Welcome to CME 250 Introduction to Machine Learning!

Spring 2020 – Online version April 16th 2020

Today's schedule

- Dimensionality reduction: Why is it useful?
- Reduce number of features
 - PCA as Maximal Variance Projection
 - Other (really useful) matrix decompositions
- Creating features out of similarity
 - Spectral clustering

Let's get to know each other...

Breakout room

You

Another student

Name

Location

Department

Year

Describe where you are: kitchen, car, coffee shop ...

3 mins

Chat/Audio/Video

Unsupervised Learning Part II: Dimensionality Reduction

Data Exploration

Introduction to Statistical Learning

Chapter 10.2: Principal Component Analysis,

10.4: Practical Lab in R

Elements Statistical Learning

Chapter 14.5 – 14.9: Different methods of DR

Recommended:

Ten quick tips for effective dimensionality reduction Lan Huong Nguyen, Susan Holmes.(2019) https://doi.org/10.1371/journal.pcbi.1006907

Last class recap

What is dimensionality reduction?

Reduce # of variables preserving most of the information

PCA: Principal Component Analysis

The most common DR method

Figure 10.2 ISL (2013)

Goal: Find the projection that maximizes variation

PCA: What is 1st principal component?

Variables: $X_1, X_2, ..., X_p$

Ist principal component
$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$
 the largest variance

PCA: Computing 1st principal component

For each sample: $x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}$

I) Center observations
$$\tilde{x}_j^{(i)} = x_j^{(i)} - \bar{x}_j$$

$$\tilde{x}_j^{(i)} = x_j^{(i)} - \overline{x}_j$$

2) We look for
$$z_1^{(i)} = \phi_{11}\tilde{x}_1^{(i)} + \phi_{21}\tilde{x}_2^{(i)} + \dots + \phi_{p1}\tilde{x}_p^{(i)}$$

by solving

$$\max_{\phi_{11},\dots,\phi_{21}} \frac{1}{N} \sum_{i=1}^{N} \left(z_1^{(i)}\right)^2$$
 s.t.
$$\sum_{j=1}^{p} \phi_{p1}^2 = 1$$
 normalized variance

PCA: Computing 1 st principal component (In matrix form)

Observation vs. feature X

1) Center observations
$$\widetilde{X} = \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right) X$$

2) We look for
$$z_1 = \widetilde{X}\phi_1$$

by solving

$$\max_{\phi_1} \phi_1^T (\widetilde{\textbf{\textit{X}}}^T \widetilde{\textbf{\textit{X}}}) \phi_1 \qquad \text{s.t.} \qquad \|\phi_1\|_2 = 1 \quad \text{normalized}$$
 variance

Solution = Largest eigenvector of $\widetilde{X}^T \widetilde{X}$ normalized

PCA: What are first k principal components?

Variables: $X_1, X_2, ..., X_p$

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \cdots + \phi_{p1}X_p \qquad \text{the largest}$$
 k principal components
$$Z_k = \phi_{1k}X_1 + \phi_{2k}X_2 + \cdots + \phi_{pk}X_p \qquad \text{uncorrelated}$$

PCA: Computing k principal components (In matrix form)

Observation vs. feature X

- 1) Center observations $\widetilde{X} = \left(I \frac{1}{n} \mathbf{1} \mathbf{1}^T\right) X$
- 2) We look for $Z_k = \widetilde{X}V_k$

by solving

$$\max_{V_k} tr\left(V_k^T \widetilde{X}^T \widetilde{X} V_k\right)$$
variance

s.t.

$$V_k^T V_k = I$$
 and uncorrelated

Solution = orthogonal projection into k largest eigenvectors of $\widetilde{X}^T \widetilde{X}$

PCA: How to compute eigenvectors?

Eigenvalue Decomposition

$$A = B\Lambda B^{-1}$$

 Λ : diagonal

For
$$\widetilde{X}^T\widetilde{X}$$
:

For
$$\widetilde{X}^T\widetilde{X}$$
: $\widetilde{X}^T\widetilde{X} = VD^2V^T$

s.p.d: symmetric positive definite

Singular Value Decomposition

$$\widetilde{X} = UDV^T$$

$$d_{11} \ge d_{22} \ge \dots \ge d_{NN} \ge 0$$

$$U^TU = I, V^TV = I$$

PCA: The SVD and the principal components

We look for $Z_k = \tilde{X}V_k$ uncorrelated and with largest variance

SVD:
$$\widetilde{X} = UDV^T$$

$$Z_k = U_k D_k$$

Truncated SVD

PCA = SVD applied to centered matrix
$$\tilde{X} = \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^{T}\right) X$$

The SVD and data compression

For any A, truncated SVD minimizes

$$\min_{U_k, D_k, V_k} \left\| A - U_k D_k V_k^T \right\|_2 \qquad U_k \in \mathbb{R}^{N \times k}, D_k \in \mathbb{R}^{\times k}, V_k \in \mathbb{R}^{p \times k}$$
 Orthogonal Orthogonal

12 times smaller

The SVD and data compression

PCA: How many k do we pick?

Space available

"Clear" cut

% Variance

$$\frac{\sum_{i=1}^{k} d_i^2}{\sum_{i=1}^{p} d_i^2} = \frac{\text{Variance Explained}}{\text{Total Variance}}$$

PCA: SVD Challenges

Not all variables have the same influence

Non suitable for sparse data, expensive to compute

Uncorrelation, not independence

Does not preserve non negativity

Non robust

Only 2D arrays

PCA: SVD Challenges

$$\min_{\substack{U_k,D_k,V_k}} \left\| A - U_k D_k V_k^T \right\|_2 \qquad U_k \in \mathbb{R}^{N \times k}, D_k \in \mathbb{R}^{\times k}, V_k \in \mathbb{R}^{p \times k}$$
 Orthogonal Orthogonal

Makes optimization more challenging

PCA: Not all variables have the same influence

Weighted PCA

$$\widetilde{X}W \approx U_k D_k V_k^T$$

e.g.W diagonal
$$w_i = \frac{1}{\sqrt{var(x_i)}}$$

PCA: Components are uncorrelated, but not

independent

Independent Component Analysis ICA

$$\widetilde{X}\Sigma^{-1/2} \approx UA$$

U low entropy = non-Gaussian projection

PCA: Components are uncorrelated, but not independent

PCA: Components are uncorrelated, but not independent

PCA: Non robust to outliers

$$\widetilde{X} \approx U_k D_k V_k^T + S$$

S sparse

PCA: Non suitable for sparse data, expensive to compute

Sparse PCA $\widetilde{X} \approx U_k D_k V_k^T$ $V_k \text{ sparse}$

CUR $\widetilde{X} \approx CUR$ C columns R rows

PCA: Non suitable for sparse data, expensive to compute

Non-Negative Factorization

$$\widetilde{X} \approx WH$$

$$w_{i,k}, h_{k,j} \geq 0$$

PCA: Non suitable for sparse data, expensive to compute

genfaces - PCA using randomized SVD - Train time 0.(Non-negative components - NMF - Train time 0.2s

PCA: Only 2D arrays

PCA: Only 2D arrays

Neuron

Volume 98, Issue 6, 27 June 2018, Pages 1099-1115.e8

NeuroResource

Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis

Alex H. Williams ^{1, 13} $\stackrel{1}{\sim}$ $\stackrel{1}{\sim}$, Tony Hyun Kim ², Forea Wang ¹, Saurabh Vyas ^{2, 3}, Stephen I. Ryu ^{2, 11}, Krishna V. Shenoy ^{2, 3, 6, 7, 8, 9}, Mark Schnitzer ^{4, 5, 7, 9, 10}, Tamara G. Kolda ¹², Surya Ganguli ^{4, 6, 7, 8} $\stackrel{1}{\sim}$ $\stackrel{1}{\sim}$

PCA + Other matrix factorizations

What about similarity matrix?

Correlation as similarity

Pattern

Figure 10.13 ISL (2013)

Correlation

$$d(x^{(1)}, x^{(2)}) = \sum_{k=1}^{P} \frac{\left(x_k^{(1)} - \bar{x}^{(1)}\right) \left(x_k^{(2)} - \bar{x}^{(2)}\right)}{\sqrt{\sum_{k=1}^{P} \left(x_k^{(1)} - \bar{x}^{(1)}\right)^2} \sqrt{\sum_{k=1}^{P} \left(x_k^{(2)} - \bar{x}^{(2)}\right)^2}}$$

In matrix notation, \widetilde{K} similarity matrix

$$\widetilde{K} = \widetilde{X}\widetilde{X}^T$$

SVD and Similarity matrix

In matrix notation, K similarity matrix

$$\widetilde{K} = \widetilde{X}\widetilde{X}^T$$

In terms of cosine similarity

$$\widetilde{K} = \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right) X X^T \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right)$$

Using SVD of \widetilde{X} (Principal Components)

$$\widetilde{K} = UD^2U^T = ZZ^T$$

What if we prefer another similarity measure?

Kernel PCA

In terms of any similarity

$$\widetilde{K} = \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right) K \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right)$$

computing SVD (Principal Components)

$$\widetilde{K} = UD^2U^T = ZZ^T$$

Create features that preserve similarity

Kernel PCA

How to interpret similarity matrix?

K-Nearest Neighbors graph

Edge weight = similarity

Graph Laplacian

W = Adjacency Matrix

Graph Laplacian

$$L = G - W$$

where
$$g_{ii} = \sum_{j \neq i} w_{ij}$$

Edge weight = similarity

Spectral Clustering

Eigenvectors of L # Connected corresponding to components smallest eigenvalue New features Apply clustering (e.g. K-means)

Edge weight = similarity

Spectral Clustering

42

Further reading

- What about categorical variables?
- What about DR for visualization?

Ten quick tips for effective dimensionality reduction Lan Huong Nguyen, Susan Holmes. (2019) https://doi.org/10.1371/journal.pcbi.1006907

Logistics

- Join slack channel cme250202.slack.com
- Office hours tomorrow Noon to 1pm (link on Canvas)
- Part I project deadline: April 26.