

UNIVERSITY OF GHANA

(All rights reserved)

BSC. (Eng.) MATERIALS SCIENCE AND ENGINEERING SECOND SEMESTER EXAMINATIONS: 2016/2017

SCHOOL OF ENGINEERING SCIENCES

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

MTEN 204: THERMODYNAMICS OF MATERIALS (2 CREDITS)

INSTRUCTIONS: ANSWER ALL QUESTIONS IN SECTION A, AND ONE QUESTION IN SECTION B. SOME EQUATIONS ARE PROVIDED ON PAGE 4.

TIME ALLOWED: TWO (2) HOURS

SECTION A

1.

a. Nitrogen has a triple point at P=4650 atm and T=44.5 K, at which state the allotropes α , β and γ coexist in equilibrium with one another. At the triple point, $V_{\beta}-V_{\alpha}=0.043$ cc/mole and $V_{\alpha}-V_{\gamma}=0.165$ cc/mole. Also at the triple point $S_{\beta}-S_{\alpha}=4.59$ J/K and $S_{\alpha}-S_{\gamma}=1.25$ J/K. The state of P=1 atm, T=36 K lies on the boundary between the fields of stability of the α and β phases, and at this state, for the transformation of $\alpha \to \beta$, $\Delta S^{\alpha \to \beta}=6.52$ J/K and $\Delta V^{\alpha \to \beta}=0.22$ $\frac{cc}{mole}$.

Sketch the phase diagram for nitrogen at low temperatures. (15 Marks)

b. Two molecules A and B are mixed to form a solution in a closed, initially evacuated vessel at temperature T. Consider the case where A-B bond energy is considerably more negative than the A-A and B-B bond energies. Also consider a solution of A in B which is sufficiently dilute that every A atom on the surface of the liquid is surrounded by *only* be B atoms.

E

- I. Will this binary solution exhibits a **POSITIVE** or **NEGATIVE** deviation from Raoultian Behavior? Explain your answer. (5 Marks)
- II. Sketch a plot of the vapor pressure as a function of composition for this binary solution. Hint: sketch both the Henry's and Raoult's Law behavior indicating whether or not the binary solution exhibits positive or negative deviation from Raoultian Behvaior. (5 Marks)

2.

- a. Zn-Cd alloy is a simple eutectic system which has been widely studied due to its low melting point. Zn-Cd alloys are used as solders at medium temperature which provides excellent corrosion resistance on most metals. The integral heat of mixing $(\Delta H^M, J/mol)$ of Zn-Cd alloy with its mole fraction (X_{Zn}) are reported in the Table 1 below.
 - I. Plot a graph of ΔH^{M} on the y-axis against the mole fraction (X_{Zn}) on the x-axis. (7 Marks)
 - II. Determine graphically the partial molar heats of mixing of Cd $(\overline{\Delta H}_{Cd}^{M})$ and Zn $(\overline{\Delta H}_{Zn}^{M})$ for a solution containing 0.6 atom fraction of Zn $(X_{Zn} = 0.6)$. (6 Marks)

Table 1

X_{Zn}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
ΔH^M	750	1330	1730	1960	2050	2000	1770	1380	790

b. Using the conditions of equilibrium (chemical, mechanical and thermal conditions of equilibrium), derive the form of the Clausius-Clapeyron equation below for a binary heterogeneous system made up of the phases α and β, where α is the liquid phase and β is the gaseous phase. The symbols in the equation have their usual meanings. State all assumptions used in the derivation.

$$ln\frac{P_2}{P_1} = -\frac{\Delta H^{\alpha \to \beta}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

(12 Marks)