NoProp: Трениране на невронни мрежи без Back-propagation или Forward-propagation

Даниел Халачев, 4МІЗ400603, ИИОЗ

Цветелина Чакърова, 8МІЗ400591, ИИОЗ

Николета Бейска, 2МІЗ400639, ИИОЗ

Ограничения на съвременните подходи за машинно самообучение

- Последователна зависимост forward-propagation трябва да завърши преди back-propagation може да се изпълни
- Високи изисквания за памет за изчисляване на градиенти
- Трудност при паралелизация
- Catastrophic forgetting последователният характер води до загуба на контекст

Въпреки десетилетия изследвания за решаване на тези проблеми, до момента нито един метод не надминава градиентната оптимизация по точност и стабилност.

Подходът NoProp

- Нов подход за трениране на невронни мрежи, вдъхновен от дифузионни модели
- Всеки слой се обучава независимо без forward-propagation и back-propagation през целия модел.
- Намалява изискванията за памет
- Позволява паралелна обработка
- Ускорява обучението, като същевременно запазва или подобрява точността на класификация в сравнение с традиционните методи
- Три варианта: NoProp-DT (дискретно време), NoProp-CT (непрекъснато време) и NoProp-FM (flow matching)

Цели на проекта

- Имплементация на NoProp-DT и NoProp-CT
- Тестване върху MNIST, CIFAR-10, CIFAR-100
- Тестване върху набор от данни с по-висока резолюция BLOODMNIST (128х128)
- Сравнение с резултатите от оригиналната статия

Архитектура на NoProp: Фаза на извод

- Входните данни се обработват в серия от стъпки трансформации на данните, чрез прекарването им през **дифузионени блокове.**
- Вход на мрежата: начално изображение **х** и **гаусов шум z**₀
- На всяка стъпка от този процес:
 - Създава се **латентна променлива z_t**, получена чрез **дифузионен блок u_t**
 - Този блок приема:
 - предишната латентна променлива \mathbf{z}_{t-1}
 - входното изображение х
 - След ${\bf t}$ на брой трансформации получаваме последователност от междинни представяния: ${\bf z_1},\,{\bf z_2},\,...,\,{\bf z_t}$
- Последната латентна променлива **z**_t се изпраща към **линеен слой**, последван от **softmax функция**, за да се направи **класификация**

Архитектура на NoProp: Фаза на извод

Архитектура на фазата на извод. z_1, z_2, \ldots, z_T са последователните етапи на трансформация на първоначалния шум z_0 . $u_1, u_2, \ldots u_T$ са дифузионните блокове, които се обучават да премахват различни нива на шум. Линейният слой и softmax активиращата функция не са изобразени експлицитно.

Архитектура на NoProp: Фаза на обучение

- Всеки блок $\mathbf{u}_{\mathbf{t}}$ се разглежда като единична невронна мрежа, която получава на входа си изображението \mathbf{x} , и се тренира самостоятелно от останалителите блокове
 - Позволява по-лесна паралелизация
 - Намалява изискванията за памет
- Линейният слой, използван за класификация, се тренира едновременно с всички блокове
 - Осигурява се съгласуваност на научените характеристики
 - Предотвратява се срив в ембедингите на класовете

Архитектура на NoProp: Структура на дифузионния блок

- Общи структурни сегменти за NoProp-DT и NoProp-CT:
 - Кодиране на изображението
 - Конволюционни слоеве
 - Напълно свързан слой
 - Кодиране на предходния етикет
 - Конкатениращ сегмент
- В допълнение, блокът на NoProp-CT включва и сегмент за кодиране на времевите последователности.

Архитектура на NoProp: NoProp-DT

• Изображението се обработва в краен брой стъпки Т, които са параметър на модела.

Архитектура на NoProp: NoProp-CT

- Фазата на трениране е идентична с тази на NoProp-DT със следната разлика:
 - На входа, освен изображението х, се подава и времеви параметър t кодира времевата зависимост чрез positional embeddings.
 - Всеки блок u_t приема и времевия параметър t.
 - Всяка поетапна трансформация се адаптира според етапа на дифузия моделът "знае" колко е напреднал процесът.

Псевдокод на тренирането: NoProp-DT

Algorithm 1 NoProp-DT (Training)

```
Require: T diffusion steps, dataset \{(x_i,y_i)\}_{i=1}^N, batch size B, hyperparameter \eta, embedding matrix W_{\mathrm{Embed}}, parameters \{\theta_t\}_{t=1}^T, \theta_{\mathrm{out}}, noise schedule \{\alpha_t\}_{t=0}^T for t=1 to T do for each mini-batch \mathcal{B} \subset \{(x_i,y_i)\}_{i=1}^N of size B do for each (x_i,y_i) \in \mathcal{B} do Obtain label embedding u_{y_i} = \{W_{\mathrm{Embed}}\}_{y_i}. Sample z_{t,i} \sim \mathcal{N}_d(z_{t,i}|\sqrt{\bar{\alpha}_t}u_{y,i},1-\bar{\alpha}_t). end for Compute the loss function:
```

$$\mathcal{L}_{t} = \frac{1}{B} \sum_{i \in \mathcal{B}} \left[-\log \hat{p}_{\theta_{\text{out}}}(y_{i}|z_{T,i}) \right]$$

$$+ \frac{1}{B} \sum_{i \in \mathcal{B}} D_{\text{KL}}(q(z_{0}|y_{i}) || p(z_{0}))$$

$$+ \frac{T}{2B} \eta \sum_{i \in \mathcal{B}} \left(\text{SNR}(t) - \text{SNR}(t-1) \right) \left\| \hat{u}_{\theta_{t}}(z_{t-1,i}, x_{i}) - u_{y_{i}} \right\|^{2}.$$

Update θ_t , θ_{out} , and W_{Embed} using gradient-based optimization. end for

end for

Псевдокод на тренирането: NoProp-CT

Algorithm 2 NoProp-CT (Training)

```
Require: dataset \{(x_i, y_i)\}_{i=1}^N, batch size B, hyperparameter \eta, embedding matrix W_{\text{Embed}}, parameters \theta, \theta_{\text{out}}, noise
   schedule \bar{\alpha}_t = \sigma(-\gamma_{\psi}(t))
   for each mini-batch \mathcal{B} \subset \{(x_i, y_i)\}_{i=1}^N with size B do
        for each (x_i, y_i) \in \mathcal{B} do
              Obtain label embedding u_{y_i} = \{W_{\text{Embed}}\}_{y_i}.
```

Sample $t_i \sim \mathcal{U}(0,1)$. Sample $z_{t_i,i} \sim \mathcal{N}_d(z_{t_i,i}|\sqrt{\bar{\alpha}_{t_i}}u_{u,i}, 1-\bar{\alpha}_{t_i}).$

end for

Compute the loss function:

$$\mathcal{L} = \frac{1}{B} \sum_{i \in \mathcal{B}} \left[-\log \hat{p}_{\theta_{\text{out}}}(y_i | z_{1,i}) \right]$$

$$+ \frac{1}{B} \sum_{i \in \mathcal{B}} D_{\text{KL}}(q(z_0 | y_i) \| p(z_0))$$

$$+ \frac{1}{2B} \eta \sum_{i \in \mathcal{B}} \text{SNR}'(t_i) \| \hat{u}_{\theta}(z_{t_i,i}, x_i, t_i) - u_{y_i} \|^2.$$

Update θ , θ_{out} , ψ , and W_{Embed} using gradient-based optimization.

end for

Структура на реализацията

```
NoProp
                                         embeddings
   config_data
                                             ct_label_encoder.py
       components
                                            dt_label_encoder.py
           backbone.py
                                            - label_encoder.py
         block.py
                                            sinusoidal_embedding.py
          concatenator.py
                                           — time_encoder.py
         — ct_block.py
                                         models
          ct_concatenator.py
                                            base_model.py
          ct_noise_scheduler.py
                                             model_type.py
         — dt_block.py
                                             model_wrapper.py
         — dt_concatenator.py
                                            noprop_ct.py
         — dt_noise_scheduler.py
                                            - noprop_dt.py
         - noise_scheduler.py
                                         scripts
         — resnet_type.py
                                         L— train_test.py
         — time_scheduler.py
                                         utils
       data
           cifar10_dataset.py
                                             device.py
           cifar100_dataset.py
                                             model_config.py
           dataset_manager.py
                                            - test_utils.py
           medmnist_dataset.py
                                            - train_config.py
           mnist_dataset.py
                                            train_utils.py
```

Използвани стойности на хиперпараметрите

Набор	Вариант	Бач	Епохи	Опт.	lr	$\mathbf{w}\mathbf{d}$	Стъпки	η
MNIST	NoProp-DT	128	100	AdamW	0.001	0.001	10	0.1
CIFAR-10	NoProp-DT	128	150	AdamW	0.001	0.001	10	0.1
CIFAR-100	NoProp-DT	128	150	${\rm AdamW}$	0.001	0.001	10	0.1
BLOODMNIST	NoProp-DT	128	100	${\rm AdamW}$	0.001	0.001	1000	0.1
MNIST	NoProp-CT	128	100	Adam	0.001	0.001	1000	1
CIFAR-10	NoProp-CT	128	500	Adam	0.001	0.001	1000	1
CIFAR-100	NoProp-CT	128	1000	Adam	0.001	0.001	1000	1
BLOODMNIST	NoProp-CT	128	1000	Adam	0.001	0.001	1000	1

Таблица 2: Стойности на хиперпараметри за различни множества от данни и алгоритми. lr обозначава learning_rate, wd - weight_decay, а стъпките се отнасят до фазата на извод.

Експерименти - NoProp-DT и MNIST

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
graceful-cloud-20	0.0875	99.42	78	1.92
efficient-microwave-19	0.1151	99.53	54	1.84
vivid-cosmos-18	0.1743	99.37	57	0.86

Експерименти - NoProp-DT и CIFAR-10

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
helpful-gorge-6	1.3370	80.54	150	0.69
curious-waterfall-5	1.4325	79.62	150	1.84
fancy-terrain-1	1.2189	80.75	150	0.91

Експерименти - NoProp-DT и CIFAR-100

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
royal-voice-9	10.8631	45.27	150	0.71
dashing-monkey-7	11.0258	44.49	150	0.98
dazzling-paper-4	10.2014	45.75	150	0.98

Експерименти - NoProp-DT и BLOODMNIST

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
deft-surf-46	0.2152	98.25	52	4.50
gentle-moon-43	0.2713	98.42	47	4.71
dazzling-star-39	0.2163	97.98	54	4.71

Експерименти - NoProp-CT и MNIST

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
clean-water-50	1.4221	98.63	58	2.65
crimson-bush-46	1.4950	99	44	2.45
lemon-sky-44	1.4934	98.57	57	1.99

Експерименти - NoProp-CT и CIFAR-10

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
exalted-water-7	1.8715	61.79	73	3.17
usual-elevator-6	1.8880	59.39	61	2.75
expert-silence-3	1.9260	54.62	72	2.50

Експерименти - NoProp-CT и CIFAR-100

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
wobbly-sponge-29	4.6167	1	29	0.63
deep-donkey-26	4.6106	1	13	2.64
proud-bust-24	4.6209	1	30	1.91

Експерименти - NoProp-CT и BLOODMNIST

Име на изпълнение	Загуба	Тестова точност	Брой епохи	GPU памет (GB)
worthy-oath-25	1.5700	75.50	85	4.43
northern-moon-24	1.8103	49.08	81	4.43
deft-water-23	1.6466	67.14	83	4.43

Сравнение с оригиналните резултати

		NoPr	op-CT	NoP	rop-DT
Dataset	Split	Paper	Implementation	Paper	Implementation
MNIST	Train Test	97.18 ± 1.02 97.17 ± 0.94	$egin{array}{c} 98.73 \pm 0.82 \ 98.73 \pm 0.82 \end{array}$	$99.97 \pm 0.0 \ 99.54 \pm 0.04$	99.44 ± 0.08 99.44 ± 0.08
CIFAR-10	Train Test	$86.2 \pm 7.34 \ 66.54 \pm 3.63$	58.6 ± 3.65 58.6 ± 3.65	$egin{array}{c} 97.23 \pm 0.11 \ 80.54 \pm 0.2 \end{array}$	80.30 ± 0.6 80.30 ± 0.6
CIFAR-100	Train Test	40.88 ± 10.72 21.31 ± 4.17	$0.23\dagger \ {f 0.23}\dagger$	$egin{array}{c} 90.7 \pm 0.14 \ 46.06 \pm 0.25 \end{array}$	45.17 ± 0.64 45.17 ± 0.64
MEDMNIST	Train Test	-	$69.92 \pm 4.71 \\ 63.90 \pm 13.50$	-	$egin{array}{c} 98.39 \pm 0.24 \ 98.22 \pm 0.22 \end{array}$

[†] Тренирането на модела беше нестабилно

Сравнение на използваната памет

Вариант	MNIST	CIFAR-10	CIFAR-100
NoProp-DT	1.54 GB	1.15 GB	0.89 GB
NoProp-CT	2.36 GB	2.81 GB	1.73 GB

Сравнение на употребата на GPU RAM памет на имплементацията за различни методи и набори от данни.

Заключение: Постигнати резултати

- NoProp-DT постига висока точност на класификация върху наборите от данни MNIST, CIFAR-10, CIFAR-100 и BLOODMNIST
 - В някои случаи надхвърля или се доближава до оригиналните резултати от статията
- NoProp-CT показва стабилност върху MNIST и BLOODMNIST
- NoProp-CT показва по-ниска производителност върху по-сложни набори от данни като CIFAR-10 и CIFAR-100

Заключение: Изводи

• Предимства:

- Възможността за паралелна обработка
- Намалени изисквания за памет
- Потенциал за ускоряване на обучението
- Приложимост към изображения с по-висока резолюция

• Недостатъци:

- Значителна сложност на имплементацията в сравнение с back-propagation
- Повишена вероятност от бъгове и логически грешки
- Относителна нестабилност на тренирането, която не се наблюдава при back-propagation
- Голяма дисперсия и немонотонност в метриките на резултатите от тренирането