T1 - Implementação de Sistemas de Banco de Dados

Pedro E. Melha Lemos, Rafael Scotti Zanella

¹Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) Faculdade de Informática — Bacharelado em Ciência da Computação Av. Ipiranga, 6681 — Bairro Partenon — CEP 90619-900 — Porto Alegre — RS — Brazil

{pedro.elpidio, rafael.scotti}@acad.pucrs.br

Resumo. Este relatório apresenta comparação entre Árvores de resolução em álgebra relacional e o plano de resolução do Oracle SQL Developer sobre 3 consultas diferentes. Além disso, são feitas otimizações sobre estas consultas, o que muda o plano de resolução sobre elas.

1. Introdução

Com o objetivo de extrair dados de um Banco de Dados, realiza-se consultas no mesmo. Essas consultas muitas vezes podem acontecer de forma demorada devido a grande quantidade de itens no banco ou um *hardware* lento ou simplesmente se as consultas não estão devidamente otimizadas. Tendo isso em vista, foram realizados alguns testes em um banco de dados utilizando o SGBD *Oracle SQL Developer*, da Oracle, onde foram feitas consultas com e sem otimização com a intenção de comparar seus resultados. Árvores de resolução em álgebra relacional também foram criadas para fazer a análise.

2. Primeira consulta

2.1. Árvore de resolução em álgebra relacional

Figura 1. Árvore referente a primeira consulta

2.2. Amostra de execução da consulta sobre o banco de dados

	NUMERO_GRUPO	NUMERO_PESSOA	♦ NOME_PESSOA		NUMERO_EMPENHO
1	3	OUTROS SERVIÇOS DE TERCEIROS	JOSÉ GUSTAVO OLIJNYK	8 Coletivo c/Lista (atual)	1752
2	1	PESSOAL	IVONE MARIA DA SILVA	8 Coletivo c/Lista (atual)	1729
3	1	PESSOAL	BELINDA DA SILVEIRA	8 Coletivo c/Lista (atual)	8515
4	1	PESSOAL	BELINDA DA SILVEIRA	6 Pessoal	17250
5	1	PESSOAL	MARIA CELIA DA COSTA PEREIRA	6 Pessoal	9866
6	1	PESSOAL	JOAO CARLOS MUNIZ SOARES	6 Pessoal	1727
7	1	PESSOAL	OLINDA MEIRELES DA SILVA	6 Pessoal	17270
8	1	PESSOAL	CARLOS MARTINS FERREIRA	6 Pessoal	1724
9	1	PESSOAL	DARCI DA SILVA ANTUNES	6 Pessoal	9784
10	3	OUTROS SERVICOS DE TERCETROS	MARCELO OKABAYASHI	8 Coletivo c/Lista (atual)	1909:

Figura 2. Amostra de execução da primeira consulta

2.3. Plano de resolução (Oracle SQL Developer)

Figura 3. Plano de resolução referente a primeira consulta

2.4. Comparação entre a árvore de resolução em Álgebra Relacional, com os planos de resolução do Oracle

Após realizar as consultas em SQL e implementar a árvore de resolução em álgebra relacional, percebe-se que assim como na árvore de resolução, o plano de resolução da Oracle faz primeiro uma seleção dos predicados *data_despesa*, onde a data esteja entre '01-OUT-10' e '01-OUT-11' e *numero_empenho* maior que 8000, da tabela DESPESAS1 e, na tabela PESSOAS1, onde o *numero_pessoa* seja maior que 1000. Após realiza a junção dessas tabelas. A seguir, faz uma seleção onde *numero_grupo* da tabela GRUPOS esteja entre 1 e 3 e, após é feita a junção do resultado com a tabela DESPESAS1. A terceira e ultima junção é feita com as tabelas DESPESAS1 e TIPOS_EMPENHOS após ter sido realizado uma seleção na tabela TIPOS_EMPENHOS onde utiliza o predicado *tipo_empenho* e este esteja entre 5 e 8.

2.5. Opinião sobre a otimização

Nessa primeira consulta, é feita uma criação de índice que otimiza o acesso aos registros. Como a coluna DATA_DESPESA é utilizada nas cláusulas *select* e *where* desta consulta, é então criado o índice IX_DATA_DESPESA sobre a tabela DESPESAS1. Com isso os acessos deveriam estar otimizados. No entanto, infelizmente no plano de resolução desta consulta com e sem a otimização não houve mudanças.

3. Segunda consulta

```
select NUMERO_PESSOA, NOME_PESSOA, VALOR_EMPENHADO
from PESSOAS1 natural join DESPESAS1
where VALOR_EMPENHADO >= (select avg(VALOR_EMPENHADO)
    from DESPESAS1)
order by VALOR_EMPENHADO;
```

3.1. Árvore de resolução em álgebra relacional

Figura 4. Árvore referente a segunda consulta

3.2. Amostra de execução da consulta sobre o banco de dados

	NUMERO_PESSOA	♦ NOME_PESSOA	
1	4894	45135	
2	29035	TRANS SUL EMPRESA DE TRANSPORTES DE CARGAS LTDA	45143,1
3	3059	ASSOC DAS E DE T DE P DO S DE B E DA R M DE P ALEGRE (RS)	45167,6
4	3059	ASSOC DAS E DE T DE P DO S DE B E DA R M DE P ALEGRE (RS)	45186,9
5	10687	FOLHA DE PAGAMENTO	45201
6	10687	FOLHA DE PAGAMENTO	45206,2
7	28140	SULTRAUMA CLINICA DE TRAUMATO E ORTOPEDIA LTDA	45221,2
8	6123	COMPANHIA DE PROCES DE DADOS DO MUN DE P ALEGRE PROCEMPA S/A	45254,5
9	6485	CRISTALIA PRODUTOS QUIMICOS FARMACEUTICOS LTDA	45300
10	4898	CCS SERVICOS TERCEIRIZADOS LIDA-ME	45328.7

Figura 5. Amostra de execução da segunda consulta

3.3. Plano de resolução (Oracle SQL Developer)

Figura 6. Plano de resolução referente a segunda consulta

Figura 7. Plano de resolução referente a segunda consulta utilizando índice

3.4. Comparação entre a árvore de resolução em Álgebra Relacional, com os planos de resolução do Oracle

Após analisar a árvore de resolução em árgebra relacional e comparar com o *resolution* plan do Oracle SQL Developer, percebe-se uma grande semelhança entre eles, tendo apenas um detalhe de diferença. Nota-se que no plano de resolução da Oracle não é mostrado como é feito técnicamente a seleção da função agregada, enquanto que na árvore de álgebra relacional sabe-se que elas são divididas e processadas em duas consultas. Primeiro é feito a média (AVG) de *valor_empenhado* da tabela DESPESAS1 e, após, o resultado é passado para uma outra seleção que faz a comparação do maior, ou igual, *valor_empenhado* em relação a essa média.

A seguir é feita a junção das tabelas DESPESAS1 e PESSOAS1 e, então, o resultado (projeção das colunas *numero_pessoa*, *nome_pessoa e valor_empenhado*) é projetado.

3.5. Opinião sobre a otimização

Tal qual como na primeira consulta, nesta também é feita a criação de índice: IX_VALOR_EMPENHADO para otimizar o acesso aos registros devido o uso da coluna VALOR_EMPENHADO da tabela DESPESAS1 nas cláusulas *select* e *where*. Diferente do caso apresentado na consulta anterior, nesta consulta o plano de resolução apresentado pelo Oracle SQL Developer é consideravelmente diferente, já que este está considerando o índice criado para ordenação.

4. Terceira consulta

4.1. Árvore de resolução em álgebra relacional

Figura 8. Árvore referente a terceira consulta

4.2. Amostra de execução da consulta sobre o banco de dados

	♦ NOME_RUBRICA		⊕ CODIGO_RUBRICA	♦ VALOR_EMPENHADO	VALOR_PAGO	
1	PROVENTOS -	PESSOAL	CIVIL	319001010000	2722,4	2722,4
2	PROVENTOS -	PESSOAL	CIVIL	319001010000	2722,4	2722,4
3	PROVENTOS -	PESSOAL	CIVIL	319001010000	189,8	189,8
4	PROVENTOS -	PESSOAL	CIVIL	319001010000	4618662,8	4618662,8
5	PROVENTOS -	PESSOAL	CIVIL	319001010000	1218338,9	1218338,9
6	PROVENTOS -	PESSOAL	CIVIL	319001010000	1030,8	1030,8
7	PROVENTOS -	PESSOAL	CIVIL	319001010000	251232,2	251232,2
8	PROVENTOS -	PESSOAL	CIVIL	319001010000	336809,3	336809,3
9	PROVENTOS -	- PESSOAL	CIVIL	319001010000	275950,8	275950,8
10	PROVENTOS -	- PESSOAL	CIVIL	319001010000	13184,9	13184,9

Figura 9. Amostra de execução da terceira consulta

4.3. Plano de resolução (Oracle SQL Developer)

Figura 10. Plano de resolução da terceira consulta

```
select NOME_RUBRICA, CODIGO_RUBRICA,
    VALOR_EMPENHADO, VALOR_PAGO

from RUBRICAS inner join DESPESAS1
    on RUBRICAS.NUMERO_RUBRICA = DESPESAS1.NUMERO_RUBRICA
union
select NOME_RUBRICA, CODIGO_RUBRICA,
    NULL, NULL

from RUBRICAS
where not exists (
    select * from DESPESAS1
    where RUBRICAS.NUMERO_RUBRICA = DESPESAS1.NUMERO_RUBRICA
)
order by CODIGO_RUBRICA;

| PORMATION | POR
```

Figura 11. Plano de resolução referente a terceira consulta após otimização

4.4. Comparação entre a árvore de resolução em Álgebra Relacional com os planos de resolução do Oracle

Observando a árvore de resolução em álgebra relacional, percebe-se que foi realizada uma junção externa (*left join*) nas tabelas RUBRICAS E DESPESAS1. Esse tipo de junção pega os elementos da tabela RUBRICAS e faz uma união com elementos em comum com a tabela DESPESAS1.

4.5. Opinião sobre a otimização

Na terceira consulta a otimização garante tem uma abordagem diferente: ao invés de criar índices para otimizar os acessos aos registros, a otimização tem por finalidade fazer a junção externa não explicitamente. Como a operação de junção externa é consideravelmente custosa, a solução sugerida é que fosse realizada uma junção interna entre as tabelas RUBRICAS e DESPESAS1 e a respectiva união com os registros que não são em comum.

5. Conclusão

Após finalizar as analises, conclui-se que apenas adicionando indices em uma consulta ou alterando a forma que ela é feita, obtém-se resultados consideravelmente superiores. E tendo em vista banco de dados grandes, a otimização faz uma diferença muito importante.