

Curso de robótica escolar con software libre

PROGRAMACIÓN POR SESIONES

1. Introducción a la robótica y montaje inicial

- Montaje mecánico, instalación del software.
- Prueba y ajuste de programas básicos de movimiento.

2. Programación de Arduino y sensores

- Iniciación al entorno de Arduino.
- Circuitos y programas con sensores y actuadores.

3. Robots autónomos con sensores

- Mantener la distancia, evitar o buscar obstáculos, seguir líneas.

4. Control sin hilos. Proyectos y concursos

- Control por bluetooth y enlace con Android.
- Proyectos colaborativos, ferias tecnológicas, concursos.

5. Conclusiones y propuestas

- Resumen de recursos.
- Propuestas de futuro.

INTRODUCCIÓN

- ¿Qué es la robótica?
 Origen del nombre
- ¿Qué vamos a hacer?
- ¿Qué queréis hacer?
 Volveremos al final con la pregunta

¿Qué se puede llegar a hacer?

Alumnos del CEIP de Os Dices ganan un premio de robótica de la Agencia Espacial Europea

Publicado en 25 de octubre de 2013

SOFTWARE LIBRE

El término se refiere al software que puede ser copiado, estudiado, modificado, utilizado libremente con cualquier fin y redistribuido con o sin cambios o mejoras.

Ejemplos y proyectos:

GNU/Linux, Libre Office, Open SCAD, R y R-Studio, Arduino IDE

Libre no es lo mismo que gratis.

HARDWARE LIBRE

Se llama hardware libre a aquellos dispositivos cuyas especificaciones y diagramas son de acceso público.

Ejemplos y proyectos: Interacción con el mundo físico

- Microcontroladores: Arduino, Beagle, pcDuino...
- Ordenador de placa única: Raspberry Pi, Beaglebone Black...

LEYES DE LA ROBÓTICA. YO ROBOT

- 1. Un robot no puede hacer daño a un ser humano o, por inacción, permitir que un ser humano sufra daño.
- 2. Un robot debe obedecer las órdenes dadas por los seres humanos, excepto si estas órdenes entrasen en conflicto con la 1ª Ley.
- 3. Un robot debe proteger su propia existencia en la medida en que esta protección no entre en conflicto con la 1º o la 2º Ley.

MONTAJE MECÁNICO DEL ROBOT

Montaje de la rueda loca inferior

- Porqué dos motores y una rueda loca
- Otras opciones: cuatro o más ruedas, cadenas.

Fotos por pasos. 97 piezas!!!

Montaje de la placa superior del chasis

Montaje final

MONTAJE ELECTRÓNICO DEL ROBOT

Arduino: Código y electrónica modular


```
oo robotwithlibrary | Arduino 1.0.5
Archivo Editar Sketch Herramientas Ayuda
  robotwithlibrary
 #include <RobotMovil.h>
RobotMovil robot:
 void setup()
 void loop()
   robot.forward(80,80,1000);
                                          Arduino Uno on COM7
```

INSTALACIÓN Y PRUEBA DE ARDUINO IDE (software de desarrollo)

Instalación con pendrive (monitores)

Prueba de comunicación con Blink

Power ON Motor STOP

Código de Blink: salida de información y órdenes

```
🕌 Blink | Arduino 0021
File Edit Sketch Tools Help
        ➾
 Blink
  Blink
  Turns on an LED on for one second, then off for one second, repeatedly.
  This example code is in the public domain.
void setup() {
  // initialize the digital pin as an output.
  // Pin 13 has an LED connected on most Arduino boards:
  pinMode(13, OUTPUT);
void loop() {
  digitalWrite(13, HIGH); // set the LED on
  delay(1000);
               // wait for a second
  digitalWrite(13, LOW); // set the LED off
  delay(1000);
               // wait for a second
```

CONEXIONADO DE MOTORES

Puente en H para invertir el giro

Controlador integrado en placa

Conexionado y revisión de polaridad

LIBRERÍA ROBOTMOVIL Y EJEMPLOS

 Comprobación de movimiento adelante

- Adelante y atrás
- Más rápido, más lento. Límites.
- Caminar recto. Ajuste fino (tunning).

SECUENCIAS DE MOVIMIENTOS

robot.forward robot.reverse robot.brake robot.rotate

ARDUINO SETUP Y LOOP

- La parte inicial (setup) se ejecuta una vez.
- La segunda parte (loop) se ejecuta en bucle indefinido

```
Archivo Editar Programa Herramientas Ayuda
  sketch_sep28a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
```