CS & IT

ENGINEERING

Digital Logic

Combinational Circuits

DPP - 05 Discussion Notes

By- CHANDAN JHA SIR

TOPICS TO BE COVERED

01 Question

02 Discussion

The circuit shown below, is a controlled half adder/ half subtractor. The inputs to half adder/ half subtractor are x and y while z is a control. The

outputs are y_1 and y_2 . $Z=0 \rightarrow Subtracty o$ Οy, Half adder for z = 0 $\rightarrow HA$

- Half subtractor for z = 1
- Half adder for z = 1 and half subtractor for z = 0
- Half adder regardless of whether z = 0 or z = 1 due to design defect.

$$707=1$$
 $702=0$
 $701=3$ $700=3$

Three multiplexer of size 2×1 , are interconnected as shown below:

The function f₁ and f₂ are

B
$$f_1 = x_1 \oplus x_2 \oplus x_3$$
 and $f_2 = x_1 + x_2 + x_1 + x_2 + x_3 + x_2 + x_3$

C
$$f_1 = (x_1 \oplus x_2 \oplus x_3)$$
 and $f_2 = x_1x_2 + x_1x_3 + x_2x_3$

D
$$f_1 = x_1(x_2 \oplus x_3)$$
 and $f_2 = x_1x_2 + x_1x_3 + x_2x_3$

$$f_{1} = (X_{1} \odot X_{2}) X_{3} + \overline{X_{1}} \odot \overline{X_{2}} \cdot \overline{X_{3}}$$

$$= (X_{1} \odot X_{2}) \odot X_{3} = X_{1} \oplus X_{2} \oplus X_{3}$$

Three multiplexer of size 2×1 , are interconnected as shown below:

What is this circuit?

- A Full adder
- B Full subtractor
- C Magnitude comparator
- D Priority encoder

The output of the following circuit diagram represents

- A Borrow of half subtractor
- B Carry of Half Adder
- C Sum of half adder
- D None of them

The design of a combinational logic circuit with three inputs x, y, z and three outputs A, B, C is attempted. The constraint is that designer has only HA, HS, FA and FS units only in his inventory.

When the binary input is 0, 1, 2 or 3 the binary output is same as input and when binary input is 4, 5, 6 or 7 the binary output is 2 less than binary input. What completes the design?

- A One FA and one HS
- B One HA and one HS
- C One HA only
- D One FA only

	4	7	A	3	C
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
O	1	1	0	L	1
1.	0	0	0	1	0
1	δ	1	Ó	L	1
1		0	1		0
1		1	L	0	L

NAT

A serial adder is operating with a clock frequency of 10 MHz. The time required to sum 1011011 and 10110 is $_\circ \bot$ (in µsec)

$$7 = n.T_{CLK}$$

$$= 7 \times \frac{1}{f_{CLK}}$$

$$= 7$$

PW

A half subtractor (HS) and 2 × 1 MUX are inter-connected as demonstrated below. What is NOT correct about this circuit?

$$f=(x \oplus y) \bar{z} + \bar{x} y \bar{z}$$
 $f=x \oplus y$

- For Z = 0, f = 1 indicates that the minuend and the subtrahend bits are different.
- For Z = 0, f = 0 indicates that minuend and subtrahend bits are same, that is, X = Y = 0 or X = Y = 1. 1=(XAY) = + X47

C For Z = 1, f = 1 indicates that X < Y. $f = (x \oplus y)\overline{z} + \overline{x}yz = \overline{x}y \quad (x < y)$ For Z = 1, f = 0 indicates that subtrahend bit is definitely 0.

$$f = \overline{x}y$$

What does minuend and subtrahend denotes in a subtractor?

- A Their corresponding bits of input
- B Its output
- C Its input
- D Borrow bits

What is the expression for difference, borrow of full subtractor circuit

A Diff =
$$A \oplus B \oplus C$$
, Borrow = $\bar{A}C + (A \odot B)C$

B Diff =
$$A \oplus B \oplus C$$
, Borrow = $\overline{A}B + (\overline{A \oplus B}) \cdot C$

C Diff =
$$A \odot B \odot C$$
, Borrow = $\overline{A}B + (\overline{A \odot B})C$

D Diff =
$$A \odot B \odot C$$
, Borrow = $\overline{A}C + (A \odot B)C$

$$R = A \oplus B \oplus C$$

$$B = \sum M(1,2,3,7)$$

$$= \overline{A}B + (\overline{A} \oplus B)C$$

$$= \overline{A}B + \overline{A}C + BC$$

A D flip-flop is used in a 4-bit serial adder, why?

- A It is used to invert the input of the full adder
- B It is used to store the output of the full adder •
- C It is used to store the carry output of the full adder
- D It is used to store the sum output of the full adder

$\star\star\star$

The circuit shown in the given figure represents a/an:

- A decoder
- B equality detector
- C full adder
- D full subtractor

Consider the following circuit diagram

A 4-bit subtractor, four 4-bit three-state buffers (with bus input and output), and one inverter is used to subtract two numbers (Y - X),

X = 0101 and Y = 0010

If A = 0, then D and B_{out} are respectively

A 0011 and 0

B 1101 and 0

C 0011 and 1

Thank you

Seldiers!

