# 目 录

| 1 A | ·RP 攻击防御 ···································· | 1-1  |
|-----|-----------------------------------------------|------|
|     | 1.1 ARP 攻击防御简介                                | 1-1  |
|     | 1.2 ARP 攻击防御配置任务简介                            | 1-1  |
|     | 1.3 配置 ARP 防止 IP 报文攻击功能                       | 1-1  |
|     | 1.3.1 功能简介                                    | 1-1  |
|     | 1.3.2 配置 ARP 源抑制功能                            | 1-2  |
|     | 1.3.3 配置 ARP 黑洞路由功能                           | 1-2  |
|     | 1.3.4 ARP 防止 IP 报文攻击显示和维护                     | 1-3  |
|     | 1.4 配置源 MAC 地址固定的 ARP 攻击检测功能                  | 1-3  |
|     | 1.4.1 功能简介                                    | 1-3  |
|     | 1.4.2 配置限制和指导                                 | 1-3  |
|     | 1.4.3 配置步骤                                    | 1-3  |
|     | 1.4.4 源 MAC 地址固定的 ARP 攻击检测显示和维护               | 1-4  |
|     | 1.4.5 源 MAC 地址固定的 ARP 攻击检测功能配置举例              | 1-4  |
|     | 1.5 配置 ARP 报文源 MAC 地址一致性检查功能                  | 1-5  |
|     | 1.6 配置 ARP 主动确认功能                             | 1-6  |
|     | 1.7 配置授权 ARP 功能                               | 1-6  |
|     | 1.7.1 功能简介                                    | 1-6  |
|     | 1.7.2 配置步骤                                    | 1-7  |
|     | 1.7.3 授权 ARP 功能在 DHCP 服务器上的典型配置举例             | 1-7  |
|     | 1.7.4 授权 ARP 功能在 DHCP 中继上的典型配置举例              | 1-8  |
|     | 1.8 配置 ARP Detection 功能                       | 1-9  |
|     | 1.8.1 功能简介                                    | 1-9  |
|     | 1.8.2 用户合法性检查                                 | 1-10 |
|     | 1.8.3 ARP 报文有效性检查                             | 1-11 |
|     | 1.8.4 ARP 报文强制转发                              | 1-12 |
|     | 1.8.5 ARP Detection 显示和维护                     | 1-12 |
|     | 1.8.6 用户合法性检查配置举例                             | 1-13 |
|     | 1.9 配置 ARP 自动扫描、固化功能                          | 1-15 |
|     | 1.10 配置 ARP 网关保护功能                            | 1-16 |
|     | 1.10.1 功能简介                                   | 1-16 |
|     | 1.10.2 配置限制和指导                                | 1-16 |
|     | 1.10.3 配置步骤                                   | 1-16 |

i

|      | 1.10.4 ARP 网关保护功能配置举例 | 1-16 |
|------|-----------------------|------|
| 1.11 | I 配置 ARP 过滤保护功能       | 1-17 |
|      | 1.11.1 功能简介           | 1-17 |
|      | 1.11.2 配置限制和指导        | 1-18 |
|      | 1.11.3 配置步骤           | 1-18 |
|      | 1.11.4 ARP 过滤保护功能配置举例 | 1-18 |

# 1 ARP 攻击防御

# 1.1 ARP攻击防御简介

设备提供了多种 ARP 攻击防御技术对局域网中的 ARP 攻击和 ARP 病毒进行防范、检测和解决。 常见的 ARP 攻击方式包括:

- 攻击者通过向设备发送大量目标 IP 地址不能解析的 IP 报文,使得设备试图反复地对目标 IP 地址进行解析,导致 CPU 负荷过重及网络流量过大。
- 攻击者向设备发送大量 ARP 报文,对设备的 CPU 形成冲击。
- 攻击者可以仿冒用户、仿冒网关发送伪造的 ARP 报文,使网关或主机的 ARP 表项不正确, 从而对网络进行攻击。

# 1.2 ARP攻击防御配置任务简介

如下所有配置均为可选,请根据实际情况选择配置。

- 防止泛洪攻击
  - 。 配置 ARP 防止 IP 报文攻击功能
  - 。 配置源 MAC 地址固定的 ARP 攻击检测功能
- 防止仿冒用户、仿冒网关攻击
  - 。 配置 ARP 报文源 MAC 地址一致性检查功能
  - o 配置 ARP 主动确认功能
  - 。 配置授权 ARP 功能
  - o 配置 ARP Detection 功能
  - 。 配置 ARP 自动扫描、固化功能
  - 。 配置 ARP 网关保护功能
  - 。 配置 ARP 过滤保护功能

# 1.3 配置ARP防止IP报文攻击功能

# 1.3.1 功能简介

如果网络中有主机通过向设备发送大量目标 IP 地址不能解析的 IP 报文来攻击设备,则会造成下面的危害:

- 设备向目的网段发送大量 ARP 请求报文,加重目的网段的负载。
- 设备会试图反复地对目标 IP 地址进行解析,增加了 CPU 的负担。

为避免这种 IP 报文攻击所带来的危害,设备提供了下列两个功能:

ARP源抑制功能:如果发送攻击报文的源是固定的,可以采用 ARP源抑制功能。开启该功能后,如果网络中每5秒内从某 IP地址向设备某接口发送目的 IP地址不能解析的 IP报文超过

了设置的阈值,则设备将不再处理由此 IP 地址发出的 IP 报文直至该 5 秒结束,从而避免了恶意攻击所造成的危害。

• ARP 黑洞路由功能:无论发送攻击报文的源是否固定,都可以采用 ARP 黑洞路由功能。开启该功能后,一旦接收到目标 IP 地址不能解析的 IP 报文,设备立即产生一个黑洞路由,并同时发起 ARP 主动探测,如果在黑洞路由老化时间内 ARP 解析成功,则设备马上删除此黑洞路由并开始转发去往该地址的报文,否则设备直接丢弃该报文。在删除黑洞路由之前,后续去往该地址的 IP 报文都将被直接丢弃。用户可以通过命令配置 ARP 请求报文的发送次数和发送时间间隔。等待黑洞路由老化时间过后,如有报文触发则再次发起解析,如果解析成功则进行转发,否则仍然产生一个黑洞路由将去往该地址的报文丢弃。这种方式能够有效地防止 IP 报文的攻击,减轻 CPU 的负担。

# 1.3.2 配置 ARP 源抑制功能

(1) 进入系统视图。

system-view

(2) 开启 ARP 源抑制功能。

arp source-suppression enable

缺省情况下, ARP 源抑制功能处于关闭状态。

(3) 配置 ARP 源抑制的阈值。

**arp source-suppression limit** *limit-value* 缺省情况下, ARP 源抑制的阈值为 10。

### 1.3.3 配置 ARP 黑洞路由功能

#### 1. 配置限制和指导

当用户配置的 ARP 主动探测总时长(发送次数×发送时间间隔)大于黑洞路由老化时间时,系统只会取小于等于该老化时间的最大值作为真正的探测总时长。

当发起 ARP 主动探测过程结束且生成的黑洞路由还未老化时,设备无法主动对黑洞路由对应的设备进行 ARP 解析,为了缓解该问题,用户可以配置较大的发送 ARP 请求报文次数。

#### 2. 配置步骤

(1) 进入系统视图。

system-view

(2) 开启 ARP 黑洞路由功能。

arp resolving-route enable

缺省情况下, ARP 黑洞路由功能处于开启状态。

(3) (可选)配置发送 ARP 请求报文的次数。

arp resolving-route probe-count count 缺省情况下,发送 ARP 请求报文的次数为 3 次。

(4) (可选)配置发送 ARP 请求报文的时间间隔。

arp resolving-route probe-interval interval 缺省情况下,发送 ARP 请求报文的时间间隔为 1 秒。

# 1.3.4 ARP 防止 IP 报文攻击显示和维护

在完成上述配置后,在任意视图下执行 **display** 命令可以显示配置后 ARP 源抑制的运行情况,通过查看显示信息验证配置的效果。

表1-1 ARP 防止 IP 报文攻击显示和维护

| 操作            | 命令                             |
|---------------|--------------------------------|
| 显示ARP源抑制的配置信息 | display arp source-suppression |

# 1.4 配置源MAC地址固定的ARP攻击检测功能

## 1.4.1 功能简介

本特性根据 ARP 报文的源 MAC 地址对上送 CPU 的 ARP 报文进行统计,在 5 秒内,如果收到同一源 MAC 地址(源 MAC 地址固定)的 ARP 报文超过一定的阈值,则认为存在攻击,系统会将此 MAC 地址添加到攻击检测表项中。当开启了 ARP 日志信息功能(配置 arp check log enable 命令),且在该攻击检测表项老化之前,如果设置的检查模式为过滤模式,则会打印日志信息并且 将该源 MAC 地址发送的 ARP 报文过滤掉;如果设置的检查模式为监控模式,则只打印日志信息,不会将该源 MAC 地址发送的 ARP 报文过滤掉。

对于已添加到源 MAC 地址固定的 ARP 攻击检测表项中的 MAC 地址,在等待设置的老化时间后,会重新恢复成普通 MAC 地址。

关于 ARP 日志信息功能的详细描述,请参见"网络互通配置指导"中的"ARP"。

#### 1.4.2 配置限制和指导

切换源 MAC 地址固定的 ARP 攻击检查模式时,如果从监控模式切换到过滤模式,过滤模式马上生效;如果从过滤模式切换到监控模式,已生成的攻击检测表项,到表项老化前还会继续按照过滤模式处理。

对于网关或一些重要的服务器,可能会发送大量 ARP 报文,为了使这些 ARP 报文不被过滤掉,可以将这类设备的 MAC 地址配置成保护 MAC 地址,这样,即使该设备存在攻击也不会被检测或过滤。

#### 1.4.3 配置 步骤

(1) 进入系统视图。

system-view

- (2) 开启源 MAC 地址固定的 ARP 攻击检测功能,并选择检查模式。
  - arp source-mac { filter | monitor }

缺省情况下,源 MAC 地址固定的 ARP 攻击检测功能处于关闭状态。

- (3) 配置源 MAC 地址固定的 ARP 报文攻击检测的阈值。
  - arp source-mac threshold threshold-value

缺省情况下,源 MAC 地址固定的 ARP 报文攻击检测的阈值 30

(4) 配置源 MAC 地址固定的 ARP 攻击检测表项的老化时间。

# arp source-mac aging-time time

缺省情况下,源 MAC 地址固定的 ARP 攻击检测表项的老化时间为 300 秒,即 5 分钟。

(5) (可选)配置保护 MAC 地址。

arp source-mac exclude-mac mac-address&<1-n>缺省情况下,未配置任何保护 MAC 地址。

# 1.4.4 源 MAC 地址固定的 ARP 攻击检测显示和维护

在完成上述配置后,在任意视图下执行 **display** 命令可以显示配置后源 **MAC** 地址固定的 **ARP** 攻 击检测的运行情况,通过查看显示信息验证配置的效果。



由于 WX2500H-WiNet 系列、WAC 系列、WX2500H-LI 系列和 AC1000 系列不支持 IRF 功能,因此不支持 IRF 模式的命令行配置。

#### 表1-2 源 MAC 地址固定的 ARP 攻击检测显示和维护

| 操作                       | 命令                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 显示检测到的源MAC地址固定的ARP攻击检测表项 | (独立运行模式) display arp source-mac [interface interface-type interface-number] (IRF模式) display arp source-mac { interface interface-type interface-number   slot slot-number } |

# 1.4.5 源 MAC 地址固定的 ARP 攻击检测功能配置举例

# 1. 组网需求

某局域网内客户端通过网关与外部网络通信,网络环境如图 1-1 所示。

网络管理员希望能够防止因恶意用户对网关发送大量 ARP 报文,造成设备瘫痪,并导致其它用户 无法正常地访问外部网络;同时,对于正常的大量 ARP 报文仍然会进行处理。

#### 2. 组网图

图1-1 源 MAC 地址固定的 ARP 攻击检测功能配置组网图



#### 3. 配置步骤

#开启源 MAC 固定 ARP 攻击检测功能,并选择过滤模式。

<AC> system-view

[AC] arp source-mac filter

#配置源 MAC 固定 ARP 报文攻击检测阈值为 30 个。

[AC] arp source-mac threshold 30

#配置源 MAC 地址固定的 ARP 攻击检测表项的老化时间为 60 秒。

[AC] arp source-mac aging-time 60

# 配置源 MAC 固定攻击检查的保护 MAC 地址为 0012-3f86-e94c。

[AC] arp source-mac exclude-mac 0012-3f86-e94c

# 1.5 配置ARP报文源MAC地址一致性检查功能

# 1. 功能简介

ARP 报文源 MAC 地址一致性检查功能主要应用于网关设备上,防御以太网数据帧首部中的源 MAC 地址和 ARP 报文中的源 MAC 地址不同的 ARP 攻击。

配置本特性后,网关设备在进行 ARP 学习前将对 ARP 报文进行检查。如果以太网数据帧首部中的源 MAC 地址和 ARP 报文中的源 MAC 地址不同,则认为是攻击报文,将其丢弃;否则,继续进行 ARP 学习。

# 2. 配置步骤

(1) 进入系统视图。

system-view

(2) 开启 ARP 报文源 MAC 地址一致性检查功能。

arp valid-check enable

缺省情况下,ARP报文源MAC地址一致性检查功能处于关闭状态。

# 1.6 配置ARP主动确认功能

#### 1. 功能简介

ARP 的主动确认功能主要应用于网关设备上,防止攻击者仿冒用户欺骗网关设备。ARP 主动确认功能分为非严格模式和严格模式,这两种模式的实现如下:

- 配置非严格模式的 ARP 主动确认功能时,处理方式如下:
  - 。 收到目标 IP 地址为自己的 ARP 请求报文时,设备会发送 ARP 应答报文,但先不建立对应的表项。同时,设备立即向 ARP 请求报文的发送端 IP 地址发送 ARP 请求,在一个探测周期内如果收到发送端 IP 地址对应的设备回复的 ARP 应答报文,则建立 ARP 表项。
  - 。 收到 ARP 应答报文时,需要确认本设备是否在当前探测时间周期内对该报文中的源 IP 地址发起过 ARP 请求:
    - 若发起过请求,则设备建立该 ARP 表项:
    - 若未发起过请求,则不建立 ARP 表项。同时,设备立即向 ARP 应答报文的发送端 IP 地址发送 ARP 请求,在一个探测周期内如果收到发送端 IP 地址对应的设备回复的 ARP 应答报文,则建立 ARP 表项。
- 配置严格模式的 ARP 主动确认功能时,处理方式如下:
  - 。 收到目标 IP 地址为自己的 ARP 请求报文时,设备会发送 ARP 应答报文,但不建立 ARP 表项;
  - 。 收到 ARP 应答报文时,需要确认本设备是否在当前探测时间周期内对该报文中的源 IP 地址发起过 ARP 请求:若发起过请求,则设备建立该 ARP 表项;若未发起过请求,则设备丢弃该报文,不建立表项。

#### 2. 配置步骤

(1) 进入系统视图。

system-view

(2) 开启 ARP 主动确认功能。

arp active-ack [ strict ] enable

缺省情况下, ARP 主动确认功能处于关闭状态。

在严格模式下,只有 ARP 黑洞路由功能处于开启状态,ARP 主动确认功能才能生效。

# 1.7 配置授权ARP功能

#### 1.7.1 功能简介

所谓授权 ARP(Authorized ARP),就是动态学习 ARP 的过程中,只有和 DHCP 服务器生成的租约或 DHCP 中继生成的安全表项一致的 ARP 报文才能够被学习。关于 DHCP 服务器和 DHCP 中继的介绍,请参见"网络互通配置指导"中的"DHCP"。

配置接口的授权 ARP 功能后,可以防止用户仿冒其他用户的 IP 地址或 MAC 地址对网络进行攻击,保证只有合法的用户才能使用网络资源,增加了网络的安全性。

# 1.7.2 配置步骤

(1) 进入系统视图。

#### system-view

(2) 进入接口视图。

**interface** *interface-type interface-number* 支持的接口类型包括三层以太网接口、三层以太网子接口和 VLAN 接口视图。

(3) 开启授权 ARP 功能。

#### arp authorized enable

缺省情况下,接口下的授权 ARP 功能处于关闭状态。

# 1.7.3 授权 ARP 功能在 DHCP 服务器上的典型配置举例

#### 1. 组网需求

- AC 是 DHCP 服务器,为同一网段中的客户端动态分配 IP 地址,地址池网段为 10.1.1.0/24。
   通过在 AC 接口上启用授权 ARP 功能来保证客户端的合法性。
- Client 是 DHCP 客户端,通过 DHCP 协议从 DHCP 服务器获取 IP 地址。

#### 2. 组网图

#### 图1-2 授权 ARP 功能典型配置组网图



#### 3. 配置步骤

#### # 开启 DHCP 服务。

<AC> system-view

[AC] dhcp enable

[AC] dhcp server ip-pool 1

[AC-dhcp-pool-1] network 10.1.1.0 mask 255.255.255.0

[AC-dhcp-pool-1] quit

# 创建 VLAN 10, 并配置接口 VLAN-interface 10 的 IP 地址为 10.1.1.1/24。

[AC] vlan 10

[AC-vlan10] quit

[AC] interface vlan-interface 10

[AC-Vlan-interface10] ip address 10.1.1.1 24

#开启接口 VLAN-interface10 的授权 ARP 功能。

[AC-Vlan-interface10] arp authorized enable

[AC-Vlan-interface10] quit

#### 4. 验证配置

# Client 通过 DHCP 申请地址后,可以在 AC 上查看相应的授权信息。

[AC] display arp

Type: S-Static D-Dynamic O-Openflow R-Rule I-Invalid

IP address MAC address VLAN/VSI name Interface/Link ID Aging Type

10.1.1.2 0012-3f86-e94c -- WLAN-BSS1/0/85703 20 D

从以上信息可以获知 AC 为 Client 动态分配的 IP 地址为 10.1.1.2。

此后,Client 与 AC 通信时采用的 IP 地址、MAC 地址等信息必须和授权 ARP 表项中的一致,否则将无法通信,从而保证了客户端的合法性。

# 1.7.4 授权 ARP 功能在 DHCP 中继上的典型配置举例

#### 1. 组网需求

- Switch 充当 DHCP 服务器,为不同网段中的客户端动态分配 IP 地址,地址池网段为 10.10.1.0/24。
- AC 是 DHCP 中继,通过在接口 Vlan-interface10 上启用授权 ARP 功能来保证客户端的合法性。
- Client 是 DHCP 客户端,通过 DHCP 中继从 DHCP 服务器获取 IP 地址。

#### 2. 组网图

#### 图1-3 授权 ARP 功能典型配置组网图



#### 3. 配置步骤

#### (1) 配置 Switch

#配置接口的 IP 地址。

<Switch> system-view

[Switch] interface vlan-interface 10

[Switch-Vlan-interface10] ip address 10.1.1.1 24

[Switch-Vlan-interface10] quit

#### # 启用 DHCP 服务。

[Switch] dhcp enable

[Switch] dhcp server ip-pool 1

[Switch-dhcp-pool-1] network 10.10.1.0 mask 255.255.255.0

[Switch-dhcp-pool-1] gateway-list 10.10.1.1

[Switch-dhcp-pool-1] quit

[Switch] ip route-static 10.10.1.0 24 10.1.1.2

# (2) 配置 AC

#### #启用 DHCP 服务。

<AC> system-view

[AC] dhcp enable

#配置 Vlan-interface10 以及 Vlan-interface20 接口的 IP 地址。

[AC] interface vlan-interface 10

[AC-Vlan-interface10] ip address 10.1.1.2 24

[AC-Vlan-interface10] quit

[AC] interface vlan-interface 20

[AC-Vlan-interface20] ip address 10.10.1.1 24

#配置 Vlan-interface 20接口工作在 DHCP 中继模式。

[AC-Vlan-interface20] dhcp select relay

#配置 DHCP 服务器的地址。

[AC-Vlan-interface20] dhcp relay server-address 10.1.1.1

#启用接口授权 ARP 功能。

[AC-Vlan-interface20] arp authorized enable

[AC-Vlan-interface20] quit

#开启 DHCP 中继用户地址表项记录功能。

[AC] dhcp relay client-information record

#### 4. 验证配置

#用户通过 DHCP 申请地址后,在 AC 上查看授权 ARP 信息。

[AC] display arp

Type: S-Static D-Dynamic O-Openflow R-Rule I-Invalid

IP address MAC address VLAN/VSI name Interface/Link ID Aging Type 10.10.1.2 0012-3f86-e94c -- WLAN-BSS1/0/85703 20 D

从以上信息可以获知 AC 为 Client 动态分配的 IP 地址为 10.10.1.2。

此后,Client 与 AC 通信时采用的 IP 地址、MAC 地址等信息必须和授权 ARP 表项中的一致,否则将无法通信,从而保证了客户端的合法性。

# 1.8 配置ARP Detection功能

#### 1.8.1 功能简介

ARP Detection 功能主要应用于接入设备上,通过检测并丢弃非法用户的ARP报文来防止仿冒用户、仿冒网关的攻击,具体包括以下几个功能:

- 用户合法性检查:
- ARP 报文有效性检查;
- ARP报文强制转发;
- ARP Detection 日志功能。

如果既配置了报文有效性检查功能,又配置了用户合法性检查功能,那么先进行报文有效性检查,然后进行用户合法性检查。

## 1.8.2 用户合法性检查

#### 1. 功能简介

对于 ARP 信任接口,不进行用户合法性检查;对于 ARP 非信任接口,需要进行用户合法性检查,以防止仿冒用户的攻击。

用户合法性检查是根据 ARP 报文中源 IP 地址和源 MAC 地址检查用户是否是所属 VLAN 所在接口上的合法用户,包括基于用户合法性规则检查、基于 DHCP Snooping 表项的检查和基于 802.1X 安全表项的检查。

设备收到 ARP 报文后,首先进行基于用户合法性规则检查,如果找到与报文匹配的规则,则按照该规则对报文进行处理;如果未找到与报文匹配的规则,则继续进行基于 DHCP Snooping 表项的检查和基于 802.1X 安全表项的检查:

- 只要符合两者中的任何一个,就认为该 ARP 报文合法,进行转发。转发时查询报文目的 IP
   地址对应的 DHCP Snooping 表项和 802.1X 安全表项:
  - 。 如果查询到两者中的任何一个,且和源 IP 地址对应表项的接口不一致,则将报文从目的 IP 地址对应的表项中的接口发送出去;
  - 。 如果查询到两者中的任何一个,且和源 IP 地址对应表项的接口一致,则将报文进行二层转发:
  - 。 如果未查到任何表项,则将报文进行二层转发。
- 如果所有检查都没有找到匹配的表项,则认为是非法报文,直接丢弃。

DHCP Snooping 安全表项通过 DHCP Snooping 功能自动生成,详细介绍请参见"网络互通配置指导"中的"DHCP Snooping"。

802.1X 安全表项通过 802.1X 功能产生,802.1X 用户需要使用支持将 IP 地址上传的客户端,用户通过了 802.1X 认证并且将 IP 地址上传至配置 ARP Detection 的设备后,设备自动生成可用于 ARP Detection 的用户合法性检查的 802.1X 安全表项。802.1X 的详细介绍请参见"用户接入与认证配置指导"中的"802.1X"。

#### 2. 配置限制和指导

配置用户合法性检查功能时,必须至少配置用户合法性规则或者 DHCP Snooping 功能和 802.1X 功能三者之一,否则所有从 ARP 非信任接口收到的 ARP 报文都会被正常转发。

#### 3. 配置步骤

(1) 进入系统视图。

#### system-view

(2) (可选)配置用户合法性检查规则。

arp detection rule rule-id { deny | permit } ip { ip-address [ mask ] | any }mac { mac-address [ mask ] | any } [ vlan vlan-id ]缺省情况下,未配置用户合法性检查规则。

(3) 进入 VLAN 视图。

**vlan** vlan-id

(4) 开启 ARP Detection 功能。

arp detection enable

缺省情况下, ARP Detection 功能处于关闭状态, 即不进行用户合法性检查。

- (5) (可选)将不需要进行用户合法性检查的接口配置为 ARP 信任接口。
  - a. 退回系统视图。

quit

b. 进入接口视图。

**interface** *interface-type interface-number* 支持的接口类型包括二层以太网接口和二层聚合接口视图。

c. 将不需要进行用户合法性检查的接口配置为 ARP 信任接口。

arp detection trust

缺省情况下,接口为 ARP 非信任接口。

# 1.8.3 ARP报文有效性检查

#### 1. 功能简介

对于 ARP 信任接口,不进行报文有效性检查;对于 ARP 非信任接口,需要根据配置对 MAC 地址和 IP 地址不合法的报文进行过滤。可以选择配置源 MAC 地址、目的 MAC 地址或 IP 地址检查模式。

- 源 MAC 地址的检查模式:会检查 ARP 报文中的源 MAC 地址和以太网报文头中的源 MAC 地址是否一致,一致则认为有效,否则丢弃报文;
- 目的 MAC 地址的检查模式 (只针对 ARP 应答报文): 会检查 ARP 应答报文中的目的 MAC 地址是否为全 0 或者全 1,是否和以太网报文头中的目的 MAC 地址一致。全 0、全 1、不一致的报文都是无效的,需要被丢弃;
- IP 地址检查模式:会检查 ARP 报文中的源 IP 或目的 IP 地址,如全 1、或者组播 IP 地址都是不合法的,需要被丢弃。对于 ARP 应答报文,源 IP 和目的 IP 地址都进行检查;对于 ARP 请求报文,只检查源 IP 地址。

#### 2. 配置准备

配置本功能前需保证已经配置了"1.8.2 用户合法性检查"。

#### 3. 配置步骤

(1) 进入系统视图。

system-view

(2) 进入 VLAN 视图。

**vlan** vlan-id

(3) 开启 ARP Detection 功能。

arp detection enable

缺省情况下, ARP Detection 功能处于关闭状态, 即不进行报文有效性检查。

- (4) 开启 ARP 报文有效性检查功能。
  - a. 退回系统视图。

quit

b. 开启 ARP 报文有效性检查功能。

arp detection validate { dst-mac | ip | src-mac } \*

ARP 报文有效性检查功能处于关闭状态。

- (5) (可选)将不需要进行 ARP 报文有效性检查的接口配置为 ARP 信任接口。
  - a. 进入接口视图。

interface interface-type interface-number

支持的接口类型包括二层以太网接口和二层聚合接口。

b. 将不需要进行 ARP 报文有效性检查的接口配置为 ARP 信任接口。

arp detection trust

缺省情况下,接口为 ARP 非信任接口。

# 1.8.4 ARP 报文强制转发

#### 1. 功能简介

对于从 ARP 信任接口接收到的 ARP 报文不受此功能影响,按照正常流程进行转发;对于从 ARP 非信任接口接收到的并且已经通过用户合法性检查的 ARP 报文的处理过程如下:

- 对于 ARP 请求报文,通过信任接口进行转发:
- 对于 ARP 应答报文,首先按照报文中的以太网目的 MAC 地址进行转发,若在 MAC 地址表中 没有查到目的 MAC 地址对应的表项,则将此 ARP 应答报文通过信任接口进行转发。

#### 2. 配置限制和指导

ARP 报文强制转发功能不支持目的 MAC 地址为多端口 MAC 的情况。

#### 3. 配置准备

配置本功能前需保证已经配置了"1.8.2 用户合法性检查"。

#### 4. 配置步骤

(1) 进入系统视图。

system-view

**vlan** vlan-id

(3) 开启 ARP 报文强制转发功能。

arp restricted-forwarding enable

缺省情况下, ARP 报文强制转发功能处于关闭状态。

#### 1.8.5 ARP Detection 显示和维护

在完成上述配置后,在任意视图下执行 **display** 命令可以显示配置后 ARP Detection 的运行情况,通过查看显示信息验证配置的效果。

在用户视图下,用户可以执行 reset 命令清除 ARP Detection 的统计信息。

#### 表1-3 ARP Detection 显示和维护

| 操作                        | 命令                    |
|---------------------------|-----------------------|
| 显示开启了ARP Detection功能的VLAN | display arp detection |

| 操作                                        | 命令                                                                            |
|-------------------------------------------|-------------------------------------------------------------------------------|
| 显示ARP Detection丢弃报文的统计信息                  | display arp detection statistics [ interface interface-type interface-number] |
| 清除ARP DetectionARP Detection的报文丢弃<br>统计信息 | reset arp detection statistics [interface interface-type interface-number]    |

# 1.8.6 用户合法性检查配置举例

#### 1. 组网需求

- Switch 是 DHCP 服务器; AC 是支持 802.1X 的设备,在 VLAN 10 内启用 ARP Detection 功能,对认证客户端进行保护,保证合法用户可以正常转发报文,否则丢弃。
- Client 1 和 Client 2 是本地 802.1X 接入用户,且支持 IP 地址上传。

# 2. 组网图

#### 图1-4 配置用户合法性检查组网图



#### 3. 配置步骤

- (1) 配置组网图中所有接口属于 VLAN 及 Switch 对应 VLAN 接口的 IP 地址(略)
- (2) 配置 DHCP 服务器 Switch, 创建 DHCP 地址池 0

<Switch> system-view
[Switch] dhcp enable
[Switch] dhcp server ip-pool 0
[Switch-dhcp-pool-0] network 10.1.1.0 mask 255.255.255.0

- (3) 配置客户端 Client 1 和 Client 2 (略)。
- (4) 配置 AC

```
# 配置 802.1X 认证方式为 CHAP。
<AC> system-view
[AC] dot1x authentication-method chap
#配置名称为 local 的 ISP 域,并将认证、授权和计费的方式配置为本地。
[AC] domain local
[AC-isp-local] authentication lan-access local
[AC-isp-local] authorization lan-access local
[AC-isp-local] accounting lan-access local
[AC-isp-local] guit
#配置无线服务模板,名称为 wlas local chap,用户认证方式为 802.1X,ISP 域为 local,
SSID 为 wlas_local_chap。
[AC] wlan service-template wlas_local_chap
[AC-wlan-st-wlas_local_chap] client-security authentication-mode dot1x
[AC-wlan-st-wlas_local_chap] dot1x domain local
[AC-wlan-st-wlas_local_chap] ssid wlas_local_chap
# 使能无线服务模板。
[AC-wlan-st-wlas_local_chap] service-template enable
[AC-wlan-st-wlas_local_chap] quit
# 创建 ap1,并配置序列号。
[AC] wlan ap ap1 model WA4320i-ACN
[AC-wlan-ap-ap 1] serial-id 210235A1BSC123000050
[AC-wlan-ap-ap 1] quit
#配置 Radio 信道为 149,并使能射频。
[AC] wlan ap ap1
[AC-wlan-ap-ap1] radio 1
[AC-wlan-ap-ap1-radio-1] channel 149
[AC-wlan-ap-ap1-radio-1] radio enable
#将无线服务模板 wlas local chap 绑定到 radio1 上。
[AC-wlan-ap-ap1-radio-1] service-template wlas_local_chap
[AC-wlan-ap-ap1-radio-1] quit
[AC-wlan-ap-ap1] quit
#添加本地接入用户。
[AC] local-user test class network
[AC-luser-network-test] service-type lan-access
[AC-luser-network-test] password simple test
[AC-luser-network-test] quit
# 开启 ARP Detection 功能,对用户合法性进行检查。
[AC] vlan 10
[AC-vlan10] arp detection enable
#接口状态缺省为非信任状态,上行接口配置为信任状态,下行接口按缺省配置。
[AC-vlan10] interface gigabitethernet 1/0/3
[AC-GigabitEthernet1/0/3] arp detection trust
```

[AC-GigabitEthernet1/0/3] quit

#### 4. 验证配置

完成上述配置后,对于接口 GigabitEthernet1/0/1 和 GigabitEthernet1/0/2 收到的 ARP 报文,需基于 802.1X 安全表项进行用户合法性检查。

# 1.9 配置ARP自动扫描、固化功能

#### 1. 功能简介

建议在网吧这种环境稳定的小型网络中使用 ARP 自动扫描、固化功能。ARP 自动扫描功能一般与 ARP 固化功能配合使用:

- 配置 ARP 自动扫描功能后,设备会对局域网内的邻居自动进行扫描(向邻居发送 ARP 请求报文,获取邻居的 MAC 地址,从而建立动态 ARP 表项)。
- ARP 固化用来将当前的 ARP 动态表项(包括 ARP 自动扫描生成的动态 ARP 表项)转换为静态 ARP 表项。通过对动态 ARP 表项的固化,可以有效防止攻击者修改 ARP 表项。

固化后的静态 ARP 表项与配置产生的静态 ARP 表项相同。

# 2. 配置限制和指导

- 对于已存在 ARP 表项的 IP 地址不进行扫描。
- 扫描操作可能比较耗时,用户可以通过<Ctrl\_C>来终止扫描(在终止扫描时,对于已经收到的邻居应答,会建立该邻居的动态 ARP 表项)。
- 固化生成的静态 ARP 表项数量同样受到设备可以支持的静态 ARP 表项数目的限制,由于静态 ARP 表项数量的限制可能导致只有部分动态 ARP 表项被固化。
- 通过 arp fixup 命令将当前的动态 ARP 表项转换为静态 ARP 表项后,后续学习到的动态 ARP 表项可以通过再次执行 arp fixup 命令进行固化。
- 通过固化生成的静态 ARP 表项,可以通过命令行 undo arp *ip-address* 逐条删除,也可以通过命令行 reset arp all 或 reset arp static 全部删除。

#### 3. 配置步骤

(1) 进入系统视图。

system-view

(2) 进入接口视图。

interface interface-type interface-number

(3) 开启 ARP 自动扫描功能。

arp scan [ start-ip-address to end-ip-address ]

(4) 退回系统视图。

quit

(5) 将设备上的动态 ARP 表项转化成静态 ARP 表项。

arp fixup

# 1.10 配置ARP网关保护功能

# 1.10.1 功能简介

在设备上不与网关相连的接口上配置此功能,可以防止伪造网关攻击。

在接口上开启此功能后,当接口收到 ARP 报文时,将检查 ARP 报文的源 IP 地址是否和配置的被保护网关的 IP 地址相同。如果相同,则认为此报文非法,将其丢弃;否则,认为此报文合法,继续进行后续处理。

# 1.10.2 配置限制和指导

- 每个接口最多支持配置8个被保护的网关IP地址。
- 不能在同一接口下同时配置命令 arp filter source 和 arp filter binding。
- 本功能与 ARP Detection 和 ARP 快速应答功能配合使用时,先进行本功能检查,本功能检查 通过后才会进行其他配合功能的处理。

# 1.10.3 配置步骤

(1) 进入系统视图。

system-view

(2) 进入接口视图。

**interface** *interface-type interface-number* 支持的接口类型包括二层以太网接口和二层聚合接口。

(3) 开启 ARP 网关保护功能,配置被保护的网关 IP 地址。

arp filter source ip-address

缺省情况下, ARP 网关保护功能处于关闭状态。

#### 1.10.4 ARP 网关保护功能配置举例

#### 1. 组网需求

与 AC 相连的无线客户端 Client 2 进行了仿造网关 Switch (IP 地址为 10.1.1.1) 的 ARP 攻击,接入 AC 的无线客户端 Client 1 错误地将与网关 Switch 通信的流量发往了 Client 2。

要求:通过配置防止这种仿造网关攻击。

#### 2. 组网图

# 图1-5 配置 ARP 网关保护功能组网图



## 3. 配置步骤

#在AC上配置ARP网关保护功能。

<AC> system-view

[AC] interface gigabitethernet 1/0/1

[AC-GigabitEthernet1/0/1] arp filter source 10.1.1.1

[AC-GigabitEthernet1/0/1] quit

[AC] interface gigabitethernet 1/0/2

[AC-GigabitEthernet1/0/2] arp filter source 10.1.1.1

#### 4. 验证配置

完成上述配置后,对于 Client 2 发送的伪造源 IP 地址为网关 IP 地址的 ARP 报文将会被丢弃,不会再被转发。

# 1.11 配置ARP过滤保护功能

# 1.11.1 功能简介

本功能用来限制接口下允许通过的 ARP 报文,可以防止仿冒网关和仿冒用户的攻击。

在接口上配置此功能后,当接口收到 ARP 报文时,将检查 ARP 报文的源 IP 地址和源 MAC 地址是 否和允许通过的 IP 地址和 MAC 地址相同:

- 如果相同,则认为此报文合法,继续进行后续处理;
- 如果不相同,则认为此报文非法,将其丢弃。

# 1.11.2 配置限制和指导

- 每个接口最多支持配置 8 组允许通过的 ARP 报文的源 IP 地址和源 MAC 地址。
- 不能在同一接口下同时配置命令 arp filter source 和 arp filter binding。
- 本功能与 ARP Detection 和 ARP 快速应答功能配合使用时,先进行本功能检查,本功能检查 通过后才会进行其他配合功能的处理。

# 1.11.3 配置步骤

(1) 进入系统视图。

system-view

(2) 进入接口视图。

**interface** *interface-type interface-number* 支持的接口类型包括二层以太网接口和二层聚合接口。

(3) 开启 ARP 过滤保护功能,配置允许通过的 ARP 报文的源 IP 地址和源 MAC 地址。 **arp filter binding** *ip-address mac-address*缺省情况下,ARP 过滤保护功能处于关闭状态。

# 1.11.4 ARP 过滤保护功能配置举例

#### 1. 组网需求

- Client 1 的 IP 地址为 10.1.1.2, MAC 地址为 000f-e349-1233。
- Client 2的 IP 地址为 10.1.1.3, MAC 地址为 000f-e349-1234。
- 限制 AC 的 GigabitEthernet1/0/1、GigabitEthernet1/0/2 接口只允许指定用户接入,不允许其他用户接入。

#### 2. 组网图

# 图1-6 配置 ARP 过滤保护功能组网图



#### 3. 配置步骤

#配置 AC的 ARP 过滤保护功能。

<AC> system-view

[AC] interface gigabitethernet 1/0/1

[AC-GigabitEthernet1/0/1] arp filter binding 10.1.1.2 000f-e349-1233

[AC-GigabitEthernet1/0/1] quit

[AC] interface gigabitethernet 1/0/2

[AC-GigabitEthernet1/0/2] arp filter binding 10.1.1.3 000f-e349-1234

# 4. 验证配置

完成上述配置后,接口 GigabitEthernet1/0/1 收到 Client 1 发出的源 IP 地址为 10.1.1.2、源 MAC 地址为 000f-e349-1233 的 ARP 报文将被允许通过,其他 ARP 报文将被丢弃;接口 GigabitEthernet1/0/2 收到 Client 2 发出的源 IP 地址为 10.1.1.3、源 MAC 地址为 000f-e349-1234 的 ARP 报文将被允许通过,其他 ARP 报文将被丢弃。