6.1 # 3,5,10,16,18,19,23,25,27,29

3.) Let
$$\hat{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $\hat{v} = \begin{bmatrix} 47 \\ 65 \end{bmatrix}$ $\hat{w} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ Compote:

$$\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} = \frac{3}{3} \cdot \frac{3}{3} = \frac{3}{3} \cdot \frac{3}$$

51)
$$(\vec{x} \cdot \vec{v}) \vec{v} = [-1 \ 2] \begin{bmatrix} 4 \\ 6 \end{bmatrix} = -4 + 12 = 8$$
, $\vec{v} \cdot \vec{v} = [4 \ 6] \begin{bmatrix} 4 \\ 6 \end{bmatrix} = 16 + 36 = 52$
 $(\vec{x} \cdot \vec{v}) \vec{v} = (\frac{8}{52}) \begin{bmatrix} 4 \\ 6 \end{bmatrix} = (\frac{2}{13}) \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 8/13 \\ 12/13 \end{bmatrix}$

101) Find a unit vector in the direction of
$$\begin{bmatrix} -6 \\ 4 \end{bmatrix}$$
.

$$\hat{u} = \frac{1}{\sqrt{(-6)^2 + 4^2 + (-3)^2}} \begin{bmatrix} -6 \\ -3 \end{bmatrix} = \frac{1}{\sqrt{61}} \begin{bmatrix} -6 \\ -3 \end{bmatrix} = \begin{bmatrix} -6/\sqrt{61} \\ 4/\sqrt{61} \\ -3/\sqrt{61} \end{bmatrix}$$

$$\vec{u} = \begin{bmatrix} 12 \\ 3 \end{bmatrix}, \vec{v} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

$$\vec{u} = \vec{v} = \begin{bmatrix} 12 \\ 3 \end{bmatrix} = 24 - 9 - 15 = 0$$
Since $\vec{u} = \vec{v} = 0$, \vec{u} and \vec{v} are orthogonal.

18.)
$$\vec{y} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}$$
, $\vec{z} = \begin{bmatrix} -3 \\ -7 \end{bmatrix}$ $\vec{y} \cdot \vec{z} = \begin{bmatrix} -3 & 7 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix} = -3 - 56 + 60 + 0 = 1$

Since y== = +0, y and = are not orthogonal.

- 19.) True/False. All vectors are in R.
 - a)マッマ=11マ11°
 - bi) For any scalar c, $\vec{u} \cdot (c\vec{v}) = c(\vec{u} \cdot \vec{v})$.
 - c) If the distance from \vec{u} to \vec{v} equals the distance from \vec{u} to $-\vec{v}$, then \vec{u} and \vec{v} are orthogonal
 - di) For a square matrix A, vectors in Cal A are orthogonal to vectors in Nol A.
- ei) If vectors $\vec{v}_1, ... \vec{v}_p$ span a subspace W and if \vec{x} is orthogonal to each \vec{v}_j for j=1,...,p, then \vec{x} is in W^L .
 - a) True b) True c) True d) False e) True
- 23.) Let $\vec{u} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ and $\vec{V} = \begin{bmatrix} -7 \\ -4 \end{bmatrix}$. Compute and compare $\vec{u} \cdot \vec{V}$, $||\vec{u}||^2$, $||\vec{V}||^2$ and $||\vec{u} + \vec{V}||^2$. Do not use the pythagorean thm.

 $\vec{u} \cdot \vec{v} = -14 + 20 - 6 = 0$ $||\vec{v}||^2 = \vec{v} \cdot \vec{v} = (-7)^2 + (-4)^2 + 6^2 = 10 \text{ E}$ $||\vec{u}||^2 = \vec{u} \cdot \vec{u} = 2^2 + (-5)^2 + (-1)^2 = 30$ $||\vec{u}||^2 = (-5)^2 + (-9)^2 + (5)^2 = 131$

25.) Let $\vec{V} = \begin{bmatrix} a \end{bmatrix}$. Describe the set \vec{H} of vectors $[\vec{Y}]$ that are orthogonal to \vec{V} . Hint: Consider $\vec{V} = \vec{0}$ and $\vec{V} \neq 0$.

[x] is orthogonal to \$\forall \text{if the dot product equals zero, that is, if ax+by=0. If \$\forall = \forall \text{ then } 0x+0y=0 \text{ for any values of } x,y.

In this case, \$H=\text{R}^2. If \$\forall \text{to}\$, then either ato or bto.

Suppose ato. Then ax+by=0 \Leftarrow ax=-by \Leftarrow x=(\forall)y.

Then \$H=\forall \forall \forall \text{v} \text{eff}. He has basis \$\forall \forall \forall

6.1 continued

27.) Suppose a vector \vec{y} is orthogonal to vectors \vec{u} and \vec{v} . Show that \vec{y} is orthogonal to $\vec{u}+\vec{v}$.

We know that $\vec{y} \cdot \vec{u} = 0$ and $\vec{y} \cdot \vec{v} = 0$. We want to show that $\vec{y} \cdot (\vec{u} + \vec{v}) = 0$.

$$\vec{y} \cdot (\vec{u} + \vec{v}) = \vec{y} \cdot \vec{u} + \vec{y} \cdot \vec{v}$$
Thus \vec{y} is orthogonal to
$$\vec{u} + \vec{v}$$

29.) Let $W = \operatorname{Span}\{\vec{v}_1, \dots, \vec{v}_p\}$. Show that if \vec{x} is orthogonal to every vector in W. each \vec{v}_i , for $1 \le i \le p$, then \vec{x} is orthogonal to every vector in W. Suppose \vec{x} is orthogonal to each \vec{v}_i . Then $\vec{x} \circ \vec{v}_i = 0$. for each \vec{v}_i . Any vector \vec{w} in W is of the form $\vec{w} = C_i \vec{v}_i + \dots + C_p \vec{v}_p$

then
$$\vec{x} \cdot \vec{w} = \vec{x} \cdot (\vec{c}_1 \vec{v}_1 + ... + \vec{c}_p \vec{v}_p)$$

$$= \vec{x} \cdot (\vec{c}_1 \vec{v}_1) + ... + \vec{x} \cdot (\vec{c}_p \vec{v}_p)$$

$$= \vec{c}_1(\vec{x} \cdot \vec{v}_1) + ... + \vec{c}_p(\vec{x} \cdot \vec{v}_p)$$

$$= \vec{c}_1(\vec{o}) + ... + \vec{c}_p(\vec{o})$$

Since $\hat{X} \cdot \hat{w} = 0$, \hat{X} is orthogonal to \hat{w} for any \hat{w} in \hat{W} .

		,		
			Sec.	