

Atslēgas

Arhitekts Timotijs ir uzprojektējis jaunu izlaušanās spēli. Šajā spēlē ir n istabas, kas sanumurētas no 0 līdz n-1. Sākotnēji katrā istabā atrodas tieši viena atslēga. Katrai atslēgai ir veids, kas tiek apzīmēts ar veselu skaitli no 0 līdz n-1 ieskaitot. Katram i ($0 \le i \le n-1$) i-tajā istabā esošās atslēgas veids ir r[i]. Vairākās istabās var atrasties viena veida atslēgas. Tas nozīmē, ka r[i] vērtībām nav jābūt atšķirīgām.

Spēlē ir arī m **divvirzienu** savienotāji, kas sanumurēti no 0 līdz m-1. Savienotājs j ($0 \le j \le m-1$) savieno divas dažādas istabas u[j] un v[j]. Divas konkrētas istabas var būt savienotas ar vairākiem savienotājiem.

Šī ir viena spēlētāja spēle, kurā spēlētājs vāc atslēgas un pārvietojas pa istabām, izmantojot savienotājus. Spēlētājs **izmanto** savienotāju j, lai no istabas u[j] nokļūtu istabā v[j] vai arī pretējā virzienā. Spēlētājs var izmantot savienotāju tikai tad, ja viņš pirms tam ir paņēmis c[j] veida atslēgu.

Katrā spēles brīdi spēlētājs atrodas kādā istabā x un var veikt vienu no divām darbībām:

- paņemt istabā x esošo r[x] veida atslēgu, ja tādas viņam vēl nav.
- izmantot savienojumu j, kuram vai nu u[j]=x vai v[j]=x, ja spēlētājs iepriekš ir paņēmis c[j] veida atslēgu. Spēlētājs **vienmēr** patur visas atslēgas, kurs viņš ir paņēmis.

Spēlētājs spēli **sāk** kādā istabā s, un sākumā viņam nav nevienas atslēgas. Istaba t ir **sasniedzama** no istabas s, ja spēlētājs, sākot spēli istabā s un, veicot iepriekš aprakstīto darbību virkni, spēj nokļūt istabā t.

Katrai istabai i ($0 \le i \le n-1$) ar p[i] apzīmēsim istabu skaitu, kurās var nokļūt no istabas i. Timotijs vēlas uzzināt tādu indeksu i kopu no visiem i ($0 \le i \le n-1$), kuriem p[i] vērtība ir vismazākā.

Realizācijas detaļas

Ir jārealizē šāda procedūra:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: masīvs garumā n. Katram i ($0 \le i \le n-1$), atslēga istabā i ir r[i] veida.
- u,v: divi masīvi garumā m. Katram j ($0 \leq j \leq m-1$), savienotājs j savieno istabu u[j] un v[j].
- c: masīvs garumā m. Katram j ($0 \le j \le m-1$), atslēgas veids, kas nepieciešama, lai izmantotu savienotāju j is c[j].

• Šai procedūrai ir jāatgriež masīvs a garumā n. Katram $0 \le i \le n-1$, a[i] vērtībai jābūt 1, ja katram j tādam, ka $0 \le j \le n-1$, $p[i] \le p[j]$. Citādi a[i] vērtībai jābūt 0.

Piemēri

1. piemērs

Aplūkosim šādu izsaukumu:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Ja spēlētājs spēli sāk istabā 0, viņš var veikt šādas secīgas darbības:

Pašreizējā istaba	Darbības
0	legūt 0 veida atslēgu
0	Izmantot savienotāju 0 uz istabu 1
1	legūt 1 veida atslēgu
1	Izmantot savienotāju 2 uz istabu 2
2	Izmantot savienotāju 2 uz istabu 1
1	Izmantot savienotāju 3 uz istabu 3

Tādējādi istaba 3 ir sasniedzama no istabas 0. Līdzīgi var konstruēt secīgu darbību virknes, kas parāda, ka no istabas 0 ir sasniedzamas visas istabas. Tas nozīmē, ka p[0]=4. Tabulā ir attēlotas visu sākuma istabu sasniedzamās istabas.

Sākuma istaba i	Sasniedzamās istabas	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

Mazākā visu istabu p[i] vērtība ir $\,2$, un tas ir panākts ar $\,i=1$ vai $\,i=2$. Tādēļ šai procedūrai ir jāatgriež $\,[0,1,1,0]$.

2. piemērs

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

Tabulā ir attēlotas sasniedzamās istabas:

Sākuma istaba i	Sasniedzamās istabas	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4, 6]	2

Mazākā visu istabu p[i] vērtība ir 2, un tas ir panākts ar $i\in\{1,2,4,6\}$. Tādēļ šai procedūrai ir jāatgriež [0,1,1,0,1,0,1].

3. piemērs

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Tabulā ir attēlotas sasniedzamās istabas:

Sākuma istaba i	Sasniedzamā istaba	p[i]
0	[0,1]	2
1	[0, 1]	2
2	[2]	1

Mazākā visu istabu $\,p[i]\,$ vērtība ir $\,1$, un tas ir panākts ar $\,i=2$. Tādēļ šai procedūrai ir jāatgriež $\,[0,0,1].$

Ierobežojumi

- $2 \le n \le 300\,000$
- $1 \le m \le 300\,000$
- $0 \le r[i] \le n-1$ visiem $0 \le i \le n-1$
- $0 \leq u[j], v[j] \leq n-1$ un u[j]
 eq v[j] visiem $0 \leq j \leq m-1$

• $0 \le c[j] \le n-1$ visiem $0 \le j \le m-1$

Apakšuzdevumi

- 1. (9 punkti) c[j]=0 visiem $0\leq j\leq m-1$ un $n,m\leq 200$
- 2. (11 punkti) $n,m \leq 200$
- 3. (17 punkti) $n, m \leq 2000$
- 4. (30 punkti) $c[j] \leq 29$ (visiem $0 \leq j \leq m-1$) un $r[i] \leq 29$ (visiem $0 \leq i \leq n-1$)
- 5. (33 punkti) Bez papildu ierobežojumiem.

Paraugvērtētājs

Paraugvērtētājs lasa ievaddatus šādā formātā:

- 1. rinda: n m
- 2. rinda: r[0] r[1] ... r[n-1]
- (3 + j)-tā rinda: (0 $\leq j \leq m-1$): u[j] v[j] c[j]

 $Paraugv\bar{e}rt\bar{e}t\bar{a}js\;izvada\;\texttt{find_reachable}\;v\bar{e}rt\bar{i}bu\;\check{s}\bar{a}d\bar{a}\;form\bar{a}t\bar{a}:$

• 1. rinda: s[0] s[1] ... s[n-1]