

- Long term storage of harvest from multiple farmers
- Need solution to identify / verify grains

- Computer vision / machine learning tech to grade barley
- Device trained for 7* varieties

- 10 devices
- 7 barley varietals
- 24 samples
 - 12 x Pure
 - 12 x Admixed

ZOOMAGRI methods

- 10 devices
- 7 barley varietals
- 24 samples
 - 12 x Pure
 - 12 x Admixed

What is the **efficacy** and **consistency** of the ZoomAgri devices in detecting the correct barley varietal(s)?

data analysis pipeline

Huebner et al (2018) A Contemporary Conceptual Framework for Initial Data Analysis. Observational Studies van der Loo & de Jonge (2018) Statistical Data Cleaning with Applications in R.

data analysis pipeline

Why tidy?

Complex data analyses and tools uses programming languages that require tidiness

Date	10-Jun-2017		Notes
Recorder	Spongebob Squarepants		Plant 3 was on a different shelf as 2 and 1
	Plant 1	Plant 2	Plant 3
Treatment a	2.9 (18%)	3.6 (25%)	
Treatment b			1.7 (40%)

Human-friendly for data collection

- ✓ Each column is a variable.✓ Each row is an observation.✓ Each cell is a single value.

date	recorde r	subject	treatment	leaf area	infected percent
10-06-2017	SB	plant 1	a	2.9	18
10-06-2017	SB	plant 2	а	3.6	25
10-06-2017	SB	plant 3	b	1.7	40

- Condensed
- Each cell has a single purpose

- ✓ Each column is a variable.✓ Each row is an observation.✓ Each cell is a single value.

Let's have a go! 😵 (5 mins)

- What makes these spreadsheets untidy?
- What would their tidy version look like?

	Α	В	С	D	E	F	G	Н	I
1		1 min				5 min			
2	strain	normal		mutant		normal		mutant	
3	Α	147	139	166	179	334	354	451	474
4	В	246	240	178	172	514	611	412	447

	Α	В	С	D	Е	F	G	Н	I
1		1 min				5 min			
2	strain	normal		mutant		normal		mutant	
3	Α	147	139	166	179	334	354	451	474
4	В	246	240	178	172	514	611	412	447

if in doubt, count it out

Count your key variables to:

- verify + understand structure
- identify **missing / strange** values

```
raw_data |>
  count(workstation)
```

raw_data |>
 count(sample_code)

> raw_data >	
+ count(workstati	lon)
# A tibble: 11 \times 2	
workstation	n
<chr> < <</chr>	int>
1 Beulah	30
2 Deniliquin	30
3 Donald Bunker	30
4 Dunolly	30
5 Manangatang	30
6 Murtoa South	30
7 Piangil	30
8 Quambatook	33
9 Ultima	30
10 Warracknabeal	30
11 NA	2

> 1	raw_data >		
+	count(sample_code)	l>	
+	print(n = 50)		
# /	A tibble: 38 × 2		
	sample_code	n	
	<chr></chr>	<int></int>	
1	GTABottler	10	
2		10	
3	GTAMinotaur	9	
	GTAMix1	10	
5	GTAMix10	10	
6	GTAMix11	10	
7	GTAMix12	10	
8	GTAMix2	10	
9	GTAMix3	10	
10	GTAMix4	10	
11		10	
12	GTAMix6	10	
13	GTAMix7	10	
14	GTAMix8	10	
15	GTAMix9	10	
	GTANeo	10	
17	GTAPure1	10	
18	GTAPure10	10	
19	GTAPure10 - Repeat1	1	
20		1	
21	GTAPure10 - Repeat3	1	L
22	GTAPure11	10	
23	GTAPure12	10	
24		10	
	GTAPure3	10	
	GTAPure4	10	
	GTAPure5	10	
28	GTAPure6	10	
29		10	
30		10	
31		10	
	GTATItan	1	
33		8	
	GTAZena	9	
	Mino - not done	1	
	TItan - not done	1	
37		1	
38	NA	2	Ц

if in doubt, count it out

Count your key variables to:

- verify + understand structure
- identify **missing / strange** values
- identify the observational unit

```
raw_data |>
tabyl(workstation, sample_code)
```

 Determines independence and unit of analysis **Observational unit** is smallest entity from which data has been collected from

don't be afraid to go digging ?

- What are **classified seeds**? **(2)**
- **Supplement** your understanding with more info

workstation [‡]	analysis_id [‡]	sample_code [‡]	classified_seeds [‡]	result_1 [‡]	result_1_percent	result_2 [‡]	result_2_percent [‡]	result_3 [‡]	result_3_percent +
Beulah	200	GTAMix1	303	Bass	84	Maximus CL	14	Others	2
Beulah	208	GTAMix10	283	Maximus CL	65	Bass	35	NA	NA
Beulah	209	GTAMix11	312	La Trobe	50	Maximus CL	50	NA	NA
Beulah	210	GTAMix12	273	Planet	54	Spartacus CL	46	NA	NA
Beulah	223	GTAMix2	343	Planet	84	Bass	16	NA	NA

don't be afraid to go digging ?

- What are classified seeds? (a)
- **Supplement** your understanding with more info

Number of seeds is easier to model than percentages 🏂

Wheat Variety Recognition

drop dead weight

- - Discard variables that are:
- redundant
- don't contribute information

```
raw_data |>
  janitor::get_one_to_one()
```

```
> raw_data |>
    janitor::get_one_to_one()
[[1]]
[1] "workstation" "pc_id"
                                 "s_n"
```

```
raw data |>
  janitor::remove_constant()
```

Removing 2 constant columns of 16 columns total (Removed: number_samples, expected_result).

```
raw_data |>
  count(number_samples, expected_result)
```

```
> raw_data |>
   count(number_samples, expected_result)
# A tibble: 1 \times 3
 number_samples expected_result
           <dbl> <chr>
                                 <int>
               1 Unknown
                                    243
```

take + make what you need

- Create, retain, reformat variables that are needed downstream
 - Make it 🔷 tidy 🛠

wide			A	_	A	<u></u>	À		_
workstation	analysis_id =	sample_code	classified_seeds	result_1	result_1_percent	result_2	result_2_percent	result_3	result_3_percent
Beulah	200	GTAMix1	303	Bass	84	Maximus CL	14	Others	
Beulah	208	GTAMix10	283	Maximus CL	65	Bass	35	NA	N
Beulah	209	GTAMix11	312	La Trobe	50	Maximus CL	50	NA	N
Beulah	210	GTAMix12	273	Planet	54	Spartacus CL	46	NA	N
Beulah	223	GTAMix2	343	Planet	84	Bass	16	NA	N

long					•		•
workstation [‡]	analysis_id [‡]	sample_code [‡]	classified_seeds [‡]	obs_id [‡]	variety	percent [‡]	result_top [‡]
Beulah	200	GTAMix1	303	1	Bass	84	1
Beulah	200	GTAMix1	303	1	Maximus CL	14	2
Beulah	200	GTAMix1	303	1	Others	2	3
Beulah	208	GTAMix10	283	2	Maximus CL	65	1
Beulah	208	GTAMix10	283	2	Bass	35	2
Beulah	209	GTAMix11	312	3	La Trobe	50	1
Beulah	209	GTAMix11	312	3	Maximus CL	50	2

take + make what you need

- Create, retain, reformat variables that are needed downstream
 - e.g. expected percentages

raw_data |>

	workstation	analysis_id	sample_code	classified_seeds	obs_id	variety	percent	percent_truth	result_top
	Beulah	200	GTAMix1	303	1	Bass	84	85	1
	Beulah	200	GTAMix1	303	1	Maximus CL	14	15	2
↓ ■	Beulah	200	GTAMix1	303	1	Others	2	0	3
	Beulah	200	GTAMix1	303	1	Planet	0	0	NA
	Beulah	200	GTAMix1	303	1	Spartacus CL	0	0	NA
	Beulah	200	GTAMix1	303	1	Westminster	0	0	NA
	Beulah	200	GTAMix1	303	1	La Trobe	0	0	NA
	Beulah	200	GTAMix1	303	1	Commodus CL	0	0	NA
	Beulah	208	GTAMix10	283	2	Maximus CL	65	65	1
	Beulah	208	GTAMix10	283	2	Bass	35	35	2
			GTAMix10	283	2	Planet	0	0	NA
aw_data >			GTAMix10	283	2	Spartacus CL	0	0	NA
<pre>left_join(expected_perc</pre>	entages)	GTAMix10	283	2	Westminster	0	0	NA
	5		GTAMix10	283	2	La Trobe	0	0	NA
	Beulah	208	GTAMix10	283	2	Commodus CL	0	0	NA

take + make what you need

- Create, retain, reformat variables that are needed downstream
 - e.g. predicted and expected seeds

raw_data |> mutate(predicted_seeds = percent/100 * classified_seeds, expected_seeds = percent_truth/100 * classified_seeds)

workstation	sample_code	classified_seeds [‡]	obs_id [‡]	variety	predicted_percent	expected_percent	result_top	predicted_seeds	expected_seeds	sample_type +
Beulah	GTAMix1	303	1	Bass	84	85	1	255	258	Mix
Beulah	GTAMix1	303	1	Maximus CL	14	15	2	42	45	Mix
Beulah	GTAMix1	303	1	Others	2	0	3	6	0	Mix
Beulah	GTAMix1	303	1	Planet	0	0	NA	0	0	Mix
Beulah	GTAMix1	303	1	Spartacus CL	0	0	NA	0	0	Mix
Beulah	GTAMix1	303	1	Westminster	0	0	NA	0	0	Mix
Beulah	GTAMix1	303	1	La Trobe	0				_	
		505	-	La Hobe	0					
Beulah	GTAMix1	303		Commodus CL	0	Nı	ımhe	r of see	ds is ea	asier t
Beulah Beulah			1		0			r of see		
	GTAMix1	303	1 2	Commodus CL	0 65 35					
Beulah Beulah	GTAMix1 GTAMix10	303 283	1 2 2	Commodus CL Maximus CL				r of see than pe		
Beulah Beulah Beulah	GTAMix1 GTAMix10 GTAMix10	303 283 283	1 2 2 2	Commodus CL Maximus CL Bass		m			rcentag	
Beulah Beulah Beulah Beulah	GTAMix10 GTAMix10 GTAMix10	303 283 283 283	1 2 2 2 2	Commodus CL Maximus CL Bass Planet		m	odel		rcentag	ges 🏂
Beulah	GTAMix10 GTAMix10 GTAMix10 GTAMix10	303 283 283 283 283	1 2 2 2 2 2 2	Commodus CL Maximus CL Bass Planet Spartacus CL		0 0	odel		rcentag	ges 🥕

explore your question with visuals (3)

What is the efficacy and consistency of the ZoomAgri devices in detecting the correct barley varietal(s)?

Efficacy 6

- Can the devices predict the correct variety / mix of varietals for each sample?
- → Compare between 'truth' and device output

explore your question with visuals (3)

What is the efficacy and consistency of the ZoomAgri devices in detecting the correct barley varietal(s)?

Efficacy 6

- Can the devices predict the correct variety / mix of varietals for each sample?
- → Compare between 'truth' and device output

Consistency 6 6 6

- Are all devices performing similarly?
- → Show agreement across all devices and samples

start simple;

Data viz 🧐

- Top and bottom bars for visual comparison
- Stacked bar shows composition of device prediction

start simple;

start simple; then scale up

Admixed samples

variety

Bass

La Trobe

Planet

Others

Maximus CL

Spartacus CL

Westminster

Commodus CL

GTAMix1

Beulah

Donald Bunker

GTAMix2

GTAMix3

Beulah

Donald Bunker

GTAMix4

Beulah

Admixed samples

variety

Bass

La Trobe

Planet

Others

Maximus CL

Spartacus CL

Westminster

Commodus CL

samples

could classified seeds tell us something about device consistency?

Data viz 🧐

- Stacking device for visual comparison
- Alignment of points implies agreement*

*Assumes same number of seeds used for every evaluation, sample, device

samples

Data viz 🧐

Allows for comparisons:

- within device across sample
- within sample

→ need to account for variation in classified seeds in analysis

Admixed samples

