



## Depth Perception

Lorenzo Papa

papa@diag.uniroma1.it





What is the first information lost when an image is captured from a camera sensor?

ALCOR Lab

## Overview:

- Why depth?
- Active depth sensing
- Passive depth sensing
  - Binocular, stereo vision
  - Monocular depth estimation
- State-of-the-art/Examples
- Evaluation metrics
- Datasets
- AlcorLab research projects
  - PhD projects
  - Master thesis
  - Open challenges



## Applications of depth sensing



Robotic



Drones



Autonomous driving



Games



Biometric



Augmented Reality

## Depth sensing

#### Active depth sensing



- Structured light (e.g., Kinect 1)
- ToF Time of Flight (e.g., Kinect 2)
- LiDAR (e.g., Velodyne)

#### Passive depth sensing

- Binocular stereo
- Monocular
- Multi-view (e.g., Structure For Motion)







## Active depth sensing



# Depth is perceived by perturbing the environment

- LiDAR (e.g., Velodyne)
- Time of Flight (e.g., Kinect V2)
- Structured light (e.g., Kinect V1)
- Active stereo (e.g., Intel RealSense)







## Examples of Active depth sensing

#### TIME OF FLIGHT





#### STRUCTURED LIGHT





#### **ACTIVE STEREO**





## Active depth sensing

#### Cons

- Not suited for all environments
- Sometimes really expensive
- Cumbersome
- Not filled depth map
- LiDAR returns a point-cloud

#### RAW depth map





LiDAR point cloud



## Active depth sensing

#### Cons

- Not suited for all environments
- Sometimes really expensive
- Cumbersome
- Not filled depth map
- LiDAR returns a point-cloud

#### Pros

- Very popular
- Used for multiple applications
- Effective depth measurements



## Passive depth sensing



## Passive depth sensing

#### Monocular



#### Binocular stereo





## Passive depth sensing

#### Cons

- Complexity is moved to algorithms!!
- Depth is reconstructed or estimated

#### Pros

- Standard cameras, usually cheap, lightweight, fast, etc..
- Suitable for both indoor and outdoor environments



Potentially they can remove all the active sensors issues





Given two images/cameras, if we are able to find corresponding (homologous) point in the two images we can infer depth by triangulation



D = x(I1) - x(I2) = B\*f / Z
$$\downarrow$$
Z = B\*f / (x(I1) - x(I2)) = B\*f / D

#### A general Overview

1. Cameras calibration (offline)

2. Rectification

3. Disparity map

4. Depth map



#### From Stereo-triangulation to Deep-Stereo



## Examples (CNN)

EdgeStereo: An Effective Multi-Task <mark>Learning Network</mark> for Stereo Matching and Edge Detection



Xiao Song, Xu Zhao, Liangji Fang, and Hanwen Hu. Edgestereo: An effective multi-task learning network for stereo matching and edge detection. arXiv:1903.01700, 2019. LINK

## Examples (Hybrid ViT)

Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective with Transformers



Zhaoshuo Li, Xingtong Liu, Francis X Creighton, Russell H. Taylor, and Mathias Unberath. Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. arXiv preprint, 2020. <u>LINK</u>

#### **Motivations**



ADAS



Lightweight Robotic







Augmented Reality/Mobile

Problem: Given a single RGB image as input, predict a dense depth map for each pixel

#### Perspective projection:

- The image formation process deals with mapping a 3D space into a 2D space
- Indeed, the mapping is not a bijection
- Estimating depth from a single image is an ill-posed problem





**Problem:** Given a single RGB image as input, predict a dense depth map for each pixel

#### Perspective projection:

- The image formation process deals with mapping a 3D space into a 2D space
- Indeed, the mapping is not a bijection
- Estimating depth from a single image is an ill-posed problem



Depth is an intrinsic information into the 2D space



#### Meaningful monocular cues:

- Linear Perspective
- Relative Size
- Superimposition
- Texture Gradient







#### Meaningful monocular cues:

- Linear Perspective
- Relative Size
- Superimposition
- Texture Gradient



... however ... (optical illusions)



In Computer Vision, existing solutions to depth estimation from a single image usually rely on Deep Learning based approaches:

#### **Supervised**

Ground-truth depth data (RGB-D cameras, 3D laser scanners)





#### Semi-Supervised

Sparse ground-truth depth + image reconstruction

#### Unsupervised

Image reconstruction (from monocular videos/stereo pairs/stereo sequences)

## Examples (CNN)

#### High Quality Monocular Depth Estimation via Transfer Learning



Ibraheem Alhashim and Peter Wonka. High quality monocular depth estimation via transfer learning. arXiv preprint arXiv:1812.11941, 2018. LINK

#### Examples (Ligthweigth CNN)

#### FastDepth: Fast Monocular Depth Estimation on Embedded Systems



|            | Before Pruning | After Pruning | Reduction |
|------------|----------------|---------------|-----------|
| Weights    | 3.93M          | 1.34M         | 2.9×      |
| MACs       | 0.74G          | 0.37G         | 2.0×      |
| RMSE       | 0.599          | 0.604         | -         |
| $\delta_1$ | 0.775          | 0.771         | -         |
| CPU [ms]   | 66             | 37            | 1.8×      |
| GPU [ms]   | 8.2            | 5.6           | 1.5×      |

Wofk D, Ma F, Yang T J, et al. Fastdepth: Fast monocular depth estimation on embedded systems. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019. 6101–6108 <u>LINK</u>

## Examples (Hybrid ViT)

#### AdaBins: Depth Estimation using Adaptive Bins



Bhat, Shariq Farooq, Ibraheem Alhashim, and Peter Wonka. "Adabins: Depth estimation using adaptive bins." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

#### Examples (for robotics enthusiast)

# ClearGrasp: 3D Shape Estimation of Transparent Objects for Manipulation





Sajjan SS, Moore M, Pan M, Nagaraja G, Lee J, Zeng A, Song S (2019) Cleargrasp: 3d shape estimation of transparent objects for manipulation. Preprint arXiv:1910.02550. <u>LINK</u>

#### Examples (for robotics enthusiast)

ClearGrasp: 3D Shape Estimation of Transparent Objects for Manipulation



Sajjan SS, Moore M, Pan M, Nagaraja G, Lee J, Zeng A, Song S (2019) Cleargrasp: 3d shape estimation of transparent objects for manipulation. Preprint arXiv:1910.02550. <u>LINK</u>

## Examples (multi-view)

#### Multi-View 3D Object Detection Network for Autonomous Driving



X. Chen, H. Ma, J. Wan, B. Li, T. Xia. (2017) Multi-View 3D Object Detection Network for Autonomous Driving. Preprint <u>arXiv:1611.07759</u>.

#### **Metrics**

## Given a predicted D-map p<sub>i</sub> and its Grundtruth g<sub>i</sub>:

#### 5 Errors:

Mean Absolute Error

$$\longrightarrow$$
  $ma$ 

$$mae = \frac{1}{|P|} \sum_{i \in P} ||p_i - g_i||$$

$$rmse = \sqrt{\frac{1}{|P|} \sum_{i \in P} ||p_i - g_i||^2}$$

$$abs_{rel} = \frac{1}{|P|} \sum_{i \in P} \frac{|p_i - g_i|}{g_i}$$

$$log_{mae} \& log_{rmse}$$

#### **Metrics**

#### Given a predicted D-map p<sub>i</sub> and its grundtruth g<sub>i</sub>:

#### 3 Accuracy:

• Indicate the number of correctly predicted data points out of all the data points

$$d_1 = \frac{1}{|P|} \sum_{i \in P} \max\left(\frac{p_i}{g_i}, \frac{g_i}{p_i}\right) < thr = 1.25$$

$$d_2 = \frac{1}{|P|} \sum_{i \in P} \max\left(\frac{p_i}{g_i}, \frac{g_i}{p_i}\right) < thr = 1.25^2$$

$$d_3 = \frac{1}{|P|} \sum_{i \in P} \max\left(\frac{p_i}{g_i}, \frac{g_i}{p_i}\right) < thr = 1.25^3$$

#### **Datasets**

#### Two main benchmark datasets:

#### NYU Depth V2

- **Range:** 0.5 10 meters
- **Samples:** 50K
- **Type:** depth image

#### **KITTI**

- **Range:** 0.9 80 meters
- Samples: 25K
- **Type:** LiDAR point cloud

#### Datasets

#### Two main benchmark datasets:

NYU Depth V2





#### KITTI



#### **Datasets**

#### Other datasets:

- Cityscapes
- SYNTHIA
- Dense Indoor and Outdoor *DEpth*
- DIML/CVL RDB+D
- ReDWeb2018
- YouTube 3D
- Mid-Air
- ..



## AlcorLab research projects

# ALCOR Lab

## Research projects: SPEED (CNN)



#### SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings



- Novel Depthwise Separable Pyramidal Pooling layers
- Real-Time frequency performances over CPU, TPU workstation and low-power GPU
- Achieve state-of-the-art accuracy performances compared with related works

L. Papa, E. Alati, P. Russo and I. Amerini, "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings," in *IEEE Access*, vol. 10, pp. 44881-44890, 2022, doi: 10.1109/ACCESS.2022.3170425.

## Research projects: SPEED (CNN)





L. Papa, E. Alati, P. Russo and I. Amerini, "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings," in *IEEE Access*, vol. 10, pp. 44881-44890, 2022, doi: 10.1109/ACCESS.2022.3170425.

#### Research projects: METER (Hybrid ViT)



# METER: a mobile vision transformer architecture for monocular depth estimation



L. Papa, P. Russo and I. Amerini, "METER: a mobile vision transformer architecture for monocular depth estimation," in *IEEE Transactions on Circuits and Systems for Video Technology*, doi: 10.1109/TCSVT.2023.3260310.

#### Research projects: METER (Hybrid ViT)



# METER: a mobile vision transformer architecture for monocular depth estimation



- Novel METER block and different architectures (S, XS, and XXS)
- Balanced Loss function & Specific data augmentation for MDE
- Achieve state-of-the-art accuracy performances compared with related works

L. Papa, P. Russo and I. Amerini, "METER: a mobile vision transformer architecture for monocular depth estimation," in *IEEE Transactions on Circuits and Systems for Video Technology*, doi: 10.1109/TCSVT.2023.3260310.

#### Research projects: Underwater MDE





L. Papa, P. Russo and I. Amerini, "Real-time monocular depth estimation on embedded devices: challenges and performances in terrestrial and underwater scenarios," 2022 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Milazzo, Italy, 2022, pp. 50-55, doi: 10.1109/MetroSea55331.2022.9950812.

## Research projects: Energy-aware MDE







Papa L, Proietti Mattia G, Russo P, Amerini I, Beraldi R. Lightweight and Energy-Aware Monocular Depth Estimation Models for IoT Embedded Devices: Challenges and Performances in Terrestrial and Underwater Scenarios. Sensors. 2023; 23(4):2223. https://doi.org/10.3390/s23042223

#### Research projects: Master thesis



#### DepthFake



From point-cloud to 3D mesh



L. Maiano, L. Papa, K. Vocaj and I. Amerini, "DepthFake: a depth-based strategy for detecting Deepfake videos," in Workshop on Artificial Intelligence for Multimedia Forensics and Disinformation Detection (AI4MFDD) at ICPR, 2022, [Accepted]

## Open challenges

#### Promising research directions:

- Domain adaptation / Transferability: Synthetic to real scenarios
- Lightweight / energy-aware networks for mobile / edge applications
- Learning efficient techniques: pruning, knowledge distillation, and quantization
- Temporal consistency: improve the estimation with sequence of predictions
- Multimodal learning (RGB +D)
- 3D mesh construction / From point cloud to filled depth
- ... and many others ...