Chương 1: HỆ THỐNG SỐ ĐẾM – SỐ NHỊ PHÂN

I. Các hệ thống số đếm:

1. Các khái niệm:

- Cơ số (r - radix):

là số lượng ký tự chữ số (ký số - digit) sử dụng để biểu diễn trong hệ thống số đếm

- Trọng số (weight):

đại lượng biểu diễn cho vị trí của 1 con số trong chuỗi số.

Trọng số = $C \sigma s \delta^{Vi tri}$

- Giá trị (value):

tính bằng tổng theo trọng số

 $Gi\acute{a} tri = \Sigma (K\acute{y} s\acute{o} \times Trong s\acute{o})$

a. Số thập phân (Decimal): Co số r = 10

4	0	7	1 /4 1	6	2	5
10 ²	10 ¹	10 ⁰		10-1	10-2	10-3
4x10 ²	0x10 ¹	7x10 ⁰	0.00	6x10 ⁻¹	2x10 ⁻²	5x10 ⁻³
400	0	7 1	HOACNC	№ 0.6	0.02	0.005

$$400 + 0 + 7 + 0.6 + 0.02 + 0.005 = 407.625$$

b. Số nhị phân (Binary): $C \circ s \circ r = 2$

1	0	TAIL 1 Bo	I HCWUT-CN	CP O	1	1
2 ²	21	20		2-1	2-2	2-3
1x2 ²	0x2 ¹	1x2 ⁰		0x2 ⁻¹	1x2 ⁻²	1x2 ⁻³
4	0	1		0	0.25	0.125

$$4 + 0 + 1 + 0 + 0.25 + 0.125 = 5.375$$

c. Số thập lục phân (Hexadecimal): Co số r = 16

Hexadecimal	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	001140
4	4	0100
5	5	∞0101 C
6	6	0110
7	7	0111

Hexadecimal	Decimal	Binary
8	8	1000
9	9	1001
A	10	1010
V _C B	11	1011
CC	12	1100
D	13	1101
E	14	1110
F	15	1111

5	Α	0	I HCMUT-CN	4	D	1
16 ²	16 ¹	16 ⁰		16 ⁻¹	16-2	16-3
5x16 ²	10x16 ¹	0x16 ⁰		4x16 ⁻¹	13x16 ⁻²	1x16 ⁻³
1280	160	0		0.25	0.0508	0.0002

1280 + 160 + 0 + 0.25 + 0.0508 + 0.0002 = 1440.301

2. Chuyển đổi cơ số:

a. Từ thập phân sang nhị phân

8.625

8:
$$2 = 4 \, du \, 0 \, (LSB)$$

4: $2 = 2 \, du \, 0$

2: $2 = 1 \, du \, 0$

1: $2 = 0 \, du \, 1$

TAILIEU SUU 1.000.101B

0.625 x $2 = 1.25 \, phần \, nguyên \, 1 \, (MSB)$

0.25 x $2 = 0.5 \, phần \, nguyên \, 0$

0.5 x $2 = 1.0 \, phần \, nguyên \, 1$

b. Từ thập phân sang thập lục phân:

1480.4296875

1480 : 16 = 92
$$du$$
 8 (LSD)

92 : 16 = 5 du 12

5 : 16 = 0 du 5

TAILIÊU SU'U TÂP

0.4296875 x 16 = 6.875 ph ân $nguy$ ên 6 (MSD)

0.875 x 16 = 14.0 ph ân $nguy$ ên 14

c. Từ nhị phân sang thập lục phân:

d. Từ thập lục phân sang nhị phân:

II. Số nhị phân (Binary):

1.Các tính chất của số nhị phân

- Số nhị phân n bit có 2ⁿ giá trị từ 0 đến 2ⁿ 1
- Số nhị phân có giá trị 2ⁿ-1: 1 1 (n bit 1) và giá trị 2ⁿ: 10...... 0 (n bit 0)
- Số nhị phân có giá trị lẻ là số có LSB = 1; ngược lại giá trị chẵn là số có LSB = 0
- Các bội số của bit: BỞI HCMUT-CNCP

1 B (Byte) = 8 bit
1 KB =
$$2^{10}$$
 B = 1024 B
1 MB = 2^{10} KB = 2^{20} B
1 GB = 2^{10} MB

2. Các phép toán số học trên số nhị phân:

a. Phép cộng:

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$ nhớ 1

1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0

b. Phép trừ:

TÀI LIỆU SƯU TẬP

3. Mã nhị phân:

Từ mã:

là các tổ hợp nhị phân được sử dụng trong loại mã nhị phân

a. Mã nhị phân cho số thập phân (BCD – Binary Coded Decimal)

Số thập phân	BCD (8 4 2 1)	BCD (2 4 2 1)	Nc BCD quá 3	Mã 1 trong 10
		TOTAL		
0	0000	0000	0011	0000000001
1	0001	0001	0100	0000000010
2	0010_	0010	0.1.0.1	0000000100
3	0011	0011	0 1 1 0	0000001000
4	0100	0100	0111	0000010000
5	0101	1011	1000	0000100000
6	0110	1100	1001	0001000000
7	0111	1101	1010	0010000000
8	1000	1110	1011	0100000000
9	1001	1111	1100	1000000000

b. Mã Gray: là mã nhị phân mà 2 giá trị liên tiếp nhau có tổ hợp bit biểu diễn chỉ khác nhau 1 bit

Giá trị	Binary	Gray
0	000	000
1	001cn	001
2	010	0.11
3	011	010
4	100	110

Đổi từ Binary sang Gray EU SUU TĐổi từ Gray sang Binary

c. Mã LED 7 đoạn:

Giá trị	a	b	c	d	e	f	g	
0	1	1	1	1	1	1	0	
1	0	1	1	0	0	0	0	
2	1	1	0	1	1	0	1	
3	1	1	1	1	0	0	1	
4	0	1	1	0	0	1	1	
OASNC	1	0	1	1	0	1	1	
6	01	0	1	1	1	1	1	
CH 7	1	1	1	0	0	0	0	
80	1	1	1	1	1	1	1	
9	1	1	1	1	0	1	1	

d. Mã 1 trong n:

là mã nhị phân n bịt có mỗi từ mã chỉ có 1 bit là 1 (hoặc 0) và n-1 bit còn lại là 0 (hoặc 1)

 Mã 1 trong 4:
 0
 1
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

					$(C\hat{o}t)$	$b_6b_5b_4$			
(Hàng)		000	001	010	011	100	101	110	111
$b_3b_2b_1b$	Hex	0	1	2	3	4	5	6	7
0000	0	NUL	DLE	SP	0	@	P		p
0001	1	SOH	DC1	HOAC	CN CA	A	Q	a	q
0010	2	STX	DC2	,,	2	В	R	b	r
0011	3	ETX	DC3	C#	3	3C	S	c	S
0100	4	EOT	DC4	\$	c04	D	T	d	t
0101	5	ENQ	NAK	%	5	E	U	e	u
0110	6	ACK	SYN	&	6 -	î.F	V	f	V
0111	7	BEL	ETB	lieh 2	7	G	W	g	W
1000	8	BS	CAN	OI HCMU	r-cncp 8	Н	X	h	X
1001	9	HT	EM		9	I	Y	i	y
1010	A	LF	SUB	*		J	Z	j	Z
1011	В	VT	ESC	+	•	K		k	{
1100	C	FF	FS	,	<	L	1	1	
1101	D	CR	GS		=	M		m	}
1110	E	so	RS		>	N	۸	n	~
n TrohgLulat	F	SI	US	1	?	0		0	DEL

III. Số nhị phân có dấu:

- 1. Biểu diễn số có dấu:
 - a. Số có dấu theo biên độ (Signed_Magnitude):
 - Bit MSB là bit dấu: 0 là số dương và 1 là số âm, các bit còn lại biểu diễn giá trị độ lớn

$$+13:01101$$

- Phạm vi biểu diễn:

$$-(2^{n-1}-1) \div + (2^{n-1}-1)$$

b. Số bù_1 (1's Complement):

- Số bù_1 của 1 số nhị phân N có chiều dài n bit

$$B\dot{u}_{1}(N) = 2^{n} - 1 - N$$

$$B\dot{u}_{-1}(1\ 0\ 0\ 1) = 2^{4} - 1 - 1\ 0\ 0\ 1$$

$$= 1111 - 1\ 0\ 0\ 1$$

$$= 0\ 1\ 1\ 0$$

- Có thể lấy Bù_1 của 1 số nhị phân bằng cách lấy đảo từng bit của nó (0 thành 1 và 1 thành 0)
- Biểu diễn số có dấu bù 1:
 - * Số có giá trị dương:

bit dấu = 0, các bit còn lại biểu diễn độ lớn

* Số có giá trị âm:

lấy bù_1 của số dương có cùng độ lớn

- Phạm vi biểu diễn

$$-(2^{n-1}-1) \div + (2^{n-1}-1)$$

c. Số bù 2 (2's Complement):

- Số bù_2 của 1 số nhị phân N có chiều dài n bit cũng có n bit

$$B\dot{u}_{2}(N) = 2^{n} - N = B\dot{u}_{1}(N) + 1$$

BOI HCMUT-CNCP

$$ho\bar{q}c$$
 $B\dot{u}_2(1001)$
 = $B\dot{u}_1(1001) + 1$

 =
 $0110 + 1$

 =
 0111

- Biểu diễn số có dấu bù_2:

* Số có giá trị dương:

bit dấu = 0, các bit còn lại biểu diễn độ lớn

* Số có giá trị âm:

lấy bù_2 của số dương có cùng độ lớn

- Phạm vi biểu diễn số nhị phân có dấu n bit

- (2 ⁿ⁻¹)	$(2^{n-1}-1)$
Giá trị dương	Giá trị âm
000 = 01 HCMU	100 = -4
001 = +1	101 = - 3
010 = +2	110 = - 2
011 = + 3	111 = - 1

Để tìm được giá trị của số âm:
 ta lấy bù_2 của nó; sẽ nhận được số dương có cùng biên độ

Số âm 1 1 0 0 0 1 có giá trị: -.15....

$$B\dot{u}_2 (1 \ 1 \ 0 \ 0 \ 0 \ 1) = 0 \ 0 \ 1 \ 1 \ 1 \ : + 15$$

- Mở rộng chiều dài bịt số có dấu: số dương thêm các bịt 0 và số âm thêm các bịt 1 vào trước

$$-3$$
: 101 = 11101

- Lấy bù_2 hai lần một số thì bằng chính số đó
- Giá trị -1 được biểu diễn là 1 11 (n bit 1)
- Giá trị - 2^n được biểu diễn là $1\ 0\ 0\\ 0\ 0\ (n\ bit\ 0)$

$$-32 = -2^5 : 100000$$

2. Các phép toán cộng trừ số có dấu:

- Thực hiện giống như số không dấu.
- Thực hiện trên toán hạng có cùng chiều dài bit, và kết quả cũng có cùng số bit
- Kết quả đúng nếu nằm trong phạm vi biểu diễn số có dấu. (nếu kết quả sai thì cần mở rộng chiều dài bit)

: 1010

1110

1100

+2: 0010

1011

0111

: 1001

: 0101 00101

Trừ với số bù 2:
$$A - B = A + B\dot{u}_2(B)$$

* Trừ với số không có dấu

* Trừ với số có dấu TIÊU SƯU TẬP

BOI HCMUT-CNCP

IV. Cộng trừ số BCD:

A + B	S =	A + B	Nếu tổng $S_i \ge 10$ hoặc có bit nhớ $C_i = 1$, thì hiệu đính S_i : $\underline{S_i = S_i + 6 \ va \ S_{i+1} = S_{i+1} + C_i}$
	$\mathbf{D} = \mathbf{A} - \mathbf{B}$	C _n = 1: kết quả là số dương (A≥B)	Nếu $C_i = 1$ thì không hiệu đính Nếu $C_i = 0$ thì hiệu đính D_i : $\underline{D_i = D_i + 10}$
A - B	= A + Bù_2(B) (Kết quả bỏ bit C _n)	C _n = 0: kết quả là số âm (A <b) Lấy bù kết quả</b) 	Nếu C_i = 1 thì hiệu đính D_i : $\underline{D_i = D_i + 6}$ Nếu C_i = 0 thì không hiệu đính

TÀI LIỆU SƯU TẬP 1

