Elements of Convex Analysis and Conic Duality

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Carathéodory's theorem

The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 1 Given matrix $A \in \mathbb{R}^{m \times n}$ where n > m, let convex polyhedral cone $C = \{A\mathbf{x} : \mathbf{x} \geq \mathbf{0}\}$. For any $\mathbf{b} \in C$,

$$\mathbf{b} = \sum_{i=1}^{d} \mathbf{a}_{j_i} x_{j_i}, \ x_{j_i} \ge 0, \forall i$$

for some linearly independent vectors \mathbf{a}_{j_1} ,..., \mathbf{a}_{j_d} chosen from \mathbf{a}_1 ,..., \mathbf{a}_n .

There is a construct proof of the theorem (page 21 of the text).

Basic and Basic Feasible Solution I

Now consider the polyhedron set $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$. Select m linearly independent columns, denoted by the variable index set B, from A. Solve $A_B\mathbf{x}_B = \mathbf{b}$ for the m-dimension vector \mathbf{x}_B , and set the remaining variables, \mathbf{x}_N , to zero. Then, we obtain a solution \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$, that is called a basic solution to with respect to the basis A_B . If a basic solution $\mathbf{x}_B \geq \mathbf{0}$, then \mathbf{x} is called a basic feasible solution, or BFS.

BFS is an extreme or corner point of the polyhedron.

Carathéodory's theorem implies that if there is a feasible solution to system $\{x: Ax = b, x \geq 0\}$, then there is a basic feasible solution to the system (page 21 of the text).

Hyper Planes

The most important type of convex set is hyperplane, also called *linear variety or affine set*: if for any two points are in H then their linear or affine combination is also in H.

Hyperplanes dominate the entire theory of optimization. Let ${\bf a}$ be a nonzero n-dimensional vector, and let b be a real number. The set

$$H = \{ \mathbf{x} \in \mathcal{R}^n : \mathbf{a} \bullet \mathbf{x} = b \}$$

is a hyperplane in \mathbb{R}^n . Relating to hyperplane, positive and negative closed half spaces are given by

$$H_+ = \{\mathbf{x} : \mathbf{a} \bullet \mathbf{x} \ge b\}$$

$$H_{-} = \{ \mathbf{x} : \mathbf{a} \bullet \mathbf{x} \le b \}.$$

Separating and supporting hyperplane theorem

The most important theorem about the convex set is the following separating hyperplane theorem (page 510 of the text).

Theorem 2 (Separating hyperplane theorem) Let C be a closed convex set in \mathbb{R}^m and let \mathbf{b} be a point exterior to C. Then there is a vector $\mathbf{y} \in \mathbb{R}^m$ such that

$$\mathbf{b} \bullet \mathbf{y} > \sup_{x \in C} \mathbf{x} \bullet \mathbf{y}.$$

Theorem 3 (Supporting hyperplane theorem) Let C be a closed convex set and let b be a point on the boundary of C. Then there is a vector $y \in \mathbb{R}^m$ such that

$$\mathbf{b} \bullet \mathbf{y} = \sup_{x \in C} \mathbf{x} \bullet \mathbf{y}.$$

Let C be a unit circle centered at point (1;1). That is, $C=\{x\in\mathcal{R}^2:\ (x_1-1)^2+(x_2-1)^2\leq 1\}$. If $\mathbf{b}=(2;0)$, $\mathbf{y}=(1;-1)$ is a separating hyperplane vector. If $\mathbf{b}=(0;-1)$, $\mathbf{y}=(0;-1)$ is a separating hyperplane vector. It is worth noting that these separating hyperplanes are not unique.

Figure 1: Illustration of the separating hyperplane theorem; an exterior point $\mathbf b$ is separated by a hyperplane from a convex set C.

Farkas' Lemma

The following results are Farkas' lemma and its variants.

Theorem 4 Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then, the system $\{\mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ has a feasible solution \mathbf{x} if and only if that $-A^T\mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^T\mathbf{y} > 0$ has no feasible solution \mathbf{y} .

Geometrically, Farkas' lemma means that if a vector $\mathbf{b} \in \mathcal{R}^m$ does not belong to the convex cone generated by $\mathbf{a}_{.1},...,\mathbf{a}_{.n}$, then there is a hyperplane separating \mathbf{b} from $\mathsf{cone}(\mathbf{a}_{.1},...,\mathbf{a}_{.n})$.

Example Let A=(1,1) and b=-1. Then, there is y=-1 such that $-A^Ty\geq 0$ and by>0..

Proof

Let $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ have a feasible solution, say $\bar{\mathbf{x}}$. Then, $\{\mathbf{y}: A^T\mathbf{y} \leq \mathbf{0}, \mathbf{b}^T\mathbf{y} > 0\}$ is infeasible, since otherwise,

$$0 < \mathbf{b}^T \mathbf{y} = (A\mathbf{x})^T \mathbf{y} = \mathbf{x}^T (A^T \mathbf{y}) \le 0$$

since $\mathbf{x} \geq \mathbf{0}$ and $A^T \mathbf{y} \leq \mathbf{0}$.

Now let $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$ have no feasible solution, that is, $\mathbf{b} \notin C := \{A\mathbf{x}: \ \mathbf{x} \geq \mathbf{0}\}$. We now prove that C is a closed convex set, that is, any convergent sequence $\mathbf{b}^k \in C, \ k = 1.2...$ has its limit point $\bar{\mathbf{b}}$ also in C. Let $\mathbf{b}^k = A\mathbf{x}^k, \ \mathbf{x}^k \geq \mathbf{0}$. Then by Carathéodory's theorem, we must have $\mathbf{b}^k = A_{B^k}\mathbf{x}_{B^k}, \ \mathbf{x}_{B^k} \geq \mathbf{0}$ where A_{B^k} is a basis of A. Therefore, \mathbf{x}_{B^k} , together with zero values for the nonbasic variables, is bounded for all k, and it has a limit point $\bar{\mathbf{x}}$ with $\bar{\mathbf{x}} \geq \mathbf{0}$. Thus, $\bar{\mathbf{b}} = A\bar{\mathbf{x}}$ implies that $\bar{\mathbf{b}} \in C$.

Now since C is a closed convex set, by the separating hyperplane theorem, there is y such that

$$\mathbf{y} \bullet \mathbf{b} > \sup_{\mathbf{c} \in C} \mathbf{y} \bullet \mathbf{c}$$

or

$$\mathbf{y} \bullet \mathbf{b} > \sup_{\mathbf{x} \ge \mathbf{0}} \mathbf{y} \bullet (A\mathbf{x}) = \sup_{\mathbf{x} \ge \mathbf{0}} A^T \mathbf{y} \bullet \mathbf{x}.$$
 (1)

From $\mathbf{0} \in C$ we have $\mathbf{y} \bullet \mathbf{b} > 0$.

Furthermore, $A^T \mathbf{y} \leq \mathbf{0}$. Since otherwise, say $(A^T \mathbf{y})_1 > 0$, one can have a vector $\bar{\mathbf{x}} \geq \mathbf{0}$ such that $\bar{x}_1 = \alpha > 0, \bar{x}_2 = \ldots = \bar{x}_n = 0$, from which

$$\sup_{\mathbf{x}>\mathbf{0}} A^T \mathbf{y} \bullet \mathbf{x} \ge A^T \mathbf{y} \bullet \bar{\mathbf{x}} = (A^T \mathbf{y})_1 \cdot \alpha$$

and it tends to ∞ as $\alpha \to \infty$. This is a contradiction because $\sup_{\mathbf{x} \geq \mathbf{0}} A^T \mathbf{y} \bullet \mathbf{x}$ is bounded from above by (1).

Farkas' Lemma Variant

Theorem 5 Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. Then, the system $\{\mathbf{y}: \mathbf{c} - A^T\mathbf{y} \geq \mathbf{0}\}$ has a solution \mathbf{y} if and only if that $A\mathbf{x} = \mathbf{0}$, $\mathbf{x} \geq \mathbf{0}$, and $\mathbf{c}^T\mathbf{x} < 0$ has no feasible solution \mathbf{x} .

Example Let A=(1;-1) and $\mathbf{c}=(1;-2)$. Then, there is $\mathbf{x}=(1;1)\geq \mathbf{0}$ such that $A\mathbf{x}=0$ and $\mathbf{c}^T\mathbf{x}<0$.

Alternative System Pair I

$$A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}.$$

$$-A^T \mathbf{y} \ge \mathbf{0}, \quad \mathbf{b}^T \mathbf{y} = 1(>0)$$

A vector \mathbf{y} , with $A^T\mathbf{y} \leq \mathbf{0}$ and $\mathbf{b}^T\mathbf{y} = 1$, is called an infeasibility certificate for the system $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}.$

Alternative System Pair II

$$A\mathbf{x} = \mathbf{0}, \ \mathbf{x} \ge \mathbf{0}, \ \mathbf{c}^T\mathbf{x} = -1(<0).$$

$$\mathbf{c} - A^T \mathbf{y} \ge \mathbf{0}$$

A vector \mathbf{x} , with $A\mathbf{x} = \mathbf{0}$, $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{c}^T\mathbf{x} = -1$, is called an infeasibility certificate for the system $\{\mathbf{y}: \mathbf{c} - A^T\mathbf{y} \geq \mathbf{0}\}.$

Farkas' Lemma for General Closed Convex Cones?

Given \mathbf{a}_i , i=1,...,m, and $\mathbf{b}\in\mathcal{R}^m$. An analog "alternative" system pair would be

$$\{\mathbf{x}: \mathbf{a}_i \bullet \mathbf{x} = b_i, i = 1, ..., m, \mathbf{x} \in K\}$$

and

$$\{\mathbf{y}: -\sum_{i=0}^{m} y_i \mathbf{a}_i \in K^*, \quad \mathbf{b}^T \mathbf{y} > 0\}.$$

Or in operator form:

$$A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \in K,$$

and

$$-\mathcal{A}^T \mathbf{y} \in K^*, \quad \mathbf{b}^T \mathbf{y} = 1 (> 0)$$

where

$$\mathcal{A}\mathbf{x} = (\mathbf{a}_1 \bullet \mathbf{x}; ...; \mathbf{a}_m \bullet \mathbf{x}) \in \mathcal{R}^m \text{ and } \mathcal{A}^T\mathbf{y} = \sum_i^m y_i \mathbf{a}_i.$$

An SDP Cone Example when "Alternative System" Failed

$$K = \mathcal{S}^2_+$$
.

$$\mathbf{a}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \mathbf{a}_2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

and

$$\mathbf{b} = \left(\begin{array}{c} 0 \\ 2 \end{array}\right).$$

Problem: $C := \{A\mathbf{x} : \mathbf{x} \in K\}$ is not closed even when K is a closed and pointed convex cone.

When Farkas' Lemma Holds for General Cones?

Let K be a closed and convex cone in the rest of the course.

If there is \mathbf{y} such that $-\mathcal{A}^T\mathbf{y} \in \operatorname{int} K^*$, then $C := \{\mathcal{A}\mathbf{x} : \mathbf{x} \in K\}$ is a closed convex cone. Consequently,

$$A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \in K,$$

and

$$-\mathcal{A}^T \mathbf{y} \in K^*, \quad \mathbf{b}^T \mathbf{y} = 1 (> 0)$$

are an alternative system pair.

And if there is \mathbf{x} such that $\mathcal{A}^T\mathbf{x} = \mathbf{0}, \ \mathbf{x} \in \operatorname{int} K$, then

$$A\mathbf{x} = \mathbf{0}, \quad \mathbf{x} \in K, \quad \mathbf{c} \bullet \mathbf{x} = -1 (<0)$$

and

$$\mathbf{c} - \mathcal{A}^T \mathbf{y} \in K^*$$

are an alternative system pair.

Conic LP

$$(CLP)$$
 minimize $\mathbf{c} \bullet \mathbf{x}$ subject to $\mathbf{a}_i \bullet \mathbf{x} = b_i, i = 1, 2, ..., m, \ \mathbf{x} \in K,$

where K is a closed and pointed convex cone.

Linear Programming (LP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and $K = \mathcal{R}^n_+$

Second-Order Cone Programming (SOCP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and $K = SOC = \{\mathbf{x} : x_1 \ge ||\mathbf{x}_{-1}||_2\}.$

Semidefinite Programming (SDP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{S}^n$ and $K = \mathcal{S}^n_+$

p-Order Cone Programming (POCP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and $K = POC = \{\mathbf{x} : x_1 \ge ||\mathbf{x}_{-1}||_p\}$.

Here, \mathbf{x}_{-1} is the vector $(x_2; ...; x_n) \in \mathbb{R}^{n-1}$.

LP, SOCP, and SDP Examples Again

minimize
$$2x_1+x_2+x_3$$
 subject to $x_1+x_2+x_3=1,$ $(x_1;x_2;x_3)\geq \mathbf{0}.$

minimize
$$2x_1+x_2+x_3$$
 subject to
$$x_1+x_2+x_3=1,$$

$$x_1-\sqrt{x_2^2+x_3^2}\geq 0.$$

minimize
$$2x_1+x_2+x_3$$
 subject to
$$x_1+x_2+x_3=1,$$

$$\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}\succeq \mathbf{0},$$

where

$$\mathbf{c}=\left(egin{array}{ccc} 2 & .5 \ .5 & 1 \end{array}
ight) \quad ext{and} \quad \mathbf{a}_1=\left(egin{array}{ccc} 1 & .5 \ .5 & 1 \end{array}
ight).$$

Dual of Conic LP

The dual problem to

$$(CLP) \quad \text{minimize} \quad \mathbf{c} \bullet \mathbf{x}$$

$$\text{subject to} \quad \mathbf{a}_i \bullet \mathbf{x} = b_i, i = 1, 2, ..., m, \ \mathbf{x} \in K.$$

is

$$(CLD)$$
 maximize $\mathbf{b}^T\mathbf{y}$ subject to $\sum_i^m y_i\mathbf{a}_i + \mathbf{s} = \mathbf{c}, \ \mathbf{s} \in K^*,$

where $y \in \mathbb{R}^m$, \mathbf{s} is called the dual slack vector/matrix, and K^* is the dual cone of K.

LP, SOCP, and SDP Examples

$$\min \quad (2; 1; 1)^T \mathbf{x} \qquad \quad \max \quad y$$

s. t.
$$\mathbf{e}^T \mathbf{x} = 1$$
,

s. t. $e^T x = 1$, s.t. $e \cdot y + s = (2; 1; 1)$,

$$x \ge 0$$
.

 $\mathbf{s} \geq \mathbf{0}$.

min
$$(2; 1; 1)^T \mathbf{x}$$

 $\max y$

s.t.
$$\mathbf{e}^T \mathbf{x} = 1$$
,

s.t.
$$e^T x = 1$$
, s.t. $e \cdot y + s = (2; 1; 1)$,

$$x_1 - \|\mathbf{x}_{-1}\| \ge 0.$$

$$s_1 - \|\mathbf{s}_{-1}\| \ge 0.$$

minimize
$$\begin{pmatrix} 2 & .5 \\ .5 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}$$
 subject to
$$\begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} = 1,$$

$$\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq \mathbf{0},$$

$$\begin{pmatrix} x_2 & x_3 \\ x_2 & x_3 \end{pmatrix} \succeq \mathbf{0},$$

maximize
$$y$$
 subject to $\begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix} y + \mathbf{s} = \begin{pmatrix} 2 & .5 \\ .5 & 1 \end{pmatrix},$ $\mathbf{s} = \begin{pmatrix} s_1 & s_2 \\ s_2 & s_3 \end{pmatrix} \succeq \mathbf{0}.$