Stat 982: Module 3, Homework 1 Due on November 22, 2022

Problem 1

Suppose that $X^{'}$ is exponential with mean λ^{-1} (i.e., it has density $f_{\lambda}(x) = \lambda \exp(-\lambda x)I[x \geq 0]$ with respect to the Lebesgue measure on \mathbb{R}^{1}), but that one only observes $X = X^{'}I[X^{'} \geq 1]$. (There is interval censoring

Consider the maximum likelihood estimation of λ based on X_1, \ldots, X_n , which are iid with the distribution P_{λ}^X . Let $\delta_i = I[X_i \neq 0]$, for $i = 1, \ldots, n$. Let $M_n = n - \sum_{i=1}^n \delta_i$; that is, M_n is the number of X_i 's equal to

- (a) Show that there is no maximum likelihood estimate (MLE) of λ when $M_n = n$, but there is an MLE of λ when $M_n < n$.
- (b) Show that for any $\lambda \in (0, \infty)$, with λ -probability (that is, $P_{\lambda}^{X^n}$ -probability) tending to 1, the MLE of
- (c) Give a simple estimator of λ based on M_n alone. Prove that this estimator is consistent for λ . Then write down an explicit one-step Newton improvement of your estimator based on the likelihood function from part (a).
- (d) Discuss what numerical methods you could use to find the MLE from part (a) when it exists.
- (e) Give two forms of large-sample (Wald-type) confidence intervals for λ based on the MLE $\hat{\lambda}_n$ and two different approximations to $I_1(\lambda)$.

Problem 2

Suppose that X_1, \ldots, X_n are iid with the distribution P_{θ} for $\theta \in \mathbb{R}^1$, where P_{θ} has the R-N derivative with respect to the counting measure ν on $\mathcal{X} = \{0, 1, 2\}$ given by

$$f_{\theta}(x) = \frac{\exp(x\theta)}{1 + \exp(\theta) + \exp(2\theta)}.$$

- (a) Find an estimator T_n of θ based on $n_0 = \sum_{i=1}^n I[X_i = 0]$ such that T_n is \sqrt{n} -consistent (that is, $\sqrt{n}(T_n \theta)$ is bounded in probability).
- (b) Find an explicit one-step Newton improvement of your estimator from part (a).
- (c) (Optional) Prove directly that your estimator from part (b), denoted by $\widetilde{\theta}_n$, is asymptotically normal with variance $1/I_1(\theta)$. (Hint: Note that

$$\widetilde{\theta}_{n} = T_{n} - \frac{L_{n}'(T_{n})}{L_{n}''(T_{n})},$$

and write $L_n^{'}(T_n) = L_n^{'}(\theta) + (T_n - \theta)L_n^{''}(\theta) + \frac{1}{2}(T_n - \theta)^2L_n^{'''}(\theta_n^*)$ for some θ_n^* between T_n and θ .)

(d) (Optional) Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Show that, if $\overline{X} \in (0,2)$, the log-likelihood function has a unique maximizer

$$\widehat{\theta}_n = \log \left(\frac{\overline{X} - 1 + \sqrt{-3\overline{X}^2 + 6\overline{X} + 1}}{2(2 - \overline{X})} \right).$$

- (e) Prove that an estimator defined to be $\widehat{\theta}_n$ in part (d) when $\overline{X} \in (0,2)$ is asymptotically normal with variance $1/I_1(\theta)$.
- (f) Show that $-\frac{1}{n}L''(\theta) = I_1(\theta)$, for n = 1, 2, ... and $\theta \in \mathbb{R}^1$. (Thus the "observed Fisher information" and "expected Fisher information" approximations lead to the same large-sample confidence intervals for λ .)

Note: A version of nearly everything in this problem works in any one-parameter exponential family.

Relevant notes from Stat 643 at ISU

An honest version of the Stat 543 (MS theory course) "MLE's are asymptotically Normal" is next.

Theorem 173. Suppose that k=1 and there exists an open neighborhood of θ_0 , say \mathcal{O} , such that

- 1. $f_{\theta}(x) > 0 \ \forall x \ and \ \forall \theta \in \mathcal{O}$,
- 2. $\forall x, f_{\theta}(x)$ is three times differentiable at every point of \mathcal{O} ,
- 3. there exist $M(x) \ge 0$ with $E_{\theta_0}M(X) < \infty$ and

$$\left| \frac{d^3}{d\theta^3} \ln f_{\theta}(x) \right| \le M(x) \ \forall x \ and \ \forall \theta \in \mathcal{O},$$

- 4. $1 = \int f_{\theta}(x) d\mu(x)$ can be differentiated twice with respect to θ under the integral at θ_0 , and
- 5. $I_1(\theta) \in (0, \infty) \ \forall \theta \in \mathcal{O}$.

If with θ_0 probability approaching 1, $\hat{\theta}_n$ is a root of the likelihood equation and $\hat{\theta}_n \to \theta_0$ in θ_0 probability, then under θ_0

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} N\left(0, \frac{1}{I_1\left(\theta_0\right)}\right)$$

Corollary 174. Under the hypotheses of Theorem 173, if $I_1(\theta)$ is continuous at θ_0 , then under θ_0

$$\sqrt{nI_1\left(\hat{\theta}_n\right)}\left(\hat{\theta}_n-\theta_0\right)\overset{d}{\to}N(0,1)$$

Corollary 175. Under the hypotheses of Theorem 173, under θ_0

$$\sqrt{-L_n''\left(\hat{\theta}_n\right)}\left(\hat{\theta}_n-\theta_0\right)\stackrel{d}{\to}N(0,1)$$

What is often a more practically useful result (parallel to Theorem 173) concerns "one-step Newton improvements" on " \sqrt{n} -consistent" estimators. (The following is a special case of Schervish's Theorem 7.75.)

Theorem 176. Under the hypotheses 1-5 of Theorem 173, suppose that under θ_0 estimators T_n are \sqrt{n} -consistent, that is $\sqrt{n}(T_n - \theta_0)$ converges in distribution (or more generally, is O(1) in θ_0 probability). Then with

$$\tilde{\theta}_n = T_n - \frac{L'_n(T_n)}{L''_n(T_n)}$$

under θ_0

$$\sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right)\overset{d}{\rightarrow}N\bigg(0,\frac{1}{I_{1}\left(\theta_{0}\right)}\bigg)$$

It is then obvious that versions of Corollaries 174 and 175 hold where $\hat{\theta}_n$ is replaced by $\tilde{\theta}_n$.