

Kurs:Mathematik für Anwender/Teil I/16/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Punkte 3314652442 7 4 0 0 0 1 5 4 2 57

 \equiv Inhaltsverzeichnis \vee

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine injektive Abbildung

$$f:L\longrightarrow M.$$

- 2. Eine Folge reeller Zahlen.
- 3. Die Stetigkeit einer Funktion

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

in einem Punkt $x \in \mathbb{R}$.

4. Die Integralfunktion zum Startpunkt $a \in I$ zu einer Riemann-integrierbaren Funktion

$$f{:}I \longrightarrow \mathbb{R}$$

auf einem reellen Intervall $I \subseteq \mathbb{R}$.

- 5. Die *lineare Unabhängigkeit* von Vektoren v_1, \ldots, v_n in einem K-Vektorraum V.
- 6. Eine diagonalisierbare lineare Abbildung

$$\varphi : V \longrightarrow V$$

auf einem K-Vektorraum V.

Lösung

1. Die Abbildung

$$f:L\longrightarrow M$$

ist injektiv, wenn für je zwei verschiedene Elemente $x,y\in L$ auch f(x) und f(y) verschieden sind.

2. Eine reelle Folge ist eine Abbildung

$$\mathbb{N} \longrightarrow \mathbb{R},\, n \longmapsto x_n.$$

- 3. Man sagt, dass f stetig im Punkt x ist,wenn es zu jedem $\epsilon>0$ ein $\delta>0$ derart gibt, dass für alle x' mit $|x-x'|\leq \delta$ die Abschätzung $|f(x)-f(x')|\leq \epsilon$ gilt.
- 4. Die Funktion

$$I \longrightarrow \mathbb{R}, \, x \longmapsto \int_a^x f(t) \, dt,$$

heißt die Integralfunktion zu $m{f}$ zum Startpunkt $m{a}$.

5. Die Vektoren v_1, \ldots, v_n heißen *linear unabhängig*, wenn eine Gleichung

$$\sum_{i=1}^n a_i v_i = 0$$

nur bei $a_i = 0$ für alle i möglich ist.

6. Der Endomorphismus arphi heißt diagonalisierbar, wenn $oldsymbol{V}$ eine Basis aus Eigenvektoren zu $oldsymbol{arphi}$ besitzt.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Das Majorantenkriterium für eine Reihe von reellen Zahlen.
- 2. Der Satz über die Ableitung der Umkehrfunktion.
- 3. Der Satz über die Beziehung zwischen Eigenschaften von linearen Abbildungen und Matrizen.

Lösung

1. Sei $\sum_{k=0}^\infty b_k$ eine konvergente Reihe von reellen Zahlen und $(a_k)_{k\in\mathbb{N}}$ eine Folge reeller Zahlen mit $|a_k|\leq b_k$ für alle k. Dann ist

die Reihe

$$\sum_{k=0}^{\infty} a_k$$

absolut konvergent.

2. Es seien $D,E\subseteq\mathbb{R}$ Intervalle und sei

$$f:D\longrightarrow E\subseteq \mathbb{R}$$

eine bijektive stetige Funktion mit der Umkehrfunktion.

$$f^{-1} \colon E \longrightarrow D.$$

Es sei f in $a \in D$ differenzierbar mit $f'(a) \neq 0$.

Dann ist auch die Umkehrfunktion f^{-1} in b := f(a) differenzierbar mit

$$(f^{-1})'(b) = rac{1}{f'(f^{-1}(b))} = rac{1}{f'(a)} \, .$$

3. Es sei $m{K}$ ein Körper und es seien $m{V}$ und $m{W}$ Vektorräume über $m{K}$ der Dimension $m{n}$ bzw. $m{m}$. Es sei

$$\varphi : V \longrightarrow W$$

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix $M \in \operatorname{Mat}_{m \times n}(K)$ beschrieben werde. Dann gelten folgende Eigenschaften.

- 1. φ ist genau dann injektiv, wenn die Spalten der Matrix linear unabhängig sind.
- 2. arphi ist genau dann surjektiv, wenn die Spalten der Matrix ein Erzeugendensystem von K^m bilden.

3. Bei m=n ist φ genau dann bijektiv, wenn die Spalten der Matrix eine Basis von K^m bilden, und dies ist genau dann der Fall, wenn M invertierbar ist.

Aufgabe (1 Punkt)

Wir betrachten den Satz "Kein Mensch ist illegal". Negiere diesen Satz durch eine Existenzaussage.

Lösung

Es gibt einen Menschen, der nicht legal ist.

Aufgabe (4 (1+1+2) Punkte)

a) Man gebe ein Beispiel für rationale Zahlen $a,b,c\in]0,1[$ mit

$$a^2 + b^2 = c^2.$$

b) Man gebe ein Beispiel für rationale Zahlen $a,b,c\in]0,1[$ mit

$$a^2 + b^2 \neq c^2.$$

c) Man gebe ein Beispiel für irrationale Zahlen $a,b\in]0,1[$ und eine rationale Zahl $c\in]0,1[$ mit

$$a^2 + b^2 = c^2.$$

a) Es ist

$$3^2 + 4^2 = 5^2,$$

daher ist

$$\left(rac{3}{6}
ight)^2+\left(rac{4}{6}
ight)^2=\left(rac{5}{6}
ight)^2,$$

und diese Zahlen sind rational und aus dem offenen Einheitsintervall.

b) Wir nehmen $a=rac{3}{6}$ und $b=rac{4}{6}$ und $c=rac{1}{6}$. Die Summe ist

$$a^2+b^2=\left(rac{5}{6}
ight)^2
eq \left(rac{1}{6}
ight)^2.$$

c) Wir setzen

$$a=b=rac{1}{2\sqrt{2}}\,;$$

diese Zahl ist irrational, da $\sqrt{2}$ irrational ist. Es gilt

$$\left(\frac{1}{2\sqrt{2}}\right)^2 + \left(\frac{1}{2\sqrt{2}}\right)^2 = \frac{1}{4\cdot 2} + \frac{1}{4\cdot 2} = \frac{1}{4} = \left(\frac{1}{2}\right)^2.$$

Mit $c=rac{1}{2}$ ist also ein Beispiel der gewünschten Art gefunden.

Aufgabe (6 (1+1+1+1+2) Punkte)

Bei einer Fernsehaufzeichnung sitzen n Zuschauer im Studio, die über ein elektronisches Gerät auf verschiedene Fragen mit Ja oder Nein antworten und wobei das Ergebnis (die Ja-Antworten) in vollen Prozent auf einem Bildschirm erscheint und wobei ab , 5 nach oben gerundet wird.

- a) Erstelle eine Formel mit Hilfe der Gaußklammer $\lfloor \ \rfloor$, die bei gegebenem n aus i die Prozentzahl p(i) berechnet.
- b) Für welche n ist die Prozentabbildung aus a) injektiv und für welche surjektiv?
- c) Es sei n=99. Welche Prozentzahl tritt nie auf dem Bildschirm auf?
- d) Es sei n=101. Hinter welcher Prozentzahl können sich unterschiedlich viele Ja-Stimmen verbergen?
- e) Es sei n=102. Hinter welchen Prozentzahlen können sich unterschiedlich viele Ja-Stimmen verbergen?

Lösung

a) Die ganze Prozentzahl wird bei $m{i}$ Ja-Antworten von $m{n}$ Zuschauern bei der angegebenen Rundung durch

$$p(i) = \left\lfloor 100 \cdot rac{i}{n} + rac{1}{2}
ight
floor$$

berechnet.

b) Für $n \leq 99$ ist die Abbildung aus Anzahlgründen nicht surjektiv. Sie ist injektiv, da der ungerundete Prozentwert einer Person größer als 1 ist und daher die Hinzunahme einer Person die gerundete Prozentanzahl um mindestens 1 erhöht. Für n=100 ist die

Abbildung die Identität, also injektiv und surjektiv. Für $n \geq 101$ ist die Abbildung aus Anzahlgründen nicht injektiv. Sie ist surjektiv, da der ungerundete Prozentwert einer Person weniger als 1 ist und daher die Hinzunahme einer Person die gerundete Prozentanzahl um höchstens 1 erhöht.

c) Die Prozentzahl 50 kommt nicht vor. Für i=49 ist das Ergebnis

$$\left| 100 \cdot \frac{49}{99} + \frac{1}{2} \right| = \left| \frac{9800 + 99}{198} \right| = \left| \frac{9899}{198} \right| = 49$$

(wegen $198 \cdot 50 = 9900$) und für i = 50 ist das Ergebnis

$$\left| 100 \cdot \frac{50}{99} + \frac{1}{2} \right| = \left| \frac{10000 + 99}{198} \right| = \left| \frac{10099}{198} \right| = 51$$

(wegen $198 \cdot 51 = 10098$).

d) Die Prozentzahl 50 kommt doppelt vor. Für i=50 ist das Ergebnis

$$\left[100 \cdot \frac{50}{101} + \frac{1}{2}\right] = \left[\frac{10000 + 101}{202}\right] = \left[\frac{10101}{202}\right] = 50$$

(wegen $202 \cdot 50 = 10100$) und für i = 51 ist das Ergebnis

$$\left\lfloor 100 \cdot \frac{51}{101} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{10200 + 101}{202} \right\rfloor = \left\lfloor \frac{10301}{202} \right\rfloor = 50$$

(wegen $202 \cdot 51 = 10302$).

e) Die Prozentzahl ${f 25}$ kommt doppelt vor. Für ${f i}={f 25}$ ist das Ergebnis

$$\left| 100 \cdot \frac{25}{102} + \frac{1}{2} \right| = \left| \frac{2500 + 51}{102} \right| = \left| \frac{2551}{102} \right| = 25$$

(wegen $102 \cdot 25 = 2550$) und für i = 26 ist das Ergebnis ebenfalls

$$\left\lfloor 100 \cdot \frac{26}{102} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{2600 + 51}{102} \right\rfloor = \left\lfloor \frac{2651}{102} \right\rfloor = 25$$

(wegen $102 \cdot 26 = 2652$). Wegen der Symmetrie der Situation (bis auf die Rundung) kommt auch die Prozentzahl 75 doppelt vor, für i = 76, 77.

Aufgabe (5 Punkte)

Es seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ drei reelle Folgen. Es gelte $x_n\leq y_n\leq z_n$ für alle $n\in\mathbb{N}$ und $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ drei reelle Folgen. Es gelte $x_n\leq y_n\leq z_n$ für alle $n\in\mathbb{N}$ und $(x_n)_{n\in\mathbb{N}}$ und (

Lösung

Es ist

$$x_n-a\leq y_n-a\leq z_n-a$$
 .

Bei $y_n-a\geq 0$ ist somit

$$|y_n-a|\leq |z_n-a|$$

und bei $y_n-a\leq 0$ ist

$$|y_n-a|\leq |x_n-a|\,.$$

Daher ist stets

$$|y_n-a|\leq \max\left(|x_n-a|,|z_n-a|\right).$$

Für ein vorgegebenes $\epsilon>0$ gibt es aufgrund der Konvergenz der beiden äußeren Folgen gegen a natürliche Zahlen n_1 und n_2 derart, dass

$$|x_n-a|\leq \epsilon$$

für $n \geq n_1$ und

$$|z_n-a|\leq \epsilon$$

für $n \geq n_2$ gilt. Für $n \geq n_0 = \max{(n_1, n_2)}$ gilt daher

$$|y_n-a|\leq \epsilon$$
 .

Dies bedeutet die Konvergenz von y_n gegen a.

Aufgabe (2 (1+1) Punkte)

Die Folge $(x_n)_{n\in\mathbb{N}}$ sei durch

$$x_n = \left\{ egin{aligned} 1, & ext{falls } n ext{ eine Primzahl ist} \,, \ 0 & ext{sonst} \,, \end{aligned}
ight.$$

definiert.

- 1. Bestimme x_{117} und x_{127} .
- 2. Konvergiert die Folge in \mathbb{Q} ?

- 1. Es ist $x_{117}=0$, da 117 keine Primzahl ist, und $x_{127}=1$, da 127 eine Primzahl ist.
- 2. Die Folge konvergiert nicht, da sie unendlich oft den Wert 1 und unendlich oft den Wert 0 annimmt, da es unendlich viele Primzahlen gibt und da es unendlich viele Zahlen (beispielsweise die geraden Zahlen $\neq 2$) gibt, die keine Primzahlen sind.

Aufgabe (4 Punkte)

Berechne

$$\left(rac{2}{5} - rac{1}{6}\sqrt[3]{2} + rac{1}{5}\left(\sqrt[3]{2}
ight)^2
ight) \cdot \left(-rac{2}{5} + 7\sqrt[3]{2} + rac{1}{4}\left(\sqrt[3]{2}
ight)^2
ight).$$

Lösung

Es ist

$$\begin{split} \left(\frac{2}{5} - \frac{1}{6}\sqrt[3]{2} + \frac{1}{5}\left(\sqrt[3]{2}\right)^{2}\right) \cdot \left(-\frac{2}{5} + 7\sqrt[3]{2} + \frac{1}{4}\left(\sqrt[3]{2}\right)^{2}\right) &= \left(\frac{2}{5} - \frac{1}{6} \cdot 2^{\frac{1}{3}} + \frac{1}{5} \cdot 2^{\frac{2}{3}}\right) \cdot \left(-\frac{2}{5} + 7 \cdot 2^{\frac{1}{3}} + \frac{1}{4} \cdot 2^{\frac{2}{3}}\right) \\ &= -\frac{4}{25} + \left(\frac{14}{5} + \frac{1}{15}\right) \cdot 2^{\frac{1}{3}} + \left(\frac{1}{10} - \frac{7}{6} - \frac{2}{25}\right) \cdot 2^{\frac{2}{3}} + \left(\frac{1}{10} - \frac{7}{6} - \frac{2}{10}\right) \cdot 2^{\frac{2}{3}} + \left(\frac{1}{10}$$

Aufgabe (4 Punkte)

Es sei $a \in \mathbb{R}$ und seien

$$f,g:\mathbb{R}\longrightarrow\mathbb{R}$$

stetige Funktionen mit

$$f(a) > g(a)$$
.

Zeige, dass es ein $\delta>0$ derart gibt, dass

für alle $x \in [a - \delta, a + \delta]$ gilt.

Sei

$$c:=f(a)-g(a)>0.$$

Da $m{f}$ und $m{g}$ stetig sind, gibt es zu

$$\epsilon := rac{c}{3}$$

positive Zahlen δ_1 bzw. δ_2 derart, dass aus $|x-a| \leq \delta_1$ die Abschätzung $|f(x)-f(a)| \leq \epsilon$ und aus $|x-a| \leq \delta_2$ die Abschätzung $|g(x)-g(a)| \leq \epsilon$ folgt. Mit

$$\delta := \min\left(\delta_1, \delta_2,
ight)$$

gilt somit für jedes $x \in [a-\delta,a+\delta]$ die Abschätzung

$$f(x) \ge f(a) - \epsilon > g(a) + \epsilon \ge g(x)$$
.

Aufgabe (2 Punkte)

Man gebe ein Beispiel einer stetigen, nicht differenzierbaren Funktion

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

mit der Eigenschaft, dass die Funktion $x \mapsto f(|x|)$ differenzierbar ist.

Wir betrachten

$$f(x) = \left\{ egin{aligned} 0 & ext{f\"ur } x \geq -1 \,, \ -x - 1 & ext{f\"ur } x < -1 \,. \end{aligned}
ight.$$

Diese Funktion ist offenbar stetig und in x=-1 nicht differenzierbar. Dagegen ist f(|x|)=0 für alle $x\in\mathbb{R}$ und somit differenzierbar.

Aufgabe (7 Punkte)

Beweise den Satz über die Ableitung und das Wachstumsverhalten einer Funktion $f: \mathbb{R} \to \mathbb{R}$.

Lösung

(1). Es genügt, die Aussagen für wachsende Funktionen zu beweisen. Wenn f wachsend ist, und $x \in I$ ist, so gilt für den Differenzenquotienten

$$\frac{f(x+h)-f(x)}{h}\geq 0$$

für jedes h mit $x+h \in I$. Diese Abschätzung gilt dann auch für den Grenzwert, und dieser ist f'(x). Sei umgekehrt die Ableitung ≥ 0 . Nehmen wir an, dass es zwei Punkte x < x' in I mit f(x) > f(x') gibt. Aufgrund des Mittelwertsatzes gibt es dann ein c mit x < c < x' mit

$$f'(c)=rac{f(x')-f(x)}{x'-x}< 0$$

im Widerspruch zur Voraussetzung.

(2). Es sei nun f'(x) > 0 mit nur endlich vielen Ausnahmen. Angenommen es wäre f(x) = f(x') für zwei Punkte x < x'. Da f nach dem ersten Teil wachsend ist, ist f auf dem Intervall [x,x'] konstant. Somit ist f'=0 auf diesem gesamten Intervall, ein Widerspruch dazu, dass f' nur endlich viele Nullstellen besitzt.

Aufgabe (4 Punkte)

Bestimme das Taylor-Polynom vom Grad 3 zur Funktion

$$f(x) = x \cdot \sin x$$

im Entwicklungspunkt $a=rac{\pi}{2}$.

Lösung

Es ist

$$f\Bigl(rac{\pi}{2}\Bigr)=rac{\pi}{2}.$$

Es ist

$$f'(x) = \sin x + x \cdot \cos x$$

und daher ist

$$f'\Bigl(rac{\pi}{2}\Bigr)=1.$$

Es ist

$$f''(x) = \cos x + \cos x - x \cdot \sin x = 2\cos x - x \cdot \sin x$$

und daher ist

$$f''\Bigl(rac{\pi}{2}\Bigr) = -rac{\pi}{2}.$$

Es ist

$$f'''(x) = -2\sin x - \sin x - x\cdot\cos x = -3\sin x - x\cdot\cos x$$

und daher ist

$$f'''\left(\frac{\pi}{2}\right) = -3.$$

Das Taylor-Polynom vom Grad 3 in $\frac{\pi}{2}$ ist somit

$$\frac{\pi}{2} + \left(x - \frac{\pi}{2}\right) - \frac{\pi}{4}\left(x - \frac{\pi}{2}\right)^2 - \frac{3}{6}\left(x - \frac{\pi}{2}\right)^3.$$

Aufgabe (0 Punkte)

Lösung / Aufgabe / Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (1 Punkt)

Inwiefern hat das Eliminationsverfahren für lineare Gleichungssysteme mit dem Induktionsprinzip zu tun?

Lösung Eliminationsverfahren/Induktionsprinzip/Aufgabe/Lösung

Aufgabe (5 Punkte)

Es sei K ein Körper und V ein K-Vektorraum. Es seien $s_1,\ldots,s_k\in K$ und $v_1,\ldots,v_n\in V$. Zeige

$$\left(\sum_{i=1}^k s_i
ight)\cdot \left(\sum_{j=1}^n v_j
ight) = \sum_{1\leq i\leq k,\, 1\leq j\leq n} s_i\cdot v_j$$
 .

Lösung

Wir beweisen die Aussage durch eine Doppelinduktion über $k,n\geq 1$. Die Fälle

$$(k,n)=(1,1),\,(1,2),\,(2,1)$$

sind unmittelbar klar bzw. folgen direkt aus den Axiomen für einen Vektorraum.

Die Aussage für k=1 und beliebige n beweisen für durch Induktion nach n, wobei der Induktionsanfang durch die Vorbemerkung gesichert ist. Sei die Aussage für ein n schon bewiesen, und seien n+1 Vektorenn0, ..., n0, n0, n1 gegeben. Dann ist unter Verwendung des Falles n1, n2 und der Induktionsvoraussetzung

$$egin{split} sigg(\sum_{j=1}^{n+1}v_jigg) &= sigg(\sum_{j=1}^nv_j+v_{n+1}igg) \ &= sigg(\sum_{j=1}^nv_jigg) + sv_{n+1} \ &= \sum_{1\leq j\leq n}s\cdot v_j + sv_{n+1} \ &= \sum_{1\leq j\leq n+1}s\cdot v_j. \end{split}$$

Wir betrachten nun die Aussage für ein festes k und beliebige n. Für k=1 ist diese Aussage bereits bewiesen. Sei diese Aussage nun für ein festes k schon bewiesen Es seien Skalare $s_1,\ldots,s_k,s_{k+1}\in R$ und Vektoren $v_1,\ldots,v_n\in V$ gegeben. Dann ist unter Verwendung der Fälle (k,n)=(2,1),(1,n) und der Induktionsvoraussetzung

$$egin{aligned} \left(\sum_{i=1}^{k+1} s_i
ight) \cdot \left(\sum_{j=1}^n v_j
ight) &= \left(\sum_{i=1}^k s_i + s_{k+1}
ight) \cdot \left(\sum_{j=1}^n v_j
ight) \ &= \left(\sum_{i=1}^k s_i
ight) \cdot \left(\sum_{j=1}^n v_j
ight) + s_{k+1} \cdot \left(\sum_{j=1}^n v_j
ight) \ &= \sum_{1 \leq i \leq k, \, 1 \leq j \leq n} s_i \cdot v_j + \sum_{j=1}^n s_{k+1} \cdot v_j \ &= \sum_{1 \leq i \leq k+1, \, 1 \leq j \leq n} s_i \cdot v_j. \end{aligned}$$

Aufgabe (4 Punkte)

Es sei $U\subseteq\mathbb{Q}^n$ ein Untervektorraum. Zeige, dass U eine Basis aus Vektoren besitzt, deren Einträge allesamt ganze Zahlen sind.

Lösung

Es sei u_1, \ldots, u_m eine Basis von U. Jeder dieser Basisvektoren hat die Form

$$u = \left(egin{array}{c} q_1 \ dots \ q_n \end{array}
ight)$$

mit rationalen Zahlen

$$q_j = rac{r_j}{s_j}$$

mit ganzen Zahlen r_j, s_j und $s_j
eq 0$. Es sei

$$s=s_1\cdots s_n \neq 0$$
.

Dann besitzt

$$egin{aligned} su = segin{pmatrix} q_1 \ dots \ q_n \end{pmatrix} = egin{pmatrix} sq_1 \ dots \ sq_n \end{pmatrix} = egin{pmatrix} srac{r_1}{s_1} \ dots \ srac{r_n}{s_n} \end{pmatrix} = egin{pmatrix} s_2\cdots s_n r_1 \ dots \ s_1\cdots s_{n-1} r_n \end{pmatrix} \ . \end{aligned}$$

ganzzahlige Einträge. Wir ersetzen nun jeden Basisvektor u_i durch ein solches Vielfaches $\neq 0$, deren Einträge ganzzahlig sind. Da man aus dieser neuen Familie die ursprüngliche Basis durch skalare Multiplikation zurückgewinnen kann, liegt ein Erzeugendensystem von U vor, und da die Anzahl gleich der Dimension ist, handelt es sich um eine Basis.

Aufgabe (2 Punkte)

Es sei M eine 2×2 -Matrix über einem Körper K. Zeige, dass M genau dann trigonalisierbar ist, wenn M einen Eigenvektor besitzt.

Wenn M trigonalisierbar ist, so zerfällt das charakteristische Polynom zu M in Linearfaktoren und hat somit insbesondere Nullstellen, welche wiederum Eigenwerte sind, wozu auch Eigenvektoren gehören. Wenn umgekehrt $m{M}$ einen Eigenvektor besitzt, so auch einen Eigenwert und damit besitzt das charakteristische Polynom eine Nullstelle, sagen wir λ . Dies bedeutet, dass das charakteristische Polynom χ_M von $X-\lambda$ geteilt wird. Es ist also

$$\chi_M=(X-\lambda)Q.$$

Da das charakteristische Polynom den Grad f 2 besitzt, muss der andere Faktor f Q ebenfalls ein Linearfaktor sein. Somit zerfällt das charakteristische Polynom in Linearfaktoren und M ist trigonalisierbar.

Zuletzt bearbeitet vor 2 Monaten von Marymay0609

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ℃, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht