VİTMO

Исследовательская работа по теме "Кратные и криволинейные интегралы"

Группа М3103

Кравченкова Елизавета Лакеев Георгий Родецкий Никита

Преподаватель

Сарычев Павел Александрович

Математический анализ Университет ИТМО Санк-Петербург, Россия

14 мая 2023 г.

Оглавление

1	Задача 1.Интегралы Пуассона и Френеля		
	1.1	Вычислите $\int_0^\infty e^{-x^2} dx = I$	3
	1.2	Вычислите $\int_0^\infty \frac{\cos t}{\sqrt{t}} dt = J$	4
	1.3	Нарисуйте графики функции ошибок, интегралов Френеля и их подынтеграль-	
		ных функций	8
2	Зад	дача 2. Потенциал векторного поля	11
	2.1	Убедитесь, что данное векторное поле потенциально	11
	2.2	Найдите уравнения векторных линий. Изобразите векторные линии на рисунке.	11
	2.3	Найдите потенциал поля при помощи криволинейного интеграла	12
	2.4	Найдите уравнения линий уровня потенциала (эквипотенциальных линий). Изоб-	
		разите линии уровня потенциала	13
	2.5	Докажите ортогональность найденных векторных линий поля и линий уровня	
		потенциала. Проиллюстрируйте ортогональность на графике	14
	2.6	Выберите какую-либо векторную линию поля и зафиксируйте на ней точки А	
		и В, выбрав для них числовые координаты. Вычислите работу поля вдоль этой	
		линии, используя найденный в п. 3) потенциал	15
3	Задача 3. Поток векторного поля		
	3.1	Изобразите тело Т на графике в пространстве	17
	3.2	Вычислите поток поля \vec{a} через боковую поверхность тела T, образованную вра-	
		щением дуги DEF вокруг оси Оу, в направлении внешней нормали поверхности	
		тела Т	18

4	Задача 4. Формулы теории поля	21
5	Выводы	23
6	Оценочный лист	24

Задача 1

В задачах физики и дифракционной оптики возникают интегралы вида: $\int e^{-x^2} dx$, $\int \frac{\sin t}{\sqrt{t}} dt$, $\int \frac{\cos t}{\sqrt{t}} dt$,

которые являются специальными функциями (т.е. "неберущимися"
интегралами). Однако, переход к "многомерным" интегралам позволяет вычислить по крайней мере $\int_0^\infty e^{-x^2} dx, \int_0^\infty \frac{\sin t}{\sqrt{t}} dt, \int_0^\infty \frac{\cos t}{\sqrt{t}} dt,$

где $\Phi(z)=\int_0^z e^{-x^2}dx$ - функция ошибок, $\Phi_s(z)=\int_0^z \frac{\sin t}{\sqrt{t}}dt$ и $\Phi_c(z)=\int_0^z \frac{\cos t}{\sqrt{t}}dt$ – интегралы Френеля.

1.1

Вычислите $\int_0^\infty e^{-x^2}dx=I$. Заметим что $I=\int_0^\infty e^{-x^2}dx=\int_0^\infty e^{-y^2}dy$. Тогда $I^2=\int_0^\infty e^{-x^2}dx\int_0^\infty e^{-y^2}dy$ - двукратный интеграл.

Перейдите к полярным координатам и вычислите его.

Так как пределы в интеграле по у, не зависят от переменной по х, то произведение интегралов можно записать, как двукратный интерал, т.е

$$I^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \cdot \int_{0}^{\infty} e^{-y^{2}} dy = \int_{0}^{\infty} e^{-x^{2}} dx \int_{0}^{\infty} e^{-y^{2}} dy = \int_{0}^{\infty} dx \int_{0}^{\infty} e^{-x^{2}-y^{2}} dy$$

Таким образом, вместо вычисления исходного интеграла, мы перешли к интегралу по области. Воспользовавшись свойстом степенной функции и тем, что e^{-x^2} является константой при интегрировании по у, внесли $-x^2$ и $-y^2$ в одну степень. Также стоит заметить, что получившийся интеграл - это несобственный интеграл 1 рода (интеграл с бесконечными пределами интегрирования), т.е для его решения стоит рассмотреть предел.

$$I^{2} = \int_{0}^{\infty} dx \int_{0}^{\infty} e^{-x^{2} - y^{2}} dy = \lim_{a \to \infty} \left(\int_{0}^{a} dx \int_{0}^{a} e^{-x^{2} - y^{2}} dy \right)$$

Теперь для вычисления интеграла перейдем в ПСК. Для этого выразим х и у, их дифференциалы и пределы интегрирования через полярные координаты.

$$\begin{cases} x = \rho \cos \phi, \\ y = \rho \sin \phi \\ dxdy = \rho \cdot d\rho d\phi \end{cases}$$

Так как теперь мы рассматриваем функцию в 1 четверти плоскости ОХҮ (так как $x \in [0, +\infty)$ и $y \in [0, +\infty)$), следовательно угол $\phi \in [0, \frac{\pi}{2}]$. Радиус $\rho \to \infty$, так же как и пределы дифференцирования исходной функции. Теперь выразим подынтегральную функцию в полярной системе.

$$e^{-x^2-y^2} = e^{-(x^2+y^2)} = e^{-(\rho^2(\cos^2\phi + \sin^2\phi))} = e^{-\rho^2}$$

Подставим все в исходный интеграл и найдем его значение.

$$I^{2} = \int_{0}^{\infty} dx \int_{0}^{\infty} e^{-x^{2} - y^{2}} dy = \lim_{a \to \infty} \left(\int_{0}^{a} dx \int_{0}^{a} e^{-x^{2} - y^{2}} dy \right) = \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{a} e^{-\rho^{2}} \rho d\rho \right)$$

Теперь внесем ρ под дифференциал и интегрируем полученное выражение.

$$I^{2} = \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{a} e^{-\rho^{2}} \rho d\rho \right) = \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{a} \frac{1}{2} e^{-\rho^{2}} d\rho^{2} \right) = \lim_{a \to \infty} \frac{1}{2} \left(\int_{0}^{\frac{\pi}{2}} (-e^{-\rho^{2}}) \Big|_{0}^{a} d\phi \right)$$

$$\lim_{a \to \infty} \frac{1}{2} \left(\int_{0}^{\frac{\pi}{2}} \left(-e^{-a^{2}} + 1d\phi \right) = \lim_{a \to \infty} \frac{1}{2} \left(-e^{-a^{2}}\phi + \phi \right) \Big|_{0}^{\frac{\pi}{2}} = \lim_{a \to \infty} \frac{\pi}{2} \cdot \frac{1}{2} \left(-e^{-a^{2}} + 1 \right) = \lim_{a \to \infty} \frac{\pi}{4} \left(-e^{-a^{2}} + 1 \right) = \frac{\pi}{4}$$

$$\implies I = \frac{\sqrt{\pi}}{2}$$

1.2

Вычислите $\int_0^\infty \frac{\cos t}{\sqrt{t}} dt = J$.

Используя предыдущий результат, докажите справедливость интегрального представления функции $\frac{1}{\sqrt{t}}=\frac{2}{\sqrt{\pi}}\int_0^\infty e^{-u^2t}du$.

Решим интеграл $\int_0^\infty e^{-u^2t}du$, аналогично предыдущему пункту: возведем интеграл в квадрат и перейдем в полярную систему координат.

$$I = \int_{0}^{+\infty} e^{-u^{2}t} du \implies I^{2} = \int_{0}^{+\infty} e^{-u^{2}t} \cdot \int_{0}^{+\infty} e^{-p^{2}t} = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-u^{2}t - p^{2}t}$$

Переход в полярные координаты: $u=\rho cos\phi,\, p=\rho sin\phi.$ Пределы интегрирования: $\phi\in[0,\frac{\pi}{2}],$

так как в исходном интеграле рассматривается только 1 четверть; $\rho \in [0, +\infty)$, так как $u \to \infty$. Выразим подынтегральную функцию: $e^{-u^2t-p^2t} = e^{-t(u^2+p^2)} = e^{-t(\rho^2\cos^2\phi+\rho^2\sin^2\phi)} = e^{-t\rho^2(\cos^2\phi+\sin^2\phi)} = e^{-\rho^2t}$. Тогда интеграл перезапишется, как:

$$I^2 = \int_0^{\frac{\pi}{2}} \int_0^{+\infty} e^{-\rho^2 t} \rho \cdot d\rho d\phi$$

Так как интеграл является несобственным 1 рода, то при вычислении перейдем к пределу.

$$I^{2} = \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{a} e^{-\rho^{2}t} \rho d\rho \right) = \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{a} e^{-\rho^{2}t} \frac{1}{2} \frac{1}{t} d\rho^{2}t \right) = \frac{1}{2t} \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{a} e^{-\rho^{2}t} d\rho^{2}t \right) = \frac{1}{2t} \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} \left(-e^{-\rho^{2}t} \Big|_{0}^{a} \right) d\phi \right) = \frac{1}{2t} \lim_{a \to \infty} \left(\int_{0}^{\frac{\pi}{2}} -e^{-a} + 1 d\phi \right) = \frac{1}{2t} \lim_{a \to \infty} \left(\frac{\pi}{2} (-e^{-a} + 1) \right)$$

$$\frac{1}{2t} \cdot \frac{\pi}{2} \lim_{a \to \infty} \left((-e^{-a} + 1) \right) = \frac{\pi}{4t}$$

$$I^{2} = \frac{\pi}{4t} \implies I = \frac{\sqrt{\pi}}{2\sqrt{t}}$$

Мы вычислили интеграл, теперь подставим его значение в первоначальную формулу.

$$\frac{2}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2\sqrt{t}} = \frac{1}{\sqrt{t}}$$

В исходном интеграле замените $\frac{1}{\sqrt{t}}$ её интегральным представлением и получите двойной (несобственный) интеграл.

$$J = \int_{0}^{+\infty} \cos t dt \cdot \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-u^2 t} du = \int_{0}^{+\infty} \int_{0}^{+\infty} \cos t \cdot \frac{2}{\sqrt{\pi}} e^{-u^2 t} du dt$$

Выберите порядок интегрирования так, чтобы можно было найти первообразную в элементарных функциях. (Смена порядка интегрирования требует обоснования, но в данном случае она разрешена.)

Интеграл в исходном порядке (сначала по du) интегрировать нет смысла: вычисление первого интеграла опять приведет к появлению \sqrt{t} и интеграл сведется к первоначальному. Таким образом, поменяем порядок интегрирования.

Порядок интегрирования можно менять, только в том случае, если интегрируемая область яв-

ляется правильной. Убедимся, что функция правильная в направлении Оt. Рассмотрим проекцию фукнции $p=\cos t\cdot \frac{2}{\sqrt{\pi}}e^{-u^2t}$ на плоскость Out. Заметим, что область определения данной функции ничем не ограничена, так как ни функция экспонента, ни функция косинуса не накладывает огрничений на аргумент. В нашем случае, мы рассматриваем $x,y\geqslant 0$, т.е функция покрывает всю это область. Также заметим, что область значений функции также не ограни-

Так как данная функция покрывает все область определения, то область (ограниченная $0 <= u <= +\infty, 0 <= t <= +\infty$) является правильной в направлении и Ou, и Ot. Соотвественно, в исходном интеграле можно изменить порядок интегрирования.

$$J = \int_{0}^{+\infty} du \int_{0}^{+\infty} \cos t \cdot \frac{2}{\sqrt{\pi}} e^{-u^{2}t} dt$$

Вычислите интеграл J, затем интеграл К.

$$J = \int_{0}^{+\infty} du \int_{0}^{+\infty} \cos t \cdot \frac{2}{\sqrt{\pi}} e^{-u^2 t} dt = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{+\infty} du \int_{0}^{+\infty} \cos t \cdot e^{-u^2 t} dt$$

Применим формулу интегрирования по частям к первому интегралу по dt.

$$u = \frac{1}{e^{u^2 t}} v' = \cos t$$

$$u' = -\frac{u^2}{e^{u^2 t}} v = \sin t$$

$$\int_0^{+\infty} \cos t \cdot e^{-u^2 t} dt = \frac{\sin t}{e^{u^2 t}} \Big|_0^{+\infty} + \int_0^{+\infty} \frac{u^2 \sin t}{e^{u^2 t}} dt =$$

Повторим и опять проинтегрируем по частям, так как после первого вычисления интеграл все

равно невозможно выразить через элементарные функции.

$$u = \frac{u^2}{e^{u^2 t}} v' = \sin t$$

$$u' = -\frac{u^4}{e^{u^2 t}} v = -\cos t$$

$$\int_0^{+\infty} \cos t \cdot e^{-u^2 t} dt = \frac{\sin t}{e^{u^2 t}} \Big|_0^{+\infty} - \frac{u^2 \cos t}{e^{u^2 t}} \Big|_0^{+\infty} - \int_0^{+\infty} \frac{u^4 \cos t}{e^{u^2 t}} dt$$

Заметим, что интеграл выражается через самого себя, тогда вынесем u^4 за знак интеграла и решим уравнение.

$$(u^{4}+1) \cdot \int_{0}^{+\infty} \frac{\cos t}{e^{u^{2}t}} dt = \frac{\sin t}{e^{u^{2}t}} - \frac{u^{2}\cos t}{e^{u^{2}t}} \implies \int_{0}^{+\infty} \frac{\cos t}{e^{u^{2}t}} dt = \frac{\sin t - u^{2}\cos t}{(u^{4}+1)e^{u^{2}t}} \Big|_{0}^{+\infty}$$

$$\implies J = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{+\infty} \left(\frac{\sin t - u^{2}\cos t}{(u^{4}+1)e^{u^{2}t}} \right) \Big|_{0}^{+\infty} du = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{+\infty} \lim_{a \to \infty} \left(\frac{\sin a - u^{2}\cos a}{(u^{4}+1)e^{u^{2}a}} - \frac{\sin 0 - u^{2}\cos 0}{(u^{4}+1)e^{0}} \right) du = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{+\infty} \frac{u^{2}}{u^{4}+1} du$$

Полученный интеграл решается через "Метод неопределенных коэффицентов". Полученные значения для коэффицентов: $A=-\frac{1}{2\sqrt{2}},\,B=\frac{1}{2\sqrt{2}},\,C=0,\,D=0.$

$$\int_{0}^{+\infty} \frac{Au + B}{u^{2} + \sqrt{2}u + 1} + \frac{Cu + D}{u^{2} - \sqrt{2}u + 1} = -\frac{1}{2\sqrt{2}} \int_{0}^{+\infty} \frac{u}{u^{2} + \sqrt{2}u + 1} + \frac{1}{2\sqrt{2}} \frac{u}{u^{2} - \sqrt{2}u + 1} = \left(\frac{\ln\left(u^{2} - \sqrt{2}u + 1\right)}{2} + \arctan\left(\frac{2u - \sqrt{2}}{\sqrt{2}}\right)\right)\Big|_{0}^{+\infty} = \frac{\pi}{2\sqrt{2}}$$

$$J = \frac{2}{\sqrt{\pi}} \cdot \frac{\pi}{2\sqrt{2}} = \sqrt{\frac{\pi}{2}}$$

Сведем интеграл K к интегралу J по формуле привидения $\sin\left(\frac{\pi}{2}-t\right)=\cos t$.

$$K = \int_{0}^{+\infty} \frac{\sin\frac{\pi}{2} - t}{\sqrt{t}} dt = \int_{0}^{+\infty} \frac{\cos t}{\sqrt{t}} dt = \sqrt{\frac{\pi}{2}}$$

Используя замену переменной и сводя эти интегралы к J, вычислите также: $\int_0^\infty \cos x^2 dx$ и $\int_0^\infty \cos \frac{\pi x^2}{2} dx$

Пусть $t=x^2$, тогда $x=\sqrt{t}$ и $dt=2xdx \implies dx=\frac{dt}{2x}$

$$\int_{0}^{+\infty} \cos x^{2} dx = \int_{0}^{+\infty} \frac{\cos t dt}{2\sqrt{t}} = \frac{1}{2} \int_{0}^{+\infty} \frac{\cos t dt}{\sqrt{t}} = \frac{1}{2} \cdot \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2\sqrt{2}}$$

Пусть $t=\frac{\pi x^2}{2},$ тогда $x=\sqrt{\frac{2t}{\pi}}$ и $dt=\pi x dx \implies dx=\frac{dt}{\pi x}.$

$$\int_{0}^{+\infty} \frac{\cos t dt}{\pi x} = \int_{0}^{+\infty} \frac{\cos t dt}{\pi \sqrt{\frac{2t}{\pi}}} = \int_{0}^{+\infty} \frac{\cos t dt}{\sqrt{2\pi} \cdot \sqrt{t}} = \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{+\infty} \frac{\cos t dt}{\sqrt{t}} = \frac{1}{\sqrt{2\pi}} \cdot \sqrt{\frac{\pi}{2}} = \frac{1}{2}$$

1.3

Нарисуйте графики функции ошибок, интегралов Френеля и их подынтегральных функций.

Функция ошибок.

Подынтегральная функция функции ошибок.

Интеграл Френеля с sin.

Подынтегральная функция интеграла Френеля sin.

Интеграл Френеля с cost.

Задача 2

Дано векторное поле Н: $(\frac{1}{x^2}; \frac{1}{y^2})$

2.1

Убедитесь, что данное векторное поле потенциально.

Векторное поле - это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.

Потенциальное векторное поле - это векторное поле, которое можно представить как градиент некоторой скалярной функции координат.

Ротор векторного поля - это векторный дифференциальный оператор над векторным полем. Если векторное поле (двумерное) задано функцией $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$, то ротор вычисляется по следующей формуле: $rot\vec{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \cdot \vec{k}$.(Решение занулить координату по z поля взято из пункта "Примеры"в статье Ротор) Условием потенциальности векторного поля является равенство нулю ротора поля.

Тогда для проверки данного поля подставим все в формулу. В нашем случае, $P = \frac{1}{x^2}$ и $Q = \frac{1}{y^2}$. Вычислим их производные: $\frac{\partial Q}{\partial x} = 0$, $\frac{\partial P}{\partial y} = 0$. $\Longrightarrow rot = (0-0) \cdot \vec{k} = 0$. Следовательно, векторное поле потенциально.

2.2

Найдите уравнения векторных линий. Изобразите векторные линии на рисунке.

Векторные линии – кривые, в каждой точке которых вектор направлен по касательной к кривой. Для нахождения семейства векторных линий (над векторным полем заданым - $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$) достаточно решить дифференциальное уравнение: Q(x,y)dx = P(x,y)dy.

$$\frac{1}{y^2}dx = \frac{1}{x^2}dy$$
$$\frac{1}{y^2dy} = \frac{1}{x^2dx}$$
$$\int y^2dy = \int x^2dx$$
$$\frac{y^3}{3} = \frac{x^3}{3} + c_1$$
$$y^3 = x^3 + c$$
$$y = \sqrt[3]{x^3 + c}$$

 $y=\sqrt[3]{x^3+c}$ - уравнение векторных полей, а также рисунку линий поля при $c=\pm 10,\, c=\pm 5,\, c=\pm 3$

Так как в точке (0,0) вектора не существует, то эта точка не может принадлежать векторной линии.

2.3

Найдите потенциал поля при помощи криволинейного интеграла.

Потенциалом векторного поля F называется такая скалярная функция u, что F = grad u. Потенциал векторного поля можно вычислить по формуле $\int\limits_{AB} P(x,y)dx + Q(x,y)dy$.

В нашем случае найдем потенциал поля на произвольном промежутке AB. Тогда пусть нам дана точка $A(x_0, y_0)$ и точка $B = (x_1, y_1)$. Заметим, что точка с координатам (0, 0) не принадлежит полю, а значит и потенциал в ней не определен. Криволинейный интеграл 2 рода не зависит от пути интегрирования, так что можно выбрать любой удобный путь. Тогда зададим прямую, соединяющую точки A и B.

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} \implies \frac{x - x_0}{a} = \frac{y - y_0}{b}$$

Пусть $a = x_1 - x_0$ и $b = y_1 - y_0$. Исходя из канонического уравнения прямой, можем параметрическа задачать прямую.

$$\begin{cases} x = at + x_0 \\ y = bt + y_0 \end{cases}$$

При t = 0 $x = x_0$, а при t = 1 $x = x_1$. Также выразим дифференциалы $dx = a \cdot dt$, $dy = b \cdot dt$. Теперь можем записать интеграл в параметрической форме.

$$\int_{AB} \frac{1}{x^2} dx + \frac{1}{y^2} dy = \int_0^1 \frac{a \cdot dt}{(at + x_0)^2} + \frac{b \cdot dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(bt + y_0)^2} = a \cdot \int_0^1 \frac{dt}{(at + x_0)^2} + b \cdot \int_0^1 \frac{dt}{(at + x_0)^2}$$

$$a \cdot \int_{0}^{1} (at + x_{0})^{-2} dt + b \cdot \int_{0}^{1} (bt + y_{0})^{-2} dt = a \cdot \frac{1}{a} \cdot \frac{-1}{at + x_{0}} \Big|_{0}^{1} + b \cdot \frac{1}{b} \cdot \frac{-1}{bt + y_{0}} \Big|_{0}^{1} = -\frac{1}{a + x_{0}} + \frac{1}{x_{0}} - \frac{1}{b + y_{0}} + \frac{1}{y_{0}} + \frac{1}{y_{0$$

Подставляем вместо а и b их значения и получаем:

$$\frac{1}{x_0} - \frac{1}{x_1} + \frac{1}{y_0} - \frac{1}{y_1}$$

Тогда потенциал данного векторного поля равен.

$$u(x,y) = -\frac{1}{x} - \frac{1}{y}$$

Можно проверить путем нахождения частных производных. $\frac{\partial u}{\partial x} = P$, $\frac{\partial u}{\partial y} = Q$. Таким образом, выведена общая формуа потенциала для произвольных точек, кроме точки (0,0), так как она не принадлежит векторному полю.

2.4

Найдите уравнения линий уровня потенциала (эквипотенциальных линий). Изобразите линии уровня потенциала.

Линией уровня функции двух переменных z=f(x,y) называется плоская кривая, получаемая при пересечении графика этой функции плоскостью z=, где C- постоянная величина. Отсюда уравнение линий уровня потенциала u(x,y)=C. Возьмем для графика $C=\pm 1,$ $C=\pm 3,$ $C=\pm 0.5.$

2.5

Докажите ортогональность найденных векторных линий поля и линий уровня потенциала. Проиллюстрируйте ортогональность на графике.

Известно, что вектор grad и направлен перпендикулярно к линии уровня u(x,y)=c, проходящей через соответствующую точку (доказывалось на лекции в 1 семестре)

В наших обозначениях u(x,y)=c - линии уровня потенциала

По определению потенциала: $\vec{F} = gradu$, а значит вектор \vec{F} сонаправлен с вектором перпендикуляра к кривой из точки (x,y).

Обозначим вектор $\vec{F'}$, как вектор, направленный по касательной к кривой $\mathbf{u}(\mathbf{x},\mathbf{y})=\mathbf{c}$, тогда $(\vec{F},\vec{F'})=0$

Также, по определению векторных линий поля: \vec{F} направлен по касательной к векторной линий

Рассмотрим $\vec{F'}$ - касательный к одной кривой, и \vec{F} -касательный к другой, так как $(\vec{F}, \vec{F'})$ =0 (по определению $\vec{F'}$), то эти кривые ортогональны.

Ортогональность векторных линий поля и линий уровня потенциала можно также увидеть на графике. В обоих случая в качестве константы взято значение $c=\pm 5$.

2.6

Выберите какую-либо векторную линию поля и зафиксируйте на ней точки A и B, выбрав для них числовые координаты. Вычислите работу поля вдоль этой линии, используя найденный в п. 3) потенциал.

Возьмем произвольную векторную линию, например $\frac{y^3}{3} - \frac{x^3}{3} = 100$, выберем на ней 2 про-извольные точки $A(1, \sqrt[3]{299}), B(\sqrt[3]{181}, \sqrt[3]{481}).$

Работу поля можно посчитать через потенциал посчитанный в 3 пункте. Формула из 3 пункта:

$$\frac{1}{x_0} - \frac{1}{x_1} + \frac{1}{y_0} - \frac{1}{y_1} = \frac{1}{1} - \frac{1}{\sqrt[3]{299}} + \frac{1}{\sqrt[3]{181}} - \frac{1}{\sqrt[3]{481}} \approx 0.845134$$

Задача 3

Дано тело T, ограниченное следующими поверхностями: $y-\sqrt{1-x^2-z^2}=0,\,x^2+y^2=1,\,2z-y=3.$

$$y - \sqrt{1 - x^2 - z^2} = 0$$
, $x^2 + y^2 = 1$, $2z - y = 3$.

На рисунке представлено сечение тела Т координатной плоскостью Оух.

3.1

Изобразите тело Т на графике в пространстве.

Искомое тело ограничено голубыми и розовой поверхностями. (розовую я как могла обрезала)

3.2

Вычислите поток поля $\vec{a}=\ln{(y^2+z^2)}\cdot\vec{i}+z\vec{j}+(\frac{\sqrt{y}}{2}-\frac{7}{3}z)\vec{k}$ через боковую поверхность тела T, образованную вращением дуги DEF вокруг оси Оу, в направлении внешней нормали поверхности тела Т.

Убедимся, что поверхность, образованная вращением дуги DEF вокруг оси Оу - это полусфера $y = \sqrt{1 - x^2 - z^2}$

Пусть в Оуz задана кривая Q(y,z), тогда чтобы получить уравнение поверхности вращения этой кривой, надо в уравнении линии заменить z на $\sqrt{x^2+z^2}$ (это мы выводили на паре в 1

Уравнение дуги DEF: $y = \sqrt{1-z^2}$

Тогда уравнение поверхности вращения: $y = \sqrt{1 - x^2 - z^2}$

Вычислим поток:
$$\Pi = \iint_{\delta+} \ln (y^2 + z^2) \cdot dy dz + z \cdot dx dz + (\frac{\sqrt{y}}{2} - \frac{7}{3}z) \cdot dx dy$$

Рассмотрим
$$\iint\limits_{\delta+} \ln{(y^2+z^2)} \cdot dy dz$$

Заметим, что нормаль к нашей поверхности не всегда образует нетупой угол(в случае 90 градусов поток нулевой и никак не помешает), с Ох(положительным направлением). А значит надо разделить поверхность на 2 части:

1)
$$x = \sqrt{1 - y^2 - z^2}, y >= 0$$

2) $x = -\sqrt{1 - y^2 - z^2}, y >= 0$

Для 1):
$$\iint\limits_{\delta+} \ln{(y^2+z^2)} \cdot dy dz = \iint\limits_{D_{yz}} \ln{(y^2+z^2)} \cdot dy dz$$
 Для 2):
$$\iint\limits_{\delta+} \ln{(y^2+z^2)} \cdot dy dz = -\iint\limits_{D_{yz}} \ln{(y^2+z^2)} \cdot dy dz$$

Тогда для 1) и 2):

$$\iint\limits_{\delta+} \ln{(y^2+z^2)} \cdot dy dz = \iint\limits_{D_{yz}} \ln{(y^2+z^2)} \cdot dy dz - \iint\limits_{D_{yz}} \ln{(y^2+z^2)} \cdot dy dz = 0$$

Рассмотрим $\iint\limits_{\delta+}z\cdot dxdz$

Нормаль к нашей поверхности всегда образует угол >= 90 с осью Oy(положительным направлением)

$$\iint\limits_{\delta+}z\cdot dxdz=\iint\limits_{D_{xz}}z\cdot dxdz$$

Рассмотрим проекцию нашей поверхности на Oxz (она правильная в обоих направлениях):

$$\iint_{D_{xz}} z \cdot dx dz = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} z \cdot dz = \int_{-1}^{1} \left(\frac{z^2}{2}\right) \Big|_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dx = \int_{-1}^{1} 0 \cdot dx = 0$$

Рассмотрим
$$\iint_{\delta+} (\frac{\sqrt{y}}{2} - \frac{7}{3}z) \cdot dxdy$$

Заметим, что нормаль к нашей поверхности не всегда образует нетупой угол с Oz(положительным направлением). А значит надо разделить поверхность на 2 части:

направлением). А значит надо разделить поверхность на 2 части:
$$1)z = \sqrt{1-y^2-x^2}, y>=0$$

$$2)z = -\sqrt{1-y^2-x^2}, y>=0$$
 Для 1):
$$\iint_{\delta+} (\frac{\sqrt{y}}{2} - \frac{7}{3}z) \cdot dxdy = \iint_{D_{xy}} (\frac{\sqrt{y}}{2} - \frac{7}{3}\sqrt{1-y^2-x^2}) \cdot dxdy$$
 Для 2):
$$\iint_{\delta+} (\frac{\sqrt{y}}{2} - \frac{7}{3}z) \cdot dxdy = -\iint_{D_{xy}} (\frac{\sqrt{y}}{2} + \frac{7}{3}\sqrt{1-y^2-x^2}) \cdot dxdy$$
 Тогда для 1) и 2):
$$\iint_{\delta+} (\frac{\sqrt{y}}{2} - \frac{7}{3}z) \cdot dxdy = -\frac{14}{3}\iint_{D_{xy}} (\sqrt{1-y^2-x^2}) \cdot dxdy$$

Рассмотрим проекцию нашей поверхности на Оху (она правильная в обоих направлениях):

Перейдем к полярным координатам, чтоб его посчитать:

$$-\frac{14}{3} \int\limits_{D_{xy}} (\sqrt{1-y^2-x^2}) \cdot dx dy = -\frac{14}{3} \int\limits_{D} (\sqrt{1-\rho^2}) \cdot \rho d\rho d\phi = \frac{7}{3} \int\limits_{D} (\sqrt{1-\rho^2}) \cdot (-2) \cdot \rho d\rho d\phi = \frac{7}{3} \int\limits_{0}^{\pi} d\phi \int\limits_{0}^{1} (\sqrt{1-\rho^2}) \cdot (-2) \cdot \rho d\rho = \frac{7}{3} \int\limits_{0}^{\pi} d\phi \int\limits_{0}^{1} (\sqrt{1-\rho^2}) \cdot (-2) \cdot \rho d\rho = \frac{7}{3} \int\limits_{0}^{\pi} d\phi \int\limits_{0}^{1} (\sqrt{1-\rho^2}) d(1-\rho^2) = \frac{7}{3} \int\limits_{0}^{\pi} d\phi \left(\frac{2(1-\rho^2)^{\frac{3}{2}}}{3}\right) \bigg|_{0}^{1} = -\frac{14}{9} \int\limits_{0}^{\pi} d\phi = -\frac{14\pi}{9}$$

Тогда поток равен:

Тогда поток равен:
$$\Pi=\iint\limits_{\delta+}\ln{(y^2+z^2)}\cdot dydz+z\cdot dxdz+(\tfrac{\sqrt{y}}{2}-\tfrac{7}{3}z)\cdot dxdy=0+0-\tfrac{14\pi}{9}=-\tfrac{14\pi}{9}$$
 Ответ: $-\tfrac{14\pi}{9}$

Можете посмотреть как выглядят векторы \vec{a} https://www.geogebra.org/m/kgrbr5jq. Там полусфера разделена напополам. В верхней части M(r,s,k), где r,s-параметры, автоматически пересчитывается вектор поля \vec{a} \vec{MC} . Аналогично \vec{AB} , где A(a,b,c), a,b-параметры

Задача 4

При помощи формулы Остроградского-Гаусса докажите, что

$$\iint_{s} f \vec{ds} = \iiint_{T} gradf dv,$$

где T — ограниченная область в пространстве с границей — гладкой односвязной поверхностью S,

f(x;y;z)— непрерывно дифференцируемая в области Т скалярная функция ds = (dydz;dzdx;dxdy)— направленный элементарный участок поверхности S, dv = dxdydz— элементарный участок в области T.

Доказательство:

Проведем то же доказательство(примерно такое), что и для формулы Гаусса-Остроградского(похожее было и на лекции). Рассмотрим каждую координату отдельно, а затем вместо элементов суммы получим координаты вектора.

Нужно доказать, что:

$$\iiint\limits_T gradfdv = \iiint\limits_T \nabla f dv = \iiint\limits_T \left(\frac{\delta f}{\delta x}; \frac{\delta f}{\delta y}; \frac{\delta f}{\delta z}\right) dv = \oiint\limits_s \left(f dy dz; f dz dx; f dx dy\right) = \oiint\limits_s f \vec{ds}$$

Рассмотрим сначала ось z:

$$\iiint_T \frac{\delta f}{\delta z} dv = \iiint_T \frac{\delta f}{\delta z} dx dy dz = \iint_\Omega dx dy \int_{z_1(x,y)}^{z_2(x,y)} \frac{\delta f}{\delta z} dz$$
 (По теореме Фубини) (Ω -проекция на плоскость х у

$$\iint\limits_{\Omega} dx dy \int\limits_{z_1(x,y)}^{z_2(x,y)} \frac{\delta f}{\delta z} dz = \iint\limits_{\Omega} dx dy \cdot f(x,y,z) \bigg|_{z_1(x,y)}^{z_2(x,y)} = \iint\limits_{\Omega} dx dy \cdot f(x,y,z_2(x,y)) - \iint\limits_{\Omega} dx dy \cdot f(x,y,z_1(x,y)) = \iint\limits_{\Omega} dx dy \cdot f(x,y,z_1$$

Область, ограниченная S, является z-цилиндрической, поэтому его можно разбить на две области S_1 и S_2 и на промежуточную область S_3 , где поток через S_3 равен 0. (Опустим детали доказательства)

$$= \iint\limits_{S_2} f dx dy - \iint\limits_{S_1} f dx dy = \iint\limits_{S_2} f dx dy - \iint\limits_{S_1} f dx dy + \iint\limits_{S_3} f dx dy = \iint\limits_{S} f dx dy$$

Теперь, если так сделать по всем трем осям, мы получим:

$$\iiint\limits_T \left(\frac{\delta f}{\delta x}; \frac{\delta f}{\delta y}; \frac{\delta f}{\delta z} \right) dv = \iint\limits_s \left(f dy dz; f dz dx; f dx dy \right)$$

Из чего, по определению градиента, следует:

$$\iiint\limits_T \nabla f dv = \iint\limits_s f \vec{ds}$$

Выводы 5

В результате нашей работы мы научились при помощи перехода к "многомерным" интегралам вычислять некоторые из неберущихся интегралов, нашли потенциал и поток векторного поля, эквипотенциальные линии, а также работу поля вдоль векторной линии. Мы изучили некоторые факты из курса теории поля, благодаря чему смогли доказать требуемую формулу при помощи формулы Гаусса-Остроградского, ну и помимо всего прочего отточили навык вычислениях кратных, криволинейных и поверхностных интегралов.

Оценочный лист 6

Кравченкова Елизавета

Вклад исполнителя - 33 $\frac{1}{3}$ %

Лакеев Георгий

Вклад исполнителя - 33 $\frac{1}{3}$ %

Родецкий Никита

Вклад исполнителя - 33 $\frac{1}{3}$ %