课程名称:数据库系统

基本SQL

单位: 重庆大学计算机学院

计算机内文件的操作

• 数据存储在文件中,程序语言如何实现数据访问?

主要目标

- SQL语言包含的类型和功能
- ·基本的SQL查询语言。

· 通过本节学习,可以用SQL语言实现数据 库设计,进行基本查询

思考问题

• 关系模型应该提供的操作有哪些?

• 关系代数

一 SQL数据定义语言DDL

1.1 定义数据结构

SQL如何实际建立 一个关系模式结构 属性说明

一个 create table 语句的能力有多强 (包含哪些部分)?

定义属性特征+说明语义约束。

```
create table department
                 varchar(20),
  ( dept_name
 building varchar (15),
 budget
            numeric (12,2),
 primary key (dept_name));
create table course
                varchar (7).
  (course_id
  title
          varchar (50),
                varchar (20),
  dept_name
  credits
            numeric (2,0),
  primary key (course_id),
  foreign key (dept_name) references department);
```

```
create table instructor
            varchar (5), 值类型约束
    (ID
             varchar (20) not null,
                                      非空约束
    name
                  varchar (20),
    dept_name
    salary
              numeric (8,2),
                         主码(主键)约束
    primary key (ID),
    foreign key (dept_name) references department);
                     外码(外键)约束
create table section
                  varchar (8).
    (course_id
    sec_id varchar (8).
                varchar (6),
    semester
             numeric (4,0),
    year
                varchar (15),
    building
                   varchar (7),
    room_number
    time_slot_id
                   varchar (4),
    primary key (course_id, sec_id, semester, year),
    foreign key (course_id) references course);
create table teaches
             varchar (5),
    (ID
                 varchar (8),
    course id
    sec_id varchar (8),
              varchar (6),
    semester
             numeric (4,0),
    year
    primary key (ID, course_id, sec_id, semester, year).
    foreign key (course _ id, sec _ id, semester, year)
references section,
    foreign key (ID) references instructor);
```

案例1 大学数据库的部分 SQL 数据定义

1.2 定义主键约束和外键约束

一 SQL数据定义语言DDL

解释这些关系模式的主码约束和外码约束的具体含义?

主键含一个属性

外键(参照约束) 仅包含一个属性

```
主键包含多个属性
create table department
               varchar(20),
  ( dept_name
 building varchar (15),
 budget
           numeric (12,2),
 primary key (dept_name));
create table course
              varchar (7).
  (course_id
  title
         varchar (50),
              varchar (20),
 dept_name
 credits
           numeric (2,0),
                                   外键包含三个属性
 primary key (course_id),
                                   且它包含两个外键
 foreign key (dept_name) references department);
```

```
create table instructor
             varchar (5).
    (ID
              varchar (20) not null,
    name
                   varchar (20),
    dept_name
               numeric (8,2),
    salary
    primary key (ID).
    foreign key (dept_name) references department);
create table section
                   varchar (8),
    (course_id
              varchar (8),
    sec_id
                varchar (6),
    semester
             numeric (4,0),
    year
                 varchar (15),
    building
    room number
                     varchar (7),
    time_slot_id varchar (4),
    primary key (course_id, sec_id, semester, year),
    foreign key (course_id) references course);
create table teaches
             varchar (5),
    (ID
                  varchar (8),
    course_id
    sec_id varchar (8),
               varchar (6),
    semester
             numeric (4,0),
    year
    primary key (ID, course_id, sec_id, semester, year),
    foreign key (course _ id, sec _ id, semester, year)
references section.
    foreign key (ID) references instructor);
```

案例1 大学数据库的部分 SQL 数据定义

1.3 创建数据库的实例(略讲, 上机学习)

一 SQL数据定义语言DDL

- •CREATE DATABASE 数据库名
- •ON
- ●(NAME = 逻辑文件名,
- FILENAME='mdf数据文件路径',
- SIZE = 10 MB, /*数据文件初始大小*/
- MAXSIZE = 20 MB, /*数据文件最大值*/
- FILEGROWTH = 2 MB), /*数据文件增长值*/
- •LOG ON /*创建日志文件,可省略*/
- (NAME = 日志文件名,
- •FILENAME='日志文件名',
- SIZE = 10 MB,
- MAXSIZE = 20MB,
- FILEGROWTH =10%)
- •GO

- CREATE DATABASE Bank
- •ON
- (NAME = Bank data1,
- FILENAME= 'D:\Bank data1.mdf',
- $\mathbf{SIZE} = \mathbf{20} \mathbf{MB},$
- MAXSIZE =100MB,
- FILEGROWTH =2 MB)
- •LOG ON
- ($NAME = Bank_{log1}$,
- •FILENAME= 'D:\Bank log1.ndf',
- SIZE = 4 MB.
- MAXSIZE = 25MB,
- FILEGROWTH =1MB)
- •GO

命令格式

案例2一个实例

(讲解) create database到底做了什么?

- 1. 产生了一个数据库(空仓库,仅包括系统数据字典)
- 2. 初始库小,数据增长需要时才增大库空间
- 3. 同时,还产生了一个日志存放的空仓库(备份恢复用)
- 4. 还涉及到物理设计工作:库放在何位置、库大小、库增量而且日志仓库位置可用与数据仓库位置不同(保证安全)!

二 SQL数据查询语言QL

I_{name}(σ_{depat_name='Comp.Sci' and salaty>70000}(instuctor)) 2.1 基本关系运算的SQL实现

如何理解这些查询 语句,SQL为何为 描述性语言? '自然连接'

∏name, instructor.dept_name, building

 $\sigma_{instructor.dept_name} = department.dept_name (instructor X department)$

SQL如何表示基本 关系运算?

 $(\Pi_{course_id}(\sigma_{semster= 'Fall' \ and \ 'year'=2009}(section))) \cup \\ (\Pi_{course_id}(\sigma_{semster= \ 'Spring' \ and \ 'year'=2010}(section)))$

迪卡儿积

• (P.35-36 SQL语句)

Select name From instuctor

Where depat_name = 'Comp.Sci' and salary > 70000;

Select name, instructor.dept_name, building From_instructor, department Where instructor.dept_name = department.dept_name;

(Select course_id From section Where semster = 'Fall' and 'year'

Where semster = 'Fall' and 'year' = 2009)

Union ← → p.44: 差 Except, 交 Intersact

(Select course_id From section

更名

Where semster = 'Spring' and 'year' = 2010);

[案例3.a] 关系模式上的数据查询例子

• (补充案例)

Select name as '教师姓名' / as instuctor_name

From instuctor; / as可用于属性和表(参P.40)

Select name, instructor.dept_name, building From instructor, department;

[案例3.b] 更简单的数据查询例子

2.2 Where子句的重要作用

I SQL数据查询语言QL

注:两关系连接时可以使用!

大于、小于等比较符号

Where子语句在 关系代数操作上 的作用?

选择

'自然连接'

- 1)关系记录的筛选 率等值连接
- 2)两关系间的连接

等效p.38

注:自然连接Natural join与迪卡儿积X 两点最大不同(比较p. 36图36p. 38图38)/:

- 1) 仅包含符号连接条件的元组
- 2) 连接属性仅出现一次

SQL如何实现多 个关系上的数据 查询?

> 以及后面介绍 的嵌套子查询

• (P.35-36 SQL语句) Select name

From instuctor

Where depat_name = 'Comp.Sci' and salaty > 70000;

Select name, instructor.dept_name, building

From instructor, department

Where instructor.dept_name = department.dept_name;

(Select course id From section

Where semster = 'Fall' and 'year' = 2009) 差 p.44 Except

Union

(Select course id

From section

Where semster - 'Spring' and 'year' = 2010);

「案例3.al 关系模式上的数据查询例子

• (补充案例)

Select name

From instuctor;

Select name, instructor.dept name, building

From instructor, department;

[案例3.b] 更简单的数据查询例子

迪卡儿积

三 SQL的数据查询能力

3.1 聚集函数

SQL聚集函数的 使用方法?

(教材P.46) 平均值avg 最小值min 值大值max 总和sum 计数count

*SQL能够满足应 用对数据查询的需 要吗?

SQL查询能力很强:

- 1) 实现了基本代数运算
- 2) 灵活的表间连接方式
- 3) 实现了代数运算复合 (下面的嵌套子查询)
- 4) 灵活的where条件
- 5)聚集函数等常用函数
- 6)嵌入式和动态SQL

 $g_{avg (salary)}(\sigma_{dept_name='Comp. \ Sci.'}(instuctor))$

select avg (salary) from instructor 仅计算一个系的平均工资 where dept_name= 'Comp. Sci.'; select count (distinct ID) 计数前先去除重复元组 from teaches where semester = 'Spring' and year=2010; select count (*) from *course*; *代表选择所有属性 select dept_name, avg (salary) as avg_salary from instructor 第1人共平均工作日本 group by dept_name; 第1个为平均工资显示部门名 第2个用于指定计算范围(分组) select *dept_name*, avg (*salary*) from instructor group by dept_name **having avg** (*salary*) > 42000;

案例4

限定输出哪些平均工资(结果筛选)

红色标注之处的作用, 意义你清楚吗?

三 SQL的数据查询能力

3.2 嵌套子查询

什么是**SQL**嵌套子查询? 案例**5.a** 嵌套子查询、允许嵌在何处及作用?

```
(P.49&P.24)找出在2009年秋季,但不在2010年春季同时开课的所有课程
select distinct course_id
from section
where semester = 'Fall' and year = 2009 and 集合成员资格)
course_id not in (select course_id
from section
where semester = 'Spring' and year = 2010);

(p.50)查出这些老师的姓名,他的工资要比Biology系某教师工资高
select name
from instructor
where salary > some (select salary
from instructor
where dept_name = 'Biology');
```

嵌套子句可以多种 方式用在where中! 并显著增强了SQL的 查询能力!

案例5.c

```
(P.50&P.24)找出在2009年秋季和2010年春季同时开课的所有课程 select course_id from section as S where semester= 'Fall' and year=2009 and exist (select * (空关系测试) from section as T where semester='Sring' amd year=2010 and S.course_id=T.course_id);
```

3.2 嵌套子查询(续)

三 SQL的数据查询能力

用在having子句中-输出结果筛选

嵌套子查询还允 许嵌在何处?

案例5.d

(p.50)找出平均工资最高的系
select name
from instructor
group by depat_name
having avg(salary)>= all(select avg(salary)
from instructor
group by depat_name);

外部查询: Π_{dept_name}, avg_salary(σ_{avg_salary>42000}(A))

嵌套子查询:A= P B(dept_name, avg_slary) (dept_name, avg (salary) (instuctor))

案例5.e

一个查询语句的作用相当于编写一段程序

综可上述,可用看出: SQL查询能力的确强!

案例5.f

```
(p.52)找出'系平均工资超过42000美元的那些系'的教师平均工资 select dept_name, avg_salary from (select dept_name, avg(salary) as avg_slary from instructor group by depat_name) as B (属性的别名) where avg_salary >42000;
```

用在from子句中-生成中间关系

(表的别名)

(p.54)列出所有系以及它们拥有的教师数

select dept_name,

(select count(*)

from instructor

where department.dept_name=instructor.dept_name)

as num_instructors

from department;

嵌套子句可用在select子句中-生成标量值

四 SQL数据操纵语言DML

删除数据 (可利用嵌套子句)

数据修改操作包 含哪些方面?

这些示例起到什

么作用?

插入数据(三种常用方式)

案例6.b

案例6.a

```
delete from instructor
where dept_name= 'Finance';

delete from instructor
where dept_name in (select dept_name
from department
where building = 'Watson');
```

```
P.57~58

insert into course (course_id, title, dept_name, credits)
values (' CS-437', ' Database Systems', ' Comp. Sci.', 4);

insert into student
values (' 3003', ' Green', ' Finance', null);

insert into instuctor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and tot_cred > 144;
```

更新数据 (可用case结构)

案例6.c

```
P.58~58

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end;
```

五 SQL支持的表间连接方式

5.1 自然/等值连接的不同方式

有何不同?

查询结果表虽然相同,但Where允许按指定属性(可不同名)连接,且在连接表中连接属性都会出现(ID两次)。

有何不同?

虽然都是按相同属性连接, 但using允许按指定属性、 而natural按两表同名属性

> *SQL支持哪些 类型的表间连接、 方式?

(方式1) 案例7 select name, course_id from instructor, teaches where instructor.ID= teaches.ID; (方式2) 有何不同? select name, course id from instructor natural join teaches; 虽然查询结果表相同, 但where的连接表中 (方式3) 连接属性ID出现2次, 而在join中出现1次。 select name, title from (instructor natural join teaches) join course using(course_id); select * 作用及查询结果表都相同, 在连接表中连接属性都会出 from student, takes 现(ID重复出现两次)。 where student.ID = takes.ID; 有何不同? (方式4) select * from student join takes on student.id=takes.id;

on连接示例

5.1 自然/等值连接的不同方式

	ID	course_id	sec_id	semester	year	grade
T	00128	CS-101	1	Fall	2009	Α
U.	00128	CS-347	1	Fall	2009	_A-
	12345	CS-101	1	Fall	2009	C
	12345	CS-190	2	Spring	2009	A
١	12345	CS-315	1	Spring	2010	A
	12345	CS-347	1	Fall	2009	A
1	19991	HIS-351	1	Spring	2010	В
	23121	FIN-201	1	Spring	2010	C+
1	44553	PHY-101	1	Fall	2009	B-
	45678	CS-101	1	Fall	2009	F
l.	45678	CS-101	1	Spring	2010	B+
ı	45678	CS-319	1	Spring	2010	В
	54321	CS-101	1	Fall	2009	A-
	54321	CS-190	2	Spring	2009	B+
	55739	MU-199	1	Spring	2010	A-
١	76543	CS-101	1	Fall	2009	A
١	76543	CS-319	2	Spring	2010	A
ı	76653	EE-181	1	Spring	2009	C
ı	98765	CS-101	1	Fall	2009	C-
	98765	CS-315	1	Spring	2010	В
	98988	BIO-101	1	Summer	2009	A
	98988	BIO-301	1	Summer	2010	null

案例8。a takes 关系

ID	name	dept_name	tot.cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110
44553	Peltier	Physics	56
45678	Levy	Physics	46
54321	Williams	Comp. Sci.	54
55739	Sanchez	Music	38
70557	Snow	Physics	0
76543	Brown	Comp. Sci.	58
76653	Aoi	Elec. Eng.	案例8
98765	Bourikas	Elec Eng	X 130

Biology

120

ON连接示例 p. 64

	ID	name	dept_name	tot_cred	course_id	sec_id	semester	year	grade
Ī	00128	Zhang	Comp. Sci.	102	CS-101	1	Fall	2009	A
	00128	Zhang	Comp. Sci.	102	CS-347	1	Fall	2009	A-
	12345	Shankar	Comp. Sci.	32	CS-101	1	Fall	2009	C
	12345	Shankar	Comp. Sci.	32	CS-190	2	Spring	2009	A
	12345	Shankar	Comp. Sci.	32	CS-315	1	Spring	2010	A
	12345	Shankar	Comp. Sci.	32	CS-347	1	Fall	2009	A
	19991	Brandt	History	80	HIS-351	1	Spring	2010	В
	23121	Chavez	Finance	110	FIN-201	1	Spring	2010	C+
	44553	Peltier	Physics	56	PHY-101	1	Fall	2009	B-
	45678	Levy	Physics	46	CS-101	1	Fall	2009	F
	45678	Levy	Physics	46	CS-101	1	Spring	2010	B+
	45678	Levy	Physics	46	CS-319	1	Spring	2010	В
	54321	Williams	Comp. Sci.	54	CS-101	1	Fall	2009	A-
	54321	Williams	Comp. Sci.	54	CS-190	2	Spring	2009	B+
	55739	Sanchez	Music	38	MU-199	1	Spring	2010	A-
	76543	Brown	Comp. Sci.	58	CS-101	1	Fall	2009	A
	76543	Brown	Comp. Sci.	58	CS-319	2	Spring	2010	A
	76653	Aoi	Elec. Eng.	60	EE-181	1	Spring	2009	C
	98765	Bourikas	Elec. Eng.	98	CS-101	1	Fall	2009	C-
	98765	Bourikas	Elec. Eng.	98	CS-315	1	Spring	2010	В
	98988	Tanaka	Biology	120	BIO-101	1	Summer	2009	A
	98988	Tanaka	Biology	120	BIO-301	1	Summer	2010	null

student join takes on student. ID = takes. ID 的结果,(其中省略了 ID 的第二次出现)

Tanaka

98988

5.2 外连接的不同方式

五 SQL支持的表间连接方式

给出这两个表左 外连接、右外连 接和全外连接的 结果?

course			
course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

				_
- 1	7r	α	\sim	$\boldsymbol{\cap}$
	"			
- 1		<u></u>	_	\sim

	prereq	
	course_id	prereg_id
	BIO-301	BIO-101
	CS-190	CS-101
•	CS-347	CS-101

course natural left outer join prereq

	course_id	title	dept_name	credits	prereq_id
	BIO-301	Genetics	Biology	4	BIO-101
	CS-190	Game Design	Comp. Sci.	4	CS-101
-	CS-315	Robotics	Comp. Sci.	3	<u>null</u>

*外连接以可与 on和using一起使 用吗,其作用? course natural right outer join prerea

course_id	title	dept_name	credits	prereg_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

可以,作用与前面join情形类似(p.67) (这4种连接类型和3种条件可任意组合)

I	Join types
Ì	inner join
l	left outer join
I	right outer join
l	full outer join

Join Conditions

natural

on < predicate>
using $(A_1, A_1, ..., A_n)$

练习

- Department (dname, dphone, daddress)
- Employee (<u>eid</u>, ename, egender, eage, esalary, dname)
- 1. 查询年龄在20到25之间的员工姓名
- 2. 查询每个部门的男员工人数
- 3. 按照从小到大的顺序显示每个部门的工资总额
- 4. 查找每个部门得到最高工资的员工信息

本节小结

- DDL
- DQL
- DML

课后作业安排

- 作业
 - 第3章: 3.16 a)c), 3.17 a)c), 3.21 a)c);
- 预习
 - 第9讲-高级SQL(课前预习资料)