

FACULTY OF ENGINEERING DESIGN AND TECHNOLOGY

COURSE: BACHELOR OF SCIENCE IN COMPUTER SCIENCE (BSCS)

COURSE UNIT: DATA SCIENCE DSC 2103

LECTURER: DR. DAPHINE NYACHAKI BITALO (PhD GENETICS AND BIOINFORMATICS)

NAME: MUGANGA CHARLES

Access no: A96447

REG no: J22B23/032

Assignment 3 Write Up.

Assignment 1 markdown

libraries used

- tidyverse
- ggplot2
- readxl

Part a

Approach

- Load the dataset
- Summarize dataset
- calculate the mode of the overall performance
- Calculate the mode using the user function.
- print the mode

Mode

[1] 7.5

breaking mean and median

results

• Ibanda, Mityana and MUkono respectively.

```
summary(Ibanda$OVERALL)
##
     Min. 1st Qu.
                   Median
                             Mean 3rd Qu.
                                             Max.
##
     6.75
             7.25
                     7.50
                             7.59
                                     8.00
                                             8.75
summary(Mityana$OVERALL)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
    6.000
            7.000
                    7.500
                            7.402
                                    7.750
                                            8.750
summary(Mukono$OVERALL)
##
     Min. 1st Qu.
                   Median
                             Mean 3rd Qu.
                                             Max.
##
    6.500 7.250 7.500
                            7.524 7.750
                                            9.000
```

The graphs

Mityana overall variety performance

Mukono overall variety performance

Part b

Approach

- relationship between the variables
- Looking at effect of flavor on performance per district
- Looking at effect of aroma on performance per district

- Looking at effect of aftertaste on performance per district
- Looking at effect of salt/acid on performance per district

The graphs.

Effect of flavor on overall coffee performance

Effect of flavor on coffee performance in Ibanda

Effect of flavor on coffee performance in Mityana

Effect of flavor on coffee performance in Mukono

Effect of aroma on overall coffee performance

Effect of aroma on coffee performance in Ibanda

Effect of aroma on coffee performance in Mityana

Effect of aroma on coffee performance in Mukono

Warning: Use of `coffe_dataset\$AFTERTASTE` is discouraged.
i Use `AFTERTASTE` instead.

Effect of aftertaste on overall coffee performance

Effect of aftertaste on coffee performance in Ibanda

Effect of aftertaste on coffee performance in Mukono

Effect of acidity on overall coffee performance

Effect of acidity on coffee performance in Ibanda

Warning: Use of `Mityana\$"SALT/ ACID"` is discouraged.
i Use `SALT/ ACID` instead.

Warning: Use of `Mityana\$"SALT/ ACID"` is discouraged.
i Use `SALT/ ACID` instead.

Effect of acidity on coffee performance in Mityana

Effect of acidity on coffee performance in Mukono

Part c(i)

PERFORMANCE BY VARIETY AND DISTRICT

concentrating on the mean of the overall performance

Mean overall performance by district

Part c(ii)

Performance of each variety

- Transform the coffe_dataset to subselected varieties individually
- calculating the mean of each variety
- Plot the means

Mean overall variety performance

Part d The distibution central tendency of the overall performance

the distibution central tendency of each variable

OVERALL PERFORMANCE OF VARIETIES

FRAGRANCE/AROMA

FRAGRANCE/AROMA

FLAVOR

FLAVOR

SALT/ACID

SALT/ACID

BITTER/SWEET

BITTER/SWEET

AFTERTASTE

AFTERTASTE

MOUTH FEEL

MOUTH FEEL

OVERALL

OVERALL

Part e normal distribution tests

• Test the overall variable for normal distribution using the Shapiro-wilk test

- Null hypothesis based on research question: The overall performance of varieties across districts is normally distributed. p-value >= 0.05
- Alternative hypothesis: Overall performance is not normally distributed across districts. p-value =<0.05

Shapiro-Wilk normality test

data: coffe_dataset\$OVERALL

W = 0.95674, p-value = 0.01189

- p-value = 0.01189
- Since the p-value is less than 0.05, we therefore fail to reject the null hypothesis.

Theoretical Quantiles

- the data is not normally distributed therefore we will use the non-parametric test
- One-sample Wilcoxon signed-rank test

Wilcoxon signed rank test with continuity correction

data: coffe_dataset\$OVERALL
V = 2850, p-value = 4.371e-14

alternative hypothesis: true location is not equal to 0.8

Assignment two markdown

Packages used include;

- readxl
- tidyverse
- ggplot2
- ggpubr
- dplyr

Importing data

Question 1

removing the missing values

work <- na.omit(work)</pre>

Question 2

Show the relationship between the prices and perception change.

Appoach

- define the perception values.
- compute the percentage of each perception in response to price.

Results as percentages of all perceptions.

Positive

[1] 2.977934

Negative

[1] 32.33265

partial_postive

[1] 8.831819

partial_negative

[1] 29.34545

Nuetral

[1] 20.63416

Displaying the covariation between the perception and price

Question 3

Compare the perception change and diamond quality

Question 4

Generating a boxplot of all the variables

Boxplot of the variables of the dataset

Question 5

Generating induvidual boxplots of the variables

Boxplot of the price variable

Boxplot of the carat variable

Boxplot of the depth variable

Boxplot of the x variable

Boxplot of the y variable

A box plot that labels out the outliers

Using the interquartile range to identify the outliers

Approach

- Compute the interquartile range.
- Compute the upper and lower limits.
- Identify the outliers.

Plots without outliers

Boxplot of the price variable

Boxplot of the x variable

Boxplot of the y variable

Question 6

creating a new csv file with the outliers removed

write.csv(new_work, file="D:/R/Assignment2_MugangaCharles.csv")

Question 7

Display the relationship between one qualitative variable and one finite variable in the dataset

• the selected variables are cut and price.

Question 8

Compute the variance between three groups; diamond carat, perception change and price

Appoach

- Comparing mean, median and mode
- Calculating the mean and median of the variable "carat" in the diamonds dataset

[1] 0.7239025

[1] 0.7

results

- Mean = 0.72, Median = 0.7.
- The performance of carat is positively skewed.

Question 9

Appoach

 Compute the variance between three groups; diamond carat, perception change and price

- the groups are carat, price and perception change
- the variables are carat, PC and price
- The null hypothesis is that the groups have the same variance
- The alternative hypothesis is that the groups have different variances

Steps

• view the groups

```
## # A tibble: 50,393 × 3
##
     carat PC
                    price
##
     <dbl> <chr>
                    <dbl>
## 1 0.23 Negative
                      326
## 2 0.21 Negative
                      326
## 3 0.23 Negative
                      327
## 4 0.29 Negative
                      334
## 5 0.31 Negative
                      335
## 6 0.24 Negative
                      336
## 7 0.24 Negative
                      336
## 8 0.26 Negative
                      337
## 9 0.22 Negative
                      337
## 10 0.23 Negative
                      338
## # ... with 50,383 more rows
```

• Generate the random sample of the data.

```
## # A tibble: 6 × 4
    PC
##
              mean
                      sd
                             n
##
     <chr>>
             <dbl> <dbl> <int>
## 1 Negative 3144. 2768. 16291
## 2 NR
         3169. 2767. 10404
## 3 Positive 3135. 2741. 1501
## 4 Positve 3160. 2779. 2964
## 5 SN
         3174. 2771. 14789
## 6 SP 3165. 2755. 4444
```

Plots

Computing the variance between the groups

```
## Df Sum Sq Mean Sq F value Pr(>F)
## PC 5 8.637e+06 1727312 0.226 0.952
## Residuals 50387 3.859e+11 7658723
```

Commenting on the results

- The p-value is 0.954 which is greater than 0.05 and therefore we fail to reject the null hypothesis therefore statistically not significant
- The posthoc test used is the Tukey HSD test
- The null hypothesis is that the groups have the same variance
- The alternative hypothesis is that the groups have different variances by aleast one group having a variance not equal to the others groups

Question 9(b)

```
TukeyHSD(anova, conf.level = .95)
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = price ~ PC, data = groups)
##
## $PC
##
                           diff
                                       lwr
                                                upr
                                                        p adj
## NR-Negative
                      24.169212 -74.80432 123.1427 0.9824596
## Positive-Negative -9.318170 -222.04699 203.4106 0.9999958
## Positve-Negative
                      15.538464 -141.94572 173.0227 0.9997645
                      29.562176 -60.01047 119.1348 0.9360071
## SN-Negative
## SP-Negative
                      20.484454 -112.98113 153.9500 0.9979834
## Positive-NR
                     -33.487382 -251.23446 184.2597 0.9979638
## Positve-NR
                      -8.630748 -172.83035 155.5689 0.9999896
## SN-NR
                       5.392965 -95.52036 106.3063 0.9999887
## SP-NR
                      -3.684758 -145.01169 137.6422 0.9999997
## Positve-Positive
                      24.856634 - 224.98191 274.6952 0.9997547
## SN-Positive
                      38.880347 -174.75787 252.5186 0.9954693
## SP-Positive
                      29.802624 -205.63546 265.2407 0.9992041
## SN-Positve
                      14.023713 -144.68674 172.7342 0.9998632
## SP-Positve
                     4.945990 -182.08024 191.9722 0.9999997
## SP-SN
                      -9.077723 -143.98807 125.8326 0.9999644
plot(TukeyHSD(anova, conf.level = .95))
```

95% family-wise confidence level

Differences in mean levels of PC

• The Tukey HSD test shows that the groups have different variances by aleast one group having a variance not equal to the others groups.