

УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА НОВИ САД

Департман за рачунарство и аутоматику Одсек за рачунарску технику и рачунарске комуникације

ИСПИТНИ РАД

Кандидати: Сара Крсмановић RA19/2022

Нина Драгићевић RA148/2021 Маријана Ћелић RA178/2022 Марија Секулић RA194/2022

Предмет: Оперативни системи за рад у реалном времену

Тема рада: Аутономно возило

Ментор рада: проф. др Мирослав Поповић

Нови Сад, јун, 2025.

Садржај

Списак слика	5
1. Увод	6
1.1 Задатак	7
2. Анализа проблема и концепт решења	8
3. Опис решења	10
3.1 Хардверски део и дефиниције	10
3.1.1 Дефинисање пинова	10
3.1.2 Константе	10
3.2 Модули и функције	11
3.3 Иницијализација - setup()	11
3.4 Главна логика — loop()	11
3.4.1 Читање тастера	11
3.4.2 Ултразвучни сензор	11
3.4.3 Ажурирање брзине и угла	11
3.4.4 Исписивање података у Serial Monitor	12
3.5 ISR и Timer конфигурација	12
4. Тестирање	13
4.1 Циљ тестирања	13
4.2 Услови тестирања	13
4.3 Методологија	14
4.4 Резултати	15
5. Закључак	16

Списак слика

Слика 1 - дијаграм обраде	2
Слика 2 - представа шеме повезивања пинова Ардуина	13

1. Увод

Аутономна возила представљају један од најдинамичнијих и најперспективнијих праваца у савременој технологији. Њихова способност да самостално детектују окружење, доносе одлуке и безбедно се крећу без људске интервенције има потенцијал да револуционише транспорт, смањи број саобраћајних несрећа и унапреди ефикасност саобраћаја.

У оквиру овог пројекта развијен је модел аутономног возила опремљеног ултразвучним сензором, чија је основна улога да омогући препознавање и избегавање препрека током кретања. Ултразвучни сензори раде на принципу емитовања звучних таласа високих фреквенција и мерења времена потребног да се одбијени сигнал врати, што омогућава израчунавање удаљености од објеката у окружењу.

Циљ овог пројекта је демонстрација основних принципа аутономног управљања, обраде сензорских података и доношења једноставних одлука у реалном времену. Реализација је изведена на микроконтролерској платформи (Arduino), што омогућава једноставну имплементацију и тестирање у контролисаним условима.

1.1 Задатак

Реализовати програм који прима податке са ултразвучног сензора HC-SR04 и на основу њих зауставља кретање аута у близини препреке. Такође, програм прима сигнале са тастера и на основу њих контролише брзину и скретање аута.

Слика 1 - дијаграм обраде

2. Анализа проблема и концепт решења

Основни задатак овог пројекта је да се реализује једноставан прототип аутономног аутомобила који је способан да се креће напред, регулише брзину, управља правцем кретања и зауставља када се испред њега појави препрека.

У овом конкретном случају, сензорски систем се заснива на ултразвучном сензору растојања (HC-SR04), који мери растојање до најближе препреке испред возила. Обрада података се врши на микроконтролеру (Arduino), који на основу добијених вредности управља брзином ротације мотора (BLDC) и углом серво мотора за усмеравање точкова. Такође, систем укључује и тастере за ручну контролу правца и брзине, што омогућава полуаутономни режим рада и тестирање.

Проблем који треба решити је вишеструк:

- Обезбедити стабилно читање са ултразвучног сензора и израчунати растојање.
- Реаговати на опасне ситуације
- Управљати ротацијом точкова и мотором на основу задатих услова.
- Омогућити ручну контролу као допуну или алтернативу аутономном режиму.

Решење се реализује као **секвенцијални програм** који ради на Arduino платформи. Главне компоненте система су:

1. Сензорски модул

Ултразвучни сензор (HC-SR04) повезан је на Arduino и периодично емитује trigger сигнал и мери трајање есho сигнала. На основу тога се израчунава растојање до објекта испред возила.

2. Логички контролер (Arduino програм)

На основу очитане дистанце, ако је препрека ближа од задате границе (нпр. 8 cm), програм:

- зауставља мотор (поставља PWM вредност на 0),
- активира LED као индикацију,
- о блокира ручну контролу док је препрека присутна.

3. Погонски модул (BLDC мотор и серво)

- \circ PWM сигнал управља брзином мотора (са ограничењем од -100% до +100%),
- DIR сигнал одређује смер ротације,
- Servo сигналом се управља углом точкова у опсегу 0–180° (лево-десно).

4. Интерфејс за корисника

Тастери омогућавају ручно:

- о повећање/смањење брзине,
- о скретање улево/удесно.

5. Повратне информације преко Serial монитора

• Исписује се тренутна дистанца, брзина у RPM, број импулса са ротора и угао серво мотора.

Систем је реализован као реактивна петља у loop() функцији, где се у сваком кораку читају тастери, обрађује растојање, израчунавају команде и управља излазима.

3. Опис решења

3.1 Хардверски део и дефиниције

3.1.1 Дефинисање пинова

- Trig і Есhо пинови за ултразвучни сензор (HC-SR04),
 - trigPin
 - echoPin
- пинови тастера за управљање лево десно, убрзај, успори
 - BTN_SERVO_L
 - BTN_SERVO_R
 - BTN DEC
 - BTN INC
- пин серво мотора
 - SERVO_PIN

3.1.2 Константе

- EFF_STEP, EFF_START корак и почетна вредност "ефикасности" (брзине).
- SERVO_STEP, SERVO_MIN_ANGLE, SERVO_MAX_ANGLE подешавања угла за серво мотор.
- Нови типови података: pulses_t и dir_t за смер ротације (CW, CCW).
- Volatile променљиве pos и dir се користе за бројање импулса и смер мотора.

3.2 Модули и функције

- Функција set_abs_eff(u8 percents) Поставља излазни PWM сигнал на основу процентуалне вредности врши промену брзине
- Функција set dir(dir t d) Поставља правац ротације мотора
- Функција **pos_pulse()** ISR (interrupt service routine) која се позива при сваком импулсу са PG пина. Увећава pos, број импулса.
- Функција **set_eff(i8 eff)** Поставља брзину и смер мотора. Ако је eff > 0 мотор иде напред, ако је негативно уназад.

3.3 Иницијализација - setup()

- Иницијализује се серијска комуникација, сви пинови и прекидачи
- Иницијализује се Timer2 за PWM сигнал,
- Иницијализује се серво мотор и поставља се у средину (90°).
- Почиње се са иницијалном брзином преко set_eff(eff).

3.4 Главна логика - loop()

3.4.1Читање тастера

Тастери су повезани на INPUT PULLUP пинове. Промене стања (rising edge) се прате за:

- BTN INC, BTN DEC за повећање/смањење брзине,
- BTN SERVO L, BTN SERVO R за скретање улево/удесно (серво).

3.4.2 Ултразвучни сензор

- Активира се trigPin, мери се трајање импулса са echoPin.
- Израчунава се растојање (у cm). Ако је препрека ближа од 8cm, зауставља се мотор (eff = 0).

3.4.3 Ажурирање брзине и угла

• Ако је тастер притиснут, повећава/смањује се eff или угао servo angle.

• Позива се set_eff() и servo.write().

3.4.4 Исписивање података у Serial Monitor

- Приказују се вредности:
 - Број импулса роѕа
 - RPM (израчунат преко разлике импулса и времена),
 - о Тренутни угао серва.

3.5 ISR и Timer конфигурација

- TIMER2_COMPA_vect је резервисан за будуће коришћење (тренутно празна ISR функција).
- tc2 и irq се користе за директан приступ регистрима тајмера и прекида, вероватно дефинисани у avr_io_bitfields.h.

4. Тестирање

4.1 Циљ тестирања

Циљ тестирања је да се провери исправност рада система за управљање BLDC мотором и серво мотором, као и очитавање удаљености помоћу ултразвучног сензора.

4.2 Услови тестирања

Тестирање је извршено на Arduino Nano плочи повезаној са:

- BLDC мотором преко пинова DIR и PWM
- Ултразвучним сензором HC-SR04 на пиновима 6 (echo) и 7 (trig)
- Серво мотором на пину 8
- 4 тастера (за скретање и промену брзине) на пиновима 9–12

Слика 2 - представа шеме повезивања пинова Ардуина

4.3 Методологија

- Програм је покренут са иницијалним брзинама и средњим углом серво мотора.
- Притисцима на тастере BTN_INC и BTN_DEC проверавано је да ли се мења брзина обртања BLDC мотора.
- Tacтepu BTN_SERVO_L и BTN_SERVO_R коришћени су за скретање серво мотора лево и десно.
- Пред сензор је постављан објекат на мање од 8cm како би се активирала аутоматска реакција заустављања мотора.
- Преко серијског монитора праћене су вредности RPM, угао серво мотора, број импулса и измерена дистанца.

4.4 Резултати

- Тастери исправно мењају смер и брзину ротације мотора.
- Серво мотор реагује на притиске тастера и мења угао у дефинисаним корацима.
- Ултразвучни сензор детектује објекте на мањим растојањима и мотор се аутоматски зауставља.

5. Закључак

У овом пројекту реализована је функционална платформа која омогућава контролу брзине BLDC мотора и управљање смером кретања помоћу серво мотора. Контрола се врши тастерима, а безбедносни механизам је имплементиран преко ултразвучног сензора који зауставља мотор уколико се препрека налази на мањој удаљености од задате.

Систем је стабилан, тестиран у реалним условима и успешно испуњава све захтеве пројекта.