# Ames Iowa Machine Learning

December 15, 2023

Nick Herman Charlotte Wolf Chui Pereda

## Agenda

Key Objectives and Background

**Exploratory Data Analysis (EDA)** 

Lasso and Multiple Linear Regression (MLR)

**Gradient Boosting** 

Other Models

Key Findings and Future Work

## **Key Objectives**

- Predict price for home buyers and sellers
- Determine home attributes impacting price
- Insights into the market in Ames, lowa



Data set covers sales from 2006 to 2010

Demographics: Students, professors

According to Ames Economic Development Commission, ISU is the largest employer with over 10,000 employees, or about % of the total population

# **Demographics**





# Exploratory Data Analysis

# Data Cleaning and Preprocessing



#### Merge

Housing with Real Estate data

#### **Features Added**

Latitude, Longitude, DistancetoISU, DistanceCategory, TotalSF

#### **Features Dropped**

PID, GeoRefNo, Prop\_Addr, Utilities



#### **Feature Correlation**



# Sale Price and OverallQual



# Sales Price and Neighborhood









#### **Sales Price and Location**



# Sales Price and Seasonality



#### Sales Price and Distance from ISU



# Lasso and MLR

# Lasso Regression - Handling nominal, ordinal, numerical features

All features needed to be an int or float type before modeling.

#### Nominal

- Dummified for linear models. First category was not dropped.
- NaN filled with "missing"

#### Ordinal

mapped. Missing was 0, Poor 1, Fair 2, etc

#### Numerical

NaN filled with mean/mode/median



## **Lasso Regression Round 1**

#### Standard Scaler

Ensures each feature contributes equally to computation

#### K-fold cross-validation

- reliable estimate of the model's performance
- Train test splits have a high variance depending on how the split is made. K-fold reduces this by averaging performance over folds

#### Base lasso model with ALL features + no tuning

Mean r2 = .8886, Mean RMSE = 24666.8431

## R<sup>2</sup> Changes as More Features Are Included



# Lasso Tuning

GridSearchCV used to determine best alpha = 790

- features shrunk to 0 (192)
- non-zero coeff features (84)

GridSearchCV with non zero coeff features

Best alpha = 271





# Best alpha + non-zero coeff features

- Mean R2= .8939
- Mean RMSE= 24106.9580

#### Outliers removed

- Mean R2=.9442
- Mean RMSE=15483



# Multiple Linear Regression Round 1

#### Preprocessing differences:

- NO standard scaler so the coefficients are interpretable
- For dummified categorical variables, drop\_first was used

Same 49 non-zero features were used.

Mean R2=.8881

# Multiple Linear Regression Round 2

Non-zero features removed if they do not increase R2

- 28 features kept
- Mean R2 = .8998, RMSE= 23557.2429

Same outliers were removed

• Mean R2 = .9403, RMSE=16012.39.09

# **Comparison of Models**





#### Interpretable results

- Switch wood shake to wood shingles to increase property by \$43k
- Switch "other" to wall heating can increase property value by \$46k

#### Outliers

 Opportunity to buy and sell. Buy low and sell high.

| Feature      | Average Coefficient |
|--------------|---------------------|
| GrLivArea    | 47.326946           |
| OverallQual  | 8004.122468         |
| YearBuilt    | 359.111089          |
| MasVnrArea   | 21.307342           |
| BsmtFinSF2   | 9.538167            |
| BedroomAbvGr | -5003.002423        |
| OverallCond  | 5450.969043         |
| ScreenPorch  | 24.280998           |
| TotalSF      | 11.755731           |
| BsmtFinSF1   | 20.695211           |
| GarageArea   | 18.654225           |
| LotArea      | 0.576059            |
| Fireplaces   | 2736.805119         |
| HeatingQC    | 1486.802328         |
|              |                     |

# Gradient Boosting Models

# Missing/Incorrect Values

Each feature was reviewed and the best method for imputing the missing values was determined. Some of these solutions included:

- The mean/mode value from the feature was used
- Some missing/impossible year values were filled with the year the house was built
- Some numerical features such as zip code were converted to categorical with the NA's filled with 'Other'
- When specific features related to each other a map was used to calculate the average ratio of one feature to another based on unique combinations. The ratios were used to calculate missing values
- Categorical features had their NA's replaced with "None"

# Handling Nominal, Ordinal, & Numerical Features

Ames Dataset: 2577 observations, 81 features

- (37) Numerical features were left as is
- (17) Ordinal categorical features were mapped to numerical values starting at 0 for 'none' or whatever the lowest value was for that feature
- (27) Nominal categorical features were also mapped starting at 0 in an arbitrary order. Changing the values that these were mapped to did not change the model scores

#### **Model Selection**

After data cleaning and linear modeling, many models were tested (with their default parameters) to see which would be the best to investigate further.

We decided to work on a model using Gradient Boosting Regressor

|                               | R2      | MSE             | MAE         |
|-------------------------------|---------|-----------------|-------------|
| Model                         |         |                 |             |
| GradientBoostingRegressor     | 0.92703 | 399600557.78222 | 13176.81917 |
| HistGradientBoostingRegressor | 0.92454 | 413669045.81594 | 12858.33696 |
| ExtraTreesRegressor           | 0.91723 | 454027408.12039 | 13649.25736 |
| XGBRegressor                  | 0.91551 | 458607222.70555 | 13972.52447 |
| RandomForestRegressor         | 0.90901 | 496327398.72313 | 14427.60776 |
| Lasso                         | 0.89256 | 582028189.80295 | 16652.67575 |
| Linear Regression             | 0.89253 | 582175274.44554 | 16656.33405 |
| Ridge                         | 0.89210 | 584595134.87604 | 16703.01480 |
| ElasticNet                    | 0.88496 | 624847494.15185 | 16917.58553 |

#### **Grid Search**

After broad experimentation with the various parameters one at a time, the ranges for each was narrowed down and a using the GridSearchCV function with the following parameter ranges the best values were found

```
param_grid = {
    'learning_rate': [0.008, 0.01, 0.012],
    'subsample': [0.2, 0.3, 0.4],
    'n_estimators': [5000, 6000, 7000],
    'max_depth': [3, 4, 5, 6],
    'min_samples_split': [3, 5, 7],
}
```

```
Best Parameters: {'learning_rate': 0.008, 'max_depth': 3, 'min_samples_split': 5, 'n_estimators': 6000, 'subsample': 0.3}
Best R-squared: 0.941400438914043
R-squared on Test Data: 0.9495
Elapsed Time: 34569.19 seconds
```

# Analysis on both dummified and numerical dataframes

While dummification is not necessary for a tree based model, analysis was run on both a dataframe with the categorical columns treated as previously described (called df\_numerical) as well as the version where those columns were dummified (called df\_with\_dummies).

While there is minimal impact on the mean R2 score on a 5-fold cv, we decided to continue improving our model based on the df\_numerical.

|   | DataFrame       | Hyperparameters    | Fold 1 R2 | Fold 2 R2 | Fold 3 R2 | Fold 4 R2 | Fold 5 R2 | MLR Mean R2 | Standard Deviation |
|---|-----------------|--------------------|-----------|-----------|-----------|-----------|-----------|-------------|--------------------|
| 0 | df_numerical    | best for numerical | 0.94646   | 0.93912   | 0.95445   | 0.94875   | 0.93245   | 0.94424     | 0.00768            |
| 1 | df_with_dummies | best for numerical | 0.94787   | 0.94144   | 0.95584   | 0.94682   | 0.92937   | 0.94427     | 0.00875            |
| 2 | df_numerical    | best for dummies   | 0.94283   | 0.93457   | 0.94317   | 0.94421   | 0.92979   | 0.93892     | 0.00572            |
| 3 | df_with_dummies | best for dummies   | 0.94387   | 0.93625   | 0.94926   | 0.94060   | 0.92350   | 0.93870     | 0.00871            |
|   |                 |                    |           |           |           |           |           |             |                    |

## Parameter Tuning - Null Model



# Specific parameters were tuned on a loop to see their performance changed with increasing estimators



# Specific parameters were tuned on a loop to see their performance changed with increasing estimators



#### Feature Selection

Once the model had been tuned, the most important features were determined using the GradientBoostingRegressor feature\_importances\_ attribute. These were the top 10 features:

'TotalSF',
 'OverallQual',
 'GrLivArea',
 'ExterQual\_n',
 'GarageArea',
 'GarageCars',
 'BsmtFinSF1'

The features were added one by one to a model tuned with the best hyperparameters to track how adding features impacted  $\mathsf{R}^2$ 



#### **Feature Selection**

While this result seems to indicate that the R<sup>2</sup> of the model always improves with more features included, when zoomed in we can see that this is not exactly so:





#### **Feature Selection**

#### Removed features:

- MasVnrArea
- MiscRmsAbvGrd
- LotShape\_n
- SaleType
- Foundation
- EnclosedPorch

Max  $R^2$  Score = **0.94917** at the 51 most important features included

Max  $R^2$  Score = **0.92703** with default parameters and all features included



# **Model Accuracy**





# Additional Models

## **Lazy Predict**





#### **Random Forest**

R^2 over 5-fold CV: **0.9059** 



# XGBoost

R^2 over 5-fold CV, no tuning: **0.9137** 

R<sup>2</sup> over 5-fold CV, with tuning: **0.9361** 



# **Model Comparison**



# Takeaways

### Final Takeaways

- Key features
  - Total SF + Overall Quality
- Prediction with ~95% accuracy
- Coefficients show what drives price per unit of measure
- A combination of ~50 best features accurately predicts price.
- Extrapolate to other housing models
  - Year built, overall quality, other top 10s are likely to predict housing in other markets
- What makes this market unique?
  - College town

#### **Future Work**

- Examining other models
- Further feature engineering
- Adjusting price based on price time series
- Incorporating other data sources
- Determining undervalued/overvalued homes



#### **Github Repositories:**

https://github.com/cpereda/Ames-lowa-Housing-ML-Project

https://github.com/lottiewolf/NYCDSA\_ML\_Ames

https://github.com/nherman3/NYCDSA\_ML\_Project

#### Reference Material:

https://www.census.gov/quickfacts/fact/table/amescityiowa/POP010210#POP010210

https://www.icip.iastate.edu/sites/default/files/2010census/2010census\_1901855.pdf

https://www.researchgate.net/publication/337048557\_A\_Comparative\_Analysis\_of\_XGBoost

https://github.com/thismlguy/analytics\_vidhya/blob/master/Articles/Parameter\_Tuning\_GBM\_with\_Example/GBM\_

Parameters.xlsx

https://xgboost.readthedocs.io/en/stable/parameter.html

#### **Special Thanks:**

Vinod Chugani