A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 1EF

Bookmark

Show all steps: (

ON

Problem

Prove part:

If gcd (a, n) = 1, the solution modulo n of $ax \equiv b \pmod{n}$ is $x \equiv a^{\phi(n)-1}b \pmod{n}$.

Step-by-step solution

Step 1 of 3

Consider any two relatively prime numbers a and n, that is,

$$gcd(a, n) = 1$$

Objective is to prove that solution modulo n of $ax \equiv b \pmod{n}$ is

$$x \equiv a^{\phi(n)-1}b(\bmod n)$$

The $x \equiv a^{\phi(n)-1}b \pmod{n}$ will be a solution of congruence $ax \equiv b \pmod{n}$, if it satisfies this congruence relation.

Comment

Step 2 of 3

To check this, assume that this x is solution, then

$$ax = a(a^{\phi(n)-1}b)$$
$$= a^{\phi(n)}b.$$

Since gcd(a, n) = 1, then by Euler's theorem,

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

Therefore,			
$ax = a^{\phi(n)}b$			
$\equiv 1 \cdot b(n)$	nod n		
= b(mo	d n).		
`	,		
Comment			

Step 3 of 3

Hence, $x \equiv a^{\phi(n)-1}b \pmod{n}$ will be the solution of $ax \equiv b \pmod{n}$.

Comment