Advanced Machine Learning and Deep Learning

Dr. Mohammad Pourhomayoun

Assistant Professor
Computer Science Department
California State University, Los Angeles

Ensemble Learning:

Bagging, Boosting, and Random Forests

Ensemble Learning

- Ensemble Learning is a popular and effective approach to improve the accuracy and performance of a machine learning problem.
- Ensemble Learning uses a group of machine learning algorithms
 (called base learners), and then combine the results of them to
 achieve higher accuracy.

Ensemble Learning

Example: Construct a Strong Classifier by combining several Weak Classifiers!

• Each learner (e.g. classifier) alone may have very poor performance. But, a group of them together can achieve very accurate results.

• For the sake of simplicity (or other reasons), each classifier may make some assumptions, which might be or not be valid for the problem!

Different learners of the Ensemble Learning may use:

1. Different learning Algorithms

E.g. Combination of decision tree, KNN, and logistic regression

2. Different choice of learning Parameters

E.g. Several KNNs with various K's

3. Different Features

E.g. Several decision trees, each for a set of features

4. Different Data Subsets

E.g. Several decision trees, each for a section of the dataset

5. Different Subproblems

E.g. Several logistic regression classifiers, each for a part of the problem

1. Different learning Algorithms:

2. <u>Different choice of learning Parameters:</u>

- 3. Different Features
- 4. <u>Different Subsets</u>

An Important Note about Ensemble Learning

- The key in designing ensembles is **diversity** and **not necessarily high accuracy** of the base classifiers.
- Members of an ensemble group <u>should vary in the examples they misclassify</u>, so that they cover each other's mistakes!
- In other word, if we have several classifiers that are pretty accurate but they all misclassify the **same samples**, then ensemble learning will not achieve any better results! Therefore, most ensemble approaches, seek to promote diversity among the models they combine.

Combining the Results of Base Learners

- There are 3 main approaches for <u>combining</u> the results in Ensemble Learning:
 - 1. Voting
 - 2. Stacking
 - 3. Cascading

1- Combining the Results: Voting

Voting:

- Classifiers are combined in a **static** way.
- Each base-level classifier gives a vote for its prediction.
- Plurality vote: The final decision for each data sample (each prediction) is made based on the majority of votes.
 - E.g. Suppose we use 9 different decision tree classifiers for weather forecasting. 5 of them predict Rain for tomorrow, and 4 of them predict sunny. Thus, the final decision will be Rainy!
- Note: Depending on the problem, some votes can be weighted. In this
 approach, the better base classifiers get higher voting weight.

2- Combining the Results: Stacking

Stacking:

- Classifiers are combined in a data-driven dynamic way.
- An upper level machine learning method is used to learn how to combine the prediction results of the base-level classifiers.
- The upper level classifier is used to make final decision from the predictions of the base-level classifiers.

3- Combining the Results: Cascading

Cascading:

- Classifiers are combined in an iterative way.
- At each iteration, the training dataset is extended or modified based on the prediction results obtained in the previous iterations.
- We will talk more about it later!

Question: Why Does Ensemble Learning work?

- Suppose we have 3 completely Independent Classifiers, each one with prediction accuracy of 70%, and we want to use Voting Method for making a prediction:
 - For a positive sample, the final prediction is positive if at least 2 out of 3 classifiers vote for positive:

$$0.7^3 + 0.7 \times 0.7 \times 0.3 + 0.7 \times 0.3 \times 0.7 + 0.3 \times 0.7 \times 0.7 = 0.78$$

- Thus, combining 3 classifiers with accuracy of 70% each, using just a simple voting method can improve the accuracy to 78%.
- In theory, If we use 101 independent classifiers, then the final voting accuracy will be 99.9%!!!!
- But, can we always achieve this accuracy in practice? Why not?

Intuitions: Why Does Ensemble Learning work?

- Note: Making decision based on Independent Binary Classifiers, using Voting Method has Binomial Probability Distribution:
- **Binomial Distribution:** The probability that x out of n independent classifiers vote correctly, where each classifier predicts correctly with probability of p, is

$$P(X = x | p, n) = \frac{n!}{r!(n-x)!} p^x (1-p)^{n-x}$$

- In theory, If we use 101 independent classifiers, then the final voting accuracy will be 99.9%.
- In practice, the accuracy is usually lower than theory because the classifiers are
 NOT completely independent!

Advantages and Disadvantages of Ensemble Learning

Advantages of Ensemble Learning:

- Improve prediction performance and accuracy
- Robust to Overfitting

Disadvantages of Ensemble Learning:

- The combined classifier is not so transparent
- Not a compact representation

Three Popular Approaches for Ensemble Learning

- Bagging: Bagging (stands for <u>B</u>ootstrap <u>Agg</u>regating) was first proposed by Leo Breiman to improve the classifier results using a combination of several classifiers trained on randomly generated training sets.
- Boosting: Originally proposed by Robert Schapire to build a strong classifier
 using a set of extremely weak base classifiers (each one with accuracy of slightly
 better than random guess).
- Random SubSpace (Random Forest): First proposed by Leo Breiman to improve the accuracy of decision tree classifiers and address the overfitting problem.

- Here are the main 4 steps for Bagging method:
- Step1: Bootstrapping: Suppose we have a Training Dataset S of size N. Bootstrapping generates L new training sets $S_1, S_2, ..., S_L$ each of size M, by sampling from the original dataset S randomly and with replacement.
 - This type of sampling is called Bootstrapping or Bootstrap Sampling.
 - The bootstrap training sets S_1 , S_2 ,..., S_L may have overlap with each other.
 - By sampling with replacement, some data sample may be repeated in <u>each</u> S_i.

Example for Bootstrap Sampling

- Step2: Training stage: The L new training sets $S_1, S_2, ..., S_L$ will be used to train L learners (can be either L classifiers $C_1, C_2, ..., C_L$ or L regression models $R_1, R_2, ..., R_L$).
 - E.g. Training L decision trees for classification, or L linear regression models for regression.

Step3: Testing Stage: Given a new unknown data sample, The L trained models will be used to make prediction for the new sample. In other word, Each classifier C_i or regressor R_i returns its prediction.

Step4: Combining the results:

- For Classification, we use Voting method. The final prediction is based on the majority vote of the L classifiers.
- For Regression, we use Averaging method. The final prediction is the average of L predictions.
- For Regression, depending on the application, sometimes we may prefer to use
 Median rather than average to get rid of outliers.

Important Notes

- For any machine learning method, there are two main sources of error:
 - Bias: Expected error due to <u>inaccurate model</u> in the learning algorithm that may cause to miss the relations between features and outputs (underfit model).
 - Variance: Expected error due to particular training sets, and <u>high sensitivity</u> of the system to small fluctuations in the training set (overfit models).

Important Notes

- For any machine learning method, there are two main sources of error:
 - Bias: Expected error due to <u>inaccurate model</u> in the learning algorithm that may cause to miss the relations between features and outputs (underfit model).
 - Variance: Expected error due to particular training sets, and <u>high sensitivity</u> of the system to small fluctuations in the training set (overfit models).

 Bagging works because it <u>reduces variance</u>. In other word, we don't suffer from random errors made by a single classifier. Thus, it is a good approach to deal with overfitting.

Important Notes

- Bagging has the best performance when the Learning Algorithm is unstable (high variance): if small changes to the training set cause large changes in the prediction results.
 - Some candidates for Bagging: Decision Tree and Neural Networks.

• In some rare cases, when the learning algorithm is **very stable** (low variance), Bagging may degrade the accuracy. But, it is easy to find out and avoid it.

How Can Bagging Resolve Overfitting?

Thank You!

Questions?