Chapter 1 Preliminaries

December 19, 2021

1 Notation

Definition 1.1. A first-order structure $\mathcal{M} = (M, R_1, R_2, ..., f_1, f_2, ..., c_1, c_2, ...)$ consists of the following data:

- an underlying set M;
- relations $R_1 \subseteq M^{n_1}, R_2 \subseteq M^{n_2}, ...;$
- functions $f_1:M^{m_1}\to M, f_2:M^{m_2}\to M,...;$
- constants c_1, c_2, \dots

Example 1.2. .

- Group $(G, \cdot, \cdot^{-1}, e)$;
- Ring $(G, +, \cdot, 0, 1)$;
- Ordered set (X, \leq) ;
- Graph (V, E);

Definition 1.3. A first-order formula is an expression of the form

$$\psi(y_1, ..., y_m) = \forall x_1 \exists x_2 ... \forall x_{n-1} \exists x_n \phi(x_1, ..., x_n, y_1, ..., y_m),$$

where ϕ is a boolean combination of basic relations and basic functions.

- \bullet We denote the set of all formulas by L
- If $B \subseteq M$ is a set of parameters, $L(B) = \{\psi(x,b)|\ \psi \in L, b \in B^{|b|}\};$
- If $\psi(x) \in L(B)$ is satisfied by $a \in M^{|x|}$, we denote it by $\mathcal{M} \models \psi(a)$ or $a \models \psi(x)$;

- If $\Psi(x)$ is a set of formulas, by $a \models \Psi(x)$, we mean that $a \models \psi(x)$ for each $\psi \in \Psi$;
- If $A \subseteq M^{|x|}$, then $\psi(A) = \{a \in A | a \models \psi(x)\}.$
- We say that $X \subseteq M^n$ is B-definable if there is $\psi(x) \in L(B)$ such that $X = \psi(M^n)$.
- A formula has no free variables is called a sentence.
- The theory of \mathcal{M} , denoted by $\mathrm{Th}(\mathcal{M})$, is the collection of all sentence that are ture in \mathcal{M} .

Example 1.4. $\mathcal{M} = (\mathbb{C}, +, \times, 0, 1)$

- $Th(\mathcal{M}) = ACF_0$ (algebraicly closed field of char 0);
- ACF_0 has quantifier elimination;
- Definable subsets of \mathbb{C}^n are exactly constructible sets;
- Every definable subset of \mathbb{C} is either finite or cofinite (strongly minimal);

Example 1.5. $\mathcal{M} = (\mathbb{R}, +, \times, 0, 1, <)$

- $Th(\mathcal{M}) = RCF$ (ordered real closed field);
- *RCF* has quantifier elimination;
- Definable subsets of \mathbb{R}^n are exactly semialgebraic sets;
- Every definable subset of \mathbb{R} is a finite union of points and intervals (o-minimal);

Example 1.6. $\mathcal{M} = (\mathbb{N}, +, \times, 0, 1)$

- Th(\mathcal{M}) does not have quantifier elimination;
- Undecidable;

Definition 1.7.

- Let T be a set of sentences, we say that T is consistent if there is $\mathcal{M} \models T$;
- Let T_1, T_2 are two sets of sentences, we say that $T_1 \models T_2$ if every model of T_1 is also a model of T_2 ;
- A set of sentences T is called a theory if T is consistent and $T \models \sigma \implies \sigma \in T$
- A theory T is complete if for each sentence σ , either $\sigma \in T$ or $\neg \sigma \in T$;
- We say that \mathcal{M} and \mathcal{N} are elementarily equivalent, denoted by $\mathcal{M} \equiv \mathcal{N}$, if $\mathrm{Th}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$.

Definition 1.8. Let \mathcal{M} and \mathcal{N} be L-structures.

• We say that a partial map $f: M \to N$ is an elementary map if for $a_1, ..., a_k \in \text{dom}(f)$ and any formula $\phi \in L$

$$\mathcal{M} \models \phi(a_1, ..., a_k) \iff \mathcal{N} \models \phi(f(a_1), ..., f(a_k))$$

• We say that \mathcal{M} is an elementary substructure of \mathcal{N} , denoted by $\mathcal{M} \prec \mathcal{N}$, if the embedding map is elementary.

If \mathcal{M} is finite, then $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(\mathcal{N}) \implies \mathcal{M} \cong \mathcal{N}$.

Fact 1.9. [Löwenheim-Skolem Theory] Suppose that \mathcal{M} is an infinite structure. Then

- for any $A \subseteq M$, there is $M_0 \prec \mathcal{M}$ such that $A \subseteq M_0$ and $|M_0| = |A| + |L|$;
- for any cardinal $\kappa > |\mathcal{M}|$, there is $\mathcal{N} \succ \mathcal{M}$ such that $|\mathcal{N}| = |L| + \kappa$.

Definition 1.10 (interpretation). Let \mathcal{M} be an L-structure and \mathcal{N} be an L-structure.

- An interpretation of \mathcal{M} in \mathcal{N} is a map f from a subset of \mathbb{N}^n onto M such that for every definable subset $X \subseteq M^n$, its preimage $f^{-1}(X)$ is definable in \mathcal{N} .
- \mathcal{M} and \mathcal{N} are bi-interpretable if there exists an interpretation of \mathcal{M} in \mathcal{N} and an interpretation of \mathcal{N} in \mathcal{M} such that the composite interpretations of \mathcal{M} in itself and of \mathcal{N} in itself are definable in \mathcal{M} and \mathcal{N} , respectively.

Example 1.11. .

- (Julia Robison) $(\mathbb{Z}, +, \times)$ is definable in $(\mathbb{Q}, +, \times)$;
- If (G,\cdot) is a group and H is a definable subgroup, then G/H is interpretable in G;
- $(\mathbb{C}, +, \times)$ is interpretable in $(\mathbb{R}, +, \times)$, but not the other way around.
- Every structure in a finite relational language is bi-interpretable with a graph.
- (Mekler's construction) Every structure in a finite relational language is interpretable in a pure group.

Example 1.12. [Morleyzation].

- Let \mathcal{M}_0 be an L_0 -structure;
- \mathcal{M}_1 is an expansion of \mathcal{M}_0 in the language

$$L_1 = L_0 \cup \{ R_{\phi}(x) | \phi(x) \in L \}$$

and interpret $R_{\phi}(M) = \phi(M)$;

- every L_0 -formula is equivalent to a quantifier-free L_1 -formula;
- ...
- We obtain an expansion \mathcal{M}_{∞} of \mathcal{M}_0 in the language $L_{\infty} = \bigcup_{n < \omega} L_n$;
- Then \mathcal{M}_0 and \mathcal{M}_{∞} have the same definable sets and thus they are bi-interpretable.

Fact 1.13. (Compactness Theorem)Let L be an arbitrary language, and let Φ be a set of L-sentences (of arbitrary size!). Assume that every finite subset $\Phi_0 \subseteq \Psi$ is consistent(i.e.there is some L-structure $\mathcal{M} \models \Psi_0$), then Ψ is consistent.

2 Saturation, monster models, definable and algebraic closures

Definition 2.1. Let $A \subseteq \mathcal{M}$ be a set of parameters.

- By a partial type $\Phi(x)$ over A we mean a collection of formulas of the form $\phi(x)$ with parameters from A such that every finite subcollection has a common solution in \mathcal{M} .
- By a complete type over A we mean a partial type such that for every formula $\phi(x) \in L(A)$, either $\phi(x)$ or $\neg \phi(x)$ is in it.
- For $b \in \mathcal{M}$, $\operatorname{tp}(b/A) = \{\phi(x) | b \models \phi(x) \text{ and } \phi \in L(A)\}$, is called the complete type of b over A.

Definition 2.2. Let κ be an infinite cardinal.

- We say that \mathcal{M} is κ -saturated if for any set of parameters $A \subseteq M$ with $|A| < \kappa$, every partial type $\Phi(x)$ over A with $|x| < \kappa$ can be realized in \mathcal{M} (enough to verifyit for 1-types).
- We say that \mathcal{M} is saturated if it is $|\mathcal{M}|$ -saturated;
- We say that \mathcal{M} is (strongly) κ -homogenous if any partial elementary map from \mathcal{M} to itself with a domain of size $< \kappa$ can be extended to an automorphism of \mathcal{M} .

Fact 2.3. For any T and κ , there is $\mathcal{M} \models T$ which is κ -saturated and k-homogeneous.

Proof. .

Claim. For any $\mathcal{M}_0 \models T$, there is $\mathcal{M}_1 \succ \mathcal{M}_0$ such that \mathcal{M}_1 is $|\mathcal{M}_0|^+$ -saturated. (Exercise)

- Let $\mathcal{M}_0 \prec \mathcal{M}_1 \prec ... \prec \mathcal{M}_{\alpha} \prec ...$ be a elementary chain of length κ^+
- such that each $\mathcal{M}_{\alpha+1}$ is $|\mathcal{M}_{\alpha}|^+$ -saturated;
- Then $\mathcal{N} = \bigcup_{\alpha < \kappa^+} \mathcal{M}_{\alpha}$ is κ -saturated and κ -homogeneous. (Exercise).

Remark 2.4. .

- Assume GCH or inaccessible cardinals, each T has a saturated model
- Without these assumption, RCF has no saturated models.

Example 2.5.

• $(\mathbb{C}, +, \times, 0, 1)$ is saturated;

5

- $(\mathbb{R}, +, \times, 0, 1)$ is NOT \aleph_0 -saturated;
- $(\mathbb{N}, +, \times, 0, 1)$ is NOT \aleph_0 -saturated;

From now on, we fix:

- A complete L-theory T;
- A monster model M of T;
- M is $\kappa(M)$ -saturated and $\kappa(M)$ -homogeneous for some sufficiently large $\kappa(M)$.
- Every model of T of size $\leq \kappa(\mathbb{M})$ embeds elementarily in to M;
- A model of T means a elementary submodel of M;
- tuples, paramters, and definable sets are from M;
- "small" means "of size $\leq \kappa(\mathbb{M})$ ";
- Let $\phi(x) \in L(\mathbb{M})$ and $a \in \mathbb{M}^{|x|}$, by $\models \phi(a)$, we mean $\mathbb{M} \models \phi(a)$;
- If $\Phi(x)$ and $\Psi(x)$ are two sets of formulas, then $\Phi(x) \vdash \Psi(x)$ means for any $a \models \Phi(x)$, also $a \models \Psi(x)$.

Fact 2.6. Let $\phi(x) \in L(\mathbb{M})$ and $\Phi(x) \subseteq L(\mathbb{M})$ a small set of formulas. If $\Phi(x) \vdash \phi(x)$, then there is a finite subset $\Phi_0 \subseteq \Phi$ such that $\Phi_0(x) \vdash \phi(x)$.

(Counter example: $\mathbb{M} = (\mathbb{R}, +, \times, 0, 1)$)

Fact 2.7. Let A be a subset of \mathbb{M} . Let $\operatorname{Aut}(\mathbb{M}/A)$ be the group of automorphism of \mathbb{M} fix A pointwise. If A is small and $a, b \in \mathbb{M}$, then

$$\operatorname{tp}(a/A) = \operatorname{tp}(b/A) \iff \exists \sigma \in \operatorname{Aut}(\mathbb{M}/A)(\sigma(a) = b).$$

Lemma 2.8. Let $X \subseteq \mathbb{M}^n$ be definable, $A \subseteq \mathbb{M}$ is small. Then X is A-definable iff $\sigma(X) = X$ for all $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$.

 $Proof. \Rightarrow$

- Assume that $X = \phi(\mathbb{M}, b)$ for some $b \in A^n$;
- For each $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$

$$a \in X \iff \models \phi(a,b) \iff \phi(\sigma(a),\sigma(b)) \iff \phi(\sigma(a),b) \iff \sigma(a) \in X$$

• So $\sigma(X) = X$.

 \Leftarrow

- Suppose that $X = \phi(\mathbb{M}, b)$;
- Let $\Sigma(x) = \{ \psi(x) \in L(A) | \phi(x,b) \vdash \psi(x) \};$
- Claim: $\Sigma(x) \vdash \phi(x,b)$;
- Otherwise, $\exists c \in \mathbb{M}$ such that $c \models \Sigma(x)$ and $c \notin X$;
- Let $p(x) = \operatorname{tp}(c/A)$, then $p(\mathbb{M}) \cap X = \emptyset$ (why?);
- By compactness, $\exists \psi_0(x) \in p(x)$ such that $\psi_0(\mathbb{M}) \cap X = \emptyset$;
- So $X \subseteq \neg \psi_0(\mathbb{M}) \implies \phi(x,b) \vdash \neg \psi_0(x) \implies \neg \psi_0(x) \in \Sigma(x);$
- $p(x) = \operatorname{tp}(a/A) \vdash \Sigma(x), \ \psi_0 \in p \text{ and } \neg \psi_0 \in \sigma;$
- Contradiction!

A slight generalization of the previous lemma.

Lemma 2.9. Let $X \subseteq \mathbb{M}^n$ be definable. The following are equivalent:

1. X is almost A-definable, i.e. there is an A-definable equivalence relation E on \mathbb{M}^n with finitely many classes, such that X is a union of E-classes.

- 2. The set $\{\sigma(X) | \sigma \in \operatorname{Aut}(M/A)\}\$ is finite.
- 3. The set $\{\sigma(X) | \sigma \in \operatorname{Aut}(M/A)\}\$ is small.

Proof.

 $1 \Rightarrow 2$: Any $\sigma \in \text{Aut}(\mathbb{M}/A)$ permits the *E*-classes.

 $2 \Rightarrow 1$:

- Let $X_0 = X, X_1, ..., X_k$ be the A-conjugates of X;
- Define $E(x,y) := \bigwedge_{i=0}^k (x \in X_i \leftrightarrow y \in X_i)$
- Then E is $\operatorname{Aut}(\mathbb{M}/A)$ -invariant $\implies E$ is A-definable.
- ullet E has finitely many equivalence classes and X is a union of E-classes.

 $2 \Rightarrow 3$: Clearly.

 $3 \Rightarrow 2$:

• Assume that $X = \phi(\mathbb{M}, b)$ and $p(y) = \operatorname{tp}(a/A)$;

- There are $\lambda < \kappa(\mathbb{M})$ and $(b_i)_{i < \lambda}$ s.t.
- each $b_i \models p(y)$ and $\forall \sigma \in \operatorname{Aut}(\mathbb{M}/A) \exists i < \lambda(\sigma(X) = \phi(\mathbb{M}, b_i));$
- Let $\theta(y, z) = \forall x (\phi(x, y) \leftrightarrow \phi(x, z));$
- Then $p(y) \vdash \bigvee_{i < \lambda} \theta(y, b_i)$;
- By compactness $p(y) \vdash \bigvee_{k=0}^{n} \theta(y, b_{i_k});$
- $\phi(\mathbb{M}, b)$ has finitely many A-conjugates.

Definition 2.10. Let A be a set of parameters and b a tuple.

- 1. We say that b is definable over A if $\{b\}$ is A-definable;
- 2. We say that b is algebraic over A if $\{b\}$ is almost A-definable;
- 3. $dcl(A) = \{a \in \mathbb{M} | a \text{ is definable over } A\};$
- 4. $\operatorname{acl}(A) = \{a \in \mathbb{M} | a \text{ is algebraic over } A\};$

Clearly, $A \subseteq \operatorname{dcl}(A) \subseteq \operatorname{acl}(A)$, all $\operatorname{Aut}(\mathbb{M}/A)$ -invariant.

Corollary 2.11.

- 1. $b \in \operatorname{dcl}(A) \iff \forall \sigma \in \operatorname{Aut}(\mathbb{M}/A)(\sigma(b) = b);$
- $2. \ b \in \operatorname{acl}(A) \iff \operatorname{Aut}(\mathbb{M}/A) \text{-} \textit{orbit of b is finite} \iff \operatorname{Aut}(\mathbb{M}/A) \text{-} \textit{orbit of b is small};$

Example 2.12.

- 1. T = theory of a set: acl(A) = dcl(A) = A;
- 2. $T = \text{theory of vector space} : \operatorname{acl}(A) = \operatorname{dcl}(A) = \text{linear span of } A;$
- 3. $T = ACF_0$: dcl(A) = is the field generated by A;
- 4. $T = ACF_0$: acl(A) is the usual algebraic closure in the field sense;
- 5. $T = ACF_p$: $dcl(A) = \bigcup_{n \in \mathbb{N}} Frob^{-n}(k)$, where k is the field generated by A;
- 6. $T = ACF_p$: acl(A) is the usual algebraic closure in the field sense;

Corollary 2.13. . For $A \subseteq \mathbb{M}$, $acl(A) = \bigcap \{ \mathcal{M} | A \subseteq \mathcal{M}, \mathcal{M} \prec \mathbb{M} \}$.

Proof. .

 \subseteq :

- If $a \in \operatorname{acl}(A)$ and $\mathcal{M} \supseteq A$.;
- Then there is $\phi(x) \in L(A)$ s.t. $\models \phi(a)$ and $|\phi(\mathbb{M})| = n < \omega$;
- $\mathcal{M} \prec \mathbb{M} \implies |\phi(\mathcal{M})| = n \implies \phi(\mathbb{M}) = \phi(\mathcal{M})$

⊇:

- Suppose that $a \notin \operatorname{acl}(A)$, then $\operatorname{Aut}(\mathbb{M}/A)$ -orbit of a is NOT small;
- Let $\mathcal{M} \supseteq A$ such that $|\mathcal{M}|$ is small;
- Then there is $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$ such that $\sigma(a) \notin \mathcal{M} \implies a \notin \sigma^{-1}(M) \supseteq A$.

3 M^{eq} and strong types

Definition 3.1. Let M be an L-structure and T = Th(M)

- ER(T) := all L-formulas E(x,y) that defines an equivalence relation on $M^{|x|}$;
- $L^{\text{eq}} := L \cup \{S_E : E \in ER(T)\} \cup \{f_E : E \in ER(T)\};$
- S_E is a new sort, and f_E is a new function from M^n to S_E ;
- $S_{=}$ denotes the sort for the home universe;
- Expand M to a canonical L^{eq} -structure M^{eq} ;
- the sort S_E in M^{eq} is given by the set $\{a/E : a \in M^n\}$;
- the function f_E is interpreted by $a \mapsto a/E$;
- For any $\phi(x) \in L$ and $a \in M^n$, $M \models \phi(a) \iff M^{eq} \models \phi(a)$;
- T^{eq} is the union of the following
 - 1. *T*
 - 2. $\{ (\forall g \in S_E \exists x \in S_=(f_E(x) = y)) \mid E \in ER(T) \}$
 - 3. $\{ (\forall x_1, x_2 \in S_=[f_E(x_1) = f_E(x_2) \leftrightarrow E(x_1, x_2)]) \mid E \in ER(T) \}.$
- For any $N \models T$, $N^{eq} \models T^{eq}$.

Lemma 3.2. .

- Every $\mathcal{M}^* \models T^{eq}$ is of the form M^{eq} for some $M \models T$;
- Given $E_1, ..., E_k \in ER$ and $\phi(x_1, ..., x_k) \in L^{eq}$, with x_i living on S_{E_i} , there is $\psi(y_1, ..., y_k) \in L$ s.t.

$$T^{eq} \vdash \forall y_1...y_k \in S_= \bigg(\psi(y_1, ..., y_k) \leftrightarrow \phi(f_{E_1}(y_1), ..., f_{E_k}(y_k)) \bigg).$$

- T^{eq} is complete;
- $M^{eq} = \operatorname{dcl}^{eq}(M);$
- $X \subseteq M^n$ is definable in the structure M^{eq} is already definabl; e in M;
- If M is κ -saturated (κ -homogeneous), then M^{eq} is κ -saturated (resp. κ -homogeneous);
- ullet Every automorphism of M extends in a unique way to an automorphism of M^{eq} .

Remark 3.3. Every definable $X \subseteq \mathbb{M}^n$ corresponds to an element of \mathbb{M}^{eq}

- Suppose that $X = \phi(\mathbb{M}, b)$;
- Let $E(y_1, y_2) := \forall x (\phi(x, y_1) \leftrightarrow \phi(x, y_2));$
- $b/E \in S_E$ is in \mathbb{M}^{eq} ;
- $\forall \sigma \in \operatorname{Aut}(\mathbb{M})(\sigma(X) = X \iff \sigma(b/E) = b/E;$
- X is b/E-definable in \mathbb{M}^{eq} ;
- Let $\psi(x,z) := \exists y (\phi(x,y) \land f_E(y) = z);$
- Then b/E is the unique element of sort S_E such that $X = \psi(\mathbb{M}, b/E)$;
- b/E is a code for X;
- $\forall \sigma \in \operatorname{Aut}(\mathbb{M}), \ \sigma(b/E) \text{ is a code for } \sigma(X).$
- If a and b are codes for X, then $a \in dcl^{eq}(b)$ and $b \in dcl^{eq}(a)$;

Definition 3.4. We say that T has elemination of imaginaries, or EI, if for any $e \in \mathbb{M}^{eq}$ there is $c \in \mathbb{M}^n$ s.t. $e \in \operatorname{dcl}^{eq}(c)$ and $c \in \operatorname{dcl}^{eq}(e)$. Equivalently, any definable subset $X \subseteq \mathbb{M}^n$ has a code in \mathbb{M} .

Exercise 3.5. T has EI iff for any 0-definable equivalent relation E, there is a 0-definable function f s.t.

$$\forall x, y (E(x, y) \leftrightarrow f(x) = f(y)).$$

Lemma 3.6. T^{eq} eliminates imaginaries. (Exercise)

Lemma 3.7. Let $X \subseteq \mathbb{M}^n$ be definable, and $e \in \mathbb{M}^{eq}$ a code for X.

- X is A-definable iff $e \in dcl^{eq}(A)$;
- X is almost A-definable iff $e \in \operatorname{acl}^{eq}(A)$.

Proof. .

- X is A-definable \Leftrightarrow X is $\operatorname{Aut}(\mathbb{M}/A)$ -invariant \Leftrightarrow e is $\operatorname{Aut}(\mathbb{M}/A)$ -invariant;
- X is almost A-definable \Leftrightarrow its A-conjugates is finite \Leftrightarrow the A- conjugates of e is finite.

Corollary 3.8. Let $X \subseteq \mathbb{M}^n$ be definable, $A \subseteq \mathbb{M}$. Then X is almost A-definable iff X is $\operatorname{acl}^{eq}(A)$ -definable in \mathbb{M}^{eq}

Definition 3.9. Let a, b be n-tuples from \mathbb{M} . Then they have the same strong type over $A \subseteq \mathbb{M}$, written

$$stp(a/A) = stp(b/A)$$

if for any A-definable equivalence relation E with finitely many classes, E(a,b) holds.

Clearly,

$$stp(a/A) = stp(b/A) \implies tp(a/A) = tp(b/A)$$

Example 3.10. Let T = Theory of an equivalence relation with two infinite class.

- \bullet By back-and-forth, T has quantifier elimination;
- Let a, b be two elements in different classes;
- Then $\operatorname{tp}(a/\emptyset) = \operatorname{tp}(b/\emptyset)$ but $\operatorname{stp}(a/\emptyset) \neq \operatorname{stp}(b/\emptyset)$.

Lemma 3.11. TFAE.

- 1. stp(a/A) = stp(b/A);
- 2. If $X \subseteq \mathbb{M}^n$ is almost A-definable, then $a \in X \iff b \in X$;
- 3. $\operatorname{tp}(a/\operatorname{acl}^{eq}(A)) = \operatorname{tp}(b/\operatorname{acl}^{eq}(A))$.

Proof. $1 \implies 2$

- X is almost A-definable $\Rightarrow X$ is a union of E-classes;
- E is A-definable with finite equiv. classes.;
- $E(a,b) \implies (a \in X \iff b \in X)$.
- $2 \implies 1$
- If $\neg E(a, b)$, where E is A-definable with finite equiv. classes;
- Let $X = E(a, \mathbb{M})$, then X is almost A-definable;
- $a \in X$ and $b \notin X$.
- $2 \iff 3$: almost A-definable \iff $\operatorname{acl}^{\operatorname{eq}}(A)$ -definable.

4 Stone duality and spaces of types

Fact 4.1. Let B be a Boolean algebra.

- Let S(B) be the space of ultrafilter on B;
- For $b \in B$, define:

$$\langle b \rangle = \{ u \in S(B) | b \in u \}$$

- $E(a,b) \implies (a \in X \iff b \in X)$.
- The topology of S(B) is generated by the basis of sets of the form $\langle b \rangle$;
- Each < b > is clopen;
- S(B) is a compact totally disconnected Hausdorff space.
- Each Boolean algebra B is isomorphic to the algebra of the clopen subsets of its Stone space S(B).

Definition 4.2. For any $A \subseteq \mathbb{M}$, $\operatorname{Def}_x(A)$ is the Boolean algebra of all A-definable subsets of $\mathbb{M}^{|x|}$.

- We denote the stone space of $\mathrm{Def}_x(A)$ by $S_x(A)$;
- The basis of clopens for $S_x(A)$ is given by the sets of the form

$$\langle \phi(x) \rangle = \{ p \in S_x(A) | \phi \in p \}$$

for $\phi \in L_x(A)$.

- $S_x(A)$ is also denoted by $S_n(A)$, where n = |x|;
- Elements of $S_n(\mathbb{M})$ are called global types.

Remark 4.3. .

- The embedding $a \mapsto \operatorname{tp}(a/M)$ from \mathcal{M} to its type space $S_1(M)$ makes M a dense subset of $S_1(M)$.
- So one can think of the space of types as a "compactification of the model".

Example 4.4.

- Let T be the theory of an infinite set, in the language $\{=\}$.
- By QE, $S_1(M) = M \cup \{p^*\}$, where $p^* = \{x \neq a | a \in M\}$.

Example 4.5.

- Let T be the theory of dense linear order without end points(DLO), in the language $\{<\}$.
- \bullet By back-and-forth, DLO has QE.
- Let $M \models T$ and $A, B \subseteq M$;
- We say that C = (A, B) is a Dedekind cut if $M = A \cup B$ and A < B.
- For any a Dedekind cut C = (A, B), let $p_C = \{a < x < b | a \in A, b \in B\}$ (non-realized type).
- Then $S_1(M) = M \cup \{p_C | C \text{ is a Dedekind cut}\}.$