Noise over the Business Cycle

Marco Brianti Vito Cormun

Boston College

June 2018

Research Question

The key empirical question is how the effect of **noise** varies over the **business cycle**

We employ a **regime switching** econometric model where transitions across states (recession and expansion) are **smooth**

Econometric Procedure - Overview

We use a 2-step procedure

- Estimate series of noise shocks orthogonal to any other exogenous source of fluctuations
- Estimate a Smooth Transition Local Projection model (hereafter STLP) to estimate dynamic responses of key macroeconomic variables

Step 1 - Overview

We estimate a noise shock as a change in the expected growth rate of Real GDP which is orthogonal to

- contemporaneous structural shocks
- 2 lagged principal components from a large dataset
- past and future TFP

Step 1 - Estimation of Z_t

Data

- X_t is log of Real GDP at time t
- $X_{t+k|t} = E[X_{t+k}|I(t)]$ provided by Survey of Professional Forecasters

Procedure

$$Z_t = (X_{t+4|t} - X_{t|t}) - (X_{t+4|t-1} - X_{t|t-1})$$

where

- $(X_{t+4|t} X_{t|t})$ is expected growth rate of Real GDP conditional on information set up to time t
- $(X_{t+4|t-1} X_{t|t-1})$ is expected growth rate of Real GDP conditional on information set up to time t-1
- ullet Z_t is a shock to the expectations of output growth rate

Step 1 - Estimation of \tilde{Z}_t

Problem. Z_t is correlated with current and future fundamentals such as fiscal policy, monetary policy, current and future TFP.

Solution. Estimate \tilde{Z}_t as follows

$$Z_{t} = C + \sum_{j=-J}^{H} \delta_{j} \Delta TFP_{t+j} + \gamma SS_{t} + \mu PC_{t-1} + \tilde{Z}_{t}$$

where

- C is the constant
- ullet ΔTFP_t is first difference of total factor productivity at time t
- SS_t is a vector of structural shocks at time t from the dataset of Caldara and Kamps (2017)
- ullet PC_{t-1} is a vector of principal component at time t-1

 \tilde{Z}_t represents a change in expectations which is not related to any source of fundamental fluctuations, i.e. a **noise shock**.

Step 2 - Smooth Transition Local Projection

Following Auerbach and Gorodnichenko (2012), our basic specification is

$$Y_{t+k} = [1 - F(\eta_{t-1})] \Pi_E \tilde{Z}_t + F(\eta_{t-1}) \Pi_R \tilde{Z}_t + u_t$$

where

$$F(\eta_t) = \frac{\exp(-\gamma \eta_t)}{1 + \exp(-\gamma \eta_t)}, \quad \gamma > 0$$

and variables η_t is an index (normalized to have zero mean and unit variance) of the business cycle. $[\eta_t > 0 \Rightarrow \text{expansion.}]$

Note. We date the index η by t-1 to avoid contemporaneous feedbacks of \tilde{Z}_t on the underlying state.

Noise Shocks \tilde{Z}_t

Local Projection using Smooth Transition

Main Issues

- SPF information set may be different to the one of economic agents.
- Porecast horizon of SPF may be to short to properly capture future beliefs.
- O Do we need to treat for possible trend in the data?
- Need to set up a reliable procedure for the confidence intervals.
- $\ \ \,$ Need to allow for endogenous feedbacks of noise on η_t in the local projection.

Details on η_t and STPL procedure

 η_t is defined as the seven-quarter moving average of the output growth rate.

• Notice that we can easily consider dynamic feedbacks from noise to the state of the regime.

Following Auerbach and Gorodnichenko (2012) we calibrate γ to 1.5 for now.

 \bullet Granger and Teravista (1993) suggest robustness checks procedure for $\gamma.$

Return