Teoría de Autómatas y Lenguajes Formales

Practice 3: Turing Machine, recursive functions and WHILE language

Pablo Fazio Arrabal

Ejercicio 1 - Turing Machine

Ejercicio 1. Define the TM solution of exercise 3.4 of the problem list and test its correct behaviour.

Exercise 3.4. Prove that the function add(x,y) = x + y, with $x, y \in \mathbb{N}$ is Turing-computable using the unary notation $\{|\}$. You have to create a TM with two arguments separated by a blank symbol that starts and ends behind the strings.

Construcción de la TM en JFLAP

Lo más indicado es darnos cuenta que debemos unir ambas representaciones unarias de los números de la operación y borrar los | sobrantes. Para ello, como el cabezal de la cinta comienza al principio de la cadena, lo movemos al símbolo separador entre ambos números y en dicha posición escribimos '|'.

Una vez hecho esto, nos desplazamos hasta el final de la cadena esperando un nuevo símbolo por defecto y borramos los dos últimos símbolos de la cadena a la izquierda de este. Por último, paramos la computación y en la cinta estará representada la solución de la suma en unario.

Prueba de la TM en JFLAP

Veamos un ejemplo para comprobar que la función add(x,y) está bien definida por esta TM. Dada la notación unaria $\{|\}$, sabemos que un natural n está representado con n+1'|'. Luego veamos que ocurre con add(3,2)=5, representado por la cadena " $||||\Box|||$ ":

Como vemos en la imagen anterior, la cadena es aceptada por nuestra Máquina de Turing parando la cinta con la cadena "||||||", es decir la representación unaria del número 5, lo cual coincide con la solución.

Ejercicio 2 - Recursive functions

Ejercicio 2. Define a recursive function for the sum of three values.

Definición de la función recursiva

Vamos a definir nuestra función como una recursión primitiva, es decir:

Definición. Sea $k \geq 0$ y las funciones $g : \mathbb{N}^k \to \mathbb{N}$ y $h : \mathbb{N}^{k+2} \to \mathbb{N}$. Si la función $f : \mathbb{N}^{k+1} \to \mathbb{N}$ es:

$$f(\underline{n}, m) = \begin{cases} g(\underline{n}) & \text{si } m = 0\\ h(\underline{n}, m - 1, f(\underline{n}, m - 1)) & \text{si } m > 0 \end{cases}$$

entonces f se obtiene de g y h por recursión primitiva.

Definamos la función $suma_3: \mathbb{N}^3 \to \mathbb{N}$ como $suma_3(x,y,z) = x+y+z$. Por tanto, se definen $g: \mathbb{N}^2 \to \mathbb{N}$ y $h: \mathbb{N}^4 \to \mathbb{N}$, donde g = add(x,y) y $h = \sigma(\pi_4^4)$ ambas funciones recursivas vistas en teoría.

Por lo visto en el **Ejemplo 8.1.1** de talflecturenotes.pdf, la función $add = \langle \pi_1^1 \mid \sigma(\pi_3^3) \rangle$ es recursiva. Luego, $suma_3(\underline{n}) = \langle \langle \pi_1^1 \mid \sigma(\pi_3^3) \rangle \mid \sigma(\pi_4^4) \rangle (\underline{n})$.

Prueba en Octave

```
pablofa02@pablofa02-Modern-14-A10RB: ~
                                                                                                                                                                                                                              Q
 octave:15> evalrecfunction ('suma_3', 5, 4, 3)
  \begin{array}{l} \text{Suma}_3(5,4,3) \\ << n^{1}_{1} | \sigma(n^{3}_{3}) > | \sigma(n^{4}_{4}) > (5,4,3) \\ << n^{1}_{1} | \sigma(n^{3}_{3}) > | \sigma(n^{4}_{4}) > (5,4,2) \\ << n^{1}_{1} | \sigma(n^{3}_{3}) > | \sigma(n^{4}_{4}) > (5,4,1) \\ \end{array} 
  <<Π¹1|σ(Π³3)>|σ(Π⁴4)>(5,4,0)
 < n^{1} \mid \sigma(n^{3} \mid 3) > (5,4)
< n^{1} \mid \sigma(n^{3} \mid 3) > (5,3)
< n^{1} \mid \sigma(n^{3} \mid 3) > (5,3)
< n^{1} \mid \sigma(n^{3} \mid 3) > (5,2)
< n^{1} \mid \sigma(n^{3} \mid 3) > (5,1)
< n^{1} | \sigma(n^{3} \cdot 3) > (5, 0)

< n^{1} | \sigma(n^{3} \cdot 3) > (5, 0)

n^{1} \cdot (5) = 5

\sigma(n^{3} \cdot 3) (5, 0, 5)

n^{3} \cdot 3 (5, 0, 5) = 5
 \sigma(\Pi^3_3)(5,1,6)
  \Pi^3_3(5,1,6) = 6
σ(6) = 7
σ(π³₃)(5,2,7)
π³₃(5,2,7) = 7
σ(7) = 8
σ(π³₃)(5,3,8)
π³₃(5,3,8) = 8
\sigma(\Pi^{4}_{4})(5,4,0,9)

\Pi^{4}_{4}(5,4,0,9) = 9
 σ(π<sup>4</sup>4)(5,4,1,10)
π<sup>4</sup>4(5,4,1,10) = 10
 \sigma(\Pi^4_4)(5,4,2,11)

\Pi^4_4(5,4,2,11) = 11
 \sigma(11) = 12
 ans = 12
```

Ejercicio 3 - WHILE Language

Ejercicio 3. Implement a WHILE program that computes the sum of three values. You must use an auxiliary variable that accumulates the result of the sum.

Construccion del código WHILE

```
sima_3 = (3, s)
s:
X_4 := X_1;
\mathbf{while} \ X_2 \neq 0 \ \mathbf{do}
X_4 := X_4 + 1;
X_2 := X_2 - 1;
\mathbf{od}
\mathbf{while} \ X_3 \neq 0 \ \mathbf{do}
X_4 := X_4 + 1;
X_3 := X_3 - 1;
\mathbf{od}
```

El código escrito es bastante sencillo de interpretar. Usaremos 3 argumentos de entrada en total, que representarán los números que queremos sumar, e iremos decrementando uno de ellos a favor de un argumento auxiliar X_4 , que en un principio ya asignaremos como uno de estos números, hasta que se llegue a 0. Lo mismo haremos con el siguiente argumento, es decir, lo reducimos a favor del auxiliar hasta llegar a 0. Por tanto, al final, nos quedará el atributo X_4 como suma de los tres valores.