Math 555E

Atabey Kaygun

Thursday, April 1, 2021

Regression Models

The Basic Setup

We have **structured** data (column data)

CICO	SM1Dz	GATS1i	MLOGP	LC50
3.260	0.829	1.676	1.453	3.770
2.189	0.580	0.863	1.348	3.115
2.125	0.638	0.831	1.348	3.531
3.763	0.916	0.878	2.918	4.818
3.763 2.831	0.916 1.393	0.878 1.077	2.918 0.906	4.818 5.317
	3.260 2.189	3.260 0.829 2.189 0.580	3.260 0.829 1.676 2.189 0.580 0.863	3.260 0.829 1.676 1.453 2.189 0.580 0.863 1.348

Predict the last column

The Basic Setup

We have **structured** data (column data)

	CICO	SM1Dz	GATS1i	MLOGP	LC50
0	3.260	0.829	1.676	1.453	3.770
1	2.189	0.580	0.863	1.348	3.115
2	2.125	0.638	0.831	1.348	3.531
905	3.763	0.916	0.878	2.918	4.818
906	2.831	1.393	1.077	0.906	5.317
907	4.057	1.032	1.183	4.754	8.201

- Predict the last column
- ► We form a linear model

 $LC50 \approx \alpha + \beta_1 CIC0 + \beta_2 SM1Dz + \beta_3 GATS1i + \beta_4 MLOGP$

The Optimization Model

The **best-fitting** linear model

$$\operatorname{argmin}_{\alpha,\beta} \| LC50 - \alpha - \beta \cdot X \|$$

The Questions

▶ Did the model fit?

The Questions

- ▶ Did the model fit?
- ► How well?

The Questions

- ▶ Did the model fit?
- ► How well?
- ▶ Which variables are (more) important?

A Common Misconception

The size of the coefficient

doesn't mean importance

A Common Misconception

The size of the coefficient

- doesn't mean importance
- ▶ the coefficient relates to relative size

Assume we have a linear model

$$Y \approx \beta \cdot X$$

Assume we have a linear model

$$Y \approx \beta \cdot X$$

Total variance in the dependent variable

$$SS_{tot} = \frac{1}{N} \sum_{i} (Y_i - \hat{Y})^2$$

Assume we have a linear model

$$Y \approx \beta \cdot X$$

Total variance in the dependent variable

$$SS_{tot} = \frac{1}{N} \sum_{i} (Y_i - \hat{Y})^2$$

Total residual variance

$$SS_{res} = \frac{1}{N} \sum_{i} (Y_i - \beta \cdot X_i)^2$$

► Total **explained** variance

$$\frac{SS_{res}}{SS_{tot}}$$

Total explained variance

$$\frac{SS_{res}}{SS_{tot}}$$

Total unexplained variance

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

ANOVA (ANalysis Of VAriance)

Instead of total explained variance do one variable

$$1 - \frac{SS_{res,i}}{SS_{tot}}$$

where

$$SS_{res,i} = \frac{1}{N} \sum_{i} (Y_i - \beta_j X_{ij})^2$$

DEMO

Variable Types

ightharpoonup A numerical variable takes values in $\mathbb R$

Variable Types o●ooo

- ightharpoonup A numerical variable takes values in $\mathbb R$
- ► A categorical variable is discrete.

- ightharpoonup A numerical variable takes values in $\mathbb R$
- ► A categorical variable is discrete.
 - Ordered

- ightharpoonup A numerical variable takes values in $\mathbb R$
- ► A categorical variable is discrete.
 - Ordered
 - Unordered

- ightharpoonup A numerical variable takes values in $\mathbb R$
- ► A categorical variable is discrete.
 - Ordered
 - Unordered
- Examples

- ightharpoonup A numerical variable takes values in $\mathbb R$
- A categorical variable is discrete.
 - Ordered
 - Unordered
- Examples
 - lacktriangle Education levels: primary < secondary < college < MSc < PhD

- ightharpoonup A numerical variable takes values in $\mathbb R$
- A categorical variable is discrete.
 - Ordered
 - Unordered
- Examples
 - ightharpoonup Education levels: primary < secondary < college < MSc < PhD
 - ightharpoonup Socio-Economic level: low < middle < high

- ightharpoonup A numerical variable takes values in $\mathbb R$
- A categorical variable is discrete.
 - Ordered
 - Unordered
- Examples
 - ightharpoonup Education levels: primary < secondary < college < MSc < PhD
 - Socio-Economic level: low < middle < high</p>
 - Car brands: Toyota, Mercedes, BMW, Fiat, . . .

▶ Do not automatically encode them with numbers

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2
 - Would it mean

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2
 - Would it mean
 - the difference btw low and middle is the same as middle and high?

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2
 - Would it mean
 - the difference btw low and middle is the same as middle and high?
 - the difference btw low and high is twice as much btw low and middle?

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2
 - Would it mean
 - the difference btw low and middle is the same as middle and high?
 - the difference btw low and high is twice as much btw low and middle?
 - In the case variable instances are not ordered

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2
 - Would it mean
 - the difference btw low and middle is the same as middle and high?
 - the difference btw low and high is twice as much btw low and middle?
 - In the case variable instances are not ordered
 - ► Toyota = 0, Mercedes = 1, BMW = 2

- Do not automatically encode them with numbers
 - ightharpoonup Class: low = 0, middle = 1, high = 2
 - Would it mean
 - the difference btw low and middle is the same as middle and high?
 - the difference btw low and high is twice as much btw low and middle?
 - In the case variable instances are not ordered
 - ► Toyota = 0, Mercedes = 1, BMW = 2
 - ► Toyota < Mercedes < BMW?

Examples

One Hot Encoding

- One Hot Encoding
- ► Label/Ordinal Encoding

- One Hot Encoding
- ► Label/Ordinal Encoding
- ► Frequency Encoding

- One Hot Encoding
- ► Label/Ordinal Encoding
- Frequency Encoding
- Mean Encoding

- One Hot Encoding
- ► Label/Ordinal Encoding
- Frequency Encoding
- Mean Encoding
- Hash-Encoding

Regression with Categorical Variables

Demo