Structures

Algèbre 1

algébriques

Question 1/60

Si \Rightarrow est une loi associative sur E et $(x_1, \dots, x_n) \in E^n$

Réponse 1/60

 $x_1 \not \sim \cdots \not \sim x_n$ ne dépend pas du parenthésage admissible

Question 2/60

Si
$$f \in \text{Hom}(G, K)$$
 et H est un sous-groupe distingué et $H \subset \ker(f)$

Réponse 2/60

$$f = \tilde{f} \circ \pi$$
 La réciproque est vraie

Question 3/60

Passage au quotient de la loi dans le cas d'un sous-groupe distingué Si G est un groupe et H un sous-groupe

distingué de G

Réponse 3/60

$$\equiv_g = \equiv_d$$
 et on note la relation \equiv
La loi induite corrrespond au produit des
classes élément par élément : $(ab)H =$
 $(aH) \cdot (bH) = \{x \cdot y, \ x \in aH, \ y \in bH\}$
La loi induite sur l'ensemble quotient munit
celui-ci d'une structure de groupe

Question 4/60

Distributivité généralisée $\prod_{i=1}^{n} \left(\sum_{j \in J_i} (x_{i,j}) \right)$

Réponse 4/60

$$\sum_{(j_1,\dots,j_n)\in J_1\times\dots\times J_n} \left(\prod_{i=1}^n (x_{i,j_i})\right)$$

Question 5/60

Groupe abélien

Réponse 5/60

La loi \Rightarrow de G est commutative

Question 6/60

Associativité externe E est muni d'une loi decomposition externe \diamond sur \mathbb{K} , muni d'une loi de composition interne \Leftrightarrow

Réponse 6/60

$$\forall (\lambda, \mu, x) \in \mathbb{K}^2 \times E, \ (\lambda * \mu) \diamond x = \lambda \diamond (\mu \diamond x)$$

Question 7/60

Description par le bas du sous-groupe engendré par une partie

Réponse 7/60

$$\langle X \rangle = \{x_1 \cdots x_n, (x_1, \cdots, x_n) \in X^n\}$$

 $\cup \{x^{-1}, x \in X\}$
 $e \text{ correspond au produit vide}$

Question 8/60

Soient E muni d'une loi \Leftrightarrow , $F \subset E$ F est stable par \Leftrightarrow

Réponse 8/60

$$\forall (x,y) \in F^2, \ x \not\approx y \in F$$

La loi de E se restreint en une loi $\not\approx_F$ appelée
loi induite sur F par $\not\approx$

Question 9/60

Passage au quotient de la loi dans le cas abélien Si G est un groupe abélien et H un sous-groupe de G

Réponse 9/60

$$\equiv_g = \equiv_d$$
 et on note la relation \equiv
La loi induite corrrespond au produit des
classes élément par élément : $(ab)H =$
 $(aH) \cdot (bH) = \{x \cdot y, \ x \in aH, \ y \in bH\}$
La loi induite sur l'ensemble quotient munit
celui-ci d'une structure de groupe abélien

Question 10/60

Associativité

Réponse 10/60

 \Rightarrow est associative si et seulement $si \forall (x, y, z) \in E^3, (x \Rightarrow y) \Rightarrow z = x \Rightarrow (y \Rightarrow z)$

Question 11/60

Les classes à gauche modulo H

Réponse 11/60

$$\{aH, a \in G\}$$

Question 12/60

Description par le haut du sous-groupe engendré par une partie

Réponse 12/60

Soient ${\mathcal G}$ l'ensemble des sous-groupes de G et

$$\mathcal{H} = \{ H \in \mathcal{H} \mid X \subset H \}$$
$$\langle X \rangle = \bigcap_{x \in \mathcal{H}} (H)$$

Question 13/60

Automorphisme de X

Réponse 13/60

Endomorphisme et isomorphisme de X

Question 14/60

Théorème de Lagrange pour l'ordre des groupes

Réponse 14/60

Si G est un groupe fini et H un sous-groupe de $G \label{eq:G} |H| \mid |G|$

Question 15/60

Ordre d'un groupe Si G est un groupe

Réponse 15/60

$$\operatorname{ord}(G) = |G|$$

Question 16/60

Si G est un gruope Structure de $(\operatorname{Aut}(G), \circ)$

Réponse 16/60

$$(\operatorname{Aut}(G), \circ)$$
 est un groupe

Question 17/60

Soit
$$e \in E$$

 e est un élément neutre pour la loi \Rightarrow

Réponse 17/60

$$\forall x \in E, \ e \Rightarrow x = x = x \Rightarrow e$$

Question 18/60

Si G et H sont deux groupes et $f \in \text{Hom}(g, h)$ un morphisme de groupes $\ker(f)$

Réponse 18/60

$$f^{-1}(e_H) = \{ y \in G \mid f(y) = e_H \}$$

Question 19/60

Premier théorème d'isomorphisme

Réponse 19/60

Si
$$f \in \text{Hom}(G, H)$$

ker (f) est un sous-groupe disting

 $\ker(f)$ est un sous-groupe distingué de G, et f passe au quotient, définissant un morphisme de groupes $\tilde{f}:G/\ker(f)\to H$

 \tilde{f} est injectif et sa corestriction à son image est un isomorphisme

Question 20/60

Réciproque d'isomorphisme

Réponse 20/60

Si $f: F \to F$ est un isomorphisme, alors f^{-1} est un isomorphisme

Question 21/60

x et y sont dans la même classe à droite modulo H

Réponse 21/60

$$x \equiv_d y [H] \Leftrightarrow xy^{-1} \in H$$

Question 22/60

Si $f \in \text{Hom}(G, K)$ et H est un sous-groupe distingué

Réponse 22/60

f passe au quotient avec $\tilde{f}:G/H\to K$

Question 23/60

Soit
$$x \in E$$

 x est un élement absorbant pour \Rightarrow

Réponse 23/60

$$\forall y \in E, \ x * y = x = y * x$$

Question 24/60

Ordre d'un élément d'un groupe

Réponse 24/60

$$\operatorname{ord}(x) = \min(\{n \in \mathbb{N}^* \mid x^n = e\})$$

Question 25/60

Groupe

Réponse 25/60

Muni d'une loi d'une composition interne, de l'associativité, d'un élément neutre et de symétriques

Un groupe est un monoïde

Question 26/60

Commutativité généralisée

Réponse 26/60

$$E, (x_1, \dots, x_n) \in E^n \text{ et } \sigma \in \mathfrak{S}_n$$

 $x_1 \Leftrightarrow \dots \Leftrightarrow x_n = x_{\sigma(1)} \Leftrightarrow \dots \Leftrightarrow x_{\sigma(n)}$

Question 27/60

Si
$$G$$
 et H sont deux groupes et $f \in \text{Hom}(G, H)$ $f(x^{-1})$

Réponse 27/60

$$f(x)^{-1}$$

Question 28/60

Sous-groupe monogène

Réponse 28/60

$$\langle x \rangle = \{x^n, \ n \in \mathbb{N}\}$$

Question 29/60

Sous-groupe engendrée par une partie X

Réponse 29/60

 $\langle X \rangle$

C'est le plus petit sous-groupe contenant X

Question 30/60

Les classes à droite modulo H

Réponse 30/60

$$\{Ha, a \in G\}$$

Question 31/60

Si H est un sous-groupe distingué de G

Réponse 31/60

$$\forall a \in G, \ aH = Ha \Leftrightarrow \forall a \in G, \ \forall h \in H, \ aha^{-1} \in H$$

Question 32/60

Théorème de Lagrange pour l'ordre des éléments d'un groupe

Réponse 32/60

Si G est un groupe fini et $x \in G$ ord $(x) \mid |G|$

Question 33/60

Propriété des groupes monogènes

Réponse 33/60

Un groupe monogène est abélien

Question 34/60

Sous-groupe propre de G

Réponse 34/60

Sous-groupe de G distinct de G et $\{e_G\}$

Question 35/60

Ensemble formé par les classes à gauche et à droite

Réponse 35/60

 $\{Ha, a \in G\}$ est une partition de G $\{aH, a \in G\}$ est une partition de G

Question 36/60

Soient E muni d'une structure de X et $F \subset E$ F est un sous-X de E

Réponse 36/60

F est stable par les lois de E F contient les neutres imposés par E Les lois induites sur F par les lois de E vérifient les axiomes de la structure de X

Question 37/60

Symétrique de x * y

Réponse 37/60

$$y^s \Leftrightarrow x^s$$

Question 38/60

Fibres de
$$f$$

Soit $x \in f^{-1}(\{y\})$

Réponse 38/60

$$f^{-1}(\{y\}) = x \times \ker(f)$$
$$= \{x \times z, \ z \in \ker(f)\} = \ker(f) \times x$$

Question 39/60

Soient (G, \Rightarrow) et (H, \diamond) deux groupes $f: G \to H$ est un homomorphisme de groupe

Réponse 39/60

$$\forall (x,y) \in G^2, \ f(x * y) = f(x) \diamond f(y)$$

L'ensemble des homomorphisme de G dans H
est noté $\operatorname{Hom}(G,H)$
Si $(G,*) = (H,\diamond)$, f est un endomorphisme
L'ensemble des automorphismes de G est noté $\operatorname{Aut}(G)$

Question 40/60

Soient $e \in E$ un élément neutre pour la loi \Rightarrow et $x \in E$

y est un symétrique de x pour la loi \Rightarrow

Réponse 40/60

$$x \Rightarrow y = e = y \Rightarrow x$$

Question 41/60

Intersection de sous-groupes Si G est un groupe, et $(H_i)_{i\in I}$ une famille de sous-groupes de G

Réponse 41/60

 $i \in I$

$$\bigcap (H_i)$$
 est un sous-groupe de G

Question 42/60

Distributivité

Réponse 42/60

La loi

de est distributive à gauche sur

de si et seulement

 $\operatorname{si}\forall(x,y,z)\in E^3,\ x*(y\diamond z)=(x*y)\diamond(x*z)$ La loi *\text{est distributive à droite sur \$\\diamond\$ si et

seulement

 $si \forall (x, y, z) \in E^3$, $(y \diamond z) \not\approx x = (y \not\approx x) \diamond (z \not\approx x)$ La loi $\not\approx$ est distributive sur \diamond si et seulement si elle est distributive à gauche et à droite

Question 43/60

x et y sont dans la même classe à gauche modulo H

Réponse 43/60

$$x \equiv_q y [H] \Leftrightarrow x^{-1}y \in H$$

Question 44/60

Propriétés d'un groupe (G, \Rightarrow)

Réponse 44/60

$$G$$
 admet un uique élément neutre pour \Rightarrow $\forall x \in G, \ \exists! x^s \in G$

Question 45/60

Isomorphisme de X

Réponse 45/60

Homomorphisme de X bijectif

Question 46/60

Endomorphisme de X

Réponse 46/60

Homomorphisme de X de E dans lui-même (muni des mêmes lois)

Question 47/60

Élément régulier ou simplifiable

Réponse 47/60

x est régulier à gauche si et seulement $\operatorname{si}\forall (y,z)\in E^2,\ x \Rightarrow y=x \Rightarrow z\Rightarrow y=z$ x est régulier à droite si et seulement $\operatorname{si}\forall (y,z)\in E^2,\ y \Leftrightarrow x=z \Leftrightarrow x\Rightarrow y=z$ x est régulier si et seulement s'il est régulier à gauche et à droite

Si x admet un symétrique, alors il est régulier

Question 48/60

Résolution de
$$x^n = 1$$

Réponse 48/60

$$\{n \in \mathbb{N}^* \mid x^n = e\}$$
 est de la forme $a\mathbb{Z}$ ord $(x) \in \mathbb{N} \Leftrightarrow a \neq 0$ et ord $(x) = a$

Question 49/60

Image directe et réciproque de sous-groupes par un homomorphisme

Réponse 49/60

Si G et H sont deux groupes, et $f \in \text{Hom}(G, H)$ un morphisme de groupes, G'et H' deux sous-groupes respectivement de Get Hf(G') est un sous-groupe de H $f^{-1}(H')$ est un sous-groupe de G

Question 50/60

Si
$$\ker(f) = \{e_G\}$$

Réponse 50/60

f est injectif (la réciproque est vraie)

Question 51/60

Groupe cyclique

Réponse 51/60

Groupe monogène fini

Question 52/60

Description des groupes monogènes Si $G = \langle x \rangle$

Réponse 52/60

Si
$$\operatorname{ord}(x) = +\infty$$
, G est isomorphe à \mathbb{Z}
Si $\operatorname{ord}(x) = n \in \mathbb{N}^*$, G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$

Question 53/60

Cardinal des classes de congruence

Réponse 53/60

$$|Ha, a \in G| = |Ha, a \in G| = |H|$$

Question 54/60

```
Si G et H sont deux groupes et f \in \text{Hom}(G, H) f(e_G)
```

Réponse 54/60

$$f(e_H)$$

Question 55/60

Soit E et F deux ensembles munis d'une structure de X, munis respectivement des lois de composition internes $(*, \dots, *)$ et $(\diamondsuit, \cdots, \diamondsuit)$, et externes (\Box, \cdots, \Box) et

 $\begin{pmatrix} \triangle, \cdots, \triangle \\ 1 \end{pmatrix}$ sur K_1, \cdots, K_m $f: E \to F$ est un homomorphisme

Réponse 55/60

$$f$$
 respecte les lois interne : soit $k \in [1, n]$ $\forall (x, y) \in E^2$, $f\left(x \not\approx y\right) = f(x) \not\diamond f(y)$ f respecte les lois externes : soit $k \in [1, m]$ $\forall (\lambda, x) \in K_k \times E$, $f\left(\lambda \sqsubseteq y\right) = \lambda \vartriangle f(x)$ f est compatible avec le neutre (si le neutre e_i pour la loi $\not\approx$ est imposé dans les axiomes, donc le neutre e_i' existe pour la loi \diamondsuit) : $f(e_i) = e_i'$

Question 56/60

Si (G, *) est un groupe Un sous-ensemble H de G est appelé sous-groupe de G

Réponse 56/60

H est stable pour la loi de G et la loi induite définit sur H une structure de groupe

Question 57/60

Monoïde

Réponse 57/60

Muni d'une loi d'une composition interne, de l'associativité et d'un élément neutre Un monoïde est un magma

Question 58/60

Si (G, \Leftrightarrow) est un groupe et $H \subset G$ Caractérisation(s) des sous-groupes

Réponse 58/60

$$H \neq \varnothing \quad \forall (x,y) \in H, \ x \Leftrightarrow y \in H$$
$$\forall x \in H, \ x^s \in H$$
$$H \neq \varnothing \quad \forall (x,y) \in H^2, \ x \Leftrightarrow y^s \in H$$
$$e_G \in H \quad \forall (x,y) \in H^2, \ x \Leftrightarrow y^s \in H$$

Question 59/60

Commutativité

Réponse 59/60

 \Rightarrow est commutative si et seulement $si \forall (x,y) \in E^2, \ x \Rightarrow y = y \Rightarrow x$

Question 60/60

Magma

Réponse 60/60

Muni d'une loi de composition interne