También,

$$i \times j = k$$
,  $j \times k = i$ ,  $k \times i = j$ ,

lo que podemos recordar permutando cíclicamente i, j, k de este modo:



Para proporcionar una interpretación geométrica del producto vectorial, en primer lugar vamos a ver el producto mixto . Dados tres vectores  ${\bf a}, {\bf b}$  y  ${\bf c}$ , el número real

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

se denomina *producto mixto* de  $\mathbf{a}$ ,  $\mathbf{b}$  y  $\mathbf{c}$  (en este orden). Para obtener una fórmula para él, sean  $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ ,  $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$  y  $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$ . Entonces

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} \cdot (c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k})$$

$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} c_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} c_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} c_3.$$

Este es el desarrollo por menores de la tercera fila del determinante, de modo que

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Si  $\mathbf{c}$  es un vector del plano generado por los vectores  $\mathbf{a}$  y  $\mathbf{b}$ , entonces la tercera fila del determinante, que expresa  $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$  es una combinación lineal de la primera y segunda filas, y por tanto  $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$ . En otras palabras, el vector  $\mathbf{a} \times \mathbf{b}$  es ortogonal a cualquier vector del plano generado por  $\mathbf{a}$  y  $\mathbf{b}$ , y en particular a ambos vectores  $\mathbf{a}$  y  $\mathbf{b}$ .

A continuación, calculamos la longitud de  $\mathbf{a} \times \mathbf{b}$ . Observe que

$$\|\mathbf{a} \times \mathbf{b}\|^2 = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}^2 + \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}^2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}^2$$
$$= (a_2b_3 - a_3b_2)^2 + (a_1b_3 - b_1a_3)^2 + (a_1b_2 - b_1a_2)^2.$$

Si desarrollamos los términos de la última expresión, podemos agruparlos para obtener

$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2,$$

que es igual a

$$\|\mathbf{a}\|^2\|\mathbf{b}\|^2 - (\mathbf{a} \cdot \mathbf{b})^2 = \|\mathbf{a}\|^2\|\mathbf{b}\|^2 - \|\mathbf{a}\|^2\|\mathbf{b}\|^2\cos^2\theta = \|\mathbf{a}\|^2\|\mathbf{b}\|^2\sin^2\theta,$$

donde  $\theta$  es el ángulo que forman  $\mathbf{a}$  y  $\mathbf{b}$ ,  $0 \le \theta \le \pi$ . Sacando raíces cuadradas y sabiendo que  $\sqrt{k^2} = |k|$ , obtenemos que  $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$ .