1、网络计划这一块的知识点,基本运筹学里面都会提及。作为实用性来说,对项目的整个进度和费用的控制还是很有用的。 网络计划,分两块,第一会画网络图和看懂网络图,并求出相关的一些参数(最早开始时间等);第二,根据初步的方案 (网络图),去优化,也就是如何加快进度,并且成本最小块,或者如何去调整资源的配置等等。

参考:

http://www.cnblogs.com/zany-hui/articles/4067726.html

2、首先,如何画网络图,并且求出必要的参数,看一下书,很快解决。但是,其中有两个参数,必须要解决的,就是总时差slack time 和单时差 free time。总时差,就是说调整了这个时间段,会影响到整个项目的进度; (插图)

Slack is the length of time an activity can be delayed without delaying the entire project

$$Slack = LS - ES$$
 or $Slack = LF - EF$

而单时差,就是调整了这个时间段,只会影响紧后工序的最早开工时间(如果紧后工序是关键工序,就会导致整个项目)。因此,slack time 等于最早开始时间和最晚开始时间的时间段; free time 等于 min {紧后工序的最早开始时间(虚工序)}-当前工序的最早完成时间。

3、PERT,求解项目在多少天完工的概率或者说 100%完工,需要多少天。由于没有经验,项目中的工序只能通过三点估计法来求解,得到一个期望值和响应的方差(用来求概率用的)。

当用三点估计法得到了 CPM 以后,就知道了总的工期(比如是46天),那么问题来了,42 和48 天完工的概率的分别是多少?看个例子,如图:

求解思路:分别得到每个工序的期望值和方差,然后可以得到整个项目的期望值(关键路径相加),并且得到关键工序的方差。

Project variance is computed by summing the variances of critical activities

 $\sigma_{\mathbf{p}}^{\mathbf{2}} = Project \ variance$

= \sum (variances of activities on critical path)

得到一个正态分布,根据这个正态分布,就可以知道任意一个数值的概率了。

Probability of Project Completion

Assumption: Total project completion times follow a normal probability distribution

接着看一看所要求的时间(due date)和期望完工的时间(expected)之间的差异多少(在方差之下)?

Question: What is the probability this project can be completed on or before the 16 week deadline?

STEP1: calculate Z-score.

$$Z = \begin{cases} \text{due} & \text{expected date} \\ \text{date} & \text{of completion} \end{cases} / \sigma_p$$
$$= (16 \text{ wks} - 15 \text{ wks}) / 1.76 = 0.57$$

根据这个差异去查表,得到相应的概率。

Probability of Project Completion (cont.)

STEP2: go to Appendix A and find the probability

因此,上面的例子,结果如下:

4、网络计划的优化 CPM。主要包括:时间的优化、时间一成本的优化("成本最低的完工期")和时间一资源的优化()。看图:

"向关键线路要时间,向非关键线路要节约。" ——华罗庚

5、时间一成本控制中的主要思想是:缩短工期后,会增加应急成本(直接成本),但是会减少社会成本(间接成本),看图:

工程总费用=直接费+间接费

工期一费用关系示意图

因此,怎么去合理的调整工期,让总成本最低,是时间一费用的优化主要内容。那具体的求解步骤是怎么样的呢?步骤如下:已知条件为正常和应急条件下,工期和费用的关系,如图:

工序	紧前工	时间(天)		成本(万元)		时间的最大	应急增加成本(万
	序	正常	应急	正常	应急	缩量(天)	元/天)
A		19	15	52	80	4	7
В	A	21	19	62	90	2	14
C	В	24	22	24	30	2	3
D	В	25	23	38	60	2	11
E	В	26	24	18	26	2	4
F	C	25	23	88	102	2	7
G	D,E	28	23	19	39	5	4
Н	F	23	23	30	30	0	
I	G,H	27	26	40	55	1	15
J	I	18	14	17	21	4	1
K	Ι	35	30	25	35	5	2
L	J	28	25	30	60	3	10
M	K	30	26	45	57	4	3
N	L	25	20	18	28	5	2
总成本				506	713		

并且得到减少的社会成本为多少,如图:

- (4) 已知项目缩短1天额外获得奖金5万元,减少间接费用1万元,求总成本最低的项目完工期,也称为最低成本日程。
- (1)、先求出正常的工期和成本
- (2)、找出直接成本和间接成本只差为负数的工序,进行调整。因为间接成本为6,因此要找出直接成本小于6的工序。 另外一种常用的就是:按应急时间完工,怎么是成本最低。这个其实思路也明确,那就是求出所有工序条件下,应急的工期

和成本。然后根据 CPM, 压缩非关键路径的时间(即,能不用应急就不要应急),注意,要保持关键路径的不变。