FINANCE - CLASSIFICATION

S.no	Algorithm	Accuracy	Type-I error	Percent
1	Logistic Algorithm	0.78	1181	78%
2	SVM Algorithm	0.50	0	50%
3	Decision Tree Algorithm	1.00	9	100%
4	Random Forest Algorithm	1.00	1	100%
5	Kth-Nearest Neighbor Algorithm	0.98	82	98%
6	Naives' Bayes Algorithm(BernoulliNB)	0.96	177	96%

Though Decision Tree and Random Forest Classification
Algorithm gives 100% Accuracy, We choose Random Forest
because of the Low Type I Error (i.e. 1 for RF and 9 for DT).
Hence, We can choose the Random Forest Classification
Algorithm for this problem statement.

1. Logistic Regression Algorithm:

[[1541 1181] [29 2725]]

from sklearn.metrics import classification_report
cr=classification_report(Y_test,Y_pred)
print(cr)

	precision	recall	f1-score	support
0	0.98	0.57	0.72	2722
1	0.70	0.99	0.82	2754
accuracy			0.78	5476
macro avg	0.84	0.78	0.77	5476
weighted avg	0.84	0.78	0.77	5476

Accuracy for LogisticRegression = 0.78

2. SVM algorithm:

[[2722 0] [2740 14]]

from sklearn.metrics import classification_report
cr=classification_report(Y_test,Y_pred)
print(cr)

	precision	recall	f1-score	support
0	0.50	1.00	0.67	2722
1	1.00	0.01	0.01	2754
accuracy			0.50	5476
macro avg	0.75	0.50	0.34	5476
weighted avg	0.75	0.50	0.34	5476

Accuracy for SupportVectorMachine = 0.50

3. Decision Tree Algorithm:

```
[[2713 9]
[ 6 2748]]

from sklearn.metrics import classification_report
cr=classification_report(Y_test,Y_pred)
print(cr)
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	2722
1	1.00	1.00	1.00	2754
accuracy			1.00	5476
macro avg	1.00	1.00	1.00	5476
weighted avg	1.00	1.00	1.00	5476

Accuracy for DecisionTreeClassification Algorithm = 1.00

4. Random Forest Algorithm:

```
[[2721 1]
[ 9 2745]]
```

```
from sklearn.metrics import classification_report
cr=classification_report(Y_test,Y_pred)
print(cr)
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	2722
1	1.00	1.00	1.00	2754
accuracy			1.00	5476
macro avg	1.00	1.00	1.00	5476
weighted avg	1.00	1.00	1.00	5476

Accuracy for RandomForestClassification Algorithm = 1.00

5. Kth- Nearest Neighbor Algorithm:

[[2640 82] [49 2705]]

from sklearn.metrics import classification_report
cr=classification_report(Y_test,Y_pred)
print(cr)

	precision	recall	f1-score	support
0	0.98	0.97	0.98	2722
1	0.97	0.98	0.98	2754
accuracy			0.98	5476
macro avg	0.98	0.98	0.98	5476
weighted avg	0.98	0.98	0.98	5476

Accuracy for Kth- Nearest Neighbor Algorithm = 0.98

6. Naives' Bayes Algorithm:

[[2545 177] [64 2690]]

from sklearn.metrics import classification_report
cr=classification_report(Y_test,Y_pred)
print(cr)

	precision	recall	f1-score	support
0	0.98	0.93	0.95	2722
1	0.94	0.98	0.96	2754
accuracy			0.96	5476
macro avg	0.96	0.96	0.96	5476
weighted avg	0.96	0.96	0.96	5476

Accuracy for Naives' bayes Algorithm (Done in BernoulliNB) = 0.96