F.B.122411E

JSPM's

Rajarshi Shahu College of Engineering, Tathawade, Pune- 411033

(An autonomous institute affiliated to Savitribai Phule Pune University)

Examination: Mid Semester (MSE)

Semester: I

Academic Year: 2024-25

Programme: Comp, Civil, E&TC, Electrical.

Examination Class: F.Y. B. Tech.

Course Code: ES 1206 T Course Name and Pattern: Physics for Engineers (2023)

Duration: 1.15 hours.

Max. Marks: 30 Marks

Instructions to the Candidates

- 1. Solve section All three sections A, B, C
- 2. Choose and answer one option from each question.
- 3. Assume suitable and necessary data wherever required.
- 4. Use of log table, scientific calculator, steam table is allowed.

	Section A			
Q. No.	Question	Bloom's	Marks	COs
		Level		
1	Define MACH number and MACH angle?	BL1	3	CO1
	OR			
1	Write characteristics of shock wave.(any three)	BL1	3	CO1
2	State and Derive Lamberts Cosine law.	BL1	3	CO1
	OR			
2	Define 1) Reverberation time 2) Echo	BL2	3	CO1
3	Distinguish between Single mode and multi-mode fibers	BL2	3	CO2
	OR			
3	Define the terms 1) Critical angle 2) Numerical aperture	BL2	3	CO2
4	Define 1) population inversion 2)stimulated emission of radiation	BL2	3	CO ₂
	OR			
4	What is self-luminous object and non-Self luminous object? Explain in short.	BL1	3	CO2

Section B

Q. No.	Question	Bloom's	Marks	COs
5	Explain Principal Construction and Working of He-Ne Gas Laser also state its merits	Level BL3	5	CO2
	OR			
5	What is spring? Explain different types of spring	BL2	5	CO2

6	The distance between a pointed source of light and a screen, which was 60 cm is increased to 180 cm. Calculate the percentage change in intensity on the screen OR Explain application of laser in LIDAR also Calculate the angle of acceptance of a given optical fiber such that Light rays can travel through the fiber. Data given: $n_1 = 1.563$, $n_2 = 1.498$.		5	CO2				
Section C								
Q. No.	Question	Bloom's	Marks	COs				
7	Explain forced electrical oscillations and obtain differential equation expressing forced electrical oscillation. Also Calculate the reverberation time of hall having volume 5000 m ³ and Surface area of sound absorbing material is 2500 m ² . Given	Level	1, 2, 11, 11, 11, 11, 11, 11, 11, 11, 11	COS				
	of sound absorbing material is 3500 m ² . Given average coefficient of absorption 0.078 OWU	BL3	8	CO3				
	OR							
7	Explain Principal Construction and Working of Solid state state Ruby Laser also state its De-Merits	BL3	8	CO3				