Lista 1 - Gabarito - Estatística para Administração - 2024.2

- 1) Classifique cada uma das variáveis abaixo em qualitativa(nominal/ordinal) ou quantitativa (discreta/contínua)
 - a) Qualitativa nominal
 - b) Qualitativa nominal
 - c) Quantitativa contínua
 - d) Qualitativa ordinal
 - e) Qualitativa ordinal
- 2) Os dados abaixo referem-se ao salário (em salários mínimos) de 20 funcionários administrativos de uma indústria

	7,3								
3,3	10,7	1,5	8,2	10,0	4,7	3,5	6,5	8,9	6,1

Faixa Salarial	n_i	f_i	f_{ac}
[1,3)	2	0,1	0,1
[3, 5)	5	$0,\!25$	$0,\!35$
[5, 7)	4	$0,\!20$	$0,\!55$
[7,9)	4	$0,\!20$	0,75
[9,11)	5	$0,\!25$	1
total	20	1	

a)

b) Para calcular a média, basta somar todos os valores e dividir pelo total de valores.

Ao longo da resolução desse exercício iremos denominar pela letra X o nosso conjunto de dados.

								6,1	
6,5	7,3	8,2	8,5	8,9	9,0	9,4	10	10,1	10,7

Para calcular a mediana, primeiramente precisamos ordenar os dados.

Como o tamanho do conjunto de dados é par, devemos pegar os elementos que ocupam as posições $\frac{20}{2}$ e $\frac{20}{2} + 1$ e fazer a média entre eles

$$M = \frac{6, 1+6, 5}{2} = 6, 3$$

c)

$$\begin{split} dm(X) &= \frac{1}{20}(|10,1-6,415|+|7,3-6,415|+|8,5-6,415|+|5,0-6,415|+|4,2-6,415|+|3,1-6,415|+|2,2-6,415|+|4,2-6,$$

$$s^{2} = \frac{1}{20}((10, 1 - 6, 415)^{2} + (7, 3 - 6, 415)^{2} + (8, 5 - 6, 415)^{2} + (5, 0 - 6, 415)^{2} + (4, 2 - 6, 415)^{2} + (3, 1 - 6, 415)^{2} + (2, 2 - 6, 415)^{2} + (9, 0 - 6, 415)^{2} + (9, 4 - 6, 415)^{2} + (6, 1 - 6, 415)^{2} + (3, 3 - 6, 415)^{2} + (10, 7 - 6, 415)^{2} + (1, 5 - 6, 415)^{2} + (8, 2 - 6, 415)^{2} + (10, 0 - 6, 415)^{2} + (4, 7 - 6, 415)^{2} + (3, 5 - 6, 415)^{2} + (6, 5 - 6, 415)^{2} + (8, 9 - 6, 415)^{2} + (6, 1 - 6, 415)^{2} + (8, 9 - 6, 415)^{2} + (10, 1 - 6, 115)^{2}$$

$$s = \sqrt{8,21} = 2,86$$

d)
$$CV = \frac{s}{\bar{X}} = \frac{2,86}{6,415} = 0,44$$

3) Uma pesquisa com usuários de transporte coletivo da cidade do Rio de Janeiro indagou sobre os diferentes meios de transporte utilizados em suas locomoções diárias. Dentre ônibus, metrô e trem, a quantidade de diferentes meios de transporte utilizados foi o seguinte:

$$2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3$$

- a) Quantitativa discreta
- b) Para calcular a média, basta somar todos os valores e dividir pela quantidade de elementos.

Para calcular a mediana, primeiramente precisamos ordenar os dados

Como a quantidade de elementos é 30, que é um número par, para calcular a mediana devemos calcular a média entre os elementos $\frac{30}{2}$ e $\frac{30}{2}+1$

$$M = \frac{2+2}{2} = 2$$

A moda é o valor que aparece com maior frequência em nosso conjunto de dados. Nesse caso é o valor 1.

c)
$$dm(x) = \frac{14 \times |1 - 1,67| + 12 \times |2 - 1,67| + 4 \times |3 - 1,67|}{30} = \frac{9,38 + 3,96 + 5,32}{30} = 0,622$$

$$s^2 = \frac{14 \times (1 - 1,67)^2 + 12 \times (2 - 1,67)^2 + 4 \times (3 - 1,67)^2}{30} = \frac{6,28 + 1,31 + 7,07}{30} = 0,49$$

$$s = \sqrt{0,49} = 0,7$$

d)
$$CV = \frac{0.7}{1.67} = 0.42$$

Podemos dizer que a variabilidade é alta.

X	n_i	f_i	f_{ac}
1	14	$0,\!47$	$0,\!47$
2	12	0,4	0,87
3	4	0,13	1
total	30	1	

e)

4) Um questionário foi aplicado aos dez funcionários do setor de contabilidade de uma empresa, fornecendo os dados apresentados na seguinte tabela

Funcionário	Curso (completo)	Idade	Salário (R\$)	Anos de Empresa
1	superior	34	1440,00	5
2	superior	43	$1450,\!00$	8
3	médio	32	1440,00	6
4	médio	37	3300,00	8
5	médio	24	4300,00	3
6	médio	25	2700,00	2
7	médio	27	1960,00	5
8	médio	22	5600,00	2
9	fundamental	21	6700,00	3
10	fundamental	26	4500,00	3

- a) Funcionário: Qualitativa nominal
 - Curso: Qualitativa ordinal
 - Idade: Quantitativa discreta/contínua
 - Salário: Quantitativa contínua
 - Anos de Empresa: Quantitativa Discreta

b)

$$\bar{X} = \frac{34 + 43 + 32 + 37 + 24 + 25 + 27 + 22 + 21 + 26}{10} = \frac{291}{10} = 29, 1$$

Como todos os valores da variável idade aparecem uma única vez, a moda são todos os valores, ou seja,

$$\mathbf{Moda} = \{34, 43, 32, 37, 24, 25, 27, 22, 21, 26\}$$

Para obter a mediana, primeiro precisamos ordenar os dados

$$21, 22, 24, 25, 26, 27, 32, 34, 37, 43$$

Como temos 10 valores em nosso conjunto de dados, um número par, devemos tomar a média dos elementos $\frac{10}{2}$ e $\frac{10}{2}$ + 1

$$M = \frac{26 + 27}{2} = 26,5$$

c) Para obter os quartis, primeiro precisamos ordenar os dados

1440, 00; 1440, 00; 1450, 00; 1960, 00; 2700, 00; 3300, 00; 4300, 00; 4500, 00; 5600, 00; 6700, 00

A posição do primeiro quartil é $\frac{10+1}{4}=2,75$, como esse não é um número inteiro iremos tomar a média dos elementos da posição 2 e 3

$$Q1 = \frac{1440 + 1450}{2} = 1445$$

O segundo quartil é exatamente a própria mediana, que nesse caso é a media dos elementos que ocupam a posição 5 e 6

$$Q2 = \frac{2700 + 3300}{2} = 3000$$

O posição do terceiro quartil é $\frac{3\cdot 11}{4}=8,25$, como esse não é um número inteiro iremos tomar a média dos elementos da posição 8 e 9

$$Q3 = \frac{4500 + 5600}{2} = 5050$$

d)

$$\begin{split} dm(idade) &= \frac{1}{10}(|21-29,1|+|22-29,1|+|24-29,1|+|25-29,1|+|26-29,1|+|27-29,1|+\\ &+|32-29,1|+|34-29,1|+|37-29,1|+|43-29,1|)=5,92 \end{split}$$

$$s^{2}(idade) = \frac{1}{10}((21 - 29, 1)^{2} + (22 - 29, 1)^{2} + (24 - 29, 1)^{2} + (25 - 29, 1)^{2} + (26 - 29, 1)^{2} + (27 - 29, 1)^{2} + (32 - 29, 1)^{2} + (34 - 29, 1)^{2} + (37 - 29, 1)^{2} + (43 - 29, 1)^{2}) = 51$$

Curso	n_i	f_i	f_{ac}
superior	2	0,2	0,2
médio	6	0,6	0,8
fundamental	2	0,2	1
total	10	1	

e)

Faixa etária	n_i	f_i	f_{ac}
[20, 24)	2	0,2	0,2
[24, 28)	4	0,4	0,6
[28, 32)	0	Ó	0,6
[32, 36)	2	0,2	0,8
[36, 40)	1	0,1	0,9
[40, 44)	1	0,1	1
total	10	1	

f)