Analisi 1

Mattia Marini

12.09.22

Indice

1	Intr	oduzione	2				
	1.1	Argomenti corso	2				
	1.2	Argomenti esercitazioni	2				
	1.3	Moodle	2				
	1.4	Libri di testo	2				
	1.5	Esami	2				
2	Insi	emistica	2				
	2.1	Simboli	3				
		2.1.1 Appartiene	3				
		2.1.2 Contenuto	3				
		2.1.3 Strettamente contenuto	3				
		2.1.4 Unione	3				
		2.1.5 Intersezione	3				
		2.1.6 Differenza	3				
		2.1.7 Differenza simmetrica	3				
	2.2	Insieme delle parti	4				
	2.3	Prodotto cartesiano	4				
	2.4	Funzioni fra insiemi	4				
	2.5	Proprietà delle funzioni	4				
		2.5.1 Iniettive	4				
		2.5.2 Surgettive	5				
		2.5.3 Bigettive	5				
		2.5.4 Invertibili	5				
	2.6	Insiemi numerici	5				
	2.7	Esempi funzioni	5				
	2.8	Immagine e controimmagine	6				
	2.9	Esteremi superiori ed inferiori di un insieme	6				
	2.10	-	6				
	2.11	Intervalli	7				
3	Principio di induzione 7						
	3.1	Dimostrazione 1	8				
	3.2	Dimostrazione 2	9				
	3.3	Dimostrazione 3	a				

	3.4 3.5	Disuguaglianza di bernulli					
4	Proprietà dei numeri reali						
	4.1	Proprietà algebriche somma					
	4.2	Proprietà algebriche prodotto					
	4.3	Proprietà ordinamento					
	4.4	Assioma di continuità					
5	Poli	nomi 12					
	5.1	Operazioni polinomi					
		5.1.1 Somma Polinomi					
		5.1.2 Moltiplicazione					
		5.1.3 Moltiplicazione fra polinmoni					
	5.2	Divisione fra polinomi					
		5.2.1 Algoritmo standard divisione					
		5.2.2 Algoritmo di ruffini					
	5.3	Dimostrazione teorema fondamentale dell'algebra					
	5.4	Polinomio irreducibile					
6	Fun	zioni e grafici 15					
	6.1	Grafico di una funzione					
	6.2	Definizione operative					
		6.2.1 Iniettività					
		6.2.2 Surgettività					
		6.2.3 Esempi					
	6.3	Operazioni sui grafici					
	6.4	Risoluzione di equazioni per via grafica					
7	Pot	enze, esponenziali, funzioni trigonometriche					
	7.1	Potenze pari					
	7.2	Potenze dispari					
	7.3	Esponenziale e logaritmo					
	7.4	Funzioni trigonometriche					
		7.4.1 Inverto il seno					
	7.5	Funzioni iperboliche					
	7.6	Formule trigonometria iperbolica					
8	Ese	rcizi 22					
	8.1	Esercizio 1					
	8.2	Esercizio 2					
	8.3	Esercizio 3					
9	Nur	meri complessi 25					
	9.1	Forma cartesiana					
	9.2	Somme e differenze					
	9.3	Prodotto					
	9.4	Reciproco					
	0.5	Divisiono					

	9.6	Definizioni
10	Rap	presentazione trigonometrica 26
	10.1	Argomento di un numero complesso
		10.1.1 Prodotto in forma trigonometrica
		10.1.2 reciproco in forma trigonometrica
		10.1.3 Divisione in forma trigonometrica
	10.2	Forma esponenziale
		Potenza di un numero complesso
	10.0	10.3.1 Esempio potenza
	10.4	1 1
	10.4	Radici dei numeri complessi
11	Il te	eorema fondamentale dell'algebra 29
12	Succ	cessione numeri reali 30
	12.1	Frequenza variabili
		Successione di numeri naturali
		Rappresentazione di successioni
		Limite di una successione
	12.1	12.4.1 Errori comuni
	19.5	Esempi
		Unicità del limite
		Teoremi sui limiti
		Errori comuni
		Retta reale estesa
		Forma indeterminata
	12.11	Implicazione i mportante disuquaglianza di bernoulli
13	Fatt	oriali e combinatoria 37
	13.1	Proprietà dei fattoriali
		Il triangolo di tartaglia
	10.2	
14		iteri: rapporto, radice, rapporto-radice
		Criterio della radice
	14.2	Criterio del rapporto
	14.3	Criterio rapporto \rightarrow radice
	14.4	Dimostrazioni
		14.4.1 Dimostrazione criterio radice
	14.5	Numero di nepero
		Esempio forme indeterminate
15	Lim	iti di funzioni 41
-0		Continuità
		Limiti notevoli
	15.4	Ordini di infiniti
		Dimostrazioe $\lim_{x\to 0} \frac{\sin(x)}{x}$
		Altri esempi
	15.7	Dimostrare non esistenza di un limite

16	6 Numero di nepero 16.1 Dimostrazione definizione numero di nepero			•		. 46 . 47	
Teoremi e Assiomi							
1 2 3 4 5 6 7 8 9 10 11	Assioma di continuità Divisione fra polinomi Divisione per polinomio di grado 1 Irriducibilità dei polinomi Insiemi limitati Teorema fondamentale dell'algebra Radici complesse coniugate Permanenza del segno Teorema del confronto a 2 Teorema del confronto a 3 (dei due carabinieri)					. 11 . 13 . 14 . 15 . 22 . 29 . 30 . 34 . 34	
13 14 15	2 Somma, prodotto e divisione limiti					. 46 . 47	
1						. 10	
In	incomprensioni						
1 2 3 4	11.22.37					. 28 . 30	
D	Definizioni						
1 2 3 4 5 6 7 8 9 10 11 12	Grafico di una funzione Densità degli insiemi Maggiorante e minorante Insiemi limitati superiormente/inferiormente Massimo/minimo insieme Radice di un polinomio Numeri coniugati Modulo numero complesso 0 Radici dei numeri complessi 1 Radice di un polinomio	· · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	. 7 . 11 . 11 . 11 . 12 . 14 . 26 . 26 . 28 . 29	
13	3 Frequentemente					. 30	

15	Successione di numeri naturali	31
16	Successione di numeri reali accomodante	31
17	Limite infinito	33
18	Limite se tenda a numero finito	33
19	Fattoriale di un numero	37
20	Coefficiente binomiale	37
21	Limite di funzione	42
22	Continuità	43
23	Sottosuccessione	46
24	Crescenza/decrescenza di una successione	46

1 Introduzione

Romeo Brunetti(progesssore): romeo.brunetti@unitn.it Valentino Abram(esercitatore): valentino.abram@unitn.it

1.1 Argomenti corso

1.2 Argomenti esercitazioni

o Continuità

o Esercizi per casa

Derivabilità

• Esercizi Ddi autovalutazione

o Integrabilità

1.3 Moodle

Tutto ciò che viene affrontato sta sul sito moodle. Ci si arriva da esse3

1.4 Libri di testo

o Canuto e Tabacco - Pearson - Analisi 1

1.5 Esami

- Solo scritti
- o 2 esami preliminari (5 novembre, 21 dicembre) + 5 scritti annuali
- o Se si passa primo preliminare non si passa NON si può fare il secondo
- o Se entrambi i preliminari vanno bene si può decidere di accettare un voto che è media pesata fra questi due anziche fare i 5 esami canonici
- $\circ~15$ domande a risposta multipla con 2 ore di tempo
- Ogni esercizio vale 2 punti, risposta errata = -0.4
- o Portare carta di identità
- o Scrivere nome cognome e matricola su foglio di bella
- o Sono concessi talvolta i formulari: 1 foglio A4 con tips

2 Insiemistica

Per dare una definizione di insieme rigorosa serve matematica molto complessa. Noi useremo definizione "ingenua"

2 definizioni di insieme — Per elenco: enumero nomi oggetti
Per proprietà: es. tutti gli studenti unitn mancini

Per elenco:

$$A = \{b, \beta, A, Brunetti\}$$

OSS: le ripetizioni non contano: $\{a, a, a, b, b, b\} = \{a, b\}$

Per proprietà:

 $A = \{$ tutti gli studenti mancini $\}$

- 2.1 Simboli
- 2.1.1 Appartiene

A sinistra va l'elemento, a destra l'insieme

$$\underbrace{b}_{elemento} \in \underbrace{A}_{insieme}$$

2.1.2 Contenuto

B è contenuto o uguale a A

$$B \subseteq B$$

2.1.3 Strettamente contenuto

A è contenuto ma diverso da B

$$A \subsetneq B$$

2.1.4 Unione

$$A \cup B = \left\{ x \underbrace{:}_{\text{tale che}} \quad x \in A \underbrace{\text{oppure}}_{V} x \in B \right\}$$

2.1.5 Intersezione

$$A \cap B \{x : x \in A \in x \in B\}$$

2.1.6 Differenza

$$A \setminus B \{x : x \in a \in x \notin B\}$$

2.1.7 Differenza simmetrica

$$A\triangle B = A \cup B$$

= $\{x: x \in A \text{ XOR } \}$
= $\{(A \setminus B) \cup (B \setminus A)\}$

2.2 Insieme delle parti

Dato un insieme A si indica con P(A) l'insieme costituito da tutti i sottoinsiemi di A (compresi l'insieme vuoto e A stesso)

$$A = \{1, 2, 3\}$$

$$P(A) = \{\{1, 2, 3\}, \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$$

OSS: L'insieme vuoto è contenuto in ogni insieme

OSS: Se un elemento di un insieme è un insieme, questo va trattato come insieme

2.3 Prodotto cartesiano

Si dice prodotto cartesiano e di indica con $A \times B$ l'insieme delle coppie (a,b) in cui $a \in A$ e $b \in B$ ordinate

Esempio:

$$A = \{1, 2\}$$
 $B = \{3, 4\}$
 $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

2.4 Funzioni fra insiemi

Consiste di 3 elementi:

- Insieme di partenza A
- \circ Insieme di arrivo B
- \circ Legge che ad ogni elemento dell'insieme di partenza Aassoci un unico elemento dell'insieme di arrivo B

$$f: A \to B$$
 $f\left(\underbrace{a}_{\text{elemento di A}}\right)$

NB: Affinchè f possa essere definita una funzione, devono essere collegati tutti gli elementi di A e lo stesso elemento in A non può collegarne due diversi in B

2.5 Proprietà delle funzioni

2.5.1 Injettive

 $f:A\to B$ è iniettiva se ad ogni coppia di elementi distinti di A associo una coppia di elementi distinti di B

$$a_1, a_2 \in A$$
 $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$

8

Stringi stringi non esistono elementi distinti che "puntano" allo stesso

2.5.2 Surgettive

 $f:A\to B$ è surgettina se ad ogni elemento di B ne è associato almento uno in A

$$\forall b \in B \; \exists \; a \in A : f(a) = b$$

Stringi stringi ogni elemento di B deve essere puntato da almeno un elemento di A

2.5.3 Bigettive

 $f:A\to B$ è bigettiva (o corrispondenza biunivoca) se è sia surgettina che iniettiva NB: Se f è bigettiva allora |A|=|B|

2.5.4 Invertibili

 $f:A\to B$ è invertibile se esiste una funzione $g:B\to A$ tale che

$$g(f(a)) = a \quad \forall a \in A$$

oppure

$$f(g(b)) = b \quad \forall b \in B$$

NB: $f: A \to B$ è invertibile se e solo se f è bigettiva

2.6 Insiemi numerici

- $\circ \mathbb{N}$ numeri naturali $\{1, 2, 3, 4, 5\}$
- o \mathbb{Q} numeri razionali $\left\{\frac{1}{2}, -\frac{3}{5}\right\}$ $\frac{m}{q}$ con $q \neq 0$
- o \mathbb{R} numeri reali $\{\sqrt{2},\}$
- $\circ \ \mathbb{C}$ numeri complessi

2.7 Esempi funzioni

$$f: \mathbb{N} \to \mathbb{N}$$
 $f(n) = n+3$

Iniettiva ma non biettiva(0,1,2 non vengono usati)

$$f: \mathbb{Z} \to \mathbb{Z}$$
 $f(n) = n+3$

Iniettiva biettiva e dunque invertibile

$$f: \mathbb{N} \to \mathbb{N}$$
 $f(n) = n^2$

Iniettiva ma non suriettiva

$$f: \mathbb{Z} \to \mathbb{Z}$$
 $f(n) = n^2$

9

2.8 Immagine e controimmagine

L'i mmagine di un un sottoinsieme C di A è l'insieme dei punti di B collegati da una funzione $fA \to B$

$$I_B = \{ f(a) : a \in A \}$$

La controimmagine di un sottoinsieme D di B è l'insieme dei punti di A le cui frecce arrivano in D

$$I_A^{-1} = \{ a \in A : f(a) \in B \}$$

2.9 Esteremi superiori ed inferiori di un insieme

Definizione 1: Estremi superiori e inferiori

Sia $A \in \mathbb{R}$, $A \neq 0$ L'estremo superiore di A si indica con supA e vale:

- $\circ \ +\infty$ se A non è limitato superiormente
- o Il minimo dei maggioranti di A se è limitato superiormente

NB: supA e infA esistono sempre! Esempi:

 \circ (3,7] sup=7 inf=3 min non esiste max=7 i

 $Incomprensione - 09:43:11_$

Teorema 1: Esistenza estremo superiore

Se $A \subset \mathbb{R} \neq \emptyset$ allora supA esiste.

Dimostrazione:

- Se A non è limitato superiormente allora per definizione sup $A = +\infty$
- o Se A è superiormente limitato l'insieme B dei suoi maggioranti non è vuoto
- Visto che B è "tutto a destra" di a allora esiste un elemento C separatore (assioma di continuità)

0

$$a \le c \forall a \in A$$
 (c è maggiorante) $\rightarrow c \in B$
 $c \le b \forall b \in B$ (c è minorante di B)

2.10 Caratterizzare i sup e gli inf

- $\circ \text{ supA} = +\infty \text{ se } \exists a \in A \text{ t.c. } a \geq M \quad \forall M \in \mathbb{R}$
- \circ infA = $-\infty$ se $\exists a \in A$ t.c. $a \leq M \quad \forall M \in \mathbb{R}$

- $\circ \text{ supA} = L \in \mathbb{R} \text{ se}$:
 - a è maggiorante
 - $\forall \epsilon>0$ $\exists a\in A$ t.c. $a\geq L-\epsilon$ (se sposto di una quantità infinitesimale L verso A , trovo un elemento di A che è maggiore di L)

Esempi:

$$A = [0,1] \cup (2,3) \cup \{4\}$$

- $-\inf A = \min A = 0$
- $-\sup A=\max A=4$

Definizione 2: Grafico di una funzione

Si dice grafico di f è il sottoinsieme del prodotto $A \times B$

$$graf\left(f\right)=\left\{ \left(a,b\right)\in A\times B:f\left(a\right)=b\right\}$$
 per proprietà
$$graf\left(f\right)=\left\{ \left(a,f\left(a\right)\right):a\in A\right\}$$
 per elenco

2.11 Intervalli

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

Limitato con massimo e minimo

$$[a,b) = \{x \in R : a \le x < b\}$$

Limitato con minimo ma senza massimo

$$(a, b) = \{x \in R : a < x < b\}$$

Limitato ma senza massimo e minimo

3 Principio di induzione

Principio che non si può dimostrare e necessita di due ingredienti

- \circ Insieme dei numeri naturali $\mathbb N$
- o P_n = affermazione che contenga al suo interno un paramentro $n \in \mathbb{N}$ che sia vera o falsa

Esempi:

o
$$n^2 = n + 6$$
 -vera solo per $n = 3$

o $2^n \geq n+6$
 →vera per $n \geq 4$ →necessita principio di induzione

 \circ Se A contene n elementi allora P(a) contiene 2^n elementi

Principio di induzione consiste in due passi fondamentali:

- \circ Passo base Supponiamo che l'affermazione P_0 sia vera
- o Passo intuitivo Per qualsiasi $n \in \mathbb{N}$ Se P_n è vera, allora P_{n+1} è vera

NB: il punto di partenza **conta**

- o $Passo\ base$ Supponiamo che l'affermazione P_{2022} sia vera
- o Passo intuitivo Per qualsiasi $n \in \mathbb{N}$ Se P_n è vera, allora P_{n+1} è vera
- ∘ Allora P_n è vera $\forall n \in [2022, \infty]$. Devo controllare manualmente che sia vera anche per [0, 2022]

NB: la dimostrazione procede come cascata del domino

- o $Passo\ base$ Supponiamo che l'affermazione P_{2022} sia vera
- o Passo intuitivo Per qualsiasi $n \in \mathbb{N}$ Se P_n è vera, allora P_{n+1} è vera $\forall n \geq 1$
- Dimostrazione non procede perchè paso base non vale per n=0

3.1 Dimostrazione 1

Dimostrazione che $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$

- o Passo base Verifico che P_0 è vera \rightarrow basta sostituire $0 = \frac{0.1}{2}$
- $\circ\,$ Visto che P_n è vera per hpscrivo che

$$\underbrace{[0+1+2+3\ldots+n] + (n+1)}_{\text{somma dei primi n+1 numeri}} = \frac{n(n+1)}{2} + (n+1)$$

o Raccolgo a destra e ottengo

$$\sum_{k=0}^{n+1} k = \frac{(n+2)(n+1)}{2}$$

In alternativa posso usare il metodo di gauss per verificare questa hp. (Divido i numeri da 0 a n in due e li sovrappongo al contrario)

Dimostrazione 2

Dimostrazione che $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

• Passo base $\sum_{k=0}^{0} k^2 = \frac{0.1.1}{6} = 0$

$$\underbrace{\left[0^{2}+1^{2}+2^{2}+3^{2}+4^{2}\dots n^{2}\right]}_{\text{Ho dimostrato quanto vale in passo base}}(n+1)^{2}=\underbrace{\frac{n\left(n+1\right)\left(2n+1\right)}{6}}_{\text{Ho dimostrato quanto vale in passo base}}+\left(n+1\right)^{2}$$

 $f(n) = \frac{(n+1)(2n+1)}{6}$ $f(n+1) = \frac{(n+1)(n+2)(2n+3)}{6}$ $f(n+1) = f(n) + (n+1)^2$

$$\frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(n(2n+1)+6(n+1))}{6}$$

 $(n+1)(2n^2+7n+6) = (n+1)(2n^2+7n+6)$

o Applico algebra e dimostro che

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Dimostrazione 3

Dimostrazione che $\sum_{k=1}^{n} a^k = \frac{a^{n+1}-1}{a-1}$

 \circ Passo base $1 = \frac{a-1}{a-1}$

$$[1+a+a^2 \dots a^{k+1}] = \frac{a^{n+1}-1}{a-1} + (a)^{n+1}$$

Dimostrazione 4

Dimostrazione che $2^n \ge n \quad \forall n \in \mathbb{N}$

 \circ Passo base verificato $2^0 \ge 0$

0

$$2^{n+1} \ge n+1 \to 2 \cdot \underbrace{2^n}_{\ge n} \ge n+1$$

 $2 \cdot 2^n > 2n$ dato che $2^n > n$ per hp

3.5 Disuguaglianza di bernulli

Formula 1: Disuguaglianza di Bernoulli

$$(1+x)^n \ge 1 + nx \quad \forall n \in \mathbb{N} \quad x > -1$$

- o Passo base verificato
- o Passo induttivo

$$\underbrace{(1+x)^{n+1}}_{(1+x)^{n}(1+x)} \ge 1 + x(n+1)$$

4 Proprietà dei numeri reali

- o Proprietà algebriche
- o Proprietà ordinamento
- o Assioma di continuità

4.1 Proprietà algebriche somma

- o Proprietà commutativa $a + b = b + a \quad \forall a, b \in \mathbb{R}$
- Esistenza elemento neutro $\exists 0 \in \mathbb{R} \text{ t.c } a + 0 = a$
- Esistenza elemento opposto $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \text{ t.c.} a + b = 0$

4.2 Proprietà algebriche prodotto

- o Prorpietà commutativa $a \cdot b = b \cdot a \forall a, b \in \mathbb{R}$
- o Esistenza elemento neutro $\exists 1 \in \mathbb{R} \text{ t.c } a \cdot 1 = a$
- Esistenza elemento opposto $\forall a \in \{\mathbb{R} \{0\}\}\$ $\exists b \in \mathbb{R} \text{ t.c. } a \cdot b = 0$
- Proprietà distributiva a(b+c) = ab + bc

4.3 Proprietà ordinamento

- \circ Riflessiva se $x \leq x$

- \circ se $y \leq x$ allora $zy \leq zx \quad \forall z \in \mathbb{R}^+$

4.4 Assioma di continuità

Assioma 2: Assioma di continuità

Siano A e B due sottoinsiemi non vuoti dei numeri reali. Supponiamo che ogni elemento di A sia minore o uguale a B. Per quando i due insiemi siano vicini esiste almeno un numero reale che stia fra a e b ossia:

$$\exists c \in \mathbb{R} \text{ t.c.} \quad a \leq c \leq b \quad \forall a \in A, b \in B$$

Se C appartiene sia ad A che a B questo elemento è unico NB: l'assioma di continuità vale per i numeri reali $\mathbb R$ ma non vale per i razionali $\mathbb R$ ad esempio con i due insiemi seguenti

$$A = \left\{ x \in \mathbb{R} : x \le 0ex^2 < 2 \right\} \tag{1}$$

$$B = \left\{ x \in \mathbb{R} : x \ge 0ex^2 > 2 \right\} \tag{2}$$

Unico elemento separatore è $\sqrt{2}$, numero che è reale

NB: c può essere unico nel caso di insiemi che hanno come intersezione c stesso ma anche in insiemi con intersezione vuota: es R^- e R^+

Definizione 3: Densità degli insiemi

Siano A e B insiemi non vuoti. Si dice che A è denso in B se per ogni elemento $b_1, b_2 \in B$ esiste un elemento in A tale che $b_1 \leq a \leq b_2$

Definizione 4: Maggiorante e minorante

Si dice che un numero k reale è un <u>maggiorante</u> del sottoinsieme A se $k \ge a \forall a \in A$ Si dice che un numero k reale è un <u>minorante</u> del sottoinsieme A se $k \le a \forall a \in A$

NB: maggioranti e minoranti non devono esistere necessariamente ad esempio in \mathbb{R}^+ o in \mathbb{N} non esiste maggiorante

NB: se esistono, maggioranti e minoranti non sono unici

Definizione 5: Insiemi limitati superiormente/inferiormente

Dato un insieme A non vuoto questo di dice limitato superiormente su esiste un suo maggiorante

Dato un insieme A non vuoto questo di dice limitato inferiormente se esiste un suo minorante

Dato un insieme A non vuoto questo di dice limitato se esiste un suo maggiorante e un suo minorante

 $A \in \mathbb{R}$ $A \neq \emptyset$ è limitato se e solo se $\exists k \in \mathbb{R}$ t.c. $|a| \leq k \forall a \in A$

Definizione 6: Massimo/minimo insieme

Sia $A \in \mathbb{R}$ non vuoto si dice che $M \in \mathbb{R}$ è massimo di A e si indica con M = max(A) se:

 $\circ \ a \leq M \quad \forall a \in A \text{ ossia M è un maggiorante}$

 $\circ M \in A$

NB: se un insieme ha massimo o minimo, questi sono necessariemente unici

5 Polinomi

P(x) nella variabile x di grado k è un oggetto del tipo

$$p(x) = a_0 + \sum_{k=1}^{n} a_k z^k$$

5.1 Operazioni polinomi

5.1.1 Somma Polinomi

Considero P(x) e Q(x), rispettivamente di grado n e m con $n \le n$

o Completo P(x) i modo tale che abbia esponenti fino a m

$$P(x) = \sum_{k=0}^{n} a_k x^k + \sum_{k=n+1}^{m} a_k x^k$$

o Somma è uguale a:

$$(p+q)(x) = \sum_{k=0}^{n} (a_k + b_k) x^k$$

$$Q\left(x\right) = b_0 + \sum_{k=1}^{n} a_k$$

5.1.2 Moltiplicazione

Dato un polinomio P(x) e un fattore $k \in \mathbb{R}$

5.1.3 Moltiplicazione fra polinmoni

Praticamente applico proprietà distributiva

5.2 Divisione fra polinomi

Dato $P(x) \in Q(x) \text{ con } Q(x) \neq 0$

$$f\left(x\right) = \frac{P\left(x\right)}{Q\left(x\right)}$$

Teorema 3: Divisione fra polinoma

Dati due polinomi $P_1(x), P_2(x)$ di grado n e m con $n \geq m$ esistono 2 polinomi Q(x) eR(x) tali che

$$P_{1}(x) = P_{2}(x) Q(x) + R(x)$$

Il grado di R è strettamente minore del grado di P_2

5.2.1 Algoritmo standard divisione

- \circ Scrivo polinomio completo ($12x^3+0x^2+x+6$)
- \circ Divido grado massimo di (P(x)) per grado massimo di Q(x)
- o Moltiplico risultato ottenuto e sottraggo con ultimo polinomio ottenuto a sx

Tabella 1: Divisione fra polinomi

5.2.2 Algoritmo di ruffini

Algoritmo utilizzabile solo se il divisore è di grado 1, nella forma D(x) = ax + c con a = 1

- o Scrivo polinomio da dividere completo in alto
- o Scrivo opposto termine noto divisore in basso a sinistra
- o Riporto il primo termine del polinomio da dividere
- o Moltiplico fila in basso per termine a sinistra
- o Sommo fila 1 con fila due
- Resto è cella in basso a destra

Tabella 2: Teorema di ruffini

$$\frac{x^3 + 4x + 1}{(x-1)} = (x^2 + x + 5) + \frac{6}{(x-1)}$$

Teoremi utili:

Teorema 4: Divisione per polinomio di grado 1

Dati due polinomi P(x) e Q(x) = x - c condizione necessaria e sufficiente affinchè P(x) sia divisibile per Q(x) è che P(c) = 0, in quanto posso scrivere P(x) come $(x - c) \cdot (\ldots)$

Definizione 7: Radice di un polinomia

Definizione: Se a e tale per cui P(a) = 0, a viene detto **radice** del polinomio P(x)

Esempio 2 $f: \mathbb{R} \to \mathbb{R}$

- o Non è iniettiva
- o Non è surgettiva

5.3 Dimostrazione teorema fondamentale dell'algebra

Dato un polinomio P(x) di grado n, questo ammette al massimo n radici distinte

- Passo base: n = 0 quindi P(x) = k con $k \neq 0$
- o Passo induttivo: Supponiamo che il polinomio P(x) di grado (n+1) sia divisibile per (x-a). P(x) sarà del tipo:

$$P(x) = \underbrace{(x-a)}_{\text{Soluzione 1 Grado n per hp}} \underbrace{Q(x)}_{\text{Poluzione 1 Grado n per hp}}$$

 $\circ P(x)$ ha dunque n+1 soluzioni

5.4 Polinomio irreducibile

Teorema 5: Irriducibilità dei polinomi

Un polinomio P a coefficienti reali di grado $x \ge 1$ è detto irriducibile se non esiste un polinomio D di grado n con 0 < m < n che divida esattamente P

NB: nei numeri reali i soli polinomi irreducibili sono quelli di grado 1 o di grado 2 con Δ negativo

NB: se i coefficienti del polinomio p(x) sono numeri interi, le sue radici vanno cercate fra i sottomultipli interi del termine noto di P(x).

6 Funzioni e grafici

6.1 Grafico di una funzione

NB: Cartesio era un bastardo e bullizzava Fermat

6.2 Definizione operative

6.2.1 Iniettività

Una funzione $f: \mathbb{R} \to \mathbb{R}$ è iniettiva se e solo se:

- o $\forall \lambda \in \mathbb{R}$ l'equazione $f(x) = \lambda$ ha al massimo una soluzione
- \circ In modo equivalente , f è iniettiva se il suo grafico incontra ogni retta parallela all'asse delle x al più in un punto

6.2.2 Surgettività

Una funzione $f: \mathbb{R} \to \mathbb{R}$ è surgettiva se e solo se:

- $\circ \ \forall \lambda \in \mathbb{R} \quad f(x) = \lambda \text{ ha almeno una soluzione}$
- $\circ\,$ In modo equivalente, f è surgettiva se ogni retta parallela all'asse delle x incontra il suo grafico in almeno un punto

6.2.3 Esempi

Esempio 2 $f: \mathbb{R} \to \mathbb{R}$

Esempio 2 $f: \mathbb{R} \to [0, \infty)$

- o Non è iniettiva
- o Non è surgettiva

- o Non è iniettiva
- o E' suriettiva

Esempio 3:
$$f:[0,\infty)\to\mathbb{R}$$

Esempio 3: $f:[0,\infty)\to[0,\infty)$

- \circ E' iniettiva
- o Non è surgettiva

- o E' iniettiva
- o E' surgettiva

6.3 Operazioni sui grafici

- $\circ f(x) \to f(x) + x$ traslazione in verticale (se c è positivo verso l'alto)
- o $f\left(x\right) \rightarrow f\left(x+c\right)$ traslazione in orizzontale (se c è positivo verso sinistra)
- o $f(x) \rightarrow -f(x)$ diventa speculare rispetto ad asse x
- o $f\left(x\right)\rightarrow f\left(-x\right)$ diventa speculare rispetto all'asse y
- o $f\left(x\right)\rightarrow\left|f\left(x\right)\right|$ ogni parte negativa diventa ribaltata verso l'alto
- o $f\left(x\right)\rightarrow f\left(|x|\right)$ la parte del grafico con $x\geq 0$ viene riflessa rispetto all'asse y

GRAFICO:

6.4 Risoluzione di equazioni per via grafica

Esempio 1:

$$||x| - 1| = \frac{1}{2}$$

Esercizio: determinare al variare di $\lambda \in \mathbb{R}$ quali sono le soluzioni dell'equazione

$$\left| \left(x+3 \right)^3 - 2 \right| = \lambda$$

- Potenze, esponenziali, funzioni trigonometriche
- 7.1 Potenze pari

7.2 Potenze dispari

OSS: se una funzione f(x) è iniettiva e a=b allora f(a)=f(b). Se a>b allora f(x)>f(b) se f è crescente

7.3 Esponenziale e logaritmo

 $e^x + e^y = e^{x+y}$ $(e^x)^y = e^{xy}$

7.4 Funzioni trigonometriche

7.4.1 Inverto il seno

Il seno non è ne iniettivo ne surgettivo a meno che non lo consideri come:

$$f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to [-1,1]$$

Il coseno non è ne iniettivo ne survettivo a meno che non lo si consideri come:

$$f:[0,\pi] \to [-1,1]$$

7.5 Funzioni iperboliche

$$\cosh = \frac{e^x + e^{-x}}{2} \to pari$$

$$\sinh = \frac{e^x - e^{-x}}{2} \to dispari$$

$$\tanh = \frac{\sinh}{\cosh} \to dispari$$

7.6 Formule trigonometria iperbolica

Queste formule sono molto simili alle formule della trigonometria tradizionale

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\sinh(2x) = \frac{e^{2x} - e^{-2x}}{2} = \frac{(e^x)^2 - (e^{-x})^2}{2} = \frac{(e^x - e^{-x})(e^x + e^{-x})}{2} = 2\sinh(x)\cosh(x)$$

Formula fondamentale della trigonometria

$$\sinh^2 x = \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{e^2 + e^{2x} - 2}{4}$$

$$\cosh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 = \frac{e^2 + e^{2x} + 2}{4}$$

$$\cosh^2 x - \sinh^2 x = 1$$

- 8 Esercizi
- 8.1 Esercizio 1

Teorema 6: Insiemi limitata

Se un insieme $S \neq \emptyset$ è <u>limitato superiormente/inferiormente</u> esso ammette <u>estremo</u> superiore/inferiore

Dato un un insieme S limitato inferiormente ma non superiormente e un insieme L costituito da tutti i minoranti di S allora

$$\sup L \text{ esiste e } \sup L = \inf A$$

 \circ L'insieme S denota tutti i maggioranti di L

$$y \ge x \quad \forall y \in S, x \in L$$

- o Vito che L ammette maggioranti, esso è limitato superiormente e per il teorema 8.1 ammette estremo superiore sup $L=\beta$
- \circ Visto che l'insieme S denota i maggioranti di L, allora

se
$$x < \beta \rightarrow \text{ x non è maggiorante } \rightarrow x \not\in S$$

al contrario, tuttavia

se
$$x \in S \to x \ge \beta \to \beta$$
 è minorante di S

o Se prendo $\epsilon > \beta$ so che questa non appartiene a L in quanto è più grande di un suo maggiorante, dunque

se
$$\epsilon > \beta \to \epsilon \not\in L \to \ \, \text{non è minorante di S}$$

- \circ Dunque β :
 - 1. E minorante di S
 - 2. Se $\epsilon > \beta \to \epsilon$ non è minorante di S

 β è dunque estremo inferiore di S

$$supL = infS = \beta$$

8.2 Esercizio 2

Dato l'insieme

$$A = \left\{ a_n = \frac{\cos(\pi n)}{n^2 + 1}, \quad n \in \mathbb{N} \right\}$$

si determini limite superiore, inferiore, massimo e minimo se presenti.

• Scrivo qualche termine

$$a_0 = 1, a_1 = -\frac{1}{2}, a_2 = \frac{1}{5}, a_3 = -\frac{1}{10}, a_4 = \frac{1}{17}$$

Osservo che

$$|a_n| > |a_n + 1| \quad \forall n \in \mathbb{N}$$

- $\circ |a_n| = \left| \frac{\cos(\pi n)}{n^2 + 1} \right| = \frac{1}{n^2 + 1}$ in quanto $\cos(\pi n)$ è sempre uguale a ± 1
- o Risolvo disequazione \rightarrow è vera $\forall n \in \mathbb{N}$

$$\frac{1}{n^2 + 1} \ge \frac{1}{(n+1)^2 + 1}$$

• Visto che la successione decresce in valore assoluto posso affermare che

Estremo superiore	1
Estremo inferiore	$-\frac{1}{2}$
Massimo	1
Minimo	$-\frac{1}{2}$

8.3 Esercizio 3

Dato l'insieme

$$A = \left\{ a_n = \frac{N^2 - 5}{n^2 + 2}, \quad n \in \mathbb{N} \right\}$$

si determini limite superiore, inferiore, massimo e minimo se presenti.

o Scrivo qualche termine

$$a_0 = \frac{5}{2}, a_1 = -\frac{4}{3}, a - 2 = -\frac{1}{6}, a_3 = \frac{4}{11}$$

o Noto che termini sono crescenti e lo verifico risolvendo la disequazione:

$$\frac{(n+1)^2 - 5}{(n+1)^2 + 2} > \frac{n^2 - 5}{n^2 + 2}$$
$$\frac{14n + 7}{(n^2 + 2)\left((n+1)^2 + 2\right)} > 0 \quad \forall n \in \mathbb{N}$$

- o Noto che $\lim_{n\to\infty}\frac{n^2-5}{n^2+2}=1$ dunque è probabile che 1 costituisca l'estremo superiore. Verifico che ciò è vero nel seguente modo:
 - Ricordo definizione estremo: β è estremo superiore se:

$$\forall \varepsilon > 0 \quad \exists x \in A \text{ t.c. } x > \beta - \varepsilon$$

– Se la disequazione seguente ha soluzione per almeno un $n \in \mathbb{N}$, allora vuol dire che esiste un $n \in A$ t.c. $a_n > \beta - \varepsilon$

$$1 - \varepsilon < \frac{n^2 - 5}{n^2 + 2}$$

$$n > ($$
 int $)\sqrt{\frac{7}{\varepsilon} - 2} + 1$

— La disequazione ha soluzioni per ogni valore positivo di ε e β è un <u>estremo</u> superiore

Estremo superiore	1
Estremo inferiore	$-\frac{5}{2}$
Massimo	no
Minimo	$-\frac{5}{2}$

9 Numeri complessi

9.1 Forma cartesiana

Un numero completto è un oggetto del tipo

$$a$$
 + b a
Parte reale Parte immaginaria

dove a e b sono numeri reali e i è un numero tale che $i^2 = -1$

- o L'asse y è detta asse immaginaria
- Un numero con parte i mmaginaria nulla è detto puro

9.2 Somme e differenze

Dati z = a + bi, $w = c + di \in \mathbb{C}$ la loro somma è data da:

$$(a+c) + (b+d)i$$

9.3 Prodotto

Si usa la proprietà distributiva per il fatto che $i^2 = -1$

$$z * w = (a + bi) (c + di) = ac + adi + bci + bd \underbrace{i^2}_{=-1}$$

9.4 Reciproco

Dato un numero $z \in \mathbb{C}$, al fine di calcolarne il reciproco $\frac{1}{z}$ posso razionalizzare, in modo da ottenere un numero in forma cartesiana

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2}$$

9.5 Divisione

Per effettuare una divisione fra numeri complessi trovo il reciproco del divisore e effettuo la divisione

$$\frac{c+di}{a+bi} = \frac{(ca+bd)}{a^2+b^2} + \frac{ad-^3}{a^2+b^2}i$$

9.6 Definizioni

Definizione 8: Numeri coniugata

Dato z = a + bi si dice coniugato di z e si indica con \overline{z} un numero uguale a

$$a - bi$$

o $z*\overline{z}=(a+bi)\,(a-bi)=a^2+b^2=|z|^2$ quindi ho come consequenza che $\frac{1}{z}=\frac{\overline{z}}{|z|^2}$ o

Definizione 9: Modulo numero complesso

Dato z = a + bi si dice il modulo di z il numero

$$|z| = \sqrt{a^2 + b^2}$$

10 Rappresentazione trigonometrica

Posso rappresentare il numero complesso z=a+bi tramite coordinate polari, ossia angolo e distanza dall'origine

Ad esempio, per un $z\in\mathbb{C}$ che dista ρ dall'origine e con l'asse x crea un angolo di θ so che questo numero avra coordinate cartesiane

$$\rho\cos\theta + \rho\sin\theta$$

Se invece ho un $z \in \mathbb{C}$ di coordinate polari $\rho \cos \theta + \rho \sin \theta$ la rappresentazione cartesiana è

$$\begin{cases} \arctan\left(\frac{b}{c}\right) & \text{se } -\frac{\pi}{2}\theta\frac{\pi}{2} \\ \arctan\left(\frac{b}{c}\right) + \pi & \text{se } \theta < -\frac{\pi}{2} \text{ o } \theta > \frac{\pi}{2} \end{cases}$$

10.1 Argomento di un numero complesso

L'argomento di un numero complesso è l'angolo che questo formerebbe con l'asse ${\bf x}$ se rappresentato in coordinate polari

10.1.1 Prodotto in forma trigonometrica

$$z = \rho (\cos \theta + \sin \theta)$$
 $w = r (\cos \alpha + \sin \alpha)$
 $zw = \cos (\theta + \alpha) + \sin (\theta + \alpha)$

10.1.2 reciproco in forma trigonometrica

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{\rho\left(\cos\left(-\theta\right) + \sin\left(-\theta\right)\right)}{\rho^2} =$$

10.1.3 Divisione in forma trigonometrica

$$\frac{z}{w} = z * \frac{1}{w} = \dots = \frac{\rho}{r} \left[\cos \left(\theta - \alpha \right) + i \sin \left(\theta - \alpha \right) \right]$$

10.2 Forma esponenziale

Un numero complesso di coordinate polari (ρ, θ) è espresso nel seguente modo:

$$z = \rho e^{i\theta}$$

Formula di passaggio fra forma trigonometrica e esponenziale:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

10.3 Potenza di un numero complesso

Se
$$z = \rho (\cos \theta + i \sin \theta)$$

$$z^{n} = \rho^{n} \left(\cos \left(n\theta \right) + i \sin \left(n\theta \right) \right)$$

Se
$$z = \rho e^{i\theta}$$

$$z^n = \rho^n e^{in\theta}$$

Dimostrazione per induzione

$$z^{n+1} = z \cdot z^n = z \left(\rho^n \left(\cos \left(n\theta \right) + i \sin \left(n\theta \right) \right) \right) = \rho^{n+1} \left\{ \cos \left[\left(n+1 \right) \theta \right] + i \sin \left[\left(n+1 \right) \theta \right] \right\}$$

10.3.1 Esempio potenza

$$(1+i)^6$$

o Metodo 1 - faccio binomio di Newtoon - roba da matti

$$z = \sqrt{2}e^{i\frac{\pi}{4}}$$
$$(1+i)^6 = \sqrt{2}e^{i\frac{\pi}{4}} = \sqrt{2}^6e^{i\frac{\pi}{4}6} = 8e^{i\frac{3}{2}\pi} = -8i$$
$$(1+i)^{6000} = 2^{3000}e^{i\frac{\pi}{4}6000} = 2^{3000}$$

10.4 Radici dei numeri complessi

Definizione 10: Radici dei numeri complessi

Dato un numero complesso $a\in\mathbb{C}$, le radici complesse n-esimi sono tutti i numeri complessi $z\in\mathbb{C}$ tali che $z^n=a$

NB: se $a \neq 0$ esistono sempre n numeri complessi z che verificano l'equazione $z^n = a$. Questi numeri coincidono con i vertici di un poligono regolare di n lati con centro nell'origine

Supponiamo che $a = re^{i\phi}$ e $z = \rho e^{i\theta}$.

$$z^n = a \rightarrow \rho^n e^{in\theta} = re^{i\phi}$$

Per soddisfare uguaglianza devo avere:

- \circ Stesso modulo $\rho^n = r$
- Stesso argomento $n\theta = \phi + 2k\pi$ $k \in \mathbb{Z}$

ossia rispettivamente

$$\circ \rho = \sqrt[n]{r}$$

$$\circ \ \theta = \frac{\phi}{n} + 2\pi \frac{k}{n}$$

NB: ottengo valori diversi solo per $k \in [0, n-1]$

____Incomprensione - 11.22.37_

Esercizio Trova le radici seste di -i

o Ciò corrisponde a risolvere l'equazione

$$z^n = -i$$

$$\circ -i = 1e^{\frac{3}{2}\pi}$$

• Le soluzioni sono:

$$\begin{cases} \rho = 1 \\ 6\phi = \left(\frac{3}{2}\pi + 2k\pi\right) \end{cases}$$

Il teorema fondamentale dell'algebra

Per polinomi a coefficienti reali P(x) sapevamo che:

 $P(x) = c_n x^n + c_{n-1} x^{n-1} \dots + c_1 x^1 + c_0$ $c_n \in \mathbb{R}$ polinomio di grado n a coefficienti reali. Ha al massimo n soluzioni.

Definizione 11: Radice di un nolinomio

Dato un polinomio a coefficienti complessi $\alpha \in \mathbb{C}$ si dice radice di P(z) se $P(\alpha) = 0$

Definizione 12: Molteplicità radice

Si diche che $\alpha \in \mathbb{C}$ è una radice di P(x) di molteplicità $\mu \in \mathbb{N}$ se é è divisibile per $(x - \alpha)^{\mu}$

Per un polinomio a coefficienti complessi devi ridefinire il teorema fondamentale dell'algebra:

 $P(x)=c_nx^n+c_{n-1}x^{n-1}\ldots+c_1x^1+c_0$ $c_n\in\mathbb{C}$ polinomio di grano n a coefficienti complessi. Ha esattamente n soluzioni

quindi

${f Teorema~7:~}$ Teorema fondamentale dell'algebra

Ogni polinimio p(x) di grado n a coefficienti complessi ha <u>esattamente n radici</u> complesse eventualmente contando le rispettive moltepliicità

Ogni polinomio a coefficienti complessi può essere scritto come prodotto di fattori di grado 1

$$P(z) = a_k x^k \dots a_1 x + a_0 = a_n (z - \alpha_1)^{\mu_1} (z - \alpha_2)^{\mu_2}$$

dove $\alpha_1, \alpha_2 \dots \alpha_n$ sono radici $\in \mathbb{C}$ di P(z)

Teorema 8: Radici complesse coniugate

Sia $P\left(z\right)$ polinomio a coefficienti reali. Se $z\in\mathbb{C}$ è radice di $P\left(z\right)$ allora anche \overline{z} è radice di $P\left(z\right)$

- o Se $\alpha \in \mathbb{C}$ è radice di P
 con moltepicità $\mu \in \mathbb{N}$ allora $\overline{\alpha} \in \mathbb{C}$ è radice di P
 con molteplicità μ

Dimostrazione:

- $\circ P(x) = \sum_{k=0}^{n} a_k x^k \quad P(\alpha) = 0 \text{ per hp.}$
- $\circ P(\alpha) = \sum_{k=0}^{n} a_k \alpha^k = 0 i$

_Incomprensione - 09:48:11_____

Ogni polinomio reale di grado n è prodotto di fattori di grado 1 e di fattori irreducibili di grado 2

o I fattori di grado dure rappresentano coppie di radici complesse coniugate eventualmente con molteplicità

Incomprensione - 10:00:29_

- 12 Successione numeri reali
- 12.1 Frequenza variabili

Definizione 13: Fregentemente

Si dice che una variabile P_n + vera (o falsa) frequentemente se + vera per infiniti valori di $n \in \mathbb{N}$

Definizione 14: Definitivamente

Si dice che una variabile P_n è definitivamente se

$$\exists n_0 \in \mathbb{N} \text{ t.c.} \quad P_n \text{ vera } \forall n \geq n_0$$

NB: se una variabile è vera definitivamente lo è anche frequentemente. Ma non vale il contrario:

$$\left(-2\right)^2 \ge 7$$

- Vera frequentemente
- o Falsa frequentemente
- o Non è ne vera ne falsa definitivamente

12.2 Successione di numeri naturali

Definizione 15: Successione di numeri naturali

E una funzione in cui l'insieme iniziale sono i numeri
 $\underline{\text{naturali}}$ e l'insieme finale sono i nueri reali

$$f: \mathbb{N} \to \mathbb{R}$$

il termine n-esimo della succesione si indica con f_n

NB: la seguente non è una successione:

$$a_n = \frac{1}{n - 2022}$$

in quanto per n=2022risulta $\frac{1}{0}$ che non è definito, per questo usiamo una definizione più accomodante

Definizione 16: Successione di numeri reali accomodante

Consideriamo succeesione di numeri reali quelle che sono vere almento definitivamente, ossia che siano definite da un determinato indice n_0 in poi

Esempi:

 $\circ \ a_n = \frac{1}{n+5}$ vera in senso classico

o $b_n = \frac{1}{n-5}$ vera in senso accomodante per $n \ge 6$

o $c_n = \sqrt{n - 2022}$ vera in senso accomodante per $n \ge 2022$

o $b_n = \sqrt{2022 - n}$ non è una successione $\to \not\equiv n_0$ t.c. b_n vera $\forall n \geq n_0$

12.3 Rappresentazione di successioni

Posso rappresentare successioni come normali funzioni, quindi traite grafico

 \circ Tramite grafico (n, f(n))

$$f\left(n\right) = a_n = \frac{1}{n}$$

35

- o Sulla retta dei numeri reali:
- o Rapppresentazione dinamica: i mmagino di accendere una lampadina ogni tot secondi e in corrispondenza dell'accensione segno il valore della funzione

12.4 Limite di una successione

Una successione ha 4 possibilità:

- $\circ \lim_{n\to\infty} a_n = l \in \mathbb{R} \text{ ossia } a_n \to l$
 - $-\lim_{n\to\infty} a_n = l^+$ ossia ha $a_n \ge l$ definitivamente
 - $-\lim_{n\to\infty}a_n=l^-$ ossia $a_n\leq l$ definitivamente
 - $-\lim_{n\to\infty} a_n = l$ oscillando intorno al valore
- $\circ \lim_{n\to\infty} a_n = +\infty \text{ ossia } a_n \to \infty$
- $\circ \lim_{n\to\infty} a_n = -\infty \text{ ossia } a_n \to -\infty$
- o $\lim_{n\to\infty} a_n$ NON esiste ossia a_n non ha limite

Definizione formale di limite

Definizione 17: Limite infinite

Si diche che $a_n \to +\infty$ se

$$\forall M \in \mathbb{R} \exists a_m \text{ t.c. } a_m \geq M$$

ossia $a_m \ge M$ definitivamente

Si dice che $a_n \to -\infty$ se

$$\forall M \in \mathbb{R} \exists a_m \le M$$

ossia $a_m \ge M$

Definizione 18: Limite se tenda a numero finito

Si dice che $a_n \to l \in \mathbb{R}$

$$\forall \epsilon \ge 0 \quad l - \epsilon \le a_n \le l + \epsilon$$

ossia

$$|a_n - l| \le \epsilon$$
 definitivamente

12.4.1 Errori comuni

- o Se $a_n \to \infty$ allora è definitivamente crescente. NO: potrei avere una successione che somma 2 e scende di 1 all'infinito
- o Se $a_n \to 0$ allora tende o a 0+ o a 0-. NO: vedi $\frac{(-1)^n}{n}$
- o Se a_n non è limitata superiormente allora $a_n \to \infty$. NO: vedi $(-2)^n$

12.5 Esempi

Esempio 1

$$a_n = n^2$$

Dimostriamo che $a_n \to \infty$ 2 casi:

$$\circ$$
 Se $M \leq 0 \rightarrow n^2 \geq M$ sempre

$$\circ \text{ Se } M \ge 0 \to n^2 \ge M \Leftrightarrow n \ge \sqrt{M}$$

Esempio 2

$$a_n = \sqrt{n}$$

Dimostriamo che $a_n \to \infty$ 2 casi:

$$\circ$$
 Se $M \leq 0 \rightarrow \sqrt{n} \geq M$ sempre

$$\circ \ {\rm Se} \ M \geq 0 \ {\rightarrow} \sqrt{n} \geq M \Leftrightarrow n \geq M^2$$

$$\lim_{n \to \infty} n^a = \infty \quad \forall a \ge 0$$

Esemipio 3

$$\lim_{n \to \infty} \frac{1}{n} = o^+$$

Devo verificare che

$$\forall \epsilon > 0 \quad 0 < \frac{1}{n} \ge \epsilon$$

o $a < \frac{1}{n}$ definitivamente in quanto n è naturale

$$\circ \frac{1}{n} \le \epsilon \Leftrightarrow \frac{1}{\epsilon} \le n$$

$$\lim_{n \to \infty} n^{\alpha} = 0 \quad \forall \alpha \le 0$$

Teorema 9: Permanenza del segno

Se $a_n \to l > 0$ allora $a_n > 0$ definitivamente

Se $a_n \to l < 0$ allora $a_n < 0$ definitivamente

Dimostrazione

12.6 Unicità del limite

Una successione ha sempre <u>solo uno</u> dei comportamenti descritti in subsec 12.4 <u>Dimo</u>strazione

- o Supponiamo che uno stesso limite tenda a due cose diverse $a_n \to l_1$ e $a_n \to l_2$ con $l_1 \neq l_2$
- \circ Per la definizione di limite il valore del limite deve ricadere in un intorno di l_1 e l_2 . Se questi due intervalli sono sufficientemente piccoli e dunque non hanno punti in comune dovrei avere un punto che sta in due parti contemporaneamente. Ne concludiamo che l'ipotesi sia falsa

12.7 Teoremi sui limiti

Teorema 10: Teorema del confronto a 2

Siano a_n e b_n succesioni. Supponiamo che $a_n \ge b_n$ almeno definitivamente

- \circ Se $b_n \to \infty$ allora $a_n \to \infty$
- \circ Se $a_n \to -\infty$ allora $b_n \to -\infty$

Teorema 11: Teorema del confronto a 3 (dei due carabinieri)

Siano a_n, b_n, c_n successioni tali che $a_n \leq b_n \leq c_n$ almeno definitivamente. Supponiamo che $a_n \to l \in \mathbb{R}$ e $c_n \to l \in \mathbb{R}$ allora $b_n \to l \in \mathbb{R}$

12.8 Errori comuni

o Supponiamo che a $a_n > b_n$ e $a_n \to l_1, b_n \to l_2$. Allora

$$l_1 > l_2$$

o Falso in quanto al limite non si conserva l'uguale. Vedi ad esempio:

$$a_n = \frac{2}{n} \quad b_n = \frac{1}{n}$$

nonostante i termini di a_n siano sempre il doppio di quelli di b_n il loro limite è lo stesso e vale 0. Posso in caso affermare che se $a_n > b_n$ allora $l_1 \ge l_2$

38

12.9 Retta reale estesa

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

Teorema 12: Somma, prodotto e divisione limiti

Siano a_n e b_n successioni reali.

$$a_n \to l_1 \in \mathbb{R} \ e \ b_n \to l_2 \in \mathbb{R}$$

allora

$$a_n + b_n \rightarrow l_1 + l_2$$
 $a_n - b_n \rightarrow l_1 - l_2$
$$a_n b_n \rightarrow l_1 l_2$$

$$a_n^{b_n} \rightarrow l_1^{l_2}$$

$$a_n^{b_n} \rightarrow l_1^{l_2}$$

A meno che non si cada in uno di questi 7 casi speciali:

$$+\infty - \infty$$
 $0 \cdot (\pm \infty) \frac{0}{0} \frac{\pm \infty}{\pm \infty}$
 $0^0 (+\infty)^0 1^{\pm \infty}$

NB: nel caso della successione di tipo $\frac{a_n}{b_n}$ devo stare attento al modo in cui b_n tende a zero: può tendere a $a^+,0^-$ o a 0

12.10 Forma indeterminata

Esempio 1

$$a_n = \underbrace{n^3}_{+\infty} + \underbrace{n^2}_{+\infty} \to +\infty$$

Esempio 2

$$a_n = \underbrace{n^3}_{+\infty} - \underbrace{n^2}_{+\infty} = \underbrace{n^2}_{\infty} \underbrace{(n-1)}_{+\infty-1} \to +\infty$$

Esempio 3

$$a_n = \underbrace{\sqrt{n}}_{+\infty} - \underbrace{\frac{1}{n^3}}_{0} \to +\infty$$

Esempio 4

$$a_n = 2^n$$

Dimostro con disuguaglianza di Bernoulli(sub 3.5):

$$2^n > n + 1$$

dunque visto che $n+1\to\infty$ allora anche $2^n\to\infty$ per teorema del confronto a 2(teo 12.7)

Esempio 5

$$\lim_{n \to \infty} \frac{\arctan(2^n + n!)}{n^2 + 3} = 0$$

$$\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$$

in quanto al numeratore ho valoni finiti e al demonimatore valori infiniti. Posso applicare teorema dei dure carabinieri:

- $0 \le \arctan(2^n + n!) \le \pi$
- \circ Diviso per $n^2 + 3$

$$0 \le \frac{\arctan(s^n + n!)}{\underbrace{n^2 + 3}} \le \frac{\pi}{\underbrace{n^2 + 3}}$$

• Il mio limite deve essere compreso fra 0 e 0, quindi è = 0 per il teorema del confronto a tre (teo 12.7)

Esempio 6

$$\lim_{n \to \infty} \frac{\sqrt{n} - \sqrt[3]{n}}{n + 10^{23}} = \frac{n^{\frac{1}{2}} (1 - n^{-6})}{n} = \frac{1}{\sqrt{n}} (1 - n^{-6}) \to 0$$

12.11 Implicazione i mportante disuquaglianza di bernoulli

Dimostro che

$$\lim_{n \to \infty} a^n = +\infty \quad \forall a > 1$$

o Noto che

$$a^n = (1 + (a - 1))^n$$

o questa quantità per il teorema di bernoulli è maggiore di:

$$(1 + (a - 1))^n \ge 1 + n(a - 1)$$

 $\circ \operatorname{Se} a > 1 \lim_{n \to \infty} n (a - 1) = +\infty$

Se invece ho $a \in (0,1)$

$$\lim_{n \to \infty} a^n \quad \text{con } a \in (0, 1)$$

Visto che $a \in (a,1)$ posso supporre che $a = \frac{1}{b}$ con b > 1

$$a^n = \left(\frac{1}{b}\right)^n = \frac{1}{b^n} \to 0$$

13 Fattoriali e combinatoria

Definizione 19: Fattoriale di un numero

Il fattoriale di un numero è definito nel seguente modo:

$$0! = 1$$

$$(n+1)! = (n+1) \cdot n!$$

in numeri n! rapprentenza il numero di modi in cui posso ordinare n oggetti

Per scegliere n persone posso pensare che

- \circ La prima persona la posso scieglere in n modi
- \circ La seconda in n-1
- \circ La terza in n-2
- \circ ...la k esima in n-k+1

quindi

Definizione 20: Coefficiente binomiale

Dati 2 interi $n, k \quad 0 \le k \le n$, ponto

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Immagino di avere un esercito di n soldati e ne devo estrarre k. Non conta l'ordine con cui gli estraggo

- \circ Il primo soldato lo posso scegliere in n modi
- \circ Il secondo in n-1
- \circ Il terzo in n-2
- $\circ \dots$ il k esimo in n-k+1
- o Devo poi dividere per il le permutazioni possibili visto che l'ordine non conta

numero modi di estrarre
$$=\frac{n(n-1)(n-2)\dots(n-k+1)}{k!}=\binom{n}{k}$$

 \circ Perchè diviso? Pensa al fatto che ogni squadra estratta può essere disposta in k! modi, quindi k! modi vanno considerati come la stessa squadra

13.1 Proprietà dei fattoriali

• Scontate:

$$\binom{n}{0} = \frac{n!}{0!n!} = 1$$

$$\binom{n}{n} = \frac{n!}{n!0!} = 1$$

$$\binom{n}{1} = \frac{n!}{1!(n-1)!} = \frac{n(n-1)!}{(n-1)} = n$$

$$\binom{n}{n} = \frac{n!}{n!0!} = 1$$

$$\binom{n}{n-1} = \frac{n!}{(n-1)1!} = \frac{n(n-1)!}{(n-1)!} = n$$

o Simmetrica: prendere k persona da squadra di n è la stessa cosa che lasciarne fuori n-k :

$$\binom{n}{k} = \binom{n}{n-k}$$

o Generazione ricorsiva binomiale:

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

Dimostrazione

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k! (n-k)!} + \frac{n!}{(k+1) (n-k-1)!}$$

$$= \frac{n!}{k! \underbrace{(n-k)}_{(n-k)(n-k-1)!} + \underbrace{\frac{n!}{(k+1)k!}}_{(k+1)k!}}$$

$$= \frac{n!}{k! (n-k-1)!} \frac{k+1+n-k}{(n-k)(k+1)}$$

A livello combinatorio

- Prendo un gruppo di n persone e tengo separatamente 1
- Per formare un gruppo grande k + 1 posso:
 - 1. Creare un gruppo grande n e poi aggiungerci il nuovo arrivato
 - 2. Creare un gruppo grande n+1 che non contenga il nuovo arrivato
- Nel primo caso posso creare $\binom{n}{k}$ gruppi
- nel secondo caso posso create $\binom{n}{k+1}$ gruppi

13.2 II triangolo di tartaglia

$$\begin{array}{c} & 1\\ & 1 & 1\\ & 1 & 2 & 1\\ & 1 & 3 & 3 & 1\\ & 1 & 4 & 6 & 4 & 1\\ 1 & 5 & 10 & 10 & 5 & 1\end{array}$$

Ogni valore è dato dalla somma dei valori dei termini sopra di esso a sinistra e a destra

Il coefficiente alla riga n nella posizione k è dato da

$$\binom{n}{k}$$

visto che il coefficiente nella posizione n+1, k+1 è uguale al coefficiente nella posizione $n, k \in n, k+1$ noto che questo triangolo verifica la generazione ricorsiva binomiale:

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

Nello sviluppo di un binomio del tipo $(x+y)^n$ il monomio x^ky^{n-k} ha coefficiente $\binom{n}{k}$ ossia:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

La somma dei coefficienti alla riga n è uguale a

 2^n

Dimostrazione:

- o Applico sviluppo del binomio $(x+y)^n$ con x=y=1
- In questo caso so che

$$(1+1)^n = 2^n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k} = \sum_{k=0}^n \binom{n}{k}$$

3 criteri: rapporto, radice, rapporto-radice

14.1 Criterio della radice

- o Sia a_n una successione tale che $a_n \ge 0$ definitavente
- o Supponiamo che se $\sqrt[n]{a_n} \to l \in \mathbb{R} \cup \{+\infty\}$ allora ho 3 possibilità:
 - se l > 1, allora $a_n \to +\infty$
 - se l < 1, allora $a_n \to 0$
 - se l=1 il criterio non fornisce informazioni

14.2 Criterio del rapporto

- o Sia a_n una successione tale che $a_n > 0$ definitivamente
- o Supponiamo che $\lim_{n\to\infty}\frac{a_n+1}{a_n}=l\in\mathbb{R}\cup\{+\infty\}$ allora ho 3 possibilità
 - se l > 1, allora $a_n \to +\infty$
 - se l < 1, allora $a_n \to 0$
 - se l=1 il criterio non fornisce informazioni

14.3 Criterio rapporto ightarrow radice

- $\circ\,$ Sia a_n una successione tale che $a_n>0$ definitivamente
- o Supponiamo che $\frac{a_{n+1}}{a_n} \to l \in \mathbb{R} \cup \{+\infty\}$ allora

$$\sqrt[n]{a_n} \to l$$

ossia $\frac{a_{n+1}}{a_n}$ e $\sqrt[n]{a_n} \to l$ tendono allo stesso $l \in \mathbb{R} \cup \{+\infty\}$

14.4 Dimostrazioni

14.4.1 Dimostrazione criterio radice

- \circ Visto che $\sqrt[n]{a_n} \to l$ necessariamente

$$\sqrt[n]{a_n} \ge \frac{l+1}{2}$$

 \circ Ho quantità positive sia a sinistra che a destra, posso elevare alla n da entrambe le parti, ottenendo:

$$a_n \ge \left(\frac{l+1}{2}\right)^n$$

 \circ Se $l > 1 \left(\frac{l+1}{2}\right)^n \to \infty$

se invece l<1agisco nello stesso modo:

- \circ Prendo punto a metà fra l e 1 $\stackrel{l}{\longrightarrow}$ $\stackrel{l+1}{\longrightarrow}$ $\stackrel{1}{\longrightarrow}$ $\stackrel{1}{\longrightarrow}$
- $\circ~$ Visto che $\sqrt[n]{a_n} \to l$ necessariamente

$$\sqrt[n]{a_n} \le \frac{l+1}{2}$$

 $\circ\,$ Ho quantità positive sia a sinistra che a destra, posso elevare alla n da entrambe le parti, ottenendo:

$$a_n \le \left(\frac{l+1}{2}\right)^n$$

- $\circ \text{ Se } l < 1 \left(\frac{l+1}{2}\right)^n \to 0$
- o Siccome $a_n \geq 0$ per ipotesi allora

$$0 \le a_n \le \left(\frac{l+1}{2}\right)^n$$

44

ossia $a_n \to 0$ per teorema del confronto a tre

14.5 Numero di nepero

Il numero di nepero è definito dal seguente limite

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

14.6 Esempio forme indeterminate

Esempio 1

$$\lim_{n \to \infty} \frac{n^n}{n!} = +\infty$$

Criterio del rapporto:

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

Esempio 2

$$\lim_{n \to \infty} \frac{3^{n^2}}{n!} = +\infty$$

Criterio del rapporto:

$$\frac{a_{n+1}}{a_n} = \frac{3^{(n+1)^2}}{(n+1)!}$$

Esempio 3

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} =$$

Criterio rapporto radice

$$\frac{\sqrt[n]{n!}}{n} = \sqrt[n]{\frac{n!}{n^n}}$$

15 Limiti di funzioni

Definizione 21: Limite di funzione

Data una funzione $f: A \to \mathbb{R}$ $A \subseteq \mathbb{R}$ abbiamo tre tipologie di limite:

$$\lim_{x \to \infty} f(x) \quad \lim_{x \to -\infty} f(x) \quad \lim_{x \to x_0} f(x)$$

Primo tipo:

$$\lim_{x \to \infty} f(x) = \begin{cases} l \in \mathbb{R} \\ +\infty \\ -\infty \\ \text{non esiste} \end{cases}$$

se $\lim_{x\to\infty} f(x) = +\infty$:

$$\forall M \in \mathbb{R} \quad \exists k \in \mathbb{R} \text{ t.c. } f(x) \geq M \forall x \geq k$$

se $\lim_{x\to\infty} f(x) = +-\infty$:

$$\forall M \in \mathbb{R} \quad \exists k \in \mathbb{R} \text{ t.c. } f(x) < M \forall x > k$$

se $\lim_{x\to\infty} f(x) = l$:

$$\forall \epsilon > 0 \quad \exists k \in \mathbb{R} \text{ t.c. } l - \epsilon \leq f(x) \leq l + \epsilon \quad \forall x \geq k$$

ossia

$$|f(x) - l| < \epsilon$$

se $\lim_{x\to\infty} f(x) = l^+$:

$$\forall \epsilon > 0 \quad \exists k \in \mathbb{R} \text{ t.c. } l < f(x) \le l + \epsilon \quad \forall x \ge k$$

se $\lim_{x\to\infty} f(x) = l^-$:

$$\forall \epsilon > 0 \quad \exists k \in \mathbb{R} \text{ t.c. } l - \epsilon \leq f(x) \leq l \quad \forall x \geq k$$

Secondo tipo: molto simile a primo, semplicemnte speculare

Terzo tipo:

$$\lim_{x \to x_0} f(x) = \begin{cases} l \in \mathbb{R} \\ +\infty \\ -\infty \text{ non esiste} \end{cases}$$

se $\lim_{x\to x_0} f(x) = +\infty$:

$$\forall M \in \mathbb{R} \quad \exists \delta > 0 \text{ t.c. } f(x) \geq M \quad \forall x \in [x_0 - \delta, x_0 + \delta] \setminus \{x_0\}$$

se $\lim_{x\to x_0} f(x) = l \in \mathbb{R}$:

$$\forall \epsilon > 0 \quad \exists \delta > 0 \text{ t.c. } |f(x) - l| \le \epsilon \text{ se } x \in [x_0 - \delta, x_0 + \delta] \setminus \{x_0\}$$

15.1 Continuità

Definizione 22: Continuità

Una funzione $f:A\to\mathbb{R}$ con $A\subseteq\mathbb{R}$ si dice continua in un punto $x_0\in A$ se:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

OSS:

- \circ Si dice che f è continua in A se essa è continua in ogni punto di A
- o Le funzioni elementari sono sempre comtinue sul loro dominio
- o Se faccio operazioni algebriche su funzioni continue ottengo funzioni continue
- o La composizione di funzioni continue è continua

15.2 Limiti notevoli

Limiti "nonni"

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \tag{3}$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e \tag{4}$$

Limiti "di seconda generazione"

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1$$

15.3 Cambio di variabile

Esempio 1

$$\lim_{x \to 0} \frac{\sin(x^2)}{x^2}$$

pongo $y = x^2$

$$\lim_{x \to 0} \frac{\sin(x^2)}{x^2} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1$$

Esempio 2

$$\lim_{x \to 0} \frac{e^{\sin(x)} - 1}{\sin(x)}$$

pongo
$$y = \sin(x)$$
; se $x \to 0 \Rightarrow \sin(x) \to 0 \Rightarrow y \to 0$

$$\lim_{x \to 0} \frac{e^{\sin()-1}}{\sin(x)} = \lim_{y \to 0} \frac{e^y - 1}{y}$$

Esempio 3

$$\lim_{x \to \pi} \frac{\log(1 + \sin(x))}{\sin(x)}$$

pongo $y = \sin(x)$; se $x \to \pi \Rightarrow \sin(x) \to 0 \Rightarrow y \to 0$

$$\lim_{x \to \pi} \frac{\log(1 + \sin(x))}{\sin(x)} = \lim_{y \to 0} \frac{\log(1 + y)}{y}$$

Esempio 4

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$

moltiplico e divido per $1 + \cos(x)$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \left(\frac{1 - \cos(x)}{c^2} \cdot \frac{1 + \cos(x)}{1 + \cos(x)} \right) = \lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2} \cdot \frac{1}{1 + \cos(x)} = \lim_{x \to 0} \left(\frac{\sin(x)}{x} \right)^2 \cdot \frac{1}{1 + \cos(x)} = 1 \cdot \frac{1}{2}$$

Limite

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

pongo $x = \log(y+1)$

$$\lim_{y \to 0} \frac{y}{\log(1+y)} = \lim_{x \to 0} \frac{1}{\underbrace{\log(1+y)}}$$

$$\underbrace{\frac{y}{\lim_{y \to 0} |y|}}$$

Limite

$$\lim_{x\to 0}\frac{e^x-1}{x}$$

pongo $a^x = x \log(a)$

$$\frac{e^{x\log(a)}}{r}$$
.

15.4 Ordini di infiniti

$$\lim_{x \to \infty} \frac{\left(\log(x)\right)^a}{x^b} = 0 \quad \forall e > 0, b > 0$$

dimostro facendo cambiodi variabile (im pongo $y = \log(x)$)

$$\lim_{x \to 0^+} x \log (x) = 0$$

pongo $y = \frac{1}{y}$

Dimostrazioe $\lim_{x\to 0} \frac{\sin(x)}{x}$

o Sappaimo che vale la seguente disuguaglianza:

$$\sin(x) \le x \le \tan(x)$$

 \circ Divido per $\sin(x)$

$$1 \le \frac{x}{\sin(x)} \le \frac{1}{\cos(x)}$$

15.6 Altri esempi

Esempio 1

 $\lim_{x \to 0} \frac{\log(\cos(x))}{x^2}$

0

$$\lim_{x \to 0} \frac{\log\left(\cos\left(x\right)\right)}{x^2} = \lim_{x \to 0} \frac{\log\left(\cos\left(x\right) + 1 - 1\right)}{x^2}$$

 \circ Moltiplico e divito per $\cos(x) - 1$

$$\lim_{x \to 0} \frac{\log (1 + (\cos (x) - 1))}{\cos (x) - 1} \cdot \frac{\cos (x) - 1}{x^2}$$

o Ottengo due limiti notevoli

Esempio 2

$$\lim_{x \to 0} (\cos(x))^{\frac{1}{x^2}}$$

o Ricordo che $A^B = e^{B \log A}$

0

$$\lim_{x \to 0} (\cos(x))^{\frac{1}{x^2}} = \lim_{x \to 0} e^{\frac{1}{x^2} \log(\cos(x))}$$

Esempio 3

$$\lim_{x \to 0} \frac{e^{\tan(x)} - \cos(x) + \arctan(2x)}{x}$$

• Sommo e sottraggo 1

$$\lim_{x \to 0} \frac{e^{\tan(x)} - 1 + 1 - \cos(x) + \arctan(2x)}{x}$$

• Quindi ottengo limiti notevoli:

$$\lim_{x \to 0} \frac{e^{\tan(x)} - 1}{x} + \frac{1 - \cos(x)}{x} + \frac{\arctan(2x)}{x}$$

o Moltiplico e divido numeratori e demonimatori per ottenere limiti notevoli

Esempio 4

$$\lim_{x \to +\infty} \frac{\log\left(1 + 2^x\right)}{x}$$

o Se $x \to +\infty$ l'uno diventa insignificante. Quindi:

$$\lim_{x \to +\infty} \frac{\log\left(1+2^x\right)}{x} = \frac{\log\left(2^x\right)}{x} = \frac{x\log\left(x\right)}{x} = \log\left(2\right)$$

 \circ Rigorosamente potrei raccogliere a fattor comune il 2^x

15.7 Dimostrare non esistenza di un limite

Definizione 23: Sottosuccessione

Data una successione a_n una sottosuccessione è composta da tutti i termini con indice crescente selezionati secondo una data regola

Teorema 13: Essitenza di un limite di una successione

Sia a_n una successione di numeri reali e sia a_{kn} la regola che descrive come scelgo la sottosuccessione. Supponiamo che $a_n \to l \in \mathbb{R}$ allora

$$a_{kn} \to l$$

se a_n non ha limite non posso dire nulla riguardo a a_{nk}

Esempio: se voglio dimostrare che una successione non ha limite posso cercare due sottosuccessioni che non convergano verso lo stesso limite

$$e_n=(-)^n \to \text{ non ha limite}$$

$$a_{2n}=(-1)^{2n} \to_1, 1, 1, 1, 1 \to 1$$

$$a_{2n+1}=(1)^{2n+1}=-1, -1, -1, -1, -1, \to -1$$

per questo motivo visto che $l_1 \neq l_2$, a_n non ha limite

$$a_n = \sin\left(\frac{\pi}{2}n\right)$$

$$a_{2n} = \sin\left(n\pi\right) = 0, 0, 0, 0, 0 \to 0$$

16 Numero di nepero

Per dimostrare che la successione $a_n = (1 + \frac{1}{n})^n$ converge al numero di nepero servono dei prerequisiti e dei teoremi

Definizione 24: Crescenza/decrescenza di una successione

Una successione a_n si dice:

- o Debolmente crescente se $a_{n+1} \ge a_n \quad \forall n \in \mathbb{N}$
- Strettamente crescente se $a_{n+1} > a_n \quad \forall n \in \mathbb{N}$

La stessa cosa vale per la decrescenza

OSS: una funzione è debolmente crescente se e solo se per ogni m > n anche $a_m \ge a_n$ Consideriamo la successione $e_n = \left(1 + \frac{1}{n}\right)^n$

Teorema 14: Limiti succesioni crescenti

Sia a_n una successione debolmente crescente. Allora abbiamo 2 possibili limiti:

$$\circ \ a_n \to l \in \mathbb{R}$$

$$\circ \ a_n \to +\infty$$

In ogni caso il limite della successione è il $sup(a_n)$

Teorema 15: Corollario al teorema precedente

Sia a_n una successione

- o Debolemnte crescente
- Limitata superiormente

Allora

$$a_n \to l \in \mathbb{R}$$

NB: non necessariamente l = k

16.1 Dimostrazione definizione numero di nepero

La dimostrazione si basa su 3 proprietà della succession e_n

- \circ E' sempre $\geq 2 \forall n$
- o E' debolmente crescente
- \circ E' $\leq 3 \forall n$

se so che e_n è limitata e crescente allora posso affermare che

$$e_n \to l \in [2,3]$$

Dimostro un passo alla volta

E' sempre $\geq 2 \forall n$

o Uso disuguaglianza di Bernoulli ossia

$$(1+x)^n \ge 1 + nx$$

o Pongo $x = \frac{1}{n}$ ossia

$$e_n = \left(1 + \frac{1}{n}\right)^n \ge 1 + n\frac{1}{n} \ge 2$$

E' debolmente crescente

0

$$\left(1 + \frac{1}{n}\right)^n \ge \left(1 + \frac{1}{n-1}\right)^{n-1}$$

0

$$\left(\frac{n+1}{n}\right)^n \ge \left(\frac{n}{n-1}\right)^{n-1}$$
$$\frac{(n+1)^n}{n^n} \ge \frac{n^{n-1}}{(n-1)^{n-1}}$$

o Moltiplico e divido per n e per n-1 il membro di destra

$$\frac{(n+1)^n}{n^n} \ge \frac{n^{n-1}}{(n-1)^{n-1}} \cdot \frac{n}{n} \cdot \frac{n-1}{n-1}$$

ottengo quindi

$$\frac{(n+1)^n}{n^n} \ge \frac{n^n}{(n-1)^n} \cdot \frac{n-1}{n}$$
$$\frac{(n+1)^n (n-1)^n}{n^{2n}} \ge \frac{n-1}{n}$$

o Noto la somma per differenza al numeratore del primo menmbro

$$\frac{(n^2 - 1)^n}{(n^2)^n} = \left(\frac{n^2 - 1}{n^2}\right)^n = \left(1 - \frac{1}{n^2}\right)^n \ge \frac{n - 1}{n} = 1 - \frac{1}{n}$$
$$\left(1 - \frac{1}{n^2}\right)^n \ge 1 - \frac{1}{n}$$

o Pongo
x $=-\frac{1}{n^2}$ e moltiplicando e dividendo per na destra ot
tengo che

$$\left(1 - \frac{1}{n^2}\right)^n \ge 1 - \frac{1}{n} = (1+x)^n \ge 1 + nx$$

La crescenza è quindi stata verificata per la disuguaglanza di bernoulli

 $E' \leq 3 \forall n$

• Utilizzo binomio di Newtoon:

$$(x+y)^{n} = \sum_{k=1}^{n} \binom{n}{k} x^{k} y^{n-k} = \sum_{k=1}^{n} \binom{n}{k} x^{n-k} y^{k}$$

 \circ Pongo x = 1 e $y = \frac{1}{n}$:

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=1}^n \binom{n}{k} 1^{n-k} \frac{1}{n^k} = \sum_{k=1}^n \binom{n}{k} \frac{1}{n^k}$$

o Sviluppando la sommatoria mi accordo di alcune cose:

$$\binom{n}{0} \frac{1}{n^0} \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^2} \dots$$

$$= 1 + 1 + \frac{n(n-1)}{2!} \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^3} \dots$$

o Noto che la quantità $\frac{n(n-1)}{n^2}$ è maggiorata da 1. Posso affermare quindi che l'uguaglianza è maggiorata dalla seguente:

$$1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots+\frac{1}{n!}$$

o Visto che si può dimostrare per induzione che $n! \geq 2^n \forall n \in \mathbb{N}$ quest'ultima somma sarà a sua volta maggiorata dalla seguente:

$$1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots\frac{1}{2^n}$$

o Si può dimostrare poi per induzione che $1+a+a^2+a^3+\ldots+a^{n-1}=\frac{1-a^n}{1-a}$, quindi nel nostro caso sappiamo che:

$$1 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 3$$

o Quindi $a_n \leq 3$

Ho dimostrato dunque che

$$\lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^n = l \in (2, 3)$$