

编译原理

Compilers

极夜酱

目录

1	有限	状态自动机	1
	1.1	字母表	1
	1.2	语言	4
	1.3	DFA	6
	1.4	NFA	9

Chapter 1 有限状态自动机

1.1 字母表

1.1.1 字母表 (Alphabet)

字母表是一个非空的有限集合,一般用 Σ 表示,集合中的元素被称为符号/字符 (symbol)。

例如:

- $\Sigma = \{0,1\}$: 二进制数的集合。
- $\Sigma = \{a, b, \dots, z\}$: 小写字母集合。
- $\Sigma = \{(,),[,],\{,\}\}$: 括号集合。

1.1.2 串 (String)

串是一个由字母表中的字符组成的有限序列。

例如:

- abc π bbb $\Xi \Sigma = \{a, b, \dots, z\}$ 上的串。
- (()) π (() \not $\Sigma = \{(,),[,],\{,\}\}$ 上的串。

空串

空串使用 ϵ 表示。

串的长度

- |0010| = 4
- |aa| = 2
- $|\epsilon| = 0$

前缀 (prefix)

- aa 是 aaabc 的前缀
- aaab 是 aaabc 的前缀
- aaabc 是 aaabc 的前缀

后缀 (suffix)

- bc 是 aaabc 的后缀
- abc 是 aaabc 的后缀
- aaabc 是 aaabc 的后缀

子串 (substring)

- ab 是 aaabc 的子串
- aaa 是 aaabc 的子串
- aaabc 是 aaabc 的子串

连接 (concatenation)

当 $\omega = abd$, $\alpha = ce$, 那么 $\omega \alpha = abdce$.

指数 (exponentiation)

当 $\omega = abd$, 那么 $\omega^3 = abdabdabd$, $\omega^0 = \epsilon$.

反转 (reversal)

当 $\omega = abd$, 那么 $\omega^R = dba$ 。

1.1.3 克林闭包 (Kleene Closure)

 Σ^k 用于表示所有在字母表 Σ 上的长度为 k 的串的集合。

例如,
$$\Sigma = \{a, b\}$$
, 那么 $\Sigma^2 = \{ab, ba, aa, bb\}$, $\Sigma^0 = \{\epsilon\}$ 。

克林闭包 Σ^* 用于表示所有在字母表 Σ 上能够组成的串的集合。

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k>0} \Sigma^k$$
 (1.1)

正闭包 Σ^+ 则是在 Σ^* 中除了空串以外的所有串的集合。

$$\Sigma^{+} = \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \dots = \bigcup_{k>0} \Sigma^{k}$$
 (1.2)

1.2 语言

1.2.1 语言 (Language)

语言是一个字母表中所构成串的集合。

例如, $\Sigma = \{a, b, c, \cdots, z\}$,那么所有英语单词所构成的集合 L 就是字母表 Σ 上的语言。

假设 $A = \{good, bad\}$ 和 $B = \{boy, girl\}$ 是两个语言,语言之间可以进行以下操作。

并集 (union)

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$
 (1.3)

 $A \cup B = \{good, bad, boy, girl\}$

连接 (concatenation)

$$A \circ B = \{ xy \mid x \in A \text{ or } y \in B \} \tag{1.4}$$

 $A \circ B = \{goodboy, goodgirl, badboy, badgirl\}$

闭包

$$A^* = \{x_1, x_2, \cdots, x_k \mid k \ge 0 \text{ and each } x_i \in A\}$$
 (1.5)

 $A^* = \{\epsilon, good, bad, goodgood, goodgood, goodgood, goodgood, goodgoodbad, \cdots\}$

语法和语言与自动机理论密切相关,它们是许多软件实现的基础,例如编译器/解释器、文本编辑器、文本搜索、系统验证等。

在自动机理论中,要处理的问题就是判断一个给定的串是否属于某个语言。

例如:

- 0*10*: 只包含一个 1 的串的集合。
- $\Sigma^*1\Sigma^*$: 至少有一个 1 的串的集合。
- $\Sigma^*001\Sigma^*$: 包含子串 001 的串的集合。
- $(\Sigma\Sigma)^*$: 长度为偶数的串的集合。
- $(\Sigma\Sigma\Sigma)^*$: 长度为 3 的倍数的串的集合。

1.3 DFA

1.3.1 DFA (Deterministic Finite Automaton)

有限状态机(FSM, Finite State Machine)用于决定程序当前状态和状态间的切换,状态机最终只能指向一个结果。

图 1.1: 有限状态机

确定性有限状态自动机 DFA 使用一个五元组 $(Q, \Sigma, \delta, q_0, F)$ 表示,其中

• Q: 状态的集合

Σ: 字母表

• δ : 状态转移函数 (transition function)

• q₀: 初始状态

• F: 终结状态集合

例如 DFA 可以用来识别空串或者以 0 结尾的串:

其中 $Q = \{q_0, q_1\}, \ \Sigma = \{0, 1\}, \ q_0$ 为初始状态, $F = \{q_0\}, \ \delta$ 为

状态	输入		
	0	1	
q_0	q_0	q_1	
q_1	q_0	q_1	

能够被有限自动机接受的语言被称为正则语言 (regular language)。

例如,构建一个能够识别所有包含子串 001 的串的 DFA:

1.3.2 最小化 DFA

有限状态机的最小化,即将一个有限状态机转换为一个更小的有限状态机,使得状态的数目最少。

对于两个状态,如果它们之间的转移函数相同,则这两个状态可以合并为一个状态。

在这个 DFA 中,状态 b 和 h 是等价的,当接收 0 时都转移到状态 g,当接收 1 时都转移到状态 c。同时状态 a 和 e 也是等价的,状态 a 接收 0 转移到状态 b,状态 e 接收 0 转移到状态 h,状态 a 和 e 接收 1 时都转移到状态 f。

因此,状态b和h以及状态a和e可以进行合并。

1.4 NFA

1.4.1 NFA (Non-deterministic Finite Automaton)

在 DFA 中,每个状态的下一个状态都是唯一确定的,但是非确定性有限状态自 动机 NFA 可能会存在多个下一状态。

例如在这个 NFA 中,状态 q_0 存在两个接收 1 的箭头,而状态 q_1 没有接收 1 的箭头。

因此,在 NFA 中,每个状态允许对相同输入存在 0 个、1 个或多个转移的状态。如果存在一条能够到达终结状态的路径,那么就称当前的输入是被 NFA 接受的。

1.4.2 DFA 与 NFA 的转换

NFA 并不比 DFA 更加强大, 理论证明 NFA 与 DFA 是等价的。

例如将一个 NFA 转换为 DFA:

构建一个与 NFA 等价的 DFA, 只需将 NFA 中转换到的状态集合作为 DFA 中的一个状态即可。

1.4.3 ϵ -NFA

 ϵ -NFA 允许不消耗输入字符在状态之间转移。

例如以下 ϵ -NFA 能够接受小数,如 +3.14、-0.12、.71、2. 等。

