

Ziel: Kleinste Anzahl an Zügen

Idee

- Feedback Arc Set Problem (FAS) ist ähnlich zum Spiel mit unbegrenzter Höhe
- o Konstruktion des Spiels (SCBT) als Graphen
- Reduktion des Problems auf FAS
- FAS ist NP-vollständig, somit auch SCBT

Definitionen

- \circ Menge an Farben $C = \{1, \dots c\}$ mit festem $c \in \mathbb{N}$
- o c+1 Tuben der Höhe $h_i \in \mathbb{N}$ in den Farben und eine farblos
- o Bis zu h_i Bälle pro Farbe
- \circ Konfiguration S einer Tube ist eine Sequenz (b_1,\ldots,b_l) mit $l\leq h$
- \circ Tube-Rack (T_0, T_1, \ldots, T_c) hat Höhenprofil $H = (h_0, \ldots, h_c)$ und Ersatztube T_0

Definitionen

- o Konfiguration eines Tube-Racks ist $S = (S_0, \dots, S_c)$ mit $|S_i| \leq h_i$
- \circ Zug (i,j) heißt valide, falls $|S_i| \geq 1$ und $|S_j| < h_j$
- o Finale Konfiguration ist $S=(S_0,\ldots,S_0)$ mit $S_0=()$ und $S_i=(i,\ldots,i)$ für $1\leq i\leq c$
- \circ *i*-farbiger Ball ist in finaler Position, falls er in Tube *i* ist und alle Bälle darunter Farbe *i* haben

Probleme

- SCBT-Problem:
 - \Rightarrow Instanz (H, S, k) mit k validen Zügen
- Restricted SCBT-Problem (RSCBT):
 - \Rightarrow Anzahl Bälle der Farbe i gleich der Höhe $h \in \mathbb{N}$ mit dem Höhenprofil $H = (h, \dots, h)$

Lemma 1

- 1. Falls die Anzahl der Bälle der Farbe i h entspricht für alle $1 \le i \le c$, hat $((h, ..., h), S, c \cdot h \cdot (2h + 1))$ eine Lösung,
- 2. Falls (H, S, k) eine Lösung hat und $H' \ge H$ gilt, dann hat (H', S, k) auch eine Lösung
- 3. Falls (H, S, k) mit $H = (\infty, ..., \infty)$ eine Lösung hat, dann existiert eine Lösung mit:
 - o Bälle in finaler Position werden nicht bewegt
 - Jeder andere wird 1- oder 2-mal bewegt
- 4. Falls $((\infty, ..., \infty), S, k)$ eine Lösung hat und $H = (\infty, h_1, ..., h_c)$ mit $h_i \ge \max(|s_i|, b_i)$ gilt, dann hat (H, S, k) eine Lösung

Feedback Arc Set (FAS)

- ∘ geg.: gerichteter Multigraph G=(V,E) und $k \in \mathbb{N}_0$
- ∘ ges.: $\exists E' \subseteq E \text{ mit } |E'| \leq k$, sodass $G'(V, E \setminus E')$ azyklisch ist

 \Rightarrow Nach Karp (1972) NP-vollständig

Konstruktion

$$\circ$$
 $V = \{1, \dots, n\}$ und G azyklischqazre

Lemma 2

Beweis (Hinrichtung)

Beweis (Rückrichtung)

Beweis (Rückrichtung)

Definition DFVS

Lower Bounds

Algorithmus

Related Work

- Sortieren von farbigen Bällen in farblosen Tuben. Bälle nur auf Bälle gleicher Farbe oder in leere Tuben (Reduktion von 3-Partition)
- k i-farbige Bälle in umgekehrter Reihenfolge. Nur adjazente Bälle können getauscht werden
- Reales Problem: Container in Terminalen, um Effizienz im Lagerplatz zu steigern, unproduktive Züge beim Stapeln zu vermeiden und sich an Planungseinschränkungen zu halten

Fin