Algorithmen und Datenstrukturen Klausur SS 2017

Angewandte Informatik Bachelor

Name	
Matrikelnummer	

Aufgabe 1	AVL-Baum	15	
Aufgabe 2	Algorithmus von Floyd	21	
Aufgabe 3	Tiefensuchbaum	12	
Aufgabe 4	Flüsse in Netzwerke	12	
Summe		60	

Aufgabe 1 AVL-Baum (15 Punkte)

a) Fügen Sie in einem <u>leeren nicht-balanzierten binären Suchbaum</u> nacheinander die Zahlen 1, 2, 3, 4, 5 ein. Fügen Sie dieselbe Zahlenfolge in einem leeren AVL-Baum ein.

- b) Geben Sie den Aufwand im schlechtesten Fall für das Einfügen in einem nicht-balanzierten Baum und für das Einfügen in einen AVL-Baum mit jeweils n Zahlen an (O-Notation).
- c) Löschen Sie in folgendem AVL-Baum die Zahl 20. Halten Sie dabei die folgende Regel ein: Wird ein Knoten mit zwei Kindern gelöscht, dann wird er durch das Minimum im rechten Teilbaum ersetzt.

d) Löschen Sie in folgendem AVL-Baum die Zahl 5.

- e) Welche der angegebenen Datenstrukturen unterstützt effizient die Suche von Elementen, die in einem Intervall [a,b] liegen:
 - binäre Suche in einem sortierten Feld
 - AVL-Baum
 - Feld mit Heap-Ordnung
 - Hashverfahren

Aufgabe 2 Algorithmus von Floyd (21 Punkte)

a) Berechnen Sie für folgenden gerichteten Graphen mit dem Algorithmus von Floyd für alle Knotenpaare einen günstigsten Weg. Es müssen sowohl die <u>Distanzmatrizen D^k</u> als auch die <u>Vorgängermatrizen P^k</u> berechnet werden (siehe nächste Seite).

b) Was sind die Kosten für den günstigsten Weg von Knoten 4 nach Knoten 2? Geben Sie an, wie sich der kürzeste Weg aus der Vorgängermatrix P⁴ ergibt.

c) Was ist ein negativer Zyklus?

d) Wie muss der Algorithmus von Floyd erweitert werden, um negative Zyklen zu erkennen?

```
for (int k = 0; k < n; k++) {
    // Berechne Dk:
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        if (D[i][j] > D[i][k] + D[k][j]) {
            D[i][j] = D[i][k] + D[k][j];
            P[i][j] = P[k][j];
        }
}
```

D ⁻¹						P ⁻¹				
0	∞	5	-2	∞		_	_	0	0	-
4	0	∞	3	∞		1	-	_	1	_
∞	5	0	∞	-2		_	2	_	-	2
∞	∞	5	0	1		_	-	3	-	3
4	-2	8	∞	0		4	4	_	-	_
D^0 P^0										
\mathbf{D}^1					P	1				
D^2					F	2				
D^3					F	3				
D^4					F	, 4	•	•	•	
					<u>_</u>					

Aufgabe 3 Tiefensuchbaum (12 Punkte)

Gegeben sei folgender ungerichteter Graph:

- a) Begründen Sie, warum der Knoten 4 ein Artikulationspunkt ist.
- b) Geben Sie den Tiefensuchbaum mit <u>Wurzel 2</u> an. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge</u>. Berücksichtigen Sie, dass der Tiefensuchbaum auch sogenannte Rückwärtskanten enthält.

c) Begründen Sie mit Hilfe des Tiefensuchbaums, warum Knoten 2 und 4 Artikulationspunkte (AP) sind? Folgender Begriff darf verwendet werden: Ein Rückwärtsweg ist ein Weg in einem Tiefensuchbaum mit einer beliebig langen Folge von Vorwärtskanten und dann genau einer Rückwärtskante.

Aufgabe 4 Flüsse in Netzwerke (12 Punkte)

Im folgenden Graphen ist jede Kante mit ihrer Kapazität markiert. Bestimmen Sie mit dem Algorithmus von Ford-Fulkerson einen maximalen Fluss von der Quelle q zur Senke s. Wählen Sie immer den Weg von q nach s mit größter Flusserweiterung und zeichnen Sie ihn ein.

Aktueller Fluss

S q S s q S

Residualgraph:

