文本检测-EAST

<Excerpt in index | 首页摘要>

Detecting Text In Natural Image With connectionist text proposal network

KeyWords Plus: CVPR, 2017

• relevant blog: EAST: An Efficient and Accurate Scene Text Detector

paper : EASTcoding : GithubPPT : My Note

<The rest of contents | 余下全文>

指标

1、评价指标

Precision又叫查准率, Recall又叫查全率。这两个指标共同衡量才能评价模型输出结果。

- TP: 预测为1(Positive),实际也为1(Truth-预测对了)
- TN: 预测为0(Negative),实际也为0(Truth-预测对了)
- FP: 预测为1(Positive), 实际为0(False-预测错了)
- FN: 预测为0(Negative), 实际为1(False-预测错了)

总的样本个数为: TP+TN+FP+FN。

- Accuracy = (预测正确的样本数)/(总样本数)=(TP+TN)/(TP+TN+FP+FN)
- Precision = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = **TP/(TP+FP)**
- Recall = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)
- F-score = 2*(Precision * Recall)/(Precision + Recall)

2、TensorFlow中的tf.metrics算子

深入理解TensorFlow中的tf.metrics算子

精确率(Precision): $\begin{aligned} & Precision = \frac{TP}{TP+FP} \\ & \text{召回率 (Recall)} : Recall = \frac{TP}{TP+FN} \\ & \text{F-measure: } F-measure = \frac{2\times Precision \times Recall}{Precision+Recall} \\ & \text{准确率 (Accuracy)} : Accuracy = \frac{TP}{TP+TN+FP+FN} \end{aligned}$

ICDAR 2015 is used in Challenge 4 of ICDAR 2015 Robust Reading Competition [15]. It includes a total of 1500 pictures, 1000 of which are used for training and the remaining are for testing.

Algorithm	Recall	Precision	F-score
Ours + PVANET2x RBOX MS*	0.7833	0.8327	0.8072
Ours + PVANET2x RBOX	0.7347	0.8357	0.7820
Ours + PVANET2x QUAD	0.7419	0.8018	0.7707
Ours + VGG16 RBOX	0.7275	0.8046	0.7641
Ours + PVANET RBOX	0.7135	0.8063	0.7571
Ours + PVANET QUAD	0.6856	0.8119	0.7434
Ours + VGG16 QUAD	0.6895	0.7987	0.7401
Yao et al. [41]	0.5869	0.7226	0.6477
Tian <i>et al</i> . [34]	0.5156	0.7422	0.6085
Zhang et al. [48]	0.4309	0.7081	0.5358
StradVision2 [15]	0.3674	0.7746	0.4984
StradVision1 [15]	0.4627	0.5339	0.4957
NJU [15]	0.3625	0.7044	0.4787
AJOU [20]	0.4694	0.4726	0.4710
Deep2Text-MO [45] 44]	0.3211	0.4959	0.3898
CNN MSER [15]	0.3442	0.3471	0.3457

Table 3. Results on ICDAR 2015 Challenge 4 Incidental Scene Text Localization task. MS means multi-scale testing.

COCO-Text is the largest text detection dataset to date. It reuses the images from MS-COCO dataset . A total of 63,686 images are annotated, in which 43,686 are chosen to be the training set and the rest 20,000 for testing.

Algorithm	Recall	Precision	F-score
Ours + VGG16	0.324	0.5039	0.3945
Ours + PVANET2x	0.340	0.406	0.3701
Ours + PVANET	0.302	0.3981	0.3424
Yao et al. [41]	0.271	0.4323	0.3331
Baselines from [36]			
A	0.233	0.8378	0.3648
В	0.107	0.8973	0.1914
С	0.047	0.1856	0.0747

Table 4. Results on COCO-Text.

MSRA-TD500 is a dataset comprises of **300 training images** and **200 test images**. Text regions are of arbitrary orientations and annotated at sentence level. Different from the other datasets, it contains text in **both English and Chinese**.

Algorithm	Recall	Precision	F-score
Ours + PVANET2x	0.6743	0.8728	0.7608
Ours + PVANET	0.6713	0.8356	0.7445
Ours + VGG16	0.6160	0.8167	0.7023
Yao et al. [41]	0.7531	0.7651	0.7591
Zhang et al. [48]	0.67	0.83	0.74
Yin et al. [44]	0.63	0.81	0.71
Kang et al. [14]	0.62	0.71	0.66
Yin et al. [45]	0.61	0.71	0.66
TD-Mixture [40]	0.63	0.63	0.60
TD-ICDAR [40]	0.52	0.53	0.50
Epshtein et al. [5]	0.25	0.25	0.25

Table 5. Results on MSRA-TD500.

3, ICDAR

ICDAR 2017 Robust Reading competitions官网有专门的评价函数,可以得出三个指标:

预测结果:

论文中:

Algorithm	Recall	Precision	F-score
Ours + PVANET2x RBOX MS*	0.7833	0.8327	0.8072
Ours + PVANET2x RBOX	0.7347	0.8357	0.7820

实测:

Recall: 0.772267 **Precision**: 0.846437 **F-**

SCOre: 0.807653

基本网络结构

Introduction

The contributions of this work are three-fold:

- We propose a scene text detection method that consists of two stages: a Fully
 Convolutional Network and an NMS merging stage. The FCN directly produces text
 regions, excluding redundant and time-consuming intermediate steps.
- The pipeline is flexible to produce either word level or line level predictions, whose geometric shapes can be **rotated boxes or quadrangles**, depending on specific applications.
- The proposed algorithm significantly **outperforms** state-of-the-art methods in both **accuracy and speed**.

Figure 2. Comparison of pipelines of several recent works on scene text detection: (a) Horizontal word detection and recognition pipeline proposed by Jaderberg *et al.* [12]; (b) Multi-orient text detection pipeline proposed by Zhang *et al.* [48]; (c) Multi-orient text detection pipeline proposed by Yao *et al.* [41]; (d) Horizontal text detection using CTPN, proposed by Tian *et al.* [34]; (e) Our pipeline, which eliminates most intermediate steps, consists of only two stages and is much simpler than previous solutions.

该模型直接预测全图像中**任意方向**和四边形形状的单词或文本行,**消除不必要的中间步骤**(例如,候选聚合和单词分割)。通过下图它与一些其他方式的步骤对比,可以发现该模型的步骤比较简单,去除了中间一些复杂的步骤,所以符合它的特点,EAST, since it is an Efficient and Accuracy Scene Text detection pipeline.

第一步

Feature extractor stem(PVANet)

利用Inception的思想,即不同尺寸的卷积核的组合可以适应多尺度目标的检测,作者在这里采用PVANet模型,我们也可以用VGG16或者其他的常见网络,**提取不同尺寸卷积核下的特征并用于后期的特征组合**。

第二步

Feature-merging branch

在这一部分用来组合特征,并**通过上池化和concat恢复到原图的尺寸**,这里借鉴的是U-net的思想。

所谓上池化一般是指**最大池化的逆过程**,实际上是不能实现的但是,可以通过只把池化过程中最大激活值所在的位置激活,其他位置设为0,完成上池化的近似过程。

$$g_i = \begin{cases} \operatorname{unpool}(h_i) & \text{if} \quad i \leq 3\\ \operatorname{conv}_{3\times 3}(h_i) & \text{if} \quad i = 4 \end{cases}$$

$$h_i = \begin{cases} f_i & \text{if} \quad i = 1\\ \operatorname{conv}_{3\times 3}(\operatorname{conv}_{1\times 1}([g_{i-1};f_i])) & \text{otherwise} \end{cases}$$

第三步

Output Layer

第二部分的输出通过一个 (1x1, 1) 的卷积核获得score_map。score_map与原图尺寸一致,每一个值代表此处是否有文字的可能性。

第二部分的输出通过一个 **(1x1, 4) 的卷积核**获得RBOX 的geometry_map。有四个通道,分别代表**每个像素点到文本矩形框上,右,底,左边界的距离**。另外再通过一个 (1x1, 1) 的卷积核获得该框的旋转角,这是为了能够识别出有旋转的文字。

第二部分的输出通过一个(**1x1,8)的卷积核**获得QUAD的geometry_map,八个通道分别代表每个像素点到任意四边形的四个顶点的距离。

Geometry	channels	description
AABB	4	$\mathbf{G} = \mathbf{R} = \{d_i i \in \{1, 2, 3, 4\}\}$
RBOX	5	$\mathbf{G} = \{\mathbf{R}, \theta\}$
QUAD	8 _h	$\mathbf{G} = \mathbf{Q} = \{(\Delta x_i, \Delta y_i) i \in \{1, 2, 3, 4\}\}$

代价函数

代价函数分两部分

- 第一部分是分类误差,
- 第二部分是几何误差,文中权衡重要性,λg=1。

$$L = L_{\rm s} + \lambda_{\rm g} L_{\rm g}$$

具体参考blog

Figure 4. Label generation process: (a) Text quadrangle (yellow dashed) and the shrunk quadrangle (green solid); (b) Text score map; (c) RBOX geometry map generation; (d) 4 channels of distances of each pixel to rectangle boundaries; (e) Rotation angle.

分类误差函数

采用 class-balanced cross-entropy , 这样做可以很实用的处理正负样本不均衡的问题。 来自Holistically-Nested Edge Detection

$$egin{align} L_{\mathrm{s}} &= \mathrm{balanced\text{-}xent}(\mathbf{\hat{Y}}, \mathbf{Y}^*) \ &= -eta \mathbf{Y}^* \mathrm{log}(\mathbf{\hat{Y}} + \mathbf{\hat{Y}}) (\mathbf{1}_{\mathrm{ST}} - eta) (\mathbf{1}_{\mathrm{TT}} \mathbf{\hat{Y}}^*) \log(\mathbf{1} - \mathbf{\hat{Y}}) \end{array}$$

其中:

$$\beta = 1 - \frac{\sum_{y^* \in \mathbf{Y}^*} y^*}{|\mathbf{Y}^*|}.$$

几何误差函数

1、对于RBOX, 采用IoU loss

$$L_{\text{AABB}} = -\log \operatorname{IoU}(\hat{\mathbf{R}}, \mathbf{R}^*) = -\log \frac{|\hat{\mathbf{R}} \cap \mathbf{R}^*|}{|\hat{\mathbf{R}} \cup \mathbf{R}^*|}$$
http://blog.csdn.net/zhangwell5hh

where $\hat{\pmb{R}}$ represents the **predicted** AABB geometry and $\pmb{R^*}$ is its corresponding ground truth.

loU = Area of Overlap

Area of Union

http://blog.csd

角度误差为:

$$L_{\theta}(\hat{\theta}, \theta^*) = 1 - \cos(\hat{\theta} - \theta^*).$$

2、对于QUAD采用smoothed L1 loss $CQ=\{x1,y1,x2,y2,x3,y3,x4,y4\}$

$$\begin{split} L_{\mathbf{g}} &= L_{\text{QUAD}}(\hat{\mathbf{Q}}, \mathbf{Q}^*) \\ &= \min_{\tilde{\mathbf{Q}} \in P_{\mathbf{Q}^*}} \sum_{\substack{c_i \in C_{\mathbf{Q}}, \\ \text{http:} / \hat{c}_i \in C_{\tilde{\mathbf{Q}}} \text{csdn.} \text{net/zhangwei15hh}} \\ \end{split}$$

where $\hat{\boldsymbol{\theta}}$ is the prediction to the **rotation angle** and $\boldsymbol{\theta^*}$ represents the **ground truth**.

导入数据

```
icdar.py
   -generator:
     2、循环读取图片和对应的txt文本信息内容
        im = cv2.imread(im_fn)
```

```
text_polys, text_tags = load_annoataion(txt_fn)
                text_polys:
                             文本坐标
                text_tags: 内容信息
          3、 检测得到的文本坐标信息是否有效:
                text_polys, text_tags = check_and_validate_polys(text_p
olys, text_tags, (h, w))
          4、按比例任意缩放图片大小
          5、从图片中任意剪切一块面积下来
                im, text_polys, text_tags = crop_area(im, text_polys, t
ext_tags, crop_background=True)
          6、最后经过一些列的计算得到
                1、input_images: 图片
                2、input_score_maps: 分数标记
                3. input_geo_maps: RBOX
                4、input_training_masks: 训练标记
```

具体流程参考load_image.py文件分析

评价指标计算

python script.py -g='gt.zip' s='submhome/weijia.wu/workspace/Paper/ICDAR_test/' -p='0.8'

反馈与建议

微博: @柏林designer 邮箱: wwj123@zju.edu.cn