Preparado para:

REFORM/SC2022/126 **DELIVERABLE 4 MÓDULO 2 GESTÃO E TRATAMENTO DE DADOS EM R**

DESIGNING A NEW VALUATION MODEL FOR RURAL PROPERTIES IN PORTUGAL

Parte I

Formador: Luís Teles Morais | Nova SBE Lisboa, 5 maio 2023

Programa

Módulos	Duração	
 Módulo 1 – Introdução ao R: O que é o R? Como instalar e configurar o R. Sintaxe básica e comandos. Tipos de dados, objetos e classes. 	4 Horas	
 Módulo 2 - Gestão e tratamento de dados em R: Carregar dados no R. Perceber as estruturas de dados e subsetting. Limpeza de dados: missing values, outliers e 	8 Horas	
transformações - Juntar bases de dados		
 Módulo 3 - Estatística básica em R: Estatísticas descritivas: medidas de dispersão central e variação. Distribuições probabilísticas: variáveis discretas e contínuas. Testes de hipóteses. 	8 Horas	

Módulos	Duração
 Módulo 4 - Regressão Linear: O modelo classico linear. Estimação de parametros segundo o MMQ. Testes de hipóteses: significância estatística e ajuste do modelo. Modelo de regressão múltipla. Testar as premissas: multicolinearidade, heteroscedasticidade e normalidade dos resíduos. Critérios de seleção dos modelos. 	12 Horas
 Módulo 5 - O modelo: Estrutura do modelo e premissas - Perceber o modelo (4 Hours). Uso e tratamento dos dados (4 Hours). Descrição do modelo (4 Hours). Aplicação do modelo a cada piloto (12 Hours). Aplicação autónoma do modelo a uma região (8 Hours). 	32 Horas

Vamos a isso

Aceda a este link para começar já

https://posit.cloud/content/5906356

Quiz 1

slido.com

#3915775

Importar dados no R

Ciência de dados

babynames.csv

Nomes e sexo dos bebés nascidos nos EUA de 1880 a 2017. 1.9M de observações.

babynames.csv

```
year, sex, name, n, prop
1880, F, Mary, 7065, 0.07238359
1880, F, Anna, 2604, 0.02667896
1880, F, Emma, 2003, 0.02052149
1880, F, Elizabeth, 1939, 0.01986579
1880, F, Minnie, 1746, 0.01788843
1880, F, Margaret, 1578, 0.0161672
1880, F, Ida, 1472, 0.01508119
1880, F, Alice, 1414, 0.01448696
```


babynames.csv

```
year, sex, name, n, prop
1880, F, Mary, 7065, 0.07238359
1880, F, Anna, 2604, 0.02667896
1880, F, Emma, 2003, 0.02052149
1880, F, Elizabeth, 1939, 0.01986579
1880, F, Minnie, 1746, 0.01788843
1880, F, Margaret, 1578, 0.0161672
1880, F, Ida, 1472, 0.01508119
1880, F, Alice, 1414, 0.01448696
```


Importar

Import Dataset From Text (readr)...

babynames

year <dbl></dbl>	sex <chr></chr>	name <chr></chr>	n <dbl></dbl>	prop <dbl></dbl>
1880	F	Mary	7065	0.07238359
1880	F	Anna	2604	0.02667896
1880	F	Emma	2003	0.02052149
1880	F	Elizabeth	1939	0.01986579
1880	F	Minnie	1746	0.01788843
1880	F	Margaret	1578	0.01616720
1880	F	Ida	1472	0.01508119
1880	F	Alice	1414	0.01448696
1880	F	Bertha	1320	0.01352390
1880	F	Sarah	1288	0.01319605

Transformação de dados (II)

Estruturar e filtrar

Percentagem de recém-nascidas com o nome Maria 📁 nos EUA 📁

Ciência de dados

ggplot(data = babynames) +
 geom_point(mapping = aes(x = year, y = prop))

Como isolar as observações de interesse?

	year	sex	name	n	prop
1	1880	F	Mary	7065	0.0724
2	1880	F	Margar	1578	0.0162
3	1880	F	Martha	1040	0.0107
4	1880	F	Marie	471	0.00483
5	1880	F	Maria	125	0.00128
1	1881	F	Mary	6919	0.0700
2	1881	F	Margar	1658	0.0168
3	1881	F	Martha	1044	0.0106
4	1881	F	Marie	499	0.00505
5	1881	F	Maria	120	0.00121
	1881	М	Gideon	7	0.0001

year	sex	name	n	prop
1880	F	Maria	125	0.00128
1881	F	Maria	120	0.00121
•••	•••	Maria	•••	•••

Subsetting - subconjuntos de interesse

```
select() - extrair variáveis
```

filter() - extrair observações

arrange() - reordenar observações

select()

Extrair determinadas variáveis (colunas)

select()

Extrair determinadas variáveis (colunas)

select(babynames, name, prop)

babynames

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081

prop
0.0815
0.0805
0.0501
0.0451
0.0001
0.081

Como selecionar a coluna **n**?

Como selecionar a coluna **n**?

select(babynames, n)

```
select(babynames, n)
    <int>
    7065
  2 2604
 3 2003
    1939
    1746
```

Que tipo de objeto é este?

select()

Extrair determinadas variáveis (colunas)

select(babynames, n)

babynames

year	sex	name	n	prop		n	
1880	М	John	9655	0.0815	→	9655	TIBB
1880	М	William	9532	0.0805		9532	
1880	М	James	5927	0.0501		5927	
1880	М	Charles	5348	0.0451		5348	
1880	М	Garrett	13	0.0001		13	
1881	М	John	8769	0.081		8769	
1001	IVI	JUIIII	0103	0.001		0103	

\$

Extrair conteúdo de uma variável (como um vector)

babynames\$n

babynames

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081

→ 9655 9532 5927 5348 ...

\$

Extrair conteúdo de uma variável (como um vector)

select() helpers - seleção de variáveis

: - Selecionar intervalo de várias colunas

```
select(mpg, cty:class)
```

- - Todas as colunas exceto

```
select(mpg, -c(cty, hwy))
```

starts_with() - Colunas cujo nome começa por...

```
select(mpg, starts_with("c"))
```

ends_with() - Colunas cujo nome acaba em...

```
select(mpg, ends_with("y"))
```


etc.


```
Qual destas não seleciona as colunas name e n?

select(babynames, -c(year, sex, prop))

select(babynames, name:n)

select(babynames, starts_with("n"))

select(babynames, ends_with("n"))
```

```
Qual destas não seleciona as colunas name e n?

select(babynames, -c(year, sex, prop))

select(babynames, name:n)

select(babynames, starts_with("n"))

select(babynames, ends_with("n"))
```

Como isolar as observações de interesse?

	year	sex	name	n	prop
1	1880	F	Mary	7065	0.0724
2	1880	F	Margar	1578	0.0162
3	1880	F	Martha	1040	0.0107
4	1880	F	Marie	471	0.00483
5	1880	F	Maria	125	0.00128
1	1881	F	Mary	6919	0.0700
2	1881	F	Margar	1658	0.0168
3	1881	F	Martha	1044	0.0106
4	1881	F	Marie	499	0.00505
5	1881	F	Maria	120	0.00121
	1881	М	Gideon	7	0.0001

year	sex	name	n	prop
1880	F	Maria	125	0.00128
1881	F	Maria	120	0.00121
•••	•••	Maria	•••	•••

filter()

Extrair observações (linhas) de acordo com critérios lógicos

```
tabela de dados a transformar

um ou mais testes de lógica (que serão avaliados linha a linha)
```


filter()

Extrair observações (linhas) de acordo com critérios lógicos

```
filter(babynames, name == "Maria")
```

babynames

year	sex	name	n	prop	
1880	F	Mary	7065	0.0724	
1880	F	Margaret	1578	0.0162	
1880	F	Martha	1040	0.0107	
1880	F	Marie	471	0.00483	
1880	F	Maria	125	0.00128	
1881	F	Mary	6919	0.0700	

	year	sex	name	n	prop
•	1880	F	Maria	125	0.00128
	1881	F	Maria	120	0.00121
	•••		Maria	•••	•••

filter()

Extrair observações (linhas) de acordo com critérios lógicos

filter(babynames, name == "Maria")

babynames

year	sex	name	n	prop
1880	F	Mary	7065	0.0724
1880	F	Margaret	1578	0.0162
1880	F	Martha	1040	0.0107
1880	F	Marie	471	0.00483
1880	F	Maria	125	0.00128
1881	F	Mary	6919	0.0700

= serve para definir opções etc.

== para testes de igualdade (TRUE ou FALSE)

Testes de lógica

x < y	Menor que
x > y	Maior que
x == y	Igual a
x <= y	Menor ou igual a
x >= y	Maior ou igual a
x != y	Não é igual a
x %in% y	Pertence a

O que significa NA?

1 "1" "one" NA

1 == 1

TRUE

1 == NA

NA

NA == NA

NA == NA

NA

is.na(NA)

TRUE

Testes de lógica

?Comparison

x < y	Menor que
x > y	Maior que
x == y	Igual a
x <= y	Menor ou igual a
x >= y	Maior ou igual a
x != y	Não é igual a
x %in% y	Pertence a
is.na(x)	Valor não disponível
!is.na(x)	Valor existe

Aplique a função filter aos dados babynames para extrair:

- As observações onde **prop** é maior ou igual a 0.08
- As observações de crianças chamadas José

```
filter(babynames, prop >= 0.08)
# year sex name n prop
# 1 1880 M John 9655 0.08154630
# 2 1880 M William 9531 0.08049899
# 3 1881 M John 8769 0.08098299
```

1. = em vez de ==

```
filter(babynames, name = "Jose")
filter(babynames, name == "Jose")
```

2. Esquecer aspas

```
filter(babynames, name == Jose)
filter(babynames, name == "Jose")
```

3. Caracteres especiais

```
filter(babynames, name == "José")
filter(babynames, name == "Jose")
```


filter()

Extrai observações que cumpram todos os critérios fornecidos

```
filter(babynames, name == "Maria", year == 1880)
```

babynames

year	sex	name	n	prop	
1880	F	Mary	7065	0.0724	
1880	F	Margaret	1578	0.0162	
1880	F	Martha	1040	0.0107	
1880	F	Marie	471	0.00483	
1880	F	Maria	125	0.00128	
1881	F	Mary	6919	0.0700	

year	sex	name	n	prop	
1880	F	Maria	125	0.00128	

filter(!is.na())

Remover observações com dados em falta

```
filter(x, !is.na(x2))
```


filter()

Extrai observações que cumpram todos os critérios fornecidos

```
filter(babynames, name == "Maria" & year == 1880)
```

babynames

year	sex	name	n	prop	
1880	F	Mary	7065	0.0724	
1880	F	Margaret	1578	0.0162	
1880	F	Martha	1040	0.0107	
1880	F	Marie	471	0.00483	
1880	F	Maria	125	0.00128	
1881	F	Mary	6919	0.0700	

year	sex	name	n	prop
1880	F	Maria	125	0.00128

Operadores lógicos

?base::Logic

a & b	е
a I b	ou
xor(a,b)	ou ou
!a	não é
()	agrupar testes

$$x >= 2 & x < 3$$

TRUE & TRUE

TRUE

Atenção

3. Testes lógicos de dois lados (intervalos) não funcionam

```
filter(babynames, 10 < n < 20)
filter(babynames, 10 < n, n < 20)
```

4. Juntar vários testes (em vez de usar %in%)

```
filter(babynames, n == 5 \mid n == 6 \mid n == 7 \mid n == 8)
filter(babynames, n \% in\% c(5, 6, 7, 8))
```


arrange()

Ordenar do mais pequeno para o maior

```
variáveis a usar para ordenação (por ordem de prioridade)
```


arrange()

Ordenar do mais pequeno para o maior

arrange(babynames, n)

babynames

year	sex	name	n	prop		year	sex
1880	М	John	9655	0.0815	→	1880	М
1880	М	William	9532	0.0805		1880	М
1880	М	James	5927	0.0501		1880	М
1880	М	Charles	5348	0.0451		1881	М
1880	М	Garrett	13	0.0001		1880	М
1881	М	John	8769	0.081	57	1880	М

year	sex	name	n	prop
1880	М	Garrett	13	0.0001
1880	М	Charles	5348	0.0451
1880	М	James	5927	0.0501
1881	М	John	8769	0.081
1880	М	William	9532	0.0805
1880	М	John	9655	0.0815

desc()

Ordenar do maior para o mais pequeno

arrange(babynames, desc(n))

babynames

year	sex	name	n	prop		year	sex	name	n	prop
1880	М	John	9655	0.0815	\rightarrow	1880	М	John	9655	0.0815
1880	М	William	9532	0.0805	·	1880	М	William	9532	0.0805
1880	М	James	5927	0.0501		1881	М	John	8769	0.081
1880	М	Charles	5348	0.0451		1880	М	James	5927	0.0501
1880	М	Garrett	13	0.0001		1880	М	Charles	5348	0.0451
1881	М	John	8769	0.081	58	1880	М	Garrett	13	0.0001

Qual é o nome mais raro? E o mais frequente?

```
arrange(babynames, n, prop)
#
     year
            sex
                       name
                                          prop
#
     2007
                    Aaban
                                5 2.259872e-06
#
                                5 2.259872e-06
   2 2007
                 Aareon
                    Aaris
#
     2007
                                5 2.259872e-06
#
   4 2007
                        Abd
                                5 2.259872e-06
#
                 Abdulazeez
                                5 2.259872e-06
   5 2007
#
                  Abdulhadi
                                5 2.259872e-06
     2007
#
     2007
              M Abdulhamid
                                5 2.259872e-06
                 Abdulkadir
                                5 2.259872e-06
#
     2007
     2007
              M Abdulraheem
                                5 2.259872e-06
              M Abdulrahim
     2007
                                5 2.259872e-06
# ... with 1,924,655 more rows
```



```
arrange(babynames, desc(n))
#
     year
            sex
                   name
                                    prop
                            n
     1947
                  Linda 99680 0.05483609
#
                  Linda 96211 0.05521159
   2 1948
     1947
                  James 94763 0.05102057
#
#
     1957
              M Michael 92726 0.04238659
#
     1947
              M Robert 91646 0.04934237
                  Linda 91010 0.05184281
#
     1949
#
     1956
              M Michael 90623 0.04225479
     1958
              M Michael 90517 0.04203881
#
     1948
                 James 88588 0.04969679
     1954
              M Michael 88493 0.04279403
# ... with 1,924,655 more rows
```


Mini-teste

Qual o nome de <u>menino</u> mais popular em <u>2015</u>?

```
boys_2015 <- filter(babynames, year == 2015, sex == "M")
boys_2015 <- select(boys_2015, name, n)
boys_2015 <- arrange(boys_2015, desc(n))
boys_2015</pre>
```

```
boys_2015 <- filter(babynames, year == 2015, sex == "M")
boys_2015 <- select(boys_2015, name, n)
boys_2015 <- arrange(boys_2015, desc(n))
boys_2015</pre>
```

```
arrange(select(filter(babynames, year == 2015,
    sex == "M"), name, n), desc(n))
```

sintaxe dplyr de manipulação de dados

Todas as funções têm como primeiro argumento uma tabela de dados e devolvem outra como resultado.

Operador pipe %>%

Passa resultado da esquerda à função da direita, para o seu primeiro argumento. Experimente:

```
filter(babynames, n == 99680)
babynames %>% filter(n == 99680)
```


Pipes

```
babynames
boys_2015 <- filter(babynames, year == 2015, sex == "M")
boys_2015 <- select(boys_2015, name, n)
boys_2015 <- arrange(boys_2015, desc(n))
boys_2015</pre>
```

```
babynames %>%
filter(year == 2015, sex == "M") %>%
select(name, n) %>%
arrange(desc(n))
```

Atalho de teclado para %>%

$$Alt$$
 + $-$ (Windows)

Qual o nome de <u>menina</u> mais popular em <u>2015</u>?

```
babynames %>%
  filter(year == 2017, sex == "F") %>%
  select(name, n) %>%
  arrange(desc(n))
#
  name
        n
 1 Emma 19738
 2 Olivia 18632
  3 Ava 15902
  4 Isabella 15100
  5 Sophia 14831
#
# 6 Mia 13437
 7 Charlotte 12893
 8 Amelia 11800
  9 Evelyn 10675
## ... with 20,170 more rows
```

Reproduzir o gráfico

- 1. Filtrar dados para conter apenas as "Marias"
- 2. Selecionar apenas as colunas necessárias para o gráfico
- 3. Construir gráfico de linhas com **year** no eixo do x and **prop** no eixo dos y


```
babynames %>%
  filter(name == "Maria", sex == "F") %>%
  select(year, prop) %>%
  ggplot() +
    geom_line(mapping = aes(year, prop * 100)) +
    labs(y = 'Proporção em %', x = 'Ano')
                                        0.4 -
                                       Proporção em %
```

0.2 -

1920

1960

Ano

```
babynames %>%

filter(name == "Maria") %>%

ggplot() +

geom_point(mapping = aes(year, prop))
```



```
babynames %>%
filter(name == "Maria") %>%
ggplot() +
  geom_line(mapping = aes(year, prop))
```



```
babynames %>%
filter(name == "Maria") %>%
ggplot() +
  geom_line(mapping = aes(year, prop, color = sex))
```



```
babynames %>% filter(name == "Michael") %>%
    ggplot() +
    geom_line(mapping = aes(year, prop)) +
    facet_wrap(~ sex)
```


Transformação de dados (I) Arrumar - tidy

sales.xlsx

5 papel higienico

```
clientes <- readxl::read xlsx("sales data/sales.xlsx", sheet = 'clientes')</pre>
clientes
## # A tibble: 2 × 4
    id cliente item 1 item 2
                                  item 3
##
##
         <dbl> <chr> <chr>
                                   <chr>
## 1
             1 pao leite
                                     banana
## 2
             2 leite papel higienico <NA>
precos <- readxl::read_xlsx("sales_data/sales.xlsx", sheet = 'precos')</pre>
precos
## # A tibble: 5 × 2
## item
                    price
## <chr>
                    <dbl>
## 1 abacate
                      2
## 2 banana
                     0.5
## 3 pao
                      1.5
## 4 leite
```

clientes

Temos...

Queremos...

```
## # A tibble: 6 × 3
     id_cliente item_no item
##
         <dbl> <chr>
##
                       <chr>
## 1
              1 item_1
                        pao
## 2
              1 item 2
                       leite
## 3
              1 item_3
                       banana
## 4
              2 item_1 leite
## 5
              2 item_2 papel higienico
## 6
              2 item_3
                       <NA>
```


O objetivo

Wide vs. long

wide

mais colunas / variáveis

long

mais linhas / observações

```
## # A tibble: 6 × 3
     id_cliente item_no item
          <dbl> <chr>
##
                        <chr>
## 1
              1 item 1
                        pao
## 2
              1 item 2
                        leite
## 3
              1 item 3
                        banana
              2 item_1
## 4
                       leite
## 5
              2 item_2 papel higienico
## 6
              2 item 3
                        <NA>
```


data

```
pivot_longer(
    data,
    cols,
    names_to = "name",
    values_to = "value"
)
```


- data
- cols: colunas a transpor para formato long

```
pivot_longer(
  data,
  cols,
  names_to = "name",
  values_to = "value"
)
```


- data
- cols: colunas a transpor para formato long
- names_to: nome da variável que vai receber os nomes das colunas a transpor para long, como valores

```
pivot_longer(
  data,
  cols,
  names_to = "name",
  values_to = "value"
)
```


- data
- cols: colunas a transpor para formato long
- names_to: nome da variável que vai receber os nomes das colunas a transpor para long, como valores
- values_to: nome da variável que vai receber os valores atualmente dispersos por várias colunas (string)

```
pivot_longer(
  data,
  cols,
  names_to = "name",
  values_to = "value"
)
```


clientes \rightarrow compras

```
compras <- clientes %>%
  pivot_longer(
    cols = item_1:item_3,  # variables item_1 to item_3
    names_to = "item_no",  # column names -> new column called item_no
    values_to = "item"  # values in columns -> new column called item
    )

compras
```

```
## # A tibble: 6 × 3
## id_cliente item_no item
        <dbl> <chr> <chr>
##
## 1
            1 item 1 pao
## 2
            1 item_2 leite
## 3
            1 item 3
                     banana
## 4
            2 item 1 leite
## 5
            2 item_2 papel higienico
## 6
            2 item_3
                     < NA>
```


Exemplo da importância de dados tidy

Várias operações de transformação requerem-no (e.g. *join* - prox. aula)

precos

```
compras %>%
  left_join(precos)
```

```
## # A tibble: 6 × 4
     id_cliente item_no item
                                       price
         <dbl> <chr>
                                       <dbl>
##
                       <chr>
              1 item_1
                                         1.5
                       pao
## 2
              1 item 2
                       leite
                                         0.5
## 3
              1 item 3
                       banana
## 4
             2 item 1 leite
## 5
             2 item 2
                       papel higienico
## 6
              2 item_3
                       <NA>
                                        NA
```


$compras \rightarrow clientes$

- data
- names_f rom: variável em formato long a transpor para nomes de novas colunas
- values_from:
 variável em formato
 long que contêm
 valores a dispersar por
 várias colunas no
 formato wide

```
compras %>%
  pivot_wider(
    names_from = item_no,
    values_from = item
)
```


Obrigado e bom fim-de-semana!

luis.morais@novasbe.pt