Ασκήσεις Ι Ηλεκτροστατική

ΦΥΣΙΚΗ ΙΙΙ (PHYS113)

https://eclass.uoa.gr/courses/PHYS113/

Παραδόσεις

Δευτέρα: 13.00' - 15.00' αμφιθέατρο Ίππαρχος.

Τετάρτη: 11.00' - 13.00' αμφιθέατρο Δημόκριτος.

Παρασκευή: 13.00' - 15.00' αμφιθέατρο Δημόκριτος.

Μαργαρίτα Νίκη Ασημακοπούλου

masim@phys.uoa.gr

Μέρος Α: Νόμος του Coulomb

- ❖ Άσκηση Ι: Ποιο φορτίο ασκεί την μεγαλύτερη δύναμη;
- ❖ Άσκηση ΙΙ:Τρία φορτία σε ευθεία
- Άσκηση ΙΙΙ:Υπολογισμός ηλεκτρικής δύναμης με βάση τις συνιστώσες
- ❖ Άσκηση IV: Μηδενισμός της δύναμης
- Ασκηση V: Η δύναμη στο κέντρο κανονικών νπλεύρων

Άσκηση Ι: Ποιο φορτίο ασκεί την μεγαλύτερη δύναμη;

 $\Delta \dot{0} \dot{0}$ Θετικά σημειακά φορτία $Q_1 = 50 \mu C$ και $Q_2 = 1 \mu C$ απέχουν μεταξύ τους απόσταση ℓ . Ποια δύναμη έχει μεγαλύτερο μέτρο, αυτή που ασκεί το Q_1 στο Q_2 ή αυτή που ασκεί το Q_2 στο Q_2 ή

$$Q_1 = 50 \ \mu\text{C}$$
 $Q_2 = 1 \ \mu\text{C}$

Άσκηση Ι: Απάντηση

• Σύμφωνα με το νόμο του Coulomb, η δύναμη που ασκεί το Q_1 στο Q_2 είναι

$$F_{12} = k \frac{Q_1 Q_2}{\ell^2}$$

Η δύναμη στο Q_2 εξαιτίας του Q_1 είναι αντίστοιχα

$$F_{21} = k \frac{Q_2 Q_1}{\ell^2}$$

Η εξίσωση είναι συμμετρική ως προς τα δύο φορτία

$$F_{21} = F_{12}$$

Άσκηση ΙΙ:Τρία φορτία σε ευθεία

❖Τρία φορτισμένα σωματίδια βρίσκονται διατεταγμένα πάνω σε μια ευθεία γραμμή, όπως φαίνεται στο σχήμα. Υπολογίστε τη συνισταμένη ηλεκτροστατική δύναμη στο σωματίδιο 3 (αυτό με τιμή −4,0μC στα δεξιά) εξαιτίας των υπόλοιπων δύο φορτίων.

Άσκηση ΙΙ: Μεθοδολογία

$$\vec{F} = ?$$

Άσκηση ΙΙ: Απάντηση

• Τα μέτρα των δύο αυτών δυνάμεων, όπως προκύπτουν από το νόμο του Coulomb είναι:

$$F_{31} = k \frac{Q_3 Q_1}{r_{31}^2} = \frac{\left(9.0 \times 10^9 N \cdot m^2 / C^2\right) \left(4.0 \times 10^{-6} C\right) \left(8.0 \times 10^{-6} C\right)}{\left(0.50 m\right)^2} = 1.2 N$$

Όπου $r_{31} = 0.50m$ είναι η απόσταση από το Q_3 στο Q_1 . Ομοίως

$$F_{32} = k \frac{Q_3 Q_2}{r_{32}^2} = \frac{\left(9,0 \times 10^9 N \cdot m^2 / C^2\right) \left(4,0 \times 10^{-6} C\right) \left(3,0 \times 10^{-6} C\right)}{\left(0,20 m\right)^2} = 2,7 N$$

Άσκηση ΙΙ: Απάντηση

$$Q_1 = Q_2 = Q_3 = -8.0 \,\mu\text{C}$$

• Κατεύθυνση Συνισταμένης Δύναμης

επειδή η x είναι απωστική & η \vec{F}_{31} ελκτική, οι κατευθύνσεις των δυνάμεων είναι αυτές που δίνονται στο σχήμα: \vec{F}_{32}

Η \overrightarrow{F}_{31} έχει φορά προς τα θετικά του x και η \overrightarrow{F}_{32} προς τα αρνητικά του x . Η συνισταμένη δύναμη στο σωματίδιο 3 ισούται τότε με

$$F = -F_{32} + F_{31} = -2.7N + 1.2N = -1.5N$$

Άσκηση ΙΙΙ: Υπολογισμός ηλεκτρικής δύναμης με βάση τις συνιστώσες

*Υπολογίστε τη συνισταμένη ηλεκτροστατική δύναμη στο φορτίο Q_3 , εξαιτίας των φορτίων Q_1 και Q_2

Άσκηση ΙΙΙ: Μεθοδολογία

Άσκηση III: Απάντηση

• Τα μέτρα των \vec{F}_{31} και \vec{F}_{32} είναι

$$F_{31} = k \frac{Q_3 Q_1}{r_{31}^2} = \frac{\left(9,0 \times 10^9 N \cdot m^2 / C^2\right) \left(6,5 \times 10^{-5} C\right) \left(8,6 \times 10^{-5} C\right)}{\left(0,60 m\right)^2} = 140 N$$

$$F_{32} = k \frac{Q_3 Q_2}{r_{32}^2} = \frac{\left(9,0 \times 10^9 N \cdot m^2 / C^2\right) \left(6,5 \times 10^{-5} C\right) \left(5,0 \times 10^{-5} C\right)}{\left(0,30 m\right)^2} = 330 N$$

Άσκηση III: Απάντηση

Αναλύουμε την \vec{F}_{31} στις συνιστώσες της κατά τους άξονες χ και y $F_{31x} = F_{31}\cos 30 = (140 \text{N})\cos 30 = 120 N$

$$F_{31y} = -F_{31}\sin 30 = -(140N)\sin 30 = -70N$$

Άσκηση III: Απάντηση

Η δύναμη \vec{F}_{32} έχει μόνο y συνιστώσα. Οπότε η συνισταμένη δύναμη \vec{F} στο Q_3 έχει συνιστώσες

$$F_x = F_{31x} = 120N$$

 $F_y = F_{32} + F_{31y} = 330N - 70N = 260N$

Το μέτρο της συνισταμένης δύναμης είναι

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(120N)^2 + (260N)^2} = 290N$$

Και σχηματίζει γωνία θ που δίνεται από την

$$\tan \theta = \frac{F_y}{F_x} = \frac{260N}{120N} = 2,2$$

Οπότε
$$\theta = \tan^{-1}(2,2) = 65^{\circ}$$

Άσκηση ΙV: Μηδενισμός της δύναμης

• Πού θα πρέπει να τοποθετηθεί ένα τέταρτο φορτίο $Q_4 = -50 \mu C$, ώστε η συνισταμένη δύναμη στο Q_3 να είναι μηδενική;

Άσκηση ΙV: Απάντηση

• Σύμφωνα με την αρχή της επαλληλίας, χρειαζόμαστε μία δύναμη με κατεύθυνση ακριβώς αντίθετη αυτής της συνισταμένης Ε΄ εξαιτίας των Q_2 και Q_1 που υπολογίσαμε στην προηγούμενη άσκηση [βλ. Άσκηση ΙΙΙ]. Η δύναμη που αναζητούμε θα πρέπει να έχει μέτρο 290Ν και φορά προς τα αριστερά του Q_3 στο σχήμα της εκφώνησης. Οπότε το Q_4 θα πρέπει να τοποθετηθεί κατά μήκος αυτής της ευθείας, βλ.Σχ.2

Σχήμα 2

Άσκηση V: Η δύναμη στο κέντρο κανονικών ν-πλεύρων

- \clubsuit β) Υποθέστε ότι ένα από τα 12 q απομακρύνεται. Ποια είναι η δύναμη στο Q;
- γ) Να επαναληφθούν τα ίδια ερωτήματα με 13 ίσα φορτία που είναι τοποθετημένα στις κορυφές κανονικού 13- πλεύρου

Άσκηση V: Απάντηση

α) Έστω ότι η δύναμη \vec{F} που δέχεται το φορτίο Q είναι μη μηδενική. Τότε θα έχει κάποια συγκεκριμένη διεύθυνση. Έστω αυτή του σχήματος 1.

Περιστρέφω το σύστημα των φορτίων κατά γωνία $\varphi = \left(\frac{360}{12}\right)$ Τότε, κατά την ίδια γωνία θα περιστραφεί και η συνισταμένη \vec{F}

Αλλά όταν το πολύγωνο περιστραφεί κατά γωνία φ έρχεται σε θέση που είναι απόλυτα ισοδύναμη με την προηγούμενη, αυτό λόγω της κανονικότητας του σχήματος και της ισότητας των φορτίων.

Αυτή η συμμετρία οδηγεί στο συμπέρασμα, ότι το άνυσμα \vec{F} πρέπει να παραμείνει αναλλοίωτο. Το οποίο είναι άτοπο εκτός κι αν το άνυσμα $\vec{F}=0$

Πράγματι λόγω συμμετρίας, $\dot{\mathbf{F}}=0$

Άσκηση V: Απάντηση

β) Αν αφαιρέσουμε ένα φορτίο qαπό μία μόνο κορυφή τότε το αποτέλεσμα είναι αυτό της δράσης όλων των υπολοίπων πάνω στο κεντρικό q. Τα 12 φορτία δίνουν συνισταμένη $\vec{\mathbf{F}} = 0$.

Ομοίως, αν σε μία θέση έχουμε δύο φορτία +q και -q (όλες οι άλλες είναι κενές) πάλι θα έχουμε $\vec{F}=0$. Αφαιρούμε το +q τότε το αποτέλεσμα είναι αυτό που προκαλεί το φορτίο -q

γ) Ισχύουν ακριβώς τα ίδια για 13 ίσα φορτία, αλλά και για οποιοδήποτε σύστημα ν- ίσων φορτίων, διατεταγμένων στις κορυφές ενός κανονικού ν-πλεύρου

Μέρος B1: Ηλεκτρικό Πεδίο Απομονωμένου Σημείου

- Άσκηση Ι: Ηλεκτρικό πεδίο απομονωμένου σημειακού φορτίου
- ❖ Άσκηση ΙΙα: Το Ε από δύο σημειακά φορτία
- ❖ Άσκηση ΙΙ_β: το Ε στη μεσοκάθετο ευθυγράμμου τμήματος που ενώνει δύο φορτία

Άσκηση Ι: Ηλεκτρικό πεδίο απομονωμένου σημειακού φορτίου

*Υπολογίστε το μέτρο και την κατεύθυνση του ηλεκτρικού πεδίου σε κάποιο σημείο P, το οποίο απέχει 30 cm προς τα δεξιά ενός σημειακού φορτίου $Q = -3.0 \times 10^{-6} C$

Άσκηση Ι: Απάντηση

• Το μέτρο του ηλεκτρικού πεδίου είναι:

$$E = k \frac{Q}{r^2} = \frac{(9,0 \times 10^9 \, N \cdot m^2 / C^2)(3,0 \times 10^{-6} \, C)}{(0,30m)^2} = 3,0 \times 10^5 \, N/C$$

- Η κατεύθυνση του ηλεκτρικού πεδίου είναι προς το φορτίο Q.
- Εάν το Q ήταν θετικό, το ηλεκτρικό πεδίο θα είχε φορά προς το άπειρο, όπως στο σχημα (b)

Άσκηση ΙΙα: Το Ε από δύο σημειακά φορτία

* Υπολογίστε το συνολικό ηλεκτρικό πεδίο α) στο σημείο Α και β) στο σημείο Β στο σχήμα, εξαιτίας και των δύο φορτίων Q_1 και Q_2

Άσκηση ΙΙ_α: Απάντηση

 Μεθοδολογία: Η προσέγγιση είναι παρόμοια με αυτήν της άσκησης ΙΙΙ (νόμος Coulomb, σελ.9), με τη διαφορά ότι τώρα ζητείται το ηλεκτρικό πεδίο αντί της δύναμης.

Άσκηση ΙΙ_α: Απάντηση

α) Το μέτρο του ηλεκτρικού
$$(9,0\times10^9\,N\cdot m^2/C^2)(50\times10^{-6}C)$$
 πεδίου στο σημείο Α $E_{A1}=\frac{(9,0\times10^9\,N\cdot m^2/C^2)(50\times10^{-6}C)}{(0,60m)^2}=1,25\times10^6\,N/C$

$$\mathbf{E}_{A2} = \frac{\left(9,0 \times 10^{9} N \cdot m^{2} / C^{2}\right) \left(50 \times 10^{-6} C\right)}{\left(0,30m\right)^{2}} = 5,0 \times 10^{6} N / C$$

Το συνολικό ηλεκτρικό πεδίο στο Α, E_A , έχει συνιστώσες:

$$E_{Ax} = E_{A1} \cos 30 = 1,1 \times 10^6 N/C$$

$$E_{Av} = E_{A2} - E_{A1} \sin 30 = 4.4 \times 10^6 N/C$$

Άσκηση ΙΙ_α: Απάντηση

Το μέτρο του
$$E_A$$
είναι
$$E_A = \sqrt{(1,1)^2 + (4,4)^2} \times 10^6 \, N/C = 4.5 \times 10^6 \, N/C$$
 και η κατεύθυνση του ϕ :

$$\tan \phi = E_{Ay}/E_{Ax} = 4,4/1,1 = 4,0$$
 έτσι ϕ =76°

β) Επειδή το Β ισαπέχει από τα δύο ίσα φορτία τα μέτρα των $E_{\it B1}$ και $E_{\it B2}$ θα είναι ίσα

$$E_{B1} = E_{B2} = \frac{kQ}{r^2} = \frac{(9,0 \times 10^9 \, N \cdot m^2 / C^2)(50 \times 10^{-6} \, C)}{(0,40m)^2} = 2,8 \times 10^6 \, N/C$$

λόγω της συμμετρίας, οι y συνιστώσες είναι ίσες και αντίθετες οπότε αλληλοαναιρούνται. Το συνολικό πεδίο $E_{\scriptscriptstyle B}$ είναι οριζόντιο και ισούται με: $E_{\scriptscriptstyle B} = E_{\scriptscriptstyle B1}\cos\theta + E_{\scriptscriptstyle B2}\cos\theta = 2E_{\scriptscriptstyle B1}\cos\theta$

Από το διάγραμμα,
$$\cos \theta = 26cm/40cm = 0,65$$

$$E_{\rm B}=2E_{\rm B1}\cos\theta=2\left(2,8\times10^6\,N/C\right)\!\left(0,65\right)=3,6\times10^6\,N/C$$
και η κατεύθυνση του $E_{\rm B}$ είναι κατά τα θετικά του $+x$.

Άσκηση ΙΙα: Το Ε από δύο σημειακά φορτία

Άσκηση ΙΙ_β: το Ε στη μεσοκάθετο ευθυγράμμου τμήματος που ενώνει δύο φορτία

- β) Επαναλάβετε το ίδιο αν τα φορτία είναι αντίθετα, δηλαδή q , -q

Άσκηση ΙΙ_β: Απάντηση

$$E_1 = E_2 = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{z^2 + \frac{d^2}{4}}$$

Το
$$PE_1EE_2$$
 είναι ρόμβος \Rightarrow $E = 2 \cdot E_1 \cdot \sigma \upsilon \upsilon \theta = 2 \cdot E_1 \cdot \frac{z}{\left(z^2 + \frac{d^2}{4}\right)^{\frac{1}{2}}}$

$$E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2zq}{\left(z^2 + \frac{d^2}{4}\right)^{\frac{3}{2}}}$$

Av $z \gg d$ tote $(d \approx 0)$

$$E \cong \frac{1}{4\pi\varepsilon_0} \cdot \frac{2zq}{z^3} = \frac{2q}{4\pi\varepsilon_0 z^2}$$

Δηλαδή το αποτέλεσμα ταυτίζεται με αυτό που θα είχαμε αν $(z \approx d)$ τα δύο ισα φορτία βρίσκονταν στη θέση Μ 28

Άσκηση
$$II_{\beta}$$
: Απάντηση
• β) $E = 2 \cdot E_1 \cdot \eta \mu \theta = 2 \cdot \frac{1}{4\pi \varepsilon_0} \cdot \frac{q}{z^2 + \frac{d^2}{4}} \cdot \frac{\frac{d}{2}}{\left(z^2 + \frac{d^2}{4}\right)^{\frac{1}{2}}}$

$$E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{qd}{\left(z^2 + \frac{d^2}{4}\right)^{\frac{3}{2}}}$$

