Machine Learning and Non-linear Schrödinger Equation

Hüseyin Talha Şenyaşa

Graduation Project

June 11, 2018

Outline

- Gross-Pitaevskii Equation in Random 1D Potentials
 - Random Potential Generation
- 2 Machine Learning and Differential/Eigenvalue Equations
 - Machine Learning with Neural Networks
 - Deep Learning and Schrödinger Equation
- Convolutional Neural Networks
- 4 Results
 - Ground State Energy Predictions
 - Inverse Problem: Interaction Parameter Prediction
- 5 Conclusion and Future Plans

Gross-Pitaevskii Equation in Random 1D Potentials

• Bose-Einstein Condensate at zero temperature

•
$$\frac{-\hbar^2}{2m} \frac{\mathrm{d}^2 \psi_x}{\mathrm{d}x^2} + V(x)\psi + g_{1D}|\psi|^2 \psi = \mu_{1D}\psi$$

- \bullet $g|\psi|^2$ term introduces non-linearty. (Interactions between bosons)
- Numerically solved in XMDS Framework.

Random Potential Generation

Figure 1: Envelope functions are applied to a random potential. After that, a gaussian filter is applied for smoothness. We also make sure that the minimum value of the potential is zero at re-scaling process.

Random Potential Generation

Energy Distribution

Figure 3: The energy distribution of the random potentials are similar but it is clear that the random potential generation method directly affects the energy spectrum. There is a shift between energy spectrum of the random2 and random3. The random's spectrum is completely different and contains both random2's and random3's.

Machine Learning with Neural Networks

• Artificial neural networks used in machine learning can approximate any continuous function within desired accuracy.

ullet It is guaranteed that there exists a network that satisfies the relation $||g(x)-f(x)||<\epsilon.$

• Many different kind of applications of machine learning have already been implemented in physics.

Deep Learning and Schrödinger Equation

• Application of machine learning to a 2D Schrödinger Equation with random potential.

Figure 4: Deep Learning and Schrödinger Equation.

Convolutional Neural Networks

Convolution Network for Energy Prediction:

- 3 convolution layers, 3 maxpool layers, 3 fully connected layer.
- Adaptive Learning Rate (Adam)
- ReLU activation function

Convolution Network for Interaction Parameter:

- 5 convolution layers, 5 maxpool layers, 4 fully connected layer.
- Adaptive Learning Rate (Adam)
- Rel U activation function

Ground State Energy Predictions

Table 1: Prediction Errors

Potential Type	REM (%)
DIG	1.14
Harmonic	0.05
Infinite Well	2.13
Random #1	2.24
Random #2	0.55
Random #3	0.67

(a) Double Inverted Gaussian

Ground State Energy Predictions

Inverse Problem: Interaction Parameter Prediction

Table 2: Prediction Errors

Potential Type	REM (%)
DIG	1.33
Harmonic	1.33
Infinite Well	17.29
Random #1	12.77
Random #2	10.41
Random #3	6.96

Inverse Problem: Interaction Parameter Prediction

Conclusion and Future Plan

- Conclusion
 - Machine learning techniques can also be applied to non-linear Schrödinger Equation
 - Random potential generation techniques affects the results due to corresponding energy spectrum and distribution.
- Future Work
 - Generating uniformly distributed dataset by using variational and approximation methods.
 - Working in 2D.