CS & IT ENGINERING

By-Pankaj Sharma sir

Data Structure

Tree Chapter-5 Lec- 04

CBT is a binary tree which is Complete binary tree : Full till second last level. 2 nodes at last level are filled from left to right. CBTX XCBI $X \subset B \perp$

Structure of a
CBT with 1 mode

3 structure of a CBT
With 2 mode

3: structure of a CBT With 3 mode

4. Structure of a CBT with 4 node

The structure of a CBT with K nodes is always fix.

Max no of nodes in a CBT of height $h = 2^{k+1}$.

Min no of nodes in a CBT of height $k = 2^{k+1}$.

$$2^{h+1}$$

$$x \leq 4^{h+1}$$

$$x \geq 2^{k+1}$$

$$x \geq 2^{k+1}$$

$$x \geq 2^{k+1}$$

$$x \leq 2^{h+1}$$

$$x \leq$$

Binary Search Tree

Why?

Given, Binary tree and a key and we need to find whether the key is present in the tree or not?

Binoxy Search Tree

A binary tree in which every mode satisfies following property: All the Reys in the left subtree of a node are Smaller than the mode value. All the Reys in the right subtree of a node are

greater than the node

All Reys ore VIII Bear are Freater Smaller than than x.

1: Construct a binary search tree by inserting Reys 10,20,30 in order

a) Root

 Construct binary search tree by inserting Reys 10,5,2,9,3,4 in order. (<u>5</u>)

No of BST when insertion order of Reys are fixed

Const. BST by inserting Reys 10,20,30 => 1

Const. BST by inserting Reys 10,5,29,3,4 => 1

3 Reys => 5 BST

unlabelled binary tree with 3 nodes = 5

It ructure with n nodes = $\frac{2n_{ch}}{nH}$

BST with n fleys = $\frac{2n}{n+1}$

2 *** Inorder traversal of a BST is always increasing order of Reys.

Pre: 100 80 70 60 75 105 102 110

Pre: 100 80 70 60 75 105 102 110

Griven the preorder of a BST as: 100,80,70,60,75,105,102,110

the fostorder of BST is _____

<u>5</u>3

Pre: 100 80 70 60 75 105 102 110

Griven the precider of a BST as: 100,80,70,60,75,105,102,110

the fastorder of BST is ____

In: 60 70 75 80 100 102 105 110

Pre: 100 80 70 60 75 105 102 110

9 BST

Inorder:

1,2,3 Keys

Griven a binary tree structure with n modes (unlabelled)

Griven a binary tree structure with n modes (unlabelled)

and in Reys are also given how many BSTs are Possible

10,5,12,2,1

