Isolated Footing Design (IS 456-2000)

Design For Isolated Sloped Footing 27

Design For Isolated Sloped Footing 28

Design For Isolated Sloped Footing 29

Design For Isolated Sloped Footing 30

Design For Isolated Sloped Footing 31

Design For Isolated Sloped Footing 32

Design For Isolated Sloped Footing 33

Design For Isolated Sloped Footing 34

Design For Isolated Sloped Footing 35

Design For Isolated Sloped Footing 36

Design For Isolated Sloped Footing 37

Design For Isolated Sloped Footing 38

Footing No.	Group ID			Foundation Geometr	У
-	-	Length	Width	Thickness	Slope End Thickness
27	1	1.600 m	1.600 m	0.250 m	0.150 m
28	2	1.750 m	1.750 m	0.300 m	0.200 m
29	3	1.750 m	1.750 m	0.250 m	0.150 m
30	4	1.600 m	1.600 m	0.250 m	0.150 m
31	5	1.750 m	1.750 m	0.250 m	0.150 m
32	6	2.300 m	2.300 m	0.350 m	0.250 m
33	7	2.200 m	2.200 m	0.350 m	0.250 m
34	8	1.650 m	1.650 m	0.250 m	0.150 m
35	9	1.650 m	1.650 m	0.250 m	0.150 m
36	10	1.650 m	1.650 m	0.250 m	0.150 m
37	11	1.600 m	1.600 m	0.250 m	0.150 m
38	12	1.600 m	1.600 m	0.250 m	0.150 m

Footing No.		Footing Reinforcement			Pedestal Re	einforcement
-	Bottom Reinforcement(M _z)	Bottom Reinforcement(M _x)	Top Reinforcement(M _z)	Top Reinforcement(M _x)	Main Steel	Trans Steel
27	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
28	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
29	Ø12 @ 230 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
30	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
31	Ø12 @ 230 mm c/c	Ø12 @ 230 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
32	Ø12 @ 195 mm c/c	Ø12 @ 195 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
33	Ø12 @ 230 mm c/c	Ø12 @ 230 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
34	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
35	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
36	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
37	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A
38	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	Ø12 @ 250 mm c/c	N/A	N/A

Isolated Footing 27

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

Column Shape : Rectangular
Column Length - X (PI) : 0.300 m
Column Width - Z (Pw) : 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing: 1500.000 mm

Cohesion: 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title
101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title
101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL

202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

Applied Loads - Service Stress Level						
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	132.208	-10.876	-9.265	-4.533	4.754	
102	146.353	-10.430	-8.933	-4.391	4.611	
103	132.208	-10.876	-9.265	-4.533	4.754	
104	132.208	-10.876	-9.265	-4.533	4.754	
105	117.082	-8.344	-7.147	-3.513	3.689	
106	117.082	-8.344	-7.147	-3.513	3.689	
107	117.082	-8.344	-7.147	-3.513	3.689	

	Applied Loads - Service Stress Level						
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)		
101	132.208	-10.876	-9.265	-4.533	4.754		
102	146.353	-10.430	-8.933	-4.391	4.611		
103	132.208	-10.876	-9.265	-4.533	4.754		
104	132.208	-10.876	-9.265	-4.533	4.754		
105	117.082	-8.344	-7.147	-3.513	3.689		
106	117.082	-8.344	-7.147	-3.513	3.689		
107	117.082	-8.344	-7.147	-3.513	3.689		

	A	pplied Loads -	- Strength Lev	/el	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	198.312	-16.314	-13.898	-6.799	7.131
202	219.529	-15.645	-13.400	-6.587	6.917
203	140.499	-10.013	-8.576	-4.216	4.427
204	140.499	-10.013	-8.576	-4.216	4.427
205	140.499	-10.013	-8.576	-4.216	4.427
206	158.650	-13.051	-11.118	-5.439	5.705
207	158.650	-13.051	-11.118	-5.439	5.705
208	158.650	-13.051	-11.118	-5.439	5.705
209	118.987	-9.788	-8.339	-4.079	4.278
210	118.987	-9.788	-8.339	-4.079	4.278
211	118.987	-9.788	-8.339	-4.079	4.278
	A	pplied Loads -	Strength Lev	/el	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment 2 (kNm)

201	198.312	-16.314	-13.898	-6.799	7.131
202	219.529	-15.645	-13.400	-6.587	6.917
203	140.499	-10.013	-8.576	-4.216	4.427
204	140.499	-10.013	-8.576	-4.216	4.427
205	140.499	-10.013	-8.576	-4.216	4.427
206	158.650	-13.051	-11.118	-5.439	5.705
207	158.650	-13.051	-11.118	-5.439	5.705
208	158.650	-13.051	-11.118	-5.439	5.705
209	118.987	-9.788	-8.339	-4.079	4.278
210	118.987	-9.788	-8.339	-4.079	4.278
211	118.987	-9.788	-8.339	-4.079	4.278

Footing Size

Initial Length $(L_0) = 1.000 \text{ m}$

Initial Width $(W_0) = 1.000 \text{ m}$

Reduction of force due to buoyancy = 0.000 kN

Effect due to adhesion = 0.000 kN

Area from initial length and width, $A_0 = L_0 X W_0 = 1.000 m^2$ Min. area required from bearing pressure, $A_{min} = P / q_{max} = 1.465 m^2$

> Note: A_{min} is an initial estimation. P = Critical Factored Axial Load(without self weight/buoyancy/soil). q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length (L_2) = 1.600 m Governing Load Case : # 101

Width (W_2) = 1.600 m Governing Load Case : # 101

Area $(A_2) = 2.560 \text{ m}^2$

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m ²)
102	108.2676	87.1179	67.7100	88.8596	0.000
102	108.2676	87.1179	67.7100	88.8596	0.000
102	108.2676	87.1179	67.7100	88.8596	0.000
102	108.2676	87.1179	67.7100	88.8596	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative

pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	108.2676	87.1179	67.7100	88.8596
102	108.2676	87.1179	67.7100	88.8596
102	108.2676	87.1179	67.7100	88.8596
102	108.2676	87.1179	67.7100	88.8596

<u>Details of Out-of-Contact Area</u> (<u>If Any</u>)

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety against overturnin	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	9.879	11.597	25.101	23.006
102	10.980	12.820	27.660	25.382
103	9.879	11.597	25.101	23.006
104	9.879	11.597	25.101	23.006
105	11.971	13.977	30.156	27.673
106	11.971	13.977	30.156	27.673
107	11.971	13.977	30.156	27.673

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force : -10.876 kN

Governing Restoring Force : 107.449 kN

Minimum Sliding Ratio for the Critical Load Case: 9.879
Critical Load Case for Overturning about X-Direction: 101

d Case for Overturning about X-Direction: 101

Governing Overturning Moment: -6.849 kNm

Governing Resisting Moment: 171.915 kNm

Minimum Overturning Ratio for the Critical Load Case : 25.101

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force: -9.265 kN
Governing Restoring Force: 107.449 kN
Minimum Sliding Ratio for the Critical Load Case: 11.597
Critical Load Case for Overturning about Z-Direction: 101
Governing Overturning Moment: 7.473 kNm
Governing Resisting Moment: 171.915 kNm
Minimum Overturning Ratio for the Critical Load Case: 23.006

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth $-^{D-(cc+0.5\times d_b)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.463	m
Governing moment (M_u)		= 32.571	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 $(K_{umax}) =$	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times \mathbf{f_{ck}} \times \mathbf{k_{umax}} \times (1 - 0.42 \times \mathbf{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.463	m
Governing moment $(M_u) =$		= 32.892	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance $(M_{umax}) =$	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

Check Trial Depth for two way shear

Critical Load Case = #202

Calculation of Maximum Bar Size

Along X Axis

= 12 mm

Along Z Axis

Bar diameter corresponding to max bar $size(d_h)$ = 12 mm

As Per IS 456 2000 Clause 26.2.1

Bar diameter corresponding to max bar size (d_h)

Development Length(I_d) = $\frac{\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}}{4 \times \Gamma_{bd}} = 0.583 \text{ m}$ Allowable Length(I_{db}) = $\left[\frac{(H-h)}{2} - cc\right] = 0.600 \text{ m}$ $I_{db} >= I_d \qquad \qquad \text{hence, safe}$

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 426.507 mm2

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm2}$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 431.223 mm²

Provided Area of Steel (A_{st.Provided}) = 480.000 mm2

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \le S \le S_{max}$ and selected bar size \le selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 480.000 mm2
Calculated Area of Steel (A_{st}) = 480.000 mm2
Provided Area of Steel ($A_{st,Provided}$) = 480.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12 Minimum spacing allowed (S_{min}) = 52.000 mm Selected spacing (S) = 250.000mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 480.000 mm2

Provided Area of Steel ($A_{st,Provided}$) = 480.000 mm2

 A_{stmin} <= $A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 28

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \text{Column Shape: Rectangular} \\ \text{Column Length - X (PI): 0.300 m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing: 1500.000 mm

Cohesion: 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title
101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

Applied Loads - Service Stress Level						
LC	LC					
101	224.845	-2.264	-0.757	-1.023	0.787	
102	264.160	-2.496	-0.239	-0.842	0.923	
103	224.845	-2.264	-0.757	-1.023	0.787	
104	224.845	-2.264	-0.757	-1.023	0.787	
105	211.328	-1.997	-0.191	-0.674	0.738	
106	211.328	-1.997	-0.191	-0.674	0.738	
107	211.328	-1.997	-0.191	-0.674	0.738	

	Applied Loads - Service Stress Level					
LC	LC					
101	224.845	-2.264	-0.757	-1.023	0.787	
102	264.160	-2.496	-0.239	-0.842	0.923	
103	224.845	-2.264	-0.757	-1.023	0.787	
104	224.845	-2.264	-0.757	-1.023	0.787	
105	211.328	-1.997	-0.191	-0.674	0.738	
106	211.328	-1.997	-0.191	-0.674	0.738	
107	211.328	-1.997	-0.191	-0.674	0.738	

Applied Loads - Strength Level						
LC Axial Shear X Shear Z Moment X Moment C (kN) (kN) (kN) (kNm) (kNm)						
201	337.268	-3.396	-1.135	-1.534	1.181	
202	396.240	-3.744	-0.358	-1.263	1.384	

253.593	-2.396	-0.229	-0.809	0.886
253.593	-2.396	-0.229	-0.809	0.886
253.593	-2.396	-0.229	-0.809	0.886
269.815	-2.717	-0.908	-1.227	0.945
269.815	-2.717	-0.908	-1.227	0.945
269.815	-2.717	-0.908	-1.227	0.945
202.361	-2.038	-0.681	-0.921	0.709
202.361	-2.038	-0.681	-0.921	0.709
202.361	-2.038	-0.681	-0.921	0.709
Ą	pplied Loads -	Strength Lev	rel	
Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
337.268	-3.396	-1.135	-1.534	1.181
396.240	-3.744	-0.358	-1.263	1.384
253.593	-2.396	-0.229	-0.809	0.886
253.593	-2.396	-0.229	-0.809	0.886
253.593	-2.396	-0.229	-0.809	0.886
269.815	-2.717	-0.908	-1.227	0.945
269.815	-2.717	-0.908	-1.227	0.945
269.815	-2.717	-0.908	-1.227	0.945
202.361	-2.038	-0.681	-0.921	0.709
202.361 202.361	-2.038 -2.038	-0.681 -0.681	-0.921 -0.921	0.709 0.709
	253.593 253.593 269.815 269.815 202.361 202.361 202.361 202.361 Axial (kN) 337.268 396.240 253.593 253.593 269.815 269.815	253.593 -2.396 253.593 -2.396 269.815 -2.717 269.815 -2.717 269.815 -2.717 202.361 -2.038 202.361 -2.038 202.361 -2.038 Applied Loads - Axial (kN) 337.268 -3.396 396.240 -3.744 253.593 -2.396 253.593 -2.396 253.593 -2.396 269.815 -2.717	253.593	253.593

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 2.447 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.750 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 1.750 m Area $(A_2) =$ 3.063 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	119.9548	116.4915	114.4722	117.9355	0.000
102	119.9548	116.4915	114.4722	117.9355	0.000
102	119.9548	116.4915	114.4722	117.9355	0.000
102	119.9548	116.4915	114.4722	117.9355	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	119.9548	116.4915	114.4722	117.9355
102	119.9548	116.4915	114.4722	117.9355
102	119.9548	116.4915	114.4722	117.9355
102	119.9548	116.4915	114.4722	117.9355

Details of Out-of-Contact Area (If Any)

Governing load case = N/APlan area of footing = 3.063 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

 $\begin{tabular}{lll} Governing load case = & N/A \\ Plan area of footing = & 3.063 sq.m \\ Area not in contact with soil = & 0.000 sq.m \\ \end{tabular}$

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	71.601	214.219	234.069	209.616
102	72.837	761.901	352.733	205.668
103	71.601	214.219	234.069	209.616
104	71.601	214.219	234.068	209.616
105	77.816	813.978	376.842	219.725
106	77.816	813.978	376.842	219.725
107	77.816	813.979	376.843	219.725

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force : -2.264 kN

Governing Restoring Force: 162.122 kN
Minimum Sliding Ratio for the Critical Load Case: 71.601
Critical Load Case for Overturning about X-Direction: 104

Governing Overturning Moment : -1.212 kNm
Governing Resisting Moment : 283.708 kNm

Minimum Overturning Ratio for the Critical Load Case: 234.068

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -0.757 kN
Governing Restoring Force : 162.122 kN

Minimum Sliding Ratio for the Critical Load Case: 214.219
Critical Load Case for Overturning about Z-Direction: 102

Governing Overturning Moment: 1.547 kNm
Governing Resisting Moment: 318.107 kNm
Minimum Overturning Ratio for the Critical Load Case: 205.668

Tillig Rado for the Chacar Load Case i

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.244	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.144	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.481	m
Governing moment (M _u)		= 60.010	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{(1100 + 0.87 \times \mathbf{f_y})}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 95.068804	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_{b}\right)$	= 0.244	m
Effective End Depth		= 0.144	m
Effective Width		= 0.481	m
Governing moment $(M_u) =$		= 60.370	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R _{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1-0.42 \times kumax)$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 95.068804	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.244 m		
Shear Force(S)		= 110.495	kN
Shear Stress(T _v)		= 241.088657	kN/m2
Percentage Of Steel(P_t)		= 0.5398	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 504.338	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 357.950	kN
Shear Stress(T _v)		= 724.116	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
$K_s =$	$min[(0.5 + \beta), 1]$	= 1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{\mathbf{f}_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s \times T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.37 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.675 m $I_{db} > = I_d$ hence, safe

Along Z Axis

= 12 mm

Bar diameter corresponding to max bar $size(d_b)$

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 630.000 mm2

Calculated Area of Steel (A_{st}) = 633.814 mm2

Provided Area of Steel $(A_{st,Provided}) = 633.814 \text{ mm2}$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \le S \le S_{max}$ and selected bar size \le selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 630.000 mm2

Calculated Area of Steel $(A_{st}) = 638.148 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 638.148 \text{ mm2}$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 630.000 mm2
Calculated Area of Steel (A_{st}) = 525.000 mm2

Provided Area of Steel
$$(A_{st,Provided}) = 630.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size
$$(d_b)$$
 = Ø12

Minimum spacing allowed (
$$S_{min}$$
) = 52.000 mm

Selected spacing (S)
$$= 250.000$$
mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

$$\mbox{Minimum Area of Steel (A}_{\mbox{stmin}}) = 630.000 \ \mbox{mm2}$$

Calculated Area of Steel (
$$A_{st}$$
) = 525.000 mm2

Provided Area of Steel
$$(A_{st,Provided}) = 630.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 29

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{tabular}{ll} Column Shape: Rectangular \\ Column Length - X (PI): 0.300 m \end{tabular}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2
Depth of Soil above Footing: 1500.000 mm

of Soil above Footing: 1500.000 mm

Cohesion: 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title
101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

	Appl	ied Loads - Se	ervice Stress I	_evel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	206.659	5.874	-0.816	-1.032	-2.898
102	241.945	5.823	-0.294	-0.848	-2.893
103	206.659	5.874	-0.816	-1.032	-2.898
104	206.659	5.874	-0.816	-1.032	-2.898
105	193.556	4.658	-0.235	-0.678	-2.315
106	193.556	4.658	-0.235	-0.678	-2.315
107	193.556	4.658	-0.235	-0.678	-2.315

	Appl	ied Loads - Se	ervice Stress I	Level	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	206.659	5.874	-0.816	-1.032	-2.898
102	241.945	5.823	-0.294	-0.848	-2.893
103	206.659	5.874	-0.816	-1.032	-2.898
104	206.659	5.874	-0.816	-1.032	-2.898
105	193.556	4.658	-0.235	-0.678	-2.315
106	193.556	4.658	-0.235	-0.678	-2.315
107	193.556	4.658	-0.235	-0.678	-2.315

	Ą	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	309.988	8.811	-1.224	-1.548	-4.348
202	362.917	8.734	-0.441	-1.272	-4.340

232.267	5.590	-0.282	-0.814	-2.778
232.267	5.590	-0.282	-0.814	-2.778
232.267	5.590	-0.282	-0.814	-2.778
247.990	7.049	-0.980	-1.238	-3.478
247.990	7.049	-0.980	-1.238	-3.478
247.990	7.049	-0.980	-1.238	-3.478
185.993	5.287	-0.735	-0.929	-2.609
185.993	5.287	-0.735	-0.929	-2.609
185.993	5.287	-0.735	-0.929	-2.609
Ą	pplied Loads -	Strength Lev	rel	
Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
309.988	8.811	-1.224	-1.548	-4.348
362.917	8.734	-0.441	-1.272	-4.340
232.267	5.590	-0.282	-0.814	-2.778
232.267	5.590	-0.282	-0.814	-2.778
232.267	5.590	-0.282	-0.814	-2.778
247.990	7.049	-0.980	-1.238	-3.478
247.990	7.049	-0.980	-1.238	-3.478
247.990	7.049	-0.980	-1.238	-3.478
185.993	5.287	-0.735	-0.929	-2.609
185.993	5.287	-0.735	-0.929	-2.609
	232.267 232.267 247.990 247.990 185.993 185.993 185.993 April (kN) 309.988 362.917 232.267 232.267 247.990 247.990 247.990 185.993	232.267 5.590 232.267 5.590 247.990 7.049 247.990 7.049 185.993 5.287 185.993 5.287 Applied Loads - Axial Shear X (kN) 309.988 8.811 362.917 8.734 232.267 5.590 232.267 5.590 232.267 5.590 247.990 7.049 247.990 7.049 247.990 7.049 185.993 5.287	232.267 5.590 -0.282 232.267 5.590 -0.282 247.990 7.049 -0.980 247.990 7.049 -0.980 185.993 5.287 -0.735 185.993 5.287 -0.735 185.993 5.287 -0.735 Applied Loads - Strength Lev Axial (kN) (kN) (kN) (kN) 309.988 8.811 -1.224 362.917 8.734 -0.441 232.267 5.590 -0.282 232.267 5.590 -0.282 247.990 7.049 -0.980 247.990 7.049 -0.980 247.990 7.049 -0.980 185.993 5.287 -0.735	232.267 5.590 -0.282 -0.814 232.267 5.590 -0.282 -0.814 247.990 7.049 -0.980 -1.238 247.990 7.049 -0.980 -1.238 185.993 5.287 -0.735 -0.929 185.993 5.287 -0.735 -0.929 185.993 5.287 -0.735 -0.929 Applied Loads - Strength Level Axial (kN) (kN) (kN) (kN) (kN) (kNm) 309.988 8.811 -1.224 -1.548 362.917 8.734 -0.441 -1.272 232.267 5.590 -0.282 -0.814 232.267 5.590 -0.282 -0.814 247.990 7.049 -0.980 -1.238 247.990 7.049 -0.980 -1.238 247.990 7.049 -0.980 -1.238 185.993 5.287 -0.735 -0.929

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 2.262 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.750 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 1.750 m Area $(A_2) =$ 3.063 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m ²)
102	106.1223	115.8600	113.7969	104.0592	0.000
102	106.1223	115.8600	113.7969	104.0592	0.000
102	106.1223	115.8600	113.7969	104.0592	0.000
102	106.1223	115.8600	113.7969	104.0592	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	106.1223	115.8600	113.7969	104.0592
102	106.1223	115.8600	113.7969	104.0592
102	106.1223	115.8600	113.7969	104.0592
102	106.1223	115.8600	113.7969	104.0592

Details of Out-of-Contact Area (If Any)

Governing load case = N/APlan area of footing = 3.063 sq.m

Area not in contact with soil = 0.000 sq.m % of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/APlan area of footing = 3.063 sq.mArea not in contact with soil = 0.000 sq.m% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	26.052	187.474	216.706	61.324
102	29.311	581.094	324.143	68.677
103	26.052	187.474	216.706	61.324
104	26.052	187.474	216.706	61.324
105	31.445	623.397	347.741	73.676
106	31.445	623.397	347.741	73.676
107	31.445	623.396	347.741	73.676

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force : 5.874 kN

Governing Restoring Force : 153.028 kN
Minimum Sliding Ratio for the Critical Load Case : 26.052
Critical Load Case for Overturning about X-Direction : 101

Governing Overturning Moment : -1.236 kNm
Governing Resisting Moment : 267.795 kNm

Minimum Overturning Ratio for the Critical Load Case : 216.706

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -0.816 kN
Governing Restoring Force : 153.028 kN

Minimum Sliding Ratio for the Critical Load Case : 187.474
Critical Load Case for Overturning about Z-Direction : 101

Governing Overturning Moment : -4.367 kNm
Governing Resisting Moment : 267.795 kNm

Minimum Overturning Ratio for the Critical Load Case: 61.324

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.481	m
Governing moment (M _u)		= 55.016	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times \mathbf{f_y}\right)}$	= 0.456026	
Limiting Factor2 $(R_{umax}) =$	$0.36 \times f_{ck} \times k_{umax} \times (1 - 0.42 \times kumax)$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 60.098251	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.481	m
Governing moment $(M_u) =$		= 56.935	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1 - 0.42 \times kuma)$	x) = 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 60.098251	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

$D_Z =$	0.194 m		
Shear Force(S)		= 114.847	kN
Shear Stress(T _v)		= 382.812073	kN/m2
Percentage Of Steel(P_t)		= 0.8391	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 600.245	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 333.998	kN
Shear Stress(T _v)		= 935.814	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
K _s =	$min[(0.5+\beta),1]$	= 1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.675 m $I_{db} > = I_d$ hence, safe

Along Z Axis

= 12 mm

Bar diameter corresponding to max bar $size(d_b)$

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 525.000 mm2

Calculated Area of Steel (A_{st}) = 783.416 mm2

Provided Area of Steel $(A_{st,Provided}) = 783.416 \text{ mm}^2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \le S \le S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 525.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 818.019 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 818.019 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 234.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 230.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel $(A_{stmin}) = 525.000 \text{ mm}2$

Calculated Area of Steel (A_{st}) = 525.000 mm²

Provided Area of Steel (A_{st.Provided}) = 525.000 mm2

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (A_{stmin}) = 525.000 mm2

Calculated Area of Steel (A_{st}) = 525.000 mm2

Provided Area of Steel $(A_{st,Provided}) = 525.000$ mm2

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 30

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \text{Column Shape: Rectangular} \\ \text{Column Length - X (PI): } 0.300 \text{ m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing : 1500.000 mm Cohesion : 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level			
Load Combination Number	Load Combination Title			
101	1.000 x DL			
102	1.000 x DL+1.000 x LL			
103	1.000 x DL+1.000 x ELX+1.000 x ELX			
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ			
105	0.800 x DL+0.800 x LL			
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX			
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ			
	Load Combination/s- Service Stress Level			
Load Combination Number	Load Combination Title			

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

	Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	116.685	7.176	-9.144	-4.451	-3.450	
102	127.940	7.030	-8.786	-4.289	-3.418	
103	116.685	7.176	-9.144	-4.451	-3.450	
104	116.685	7.176	-9.144	-4.451	-3.450	
105	102.352	5.624	-7.029	-3.431	-2.734	
106	102.352	5.624	-7.029	-3.431	-2.734	
107	102.352	5.624	-7.029	-3.431	-2.734	

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	116.685	7.176	-9.144	-4.451	-3.450
102	127.940	7.030	-8.786	-4.289	-3.418
103	116.685	7.176	-9.144	-4.451	-3.450
104	116.685	7.176	-9.144	-4.451	-3.450
105	102.352	5.624	-7.029	-3.431	-2.734
106	102.352	5.624	-7.029	-3.431	-2.734
107	102.352	5.624	-7.029	-3.431	-2.734

	Applied Loads - Strength Level				
LC					
201	175.027	10.764	-13.715	-6.676	-5.176
202	191.910	10.546	-13.179	-6.433	-5.127

203	122.823	6.749	-8.434	-4.117	-3.281
204	122.823	6.749	-8.434	-4.117	-3.281
205	122.823	6.749	-8.434	-4.117	-3.281
206	140.022	8.611	-10.972	-5.341	-4.141
207	140.022	8.611	-10.972	-5.341	-4.141
208	140.022	8.611	-10.972	-5.341	-4.141
209	105.016	6.458	-8.229	-4.006	-3.105
210	105.016	6.458	-8.229	-4.006	-3.105
211	105.016	6.458	-8.229	-4.006	-3.105
	A	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	175.027	10.764	-13.715	-6.676	-5.176
202	191.910	10.546	-13.179	-6.433	-5.127
203	122.823	6.749	-8.434	-4.117	-3.281
204	122.823	6.749	-8.434	-4.117	-3.281
205	122.823	6.749	-8.434	-4.117	-3.281
206	140.022	8.611	-10.972	-5.341	-4.141
207	140.022	8.611	-10.972	-5.341	-4.141
208	140.022	8.611	-10.972	-5.341	-4.141
209	105.016	6.458	-8.229	-4.006	-3.105
210	105.016	6.458	-8.229	-4.006	-3.105
211	105.016	6.458	-8.229	-4.006	-3.105

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 1.312 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.600 Governing Load Case: # 101 m Width $(W_2) =$ Governing Load Case: # 101 1.600 m Area $(A_2) =$ 2.560 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m ²)
102	82.7146	97.8775	78.8780	63.7151	0.000
102	82.7146	97.8775	78.8780	63.7151	0.000
102	82.7146	97.8775	78.8780	63.7151	0.000
102	82.7146	97.8775	78.8780	63.7151	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	82.7146	97.8775	78.8780	63.7151
102	82.7146	97.8775	78.8780	63.7151
102	82.7146	97.8775	78.8780	63.7151
102	82.7146	97.8775	78.8780	63.7151

<u>Details of Out-of-Contact Area</u> (<u>If Any</u>)

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	13.892	10.903	23.676	30.413
102	14.980	11.987	25.983	32.557
103	13.892	10.903	23.676	30.413
104	13.892	10.903	23.676	30.413
105	16.450	13.163	28.533	35.753
106	16.450	13.163	28.533	35.753
107	16.450	13.163	28.533	35.753

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 103

Governing Disturbing Force: 7.176 kN

Governing Restoring Force: 99.687 kN
Minimum Sliding Ratio for the Critical Load Case: 13.892
Critical Load Case for Overturning about X-Direction: 101

Governing Overturning Moment: -6.737 kNm
Governing Resisting Moment: 159.497 kNm

Minimum Overturning Ratio for the Critical Load Case: 23.676

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -9.144 kN
Governing Restoring Force : 99.687 kN

Minimum Sliding Ratio for the Critical Load Case : 10.903
Critical Load Case for Overturning about Z-Direction : 101

Governing Overturning Moment : -5.244 kNm
Governing Resisting Moment : 159.497 kNm

Minimum Overturning Ratio for the Critical Load Case: 30.413

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.463	m
Governing moment (M _u)		= 28.849	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{(1100 + 0.87 \times \mathbf{f_y})}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_{b}\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.463	m
Governing moment $(M_u) =$		= 28.143	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R _{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1-0.42 \times kumax)$	= 3318.146612	kN/m2
Limit Moment Of Resistance $(M_{umax}) =$	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.194 m		
Shear Force(S)		= 60.627	kN
Shear Stress(T _v)		= 222.332596	kN/m2
Percentage Of Steel(P_t)		= 0.5350	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 502.517	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)	= 1	173.616 k	:N
Shear Stress(T _v)	= 4	490.641 k	N/m2
As Per IS 456 2000 Clause 31.6.3.1			
$K_s =$	$min[(0.5 + \beta), 1] = 1$	1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}} = 1$	1250.0000 k	:N/m2
$K_s X T_c$	= 1	1250.0000 k	N/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_h) = 12 mm As Per IS 456 2000 Clause 26.2.1 Development Length(I_d) = Allowable Length(I_{db}) = $I_{db} >= I_{d}$ hence, safe

Along Z Axis

= 12 mm

Bar diameter corresponding to max bar $size(d_b)$ As Per IS 456 2000 Clause 26.2.1 $\frac{\mathtt{d}_{b}\times0.87\times\mathbf{f}_{y}}{4\times\Gamma_{bd}}$ Development Length(I_d) = = 0.583 m $\left[\frac{(H-h)}{2}-cc\right]$ Allowable Length(I_{db}) = = 0.600 m

Selection of Reinforcement

hence, safe

Along Z Axis

 $I_{db} >= I_{d}$

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 372.840 mm2

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm}^2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \le S \le S_{max}$ and selected bar size \le selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 362.840 mm2

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Calculated Area of Steel (
$$A_{st}$$
) = 480.000 mm²

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size
$$(d_h)$$
 = Ø12

Minimum spacing allowed (
$$S_{min}$$
) = 52.000 mm

Selected spacing (S) =
$$250.000$$
mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 480.000 mm2

Calculated Area of Steel (
$$A_{st}$$
) = 480.000 mm2

Provided Area of Steel (
$$A_{st,Provided}$$
) = 480.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 31

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \mbox{Column Shape}: & \mbox{Rectangular} \\ \mbox{Column Length - X (PI)}: & 0.300 \ \mbox{m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2
Depth of Soil above Footing: 1500.000 mm

Cohesion: 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				
101	1.000 x DL				
102	1.000 x DL+1.000 x LL				
103	1.000 x DL+1.000 x ELX+1.000 x ELX				
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ				
105	0.800 x DL+0.800 x LL				
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX				
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ				
	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

	Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	210.332	0.917	-2.329	-1.342	-0.410	
102	248.326	1.790	-2.210	-1.274	-0.688	
103	210.332	0.917	-2.329	-1.342	-0.410	
104	210.332	0.917	-2.329	-1.342	-0.410	
105	198.661	1.432	-1.768	-1.019	-0.550	
106	198.661	1.432	-1.768	-1.019	-0.550	
107	198.661	1.432	-1.768	-1.019	-0.550	

	Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	210.332	0.917	-2.329	-1.342	-0.410	
102	248.326	1.790	-2.210	-1.274	-0.688	
103	210.332	0.917	-2.329	-1.342	-0.410	
104	210.332	0.917	-2.329	-1.342	-0.410	
105	198.661	1.432	-1.768	-1.019	-0.550	
106	198.661	1.432	-1.768	-1.019	-0.550	
107	198.661	1.432	-1.768	-1.019	-0.550	

Applied Loads - Strength Level					
					Moment Z (kNm)
201	315.498	1.376	-3.493	-2.014	-0.615
202	372.489	2.685	-3.314	-1.911	-1.032

238.393	1.719	-2.121	-1.223	-0.661
238.393	1.719	-2.121	-1.223	-0.661
238.393	1.719	-2.121	-1.223	-0.661
252.398	1.101	-2.794	-1.611	-0.492
252.398	1.101	-2.794	-1.611	-0.492
252.398	1.101	-2.794	-1.611	-0.492
189.299	0.826	-2.096	-1.208	-0.369
189.299	0.826	-2.096	-1.208	-0.369
189.299	0.826	-2.096	-1.208	-0.369
Ą	pplied Loads -	Strength Lev	rel	
Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
315.498	1.376	-3.493	-2.014	-0.615
372.489	2.685	-3.314	-1.911	-1.032
238.393	1.719	-2.121	-1.223	-0.661
238.393	1.719	-2.121	-1.223	-0.661
238.393	1.719	-2.121	-1.223	-0.661
252.398	1.101	-2.794	-1.611	-0.492
252.398	1.101	-2.794	-1.611	-0.492
252.398	1.101	-2.794	-1.611	-0.492
189.299	0.826	-2.096	-1.208	-0.369
189.299	0.826	-2.096	-1.208	-0.369
	238.393 238.393 252.398 252.398 252.398 189.299 189.299 Axial (kN) 315.498 372.489 238.393 238.393 252.398 252.398 252.398 189.299	238.393 1.719 238.393 1.719 252.398 1.101 252.398 1.101 252.398 1.101 189.299 0.826 189.299 0.826 Applied Loads Axial Shear X (kN) 315.498 1.376 372.489 2.685 238.393 1.719 238.393 1.719 238.393 1.719 238.393 1.719 252.398 1.101 252.398 1.101 252.398 1.101 189.299 0.826	238.393 1.719 -2.121 238.393 1.719 -2.121 252.398 1.101 -2.794 252.398 1.101 -2.794 252.398 1.101 -2.794 252.398 1.101 -2.794 189.299 0.826 -2.096 189.299 0.826 -2.096 Applied Loads - Strength Lev Axial Shear X (kN) (kN) 315.498 1.376 -3.493 372.489 2.685 -3.314 238.393 1.719 -2.121 238.393 1.719 -2.121 238.393 1.719 -2.121 252.398 1.101 -2.794 252.398 1.101 -2.794 252.398 1.101 -2.794 189.299 0.826 -2.096	1.719

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 2.315 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.750 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 1.750 m Area $(A_2) =$ 3.063 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m ²)
102	112.8167	115.3593	111.2696	108.7270	0.000
102	112.8167	115.3593	111.2696	108.7270	0.000
102	112.8167	115.3593	111.2696	108.7270	0.000
102	112.8167	115.3593	111.2696	108.7270	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	112.8167	115.3593	111.2696	108.7270
102	112.8167	115.3593	111.2696	108.7270
102	112.8167	115.3593	111.2696	108.7270
102	112.8167	115.3593	111.2696	108.7270

Details of Out-of-Contact Area (If Any)

Governing load case = N/A Plan area of footing = 3.063 sq.m

Area not in contact with soil = 0.000 sq.m % of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/APlan area of footing = 3.063 sq.mArea not in contact with soil = 0.000 sq.m% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety against overturning	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	168.836	66.506	140.823	423.805
102	97.124	78.686	166.578	267.935
103	168.836	66.506	140.823	423.805
104	168.836	66.506	140.823	423.805
105	104.064	84.310	178.482	287.083
106	104.064	84.310	178.482	287.083
107	104.064	84.310	178.482	287.083

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 102

Governing Disturbing Force : 1.790 kN

Governing Restoring Force: 173.862 kN
Minimum Sliding Ratio for the Critical Load Case: 97.124
Critical Load Case for Overturning about X-Direction: 101

Governing Overturning Moment: -1.924 kNm
Governing Resisting Moment: 271.009 kNm

Minimum Overturning Ratio for the Critical Load Case: 140.823

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -2.329 kN
Governing Restoring Force : 154.865 kN

Minimum Sliding Ratio for the Critical Load Case : 66.506
Critical Load Case for Overturning about Z-Direction : 102

Governing Overturning Moment: -1.136 kNm
Governing Resisting Moment: 304.253 kNm
Minimum Overturning Ratio for the Critical Load Case: 267.935

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.481	m
Governing moment (M _u)		= 56.960	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1-0.42 \times kumax)$	= 3318.146612	kN/m2
Limit Moment Of Resistance $(M_{umax}) =$	$R_{umax} \times B \times d_e^2$	= 60.098251	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.481	m
Governing moment $(M_u) =$		= 56.574	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1 - 0.42 \times kum)$	ax) = 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 60.098251	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.194 m		
Shear Force(S)		= 114.258	kN
Shear Stress(T _v)		= 380.849798	kN/m2
Percentage Of Steel(P_t)		= 0.8767	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 610.364	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202	
Shear Force(S)	= 342.807	kN
Shear Stress(T _v)	= 960.495	kN/m2
As Per IS 456 2000 Clause 31.6.3.1		
$K_s =$	$min[(0.5 + \beta), 1] = 1.000$	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}} = 1250.0000$	kN/m2
$K_s X T_c$	= 1250.0000	kN/m2
$T_v \le K_S X T_C$	hence, safe	

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_h) = 12 mm As Per IS 456 2000 Clause 26.2.1 Development Length(I_d) = Allowable Length(I_{db}) = $I_{db} >= I_{d}$ hence, safe

Along Z Axis

= 12 mm

Bar diameter corresponding to max bar $size(d_b)$ As Per IS 456 2000 Clause 26.2.1 $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ Development Length(I_d) = = 0.583 m $\left[\frac{(H-h)}{2}-cc\right]$ Allowable Length(I_{db}) = = 0.675 m $I_{db} >= I_{d}$

Selection of Reinforcement

hence, safe

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 525.000 mm2

Calculated Area of Steel (A_{st}) = 818.473 mm2

Provided Area of Steel $(A_{st,Provided}) = 818.473$ mm²

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 234.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 230.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 525.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 811.456 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 811.456 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 234.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 230.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 525.000 mm2
Calculated Area of Steel (A_{st}) = 525.000 mm2
Provided Area of Steel ($A_{st,Provided}$) = 525.000 mm2

A_{stmin}<= A_{st,Provided} Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 525.000 mm2

Calculated Area of Steel (
$$A_{st}$$
) = 525.000 mm2

Provided Area of Steel
$$(A_{st,Provided}) = 525.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 32

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \text{Column Shape: Rectangular} \\ \text{Column Length - X (PI): 0.300 m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing : 1500.000 mmCohesion : 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level					
Load Combination Number	Load Combination Title					
101	1.000 x DL					
102	1.000 x DL+1.000 x LL					
103	1.000 x DL+1.000 x ELX+1.000 x ELX					
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ					
105	0.800 x DL+0.800 x LL					
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX					
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ					
	Load Combination/s- Service Stress Level					
Load Combination Number	Load Combination Title					

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

	Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	331.013	-13.098	-10.558	-5.580	6.042	
102	410.405	-13.805	-10.671	-5.649	6.429	
103	331.013	-13.098	-10.558	-5.580	6.042	
104	331.013	-13.098	-10.558	-5.580	6.042	
105	328.324	-11.044	-8.537	-4.520	5.143	
106	328.324	-11.044	-8.537	-4.520	5.143	
107	328.324	-11.044	-8.537	-4.520	5.143	

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	331.013	-13.098	-10.558	-5.580	6.042
102	410.405	-13.805	-10.671	-5.649	6.429
103	331.013	-13.098	-10.558	-5.580	6.042
104	331.013	-13.098	-10.558	-5.580	6.042
105	328.324	-11.044	-8.537	-4.520	5.143
106	328.324	-11.044	-8.537	-4.520	5.143
107	328.324	-11.044	-8.537	-4.520	5.143

Applied Loads - Strength Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	496.519	-19.647	-15.837	-8.370	9.063
202	615.608	-20.708	-16.007	-8.474	9.643

3.253 -10.244	-5.423	6.172
3.253 -10.244	-5.423	6.172
3.253 -10.244	-5.423	6.172
5.718 -12.669	-6.696	7.251
5.718 -12.669	-6.696	7.251
5.718 -12.669	-6.696	7.251
1.788 -9.502	-5.022	5.438
1.788 -9.502	-5.022	5.438
1.788 -9.502	-5.022	5.438
Loads - Strength Le	vel	
	Moment X (kNm)	Moment Z (kNm)
9.647 -15.837	-8.370	9.063
0.708 -16.007	-8.474	9.643
3.253 -10.244	-5.423	6.172
3.253 -10.244	-5.423	6.172
3.253 -10.244	-5.423	6.172
5.718 -12.669	-6.696	7.251
5.718 -12.669	-6.696	7.251
5.718 -12.669 5.718 -12.669	-6.696 -6.696	7.251 7.251
5.718 -12.669	-6.696	7.251
	3.253 -10.244 5.718 -12.669 5.718 -12.669 5.718 -12.669 1.788 -9.502 1.788 -9.502 1.788 -9.502 Loads - Strength Leer X (kN) 9.647 -15.837 0.708 -16.007 3.253 -10.244 3.253 -10.244	3.253 -10.244 -5.423 5.718 -12.669 -6.696 5.718 -12.669 -6.696 5.718 -12.669 -6.696 5.718 -12.669 -6.696 1.788 -9.502 -5.022 1.788 -9.502 -5.022 1.788 -9.502 -5.022 1.788 -9.502 -5.022 Loads - Strength Level ear X (kN) (kNm) 9.647 -15.837 -8.370 0.708 -16.007 -8.474 3.253 -10.244 -5.423 3.253 -10.244 -5.423 3.253 -10.244 -5.423

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 3.666 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 2.300 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 2.300 m Area $(A_2) =$ 5.290 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	117.8022	108.0574	99.8542	109.5990	0.000
102	117.8022	108.0574	99.8542	109.5990	0.000
102	117.8022	108.0574	99.8542	109.5990	0.000
102	117.8022	108.0574	99.8542	109.5990	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	117.8022	108.0574	99.8542	109.5990
102	117.8022	108.0574	99.8542	109.5990
102	117.8022	108.0574	99.8542	109.5990
102	117.8022	108.0574	99.8542	109.5990

<u>Details of Out-of-Contact Area</u> (<u>If Any</u>)

Governing load case = N/APlan area of footing = 5.290 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/APlan area of footing = 5.290 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety against overturnin	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	19.257	23.891	70.579	62.268
102	21.146	27.357	80.728	67.957
103	19.257	23.891	70.579	62.268
104	19.257	23.891	70.579	62.268
105	22.717	29.389	86.724	73.005
106	22.717	29.389	86.724	73.005
107	22.717	29.389	86.724	73.005

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force : -13.098 kN

Governing Restoring Force : 252.238 kN
Minimum Sliding Ratio for the Critical Load Case : 19.257
Critical Load Case for Overturning about X-Direction : 104

Governing Overturning Moment: -8.220 kNm
Governing Resisting Moment: 580.136 kNm

Minimum Overturning Ratio for the Critical Load Case: 70.579

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -10.558 kN
Governing Restoring Force : 252.238 kN

Minimum Sliding Ratio for the Critical Load Case: 23.891
Critical Load Case for Overturning about Z-Direction: 103

Governing Overturning Moment: 9.317 kNm
Governing Resisting Moment: 580.136 kNm

Minimum Overturning Ratio for the Critical Load Case: 62.268

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.294	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.194	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.550	m
Governing moment (M_u)		= 138.848	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 157.741143	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.294	m
Effective End Depth		= 0.194	m
Effective Width		= 0.550	m
Governing moment $(M_u) =$		= 139.792	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 157.741143	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.294 m		
Shear Force(S)		= 197.190	kN
Shear Stress(T _v)		= 225.741102	kN/m2
Percentage Of Steel(P _t)		= 0.7992	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 589.093	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 574.548	kN
Shear Stress (T_v)		= 865.782	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
$K_s =$	$min[(0.5 + \beta), 1]$	= 1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 16 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.777 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.950 m $I_{db} > = I_d$ hence, safe

Bar diameter corresponding to max bar $size(d_b)$

Selection of Reinforcement

= 16 mm

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 966.000 mm2

Calculated Area of Steel (A_{st}) = 1292.247 mm2

Provided Area of Steel $(A_{st,Provided}) = 1292.247 \text{ mm}^2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 198.909 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 195.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 966.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 1303.117 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 1303.117 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 198.909 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 195.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 966.000 mm2

Calculated Area of Steel (A_{st}) = 690.000 mm2

Provided Area of Steel ($A_{st,Provided}$) = 966.000 mm2

 A_{stmin} <= $A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_b) = Ø12 Minimum spacing allowed (S_{min}) = 52.000 mm Selected spacing (S) = 250.000mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (A_{stmin}) = 966.000 mm2

Calculated Area of Steel (A_{st}) = 991.819 mm2

Provided Area of Steel ($A_{st,Provided}$) = 991.819 mm2 A_{stmin} <= $A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 33

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \text{Column Shape: Rectangular} \\ \text{Column Length - X (PI): 0.300 m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing : 1500.000 mm Cohesion : 0.000 kN/m2

--- -f Cl-b . 0 000

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level					
Load Combination Number Load Combination Title						
101	1.000 x DL					
102	1.000 x DL+1.000 x LL					
103	1.000 x DL+1.000 x ELX+1.000 x ELX					
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ					
105	0.800 x DL+0.800 x LL					
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX					
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ					
	Load Combination/s- Service Stress Level					
Load Combination Number	Load Combination Title					

101	1.000 x DL		
102	1.000 x DL+1.000 x LL		
103	1.000 x DL+1.000 x ELX+1.000 x ELX		
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ		
105	0.800 x DL+0.800 x LL		
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX		
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ		
	Load Combination/s- Strength Level		
Load Combination Number	Load Combination Title		
201	1.500 x DL		
202	1.500 x DL+1.500 x LL		
203	0.960 x DL+0.960 x LL		
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX		
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ		
206	1.200 x DL		
207	1.200 x DL+1.200 x ELX+1.200 x ELX		
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ		
209	0.900 x DL		
210	0.900 x DL+1.200 x ELX+1.200 x ELX		
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ		
	Load Combination/s- Strength Level		
Load Combination Number	Load Combination Title		
201	1.500 x DL		
202	1.500 x DL+1.500 x LL		
203	0.960 x DL+0.960 x LL		
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX		
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ		
206	1.200 x DL		
207	1.200 x DL+1.200 x ELX+1.200 x ELX		
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ		
209	0.900 x DL		
210	0.900 x DL+1.200 x ELX+1.200 x ELX		
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ		

	Applied Loads - Service Stress Level						
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)		
101	312.743	13.049	-10.478	-5.526	-6.183		
102	383.917	13.199	-10.595	-5.596	-6.261		
103	312.743	13.049	-10.478	-5.526	-6.183		
104	312.743	13.049	-10.478	-5.526	-6.183		
105	307.133	10.559	-8.476	-4.477	-5.009		
106	307.133	10.559	-8.476	-4.477	-5.009		
107	307.133	10.559	-8.476	-4.477	-5.009		

	Applied Loads - Service Stress Level						
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)		
101	312.743	13.049	-10.478	-5.526	-6.183		
102	383.917	13.199	-10.595	-5.596	-6.261		
103	312.743	13.049	-10.478	-5.526	-6.183		
104	312.743	13.049	-10.478	-5.526	-6.183		
105	307.133	10.559	-8.476	-4.477	-5.009		
106	307.133	10.559	-8.476	-4.477	-5.009		
107	307.133	10.559	-8.476	-4.477	-5.009		

Applied Loads - Strength Level						
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
201	469.114	19.574	-15.717	-8.288	-9.275	
202	575.875	19.798	-15.893	-8.394	-9.392	

203	368.560	12.671	-10.171	-5.372	-6.011
204	368.560	12.671	-10.171	-5.372	-6.011
205	368.560	12.671	-10.171	-5.372	-6.011
206	375.291	15.659	-12.574	-6.631	-7.420
207	375.291	15.659	-12.574	-6.631	-7.420
208	375.291	15.659	-12.574	-6.631	-7.420
209	281.469	11.744	-9.430	-4.973	-5.565
210	281.469	11.744	-9.430	-4.973	-5.565
211	281.469	11.744	-9.430	-4.973	-5.565
	Ą	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	469.114	19.574	-15.717	-8.288	-9.275
202	575.875	19.798	-15.893	-8.394	-9.392
203	368.560	12.671	-10.171	-5.372	-6.011
204	368.560	12.671	-10.171	-5.372	-6.011
205	368.560	12.671	-10.171	-5.372	-6.011
206	375.291	15.659	-12.574	-6.631	-7.420
207	375.291	15.659	-12.574	-6.631	-7.420
208	375.291	15.659	-12.574	-6.631	-7.420
209	281.469	11.744	-9.430	-4.973	-5.565
210	281.469	11.744	-9.430	-4.973	-5.565

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 3.445 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 2.200 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 2.200 m Area $(A_2) =$ 4.840 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	106.2443	116.3169	107.6311	97.5584	0.000
102	106.2443	116.3169	107.6311	97.5584	0.000
102	106.2443	116.3169	107.6311	97.5584	0.000
102	106.2443	116.3169	107.6311	97.5584	0.000

If A₁ is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	106.2443	116.3169	107.6311	97.5584
102	106.2443	116.3169	107.6311	97.5584
102	106.2443	116.3169	107.6311	97.5584
102	106.2443	116.3169	107.6311	97.5584

Details of Out-of-Contact Area (If Any)

Governing load case = N/A Plan area of footing = 4.840 sq.m Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A Plan area of footing = 4.840 sq.m Area not in contact with soil = 0.000 sq.m

0.000% % of total area not in contact =

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety against overturnin	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	18.056	22.487	63.641	54.877
102	20.548	25.598	72.368	62.404
103	18.056	22.487	63.641	54.877
104	18.056	22.487	63.641	54.877
105	22.049	27.468	77.655	66.963
106	22.049	27.468	77.655	66.963
107	22.049	27.468	77.655	66.963

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 103

> Governing Disturbing Force: 13.049 kN

Governing Restoring Force: 235.621 kN
Minimum Sliding Ratio for the Critical Load Case: 18.056
Critical Load Case for Overturning about X-Direction: 104

Governing Overturning Moment : -8.145 kNm
Governing Resisting Moment : 518.358 kNm
Ratio for the Critical Load Case : 63.641

Minimum Overturning Ratio for the Critical Load Case: 63.641

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -10.478 kN Governing Restoring Force : 235.621 kN

Minimum Sliding Ratio for the Critical Load Case: 22.487
Critical Load Case for Overturning about Z-Direction: 103

Governing Overturning Moment : -9.446 kNm
Governing Resisting Moment : 518.358 kNm

Minimum Overturning Ratio for the Critical Load Case: 54.877

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.294	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.194	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.538	m
Governing moment (M_u)		= 123.043	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance $(M_{umax}) =$	$R_{umax} \times B \times d_e^2$	= 154.156117	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.294	m
Effective End Depth		= 0.194	m
Effective Width		= 0.538	m
Governing moment $(M_u) =$		= 123.835	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 154.156117	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

 $D_{X} = 0.294 \text{ m}$

Shear Force(S) = 178.774 kN Shear Stress(T_v) = 214.577085 kN/m2

Percentage Of Steel(P_t) = 0.7150

As Per IS 456 2000 Clause 40 Table 19

Shear Strength Of Concrete(T_c) = 564.154 kN/m2

 $T_v < T_c$ hence, safe

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

 $D_Z = 0.294 \text{ m}$

Shear Force(S) = 179.901 kN Shear Stress(T_v) = 215.929731 kN/m2

Percentage Of Steel(P_t) = 0.7095

As Per IS 456 2000 Clause 40 Table 19

Shear Strength Of Concrete(T_c) = 562.454 kN/m2

 $T_v < T_c$ hence, safe

Check Trial Depth for two way shear

Critical Load Case	= #202	
Shear Force(S)	= 533.894	kN
Shear Stress(T _v)	= 806.756	kN/m2
As Per IS 456 2000 Clause 31.6.3.1		
K _s =	$min[(0.5 + \beta), 1] = 1.000$	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}} = 1250.0000$	kN/m2
$K_s X T_c$	= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe	

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 16 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.777 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.900 m $I_{db} >= I_d$ hence, safe

Along Z Axis

Bar diameter corresponding to max bar size(I_b) = 16 mm

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 924.000 mm2

Calculated Area of Steel (A_{st}) = 1121.220 mm²

Provided Area of Steel $(A_{st,Provided}) = 1121.220 \text{ mm}^2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 232.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 230.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 924.000 \text{ mm}2$

Calculated Area of Steel (A_{st}) = 1129.885 mm2

Provided Area of Steel $(A_{st,Provided}) = 1129.885 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 232.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 230.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 924.000 mm2
Calculated Area of Steel (A_{st}) = 660.000 mm2
Provided Area of Steel ($A_{st,Provided}$) = 924.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 924.000 mm2
Calculated Area of Steel (A_{st}) = 869.183 mm2
Provided Area of Steel ($A_{st,Provided}$) = 924.000 mm2
 A_{stmin} <= $A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 34

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \mbox{Column Shape}: & \mbox{Rectangular} \\ \mbox{Column Length - X (PI)}: & 0.300 \ \mbox{m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing : 1500.000 mmCohesion : 0.000 kN/m2

COTICSION : 0.000 KN/I

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				
101	1.000 x DL				
102	1.000 x DL+1.000 x LL				
103	1.000 x DL+1.000 x ELX+1.000 x ELX				
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ				
105	0.800 x DL+0.800 x LL				
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX				
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ				
	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

	Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	195.254	-1.067	-2.348	-1.326	0.396	
102	227.299	-1.484	-2.222	-1.246	0.549	
103	195.254	-1.067	-2.348	-1.326	0.396	
104	195.254	-1.067	-2.348	-1.326	0.396	
105	181.839	-1.187	-1.778	-0.997	0.440	
106	181.839	-1.187	-1.778	-0.997	0.440	
107	181.839	-1.187	-1.778	-0.997	0.440	

	Applied Loads - Service Stress Level				
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	195.254	-1.067	-2.348	-1.326	0.396
102	227.299	-1.484	-2.222	-1.246	0.549
103	195.254	-1.067	-2.348	-1.326	0.396
104	195.254	-1.067	-2.348	-1.326	0.396
105	181.839	-1.187	-1.778	-0.997	0.440
106	181.839	-1.187	-1.778	-0.997	0.440
107	181.839	-1.187	-1.778	-0.997	0.440

Applied Loads - Strength Level					
LC					
201	292.881	-1.601	-3.522	-1.989	0.595
202	340.948	-2.225	-3.333	-1.869	0.824

203	218.207	-1.424	-2.133	-1.196	0.528
204	218.207	-1.424	-2.133	-1.196	0.528
205	218.207	-1.424	-2.133	-1.196	0.528
206	234.305	-1.281	-2.817	-1.591	0.476
207	234.305	-1.281	-2.817	-1.591	0.476
208	234.305	-1.281	-2.817	-1.591	0.476
209	175.729	-0.961	-2.113	-1.193	0.357
210	175.729	-0.961	-2.113	-1.193	0.357
211	175.729	-0.961	-2.113	-1.193	0.357
	Ą	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	292.881	-1.601	-3.522	-1.989	0.595
202	340.948	-2.225	-3.333	-1.869	0.824
203	218.207	-1.424	-2.133	-1.196	0.528
204	218.207	-1.424	-2.133	-1.196	0.528
205	218.207	-1.424	-2.133	-1.196	0.528
206	234.305	-1.281	-2.817	-1.591	0.476
207	234.305	-1.281	-2.817	-1.591	0.476
208	234.305	-1.281	-2.817	-1.591	0.476
209	175.729	-0.961	-2.113	-1.193	0.357
210	175.729	-0.961	-2.113	-1.193	0.357
211	175.729	-0.961	-2.113	-1.193	0.357

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 2.140 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.650 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 1.650 m Area $(A_2) =$ 2.723 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	117.9943	115.5356	110.7234	113.1822	0.000
102	117.9943	115.5356	110.7234	113.1822	0.000
102	117.9943	115.5356	110.7234	113.1822	0.000
102	117.9943	115.5356	110.7234	113.1822	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	117.9943	115.5356	110.7234	113.1822
102	117.9943	115.5356	110.7234	113.1822
102	117.9943	115.5356	110.7234	113.1822
102	117.9943	115.5356	110.7234	113.1822

Details of Out-of-Contact Area (If Any)

Governing load case = N/A Plan area of footing = 2.723 sq.m Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/APlan area of footing = 2.723 sq.m Area not in contact with soil = 0.000 sq.m % of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	132.730	60.342	122.197	352.411
102	106.289	70.973	144.442	282.698
103	132.730	60.342	122.197	352.411
104	132.730	60.342	122.197	352.411
105	113.711	75.929	154.528	302.438
106	113.711	75.929	154.528	302.438
107	113.711	75.929	154.528	302.438

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 102

Governing Disturbing Force : -1.484 kN

Governing Restoring Force: 157.696 kN
Minimum Sliding Ratio for the Critical Load Case: 106.289
Critical Load Case for Overturning about X-Direction: 101

Governing Overturning Moment: -1.913 kNm
Governing Resisting Moment: 233.757 kNm

Minimum Overturning Ratio for the Critical Load Case: 122.197

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : -2.348 kN
Governing Restoring Force : 141.674 kN

Minimum Sliding Ratio for the Critical Load Case: 60.342
Critical Load Case for Overturning about Z-Direction: 102

Governing Overturning Moment: 0.920 kNm
Governing Resisting Moment: 260.194 kNm
Minimum Overturning Ratio for the Critical Load Case: 282.698

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_{b}\right)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.469	m
Governing moment (M_u)		= 48.060	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K _{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{\mathbf{y}}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1-0.42 \times kumax)$	= 3318.146612	kN/m2
Limit Moment Of Resistance $(M_{umax}) =$	$R_{umax} \times B \times d_e^2$	= 58.537258	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_{b}\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.469	m
Governing moment $(M_u) =$		= 47.577	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1 - 0.42 \times kuma)$	x) = 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 58.537258	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

 $T_v < T_c$ hence, safe

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

 $T_v < T_c$ hence, safe

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 310.387	kN
Shear Stress(T _v)		= 874.457	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
$K_s =$	$min[(0.5 + \beta), 1]$	= 1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.37 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.625 m $I_{db} > = I_d$ hence, safe

Along Z Axis

Bar diameter corresponding to max bar size(d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(H-h)}{2} - cc\right]$ = 0.625 m $I_{db} > = I_d$ hence, safe

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 495.000 mm2

Calculated Area of Steel (A_{st}) = 667.494 mm2

Provided Area of Steel $(A_{st,Provided}) = 667.494 \text{ mm}2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 495.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 659.423 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 659.423 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Calculated Area of Steel (
$$A_{st}$$
) = 495.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size
$$(d_h)$$
 = Ø12

Minimum spacing allowed (
$$S_{min}$$
) = 52.000 mm

Selected spacing (S) =
$$250.000$$
mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel
$$(A_{stmin}) = 495.000 \text{ mm}2$$

Calculated Area of Steel (
$$A_{st}$$
) = 495.000 mm2

Provided Area of Steel
$$(A_{st,Provided}) = 495.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 35

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \mbox{Column Shape}: & \mbox{Rectangular} \\ \mbox{Column Length - X (PI)}: & 0.300 \ \mbox{m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing : 1500.000 mmCohesion : 0.000 kN/m2

--- -f Cl-b . 0 000

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				
101	1.000 x DL				
102	1.000 x DL+1.000 x LL				
103	1.000 x DL+1.000 x ELX+1.000 x ELX				
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ				
105	0.800 x DL+0.800 x LL				
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX				
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ				
	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

	Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)	
101	149.726	-13.556	11.230	4.949	6.201	
102	167.558	-12.411	10.813	4.801	5.699	
103	149.726	-13.556	11.230	4.949	6.201	
104	149.726	-13.556	11.230	4.949	6.201	
105	134.047	-9.929	8.650	3.841	4.559	
106	134.047	-9.929	8.650	3.841	4.559	
107	134.047	-9.929	8.650	3.841	4.559	

	Applied Loads - Service Stress Level				
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	149.726	-13.556	11.230	4.949	6.201
102	167.558	-12.411	10.813	4.801	5.699
103	149.726	-13.556	11.230	4.949	6.201
104	149.726	-13.556	11.230	4.949	6.201
105	134.047	-9.929	8.650	3.841	4.559
106	134.047	-9.929	8.650	3.841	4.559
107	134.047	-9.929	8.650	3.841	4.559

Applied Loads - Strength Level					
LC					
201	224.590	-20.334	16.845	7.423	9.302
202	251.338	-18.617	16.219	7.201	8.548

203	160.856	-11.915	10.380	4.609	5.471
204	160.856	-11.915	10.380	4.609	5.471
205	160.856	-11.915	10.380	4.609	5.471
206	179.672	-16.267	13.476	5.939	7.441
207	179.672	-16.267	13.476	5.939	7.441
208	179.672	-16.267	13.476	5.939	7.441
209	134.754	-12.200	10.107	4.454	5.581
210	134.754	-12.200	10.107	4.454	5.581
211	134.754	-12.200	10.107	4.454	5.581
	A	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	224.590	-20.334	16.845	7.423	9.302
202	251.338	-18.617	16.219	7.201	8.548
203	160.856	-11.915	10.380	4.609	5.471
204	160.856	-11.915	10.380	4.609	5.471
205	160.856	-11.915	10.380	4.609	5.471
206	179.672	-16.267	13.476	5.939	7.441
207	179.672	-16.267	13.476	5.939	7.441
208	179.672	-16.267	13.476	5.939	7.441
209	134.754	-12.200	10.107	4.454	5.581
210	134.754	-12.200	10.107	4.454	5.581
211	134.754	-12.200	10.107	4.454	5.581

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 1.642 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.650 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 1.650 m Area $(A_2) =$ 2.723 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	94.1488	70.6365	90.6824	114.1947	0.000
102	94.1488	70.6365	90.6824	114.1947	0.000
102	94.1488	70.6365	90.6824	114.1947	0.000
102	94.1488	70.6365	90.6824	114.1947	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	94.1488	70.6365	90.6824	114.1947
102	94.1488	70.6365	90.6824	114.1947
102	94.1488	70.6365	90.6824	114.1947
102	94.1488	70.6365	90.6824	114.1947

<u>Details of Out-of-Contact Area</u> (<u>If Any</u>)

Governing load case = N/A

Plan area of footing = 2.723 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A

Plan area of footing = 2.723 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	8.772	10.588	25.295	20.458
102	10.299	11.822	28.106	23.963
103	8.772	10.588	25.295	20.458
104	8.772	10.588	25.295	20.458
105	11.186	12.840	30.528	26.027
106	11.186	12.840	30.528	26.027
107	11.186	12.840	30.528	26.027

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force : -13.556 kN

Governing Restoring Force: 118.910 kN
Minimum Sliding Ratio for the Critical Load Case: 8.772
Critical Load Case for Overturning about X-Direction: 101

Governing Overturning Moment: 7.756 kNm
Governing Resisting Moment: 196.198 kNm

Minimum Overturning Ratio for the Critical Load Case: 25.295

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force: 11.230 kN
Governing Restoring Force: 118.910 kN
tio for the Critical Load Case (1998)

Minimum Sliding Ratio for the Critical Load Case: 10.588
Critical Load Case for Overturning about Z-Direction: 101

Governing Overturning Moment: 9.590 kNm
Governing Resisting Moment: 196.198 kNm

Minimum Overturning Ratio for the Critical Load Case: 20.458

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.469	m
Governing moment (M _u)		= 38.815	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times \mathbf{f_y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 58.537258	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_{b}\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.469	m
Governing moment $(M_u) =$		= 39.520	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1 - 0.42 \times kuma)$	x) = 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 58.537258	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.194 m		
Shear Force(S)		= 83.184	kN
Shear Stress(T _v)		= 295.155281	kN/m2
Percentage Of Steel(P _t)		= 0.5710	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 515.933	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 228.809	kN
Shear Stress(T _v)		= 644.625	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
$K_s =$	$min[(0.5+\beta),1]$	= 1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_h) = 12 mm As Per IS 456 2000 Clause 26.2.1 Development Length(I_d) = Allowable Length(I_{db}) = $I_{db} >= I_{d}$ hence, safe

Along Z Axis

= 12 mm

As Per IS 456 2000 Clause 26.2.1 $\frac{\mathtt{d}_{b}\times0.87\times\mathbf{f}_{y}}{4\times\Gamma_{bd}}$ $Development \ Length(I_{\underline{d}}) =$ = 0.583 m $\left[\frac{(H-h)}{2}-cc\right]$ Allowable Length(I_{db}) = = 0.625 m $I_{db} >= I_{d}$

Bar diameter corresponding to max bar $size(d_b)$

Selection of Reinforcement

hence, safe

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 495.000 mm2

Calculated Area of Steel (A_{st}) = 519.252 mm2

Provided Area of Steel $(A_{st,Provided}) = 519.252$ mm²

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 495.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 530.121 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 530.121 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Calculated Area of Steel (
$$A_{st}$$
) = 495.000 mm²

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size
$$(d_h)$$
 = Ø12

Minimum spacing allowed (
$$S_{min}$$
) = 52.000 mm

Selected spacing (S) =
$$250.000$$
mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel
$$(A_{stmin}) = 495.000 \text{ mm}2$$

Calculated Area of Steel (
$$A_{st}$$
) = 495.000 mm2

Provided Area of Steel
$$(A_{st,Provided}) = 495.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 36

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{tabular}{ll} Column Shape: Rectangular \\ Column Length - X (PI): 0.300 m \end{tabular}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type : Drained
Unit Weight : 18.000 kN/m3
Soil Bearing Capacity : 120.000 kN/m2
Soil Surcharge : 0.000 kN/m2

Depth of Soil above Footing : 1500.000 mmCohesion : 0.000 kN/m2

t--- -f Cl-b . 0 000

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				
101	1.000 x DL				
102	1.000 x DL+1.000 x LL				
103	1.000 x DL+1.000 x ELX+1.000 x ELX				
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ				
105	0.800 x DL+0.800 x LL				
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX				
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ				
	Load Combination/s- Service Stress Level				
Load Combination Number	Load Combination Title				

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
200	1.200 x DL+1.200 x ELZ+1.200 x ELZ
208	
209	0.900 x DL
	0.900 x DL 0.900 x DL+1.200 x ELX+1.200 x ELX

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	159.264	13.599	11.563	4.784	-6.513
102	178.748	12.433	11.099	4.595	-5.997
103	159.264	13.599	11.563	4.784	-6.513
104	159.264	13.599	11.563	4.784	-6.513
105	142.998	9.946	8.879	3.676	-4.798
106	142.998	9.946	8.879	3.676	-4.798
107	142.998	9.946	8.879	3.676	-4.798

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	159.264	13.599	11.563	4.784	-6.513
102	178.748	12.433	11.099	4.595	-5.997
103	159.264	13.599	11.563	4.784	-6.513
104	159.264	13.599	11.563	4.784	-6.513
105	142.998	9.946	8.879	3.676	-4.798
106	142.998	9.946	8.879	3.676	-4.798
107	142.998	9.946	8.879	3.676	-4.798

Applied Loads - Strength Level						
LC						
201	238.896	20.398	17.345	7.177	-9.770	
202	268.122	18.649	16.649	6.892	-8.996	

203	171.598	11.936	10.655	4.411	-5.757
204	171.598	11.936	10.655	4.411	-5.757
205	171.598	11.936	10.655	4.411	-5.757
206	191.117	16.319	13.876	5.741	-7.816
207	191.117	16.319	13.876	5.741	-7.816
208	191.117	16.319	13.876	5.741	-7.816
209	143.338	12.239	10.407	4.306	-5.862
210	143.338	12.239	10.407	4.306	-5.862
211	143.338	12.239	10.407	4.306	-5.862
	Ą	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	238.896	20.398	17.345	7.177	-9.770
202	268.122	18.649	16.649	6.892	-8.996
203	171.598	11.936	10.655	4.411	-5.757
204	171.598	11.936	10.655	4.411	-5.757
205	171.598	11.936	10.655	4.411	-5.757
206	191.117	16.319	13.876	5.741	-7.816
207	191.117	16.319	13.876	5.741	-7.816
208	191.117	16.319	13.876	5.741	-7.816
209	143.338	12.239	10.407	4.306	-5.862
210	143.338	12.239	10.407	4.306	-5.862
211	143.338	12.239	10.407	4.306	-5.862

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 1.735 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.650 Governing Load Case: # 102 m Width $(W_2) =$ Governing Load Case: # 102 1.650 m Area $(A_2) =$ 2.723 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m ²)
102	74.5201	98.8438	118.5311	94.2074	0.000
102	74.5201	98.8438	118.5311	94.2074	0.000
102	74.5201	98.8438	118.5311	94.2074	0.000
102	74.5201	98.8438	118.5311	94.2074	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	74.5201	98.8438	118.5311	94.2074
102	74.5201	98.8438	118.5311	94.2074
102	74.5201	98.8438	118.5311	94.2074
102	74.5201	98.8438	118.5311	94.2074

Details of Out-of-Contact Area (If Any)

Governing load case = N/APlan area of footing = 2.723 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A

Plan area of footing = 2.723 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		y against sliding Factor of safety a	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	9.095	10.696	26.588	20.585
102	10.731	12.021	29.871	24.177
103	9.095	10.696	26.588	20.585
104	9.095	10.696	26.588	20.585
105	11.617	13.013	32.336	26.173
106	11.617	13.013	32.336	26.173
107	11.617	13.013	32.336	26.173

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force: 13.599 kN

Governing Restoring Force: 123.679 kN
Minimum Sliding Ratio for the Critical Load Case: 9.095

Critical Load Case for Overturning about X-Direction: 101

Governing Overturning Moment: 7.675 kNm
Governing Resisting Moment: 204.066 kNm

Minimum Overturning Ratio for the Critical Load Case: 26.588

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force: 11.563 kN
Governing Restoring Force: 123.679 kN
tio for the Critical Load Case: 10.696

Minimum Sliding Ratio for the Critical Load Case: 10.696
Critical Load Case for Overturning about Z-Direction: 101

Governing Overturning Moment: -9.913 kNm
Governing Resisting Moment: 204.066 kNm
Minimum Overturning Ratio for the Critical Load Case: 20.585

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.469	m
Governing moment (M _u)		= 41.059	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times \mathbf{f_y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 58.537258	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_{b}\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.469	m
Governing moment $(M_u) =$		= 42.010	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{ck} \times k_{umax} \times (1 - 0.42 \times kumax)$	s) = 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 58.537258	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.194 m		
Shear Force(S)		= 88.419	kN
Shear Stress(T _v)		= 313.730266	kN/m2
Percentage Of Steel(P_t)		= 0.6093	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 529.538	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)	=	= 244.088	kN
Shear Stress(T _v)	=	= 687.673	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
K _s =	$min[(0.5 + \beta), 1] =$	= 1.000	
Shear Strength(T_c)=	$0.25 imes \sqrt{\mathbf{f}_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$	=	= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.625 m $I_{db} > = I_d$ hence, safe

Along Z Axis

Bar diameter corresponding to max bar size(d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(H-h)}{2} - cc\right]$ = 0.625 m $I_{db} > = I_d$ hence, safe

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 495.000 mm2

Calculated Area of Steel $(A_{st}) = 554.056$ mm²

Provided Area of Steel $(A_{st,Provided}) = 554.056$ mm2

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The r

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 495.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 569.029 \text{ mm2}$

Provided Area of Steel $(A_{st,Provided}) = 569.029 \text{ mm2}$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Calculated Area of Steel (
$$A_{st}$$
) = 495.000 mm²

Provided Area of Steel
$$(A_{st.Provided}) = 495.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size
$$(d_h)$$
 = Ø12

Minimum spacing allowed (
$$S_{min}$$
) = 52.000 mm

Selected spacing (S) =
$$250.000$$
mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel
$$(A_{stmin}) = 495.000 \text{ mm}2$$

Calculated Area of Steel (
$$A_{st}$$
) = 495.000 mm2

Provided Area of Steel
$$(A_{st,Provided}) = 495.000$$
 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12 Minimum spacing allowed (S_{min}) = 50.000 mm Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 37

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{tabular}{ll} Column Shape: Rectangular \\ Column Length - X (PI): 0.300 m \end{tabular}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing: 1500.000 mm

Cohesion: 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level			
Load Combination Number	Load Combination Title			
101	1.000 x DL			
102	1.000 x DL+1.000 x LL			
103	1.000 x DL+1.000 x ELX+1.000 x ELX			
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ			
105	0.800 x DL+0.800 x LL			
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX			
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ			
	Load Combination/s- Service Stress Level			
Load Combination Number	Load Combination Title			

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	143.300	-9.200	11.600	4.817	4.336
102	159.382	-8.591	11.140	4.628	4.035
103	143.300	-9.200	11.600	4.817	4.336
104	143.300	-9.200	11.600	4.817	4.336
105	127.505	-6.873	8.912	3.702	3.228
106	127.505	-6.873	8.912	3.702	3.228
107	127.505	-6.873	8.912	3.702	3.228

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	143.300	-9.200	11.600	4.817	4.336
102	159.382	-8.591	11.140	4.628	4.035
103	143.300	-9.200	11.600	4.817	4.336
104	143.300	-9.200	11.600	4.817	4.336
105	127.505	-6.873	8.912	3.702	3.228
106	127.505	-6.873	8.912	3.702	3.228
107	127.505	-6.873	8.912	3.702	3.228

Applied Loads - Strength Level					
LC Axial Shear X Shear Z Moment X Moment C (kN) (kN) (kN) (kNm) (kNm)					
201	214.949	-13.799	17.401	7.225	6.504
202	239.072	-12.887	16.709	6.942	6.053

203	153.006	-8.248	10.694	4.443	3.874
204	153.006	-8.248	10.694	4.443	3.874
205	153.006	-8.248	10.694	4.443	3.874
206	171.959	-11.039	13.921	5.780	5.203
207	171.959	-11.039	13.921	5.780	5.203
208	171.959	-11.039	13.921	5.780	5.203
209	128.970	-8.280	10.440	4.335	3.902
210	128.970	-8.280	10.440	4.335	3.902
211	128.970	-8.280	10.440	4.335	3.902
	A	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	214.949	-13.799	17.401	7.225	6.504
202	239.072	-12.887	16.709	6.942	6.053
203	153.006	-8.248	10.694	4.443	3.874
204	153.006	-8.248	10.694	4.443	3.874
205	153.006	-8.248	10.694	4.443	3.874
206	171.959	-11.039	13.921	5.780	5.203
207	171.959	-11.039	13.921	5.780	5.203
208	171.959	-11.039	13.921	5.780	5.203
209	128.970	-8.280	10.440	4.335	3.902
210	128.970	-8.280	10.440	4.335	3.902
211	128.970	-8.280	10.440	4.335	3.902

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$

Min. area required from bearing pressure, $A_{min} = P / q_{max} = 1.574 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.600 Governing Load Case: # 101 m Width $(W_2) =$ Governing Load Case: # 101 1.600 m Area $(A_2) =$ 2.560 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	91.2764	73.1618	94.8798	112.9944	0.000
102	91.2764	73.1618	94.8798	112.9944	0.000
102	91.2764	73.1618	94.8798	112.9944	0.000
102	91.2764	73.1618	94.8798	112.9944	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	91.2764	73.1618	94.8798	112.9944
102	91.2764	73.1618	94.8798	112.9944
102	91.2764	73.1618	94.8798	112.9944
102	91.2764	73.1618	94.8798	112.9944

<u>Details of Out-of-Contact Area</u> (<u>If Any</u>)

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
101	12.283	9.741	23.428	27.245
102	14.088	10.865	26.124	31.320
103	12.283	9.741	23.428	27.245
104	12.283	9.741	23.428	27.245
105	15.291	11.793	28.355	33.995
106	15.291	11.793	28.355	33.995
107	15.291	11.793	28.355	33.995

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force : -9.200 kN

Governing Restoring Force: 112.995 kN
Minimum Sliding Ratio for the Critical Load Case: 12.283
Critical Load Case for Overturning about X-Direction: 101

Governing Overturning Moment: 7.717 kNm
Governing Resisting Moment: 180.788 kNm

Minimum Overturning Ratio for the Critical Load Case: 23.428

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force : 11.600 kN Governing Restoring Force : 112.995 kN

Minimum Sliding Ratio for the Critical Load Case: 9.741
Critical Load Case for Overturning about Z-Direction: 101

Governing Overturning Moment: 6.636 kNm
Governing Resisting Moment: 180.788 kNm

Minimum Overturning Ratio for the Critical Load Case: 27.245

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.463	m
Governing moment (M _u)		= 35.583	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times \mathbf{f_y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M _{umax}) =	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.463	m
Governing moment $(M_u) =$		= 34.912	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times \mathbf{f_y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kuma})$	x) = 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.194 m		
Shear Force(S)		= 75.223	kN
Shear Stress(T _v)		= 275.859380	kN/m2
Percentage Of Steel(P _t)		= 0.5350	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 502.517	kN/m2
$T_v < T_c$	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 216.282	kN
Shear Stress(T _v)		= 611.216	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
$K_s =$	$min[(0.5 + \beta), 1]$	= 1.000	
Shear Strength(T_c)=	$0.25 imes \sqrt{f_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis Bar diameter corresponding to max bar size (d_h) = 12 mm As Per IS 456 2000 Clause 26.2.1 Development Length(I_d) = Allowable Length(I_{db}) = $I_{db} >= I_{d}$ hence, safe Along Z Axis Bar diameter corresponding to max bar $size(d_b)$ = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(
$$I_d$$
) =
$$\frac{\frac{d_b \times 0.37 \times f_y}{4 \times \Gamma_{bd}}}{\frac{d_b \times 0.37 \times f_y}{4 \times \Gamma_{bd}}} = 0.583 \text{ m}$$
Allowable Length(I_{db}) =
$$\left[\frac{(H-h)}{2} - cc\right] = 0.600 \text{ m}$$

$$I_{db} >= I_d \qquad \qquad \text{hence, safe}$$

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel $(A_{st}) = 471.128 \text{ mm}^2$

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm}^2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \le S \le S_{max}$ and selected bar size < selected maximum bar size...

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel $(A_{st}) = 461.094 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Calculated Area of Steel (
$$A_{st}$$
) = 480.000 mm²

Provided Area of Steel (
$$A_{st.Provided}$$
) = 480.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size
$$(d_h)$$
 = Ø12

Minimum spacing allowed (
$$S_{min}$$
) = 52.000 mm

Selected spacing (S) =
$$250.000$$
mm

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 480.000 mm2

Calculated Area of Steel (
$$A_{st}$$
) = 480.000 mm²

Provided Area of Steel (
$$A_{st,Provided}$$
) = 480.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

Selected bar Size (d_b) = Ø12 Minimum spacing allowed (S_{min}) = 50.000 mm Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Isolated Footing 38

ELEVATION

Input Values

Footing Geomtery

Design Type: Set Dimension
Footing Thickness (Ft): 250.000 mm

Slope End Thickness (St): 150.000 mm

Footing Length - X (Fl): 1000.000 mm

Footing Width - Z (Fw): 1000.000 mm

Eccentricity along X (Oxd): 0.000 mm

Eccentricity along Z (Ozd): 0.000 mm

Column Dimensions

 $\begin{array}{c} \mbox{Column Shape: Rectangular} \\ \mbox{Column Length - X (PI): } 0.300 \ \mbox{m} \end{array}$

Column Width - Z (Pw): 0.300 m

Pedestal

Include Pedestal? No
Pedestal Shape: N/A
Pedestal Height (Ph): N/A
Pedestal Length - X (Pl): N/A
Pedestal Width - Z (Pw): N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete: 25.000 kN/m3

Strength of Concrete: 25.000 N/mm2

Yield Strength of Steel: 500.000 N/mm2

Minimum Bar Size: Ø12

Maximum Bar Size: Ø25

Minimum Bar Spacing: 50.000 mm

Maximum Bar Spacing: 250.000 mm

Pedestal Clear Cover (P, CL): 50.000 mm

Footing Clear Cover (F, CL): 50.000 mm

Soil Properties

Soil Type: Drained
Unit Weight: 18.000 kN/m3
Soil Bearing Capacity: 120.000 kN/m2
Soil Surcharge: 0.000 kN/m2

Depth of Soil above Footing: 1500.000 mm

Cohesion: 0.000 kN/m2

Min Percentage of Slab: 0.000

Sliding and Overturning

Coefficient of Friction: 0.500 Factor of Safety Against Sliding: 1.500 Factor of Safety Against Overturning: 1.500

Footing Design Calculations

	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title
101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Service Stress Level
Load Combination Number	Load Combination Title

101	1.000 x DL
102	1.000 x DL+1.000 x LL
103	1.000 x DL+1.000 x ELX+1.000 x ELX
104	1.000 x DL+1.000 x ELZ+1.000 x ELZ
105	0.800 x DL+0.800 x LL
106	0.800 x DL+0.800 x LL+0.800 x ELX+0.800 x ELX
107	0.800 x DL+0.800 x LL+0.800 x ELZ+0.800 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
208	1.200 x DL+1.200 x ELZ+1.200 x ELZ
209	0.900 x DL
210	0.900 x DL+1.200 x ELX+1.200 x ELX
211	0.900 x DL+1.200 x ELZ+1.200 x ELZ
	Load Combination/s- Strength Level
Load Combination Number	Load Combination Title
201	1.500 x DL
202	1.500 x DL+1.500 x LL
203	0.960 x DL+0.960 x LL
204	0.960 x DL+0.960 x LL+0.960 x ELX+0.960 x ELX
205	0.960 x DL+0.960 x LL+0.960 x ELZ+0.960 x ELZ
206	1.200 x DL
207	1.200 x DL+1.200 x ELX+1.200 x ELX
200	1.200 x DL+1.200 x ELZ+1.200 x ELZ
208	
209	0.900 x DL
	0.900 x DL 0.900 x DL+1.200 x ELX+1.200 x ELX

Applied Loads - Service Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
101	134.455	9.446	11.301	5.006	-4.392
102	149.161	8.943	10.898	4.873	-4.197
103	134.455	9.446	11.301	5.006	-4.392
104	134.455	9.446	11.301	5.006	-4.392
105	119.328	7.155	8.718	3.898	-3.358
106	119.328	7.155	8.718	3.898	-3.358
107	119.328	7.155	8.718	3.898	-3.358

Applied Loads - Service Stress Level							
LC	LC						
101	134.455	9.446	11.301	5.006	-4.392		
102	149.161	8.943	10.898	4.873	-4.197		
103	134.455	9.446	11.301	5.006	-4.392		
104	134.455	9.446	11.301	5.006	-4.392		
105	119.328	7.155	8.718	3.898	-3.358		
106	119.328	7.155	8.718	3.898	-3.358		
107	119.328	7.155	8.718	3.898	-3.358		

Applied Loads - Strength Level						
LC Axial Shear X Shear Z Moment X Moment X (kN) (kN) (kN) (kNm) (kNm)						
201	201.683	14.170	16.951	7.509	-6.587	
202	223.741	13.415	16.347	7.309	-6.296	

203	143.194	8.585	10.462	4.678	-4.030
204	143.194	8.585	10.462	4.678	-4.030
205	143.194	8.585	10.462	4.678	-4.030
206	161.346	11.336	13.561	6.007	-5.270
207	161.346	11.336	13.561	6.007	-5.270
208	161.346	11.336	13.561	6.007	-5.270
209	121.010	8.502	10.171	4.506	-3.952
210	121.010	8.502	10.171	4.506	-3.952
211	121.010	8.502	10.171	4.506	-3.952
	A	pplied Loads -	Strength Lev	rel	
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
201	201.683	14.170	16.951	7.509	-6.587
202	223.741	13.415	16.347	7.309	-6.296
203	143.194	8.585	10.462	4.678	-4.030
204	143.194	8.585	10.462	4.678	-4.030
205	143.194	8.585	10.462	4.678	-4.030
206	161.346	11.336	13.561	6.007	-5.270
207	161.346	11.336	13.561	6.007	-5.270
208	161.346	11.336	13.561	6.007	-5.270
209	121.010	8.502	10.171	4.506	-3.952
210	121.010	8.502	10.171	4.506	-3.952
211	121.010	8.502	10.171	4.506	-3.952

Footing Size

Initial Length $(L_0) =$ 1.000 m

Initial Width $(W_0) =$ 1.000 m

Reduction of force due to buoyancy = 0.000 kN

> 0.000 kN Effect due to adhesion =

Area from initial length and width, $A_0 = L_0 \times W_0 = 1.000 \text{ m}^2$ Min. area required from bearing pressure, $A_{min} = P / q_{max} = 1.489 \text{ m}^2$

Note: \mathbf{A}_{\min} is an initial estimation.

P = Critical Factored Axial Load(without self weight/buoyancy/soil).
q_{max} = Respective Factored Bearing Capacity.

Final dimensions for design

Length $(L_2) =$ 1.600 Governing Load Case: # 101 m Width $(W_2) =$ Governing Load Case: # 101 1.600 m Area $(A_2) =$ 2.560 m^2

Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁) (kN/m2)	Pressure at corner 2 (q ₂) (kN/m2)	Pressure at corner 3 (q ₃) (kN/m2)	Pressure at corner 4 (q ₄) (kN/m2)	Area of footing in uplift (A _u) (m²)
102	68.5326	87.3801	109.6385	90.7909	0.000
102	68.5326	87.3801	109.6385	90.7909	0.000
102	68.5326	87.3801	109.6385	90.7909	0.000
102	68.5326	87.3801	109.6385	90.7909	0.000

If A_u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 (q ₁)	Pressure at corner 2 (q ₂)	Pressure at corner 3 (q ₃)	Pressure at corner 4 (q ₄)
	(kN/m2)	(kN/m2)	(kN/m2)	(kN/m2)
102	68.5326	87.3801	109.6385	90.7909
102	68.5326	87.3801	109.6385	90.7909
102	68.5326	87.3801	109.6385	90.7909
102	68.5326	87.3801	109.6385	90.7909

<u>Details of Out-of-Contact Area</u> (<u>If Any</u>)

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m

% of total area not in contact = 0.000%

Detail of Out-of-contact Area

Governing load case = N/A

Plan area of footing = 2.560 sq.m

Area not in contact with soil = 0.000 sq.m % of total area not in contact = 0.000%

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety against sliding		Factor of safety a	gainst overturning
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction		
101	11.494	9.608	22.182	25.723		
102	12.962	10.638	24.413	28.831		
103	11.494	9.608	22.182	25.723		
104	11.494	9.608	22.182	25.723		
105	14.118	11.586	26.590	31.402		
106	14.118	11.586	26.590	31.402		
107	14.118	11.586	26.590	31.402		

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along X-Direction: 101

Governing Disturbing Force: 9.446 kN

Governing Restoring Force: 108.573 kN
Minimum Sliding Ratio for the Critical Load Case: 11.494
Critical Load Case for Overturning about X-Direction: 104

Governing Overturning Moment: 7.831 kNm
Governing Resisting Moment: 173.713 kNm

Minimum Overturning Ratio for the Critical Load Case : 22.182

Critical load case and the governing factor of safety for overturning and sliding

Critical Load Case for Sliding along Z-Direction: 101

Governing Disturbing Force: 11.301 kN
Governing Restoring Force: 108.573 kN

Minimum Sliding Ratio for the Critical Load Case: 9.608
Critical Load Case for Overturning about Z-Direction: 101

Governing Overturning Moment: -6.753 kNm
Governing Resisting Moment: 173.713 kNm

Minimum Overturning Ratio for the Critical Load Case: 25.723

Check Trial Depth against moment (w.r.t. X Axis)

Critical Load Case	= #202		
Effective Depth =	$D - (cc + 0.5 \times d_b)$	= 0.194	m
Effective End Depth =	Initial End Depth - $^{D-\left(cc+0.5\times d_{b}\right)}$	= 0.094	m
Effective Width of Equivalent Rectangle =	Col. Width + (Footing Width - Col. Width)/8.0	= 0.463	m
Governing moment (M_u)		= 33.658	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 (K_{umax}) =	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \ll M_{umax}$	hence, safe		

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case	= #202		
Effective Depth =	$D - \left(cc + 0.5 \times d_b\right)$	= 0.194	m
Effective End Depth		= 0.094	m
Effective Width		= 0.463	m
Governing moment $(M_u) =$		= 33.027	kNm
As Per IS 456 2000 ANNEX G G-1.1C			
Limiting Factor1 $(K_{umax}) =$	$\frac{700}{\left(1100 + 0.87 \times f_{y}\right)}$	= 0.456026	
Limiting Factor2 (R_{umax}) =	$0.36 \times f_{\text{ck}} \times k_{\text{umax}} \times (1 - 0.42 \times \text{kumax})$	= 3318.146612	kN/m2
Limit Moment Of Resistance (M_{umax}) =	$R_{umax} \times B \times d_e^2$	= 57.756761	kNm
$M_u \le M_{umax}$	hence, safe		

Check Trial Depth for one way shear (Along X Axis)

(Shear Plane Parallel To X axis)

Critical Load Case = #202

Check Trial Depth for one way shear (Along Z Axis)

(Shear Plane Parallel To Z axis)

Critical Load Case = #202

D _Z =	0.194 m		
Shear Force(S)		= 71.140	kN
Shear Stress(T _v)		= 260.887124	kN/m2
Percentage Of Steel(P _t)		= 0.5350	
As Per IS 456 2000 Clause 40 Table 19			
Shear Strength Of Concrete(T_c)		= 502.517	kN/m2
T < T	hence, safe		

Check Trial Depth for two way shear

Critical Load Case	= #202		
Shear Force(S)		= 202.412	kN
Shear Stress(T_v)		= 572.019	kN/m2
As Per IS 456 2000 Clause 31.6.3.1			
K _s =	$min[(0.5 + \beta), 1]$	= 1.000	
Shear Strength(T_c)=	$0.25 \times \sqrt{f_{ck}}$	= 1250.0000	kN/m2
$K_s X T_c$		= 1250.0000	kN/m2
$T_v \le K_s X T_c$	hence, safe		

Calculation of Maximum Bar Size

Along X Axis

Bar diameter corresponding to max bar size (d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(B-b)}{2} - cc\right]$ = 0.600 m $I_{db} > = I_d$ hence, safe

Along Z Axis

Bar diameter corresponding to max bar size(d_b) = 12 mm

As Per IS 456 2000 Clause 26.2.1

Development Length(I_d) = $\frac{d_b \times 0.87 \times f_y}{4 \times \Gamma_{bd}}$ = 0.583 m

Allowable Length(I_{db}) = $\left[\frac{(H-h)}{2} - cc\right]$ = 0.600 m $I_{db} > = I_d$ hence, safe

Selection of Reinforcement

Along Z Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel (A_{stmin}) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 442.494 mm2

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm}2$

 $A_{stmin} \le A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 52.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The re-

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Along X Axis

As Per IS 456 2000 Clause 26.5.2.1

Critical Load Case = #202

Minimum Area of Steel $(A_{stmin}) = 480.000 \text{ mm}2$

Calculated Area of Steel $(A_{st}) = 433.203 \text{ mm}2$

Provided Area of Steel $(A_{st,Provided}) = 480.000 \text{ mm}2$

A_{stmin}<= A_{st.Provided} Steel area is accepted

Selected bar Size (d_h) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250.000 mm o.c.

Reinforecement is provided at bottom. Provide minimum reinf at top if depth is considerable

Design for top reinforcement Along Z Axis

Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 480.000 mm2
Calculated Area of Steel (A_{st}) = 480.000 mm2
Provided Area of Steel ($A_{st,Provided}$) = 480.000 mm2

$$A_{stmin} \le A_{st,Provided}$$
 Steel area is accepted

 $S_{min} <= S <= S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Design for top reinforcement Along X Axis

Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required

The strength values of steel and concrete used in the formulae are in ksi

Minimum Area of Steel (
$$A_{stmin}$$
) = 480.000 mm2

Calculated Area of Steel (A_{st}) = 480.000 mm2

Provided Area of Steel ($A_{st,Provided}$) = 480.000 mm2

 A_{stmin} <= $A_{st,Provided}$ Steel area is accepted

Selected bar Size (d_b) = Ø12

Minimum spacing allowed (S_{min}) = 50.000 mm

Selected spacing (S) = 250.000 mm

 $S_{min} \leftarrow S \leftarrow S_{max}$ and selected bar size < selected maximum bar size... The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

Ø12 @ 250 mm o.c.

Print Calculation Sheet