- 1. Exercise 10.1.20. Let \mathbb{F} be a field.
 - (a) Show that the following are equivalent for a polynomial $f(x) \in F[x]$.
 - i. f(x) has no repeated root in any extension field of \mathbb{F} .
 - ii. f(x) has no repeated root in some splitting field over \mathbb{F} .
 - iii. f(x) and f'(x) are relatively prime in $\mathbb{F}[x]$
 - **i.** \Longrightarrow **ii.** Suppose f has no repeated root in any extension of \mathbb{F} . f has a splitting field, and by assumption it must have no repeated roots in this field.
 - ii. \Longrightarrow iii. Suppose f has no repeated roots in an extension $\mathbb E$ in which it splits. Then suppose for the sake of contradiction that there exists some $g \in \mathbb F[x]$ so that g|f and g|f', and that g is nonconstant. By Kronecker's Theorem, take a root $\alpha \in \mathbb E$ of g. Then x a|g and so $x \alpha|f'$. But if $x \alpha|f'$, then $(x \alpha)^2|f$, a contradiction since we assumed that f had no repeated root.
 - **iii.** \Longrightarrow **i.** Suppose that f, f' are relatively prime in $\mathbb{F}[x]$. Then suppose for the sake of contradiction that there is some extension \mathbb{E} of \mathbb{F} so that f has a repeated root in \mathbb{E} . Then $(x \alpha)^2 | f$. But then $(x \alpha)$ would divide f', contradicting f, f' being coprime.
 - (b) If f(x) is as in (a), show that f(x) is separable, but not conversely.

Solution: Let *f* have no repeated roots in its splitting field. Then clearly none of its factors can have repeated roots, so it must be separable.

Counterexample: Take $f(x) = x^2 + 2x + 1$ which has a repeated root in the trivial extension \mathbb{F} of \mathbb{F} , but its irreducible factor (x + 1) has no repeated root in any extension \mathbb{E} of \mathbb{F} .

- 2. Exercise 10.1.26 (a) (b)
 - (a) Show that the following conditions are equivalent for a field \mathbb{F} (then called a perfect field):
 - i. Every algebraic extension of \mathbb{F} is separable.
 - ii. Every finite extension of \mathbb{F} is separable.
 - iii. Every irreducible polynomial in $\mathbb{F}[x]$ is separable.
 - i. \implies ii. Suppose that every algebraic extension of \mathbb{F} is separable. Then, if \mathbb{E} were a finite extension, it would have to be algebraic and as such it would be separable.
 - ii. \Longrightarrow iii. Suppose that every finite extension of \mathbb{F} is separable, and that f is irreducible in $\mathbb{F}[x]$. Let \mathbb{E} be the splitting field of f over \mathbb{E} . Then \mathbb{E} is a finite extension, and by hypothesis \mathbb{E} must be separable. Since the minimal monic polynomial for any root u_i of f is $x u_i \in E[x]$, and these are all separable since \mathbb{E} is separable. we can say f is separable since it is the product of all these and a constant in \mathbb{F} .
 - **iii.** \Longrightarrow **i.** Suppose all irreducible polynomials in $\mathbb{F}[x]$ are seperable, and \mathbb{E} be an algebraic extension of \mathbb{F} . Let $u \in \mathbb{E}$, and m(x) be the minimal monic polynomial for u. Then since m is irreducible, it is separable by hypothesis. Therefore the algebraic extension \mathbb{E} is separable.
 - (b) Show that every field of characteristic 0 is perfect.

Solution: Let f be of characteristic 0. Then an irreducible p is separable (Nicholson Chapter 10, Theorem 4), satisfying iii. Therefore \mathbb{F} is perfect.

- 3. Exercise 10.2.12 If \mathbb{E} is a finite extension of \mathbb{F} and $G = gal(\mathbb{E} : \mathbb{F})$, show that the extension E of F is Galois if and only if $|G| = [\mathbb{E} : \mathbb{F}]$.
 - \Longrightarrow : Since the Galois group is a group of automorphisms fixing \mathbb{F} , this follows from Dedekind-Artin since $\mathbb{F} = \mathbb{E}_G$.
 - ϵ: Let 𝔼 be a finite extension of 𝔻 and |G| = [𝔼 : 𝔻]. We want to show that the fixed set of 𝔼 under G is precisely 𝔻 in order to show that the extension is Galois. If the extension is degree 1, the result is clear, since the fixed set of $G = \{e\}$ is 𝔻. So suppose the degree of the extension is ≥ 2. Then let $u ∈ 𝔼 \setminus 𝔻$, and suppose for the sake of contradiction that $u ∈ 𝔼_G$. Then for any σ ∈ G, σ(u) = u. But since σ is uniquely defined by where it sends u, this must mean that σ = e and therefore $G = \{e\}$. But then |G| = [𝔼 : 𝔻] = 1 < 2, a contradiction. Therefore $𝔼_G = 𝔻$, and the extension is Galois.