Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Yongho Shin, **Changyeol Lee**, Gukryeol Lee, and Hyung-Chan An Yonsei University

Learning-Augmented Algorithms

- Take ML prediction as added input
- No assumption on prediction

- Recent success in online optimization

Performance Measure

• An online algorithm is *c-competitive* if $SOL \le c \cdot OPT$.

- A learning-augmented algorithm is
 - χ -consistent if SOL $\leq \chi$ ·OPT when prediction is accurate.
 - ρ -robust if SOL $\leq \rho$ ·OPT unconditionally.

Multi-Option Ski Rental

Multi-Option Ski Rental

Learning-Augmented Multi-Option Ski Rental

Learning-Augmented Multi-Option Ski Rental

Previous Work

Our Results (Deterministic)

Our Results (Deterministic)

Our Results (Deterministic)

Our Results (Randomized)

Our Results (Randomized)

Our Results (Randomized)

Roadmap of Algorithms

Deterministic
4-competitive
algorithm

Randomized
e-competitive
algorithm

Randomized
learning augmented
algorithm

Roadmap of Algorithms

Deterministic
4-competitive
algorithm

Randomized
e-competitive
algorithm

Randomized
learning augmented
algorithm

Deterministic Competitive Algorithm

```
for each round i = 0,1,...:
    set budget to 2<sup>i</sup>
    choose "best" options within the budget
```

Deterministic Competitive Algorithm

```
for each round i = 0,1,...:
    set budget to 2<sup>i</sup>
    choose "best" options within the budget
```


Theorem. (Anand et al.) This algorithm is 4-competitive

Worst Case of Deterministic Algorithm

```
for each round i = 0,1,...:
    set budget to 2<sup>i</sup>
    choose "best" options within the budget
```


Randomized Initial Budget

```
sample initial budget \alpha \in [1, 2)

for each round i = 0,1,...:

set budget to \alpha \cdot 2^i

choose "best" options within the budget
```


Randomized Initial Budget

```
sample initial budget \alpha \in [1, 2)

for each round i = 0,1,...:

set budget to \alpha \cdot 2^i

choose "best" options within the budget
```


Randomized Competitive Algorithm

```
sample initial budget \alpha \in [1, e] from pdf f(\alpha) = 1/\alpha

for each round i = 0,1,...:

set budget to \alpha \cdot e^i

choose "best" options within the budget
```


Theorem. (SLLA, 2023) This algorithm is *e*-competitive

Theorem. (SLLA, 2023) This algorithm is best possible

Roadmap of Algorithms

Deterministic
4-competitive
algorithm

Randomized
e-competitive
algorithm

Randomized
learning augmented
algorithm

Given: prediction on the last day assume *cost* ("*predicted opt soln*") = e^k for some int k

Given: prediction on the last day assume *cost* ("*predicted opt soln*") = e^k for some int k, WLOG

Given: prediction on the last day

Pred-OPT = e^k for some int k, WLOG


```
Given: prediction on the last day, "level of confidence" \lambda \in [0,1] Pred-OPT = e^k for some int k, WLOG sample initial budget \ \alpha \in [1, e] from pdf f(\alpha) = 1/\alpha for each round i = 0,1,...: set budget \ to \ \alpha \cdot e^i if the budget \in [\lambda \cdot Pred-OPT, Pred-OPT), " follow \ the \ prediction" (at most once) otherwise, choose "best" options within the budget
```



```
Given: prediction on the last day, "level of confidence" \lambda \in [0,1] Pred-OPT = e^k for some int k, WLOG sample initial budget \alpha \in [1, e] from pdf f(\alpha) = 1/\alpha for each round i = 0,1,...: set budget to \alpha \cdot e^i if the budget \in [\lambda \cdot \text{Pred-OPT}, \text{Pred-OPT}), "follow the prediction" (at most once) otherwise, choose "best" options within the budget
```



```
Given: prediction on the last day, "level of confidence" \lambda \in [0,1] Pred-OPT = e^k for some int k, WLOG sample initial budget \alpha \in [1, e] from pdf f(\alpha) = 1/\alpha for each round i = 0,1,...: set budget to \alpha \cdot e^i if the budget \in [\lambda \cdot \text{Pred-OPT}, \text{Pred-OPT}), "follow the prediction" (at most once) otherwise, choose "best" options within the budget
```



```
Given: prediction on the last day, "level of confidence" \lambda \in [0,1] Pred-OPT = e^k for some int k, WLOG sample initial budget \alpha \in [1, e] from pdf f(\alpha) = 1/\alpha for each round i = 0,1,...: set budget to \alpha \cdot e^i if the budget \in [\lambda \cdot \text{Pred-OPT}, \text{Pred-OPT}), "follow the prediction" (at most once) otherwise, choose "best" options within the budget
```



```
Given: prediction on the last day, "level of confidence" \lambda \in [0,1] Pred-OPT = e^k for some int k, WLOG sample initial budget \ \alpha \in [1, e] from pdf f(\alpha) = 1/\alpha for each round i = 0,1,...: set budget \ to \ \alpha \cdot e^i if the budget \in [\lambda \cdot Pred-OPT, Pred-OPT), " follow the prediction" (at most once) otherwise, choose "best" options within the budget
```


Theorem. (SLLA, 2023) For $\lambda \in [0,1]$, this algorithm is $\chi(\lambda)$ -consistent (e^{λ}/λ) -robust, where

$$\chi(\lambda) \coloneqq \begin{cases} 1 + \lambda, & \lambda < 1/e, \\ (e+1)\lambda - \ln \lambda - 1, & \lambda \ge 1/e. \end{cases}$$

Lower Bounds

- Button problem
 - is (almost) as hard as multi-option ski rental
- Competitive ratio of any algorithm for the button problem ≥

minimize
$$\gamma$$
 subject to $\sum_{j=1}^{m} x_j = 1$, $\sum_{j=t+1}^{m} y_{t,j} = x_t + \sum_{j=1}^{t-1} y_{j,t}, \quad \forall t = 1, \cdots, m-1,$ $\sum_{j=1}^{m} b_j \cdot \left(x_j + \sum_{t=1}^{\min(J,j)-1} y_{t,j}\right) \leq \gamma \cdot b_J, \quad \forall J = 1, \cdots, m,$ $x, y \geq 0$.

Construct a family of instances and consider the dual solutions

Lower Bounds for Button Problem

Theorem. (SLLA, 2023) LB on the competitiveness

Lower Bounds for Button Problem

Theorem. (SLLA, 2023)

LB on the trade-off for the deterministic algorithm

Theorem. (SLLA, 2023) LB on the competitiveness

Thank you for listening!