

Regresinė analizė

Laboratorinis darbas

Darbą atliko:

Vainius Gataveckas, Matas Gaulia, Dovydas Martinkus Duomenų Mokslas 3 kursas 2 gr.

Naudoti metodai

Darbas atliktas naudojant R, SAS ir Python.
Naudoti R paketai:
tidyverse.
janitor
car
Imtest
RcmdrMisc
lm.beta
psych
ppcor

Duomenys ir jų šaltiniai

Šalių gyventojų vidutinė gyvenimo trukmė pagal sveikatos rodiklius.

Duomenų šaltinis - Kaggle. Prieiga per internetą: https://www.kaggle.com/kumarajarshi/life-expectancy-who
Originalus šaltinis - WHO.

Atliktos analizės aprašymas

1. Naudojant R

```
library(tidyverse)
library(car)
library(janitor)
x <- read_csv("life.csv") %>% clean_names()
```

Tikslas: prognozuoti vidutinę gyvenimo trukmę šalyje pagal tam tikrus sveikatos rodiklius.

```
set.seed(100)
transform_1<- function(x) {</pre>
  x %>%
 mutate(gdp_per_capita = gdp / population) %>%
  group by (country) %>%
 fill(everything(), .direction = "up") %>%
dplyr::select(-c(1, 3), -population, -gdp, -percentage_expenditure) %>%
 drop na() %>%
 ungroup() %>%
  dplyr::select(-1)
x \leftarrow transform 1(x)
x_1 \leftarrow x % filter(year == max(year)) %>% select(-1)
# atskiri duomenys, patikrinti kaip gautas galutinis modelis progrnozuoja reikšmes
# kaikurių kovariančių priklausomybę nėra tiesinė
x_1 %>% pivot_longer(-1) %>% ggplot(aes(x=value,y=life_expectancy)) + facet_wrap(vars(name),sc
ales="free") + geom point() + geom smooth(method="lm") + theme minimal()
```



```
model <- lm(life_expectancy ~ ., data = x_1)
crPlots(model)</pre>
```



```
transform_2 <- function(x) {
    x %>%
    mutate(gdp_per_capita = log(gdp_per_capita),
    infant_deaths = log(infant_deaths + 1),
    measles = log(measles + 1),
    total_expenditure = log(total_expenditure + 1),
    under_five_deaths = log(under_five_deaths + 1)
)
}
```

```
# transformuojamos kaikurios kovariantés
x_2 <- transform_2(x_1)
x_predict <- transform_2(x_predict)

# Kintamujų tiesinis ryšys patikrinamas dar kartą
x_2 %>% pivot_longer(-1) %>% ggplot(aes(x=value, y=life_expectancy)) + facet_wrap(vars(name), scales="free") + geom_point() + geom_smooth(method="lm") + theme_minimal()
```


Modifikuoti duomenys išsaugomi faile "life_modified.csv".

```
write.csv(x_2, "life_modified.csv")

# Sukuriamas modelis
model <- lm(life_expectancy ~ ., data = x_2)</pre>
```

Modelio prielaidos

Tikrinamas liekanų normalumas, homoskadiškumas, liekanų nepriklausomumas, išskirtys plot(model)

plot(cooks.distance(model))

plot(hatvalues(model))


```
# Liekanų normalumo testas
shapiro.test(residuals(model))
##
## Shapiro-Wilk normality test
##
## W = 0.98195, p-value = 0.07493
```

Homoskadiškumo testas library(lmtest) bptest(model) ## studentized Breusch-Pagan test ## BP = 13.511, df = 16, p-value = 0.6351


```
anova(model) # Tikrinama hipotezė H0: beta 1 = beta 2 = ... = 0
## Analysis of Variance Table
##
## Response: life_expectancy
##
                                  Df Sum Sq Mean Sq F value
                                                               Pr(>F)
## adult_mortality
                                  1 4541.4 4541.4 658.0923 < 2.2e-16 ***
## infant_deaths
                                              714.3 103.5021 < 2.2e-16 ***
                                   1 714.3
                                              631.9 91.5693 2.427e-16 ***
## alcohol
                                   1 631.9
                                              278.4 40.3488 4.305e-09 ***
## hepatitis_b
                                   1
                                      278.4
                                                     0.0300 0.8628941
## measles
                                   1
                                      0.2
                                              0.2
                                             152.7 22.1288 7.095e-06 ***
## bmi
                                   1 152.7
                                            238.6 34.5813 4.022e-08 ***
## under five deaths
                                   1 238.6
## polio
                                   1 78.7
                                              78.7 11.4067 0.0009967 ***
                                             33.3 4.8273 0.0300005 *
## total_expenditure
                                   1 33.3
                                               9.6 1.3904 0.2407448
## diphtheria
                                       9.6
                                   1
## hiv aids
                                   1
                                       50.6
                                               50.6
                                                     7.3376 0.0077755 **
## thinness_1_19_years
                                   1
                                       53.1
                                               53.1
                                                      7.6883 0.0064776 **
                                                    0.9952 0.3205464
## thinness_5_9_years
                                   1
                                        6.9
                                               6.9
                                   1 766.0
## income_composition_of_resources
                                            766.0 110.9948 < 2.2e-16 ***
                                       9.0
                                               9.0 1.3108 0.2546025
## schooling
                                   1
                                   1
                                      19.2
                                               19.2
                                                      2.7882 0.0976592 .
## gdp_per_capita
## Residuals
                                  116 800.5
                                               6.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Modelio parinkimas

```
# Požinksninė regresija
library(RcmdrMisc)
model_2 <- stepwise(model)</pre>
##
## Direction: backward/forward
## Criterion:
              BTC
##
## Step: AIC=278.2
## life expectancy ~ adult mortality + hepatitis b + total expenditure +
##
      hiv aids + income composition of resources
##
##
                                    Df Sum of Sq
                                                     RSS
                                                            ΔTC
## <none>
                                                  863.91 278.20
## - total expenditure
                                     1
                                           37.46 901.37 278.96
                                           11.09 852.82 281.37
## + measles
                                     1
                                            8.38 855.52 281.79
## + schooling
                                     1
## + thinness 1 19 years
                                     1
                                            8.26 855.65 281.81
## + under five deaths
                                           6.98 856.93 282.01
                                     1
                                          6.83 857.08 282.04
## + gdp_per_capita
                                    1
                                           5.20 858.71 282.29
## + thinness_5_9_years
                                     1
## + infant_deaths
                                     1
                                            5.00 858.90 282.32
## - hiv_aids
                                     1
                                          61.54 925.45 282.46
                                            2.30 861.60 282.74
## + polio
                                     1
## + alcohol
                                            2.23 861.68 282.75
                                     1
                                            0.30 863.61 283.04
## + bmi
                                     1
## + diphtheria
                                            0.17 863.73 283.06
## - hepatitis_b
                                     1
                                           89.00 952.91 286.35
## - adult_mortality
                                     1
                                          248.42 1112.32 306.92
## - income_composition_of_resources 1 2064.50 2928.40 435.67
```

Parametrų vertinimas ir interpretacija

```
# Koeficientai
summary(model_2)
##
## Call:
```

```
## lm(formula = life_expectancy ~ adult_mortality + hepatitis_b +
      total expenditure + hiv aids + income composition of resources,
##
       data = x_2
##
## Residuals:
     Min
               1Q Median
                               3Q
## -8.1512 -1.5507 0.2728 1.6248 8.3196
##
## Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
##
                                             1.879961 24.477 < 2e-16 ***
## (Intercept)
                                  46.015816
                                              0.003280 -6.043 1.56e-08 ***
## adult_mortality
                                  -0.019823
                                              0.009888 3.617 0.000428 ***
## hepatitis b
                                   0.035768
                                              0.589638 2.347 0.020491 *
## total expenditure
                                   1.383667
                                  ## hiv aids
                                             1.948050 17.421 < 2e-16 ***
## income_composition_of_resources 33.937181
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.608 on 127 degrees of freedom
## Multiple R-squared: 0.897, Adjusted R-squared: 0.8929
## F-statistic: 221.1 on 5 and 127 DF, p-value: < 2.2e-16
 # Visų koeficientų interpretacija paprasta,
 # nes pažinksnine regresija neišrinkti transformuoti kintamieji
library(lm.beta)
# Standartizuoti koeficientai
lm.beta(model_2)
##
## Call:
## lm(formula = life_expectancy \sim adult_mortality + hepatitis_b +
##
       total_expenditure + hiv_aids + income_composition_of_resources,
##
       data = x_2
##
## Standardized Coefficients::
##
                      (Intercept)
                                                  adult mortality
##
                       0.00000000
                                                      -0.24840840
##
                      hepatitis b
                                                total_expenditure
##
                                                       0.06927302
                       0.11222105
##
                         hiv aids income composition of resources
##
                      -0.11477877
                                                       0.64768318
# Pasikliovimo interalai
confint(model_2)
##
                                        2.5 %
                                                   97.5 %
                                  42.29571386 49.73591902
## (Intercept)
## adult_mortality
                                  -0.02631364 -0.01333173
                                   0.01620110 0.05533575
## hepatitis_b
## total expenditure
                                   0.21687917 2.55045417
                                  -1.00808384 -0.20800885
## hiv aids
## income_composition_of_resources 30.08234193 37.79202074
# Kovariancių įtaka vizualizuota
library(effects)
plot(predictorEffects(model_2))
```

_mortality predictor effeptatitist_b predictor to the predictor effe

v_aids predictore effect plot

Multikolinearumo tikrinimas

```
vars <- dplyr::select(x_2, c(adult_mortality, hepatitis_b, total_expenditure,</pre>
  hiv aids, income composition of resources, life expectancy))
#Library(psych)
#corr.test(vars)
#dalinės koreliacijos
library(ppcor)
pcor(vars)$estimate
##
                                    adult_mortality hepatitis_b total_expenditure
                                         1.00000000 0.284752689
## adult_mortality
                                                                        0.031114658
## hepatitis b
                                         0.28475269 1.000000000
                                                                       -0.007076189
## total_expenditure
                                         0.03111466 -0.007076189
                                                                       1.000000000
## hiv_aids
                                         0.30378653 -0.187990543
                                                                        0.103610440
## income_composition_of_resources
                                         0.18178399 -0.156298047
                                                                       -0.086817301
## life_expectancy
                                        -0.47258053 0.305618694
                                                                        0.203857631
##
                                      hiv aids income composition of resources
## adult_mortality
                                     0.3037865
                                                                      0.1817840
## hepatitis b
                                    -0.1879905
                                                                     -0.1562980
## total expenditure
                                     0.1036104
                                                                     -0.0868173
## hiv aids
                                     1.0000000
                                                                      0.1721392
## income composition of resources
                                                                      1.0000000
                                    0.1721392
## life_expectancy
                                    -0.2578685
                                                                      0.8396372
##
                                    life expectancy
## adult mortality
                                         -0.4725805
## hepatitis b
                                          0.3056187
## total_expenditure
                                          0.2038576
## hiv aids
                                         -0.2578685
```

```
0.8396372
## income_composition_of_resources
## life_expectancy
                                           1.0000000
# Variance inflation factor
vif(model_2)
##
                   adult_mortality
                                                         hepatitis b
##
                           2.082698
                                                            1.186351
##
                  total expenditure
                                                            hiv aids
                                                            1.794951
##
                           1.074114
## income_composition_of_resources
                          1.703679
```

Modelio tinkamumo analizė

```
summary(model 2)
##
## Call:
## lm(formula = life expectancy ~ adult mortality + hepatitis b +
##
      total expenditure + hiv aids + income composition of resources,
##
      data = x 2
##
## Residuals:
               1Q Median
##
     Min
                              30
                                     Max
## -8.1512 -1.5507 0.2728 1.6248 8.3196
##
## Coefficients:
##
                                  Estimate Std. Error t value Pr(>|t|)
                                 46.015816 1.879961 24.477 < 2e-16 ***
## (Intercept)
## adult_mortality
                                 ## hepatitis_b
                                  1.383667 0.589638 2.347 0.020491 *
## total_expenditure
                                            0.202160 -3.008 0.003174 **
## hiv_aids
                                 -0.608046
## income_composition_of_resources 33.937181
                                            1.948050 17.421 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.608 on 127 degrees of freedom
## Multiple R-squared: 0.897, Adjusted R-squared: 0.8929
## F-statistic: 221.1 on 5 and 127 DF, p-value: < 2.2e-16
 \# R-squared = 0.897
 # Adj R-squared = 0.892
plot_predictions <- function(x,y) {</pre>
 predictions <- predict(x,newdata = y, interval = "prediction")</pre>
  predictions <- as_tibble(predictions) %>% mutate(n = 1:nrow(predictions))
  predictions_points <- y %>%
  mutate(pred = predictions) %>%
 unnest(pred) %>%
 dplyr::select(1,last_col(3),last_col(2),last_col(1),last_col(0)) %>%
 pivot_longer(c(1,2))
 ggplot(predictions) +
 geom_linerange(aes(x=n,ymin=lwr,ymax=upr)) +
  geom_point(data=predictions_points,aes(x=n,y=value,color=name),size = 4) +
  scale_x_discrete("Observation") +
 scale_y\_continuous("Life Expectancy", limits = c(60,90)) +
 theme_minimal(base_size = 16) +
  scale_color_brewer("",palette = "Set1")
}
```


Rezultatai

Siekiant ištirti gyvenimo trukmės ryšį su sveikata susijusiais kriterijais naudota daugelio kintamųjų tiesinė regresija.

Pažinksnine regresija išrinktas modelis paaiškina 89.7% duomenų sklaidos (F(5,127) = 221.1, $R^2 = 0.897$, p < 0.01). Rastos 5 statistiškai reikšmingos kovariantės gyvenimo trukmės prognozavimui (pateikti standartizuoti krypties koeficientai):

Suaugusių mirtingumas (tikimybė mirti tarp 15 ir 60 metų 1000 gyventojų) (stulp. adult_mortality θ =-0.25, p<0.001)

Imunizacija nuo Hepatito B tarp 1 metų vaikų % (stulp. hepatitis_b β =0.11, p<0.001) Dalis visų vyriausybės išlaidų sveikatos apsaugai (stulp. total_expenditure β =0.07, p=0.02) Mirtys nuo ŽIV/AIDS nuo 0 iki 4 metų 1000 gimimų (stulp. hiv_aids β =-0.11, p=0.003) HDI pagal pajamų parametrą (stulp. income_composition_of_resources β =0.65, p<0.001)

2. Naudojant SAS

Naudojamas anksčiau sukurtas duomenų failas.

/* Modelio prielaidos */

PROC REG data=data simple corr plots=(diagnostics(stats=none) RStudentByLeverage(label) CooksD(label) Residuals(smooth) ObservedByPredicted(label));

MODEL life_expectancy = adult_mortality infant_deaths alcohol hepatitis_b measles bmi under_five_deaths polio total_expenditure diphtheria hiv_aids

bmi under_five_deaths polio total_expenditure diphtheria hiv_aids thinness_1_19_years thinness_5_9_years income_composition_of_resources schooling gdp_per_capita;

Observation

```
/* Normalumo testas */
proc univariate data=rez normal;
var liekanos;
run;
```

Tests for Normality								
Test	St	atistic	p Val	lue				
Shapiro-Wilk	W	0.981952	Pr < W	0.0749				
Kolmogorov-Smirnov	D	0.060241	Pr > D	>0.1500				
Cramer-von Mises	W-Sq	0.100101	Pr > W-Sq	0.1135				
Anderson-Darling	A-Sq	0.63253	Pr > A-Sq	0.0979				

```
/* Modelio parinkimas naudojant pažinksninę regresiją*/
/* Parametrų vertinimas */

PROC REG data=data plots=none outest=summary;
MODEL life_expectancy = adult_mortality infant_deaths alcohol hepatitis_b measles
bmi under_five_deaths polio total_expenditure diphtheria hiv_aids
thinness_1_19_years thinness_5_9_years income_composition_of_resources
schooling gdp_per_capita / stb vif cli clb pcorr2 slentry=0.05 slstay=0.05
selection=stepwise aic bic;
run;
proc print data=summary;
run;
```

Stepwise Selection: Step 5 Variable total_expenditure Entered: R-Square = 0.8970 and C(p) = 4.1881

Analysis of Variance									
Source	F Value	Pr > F							
Model	5	7520.59056	1504.11811	221.12	<.0001				
Error	127	863.90673	6.80242						
Corrected Total	132	8384.49729							

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	46.01582	1.87996	4075.49110	599.12	<.0001
adult_mortality	-0.01982	0.00328	248.41814	36.52	<.0001
hepatitis_b	0.03577	0.00989	89.00457	13.08	0.0004
total_expenditure	1.38367	0.58964	37.45889	5.51	0.0205
hiv_aids	-0.60805	0.20216	61.53858	9.05	0.0032
income_composition_of_resources	33.93718	1.94805	2064.49803	303.49	<.0001

Bounds on condition number: 2.0827, 39.209

All variables left in the model are significant at the 0.0500 level.

No other variable met the 0.0500 significance level for entry into the model.

	Summary of Stepwise Selection								
Step	Variable Entered	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F	
1	income_composition_of_resources		1	0.8052	0.8052	107.730	541.34	<.0001	
2	adult_mortality		2	0.0619	0.8671	34.4953	60.56	<.0001	
3	hepatitis_b		3	0.0187	0.8857	13.8226	21.07	<.0001	
4	hiv_aids		4	0.0068	0.8925	7.6163	8.04	0.0053	
5	total_expenditure		5	0.0045	0.8970	4.1881	5.51	0.0205	

3. Naudojant Python

```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import levene
import statsmodels.api as sm
from statsmodels.formula.api import ols
import pylab
import scipy.stats as stats
from bioinfokit.analys import stat
def split(df, col):
   return [
        df[df["handedness"] == "left"][df["sex"] == "female"][col],
        df[df["handedness"] == "left"][df["sex"] == "male"][col],
        df[df["handedness"] == "right"][df["sex"] == "female"][col],
        df[df["handedness"] == "right"][df["sex"] == "male"][col]
    ]
def vartest(df,col):
    s = split(df, col)
    stat, p = levene(s[0], s[1], s[2], s[3])
    print("F value:", round(stat,4), "Pr(>F)", round(p,4))
def anova(df, col):
    stats.probplot(df[col], dist="norm", plot=pylab)
    pylab.show()
   model = ols(col + ' ~ sex * handedness', data=df).fit()
    anova table = sm.stats.anova lm(model, typ=3)
    return anova_table
data = pd.read csv("data.csv")
data = data.sort values(["sex", "handedness"])
mypal = {sex: '#f9665e' if sex == "female" else '#799fcb' for sex in data["sex"].unique()}
ft = data
ft["group"] = ft["handedness"] + ft["sex"]
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle("Tiriamieji grafikai")
sns.boxplot(ax = axes[0,0],x="handedness", y="t1", hue="sex", data=data, palette=mypal)
sns.boxplot(ax = axes[0,1],x="handedness", y="t2", hue="sex", data=data, palette=mypal)
sns.boxplot(ax = axes[1,0],x="handedness", y="t3", hue="sex", data=data, palette=mypal)
sns.boxplot(ax = axes[1,1],x="handedness", y="t4", hue="sex", data=data, palette=mypal)
```

Tiriamieji grafikai


```
means = data.groupby(['sex','handedness']).mean()

fig, axes = plt.subplots(2, 2,figsize=(15,12))

fig.suptitle("Vidurkių grafikas")

sns.lineplot(ax = axes[0,0],x="handedness", y="t1", hue="sex", data=means, palette=mypal)

sns.lineplot(ax = axes[0,1],x="handedness", y="t2", hue="sex", data=means, palette=mypal)

sns.lineplot(ax = axes[1,0],x="handedness", y="t3", hue="sex", data=means, palette=mypal)

sns.lineplot(ax = axes[1,1],x="handedness", y="t4", hue="sex", data=means, palette=mypal)
```

Vidurkių grafikas

vartest(data,"t1")

F value: 0.8848 Pr(>F) 0.4572

vartest(data,"t2")

F value: 0.4793 Pr(>F) 0.6985

vartest(data,"t3")

F value: 1.7389 Pr(>F) 0.1745

vartest(data,"t4")

F value: 1.8124 Pr(>F) 0.1604

	sum_sq	df	F	PR(>F)
Intercept	1842.757078	1.0	507.629040	2.428428e-24
sex	1.102086	1.0	0.303594	5.847024e-01
handedness	6.979565	1.0	1.922679	1.732417e-01
sex:handedness	10.967304	1.0	3.021191	8.987678e-02
Residual	145.205016	40.0	NaN	NaN

	sum_sq	df	F	PR (>F)
Intercept	$1717.564\overline{5}55$	1.0	538.700233	8.037321e-25
sex	4.301995	1.0	1.349286	2.522877e-01
handedness	0.105805	1.0	0.033185	8.563713e-01
sex:handedness	4.459198	1.0	1.398591	2.439417e-01
Residual	127.533975	40.0	NaN	NaN

	sum sq	df	F	PR(>F)
Intercept	981.812 0 39	1.0	276.846236	1.413343e-19
sex	7.541214	1.0	2.126432	1.525851e-01
handedness	2.710706	1.0	0.764351	3.871895e-01
sex:handedness	7.358940	1.0	2.075035	1.575086e-01
Residual	141 856657	40 0	NaN	NaN

	sum_sq	df	F	PR (>F)
Intercept	5738.425909	1.0	261.107038	3.929689e-19
sex	52.051729	1.0	2.368432	1.316855e-01
handedness	0.108554	1.0	0.004939	9.443204e-01
sex:handedness	127.945606	1.0	5.821718	2.050468e-02
Residual	879.091725	40.0	NaN	NaN

	group1	group2	Diff	Lower	Upper	q-value	p-value
0	leftfemale	rightfemale	0.136416	-5.066654	5.339486	0.099392	0.900000
1	leftfemale	leftmale	3.089145	-2.291556	8.469846	2.176434	0.425942
2	leftfemale	rightmale	3.745010	-2.215856	9.705877	2.381714	0.345613
3	rightfemale	leftmale	2.952729	-1.990949	7.896407	2.264224	0.390736
4	rightfemale	rightmale	3.881426	-1.688128	9.450981	2.641903	0.257923
5	leftmale	rightmale	6.834156	1.098309	12.570002	4.516826	0.013984