Семинар 17

- Если задан оператор $\varphi \colon V \to V$ и $U \subseteq V$ подпространство. То U называется инвариантным, если $\varphi(U) \subseteq U$. Или другими словами для любого $u \in U$ следует, что $\varphi(u) \in U$.
- Вектор $v \in V$ называется собственным, если для некоторого $\lambda \in F$ верно $\varphi(v) = \lambda v$. Если $v \neq 0$, то λ называется собственным значением для φ .
- Множество $V_{\lambda} = \{v \in V \mid \varphi(v) = \lambda v\}$ векторов, которые растягиваются на один и тот же коэффициент $\lambda \in F$ является подпространством и называется собственным подпространством для λ .
- Следующие условия эквивалентны
 - 1. λ собственное значение.
 - 2. λ лежит в спектре φ .
 - 3. $V_{\lambda} \neq 0$.
- Одномерное подпространство $U = \langle v \rangle$, где $v \in V$ и $v \neq 0$, является φ инвариантным тогда и только тогда, когда v является собственным для φ .

Задачи:

- 1. Задачник. §40, задача 40.15 (в).
- 2. Задачник. §40, задача 40.1 (e).
- 3. Задачник. §40, задача 40.2.
- 4. Задачник. §40, задача 40.4.
- 5. Опишите инвариантные подпространства следующих операторов:

(a)
$$\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$$
, где $\phi(x) = Ax$ и $A = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$.

(b)
$$\phi \colon \mathbb{R}^4 \to \mathbb{R}^4$$
, где $\phi(x) = Ax$ и $A = \begin{pmatrix} 0 & 1 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$.

6. Пусть в \mathbb{R}^3 заданы два линейных оператора $\phi, \psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ заданные следующими матрицами:

$$A_{\phi} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \\ -1 & -2 & -3 \end{pmatrix} \quad \text{if} \quad A_{\psi} = \begin{pmatrix} 1 & 2 & -3 \\ 2 & -2 & 6 \\ 2 & -2 & 6 \end{pmatrix}$$

1

Найдите базис подпространства $\ker \phi^{2020} \cap \operatorname{Im} \psi^{2021}$.