IFB105: Database Management

Tutorial 3 – ORM (steps 4-7)

Outline

Part 1: Lecture 2 Summary & Quiz

Part 2: Tasks (CSDP step 4 ~ 6)

Part 1 – Week 3 Summary

Q1. Fill in the blank. () is represented as "bar" over or below the fact role(s) to show the role(s) cannot be repeated.

() makes a conceptual model to avoid () simplifying updates and preserving integrity of the model.

Q2. Yes or No

- 1. () is represented as "bar" over or below the fact role(s) to show the role(s) can be repeated.
- 2. Constrains apply to all possible populations of the fact types.

Q3. Can I add "Jane" to this conceptual schema? Why?

Q4. What entities are required to uniquely identify each fact in this diagram?

Q4. Select fact types (see (a) \sim (h)).

- 1. An n-ary fact type has exactly one UC that spans the whole fact type.
- 2. At least one UC which spans at least n-1 roles.

Q5. If n-1 rule is violated, what should you do?

Q6. Fill in the blank

UC is applied to roles. If one fact type is involved, it is () UC.

If it is applied to roles from different predicates (two or more facts), we call it () UC.

Q7. Select a correct symbol for the following facts

Q8. Answer the following question

There is an example table which has three columns (a, b and c). How to check the arity (length) of the fact type? Explain two different ways.

а	b	С

Activity 1 – Revision: Arity of Fact Types

Check if the length is too short by joining the two fact tables and comparing the new output with the original output.

Q9. Read the following and choose correct answer

QUT collects data from students and store the data in the database. There are some rules set by the data modelling team.

- 1. A student table has four columns including student number, student name, address, and phone number.
- 2. Every student has a student number and it is unique.
- 3. A student should provide the name and address, and therefore the columns always have values.
- 4. A student can provide his/her phone number if he/she wants.

What constraints can we identify from the scenario?

Q10. Apply the CSDP steps to generate an ORM diagram with the required uniqueness and mandatory constraints

Student Number	Name	Address	Phone Number
001	Tom	77 Grey Street	0490 456 789
002	Bread	1 Queen Street	?
003	Tony	2 Logan Road	0482 443 245
004	Jane	100 Wondall Road	?
005	Bruce	22 Figtree Place	0490 642 262

CRICOS No. 00213J @ QUT 2019

Q11. There are two fact types which include Person and Team entity types. If each person must play one or two roles for a team, what constraints do we need to add to the fact types?

For example,

Each person must coach a team, play for a team or both coach and play for a team.

Q12. Read the following requirements and explain how to add value constraints

1. Gender should have only 'M' or 'F'.

2. Customer can give rating score between 1 and 7.

3. We define the available ages for enrolment between 0 and 10, and 30 and 40.

Q13. Find the right ORM representation for

a. Exclusion constraint

b. Mandatory role constraint combined with an exclusion constraint

Uniqueness Constraint (UC)	Person Speaks Language NrLanguages speaks*	Each object instance plays role zero or one times
External UC	Folder (.Name)	Combination of objects playing roles is unique
Composite Reference Mode	File Folder (.Name) File FileName	Combination of objects playing roles is unique AND That combination can be used as a reference for the object involved in both facts

Mandatory Role Constraint	Person Country was born in	Each object instance must play role one or more times * May affect external entities *
Disjunctive Mandatory Role Constraint	Person (.Name) Team (.Code)	Each object instance must play one role, or the other role, or both roles, one or more times
Mandatory role constraint combined with an exclusion constraint	Person (.Name) Female	Each object instance must play one of the roles (not both)

Part 2 - Conceptual Schema Design

Task 1 – N-1 Roles

Which of the following fact types are definitely splitable?

Rule: An **n**-ary fact type should have at least one UC which spans at least **n-1** roles.

Task 2.1 – Add Constraints

Add a UC to the diagram.

Athlete	Height
Jones EM	400
Pie QT	450
Smith JA	550

The **Athlete** with name 'Jones EM' pole vaults the **Height** of 400 cm.

The **Athlete** with name 'Pie QT' pole vaults the **Height** of 450 cm.

The **Height** of 550 cm. was vaulted by the **Athlete** with name 'Smith JA'

Task 2.2 – Add Constraints

Add a UC to the diagram.

Person	Height (cm)	Year
Jones EM	160	1970
Jones EM	166	1980
Jones EM	166	1990

Task 2.3 – Add Constraints

Add necessary contraints to the diagram.

Parents	Children	
Ann, Bill	Colin, David, Eve	
David, Fiona	Gus	

The **Parent** with firstname 'Ann' is a parent of the **Child** with firstname 'Colin'.

The **Person** with firstname 'Ann' is a parent of the **Person** with firstname 'Colin'.

is a parent of / is a child of

Task 2.4 – Add Constraints

Add a UC to the diagram.

	Australia	Jun, Jul, Aug
Apple	America	Oct, Dec, Jan
	Ireland	Oct, Dec
Mango	Australia	Nov, Dec, Jan, Feb
Pineapple	America	Jun, Jul
	Australia	Oct, Nov, Dec, Jan

The **Fruit** named 'Apple' is harvested in the **Country** named 'Australia' in the **Month** named 'June'.

Task 2.5 – Add Constraints

Add necessary contraints to the diagram.

Medium	Capacity	Year	Disk Price	Cost per MB
Wediam	Capacity	Introduced	(USD)	(USD)
5.25" floppy	160KB	1981	2.60	16.25
3.5" floppy	720KB	1985	3.50	4.86
Zip Drive	100MB	1995	16.65	0.17
CD-R	650MB	1996	1.79	0.003
DVD-R	9.4GB	2002	7.89	0.0008

The **Medium** with name CD-R has **Capacity** 650 MB

The **Medium** with name CD-R was introduced in **Year** 1996 CE

The **Medium** with name CD-R has **DiskPrice** 1.79 USD

The **Medium** with name CD-R has **CostPerMB** 0.003 USD

Task 2.5 – Add Constraints

Add necessary contraints to the diagram.

* for each Medium, cost per MB = disk price / capacity

Task 3 – Check Constraints

The following conceptual schema diagram incorporates the use of various constraints to enforce the rules of a universe of discourse.

Each of the following requests applies to the same population as shown above (i.e. treat each request as if it were the first to be made with this population). For each request, indicate the response. If the request is legal, write "Accept". Otherwise write "Reject" and indicate the constraint violated.

Task 3 – Check Constraints

Transaction	Constraint violated?
add (a5, b3) to F1	

F4

F3		
Α	Α	В
a1	a2	b1
a4	аЗ	b2

В	С
b1	c1
b2	c1
b3	c2
b4	c2

F1

Α	В
a1	b1
a1	b2

F2

В	С
b3	c1
b1	c2
b4	c1

The application described here is partly based on a real-life banking system, but simplifications and changes have been made. To help you appreciate the privacy implications of a universal identification scheme, all clients and staff of the bank are identified throughout the application by their tax file number (taxNr). Thus, all bank customers and personnel are taxpayers.

An information system is required to manage accounts and staff records for Oz Bank, which has branches at various locations. Each branch is identified by its branch number but also has a unique name. The first table (below) is an extract from staff records of Oz Bank. Each employee works at exactly one branch and has at most one phone listed. The mark "?" denotes a null value. The mark "..." indicates "etc." (other instances exist but are not shown here).

BranchNr	Branch name	Emp taxNr	Emp name	Emp phone
1	Uni. of Qld	200	Jones E	3770000
		390	Presley E	?
2	Toowong Central	377	Jones E	?
3	Strathpine	222	Wong M	2051111

Within the one branch, each account has a unique serial number, but different accounts in different branches may have the same serial number. Account users are identified by their TaxNr, but also have a name and possibly a phone number.

Account	Account		r	
BranchNr	SerialNr	TaxNr	Name	Phone
1	55	200	Jones E	3770000
		311	Jones T	3770000
1	66	199	Megasoft	3771234
2	55	199	Megasoft	3771234
2	77	377	Jones E	?
3	44	300	Wong S	2051111

Each account is a passbook account. Five sample passbook entries are shown. For each account, transactions are numbered sequentially 1, 2, 3, ... Dates are formatted day/month/year. For simplicity, assume each transaction is either a deposit (DEP) or withdrawal (WDL). In practice, other types of transactions are possible (e.g. interest and fees). The balance column shows the account balance after the transaction is executed.

Although the balance is derivable, for efficiency purposes the balance is stored as soon as it is derived. For example, this speeds up production of monthly statements for the bank's customers (Oz Bank has a few million customers who average several transactions each month). This derive-on-update (eager evaluation) decision contrasts with our normal derive-on-query (lazy evaluation) policy.

Sample passbook entries (1)

OZ BANK						
BranchNr SerialNr Branch name: Uni. of Qld						
1	55 Users: Jones E; Jones T			Γ		
	'	•				
TranNr	Date	Deposit	Withdrawal	Balance		
TranNr 1	Date 3/1/90	Deposit	Withdrawal	Balance 1000		
TranNr 1 2		-	Withdrawal 200			

Sample passbook entries (2)

OZ BANK					
BranchNr SerialNr Branch name: Uni. of Qld Users: Megasoft					
1	66	Users: Megason			
TranNr	Date	Deposit	Withdrawal	Balance	
1	10/2/90	2000		2000	
2	10/2/90		500	1500	

Sample passbook entries (3)

OZ BANK					
BranchNr SerialNr Branch name: Toowong Central					
2	55 Users: Megasoft				
		•			
TranNr	Date	Deposit	Withdrawal	Balance	
1	23/1/90	9000		9000	
2	7/2/90	5000		14000	
3	10/2/90	2000 12000			
4	2/3/90		5000	7000	

Sample passbook entries (4)

OZ BANK					
BranchNr	SerialNr	I	Branch name: Strathpine		
3	44	Users: Wong S			
		-			
TranNr	Date	Deposit	Withdrawal	Balance	
TranNr 1	Date 5/1/90	Deposit	Withdrawal	Balance 100	

Sample passbook entries (5)

OZ BANK					
BranchNr SerialNr Branch name: Toowong Central Users: Jones E					
2	77				
TranNr	Date	Deposit Withdrawal Balance			
1	3/1/90	500		500	

Apply the CSDP steps from 1 to 7 and show the final ORM diagram.