CONTROLE N°2: 6 OCTOBRE 2014

Documents et appareils électroniques non autorisés. Les notations sont celles du cours. Durée : 1h30.

Exercice 1. (5 pts)

Soit E un \mathbb{R} -espace vectoriel.

- 1.1 Rappeler la définition de deux normes équivalentes \mathcal{N}_1 et \mathcal{N}_2 définies sur E.
- 1.2 Montrer que : s'il existe deux réels strictement positifs α et β , tels que :

$$\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha) \subset \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subset \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta) \tag{1.1}$$

alors la norme $\,\mathcal{N}_{1}\,$ est équivalente à la norme $\,\mathcal{N}_{2}\,$.

1.3 <u>Application</u>: On considère l'espace $E = \mathbb{R}^2$ et les normes \mathcal{N}_1 et \mathcal{N}_2 définies pour tout $(x,y) \in \mathbb{R}^2$ par :

$$\mathcal{N}_1(x, y) = |x| + |y|$$
; $\mathcal{N}_2(x, y) = \max(|x|, |y|)$.

Donner deux réels strictement positifs α et β puis tracer $\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha)$; $\overline{\mathcal{B}}_{\mathcal{N}_2}(0,1)$; $\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$ telles que les inclusions (1.1) soient vérifiées.

Conclure.

Exercice 2. (5 pts)

Soit I = [0,1] et $E = \mathcal{C}(I,\mathbb{K})$, l'espace vectoriel des fonctions continues de I dans \mathbb{K} ; $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

2.1 Montrer que les applications suivantes définissent des nomes sur *E* :

$$\|.\|_{\infty}: f \to \sup_{t \in I} |f(t)|$$
 et $\|.\|_1: f \to \int_0^1 |f(t)| dt$

- 2.2 Montrer que : $\forall f \in E$, $||f||_1 \leq ||f||_{\infty}$.
- 2.3 Ces normes sont-elles équivalentes sur E ? (On pourra considérer la suite $(f_n)_{n\in\mathbb{N}}$ d'éléments de E définie pour tout $n\in\mathbb{N}$ et tout $t\in I$ par $f_n(t)=t^n$).

Exercice 3. (5 pts)

Dire si la partie de \mathbb{R}^2 suivante est fermée, ouverte ou ni l'un ni l'autre, **puis le démontrer**.

$$A = \{(x, y) \in \mathbb{R}^2, xy > 1\}.$$

Exercice 4. (5 pts)

Montrer que l'intégrale suivante est semi-convergente :

$$I = \int_0^{+\infty} \frac{\sin t}{2\sqrt{t}} dt.$$