Recent Progress:

- 1. MiniWECC step test results
- 2. Matt approach of ggov1 model attempted.
- 3. Code flowchart being compiled to aid in further development.
- 4. Shunts and Branches added to Mirror
- 5. custom single2float function added to reduce casting error during PSLF→LTD value exchange
- 6. shelve used for python data storage (instead of pickle)
- 7. GitHub updated: https://github.com/thadhaines/PSLTDSim/

Current Tasks:

- 1. Formulate feasible plan of action for casting WECC governors to LTD governors. Something like:
 - (a) Parse models of interest from dyd
 - (b) Perform system test to generate LTD equivalent model (automate)
 - (c) Export altered dyd for LTD simulation. (PSDS would still use original the dyd, though 'could' use modified)
- 2. Create an agent for every object: SVD, Transformer, \dots
- 3. Add logging to Shunt and Branch
- 4. Add perturbance agents for Generator, Shunt, Branch...
- 5. Define Agent actions for AGC/LFC (i.e. ACE calculations)
- 6. Formulate an experiment utilizing a multi-area model that can be validated with PSDS.
- 7. Investigate line current data and ULTC action in PSLF.

Future Tasks: (Little to No Progress since last time / Things coming down the pipe)

- 1. Think about Shunt Control / Generic Agent control based on system state(s)
- 2. Add import mirror / bypass mirror init sequence option. Will prevent repeated WECC mirror creations.
- 3. Identify System Slack bus programmatically (currently assumes first slack if > 1)

AND/OR calculate system slack error differently \rightarrow An average of slack errors?

4. Matt request: Enable multiple dyd files to overwrite / replace previously defined agents/parameters

Current Questions:

- 1. Overview of planned PSLF scenarios?

 → Similar to Heredia paper but on Wecc/MiniWecc Scale?
- 2. Is there more available/relevant event data that may help us to verify simulations of specific instances (wind ramps or other behavior) that novel research will focus on?
- 3. Any progress / continued interest in miniWecc Area definitions?

'Goals':

1. Speed \longrightarrow Order of Magnitude faster than PSDS

Time step resolution: Changing the time step affects accuracy, size of data collected, and simulation run time. The following data was collected from a 90 second simulation. LTD uses rk45 integration and 0.5 MW slack tolerance — it is also run from the command line. The PSDS system has exciters and PSS included in dyd file.

	Time step	Simulation Time [sec]	Data File Size [KB]	Real time Speed up	PSDS Speed up	Reduction of file size	Steady State f varience [Hz]
PSDS	$4.167~\mathrm{ms}$	56.12	35,070	1.60	1	1	0
LTD	$2 \mathrm{sec}$	13.79	238	6.53	4.07	147.35	NA
LTD	1 sec	27.22	479	3.31	2.06	73.21	9.50E-4
LTD	$0.5 \sec$	53.56	871	1.68	1.05	40.26	9.71E-4
LTD	$0.25~{ m sec}$	104.76	1,655	0.86	0.54	21.19	9.77E-4

Figure 1: Comparison of system frequency among different time steps.

Figure 2: Relative Hz difference of PSDS - LTD (i.e. $|f_{PSDS}(t) - f_{LTD}(t)| \times 60$ Hz).