MSBD 5004 Mathematical Methods for Data Analysis Homework 2

Due date: 27 March, 11:59pm, Friday

- 1. Let $(V, \|\cdot\|)$ be a normed vector space.
 - (a) Prove that, for all $x, y \in V$,

$$|||x|| - ||y||| \le ||x - y||.$$

(b) Let $\{x_k\}_{k\in\mathbb{N}}$ be a convergent sequence in V with limit $x\in V$. Prove that

$$\lim_{k\to\infty}\|\boldsymbol{x}_k\|=\|\boldsymbol{x}\|.$$

(Hint: Use part (a).)

(c) Let $\{x^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in V and $x, y \in V$. Prove that, if

$$oldsymbol{x}^{(k)}
ightarrow oldsymbol{x}, \quad ext{and} \quad oldsymbol{x}^{(k)}
ightarrow oldsymbol{y},$$

then x = y. (In other words, the limit of the same sequence in a normed vector space is unique.)

- 2. Let V be a vector space, and $\langle \cdot, \cdot \rangle$ be an inner product on V. Use the definition of inner product to prove the following.
 - (a) Prove that $\langle \mathbf{0}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{0} \rangle = 0$ for any $\mathbf{x} \in V$. Here $\mathbf{0}$ is the zero vector in V.
 - (b) Prove that the second condition

$$\langle \alpha x_1 + \beta x_2, y \rangle = \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle, \quad \forall x_1, x_2, y \in V, \alpha, \beta \in \mathbb{R}$$

is equivalent to

$$\langle \boldsymbol{x}_1 + \boldsymbol{x}_2, \boldsymbol{y} \rangle = \langle \boldsymbol{x}_1, \boldsymbol{y} \rangle + \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle$$
 and $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$, $\forall \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}, \boldsymbol{y} \in V, \alpha \in \mathbb{R}$.

- 3. $\mathbb{R}^{m \times n}$ is a vector space over \mathbb{R} . Show that $\langle A, B \rangle = \operatorname{trace}(A^T B)$ for $A, B \in \mathbb{R}^{m \times n}$ is an inner product on $\mathbb{R}^{m \times n}$. Here $\operatorname{trace}(\cdot)$ is the trace of a matrix, i.e., the sum of all diagonal entries.
- 4. Consider the polynomial kernel $K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}^T \boldsymbol{y} + 1)^2$ for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$. Find an explicit feature map $\phi : \mathbb{R}^2 \to \mathbb{R}^6$ satisfying $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle = K(\boldsymbol{x}, \boldsymbol{y})$, where the inner product the standard inner product in \mathbb{R}^6 .
- 5. (You don't need to do anything for this question.) A good Matlab code and demonstration of kernel K-means can be found at

http://www.dcs.gla.ac.uk/~srogers/firstcourseml/matlab/chapter6/kernelkmeans.html Read the code. Run the code in Matlab, if possible, to see how kernel K-means works for nonlinear data.