集合论与图论

本资料由刘峰老师整理由HIT公共学习资源邮箱管理员15整理、发布。

<u>"本资料仅限与哈工大学生学习、研究,所用不</u>

可用于商业用途,

保留作者权力,侵权必究!"

"如果您觉得作者做的很棒想要打赏作者,

可以扫描下方二维码进行打赏哦!"

资料使用时,若需打印 大量打印请在淘宝搜索"打印",0.07元一张黑白A4 少量打印建议联系建筑二班,它们提供预约打印服务,0.1/页

同时,本校任何地方打印若单价高于0.15 那么就是流氓无 误了,请周知~

资料由公共邮箱管理员整理, 属义务工作, 若想 支持,可以扫描下方二维码打赏哦!

第一章 集合及其运算

P_s 习题

- 1. 写出方程 $x^2 + 2x + 1 = 0$ 的根所构成的集合。
- 2. 下列命题中哪些是真的,哪些为假
- a) 对每个集 A, $\phi \in A$;

- c) 对每个集 A, $A \in \{A\}$;
- d) 对每个集 A, $A \in A$;

e) 对每个集 A, $A \subset A$;

f) 对每个集 A, $A \subset \{A\}$;

g) 对每个集 A, $A \in 2^A$;

h) 对每个集 A, $A \subset 2^A$;

XOOMBATTOOX

- i) 对每个集 A, $\{A\} \subseteq 2^A$;
- j) 对每个集 A, $\{A\} \in 2^A$;

k) 对每个集 A, $\phi \in 2^A$;

- 1) 对每个集 A, $\phi \subset 2^A$;
- m) 对每个集 A, $A = \{A\}$;
- n) $\phi = \{\phi\}$;

o) {**ø**} 中没有任何元素;

- p)若 $A \subset B$,则 $2^A \subset 2^B$
- q)对任何集 A, $A = \{x \mid x \in A\}$;
 - r)对任何集 A, $\{x \mid x \in A\} = \{y \mid y \in A\};$
- s)对任何集 A, $y \in A \Leftrightarrow y \in \{x \mid x \in A\}$; t)对任何集 A, $\{x \mid x \in A\} \neq \{A \mid A \in A\}$ 。

答案:

3. 设有 n 个集合 A, A,

- 4. 设 $S = \{\phi, \{\phi\}\}$, 试求 2^{s} ?
- 5. 设 S 恰有 n 个元素,证明 2^s 有 2ⁿ 个元素。

P16 习题 6. 设 A、B 是集合,证明: $(A \setminus B) \cup B = (A \cup B) \setminus B \Leftrightarrow B = \phi$ 。

7. 设 A、B 是集合,试证 $A = \phi \Leftrightarrow B = A\Delta B$ 。

Alguerials Sha $A \setminus (B \cup C) = (A \setminus B) \setminus C \circ$ $= (A \setminus C) \cup (B \setminus C) \circ$ $\Rightarrow \land C \circ$ 9. 设 A, B, C 为集合, 证明: $A \setminus (B \cup C) = (A \setminus B) \setminus C$ 。

10. 设 A, B, C 为集合, 证明: $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$ 。

11. 设 A, B, C 为集合, 证明: $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$ 。

12. 设 A, B, C 都是集合,若 $A \cup B = A \cup C$ 且 $A \cap B = B \cap C$,试证 B=C。

Hit Sharesth @163.00M 15. 下列命题是否成立? 说明理由(举例)。

- $(1) (A \setminus B) \cup C = A \setminus (B \setminus C); \quad (2) A \cup (B \setminus C) = (A \cup B) \setminus C;$
 - (3) $A \setminus (B \cup C) = (A \cup B) \setminus B$ 。(答案: 都不正确)

- 16. 下列命题哪个为真? 答案: _____
- a) 对任何集合 A, B, C, 若 $A \cap B = B \cap C$, 则 A=C。
- b) 设 A, B, C 为任何集合,若 $A \cup B = A \cup C$,则 B=C。
- c) 对任何集合 A, B, $2^{A \cup B} = 2^A \cup 2^B$ 。 d) 对任何集合 A, B, $2^{A \cap B} = 2^A \cap 2^B$ 。
- e)对任何集合 A, B, $2^{A \setminus B} = 2^A \setminus 2^B$ 。 f)对任何集合 A, B, $2^{A \Delta B} = 2^A \Delta 2^B$ 。
- 17. 填空: 设 A, B 是两个集合。
 - a) $x \in A \cup B \Leftrightarrow$
- b) $x \in A \cap B \Leftrightarrow$

c) $x \in A \setminus B \Leftrightarrow$

- d) $x \in A\Delta B \Leftrightarrow$
- 18. 设 A, B, C 为三个集合, 下列集合表达式哪一个等于 $A \setminus (B \cap C)$? 答案:
 - (a) $(A \setminus B) \cap (A \setminus C)$; (b) $(A \cap B) \setminus (A \cap C)$;
 - (c) $(A \setminus B) \cup (A \setminus C)$; (d) $(A \cup B) \setminus (A \cup C)$; (e) $(A \cup B) \cap (A \cup C)$

P₂₀ 习题

- **20.** 设 A, B, C 为集合,并且 $A \cup B = A \cup C$,则下列断言哪个成立?
 - (1) B = C; (2) $A \cap B = A \cap C$; (3) $A \cap B^{C} = A \cap C^{C}$; (4) $A^{C} \cap B = A^{C} \cap C$.

答案:

21. 设 A, B, C 为任意集合,化简 $(A \cap B \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A \cap B \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B \cap C^c) = A^c \cap A$

不可用于商业用途 侵权必究!

P25 习题

25. 设 A, B 为集合, 试证: $A \times B = B \times A$ 的充要条件是下列三个条件至少一个成 $\vec{\Sigma}$: (1) $A = \phi$; (2) $B = \phi$; (3) A = B.

×D) **26.** 设 A, B, C, D 为任四个集合, 证明: $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$

29. 设 A, B, C 是三个任意集合,证明: $A \times (B \Delta C) = (A \times B) \Delta (A \times C)$ 。

- (1) $(x, y) \in A \times B \Leftrightarrow x \in A \perp y \in B$; (2) $(x, y) \in A \times B \Leftrightarrow x \in A \not\equiv y \in B$;
- $(3) 2^{A \times B} = 2^A \times 2^B$:

(4) 若
$$A \times C = B \times C$$
,则 $A = B$;

- 31. 设A有m个元素,B有n个元素,则A×B是多少个序对组成的?A×B有多 少个不同的子集? 答案:
- 32. 设A,B是两个集合, $B \neq \emptyset$,试证: 若 $A \times B = B \times B$,则A = B。

Hit Sharesth @163.00M weshare

P., 习题

- 33. 设 A, B 是两个有限集,试求 $|2^{2^{A \times B}}| = ?$
- 34. 某班学生中有 45% 正在学德文, 65% 正在学法文。问此班中至少有百分之几 的学生正同时学德文和法文?

第二章 映射习题

P39 习题

- **1.** 设 A, B 是有穷集, |A| = m, |B| = n。则
 - (1) 计算 $|A^B|$;

(2) 从A到A有多少个双射?

P43 习题

3. 证明: 从一个边长为 1 的等边三角形中任意选 5 个点,那么这 5 个点中必有 2 个点,它们之间的距离至多为 1/2,而任意 10 个点中必有 2 个点其距离至多是 1/3.

5. 证明在52个整数中,必有两个整数,使这两个整数之和或差能被100整除。

本资料 仅供哈工大学生 学习研究所用

6. 设 a_1, a_2, \dots, a_n 为 $1, 2, 3, \dots, n$ 的 任一 排 列 , 若 n 是 奇 数 且

 $(a_1-1)(a_2-2)\cdots(a_n-n)\neq 0$,则乘积为偶数。

weshare

P46 习题

7.设 $f: X \to Y$, $C, D \subseteq Y$, 证明 $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$

8. 设 $f: X \to Y$, $A,B \subseteq X$, 证明 $f(A \setminus B) \supseteq f(A) \setminus f(B)$ 。

10.设 $f: X \to Y, A \subseteq X, B \subseteq Y$ 。以下四个小题中,每个小题均有四个命题,这四个命题有且仅有一个正确,请找出正确的那个。

- (1) (a) 若 $f(x) \in f(A)$, 则 x 未必在 A 中; (b) 若 $f(x) \in f(A)$, 则 $x \in A$;
 - (c) 若 $f(x) \in f(A)$,则 $x \in A$;
- (d) 若 $f(x) \in f(A)$,则 $x \in A^c$ 。

(2) (a) $f(f^{-1}(B)) = B$;

(b) $f(f^{-1}(B)) \subseteq B$;

(c) $f(f^{-1}(B)) \supseteq B$;

(d) $f(f^{-1}(B)) = B^c$.

(3) (a) $f^{-1}(f(A)) = A$;

 $(b) f^{-1}(f(A)) \subseteq A;$

(c) $f^{-1}(f(A)) \supset A$;

(d) 上面三个均不对。

(4) (a) $f(A) \neq \emptyset$;

- (b) $f(B) \neq \emptyset$;
- (c) 若 $y \in Y$,则 $f^{-1}(y) \in x$;
- (d) 若 $y \in Y$,则 $f^{-1}(y) \subseteq x$ 。

P50 习题

华贝代

15. $\c \c X = \{a,b,c\}, Y = \{0,1\}, Z = \{2,3\}, f: X \rightarrow Y, f(a) = f(b) = 0,$

 $f(c) = 1; g: Y \rightarrow Z$, g(0) = 2, g(1) = 3,试求 $g \circ f$ 。

侵权必究!

 P_{55} 习题

17. 设 $N = \{1, 2, 3, \dots\}$, 试构造两个映射 f 和 $g: N \to N$, 使得

(1) $fg = I_N$, $\coprod gf \neq I_N$; (2) $gf = I_N$, $\coprod fg \neq I_N$.

18. 设 $f: X \rightarrow Y$ 则

- (1) 若存在唯一的一个映射 $g:Y\to X$,使得 $gf=I_X$,则 f 是可逆的吗?

(2) 若存在唯一的一个映射
$$g:Y \to X$$
 ,使得 $fg = I_Y$,则 f 是可逆的吗?

20. 是否有一个从 X 到 X 的一一对应 f ,使得 $f = f^{-1}$,但 $f \neq I_X$?

21. 设 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}$, 求 $\sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1^{-1}, \sigma_2^{-1}$ 。

22.将置换

第三章 关系习题

P₈₆ 习题

- 1.给出一个既不是自反的又不是反自反的二元关系?
- 传递性和人 2.是否存在一个同时不满足自反性,对称性,反对称性,传递性和反自反性的 二元关系?
- 3.设 R, S 是 X 上的二元关系, 下列命题哪些成立:
 - a)若 R 与 S 是自反的,则 $R \cup S$, $R \cap S$ 分别也是自反的;
 - b) 若 R 与 S 是对称的,则 $R \cup S$, $R \cap S$ 分别对称的;
- c) 若 R 与 S 是传递的,则 $R \cap S$ 也是传递的;
 - d) 若 R 与 S 不是自反的,则 $R \cup S$ 也不是自反的;
 - e) 若 R 与 S 是反自反的,则 $R \cup S$, $R \cap S$ 也是反自反的;
 - f) 若 R 是自反的,则 R^c 也是反自反的;
 - g) 若 R 与 S 是传递的,则 R\S 是传递的。

答案:

4.实数集合上的"小于"关系<是否是反自反的?集合 X 的幂集上的"真包含" 关系⊂是否是反自反的? 为什么?

- 5.设 R、S 是 X 上的二元关系。证明:
 - $(1) (R^{-1})^{-1} = R;$

(2) $(R \cup S)^{-1} = R^{-1} \cup S^{-1};$

(3) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$; (4) 若 $R \subseteq S$,则 $R^{-1} \subseteq S^{-1}$

- **6**. 设 R 是 X 上的二元关系,证明: $R \cup R^{-1}$ 是对称的二元关系。
- 7. 设 R 为 X 上的是反自反的和传递的二元关系,证明: R 是反对称的。

Mater	ials	$Sh_{a_{i}}$		
			100	<i>)</i>
万是什么关系?	答案:			2:
上的任两个二元关系,自反的,则 $R \circ S$ 也是对称的,则 $R \circ S$ 也是	自反的;	『些为真? ②	答案:	S

P₉₂ 习题

9."父子"关系的平方是什么关系?

- 11.设R与S为X上的任两个二元关系,下列命题哪些为真? 答案:
 - a) 若 R,S 都是自反的,则 $R \circ S$ 也是自反的;
 - b) 若 R,S 都是对称的,则 $R \circ S$ 也是对称的;
 - c) 若 R,S 都是反自反的,则 $R \circ S$ 也是反自反的;
 - d) 若 R,S 都是反对称的,则 $R \circ S$ 也是反对称的;
 - e)若 R,S 都是传递的,则 $R \circ S$ 也是传递的。
- **12.** 设 R_1 是 A 到 B, R_2 和 R_3 是 B 到 C 的二元关系,则一般情况下:

$$R_1 \circ (R_2 \setminus R_3) \neq (R_1 \circ R_2) \setminus (R_1 \circ R_3) \circ$$

但有人声称等号成立,他的证明如下: 设 $(a,c) \in R_1 \circ (R_2 \setminus R_3)$,则 $\exists b \in X$,

使得 $(a,b) \in R_1 \perp (b,c) \in R_2 \setminus R_3$ 。于是 $(b,c) \in R_2 \perp (b,c) \in R_3$ 。从而 $(a,c) \in R_1 \circ R_2 \perp R_3 \in R_3 \in$

 $(b,c) \notin R_1 \bullet R_3$,所以 $(a,c) \in (R_1 \circ R_2) \setminus (R_1 \circ R_3)$,即 $(R_1 \circ R_2) \setminus (R_1 \circ R_3) \subseteq (R_1 \circ R_2) \setminus (R_1 \circ R_3)$ 。 同理可证相反的包含关系成立,故等式成立,这个证明错在什么地方?

Tit Sharesth @163.00M

13.设 R,S 是 X 上的满足 $R \circ S \subseteq S \circ R$ 的对称关系,证明 $R \circ S = S \circ R$ 。

P113 习题

25. 设 $X = \{1,2,3\}, Y = \{1,2\}, S = \{f \mid f : X \to Y\}$ 。 \cong 是 S 上的二元关系:

$$\forall f, g \in S, f \cong g \Leftrightarrow I_m(f) = I_m(g)$$

证明: (1) ≅是 S 上的等价关系; (2) 求等价类的集合。

26. 设 $X = \{1,2,3\}, Y = \{1,2\}, S = \{f \mid f : X \to Y\}$ 。 \cong 是 S 上的二元关系:

 $\forall f, g \in S, f \cong g \iff f(1) + f(2) + f(3) = g(1) + g(2) + g(3)$.

证明: $(1) \cong \mathbb{E} S 上的等价关系; (2) 求等价类数。$

侵权必究

27. 设 $X = \{1,2,3\}, Y = \{1,2\}, S = \{f \mid f: X \to Y\}$ 。 \cong 是S上的二元关系:

 $\forall f, g \in S, f \cong g \Leftrightarrow \{f^{-1}(y) \mid y \in Y\} = \{g^{-1}(y) \mid y \in Y\} .$

证明: (1) ≅是 S 上的等价关系; (2) 求等价类。

28. 由置换 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 5 & 8 & 1 & 2 & 7 & 4 \end{pmatrix}$ 确定了 $X = \{1, 2, \dots, 8\}$ 上的一个关系

 $\cong i, j \in X, i \cong j$ 当且仅当 i 与 j 在 σ 的循环分解式中的同一循环置换中,证明: \cong 是 X 上的等价关系,求 X/\cong 。

Materials Shar

- **29.** 给出 $X = \{1,2,3,4\}$ 上两个等价关系 R 与 S,使得 $R \circ S$ 不是等价关系。
- **30.** 设 R 是 X 上的一个自反关系,证明: R 是等价关系 \Leftrightarrow 若 $(a,b) \in R$ 且 $(a,c) \in R$,则 $(b,c) \in R$ 。

- **35.** 设 X 是一个集合,|X|=n,试求:
 - (1) X上自反二元关系的个数; (2) X上反自反二元关系的个数;
 - (3) X上对称二元关系的个数; (4) X上自反或对称关系的个数。

学习研究所用 不可用于商业用途 侵权必密!

P₁₂₅ 习题

- **38.** 存在一个偏序关系 \le ,使得 (X,\le) 中有唯一的极大元素,但没有最大元素?若有请给出一个具体例子;若没有,请证明之。
- **39.** 令 $S = \{1, 2, ..., 12\}$,画出偏序集(S,|)的 Hass 图,其中"|"是整除关系,它有几个极大(小)元素? 列出这些极大(小)元素。

第四章 无穷集合及其基数习题

- 1. 设A为由序列 $a_1, a_2, \dots, a_n, \dots$ 的所有项组成的集合,则A是否是可数的?为什么?
- 是合至多可数 Sharting 2. 证明: 直线上互不相交的开区间的全体所构成的集合至多可数。
- 3. 证明: 单调函数的不连续点的集合至多可数。
- 可数集A的所有有限子集构成的集族是可数集合。

5. 判断下列命题之真伪:

公共邮箱: hitsharesth163.com

管理员15邮箱:wangzhqhit@163.com

- (1) 若 $f: X \to Y \perp L$ 是满射,则只要 X 是可数的,那么 Y 是至多可数的;
- (2) 若 $f: X \to Y$ 且 f 是单射,那么只要 Y 是可数的,则 X 也是可数的;
- (3) 可数集在任一映射下的像也是可数的;
- 7. 设 Σ 为一个有限字母表, Σ 上所有字(包括空字)之集记为 Σ *。证明 Σ *是 可数集

密码: weshare

P₁₄₂ 习题

- 1. 找一个初等可数 f(x), 使得它是(0,1)到实数 R的一一对应。
- **4.** 利用康托的对角线法证明 2^{A} 是不可数集,其中 A 为可数集。

第六章 图的基本概念

P₂₀₆ 习题

- 1. 画出具有 4 个顶点的所有无向图(同构的只算一个)。
- D.haring 2. 画出具有3个顶点的所有有向图(同构的只算
- 3. 画出具有4个、6个、8个顶点的三次图。
- 4. 某次宴会上,许多人互相握手。证明:握过奇数次手的人数为偶数(注意,0 是偶数)。

P209 习题

1. 设 u 与 v 是图 G 的两个不同顶点。若 u 与 v 间有两条不同的通道(迹),则 G 中是否有圈?

个连通的(p, q)图中 q≥p 2. 证明:

3. 设 G 是一个 (p, q) 图,且 q > (p-1)(p-2)/2,则 G 是连通的。

6. 在一个有 n 个人的宴会上,每个人至少有 m 个朋友 $(2 \le m \le n)$ 。试证:有不少 于 m+1 个人, 使得他们按某种方法坐在一张圆桌旁, 每人的左、右均是他的朋友。

证明: 若δ(G)≥2,则G包含长至少人

Aterials Sharing

-1-c° 是连通图。 8. 设 G 是图。证明: 若 δ (G) ≥ 2,则 G 包含长至少是 δ (G) +1 的圈。

P₂₁₆ 习题

1. 证明: 若图 G 不是连通图,则 G 是连通图。

2. 证明:每一个自补图有 4n 或 4n+1 个顶点。

P228 习题

1. 给出一个 10 个顶点的非哈密顿图的例子, 使得每一对不邻接的顶点 u 和 v 均有: degu+degv≥9。

2. 试求 Kp 中不同的哈密顿圈的个数。

- 4. 完全偶图 Km, n 为哈密顿图的充分必要条件是什么?
- 10. 证明具有奇数顶点的偶图不是哈密顿图。

第七章 树和割集

P₂₄₃ 习题

- 1. 分别画出具有 4、5、6 个顶点的所有树(同构的只算一个)。
- 2. 证明:每个非平凡树是偶图。
- 3. 设 G 是一棵树且 Δ (G) ≥ k, 证明: G 中至少有 k 个度为 l 的顶点。
- 4. 令 G 是一个有 p 个顶点, k 个支的森林, 证明: G 有 p-k 条边。
- 6. 设树T中有2n个度为1的顶点,有3n个度为2的顶点,有n个度为3的顶点,则这棵树有多少个顶点和多少条边?

7 一棵树 T 有 n_2 个度为 2 的顶点, n_3 个度为 3 的顶点,…, n_k 个度为 k 的顶点,则 T 有多少个度为 1 的顶点?

本资料

仅供哈工大学生

P257 习题

- 1. P个顶点的图中,最多有多少个割点?
- 3. 证明:有一座桥的三次图中至少有10个顶点。
- 4. 设 v 是图 G 的一个割点,证明 v 不是 G 的补图 G^c 的割点。
- 7. 有割点的连通图是否一定不是欧拉图?是否一定不是哈密顿图?有桥的连通图是否一定不是欧拉图和哈密顿图。

第九章 平面图和图的着色

P₂₈₁ 习题

1. 设G=(p,q)是一个具有f个面,k个分支的平面图,则p-q+f=k+1。

有f个面,k个分人

Aterials Sharing

T可图,试证 G°不是平面图。 若 G 是顶点数 p≥11 的平面图,试证 G°不是平面图。 4. 证明:不存在7条棱的凸多面体。 P294 习题 1. 设 G 是一个没有三角形的平面图。应用欧拉公式证明 G 中有一个顶点 v, 使得 $degv \leq 3$.

2. 设 G 是一个没有三角形的平面图。应用数学归纳法证明 G 是 4-可着色的。

第十章 有向图

P_{301} 习题

- 2. 画出具有三个顶点的所有互不同构的有向图的图解。
- 3. 具有 p 个顶点的完全有向图中有多少条弧?

P307 习题

1. 设D是一个有 p 个顶点 q 条弧的有向图。若 D 是连通的,证明: p-1≤q≤p(p-1)。

Sharing

2. 设 D 是一个有 p 个顶点 q 条弧的强连通的有向图,则 q 至少是多大?

P307 习题

- 2. 有向图 D 的图解如图 10. 4. 3 所示
- (1)写出 D 的邻接矩阵及可达矩阵; (2)写出 D 关联矩阵。

学习研究所用 不可用于商业用途

3. 设 D 为图 10. 4. 4 中的有向图,试求 v_2 到其余每个顶点的长≤4 的所有通道的条数。

P_{321} 习题

1. 设 T 是一个正则 m 元有序树,它有 n₀个叶子, T 有多有多少条弧?

3. 设 T 是一个有 n_0 个叶子的二元树,出度为 2 的顶点为 n2,试证: n_0 = n_2 +1。

4. 具有三个顶点的有序树共有多少个? 具有三个顶点的有根树有多个? 注意, 同构的只算一个。

8. 用数学归纳法证明每个比赛图中必有有向哈密顿路。

学习研究所用不可用于商业用途 侵权必究! *是*以必究!