On a new method towards proof of Riemann's Hypothesis

Akhila Raman

University of California at Berkeley. Email: akhila.raman@berkeley.edu.

Abstract

We consider the analytic continuation of Riemann's Zeta Function derived from **Riemann's Xi function** $\xi(s)$ which is evaluated at $s = \frac{1}{2} + \sigma + i\omega$, given by $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$, where σ, ω are real and $-\infty \le \omega \le \infty$ and compute its inverse Fourier transform given by $E_p(t)$.

We use a new method and show that the Fourier Transform of $E_p(t)$ given by $E_{p\omega}(\omega) = \xi(\frac{1}{2} + \sigma + i\omega)$ does not have zeros for finite and real ω when $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line and prove Riemann's hypothesis.

More importantly, the new method **does not** contradict the existence of non-trivial zeros on the critical line with real part of $s = \frac{1}{2}$ and **does not** contradict Riemann Hypothesis. It is shown that the new method is **not** applicable to Hurwitz zeta function and related functions and **does not** contradict the existence of their non-trivial zeros away from the critical line.

If the specific solution presented in this paper is incorrect, it is **hoped** that the new method discussed in this paper will lead to a correct solution by other researchers.

Keywords: Riemann, Hypothesis, Zeta, Xi, exponential functions

1. Introduction

It is well known that Riemann's Zeta function given by $\zeta(s)=\sum_{m=1}^{\infty}\frac{1}{m^s}$ converges in the half-plane where the real part of s is greater than 1. Riemann proved that $\zeta(s)$ has an analytic continuation to the whole s-plane apart from a simple pole at s=1 and that $\zeta(s)$ satisfies a symmetric functional equation given by $\xi(s)=\xi(1-s)=\frac{1}{2}s(s-1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$ where $\Gamma(s)=\int_0^\infty e^{-u}u^{s-1}du$ is the Gamma function. [4] [5] We can see that if Riemann's Xi function has a zero in the critical strip, then Riemann's Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859 paper, that all of the non-trivial zeros of $\zeta(s)$ lie on the critical line with real part of $s=\frac{1}{2}$, which is called the Riemann Hypothesis. [1]

Hardy and Littlewood later proved that infinitely many of the zeros of $\zeta(s)$ are on the critical line with real part of $s=\frac{1}{2}.^{[2]}$ It is well known that $\zeta(s)$ does not have non-trivial zeros when real part of $s=\frac{1}{2}+\sigma+i\omega$, given by $\frac{1}{2}+\sigma\geq 1$ and $\frac{1}{2}+\sigma\leq 0$. In this paper, **critical strip** 0< Re[s]<1 corresponds to $0\leq |\sigma|<\frac{1}{2}$.

In this paper, a **new method** is discussed and a specific solution is presented to prove Riemann's Hypothesis. If the specific solution presented in this paper is incorrect, it is **hoped** that the new method discussed in this paper will lead to a correct solution by other researchers.

In Section 2, we prove Riemann's hypothesis by taking the analytic continuation of Riemann's Zeta Function derived from Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ and compute inverse Fourier transform of $E_{p\omega}(\omega)$ given by $E_p(t)$ and show that its Fourier transform $E_{p\omega}(\omega)$ does not have zeros for finite and real ω when $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip **excluding** the critical line.

In Appendix A to Appendix G, well known results which are used in this paper are re-derived.

We present an **outline** of the new method below.

1.1. Step 1: Inverse Fourier Transform of $\xi(\frac{1}{2} + i\omega)$

Let us start with Riemann's Xi Function $\xi(s)$ evaluated at $s = \frac{1}{2} + i\omega$ given by $\xi(\frac{1}{2} + i\omega) = \Xi(\omega) = E_{0\omega}(\omega)$, where $-\infty \le \omega \le \infty$. Its inverse Fourier Transform is given by $E_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega) e^{i\omega t} d\omega$, where ω, t are real, as follows (link). [3] This is re-derived in Appendix B.

$$E_0(t) = \Phi(t) = 2\sum_{n=1}^{\infty} \left[2n^4\pi^2 e^{\frac{9t}{2}} - 3n^2\pi e^{\frac{5t}{2}}\right]e^{-\pi n^2 e^{2t}} = 2\sum_{n=1}^{\infty} \left[2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}\right]e^{-\pi n^2 e^{2t}}e^{\frac{t}{2}}$$
(1)

We see that $E_0(t) = E_0(-t)$ is a real and **even** function of t, given that $E_{0\omega}(\omega) = E_{0\omega}(-\omega)$ because $\xi(s) = \xi(1-s)$ and hence $\xi(\frac{1}{2}+i\omega) = \xi(\frac{1}{2}-i\omega)$ when evaluated at $s = \frac{1}{2}+i\omega$.

The inverse Fourier Transform of $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ is given by the real function $E_p(t)$. We can write $E_p(t)$ as follows for $0 < |\sigma| < \frac{1}{2}$ and this is shown in detail in Appendix A using contour integration.

$$E_p(t) = E_0(t)e^{-\sigma t} = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}]e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t}$$
(2)

We can see that $E_p(t)$ is an analytic function in the interval $|t| \leq \infty$, given that the sum and product of exponential functions are analytic in the same interval and hence infinitely differentiable in that interval.

1.2. Step 2: Taylor's series representation of $E_p(t)$

We can substitute $z = e^{2t}$ in Eq. 2 as follows.

$$E_p(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} = E_0(t) e^{-\sigma t} = f(e^{2t}) e^{\frac{t}{2}} e^{-\sigma t}$$

$$f(z) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 z^2 - 3\pi n^2 z] e^{-\pi n^2 z}$$
(3)

We can expand the real analytic function f(z) using Taylor series expansion **around** z=1 as follows.

$$f(z) = \sum_{n=1}^{\infty} a_n z^2 \left[\sum_{k=0}^{\infty} d_{nk} (z-1)^k \right] - b_n z \left[\sum_{k=0}^{\infty} d_{nk} (z-1)^k \right]$$

$$a_n = 4\pi^2 n^4 e^{-\pi n^2}, \quad b_n = 6\pi n^2 e^{-\pi n^2}, \quad d_{nk} = \frac{(-\pi n^2)^k}{!(k)}$$

$$(4)$$

Now we substitute $z = e^{2t}$ in Eq. 7 and we can write the Taylor series expansion of $E_p(t)$ as follows and we use binomial series expansion $(e^{2t} - 1)^v = \sum_{n=0}^v \binom{v}{p} (-1)^p e^{2t(v-p)}$ for v is a positive integer.

$$E_p(t) = \left[\sum_{n=1}^{\infty} a_n e^{4t} \left[\sum_{k=0}^{\infty} d_{nk} (e^{2t} - 1)^k\right] - b_n e^{2t} \left[\sum_{k=0}^{\infty} d_{nk} (e^{2t} - 1)^k\right]\right] e^{\frac{t}{2}} e^{-\sigma t}$$

$$E_p(t) = \left[\sum_{n=1}^{\infty} a_n \sum_{k=0}^{\infty} d_{nk} \left[\sum_{p=0}^{k} \binom{k}{p} (-1)^p e^{2t(k+2-p)}\right] - b_n \sum_{k=0}^{\infty} d_{nk} \left[\sum_{p=0}^{k} \binom{k}{p} (-1)^p e^{2t(k+1-p)}\right]\right] e^{\frac{t}{2}} e^{-\sigma t}$$

(8)

This equation can be simplified as follows, using shorthand notation.

$$E_{p}(t) = \sum_{n,k,r,p} c_{nkrp} e^{b_{krp}t} e^{-\sigma t}$$

$$b_{krp} = (2k + \frac{5}{2} + 2r - 2p), \quad \sum_{n,k,r,p} c_{nkrp} = \sum_{r=0}^{1} \sum_{n=1}^{\infty} e_{nr} \sum_{k=0}^{\infty} d_{nk} \sum_{p=0}^{k} {k \choose p} (-1)^{p}, \quad e_{n1} = a_{n}, \quad e_{n0} = -b_{n},$$

$$(6)$$

In Section 1.1, we showed that $E_0(t) = E_0(-t)$ and we can write $E_p(t) = E_0(t)e^{-\sigma t}$ as an **infinite summation** of two-sided decaying exponential functions as follows.

$$E_{p}(t) = \left[\sum_{n,k,r,p} c_{nkrp} e^{b_{krp}t} u(-t) + \sum_{n,k,r,p} c_{nkrp} e^{-b_{krp}t} u(t)\right] e^{-\sigma t}$$
(7)

1.3. Step 3: Two-sided decaying exponentials and zeros in their Fourier transform

We know that a real two-sided decaying exponential function $g_0(t) = e^{bt}u(-t) + e^{-at}u(t)$, where u(t) is Heaviside unit step function and a, b > 0 and t are real, has Fourier Transform $G_0(\omega)$, where ω is real. (link)

$$G_0(\omega) = \int_{-\infty}^{\infty} g_0(t)e^{-i\omega t}dt = \frac{1}{b - i\omega} + \frac{1}{a + i\omega} = \frac{b + i\omega}{b^2 + \omega^2} + \frac{a - i\omega}{a^2 + \omega^2}$$
$$= \left[\frac{b}{b^2 + \omega^2} + \frac{a}{a^2 + \omega^2}\right] + i\omega\left[\frac{1}{b^2 + \omega^2} - \frac{1}{a^2 + \omega^2}\right]$$

We can see that the real part of $G_0(\omega)$ given by $\frac{b}{b^2+\omega^2}+\frac{a}{a^2+\omega^2}$ does not have zeros for any finite real value of ω and hence $G_0(\omega)$ does not have zeros for any finite value of ω .

Given that the inverse Fourier Transform of Riemann Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ given by $E_p(t)$ is expressed as an infinite summation of two-sided decaying exponential functions in previous subsection, we could investigate if $E_{p\omega}(\omega)$ also does not have zeros for any finite real value of ω .

1.4. Step 4: On the zeros of a related function $G(\omega)$

Statement 1: Let us assume that Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0$ where ω_0 is real and finite and $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line. We will prove that this assumption leads to a **contradiction**.

Let us consider $0 < \sigma < \frac{1}{2}$ at first. Let us consider a new function $g(t) = E_p(t)e^{-\sigma t}u(-t) + E_p(t)e^{\sigma t}u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function. We can see that $g(t)h(t) = E_p(t)$ where $h(t) = \left[e^{\sigma t}u(-t) + e^{-\sigma t}u(t)\right].$

In **Appendix G**, we will show that the Fourier transform of the **even function** $g_{even}(t) = \frac{1}{2}[g(t) + g(-t)]$ given by $G_{even}(\omega) = G_R(\omega)$ must have at least one zero at $\omega = \omega_1 \neq 0$ to satisfy Statement 1, where ω_1 is real and finite.

As an **example**, consider $E_p(t) = e^{bt}u(t) + e^{-at}u(-t)$ where $a, b > \sigma > 0$ are real and $h(t) = [e^{\sigma t}u(-t) + e^{-\sigma t}u(t)]$. We see that $g(t) = e^{(b-\sigma)t}u(-t) + e^{-(a-\sigma)t}u(t)$. The real part of Fourier transform of g(t) is given by $G_R(\omega) = e^{(b-\sigma)t}u(-t) + e^{-(a-\sigma)t}u(-t)$ $\frac{(b-\sigma)}{(b-\sigma)^2+\omega^2}+\frac{(a-\sigma)}{(a-\sigma)^2+\omega^2}$ does not have any zeros for real and finite ω . The Fourier transform of h(t) is given by $H(\omega) = \frac{2\sigma}{(\sigma)^2 + \omega^2}$ also **does not** have any zeros for real and finite ω .

Because $g(t)h(t) = E_p(t)$ corresponds to **convolution** of the respective Fourier transforms (plot), therefore real part of Fourier transform of $E_p(t)$ given by $Re[E_{p\omega}(\omega)]$ cannot have zeros for real and finite ω , which **contradicts** Statement 1. Therefore $G_R(\omega)$ must have **at least one zero** at $\omega = \omega_1 \neq 0$ to satisfy Statement 1, where ω_1 is real and finite.

Similarly, in Section 2.1, we consider the **even** function $g(t) = [e^{-\sigma t_0}E_p(t-t_0) + e^{\sigma t_0}E_p(t+t_0)]e^{-\sigma t}u(-t) + [e^{-\sigma t_0}E_p(t-t_0) + e^{\sigma t_0}E_p(t+t_0)]e^{3\sigma t}u(t)$ for $|t_0| \leq \infty$ and $h(t) = [e^{\sigma t}u(-t) + e^{-3\sigma t}u(t)]$ where $g(t)h(t) = E_p(t)$ and show that Fourier transform of the **even function** $g_{even}(t) = \frac{1}{2}[g(t) + g(-t)]$ given by $G_{even}(\omega) = G_R(\omega)$ must have **at least one zero** at $\omega = \omega_2(t_0) \neq 0$, for **every value** of t_0 , to satisfy Statement 1, where $\omega_2(t_0)$ is real and finite.

1.5. Step 5: On the zeros of the function $G_R(\omega)$

In Section 2.1, we compute the Fourier transform of the even function g(t) given by $G_R(\omega)$. We require $G_R(\omega) = 0$ for $\omega = \omega_2(t_0)$ for every value of t_0 , to satisfy **Statement 1**. In general, $\omega_2(t_0) \neq \omega_0$.

It is shown that $R(t_0) = G_R(\omega_2(t_0), t_0)$ is an **odd** function of variable t_0 as follows.

$$R(t_0) = e^{2\sigma t_0} \left[\cos(\omega_2(t_0)t_0) \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau) d\tau + \sin(\omega_2(t_0)t_0) \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma\tau} \sin(\omega_2(t_0)\tau) d\tau\right]$$
(9)

Using Taylor series representation of $E_p(t) = \sum_{n,k,r,p} c_{nkrp} e^{b_{krp}t} e^{-\sigma t}$, we use the fact that $E_0(t) = E_0(-t)$, we can write as follows.

$$R(t_0) = \sum_{n,k,r,p} c_{nkrp} \frac{(b_{krp} - 2\sigma)e^{(b_{krp})t_0}}{(\omega_2^2(t_0) + (b_{krp} - 2\sigma)^2)}$$
(10)

We see that there is a **one to one correspondence** between the integral representation in Eq. 9 and Taylor series representation in Eq. 10. Given that it is easier to show integral convergence, we use only the integral representation in subsequent steps.

1.6. Step 6: Power series representation of $R(t_0)$

In Section 2.2, it is shown that $R(t_0)$ can be expressed as power series in t_0 as follows, where $e_0 = E_0(0), \omega_{20} = [\omega_2(t_0)]_{t_0=0}, \ M(t_0) = \int_{-\infty}^0 E_0(\tau) e^{-2\sigma\tau} \cos{(\omega_2(t_0)\tau)} d\tau = [m_0 + m_1 t_0 + m_2 t_0^2 + ...]$ and $N(t_0) = \int_{-\infty}^0 E_0(\tau) e^{-2\sigma\tau} \sin{(\omega_2(t_0)\tau)} d\tau = [n_0 + n_1 t_0 + n_2 t_0^2 + ...].$

$$R(t_0) = m_0 + (e_0 + n_0\omega_{20} + 2\sigma m_0)t_0 + t_0^2(m_2 + \sigma e_0 + 2\sigma n_0\omega_{20} + 2\sigma^2 m_0 - m_0\frac{\omega_{20}^2}{2}) + \dots$$
(11)

Given that $R(t_0) = G_R(\omega_2(t_0), t_0)$ is an **odd** function of variable t_0 , we get $m_0 = 0$ and $m_2 + \sigma e_0 + 2\sigma n_0 \omega_{20} = 0$.

1.7. Step 7: Next Step

In Section 2.3, we replace $E_p(t)$ by $E_{pp}(t) = e^{\sigma t_2} E_p(t+t_2) + e^{-\sigma t_2} E_p(t-t_2)$, for $|t_2| \le \infty$ and derive as follows.

$$m'_{0}(t_{2}) = R'(t_{2}) + R'(-t_{2}) = 0$$

$$R'(t_{2}) = e^{2\sigma t_{2}} \left[\cos\left(\omega_{20}(t_{2})t_{2}\right) \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau} \cos\left(\omega_{20}(t_{2})\tau\right)d\tau + \sin\left(\omega_{20}(t_{2})t_{2}\right) \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau} \sin\left(\omega_{20}(t_{2})\tau\right)d\tau\right]$$

$$A(t_{2}) = m'_{2}(t_{2}) + \sigma e'_{0}(t_{2}) + 2\sigma n'_{0}(t_{2})\omega_{2}(t_{2}) = 0$$

$$e'_{0}(t_{2}) = E_{0}(t_{2}) + E_{0}(-t_{2})$$

$$n'_{0}(t_{2}) = n_{0p}(t_{2}) + n_{0p}(-t_{2})$$

$$m'_{0}(t_{2}) = n_{0p}(t_{2}) + n_{0p}(-t_{2})$$

$$m'_{2}(t_{2}) = m_{2p}(t_{2}) + m_{2p}(-t_{2})$$

$$m'_{2}(t_{2}) = m_{2p}(t_{2}) + m_{2p}(-t_{2})$$

$$m_{2p}(t_{2}) = -\frac{1}{2} \frac{d^{2}\omega_{2}(t_{2})}{dt_{2}^{2}} e^{2\sigma t_{2}} \left[\cos\left(\omega_{2}(t_{2})t_{2}\right) \int_{-\infty}^{t_{2}} (\tau - t_{2})E_{0}(\tau)e^{-2\sigma\tau} \sin\left(\omega_{2}(t_{2})\tau\right)d\tau\right]$$

$$-\sin\left(\omega_{2}(t_{2})t_{2}\right) \int_{-\infty}^{t_{2}} (\tau - t_{2})E_{0}(\tau)e^{-2\sigma\tau} \cos\left(\omega_{2}(t_{2})\tau\right)d\tau$$

$$-\sin\left(\omega_{2}(t_{2})t_{2}\right) \int_{-\infty}^{t_{2}} (\tau - t_{2})E_{0}(\tau)e^{-2\sigma\tau} \cos\left(\omega_{2}(t_{2})\tau\right)d\tau$$

$$(12)$$

1.8. Step 8: Asymptotic Case and Final result

In Section 2.4, we consider the asymptotic case and show that $\lim_{t_2\to\infty}\omega_2(t_2)=\omega_z$ and derive as follows.

$$\lim_{t_2 \to \infty} A(t_2) = \lim_{t_2 \to \infty} 2\sigma \omega_z n_0'(t_2) = 0$$

$$\lim_{t_2 \to \infty} n_0'(t_2) = 0$$

$$\lim_{t_2 \to \infty} m_0'(t_2) = 0$$

$$\int_{-\infty}^{\infty} E_0(t) e^{-2\sigma t} e^{i(\omega_z t)} dt = 0$$
(13)

We started with **Statement 1** that the Fourier Transform of the function $E_p(t) = E_0(t)e^{-\sigma t}$ has a zero at $\omega = \omega_0$ which means that $\int_{-\infty}^{\infty} E_0(\tau)e^{-\sigma \tau}e^{-i\omega_0\tau}d\tau = 0$ and we derived the result that $\int_{-\infty}^{\infty} E_0(\tau)e^{-2\sigma \tau}e^{-i\omega_z\tau}d\tau = 0$.

We repeat above steps N times till $(2^{N+1}\sigma) > \frac{1}{2}$ and get the result $\int_{-\infty}^{\infty} E_0(\tau) e^{-(2^{N+1}\sigma)\tau} e^{-i\omega_{(zN)}\tau} d\tau = 0$. In each iteration n, we use $h(t) = e^{(2^{N+1}\sigma)t}u(-t) + e^{-3*(2^{N+1}\sigma)t}u(t)$. We know that the Fourier Transform of $E_0(t)e^{-(2^{N+1}\sigma)t}$ does not have a real zero for $(2^{N+1}\sigma) > \frac{1}{2}$, corresponding to Re[s] > 1 and we show a **contradiction** of **Statement 1** that the Fourier Transform of the function $E_p(t) = E_0(t)e^{-\sigma t}$ has a zero at $\omega = \omega_0$.

2. An Approach towards Riemann's Hypothesis: Method 1

Theorem 1: Riemann's Xi function $\xi(\frac{1}{2}+\sigma+i\omega)=E_{p\omega}(\omega)$ does not have zeros for any real value of $-\infty < \omega < \infty$, for $0<|\sigma|<\frac{1}{2}$, corresponding to the critical strip excluding the critical line, given that $E_0(t)=E_0(-t)$ is an even function of variable t, where $E_p(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}E_{p\omega}(\omega)e^{i\omega t}d\omega$, $E_p(t)=E_0(t)e^{-\sigma t}$ and $E_0(t)=2\sum_{n=1}^{\infty}[2\pi^2n^4e^{4t}-3\pi n^2e^{2t}]e^{-\pi n^2e^{2t}}e^{\frac{t}{2}}$.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contradiction.

Statement 1: Let us assume that Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0$ where ω_0 is real and finite and $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line. We will prove that this assumption leads to a **contradiction**.

We will prove it for $0 < \sigma < \frac{1}{2}$ first and then use the property $\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} - \sigma - i\omega)$ to show the result for $-\frac{1}{2} < \sigma < 0$ and hence show the result for $0 < |\sigma| < \frac{1}{2}$.

We know that $\omega_0 \neq 0$, because $\zeta(s)$ has no zeros on the real axis between 0 and 1, when $s = \frac{1}{2} + \sigma + i\omega$ is real, $\omega = 0$ and $0 < |\sigma| < \frac{1}{2}$. [3] This is shown in detail in first two paragraphs in Appendix D.1.

2.1. On a related function $G(\omega)$

Let us form a new function $f(t) = e^{-\sigma t_0} E_p(t-t_0) + e^{\sigma t_0} E_p(t+t_0) = [E_0(t+t_0) + E_0(t-t_0)]e^{-\sigma t} = E_{0n}(t)e^{-\sigma t}$, where $|t_0| \leq \infty$, $E_{0n}(t) = E_{0n}(-t) = E_0(t+t_0) + E_0(t-t_0)$. Its Fourier Transform given by $F(\omega) = E_{p\omega}(\omega)[e^{-\sigma t_0}e^{-i\omega t_0} + e^{\sigma t_0}e^{i\omega t_0}]$ also has a zero at $\omega = \omega_0$.

Let us consider another function $g(t) = g_-(t)u(-t) + g_+(t)u(t)$ where g(t) is a real and **even symmetric** function of variable t and u(t) is Heaviside unit step function and $g_-(t) = f(t)e^{-\sigma t}$ and $g_+(t) = g_-(-t) = f(-t)e^{\sigma t} = f(t)e^{3\sigma t}$, because $f(t) = E_{0n}(t)e^{-\sigma t}$, $f(-t)e^{\sigma t} = E_{0n}(t)e^{2\sigma t}$, $f(t)e^{3\sigma t} = E_{0n}(t)e^{2\sigma t}$ and $E_{0n}(t) = E_{0n}(-t)$. We see that $g(t) = E_{0n}(t)e^{-2\sigma t}u(-t) + E_{0n}(t)e^{2\sigma t}u(t)$. We can see that g(t)h(t) = f(t) where $h(t) = [e^{\sigma t}u(-t) + e^{-3\sigma t}u(t)]$.

We can see that g(t) is a real L^1 integrable function, its Fourier transform $G(\omega)$ is finite for $|\omega| < \infty$ and goes to zero as $\omega \to \pm \infty$, as per **Riemann-Lebesgue Lemma**[Riemann Lebesgue Lemma]. This is explained in detail in Appendix D.1.

If we take the Fourier transform of the equation g(t)h(t)=f(t) where $h(t)=[e^{\sigma t}u(-t)+e^{-3\sigma t}u(t)]$, we get $\frac{1}{2\pi}[G(\omega)*H(\omega)]=F(\omega)$ where * denotes convolution operation given by $F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty}G(\omega')H(\omega-\omega')d\omega'$ and $H(\omega)=[\frac{1}{\sigma-i\omega}+\frac{1}{3\sigma+i\omega}]=[\frac{\sigma}{(\sigma^2+\omega^2)}+\frac{3\sigma}{(9\sigma^2+\omega^2)}]+i\omega[\frac{1}{(\sigma^2-\omega^2)}-\frac{1}{(9\sigma^2+\omega^2)}]$ is the Fourier transform of the function h(t).

For every value of t_0 , we require the Fourier transform of the function f(t) given by $F(\omega)$ to have a zero at $\omega = \omega_0$. This implies that the Fourier transform of the even function g(t) given by $G(\omega) = G_R(\omega)$ must have at least one real zero at $\omega = \omega_2(t_0)$ for every value of t_0 . Because the real part of $H(\omega)$ given by $H_R(\omega) = \frac{\sigma}{(\sigma^2 + \omega^2)} + \frac{3\sigma}{(9\sigma^2 + \omega^2)}$ does not have real zeros, if $G_R(\omega)$ does not have real zeros, then $F_R(\omega) = G_R(\omega) * H_R(\omega)$ obtained by the convolution of $H_R(\omega)$ and $G_R(\omega)$, cannot possibly have real zeros, which goes against **Statement 1**.

This is explained in detail in Appendix G.

Next Step

Let us compute the Fourier transform of the function g(t) given by $G(\omega)$.

$$g(t) = g_{-}(t)u(-t) + g_{+}(t)u(t) = g_{-}(t)u(-t) + g_{-}(-t)u(t)$$

$$g(t) = [e^{-\sigma t_{0}}E_{p}(t-t_{0}) + e^{\sigma t_{0}}E_{p}(t+t_{0})]e^{-\sigma t}u(-t) + [e^{-\sigma t_{0}}E_{p}(-t-t_{0}) + e^{\sigma t_{0}}E_{p}(-t+t_{0})]e^{\sigma t}u(t)$$

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = \int_{-\infty}^{0} [e^{-\sigma t_{0}}E_{p}(t-t_{0}) + e^{\sigma t_{0}}E_{p}(t+t_{0})]e^{-\sigma t}e^{-i\omega t}dt$$

$$+ \int_{0}^{\infty} [e^{-\sigma t_{0}}E_{p}(-t-t_{0}) + e^{\sigma t_{0}}E_{p}(-t+t_{0})]e^{\sigma t}e^{-i\omega t}dt$$

$$(14)$$

In the second integral in above equation ,we can substitute t = -t and we get

$$G(\omega) = \int_{-\infty}^{0} [e^{-\sigma t_0} E_p(t - t_0) + e^{\sigma t_0} E_p(t + t_0)] e^{-\sigma t} e^{-i\omega t} dt + \int_{-\infty}^{0} [e^{-\sigma t_0} E_p(t - t_0) + e^{\sigma t_0} E_p(t + t_0)] e^{-\sigma t} e^{i\omega t} dt$$

$$G(\omega) = 2 \int_{-\infty}^{0} [e^{-\sigma t_0} E_p(t - t_0) + e^{\sigma t_0} E_p(t + t_0)] e^{-\sigma t} \cos \omega t dt = G_R(\omega) + iG_I(\omega) = G_R(\omega)$$
(15)

Using the substitutions $t - t_0 = \tau$, $dt = d\tau$ and $t + t_0 = \tau$, $dt = d\tau$, we can write the above equation as follows. We use $E_p(\tau) = E_0(\tau)e^{-\sigma\tau}$.

$$G_{R}(\omega) = G_{R}(\omega, t_{0}) = G_{2}(\omega, t_{0}) + G_{2}(\omega, -t_{0})$$

$$G_{2}(\omega, t_{0}) = 2e^{\sigma t_{0}}e^{\sigma t_{0}}[\cos(\omega t_{0})\int_{-\infty}^{t_{0}} E_{p}(\tau)e^{-\sigma\tau}\cos(\omega\tau)d\tau + \sin(\omega t_{0})\int_{-\infty}^{t_{0}} E_{p}(\tau)e^{-\sigma\tau}\sin(\omega\tau)d\tau]$$

$$G_{2}(\omega, t_{0}) = 2e^{2\sigma t_{0}}[\cos(\omega t_{0})\int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\cos(\omega\tau)d\tau + \sin(\omega t_{0})\int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega\tau)d\tau]$$

$$(16)$$

We require $G(\omega) = G_R(\omega) = 0$ for $\omega = \omega_2(t_0)$ for **every value** of t_0 , to satisfy **Statement 1**. Hence we can see that $R(t_0) = \frac{1}{2}G_2(\omega_2(t_0), t_0)$ is an **odd function** of variable t_0 .

$$G(\omega_{2}(t_{0}), t_{0}) = G_{2}(\omega_{2}(t_{0}), t_{0}) + G_{2}(\omega_{2}(t_{0}), -t_{0}) = 0$$

$$R(t_{0}) = \frac{1}{2}G_{2}(\omega_{2}(t_{0}), t_{0})$$

$$R(t_{0}) = e^{2\sigma t_{0}}[\cos(\omega_{2}(t_{0})t_{0}) \int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\cos(\omega_{2}(t_{0})\tau)d\tau + \sin(\omega_{2}(t_{0})t_{0}) \int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega_{2}(t_{0})\tau)d\tau]$$

$$R(t_{0}) + R(-t_{0}) = 0$$

$$(17)$$

We see that $f(t) = e^{-\sigma t_0} E_p(t - t_0) + e^{\sigma t_0} E_p(t + t_0)$ is **unchanged** by the substitution $t_0 = -t_0$ and hence $\omega_2(t_0)$ is an **even** function of variable t_0 .

2.2. Power Series Representation of $R(t_0)$

In this section, we assume that $\omega_2(t_0)$ is analytic in $|t_0| \leq \infty$ and hence can be expanded using Taylor series around $t_0 = 0$, given by $\omega_2(t_0) = w_{20} + w_{22}t_0^2 + ... = \sum_{k=0}^{\infty} w_{2(2k)}t_0^{2k}$. [We can also derive the results for $R(t_0)$ using integration by parts, without using Taylor series for $\omega_2(t_0)$ as shown in Appendix F].

In Appendix E, we write $R(t_0)$ using Taylor series for $\omega_2(t_0)$ and we can write Eq. 17 as follows, where $M(t_0) = \int_{-\infty}^{0} E_0(\tau) e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau) d\tau = [m_0 + m_1t_0 + m_2t_0^2 + ...]$ and $N(t_0) = \int_{-\infty}^{0} E_0(\tau) e^{-2\sigma\tau} \sin(\omega_2(t_0)\tau) d\tau = [n_0 + n_1t_0 + n_2t_0^2 + ...]$. We get $m_1 = n_1 = 0$ because $\omega_2(t_0)$ is an **even** function of variable t_0 .

$$R(t_0) = m_0 + (e_0 + n_0\omega_{20} + 2\sigma m_0)t_0 + t_0^2(m_2 + \sigma e_0 + 2\sigma n_0\omega_{20} + 2\sigma^2 m_0 - m_0\frac{\omega_{20}^2}{2}) + \dots$$
(18)

The equations for m_0, m_2, n_0 are described in Appendix E.4. Given that $R(t_0)$ is an **odd function** of variable t_0 , we get

$$m_{0} = 0$$

$$m_{2} + \sigma e_{0} + 2\sigma n_{0}\omega_{20} + 2\sigma^{2}m_{0} - m_{0}\frac{\omega_{20}^{2}}{2} = 0, \quad m_{2} + \sigma e_{0} + 2\sigma n_{0}\omega_{20} = 0$$

$$m_{0} = \int_{-\infty}^{0} E_{0}(\tau)e^{-2\sigma\tau}\cos(\omega_{20}\tau)d\tau, \quad n_{0} = \int_{-\infty}^{0} E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega_{20}\tau)d\tau$$

$$m_{2} = -\omega_{22}\int_{-\infty}^{0} \tau E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega_{20}\tau)d\tau, \quad e_{0} = E_{0}(0)$$

$$(19)$$

2.3. Next Step

If we replace $E_p(t)$ in above section by $E_{pp}(t) = e^{\sigma t_2} E_p(t+t_2) + e^{-\sigma t_2} E_p(t-t_2) = [E_0(t+t_2) + E_0(t-t_2)]e^{-\sigma t} = E_0'(t)e^{-\sigma t}$, for $|t_2| \leq \infty$, where $E_0'(t) = E_0(t+t_2) + E_0(t-t_2)$, the location of the zeros in Fourier transform of $g(t,t_0,t_2)$ are represented by $\omega_2'(t_2,t_0)$ and using method in the above section, we can get results similar to Eq. 19 with $E_0(t)$ replaced by $E_0'(t)$ and ω_{20} replaced by $\omega_{20}'(t_2)$ and other variables replaced with their **primed** versions as follows. We use $\omega_2'(t_2,t_0) = w_{20}'(t_2) + w_{22}'(t_2)t_0^2 + \dots$

$$m'_{0}(t_{2}) = \int_{-\infty}^{0} E'_{0}(\tau)e^{-2\sigma\tau}\cos(\omega'_{20}(t_{2})\tau)d\tau = 0$$

$$m'_{2}(t_{2}) + \sigma e'_{0}(t_{2}) + 2\sigma n'_{0}(t_{2})\omega'_{20}(t_{2}) = 0$$

$$n'_{0}(t_{2}) = \int_{-\infty}^{0} E'_{0}(\tau)e^{-2\sigma\tau}\sin(\omega'_{20}(t_{2})\tau)d\tau$$

$$m'_{2}(t_{2}) = -\omega'_{22}(t_{2})\int_{-\infty}^{0} \tau E'_{0}(\tau)e^{-2\sigma\tau}\sin(\omega'_{20}(t_{2})\tau)d\tau, \quad e'_{0}(t_{2}) = E'_{0}(0) = E_{0}(t_{2}) + E_{0}(-t_{2})$$

$$(20)$$

We use $E'_0(t) = E_0(t + t_2) + E_0(t - t_2)$ in Eq. 20 and then substitute $t + t_2 = \tau$ for the first term and $t - t_2 = \tau$ for the second term and get $m'_0(t_2)$ as follows.

$$\begin{split} m_{0}^{'}(t_{2}) &= e^{2\sigma t_{2}}[\cos{(\omega_{20}^{'}(t_{2})t_{2})} \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau}\cos{(\omega_{20}^{'}(t_{2})\tau)}d\tau + \sin{(\omega_{20}^{'}(t_{2})t_{2})} \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau}\sin{(\omega_{20}^{'}(t_{2})\tau)}d\tau \\ &+ e^{-2\sigma t_{2}}[\cos{(\omega_{20}^{'}(t_{2})t_{2})} \int_{-\infty}^{-t_{2}} E_{0}(\tau)e^{-2\sigma\tau}\cos{(\omega_{20}^{'}(t_{2})\tau)}d\tau - \sin{(\omega_{20}^{'}(t_{2})t_{2})} \int_{-\infty}^{-t_{2}} E_{0}(\tau)e^{-2\sigma\tau}\sin{(\omega_{20}^{'}(t_{2})\tau)}d\tau] = 0 \\ m_{0}^{'}(t_{2}) &= R^{'}(t_{2}) + R^{'}(-t_{2}) = 0 \\ R^{'}(t_{2}) &= e^{2\sigma t_{2}}[\cos{(\omega_{20}^{'}(t_{2})t_{2})} \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau}\cos{(\omega_{20}^{'}(t_{2})\tau)}d\tau + \sin{(\omega_{20}^{'}(t_{2})t_{2})} \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau}\sin{(\omega_{20}^{'}(t_{2})\tau)}d\tau] \end{split}$$

We compare Eq. 21 with Eq. 17 and see that $R(t_0)$ and $R'(t_2)$ are similar equations, with $t_0, \omega_2(t_0)$ replaced by $t_2, \omega'_{20}(t_2)$ and hence both equations **must have at least one** common solution with $\omega_2(t_0) = \omega'_{20}(t_2)$. Hence we replace $\omega'_{20}(t_2)$ in Eq. 20 with $\omega_2(t_2)$ and use $E'_0(t) = E_0(t + t_2) + E_0(t - t_2)$ and write as follows.

$$n_{0p}(t_2) = e^{2\sigma t_2} [\cos{(\omega_2(t_2)t_2)} \int_{-\infty}^{t_2} E_0(\tau) e^{-2\sigma \tau} \sin{(\omega_2(t_2)\tau)} d\tau - \sin{(\omega_2(t_2)t_2)} \int_{-\infty}^{t_2} E_0(\tau) e^{-2\sigma \tau} \cos{(\omega_2(t_2)\tau)} d\tau]$$

$$m_2'(t_2) = m_{2p}(t_2) + m_{2p}(-t_2)$$

$$m_{2p}(t_2) = -\frac{1}{2} \frac{d^2 \omega_2(t_2)}{dt_2^2} e^{2\sigma t_2} [\cos{(\omega_2(t_2)t_2)} \int_{-\infty}^{t_2} (\tau - t_2) E_0(\tau) e^{-2\sigma \tau} \sin{(\omega_2(t_2)\tau)} d\tau$$

$$-\sin{(\omega_2(t_2)t_2)} \int_{-\infty}^{t_2} (\tau - t_2) E_0(\tau) e^{-2\sigma \tau} \cos{(\omega_2(t_2)\tau)} d\tau]$$

$$e_0'(t_2) = E_0(t_2) + E_0(-t_2)$$

$$A(t_2) = m_2'(t_2) + \sigma e_0'(t_2) + 2\sigma n_0'(t_2)\omega_2(t_2) = 0$$

(22)

The term $\frac{d^2\omega_2(t_0)}{dt_0^2}$ in Eq. 22 is obtained as follows. We see that $f'(t) = e^{\sigma t_0}E_{pp}(t+t_0) + e^{-\sigma t_0}E_{pp}(t-t_0)$ remains the **same**, when we **interchange** t_0 with t_2 , where $E_{pp}(t) = e^{\sigma t_2}E_p(t+t_2) + e^{-\sigma t_2}E_p(t-t_2)$. Because the Fourier transform of f'(t) given by $F'(\omega) = E_{pp\omega}(\omega)(e^{\sigma t_0}e^{i\omega t_0} + e^{-\sigma t_0}e^{-i\omega t_0}) = E_{p\omega}(\omega)(e^{\sigma t_2}e^{i\omega t_2} + e^{-\sigma t_2}e^{-i\omega t_2})(e^{\sigma t_0}e^{i\omega t_0} + e^{-\sigma t_0}e^{-i\omega t_0})$ remains the **same**, when we **interchange** t_0 with t_2 .

Hence $\omega_2(t_2,t_0) = \omega_2(t_0,t_2)$. The second derivative is given by $\frac{d^2\omega_2(t_2,t_0)}{dt_0^2} = \frac{d^2\omega_2(t_0,t_2)}{dt_2^2}$. In Eq. E.10, we computed ω_{22} by evaluating $\frac{1}{2}\frac{d^2\omega_2(t_0)}{dt_0^2}$ at $t_0 = 0$ to obtain m_2 . Similarly, we compute $\omega'_{22}(t_2)$ in Eq. 20, by evaluating the term $\frac{1}{2}\frac{d^2\omega_2(t_2,t_0)}{dt_0^2}$ at $t_0 = 0$, hence this is the **same** as evaluating $\frac{1}{2}\frac{d^2\omega_2(t_0,t_2)}{dt_2^2}$ at $t_0 = 0$ which equals $\frac{1}{2}\frac{d^2\omega_2(t_2)}{dt_2^2}$. in Eq. 22.

2.4. Asymptotic Case and Final result

In Section 2.5, we show that $\lim_{t_2\to\infty} g(t)$ is an **analytic** function, with the **magnitude** of the step discontinuity at t=0 **decreasing to zero**, and its Fourier transform is an analytic function with **isolated zeros**, as $\lim_{t_2\to\infty}$. Hence $\lim_{t_2\to\infty} \omega_2(t_2) = \omega_z \neq 0$ which is a constant and $\lim_{t_2\to\infty} \frac{d^2\omega_2(t_2)}{dt_2^2} = 0$. Hence $\lim_{t_2\to\infty} m_2'(t_2) = 0$. We see that $\lim_{t_2\to\infty} e_0'(t_2) = 0$ and $\lim_{t_2\to\infty} n_{0p}(-t_2)$, $m_{2p}(-t_2) = 0$ and we write Eq. 22 as follows given $\sigma, \omega_z \neq 0$.

$$\lim_{t_{2}\to\infty} A(t_{2}) = \lim_{t_{2}\to\infty} 2\sigma\omega_{z} n_{0}'(t_{2}) = 0$$

$$\lim_{t_{2}\to\infty} n_{0}'(t_{2}) = \lim_{t_{2}\to\infty} e^{2\sigma t_{2}} \left[\cos(\omega_{2}(t_{2})t_{2}) \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau} \sin(\omega_{2}(t_{2})\tau)d\tau - \sin(\omega_{2}(t_{2})t_{2}) \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau} \cos(\omega_{2}(t_{2})\tau)d\tau \right] = 0$$

$$\lim_{t_{2}\to\infty} \left[\cos(\omega_{2}(t_{2})t_{2}) \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau} \sin(\omega_{2}(t_{2})\tau)d\tau - \sin(\omega_{2}(t_{2})t_{2}) \int_{-\infty}^{t_{2}} E_{0}(\tau)e^{-2\sigma\tau} \cos(\omega_{2}(t_{2})\tau)d\tau \right] = 0$$

$$(23)$$

Similarly, we can write Eq. 21 in the asymptotic case $\lim_{t_2\to\infty}$ as follows.

$$\lim_{t_2 \to \infty} m_0'(t_2) = \lim_{t_2 \to \infty} e^{2\sigma t_2} [\cos(\omega_2(t_2)t_2) \int_{-\infty}^{t_2} E_0(\tau) e^{-2\sigma \tau} \cos(\omega_2(t_2)\tau) d\tau + \sin(\omega_2(t_2)t_2) \int_{-\infty}^{t_2} E_0(\tau) e^{-2\sigma \tau} \sin(\omega_2(t_2)\tau) d\tau] = 0$$

If we write $I_1(t_2) = \int_{-\infty}^{t_2} E_0(\tau) e^{-2\sigma\tau} \cos(\omega_z \tau) d\tau$ and $I_1(t_2) = \int_{-\infty}^{t_2} E_0(\tau) e^{-2\sigma\tau} \sin(\omega_z \tau) d\tau$, and $\lim_{t_2 \to \infty} (\omega_2(t_2)) = \omega_z$ we can write Eq. 23 and Eq. 24 as follows.

$$\lim_{t_{2} \to \infty} \cos(\omega_{z} t_{2}) I_{2}(t_{2}) - \lim_{t_{2} \to \infty} \sin(\omega_{z} t_{2}) I_{1}(t_{2}) = 0$$

$$\lim_{t_{2} \to \infty} \cos(\omega_{z} t_{2}) I_{1}(t_{2}) + \lim_{t_{2} \to \infty} \sin(\omega_{z} t_{2}) I_{2}(t_{2}) = 0$$

$$\lim_{t_{2} \to \infty} \frac{I_{2}(t_{2})}{I_{1}(t_{2})} = \lim_{t_{2} \to \infty} \frac{\sin(\omega_{z} t_{2})}{\cos(\omega_{z} t_{2})} = \lim_{t_{2} \to \infty} -\frac{I_{1}(t_{2})}{I_{2}(t_{2})}$$
(25)

For the general case of $\lim_{t_2\to\infty}\frac{\sin(\omega_z t_2)}{\cos(\omega_z t_2)}\neq 0, \pm\infty$, we get $\lim_{t_2\to\infty}(I_1(t_2)^2+I_2(t_2)^2)=0$. This implies that $\lim_{t_2\to\infty}I_1(t_2)=\lim_{t_2\to\infty}I_2(t_2)=0$ and $\int_{-\infty}^\infty E_0(\tau)e^{-2\sigma\tau}e^{-i\omega_z\tau}d\tau=0$.

We started with **Statement 1** that the Fourier Transform of the function $E_p(t) = E_0(t)e^{-\sigma t}$ has a zero at $\omega = \omega_0$ which means that $\int_{-\infty}^{\infty} E_0(\tau)e^{-\sigma \tau}e^{-i\omega_0\tau}d\tau = 0$ and we derived the result that $\int_{-\infty}^{\infty} E_0(\tau)e^{-2\sigma \tau}e^{-i\omega_z\tau}d\tau = 0$.

Now we can repeat the steps in Section 2, starting with the new result that $\int_{-\infty}^{\infty} E_0(\tau) e^{-2\sigma\tau} e^{-i\omega_z\tau} d\tau = 0$ and σ replaced by 2σ and derive the next result that $\int_{-\infty}^{\infty} E_0(\tau) e^{-4\sigma\tau} e^{-i\omega_{(z^1)}\tau} d\tau = 0$.

We can repeat above steps N times till $(2^{N+1}\sigma) > \frac{1}{2}$ and get the result $\int_{-\infty}^{\infty} E_0(\tau) e^{-(2^{N+1}\sigma)\tau} e^{-i\omega_{(zN)}\tau} d\tau = 0$. In each iteration n, we use $h(t) = e^{(2^{N+1}\sigma)t}u(-t) + e^{-3*(2^{N+1}\sigma)t}u(t)$, $\omega_2(t_2)$ replaced by $\omega_{2n}(t_2)$ and ω_z replaced by $\omega_{(zn)}$. We know that the Fourier Transform of $E_0(t)e^{-(2^{N+1}\sigma)t} = \sum_{n=1}^{\infty} [4\pi^2n^4e^{4t} - 6\pi n^2e^{2t}]e^{-\pi n^2e^{2t}}e^{\frac{t}{2}}e^{-(2^{N+1}\sigma)t}$ given by $E_{p\omega N}(\omega) = \xi(\frac{1}{2} + 2^N\sigma + i\omega)$ does not have a real zero for $(2^{N+1}\sigma) > \frac{1}{2}$, corresponding to Re[s] > 1.

We have shown this result for $0 < \sigma < \frac{1}{2}$ and then use the property $\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} - \sigma - i\omega)$ to show the result for $-\frac{1}{2} < \sigma < 0$. Hence we have produced a **contradiction** of **Statement 1** that the Fourier Transform of the function $E_p(t) = E_0(t)e^{-\sigma t}$ has a zero at $\omega = \omega_0$ for $0 < |\sigma| < \frac{1}{2}$.

2.5. Analytic Functions and Isolated Zeros

In this section, we show that $\lim_{t_0\to\infty} g(t)$ is an analytic function, with the magnitude of the step discontinuity at t=0 decreasing to zero, and its Fourier transform is an analytic function with isolated zeros, as $\lim_{t_0\to\infty}$. Hence $\lim_{t_0\to\infty}\omega_2(t_0)=\omega_z\neq 0$ which is a constant and $\lim_{t_0\to\infty}\frac{d^2\omega_2(t_0)}{dt_0^2}=0$.

We see that $g(t) = E_0'(t)e^{-2\sigma t}u(-t) + E_0'(t)e^{2\sigma t}u(t)$ where $E_0'(t) = E_0'(-t) = E_0(t+t_0) + E_0(t-t_0)$ and its first derivative has a **step** discontinuity at t=0 with magnitude $\Delta_d = 4\sigma E_0'(0) = 4\sigma(E_0(t_0) + E_0(-t_0))$. As $\lim_{t_0 \to \infty} \Delta_d \to 0$ because $E_0(t_0)$ and $E_0(-t_0)$ decrease to zero as $\lim_{t_0 \to \infty} \Delta_d \to 0$ and hence $\lim_{t_0 \to \infty} \Delta_d \to 0$ is an **analytic** function.

We use a **scale factor** and get $g_s(t) = g(t)e^{-2\sigma t_0}$, so that $\lim_{t_0 \to \infty} g(t)$ remains **finite** for all $|t| \le \infty$. This scale factor **does not** affect the location of zeros in the Fourier transform of g(t) and $g_s(t)$. Hence $\lim_{t_0 \to \infty} g_s(t) = \lim_{t_0 \to \infty} E_0'(t)[e^{-2\sigma t} + e^{2\sigma t}]e^{-2\sigma t_0} = E_0(t+t_0)e^{-2\sigma(t+t_0)} + E_0(t-t_0)e^{2\sigma(t-t_0)} + E_0(t-t_0)e^{-2\sigma(t+t_0)} + E_0(t+t_0)e^{2\sigma(t-t_0)}$.

The Fourier transform of $g_s(t)$ is given by $G_s(\omega)$ and $\lim_{t_0\to\infty}G_s(\omega)=E_{0\omega}(\omega-i2\sigma)e^{i\omega t_0}+E_{0\omega}(\omega+i2\sigma)e^{-i\omega t_0}+E_{0\omega}(\omega+i2\sigma)e^{-i\omega t_0}+E_{0\omega}(\omega+i2\sigma)e^{-i\omega t_0}$. As $\lim_{t_0\to\infty}$, the last two terms in $\lim_{t_0\to\infty}G_s(\omega)$ go to zero.

Hence $\lim_{t_0\to\infty} G_s(\omega) = E_{0\omega}(\omega - i2\sigma)e^{i\omega t_0} + E_{0\omega}(\omega + i2\sigma)e^{-i\omega t_0}$ is an **analytic function** for all $|\omega| \leq \infty$ because it is derived from the **entire function** $\xi(s)$ and we know that $E_{0\omega}(\omega) = \xi(\frac{1}{2} + i\omega)$. The same statement holds for $\lim_{t_0\to\infty} G(\omega)$ which differs only by a scale factor $e^{-2\sigma t_0}$.

We use the well known result that analytic functions have isolated zeros.(link) Hence $\lim_{t_0\to\infty} G_s(\omega)$ and $\lim_{t_0\to\infty} G(\omega)$ have isolated zeros at $\omega = \omega_2(t_0) = \omega_z$ and the second derivative given by $\lim_{t_0\to\infty} \frac{d^2\omega_2(t_0)}{dt_0^2} = 0$.

References

- [1] Bernhard Riemann, On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen untereiner gegebenen Grosse.) Monatsberichte der Berliner Akademie, November 1859. (Link to Riemann's 1859 paper)
- [2] Hardy, G.H., Littlewood, J.E. The zeros of Riemann's zeta-function on the critical line. Mathematische Zeitschrift volume 10, pp.283 to 317 (1921).
- [3] E. C. Titchmarsh, The Theory of the Riemann Zeta Function. (1986) pp.254 to 255
- [4] Fern Ellison and William J. Ellison, Prime Numbers (1985).pp147 to 152
- [5] J. Brian Conrey, The Riemann Hypothesis (2003). (Link to Brian Conrey's 2003 article)
- [6] Mathworld article on Hurwitz Zeta functions. (Link)
- [7] Wikipedia article on Dirichlet L-functions. (Link)

Appendix A. Derivation of $E_p(t)$

Let us start with Riemann's Xi Function $\xi(s)$ evaluated at $s = \frac{1}{2} + i\omega$ given by $\xi(\frac{1}{2} + i\omega) = E_{0\omega}(\omega)$. Its inverse Fourier Transform is given by $E_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega) e^{i\omega t} d\omega = 2 \sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$ (link). This is re-derived in Appendix B.

We will show in this section that the inverse Fourier Transform of the function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$, is given by $E_p(t) = E_0(t)e^{-\sigma t}$ where $0 \le |\sigma| < \frac{1}{2}$ is real.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} + i(\omega - i\sigma)) = E_{p\omega}(\omega) = E_{0\omega}(\omega - i\sigma)$$

$$E_{p}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{p\omega}(\omega) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega - i\sigma) e^{i\omega t} d\omega$$
(A.1)

We substitute $\omega' = \omega - i\sigma$ in Eq. A.1 as follows.

$$E_p(t) = e^{-\sigma t} \frac{1}{2\pi} \int_{-\infty - i\sigma}^{\infty - i\sigma} E_{0\omega}(\omega') e^{i\omega' t} d\omega'$$
(A.2)

We can evaluate the above integral in the complex plane using contour integration, substituting $\omega' = z = x + iy$ and we use a rectangular contour comprised of C_1 along the line $x = [-\infty, \infty]$, C_2 along the line $y = [\infty, \infty - i\sigma]$, C_3 along the line $x = [\infty - i\sigma, -\infty - i\sigma]$ and then C_4 along the line $y = [-\infty - i\sigma, -\infty]$. We can see that $E_{0\omega}(z) = \xi(\frac{1}{2} + iz)$ has no singularities in the region bounded by the contour because $\xi(\frac{1}{2} + iz)$ is an entire function in the Z-plane.

In **Appendix D.1**, we show that $\int_{-\infty}^{\infty} |E_p(t)| dt$ is finite and $E_p(t) = E_0(t)e^{-\sigma t}$ is an absolutely integrable function, for $0 \le |\sigma| < \frac{1}{2}$.

We use the fact that $E_{0\omega}(z) = \xi(\frac{1}{2} + iz) = \xi(\frac{1}{2} - y + ix) = \int_{-\infty}^{\infty} E_0(t)e^{-izt}dt = \int_{-\infty}^{\infty} E_0(t)e^{yt}e^{-ixt}dt$, goes to zero as $x \to \pm \infty$ when $-\sigma \le y \le 0$, as per Riemann-Lebesgue Lemma (link), because $E_0(t)e^{yt}$ is a absolutely integrable function in the interval $-\infty \le t \le \infty$. Hence the integral in Eq. A.2 vanishes along the contours C_2 and C_4 . Using Cauchy's Integral theroem, we can write Eq. A.2 as follows.

$$E_p(t) = e^{-\sigma t} \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega') e^{i\omega' t} d\omega'$$

$$E_p(t) = E_0(t)e^{-\sigma t} = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t}$$
(A.3)

Thus we have arrived at the desired result $E_p(t) = E_0(t)e^{-\sigma t}$. Alternate derivation is in Appendix B.1.

Appendix B. Derivation of entire function $\xi(s)$

In this section, we will re-derive Riemann's Xi function $\xi(s)$ and the inverse Fourier Transform of $\xi(\frac{1}{2}+i\omega) = E_{0\omega}(\omega)$ and show the result $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$.

We will use the steps in Ellison's book "Prime Numbers" pages 151-152 and re-derive the steps below^[4] (link). We start with the gamma function $\Gamma(s) = \int_0^\infty y^{s-1} e^{-y} dy$ and substitute $y = \pi n^2 x$ and derive as follows.

$$\Gamma(\frac{s}{2}) = \int_0^\infty y^{\frac{s}{2} - 1} e^{-y} dy$$

$$\Gamma(\frac{s}{2}) (\pi n^2)^{-\frac{s}{2}} = \int_0^\infty x^{\frac{s}{2} - 1} e^{-\pi n^2 x} dx$$
(B.1)

For real part of s greater than 1, we can do a summation of both sides of above equation for all positive integers n and obtain as follows. We note that $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \sum_{n=1}^{\infty} \int_{0}^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^{2}x} dx$$
(B.2)

(B.3)

For real part of s (σ') greater than 1, we can use theorem of dominated convergence and interchange the order of summation and integration as follows. We use the fact that $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ and

$$\sum_{i=1}^{\infty} \int_{0}^{\infty} |x^{\frac{s}{2}-1}e^{-\pi n^2x}| dx = \Gamma(\frac{\sigma'}{2})\pi^{-\frac{\sigma'}{2}}\zeta(\sigma').$$

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \int_0^\infty x^{\frac{s}{2}-1}w(x)dx$$

For real part of s less than or equal to 1, $\zeta(s)$ diverges. Hence we do the following. In Eq. B.3, first we consider real part of s greater than 1 and we divide the range of integration into two parts: (0,1] and $[1,\infty)$ and make the substitution $x \to \frac{1}{x}$ in the first interval (0,1]. We use **the well known theorem** $1 + 2w(x) = \frac{1}{\sqrt{x}}(1 + 2w(\frac{1}{x}))$, where x > 0 is real.^[4]

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \int_{1}^{\infty} x^{\frac{s}{2}-1}w(x)dx + \int_{1}^{\infty} \frac{x^{-(\frac{s}{2}-1)}}{x^{2}} \frac{(1+2w(x))\sqrt{x}-1)}{2}dx$$
(B.4)

12

Hence we can simplify Eq. B.4 as follows.

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \frac{1}{s(s-1)} + \int_{1}^{\infty} x^{\frac{s}{2}-1}w(x)dx + \int_{1}^{\infty} x^{\frac{-(s+1)}{2}}w(x)dx$$
(B.5)

We multiply above equation by $\frac{1}{2}s(s-1)$ and get

$$\xi(s) = \frac{1}{2}s(s-1)\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \frac{1}{2}\left[1 + s(s-1)\int_{1}^{\infty} \left(x^{\frac{s}{2}} + x^{\frac{1-s}{2}}\right)w(x)\frac{dx}{x}\right]$$
(B.6)

We see that $\xi(s)$ is an entire function, for all values of Re[s] in the complex plane and hence we get an analytic continuation of $\xi(s)$ over the entire complex plane. We see that $\xi(s) = \xi(1-s)^{-[4]}$.

Appendix B.1. **Derivation of** $E_p(t)$ **and** $E_0(t)$

Given that $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$, we substitute $x = e^{2t}$, $\frac{dx}{x} = 2dt$ in Eq. B.6 and evaluate at $s = \frac{1}{2} + \sigma + i\omega$ as follows.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \frac{1}{2} \left[1 + 2(\frac{1}{2} + \sigma + i\omega)(-\frac{1}{2} + \sigma + i\omega) \int_0^\infty \sum_{n=1}^\infty e^{-\pi n^2 e^{2t}} \left(e^{\frac{t}{2}} e^{\sigma t} e^{i\omega t} + e^{\frac{t}{2}} e^{-\sigma t} e^{-i\omega t}\right) dt\right]$$
(B.7)

We can substitute t = -t in the first term in above integral and simplify above equation as follows.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \frac{1}{2} + (-\frac{1}{4} + \sigma^2 - \omega^2 + i\omega(2\sigma)) \left[\int_{-\infty}^{0} \sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} e^{-i\omega t} dt + \int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} e^{-i\omega t} dt \right]$$
(B.8)

We can write this as follows.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \frac{1}{2} + (-\frac{1}{4} + \sigma^2 - \omega^2 + i\omega(2\sigma)) \int_{-\infty}^{\infty} \left[\sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} u(t)\right] e^{-\sigma t} e^{-i\omega t} dt \quad (B.9)$$

We define $A(t) = \left[\sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} u(t)\right] e^{-\sigma t}$ and get the **inverse Fourier transform** of $\xi(\frac{1}{2} + \sigma + i\omega)$ in above equation given by $E_p(t)$ as follows. We use dirac delta function $\delta(t)$.

$$E_p(t) = \frac{1}{2}\delta(t) + (-\frac{1}{4} + \sigma^2)A(t) + 2\sigma \frac{dA(t)}{dt} + \frac{d^2A(t)}{dt^2}$$

$$A(t) = \left[\sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} u(t)\right] e^{-\sigma t}$$

$$\frac{dA(t)}{dt} = \sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} \left[-\frac{1}{2} - \sigma + 2\pi n^2 e^{-2t}\right] u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} \left[\frac{1}{2} - \sigma - 2\pi n^2 e^{2t}\right] u(t)$$

$$\frac{d^2A(t)}{dt^2} = \sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} \left[-4\pi n^2 e^{-2t} + (-\frac{1}{2} - \sigma + 2\pi n^2 e^{-2t})^2\right] u(-t)$$

$$+ \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} \left[-4\pi n^2 e^{2t} + (\frac{1}{2} - \sigma - 2\pi n^2 e^{2t})^2\right] u(t) + \delta(t) \left[\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2)\right]$$

We can simplify above equation as follows.

$$\frac{d^2 A(t)}{dt^2} = \sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} \left[\frac{1}{4} + \sigma^2 + \sigma + 4\pi^2 n^4 e^{-4t} - 6\pi n^2 e^{-2t} - 4\sigma \pi n^2 e^{-2t} \right] u(-t)$$

$$\sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} \left[\frac{1}{4} + \sigma^2 - \sigma + 4\pi^2 n^4 e^{4t} - 6\pi n^2 e^{2t} + 4\sigma \pi n^2 e^{2t} \right] u(t) + \delta(t) \left[\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2) \right] \tag{B.11}$$

We use the fact that $F(x) = 1 + 2w(x) = \frac{1}{\sqrt{x}}(1 + 2w(\frac{1}{x}))$, where $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ and x > 0 is real^[4], and we take the first derivative of F(x) and evaluate it at x=1. We see that $\sum_{n=1}^{\infty} e^{-\pi n^2} (1-4\pi n^2) = -\frac{1}{2}$ (Appendix B.2) and hence dirac delta terms cancel each other in equation below.

$$E_{p}(t) = \frac{1}{2}\delta(t) + \left(-\frac{1}{4} + \sigma^{2}\right)A(t) + 2\sigma\frac{dA(t)}{dt} + \frac{d^{2}A(t)}{dt^{2}}$$

$$E_{p}(t) = \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} \left[-\frac{1}{4} + \sigma^{2} + 2\sigma(\frac{1}{2} - \sigma - 2\pi n^{2}e^{2t}) + \frac{1}{4} + \sigma^{2} - \sigma + 4\pi^{2}n^{4}e^{4t} - 6\pi n^{2}e^{2t} + 4\sigma\pi n^{2}e^{2t}\right]u(t)$$

$$+ \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} \left[-\frac{1}{4} + \sigma^{2} + 2\sigma(-\frac{1}{2} - \sigma + 2\pi n^{2}e^{-2t}) + \frac{1}{4} + \sigma^{2} + \sigma + 4\pi^{2}n^{4}e^{-4t} - 6\pi n^{2}e^{-2t} - 4\sigma\pi n^{2}e^{-2t}\right]u(-t)$$

$$(B.12)$$

We can simplify above equation as follows.

$$E_0(t) = 2\sum_{n=1}^{\infty} \left[2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}\right] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$$
(B.13)

We use the fact that $E_0(t) = E_0(-t)$ because $\xi(s) = \xi(1-s)$ and hence $\xi(\frac{1}{2} + i\omega) = \xi(\frac{1}{2} - i\omega)$ when evaluated at the critical line $s = \frac{1}{2} + i\omega$. This means $\xi(\frac{1}{2} + i\omega) = E_{0\omega}(\omega) = E_{0\omega}(-\omega)$ and $E_0(t) = E_0(-t)$ and we arrive at the desired result for $E_p(t)$ as follows.

 $E_p(t) = [E_0(-t)u(-t) + E_0(t)u(t)]e^{-\sigma t}$

$$E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$$

$$E_p(t) = E_0(t)e^{-\sigma t} = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t}$$
(B.14)

Appendix B.2. **Derivation of** $\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2) = -\frac{1}{2}$

In this section, we derive $\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2) = -\frac{1}{2}$. We use the fact that $F(x) = 1 + 2w(x) = \frac{1}{\sqrt{x}} (1 + 2w(\frac{1}{x}))$, where $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ and x > 0 is real^[4], and we take the first derivative of F(x) and evaluate it at x = 1.

$$F(x) = 1 + 2w(x) = \frac{1}{\sqrt{x}}(1 + 2w(\frac{1}{x}))$$

$$F(x) = 1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 x} = \frac{1}{\sqrt{x}}(1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 \frac{1}{x}})$$

$$\frac{dF(x)}{dx} = 2\sum_{n=1}^{\infty} (-\pi n^2)e^{-\pi n^2 x} = \frac{1}{\sqrt{x}}\sum_{n=1}^{\infty} (2\pi n^2)e^{-\pi n^2 \frac{1}{x}}(\frac{1}{x^2}) + (1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 \frac{1}{x}})(\frac{-1}{2})\frac{1}{x^{\frac{3}{2}}}$$
(B.15)

We evaluate the above equation at x = 1 and we simplify as follows.

$$\left[\frac{dF(x)}{dx}\right]_{x=1} = 2\sum_{n=1}^{\infty} (-\pi n^2)e^{-\pi n^2} = \sum_{n=1}^{\infty} (2\pi n^2)e^{-\pi n^2} + (1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2})(\frac{-1}{2})$$

$$\sum_{n=1}^{\infty} e^{-\pi n^2}(1 - 4\pi n^2) = -\frac{1}{2}$$
(B.16)

Appendix C. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.

Appendix C.1. Convolution Theorem: Multiplication of g(t) and h(t) corresponds to convolution in Fourier transform domain

We start with the Fourier transform equation $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$ where f(t) = g(t)h(t) and show that $F(\omega) = \frac{1}{2\pi}[G(\omega)*H(\omega)] = \frac{1}{2\pi}\int_{-\infty}^{\infty} G(\omega')H(\omega-\omega')d\omega'$ obtained by the **convolution** of the functions $G(\omega)$ and $H(\omega)$ which correspond to the Fourier transforms of g(t) and h(t) respectively.

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt = \int_{-\infty}^{\infty} g(t)h(t)e^{-i\omega t}dt$$
 (C.1)

We use the inverse Fourier transform equation $g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') e^{i\omega't} d\omega'$ and we interchange the order of integration in equations below using Fubini's theorem (link).

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} G(\omega') e^{i\omega't} d\omega' \right] h(t) e^{-i\omega t} dt$$

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') \left[\int_{-\infty}^{\infty} e^{i\omega't} h(t) e^{-i\omega t} dt \right] d\omega'$$

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') \left[\int_{-\infty}^{\infty} h(t) e^{-i(\omega - \omega')t} dt \right] d\omega'$$
(C.2)

We substitute $\int_{-\infty}^{\infty} h(t)e^{-i(\omega-\omega')t}dt = H(\omega-\omega')$ in Eq. C.2 and arrive at the convolution theorem.

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') H(\omega - \omega') d\omega' = \int_{-\infty}^{\infty} g(t) h(t) e^{-i\omega t} dt$$
 (C.3)

Appendix C.2. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g(t), given by $G(\omega) = G_R(\omega) + iG_I(\omega)$ has the properties given by $G_R(-\omega) = G_R(\omega)$ and $G_I(-\omega) = -G_I(\omega)$.

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = G_R(\omega) + iG_I(\omega)$$

$$G_R(\omega) = \int_{-\infty}^{\infty} g(t)\cos(\omega t)dt = G_R(-\omega)$$

$$G_I(\omega) = -\int_{-\infty}^{\infty} g(t)\sin(\omega t)dt = -G_I(-\omega)$$
(C.4)

Appendix C.3. Even part of g(t) corresponds to real part of Fourier transform $G(\omega)$

In this section, we show that the **even part** of real function g(t), given by $g_{even}(t) = \frac{1}{2}[g(t) + g(-t)]$, corresponds to **real part** of its Fourier transform $G(\omega)$. We use the fact that $G_R(-\omega) = G_R(\omega)$ and $G_I(-\omega) = -G_I(\omega)$ for a real function g(t).

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = G_R(\omega) + iG_I(\omega)$$

$$\int_{-\infty}^{\infty} g_{even}(t)e^{-i\omega t}dt = \int_{-\infty}^{\infty} \frac{1}{2}[g(t) + g(-t)]e^{-i\omega t}dt = \frac{1}{2}[G(\omega) + G(-\omega)] = G_R(\omega)$$
(C.5)

Appendix C.4. Odd part of g(t) corresponds to imaginary part of Fourier transform $G(\omega)$

In this section, we show that the **odd part** of real function g(t), given by $g_{odd}(t) = \frac{1}{2}[g(t) - g(-t)]$, corresponds to **imaginary part** of its Fourier transform $G(\omega)$. We use the fact that $G_R(-\omega) = G_R(\omega)$ and $G_I(-\omega) = -G_I(\omega)$ for a real function g(t).

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = G_R(\omega) + iG_I(\omega)$$

$$\int_{-\infty}^{\infty} g_{odd}(t)e^{-i\omega t}dt = \int_{-\infty}^{\infty} \frac{1}{2}[g(t) - g(-t)]e^{-i\omega t}dt = \frac{1}{2}[G(\omega) - G(-\omega)] = iG_I(\omega)$$
(C.6)

Appendix D. Properties of Fourier Transforms Part 2

Appendix D.1. $E_p(t), h(t), g(t)$ are absolutely integrable functions and their Fourier Transforms are finite.

The inverse Fourier Transform of the function $E_{p\omega}(\omega) = \xi(\frac{1}{2} + \sigma + i\omega)$ is given by $E_p(t) = E_0(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{p\omega}(\omega) e^{i\omega t} d\omega$. We see that $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} > 0$ for all $0 \le t < \infty$. Given that $E_0(t) = E_0(-t)$, we see that $E_0(t) > 0$ and $E_p(t) = E_0(t)e^{-\sigma t} > 0$ for all $-\infty < t < \infty$.

As $t \to \infty$, $E_p(t)$ goes to zero, due to the term $e^{-\pi n^2 e^{2t}}$. As $t \to -\infty$, $E_p(t)$ goes to zero, because for every value of n, the term $e^{-\pi n^2 e^{2t}} e^{\frac{5t}{2}} e^{-\sigma t}$ goes to zero, for $0 \le |\sigma| < \frac{1}{2}$. Hence $E_p(t) = E_0(t)e^{-\sigma t} = 0$ at $t = \pm \infty$ and we showed

that $E_p(t) > 0$ for all $-\infty < t < \infty$. Hence $E_{p\omega}(\omega) = \int_{-\infty}^{\infty} E_p(t) e^{-i\omega t} dt$, evaluated at $\omega = 0$ cannot be zero. Hence $E_{p\omega}(\omega)$ does not have a zero at $\omega = 0$ and hence $\omega_0 \neq 0$.

Given that $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ is an entire function in the whole of s-plane, it is finite for $|\omega| \leq \infty$ and also for $\omega = 0$. Hence $\int_{-\infty}^{\infty} E_p(t)dt$ is finite. We see that $E_p(t) \geq 0$ for all $|t| \leq \infty$. Hence we can write $\int_{-\infty}^{\infty} |E_p(t)|dt$ is finite and $E_p(t)$ is an absolutely **integrable function** and its Fourier transform $E_{p\omega}(\omega)$ goes to zero as $\omega \to \pm \infty$, as per Riemann Lebesgue Lemma (link).

Let us consider a new function $g(t) = E_p(t)e^{-\sigma t}u(-t) + E_p(t)e^{\sigma t}u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function and $0 < \sigma < \frac{1}{2}$. We can see that $g(t)h(t) = E_p(t)$ where $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$.

We can see that $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$ is an absolutely **integrable function** because $\int_{-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{\infty} h(t) dt = [\int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt]_{\omega=0} = [\frac{1}{\sigma-i\omega} + \frac{1}{\sigma+i\omega}]_{\omega=0} = \frac{2}{\sigma}$, is finite for $0 < \sigma < \frac{1}{2}$ and its Fourier transform $H(\omega)$ goes to zero as $\omega \to \pm \infty$, as per Riemann Lebesgue Lemma (link).

It is shown in Appendix D.4 that $E_0(t)$ and $E_0(t)e^{-2\sigma t}$ have fall-off rates at least $\frac{1}{t^2}$ as $|t| \to \infty$ and hence are absolutely **integrable** functions and the integrals $\int_{-\infty}^{\infty} |E_0(t)| dt < \infty$ and $\int_{-\infty}^{\infty} |E_0(t)e^{-2\sigma t}| dt < \infty$. Hence $g(t) = E_0(t)e^{-2\sigma t}u(-t) + E_0(t)u(t)$ is an absolutely **integrable function** and $\int_{-\infty}^{\infty} |g(t)| dt = \int_{-\infty}^{\infty} g(t) dt$ is finite and its Fourier transform $G(\omega)$ goes to zero as $\omega \to \pm \infty$, as per Riemann Lebesgue Lemma (link).

Appendix D.2. Convolution integral convergence

Let us consider $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$ whose **first derivative is discontinuous** at t = 0. The second derivative of h(t) given by $h_2(t)$ has a Dirac delta function $A_0\delta(t)$ where $A_0 = -2\sigma$ and its Fourier transform $H_2(\omega)$ has a constant term A_0 , corresponding to the Dirac delta function.

This means h(t) is obtained by integrating $h_2(t)$ twice and its Fourier transform $H(\omega)$ has a term $-\frac{A_0}{\omega^2}$ (link) and has a **fall off rate** of $\frac{1}{\omega^2}$ as $|\omega| \to \infty$ and $\int_{-\infty}^{\infty} H(\omega) d\omega$ converges.

We see that $E_p(t) = E_0(t)e^{-\sigma t}$ where $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}]e^{-\pi n^2 e^{2t}}e^{\frac{t}{2}}$.

Let us consider a new function $g(t) = E_p(t)e^{-\sigma t}u(-t) + E_p(t)e^{\sigma t}u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function and $0 < \sigma < \frac{1}{2}$. We can see that $g(t)h(t) = E_p(t)$ where $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$.

We can see that $G(\omega), H(\omega)$ have **fall-off rate** of $\frac{1}{\omega^2}$ as $|\omega| \to \infty$ because the **first derivatives** of g(t), h(t) are **discontinuous** at t = 0. Also, h(t), g(t) are absolutely integrable functions and their Fourier Transforms are finite as shown in Appendix D.1. Hence the convolution integral below converges to a finite value for $|\omega| \le \infty$.

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') H(\omega - \omega') d\omega' = \frac{1}{2\pi} [G(\omega) * H(\omega)]$$
 (D.1)

Appendix D.3. Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function $P(t) = P_+(t)u(t) + P_-(t)u(-t)$ whose $(N-1)^{th}$ derivative is discontinuous at t = 0. The $(N)^{th}$ derivative of P(t) given by $P_N(t)$ has a Dirac delta function $A_0\delta(t)$ where $A_0 = \left[\frac{d^{N-1}P_+(t)}{dt^{N-1}} - \frac{d^{N-1}P_-(t)}{dt^{N-1}}\right]_{t=0}$ and its Fourier transform $P_N(\omega)$ has a constant term A_0 , corresponding to the Dirac delta function.

This means P(t) is obtained by integrating $P_N(t)$, N times and its Fourier transform $P(\omega)$ has a term $\frac{A_0}{(i\omega)^N}$ (link) and has a **fall off rate** of $\frac{1}{\omega^N}$ as $|\omega| \to \infty$.

We have shown that if the $(N-1)^{th}$ derivative of the function P(t) is discontinuous at t=0 then its Fourier transform $P(\omega)$ has a fall-off rate of $\frac{1}{\omega^N}$ as $|\omega| \to \infty$.

In Section 1.1, we showed that $E_0(t)$ is an analytic function which is infinitely differentiable which produces no discontinuities in $|t| \leq \infty$. Hence its Fourier transform $E_{0\omega}(\omega)$ has a fall-off rate faster than $\frac{1}{\omega^M}$ as $M \to \infty$, as $|\omega| \to \infty$ and it should have a fall-off rate **at least** of the order of $\omega^A e^{-B|\omega|}$ as $|\omega| \to \infty$, where A, B > 0 are real.

Appendix D.4. Payley-Weiner theorem and Fall off rate of analytic functions.

We know that Payley-Weiner theorem relates analytic functions and exponential decay rate of their Fourier transforms (link). Using similar arguments, we will show that the functions $E_0(t)$, $E_p(t)$ and $x(t) = E_0(t)e^{-2\sigma t}$ and $\frac{d^{2r}x(t)}{dt^{2r}}$ have fall-off rates at least $\frac{1}{t^2}$ as $|t| \to \infty$ for $0 < \sigma < \frac{1}{2}$.

We know that the order of Riemann's Xi function $\xi(\frac{1}{2}+i\omega) = E_{0\omega}(\omega) = \Xi(\omega)$ is given by $O(\omega^A e^{-\frac{|\omega|\pi}{4}})$ where A is a constant [3] (link). Hence both $E_{0\omega}(\omega)$ and $E_{p\omega}(\omega) = \xi(\frac{1}{2}+\sigma+i\omega) = E_{0\omega}(\omega-i\sigma)$ have **exponential fall-off** rate $O(\omega^A e^{-\frac{|\omega|\pi}{4}})$ as $|\omega| \to \infty$ and they are absolutely integrable and Fourier transformable, given that they are derived from an entire function $\xi(s)$.

Given that $\xi(s)$ is an entire function in the s-plane, we see that $E_{0\omega}(\omega)$ and $E_{p\omega}(\omega)$ are **analytic** functions which are infinitely differentiable which produce no discontinuities for all $|\omega| \leq \infty$ and $0 < \sigma < \frac{1}{2}$. Hence their respective **inverse Fourier transforms** $E_0(t), E_p(t)$ have fall-off rates faster than $\frac{1}{t^M}$ as $M \to \infty$, as $|t| \to \infty$ (Appendix D.3) and hence it should have a fall-off rate **at least** $\frac{1}{t^2}$ as $|t| \to \infty$.

We can use similar arguments to show that $x(t) = E_0(t)e^{-2\sigma t}$ and $\frac{d^{2r}x(t)}{dt^{2r}}$ have fall-off rates **at least** $\frac{1}{t^2}$ as $|t| \to \infty$, because their Fourier transforms are **analytic** functions for all $|\omega| \le \infty$ with **exponential fall-off** rate $O(\omega^A e^{-\frac{|\omega|\pi}{4}})$ as $|\omega| \to \infty$.

Appendix E. Power Series for $R(t_0)$

In this section, we derive the Taylor series expansion of $R(t_0)$ in Eq. 17. We use $E_p(\tau) = E_0(\tau)e^{-\sigma\tau}$

We define $I_1(t_0) = \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau) d\tau$, $Q_1(t_0) = \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma\tau} \sin(\omega_2(t_0)\tau) d\tau$ and write as follows.

$$R(t_0) = e^{2\sigma t_0} \left[\cos(\omega_2(t_0)t_0) \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma \tau} \cos(\omega_2(t_0)\tau) d\tau + \sin(\omega_2(t_0)t_0) \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma \tau} \sin(\omega_2(t_0)\tau) d\tau\right]$$

$$R(t_0) = e^{2\sigma t_0} \left[\cos(\omega_2(t_0)t_0) I_1(t_0) + \sin(\omega_2(t_0)t_0) Q_1(t_0)\right]$$
(E.1)

We assume that the **even** symmetric function $\omega_2(t_0)$ is analytic in $|t_0| \leq \infty$ and hence can be expanded using Taylor series around $t_0 = 0$, given by $\omega_2(t_0) = w_{20} + w_{22}t_0^2 + ... = \sum_{k=0}^{\infty} w_{2(2k)}t_0^{2k}$. In Appendix F, we derive the same results derived below **without** this assumption.

Appendix E.1. $I_1(t_0) = \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau) d\tau$

We see that $E_0(\tau)$ and $\cos(\omega_2(t_0)\tau)$ are analytic functions in $|\tau| \leq \infty$ and hence we expand using Taylor series as follows. We use $E_0(\tau) = E_0(-\tau) = e_0 + e_2\tau^2 + e_4\tau^4 + ...$, $e^{-2\sigma\tau} = 1 - 2\sigma\tau + 2\sigma^2\tau^2 + ...$ and $\cos(\omega_2(t_0)\tau) = 1 - \omega_2(t_0)\frac{\tau^2}{2} + ...$ We expand **only till** τ^1 term, **because** we need only the second derivative of $R(t_0)$ at $t_0 = 0$. $K_{1c}(t_0)$ is an integration constant which gets **cancelled** at upper limit and lower limits.

$$I_{1}(t_{0}) = \int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\cos(\omega_{2}(t_{0})\tau)d\tau$$

$$I_{1}(t_{0}) = \int_{-\infty}^{t_{0}} (e_{0} + e_{2}\tau^{2} + ...)(1 - 2\sigma\tau + ...)(1 - \frac{\omega_{2}^{2}(t_{0})}{2}\tau^{2} + ...)d\tau$$

$$I_{1}(t_{0}) = \int_{-\infty}^{t_{0}} (e_{0} - 2\sigma e_{0}\tau + ...)(1 - \frac{\omega_{2}^{2}(t_{0})}{2}\tau^{2} + ...)d\tau = \int_{-\infty}^{t_{0}} (e_{0} - 2\sigma e_{0}\tau + ...)d\tau$$

$$I_{1}(t_{0}) = [K_{1c}(t_{0}) + e_{0}\tau - 2\sigma e_{0}\frac{\tau^{2}}{2} + ...]_{-\infty}^{t_{0}} = (e_{0}t_{0} - 2\sigma e_{0}\frac{t_{0}^{2}}{2} + ...) - (f_{c1}(\tau))_{-\infty}$$
(E.2)

We compare first and last equation in Eq. E.2 for $I_1(t_0)$ and get the value of $(f_{c1}(\tau))_{-\infty} = (e_0\tau - 2\sigma e_0\frac{\tau^2}{2} + ...)$ by setting $t_0 = 0$.

$$(e_{0}t_{0} - 2\sigma e_{0}\frac{t_{0}^{2}}{2} + \dots) - (f_{c1}(\tau))_{-\infty} = \int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\cos(\omega_{2}(t_{0})\tau)d\tau, \quad f_{c1}(\tau) = (e_{0}\tau - 2\sigma e_{0}\frac{\tau^{2}}{2} + \dots)$$

$$(f_{c1}(\tau))_{-\infty} = -\int_{-\infty}^{0} E_{0}(\tau)e^{-2\sigma\tau}\cos(\omega_{2}(t_{0})\tau)d\tau = -M(t_{0}) = -[m_{0} + m_{1}t_{0} + m_{2}t_{0}^{2} + \dots]$$
(E.3)

Appendix E.2. $Q_1(t_0) = \int_{-\infty}^{t_0} E_0(\tau) e^{-2\sigma\tau} \sin(\omega_2(t_0)\tau) d\tau$

We use $\sin(\omega_2(t_0)\tau) = \omega_2(t_0)\tau - \omega_2^3(t_0)\frac{\tau^3}{!3} + ...$ and derive as follows. We see that $K_{1s}(t_0)$ is an integration constant which gets cancelled at upper limit and lower limits.

$$Q_{1}(t_{0}) = \int_{-\infty}^{t_{0}} E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega_{2}(t_{0})\tau)d\tau$$

$$Q_{1}(t_{0}) = \int_{-\infty}^{t_{0}} (e_{0} + e_{2}\tau^{2} + ..)(1 - 2\sigma\tau + ...)(\omega_{2}(t_{0})\tau + ...)d\tau$$

$$Q_{1}(t_{0}) = \int_{-\infty}^{t_{0}} (e_{0} - 2\sigma e_{0}\tau + ...)(\omega_{2}(t_{0})\tau + ...)d\tau = \int_{-\infty}^{t_{0}} (e_{0}\omega_{2}(t_{0})\tau + ...)d\tau$$

$$Q_{1}(t_{0}) = [K_{1s}(t_{0}) + e_{0}\omega_{2}(t_{0})\frac{\tau^{2}}{2} + ...]_{-\infty}^{t_{0}} = (e_{0}\omega_{2}(t_{0})\frac{t_{0}^{2}}{2} + ...) - (f_{s1}(\tau))_{-\infty}$$
(E.4)

We compare first and last equation in Eq. E.2 for $Q_1(t_0)$ and get the value of $(f_{s1}(\tau))_{-\infty} = (e_0\omega_2(t_0)\frac{\tau^2}{2} + ...)$ by setting $t_0 = 0$.

$$(e_0\omega_2(t_0)\frac{t_0^2}{2} + \dots) - (f_{s1}(\tau))_{-\infty} = \int_{-\infty}^{t_0} E_0(\tau)e^{-2\sigma\tau}\sin(\omega_2(t_0)\tau)d\tau, \quad f_{s1}(\tau) = (e_0\omega_2(t_0)\frac{\tau^2}{2} + \dots)$$

$$(f_{s1}(\tau))_{-\infty} = -\int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau}\sin(\omega_2(t_0)\tau)d\tau = -N(t_0) = -[n_0 + n_1t_0 + n_2t_0^2 + \dots]$$
(E.5)

Given that $m_1 = n_1 = 0$ because $\omega_2(t_0)$ is an even function, we can write as follows.

$$I_1(t_0) = (e_0 t_0 - 2\sigma e_0 \frac{t_0^2}{2} + \dots) + (m_0 + m_2 t_0^2 + \dots)$$

$$Q_1(t_0) = (e_0 \omega_2(t_0) \frac{t_0^2}{2} + \dots) + (n_0 + n_2 t_0^2 + \dots) = (e_0 \omega_{20} \frac{t_0^2}{2} + \dots) + (n_0 + n_2 t_0^2 + \dots)$$
(E.6)

Appendix E.3.

Now we can expand $R(t_0)$ in Eq. E.1 as follows, using results in Eq. E.6.

$$R(t_0) = e^{2\sigma t_0} \left[\cos\left(\omega_2(t_0)t_0\right)I_1(t_0) + \sin\left(\omega_2(t_0)t_0\right)Q_1(t_0)\right]$$

$$R(t_0) = (1 + 2\sigma t_0 + 2\sigma^2 t_0^2 + \dots)\left[$$

$$(1 - \frac{\omega_{20}^2}{2}t_0^2 + \dots)(m_0 + e_0t_0 + (m_2 - \sigma e_0)t_0^2 + \dots) + (\omega_{20}t_0 + \dots)(n_0 + (\frac{e_0}{2}\omega_{20} + n_2)t_0^2 + \dots)\right]$$
(E.7)

We can simplify as follows.

$$R(t_0) = (1 + 2\sigma t_0 + 2\sigma^2 t_0^2 + \dots)[m_0 + (e_0 + n_0\omega_{20})t_0 + t_0^2(m_2 - \sigma e_0 - m_0\frac{\omega_{20}^2}{2}) + \dots]$$
(E.8)

We can simplify as follows.

$$R(t_0) = m_0 + (e_0 + n_0\omega_{20} + 2\sigma m_0)t_0 + t_0^2(m_2 - \sigma e_0 - m_0\frac{\omega_{20}^2}{2} + 2\sigma(e_0 + n_0\omega_{20}) + 2\sigma^2 m_0) + \dots$$

$$R(t_0) = m_0 + (e_0 + n_0\omega_{20} + 2\sigma m_0)t_0 + t_0^2(m_2 + \sigma e_0 + 2\sigma n_0\omega_{20} + 2\sigma^2 m_0 - m_0\frac{\omega_{20}^2}{2}) + \dots$$
(E.9)

In Appendix F, we derive the same results derived in this section without the assumption that $\omega_2(t_0)$ is analytic in $|t_0| \leq \infty$.

We assume that the **even** symmetric function $\omega_2(t_0)$ is analytic in $|t_0| \leq \infty$ and hence can be written in Taylor series as $\omega_2(t_0) = w_{20} + w_{22}t^2 + \dots = \sum_{k=0}^{\infty} w_{2(2k)}t_0^{2k}$. We can see that $\omega_2(0) = \omega_{20}$, $[\frac{d\omega_2(t_0)}{dt_0}]_{t_0=0} = 0$, $[\frac{d^2\omega_2(t_0)}{dt_0^2}]_{t_0=0} = 2\omega_{22}$.

We can compute $m_0, m_1, m_2, n_0, n_1, n_2$ as follows. Define $\theta(t_0) = \omega_2(t_0)\tau$, we have $\frac{d\theta(t_0)}{dt_0} = \tau \frac{d\omega_2(t_0)}{dt_0}$ and equals $\omega_{21}\tau = 0$ at $t_0 = 0$. $\frac{d^2\theta(t_0)}{dt_0^2} = \tau \frac{d^2\omega(t_0)}{dt_0^2}$ and equals $2\omega_{22}\tau$ at $t_0 = 0$.

$$M(t_0) = \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau}\cos(\omega_2(t_0)\tau)d\tau = [m_0 + m_1t_0 + m_2t_0^2 + \dots]$$

$$m_0 = \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau}\cos(\omega_{20}\tau)d\tau$$

$$\frac{dM(t_0)}{dt_0} = -\int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau}\sin(\omega_2(t_0)\tau)\frac{d\theta(t_0)}{dt_0}d\tau = -\frac{d\omega_2(t_0)}{dt_0}\int_{-\infty}^{0} \tau E_0(\tau)e^{-2\sigma\tau}\sin(\omega_2(t_0)\tau)d\tau$$

$$m_1 = (\frac{dM(t_0)}{dt_0})_{t_0=0} = -\omega_{21}\int_{-\infty}^{0} \tau E_0(\tau)e^{-2\sigma\tau}\sin(\omega_{20}\tau)d\tau = 0$$

$$\frac{d^2M(t_0)}{dt_0^2} = -\int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau}\sin(\omega_2(t_0)\tau)\frac{d^2\theta(t_0)}{dt_0^2}d\tau - \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau}\cos(\omega_2(t_0)\tau)(\frac{d\theta(t_0)}{dt_0})^2d\tau$$

$$m_2 = \frac{1}{2}(\frac{d^2M(t_0)}{dt_0^2})_{t_0=0} = -\omega_{22}\int_{-\infty}^{0} \tau E_0(\tau)e^{-2\sigma\tau}\sin(\omega_{20}\tau)d\tau$$
(E.10)

Similarly, we can compute n_0, n_1, n_2 as follows.

$$N(t_0) = \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau} \sin(\omega_2(t_0)\tau)d\tau = [n_0 + n_1t_0 + n_2t_0^2 + \dots]$$

$$n_0 = \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau} \sin(\omega_{20}\tau)d\tau$$

$$\frac{dN(t_0)}{dt_0} = \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau) \frac{d\theta(t_0)}{dt_0} d\tau = \frac{d\omega_2(t_0)}{dt_0} \int_{-\infty}^{0} \tau E_0(\tau)e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau)d\tau$$

$$n_1 = (\frac{dN(t_0)}{dt_0})_{t_0=0} = \omega_{21} \int_{-\infty}^{0} \tau E_0(\tau)e^{-2\sigma\tau} \cos(\omega_{20}\tau)d\tau = 0$$

$$\frac{d^2N(t_0)}{dt_0^2} = \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau} \cos(\omega_2(t_0)\tau) \frac{d^2\theta(t_0)}{dt_0^2} d\tau - \int_{-\infty}^{0} E_0(\tau)e^{-2\sigma\tau} \sin(\omega_2(t_0)\tau) (\frac{d\theta(t_0)}{dt_0})^2 d\tau$$

$$n_2 = \frac{1}{2} (\frac{d^2N(t_0)}{dt_0^2})_{t_0=0} = \omega_{22} \int_{-\infty}^{0} \tau E_0(\tau)e^{-2\sigma\tau} \cos(\omega_{20}\tau)d\tau$$
(E.11)

Appendix F. Method 2: First 2 derivatives of $R(t_0)$

In this section, we assume that $\omega_2(t_0)$ is **not** analytic and we can derive the equation for $R(t_0)$ in Eq. E.9 in Appendix E, using integration by parts, **without** using Taylor series for $\cos(\omega_2(t_0)t_0)$, $\sin(\omega_2(t_0)t_0)$. We are interested **only** in the first 3 terms t_0^0 , t_0^1 , t_0^2 .

We expand a few terms in $R(t_0)$ which are analytic functions, using Taylor series as follows. We use $E_0(t) = E_0(-t)$, $E_0(t)e^{-2\sigma t} = [e_0 + e_2\frac{t^2}{12} + e_4\frac{t^4}{14} + ...][1 - 2\sigma t + 2\sigma^2 t^2 + ...] = e_0 - 2\sigma e_0 t + t^2(\frac{e_2}{12} + 2e_0\sigma^2) +$

We use $(f_{c1}(t))_{-\infty} = [\int E_0(t)e^{-2\sigma t}\cos(\omega_2(t_0)t)dt]_{t=-\infty} - K_{1c} = -M(t_0) - K_{1c}$ and $(f_{s1}(t))_{-\infty} = [\int E_0(t)e^{-2\sigma t}\sin(\omega_2(t_0)t)dt]_{t=-\infty} - K_{1s} = -N(t_0) - K_{1s}$ as derived in Appendix E and split each integral into two integrals evaluated at upper and lower limits. $M(t_0), N(t_0)$ are defined in Appendix E.4. Integration constants K_{1c}, K_{1s} get **cancelled** at upper and lower limits of the integrals.

$$R(t_{0}) = e^{2\sigma t_{0}} \left[\cos(\omega_{2}(t_{0})t_{0}) \int_{-\infty}^{t_{0}} E_{0}(t)e^{-2\sigma t} \cos(\omega_{2}(t_{0})t)dt + \sin(\omega_{2}(t_{0})t_{0}) \int_{-\infty}^{t_{0}} E_{0}(t)e^{-2\sigma t} \sin(\omega_{2}(t_{0})t)dt\right]$$

$$R(t_{0}) = e^{2\sigma t_{0}} \left[\cos(\omega_{2}(t_{0})t_{0}) \int_{-\infty}^{t_{0}} \left[e_{0} - 2\sigma e_{0}t + t^{2}(\frac{e_{2}}{!2} + 2e_{0}\sigma^{2}) + ...\right] \cos(\omega_{2}(t_{0})t)dt\right]$$

$$+ \sin(\omega_{2}(t_{0})t_{0}) \int_{-\infty}^{t_{0}} \left[e_{0} - 2\sigma e_{0}t + t^{2}(\frac{e_{2}}{!2} + 2e_{0}\sigma^{2}) + ...\right] \sin(\omega_{2}(t_{0})t)dt\right]$$

$$R(t_{0}) = e^{2\sigma t_{0}} \left[\cos(\omega_{2}(t_{0})t_{0})\left[\int (e_{0} - 2\sigma e_{0}t + t^{2}(\frac{e_{2}}{!2} + 2e_{0}\sigma^{2}) + ...\right) \cos(\omega_{2}(t_{0})t)dt\right]_{t=t_{0}}$$

$$+ \sin(\omega_{2}(t_{0})t_{0})\left[\int (e_{0} - 2\sigma e_{0}t + t^{2}(\frac{e_{2}}{!2} + 2e_{0}\sigma^{2}) + ...\right) \sin(\omega_{2}(t_{0})t)dt\right]_{t=t_{0}}$$

$$+ e^{2\sigma t_{0}} \left((M(t_{0}) + K_{1c})\cos(\omega_{2}(t_{0})t_{0}) + (N(t_{0}) + K_{1s})\sin(\omega_{2}(t_{0})t_{0})\right)$$

$$(F.1)$$

Using **repeated** integration by parts, for the first two terms t^0, t^1 in the two integrals in above equation, this can be simplified as follows. For the **first** integral, we use $u = \cos(\omega_2(t_0)t), dv = t^r dt, v = \frac{t^{(r+1)}}{(r+1)}, du = -\omega_2(t_0)\sin(\omega_2(t_0)t)dt$ for r = 0, 1. For the **second** integral, we use $u = \sin(\omega_2(t_0)t), dv = t^r dt, v = \frac{t^{(r+1)}}{(r+1)}, du = \omega_2(t_0)\cos(\omega_2(t_0)t)dt$ for r = 0, 1.

$$R(t_0) = e^{2\sigma t_0} \left[e_0 \left[\cos(\omega_2(t_0)t_0)(t_0\cos(\omega_2(t_0)t_0) + \frac{t_0^2}{!2}\sin(\omega_2(t_0)t_0)\omega_2(t_0) + \dots \right] \right.$$

$$+ \sin(\omega_2(t_0)t_0)(t_0\sin(\omega_2(t_0)t_0) - \frac{t_0^2}{!2}\cos(\omega_2(t_0)t_0)\omega_2(t_0) + \dots \right]$$

$$-2\sigma e_0 \left[\cos(\omega_2(t_0)t_0)(\frac{t_0^2}{2}\cos(\omega_2(t_0)t_0) + \frac{t_0^3}{!3}\sin(\omega_2(t_0)t_0)\omega_2(t_0) + \dots \right]$$

$$+ \sin(\omega_2(t_0)t_0)(\frac{t_0^2}{2}\sin(\omega_2(t_0)t_0) - \frac{t_0^3}{!3}\cos(\omega_2(t_0)t_0)\omega_2(t_0) + \dots \right]$$

$$+ \cos(\omega_2(t_0)t_0) \left[\int \left[t^2(\frac{e_2}{!2} + 2e_0\sigma^2) + \dots \right] \cos(\omega_2(t_0)t) dt \right]_{t=t_0}$$

$$+ \sin(\omega_2(t_0)t_0) \left[\int \left[t^2(\frac{e_2}{!2} + 2e_0\sigma^2) + \dots \right] \sin(\omega_2(t_0)t) dt \right]_{t=t_0}$$

$$+ e^{2\sigma t_0} \left[\left(K_{1c}\cos(\omega_2(t_0)t_0) + K_{1s}\sin(\omega_2(t_0)t_0) \right] + e^{2\sigma t_0} \left[\left(M(t_0)\cos(\omega_2(t_0)t_0) + N(t_0)\sin(\omega_2(t_0)t_0) \right] \right]$$

$$(F.2)$$

This can be further simplified as follows by cancelling common terms in the term involving e_0 and $2\sigma e_0$. Using $e^{2\sigma t_0} = 1 + 2\sigma t_0 + 2\sigma^2 t_0^2 + \dots = \sum_{k=0}^{\infty} (2\sigma)^k \frac{t_0^k}{!k}$, we get

$$R(t_0) = (1 + 2\sigma t_0 + 2\sigma^2 t_0^2 + \dots)[e_0[t_0 + \frac{t_0^3}{!3}\omega_2^2(t_0) + \dots] - 2\sigma e_0[\frac{t_0^2}{!2} + \frac{t_0^4}{!4}\omega_2^2(t_0) + \dots]$$

$$+ \cos(\omega_2(t_0)t_0)[\int [t^2(\frac{e_2}{!2} + 2e_0\sigma^2) + \dots] \cos(\omega_2(t_0)t)dt]_{t=t_0}$$

$$+ \sin(\omega_2(t_0)t_0)[\int [t^2(\frac{e_2}{!2} + 2e_0\sigma^2) + \dots] \sin(\omega_2(t_0)t)dt]_{t=t_0}]$$

$$+ e^{2\sigma t_0}[(K_{1c}\cos(\omega_2(t_0)t_0) + K_{1s}\sin(\omega_2(t_0)t_0)] + e^{2\sigma t_0}[(M(t_0)\cos(\omega_2(t_0)t_0) + N(t_0)\sin(\omega_2(t_0)t_0)]$$

$$(F.3)$$

Integration constants K_{1c} , K_{1s} get **cancelled** at upper and lower limits of the integrals. The terms inside the integrals in above equation can be shown to have terms of the order of t_0^3 and above. Hence we can write as follows, where a_k are the coefficients of the terms $\frac{t_0^k}{l_k}$.

$$R(t_0) = (1 + 2\sigma t_0 + 2\sigma^2 t_0^2 + \dots)[(e_0 t_0 - 2\sigma e_0 \frac{t_0^2}{2} + a_3 \frac{t_0^3}{3} + a_4 \frac{t_0^4}{4} + \dots)]$$

$$e^{2\sigma t_0}[(M(t_0)\cos(\omega_2(t_0)t_0) + N(t_0)\sin(\omega_2(t_0)t_0)]$$

$$R(t_0) = (1 + 2\sigma t_0 + 2\sigma^2 t_0^2 + \dots)[(e_0 t_0 - \sigma e_0 t_0^2 + a_3 \frac{t_0^3}{3} + a_4 \frac{t_0^4}{4} + \dots)]$$

$$+ e^{2\sigma t_0}[(M(t_0)\cos(\omega_2(t_0)t_0) + N(t_0)\sin(\omega_2(t_0)t_0)]$$

$$R(t_0) = (e_0 t_0 + t_0^2(-\sigma e_0 + 2\sigma e_0) + t_0^3() + \dots) + e^{2\sigma t_0}[(M(t_0)\cos(\omega_2(t_0)t_0) + N(t_0)\sin(\omega_2(t_0)t_0)]$$

$$(F.4)$$

We want to evaluate the first and second derivative of $R(t_0)$ in section below.

Appendix F.1. Second derivative of $\omega_2(t_0)$ at $t_0 = 0$ is finite at $t_0 = 0$.

In this section, we will show that the second derivative of $\omega_2(t_0)$ is finite at $t_0 = 0$. In Appendix G, we show that $[\omega_2(t_0)]_{t_0=0} = \omega_2(0) = \omega_{20}$ is finite. In Eq. E.10, we see that $m_1 = (\frac{dM(t_0)}{dt_0})_{t_0=0} = -\omega_{21} \int_{-\infty}^{0} \tau E_0(\tau) e^{-2\sigma\tau} \sin(\omega_{20}\tau) d\tau = 0$. Given that $\int_{-\infty}^{0} \tau E_0(\tau) e^{-2\sigma\tau} \sin(\omega_{20}\tau) d\tau$ is finite, we infer that $\omega_{21} = [\frac{d\omega_2(t_0)}{dt_0}]_{t_0=0}$ must be finite. Hence we have shown that the **first derivative** of $\omega_2(t_0)$ is **finite**.

We can show that the second derivative of $\omega_2(t_0)$ is also finite. We see from Eq. 19 that $m_2 + \sigma e_0 + 2\sigma n_0\omega_{20} = 0$ where $m_2 = -\omega_{22} \int_{-\infty}^{0} \tau E_0(\tau) e^{-2\sigma\tau} \sin{(\omega_{20}\tau)} d\tau$ and $\omega_{22} = \frac{1}{2} \left[\frac{d^2\omega_2(t_0)}{dt_0^2}\right]_{t_0=0}$.

$$m_{2} + \sigma e_{0} + 2\sigma n_{0}\omega_{20} = 0$$

$$n_{0} = \int_{-\infty}^{0} E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega_{20}\tau)d\tau, \quad e_{0} = E_{0}(0)$$

$$m_{2} = -\omega_{22}\int_{-\infty}^{0} \tau E_{0}(\tau)e^{-2\sigma\tau}\sin(\omega_{20}\tau)d\tau$$
(F.5)

We see that e_0, ω_{20}, n_0 in above equation are finite. Hence m_2 is also finite. Given that $\int_{-\infty}^0 \tau E_0(\tau) e^{-2\sigma\tau} \sin(\omega_{20}\tau) d\tau$ is also finite, we infer that $\omega_{22} = \frac{1}{2} \left[\frac{d^2 \omega_2(t_0)}{dt_0^2} \right]_{t_0=0}$ must be finite. Hence we have shown that the **second derivative** of $\omega_2(t_0)$ is **finite**.

Computation of first two derivatives of $M(t_0), N(t_0)$:

Define $\theta(t_0) = \omega_2(t_0)t_0$, we have $\frac{d\theta(t_0)}{dt_0} = t_0\frac{d\omega_2(t_0)}{dt_0} + \omega_2(t_0)$ which equals ω_{20} at $t_0 = 0$. $\frac{d^2\theta(t_0)}{dt_0^2} = t_0\frac{d^2\omega_2(t_0)}{dt_0^2} + 2\frac{d\omega_2(t_0)}{dt_0}$ which equals zero at $t_0 = 0$, given that $\omega_2(t_0)$ is an even function of t_0 . We substitute $(\frac{dM(t_0)}{dt_0})_{t_0=0} = 0$ and $(\frac{dN(t_0)}{dt_0})_{t_0=0} = 0$ from Eq. E.10 and Eq. E.11 in Eq. F.6. We can write Eq. F.4 as follows.

$$R(t_0) = (e_0t_0 + t_0^2(\sigma e_0) + t_0^3() + \dots) + MN(t_0)$$

$$MN(t_0) = e^{2\sigma t_0}(M(t_0)\cos(\theta(t_0)) + N(t_0)\sin(\theta(t_0)))$$

$$MN(0) = m_0$$

$$\frac{dMN(t_0)}{dt_0} = e^{2\sigma t_0}[\cos(\theta(t_0))[2\sigma M(t_0) + \frac{dM(t_0)}{dt_0} + N(t_0)\frac{d\theta(t_0)}{dt_0}] + \sin(\theta(t_0))[2\sigma N(t_0) + \frac{dN(t_0)}{dt_0} - M(t_0)\frac{d\theta(t_0)}{dt_0}]]$$

$$(\frac{dMN(t_0)}{dt_0})_{t_0=0} = 2\sigma M(0) + (\frac{dM(t_0)}{dt_0})_{t_0=0} + N(0)\omega_{20} = 2\sigma m_0 + n_0\omega_{20}$$
(F.6)

Now we compute the second derivative as follows. We use $m_2 = \frac{1}{2} \left(\frac{d^2 M(t_0)}{dt_0^2} \right)_{t_0=0}$.

$$\frac{d^{2}MN(t_{0})}{dt_{0}^{2}} = e^{2\sigma t_{0}} \left[\cos\left(\theta(t_{0})\right)\left[2\sigma(2\sigma M(t_{0}) + \frac{dM(t_{0})}{dt_{0}} + N(t_{0})\frac{d\theta(t_{0})}{dt_{0}}\right) + 2\sigma\frac{dM(t_{0})}{dt_{0}} + \frac{d^{2}M(t_{0})}{dt_{0}^{2}} + N(t_{0})\frac{d^{2}\theta(t_{0})}{dt_{0}^{2}} + N(t_{0})\frac{d^{2}\theta(t_{0})}{dt_{0}^{2}} + N(t_{0})\frac{d^{2}\theta(t_{0})}{dt_{0}^{2}} + \frac{d\theta(t_{0})}{dt_{0}}\left(2\sigma N(t_{0}) + \frac{dN(t_{0})}{dt_{0}} - M(t_{0})\frac{d\theta(t_{0})}{dt_{0}}\right)\right] + \sin\left(\theta(t_{0})\right)\left[2\sigma(2\sigma N(t_{0}) + \frac{dN(t_{0})}{dt_{0}} - M(t_{0})\frac{d\theta(t_{0})}{dt_{0}}\right) - \frac{d\theta(t_{0})}{dt_{0}}\left(2\sigma M(t_{0}) + \frac{dM(t_{0})}{dt_{0}} + N(t_{0})\frac{d\theta(t_{0})}{dt_{0}}\right) + 2\sigma\frac{dN(t_{0})}{dt_{0}} + \frac{d^{2}N(t_{0})}{dt_{0}^{2}} - M(t_{0})\frac{d^{2}\theta(t_{0})}{dt_{0}^{2}} - \frac{d\theta(t_{0})}{dt_{0}}\frac{dM(t_{0})}{dt_{0}}\right] \right] + 2\sigma\frac{dN(t_{0})}{dt_{0}^{2}} + \frac{d^{2}N(t_{0})}{dt_{0}^{2}} + \frac{d^{2}N(t_{0})}{dt_{0}^{2}} - \frac{d\theta(t_{0})}{dt_{0}}\frac{dM(t_{0})}{dt_{0}}\right] \right] - \frac{1}{2}\left(\frac{d^{2}MN(t_{0})}{dt_{0}^{2}}\right)_{t_{0}=0} = \sigma(2\sigma m_{0} + n_{0}\omega_{20}) + m_{2} + \frac{1}{2}\omega_{20}(2\sigma n_{0} - m_{0}\omega_{20}) - \frac{1}{2}(\frac{d^{2}MN(t_{0})}{dt_{0}^{2}})_{t_{0}=0} = m_{2} + 2\sigma n_{0}\omega_{20} + 2\sigma^{2}m_{0} - \frac{m_{0}}{2}\omega_{20}^{2}\right) \right]$$

$$(F.7)$$

We substitute above result in Eq. F.4 and derive as follows.

$$R(t_0) = (e_0t_0 + t_0^2(\sigma e_0) + t_0^3() + \dots) + MN(t_0)$$

$$R(0) = MN(0) = m_0$$

$$(\frac{dR(t_0)}{dt_0})_{t_0=0} = e_0 + (\frac{dMN(t_0)}{dt_0})_{t_0=0} = e_0 + 2\sigma m_0 + n_0\omega_{20}$$

$$\frac{1}{2}(\frac{d^2R(t_0)}{dt_0^2})_{t_0=0} = \sigma e_0 + \frac{1}{2}(\frac{d^2MN(t_0)}{dt_0^2})_{t_0=0} = \sigma e_0 + m_2 + 2\sigma n_0\omega_{20} + 2\sigma^2 m_0 - \frac{m_0}{2}\omega_{20}^2$$
(F.8)

We can simplify as follows. The results in equation below are exactly the same as those derived in Eq. E.9 using Taylor series expansion of $\omega_2(t_0)$ reproduced below.

$$R(t_0) = m_0 + (e_0 + n_0\omega_{20} + 2\sigma m_0)t_0 + t_0^2(m_2 + \sigma e_0 + 2\sigma n_0\omega_{20} + 2\sigma^2 m_0 - m_0\frac{\omega_{20}^2}{2}) + \dots$$
(F.9)

Appendix G. On the zeros of a related function $G(\omega)$

Statement 1: Let us assume that Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0$ where ω_0 is real and finite and $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line.

Let us consider a new function $g(t) = E_p(t)e^{-\sigma t}u(-t) + E_p(t)e^{\sigma t}u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function and $0 < \sigma < \frac{1}{2}$. We can see that $g(t)h(t) = E_p(t)$ where $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$.

We can show that $E_p(t), h(t), g(t)$ are real absolutely integrable functions and go to zero as $t \to \pm \infty$. Hence their respective Fourier transforms given by $E_{p\omega}(\omega), H(\omega), G(\omega)$ are finite for $|\omega| \le \infty$ and go to zero as $|\omega| \to \infty$, as per Riemann Lebesgue Lemma (link). This is shown in detail in Appendix D.1.

If we take the Fourier transform of the equation $g(t)h(t) = E_p(t)$, we get $\frac{1}{2\pi}[G(\omega) * H(\omega)] = E_{p\omega}(\omega)$ as per convolution theorem (link), where * denotes **convolution** operation given by $E_{p\omega}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') H(\omega - \omega') d\omega'$ and $H(\omega) = \left[\frac{1}{\sigma - i\omega} + \frac{1}{\sigma + i\omega}\right] = \frac{2\sigma}{(\sigma^2 + \omega^2)}$ is the Fourier transform of the function h(t) and $G(\omega) = G_R(\omega) + iG_I(\omega)$ is the Fourier transform of the function g(t). This is shown in detail in Appendix C.1.

We can write $g(t) = g_{even}(t) + g_{odd}(t)$ where $g_{even}(t)$ is an even function and $g_{odd}(t)$ is an odd function of variable t. If Statement 1 is true, then the **real** part of the Fourier transform of the **even function** $g_{even}(t) = \frac{1}{2}[g(t) + g(-t)]$ given by $G_R(\omega)$ must have **at least one zero** at $\omega = \omega_1 \neq 0$ where ω_1 is real and finite and can be different from ω_0 in general. We call this **Statement 2**.

Because $H(\omega) = \frac{2\sigma}{(\sigma^2 + \omega^2)}$ is real and does not have zeros for any finite value of ω , if $G_R(\omega)$ does not have at least one zero for some $\omega = \omega_1 \neq 0$, then the real part of $E_{p\omega}(\omega)$ given by $E_R(\omega) = \frac{1}{2\pi}[G_R(\omega) * H(\omega)]$, obtained by the convolution of $H(\omega)$ and $G_R(\omega)$, cannot possibly have zeros for any non-zero finite value of ω , which goes against Statement 1. This is shown in detail in Lemma 1.

Lemma 1: If Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0 \neq 0$ where ω_0 is real and finite, then the **real** part of the Fourier transform of the **even function** $g_{even}(t) = \frac{1}{2}[g(t) + g(-t)]$ given by $G_R(\omega)$ must have **at least one zero** at $\omega = \omega_1 \neq 0$, where ω_1 is real and finite, where $g(t)h(t) = E_p(t)$ and $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$ and $0 < \sigma < \frac{1}{2}$.

Proof: If $E_{p\omega}(\omega)$ has a zero at finite $\omega = \omega_0 \neq 0$ to satisfy Statement 1, then its real part given by $E_R(\omega)$ also has a zero at the same location $\omega = \omega_0 \neq 0$.

Let us consider the case where $G_R(\omega)$ does not have at least one zero for finite $\omega = \omega_1 \neq 0$ and show that $E_R(\omega)$ does not have at least one zero at finite $\omega \neq 0$ for this case, which **contradicts** Statement 1. Given that $H(\omega)$ is real, we can write the convolution theorem only for the imaginary parts as follows.

$$E_R(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_R(\omega') H(\omega - \omega') d\omega'$$
 (G.1)

We can show that the above integral converges for all $|\omega| \leq \infty$, given that $G(\omega)$ and $H(\omega)$ have fall-off rate of $\frac{1}{\omega^2}$ as $|\omega| \to \infty$ because the first derivatives of g(t) and h(t) are discontinuous at t = 0. (Appendix D.2)

We substitute $H(\omega) = \frac{2\sigma}{(\sigma^2 + \omega^2)}$ in Eq. G.1 and we get

$$E_R(\omega) = \frac{\sigma}{\pi} \int_{-\infty}^{\infty} G_R(\omega') \frac{1}{(\sigma^2 + (\omega - \omega')^2)} d\omega'$$
 (G.2)

We can split the integral in Eq. G.2 as follows.

$$E_R(\omega) = \frac{\sigma}{\pi} \left[\int_{-\infty}^0 G_R(\omega') \frac{1}{(\sigma^2 + (\omega - \omega')^2)} d\omega' + \int_0^\infty G_R(\omega') \frac{1}{(\sigma^2 + (\omega - \omega')^2)} d\omega' \right]$$

(G.3)

We see that $G_R(-\omega) = G_R(\omega)$ because g(t) is a real function (Appendix C.2). We can substitute $\omega' = -\omega''$ in the first integral in Eq. G.3 and substituting $\omega'' = \omega'$ in the result, we can write as follows.

$$E_R(\omega) = \frac{\sigma}{\pi} \int_0^\infty G_R(\omega') \left[\frac{1}{(\sigma^2 + (\omega - \omega')^2)} + \frac{1}{(\sigma^2 + (\omega + \omega')^2)} \right] d\omega'$$
(G.4)

In Appendix D.1 last paragraph, it is shown that $G(\omega)$ is finite for $|\omega| \leq \infty$ and goes to zero as $|\omega| \to \infty$. We can see that for $\omega' = 0$ and $\omega' = \infty$, the integrand in Eq. G.4 is zero. For finite $\omega > 0$, and $0 < \omega' < \infty$, we can see that the term $\frac{1}{(\sigma^2 + (\omega - \omega')^2)} + \frac{1}{(\sigma^2 + (\omega + \omega')^2)} > 0$.

• Case 1: $G_R(\omega') > 0$ for all finite $\omega' > 0$

We see that $E_R(\omega) > 0$ for all finite $\omega > 0$. We see that $E_R(-\omega) = E_R(\omega)$ because $E_p(t)$ is a real function (Appendix C.2). Hence $E_R(\omega) > 0$ for all finite $\omega < 0$.

This **contradicts** Statement 1 which requires $E_R(\omega)$ to have at least one zero at finite $\omega \neq 0$ because we showed that $\omega_0 \neq 0$ in **Section 2** paragraph 5. Therefore $G_R(\omega')$ must have **at least one zero** at $\omega' = \omega_1 \neq 0$, where ω_1 is real and finite.

• Case 2: $G_R(\omega') < 0$ for all finite $\omega' > 0$

We see that $E_R(\omega) < 0$ for all finite $\omega > 0$. We see that $E_R(-\omega) = E_R(\omega)$ because $E_p(t)$ is a real function (Appendix C.2). Hence $E_R(\omega) < 0$ for all finite $\omega < 0$.

This **contradicts** Statement 1 which requires $E_R(\omega)$ to have at least one zero at finite $\omega \neq 0$. Therefore $G_R(\omega')$ must have at least one zero at $\omega' = \omega_1 \neq 0$, where ω_1 is real and finite.

We have shown that, $G_R(\omega)$ must have at least one zero at finite $\omega = \omega_1 \neq 0$ to satisfy **Statement 1**. We call this **Statement 2**.