

Metrology and Sensing

Lecture 11-3: Phase retrieval

2021-01-14

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Content

- Apodization
- Image processing
- Examples

Phase Retrieval with Apodization

Analysis taking apodization into account greatly improves the result

input-stack

Phase Retrieval with Apodization

- If the pupil shows a significant illumination distribution: apodization must be taken into account
- Apodization can be fitted too
- Better: measured apodization used

Phase Retrieval with Apodization

- Retrieval without / with Apodization
- Correlation over z

Image Processing

- Determination background intensity preferred: corner, every z-plane individually
- Truncation of outer region without signal
- Subtraction of underground

Noise in Signal

- Noise depends on light level
- Defocussed z-planes more critical
- Modal fit with Zernikes is low pass filter

Centering - Line of Sight

Centering of z-stack images:

- Line of sight (centroid moves exactly on a line))
- 2. Systematic errors due to mechanical inaccuracy (line tilt)
- 3. Statistical errors

 Problems for truncation of the beam profiles: errors in cetroid determination

Object Space Defocussing

a) defocussing in image space

b) defocussing in object space

Object Space Defocussing

- Good Linearity of Zernike coefficients
- Small retrace non-linearity

$$c_{j}(z) = c_{jo} \cdot \left(1 + + \Delta c_{lin} \cdot \frac{\Delta z}{R_{E}}\right)$$

Phase Retrieval Accuracy

Evaluation of real measuring data

Comparison of Zernike coefficients with Hartmann test results: accuracy in the range $\lambda/100$

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Separation of Circular Symmetric Effects

- Circular symmetric contributions can be separated over defocussing range:
 - 1. apodization: increase in diameter in focal region
 - 2. finite pinhole size: uniform broadening vs defocus
 - 3. spherical aberration: asymmetric around focal plane

Phase Retrieval Reproducability

- Reproducability of 3 measurements
- Very good agreement with uncertainties in the range of $\lambda/100$ for every Zernike coefficients for the first 36 terms
- No dependence on symmetry

Example Residuum

 Comparison of intensity profile cross sections x / y

Blue : Input Red : Model

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Problems and Suggestions

- Data not truncated
- Centering of stack images on common line
- Don't use more than 36 Zernikes
- Pinhole not larger than 2x D_{airy}
- Deconvolution for nearly incoherent illumination
- Preferred dynamic pinhole-match and forward convolution of finite size
- Proposed: n > 7 z-planes in the intervall -2 Ru...+2 Ru
- At least 6 detector pixels inside the Airy diameter in the focus plane
- Denoising of data
- Subtraction of background
- Low-pass filtering of Zernike modal functions in pupil
- If pupil apodization present: must be taken into account
- Normalization of intensity in every z-plane