Reto - Titanic: Machine Learning from Disaster

Lautaro Gabriel Coteja - A01571214

Daniela Jiménez Téllez - A01654798

Andrés Villarreal González - A00833915

Héctor Hibran Tapia Fernández - A01661114

Link del repositorio:

https://github.com/Lautaro000/Inteligencia-Artificial-Avanzada-para-la-Ciencia-de-Datos-l

Importamos librerias

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import plotly.express as px
   import matplotlib.pyplot as plt
   import plotly.graph_objects as go
In [2]: plt.style.use('dark_background')
```

Importamos dataset (train)

```
In [3]: df = pd.read_csv('/content/train.csv')
   pd.reset_option('display.max_rows')
   df
```

3]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
	•••												
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 12 columns

Recordamos que se descompone de la siguiente forma el dataset:

- train: Contiene las 12 columnas del dataset, solo tenemos del pasajero 1 al 891.
- test: Contiene 11 columnas del dataset, se quitó "Survived", tenemos del pasajero 892 al 1309.
- gender_submission: Contiene la columna "Survived" del test, con los mismos pasarejos, se usará como comparación de respuesta al finalizar el modelo.

Documentación

Variable	Definición	Clave
survival	Supervivencia	0 = No, 1 = Sí
pclass	Clase de ticket	$1 = 1^a, 2 = 2^a, 3 = 3^a$
sex	Sexo	
Age	Edad en años	
sibsp	Nº de hermanos / cónyuges a bordo	
parch	Nº de padres / hijos a bordo	
ticket	Número de ticket	
fare	Tarifa del pasajero	
cabin	Número de camarote	
embarked	Puerto de embarque	C = Cherburgo, Q = Queenstown, S = Southampton

Notas sobre las variables:

- **pclass:** Un indicador de estatus socioeconómico (SES)
 - 1^a = Alta
 - 2^a = Media
 - 3^a = Baja
- edad: La edad es fraccionaria si es menor de 1. Si la edad es estimada, se presenta en la forma xx.5
- sibsp: El conjunto de datos define las relaciones familiares de la siguiente manera:
 - Hermano/a = hermano, hermana, hermanastro/a
 - Cónyuge = esposo, esposa (se ignoran amantes y prometidos)
- parch: El conjunto de datos define las relaciones familiares de la siguiente manera:
 - Padre/madre = madre, padre
 - Hijo/a = hija, hijo, hijastra/o
 - Algunos niños viajaban solo con una niñera, por lo que parch=0 para ellos.

In [4]: df.describe()

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Procesamientos de Datos

dtype: int64

Aquí "Cabin," está sospechoso como llenarlo, por ahora no la borraremos, pero la tendremos sí es necesario borrarla en el futuro.

Vamos a hacer experimentos...

Vamos a Rellenar los datos con interpolación

```
In [6]:
        df["Title"] = df["Name"].apply(lambda x: x.split(",")[1].split(".")[0].strip())
        df_mr = df[df["Title"] == "Mr"]
         df_mr[df_mr.isnull().any(axis = 1)]
         df_mr.loc[:, "Age"] = df_mr["Age"].interpolate(method = "linear")
         df_miss = df[df["Title"] == "Miss"]
         df_miss.loc[:, "Age"] = df_miss["Age"].interpolate(method = "linear")
         df_mrs = df[df["Title"] == "Mrs"]
         df_mrs.loc[:, "Age"] = df_mrs["Age"].interpolate(method = "linear")
         df_master = df[df["Title"] == "Master"]
         df_master.loc[:, "Age"] = df_master["Age"].interpolate(method = "linear")
         df_extra = df[~df["Title"].isin(["Mr", "Miss", "Mrs", "Master"])]
        mean_age_dr = df_extra[df_extra["Title"] == "Dr"]["Age"].mean()
         df_extra.loc[(df["Title"] == "Dr") & (df["Age"].isnull()), "Age"] = mean_age_dr
         df_list = [df_mr, df_miss, df_mrs, df_master, df_extra]
         df = pd.concat(df list, ignore index = True)
```

In [7]: pd.set_option('display.max_rows', None)
 df.head(10)

t[7]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Em
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
	2	6	0	3	Moran, Mr. James	male	44.5	0	0	330877	8.4583	NaN	
	3	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	
	4	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	NaN	
	5	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	31.2750	NaN	
	6	18	1	2	Williams, Mr. Charles Eugene	male	37.0	0	0	244373	13.0000	NaN	
	7	21	0	2	Fynney, Mr. Joseph J	male	35.0	0	0	239865	26.0000	NaN	
	8	22	1	2	Beesley, Mr. Lawrence	male	34.0	0	0	248698	13.0000	D56	
	9	24	1	1	Sloper, Mr. William Thompson	male	28.0	0	0	113788	35.5000	A6	

`

```
In [8]:
         df['Cabin'] = df['Cabin'].fillna(df['Cabin'].mode()[0])
         df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
         df["Family"] = df["SibSp"] + df["Parch"] + 1
In [9]: from sklearn.preprocessing import OneHotEncoder
         def transform_dataframe(df):
             encoder = OneHotEncoder(sparse_output = False, handle_unknown = 'ignore')
             matrix = encoder.fit_transform(df[['Embarked']])
             column_names = ["C", "Q", "S"]
             for i in range(len(matrix.T)):
                  df[column_names[i]] = matrix.T[i]
             matrix = encoder.fit_transform(df[['Sex']])
             column_names = ["Female", "Male"]
             for i in range(len(matrix.T)):
                  df[column_names[i]] = matrix.T[i]
             return df
         pd.reset_option('display.max_rows')
In [10]:
         transform_dataframe(df)
```

Out[10]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	B96 B98
	1	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	B96 B98
	2	6	0	3	Moran, Mr. James	male	44.5	0	0	330877	8.4583	B96 B98
	3	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46
	4	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	B96 B98
	•••											•••
	886	767	0	1	Brewe, Dr. Arthur Jackson	male	42.0	0	0	112379	39.6000	B96 B98
	887	797	1	1	Leader, Dr. Alice (Farnham)	female	49.0	0	0	17465	25.9292	D17
	888	823	0	1	Reuchlin, Jonkheer. John George	male	38.0	0	0	19972	0.0000	B96 B98
	889	849	0	2	Harper, Rev. John	male	28.0	0	1	248727	33.0000	B96 B98
	890	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	B96 B98

891 rows × 19 columns

In [11]: df.isnull().sum()

dtype: int64

Guardamos el Dataset limpio de "train.csv"

```
In [14]: df.to_csv('/content/train_cleaned_INTER.csv', index = False)
    df_train_cleaned = pd.read_csv('/content/train_cleaned_INTER.csv')

In [15]: from google.colab import drive
    drive.mount('/content/drive')
    Mounted at /content/drive
```

Ya que tenemos 0 valores nulos, podemos iniciar con el análisis.

Análisis de Datos

```
df_train_cleaned.info()
In [16]:
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 19 columns):

#	Column	Non-	-Null Count	Dtype
0	PassengerId	891	non-null	int64
1	Survived	891	non-null	int64
2	Pclass	891	non-null	int64
3	Name	891	non-null	object
4	Sex	891	non-null	object
5	Age	891	non-null	float64
6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Cabin	891	non-null	object
11	Embarked	891	non-null	object
12	Title	891	non-null	object
13	Family	891	non-null	int64
14	С	891	non-null	float64
15	Q	891	non-null	float64
16	S	891	non-null	float64
17	Female	891	non-null	float64
18	Male	891	non-null	float64
dtyp	es: float64(7), in	nt64(6), obj	ect(6)

memory usage: 132.4+ KB

df_train_cleaned.describe(include = 'all')

Tick	Parch	SibSp	Age	Sex	Name	Pclass	Survived	Passengerld		Out[17]:
89	891.000000	891.000000	891.000000	891	891	891.000000	891.000000	891.000000	count	
68	NaN	NaN	NaN	2	891	NaN	NaN	NaN	unique	
34708	NaN	NaN	NaN	male	Braund, Mr. Owen Harris	NaN	NaN	NaN	top	
	NaN	NaN	NaN	577	1	NaN	NaN	NaN	freq	
Na	0.381594	0.523008	29.807054	NaN	NaN	2.308642	0.383838	446.000000	mean	
Na	0.806057	1.102743	13.883697	NaN	NaN	0.836071	0.486592	257.353842	std	
Na	0.000000	0.000000	0.420000	NaN	NaN	1.000000	0.000000	1.000000	min	
Na	0.000000	0.000000	21.000000	NaN	NaN	2.000000	0.000000	223.500000	25%	
Na	0.000000	0.000000	28.000000	NaN	NaN	3.000000	0.000000	446.000000	50%	
Na	0.000000	1.000000	38.125000	NaN	NaN	3.000000	1.000000	668.500000	75%	
Na	6.000000	8.000000	80.000000	NaN	NaN	3.000000	1.000000	891.000000	max	

```
fig = px.histogram(df_train_cleaned, x = "Survived", color = "Sex", barmode = "group",
In [18]:
                             color_discrete_map = {'male': '#00FFFF', 'female': '#FF69B4'})
         fig.update_xaxes(tickvals = [0, 1], ticktext = ['Not Survived', 'Survived'], title_tex
         fig.update_traces(textposition = 'outside', textfont_color = 'white')
         fig.update_layout(
              title_text = 'Survivors by Sex',
             title_x = 0.5,
              plot_bgcolor = 'black',
              paper_bgcolor = 'black',
              font_color = 'white',
             xaxis = dict(
                 color = 'white'
             yaxis = dict(
                 color = 'white'
              legend = dict(
                 font = dict(
                     color = 'white'
              )
         fig.show()
```

```
In [19]: fig = px.histogram(
             df_train_cleaned,
             x = "Fare",
             color = "Survived",
             marginal = "box",
             nbins = 50,
             title = "Distribution of Survival Fees",
             color_discrete_map = {0: "#ff073a", 1: "#39ff14"},
             category_orders = {"Survived": [0, 1]}
         )
         fig.for_each_trace(lambda t: t.update(name=t.name.replace("0", "Not Survived").replace
         fig.update_layout(
             title_x = 0.5,
             plot_bgcolor = 'black',
             paper_bgcolor = 'black',
             font_color = 'white',
             title_font = dict(color = 'white'),
             legend_bgcolor = 'black',
             legend_font = dict(color = 'white')
         fig.show()
```

```
In [20]: fig = px.histogram(
             df_train_cleaned,
             x = "Age",
             color = "Survived",
             marginal = "box",
             nbins = 50,
             title = "Age Distribution",
             color_discrete_map = {0: "#ff073a", 1: "#39ff14"},
             category_orders = {"Survived": [0, 1]}
         )
         fig.for_each_trace(lambda t: t.update(name=t.name.replace("0", "Not Survived").replace
         fig.update_layout(
             title_x = 0.5,
             plot_bgcolor = 'black',
             paper_bgcolor = 'black',
             font_color = 'white',
             title_font = dict(color = 'white'),
             legend_bgcolor = 'black',
             legend_font = dict(color = 'white')
         fig.show()
```

```
In [21]: pclass_counts = df_train_cleaned['Pclass'].value_counts().sort_index()
         fig = go.Figure(data = [go.Bar(
             x = pclass_counts.index,
             y = pclass_counts.values,
             text = pclass_counts.values,
             textposition = 'outside',
             marker_color = ['#FFD700', '#C0C0C0', '#CD7F32'],
             marker_line_color = ['#FFD700', '#C0C0C0', '#CD7F32'],
             marker_line_width = 2
         )])
         fig.update_traces(
             textposition = 'outside',
             textfont = dict(size = 14),
             cliponaxis = False,
             offsetgroup = 0
         fig.update_traces(y = [v + 20 for v in pclass_counts.values])
         fig.update_layout(
             title = 'Number of People per Class',
             xaxis_title = ' ',
             yaxis_title = 'Count',
             xaxis = dict(
```

```
tickmode = 'array',
        tickvals = [1, 2, 3],
        ticktext = ['1st Class', '2nd Class', '3rd Class'],
        linecolor = 'gray',
        gridcolor = 'black'
    ),
    yaxis = dict(
        range = [0, 520],
        linecolor = 'gray',
        gridcolor = 'gray'
    bargap = 0.2,
    width = 700,
    height = 500,
    plot_bgcolor = 'black',
    paper_bgcolor = 'black',
    font = dict(color = 'white'),
    title_font = dict(color = 'white')
)
fig.show()
```

```
fig.update_xaxes(title_text = ' ', tickvals = [1, 2, 3], ticktext = ['1st Class', '2nc
fig.update_traces(textposition = 'outside', textfont_color = 'white')
fig.update_layout(
    width = 1000,
    height = 500,
    plot_bgcolor = 'black',
    paper_bgcolor = 'black',
    font_color = 'white',
    xaxis = dict(
        color = 'white'
    ),
    yaxis = dict(
        color = 'white'
    legend = dict(
        font = dict(
            color = 'white'
        )
fig.show()
```

>

```
In [23]: | df_count = df_train_cleaned.groupby(['Survived', 'Pclass']).size().reset_index(name =
         fig = go.Figure()
         pclass_names = {1: '1st Class', 2: '2nd Class', 3: '3rd Class'}
         survival_labels = {0: 'Not Survived', 1: 'Survived'}
         for pclass in sorted(df train cleaned['Pclass'].unique()):
             filtered df = df count[df count['Pclass'] == pclass]
             filtered_df['Survived'] = filtered_df['Survived'].map(survival_labels)
             fig.add trace(go.Bar(
                 x = filtered df['Survived'],
                 y = filtered_df['count'],
                 name = pclass names[pclass],
                 text = filtered_df['count'],
                 textposition = 'outside',
                 marker_color = ['#FFD700', '#C0C0C0', '#CD7F32'][pclass-1],
                 marker_line_color = ['#FFD700', '#C0C0C0', '#CD7F32'][pclass-1],
                 marker_line_width = 2
             ))
         fig.update_layout(
             title_text = 'Survivors per Class',
             xaxis_title = ' ',
             barmode = 'group',
             plot_bgcolor = 'black',
             paper_bgcolor = 'black',
             font = dict(color = 'white'),
             title_font = dict(color = 'white')
         fig.show()
         <ipython-input-23-a8f29d6a8b23>:10: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
```

```
<ipython-input-23-a8f29d6a8b23>:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
```

```
In [24]: df_train_cleaned['Título'] = df_train_cleaned['Name'].str.extract(r'([A-Za-z]+)\.')
         title_counts = df_train_cleaned['Título'].value_counts().reset_index()
         title_counts.columns = ['Título', 'Count']
         title_counts = title_counts.iloc[::-1].reset_index(drop = True)
         neon_colors = [
             '#39FF14', '#0AFF0A', '#00FFFF', '#00BFFF', '#FF00FF', '#FF1493',
             '#FF4500', '#FFD700', '#ADFF2F', '#7FFF00', '#00FF7F', '#32CD32',
             '#00FA9A', '#00CED1', '#1E90FF', '#8A2BE2', '#FF69B4'
         ]
         fig = go.Figure()
         for i, row in title_counts.iterrows():
             fig.add_trace(go.Bar(
                 y = [row['Título']],
                 x = [row['Count']],
                 orientation = 'h',
                 name = row['Título'],
                 marker = dict(color = neon_colors[i % len(neon_colors)]),
                 text = row['Count'],
                 textposition = 'outside'
             ))
```

```
fig.update_layout(
    template = 'plotly_dark',
    plot_bgcolor = '#000000',
    paper_bgcolor = '#000000',
    font = dict(color = 'white'),
    title = 'Number of People per Title',
    xaxis = dict(title = 'Count'),
    yaxis = dict(title = 'Title'),
    height = 550
)
fig.show()
```

```
text = f'{age:.2f}',
    textposition = 'inside'
))

fig.update_layout(
    template = 'plotly_dark',
    plot_bgcolor = '#000000',
    paper_bgcolor = '#000000',
    font = dict(color = 'white'),
    title = 'Average Age by Title',
    xaxis = dict(title = 'Age'),
    yaxis = dict(title = 'Title'),
    height = 550
)
```

Dropeamos variables que no necesitamos

```
In [26]: df_train_cleaned = df_train_cleaned.drop(['Sex', 'Embarked', 'Name', 'Ticket', 'Cabin'
In [27]: df_train_cleaned.head(20)
```

Out[27]:		PassengerId	Survived	Pclass	Age	Fare	Family	c	Q	S	Female	Male
	0	1	0	3	22.0	7.2500	2	0.0	0.0	1.0	0.0	1.0
	1	5	0	3	35.0	8.0500	1	0.0	0.0	1.0	0.0	1.0
	2	6	0	3	44.5	8.4583	1	0.0	1.0	0.0	0.0	1.0
	3	7	0	1	54.0	51.8625	1	0.0	0.0	1.0	0.0	1.0
	4	13	0	3	20.0	8.0500	1	0.0	0.0	1.0	0.0	1.0
	5	14	0	3	39.0	31.2750	7	0.0	0.0	1.0	0.0	1.0
	6	18	1	2	37.0	13.0000	1	0.0	0.0	1.0	0.0	1.0
	7	21	0	2	35.0	26.0000	1	0.0	0.0	1.0	0.0	1.0
	8	22	1	2	34.0	13.0000	1	0.0	0.0	1.0	0.0	1.0
	9	24	1	1	28.0	35.5000	1	0.0	0.0	1.0	0.0	1.0
	10	27	0	3	23.5	7.2250	1	1.0	0.0	0.0	0.0	1.0
	11	28	0	1	19.0	263.0000	6	0.0	0.0	1.0	0.0	1.0
	12	30	0	3	42.5	7.8958	1	0.0	0.0	1.0	0.0	1.0
	13	34	0	2	66.0	10.5000	1	0.0	0.0	1.0	0.0	1.0
	14	35	0	1	28.0	82.1708	2	1.0	0.0	0.0	0.0	1.0
	15	36	0	1	42.0	52.0000	2	0.0	0.0	1.0	0.0	1.0
	16	37	1	3	31.5	7.2292	1	1.0	0.0	0.0	0.0	1.0
	17	38	0	3	21.0	8.0500	1	0.0	0.0	1.0	0.0	1.0
	18	43	0	3	21.0	7.8958	1	1.0	0.0	0.0	0.0	1.0
	19	46	0	3	21.0	8.0500	1	0.0	0.0	1.0	0.0	1.0

							paradion					
Passengerid -	1	-0.005	-0.035	0.032	0.013	-0.04	-0.0012	-0.034	0.022	-0.043	0.043	- 1
Survived -	-0.005	1	-0.34	-0.081	0.26	0.017	0.17	0.0037	-0.15	0.54	-0.54	
Pclass -	-0.035	-0.34	1	-0.34	-0.55	0.066	-0.24	0.22	0.074	-0.13	0.13	
Age -	0.032	-0.081	-0.34	1	0.098	-0.26	0.034	-0.032	-0.009	-0.11	0.11	
Fare -	0.013	0.26	-0.55	0.098	1	0.22	0.27	-0.12	-0.16	0.18	-0.18	
Family -	-0.04	0.017	0.066	-0.26	0.22	1	-0.046	-0.059	0.077	0.2	-0.2	- 0
С-	-0.0012	0.17	-0.24	0.034	0.27	-0.046	1	-0.15	-0.78	0.083	-0.083	
Q -	-0.034	0.0037	0.22	-0.032	-0.12	-0.059	-0.15	1		0.074	-0.074	
S -	0.022	-0.15	0.074	-0.009	-0.16	0.077	-0.78	-0.5	1	-0.12	0.12	
Female -	-0.043	0.54	-0.13	-0.11	0.18	0.2	0.083	0.074	-0.12	1	-1	
Male -	0.043	-0.54	0.13	0.11	-0.18	-0.2	-0.083	-0.074	0.12	-1	1	
	Passengerid -	Survived -	Pclass -	Age -	Fare -	Family -	- O	- o	S-	Female -	Male -	1

Modelos Predictivos

Regresión Logística

```
In [30]: X = df_train_cleaned.drop('Survived', axis = 1).values
y = df_train_cleaned['Survived'].values

X = np.hstack((np.ones((X.shape[0], 1)), X))
theta = np.zeros(X.shape[1])

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_cost(X, y, theta):
    m = len(y)
    h = sigmoid(X @ theta)
    cost = (1/m) * (-y @ np.log(h) - (1 - y) @ np.log(1 - h))
    return cost
```

```
def gradient_descent(X, y, theta, alpha, num_iterations):
            m = len(y)
            cost_history = []
            for _ in range(num_iterations):
                h = sigmoid(X @ theta)
                theta -= (alpha/m) * (X.T @ (h - y))
                cost_history.append(compute_cost(X, y, theta))
            return theta, cost_history
         alpha = 0.000033
         num_iterations = 100000
        theta, cost_history = gradient_descent(X, y, theta, alpha, num_iterations)
         print("Parámetros finales (theta):", theta)
        print("Costo final:", cost_history[-1])
        764 -0.09055647
          0.0474905 0.01628143 -0.0505286
                                           0.31605913 -0.3028158 ]
        Costo final: 0.5458265999750608
In [31]: from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score
        predictions = sigmoid(X @ theta) >= 0.5
         cm = confusion_matrix(y, predictions)
         plt.figure(figsize = (6, 4))
         sns.heatmap(cm, annot = True, fmt = 'd', cmap = 'Blues')
         plt.xlabel('Predicción')
         plt.ylabel('Real')
         plt.title('Matriz de Confusión')
```



```
In [32]: fpr, tpr, thresholds = roc_curve(y, sigmoid(X @ theta))
    roc_auc = roc_auc_score(y, sigmoid(X @ theta))

plt.figure(figsize = (10, 6))
    plt.plot(fpr, tpr, label = f'ROC Curve (AUC = {roc_auc:.2f})')
    plt.plot([0, 1], [0, 1], linestyle = '--', color = 'r', label = 'Random Guess')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Curva ROC')
    plt.legend()
    plt.show()
```


Procesamiento de datos con "test.csv"

```
In [33]: test_df = pd.read_csv('/content/test.csv')
  test_df.head()
```

Out[33]:		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

```
test_df["Title"] = test_df["Name"].apply(lambda x: x.split(",")[1].split(".")[0].strip
In [34]:
         df_mr = test_df[test_df["Title"] == "Mr"]
         df_mr[df_mr.isnull().any(axis = 1)]
         df_mr.loc[:, "Age"] = df_mr["Age"].interpolate(method = "linear")
         df_miss = test_df[test_df["Title"] == "Miss"]
         df_miss.loc[:, "Age"] = df_miss["Age"].interpolate(method = "linear")
         df_mrs = test_df[test_df["Title"] == "Mrs"]
         df_mrs.loc[:, "Age"] = df_mrs["Age"].interpolate(method = "linear")
         df_master = test_df[test_df["Title"] == "Master"]
         df_master.loc[:, "Age"] = df_master["Age"].interpolate(method = "linear")
         df_extra = test_df[~test_df["Title"].isin(["Mr", "Miss", "Mrs", "Master"])]
         mean_age_dr = df_extra[df_extra["Title"] == "Dr"]["Age"].mean()
         df_extra.loc[(test_df["Title"] == "Dr") & (test_df["Age"].isnull()), "Age"] = mean_age
         df_list = [df_mr, df_miss, df_mrs, df_master, df_extra]
         test_df = pd.concat(df_list, ignore_index = True)
In [35]: | test_df['Cabin'] = test_df['Cabin'].fillna(test_df['Cabin'].mode()[0])
         test_df['Embarked'] = test_df['Embarked'].fillna(test_df['Embarked'].mode()[0])
```

dtype: int64

```
In [36]: pd.reset_option('display.max_rows')
transform_dataframe(test_df)
```

30 PIVI						KLC	omparac	ion				
[36]:		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	B57 B59 B63 B66	Q
	1	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	B57 B59 B63 B66	Q
	2	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	B57 B59 B63 B66	S
	3	897	3	Svensson, Mr. Johan Cervin	male	14.0	0	0	7538	9.2250	B57 B59 B63 B66	S
	4	899	2	Caldwell, Mr. Albert Francis	male	26.0	1	1	248738	29.0000	B57 B59 B63 B66	S
	413	1041	2	Lahtinen, Rev. William	male	30.0	1	1	250651	26.0000	B57 B59 B63 B66	S
	414	1056	2	Peruschitz, Rev. Joseph Maria	male	41.0	0	0	237393	13.0000	B57 B59 B63 B66	S
	415	1094	1	Astor, Col. John Jacob	male	47.0	1	0	PC 17757	227.5250	C62 C64	С
	416	1185	1	Dodge, Dr. Washington	male	53.0	1	1	33638	81.8583	A34	S
	417	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	C
2	118 rc	ows × 18 colu	umns									

Guardamos el Dataset limpio de "test.csv"

```
test_df.to_csv('/content/test_cleaned_INTER.csv', index = False)
test_df_cleaned = pd.read_csv('/content/test_cleaned_INTER.csv')
```

Corremos el modelo pero ahora con "test.csv"

```
In [40]: X_test = test_df_cleaned.values
    X_test = np.hstack((np.ones((X_test.shape[0], 1)), X_test))

def predict(X, theta):
    probabilities = sigmoid(X @ theta)
    return (probabilities >= 0.5).astype(int)

predictions = predict(X_test, theta)

test_df_cleaned['Survived'] = predictions
```

Comparamos resultados con gender_submission.csv

Out[44]:		PassengerId	Survived_pred	Survived_real
	0	892	0	0
	1	894	0	0
	2	895	0	0
	3	897	0	0
	4	899	0	0
	5	901	0	0
	6	902	0	0
	7	903	0	0
	8	905	0	0
	9	908	0	0

Referencias

https://www.kaggle.com/code/abhinavatall/titanic-dataset-top-3-accuracy-with-ensambling

https://www.kaggle.com/code/vinothan/titanic-model-with-90-accuracy