文件 章节导学

文件的基 本概念

文件的逻 辑结构

文件目录 文件共享

本章要求

1. 文件的基本概念和属性

- 1. 理解文件的属性和内部数据组织方式
- 2. 学习文件之间的组织方式
- 3. 理解操作系统应提供的相关文件管理功能

2.文件的逻辑结构:

- 1. 区分无结构文件和有结构文件
- 2. 掌握顺序文件、索引文件、索引顺序文件、多级索引顺序文件等逻辑结构的特点和应用
- 3. 理解文件在外存中的存放方式

3. 文件系统的实现和文件共享:

- 1. 学习各种文件目录结构,如单级目录结构、两级目录结构、多级目录结构、无环图目录结构和索引结点
- 2. 理解文件共享的概念, 区分硬链接和软连接, 以及它们的实现方式
- 3. 了解文件系统的实现和文件的层次结构

本章内容就帮助你理解文件系统的实现机制, 这些内容是操作系统课程的重点内容,也是考研中的重点。 文件

一切皆文件 _{宿船长}

一切皆文件: Linux中的七种文件

在Linux系统中,有七种基本的文件类型。它们是:

- 1. 普通文件(Regular file):通常用来存储文本或二进制数据,如文本文件、图像文件等。
- 2. 目录文件(Directory file): 用来存储其他文件和目录的位置信息。
- 3. 符号链接文件(Symbolic link file): 类似于Windows系统中的快捷方式,它指向另一个文件或目录。
- 4. 块设备文件(Block device file):用于存储数据的设备,如硬盘、U盘等。
- 5. 字符设备文件(Character device file):用于传输字符流的设备,如键盘、鼠标等。
- 6. 套接字文件(Socket file):用于进程间通信的文件。
- 7. 管道文件(FIFO file):类似于套接字文件,也用于进程间通信,但是它只能用于相关进程之间的通信。

Type	User			G	rou	p	Other			

Type	User			Group			Other		
d	r	W	x	r	_	x	r	_	x

2²

2¹

2²

2⁰

2²

2⁰

2⁰

普通文件

普通文件在Linux中的文件类型占位符为 - , 普通文件主要有以下三种:

- 1. **文本文件**:源代码,txt文档等
- 2. 二进制可执行文件:源码编译后的可执行文件
- 3. **其他特殊编码格式的数据文件**: /var/log/wtmp, 图片, 音视频, 数据库文件 等等

目录文件

目录文件在Linux中的文件类型占位符为 d , 在Linux中, 有一些跟目录相关的概念, 需要着重强调

- 1. 家目录不是/home目录:每个用户都有自己的家目录,除root的家目录在/root外, 其他普通用户的家目录位于/home目录下面的以自己用户名为名的目录下
- 2. PATH路径:准确的说,PATH是shell中的一个环境变量,在各种操作系统中都有,用以存储可执行文件所在的目录,当我们在shell里写入指令时,实际是在所有PATH路径里查找是否存在该可执行文件

链接文件

链接文件(符号链接,软链接)在Linux中的文件类型占位符为 I ,软链接相对于硬链接,是操作系统中,必须要掌握的知识

- 1. 软链接:一个新的文件,文件内容为原始文件的具体存储位置,跟Windows中的快捷方式一样;
- 2. 硬链接:本质上是同一个文件,只是这个文件有了不止一个名字,相当于与一个具有双国籍的人,或者有两个户口的人,虽然名字,国籍,户口所在位置不同,但本质上还是同一个人。

块设备文件

块设备文件在Linux中的文件类型占位符为 b ,块设备是系统中用来存储数据的设备块(block)的概念在操作系统中广泛存在,虽然所处的层,模块各不相同,但其本质思想是相通的。它指的是一段固定大小的连续内存或磁盘空间,用于数据存储和管理。块被用于以结构化和高效的方式组织和管理数据。它们将数据分解成更小、可管理的部分,从而使数据的访问、检索和修改更容易。这个概念被应用于操作系统的许多不同部分,从文件系统到输入/输出操作。

字符设备

字符设备文件在Linux中的文件类型占位符为 c, 意为字符文件, 它的特点是该文件中传递的数据为字符数据,构成字符流,同时数据是实时的,不能存储常见的字符设备有鼠标,键盘,串口等等

套接字文件

套接字文件在Linux中的文件类型占位符为 s , 主要用在网络通信

套接字(socket)是应用层和运输层的接口,负责将应用层的数据,通过运输层的TCP或者UDP传输出去。Socket是网络编程中,发送和接收数据的唯一接口,发数据则往socket文件写,收数据则是从socket中读数据。

套接字有两个缓冲区:

- 1. 接收缓冲区:也称为输入缓冲区,它存储来自网络的待读取应用程序的数据。
- 2. 发送缓冲区:也称为输出缓冲区,它存储应用程序等待发送到网络的数据。

这些缓冲区用于临时存储数据,直到应用程序准备处理或发送到网络为止。这些缓冲区的大小可以使用各种套接字选项进行调整。

管道文件

管道文件在Linux中的文件类型占位符为p ,管道文件,也称为命名管道,是Linux中用于进程间通信(IPC)的一种文件类型。

- 1. 它允许两个或多个进程通过读写共享数据缓冲区来相互通信。管道文件类似于普通文件, 但不同的是,它只存在于内存中,而不是存储在磁盘上。
- 2. 文管道文件有两个端口,一个用于写入,一个用于读取。
- 3. 当一个进程向管道文件的写入端口写入数据时,数据将被存储在共享缓冲区中。另一个进程可以从管道文件的读取端口读取数据。数据按照写入的顺序读取,所以第一个写入的数据也是第一个读取的数据。
- 4. 管道文件可用于在同时运行的进程之间传递数据。例如,一个进程可能生成需要由另一个进程处理的数据。第一个进程可以将数据写入管道文件,第二个进程可以从管道文件中读取数据并对其进行处理。

16

ps -ef | grep ping

一切皆文件的好处

这种"一切皆文件"的设计哲学带来了许多好处,包括:

- 1.统一的接口: 统一的文件I/O接口简化了系统的管理和编程, 使得用户和开发者无需了解不同资源的特定接口和细节。
- **2.易于扩展**: 新的设备和资源可以通过文件系统的形式轻松地添加到系统中,无需修改现有的程序或工具。
- **3.灵活性**:由于一切都被视为文件,因此可以使用标准的文件操作工具(如cat、cp、mv等)来操作各种资源,提高了系统的灵活性和可编程性。
- **4.安全性**: Unix和Linux系统通过权限控制来限制对文件的访问,从而提高了系统的安全性。

总之, "一切皆文件"的设计哲学是Unix和Linux操作系统的重要特征之一,它在操作系统的设计和使用中起着至关重要的作用。

一切皆文件的例子

如何给云主机上的其他用户留言?

文件

文件的基本概念

文件的相关概念——文件的属性

一个文件有哪些属性?

文件名:由创建文件的用户决定文件名,主要是为了方便用户找到文件,同一目录下不允许有重名文件。

标识符:一个系统内的各文件标识符唯一,对用户来说毫无可读性,因此标识符只是操作系统用于区分各个文件的一种内部名称。

类型: 指明文件的类型

位置: 文件存放的路径(让用户使用)、在外存中

的地址(操作系统使用,对用户不可见)

大小: 指明文件大小

创建时间、上次修改时间

文件所有者信息

保护信息:对文件进行保护的访问控制信息

文件的相关概念——文件内部的数据应该怎样组织起来?

无结构文件(如文本文件)——由一些二进制或字符流组成,又称"流式文件"

2	日期	题目名称	题目链接	难度	知识点
3		a+b	0d6a11417?tpld=40&&tqld=	☆	没啥知识点
4	1月24日	abc	d7b8750b6?tpld=40&&tqld=	☆☆	穷举
5		成绩排序	e0610418b1?tpld=40&&tqld=	2	排序
6		球的体积和半径	5c8c2ec96b?tpld=40&&tqld=	☆	数学?
7	1月25日	字母统计	573b831f3c?tpld=40&&tqld=	☆	字符串
8		谁是你的潜在朋友	2b1c6f9fcc?tpld=40&&tqld=	222	排序
9		反序输出	3b40171bb?tpld=40&&tqld=	☆	字符串
10	1月26日	手机键盘	05cd476cd?tpld=40&&tqld=	☆☆	字符串、模拟
11		搬水果	d2e1eef8a?tpld=40&&tqld=	222	贪心
12		今年的第几天?	d70eaf04d?tpld=40&&tqld=	☆	模拟
13	1月27日	小白鼠排队	pa60cf372b?tpld=40&&tqld=	☆☆	排序、字符串
14		哈夫曼树	b2fcda155?tpld=40&&tqld=	☆☆☆	贪心
15		n的阶乘	998ca628c8?tpld=40&&tqld=	☆☆	模拟(也可递归
		约数个数	9f053fa4d6?tpld=40&&tqld=	☆☆	数学、穷举
记	录 !	查找	3842aca8aa?tpld=40&&tqld=	☆☆	二分、排序
اسام	/ /	求最大最小数	7895cc7b4?tpld=40&&tqld=	☆	查找
19	Dr. A	查找学生信息	e0d86bb4?tpld=40&&tqld=	☆☆	哈希、查找
20		ero-complexity Transposi	iid1eb30e975?tpld=40&&tqld=	Δ A	12
21		数字之和	d9657f4b0?tpld=40&&tqld=	☆	数学、模拟
22	1月30日	東 天公 到	382536103?tp10=40&&tq10=	йù	
23		表达式计算	acdebf890b?tpld=40&&tqld=	22	杜
24		特殊乘法	1c3a34240f?tpld=40&&tqld=	☆	模拟

有结构文件(如数据库表)——由一组相似的记录组成,又称"记录式文件"

其中,记录是一组相关数据项的集合; 数据项是文件系统中最基本的数据单位 数据项

文件的相关概念——文件内部的数据应该怎样组织起来?

文件的相关概念——文件之间应该怎样组织起来?

文件的相关概念——文件之间应该怎样组织起来?

文件的相关概念——操作系统应该向上提供哪些功能?

操作系统应向上提供哪些功能

可用几个基本操作完成更复杂的操作,比如:"复制文件": 先创建一个新的空文件,再把源文件读入内存,再将内存中的数据写到新文件中

操作系统在 背后做的处 理会在以后 进行探讨 创建文件 (create系统调用)

删除文件 (delete 系统调用)

读文件 (read 系统调用)

写文件 (write系统调用)

打开文件 (open系统调用)

关闭文件 (close 系统调用)

读/写文件之前,需要"打开文件" 读/写文件结束之后,需要"关闭文件"

文件的相关概念——从上往下看,文件应如何存放在外存?

存储单元对应一个物理地址

文件的相关概念——从上往下看,文件应如何存放在外存?

文件数据放在连续 的几个磁盘块中

文件数据放在离散的几个磁盘块中。此时,应该如何记录各个磁盘块之间的先后顺序呢?

文件的相关概念——其他需要由操作系统实现的文件管理功能

文件共享: 使多个用户可以共享使用一个文件

文件保护: 如何保证不同的用户对文件有不同的操作权限

文件

文件的逻辑结构

文件的逻辑结构

文件的逻辑结构

所谓的"逻辑结构",就是指 在用户看来,文件内部的数据 应该是如何组织起来的。"物 理结构"指的是在操作系统看 来,文件的数据是如何存放在 外存中的。

文件的逻辑结构——无结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。 无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:Windows操作系统中的.txt文件。

文件内部的数据其实就是一系列字符流,没有明显的结构特性。因此也不用探讨无结构文件的"逻辑结构"问题。

文件的逻辑结构——有结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:

Windows操作系统中的. txt文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组

成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同

记录的ID)

学号	。姓名	。性别	『专业	V
202106120	01 5.	生本例中,	"学号"即可	,
202106120			录的关键字	:程
202106120	03 王五	男	计异机	ĺ
202106120	04 刘二	女	网络工	程
202106120	05 赵一	男	计算机	l
202106120		- 1	网络工	_程
202106120	07 赵一2	里 男	计算机	l
202106120	08 XIJ_3	女	网络山	_桯
202106120	09 赵一3	男	计算机	l
202106123	10 刘二4	女	网络工	_程

这是一张数据库 表,记录了各个 学生的信息

每个学生对应一 条记录,每条记 录由若干个数据 项组成

文件的逻辑结构——有结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:

Windows操作系统中的. txt文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如:数

据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同记录的ID)

根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。

 32B
 32B
 4B
 60B

 学号
 姓名
 性别
 专业

这个有结构文件由定长记录组成,每条记录的长度都相同(共128 B)。各数据项都处在记录中相同的位置,具有相同的顺序和长度(前32B一定是学号,之后32B一定是姓名······)

文件的逻辑结构——有结构文件

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:

Windows操作系统中的. txt文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如:数

据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同记录的ID)

根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。

 32B
 32B
 4B
 (长度不确定)

 学号
 姓名
 性别
 特长

这个有结构文件由**可变长记录**组成,由于各个学生的特长存在很大区别,因此"特长"这个数据项的长度不确定,这就导致了各条记录的长度也不确定。当然,没有特长的学生甚至可以去掉"特长"数据项。

文件的逻辑结构——有结构文件的逻辑结构

按文件是否有结构分类,可以分为无结构文件、有结构文件两种。

无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称"流式文件"。如:

Windows操作系统中的. txt文件。

有结构文件:由一组相似的记录组成,又称"记录式文件"。每条记录又若干个数据项组成。如:数

据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同记录的ID)

根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。

文件的逻辑结构——顺序文件

顺序文件:文件中的记录一个接一个地顺序排列(逻辑上),记录可以是定长的或可变长的。各个记录在物理上可以顺序存储或链式存储。

文件的逻辑结构——顺序文件

i*L →

可变长记录

结论:定长记录的顺序文件,若物理上采用顺序存储,则可实现随机存取;若能再保证记录的顺序结构,则可实现快速检索(即根据关键字快速找到对应记录)

注:一般来说,考试题目中所说的"顺序文件"指的是物理上顺序存储的顺序文件。之后的讲解中提到的顺序文件也默认如此。可见,顺序文件的缺点是增加/删除一个记录比较困难(如果是串结构则相对简单)

定长记录

记录内容

R0

R1

Ri

38

文件的逻辑结构——索引文件

索引号	长度m	指针ptr		
Λ	m0	-	+	R0
U				R1
1	m1			
	ma i		—	Ri
ı	mi			

建立一张索引表以加快 文件检索速度。每条记 录对应一个索引项。

文件中的这些记录在物理上可以 离散地存放。

逻辑文件

索引表本身是定长记录的顺序文件。因此可以快速 找到第i个记录对应的索引项。

可将关键字作为索引号内容,若按关键字顺序排列,则还可以支持按照关键字折半查找。

每当要增加/删除一个记录时,需要对索引表进行修改。由于索引文件有很快的检索速度,因此主要用于对信息处理的及时性要求比较高的场合。

另外,可以用不同的数据项建立多个索引表。如: 学生信息表中,可用关键字"学号"建立一张索引 表。也可用"姓名"建立一张索引表。这样就可以 根据"姓名"快速地检索文件了。(Eg: SQL就支持 根据某个数据项建立索引的功能)

文件的逻辑结构——索引顺序文件

键	地址
A Ke	
Bai Qi	
Dian Wei	
Cao Cao	

索引顺序文件的索 引项也不需要按关 键字顺序排列,这 样可以极大地方便 新表项的插入 A ke
An Qi La
...
...

索引顺序文件是索引文件和顺序文件思想的结合。 索引顺序文件中,同样会为文件建立一张索引表, 但不同的是:并不是每个记录对应一个索引表项, 而是一组记录对应一个索引表项。

其他属性

逻辑文件

在本例中,学生记录按照学生姓名的开头字母进行分组。每个分组就是一个顺序文件,分组内的记录不需要按关键字排序

文件的逻辑结构——索引顺序文件(检索效率分析)

若一个顺序文件有10000个记录,则根据关键字检索文件,只能从头开始顺序查找(这里指的并不是定长记录、顺序结构的顺序文件),平均须查找5000个记录。

键	地址		→ 姓名	其他属性
A Ke			A Ke	
Bai qi			An Qi La	
Dian Wei				
Cao Cao			* 姓名	其他属性
			Bai Qi	
01/2 - 400	/n /= /n 40/	^ <i>^ \</i> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

若采用索引顺序文件结构,可把10000个记录分为10000^{1/2} = 100 组,每组100个记录。则需要先顺序查找索引表找到分组(共100个分组,因此索引表长度为100,平均需要查50次),找到分组后,再在分组中顺序查找记录(每个分组100个记录,因此平均需要查50次)。可见,采用索引顺序文件结构后,平均查找次数减少为50+50 = 100次。

逻辑文件

同理,若文件共有10⁶个记录,则可分为1000个分组,每个分组1000个记录。根据关键字检索一个记录平均需要查找500+500 = 1000次。这个<mark>查找次数依然很多</mark>,如何解决呢?

文件的逻辑结构——多级索引顺序文件

为了进一步提高检索效率,可以为顺序文件建立多级索引表。例如,对于一个含10。个记录的文件,可先为该文件建立一张低级索引表,每100个记录为一组,故低级索引表中共有10000个表项(即10000个定长记录),再把这10000个定长记录分组,每组100个,为其建立顶级索引表,故顶级索引表中共有100个表项。

Tips:要为N个记录的文件建立K级索引,则最优的分组是每组N^{1/(k+1)}个记录。

检索一个记录的平均查找次 数是((N^{1/(k+1)})/2) * (K+1)

如:本例中,建立2级索引,则最优分组为每组100000^{1/3} = 100个记录,平均查找次数是(100/2) *3 = 150次

文件目录——文件控制块

■ 标准文档 ★ 操作系统与…总结,xmind ※ 如何实现高…务器.xmind ■ 6.408 计算机考研 0.课堂总结 进程同步.xmind 5.高并发服务器开发 1.随堂练习 考试记录 3.课上实践 课程设计 1.测评作业 0.数据统计 2.线上测评 规范说明 OJ 题目 可 项目 x.营销课 3.任务制视频

目录文件

目录本身就是一种有 结构文件,由一条条 记录组成。每条记录 对应一个在该放在该 日录下的文件

文件名	类型,	目录下的:	文件	物理位置
标准文档	目录	只读		外存7号块
考试记录	目录	读/写		外存18号块
4.系统编程与网络	目录	读/写		外存643块
编程				

进程同步.xmind	Xmind	只读		外存324块

当我们双击"4. 系统编程与网络编程"后,操作系统会在这个目录表中找到关键字"4. 系统编程与网络编程"对应的目录项(也就是记录),然后从外存中将"4. 系统编程与网络编程"目录的信息读入内存,于是,"4. 系统编程与网络编程"目录中的内容就可以显示出来了。

文件目录——文件控制块

"4.系统编程与 网络编程"目录 对应的目录文件

类型

				文件名
_		— ш	000	0.课堂总结
标准文档	> ×	操作系统与总结.xmind	l.	
4.系统编程与网络编程	> ×	如何实现高务器.xmind	Ľ	1.随堂练习
6.408计算机考研	>	0.课堂总结	>	,~
进程同步.xmind	×	UDP && TCP.xmind		
5.高并发服务器开发	>	1.随堂练习	>	
考试记录	>	3.课上实践	>	3.课上实践
课程设计	> ×	进程.xmind		
1.测评作业	>			
0.数据统计	>			
2.线上测评	>			进程.xmind
规范说明	>			处作主.XIIIIIII
OJ题目	>			
项目	>		Ļ	
x.营销课	>			
3.任务制视频	>			FCB的左
	标准文档 4.系统编程与网络编程 6.408 计算机考研 进程同步.xmind 5.高并发服务器开发 考试记录 课程设计 1.测评作业 0.数据统计 2.线上测评 规范说明 OJ题目 项目 x.营销课	标准文档	 标准文档 4.系统编程与网络编程 6.408 计算机考研 进程同步.xmind 5.高并发服务器开发 考试记录 课程设计 1.随堂练习 3.课上实践 进程.xmind 1.测评作业 0.数据统计 2.线上测评 规范说明 OJ题目 项目 次 操作系统与…总结.xmind 	标准文档

0.课堂总结	目录	只读	 外存25号块
1.随堂练习	目录	读/写	 目录文件中的一条
			 记录就是一个"文
3.课上实践	目录	读/写	 件控制块(FCB)"
进程.xmind	xmind	只读	 外存995号块

存取权限

FCB实现了文件名和文件之间的映射。使用户 (用户程序)可以实现 "按名存取" FCB的有序集合称为"文件目录",一个FCB就是一个文件目录项。 FCB中包含了文件的基本信息(文件名、物理地址、逻辑结构、物理 结构等),存取控制信息(是否可读/可写、禁止访问的用户名单 等),使用信息(如文件的建立时间、修改时间等)。 最重要,最基本的还是文件名、文件存放的物理地址。

物理位置

文件目录——文件控制块

文件名	类型	存取权限	 物理位置
0.课堂总结	目录	只读	 外存25号块
1.随堂练习	目录	读/写	 外存278号块
3.课上实践	目录	读/写	 外存152号块
进程.xmind	xmind	只读	 外存995号块

需要对目录进行哪些操作?

搜索: 当用户要使用一个文件时,系统要根据文件名搜索目录,找到该文件对应的目录项

创建文件: 创建一个新文件时, 需要在其所属的目录中增加一个目录项

删除文件: 当删除一个文件时,需要在目录中删除相应的目录项

显示目录: 用户可以请求显示目录的内容, 如显示该目录中的所有文件及相应属性

修改目录:某些文件属性保存在目录中,因此这些属性变化时需要修改相应的目录项(如:文件重命名)

文件目录——单级目录结构

- 1. 查找速度慢;
- 2. 不允许重名;
- 3. 不便于实现文件共享

文件目录——两极目录结构

单级目录结构:将文件目录分为主文件目录和用户文件目录。

主目录表

User1

User2

X	文件名	 存放位置
	文件1	
	文件2	
	文件3	

文件1

文件2

文件3

优点:

- 1. 提高了目录检索速度
- 2. 允许文件重名
- 3. 不同用户可以使用不同的文件名来访问 系统中的同一个共享文件

缺点:

- 1. 缺乏灵活性
- 2. 无法很好地满足文件多的用户的需要

文件目录——多极目录结构

多级目录结构:两级目录结构加以推广,允许用户文件目录再建立下级子目录,由此形成了多级目录结构。在树形目录中,主目录则称为根目录,目录树中的非叶节点均为目录文件(又称子目

录),叶节点为数据文件。

根目录

目录2

优点:

- 1. 层次清楚
- 2. 允许文件重名
- 3. 进一步提高目录检索速度
- 4. 容易实现共享

"目录2"目录 目录3 文件3

"目录1"目录

文件1

文件2

文件3

● 绝对路径: 目录/子目录名.../文件名

● 相对路径: 当前目录/子目录名.../文件名

文件1

文件目录——无环图目录结构

可以用不同的文件名指向同一个文件,甚至可以指向同一个目录(共享同一目录下的所有内容)。

需要为<mark>每个共享结点设置一个共享计数器</mark>,用于记录此时有多少个地方在共享该结点。用户提出删除结点的请求时,只是删除该用户的FCB、并使共享计数器减1,并不会直接删除共享结点。

只有共享计数器减为0时,才删除结点。

注意:共享文件不同于复制文件。在共享文件中,由于各用户指向的是同一个文件,因此只要其中一个用户修改了文件数据,那么所有用户都可以看到文件数据的变化。

文件目录——索引结点(FCB的改进)

文	件名	类	型	存取权限				物理位置
标》	准文档	目	录	只读				外存7号块
考	试记录	目录		读/写				外存18号块
4.系统编程与		目	录	读/写				外存643块
网络编程								
	•••							
进:	文件名		索引约	吉点指针			外存324块	
<i>'</i>	标准文档					麦	引	
	考试记录					结点		
4.系统编程与 网络编程			/				了文件名 小的文件	
							述信息都 到这里来	

其实在查找各级目录的过程中只需要用到"文件名"这个信息,只有文件名匹配时,才需要读出文件的其他信息。因此可以考虑让目录表"瘦身"来提升效率。

思考有何好处?

假设一个FCB是64B,磁盘块的大小为1KB,则每个盘块中只能存放16个FCB。若一个文件目录中共有640个目录项,则共需要占用640/16 = 40个盘块。因此按照某文件名检索该目录,平均需要查询320个目录项,平均需要启动磁盘20次(每次磁盘I/0读入一块)。若使用索引结点机制,文件名占14B,索引结点指针站2B,则每个盘块可存放64个目录项,那么按文件名检索目录平均只需要读入320/64 = 5个磁盘块。显然,这将大大提升文件检索速度。

文件目录——索引结点(FCB的改进)

	-
文件名	索引结点指针
标准文档	
考试记录	
4.系统编程与 网络编程	

索引结点 (包含除了文件名之 外的文件描述信息) 思考有何好处?

假设一个FCB是64B,磁盘块的大小为1KB,则每个盘块中只能存放16个FCB。若一个文件目录中共有640个目录项,则共需要占用640/16 = 40个盘块。因此按照某文件名检索该目录,平均需要查询320个目录项,平均需要启动磁盘20次(每次磁盘I/0读入一块)。

若使用索引结点机制,文件名占14B,索引结点指针站2B,则每个盘块可存放64个目录项,那么按文件名检索目录平均只需要读入320/64 = 5个磁盘块。显然,这将大大提升文件检索速度。

当找到文件名对应的目录项时,才需要将索引结点调入内存,索引结点中记录了文件的各种信息,包括文件在外存中的存放位置,根据"存放位置"即可找到文件。

存放<mark>在外存中</mark>的索引结点称为"<mark>磁盘索引结点",当索引结点放入内存后称为"内存索引结点</mark>"。 相比之下<mark>内存索引结点中需要增加一些信息</mark>,比如:文件是否被修改、此时有几个进程正在访问该文件等。

文件共享——基于索引结点的共享方式(硬链接)

索引结点中设置一个链接计数变量count,用于表示链接到本索引结点上的用户目录项数。

若count = 2, 说明此时有两个用户目录项链接到该索引结点上,或者说是有两个用户在共享此文件。

若某个用户决定"删除"该文件,则只是要把用户目录中与该文件对应的目录项删除,且索引结点的count值减1。

若count>0,说明还有别的用户要使用该文件,暂时不能把文件数据删除,否则会导致指针悬空。

当count = 0时系统负责删除文件。

文件共享——基于符号链的共享方式(软链接)

拜拜