



# **Table of Contents**

| Versions                                                 | 3  |
|----------------------------------------------------------|----|
| Introduction                                             | 3  |
| Features                                                 | 3  |
| Overview                                                 | 4  |
| Power Source Select                                      | 4  |
| Programming Using External Connector                     | 6  |
| Spare GPIOs                                              |    |
| Solder Bridges                                           |    |
| Fuses                                                    | 10 |
| Changing the fuses or solder bridges                     | 10 |
| Insertion and extraction of wire from AVX 9296 connector |    |
| Mechanical Layout                                        | 12 |
| ,<br>Legal Disclaimer                                    | 12 |



#### **Versions**

Table 1

| Version | Date              | Rationale                |
|---------|-------------------|--------------------------|
| 0.1     | November 07, 2022 | First draft. Author: GDR |

#### Introduction

The RDK4 is an automotive PSoC 4100S Max microcontroller and TLE9262-3BQX System-Basis-Chip-based development platform.

### **Features**

- CY8C4149AZE-S598 Infineon's Arm® Cortex™-M0+ AEC-Q100 compliant MCU.
- All CY8C4149AZE-S598 GPIOs are accessible via onboard headers.
- TLE9262-3BQXV33 Infineon's System Basis Chip for automotive applications.
- On-board debugger KitProg3 with I2C and UART USB bridge.
- 10-pin Amphenol ICC SWD header for J-Link.
- JAE USB Type-C connector for the KitProg3 debugger.
- Minitek MicroSpace™ CAN FD connector.
- On-board capacitive buttons based on CapSense® CSX technology.
- TOPLED<sup>®</sup> E1608 and OSIRE<sup>®</sup> E3635 OSRAM LEDs.
- Diodes Inc. automotive PNP Power Transistor BCP5216TA for the SBC LDO circuit.
- Keystone Electronics Corp. P/N5019 GND test point.
- TOSHIBA Load Switch (with the current limiting capability) TCK22946G,LF.
- NISSHINBO low power amplifier NJU77001F.
- DIPTRONICS tactile buttons.
- Panasonic Right-angled RESET switch.
- C&K Slider switches for power supply selection and hardware configuration.
- PIHER Potentiometer for ADC peripheral evaluation.
- Passive components from Samsung EM, Yageo, and ASJ.



#### **Overview**



Fig. 1. RDK4 Board's layout.

#### **Power Source Select**

There are four ways to provide power for the MCU in RDK4:

- 1. KitProg3 USB Type-C port +5.5V maximum.
- 2. Arduino connector P3 pin 8 (VIN) +26V maximum.
- 3. VS AUX header P2 +26V maximum
- 4. Battery banana sockets J1 and J4 +26V maximum.



Select the main power supply using SW4 – the KitProg3 USB Type-C port "**USB**" or the 3.3V System Basis Chip LDO "**LDO**".



Fig. 2. Power source selector SW4.



Fig. 3. RDK4 Power Distribution Diagram.



### **Programming Using External Connector**



Fig. 4. 10-pin male 1.27mm pitch, SWD connector.

Users may use third-party programming devices to connect the CY8C4149AZE-S598 target via the P11 SWD connector. The onboard "KitProg3" debugger should not be powered while using an external JTAG connector.

### **Spare GPIOs**

All GPIOs of CY8C4149AZE-S598 MCU are available at sockets P7, P8, and P15. Some may need to be configured using <u>solder bridges</u>.

Table 1

| Socket P7 Pinout |      |      |         |
|------------------|------|------|---------|
| Pin No.          | Name | Name | Pin No. |
| 1                | P4.1 | P4.0 | 2       |
| 3                | P4.3 | P4.2 | 4       |
| 5                | P4.5 | P4.4 | 6       |
| 7                | P4.7 | P4.6 | 8       |
| 9                | P5.7 | P5.6 | 10      |
| 11               | P7.1 | P7.0 | 12      |
| 13               | P7.3 | P7.2 | 14      |
| 15               | P7.5 | P7.4 | 16      |
| 17               | P7.7 | P7.6 | 18      |
| 19               | P0.3 | P0.2 | 20      |
| 21               | P0.5 | P0.4 | 22      |
| 23               | P0.7 | P0.6 | 24      |
| 25               | P9.1 | P9.0 | 26      |
| 27               | P9.3 | P9.2 | 28      |
| 29               | P5.0 | P5.1 | 30      |
| 31               | P5.2 | P5.3 | 32      |
| 33               | P5.4 | P5.5 | 34      |



Table 2

| Socket P8 Pinout |         |         |         |
|------------------|---------|---------|---------|
| Pin No.          | Name    | Name    | Pin No. |
| 1                | FO_OUT3 | FO_OUT2 | 2       |
| 3                | HS_OUT2 | HS_OUT1 | 4       |
| 5                | HS_OUT4 | HS_OUT3 | 6       |
| 7                | WAKEUP1 | FO_OUT1 | 8       |
| 9                | WAKEUP3 | WAKEUP2 | 10      |
| 11               | GND     | GND     | 12      |

Table 3

| Socket P15 Pinout |      |      |         |
|-------------------|------|------|---------|
| Pin No.           | Name | Name | Pin No. |
| 1                 | P3.7 | GND  | 2       |
| 3                 | P3.6 | P3.5 | 4       |
| 5                 | P3.4 | P3.3 | 6       |
| 7                 | P3.2 | P6.5 | 8       |
| 9                 | P6.4 | P6.3 | 10      |
| 11                | P6.1 | P6.2 | 12      |
| 13                | P6.0 | P2.7 | 14      |
| 15                | P2.5 | P2.4 | 16      |
| 17                | P2.3 | P2.2 | 18      |
| 19                | P2.1 | P2.0 | 20      |
| 21                | P1.7 | P1.6 | 22      |
| 23                | P1.5 | P1.4 | 24      |
| 25                | P1.3 | P1.2 | 26      |
| 27                | P1.0 | P1.1 | 28      |



### **Solder Bridges**



Fig. 5. Locations of the Solder Bridges [SBxx] (please check the assembly document to see in detail).



Table 4

| Solder Bridge | Circuit                                  | Default |
|---------------|------------------------------------------|---------|
| SB1           | P4_VDD_BUF Supply for the Potentiometer. | Closed  |
| SB2           | Potentiometer Output with ADC5 P10.4     | Closed  |
| SB3           | TVS protector with ADC1 P10.0            | Closed  |
| SB4           | TVS protector with ADC2 P10.1            | Closed  |
| SB5           | Arduino SPI CS with SBC CS (over SW1)    | Closed  |
| SB6           | MCU SPI CS with Arduino SPI CS           | Opened  |
| SB7           | Ignition Circuit with SBC WK3 pin        | Closed  |
| SB8           | LIN 1K pull-up resistor                  | Opened  |
| SB9           | CAN FD Termination                       | Opened  |
| SB10          | Op-amp NJU77001F (U4) +Input             | Closed  |
| SB11          | KitProg3 SWDIO with MCU SWDIO            | Closed  |
| SB12          | KitProg3 SWCLK with MCU SWCLK            | Closed  |
| SB13          | KitProg3 RESET with MCU RESET            | Closed  |
| SB14          | KitProg3 I2C SCL with MCU I2C SCL        | Closed  |
| SB15          | KitProg3 I2C SDA with MCU I2C SDA        | Closed  |
| SB16          | KitProg3 UART TX with MCU UART RX        | Closed  |
| SB17          | KitProg3 UART RX with MCU UART TX        | Closed  |
| SB18          | D10 RGB GREEN LED with P6.0              | Closed  |
| SB19          | D10 RGB RED LED with P6.1                | Closed  |
| SB20          | D10 RGB BLUE LED with P6.2               | Closed  |
| SB21          | Header P7 pin 20 with MCU P0.2           | Opened  |
| SB22          | USER BUTTON Circuit with MCU P6.3        | Closed  |
| SB23          | CAN FD RX with MCU P0.2                  | Closed  |
| SB24          | Header P7 pin 19 with MCU P0.3           | Opened  |
| SB25          | CAN FD TX with MCU P0.3                  | Closed  |
| SB26          | Header P15 pin 27 with MCU P1.0          | Opened  |
| SB27          | MCU P1.0 with KitProg3 UART TX           | Closed  |
| SB28          | Header P15 pin 28 with MCU P1.1          | Opened  |
| SB29          | MCU P1.1 with KitProg3 UART RX           | Closed  |
| SB30          | Header P15 pin 7 with MCU P3.2           | Opened  |
| SB31          | KitProg3 SWDIO with MCU P3.2             | Closed  |
| SB32          | Header P15 pin 6 with MCU P3.3           | Opened  |
| SB33          | KitProg3 SWCLK with MCU P3.3             | Closed  |
| SB34          | Header P7 pin 2 with MCU P4.0            | Opened  |
| SB35          | LIN RX with MCU P4.0                     | Closed  |
| SB36          | Header P7 pin 2 with MCU P4.1            | Opened  |
| SB37          | LIN TX with MCU P4.0                     | Closed  |
| SB38          | Header P7 pin 32 with MCU P5.3           | Opened  |
| SB39          | Header P7 pin 33 with MCU P5.4           | Opened  |
| SB40          | Header P7 pin 34 with MCU P5.5           | Opened  |



| SB41 | Header P7 pin 10 with MCU P5.6              | Opened |
|------|---------------------------------------------|--------|
| SB42 | Header P7 pin 23 with MCU P0.7              | Opened |
| SB43 | MCU P0.7 with X1 pin 3                      | Closed |
| SB44 | MCU P0.6 with X1 pin 1                      | Closed |
| SB45 | Header P7 pin 24 with MCU P0.6              | Opened |
| SB46 | Header P7 pin 21 with MCU P0.5              | Opened |
| SB47 | MCU P0.5 with X1 pin 2                      | Closed |
| SB48 | MCU P0.5 with X1 pin 1                      | Closed |
| SB49 | Header P7 pin 22 with MCU P0.4              | Opened |
| SB50 | Header P7 pin 9 with MCU P5.7               | Opened |
| SB51 | SBC Interrupt INT with MCU P5.7             | Closed |
| SB52 | MCU_VDD with MCU VDDA                       | Closed |
| SB53 | AREF (analog reference) input with MCU VDDA | Opened |

### **Fuses**

The RDK4 board has three 2A fast-acting fuses F1, F2, and F3 in a 1206 package; Part No: CC12H2A-TR "Eaton".

# Changing the fuses or solder bridges

The SMD "Chipping Tool" is recommended to use for SMD solder bridges or fuses soldering on the RDK4 development board.



Fig. 6. Soldering the RDK3's fuse.



#### Insertion and extraction of wire from AVX 9296 connector

The RDK4 board has a single AVX 9296 2-pin connector for the LIN interface (P13 and P6). The 20/22/24/26AWG wires are recommended to be striped from 3.5mm to 4.5mm before insertion. Once inserted it can be extracted <u>without any tools</u>. Gently rotate the wire while pulling until the extraction is complete. Please refer to the application note <u>201-01-167</u> provided by the AVX for more detailed information.



# **Mechanical Layout**









### **Legal Disclaimer**

The evaluation board is for testing purposes only and, because it has limited functions and limited resilience, is not suitable for permanent use under real conditions. If the evaluation board is nevertheless used under real conditions, this is done at one's responsibility; any liability of Rutronik is insofar excluded.