

PBT223 用户手册 DC-DC 同步降压模块, 0.8-22VDC/3A, 可编程, OLED 屏幕

产品简介

- PBT223 系列是一款可通过 UART 串口程控的直流转直流降压电路(DC-DC Buck)
 - ➤ PBT223-FIXED: 仅支持恒电压 (CV) 模式
 - ▶ PBT223-ADJ: 支持恒电压 (CV), 恒功率 (CP) 和 12-bit DAC 模式
- DC-DC Buck 同步降压电路
 - \rightarrow Vin = 3.8 30 Vs
 - ▶ Vout = 0.8 22 V (固定输出 & 可调输出)
 - \triangleright lout = 0 3 A
 - ▶ 开关频率: 默认 500kHz, 支持 200kHz 2.2MHz
 - ▶ 最大占空比: 98%
 - ▶ 软起动时间: 默认 4.8ms
- **UART** 串口**读取数据**: DC-DC 状态, Vin, Vout, lout, Pout, 温度, EEPROM 数据 等
- **UART 串口写入数据**: 打开/关闭 DC-DC,设定最大 Vin, Vout, lout, Pout 保护值, EEPROM 数据等
- **OLED 屏幕:** 显示实时数据 Vout, lout, Pout, 温度
- **软硬件保护电路**:输入欠压保护 UVLO,输入/输出过压保护 OVP,输出过压保护 OCP,输出过流保护 OCP,输出过功率保护 OPP,输出短路保护,过温保护 OTP,输入/输出防反接保护,静电保护 ESD
- Python API & 例程代码: Python 语言, 支持 windows 和 Linux 系统
- 工作温度范围: -40 85 ℃

Figure 2 PBT223-ADJ

产品选型

	PBT223-	PBT223-	PBT223-	PBT223-	PBT223-	PBT223-
功能	0V8	3V3	5V0	12V	22V	ADJ
UART 编程	V	V	V	V	V	V
输出电压						1 - 22V 可
Vout	0.8V	3.3V	5V	12V	22V	调节
输出电流						
lout	0 - 3A					
输入电压						
Vin	2 - 30V	5 - 30V	7 - 30V	14 - 30V	24 - 30V	Vout + 2V
输出纹波						
Vout_pp	<150mV	<150mV	<150mV	<150mV	<150mV	<400mV
开关频率	200 -	200 -	200 -	200 -	200 -	200 -
f_{sw}	2200kHz	2200kHz	2200kHz	2200kHz	2200kHz	2200kHz
工作温度	-40 - 85 °C					
保护电						
路:						
输入/输出						
防反接,						
OVP, OCP,						
OTP, UVP	V	V	V	V	V	v

应用场景

- 工业自动化产线
- 自动化测试机
- 嵌入式电子设备
- 恒功率加热棒
- 高精度电源系统
- 电池管理系统
- 大学、科研机构、实验室
- 科创教育、培训机构

版本控制

版本号	发布时间	版本说明与变更
1.0	2024年5月1号	初始发布版本
2.0	2024年6月1号	更新 PBT223 通讯协议
		添加 PBT223-ADJ 的详细介绍

目录

L	电气参数	6
	1.1 直流同步降压 DC-DC Buck	6
	1.2 PBT223-FIXED 固定输出	7
	1.2.1 输出纹波 Vout_pp	7
	1.2.2 线性调整率	8
	1.2.3 负载调节率10	0
	1.2.4 转换效率 (%)1	1
	1.2.5 PWM	2
	1.3 PBT223-ADJ 可调输出1	3
	1.3.1 DAC 模式(0-4095)14	4
	1.3.2 恒电压 CV 模式19	5
	1.3.3 恒功率 CP 模式18	8
	1.3.5 输出纹波 Vout_pp1	9
	1.3.4 线性调整率20	0
	1.3.6 负载调节率23	3
	1.3.7 转换效率 (%)24	4
	1.3.8 PWM2!	5
	1.4 旋转编码器(带按键)20	6
	1.5 UART 串口2	7
	1.6 温度传感器2	7
	1.7 开关按键29	8
	1.8 EEPROM 数据映射28	8
	1.9 OLED 1.3" 显示屏	0
	1.10 LED 指示灯	0
	1.11 看门狗	1
	1.12 工作温度	1
)	通讯协议	2

	2.1 读指令	32
	2.2 写指令	34
	2.3 故障信息	35
3.	保护电路	36
	3.1 软件保护: 出厂设定值	36
	3.2 输入保护	36
	3.3 输出保护	37
	3.4 过温保护	38
	3.5 ESD 保护	38
4.	功能方框图	39
5.	产品图片	39
	5.1 实物图	39
	5.2 图纸 2D	40
	5.3 模型 3D	41
6.	例程代码和 API	42
7.	测试报告	42
8.	联系我们	42

1 电气参数

1.1 直流同步降压 DC-DC Buck

参数	数值					
输入电压 V _{in}	◆ Vin = 3.8 – 30 V					
	▶ PBT223-FIXED 固定输出: (Vout + 2) < Vin < 30V					
	➤ PBT223-A	ADJ 可调输出: (Vou	t + 5) < Vin < 30V			
	型号	输出电压 Vout	输入电压 V_{in} 范围			
	PBT223-0V8	Vout = 0.8V	Vin = 2 – 30 V			
	PBT223-3V3	Vout = 3.3V	Vin = 5 – 30 V			
	PBT223-5V0	Vout = 5.0V	Vin = 7 – 30 V			
	PBT223-12V	Vout = 12V	Vin = 14 – 30 V			
	PBT223-22V	Vout = 22V	Vin = 24 – 30 V			
	PBT223-ADJ	Vout = 1-22V 可调	Vin = (Vout + 5V) – 30 V			
输入电流 I _{in}	• 0−3 A					
输出电压 Vout	• Vout = 0.8 − 2	22 V				
	● PBT223-FIXED 固定输出: 0.8V, 3.3V, 5V, 12V, 15V, 22V					
	● PBT223-ADJ 可调输出 : 可调节 Vout = 1 – 22 V					
输出电流 lout	• 0-3A					
输出电压纹波 Vout_pp	PBT223-FIXE	D 固定输出∶<100 m\	1			
	PBT223-ADJ	可调输出: <350mV				
工作频率 f _{sw}	● 默认 500kHz					
	● 支持 200 kHz – 2.2 MHz					
输出软起动时间 tss	◆ 默认 5ms					
	支持 ≥ 1ms					
转换效率 η	• 85 - 97%					
,						

1.2 PBT223-FIXED 固定输出

以下实验数据是在以下测试环境中获得:

- PBT223-12V 模块
- 室温 25 摄氏度
- 1个标准大气压

1.2.1 输出纹波 Vout_pp

测试目的: 当输入电压 Vin 变化时,在不同负载 lout 情况下,输出电压纹波 Vout_pp 应该 小于 100 mV。

PBT223-12V 电压纹波: Vin = 14V						
负载电流	负载电流 输出电压纹波 合格要求 测试结果					
lout (A)	Vout_pp (mV)					
0	35	≤100mV	PASS			
1	35	≤100mV	PASS			
2	38	≤100mV	PASS			
3	42	≤100mV	PASS			

PBT223-12V 电压纹波: Vin = 30V						
负载电流	负载电流 输出电压纹波 合格要求 测试结果					
lout (A)	Vout_pp (mV)					
0	85	≤100mV	PASS			
1	75	≤100mV	PASS			
2	78	≤100mV	PASS			
3	79	≤100mV	PASS			

1.2.2 线性调整率

测试目标: 当输入电压 Vin 变化时,输出电压 Vout 应该保持稳定。

	PBT223-12V: 线性调整率					
lout (A)	Vin (V)	Vout (V)				
0	16	12.12				
	18	12.12				
	20	12.11				
	22	12.11				
	24	12.11				
	26	12.1				
	28	12.1				
	30	12.1				
1	16	12.03				
	18	12.03				
	20	12.04				
	22	12.04				
	24	12.04				
	26	12.04				
	28	12.04				
	30	12.04				
2	16	12.07				
	18	12.07				
	20	12.06				
	22	12.06				
	24	12.06				
	26	12.06				
	28	12.06				
	30	12.05				
3	16	12.11				
	18	12.1				
	20	12.1				
	22	12.08				
	24	12.09				
	26	12.08				
	28	12.08				
	30	12.07	_			

1.2.3 负载调节率

测试目的: 在不同负载 lout 情况下,输出电压 Vout 应该保持稳定。

	PBT223-12V: 负载调节率					
Vin (V)	lout (A)	Vout (V)				
14	0	12.13				
	0.5	12.03				
	1	12.04				
	1.5	12.06				
	2	12.07				
	2.5	12.08				
	3	12.12				
30	0	12.09				
	0.5	12.03				
	1	12.04				
	1.5	12.05				
	2	12.05				
	2.5	12.06				
	3	12.07				

1.2.4 转换效率 (%)

测试目的: 当转换效率越低, buck 芯片发热量越高; 当转换效率越高, buck 芯片发热量越低。

PBT223-12V: 转换效率 (η)					
Vin (V)	lout (A)	Efficiency (%)			
13V	0.5	92.83			
	1	90.78			
	1.5	88.91			
	2	86.46			
	2.5	85.00			
	3	83.52			
30V	0.5	93.58			
	1	92.99			
	1.5	92.40			
	2	91.75			
	2.5	90.86			
	3	89.71			

1.2.5 PWM

1.3 PBT223-ADJ 可调输出

PBT223-ADJ 支持 3 种工作模式: 恒电压 (CV), 恒功率 (CP) 和 DAC 模式。支持 2 种控制方式: 手动调节和 UART 指令程控 (提供 Python API)。

3 种操作模式

- DAC 模式: 通过调整 12 位数字信号从 0 4095, 可以线性地将 Vout 调整 1 22V。
- 恒压 (CV) 模式: MCU 实时监控 Vout, 并使用 PID 算法在 3 秒内自动调整到目标 Vout。
- 恒功率 (CP) 模式: MCU 实时监控 Vout 和 lout, 计算出实时的 Pout, 并使用 PID 算法在 3 秒内自动调整到目标 Pout。

手动控制

用户可以通过顺时针或逆时针旋转编码器、短按或长按编码器按钮,来手动选择操作模式和设定目标值。请阅读《旋转编码器(带按键)》部分了解更多详情。

程序控制

- 请阅读《通讯协议》了解 UART 读/写命令。
- 最新的 Python API 和示例代码可以从官方 GitHub 仓库下载。

1.3.1 DAC 模式 (0-4095)

如下图所示, 当 R² 越接近 1, 表示 12 位 DAC 信号与输出电压 Vout 之间的关系越线性。

Figure 3 DAC vs Vout when Vin=30V, Iout=0.1A

Figure 4 DAC vs Vout when Vin=30V, Iout=1A

Figure 5 DAC vs Vout when Vin=30V, Iout=2A

1.3.2 恒电压 CV 模式

以下图表显示了 PBT223-ADJ 在恒压 (CV) 模式下的性能,目标电压从 2V 到 22V,增量步长为 2V,负载电流 lout = 0.1/1/2 A。

Figure 6 恒电压 CV 模式: Iout=0.1A

PBT223-ADJ 恒电压(CV)模式:Vout 统计(lout=0.1A)						
目标电压	平均值	方差	标准方差	最大值	最小值	
Vout						
2	2.04	0	0.01	2.06	2.03	
4	3.98	0	0.01	3.99	3.95	
6	5.99	0	0.01	6	5.98	
8	8.02	0	0.01	8.03	7.98	
10	10.02	0	0.01	10.05	10	
12	12.04	0	0.01	12.06	12.03	
14	14.04	0	0.01	14.07	14.01	
16	16.03	0	0.02	16.08	15.99	
18	18.03	0	0.02	18.08	17.99	
20	20.04	0	0.02	20.1	20	
22	22.04	0	0.02	22.11	22	

Figure 7 恒电压 CV 模式: lout=1A

PBT223-ADJ 恒电压(CV)模式: Vout 统计(lout=1A)						
目标电压 平均值 方差 标准方差 最大值 最小值						
Vout						
2	1.95	0	0.01	1.97	1.93	
4	3.96	0	0.01	3.99	3.93	
6	5.98	0	0.02	6.02	5.93	
8	7.99	0	0.02	8.03	7.92	
10	9.99	0	0.02	10.04	9.93	
12	11.99	0	0.03	12.05	11.9	
14	13.99	0	0.03	14.08	13.91	
16	16	0	0.04	16.09	15.86	
18	18.01	0	0.05	18.12	17.88	
20	19.99	0	0.04	20.07	19.9	
22	22	0	0.06	22.12	21.83	

Figure 8 恒电压 CV 模式: lout=2A

	PBT223-ADJ	恒电压(CV)机	莫式: Vout 统计	(lout=2A)	
目标电压	平均值	方差	标准方差	最大值	最小值
Vout					
2	2.01	0	0	2.02	2.01
4	3.97	0	0	3.98	3.96
6	5.98	0	0.01	5.99	5.96
8	8.01	0	0.01	8.02	7.99
10	10.01	0	0.01	10.06	9.99
12	12.01	0	0.02	12.07	11.97
14	14.03	0	0.02	14.08	13.97
16	16.03	0	0.03	16.09	15.97
18	18.03	0	0.05	18.16	17.92
20	20.03	0.01	0.09	20.23	19.86
22	22.02	0.01	0.1	22.24	21.81

1.3.3 恒功率 CP 模式

- 恒功率 (CP) 模式 可用于为加热棒供电,以实现稳定的发热功率。
- 加热棒是一种将电能转换为热能的纯电阻设备。发热功率公式为 P=I²*R。一般经过 约 100-300 小时的加热后,加热棒的电阻会漂移,导致发热功率漂移。
- PBT223-ADJ 的恒功率 (CP) 模式可以持续监控输出电压 Vout、输出电流 lout)和输出功率 Pout,并自动补偿由于加热棒电阻变化引起的发热功率漂移,从而确保发热功率稳定。这是一种创新的用于恒定功率输出和温度控制的方法。

Figure 9 恒功率 CP 模式

以下实验数据是在以下测试环境中获得:

- PBT223-ADJ 模块
- 室温 25 摄氏度
- 1个标准大气压

1.3.5 输出纹波 Vout_pp

测试目的: 在不同负载 lout 情况下,输出电压纹波 Vout_pp<350mV。

	PBT223-ADJ: Vin = 30	V, Vout=22V	
负载电流 lout (A)	输出电压纹波 Vout_pp (mV)	合格要求	测试结果
0	203	≤350mV	PASS
1	282	≤350mV	PASS
2	294	≤350mV	PASS
3	302	≤350mV	PASS

1.3.4 线性调整率

测试目标: 当输入电压 Vin 变化时,输出电压 Vout 应该保持稳定。

PBT223-ADJ: 负载调节率 Vin=30V, Vout=2V		
lout (A)	Vin (V)	Vout (V)
0	10	2.008
	15	2.006
	20	2.007
	25	2.009
	30	2.01
3	10	2.001
	15	1.983
	20	1.978
	25	1.977
	30	1.977

PBT223	-ADJ: 负载调节率 Vin=30V,	Vout=10V
lout (A)	Vin (V)	Vout (V)
0	15	10.04
	20	10.03
	25	10.02
	30	10.01
3	15	10.06
	20	10.04
	25	10.02
	30	10.02

PBT223-ADJ: 负载调节率 Vin=30V, Vout=20V			
lout (A)	Vin (V)	Vout (V)	
0	24	20.01	
	27	20	
	30	20	
3	24	20.1	
	27	20.08	
	30	20.06	

1.3.6 负载调节率

测试目的: 在不同负载 lout 情况下,输出电压 Vout 应该保持稳定。

PBT223-ADJ: 负载调节率			
Vin (V)	lout (A)	Vout (V)	
15	0	5	
	0.5	4.765	
	1	4.711	
	1.5	4.695	
	2	4.688	
	2.5	4.684	
	3	4.673	
20	0	10	
	0.5	9.84	
	1	9.83	
	1.5	9.82	
	2	9.83	
	2.5	9.84	
	3	9.86	
30	0	20.01	
	0.5	19.92	
	1	19.96	
	1.5	19.98	
	2	19.99	•
	2.5	20.04	
	3	20.06	

1.3.7 转换效率 (%)

测试目的: 当转换效率越低, buck 芯片发热量越高; 当转换效率越高, buck 芯片发热量越低。

Vin (V)	Vout (V)	lout (A)	Pin (W)	Pout (W)	Efficiency (%)
30	1	1	1.83	1.01	55.19
		2	3.72	1.7733	47.67
		3	5.55	2.3461	42.27
	22	1	23.1	21.992	95.20
		2	47.67	44.006	92.31
		3	73.14	65.96	90.18

1.3.8 PWM

1.4 旋转编码器 (带按键)

仅 PBT223-ADJ 款含有旋转编码器。

- 旋钮可以正/反旋转。旋转一格时,会有齿轮感的触觉反馈。
- 手松开按键时,按键会自动复位。
 - ▶ **短按:** 按下<1 秒时, 认为是短按。短按用于调节挡位, 便于快速准确地调节目标 电压/功率或 DAC 数值。

挡位调节	恒电压 CV 模式	恒功率 CP 模式	DAC 模式
	1 – 22V	0 – 66W	0 - 4095
1档调节	0.01 V	0.01 W	1
2 档调节	0.1 V	0.1 W	10
3 档调节	1 V	1 W	100
4档调节	10 V	10 W	1000

➤ **长按:** 按下>1 秒时,认为是长按。长按用于切换 DC-DC 的 3 种工作模式:恒电压 (CV),恒功率 (CP)或 DAC 模式。

Figure 10 PBT223-ADJ CV 模式 = 1V

Figure 11 PBT223-ADJ CV 模式 = 22V

Figure 12 PBT223-ADJ CP 模式 = 1W

Figure 13 PBT223-ADJ CP 模式 = 50W

Figure 14 PBT223-ADJ DAC 模式 = 0

Figure 15 PBT223-ADJ DAC 模式 = 4095

1.5 UART 串口

参数	数值
通信模式	USART
波特率 Baud rate	115200
数据位数 Data bits	8
停止位数 Stop bits	1
奇偶校验 Parity	奇校验
流控制 Flow Control	无

1.6 温度传感器

参数	数值
芯片型号	PN: TMP102 (美国德州仪器 TI)
温度范围	-40 − 125 °C
温度分辨率	0.0625 °C
温度精度	-25-85 ℃时,额定精度±0.5℃,最差精度±2℃
	-40-125℃时,额定精度±1℃,最差精度±3℃
温度刷新率	4Hz

1.7 开关按键

按键位于 PCBA 电路板右侧,用于打开或关闭 DC-DC 输出。

1.8 EEPROM 数据映射

- 每次手动或 Python 程控调整完 PBT223-ADJ 的工作模式和目标 DAC/Vout/Pout 值后, EEPROM 会自动保存用户的最后一次设定值。
- 每次重新启动 PBT223-ADJ 电路板后, 会恢复到最近一次的设定值。
- 用户可以通过 UART Python API 读/写 EEPROM
 - ➤ **EEPROM** 地址: 0x00 0xFF
 - ➤ **EEPROM** 每个地址可以读/写 **1** byte 数据: 0x00 0xFF
 - ▶ 用户自定义范围: 0x00 0xDF
 - ▶ 预保留范围: 0xE0 0xFF

	EEPROM 数据映射		
EEPROM 地址	EEPROM 数据	单位	
0x00 - 0xDF	用户自定义	/	
0xE0	PBT233-ADJ 工作模式	0: 恒电压 CV 模式 1: 恒功率 CP 模式 2: DAC 模式	
0xE1	仅 PBT233-ADJ 支持: 恒电压 CV 模式的目标 Vout (整数部分)	目标 Vout = XX .XX (V)	

0xE2	仅 PBT233-ADJ 支持:	目标
	恒电压 CV 模式的目标 Vout	
	(小数部分, 2位小数)	
0xE3	仅 PBT233-ADJ 支持:	目标 Pout = XX .XX (W)
	恒功率 CP 模式的目标 Pout	
	(整数部分)	
0xE4	仅 PBT233-ADJ 支持:	目标 Pout = XX. XX (W)
	恒功率 CP 模式的目标 Pout	
	(小数部分, 2位小数)	
0xE5	仅 PBT233-ADJ 支持:	/
	DAC 模式的目标 DAC(12 位	
	DAC 数值的高 4 位)	
0xE6	仅 PBT233-ADJ 支持:	/
	DAC 模式的目标 DAC(12 位	
	DAC 数值的低 8 位)	
0xE7 - 0xEF	保留,未使用	1
0xE7 - 0xEF 0xF0	保留,未使用 软件保护:Vin_max 整数部分	/ xx .xx (v)
0xF0	软件保护: Vin_max 整数部分	XX.XX (V)
0xF0	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分	XX.XX (V)
0xF0 0xF1	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数)	XX.XX (V) XX.XX (V)
0xF0 0xF1 0xF2	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数) 软件保护: Vout_max 整数部分	XX.XX (V) XX.XX (V) XX.XX (V)
0xF0 0xF1 0xF2	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数) 软件保护: Vout_max 整数部分 软件保护: Vout_max 小数部分	XX.XX (V) XX.XX (V) XX.XX (V)
0xF0 0xF1 0xF2 0xF3	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数) 软件保护: Vout_max 整数部分 软件保护: Vout_max 小数部分 (2 位小数)	XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (V)
0xF0 0xF1 0xF2 0xF3 0xF4	软件保护:Vin_max 整数部分软件保护:Vin_max 小数部分(2 位小数)软件保护:Vout_max 整数部分软件保护:Vout_max 小数部分(2 位小数)软件保护:lout_max 整数部分	XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (A)
0xF0 0xF1 0xF2 0xF3 0xF4	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数) 软件保护: Vout_max 整数部分 软件保护: Vout_max 小数部分 (2 位小数) 软件保护: lout_max 整数部分 软件保护: lout_max 小数部分	XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (A)
0xF0 0xF1 0xF2 0xF3 0xF4 0xF5	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数) 软件保护: Vout_max 整数部分 软件保护: Vout_max 小数部分 (2 位小数) 软件保护: lout_max 整数部分 软件保护: lout_max 小数部分 (2 位小数)	XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (A) X.XX (A)
0xF0 0xF1 0xF2 0xF3 0xF4 0xF5 0xF6	软件保护: Vin_max 整数部分 软件保护: Vin_max 小数部分 (2 位小数) 软件保护: Vout_max 整数部分 软件保护: Vout_max 小数部分 (2 位小数) 软件保护: lout_max 整数部分 软件保护: lout_max 小数部分 (2 位小数)	XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (V) XX.XX (A) X.XX (A) XX.XX (W)

1.9 OLED 1.3" 显示屏

• 尺寸: 1.3 英寸

• 屏幕刷新速度: 5 Hz

1.10 LED 指示灯

LED 灯	指示信息
左侧,绿色 LED	• 亮起时,代表 USB 有供电正常
	● 不亮时,代表 USB 没有供电。
右侧,绿色 LED	● 亮起时,代表 DC-DC 打开输出。
	● 不亮时,代表 DC-DC 关闭输出。
USART RX 接收端,黄色 LED	• 闪烁或常亮时,代表正在接收通讯
	• 不亮时,代表没有接收通讯
USART TX 发送端,蓝色 LED	• 闪烁或常亮时,代表正在发送通讯
	• 不亮时,代表没有发送通讯

1.11 看门狗

- MCU 含有看门狗功能。正常情况下,MCU 会每 500ms 喂一次狗,避免 MCU 重启。
- 当 MCU 超过 2000ms 没有喂狗时,MCU 会自行重启。

1.12 工作温度

- 产品工作温度范围 -40 to 85 ℃。
- 【注意】当输出功率 Pout > 50W 时,必须使用散热器或风扇进行冷却。
- 以下是在不同工况下, PBT223 PCB 的热成像仪图。

2. 通讯协议

2.1 读指令

	读指令				
字节	指令	功能	备注		
第 0	0x00	代表读指令	1		
字节					
第1	0x00	读取降压状态: ON/OFF	1: DCDC 已打开		
字节			0: DCDC 已关闭		
	0x01	读取 Vin	2 位小数 (V)		
	0x02	读取 Vout	2 位小数 (V)		
	0x03	读取 lout	2 位小数(A)		
	0x04	读取 Pout	2 位小数 (W)		
	0x05	读取 PBT223-ADJ 模式	仅适用于 PBT223-ADJ,模式包		
			含:		
			1) 恒电压 Constant Voltage		
			(CV)		
			2) 恒功率 Constant Power		
			(CP)		
			3) DAC 模式: 0 - 4095		
	0x06	读取 CV 模式目标电压	2 位小数 (V)		
	0x07	读取 CP 模式目标功率	2 位小数 (W)		
	0x08	读取 DAC 值: 0 - 4095	* 仅适用于 PBT223-ADJ		
	0x09	读取 Vin_max 软件保护	2 位小数(V)		
	0x10	读取 Vout_max 软件限制	2 位小数 (V)		
	0x11	读取 lout_max 软件限制	2 位小数(A)		
	0x12	读取 Pout_max 软件限制	2 位小数(W)		
	0x13	读取 LDO VDDA 电压	3 位小数(V)		
	0x14	读取 MCU 温度	2 位小数 (℃)		
	0x15	读取温度传感器	2 位小数 (℃)		
	0x16	读取 OLED 状态:ON/OFF	1: OLED 已打开		
			0: OLED 已关闭		
	0x17	读取 EEPROM 指定地址里的	1) EEPROM 地址范围 = 0x00 -		
		数据	0xFF		
			2)数据范围 = 0x00 - 0xFF		

	0xF0	读取 PN	PN 包含:
	OAI O		PBT223-0V8
			PBT223-0V8
			PBT223-5V
			PBT223-12V
			PBT223-22V PBT223-ADJ
	0xF1	注明 CN	
		读取 SN	96 位 UUID
	0xF2	读取硬件版本	HW: X.Y.Z
			X=主要硬件更改,例如添加/
			删除组件
			Y=次要硬件更新,例如 PN 更
			改
			Z=补丁,例如错误修复
	0xF3	读取固件版本	FW: X.Y.Z
			X=主要固件更改,例如新功能
			或算法
			Y=次要固件更新,例如次要功
			能改进
			Z=补丁,例如错误修复
第 2	如果第1字节	读取 EEPROM 任意地址	该 EEPROM 地址的数据 0x00 -
字节	是 0x17	(0x00 - 0xFF) 中的数据	0xFF
	其他情况	未定义,可使用任意字节填	/
		补	
第 3	未定义,可使	/	/
字节	 用任意字节填		
	补		
	其他情况	未定义,可使用任意字节填	1
		补	

2.2 写指令

	写指令				
字节	指令	功能	备注		
第 0	0x01	代表写指令	/		
字节					
第1	0x00	关闭 DC-DC	/		
字节	0x01	打开 DC-DC	/		
	0x02	设定恒电压 CV 模式的目	仅适用于 PBT223-ADJ		
		标 Vout 值	Vout 范围 = 1 - 22 (V), 2 位小数		
			需要第 2, 3 字节补充完整指令		
	0x03	设定恒功率 CP 模式的目	仅适用于 PBT223-ADJ		
		标 Pout 值	Pout 范围 = 0 - 66 (W),2 位小数		
			需要第 2, 3 字节补充完整指令		
	0x04	设定 DAC 模式的目标 DAC	仅适用于 PBT223-ADJ		
		值	DAC 范围 = 0 - 4095,整数		
			需要第 2, 3 字节补充完整指令		
	0x05	设定 Vin_max 软件保护	2 位小数(V)		
			需要第 2, 3 字节补充完整指令		
	0x06	设定 Vout_max 软件保护	2 位小数(V)		
			需要第 2, 3 字节补充完整指令		
	0x07	设定 lout_max 软件保护	2 位小数(A)		
			需要第 2, 3 字节补充完整指令		
	0x08	设定 Pout_max 软件保护	2 位小数(W)		
			需要第 2, 3 字节补充完整指令		
	0x09	打开 OLED 屏幕	/		
	0x10	关闭 OLED 屏幕	/		
	0x11	打开数据流模式 	有 2 种方式可以查看数据流		
			1)可通过串口助手超看数据,数		
			据格式为:		
			/*Vin,Vout,lout,Pout,温度*/		
			保留 2 位小数		
			 2) 您可以下载"Serial Studio"软件		
			来查看实时的数据曲线图		
			木宣有关的的数据曲线图 详情请参考《用户手册》		
	0x12	 关闭数据流模式			
	OXIZ	大例数循流保工	1		

	0x13	将数据写入 EEPROM 地址	/
第 2	如果第2字节	写入数值 XX.XX 的整数部	/
字节	是 0x02 - 0x08	分	
	如果第2字节	选择 EEPROM 地址,保存	EEPROM 地址 0xE0 - 0xFF 已被占
	是 0x13	用户自定义数据: 0x00 -	用,用于指定功能
		0xDF	
	其他情况	未定义,可使用任意字节	/
		填补	
第 3	如果第2字节	写入数值 XX.XX 的小数部	2 位小数
字节	是 0x02 - 0x08	分	
	如果第2字节	写入 EEPROM 数据: 0x00	1
	是 0x13	- 0xFF	
	其他情况	未定义,可使用任意字节	/
		填补	

2.3 故障信息

故障信息		
字节 0 错误	/	返回字符串"Error byte 0: unknown
		read / write command"
字节1错误(读)	/	返回字符串"Error byte 1: unknown
		read command"
字节1错误(写)	/	返回字符串"Error byte 1: unknown
		write command"

3. 保护电路

3.1 软件保护: 出厂设定值

型 号	Max Vin (V)	Max Vout (V)	Max lout (A)	Max Pout (W)
PBT223-0V8	33.0	1.5	3.5	5.25
PBT223-3V3	33.0	4.5	3.5	15.75
PBT223-5V0	33.0	6.0	3.5	21.0
PBT223-12V	33.0	13.0	3.5	45.5
PBT223-22V	33.0	25.0	3.5	75.0
PBT223-ADJ	33.0	25.0	3.5	75.0

3.2 输入保护

保护功能	硬件保护	软件保护
输入过压保护	TVS 二极管 36V 过压保护。	当 V _{in} > V _{in_max} 超过 300ms 时,
(OVP)		MCU 会关闭 DC-DC 输出,并通过串
		口和 OLED 报错。
		用户也可以通过串口 API 自行设定
		最大输入电压 V_{in_max} 值,并把数
		据存储在 EEPROM 中。
输入过流保护	当 I_{in} > 3.5 A 时,会熔断一次性保	/
(OCP)	险丝(品牌:美国 Littlefuse)。	
输入防反接保	PMOS 防反接电路	/
护		

3.3 输出保护

保护功能	硬件保护	软化	件保护
输出过压保护	● 当 Vout >115%的额定值时,	•	当 Vout > max Vout 超过 300ms
(OVP)	DC-DC 会关闭输出。此时,		时,MCU 会关闭 DC-DC 输出
	Vout 会下降。当 Vout <110%	•	用户也可以通过 <u>UART Python</u>
	的额定值时,DC-DC 会自动打		API 自行设定最大输出电压 max
	开输出。		Vout, 并把数据存储在
	● 输出有 TVS 二极管,可接阻		EEPROM 中
	性和感性负载		
输出欠压保护	当 DC-DC 出现故障或负载异常	/	
(UVP)	时,Vout 会下降。当 Vout <65%		
	的额定值时,DC-DC 会关闭输		
	出,自动进入 DC-DC 打嗝模式。		
	此时 DC-DC 会周期性的尝试重启		
	以恢复正常操作,就像打嗝一		
	样。周期时间为 10.5 个软起动时		
	间。DC-DC 会一直保持打嗝模		
	式,直到 Vout 正常。		
输出过流保护	/	•	当 lout > max lout 超过 300ms
(OCP)			时,MCU 会关闭 DC-DC 输出
		•	用户也可以通过 <u>UART Python</u>
			API 和自行设定最大输出电压
			max lout , 并把数据存储在
			EEPROM 中
輸出短路保护	DC-DC 芯片自带短路保护	/	
(SCP)			
4A 11 \ 1 -1 -> 10			- ITA I
输出过功率保	/	•	当 Pout > max Pout 超过 300ms
护 (2000)			时,MCU 会关闭 DC-DC 输出
(OPP)		•	用户也可以通过 <u>UART Python</u>
			API 和自行设定最大输出电压
			max Pout, 并把数据存储在
			EEPROM 中

3.4 过温保护

- 当以下任一条件满足时, MCU 会启动过温保护, 关闭 DC-DC 输出:
 - ➤ MCU 内部温度传感器, 持续 300ms 超过 80°C
 - ▶ DC-DC 附近的温度传感器, 持续 300ms 超过 120℃
 - ▶ DC-DC 芯片温度超过 165℃
- 当以下所有条件都满足时, MCU 会取消过温保护, 打开 DC-DC 输出:
 - ▶ MCU 内部温度传感器,持续 300ms 低于 70℃
 - ▶ DC-DC 附近的温度传感器, 持续 300ms 低于 110℃
 - ▶ DC-DC 芯片温度低于 135℃

3.5 ESD 保护

ESD 保护区域	电路	备注
USB	TVS 二极管和电容保护	/
输入连接器	TVS 二极管和电容保护	/
输出连接器	TVS 二极管和电容保护	可接阻性和感性负载。
PCBA 板边缘	PCBA 外围接地和打孔	/

4. 功能方框图

Figure 16 PBT223 功能方框图

5. 产品图片

5.1 实物图

Figure 17 PBT223-FIXED

Figure 18 PBT223-ADJ

5.2 图纸 2D

- 点击下载 2D 图纸: DWG, DXF, PNG
- 单位: mm

5.3 模型 3D

• 点击下载 3D 模型: STEP, STL, PDF 3D

6. 例程代码和 API

• 点击进入 GitHub 链接

7. 测试报告

所有产品在交付时均经过100%测试,并附有测试报告。以下是测试报告模板。

PBT223-FIXED 测试报告(模板): 下载PBT223-ADJ 测试报告(模板): 下载

8. 联系我们

• 公司官网: https://altita-tech.com/

电话: +86 13512122992 (销售董小姐)
 微信: DL13512122992 (销售董小姐)
 销售邮箱: sales@altita-tech.com

• 技术支持邮箱: tech@altita-tech.com