Span

Definition: Linear Combination

Let V be a vector space over a field $\mathbb F$ and let S be a non-empty subset of V. To say that $\vec v \in V$ is a *linear combination* of the vectors in S means $\exists \{\vec{s_1}, \ldots, \vec{s_n}\} \subseteq S$ and $\exists c_1, \ldots, c_n \in \mathbb F$ such that:

$$\vec{v} = \sum_{k=1}^{n} c_k \vec{s_k}$$

Note that linear combinations are finite sums.

When all $c_k = 0$ then the linear combination is called *trivial*.

Definition: Span

Let V be a vector space over a field \mathbb{F} and let $S \subseteq V$. The *span* of S, denoted $\mathrm{span}(S)$, is the set of all possible linear combinations of S.

By definition, $\operatorname{span}(\emptyset) = {\vec{0}}.$

Theorem

Let V be a vector space over a field \mathbb{F} and let $S \subseteq V$:

 $\operatorname{span}(S)$ is a subspace of V.

Proof

If $S = \emptyset$ then by definition span(S) is the trivial subspace. So AWLOG $S \neq \emptyset$.

Assume $\vec{u} \in \text{span}(S)$

$$\exists \{\vec{s_1}, \dots, \vec{s_n}\} \subseteq S$$
 and $\exists c_1, \dots, c_n \in \mathbb{F}$ such that $\vec{u} = \sum_{k=1}^n c_k \vec{s_k}$ But $\{\vec{s_1}, \dots, \vec{s_n}\} \in V$ as well, so by closure, $\vec{u} \in V$

$$\therefore \operatorname{span}(S) \subseteq V$$

Now assume $\vec{v} \in \text{span}(S)$

$$\begin{array}{l} \exists \, \{\vec{t_1}, \dots, \vec{t_m}\} \subseteq \vec{S} \text{ and } \exists \vec{d_1} \dots, \vec{d_m} \in \mathbb{F} \text{ such that } \vec{v} = \sum_{k=1}^m d_k \vec{t_k} \\ \vec{u} + \vec{v} = \sum_{k=1}^n c_k \vec{s_k} + \sum_{k=1}^m d_k \vec{t_k} \end{array}$$

After combining coefficients of common vectors, $\vec{u} + \vec{v}$ is a linear combination of S, and thus $\vec{u} + \vec{v} \in \operatorname{span}(S)$

Therefore $\operatorname{span}(S)$ is closed under vector addition.

Assume $a \in \mathbb{F}$

$$a\vec{u} = a \sum_{k=1}^{n} c_k \vec{s_k} = \sum_{k=1}^{n} (ac_k) \vec{s_k}$$

So $a\vec{u}$ is also a linear combination of S, and thus $a\vec{u} \in \text{span}(S)$

Therefore span(S) is closed under scalar multiplication.

Therefore $\operatorname{span}(S)$ is a subspace of V.

Theorem

Let V be a vector space over a field \mathbb{F} and let $S \subseteq V$:

 $\operatorname{span}(S)$ is the smallest subspace of V containing S.

Proof

Assume W is a subspace of V such that $S \subseteq W$ Assume $\vec{v} \in \operatorname{span}(S)$ $\exists \{\vec{s_1}, \dots, \vec{s_n}\} \subseteq S$ and $\exists c_1, \dots, c_n \in \mathbb{F}$ such that $\vec{v} = \sum_{k=1}^n c_k \vec{s_k}$ But $\{\vec{s_1}, \dots, \vec{s_n}\} \subseteq W$ as well, so by closure, $\vec{v} \in W$

Therefore $\operatorname{span}(S) \subseteq W$

Corollary

Let V be a vector space over a field \mathbb{F} and let $S \subseteq V$:

 $\operatorname{span}(S)$ is the intersection of all subspaces of V that contain S.

Proof

Let W be the intersection of all subspaces of V containing S W is a subspace of V containing S But $\mathrm{span}(S)$ is the smallest such subspace, so $\mathrm{span}(S)\subseteq W$ But by construction $W\subseteq\mathrm{span}(S)$

$$\therefore \operatorname{span}(S) = W$$

Theorem

Let V be a vector space over a field \mathbb{F} and let U,W be subspaces of V:

$$U+W=\mathrm{span}(U\cup W)$$

Proof

$$\implies$$
 Assume $\vec{v} \in U + W$

There exists $\vec{u} \in U$ and $\vec{w} \in W$ such that $\vec{v} = \vec{u} + \vec{w}$ $\vec{u} \in U \cup W$ and $\vec{w} \in U \cup W$

Thus \vec{v} is a linear combination of vectors in U and W

$$\vec{v} \in \operatorname{span}(U \cup W)$$

$$\iff$$
 Assume $\vec{v} \in \text{span}(U \cup W)$

$$\vec{v} = \sum_{k=1}^m c_k \vec{u_k} + \sum_{k=1}^n d_k \vec{w_k} \text{ for some } u_k \in U, w_k \in W, \text{ and } c_k, d_k \in \mathbb{F}$$
 But by closure, $\sum_{k=1}^m c_k \vec{u_k} \in U$ and $\sum_{k=1}^n d_k \vec{w_k} \in W$

$$\vec{v} \in U + W$$