Code No: R101410

MATHEMATICAL METHODS

Time: 3 hours Max.Marks:100

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Find the Laplace transform of the function $f(t) = \begin{cases} t, & 0 < t \le a \\ -t + 2a, & a < t < 2a \end{cases}$
 - b) Using Laplace transform, solve y'' 2y' 8y = 0; y(0) = 3, y'(0) = 6. [10+10]
- 2.a) Find Laplace transform of the function $\frac{e^{-at} e^{-bt}}{t}$.
 - b) Use Laplace transform, solve $y(t) = 1 e^{-t} + \int_0^t y(t-u) \sin u \, du$. [10+10]
- 3.a) Find Fourier sine transform of $f(x) = \frac{1}{x(x^2+a^2)}$ and hence deduce cosine transform of $\frac{1}{x^2+a^2}$.
 - b) Find the inverse Fourier sine transform of $F_s\{p\} = \frac{e^{-ap}}{p}$ and hence deduce $F_s^{-1}\{1/p\}$. [10+10]
- 4.a) Find the area of a plate in the form of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, using Beta, gamma functions.
 - b) Evaluate $\iint (x^2 + y^2) dx dy$ over the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant by using the transformation x = au and y = bv, using Beta, Gamma functions.
- 5.a) Find the eigen values and eigen functions of the Sturm-Liouville problem $y'' + \lambda y = 0$ with boundary conditions y(0) = 0, $y(\pi) = 0$.
 - b) Using Parseval's identity, evaluate $\int_{0}^{\infty} \frac{1-\cos 2x}{x^2} dx$. [10+10]
- 6.a) If n > 1, prove that $\int_0^x x^{-n} J_{n+1}(x) dx = \frac{1}{2^n \Gamma(n+1)} x^{-n} J_n(x)$.
- b) Prove that $P'_n P'_{n-2} = (2n-1)P_{n-1}$. [10+10]
- 7.a) Show that the given exponential series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ converges absolutely for all x.
- b) If $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} \le x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$ then show that $f(x) = \frac{4}{\pi} \left[\sin x \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} \cdots \right].$ [10+10]
- 8.a) Solve the initial value problem $(y + 2)y' = \sin x$, y(0) = 0, using Laplace Transform.
 - b) Find half range Fourier sine series for $f(x) = \pi x$ in $[0, \pi]$. [10+10]