8 Advanced Counting techniques

Key Terms and Results

TERMS

回归关系

recurrence relation: a formula expressing terms of a sequence, except for some initial terms, as a function of one or more previous terms of the sequence

initial conditions for a recurrence relation: the values of the terms of a sequence satisfying the recurrence relation before this relation takes effect

动态规划

dynamic programming: an algorithmic paradigm that finds the solution to an optimization problem by recursively breaking down the problem into overlapping subproblems and combining their solutions with the help of a recurrence relation

线性齐次 常系数回归关

linear homogeneous recurrence relation with constant coefficients: a recurrence relation that expresses the terms of
a sequence, except initial terms, as a linear combination of
previous terms

特征根

characteristic roots of a linear homogeneous recurrence relation with constant coefficients: the roots of the polynomial associated with a linear homogeneous recurrence relation with constant coefficients 非齐次回归关系

linear nonhomogeneous recurrence relation with constant coefficients: a recurrence relation that expresses the terms of a sequence, except for initial terms, as a linear combination of previous terms plus a function that is not identically zero that depends only on the index

divide-and-conquer algorithm: an algorithm that solves a problem recursively by splitting it into a fixed number of smaller non-overlapping subproblems of the same type

generating function of a sequence: the formal series that has the *n*th term of the sequence as the coefficient of x^n

sieve of Eratosthenes: a procedure for finding the primes less than a specified positive integer

错排 derangement: a permutation of objects such that no object is in its original place

分治算法

序列的生成 函数

埃拉托斯特尼 筛法

RESULTS

the formula for the number of elements in the union of two finite sets:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

the formula for the number of elements in the union of three finite sets:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C|$$

- $|B \cap C| + |A \cap B \cap C|$

the principle of inclusion-exclusion: 包容-排斥原理

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$

$$- \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

the number of onto functions from a set with m elements to a set with n elements:

$$n^m - C(n, 1)(n-1)^m + C(n, 2)(n-2)^m$$

 $-\cdots + (-1)^{n-1}C(n, n-1)\cdot 1^m$

the number of derangements of n objects:

$$D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!} \right]$$