

This is done by chad bump function lemma. Here we already done everything except (4)

And by local finiteness of the partition, $\forall x \in A$, only finite $\forall i$; are positive at xDefine $\lambda = \sum_{i=1}^{\infty} \psi_i$ $\Rightarrow \lambda$ is bolded.

And λ is C^{∞} So define $\psi_i(x) = \begin{cases} \psi_i(x) \\ \lambda(x) \end{cases}$, $x \in A$ for each $i \in \mathbb{N}$ $\Rightarrow \sum_{i=1}^{\infty} \psi_i = 1$ This finishes the construction of the POU

If Case L $f \ge 0$ (1) Suppose $\sum_{A} y_{i}f$ converges

Let $D \in J_{C}$ and $D \subseteq A$ By local finiteness $\ni M$ st. $\forall i \ge M$, y_{i} vanishes on DSo $f|_{D} = \sum_{i=1}^{M} y_{i}|_{D} f|_{D}$ $\Rightarrow \int_{D} f = \sum_{i=1}^{M} \int_{D} y_{i}f$ $\leq \sum_{i=1}^{M} \int_{A} y_{i}f$ by monotonicity $= \sum_{i=1}^{M} \int_{A} y_{i}f$ $\leq \sum_{i=1}^{\infty} \int_{A} y_{i}f$ So $\sum_{i=1}^{\infty} \int_{A} y_{i}f$ conv $\Rightarrow \int_{D} f \ni f$ for any $D \in \mathcal{I}_{C}$ in A $\Rightarrow \int_{A} f \ni \int_{A} f \leq \sum_{i=1}^{\infty} \int_{A} y_{i}f$

(2) Suppose $\int_{A} f = \frac{1}{2} \sum_{i=1}^{N} y_{i} f$ by linearly $\leq \int_{A} f \quad \text{since } \sum_{i=1}^{N} y_{i} f \leq f$ $\Rightarrow \sum_{i=1}^{N} \int_{A} y_{i} f \leq \int_{A} f \quad \text{so it conv.}$ By (1)(2) $\Rightarrow \sum_{i=1}^{N} \int_{A} y_{i} f \quad \text{conv iff } \int_{A} f \Rightarrow f \Rightarrow f$ and they equals.

[ase 2 General f $f = f_{1} - f_{2}$ $\int_{A} f = \int_{A} f_{1} - \int_{A} f_{2}$ $= \sum_{i=1}^{N} \int_{A} y_{i} f_{1} - \sum_{i=1}^{N} \int_{A} y_{i} f$ $= \sum_{i=1}^{N} \int_{A} y_{i} f$ $= \sum_{i=1}^{N} \int_{A} y_{i} f$