Cryptography and Network Security I HW 2 Theory Part a. Due October 9, 2018

- 1- Prove that
- a) $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
- b) prove that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$
- 2- Using extended Euclidean algorithm find the multiplicative inverse of
- a) 1234 mod 4321
- b) 24140 mod 40902
- c) 550 mod 1769
- 3- Determine which of the following are reducible over GF(2)
- a) $x^3 + 1$
- b) $x^3 + x^2 + 1$
- c) $x^4 + 1$
- 4- Determine the GCD of following pair of polynomials:
- a) $x^3 x + 1$ and $x^2 + 1$ over GF(2)
- b) $x^5 + x^4 + x^3 x^2 x + 1$ and $x^3 + x^2 + x + 1$ over GF(3)

5- For a cryptosystem {P,K,C,E,D} where

P={a,b,c} with

PP(a)=1/4

PP(b)=1/4

PP(c)=1/2

K = (k1, k2, k3) with

PK(k1)=1/2

PK(k2)=1/4

PK(k3)=1/4

 $C = \{ 1,2,3,4 \}$

Encryption table

Ek(P)	а	b	С
k1	1	2	1
k2	2	3	1
k3	3	2	4
k4	3	4	4

Calculate H(K|C)