La concurrence

Exemple

- ► Lecture / Ecriture
- ► Soit A une donnée et 2 processus ayant le même code
 - ► Lire(A)
 - ► A← A+1
 - Ecrire(A)
- Donner les exécutions possibles, que vaut A pour chaque exécutrion?
- Quel est le problème?

Section Critique

Portion de code qui doit être exécuté en exclusion mutuelle

▶ Problème d'exclusion mutuelle : 2 propriétés :

Sûreté: Un **seul** processus peut entrer en section critique

Vivacité : Un processus demandant la section critique finira par l'obtenir

Efficacité (ne fait pas partie de la définition stricte)

Solutions

- ► Désactivation des interruptions
- ► Variable de verrou
- Alternance stricte
- ► Algorithme de Peterson

Algorithme de Peterson

```
while vrai do
  Actions avant la S.C.
  D; ← vrai
  Tour \leftarrow i
  while (D_{((i+1)\%2)}) \cap (Tour = i) do
     Rien
  end while
  Actions de la S.C.
  D_i \leftarrow faux
  Actions suivant la S.C.
end while
```

Les Sémaphores

Un sémaphore S (le plus simple) est un drapeau qui est :

- soit levé
- soit baissé

Avant d'entrer en S.C, un processus attend que le drapeau soit levé, puis le baisse : opération P() A la sortie de la S.C., le processus lève le drapeau opération V() et le S.E réveille un processus en attente

Les Sémaphores

Les opérations P() et V() sont atomiques

- ► P() : le test et la décrémentation sont **atomiques**.
- ► V() : l'incrémentation est atomique

2 opérations atomiques ne peuvent être exécutées simultanément En aucun cas, 2 processus ne verront le drapeau levé et l'abaisseront

Les Sémaphores (System V)

- \triangleright S entier entre 0 et n
- ▶ P(n) : bloquante si S < n sinon décrémente S de n.
- ightharpoonup V(n) : incrémente S de n

Exemple : Problème du producteur-consommateur

- 2 processus partagent un buffer commun
 - le producteur place des informations
 - ► le consommateur les retire
- ▶ Les problèmes :
 - buffer est plein et le producteur veut placer une information
 - buffer est vide et le consommateur veut retirer une information
- Ecrire une solution à l'aide de sémaphores

- Comment réaliser cette exécution à l'aide de sémaphore?
 - Combien de sémaphores doit-on utiliser?
 - A quelle(s) valeur(s) doit on les initialiser?
- Solution
 - ▶ 2 sémaphores S_1 et S_2 initialisés à 0.
 - ▶ Où placer les opérations P() et V()?
- ▶ $P1.A, P1.V(S_1), P1.P(S_2), P1.C$ et $P2.P(S_1), P2.B, P2.V(S_2)$
- Détailler l'exécution

- ► Comment réaliser cette exécution à l'aide de sémaphore?
 - Combien de sémaphores doit-on utiliser?
 - A quelle(s) valeur(s) doit on les initialiser?
- Solution
 - ▶ 2 sémaphores S_1 et S_2 initialisés à 0.
 - ▶ Où placer les opérations P() et V()?
- ▶ $P1.A, P1.V(S_1), P1.P(S_2), P1.C$ et $P2.P(S_1), P2.B, P2.V(S_2)$
- Détailler l'exécution

- Comment réaliser cette exécution à l'aide de sémaphore?
 - Combien de sémaphores doit-on utiliser?
 - A quelle(s) valeur(s) doit on les initialiser?
- Solution
 - ▶ 2 sémaphores S_1 et S_2 initialisés à 0.
 - ▶ Où placer les opérations P() et V()?
- ► $P1.A, P1.V(S_1), P1.P(S_2), P1.C$ et $P2.P(S_1), P2.B, P2.V(S_2)$
- ▶ Détailler l'exécution

- Comment réaliser cette exécution à l'aide de sémaphore?
 - Combien de sémaphores doit-on utiliser?
 - A quelle(s) valeur(s) doit on les initialiser?
- Solution
 - ▶ 2 sémaphores S_1 et S_2 initialisés à 0.
 - ▶ Où placer les opérations P() et V()?
- ► $P1.A, P1.V(S_1), P1.P(S_2), P1.C$ et $P2.P(S_1), P2.B, P2.V(S_2)$
- ► Détailler l'exécution

Exercice

Soit un système sur lequel on exécute trois processus P_1 , P_2 et P_3 . P_1 exécute successivement du code découpé en trois parties A, B et C. P_2 exécute du code découpé en deux parties D et E. P_3 ne doit commencer réellement à s'exécuter que lorsque P_1 aura terminé la partie A. De plus B et D doivent être en exclusion mutuelle.

- Construire le graphe de précédence de ce système de processus.
- ▶ Résoudre le problème entre P_3 et P_1 avec un sémaphore.
- ▶ Même chose pour l'exclusion mutuelle entre *P*₁ et *P*₂. Peut-on utiliser le même sémaphore ?
- Donner le code de chacun des processus.

Et sinon?

Que faire lorsque les processus n'ont pas accès à une mémoire partagée commune?

- ► Communication entre les processus
 - Tubes
 - Sockets

Interblocage

Soit 2 processus et 2 sémaphores S1 et S2 initialisés à 1 :

- ▶ P1
 - ► P(S1)
 - ▶ P(S2)
 - Section critique
 - V(S1)
 - ► V(S2)
- ▶ P2
 - ► P(S2)
 - ▶ P(S1)
 - Section critique
 - ▶ V(S2)
 - ► V(S1)

Y-a-t'il moyen de bloquer le système?

Un outil pour la détection d'interblocage : Graphe des ressources

- (a) A détient la ressource R
- (b) A demande la ressource R

Un interblocage se produit lorsqu'un circuit se forme dans le graphe des ressources.

Ceci permet une détection des interblocages mais en aucun cas une prévention.

Solution

Tuer un processus qui contribue à l'interblocage.

Choix du processus : Critères?

- ▶ Temps CPU consommé?
- Ressources attachées?
- Au centre de combien d'interblocage?

Beaucoup de travaux, mais peu de résultats convaincants