Un auto-morphisme bidendriforme de WQSym Séminaire ULCO

Hugo Mlodecki

Directeurs:

Florent Hivert Viviane Pons

18 Mars 2021

Exemples d'algèbres de Hopf

- Arbres binaires, PBT, Loday-Ronco
- Fonctions symétriques non-commutatives, Sym
- Fonctions quasi-symétriques, QSym
- Permutations, FQSym, Malvenuto-Reutenauer
- Mots tassés, WQSym, Hivert

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

ϵ

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- ϵ
- 1

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- ϵ
- 1
- 122111

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- ϵ
- 1
- 122111
- 123 132 213 231 312 321
 122 212 221 112 121 211 111

Définition

Un mot sur l'alphabet $\mathbb{N}_{>0}$ est dit **tassé** si toutes les lettres de 1 à son maximum m apparaissent au moins une fois.

Mots tassés de tailles 0, 1, 2 et 3

- ϵ
- 1
- 122111
- 123 132 213 231 312 321
 122 212 221 112 121 211 111

Mots tassés de taille n [OEIS A000670]

	n	1	2	3	4	5	6	7	8
ĺ	PW_n	1	3	13	75	541	4683	47293	545835

Tassement

Exemple

24154 **∉ PW**

Tassement

Exemple

 $pack(24154) = 23143 \in PW$ 24154 **∉ PW** mais

Tassement

Exemple

24154 **∉ PW**

mais

$$pack(24154) = 23143 \in PW$$

Une représentation : #lignes $\leq \#$ colonnes

retrait lignes vides

ightarrow pack ightarrow

2 3 1 4 3

Algèbre de Hopf

Exemple

•
$$_{3112} + _{212} - 3 _{212341} - \frac{5}{3} _{111}$$

Algèbre de Hopf

Exemple

$$\bullet \ \mathbb{R}_{3112} + \mathbb{R}_{212} - 3\mathbb{R}_{212341} - \frac{5}{3}\mathbb{R}_{111}$$

Exemple

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbf{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$

Algèbre de Hopf

Exemple

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\bullet \ \Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$

Exemple

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- $\mathbb{R}_{12}\mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $ullet \Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$
- Un produit associatif unitaire ·
- Un coproduit coassociatif counitaire Δ
- La relation de Hopf $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

 \mathbb{R}_{24231}

4 D > 4 A > 4 B > 4 B > B = 40 0

+

 \mathbb{R}_{24231}

 \mathbb{R}_{24231}

2 4 2 3

Déconcaténation réduite

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $+$
 \bullet
 1
 2
 1
 2
 1

+

2 4

 \mathbb{R}_{24231}

•

3

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$

+

 \mathbb{R}_{24231}

$$\mathbb{R}_{\epsilon}\otimes\mathbb{R}_{24231}$$
 $\mathbb{R}_{121}\otimes\mathbb{R}_{21}$

$$\mathbb{R}_{24231}$$
 $\overset{\Delta}{\longrightarrow}$

$$\mathbb{R}_{1312} \otimes \mathbb{R}_1$$
 + $\mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$

4

 \mathbb{Q}_{2413}

4

3

$$\mathbb{Q}_{\epsilon}\otimes\mathbb{Q}_{2413_{+}}\,\,\mathbb{Q}_{1}\otimes\mathbb{Q}_{132_{+}}\,\,\mathbb{Q}_{21}\otimes\mathbb{Q}_{21}$$

$$\mathbb{Q}_{2413}$$
 $\overset{\Delta}{\underset{\rightarrow}{\longrightarrow}}$ $\mathbb{Q}_{213}\otimes\mathbb{Q}_{1}$ $\mathbb{Q}_{2413}\otimes\mathbb{Q}_{\epsilon}$

Auto-dualité

ullet et $\mathbb Q$ bases de WQSym et WQSym*

Auto-dualité

- ullet et $\mathbb Q$ bases de **WQSym** et **WQSym***
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de **WQSym**

Auto-dualité

- ■ R et
 □ bases de WQSym et WQSym*
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de **WQSym**
- 2005 Foissy démontre l'auto-dualité des bigèbre bidendriforme (rigidité)

- ullet et $\mathbb Q$ bases de **WQSym** et **WQSym***
- 2001 Duchanp-Hivert-Thibon conjecturent l'auto-dualité de WQSym
- 2005 Foissy démontre l'auto-dualité des bigèbre bidendriforme (rigidité)
- Pas d'isomorphisme explicite

Demis coproduits

Exemple de coproduits gauche et droit

$$\bullet \ \ \tilde{\Delta}(\mathbb{R}_{242\underline{55}31}) = \mathbb{R}_{121} \otimes \mathbb{R}_{\underline{33}21} + \mathbb{R}_{121\underline{33}} \otimes \mathbb{R}_{21} + \mathbb{R}_{131\underline{44}2} \otimes \mathbb{R}_{1}$$

Demis coproduits

Exemple de coproduits gauche et droit

- $\bullet \ \ \tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\Delta_{\prec}(\mathbb{R}_{2425531}) = \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\Delta_{\succ}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321}$

Demis coproduits

Définitions

$$\Delta_{\prec}(\mathbb{R}_u) := \sum_{\substack{i=k\\\{u_1,\dots,u_i\}\cap\{u_{i+1},\dots,u_n\}=\emptyset\\u_k=\max(u)}}^{n-1} \mathbb{R}_{pack(u_1\cdots u_i)} \otimes \mathbb{R}_{pack(u_{i+1}\cdots u_n)},$$

$$\bullet \ \Delta_{\succ}(\mathbb{R}_u) := \sum_{\substack{i=1\\\{u_1,\dots,u_i\}\cap\{u_{i+1},\dots,u_n\}=\emptyset\\u_k=\mathsf{max}(u)}}^{k-1} \mathbb{R}_{\mathsf{pack}(u_1\cdots u_i)} \otimes \mathbb{R}_{\mathsf{pack}(u_{i+1}\cdots u_n)}$$

Exemple de coproduits gauche et droit

$$m{\Phi} ilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{12133}$$

•
$$\Delta_{\prec}(\mathbb{R}_{2425531}) = \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$$

$$ullet$$
 $\Delta_{\succ}(\mathbb{R}_{2425531})=\mathbb{R}_{121}\otimes\mathbb{R}_{3321}$

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Demis coproduits Éléments primitifs

Bigèbre bidendriforme

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Séries

n	1	2	3	4	5	6	7	8
WQSym _n	1	3	13	75	541	4 683	47 293	545 835
TPrim _n	1	1	4	28	240	2 384	26 832	337 168

10/24

Définition

- Raffinement de l'associativité et la coassociativité
 - 3 et 3 équations
- Raffinement de la relation de Hopf
 - 4 équations

Théorème [Foissy]

Si A est une bigèbre bidendriforme alors A est généré librement par $\mathsf{TPrim}(A)$ en tant qu'algèbre dendriforme.

Corollaire

WQSym est auto-duale.

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

 $\mathsf{Ex}:\,\mathbb{R}_{1213}-\mathbb{R}_{2321}$

Définitions

Élément primitif

$$P$$
 est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

$$ilde{\Delta}(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Élément totalement primitif

P est une élément totalement primitif $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

$$\mathsf{Ex}: \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$$

Définitions

Élément primitif

P est un éléments primitif $\iff \tilde{\Delta}(P) = 0$

$$Ex : \mathbb{R}_{1213} - \mathbb{R}_{2321}$$

$$ilde{\Delta}(\mathbb{R}_{1213}) = \Delta_{\succ}(\mathbb{R}_{1213}) = \mathbb{R}_{121} \otimes \mathbb{R}_{121}$$

$$\Delta(\mathbb{R}_{2321}) = \Delta_{\prec}(\mathbb{R}_{2321}) = \mathbb{R}_{121} \otimes \mathbb{R}_1$$

Elément totalement primitif

P est une élément totalement primitif $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

$$\mathsf{Ex}:\, \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$$

$$ilde{\Delta}(\mathbb{R}_{12443}) = \mathbb{R}_{1233} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{12} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{1332}$$

$$\tilde{\Delta}(\mathbb{R}_{21443}) = \mathbb{R}_{2133} \otimes \mathbb{R}_1$$
 $\mathbb{R}_{21} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{1332}$

$$ilde{\Delta}(\mathbb{R}_{23441}) = \mathbb{R}_{1233} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{12} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{2331}$$

$$ilde{\Delta}(\mathbb{R}_{32441}) = \mathbb{R}_{2133} \otimes \mathbb{R}_1 \qquad \mathbb{R}_{21} \otimes \mathbb{R}_{221} + \mathbb{R}_1 \otimes \mathbb{R}_{2331}$$

Isomorphisme bidendriforme explicite entre WQSym et sa duale

Mon but

Isomorphisme bidendriforme explicite entre WQSym et sa duale Isomorphisme explicite entre TPrim(WQSym) et le dual

Mon but

Isomorphisme bidendriforme explicite entre **WQSym** et sa duale Isomorphisme explicite entre TPrim(WQSym) et le dual

Construction de deux bases de totalement primitif (dans WQSym et WQSym*)

 F_{ske} (8767595394312)

 F_{ske} (8767595394312)

Factorisation en descentes globales

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$

Factorisation en descentes globales

+ tassement


```
F_{ske}(8767595394312) = T_{ske}(65453731721) T_{ske}(12)
```


$$F_{ske}(8767595394312) = T_{ske}(65453731721) T_{ske}(12)$$

Retrait des lettres de valeur max

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$

Factorisation en descentes globales

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$

Distinction de deux groupes de facteurs

 $F_{ske}(8767595394312) =$ $T_{ske}(65453731721)T_{ske}(12)$

Remise des lettres de valeur max + tassement

Irréductible rouge

Un mot tassé w est rouge irréductible si il n'est pas décomposable par cet algorithme.

Irréductible rouge

Un mot tassé w est rouge irréductible si il n'est pas décomposable par cet algorithme.

$F_{ske}(8767595394312) =$

Irréductible rouge

Un mot tassé w est rouge irréductible si il n'est pas décomposable par cet algorithme.

 $\forall n, RougeIrréductible_n = \mathsf{TPrim}_n$.

$$\mathbb{P}_{\underbrace{1}} := \mathbb{R}_{1},$$

$$\mathbb{P}_{t_{1},...,t_{k}} := (...(\mathbb{P}_{t_{k}} \prec ...) \prec \mathbb{P}_{t_{2}}) \prec \mathbb{P}_{t_{1}},$$

$$\mathbb{P}_{\underbrace{w}} := \langle \mathbb{P}_{\ell_{1}}, \mathbb{P}_{\ell_{2}}, ..., \mathbb{P}_{\ell_{g}}; \mathbb{P}_{T(w)} \rangle.$$

F(8767595394312) =

La partie droite!

F(8767595394312) =

Positions des max

F(8767595394312) =

Fils droits

On reboucle

F(8767595394312) =

F(8767595394312) =

$$egin{aligned} \mathbb{P}_{\stackrel{}{ o}} &:= \mathbb{R}_1, \ \mathbb{P}_{t_1,...,t_k} &:= (...(\mathbb{P}_{t_k} \prec ...) \prec \mathbb{P}_{t_2}) \prec \mathbb{P}_{t_1}, \ \mathbb{P}_{\ell_1} &:= \langle \mathbb{P}_{\ell_1}, \mathbb{P}_{\ell_2}, ..., \mathbb{P}_{\ell_g}; \mathbb{P}_{T(w)}
angle, \ \mathbb{P}_{\ell_1} &:= \Phi_I(\mathbb{P}_{r_1,...,r_d}). \end{aligned}$$

La base $\mathbb P$

$$\mathbb{P}_{1}:=\mathbb{R}_{1},$$
 $\mathbb{P}_{t_{1},...,t_{k}}:=(...(\mathbb{P}_{t_{k}}\prec...)\prec\mathbb{P}_{t_{2}})\prec\mathbb{P}_{t_{1}},$
 $\mathbb{P}_{t_{1},...,t_{k}}:=\langle\mathbb{P}_{\ell_{1}},\mathbb{P}_{\ell_{2}},...,\mathbb{P}_{\ell_{g}};\mathbb{P}_{T(w)}\rangle,$
 $\mathbb{P}_{\ell_{1}}$
 $\mathbb{P}_{\ell_{2}}:=\Phi_{I}(\mathbb{P}_{r_{1},...,r_{d}}).$

Exemple

La base \mathbb{P}

$$egin{aligned} \mathbb{P}_{\stackrel{}{ o}} &:= \mathbb{R}_1, \ \mathbb{P}_{t_1,...,t_k} &:= \left(...(\mathbb{P}_{t_k} \prec ...) \prec \mathbb{P}_{t_2}
ight) \prec \mathbb{P}_{t_1}, \ \mathbb{P}_{\ell_1} &:= \left\langle \mathbb{P}_{\ell_1}, \mathbb{P}_{\ell_2}, ..., \mathbb{P}_{\ell_g}; \mathbb{P}_{T(w)}
ight
angle, \ \mathbb{P}_{\ell_1} &:= \Phi_I(\mathbb{P}_{r_1,...,r_d}). \end{aligned}$$

Théorème [M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ est une base de **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ est une base de Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{P}_n}$ est une base de TPrim_n.

200

17/24

$F_{ske}^{*}(8967647523314)$

 $F_{ske}^{*}(8967647523314)$

Factorisation en descentes globales

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Factorisation en descentes globales + tassement + échange

$$F_{ske}^*$$
 (8967647523314) = T_{ske}^* (67647523314) T_{ske}^* (12)

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Retrait de la dernière lettre

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Factorisation en descentes globales

$$F_{ske}^*(8967647523314) = T_{ske}^*(67647523314) T_{ske}^*(12)$$

Distinction de deux groupes de facteurs

$F_{cke}^*(8967647523314) =$ $T_{ske}^*(67647523314)T_{ske}^*(12) =$ $T_{ske}^{*}(12)$

Irréductible bleu

Un mot tassé w est **bleu irréductible** si il n'est pas décomposable par cet algorithme.

$$F_{ske}^{*}(8967647523314) = T_{ske}^{*}(67647523314) T_{ske}^{*}(12) = T_{ske}^{*}(12) = T_{ske}^{*}(12)$$

On boucle

Irréductible bleu

Un mot tassé w est **bleu irréductible** si il n'est pas décomposable par cet algorithme.

$$F_{ske}^*(8967647523314) =$$

Irréductible bleu

Un mot tassé w est **bleu irréductible** si il n'est pas décomposable par cet algorithme.

 $\forall n, BleuIrréductible_n = RougeIrréductible_n = TPrim_n$.

$$\mathbb{O}_{\widehat{\mathbb{I}}} := \mathbb{Q}_{1},$$

$$\mathbb{O}_{t_{1},...,t_{k}} := (...(\mathbb{O}_{t_{k}} \prec ...) \prec \mathbb{O}_{t_{2}}) \prec \mathbb{O}_{t_{1}},$$

$$\mathbb{O} := \langle \mathbb{O}_{\ell_{1}}, \mathbb{O}_{\ell_{2}}, ..., \mathbb{O}_{\ell_{g}}; \mathbb{O}_{T^{*}(w)} \rangle.$$

$F^*(8967647523314) =$

La partie droite!

$$F^*(8967647523314) =$$

La dernière lettre est-elle présente dans le reste du mot?

Fils droits

 $F^*(8967647523314) =$

Forêt bleu de 8967647523314

	•			•	
•		•			
×	←	←	←	←	0
			•		
3	4	3	1	4	2

Forêt bleu de 8967647523314

$F^*(8967647523314) =$

La base O

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{T^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi^{lpha}_i(\mathbb{O}_r).$$

La base ①

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{\mathcal{T}^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi_i^{lpha}(\mathbb{O}_r).$$

Exemple

 $\mathbb{Q}_{531442} + \mathbb{Q}_{521443} + \mathbb{Q}_{512443} - \mathbb{Q}_{534142} - \mathbb{Q}_{534142}$ $\mathbb{Q}_{524143} - \mathbb{Q}_{514243} - \mathbb{Q}_{514432} - \mathbb{Q}_{524431} \mathbb{Q}_{514423} + \mathbb{Q}_{541432} + \mathbb{Q}_{542431} + \mathbb{Q}_{541423}$

La base O

$$\mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\mathbb{Q}_1, \ \mathbb{O}_{t_1,...,t_k}:=(...(\mathbb{O}_{t_k}\prec...)\prec\mathbb{O}_{t_2})\prec\mathbb{O}_{t_1}, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\langle\mathbb{O}_{\ell_1},\mathbb{O}_{\ell_2},...,\mathbb{O}_{\ell_g};\mathbb{O}_{\mathcal{T}^*(w)}
angle, \ \mathbb{O}_{\stackrel{}{\mathbb{O}}}:=\Psi^{lpha}_i(\mathbb{O}_r).$$

Théorème [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}^*_n}$ est une base de **WQSym**_n*,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}^*_n}$ est une base de Prim $_n^*$,
- $(\mathbb{O}_t)_{t\in\mathfrak{N}^*}$ est une base de TPrim_n.

21/24

Théorème [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_n^*}$ base de **WQSym**_n,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_n^*}$ base de Prim_n,
- $(\mathbb{O}_t)_{t \in \mathfrak{P}_n^*}$ base de TPrim $_n^*$.

$\mathsf{Th\'{e}or\`{e}me[M.]}$

Forêts Bicolors

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ base de **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ base de Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{P}_n}$ base de TPrim_n.

Rigidité

∀ bijection entre les mots irréductibles bleus et rouges, recoloration des squelettes

$$T_{ske}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$$

 $T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9)$

 $T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9)$

 $T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$

 $T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$

$$T_{bi}^*(13, 13, 13, 12, 12, 12, 14, 11, 11, 14, 9, 15, 10, 5, 8, 7, 6, 5, 3, 2, 1, 3, 4, 4, 9) =$$

 $T_{ske}(14, 12, 11, 13, 13, 14, 7, 10, 9, 8, 7, 5, 15, 6, 3, 3, 4, 2, 2, 2, 1, 1, 1, 4, 5) =$

Théorèmes [M.]

Théorème [M.]

- $(\mathbb{O}_f)_{f \in \mathfrak{F}_n^*}$ base de **WQSym** $_n^*$,
- $(\mathbb{O}_t)_{t\in\mathfrak{T}_n^*}$ base de $Prim_n^*$,
- $(\mathbb{O}_t)_{t\in\mathfrak{P}_n^*}$ base de TPrim $_n^*$.

Théorème [M.]

- $(\mathbb{P}_f)_{f \in \mathfrak{F}_n}$ base de **WQSym**_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ base de Prim_n,
- $(\mathbb{P}_t)_{t\in\mathfrak{P}_n}$ base de TPrim_n.

Bijection [M.]

Involution grâce aux forêts bicolores.

Isomorphisme bidendriforme entre WQSym et WQSym*.

