Syntaks og semantik

Lektion 8

13 marts 2007

Automater med stacke Grammatikker Chomsky-hierarkiet

Perspektivering

Definition: En automat med k stacke, for $k \in \mathbb{N}_0$, er en 6-tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- Γ : stack-alfabetet
- \bullet $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}^{\mathbf{k}} \to \mathcal{P}(Q \times \Gamma_{\varepsilon}^{\mathbf{k}})$: transitionsfunktionen
- $oldsymbol{0} q_0 \in Q$: starttilstanden
- \bullet $F \subseteq Q$: mængden af accepttilstande
 - k = 0 : NFA
 - k = 1 : PDA
 - $k \ge 2$: Turing-maskine!
 - to stacke er nok!

3/15

Automater med stacke Grammatikker Chomsky-hierarkiet

Definition: En grammatik er en 4-tupel $G = (V, \Sigma, R, S)$, hvor delene er

- V : en endelig mængde af variable
- Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$
- 3 $R: (V \cup \Sigma)^* V (V \cup \Sigma)^* \rightarrow \mathcal{P}((V \cup \Sigma)^*)$: produktioner
- $S \in V$: startvariablen
 - alle produktioner på formen $A \rightarrow w$, for $A \in V$ og $w \in (V \cup \Sigma)^*$: kontekstfri grammatik
 - alle produktioner på formen $A \to \varepsilon$, $A \to a$ eller $A \to aB$, for $A, B \in V$ og $a \in \Sigma$: regulær grammatik

Eksempel på en ikke-kontekstfri grammatik:

$$S o aBSc \mid abc \qquad Ba o aB \qquad Bb o bb$$

Genererer sproget $\{a^nb^nc^n \mid n \in \mathbb{N}_+\}$

	Type 3	Type 2	Type 0
	regulære sprog	kontekstfrie sprog	rekursivt enumerable sprog
	regulære grammatikker endelige automater	kontekstfrie grammatikker pushdown- automater	generelle grammatikker Turing-maskiner
determ inisme lukket under:	ingen indskrænkning	indskrænkning	ingen indskrænkning
\cup , \circ , *	ja	ja	ja
\cap	ja	nej	ja
-	ja	nej	nej

5/15

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Ikke-kontekstfrie sprog

Sætning 2.34: For ethvert kontekstfrit sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i fem stykker, s = uvxyz, med

- $|\mathbf{v}y| > 0$ og $|\mathbf{v}xy| \leq p$,
- og således at ordene $uv^i x y^i z \in A$ for alle $i \in \mathbb{N}_0$.

Anvendelse: Vis a sproget *X ikke er kontekstfrit*:

Antag at X er kontekstfrit. Så må det opfylde pumpelemmaet. Lad p være pumpelængden.

Find en streng s som

- har $|s| \ge p$, dvs. bør kunne pumpes,
- men som ikke kan pumpes, ligegyldigt hvordan man opsplitter s = uvxyz.

Modstrid!

7/15

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- 1 Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A \text{ med } |s| \ge p$. |V| er antallet af variable i G.

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- 1 Lad b være længden af den længste streng på højresiden af produktionerne i $G: b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A$ med $|s| \ge p$.
- 3 Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V|+1. Lad h være højden af τ . Hvert punkt i τ har højst b sønner, så τ har højst b^h blade. Tegnene i s står i bladene, så s har længde højst s Men $|s|>b^{|V|}$, så s har længde højst s

9/15

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- 1 Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A$ med $|s| \ge p$.
- 3 Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V| + 1.
- 4 Lad ℓ være en sti i τ af længde mindst |V| + 2.
- **1** indeholder mindst |V| + 1 variable (og én terminal), så blandt de *sidste* |V| + 1 variable i ℓ er der en der forekommer *to gange*. Kald den R.
- **1** Lad x være den delstreng af s der deriveres af den sidste forekomst af R. Strengen der deriveres af den næstsidste forekomst af R kan da skrives vxy, og s = uvxyz.

```
Dvs. R \stackrel{*}{\Rightarrow} x, R \stackrel{*}{\Rightarrow} vRy \stackrel{*}{\Rightarrow} vxy, og S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uvRyz \stackrel{*}{\Rightarrow} uvxyz.
```

- **10** Lad x være den delstreng af s der deriveres af den sidste forekomst af R. Strengen der deriveres af den næstsidste forekomst af R kan da skrives vxy, og s = uvxyz.
- O Den næstsidste forekomst af R er blandt de sidste |V|+1 variable i ℓ , så deltræet med dette R som rod har højde højst |V|+1, så $|vxy| \le b^{|V|+1} = p$. Fejl i bogen!
- 8 Ved at erstatte deltræet med det *næstsidste R* som rod, med deltræet med det *sidste R* som rod fås derivationen $S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uxz$. Dvs.
 - $uxz = uv^0xy^0z \in A$
 - |vy| > 0, for ellers ville s = uxz, og det parsetræ for uxz vi lige har lavet er mindre end det vi startede med. Modstrid til (3).
- Ved at erstatte deltræet med det sidste R som rod, med deltræet med det næstsidste R som rod fås derivationen S

 ⇒ uRz ⇒ uvRyz ⇒ uv²Ry²z ⇒ uv²xy²z.
 Ved at gentage dette fås derivationer til uv¹xy¹z for alle i ∈ N.

11/15

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Sætning: $\sqrt{2}$ er et irrationelt tal.

Bevis:

- Antag at $\sqrt{2}$ er et rationelt tal.
- ② Så må det kunne skrives som en brøk: $\sqrt{2} = \frac{a}{b}$, for to positive heltal a og b.
- Lad brøken være reduceret, dvs. specielt er ikke både a og b lige tal.
- Hvis a er ulige, er a² også ulige, modstrid til (4).
- 1 Dvs. a må være et lige tal, og med (3) må b så være ulige.
- Skriv a = 2c. Så er $2b^2 = a^2 = 4c^2$, dvs. $b^2 = 2c^2$.
- Men b er ulige, så det er b² også, modstrid til (7).
- ② Antagelsen om at $\sqrt{2}$ var et rationelt tal ledte frem til et modstrid, så den må være forkert. Konklusion: $\sqrt{2}$ er et irrationelt tal.

Sætning: Der findes uendeligt mange primtal.

Bevis:

- Antag at der kun findes endeligt mange primtal. Kald dem p_1, p_2, \dots, p_k .
- 2 Lad $N = p_1 p_2 \dots p_k + 1$.
- N er større end ethvert af primtallene, så det kan ikke være et primtal selv.
- Ovs. der er et primtal der går op i N. Kald det pi.
- **1** Men $N-1=p_1p_2...p_k$, så p_i går også op i N-1.
- **1** Derfor går p_i op i N (N 1) = 1, modstrid.
- Antagelsen om at der kun findes endeligt mange primtal ledte frem til et modstrid, så den må være forkert. Konklusion: Der findes uendeligt mange primtal. Euklid havde ret!

13/15

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Eksempel 2.36: Sproget $B = \{a^n b^n c^n \mid n \in \mathbb{N}_0\}$ er ikke kontekstfrit: Bevis:

- Antag at B er kontekstfrit, og lad p være dets pumpelængde.
- 2 Lad $s = a^p b^p c^p$. (Et smart valg!) Vi har $|s| \ge p$.
- Lad s = uvxyz være den opsplitning af s som pumpelemmaet garanterer. (Vi ved den findes. Vi ved ikke hvordan den ser ud!)
- 4 Hvis v og y hver kun indeholder én slags af symbolerne a, b og c, er der et af symbolerne der ikke er med i v eller y. Strengen uv²xy²z indeholder så for få symboler af denne slags og er derfor ikke indeholdt i B, modstrid!
- 5 Hvis v eller y indeholder mere end én slags symboler, optræder de i uv²xy²z i forkert rækkefølge ⇒ uv²xy²z ∉ B, modstrid!
- Ligegyldigt hvad får vi en modstrid. ⇒ antagelsen forkert
 ⇒ B er ikke kontekstfrit.

Pumpelemmaet Indirekte beviser Ikke-kontekstfrie sprog

Eksempel 2.38: Sproget $D = \{ww \mid w \in \{0, 1\}^*\}$ er ikke kontekstfrit: Bevis:

- Antag at D er kontekstfrit, og lad p være dets pumpelængde.
- 2 Lad $s = 0^p 1^p 0^p 1^p$. Vi har $|s| \ge p$. Lad s = uvxyz være den opsplitning af s som pumpelemmaet garanterer.
- 3 Hvis strengen vxy er en del af det første 0^p1^p i s, starter anden halvdel af uv^2xy^2z med et 1. Men første halvdel starter stadig med 0, så $uv^2xy^2z \notin D$, modstrid!
- 4 Hvis strengen vxy er en del af det andet 0^p1^p i s, slutter første halvdel af uv^2xy^2z med et 0, men anden halvdel slutter med 1, så $uv^2xy^2z \notin D$, modstrid!
- Så strengen vxy må indeholde midten af s, dvs. vxy er en del af det midterste 1^p0^p . Men |vy|>0, så |x|<|vxy|, dvs. $uv^0xy^0z=0^p1^i0^j1^p$ med i< p eller j< p, så $uv^0xy^0z\notin D$, modstrid!

15/15