ASK

- Los valores se representan por amplitud.
 - Presencia o ausencia de señal para 1 y 0.
- Es parecido a "código Morse, pero rápido".
- Simple.
 - Relación directa entre dato y potencia recibida.
- Susceptible a ruidos e interferencia.

FSK

- Los valores se representan en varias frecuencias (frecuencia del 0, del 1...).
- Muy eficiente de procesar.
 - El "algoritmo de Goertzel" es rápido.
- Fácil de implementar de forma barata.
 - Mandos de garaje y de coche.
 - Sondas científicas.

Ejemplos de FSK

Downlink de Inmarsat-D.

Llave Alps de coches Nissan.

PSK

- Los valores se representan por cambios repentinos de fase.
 - Fenómeno muy artificial, sin interferencias.
- Extremadamente popular.
 - 802.11 (Wi-Fi).
 - Bluetooth.
 - RFID.
 - GPS (PSK binario).

QAM

- "Modulación por amplitud de cuadratura."
- Dos señales ortogonales (desfase 90º).
 - Permite crear un plano 2D, una señal siendo cada eje.
 - Variando las amplitudes llegamos a un punto del plano.
- Popular en extremo por su rapidez.

Un ejemplo: 16-QAM

La técnica spread-spectrum

- Varios subtipos como FHSS y DSSS.
- Dispersa una señal por muchas frecuencias.
- Sirve para:
 - Tener gran número de comunicaciones/llamadas en el mismo canal ("multiplexar").
 - Evitar interferencias
 - Mantener privacidad o secreto.