

KALKULUS

Bagian 3. Fungsi dan Limit

Sesi Online 7

Limit Tak Hingga

PROGRAM STUDI INFORMATIKA UNIVERSITAS SIBER ASIA

Oleh:

Ambros Magnus Rudolf Mekeng, S.T, M.T

Limit Tak Hingga

Limit Tak Hingga

Misal
$$\lim_{x\to a} f(x) = L \neq 0$$
 dan $\lim_{x\to a} g(x) = 0$, maka

$$\lim_{x \to a} \frac{f(x)}{g(x)} =$$

$$(i) + \infty$$
, jika $L > 0$ dan $g(x) \to 0$ dari arah atas

$$(ii) - \infty$$
, jika $L > 0$ dan $g(x) \rightarrow 0$ dari arah bawah

$$(iii) + \infty$$
, jika $L < 0$ dan $g(x) \rightarrow 0$ dari arah bawah

$$(iv) - \infty$$
, jika $L < 0$ dan $g(x) \rightarrow 0$ dari arah atas

tt: g(x

 $g(x) \rightarrow 0$ dari arah atas maksudnya g(x) menuju 0 dari nilai g(x) positif.

 $g(x) \rightarrow 0$ dari arah bawah maksudnya g(x) menuju 0 dari nilai g(x) negatif.

Limit di Tak Hingga

a. $\lim_{x\to\infty} f(x) = L$ jika f(x) terdefinisikan untuk setiap nilai x cukup besar (arah positif) dan jika x menjadi besar tak terbatas (arah positif) maka f(x) mendekati L.

b. $\lim_{x\to -\infty} f(x) = L$ jika f(x) terdefinisikan untuk setiap nilai x cukup besar (arah negatif) dan jika x menjadi besar tak terbatas (arah negatif) maka f(x) mendekati L.

39

Hitunglah limit berikut ini!

a.
$$\lim_{x\to\infty}\frac{4}{x-2}$$

$$c. \lim_{x \to \infty} \frac{4x}{x^2 - 2x + 2}$$

e.
$$\lim_{x\to\infty}\frac{x^3}{x^2+3}$$

$$b. \lim_{x\to\infty} \frac{6x+1}{2x+10}$$

d.
$$\lim_{x \to \infty} \frac{-6x^2}{2x^2 + 3x}$$

a.
$$\lim_{x\to\infty}\frac{4}{x-2}=\frac{4}{\infty}=0$$

b.
$$\lim_{x\to\infty}\frac{6x+1}{2x+10}=\frac{\infty}{\infty}$$
 (tak tentu).

Untuk menyelesaikannya, kita bagi dengan pangkat tertinggi dari pembilang dan penyebutnya, yaitu *x* sehingga diperoleh:

$$\lim_{x \to \infty} \frac{6 + \frac{1}{x}}{2 + 10/x} = \frac{6 + 0}{2 + 0} = 3$$

c.
$$\lim_{x\to\infty}\frac{4x}{x^2-2x+2}=\frac{\infty}{\infty}$$
 (tak tentu)

Untuk menyelesaikannya, kita bagi dengan pangkat tertinggi dari pembilang dan penyebutnya, yaitu x^2 sehingga diperoleh:

$$\lim_{x \to \infty} \frac{4x}{x^2 - 2x + 2} = \lim_{x \to \infty} \frac{\frac{4}{x}}{1 - \frac{2}{x} + \frac{2}{x^2}} = \frac{\Box 0}{1 - 0 + 0}$$

d.
$$\lim_{x \to \infty} \frac{-6x^2}{2x^2 + 3x} = \frac{\infty}{\infty}$$
 (bentuk tak tentu)

Untuk menyelesaikannya, kita bagi dengan pangkat tertinggi dari pembilang dan penyebutnya, yaitu x^2 sehingga diperoleh:

$$\lim_{x \to \infty} \frac{-6x^2}{2x^2 + 3x} = \lim_{x \to \infty} \frac{-6}{2 + \frac{3}{x}} = \frac{-6}{2 + 0} = -3$$

e.
$$\lim_{x \to \infty} \frac{x^3}{x^2 + 3} = \frac{\infty}{\infty} \text{(tak tentu)}$$

$$\lim_{x \to \infty} \frac{x^3}{x^2 + 3} = \lim_{x \to \infty} \frac{1}{\frac{1}{x} + \frac{3}{x^3}} = \frac{1}{0 + 0} = \infty$$

Kekontinuan Fungsi

Fungsi f(x) dikatakan **kontinu** pada suatu titik x = a jika

- (i) f(a) terdefinisi
- (ii) $\lim_{x\to a} f(x)$ ada
- (iii) $\lim_{x \to a} f(x) = f(a)$

Jika paling kurang salah satu syarat diatas tidak dipenuhi maka f dikatakan tidak kontinu di *x=a*

44

f(a) tidak terdefinisi

f(a) tidak kontinu di x = a

- 1. f(a) terdefinisi
- 2. $\lim_{x\to a} f(x)$ ada
- $3. \lim_{x \to a} f(x) \neq f(a)$

f(x) tidak kontinu di x = a

- 1. f(a) terdefinisi
- 2. $\lim_{x\to a} f(x)$ ada
- $3. \lim_{x \to a} f(x) = f(a)$

f(x) kontinu di x = a

Periksa apakah fungsi berikut kontinu di x=2, jika tidak sebutkan alasannya

$$f(x) = \frac{x^2 - 4}{x - 2}$$

a.
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 b. $f(x) = \begin{cases} \frac{|x^2 - 4|}{x - 2}, & x \neq 2 \\ \frac{|x - 2|}{x - 2}, & x = 2 \end{cases}$ c. $f(x) = \begin{cases} x + 1, & x < 2 \\ x^2 - 1, & x \ge 2 \end{cases}$

c.
$$f(x) = \begin{cases} x+1, x < 2 \\ x^2 - 1, x \ge 2 \end{cases}$$

Jawab:

f(x) tidak kontinu di x=2

b.
$$f(2) = 3$$

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)} = \lim_{x \to 2} x + 2 = 4$$

$$\lim_{x\to 2} f(x) \neq f(2)$$

kontinu di x=2

c.
$$f(2) = 2^2 - 1 = 3$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} x + 1 = 3$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} x^{2} - 1 = 3$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} x^{2} - 1 = 3$$

$$\lim_{x\to 2} f(x) = f(2)$$

Karena semua syarat dipenuhi \rightarrow f(x) kontinu di x=2

Latihan Soal

Tentukan apakah f(x) kontinu di x = 1 dan x = 3 jika diketahui:

$$f(x) = \begin{cases} 3x + 2, & x \le 1 \\ 5, & 1 < x \le 3 \end{cases}$$

$$\lfloor 3x^2 - 1, & x > 3 \end{cases}$$

$$2x - 6, & x \le 1$$

$$x^2 - 4x + 3 \qquad 1 < x \le 3$$
Selidiki apakah $g(x)$ kontinu di

Selidiki apakah g(x) kontinu di

$$b. x=1$$