

Optimal Forecast Reconciliation

Rob J Hyndman

robjhyndman.com

Outline

- 1 Hierarchical and grouped time series
- **2** Forecast reconciliation
- 3 Fast computational tricks
- 4 Temporal hierarchies

Labour market participation

Australia and New Zealand Standard Classification of Occupations

- 8 major groups
 - 43 sub-major groups
 - 97 minor groups
 - 359 unit groups
 - * 1023 occupations

Example: statistician

- 2 Professionals
 - 22 Business, Human Resource and Marketing Professionals
 - 224 Information and Organisation Professionals
 2241 Actuaries, Mathematicians and Statisticians
 224113 Statistician

Labour market participation

Australia and New Zealand Standard Classification of Occupations

- 8 major groups
 - 43 sub-major groups
 - 97 minor groups
 - 359 unit groups
 - * 1023 occupations

Example: statistician

- 2 Professionals
 - 22 Business, Human Resource and Marketing Professionals
 - 224 Information and Organisation Professionals
 2241 Actuaries, Mathematicians and Statisticians
 224113 Statistician

Australian tourism demand

Australian tourism demand

Quarterly data on visitor night from 1998:Q1 – 2013:Q4

15/1

- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

3. PBS sales

3. PBS sales

ATC drug classification

- A Alimentary tract and metabolism
- B Blood and blood forming organs
- C Cardiovascular system
- D Dermatologicals
- G Genito-urinary system and sex hormones
- H Systemic hormonal preparations, excluding sex hormones and insulins
- J Anti-infectives for systemic use
- L Antineoplastic and immunomodulating agents
- M Musculo-skeletal system
- N Nervous system
- P Antiparasitic products, insecticides and repellents
- R Respiratory system
- S Sensory organs
- V Various

3. PBS sales

ATC drug classification

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Pharmaceutical sales
- Tourism by state and region

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Pharmaceutical sales
- Tourism by state and region

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Pharmaceutical sales
- Tourism by state and region

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

- Labour turnover by occupation
- Pharmaceutical sales
- Tourism by state and region

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc., etc.,

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc.
- Tourism by state and purpose of travel

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc.
- Tourism by state and purpose of travel

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc.
- Tourism by state and purpose of travel

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima, ...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima,...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima,...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

 y_t : observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time t.

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at time t.

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at time

$$\mathbf{y}_t = [\mathbf{y}_t, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$

 y_t : observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{c}} \begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$

 y_t : observed aggregate of all series at time t.

y_{X,t}: observation on series X at time

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{b}_{t}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at timet.

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

YBY.t YBZ,t YCX,t Ycy.t Vcz.t. $\mathbf{y}_{\mathsf{t}} = \mathbf{S}\mathbf{b}_{\mathsf{t}}$ \mathbf{b}_{t}

YAX,t

YAY,t

YAZ,t

YBX.t

Grouped data

Total

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Grouped data

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Grouped data

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $\mathbf{y}_t = \mathbf{Sb}_t$

Every collection of time series with aggregation constraints can be written as

$$y_t = Sb_t$$

where

- \mathbf{y}_t is vector of all series at time t
- **\mathbf{b}_t** is vector of the most disaggregated series at time t
- **S** is "summing matrix" containing the aggregation constraints.

Outline

- 1 Hierarchical and grouped time series
- 2 Forecast reconciliation
- 3 Fast computational tricks
- 4 Temporal hierarchies

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - Bottom-upTop-down
- Mildule-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - Bottom-up
 - Top-down
 - Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - > Bottom-up
 - Top-down
 - Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - Bottom-up
 - > Top-down
 - Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - > Bottom-up
 - > Top-down
 - > Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - Bottom-up
 - > Top-down
 - Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

- Forecasts should be "coherent", unbiased, minimum variance.
- Existing methods:
 - Bottom-up
 - > Top-down
 - Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

- Loss of information, especially individual series dynamics.
- Distribution of forecast to lower levels can be difficult
- No prediction intervals

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

- Loss of information, especially individual series dynamics.
- Distribution of forecast to lower levels can be difficult
- No prediction intervals

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

- Loss of information, especially individual series dynamics.
- Distribution of forecast to lower levels can be difficult
- No prediction intervals

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

- Loss of information, especially individual series dynamics.
- Distribution of forecast to lower levels can be difficult
- No prediction intervals

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

- Loss of information, especially individual series dynamics.
- Distribution of forecasts to lower levels can be difficult
- No prediction intervals

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

- Loss of information, especially individual series dynamics.
- Distribution of forecasts to lower levels can be difficult
- No prediction intervals

Advantages

- No loss of information.
- Better captures dynamics of individual series.

- Large number of series to be forecast.
- Constructing forecasting models is harder because of noisy data at bottom level.
- No prediction intervals

Advantages

- No loss of information.
- Better captures dynamics of individual series.

- Large number of series to be forecast.
- Constructing forecasting models is harder because of noisy data at bottom level.
- No prediction intervals

Advantages

- No loss of information.
- Better captures dynamics of individual series.

- Large number of series to be forecast.
- Constructing forecasting models is harder because of noisy data at bottom level.
- No prediction intervals

Advantages

- No loss of information.
- Better captures dynamics of individual series.

- Large number of series to be forecast.
- Constructing forecasting models is harder because of noisy data at bottom level.
- No prediction intervals

Advantages

- No loss of information.
- Better captures dynamics of individual series.

- Large number of series to be forecast.
- Constructing forecasting models is harder because of noisy data at bottom level.
- No prediction intervals

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

(In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix P.

■ P extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.

= S adds them up

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

- P extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.
- S adds them up

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{n}}(h) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{n}}(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up

Bottom-up forecasts

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where **0** is null matrix and **I** is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{y}_n(h)$
- S adds them up to give the bottom-up forecasts.

Bottom-up forecasts

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where **0** is null matrix and **I** is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{y}_n(h)$
- S adds them up to give the bottom-up forecasts.

Bottom-up forecasts

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where **0** is null matrix and **I** is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{y}_n(h)$
- **S** adds them up to give the bottom-up forecasts.

Top-down forecasts

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Top-down forecasts are obtained using

$$P = [p \mid 0]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- P distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors p.

Top-down forecasts

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Top-down forecasts are obtained using

$$P = [p \mid 0]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- P distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors p.

Top-down forecasts

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Top-down forecasts are obtained using

$$P = [p \mid 0]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- P distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors **p**.

General properties: bias

$$\tilde{\textbf{y}}_n(h) = \textbf{SP}\hat{\textbf{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$\mathsf{E}[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=\mathsf{E}[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $b_n(h)$ be bottom level base forecasts with $\beta_n(h) = E[\hat{b}_n(h)|y_1, \dots, y_n]$.
- Then $E[\hat{y}_n(h)] = SB_n(h)$.
- We want the revised forecasts to be unbiased:
 - $E[\hat{y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$

Reconciled forecast are unbiased if and only if SPS =

True for bottom-up, but not top-down or middle-out.

General properties: bias

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

True for bottom-up, but not top-down or middle-out.

General properties: bias

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n] = E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathbb{E}[\hat{\boldsymbol{b}}_n(h)|\mathbf{y}_1,\dots,\mathbf{y}_n]$.
- Then $E[\hat{y}_n(h)] = S\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

True for bottom-up, but *not* top-down or middle-out

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathbb{E}[\hat{\boldsymbol{b}}_n(h)|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$.
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

Reconciled forecast are unbiased if and only if $extit{SPS} = extit{S}$

True for bottom-up, but *not* top-down or middle-out

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathbb{E}[\hat{\boldsymbol{b}}_n(h)|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$.
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\beta_n(h) = \mathbf{S}\beta_n(h)$.

Reconciled forecast are unbiased if and only if SPS = S

True for bottom-up, but not top-down or middle-out

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathbb{E}[\hat{\boldsymbol{b}}_n(h)|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$.
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{\mathbf{y}}_n(h)] = \mathbf{SPS}\beta_n(h) = \mathbf{S}\beta_n(h)$.

Reconciled forecast are unbiased if and only if SPS = S

True for bottom-up, but not top-down or middle-out.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Assume: base forecasts $\hat{y}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathbb{E}[\hat{\boldsymbol{b}}_n(h)|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$.
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

Reconciled forecast are unbiased if and only if SPS = S.

True for bottom-up, but not top-down or middle-out.

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Assume: base forecasts $\hat{\mathbf{y}}_n(h)$ are unbiased:

$$E[\hat{\mathbf{y}}_n(h)|\mathbf{y}_1,\ldots,\mathbf{y}_n]=E[\mathbf{y}_{n+h}|\mathbf{y}_1,\ldots,\mathbf{y}_n]$$

- Let $\hat{\boldsymbol{b}}_n(h)$ be bottom level base forecasts with $\beta_n(h) = \mathbb{E}[\hat{\boldsymbol{b}}_n(h)|\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n]$.
- Then $E[\hat{\mathbf{y}}_n(h)] = \mathbf{S}\beta_n(h)$.
- We want the revised forecasts to be unbiased: $E[\tilde{y}_n(h)] = SPS\beta_n(h) = S\beta_n(h)$.

Reconciled forecast are unbiased if and only if SPS = S.

True for bottom-up, but *not* top-down or middle-out.

General properties: variance

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Let error variance of h-step base forecasts $\hat{\mathbf{y}}_n(h)$ be

$$\Sigma_h = \mathsf{Var}[extbf{ extit{y}}_{n+h} - \hat{ extbf{ extit{y}}}_n(h) \mid extbf{ extit{y}}_1, \dots, extbf{ extit{y}}_n]$$

Then the error variance of the corresponding reconciled forecasts is

$$\mathsf{Var}[\mathbf{y}_{n+h} - \widetilde{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = \mathsf{SP}\Sigma_h \mathsf{P}'\mathsf{S}'$$

This is a general result for all existing methods.

General properties: variance

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Let error variance of h-step base forecasts $\hat{\mathbf{y}}_n(h)$ be

$$\Sigma_{h} = \mathsf{Var}[\mathbf{y}_{n+h} - \hat{\mathbf{y}}_{n}(h) \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{n}]$$

Then the error variance of the corresponding reconciled forecasts is

$$\mathsf{Var}[\mathbf{y}_{n+h} - \widetilde{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = \mathsf{SP}\Sigma_h \mathsf{P}'\mathsf{S}'$$

This is a general result for all existing methods.

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Theorem: MinT Reconciliation

If **P** satisfies SPS=S, then $\min_{P}=\operatorname{trace}[SP\Sigma_{h}P'S']$ has solution $P=(S'\Sigma_{h}^{-1}S)^{-1}S'\Sigma_{h}^{-1}$.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathbf{h})$$

Reconciled forecasts

Base forecasts

lacksquare Assume that $\Sigma_h=k_h\Sigma_1$ to simplify computations.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Theorem: MinT Reconciliation

If P satisfies SPS = S, then

$$min_P = trace[SP\Sigma_h P'S']$$

has solution $\mathbf{P} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\overline{\Sigma}_h^{-1}.$

$$\widetilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\widehat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Assume that $\Sigma_h = k_h \Sigma_1$ to simplify computations.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Theorem: MinT Reconciliation

If **P** satisfies $extbf{SPS} = extbf{S}$, then $\min_{ extbf{P}} = \operatorname{trace}[extbf{SP}\Sigma_{h} extbf{P}' extbf{S}']$ has solution $extbf{P} = (extbf{S}'\Sigma_{h}^{-1} extbf{S})^{-1} extbf{S}'\Sigma_{h}^{-1}.$

$$\widetilde{\mathbf{y}}_{\mathsf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\widehat{\mathbf{y}}_{\mathsf{n}}(\mathbf{h})$$

Reconciled forecasts

Base forecasts

Assume that $\Sigma_h = k_h \Sigma_1$ to simplify computations.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Theorem: MinT Reconciliation

If **P** satisfies SPS = S, then $\min_{\textit{P}} = \text{trace}[\textit{SP}\Sigma_{\textit{h}}\textit{P}'\textit{S}']$ has solution $\textit{P} = (\textit{S}'\Sigma_{\textit{h}}^{-1}\textit{S})^{-1}\textit{S}'\Sigma_{\textit{h}}^{-1}$.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Assume that $\Sigma_h = k_h \Sigma_1$ to simplify computations.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_1^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_1^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Solution 1: OLS

 \blacksquare Assume $\Sigma_1 pprox kl$.

Works surprisingly www.

prediction interve

$$\mathbf{\tilde{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_1^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_1^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Solution 1: OLS

$$\tilde{\mathbf{y}}_{n}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_{n}(\mathbf{h})$$

- Reconciliation does not depend on data
- Works surprisingly well.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\hat{\mathbf{y}}_{\mathsf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_1^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_1^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathbf{h})$$

Reconciled forecasts

Base forecasts

Solution 1: OLS

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_{n}(h)$$

- Reconciliation does not depend on data
- Works surprisingly well.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\mathbf{\tilde{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{1}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{1}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Solution 1: OLS

$$\tilde{\mathbf{y}}_{n}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_{n}(\mathbf{h})$$

- Reconciliation does not depend on data
- Works surprisingly well.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\widetilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_1^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_1^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Solution 1: OLS

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_{\mathsf{n}}(\mathbf{h})$$

- Reconciliation does not depend on data
- Works surprisingly well.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\widetilde{\mathbf{y}}_{\mathsf{n}}(h) = \mathbf{S}(\mathbf{S}'\Sigma_{1}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{1}^{-1}\widehat{\mathbf{y}}_{\mathsf{n}}(h)$$

Reconciled forecasts

Base forecasts

Solution 1: OLS

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'\hat{\mathbf{y}}_{n}(h)$$

- Reconciliation does not depend on data
- Works surprisingly well.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- \blacksquare Approximate Σ_1 by its diagonal
- Easy to estimate, and places weight where we have
- Still need to estimate covariance matrix to produce or produced in the state of the state of

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- Approximate Σ_1 by its diagonal.
- Easy to estimate, and places weight where we have best forecasts.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- Approximate Σ_1 by its diagonal.
- Easy to estimate, and places weight where we have best forecasts.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- \blacksquare Approximate Σ_1 by its diagonal.
- Easy to estimate, and places weight where we have best forecasts.
- Still need to estimate covariance matrix to produce prediction intervals.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- \blacksquare Estimate Σ_1 using shrinkage to the diagonal
- Allows for covariances
- Difficult to compute for large numbers of time
 - series.

$$\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- Estimate Σ_1 using shrinkage to the diagonal.
- Allows for covariances.
- Difficult to compute for large numbers of time series.

$$\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- **E**stimate Σ_1 using shrinkage to the diagonal.
- Allows for covariances.
- Difficult to compute for large numbers of time series.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

- **E**stimate Σ_1 using shrinkage to the diagonal.
- Allows for covariances.
- Difficult to compute for large numbers of time series.

Australian tourism

Australian tourism

Australian tourism

Base forecasts

Training sets

Test sets h = 1

Training sets

Test sets h = 1

Training sets

Test sets h = 1

Training sets Test sets h = 1 time

Hierarchy: states, zones, regions

Forecast horizon							
DN 4CE	l- 1	l- 0			l	l- /	A
RMSE	h = 1	h=2	h = 3	h = 4	h = 5	h = 6	Ave
Australia							
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22
OLS	1747.60	1757.68	1751.77	1800.67	1686.00	1706.45	1741.69
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43
States							
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43
OLS	404.47	407.62	405.43	413.79	401.10	404.90	406.22
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95
Regions							
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47
OLS	93.28	93.53	93.64	94.17	93.78	93.88	93.71
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34

Outline

- 1 Hierarchical and grouped time series
- **2** Forecast reconciliation
- 3 Fast computational tricks
- 4 Temporal hierarchies

Fast computation: hierarchical data

YAX,t YAY,t YAZ,t YBX,t YBY,t YBZ,t YCX,t YCY,t YCZ,t

 $\mathbf{y}_t = \mathbf{5b}_t$

Fast computation: hierarchical data

YAX,t YAY,t YAZ,t YBX,t YBY,t YBZ,t YCX,t YCY,t YCZ,t

 $\mathbf{y}_t = \mathbf{5b}_t$

Fast computation: hierarchical data

/YAX,t YAY,t YAZ,t YBX,t YBY,t YBZ,t YCX,t YCY,t YCZ,t

 $\mathbf{y}_t = \mathbf{Sb}_t$

Think of the hierarchy as a tree of trees:

Then the summing matrix contains *k* smaller summing matrices:

$$S = \begin{bmatrix} \mathbf{1}_{n_1}' & \mathbf{1}_{n_2}' & \cdots & \mathbf{1}_{n_K}' \\ S_1 & 0 & \cdots & 0 \\ 0 & S_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & S_K \end{bmatrix}$$

where $\mathbf{1}_n$ is an *n*-vector of ones and tree T_i has n_i terminal nodes.

Think of the hierarchy as a tree of trees:

Then the summing matrix contains *k* smaller summing matrices:

$$\mathbf{S} = \left[egin{array}{ccccc} \mathbf{1}_{n_1}' & \mathbf{1}_{n_2}' & \cdots & \mathbf{1}_{n_K}' \ \mathbf{S}_1 & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{S}_2 & \cdots & \mathbf{0} \ dots & dots & \ddots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{S}_K \end{array}
ight]$$

where $\mathbf{1}_n$ is an *n*-vector of ones and tree T_i has n_i terminal nodes.

$$\mathbf{S}'\!\boldsymbol{\Lambda}\mathbf{S} = \begin{bmatrix} \mathbf{S}_1'\boldsymbol{\Lambda}_1\mathbf{S}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_2'\boldsymbol{\Lambda}_2\mathbf{S}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{S}_K'\boldsymbol{\Lambda}_K\mathbf{S}_K \end{bmatrix} + \lambda_0 \, \mathbf{J}_n$$

- λ_0 is the top left element of Λ ;
- Λ_k is a block of Λ , corresponding to tree T_k ;
- **J**_n is a matrix of ones;
- \blacksquare $n = \sum_k n_k$.

Now apply the Sherman-Morrison formula ...

$$m{S'} m{\Lambda} m{S} = egin{bmatrix} m{S'_1} m{\Lambda_1} m{S_1} & m{0} & \cdots & m{0} \\ m{0} & m{S'_2} m{\Lambda_2} m{S_2} & \cdots & m{0} \\ dots & dots & \ddots & dots \\ m{0} & m{0} & \cdots & m{S'_K} m{\Lambda_K} m{S_K} \end{bmatrix} + \lambda_0 m{J_n}$$

- λ_0 is the top left element of Λ ;
- $lack \Lambda_k$ is a block of Λ , corresponding to tree T_k ;
- **J**_n is a matrix of ones;
- \blacksquare $n = \sum_k n_k$.

Now apply the Sherman-Morrison formula ...

$$(\mathbf{S}'\!\Lambda\mathbf{S})^{-1} = egin{bmatrix} (\mathbf{S}'_1\Lambda_1\mathbf{S}_1)^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & (\mathbf{S}'_2\Lambda_2\mathbf{S}_2)^{-1} & \cdots & \mathbf{0} \\ dots & dots & \ddots & dots \\ \mathbf{0} & \mathbf{0} & \cdots & (\mathbf{S}'_{\mathsf{K}}\Lambda_{\mathsf{K}}\mathbf{S}_{\mathsf{K}})^{-1} \end{bmatrix} - c\mathbf{S}_0$$

■ S_0 can be partitioned into K^2 blocks, with the (k, ℓ) block (of dimension $n_k \times n_\ell$) being

$$(\textbf{\textit{S}}_k'\boldsymbol{\Lambda}_k\textbf{\textit{S}}_k)^{-1}\textbf{\textit{J}}_{n_k,n_\ell}(\textbf{\textit{S}}_\ell'\boldsymbol{\Lambda}_\ell\textbf{\textit{S}}_\ell)^{-1}$$

- **J**_{n_k,n_ℓ} is a $n_k \times n_\ell$ matrix of ones.
- $lacksquare c^{-1} = \lambda_0^{-1} + \sum_k \mathbf{1}'_{n_k} (\mathbf{S}'_k \Lambda_k \mathbf{S}_k)^{-1} \mathbf{1}_{n_k}.$
- Each $S'_k \Lambda_k S_k$ can be inverted similarly.
- **S'** Λy can also be computed recursively.

Fast computation: hierarchies

$$(\mathbf{S}'\!\Lambda\mathbf{S})^{-1} = egin{bmatrix} (\mathbf{S}'_1\Lambda_1\mathbf{S}_1)^{-1} & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & (\mathbf{S}'_2\Lambda_2\mathbf{S}_2)^{-1} & \cdots & \mathbf{0} \ dots & dots & \ddots & dots \ \mathbf{0} & \mathbf{0} & \cdots & (\mathbf{S}'_K\Lambda_K\mathbf{S}_K)^{-1} \end{bmatrix} - c\mathbf{S}_0$$

S₀ can be partitioned into K^2 blocks, with the (k, ℓ) block (of dimension $n_k \times n_\ell$) being

> The recursive calculations can be done in such a way that we never store any of

the large matrices involved.
$$c^{-1} = r_0 + \sum_{k} \frac{1}{n_k} (\frac{1}{n_k} \frac{1}{n_k} \frac{1$$

- Each $S'_k \Lambda_k S_k$ can be inverted similarly.
- $S'\Lambda y$ can also be computed recursively.


```
0
 YA.t
Y<sub>B</sub>,t
 Yc.t
Yx.t
YY.t
y_{Z,t}
YAX.t
YAY.t
YAZ.t
Y<sub>BX</sub>,t
YBY.t
YBZ.t
                                                                                 0
Ycx.t
                                                                                 0
Ycy,t
```

```
y_{AX,t}
y_{AY,t}
YAZ.t
y_{BX,t}
YBY.t
Y<sub>BZ</sub>.t
y_{CX,t}
y_{CY,t}
Ycz,t
  b
```

 $\mathbf{y}_t = \mathbf{Sb}_t$

$$\mathbf{S} = egin{bmatrix} \mathbf{1}_m' \otimes \mathbf{1}_n' \ \mathbf{1}_m' \otimes \mathbf{I}_n \ \mathbf{I}_m \otimes \mathbf{1}_n' \ \mathbf{I}_m \otimes \mathbf{I}_n \end{bmatrix}$$

m = number of rows n = number of columns

$$extstyle S'\Lambda extstyle S = \lambda_{00} extstyle extstyle extstyle J_{n} + (extstyle extstyle A_{C}) + \Delta_{U}$$

- Λ_R , Λ_C and Λ_U are diagonal matrices corresponding to rows, columns and unaggregated series;
- λ_{00} corresponds to aggregate.

$$\mathbf{S} = egin{bmatrix} \mathbf{1}_m' \otimes \mathbf{1}_n' \ \mathbf{1}_m' \otimes \mathbf{I}_n \ \mathbf{I}_m \otimes \mathbf{1}_n' \ \mathbf{I}_m \otimes \mathbf{I}_n \end{bmatrix}$$

m = number of rows n = number of columns

S'
$$\Lambda$$
S $=\lambda_{00}$ J $_{mn}+\left(\Lambda_{\it R}\otimes J_{\it n}
ight)+\left(J_{\it m}\otimes\Lambda_{\it C}
ight)+\Lambda_{\it U}$

- Λ_R , Λ_C and Λ_U are diagonal matrices corresponding to rows, columns and unaggregated series;
- lacksquare λ_{00} corresponds to aggregate.

$$(\mathbf{S}\mathbf{\Lambda}\mathbf{S})^{-1} = \mathbf{A} - rac{\mathbf{A}\mathbf{1}_{mn}\mathbf{1}_{mn}'\mathbf{A}}{1/\lambda_{00} + \mathbf{1}_{mn}'\mathbf{A}\mathbf{1}_{mn}}$$

$$\mathbf{A} = \mathbf{\Lambda}_U^{-1} - \mathbf{\Lambda}_U^{-1} (\mathbf{J}_m \otimes \mathbf{D}) \mathbf{\Lambda}_U^{-1} - \mathbf{E} \mathbf{M}^{-1} \mathbf{E}'.$$

D is diagonal with elements $d_j = \lambda_{0j}/(1 + \lambda_{0j} \sum_i \lambda_{ij}^{-1})$.

E has $m \times m$ blocks where \mathbf{e}_{ij} has kth element

$$(\mathbf{e}_{ij})_{k} = \begin{cases} \lambda_{i0}^{1/2} \lambda_{ik}^{-1} - \lambda_{i0}^{1/2} \lambda_{ik}^{-2} d_{k}, & i = j, \\ -\lambda_{j0}^{1/2} \lambda_{ik}^{-1} \lambda_{jk}^{-1} d_{k}, & i \neq j. \end{cases}$$

M is $m \times m$ with (i, j) element

$$(\textbf{\textit{M}})_{ij} = \left\{ \begin{array}{l} 1 + \lambda_{i0} \sum_{k} \lambda_{ik}^{-1} - \lambda_{i0} \sum_{k} \lambda_{ik}^{-2} d_{k}, & i = j, \\ -\lambda_{i0}^{1/2} \lambda_{j0}^{1/2} \sum_{k} \lambda_{ik}^{-1} \lambda_{jk}^{-1} d_{k}, & i \neq j. \end{array} \right.$$

$$(\mathbf{S}\mathbf{\Lambda}\mathbf{S})^{-1} = \mathbf{A} - rac{\mathbf{A}\mathbf{1}_{mn}\mathbf{1}_{mn}'\mathbf{A}}{1/\lambda_{00} + \mathbf{1}_{mn}'\mathbf{A}\mathbf{1}_{mn}}$$

$$\mathbf{A} = \mathbf{\Lambda}_U^{-1} - \mathbf{\Lambda}_U^{-1} (\mathbf{J}_m \otimes \mathbf{D}) \mathbf{\Lambda}_U^{-1} - \mathbf{E} \mathbf{M}^{-1} \mathbf{E}'.$$

D is diagonal with elements $d_i = \lambda_{0i}/(1 + \lambda_{0i} \sum_i \lambda_{ii}^{-1})$.

E has $m \times m$ blocks where e_{ii} has kth element

Again, the calculations can be done in such a way that we never store any of M is $m \times$ the large matrices involved.

$$(\mathbf{M})_{ij} = \begin{cases} 1 + \lambda_{i0} \sum_{k} \lambda_{ik}^{-1} - \lambda_{i0} \sum_{k} \lambda_{ik}^{-2} d_{k}, & i = j, \\ -\lambda_{i0}^{1/2} \lambda_{j0}^{1/2} \sum_{k} \lambda_{ik}^{-1} \lambda_{jk}^{-1} d_{k}, & i \neq j. \end{cases}$$

Outline

- 1 Hierarchical and grouped time series
- **2** Forecast reconciliation
- 3 Fast computational tricks
- 4 Temporal hierarchies

Temporal hierarchies

Basic idea

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Temporal hierarchies

Basic idea:

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly data

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $lacktriangleq M_k = m/k$ is seasonal period of aggregated series.

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

- Type 1 Departments Major A&E
- Type 2 Departments Single Specialty
- Type 3 Departments Other A&E/Minor Injury
- 4 Total Attendances
- Type 1 Departments Major A&E > 4 hrs
- Type 2 Departments Single Specialty > 4 hrs
- 7 Type 3 Departments Other A&E/Minor Injury > 4 hrs
- 8 Total Attendances > 4 hrs
- 9 Emergency Admissions via Type 1 A&E
- Total Emergency Admissions via A&E
- Other Emergency Admissions (i.e., not via A&E)
- 12 Total Emergency Admissions
- Number of patients spending > 4 hrs from decision to admission

Optimal Forecast Reconciliation

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

Aggr. Level		Base	Reconciled	Change
Weekly	1	1.6	1.3	-17.2%
Weekly	4	1.9	1.5	-18.6%
Weekly	13	2.3	1.9	-16.2%
Weekly	1-52	2.0	1.9	
Annual	1	3.4	1.9	-42.9%

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

h	Base	Reconciled	Change
1	1.6	1.3	-17.2%
4	1.9	1.5	-18.6%
13	2.3	1.9	-16.2%
1-52	2.0	1.9	-5.0%
1	3.4	1.9	-42.9%
	1 4 13 1-52	1 1.6 4 1.9 13 2.3 1-52 2.0	1 1.6 1.3 4 1.9 1.5 13 2.3 1.9 1-52 2.0 1.9

References

RJ Hyndman, RA Ahmed, G Athanasopoulos and HL Shang (2011). Optimal combination forecasts for hierarchical time series. *Computational Statistics & Data Analysis* **55**(9), 2579–2589.

RJ Hyndman, A Lee and E Wang (2016). Fast computation of reconciled forecasts for hierarchical and grouped time series. *Computational Statistics & Data Analysis* **97**, 16–32

SL Wickramasuriya, G Athanasopoulos and RJ Hyndman (2015). Forecasting hierarchical and grouped time series through trace minimization. Working paper. Dept Econometrics & Business Statistics, Monash University

G Athanasopoulos, RJ Hyndman, N Kourentzes and F Petropoulos (2017). Forecasting with temporal hierarchies. European Journal of Operational Research 262(1), 60–74

RJ Hyndman and G Athanasopoulos (2018). Forecasting: principles and practice. 2nd ed. Melbourne, Australia: OTexts. OTexts.org/fpp2/.

R packages

https://github.com/earowang/tsibble

http://pkg.earo.me/sugrrants

http://pkg.robjhyndman.com/forecast

http://pkg.earo.me/hts

http://pkg.robjhyndman.com/thief