

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales Büro



INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :                                                                                                                                                                                                                                                                                                                                                                          | C12N 15/55, 9/16, 5/10, C07K 16/40,<br>G01N 33/50, A61K 38/43, A01K 67/027                                                          | A1                                                                                                                                                                      | (11) Internationale Veröffentlichungsnummer: WO 99/07855<br>(43) Internationales Veröffentlichungsdatum: 18. Februar 1999 (18.02.99)                                                                                                                                                                                                                                                                                                                                                              |
| (21) Internationales Aktenzeichen:                                                                                                                                                                                                                                                                                                                                                                                               | PCT/EP98 05127                                                                                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (22) Internationales Anmeldedatum:                                                                                                                                                                                                                                                                                                                                                                                               | 11. August 1998 (11.08.98)                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (30) Prioritätsdaten:                                                                                                                                                                                                                                                                                                                                                                                                            | 197 34 764.9 11. August 1997 (11.08.97) DE<br>197 58 501.9 15. Oktober 1997 (15.10.97) DE<br>60 078,386 18. März 1998 (18.03.98) US |                                                                                                                                                                         | (81) Bestimmungsstaaten: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, DE, EE, GE, HR, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, AR IPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |
| (71) Anmelder (für alle Bestimmungsstaaten ausser US): MÈMOREC STOFFEL GMBH [DE DE]; Stöckheimer Weg 1, D-50829 Köln (DE).                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (72) Erfinder; und                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                                                                         | Veröffentlicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (75) Erfinder/Anmelder (nur für US): STOFFEL, Wilhelm [DE DE]; Komelminsterstrasse 14, D-50933 Köln (DE). HOFMANN, Kay [DE DE]; Laboratorium für Molekulare Neurowissenschaften, Institut für Biochemie, Med. Fak., Joseph-Stelzmann-Strasse 52, D-50931 Köln (DE). TOMIUK, Stephan [DE DE]; Laboratorium für Molekulare Neurowissenschaften, Institut für Biochemie, Med. Fak., Joseph-Stelzmann-Strasse 52, D-50931 Köln (DE). |                                                                                                                                     | Mit internationalem Recherchenbericht.<br>Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (74) Anwälte: MEYERS, Hans-Wilhelm usw.; Postfach 10 22 41, D-50462 Köln (DE).                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

(54) Title: NEUTRAL SPHINGOMYELINASE

(54) Bezeichnung: NEUTRALE SPHINGOMYELINASE

(57) Abstract

The invention relates to eukaryotic neutral sphingomyelinase (nSMase) and the use thereof.

(57) Zusammenfassung

Die Erfindung betrifft eukaryontische neutrale Sphingomyelinase (nSMase) und seine Anwendung.



#### ***LEDIGLICH ZUR INFORMATION***

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                              |    |                                      |    |                                                    |    |                                   |
|----|------------------------------|----|--------------------------------------|----|----------------------------------------------------|----|-----------------------------------|
| AL | Albanien                     | ES | Spanien                              | LS | Lesotho                                            | SI | Slowenien                         |
| AM | Armenien                     | FI | Finnland                             | LT | Litauen                                            | SK | Slowakei                          |
| AT | Österreich                   | FR | Frankreich                           | LU | Luxenburg                                          | SN | Senegal                           |
| AU | Australien                   | GA | Gabun                                | LV | Lettland                                           | SZ | Swasiland                         |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich               | MC | Monaco                                             | TD | Tschad                            |
| BA | Bosnien-Herzegowina          | GE | Georgien                             | MD | Republik Moldau                                    | TG | Togo                              |
| BB | Barbados                     | GH | Ghana                                | MG | Madagaskar                                         | TJ | Tadschikistan                     |
| BE | Belgien                      | GN | Guinea                               | MK | Die ehemalige jugoslawische<br>Republik Mazedonien | TM | Turkmenistan                      |
| BF | Burkina Faso                 | GR | Griechenland                         | ML | Mali                                               | TR | Türkei                            |
| BG | Bulgarien                    | HU | Ungarn                               | MN | Mongolei                                           | TT | Trinidad und Tobago               |
| BJ | Benin                        | IE | Irland                               | MR | Mauretanien                                        | UA | Ukraine                           |
| BR | Brasilien                    | IL | Israel                               | MW | Malawi                                             | UG | Uganda                            |
| BY | Belarus                      | IS | Island                               | MX | Mexiko                                             | US | Vereinigte Staaten von<br>Amerika |
| CA | Kanada                       | IT | Italien                              | NE | Niger                                              | UZ | Usbekistan                        |
| CF | Zentralafrikanische Republik | JP | Japan                                | NL | Niederlande                                        | VN | Vietnam                           |
| CG | Kongo                        | KE | Kenia                                | NO | Norwegen                                           | YU | Jugoslawien                       |
| CH | Schweiz                      | KG | Kirgisistan                          | NZ | Neuseeland                                         | ZW | Zimbabwe                          |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik<br>Korea | PL | Polen                                              |    |                                   |
| CM | Kamerun                      | KR | Republik Korea                       | PT | Portugal                                           |    |                                   |
| CN | China                        | KZ | Kasachstan                           | RO | Rumänien                                           |    |                                   |
| CU | Kuba                         | LC | St. Lucia                            | RU | Russische Föderation                               |    |                                   |
| CZ | Tschechische Republik        | LI | Liechtenstein                        | SD | Sudan                                              |    |                                   |
| DE | Deutschland                  | LK | Sri Lanka                            | SE | Schweden                                           |    |                                   |
| DK | Dänemark                     | LR | Liberia                              | SG | Singapur                                           |    |                                   |
| EE | Estland                      |    |                                      |    |                                                    |    |                                   |

### Neutrale Sphingomyelinase

Die vorliegende Erfindung betrifft Nukleinsäuren, die für eukaryontische neutrale Sphingomyelinase codieren, und ihre Anwendung.

Sphingomyelin ist eine wesentliche Komponente von Plasmamembranen. Der Abbau des Sphingomyelins gibt eine Vielzahl von Substanzen, die potentielle second messenger Eigenschaften haben, z.B. Ceramid, Sphingosin, Sphingosin-1-phosphat. Es sind zwei sphingomyelin-spaltende Enzymaktivitäten bekannt, zum einen die der lysosomalen sauren Sphingomyelinase und zum anderen die der plasmamembran-gebundenen neutralen Sphingomyelinase.

Die bakterielle neutrale Sphingomyelinase ist ein sezerniertes, lösliches Protein.

Durch die vorliegende Erfindung werden erstmals Nukleinsäuren, codierend für eukaryontische neutrale Sphingomyelinase, verfügbar gemacht. Die eukaryontische neutrale Sphingomyelinase (nSMase) ist dadurch charakterisiert, daß sie Sphingomyelin in Ceramid und Phosphocholin spaltet und die Aktivität von der Zugabe von Magnesiumionen abhängig ist. Es handelt sich um ein membrangebundenes Enzym. Die maximale Aktivität wird im neutralen pH-Bereich erzielt.

Figur 1 zeigt die Gensequenz der humanen neutralen Sphingomyelinase.

Figur 2 zeigt die Gensequenz der murinen neutralen Sphingomyelinase.

Figur 3 zeigt die Ergebnisse von Northern- und Westernblots nSMase-überexprimierender Zelllinien.

- 2 -

Figur 4 zeigt die Strategie zur Erzeugung von murinen Knockout-Mutanten. Die Buchstaben symbolisieren Restriktionsschnittstellen.

Figur 5 zeigt Konstrukte zur Gewinnung transgener Mausmutanten.

Bevorzugt handelt es sich bei der erfindungsgemäßen Nukleinsäure um eine Nukleinsäure, die für die neutrale Sphingomyelinase eines Säugetiers codiert. In besonders bevorzugter Weise handelt es sich dabei um die humane und murine neutrale Sphingomyelinase. Die entsprechenden Nukleinsäuresequenzen sind als Seq. ID. Nr. 3 und Seq. ID. Nr. 4 offenbart.

Teile der Nukleinsäuresequenzen stimmen mit der EST-Sequenzen AA028477 und AA013912 (murin) und W32352 und AA056024 (human) überein.

Bei Kenntnis der Aminosäure- und Nukleinsäurestruktur der humanen und murinen neutralen Sphingomyelinase kann der Fachmann unter Berücksichtigung der hohen Homologie zwischen der humanen und murinen nSMase die entsprechenden Nukleinsäuren und Proteine aus anderen Eukaryonten leicht auffinden. Dazu kann er zum einen kreuzreagierende Antikörper für eine spezifische affinitätschromatographische Aufreinigung einsetzen, oder er kann auf der Grundlage der Nukleinsäuresequenz Oligonukleotidprimer synthetisieren und die gesuchten Nukleinsäuren mit Hilfe der Polymerasekettenreaktion in einer cDNA-Bank des Eukaryonten amplifizieren. Die entsprechende cDNA-Bank kann durch Isolierung von mRNA aus einer Gewebeprobe und anschließende Reverse-Transkription in an sich bekannter Weise erhalten werden. Aus der Nukleinsäuresequenz kann mit Hilfe des genetischen Codes die Aminosäuresequenz abgeleitet werden. Alternativ ist es hierzu auch möglich, homologe Sequenzen in EST (Expressed Sequence Tags) -Datenbanken zu suchen und zu kombinieren.

- 3 -

Die erfindungsgemäßen Nukleinsäuren eignen sich zur Expression der eukaryontischen neutralen Sphingomyelinase in pro- oder eukaryontischen Systeme. Darüber hinaus sind sie auch zur Expression der nSMase in vivo im Sinne einer Gentherapie oder insbesondere in Form von Fragmenten auch in komplementärer Struktur als Antisense-Nukleotide zur Verringerung der Expression der nSMase geeignet.

Die erfindungsgemäßen Nukleinsäuren können durch chemische Synthese oder durch Vervielfältigung in gentechnisch veränderten Organismen nach dem Fachmann an sich bekannten Verfahren hergestellt werden.

Gegenstand der Erfindung ist auch die durch die Expression der erfindungsgemäßen Nukleinsäuren erhältliche eukaryontische neutrale Sphingomyelinase.

Die erfindungsgemäße nSMase lässt sich durch Expression in gentechnisch veränderten Organismen herstellen. Insbesondere sind eukaryontische Expressionssysteme geeignet. Entsprechende eukaryontische Expressionssysteme sind dem Fachmann bekannt wie beispielsweise pRc/CMV (Firma Stratagene). Die Aufreinigung aus gentechnisch veränderten Organismen bietet, insbesondere im Falle der Überexpression, ein leichten und direkten Zugang zur erfindungsgemäßen nSMase und erlaubt darüber hinaus die Isolierung in größeren Mengen.

Bevorzugt handelt es sich um die eukaryontische neutrale Sphingomyelinase eines Säugetiers, insbesondere um humane oder murine neutrale Sphingomyelinase. Die Aminosäuresequenzen der humanen und murinen neutralen Sphingomyelinase sind als Seq. ID. Nr. 1 und 2 wiedergegeben.

Die Molekulargewichte der humanen bzw. murinen Sphingomyelinase beträgt 47,6 bzw. 47,5 kDa. Im Gegensatz zu den bakteriellen nSMasen enthalten die erfindungsgemäßen nSMasen von Säugetieren keine Signalsequenz am N-Terminus. Aufgrund der Hydrophobizi-

- 4 -

tätsanalyse kann davon ausgegangen werden, daß zwei benachbarte hydrophobe Membrandomänen am C-Terminus durch acht Aminosäuren getrennt sind. Es scheint sich daher um integrale Membranproteine zu handeln, deren katalytisch aktive Domäne zum Cytosol zeigt, während nur ein geringer Anteil der Enzyme Kontakt zur extrazellulären Umgebung hat. Dies ist im Gegensatz zu den bakteriellen nSMasen, bei denen es sich um sekretierte, lösliche Proteine handelt, ist aber in Übereinstimmung mit bisherigen Untersuchungen zu den Eigenschaften der neutralen Sphingomyelinnasen von Säugetieren. Die 1,7 kb mRNA der murinen nSMase wird gemäß Northern Blot Analyse in allen Geweben exprimiert. In Nieren, Hirn, Leber, Herz und Lunge zeigt der Northern Blot ein starkes Signal, während die Expression in der Milz gering zu sein scheint. Diese Messung war nicht in Übereinstimmung mit den gemessenen enzymatischen Aktivitäten der entsprechenden Gewebe. Dies spricht für eine posttranskriptionale Regulation der nSMase.

Das pH-Optimum der erfindungsgemäßen neutralen Sphingomyelinase liegt im Bereich von 6,5 bis 7,5 mit einem  $K_m$ -Wert für C18 Sphingomyelin im Bereich von 1,0 bis  $1,5 \times 10^{-5}$  M. Die Aktivität ist magnesiumionenabhängig, die Zugabe von EDTA führt zu einer Inhibierung der SMase-Aktivität, kann jedoch durch Zugabe von  $Mn^{2+}$ - oder  $Mg^{2+}$ -Ionen wiederhergestellt werden. Die Zugabe von 0,3 bis 0,5% Triton X-100 erhöht die Enzymaktivität. Die Aktivität ist unbeeinflußt durch Behandlung mit DTT oder 2-Mercaptoethanol, wohingegen die Zugabe von 20 mM Glutathion zur Inhibition führte. Die Aktivität der nSMase ist nicht auf Sphingomyelin limitiert, auch das strukturell verwandte Phosphatidylcholin wurde mit etwa 3% Aktivität gespalten.

Weiterhin beansprucht werden Varianten der eukaryontischen neutralen Sphingomyelinase. Unter den Begriff "Varianten" fallen sowohl natürlich vorkommende allelische Variationen der eukaryontischen neutralen Sphingomyelinase sowie durch rekombinante DNA-Technologie (insbesondere durch in vitro Mutagenese mit Hilfe von chemisch synthetisierten Oligonukleotiden) und an-

- 5 -

schließende Expression erzeugte Proteine, die hinsichtlich ihrer biologischen und/oder immunologischen Aktivität der eukaryontischen neutralen Sphingomyelinase entsprechen. Dabei können sowohl Aminosäuren deletiert, eingefügt oder konservativ ausgetauscht werden. Konservativer Austausch bedeutet, daß eine Aminosäure durch eine Aminosäure ersetzt wird, die ähnliche physikalisch-chemische Eigenschaften aufweist.

So sind beispielsweise folgende Aminosäuren austauschbar: Serin für/gegen Alanin, Alanin für/gegen Glycin, Methionin für/gegen Serin, Lysin für/gegen Arginin, Lysin für/gegen Serin.

Insbesondere umfaßt der Begriff Varianten auch N- und/oder C-terminale verkürzte Proteine sowie acetylierte, glykosylierte, amidierte und/oder phosphorylierte Derivate.

Die Aktivität der nSMase scheint zumindest zum Teil im C-terminalen Bereich zu liegen, da das Fragment 1 bis 282 der murinen nSMase bei Expression in HEK293 Zellen keine Erhöhung der Sphingomyelinase-Aktivität zeigte. C-terminale Fragmente der nSMase sind ebenfalls Gegenstand dieser Erfindung. Auch Verbindungen, bei denen nSMase oder seine Varianten mit weiteren Molekülen wie Farbstoffe, Radionukliden oder Affinitätskomponenten gekoppelt sind, stellen erfindungsgemäße Varianten dar.

Beansprucht werden auch Nukleinsäuren, die für eukaryontische neutrale Sphingomyelinase codieren bzw. komplementär zu diesen Nukleinsäuren sind. Bei den Nukleinsäuren kann es sich beispielsweise um DNA, RNA, PNA oder um nukleaseresistenter Analoga handeln. Nukleaseresistente Analoga sind insbesondere solche Verbindungen, in denen die Phosphodiesterbindung durch hydrolysestabile Verbindungen modifiziert sind, beispielsweise Phosphothioate, Methylphosphonate o.ä.

Für Antisensenuklectide sind insbesondere kurze Fragmente der Nukleinsäuren geeignet. Diese sollten aus Gründen der Spezifität bevorzugt mehr als 6, noch mehr bevorzugt mehr als 8 und am

- 6 -

meisten bevorzugt mehr als 12 Nukleotide aufweisen. Aus Gründen der Diffusion und der Kosten haben sie üblicherweise eine Länge von weniger als 30 Nukleotiden, bevorzugt 24 oder weniger und noch mehr bevorzugt 18 oder weniger Nukleotide.

Gegenstand der Erfindung sind auch Derivate von Nukleinsäuren, die für diagnostische oder therapeutische Zwecke mit anderen Molekülen gekoppelt sind, beispielsweise mit Fluoreszenzfarbstoffen, radioaktiven Markern oder Affinitätskomponenten, sowie Fragmente der erfindungsgemäßen Nukleinsäuren und der zu diesen Nukleinsäuren komplementären Nukleinsäuren sowie Varianten der Nukleinsäuren.

Fragmente bezeichnet dabei Nukleinsäuren, die am 5' oder 3' oder an beiden Seiten verkürzt sind. Unter dem Begriff "Varianten" wird verstanden, daß diese Nukleinsäuren unter stringenten Bedingungen mit der erfindungsgemäßen Nukleinsäure bzw. dazu komplementären Nukleinsäuren hybridisieren. Unter dem Begriff "stringente Bedingungen" wird verstanden, daß die Hybridisierung bei Bedingungen durchgeführt wird, bei der die Temperatur noch bis zu 10°C unter der Temperatur liegt (bei sonst identischen Bedingungen), bei der exakt komplementäre Nukleinsäuren gerade noch hybridisieren würden. Wenn beispielsweise eine exakt hybrisierende Nukleinsäure unter gegebenen Bedingungen bis zu einer Temperatur von ca. 55°C hybridisiert, dann sind stringente Bedingungen Temperaturen gleich oder höher 45°C. Bevorzugt ist der Temperaturbereich für stringente Bedingungen von 5°C, noch mehr bevorzugt von 3°C.

Des Weiteren betrifft die Erfindung Antikörper, die gegen die erfindungsgemäße nSMase oder die erfindungsgemäßen Nukleinsäuren gerichtet sind. Diese Substanzen eignen sich insbesondere zum Einsatz in der Diagnostik, dem Fachmann an sich bekannten Immunoassays, zur histologischen Untersuchung sowie als Arzneimittel zur Behandlung von Zuständen, die mit einer Überexpression der nSMase verbunden sind. Solche erfindungsgemäßen Antikörper können mit dem Fachmann an sich bekannten Verfahren durch

- 7 -

Immunisierung mit nSMase, erfindungsgemäßen Nukleinsäuren oder Peptid- und Nukleinsäurenfragmenten in Gegenwart von Hilfsreagenzien erhalten werden.

Weiterhin sind Gegenstand der Erfindung Zelllinien, die die erfindungsgemäße nSMase überexprimieren. Solche Zelllinien sind erhältlich durch Transfektion mit Vektoren, die die erfindungsgemäßen Nukleinsäuren, die für nSMase kodieren, enthalten. Im Falle von eukaryontischen Zelllinien kann die Transfektion beispielsweise durch Elektroporation erfolgen. Die Zelllinien sind dabei vorzugsweise stabiltransfiziert.

Überexpression bedeutet in diesem Zusammenhang, daß diese Zelllinie eine höhere Aktivität der nSMase aufweisen als die Zelllinien, die nicht mit den erfindungsgemäßen Nukleinsäuren transfiziert wurden. Geeignete eukaryontische Zelllinien sind beispielsweise die Zelllinien U937, HEK 293 oder Jurkat.

Die Zelllinien zeigten in Experimenten eine spezifische nSMase-Aktivität zwischen 0,3 und 10 µmol/mg Protein/Stunde.

Figur 3 zeigt die Northern und Western Blot Analyse der nSMase-Expression in transfizierten Zelllinien. Teil A zeigt dabei das Ergebnis einer RT-PCR der Gesamtzelle RNA mit Primern, die mit humaner und muriner nSMase cDNA hybridisieren. Teil B zeigt als Kontrolle die T-PCR der Gesamt-RNA mit Primern, die zu humanem β-Actin cDNA hybridisieren. Teil C zeigt den Westernblot des Plasma Membran Proteinextrakts von verschiedenen HEK 293 Zelllinien nach SDS Polyacrylamid-Gelelektrophorese und Hybridisierung mit dem polyklonalen Anti-nSMase-Antikörpern.

Die Zugabe von 0,5 mM Arachidonsäure führte zu einer dreifachen Erhöhung der nSMase-Aktivität in den überexprimierenden HEK-Zellen.

Gegenstand der Erfindung ist weiterhin ein transgenes Säugetier, das eine Überexpression (gain of function) oder eine Gendefi-

zienz bzw. einen Gendefekt (loss of function) für die erfindungsgemäße nSMase aufweist. Bevorzugt handelt es sich bei dem Säugetier um ein Nagetier, insbesondere eine Maus. Diese transgenen Säugetiere sind durch für den Fachmann an sich bekannte Verfahren erhältlich und eignen sich insbesondere zur Funktionsaufklärung der neutralen Sphingomyelinase. Für transgene Säugetiere werden definierte Genkonstrukte durch DNA-Mikroinjektion in den Vorkern (Pronukleus) einer befruchteten Eizelle im Einzellstadium injiziert, um die Expression des zusätzlichen Gens zu erreichen. Durch zielgerichtete Veränderung eines Gens im Genoms von ES-Zellen, die nachfolgend in Blastozysten injiziert werden, wird die Funktion eines Gens ausgeschaltet.

Die Strategie und Konstrukte zur Generierung der Mausmutanten sind in Figur 4 und 5 gezeigt.

Bevorzugt handelt es sich bei den transgenen Tieren um Tiere, bei denen das Gen zeitlich und gewebsspezifisch von außen induzierbar ein- bzw. ausgeschaltet werden kann. Entsprechende transgene Säugetiere eignen sich insbesondere zur Aufklärung der mit der erfindungsgemäßen nSMase im Zusammenhang stehenden Stoffwechsel- und Signaltransduktionswegen, die wiederum diagnostische oder therapeutische Anwendungen eröffnen. Insbesondere eignen sich die transgenen Säugetiere zum Screening von pharmazeutischen Wirkstoffen.

Die erfindungsgemäße eukaryontische neutrale Sphingomyelinase, die erfindungsgemäßen Nukleinsäuren sowie die erfindungsgemäßen Antikörper können in Arzneimitteln und Diagnostikmitteln gegebenfalls zusammen mit weiteren Hilfsstoffen enthalten sein. Diese Arznei- und Diagnostikmittel eignen sich zur Diagnose und Behandlung von Erkrankungen, die auf einer Über- oder Unterexpression und/oder einer erhöhten oder verminderten Aktivität der eukaryontischen neutralen Sphingomyelinase und/oder auf Störungen der Zellproliferation, Zelldifferenzierung und/oder Apotose beruhen.

- 9 -

Insbesondere sind dies Erkrankungen, bei denen Entzündungsprozesse, Zellwachstumstörungen und Stoffwechselstörungen eine Rolle spielen. Dies können beispielsweise Krebserkrankungen oder Störungen der Cholesterinhomöostase (Arteriosklerose) sein.

Ein erfindungsgemäßes pharmazeutisches Screening-Verfahren beruht auf der Veränderung der Expression oder Aktivität der erfindungsgemäßen nSMase in nSMase-überexprimierenden Zelllinien bei Zugabe von mindestens einer potentiell pharmazeutisch wirksamen Substanz. Die Zelllinien eignen sich somit insbesondere zur Entwicklung und Prüfung von pharmazeutischen Leitstrukturen.

Die Erfindung soll durch die folgenden Beispiele weiter erläutert werden.

#### **Beispiel 1**

##### *Klonierung der Nukleinsäure*

Die erfindungsgemäßen für die neutrale Sphingomyelinase kodierenden Nukleinsäuren wurden in die NotI Schnittstellen der Klonierungsstelle des eukaryontischen Expressionsvektors pRc/CMV (Stratagene) kloniert. Die erhaltenen Sequenzen wurden durch Sequenzierung mit einem Perkin-Elmer DNA-Sequenzer 377A erhalten.

#### **Beispiel 2**

##### *Klonierung der RNA*

Die Gesamt-RNA wurde nach bekannten Methoden aus verschiedenen Organen von acht drei Wochen alten CD1 Mäusen isoliert und Poly(A<sup>+</sup>)-RNA wurde durch Affinitätsreinigung an Oligo(dT)cellulose (Boehringer Mannheim Deutschland) gemäß Standardmethoden isoliert.

- 10 -

### Beispiel 3

#### Überexprimierende Zelllinien

U937 Zellen wuchsen in RPMI 1640 Medium mit 10% fötalem Kälber-serum, 1 µg/ml Penicillin/Streptomycin und 0,03% Glutamin bei 37°C und 5% CO<sub>2</sub>. 5x10<sup>6</sup>-Zellen wurden mit 1 µg linearisierter Plasmid-DNA, die für die erfindungsgemäße nSMase kodierte durch Elektroporation mit einem "gene pulser" (Firma Bio-Rad) transfi-ziert. Die Selektion stabiler Klone erfolgte unter 1 mg/ml Geneticin (G418, Life Technologies, Gaithersburg, MD).

Die aus den Zelllinien aufgereinigte nSMase zeigte eine spezifi-sche Aktivität zwischen 0,3 und 10 µmol/mg Protein/Stunde. Das pH-Optimum lag bei 6,5 und 7,5. Der K<sub>m</sub>-Wert für C18 Sphingo-myelin betrug 1,0 bis 1,5 x 10<sup>-5</sup> M. Die Aktivität war von der Anwesenheit von Magnesiumionen abhängig; die Zugabe von EDTA inhibierte die Aktivität.

### Beispiel 4

#### Messung der nSMase-Aktivität

Die enzymatische Aktivität wurde in Zellen und Mäusegewebe untersucht. Die Zellen wurden zweimal mit eiskaltem PBS gewa-schen und bei 1.000 g sedimentiert. Das Pellet wurde in Lysepuff-fer resuspendiert und die Zellen wurden durch wiederholtes Einfrieren und Auftauen zerstört. Nach Zentrifugation für 2 min bei 2.500 g gefolgt von einer Extraktion mit Lysepuffer mit 0,2% Triton X-100. Anschließend erfolgt eine Zentrifugation für 15 min bei 100.000 g.

Gewebe von drei Wochen alten Mäusen wurde in kaltem Lysepuffer homogenisiert. Die zu untersuchende Menge an Protein oder homogenisiertem Gewebe wurde mit 10 nm (80.000 dpm) [N-<sup>14</sup>CH<sub>3</sub>] - Sphingomyelin für 30 min bei 37° in einem Gesamtvolume von 200 µl inkubiert. Dann wurden 100 µl Wasser zugesetzt und unreagiertes Substrat durch Extraktion mit Chloroform-Methanol (2:1, v/v) entfernt. Die Radioaktivität der wäßrigen Phase, die

- 11 -

das enzymatisch freigesetzte Phosphocholin enthielt, wurde in einem Sintillationszähler gemessen.

**Beispiel 5**

**Polyklonale Antikörper**

Kaninchen wurden mit dem synthetischen Peptide CDPHSDKPFSDHE (entsprechend den Aminosäuren 261 bis 273 der murinen nSMase) gekoppelt an Keyhole-Limpit-Hemocyanin immunisiert. Das polyclonale Antikörperserum wurde durch Chromatographie an Hydroxyapatit und Affinitätschromatographie an einer Säule, an der das oben genannte synthetische Peptide gebunden war, gereinigt.

Patentansprüche

1. Nukleinsäure kodierend für eukaryontische neutrale Sphingomyelinase.
2. Nukleinsäure gemäß Anspruch 1, dadurch gekennzeichnet, daß es sie für die neutrale Sphingomyelinase eines Säugetiers, insbesondere für humane oder murine neutrale Sphingomyelinase kodiert.
3. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die neutrale Sphingomyelinase Sphingomyelin in Ceramid und Phosphocholin spaltet und ihre Aktivität von der Zugabe von Magnesiumionen abhängig ist.
4. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 3 mit der Sequenz gemäß Seq. ID. Nr. 3 oder Seq. ID. Nr. 4.
5. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß es sich um DNA, RNA, PNA oder nukleaseresistente Analoga handelt.
6. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß es sich um mRNA, cDNA oder genomische DNA handelt.
7. Nukleinsäure dadurch gekennzeichnet, daß sie komplementär zur Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 6 ist.
8. Eukaryontische neutrale Sphingomyelinase erhältlich durch Expression der Nukleinsäure gemäß Anspruch 1 bis 6, insbesondere mit der Sequenz gemäß Seq. ID. Nr. 1 oder Seq. ID. Nr. 2.

9. Antikörper, dadurch gekennzeichnet, daß sie gegen eukaryontische neutrale Sphingomyelinase gemäß Anspruch 8 oder eine Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 gerichtet sind.
10. Zelllinie, dadurch gekennzeichnet, daß sie neutrale Sphingomyelinase gemäß Anspruch 8 überexprimiert.
11. Zelllinie gemäß Anspruch 10 dadurch gekennzeichnet, daß es sich um eine eukaryontische neutrale Sphingomyelinase exprimierende Zelllinie handelt, die auf den Zelllinien U937, HEK 293 oder Jurkat beruht.
12. Transgenes Säugetier mit Überexpression (gain of function) oder Gendefizienz oder Gendefekt (loss of function) für eukaryontische neutrale Sphingomyelinase.
13. Transgenes Säugetier gemäß Anspruch 12 dadurch gekennzeichnet, daß es ein Nagetier ist.
14. Arzneimittel enthaltend eukaryontische neutrale Sphingomyelinase gemäß Anspruch 8, eine Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 und/oder einen Antikörper gemäß Anspruch 9 zusammen mit weiteren Hilfsstoffen.
15. Diagnostikmittel enthaltend eukaryontische neutrale Sphingomyelinase gemäß Anspruch 8, eine Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 und/oder einen Antikörper gemäß Anspruch 9 zusammen mit weiteren Hilfsstoffen.
16. Verwendung der Arzneimittel gemäß Anspruch 14 oder der Diagnostikmittel gemäß Anspruch 15 zur Diagnose und Behandlung von Erkrankungen, die auf einer Über- oder Unterexpression und/oder einer erhöhten oder verminderten Aktivität der eukaryontischen neutralen Sphingomyelinase und/oder

-14-

auf Störungen der Zellproliferation, Zelldifferenzierung und/oder Apotose beruhen.

17. Verwendung gemäß Anspruch 15, dadurch gekennzeichnet, daß es sich bei den Erkrankungen um Entzündungsprozesse, Zellwachstumstörungen, Krebs und/oder Stoffwechselstörungen wie Störungen der Cholesterinhomöostase (Arteriosklerose) handelt.
18. Verfahren zum Screening von Wirkstoffen dadurch gekennzeichnet, daß die Veränderung der Expression oder Aktivität der eukaryontischen neutralen Sphingomyelinase in Zelllinien gemäß Anspruch 10 bei Zugabe von mindestens einer möglichen pharmazeutisch wirksamen Substanz gemessen wird.
19. Verwendung der Zelllinie gemäß Anspruch 10 zur Entwicklung und Prüfung von pharmazeutischen Leitstrukturen.
20. Verfahren zur Herstellung der eukaryontischen neutralen Sphingomyelinase gemäß Anspruch 8 durch chemische Peptid-synthese oder durch Expression in gentechnisch veränderten Organismen, insbesondere in eukaryontischen Expressionssystemen.
21. Verfahren zur Herstellung einer Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 durch chemische Synthese oder durch Vervielfältigung in gentechnisch veränderten Organismen.
22. Nukleinsäuren gemäß Anspruch 5, dadurch gekennzeichnet, daß es sich um das Gen für eukaryontische neutrale Sphingomyelinase handelt und neben codierenden Bereich (Exons) nicht codierende Bereiche (Introns) aufweist, insbesondere ein Gen mit der Sequenz gemäß Seq. ID. Nr. 5 und Seq. ID. Nr. 6.

-15-

23. Varianten der eukaryontischen neutralen Sphingomyelinase gemäß Anspruch 8.
24. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 oder 22, dadurch gekennzeichnet, daß es sich um Derivate, Fragmente oder Varianten der Nukleinsäuren handelt.

1 / 12

## human neutral Sphingomyelinase (NSM) Gene Sequence

ACCGCGGCCGTCGCTGGAGAGTTCGAGGCCCTAGCCCCCTGGAGCTCCCCAACCATGA  
 1 -----+-----+-----+-----+-----+-----+-----+-----+ 60  
 TGGCGCCGGCAGCGACCTCTCAAGCTCGCCGATCGGGGACCTCGAGGGTTGGTACT  
**E I**  
 AGCCCAACTTCTCCCTGCGACTCGGGATCTCACCTCAACTGCTGGTGAGTGCCTG  
 61 -----+-----+-----+-----+-----+-----+-----+-----+ 120  
 TC GG GT GA AG AG GG AC G CT G AC G C CT AG A AG TT GG AG TT G AC G ACC ACT C AC G C AG AC G  
 GG AG TG CG GT CT GGGG G C AC CCT CC G TT CG C ACC C AT G C AG C C T C C T C C C C T AT C C C  
 121 -----+-----+-----+-----+-----+-----+-----+-----+ 180  
 CCT CA CG CC AG AC C C C C G GT GG A AGG C A AG C GT GGG T AC G T CG G A AGG A GGG G G AT AG G G  
 G C C C C A C G AT CT C AG G G T G T A G G G A A A C C C G A A C C T C C A A A G T C C A C A T C T G G C C C A G  
 181 -----+-----+-----+-----+-----+-----+-----+-----+ 240  
 U GGG GT G C T A G A G T C C C A C A T C C C T T T G G G C T T G G A G G T T T C A G G T G T A G A C C G G G T C  
 G C C C G T G G T C C C A G C A G T C C C T C C C T G C C C G C T T C C C T C C T T A G G G G C A T T C C  
 241 -----+-----+-----+-----+-----+-----+-----+-----+ 300  
 G C G G C C A C C A G G G T C G T C A C C G G A G G G G A C G G G G C A G A A G G G A A G G A A T C C C G T A A G G  
 G T A C T T G A G C A A G C A C C G G G C G A C C G A T G A G G C C T G G G A G A C T T C T G A A C C A G G A  
 301 -----+-----+-----+-----+-----+-----+-----+-----+ 360  
 C A T G A A C T C G T C G T G G C C C G G C T G G C G T A C T C C G C G A C C C T C T G A A A G A C T T G G T C C T  
**E II**  
 G A G C T T C G A C C T G G C T T T G C T G G A G G G A G G T G A G A T T G T G C A G C A C G G T G C G G A A C C C A G G  
 361 -----+-----+-----+-----+-----+-----+-----+-----+ 420  
 C T C G A A G C T G G A C C G A A A C G A C C T C C T C A C T C T A A C A C G T C G T G C C A C G C C T T G G G T C C  
 C T G G G A G G G A C A G A C C G T C C C A C T G G G A A A G A C C A A G C A G G C A T C C T C A C C G C T C  
 421 -----+-----+-----+-----+-----+-----+-----+-----+ 480  
 G A C C C T C C T C C T G T C T G G C A G G G T G A C C C T T T C T G G T T C G T C C G T A G G A G T G G C G A A G  
 C C T C A G G T G T G G A G T G A G C C A G G A C T T C C A G T A C C T G A G A C A C G A A G G C T G T C A C C T A C C T A C  
 481 -----+-----+-----+-----+-----+-----+-----+-----+ 540  
 G G A G T C C A C A C C T C A C T C G T C C T G A A G G T C A T G G A C T C T G T C T T C G A C A G T G G A T G G A T G  
**E III**  
 C C A G C T G C A C A C C A C T T C C G G A G G T G A G A A G G C C A C T G G C C T G A A G C C T G T T G T C A T C C C  
 541 -----+-----+-----+-----+-----+-----+-----+-----+ 600  
 G G T C G A C G T G T G G T G A A G G C C T C A C T C T C G G G T G A C C G G A C T T C G G A C A A C A G T A G G G  
 A G G A G G C T C T T G G C C C T G C C A G C C T T C C T A T C C T G C C T G C A C T C C C A G T C T C C T C C A  
 601 -----+-----+-----+-----+-----+-----+-----+-----+ 660  
 T C C T C C G A G A A C C G G A C G G T C G G G A A G G G A T A G G A C G G A C G T G A G A G G T C A G A G G G A G G T  
 G C C T C C T C T C C C T C T G G A T G T G A G A G A A G G G A A G G G T G A A C C A A G G G T C C T A T G A C T  
 661 -----+-----+-----+-----+-----+-----+-----+-----+ 720  
 C G G A G G A G A G G G A G A C C T A C A C T C T C T C C T C T T C C A C T T G G T T C T T C C A G G G A T A C T G A  
 T C A G C C C A T T C A G C T T T G T T T C T G G C T G C C C T A T A C T C C T C C A A A G G C C G T G C C T T G  
 721 -----+-----+-----+-----+-----+-----+-----+-----+ 780  
 A G T C G G G T A A A G T C G A A A C A P A A A G A C C G A C G G G A T A T G A G G A G G T T C C G G A C G G G A A C  
 G T T C T A G G G C T A G T C C C A G C A G T G A G A A A A A G A A A A A A T A G C T G A T C A G A G C T G G A A G A C  
 781 -----+-----+-----+-----+-----+-----+-----+-----+ 840  
 C A A G A T C C C G A T C A G G G T C G T C A T C T T T C T T T T A T C G A C T A G T C T C G A C C T T C T G  
 A A G G G A G G G G A A G A A G G C T G G G T G T C T C C C C T G T T T T C T G G T T A T T A A G C A G G G C T T G  
 841 -----+-----+-----+-----+-----+-----+-----+-----+ 900  
 T T C C C T C C C C T T C T T C C G A C C C A C A G A G A G G G A C A P A A A A G C C C A T T A T T C G T C C C G A A C

Figur 1-1

2 / 10

1861 CTCTCCCTCCTTCTCCGACATCTAGCATGAGCCAAATGATTCCCTTAGGGCTCTGAGG 1920  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
GAGAGGGAGGAAGAAGGGGTGTAGGATCCTACTCGGTTACTAAGGAAATCCCCGAGACTCC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
1921 AAGGCAACACAATGGTACCCAAAGAACTGNTACGTCAGCCAGCAGGAGCTGAAGCCATTTC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
1981 CCTTTGGTGTCCGCATTGACTA2GTGCTTTACAGGTCAAGGCTCCTCCCTTCAGCATGCT  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
GGAAACCACAGGCGTAAGTGAAGAAATGTTCCAGTCAGGAGGGAAAGTTGTACGA  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2041 TTCATATGCTGTCTCTTGTCTACTAACCTCTTAGATCCTTTGCTCAGNTAGTCTAG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
AAGTATAACGACACAGAGACAGACATGATTGGACACATCTAGGAACGAGTCNATCAGATC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2101 TCTTGGACCACTGATGGTGCAGAAGTGGGTTAAGCCGGGAGGTGGTTCTCTGGAAAGAGGC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
AGAACCTGGTCACTACCCACCTTCCAGCCATGGACCTGGACCAAGAGACCCCTTCTCCG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2161 CCTCATATATAAGCTTCTTNTGGCGCTTACTTTCTTACAGCAGCTTCTGGGTTTACAT  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
GAGTATATATTGGAGAGAAGAAGAAGAGAGAGAGAGAGAGAGACCCAAAATGTA  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2221 CTCCTGTAGAGTTTGAAAGACACTAACAGACAGCTTACAGGGCACCCCCCTCTC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
GAGGACATTCTCAAAACTTGGTGTGTCTGAGACTGGGANTGTCCCCGTGGGGGAGAG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2281 TTGATCATGAAGCCCTGATGGCTACTCTGTTGTAGGCACAGCCCCCCACAGCAGAAC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
AACTAGTACTTCGGGACTACCGATGAGACAAACACTCCGTGTCGGGGGTGTCGTCTGG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2341 CCAGCTCTACCCACGGTGAGTCACCCCCCAACCTTCCCTGGCCCTTGCCCCGCTTGAAGC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
GGTCGAGATGGGTGCCACTCAGTGGGGTGGGAAGGAACCGGGAACGGGGCGAACCTCG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2401 AGCCCTTCCACTCTGACTCTCTCCCTGCCCCACTCCCCCTGCTCTGTTTAGGACCAGCAG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
TCGGGAAGGTGAGAACTGAGAGAGGACGGCGTACGGGACGAGACAAACATCCTGGTCGT  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2461 AGAGGTGCCGTTGATGTGTGCTAAAGGAGGCTGGACGGAGCTGGGTCTGGGATGG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2521 TCTCCAGCGGCCACTACACACACAGATTCCCTCCGGACCTCCCTCGACCCAGACCGTAC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
CTCAGGCTCGCTGGTGGGCCACCTTCGCTAGCTATGTGATTGGCTGGGCTGCTTCTCC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
GAGTCGAGCGACCACCGCGTGGAAAGCGATCGATACACTAACCGGACCCGACGAAGAGG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2581 TGGCACTGCTGTGTCTGGCGCTGGAGGGAGGGGCCGGGAAGCTGCCATACTGCTCT  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
ACCGTGACGACACACAGGACCGCCGACCTCTCCCGGCCCTTCGACGGTATGACGAGA  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2641 GGACCCCCAGTGTAGGGCTGGTGCTGGCAGGTGCAATTCTACCTCTTCCACGTACAGG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
CCTGGGGGTACATCCCGACCGACACCCGTCAAGTAAAGATGGAGAAGGTGCATGTCC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2701 AGGTCAATGGCTTATATAGGGCCCAGGCTGAGCTCAGCATGTGCTAGGAAGGGCAAGGG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
TCCAGTTACCGAATATATCCCGGTCGGGACTCGAGGCTGATCACCGATCCCTCCCGTCC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
2761 AGGCCAGGATCTGGGCCAGGGCTCAGCCAGGCCACTCTGGGGCAGCAGGAGGGGG  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+  
TCGGGCTCTAGACCCGGGTCTCGGASTCGAGGCTGATCACCGATCCCTCCCGTCC  
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

3 / 12

2821 -----+-----+--- 2852  
TGTCTTGATTTCTTGTТАTTCGAACCGGGTT

Figur 1-3

卷之三

## Mouse Neutral Sphingomyelinase (nSMase) gene sequence

Figure 2-1

5 / 12

cccaggcggtgggCTGCAGCCTCGGAGCCACCTTCAGTCCCCTCTCGCACATGCCTAGGA  
 841 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 900  
 gggtcgcacccGACGTGGAGGCCCGGTGAAAGGTCAAGGGAGAGCGTGTACGGATCCT  
  
 AGGAAGCAGGTCTTCTTCAGCCGAGCTAGACCCCTGTCCCTCCGAACCACCAAAGTCCAC  
 901 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 960  
 TCCTCGTCCAGAAGAAGTCGGCTCGATCTGGGACAGGAAGGCTTGGTTCAAGGTG  
  
 ATCGCCTAAAGACCAGAGCTTGGGTGGTGAGCAATCACCAAAGTCCCTATCATCCAA  
 961 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1020  
 TAGCGGATTCTGGTCTCGAACCCACCAACGTCGTAGTGGTTCAAGGATAGTAGGTT  
  
 GCTGAGGTGATGACAGCAGTAATCGTCCAAACCTGGCCCATGTCTTCCTTTAAATGA  
 1021 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1080  
 CGACTCCACTACTGTCGTCAATTAGCAGGGTTGGACCGGGTACAGAAAGGAAJATTTACT  
  
 TTTACTTTATTTATGTACATTGGTGTGCTGTATGTATGTCTGTGAAGGTGC  
 1081 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1140  
 AAATGAAAATAAAATACATGTAACCACAAAACGGACATACATACAGACACACTTCCACG  
  
 CAGATTCTCTGGAACGGAGTTACAGACAGTTGTAAGCTGTATGTGCTTGCTGGAAATT  
 1141 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1200  
 GTCTAAGAGACCTTGACCTCAATGTCTGTCAACATTGACAGTACACGAACGACCTTAA  
  
 GAACTGCTGACCCATCTCTGCCCCCTGCGTCTCCACCCCTTTAGGGACATCCCC  
 1201 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1260  
 CTTGACGACTGGTAGAGAAGACGGGGACGCAGGAGGTGGGAAAATCCCTGTAGGGGA  
  
 ACCTGAGCAAACATAGGGCGGACCGCATGAAGCGCTGGAGACTTTCTGAACTTGGAAA  
 1261 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1320  
 TGGACTCGTTGTATCCCGCTGGCGTACTTCGCAACCCCTGTAAAGACTTGAACCTT  
  
**E II**  
 ACTTTGATCTGGCTCTCCTGGAGGAGGTGAGGTTGAGGGCAGGCTAGGTTGGAGGAGGG  
 1321 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1380  
 TGAAACTAGACCGAGAGGACCTCCACTCCAACATCCCGTCGATCCAACCTCCTCCC  
  
 CAGCAGGCGGCAGGCGGGCAGGAAAACCTGTTCTGTCTGGATGAAATCCAAGCAA  
 1381 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1440  
 GTCGTCCGCCGTCCCGCCCGTCTTTGAACAAGACAGAACCCCTACTTGGTTCGTT  
  
 GTATCCTCACCTTCTCCAGGTGTTGGAGTGAGCAGGACTCCCAGTACCTAAGGCAA  
 1441 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1500  
 CATAGGAGTGGAAAGAAGGAGGTCCACACCTCACTCGTCTGAAGGGCATGGATTCCGTT  
  
**E III**  
 AGGCTATCGTCACCTATCCAGATGCACACTACTTCAGAAGGTGAAAAGCCTGTGTTCTC  
 1501 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1560  
 TCCGATAGCGAGTGGATAGGTCTACGTGTGATGAAGTCTTCACTTTCGACACAAGAG  
  
 AGCCTGTTCTCAGACGAGGAAGCTCCAAACATTCTGCTTGACCCCTCGATCTTCTCC  
 1561 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1620  
 TCGGACAAGAGTCTGCTCCCTCGAGAGGTTGTAAGAACGAAACGTGGAGCTAGAAGAAGG  
  
 TCTGGGTGTGAGAAGAGCAGGCCGTACCCCTCATTTGCAAGGGCTGCTGTCTTAGGCTT  
 1621 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1680  
 AGACCCACACTCTCTCGTCCGGCAGTGGAGTAGAACGTTCCCGACGACAGAACCGAA  
  
 TGTTCTGGGGTTGATCTTAGCAGTAGAGCTGGAGACCGCGGAGGGGAAGAGGGCTGGCT  
 1681 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1740  
 ACAAGACCCCAACTAGAAATCGTCATCTCGACCCCTCTGGCGCCTCCCTCGACCGA

卷之二

GGGTACTCCCCCTCTGCTTCTGTTATTAAACCAAGAGTTGGTTTCAGCGGGATGAT 1841  
 CCCATGAGGGGAGGAACGAGAAGACCAATAATTGTTCTCAACCXAAAGTCGCCCTACTA  
**E IV**  
 AGGCAGTGCCCTCTGTGTCTCCAAACACCCAACTCAGGAATCTTCAGCATGTCTA 1801  
 TCCGTCAACGGAGACACACAAGAGGTTGTGGGTTAGGTCTTTAGAAGGTGTAAGAT 1860  
 CAGTCTAAATGGTTACCCCTACATGGTAAGGATCTTCCCTATCCTTGCTAACACAGAC 1861  
 GTCAGACTTACCAATGGGATGTACCATTCCTAGAGAAGGCAAGAACATTGTGTCG 1920  
 TGGACCGAGCCTCCTGGGGCTTCCAGGAGGGTGTCAAGTACCCCTGAGTTTTGTCTTC 1921  
 ACCTGCCTCGGAAGGACCCCCGAACCCCTCCTCCCACAGTCATGGCACTCAGAACAGAAG 1980  
 TCTTCCTGCAGTCCATCATGGAGACTCGTTCTGTGGGAAGTCTGTGGGCTGCTGGTG 1981  
 AGAACCGCACGTCAAGGTAGTACCTCTGACCAAGACACCCCCCTCAGACACCCCCAGCAC 2040  
**E V**  
 CTCCGTCTAAGTGGACTGGTGTCAATGCCCTACGTACTCATGTGAGTGGGCTAGCCAG 2041  
 GAGGCACATTCAACCTGACCAAGAGTTACGGATGCACTGAGTACACTCACCCCGATCGGT 2100  
 GCTTAGCCAGTGGGTCAAGCAGCCCAATGCTATGGTGGAGAAGAGACGCCACTAGTTAGT 2101  
 CGAATCCGTACCCAGTTCTGCGGGTTACGATACCACCTCTCTGCGGTATCAATCA 2160  
 TCTGCTCCCTGGGGATAAGGCATGGATCAGAAGCTAGCATTGGCAAGGTTCACCCATT 2161  
 AGACGACGGACCCCTATTCCGTACCCCTAGTCTCGATCGTAACCGTTCCAAGTGGTAA 2220  
 CCCTGTCAACACTCTGCCATGTGACAGATGACAAGCTTGATTCAAGACAGCCTCTCTTG 2221  
 GGGACAGTGTGAGACGGTACACTGTCTACTGTTGAACAAAGTCTGTGCGGAAGAGAAACT 2280  
 TTTCACCTATTCCACTTTAGCTACATGCTGAGTACAGCCGACAGAAGGACATCTACTTTG 2281  
 AAAGTGGATAAGGTGAAATCGATGTACGACTCATGTCGGCTGTTCTGTAGATGAAAC 2340  
**E VI**  
 CACACCGTGTGGCCCAAGCTTGGAACTGGCCAGTTCATCCAGTGTGAGCCTGGGCT 2341  
 GTGTGGCACACCGGGTTCGAACCCCTTGACCGGGTCAAGTAGGTACACACTCGGACCCGA 2400  
 TGATGGGGCTGTGGGTGGGGACGGGGTTGAGGGATGNGNAANTTATCCTTGAAAGAGGG 2401  
 ACTACCCCCGACACCCCAACCCCTGCCCTACNCNTTAAATAGGAACCTCTCCC 2460  
 CACATAATAAGGGAAAGAATTTCCTCTTGCCTCTTCCAGCCACACATCCA 2461  
 GTGTATTATTCCCTTCTTAAAGGAGGAACGGCGAGAAGGGGGTTGAGTCGGTGTAGGT 2520  
**E VII**  
 AGAATGCAGATGTGGTTCTATTGTGTGGAGACCTCAATATGCACCCCAAGACCTGGGCT 2521  
 TCTTACGTCTACACCAAGATAACACACCTCTGAGTTACGTCGGGTTCTGGACCCGA 2580

Figur 2-3

7 / 12

Figur 2-4

6 / 12

9 / 12

TCCCTTGGGNCCNAANCCNTGGCCGGNCTTGGCTTTCCCCCTTCCAAGNATTTC  
4261 -----+-----+-----+-----+-----+ 4320  
AGGGAACCCCNNGNTTNGGNACCGGCCNGAACCGAAAAGGGGGAAAGGGTTCNTAAAG

AAANNTTCCCTNGGAAANCCCTTGNTTGGNAAACCNAATNANGAACCANGCCAANNNT  
4321 -----+-----+-----+-----+-----+ 4380  
TTTNAAGGGANCCTTNNGGGAACNAACCNTTGGNTTANTNCTGGTNCGGTTNNNA

TGCCAANAAACCNTTGGCAAAGGGGNAAATTCAACAANGGGNAATTGGGGAAACCC  
4381 -----+-----+-----+-----+-----+ 4440  
ACGTTNTTGGNAAACCGTTCCCCNTTAAGTNGTNCcccNTAACCCCTTGGG

NTGGGTTTNCCTAAGGGCCCNAANANT  
4441 -----+-----+-----+ 4468  
NACCCAAANGGGTTCCCGGGNTNTNA

Figur 2-6

10 / 12



Figur 3

## mnSMase "konventional" Knock Out



Figure 4

12 / 12

## Konstrukte zur Generierung transgener Mausmutanten



Ubiquitinpromotor: Regulationssequenz des Ubiquitin-Gens, das eine ubiquitäre Transkription steuert.

nSMase: neutrale Sphingomyelinase

lacZ: lacZ, Gen kodiert für die  $\beta$ -Galaktosidase

polyA: Erkennungssignal für die Termination der Transkription und Polyadenylierung

CMV: Cytomegalovirus-Promotor des Cytomegalovirus-Gens, das eine ubiquitäre Transkription steuert.

rtTA: reverser Transaktivator, bindet an den Minimalpromotor und steuert dadurch die Transkription. Die Bindungseigenschaften des Transaktivators werden durch Tetrazyklin beeinflußt. Zugabe von Tetrazyklin läßt den Transaktivator an den Minimalpromotor binden und startet die Transkription, Wegnahme von Tetrazyklin verhindert die Bindung des Transaktivators an den Minimalpromotor und verhindert die Transkription.

CMV-1: Minimalpromotor, Bindung des Transaktivators startet die Transkription.

IRES: internal ribosomal entry sequence, virales Initiationssignal für die Translation.

## SEQUENZPROTOKOLL

## (1) ALLGEMEINE ANGABEN:

## (i) ANMELDER:

- (A) NAME: Memorec Stoffel GmbH
- (B) STRASSE: Stoeckheimer Weg 1
- (C) ORT: Koeln
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: 50829

(ii) BEZEICHNUNG DER ERFINDUNG: Neutrale Sphingomyelinase

(iii) ANZAHL DER SEQUENZEN: 6

## (iv) COMPUTER-LESBARE FASSUNG:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

## (2) ANGABEN ZU SEQ ID NO: 1:

## (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 423 Aminosäuren
- (B) ART: Aminosäure
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

Met Lys Leu Asn Phe Ser Leu Arg Leu Arg Ile Phe Asn Leu Asn Cys  
1 5 10 15

Trp Gly Ile Pro Tyr Leu Ser Lys His Arg Ala Asp Arg Met Arg Arg  
20 25 30

Leu Gly Asp Phe Leu Asn Gln Glu Ser Phe Asp Leu Ala Leu Leu Glu  
35 40 45

Glu Val Trp Ser Glu Gln Asp Phe Gln Tyr Leu Arg Gln Lys Leu Ser  
50 55 60

Pro Thr Tyr Pro Ala Ala His His Phe Arg Ser Gly Ile Ile Gly Ser  
65 70 75 80

Gly Leu Cys Val Phe Ser Lys His Pro Ile Gln Glu Leu Thr Gln His  
85 90 95

Ile Tyr Thr Leu Asn Gly Tyr Pro Tyr Met Ile His His Gly Asp Trp  
100 105 110

Phe Ser Gly Lys Ala Val Gly Leu Leu Val Leu His Leu Ser Gly Met  
115 120 125

Val Leu Asn Ala Tyr Val Thr His Leu His Ala Glu Tyr Asn Arg Gln  
130 135 140

Lys Asp Ile Tyr Leu Ala His Arg Val Ala Gln Ala Trp Glu Leu Ala  
145 150 155 160

Gln Phe Ile His His Thr Ser Lys Lys Ala Asp Val Val Leu Leu Cys  
165 170 175

Gly Asp Leu Asn Met His Pro Glu Asp Leu Gly Cys Cys Leu Leu Lys  
180 185 190

Glu Trp Thr Gly Leu His Asp Ala Tyr Leu Glu Thr Arg Asp Phe Lys  
195 200 205

Gly Ser Glu Glu Gly Asn Thr Met Val Pro Lys Asn Cys Tyr Val Ser  
210 215 220

Gln Gln Glu Leu Lys Pro Phe Pro Phe Gly Val Arg Ile Asp Tyr Val  
225 230 235 240

Leu Tyr Lys Ala Val Ser Gly Phe Tyr Ile Ser Cys Lys Ser Phe Glu  
245 250 255

Thr Thr Thr Gly Phe Asp Pro His Ser Gly Thr Pro Leu Ser Asp His  
260 265 270

Glu Ala Leu Met Ala Thr Leu Phe Val Arg His Ser Pro Pro Gln Gln  
275 280 285

Asn Pro Ser Ser Thr His Gly Pro Ala Glu Arg Ser Pro Leu Met Cys  
290 295 300

Val Leu Lys Glu Ala Trp Thr Glu Leu Gly Leu Gly Met Ala Gln Ala  
 305 310 315 320  
  
 Arg Trp Trp Ala Thr Phe Ala Ser Tyr Val Ile Gly Leu Gly Leu Leu  
 325 330 335  
  
 Leu Leu Ala Leu Leu Cys Val Leu Ala Ala Gly Gly Gly Ala Gly Glu  
 340 345 350  
  
 Ala Ala Ile Leu Leu Trp Thr Pro Ser Val Gly Leu Val Leu Trp Ala  
 355 360 365  
  
 Gly Ala Phe Tyr Leu Phe His Val Gln Glu Val Asn Gly Leu Tyr Arg  
 370 375 380  
  
 Ala Gln Ala Glu Leu Gln His Val Leu Gly Arg Ala Arg Glu Ala Gln  
 385 390 395 400  
  
 Asp Leu Gly Pro Glu Pro Gln Pro Ala Leu Leu Leu Gly Gln Gln Glu  
 405 410 415  
  
 Gly Asp Arg Thr Lys Glu Gln  
 420

## (2) ANGABEN ZU SEQ ID NO: 2:

## (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 419 Aminosäuren
- (B) ART: Aminosäure
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

## (ii) ART DES MOLEKÜLS: Peptid

## (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Lys Leu Asn Phe Ser Leu Arg Leu Arg Val Phe Asn Leu Asn Cys  
 1 5 10 15

Trp Asp Ile Pro Tyr Leu Ser Lys His Arg Ala Asp Arg Met Lys Arg  
 20 25 30

Leu Gly Asp Phe Leu Asn Leu Glu Asn Phe Asp Leu Ala Leu Leu Glu  
 35 40 45

Glu Val Trp Ser Glu Gln Asp Phe Gln Tyr Leu Arg Gln Arg Leu Ser  
50 55 60

Leu Thr Tyr Pro Asp Ala His Tyr Phe Arg Ser Gly Met Ile Gly Ser  
65 70 75 80

Gly Leu Cys Val Phe Ser Lys His Pro Ile Gln Glu Ile Phe Gln His  
85 90 95

Val Tyr Ser Leu Asn Gly Tyr Pro Tyr Met Phe His His Gly Asp Trp  
100 105 110

Phe Cys Gly Lys Ser Val Gly Leu Leu Val Leu Arg Leu Ser Gly Leu  
115 120 125

Val Leu Asn Ala Tyr Val Thr His Leu His Ala Glu Tyr Ser Arg Gln  
130 135 140

Lys Asp Ile Tyr Phe Ala His Arg Val Ala Gln Ala Trp Glu Leu Ala  
145 150 155 160

Gln Phe Ile His His Thr Ser Lys Asn Ala Asp Val Val Leu Leu Cys  
165 170 175

Gly Asp Leu Asn Met His Pro Lys Asp Leu Gly Cys Cys Leu Leu Lys  
180 185 190

Glu Trp Thr Gly Leu His Asp Ala Phe Val Glu Thr Glu Asp Phe Lys  
195 200 205

Gly Ser Asp Asp Gly Cys Thr Met Val Pro Lys Asn Cys Tyr Val Ser  
210 215 220

Gln Gln Asp Leu Gly Pro Phe Pro Ser Gly Ile Arg Ile Asp Tyr Val  
225 230 235 240

Leu Tyr Lys Ala Val Ser Glu Phe His Val Cys Cys Glu Thr Leu Lys  
245 250 255

Thr Thr Thr Gly Cys Asp Pro His Ser Asp Lys Pro Phe Ser Asp His  
260 265 270

Glu Ala Leu Met Ala Thr Leu Tyr Val Lys His Ser Pro Pro Gln Glu  
275 280 285

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Asp Pro Cys Thr Ala Cys Gly Pro Leu Glu Arg Ser Asp Leu Ile Ser |     |     |
| 290                                                             | 295 | 300 |
| Val Leu Arg Glu Ala Arg Thr Glu Leu Gly Leu Gly Ile Ala Lys Ala |     |     |
| 305                                                             | 310 | 315 |
| Arg Trp Trp Ala Ala Phe Ser Gly Tyr Val Ile Val Trp Gly Leu Ser |     |     |
| 325                                                             | 330 | 335 |
| Leu Leu Val Leu Leu Cys Val Leu Ala Ala Gly Glu Glu Ala Arg Glu |     |     |
| 340                                                             | 345 | 350 |
| Val Ala Ile Ile Leu Cys Ile Pro Ser Val Gly Leu Val Leu Val Ala |     |     |
| 355                                                             | 360 | 365 |
| Gly Ala Val Tyr Leu Phe His Lys Gln Glu Ala Lys Gly Leu Cys Arg |     |     |
| 370                                                             | 375 | 380 |
| Ala Gln Ala Glu Met Leu His Val Leu Thr Arg Glu Thr Glu Thr Gln |     |     |
| 385                                                             | 390 | 395 |
| Asp Arg Gly Ser Glu Pro His Leu Ala Tyr Cys Leu Gln Gln Glu Gly |     |     |
| 405                                                             | 410 | 415 |
| Asp Arg Ala                                                     |     |     |

## (2) ANGABEN ZU SEQ ID NO: 3:

## (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1662 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

## (ii) ART DES MOLEKÜLS: cDNA

## (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

|                                                                       |     |
|-----------------------------------------------------------------------|-----|
| GC GGCC CGCGA CCGCCGGGGA CGAGCTTGGGA GGAAAAGGAA CCGGGAGCCG CCCACCCGGG | 60  |
| GGCGCTCTCC GGACCCCCAG GGTCTAGCG CGCGGCCCTT ACCGAGCCTG GGCGCCCGGA      | 120 |
| TTTCGGSAGC GGATCGCCTT TCCGGGTTGG CGGCCCGCCT GATTGGGAAC AGCCGGCCGG     | 180 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| TTGCCGGGGG AACGCCGGAG TCGGGCCCGA CCTGAGCCAC GCGGGCTTGG TGCCCCACCTG | 240  |
| TGCAGCGCCGC CTGCGAAGAA GGAACGGTCT AGGGAGAAGG CGCCGCCGGC CGCCCCCGTC | 300  |
| CCCACCGCGGG CCGTCGCTGG AGAGTTCGAG CCGCCTAGCG CCCCTGGAGC TCCCCAACCA | 360  |
| TGAAGCTCAA CTTCTCCCTG CGACTGCCGA TCTTCAACCT CAACTGCTGG GGCAATTCCGT | 420  |
| ACTTGAGCAA GCACCGGGCC GACCGCATGA GGCGCCTGGG AGACTTTCTG AACCAGGAGA  | 480  |
| GCTTCGACCT GGCTTGCTG GAGGAGGTGT GGAGTGAGCA GGACTTCCAG TACCTGAGAC   | 540  |
| AGAACGCTGTC ACCTACCTAC CCAGCTGCAC ACCACTTCCG GAGCGGAATC ATTGGCAGTG | 600  |
| GCCTCTGTGT CTTCTCCAAA CATCGAATCC AGGAGCTTAC CCAGCACATC TACACTCTCA  | 660  |
| ATGGCTACCC CTACATGATC CATCATGGTG ACTGGTTCAAG TGGGAAGGCT GTGGGGCTGC | 720  |
| TGGTGCTCCA TCTAAAGTGGC ATGGTGCTCA ACGCCTATGT GACCCATCTC CATGCCGAAT | 780  |
| ACAATCGACA GAAGGACATC TACCTAGCAC ATCGTGTGGC CCAAGCTTGG GAATTGGCCC  | 840  |
| AGTTCATCCA CCACACATCC AAGAAGGCAG ACGTGGTTCT GTTGTGTGGA GACCTCAACA  | 900  |
| TGCACCCAGA AGACCTGGGC TGCTGCCTGC TGAAGGAGTG GACAGGGCTT CATGATGCCT  | 960  |
| ATCTTGAAAC TCGGGACTTC AAGGGCTCTG AGGAAGGCAA CACAATGGTA CCCAAGAACT  | 1020 |
| GCTACGTCAG CCAGCAGGAG CTGAAGCCAT TTCCCTTGG TGTCCGCATT GACTACGTGC   | 1080 |
| TTTACAAGGC AGTTTCTGGG TTTTACATCT CCTGTAAGAG TTTTGAAACC ACTACAGGCT  | 1140 |
| TTGACCCCTCA CAGTGGCACC CCCCTCTCTG ATCATGAAGC CCTGATGGCT ACTCTGTTG  | 1200 |
| TGAGGCACAG CCCCCCACAG CAGAACCCCA GCTCTACCCA CGGACCAGCA GAGAGGTCGC  | 1260 |
| CGTTGATGTG TGTGCTAAAG GAGGCCTGGA CGGAGCTGGG TCTGGGCATG GCTCAGGCTC  | 1320 |
| GCTGGTGGGC CACCTTCGCT AGCTATGTGA TTGGCCTGGG GCTGCTTCTC CTGGCACTGC  | 1380 |
| TGTGTGTCCT GGCGGCTGGA GGAGGGCCG GGGAAAGCTGC CATACTGCTC TGGACCCCCA  | 1440 |
| GTGTAGGGCT GGTGCTGTGG GCAGGGCAT TCTACCTTT CCACGTACAG GASGTCAATG    | 1500 |

|                                                                  |      |
|------------------------------------------------------------------|------|
| GCTTATATAG GGCCCAGGCT GAGCTCCAGC ATGTGCTAGG AAGGGCAAGG GAGGCCAGG | 1560 |
| ATCTGGGCC AGAGCCTCAG CCAGCCCTAC TCCTGGGCA GCAGGAGGGG GACAGAACTA  | 1620 |
| AAGAACATA AAGCTTGGCC CTTTAAAAAA ·AAAAAAAAAA AA                   | 1662 |

## (2) ANGABEN ZU SEQ ID NO: 4:

## (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1627 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

## (ii) ART DES MOLEKÜLS: cDNA

## (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| GTGCTGGTGG AAGCCGAGCC GGGAAACAAGG GAGGAACCTG TAGGCCGCGG TGCGAGAAC | 60  |
| CACCGAAGAC CTAAGAATCT GGAACAGTCC ACCCGAGATT CCTTCCAGGA CTGCCGGCGG | 120 |
| CTCGCGCACC AGCCCCGGAT TTGCAGCCGA CCTTCTTCG GGGTGGAAAGG ACGGCCTTG  | 180 |
| TCCCAGTAAC GCAGGAGTCG CCCCCCACCC CCAACCAGCT CGCGTTCTG GGTCGGGGCA  | 240 |
| GCGCAGGACA GGGCAATAAG CCTGTGCGCG CAATCCGCCT CGCCGCCCTT GCTCCGAAGC | 300 |
| ACTCCAGCCA TGAAGCTCAA CTTTCTCTA CGGCTGAGAG TTTCAATCT CAACTGCTGG   | 360 |
| GACATCCCC ACCTGAGCAA ACATAGGGCG GACCGCATGA AGCGCTTGGG AGACTTCTG   | 420 |
| AACTTGGAAA ACTTGATCT GGCTCTCCTG GAGGAGGTGT GGAGTGAGCA GGACTTCCAG  | 480 |
| TACCTAAGGC AAAGGCTATC GCTCACCTAT CCAGATGCAC ACTACTCAG AAGCGGGATG  | 540 |
| ATAGGCAGTG GCCTCTGTGT GTTCTCCAAA CACCAATCC AGGAAATCTT CCAGCATGTC  | 600 |
| TACAGTCTGA ATGGTTACCC CTACATGTTC CATCATGGAG ACTGGTTCTG TGGGAAGTCT | 660 |
| GTGGGGCTGC TGGTGCTCCG TCTAAGTGGA CTGGTGCTCA ATGCCTACGT GACTCATCTA | 720 |
| CATGCTGAGT ACAGCCGACA GAAGGACATC TACTTGAC ACCGTGTGGC CCAAGCTTGG   | 780 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| GAACTGGCCC AGTTCATCCA CCACACATCC AAGAATGCAG ATGTGGTTCT ATTGTGTGGA  | 840  |
| GACCTCAATA TGCACCCCAA AGACCTGGGC TGCTGCCTGC TGAAAGAGTG GACAGGGCTC  | 900  |
| CATGATGCTT TCGTTGAGAC TGAGGACTTT AAGGGCTCTG ATGATGGCTG TACCATGGTA  | 960  |
| CCCAAGAACT GCTACGTCAG CCAGCAGGAC CTGGGACCGT TTCCGTCTGG TATCCGGATT  | 1020 |
| GATTACGTGC TTTACAAGGC AGTCTCTGAG TTCCACGTCT GCTGTGAGAC TCTGAAAACC  | 1080 |
| AATACAGGCT GTGACCCCTCA CAGTGACAAG CCCTTCTCTG ATCACGAGGC CCTCATGGCT | 1140 |
| ACTTTGTATG TGAAGCACAG CCCCCCTCAG GAAGACCCCT GTACTGCCTG TGGCCCACTG  | 1200 |
| CAAAGGTCCG ATTTGATCAG CGTGCTAAGG GAGGCCAGGA CAGAGCTGGG GCTAGGCATA  | 1260 |
| GCTAAAGCTC GCTGGTGGGC TGCATTCTCT GGCTATGTGA TCGTTGGGG GCTGTCCCTT   | 1320 |
| CTGGTGTGTC TGTGTGTCCT GGCTGCAGGA GAAGAGGCCA GGGAAAGTGGC CATCATCCTC | 1380 |
| TGCATACCCA GTGTGGGTCT GGTGCTGGTA GCAGGTGCAG TCTACCTCTT CCACAAGCAG  | 1440 |
| GAGGCCAAGG GCTTATGTCG GGCCCAGGCT GAGATGCTGC ACGTTCTGAC AAGGGAAACG  | 1500 |
| GAGACCCAGG ACCGAGGCTC AGAGCCTCAC CTAGCCTACT GCTTGCAGCA GGAGGGGGAC  | 1560 |
| AGAGCTTAAG AGCTTAACAA TAAAACTTGC TTGACACACA AAAAAAAAAA AAAAAAAAAA  | 1620 |
| AAAAAAA                                                            | 1627 |

## (2) ANGABEN ZU SEQ ID NO: 5:

## (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 4464 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

## (ii) ART DES MOLEKÜLS: Genom-DNA

## (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

|                                                                   |    |
|-------------------------------------------------------------------|----|
| GACTCGATCC CGCGAACGC TCGCTCGCGC TCCGAGTCTC TTCCAGGTCTG CCCTTCCTTG | 60 |
|-------------------------------------------------------------------|----|

|                                                                     |      |
|---------------------------------------------------------------------|------|
| CGACCAGCAT TTGTTCTCTA TGCCCCATC CAGCCCTAGG ACAGAACGTG GACCCCCGCC    | 120  |
| CGCCAGCGCA GGCGACACCG CGGCAGGGGG CTGAGGTGCG CACGGCGTCT GGGCGAGGG    | 180  |
| GTTACCTCAG CGATGGTCCT TGACACCTGA AAGCTGGAGC TTTGAAGAG CCCCACCACC    | 240  |
| TTCAGCTTCA GGGGCGGCTC GGGCGGCAAC CGCACGTGAC ATGCTGGGG CTTCGACTTG    | 300  |
| GGCCGGCACG GCTGCTGGGT GGCCATGGCA GGGACAGCAG AGAGCCCGGA ACACAAATAG   | 360  |
| TGCGAGTCGC CAGGGCAACC CGGTGGCTCC TCCCCGAACG CCCGCAAGGG GCGGGACCTG   | 420  |
| AGTGAGTTCG TGGGCGGGGC CTCGCATCAA CTTCAAGCCT GTTGCTGGTG GAAGCCGAGC   | 480  |
| CGGGAACAAG GGAGGAACCT GTAGGCCGCG GTGCGGATAA CCCACCGAAG GACCTAAGAA   | 540  |
| TCTGGAACAG TCCACCCGAG ATTCCCTCCA GGACTGCCGG CGGACTCTCG CATTCAAGCCC  | 600  |
| GGGATTGCA GCCGACCTTC TTTCCGGGTG GAATGACGGC CTTTGTCCCA GTAACGCAGG    | 660  |
| AGTAGCCCCC CACCCCCAAC CAGCTCGCGT TCCTGGGTG GGGCAGCGCA GGATAGGGCA    | 720  |
| ATAAGCCTGT GCGCGCAATC CGCCTCGCCG CCCTGCTCC GAAGCACTCC AGCCATGAAG    | 780  |
| CTCAACTTTT CTCTACGGCT GAGAGTTTC AATCTCAACT GCTGGTAAGT AAGTGCTCCC    | 840  |
| AGGC GTGGGC TGCAGCCTCG GAGCCACCTT CCAGTCCCCT CTCGCACATG CCTAGGAAGG  | 900  |
| AAGCAGGTCT TCTTCAGCCG AGCTAGACCC TGTCTTCCC GAACCACCAA AGTCCACATC    | 960  |
| GCCTAAAGAC CAGAGCTTGG GTGGTTGCAG CAATCACCAA AGTCCCTATC ATCCAAAGCT   | 1020 |
| GAGGTGATGA CAGCAGTAAT CGTCCAAAC CTGGCCCATG TCTTCCTTT TAAATGATTT     | 1080 |
| ACTTTTATTT TATGTACATT TGGTGTGGT CCTGTATGTA TGTCTGTGTG AAGGTGCCAG    | 1140 |
| ATTCTCTGGA ACTGGAGTTA CAGACAGTTG TAAGCTGTCA TGTGCTTGCT GGAAATTGAA   | 1200 |
| CTGCTGACCC ATCTCTTCTG CCCCCCTCGCGT CCTCCACCCC TTTTAGGGAC ATCCCCTACC | 1260 |
| TGAGCAAACA TAGGGCGGAC CGCATGAAGC GCTTGGGAGA CTTTCTGAAC TTGGAAAAC    | 1320 |
| TTGATCTGGC TCTCCTGGAG GAGGTGAGGT TGTAGGGCAG GCTAGGTTGG AGGAGGGCAG   | 1380 |

|             |             |             |            |            |            |      |
|-------------|-------------|-------------|------------|------------|------------|------|
| CAGGGCGGCAG | GCGGGCGGCAG | GAAAACTTGT  | TCTGTCTTGG | GATGAAATCC | CAAGCAAGTA | 1440 |
| TCCTCACCTT  | CTTCCTCCAG  | GTGTGGAGTG  | AGCAGGACTT | CCAGTACCTA | AGGCAAAGGC | 1500 |
| TATCGCTCAC  | CTATCCAGAT  | GCACACTACT  | TCAGAAGGTG | AAAAGCCTGT | GTTCTCAGCC | 1560 |
| TGTTCTCAGA  | CGAGGAAGCT  | CTCCAACATT  | CTTGTCTGCA | CCCTCGATCT | TCTTCTCTG  | 1620 |
| GGTGTGAGAA  | GAGCAGGCCG  | TCACCCCTCAT | CTTGCAGGG  | CTGCTGTCTT | AGGCTTTGTT | 1680 |
| CTGGGGTTGA  | TCTTAGCAGT  | AGAGCTGGGA  | GACCGCGGAG | GGGAAGAGGG | CTGGCTGGGT | 1740 |
| ACTCCCCCTCC | TTGCTCTTCT  | GGTTATTAAG  | CAAGAGTTGG | TTTCAGCGG  | GATGATAGGC | 1800 |
| AGTGGCCTCT  | GTGTGTTCTC  | AAAACACCCA  | ATCCAGGAAA | TCTTCCAGCA | TGTCTACAGT | 1860 |
| CTGAATGGTT  | ACCCCTACAT  | GGTAAGGATC  | TCTTCCCTAT | CCTTGCTAAC | ACAGACTGGA | 1920 |
| CGCAGCCTTC  | CTGGGGCCTT  | GGCAGGAGGG  | TGTCAGTACC | CTGAGTTTTT | GTCTTCTCTT | 1980 |
| GCCTGCAGTT  | CCATCATGGA  | GAUTGGTTCT  | GTGGGAAGTC | TGTGGGGCTG | CTGGTGCTCC | 2040 |
| GTCTAAGTGG  | ACTGGTGCTC  | AATGCCTACG  | TGACTCATGT | GAGTGGGGCT | AGCCAGGCTT | 2100 |
| AGGCAGTGGG  | TCAAGCAGCC  | CAATGCTATG  | GTGGAGAAGA | GACGCCACTA | GTTAGTTCTG | 2160 |
| CTGCCTGGGG  | ATAAGGCATG  | GGATCAGAAG  | CTAGCATTGG | GCAAGGTTCA | CCCATTCCCT | 2220 |
| GTCACACTCT  | GCCATGTGAC  | AGATGACAAG  | CTTGATTCA  | ACAGCCTTCT | CTTGATTTC  | 2280 |
| ACCTATTCCA  | CTTTAGCTAC  | ATGCTGAGTA  | CAGCCGACAG | AAGGACATCT | ACTTTGCACA | 2340 |
| CCGTGTGGCC  | CAAGCTTGGG  | AACTGGCCCA  | GTTCATCCAG | TGTGTGAGCC | TGGGCTTGAT | 2400 |
| GGGGGCTGTG  | GGGTGGGGAC  | GGGGTTGAGG  | GATGNGNAAN | TTATCCTTGA | AGAGGGCACA | 2460 |
| TAATAAGGGA  | AGAATTTCCT  | CCTGCCGCT   | CTTCCCCCAA | CTCAGCCACA | CATCCAAGAA | 2520 |
| TGCAGATGTG  | GTTCTATTGT  | GTGGAGACCT  | CAATATGCAC | CCCAAAGACC | TGGGCTGCTG | 2580 |
| CCTGCTGAAA  | GAGTGGACAG  | GGCTCCATGA  | TGCTTCGTT  | GAGACTGAGG | ACTTTAAGGT | 2640 |
| GAGAGACTGT  | TTCCCACCAA  | CTCCACACTT  | GTTCCAGTCT | TCTGTCTCT  | TAGCATCCTA | 2700 |

|            |            |            |             |            |             |      |
|------------|------------|------------|-------------|------------|-------------|------|
| GCCACCTGTT | TCCCTAGGGC | TCTGATGATG | GCTGTACCAT  | GGTACCCAAG | AACTGCTACG  | 2760 |
| TCAGCCAGCA | GGACCTGGGA | CCGTTCCGT  | CTGGTATCCG  | GATTGATTAC | GTGCTTACA   | 2820 |
| AGGTCAAGCT | CTTATTCCCG | GTGTGCCCTC | TCCAGTATCT  | TCCTTCCTCT | GTCACTAGCC  | 2880 |
| CACGCTTTAG | TTCAGCTACA | GTCTGGGCC  | ACTGATGGCT  | AAAGAATAGA | ATCCTGTCGG  | 2940 |
| CTGGTTCTCT | GGGAGAATT  | AAGCTTCTCC | ATGTTCTTGC  | TCTTCCTAGG | CAGTCTCTGA  | 3000 |
| GTTCCACGTC | TGCTGTGAGA | CTCTGAAAAC | CACTACAGGC  | TGTGACCCTC | ACAGTGACAA  | 3060 |
| GCCCTTCTCT | GATCACGAGG | CCCTCATGGC | TACTTTGTAT  | GTGAAGCACA | GCCCCCCTCA  | 3120 |
| GGAAGACCCC | TGTACTGCCT | GTGGTAAGCA | GCATTTCTT   | TGCCCTCTCT | ACTTTAACGC  | 3180 |
| AGCCCCGCCT | CCATCCTGAC | CCTCCCTGC  | TCTACGTTCT  | CTCTTTTCC  | AGGCCCACTG  | 3240 |
| GAAAGGTCCG | ATTTGATCAG | CGTGCTAAGG | GAGGCCAGGA  | CAGAGCTGGG | GCTAGGCATA  | 3300 |
| GCTAAAGCTC | GCTGGTGGGC | TGCATTCTCT | GGCTATGTGA  | TCGTTGGGG  | GCTGTCCCTT  | 3360 |
| CTGGTGTGTC | TGTGTGTCCT | GGCTGCAGGA | GAAGAGGCCA  | GGGAAGTGGC | CATCATCCTC  | 3420 |
| TGCATAACCA | GTGTGGGTCT | GGTGCTGGTA | GCAGGTGCAG  | TCTACCTCTT | CCACAAGCAG  | 3480 |
| GAGGCCAAGG | GCTTATGTCG | GGCCCAGGCT | GAGATGCTGC  | ACGTTCTGAC | AAGGGAAACG  | 3540 |
| GAGACCCAGG | ACCGAGGCTC | AGAGCCTCAC | CTAGCCTACT  | GCTTGCAGCA | GGAGGGGGAC  | 3600 |
| AGAGCTTAAG | AGCTTAACAA | AAAAACTTGC | TTGACACACT  | CTAGTGGCTC | TACCTTGTTC  | 3660 |
| CTTGCAGAGG | CATGATGGGA | ACTGAAGGTC | AGTGGCCTTG  | TCACTGTGTG | GCTTAGAGC   | 3720 |
| GTTGGCCTCT | CACTTGCCTT | TTTGCACAC  | TCCCCTCTCC  | TGCCAGCACA | GAGCATAAAC  | 3780 |
| CCTGTTCATG | GTCATAATCC | TTTATTGTA  | AAACAACGAAG | CCTCTGACTA | AGCAGTCCAG  | 3840 |
| ATGGCGGAGG | TACAGCCCTT | GTGATGGTGT | CTTGCTTACG  | GGGCAGGGAG | GCAGCTAAC   | 3900 |
| ATCATCTTCT | AGCCCTGGGC | TCCCATCTAT | GCAGGCATCT  | CTCTGAGCCT | CCGTTCCCTCC | 3960 |
| TGGAATTGGN | TCAGAGCAAT | CCCGCTTGGT | TCACCAAACCT | CCAAACAGCT | TCCTTAAGGA  | 4020 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| CCTGGTTTCT CAAAANGGNA AGGTNCGGGC CTCCGGTCTT CAATANGTTT TCCTAAAAAG | 4080 |
| CGAAGAATGA AAANCCTAA GNNCCAACAA GGGGAACCCCT TGGNCCCAAAGGGGACCTG   | 4140 |
| GGTGGTTTCC CNTTGGGCC AAANTTATCC CAAAGGGTC CAATTGAAGG GTTAACCCCC   | 4200 |
| CAAAAANNAC CCNTTCCCC CGGAATTTC CAAAGGTTNC CCCCCCGGC AAAANCTCCC    | 4260 |
| TTGGGGNNCC NAANSCNTGG CCCGNCTTG GCTTTCCCC CTTCCCAAG NATTCAAAN     | 4320 |
| NTTCCCTNGG AAANCCCTT GNTTGGNAAA ACCNAATNAN GAACCANGCC AANINTTGCC  | 4380 |
| AANAAACCN TTGGGCAAAG GGGNAAATT CANCAANGG GNAATTGGGG AAACCCNTGG    | 4440 |
| GTTTNCCCAA AGGGGCCNAA NANT                                        | 4464 |

## (i) ANGABEN ZU SEQ ID NO: 6:

## (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 2852 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

## (ii) ART DES MOLEKÜLS: Genom-DNA

## (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ACCGCGGCCG TCGCTGGAGA GTTCGAGCCG CCTAGCGCCC CTGGAGCTCC CCAACCATGA  | 60  |
| AGCCCAACTT CTCCCTGCGA CTGCGGATCT TCAACCTCAA CTGCTGGTGA GTGCGTCTGC  | 120 |
| GGAGTGCAGGT CTGGGGGCCA CCTTCCGTTC GCACCCATGC AGCCTTCCTC CCCCTATCCC | 180 |
| GCCCCACGAT CTCAGGGTGT AGGGAAAACC CGAACCTCCA AAGTCCACAT CTGGCCCCAG  | 240 |
| CGCCGGTGGT CCCAGCAGTC GCCTCCCTG CCCCAGCTTT CCCTTCCTTA GGGGCATTCC   | 300 |
| GTACTTGAGC AAGCACCGGG CCGACCGCAT GAGGCGCCTG GGAGACTTTC TGAAACCAGGA | 360 |
| GAGCTTCGAC CTGGCTTTC TGGAGGAGGT GAGATTGTGC AGCACGGTGC GGAACCCAGG   | 420 |
| CTGGGAGGAG GGACAGACCG TCCCACGTGGG GAAAGACCAA GCAGGCATCC TCACCGCTTC | 480 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| CCTCAGGTGT GGAGTGAGCA GGACTTCCAG TACCTGAGAC AGAAGCTGTC ACCTACCTAC  | 540  |
| CCAGCTGCAC ACCACTTCCG GAGGTGAGAA GCCCACTGGC CTGAAGCCTG TTGTCATCCC  | 600  |
| AGGAGGCTCT TGGCCCTGCC AGCCCTTCCC TATCCTGCCT GCACTCTCCA GTCTCCTCCA  | 660  |
| GCCTCCTCTC CCTCTGGATG TGAGAGAAGG AGAAGGGTGA ACCAAGAAGG TCCTATGACT  | 720  |
| TCAGCCCATT TCAGCTTTGT TTTCTGGCTG CCCTATACTC CTCCAAAGGC CGTCGCCTTG  | 780  |
| GTTCTAGGGC TAGTCCCAGC AGTAGAAAAA GAAAAAAAATA GCTGATCAGA GCTGGAAGAC | 840  |
| AAGGGAGGGG AAGAAGGCTG GGTGTCTCTC CCTGTTTTTC TGTTTATTAA GCAGGGCTTG  | 900  |
| GCTTCAGCG GAATCATTGG CAGTGGCCTC TGTGTCTTCT CCAAACATCC AATCCAGGAG   | 960  |
| CTTACCCAGC ACATCTACAC TCTCAATGGC TACCCCTACA TGGTAAGGCA GACCTTGAC   | 1020 |
| CTCTTCCACC TCCCTCCCC ACCTCCAGTA ATACAAGGTA GAGGAGGCAG CCCTCTGAGA   | 1080 |
| GCTGCAGGGG ATGGGCAGAA AGATGGTGGC GGTGCCCTGA GTTTCTATCT CCTCCTGCCT  | 1140 |
| GCAGATCCAT CATGGTGAAT GGTCAGTGG GAAGGCTGTG GGGCTGCTGG TGCTCCATCT   | 1200 |
| AAGTGGCATG GTGCTAACG CCTATGTGAC CCATGTGAGT GAAGCTGGCA GTGCCTAGGG   | 1260 |
| CTGGGACATG CAGCCCAGTC CTGGGACAGA GAGATGGTAC TTCTCTAGCT CTCATACCTG  | 1320 |
| GGGATGAGGT GTGGGGCAA GATTTATAA GGAAGCAATG GGCAAGGCTT ATCCATTGTA    | 1380 |
| TACCAAACAC CATGCCAAGT GACAGACACA GGCTTGATTG AGACATACCC CTGGGACCCCT | 1440 |
| CAGTCTTATC TGCTGTGATC TCATCCATCT TGCTCAGCTC CATGCCAAT ACAATCGACA   | 1500 |
| GAAGGACATC TACCTAGCAC ATCGTGTGGC CCAAGCTTGG GAATTGGCCC AGTTCATCCA  | 1560 |
| GTGTGTGAGC CTGGGCTTGA AATGGGAAGT GGGATGGAC CCAGGGCTG AGGGTGAACA    | 1620 |
| AGGCCCCAGT CATGGGAAAG AGCTGGTGAT GGAAGAACTC CCGCCTCACC AACCTGGTTC  | 1680 |
| CCCCAGCCAC ACATCCAAGA AGGCAGACGT GGTTCTGTTG TGTGGAGACC TCAACATGCA  | 1740 |
| CCCAGAAGAC TGGGCTGCTG CCTGCTGAAG GAGTGGACAG GGCTTCATGA TGCCTATCTT  | 1800 |

GAATCTCGGG ACTTCAGGT GAGGACTTGC CTGTTACTTC CCCACCTATA TCCCCAGCTT 1860  
CTCTCCCTCC TTCTCCCCCA CATCCTAGCA TGAGCCAATG ATTCCCTTAG GGCTCTGAGG 1920  
AAGGCAACAC AATGGTACCC AAGAACTGNT ACGTCAGCCA GCAGGAGCTG AAGCCATTTC 1980  
CCTTGGTGT CCGCATTGAC TACGTGCTTT ACAAGGTCAG GCTCCTCCCT TCAACATGCT 2040  
TTCATATGCT GTGTCTCTT GTCTACTAAC CTGTGTAGAT CCTTTGCTCA GNTAGTCTAG 2100  
TCTTGGACCA CTGATGGGTG GAAAGTGGGG TAGCCGGAG CTGGTTCTCT GGGAAAGAGGC 2160  
CCTCATATAT AAGCTTCTCT NTGGCCCTTA CTTTCCTAG GCAGTTCTG GGTTTACAT 2220  
CTCCTGTAAG AGTTTGAAA CCACIACAGG CTTTGACCCCT NACAGGGCA CCCCCCTCTC 2280  
TTGATCATGA AGCCCTGATG GCTACTCTGT TTGTGAGGCA CAGCCCCCA CAGCAGAAC 2340  
CCAGCTCTAC CCACGGTGAG TCACCCCCAC CCTTTCCCTTG GCCCTTGCCC CGCTTGAAGC 2400  
AGCCCTTCCA CTCTTGACTC TCTCCTGCC CACTGCCCTG CTCTGTTGTA GGACCAGCAG 2460  
AGAGGTCGCC GTTGATGTGT GTGCTAAAGG AGGCCTGGAC GGAGCTGGGT CTGGGCATGG 2520  
CTCAGGCTCG CTGGTGGGCC ACCTTCGCTA GCTATGTGAT TGGCCTGGGG CTGCTTCTCC 2580  
TGGCACTGCT GTGTGTCCTG GCGGCTGGAG GAGGGGCCGG GGAAGCTGCC ATACTGCTCT 2640  
GGACCCCCAG TGTAGGGCTG GTGCTGTGGG CAGGTGCATT CTACCTCTTC CACGTACAGG 2700  
AGGTCAATGG CTTATATAGG GCCCAGGCTG AGCTCCAGCA TGTGCTAGGA AGGGCAAGGG 2760  
AGGCCCAAGGA TCTGGGCCA GAGCCTCAGC CAGCCCTACT CCTGGGGCAG CAGGAGGGGG 2820  
ACAGAACTAA AGAACAAATAA AGCTTGGCCC AA 2852

# INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 98/05127

**A. CLASSIFICATION OF SUBJECT MATTER**

|       |           |            |          |           |           |
|-------|-----------|------------|----------|-----------|-----------|
| IPC 6 | C12N15/55 | C12N9/16   | C12N5/10 | C07K16/40 | G01N33/50 |
|       | A61K38/43 | A01K67/027 |          |           |           |

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C07K A61K A01K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                      | Relevant to claim No          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| X        | CHATTERJEE S. & GHOSH N.: "Neutral sphingomyelinase from human urine"<br>J. BIOL. CHEM.,<br>vol. 264, no. 21, 25 July 1989, pages<br>12554-12561, XP002087487<br>see the whole document | 1-3,5-7,<br>9,21,24           |
| A        | ---                                                                                                                                                                                     | 4,8,<br>10-20,<br>22,23       |
| P,X      | WO 98 28445 A (CHATTERJEE SUBROTO ;UNIV<br>JOHNS HOPKINS (US)) 2 July 1998<br><br>see abstract<br>see figures 1,2<br>see claims 1-30<br>---                                             | 1-3,5-7,<br>9,14-19,<br>21,24 |

Further documents are listed in the continuation of box C

Patent family members are listed in annex.

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 December 1998

29/12/1998

Name and mailing address of the ISA

European Patent Office, P B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Authorized officer

Galli, I

## INTERNATIONAL SEARCH REPORT

Inte... Serial Application No.  
PCT/EP 98/05127

## C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation or document with indication where appropriate of the relevant passages                                                                                                                                                                                                             | Relevant to claim No. |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A        | KOSTELLOW A ET AL: "REDUCTION IN EXTRACELLULAR MG2+ INDUCES SPHINGOMYELINASE, ELEVATES CERAMIDE AND RELEASES NF-KB IN AORTIC SMOOTH MUSCLE CELLS"<br>FASEB JOURNAL,<br>vol. 10, no. 6, 30 April 1996, page A1253<br>XP000644454<br>see abstract<br>---                                      | 3                     |
| A        | CAI Z. ET AL.: "Alteration of the sphingomyelin/ceramide pathway is associated with resistance of the human breast carcinoma MCF7 cells to Tumor Necrosis Factor alpha-mediated cytotoxicity."<br>J. BIOL. CHEM.,<br>vol. 272, no. 11, 14 March 1997,<br>XP002087488<br>see abstract<br>--- | 14-17                 |
| A        | DATABASE GENBANK<br>Accession No. AA412649, 18 May 1997<br>HILLIER ET AL.: "H. sapiens cDNA clone IMAGE 730457 - EST."<br>XP002087490<br>compare with amino acids 247-394 in sequence ID 1<br>---                                                                                           | 1-24                  |
| P, X     | TOMIUK S. ET AL.: "Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling?"<br>PRC. NATL. ACAD. SCI. USA,<br>vol. 95, no. 7, 31 March 1998, pages<br>3638-3643, XP002087489<br>see the whole document<br>-----                                                      | 1-11,<br>20-24        |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/EP 98/05127

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:  

Observation: Although the claim(s) 16 and 17 relate(s) to a method for treatment of the human or animal body, the search was carried out and was based on the cited effects of the compound/composition.
2.  Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**

The additional search fees were accompanied by the applicant's protest.  
 No protest accompanied the payment of additional search fees.

# INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 98/05127

| Patent document cited in search report | Publication date | Patent family member(s) | Publication date |
|----------------------------------------|------------------|-------------------------|------------------|
| WO 9828445 A                           | 02-07-1998       | AU 5809398 A            | 17-07-1998       |

# INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen

PCT/EP 98/05127

|                                              |                           |                     |          |           |           |
|----------------------------------------------|---------------------------|---------------------|----------|-----------|-----------|
| A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES | IPK 6 C12N15/55 A61K38/43 | C12N9/16 A01K67/027 | C12N5/10 | C07K16/40 | G01N33/50 |
|----------------------------------------------|---------------------------|---------------------|----------|-----------|-----------|

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C12N C07K A61K A01K G01N

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

## C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                         | Betr. Anspruch Nr                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| X         | CHATTERJEE S. & GHOSH N.: "Neutral sphingomyelinase from human urine"<br>J. BIOL. CHEM.,<br>Bd. 264, Nr. 21, 25. Juli 1989, Seiten<br>12554-12561, XP002087487<br>siehe das ganze Dokument | 1-3, 5-7,<br>9.21, 24            |
| A         | ---                                                                                                                                                                                        | 4, 8,<br>10-20.<br>22, 23        |
| P, X      | WO 98 28445 A (CHATTERJEE SUBROTO ;UNIV<br>JOHNS HOPKINS (US)) 2. Juli 1998<br><br>siehe Zusammenfassung<br>siehe Abbildungen 1-2<br>siehe Ansprüche 1-30<br>---                           | 1-3, 5-7,<br>9, 14-19,<br>21, 24 |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- \* Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolliert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfindenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Rechercheberichts

11. Dezember 1998

29/12/1998

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Galli, I

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 98/05127

C (Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                                                  | Bei'r Anspruch Nr. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A         | KOSTELLOW A ET AL: "REDUCTION IN EXTRACELLULAR MG2+ INDUCES SPHINGOMYELINASE, ELEVATES CERAMIDE AND RELEASES NF-KB IN AORTIC SMOOTH MUSCLE CELLS"<br>FASEB JOURNAL,<br>Bd. 10, Nr. 6, 30. April 1996, Seite A1253<br>XP000644454<br>siehe Zusammenfassung<br>---                                    | 3                  |
| A         | CAI Z. ET AL.: "Alteration of the sphingomyelin/ceramide pathway is associated with resistance of the human breast carcinoma MCF7 cells to Tumor Necrosis Factor alpha-mediated cytotoxicity."<br>J. BIOL. CHEM.,<br>Bd. 272, Nr. 11, 14. März 1997.<br>XP002087488<br>siehe Zusammenfassung<br>--- | 14-17              |
| A         | DATABASE GENBANK<br>Accession No. AA412649, 18. Mai 1997<br>HILLIER ET AL.: "H. sapiens cDNA clone IMAGE 730457 - EST."<br>XP002087490<br>Vergleiche mit Aminosäuren 247-394 in Seq.<br>ID 1<br>---                                                                                                 | 1-24               |
| P,X       | TOMIUK S. ET AL.: "Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling?"<br>PRC. NATL. ACAD. SCI. USA,<br>Bd. 95, Nr. 7, 31. März 1998, Seiten<br>3638-3643, XP002087489<br>siehe das ganze Dokument<br>-----                                                            | 1-11,<br>20-24     |

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen

PCT/EP 98/05127

**Feld I** Bemerkungen zu den Ansprüchen, die sich als nicht rechnerierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)

Gemaß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1.  Ansprüche Nr.  
weil Sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich  
**Bemerkung:** Obwohl der(die) Anspruch(üche) 16 und 17  
sich auf ein Verfahren zur Behandlung des menschlichen/tierischen  
Körpers bezieht(en), wurde die Recherche durchgeführt und gründete sich  
auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2.  Ansprüche Nr.  
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen,  
daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3.  Ansprüche Nr.  
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind

**Feld II** Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1.  Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle rechnerierbaren Ansprüche der internationalen Anmeldung.
2.  Da für alle rechnerierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3.  Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4.  Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

**Bemerkungen hinsichtlich eines Widerspruchs**

Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.  
 Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

mit dem gleichen Referenzzeichen

PCT/EP 98/05127

| im Recherchenbericht<br>angeführtes Patentdokument | Datum der<br>Veröffentlichung | Mitglieder der<br>Patentfamilie | Datum der<br>Veröffentlichung |
|----------------------------------------------------|-------------------------------|---------------------------------|-------------------------------|
| WO 9828445 A                                       | 02-07-1998                    | AU 5809398 A                    | 17-07-1998                    |

