Signature and Name of Invig	ilator OM	IR Sheet No	. :					
0				o be fil				
1. (Signature)		Roll No.						
(Name)		110111101	(In figu	1700.00	nor o	dmiss	zion c	L J
			(III IIgt	nes as	per a	umiss	31011 C	aruj
2. (Signature)	Rol	l No						
(Name)				(In wo	rds)			
<u> </u>	PAPER – II	Test Bo	oklet :	No.				

D-8708

COMPUTER SCIENCE AND

Time: 11/4 hours [Maximum Marks: 100 **APPLICATIONS**

Number of Pages in this Booklet: 8

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- This paper consists of fifty multiple choice type of questions.
- At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker seal and do not accept an open booklet.
 - Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the question booklet will be replaced nor any extra time will be
 - (iii) After this verification is over, the Test Booklet Number should be entered in the OMR heet and the OMR Sheet Number should be entered on this Test
- 4. Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the oval as indicated below on the correct response against each item.

Example: A B

where (C) is the correct response.

- Your responses to the items are to be indicated in the Answer Sheet given inside the Paper I booklet only. If you mark at any place other than in the ovals in the Answer Sheet, it will not be evaluated.
- Read instructions given inside carefully.
- Rough Work is to be done in the end of this booklet.
- f you write your name or put any mark on any part of the test booklet, except for the space allotted for the relevant entries, which may disclose your identity, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is NO negative marking.

परीक्षार्थियों के लिए निर्देश

Number of Questions in this Booklet: 50

- 1. पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में पचास बहविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को ाड लें / खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - कवर पष्ठ पर छपे निर्देशानसार प्रश्न-पस्तिका के पष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ / प्रश्न कम हों या दबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-प्स्तिका की ऋम संख्या OMR पत्रक पर अंकित करें और OMR पत्रक की ऋम संख्या इस प्रश्न-पस्तिका पर
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं। आपको सही उत्तर के दीर्घवृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : (A) (B) (D) जबकि (C) सही उत्तर है।

5. प्रश्नों के उत्तर **केवल प्रश्न पत्र ! के अन्दर दिये गये** उत्तर-पत्रक पर ही अंकित करने हैं। यदि आप उत्तर पत्रक पर दिये गये दीर्घवृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते है, तो उसका मृल्यांकन नहीं होगा।

- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 8. यदि आप उत्तर-पुस्तिका पर अपना नाम या ऐसा कोई भी निशान जिससे आपकी पहचान हो सके, किसी भी भाग पर दर्शाते या अंकित करते हैं तो परीक्षा के लिये अयोग्य घोषित कर दिये जायेंगे।
- 9. आपको परीक्षा समाप्त होने पर उत्तर-पुस्तिका निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद अपने साथ परीक्षा भवन से बाहर न
- 10. केवल नीले / काले बाल प्वाईंट पैन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तर के लिए अंक नहीं काटे जायेंगे।

Computer Science and Applications

PAPER-II

Note: This paper contains **fifty** (50) objective-type questions, each question carrying **two** (2) marks. Attempt **all** of them.

1. The channel capacity of a band-limited Gaussian channel is given							n by:		
	(A)	$B\log_2\left(2+\frac{S}{N}\right)$			(B)	B log	$g_2\left(1+\frac{S}{N}\right)$		
	(C)	$B\log_{10}\left(1+\frac{S}{N}\right)$			(D)	B log	$g_{e}\left(1+\frac{S}{N}\right)$		
2.	The	graph K _{3, 4} has :							
		3 edges	(B)	4 edges		(C)	7 edges	(D)	12 edges
2	TT1		:	((1	1	L. J	C	1 - 1 11 1	
3.		total number of s	_	_	it can	be ara			
	(A)	125	(B)	64		(C)	36	(D)	16
4.	Extr	emely low power	dissi	nation and l	low co	st nei	r gate can be ac	hieved i	n·
1.	(A)	MOS ICs	(B)	C MOS IC		(C)	TTL ICs	(D)	ECL ICs
5.	An e	example of a univ	ersali	building blo	ck is				
·	(A)	EX-OR gate		AND gate		(C)	OR gate	(D)	NOR gate
6.	An e	example of a layer	r that	is absent in	broac	lcast 1	networks is :		
	(A)	physical layer	7		(B)		entation layer		
	(C)	network layer			(D)	•	ication layer		
7.	The	ATM cell is:							
•	(A)	48 bytes long			(B)	53 b	ytes long		
	(C)	64 bytes long			(D)	•	ytes long		
4	(0)	of by ics forig			(D)	07 D	y 103 1011g		
Q	Eou	riobe I I I and	Laro	waiting to	ho run	The	oir avpacted rur	n timos a	ro 9 6 3 ar

8. Four jobs J_1 , J_2 , J_3 and J_4 are waiting to be run. Their expected run times are 9, 6, 3 and 5 respectively. In order to minimise average response time, the jobs should be run in the order :

- (A) $J_1 J_2 J_3 J_4$
- (B) $J_4 J_3 J_2 J_1$
- (C) $J_3 J_4 J_1 J_2$
- (D) $J_3 J_4 J_2 J_1$

9. Suppose it takes 100 ns to access page table and 20 ns to access associative memory. If the average access time is 28 ns, the corresponding hit rate is :

- (A) 100 percent
- (B) 90 percent
- (C) 80 percent
- (D) 70 percent

10.		smission of N sig l-width of :	nals,	each band lii	mited	to f _n	Hz by TDM,	requires	a minimum
	(A)	f_{m}	(B)	2 f _m		(C)	N f _m	(D)	2N f _m
11.	If a c	code is 't' error de	tectin	g, the minim	ium h	ıumm	ing distance sl	hould be	equal to:
	(A)	t-1	(B)	t		(C)	t+1	(D)	2t+1
12.	A relis: (A) (B) (C) (D)	reflexive symmetric transitive not reflexive, no						, (4, 5) }.	This relation
13.	The	dual of the switch	ning fi	unction $x+y$	z is:			•	
	(A)	x+yz	(B)	$\overline{x} + \overline{y} \overline{z}$		(C)	x(y+z)	(D)	$\overline{x}(\overline{y}+\overline{z})$
14.	The	characteristic equ	ation	of D flip-flop	is:				
	(A)	Q = 1	(B)	Q = 0		(C)	$Q = \overline{D}$	(D)	Q = D
15.	If for	ur 4 input multipl	lexers	drive a 4 in	out m	ultipl	exer, we get a	:	
	(A) (C)	16 input MUX 4 input MUX			(B) (D)	8 inp	out MUX out MUX		
16.	The	throughput of slo			ven b				
	(A)	S=G	(B)	S=Ge ^G		(C)	S=Ge ^{-G}	(D)	$S=e^{G}$
17.	•	gestion control is	done	•					
	(A) (C)	Network layer Presentation lay	or		(B) (D)	•	ical layer lication layer		
	(C)	Tresentation lay	CI		(D)	дррі	ilcation layer		
18.	Assertion (A): Twisted pairs are widely used as transmission medium. Reasoning (R): Twisted pairs have adequate performance and low cost. (A) Both (A) and (R) are true and (R) is the correct explanation for (A) (B) Both (A) and (R) are true but (R) is not the correct explanation (C) (A) is true but (R) is false (D) (A) is false but (R) is true								
19.	An e (A) (C)	example of a non- Shortest path ro Baran's hot pota	uting	C	algori (B) (D)	Cent	s: ralised routing n's backward	-	algorithm

20.	(A)	address in B class is given by: 125 . 123 . 123 . 2 192 . 128 . 32 . 56				(B) (D)				
21.		rocesses are wa e. The CPU uti				spend	s a fract	ion p of i	ts time ii	n I/O wait
			(B)			(C)	p^N	(D)	p^{-N}	
22.	If ho	oles are half as	large as	processes,	the fra	ction (of memo	ory waste	d in hole	es is :
	(A)	$\frac{2}{3}$	(B)	$\frac{1}{2}$		(C)	$\frac{1}{3}$	(D)	<u>1</u> 5),
23.	An e	example of a n	on - pre-	emptive so	cheduli	ng alg	orithm i	is :		
	(A)	Round Robin	l		(B)	Prio	rity Sch	eduling	♦	
	(C)	Shortest job f	irst		(D)	2 lev	el schec	luling		
24.	An e	example of a d	istributed	d OS is :			1			
	(A)	Amoeba			(B)	UNI	X			
	(C)	MS-DOS			(D)	MUI	LTICS			
25.	Whi	ch one of the f	ollowing	describes	correct	ly a s	tatic var	riable 2		
2 0.	(A)	It cannot be i			Correct	1y a 3	tatic vai	iabic :		
	(B)	It is initialised run time			nencem	ent of	executio	on and ca	nnot be o	changed at
	(C)	It retains its v	alue du	ring the lif	e of the	prog	ram			
	(D)	None of the a	above							
26.	The	output of the j	orogram	code						
	maiı		•							
	{	17/2								
	1	int x = 0;	10)							
•		while $(x < =$,							
		for (;;	•	10 = = 0)					
	7		reak;	10 0	,					
		print $f("x = \%)$								
	}	. \	. ,.							
	is:									

(A) x = 1(C) x = 20 (B) compilation error

(D) none of the above

D-3	8708		5				P.T.O.
34.	`	ear = = maxsize -1) rear = 0; else circular queue (B) linear que		rear - (C)	•	ı: (D)	deque
33.	(A)	heap, every element is maximum (B) minimum		(C)	elements in the su sum	(D)	product
1	(D)	at least one from $R_1 \cap R_2 \to R_1$ a	nd R ₁	$_{1}\cap \mathbb{R}_{2}$	\rightarrow R ₂ is in F ⁺		
	(C)	both $R_1 \cap R_2 \to R_1$ and $R_1 \cap R_2$				es are	ın F ⁺
	(B)	$R_1 \cap R_2 \to R_2$ is in F^+	_				
	` ,						
	(A)	$R_1 \cap R_2 \to R_1$ is in F^+					
	supp	pose R_1 and R_2 form a decomposition of R provided that:					
32.	Sup	pose R is a relation schema and F is	a set	of fun	ctional dependen	cies or	n R. Further,
	(D)	none of the above					
	(C)	an abstraction through which rel none of the above	ations	hips a	are not treated at	all as	entities.
	(B)	an abstraction through which rel					
	(A)	an abstraction through which rel		-			
31.	Agg	regation is :					
	(A)	(i) only (B) (ii) only		(C)	(iii) only	(D)	(iv) only
		ch of the above are valid?		(C)	(;;;)1	(D)	(:)1
	` ′	an entity				, 1	
	(iv)	a set of properties and the values	for sor	ne set	of properties ma	y uniq	uely identify
	(iii)	a set of properties and the value identify an entity	s for s	some	set of properties	may r	on-uniquely
	(ii)	a set of properties and values for					
	(i)	a set of properties					•
30.	An e	entity has :					
	(-)	_	(2)	апу			
	(A) (C)	zero 2	(B) (D)		number		
29.		v many constructors can a class ha		1			
20		1 1	2				
	(C)	overloaded	(D)	none	e of the above		
	(A)	extensible	(B)	enca	psulated		
28.	Whe	en a language has the capability to	produ	ice ne	w data types, it is	s said	to be:
	(-)	a random retains by reference	(2)	110110			
	(A) (C)	a function returns by value a function returns by reference	(B) (D)		rgument is passed e of the above	a by v	aiue
27.		ppy constructor is invoked when:	(D)		. •		•

35.	5. A high performance switching and multiplexing technology that utilises fixed length packets to carry different types of traffic is :									
	(A)	ATM	(B)	ADSL						
	(C)	SONET	(D)	None of the above						
36.	36. A conventional LAN bridge specifies only the functions of OSI:									
	(A)	layers 1 and 2	(B)	layers 1 through 3						
	(C)	all layers	(D)	none of the above						
37.	An a	ssembly program contains :								
	(A)	imperative and declarative staten	nents							
	(B)	imperative statements and assem	bler d	irectives						
	(C)	imperative and declarative statem	ents a	as well as assembler directives						
	(D)	declarative statements and assem	bler d	irectives						
38.		hich addressing mode, the effectivenstant value to the contents of regis		ess of the operand is generated by adding						
	(A)	absolute mode	(B)	immediate mode						
	(C)	indirect mode	(D)	index mode						
39.	Whi	ch of the following are Assembler l	Direct	ives ?						
	(i)	EQU (ii) ORIGIN		(iii) START (iv) END						
	(A)	(ii), (iii) and (iv)	(B)	(i), (iii) and (iv)						
	(C)	(iii) and (iv)	(D)	(i), (ii), (iii) and (iv)						
40.	Whic	ch of the following OS treats hardy	vare a	s a file system ?						
	(A)	UNIX	(B)	DOS						
	(C)	Windows NT	(D)	None of the above						
41.	In w	hich of the following, ready to exec	cute p	rocesses must be present in RAM?						
	(A)	multiprocessing	(B)	multiprogramming						
	(C)	multitasking	(D)	in all of the above						
42.	If the	e executing program size is greater	than	the existing RAM of a computer, it is still						
	poss	ible to execute the program if the C	OS sup	pports:						
	(A)	multitasking	(B)	virtual memory						
	(C)	paging system	(D)	none of the above						
43.	Softv	vare Quality Assurance (SQA) enc	ompa	sses:						
	(A)	verification	(B)	validation						
	(C)	both verification and validation	(D)	none of the above						

D - 8708

44.	Whi	ch level is called as "defined" in capability maturity model?											
	(A)	level 0	(B)	level 3		(C)	level 4	(D)	level 1				
45.	COC	COMO model is	used fo	or:									
	(A)	product quali	ty estim	ation	(B)	prod	luct complexi	ty estimat	tion				
	(C)	product cost e	estimatio	on	(D)	all of	f the above						
46.	Font	sizes are usual	ly expre	ssed in po	ints. C	ne po	int is :						
	(A)	0.0069 inch	, ,	•	(B)	-	38 inch						
	(C)	0.0207 inch			(D)	0.027	76 inch						
47.	Asse	ertion (A) : Ce	llular te	lenhone sv	vstems	can h	andle a multi	tude of us	sers				
		soning (R) : Ce		lephone sy									
	(A)	Both (A) and	(R) are	true and (l	R) is th	is the correct explanation for (A)							
	(B)	Both (A) and (R) are true but (R) is not the correct explanation											
	(C)	(A) is true but	(R) is fa	alse									
	(D)	(A) is false bu	t (R) is t	rue									
48.	E-c	commerce invol	ves :		1								
	(A)	Electronic Da	ta Interd	change	(B)	Elect	ronic mail						
	(C)	Electronic Bul	letin Bo	ards	(D)	All o	of the above						
49.	An e	example of a da	ta minii	ng algorith	ım whi	ch use	es squared eri	ror score f	unction is:				
	(A)	CART algorit	hm		(B)	back	propagation	algorithn	n				
	(C)	a priori algori	thm		(D)	vecto	or space algor	rithm					
50.	(I)	Each object in	the act	ive directo	ry of w	vindov	vs 2000 has a	ın access c	control list.				
	(II)				•								
		(II) The scheme is a blueprint of all objects in the domain of windows 2000. Which of the following is true?											
•	(A)	only (I)		0	(B)	only	(II)						
	(C)	both (I) and (I	(I)		(D)	3	of the above	<u>.</u>					
	1	()	,		` /								

- o O o -

D - 8708