### **Bases de Dados**

Normalização de Esquemas Relacionais

FCUL, Departamento de Informática Ano Letivo 2015/2016

Ana Paula Afonso

## Sumário e Referências

- Sumário
  - Motivação para a normalização de esquemas relacionais
  - Problemas da redundância de dados Exemplo de relação com redundância
  - Dependências funcionais
  - Etapas da normalização

Principais formas normais Exemplo de normalização

- Referências
  - R. Ramakrishnan (capítulo 19, secção 19.1 e 19.4)



© 2015 - Docentes SI - DI/FCUL

© Docentes FCUL/DI/SI

2

## Motivação da Normalização

- Após a construção do modelo concetual dos dados (Modelo E/A) é feita a transformação para um modelo lógico (Esquema Relacional)
- O esquema relacional obtido representa a estrutura da informação de um modo natural e completo. Mas terá o mínimo de redundância possível?



© 2015 - Docentes SI - DI/FCUL

## Normalização

- · Dado um esquema relacional por vezes
  - Os mesmos dados existem armazenados em múltiplos locais (redundância)
  - Existência de anomalias aquando da escrita de dados (incoerências dos dados)
- Normalização permite melhorar a qualidade do esquema através da
  - Eliminação da redundância dos dados
  - Prevenção de anomalias
- Normalização é uma abordagem que envolve a
  - Decomposição sucessiva de relações até se obter um conjunto de relações
  - ... sem redundâncias e que permitam inserções, atualizações e remoções sem incoerências

© 2015 - Docentes SI - DI/FCUL

4

## Exemplo de Relação não Normalizada

#### **Nota**

| nº<br>estudante | nome<br>estudante | curso       | nº<br>disciplina | nome<br>disciplina | cod<br>professor | nome<br>professor | grau<br>professor | nota |
|-----------------|-------------------|-------------|------------------|--------------------|------------------|-------------------|-------------------|------|
| 21934           | Antunes           | Informática | 04               | Álgebra            | 21               | Gil Algébrico     | PA                | 15   |
|                 |                   |             | 14               | Análise Sist.      | 87               | Ana Listada       | PC                | 12   |
|                 |                   |             | 23               | P.Linear           | 43               | Plínio            | AS                | 16   |
| 42346           | Bernardo          | Matemática  | 08               | Topologia          | 32               | Topo Lógico       | AE                | 10   |
|                 |                   |             | 04               | Álgebra            | 21               | Gil Algébrico     | PA                | 12   |
|                 |                   |             | 12               | Geometria          | 21               | Gil Algébrico     | PA                | 18   |
|                 |                   |             | 16               | Lógica             | 32               | Topo Lógico       | AE                | 13   |
| 54323           | Correia           | Estatística | 04               | Álgebra            | 21               | Gil Algébrico     | PA                | 11   |
|                 |                   |             | 08               | Topologia          | 32               | Topo Lógico       | AE                | 10   |
|                 |                   |             |                  |                    |                  | •••               |                   |      |

© 2015 - Docentes SI - DI/FCUL

5

## Anomalias de Relação não Normalizada

| <u>nº</u><br><u>estudante</u> | nome<br>estudante | curso       | nº<br>disciplina | nome<br>disciplina | cod<br>professor | nome<br>professor | grau<br>professor | nota |
|-------------------------------|-------------------|-------------|------------------|--------------------|------------------|-------------------|-------------------|------|
| 21934                         | Antunes           | Informática | 04               | Álgebra            | 21               | Gil Algébrico     | PA                | 15   |
|                               |                   |             | 14               | Análise Sist.      | 87               | Ana Listada       | PC                | 12   |
|                               |                   |             | 23               | P.Linear           | 43               | Plínio            | AS                | 16   |
| 42346                         | Bernardo          | Matemática  | 08               | Topologia          | 32               | Topo Lógico       | AE                | 10   |
|                               |                   |             | 04               | Álgebra            | 21               | Gil Algébrico     | PA                | 12   |
|                               |                   |             | 12               | Geometria          | 21               | Gil Algébrico     | PA                | 18   |
|                               |                   |             | 16               | Lógica             | 32               | Topo Lógico       | AE                | 13   |
| 54323                         | Correia           | Estatística | 04               | Álgebra            | 21               | Gil Algébrico     | PA                | 11   |
|                               |                   |             | 08               | Topologia          | 32               | Topo Lógico       | AE                | 10   |

- Inserção de um novo professor requer indicação de outros dados
- Atualização do grau do professor tem de afetar várias linhas
- Remoção de um professor elimina os dados da disciplina a que está afeto

© 2015 - Docentes SI - DI/FCUL

6

## Exemplo de Relação não Normalizada

Possível EA para Notas



Notação: atributo com vários valores



© 2015 - Docentes SI - DI/FCUL

Problemas da Redundância dos Dados

- A redundância introduz problemas (anomalias) de coerência e manutenção
  - Anomalia de inserção informação que é independente não pode ser inserida de forma separada na Base de Dados
  - Anomalia de remoção a remoção de informação acarreta a perda de outra informação independente contida na Base de Dados
  - Anomalia de atualização a modificação de informação num conjunto de ocorrências implica a criação de inconsistências ou a necessidade de alterar informação noutras instâncias da Base de Dados que são independentes das primeiras

© 2015 - Docentes SI - DI/FCUL

8

## Conceitos associados à Normalização

- Depêndencia funcional (DF) de X → Y de uma relação R
  - X e Y são conjuntos de colunas (atributos) de R
  - Lê-se: qualquer valor de X determina univocamente o valor de Y
     Para quaisquer dois tuplos t1 e t2 de R se:

```
t1.X = t2.X => t1.Y=t2.Y
```

- Lado esquerdo da DF designa-se por determinante
- Exemplos:  $n_{aluno}$  →  $n_{aluno}$  → n
- Formas normais (FN)
  - 1FN, 2FN, 3FN, FNBC, outras (não estudadas em BD)
  - Quanto maior a FN menor a redundância nos dados

© 2015 - Docentes SI - DI/FCUL

.

# **Principais Formas Normais**

- Primeira forma normal: 1FN
  - Colunas da relação guardam apenas um valor por linha
  - Tipicamente verificado em BD relacionais
- Segunda forma normal: 2FN = 1FN +
  - Colunas não pertencentes às chaves candidatas da relação...
  - ...dependem da totalidade das colunas de cada chave
  - Trivial, se chaves da relação tiverem apenas uma coluna
- Terceira forma normal: 3FN = 2FN +
  - Colunas não pertencentes às chaves candidatas...
  - ...dependem apenas das chaves candidatas
- Forma normal de Boyce-Codd: FNBC = 3FN +
  - Todos os determinantes são chaves candidatas da relação

© 2015 - Docentes SI - DI/FCUL 1





### Anomalias com a 1º Forma Normal

#### Inserção

- Não se pode inserir informação sobre uma nova disciplina ...
- .... enquanto n\u00e3o existirem alunos inscritos para a nova disciplina (o atributo №
  Estudante faz parte da chave da relaç\u00e3o)

#### Remoção

- Quando se apaga a informação sobre todos os alunos que têm uma determinada disciplina ....
- perde-se toda a informação dessa disciplina e do respetivo professor

#### Atualização

- Quando se modifica o nome de uma disciplina ...
- ... é necessário percorrer toda a relação e fazer essa modificação para todos os alunos que tivessem essa disciplina
- No caso de falhar a aplicação de modificação em alguma ocorrência, então ter-se-iam dados inconsistentes

© 2015 - Docentes SI - DI/FCUL

# **Principais Formas Normais**

- Primeira forma normal: 1FN
  - Colunas da relação guardam apenas um valor por linha
  - Tipicamente verificado em bases de dados relacionais
- Segunda forma normal: 2FN = 1FN +
  - Se não existirem dependências funcionais entre subconjuntos próprios da chave e atributos não chave
  - Colunas não pertencentes às chaves candidatas da relação...
  - ...dependem da totalidade das colunas de cada chave
  - As relações com chaves simples (1único atributo) que estejam na 1FN estão sempre na 2FN

© 2015 - Docentes SI - DI/FCUL 14





## Decomposição na 2FN

- O esquema atual tem atualmente 3 tabelas
  - Estudante, Disciplina e Nota. Inicialmente era apenas 1 tabela
  - As 3 tabelas estão na 2FN ...
  - ... colunas não chave dependem da totalidade da chave
- Contudo, ainda existem anomalias na tabela Disciplina
  - Inserção de um novo professor exige que lhe seja distribuída pelo menos uma disciplina (a chave é № Disciplina)
  - Remoção de uma disciplina elimina a informação do professor se esse professor não dá aulas a outras disciplinas, então perde-se a sua informação
  - Actualização do grau de um professor exige efectuar a alteração em todas as disciplinas que esse professor dá

© 2015 - Docentes SI - DI/FCUL 17

# **Principais Formas Normais**

- Primeira forma normal: 1FN
  - Colunas da relação guardam apenas um valor por linha
  - Tipicamente verificado em bases de dados relacionais
- Segunda forma normal: 2FN = 1FN +
  - Colunas não pertencentes às chaves candidatas da relação...
  - ...dependem da totalidade das colunas de cada chave
  - Trivial, se chaves da relação tiverem apenas uma coluna
- Terceira forma normal: 3FN = 2FN +
  - Colunas não pertencentes às chaves candidatas...
  - ...dependem apenas das chaves candidatas
  - As relações com um único atributo não chave que estejam na 2FN estão sempre na 3FN

© 2015 - Docentes SI - DI/FCUL 19





21

## Decomposição na 3FN

- Esquema atual tem 4 tabelas
  - Estudante (número aluno, nome aluno, sigla curso)
  - Nota (número aluno, número disciplina, nota)
  - Disciplina (número disciplina, nome disciplina, número professor)
  - Professor (<u>número professor</u>, nome professor, grau professor)
- Esquema relacional está na 3FN
  - Para cada relação, não existem dependências entre colunas não chave
  - Todas as dependências são das chaves candidatas para as outras colunas
- Também está na forma normal de Boyce-Codd
  - Para cada relação, todos os determinantes são chaves candidatas
- Esquema normalizado é que seria traduzido para comandos SQL

© 2015 - Docentes SI - DI/FCUL

### Anomalias com a 3ª Forma Normal

#### Novo problema

- Um estudante pode frequentar vários anos simultaneamente
- A cada estudante está afeto um tutor em cada ano que frequenta
- A cada ano estão afetos vários professores como tutor
- Cada professor é tutor apenas de um ano
- Cada professor pode ser tutor de vários estudantes num ano

Chaves candidatas: {nº estudante, ano\_de\_licenciatura} {nº estudante, professor\_responsavel}

Tutores (n°estudante, ano de licenciatura, professor responsável)



### Anomalias com a 3º Forma Normal

- A Inserção da informção de que um professor é tutor de um ano não pode ser efetuada enquanto não for afeto a pelo menos um aluno
- A Remoção (anular a inscrição) da inscrição de um aluno num ano, implica a perda da informação que esse professor é tutor nesse ano, caso o seu tutor não tiver na altura mais alunos desse ano
- A Atualização de ano de licenciatura de um aluno para outro ano, pode implicar a perda da informação de que esse professor é tutor do primeiro ano (caso análogo à remoção).



# **Principais Formas Normais**

- Primeira forma normal: 1FN
  - Colunas da relação guardam apenas um valor por linha
  - Tipicamente verificado em BD relacionais
- Segunda forma normal: 2FN = 1FN +
  - Colunas não pertencentes às chaves candidatas da relação...
  - ...dependem da totalidade das colunas de cada chave
  - Trivial, se chaves da relação tiverem apenas uma coluna
- Terceira forma normal: 3FN = 2FN +
  - Colunas não pertencentes às chaves candidatas...
  - ...dependem apenas das chaves candidatas
- Forma normal de Boyce-Codd: FNBC = 3FN +
  - Todos os determinantes são chaves candidatas da relação

© 2015 - Docentes SI - DI/FCUL 24



## FN de Boyce Codd (BCNF)

- A FNBC só é distinta da 3FN quando
  - tem mais do que uma chave candidata, tal que
  - duas chaves candidatas têm mais do que um atributo, e
  - existem atributos comuns nessas chaves

© 2015 - Docentes SI - DI/FCUL 20

## **Principais Formas Normais**

- Primeira forma normal: 1FN
  - Colunas da relação guardam apenas um valor por linha
  - Tipicamente verificado em BD relacionais
- Segunda forma normal: 2FN = 1FN +
  - Colunas não pertencentes às chaves candidatas da relação...
  - ...dependem da totalidade das colunas de cada chave
  - Trivial, se chaves da relação tiverem apenas uma coluna
- Terceira forma normal: 3FN = 2FN +
  - Colunas não pertencentes às chaves candidatas...
  - ...dependem apenas das chaves candidatas
- Forma normal de Boyce-Codd: FNBC = 3FN +
  - Todos os determinantes são chaves candidatas da relação

© 2015 - Docentes SI - DI/FCUL

