



### Department of Computer Science and Engineering

# SMARTSIZER: A REAL-TIME MULTIBRAND CLOTHING SIZE PREDICTION ENGINE USING RANDOM FOREST

Mrs. M. Divya M.E.

Supervisor

**Assistant Professor** 

Department of Computer Science and Engineering

Rajalakshmi Engineering College, Chennai-602105 220701208 Radhika Rakesh

#### **Problem Statement and Motivation**

#### **Problem:**

Online shoppers face confusion due to **non-standard clothing sizes** across brands, leading to **returns and poor fit**. Size charts lack **personalization**.

#### Motivation:

Build an ML-based system to:

- ✓ Predict brand-specific sizes from measurements
- ✓ Improve fit and reduce returns
- ✓ Enable easy API integration and scaling

## **Existing System**

- •Most e-commerce platforms use static size charts or generic recommendations.
- •Some offer user reviews for sizing guidance, which are often subjective and inconsistent.
- •Virtual try-on tools exist, but they rely on image estimation and may lack accuracy.
- •Few platforms support brand-specific sizing log

## **Objectives**

evelop a machine learning system to **predict accurate clothing sizes** across multiple brands

- ✓ Use body measurements to offer personalized, brandspecific recommendations
- ✓ Deploy models via FastAPI for real-time interaction
- ✓ Ensure scalability and modularity for adding new brands
- ✓ Reduce return rates and improve customer satisfaction in online fashion retail

#### **Abstract**

Choosing the right clothing size across brands is difficult due to inconsistent sizing standards. This project presents an AIpowered platform that predicts the best-fit size for each brand using user body measurements (chest, shoulder, front length, sleeve length). Random Forest classifiers are trained separately for brands like Zara, H&M, Nike, Puma, and Adidas. The models are deployed via a FastAPI backend, offering real-time, brand-wise size predictions through a RESTful API. This system reduces size mismatches, lowers return rates, and improves the personalized shopping experience in ecommerce.

## **Proposed System**

- This system uses machine learning to predict accurate clothing sizes across brands based on user body measurements.
  - Inputs: Chest, shoulder, front length, sleeve length
  - Processing: Brand-specific Random Forest classifiers trained on labeled data
  - Backend: FastAPI handles user input via a POST endpoint and returns real-time predictions
  - Model Storage: Trained models and encoders stored in a centralized
    Pickle file
  - Output: Personalized size recommendation for each brand (e.g., Zara, Nike, H&M)
  - Scalability: Easily extendable to more brands with new data
  - Goal: Reduce return rates and improve fit confidence in online shopping

## **System Architecture**





### **List of Modules**

- Dataset Description
- Data Preprocessing
- Brand-wise Size Prediction using ML
- Model Training and Serialization
- API Development using FastAPI
- System Integration and Testing

# Functional Description for each modules with DFD and Activity Diagram





## **Implementation & Results of Module**





#### **Conclusion & Future Work**

- The system successfully predicts brand-specific clothing sizes using Random Forest classifiers based on user body measurements.
- Integrated via FastAPI, it delivers real-time, personalized size recommendations, reducing guesswork and returns.

#### **Future Work**

- ✓ Add more body measurements (waist, hips) for higher accuracy
- ✓ Extend support to more brands and garment types
- ✓ Explore advanced models (e.g., XGBoost, CNNs)
- ✓ Build a user-friendly frontend or mobile app
- ✓ Integrate user feedback and virtual try-on tools

#### References

- Abdul-Saboor Sheikh et al., "A Deep Learning System for Predicting Size and Fit in Fashion E-Commerce," arXiv:1907.09844, 2019. <a href="https://arxiv.org/abs/1907.09844">https://arxiv.org/abs/1907.09844</a>
  - •Oishik Chatterjee et al., "Incorporating Customer Reviews in Size and Fit Recommendation Systems," arXiv:2208.06261, 2022. https://arxiv.org/abs/2208.06261
  - •M. Kuribayashi et al., "Image-Based Virtual Try-On System With Clothing-Size Adjustment," arXiv:2302.14197, 2023. <a href="https://arxiv.org/abs/2302.14197">https://arxiv.org/abs/2302.14197</a>
  - •W.-L. Hsiao, K. Grauman, "ViBE: Dressing for Diverse Body Shapes," CVPR, 2020. <a href="https://arxiv.org/abs/1912.06697">https://arxiv.org/abs/1912.06697</a>
  - •Zhengtang Tan et al., "Cluster Size Intelligence Prediction Using 3D Body Scan Data," Cluster Computing, vol. 25, 2022.
  - •Amazon, "Fit Insights Tool," [Online]. Available: <a href="https://www.aboutamazon.com">https://www.aboutamazon.com</a>

## **Paper Publication Status**

■ Not yet published

# **Thank You**