Fonction exponentielle. $\exists \; ! \; exp : \mathbb{R} \to \mathbb{R} \; dérivable \; sur \; \mathbb{R} \; telle \; que \begin{cases} exp' = exp \\ exp \; 0 = 1 \end{cases}$

On note aussi $e^x = \exp x$.

$$\forall x \in \mathbb{R} \exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\forall x, y \in \mathbb{R} e^{x+y} = e^x e^y$$

$$\forall x \in \mathbb{R} \ e^{-x} = \frac{1}{e^x}$$

$$\forall k \geq 1 \ \forall x \in \mathbb{R} \ \frac{d^k}{dx^k} e^x = e^x$$

$$e^x \rightarrow_{x \rightarrow \infty} \infty$$
, $e^x \rightarrow_{x \rightarrow -\infty} 0$, $e^0 = 1$

La fonction exponentielle est un \mathcal{C}^∞ difféomorphisme de \mathbb{R} vers \mathbb{R}_+^*

L'exponentielle est croissante sur $\mathbb R$ et convexe sur $\mathbb R$, strictement positive sur $\mathbb R$

Fonction logarithme naturel. $\exists ! \ln : \mathbb{R}_+^* \to \mathbb{R} : x \mapsto \ln x = \exp^{-1} x$

$$\forall x \in \mathbb{R}_+^* \ln x = \int_1^x \frac{1}{t} dt$$

$$\forall x, y \in \mathbb{R}_+^* \ln(xy) = \ln x + \ln y$$

$$\forall x \in \mathbb{R}_+^* \ln \left(\frac{1}{x} \right) = -\ln x$$

$$\forall k \ge 1 \ \forall x \in \mathbb{R} \ \frac{d^k}{dx^k} \ln x = (-1)^{k-1} \ (k-1)! \, x^{-k}$$

$$\ln x \rightarrow_{x \to 0^+} -\infty$$
, $\ln x \rightarrow_{x \to \infty} \infty$, $\ln 1 = 0$

Le logarithme est la réciproque de l'exponentielle, donc est un C^{∞} difféomorphisme de \mathbb{R}_{+}^{*} vers \mathbb{R} ln est croissante et concave sur \mathbb{R}_{+}^{*} strictement < 0 sur]0,1[et strictement > 0 sur $]1,\infty[$

Fonction exponentielle de base a > 0. $\exists ! \exp_a : \mathbb{R} \to \mathbb{R} : x \mapsto \exp_a x = a^x = e^{x \ln a}$

$$\forall x, y \in \mathbb{R} \ a^{x+y} = a^x a^y$$

$$\forall x \in \mathbb{R} \ a^{-x} = \frac{1}{a^x}$$

$$\forall r \in \mathbb{R} \ \forall x \in \mathbb{R} \ (a^x)^r = a^{xr}$$

$$\forall x \in \mathbb{R} \ \frac{d}{dx} a^x = (\ln a) a^x \quad \forall k \ge 1 \ \forall x \in \mathbb{R} \ \frac{d^k}{dx^k} a^x = (\ln a)^k a^x$$

Si $\alpha = 1$, $x \mapsto 1^x$ est la fonction constante 1.

Si a > 1:

$$a^x \rightarrow_{x \rightarrow \infty} \infty$$
 , $a^x \rightarrow_{x \rightarrow -\infty} 0$, $a^0 = 1$

$$x \mapsto a^x$$
 est un C^{∞} difféomorphisme de \mathbb{R} vers \mathbb{R}_+^*

 $x\mapsto a^x$ est croissante sur $\mathbb R$ et convexe sur $\mathbb R$, strictement positive sur $\mathbb R$

Si $a \in]0,1[$:

$$a^x \rightarrow_{x \rightarrow \infty} 0$$
 , $a^x \rightarrow_{x \rightarrow -\infty} \infty$, $a^0 = 1$

 $x \mapsto a^x$ est un C^{∞} difféomorphisme de \mathbb{R} vers \mathbb{R}_+^*

 $x\mapsto a^x$ est décroissante sur $\mathbb R$ et convexe sur $\mathbb R$, strictement positive sur $\mathbb R$

Fonction logarithme de base a > 0, $a \neq 1$. $\exists ! \log_a : \mathbb{R} \to \mathbb{R} : x \mapsto \log_a x = \frac{\ln x}{\ln a}$

$$\forall x, y \in \mathbb{R}_+^* \, \log_a(xy) = \log_a x + \log_a y$$

$$\forall x \in \mathbb{R}_+^* \log_a \left(\frac{1}{x}\right) = -\log_a x$$

$$\forall \alpha \in \mathbb{R} \ \forall x \in \mathbb{R}^*_+ \ \log_a(x^\alpha) = \alpha \log_a x$$

Pour deux bases
$$a, b \in \mathbb{R}_+^* \setminus \{1\}$$
, $\log_b x = \frac{\log_a x}{\log_a b}$

$$\forall x \in \mathbb{R} \frac{d}{dx} \log_a x = \frac{1}{x \ln a} \quad \forall k \ge 1 \ \forall x \in \mathbb{R} \frac{d^k}{dx^k} \log_a x = (-1)^{k-1} \frac{(k-1)! x^{-k}}{\ln a}$$

Si
$$a=1$$
, \log_1 n'est pas défini car $\ln 1=0$

Si a > 1:

$$\log_a x \rightarrow_{x \rightarrow 0^+} -\infty$$
, $\log_a x \rightarrow_{x \rightarrow \infty} \infty$, $\log_a 1 = 0$

 \log_a est la réciproque de $x\mapsto a^x$, donc est un C^∞ difféomorphisme de \mathbb{R}_+^* vers \mathbb{R}

 \log_a est croissante et concave sur \mathbb{R}_+^* strictement < 0 sur]0,1[et strictement > 0 sur $]1,\infty[$ Si $a \in]0,1[$:

$$\log_a x \rightarrow_{x\rightarrow 0^+} \infty$$
, $\log_a x \rightarrow_{x\rightarrow \infty} - \infty$, $\log_a 1 = 0$

 \log_a est la réciproque de $x\mapsto a^x$, donc est un C^∞ difféomorphisme de \mathbb{R}_+^* vers \mathbb{R}

 \log_a est décroissante et concave sur \mathbb{R}_+^* strictement > 0 sur]0,1[et strictement < 0 sur $]1,\infty[$

Fonctions puissances d'exposant $\alpha \in \mathbb{R}$ fixé. $\exists ! \quad \alpha : \mathbb{R}_+^* \to \mathbb{R} : x \mapsto x^\alpha = e^{\alpha \ln x}$

$$\forall x, y \in \mathbb{R}_+^* (xy)^\alpha = x^\alpha y^\alpha$$

$$\forall x \in \mathbb{R}_+^* \left(\frac{1}{x}\right)^\alpha = \frac{1}{x^\alpha}$$

$$\forall r \in \mathbb{R} \ \forall x \in \mathbb{R}^* \ (x^{\alpha})^r = x^{\alpha r}$$

$$\forall x \in \mathbb{R}^*_+ \frac{d}{dx} x^{\alpha} = \alpha x^{\alpha - 1} \quad \forall k \ge 1 \ \forall x \in \mathbb{R} \ \frac{d^k}{dx^k} x^{\alpha} = \alpha (\alpha - 1) \dots (\alpha - k + 1) x^{\alpha - k}$$

Si $\alpha \neq 0$ alors $x \mapsto x^{\alpha}$ est un C^{∞} difféomorphisme de \mathbb{R}_{+}^{*} vers \mathbb{R}_{+}^{*} de réciproque $x \mapsto x^{\frac{-}{\alpha}}$

Si
$$\alpha < 0: x^{\alpha} \to_{x \to 0^+} \infty$$
, $x^{\alpha} \to_{x \to \infty} 0$, $x \mapsto x^{\alpha}$ est convexe, décroissante sur \mathbb{R}_+^*

Si
$$\alpha \in]0,1[:x^{\alpha} \to_{x\to 0^+} 0, x^{\alpha} \to_{x\to \infty} \infty, x\mapsto x^{\alpha} \text{ est concave, croissante sur } \mathbb{R}_+^*$$

Si
$$\alpha > 0: x^{\alpha} \to_{x \to 0^+} 0$$
, $x^{\alpha} \to_{x \to \infty} \infty$, $x \mapsto x^{\alpha}$ est convexe, croissante sur \mathbb{R}_+^*

Croissances comparées.

$$\forall \alpha, \beta \in \mathbb{R}_+^* \xrightarrow[r\beta]{\ln^{\alpha} x} \to_{x \to \infty} 0$$
 en particulier $\frac{\ln x}{r} \to_{x \to \infty} 0$

$$\forall \alpha,\beta \in \mathbb{R}_+^* \, x^\beta \, |\ln x|^\alpha \to_{x \to 0^+} 0 \quad \text{en particulier } x \ln x \to_{x \to \infty} 0$$

$$\forall \alpha, \beta \in \mathbb{R}_+^* \xrightarrow[x\beta]{e^{\alpha x}} \rightarrow_{x \to \infty} \infty$$
 en particulier $\frac{e^x}{x} \rightarrow_{x \to \infty} \infty$

$$\forall \alpha, \beta \in \mathbb{R}_+^* |x|^{\beta} e^{\alpha x} \to_{x \to -\infty} 0$$
 en particulier $x e^x \to_{x \to -\infty} 0$

Fonctions circulaires.

$$\exists \ ! \ \mathbf{cos} : \mathbb{R} \to \mathbb{R} \ 2 \ \text{fois dérivable sur } \mathbb{R} \ \text{telle que} \begin{cases} \cos'' = -\cos \theta \\ \cos \theta = 1 \\ \cos' \theta = 0 \end{cases}$$

$$\exists \ ! \ \mathbf{sin} : \mathbb{R} \to \mathbb{R} \ 2 \ \text{fois dérivable sur } \mathbb{R} \ \text{telle que} \begin{cases} \sin'' = -\sin \theta \\ \sin \theta = 0 \\ \sin' \theta = 1 \end{cases}$$

$$\exists ! \mathbf{sin} : \mathbb{R} \to \mathbb{R}$$
 2 fois dérivable sur \mathbb{R} telle que
$$\begin{cases} \sin \theta = -\sin \theta \\ \sin \theta = 0 \\ \sin' \theta = 1 \end{cases}$$

$$\forall x \in \mathbb{R} \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \frac{e^{ix} + e^{-ix}}{2}$$

$$\forall x \in \mathbb{R} \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = \frac{e^{ix} - e^{-ix}}{2i}$$

La dérivée de cos est – sin, et la dérivée de sin est cos.

cos est une fonction paire, sin est une fonction impaire.

 \cos et \sin , \cot C^{∞} \sin \mathbb{R}

$$\boldsymbol{\pi} = 2\min\{x \in \mathbb{R}_+^* \mid \cos x = 0\}$$

cos et sin sont 2π -periodiques.

 $\forall k \in \mathbb{Z} \text{ cos est un } C^{\infty} \text{ diff\'eomorphisme de }]k\pi, (k+1)\pi[\text{ sur }]-1,1[$

 $\forall k \in \mathbb{Z} \text{ sin est un } C^{\infty} \text{ diff\'eomorphisme de }] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[\text{ sur }] - 1,1[$

$$\forall k \ge 1 \ \forall x \in \mathbb{R} \frac{d^k}{dx^k} \cos x = \cos\left(x + k\frac{\pi}{2}\right)$$

$$\forall k \ge 1 \ \forall x \in \mathbb{R} \frac{d^k}{dx^k} \sin x = \sin\left(x + k\frac{\pi}{2}\right)$$

$$\forall x \in \mathbb{R} \cos x = 0 \Leftrightarrow \exists k \in \mathbb{Z} \ x = \frac{\pi}{2} + k\pi$$

$$\forall x \in \mathbb{R} \sin x = 0 \Leftrightarrow \exists k \in \mathbb{Z} \ x = k\pi$$

$$\exists \,! \, \mathbf{tan} : \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \colon k \in \mathbb{Z} \right\} \to \mathbb{R} \colon x \mapsto \frac{\sin x}{\cos x} \,. \quad \text{On a } \in D_{\tan} \Leftrightarrow \cos x \neq 0$$

$$\exists \,! \, \mathbf{cotan} : \mathbb{R} \setminus \left\{ k\pi \colon k \in \mathbb{Z} \right\} \to \mathbb{R} \colon x \mapsto \frac{\cos x}{\sin x} \,. \quad \text{On a } x \in D_{\cot x} \Leftrightarrow \sin x \neq 0$$

$$\exists ! \mathbf{cotan} : \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \to \mathbb{R} : x \mapsto \frac{\cos x}{\sin x}$$
. On a $x \in D_{\mathrm{cotan}} \Leftrightarrow \sin x \neq 0$

tan est une fonction impaire, cotan est une fonction paire.

tan est C^{∞} sur D_{\tan} , et cotan est C^{∞} sur $D_{\cot an}$

$$\tan x \to_{x \to \frac{\pi^-}{2}} \infty$$
, $\tan x \to_{x \to -\frac{\pi^+}{2}} - \infty$, $\cot x \to_{x \to 0^+} \infty$, $\cot x \to_{x \to \pi^-} - \infty$

$$\forall x \in D_{\tan} \tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 et $\forall x \in D_{\cot} \cot x = -(1 + \cot^2 x) = -\frac{1}{\sin^2 x}$

$$\forall k \in \mathbb{Z} \text{ tan est un } C^{\infty} \text{ diff\'eomorphisme de }] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[\text{ sur } \mathbb{R}]$$

 $\forall k \in \mathbb{Z}$ cotan est un C^{∞} difféomorphisme de $]k\pi, (k+1)\pi[$ sur \mathbb{R}

Fonctions circulaires réciproques.

$$\exists ! \mathbf{arccos} : [-1,1] \to [0,\pi] : x \mapsto \cos^{-1} x$$

 $\forall k \in \mathbb{Z}$ arccos est un C^{∞} difféomorphisme de] -1,1[sur $]0,\pi[$, et est continue sur [-1,1]

$$arccos(-1) = \pi$$
, $arccos(1) = 0$

$$\forall x \in]-1,1[\ \arccos' x = -\frac{1}{\sqrt{1-x^2}}$$

$$\forall x, y \in \mathbb{R}$$
 $\begin{cases} y = \cos(x) \\ x \in [0, \pi] \end{cases} \Leftrightarrow \begin{cases} x = \arccos(y) \\ y \in [-1, 1] \end{cases}$

$$\exists ! \operatorname{arcsin}: [-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]: x \mapsto \sin^{-1} x$$

arcsin est un C^{∞} difféomorphisme de] -1,1[sur] $-\frac{\pi}{2},\frac{\pi}{2}[$, et est continue sur [-1,1]

$$\arcsin(-1) = -\frac{\pi}{2}$$
, $\arcsin(1) = \frac{\pi}{2}$

arcsin est une fonction impaire.

$$\forall x \in]-1,1[\arcsin' x = \frac{1}{\sqrt{1-x^2}}$$

$$\forall x, y \in \mathbb{R} \begin{cases} y = \sin(x) \\ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{cases} \Leftrightarrow \begin{cases} x = \arcsin(y) \\ y \in [-1, 1] \end{cases}$$

$$\exists! \operatorname{arctan}: \mathbb{R} \to] - \frac{\pi}{2}, \frac{\pi}{2} [: x \mapsto \tan^{-1} x$$

$$\arctan x \to_{x \to \infty} \frac{\pi}{2}, \ \arctan x \to_{x \to -\infty} -\frac{\pi}{2}$$

arctan est un C^{∞} difféomorphisme de \mathbb{R} sur $]-\frac{\pi}{2},\frac{\pi}{2}[$

arctan est une fonction impaire.

$$\forall x \in \mathbb{R} \arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

$$\forall x \in \mathbb{R} \text{ arctan' } x = \frac{1}{1+x^2}$$

$$\forall x \in \mathbb{R} \arctan' x = \frac{1}{1+x^2}$$

$$\forall x, y \in \mathbb{R} \begin{cases} y = \tan(x) \\ x \in] -\frac{\pi}{2}, \frac{\pi}{2}[\iff \begin{cases} x = \arctan(y) \\ y \in \mathbb{R} \end{cases}$$

Formules circulaires. Soient $a, b \in \mathbb{C}$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \ \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b), \ \sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right), \quad \cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right), \ \sin(a) - \sin(b) = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

$$\begin{split} \cos^2(a) + \sin^2(a) &= 1 \\ \cos(2a) &= 2\cos^2(a) - 1 = 1 - 2\sin^2(a) = \cos^2(a) - \sin^2(a) \\ \sin(2a) &= 2\sin(a)\cos(a) \\ \cos^2(a) &= \frac{1 + \cos(2a)}{2}, \ \sin^2(a) = \frac{1 - \cos(2a)}{2} \\ \text{Pour } a, b, a + b \in D_{\tan} \ \text{alors } \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} \\ \text{Pour } a, b, a - b \in D_{\tan} \ \text{alors } \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)} \end{split}$$

Pour
$$a, b \in D_{tan}$$
 alors $tan(a) + tan(b) = \frac{\sin(a+b)}{\cos(a)\cos(b)}$

Pour
$$\frac{a}{2} \in D_{\tan}$$
, $t = \tan\left(\frac{a}{2}\right)$, alors $\cos(a) = \frac{1-t^2}{1+t^2} \sin(a) = \frac{2t}{1+t^2} \tan(a) = \frac{2t}{1-t^2}$
Pour $\frac{a}{2} \in D_{\tan}$, $t = \tan\left(\frac{a}{2}\right)$, $\sin(a) \neq 0$ alors $t = \frac{\sin(a)}{1+\cos(a)} = \frac{1-\cos(a)}{\sin a}$

Formules circulaires réciproques.

Pour
$$x \in [-1,1]$$

$$\begin{cases} \arccos(x) + \arcsin(x) = \frac{\pi}{2} \\ \arccos(-x) = \pi - \arccos(x) \\ \arcsin(-x) = -\arcsin(x) \end{cases}$$

$$\text{Pour } x \in \mathbb{R}^* \begin{cases} \arctan(x) + \arctan\left(\frac{1}{x}\right) = sgn(x)\frac{\pi}{2} \\ \arctan(-x) = -\arctan(x) \end{cases}$$

$$\text{Pour } x, y \in \mathbb{R}$$

$$\begin{cases} xy < 1 \Rightarrow \arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right) \\ xy < 1 \Rightarrow \arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right) + sgn(x)\pi \end{cases}$$
Fonctions hyperboliques.

Fonctions hyperboliques.

$$\exists \; ! \; \mathbf{cosh} \colon \mathbb{R} \to \mathbb{R} \; 2 \; \text{fois dérivable sur } \mathbb{R} \; \text{telle que} \begin{cases} \cosh'' &= \cosh \\ \cosh 0 &= 1 \\ \cosh' 0 &= 1 \end{cases}$$

$$\exists \; ! \; \mathbf{sinh} \colon \mathbb{R} \to \mathbb{R} \; 2 \; \text{fois dérivable sur } \mathbb{R} \; \text{telle que} \begin{cases} \sinh'' &= \sinh \\ \sinh'' &= \sinh \end{cases}$$

$$\sinh 0 &= 0 \\ \sinh' 0 &= 1 \end{cases}$$

$$\forall x \in \mathbb{R} \; \cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} = \frac{e^x + e^{-x}}{2}$$

$$\forall x \in \mathbb{R} \; \sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} = \frac{e^x - e^{-x}}{2}$$

La dérivée de cosh est sinh, et la dérivée de sinh est cosh. cosh est une fonction paire, sinh est une fonction impaire. \cosh et \sinh , $\operatorname{sont} \mathcal{C}^{\infty}$ $\operatorname{sur} \mathbb{R}$

$$\forall k \geq 1 \ \forall x \in \mathbb{R} \frac{d^k}{dx^k} \cosh x = \begin{cases} \cosh x \text{ si } k \text{ pair} \\ \sinh x \text{ si } k \text{ impair} \end{cases}$$

$$\forall k \geq 1 \ \forall x \in \mathbb{R} \frac{d^k}{dx^k} \sinh x = \begin{cases} \sinh x \text{ si } k \text{ pair} \\ \cosh x \text{ si } k \text{ impair} \end{cases}$$

 $\cosh x \to_{\chi \to \infty} \infty, \ \cosh x \to_{\chi \to -\infty} \infty, \ \sinh x \to_{\chi \to \infty} \infty, \ \sinh x \to_{\chi \to -\infty} -\infty$

 $\forall k \in \mathbb{Z}$ cosh est un C^{∞} difféomorphisme de $]0, \infty[$ sur $]1, \infty[$ et de $]-\infty, 0[$ sur $]1, \infty[$

 $\forall k \in \mathbb{Z}$ sinh est un C^{∞} difféomorphisme de \mathbb{R} sur \mathbb{R}

$$\exists ! tanh : \mathbb{R} \to \mathbb{R} : x \mapsto \frac{\sinh x}{\cosh x}$$
$$\exists ! cotanh : \mathbb{R}^* \to \mathbb{R} : x \mapsto \frac{\cosh x}{\sinh x}$$

tanh est une fonction impaire, cotanh est une fonction paire.

 $tanh \ est \ C^{\infty} \ sur \ \mathbb{R}$, et cotanh $est \ C^{\infty} \ sur \ \mathbb{R}^*$

$$\tanh x \to_{x\to\infty} 1$$
, $\tanh x \to_{x\to-\infty} - 1$

```
\operatorname{cotanh} x \to_{x \to \infty} 1, \operatorname{cotanh} x \to_{x \to 0^+} \infty, \operatorname{cotanh} x \to_{x \to -\infty} - 1, \operatorname{cotanh} x \to_{x \to 0^-} - \infty
\forall x \in \mathbb{R} \tanh' x = 1 - \tanh^2 x = \frac{1}{\cosh^2 x} et \forall x \in \mathbb{R}^* \operatorname{cotanh}' x = 1 - \operatorname{cotanh}^2 x = -\frac{1}{\sinh^2 x}
\forall k \in \mathbb{Z} \text{ tanh est un } C^{\infty} \text{ diff\'eomorphisme de } \mathbb{R} \text{ sur } ]-1,1[
\forall k \in \mathbb{Z} cotanh est un C^{\infty} difféomorphisme de ]0, \infty[ sur ]1, \infty[ et de ]-\infty, 0[ sur ]-\infty, -1[
Fonctions hyperboliques réciproques.
\exists ! \operatorname{arccosh}: [1, \infty[ \to [0, \infty[: x \mapsto \cosh^{-1} x]]]
\forall k \in \mathbb{Z} arccosh est un C^{\infty} difféomorphisme de ]1, \infty[ sur ]0, \infty[, et est continue sur [1, \infty[
\operatorname{arccosh}(1) = 0, \operatorname{arccosh}(x) \to_{x \to \infty} \infty
\forall x \in ]1, \infty[ \operatorname{arccosh}' x = \frac{1}{\sqrt{x^2 - 1}}
\forall x \in ]1, \infty[ \operatorname{arccosh} x = \ln(x + \sqrt{x^2 - 1})]
\forall x, y \in \mathbb{R} \begin{cases} y = \cosh(x) \\ x \in [0, \infty[ \end{cases} \Leftrightarrow \begin{cases} x = \operatorname{arccosh}(y) \\ y \in [1, \infty[ \end{cases}
\exists! \operatorname{arcsinh}: \mathbb{R} \to \mathbb{R}: x \mapsto \sinh^{-1}
arcsinh est un C^{\infty} difféomorphisme de \mathbb{R} sur \mathbb{R}
\operatorname{arcsinh}(x) \to_{x \to \infty} \infty, \operatorname{arcsinh}(x) \to_{x \to -\infty} - \infty
arcsinh est une fonction impaire.
\forall x \in \mathbb{R} \text{ arcsinh}' x = \frac{1}{\sqrt{x^2+1}}
\forall x \in ]1, \infty[ \arcsin x = \ln(x + \sqrt{x^2 + 1})
\forall x, y \in \mathbb{R} \ \left\{ egin{aligned} y = \sinh(x) \\ x \in \mathbb{R} \end{aligned} \right. & \Longleftrightarrow \left\{ egin{aligned} x = \mathrm{arcsinh}(y) \\ y \in \mathbb{R} \end{aligned} \right.
\exists ! \operatorname{arctanh}: ] - 1,1[ \rightarrow \mathbb{R}: x \mapsto \tanh^{-1} x
\operatorname{arctanh} x \to_{x \to 1^{-}} \infty, \operatorname{arctanh} x \to_{x \to -1^{+}} - \infty
arctanh est un C^{\infty} difféomorphisme de ] -1,1[ vers \mathbb R
arctanh est une fonction impaire.
\forall x \in \mathbb{R} \ \operatorname{arctanh} x = \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}
\forall x \in \mathbb{R} \text{ arctanh' } x = \frac{1}{1-x^2}
\forall x \in \mathbb{R} \ \operatorname{arctanh} x = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right)
\forall x, y \in \mathbb{R} \ \begin{cases} y = \tanh(x) \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \operatorname{arctanh}(y) \\ y \in ]-1,1[ \end{cases}
Formules hyperboliques. Soient a, b \in \mathbb{C}
\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)
\cosh(a - b) = \cosh(a)\cosh(b) - \sinh(a)\sinh(b)
\sinh(a+b) = \sinh(a)\cosh(b) + \cosh(a)\sinh(b)
\sinh(a - b) = \sinh(a)\cosh(b) - \cosh(a)\sinh(b)
\cosh(a) + \cosh(b) = 2\cosh\left(\frac{a+b}{2}\right)\cosh\left(\frac{a-b}{2}\right), \quad \cosh(a) - \cosh(b) = 2\sinh\left(\frac{a+b}{2}\right)\sinh\left(\frac{a-b}{2}\right)
\sinh(a) + \sinh(b) = 2\sinh\left(\frac{a+b}{2}\right)\cosh\left(\frac{a-b}{2}\right), \ \sinh(a) - \sinh(b) = 2\cosh\left(\frac{a+b}{2}\right)\sinh\left(\frac{a-b}{2}\right)
\cosh(a)\cosh(b) = \frac{1}{2}(\cosh(a+b) + \cosh(a-b))
\sinh(a)\sinh(b) = \frac{1}{2}(\cosh(a+b) - \cosh(a-b))
\sinh(a)\cosh(b) = \frac{1}{2}(\sinh(a+b) + \sinh(a-b))
\cosh^2(a) - \sinh^2(a) = 1
\cosh(2a) = 2\cosh^2(a) - 1 = 1 - 2\sinh^2(a) = \cosh^2(a) + \sinh^2(a)
sinh(2a) = 2 sinh(a) cosh(a)
```

$$\begin{split} \cosh^2(a) &= \frac{1 + \cosh(2a)}{2} \,, \quad \sinh^2(a) = \frac{1 - \cosh(2a)}{2} \\ \text{Pour } a, b \in \mathbb{R} \text{ alors } \tanh(a+b) &= \frac{\tanh(a) + \tanh(b)}{1 + \tanh(a) \tanh(b)} \\ \text{Pour } a, b \in \mathbb{R} \text{ alors } \tanh(a-b) &= \frac{\tanh(a) - \tanh(b)}{1 - \tanh(a) \tanh(b)} \\ \text{Pour } a, b \in \mathbb{R} \text{ alors } \tanh(a) + \tanh(b) &= \frac{\sinh(a + b)}{\cosh(a) \cosh(b)} \\ \text{Pour } a \in \mathbb{R}, t &= \tanh\left(\frac{a}{2}\right), \text{ alors } \cosh(a) &= \frac{1 + t^2}{1 - t^2} \sinh(a) &= \frac{2t}{1 - t^2} \tanh(a) &= \frac{2t}{1 + t^2} \\ \text{Pour } a \in \mathbb{R}, t &= \tanh\left(\frac{a}{2}\right), \sinh(a) \neq 0 \text{ alors } t &= \frac{\sinh(a)}{1 + \cosh(a)} &= \frac{1 - \cosh(a)}{\sinh a} \end{split}$$

Formulaire dérivées.

Fonction	Dérivée	Domaine dérivabilité	Domaine définition
1	0	\mathbb{R}	idem
$x^k, k \in \mathbb{N}, k \ge 1$	kx^{k-1}	\mathbb{R}	idem
$x^k, k \in \mathbb{Z}, k \le -1$	kx^{k-1}	\mathbb{R}^*	idem
$x^{\alpha}, \alpha \in \mathbb{R}$ $\frac{1}{x}$ \sqrt{x}	$\begin{array}{c} kx^{k-1} \\ \alpha x^{\alpha-1} \\ 1 \end{array}$	R*+	idem
1	1	\mathbb{R}^*	idem
$\frac{\overline{x}}{x}$	$-{x^2}$		
\sqrt{x}		\mathbb{R}_+^*	\mathbb{R}_+
	$2\sqrt{x}$		
$\exp(x)$	$\exp(x)$	\mathbb{R}	idem
a^x , $a \in \mathbb{R}_+^*$	$(\ln(a))a^x$	\mathbb{R}	idem
ln(x)	$\frac{(\ln(a))a^x}{\frac{1}{x}}$	\mathbb{R}_+^*	idem
$\log_a(x)$	1	R ₊ *	idem
	$\frac{x \ln(a)}{x}$		
cos(x)	$-\sin(x)$	\mathbb{R}	idem
sin(x)	$\cos(x)$	\mathbb{R}	idem
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2 x}$	$] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi[, k \in \mathbb{Z}]$	idem
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$] – 1,1[[-1,1]
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$] – 1,1[[-1,1]
arctan(x)	_	R	idem
cosh(x)	$\frac{1+x^2}{\sinh(x)}$	\mathbb{R}	idem
sinh(x)	$\cosh(x)$	\mathbb{R}	idem
tanh(x)	$1 - \tanh^2(x) = \frac{1}{\cosh^2(x)}$	R	idem
arccosh(x)]1,∞[[1,∞[
arcsinh(x)	$ \frac{\sqrt{x^2 - 1}}{1} $ $ \frac{1}{\sqrt{x^2 + 1}} $	R	idem
arctanh(x)	$ \frac{\sqrt{x^2 + 1}}{\frac{1}{1 - x^2}} $] – 1,1[idem

Formulaire composées. (utile pour reconnaître formes composées lorsqu'on intègre).

Opération	Dérivée
o peración	2011100

αu	αu'
u + v	u' + v'
uv	u'v + uv'
\underline{u}	u'v + uv'
$\frac{\overline{v}}{v}$	$\overline{v^2}$
$v \circ u$	$ \begin{array}{c c} \hline v^2 \\ (v' \circ u) \times u' \\ -\frac{u'}{u^2} \\ \hline 1 \end{array} $
1	u'
\overline{u}	$-\frac{1}{u^2}$
$\frac{\frac{1}{u}}{u^{-1}}$	1
	$\overline{u' \circ u^{-1}}$
$u^{\alpha}, \alpha \in \mathbb{R}$ \sqrt{u}	$\alpha u^{\alpha-1}u'$
\sqrt{u}	u'
	$\frac{u' \circ u^{-1}}{\alpha u^{\alpha - 1} u'}$ $\frac{u'}{2\sqrt{u}}$
$\exp(u)$	$\frac{\exp(u)u'}{\underline{u'}}$
$\ln(u)$	u'
$\cos(u)$	$\frac{u}{-\sin(u)u'}$
$\sin(u)$	$\cos(u) u'$

Formulaire primitives.

Fonction	Primitive	Intervalle d'intégration
1	x	R
$(x-a)^k, k \in \mathbb{N}, k \ge 0$	$\frac{\frac{1}{k+1}(x-a)^{k+1}}{\frac{1}{k+1}(x-a)^{k+1}}$	R
$(x-a)^k, k \in \mathbb{Z}, k \le -2$	$\frac{1}{k+1}(x-a)^{k+1}$	$]-\infty,a[\text{ ou }]a,\infty[$
$\frac{1}{(x-a)^k}, k \in \mathbb{Z}, k \ge 2$	$-\frac{1}{(k-1)(x-a)^{k-1}}$ $\ln x-a $	$]-\infty$, $a[$ ou $]a,\infty[$
	$\ln x-a $] − ∞, <i>a</i> [ou] <i>a</i> , ∞[
$(x-a)^{\alpha}, \alpha \in \mathbb{R} \setminus \{-1\}$	$\frac{1}{\alpha+1}(x-a)^{\alpha+1}$] <i>a</i> ,∞[
$\sqrt{x-a}$	$\frac{\frac{1}{\alpha+1}(x-a)^{\alpha+1}}{\frac{2}{3}(x-a)^{\frac{3}{2}}}$ $2\sqrt{x-a}$] <i>a</i> ,∞[
$\frac{1}{\sqrt{x-a}}$	$2\sqrt{x-a}$] <i>a</i> ,∞[
$\frac{1}{\sqrt{1-x^2}}$	arcsin x] – 1,1[
$\frac{1}{1+x^2}$	arctan x	R
$\frac{1}{\sqrt{x^2+1}}$	$\ln\left x+\sqrt{x^2+1}\right $	\mathbb{R}
1	$= \operatorname{arcsinh} x$ $\ln \left x + \sqrt{x^2 - 1} \right $] - ∞, -1[ou]1, ∞[
$\sqrt{x^2-1}$	$ \ln x + \sqrt{x^2 - 1} \\ = \operatorname{arccosh} x $	
$\frac{1}{1-x^2}$ $e^{ax} \cdot a \in \mathbb{R}^*$	$\frac{1}{2}(\ln x-1 - \ln x+1)$] - ∞, -1[ou] - 1,1[ou]1,∞[
$e^{ax}, a \in \mathbb{R}^*$	$\frac{1}{a}e^{ax}$	R
$a^x, a \in \mathbb{R}_+^*$	$\frac{1}{a}e^{ax}$ $\frac{1}{\ln(a)}a^{x}$	R

ln(x)	$x \ln(x) - x$	\mathbb{R}_+^*
$\cos(ax+\varphi)$, $a\in\mathbb{R}^*$	$\frac{1}{a}\sin(ax+\varphi)$ $\frac{1}{a}\cos(ax+\varphi)$	\mathbb{R}
$\sin(ax+\varphi)$, $a\in\mathbb{R}^*$	$-\frac{1}{a}\cos(ax+\varphi)$ $-\ln \cos(x) $	\mathbb{R}
tan(x)	$-\ln \cos(x) $	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\colon k\in\mathbb{Z}\right\}$
cotan(x)	$\ln \sin(x) $	$\mathbb{R}\setminus\{k\pi\colon\! k\in\mathbb{Z}\}$
$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	tan(x)	$\mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$ $\mathbb{R} \setminus \left\{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\right\}$
$-\frac{1}{\sin^2(x)} = -1 - \cot^2(x)$	cotan(x)	$\mathbb{R}\setminus\{k\pi\colon\! k\in\mathbb{Z}\}$
$\frac{1}{\cos(x)}$	$\ln\left \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right $	
$\frac{1}{\sin(x)}$	$\ln \left \tan \left(\frac{x}{2} \right) \right $	
$\cosh(x)$	sinh(x)	
sinh(x)	$\cosh(x)$	
$\frac{1}{\cosh(x)}$	arctan(sinh(x)) + C = $arctan(tanh(x)) + C$	
1	$= 2 \arctan(e^x) + C$	
$\frac{1}{\sinh(x)}$	$\ln\left \tanh\left(\frac{x}{2}\right)\right $	
$\frac{1}{\cosh^2(r)}$	tanh(x)	
$\frac{\cosh^2(x)}{1}$	1	
$sinh^2(x)$	$-\frac{1}{\tanh(x)}$	