MTH 375 Fall 2022 Hw 4 key

- #1. Let X_1, \ldots, X_n be iid Binomial(1, p) random variables.
- (a) $L(p) = p^{x_1}(1-p)^{1-x_1} \cdots p^{x_n}(1-p)^{1-x_n} = p^{x_1+\cdots x_n}(1-p)^{n-(x_1+\cdots +x_n)}$ so a sufficient statistic for p is $\Sigma = X_1 + \cdots + X_n$.
- (b) $E(\Sigma) = nE(X_k) = np$, so $E(\Sigma/n) = p$. Therefore the statistic Σ/n , better known as \overline{X} , is an unbiased estimator of p which is a function of the complete sufficient statistic Σ , and is therefore an UMVUE.
 - (c) \overline{X} has mean p and variance p(1-p)/n, so $E(\overline{X}^2) = \frac{p(1-p)}{n} + p^2 = \frac{n-1}{n}p^2 + \frac{p}{n}$.
- (d) Solving for the equation in (c) for p^2 , $p^2 = \frac{n}{n-1}E(\overline{X}^2) \frac{1}{n-1}p = \frac{n}{n-1}E(\overline{X}^2) \frac{1}{n-1}E(\overline{X}) = E(\frac{n}{n-1}\overline{X}^2 \frac{1}{n-1}\overline{X}) .$

The statistic $T = \frac{n}{n-1}\overline{X}^2 - \frac{1}{n-1}\overline{X}$ is an unbiased estimator of p^2 and a function of the sufficient statistic Σ , T is an UMVUE for p^2 .

Another way of writing the same statistic is $T = \frac{\Sigma^2 - \Sigma}{n(n-1)}$.

- #2. Let X_1, \ldots, X_n be iid Normal $(\mu, 1)$. We know that \overline{X} is an UMVUE for μ .
- (a) $E(\overline{X}^2) = V((\overline{X}) + (E(\overline{X}))^2 = \frac{1}{n} + \mu^2$, so the UMVUE for is $T = \overline{X}^2 \frac{1}{n}$.
- (b) The RV (\overline{X}) is N $(\mu, \frac{1}{n})$, so moment-generating function of \overline{X} is $M(t) = e^{\mu t + \frac{1}{2n}t^2}$.

$$M'(t) = (\mu + \frac{t}{n})e^{\mu t + \frac{1}{2n}t^2}.$$

$$M''(t) = \left(\frac{1}{n} + (\mu + \frac{t}{n})^2\right)e^{\mu t + \frac{1}{2n}t^2}.$$

$$M'''(t) = \left(\frac{3}{n}(\mu + \frac{t}{n}) + (\mu + \frac{t}{n})^3\right)e^{\mu t + \frac{1}{2n}t^2}.$$

Therefore $E(\overline{X}^3) = M'''(0) = \frac{3}{n}\mu + \mu^3$

(c) Solve for μ^3 : $\mu^3 = E(\overline{X}^3) - \frac{3}{n}\mu = E(\overline{X}^3) - \frac{3}{n}E(\overline{X})$.

An UMVUE for μ^3 is $U = \overline{X}^3 - \frac{3}{n}\overline{X}$.

#3. Let $X_1 \ldots, X_n$ be iid with common pdf

$$f(x;\theta) = \frac{3x^2}{\theta^3}$$
 for $0 \le x \le \theta$.

(a)
$$L(\theta) = \left(3^n(x_1 \cdots x_n)^2\right) \cdot \left(\frac{1}{\theta^{3n}} \text{ for } 0 \le \max\{x_1, \dots, x_n\} \le \theta\right).$$

The first factor is $h(x_1, \ldots, x_n)$. The second factor is $f(\max\{x_1, \ldots, x_n\}, \theta)$. The required UMVUE is $T = \max\{X_1, \ldots, X_n\} = X_{(n)}$.

(b)
$$F_{X_{(n)}}(x) = (P(X_i \le x))^n = (x/\theta)^{3n}$$
 for $x \in (0, \theta)$.

$$f_{X_{(n)}}(x) = F'_{(n)}(x) = 3nx^{3n-1}/\theta^{3n} \text{ for } x \in (0,\theta).$$

$$E[X_{(n)}] = \int_0^{\theta} x \cdot 3nx^{3n-1}/\theta^{3n} \ dx = 3n\theta/(3n+1).$$

The required UMVUE of θ is $T = (3n+1)X_{(n)}/(3n)$.

#4. Let $X_1 \ldots X_n$ be iid with common pdf

$$f(x; \theta_1, \theta_2) = \frac{1}{\theta_1} e^{-(x-\theta_2)/\theta_1}$$
 for $x > \theta_2$.

(a) Show that the pair $(\sum_{k=1}^{n} X_k, X_{(1)})$ is sufficient for (θ_1, θ_2) . We use the notation $X_{(1)} = \min\{X_1, \dots, X_n\}.$

This follows from the computation $L(\theta_1, \theta_2) = \frac{1}{\theta_1^n} e^{-(x_1 + \dots + x_n - n\theta_2)/\theta_1}$ for $x_{(1)} > \theta_2$, which shows that $L(\theta_1, \theta_2)$ is a function of $(\sum_{i=1}^n x_i, x_{(1)}, \theta_1, \theta_2)$. (b) Find a pair (T_1, T_2) which is an UMVUE for (θ_1, θ_2) .

$$E(\overline{X}) = E(X_k) = \int_{\theta_2}^{\infty} x \cdot \frac{1}{\theta_1} e^{-(x-\theta_2)/\theta_1} dx = \int_{0}^{\infty} (u+\theta_2) \cdot \frac{1}{\theta_1} e^{-u/\theta_1} du = \theta_1 + \theta_2. \quad (*)$$
[Using the substitution $u = x - \theta_2$, $du = dx$.]

To compute $E(X_{(1)})$:

$$P(X_k > t) = \int_t^{\infty} \frac{1}{\theta_1} e^{-(x-\theta_2)/\theta_1} dx = e^{-(t-\theta_2)/\theta_1},$$

so
$$P(X_{(1)} > t) = P(X_1 > t \& \cdots \& X_n > t) = e^{n(t-\theta_2)/\theta_1} = e^{(t-\theta_2)/(\theta_1/n)}$$
.

In words, $X_{(1)}$ has the pdf $f(x; \theta_1/n, \theta_2)$, where f is the pdf defined at the beginning of this problem. From the computation (*), we conclude that $E(X_{(1)}) = \frac{\theta_1}{x} + \theta_2$.

Finally, solve the system of equations

$$E(\overline{X}) = \theta_1 + \theta_2, \quad E(X_{(1)}) = \frac{\theta_1}{n} + \theta_2$$

for (θ_1, θ_2) to obtain

$$\theta_1 = \frac{n}{n-1} (E(\overline{X}) - E(X_{(1)}), \quad \theta_2 = -\frac{1}{n-1} E(\overline{X}) + \frac{n}{n-1} E(X_{(1)})$$

An UMVUE for
$$(\theta_1, \theta_2)$$
 is $(T_1 = \frac{n}{n-1}(\overline{X} - X_{(1)}), T_2 = -\frac{1}{n-1}\overline{X} + \frac{n}{n-1}X_{(1)}).$