References

 Table 1
 Calibration

Macroeconomic Parameters						
γ	0.36	Capital's Share of Income				
$\stackrel{'}{\delta}$	$1 - 0.94^{1/4}$	Depreciation Rate				
$\sigma_{\rm c}^2$	0.00001	Variance Aggregate Transitory Shocks				
σ_{Ψ}^2	0.00001	Variance Aggregate Permanent Shocks				
	Stead	y State of Perfect Foresight DSGE Model				
	$(\sigma_\Psi = \sigma_\Theta = \sigma_\psi = \sigma_\theta = \wp = D = 0, \Phi_t = 1)$					
K/K^{γ}	12.0	SS Capital to Output Ratio				
K	48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\gamma)}$)				
W	2.59	SS Wage Rate $(=(1-\gamma)K^{\gamma})$				
r	0.03	SS Interest Rate $(= \gamma K^{\gamma-1})$				
$\mathcal R$	1.015	SS Between-Period Return Factor $(=1-\delta+r)$				
Preference Parameters						
ho	2.	Coefficient of Relative Risk Aversion				
β	0.970	Discount Factor (SOE Model)				
П	0.25	Probability of Updating Expectations (if Sticky)				
Idiosyncratic Shock Parameters						
$\sigma_{ heta}^2$	0.120	Variance Idiosyncratic Tran Shocks (=4× Annual)				
σ_{ψ}^{2}	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times \text{Annual})$				
Ø	0.050	Probability of Unemployment Spell				
Ď	0.005	Probability of Mortality				

Note: As discussed in online Appendix ??, we calibrate to the steady state values from a perfect foresight DGSE model.

 Table 2
 Equilibrium Statistics

	SOE Mod	del	HA-DSGE	Model
	Frictionless Sticky		Frictionless	Sticky
Means				
A	7.49	7.43	56.85	56.72
C	2.71	2.71	3.44	3.44
Standard Deviations				
Aggregate Time Ser	ries ('Macro')			
$\log A$	0.332	0.321	0.276	0.272
$\Delta \log \mathbf{C}$	0.010	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.010	0.010	0.007	0.007
Individual Cross Se	ctional ('Micro')			
$\log \mathbf{a}$	0.926	0.927	1.015	1.014
$\log \mathbf{c}$	0.790	0.791	0.598	0.599
$\log p$	0.796	0.796	0.796	0.796
$\log \mathbf{y} \mathbf{y} > 0$	0.863	0.863	0.863	0.863
$\Delta \log \mathbf{c}$	0.098	0.098	0.054	0.055
Cost of Stickiness	4.82e-4	=	4.51e-	-4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3 Aggregate Consumption Dynamics in US Data

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$						
Measure of Consumption			OLS	2 nd Stage	KP p -val	
Inde	pendent Vari	iables	or IV	$ar{R}^2$	Hansen J p val	
Nondural	oles and Serv	ices				
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
0.468			OLS	0.216		
(0.076)						
0.830			IV	0.278	0.222	
(0.098)					0.439	
	0.587		IV	0.203	0.263	
	(0.110)				0.319	
		-0.17e-4		-0.005	0.081	
		(5.71e-4)			0.181	
0.618	0.305	-4.96e-4	IV	0.304	0.415	
(0.159)		(2.94e-4)			0.825	
Memo: Fo	or instrumen	$\operatorname{ts} \mathbf{Z}_t, \Delta \log \mathbf{C}$	$C_t = \mathbf{Z}_t$	$\zeta, \ \bar{R}^2 = 0.3$	58	
Nondural	oles					
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
0.200			OLS	0.036		
(0.058)						
0.762			IV	0.083	0.504	
(0.284)					0.727	
	0.849		IV	0.061	0.398	
	(0.357)				0.731	
		$9.09e{-4}$	IV	0.008	0.118	
		(9.05e-4)			0.446	
0.620	0.313	-3.25e-4	IV	0.077	0.523	
(0.292)	(0.286)	(8.32e-4)			0.821	
Memo: Fe	or instrumen	ts $\mathbf{Z}_t, \Delta \log \mathbf{C}$	$C_t = \mathbf{Z}_t$	$\zeta, \ \bar{R}^2 = 0.08$	80	

Notes: Robust standard errors are in parentheses. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}, \log \mathbf{Y}$

 Table 4
 Micro Consumption Regression on Simulated Data

$$\Delta \log \mathbf{c}_{t+1,i} = \alpha_0 + \alpha_1 \Delta \log \mathbf{c}_{t,i} + \alpha_2 \mathbf{e}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha_3 a_{t,i}$$
 (1)

Model of				
Expectations	χ	η	α	$ar{R}^2$
	<u>Λ</u>	-1		
Frictionless				
	0.019			0.000
	(-)			
	()	0.011		0.004
				0.004
		(-)		
			-0.190	0.010
			(-)	
	0.061	0.016	-0.183	0.017
	(-)	(-)	(-)	
	()	()	()	
Sticky				
	0.012			0.000
	(-)			
	()	0.011		0.004
				0.004
		(-)	0.404	0.010
			-0.191	0.010
			(-)	
	0.051	0.015	-0.185	0.016
	(-)	(-)	(-)	

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t. The notation "(—)" indicates that standard errors are close to zero, given the very large simulated sample size.

 Table 5
 Aggregate Consumption Dynamics in SOE Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

$\Delta \log C_{t+1} = \zeta + \chi \Delta \log C_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Expectations : Dep Var			OLS	2 nd Stage	KP p-val		
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val		
	Frictionless: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
	·		asureme	ent error $\mathbf{C}_t = \mathbf{C}_t$	$\cup_t \times \zeta_t$),		
- ·	$\Delta \log \mathbf{Y}_{t+1}$	A_t	OI C	0.007			
0.295			OLS	0.087			
(0.066)			** *	0.040			
0.660			IV	0.040	0.237		
(0.309)					0.600		
	0.457		IV	0.035	0.059		
	(0.209)				0.421		
		-6.92e-4	IV	0.026	0.000		
		(5.87e-4)			0.365		
0.420	0.258	0.45e-4	IV	0.041	0.516		
(0.428)	(0.365)	(9.51e-4)			0.529		
\ /			$\mathbf{C}_t^* = \mathbf{Z}_t$	$_{t}\zeta,\ \bar{R}^{2}=0.039;$	$var(\log(\xi_t)) = 5.99e-6$		
Sticky: \(\alpha \)	$\frac{1}{2} \log \mathbf{C}_{+1}^*$ (wi	th measure	ment er	$\operatorname{ror} \mathbf{C}_t^* = \mathbf{C}_t \times \delta$	(ξ_t) :		
	$\Delta \log \mathbf{Y}_{t+1}$	A_t			30//		
0.508	— 100 = 1+1		OLS	0.263			
(0.058)			OLD	0.200			
0.802			IV	0.260	0.000		
(0.104)			1 V	0.200	0.554		
(0.104)	0.050		137	0.100			
	0.859		IV	0.198	0.060		
	(0.182)	0.00	TT 7	0.000	0.233		
		-8.26e-4	IV	0.066	0.000		
		(3.99e-4)			0.002		
0.660	0.192		IV	0.261	0.359		
(0.187)	(0.277)	(5.03e-4)			0.546		
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.260$; $\operatorname{var}(\log(\xi_t)) = 5.99e{-}6$							

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

$$\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$$

 Table 6
 Aggregate Consumption Dynamics in HA-DSGE Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$ 2nd Stage OLS KP p-val Expectations: Dep Var or IV \bar{R}^2 Independent Variables Hansen J p-val Frictionless: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{Y}_{t+1}$ $\Delta \log \mathbf{C}_t^*$ 0.189OLS 0.036(0.072)IV0.4760.0200.318(0.354)0.556 0.368 IV 0.0170.107(0.321)0.457-0.34e-4IV0.0150.000 (0.98e-4)0.433 0.289IV 0.2140.01e-40.020 0.572(1.87e-4)(0.463)(0.583)0.531Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.023$; $\operatorname{var}(\log(\xi_t)) = 4.16\text{e-}6$ Sticky: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{Y}_{t+1}$ $\Delta \log \mathbf{C}_t^*$ A_t 0.467OLS 0.223 (0.061)IV0.7730.2300.000 (0.108)0.5420.912IV0.1450.105(0.245)0.187-0.97e-4IV 0.0590.000(0.56e-4)0.0020.6700.12e-40.231 0.171IV0.460(0.181)(0.363)(0.86e-4)0.551Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.232$; $\operatorname{var}(\log(\xi_t)) = 4.16\text{e-}6$

 Table 7
 Aggregate Consumption Dynamics in RA Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$ ectations: Dep Var OLS 2nd Stage KP n-val

Expectations : Dep Var			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$		
Frictionless: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);							
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t		-			
-0.015			OLS	0.002			
(0.077)							
0.387			IV	0.014	0.367		
(0.390)					0.570		
	0.390		IV	0.016	0.084		
	(0.311)				0.475		
		-0.26e-4	IV	0.016	0.000		
		(1.11e-4)			0.493		
0.122	0.267	0.16e-4	IV	0.018	0.547		
(0.519)	(0.575)	(2.12e-4)		= 0	0.572		
Memo: Fo	or instrument	$\mathbf{S} \; \mathbf{Z}_t, \; \Delta \log \mathbf{Q}$	$C_t^* = \mathbf{Z}_t$	ζ , $R^2 = 0.018$;	$var(\log(\xi_t)) = 3.33e-6$		
Sticky: 4	Sticky: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.412			OLS	0.179			
(0.063)							
0.788			IV	0.183	0.001		
(0.138)					0.532		
	0.641		IV	0.128	0.085		
	(0.163)				0.171		
		-0.47e-4	IV	0.075	0.000		
		(0.52e-4)			0.027		
0.632	0.118	0.10e-4	IV	0.184	0.321		
(0.223)	(0.280)	(0.79e-4)			0.480		
Memo: Fo	Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.186$; $\operatorname{var}(\log(\xi_t)) = 3.33e{-}6$						

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments:

$$\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$$