Then $f_0 \in C^2[0,1]$ and $f_0 - f_0'' = g$. There exist a , b $\in \mathbb{R}$ such that $f(x) = f_0(x) + ae^X + be^{-X}$ defines a function $f \in C^2[0,1]$ satisfying f(0) = f(1) = 0. Since $f - f'' = f_0 - f_0'' = g$ this implies that $f \in D(A)$ and f - Af = g. We have shown that (Id - A) is surjective. It follows from Thm.1.2 that A is the generator of a positive contraction semigroup.

b) Let $E = L^p[0,1]$ $(1 \le p < \infty)$ and A be given by Af = f'' on $D(A) = \{f \in E : f \in C^1[0,1] , f' \in AC[0,1] , f'' \in L^p[0,1] , f(0) = f(1) = 0\}$. Then A is the generator of a positive contraction semigroup.

<u>Proof.</u> A is dispersive. In fact, let $f \in D(A)$. Since the set $M = \{x \in (0,1) : f(x) > 0\}$ is open, there exists a countable set of disjoint intervals (a_n,b_n) such that $M = \bigcup_{n \in \mathbb{N}} (a_n,b_n)$. First case: p > 1.

Let $\phi \in dN^+(f)$. Then there exists $c \ge 0$ such that $\phi(x) = c f(x)^{p-1}$ for all $x \in M$ and and $\phi(x) = 0$ if $f(x) \le 0$ (see Ex. 1.1b). Thus integration by parts yields

$$\langle Af, \phi \rangle = \sum_{n} \int_{a_{n}}^{b_{n}} f''(x) \phi(x) dx$$

$$= -c \sum_{n} \int_{a_{n}}^{b_{n}} f'(x) f'(x) (p-1) f(x)^{p-2} dx$$

$$\leq 0 .$$

Second case: p = 1.

Let $\phi(x) = 1$ for $x \in M$ and $\phi(x) = 0$ for $x \notin M$. Then $\phi \in dN^+(f)$ and

$$\langle Af, \phi \rangle = \sum_{n} \int_{a_{n}}^{b_{n}} f''(x) dx = \sum_{n} (f'(b_{n}) - f'(a_{n})) \le 0$$

since $f'(b_n) \le 0$ and $f'(a_n) \ge 0$ for all n.

We have shown that A is dispersive. As in a) one shows that (Id - A) is surjective. Now the claim follows from Thm.1.2.

c) Consider $E=C_0(\mathbb{R}^n)$. Let $D(A)=S(\mathbb{R}^n)$ (the Schwartz space of all infinitely differentiable rapidly decreasing functions) and $Af=\Delta f$ ($f\in D(A)$). Then A is closable and the closure of A generates a positive contraction semigroup on E.

Remark. In addition one can show that the closure \overline{A} of A is given by $\overline{A}f = \Delta f$ with domain $D(\overline{A}) = \{f \in E : \Delta f \in E\}$ where for