ГУАП

КАФЕДРА № 44

OTHET			
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ			
ПРЕПОДАВАТЕЛЬ			
доц., канд. техн. наук, доц. должность, уч. степень, звание	подпис	ь, дата	А.А.Востриков инициалы, фамилия
, , , , , , , , , , , , , , , , , , ,			, , , , ,
ОТЧЕТ	О ЛАБОРАТО	РНОЙ РАБОТЕ	E № 1
по курсу: проектиј	оование систем об	бработки и перелач	ни информации
,, ., .,			1 · F · · · · · · · · · · · · · · · · ·
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ гр. № 414.	3		Д.В.Пономарев
		подпись, дата	инициалы, фамилия

Цель работы.

Получение практического навыка составления схем электрических принципиальных при проектировании современных систем обработки и передачи информации на основе программно-управляемых вычислителей.

Индивидуальное задание

Разработать схему электрическую принципиальную и спецификацию (перечень элементов) электронного модуля системы (устройства) в соответствии с индивидуальным заданием. Привести обоснование выбора конкретного наименования вычислителя и других комплектующих, а также номиналы пассивных компонентов, присутствующих в спецификации.

						индикатора	1
11	2.5 ÷ 3.0	Встроенный генератор	I ² C, RS-485	0 B ÷ 10 B	 1	Цифровая клавиатура (10 кнопок)	

Рисунок 1 – Вариант задания

Определение перечня необходимых комплектующих по типам со ссылками на документацию производителей.

• Микроконтроллер: STM32F103C8T6

Документация: https://www.st.com/resource/en/datasheet/cd00161566.pdf

• Повышающий DC-DC преобразователь: TPS61220DCKT

Документация:https://www.ti.com/lit/ds/symlink/tps61220.pdf?ts=1743861916198&ref_url=https %253A%252F%252Fwww.ti.com%252Fproduct%252FTPS61220

- Tpahcubep RS-485: SN65HVD72DR
- Документация: https://static.chipdip.ru/lib/276/DOC012276983.pdf

Матричная клавиатура: Матричная клавиатура Cuiisw 4x3

- Документация: https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/794/3845_Web.pdf
- Резисторы
 - 1. 56-https://www.chipdip.ru/product/0.062w-0402-56-kom-1
 - 2. 10-https://static.chipdip.ru/lib/534/DOC021534314.pdf
 - 3. 20-https://static.chipdip.ru/lib/175/DOC011175144.pdf

• Конденсаторы

Документация: https://static.chipdip.ru/lib/973/DOC031973060.pdf

Обоснование выбора комплектующих и расчет номиналов со ссылками на

документацию производителей, если применимо

1. Микроконтроллер: STM32F103C8T6

- **Рабочее напряжение**: Согласно datasheet, STM32F103C8T6 работает в диапазоне напряжений 2.0–3.6 В, что идеально подходит для питания 3.3 В, которое вы получите после повышения входного напряжения 2.5–3.0 В с помощью TPS61220. Это гарантирует надежную работу в заданных условиях.
- Встроенный генератор (HSI): Микроконтроллер имеет встроенный высокоскоростной генератор (HSI) с частотой 8 МГц, что соответствует требованию использования внутреннего тактирующего генератора. Это позволяет отказаться от внешнего кварцевого резонатора, уменьшая количество компонентов и стоимость.

• Цифровые интерфейсы:

- I2C: STM32F103C8T6 поддерживает несколько интерфейсов I2C (например, I2C1 на пинах PB6/PB7). Это позволяет реализовать требуемый интерфейс I2C для подключения периферийных устройств, таких как датчики или дисплеи.
- RS-485: Микроконтроллер имеет несколько UART (например, UART1 на пинах PA9/PA10), которые можно использовать для связи с трансивером RS-485 SN65HVD72DR. Это удовлетворяет требование по RS-485.
- **АЦП** STM32F103C8T6 оснащен 12-битным АЦП, но для диапазона 0 В ÷ 10 В потребуется делитель напряжения.
- **Компаратор**: Микроконтроллер имеет два встроенных аналоговых компаратора (СОМР1 и СОМР2), что соответствует требованию «на кристалле». Например, СОМР1 (с использованием РА1 как положительного входа и РА0 или внутреннего опорного напряжения как отрицательного) позволяет реализовать детектирование уровня.
- Пины ввода-вывода для клавиатуры: STM32F103C8T6 имеет 37 пинов GPIO, что более чем достаточно для подключения клавиатуры, а также для других периферийных устройств (I2C, RS-485, АЦП и т.д.).

2. TPS61220DCKT (Повышающий DC-DC преобразователь)

- **Требование по питанию**: Проект требует входное напряжение 2.5–3.0 В (например, от батареи), но система должна работать на 3.3 В (для STM32F103C8T6, SN65HVD72DR и других компонентов). TPS61220DCKT это повышающий преобразователь, который может увеличить входное напряжение до 3.3 В.
- **Диапазон входного напряжения**: Согласно datasheet, TPS61220 работает с входным напряжением от 0.7 В до 5.5 В, что полностью покрывает требуемый диапазон 2.5–3.0 В.

- **Выходное напряжение**: TPS61220 можно настроить на выходное напряжение 3.3 В с помощью делителя напряжения на пине FB (например, 560 кОм и 100 кОм). VOUT = 0.5V × (1 + R1/R2) = 3.3V
- Это соответствует требуемому напряжению питания 3.3 В.
- Эффективность: TPS61220 обеспечивает высокую эффективность (до 95%). При входном напряжении 2.5–3.0 В и нагрузке 50–100 мА (для STM32 и периферии) эффективность составляет около 85–90%, что является отличным показателем.
- **Выходной ток**: TPS61220 может выдавать до 200 мА (согласно datasheet), что достаточно для системы:
 - о STM32F103C8T6: ~50 мА в активном режиме.
 - SN65HVD72DR: ~2–5 мА.
 - Клавиатура 4х4 и другие периферийные устройства: минимальный ток (несколько мА).
 - о Общий расчетный ток: < 100 мA, что значительно ниже предела TPS61220.
- **Низкий ток покоя**: TPS61220 имеет ток покоя всего 5.5 мкА, что делает его идеальным для приложений с низким энергопотреблением.
- **Простота использования**: Для работы TPS61220 требуется минимум внешних компонентов (катушка индуктивности, два конденсатора и два резистора для делителя напряжения), что упрощает его интеграцию в схему.

3. Tpaнсивер RS-485: SN65HVD72DR

- **Требование RS-485**: Проект требует интерфейс RS-485 для связи. SN65HVD72DR это трансивер RS-485, работающий на напряжении 3.3 В, который предназначен для связи с UART микроконтроллера (например, STM32F103C8T6), обеспечивая реализацию RS-485.
- **Рабочее напряжение**: Согласно datasheet, SN65HVD72DR работает в диапазоне 3.0–3.6 В, что идеально соответствует напряжению питания 3.3 В, которое вы получаете от TPS61220. Это обеспечивает совместимость с остальной частью системы.
- **Скорость передачи данных**: SN65HVD72DR поддерживает скорость до 250 кбит/с, что достаточно для большинства приложений RS-485 в встраиваемых системах, таких как промышленная связь или сети датчиков.
- **Низкое энергопотребление**: Трансивер имеет низкий ток потребления в режиме ожидания (обычно 2 мА), что важно для системы, которая может питаться от батареи или источника с низким напряжением (2.5–3.0 В).
- Совместимость с пинами: SN65HVD72DR имеет простой интерфейс:

- D (вход передатчика) и R (выход приемника) подключаются напрямую к пинам UART микроконтроллера (например, PA9 для TX, PA10 для RX).
- DE (включение передатчика) и RE# (включение приемника) можно управлять одним пином GPIO (например, PA8), что упрощает управление.
- Пины A и B подключаются к шине RS-485 для связи с другими устройствами.

4. $A \coprod \Pi (0 B \div 10 B)$

- Встроенный АЦП STM32F103C8T6 поддерживает 0 В ÷ 3.3 В. Для масштабирования $0 \text{ B} \div 10 \text{ B}$ до $0 \text{ B} \div 3.3 \text{ B}$ используется делитель напряжения.
- Расчет делителя:
 - \circ Формула: $Vmeas = Vin \times \frac{R2}{(R1+R2)}$
 - о Требуется: при Vin=10B, Vmeas=3.3 В
 - о Пусть R2=10 кОм

$$3.3 = 10 \times \frac{10K}{R1 + 10K}$$

 $3.3 = 10 \times \frac{10K}{R1 + 10K}$ $R1 = \frac{10 \times 10K}{3.3} - 10K \approx 20.3 \text{ кОм} \approx 20\text{кОм (стандартное значение)}$

Проверка:

○ $Vmeas = 10 \times \frac{}{(20\kappa + 10\kappa)} = 10 \times 0.333 \approx 3.33 \,\mathrm{B}$ (приемлемо, так как в пределах 0-3.3 В для АЦП).

5. . Конденсаторы.

Конденсаторы. Выполняют в разработанной схеме критически важные функции: фильтрацию помех, стабилизацию напряжения.

6. Резисторы.

Для делителя напряжений:

$$V_ADC=V_in*R2/(R1+R2)$$

При V in=10В должно быть V ADC≤3.3В. Отсюда:

R1/R2≈2

Нашли оптимальный вариант:

R1=20 кОм и R2=10 кОм

TPS61220 можно настроить на выходное напряжение 3.3 В с помощью делителя напряжения на пине FB (например, 560 кОм и 100 кОм). VOUT = $0.5V \times (1 + R3/R4) = 3.3V$.

R3=56 кОм и R4=10 кОм

Использование делителя минимизирует количество компонентов. Выбор резисторов 20 кОм и 10 кОм основан на стандартных значениях Е12.

Схема электрическая принципиальная

Рисунок 2 – Схема электрическая принципиальна

Спецификация

Таблица 1. Спецификация элементов схемы

№	Наименование	Обозн	Тип/Модель	Кол	Примечание
		ачение		-B0	
		на			
		схеме			
1	Микроконтроллер	U1	STM32L476GRTx	1	Основной управляющий
					элемент схемы
2	Конденсатор 100 пФ	C1-C3	Керамический	12	Развязка питания
3	Резистор 10 кОм	R4, R2	-	2	Подтяжка
4	Резистор 1 кОм	R5	-	1	Связь с РА2 (компаратор)
5	Резистор 20 кОм	R1	-	1	Делитель напряжения
6	Резистор 56 кОм	R3	-	1	Делитель напряжения
7	Трансивер RS-485	U4	SN65HVD72DR	1	Передача/приём данных
					по RS-485

8	Повышающий DC-	U3	TPS61220DCKT	1	Повышения напряжения с
	DC преобразователь				2.5-3 до чистых 3.3
9	Соединительные	-	-	-	Внутрисхемные
	провода				соединения
10	Матричная	U2	Матричная	1	Замена цифровой
	клавиатура		клавиатура Cuiisw 4x3		клавиатуры 10 кнопок

Вывод

В рамках лабораторной работы была разработана схема электрическая принципиальная и спецификация электронного модуля. Расчеты номиналов пассивных компонентов (резисторов для делителя АЦП,) выполнены с учетом рекомендаций из