UFC/DC SA (CK0191) 2018.1

Signals and distributions Stochastic algorithms

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Canonical signals

Signals and distributions

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Canonical signals

We describe some signals or functions in the real variable t, time

 $f: \mathcal{R} \to \mathcal{C}$

In our studies, such functions are often discontinuous

- We introduce a generalisation of function
- The distribution

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Unit step

Unit step

Canonical signals

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step

----1--

erivative of t

mpulse

The family of canonical signal

Derivatives of discontinuous

a l

integrals

Convolution with canonical signals

Unit step

$\operatorname{Definition}$

 $Unit\ step$

The unit step, denoted as $\delta_{-1}(t)$, is a function

$$\delta_{-1}(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

The function is continuous over the domain, except for the origin

• Discontinuity, size 1

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Ramps

Impulse

Derivative of the

The family of

Derivatives of

Convolutio

Convolution wit

Ramps

Canonical signals

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signa

Unit step

Ramps

Derivative of the

he family of

Derivatives of discontinuous

Convolu

Convolution wit

Unit step (cont.)

We can use the unit step to define new functions

Consider some function $f(t): \mathcal{R} \to \mathcal{R}$, we have

$$f(t)\delta_{-1}(t) = \begin{cases} 0, & t < 0\\ f(t), & t \ge 0 \end{cases}$$

Values of f(t) for t < 0 have been set to zero

Graphically,

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step

Ramps

erivative of the

The family of

Derivatives of a discontinuous function

Convolutio

Convolution wit

Ramps

Definition

Unit ramp

The integral of the unit step is called the unit ramp, $\delta_{-2}(t)$

$$\delta_{-2}(t) = \int_{-\infty}^{t} \delta_{-1}(\tau) d\tau$$

$$= \begin{cases} 0, & t < 0 \\ t, & t \ge 0 \end{cases}$$

$$= t\delta_{-1}(t)$$

UFC/DC SA (CK0191) 2018.1

Ramps

Ramps (cont.)

Ramp functions

The family of ramp functions $\delta_{-k}(t)$ can be be recursively defined for k>2

$$\delta_{-k}(t) = \underbrace{\int_{-\infty}^{t} \cdots \int_{-\infty}^{t} \delta_{-1}(\tau) d\tau}_{k-1 \text{ times}} = \begin{cases} 0, & t < 0 \\ \frac{t^{k-1}}{(k-1)!}, & t \ge 0 \end{cases}$$
$$= \frac{t^{k-1}}{(k-1)!} \delta_{-1}(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Ramps

• Quadratic ramp, k=3

$$\rightsquigarrow \quad \delta_{-3}(t) = \frac{t^2}{2!} \delta_{-1}(t)$$

• Cubic ramp, k=4

Ramps (cont.)

$$\rightsquigarrow \quad \delta_{-4}(t) = \frac{t^3}{3!} \delta_{-1}(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Ramps

Ramps (cont.)

$Exponential\ ramp$

A generalisation of the ramp function is the exponential ramp, or cisoid

$$\frac{t^k}{k!}e^{at}\delta_{-1}(t) = \begin{cases} 0, & t < 0\\ \frac{t^k}{(k)!}e^{at}, & t \ge 0 \end{cases}$$

It is defined in terms of two parameters

 $\rightarrow k \in \mathcal{N}$

 \rightarrow $a \in C$

Signals and distributions

UFC/DC SA (CK0191) 2018 1

Ramps

Ramps (cont.)

$$\frac{t^k}{k!}e^{at}\delta_{-1}(t)$$

Particular cases that can be generated from the exponential ramp

- \rightarrow a = 0 and $k = 1, 2, \cdots$, the family of ramp functions
- \rightarrow a=0 and k=0, the unit ramp
- $\rightarrow k = 0$ and $a \in \mathcal{R}$, exponential function e^{at}
- $\rightarrow k = 0$ and $a = j\omega \in \mathcal{I}$, a linear combinations of exponential ramps can be used to describe sinusoidal functions

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$
$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

Linear combinations of ramps can be used for polynomial functions

$$c_2t^2 + c_1t + c_0$$

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit ste

Ramps

Impulse

Th - 6----------

canonical signa

discontinuous

function

Convolutio

Convolution wit

Impulse

Canonical signals

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Impulse

Derivative of th impulse

canonical signal

Derivatives o

Convolutio

Convolution wit

Impulse (cont.)

We need to generalise the concept of function

→ The distribution

Signals and distributions

UFC/DC SA (CK0191) 2018.1

anonical signa Jnit step

Impulse

Derivative of the impulse

The family of anonical signals

liscontinuous unction

Convolution

Convolution wit

Impulse

We can extend the family of canonical signals

We consider the derivatives of the unit step (so far, we integrated it)

- The results of classical calculus cannot be used for the purpose
- The derivative of a discontinuous function is not defined

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps

Impulse
Derivative of the

impulse
The family of

Derivatives of a discontinuous function

Convolution integrals

Convolution wit

Impulse (cont.)

Let $\varepsilon > 0$ be some positive scalar

Define the function $\delta_{-1,\varepsilon}(t)$

$$\delta_{-1,\varepsilon}(t) = \begin{cases} 0, & t < 0 \\ t/\varepsilon, & t \in [0,\varepsilon) \\ 1, & t \ge \varepsilon \end{cases}$$

This function is understood as a continuous approximation of the unit step

$$\leadsto \lim_{\varepsilon \to 0} \delta_{-1,\varepsilon}(t) = \delta_{-1}(t)$$

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step

Impulse

Derivative of the

The family of

canonical signals

Derivatives of discontinuous

Convolution

Convolution wit

Impulse (cont.)

$\operatorname{Definition}$

Finite impulse

Function $\delta_{-1,\varepsilon}(t)$ is continuous, it thus possesses a derivative

$$\delta_{\varepsilon}(t) = \frac{d}{dt} \delta_{-1,\varepsilon} = \begin{cases} 1/\varepsilon, & t \in [0,\varepsilon) \\ 0, & elsewhere \end{cases}$$

Function $\delta_{\varepsilon}(t)$ is denoted as finite impulse of base ε

Function $\delta_{\varepsilon}(t)$ is a rectangle with base ε and with height $1/\varepsilon$

• Area equal to 1, whatever the value of ε

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Pampa

Impulse

Derivative of th

The family of

Derivatives of discontinuous

Convolutio

Convolution with

Impulse (cont.)

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step

Impulse

Derivative of the

he family of

Derivatives of discontinuous

Convol

Convolution wi

Impulse (cont.)

Definition

Unit impulse or Dirac function

We define the derivative of the unit step

$$\delta(t) = \frac{d}{dt}\delta_{-1}(t) = \frac{d}{dt}\lim_{\varepsilon \to 0} \delta_{-1,\varepsilon}(t) = \lim_{\varepsilon \to 0} \frac{d}{dt}\delta_{-1,\varepsilon}(t) = \lim_{\varepsilon \to 0} \delta_{\varepsilon}(t)$$

Such a definition is not formally correct in the sense of the classical calculus

- It is valid only if we accept the generalisation of a function
- The impulse $\delta(t)$ is not a function, it is a distribution

Signals and distributions

UFC/DC SA (CK0191) 2018.1

anonical signals

Ramps

Impulse

impulse

Derivatives of a

Convolution

Convolution wi canonical signa

Impulse (cont.)

The following properties hold

 \rightarrow $\delta(t)$ is equal to zero everywhere, except the origin

$$\delta(t) = 0$$
, if $t \neq 0$

 \rightarrow $\delta(t)$ at the origin is equal to infinity

$$\delta(t) = \infty$$
, if $t = 0$

 \rightarrow The area under $\delta(t)$ is equal to 1

$$\int_{-\infty}^{+\infty} \delta(t) dt = \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

UFC/DC SA (CK0191) 2018.1

Impulse (cont.)

Let f(t) be some continuous function in t = 0

• The product of f(t) and the impulse $\delta(t)$

$$\rightarrow$$
 $f(t)\delta(t) = f(0)\delta(t)$

Let f(t) be some continuous function in t = T

• The product of f(t) and $\delta(t-T)$

$$\rightarrow$$
 $f(t)\delta(t-T) = f(T)\delta(t-T)$

Proof

The values taken by f(t) for $t \neq 0$ are not significant (impulse is zero)

We have that $\delta(t) = 0$, for $t \neq 0$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Derivative of the impulse

Derivative of the impulse

We use the limit reasoning to define higher-order derivatives of the impulse

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Derivative of the impulse

Derivative of the impulse

Canonical signals

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Derivative of the impulse

Derivative of the impulse (cont.)

Consider the function $\hat{\delta}_{\varepsilon}(t)$

$$\hat{\delta}_{\varepsilon}(t) = \begin{cases} 4t/\varepsilon^2, & t \in [0, \varepsilon/2) \\ 4/\varepsilon - 4t/\varepsilon^2, & t \in [\varepsilon/2, \varepsilon) \\ 0, & \text{elsewhere} \end{cases}$$

The impulse can be re-defined

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Derivative of the impulse

The family of

discontinuous

Tunction

integrals

Convolution with canonical signals

Derivative of the impulse (cont.)

We define the first-order derivative of the impulse

$$\rightsquigarrow \delta_1(t) = \frac{d}{dt}\delta(t) = \frac{\mathrm{d}}{\mathrm{d}t}\lim_{\varepsilon \to 0} \hat{\delta}_{\varepsilon}(t) = \lim_{\varepsilon \to 0} \frac{\mathrm{d}}{\mathrm{d}t}\delta_{1,\varepsilon}(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step Ramps

Derivative of the impulse

The family of

Derivatives of

Convolutio

Convolution with canonical signals

Derivative of the impulse (cont.)

The higher-order (k > 1) derivatives of the impulse

$$ightarrow \delta_k(t) = rac{\mathrm{d}^k}{\mathrm{d}t^k} \delta(t) = rac{\mathrm{d}}{\mathrm{d}t} \delta_{k-1}(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

anonical signals Jnit step

Ramps Impulse

Derivative of the impulse

The family of

canonical signals

Derivatives of discontinuous

Convolu

Convolution wi

Derivative of the impulse (cont.)

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps

Derivative of the

The family of canonical sign

Derivatives of a discontinuous function

Convolution

Convolution wi

The family of canonical signals

Canonical signals

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Impulse

Derivative of th impulse

The family of canonical signals

Derivatives of

function

Convolution integrals

Convolution with canonical signals

The family of canonical signals

For $k \in \mathcal{Z}$, we can define a family of canonical signals, $\delta_k(t)$

- $\rightarrow \delta_0(t) = \delta(t)$, the impulse (k=0)
- $\rightarrow k < 0$, the integrals of the impulse
- $\rightarrow k > 0$, the derivatives of the impulse

Such signals are linearly independent

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Ramne

Impulse

Derivative of the

The family of canonical signals

Derivatives of a discontinuous

Convolution

Convolution wit canonical signal

The family of canonical signals (cont.)

Example

Consider two functions $f_1(t)$ and $f_2(t)$

$$f_1(t) = t, \quad t \in (-\infty, \infty)$$

$$f_2(t) = |t| = \begin{cases} -t, & t \in (-\infty, 0) \\ t, & t \in (0, \infty) \end{cases}$$

The two functions are linearly dependent on each interval $[t_1, t_2]$ with $t_2 \leq 0$

• Let $\alpha_1 = \alpha_2 \neq 0$, we have $\alpha_1 f_1(t) + \alpha_2 f_2(t) = 0$, for every $t \in [t_1, t_2]$

The two functions are linearly dependent on each interval $[t_1, t_2]$ with $t_1 > 0$

• Let $\alpha_1 = \alpha_2 \neq 0$, we have $\alpha_1 f_1(t) + \alpha_2 f_2(t) = 0$, for every $t \in [t_1, t_2]$

The two functions are linearly independent on $[t_1, t_2]$, $t_1 < 0$ and $t_2 > 0$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step

Impulse

Derivative of th

The family of canonical signals

Derivatives of a discontinuous

Convolut integrals

Convolution wi

The family of canonical signals (cont.)

Definition

Linear dependence of scalar functions

Consider a set of scalar real functions $f_1(t), f_2(t), \ldots, f_n(t)$

$$f_i(t): \mathcal{R} \to \mathcal{R}$$

Such functions are said to be linearly dependent over the interval $[t_1, t_2]$, if and only if there exist a set of real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ that are not all equal to zero and such that

$$\rightarrow \alpha_1 f_1(t) + \alpha_2 f_2(t) + \dots + \alpha_n f_n(t) = 0, \quad \forall t \in [t_1, t_2]$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps

Derivative of the

The family of canonical signals

Derivatives of a discontinuous

Convolution

Convolution wi canonical signa

The family of canonical signals (cont.)

Remar

Two or more functions can be linearly dependent in an interval

• Yet, they can be linearly independent in a larger interval

Conversely, linear independence in a given interval implies linear independence in any larger interval of which the initial interval is a subset

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Impulse

Derivative of the impulse

The family of canonical signals

Derivatives of discontinuous

Convolution

Convolution with canonical signals

The family of canonical signals (cont.)

Consider the function

$$f(t) = \sum_{k=-\infty}^{\infty} a_k \delta_k(t)$$

Suppose that such a function is identically null over [a, b], with $a \neq b$

 \rightarrow Then, $a_k = 0$ for all $k \in \mathcal{Z}$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit ste

Derivative of the

The family of

Derivatives of a discontinuous function

Convolution integrals

Convolution wit

Derivatives of a discontinuous function

We can formally calculate the derivative of discontinuous functions

Discontinuous functions are common in systems analysis

- Zero for t < 0 and continuous for $t \ge 0$
- Discontinuity in the origin

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

mpulse

The family of

The family of canonical signals

Derivatives of a discontinuous function

Convolution

Convolution wit

Derivatives of a discontinuous function

Signals and distributions

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Unit step Ramps

erivative of the

canonical signals

Derivatives of a

function
Convolution

Convolution with canonical signals Derivatives of a discontinuous function (cont.)

Let f(t) be a continuous function

We are interested in calculating the derivative of function $f(t)\delta_{-1}(t)$

• If $f(0) \neq 0$, then $f(t)\delta_{-1}(t)$ has a discontinuity in t = 0

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Impulse

Derivative of the impulse

The family of

Derivatives of a discontinuous function

Convolution

Convolution wit

Derivatives of a discontinuous function (cont.)

The first-order derivative

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t)\delta_{-1}(t) = \left[\frac{\mathrm{d}}{\mathrm{d}t}f(t)\right]\delta_{-1}(t) + f(t)\left[\underbrace{\frac{\mathrm{d}}{\mathrm{d}t}\delta_{-1}(t)}_{\delta_{(t)}}\right]$$

It is the first-order derivative of the original function multiplied by $\delta_{-1}(t)$

• plus the impulse at the origin multiplied by f(0)

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit ste Ramps

Derivative of the

The family of canonical signals

Derivatives of a discontinuous function

Convolution integrals

Convolution witl canonical signals

Derivatives of a discontinuous function (cont.)

Higher-order derivatives are calculated analogously

$$\frac{\mathrm{d}^k}{\mathrm{d}t^k} f(t)\delta_{-1}(t) = f^{(k)}\delta_1(t) + f^{(k-1)}(0)\delta(t) + \dots + f(0)\delta_{k-1}(t)$$

$$\leadsto = f^{(k)}(t)\delta_{-1}(t) + \sum_{i=0}^{k-1} f^{(i)}(0)\delta_{k-1-i}(t)$$

We used $\delta_0(t) = \delta(t)$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signa

Jnit step Ramps

Derivative of the

The family of canonical signals

Derivatives of a

Convolution

Convolution wit

Derivatives of a discontinuous function (cont.)

The second-order derivative

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} f(t) \delta_{-1}(t) = \left[\frac{\mathrm{d}}{\mathrm{d}t} \dot{f}(t) \right] \delta_{-1}(t) + f(t) \left[\frac{\mathrm{d}}{\mathrm{d}t} \delta_{-1}(t) \right] + f(0) \left[\frac{\mathrm{d}}{\mathrm{d}t} \delta(t) \right]$$

$$\Rightarrow = \ddot{f}(t) \delta_{-1}(t) + \dot{f}(0) \delta(t) + f(0) \delta_1(t)$$

It is the second-order derivative of the original function multiplied by δ_{-1}

- plus the impulse at the origin multiplied by $\dot{f}(0)$
- plus $\delta_1(t)$ times f(0)

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps Impulse

erivative of the

The family of

Derivatives of a discontinuous function

Convolution integrals

Convolution with canonical signals

Derivatives of a discontinuous function (cont.)

Example

Consider the function

$$f(t) = \cos(t)\delta_{-1}(1)$$

We are interested in its derivatives

The first-order derivative,

$$\frac{\mathrm{d}}{\mathrm{d}t}\cos t\delta_{-1}(t) = \left[\frac{\mathrm{d}}{\mathrm{d}t}\cos(t)\right] + \sin(0)\delta_t + \cos(0)\delta_1(t)$$
$$= -\sin(t)\delta_{-1}(t) + \delta_1(t)$$

The second-order derivative,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\cos(t)\delta_{-1}(t) = \left[\frac{\mathrm{d}^2}{\mathrm{d}t^2}\cos(t)\right]\delta_{-1}(t) - \sin(0)\delta(t) + \cos(0)\delta_1(t)$$
$$= -\cos(t)\delta_{-1}(t) + \delta_{-1}(t)$$

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Impulse

Derivative of th

The family of

canonical signals

Derivatives of a discontinuous function

Convolution

Convolution with canonical signals

Derivatives of a discontinuous function (cont.)

Example

Consider the cisoid function

$$f(t) = te^{(at)}\delta_{-1}(t)$$

We are interested in its derivatives

The first-order derivative,

$$\frac{d}{dt}te^{(at)}\delta_{-1}(t) = e^{(at)}\delta_{-1}(t) + ate^{(at)} + [te^{(at)}]_{t=0}\delta(t)$$
$$= (1 - at)e^{(at)}\delta_{-1}(t)$$

The second-order derivative,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} = ae^{(at)}\delta_{-1}(t) + a(1+at)e^{(at)}\delta_{-1}(t) + [(1+at)e^{(at)}]_{t=0}\delta(t)$$
$$= (2a+a^2t)e^{(at)}\delta_{-1}(t) + \delta(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit ste

Derivative of the

The family of canonical signal

Derivatives of discontinuous function

Convolution integrals

Convolution with canonical signals

Convolution integrals

The convolution integral is an important operator

- Largely utilised in various field
- → Systems and signal analysis

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps

Derivative of the

The family of

Derivatives of a liscontinuous

Convolution integrals

Convolution with

Convolution integrals

Signals and distributions

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps

Derivative of the impulse

The family of canonical signa

Derivatives of a discontinuous function

Convolution integrals

Convolution with

Convolution integrals(cont.)

Definition

Convolution

Consider the two functions

$$f, q: \mathcal{R} \to \mathcal{C}$$

The **convolution** of f with g is a function $h: \mathbb{R} \to \mathcal{C}$ in the real variable t

$$h(t) = f \star g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Function h(t) is built by using the operator convolution integral

~→

UFC/DC SA (CK0191) 2018.1

Canonical signals
Unit step

Ramps

Derivative of the

The family of

Derivatives of a discontinuous

Convolution integrals

Convolution with canonical signals

Convolution integrals (cont.)

$\operatorname{Example}$

Consider the two functions

$$f(\tau) = \begin{cases} 1, & \text{if } \tau \in [0, 1] \\ 0, & \text{otherwise} \end{cases}$$
$$g(\tau) = \begin{cases} \tau, & \text{if } \tau \in [0, 1] \\ 0, & \text{otherwise} \end{cases}$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Ramps

Derivative of the

The family of canonical signals

Derivatives of discontinuous function

Convolution integrals

Convolution wit

Convolution integrals (cont.)

Suppose that we want to calculate the function

$$g(t - \tau) = \begin{cases} t - \tau, & \text{if } \tau \in [t - 1, t] \\ 0, & \text{otherwise} \end{cases}$$

We flip $g(\tau)$ around $\tau = t$ (vertically)

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step Ramps

Derivative of the

The family of anonical signals

Derivatives of a discontinuous

Convolution integrals

Convolution wi canonical signa

Convolution integrals (cont.)

Suppose that we want to calculate the function

$$g(\tau - t) = \begin{cases} \tau - t, & \text{if } \tau \in [t, t + 1] \\ 0, & \text{otherwise} \end{cases}$$

We shift $g(\tau)$ by the quantity t

- \rightarrow If t > 0, to the right
- \rightarrow If t < 0, to the left

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signal

Unit step Ramps Impulse

erivative of the npulse

Derivatives of a

Convolution integrals

Convolution wit canonical signals

Convolution integrals (cont.)

We can now calculate the product function

$$\rightsquigarrow f(\tau)g(t-\tau)$$

- For $t \in [0, 1]$, area $0.5t^2$
- For $t \in [1, 2]$, area $0.5 0.5(t 1^2)$
- Zero elsewhere

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step

ramps

Derivative of th

The family of

canonical signals

discontinuous

Convolution integrals

Convolution with

Convolution integrals (cont.)

We thus have,

$$f \star g(t) = \begin{cases} 0.5t^2, & t \in [0, 1] \\ 0.5 - 0.5(t - 1)^2, & t \in [1, 2] \\ 0, & \text{elsewhere} \end{cases}$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Unit step Ramps

Derivative of the

The family of canonical signals

Derivatives of discontinuous function

Convolution integrals

Convolution with canonical signals

Convolution integrals (cont.)

Definition

Consider the two functions

$$f,g:\mathcal{R}\to\mathcal{C}$$

Their derivatives

$$\dot{f}(t) = \frac{d}{dt}f(t)$$

$$\dot{g}(t) = \frac{d}{dt}g(t)$$

Their integrals

$$\mathcal{F}(t) = \int_{-\infty}^{t} f(\tau) d\tau$$

$$\mathcal{G}(t) = \int_{-\infty}^{t} g(\tau) d\tau$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Canonical signals

Ramps

Derivative of the

The family of canonical signals

discontinuous function Convolution

Convolution wit

Convolution integrals (cont.)

[¬]heorem

The convolution operator is commutative

$$f \star g(t) = g \star f(t)$$

Proof

Let $\rho = t - \tau$, then write

$$f \star g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{+\infty} f(t-\rho)g(\rho)d\rho$$
$$= g \star f(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Unit step Ramps

Derivative of the

The family of canonical signals

Derivatives of a discontinuous function

 $\begin{array}{c} Convolution \\ integrals \end{array}$

Convolution wi canonical signa

Convolution integrals (cont.)

The following statements are true

(1) The derivative of the convolution between two functions is given by the convolution of one function with the derivative of the other function

$$\rightsquigarrow \frac{\mathrm{d}}{\mathrm{d}t} f \star g(t) = f \star \dot{g}(t) = \dot{f} \star g(t)$$

(2) The integral of the convolution between two functions is given by the convolution of one function with the integral of the other function

$$\rightsquigarrow \int_{-\infty}^{t} f \star g(\tau) d\tau = f \star \mathcal{G}(t) = \mathcal{F} \star g(t)$$

(3) The integral of a convolution between two function does not change if one of the two operands is derived and the other one is integrated

$$\leadsto f \star g(t) = \mathcal{F} \star \dot{g}(t) = \dot{f} \star \mathcal{G}(t)$$

UFC/DC SA (CK0191) 2018.1

Convolution integrals

Convolution integrals (cont.)

Proof

To demonstrate (1), observe that we can write

$$\frac{\mathrm{d}}{\mathrm{d}t}f \star g(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)\mathrm{d}\tau = \int_{-\infty}^{+\infty} f(\tau)\frac{\mathrm{d}}{\mathrm{d}t}g(t-\tau)\mathrm{d}\tau$$
$$= \int_{-\infty}^{+\infty} f(\tau)\dot{g}(t-\tau)\mathrm{d}\tau = f \star \dot{g}(t)$$

Because of the commutative property $f \star g(t) = g \star f(t)$, we also have

$$\frac{\mathrm{d}}{\mathrm{d}t}f \star g(t) = \frac{\mathrm{d}}{\mathrm{d}t}g \star f(t) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}}{\mathrm{d}t}f(t-\tau)g(\tau)\mathrm{d}\tau$$
$$= \int_{-\infty}^{+\infty} \dot{f}(t-\tau)g(\tau)\mathrm{d}\tau = g \star \dot{f}(t) = \dot{f} \star g(t)$$

Convolution integrals (cont.)

distributions UFC/DC SA (CK0191) 2018.1

Signals and

Convolution integrals

To demonstrate (3), we use (1) again

 $\mathcal{F} \star \dot{q}(t)$ is obtained from (1)

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}\star g(t) = \mathcal{F}\star \Big[\frac{\mathrm{d}}{\mathrm{d}t}g\Big](t) = \Big[\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}\Big]\star g(t)$$

$$\leadsto \quad \mathcal{F} \star \dot{g}(t) = f \star g(t)$$

 $\dot{f} * \mathcal{G}(t)$ is obtained by differentiating $f * \mathcal{G}(t)$

$$\frac{\mathrm{d}}{\mathrm{d}t}f\star\mathcal{G}(t) = f\star\left[\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{G}\right](t) = \left[\frac{\mathrm{d}}{\mathrm{d}t}f\right]\star\mathcal{G}(t)$$

$$\leadsto f\star q(t) = \dot{f}\star\mathcal{G}(t)$$

Signals and distributions

SA (CK0191) 2018.1

Convolution

Convolution integrals (cont.)

To demonstrate (2), where the three functions are identical, we use (1)

Observe that all three functions when evaluated for $t = -\infty$ are null

• Whereas their derivatives are equal, for all values of t

This is because of the definition of integral

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{0} f * g(\tau) d\tau = f * g(t)$$

And, because

$$\frac{\mathrm{d}}{\mathrm{d}t}f\star\mathcal{G}(t) = f\star\left[\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{G}\right](t) = f\star g(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} f \star \mathcal{G}(t) = f \star \left[\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{G} \right](t) = f \star g(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F} \star g(t) = \left[\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F} \right] \star g(t) = f \star g(t)$$

Signals and distributions

UFC/DC SA (CK0191) 2018 1

Convolution with canonical signals

Convolution with canonical signals

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Convolution with canonical signals

Convolution with canonical signals

Convolution with the impulse

Consider a function $f: \mathbb{R} \to \mathbb{R}$ continuous in t

We have,

$$f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t - \tau)d\tau$$

For any interval (t_a, t_b) containing t, we have

$$f(t) = \int_{t_a}^{t_b} f(\tau) \delta(t - \tau) d\tau$$

Signals and distributions

UFC/DC SA (CK0191) 2018.1

Convolution with canonical signals

Convolution with canonical signals (cont.)

Consider a continuous function $f: \mathbb{R} \to \mathbb{R}$ with k continuous derivatives

We have,

$$\frac{d^k}{dt^k}f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta_k(t-\tau)d\tau$$

Proof

Observe that $f(t) = f \star \delta(t)$

By repeatedly differentiating and using that $\frac{d}{dt}f \star g(t) = f \star \dot{g}(t) = \dot{f} \star g(t)$,

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = \frac{\mathrm{d}}{\mathrm{d}t}f \star \delta(t) = f \star \left[\frac{\mathrm{d}}{\mathrm{d}t}\delta\right](t) = f \star \delta_1(t)$$

$$\frac{\mathrm{d}t}{\mathrm{d}t^2}f(t) = \frac{\mathrm{d}}{\mathrm{d}t}f \star \delta_1(t) = f \star \delta_2(t)$$

$$\cdots = \cdots$$

$$\frac{\mathrm{d}^{k}}{\mathrm{d}t^{k}}f(t) = \frac{\mathrm{d}}{\mathrm{d}t}f \star \delta_{k-1}(t) = f \star \delta_{k}(t)$$

Signals and distributions

SA (CK0191) 2018.1

Convolution with canonical signals

Convolution with canonical signals (cont.)

Proof

Observe that $\delta(t-\tau) = \delta(\tau-t)$ is an impulse centred in $\tau=t$

Thus,

$$\int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau = \int_{-\infty}^{+\infty} \underbrace{f(t)\delta(t-\tau)}_{f(t)\delta(t-T)=f(T)\delta(t-T)} d\tau$$

$$= f(t) \underbrace{\int_{-\infty}^{+\infty} \delta(t-\tau)d\tau}_{\int_{-\infty}^{+\infty} \delta(t)dt = \int_{0-}^{0+} \delta(t)dt = 1} = f(t)$$

The second part is derived from the first one, as $\delta(t-\tau)=0$ for $\tau\neq t$