Name		-	Tutorgruppe:	
	MA9202 Mathematik für Physiker Probeklausur, 23.1		Dr. S. Warz	zel
Bei M Bei A	nittel: ein selbsterstelltes DIN-A4 Blatt. ultiple-Choice-Aufgaben sind genau die zutreff ufgaben mit Kästen werden nur die Resultate in ben ohne Kästen lösen Sie bitte auf dem bereits	n diesen Kästen berüc	eksichtigt.	
1.	Vollständige Induktion			[8 Punkte]
]	Beweisen Sie mittels vollständiger Induktion, da	$\operatorname{uss} \sum_{k=1}^{n} \frac{1}{k^2 + k} = \frac{n}{n+1} \text{ für a}$	lle $n \in \mathbb{N}$ gilt.	
	Komplexe Zahlen Schreiben Sie $\log \left(\sqrt{\mathrm{e}^{\pi+7\pi\mathrm{i}}} \right)$ in Polardarstellung.			[7 Punkte]
3.	Konvergenz von Folgen und Reihen		_	[10 Punkte]
1	(a) Berechnen Sie den Wert der Reihe: $\sum_{n=1}^{\infty}$	$\frac{1-2(-3)^n}{4^n} =$		
((a) Berechnen Sie den Wert der Reihe: $\sum_{n=1}^{\infty} \frac{1}{(-1)^n}$ (b) Wo liegt der Grenzwert der Reihe $\sum_{n=2}^{\infty} \frac{1}{(-1)^n}$	$\frac{1}{1+\frac{1}{n})^n}?$	J	
	$\square = -\infty \qquad \square \in (-\infty, 0) \qquad \square =$	$=0$ $\square \in (0,\infty)$ \square	$\Box = +\infty$	undefiniert
	(c) Wie groß ist der Konvergenzradius der Pote	enzreihe $\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n?$		
	$\square 0 \square \frac{1}{\pi} \square \frac{1}{\mathrm{e}} \square \frac{1}{2}$		e \Box π	\square ∞
((d) Sei $(x_n)_{n\in\mathbb{N}_0}$ eine relle Zahlenfolge mit $ x_{n+1} $ ist. (x_n) ist		für alle $n \in \mathbb{N}$,	wobei $r \in [0, 1)$
	\square eine Cauchy-Folge \square diverg	ent	\square monoton	fallend
4.	Zwischenwertsatz			[7 Punkte]
1	(a) Zeigen Sie, dass für eine stetige Funktion $f:[0,1]\to [0,1]$ die Gleichung $f(x)=x$ imm Lösung hat. HINWEIS: Man betrachte $f(x)-x$.			
((b) Geben Sie mit Skizze eine Funktion $f:[0,1]$	$] \rightarrow [0,1]$ an, für die $f(x)$	$(x) \neq x$ für alle	$x \in [0, 1]$ gilt.
5.	Ableitung der Umkehrfunktion			[17 Punkte]
	(a) Sei $f:(a,b) \to (c,d)$ mit $-\infty \le a < b \le \infty$ bijektive Funktion mit $f'>0$. Begründen Sie ist und drücken Sie die zweite Ableitung von	e, dass die Umkehrfunktio	on f^{-1} zweima	al differenzierbar

f an geeigneter Stelle aus. (b) Zeigen Sie, das $f:(0,e)\to(-\infty,\frac{1}{e}), f(x)=\frac{\ln x}{x}$ den Bedingungen von (a) genügt und berechnen Sie das Taylorpolynom zweiter Ordnung von f^{-1} im Punkt 0.

6.	Integration		[7 Punkte]
	Berechnen Sie		
	(a) $\int_{0}^{x} \frac{t^{2013}}{1+t^{2014}} dt,$	(b) $\int_{0}^{x} e^{t} \sin t dt.$	
7.	Funktionenfolgen		[10 Punkte]
	Für die Funktionenfolge (f_r	f_n) $_{n\in\mathbb{N}}$, $f_n:\mathbb{R}\to\mathbb{R}$, $f_n(x)=\arctan(nx)$ gilt:	
	(a) (f_n) konvergiert punktv	weise gegen $f: \mathbb{R} \to \mathbb{R}$, mit	7
		f(x) =	
	□ Weil f stetig ist, ke □ Weil f unstetig ist, □ Weil f unsteti	onvergiert (f_n) gleichmäßig gegen f . onvergiert (f_n) nicht gleichmäßig gegen f . onvergiert (f_n) gleichmäßig gegen f . onvergiert (f_n) nicht gleichmäßig gegen f . onvergiert (f_n) nicht gleichmäßig gegen f . onvergiert (f_n) und skizzieren Sie sie.	
		$f'_n(x) =$	