Самостоятельная работа для 11 класса по теме

«Электромагнитные волны".

1. На рисунке показан график колебаний силы тока в колебательном контуре с антенной. Определите длину электромагнитной волны, излучаемой антенной.

1)

 $1,2.10^3 \,\mathrm{M}$

2)	0,83·10 ⁻³ м
3)	$7,5\cdot10^2\mathrm{M}$
4)	$6.10^2 \mathrm{M}$

2. Заряженная частица излучает электромагнитные волны в вакууме.

1)

только при движении с ускорением

2)	только при движении с постоянной скоростью
3)	только в состоянии покоя
4)	в состоянии покоя или при движении с постоянной скоростью

3. Согласно теории Максвелла, электромагнитные волны излучаются зарядом.

1)

только при равномерном движении заряда по прямой

2)	только при гармонических колебаниях заряда
3)	только при равномерном движении заряда по окружности
4)	при любом ускоренном движении заряда в инерциальной системе отсчета

4. При прохождении электромагнитных волн в воздухе происходят колебания. 1)

молекул воздуха

2)	плотности воздуха
3)	напряженности электрического и индукции магнитного полей
4)	концентрации кислорода

5. В электромагнитной волне, распространяющейся в вакууме со скоростью $\sqrt[\mathbf{k}]{\mathbf{v}}$, происходят колебания векторов напряженности электрического поля $\sqrt[\mathbf{k}]{\mathbf{E}}$ и индукции магнитного поля $\sqrt[\mathbf{k}]{\mathbf{E}}$. При этих колебаниях векторы $\sqrt[\mathbf{k}]{\mathbf{E}}$, $\sqrt[\mathbf{k}]{\mathbf{E}}$, $\sqrt[\mathbf{k}]{\mathbf{E}}$ имеют взаимную ориентацию:

$$\overrightarrow{\mathbf{E}}_{\perp} \overrightarrow{\mathbf{D}} \overrightarrow{\mathbf{B}}, \overrightarrow{\mathbf{E}}_{\parallel} \overrightarrow{\mathbf{D}} \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{D}} \overrightarrow{\mathbf{B}}$$

6. Явлением, доказывающим, что в электромагнитной волне вектор напряженности электрического поля колеблется в направлении, перпендикулярном направлению распространения электромагнитной волны, является.

1) интерференция

- - - - - - - -	
2)	отражение
3)	поляризация
4)	дифракция

7. Как инфракрасное излучение воздействует на живой организм?

1)

вызывает фотоэффект

2)	охлаждает облучаемую поверхность
3)	нагревает облучаемую поверхность
4)	способствует загару

8. Скорость распространения рентгеновского излучения в вакууме.

1)

3·10⁸ м/с

2)	3·10 ² м/с
3)	зависит от частоты
4)	зависит от энергии

9. Укажите сочетание тех параметров электромагнитной волны, которые изменяются при переходе волны из воздуха в стекло.

1)

скорость и длина волны

2)	частота и скорость
3)	длина волны и частота
4)	амплитуда и частота

10. Какое явление характерно для электромагнитных волн, но не является общим свойством волн любой природы?

1)

поляризация

2)	преломление
3)	дифракция
4)	интерференция

Ответы.

1

2	3	4	5	6	7	8	9	10	
1	1	4	2	3	3	3	1	2	1