Math for Machine Learning

Week 1.2: Subspaces, Bases, and Orthogonality

By: Samuel Deng

Logistics and Announcements

Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem.

Subspaces. Subsets of $S \subseteq \mathbb{R}^n$ where we "stay inside" when performing linear combinations of vectors.

Bases. A "language" to describe all vectors in a subspace.

Orthogonality. Orthonormal bases are "good" bases to work with.

Projection. Formal definition of projection and the relationship between projection and least squares.

Least squares with orthonormal bases. If we have an orthonormal basis for $\mathrm{span}(\mathrm{col}(X))$, least squares becomes much simpler.

Lesson Overview

Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

Least Squares A Quick Review

Vectors

Review from linear algebra

Vectors can interchangeably thought of as points:

or "arrows":

Regression Setup

Observed: Matrix of *training samples* $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training labels* $\mathbf{y} \in \mathbb{R}^d$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\mathsf{T} & \rightarrow \\ \vdots & & \vdots \\ \leftarrow & \mathbf{x}_n^\mathsf{T} & \rightarrow \end{bmatrix}.$$

<u>Unknown:</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$.

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

A note on intercepts

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

This "homogeneous" equation doesn't account for intercepts!

What if we want: $\hat{y}_i = \mathbf{w}^{\mathsf{T}} \mathbf{x}_i = w_1 x_{i1} + ... + w_d x_{id} + w_0$?

A note on intercepts

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

This "homogeneous" equation doesn't account for intercepts!

What if we want: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} + w_0$?

Solution: We modify add a "dummy" 1 to each example:

$$\mathbf{x}_i^{\mathsf{T}} = \begin{bmatrix} x_{i1} & \dots & x_{id} & 1 \end{bmatrix}.$$

Same as transforming the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ into $\mathbf{X}' \in \mathbb{R}^{n \times (d+1)}$:

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \implies \mathbf{X}' = \begin{bmatrix} \uparrow & & \uparrow & 1 \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d & \vdots \\ \downarrow & & \downarrow & 1 \end{bmatrix}$$

A note on intercepts

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

This "homogeneous" equation doesn't account for intercepts!

What if we want: $\hat{y}_i = \mathbf{w}^{\top} \mathbf{x}_i = w_1 x_{i1} + ... + w_d x_{id} + w_0$?

Solution: We modify add a "dummy" 1 to each example:

$$\mathbf{x}_i^{\mathsf{T}} = \begin{bmatrix} x_{i1} & \dots & x_{id} & 1 \end{bmatrix}$$
.

Same as transforming the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ into $\mathbf{X}' \in \mathbb{R}^{n \times (d+1)}$:

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \implies \mathbf{X}' = \begin{bmatrix} \uparrow & & \uparrow & 1 \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d & \vdots \\ \downarrow & & \downarrow & 1 \end{bmatrix}$$

Choose a weight vector that fits \mathbf{X}' : $\mathbf{w} \in \mathbb{R}^{d+1}$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

 $\mathbf{X}'\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$. The last (d+1) entry of \mathbf{w} is the intercept, w_0 .

A note on intercepts

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} + w_0$?

Solution: We modify add a "dummy" 1 to each example:

$$\mathbf{x}_i^{\mathsf{T}} = \begin{bmatrix} x_{i1} & \dots & x_{id} & 1 \end{bmatrix}$$
.

Same as transforming the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ into $\mathbf{X}' \in \mathbb{R}^{n \times (d+1)}$:

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} \implies \mathbf{X}' = \begin{bmatrix} \uparrow & & \uparrow & 1 \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d & \vdots \\ \downarrow & & \downarrow & 1 \end{bmatrix}$$

Choose a weight vector that fits \mathbf{X}' : $\mathbf{w} \in \mathbb{R}^{d+1}$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

 $\mathbf{X}'\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$. The last (d+1) entry of \mathbf{w} is the intercept, w_0 .

We can always do this WLOG, so we'll focus on the "homogeneous" case.

Least Squares Summary

Use the principle of *least squares* to find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Using geometric intuition: $\hat{\mathbf{y}}$ is the vector for which $\hat{\mathbf{y}} - \mathbf{y}$ is perpendicular to span(col(X)).

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Because $\hat{y} - y$ is perpendicular to span(col(X)), we obtain the *normal* equations:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then $\mathbf{X}^T \mathbf{X}$ is invertible, and

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Least Squares Summary

Use the principle of *least squares* to find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Using geometric intuition: $\hat{\mathbf{y}}$ is the vector for which $\hat{\mathbf{y}} - \mathbf{y}$ is perpendicular to span(col(X)).

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \mathrm{span}(\mathrm{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Because $\hat{y} - y$ is perpendicular to span(col(X)), we obtain the *normal* equations:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

If $n \ge d$ and $\operatorname{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, and

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Click to

Least Squares

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible.

"If there are no redundant features, then we can invert the normal equations"

Subspaces Idea

A <u>subspace</u> is a set of vectors that "stays within" the set under all linear combinations of the vectors.

Definition

A <u>subspace</u> $S \subseteq \mathbb{R}^n$ is a subset of vectors that satisfies the property: if $\mathbf{v}, \mathbf{w} \in S$, then $\alpha \mathbf{v} + \beta \mathbf{w} \in S$ for any $\alpha, \beta \in \mathbb{R}$.

Any subspace \mathcal{S} contains the zero vector: $\mathbf{0} \in \mathcal{S}$.

Subspaces Examples

Example: $S_0 := \mathbb{R}^2$

Examples

Example: $\mathcal{S}_1 := \{ \mathbf{v} \in \mathbb{R}^2 : v_1 = 0 \}$

Examples

Example:
$$S_2 := \{ \mathbf{v} \in \mathbb{R}^3 : v_1 = v_2 \}$$

Span

Review

For a collection of vectors $\mathbf{a}_1, ..., \mathbf{a}_d \in \mathbb{R}^n$, the <u>span</u> is the set of vectors we can attain through linear combinations of $\mathbf{a}_1, ..., \mathbf{a}_d$:

$$\operatorname{span}(\mathbf{a}_1, ..., \mathbf{a}_d) = \left\{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \sum_{i=1}^d \alpha_i \mathbf{a}_i, \alpha_i \in \mathbb{R} \right\}.$$

Recall that this is equivalent to all the $\mathbf{y} \in \mathbb{R}^{n \times d}$ we obtain from matrix vector multiplication!

$$\mathbf{y} = \mathbf{A}\alpha$$
, i.e. $\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{a}_1 & \dots & \mathbf{a}_d \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix}$

Examples

Example:
$$S_3 := \operatorname{span} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)$$
.

Examples

(Non)Example: $S_4 := \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 5 \}$

Specific example: span(col(X))

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$. The columns are $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$.

$$\operatorname{span}(\operatorname{col}(\mathbf{X})) = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = w_1 \mathbf{x}_1 + \dots + w_d \mathbf{x}_d \}$$

Bases & Dimension

Basis Idea

For a subspace \mathcal{S} , a <u>basis</u> is a *minimal* set of vectors that can "linearly describe" *any* vector in \mathcal{S} . A "language" for vectors in \mathcal{S} .

Basis

Linear Independence and Span

Recall the following two notions.

A collection of vectors $\mathbf{a}_1, ..., \mathbf{a}_d \in \mathbb{R}^n$ is <u>linearly independent</u> if $\alpha_1 \mathbf{a}_1 + ... + \alpha_d \mathbf{a}_d = \mathbf{0}$ if and only if $\alpha_i = 0$ for all $i \in [d]$.

For a collection of vectors $\mathbf{a}_1, ..., \mathbf{a}_d \in \mathbb{R}^n$, the <u>span</u> is the set of vectors we can attain through linear combinations of $\mathbf{a}_1, ..., \mathbf{a}_d$:

$$\operatorname{span}(\mathbf{a}_1, ..., \mathbf{a}_d) = \left\{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \sum_{i=1}^d \alpha_i \mathbf{a}_i, \alpha_i \in \mathbb{R} \right\}.$$

Basis Definition

For a subspace $\mathcal{S} \subseteq \mathbb{R}^n$, a set of vectors $\mathbf{a}_1, ..., \mathbf{a}_d \in \mathcal{S}$ is a <u>basis</u> for \mathcal{S} if:

 $\mathcal{S} = \mathrm{span}(\mathbf{a}_1, ..., \mathbf{a}_d)$ and $\mathbf{a}_1, ..., \mathbf{a}_d$ are linearly independent.

Bases are not unique — there are infinitely many bases for any subspace.

However, all bases have the same number of elements.

Basis Examples

Example: $S_0 := \mathbb{R}^2$

Basis

Examples

Example: $\mathcal{S}_1 := \{ \mathbf{v} \in \mathbb{R}^2 : v_1 = 0 \}$

Basis Examples

Example:
$$S_2 := \{ \mathbf{v} \in \mathbb{R}^3 : v_1 = v_2 \}$$

Dimension of a Subspace

Definition

The <u>dimension</u> of a subspace is the size of any of its bases. For a subspace S, write this as $\dim(S)$.

Matrices & Subspaces

Every matrix comes with four subspaces

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix.

Its <u>columnspace</u> is $col(X) = \{y \in \mathbb{R}^n : y = Xw, \text{ for any } w \in \mathbb{R}^d\}.$

Its <u>nullspace/kernel</u> is $ker(X) := \{ w \in \mathbb{R}^d : Xw = 0 \}$.

Its rowspace is $col(\mathbf{X}^{\mathsf{T}}) = \{ \mathbf{y} \in \mathbb{R}^d : \mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{v}, \text{ for any } \mathbf{v} \in \mathbb{R}^n \}.$

Its left nullspace is $ker(\mathbf{X}^{\mathsf{T}}) := \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{X}^{\mathsf{T}} \mathbf{v} = \mathbf{0} \}.$

Rank-nullity theorem: $n = \dim(\operatorname{col}(\mathbf{X})) + \dim(\ker(\mathbf{X}))$.

Matrices & Subspaces

Columnspace of a matrix

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$.

We can think of its columnspace as:

$$col(\mathbf{X}) := \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{X}\mathbf{w}, \text{ for any } \mathbf{w} \in \mathbb{R}^d \}$$

$$= \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = w_1\mathbf{x}_1 + \dots + w_d\mathbf{x}_d, \text{ for any } w_i \in \mathbb{R} \}$$

$$= span(\mathbf{x}_1, \dots, \mathbf{x}_d)$$

This is a subspace that "comes with" any matrix.

Matrices & Subspaces

Rank of a matrix

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$.

The \underline{rank} of X is the number of linearly independent columns (which is the same as the number of linearly independent rows).

It is always the case that: $rank(\mathbf{X}) \leq min\{n, d\}$. If $rank(\mathbf{X}) = min\{n, d\}$, then we say \mathbf{X} is *full rank*.

Matrices & Subspaces

Rank & Invertibility

Let $\mathbf{X} \in \mathbb{R}^{d \times d}$ be a square matrix.

It is always the case that: $rank(X) \le d$. If rank(X) = d, then we say X is *full rank*.

Basic fact from linear algebra:

X is invertible if and only if it is full rank.

Matrices & Subspaces

Dimension of the columnspace

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$.

$$col(\mathbf{X}) = span(\mathbf{x}_1, ..., \mathbf{x}_d)$$

rank(X) = how many of $x_1, ..., x_d$ are linearly independent

So, if $rank(\mathbf{X}) = d$, then $\mathbf{x}_1, \dots, \mathbf{x}_d$ form a basis for the columnspace!

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible.

"If there are no redundant features, then we can invert the normal equations"

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathrm{rank}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d$.

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns.

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0} \iff \mathbf{w} = \mathbf{0}.$$

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns.

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}=\mathbf{0} \implies \mathbf{w}=\mathbf{0}.$$

Suppose $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^d$ be any vector.

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns.

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0} \implies \mathbf{w} = \mathbf{0}.$$

Suppose $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^d$ be any vector. Take a dot product of both sides with \mathbf{w} :

$$\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{w}^{\mathsf{T}}\mathbf{0} = 0.$$

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns.

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0} \implies \mathbf{w} = \mathbf{0}.$$

Suppose $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^d$ be any vector. Take a dot product of both sides with \mathbf{w} :

$$\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \|\mathbf{X}\mathbf{w}\|^2 = 0.$$

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns.

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0} \implies \mathbf{w} = \mathbf{0}.$$

Suppose $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^d$ be any vector. Take a dot product of both sides with \mathbf{w} :

$$\|\mathbf{X}\mathbf{w}\|^2 \implies \mathbf{X}\mathbf{w} = \mathbf{0}$$
.

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Proof. To show that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, show $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ has d linearly independent columns.

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0} \implies \mathbf{w} = \mathbf{0}.$$

Suppose $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^d$ be any vector. Take a dot product of both sides with \mathbf{w} :

$$\|\mathbf{X}\mathbf{w}\|^2 \implies \mathbf{X}\mathbf{w} = \mathbf{0}$$
.

But rank(X) = d, so X has d linearly independent columns. Therefore, w = 0.

First missing item: invertibility of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Theorem (Invertibility of $\mathbf{X}^{\top}\mathbf{X}$). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix, with columns $\mathbf{x}_1, \dots, \mathbf{x}_d \in \mathbb{R}^n$. If $n \geq d$ and $\mathrm{rank}(\mathbf{X}) = d$, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible.

Use the principle of *least squares* to find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Using geometric intuition: $\hat{\mathbf{y}}$ is the vector for which $\hat{\mathbf{y}} - \mathbf{y}$ is perpendicular to $\mathrm{span}(\mathrm{col}(\mathbf{X}))$.

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Because $\hat{y} - y$ is perpendicular, we obtain the *normal equations:*

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then $\mathbf{X}^T \mathbf{X}$ is invertible, and

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Second missing item: Pythagorean Theorem

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

"The vector closest to y in the subspace is perpendicular."

Orthogonality Definition and Orthonormal Bases

Norms and Inner Products

Euclidean Norm

Recall the notion of "length" from \mathbb{R}^2 . For a vector $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$,

$$\|\mathbf{x}\|_2 := \sqrt{x_1^2 + x_2^2}.$$

Generalizing this, for $\mathbf{x} \in \mathbb{R}^n$, the <u>Fuclidean norm</u> (ℓ_2 -norm) is:

$$\|\mathbf{x}\|_2 := \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\mathbf{x}^T \mathbf{x}}.$$

$$\|\mathbf{x}\|_2^2 = \mathbf{x}^\mathsf{T}\mathbf{x}.$$

In this course, dropping the "2" and just writing $\|\mathbf{x}\|$ denotes the Euclidean norm.

Definition

Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are <u>orthogonal</u> if $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^\mathsf{T} \mathbf{w} = 0$. In \mathbb{R}^2 and \mathbb{R}^3 , this corresponds to our geometric notion of "perpendicular."

A set of vectors is <u>orthogonal</u> if every pair of distinct vectors in the set is orthogonal.

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

$$\|\mathbf{v} + \mathbf{w}\|^2 = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

$$\|\mathbf{v} + \mathbf{w}\|^2 = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$
$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$

$$\|\mathbf{v} + \mathbf{w}\|^2 = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + 2\langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

$$\|\mathbf{v} + \mathbf{w}\|^{2} = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + 2 \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= \|\mathbf{v}\|^{2} + \|\mathbf{w}\|^{2}$$

Pythagorean Theorem

Theorem (Pythagorean Theorem). If vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal, then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

$$\|\mathbf{v} + \mathbf{w}\|^2 = (\mathbf{v} + \mathbf{w})^{\mathsf{T}} (\mathbf{v} + \mathbf{w})$$

$$= \mathbf{v}^{\mathsf{T}} \mathbf{v} + \mathbf{v}^{\mathsf{T}} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \mathbf{v} + \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$= \mathbf{v}^{\mathsf{T}} \mathbf{v} + 2 \mathbf{v}^{\mathsf{T}} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

$$= \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$

Second missing item: Pythagorean Theorem

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\text{span}(\text{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be any other vector. Then $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$.

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\operatorname{span}(\operatorname{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ be any other vector. Then $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$.

Proof. Because $\hat{y} \in \text{span}(\text{col}(X))$ and $\tilde{y} \in \text{span}(\text{col}(X))$ and span(col(X)) is a subspace, $\tilde{y} - \hat{y} \in \text{span}(\text{col}(X))$.

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\text{span}(\text{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be any other vector. Then $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$.

Proof. Because $\hat{y} \in \text{span}(\text{col}(X))$ and $\tilde{y} \in \text{span}(\text{col}(X))$ and span(col(X)) is a subspace, $\tilde{y} - \hat{y} \in \text{span}(\text{col}(X))$.

The vector $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in span(col(\mathbf{X})), so $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to $\tilde{\mathbf{y}} - \hat{\mathbf{y}}$.

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\text{span}(\text{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be any other vector. Then $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$.

Proof. Because $\hat{y} \in \text{span}(\text{col}(X))$ and $\tilde{y} \in \text{span}(\text{col}(X))$ and span(col(X)) is a subspace, $\tilde{y} - \hat{y} \in \text{span}(\text{col}(X))$.

The vector $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in span(col(\mathbf{X})), so $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to $\tilde{\mathbf{y}} - \hat{\mathbf{y}}$.

By the Pythagorean Theorem:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 + \|\tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 = \|\hat{\mathbf{y}} - \mathbf{y} + \tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2$$

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\text{span}(\text{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be any other vector. Then $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$.

Proof. Because $\hat{y} \in \text{span}(\text{col}(X))$ and $\tilde{y} \in \text{span}(\text{col}(X))$ and span(col(X)) is a subspace, $\tilde{y} - \hat{y} \in \text{span}(\text{col}(X))$.

The vector $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in span(col(\mathbf{X})), so $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to $\tilde{\mathbf{y}} - \hat{\mathbf{y}}$.

By the Pythagorean Theorem:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 + \|\tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 = \|\hat{\mathbf{y}} - \mathbf{y} + \tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 = \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$$

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\text{span}(\text{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be any other vector. Then $||\hat{\mathbf{y}} - \mathbf{y}||^2 \le ||\tilde{\mathbf{y}} - \mathbf{y}||^2$.

Proof. Because $\hat{y} \in \text{span}(\text{col}(X))$ and $\tilde{y} \in \text{span}(\text{col}(X))$ and span(col(X)) is a subspace, $\tilde{y} - \hat{y} \in \text{span}(\text{col}(X))$.

The vector $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in span(col(X)), so $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to $\tilde{\mathbf{y}} - \hat{\mathbf{y}}$.

By the Pythagorean Theorem:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 + \|\tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 = \|\hat{\mathbf{y}} - \mathbf{y} + \tilde{\mathbf{y}} - \hat{\mathbf{y}}\|^2 = \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$$

But because norms are always nonnegative,

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Second missing item: Pythagorean Theorem

Theorem (Projection minimizes distance). Let $\hat{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be the vector where $\hat{\mathbf{y}} - \mathbf{y}$ is orthogonal to any vector in $\text{span}(\text{col}(\mathbf{X}))$ and let $\tilde{\mathbf{y}} \in \text{span}(\text{col}(\mathbf{X}))$ be any other vector. Then $\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2$.

Use the principle of *least squares* to find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2.$$

Using geometric intuition: $\hat{\mathbf{y}}$ is the vector for which $\hat{\mathbf{y}} - \mathbf{y}$ is perpendicular to $\mathrm{span}(\mathrm{col}(\mathbf{X}))$.

By Pythagorean Theorem, any other vector $\tilde{\mathbf{y}} \in \operatorname{span}(\operatorname{col}(\mathbf{X}))$ gives a larger error:

$$\|\hat{\mathbf{y}} - \mathbf{y}\|^2 \le \|\tilde{\mathbf{y}} - \mathbf{y}\|^2.$$

Because $\hat{y} - y$ is perpendicular, we obtain the *normal equations:*

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then $\mathbf{X}^T \mathbf{X}$ is invertible, and

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Goal: Find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$
.

Theorem (OLS). If $n \ge d$ and $\operatorname{rank}(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Goal: Find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|X\mathbf{w} - \mathbf{y}\|^2$$
.

Theorem (OLS). If $n \ge d$ and rank(X) = d, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Goal: Find the $\hat{\mathbf{w}} \in \mathbb{R}^d$ that minimizes

$$\|X\mathbf{w} - \mathbf{y}\|^2$$
.

Theorem (OLS). If $n \ge d$ and rank(X) = d, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Least Squares Summary

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Orthogonality Projections

Idea: A vector's "shadow" on another set

For an arbitrary set $S \subseteq \mathbb{R}^n$, the <u>projection</u> of a vector $\mathbf{y} \in \mathbb{R}^n$ onto the set S is the closest vector $\hat{\mathbf{y}}$ in S to \mathbf{y} .

Denote this vector $\Pi_S(\mathbf{y}) := \hat{\mathbf{y}}$.

Projection of a vector onto an arbitrary set

For an arbitrary set $S \subseteq \mathbb{R}^n$, the <u>projection</u> of a vector $\mathbf{y} \in \mathbb{R}^n$ onto the set S is the closest vector $\hat{\mathbf{y}}$ in S to \mathbf{y} .

Denote this vector $\Pi_S(\mathbf{y}) := \hat{\mathbf{y}}$.

Projection of a vector onto an arbitrary set

For an arbitrary set $S \subseteq \mathbb{R}^n$, the <u>projection</u> of a vector $\mathbf{y} \in \mathbb{R}^n$ onto the set S is the closest vector $\hat{\mathbf{y}}$ in S to \mathbf{y} .

Denote this vector $\Pi_S(\mathbf{y}) := \hat{\mathbf{y}}$.

"Closest" in a Euclidean ("least squares") distance sense:

$$\Pi_{S}(\mathbf{y}) = \underset{\hat{\mathbf{y}} \in S}{\text{arg min}} \|\hat{\mathbf{y}} - \mathbf{y}\| = \|\hat{\mathbf{y}} - \mathbf{y}\|^{2}.$$

Projection of a vector onto a subspace

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a *subspace*, with the basis $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the matrix with $\mathbf{x}_1, ..., \mathbf{x}_d$ as its columns. *Any* point $\hat{\mathbf{y}} \in \mathcal{X}$ is a linear combination:

$$\hat{\mathbf{y}} = w_1 \mathbf{x}_1 + \dots + w_d \mathbf{x}_d$$
$$= \mathbf{X} \mathbf{w}$$

The projection of $\mathbf y$ onto $\mathcal X$ is:

$$\Pi_{\mathcal{X}}(\mathbf{y}) = \underset{\hat{\mathbf{y}} \in \mathcal{X}}{\arg \min} \|\hat{\mathbf{y}} - \mathbf{y}\|^2$$

Projection of a vector onto a subspace

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a *subspace*, with the basis $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the matrix with $\mathbf{x}_1, ..., \mathbf{x}_d$ as its columns. *Any* point $\hat{\mathbf{y}} \in \mathcal{X}$ is a linear combination:

$$\hat{\mathbf{y}} = w_1 \mathbf{x}_1 + \dots + w_d \mathbf{x}_d$$
$$= \mathbf{X} \mathbf{w}$$

This is equivalent to finding:

$$\hat{\mathbf{w}} = \underset{\hat{\mathbf{w}} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2$$

Least Squares as Projection

Projection Matrix

$$\hat{\mathbf{w}} = \underset{\hat{\mathbf{w}} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2$$

This is just least squares! By what we've learned...

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\Pi_{\mathcal{X}}(\mathbf{y}) = \hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Least Squares as Projection

Projection Matrix

$$\hat{\mathbf{w}} = \underset{\hat{\mathbf{w}} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}\|^2$$

This is just least squares! By what we've learned...

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\Pi_{\mathcal{X}}(\mathbf{y}) = \hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Let $P_{\mathbf{X}} := \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{n \times n}$ be the **projection matrix** for span(col(\mathbf{X})).

Review from linear algebra

Linearity is the central property in linear algebra. Cooking is linear.

Bacon, egg, cheese (on roll)	Bacon, egg, cheese (on bagel)	Lox sandwich	
1 egg	1 egg	0 egg	
1 slice of cheese	1 slice of cheese	0 slice of cheese	
1 slice bacon	1 slice bacon	0 slice bacon	
1 Kaiser roll	0 Kaiser roll	0 Kaiser roll	
0 cream cheese	0 cream cheese	1 cream cheese	
0 slices of lox	0 slices of lox	2 slices of lox	
0 bagel	1 bagel	1 bagel	

Review from linear algebra

Linearity is the central property in linear algebra. A function ("transformation") $T: \mathbb{R}^d \to \mathbb{R}^n$ is **linear** if T satisfies these two properties for any two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$:

$$T(\mathbf{a} + \mathbf{b}) = T(\mathbf{a}) + T(\mathbf{b})$$

$$T(c\mathbf{a}) = cT(\mathbf{a})$$
 for any $c \in \mathbb{R}$.

Review from linear algebra

Example. Consider the function $T: \mathbb{R}^3 \to \mathbb{R}$, defined by:

$$T(\mathbf{x}) = 2x_1 + 3x_3.$$

Review from linear algebra

Matrices also play by these rules. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a matrix and let $\mathbf{w}, \mathbf{v} \in \mathbb{R}^d$ be vectors.

$$X(w + v) = Xw + Xv$$

$$\mathbf{X}(c\mathbf{w}) = c(\mathbf{X}\mathbf{w})$$
 for any $c \in \mathbb{R}$.

Review from linear algebra

Theorem (Equivalence of linear transformations and matrices).

Any linear transformation $T: \mathbb{R}^d \to \mathbb{R}^n$ has a corresponding matrix $\mathbf{A}_T \in \mathbb{R}^{n \times d}$ such that:

$$T(\mathbf{x}) = \mathbf{A}_T \mathbf{x}$$
.

Any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ has a corresponding linear transformation $T_{\mathbf{A}} : \mathbb{R}^d \to \mathbb{R}^n$ such that:

$$T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
.

Review from linear algebra

$$T(\mathbf{x}) = \mathbf{A}_T \mathbf{x}$$
 and $T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$

This means that matrix-vector multiplication is the same as applying a linear transformation. So one way of thinking of a matrix is an "action" applied to vectors.

Least Squares as Projection

Projection Matrix

Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a *subspace* with basis $\mathbf{x}_1, ..., \mathbf{x}_d \in \mathbb{R}^n$. If $\mathbf{x}_1, ..., \mathbf{x}_d$ are linearly independent, making up the matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$,

$$P_{\mathbf{X}} := \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{n \times n}$$

is the <u>projection matrix</u> onto \mathcal{X} . To project a vector $\mathbf{y} \in \mathbb{R}^n$ onto \mathcal{X} , compute:

$$\Pi_{\mathcal{X}}(\mathbf{y}) = \hat{\mathbf{y}} = P_{\mathbf{X}}\mathbf{y} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}\mathbf{y}.$$

Least Squares Orthonormal Bases and Projection

Norms and Inner Products Unit Vectors

A vector $\mathbf{v} \in \mathbb{R}^d$ is a <u>unit vector</u> if $\|\mathbf{v}\| = 1$.

We can convert any vector into a unit vector by dividing itself by its norm:

"Good" Bases

How should we represent a subspace?

Take, for example, the subspace $\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 0 \}$.

"Good" Bases

$$\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : \nu_3 = 0 \}$$

Attempt 1: Use the span of a set of vectors: span $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

"Good" Bases

$$\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 0 \}$$

Attempt 1: Use the span of a set of vectors: span
$$\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$.

Attempt 2: Use the span of a set of linearly independent vectors (a basis):

$$\operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right).$$

"Good" Bases

$$\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 0 \}$$

Attempt 1: Use the span of a set of vectors: span
$$\begin{pmatrix} 2 & 0 & 2 \\ 1 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

Attempt 2: Use the span of a set of linearly independent vectors (a basis):

$$\operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right).$$

Attempt 3: Use the span of an orthonormal set of vectors (an orthonormal basis):

$$\operatorname{span}\left(\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right)$$

"Good" Bases

$$\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 0 \}$$

$$\operatorname{span}\left(\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0 \end{bmatrix}\right) \quad \operatorname{span}\left(\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}\right) \quad \operatorname{span}\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}\right)$$

Definition

A set of vectors $\mathbf{u}_1, ..., \mathbf{u}_n \in \mathcal{S}$ is an <u>orthonormal basis</u> for the subspace \mathcal{S} if they are a basis for \mathcal{S} and, additionally:

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0 \text{ for } i \neq j.$$

$$\|\mathbf{u}_i\| = 1$$
 for $i \in [n]$.

Orthogonal Matrices

A square matrix $\mathbf{U} \in \mathbb{R}^{d \times d}$ is an <u>orthogonal matrix</u> if its columns $\mathbf{u}_1, ..., \mathbf{u}_d \in \mathbb{R}^d$ are orthogonal unit vectors:

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0 \text{ for } i \neq j.$$

$$\|\mathbf{u}_i\| = 1$$
 for $i \in [d]$.

These form an orthonormal basis for span(col(U)).

Its rows are also orthogonal.

Orthogonal Matrices

A matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$ is an <u>semi-orthogonal matrix</u> if its columns $\mathbf{u}_1, ..., \mathbf{u}_d \in \mathbb{R}^n$ are orthogonal unit vectors:

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0 \text{ for } i \neq j.$$

$$\|\mathbf{u}_i\| = 1$$
 for $i \in [d]$.

These form an orthonormal basis for span(col(U)).

Properties of Orthogonal Matrices

Let a square matrix $\mathbf{U} \in \mathbb{R}^{d \times d}$ be an <u>orthogonal matrix.</u> Then:

<u>U is its own inverse</u>: $U^{T}U = UU^{T} = I$.

<u>U is length-preserving:</u> ||Uv|| = ||v||.

Properties of Orthogonal Matrices

Let matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$ be an <u>semi-orthogonal matrix.</u> Then:

U is its own left inverse: $U^{\mathsf{T}}U = I$.

<u>U is length-preserving:</u> ||Uv|| = ||v||.

What if we had an orthogonal basis?

A basis is just a "language" for representing vectors in a subspace. For example, consider the subspace $\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 0 \}$ and the vector

$$\hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Basis 1:
$$\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

What if we had an orthogonal basis?

A basis is just a "language" for representing vectors in a subspace. For example, consider the subspace $\mathcal{S} = \{ \mathbf{v} \in \mathbb{R}^3 : v_3 = 0 \}$ and the vector

$$\hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Basis 2:
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

What if we had an orthogonal basis?

Every subspace $\mathcal{X} \subseteq \mathbb{R}^n$ has many choices of bases.

Some are better than others.

What if we had an orthogonal basis?

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a subspace, with $\dim(\mathcal{X}) = d$.

One basis: $\mathbf{X}_1, \dots, \mathbf{X}_d \in \mathbb{R}^n$, with matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$.

Another basis: $\mathbf{u}_1, ..., \mathbf{u}_d \in \mathbb{R}^n$, with matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$.

What if we had an orthogonal basis?

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a subspace, with $\dim(\mathcal{X}) = d$.

One basis: $\mathbf{X}_1, ..., \mathbf{X}_d \in \mathbb{R}^n$, with matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$.

Another basis: $\mathbf{u}_1, ..., \mathbf{u}_d \in \mathbb{R}^n$, with matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$.

Then,

 $\mathcal{X} = \text{span}(\text{col}(\mathbf{U})) = \text{span}(\text{col}(\mathbf{X})).$

What if we had an orthogonal basis?

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a subspace, with $\dim(\mathcal{X}) = d$.

$$\mathcal{X} = \text{span}(\text{col}(\mathbf{U})) = \text{span}(\text{col}(\mathbf{X})).$$

Therefore, for any $\hat{\mathbf{y}} \in \mathcal{X}$, we can write:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{U}\hat{\mathbf{w}}_{onb}$$
.

Both $\hat{\mathbf{w}}, \hat{\mathbf{w}}_{onb} \in \mathbb{R}^d$ are valid ways to "represent" $\hat{\mathbf{y}}$.

What if we had an orthogonal basis?

How do we find $\hat{\mathbf{w}}_{onb} \in \mathbb{R}^d$ in $\hat{\mathbf{y}} = \mathbf{U}\hat{\mathbf{w}}_{onb}$? Least squares!

$$\hat{\mathbf{w}}_{onb} = \underset{\hat{\mathbf{w}}_{onb} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{y} - \mathbf{U}\hat{\mathbf{w}}_{onb}\|^2$$

The columns of ${\bf U}$ give an ONB for ${\mathcal X}...$

$$\hat{\mathbf{w}}_{onb} = (\mathbf{U}^{\mathsf{T}}\mathbf{U})^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$

What if we had an orthogonal basis?

How do we find $\hat{\mathbf{w}}_{onb} \in \mathbb{R}^d$ in $\hat{\mathbf{y}} = \mathbf{U}\hat{\mathbf{w}}_{onb}$? Least squares!

$$\hat{\mathbf{w}}_{onb} = \arg\min_{\hat{\mathbf{w}}_{onb} \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{U}\hat{\mathbf{w}}_{onb}\|^2$$

The columns of ${\bf U}$ give an ONB for ${\mathcal X}...$

$$\hat{\mathbf{w}}_{onb} = (\mathbf{U}^{\mathsf{T}}\mathbf{U})^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{y}$$
$$= \mathbf{U}^{\mathsf{T}}\mathbf{y}$$

Why do we like an orthogonal basis?

Let \mathcal{X} be a subspace. Let $\Pi_{\mathcal{X}}(\mathbf{y}) = \underset{\hat{\mathbf{y}} \in \mathcal{X}}{\arg \min} \|\hat{\mathbf{y}} - \mathbf{y}\|^2$ be the projection of \mathbf{y} onto \mathcal{X} .

For an arbitrary matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\mathrm{span}(\mathrm{col}(\mathbf{X})) = \mathcal{X}$,

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
 and $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$.

For a semi-orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$ with $\mathrm{span}(\mathrm{col}(\mathbf{U})) = \mathcal{X}$,

$$\hat{\mathbf{w}}_{onb} = \mathbf{U}^\mathsf{T} \mathbf{y} \text{ and } \hat{\mathbf{y}} = \mathbf{U} \mathbf{U}^\mathsf{T} \mathbf{y}.$$

Much simpler — no inverse operations!

Why do we like an orthogonal basis?

Theorem (Projection with orthogonal matrices). Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a subspace and let $\mathbf{u}_1, ..., \mathbf{u}_d \in \mathbb{R}^n$ be an orthonormal basis for \mathcal{X} , with semi-orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$. For any $\mathbf{y} \in \mathbb{R}^n$, the <u>projection</u> of \mathbf{y} onto \mathcal{X} , i.e.

$$\Pi_{\mathcal{X}}(\mathbf{y}) = \underset{\hat{\mathbf{y}} \in \mathcal{X}}{\arg \min} \|\hat{\mathbf{y}} - \mathbf{y}\|^2$$

is given by

$$\Pi_{\mathcal{X}}(\mathbf{y}) = \mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{y}.$$

Recap

Lesson Overview

Regression. Fill in gaps from last time: invertibility and Pythagorean theorem.

Subspaces. Subsets of $S \subseteq \mathbb{R}^n$ where we "stay inside" when performing linear combinations of vectors.

Bases. A "language" to describe all vectors in a subspace.

Orthogonality. Orthonormal bases are "good" bases to work with.

Projection. Formal definition of projection and the relationship between projection and least squares.

Least squares with orthonormal bases. If we have an orthonormal basis for $\mathrm{span}(\mathrm{col}(X))$, least squares becomes much simpler.

Lesson Overview

Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

References

Mathematics for Machine Learning. Marc Pieter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.

Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. John H. Hubbard and Barbara Burke Hubbard.

Computational Linear Algebra Lecture Notes: Orthogonality. Daniel Hsu.

Mathematical Foundations for Machine Learning. Rebecca Willett.

Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, and Jerome Friedman.