1. Feature Engineering

Contents

1. Feature scaling	
2. Data pre-processing	2
3. Why Data Pre-processing in Machine Learning?	
4. What type of data we need to handle?	
5. Numerical data	
6. To handle Numerical data	
7. To handle Categorical data	5
8. scikit-learn installation	
9. Label Encoder	7
9.1. LabelEncoder class	7
9.2. fit_transform(p) method	7
10. MinMaxScaler	
11. Transforming Features	13
12. Handling outlier	
13. Impute Missing values	
14. Impute missing numeric values	

1. Feature Engineering

1. Feature scaling

- ✓ Feature Scaling is a technique to standardize the independent features present in the data in a fixed range.
- ✓ It is performed during the data pre-processing.

2. Data pre-processing

- ✓ In machine learning data pre-processing is an important step
- ✓ The purpose of this technique is cleaning and organizing the raw data to make is suitable for building and training machine learning models

3. Why Data Pre-processing in Machine Learning?

- ✓ Typically, real-world data is incomplete, inconsistent, inaccurate (contains errors or outliers), and often lacks specific attribute values/trends.
- ✓ This is where data pre-processing enters the scenario it helps to clean, format, and organize the raw data, thereby making it ready to use the data for Machine Learning models.

4. What type of data we need to handle?

- ✓ Two types of data we need to handle
 - Numerical data
 - Categorical data

5. Numerical data

- ✓ Quantitative data is the measurement of something monthly sales, or student scores etc.
- ✓ The natural way to represent these quantities is numerically (e.g., 29 students, \$529,392 in sales).
- ✓ So we need to understand how to transforming raw numerical data into features, then we need to use this feature during machine learning

6. To handle Numerical data

Technique	Purpose
✓ LabelEncoder	✓ To convert all character/categorical variables to be numeric.
✓ StandardScaler	✓ To transform a feature which is mean to 0 and standard deviation to 1
✓ Transforming Features	✓ We can transform features
✓ Handling outlier	✓ To handle outlier
✓ Impute Missing Values	✓ To impute missing value with strategy

7. To handle Categorical data

Technique	Purpose
✓ Encoding nominal categories	✓ To do one hot encoding
✓ Encoding ordinal categories	✓ Ordinal categorical
✓ Imputing categorical missing values	✓ Imputing categorical missing values with most frequent strategy

8. scikit-learn installation

 \checkmark To execute all these examples we need to install scikit-learn library.

pip install scikit-learn

9. Label Encoder

✓ By using this we can convert all character/categorical variables to be numeric.

9.1. LabelEncoder class

- ✓ LabelEncoder is predefined class in sklearn.preprocessing package
- ✓ We need to import this class from sklearn.preprocessing package
- ✓ Once we imported then we need to create an object o LabelEncoder class.

9.2. fit_transform(p) method

- √ fit_transform(p) is predefined method in LabelEncoder class.
- ✓ We should access this method by using LabelEncoder object only.
- ✓ This method converts categorical variables into numerical values.

```
Program
           LabelEncoder
Name
           demo1.py
           from sklearn.preprocessing import LabelEncoder
           import pandas as pd
           d = {
                 "Company": ["Google", "Twitter", "Google", "LinkedIn"],
                 "Role": ["Data Scientist", "Sales manager", "HR", "HR"]
           }
           df = pd.DataFrame(d)
           label_encoder = LabelEncoder()
           df["Company_n"] = label_encoder.fit_transform(df['Company'])
           df["Role_n"] = label_encoder.fit_transform(df['Role'])
           print()
           print(df)
Output
                Company
                                        Role
                                               Company_n
                                                             Role_n
                 Google Data Scientist
                                                         0
                                                                   0
                Twitter
                            Sales manager
                                                         2
                                                                   2
                 Google
                                          HR
                                                                   1
               LinkedIn
                                          HR
                                                         1
                                                                   1
```

10. MinMaxScaler

- ✓ Min-max scaling is a common feature pre-processing technique which results in scaled data values that fall in the range 0 and 1.
 - 0 is minimum value
 - o 1 is maximum value
- ✓ If we rescale the value of numeric feature then it is in between two values.

```
Program
          MinMaxScaler
Name
          demo2.py
          import pandas as pd
          d = {
              "x" : [10, 20, 30, 40, 50],
              "y": [25, 50, 75, 100, 125]
          }
           df = pd.DataFrame(d)
          print(df)
Output
                X
               10
                      25
               20
                      50
                     75
               30
                     100
               40
               50
                     125
```

```
MinMaxScaler: single column
Program
           demo3.py
Name
           import pandas as pd
           from sklearn.preprocessing import MinMaxScaler
           d = {
               "x": [10, 20, 30, 40, 50],
               "y": [25, 50, 75, 100, 125]
           }
           df = pd.DataFrame(d)
           mm_scale = MinMaxScaler(feature_range = (0, 1))
           print(df)
           one_col = mm_scale.fit_transform(df[["x"]])
           print(one_col)
Output
                X
               10
                     25
               20
                     50
               30
                    75
               40 100
               50
                   125
           [[0.]
             [0.25]
             [0.5]
             [0.75]
```

```
Program
           MinMaxScaler: two columns
           demo4.py
Name
           import pandas as pd
           from sklearn.preprocessing import MinMaxScaler
           d = {
               "x": [10, 20, 30, 40, 50],
               "y": [25, 50, 75, 100, 125]
           }
           df = pd.DataFrame(d)
           mm_scale = MinMaxScaler(feature_range = (0, 1))
           print(df)
           df[["x", "y"]] = mm_scale.fit_transform(df[["x", "y"]])
           print(df)
Output
                Χ
              10
                     25
              20
                     50
                    75
              30
              40 100
              50 125
                  X
             0.00 0.00
              0.25 0.25
              0.50 0.50
              0.75 0.75
              1.00 1.00
```

11. Transforming Features

✓ By using **FunctionTransformer** we can transform the features.

```
FunctionTransformer
Program
Name
           demo5.py
           import numpy as np
           from sklearn.preprocessing import FunctionTransformer
           a = [[10, 20], [30, 40], [50, 60]]
           f = np.array(a)
           def add_ten(x):
                 return x + 10
           obj = FunctionTransformer(add_ten)
           result = obj.transform(f)
           print(f)
           print()
           print(result)
Output
            [[10 20]
             [30 40]
             [50 60]]
            [[20 30]
             [40 50]
             [60 70]]
```

12. Handling outlier

- 1. If due to an error: drop, mark as missing value, mark as possible error.
- 2. If a legitmate but extreme value: decide if it is genuinely a member of the population we are try to address with our model.
- ✓ Outlier means a large value compare with other values
- ✓ Some values are also out of the range of the feature, so they are also considered as outliers.
- ✓ Outliers affect our model's efficiency because it influences the model very much.
- ✓ Three ways to handle these,
 - Drop outlier or filter outlier
 - o Marking them using boolean condition
 - Transform into feature

Program Name

A dataframe with outliers

demo6.py

import numpy as np import pandas as pd

houses = pd.DataFrame()

houses['Price'] = [534433, 392333, 293222, 4322032]

houses['rooms'] = [2, 3, 2, 116]

houses['Square_Feet'] = [1500, 2500, 1500, 48000]

print(houses)

Output

	Price	rooms	Square_Feet
0	534433	2	1500
1	392333	3	2500
2	293222	2	1500
3	4322032	116	48000

Program Name

Filtering outlier demo7.py

import numpy as np import pandas as pd

houses = pd.DataFrame()

houses['Price'] = [534433, 392333, 293222, 4322032]

houses['rooms'] = [2, 3, 2, 116]

houses['Square_Feet'] = [1500, 2500, 1500, 48000]

con1 = houses['rooms'] < 20

new = houses[con1]

print(new)

Output

	Price	rooms	Square_Feet
0	534433	2	1500
1	392333	3	2500
2	293222	2	1500

Program Name

Mark them as outliers

demo8.py

import numpy as np import pandas as pd

houses = pd.DataFrame()

houses['Price'] = [534433, 392333, 293222, 4322032]

houses['rooms'] = [2, 3, 2, 116]

houses['Square_Feet'] = [1500, 2500, 1500, 48000]

houses["Outlier"] = np.where(houses["rooms"] < 20, 0, 1)

print(houses)

Output

	Price	rooms	Square_Feet	Outlier
0	534433	2	1500	0
1	392333	3	2500	0
2	293222	2	1500	0
3	4322032	116	48000	1

13. Impute Missing values

- ✓ We can impute missing values with different strategy.
- ✓ There are two types of missing values
 - o Numeric missing values
 - Categorical missing values

14. Impute missing numeric values

- ✓ Missing numeric values we can impute with different strategy
 - o mean
 - o median
 - o most_frequent
 - o constant

```
Program
           Creating DataFrame
Name
           demo9.py
           import numpy as np
           import pandas as pd
           students = [
                     [85, 'M', 'verygood'],
                     [95, 'F', 'excellent'],
                     [60, None, 'good'],
                     [np.NaN, 'M', 'average'],
                     [70, 'M', 'good'],
                     [np.NaN, None, 'verygood'],
                     [60, 'F', 'verygood'],
                     [98, 'M', 'excellent']
           ]
           cols = ['marks', 'gender', 'result']
           df = pd.DataFrame(students, columns = cols)
           print(df)
output
                marks gender
                                        result
                 85.0
                                     verygood
                               Μ
                 95.0
                                   excellent
                               F
                           None
                                          good
                 60.0
                                      average
                  NaN
                               Μ
                 70.0
                               Μ
                                           good
```

verygood

verygood

excellent

NaN

60.0

98.0

None

F

Μ

```
Program
            Imputing missing numeric values with mean strategy
            demo10.py
Name
            import numpy as np
            from sklearn.impute import SimpleImputer
            import pandas as pd
            students = [
                       [85, 'M', 'verygood'],
                       [95, 'F', 'excellent'],
                       [60, None, 'good'],
                       [np.NaN, 'M', 'average'],
                       [70, 'M', 'good'],
                       [np.NaN, None, 'verygood'],
                       [60, 'F', 'verygood'],
                       [98, 'M', 'excellent']
            ]
            cols = ['marks', 'gender', 'result']
            df = pd.DataFrame(students, columns = cols)
            print(df)
            imputer = SimpleImputer(missing_values = np.nan, strategy =
            'mean')
            result = df['marks'].values.reshape(-1, 1)
            df.marks = imputer.fit_transform(result)
            print()
            print(df)
```

output

	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
2	60.0	None	good
3	NaN	М	average
4	70.0	М	good
1 2 3 4 5 6 7	NaN	None	verygood
6	60.0	F	verygood
7	98.0	М	excellent
	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
2	60.0	None	good
1 2 3 4 5 6 7	78.0	М	average
4	70.0	М	good
5	78.0	None	verygood
6	60.0	F	verygood
7	98.0	М	excellent

```
Program
            Imputing missing numeric values with median strategy
            demo11.py
Name
            import numpy as np
            from sklearn.impute import SimpleImputer
            import pandas as pd
            students = [
                       [85, 'M', 'verygood'],
                       [95, 'F', 'excellent'],
                       [60, None, 'good'],
                       [np.NaN, 'M', 'average'],
                       [70, 'M', 'good'],
                       [np.NaN, None, 'verygood'],
                       [60, 'F', 'verygood']
            ]
            cols = ['marks', 'gender', 'result']
            df = pd.DataFrame(students, columns = cols)
            print(df)
            imputer = SimpleImputer(missing values = np.nan, strategy = '
            median')
            result = df['marks'].values.reshape(-1, 1)
            df.marks = imputer.fit transform(result)
            print()
            print(df)
```

output

	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
1 2 3 4 5 6	60.0	None	good
3	NaN	М	average
4	70.0	М	good
5	NaN	None	verygood
6	60.0	F	verygood
	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
1 2 3 4 5 6	60.0	None	good
3	70.0	М	average
4	70.0	М	good
5	70.0	None	verygood
		F	verygood

Program Imputing missing numeric values with most_frequent strategy Name demo12.py import numpy as np from sklearn.impute import SimpleImputer import pandas as pd students = [[85, 'M', 'verygood'], [95, 'F', 'excellent'], [60, None, 'good'], [np.NaN, 'M', 'average'], [70, 'M', 'good'], [np.NaN, None, 'verygood'], [60, 'F', 'verygood'], [98, 'M', 'excellent']] cols = ['marks', 'gender', 'result'] df = pd.DataFrame(students, columns = cols) imputer = SimpleImputer(missing_values = np.nan, strategy = ' most_frequent') result = df['marks'].values.reshape(-1, 1) df.marks = imputer.fit_transform(result) print(df)

output

```
marks gender
                  result
85.0
           Μ
              verygood
           F
               excellent
95.0
                    good
60.0
        None
60.0
                 average
           Μ
70.0
                    good
           Μ
60.0
               verygood
        None
               verygood
60.0
           F
               excellent
 98.0
           Μ
```

```
Program
            Imputing missing numeric values with constant strategy
            demo13.py
Name
            import numpy as np
            from sklearn.impute import SimpleImputer
            import pandas as pd
            students = [
                       [85, 'M', 'verygood'],
                       [95, 'F', 'excellent'],
                       [60, None, 'good'],
                       [np.NaN, 'M', 'average'],
                       [70, 'M', 'good'],
                       [np.NaN, None, 'verygood'],
                       [60, 'F', 'verygood'],
                       [98, 'M', 'excellent']
            ]
            cols = ['marks', 'gender', 'result']
            df = pd.DataFrame(students, columns = cols)
            print(df)
            imputer = SimpleImputer(missing_values = np.nan, strategy =
            'constant', fill_value = 80)
            result = df['marks'].values.reshape(-1, 1)
            df.marks = imputer.fit_transform(result)
            print()
            print(df)
```

output

ygood
llent
good
erage
good
ygood
ygood
llent
esult
ygood
llent
good
erage
good
ygood
ygood
llent

2. Feature Engineering

Contents

1	. Handling Categorical Data	2
2	. Encoding Categorical Data	3
	2.1. Ordinal encoding	
	2.2. One hot encoding	6
	2.3. Dummy variable encoding	9
	2.4. Imputing Missing Class Values	11

2. Feature Engineering

1. Handling Categorical Data

Categorical data

✓ Categorical data are variables that contain label values rather than numeric values.

Types of categorical data

- ✓ Nominal Variable
- ✓ Ordinal Variable

Nominal Variable

- ✓ The variables which are having no-order those are called as Nominal Variable.
- ✓ Examples:

Pet variables values : cat, dog

o Color variables values : blue, green, red

Ordinal Variable

- ✓ The variables which are having an order those are called as ordinal Variable.
- ✓ Examples:

Score variables values : low, medium, high

Kind note

- ✓ In real time mostly we do have nominal variable scenarios.
- ✓ So, please understand the below scenarios

2. Encoding Categorical Data

- ✓ There are 3 ways to convert categorical variables to numerical values.
 - o Ordinal encoding
 - o One hot encoding
 - o Dummy variable encoding

2.1. Ordinal encoding

✓ In ordinal encoding every nominal value is assigned an integer value.

✓ Example

blue : 0green : 1red : 2

```
Ordinal encoding
Program
            demo1.py
Name
            from numpy import asarray
            from sklearn.preprocessing import OrdinalEncoder
            data = asarray([['blue'], ['green'], ['red']])
            encoder = OrdinalEncoder()
            result = encoder.fit_transform(data)
            print(data)
            print(result)
Output
             [['blue']
             ['green']
             ['red']]
             [[0.]]
             [1.]
             [2.]]
```

Problem with ordinal encoding

- ✓ If we have applied ordinal encoding on nominal values then it will be an order and having relationship but actually there is no relationship in between the nominal variables.
- ✓ Machine learning algorithm understands like there is an order in between nominal values.
- ✓ So it causes a problem like machine learning algorithm will produce poor performance.
- ✓ We can solve this problem by using one hot encoding.

2.2. One hot encoding

- ✓ For nominal values integer encoding may not be enough and even it is misleading the model.
- ✓ Here one hot encoding helps, it is technique where each of the nominal variables will be represented with binary values.

✓ Example

blue: 1 0 0green: 0 1 0red: 0 0 1

```
One hot encoding
Program
           demo2.py
Name
           from numpy import asarray
           from sklearn.preprocessing import OneHotEncoder
           a = [['apple'], ['peer'], ['apple'], ['peer'], ['apple']]
           data = asarray(a)
           encoder = OneHotEncoder(sparse = False)
           onehot = encoder.fit_transform(data)
           print(data)
           print()
           print(onehot)
output
              'apple']
             ['peer']
             ['apple']
             ['peer']
             ['apple']]
           [[1. 0.]
             [0. 1.]
             [1. 0.]
             [0. 1.]
             [1. 0.]]
```

```
Program
            One hot encoding
            demo3.py
Name
            from numpy import asarray
            from sklearn.preprocessing import OneHotEncoder
            data = asarray([['blue'], ['green'], ['red']])
            encoder = OneHotEncoder(sparse = False)
            onehot = encoder.fit_transform(data)
            print(data)
            print(onehot)
Output
             [['blue']
             ['green']
             ['red']]
             [[1. 0. 0.]
             [0. 1. 0.]
             [0. 0. 1.]]
```

2.3. Dummy variable encoding

- ✓ The one hot encoding creates one binary variable for each category.
- ✓ The problem is that this representation includes redundancy.
- ✓ For example, if we know that [1, 0, 0] represents for first value and [0, 1, 0] represents for second value then we don't need another binary variable to represent third value, instead we could use 0 values alone like [0, 0].

One hot encoding example

✓ Example

blue: 1 0 0green: 0 1 0red: 0 0 1

Dummy variable encoding example

✓ Example

blue : 0 0green : 1 0red : 0 1

Conclusion

✓ If we drop first column from the result of one hot encoding then we will get dummy variable encoding

```
Program
            Dummy variable encoding
            demo4.py
Name
            from numpy import asarray
            from sklearn.preprocessing import OneHotEncoder
            data = asarray([['blue'], ['green'], ['red']])
            encoder = OneHotEncoder(drop = 'first', sparse = False)
            onehot = encoder.fit_transform(data)
            print(data)
            print(onehot)
Output
             [['blue']
             ['green']
             ['red']]
             [[0. 0.]]
             [1. 0.]
             [0. 1.]]
```

2.4. Imputing Missing Class Values

- ✓ Categorical feature may have missing values
- ✓ These we can impute with most frequent strategy

```
Program
            Imputing categorical values with most frequent strategy
Name
            demo5.py
            import pandas as pd
            import numpy as np
            from sklearn.impute import SimpleImputer
            students = [
                          [85, 'M', 'verygood'],
                          [95, 'F', 'excellent'],
                          [75, np.NaN, 'good'],
                          [np.NaN, 'M', 'average'],
                          [70, 'M', 'good'],
                          [np.NaN, np.NaN, 'verygood'],
                          [92, 'F', 'verygood'],
                          [98, 'M', 'excellent']
            ]
            cols = ['marks', 'gender', 'result']
            df = pd.DataFrame(students, columns = cols)
            print(df)
            imputer = SimpleImputer(missing_values = np.NaN,
            strategy='most_frequent')
            result = df['gender'].values.reshape(-1, 1)
            df.gender = imputer.fit_transform(result)
            print()
            print(df)
```

output

	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
2	75.0	NaN	good
3	NaN	М	average
1 2 3 4 5	70.0	М	good
5	NaN	NaN	verygood
6	92.0	F	verygood
7	98.0	М	excellent
	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
2	75.0	М	good
3	NaN	М	average
4	70.0	М	good
2 3 4 5 6	NaN	М	verygood
6	92.0	F	verygood
7	98.0	М	excellent

Data Science – Feature Engineering

2. Feature Engineering

Contents

1	. Handling Categorical Data	2
	Encoding Categorical Data	
	2.1. Ordinal encoding	
	2.2. One hot encoding	6
	2.3. Dummy variable encoding	9
	2.4. Imputing Missing Class Values	11

2. Feature Engineering

1. Handling Categorical Data

Categorical data

✓ Categorical data are variables that contain label values rather than numeric values.

Types of categorical data

- ✓ Nominal Variable
- ✓ Ordinal Variable

Nominal Variable

- ✓ The variables which are having no-order those are called as Nominal Variable.
- ✓ Examples:

Pet variables values : cat, dog

o Color variables values : blue, green, red

Ordinal Variable

- ✓ The variables which are having an order those are called as ordinal Variable.
- ✓ Examples:

Score variables values : low, medium, high

Kind note

- ✓ In real time mostly we do have nominal variable scenarios.
- ✓ So, please understand the below scenarios

Data Science – Feature Engineering

2. Encoding Categorical Data

- ✓ There are 3 ways to convert categorical variables to numerical values.
 - o Ordinal encoding
 - o One hot encoding
 - o Dummy variable encoding

2.1. Ordinal encoding

✓ In ordinal encoding every nominal value is assigned an integer value.

✓ Example

blue : 0green : 1red : 2

```
Ordinal encoding
Program
            demo1.py
Name
            from numpy import asarray
            from sklearn.preprocessing import OrdinalEncoder
            data = asarray([['blue'], ['green'], ['red']])
            encoder = OrdinalEncoder()
            result = encoder.fit_transform(data)
            print(data)
            print(result)
Output
             [['blue']
             ['green']
             ['red']]
             [[0.]]
             [1.]
             [2.]]
```

Data Science – Feature Engineering

Problem with ordinal encoding

- ✓ If we have applied ordinal encoding on nominal values then it will be an order and having relationship but actually there is no relationship in between the nominal variables.
- ✓ Machine learning algorithm understands like there is an order in between nominal values.
- ✓ So it causes a problem like machine learning algorithm will produce poor performance.
- ✓ We can solve this problem by using one hot encoding.

2.2. One hot encoding

- ✓ For nominal values integer encoding may not be enough and even it is misleading the model.
- ✓ Here one hot encoding helps, it is technique where each of the nominal variables will be represented with binary values.

✓ Example

blue: 1 0 0green: 0 1 0red: 0 0 1

```
One hot encoding
Program
           demo2.py
Name
           from numpy import asarray
           from sklearn.preprocessing import OneHotEncoder
           a = [['apple'], ['peer'], ['apple'], ['peer'], ['apple']]
           data = asarray(a)
           encoder = OneHotEncoder(sparse = False)
           onehot = encoder.fit_transform(data)
           print(data)
           print()
           print(onehot)
output
              'apple']
             ['peer']
             ['apple']
             ['peer']
             ['apple']]
           [[1. 0.]
             [0. 1.]
             [1. 0.]
             [0. 1.]
             [1. 0.]]
```

```
Program
            One hot encoding
            demo3.py
Name
            from numpy import asarray
            from sklearn.preprocessing import OneHotEncoder
            data = asarray([['blue'], ['green'], ['red']])
            encoder = OneHotEncoder(sparse = False)
            onehot = encoder.fit_transform(data)
            print(data)
            print(onehot)
Output
             [['blue']
             ['green']
             ['red']]
             [[1. 0. 0.]
             [0. 1. 0.]
             [0. 0. 1.]]
```

2.3. Dummy variable encoding

- ✓ The one hot encoding creates one binary variable for each category.
- ✓ The problem is that this representation includes redundancy.
- ✓ For example, if we know that [1, 0, 0] represents for first value and [0, 1, 0] represents for second value then we don't need another binary variable to represent third value, instead we could use 0 values alone like [0, 0].

One hot encoding example

✓ Example

blue: 1 0 0green: 0 1 0red: 0 0 1

Dummy variable encoding example

✓ Example

blue : 0 0green : 1 0red : 0 1

Conclusion

✓ If we drop first column from the result of one hot encoding then we will get dummy variable encoding

```
Program
            Dummy variable encoding
            demo4.py
Name
            from numpy import asarray
            from sklearn.preprocessing import OneHotEncoder
            data = asarray([['blue'], ['green'], ['red']])
            encoder = OneHotEncoder(drop = 'first', sparse = False)
            onehot = encoder.fit_transform(data)
            print(data)
            print(onehot)
Output
             [['blue']
             ['green']
             ['red']]
             [[0. 0.]]
             [1. 0.]
             [0. 1.]]
```

2.4. Imputing Missing Class Values

- ✓ Categorical feature may have missing values
- ✓ These we can impute with most frequent strategy

```
Program
            Imputing categorical values with most frequent strategy
Name
            demo5.py
            import pandas as pd
            import numpy as np
            from sklearn.impute import SimpleImputer
            students = [
                          [85, 'M', 'verygood'],
                          [95, 'F', 'excellent'],
                          [75, np.NaN, 'good'],
                          [np.NaN, 'M', 'average'],
                          [70, 'M', 'good'],
                          [np.NaN, np.NaN, 'verygood'],
                          [92, 'F', 'verygood'],
                          [98, 'M', 'excellent']
            ]
            cols = ['marks', 'gender', 'result']
            df = pd.DataFrame(students, columns = cols)
            print(df)
            imputer = SimpleImputer(missing_values = np.NaN,
            strategy='most_frequent')
            result = df['gender'].values.reshape(-1, 1)
            df.gender = imputer.fit_transform(result)
            print()
            print(df)
```

output

	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
2	75.0	NaN	good
3	NaN	М	average
1 2 3 4 5	70.0	М	good
5	NaN	NaN	verygood
6	92.0	F	verygood
7	98.0	М	excellent
	marks	gender	result
0	85.0	М	verygood
1	95.0	F	excellent
2	75.0	М	good
3	NaN	М	average
4	70.0	М	good
2 3 4 5 6	NaN	М	verygood
6	92.0	F	verygood
7	98.0	М	excellent