01711	13.57216	1	51

tab female

	1 if male	Freq	. Percent	Cum.
	0 1	274 252		52.09 100.00
т	otal	526	6 100.00	

- The mean (average) of a binary variable is the fraction of ones in the sample
- The fraction of females is 47.91%.

. req wage female

	Source	SS	df	MS	Number of obs	=	526 68.54
	Model Residual	828.220467 6332.19382	1 524	828.220467 12.0843394	Prob > F R-squared	=	0.0000
_	Total	7160.41429	525	13.6388844	Adj R-squared Root MSE	=	0.1140 3.4763

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female _cons	-2.51183 7.099489	.3034092 .2100082	-8.28 33.81		-3.107878 6.686928	-1.915782 7.51205

. tabstat wage, by (female)

Summary for variables: wage by categories of: female (=1 if female)

mean	female
7.099489 4.587659	0
5.896103	Total

[.] di 4.588-7.099

^{-2.511}

- The estimated difference is large. Women earn about \$2.51 less than men per hour, on average ("difference in averages").
- This simple regression allows us to do a comparison of means test.
 - ▶ The null is

$$H_0: \mu_f = \mu_m$$

 μ_f : **population** average wage for women;

 μ_m : **population** average wage for men.

- ightharpoonup The t statistic and confidence interval are directly reported.
- t test leads to a very strong rejection of H_0 :

$$t_{female} = -8.28, p$$
-val = 0.000

• Remember: NO other factors are controlled for! (such as workforce experience and schooling)

• If we control for experience, the model written in expected value form is

$$\mathbb{E}[wage|female, exper] = \beta_0 + \delta_0 female + \beta_1 exper$$

where δ_0 measures the gender difference when we hold fixed exper.

• Another way to write δ_0 :

$$\delta_0 = \mathbb{E}[wage|female, exper_0] - \mathbb{E}[wage|male, exper_0]$$

 $exper_0$ is any level of experience that is the same for the woman and man.

• The model imposes a **common slope** on *exper* for men and women, β_1 . It is only the intercepts that are allowed to differ.

reg wage female exper

Source	SS	df	MS	Number of obs	= 526 = 37.51
Model Residual	898.161983 6262.25231	2 523	449.080991 11.9737138	Prob > F R-squared	= 0.0000 = 0.1254 = 0.1221
Total	7160.41429	525	13.6388844	Adj R-squared Root MSE	= 0.1221
wage	Coef.	Std. Err.	t	P> t [95% Co	onf. Interval]
female exper _cons	-2.48142 .0269163 6.626882	.3022793 .0111369 .2862475	2.42	0.000 -3.0752 0.016 .005037 0.000 6.06454	79 .0487948

• There is still a difference of about \$2.48, slightly smaller than when *exper* is not controlled for.

reg wage female exper educ

- The estimated difference in average wages is the same at all levels of experience: \$2.48.
- Easy to add other variables (but picture is harder to draw). For example, adding years of education shrinks the gap to about \$2.15.

,,					
Source	SS	df	MS	Number of obs	= 526
				F(3, 522)	= 77.92
Model	2214.74206	3	738.247353	Prob > F	= 0.0000
Residual	4945.67223	522	9.47446788	R-squared	= 0.3093
				Adi R-squared	= 0.3053
Total	7160.41429	525	13.6388844	Root MSE	= 3.0781
wage	Coef.	Std. Err.	t I	?> t [95% Co	onf. Interval]
female exper educ _cons	-2.155517 .0642417 .6025802 -1.734481	.2703055 .0104003 .0511174 .7536203	6.18 (11.79 (0.000 -2.68653 0.000 .043810 0.000 .502159 0.022 -3.21498	.0846734 .7030012

- The previous regressions use males as the base group (or benchmark group or reference group).
 - ightharpoonup Recall: female = 0 refers to males
 - ▶ The coefficient -2.15 on female tells us how women do compared with men.
- We will get the same answer if we use women as the base group
 - use a dummy variable for males rather than females
 - ightharpoonup male = 1 female
 - ▶ The coefficient on *male* will change sign but must remain the same magnitude.
- The intercept changes because now the base (or reference) group is females.

gen male=1-female

reg wage male exper educ

Source	SS	df	MS		of ob		526
Model Residual	2214.74206 4945.67223	3 522	738.247353 9.47446788	R-squa	F	= = = d =	77.92 0.0000 0.3093 0.3053
Total	7160.41429	525	13.6388844			=	3.0781
wage	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
male exper educ _cons	2.155517 .0642417 .6025802 -3.889998	.2703055 .0104003 .0511174 .7271441	6.18 11.79	0.000 0.000 0.000 0.000	1.624 .0438 .5021 -5.318	101 591	2.686537 .0846734 .7030012 -2.46151

- We get what we had before
 - ▶ The intercept for **men** is -3.890 + 2.156 = -1.734.
 - ▶ The intercept for women is -3.890.

Dummy Variable Trap

- Putting female and male both in the equation is redundant.
 - ▶ Perfect colinearity: female + male = 1
 - ▶ We have two groups so need only two intercepts.
 - ► Stata drops one of the dummies (in this case, the second one listed in the reg command).
- This is the simplest example of the so-called dummy variable trap
 - Putting in too many dummy variables to represent the given number of groups (two in this case).
 - ▶ An intercept is estimated for the base group, we need only **one** dummy variable that distinguishes the two groups.

Dummy Variable Trap

. reg wage female male exper educ

note: male omitted because of collinearity

Source	SS	df	MS		Number of obs F(3, 522) Prob > F R-squared Adj R-squared		526
Model Residual	2214.74206 4945.67223	3 522	738.247353 9.47446788	Prob R-sq			77.92 0.0000 0.3093 0.3053
Total	7160.41429	525	13.6388844	_		=	3.0781
wage	Coef.	Std. Err.	t	P> t	[95% Co	onf.	<pre>Interval]</pre>
female male	-2.155517 0	.2703055 (omitted)	-7.97	0.000	-2.68653	37	-1.624497
exper	.0642417	.0104003		0.000	.043810		.0846734
educ	.6025802	.0511174		0.000	.502159		.7030012
_cons	-1.734481	.7536203	-2.30	0.022	-3.21498	82	2539797

Dummy Variable: log(y) as the Dependent Variable

• WAGE1.DTA: lwage = log(wage) as the dependent variable:

$$\widehat{lwage} = 1.814 - .397 female, \quad n = 526, R^2 = .309$$

- A rough estimate: average wage for women is below that of men by 39.7%.
- Recall: the precise formula to calculate percentage change is $100 \cdot (\exp(\beta_i) 1)$
- More precise estimate: $\exp(-.397) 1 \approx -.328$, or 32.8% lower for women.
- If we use women as the base group, $\exp(.397) 1 \approx .487$, so men earn 48.7% more than women on average.

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- 5 The Linear Probability Model

- In the wage example we have two qualitative variables, gender (female) and marital status (married).
- Define four exhaustive and mutually exclusive groups.
 - Married males (marrmale), married females (marrfem), single males (singmale), and single females (singfem)
- We can define each of these dummy variables by interactions of female and married:

```
marrmale = married \cdot (1 - female)
marrfem = married \cdot female
singmale = (1 - married) \cdot (1 - female)
singfem = (1 - married) \cdot female
```

```
marrmale = married \cdot (1 - female)
marrfem = married \cdot female
singmale = (1 - married) \cdot (1 - female)
singfem = (1 - married) \cdot female
```

- We can allow each of the four groups to have a different intercept by choosing a base group (omit the dummy for the base group) and then including dummies for the other three groups.
- For example, choose single males as the base group
 - ▶ Do not add *singmale* in the regression
 - ightharpoonup include marrmale, marrfem, and <math>singfem
 - ▶ The coefficients on these dummies are difference compared with single men.

Use WAGE1.DTA

```
gen marrmale=male*married
gen marrfem=female*married
gen singfem=female*(1-married)
gen exper2=exper^2
gen tenure2=tenure^2
```

reg lwage marrmale marrfem singfem educ exper exper2 tenure tenure2

	Source	SS	df	MS	Number of obs	=	526
-					F(8, 517)	=	55.25
	Model	68.3617623	8	8.54522029	Prob > F	=	0.0000
	Residual	79.9679891	517	.154676961	R-squared	=	0.4609
-					Adj R-squared	=	0.4525
	Total	148.329751	525	.28253286	Root MSE	=	.39329

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
marrmale	.2126757	.0553572	3.84	0.000	.103923	.3214284
marrfem	1982676	.0578355	-3.43	0.001	311889	0846462
singfem	1103502	.0557421	-1.98	0.048	219859	0008414
educ	.0789103	.0066945	11.79	0.000	.0657585	.092062
exper	.0268006	.0052428	5.11	0.000	.0165007	.0371005
exper2	0005352	.0001104	-4.85	0.000	0007522	0003183
tenure	.0290875	.006762	4.30	0.000	.0158031	.0423719
tenure2	0005331	.0002312	-2.31	0.022	0009874	0000789
cons	.3213781	.100009	3.21	0.001	.1249041	.5178521
_						

$$\widehat{lwage} = \underbrace{.321}_{(.100)} + \underbrace{.213 \, marrmale}_{(.055)} - \underbrace{.198 \, marrfem}_{(.058)} - \underbrace{.110 \, singfem}_{(.056)}$$

$$+ \underbrace{.079 \, educ}_{(.007)} + \underbrace{.027 \, exper}_{(.00011)} - \underbrace{.00054 \, exper}_{(.00011)} ^{2}$$

$$+ \underbrace{.029 \, tenure}_{(.0007)} - \underbrace{.00053 \, tenure}_{(.00023)} ^{2}, \qquad n = 526, \, R^{2} = .461$$

- Interpretation: holding education, experience and tenure fixed,
 - ▶ A married man earns about 21.3% more than a single man on average.
 - Remember this compares two men with the same level of schooling,
 experience, and tenure with the current employer

$$\widehat{lwage} = .321 + .213 \, marrmale - .198 \, marrfem - .110 \, sing fem \\ + .079 \, educ + .027 \, exper - .00054 \, exper^2 \\ + .029 \, tenure - .00053 \, tenure^2, \qquad n = 526, \, R^2 = .461$$

- Interpretation: holding education, experience and tenure fixed,
 - ▶ Marriage premium for men has long been noted by labor economists.
 - Does marriage make men more productive?
 - ★ Is being married a signal to employers (say, of stability and reliability)?
 - ★ Is there a selection issue in that more productive men are likely to be married, on average?
 - ► The regression cannot tell us which explanation is correct.

$$\begin{array}{lll} \widehat{lwage} & = & .321 + .213 \, marrmale - .198 \, marrfem - .110 \, sing fem \\ & + .079 \, educ + .027 \, exper - .00054 exper^2 \\ & + .029 \, tenure - .00053 tenure^2, & n = 526, \, R^2 = .461 \end{array}$$

- Interpretation: holding education, experience and tenure fixed,
 - ▶ A married woman earns about 19.8% less than a single man.
 - ▶ A single woman earns about 11.0% less than a comparable single man.
 - Marriage "penalty" for women?

• Control for education, experience, and tenure:

$$\widehat{lwage} = \underbrace{.321}_{(.100)} + \underbrace{.213\,marrmale}_{(.055)} - \underbrace{.198\,marrfem}_{(.058)} - \underbrace{.110\,singfem}_{(.056)}$$

$$+ \underbrace{.079\,educ}_{(.007)} + \underbrace{.027\,exper}_{(.00011)} - \underbrace{.000134exper}^2$$

$$+ \underbrace{.029\,tenure}_{(.0007)} - \underbrace{.00053tenure}^2, \qquad n = 526, \ R^2 = .461$$

- Interpretation: holding education, experience and tenure fixed,
 - ▶ Compare married women and single women?

intercept for married women =
$$.321 - .198$$

intercept for single women = $.321 - .110$
difference = $-.198 - (-.110) = -.088$

► Married women earn about 8.8% less than single women.

$$\widehat{lwage} = .321 + .213 \, marrmale - .198 \, marrfem - .110 \, sing fem \\ + .079 \, educ + .027 \, exper - .00054 \, exper^2 \\ + .029 \, tenure - .00053 \, tenure^2, \qquad n = 526, \, R^2 = .461$$

- Interpretation: holding education, experience and tenure fixed,
 - Compare married women and single women?
 - ★ Is this difference statistically significant?
 - * Two approaches: (1) lincom command in Stata. (2) Choose, say, married females as the base group and re-estimate the model (including the dummies marrmale, singmale, and singfem).
 - ★ The t statistic for the estimated difference -.088 is -1.68, which is significant at the 10% level (but not much lower than that).

lincom marrfem-singfem

(1) marrfem - singfem = 0

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	0879174	.0523481	-1.68	0.094	1907586	.0149238

reg lwage singmale marrmale singfem educ exper exper2 tenure tenure2

Source	SS	df	MS	Number of obs	=	526 55.25
Model Residual	68.3617623 79.9679891	8 517	8.54522029 .154676961	F(8, 517) Prob > F R-squared	= =	0.0000 0.4609
Total	148.329751	525	.28253286	Adj R-squared Root MSE	=	0.4525

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
singmale	.1982676	.0578355	3.43	0.001	.0846462	.311889
marrmale	.4109433	.0457709	8.98	0.000	.3210234	.5008631
singfem	.0879174	.0523481	1.68	0.094	0149238	.1907586
educ	.0789103	.0066945	11.79	0.000	.0657585	.092062
exper	.0268006	.0052428	5.11	0.000	.0165007	.0371005
exper2	0005352	.0001104	-4.85	0.000	0007522	0003183
tenure	.0290875	.006762	4.30	0.000	.0158031	.0423719
tenure2	0005331	.0002312	-2.31	0.022	0009874	0000789
_cons	.1231105	.1057937	1.16	0.245	0847279	.3309488

- BEAUTY.DTA includes a ranking of physical attractiveness of each man or woman, on a scale of 1 to 5 (5 indicates "strikingly beautiful or handsome")
 - ► This is a subset of the data used in Hamermesh and Biddle (1994, American Economic Review).
- As we move up the scale from 1 to 5, why should a one-unit increase mean the same amount of "beauty"?
- Such variables are called **ordinal variables**:
 - ▶ Order of outcomes conveys information (5 is better than 4; 2 is better than 1)
 - ▶ We do not know that the difference between 5 and 4 is the same as 2 and 1.
 - ▶ Very few people are at the extreme values 1 and 5. It makes sense to combine into three categories: below average (belavg), average, and above average (abvavg).

• 12.3% of people are "below average," 30.4% are "above average," and everyone else (57.3%) has looks = 3 (labeled "average").

. tab looks			
from 1 to 5	Freq.	Percent	Cum.
1	13	1.03	1.03
2	142	11.27	12.30
3	722	57.30	69.60
4	364	28.89	98.49
5	19	1.51	100.00
Total	1,260	100.00	
. tab abvavg			
=1 if looks			
>=4	Freq.	Percent	Cum.
0	877	69.60	69.60
1	383	30.40	100.00
Total	1,260	100.00	
. tab belavg			
=1 if looks			
<= 2	Freq.	Percent	Cum.
0	1,105	87.70	87.70
1	155	12.30	100.00
Total	1 260	100.00	

reg lwage be	elavg abvavg						
Source	SS	df	MS	Numb	er of ob	s =	1,260
				- F(2,	1257)	=	7.98
Model	5.58214128	2	2.7910706	4 Prob	> F	=	0.0004
Residual	439.397831	1,257	.34956072	5 R-sq	uared	=	0.0125
				- Adj	R-square	d =	0.0110
Total	444.979972	1,259	.35343921	5 Root	MSE	=	.59124
lwage	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
belavg abvavg cons	2087896 0454376 1.698296	.0523391 .0373744 .0220035	-3.99 -1.22 77.18	0.000 0.224 0.000	3114 1187 1.655	607	1061078 .0278855 1.741463

- Base group: people with "average" looks
- Those with "below average" looks earn about 20.9% less than those with average looks. The t statistic is very significant.
- Those with above average looks are estimated to earn about 4.5% less than those with average looks, but the p-value is .266 (little evidence for a non-zero effect)

• Now control for some other factors, including gender and education.

reg lwage	belavo	abvavo	educ	exper	experso	female	

		-					
Source	ss	df	MS		per of obs	=	1,260
				F(6	, 1253)	=	117.36
Model	160.094314	6	26.6823857	Prol	> F	=	0.0000
Residual	284.885658	1,253	.227362856	R-s	guared	=	0.3598
		<u> </u>		Adi	R-squared	=	0.3567
Total	444.979972	1,259	.353439215		MSE	=	.47683
lwage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
belavg	1542032	.0423296	-3.64	0.000	237247	9	0711585
abvavq	0066465	.0306562		0.828	066789	-	.0534966
educ	.0663221	.0053094		0.000	.055905	•	.0767384
						-	
exper	.0408305	.0044034		0.000	.032191		.0494694
expersq	0006301	.0000985		0.000	000823		0004368
female	4532832	.029217	-15.51	0.000	510602	9	3959636
_cons	.558981	.0795603	7.03	0.000	.402894	9	.7150671

• The effect of having "below average" looks is now -15%. The effect of "above average looks" is still insignificant and gets smaller in magnitude.

- One shortcoming in the previous analysis:
 - ▶ It ignores occupation. Maybe we should allow people to sort into occupation (perhaps partly based on looks) and see if there is a "looks premium" in a given occupation. Biddle and Hamermesh (1998, Journal of Labor Economics) study lawyers' looks and earnings.
- Variables such as credit ratings, or any variables asked on a scale, are ordered variables. For example,
 - ▶ A credit rating on a scale from 1 to 7
 - ▶ Rate one's "happiness" on a scale of 1 to 5

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- 5 The Linear Probability Model

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- The Linear Probability Model

Interactions Among Dummy Variables

- \bullet Example: lwage equation
 - ► Gender and marital status define four different groups: married male, married female, single male, single female
 - \blacktriangleright We can achieve the same thing by interacting between female and married.
- \bullet Regress lwage on female, married, $female \cdot married$ (and others)

$$\widehat{lwage} = .321 - .110_{(.056)} female + .213_{(.055)} married - .301_{(.072)} female \cdot married + ...$$

- The intercept for
 - single male: female = 0, married = 0, so 0.321
 - ▶ single female: female = 1, married = 0, so 0.321 0.110
 - ▶ married male: female = 0, married = 1, so 0.321 + 0.213
 - ightharpoonup married female: female = 1, married = 1, so 0.321 0.110 + 0.213 0.301

Interactions Among Dummy Variables

- \bullet Example: lwage equation
 - ► Gender and marital status define four different groups: married male, married female, single male, single female
 - ightharpoonup We can achieve the same thing by interacting between female and married.
- Regress lwage on female, married, $female \cdot married$ (and others)

$$\widehat{lwage} = .321 - .110_{(.056)} female + .213_{(.055)} married - .301_{(.072)} female \cdot married + ...$$

- One advantage with interaction: we can read off the difference in marriage premium between women and men.
 - ▶ For males: slope on married, +0.213
 - For female: slope on married+slope on $female \cdot married$, 0.213 - 0.301 = -0.088
 - ▶ Slope on the interaction -0.301: gender difference in marriage premium

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- 5 The Linear Probability Model

- Regression models with different slopes and different intercepts.
- Interact dummy variables with quantitative variables
- Recall

$$lwage = \beta_0 + \delta_0 female + \beta_1 exper + u,$$

Intercept for men is β_0 and that for women is $\beta_0 + \delta_0$. The slope on *exper*, β_1 , is common across men and women.

• An extended model is

$$lwage = (\beta_0 + \delta_0 female) + (\beta_1 + \delta_1 female) \cdot exper + u$$

The slope for men is β_1 and the slope for women is $\beta_1 + \delta_1$

• An extended model is

$$lwage = (\beta_0 + \delta_0 female) + (\beta_1 + \delta_1 female) \cdot exper + u$$

• For men, female = 0. For women, female = 1. Then,

	Intercept	Slope
Male	β_0	β_1
Female	$\beta_0 + \delta_0$	$\beta_1 + \delta_1$
Difference (Female – Male)	δ_0	δ_1

- Here we use Greek letter "delta" to emphasize that δ_0 and δ_1 are differences
- Estimation: write the model as

$$lwage = \beta_0 + \delta_0 female + \beta_1 exper + \delta_1 female \cdot exper + u$$

Use WAGE1.DTA

gen femexper=female * exper

reg lwage female exper femexper

	Source	ss	df	MS	Number of obs	=	526
_					F(3, 522)	=	31.78
	Model	22.9051677	3	7.63505589	Prob > F	=	0.0000
	Residual	125.424584	522	.24027698	R-squared	=	0.1544
_					Adj R-squared	=	0.1496
	Total	148.329751	525	.28253286	Root MSE	=	.49018

lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
female	2934319	.0685958	-4.28	0.000	4281897	158674
exper	.0066007	.0021976	3.00	0.003	.0022835	.0109179
femexper	0058634	.0031567	-1.86	0.064	0120649	.000338
_cons	1.697672	.0486394	34.90	0.000	1.602119	1.793225

• Use WAGE1.DTA:

$$\widehat{lwage}$$
 = 1.698 - .293 female + .007 exper - .006 female · exper
 n = 526, R^2 = .154

- ▶ The intercept for men is 1.698 and the slope is .007 about 0.7% for each year of experience.
- ▶ The intercept for women is 1.698 .293 = 1.405 and the slope is .007 .006 = .001 about 0.1% for each year of experience.
- ► The interaction term is marginally statistically significant, with p-value = .064. (So at the 10% level but not the 5%.)

• Use WAGE1.DTA:

$$\widehat{lwage} = 1.698 - .293 female + .007 exper - .006 female \cdot exper$$

$$n = 526, R^2 = .154$$

► At any level of experience, the predicted difference in *lwage* between females and males is

$$-.293-.006\ exper$$

- ▶ The coefficient -.293 on female: is the predicted difference in lwage between a woman and a man when exper = 0 (not a very interesting subpopulation)
- ▶ A more interesting quantity may be the gap at around the mean $\overline{exper} = 17$:

$$-.293 - .006 \cdot 17 = -.395$$

or about 39.5% less for women.

ightharpoonup The gap increases in exper.

• Use the same centering scheme as before to directly get the gap estimate at

exper = 17

gen femexper_17=female*(exper-17)

reg lwage female exper femexper_17

Source	SS	df	MS	Number of obs	=	526
				F(3, 522)	=	31.78
Model	22.9051677	3	7.63505589	Prob > F	=	0.0000
Residual	125.424584	522	.24027698	R-squared	=	0.1544
				Adj R-squared	=	0.1496
Total	148 329751	525	28253286	Root MSF	=	49018

	lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
fer	female	3931104	.0428204	-9.18	0.000	4772318	3089889
	exper	.0066007	.0021976	3.00	0.003	.0022835	.0109179
	nexper_17	0058634	.0031567	-1.86	0.064	0120649	.000338
	_cons	1.697672	.0486394	34.90	0.000	1.602119	1.793225

ullet Add educ and the interaction term $female \cdot educ$

gen femeduc	=female*educ						
reg lwage fe	emale educ fem	educ exper	femexper				
Source	SS	df	MS	Numbe	er of obs	=	526
				F(5,	520)	=	61.03
Model	54.8532145	5	10.9706429	Prob	> F	=	0.0000
Residual	93.4765369	520	.179762571	R-sq	uared	=	0.3698
				- Adj I	R-squared	=	0.3637
Total	148.329751	525	. 28253286	Root	MSE	=	. 42398
lwage	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
female	.0850418	.2035344	0.42	0.676	314808	9	. 4848925
educ	.1018128	.0091857	11.08	0.000	.083767	2	.1198583
femeduc	0194987	.0144173	-1.35	0.177	04782	2	.0088246
exper	.0149081	.0020432	7.30	0.000	.010894	1	.0189221
femexper	0107923	.0028679	-3.76	0.000	016426	4	0051581
_cons	.2497944	.1372369	1.82	0.069	019812	5	.5194014

 $lwage = \beta_0 + \delta_0 female + \beta_1 exper + \delta_1 female \cdot exper + \beta_2 educ + \delta_2 female \cdot educ + u$

• We can test

 H_0 : no difference between women and men

by testing the three variables female, femeduc and femexper jointly, i.e.,

$$H_0: \delta_0 = \delta_1 = \delta_2 = 0$$

test female femeduc femexper

- (1) female = 0
- (2) femeduc = 0
- (3) femexper = 0

$$F(3, 520) = 33.13$$

 $Prob > F = 0.0000$

- A final warning: it is hard to justify omitting the level of a variable but including an interaction that involves that variable.
- Suppose we drop educ but include $female \cdot educ$.

$$lwage = \beta_0 + \delta_0 female + \beta_1 female \cdot educ + \dots$$

- The model imposes a zero return to education for men, which we cannot justify
- The coefficient on $female \cdot educ$ is now a direct estimate of the return to education for women, rather than being the difference in the returns between women and men

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- The Linear Probability Model

Testing for Differences Across Groups

- Chow test: Does the regression function change across groups?
 - Allow all parameters to vary across groups
- ullet In the general k variable case, we can define a dummy variable, w, indicating the two groups. Then

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
$$+ \delta_0 w + \delta_1 w \cdot x_1 + \delta_2 w \cdot x_2 + \dots + \delta_k w \cdot x_k + u$$
$$H_0 : \delta_0 = 0, \delta_1 = 0, \delta_2 = 0, \dots, \delta_k = 0$$

for k+1 restrictions.

- We can use a standard F test of the k+1 exclusion restrictions.
- Reject if F statistic is greater than the critical value from $\mathcal{F}_{k+1,n-2(k+1)}$

Testing for Differences Across Groups

- Rather than construct all of the interactions and run the regression with interactions, there is an equivalent way to implement this test (without using the interactions).
 - Pool the data and estimate a single regression. This is the **restricted** model, and produces the restricted SSR. Call this the *pooled* SSR, SSR_P .
 - ② Estimate the regressions on the two groups (say, 1 and 2) separately. Get SSR_1 and SSR_2 . The unrestricted SSR is $SSR_1 + SSR_2$ (this is the same as the regression that includes the full set of interactions).
- The F statistic is

$$F = \frac{[SSR_P - (SSR_1 + SSR_2)]/(k+1)}{(SSR_1 + SSR_2)/[n-2(k+1)]}$$

and, under H_0 , has the $\mathcal{F}_{k+1,n-2(k+1)}$ distribution under H_0

Outline

- Describing Qualitative Information
- 2 A Single Dummy Variable
- 3 Dummy Variables for Multiple Categories
- 4 Interactions Involving Dummy Variables
 - Interactions Among Dummy Variables
 - Allowing for Different Slopes
 - Testing for Differences in Regression Functions Across Groups: The Chow Test
- **5** The Linear Probability Model

- We have studied many ways that binary (dummy) explanatory variables can appear in regression analysis.
- Question: What if the *dependent* variable is a dummy variable?
 - ▶ We want to explain the outcome of a yes/no or zero/one event.
- For example, we want to study the question of married women's labor force participation. Or, we want to know whether a young man is arrested for a crime during a certain period of time.
- ullet In these cases, the variable y we want to explain is a binary or dummy variable.

• How do we interpret the population model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

when y is binary?

- y can only change from 0 to 1 or 1 to 0.
- Suppose $\beta_1 = .035$ and $x_1 = educ$. What does it mean for a one year increase in educ to increase y by .035?
- Same problem arises for other discrete variables, such as $y = number\ of$ arrests or $y = number\ of\ children$ (cannot have a fraction more of a child)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

• We rely on the expected value formulation of linear regression. Recall under MLR.4,

$$\mathbb{E}[y|\mathbf{x}] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k,$$

where **x** is shorthand for $(x_1, x_2, ..., x_k)$.

• Remember, we can interpret β_i as

$$\Delta \mathbb{E}[y|\mathbf{x}] = \beta_j \Delta x_j$$
, holding other explanatory variables fixed

• Key relationship when y is binary:

$$\mathbb{E}[y|\mathbf{x}] = \mathbb{P}[y = 1|\mathbf{x}]$$

- We call $\mathbb{P}[y=1|\mathbf{x}]$ the **response probability**.
- When we apply the linear model to binary y, we are really saying

$$\mathbb{P}[y = 1 | \mathbf{x}] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

and we call the model the linear probability model (LPM). (Other binary response models are covered in Chapter 17 of Wooldridge)

▶ **Important**: all partial effects are effects on the probability that y = 1

$$\Delta \mathbb{P}[y=1|\mathbf{x}] = \beta_j \Delta x_j$$
, holding other explanatory variables fixed

- ▶ Since $\mathbb{P}[y=0|\mathbf{x}] = 1 \mathbb{P}[y=1|\mathbf{x}]$, it is the only probability we need.
- ▶ The sample analog holds as well. When we have the OLS regression line

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k,$$

 \hat{y} is now the predicted probability.

- EXAMPLE: Married Women's Labor Force Participation (MROZ.DTA)
 - ightharpoonup inl f = 1 if a woman worked for a wage during a certain year, and 0 if not.
 - We estimate a linear probability model to see the effects of variables on the probability of being in the labor force.
 - . des inlf nwifeinc educ exper age kidslt6 kidsge6

Variable name	Storage type	Display format	Value label	Variable label
inlf	byte	%9.0g		=1 if in lab frce, 1975
nwifeinc	float	%9.0g		(faminc - wage*hours)/1000
educ	byte	%9.0g		years of schooling
exper	byte	%9.0g		actual labor mkt exper
age	byte	%9.0g		woman's age in yrs
kidslt6	byte	%9.0g		# kids < 6 years
kidsge6	byte	%9.0g		# kids 6-18

reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6

	Source	SS	df	MS	Number of obs	=	753
_					F(7, 745)	=	38.22
	Model	48.8080578	7	6.97257969	Prob > F	=	0.0000
	Residual	135.919698	745	.182442547	R-squared	=	0.2642
_					Adj R-squared	=	0.2573
	Total	184.727756	752	.245648611	Root MSE	=	.42713

inlf	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
nwifeinc	0034052	.0014485	-2.35	0.019	0062488	0005616
educ	.0379953	.007376	5.15	0.000	.023515	.0524756
exper	.0394924	.0056727	6.96	0.000	.0283561	.0506287
expersq	0005963	.0001848	-3.23	0.001	0009591	0002335
age	0160908	.0024847	-6.48	0.000	0209686	011213
kidslt6	2618105	.0335058	-7.81	0.000	3275875	1960335
kidsge6	.0130122	.013196	0.99	0.324	0128935	.0389179
_cons	.5855192	.154178	3.80	0.000	. 2828442	.8881943

• The estimated equation is

$$\begin{array}{rcl} \widehat{inlf} & = & .586 - .0034 \, nwifeinc + .038 \, educ + .039 \, exper - .00060 \, exper^2 \\ & & - .016 \, age - .262 \, kidslt6 + .013 \, kidsge6 \\ & & - .753, \, \, R^2 = .264 \\ \end{array}$$

- The coefficient on *nwifeinc* (other sources of income) shows a modest effect: if it increases by 20 (\$20,000, about one standard deviation), the probability of being in the labor force falls by .068, or 6.8 percentage points. The t statistic shows it is statistically significant at the 2% level.
- ► Each year of education increases the probability by an estimated .038, or 3.8 percentage points.

• The estimated equation is

$$\begin{array}{rcl} \widehat{inlf} & = & .586 - .0034 \, nwifeinc + .038 \, educ + .039 \, exper - .00060 \, exper^2 \\ & & - .016 \, age - .262 \, kidslt6 + .013 \, kidsge6 \\ & & n & = & 753, \, R^2 = .264 \\ \end{array}$$

- Past workforce experience has a positive but diminishing effect. The effect of the first year is about .039, and this diminishes to zero at exper = .039/(2 ⋅ .0006) = 32.5. (Only 13 women have exper > 32.)
- Having young children has a very large negative effect: being in the labor force falls by .262 for each young child.
- ▶ It is unwise to extrapolate to extreme values when using any linear model

Shortcomings of the LPM

- Using a linear model for a binary outcome is convenient because estimation is easy and so is interpretation.
- But the LPM does have some shortcomings.
 - The fitted values from an OLS regression are never guaranteed to be between zero and one
 - ★ Slightly embarrassing but is rarely a big deal. We usually use the LPM to estimate partial effects, not to make predictions.

Shortcomings of the LPM

- Using a linear model for a binary outcome is convenient because estimation is easy and so is interpretation.
- But the LPM does have some shortcomings.
 - The estimated partial effects are constant throughout the range of explanatory variables (possibly silly estimated effects for large changes)
 - * This is more of a problem because we know, say, a variable with a positive effect on $\mathbb{P}[y=1|\mathbf{x}]$ must eventually have a diminishing effect. But the linear model implies a constant effect (when the variable appears by itself).
 - * But LPM does a good job of approximating partial effects if we do not look at extreme values of the explanatory variables.

Shortcomings of the LPM

- Using a linear model for a binary outcome is convenient because estimation is easy and so is interpretation.
- But the LPM does have some shortcomings.
 - **3** Because y is binary, the LPM must exhibit **heteroskedasticity** except in the one case where no x_j affects $P(y = 1 | \mathbf{x})$:

$$\mathbb{V}[y|\mathbf{x}] = p(\mathbf{x})[1 - p(\mathbf{x})]$$

where
$$p(\mathbf{x}) = \mathbb{P}[y = 1 | \mathbf{x}] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

- ★ This is a case where we know MLR.5 must fail, and we know how. So, currently, we treat the usual t and F tests with suspicion, and the confidence intervals.
- ★ We will relax MLR.5 later