Projet : CinéGraph - Système Avancé de Recommandation de Films

Contexte

Dans l'industrie du streaming, la personnalisation des recommandations est cruciale. CinéGraph vise à créer un système de recommandation de films sophistiqué, utilisant le filtrage collaboratif et l'analyse de graphes pour offrir des suggestions précises et variées aux utilisateurs.

Objectifs

- 1. Développer un système de recommandation de films basé sur le filtrage collaboratif (<u>What is collaborative filtering? | IBM</u>).
- 2. Utiliser des algorithmes de graphes pour améliorer la qualité des recommandations.
- 3. Implémenter des visualisations interactives pour analyser les relations entre films et utilisateurs.
- 4. Optimiser les performances du système pour gérer de grands ensembles de données.

Outils et Bibliothèques

- NumPy: Pour les calculs numériques efficaces
- pandas : Pour la manipulation et l'analyse des données
- **NetworkX** : Pour la modélisation et l'analyse des graphes
- Matplotlib/Seaborn : Pour la visualisation des résultats

Fonctionnalités Requises

- 1. Gestion et Préparation des Données :
 - Utiliser pandas pour importer et nettoyer un large dataset de films et d'évaluations (ex: MovieLens : MovieLens | GroupLens)
 - Créer des DataFrames efficaces pour stocker les informations sur les films, utilisateurs et évaluations
- 2. Implémentation du Filtrage Collaboratif :
 - Utiliser NumPy pour calculer efficacement les similarités entre utilisateurs et entre films
 - Implémenter les méthodes de filtrage collaboratif "user-based" et "item-based"
- 3. Analyse de Graphes:
 - Utiliser NetworkX pour créer un graphe biparti utilisateurs-films
 - Implémenter des algorithmes de recommandation basés sur la structure du graphe (ex: PageRank personnalisé)
- 4. Visualisation et Analyse:

- Créer des visualisations interactives avec Matplotlib pour :
 - Afficher les relations entre films (graphe de similarité)
 - Visualiser les clusters d'utilisateurs
- Utiliser Seaborn pour générer des heatmaps de corrélation entre genres de films
- 5. Optimisation des Performances:
 - Utiliser les capacités de calcul vectoriel de NumPy pour accélérer les calculs de similarité
 - Implémenter des techniques de réduction de dimensionnalité (ex: SVD avec NumPy) pour gérer de grands ensembles de données
- 6. Interface Utilisateur:
 - Développer une interface en ligne de commande pour interagir avec le système
 - Permettre aux utilisateurs de recevoir des recommandations et de visualiser les analyses

Étapes du Projet

- 1. Préparation et Exploration des Données :
 - Charger le dataset avec pandas
 - Effectuer une analyse exploratoire des données (EDA) avec pandas et Seaborn
- 2. Implémentation du Filtrage Collaboratif :
 - Développer les fonctions de calcul de similarité avec NumPy
 - Implémenter les algorithmes de recommandation basés sur les utilisateurs et les items
- 3. Modélisation par Graphes :
 - Construire le graphe utilisateurs-films avec NetworkX
 - Implémenter des algorithmes de recommandation basés sur la structure du graphe
- 4. Visualisation et Analyse:
 - Créer des visualisations de graphes avec NetworkX et Matplotlib
 - Générer des graphiques d'analyse avec Seaborn (distributions, corrélations)
- 5. Optimisation et Évaluation :
 - Optimiser les calculs avec NumPy
 - Évaluer les performances des différentes méthodes de recommandation
- 6. Développement de l'Interface :
 - Créer une interface CLI pour interagir avec le système

• Intégrer les visualisations dans l'interface utilisateur

Livrables Attendus

- 1. Code source Python bien structuré et commenté
- 2. Notebook Jupyter détaillant l'analyse exploratoire des données et les résultats
- 3. Rapport technique incluant :
 - Description des algorithmes implémentés
 - Analyse des performances des différentes approches
 - Interprétation des visualisations et des résultats d'analyse de graphes
- 4. Présentation du projet avec démonstration des visualisations

Défis Techniques

- Gestion efficace de grandes matrices de données avec NumPy
- Optimisation des algorithmes de graphe pour passer à l'échelle
- Création de visualisations informatives et interactives