(b) Mostre que o polinômio interpolador sempre passei um mínimo que ratisfaz 0 < x* (1. Pode-se mostrar o mismo para função f?

Com as três observações que temos, norso polinômio terá a seguinte forma:

$$C_0 + C_1(x-0) + C_2(x-0)^2 = C_0 + C_1 \times + C_2 \times^2$$

$$c_0 = t(x^0) = t(0)$$

$$C' = t[x^{o}, x^{i}] = t_{i}(0)$$

$$C_2 = f[X_0, X_1, X_2] = f(1) - f(0)$$

Sabemos, que, tanto para o polinômio, quanto para a função, x* se uma raiz da dirinada.

Observemos o caso do polinômio

$$b_i(x) = c' + 5c^2x = b_i(0) + 5(b(1) - b(0)) x_* = 0 \iff x_* = \frac{5(b(1) - b(0))}{-b(0)}$$

$$M^{op}$$
, $t_i(0) < 0^2$ $t_i(1) > t_i(0) > 0$ $t_i(1) - t_i(0) > 0$

Agora, vamo, escurer
$$f(1)$$
 como em polinômio de taylor (pois $f \in C^2$)

$$f(1) = f(0) + \frac{f'(0)(1-0)}{1!} + \frac{f''(\xi)(1-0)}{Z}$$
, para algum $\xi \in [0,1]$

$$\Rightarrow \chi_{*} = \frac{-f'(0)}{Z(f(0) + f'(0) + f''(\xi) - f(0))} = \frac{2f'(0) + f''(\xi)}{2f'(0) + f''(\xi)}$$

Mas, no polinômio interpolador, onde aproximamos f, a segunda deruvada 1 02Cz = 2(f(1)-f(0))>0 portanto zf'(0)+f"(8)>-f'(0). → -f'(0) < 1

Portanto, no polinômio, de fato, 0 < x* < 1

Posiem, para a função original uno não é sempre verdodeiros pois não conhecemos informações suficiente robre os demadas.

Contra- Exemplo:

Vamos construir um contra exemplo usanto o própuo mitodo de

Newton:

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^2 (x-1) + c_4 x^2 (x-1)^2 + c_5 x^2 (x-1)^2 (x-2)$$

Observações

$$f'(1) = T$$

 $f(1) = 3$
 $f(0) = -T$
 $f(0) = X_0 = X_1 = 0$
 $f(0) = X_1 = 0$

$$f(z) = 1$$

 $f'(z) = 0$

-4.			3 · (A 1) [A 2)				
Ĺ	×i	t[xf]	$\text{t[x_{i-1},x_{i-1}]}$	$t[x^{i-i},x^{i-i},x^{i}]$	t[.'.'.']	t[,.)	t[
0	0	2					
1	0	2	- T	A .	T-11-2		
2	1	3	1	2			
3	1	3	7	0	-2		2 = 1 . 7
4	Z	1	- Z	- 3	- 3/2	1/4	
- 1	2	1	0	2	5	13/4	3/2
)		1			1		

$$f(x) = 2 - x + 2x^2 - 2x^2(x-1) + \frac{1}{4}x^2(x-1)^2 + \frac{3}{2}x^2(x-1)^2(x-2)$$