Fixed Points

meu

July 2, 2025

Contents

L	Definition]
2	Applications on logic 2.1 Gödel's Incompleteness Theorem	1 2
3	Applications on computer science	2

1 Definition

Definition 1.1. A fixed point of a function f is a value x of its domain satisfying:

$$f(x) = x$$

One seemingly obvious way to find fixed point if we allow infinitely many application of the function is:

$$x = f(f(f(f(\dots))))$$

Proposition Let $f: \mathbb{R} \to \mathbb{R}$ be *continuos* and $x_1 \in \mathbb{R}$. If the sequence

$$x_1, x_2 = f(x_1), x_3 = f(x_2), \dots$$

converges to $x \in \mathbb{R}$, then f(x) = x.

2 Applications on logic

For a formula ϕ in the language of Peano Arithmetic (PA), let $\lceil \phi \rceil$ denote its Göldel number.

Lemma (Carnap) For any formula $\phi(x)$, there is a sentence ψ such that

$$PA \vdash \psi \leftrightarrow \phi(\lceil \psi \rceil)$$

i.e. ψ says "I have property ϕ ".

In the book An Introduction to Godel's Theorems from Peter Smith (Logic Matters) one can find a constructive proof os this Lemma (called **Diagonal Lemma**).

2.1 Gödel's Incompleteness Theorem

Theorem 2.1 (Gödel). If PA is consistent, then it admits true but unprovable statements.

Proof. By previous lemma, there is ψ for which

$$PA \vdash \psi \leftrightarrow \neg Prov(\psi)$$

Where Prov(x) is the formula constructed such that $Prov(\phi)$ if ϕ is provable in PA.

3 Applications on computer science

The fixed point of a function can be used to achieve infinite loops via recursion in something like λ -calculus.

First consider

$$\omega = \lambda x.xx$$

and

$$\Omega = \omega \omega$$

 Ω reduces to itself:

$$\Omega = \omega \omega$$
 By definition of Ω
 $= (\lambda x.xx)\omega$ by definition of ω
 $= \omega \omega$ by β -reduction
 $= \Omega$ (1)

If we introduce F into ω , we can generate an F at each reduction step of Ω . Let $\omega_F = \lambda x. F(xx)$ and $\Omega_F = \omega_F \omega_F$. Then

$$\Omega_F = \omega_F \omega_F = (\lambda x. F(xx))\omega_F = F(\omega_F \omega_F) = F(\Omega_F)$$

In other words, Ω_F is a fixed point of F. We can generalize this to obtain a fixed-point combinator: **Theorem (Curry)**: There is a combinator Y such that

$$YF = F(YF)$$

is a fixed point of F for any term F. Pf:

$$Y = \lambda x.\Omega_f = \lambda x.f(xx)(\lambda x.(fxx))$$