CH9121 串口配置使用说明

一、进入与退出串口配置的方式

CH9121 支持两种方式进入配置模式:

- 1、硬件 CFG 脚(PIN60#), 当 CH9121CFG 脚检测到低电平时, CH9121 串口数据 认为是配置数据。CFG 脚拉高退出配置模式。
- 2、串口协商方式(需要先通过网络配置软件开启)进入串口配置模式。当 当串口空闲时间达到 500ms 时,CH9121 收到的串口数据与 {0x55, 0xAA, 0x5A} 对比,对比 成功,CH9121 会回复一字节: 0xA5, 500ms 时间内收到应答数据 0xA5 后,发送 0xA5 确 认进入配置模式。中途任何一个环节的数据比对出错,则认为这些数据位正常的串口数 据,并将这部分数据通过串口发往网络端。

二、串口配置命令码

CH9121 串口配置命令格式为: 0x57, 0xAB, 命令码, 数据。

1、写命令操作

命令码	功能	举例(注释)
写命令流程: 发送命令码 1(0x57 0xab + 命令码 1+数据) + 等待 CH9121 ACK(0xAA) +发		
送命令码 2(0x57 0xab + 命令码 2+数据) + 等待 CH9121 ACK(0xAA) ++发送命令码		
n(0x57 0xab + 命令码 n+数据) + 等待 CH9121 ACK(0xAA)+发送数据更新命令(0x57 0xab		
0x0d).+ 等待 CH9121 ACK(0xAA)+发送执行命令(0x57 0xab 0x0e)+ 等待 CH9121 ACK(0xAA)。		
0x0e	命令执行	0x57 0xab 0x0e (命令执行)
0x5e	退出串口配置模式	0x57 0xab 0x5e (退出串口配置模式)
0x02	复位命令,芯片重新运行	0x57 0xab 0x02 (芯片复位)
0x11	设置芯片 IP	0x57 0xab 0x11 0xc0 0xa8 0x01 0xc8
		(192. 168. 1. 200)
0x12	设置芯片掩码	0x57 0xab 0x12 0xff 0xff 0xff 0x00
		(255. 255. 255. 0)
0x13	设置芯片网关	0x57 0xab 0x13 0xc0 0xa8 0x01 0x01
		(192. 168. 1. 1)
0x10	设置模式: 00:TCP 服务器	0x57 0xab 0x10 0x01 (设置芯片工作在 TCP
	01:TCP 客户端	客户端模式)
	02:UDP 服务器	
	03:UDP 客户端	
0x14	设置芯片本地端口	0x57 0xab 0x14 0xd0 0x07
		(2000)
0x15	设置芯片目的 IP	0x57 0xab 0x15 0xc0 0xa8 0x01 0x64
		(192. 168. 1. 100)
0x16	设置芯片目的端口	0x57 0xab 0x16 0xe8 0xe3
		(1000)
0x21	设置串口波特率	0x57 0xab 0x21 0x80 0x25 0x00 0x00
		(9600)
0×22	设置串口校验位数据位停止位:	0x57 0xab 0x22 0x01 0x04 0x08
	校验: 00: 偶 01: 奇	(1stop, 无校验,8data ,)
	02: mark 03: Space	
	04: 无	

2、读命令操作

命令码	注释	
读命令,获取配置(0x57 0xab + 命令码)		
0×60	读取芯片工作模式,返回 1 字节	
0x61	读取芯片 IP 地址,返回 4 字节	
0x62	读取芯片掩码,返回 4 字节	
0×63	读取芯片网关,返回 4 字节	
0×64	读取芯片源端口号,返回 2 字节	
0×65	读取芯片目的 IP 地址,返回 4 字节	
0×66	读取芯片目的端口号,返回 2 字节	
0×67	读取 TCP 重试次数,返回 1 字节	
0x71	读取串口波特率,返回 4 字节	
0×72	读取串口校验位数据位停止位,返回3字节	
0×73	读取串口超时时间,返回 1 字节	
0x81	读取 MAC 地址,返回 6 字节	
0x03	读取 TCP 连接状态(TCP CLIENT 模式下),返回 1 字节,1:连接,	
	0: 断开。	

三、应用说明

设置说明: "→"串口设备发送 , "←" CH9121 返回

- 1、进入配置模式过程(串口数据握手协商进入)
 - \rightarrow 0x55, 0xAA, 0x5A
 - **←**0xA5
 - \rightarrow 0xA5
 - **←**0xA5
- 2、设置模块参数:
- →0x57, 0xAB, 0x10, 0x02 //02: UDP 广播模式。
- ←0xAA
- →0x57, 0xAB, 0x11, 0xC0, 0xA8, 0x01, 0x0A //源 IP: 192.168.1.10
- ←0xAA
- →0x57, 0xAB, 0x12, 0xFF, 0xFF, 0xFF, 0x00 //子网掩码: 255. 255. 255. 0
- ←0xAA
- →0x57, 0xAB, 0x13, 0xC0, 0xA8, 0x01, 0x01 //网关: 192. 168. 1. 1
- **←**0xAA
- →0x57, 0xAB, 0x14, 0x88, 0x13 //本地端口: 0x1388 (5000)
- **←**0xAA
- →0x57, 0xAB, 0x15, 0xFF, 0xFF, 0xFF, 0xFF //目的 IP 地址: 255. 255. 255. 255
- **←**0xAA
- →0x57, 0xAB, 0x16, 0x70, 0x17 //目的端口: 0x1770(6000)
- \leftarrow AA
- →0x57, 0xAB, 0x21, 0x00, 0xC2, 0x01, 0x00 //串口波特率: 0x0001c200(1152000)

←AA
→0x57, 0xAB, 0x0D
←0xAA
→0x57, 0xAB, 0x0E
←0xAA
→0x57, 0xAB, 0x5E
←0xAA
→0x57, 0xAB, 0x5E
←0xAA
3、读取配置
→0x57, 0xAB, 0x91
(/读取MAC)

→0x57, 0xAB, 0x81 //读取 MAC ←0x84, 0xC2, 0xE4, 0x05, 0x06, 0x07 //返回 MAC →0x57, 0xAB, 0x61 //读取源 IP ←0xC0, 0xA8, 0x01, 0x10 //返回 IP 地址