

Práctica 1

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

 $\rm http://www.exactas.uba.ar$

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Práctica 1	2
	1.1. Ejercicio 1	 2
	1.2. Ejercicio 2	 2
	1.3. Ejercicio 3	 2
	1.4. Ejercicio 4	 2
	1.5. Ejercicio 5	 3
	1.6. Ejercicio 6	 3
	1.7. Ejercicio 7	 3
	1.8. Ejercicio 8	 4
	1.9. Ejercicio 9	 4
	1.10. Ejercicio 10	 4
	1.11. Ejercicio 11	 4
	1.12. Ejercicio 12	 5
	1.13. Ejercicio 13	 5
	1.14. Ejercicio 14	 6
	1.15. Ejercicio 15	 7
	1.16. Ejercicio 16	 7
	1.17. Ejercicio 17	 8
	1.18. Ejercicio 18	8
	1.19. Ejercicio 19	 8
	1.20. Ejercicio 20	 9
	1.21. Ejercicio 21	9
	1.22. Ejercicio 22	 9
	1.23. Ejercicio 23	 9
	1.24. Ejercicio 24	10
	1.25. Ejercicio 25	 10
	1.26. Ejercicio 26	 10
	1.27. Ejercicio 27	11
	1.28. Ejercicio 28	 12
	1.29. Ejercicio 29	12
	1.30. Ejercicio 30	12
	1.31. Ejercicio 31	14
	1.32. Ejercicio 32	14
	1.33. Ejercicio 33	14
	1.34. Ejercicio 34	14
	1.35. Ejercicio 35	 14

1. Práctica 1

1.1. Ejercicio 1

- (a) Verdadero
- (b) Falso
- (c) Verdadero
- (d) Falso
- (e) Falso

1.2. Ejercicio 2

- (a) Falso
- (b) Falso
- (c) Verdadero
- (d) Verdadero
- (e) Verdadero
- (f) Verdadero
- (g) Verdadero
- (h) Falso
- (i) Falso
- (j) Verdadero
- (k) Falso
- (l) Verdadero

1.3. Ejercicio 3

Rdo.: Sean A y B conjuntos. $A \subseteq B \iff \forall x \in A \implies x \in B$

- (a) $A \subseteq B$
- (b) $A \not\subseteq B$ pues $3 \not\in B$
- (c) $A \not\subseteq B$ pues $2.25 \not\in B$
- (d) $A \subseteq B$

1.4. Ejercicio 4

- (a) $A \cap (B \triangle C) = \{1, -2, 3\}$
- (b) $(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$
- (c) $A^c \cap B^c \cap C^c = \emptyset$

1.5. Ejercicio 5

Rdo. DeMorgan: Sean A y B conjuntos, $(A \cap B)^c = (A^c \cup B^c)$ y $(A \cup B)^c = (A^c \cap B^c)$

- 1. $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$
- 2. $(A \cap B \cap C)^c = A^c \cup B^c \cup C^c$

1.6. Ejercicio 6

1.7. Ejercicio 7

- (a) $(A \cap B^c) \cup (B \cap C \cap A^c)$
- (b) $((A \cap C^c) \cup (C \cap A^c)) \cap B^c$
- (c) $(A \cap B) \cup (A \cap C) \cup (B \cap C) \cap (A \cap B \cap C)^c$

1.8. Ejercicio 8

Rdo. conjunto de partes: Sea A un conjunto, el conjunto de partes de A, P(A) es aquel formado por todos los subonjuntos de A.

- (a) $P(A) = \{\emptyset, \{1\}\}\$
- (b) $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- (c) $P(A) = \{\emptyset, \{1\}, \{\{1,2\}\}, \{3\}, \{1,\{1,2\}\}, \{1,3\}, \{\{1,2\},3\}, \{1,\{1,2\},3\}\}$

1.9. Ejercicio 9

Quiero probar un (\iff) por lo que debo verificar la doble inclusión.

- (a) $A \subseteq B \implies P(A) \subseteq P(B)$ Sea x tal que $x \in P(A) \implies (\forall y \in x) : y \in A$. Pero $A \subseteq B \implies y \in B$. Por lo tanto $(\forall x \in P(A)) : x \in P(B) \implies P(A) \subseteq P(B)$
- (b) $P(A) \subseteq P(B) \implies A \subseteq B$ Por definición del conjunto de partes, $A \in P(A)$ por lo tanto se que $A \in P(B)$ Además $B \in P(B)$ y es el elemento con más elementos de P(B), así $A \subseteq B$ como se quiería probar.

1.10. Ejercicio 10

1.10.A. Inciso a

Calculadora de tablas de verdad. Link

	P	9	P=>4	~9	~P	N9=>NP	NP V 9	PNNq	N(PNNg)
	V	V	V	Ŧ					
	V	F	下	V	F	V F V V	F	V	F
	F	V	V	F	V	V	V	チ	V
	F	F	V	V	V	V	V	F	V
'			'	'				'	ı
,									
L	as	47	ieven	los r	ismo	rawies	de ve	rdod,	sor equivalentes

1.10.B. Inciso b

1.11. Ejercicio 11

(a) a = 1 pues $1 \in \mathbb{N}$ pero $\frac{1-1}{1} = 0 \notin \mathbb{N}$.

- (b) x = y = 4 pues $\sqrt{4+4} = \sqrt{8} \neq 4 = \sqrt{4} + \sqrt{4}$
- (c) x = -3 pues $(-3)^2 = 9 > 4$ sin embargo $(-3) \ge 2$

1.12. Ejercicio 12

- (a) El \vee lógico es falso unicamente cuando ambas preposiciones son falsas. Así, la proposición será falsa sii $(x < 5) \wedge (x > 8)$ Pero es fácil ver que no existe ningún $x \in \mathbb{N}$ que lo cumpla.
- (b) Es verdadera pues n=6 hace verdadera la proposición $(n \ge 5) \land (n \le 8)$
- (c) Es verdadera pues el conjunto de los \mathbb{N} es infinito y por lo tanto existe m = n + 1 que hace verdadera la proposición.
- (d) Es falsa pues no existe un natural n tal que 1 > n.
- (e) Es verdadera pues $f(x) = x^2$ es una función estrictamente creciente en el intervalo $[0, \infty]$ y dado que f(3) = 9 > 4 podemos afirmar que la preposición es verdadera.
- (f) Es verdadera pues sea $c \in \mathbb{C} \implies c = a + b.i$ con $a, b \in \mathbb{R}$ y por lo tanto $(\forall r \in \mathbb{R}) : (r + 0.i) \in \mathbb{C}$

1.13. Ejercicio 13

(a)

(c)

	A	В	C	AAB	LADB)-C	A-C	B-C	(A-C)(B-C)			
	V	V	V	干	F	F	F	T T			
	V	V	F	F	F	V	V	F			
	V	F	V	V	Ŧ	F	F	F			
	J	F	F	V	V	V	F	V			
	F	٧	V	V	F	Ŧ	F	F			
	F	V	Ē_	V	V	Ŧ	V	V			
	+	F	 V	F	Ŧ	F	F	F			
	F	+	F	F	F	F	F	F			
_ I											
	For ignalls, la prenisa es Verdadera										
						U					

(b) Falsa. Contraejemplo. $A=\{1\}$ $B=\{2\}$ $C=\{1\}$

	4	В	C	CSA	Bnc	ДΔВ	(AAB)c	(BOC) = (ADB) C	CEA => BOCE (ALB) &		
	V	V	V	V	V	F	V	V	V		
	V	V	F	V	F	F	V	V	V		
	V	F	V	V	F	V	F	V	V		
	J	F	F	V	F	V	F	V	V		
	F	٧	V	F	V	V	F	F	V		
	F	V	F	VF	Ŧ	V	F	V	V		
	+	F	V	F	F	F	V	V	V		
	F	F	F	V	F	下	V	ν	V		
I											
	ts l	krdu	ade	ra eu	Tows	LOS A, I	B, C pos	ibus			

1.14. Ejercicio 14

(a)

Se prueban con tablas de verdad. Van los primeros cuatro.

	A	В	C	BAC	AN (BAC)	Ans	Anc	IANG A (ANC)
	V	V	V	F	F	V	V	F
	V	V	F	V	V	V	F	V
	V	F	V	V	V	F	V	V
	J	F	F	F	F	F	F	F
	F	V	V	F	F	F	F	F
	F	V	F	V	F	F	F	F
	+	F	✓	V	F	F	F	F
	F	+	F	F	F	F	F	F
I		ا						
							~	. 0
						४०१।	gud	15, la afronció es Vardadua
							U	

4	B	С	4AB	AΔC	BAC	(AAC) U(BAC)	A1B = (ADC) U(B1C)
V	V	V	F	F	F	F	V
V	V	F	Ŧ	V	V _.	V	V
V	F	V	V	F	V	V	V
J	F	F	V	V	F	V	√
F	٧	V	ν	V	F	V	V
F	V	Ē	V	F	V	V,	V
+	F	√	F	V	V	<u>/</u>	V _.
F	7	F	F	F	F	F	, V
١			'	'			
							4 65 V on today was logges
							denostrado

		4	В	C	4nC	(Anc)-B	4-B	(A-B) nc
		V	V	V	V	F	7	下
		V	V	F	F	F	F	Ŧ
		V	F	V	V	V	V	V
		J	F	F	F	F	V	F
		F	٧	V	F	F	エ	F
		F	V	F,	F	F	F	F
		+	F	V	F	F	F	臣
		F	+	F	F	F	F	7
(d)	I	ı	I				'	

(e) TODO

(c)

- (f) TODO
- (g) TODO

1.15. Ejercicio 15

- 1. $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
- 2. $A \times B = \{(1,1), (1,3), (1,5), (1,7), (2,1), (2,3), (2,5), (2,7), (3,1), (3,3), (3,5), (3,7)\}$
- 3. $(A \cap B) \times (A \cup B) = \{(1,1), (1,2), (1,3), (1,5), (1,7), (3,1), (3,2), (3,3), (3,5), (3,7)\}$

1.16. Ejercicio 16

Pruebo la doble implicación.

- (a) TODO
- (b) TODO
- (c) a) $(A \cup B) \times C \implies (A \times C) \cup (B \times C)$ $(x,y) \in (A \cup B) \times C \iff (x \in (A \cup B) \land y \in C) \iff ((x \in A \lor x \in B) \land y \in C)$ $\iff (x,y) \in (A \times C) \cup (B \times C)$
 - $\begin{array}{l} b) \ (A \times C) \cup (B \times C) \implies (A \cup B) \times C \\ (x,y) \in (A \times C) \cup (B \times C) \iff ((x \in A \vee x \in B) \wedge y \in C) \implies (x \in (A \cup B) \wedge y \in C) \\ \implies (x,y) \in (A \cup B) \times C \end{array}$
 - c) TODO

1.17. Ejercicio 17

Rdo. relación: Sean A y B conjuntos, R es relación de A en B si $R \subseteq A \times B$ es decir, si R es un subonjunto del producto cartesiano $A \times B$

 $R \subseteq A \times B \iff \forall (X, y) \in R : (x \in A \land y \in B)$

(b) No es relación $(3,2) \notin A \times B$ pues $2 \notin B$

Es eloción pues R = AXB

R

A

B

A

1.18. Ejercicio 18

(d)

- (a) $R = \{(1,1), (1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7)\}$
- (b) $R = \{(2,1), (3,1)\}$
- (c) $R = \{(2,1), (2,3), (2,5), (2,7)\}$
- (d) $R = \{(1,7), (2,5), (2,7), (3,5), (3,7)\}$

1.19. Ejercicio 19

(a) NO es reflexiva, simétrica, antisimétrica, transitiva. $R = \{(a,b), (b,a), (c,c), (c,d), (c,h), (e,c), (f,f), (h,g)\}$

- (b) ES transitiva. NO es reflexiva, simétrica, antisimétrica. $R = \{(a,a), (a,b), (b,b), (b,a), (c,c), (c,e), (c,h), (c,g), (f,f), (h,g)\}$
- (c) ES reflexiva. NO es simétrica, antisimétrica, transitiva. $R = \{(a,a),(a,b),(b,a),(b,b),(c,c),(c,d),(c,e),(c,h),(d,c),(d,d),(e,e),(f,f),(g,g),(h,h),(h,g)\}$
- (d) Es reflexiva, simétrica y transitiva. NO es antisimétrica. $R = \{(a,a), (a,b), (b,a), (b,b), (c,c), (d,d), (e,e), (e,h), (e,g), (f,f), (g,e), (g,g), (g,h), (h,h), (h,e), (h,g)\}$

1.20. Ejercicio 20

1.21. Ejercicio 21

- (a) 4 pares.
- (b) 1 pares.
- (c) 1 pares.
- (d) 5 pares.
- (e) 4 pares.
- (f) 5 pares.

1.22. Ejercicio 22

- (a) Es relación de orden.
- (b) Es relación de equivalencia.
- (c) Es relación de orden.
- (d) Es reflexiva y transitiva.

1.23. Ejercicio 23

- (a) Una relación es simétrica sii $(a,b) \Longrightarrow (b,a) \in \mathbb{R}$ Una relación es antisimétrica sii $((a,b) \in \mathbb{R} \land (b,a) \in \mathbb{R}) \Longrightarrow a=b$ Luego, las relaciones en A simétricas y antisimétricas son de la forma: $R = \{(a,b) \in A^2/a = b\}$
- (b) R también es de orden y equivalencia, pues es reflexiva y transitiva.

La relación $R = \emptyset$ no es simétrica ni antisimétrica.

1.24. Ejercicio 24

1.25. Ejercicio 25

Tiene cuatro clases de equivalencia. Representantes: $\tilde{1}=1; \tilde{2}=2; \tilde{4}=4; \tilde{5}=5$

1.26. Ejercicio 26

Demostración de relación de equivalencia. Vamos a probar que es reflexiva y simétrica y transitiva, cada uno por separado.

Reflexividad

Res reflexiva sii $\mathbf{A}R\mathbf{A}$

Por definición, $ARA \iff ((A \triangle A) \cap \{1, 2, 3\} = \emptyset)$

Por definición de la diferencia simétrica, $(A\triangle A) = \emptyset$

Por lo tanto, $\emptyset \cap \{1, 2, 3\} = \emptyset$ como se quería probar.

Así, R es **reflexiva**.

Simetría

R es simétrica \iff $ARA \implies BRA$.

Por definición, $ARB \iff (A \triangle B) \cap \{1, 2, 3\} = \emptyset$

Por definición de la diferencia simétrica, $(A \triangle B) = (B \triangle A)$

Por lo tanto, $(A\triangle B)\cap\{1,2,3\}=(B\triangle A)\cap\{1,2,3\}$ Y por definición se que $(B\triangle A)\cap\{1,2,3\}\iff BRA$ como se quería probar.

Así, R es **simétrica**.

Transitividad

R es transitiva \iff $(ARB \land BRC \implies ARC)$.

Por definición,

$$ARB \iff (A\triangle B) \cap \{1,2,3\} = \emptyset$$

$$BRC \iff (B\triangle C) \cap \{1, 2, 3\} = \emptyset$$

$$ARC \iff (A\triangle C) \cap \{1, 2, 3\} = \emptyset$$

Por ejercicio 14.3, $(A\triangle B)\subseteq (A\triangle B)\cup (B\triangle C)$

Por lo tanto, $ARC \iff ((A \triangle B) \cup (B \triangle C)) \cap \{1, 2, 3\} = \emptyset$

Haciendo distributiva, $ARC \iff ((A \triangle B) \cap \{1,2,3\}) \cup ((B \triangle C) \cap \{1,2,3\}) = \emptyset$

Pero se que,

$$(A\triangle B)\cap\{1,2,3\}=\emptyset$$
 y

$$(B\triangle C)\cap\{1,2,3\}=\emptyset$$

Entonces, $ARC \iff (\emptyset \cup \emptyset = \emptyset)$ que es verdadero.

Así, R es **transitiva**.

Dado que R es refelexiva, simétrica y transitiva, queda demostrado que R es una relación de equivalencia.

Antisimétria

R es antisimétrica \iff $(ARB \land BRA \implies B = A)$.

Contraejemplo: $A = \{4\}; B = \emptyset$

$$ARB \iff (A\triangle B) \cap \{1, 2, 3\} = \emptyset$$

$$ARB \iff \{4\} \cap \{1,2,3\} = \emptyset$$
 es verdadero.

$$BRA \iff (B\triangle A) \cap \{1, 2, 3\} = \emptyset$$

$$BRA \iff \{4\} \cap \{1,2,3\} = \emptyset$$
 es verdadero.

Por lo tanto ARB y BRA pero $A \neq B$

Así, R NO es antisimétrica.

(2) Busco la clase de equivalencia del $\{1, 2, 3\}$

Se que la clase de equivalencia está formada por todos los $B \in P$ tales que:

$$\{1,2,3\}RB \iff (\{1,2,3\}\triangle B) \cap \{1,2,3\} = \emptyset$$

Por definición de la diferencia simétrica, los B que cumple esto son:

$$\overline{\{1,2,3\}} = \{B \in P/\{1,2,3\} \subset B\}$$

1.27. Ejercicio 27

(1) De nuevo vamos a probar por separado la refexividad, simetría y transitividad.

Reflexividad

$$R$$
 es reflexiva \iff $(\forall x \in A) : xRx$

Por definición,
$$xRx \iff x^2 - x^2 = 93x - 93y \iff 0 = 0$$

Así, R es **reflexiva**.

Simetría

$$R$$
 es simétrica \iff $(\forall x, y \in A) : xRy \implies yRx$

Por definición,

$$xRy \iff x^2 - y^2 = 93x - 93y$$

$$\iff -x^2 + y^2 = -93x + 93y$$

$$\iff y^2 - x^2 = 93y - 93x$$

$$\iff yRx$$

Así, R es simétrica.

Transitividad

R es transitiva \iff $(\forall x, y, z \in A) : (xRy \land yRz) \implies xRz$

Por definición.

$$xRy \iff x^2 - y^2 = 93x - 93y$$

 $yRz \iff y^2 - z^2 = 93y - 93z$

Sumando ambas,

$$x^{2} - y^{2} + y^{2} - z^{2} = 93x - 93y + 93y - 93z$$

 $\iff x^{2} - z^{2} = 93x - 93z \iff xRz$

Así, R es transitiva.

Por lo tanto, R es reflexiva, simétrica y transitiva; luego R es una relación de equivalencia.

$$(2) \ \overline{x} = \{x, 93 - x\}$$

1.28. Ejercicio 28

Habrá una clase de equivalencia para cada cardinal posible en los subconjuntos de P(A) es decir,

- (a) $\tilde{1} = \{\text{subconjuntos con } \# = 1\}$
- (b) $\tilde{2} = \{\text{subconjuntos con } \# = 2\}$
- (c) $\tilde{3} = \{\text{subconjuntos con } \# = 3\}$
- (d) etc

Lo que define 10 clases de equivalencia, más la clase $\tilde{0}=\emptyset$ determinan 11 clases de equivalencia.

1.29. Ejercicio 29

Rdo. función: Una relación $R \subseteq A \times B$ es una función de A en B si: $\forall x \in A, \exists ! y \in B/xRy$

- (a) No. El 3 tiene dos asignaciones en R: (3, a)y(3, d)
- (b) No. El 5 no tiene asignación en R.
- (c) Sí
- (d) Sí
- (e) No. $\not\exists b \in \mathbb{N} : 2b 3 = \pi$
- (f) No. Tomando a=1 se obtiene más de un valor en R:(1,4),(1,9)

1.30. Ejercicio 30

1.30.A. Inciso 1

Inyectiva

Por definición, f es inyectiva $\iff \forall x,y \in \mathbb{R}: f(x)=f(y) \implies x=y$

Contraejemplo: x = 1; y = -1

$$f(x) = 12 - 5 = 7$$

$$f(y) = 12 - 5 = 7$$

Luego f(x) = f(y) pero $x \neq y$

Así, f NO es **inyectiva**.

Sobreyectiva

Por definición, f es sobreyectiva $\iff Im(f) = \mathbb{R}$

Pero por ej. $\not\exists x \in \mathbb{R} : f(x) = -6$ pues $f(x) = 12x^2 - 5 \ge -5, \forall x \in \mathbb{R}$

Así, f NO es **sobreyectiva**.

$$Im(f) = \mathbb{R}_{\geq -5}$$

1.30.B. Inciso 2

Inyectiva

Por definición, f es inyectiva $\iff \forall a, b, c, d \in \mathbb{R} : f(a, b) = f(c, d) \implies (a, b) = (c, d)$

Contraejemplo: (1,3),(2,2)

$$f(1,3) = 1 + 3 = 4$$

$$f(2,2) = 2 + 2 = 4$$

Luego f(a,b) = f(c,d) pero $(a,b) \neq (c,d)$

Así, f NO es **inyectiva**.

Sobreyectiva

Por definición, f es sobreyectiva $\iff Im(f) = \mathbb{R}$

Sea $n \in \mathbb{R}$ quiero ver que $\exists (x, y) \in \mathbb{R}^2 : f(x, y) = n$

Luego $n = x + y \iff y = n - x \implies y \in \mathbb{R}$

Así, f es sobreyectiva.

1.30.C. Inciso 3

Inyectiva

Por definición, f es inyectiva $\iff \forall a, b, c, d, e, f \in \mathbb{R} : f(a, b, c) = f(d, e, f) \implies (a, b, c) = (d, e, f)$

Por definición de f.

$$f(a,b,c) = f(d,e,f) \iff (a+b,2.c) = (d+e,2.f)$$
$$\iff (a+b=d+e) \land (2.c=2.f)$$

Contraejemplo: (a, b) = (1, 3); (d, e) = (2, 2)

$$(a+b=d+e) \implies (4=4) \text{ pero } (1,3) \neq (2,2)$$

Así, f NO es **inyectiva**.

Sobreyectiva

Por definición, f es sobreyectiva $\iff Im(f) = \mathbb{R}^2 \iff (\forall (x,y) \in \mathbb{R}^2) : \exists (a,b,c) \in \mathbb{R}^3 / f(a,b,c) = (x,y)$

$$f(a, b, c) = (a + b, 2.c) = (x, y) \iff (x = a + b \land y = 2.c)$$

Así, f es sobreyectiva.

1.30.D. Inciso 4

TODO

1.30.E. Inciso 5

TODO

1.30.F. Inciso 6

TODO

1.31. Ejercicio 31

1.31.A. Inciso 1

(a)
$$(f \circ g)(3,4) = f(g(3,4)) = f(15) = 46$$

(b)
$$(f \circ g)(2,5) = f(g(2,5)) = f(12) = 72$$

(c)
$$(f \circ g)(3,2) = f(g(3,2)) = f(9) = 28$$

1.31.B. Inciso 2

Busco $f(g(n)) = 13 \implies f(\sqrt{n}) = 13$. Hay dos casos

1.
$$\sqrt{n} \le 7 \implies f(\sqrt{n}) = n = 13 \iff n = 13$$

2.
$$\sqrt{n} > 7 \implies f(\sqrt{n}) = 2.\sqrt{n} - 1 = 13 \iff \sqrt{n} = 7$$
. Abs pues $\sqrt{n} > 7$

Luego $f(q(n)) = 13 \iff n = 13$

Busco $f(g(m)) = 15 \implies f(\sqrt{m}) = 15$. Hay dos casos

1.
$$\sqrt{m} \le 7 \implies f(\sqrt{m}) = m = 15 \iff m = 15$$

2.
$$\sqrt{n} > 7 \implies f(\sqrt{m}) = 2.\sqrt{m} - 1 = 15 \iff \sqrt{n} = 8$$

Luego $f(g(m)) = 15 \iff m \in \{-64, 15, 64\}$

1.32. Ejercicio 32

1.
$$a)$$
 $(f \circ g) = f(g(x)) = f(x+3) = 2(x+3)^2 - 18 = 2(x^2+6x+9) - 18 = 2x^2+12x = 2x(x+6)$

b)
$$(g \circ f) = g(f(x)) = g(2x^2 - 18) = (2x^2 - 18) + 3 = 2x^2 - 15$$

2. a)
$$(f \circ g) = f(g(x)) = f(4x) = 4x - 2$$

b)
$$(g \circ f) = g(f(x)) =$$

$$\begin{cases} 4(n-2) & n \mod 4 = 4\\ 4(n+1) & \text{en otro caso} \end{cases}$$

c)
$$(f \circ g) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x} + 5, 3x)$$

$$d)\ (g\circ f)$$
no se puede calcular pues $f:\mathbb{R}\to\mathbb{R}\times\mathbb{R}$ y $g:\mathbb{N}\to\mathbb{R}$

1.33. Ejercicio 33

$$f(x) = \begin{cases} \frac{x}{3} & x \mod 3 = 0\\ 1 & \text{en otro caso} \end{cases}$$

$$g(x) = 3x$$

1.34. Ejercicio 34

TODO

1.35. Ejercicio 35

TODO