Homework_13

December 4, 2019

1 Homework 13

1.0.1 1. Waiting Till HH

In a lab earlier in the term, you found a formula for the expected waiting time till any finite pattern of heads and tails appears in a sequence of coin tosses. In this exercise you will revisit that calculation in the case of a simple pattern HH, and find the variance of the waiting time as well.

A p-coin is tossed repeatedly. Let W_H be the number of tosses till the first head appears, and W_{HH} the number of tosses till two consecutive heads appear.

- (a) Describe a random variable X that depends only on the tosses after W_H and satisfies W_{HH} = W_H + X.
- (b) Use Part (a) to find $E(W_{HH})$. What is its value when p = 1/2?
- (c) Use Parts (a) and (b) to find $Var(W_{HH})$. What is the value of $SD(W_{HH})$ when p = 1/2?

1.0.2 Solution

(a) X = 1 with probability p.

With probability q, $X = 1 + W_{HH}^*$ where W_{HH}^* is an independent copy of W_{HH} .

(b) Let \(\mu = E(W_{HH}) \) and let \(I \) be the indicator of heads on the toss after \(W_H \). Then

```
E(X \mid I) = 1 with probability p and 1 + \mu with probability q. By iteration, E(X) = p + q(1 + \mu) = 1 + q\mu. Since W_{HH} = W_H + X, we have \mu = E(W_H) + E(X) = \frac{1}{p} + 1 + q\mu. So p\mu = \frac{1}{p} + 1 and hence \mu = \frac{1}{p^2} + \frac{1}{p}. When p = 1/2, \mu = 4 + 2 = 6.
```

(c) For brevity, let σ² = Var(W_{HH}).

 $\sigma^2 = Var(W_H) + Var(X)$ since W_H and X are functions of disjoint sets of tosses.

 $Var(W_H) = \frac{q}{p^2}$ since W_H is geometric. So $\sigma^2 = \frac{q}{p^2} + Var(X)$.

Find Var(X) by conditioning on I, the indicator of the toss after W_H landing heads.

$$Var(X) = E(Var(X \mid I)) + Var(E(X \mid I))$$

The first piece:

Var(X | I = 1) = 0 and $Var(X | I = 0) = \sigma^2$.

So
$$E(Var(X \mid I) = 0 \cdot p + \sigma^2 q = \sigma^2 q$$
.

The second piece:

From (b), $E(X \mid I) = 1$ with probability p and $1 + \mu$ with probability q, and $E(E(X \mid I)) =$ $E(X) = 1 - q\mu$.

So
$$Var(E(X \mid I)) = 1^2p + (1 + \mu)^2q - (1 + q\mu)^2$$

= $1 + 2\mu q + \mu^2 q - 1 - 2q\mu - q^2\mu^2$

$$= 1 + 2\mu q + \mu^2 q - 1 - 2q\mu - q^2\mu^2$$

$$= \mu^2 q p$$

So $Var(X) = \sigma^2 q + \mu^2 q p$ Plug this into $\sigma^2 = \frac{q}{p^2} + Var(X)$ to get $\sigma^2 = \frac{q}{p^2} + \sigma^2 q + \mu^2 q p$

$$\sigma^2 = \frac{q}{p^2} + \sigma^2 q + \mu^2 q p$$

So
$$p\sigma^2 = \frac{q}{p^2} + \mu^2 qp$$
 and so

$$\sigma^2 = \frac{q}{p^3} + \mu^2 q$$

That's fine as an answer. But it simplifies after substituting $\mu = \frac{1}{n^2} + \frac{1}{n}$:

$$\begin{split} \sigma^2 &= q \left(\frac{1}{p^3} + \frac{1}{p^4} + \frac{2}{p^3} + \frac{1}{p^2} \right) \\ &= \left(1 - p \right) \left(\frac{3}{p^3} + \frac{1}{p^4} + \frac{1}{p^2} \right) \end{split}$$

$$= (1-p)(\frac{3}{p^3} + \frac{1}{p^4} + \frac{1}{p^2})$$

$$=\frac{1}{p^4}+\frac{2}{p^3}-\frac{2}{p^2}-\frac{1}{p}$$

 $= \frac{1}{p^4} + \frac{2}{p^3} - \frac{2}{p^2} - \frac{1}{p}$ When p = 1/2, $\sigma^2 = 16 + 16 - 8 - 2 = 22$, so $\sigma \approx 4.7$.

1.0.3 2. Random Vector Workout

A random vector $\mathbf{Y} = [Y_1 \ Y_2 \ \cdots \ Y_n]^T$ has mean vector $\boldsymbol{\mu}$ and covariance matrix $\sigma^2 \mathbf{I}_n$ where $\sigma > 0$ is a number and I_n is the $n \times n$ identity matrix.

- (a) Pick one option and explain: Y₁ and Y₂ are
- (i) independent. (ii) uncorrelated but might not be independent. (iii) not uncorrelated.
 - (b) Pick one option and explain: Var(Y1) and Var(Y2) are
 - (i) equal. (ii) possibly equal, but might not be. (iii) not equal.
 - (c) For $m \le n$ let **A** be an $m \times n$ matrix of real numbers, and let **b** be an $m \times 1$ vector of real numbers. Let V = AY + b. Find the mean vector μ_V and covariance matrix Σ_V of V.
 - (d) Let c be an $m \times 1$ vector of real numbers and let $W = \mathbf{c}^T \mathbf{V}$ for \mathbf{V} defined in Part (c). In terms of \mathbf{c} , $\mu_{\mathbf{V}}$ and $\Sigma_{\mathbf{V}}$, find E(W) and Var(W).
 - (a) (ii) because the (1,2) element of the covariance matrix is 0

- (b) (i) because all the diagonal elements of the covariance matrix are σ^2
- (c) $\mu_{\mathbf{V}} = \mathbf{A}\mu + \mathbf{b}$, $\Sigma_{\mathbf{V}} = \mathbf{A}\sigma^2 \mathbf{I} n \mathbf{A}^T = \sigma^2 \mathbf{A} \mathbf{A}^T$
- (d) $E(W) = \mathbf{c}^T \boldsymbol{\mu}_{\mathbf{V}}, Var(W) = \mathbf{c}^T \boldsymbol{\Sigma}_{\mathbf{V}} \mathbf{c}$

1.0.4 3. Normals and Coins

Let X be standard normal. Construct a random variable Y as follows:

- · Toss a fair coin.
- If the coin lands heads, let Y = X.
- If the coin lands tails, let Y = -X.
- (a) Find the cdf of Y.
- (b) Find E(XY) by conditioning on the result of the toss.
- (c) Are X and Y uncorrelated?
- (d) Are X and Y independent?
- (e) Is the joint distribution of X and Y bivariate normal?
- (a) For all y, $\Phi(y) = 1 \Phi(-y)$.

Let I be the indicator of heads.

$$P(Y < y) = P(Y < y, I = 1) + P(Y < y, I = 0) = (1/2)P(X < y) + (1/2)P(-X < y) = (1/2)\Phi(y) + (1/2)(1 - \Phi(-y)) = (1/2)\Phi(y) + (1/2)\Phi(y) = \Phi(y)$$

So Y is standard normal.

(b) Given I = 1, $XY = X^2$ so $E(XY \mid I = 1) = E(X^2) = 1$.

Given
$$I = 0$$
, $XY = -X^2$ so $E(XY \mid I = 0) = -E(X^2) = -1$.
So $E(XY) = (1/2)1 + (1/2)(-1) = 0$

- (c) Yes by (b).
- (d) No. For example if X = 2 then Y has to be either 2 or -2.
- (e) No. If they were bivariate normal then they would be independent because they are uncorrelated. But they aren't independent.

1.0.5 4. Correlation

The covariance of random variables *X* and *Y* has nasty units: the product of the units of *X* and the units of *Y*. Dividing the covariance by the two SDs results in an important pure number.

The *correlation coefficient* between random variables *X* and *Y* is defined as

$$r(X,Y) = \frac{Cov(X,Y)}{SD(X)SD(Y)}$$

It is called the correlation, for short. The definition explains why X and Y are called *uncorrelated* if Cov(X,Y) = 0.

a) Let X* be X in standard units and let Y* be Y in standard units. Check that

$$r(X,Y) = E(X^*Y^*)$$

This is the random variable version of the Data 8 definition of the correlation between two data variables: convert each variable to standard units; multiply each pair; take the mean of the products.

b) Use the fact that $(X^* + Y^*)^2$ and $(X^* - Y^*)^2$ are non-negative random variables to show that $-1 \le r(X,Y) \le 1$.

[First find the numerical values of $E(X^*)$ and $E(X^{*2})$. Then find $E(X^* + Y^*)^2$.]

- c) Show that if Y = aX + b where $a \neq 0$, then r(X, Y) is 1 or -1 depending on whether the sign of a is positive or negative.
- d) Consider a sequence of i.i.d. Bernoulli (p) trials. For any positive integer k let X_k be the number of successes in trials 1 through k. Use bilinearity to find $Cov(X_n, X_{n+m})$ and hence find $r(X_n, X_{n+m})$.
- e) Fix n and find the limit of your answer to c as $m \to \infty$. Explain why the limit is consistent with intuition.

1.0.6 Solution

a)
$$E(X^*) = E(Y*) = 0$$

 $SD(X^*) = SD(Y*) = 1$
 $Cov(X^*, Y^*) = \frac{1}{SD(X)SD(Y)}Cov(X - E(X), Y - E(Y)) = \frac{1}{SD(X)SD(Y)}Cov(X, Y) = r(X, Y)$
 $r(X, Y) = Cov(X^*, Y^*) = E(X^*Y^*) - E(X^*)E(Y^*) = E(X^*Y^*) - 0 = E(X^*Y^*)$
b) $E(X^*) = 0$
 $E(X^*)$

This makes sense because as $m \to \infty$, the overlap between X_n and X_{n+m} decreases. The overlapping X_n portion is insignificant because X_n and X_m are independent and m is large compared to n.

1.1 Submission Instructions

Many assignments throughout the course will have a written portion and a code portion. Please follow the directions below to properly submit both portions.

1.1.1 Written Portion

- Scan all the pages into a PDF. You can use any scanner or a phone using an application.
 Please DO NOT simply take pictures using your phone.
- Please start a new page for each question. If you have already written multiple questions on the same page, you can crop the image or fold your page over (the old-fashioned way). This helps expedite grading.
- It is your responsibility to check that all the work on all the scanned pages is legible.

1.1.2 Code Portion

- Save your notebook using File > Save and Checkpoint.
- Generate a PDF file using File > Download as > PDF via LaTeX. This might take a few seconds and will automatically download a PDF version of this notebook.
 - If you have issues, please make a follow-up post on the general HW 13 Piazza thread.

1.1.3 Submitting

- Combine the PDFs from the written and code portions into one PDF. Here is a useful tool for doing so.
- Submit the assignment to Homework 13 on Gradescope.
- · Make sure to assign each page of your pdf to the correct question.
- It is your responsibility to verify that all of your work shows up in your final PDF submission.
- 1.1.4 We will not grade assignments which do not have pages selected for each question.