香港道教聯合會青松中學

二零二一至二零二二年度

下學期考試

中四級 數學 必修部分

試卷一

試題答題簿

日期:2022年7月11日	總分:70
姓名:	時間: 08:30 – 10:00 (90 分鐘)
班別:()	頁數:共13頁
老師編號(4AB 適用): 13 / 54	

考生須知

- (一) 宣布開考後,考生須首先於適當位置填上考生姓名、班別及學號。
- (二) 本試卷分兩部,甲部 (13分) 和乙部(57分)。
- (三)本試卷**各題均須作答**,答案須寫本試題答題簿中預留的空位內。不可在各頁邊界以外位 置書寫。寫於邊界以外的答案,將不予評閱。
- (四) 如有需要,可要求派發方格紙及補充答題紙。每張紙均須填寫考生姓名、班別及學號。
- (五) 除特別指明外,須詳細列出所有算式。
- (六) 除特別指明外,數值答案須用真確值,或準確至**三位有效數字**的近似值表示。
- (七) 本試卷的附圖不一定依比例繪成。
- (八) 本試卷必須用中文作答。

甲部(1	3分)
1 111-	- /1/

於邊界

以外的答

案

將

不予評閱

1. 化簡 $\frac{(a^4b^{-3})^5}{a^{-4}b^7}$,並以正指數表示答案。 (3 分	(1
---	-----	----

2. $\Leftrightarrow h$ 成為公式 $3k = \frac{4-5h}{h+2}$ 的主項。 (3 分)

寫
於
邊
界
以
外
的
答
案
,
將

不予評閱

3.	因式分解	
	(a) $3a^2 - 5ab - 2b^2$,	
	(b) $3a^2 - 5ab - 2b^2 - 3a - b$ °	(3分)

4.	某風鳥的成本為	\$300	。該風鳥售出後	, 盈利百分率為 26%。

- (a) 求售價。
- (b) 若該風扇以七折出售,求標價。 (4分)

乙音	邓(57分)	
5.	解指數方程 $5^{\frac{x}{2}} = 125$ 。	(3分)
6.	求下列三角形中的未知量。	(2 分)
	B 5 cm 5 cm 6 cm	A x cm

			+-X-119-110/J/ 12112/ G
7.	求圖中平行四邊形的面積。		(2 分)
		A	D
		8 cm B	140° C
8.	求方程 $x^6 + 63x^3 - 64 = 0$ 的實根。		(4 分)

寫
於邊
界以
外的
答
案 ,
將不
~

		2122/数字_处修即力/12 A 2/仓
9.	解下列各方程,其中 $0^{\circ} \le x \le 360^{\circ}$ 。 (a) $\tan x = 1$	(2 分)
	(b) $3\sin^2\theta - 7\sin\theta - 6 = 0$	(3 分)
10.	化簡 $\frac{a^{-2}}{(\sqrt{ab})^3} \times \frac{\sqrt[3]{b^4}}{\sqrt{a}}$,並以正指數表示答案。	(3 分)

寫 於 邊 . 界 以 外 的 答 案

將 不 予

評

於 邊 界

- 11. 已知 $\log_3 2 = p$ 及 $\log_3 5 = q$,試以 p 和 q 表示下列對數。
 - $\log_3 10$ (a)

(b)
$$\log_3\left(\frac{15}{2}\right)$$

(4 分)

於邊界

以

的

答

案

將

不予 評

閱

(3分)

13. 已知 $f(x) = 2x^3 - 19x^2 + kx + 21$ 可被 $x - 3$ 整除。 (a) 求 k 的值。	
(b) 由此,因式分解 $f(x)$ 。	(4 分)

寫

於

邊

界以外

的

答

案

將

不予

評

14.	已知聯立方程 $\begin{cases} y = kx^2 - 8x + 2 \\ 10x - y - 7 = 0 \end{cases}$ 只有一個實數解。	
	(a) 求 k 的值。 (b) 解該聯立方程。	(3 分) (3 分)

寫於邊

界

以外

的

答

案

將

不予

評

16.	圖中所示為四邊形 $EBCD$,而 A 是 ED 上的一點,使 $EB=8\mathrm{cm}$, $\angle AEB=75^\circ$, $CD=9\mathrm{cm}$ 及 $\angle CDA=82^\circ$	
	(a) 求 AB。	(2 分)
	(b) 求∠EAB。	(2 分)
	(c) 求 △ABC 的面積。	(4分)
		······································

17. 子健用 \$500 購買了若干瓶牛奶,而其中 10 瓶在運送途中損毀了。若他把餘下完好的奶每瓶以高於成本 \$4 出售,則可獲得盈利 \$60。問他最初購入多少瓶牛奶? (4 分)
-

邊界以外的答案,將不予評閱。

寫

於

於

邊

界

以

的答

案

將

不予

評

香港道教聯合會青松中學 2021/22 年度 中四級 下學期考試 數學 必修部分 試卷一 評分參考

甲部:

1.	$\frac{(a^4b^{-3})^5}{a^{-4}b^7}$		
	$=\frac{a^{20}b^{-15}}{a^{-4}b^7}$		$ \stackrel{\text{\tiny \triangle}}{\bowtie} (ab)^{\ell} = a^{\ell}b^{\ell} \stackrel{\text{\tiny \triangle}}{\bowtie} (a^{h})^{k} = a^{hk} $
	$= a^{20-(-4)}b^{-15-7}$ $= a^{24}b^{-22}$	1M	$ \stackrel{\text{def}}{=} \frac{c^p}{c^q} = c^{p-q} \stackrel{\text{def}}{=} \frac{c^p}{c^q} = \frac{1}{c^{q-p}} $
	$=\frac{a^{24}}{\underline{b^{22}}}$		
		1A (3)	

2		
$3k = \frac{4 - 5h}{h + 2}$		
3k(h+2) = 4 - 5h	1M	展開
3kh + 6k = 4 - 5h		
3kh + 5h = 4 - 6k	1M	給將 h 放在一邊
$h(3k+5) = 4-6k$ $h = \frac{4-6k}{3k+5}$	1A	或等價
	(3)	

3. (a) $3a^2 - 5ab - 2b^2$ = $(3a+b)(a-2b)$	1A	或等價
(b) $3a^2 - 5ab - 2b^2 - 3a - b$ = $(3a+b)(a-2b) - (3a+b)$ = $(3a+b)(a-2b-1)$	1M 1A	給利用 (a) 的結果 或等價

4.(a)	售價 = 300 ×(1+26%)	1M	售價=成本×(1+盈利%)
	= <u>\$378</u>	1A	
(b)	標價 = 378 ÷ 70%	1M	÷70%
	= \$540	1A	. 7070
		(4)	
		(4)	

5.		
$5^{\frac{x}{2}} = 125$		
$5^{\frac{x}{2}} = 5^3$	1M	底數相同
$\frac{x}{2} = 3$ $\therefore x = \underline{6}$	1M 1A	去底
=	(3)	

6.		
$AC^2 = AB^2 + BC^2 - 2(AB)(BC)\cos\angle ABC$	1M	使用餘弦公式
$x = \sqrt{5^2 + 6^2 - 2(5)(6)\cos 20^\circ}$		
$=\underline{2.15} (\square \square \square \square \square \square \square \square \square)$	1A	
	(2)	

7.		
平行四邊形 ABCD 的面積		
$= 2 \times \square ABC \square \square$		
$=2\times\left(\frac{1}{2}\times8\times12\times\sin140^{\circ}\right)\mathrm{cm}^{2}$	1M	使用正弦公式
$= \underline{61.7 \text{ cm}^2} (\square \square \square \square \square \square \square \square)$	1A	
	(2)	

8.		
$x^6 + 63x^3 - 64 = 0$		
$(x^3)^2 + 63x^3 - 64 = 0$		
把 $x^3 = u$ 代入以上方程,可得:		
$u^2 + 63u - 64 = 0$	1M	給代換
(u+64)(u-1) = 0		
$u = -64 \implies u = 1$	1 M	給解二次方程
由於 $x^3 = u$,可得:		
$x^3 = -64$ 或 $x^3 = 1$	1M	給代入
$x = \underline{\underline{-4}} \vec{\mathfrak{D}} \qquad x = \underline{\underline{1}}$	1A	
	(4)	

	ľ	T
9.		
(a)		
$\tan x = 1$		
$\tan x = \tan 45^{\circ}$		
$□ x = 45^{\circ} \overrightarrow{\text{sk}} 180^{\circ} + 45^{\circ}$		
	1A+1A	
= <u>45°</u> 或 <u>225°</u>		
	(2)	
(b)		
$3\sin^2\theta - 7\sin\theta - 6 = 0$		
$(3\sin\theta + 2)(\sin\theta - 3) = 0$	43.5	<i>ħ.</i> ∏ → → <i>-</i> /→ → ↑□
	1M	解二次方程
$3\sin\theta + 2 = 0 \vec{\boxtimes} \sin\theta - 3 = 0$		
$\sin \theta = -\frac{2}{3}$ 或 $\sin \theta = 3$ (捨去)		
J		
$\dot{\cdot}$.		
$\theta \approx 180^{\circ} + 41.8103^{\circ}$	1 . 1 .	
= <u>221.8°</u> (□ □ □ □ □ □ □) 或 <u>318.2°</u> (□ □ □ □ □ □	1A+1A	
	(3)	

10.
$$\frac{a^{-2}}{(\sqrt{ab})^3} \times \frac{\sqrt[3]{b^4}}{\sqrt{a}} = \frac{a^{-2}}{(a^{\frac{1}{2}}b)^3} \times \frac{b^{\frac{4}{3}}}{a^{\frac{1}{2}}}$$

$$= \frac{a^{-2}}{a^{\frac{3}{2}}b^3} \times \frac{b^{\frac{4}{3}}}{a^{\frac{1}{2}}}$$

$$= a^{-2-\frac{3}{2}-\frac{1}{2}} \times b^{\frac{4}{3}-3}$$

$$= a^{-4} \times b^{-\frac{5}{3}}$$

$$= \frac{1}{a^4b^{\frac{5}{3}}}$$
1M
$$\frac{\triangle}{\triangle} (ab)^{\ell} = a^{\ell}b^{\ell} \stackrel{\cancel{!}}{\cancel{!}} (a^h)^k = a^{hk}$$
1M
$$\frac{\triangle}{\triangle} \frac{c^p}{c^q} = c^{p-q} \stackrel{\cancel{!}}{\cancel{!}} \frac{c^p}{c^q} = \frac{1}{c^{q-p}}$$
1A

11.		
(a) $\log_3 10 = \log_3 (2 \times 5)$		
$=\log_3(2\times5)$		
$= (\log_3 2 + \log_3 5)$	1M	$\log(a \times b) = \log a + \log b$
$=\underline{\underline{p+q}}$	1A	
(b) $\log_3\left(\frac{15}{2}\right) = \log_3\left(\frac{3\times 5}{2}\right)$ = $\log_3 3 + \log_3 5 - \log_3 2$ = $\underbrace{1 + q - p}$	1M 1A	$\log\left(\frac{a}{b}\right) = \log a - \log b$
	(4)	

12.		
$\frac{6}{k-18} + \frac{2}{5k+6}$		
$= \frac{6(5k+6)}{(k-18)(5k+6)} + \frac{2(k-18)}{(5k+6)(k-18)}$	1M	通分母
$=\frac{6(5k+6)+2(k-18)}{(k-18)(5k+6)}$		
$=\frac{30k+36+2k-36}{}$	1 M	展開
(k-18)(5k+6) $32k$		JONE S
$=\frac{52k}{(k-18)(5k+6)}$	1A	
	(3)	

_	_
1	7

(a) :: f(x) 可被 x-3 整除。

f(3) = 0

 $2(3)^3 - 19(3)^2 + k(3) + 21 = 0$

54 - 171 + 3k + 21 = 0

3k - 96 = 0

k = 32

1**M**

因式定理

1**A**

(b) $f(x) = 2x^3 - 19x^2 + 32x + 21$

利用長除法,

$$\begin{array}{r}
 2x^2 - 13x - 7 \\
 x - 3 \overline{\smash{\big)}\ 2x^3 - 19x^2 + 32x + 21} \\
 \underline{2x^3 - 6x^2}
 \end{array}$$

 $-13x^2 + 32x + 21$

 $-13x^2 + 39x$ -7x+21

-7x+21

1**M** 1**A**

利用(x-3)進行因式分解

 $f(x) = (x-3)(2x^2-13x-7)$ = (x-3)(x-7)(2x+1)

14.

(4)

 $\begin{cases} y = kx^2 - 8x + 2 & \dots (1) \\ 10x - y - 7 = 0 & \dots (2) \end{cases}$

從 (2) 可得:

y = 10x - 7(3)

把 (3) 代入 (1),可得:

 $10x - 7 = kx^2 - 8x + 2$

 $kx^2 - 18x + 9 = 0$ (4)

:: 該聯立方程只有一個實數解。

(4) 的 Δ=0

 $(-18)^2 - 4(k)(9) = 0$

324 - 36k = 0

324 = 36k

k = 9

1M

給 代入法從而消去 y

1M

 $\Delta = 0$ 並成功代入數字

1A

(b) 把 $k=9$ 代入 (4),可得: $9x^2-18x+9=0$ $x^2-2x+1=0$	1M	利用(a)
$(x-1)^2 = 0$ x = 1 把 $x = 1$ 代入 (3),可得: y = 10(1) - 7 = 3	1A	
該聯立方程的解是 $x=1, y=3$	1A	

15. (a) L_1 的斜率= $-\left(\frac{5}{-4}\right) = \frac{5}{4}$ $\therefore L_2 \perp L_1$ $\therefore L_2$ 的斜率× L_1 的斜率= -1
(a) L_1 的斜率= $-\left(\frac{5}{-4}\right)=\frac{5}{4}$ $\therefore L_2 \perp L_1$ 1A
$\therefore L_2 \perp L_1$
$L_2 \perp L_1$
· I 的 9 \times I 的 9 \times \times I 的 1
$P_2 + J_1 + A_1 + J_2 + A_3 + A_4 + A_4 + A_5 $
L_2 的斜率× $\left[-\left(\frac{5}{-4}\right)\right]=-1$
L_2 的斜率 = $-\frac{4}{5}$
5 1A
(b) L ₂ 的方程是
$y-1.5 = -\frac{4}{5}[x-(-3)]$
10y - 15 = -8(x+3)
$\therefore 8x + 10y + 9 = 0$
(c) $L_1: 5x-4y-20=0$ (1)
L_2 : $8x + 10y + 9 = 0$ (2)
$(1) \times 5 + (2) \times 2$:
5(5x-4y-20)+2(8x+10y+9)=0 1M 消去其中一個未知數
41x - 82 = 0
x = 2
把 x = 2 代入 (1),可得:
5(2) - 4y - 20 = 0
4y = -10
y = -2.5
∴ A 的坐標 = (2, -2.5) 1A
(5)

16.		
(a)		
$AB^2 = AE^2 + BE^2 - 2(AE)(BE)\cos\angle AEB$	1M	使用餘弦公式
$AB = \sqrt{10^2 + 8^2 - 2(10)(8)\cos 75^{\circ}} \text{ cm}$ \$\approx 11.0720 \text{ cm}\$	1A	
(b)		
$\frac{\sin \angle BAE}{BE} = \frac{\sin \angle AEB}{AB}$	1M	使用正弦公式
$\frac{\sin \angle BAE}{8 \text{ cm}} \approx \frac{\sin 75^{\circ}}{11.0720 \text{ cm}}$		
∠BAE ≈ 44.2606° 或 180° – 44.2606°	1A	
= 44.2606° 或 135.7394°(捨去)		
(c)		
$AC^{2} = AD^{2} + CD^{2} - 2(AD)(CD)\cos \angle ADC$		
$AC = \sqrt{12^2 + 9^2 - 2(12)(9)\cos 82^\circ}$ cm	1A	
≈13.9620 cm	111	
$\frac{\sin \angle CAD}{=} = \frac{\sin \angle ADC}{=}$		
CD AC		
$\frac{\sin \angle CAD}{9 \text{ cm}} \approx \frac{\sin 82^{\circ}}{13.9620 \text{ cm}}$		
$\angle CAD \approx 39.6677^{\circ}$ 或 $180^{\circ} - 39.6677^{\circ}$	1A	
= 39.6677° 或 140.3323°(捨去)		
$\angle BAE + \angle BAC + \angle CAD = 180^{\circ} (\Box \Box \Box \Box \Box)$		
$44.2606^{\circ} + \angle BAC + 39.6677^{\circ} \approx 180^{\circ}$		
∠BAC ≈ 96.0717°	1A	
$\Box ABC \Box \Box = \frac{1}{2} \times AB \times AC \times \sin \angle BAC$		
$\approx \left(\frac{1}{2} \times 11.0720 \times 13.9620 \times \sin 96.0717^{\circ}\right) \text{cm}^{2}$		
$= \underline{76.9 \text{ cm}^2} \left(\Box \Box \Box \Box \Box \Box \Box \Box \right)$	1 A	
	1A (8)	

17.		
設子健最初購入了 N 瓶牛奶。		
$\therefore \left(\frac{500}{N} + 4\right)(N - 10) = 500 + 60$	1A	
$N\left(\frac{500}{N} + 4\right)(N - 10) = 560N$	1M	1M 消去分母
(500 + 4N)(N - 10) = 560N		
$500N + 4N^2 - 5000 - 40N = 560N$		
$4N^2 - 100N - 5000 = 0$		
$N^2 - 25N - 1250 = 0$		
(N-50)(N+25) = 0	1M	得出二次方程及試解方程
N = 50 或 $N = -25$ (捨去)		
· . 他最初購入了 50 瓶牛奶。	1A	必須捨去負根
	(4)	

	1	T
18.		
(a)		
把 $\log x = 0$ 及 $y = 4$ 代入 $y = k \log x + n$,可		
得:		
4 = k(0) + n	1A	
$n=\underline{4}$	174	
把 $\log x = 4$, $y = 6$ 及 $n = 4$ 代入		
$y = k \log x + n$,可得:		
6 = 4k + 4		
$k = \frac{1}{2}$	1A	
(b) $y = \frac{1}{2} \log x + 4$		
$y - 4 = \frac{1}{2}\log x$		
2	1M	logx 做主項
$2(y-4) = \log x$	1A	
$x = 10^{2y-8}$		
	(4)	