TMMS30 Lab 1

Eric Moringe (erimo
668), David Wiman (davwi
279) February 7, 2023

Figure 1: Location of point P as a function of time.

Figure 2: Velocity of point P as a function of time.

Figure 3: Accerelation of point P as a function of time.

Figure 4: Angle of body 1, 2, and 3 as functions of time.

Figure 5: Location of point P as a function of time.

Figure 6: Velocity of point P as a function of time.

Figure 7: Acceleration of point P as a function of time.

Figure 8: Path of point P as a function of time.

Figure 9: Location of the midpoint of body PQ in the y_0 direction as a functions of the same point's location in the x_0 direction.

Figure 10: Figure of an RPg joint.

(a) The constraint equation that a RPg joint gives rise to can be described as

$$\overline{H}^{rpg} = \tilde{e}^T (\overline{r}_{P_j} - \overline{r}_{P_i}) = 0. \tag{1}$$

This can be expanded to

$$\overline{H}^{rpg} = \tilde{e}^T (\overline{r}_j + \overline{s}_{P_j} - \overline{r}_{P_i}) = 0.$$
(2)

When we differentiate this, we get

$$\dot{\overline{H}}^{rpg} = \tilde{e}^T (\dot{\overline{r}}_j + \dot{\theta}_j \tilde{s}_{P_j}), \tag{3}$$

which we can use to get the Jacobian

$$\overline{H}_{q_j}^{rpg} = [\tilde{e}^T \quad \overline{e}^T \overline{s}_{P_j}] \tag{4}$$

as $\tilde{e}^T \tilde{s}_{P_j} = \overline{e}^T \overline{s}_{P_j}$.

If we differentiate again, we get

$$\ddot{\overline{H}}^{rpg} = \tilde{e}^T (\ddot{\overline{r}}_j + \ddot{\theta}_j \tilde{s}_{P_j} - \dot{\theta}_j^2 \overline{s}_{P_j}). \tag{5}$$

With this, we can determine the \bar{c}^{rpg} .

$$\overline{c}^{rpg} = \tilde{e}^T \dot{\theta}_j^2 \overline{s}_{P_j} \tag{6}$$

Implementing these results in matlab yields the following code lines in the files get_H_kin.m, get_jac_kin.m and get_c_kin.m respectively.

get_H_kin.m	$s_{j}=rot(theta_{j},s_{j}prime);$
	$e_{tilde} = [-e(2); e(1)];$
	$h = e_{tilde} *(r_{j} + s_{j} - r_{pi});$
get_jac_kin.m	$s_{-j} = rot(theta_{-j}, s_{-j}prime);$
	$e_{tilde}=[-e(2);e(1)];$
	$jac=[e_tilde' e'*s_j];$
get_c_kin.m	$s_{-j} = rot(theta_{-j}, s_{-j}prime);$
	$e_{\text{tilde}}=[-e(2);e(1)];$
	$c = e_{tilde}$ theta_ dot_{j} * s_j;

Table 1: Table of Matlab implementations.

(b) The requested graphs look as follows:

Figure 11: Acceleration of point P in x_0 direction.

Figure 12: Acceleration of point P in y_0 direction.

Figure 13: Acceleration of point P in y_0 direction using different formulas. Acceleration 1 and 2 are so similar it is hard see their differences in this plot, hence it only looks like three graphs.

(c) The requested graphs look as follows:

Figure 14: Acceleration of point P in x_0 direction.

Figure 15: Acceleration of point P in y_0 direction.

Figure 16: Acceleration of point P in y_0 direction using different formulas.

The code implemented for the improvements of order 1 and order 2 respectively were:

Order 1 Improvement	
Order 2 Improvement	$q = q + t_{inc}*q_{dot}+1/2*t_{inc}^2*q_{dot};$

Table 2: Table of Matlab implementations.

Number of Newton iterations per timestep without any improvements:

$$its_hist = [3, 3, 3, 3, 3, 4, 5, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2].$$
 (7)

The average was 3.1429.

Number of Newton iterations per timestep with improvement of order 1:

$$its_hist = [3, 2, 2, 2, 2, 3, 4, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1].$$
 (8)

The average was 2.1905.

Number of Newton iterations per timestep with improvement of order 2:

$$its_hist = [3, 1, 1, 1, 2, 2, 3, 4, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].$$
 (9)

The average was 1.6667.