節番号		課題		ボメモリ	メモリ量/ ス ケース 量		計算時間	ケース数	総演算量	柳丽山一体工士	RR 85 +8 +#	備考	演算量、メモリアクセス量、メモリ量、ストレー
即番写	創薬・医療	個人ゲノム解析		(PB/s)	(PB)	(PB)	(hour)	ケース数	(EFLOP)	概要と計算手法	問題規模	1人分の解析を1ケースとした。入力データを	ジ量に関して精査中の項目
			0.0054	0.0001	1.6	0.1	0.7	200000	2700	シーケンスマッチング	がんゲノム解析200,000人分のマッピ ングおよび変異同定	分割することで、細かい単位での実行、拠点 をまたいだ実行も可能。整数演算中心のた め「総演算量」はInstruction数とした。総浮動 小数点演算量は45.864EFLOPとなる。	
		遺伝子ネットワーク解析	25	89	0.08	0.016	0.34	26000	780000	ベイジアンネットワークおよびL1正則化法	4万転写物×26,000データセット・280 万アレイ		
		創薬などMD・自由エネル ギー計算	1000	400	0.0001		0.0012	1000000	4300000	全原子分子動力学シミュレーション	ケース数: 10万化合物×10標的蛋白質 (10万原子程度)	B/F-0.4、数百から数千ケース同時に実行することを想定しているので、実行時に必要な全メモリ量、各ケースの実際の実計算時間は、表の値の数百~数千倍となる。メモリ量/ケースは100ノード実行時を想定。	
		細胞環境・ウィルス	490	49	0.2	1.2	48	10	850000	全原子/粗視化分子動力学シミュレーション	~1億粒子	B/F=0.1	
		細胞内信号伝達経路シミュ レーション	42	100	10	10	240	100	3600000	一分子粒度細胞シミュレーション (格子法)	1000 から 10,000 細胞で構成される細胞集団	は販払10回、100回任及が呈ましいた87100	
		高精度創薬	0.83	0.14	1	0.001	1	100	300	薬品とタンパク質間相互作用の量子化学計算	水和条件下,500残基タンパク質+リ	回とした。 ファイルI/Oは終了時に1TBを1秒で書き出す	
		バイオデバイス設計				0.001		100			ガンド	ことを想定し、1TB/s必要とした ファイルI/Oは終了時に1TBを1秒で書き出す	
		血流シミュレーション	1.1	0.19	'	0.001	1	100		200-500残基程度のタンパク質の分光計算	電子軌道数10万超	ことを想定し、1TB/s必要とした	
		+11.57.24x 2 2 4 2 2 4	400	64	1	1	170	10	2500000	差分法、準陽解法(構造・流体・生化学連成シミュレーション)	100mm長x100um径, 0.1um格子, 流速10~2m/s, 解像度1us, 10秒 400mm~3の計算領域を軟組織とマイ		
		超音波シミュレーション	380	460	54	64	240	10	3300000	差分法、陽解法(音波・熱シミュレーション)	クロカプセル干渉音場を捉えるため、 225兆点の格子と時間ステップ数として1459200ステップが必要である。また、1格子点あたり演算数1000程度と		
		脳神経系シミュレーション (ヒト全脳簡約モデル)	6.9	7.6	56	3600	0.28	100	700	単一コンパートメントIFモデル シナブス可塑 性・通信	なる。 1000億ニューロン ニューロンあたり1 万シナプス 10 ⁵ step	ネットワークのボトルネックはレイテンシー	演算量、メモリアクセス量、メモリ量、ストレージ量
		脳神経系シミュレーション・ 昆虫全脳詳細モデル 神	71	60	0.2	20	28	20			1000ニューロン 10^6遺伝子 100世	100MB/S程度の外部との通信も想定	演算量、メモリアクセス量、メモリ量、ストレー
2.2.1	地震・津波防災	経回路パラメータ推定・生 理実験とシミュレーションの 呼が連携シミュレーション	//	00	0.2	20	20	20	140000	ソン)シナプス通信 進化的アルゴリズム	代		ジ量
2.2.1	地辰,洋瓜切火	防災連携シミュレーション (地震直後の被害状況予 測) 内訳は以下(1)~(6)	7	15	0.1	0.00086	3	5000	310000	境界積分法による地震サイクル計算	面素数10^7	地震発生は1領域1000シナリオを5領域行う。 各領域について1000シナリオ中、観測に基づき20シナリオを選び、波動伝播計算を行う。一方、地震動増幅や増物変動・津波遡上については、地盤構造や建物等化、海底地形の不確実さを考慮するために数ナケス計算するとともに、複数の都道府県の都市(例えば南海トラン地震の場合に、東海・近畿・四国・水州の4都市)を一度に計算する必要を考慮すると、結果的に各領域で1000ケース程度は計算が必要。アブリの最大BF値=8.0アブリカでは、2012年度2月を2月では、2012年度2月では、2012年度2月では、2012	
		(2) 波動伝搬								** / _ 7 70/ ki. _ 27 10/ ki. _ 20/	1200x1000x200Km ³ 3	アプリの最大BF値=2.14、京での実測1.4。1 ケースあたり演算量14EFLOP(東北大調	
		(0) Interest (M) =			0.1	0.5		100		差分法による弾性波動伝搬計算	(125mx125mx62.5m格子)、ステップ数 24万回	べ)。東大前田先生による新バージョンを京 でも主に利用。そちらは20EFLOP。	
		(3) 地震動増幅 (4) 地震動増幅			0.01	4		5000		有限要素法による地震波動計算	30億節点(300x250x10km ² 3)	アプリの最大BF値=8.00	
		(4) 地震動增幅 (5) 建物震動			0.01	4		5000	130000	有限要素法による地震波動計算	30億節点(30x25x1km ³)	アプリの最大BF値=8.00	
					0.05	0.05		5000	500		構造物100万棟	BF値=0.26 (実測値)。メモリ転送量はBF値と 演算量から逆算。BF値はキャッシュに載るの で小さい。 演算量はプロファイルからの外挿と一致、メ モリ転送量はプロファイルからの外挿	
		(6) 津波遡上			0.002	0.5		5000	50000	Navier-Stokes方程式複数モデル(静水圧近似、非静水圧、VOF法)計算	3x3x0.08Km(1都市領域を1m格子幅) から1400x1100x10Km(5.4Km格子幅) の複合格子、7都市同時計算、72万ス テップ	演算量、メモリ転送量、メモリ量は実測値からの外挿。BF値=10(実測値)	
		避難誘導シミュレーション	3.3	0.28	0.3	0.006	1	5000	60000	マルチエージェントモデルによる行動シミュレー ション	300,000 agents, 18,000 steps (1 hour simulation), 1,000 Monte-Carlo members	演算量は命令数である。浮動小数演算は命令数のおよそ 1/40。 演算量、メモリアセス量、メモリ使用量は京	
2.2.2	気象災害	高解像度気象予報(全球) 高解像度気象予報(領域)	130	360	3	58	340	1	150000	モデル名NICAM, 有限体積法	格子点数:1兆(水平解像度220m,鉛 直94層)、ステップ数:520万(dt=1秒、	でのプロファイルから外挿 10万ノードを仮定(ノードあたり隣接通信 1GB/s)	
			33	33	0.09	0.3	0.5	2700	160000	モデル名ASUCA, 有限体積法	格子点数: 7500×7500×500、ステップ 数: 13万(dt=1秒、36時間)	演算量、メモリ量に関しては、SR1600でのプロファイルを元に外挿。メモリアクセス量は、B/F値が1と仮定して見積もった。 出力は、28変数は10分毎に出力する。 通信に関しては、22500/一ドを仮定(ノードあたり隣接通信400B/s)	メモリアクセス量
		局所的・集中的大雨、熱帯 気象の高度予測	220	270	0.7	5	580	2	900000	大気モデル:NICAM(有限体積法), アンサンブル データ同化:LETKF	水平解像度3.5km、鉛直100層、1000 アンサンブルメンバー、3時間おきの 同化サイクル、2ヶ月積分	10万ノードを仮定(大気モデルのノードあたり 隣接通信1GB/s) 演算量、メモリ転送量、メモリ使用量は、京で のプロファイルを元に外挿	
2.3	エネルギー・環境問題	電子材料の電子状態計 算・手法1	100	20	5	15	240	10	860000	第一原理分子動力学計算	原子数:1億、時間ステップ数10^4		
		電子材料の電子状態計 算・手法2	100	10	1.2	12	96	10	350000	実空間基底O(N^3)第一原理分子動力学計算	原子数:10万、100ステップ	20SCF×100ステップ	
		強相関電子系の理解	1900	2700	0.2		8	100		変分モンテカルロ法	原子数1万	メモリ使用量はMPIプロセス数に比例し最大	
		プラズマ乱流計算・マルチスケール利流	100	200	0.5	0.1	24	50	430000	ボルップ、大和学の5次元計第7スペクレル注:	10^12格子、10^6ステップ	使用量を記載した	
		スケール乱流 プラズマ乱流計算・大域的 非定常乱流	100	200	0.5	1	170	10	610000	ボルツマン方程式の5次元計算(差分法)	10^12格子、10^7ステップ		
		熱流体シミュレーション(自動車、実際の設計、最適化	110	230	0.04	Δ.	1	100	41000	Re=10^6~10^7のLES流体計算、パラメータスタ	10^10格子	BF=2として計算	
		問題) 熱流体シミュレーション(自			0.0.		·			77,1007—2846			
		動車、ハイエンドベンチ マーク)	120	230	0.5	48	24	10	100000	Re=10^6~10^7のLES流体計算、ストロングス ケール	格子点数:10^12	構造格子でBF=2、1,000タイムスライスを30 分で出力と想定	
		風力発電立地条件アセス メント	29	89	0.01	0.07	72	100	760000	高解像度LES流体計算(差分法)	3300x3300x300格子点(30x30x10m解像度)、123万ステップ(dt=0.21秒、72時間、フレンフング(dt=0.21秒、72	1立地のアセスメントに約100ケース(200日) 必要。これを立地ごとに行うことが必要。	
		近未来地球環境予測シス									時間、スピンアップ24時間含)	計算の大半を占める大気モデルのみで見積	
		テム	56	110	0.6	80	600	1	120000	モデル名MIROC-ESM	格子点数:2000x1000x200、ステップ 数:5300万(dt=60秒、100年)、100アン サンブル同時実行	もり。100ケース全体が1ヶ月で計算完了する ことが必要。ネットワークは1000ノードを仮定 (ノードあたり大域通信1TB/s) 演算量、メモリ転送量、メモリ使用量は、京で のプロファイルを元に外挿	
2.4	社会経済予測	自動車交通流のリアルタイムシミュレーション	1000	100	0.00011	0.001	2.8E-08	1000	0.1	地球上の全自動車交通規模(10億台、道路総 延長3400万km)、エージェントモデルによるシ ミュレーション (実際に計算対象となる稼働している車の台数 は10 [°] 8台と推定)	10 ⁸ 台×10 ³ 演算×10 ³ step×10 ³ ケース(10秒分のシミュレーション) これを0.1 secで計算する	要求ストレージおよび総演算量は1日分あたり、とする。一台あたり10^3 FLOPと推定。	メモリ量、メモリアクセス量
		株式取引所ルールの最適 化	2100	0.0001	1E-08		0.0024	10000	180000	1取引所の1000銘柄について、1日分の取引を トレーダーエージェントモデルでモンテカルロシ ミュレーション	総演算量 5時間 × 3600秒/時間 × 1000 注文 機会/秒 × 10 ¹ 4演算/注文機会 × 10 トレーダー × 10 ¹ 4 サンブル × 10 ² 3 銘柄 = 1.8 × 10 ² 19 演算 これを24hで10 ² 4ケース計算する	整数演算が中心 「要求性能」「総演算量」はインストラクション 数	
3.1.1	基礎物理における連携	カイラル対称性とQCDに基づく有効パリオン間相互作用の決定とその応用	510	390	0.066	0.5	880	10	16000000	格子QCD (カイラル5次元型),ハイブリッドモンテ カルロ法、CG法	問題規模 格子点:128 ⁴ x32、格子間隔:0.1 [fm] 以下	ノード数を16 [*] 4 ノードを仮定し、ノードあたり 性能を、オンチップメモリ容量 200MB, オン チップメモリバンド幅 6TB/s, ネットワークレイ テンシ 1 μ soc程度、ネットワークバンド幅 128GB/sを想定。	
		閉殻を仮定しない殻模型 計算	100	10	0.1	0.0001	28	100	1000000	モンテカルロ殻模型法による原子核の構造計 算、軽い核	空間を調和振動子基底で展開し、7~ 8主殻までを考慮。10 ⁹ ステップ数。	メモリ量は10000ノード X 10GBで計算。ただし、問題をノード間で分割して持つことで削減可能。	ストレージ量
		相対論的輻射流体計算に よる超新星爆発メカニズム の探究	18	70	1.6	1.3	1200	10	780000	ニュートリノ輻射輸送計算(超新星爆発)	空間512x64x128 位相空間24 ² 3 で1秒 分の時間を計算	100Tflops/ノード×10000ノード、主記憶 100GB/ノード、主記憶パンド幅20TB/s/ノード、オンチップメモリ容量2MB/コア、通信速度60GB/s/ノード	
3.1.2	連携による惑星科学	惑星系形成のシミュレー ション	4.2	0.021	0.00001	0.05	1000	100	1500000	N-体 シミュレーション	粒子数: 1億体 積分時間: 1億年 (ステップ数: 10G)	無文 で報告されているアルコリスムと GRAPE における計測結果から算出。1ステッ ブ1粒子あたり1万5千演算、グループ内粒子 数 128。メモリアクセスは6000 演算あたり32 パイト	
		地球・惑星の形成シミュ レーション	520	29	0.001	1	24	100	4500000	SPH 計算	粒子数: 10億体 積分時間: 数ヶ月 (ステップ数: 100M), 演算量 NlogN	演算量、メモリ転送量、メモリ使用量は、 TSUBAMEでのプロファイルを元に外挿	
		惑星表層環境の形成と進 化シミュレーション	5.6	25	0.01	Δ	100	1000	2000000	流体計算 + 輻射計算(スペクトル法+差分法)	格子数: 3840×1920×192, 100 ケース × 10 惑星, 積分時間: 10年(ステップ数:	演算量、メモリ使用量は、TSUBAMEでのプ	
3.1.3	生命科学公配 糖糖红	創薬などMD・自由エネル	5.0	20	5.01		100	1000	200000	TRIGINITE TO THE TRIGINATE TO THE TENTE TH	30M), 1ステップ1格子あたりの演算量: 50K	ロファイルを元に外挿 B/F=0.4、数百から数千ケース同時に実行す	
0.1.0	生命科学分野、物質科学分野、ものづくり分野の分野横断連携	ギー計算	1000	400	0.0001		0.0012	1000000	4300000	全原子分子動力学シミュレーション	ケース数: 10万化合物×10標的蛋白質 (10万原子程度)	スーレた相中! アハスので 宝行時に必要な	
		高精度創薬	0.83	0.14	1	0.001	1	100	300	薬品とタンパク質間相互作用の量子化学計算	フラグメント分子軌道法で~500残基程度までの計算を統計的ゆらぎを含めた複数サンブルで行う	計算要求は「物質科学」のフラグメント分子 軌道法のところを参照	
		バイオデバイス設計	1.1	0.19	1	0.001	1	100	400	200-500残基程度のタンパク質の分光計算	めた複数サンプルで行う 電子軌道数10万超	計算要求は「物質科学」のフラグメント分子	
		細胞環境・ウィルス	490	49	0.2		48	100			電子軌道数10万超 ~1億粒子	軌道法のところを参照 B/F=0.1	
3.2.1	計算科学基盤技術の		200	61	0.2	1.2		10		全原子/粗視化分子動力学シミュレーションボリュームレンダリング(レイキャスト、ファイルベー	ाष्ट्रसम् ।	対象によって問題規模等は異なるため、典	
	創出と高度化	並列レンダリング	200	61	2	1	0.5	1		ス) ポリュームレンダリング (In situ)		型的な例で概算 対象によって問題規模等は異なるため、典 型的な例で概算	
		データ圧縮	500	25	8	10	0.5	1		POD圧縮(ファイルベース)		対象によって問題規模等は異なるため、典型的な例で概算	
3.2.2	ビッグデータの有効利 用①:衛星・観測データ の有効利用	局所的・集中的大雨、熱帯 気象の高度予測	220	270	0.7	5	580	2		大気モデル:NICAM(有限体積法), アンサンブル データ同化:LETKF	水平解像度3.5km、鉛直100層、1000 アンサンブルメンバー、3時間おきの 同化サイクル、2ヶ月積分	10万ノードを仮定(大気モデルのノードあたり 隣接通信1GB/s) 演算量、メモリ転送量、メモリ使用量は、京で	
		統合地球環境再解析	3.1	13	0.018	0.022	18	240	48000	4次元変分法	格子点: 大気640x320x150, 海洋 3600x1800x150 ムt: 大気1min, 海洋30sec, 結合 10min 100イタレーション	のプロファイルを元に外挿 B/F値: 大気4.66、海洋4.24 演算量: メモリ使用量は、ES2のプロファイル を元に精査。メモリ転送量は、ソースから見 稀もったB/F値をもヒに、演算量から算出 (キャッシュは考慮していない)。	
1	1	İ							L	1	11001ダレーンヨン	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	L

節番号		課題	要求性能	要求メモリバンド幅	メモリ量/ ケース	ストレージ 量/ケース			総演算量 概要と計算手法	問題規模	備考	演算量、メモリアクセス量、メモリ量、ストレー
	ビッグデータの有効利	個人ゲノム解析	(PFLOPS)	(PB/s)	(PB)	(PB)	(hour)	7—入数	(EFLOP) 似安CaT异于法	问超然快	1人分の解析を1ケースとした。入力データを	ジ量に関して精査中の項目
	用②:ゲノム解析・バイ オインフォマティクス	疾患遺伝子発見のための	0.0054	0.0016	1.6	0.1	0.7	200000	2700 シーケンスマッチング	がんゲノム解析200,000人分のマッピ ングおよび変異同定	分割することで、細かい単位での実行、拠点 をまたいだ実行も可能。整数演算中心のため「総演算量」はInstruction数とした。総浮動 小数点演算量は45.864EFLOPとなる。 メモリ量は800GB/node、ノード数25万を仮定	
3.3	X線自由電子レーザー	統計的解析 大量実験データ解析による	9.9	0.0002	200	2	140	5	25000 ゲノムワイド連鎖解析(GWAS)	Z4万人	通信、ファイルI/Oは引き続き調査必要。特	
3.3	施設SACLA等の大型研究施設との連携	4次元イメージング	2	0.01	0.000001	0.000001	2.8E-11	1E+12	構造分類、3次元構造構築、時間軸推定のための統計処理		にファイルI/Oがボトルネックとなる可能性あり。京ではローカリティを考慮したI/Oにより	
		実験解析結果に基づく動	490	49	0.2	1.2	48	10	850000 全原子/粗視化分子動力学シミュレーション	ジあたりのサイズは数百MB ~1億粒子	最適化している。 B/F=0.1	
4.1	生命科学	的構造モデリング 生体分子機能解析							公之動力受計質(今面之(代表) OM/MM 知道		サブイクロロ砂以下のネットワークレイテンシ	
		to the second se	29	12	0.0084	1.2	240	10	250000 化MDなど)	対象:100万原子,100レプリカ	が必要。メモリ量/ケースは10万ノード実行を 想定。	
		細胞環境・ウィルス 創薬などMD・自由エネル	490	49	0.2	1.2	48	10	850000 全原子/粗視化分子動力学シミュレーション	~1億粒子	B/F=0.1 B/F=0.4, 数百から数千ケース同時に実行す	
		ギー計算	1000	400	0.0001		0.0012	1000000	4300000 全原子分子動力学シミュレーション	ケース数: 10万化合物×10標的蛋白質 (10万原子程度)	ることを想定しているので、実行時に必要な 全メモリ量、各ケースの実際の実計算時間 は、表の値の数百~数千倍となる。メモリ量	
		細胞内信号伝達経路シミュ	40	100	10	10	0.40	100	0000000 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000 から 10,000 細胞で構成される細	/ケースは100ノード実行時を想定。 格子法・整数系の演算性能を要求。ケース数	
		レーション 細胞内信号伝達経路シミュ	42	100	10	10	240	100	3600000 一分子粒度細胞シミュレーション (格子法)	胞集団 グリーン関数反応動力学法·百万分子	回とした。	演算量、メモリアクセス量、メモリ量、ストレー
		レーション 血流シミュレーション	420 400	0.01	0.001	0.001	240 170	100	36000000 一分子粒度細胞シミュレーション (粒子法) 2500000 差分法、準陽解法(構造・流体・生化学連成シ	程度 100mm長x100um径, 0.1um格子, 流	共通·低ネットワークレイテンシを要求	ジ量
		超音波シミュレーション				-			ミュレーション)	速10 ⁻ -2m/s, 解像度1us, 10秒 400mm ³ の計算領域を軟組織とマイ		
			380	460	54	64	240	10	3300000 差分法、陽解法(音波・熱シミュレーション)	クロカブセル干渉音場を捉えるため、 225兆点の格子と時間ステップ数として1459200ステップが必要である。また、1格子点あたり演算数1000程度となる。		
		脳神経系シミュレーション・ ヒト全脳簡約モデル	6.9	7.6	56	3600	0.28	100	単一コンパートメントIFモデル シナブス可塑	1000億ニューロン ニューロンあたり1	ネットワークのボトルネックはレイテンシー	
		脳神経系シミュレーション・							マルチコンパートメントリーリ(局所クランクニコル	万シナプス 10 ⁵ step	ストレージ量は最大想定・ネットワークはレ	演算量、メモリアクセス量、メモリ量、ストレー
		ヒト全脳詳細モデル 脳神経系シミュレーション・	71	78	250	25000	39	1	10000 ソン)シナブス通信	万シナプス 10 ⁵ step	イテンシーの影響も大きいと予測	ジ量
		昆虫脳全脳詳細モデル リアルタイム	71	60	0.002	0.2	0.028	100	720 マルチコンパートメントH-H(局所クランクニコル ソン) シナプス通信	100万ニューロン ニューロン(10000コ ンパートメント)あたり500シナプス	通信パターンの設計に工夫の余地がある	演算量、メモリアクセス量、メモリ量、ストレージ量
		脳神経系シミュレーション・ 昆虫全脳詳細モデル 神	71	60	0.2	20	28	10	72000 マルチコンパートメントH-H(局所クランクニコル ソン) シナブス通信 進化的アルゴリズム	1000ニューロン 10^6遺伝子 100世	通信パターンの設計に工夫の余地がある	演算量、メモリアクセス量、メモリ量、ストレージ量
		経回路パラメータ推定 脳神経系シミュレーション・ 昆虫全脳詳細モデル 生							72000 マルチコンパートメントH-H(局所クランクニコル	・1000ニューロン 10^6遺伝子 100世	100MD (575 to 11 to 12 to 12 to 13 to 14 t	演算量、メモリアクセス量、メモリ量、ストレー
		理実験とシミュレーションの 通信	71	60	0.2	20	28	10	プン)シテノス通信 進化的アルコリスム 	10	100MB/S程度の外部との通信も想定	演弁里、グモリアクセヘ里、グモリ里、ヘトレー ジ量
4.2	物質科学	遺伝子ネットワーク解析 次世代先端デバイス	2900	1500	0.08	0.016	0.34	26000	94000000 ベイジアンネットワークおよびL1正則化法 350000 第一原理計算RSDFT(擬ポテンシャル法、実空	4万転写物×26,000データセット・280 万アレイ		演算量、メモリアクセス量、メモリ量、ストレー
		次世代先端デバイス	100	100	1.2	10	96 60	100	350000 間基底) 2200000 第一原理計算PHASE(擬ポテンシャル、平面波	原子数:10万 原子数:1万 100MDを同時実行		ジ量 家算量、メモリアクセス量、メモリ量、ストレー
		次世代先端デバイス	100	100	2	15	60	100	基底、O(N^3)法) 2200000 第一原理計算xTAPP(擬ポテンシャル、平面波基底、O(N^3)法)	原子数:1万 100MDを同時実行		<u>ジ量</u> 演算量、メモリアクセス量、メモリ量、ストレー ジ量
		次世代先端デバイス								原子数:1億 2fsの時間刻みで2500 0でナノ秒オーダーを想定 計算時間		_
			100	20	5	10	240	10	第一原理計算CONQUEST(密度行列、最適化によるO(N)法)	は要注意。時間ステップ数10 ² 4。電子 材料の電子状態計算・手法1と同じ計 算だが、こちらは個々のケースを高速 に計算する必要があり、ネットワーク 性能をより要求する。ストレージ量の		
		光・電子デバイス	1000	10	10	0.1	1	100	360000 高精度分子軌道法	違いは出力頻度の違いによる。 2万基底、100万求積点	100~1000くらいのアレイジョブを想定	
		分子機能	300	18	4	0.0001	15	10	160000 大規模分子軌道法	原子数:1万		
		分子機能(タンパク質の電子状態) 熱交換デバイスの安全性	1.1	0.19	1	0.001	1	100	400 フラグメント分子軌道法	数百残基のタンパク質、数千万次元 の密行列の固有値問題		
		向上·特性解析	20	6.4	51	44	24	10	17000 短距離古典分子動力学	粒子数:4000億		
		分子機能と物質変換	1000	100	2	1000	150	10	5400000 長距離古典分子動力学	原子数:10億		
		光·電子材料	600	200	200	33	14	10	300000 ナノ構造体電子・電磁波ダイナミクス法	原子数:96万,時間は1ステップあたり 1秒で計算量は0.63EFLOP。これを		
		強相関電子系の機能解明	3	390	10	10	10	100	11000 クラスターアルゴリズム量子モンテカルロ法	50000ステップでおよそ14時間 原子数:1億	整数演算がメイン	演算量、メモリアクセス量、メモリ量、ストレー
		強相関電子系の機能解明	1000	300	0.2		8	100	2900000 変分モンテカルロ法	原子数1万	メモリ使用量はMPIプロセス数に比例し最大 使用量を記載した	シ重
		物質・エネルギー変換									電子状態計算の要求性のは第一原理計算 のxTAPP、古典MDはMODYLAS、I/Oの部分	
			500	50	0.008	6.4	2.8	10	50000 量子分子動力学法	100レプリカ、100万ステップ	は東大渡辺による短距離古典MD(東大渡辺 さん)のデータをベースに概算	
		物質・エネルギー変換	690	69	2	3.2	300	10	7400000 位学反応動力学・量子分子動力学法(分子軌 道計算またはQM/MM)	QM1000原子、10000レプリカ、	電子状態計算の要求性のは第一原理計算のxTAPP、古典MDはMODYLAS、I/Oの部分	
		the SS 11 at	090	05		3.2	300	10	道計算またはQM/MM)	10000step, MM100,000原子(roadmap)	は東大渡辺による短距離古典MD(東大渡辺 さん)のデータをベースに概算	
		物質・エネルギー変換	410	41	0.02	0.05	20	10	300000 化学反応動力学·量子分子動力学法(第一原理計算)¥	数万レプリカ	電子状態計算の要求性のは第一原理計算のxTAPP、古典MDはMODYLAS、I/Oの部分 は東大渡辺による短距離古典MD(東大渡辺	
		分子構造·分子機能	1000	0.5	0.04		24	1	86000 分子動力学法(feramによるリラクサー強誘電体	512x512x512	さん)のデータをベースに概算 アレイジョブでノード間通信なし	演算量、メモリアクセス量、メモリ量、ストレー
		新物質探索	4100	41	20		0.5	1	7400 クラスター展開法(第一原理計算)	原子数:1万,100イオン配置の同時実	7 PHILE IS AS IN THE IS AS IN T	<u>ジ量</u>
		新材料	0.1	0.02	0.00012		24	10000	86000 第一原理計算(凍結フォノン法)	原子数:1万	PHASEの1/10の規模であることから、同時実行はこの表では想定していない	演算量、メモリアクセス量、メモリ量、ストレージ量
		強相関電子系の機能解明	82	130	82	41	42	10	120000 厳密対角化(ランチョス法)	54サイトのスピン系(Sz=0)		演算量、メモリアクセス量、メモリ量、ストレージ量
4.3.1	気象・気候科学	新物質探索 高解像度気象予報(全球)	690	1600	1.5		24	20	1200000 フェーズフィールド法	10 ¹³ 空間メッシュ、10 ⁷ 時間ステップ 格子点数:1兆(水平解像度220m,鉛	1ノード100TFLOPS, 10000ノード並列を仮 定 10万ノードを仮定(ノードあたり隣接通信	
4.0.1	XIX XIXIT	高解像度気象予報(領域)	130	360	3	58	340	1	150000 モデル名NICAM, 有限体積法	直94層)、ステップ数:520万(dt=1秒、	1GB/s) 演算量、メモリ量に関しては、SR1600でのプ	
			33	33	0.09	0.3	0.5	2700	160000 モデル名ASUCA, 有限体積法	格子点数:7500x7500x500、ステップ数:13万(dt=1秒、36時間)	ロファイルを元に外挿。メモリアクセス量は、 B/F値が1と仮定して見積もった。 出力は、25変数は10分毎に出力する。 通信に関しては、22500ノードを仮定(ノードあ たり職後通信40GB/s)	メモリアクセス量
		地球環境変化予測	56	110	0.6	80	600	1	120000 モデル名MIROC-ESM	格子点数: 2000×1000×200、ステップ 数: 5300万(dt=60秒、100年)、100アン サンブル同時実行	計算の大半を占める大気モデルのみで見積 もり。100ケース全体が1ヶ月で計算完了する ことが必要、カットワークは1000ノードを仮定	
		データ同化を用いた気象	2.5	_	4.8	0.0003	0.5	6100	28000 モデル名JNoVA, 四次元変分法(同化モデル)	格子点数:4000x3000x150、ステップ	演算量、メモリ転送量、メモリ使用重は、京でのプロファイルを元に外播 演算量、メモリ量に関しては、SR1600でのプロファイルを元に外挿。メモリ転送量はB/F	メモリアクセス量
4.3.2	固体地球	予測精度向上 防災連携シミュレーション	2.0	,	4.0	5.5003	0.0	3.00		数:2700、探査回数50回	値を2として見積もった 地震発生は1領域1000シナリオを5領域行	
		(地震直後の被害状況予 測)									う。 各領域について1000シナリオ中、観測に基 づき20シナリオを選び、波動伝播計算を行	
		内訳は以下(1)~(6)	7	15	0.1	9	3		310000		う。一方、地震動増幅や建物震動・津波遡上 については、地盤構造や建物劣化、海底地	
			'	13	0.1		J				形の不確実さを考慮するために数十ケース 計算するとともに、複数の都道府県の都市 (例えば南海トラフ地震の場合に、東海・近	
											畿・四国・九州の4都市)を一度に計算する必要を考慮すると、結果的に各領域で1000	
		(1) 地震発生			0.00086	0.00086		5000	48 境界積分法による地震サイクル計算	面素数10^7	ケース程度は計算が必要。 アプリの最大BF値=4	
		(2) 波動伝搬			0.1	0.5		100	1400 差分法による弾性波動伝搬計算	1200×1000×200Km ³ (125m×125m×62.5m格子)、ステップ数	アプリの最大BF値=2.14、京での実測1.4。1 ケースあたり演算量14EFLOP(東北大調	
		(3) 地震動増幅								24万回	べ)。東大前田先生による新バージョンを京でも主に利用。そちらは20EFLOP。	
		(4) 地震動増幅			0.01	4		5000 5000	130000 有限要素法による地震波動計算 130000 有限要素法による地震波動計算	30億節点(300x250x10km ³) 30億節点(30x25x1km ³)	アプリの最大BF値=8.00 アプリの最大BF値=8.00	
		(5) 建物震動									BF値=0.26 (実測値)。メモリ転送量はBF値と 演算量から逆算。BF値はキャッシュに載るの	
					0.05	0.05		5000	500	構造物100万棟	で小さい。 演算量はプロファイルからの外挿と一致、メ モリ転送量はプロファイルからの外挿	
		(6) 津波遡上			0.002	0.5		5000	Navier-Stokes方程式複数モデル(静水圧近似,非静水圧,VOF法)計算	3x3x0.08Km(1都市領域を1m格子幅) から1400x1100x10Km(5.4Km格子幅) の複合格子、7都市同時計算、72万ス	演算量、メモリ転送量、メモリ量は実測値からの外挿。BF値=10(実測値)	
		避難誘導シミュレーション	3.3	0.28	0.3	0.006		5000	60000 マルチエージェントモデルによる行動シミュレー	<u>の複合格子、7都市同時計算、72万ス</u> 300,000 agents, 18,000 steps (1 hour simulation), 1,000 Monte-Carlo	演算量は命令数である。浮動小数演算は命令数のおよそ 1/40。	
		マントル対流		0.28		0.006	1	5000	ション	members	演算量、メモリアクセス量、メモリ使用量は京 でのプロファイルから外插	演算量、メモリアクセス量、メモリ量、ストレー
		ダイナモ	1000		0.01	4	0.083	1	300 流れ場の反復求解、格子法差分計算? 陰陽格子	格子数: 290×4000×2000, 4変数 格子点: 2000×2000×6000×2, 8変数		演算量、メモリアクセス重、メモリ重、ストレー ジ量 演算量、メモリアクセス量、メモリ量、ストレー
4.4.1	熱流体	ターボ機械の熱流動、振動、音響解析			0.053	4		1			演算量については、アルゴリズムそのものの変更についてコミュニティ関で議論が進んで	ジ量
			18	100	5	10	120	20	160000 有限要素法	10^12格子	変更についてコミュニティ間で議論が進んでいるところでおり、将来大幅な増減の可能性 あり	
		熱流体シミュレーション(自動車、実際の設計、最適化	280	560	0.04	4	1	100	100000 Re=10^6~10^7のLES流体計算、パラメータスタ ディ、100ケースを4日	10^10格子	BF=2として計算	
		問題) 電子機器の熱流体解析、 騒音解析								10^11#8 7	演算量については、アルゴリズムそのものの 変更についてコミュニティ間で議論が進んで	
			0.46	2.5	0.1	1.6	12	1000	20000 有限要素法	10^11格子	いるところでおり、将来大幅な増減の可能性あり	
		航空機の翼設計、機体設計、エンジンや機体の空力・騒音解析	7.9	20	0.092	8	24	1000	680000 差分法	10^11格子		
		宇宙機の熱流体設計、推進系解析、全機システム解	40	99	0.92	80	240	10	340000 差分法	10^12格子		
		都市や建築物内の空気の 流れや汚染物質の拡散解	120	490	4	160	96	10	430000 有限要素法	10^12格子、10^4ステップ		
	1	析										<u> </u>

節番号		課題	安水性能 (DEL ODE)	求メモリ ベンド幅 (PB/s)		レージ i ケース i		ァース数	総演算量 (EFLOP) 概要と計算手法	問題規模	備考	演算量、メモリアクセス量、メモリ量、ストレー ジ量に関して精査中の項目
4.4.2	構造解析	自動車の衝突解析 薄鋼板部品の弾塑性解析	540	27	(PB) (P	100	24	10	470000 有限要素法(陽解法)	10^11節点		
		原子炉の丸ごと詳細解析	54 540	2.7	10	10	24	10	47000 有限要素法(陰解法) 470000 有限要素法(陰解法)	10^10節点		
4.4.3	機械材料	電子部品用機能性材料に 関する強度評価 炭素繊維強化プラスチック	31	38		500	10	10	11000 加速分子動力学法	粒径40nm、1マイクロ秒、レブリカ数 1000の銀多結晶体引張シミュレーショ 試験片30cm、欠陥サイズ50μm、	レプリカによる加速化率は1000並列あたり 666倍と仮定	
4.4.4	プラズマ・核融合	開発 プラズマ乱流計算・マルチ スケール乱流	3.3	160 200		0.1	2 24	30 50	720 非線形有限要素法 430000 ボルツマン方程式の5次元計算(スペクトル法+	10000ステップの陰解法シミュレーショ 10^12格子、10^6ステップ	B/F=2として計算	
		プラズマ乱流計算・大域的 非定常乱流	100	200	0.5	1	170	10	差分法) 610000 ポルツマン方程式の5次元計算(差分法)	10^12格子、10^7ステップ	B/F=2として計算	
4.4.5 4.5.1	電磁界解析宇宙研究	サーバの装置全体レベル 解析 自己重力N体/流体シミュ	3.2	5.3	0.072	0.6	1	20	230 陽解法と陰解法の混合	10^12格子		演算量、メモリアクセス量、メモリ量、ストレー ジ量
		レーションによる宇宙構造 形成の解明	420	1.4	5	100	1000	1	1500000 独立時間刻みとツリーのハイブリッド	10^14粒子	100Tflops/ノード ×10000ノード、通信速度 30GB/s/ノード	
		輻射流体力学による銀河 と巨大ブラックホール形成 過程の解明	50	0.63	2	1.2	550	1	98000 Tree radiation SPH	4096^3粒子 + 6×10^7光源	100Tflops/ノード ×10000ノード、通信速度 100GB/s/ノード	
		6次元位相空間上の Boltzmann方程式による無 衝突粒子系力学の探究	45	34	2	2	3.3	10	5400 有限体積法	位置空間256^3個 速度空間256^3個	100Tflops/ノード×10000ノード、通信速度 1000GB/s/ノード	
		ダークマター宇宙における 宇宙暗黒時代の進化の解 明	420	1.4	1	2	20	1	30000 Particle-Mesh + FFT	10兆粒子+10万光源、10000時間ステップ	100Tflops/ノード×10000ノード、通信速度 128GB/s/ノード	
		自己重力輻射流体シミュ レーションによる銀河ス ケール星間ガス進化の解	1000	0.31	2	10	1000	10	Tree-Based Radiation Transfer + mesh流体	8192^3メッシュ+10^8光源	100Tflops/ノード ×10000ノード、通信速度 128GB/s/ノード	演算量、メモリアクセス量、メモリ量、ストレージ量
		明 朝射磁気流体計算による 天体降着流・噴出流の研	100	20	0.2	200	1000	2	720000 相対論的磁気流体方程式の近似リーマン解法	512^3格子点、1000光線方向、100振	100Tflops/ノード×10000ノード、通信速度 30GB/s/ノード	
		究 数値相対論によるブラック ホールの形成と強重力現	1000	100	0.04	50	28	10	+輻射輸送の6次元計算 1000000 4次元RK、Rad-HRSC	動数、3.6×10 ⁷ 時間ステップ 1000 ³ ,10 ⁷ step	100Tflops/ノード×10000ノード、通信速度	
		象の解明 相対論的輻射流体計算に				-					2.88GB/s/ノード 100Tflops/ノード ×10000ノード、主記憶	
		よる超新星爆発メカニズムの探究	18	70	1.6	1.3	1200	10	780000 ニュートリノ輻射輸送計算(超新星爆発)	空間512x64x128 位相空間24^3 で1秒 分の時間を計算	100GB/ノード、主記憶バンド幅 20TB/s/ノード、オンチップメモリ容量 2MB/コア、通信速度60GB/s/ノード	
		相対論的粒子計算による 超高エネルギー現象と粒 子加速機構の探究	310	92	96	1000	200	2	450000 Particle-in-Cell法	4096^3グリッド、10^15粒子、10^5ス テップ	100Tflops/ノード ×10000ノード、通信速度 1GB/s/ノード	
		6次元ブラソフシミュレー ションによるプラズマ非熱 的分布形成の解明	24	1.5	50	500	1400	2	240000 セミ・ラグランジュアン法	実空間1024 ³ 点、速度空間265 ³ 点 の6次元計算、数万ステップ	100Tflops/ノード ×10000ノード、通信速度 1GB/s/ノード	
		量子計算による宇宙アミノ 酸生成と光不斉化過程の	1000	0.1	1		600	1	2200000 量子ダイナミックス計算サーフェスホッピング法	20アミノ酸×10初期状態×3000サー	100Tflops/ノード ×10000ノード、通信速度	演算量、メモリアクセス量、メモリ量、ストレー
		探究 輻射磁気流体計算による 太陽恒星ダイナモの探究	100	88	7	13	410	1	150000 音速抑制法+Yin-Yang grid	フェスホッピング 格子点1024x8192x24576x2, 5x10^7ス テップ	100GB/s/ノード 100Tflops/ノード ×10000ノード、通信速度 1GB/s/ノード	シェ
		プラズマ計算による太陽 圏・宇宙空間無衝突衝撃	160	46	96	1000	1400	2	1600000 Particle~in~Cell法	72000x3072^2グリッド点(粒子数10^15	100Tflops/ノード ×10000ノード、通信速度	
		波の研究 宇宙天気予報に基づく太	1000		2		100		360000 電磁流体力学有限要素法・有限差分スキー	個),10^6ステップ 3000^3格子	1GB/s/ノード 100Tflops/ノード×10000ノード、通信速度	演算量、メモリアクセス量、メモリ量、ストレー
4.5.2	素粒子	陽系環境科学の推進 カイラル対称性とQCDに基づく有効バリオン間相互作	1000	2	2		100	'	ム、ハイノリットス十一ムドレ寺		100GB/s/ノード ノード数を16 ² 4 ノードを仮定し、ノードあたり 性能を、オンチップメモリ容量 200MB, オン	ジ量
		用の決定とその応用	510	390	0.066	0.5	880	10	16000000 格子QCD (カイラル5次元型),ハイブリッドモンテカルロ法、CG法	問題規模 格子点:128 [*] 4×32、格子間隔:0.1 [fm] 以下	またさ、カンファントと「Ame actions American Transfer Amer	
		重いクオークの初珪	510	370	0.021	1	880	10	16000000 格子QCD (ウィルソン型),ハイブリッドモンテカル ロ法、CG法BiCGStab法	192^4	ノード数を12 [^] 4 ノードを仮定し、ノードあたり 性能を、オンチップメモリ容量 200MB, オン チップメモリバンド幅 18TB/s, ネットワークレ	
		在四小卷子 0.2 ho 0 mkg							LIK, CG/KBICGSRD/K		イテンシ 1 μ sec程度、ネットワークパンド幅 128GB/sを想定。	
		極限状態でのミクロの階層 構造と物質の物理	510	1200	0.066	0.2	880	10	格子QCD (ウィルソン型)、ハイブリッドモンテカ ルロ法、CG法、BiCGStab法	256^4	ノード数を $16^{\circ}4$ ノードを仮定し、ノードあたり 性能を、オンチップメモリ容量 200MB、オン チップメモリバンド幅 $187B/s$ 、ネットワークレ イテンシ 1μ sec程度、ネットワークバンド幅 128GB/sを想定。	
		テクニカラー理論の非摂動 ダイナミクス	510	1200	0.46	0.05	880	10	格子QCD (カイラル5次元型)、ハイブリッドモン テカルロ法、CG法	96^4×32	ノード数を16 ² 4 ノードを仮定し、ノードあたり 性能を、オンチップメモリ容量 200MB. オン チップメモリバンド幅 18TB/s. ネットワークレ イテンシ 1 µ sec程度、ネットワークバンド幅 128GB/sを想定。	
		量子電磁気学(GED)の高 次補正計算(多倍精度演算)	1.8	1.3	0.00012		24	220	34000 モンテカルロ法による多次元積分	1万個以上の多次元(8~13次元)積分	「万個以上の単体ノードジョブのアレイジョ ブ、SIMDとコア並列が必要、プログラムが巨 大なためコンバイル速度が重要。 かっ 通化された4倍精度ライブラリが必要。ケー ス数は独立なノードジョブの個数である1万 程ともいえる。2から3年かけて計算を終える ようにしたい。多倍長精度浮動小数点類にの 回削減算数を倍精度浮動小数点類にある。多 倍長精度浮動小数点変にである。多 倍長精度浮動小数点変として記載してある。多 倍長精度浮動小数点変数として出載してある。多	
		ファインマン振幅の自動計 算(4倍精度演算)	3.2	0.13	2E-09 0	0.0005	24	1000	280000 モンテカルロ法による多次元積分	2ループ図形 総数約350,000ダイアグラム(ILCでの 重心系衝突エネルギー250GeVでの Bhabha,ZH過程、370GeVでの Bhabha,ZH,トップクォーク対生成過程 に対応した理論計算に必要)	る。 超並列化は極めて容易である。4倍精度については指数部15ビット(IEEE754-2008の binary128形式)が不可欠であり、高速計算されることが必要である。ブログラムが巨大な ため演算命令数が極めて多い。コンバイル の速度も問題になる。場合によっては信精 度以上の計算が必要になる。一つの素粒子 反応過程については半年から1年を目処に 計算を実施する。演算量は4倍精度浮動小 数点型の四則演算数である。要求性能も4 倍精度浮動小数点演算数/sである。一ケー スあたり350ダイアグラムを計算する。	
4.5.3	原子核物理	原子核構造の第一原理的 解明	100	10	0.1 0	0.0001	28	100	1000000 モンテカルロ殻模型法による原子核の構造計 算、軽い核	空間を調和振動子基底で展開し、7~ 8主殻までを考慮。10 ⁹ ステップ数。	メモリ量は10000ノード X 10GBで計算。ただし、問題をノード間で分割して持つことで削減	
		原子核殻模型計算の適用 領域の拡張									可能。 メモリ量は10000ノード X 32GBで計算。ただ	
			14	0.69	0.32 0	0.0001	10	1000	500000 年ンテカルロ殻模型法による原子核の構造計算、中重核領域	模型空間は、バレンス殻2主殻や、一部それを超えるものを想定。	し、問題をノード間で分割して持つことで削減 可能。	
		原子核構造・反応の統一 的解明 原子核応答関数の系統的	53		0.03		100	50	950000 生成座標法を用いた第一原理的CI計算	空間格子点1万点、配位数100程度	14t F + 1 110 \(\text{1.10} \)	演算量、メモリアクセス量、メモリ量、ストレー ジ量
		記述と計算核データ構築	46	0.22	0.03	0.1	0.1	10000	160000 実空間表示準粒子による線形応答行列対角化	10000核種に対して特定の一体場に 対する応答関数を系統的に計算	1枝種あたり10分以内での計算が可能になれば、系統的な計算による計算核データ構築が現実的になる。現在、反復解法などが改良されており、将来的には行列対角化に頼らない方法になる可能性あり。	
		核分裂現象の微視的記述	42	0.021	0.04	10	24	100	360000 実空間・実時間発展計算	空間格子点数、準粒子数、時間ステップ数、それぞれ10万	時間発展1ケースあたり、3×10 ² 1 FLOP	
		核物質の相構造・状態方 程式の解明	20	2.1	2.4	0.02	24	100	170000 AMD法による熱平衡の計算	核子数3200の系の状態方程式を得る	密度・温度・量子中性子非対称度・有効相互 作用の異なる2万の場合のそれぞれについ て30万ステップの時間発展を計算する。	
		ハイペロンを含む軽い核の 構造・反応の解明	57000	17000	180 0.0	.00001	24	200	980000000 量子少数多体系のガウス関数展開法による厳密計算	7体系(6400万x6400万密行列の一般 化固有値問題)	固有値計算ライブラリEigenExaの実行性能値(100万x100万, 10万x10万)を元に外挿	ストレージ量
		相対論的重イオン衝突と クォーク・グルーオン・ブラ ズマ物性の解明							高エネルギー重イオン衝突実験の流体シミュ レーション計算	実験においても初期状態の揺らぎが 注目されるなど、理論の枠組み自体 の発展も激しい、現在確立している物 理状況を取り入れた模型における計 算を目指している。	(課題解決に向けた現在の取り組み) 衝撃 波を扱った相対論的乾性流体方程式解法の アルゴリズム開発。数値解の安定性、初期 条件等の吟味。(手法確立に必要な知見) 粘性が有限の場合の低温での数値不安定 性の回避が必要。	演算量、メモリアクセス量、メモリ量、ストレー
		多粒子生成反応で探るハ ドロン共鳴と相互作用の新 たな展開	1.1	0.24	0.0002 0.00	000005	720	10	大量の散乱現象のデータと理論計算とを比較することで、励起パリオンに関する知見を得るための計算、微視的な多チャンネル動的反応模型を用いた数値計算。	chi-2乗値を計算するために1000次元の複素密行列の逆行列を6000回計算する。そのchi-2乗値の計算を2.5×10 ⁷ 7回繰り返す		
4.6	社会科学	自動車交通流のリアルタイ ムシミュレーション	1000	100	0.00011	0.001	2.8E-08	1000	地球上の全自動車交通規模(10億台、道路総延長3400万Km)、エージェントモデルによるシ 0.1 ミュレーション (実際に計算対象となる稼働している車の台数は10°8台と推定)	10 [°] 8台×10 [°] 3 演算×10 [°] 3step×10 [°] 3ケース(10秒分のシミュレーション) これを0.1 secで計算する		
		株式取引所ルールの最適 化	2100	0.0001	1E-08		0.0024	10000	1取引所の1000銘柄について、1日分の取引を 180000トレーダーエージェントモデルでモンテカルロシ ミュレーション	機会/砂×10 4漁昇/注入機会 × 10 トレーダー × 10 ² サンプル × 10 ³ 銘柄 = 1.8×10 ¹ 9 演算	整数演算が中心 「要求性能」「総演算量」はインストラクション 数	
		人間関係シミュレーション							10 ¹ 10人程度の集団が、集団の規模に応じて異なる規則に従うエージェントシミュレーション	これを24hで10 ² 4ケース計算する	現時点において、問題を記述するモデルおよび数値計算モデルが確立していないため、要求計算リソースを見積もることが出来しない。	演算量、メモリアクセス量、メモリ量、ストレー ジ量