$\mathcal{S}_{mu}^{\wedge}$

Imagine maps:

 $\operatorname{Map}_{*}^{G}(A,B)$

where $A, B \in \mathsf{Top}^G_*$.

If $X \in \mathsf{Top}_*$ and $Y \in \mathsf{Top}$, we can form the spectra:

 $\Sigma^{\infty}X, \Sigma_{+}^{\infty}Y$

Theorem 1 (Pythagoras). $a^2 + b^2 = c^2$.

Proof. Trivial \Box Lemma 2 (Zorn's Lemma). An poset $P \in \mathsf{Poset}$ where all chains are bounded above has a maximal element.

Proof. Axiom of choice.

Proposition 3. $\sqrt[3]{2}$ is not a rational number.

Proof. Suppose it was. Then, there will be two integers $a, b \in \mathbb{Z}$ such that $a^3 + a^3 = b^3$. We will need the following:

Theorem 4 (Fermat's Last Theorem, due to Andrew Wiles). The equation $a^n + b^n = c^n$ has no integer solutions when $n \ge 3$.

Proof. Trivial [Theorem 4] \square

We see that $\sqrt[3]{2}$ being rational produces a contradiction to Fermat's Last Theorem. Therefore, it must be irrational. [Proposition 3] \square

Remark 5 (Jordan curve theorem). It happens

Proof. Duh \Box

 $\mathcal{S}, \mathcal{MU}, tmf, \mathcal{BP}, \mathcal{T}(n), \mathcal{K}(n)$