영상처리 Hackathon 문제

2021년 1월 11일 ~ 13일

- 개요: 교내 공과대 사거리를 촬영한 영상에서 자동차 이동 분석
 - 지정된 구역을 지나가는 차량 대수 파악
 - 직진, 좌/우 회전하는 차량 대수 파악
- 공개 학습용 데이터
 - 시간 순에 따라 번호가 붙은 JPG 이미지 3세트
 - Sequence01 폴더: 00000.jpg ~ 00900.jpg (901장)

- Google Colab에서 이미지를 로딩, 처리하고 결과를 출력하는 코드
- 예제 코드를 활용하여 답안 제출하면, 채점할 때 이미지 경로만 수정하여 채점
- 채점을 위한 비공개 테스트 데이터
 - 동일 지역을 유사 시간 대, 다른 날짜에 촬영한 이미지로 구성 (시나리오별로 구성)
 - 조명, 촬영 각도는 동일하거나 매우 유사, Frame rate 동일

- 제출물: 소스코드, 모델파일(해당되는 경우)
 - [필수 1] 알고리즘에 대한 설명과 결과 스크린샷을 담은 한글문서 (.hwp)
 - 공개데이터에 대한 동작 여부를 보여주면 됩니다.
 - 채점을 위한 수행과정이 복잡할 경우, 자세히 설명
 - 연락처 필수 기재: 채점과정에서 연락할 수 있습니다.
 - [필수 2] 해결문제 소스 코드: .ipynb
 - 무료 Google Colab 환경에서 수행이 가능해야
 - 이미지 1장당 분석시간 최대 5초 이내 (Google colab GPU 사용 기준)
 - [선택 3] 딥러닝을 사용했을 경우, 동작에 필요한 모델 파일
 - Subfolder로 구성하지 말고, 하나의 폴더에 동작에 필요한 파일을 모두 포함
 - 이미지 데이터는 제출하지 않아도 됨.
 - 제출파일들을 zip파일로 제출: 제출자 혹은 팀을 파일명에 기입
- 제출 기한: 2021년 1월 13일(수) 오후 11시 59분
- 제출방법 : LMS "영상처리 기초부터 딥러닝 응용까지"의 "해커톤 답안제출" 과제 게시판에 업로드

• 채점과 배점

- 시나리오별 테스트데이터에 대해 수행하고, 평균점수로 계산
- pred: 프로그램 수행에 의한 결과값
- GT: ground truth, 정답
- 알고리즘없이 단순 출력하는 경우, 부정행위로 실격 처리

항목	평가항목: 정확도	가중치	
1구역 통과 대수			
2구역 통과 대수		10	
3구역 통과 대수		10	
4구역 통과 대수	$= \max(1 - \frac{ pred - GT }{GT}, 0)$		
직진 대수		15	
좌회전 대수		20	
우회전 대수		20	

• 채점 예시

항목	프로그램 예측결과	GT (정답)	정확도	가중치	점수	최종 점수
1구역 통과 대수	8	10	0.8	10	8	66점
2구역 통과 대수	9	10	0.9		9	
3구역 통과 대수	10	10	1		10	
4구역 통과 대수	11	10	0.9		9	
직진 대수	12	10	0.8	15	12	
좌회전 대수	9	10	0.9	20	18	
우회전 대수	20	10	0	20	0	

- 해커톤 진행중 문의사항
 - LMS 내 해커톤 질의응답 게시판 이용 또는
 - 유호진 e-mail : yoohj0416@gmail.com

카카오톡 ID : yoohj0416

특정 구역을 통과한 차량 대수 파악

시간 순으로 정렬된 이미지들이 주어질 때, 아래 사진에서 section 1~4로 지정된 구역을 통과한 차량의 대수를 "구역별로 출력"

Section 정보

통과의 정의: 해당 구역을 완전히 벗어난 경우에만 통과로 간주

예시 사진

아직 Section 1을 지나기 전이기 때문에 카운트 하지 않는다. Section 1을 지났기 때문에 카운트 한다.

차량의 진행 방향과 상관없이 해당 구역 통과만 고려.

위와 같은 순서 (1-2-3-4)의 경우, Section 2에 2대의 차량이 통과했고, Section3는 3대의 차량 통과

직진, 좌회전, 우회전하는 차량의 대수 분석

중요!!! 차량의 관점에서 직진, 좌회전, 우회전을 판별

아래 예시 순서 (1~6)에서는 우회전 차량이 2대

수행결과 출력 예시

- Section 1: 00대
- Section 2: 00대
- Section 3: 00대
- Section 4: 00대
- 직진: 00 대
- 좌회전: 00 대
- 우회전: 00 대