Prova 2: Cálculo 1- UFF

Professor: Wodson Mendson - Turma Q2

Aluno:

Valor: 10 pontos

Nota:

Observação: procure justificar ao máximo sua resposta e de modo legível. Tenha uma boa prova!

Questão 1. (2 pontos) Calcule, caso existam, os seguintes limites.¹

1.
$$\lim_{x \to 0} \frac{\sinh(x) - x}{x^3}$$

$$\lim_{x \to 0} \frac{e^x - 1 - x - \frac{x^2}{2}}{x^3}$$

2.
$$\lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{2}{\ln(x)} \right) \qquad \qquad \lim_{x \to 0} \frac{\sin(x) - x + \frac{x^3}{6}}{x^5}$$

Questão 2. $(2,5 \ pontos)$ Considere a curva descrita pela equação: $x^3 + y^3 = 6xy$.

- 1. $(0,5 \ pontos)$ Encontre y'
- 2. (1,5 pontos) Determine a equação da reta tangente no ponto (3,3)
- 3. (0,5 pontos) Em qual ponto do primeiro quadrante a reta tangente é horizontal?

Questão 3. (2,5 pontos) Determine o ponto da parábola $y = x^2 + 1$ que está mais próximo do ponto P = (3,1).

Questão 4. (3 pontos) Seja

$$f(x) = -\frac{x^4}{x^4 - 4}.$$

- 1. (0,75 pontos) Determine os intervalos de crescimento/decrescimento de f, e os seus pontos de máximo/mínimo.
- 2. (0,75 pontos) Determine os intervalos onde f é côncava/convexa e os seus pontos de inflexão.
- 3. (0.5 pontos) Caso existam, encontre as assíntotas horizontais e verticais de f.
- 4. (0.5 pontos) Seja 0 < a < 1. Existe solução para a equação f(x) = a? Explique.
- 5. (0.5 pontos) Usando as informações dos itens anteriores esboce o gráfico de f(x).

$$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

1

¹Relembre que