Proof. Compute $\langle f(x+y), x+y \rangle$ and $\langle f(x-y), x-y \rangle$:

$$\langle f(x+y), x+y \rangle = \langle f(x), x \rangle + \langle f(x), y \rangle + \langle f(y), x \rangle + \langle y, y \rangle$$
$$\langle f(x-y), x-y \rangle = \langle f(x), x \rangle - \langle f(x), y \rangle - \langle f(y), x \rangle + \langle y, y \rangle;$$

then subtract the second equation from the first to obtain

$$\langle f(x+y), x+y \rangle - \langle f(x-y), x-y \rangle = 2(\langle f(x), y \rangle + \langle f(y), x \rangle).$$

If $\langle f(u), u \rangle = 0$ for all $u \in E$, we get

$$\langle f(x), y \rangle + \langle f(y), x \rangle = 0$$
 for all $x, y \in E$.

Then the above equation also holds if we replace x by ix, and we obtain

$$i\langle f(x), y \rangle - i\langle f(y), x \rangle = 0$$
, for all $x, y \in E$,

so we have

$$\langle f(x), y \rangle + \langle f(y), x \rangle = 0$$

 $\langle f(x), y \rangle - \langle f(y), x \rangle = 0,$

which implies that $\langle f(x), y \rangle = 0$ for all $x, y \in E$. Since $\langle -, - \rangle$ is positive definite, we have f(x) = 0 for all $x \in E$; that is, f = 0.

One should be careful not to apply Proposition 14.3 to a linear map on a real Euclidean space because it is false! The reader should find a counterexample.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-Hilbert spaces and to Hermitian spaces.

Proposition 14.4. Let $\langle E, \varphi \rangle$ be a pre-Hilbert space with associated quadratic form Φ . For all $u, v \in E$, we have the Cauchy–Schwarz inequality

$$|\varphi(u,v)| \le \sqrt{\Phi(u)} \sqrt{\Phi(v)}.$$

Furthermore, if $\langle E, \varphi \rangle$ is a Hermitian space, the equality holds iff u and v are linearly dependent.

We also have the Minkowski inequality

$$\sqrt{\Phi(u+v)} \le \sqrt{\Phi(u)} + \sqrt{\Phi(v)}.$$

Furthermore, if $\langle E, \varphi \rangle$ is a Hermitian space, the equality holds iff u and v are linearly dependent, where in addition, if $u \neq 0$ and $v \neq 0$, then $u = \lambda v$ for some real λ such that $\lambda > 0$.