Niveau: TRONC COMMUN - Cours

les ensembles

page

Les ensembles \mathbb{N} et \mathbb{Z} et \mathbb{D} et \mathbb{Q} et \mathbb{R}

a. Les nombres entiers :

\star Ensemble: \mathbb{N}

Les nombres entiers naturels forment un ensemble appelé ensemble des nombres entiers naturels on le note $\mathbb N$.

- On écrit : $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ on dit que \mathbb{N} est écrit en extension.
- L'ensemble $\{1,2,3,\ldots\}$ est note \mathbb{N}^* , on a $\mathbb{N}^* \subset \mathbb{N}$.

❖ Ensemble **Z**

Les nombres entiers relatifs forment un ensemble appelé ensemble des nombres entiers relatifs on le note $\mathbb Z$.

- On écrit : $\mathbb{Z} = \{...., -3, -2, -1, 0, 1, 2, 3,\}$ on dit que \mathbb{Z} est écrit en extension.
- L'ensemble $\{\ldots, -3, -2, -1, 1, 2, 3, \ldots\}$ est note \mathbb{Z}^* on a $\mathbb{Z}^* \subset \mathbb{Z}$.
- L'ensemble $\{0,1,2,3,....\}$ est l'ensemble des entiers positifs , on note $\mathbb{Z}^+ = \mathbb{N}$. on a $\mathbb{Z}^+ \subset \mathbb{Z}$ (ou encore $\mathbb{N} \subset \mathbb{Z}$)
- L'ensemble $\{1,2,3,....\}$ est l'ensemble des entiers strictement positifs, on note $\mathbb{Z}^{+^*} = \mathbb{N}^*$.
- L'ensemble $\{0,-1,-2,-3,....\}$ est l'ensemble des entiers négatifs, on note \mathbb{Z}^- .. on a \mathbb{Z}^-
- L'ensemble {-1,-2,-3,....} est l'ensemble des entiers strictement négatifs , on note Z

• Remarque :

- ✓ les chiffres sont : 0 et 1 et 2 et 3 et 4 et 5 et 6 et 7 et 8 et 9.
- ✓ les nombres sont : 0 et 1 et 2 et 3 et 4 et 5 et 6 et 7 et 8 et 9 et 10 et 11 et 12
- $\checkmark \mathbb{Z}^- \cup \mathbb{Z}^+ = \mathbb{Z}$

b. Les nombres décimaux :

Un nombre décimal est un nombre qui peut s'écrire par un nombre fini de chiffres après la virgule. par exemple -15,237 et 0,21 et $\frac{3}{4}$ = 0.75 sont des nombres décimaux ; mais

 $\frac{2}{3}$ = 0,6666666... n'est pas un nombre décimal . pour comprendre la définition mathématique exacte de l'ensemble des nombres décimaux .

On Remarque: $-15,237 = -\frac{15237}{1000} = -\frac{15237}{10^3}$ et $0,21 = \frac{21}{100} = \frac{21}{10^2}$.

- ❖ D'ou : Les nombres décimaux forment un ensemble appelé ensemble des nombres décimaux on le note \mathbb{D} . Avec : $\mathbb{D} = \left\{ \frac{a}{10^p} / a \in \mathbb{Z}, p \in \mathbb{N} \right\}$.
 - * Remarque:

$$17 = \frac{17}{10^0} \in \mathbb{D} \text{ et } -5 = \frac{-5}{10^0} \in \mathbb{D} \text{ d'ou} : \mathbb{Z} \subset \mathbb{D} \text{ et } \mathbb{N} \subset \mathbb{D} \text{ .}$$

Niveau: TRONC COMMUN - Cours

les ensembles

page

c. Les nombres rationnels :

On a: $\frac{2}{3} = 0,6666666... \notin \mathbb{D}$. $\frac{2}{3}$ est un nombre rationnel (du latin ratio= fraction). chaque nombre rationnel peut s'écrire sous la forme $\frac{a}{b}$ avec a et b sont des entiers (avec $b \neq 0$ on préfère b > 0). on note l'ensemble des nombres rationnels par \mathbb{Q}

Remarque:

- ✓ On a de même \mathbb{Q}^* et \mathbb{Q}^+ et \mathbb{Q}^- .
- $\checkmark \quad \frac{2}{3} \in \mathbb{Q} \text{ mais } \frac{2}{3} \notin \mathbb{D} \quad \frac{3}{4} \in \mathbb{Q} \text{ mais } \frac{3}{4} \in \mathbb{D} .$
- ✓ Tout nombre rationnel admet une infinité de représentants par exemple :

$$\frac{3}{4} = \frac{6}{8} = \frac{15}{20} = \frac{-3}{-4}$$
 le représentant privilégié est la fraction irréductible $\frac{3}{4}$.

- \checkmark $\frac{3}{4}$ est une fraction et 0,75 est son développement décimal.
- ✓ Considérons les développement décimal de quelques nombre rationnels :

$$\frac{7}{101} = 0,069306930693... = 0,\overline{0693} \cdot \frac{47}{41} = 1,14634146341463414634... = 1,\overline{14634} \cdot ... = 1,$$

* Théorème :

Dans le développement décimal de tout nombre rationnel il y a une suite de chiffres qui se répète indéfiniment, appelle période de ce nombre rationnel.

d. Les nombres réels :

Exemples:

 $\sqrt{2} \approx 1,41421356...$. $\pi \approx 3,141592653589...$. Sont des nombres irrationnels .

- Les nombres rationnels et les nombres irrationnels forment un ensemble appelé ensemble des nombres reels on note cet ensemble par : \mathbb{R} .
- $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$.
- lacksquare est l'ensemble des nombres réels non nuls .
- \blacksquare \mathbb{R}^+ est l'ensemble des nombres réels positifs .
- \blacksquare \mathbb{R}^{+^*} est l'ensemble des nombres réels positifs non nuls .
- \mathbb{R}^- est l'ensemble des nombres réels négatifs .
- $\blacksquare \mathbb{R}^+ \bigcup \mathbb{R}^- = \mathbb{R} \text{ et } \mathbb{R}^+ \cap \mathbb{R}^- = \{0\}$

Règles de calculs:

a. Pour les fractions :

Soient a et b et c et d des nombres réels avec $b \neq 0$ et $d \neq 0$.

•
$$\frac{a}{b} + \frac{c}{d} = \frac{a \times d + b \times c}{ad}$$
 et $\frac{a}{b} - \frac{c}{d} = \frac{a \times d - b \times c}{ad}$

Niveau: TRONC COMMUN - Cours

les ensembles

page

b. Les racines carrées :

Définition:

La racine carrée d'un nombre positif x est le nombre positif a dont $a^2 = x$ le nombre a est noté $a = \sqrt{x}$ (càd $\sqrt{a^2} = x$).

c. Identités remarquables :

a et b sont des nombres reels.

d. Puissances de 10 :

$$10^{n} = \underbrace{10 \times 10 \times 10 \times \dots \times 10}_{n \text{ fois}} = 1 \underbrace{000 \dots 0}_{n \text{ zéros}} \text{ et } 10^{-n} = \frac{1}{10^{n}} = \underbrace{0,00 \dots 0}_{n \text{ zéros}} 1$$

e. Ecriture scientifique:

Ecrire un nombre b en écriture scientifique c'est de l'écrire sous la forme :

$$b = \underset{\text{nombre entre1 et10 exclu}}{\mathbf{a}} \times 10^{\mathbf{n}}$$

$ \mathbf{b} \le 1 \ (-1 \le \mathbf{b} \le 1)$ n est positif	b > 1 $(-1 < b ou b > 1)$ n est négatif
$b = 5, 4 = 5, 4 \times 10^{0}$	$b = -0.4 = 4 \times 10^{-1}$
$b = 47, 3 = 4,73 \times 10^{1}$	$b = 0,043 = 4,3 \times 10^{-2}$
$b = -5110 = -5,11 \times 10^3$	$b = -0.00757 = 7.57 \times 10^{-3}$
$b = 59, 4 = 5,94 \times 10^{1}$	$b = -\frac{2}{5} = -0, 4 = 4 \times 10^{-1}$
$b = \frac{7}{4} = 1,75 = 1,75 \times 10^{0}$	3
0-4-1,73-1,73×10	$b = -0,00009999 = 9,999 \times 10^{-5}$