

El ciclo hidrológico

Compilado y resumido por Oliver C. Saavedra V.

1	Uso v manejo histórico del aqua	Jueves	2-Aug
2	El ciclo hidrológico	Viernes	3-Aug
3	Delineación de una cuenca usando SIG	Sabado	4-Aug
	Feriado Nacional	Lunes	6-Aug
4	Sistema de cuenca y modelos hidrológicos	Martes	7-Aug
5	Procesos hidrológicos y ecuaciones de gobierno	Miercoles	8-Aug
6	Flujo en canales y procesos transporte	Jueves	9-Aug
7	Agua atmosférica	Viernes	10-Aug
8	Precipitación & Evaporación	Lunes	13-Aug
9	1er Examen Parcial	Martes	14-Aug
10	Interpolación usando SIG	Miercoles	15-Aug
11	Agua subsuperficial & campo de flujo	Jueves	16-A ug
12	Infiltración y tiempo de encharcamiento	Viernes	17-Aug
13	Estimación de abstracciones: método índice Φ	Lunes	20-Aug
14	Estimación de abstracciones según método SCS	Martes	21-Aug
15	2ndo Parcial	Miercoles	22-Aug
16	Mediciones hidrológicas	Jueves	23-A ug
17	Visita a SENAMHI	Viernes	24-Aug
18	Mediciones de campo	Lunes	27-Aug
19	Hidrograma unitario	Martes	28-Aug
20	Modelo HEC-HMS	Miercoles	29-Aug
21	Estadística hidrológica	Jueves	30-Aug
22	Análisis de frecuencia	Viernes	31-Aug
23	Desafíos del agua en el futuro	Lunes	3-Sep
24	Examen final escrito	Martes	4-Sep

Tópicos del día

- Propiedades del agua
- Ciclo hidrológico
- Concepto de sistema
- Tasa de cambio de almacenamiento
- Clasificación de los modelos hidrológicos
- Ejercicio 2

Propiedades del Agua

Cohesión: H-O enlace fuerte; H-H enlace débil. Este ultimo permite el enlace con otras moléculas de agua.

Ligera carga negativa

Los enlaces e pasan mas tiempo
alrededor de los átomos O que
alrededor de los átomos de H. Así se
genera una ligera carga negativa.

Ligera carga positiva

Debido a las pequeñas
cargas y el hecho
"opuestos se atraen", las
moleculas de agua se
encuentran organizadas
con enlaces de hidrógeno.

Adhesión: Existe una atracción entre el agua y otras sustancias: Productos químicos, minerales y nutrientes

-Indice de calor específico elevado -Tensión superficial elevado

Idea inicial del ciclo hidrológico

Thales (636-546 B.C.) teorizó que todo en el universo se origina y termina como agua.

En realidad, razonó que todas las cosas están hechas de agua. Dios arroja agua del cielo, le permite fluir en los ríos y eventualmente a los océanos. El agua ha sido utilizada por los humanos.

Ciclo hidrológico en cantidades

Fuente: Ven Te Chow

Cantidad de agua en el mundo

Tipo	Área (10 ⁶ Km²)	Volumen (km³)	Porcentaje de agua total	Porcentaje de agua dulce
Océano	361.3	1338000000	96.54	
Agua Subterránea				
Dulce	134.8	10530000	0.76	30.1
Salada	134.8	12870000	0.93	
Humedad del suelo	82	16500	0.0012	0.05
Hielo polar	16	24023500	1.73	68.6
Hielo no polar y nieve	0.3	340600	0.025	1.0
Lagos				
Dulces	1.2	91000	0.007	0.26
Salinos	0.8	85400	0.006	
Pantanos	2.7	11470	0.0008	0.03
Ríos	148.8	2120	0.0002	0.006
Agua biológica	510	1120	0.0001	0.003
Agua atmosférica	510	12900	0.001	0.04
Agua total	510	1385984610	100.00	
Agua dulce	148.8	35029210	2.5	100

Fuente: UNESCO 1987

Cantidad de agua en Bolivia

UH	Superficie cuenca (km²)	Variable	ANUAL
Coipasa-	80,830	Precipitación (mm)	285,6
Uyuni		ETP (mm)	1.161,6
		ETR (mm)	211,9
		Escorrentía (mm)	75,4
		Aportación (m3/s)	193,3
		Q específico (l/s-km2)	2,4
		Aportación total (hm3)	6.094,7
Mamoré	259,083	Precipitación (mm)	1.489,4
		ETP (mm)	1.540,3
		ETR (mm)	888,6
		Escorrentía (mm)	606,2
		Aportación (m3/s)	4.980,5
		Q específico (l/s-km2)	19,2
		Aportación total (hm3)	157.064,3
Bermejo	11,912	Precipitación (mm)	628,2
		ETP (mm)	1.488,8
		ETR (mm)	441,6
		Escorrentía (mm)	190,5
		Aportación (m3/s)	72,0
		Q específico (l/s-km2)	6,0
		Aportación total (hm3)	2.269,8

Fuente: MMAyA 2016

Unidades hidrográficas de las cuencas priorizadas

Bermejo Área: 11,912 km² Coipasa-Uyuni Área: 80,830 km²

Mamore Área: 259,083 km²

Representación en diagrama de bloques del sistema

hidrológico global

El ciclo hidrológico global se representa como un sistema. Las líneas punteadas lo dividen en tres subsistemas: el sistema de agua atmosférica, el sistema de agua superficial y el sistema de agua subsuperficial.

Sistema de Transformación

Un sistema hidrológico transforma entradas I(t) en salidas Q(t)

Sistema de Cuenca

Una cuenca hidrográfica es el área de tierra que desemboca en un arroyo en un determinado lugar. (Chow et al., 1988)

Tasa de cambio de almacenamiento

$$dS = I(entrada) - Q(salida)$$

Ejemplo

Hallar la cantidad de agua almacenada al final de cada día dado un volumen inicial de 20 m³.

	Entrada (m³/s)	Salida (m3/s)	Diferencia (m3/s)	Diferencia (m3)	Diferencia (MCM)	Volumen [Millones de m3]
	(a)	(b)	(c) = (a) - (b)	(d) = (c) * 86400	$(e) = \frac{(d)}{1.000.000}$	$V_f = (e) + V_O$
Dia1	38	50	-12	-1036800	-1.04	18.96
Dia2	45	50	-5	-432000	-0.43	18.53
Dia3	90	75	15	1296000	1.30	19.83
Dia4	63	75	-12	-1036800	-1.04	18.79

Vol. Inicial = 20.00 m3

Clasificación de los modelos hidrológicos

FIGURA 1.4.1

Clasificación de modelos hidrológicos de acuerdo con la forma, la aleatoridad y la variabilidad espacial y temporal de los fenómenos hidrológicos.

Modelo Hidrológico Distribuido

Simulación de los procesos hidrológicos

MIKE SHE model components

http://www.dhisoftware.com/mikeshe/Components/

Distributed Hydrological Sub basin Model **Precipitation** Flow interval Basin Soil moisture condition **Discharge** Precipitation Transpiration Wet Evaporation layer Soil surface layer Unsaturated layer - Runoff **Topography** - Soil condition Land use Soil map Satellite image ∂h $\underline{\frac{\partial}{\partial t}} = q_L$ Saturated layer River routine model Hill slope model

Estructura de MHD

Soil type & Land use Maps

Lansuse-	vegetation	paramete	ers				
code	coverage	LAlmax	kcrop	roote-depth(m)	anitropic-r	ce-storage	landuse-type
1	0.95	3.3	0.8	0.5	3	10	"grassland"
2	0.2	8	0.75	1	5	15	"forest"
3	0.05	3.3	0.8	0.5	1	8	"baresoil"
4	0.8	3.3	0.8	0.5	1	8	"urban-area"
5	0.9	3.3	0.95	0.5	1	5	"water-body"
6	0.9	3.3	0.85	0.5	1	5	"sea-shore"

Soil	water	parameters						
soil_code,	theta_s,	theta_r,	alpha,	n,	ks1,	ks2,	ksg,	GWcs
1	0.51	0.17	0.01746	1.52402	80	1	1	0.15
2	0.51	0.17	0.01746	1.52402	25	1	1	0.15
3	0.51	0.17	0.01746	1.52402	50	1	1	0.15
4	0.51	0.17	0.01746	1.52402	60	1	1	0.15
5	0.51	0.17	0.01746	1.52402	60	1	1	0.15

Dominio espacio-tiempo

a) Modelo determinístico agregado de flujo permanente, I = Q.

b) Modelo determinístico agregado de flujo no permanente, dS/dt = I(t) - Q(t).

c) Modelo determinístico distribuido de flujo no permanente.

d) Modelo estocástico independiente del espacio y del tiempo.

Desarrollo de la hidrología

Leonardo da Vinci midió la distribución de velocidad de flujo en la sección transversal de una corriente mediante la repetición de experimentos del tipo mostrado en a). Él liberaba una vara lastrada b), la cual era mantenida a flote por medio de una vejiga animal inflada y la seguía mientras avanzaba aguas abajo, midiendo la distancia con un odómetro y el tiempo con canciones rítmicas.

Ejemplo

En 1980 la población mundial se estimó en 4,500 millones. El incremento anual de población en la década precedente fue aproximadamente del 3%. Con esta tasa de crecimiento de población, prediga el año en el cual habrá escasez de agua dulce, si todo el mundo tuviera el nivel de vida equivalente al más alto actual, para el cual el uso de agua dulce es casi de 6.8 m3 /día (1,800 gal/día) per cápita, incluyendo el uso de aguas públicas y el agua utilizada para la irrigación y la industria. Suponga que anualmente 47,000 km³ de escorrentía superficial y subsuperficial están disponibles para uso.

	Año	Población	Demanda	Oferta	Deficit
		hab	km3	km3	km3
		$P_f = P_o(1 + TC)$	$Dem = \frac{P_f}{Uso \ de \ agua}$		Deficit = Dem — Oferta
1	1980	450000000	11169.0	47000	35831
2	1981	4635000000	11504.1	47000	35496
3	1982	4774050000	11849.2	47000	35151
4	1983	4917271500	12204.7	47000	34795
5	1984	5064789645	12570.8	47000	34429
6	1985	5216733334	12947.9	47000	34052
7	1986	5373235334	13336.4	47000	33664
8	1987	5534432394	13736.5	47000	33264
9	1988	5700465366	14148.6	47000	32851
10	1989	5871479327	14573.0	47000	32427
11	1990	6047623707	15010.2	47000	31990
12	1991	6229052418	15460.5	47000	31539
13	1992	6415923991	15924.3	47000	31076
14	1993	6608401711	16402.1	47000	30598
15	1994	6806653762	16894.1	47000	30106
16	1995	7010853375	17400.9	47000	29599
17	1996	7221178976	17923.0	47000	29077
18	1997	7437814345	18460.7	47000	28539
19	1998	7660948776	19014.5	47000	27986
20	1999	7890777239	19584.9	47000	27415
21	2000	8127500556	20172.5	47000	26828
22	2001	8371325573	20777.6	47000	26222
23	2002	8622465340	21401.0	47000	25599
24	2003	8881139300	22043.0	47000	24957
25	2004	9147573479	22704.3	47000	24296

[Año	Población	Demanda	Oferta	Deficit
		hab	km3	km3	km3
		$P_f = P_o(1 + TC)$	$Dem = \frac{P_f}{Uso \ de \ agua}$		Deficit = Dem — Oferta
26	2005	9422000683	23385.4	47000	23615
27	2006	9704660704	24087.0	47000	22913
28	2007	9995800525	24809.6	47000	22190
29	2008	10295674541	25553.9	47000	21446
30	2009	10604544777	26320.5	47000	20680
31	2010	10922681120	27110.1	47000	19890
32	2011	11250361554	27923.4	47000	19077
33	2012	11587872401	28761.1	47000	18239
34	2013	11935508573	29623.9	47000	17376
35	2014	12293573830	30512.7	47000	16487
36	2015	12662381045	31428.0	47000	15572
37	2016	13042252476	32370.9	47000	14629
38	2017	13433520050	33342.0	47000	13658
39	2018	13836525652	34342.3	47000	12658
40	2019	14251621421	35372.5	47000	11627
41	2020	14679170064	36433.7	47000	10566
42	2021	15119545166	37526.7	47000	9473
43	2022	15573131521	38652.5	47000	8347
44	2023	16040325467	39812.1	47000	7188
45	2024	16521535231	41006.5	47000	5994
46	2025	17017181287	42236.6	47000	4763
47	2026	17527696726	43503.7	47000	3496
48	2027	18053527628	44808.9	47000	2191
49	2028	18595133457	46153.1	47000	847
50	2029	19152987460	47537.7	47000	-538

Referencia

