Définition

n et d sont deux nombres entiers et $d \neq 0$.

- $\frac{1}{d}$ c'est 1 part d'une unité partagée en d parts égales.
- $\frac{\ddot{n}}{d}$ c'est n parts d'une unité partagée en d parts égales.

Exemple

Propriété

Si on multiplie le numérateur et le dénominateur d'une fraction par un même nombre alors on obtient une fraction égale.

On peut aussi diviser, mais jamais par 0.

Exemple

$$-\frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12}$$
$$-\frac{24}{18} = \frac{24 \div 2}{18 \div 2} = \frac{12}{9}$$

Propriété

On peut additionner deux fractions qui ont le même dénominateur. Dans ce cas, on additionne les numérateurs en gardant le dénominateur commun.

Exemple

$$\frac{1}{3} + \frac{5}{3} = \frac{1+5}{3} = \frac{6}{3} = 2$$
$$\frac{29}{31} + \frac{7}{31} = \frac{29+7}{31} = \frac{36}{31}$$

Comparaisons

Propriété

- Si le numérateur est strictement supérieur au dénominateur alors la fraction est strictement supérieure à 1.
- Si le numérateur est égal au dénominateur alors la fraction est égale à 1.
- Si le numérateur est strictement inférieur au dénominateur alors la fraction est strictement inférieure à 1.

Exemple

$$\frac{4}{3} > 1 \text{ car } 4 > 3$$

$$\frac{7}{7} = 1 \text{ car } 7 = 7$$

$$\frac{6}{10} < 1 \text{ car } 6 < 10$$

Méthode

Pour encadrer une fraction entre deux entiers, on peut la décomposer comme la somme d'un entier et d'une fraction strictement inférieure à 1.

Exemple

$$\frac{9}{2} = \frac{8+1}{2} = \frac{8}{2} + \frac{1}{2} = 4 + \frac{1}{2}$$
 Donc $4 < \frac{9}{2} < 5$.