Групповой проект по математическому моделированию

Содержание

1	Решения	1
	Задача 1	1
	Решение задачи 1	
	Задача 2	
	Решение задачи 2	2
	Задача 3	6
	Решение задачи 3	6
	Задача 4	8
	Решение задачи 4	8

1 Решения

Задача 1.

Вслед за лордом Рэлеем найдите период малых колебаний капелек жидкости под действием их поверхностного натяжения, считая, что всё происходит вне гравитационного поля (в космосе).

Решение.

Житейкий опыт подсказывает, что период малых колебаний капли должен быть связан с коэффициентом σ поверхностного натяжения капли, её плотностью ρ и размером. Поскольку колебания по условию малые, можно считать, что капля имеет объём сферы и её размер вполне описывается радиусом r. Итого получаем соотношение

$$P = f(\sigma, \rho, r).$$

Выпишем размерности введённых величин в системе L, M, T:

$$[P] = T,$$

$$[\sigma] = MT^{-2},$$

$$[\rho] = ML^{-3},$$

$$[r] = L.$$

$$(1)$$

Величины σ , ρ и r размерно независимы. Действительно, равенство $\sigma^{\alpha}\rho^{\beta}r^{\gamma}=1$ выполняется только при $\alpha=\beta=\gamma=0$. Значит, для некоторых $p_{\sigma},p_{\rho},p_{r}$ и c_{0} применение Π -теоремы даёт тождество

$$\frac{P}{\sigma^{p_{\sigma}}\rho^{p_{\rho}}r^{p_{r}}} = c_{0} \tag{2}$$

Так как только P и σ выражаются через T (см. (1)), то $p_{\sigma} = -\frac{1}{2}$. Далее, только σ и ρ выражаются через M, а значит, $p_{\rho} = -p_{\sigma} = \frac{1}{2}$. Аналогично находим $p_r = \frac{3}{2}$. Подставляя найденные числа в (2), получаем

$$\frac{P}{\sigma^{-\frac{1}{2}}\rho^{\frac{1}{2}}r^{\frac{3}{2}}} = c_0 \iff P = c_0\sqrt{\frac{\rho r^3}{\sigma}}.$$

Примечание. В действительности $c_0 = \pi/\sqrt{2}$.

Задача 2.

В приведённом наборе данных V представляет собой среднюю скорость ходьбы, а P — численность популяции. Мы хотим узнать, можно ли предсказать численность популяции P, наблюдая за тем, как быстро ходят люди. «Подгоните» моделям $P = a \ln V$ и $P = a V^b$ к имеющимся данным с помощью критерия наименьших квадратов. Сравните модели с помощью критерия Фишера.

V	4.81	4.90	5.05	5.21	5.62	5.88
P	341948	49375	260200	867023	1340000	1092759

Решение.

Сначала подгоним данные к модели $P(V) = a_1 \ln V$. Для этого, согласно методу наименьших квадратов, найдём такое a_1 , что минимизируется значение

$$\Delta_1 := \sum_{i=1}^n (P_i - a_1 \ln V_i)^2$$

(в нашем случае всего n = 6 наборов данных).

Для упрощения выкладок рассмотрим векторы $\mathbf{p} := (P_1, \dots, P_n)^\top \in \mathbb{R}^n$ и $\mathbf{l} := (\ln V_1, \dots, \ln V_n)^\top \in \mathbb{R}^n$ (в каноническом базисе). Фиксируем в \mathbb{R}^n стандартное¹ евклидово произведение $\langle \cdot, \cdot \rangle$. Тогда верна цепочка

$$\Delta_1 := \sum_{i=1}^n (P_i - a_1 \ln V_i)^2 =$$

Оно даётся формулой $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_n y_n$, где $\mathbf{x} = (x_1, \ldots, x_n)^\top \in \mathbb{R}^n$, $\mathbf{y} = (y_1, \ldots, y_n)^\top \in \mathbb{R}^n$.

$$= \sum_{i=1}^{n} P_i^2 - 2a_1 \sum_{i=1}^{n} P_i \ln V_i + a_1^2 \sum_{i=1}^{n} \ln^2 V_i =$$

$$= \langle \mathbf{p}, \mathbf{p} \rangle - 2 \langle \mathbf{p}, \mathbf{l} \rangle a_1 + \langle \mathbf{l}, \mathbf{l} \rangle a_1^2 =$$

$$= \langle \mathbf{p}, \mathbf{p} \rangle - \frac{\langle \mathbf{p}, \mathbf{l} \rangle^2}{\langle \mathbf{l}, \mathbf{l} \rangle} + \langle \mathbf{l}, \mathbf{l} \rangle \left(a_1 - \frac{\langle \mathbf{p}, \mathbf{l} \rangle}{\langle \mathbf{l}, \mathbf{l} \rangle} \right)^2 \ge$$

$$\geq \langle \mathbf{p}, \mathbf{p} \rangle - \frac{\langle \mathbf{p}, \mathbf{l} \rangle^2}{\langle \mathbf{l}, \mathbf{l} \rangle} =$$

$$= \frac{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{l}, \mathbf{l} \rangle - \langle \mathbf{p}, \mathbf{l} \rangle^2}{\langle \mathbf{l}, \mathbf{l} \rangle} = \min \Delta_1,$$

причём наименьшее значение достигается при $a_{1\,\mathrm{min}}=\langle\mathbf{p},\mathbf{l}\rangle/\langle\mathbf{l},\mathbf{l}\rangle.$

В нашем случае $a_{1\,\mathrm{min}} \approx 408135.750\ldots, \min \Delta_1 \approx 1186996197086.548\ldots$ и

$$\chi_1^2 = \sum_{i=1}^6 \frac{(P_i - a_{1 \min} \ln V_i)^2}{P(V_i)} \approx 1753774.374...$$

Итак, мы получили зависимость

$$P(V) \approx 408135.750 \ln V. \tag{3}$$

Займёмся теперь подгонкой данных к модели $P(V)=a_2V^{b_2}$. На этот раз требуется оптимизировать величину

$$\Delta_2 := \sum_{i=1}^n (P_i - a_2 V_i^{b_2})^2.$$

Аналогично рассмотрим векторы $\mathbf{p} = (P_1, \dots, P_n)^\top \in \mathbb{R}^n$ и $\mathbf{v} = \mathbf{v}(b_2) := (V_1^{b_2}, \dots, V_n^{b_2})^\top \in \mathbb{R}^n, b_2 \in \mathbb{R}$. При каком-нибудь фиксированном b_2 оценим Δ_2 снизу по a_2 так же, как и в прошлом случае:

$$\begin{split} \Delta_2 &:= \sum_{i=1}^n (P_i - a_2 V_i^{b_2})^2 = \\ &= \sum_{i=1}^n P_i^2 - 2a_2 \sum_{i=1}^n P_i V_i^{b_2} + a_2^2 \sum_{i=1}^n V_i^{2b_2} = \\ &= \langle \mathbf{p}, \mathbf{p} \rangle - 2 \langle \mathbf{p}, \mathbf{v} \rangle a_2 + \langle \mathbf{v}, \mathbf{v} \rangle a_2^2 = \\ &= \langle \mathbf{p}, \mathbf{p} \rangle - \frac{\langle \mathbf{p}, \mathbf{v} \rangle^2}{\langle \mathbf{v}, \mathbf{v} \rangle} + \langle \mathbf{v}, \mathbf{v} \rangle \left(a_2 - \frac{\langle \mathbf{p}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \right)^2 \ge \\ &\geq \langle \mathbf{p}, \mathbf{p} \rangle - \frac{\langle \mathbf{p}, \mathbf{v} \rangle^2}{\langle \mathbf{v}, \mathbf{v} \rangle} = \\ &= \frac{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{v}, \mathbf{v} \rangle - \langle \mathbf{p}, \mathbf{v} \rangle^2}{\langle \mathbf{v}, \mathbf{v} \rangle}, \end{split}$$

где минимум достигается при $a_{2 \min} = \langle \mathbf{p}, \mathbf{v} \rangle / \langle \mathbf{v}, \mathbf{v} \rangle$. Полученную функцию от b_2 уже можно оптимизировать численными методами, но можно поступить и иначе.

Преобразуем последнюю дробь:

$$\frac{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{v}, \mathbf{v} \rangle - \langle \mathbf{p}, \mathbf{v} \rangle^{2}}{\langle \mathbf{v}, \mathbf{v} \rangle} = \frac{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{v}, \mathbf{v} \rangle - \langle \mathbf{p}, \mathbf{v} \rangle \langle \mathbf{p}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}
= \frac{\langle \mathbf{p}, \langle \mathbf{v}, \mathbf{v} \rangle \mathbf{p} \rangle - \langle \mathbf{p}, \langle \mathbf{p}, \mathbf{v} \rangle \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} =
= \frac{\langle \mathbf{p}, \langle \mathbf{v}, \mathbf{v} \rangle \mathbf{p} - \langle \mathbf{p}, \mathbf{v} \rangle \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} =
= \langle \mathbf{p}, \frac{\langle \mathbf{v}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{p} - \frac{\langle \mathbf{p}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} \rangle =
= \langle \mathbf{p}, \mathbf{p} - \frac{\langle \mathbf{p}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} \rangle.$$

Нетрудно сообразить, что, каково бы ни было b_2 , (для данного набора данных) векторы \mathbf{p} и $\mathbf{v}(b_2)$ неколлинеарны. Значит, их можно ортогонализовать. Применяя алгоритм Грама–Шмидта к системе (\mathbf{v}, \mathbf{p}) , получим ортогональную систему (\mathbf{v}, \mathbf{s}) , где

$$\mathbf{s} = \mathbf{s}(b_2) = \mathbf{p} - \frac{\langle \mathbf{p}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$$

— перпендикуляр к v (рис. 1).

Рис. 1: Векторы $\mathbf{v}(b_2)$ и $\mathbf{s} = \mathbf{s}(b_2)$ меняются с изменением b_2 .

Для того чтобы минимизировать значение $\langle \mathbf{p}, \mathbf{s} \rangle$, требуется увеличить угол $\angle(\mathbf{p}, \mathbf{s})$ и уменьшить $\|\mathbf{s}\|$, а для этого (см. рис. 1) необходимо и достаточно уменьшить

$$\angle(\mathbf{p}, \mathbf{v}) = \arccos\bigg\{\frac{\langle \mathbf{p}, \mathbf{v} \rangle}{\sqrt{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{v}, \mathbf{v} \rangle}}\bigg\}.$$

Значит, Δ_2 минимизируется при том же b_2 , при котором максимизируется значение

$$\left(\frac{\langle \mathbf{p}, \mathbf{v}(b_2) \rangle}{\sqrt{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{v}(b_2), \mathbf{v}(b_2) \rangle}}\right)^2 = \frac{\langle \mathbf{p}, \mathbf{v}(b_2) \rangle^2}{\langle \mathbf{p}, \mathbf{p} \rangle \langle \mathbf{v}(b_2), \mathbf{v}(b_2) \rangle}.$$

В ходе численного решения были последовательно найдены числа

 $b_{2 \min} \approx 6.888 \dots, a_{2 \min} \approx 6.651 \dots, \min \Delta_2 \approx 424800366918.064 \dots$

И

$$\chi_2^2 = \sum_{i=1}^6 \frac{(P_i - a_{2\min}V_i^{b_{2\min}})^2}{P(V_i)} \approx 703550.381...$$

Значит, искомая зависимость имеет вид

$$P(V) \approx 6.651V^{6.888}. (4)$$

Сравним полученные модели (3) и (4):

$$\frac{\chi_2^2}{\chi_1^2} \approx 40\%.$$

Найденные зависимости изображены на рисунке 2:

Рис. 2: Сравнение полученных моделей

Задача 3.

Изучается распределение температуры u=u(x,t) в тонком бесконечном металлическом стержне, боковая поверхность которого теплоизолирована. Внутри стержня нет источника тепла. Коэффициент температуропроводности стержня $\alpha^2=\frac{1}{20}$. Начальное распределение температуры в стержне имеет вид

$$\varphi(x) = (1 - x)(\theta(x) - \theta(x - 1)),$$

где

$$\theta(x) = \begin{cases} 0, x < 0, \\ 1, x \ge 0 \end{cases}$$

- ступенчатая функция Хевисайда.
 - 1. Решите задачу с помощью преобразования Фурье и постройте 3D-график полученного решения.
 - 2. Постройте анимацию пространственно-временного распределения температуры в стержне при $0 \le t \le 5$.

Решение.

Начально-кравевая задача для u = u(x,t) имеет вид

$$\begin{cases} \frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0, \\ u(x, 0) = \varphi(x). \end{cases}$$
 (5)

(Первое уравнение системы, очевидно, является уравнением теплопроводности стержня.)

Обозначим соответственно через $U=U_y(t):=\mathcal{F}[u](y,t)$ и $\Phi(y):=\mathcal{F}[\varphi](y)$ преобразования Фурье по первому аргументу функций u и φ . С учётом того, что для всяких чисел $k\in\mathbb{N}$ и $\mu,\nu\in\mathbb{C}$ и любых абсолютно интегрируемых на \mathbb{R} функций f,g

$$\mathcal{F}\left[\frac{\partial u}{\partial t}\right](y,t) = \frac{\partial}{\partial t}\mathcal{F}[u](y,t) = \frac{\mathrm{d}U}{\mathrm{d}t} = \dot{U},$$

$$\mathcal{F}\left[\frac{\partial^k u}{\partial x^k}\right](y,t) = (iy)^k \mathcal{F}[u](y,t) = (iy)^k U,$$

$$\mathcal{F}[\mu f + \nu g] = \mu \mathcal{F}[f] + \nu \mathcal{F}[g],$$

система (5) примет вид задачи Коши:

$$\begin{cases} \dot{U} + \alpha^2 y^2 U = 0, \\ U(0) = \Phi(y). \end{cases}$$
 (6)

Легко видеть, что её решеним является функция $U_y(t) = \Phi(y) \mathrm{e}^{-\alpha^2 y^2 t}$. Чтобы получить решение u(x,t) исходной задачи, найдём обратное преобразование Фурье к данному решению:

$$u(x,t) = \mathcal{F}^{-1}[U_y] = \mathcal{F}^{-1}[\Phi(y)e^{-\alpha^2 y^2 t}] =$$

$$= \mathcal{F}^{-1}[\Phi] * \mathcal{F}^{-1}[e^{-\alpha^2 y^2 t}] =$$

$$= \varphi(s) * \frac{\exp\left\{-\frac{s^2}{4\alpha^2 t}\right\}}{\sqrt{2t}\alpha} =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(s) \frac{\exp\left\{-\frac{(x-s)^2}{4\alpha^2 t}\right\}}{\sqrt{2t}\alpha} ds,$$

где интеграл понимается в смысле главного значения. В выкладке использовалось то, что

$$\mathcal{F}^{-1}[f \cdot g] = \mathcal{F}^{-1}[f] * \mathcal{F}^{-1}[g],$$
$$\mathcal{F}^{-1}[e^{-\nu^2 y^2}] = \frac{e^{-\frac{x^2}{4\nu^2}}}{\sqrt{2}\nu}.$$

Вычислим последний интеграл. Для начала заметим, что

$$\varphi(s) = (1-s)(\theta(s) - \theta(s-1)) = \begin{cases} 1-s, 0 \le s \le 1, \\ 0, s \in \mathbb{R} \setminus [0, 1]. \end{cases}$$

В таком случае

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi(s) \frac{\exp\left\{-\frac{(x-s)^2}{4\alpha^2 t}\right\}}{\sqrt{2t}\alpha} ds = \frac{1}{2\alpha\sqrt{\pi t}} \int_{0}^{1} (1-s) \exp\left\{-\frac{(x-s)^2}{4\alpha^2 t}\right\} ds =$$

$$= \frac{1}{2\alpha\sqrt{\pi t}} \int_{0}^{1} \left((1-x) + (x-s)\right) \exp\left\{-\frac{(x-s)^2}{4\alpha^2 t}\right\} ds =$$

$$= \frac{1-x}{2\alpha\sqrt{\pi t}} \int_{0}^{1} \exp\left\{-\frac{(x-s)^2}{4\alpha^2 t}\right\} ds + \frac{1}{2\alpha\sqrt{\pi t}} \int_{0}^{1} (x-s) \exp\left\{-\frac{(x-s)^2}{4\alpha^2 t}\right\} ds =$$

$$= \frac{1-x}{2} \left[\operatorname{erf}\left(\frac{x}{2\alpha\sqrt{t}}\right) - \operatorname{erf}\left(\frac{x-1}{2\alpha\sqrt{t}}\right) \right] -$$

$$-\alpha\sqrt{\frac{t}{\pi}} \left[\exp\left(-\frac{x^2}{4\alpha^2 t}\right) - \exp\left(-\frac{(x-1)^2}{4\alpha^2 t}\right) \right].$$

Итак, окончательно

$$u(x,t) = \frac{1-x}{2} \left[\operatorname{erf}\left(\frac{x}{2\alpha\sqrt{t}}\right) - \operatorname{erf}\left(\frac{x-1}{2\alpha\sqrt{t}}\right) \right] - \alpha\sqrt{\frac{t}{\pi}} \left[\exp\left(-\frac{x^2}{4\alpha^2t}\right) - \exp\left(-\frac{(x-1)^2}{4\alpha^2t}\right) \right].$$

Как видно, полученная функция не определена при t=0. Однако изначально она удовлетворяла тождеству $u(x,t)=\mathcal{F}^{-1}[\Phi(y)\mathrm{e}^{-\alpha^2y^2t}]$, поэтому $u(x,0)=\mathcal{F}^{-1}[\Phi(y)]=\varphi(x)$. Вспоминая, что $\alpha^2=\frac{1}{20}$, запишем ответ:

$$u(x,t) = \begin{cases} \frac{1-x}{2} \left[\operatorname{erf}\left(\sqrt{\frac{5}{t}}x\right) - \operatorname{erf}\left(\sqrt{\frac{5}{t}}(x-1)\right) \right] - \\ -\sqrt{\frac{t}{20\pi}} \left[\exp\left(-\frac{5x^2}{t}\right) - \exp\left(-\frac{5(x-1)^2}{t}\right) \right] \text{ при } t > 0, \end{cases}$$

$$\varphi(x) \text{ при } t = 0.$$

Задача 4.

Максимизируйте целевую функцию g(x,y) = 2x - y при следующих условиях:

$$\begin{cases} x \le 3, \\ y \ge -1, \\ -2x - 3y \le 6, \\ -x + 2y \le 6. \end{cases}$$
 (M)

Решение.

Решим задачу графически. Положим 2x-y=c и изобразим на плоскости xOy множество М. С ростом параметра c прямая 2x-y=c опускается вдоль оси ординат, следовательно, достаточно найти такие точки (x,y), при которых прямая 2x-y=c пересекает множество М и имеет наименьшую ординату точки пересечения с осью Oy. Из рисунка 3 видно, что это достигается в точке (3,-1), а значит,

$$\max_{(x,y)\in M} (2x - y) = 7.$$

Рис. 3: Графическое решение задачи