水文预报课程设计

佘敦先 shedunxian@whu.edu.cn 水利水电学院 2018. 11. 05

提纲

- 一、背景及意义
- 二、设计目标
- 三、设计内容
- 四、提交材料

一、背景及意义

> 关于课设

重要的教学环节

理论联系实际

大学中的美好时光

▶本课设

生产实际问题

根据建立的流域洪水预报方案,应用预留的水文资料,对此方案进行检验。

二、设计目标

分组

一、学号末位为0-3号:老灌河

二、学号末位为4-6号: 旬河

三、学号末位为7-9号: 褒河

水文预报设计报告编写

- 一、流域暴雨洪水场次资料的整理
- 二、流域产流方案的检验
- 三、流域汇流方案的检验
- 四、流域洪水预报方案的评定

三、设计内容

> 一、洪水场次资料的整理

NO	洪号	流量起止时间
1	870606	06.04-06.10
2	870806	08.04-08.10
3	870720	07.17-07.26
4	870904	09.02-09.09
5	880815	08.12-08.19
6	880914	09.12-09.17
7	890711	07.10-07.20
8	890726	07.23-08.01
9	890816	08.15-08.25
10	890911	09.07-09.18
11	900502	04.30-05.08
12	900626	06.23-06.30
13	900721	07.19-07.26

> 一、洪水场次资料的整理

þ	序号	洪号	降雨P	实测RO	计算RC	绝对误差	相对误差
	23	860710	44.3	17.0	13.4	-3.6	-21.2
	24	860910	114.4	29.2	37.7	8.5	29.1
	25	861021	38.1	14.1	16.0	1.9	13.5
	26	870513					
	27	870614					
	28	870804					

旬河流域退水曲线中蓄泄系数K=48小时

> 二、产流方案

> 二、产流方案

流域总径流深 R 的计算:

(1) 当 PE≤0 时

R=0

(3-6)

(2) 当 PE>0, 且 PE+A < W_m(1+B) 时

$$R = PE - W_{m} + W + W_{m} \left(1 - \frac{PE + A}{W_{m} (1 + B)} \right)^{1+B}$$
 (3-7)

(3) 当 PE>0, 且 PE+A \geqslant W_m(1+B) 时 R=PE-(WM-W) (3-8)

(1) PE≤0 的产流计算

因为 $PE \le 0$,所以 R=0,但因自由蓄水库中有蓄水 S_t ,故壤中流 RSS 和地下径流 RG 不为零,此时,

> 二、产流方案

$$F_{Rt} = 1 - \left(1 - \frac{W_t}{W_m}\right)^{\frac{B}{1+B}}$$
 (3-10)

RS=0

$$RSS = S_{t} \times KSS \times F_{R}$$

$$RG = S_{t} \times KG \times F_{Rt}$$
(3-11)

$$S_{t+1} = (1 - KSS - KG)S_t$$

(2) PE>0 的产流计算

如果 PE+AU < SS_m,则

$$RS = \left(PE - S_{m} + S_{t} + S_{m} (1 - \frac{PE + AU}{SS_{m}})^{1+EX}\right) F_{R}$$

$$RSS = \left(S_{m} - S_{m} (1 - \frac{PE + AU}{SS_{m}})^{1+EX}\right) KSS \times F_{R}$$

$$RG = \left(S_{m} - S_{m} (1 - \frac{PE + AU}{SS_{m}})^{1+EX}\right) KG \times F_{R}$$

$$S_{t+1} = (1 - KSS - KG) \left(S_{m} - S_{m} (1 - \frac{PE + AU}{SS_{m}})^{1+EX}\right)$$

如果 PE+AU≥SS_m,则

$$RS = (PE - S_m + S_t)F_R$$

$$RSS = S_m \times KSS \times F_R$$

$$RG = S_m \times KG \times F_R$$

$$S_{t+1} = (1 - KSS - KG)S_m$$
(3-13)

式中: KSS——自由蓄水库对壤中流的出流系数:

KG——自由蓄水库对地下径流的出流系数:

FR——时段平均产流面积 FR=R/PE;

> 三、汇流方案

- *FE为初始土壤含水容量折算系数,即各层土壤水均为容量的FE倍:
- ☀ 如WUM0=FE*WUM, S0=SM*FE

> 四、精度评价

统计指标	R ² (%)	RE (%)
率定期		
检验期		

洪号	实测洪峰 (m³/s)	预报洪峰 (m³/s)	相对误差 (%)	峰现时差 (dt)	R ² (%)	RE (%)
19980722	1296.8	1235.5	-4.7	0	94.3	22.5
19990629	1981.1	1595.8	-19.4	-1	89.0	-22.0
20020724	707.3	640.9	-9.4	1	91.0	13.4
20030625	1545.7	1107.2	-28.4	0	90.6	-18.0
20040624	893.9	627.7	-29.8	0	91.2	-6.7
20050903	778.7	778.2	-0.1	0	89.0	-7.7
20060509	917.9	782.2	-14.8	-1	87.9	6.1
20070531	701.2	679.2	-3.1	0	95.4	18.0
20081106	566.1	363.0	-35.9	0	74.6	-35.0
20090630	728.7	777.7	6.7	0	71.0	50.8
20100711	2033.6	1493.3	-26.6	0	95.3	2.7
平均	/	/	$DQ_{m} = 63.6\%$	DT=100%	88.1	2.2

四、提交材料

>一、设计报告书(打印)

封面

目录

图、表规范

参考文献

>二、源程序(电子)

新安江模型程序

论文编撰常范错误

※ 字体

* 英文不能用中文字体,如宋体、仿宋等,一般 用Times New Roman

龙滩水电站是中国红水河上游的大型水电站,位于广西河池市天峨县境内,距 天峨县城 15 公里。其控制流域面积 10.58 万 km2,占西江下游防洪控制断面梧 州站以上流域面积的 32.4%,以发电为主,兼有防洪、航运和水产养殖等综合效 益。龙滩水库防洪库容大且与兴利库容结合好,调蓄能力强,可尽可能多地承担 调控西江洪水的任务。4

其目前是中国大陆在建的第三大水电站,位于三峡、溪<u>洛</u>渡水电站之后。为西部大开发的标志性工程和"西电东送"的重点项目之一。4

水库淹没范围涉及广西和贵州的 10 个县、47 个乡(镇)、232 个行政村,按一期工程水库正常蓄水位 375 米,移民 8.05 万人,淹没耕地 8.42 万亩。↓

论文编撰常范错误

* 段落

- * 每段开头退格2字符
- * 对公式的解释用"式中:",顶格写

(6) 水库泄流能力约束: ₽

式中: $q_{(z_i^{(t)})}$ 为 t 时刻第 i 个水库对应 $z_i^{(t)}$ 的下泄能力; $z_i^{(t)}$ 为 t 时刻第 i 个水库的水位。+

文编撰常范错误

图、表

- *避免"如下图"、"如下表"等说法
- * 一定要在正文中说明或者描述
- * 图表说明要尽可能详细,能单独让读者理解
- * 每个变量标上单位
 选取 1978 年百色、龙滩、青狮潭水库运用 DPSA 法进行优化调度的结果进行展示。中

论文编撰常范错误

* 序号

- * 同一段中用①、②等
- * 不同段落中用(1)、(2)等

重磅推出!!

宋志红 男 22

一个人介绍

- ▶ 教育背景:本科武汉大学水文水资源专业
- ◆ 研究方向: 水文模型
- ◆ 兴趣爱好: 乒乓球, 编程

一 联系方式

QQ: 742383683

EMail: Jason_songzh@126.com

Tel: 18207190348

个人简介

胡辰,江西吉安人,本科毕业于河海大学水文与水资源工程专业。

研究方向: 降雨径流过程模拟及预报

联系方式

QQ:785290576

E-mail:18507170625@163.com

