Support Vector Machines

Javier Béjar @(1) (S) (3)

LSI - FIB

Term 2012/2013

- Support Vector Machines Introduction
- Maximum Margin Classification
- Soft Margin Classification
- 4 Non linear large margin classification
- Application

- Support Vector Machines Introduction
- 2 Maximum Margin Classification
- Soft Margin Classification
- 4 Non linear large margin classification
- 6 Application

Linear separators

- As we saw with the perceptron, one way to perform classification is to find a linear separator (for binary classification)
- The idea is to find the equation of a line $w^Tx + b = 0$ that divides the set of examples in the target classes so:

$$w^T x + b > 0 \Rightarrow Positive class$$

 $w^T x + b < 0 \Rightarrow Negative class$

• This is just the problem that the single layer perceptron solves (b is the bias weight)

Optimal linear separator

- Actually any line that divides the examples can be the answer for the problem
- The question that we can ask is, what line is the best one?

Optimal linear separator

- Some boundaries seem a bad choice due to poor generalization
- We have to maximize the probability of classifying correctly unseen instances
- We want to minimize the expected generalization loss (instead of the expected empirical loss)

- Support Vector Machines Introduction
- Maximum Margin Classification
- Soft Margin Classification
- 4 Non linear large margin classification
- 6 Application

Maximum Margin Classification

- Maximizing the distance of the separator to the examples seems the right choice (actually supported by PAC learning theory)
- This means that only the nearest instances to the separator matter (the rest can be ignored)

Classification Margin

 We can compute the distance from an example x_i to the separator as:

$$r = \frac{w^T x_i + b}{||w||}$$

- The examples closest to the separator are support vectors
- The margin (ρ) of the separator is the distance between support vectors

Large Margin Decision Boundary

- The separator has to be as far as possible from the examples of both classes
- This means that we have to **maximize** the margin
- We can normalize the equation of the separator so the distance in the supports are 1 or -1, by

$$r = \frac{w^T x + b}{||w||}$$

- So the length of the optimal margin is $m = \frac{2}{||w||}$
- This means that maximizing the margin is the same that minimizing the norm of the weights

Computing the decision boundary

- Given a set of examples $\{x_1, x_2, \dots, x_n\}$ with class labels $y_i \in \{+1, -1\}$
- The decision boundary that classify the examples correctly holds

$$y_i(w^Tx_i+b) \geq 1, \ \forall i$$

This allows to define the problem of learning the weights as an optimization problem

Computing the decision boundary

• The primal formulation of the optimization problem is:

Minimize
$$\frac{1}{2}||w||^2$$

subject to
$$y_i(w^Tx_i + b) \ge 1$$
, $\forall i$

• This problem is difficult to solve in this formulation, but we can rewrite the problem in a more convenient form

Constrained optimization (a little digression)

- Suppose we want to minimize f(x) subject to g(x) = 0
- A necessary condition for a point x_0 to be a solution is

$$\begin{cases} \frac{\partial}{\partial x} (f(x) + \alpha g(x)) \big|_{x=x_0} = 0 \\ g(x) = 0 \end{cases}$$

- ullet Being lpha the Lagrange multiplier
- If we have multiple constraints, we just need one multiplier per constraint

$$\begin{cases} \frac{\partial}{\partial x} \left(f(x) + \sum_{i=1}^{n} \alpha_{i} g_{i}(x) \right) \Big|_{x=x_{0}} = 0 \\ g_{i}(x) = 0 \ \forall i \in 1 \dots n \end{cases}$$

Constrained optimization (a little digression)

- For inequality constraints $g_i(x) \le 0$ we have to add the constraint that the Lagrange multipliers have to be positive $\alpha_i \ge 0$
- If x_0 is a solution to the constrained optimization problem

$$\min_{x} f(x)$$
 subject to $g_i(x) \leq 0 \ \forall i \in 1 \dots n$

• There must exist $\alpha_i \geq 0$ such that x_0 satisfies

$$\begin{cases} \frac{\partial}{\partial x} \left(f(x) + \sum_{i=1}^{n} \alpha_{i} g_{i}(x) \right) \Big|_{x=x_{0}} = 0 \\ g_{i}(x) = 0 \ \forall i \in 1 \dots n \end{cases}$$

- The function $f(x) + \sum_{i=1}^{n} \alpha_i g_i(x)$ is called the Lagrangian
- The solution is the point of gradient 0

Computing the decision boundary (we are back)

• The primal formulation of the optimization problem is:

Minimize
$$\frac{1}{2}||w||^2$$

subject to
$$1 - y_i(w^Tx_i + b) \le 0$$
, $\forall i$

The Lagrangian is¹:

$$\mathcal{L} = \frac{1}{2} w^{T} w + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} (w^{T} x_{i} + b))$$

Computing the decision boundary (we are back)

• If we compute the derivative of \mathcal{L} with respect to w and b and we set them to zero (we are computing the gradient):

$$w + \sum_{i=1}^{n} \alpha_i (-y_i) x_i = 0 \Rightarrow w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

and

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The dual formulation

• If we substitute w in the Lagrangian \mathcal{L}

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i} + b \right) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} + \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \alpha_{i} y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i}$$

$$-b \sum_{i=1}^{n} \alpha_{i} y_{i} \quad (and \quad given \quad that \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0)$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} + \sum_{i=1}^{n} \alpha_{i} \quad (rearranging \quad terms)$$

The dual formulation

- This problem is known as the dual problem (the original is the primal)
- This formulation only depends on the α_i
- Both problems are linked, given the w we can compute the α_i and viceversa
- This means that we can solve one instead of the other
- Now this problem is a maximization problem $(\alpha_i \ge 0)$

The dual problem

The formulation of the dual problem is

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0, \quad \alpha_i \ge 0 \quad \forall i$

- This a Quadratic Programming problem (QP)
- This means that the parameters form a parabolloidal surface, and an optimal can be found
- We can obtain w by

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

• b can be obtained from a positive support vector (x_{psv}) knowing that $w^Tx_{psv} + b = 1$

Geometric Interpretation

Characteristics of the solution

- Many of the α_i are zero
 - w is a linear combination of a small number of examples
 - We obtain a sparse representation of the data (data compression)
- The examples x_i with non zero α_i are the support vectors (SV)
- The vector of parameters can be expressed as:

$$w = \sum_{\forall i \in SV} \alpha_i y_i x_i$$

Classifying new instances

In order to classify a new instance z we just have to compute

$$sign(w^Tz + b) = sign(\sum_{\forall i \in SV} \alpha_i y_i x_i^T z + b)$$

This means that w does not need to be explicitly computed

Solving the QP problem

- Quadratic programming is a well known optimization problem
- Many algorithms have been proposed
- One of the most popular is Sequential Minimal Optimization (SMO)
 - Picks a pair of variables and solves a QP problem for two variables (trivial)
 - Repeats the procedure until convergence

- Support Vector Machines Introduction
- 2 Maximum Margin Classification
- Soft Margin Classification
- 4 Non linear large margin classification
- 6 Application

Non separable problems

- This algorithm works well for separable problems
- Sometimes data has errors and we want to ignore them to obtain a better solution
- Sometimes data is just non linearly separable
- We can obtain better linear separators being less strict

Soft Margin Classification

- We want to be permissive for certain examples, allowing that their classification by the separator diverge from the real class
- This can be obtained by adding to the problem what is called **slack** variables (ξ_i)
- This variables represent the deviation of the examples from the margin
- Doing this we are relaxing the margin, we are using a soft margin

Soft Margin Classification

- We are allowing an error in classification based on the separator $w^Tx + b$
- The values of ξ_i approximate the number of missclassifications

Soft Margin Hyperplane

• In order to minimize the error, we can minimize $\sum_i \xi_i$ introducing the slack variables to the constraints of the problem:

$$\begin{cases} w^T x_i + b \ge 1 - \xi_i & y_i = 1 \\ w^T x_i + b \ge -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 \end{cases}$$

- $\xi_i = 0$ if there are no errors (linearly separable problem)
- The number of resulting supports and slack variables give an upper bound of the leave one out error

The primal optimization problem

 We need to introduce this slack variables on the original problem, we have now:

Minimize
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

subject to $y_i(w^Tx_i + b) \ge 1 - \xi_i, \ \forall i, \xi_i \ge 0$

- Now we have an additional parameter C that is the tradeoff between the error and the margin
- We will need to adjust this parameter

The dual optimization problem

 Performing the transformation to the dual problem we obtain the following:

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0$, $C \ge \alpha_i \ge 0 \ \forall i$

- We can recover the solution as $w = \sum_{\forall i \in SV} \alpha_i, y_i x_i$
- This problem is very similar to the linearly separable case, except that there is a upper bound C on the values of α_i
- This is also a QP problem

- Support Vector Machines Introduction
- 2 Maximum Margin Classification
- Soft Margin Classification
- Non linear large margin classification
- 6 Application

Non linear large margin classification

- So far we have only considered large margin classifiers that use a linear boundary
- In order to have better performance we have to be able to obtain non-linear boundaries
- The idea is to transform the data from the input space (the original attributes of the examples) to a higher dimensional space using a function $\phi(x)$
- This new space is called the feature space
- The advantage of the transformation is that linear operations in the feature space are equivalent to non-linear operations in the input space
- Remember the RBFs networks?

Feature Space transformation

The XOR problem

• The XOR problem is not linearly separable in its original definition, but we can make it linearly separable if we add a new feature $x_1 \cdot x_2$

x_1	<i>X</i> ₂	$x_1 \cdot x_2$	x ₁ XOR x ₂
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

• The linear function $h(x) = 2x_1x_2 - x_1 - x_2 + 1$ classifies correctly all the examples

Transforming the data

- Working directly in the feature space can be costly
- We have to explicitly create the feature space and operate in it
- We may need infinite features to make a problem linearly separable
- We can use what is called the Kernel trick

The Kernel Trick

- In the problem that define a SVM only the inner product of the examples is needed
- This means that if we can define how to compute this product in the feature space, then it is not necessary to explicitly build it
- There are many geometric operations that can be expressed as inner products, like angles or distances
- We can define the kernel function as:

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

Kernels - Example

- We can show how this kernel trick works in an example
- Lets assume a feature space defined as:

$$\phi\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2x_2^2, \sqrt{2}x_1x_2)$$

A inner product in this feature space is:

$$\left\langle \phi\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right), \phi\left(\left[\begin{array}{c}y_1\\y_2\end{array}\right]\right)\right\rangle = (1+x_1y_1+x_2y_2)^2$$

 So, we can define a kernel function to compute inner products in this space as:

$$K(x, y) = (1 + x_1y_1 + x_2y_2)^2$$

and we are using only the features from the input space

Kernel functions - Properties

• Given a set of examples $X = \{x_1, x_2, \dots x_n\}$, and a symmetric function k(x, z) we can define the kernel matrix K as:

$$K = \phi^{\mathsf{T}} \phi = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \cdots & \cdots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

- If K is a symmetric and positive definite matrix, then k(x,z) is a kernel function
- The justification is that if K is a sdp matrix then can be decomposed in:

$$K = V \Lambda V^T$$

 V can be interpreted as a projection in the feature space (remember feature projection?)

Kernel functions

- Examples of functions that hold this condition are:
 - Polynomial kernel of degree d: $K(x,y) = (x^Ty + 1)^d$
 - Gaussian function with width σ : $K(x,y) = \exp(-||x-y||^2/2\sigma^2)$
 - Sigmoid hiperbolical tangent with parameters k and θ : $K(x,y) = \tanh(kx^Ty + \theta)$ (only for certain values of the parameters)
- Kernel functions can also be interpreted as similarity function
- A similarity function can be transformed in a kernel given that hold the sdp matrix condition

The dual problem

 Due to the introduction of the kernel function, the optimization problem has to be modified:

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0$, $C \ge \alpha_i \ge 0 \ \forall i$

For classifying new examples:

$$h(z) = sign\left(\sum_{\forall i \in SV} \alpha_i, y_i k(x_i, z) + b\right)$$

The advantage of using kernels

- Since the training of the SVM only needs the value of $K(x_i, x_j)$ there is no constrains about how the examples are represented
- We only have to define the kernel as a similarity among examples
- We can define similarity functions for different representations
 - Strings, sequences
 - Graphs/Trees
 - Documents
 - ...

- Support Vector Machines Introduction
- 2 Maximum Margin Classification
- Soft Margin Classification
- 4 Non linear large margin classification
- Application

Splice-Junction gene sequences

- Identification of gene sequence type (Bioinformatics)
- 60 Attributes (Discrete)
- Attributes: DNA base at position 1-60
- 3190 instances
- 3 classes
- Methods: Support vector machines
- Validation: 10 fold cross validation

Splice-Junction gene sequences: Models

- SVM (linear): accuracy 90.9%, 1331 Support Vectors
- SVM (linear, C=1): accuracy 91.8%, 608 Support Vectors
- SVM (linear, C=5): accuracy 91.5%, 579 Support Vectors
- SVM (quadratic): accuracy 91.4%, 1305 Support Vectors
- SVM (quadratic, C=5): accuracy 91.6%, 1054 Support Vectors
- SVM (cubic, C=5): accuracy 91.9%, 1206 Support Vectors