Semestrální zkouška ISS, 1. opravný termín, 24.1.2017, skupina D

Login: Příjmení a jméno: Podpis: Podpis:

Příklad 1 Nakreslete periodický signál se spojitým časem se základní kruhovou frekvencí $\omega_1 = 100\pi \text{ rad/s}$ a koeficienty Fourierovy řady: $c_1 = 500e^{j\frac{\pi}{2}}$ $c_2 = 500e^{-j\frac{\pi}{2}}$ $c_3 = 50$

20 40 60 E [MS]

Příklad 2 Signál se spojitým časem je posunutý Diracův impuls $x(t) = \delta(t-4)$. Nakreslete jeho spektrální funkci (průběh modulu i argumentu).

Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$.

 $x_1(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 2\\ 0 & \text{jinde} \end{cases}$

 $x_2(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1\\ 0 & \text{jinde} \end{cases}$

Označte prosím pečlivě hodnoty na obou osách.

J(t) 1 2 3 4 6

012

Příklad 4 Hodnota spektrální funkce signálu x(t) na kruhové frekvenci $\omega = 45\pi$ rad/s je $X(j45\pi) = 1+j$. Určete, jaká bude hodnota spektrální funkce $Y(j45\pi)$ pro signál vzniklý zpožděním: y(t) = x(t-0.5)

viz 4

 $Y(j45\pi) = \dots$

Příklad 5 Vzorkovací frekvence je $F_s = 16$ kHz. Vstupní signál je cosinusovka na frekvenci 15 kHz. Tento signál je ideálně vzorkován a ideálně rekontruován. Není použit anti-aliasingový filtr. Určete typ (např. cosinusovka, pravoúhlý, stejnosměrný, ...) a frekvenci signálu na výstupu.

(napr. cosinusovka, pravouhlý, stejnos

relunstruovació

er va 1642

17012 | CTT: | 1 15 A

Příklad 6 Zakreslete do komplexní roviny nulové body a póly systému se spojitým časem s přeposovou funkcí $H(s) = \frac{s}{s+1}$.

Příklad 7 Systém se spojitým časem má stejnou přenosovou funkci, jako v příkladu 6, tedy $H(s) = \frac{s}{s+1}$. Určete hodnotu jeho kmitočtové charakteristiky $H(j\omega)$ na zadané kruhové frekvenci. Nezpomeňte na to, že se bude pravděpodobně jednat o komplexní číslo. Stačí počítat na jednu platnou cifru. Pokud vyjde jedna složka komplexního čísla podstatně menší než ta druhá, zanedbejte ji.

Příklad 8 Do kvantizéru vstupují vzorky x[n]. Kvantizér se ale zasekl a pro všechny vstupní vzorky produkuje tu samou výstupní hodnotu: nulu. $x_q[n]=0$. Určete poměr signálu k šumu (SNR) v deciBellech

Vi7 A

Příklad 9 Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce N = 4:

n	0	1	2	3
$x_1[n]$	4	3	1	2
$x_2[n]$	1	1	0	0
$x_1[n] \otimes x_2[n] \parallel$	6	7	4	13

Příklad 10 Dokažte, že Fourierova transformace s diskrétním časem (DTFT) je periodická s periodou 2π rad, tedy že $\tilde{X}(e^{j\omega}) = \tilde{X}(e^{j(\omega+k2\pi)})$, kde k je libovolné celé číslo.

Viz A

Příklad 11 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=3 2 3 4 5 0 0 0.

Vypočtěte zadaný koeficient jeho diskrétní Fourierovy transformace (DFT) X[k].

viz A

$$X[4] = 3 - 2 + 3 - 4 + 5 = 5$$

Příklad 12 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=1 -1 0 0 0 0 0. Známe hodnotu koeficientu jeho diskrétní Fourierovy transformace (DFT):

X[2] = 1 + j. Určete hodnotu koeficientu DFT Y[2] signálu y[n], který je kruhově posunutou verzí

signálu x[n]: y[n]=0 0 0 0 1 -1 0 0.

$$Y[2] = (1+j)e^{+j\frac{2\pi}{6}-4\cdot 2} = (1+j)e^{-2\pi} = 1+j$$

$$Y[2] = \dots$$

Příklad 13 Diskrétní signál x[n] má délku N vzorků, N je sudé. Ukládáme pouze hodnoty $X[0] \dots X[\frac{N}{2}]$. Kolik na to potřebujeme proměnných typu float, když na uložení jednoho reálného čísla je potřeba jeden float a na uložení jednoho komplexního čísla dva floaty?

viz A

Příklad 14 Přenosová funkce číslicového filtru je $H(z) = \frac{1}{1+1.4z^{-1}+0.49z^{-2}}$. Určete, zda je filtr stabilní, a vysvětlete proč.

(2-(-0,7)(2-(-0,7))

dvojit/pól v (-0,7) je uvmitr-jedn. Cružmice

=) Stabilin.

Příklad 15 Na obrázku je průběh modulu frekvenční charakteristiky číslicového filtru pro normované kruhové frekvence $\omega \in [0, \pi]$ rad. Nakreslete přibližné rozložení nulových bodů a pólů tohoto filtru.

7

Příkla	d 16	V tabul	ce jsou	i hodno	ty vzoi	cku n =	7 náh	odného	signáli	ı pro s	$\Omega = 10$ realizací:
ω	1	2	3	4	5	6	7	8	9	10	

Proveďte souborový odhad funkce hustoty rozdělení pravděpodobnosti p(x,7) a nakreslete ji.

viz A

Příklad 17 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=1 2 3 4 5 0 0 0.

Provedte nevychýlený odhad zadaného korelačního koeficientu R[k].

riz A

 $R[3] = \dots$

Příklad 18 Na $\Omega=4000$ realizacích náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a n_2 . Spočítejte korelační koeficient $R[n_1,n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1,n_2]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2p(x_1,x_2,n_1,n_2)dx_1dx_2$ použijte středy intervalů v tabulce.

intervaly	\parallel intervaly x_2						
x_1	[-4, -2]	[-2, 0]	[0, 2]	[2, 4]			
[2, 4]	0	0	0	0			
[0, 2]	0	1000	0	0			
[-2, 0]	0	0	1000	0			
[-4, -2]	0	0	0	2000			

viz A

 $R[n_1, n_2] = \dots$

Příklad 19 Jaké musí být vzorky náhodného signálu, abychom ho mohli považovat za bílý šum?

viz A

Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci $\omega=0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi})=5$. Signál prochází číslicovým filtrem, který má na této frekvenci hodnotu frekvenční charakteristiky $H(e^{j0.2\pi})=\sqrt{2}e^{-j\frac{3\pi}{4}}$. Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.

viz A

 $G_y(e^{j0.2\pi}) = \dots$