52. Una massa m es mou sobre l'eix OX sota una força $F(x) = -kx + \frac{c}{x^3}$ on k i c són constants positives. Calculeu els punts d'equilibri i l'expressió de l'energia potencial a què la massa és sotmesa. Feu la representació gràfica.

Podem analitzar separadament els dos sumands de F(x)

$$F(x) = -kx + \frac{c}{x^3} = F_1(x) + F_2(x)$$
 on $F_1(x) = -kx$ i $F_2(x) = \frac{c}{x^3}$

Així doncs F(x) serà la suma d'questes dues components

Els punts d'equilibri són els màxims i mínims de la corba de potencial. Això ho trobem igualant a zero la derivada del potencial, que és la força amb signe negatiu:

$$\frac{dU(x)}{dx} = -F(x) = 0 \quad \Rightarrow \quad kx - \frac{c}{x^3} = 0 \quad \Rightarrow \quad x^4 = \frac{c}{k}$$

La variable X te 4 solucions però només són reals les dues positives.

Per veure si es tracten de màxims o mínims substituim els punts a la segona derivada del potencial:

$$\frac{d^2U(x)}{dx^2} = \frac{d(-F(x))}{dx} = k + \frac{3c}{x^4} = k + \frac{3c}{c/k} = k + 3k = 4k$$

on, substtuint les solucions, ens dona que el punt serà màxim o mínim depenent del valor de k. Si $F_1(x)$ és l'expressió que descriu la força que fa una molla, podem suposar que k, la constant de la molla, serà positiva. Llavors, els punts són mínims.

Per a calcular el potencial, simplement integrem l'expressió de la força:

$$F(x) = -\frac{dU(x)}{dx} \qquad \Rightarrow \qquad dU(x) = -F(x)dX \qquad \Rightarrow \qquad \int dU(x) = -\int \left(-kx + \frac{c}{x^3}\right) dx$$

$$U(x) = -\left(-k\frac{x^2}{2} - \frac{c}{2x^2}\right) = \frac{1}{2}kx^2 + \frac{c}{2x^2}$$

La representació gràfica de l'energia potencial serà:

53. Una particula es mou per l'eix OX sota l'acció d'una força conservativa amb energia potencial $U(x) = 8x^2 - 2x^4$

a) Representeu gràficament la funció energia potencial

- · Punts on s'anul·la el potencial
- · Funció parell/imparell
- · Màxims, mínims i punts d'inflexió

b) Analitzeu el moviment de la partícula per a diferents valors de la seva energía total

Ep > 8

Lliure ⇒ No està sota l'acció del potencial

0<Ep<8

Energia dispersada (fora del pou)

Energia lligada (dintre del pou)

Ep<0

Energia dispersada

c) Calculeu els punts de retorn si E=4 i E=-4

Els punts de retorn són aquells on la partícula canvia el seu moviment. Ès on E=Ep. L'energia cinètica és nul·la.

Per E=4:

$$U(x) = 8x^2 - 2x^4 = 4$$
 \Rightarrow $x^4 - 4x^2 + 2 = 0$

Fent el canvi de variable $t = x^2$

$$t^2 - 4t + 2 = 0$$
 \Rightarrow $t = 2 \pm \sqrt{2}$ \Rightarrow $x = \pm \sqrt{2 \pm \sqrt{2}}$

obtenim 4 punts:

$$x_1 = +\sqrt{2 + \sqrt{2}} \approx 1.85$$
 $x_2 = +\sqrt{2 - \sqrt{2}} \approx 0.77$ $x_3 = -\sqrt{2 + \sqrt{2}} \approx -1.85$ $x_4 = -\sqrt{2 - \sqrt{2}} \approx -0.77$

que son els 4 punts de tall entre U(x) i E=4

Per E=-4:

Fem el mateix, però igualant U(x) a -4. L'equació de segon grau que trobem és la mateixa però variant un signe:

$$t^2 - 4t - 2 = 0$$
 \Rightarrow $t = 2 \pm \sqrt{6}$ \Rightarrow $x = \pm \sqrt{2 + \sqrt{6}}$

en aquest cas només obtenim 2 solucions, ja que $\sqrt{6}$ >2, i l'arrel general no seria real:

$$x_1 = +\sqrt{2 + \sqrt{6}} \approx 2.11$$
 $x_2 = -\sqrt{2 + \sqrt{6}} \approx -2.11$

que son els 2 punts de tall entre U(x) i E=-4

d) Quant val la força F(x)?

La força és, simplement, la derivada del potencial amb signe negatiu:

$$F(x) = -\frac{dU(x)}{dx} = \frac{d}{dx} \left(-8x^2 + 2x^4 \right) = -16x + 8x^3$$

54. Calculeu l'energia potencial U(r) associada al camp de forces central $F(r) = \frac{k}{r^2}$. Dibuixeu la corba d'energia potencial i analitzeu el moviment.

Per a trobar l'energia apliquem:

$$F(r) = -\frac{dU(r)}{dr} = \frac{k}{r^2} \qquad \Rightarrow \qquad dU(r) = -\frac{k}{r^2} dr$$

$$\int dU(r) = -k \int \frac{1}{r^2} dr \qquad \Rightarrow \qquad U(r) = -k \left(-\frac{1}{r}\right) = \frac{k}{r}$$

El potencial depen del valor de la constant k.

Si prenem un valor de k > 0, i un altre de k < 0, podem veure que les gràfiques són diferents:

Per representar-la haurem de fer l'ànalisi de la funció $U(r) = \frac{k}{r}$

- Punts de tall
- Funció parell/imparell
- Màxims, mínims i punts d'inflexió
- Assimptotes

Estudiant per separat els casos k>0 i k<0, raoneu el moviment d'una massa puntual m que, sotmesa a aquestes forces, està en un instant donat en una posició r_0 amb una velocitat v_0 dirigida cap el centre del camp de forces.

A l'hora de trobar el potencial hem de considerar les condicions inicials:

$$\int_{U(r_0)}^{U(r)} dU(r) = -k \int_{r_0}^{r} \frac{1}{r^2} dr \qquad \Rightarrow \qquad U(r) - U(r_0) = \frac{k}{r} - \frac{k}{r_0}$$

El que passarà en aquest cas és que al haver afegit una constant al potencial, l'assimptota horitzontal passa de 0 a estar al valor de la constant $-\frac{k}{r_0}$. Lògicament, encara dependrà de si el valor de k és positiu o negatiu.

Per representar-la haurem de tornar a fer l'ànalisi de la funció, aquest cop de $U(r)-U(r_0)=\frac{k}{r}-\frac{k}{r_0}$