Global Explainability (XAI) Techniques Quantifying the uncertainty of the explanations

Vasilis Gkolemis¹

¹ATHENA Research and Innovation Center

November 2021

- Intro to XAIGlobal vs Local
- 2 Feature Effect
- Feature Effect Methods
- 4 Feature Interaction
- **5** Feature Importance
- 6 Extras

Hypothetical (?) scenarios

 The computer vision subsystem of an autonomous vehicle leads the vehicle to take a left turn, in front of a car moving in the opposite direction¹

¹https://www.theguardian.com/technology/2022/dec/22/

tesla-crash-full-self-driving-mode-san-francisco

²https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-l

3https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing

Hypothetical (?) scenarios

- The computer vision subsystem of an autonomous vehicle leads the vehicle to take a left turn, in front of a car moving in the opposite direction¹
- The credit assessment system leads to the rejection of an application for a loan - the client suspects racial bias²

¹https://www.theguardian.com/technology/2022/dec/22/

tesla-crash-full-self-driving-mode-san-francisco

²https://www.technologyreview.com/2021/06/17/1026519/ racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-l

³https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing a part of the sentencing and the sentencing and the sentencing and the sentencing are sentencing as the sentencing and the sentencing are sentencing as the sentencing are sentenc

Hypothetical (?) scenarios

Intro to XAI

- The computer vision subsystem of an autonomous vehicle leads the vehicle to take a left turn, in front of a car moving in the opposite direction¹
- The credit assessment system leads to the rejection of an application for a loan - the client suspects racial bias²
- A model that assesses the risk of future criminal offenses (and used for decisions on parole sentences) is biased against black prisoners³

https://www.theguardian.com/technology/2022/dec/22/

tesla-crash-full-self-driving-mode-san-francisco

²https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-l 3https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing a part of the sentencing and the sentencing and the sentencing and the sentencing are sentencing as the sentencing and the sentencing are sentencing as the sentencing are sentenc

Questions

- Why did the model make a specific decision? local XAI
- What could we change so that the model will make a different decision? counterfactual
- Can we summarize the model's behavior? global XAI
- Models as knowledge extractors, what hat the model learnt global XAI

Interpretability of Machine Learning Models

Qualitative definitions:

Intro to XAI

 "Interpretability is the degree to which a human can understand the cause of a decision" 4

⁴Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (2017)

⁵Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! Criticism for interpretability." Advances in Neural Information Processing Systems (2016).

⁶Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences, 116(44), 22071-22080. (2019)

Interpretability of Machine Learning Models

Qualitative definitions:

Intro to XAI

- "Interpretability is the degree to which a human can understand the cause of a decision"
- "Interpretability is the degree to which a human can consistently predict the model's result"

⁴Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (2017)

⁵Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! Criticism for interpretability." Advances in Neural Information Processing Systems (2016).

⁶Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences, 116(44), 22071-22080. (2019)

Interpretability of Machine Learning Models

Qualitative definitions:

Intro to XAI

- "Interpretability is the degree to which a human can understand the cause of a decision" 4
- "Interpretability is the degree to which a human can consistently predict the model's result"
- "Extraction of relevant knowledge from a machine-learning model concerning relationships either contained in data or learned by the model" ⁶

⁴Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (2017)

⁵Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! Criticism for interpretability." Advances in Neural Information Processing Systems (2016).

⁶Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences, 116(44), 22071-22080. (2019)

My understanding

Interpretability is the degree to which a human can understand the reasoning process for a (specific) prediction

- interpretability: either by-design or assisted by a post-hoc XAI technique
- degree: non binary, interpretability is a spectrum
- human: interpretability is a human-centric procedure
- reasoning process: mechanism for predicting

Global vs Local

Local

- Interpret the model's output for a particular input
- Extract interpretable quantity that holds for x close to $x^{(i)}$
- Global
 - Provide a general interpretation of the model's behavior
 - Extract interpretable quantity that holds for $x \in \mathcal{X}$

Figure: (Left) Global vs (Right) Local

Challenges on global methods

Extract an interpretable quantity that holds for $x \in \mathcal{X}$

- Fidelity: does the interpretable quantity mimics the model's behavior?
- Interpretability: is the extracted quantity interpretable enough?
- Can we have both?
 - if yes, why not replacing the original model with an interpretable one?
 - if no, how to deal with the trade-off?

Spoiler: Maybe uncertainty helps...

Methods we will discuss

- Feature Effect
- Feature Interaction
- Feature Importance

- Intro to XAIGlobal vs Local
- Peature Effect
- Feature Effect Methods
- Feature Interaction
- **5** Feature Importance
- 6 Extras

Consider the following mapping $x \rightarrow y$

Process unknown \rightarrow we only have samples

Our goal is to model the process using the available samples (regression)

Linear model \rightarrow Underfiting!

$$y = w_1 \cdot x + w_0$$

 2^{nd} degree polynomial \rightarrow Decent Fit!

$$y = w_2 \cdot x^2 + w_1 \cdot x + w_0$$

 3^{rd} degree polynomial \rightarrow Good Fit!

$$y = w_3 \cdot x^3 + w_2 \cdot x^2 + w_1 \cdot x + w_0$$

 9^{th} degree polynomial \rightarrow Overfitting!

$$y = \sum_{i=0}^{9} w_i \cdot x^i$$

Problem diagnosis

- Model behavior is *explained* by the shape of the function
- Overfitting, Underfitting are easily diagnosed
- If the input has multiple dimensions D?
 - We often have tens or hundreds of features
 - Images and signals: Several thousands of input dimensions

Bike Sharing Problem

- Predict Bike rentals per hour in California
- We have 11 features
 - e.g., month, hour, temperature, humidity, windspeed
- We fit a Neural Network $y = \hat{f}(x)$
- How to make a plot like before?
 - Feature Effect methods

Feature effect methods

- ullet High-dimensional input space $oldsymbol{x} \in \mathbb{R}^D$
 - $x_s \rightarrow$ feature of interest
 - $\mathbf{x}_c \rightarrow$ other features
- How do we isolate the effect of x_s ?

- Intro to XAIGlobal vs Local
- 2 Feature Effect
- Feature Effect Methods
- 4 Feature Interaction
- **5** Feature Importance
- 6 Extras

- Intro to XAIGlobal vs Local
- 2 Feature Effect
- Feature Effect Methods
- Feature Interaction
- 5 Feature Importance
- 6 Extras

- Intro to XAIGlobal vs Local
- 2 Feature Effect
- Feature Effect Methods
- Feature Interaction
- **5** Feature Importance
- 6 Extras