ESC201A EndSem Part 3

RAGHAV SHUKLA

TOTAL POINTS

10 / 20

QUESTION 1

Q1 10 pts

1.1 1(a) 1 / 2

- + 2 pts Completely Correct
- √ + 0 pts Completely Incorrect
 - + 0 pts Not Attempted
 - + 0 pts Copied
- + 1 Point adjustment

1.2 1(b) 3 / 3

- + 3 pts Completely Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 1 pts Correct number of 1 to 2 decoders used
- √ + 2 pts Final implementation correct

1.3 1(c) 4/5

- + 5 pts Completely Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 2 pts Minimized PoS expression correct
 - + 3 pts Final implementation using 2-input NOR

gates correct

+ 2 Point adjustment

QUESTION 2

Q2 10 pts

2.1 2(a) 2 / 4

- + 4 pts Completely Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 2 pts Excitation table correct
 - + 2 pts Final implementation correct

2.2 2(b) 0 / 6

- + 6 pts Completely Correct
- + 0 pts Completely Incorrect
- √ + 0 pts Not Attempted
 - + 0 pts Copied
- + 1 pts Counter states and transitions correctly identified
- + 3 pts Assignment to D inputs of the two flip flops correct
 - + 2 pts Final implementation schematic correct

encountered

RAGHAV SHUKLA

Roll No.

210800

Seat/Room No.

260 / L19

1 (a). Prove using basic postulates of Boolean algebra that x+x,y=x+y. [2]

R.H. $5=x+y=(x+y)\cdot(x+\overline{x})$ $=x+x+\overline{x}=1$ and $(x+y)\cdot 1=x+y$ $=x+x+x+\overline{x}+y-\overline{x}+y-\overline{x}$ [Distribution of multiplication] $=x-x+(x-x+x-\overline{x})+(x-x+y-x)+(y-\overline{x})$ $=x+x+(x+\overline{x})+x(1+y)+y-\overline{x}$ $=x+x+x+x+\overline{x}+y-\overline{x}=x+y-\overline{x}=1$ Also x+y=(x+x)(y+x)1 (b). Implement a 3 to 8 decoder using only 1 to 2 decoders. Assume that each decoder has an enable signal. Label all the input and output lines. [3]

1(c). Determine the minimized product of Sum (PoS) expression for the K-map shown below and implement using only 2-input NOR gates. Assume that complements of input variables are also available and need not be generated using gates. [5]

Minimised POS expression = $(\overline{\eta}_z + \overline{\eta}_4)$, $(\overline{\eta}_3 + \overline{\eta}_4)$, $(\overline{\eta}_3 + \overline{\eta}_2)$, $(\overline{\eta}_1 + \overline{\eta}_3 + \overline{\lambda}_4)$ A POS This POS expression corresponds to a OR-AND network.

2(a). For the Flip-flop with two inputs A and B whose characteristic table is shown below, determine first the excitation table and then implement the flip-flop using a D flip-flop and a 4 to 1 multiplexer. [4]

Excitation table

	· -				
Q(+)	Q(X+1)	AuB	D		
0	0	1 X	0		
0	1	ΟX	1		
1	0	010010	0		
ī	1	00 00 11	1		
,					

Α	В	Q(t+1)	State
0	0	1	Set
0	1	Q(t)	Toggle
1	0,	0 .	Reset
1	1	Q(t)	Hold

We want
$$D = f(A,B,Q)$$

observe that wher $Q = 0$, $D = \overline{A}$
 $Q = 1$, $D = A.B + \overline{A}.\overline{B} = AOB$

2(b). Design a synchronous circuit using D flip-flops that can produce the outputs y_0 and y_1 from a clock input X as shown below. The output sequence repeats after the dotted line shown below. [6]

