1 Простые поля, расширения полей, поле разложения многочлена

Определение 1.1 (Простое поле). Поле -простое, если оно не содержит собственных подполей

Определение 1.2 (Собственное подполе).

Теорема 1.1. F - простое поле, тогда $F \simeq Q$ или $F \simeq \mathcal{Z}_p$

Следствие 1.1. Внутри каждого поля есть простое подполе

 \square оказательство.

Определение 1.3 (Характеристика поля).

Определение 1.4 (Неразложимый многочлен). Неразложимый многочлен - многочлен, который не раскладывается на множители

Следствие 1.2. 1. Многочлен 1 степени всегда неразложим

- 2. Многочлен 2 или 3 степени неразложим ⇔ не имеет корней
- 3. Если многочлен степени большей 3 не разложим, то он не имеет корней

Следствие 1.3. *Неразложимый многочлены - простые элементы кольца многочленов*

Теорема 1.2. R - кольцо главных идеалов, c - простой элемент, тогда cR - простой идеал

Следствие 1.4. *Если р - неразложимый многочлен, тогда порожедёны-* ый им мдеал является максимальным

Следствие 1.5. $F(x)/\langle p \rangle$ - none

Теорема 1.3. Для каждого многочлена существует расширение поля, в котором он разложится на линейные множители.

Следствие 1.6. Если F - конечное поле, то поле расширений многочлена p тоже конечно

Следствие 1.7. deqp = n