Scanning Laser Optical Tomography SLOT (IQ18)

Laborpraktikum durchgeführt im Block 1 22.10.2018 – 09.11.2018

Leibniz Universität Hannover

Daniel Scheiermann 3227680 Felix Springer 10002537

22. Februar 2019

Inhaltsverzeichnis

1	Einleitung				
2	Scanning Laser Optical Tomography 2.1 Radontransformation				
	2.2		ionsweise	3	
	2.3	Versuc	chsaufbau	5	
3	Ergebnisse				
	3.1	Auflös	sungsvermögen	7	
	3.2	Aufna	hmen von Heuschreckengehirnen	10	
		3.2.1	Korrektur der Schieflage	10	
		3.2.2	Darstellung der Rekonstruktion	11	
		3.2.3	Schwiereigkeiten bei der Versuchsdurchführung	13	
		3.2.4	Analyse	14	

1 Einleitung

In diesem Versuch wird die Methode der Tomographie am Beispiel der SLOT "Scanning Laser Optical Tomography" untersucht. Dieses ist ein spezielles dreidimensionales Tomographie-Verfahren, das mit Lasern verschiedener Wellenlängen Streuung, Absorption und Fluoreszenz als Kontrastmechanismen nutzt.

Das dreidimensionale Präparat wird ebenenweise durch zweidimensionale Schnitte (Tomogramme) rekonstruiert und zu einem dreidimensionalen Bildobjekt zusammengesetzt. Das entstandene Bildobjekt ist nun vom Präparat getrennt und virtuell verfügbar. Daraus ergibt sich der Vorteil das Präparat unbeschädigt lassen zu können und dennoch die innere Struktur des Präparates zu untersuchen [1].

2 Scanning Laser Optical Tomography

2.1 Radontransformation

Bei allen auf Computertomographie basierenden Verfahren ist die Radontransformation die mathematische Grundlage zur Nutzung des integrierten Signals für eine 3D-Darstellung. Dabei wird das integrierte Signal durch Durchleuchten des Präparats aufgenommen. Letzter Satz nicht falsch aber ausführlicher.

Die Strahlen werden hierfür in Polarkoordinaten durch eine Schar von Geraden parametrisiert. Durch den Polarwinkel ϕ ist die Richtung der Strahlen und durch s wird der "Radius" festgelegt. Weiterhin wird durch ρ der senkrechte Abstand von der Geraden, die im Winkel ϕ durch den Ursprung geht, festgelegt, wodurch die Schar der Strahlen parametrisiert wird.

$$lin_{\rho,\phi}(s) = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \cdot \begin{pmatrix} \rho \\ s \end{pmatrix} = \begin{pmatrix} \rho \cdot \cos(\phi) - s \cdot \sin(\phi) \\ \rho \cdot \sin(\phi) + s \cdot \cos(\phi) \end{pmatrix}$$
(1)

Für eine zweidimensionale Funktion f(x, y) ist die Radontransformierte das integrierte Signal über den parametrisierten Weg durch das Präparat:

$$R(\rho, \phi) = \int_{-\infty}^{\infty} f(lin_{p,q}(s)) ds = \int_{-\infty}^{\infty} f\left(\frac{\rho \cdot \cos(\phi) - s \cdot \sin(\phi)}{\rho \cdot \sin(\phi) + s \cdot \cos(\phi)}\right) ds$$
 (2)

Entscheidend für die Nutzung der Tomographie ist die Invertierbarkeit der Radontransformierten $R(\rho, \phi)$, denn dies ermöglicht die Rekonstruktion der ursprünglichen Funktion f(x, y), also die Rekonstruktion des Präparates [2].

Abbildung 1: Graphische Darstellung der Radontransformation: Parametrisierung eines Strahls $lin_{\rho,\phi}(s)$ in Polarkoordinaten, wobei s dem Radius und ϕ der Polarwinkel ist. Die Schar an Strahlen wird durch ρ parametrisiert. Das Präparat wird durch die rote Fläche f(x,y) dargestellt und hinter dem Präparat ist das integrierte Signal über die verschiedenen Strahlen der Schar dargestellt, die zusammengenommen die Radontransformierte $R(\rho,\phi)$ ergeben [2].

2.2 Funktionsweise

SLOT basiert auf einem x-y-Scanner-System mit zwei Silberspiegeln, das den auf die Mitte des Präparates fokussierten Laser ablenkt und somit die Probe abrastert. Das Präparat muss optisch transparent sein, um Streuung innerhalb des Präparats zu verringern und eine höhere Transmission zu erreichen. Hierzu werden Glycerin oder ähnliche Lösungsmittel genutzt, da diese einen ähnlichen Brechungsindex wie feste organische Bestandteile haben. Das transmittierte Laserlicht wird von einer Photodiode hinter der Probenkammer detektiert. Um eine Rekonstruktion durchführen zu können sind Aufnahmen des Präparats von verschiedenen Richtungen nötig. Diese verschiedenen Aufnahmen werden durch einen Motor ermöglicht der die Kapillare und damit das Präparat dreht. Weiterhin regt das Laserlicht das Präparat zur Fluoreszenz an. Dieses Fluoreszenzlicht wird mittels plankovexen Linsen mit dazwischen liegendem Fluoreszenz-Filter gesammelt und auf den sensitiven Photomuliplier (PMT) geleitet [1].

Abbildung 2: Schema eines scannenden laseroptischen Tomographen (SLOT) [2]. Ausführlicher, insbesondere soll die Abbildung für vollständig aus der Bildunterschrift erklärbar sein. Der schematische Kollimator ist im Versuchsaufbau ein Bündel von Glasfasern, das an die Unterseite der Küvette angebracht ist und mit der Form eine ähnliche Fläche ausfüllt wie die PMT-Diode, sodass möglichst viel der Diode ausgeluchtet werden kann. Der Kollimator wird genutzt, um das gesammelte Licht senkrecht auf die dieelektrischen Farbfilter zu leiten, denn nur dann sind die angegebenen Werte des Herstellers verlässlich (sonstige Abweichung der Reflexion und Transmission in Abhängigkeit vom Einfallswinkel nach Fresnel-Gesetz

2.3 Versuchsaufbau

Abbildung 3: Versuchsaufbau: Der gesamte Versuchsaufbau befindet sich auf einer optischen Platte, um Störungen durch Vibration zu verringern. Weiterhin ist die Kompaktheit des Versuchsaufbaus zu sehen [1].

Abbildung 4: Teleskop und Scanner [1]

Filterrad
Photomultiplier

(a) Einkopplung der Laserdiode

(b) Filterrad und Photomuliplier (PMT)

Abbildung 5: Trennung der Laserkonfiguration vom restlichen Versuchsaufbau [1].

Abbildung 6: Turm mit Rotationsachse [1]

3 Ergebnisse

3.1 Auflösungsvermögen

Der Kontrast wurde für verschiedene Fokussierungen, Strahlendurchmesser und Wellenlängen des Lasers mithilfe eines USAF-Targets gemessen. Dadurch ergibt sich die Modulationsübertragungsfunktion.

Bei allen Messungen wurde die Dunkelaufnahme von der Abbildung des Targets abgezogen, um ein Rauschen herauszurechnen.

Für geringe Auflösung wurde die Modulationsübertragungsfunktion in Abhängikeit zur horizontalen Auflösung in Abbildung 7 und zur vertikalen Auflösung in Abbildung 8 dargestellt.

Abbildung 7: Kontrast bei geringer Auflösung (horizontal)

Abbildung 8: Kontrast bei geringer Auflösung (vertikal)

Ein erhöhter Strahlendurchmesser verbessert den Kontrast. Bei geringer Auflösung ist der Kontrast für eine höhere Wellenlänge höher. Der Kontrast ist in horizontaler und vertikaler Richtung von vergleichbarer Höhe. Weiterhin sinkt der Kontrast rapide, falls ohne Fokussierung gemessen wird.

Für hohe Auflösung ist diese zur horizontalen Auflösung in Abbildung 9 und zur vertikalen Auflösung in Abbildung 10 dargestellt.

Abbildung 9: Kontrast bei hoher Auflösung (horizontal)

Abbildung 10: Kontrast bei hoher Auflösung (vertikal)

Auch bei hoher Auflösung verbessert ein erhöhter Strahlendurchmesser den Kontrast. Zwar ist der Kontrast bei einer geringen Auflösung bei einer höheren Wellenlänge höher, aber ab etwa einer Auflösung von $20\frac{lp}{mm}$ erhöht eine kleine Wellenlänge den Kontrast.

Weiterhin sind die Modulationsübertragungsfunktionen für hohe Auflösungen in Abbildung 11 dargestellt, um diese untereinander besser vergleichen zu können.

Abbildung 11: Kontrast bei hoher Auflösung (horizontal & vertikal)

3.2 Aufnahmen von Heuschreckengehirnen

In diesem Versuchsabschnitt wurde als Probe ein präpariertes Heuschreckengehirn gewählt. Die Probe wurde in einer Küvette von oben in Glycerin getaucht und wurde um die z-Achse gedreht. Mit einer 360°-Drehung um die z-Achse wurden die Aufnahmen unter verschiedenen Winkeln aufgenommen. Interessant war bei dieser Messung, dass die Fluoreszenz mit dem Photomultiplier (PMT) darstellt werden konnte, da es sich hier, im Gegensatz zum USAF-Target, um eine dreidimensionale Probe handelt, die fluoresziert.

3.2.1 Korrektur der Schieflage

Die durchschnittliche Schieflage der Probe α konnte bei der Auswertung ausgeglichen werden. Dazu wurde der Drehachsendurchlauf am oberen und unteren Bildrand gemessen und der Winkel α nach folgender Formel berechnet:

$$\alpha = \arcsin\left(\frac{\Delta x_{\text{oben}} - \Delta x_{\text{unten}}}{y_{\text{max}}}\right).$$

Hier entspricht y_{max} der Anzahl der Pixel auf der y-Achse im Bild. Δx_{oben} und Δx_{unten} beziehen sich hierbei auf die äußersten Pixel am Bildrand oben und unten.

Um Δx_{oben} und Δx_{unten} zu messen wurde die jeweilige Ebene mit 100 verschiedenen x-Achsenverschiebungen mit "tilt" rekonstruiert und anschließend das beste Bild herausgesucht (Reduzierung der Ringartefakte).

Im Folgenden wurde die Aufnahme mit "Image
J" um den jeweiligen Winkel gedreht und das Ergebnis wieder mit "tilt"
, aber dieses Mal für alle Ebenen rekonstruiert. Dabei wurde auch die mittlere x-Achsenverschiebung beachtet:

$$\Delta x = \frac{\Delta x_{\text{oben}} - \Delta x_{\text{unten}}}{2} \ .$$

3.2.2 Darstellung der Rekonstruktion

Eine Verlängerung der Integrationszeit Δt von 1 zu 2 Sekunden hatte nur eine Aufhellung des PMT-Bildes zur Folge. Da bei dieser Aufnahme jedoch ein unpassender Filter verwendetet wurde, zeigt das PMT-Bild auch nur das gestreute Licht. Das Ergebnis ist in Abbildung 12 zu sehen.

Abbildung 12: Rekonstruktion: Photodiode links, PMT rechts; $\lambda = 450$ nm, $\Delta t = 2$ s, $\lambda_{\rm Filter} = (520 \pm 36)$ nm, $d_{\rm Strahl} = 5$ mm, Kontrast angepasst

Mit der Photodiode lassen sich die äußeren Umrisse gut erkennen, mit dem Photomultiplier sogar die Dichte im Inneren.

In Abbildung 13 sind 2 Rekonstruktionen der Bilder der Photodiode dargestellt. Es ist erkennbar, dass das Bild mit der längeren Wellenlänge feinere Strukturen im Heuschreckengehirn auflöst.

Abbildung 13: Rekonstruktion: $\lambda = 520$ nm links, $\lambda = 450$ nm rechts; Photodiode, $\Delta t = 1$ s, $\lambda_{\rm Filter} = (520 \pm 36)$ nm, $d_{\rm Strahl} = 5$ mm, Kontrast angepasst

In Abbildung 14 wurden Bilder des PMT vom jeweiligen Fluoreszenzlicht der Laser rekonstruiert. Im Vergleich ist festzustellen, dass bei $\lambda=520$ nm die Auflösung höher ist.

Abbildung 14: Rekonstruktion: $\lambda = 520$ nm mit $\lambda_{\text{Filter}} = (676 \pm 29)$ nm links, $\lambda = 450$ nm mit $\lambda_{\text{Filter}} \geq 570$ nm rechts; PMT, $\Delta t = 1$ s, $d_{\text{Strahl}} = 5$ mm, Kontrast angepasst

Mit dem Image J-Plugin "Volume Viewer" , ist es nach der Rekonstruktion möglich verschiedene Ansichten auf das Heuschreckengehirn zu generieren. Ein mögliche Ansicht ist in Abbildung 15 dargestellt.

Abbildung 15: 3-dimensionale Ansicht einer PMT-Aufnahme: $\lambda=520$ nm mit $\lambda_{\rm Filter}=(676\pm29)$ nm, $\Delta t=1$ s, $d_{\rm Strahl}=5$ mm

3.2.3 Schwiereigkeiten bei der Versuchsdurchführung

Zum Einen haben wir zum Einfädeln der Laser in eine Glasfaser das Verfahren Beamwalk benutzt. Da dies aber sehr lange gedauert hat haben wir es darum ergänzt, dass man beim korrigieren der Spiegel immer ein bisschen weiter dreht als das Maximum der Intensität. Das haben wir gemacht, da der normale Beamwalk das absolute

Maximum nur nach unendlich vielen Schritten erreicht. Wenn man aber die Schritte über das Maximum hinaus macht, dann kommt man schneller zum Maximum, kann es jedoch je nach Schrittgröße nicht erreichen, da man es überspringt. Ab diesem Punkt führt man wieder den normalen Beamwalk durch.

Man kann unser Verfahren vergleichen mit einer alternierenden Reihe, die schneller konvergiert, als wenn man den Betrag der Reihenglieder betrachten würde.

Eine weitere Schwierigkeit ist bei den Messungen mit sich drehender Probe aufgetreten. Man musste die Drehachse genau senkrecht positionieren, damit sie nicht präzessiert. Dies konnten wir durch unsere Justage und die limitierte Genauigkeit der direkten Bildanzeige nicht ganz verhindern. In der Auswertung konnten wir dann leider auch nur die mittlere Schieflage korrigieren.

In der Theorie sollte jedoch auch eine Korrektur der Präzession nach der Aufnahme noch möglich sein. Dazu müsste man jedes Bild einer 360°-Aufnahme um den richtigen Betrag drehen, den man mit einem Sinus berechnen könnte, wenn man die maximale Abweichung während der Präzession kennt.

In unserem Fall wanderte die Achse circa 4 Pixel in horizontaler Richtung, was für unser Ergebnis noch in Ordnung war.

3.2.4 Analyse

Wie erwartet lassen sich in den Aufnahmen mit dem PMT die inneren Strukturen besser erkennen, da hier die Fluoreszenz aufgenommen wurde. In Abbildung 14 kann man außerdem sehen, dass verschiedene Wellenlängen unterschiedliche Bereiche verschieden stark zum Fluoreszieren bringen.

Das unser Meinung nach beste Ergebnis konnten wir beim PMT mit der Kombination des 520 nm-Lasers und dem (676 ± 29) nm-Filter erzeugen. Deshalb ist dies nochmal mit einer 3-dimensionalen Ansicht des gesamten Heuschreckengehirns abgebildet.

Wir hatten kein Problem mit zu starker Absorption, wie sie nach Lorbeer [2] bei einer zu großen Probe auftritt.

Insgesamt sind wir mit den Ergebnissen unserer Messung zufrieden.

Abbildungsverzeichnis

1	Graphische Darstellung der Radontransformation: Parametrisierung ei-				
	nes Strahls $lin_{\rho,\phi}(s)$ in Polarkoordinaten, wobei s dem Radius und ϕ				
	der Polarwinkel ist. Die Schar an Strahlen wird durch ρ parametrisiert.				
	Das Präparat wird durch die rote Fläche $f(x,y)$ dargestellt und hinter				
	dem Präparat ist das integrierte Signal über die verschiedenen Strahlen				
	der Schar dargestellt, die zusammengenommen die Radontransformier-				
	te $R(\rho, \phi)$ ergeben [2]	3			
2	Schema eines scannenden laseroptischen Tomographen (SLOT) [2]. Ausführlich				
	insbesondere soll die Abbildung für vollständig aus der Bildunterschrift				
	erklärbar sein.	4			
3	Versuchsaufbau: Der gesamte Versuchsaufbau befindet sich auf einer				
	optischen Platte, um Störungen durch Vibration zu verringern. Wei-				
	terhin ist die Kompaktheit des Versuchsaufbaus zu sehen [1]	5			
4	Teleskop und Scanner [1]	5			
5	Trennung der Laserkonfiguration vom restlichen Versuchsaufbau [1]	6			
6	Turm mit Rotationsachse [1]	7			
7	Kontrast bei geringer Auflösung (horizontal)	8			
8	Kontrast bei geringer Auflösung (vertikal)	8			
9	Kontrast bei hoher Auflösung (horizontal)	9			
10	Kontrast bei hoher Auflösung (vertikal)	9			
11	Kontrast bei hoher Auflösung (horizontal & vertikal)	10			
12	Rekonstruktion: Photodiode links, PMT rechts; $\lambda = 450$ nm, $\Delta t = 2$ s,				
	$\lambda_{\text{Filter}} = (520 \pm 36) \text{ nm}, d_{\text{Strahl}} = 5 \text{ mm}, \text{Kontrast angepasst} \dots \dots$	11			
13	Rekonstruktion: $\lambda = 520$ nm links, $\lambda = 450$ nm rechts; Photodiode,				
	$\Delta t = 1 \text{ s}, \lambda_{\text{Filter}} = (520 \pm 36) \text{ nm}, d_{\text{Strahl}} = 5 \text{ mm}, \text{Kontrast angepasst}$	12			
14	Rekonstruktion: $\lambda = 520 \text{ nm mit } \lambda_{\text{Filter}} = (676 \pm 29) \text{ nm links}, \lambda =$				
	450 nm mit $\lambda_{\text{Filter}} \geq 570$ nm rechts; PMT, $\Delta t = 1$ s, $d_{\text{Strahl}} = 5$ mm,				
	Kontrast angepasst	12			
15	3-dimensionale Ansicht einer PMT-Aufnahme: $\lambda = 520$ nm mit $\lambda_{\rm Filter} =$				
	$(676 \pm 29) \text{ nm}, \Delta t = 1 \text{ s}, d_{\text{Strabl}} = 5 \text{ mm}$	13			

Literatur

- [1] LENA NOLTE, Versuchsanleitung: IQ18 SLOT für das Laborpraktikum Atomund Molekühlphysik der Leibniz Universität Hannover (2015)
- [2] RAOUL-AMADEUS LORBEER, Dreidimensionale und effiziente Erfassung mesoskopischer Proben (2013)