Gabriel Sarch

gsarch@andrew.cmu.edu www.gabesarch.me

Education

Carnegie Mellon University, Pittsburgh, USA

Ph.D. in Machine Learning and Neural Computation Advisors: Dr. Katerina Fragkiadaki and Dr. Michael Tarr

2020 - present

Carnegie Mellon University, Pittsburgh, USA

Master of Science in Machine Learning

2023

University of Rochester, Rochester, USA

Bachelor of Science in Biomedical Engineering, magna cum laude

2016 - 2020

Publications

- Sarch, G., Wu, Y., Tarr, M., & Fragkiadaki, K. (2023). Open-Ended Instructable Embodied Agents with Memory-Augmented Large Language Models. Findings of the Association for Computational Linguistics: EMNLP 2023. [Project Page]
- Sarch, G., Tarr, M., Wehbe, L., & Fragkiadaki, K. (2023). <u>Brain Dissection: fMRI-trained Networks Reveal Spatial Selectivity in the Processing of Natural Images.</u> 37th Advances in Neural Information Processing Systems 2023. [Project Page]
- Sarch, G., Tung, H., Wang, A., Prince, J., Tarr, M. (2023). <u>3D View Prediction Models of the Dorsal Visual Stream.</u> 2023 Conference on Cognitive Computational Neuroscience.
- Yates, J., Coop, S., **Sarch, G.**, Wu, R., Butts, D., Rucci, M., Mitchell, J. (2023). <u>Beyond Fixation: detailed characterization of neural selectivity in free-viewing primates</u>. *Nature Communications*. 2023.
- Sarch, G., Fang, Z., Harley, A. W., Schydlo, P., Tarr, M., Gupta, S., & Fragkiadaki, K. (2022). <u>TIDEE: Tidying Up Novel Rooms using Visuo-Semantic Common Sense Priors</u>. European Conference on Computer Vision (ECCV) 2022. [Project Page]
- Sarch, G.*, Fang, Z.*, Jain, A.*, Harley, A. W., & Fragkiadaki, K. (2021). <u>Move to See Better:</u> <u>Self-Improving Embodied Object Detection</u>. British Machine Vision Conference 2021. (*equal contribution). [Project Page]

Presentations

- Amy Bucklaew, Coop SH, **Sarch GH**, Mitchell JF (2023). Laminar and cell type distinctions for pre-saccadic attention in marmoset MT/MTC. Journal of Vision 2023. Poster.
- Coop SH, **Sarch GH**, Bucklaew A, Yates JL, Mitchell JF (2022). Laminar Organization of Pre-Saccadic Attention in Marmoset Area MT. Journal of Vision 2022. Poster.
- Coop SH, **Sarch GH**, Bucklaew A, Yates JL, Mitchell JF (2022). Laminar Organization of Pre-Saccadic Attention in Marmoset Area MT. Journal of Vision 2022. Poster.

Sarch GH, Yates JL, Coop SH, Mitchell JF (2019) Identification of cortical layers from current source density (CSD) analysis and two local field potential (LFP) band-power measures in marmoset V1. Society for Neuroscience. Chicago, IL, 2019. Poster.

Sarch GH, Pavindra PH, Smith JC (2018) Computational Modeling of Respiratory Neural Circuits. NIH Bethesda, MD, 2018.

Invited Talks	
brAIn Seminar talk titled "Spatial Processing during Natural Scene Viewing: Insights from Artificial Neural Network Modeling." Carnegie Mellon University.	2023
Invited Lecture Biologically Intelligent Exploration (CMU 85-435) "How do you use evidence to make a decision?" Carnegie Mellon University.	2023
Selected Grants & Awards	
National Science Foundation Graduate Research Fellowship Funding three years of interdisciplinary graduate research in machine learning and neuroscience	- 2025
Runner-Up in Amazon Alexa Prize SimBot Embodied Dialogue Challenge Developed multimodal instruction following agent as a member of CMU Symbiote Team	2022
2020 Biomedical Engineering Outstanding Award for Academic Excellence Awarded to the top student in the Biomedical Engineering class for academic excellence	2022
Tau Beta Pi Engineering Honor Society Awarded to undergraduate students in the top eighth of their engineering class	2020
University of Rochester Center for Visual Science (CVS) Research Fellowship Funded neural recording and analysis research at the Active Vision Laboratory	2019
National Institutes of Health Ruth L. Kirschstein National Research Service Award Funded neural modeling research at the Computational Neurobiology Laboratory, NIH	2019

Carnegie Mellon University

Experience

Aug 2020 - present

Pls: Katerina Fragkiadaki (Machine Learning Dept.) and Michael Tarr (Psychology Dept.) PhD Student

- Research topics: household robotics, embodied learning & planning, spatial perception
- Mentoring undergraduate and master's students
- Serving on the MLD PhD Peers Committee to help guide new MLD PhD students

Active Vision Laboratory, University of Rochester

Aug 2018 - Aug 2020

PI: Prof. Jude Mitchell

Research Assistant

- Studied cortical laminar differences in pre-saccadic attention
- Assisted with primate electrophysiology recordings and neural data analysis

Neurobiology Laboratory, National Institutes of Health

May 2018 - Aug 2018

PI: Dr. Jeffrey Smith Internship Program Researched computational models of the pre-Bötzinger respiratory generator

Cognitive Neurophysiology Laboratory, University of Rochester Jan 2018 - May 2018 PI: Prof. Edmund Lalor

Research Assistant

Researched contextualized semantics for speech comprehension decoding in EEG

Skills	S	

- **Computer Languages and Other Tools:** Python, Matlab, Unix shell/bash, Git, common cluster computing tools, HTML/CSS
- ML/Al Tools & Simulation Environments: Pytorch, TensorFlow, PyCortex, Ai2thor, Habitat Al, Carla, Open Al Gym
- **General laboratory methods:** reinforcement learning, representation learning, computer vision, language model prompting, multiple view geometry, search, probabilistic inference, statistical machine learning, density estimation, learning theory, signal processing, electrophysiology
- Relevant coursework: Deep Reinforcement Learning (CMU 10-703), Advanced Machine Learning (CMU 10-715 & 10-716), Intermediate Statistics (CMU 36-705), Graduate Artificial Intelligence (CMU 15-780), Statistical Models of the Brain (CMU 36-759), Cognitive Neuroscience (CMU 85-0765 & 03-763)
- **Teaching Assistantships:** Deep Reinforcement Learning (CMU 10-403), Biologically Intelligent Exploration (CMU 85-435)