ЗАДАНИЕ ПО КУРСУ

«Уравнения математической физики»

Автор: Хоружий Кирилл

От: 25 сентября 2021 г.

ТеорМин

Интеграл по дуге может быть найден, как

$$\int_C dz f(z) = 2\pi i \sum_{z_j} \operatorname{res}_{z_j} f(z), \quad \operatorname{res}_{z_j} f(z) = \lim_{\varepsilon \to 0} \varepsilon \int_0^{2\pi} \frac{d\varphi}{2\pi} e^{i\varphi} f(z_j + \varepsilon e^{i\varphi})$$

$$= \frac{1}{(m-1)!} \lim_{z \to z_j} \left(\frac{d^{m-1}}{dz^{m-1}} (z - z_j)^m f(z) \right),$$

где m – степень полюса.

1 Неделя I

№1

Рассмотрим уравнение на G(t)

$$(\partial_t + \gamma)G(t) = \delta(t),\tag{1}$$

с учетом принципа причинности g(t < 0) = 0.

При t > 0 $\delta(t) = 0$, так что

$$\partial_t G(t) = -\gamma G(t), \quad \Rightarrow \quad G(t) = A \exp(-\gamma t).$$

Проинтегрируем уравнение (1) от $-\varepsilon$ до ε :

$$G(\varepsilon) - G(\varepsilon) + \int_{\varepsilon}^{\varepsilon} \gamma G(t) \, dt = \int_{\varepsilon}^{\varepsilon} \delta(t) \, dt = 1, \quad \Rightarrow \quad G(\varepsilon) = 1, \quad \Rightarrow \quad A = 1.$$

Таким образом, искомая функция Грина G(t):

$$G(t) = \theta(t) \cdot \exp(-\gamma t)$$
.

где $\theta(t)$ обеспечивает G(t)=0 при t<0.

№2

Рассмотрим уравнение, вида

$$(\partial_t^2 + \omega^2)\varphi(t) = g(t), \quad g(t) = \begin{cases} 0, & t \notin [0, \tau]; \\ -\frac{v}{\tau l}, & t \in [0, \tau], \end{cases}$$

с нулевым начальным условием $\varphi(t<0)=0.$ Функция Грина G(t) для оператора $(\partial_t^2+\omega^2)$ равна 1

$$G(t) = \theta(t) \frac{1}{\omega} \sin(\omega t), \tag{2}$$

Далее найдём вид $\varphi(t)$ при $t < \tau$ (красная линия рис. 1):

$$\varphi(t < \tau) = \frac{1}{\omega} \int_{-\infty}^{t} \sin \omega(t - s) \ g(s) \ dt = \frac{1}{\omega} \int_{0}^{t} \sin \omega(t - s) \frac{v}{2l} \ d(t - s) = \frac{v}{l\tau} \frac{1}{\omega^2} \left(\cos(\omega t) - 1\right).$$

Теперь решим 2 задачу Коши с начальным условием при $t=\tau$, введя переменную $T=t-\tau$:

$$\varphi(T) = \varphi(t - \tau) = \dot{\varphi}(\tau)G(t - \tau) + \varphi(\tau)\dot{G}(t - \tau) + 0 = \frac{v}{lt}\frac{1}{\omega^2}(\cos\omega t - \cos\omega(t - \tau)).$$

получая синюю кривую на рис. 1.

 $^{^{1}}$ Конспект, уравнение (1.11).

²Конспект, уравнение (1.12).

Рис. 1: Сшивка решений в I.2

Итого, решение уравнения (1) (фиолетовая кривая, рис 1):

$$\varphi(t) = \frac{v}{l\tau} \frac{1}{\omega^2} \begin{cases} 0, & t < 0; \\ \cos \omega t - 1, & t \in [0, \tau]; \\ \cos \omega t - \cos \omega (t - \tau), & t > \tau. \end{cases}$$

№3

І. Найдём значение интеграла, вида

$$I_1 = \int_{-\infty}^{+\infty} \frac{1}{(x^2 + a^2)^2} dx.$$

Заметим, что уравнение $z^2+a^2=0$ имеет корни в $z_{1,2}=a^{\pm i\pi/2}$, тогда

$$I_1 = 2\pi i \cdot \text{res}_{z_1} = 2\pi i \lim_{z \to z_1} \cdot \left(\frac{1}{(z - z_2)^2}\right)' = -4\pi i \cdot \lim_{z \to z_1} \left(\frac{1}{(z - z_2)^3}\right) = -4\pi i \frac{1}{(2ia)^3} = \frac{\pi}{2a^3}$$

ІІ. Теперь найдём значение интеграла, вида

$$I_2 = \int_{-\infty}^{+\infty} \frac{e^{ipx}}{x^2 + a^2} dx \stackrel{p \ge 0}{=} 2\pi i \cdot \text{res}_{ia} f(z) = 2\pi i \cdot \frac{e^{-ap}}{2ai} = \frac{\pi}{a} e^{-ap},$$

где мы считали p > 0. В случае p < 0:

$$I_2 \stackrel{p<0}{=} -2\pi i \cdot \text{res}_{-ia} f(z) = -2\pi i \cdot \frac{e^{ap}}{-2ai} = \frac{\pi}{a} e^{ap}, \quad \Rightarrow \quad I_2 = \frac{\pi}{a} e^{-a|p|}.$$

2 Неделя II

№1 (1.1.4)

Найдём функию Грина G(t) уравнения

$$L(\partial_t)x(t) = \varphi(t), \quad L(\partial_t) = \partial_t^4 + 4\nu^2\partial_t^2 + 3\nu^4.$$

Функция Грина может быть найдена, как решение уравнения

$$L(\partial_t)G(t) = \delta(t)l, \quad \Rightarrow \quad G(t) = \theta(t) \cdot \left(b_1 e^{-\nu t} + b_2 e^{i\nu t} + b_3 e^{-i\sqrt{3}\nu t} + b_4 e^{i\sqrt{3}\nu t}\right),$$

где воспользовались разложением

$$L(z) = (z + i\nu)(z - i\nu)(z - i\sqrt{3}\nu)(z + i\sqrt{3}\nu).$$

Интегрируя от $-\varepsilon$ до $+\varepsilon$ уравнение на G(t) находим, что

$$\partial_t^3 G(+0) = 1, \quad \partial_t^2 G(+0) = \partial_t^1 G(+0) = G(+0) = 0,$$

откуда получаем СЛУ на $\{b_1, b_2, b_3, b_4\}$:

$$b_1 + b_2 + b_3 + b_4 = 0,$$

$$b_1 - b_2 + \sqrt{3} (b_3 - b_4) = 0,$$

$$b_1 + b_2 + 3 (b_3 + b_4) = 0,$$

$$b_1 - b_2 + 3\sqrt{3} (b_3 - b_4) = -\frac{i}{\nu^3},$$

$$b_1 = \frac{i}{4\nu^3},$$

$$b_2 = -\frac{i}{4\nu^3},$$

$$b_3 = -\frac{i}{4\sqrt{3}\nu^3},$$

$$b_4 = \frac{i}{4\sqrt{3}\nu^3}.$$

Так получаем решение, вида

$$G(t) = \frac{\theta(t)}{2\sqrt{3}\nu^3} \left(\sqrt{3}\sin(\nu t) - \sin(\sqrt{3}\nu t) \right).$$

№2 (1.1.5)

Найдём функцию Грина для уравнения, вида

$$(\partial_t^2 + \nu^2)^2 x(t) = \varphi(t).$$

Аналогично предыдущему номеру, сначала находим G(t > 0):

$$G(t>0) = b_1 e^{i\nu t} + b_2 t e^{i\nu} + b_3 e^{-i\nu t} + b_4 t e^{-i\nu t}$$

где секулярные члены возникли из-за кратности корней.

Также, интегрируя уравнение на G(t) от $-\varepsilon$ до ε , получаем аналогичное условие

$$\partial_t^3 G(+0) = 1, \quad \partial_t^2 G(+0) = \partial_t^1 G(+0) = G(+0) = 0,$$

и приходим к СЛУ на коэффициенты $\{b_1, b_2, b_3, b_4\}$:

$$b_1 + b_3 = 0, i (b_1 - b_3) \nu + b_2 + b_4 = 0, \nu ((b_1 + b_3) \nu - 2i (b_2 - b_4)) = 0, \nu^2 (-3 (b_2 + b_4) - i (b_1 - b_3) \nu) = 1,$$
 \Rightarrow $b_1 = -\frac{i}{4\nu^3}, \quad b_2 = -\frac{1}{4\nu^2}, \quad b_3 = \frac{i}{4\nu^3}, \quad b_4 = -\frac{1}{4\nu^2}.$

Получаем решение, вида

$$G(t) = \frac{\theta(t)}{2\nu^3} \left(\sin(\nu t) - \nu t \cos(\nu t) \right).$$

№3 (1.1.8)

Для системы уравнений, вида

$$(\partial_t + \hat{\Gamma}) \boldsymbol{y}(t) = \boldsymbol{\xi}(t), \quad \Gamma = \lambda \delta_{i,j} + \delta_{i,j-1},$$

найдём функцию Грина G(t), как решение уравнения

$$(\partial_t + \hat{\Gamma})G(t) = \delta(t)\mathbb{E}, \quad \Rightarrow \quad G(t) = \theta(t)\exp\left(-\hat{\Gamma}t\right).$$

Осталось найти $\exp(-\hat{\Gamma}t)$, как матричную экспоненту, от жордановой клетки.

Для начала заметим, что

$$\delta_{i,j-1}^2 = \delta_{i,j-1}\delta_{j,k} = \delta_{i+1,k-1} = \delta_{i,k-2},$$

и так далее, то есть $\delta_{i,j-1}$ – нильпотентный оператор, с $\delta_{i,j-1}^4 = 0$.

Посмотрим на степени $\hat{\Gamma}$:

$$\hat{\Gamma}^2 = \delta_{i,j} + 2\delta_{i,j-1} + \delta_{i,j-2}$$

$$\hat{\Gamma}^3 = \delta_{i,j} + 3\delta_{i,j-1} + 3\delta_{i,j-2} + \delta_{i,j-3}$$

$$\hat{\Gamma}^4 = \delta_{i,j} + 4\delta_{i,j-1} + 6\delta_{i,j-2} + 4\delta_{i,j-3} + \delta_{i,j-4},$$

но $\delta_{i,i-4} = 0$, так что можем явно выделить на побочных диагоналях соответсвтующие экспоненты:

$$G(t) = \theta(t)e^{-\lambda t} \begin{pmatrix} 1 & -t & \frac{t^2}{2} & -\frac{t^3}{6} \\ 0 & 1 & -t & \frac{t^2}{2} \\ 0 & 0 & 1 & -t \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

где появившиеся t^k – секулярные члены.

№4

В частотном представлении для оператора $\partial_t^2 + \omega_0^2$ можем «найти» функцию Грина, приводящую к

$$G(\omega) = \frac{1}{\omega_0^2 - \omega^2}, \quad \Rightarrow \quad G(t) = \int_{-\infty}^{+\infty} \frac{e^{-i\omega t}}{\omega_0^2 - \omega^2} \frac{d\omega}{2\pi},$$

с особенностями на вещественной оси.

Регуляризуем интеграл, рассмотрением «затухающего» осцилятора, тогда

$$G(t) = \int_{-\infty}^{+\infty} \underbrace{\frac{e^{-i\omega t}}{(\omega_0 - \omega + i\varepsilon_1)(\omega_0 + \omega + i\varepsilon_2)}}_{F(w)} \frac{d\omega}{2\pi}.$$

Получилось два полюса:

$$\omega_1 = \omega_0 + i\varepsilon_1, \quad \omega_2 = -\omega_0 - i\varepsilon_2.$$

Соответсвенно, по лемме Жордана, наличие/отсутствие вклада от $\varepsilon_{1,2}$ будет зависеть от выбора знаков в $\varepsilon_{1,2} \to \pm 0$.

Для начала найдём вычеты по каждому полюсу:

$$2\pi i \cdot \operatorname{res}_{\omega_1} F(\omega) = i\varepsilon e^{i\varphi} F(\omega_1) = -i\varepsilon e^{i\varphi} \frac{e^{it\omega_0}}{2\omega_0 + i(\varepsilon_1 + \varepsilon_2) + \varepsilon e^{i\varphi}} \stackrel{\varepsilon \to 0}{\approx} -\frac{i}{2\omega_0} e^{-it\omega_0}.$$

Аналогично, для второго полюса:

$$2\pi i \cdot \operatorname{res}_{\omega_2} F(\omega) = \dots = \frac{i}{2\omega_0} e^{it\omega_0}.$$

Сразу заметим, что при вхождение только отного вычета невозможно выполнение условия о G(0) = 0, тогда рассмотрим $\varepsilon_1 \to +0$ и $\varepsilon_2 \to -0$, тогда оба полюча находятся в верхней полуплоскости, по которой и происходит обход *по* часовой стрелке:

$$G(t) = \theta(-t) \frac{1}{\omega_0} \sin(-\omega_0 t),$$

что соответствует опережающей функции Грина ($\partial_t G(t=0) = -1$).

Теперь найдём, что при $\varepsilon_1 \to -0$ и $\varepsilon_2 \to +0$ оба вычета в нижней полуплоскости, что приведет к смене знака:

$$G(t) = \theta(t) \frac{1}{\omega_0} \sin(\omega_0 t),$$

что и соответствует запаздывающей функции Грина (см. ур. (2), $\partial_t G(t=0)=1$), что не может не радовать.

3 Семинар от 25.09.21

Про Фурье. Как раньше нашли

$$L(\partial_t)G(t) = \delta(t), \quad \Rightarrow \quad \hat{x}(\omega) = \int_{\mathbb{R}} e^{-i\omega t} x(t) dt, \quad x(t) = \int_{\mathbb{R}} e^{i\omega t} \hat{x}(\omega) \frac{d\omega}{2\pi}.$$

Для этого должно выполняться

$$\int |x(t)| \, dd < +\infty.$$

Hanpumep, для $\partial_t + \gamma$:

$$(\partial_t + \gamma)G(t) = \delta(t), \quad \Rightarrow \quad \int_{\mathbb{R}} \frac{dt}{\cdots} e^{-i\omega t} dt = x(t)e^{-i\omega t} \Big|_{-\infty}^{+\infty}, \quad \Rightarrow \quad (i\omega + \gamma)\hat{G}(\omega) = 1, \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{i\omega + \gamma}.$$

Так приходим к уравнению

$$G(t) = \int_{\mathbb{R}} \frac{e^{i\omega t}}{\omega - i\gamma} \frac{d\omega}{2\pi} = \left\{ e^{-\gamma t}, \quad t > 00, \quad t < 0 \qquad \Rightarrow \qquad \hat{G}(\omega) = \theta(t)e^{-|t|}.$$

Однако, при $\hat{L} = \partial_t - \gamma$ мы бы получили

$$G_A(t) = \theta(-t)e^{\gamma t}$$

хотя вообще должно быть (если посчитать через неопределенные коэффициенты)

$$G_R(t) = \theta(t)e^{\gamma t}$$
.

которая растёт.

В методе с Фурье будут получаться функции Грина затухающие, но, возможно, без причинности. В методе

неопределенных коэффициентов исходим из причинности, но может быть рост $\sim e^{\gamma t}$.

Кроме того, в Фурье всегда предполагается $x(t \to -\infty) = 0$ и $x(t \to +\infty) = 0$. Также может случиться

$$(\partial_t^2 + \omega_0^2)G(t) = \delta(t), \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{\omega^2 - \omega_0^2},$$

с особенностями на вещественной оси, что можно решить, сместив полюса в $\mathbb{C}.$

Свёртка. Рассмотрим уравнение

$$L(\partial_t)x(t) = f(t), \quad L(\partial_t)G(t) = \delta(t).$$

Фурье переводит

$$\int_{\mathbb{P}} \partial_x^n x(t) e^{-i\omega t} dt = (i\omega)^n \hat{x}(\omega).$$

Тогда

$$L(i\omega)\hat{x}(\omega) = \hat{f}(\omega), \quad L(i\omega)\hat{G}(\omega) = 1, \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{L(i\omega)}.$$

Также нашли, что

$$\hat{x}(\omega) = \frac{\hat{f}(\omega)}{L(i\omega)} = \hat{f}(\omega)\hat{G}(\omega), \quad \Rightarrow \quad x(t) = \int_{-\infty}^{+\infty} G(t-s)f(s) ds.$$

Преобразование Лапласа. Пусть есть некоторое преобразование

$$\tilde{f}(p) = \int_0^\infty e^{-pt} f(t) \, dt,$$

где подразумевается, что $\operatorname{Re} p \geqslant 0$ и, вообще, в Фурье можно $p \in \mathbb{C}$.

Пусть $p=i\omega$, где $\omega\in\mathbb{R}$. Тогда

$$\tilde{f}(i\omega) = \int_{\mathbb{R}} e^{-i\omega t} f(t) dt = \hat{f}(\omega), \quad \Rightarrow \quad f(t) = \int_{\mathbb{R}} \hat{f}(\omega) e^{i\omega t} \frac{d\omega}{2\pi} = \int_{\mathbb{R}} \tilde{f}(i\omega) e^{i\omega t} \frac{d\omega}{2\pi} = \int_{-i\infty}^{i\infty} e^{pt} \tilde{f}(p) \frac{dp}{2\pi}.$$

В вычислениях выше мы предполагали, что $f(t \to \infty) = 0$.

Обойдём это, пусть $|f(t)| < Me^{st}$, при s > 0. Возьмём $p_0 > s$, тогда

$$\tilde{f}(p) = \int_{\mathbb{R}} e^{-p_0 t} e^{-(p-p_0)t} f(t) dt = \tilde{g}(p-p_0),$$

где вводе $g(t) = e^{-ip_0t}f(t)$, которая уже убывает на бесконечности. Обратно:

$$g(t) = \int_{-i\infty}^{+i\infty} \tilde{g}(p)e^{pt} \frac{dp}{2\pi} = \int_{p_0 - i\omega}^{p_0 + i\omega} \tilde{g}(p - p_0)e^{-p_0 t}e^{pt} \frac{dp}{2\pi i}.$$

Так пришли к форме обращения

$$f(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \tilde{f}(p) \frac{dp}{2\pi i}, \qquad \tilde{f}(p) = \int_{\mathbb{R}} e^{-p_0 t} e^{-(p - p_0)t} f(t) dt = \tilde{g}(p - p_0),$$

где $g(t) = e^{-ip_0t} f(t)$.

Забавный факт, из леммы Жордана: при t < 0 f(t < 0) = 9, по замыканию дуги по часовой стрелке (вправо). Выбирая p_0 так, чтобы все особенности лежали левее p_0 , можем получать причинные функции.

Примеры. Найдём преобразование Лапласа для $\partial_t f(t)$:

$$\int_0^\infty \frac{df}{dt} e^{-pt} \, dt = f e^{-pt} \bigg|_0^\infty + p \int_0^\infty f(t) e^{-pt} \, dt = p \tilde{f}(p) - f(+0).$$

Но, для функции Грина $L(\partial_t)G(t) = \delta(t)$, тогда

$$L(\partial_t)G_{\varepsilon}(t) = \delta(t-\varepsilon), \qquad G_{\varepsilon}(t) = G(t-\varepsilon), \quad \Rightarrow \quad G_{\varepsilon}(0) = 0,$$

где $G_{\varepsilon} \to G(t)$ при $\varepsilon \to 0$.

Здесь и далее f(t) – функция, $f(\omega) = \hat{f}(\omega)$ – Фурье образ, $f(p) = \tilde{f}(p)$ – преобразование Лапласа. Преобразуем по Лапласу уравнения выше

$$L(p)G(p) = e^{p\varepsilon} = 1, \quad \Rightarrow \quad G_{\varepsilon}(p) = \frac{1}{L(p)}, \quad \stackrel{\varepsilon \to 0}{\Rightarrow} \quad G(p) = \frac{1}{L(p)}.$$

Так получаем

$$G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{L(p)} \frac{dp}{2\pi i}$$

где p_0 правее всех особенностей.