probstat

April 16, 2021

```
[1]: import pandas as pd
  import pylab
  import scipy.stats as stats
  import math

    print("Anggota: ")
    print("Ilyasa Salafi Putra Jamal 13519023")
    print("Mahameru Ds 13519014")

    df = pd.read_csv("Gandum.csv")
```

Anggota:

Ilyasa Salafi Putra Jamal 13519023

[2]: df.describe()

[2]:		id	Daerah	SumbuUtama	SumbuKecil	Keunikan	\
	count	500.000000	500.000000	500.000000	500.000000	500.000000	
	mean	250.500000	4801.246000	116.045171	53.715246	0.878764	
	std	144.481833	986.395491	18.282626	4.071075	0.036586	
	min	1.000000	2522.000000	74.133114	39.906517	0.719916	
	25%	125.750000	4042.750000	104.116098	51.193576	0.863676	
	50%	250.500000	4735.000000	115.405140	53.731199	0.890045	
	75%	375.250000	5495.500000	129.046792	56.325158	0.907578	
	max	500.000000	7453.000000	227.928583	68.977700	0.914001	
		AreaBulatan	Diameter	KadarAir	Keliling	Bulatan	\
	count	500.000000	500.000000	500.000000	500.000000	500.000000	
	mean	4937.048000	77.771158	0.648372	281.479722	0.761737	
	std	1011.696255	8.056867	0.094367	37.335402	0.061702	
	min	2579.000000	56.666658	0.409927	197.015000	0.174590	
	25%	4170.250000	71.745308	0.572632	255.883000	0.731991	
	50%	4857.000000	77.645277	0.626117	280.045500	0.761288	
	75%	5654.250000	83.648598	0.726633	306.062500	0.796361	
	max	7720.000000	97.413830	0.878899	488.837000	0.904748	
		Rangum	Kelas				

Ransum Kelas count 500.000000 500.000000

```
mean
              2.150915
                           1.502000
     std
              0.249767
                           0.500497
     min
              1.440796
                           1.000000
     25%
              1.983939
                           1.000000
     50%
              2.193599
                           2.000000
     75%
              2.381612
                           2.000000
              2.464809
                           2.000000
     max
[3]: print("Skewness: ")
     df.skew()
    Skewness:
[3]: id
                    0.000000
     Daerah
                    0.238144
     SumbuUtama
                    0.761529
     SumbuKecil
                   -0.010828
     Keunikan
                   -1.623472
     AreaBulatan
                    0.257560
     Diameter
                    0.002725
     KadarAir
                    0.493661
     Keliling
                    0.733627
     Bulatan
                   -3.599237
     Ransum
                   -0.658188
     Kelas
                   -0.008024
     dtype: float64
[4]: print("Variance: ")
     df.var()
    Variance:
[4]: id
                    2.087500e+04
     Daerah
                     9.729761e+05
     SumbuUtama
                    3.342544e+02
     SumbuKecil
                     1.657365e+01
     Keunikan
                     1.338528e-03
     AreaBulatan
                     1.023529e+06
     Diameter
                     6.491311e+01
     KadarAir
                    8.905149e-03
     Keliling
                     1.393932e+03
     Bulatan
                     3.807194e-03
     Ransum
                     6.238350e-02
     Kelas
                     2.504970e-01
     dtype: float64
[5]: print("Kurtosis: ")
     df.kurt()
```

Kurtosis:

```
[5]: id
                    -1.200000
    Daerah
                    -0.434631
    SumbuUtama
                     4.330534
    SumbuKecil
                     0.475568
    Keunikan
                    2.917256
    AreaBulatan
                    -0.409685
    Diameter
                    -0.466455
    KadarAir
                    -0.740326
    Keliling
                    2.272685
    Bulatan
                    29.975096
    Ransum
                    -0.428656
    Kelas
                    -2.007984
    dtype: float64
```

[6]: print("Modus: ")

print("Beberapa data memiliki 500 modus karena setiap datanya unik")
df.mode()

Modus:

Beberapa data memiliki 500 modus karena setiap datanya unik

[6]:		id	Daerah	SumbuU	tama S	Sumbi	ıKecil	Ke	unikan	AreaBulatan	Diameter	\
	0	1	3992.0	74.13	3114	39.9	906517	0.	719916	3802.0	71.293564	
	1	2	4881.0	74.36	4021	41.4	136419	0.	725553	4913.0	78.833256	
	2	3	5642.0	74.69	1881	42.8	371879	0.	731211	NaN	84.756224	
	3	4	6083.0	76.29	3164	43.2	284979	0.	738639	NaN	88.006342	
	4	5	NaN	76.78	9043	44.1	119355	0.	749282	NaN	NaN	
		•••	•••			•••				•••		
	495	496	NaN	152.06	8440	63.3	322854	0.	913724	NaN	NaN	
	496	497	NaN	152.11	3491	63.7	762307	0.	913760	NaN	NaN	
	497	498	NaN	153.58	3387	64.0	12769	0.	913891	NaN	NaN	
	498	499	NaN	227.10	5462	65.7	738475	0.	913909	NaN	NaN	
	499	500	NaN	227.92	8583	68.9	977700	0.	914001	NaN	NaN	
		Kada	rAir K	eliling	Bulat	tan	Rans	um	Kelas			
	0	0.73	5849	197.015	0.174	590	1.4407	96	2.0			
	1	0.82	4405	200.587	0.2612	297	1.4531	37	NaN			
	2		NaN	202.456	0.2992	298	1.4659	50	NaN			
	3		NaN	207.325	0.589	146	1.4834	56	NaN			
	4		NaN	207.697	0.6038	807	1.5100	00	NaN			
	495		NaN	375.651	0.8724	417	2.4610	17	NaN			
	496		NaN	390.125	0.8742	243	2.4615	10	NaN			
	497		NaN	434.235	0.8747	743	2.4632	97	NaN			
	498		NaN	448.305	0.891	706	2.4635	46	NaN			
	499		NaN	488.837	0.9047	748	2.4648	09	NaN			

```
[7]: print("Interquartile Range (IQR):")
     val list = df["Daerah"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Daerah\t\t: ", iqr)
     val_list = df["SumbuUtama"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Sumbu Utama\t: ", iqr)
     val_list = df["SumbuKecil"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Sumbu Kecil\t: ", iqr)
     val_list = df["Keunikan"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Keunikan\t: ", iqr)
     val_list = df["AreaBulatan"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Area Bulatan\t: ", iqr)
     val list = df["Diameter"].values.tolist()
     igr = stats.igr(val list)
     print("Diameter\t: ", iqr)
     val_list = df["KadarAir"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Kadar Air\t: ", iqr)
     val_list = df["Keliling"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Keliling\t: ", iqr)
     val_list = df["Bulatan"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Bulatan\t\t: ", iqr)
     val_list = df["Ransum"].values.tolist()
     igr = stats.igr(val list)
     print("Ransum\t\t: ", iqr)
     val list = df["Kelas"].values.tolist()
     iqr = stats.iqr(val_list)
     print("Kelas\t\t: ", iqr)
```

Interquartile Range (IQR):
Daerah : 1452.75

Sumbu Utama : 24.93069385000001 Sumbu Kecil : 5.131581650000001 Keunikan : 0.04390216424999993

Area Bulatan : 1484.0

Diameter : 11.903290020000014
Kadar Air : 0.15400088725000005
Keliling : 50.17950000000002
Bulatan : 0.06437024175000006

Ransum : 0.3976734275

Kelas : 1.0

[8]: df.hist(column="Daerah")

- [9]: df.boxplot(column="Daerah")
- [9]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8203dc8>


```
[10]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Daerah"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

Pengujian normal dengan tes Shapiro-Wilk

Pval: 0.003270698245614767

Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal

```
[12]: df.hist(column="SumbuUtama")
```


[13]: df.boxplot(column="SumbuUtama")

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8832548>


```
[14]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["SumbuUtama"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

```
[15]: print("Pengujian normal dengan tes Shapiro-Wilk")
val_list = df["SumbuUtama"].values.tolist()
tset, pval = stats.shapiro(val_list)
print("Pval: ", pval)
if pval > 0.05:
    print("Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal")
else:
    print("Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi
→normal")#Ans
```

Pengujian normal dengan tes Shapiro-Wilk

Pval: 9.236201213569384e-12

Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal

```
[16]: df.hist(column="SumbuKecil")
```


[17]: df.boxplot(column="SumbuKecil")

[17]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8983a48>


```
[18]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["SumbuKecil"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

```
[19]: print("Pengujian normal dengan tes Shapiro-Wilk")
  val_list = df["SumbuKecil"].values.tolist()
  tset, pval = stats.shapiro(val_list)
  print("Pval: ", pval)
  if pval > 0.05:
     print("Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal") #Ans
  else:
     print("Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal")
```

Pengujian normal dengan tes Shapiro-Wilk

Pval: 0.4234558641910553

Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal

```
[20]: df.hist(column="Keunikan")
```


[21]: df.boxplot(column="Keunikan")

[21]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8b00e48>


```
[22]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Keunikan"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Tidak berdistribusi normal")
```


Kesimpulan: Tidak berdistribusi normal

```
[23]: df.hist(column="AreaBulatan")
```


[24]: df.boxplot(column="AreaBulatan")

[24]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac82e9448>


```
[25]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

")

stats.probplot(df["AreaBulatan"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

```
[26]: print("Pengujian normal dengan tes Shapiro-Wilk")
val_list = df["AreaBulatan"].values.tolist()
tset, pval = stats.shapiro(val_list)
print("Pval: ", pval)
if pval > 0.05:
    print("Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal")
else:
    print("Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal")

→#Ans
```

Pengujian normal dengan tes Shapiro-Wilk Pval: 0.0024847122840583324

Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal

```
[27]: df.hist(column="Diameter")
```


[28]: df.boxplot(column="Diameter")

[28]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8c74b08>


```
[29]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Diameter"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

```
[30]: print("Pengujian normal dengan tes Shapiro-Wilk")
  val_list = df["Diameter"].values.tolist()
  tset, pval = stats.shapiro(val_list)
  print("Pval: ", pval)
  if pval > 0.05:
    print("Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal") #Ans
  else:
    print("Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal")
```

Pengujian normal dengan tes Shapiro-Wilk

Pval: 0.11834503710269928

Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal

```
[31]: df.hist(column="KadarAir")
```

[31]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000015AC8D41688>]], dtype=object)

[32]: df.boxplot(column="KadarAir")

[32]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8dc2348>


```
[33]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["KadarAir"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Tidak berdistribusi normal")
```


Kesimpulan: Tidak berdistribusi normal

```
[34]: df.hist(column="Keliling")
```


[35]: df.boxplot(column="Keliling")

[35]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8f41208>


```
[36]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Keliling"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

```
[37]: print("Pengujian normal dengan tes Shapiro-Wilk")
val_list = df["Keliling"].values.tolist()
tset, pval = stats.shapiro(val_list)
print("Pval: ", pval)
if pval > 0.05:
    print("Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal")
else:
    print("Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal")

→#Ans
```

Pengujian normal dengan tes Shapiro-Wilk Pval: 9.728394090302572e-09

Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal

[38]: df.hist(column="Bulatan")

[38]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000015AC8BF64C8>]], dtype=object)

[39]: df.boxplot(column="Bulatan")

[39]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac88e88c8>


```
[40]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Bulatan"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk")
```


Kesimpulan: Gagal menolak, perlu dilakukan tes Shapiro-Wilk

```
[41]: print("Pengujian normal dengan tes Shapiro-Wilk")
val_list = df["Bulatan"].values.tolist()
tset, pval = stats.shapiro(val_list)
print("Pval: ", pval)
if pval > 0.05:
    print("Pval lebih besar dari 0.05, Kesimpulan: Berdistribusi normal")
else:
    print("Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi
→normal")#Ans
```

Pengujian normal dengan tes Shapiro-Wilk

Pval: 6.899158691421287e-26

Pval lebih kecil dari 0.05, Kesimpulan: Tidak berdistribusi normal

```
[42]: df.hist(column="Ransum")
```


[43]: df.boxplot(column="Ransum")

[43]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac9064848>


```
[44]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Ransum"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Tidak berdistribusi normal")
```


Kesimpulan: Tidak berdistribusi normal

```
[45]: df.hist(column="Kelas")
```


[46]: df.boxplot(column="Kelas")

[46]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca195d08>


```
[47]: print("Pengujian distribusi normal dengan normality test Quartile-Quartile plot:

→ ")

stats.probplot(df["Kelas"], dist="norm", plot=pylab)

pylab.show()

print("Kesimpulan: Tidak berdistribusi normal")
```


Kesimpulan: Tidak berdistribusi normal

```
[48]: #Korelasi
#Target adalah kolom "Kelas", yang memiliki nilai 1 atau 2
print("Correlation")
```

Correlation

```
[49]: #Kelas-Daerah df.plot.scatter("Kelas", "Daerah")
```

[49]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca1c9508>


```
[50]: print("Korelasi negatif kuat (0.6-0.79)")
    print("Nilai korelasi: ")
    df["Kelas"].corr(df["Daerah"])

    Korelasi negatif kuat (0.6-0.79)
    Nilai korelasi:

[50]: -0.6027466517416654

[51]: #Kelas-SumbuUtama
    df.plot.scatter("Kelas", "SumbuUtama")
```

[51]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca2c2908>


```
[52]: print("Korelasi negatif kuat (0.6-0.79)")
    print("Nilai korelasi: ")
    df["Kelas"].corr(df["SumbuUtama"])

    Korelasi negatif kuat (0.6-0.79)
    Nilai korelasi:
[52]: -0.7130906104204592

[53]: #Kelas-SumbuKecil
    df.plot.scatter("Kelas", "SumbuKecil")
```

[53]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca356b08>


```
[54]: print("Korelasi negatif sangat lemah (0.0-0.19)")
    print("Nilai korelasi: ")
    df["Kelas"].corr(df["SumbuKecil"])

    Korelasi negatif sangat lemah (0.0-0.19)
    Nilai korelasi:

[54]: -0.15297517335535024

[55]: #Kelas-Keunikan
    df.plot.scatter("Kelas", "Keunikan")
```

[55]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca3b8748>


```
[56]: print("Korelasi negatif kuat (0.6-0.79)")
    print("Nilai korelasi: ")
    df ["Kelas"].corr(df ["Keunikan"])

    Korelasi negatif kuat (0.6-0.79)
    Nilai korelasi:

[56]: -0.7304563686511927

[57]: #Kelas-AreaBulatan
    df.plot.scatter("Kelas", "AreaBulatan")
```

[57]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca3f9648>


```
[58]: print("Korelasi negatif kuat (0.6-0.79)")
    print("Nilai korelasi: ")
    df ["Kelas"].corr(df ["AreaBulatan"])

    Korelasi negatif kuat (0.6-0.79)
    Nilai korelasi:

[58]: -0.6073125434153747

[59]: #Kelas-Diameter
    df.plot.scatter("Kelas", "Diameter")
```

[59]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca0eafc8>


```
[60]: print("Korelasi negatif kuat (0.6-0.79)")
    print("Nilai korelasi: ")
    df ["Kelas"].corr(df ["Diameter"])

    Korelasi negatif kuat (0.6-0.79)
    Nilai korelasi:
[60]: -0.6025356896618811
[61]: #Kelas-KadarAir
    df.plot.scatter("Kelas", "KadarAir")
```

[61]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8fab248>


```
[62]: print("Korelasi positif sangat lemah (0.0-0.19)")
print("Nilai korelasi: ")
df["Kelas"].corr(df["KadarAir"])
```

Korelasi positif sangat lemah (0.0-0.19)
Nilai korelasi:

[62]: 0.13434422605727644

```
[63]: #Kelas-Keliling
df.plot.scatter("Kelas", "Keliling")
```

[63]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac8d2ea48>


```
[64]: print("Korelasi negatif kuat (0.6-0.79)")
    print("Nilai korelasi: ")
    df["Kelas"].corr(df["Keliling"])

    Korelasi negatif kuat (0.6-0.79)
    Nilai korelasi:
[64]: -0.6348607454756852
[65]: #Kelas-Bulatan
    df.plot.scatter("Kelas", "Bulatan")
```

[65]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca2111c8>


```
[66]: print("Korelasi positif sedang (0.4-0.59)")
    print("Nilai korelasi: ")
    df["Kelas"].corr(df["Bulatan"])

    Korelasi positif sedang (0.4-0.59)
    Nilai korelasi:
[66]: 0.5450045317240073

[67]: #Kelas-Ransum
    df.plot.scatter("Kelas", "Ransum")
```

[67]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca4730c8>


```
[68]: print("Korelasi negatif sangat kuat (0.8-1.0)")
print("Nilai korelasi: ")
df["Kelas"].corr(df["Ransum"])
```

Korelasi negatif sangat kuat (0.8-1.0) Nilai korelasi:

[68]: -0.8399038681287486

```
[69]: print("Tes Hipotesis 1 Sampel")
      print("4.a: Nilai rata-rata Daerah di atas 4700?")
      print("h0: rata-rata = 4700")
      print("h1: rata-rata > 4700")
      print("alpha = 0.05")
      print("Tes yang digunakan: One Sample One-Tailed Normal test")
      print("Daerah kritis: Z > 1.645")
      val_list = df["Daerah"].values.tolist()
      tset, pval = stats.ttest_1samp(val_list, 4700)
      print("Nilai P: ", pval)
      # tes yang diperlukan one-tailed, sementara fungsi menghitung two-ended,
      ⇒sehingga P daerah kritis perlu 2x lipat
      # note: keberadaan tail kedua dinilai tidak memengaruhi hasil
      if pval < 0.10:</pre>
         print("Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima, ⊔
       ⇒sehingga rata-rata diatas 4700")
```

Tes Hipotesis 1 Sampel

4.a: Nilai rata-rata Daerah di atas 4700?

h0: rata-rata = 4700 h1: rata-rata > 4700 alpha = 0.05

Tes yang digunakan: One Sample One-Tailed Normal test

Daerah kritis: Z > 1.645

Nilai P: 0.022138370895226352

Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga rata-rata diatas 4700

[69]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca4d3ec8>


```
[70]: print("4.b: Nilai Rata-rata Sumbu Utama tidak sama dengan 116?")
    print("h0: rata-rata = 116")
    print("h1: rata-rata =/= 116")
    print("alpha = 0.05")
    print("Tes yang digunakan: One Sample Two-Tailed Normal test")
    print("Daerah kritis: Z > 1.96 atau Z < -1.96")
    val_list = df["SumbuUtama"].values.tolist()
    tset, pval = stats.ttest_1samp(val_list, 116)</pre>
```

```
print("Nilai P: ", pval)
if pval < 0.05:
    print("Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima,
    ⇒sehingga rata-rata bukan 116")
else:
    print("Pvalue lebih besar dari alpha, Hipotesis null diterima, sehingga
    ⇒rata-rata 116")
df.boxplot(column="SumbuUtama")</pre>
```

4.b: Nilai Rata-rata Sumbu Utama tidak sama dengan 116?

h0: rata-rata = 116 h1: rata-rata =/= 116

alpha = 0.05

Tes yang digunakan: One Sample Two-Tailed Normal test

Daerah kritis: Z > 1.96 atau Z < -1.96

Nilai P: 0.955963699941099

Pvalue lebih besar dari alpha, Hipotesis null diterima, sehingga rata-rata 116


```
[71]: print("4c. Nilai Rata-rata 20 baris pertama kolom Sumbu Kecil bukan 50?")

print("h0: rata-rata = 50")

print("h1: rata-rata =/= 50")

print("alpha = 0.05")

print("Tes yang digunakan: One Sample Two-Tailed Normal test")

print("Daerah kritis: Z > 1.96 atau Z < -1.96")
```

4c. Nilai Rata-rata 20 baris pertama kolom Sumbu Kecil bukan 50?

h0: rata-rata = 50 h1: rata-rata =/= 50 alpha = 0.05

Tes yang digunakan: One Sample Two-Tailed Normal test

Daerah kritis: Z > 1.96 atau Z < -1.96

Nilai P: 3.3020185644245e-06

Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga rata-rata bukan 50

[71]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca50ae48>


```
[72]: print("4d. Proporsi nilai Diameter yang lebih dari 85, adalah tidak sama dengan_{\sqcup} _{\hookrightarrow}15\% ?") print("h0: p = 0.15")
```

4d. Proporsi nilai Diameter yang lebih dari 85, adalah tidak sama dengan 15% ? h0: p = 0.15 h1: p =/= 0.15 alpha = 0.05 Tes yang digunakan: Two-Tailed Binomial Test Daerah kritis: Z > 1.96 atau Z < -1.96 Nilai P: 0.0070570916667948 Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga proporsi bukan 15%

[72]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca5f36c8>


```
[73]: print("4e. Proporsi nilai Keliling yang kurang dari 100, adalah kurang dari 5%?
      ")
      print("h0: p = 0.05")
      print("h1: p < 0.05")</pre>
      print("alpha = 0.05")
      print("Tes yang digunakan: One-Tailed Binomial Test")
      print("Daerah kritis: Z < -1.645")</pre>
      kel_below_100 = len(df[df['Keliling'] < 100])</pre>
      print(kel_below_100)
      pval = stats.binom_test(kel_below_100, len(df), 0.05)
      print("Nilai P: ", pval)
      # tes yang diperlukan one-tailed, sementara fungsi menghitung two-ended,
      →sehingga P daerah kritis perlu 2x lipat
      # note: keberadaan tail kedua dinilai tidak memengaruhi hasil
      if pval < 0.10:</pre>
         print("Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima, ⊔
      ⇒sehingga proporsi bukan 5%")
        print("Pvalue lebih besar dari alpha, Hipotesis null diterima, sehingga⊔
       →proporsi 5%")
      df.boxplot(column="Keliling")
     4e. Proporsi nilai Keliling yang kurang dari 100, adalah kurang dari 5% ?
     h0: p = 0.05
     h1: p < 0.05
     alpha = 0.05
     Tes yang digunakan: One-Tailed Binomial Test
     Daerah kritis: Z < -1.645
     Nilai P: 1.7481550525507304e-11
     Pvalue lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga proporsi
     bukan 5%
[73]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca66db88>
```



```
[74]: # 5.a
      print("5a. Data kolom AreaBulatan dibagi 2 sama rata: bagian awal dan bagian⊔
       →akhir kolom. Benarkah rata-rata kedua bagian tersebut sama?")
      df length = int(len(df)/2)
      sample1 = df[df length:]["AreaBulatan"]
      sample2 = df[:df_length]["AreaBulatan"]
      print("1. h0 : meanSample1 = meanSample2")
      print("2. h1 : meanSample1 =/= meanSample2")
      print("3. alpha = 0.05")
      print("4. Two-Sample Two-Tailed Normal Test")
      print("Daerah kritis: Z > 1.96 atau Z < -1.96")</pre>
      ttest,pval = stats.ttest_ind(sample1, sample2)
      print("5. Nilai P: ", pval)
      if pval < 0.05:
         print("6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga⊔
      →rata-rata kedua bagian tidak sama")
      else:
        print("6. P lebih besar dari alpha, Hipotesis null diterima, sehingga∟
       →rata-rata kedua bagian tidak sama")
      df.boxplot(column="AreaBulatan")
```

5a. Data kolom AreaBulatan dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata kedua bagian tersebut sama?

- 1. h0 : meanSample1 = meanSample2
- 2. h1 : meanSample1 =/= meanSample2
- 3. alpha = 0.05

- 4. Two-Sample Two-Tailed Normal Test
 Daerah kritis: Z > 1.96 atau Z < -1.96
 5. Nilai P: 1.6612692497332565e-51
- 6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga rata-rata kedua bagian tidak sama

[74]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca6db4c8>


```
[75]: #5.b
      print("5b. Data kolom Kadar Air dibagi 2 sama rata: bagian awal dan bagian⊔
      →akhir kolom. Benarkah rata-rata bagian awal lebih besar dari pada bagian ⊔
      →akhir sebesar 0.2?")
      df length = int(len(df)/2)
      sample1 = df[df_length:]["KadarAir"]
      sample2 = df[:df_length]["KadarAir"]
      print("1. h0 : meanSample1-meanSample2 = 2")
      print("2. h1 : meanSample1-meanSample2 > 2")
      print("3. alpha = 0.05")
      print("4. Two-Sample Two-Tailed Normal Test")
      print("Daerah kritis: Z > 1.645")
      ttest,pval = stats.ttest_ind(sample1, sample2)
      print("5. Nilai P: ", pval)
      if pval < 0.05:</pre>
         print("6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga⊔
      →perbedaan rata-rata kedua bagian sama dengan dua")
      else:
```

```
print("6. P lebih besar dari alpha, Hipotesis null diterima, sehingga⊔ 
→perbedaan rata-rata kedua bagian tidak sama dengan dua")

df.boxplot(column="KadarAir")
```

5b. Data kolom Kadar Air dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata bagian awal lebih besar dari pada bagian akhir sebesar 0.2?

- 1. h0 : meanSample1-meanSample2 = 2
- 2. h1 : meanSample1-meanSample2 > 2
- 3. alpha = 0.05
- 4. Two-Sample Two-Tailed Normal Test

Daerah kritis: Z > 1.645

- 5. Nilai P: 0.0026878582871855895
- 6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga perbedaan rata-rata kedua bagian sama dengan dua

[75]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca73b948>

5c. Rata-rata 20 baris pertama kolom Bulatan sama dengan 20 baris terakhirnya?

- 1. h0 : meanSample1 = meanSample2
- 2. h1 : meanSample1 =/= meanSample2
- 3. alpha = 0.05
- 4. Two-Sample Two-Tailed Normal Test

Daerah kritis: Z > 1.96 atau Z < -1.96

- 5. Nilai P: 0.0016919037522060854
- 6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga rata-rata kedua bagian tidak sama

[76]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca791588>

[77]: #5.d print("5d. Proporsi nilai bagian awal Ransum yang lebih dari 2, adalah lebih⊔ ⇒besar daripada, proporsi nilai yang sama di bagian akhir Ransum?")

```
data = df[df.Ransum > 2]["Ransum"]
data_length = int(len(data)/2)
sample1 = data[df_length:]
sample2 = data[:df_length]
print("1. h0 : Sample1 = Sample2")
print("2. h1 : Sample1 > Sample2")
print("3. alpha = 0.05")
pt = len(sample1)/len(df)
pc = len(sample2)/len(df)
print("4. Two-Sample One-Tailed Binomial Test")
print("Daerah kritis: Z > 1.645")
p = (len(sample1) + len(sample2))/len(df)
q = 1-p
z = (pt-pc)/math.sqrt(p * q * ((1/len(sample1) + (1/len(sample2)))))
pval = stats.norm.sf(abs(z)) #one-sided
print("5. Nilai P: ", pval)
if pval < 0.05:
  print("6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga⊔
→proporsi bagian awal lebih besar")
else:
 print("6. P lebih besar dari alpha, Hipotesis null diterima, sehingga,

→proporsi bagian awal tidak lebih besar")
df.boxplot(column="Ransum")
```

5d. Proporsi nilai bagian awal Ransum yang lebih dari 2, adalah lebih besar daripada, proporsi nilai yang sama di bagian akhir Ransum?

```
1. h0 : Sample1 = Sample2
```

- 2. h1 : Sample1 > Sample2
- 3. alpha = 0.05
- 4. Two-Sample One-Tailed Binomial Test

Daerah kritis: Z > 1.645

- 5. Nilai P: 3.378725067634258e-08
- 6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga proporsi bagian awal lebih besar

[77]: <matplotlib.axes._subplots.AxesSubplot at 0x15aca78d4c8>


```
[79]: #5.e
      print("5e. Bagian awal kolom Diameter memiliki variansi yang sama dengan bagian
       →akhirnya?")
      data = df[df.Ransum > 2]["Diameter"]
      data_length = int(len(data)/2)
      sample1 = data[df_length:]
      sample2 = data[:df_length]
      print("1. h0 : VarSample1 = VarSample2")
      print("2. h1 : VarSample1 =/= VarSample2")
      print("3. alpha = 0.05")
      print("4. Two-Tailed Dist f Test")
      F = sample1.var() / sample2.var()
      p_val = stats.f.cdf(F, len(sample1)-1, len(sample2)-1)
      print("5. Nilai P: ", pval)
      if pval < 0.05:</pre>
          print("6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga⊔
      ⇔variansi tidak sama")
          print("6. P lebih besar dari alpha, Hipotesis null diterima, sehingga⊔
      ⇔variansi sama")
      df.boxplot(column="Diameter")
```

5e. Bagian awal kolom Diameter memiliki variansi yang sama dengan bagian akhirnya?

```
    h0 : VarSample1 = VarSample2
    h1 : VarSample1 =/= VarSample2
```

- 3. alpha = 0.05
- 4. Two-Tailed Dist f Test
- 5. Nilai P: 3.378725067634258e-08
- 6. P lebih kecil dari alpha, Hipotesis null tidak diterima, sehingga variansi tidak sama

[79]: <matplotlib.axes._subplots.AxesSubplot at 0x15ac828fa48>

[]:	