第1学年 数学 A 復習課題 (表)

確認事項1

線分 AB を m:n に内部する点 P

A I

線分 AB を m:n に外分する点 P (m>n の場合)

ĀB

線分 AB を m:n に外分する点 P(m < n) の場合)

Ā

確認事項2

が成立

が成立

В

1 線分 AB を 3:1 に内分する点 P, 3:1 に外分する点 Q, 1:3 に外分する点 R をそれぞれ下の図に示せ.

2 AB= 12, BC= 8, CA= 10 である三角形 ABC において, ∠ B の二等分線と辺 AC の交点を D とする. CD の長さを求めよ.

3 AB= 5, BC= 7, CA= 3 である三角形 ABC において, ∠ C の二等分線と辺 AB の交点を D とする. AD の長さを求めよ.

4 AB= 5, BC= 4, CA= 6 である三角形 ABC において, ∠ C の外角の二等分線と辺 AB の延長との交点を D とする. AD の長さを求めよ.

5 AB= 9, BC= 8, CA= 3 である三角形 ABC において, ∠ A の外角の二等分線と辺 BC の延長との交点を D とする. CD の長さを求めよ.

1年_____組____番

/ 確認事項 ————		
三角形の3辺の垂直二等分	, -	·
この点のことを	という.(←	円の中心)
三角形の3つの角の二等分	分線は,	
この点のことを	という.(←	円の中心)

1 以下の問いに答えよ.

三角形の3本の中線は,____

この点のことを_____という.

(1) O を △ABC の外心とする. ∠OAB= 30°, ∠OBC= 40° のとき, ∠OAC の値.

(2) O を \triangle ABC の内心とする. \angle OAB= 25°, \angle OCB= 30° のとき, \angle ABC の値.

(3) O を \triangle ABC の重心とする. CD= 9 のとき, OD の値.

- **2** 以下の問いに答えよ.
 - (1) O を \triangle ABC の外心とする. \angle OAB= 36°, \angle OAC= 30° のとき, \angle OBC の値.

(2) O を \triangle ABC の外心とする. \angle BAC= 120°, \angle ABC= 35° のとき、 \angle OCB の値.

(3) I を \triangle ABC の内心とする. \angle IAB= 15°, \angle ICB= 46° の とき, \angle IBC の値.

(4) I を \triangle ABC の内心とする. \angle ABC= 50° のとき, \angle AIC の値.

(5) G を \triangle ABC の重心とする. AG の延長と BC の交点を D とおく. CD= 3 のとき, DB の値.

(6) G を △ABC の重心とする. △ABC: △BGC の値.

1年_______番

丘夕

- 確認事項 -

チェバの定理

メネラウスの定理

- **1** 以下の問いに答えよ.
 - (1) AQ: QC= 1: 3, AP: PB= 1: 1 のとき, CR: RBの 値を求めよ.

(2) AR : RC= 3 : 2, CQ : QB= 2 : 1 のとき, AP : BP の 値を求めよ.

- **2** 以下の問いに答えよ.
 - (1) \triangle ABC において、辺 AC 上に AQ: QC= 2: 1 なる点 Q を、辺 AB 上に AR: RB= 1: 3 なる点 R をおく、BQ と CR の交点を O とおき、AO と BC の交点を P とおく、BP: PC の値を求めよ、

(2) △ABC において、辺 AC 上に AQ: QC=3:1 なる点 Qを、辺 AB 上に AR: RB=1:4 なる点 Rをおく、QRの延長と BCの延長の交点を Pとおく、BP: PCの値を求めよ。

(3) △ABC において, 辺 AB 上に AR: RC=1:3 なる点 R を, 辺 BC 上に BP: PC=3:4 なる点 P をおく. PR の 延長と AC の延長の交点を Q とおく. PR: RQ の値を 求めよ.

1年______番

第1学年 数学 A 復習課題(表)

R4. 10

一確認事項 円周角の定理

- 確認事項 -

四角形が円に内接するとき,以下が成立.

1)

2)

- **1** 以下の図において, 4 点 A, B, C, D は同一円周上にあるか判定せよ.
 - (1) $\angle ABE = 40^{\circ}$, $\angle AEB = 110^{\circ}$, $\angle CDE = 30^{\circ}$

(2) $\angle BEC = 73^{\circ}$, $\angle CAE = 74^{\circ}$, $\angle DBE = 32^{\circ}$

(3) A の内角 82°, B の内角 71°, D の外角 88°

2 四角形 ABCD は、円に内接するとする。以下の問いに答えよ。(1) AD=DC、∠DBA= 40°、∠BDC= 30° のとき、∠BCD の値。

(2) 円の中心を O とする. \angle OBC= 64°, \angle CAD= 45° のとき, \angle BCD の値.

3 正三角形 ABC で, 辺 AB 上に (A, B とは異なる) 点 D をとる. AC 上に BD=AE を満たす点 E をとる. BE と CD の交点を F とするとき, 4 点 A, D, F, E が 1 つの円周上に存在することを示せ.

1年______番

確認事項

以下の図で,等しい角度を図中で表せ.

1 以下の問いに答えよ.

(1) $\angle ACB = 38^{\circ}$ のときの $\angle BAE$ の値.

(2) O を円の中心とする. ∠OAC= 24°, ∠ACB= 31° のと きの ∠OBC の値.

2 以下の問いに答えよ.

(1) AB=BC とする. \angle EAB= 40° のときの \angle ADC の値.

(2) 円と直線 EF は、点 A で接しているとする. \angle AEC= 33°、 \angle ECB= 71°、 \angle ADC= 68° のとき、 \angle EAB の値.

1年_________番

- 確認事項 -

方べきの定理 ver1

- 確認事項 —

方べきの定理 ver2

- **1** 以下の問いに答えよ.
 - (1) 辺 AB と辺 CD の交点を O とする. AO= 2, BO= 3, DO= 4 のとき, CO の長さ.

(2) 辺 AB の延長と辺 CD の延長の交点を P とする. AP= 4, BP= 1, DP= 7 のとき, CP の長さ.

(3) CP= 3, DC= 4 のとき, AP の長さ.

(4) CD= 3, AP= 2 のとき, CP の長さ.

(5) AB=2x, BP=3, CD=6, CP=4 のとき, x の値.

1年_____組____番

第1学年 数学 A 復習課題 (表)

R4. 10

確認事項

以下の表を埋めよ.

(d: 2 円の中心間距離, r: 大きい円の半径, r': 小さい円の半径)

dと $r+r'$ の関係	状況	共通接線の本数

1 円 O の半径を 4, 円 O' の半径を 2 とする. 図中において, AB の距離を 8 とする. OO' の距離を求めよ.

2 円 O の半径を 4, 円 O' の半径を 3 とする. 図中において, OO' の距離を 8 とする. AB の距離を求めよ.

3 円 O の半径を 4, 円 O' の半径を 5 とする. OO' の距離を 6 とする. AB の距離を求めよ.

1年_______番

確認事項

● 2 直線の位置関係

• 直線と平面の位置関係

● 2 平面の位置関係

1 AD=AE= 1, AB= $\sqrt{3}$ の直方体について, 以下の 2 直線のなす角 θ を答えよ. ただし, $0^{\circ} \le \theta \le 90^{\circ}$ とする.

- (1) ABとEH
- (2) BF と AH
- (3) AB と DG

2 以下の問いに答えよ.

- (1) CG と平行な面を答えよ.
- (2) CG と垂直な面を答えよ.
- (3) 面 ABCD と平行な辺を答えよ.
- (4) 面 ABCD と垂直な辺を答えよ.
- **3** 空間内の直線 l, m, n と平面 P, Q, R につい、以下が正しいか答えよ.
 - (1) $P \perp Q$, $Q \perp R$ $O \geq \vartheta$, $P /\!\!/ R$
 - (2) $P \perp Q$, $Q \perp R$ のとき, $P \perp R$
 - (3) $l \perp m$, P//l のとき, P $\perp m$
 - (4) P/l, Q/l のとき, P/lQ
 - (5) $P \perp l$, Q // l $O \geq \delta$, $P \perp Q$
 - (6) $l \perp m, m \perp n$ のとき、 $l/\!\!/ n$

1年_______番

氏名

第1学年 数学 A 復習課題(表)

R4. 11

- 確認事項 -

正多面体は、以下の2条件を満たす凸多面体のことである.

1

正多面体は, _____種類のみ. その5種類とは、

- 確認事項 —

オイラーの多面体定理

f: 面の数, e: 辺の数, v: 頂点の数 とする. 以下が成立.

1 5種類の正多面体に対して, 以下の表を埋めよ.

正多面体	面の数	辺の数	頂点の数	面の形
正四面体				
正六面体				
正八面体				
正十二面体				
正二十面体				

2 立方体 ABCD-EFGH を,次の4つの平面,ACF,AFH,ACH,CFHで切る.新しくできた多面体は何か.また,それを証明せよ.

4 1 辺が 2 である立方体の各面の対角線の交点を結んでできる 正八面体の体積を求めよ.

 $\fbox{\bf 3}$ 1 辺が 2 である正四面体 ABCD の各辺の中点を P, Q, R, S,

T,Uとする. 正八面体 PQRSTU の体積を求めよ.

1年_______番