Theorem 0.1. Let the lead-time T be normally distributed, i.e. $T \sim N(\mu_{\ell}, \sigma_{\ell}^2)$ and denote the set of demand of period i as $\{D_i\}_{i=1}^T$ where $D_i \sim N(\mu_d, \sigma_d^2)$ for each $1 \leq i \leq T$. Then the safety stock level, SS satisfies the following equation

$$SS = z_{\alpha} \sqrt{\sigma_d^2 \mu_{\ell} + \mu_d^2 \sigma_{\ell}^2},$$

where z_{α} is the Z-value of a desired α which is chosen.

Proof. Denote the demand between within lead-time as $D(T) := \sum_{i=1}^{N} D_i$. The safety stock level is then set at

$$SS = z_{\alpha} \sqrt{Var(D(T))}.$$

Thus we need only to prove Var(D(T)).

From Towering-property, note that

$$\begin{split} \mathbb{E}[D(T)] &= \mathbb{E}\big[\mathbb{E}[D(T)|T]\big] \\ &= \mathbb{E}\big[T\mu_d\big] = \mu_d \mathbb{E}[T] = \mu_d \mu_\ell. \end{split}$$

Furthemore, again with Towering-property, we have

$$\begin{split} \mathbb{E}[D^2(T)] &= \mathbb{E}\left[\mathbb{E}[D^2(T)|T]\right] \\ &= \mathbb{E}\left[Var[D(T)|T] + \left(\mathbb{E}[D(T)|T]\right)^2\right] \\ &= \mathbb{E}\left[T\sigma_d^2 + \left(T\mu_d\right)^2\right] \\ &= \sigma_d^2\mathbb{E}[T] + \mu_d^2\mathbb{E}[T^2] \\ &= \sigma_d^2\mu_\ell + \mu_d^2\left(Var(T) + \left(\mathbb{E}[T]\right)^2\right) \\ &= \sigma_d^2\mu_\ell + \mu_d^2\left(\sigma_\ell^2 + \mu_\ell^2\right). \end{split}$$

Finally,

$$Var(D(T)) = \mathbb{E}[D^2(T)] - (\mathbb{E}[D(T)])^2$$

$$= \sigma_d^2 \mu_\ell + \mu_d^2 (\sigma_\ell^2 + \mu_\ell^2) - (\mu_d \mu_\ell)^2$$

$$= \sigma_d^2 \mu_\ell + \mu_d^2 \sigma_\ell^2.$$