Universidade de Aveiro Departamento de Matemática

Cálculo II - C 2024/2025

Ficha de Exercícios 2 - Parte I Séries de Potências e Fórmula de Taylor

1. Determine o domínio de convergência das seguintes séries de potências, indicando os pontos onde a convergência é simples ou absoluta.

(a)
$$\sum_{n=1}^{+\infty} n(n+1)x^n$$
; (b) $\sum_{n=1}^{+\infty} \frac{(2x)^n}{(n-1)!}$; (c) $\sum_{n=1}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$; (d) $\sum_{n=1}^{+\infty} \frac{(2x-3)^n}{2n+4}$; (e) $\sum_{n=1}^{+\infty} \frac{n^2}{n!} x^n$; (f) $\sum_{n=2}^{+\infty} \frac{n!(x-2)^n}{n-1}$; (g) $\sum_{n=1}^{+\infty} \frac{\ln n}{n} (x+2)^n$; (h) $\sum_{n=0}^{+\infty} \frac{3^n}{2+n^3} x^n$;

(i)
$$\sum_{n=2}^{+\infty} \frac{x^{3n}}{\ln n}$$
; (j) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n6^n} (3x-2)^n$; (k) $\sum_{n=0}^{+\infty} \frac{n+1}{2^n} (x-2)^n$; (l) $\sum_{n=1}^{+\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$;

(m)
$$\sum_{n=1}^{+\infty} \frac{1}{(-2)^n} x^{2n}$$
.

2. Mostre que:

- (a) se $\sum_{n=0}^{+\infty} a_n x^n$ é absolutamente convergente num dos extremos do seu domínio de convergência, então também é absolutamente convergente no outro extremo;
- (b) se o domínio de convergência de $\sum_{n=0}^{+\infty} a_n x^n$ é]-r,r], então a série é simplemente convergente em x=r

3. Determine os polinómios de Taylor seguintes:

- (a) $T_0^3(x^3 + 2x + 1);$ (b) $T_\pi^3(\cos x);$ (c) $T_1^3(xe^x);$ (d) $T_0^5(\sin x);$ (e) $T_0^6(\sin x);$ (f) $T_1^n(\ln x)$ $(n \in \mathbb{N}).$
- 4. Considere $f(x) = e^x$.
 - (a) Escreva a fórmula de MacLaurin de ordem n da função f.
 - (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo]-1,0[, com erro absoluto inferior a $\frac{1}{(n+1)!}$.
 - (c) Escolha um dos polinómios de MacLaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando uma estimativa para o erro absoluto cometido nessa aproximação.
- 5. Usando o resto de Lagrange, determine um majorante para o erro absoluto cometido na aproximação de sen(3) quando se usa o polinómio de Taylor de ordem 5 de $f(x) = \operatorname{sen} x$ em torno do ponto $a = \pi$.
- 6. Mostre que o polinómio de MacLaurin de ordem 7 da função seno permite aproximar os valores desta função, no intervalo [-1,1], com erro absoluto inferior a $\frac{1}{2} \times 10^{-4}$.

- 7. (a) Escreva a fórmula de Taylor de 2.ª ordem no ponto 1 da função $f(x) = \ln(x)$.
 - (b) Calcule um valor aproximado de $\ln(1.2)$ usando o polinómio de Taylor de ordem 2 obtido na alínea anterior e mostre que o erro absoluto cometido é inferior a 3×10^{-3} .

Resolução:

(a) Como

$$f(x) = \ln(x), f(1) = 0$$

$$f'(x) = \frac{1}{x}, f'(1) = 1$$

$$f''(x) = -\frac{1}{x^2}, f''(1) = -1$$

$$f^{(3)}(x) = \frac{2}{x^3}, f^{(3)}(\theta) = \frac{2}{\theta^3}$$

o polinómio de Taylor de ordem 2 no ponto 1 e o resto de Lagrange de ordem 2 são dados, respetivamente, por

$$T_1^2 f(x) = 0 + 1(x - 1) + \frac{-1}{2}(x - 1)^2$$

$$= (x - 1) - \frac{1}{2}(x - 1)^2$$

$$R_1^2 f(x) = \frac{\frac{2}{\theta^3}}{3!}(x - 1)^3$$

$$= \frac{1}{3\theta^3}(x - 1)^3, \text{ para algum } \theta \text{ entre } x \in 1.$$

A fórmula de Taylor pedida é

$$\ln(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3\theta^3}(x-1)^3$$
, para algum θ entre $x \in \mathbb{1}$.

(b)

$$\ln(1.2) \simeq T_1^2 f(1.2)$$

$$= 0.2 - \frac{1}{2}(0.2)^2$$

$$= 0.2 - 0.02$$

$$= 0.18$$

O erro absoluto cometido nesta aproximação é igual a $|R_1^2f(1.2)|$. Como

$$|R_1^2 f(1.2)| = \frac{\frac{2}{\theta^3}}{3!} (0.2)^3$$

= $\frac{8}{3\theta^3} 10^{-3}$, para algum θ entre 1 e 1.2,
< $\frac{8}{3} \times 10^{-3}$
< 3×10^{-3}

provámos o pretendido.

- 8. (a) Obtenha o polinómio de Taylor de ordem $n \in \mathbb{N}$ da função $f(x) = \frac{1}{x}$ no ponto c = 1.
 - (b) Determine um valor de n para o qual se garanta que o polinómio $T_1^n\left(\frac{1}{x}\right)$, obtido na alínea anterior, aproxime $\frac{1}{x}$ no intervalo [0.9,1.1], com erro absoluto inferior a 10^{-3} .

- 9. Determine o menor valor de n tal que o polinómio de MacLaurin de ordem n da função $f(x) = e^x$ aproxime f(1) com erro absoluto inferior a 10^{-3} .
- 10. Mostre, usando a fórmula de Taylor, que $\ln(1+x) \le x$, para todo o x > -1.
- 11. Considere a representação em série de potências da função $\frac{1}{1-x}$ dada por

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad -1 < x < 1.$$

Determine uma representação em série de potências para cada uma das seguintes funções (indicando o intervalo onde tal é válida):

(a)
$$\frac{1}{1-3x}$$
; (b) $\frac{2}{2+x}$; (c) $\frac{1}{x}$.

12. Desenvolva a função $f(x) = \frac{1}{x+1}$ em série de potências de x-3, indicando o maior intervalo onde o desenvolvimento é válido.

Exercícios de revisão

- 13. Considere a seguinte série de potências $\sum_{n=0}^{+\infty} \frac{4^n}{n+1} (x-1)^n.$
 - (a) Calcule o raio de convergência da série.
 - (b) Determine o seu domínio de convergência.
- 14. Determine o domínio de convergência da série de potências $\sum_{n=0}^{+\infty} \frac{1}{n} \left(\frac{x-2}{4} \right)^n$.

Resolução: Usando o Critério da Raiz, tem-se que:

$$L = \lim_{n \to +\infty} \sqrt[n]{\left| \frac{1}{n} \left(\frac{x-2}{4} \right)^n \right|}$$
$$= \lim_{n \to +\infty} \frac{|x-2|}{4\sqrt[n]{n}}$$
$$= \frac{|x-2|}{4\sqrt[n]{n}}.$$

Assim, a série é convergente para valores de x tais que L < 1 e divergente para valores de x tais que L > 1. Como, $\frac{|x-2|}{4} < 1 \Leftrightarrow -2 < x < 6$, o intervalo de convergência da série é $I_c =]-2,6[$. Podem ainda pertencer ao domínio de convergência os pontos x = -2 e x = 6. Para x = 6, obtém-se a série

$$\sum_{n=1}^{+\infty} \frac{1}{n},$$

que é divergente (pois é a série harmónica de ordem p=1). Para x=-2, temos a série numérica alternada

$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n} .$$

A sua série dos módulos é divergente, logo esta série alternada não é absolutamente convergente. Vejamos se podemos usar o Critério de Leibniz. Uma vez que, sendo $a_n = \frac{1}{n}$, se tem que $a_n > 0$, para todo o $n \in \mathbb{N}$, $\lim_{n \to +\infty} a_n = 0$ e a sucessão $(a_n)_{n \in \mathbb{N}}$ é monótona decrescente (porque para todo o $n \in \mathbb{N}$, $a_{n+1} = \frac{1}{n+1} < \frac{1}{n} = a_n$), então, pelo Critério de Leibniz, a série é convergente (logo a série alternada é simplesmente convergente)

Conclusão: o domínio de convergência da série é $D_c = [-2, 6[$.

Nota: Em alternativa, pode determinar o intervalo de convergência I_c , calculando o raio de convergência usando os coeficientes da série.

- 15. Indique o maior intervalo onde a série de potências $\sum_{n=0}^{+\infty} \frac{(-3)^n}{\sqrt{3n+1}} (x+2)^n$ é absolutamente convergente. (Exame de Recurso de Cálculo II - Agrupamento $\stackrel{\dots}{3}$, $\stackrel{\dots}{2}021/2022$)
- 16. Determine o domínio de convergência da série de potências $\sum_{n=1}^{+\infty} \frac{(2x-4)^n}{n \, 6^{n+1}}$, indicando os pontos onde a convergência é simples ou absoluta. (Teste 2 de Cálculo II - Agrupamento 3, 2021/2022)
- 17. Seja $f(x) = \ln(1+x^2), x \in \mathbb{R}$.
 - (a) Sabendo que $\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$, para |x| < 1, mostre que:

$$\frac{x}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n+1}, |x| < 1.$$

(b) Utilizando o polinómio de MacLaurin de ordem 2 de f, indique um valor aproximado para $\ln(1.01)$. Sabendo que $f'''(x) = \frac{4x(x^2-3)}{(1+x^2)^3}$, mostre que o erro absoluto dessa aproximação é inferior a $2 \times (0.1)^4$

(Teste 2 de Cálculo II - Agrupamento 3, 2021/2022)

18. Considere a função f dada por $f(x) = \cos(2x)$. Usando a fórmula MacLaurin de ordem 3 da função f, calcule um valor aproximado de $\cos(\frac{1}{5})$ e mostre que o erro absoluto cometido nessa aproximação é inferior a $\frac{2}{3} \cdot 10^{-4}$.

(Exame Final de Cálculo II - Agrupamento 3, 2022/2023)

Questões de escolha múltipla:

- 19. Qual é o raio de convergência da série de potências $\sum_{n=1}^{+\infty} (-1)^n \frac{n!}{n^n} (x-2)^n$?
 - (a) 2

- (b) 1/e (c) e (d) 1/2
- 20. Sabendo que a série de potências $\sum_{n=0}^{+\infty} \frac{2}{n+5} (x+1)^n$ tem raio de convergência R=1, podemos concluir que o seu domínio de convergência é:

 - (a) $\{-1\}$ (b)]-2,0[(c) [-2,0] (d) [-2,0[

21. O polinómio de MacLaurin de ordem 3 da função $f(x) = e^{-x} sen(x)$ é dado por:

(a)
$$P(x) = x + x^2 - \frac{x^3}{3}$$

(b)
$$P(x) = x^2 + \frac{x^3}{3}$$

(c)
$$P(x) = x - x^2 + x^3$$

(d)
$$P(x) = x - x^2 + \frac{x^3}{3}$$

22. Sabendo que $\frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n$ para |x|<1, podemos afirmar que uma representação em série de potências de $f(x)=\frac{2}{3-x}$ é dada por

(a)
$$\sum_{n=0}^{+\infty} \frac{2}{3^{n+1}} x^n$$
, $|x| < 3^2$.

(b)
$$\sum_{n=0}^{+\infty} \frac{2}{3^{n+1}} x^n$$
, $|x| < 3$.

(c)
$$\sum_{n=0}^{+\infty} \frac{2^n}{3^{n+1}} x^n$$
, $|x| < 2/3$.

(d)
$$\sum_{n=0}^{+\infty} \frac{2^n}{3^{n+1}} x^n, |x| < 2/3^2.$$

Soluções

- 1. (a)]-1,1[, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (b) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (c)]-1,1], sendo simplesmente convergente em x=1 e absolutamente convergente nos restantes pontos.
 - (d) [1,2[, sendo simplesmente convergente em x=1 e absolutamente convergente nos restantes pontos.
 - (e) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (f) {2}, sendo absolutamente convergente nesse ponto.
 - (g) [-3, -1[, sendo simplesmente convergente em x = -3 e absolutamente convergente nos restantes pontos.
 - (h) $\left[-\frac{1}{3},\frac{1}{3}\right]$, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (i) [-1,1[, sendo simplesmente convergente em x=-1 e absolutamente convergente nos restantes pontos.
 - (j) $]-\frac{4}{3},\frac{8}{3}]$, sendo simplesmente convergente em $x=\frac{8}{3}$ e absolutamente convergente nos restantes pontos.
 - (k)]0,4[, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (l) $]-\frac{1}{2},\frac{1}{2}]$, sendo simplesmente convergente em $x=\frac{1}{2}$ e absolutamente convergente nos restantes pontos.
 - (m) $]-\sqrt{2},\sqrt{2}[$, sendo absolutamente convergente em todos os pontos do intervalo.

2. —

- 3. (a) $T_0^3(x^3 + 2x + 1) = x^3 + 2x + 1$
 - (b) $T_{\pi}^{3}(\cos x) = -1 + \frac{(x-\pi)^{2}}{2}$
 - (c) $T_1^3(xe^x) = e + 2e(x-1) + \frac{3}{2}e(x-1)^2 + \frac{2}{3}e(x-1)^3$
 - (d) $T_0^5(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (e) $T_0^6(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (f) $T_1^n(\ln x) = (x-1) \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + \dots + \frac{(-1)^{n-1}}{n}(x-1)^n$.
- 4. (a) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$, para algum θ entre 0 e x.
 - (b) -
 - (c) Por exemplo, $\frac{1}{\sqrt{e}} \simeq T_0^2 f(-\frac{1}{2}) = 1 \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$, com erro inferior a $\frac{1}{6}$.
- 5. $|R_{\pi}^{5}(\text{sen}(3))| \leq \frac{(3-\pi)^{6}}{6!}$
- 6. —
- 7. Resolvido
- 8. (a) $T_1^n(\frac{1}{x}) = 1 (x-1) + (x-1)^2 + \dots + (-1)^n (x-1)^n$, $n \in \mathbb{N}$.
 - (b) n=3 (ou outro superior a este).
- 9. n = 6.
- 10. —

11. (a)
$$\sum_{n=0}^{\infty} 3^n x^n$$
, para $-\frac{1}{3} < x < \frac{1}{3}$;

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n$$
, para $-2 < x < 2$;

(c)
$$\sum_{n=0}^{\infty} (-1)^n (x-1)^n$$
, para $0 < x < 2$.

12.
$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-3)^n, \quad x \in]-1,7[.$$

13. (a)
$$R = \frac{1}{4}$$
.

(b)
$$\left[\frac{3}{4}, \frac{5}{4}\right]$$
.

15.
$$]-\frac{7}{3},-\frac{5}{3}[$$

16.
$$D_c = [-1, 5[$$
, sendo que a série converge absolutamente em] $-1, 5[$ e converge simplesmente em $x = -1.$

(b)
$$ln(1.01) \approx 0.01$$

18.
$$\frac{49}{50}$$