Context Awareness Gate For Retrieval Augmented Generation

Mohammad Hassan Heydari Computer Engineering Faculty Computer Engineering Faculty Computer Engineering Faculty Computer Engineering Faculty University of Isfahan

Isfahan, Iran mheydarii@mehr.ui.ac.ir

Arshia Hemmat University of Isfahan Isfahan, Iran arshiahemmat@mehr.ui.ac.ir

Erfan Naman University of Isfahan

Isfahan, Iran erfannaman@mehr.ui.ac.ir Afsaneh Fatemi

University of Isfahan Isfahan, Iran a_fatemi@eng.ui.ac.ir

Abstract—Retrieval-Augmented Generation (RAG) emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions. Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline. However, despite ongoing advancements, the critical issue of retrieving irrelevant information—which can impair a model's ability to utilize its internal knowledge effectively-has received minimal attention. In this work, we investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs. To address this challenge, we propose the Context Awareness Gate (CAG) architecture, a novel mechanism that dynamically adjusts the LLM's input prompt based on whether the user query necessitates external context retrieval. Additionally, we introduce the Vector Candidates method, a core mathematical component of CAG that is statistical, LLM-independent, and highly scalable. We further examine the distributions of relationships between contexts and questions, presenting a statistical analysis of these distributions. This analysis can be leveraged to enhance the context retrieval process in retrieval-augmented generation (RAG) systems.

Index Terms—Retrieval-Augmented Generation, Hallucination, Large Language Models, Open Domain Question Answering

I. INTRODUCTION

Retrieval-augmented generation (RAG) has emerged as a leading approach for implementing question-answering systems that require intensive domain-specific knowledge [1]. This method allows for the utilization of customized datasets to generate answers, grounded in the information provided by those datasets. However, the effectiveness of the retrieval component within RAG pipelines is critical, as it directly influences the reliability and quality of the generated outputs [2], [3].

In efforts to enhance the quality of the retrieval component in RAG pipelines, research has demonstrated that transforming the user's input query into varying levels of abstraction before conducting the document search can significantly improve the relevance of the retrieved data. Several methods have been proposed, including query expansion into multi-query searches, chain of verification [4], [5], pseudo-context search [6] and query transformation [7], [8], [9], [10]. These approaches contribute to more accurate and effective retrieval of information.

Despite ongoing efforts to develop more reliable retrieval methods for extracting relevant data chunks, many questionanswering systems do not solely rely on local or domainspecific datasets for answering user queries. In addition to domain-specific user queries, many input queries do not necessitate retrieval from local datasets, which reduces the scalability and reliability of question-answering systems [11]. To tackle this limitation, retrieval methods based on query classification and routing mechanisms have proven effective in enhancing retrieval accuracy by directing the search toward a set of documents closely related to the user's query [10]. However, in our study, we demonstrate that even with semantic routing, the probability of retrieving irrelevant information remains non-negligible, particularly when dealing with a broad domain of potential queries.

Due to the inherently local search mechanism of Retrieval-Augmented Generation (RAG) systems [1], [12], even for queries that are largely irrelevant, the pipeline will still return a set number of passages. While existing research has made strides in addressing the challenge of imperfect data retrieval [11], [13], [14], the issue of broad-domain question answering in RAG systems has received relatively little attention.

Many queries submitted to RAG-enhanced questionanswering (QA) systems do not require data retrieval, such as daily conversations, general knowledge questions, or questions that large language models (LLMs) themselves can answer using their internal knowledge [10], [11], [15]. Retrieving passages for all input queries, especially in these cases, can significantly diminish the retrieval precision [11] and the context relevancy [16], often rendering them entirely irrelevant.

To address this issue, we propose a novel context-aware gate architecture for RAG-enhanced systems which is highly scalable of dynamically routing the LLM input prompt to increase the quality of pipeline outputs.

For better comprehension of our work, we highlight three main contributions in this study:

 Context Awareness Gate (CAG): We introduce a novel gate architecture that significantly broadens the domain accessibility of RAG systems. CAG leverages both query transformation and dynamic prompting to enhance the

- reliability of RAG pipelines in both open-domain and closed-domain question answering tasks.
- Vector Candidates (VC): We propose a statistical semantic analysis algorithm that improves semantic search and routing by utilizing the concept of pseudo-queries and in-dataset embedding distributions.
- Context Retrieval Supervision Benchmark (CRSB)

 Dataset: Alongside our technical and statistical investigations, we introduce the CRSB dataset, which consists of data from 17 diverse fields. We study the inner context-query distributions of this rich dataset and demonstrate the effectiveness and scalability of Vector Candidates on practical QA systems ¹.

Fig. 1. Context Awareness Gate (CAG) architecture for open domain questions answering

II. RELATED WORK

improving both retrieval quality and the outputs of large language models. Query2Doc [17] and HyDE [6] generate pseudo-documents based on the input query and utilize these for semantic search instead of the query itself. RQ-RAG [18] decomposes complex queries into simpler sub-queries, enhancing retrieval performance. The Rewrite-Retrieve-Read framework [7] employs query rewriting to improve the match between queries and relevant documents. Additionally, some studies suggest that for queries answerable by the large language model (LLM) based on its internal knowledge, query classification using a smaller language model can benefit overall pipeline performance [10].

In terms of improving model output quality, RobustRAG [3] investigates the vulnerability of RAG-based systems to malicious passages injected into the knowledge database. Conflict-Disentangle Contrastive Decoding (CD2) [19] proposes a framework to reconcile conflicts between an LLM's internal knowledge and external knowledge stored in a database. Yu et

al. (2024) [20] argue that simply adding more context to the LLM input prompt does not necessarily improve performance. In a recent and highly relevant study, Wang et al. (2024) [11] show that when retrieval precision is below 20%, RAG is not beneficial for QA systems. They highlight that when retrieval precision approaches zero, the RAG pipeline performs significantly worse than a pipeline without RAG.

III. APPROACH

To address the challenges associated with retrieving irrelevant information [11], we propose the Context Awareness Gate (CAG) architecture, which utilizes Vector Candidates as its primary statistical method for query classification. CAG significantly improves the performance of open-domain question-answering systems by dynamically adjusting the input prompt for the LLM, transitioning from RAG-based context prompts to Few Shot, Chain-of-Thought (CoT) [4], [5], and other methodologies. Consequently, the LLM responds to user queries based on its internal knowledge base.

A. Context Awareness Gate (CAG)

To address the issue of retrieving irrelevant data chunks for each input query, one solution is to ask a supervising large language model (LLM) to classify whether the query should prompt a retrieval-augmented generation (RAG) or a RAG-free response. This involves determining whether the input query falls within the scope of the local database. However, a significant limitation of this approach is the high computational cost of using an LLM with billions of parameters for a relatively simple task like query classification. Even smaller language models come with their own challenges, such as hallucination and limited reasoning capabilities [11].

To mitigate these issues, we propose an efficient yet highly effective statistical approach, known as Vector Candidates. The key idea behind Vector Candidates is to generate pseudoqueries for each document in the set, then calculate the distribution of embeddings and their similarities. By comparing the input query to this distribution, it is possible to estimate whether context retrieval is necessary with a certain level of probability. If the input query is far from this distribution, it is recommended not to retrieve any context and instead reformulate the LLM input prompt into a simpler few-shot question-answering task, rather than utilizing RAG. The overall architecture of CAG is presented in figure 1

The limitation of this approach may appear to be the necessity of generating numerous pseudo-queries for a local dataset. However, when comparing it to LLM supervision, the complexity of the Vector Candidates method, which operates on a set of contexts with C contexts and N pipeline input requests, reveals a significant advantage. Specifically, the complexity of the Vector Candidates method is O(1), as it relies solely on the number of contexts, regardless of the number of input requests (This happens when we disable the query transformation as one of the CAG steps). In contrast, the complexity of LLM supervision scales linearly with the number of input requests, represented as O(N). This indicates

 $^{^1{\}rm The}$ CRSB dataset is available at: https://huggingface.co/datasets/heydariAI/CRSB

that while generating pseudo-queries may seem cumbersome, the overall efficiency of the Vector Candidates approach is superior in scenarios with multiple input requests.

Alongside all the steps involved in the Vector Candidates approach, the process begins with transforming the user's input query into a more appropriate format to enhance the quality of semantic search. This query transformation is critical as it ensures that the input is optimized for better alignment with the embeddings used in the retrieval process. After this transformation, the Vector Candidates method is applied to assess the relevance of context retrieval.

Following query transformation and Vector Candidates analysis, the Context-Adaptive Generation (CAG) system dynamically adapts the input query into a suitable prompt. This involves determining whether context retrieval is necessary or if the LLM can answer the query based on its internal knowledge, utilizing techniques like Chain of Thought (CoT) reasoning [4], [5], agents, or other methods.

B. Vector Candidates

To address the issues of using a LLM for context supervision, we propose a statistical approach based on the distributions of emmbedings of contexts and pseudo-queries.

Algorithm 1 Vector Candidates Algorithm

Require: Contexts C, Pseudo Queries Q, Policy P, Threshold T, Input Query q

Ensure: A classification (True or False)

1: Compute dataset distributions based on cosine similarity:

$$D \leftarrow \frac{C \cdot Q}{\|C\| \|Q\|}$$

2: Compute input query similarities with contexts:

$$d \leftarrow \frac{C \cdot q}{\|C\| \|q\|}$$

- 3: **if** $\max(d) > P(D) T$ **then**
- 4: **return** True
- 5: else
- 6: **return** False
- 7: end if

Based on the proposed method in Algorithm (1), we first calculate the cosine similarity distributions between the contexts and pseudo-queries. Then, we compute the similarity between the user's original query and each context in the dataset. If the maximum similarity found between the original query and the contexts falls within the distribution of context-pseudo-query similarities, this suggests that retrieval-augmented generation (RAG) might be beneficial. Otherwise, it is more efficient to exclude RAG from the pipeline. This approach is grounded in our statistical analysis and the results presented by Wang et al. [11].

To measure the relevancy between the described distributions and the user query, we apply a policy P, which is a

hyperparameter derived from common statistical metrics such as minimum, mean, median, or quartiles. Additionally, we define a threshold T, which serves as another hyperparameter, to create a risk range for decision-making. This threshold helps in determining the confidence level for whether context retrieval should be applied, balancing the trade-off between precision and recall in the retrieval process.

C. Context Retrieval Supervision Bench (CRSB)

We introduce the Context Retrieval Supervision Bench (CRSB) dataset, which can be used to evaluate the performance of context-aware systems and retrieval-augmented generation (RAG) semantic routers. The CRSB contains 17 different topics, with each context associated with 3 pseudo-queries. This design allows the CRSB to encompass a total of 5,100 question-answer pairs. With a correct permutation, CRSB can offer more than 83000 context-query pairs to evaluate the context awareness systems and semantic routing pipelines..

IV. EXPERIMENTS

To analyze the statistical relationships between relevant and irrelevant context-query pairs, we examine the distribution of collected contexts and generated pseudo-queries. We begin by gathering 1,700 contexts across 17 distinct topics. For each context, we prompt the Gemma 2 9B language model [21] to generate three pseudo-queries. We applied all-mpnet-base-v2 as our embedding model and create a vector database of contexts and pseudo-queries embeddings [22].

We then calculate the similarity distributions for *Positive* (relevant) context-query pairs, where the queries require context retrieval, as well as for *Negative* (irrelevant) context-query pairs. With appropriate permutations, we analyze 83,000 *Positive* and *Negative* context-query pairs. Various statistical metrics are applied to these distributions, and the results are presented in Table I.

TABLE I STATISTICAL ANALYSIS ON CRSB

Policy	Positive	Negative
Minimum	0.110	-0.193
5th Percentile	0.554	-0.052
1st Quartile	0.662	-0.000
Mean	0.705	0.047
Median	0.716	0.039
3rd Quartile	0.762	0.086
95th Percentile	0.836	0.219
Maximum	0.912	0.654

As demonstrated in Table I, over 95% of positive context-question pairs exhibit a cosine similarity greater than 0.55, while more than 95% of negative context-query pairs have a cosine similarity lower than 0.21. The median value for the positive set exceeds 0.71, whereas the median for the negative set is below 0.04. Although the maximum value of the negative set is higher than the minimum value of the positive set, the density of the positive distribution is greater than

that of the negative distribution approximately 98.7% of the time. These statistics provide a comprehensive understanding that, by utilizing these metrics as a policy, we can develop a statistical method that is highly effective in classifying user queries to establish dynamic prompts, as discussed in previous sections.

Due to the algebraic nature of our method, we have integrated advanced high-performance techniques for parallel computing and accelerated linear algebra through the JAX framework [23]. Leveraging JAX's ability to handle automatic differentiation and just-in-time compilation (JIT) seamlessly, we are able to optimize the underlying computations for both CPU and GPU architectures. This not only allows for faster execution but also ensures scalability across large datasets and complex models. Our approach significantly improves the efficiency in computing the distributions of the dataset, offering a more streamlined and scalable solution for high-dimensional data analysis ².

V. RESULTS

To evaluate the capabilities and performance of the Context Awareness Gate (CAG), we applied this architecture to the SQuAD dataset [24] and our proposed benchmark, CRSB. We implemented an open-domain question-answering pipeline to assess the outcomes of CAG under two approaches:

- Setting CRSB as the local dataset while querying from SQuAD [24]. The pipeline should identify irrelevant queries to the dataset and refrain from using RAG, instead generating a few-shot response using the LLM input prompt.
- Setting CRSB as the local dataset and querying about information within CRSB. The pipeline should recognize the need for context retrieval and manage queries to retrieve relevant data according to RAG steps.

For both approaches, we evaluate using two metrics from RAGAS: context relevancy and answer relevancy [16]. In the first approach, due to the absence of retrieved context, we ask our model to generate a pseudo-context that answers the query and then calculate the context relevancy based on this generated context. Our question-answering base model is OpenAI GPT-40 mini. To demonstrate the effectiveness of the proposed pipeline, we compare the results of the classic RAG and the proposed CAG.

For the evaluation step, we applied both RAG and CAG. We set 95% density distribution as the Policy P and we set the threshold T to 0 as the Vector Candidates hyperparameters.

TABLE II EVALUATION OF CONTEXT-AWARE GENERATION (CAG) ON SQUAD AND CRSB

	Context Relevancy	Answer Relevancy
SQuAD on RAG	0.06	0.186
SQuAD on CAG (Ours)	0.684	0.821
CRSB on CAG (Ours)	0.783	0.84

²Our project is available at : https://github.com/heydaari/CAG

Our experimental evaluation demonstrates the superior performance of our method, CAG, in terms of both context relevancy and answer relevancy across different datasets. When applied to the SQuAD dataset [24], the baseline model RAG achieved a context relevancy score of 0.06 and an answer relevancy score of 0.186, highlighting significant limitations in capturing and retrieving relevant information. In contrast, our CAG approach dramatically improved these metrics, achieving a context relevancy of 0.684 and answer relevancy of 0.821. This indicates a substantial enhancement in the model's ability to retrieve and understand contextually relevant information and provide more accurate answers.

Furthermore, applying our CAG architecture to the CRSB dataset yielded even stronger results, with context relevancy reaching 0.783 and answer relevancy rising to 0.84. These findings suggest that our approach not only generalizes well across datasets but also significantly enhances the system's overall comprehension and open domain question answering capabilities.

According to the represented results in table II, we conclude that open domain question answering using RAG on a closed database, significantly reduces the reliability of the QA systems; which confirms the results of wang et al. (2024) [11].

VI. CONCLUSION

While RAG presents a widely adopted approach for question answering using local databases, it exhibits notable limitations in open-domain question answering. Previous research has seldom addressed the critical issue that retrieving irrelevant data chunks can detract from the model's ability to generate accurate responses, particularly when relying on the model's internal knowledge.

In this study, we propose a novel, statistically-driven, and highly scalable approach to mitigate this challenge. Our method, the Context Awareness Gate (CAG), dynamically adjusts the model's input domain, refining the retrieval process based on the semantic relevance of the data to the user's query. This adaptive mechanism enhances the model's capability to provide more accurate answers by optimizing its interaction with the dataset.

VII. FUTURE DIRECTION

This work opens up several promising avenues for further research and enhancement of Context Awareness Gate (CAG) in open-domain question answering systems:

• Incorporating Best Practices in Information Retrieval: Future work could focus on integrating the methodologies outlined in [15] to refine CAG's information retrieval pipeline. Specifically, these practices could optimize how CAG filters and ranks relevant information, leading to even more precise data selection. By enhancing the granularity of relevance scoring during retrieval, CAG could further improve its ability to identify and utilize the most contextually pertinent chunks of information, boosting both retrieval accuracy and downstream performance in generating high-quality responses.

• Replacing Pseudo-Context Search with Pseudo-Query Search: While the pseudo-context search strategy proposed in HyDE [6] has been effective, this study introduces the concept of pseudo-query search as a potentially more robust alternative. Future research could explore the efficacy of this approach across various datasets and domains. A systematic evaluation of the pseudo-query search could reveal whether it generalizes better across different question-answering tasks, especially in complex or multi-turn dialogues, where context awareness is crucial for maintaining conversation coherence.

REFERENCES

- [1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., "Retrievalaugmented generation for knowledge-intensive nlp tasks," Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.
- [2] J. Chen, H. Lin, X. Han, and L. Sun, "Benchmarking large language models in retrieval-augmented generation," in *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 38, no. 16, 2024, pp. 17754–17762.
- [3] C. Xiang, T. Wu, Z. Zhong, D. Wagner, D. Chen, and P. Mittal, "Certifiably robust rag against retrieval corruption," arXiv preprint arXiv:2405.15556, 2024.
- [4] S. Dhuliawala, M. Komeili, J. Xu, R. Raileanu, X. Li, A. Celikyilmaz, and J. Weston, "Chain-of-verification reduces hallucination in large language models," arXiv preprint arXiv:2309.11495, 2023.
- [5] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., "Chain-of-thought prompting elicits reasoning in large language models," Advances in neural information processing systems, vol. 35, pp. 24824–24837, 2022.
- [6] L. Gao, X. Ma, J. Lin, and J. Callan, "Precise zero-shot dense retrieval without relevance labels," arXiv preprint arXiv:2212.10496, 2022.
- [7] X. Ma, Y. Gong, P. He, H. Zhao, and N. Duan, "Query rewriting for retrieval-augmented large language models," arXiv preprint arXiv:2305.14283, 2023.
- [8] W. Peng, G. Li, Y. Jiang, Z. Wang, D. Ou, X. Zeng, D. Xu, T. Xu, and E. Chen, "Large language model based long-tail query rewriting in taobao search," in *Companion Proceedings of the ACM on Web Conference* 2024, 2024, pp. 20–28.
- [9] H. S. Zheng, S. Mishra, X. Chen, H.-T. Cheng, E. H. Chi, Q. V. Le, and D. Zhou, "Take a step back: Evoking reasoning via abstraction in large language models," arXiv preprint arXiv:2310.06117, 2023.
- [10] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and H. Wang, "Retrieval-augmented generation for large language models: A survey," arXiv preprint arXiv:2312.10997, 2023.
- [11] F. Wang, X. Wan, R. Sun, J. Chen, and S. Ö. Arık, "Astute rag: Overcoming imperfect retrieval augmentation and knowledge conflicts for large language models," arXiv preprint arXiv:2410.07176, 2024.
- [12] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, "Retrieval augmented language model pre-training," in *International conference* on machine learning. PMLR, 2020, pp. 3929–3938.
- [13] Z. Jin, P. Cao, Y. Chen, K. Liu, X. Jiang, J. Xu, Q. Li, and J. Zhao, "Tug-of-war between knowledge: Exploring and resolving knowledge conflicts in retrieval-augmented language models," arXiv preprint arXiv:2402.14409, 2024.
- [14] A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi, "When not to trust language models: Investigating effectiveness of parametric and non-parametric memories," arXiv preprint arXiv:2212.10511, 2022.
- [15] X. Wang, Z. Wang, X. Gao, F. Zhang, Y. Wu, Z. Xu, T. Shi, Z. Wang, S. Li, Q. Qian *et al.*, "Searching for best practices in retrieval-augmented generation," *arXiv preprint arXiv:2407.01219*, 2024.
- [16] S. Es, J. James, L. Espinosa-Anke, and S. Schockaert, "Ragas: Automated evaluation of retrieval augmented generation," arXiv preprint arXiv:2309.15217, 2023.
- [17] L. Wang, N. Yang, and F. Wei, "Query2doc: Query expansion with large language models," arXiv preprint arXiv:2303.07678, 2023.

- [18] C.-M. Chan, C. Xu, R. Yuan, H. Luo, W. Xue, Y. Guo, and J. Fu, "Rq-rag: Learning to refine queries for retrieval augmented generation," arXiv preprint arXiv:2404.00610, 2024.
- [19] Z. Jin, P. Cao, Y. Chen, K. Liu, X. Jiang, J. Xu, Q. Li, and J. Zhao, "Tug-of-war between knowledge: Exploring and resolving knowledge conflicts in retrieval-augmented language models," arXiv preprint arXiv:2402.14409, 2024.
- [20] Y. Yu, W. Ping, Z. Liu, B. Wang, J. You, C. Zhang, M. Shoeybi, and B. Catanzaro, "Rankrag: Unifying context ranking with retrievalaugmented generation in llms," arXiv preprint arXiv:2407.02485, 2024.
- [21] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard, B. Shahriari, A. Ramé et al., "Gemma 2: Improving open language models at a practical size," arXiv preprint arXiv:2408.00118, 2024.
- [22] N. Reimers and I. Gurevych, "Sentence-bert: Sentence embeddings using siamese bert-networks," in *Proceedings of the 2019 Conference* on *Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, 11 2019. [Online]. Available: https://arxiv.org/abs/1908.10084
- [23] A. Roberts, H. W. Chung, G. Mishra, A. Levskaya, J. Bradbury, D. Andor, S. Narang, B. Lester, C. Gaffney, A. Mohiuddin et al., "Scaling up models and data with t5x and seqio," *Journal of Machine Learning Research*, vol. 24, no. 377, pp. 1–8, 2023.
- [24] P. Rajpurkar, "Squad: 100,000+ questions for machine comprehension of text," arXiv preprint arXiv:1606.05250, 2016.