Assignment#1-Lab1

Jun Park / 28969360

Part I: Vector Addition Example

* Code (Vitis HLS)

* Synthesis Summary report (Vitis HLS)

* Report utilization (Vivado)

Name 1	CLB LUTs (117120)	CLB Registers (234240)	CARRY8 (14640)	F7 Muxes (58560)	CLB (14640)	LUT as Logic (117120)	LUT as Memory (57600)	Block RAM Tile (144)	DSPs (1248)	GLOBAL CLOCK BUFFERs (352)	PS8 (1)
∨ N design_1_jp_wrapper	4020	5450	97	2	877	3269	751	1.5	2	2	1
✓ ■ design_1_jp_i (design_1_jp)	4020	5450	97	2	877	3269	751	1.5	2	2	1
> I axi_smc (design_1_jp_axi_s	368	349	0	0	71	200	168	0	0	0	0
> I axi_smc_1 (design_1_jp_ax	367	349	0	0	73	199	168	0	0	0	0
> I axi_smc_2 (design_1_jp_ax	414	554	0	0	88	247	167	0	0	0	0
> I pl_vecadd_0 (design_1_ip_i	1869	3183	97	0	499	1703	166	1.5	2	0	0
> I ps8_0_axi_periph (design_1	994	981	0	2	203	913	81	0	0	0	0
> I rst_ps8_0_96M (design_1_j	14	34	0	0	7	13	1	0	0	1	0
> I zynq_ultra_ps_e_0 (design_	0	0	0	0	0	0	0	0	0	1	1

Part II: Matrix Multiplication - (a) a plain version without any HLS pragmas

* Code (Vitis HLS)

```
#include "ap int.h"
#include "ap_fixed.h"
#include "hls math.h"
void pl_matmul_a(int A[16][16], int B[16][16], int AB[16][16])
  int M = 16;
 int K = 16;
 int N = 16;
 #pragma HLS INTERFACE m_axi port=A offset=slave bundle=data0
 #pragma HLS INTERFACE s_axilite register port=A bundle=ctrl
 #pragma HLS INTERFACE m_axi port=B offset=slave bundle=data1
 #pragma HLS INTERFACE s_axilite register port=B bundle=ctrl
 #pragma HLS INTERFACE m_axi port=AB offset=slave bundle=data2
 #pragma HLS INTERFACE s_axilite register port=AB bundle=ctrl
 #pragma HLS INTERFACE s_axilite register port=return bundle=ctrl
 for(int i = 0; i < M; ++i)</pre>
 {for(int j = 0; j < N; ++j)
                        int ABij = 0;
                        for(int k = 0; k < K; ++k)
                               ABij += A[i][k] * B[k][j];
                        AB[i][j] = ABij;
```

* Synthesis Summary report (Vitis HLS)

* Report utilization (Vivado)

•												
	Name ^1	CLB LUTs (117120)	CLB Registers (234240)	CARRY8 (14640)	F7 Muxes (58560)	CLB (14640)	LUT as Logic (117120)	LUT as Memory (57600)	Block RAM Tile (144)	DSPs (1248)	GLOBAL CLOCK BUFFERs (352)	PS8 (1)
~ N	design_1_wrapper	4943	7639	241	2	1154	4196	747	1.5	3	2	1
~	design_1_i (design_1)	4943	7639	241	2	1154	4196	747	1.5	3	2	1
	> I axi_smc (design_1_	413	501	0	0	95	245	168	0	0	0	0
	> I axi_smc_1 (design_	412	501	0	0	104	244	168	0	0	0	0
	> I axi_smc_2 (design_	462	706	0	0	106	295	167	0	0	0	0
	> I pl_matmul_a_0 (des	2661	4916	241	0	759	2499	162	1.5	3	0	0
	> I ps8_0_axi_periph (d	983	981	0	2	187	902	81	0	0	0	0
	> I rst_ps8_0_99M (des	15	34	0	0	6	14	1	0	0	1	0
	> I zynq_ultra_ps_e_0 (0	0	0	0	0	0	0	0	0	1	1

* Code (Vitis HLS)

```
#include "ap int.h"
#include "ap_fixed.h"
#include "hls math.h"
void pl_matmul_b(int A[16][16], int B[16][16], int AB[16][16])
 int M = 16;
 int K = 16;
 int N = 16;
 int A_buff[16][16];
 int B_buff[16][16];
        for(int i= 0 ; i < 16; ++i)
          for(int j = 0; j < 16; ++j)
            A_buff[i][j] = A[i][j];
        for(int i = 0; i < 16; ++i)
          for(int j = 0; j < 16; ++j)
            B_buff[i][j] = A[i][j];
 #pragma HLS INTERFACE m axi port=A offset=slave bundle=data0
 #pragma HLS INTERFACE s_axilite register port=A bundle=ctrl
 #pragma HLS INTERFACE m_axi port=B offset=slave bundle=data1
 #pragma HLS INTERFACE s_axilite register port=B bundle=ctrl
 #pragma HLS INTERFACE m axi port=AB offset=slave bundle=data2
 #pragma HLS INTERFACE s axilite register port=AB bundle=ctrl
 #pragma HLS INTERFACE s axilite register port=return bundle=ctrl
 #pragma HLS ARRAY PARTITION variable=A buff complete dim=2
 #pragma HLS ARRAY_PARTITION variable=B_buff complete dim=1
 for(int i = 0; i < M; ++i)</pre>
  {
      for(int j = 0; j < N; ++j)
          #pragma HLS PIPELINE II=1
                        int ABij = 0;
                        for(int k= 0; k < K; ++k)</pre>
                               ABij += A_buff[i][k] * B_buff[k][j];
                        AB[i][j] = ABij;
              }
```

* Synthesis Summary report (Vitis HLS)

* Report utilization (Vivado)

