☞ Baccalauréat S Amérique du Nord 31 mai 2012 ∾

EXERCICE 1 5 points

Commun à tous les candidats

Dans une association sportive, un quart des femmes et un tiers des hommes adhèrent à la section tennis. On sait également que 30 % des membres de cette association adhèrent à la section tennis.

Partie A

On choisit au hasard un membre de cette association et on note :

- F l'évènement « le membre choisi est une femme ».
- T l'évènement « le membre choisi adhère à la section tennis ».
- 1. Montrer que la probabilité de l'évènement F est égale à $\frac{2}{5}$.
- **2.** On choisit un membre parmi les adhérents à la section tennis. Quelle est la probabilité que ce membre soit une femme?

Partie B

Pour financer une sortie, les membres de cette association organisent une loterie.

- 1. Chaque semaine, un membre de l'association est choisi au hasard de manière indépendante pour tenir la loterie.
 - **a.** Déterminer la probabilité pour qu'en quatre semaines consécutives, il y ait exactement deux fois un membre qui adhère à la section tennis parmi les membres choisis
 - **b.** Pour tout entier naturel n non nul, on note p_n la probabilité pour qu'en n semaines consécutives, il y ait au moins un membre qui adhère à la section tennis parmi les membres choisis.

Montrer que pour tout entier n non nul, $p_n = 1 - \left(\frac{7}{10}\right)^n$.

- **c.** Déterminer le nombre minimal de semaines pour que $p_n \ge 0.99$.
- **2.** Pour cette loterie, on utilise une urne contenant 100 jetons; 10 jetons exactement sont gagnants et rapportent 20 euros chacun, les autres ne rapportent rien.

Pour jouer à cette loterie, un joueur doit payer $5 \in$ puis tire au hasard et de façon simultanée deux jetons de l'urne : il reçoit alors 20 euros par jeton gagnant. Les deux jetons sont ensuite remis dans l'urne.

On note X la variable aléatoire associant le gain algébrique (déduction faite des $5 \in$) réalisé par un joueur lors d'une partie de cette loterie.

- **a.** Déterminer la loi de probabilité de la variable aléatoire *X*.
- **b.** Calculer l'espérance mathématique de la variable aléatoire *X* et interpréter le résultat obtenu.

Baccalauréat S A. P. M. E. P.

EXERCICE 2 5 points

Partie A Restitution organisée des connaissances

On rappelle que $\lim_{t \to +\infty} \frac{e^t}{t} = +\infty$. Démontrer que $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$.

Partie B

On considère la fonction f définie sur $[1; +\infty[$ par $f(x) = x - \frac{\ln(x)}{x}]$. On note \mathscr{C} sa courbe représentative dans un repère orthonormal $(0, \vec{t}, \vec{j})$.

- 1. Soit g la fonction définie sur [1; $+\infty$ [par $g(x) = x^2 1 + \ln(x)$. Montrer que la fonction g est positive sur $[1; +\infty[$.
- **a.** Montrer que, pour tout x de $[1; +\infty[, f'(x) = \frac{g(x)}{r^2}]$. 2.
 - **b.** En déduire le sens de variation de f sur $[1; +\infty[$.
 - **c.** Montrer que la droite \mathcal{D} d'équation y = x est une asymptote à la courbe \mathscr{C} .
 - **d.** Étudier la position de la courbe \mathscr{C} par rapport à la droite \mathscr{D} .
- 3. Pour tout entier naturel k supérieur ou égal à 2, on note respectivement M_k et N_k les points d'abscisse k de \mathscr{C} et \mathscr{D} .
 - **a.** Montrer que, pour tout entier naturel k supérieur ou égal à 2, la distance $M_k N_k$ entre les points M_k et N_k est donnée par $M_k N_k = \frac{\ln(k)}{k}$.
 - **b.** Écrire un algorithme déterminant le plus petit entier k_0 supérieur ou égal à 2 tel que la distance $M_k N_k$ soit inférieure ou égale à 10^{-2} .

Exercice 3 5 points

Commun à tous les candidats

Soit *f* une fonction définie et dérivable sur [0 ; 1] telle que :

$$f(0) = 0$$
 et $f'(x) = \frac{1}{1+x^2}$ pour tout x de [0; 1].

On ne cherchera pas à déterminer f.

Partie A

- 1. Déterminer le sens de variation de f sur [0; 1].
- **2.** Soit *g* la fonction définie sur $\left[0; \frac{\pi}{4}\right]$ par $g(x) = f(\tan(x))$.
 - **a.** Justifier que g est dérivable sur $\left[0; \frac{\pi}{4}\right]$, puis que, pour tout x de $\left[0; \frac{\pi}{4}\right]$, g'(x) = 1.
 - **b.** Montrer que, pour tout x de $\left[0; \frac{\pi}{4}\right]$, g(x) = x, en déduire que $f(1) = \frac{\pi}{4}$.

Baccalauréat S A. P. M. E. P.

3. Montrer que, pour tout x de [0; 1], $0 \le f(x) \le \frac{\pi}{4}$.

Partie B

Soit (I_n) la suite définie par $I_0 = \int_0^1 f(x) dx$ et, pour tout entier naturel n non nul, $I_n = \int_0^1 x^n f(x) dx$.

- 1. Montrer à l'aide d'une intégration par parties que, $I_0 = \frac{\pi}{4} \frac{1}{2} \ln(2)$.
- **2. a.** Montrer que, pour tout entier naturel non nul n, $I_n \ge 0$.
 - **b.** Montrer que, pour tout entier naturel non nul n, $I_n \leqslant \frac{\pi}{4(n+1)}$.
 - **c.** En déduire la limite de la suite (I_n) .

EXERCICE 3 5 points

Commun à tous les candidats

Le plan complexe est rapporté à un repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

On considère l'application f du plan dans lui même qui, à tout point M d'affixe z, associe le point M' d'affixe z' telle que : $z' = z^2$.

On note Ω le point d'affixe 1.

- 1. Déterminer l'ensemble Γ_1 des points M du plan tels que f(M) = M.
- 2. Soit A le point d'affixe $a = \sqrt{2} i\sqrt{2}$.
 - **a.** Exprimer *a* sous forme exponentielle.
 - **b.** En déduire les affixes des deux antécédents de A par f.
- **3.** Déterminer l'ensemble Γ_2 des points M d'affixe z tels que l'affixe z' du point M' soit un nombre imaginaire pur.
- **4.** Dans cette question, on souhaite déterminer l'ensemble Γ_3 des points M distincts de Ω pour lesquels le triangle $\Omega MM'$ est rectangle isocèle direct en Ω .
 - **a.** À l'aide de la rotation de centre Ω et d'angle $\frac{\pi}{2}$, montrer que M est un point de Γ_3 si et seulement si $z^2 iz 1 + i = 0$ et $z \neq 1$.
 - **b.** Montrer que $z^2 iz 1 + i = (z 1)(z + 1 i)$.
 - **c.** En déduire l'ensemble Γ_3 .
- **5.** Soit M un point d'affixe z différente de 0 et de 1.
 - **a.** Exprimer $(\overrightarrow{OM}, \overrightarrow{OM'})$ en fonction d'un argument de z.
 - **b.** En déduire l'ensemble Γ_4 des points M distincts de O et de Ω tels que O, M et M' soient alignés.

EXERCICE 5 5 points

Candidats ayant suivi l'enseignement de spécialité

Baccalauréat S A. P. M. E. P.

Le plan complexe est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Soit S la transformation du plan qui, à tout M d'affixe z, associe le point M' d'affixe z' telle que :

$$z' = 5iz + 6i + 4$$
.

Partie A

- 1. Déterminer la nature et les éléments caractéristiques de la transformation *S*.
- **2.** On note x et x', y et y' les parties réelles et imaginaires respectives de z et z'. Démontrer que :

$$\begin{cases} x' = -5y + 4 \\ y' = 5x + 6 \end{cases}$$

Partie B

Dans cette partie, on se place dans le cas où les coordonnées x et y du point M sont des entiers relatifs tels que $-3 \le x \le 5$ et $-3 \le y \le 5$.

On note \mathcal{E} l'ensemble de ces points M.

On rappelle que les coordonnées (x'; y') du point M', image du point M par la transformation S, sont x' = -5y + 4 et y' = 5x + 6.

- 1. **a.** Déterminer l'ensemble des couples d'entiers relatifs (a; b) tels que 4a + 3b = 5.
 - **b.** En déduire l'ensemble des points M de $\mathscr E$ de coordonnées (x; y) tels que -3x'+4y'=37.
- **2.** Soit M un point de l'ensemble \mathscr{E} et M' son image par la transformation S.
 - **a.** Démontrer que x' + y' est un multiple de 5.
 - **b.** Démontrer que x' y' et x' + y' sont congrus modulo 2. En déduire que si $x'^2 - y'^2$ est multiple de 2 alors x' - y' et x' + y' le sont également.
 - **c.** Déterminer l'ensemble des points M de \mathscr{E} tels que : $x'^2 y'^2 = 20$.