2^a PROVA DE TERMODINÂMICA (EQE-363) Prof. Frederico W. Tavares

1) (50 Ptos) Uma mistura contendo 50%, em mols, de n-butano (1), 30% de benzeno(2) e o restante de um polímero(3) não volátil, escoa numa tubulação industrial a 50° C. Sabendo-se que o comportamento da fase líquida, mistura ternária, é bem descrito com o modelo de Margules e que as pressões de vapor dos componentes puros são, respectivamente, $P_1^{SAT} = 3620 torr$, $P_2^{SAT} = 280 torr$ e $P_3^{SAT} \cong \infty$, determine:

- a) a variação de entropia do processo de misturar, com quantidades equimolares, os três componentes;
- b) a menor pressão da tubulação para que a corrente não apresente fase vapor;
- c) a pressão da tubulação para que a corrente apresente 50% de vapor.

modelo de Margules:
$$\frac{G^E}{RT} = x_1 x_2 + 0.0 x_1 x_3 + 0.0 x_2 x_3$$
 em que, $\ln(\gamma_i) = \left[\frac{\partial \left(nG^E/RT\right)}{\partial N_i}\right]_{TP,Ni\neq i}$

2) (30 Ptos) Etanol pode ser produzido via hidrogenação de acetaldeído de acordo com a seguinte reação: CH_3CHO (g) + H_2 (g) == C_2H_5OH (g) . Supondo-se que a alimentação, em fase gasosa, do reator contenha 20%, em mols, de CH_3CHO , 20% de C_2H_5OH , 20% de H_2 , 30% de H_2 , 30% de H_2 0, calcule a composição de equilíbrio a 700 K e 5 atm. Os seguintes dados da reação são conhecidos (notar que o estado de referencia é aquele de gás ideal a 1 atm): ΔG^0 (400K, 1atm, gás ideal) = - 200 cal/gmol, ΔH^0 (400K, 1atm, gás ideal) = 0 cal/gmol ΔC_D (1atm, gás ideal) = 5 cal/gmolK

3) (20 Ptos) Uma corrente de 100 kg/min de água líquida pura a $21,1\,^{o}C$ é misturada continuamente com outra de 50 kg/min de uma solução contendo 90% (em peso) de ácido sulfúrico a $37,8\,^{o}C$. Qual a taxa de adição ou remoção de calor que deve ser usada no misturador de modo que temperatura da corrente de saída seja igual a $25\,^{o}C$?

