

Functional Data Analysis

Ping-Han Huang

Arizona State University

November 26, 2024

Examples of FDA—CD4

Introduction

Background

Stochastic Process Second-Order Process

fPCA

PCA for Multivariate Data From PCA to fPCA Number of FPC Recovering Individual

Trajectories Comparison

R Demonstration

Extensions

Curve Registration Sparse Data

References

CD4 cell counts

Figure 1: CD4 Data (Source: Staicu & Park, 2016)

Examples of FDA—DTI

Introduction

Background

Stochastic Process Second-Order Process

fPCA

PCA for Multivariate Data From PCA to fPCA Number of FPC

Recovering Individual Trajectories

Comparison

R Demonstration

Extensions

Curve Registratio Sparse Data

References

Diffusion Tensor Imaging

Figure 2: DTI Data (Source: Staicu & Park, 2016)

Stochastic Process

Introduction

Background Stochastic Process

Second Order Proces

fPCA

From PCA to fPCA
Number of FPC
Recovering Individual
Trajectories

Comparison

R Demonstration

Extensions

Curve Registratio Sparse Data

References

- Underlying random function: $\{X(t); t \in \mathcal{T}\}$
- m i.i.d. sample paths (realizations of random functions): $\{X_i(t); t \in \mathcal{T}\}$
- Subsamples of m sample paths: $x_i(t_{ij})$, i = 1, ..., m and $j = 1, ..., n_i$

Second-Order Process

Introduction

Background Stochastic Process

Second-Order Process

fPCA

PCA for Multivariate Data From PCA to fPCA

Recovering Individual Trajectories

Comparison

R Demonstration

Extension

FLR

Sparse Data

References

■ $\{X(t); t \in \mathcal{T}\}$ is a second-order process if, for each t, X(t) has finite second moment, i.e.,

$$E|X(t)|^2 < \infty$$

Continuous mean function:

$$\mu_X(t) = E\{X(t)\}$$

Continuous and nonnegative definite covariance function:

$$\Gamma_X(s,t) = Cov\{X(s),X(t)\}, \text{ for all } s,t \in \mathcal{T}$$

Functional Principal Component Analysis (fPCA)

introduction

Background Stochastic Process

Second-Order Proce

fPCA for I

From PCA to fPCA
Number of FPC
Recovering Individual
Trajectories

Comparison

R Demonstration

Extension

Curve Registratio

References

■ Reduce dimensionality

- Capture main modes of variation
- Express X(t) as

$$X(t) = \mu_X(t) + \sum_{k=1}^K \zeta_k \phi_k(t)$$

where ζ_k is the kth FPC score and ϕ_k is the kth eigenfunction

PCA for Multivariate Data

Introduction

Background

Stochastic Process Second-Order Process

fPCA

PCA for Multivariate Data

From PCA to fPCA Number of FPC Recovering Individual Trajectories

Comparison

R Demonstration

Extensions

FLR Curve Registration

Sparse Data

Figure 3: PCA (Source: Pachter, 2014)

PCA for Multivariate Data

Introduction

Background

Stochastic Process

fPCA

PCA for Multivariate Data

From PGA to tPGA Number of FPC Recovering Individual Trajectories

Comparison

R Demonstration

Extension

Curve Registratio

References

1 The data is $\vec{X} = (X_1, ..., X_m)^T$

2 Eigen decomposition of $Cov(\vec{X})$ to get eigenvectors Φ and eigenvalues $\vec{\lambda}$

$$Cov(\vec{X}) = \Phi \Lambda \Phi^T = \sum_{m=1}^{M} \lambda_m \phi_m \phi_m^T$$

3 Obtain

$$m{Y} = m{P} ec{X}_c = \sum_{m=1}^M [\phi_m^T ec{X}_c] \phi_m$$

- $\vec{X}_c = \vec{X} \mu_X$
- $m{P} = \Phi(\Phi^T\Phi)^{-1}\Phi^T$ is the projection matrix
- Y is the re-representation of the data

PCA for Multivariate Data

Introduction

Background

Stochastic Process
Second-Order Process

fPCA

PCA for Multivariate Data

From PCA to fPCA Number of FPC Recovering Individual Trajectories

Comparison

R Demonstration

Extensions

Curve Registration

References

■ Then we have $\vec{X} = \mu_X + \Phi \zeta$, where $\zeta = \Phi^T \vec{X_c}$.

$$\boldsymbol{\zeta} = (\zeta_1, ..., \zeta_m)^T$$

$$\mathbf{E}(\zeta_m)=\mathbf{0}$$

$$\blacksquare$$
 $Var(\zeta_m) = \lambda_m$

$$lacksquare$$
 $Cov(\zeta_m, \zeta_m') = 0$

■ The principal component scores are rank-ordered by their variances

From PCA to fPCA

Introduction

Background Stochastic Process

Second-Order Proces

fPCA

PCA for Multivariate Dat

From PCA to fPCA

Recovering Individual Trajectories

Comparison

R Demonstration

Extension

FLR Curve Registratio

Sparse Data

References

Mercer's Theorem

$$\Gamma_X(s,t) = \sum_{k=1}^{\infty} \lambda_k \phi_k(s) \phi_k(t), \text{ for all } s,t \in \mathcal{T}$$

- λ_k : mth eigenvalue of X(t)
- $\phi_k(t)$: *m*th eigenfunction of X(t)
- Karhunen-Lóeve Representation

$$X(t) = \mu_X(t) + \sum_{k=1}^{\infty} \zeta_k \phi_k(t)$$

- \blacksquare $E(\zeta_k) = 0$, $var(\zeta_k) = \lambda_k$, $cov(\zeta_k, \zeta_{k'}) = 0$

Number of FPC (K)

minoduction

Background

Stochastic Process Second-Order Proces

fPCA

PCA for Multivariate Dat From PCA to fPCA

Number of FPC Recovering Individual Trajectories

Comparison

R Demonstration

Extension

Curve Registration

References

■ Fraction of variation explained (FVE)

$$lacksquare$$
 $FVE = rac{\sum_{k=1}^K \lambda_k}{\sum_{k=1}^\infty \lambda_k}$

- Information criteria
 - AIC
 - BIC
- Cross validation (CV)
 - Minimize the cross-validation score based on the one-curve-leave-out squared prediction error:

$$CV(K) = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \{Y_{ij} - \hat{Y}_i^{(-i)}(T_{ij})\}^2$$

Recovering Individual Trajectories

Introduction

Background

Stochastic Process
Second-Order Process

fPCA

PCA for Multivariate Data From PCA to fPCA

Recovering Individual Trajectories

Comparison

R Demonstration

Extension

Curve Registratio

References

After fPCA and selecting the number of FPCs, we can recover the trajectory $\hat{X}_i(t)$ for the *i*th subject as

$$\hat{X}_{i}^{K}(t) = \hat{\mu}(t) + \sum_{k=1}^{K} \hat{\zeta}_{ik} \hat{\phi}_{k}(t)$$

The estimation is based on noisy observations $\{(Y_{i1}, t_{i1}), ..., (Y_{in_i}, t_{in_i})\}$, where

$$Y_{ij} = X_i(t_{ij}) + \epsilon_{ij}$$

Comparisons of LMEM and FDA

Introduction

Background Stochastic Process

Stochastic Process
Second-Order Proces

fPCA

PCA for Multivariate Dat From PCA to fPCA Number of FPC Recovering Individual

Comparison

R Demonstration

Extensions

Curve Registration Sparse Data

References

Observed data: $\{(Y_{i1}, t_{i1}), ..., (Y_{in_i}, t_{in_i})\}$

- lacksquare LMEM: $Y_i = oldsymbol{X}_i ec{eta} + oldsymbol{Z}_i ec{b}_i + ec{e}_i$
 - parametric assumptions for the model
 - parametric methods for estimation
 - objective: inference
- FDA: $Y_{ij} = X_i(t_{ij}) + \epsilon_{ij}$
 - no assumption for the model covariance
 - nonparametric approach for estimation
 - objective: recovering subject-specific trajectories

R Demonstration

Introduction

Background Stochastic Process

Second-Order Process

fPCA

From PCA to fPCA
Number of FPC
Recovering Individual
Trajectories

Comparison

R Demonstration

Extensions

Curve Registratio

References

R Demonstration

Extensions: FLR

Introduction

Background

Stochastic Process

fPCA

PCA for Multivariate Data From PCA to fPCA Number of FPC Recovering Individual

Trajectories Comparison

R Demonstration

Extensions

FLB

Sparse Data

References

Functional Linear Regression Models (FLR)

■ Scalar-on-Function Regression

$$Y_i = \alpha + \int \beta(t) X_i(t) dt + \epsilon_i$$

■ Function-on-Scalar Regression

$$Y_i(t) = \beta_0(t) + \sum_{i=1}^p \beta_i(t) X_{ij} + \epsilon_i(t)$$

■ Function-on-Function Regression

$$Y_i(t) = \beta_0(t) + \int \beta(s,t) X_i(t) dt + \epsilon_i(t)$$

Extensions: Curve Registration

Introduction

Background

Stochastic Process Second-Order Process

fPCA

- PCA for Multivariate Data From PCA to fPCA Number of FPC
- Recovering Individual Trajectories

Comparison

R Demonstration

Extensions

Curve Registration

References

■ Phase displacement or amplitude variability in the data.

Align the curves through time warping.

Extensions: Curve Registration

Introduction

Background

Stochastic Process Second-Order Process

fPCA

PCA for Multivariate Data From PCA to fPCA Number of FPC Recovering Individual

Trajectories Comparison

R Demonstration

Extensions

FLR Curve Registration

Sparse Data

References

Extensions: Sparse Data

Introduction

Background

Stochastic Process

fPCA

PCA for Multivariate Data From PCA to fPCA

Recovering Individual Trajectories

Comparison

R Demonstration

Extension

ELD

Sparse Data

References

Principal Component Analysis through Conditional Expectation (PACE) Method for Sparse Data

■ We have "sparse" data when the number of measurements per subject (n_i) is very low.

References

Introduction

Background Stochastic Process

fPCA

From PCA to fPCA Number of FPC Recovering Individual Trajectories

Comparison

R Demonstration

Extensions FLR

Sparse Data References

neierence

Textbook:

- Hsing, T., & Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators (Vol. 997). John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118762547
- Kokoszka, P., & Reimherr, M. (2017). Introduction to Functional Data Analysis (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315117416
- Ramsay, J., Hooker, G., Graves, S. (2009). Functional Data Analysis with R and MATLAB. Use R. Springer, New York, NY. https://link.springer.com/book/10.1007/978-0-387-98185-7

Paper:

- Yao, F., Müller, H.-G., & Wang, J.-L. (2005). Functional data analysis for SPARSE LONGITUDINAL DATA. Journal of the American Statistical Association, 100(470), 577–590. https://doi.org/10.1198/016214504000001745
- J. S. Marron. James O. Ramsay. Laura M. Sangalli. Anuj Srivastava. "Functional Data Analysis of Amplitude and Phase Variation." Statist. Sci. 30 (4) 468 - 484, November 2015. https://doi.org/10.1214/15-STS524

Online Lecture:

- Ana-Maria Staicu & So Young Park (2016). Short course on Applied Functional Data Analysis.
 Retrieved from https://www4.stat.ncsu.edu/~staicu/FDAtutorial/index.html
- Short course on functional data analysis. YouTube. https://youtube.com/playlist?list=PLD2RXrMBJWf0EmYmYE5xlB1ARqbZrc0h9&feature=shared

Introduction

Background

Stochastic Process Second-Order Process

fPCA

Number of FPC Recovering Individual Trajectories

Comparison

R Demonstration

Extensions

Sparse Data

References

Thank you!