

# 5주2강. 이산형 확률분포2

5.5절





## 5.5. 다항분포

### 다항분포

- □ 1. 다항분포
- □ 가능한 결과가 세 개 이상인 실험을 n번 반복하였을 때 각 결과가 나타날 확률을 구하는 분 포를 다항분포(multinomial distribution)라고 한다.
- 그 각 실험의 실현치가 k개 범주 중의 하나이며, 각 범주가 나타날 확률이  $p_1, p_2, \cdots, p_k$ 인 확률 실험에서 실험을 n번 반복했을 때 각 범주의 관측치를 확률변수  $X_1, X_2, \dots, X_k$ 로 표현하면,  $X_1 = x_1, X_2 = x_2, \dots, X_k = x_k$ 가 관측될 확률을 측정하는 분포를 **다항분포**라고 한다.
- □ 다항분포의 확률은 다음과 같이 구한다.

$$P_r(X_1 = x_1, X_2 = x_2, ..., X_k = x_k) = \frac{n!}{x_1! x_2! \cdots x_k!} \cdot p_1^{x_1} \cdot p_2^{x_2} \cdot \dots \cdot p_k^{x_k}$$

 $\square$  여기에서  $n = x_1 + x_2 + \dots + x_k$ 이며,  $p_1 + p_2 + \dots + p_k = 1$ 이다.



□ 관측도수와 확률, 범주의 관계를 표로 정리하면 다음과 같다.

| 관측도수 | $x_1$ | $x_2$ | $x_3$ | ••• | $x_k$ |
|------|-------|-------|-------|-----|-------|
| 확률   | $p_1$ | $p_2$ | $p_3$ | *** | $p_k$ |
| 범주   | 1     | 2     | 3     | ••• | k     |

예 5-8 한 실험의 결과는 1, 2, 3, 4로 표현되는 4가지 속성 중 하나로 나타나며 각각의 속성이나타날 확률이 순서대로 1/10, 2/10, 3/10, 4/10 라고 한다. 이 실험에서 관측한 20개의 값에 있어서 각 속성의 관측치가 3, 4, 5, 8일 확률을 구하라.

(sol)  $X_1, X_2, X_3, X_4$ 를 각각의 속성이 관측된 수를 의미하는 확률변수라고 할 때, 각각의 속성이 나타날 확률이 1/10, 2/10, 3/10, 4/10로 다음과 같이 나타낼 수 있다.

$$P_r(X_1 = 3, X_2 = 4, X_3 = 5, X_4 = 8) = \frac{20!}{3! \ 4! \ 5! \ 8!} \cdot \left(\frac{1}{10}\right)^3 \cdot \left(\frac{2}{10}\right)^4 \cdot \left(\frac{3}{10}\right)^5 \cdot \left(\frac{4}{10}\right)^8$$

5.6절





## 5.6. 포아송분포

## 시메옹 포아송

- □ 1781~1840년 프랑스 출생
- □ 공학자, 수학자, 물리학자

#### 포아송 분포

- □ 이항분포의 특수한 케이스
- □ 시행횟수가 많다.
- □ 발생확률이 낮다.

### 포아송 분포의 확률질량함수 유도

- □ 하루(24시간) 동안 거리를 돌아 다니다가 길냥이를 만나는 횟수(X)
- □ 마주칠 확률 p: 매우 작음
- □ 시행횟수  $n: n \to \infty$
- $\square$  np= 하루동안 돌아다니며 길냥이를 만나는 평균 횟수  $=\mu \implies p=rac{\mu}{n}$

$${\binom{n}{x}} p^{x} (1-p)^{n-x} = {\binom{n}{x}} \left(\frac{\mu}{n}\right)^{x} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{(n-x)!} \frac{\mu^{x}}{x!} \left(1 - \frac{\mu}{n}\right)^{n} \left(1 - \frac{\mu}{n}\right)^{-x}$$

$$= \frac{n(n-1) \cdots (n-x+1)}{x!} \frac{\mu^{x}}{n^{x}} \left(1 - \frac{\mu}{n}\right)^{n} \left(1 - \frac{\mu}{n}\right)^{-x}$$

$$\binom{n}{x} p^{x} (1-p)^{n-x} = \frac{n(n-1)\cdots(n-x+1)}{x!} \frac{\mu^{x}}{n^{x}} \left(1 - \frac{\mu}{n}\right)^{n} \left(1 - \frac{\mu}{n}\right)^{-x}$$

$$= \frac{n(n-1)\cdots(n-x+1)}{n^{x}} \frac{\mu^{x}}{x!} \left(1 - \frac{\mu}{n}\right)^{n} \left(1 - \frac{\mu}{n}\right)^{-x}$$

$$= \left(\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n}\right) \frac{\mu^{x}}{x!} \left(1 - \frac{\mu}{n}\right)^{n} \left(1 - \frac{\mu}{n}\right)^{-x}$$

$$P(X = x) = \lim_{n \to \infty} \left( \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n} \cdot \frac{\mu^x}{x!} \left( 1 - \frac{\mu}{n} \right)^n \left( 1 - \frac{\mu}{n} \right)^{-x} \right)$$
$$= \lim_{n \to \infty} \frac{\mu^x}{x!} \left( 1 - \frac{\mu}{n} \right)^n = \lim_{n \to \infty} \frac{\mu^x}{x!} \left( \left( 1 - \frac{\mu}{n} \right)^{-\frac{n}{\mu}} \right)^{-\mu} = \frac{\mu^x}{x!} e^{-\mu}$$



#### 1. 포아송분포

- □ 포아송분포는 주어진 단위시간, 거리, 영역 등에서 어떤 사건이 발생되는 횟수를 측정하는 확률변수로 다음과 같은 "록 생각할 수 있다.
  - ① 특정지역에서 제한된 사 내에 발생되는 교통사고의 수의 분포
  - ② 타이프를 치는 데 있어서 페어 오타의 수의 분포
  - ③ 특정시간에 고속도로 톨게이트를 저 '제차량 수의 분포
  - ④ 자동생산라인에서 특정시간에 발생되는 물
- □ 단위구간 내에서 어떤 사건이 평균  $\mu$ 회 발생 라고 할 때,  $X \sim Poisson(\mu)$ 로 표현하며 사건

$$P_r(X=k) = \frac{\mu^k}{k!}e^{-\mu},$$

□ 여기에서 e는 자연대수(log)의 밑수로 e=2.7

- 구간이 겹치지 않는 경우 사건의 수는 서로 독립니다.
- 2. 사건이 일어날 횟수의 평균은 구간의 길이에 비례한다.
- 3. 임의의 시간에 일어날 확률은 0이다.



#### 2. 포아송 분포의 평균과 분산

 $lacksymbol{\square}$  확률변수 X가 평균  $\mu$ 인 포아송분포를 따를 때, X의 평균과 분산은 다음과 같이 동일하다.

① 평균 :  $E(X) = \mu$ 

② 분산 :  $Var(X) = \mu$ 

$$E(X) = \sum_{k=0}^{\infty} k \frac{\mu^k}{k!} e^{-\mu} = \sum_{k=1}^{\infty} k \frac{\mu^k}{k!} e^{-\mu} = \mu e^{-\mu} \sum_{k=1}^{\infty} \frac{\mu^{k-1}}{(k-1)!}$$
$$= \mu e^{-\mu} \sum_{n=0}^{\infty} \frac{\mu^n}{n!} = \mu e^{-\mu} \cdot e^{\mu} = \mu$$

### $Var(X) = \mu$

$$\begin{aligned} Var(X) &= E(X^2) - [E(X)]^2 = \sum_{k=0}^{\infty} k^2 \frac{\mu^k}{k!} e^{-\mu} - \mu^2 = \sum_{k=1}^{\infty} k^2 \frac{\mu^k}{k!} e^{-\mu} - \mu^2 \\ &= \sum_{k=1}^{\infty} k \frac{\mu \cdot \mu^{k-1}}{(k-1)!} e^{-\mu} - \mu^2 = \mu e^{-\mu} \sum_{k=1}^{\infty} k \frac{\mu^{k-1}}{(k-1)!} - \mu^2 = \mu e^{-\mu} \sum_{n=0}^{\infty} (n+1) \frac{\mu^n}{n!} - \mu^2 \\ &= \mu e^{-\mu} \left[ \sum_{n=0}^{\infty} n \frac{\mu^n}{n!} + \sum_{n=0}^{\infty} \frac{\mu^n}{n!} \right] - \mu^2 = \mu e^{-\mu} \left[ \sum_{n=1}^{\infty} \frac{\mu \cdot \mu^{n-1}}{(n-1)!} + e^{\mu} \right] - \mu^2 \\ &= \mu e^{-\mu} \left[ \mu \sum_{s=0}^{\infty} \frac{\mu^s}{s!} + e^{\mu} \right] - \mu^2 = \mu e^{-\mu} [\mu e^{\mu} + e^{\mu}] - \mu^2 = \mu^2 + \mu - \mu^2 = \mu \end{aligned}$$



#### □ 3. 포아송 분포의 확률계산

이래는 포아송분포에서 각각의 평균값  $\mu$ 에 대한 확률변수 X의 c까지의 누적확률값  $P_r(X=k)=\sum_{k=0}^c \frac{\mu^k}{k!}e^{-\mu}$ 을 계산해 나타낸 표이다.

| 표 <b>7-1</b> 포아송분포표(〈부록 IV〉의 [표 2)의 일부) |       |       |       |       |       |       |       |       |       |       |       |  |
|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| c µ                                     | 4.4   | 4.6   | 4.8   | 5.0   | 5.2   | 5.4   | 5.6   | 5.8   | 6.0   | 6.2   | 6.4   |  |
| 0                                       | .012  | .010  | .008  | .007  | .006  | .005  | .004  | .003  | .002  | .002  | .002  |  |
| 1                                       | .066  | .056  | .048  | .040  | .034  | .029  | .024  | .021  | .017  | .015  | .012  |  |
| 2                                       | .185  | .163  | .143  | .125  | .109  | .095  | .082  | .072  | .062  | .054  | .046  |  |
| 3                                       | .359  | .326  | .294  | .265  | .238  | .213  | .191  | .170  | .151  | .134  | .119  |  |
| 4                                       | .551  | .513  | .476  | .440  | .406  | .373  | .342  | .313  | .285  | .259  | .235  |  |
| 5                                       | .720  | .686  | .651  | .616  | .581  | .546  | .512  | .478  | .446  | .414  | .384  |  |
| 6                                       | .844  | .818  | .791  | .762  | .732  | .702  | .670  | .638  | .606  | .574  | .542  |  |
| 7                                       | .921  | .905  | .887  | .867  | .845  | .822  | .797  | .771  | .744  | .716  | .687  |  |
| 8                                       | .964  | .955  | .944  | .932  | .918  | .903  | .886  | .867  | .847  | .826  | .803  |  |
| 9                                       | .985  | .980  | .975  | .968  | .960  | .951  | .941  | .929  | .916  | .902  | .886  |  |
| 10                                      | .994  | .992  | .990  | .986  | .982  | .977  | .972  | .965  | .957  | .949  | .939  |  |
| 11                                      | .998  | .997  | .996  | .995  | .993  | .990  | .988  | .984  | .980  | .975  | .969  |  |
| 12                                      | .999  | .999  | .999  | .998  | .997  | .996  | .995  | .993  | .991  | .989  | .986  |  |
| 13                                      | 1.000 | 1.000 | 1.000 | .999  | .999  | .999  | .998  | .997  | .996  | .995  | .994  |  |
| 14                                      |       |       |       | 1.000 | 1.000 | 1.000 | .999  | .999  | .999  | .998  | .997  |  |
| 15                                      |       |       |       |       |       |       | 1.000 | 1.000 | .999  | .999  | .999  |  |
| 16                                      |       |       |       |       |       |       |       |       | 1.000 | 1.000 | 1.000 |  |

예 5-9 최근 올림픽도로에서는 하루 평균 5건의 교통사고가 발생한다. 교통사고의 발생횟수가 포아송분포를 따른다고 할 때, 어느 날 교통사고가 전혀 일어나지 않을 확률은 얼마인가? 또 교 통사고가 3번 이상 일어날 확률은 얼마인가?

□ (sol) 확률변수 X가 하루에 발생하는 교통사고의 횟수를 나타낸다고 하면, 하루에 발생되는 교통사고의 횟수가 평균 5회이므로  $X \sim Poisson(5)$ 이고 다음과 같이 나타낼 수 있다.

$$P_r(X=k) = \frac{5^k}{k!}e^{-5}$$

□ 교통사고가 전혀 발생하지 않을 확률과 3회 이상 발생할 확률은 다음과 같이 계산된다.

$$P_r(X = 0) = \frac{5^0}{0!}e^{-5} = e^{-5} \approx 0.00674$$

$$P_r(X \ge 3) = 1 - P_r(X < 3) = 1 - (P_r(X = 0) + P_r(X = 1) + P_r(X = 2))$$

$$= 1 - 0.1247 = 0.8753$$

예 5-10 한 공장의 자동화기계가 제품을 생산하는 데 생산된 제품 중에서 불량품의 수가 시간당 평균 3개씩 발생된다고 한다. 특정시간에 생산된 제품 중에서 불량품이 2개 이상 발생될 확률은 얼마인가?

(sol) 확률변수 X가 불량품의 수를 나타낼 때,  $X \sim Poisson(3)$  이며, 부록  $\square$ 의 [표 2]에 의하여  $\mu = 3.0$  일 때 다음과 같이 계산된다.

$$P_r(X \ge 2) = 1 - P_r(X \le 1) = 1 - 0.199 = 0.801$$

