NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Zheng Shaoxuan

MA2101 Linear Algebra II

AY 2008/2009 Semester 1

Question 1

- (a) False. $\mathbf{A} = \mathbf{I}_2$ is diagonalisable, since it is already diagonal. However the two eigenvalues \mathbf{A} has are both 1.
- (b) False. Let $V = \left\{ \begin{pmatrix} f(x) \\ g(x) \end{pmatrix} \right\}$, where f(x) and g(x) are polynomials. Let $S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ 0 \end{pmatrix}, \begin{pmatrix} x^2 \\ 0 \end{pmatrix}, \dots \right\}$. S is an infinite linearly independent set, but S is not a basis of V since $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \in V$ but $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin \operatorname{Span} S$.
- (c) False. Consider $V = \mathbb{R}^2$, $U = \operatorname{Span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$, $W = \operatorname{Span}\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$, $W' = \operatorname{Span}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. $U \oplus W = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\} = \mathbb{R}^2.$ $U \oplus W' = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\} = \mathbb{R}^2.$ $\therefore U \oplus W = U \oplus W', \text{ but } W \neq W'.$
- (d) True. First we prove the claim $(\mathbf{A}^T)^2 = (\mathbf{A}^2)^T$ for any square matrix \mathbf{A} . Write \mathbf{A} as $(a_{ij})_{n \times n}$. Then, $(\mathbf{A}^T)^2 = (a_{ji})_{n \times n}^2 = (c_{ij})_{n \times n}$, where $c_{ij} = \sum_{k=1}^n a_{ki} a_{jk}$. Also, $(\mathbf{A}^2)^T = (d_{ij})_{n \times n}^T = (d_{ji})_{n \times n}$, where $d_{ij} = \sum_{k=1}^n a_{ik} a_{kj}$. Since $d_{ji} = \sum_{k=1}^n a_{jk} a_{ki} = c_{ij}$, our claim $(\mathbf{A}^T)^2 = (\mathbf{A}^2)^T$ is true.

For any orthogonal \boldsymbol{A} , $\boldsymbol{A}\boldsymbol{A}^T=\boldsymbol{I}$. Hence,

$$\mathbf{A}^{2}(\mathbf{A}^{2})^{T} = \mathbf{A}^{2}(\mathbf{A}^{T})^{2}$$

$$= \mathbf{A}\mathbf{A}\mathbf{A}^{T}\mathbf{A}^{T}$$

$$= \mathbf{A}\mathbf{I}\mathbf{A}^{T}$$

$$= \mathbf{A}\mathbf{A}^{T}$$

$$= \mathbf{I}.$$

Therefore, A^2 is also orthogonal.

Question 2

(i) The additive identity (a_0, b_0) is such that for any $(a, b) \in \mathbb{R}^2$, $(a, b) + (a_0, b_0) = (a, b)$. So, $(a + a_0, b + b_0) = (a, b)$, and hence, $(a_0, b_0) = (0, 0)$. The multiplicative identity (a_1, b_1) is such that for any $(a, b) \in \mathbb{R}^2$, $(a, b) \times (a_1, b_1) = (a, b)$. So, $(a \times a_1, b \times b_1) = (a, b)$, and hence, $(a_1, b_1) = (1, 1)$. (ii) Consider (0,1), which is not the additive identity (0,0). For all (a,b), $(0,1) \times (a,b) = (0,b) \neq (1,1)$. Hence, (0,1) has no multiplicative identity. This violates (M5) and therefore, $(\mathbb{R}^2,+,\times)$ is not a field.

Question 3

(i) First of all, $A\mathbf{0} = \mathbf{0} = \mathbf{0}A$. Therefore $\mathbf{0} \in W$ and hence W is non-empty. For any $\mathbf{W}_1, \mathbf{W}_2 \in W$, $\alpha, \beta \in \mathbb{F}$,

$$A(\alpha W_1 + \beta W_2) = \alpha A W_1 + \beta A W_2$$
$$= \alpha W_1 A + \beta W_2 A$$
$$= (\alpha W_1 + \beta W_2) A.$$

Hence, $\alpha \mathbf{W}_1 + \beta \mathbf{W}_2 \in W$ and therefore, W is a subspace of $\mathcal{M}_{nn}(\mathbb{R})$

(ii) For any \mathbf{A}^k , $k = 0, 1, \dots, r - 1$, $\mathbf{A}\mathbf{A}^k = \mathbf{A}^{k+1} = \mathbf{A}^k \mathbf{A}$. Therefore, $\mathbf{A}^k \in W$.

Suppose $I, A, ..., A^{r-1}$ are not linearly independent vectors. Then there exists $\alpha_0, ..., \alpha_{r-1} \in \mathbb{F}$, not all 0, such that $\alpha_0 I + \alpha_1 A + ... + \alpha_{r-1} A^{r-1} = \mathbf{0}$.

Let i be the biggest subscript such that $\alpha_i \neq 0$. Note that i < r. Then, $\alpha_0 \mathbf{I} + \alpha_1 \mathbf{A} + \ldots + \alpha_i \mathbf{A}^i = \mathbf{0}$. Since $\alpha_i \neq 0$, $\mathbf{A}^i + \frac{\alpha_{i-1}}{\alpha_i} \mathbf{A}^{i-1} + \ldots + \frac{\alpha_0}{\alpha_i} \mathbf{I} = \mathbf{0}$. Let $m'_{\mathbf{A}}(x) = x^i + \frac{a_{i-1}}{a_i} x^{i-1} + \ldots + \frac{a_0}{a_i}$. Then $m'_{\mathbf{A}}(\mathbf{A}) = \mathbf{0}$.

Now, $m_{\mathbf{A}}(x)$ is the minimum polynomial of \mathbf{A} and it has degree r. However, $m'_{\mathbf{A}}(x)$ is a polynomial satisfying $m'_{\mathbf{A}}(\mathbf{A}) = \mathbf{0}$, and with degree i, less than that of the degree of $m_{\mathbf{A}}(x)$, a contradiction.

Hence, I, A, \dots, A^{r-1} are linearly independent vectors in W.

Question 4

We claim that the set $A = \operatorname{Span}\{v_1, v_2, \dots, v_r\}$ is a subspace of V of dimension r.

First of all, v_1, v_2, \ldots, v_n are linearly independent as B is a basis of V. Therefore, since r < n, v_1, \ldots, v_r are also linearly independent. Hence v_1, \ldots, v_r is a basis of A and therefore A has dimension r.

Furthermore, $\mathbf{0} \in A$, hence A is non-empty.

For any $x_1, x_2 \in A$, let $x_1 = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_r v_r$ and $x_2 = \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_r v_r$, for some $\alpha_1, \alpha_2, \ldots, \alpha_r, \beta_1, \beta_2, \ldots, \beta_r \in \mathbb{F}$. Then, for all $p, q \in \mathbb{F}$,

$$px_1 + qx_2 = p(\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_rv_r) + q(\beta_1v_1 + \beta_2v_2 + \ldots + \beta_rv_r)$$
$$= (p\alpha_1 + q\beta_1)v_1 + (p\alpha_2 + q\beta_2)v_2 + \ldots + (p\alpha_r + q\beta_r)v_r \in \text{Span } \{v_1, v_2, \ldots, v_r\}.$$

Hence, $px_1 + qx_2 \in A$, and therefore A is a subspace of V of dimension r.

Question 5

- (i) $\dim(\mathbb{R}^n) = n$, $\dim(P_m(\mathbb{R})) = m + 1$.
- (ii) If m+1 < n, then $\dim(P_m(\mathbb{R})) < \dim(\mathbb{R}^n)$. Also, since $P_m(\mathbb{R})$ is the codomain of T, rank $(T) \le \dim(P_m(\mathbb{R}))$.

By the Dimension Theorem, $rank(T) + nullity(T) = dim(\mathbb{R}^n)$. Hence,

nullity(T) = dim(
$$\mathbb{R}^n$$
) - rank(T)
 \geq dim(\mathbb{R}^n) - dim($P_m(\mathbb{R})$)
> 0.

Therefore, $Ker(T) \neq \{0\}$.

(iii) Since m+1=n, $\dim(P_m(\mathbb{R}))=\dim(\mathbb{R}^n)$. Therefore, to show T is bijective it suffices to show that T is injective.

Since the null space of $[T]_{B_2,B_1} = \{\mathbf{0}\}$, the only $\mathbf{v} \in \mathbb{R}^n$ such that $T(\mathbf{v}) = 0$ is $\mathbf{v} = \mathbf{0}$. Hence $\mathrm{Ker}(T) = \{\mathbf{0}\}$ and therefore T is injective. From the above, T is bijective.

Question 6

(i) From the given formula of T_1 in the question, we have: $T_1(1) = -1 + x$, $T_1(x) = 1 - x + x^3$, $T_1(x^2) = x + x^2 + 2x^3$. Since $B_2 = \{1, x, x^2, x^3\}$, we have

$$[T_1(1)]_{B_2} = \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, [T_1(x)]_{B_2} = \begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix}, [T_1(x^2)]_{B_2} = \begin{pmatrix} 0\\1\\1\\2 \end{pmatrix}.$$

Therefore, since $B_1 = \{1, x, x^2\},\$

$$[T_1]_{B_2,B_1} = \left(\begin{array}{ccc} [T_1(1)]_{B_2} & [T_1(x)]_{B_2} & [T_1(x^2)]_{B_2} \end{array} \right)$$

$$= \left(\begin{array}{ccc} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{array} \right).$$

(ii) By formula,

$$[T_2 \circ T_1]_{B_1} = [T_2]_{B_1, B_2} [T_1]_{B_2, B_1}$$

$$= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$$

Question 7

(i) For any linear transformation T, $T(\mathbf{0}) = \mathbf{0}$. Note that T^{j-i} is defined since j > i. So, $\forall \boldsymbol{x} \in \text{Ker} T^i$,

$$T^{i}(x) = \mathbf{0}$$

 $\Rightarrow T^{j-i} \circ T^{i}(x) = \mathbf{0}$
 $\Rightarrow T^{j}(x) = \mathbf{0}$

Page: 3 of 8

Hence, $\boldsymbol{x} \in \text{Ker}T^j$. Therefore, $\text{Ker}T^i \subset \text{Ker}T^j$.

(ii) For any $\boldsymbol{x} \in V$, $\boldsymbol{x} = \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \alpha_3 \boldsymbol{u}_3$ for some $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}$. Now,

$$T^{3}(\boldsymbol{x}) = T \circ T \circ T(\alpha_{1}\boldsymbol{u}_{1} + \alpha_{2}\boldsymbol{u}_{2} + \alpha_{3}\boldsymbol{u}_{3})$$

$$= T \circ T(\alpha_{1}T(\boldsymbol{u}_{1}) + \alpha_{2}T(\boldsymbol{u}_{2}) + \alpha_{3}T(\boldsymbol{u}_{3}))$$

$$= T \circ T(\alpha_{1}\boldsymbol{u}_{2} + \alpha_{2}\boldsymbol{u}_{3})$$

$$= T(\alpha_{1}\boldsymbol{u}_{3})$$

$$= \mathbf{0}.$$

Hence, $Ker T^3 = V$.

Note that $u_1 \in \text{Ker}T^3$ but $T^2(u_1) = u_3 \neq 0$. Hence, $u_1 \notin \text{Ker}T^2$. Therefore, $\text{Ker}T^2 \neq \text{Ker}T^3$. Similarly, $u_2 \in \text{Ker}T^2$ but $T(u_2) = u_3 \neq 0$. Hence, $u_2 \notin \text{Ker}T$. Therefore, $\text{Ker}T \neq \text{Ker}T^2$. Therefore, $\text{Ker}T \neq \text{Ker}T^3 = V$.

(iii) Since $\text{Ker}T^3 = V$, a basis for $\text{Ker}T^3$ is $\{u_1, u_2, u_3\}$.

We claim that $Ker T^2 = Span\{u_2, u_3\}$.

To prove this, first we note that for any $\alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 \in \text{Span}\{\mathbf{u}_2, \mathbf{u}_3\}, T^2(\alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3) = 0.$ Hence, $\alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 \in \text{Ker}T^2$ and therefore $\text{Span}\{\mathbf{u}_2, \mathbf{u}_3\} \subseteq \text{Ker}T^2$.

Subsequently, for any $\mathbf{x} \in \text{Ker}T^2$, let $\mathbf{x} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3$ for some $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}$. Then, $\mathbf{0} = T^2(\mathbf{x}) = \alpha_1 \mathbf{u}_3$. Hence, since $\mathbf{u}_3 \neq \mathbf{0}$, $\alpha_1 = 0$. So, $x = \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3$ and hence, $x \in \text{Span}\{\mathbf{u}_2, \mathbf{u}_3\}$. Therefore, $\text{Ker}T^2 \subseteq \text{Span}\{\mathbf{u}_2, \mathbf{u}_3\}$. This, with the above, proves the claim $\text{Ker}T^2 = \text{Span}\{\mathbf{u}_2, \mathbf{u}_3\}$.

Similarly, we claim that $Ker T = Span\{u_3\}$.

To prove this, first we note that for any $\alpha_3 \mathbf{u}_3 \in \operatorname{Span}\{\mathbf{u}_3\}$, $T(\alpha_3 \mathbf{u}_3) = 0$. Hence, $\alpha_3 \mathbf{u}_3 \in \operatorname{Ker} T$ and therefore $\operatorname{Span}\{\mathbf{u}_3\} \subseteq \operatorname{Ker} T$.

Subsequently, for any $\mathbf{x} \in \text{Ker}T$, let $\mathbf{x} = \alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \alpha_3\mathbf{u}_3$ for some $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}$. Then, $\mathbf{0} = T(\mathbf{x}) = \alpha_1\mathbf{u}_2 + \alpha_2\mathbf{u}_3$. Hence, since $\{\mathbf{u}_2, \mathbf{u}_3\}$ is a subset of the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, $\{\mathbf{u}_2, \mathbf{u}_3\}$ is linearly independent and hence $\alpha_1 = \alpha_2 = 0$. So, $x = \alpha_3\mathbf{u}_3$ and hence, $x \in \text{Span}\{\mathbf{u}_3\}$. Therefore, $\text{Ker}T \subseteq \text{Span}\{\mathbf{u}_3\}$. This, with the above, proves the claim $\text{Ker}T = \text{Span}\{\mathbf{u}_3\}$.

Finally we note that since $\{u_1, u_2, u_3\}$ is a basis and hence a linearly independent set, we have $\{u_2, u_3\}$ and $\{u_3\}$ to be linearly independent sets as well. Therefore, a basis of $\text{Ker}T^2$ is $\{u_2, u_3\}$ and a basis of KerT is $\{u_3\}$.

Question 8

(i) The characteristic polynomial of A is

$$c_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A})$$

$$= \det\begin{pmatrix} \lambda - 1 & -1 & -a \\ 0 & \lambda - 1 & 0 \\ 0 & -1 & \lambda - 2 \end{pmatrix}$$

$$= (\lambda - 1) \det\begin{pmatrix} \lambda - 1 & 0 \\ -1 & \lambda - 2 \end{pmatrix}$$

$$= (\lambda - 1)^{2}(\lambda - 2).$$

(ii) From the characteristic polynomial, the dimension of the eigenspace E_2 is 1 and the dimension of the eigenspace E_1 is either 1 or 2. For A to be diagonalisable, it suffices to check that the dimension of E_1 is 2.

For $\lambda = 1$, E_1 is the null space of $(\lambda \mathbf{I} - \mathbf{A}) = \begin{pmatrix} 0 & -1 & -a \\ 0 & 0 & 0 \\ 0 & -1 & -1 \end{pmatrix}$. For E_1 to have dimension 2, row operations from row 1 onto row 3 must cause row 3 to be all 0s. Therefore a = 1.

(iii) Since A is not diagonalisable, A must contain the Jordan block $J_2(1)$ rather than the two Jordan blocks $J_1(1)$, $J_1(1)$. Therefore, the only Jordan form of A, up to rearrangement of the Jordan blocks, is $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Question 9

(i) The characteristic polynomial of A is

$$c_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A})$$

$$= \det\begin{pmatrix} \lambda & 0 & -1 & 1 \\ -2 & \lambda - 2 & 1 & -1 \\ 0 & 0 & \lambda + 1 & -1 \\ 0 & 0 & 1 & \lambda - 1 \end{pmatrix}$$

$$= (\lambda - 2) \det\begin{pmatrix} \lambda & -1 & 1 \\ 0 & \lambda + 1 & -1 \\ 0 & 1 & \lambda - 1 \end{pmatrix}$$

$$= \lambda(\lambda - 2) \det\begin{pmatrix} \lambda + 1 & -1 \\ 1 & \lambda - 1 \end{pmatrix}$$

$$= \lambda(\lambda - 2)(\lambda^2 - 1 + 1)$$

$$= \lambda^3(\lambda - 2).$$

Therefore, its roots are $\lambda = 0, 2$.

Hence, the possible minimal polynomials of \boldsymbol{A} are: $\lambda(\lambda-2)$, $\lambda^2(\lambda-2)$, and $\lambda^3(\lambda-2)$.

(ii) We check for minimal polynomials of \boldsymbol{A} by substituting \boldsymbol{A} for λ into the various possible minimal polynomials of \boldsymbol{A} .

Observe that
$$\mathbf{A} - 2\mathbf{I} = \begin{pmatrix} -2 & 0 & 1 & -1 \\ 2 & 0 & -1 & 1 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$
. Hence $\mathbf{A}(\mathbf{A} - 2\mathbf{I}) = \begin{pmatrix} 0 & 0 & -2 & 2 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 2 & -2 \end{pmatrix} \neq \mathbf{0}$.

Therefore $\lambda(\lambda - 2)$ is not the minimal polynomial of A.

polynomial of A.

From the minimal polynomial of \mathbf{A} , we can tell that the largest Jordan block corresponding to $\lambda = 0$ is $J_2(0)$. Hence the Jordan canonical form of \mathbf{A} is constructed with the Jordan blocks $J_2(0)$,

Question 10

(i) For any $u = (u_1, u_2, u_3, u_4), v = (v_1, v_2, v_3, v_4), w = (w_1, w_2, w_3, w_4) \in \mathbb{R}^4$, and for any $\alpha \in \mathbb{R}$, we check for the validity of (IP1) to (IP4).

For (IP1),

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = u_1 v_1 + 2u_2 v_2 + 3u_3 v_3 + 4u_4 v_4$$

= $v_1 u_1 + 2v_2 u_2 + 3v_3 u_3 + 4v_4 u_4$
= $\langle \boldsymbol{v}, \boldsymbol{u} \rangle$.

For (IP2),

$$\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w} \rangle = (u_1 + v_1)w_1 + 2(u_2 + v_2)w_2 + 3(u_3 + v_3)w_3 + 4(u_4 + v_4)w_4$$

$$= u_1w_1 + v_1w_1 + 2u_2w_2 + 2v_2w_2 + 3u_3w_3 + 3v_3w_3 + 4u_4w_4 + 4v_4w_4$$

$$= (u_1w_1 + 2u_2w_2 + 3u_3w_3 + 4u_4w_4) + (v_1w_1 + 2v_2w_2 + 3v_3w_3 + 4v_4w_4)$$

$$= \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle.$$

For (IP3),

$$\langle \alpha \boldsymbol{u}, \boldsymbol{v} \rangle = \alpha u_1 v_1 + 2\alpha u_2 v_2 + 3\alpha u_3 v_3 + 4\alpha u_4 v_4$$
$$= \alpha (u_1 v_1 + 2u_2 v_2 + 3u_3 v_3 + 4u_4 v_4)$$
$$= \alpha \langle \boldsymbol{u}, \boldsymbol{v} \rangle.$$

For (IP4), $\langle \mathbf{0}, \mathbf{0} \rangle = \mathbf{0}$, and for $\mathbf{v} \neq \mathbf{0}$,

$$\langle \boldsymbol{v}, \boldsymbol{v} \rangle = v_1 v_1 + 2v_2 v_2 + 3v_3 v_3 + 4v_4 v_4$$
$$= v_1^2 + 2v_2^2 + 3v_3^2 + 4v_4^2$$
$$> 0$$

Therefore, $\langle ., . \rangle$ defines an inner product on \mathbb{R}^4 .

(ii) Let $x_1 = (1, -2, 1, -1), x_2 = (2, -3, 2, -3), x_3 = (3, -5, 3, -4), x_4 = (-1, 1, -1, 2),$ where $\{x_1, x_2, x_3, x_4\}$ spans W. Then, for any $\mathbf{v} = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4, v \in W^{\perp}$ if and only if $\langle v, u_i \rangle = 0$ for i = 1, 2, 3, 4.

Hence we have:
$$\begin{cases} v_1 & - & 4v_2 & + & 3v_3 & - & 4v_4 & = & 0 \\ 2v_1 & - & 6v_2 & + & 6v_3 & - & 12v_4 & = & 0 \\ 3v_1 & - & 10v_2 & + & 9v_3 & - & 16v_4 & = & 0 \\ -v_1 & + & 2v_2 & - & 3v_3 & + & 8v_4 & = & 0 \end{cases}$$

Solving by Gaussian elimination.

Let
$$v_4 = s$$
, $v_3 = t$. Then, $v_2 = 2s$, $v_1 = 4v_2 - 3v_3 + 4v_4 = 12s - 3t$. So, $v = \begin{pmatrix} 12 \\ 2 \\ 0 \\ 1 \end{pmatrix} s + \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix} t$.

Therefore,
$$W^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 12 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Question 11

(i) Since for any $x \in E_1, y \in E_2$, $\langle x, y \rangle = 0$, and that $E_1 \cup E_2 = \mathbb{R}^4$, to find an orthonormal basis of \mathbb{R}^4 consisting of eigenvectors of A, it suffices for us to find an orthonormal basis of E_1 and an orthonormal basis of E_2 (whose elements are all eigenvectors of A), and take the union of these two orthonormal bases together to form the desired orthonormal basis of \mathbb{R}^4 .

The orthonormal basis of
$$E_2$$
 is $\left\{ \begin{array}{l} 1\\ -1\\ 1\\ -1 \end{array} \right\}$.

For the orthonormal basis of E_1 , we perform the Gram-Schmidt algorithm.

Let
$$\boldsymbol{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\boldsymbol{u}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$, $\boldsymbol{u}_3 = \begin{pmatrix} 1 \\ -2 \\ -2 \\ 1 \end{pmatrix}$. Then,

$$oldsymbol{v}_1 = rac{1}{\|oldsymbol{u}_1\|} oldsymbol{u}_1 = rac{1}{2} \left(egin{array}{c} 1 \ 1 \ 1 \ 1 \end{array}
ight).$$

$$egin{array}{lll} m{v}_2' &=& m{u}_2 - \langle m{u}_2, m{v}_1
angle m{v}_1 \\ &=& egin{pmatrix} 1 \ 0 \ 1 \ 2 \ \end{pmatrix} - rac{1}{4} \left\langle egin{pmatrix} 1 \ 0 \ 1 \ 2 \ \end{pmatrix}, egin{pmatrix} 1 \ 1 \ 1 \ 1 \ 1 \ \end{pmatrix}
ight
angle \left(egin{pmatrix} 1 \ 1 \ 1 \ 1 \ \end{pmatrix}
ight. \\ &=& egin{pmatrix} 1 \ 0 \ 1 \ \end{pmatrix} - egin{pmatrix} 1 \ 1 \ 1 \ 1 \ \end{pmatrix} \\ &=& egin{pmatrix} 0 \ -1 \ 0 \ 1 \ \end{pmatrix} \\ m{v}_2 &=& rac{1}{\|m{v}_2'\|} m{v}_2' = rac{1}{\sqrt{2}} egin{pmatrix} 0 \ -1 \ 0 \ 1 \ \end{pmatrix}. \end{array}$$

Page: 7 of 8

$$\begin{aligned} v_3' &= u_3 - \langle u_3, v_1 \rangle v_1 - \langle u_3, v_2 \rangle v_2 \\ &= \begin{pmatrix} 1 \\ -2 \\ -2 \\ 1 \end{pmatrix} - \frac{1}{4} \left\langle \begin{pmatrix} 1 \\ -2 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ -2 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle \\ &= \begin{pmatrix} 1 \\ -2 \\ -2 \\ 1 \end{pmatrix} - \frac{1}{4} (-2) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} (3) \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} \\ &= \frac{3}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \\ v_3 &= \frac{1}{\|v_3'\|} v_3' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}. \end{aligned}$$

Therefore, an orthonormal basis of E_1 is $\left\{ \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \right\}$.

Therefore, the desired orthonormal basis is $\left\{ \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1\\0\\1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix} \right\}$.

(ii) A matrix that diagonalises \boldsymbol{A} is one which has columns of its linearly independent eigenvectors. Furthermore, an orthogonal matrix has columns which form an orthogonal basis of \mathbb{R}^4 . Hence, to obtain an orthogonal matrix which diagonalises \boldsymbol{A} , we take the vectors in the basis found in (i)

Page: 8 of 8

as its columns. We obtain
$$\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \end{pmatrix}.$$