Knapsack

Outline

- Approximation algorithms
 - Exact vs approximate solution
- The Knapsack problem
 - Greedy 2-approximation algorithm

Outline

- Approximation algorithms
 - Exact vs approximate solution
- The Knapsack problem
 - Greedy 2-approximation algorithm

Learning objectives:

You are able to

- describe formally and informally the definition of an approximation algorithm.
- design and analyse a 2-approximation algorithm to the Knapsack problem.

Exact solutions:

- Find the *minimum* spanning tree
- The largest number of sets that add up to T
- The *maximum* cardinality independent set
- •

Minimize x Objective function f(x)Subject to Constraints $g_1(x)$ $g_2(x)$... g_m

An algorithm A is called an α -approximation algorithm for a minimization problem P, if for every input I, the cost cost(A(I)) satisfies

$$cost(A(I)) \leq cost(OPT(I)) \cdot \alpha$$

An algorithm A is called an α -approximation algorithm for a minimization problem P, if for every input I, the cost cost(A(I)) satisfies

$$cost(A(I)) \leq cost(OPT(I)) \cdot \alpha$$

An algorithm A is called an α -approximation algorithm for a minimization problem P, if for every input I, the cost cost(A(I)) satisfies

 $cost(A(I)) \leq cost(OPT(I)) \cdot \tilde{a}$

Multiplicative approximation

An algorithm A is called an α -approximation algorithm for a minimization problem P, if for every input I, the cost cost(A(I)) satisfies

 $cost(A(I)) \leq cost(OPT(I)) \cdot \tilde{a}$

Multiplicative approximation

An algorithm A is called an α -approximation algorithm for a minimization problem P, if for every input I, the cost cost(A(I)) satisfies

 $cost(A(I)) \leq cost(OPT(I)) \cdot \alpha$

Nicer to always say " α " approximation and not " $1/\alpha$ " approximation.

Outline

- Approximation algorithms
 - Exact vs approximate solution
- The Knapsack problem
 - Greedy 2-approximation algorithm

The Knapsack Problem

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Chocolate

Value v_2 : 4 Weight w_2 : 3

Apple

Value: v_3 : 5 Weight: w_3 : 4

The Knapsack Problem

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Chocolate

Value v_2 : 4 Weight w_2 : 3

Apple

Value: v_3 : 5 Weight: w_3 : 4

Capacity C

Maximize sum of values

Sum of weights at most *C*

The Knapsack Problem

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Chocolate

Value v_2 : 4 Weight w_2 : 3

Apple

Value: v_3 : 5 Weight: w_3 : 4 Set of items *I*

Unbounded Knapsack:

You can pick each item as many times as you want.

Capacity C

Maximize *S*

$$\Sigma_{S\subseteq I}V(S)$$

Subject to

$$W(S) \leq C$$

V(S): sum of values

W(S): sum of weights

Capacity C

Maximize *S*

$$\Sigma_{S\subseteq I}V(S)$$

Subject to

$$W(S) \leq C$$

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Marginal gain:

Ratio of weight and value v_i/w_i

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Chocolate

Value v_2 : 4 Weight w_2 : 3

Marginal gain:

Ratio of weight and value v_i/w_i

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Marginal gain: 1/7

Chocolate

Value v_2 : 4 Weight w_2 : 3

Marginal gain:

Ratio of weight and value v_i/w_i

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Marginal gain: 1/7

Chocolate

Value v_2 : 4 Weight w_2 : 3

Marginal gain: 4/3

Marginal gain:

Ratio of weight and value v_i/w_i

Chocolate is much better than sauerkraut.

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Marginal gain:

Ratio of weight and value v_i/w_i

Greedy algorithm

Sort items descending according to gain Set $S = \emptyset$

While(\exists item i s.t. $W(S \cup i) \leq C$)

Let j be the item with the largest gain such that $W(S \cup j) \leq C$

 $\mathsf{Set}\, S \coloneqq S \cup j$

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Gain g_1 : 1/7

Chocolate

Value v_2 : 4

Weight w_2 : 3

Gain g_2 : 4/3

Apple

Value: v_3 : 5 Weight: w_3 : 4

Gain: g_3 : 5/4

Marginal gain:

Ratio of weight and value v_i/w_i

Sauerkraut

Value v_1 : 1 Weight w_1 : 7

Gain g_1 : 1/7

Greedy algorithm

Sort items descending according to gain Set $S = \emptyset$

While(\exists item *i* s.t. $W(S \cup i) \leq C$)

Let *j* be the item with the largest gain such that $W(S \cup j) \leq C$

Set $S := S \cup i$

Pick the best item that fits.

Chocolate

Value v_2 : 4

Weight w_2 : 3

Gain g_2 : 4/3

Apple

Value: v_3 : 5 Weight: w_3 : 4

Gain: g_3 : 5/4

The Greedy Algorithm - Example

Let C = 8

Sauerkraut

Value v_1 : 1 Weight w_1 : 7 Gain g_1 : 1/7

Chocolate

Value v_2 : 4 Weight w_2 : 3 Gain g_2 : 4/3

Apple

Value: v_3 : 5 Weight: w_3 : 4 Gain: g_3 : 5/4

The Greedy Algorithm - Example

Let
$$C = 8$$

Sauerkraut

Value v_1 : 1 Weight w_1 : 7 Gain g_1 : 1/7

Chocolate

Value v_2 : 4 Weight w_2 : 3 Gain g_2 : 4/3

Apple

Value: v_3 : 5 Weight: w_3 : 4 Gain: g_3 : 5/4

The Greedy Algorithm - Example

Let
$$C = 8$$

Sauerkraut

Value v_1 : 1 Weight w_1 : 7 Gain g_1 : 1/7

Chocolate

Value v_2 : 4 Weight w_2 : 3 Gain g_2 : 4/3

Apple

Value: v_3 : 5 Weight: w_3 : 4 Gain: g_3 : 5/4

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Suppose w.l.o.g. that, for all $i, w_i \leq C$, that is, each item fits into the knapsack.

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Suppose w.l.o.g. that, for all $i, w_i \leq C$, that is, each item fits into the knapsack.

Plan:

1. Let $x \in I$ be the item with the best marginal gain. If it was the case that C is a multiple of w_x , the best thing to do is to only choose items x.

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Suppose w.l.o.g. that, for all $i, w_i \leq C$, that is, each item fits into the knapsack.

Plan:

- 1. Let $x \in I$ be the item with the best marginal gain. If it was the case that C is a multiple of w_x , the best thing to do is to only choose items x.
- 2. Adding one more *x* to greedy must be better than OPT.

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Suppose w.l.o.g. that, for all $i, w_i \leq C$, that is, each item fits into the knapsack.

Plan:

- 1. Let $x \in I$ be the item with the best marginal gain. If it was the case that C is a multiple of w_x , the best thing to do is to only choose items x.
- 2. Adding one more *x* to greedy must be better than OPT.
- 3. One more x can at most double the value of the greedy solution.

Input:

Set I of items, capacity C and let x be the item with the best marginal gain.

Denote greedy(I) = Sand $OPT(I) = S^*$

Input:

Set I of items, capacity C and let x be the item with the best marginal gain.

Denote greedy(I) = Sand $OPT(I) = S^*$

Observation:

$$V(S^*) = \sum_{i \in S^*} v_i = \sum_{i \in S^*} \frac{w_i \cdot v_i}{w_i}$$

Input:

Set I of items, capacity C and let x be the item with the best marginal gain.

Denote greedy(I) = Sand $OPT(I) = S^*$

Observation:

$$V(S^*) = \sum_{i \in S^*} v_i = \sum_{i \in S^*} \frac{w_i \cdot v_i}{w_i}$$

$$\leq \sum_{i \in S^*} \frac{w_i \cdot v_{\chi}}{w_{\chi}} \leq C \cdot \frac{v_{\chi}}{w_{\chi}}$$

Input:

Set I of items, capacity C and let x be the item with the best marginal gain.

Denote greedy(I) = Sand $OPT(I) = S^*$

Observation:

It holds that $V(S) \ge v_{\chi}$.

Input:

Set I of items, capacity C and let x be the item with the best marginal gain.

Denote greedy(I) = Sand $OPT(I) = S^*$

Observation:

It holds that $V(S) \ge v_{\chi}$.

Observation:

Suppose that there are k items x in S. Then $(k + 1) \cdot v_x \le 2 \cdot V(S)$.

Input:

Set I of items, capacity C and let x be the item with the best marginal gain.

Denote greedy(I) = Sand $OPT(I) = S^*$

Observation:

It holds that $V(S) \geq v_{\chi}$.

Observation:

Suppose that there are k items x in S. Then $(k+1) \cdot v_x \leq 2 \cdot V(S)$.

Proof:

By assumption, we have that $V(S) \ge k \cdot v_x = (k+1) \cdot v_x - v_x$. From the previous observation, we derive $V(S) \ge (k+1) \cdot v_x - V(S)$ and re-writing gives

$$2 \cdot V(S) \ge (k+1) \cdot v_{\chi}$$

Claim:

Greedy algorithm gives a 2-approximation to the bounded Knapsack problem.

Observation:

Suppose that there are k items x in S. Then $(k+1) \cdot v_x \le 2 \cdot V(S)$ and $C < w_x \cdot (k+1)$

Observation:

$$V(S^*) \le C \cdot \frac{v_{\chi}}{w_{\chi}}$$

Claim:

Greedy algorithm gives a 2-approximation to the bounded Knapsack problem.

Proof:

Recall that S is the greedy and S^* the optimal solution, respectively. We have

$$V(S^*) \le C \cdot \frac{v_{\chi}}{w_{\chi}} < \frac{w_{\chi} \cdot (k+1) \cdot v_{\chi}}{w_{\chi}}$$
$$= (k+1) \cdot v_{\chi} \le 2 \cdot V(S)$$

Observation:

Suppose that there are k items x in S. Then $(k+1) \cdot v_x \le 2 \cdot V(S)$ and $C < w_x \cdot (k+1)$

Observation:

$$V(S^*) \le C \cdot \frac{v_{\chi}}{w_{\chi}}$$

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Theorem:

There is 2-approximation algorithm to the Unbounded Knapsack problem.

Why does this not work in the bounded case?

Wrap-Up

Approximation:

Optimal solutions vs almost optimal solutions.

Knapsack:

The greedy algorithms is a 2-approximation

