Linear Regression (part 1)

Ryan Miller

Linear Regression

Using ANOVA, we modeled a quantitative outcome variable Y using a single categorical variable:

$$y_i = \mu_k + \epsilon_i$$

Generally speaking, **linear regression** models a quantitative outcome using a *linear combination* of variables:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots \beta_p x_{ip} + \epsilon_i$$

ANOVA as Linear Regression

To fit our ANOVA model into the linear regression framework, we need to use *dummy variables* and *reference coding*:

			1/1	1/0
Y	group	Y	X1	X2
8.5	С	8.5	0	1
11.6	В	11.6	1	0
9.0	С	9.0	0	1
9.1	В	9.1	1	0
8.0	Α	8.0	0	0
9.7	Α	9.7	0	0

- ▶ In this example, $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$
 - For those in group A, $X_1=0$ and $X_2=0$, suggesting $\beta_0=\mu_A$
 - For those in group B, $X_1 = 1$ and $X_2 = 0$, suggesting $\beta_1 = \mu_B \mu_A$
 - For those in group C, $X_1 = 0$ and $X_2 = 1$, suggesting $\beta_2 = \mu_C \mu_A$

Model Estimation

- In regression, we assume the specified model is true at the population level
 - ► The specified model is something we decide, the data are then used to *estimate* the model's *parameters*
 - We understand the model through these estimates
- ► The using population model: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ results in the estimated model:

$$\hat{y}_1 = b_0 + b_1 x_{i1} + b_2 x_{i2}$$

- The parameter estimates are found using least squares, they are: $b_0 = 9.77$, $b_1 = 0.25$, $b_2 = 0.03$
 - In our example, $\bar{y}_A = 9.77$, $\bar{y}_B = 10.02$, $\bar{y}_C = 9.80$; this is not a coincidence

Interpretting Model Parameter Estimates

For the drug use and tailgating example, the *estimated* ANOVA model is:

$$\hat{Y} = b_0 + b_1 X_{MDMA} + b_2 X_{NODRUG} + b_3 X_{THC}$$

The parameter estimates are $b_0 = 36.8$, $b_1 = -9.2$, $b_2 = 10.5$, $b_3 = 5.8$, from this we know:

- 1. ALC is the reference group
- 2. The mean following distance in the ALC group is 36.8 ft (interpretation of b_0)
- 3. Predicted following distances in the MDMA group are 9.2 ft *less* than the reference group of ALC users (interpretation of b_1)
- 4. Predicted following distances in the THC group are 5.8 ft more than the reference group of ALC users (interpretation of b_3)

What About Uncertainty?

- Like any estimate, the regression estimates, b_0, b_1, \ldots, b_p , won't *exactly* match the population parameters, $\beta_0, \beta_1, \ldots, \beta_p$
- We won't go too far into the details, but most standard software will provide confidence interval estimates for the population parameters using the t-distribution

What About Inference?

- We can also use the regression estimates, b_0, b_1, \dots, b_p , to perform hypothesis testing
- ▶ How might you describe the hypothesis H_0 : $\beta_1 = 0$? (Hint: think about reference coding and what β_1 is in terms of group means)
- $eta_1=0$ implies that the mean of group 1 is no different from the mean of the reference group, essentially a two-sample t-test!

Example #1

With your group, load the College Data into Minitab and fit a linear regression using REGION to predict AVGFACSAL (Hint: you'll need to change the variable REGION to text by right clicking the column and selecting "format column"). Answer the following questions:

- 1. By default, which region is chosen as the reference category?
- 2. Which region has the highest average faculty salaries?
- Are the population mean salaries in Region 3 (Great Lakes) significantly different from those in Region 4 (Midwest) (Hint: change the reference category using "Coding" in the regression menu)

Example #1 - Solution

- 1. Region 1 (Northeast) is the default reference category
- 2. Region 1 (Northeast) has the highest average salaries
- 3. No, the estimated difference of -2572 has a *p*-value of 0.66, there is not sufficient evidence for us to believe that colleges in these regions have different average faculty salaries

Simple Linear Regression

- ► The inference methods we used apply to quantitative predictor variables too
 - However, our interpretations must change
- Simple linear regression uses a single quantitative predictor and the population level model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$

► The Tips Data documents the tips received by a server in a suburban national chain restaurant:

Example #2

With your group, load the Tips Data into Minitab and fit a regression model that uses TotBill to predict Tip, then answer the following:

- Interpret the estimate and 95% confidence interval for the slope coefficient of TotBill
- 2. Is it plausible that tips are unrelated to the total bill amount?

Example #2 - Solution

- 1. The estimate is 0.105, indicating that each \$1 increase in the total bill on average leads to a 10.5 cent increase in the tip. The 95% confidence interval suggests we are confident the actual population level effect for this server is between 9 cents and 12 cents
- 2. No, the 95% confidence interval doesn't contain zero (similarly, the hypothesis test has a very small p-value)

Non-linear Effects

- Sometimes, the relationship between a predictor and the outcome won't be linear
- ► The plot below adds a *loess* smoothing line (essentially the average calculated within a moving window) applied the Tips Data

Non-linear Effects

- ➤ The loess line shows some *curvature*, but it is drastic enough to suggest that a population model with a **quadratic effect** should be used?
 - ▶ We can compare these two models using ANOVA!
- Null model: $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$
- Alternative model: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i1}^2 + \epsilon_i$
 - ▶ All we need is the *sum of squares* for each of these models to perform the test

Non-linear Effects - Example

For the Tips Data, use Minitab fit the following models:

- 1. A model which predicts Tip using a linear effect for TotBill
- A model which predicts Tip using a quadratic effect for TotBill (INSERT MINITAB DIRECTIONS)

Record the sum of squares for each model and test for superiority of the quadratic model using ANOVA

Non-linear Effects - Solution

SOLUTION COMING SOON

R-Squared

- When we first discussed regression in Chapter 2, we learned about the coefficient of variation or R^2
- We can express R^2 using sums of squares:

$$R^2 = SSE/SST$$

Note: In calculating R^2 , SST refers to the null model that predicts each observation as the mean \bar{y} . This is in contrast to some situations (like the last example) where we consider another model to be the "null model"

Loose-ends

- Linear regression models assume ϵ 's (population level deviations from the model) are normally distributed with a mean of zero
 - ▶ We can check this assumption using the residuals
- ANOVA can only be used to compare nested models
 - $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i1}^2 + \epsilon_i$ and $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$ are nested because forcing $\beta_2 = 0$ makes them identical

Conclusion

These notes cover Ch 9 of the textbook. Right now, you should...

- Know the relationship between one-way ANOVA and linear regression
- 2. Understand how to perform on statistical inference on the parameters of linear regression model
- 3. Know how to compare two nested models using ANOVA

I encourage you to read Ch 9 of the book and its examples.