

DIALOG(R) File 351:Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.

008735622 **Image available**

WPI Acc No: 1991-239638/ 199133

XRAM Acc No: C91-104136

XRPX Acc No: N91-182753

Polythiophene dispersion contg. polyanion - used as antistatic for
plastics moulding and photographic material giving transparent coating

Patent Assignee: BAYER AG (FARB)

Inventor: JONAS F; KRAFFT W

Number of Countries: 006 Number of Patents: 008

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 440957	A	19910814	EP 90124841	A	19901220	199133	B
DE 4100202	A	19910814	DE 4100202	A	19910105	199134	
EP 440957	A3	19930310	EP 90124841	A	19901220	199349	
US 5300575	A	19940405	US 91647093	A	19910129	199413	
			US 92989731	A	19921210		
JP 7090060	A	19950404	JP 9136531	A	19910207	199522	
EP 440957	B1	19960327	EP 90124841	A	19901220	199617	
DE 59010247	G	19960502	DE 510247	A	19901220	199623	
			EP 90124841	A	19901220		
JP 2636968	B2	19970806	JP 9136531	A	19910207	199736	

Priority Applications (No Type Date): DE 4003720 A 19900208; DE 4100202 A 19910105

Cited Patents: NoSR.Pub; 1.Jnl.Ref; EP 253594; EP 339340; EP 229992

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 440957	A	B					
Designated States (Regional): DE FR GB IT							
US 5300575	A	10 B	Cont of application	US 91647093			
JP 7090060	A	13 B					
EP 440957	B1	G 18 B					
Designated States (Regional): DE FR GB IT							
DE 59010247	G	B	Based on patent	EP 440957			
JP 2636968	B2	12 B	Previous Publ.	patent JP 7090060			
DE 4100202	A	B					
EP 440957	A3	B					

Abstract (Basic): EP 440957 A

Dispersions of (new) polythiophenes are claimed. These contain structural units of formula (I); R1 and R2 independently = H or 1-4 C alkyl or R1 + R2 = (substd.) 1-4 C alkylene; in the presence of polyanions (II).

USE/ADVANTAGE - The dispersions are claimed for antistatic finishing of plastics mouldings and photographic materials.

Polymerisation in the presence of polyacids results in a high rate of polymerisation and gives formulations which are stable in water and have the required processing properties. Transparent antistatic coatings can be produced, regardless of the atmos. humidity. (17pp Dwg.No.0/0)

Title Terms: POLY; THIOPHENE; DISPERSE; CONTAIN; POLYANION; ANTISTATIC; PLASTICS; MOULD; PHOTOGRAPH; MATERIAL; TRANSPARENT; COATING

Derwent Class: A26; A60; A89; G06; P42; P83

International Patent Class (Main): C08G-061/12; C08L-037/00; C08L-065/00

International Patent Class (Additional): B05D-005/12; C08G-075/00;

C08J-007/00; C08K-003/16; C08L-025/18; C09D-005/24; C09D-181/00;

C09K-003/16; C25D-017/10; G03C-001/89; H05F-001/02

File Segment: CPI; EngPI

?

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: **0 440 957 A2**

⑫

EUROPÄISCHE PATENTANMELDUNG

㉑ Anmeldenummer: 90124841.9

㉓ Int. Cl. 5: **C08G 61/12, C08L 65/00,**
C08J 7/00, G03C 1/89

㉒ Anmeldetag: **20.12.90**

㉔ Priorität: **08.02.90 DE 4003720**

㉕ Anmelder: **BAYER AG**

㉖ Veröffentlichungstag der Anmeldung:
14.08.91 Patentblatt 91/33

W-5090 Leverkusen 1 Bayerwerk(DE)

㉗ Benannte Vertragsstaaten:
DE FR GB IT

㉘ Erfinder: **Jonas, Friedrich, Dr.**
Krugenofen 15
W-5100 Aachen(DE)
Erfinder: Krafft, Werner, Dr.
Nauener Strasse 29
W-5090 Leverkusen 1(DE)

㉙ **Neue Polythiophen-Dispersionen, Ihre Herstellung und Ihre Verwendung.**

㉚ **Die Erfindung betrifft Dispersionen von Polythiophenen, die aus Struktureinheiten der Formel**

aufgebaut sind, in der

R₁ und R₂ unabhängig voneinander für Wasserstoff oder eine C₁-C₄-Alkylgruppe stehen oder zusammen einen gegebenenfalls substituierten C₁-C₄-Alkylen-Rest bilden.

in Gegenwart von Polyanionen, die Herstellung dieser Dispersionen und ihre Verwendung zur antistatischen Ausrüstung von Kunststoff-Formteilen.

EP 0 440 957 A2

PHEN-DISPERSIONEN, IHRE HERSTELLUNG UND IHRE VERWENDUNG

fft neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung zur γ -Strahlung von Kunststoff-Formteilen.

Ind deren Verwendung zur antistatischen Ausrüstung von Kunststoff-Formteilen und elektronischen Geräten und Kondensatoren sind bekannt (siehe z.B. die EP-A 253 339 340 und 340 512).

594 sind in 3,4-Stellung durch bestimmte Gruppen substituierte Polythiophene mit niedermolekularen Säuren (nachfolgend als Monosäuren bezeichnet) und hochmolekularen Polysäuren (nachfolgend als Polysäuren bezeichnet) beschrieben. Die Polymere bilden, unabhängig davon, ob Mono- oder Polysäuren vorliegen, in Wasser und zum Teil auch in aprotischen Lösungsmitteln unlösliche Pulver oder Filme. Solche unlöslichen Pulver und Filme kommen für die Verwendung von Kunststoff-Formteilen nicht in Betracht.

61 sind in aprotischen organischen Lösungsmitteln lösliche, von in 3,4-Stellung durch bestimmte Gruppen substituierte Polythiophene mit Monosäuren und in der EP-A 328 981 die Verwendung von elektrisch leitenden Beschichtungsmassen beschrieben. Die Gemische werden nach einem Verfahren, nämlich durch elektrochemische Oxidation der entsprechenden monogemengenartigen Leitsalzen, hergestellt. Zur antistatischen Ausrüstung von Kunststoff-Formteilen wird das Polythiophen-Salze in Form ihrer Lösungen in organischen aprotischen Lösungsmitteln aufgebracht.

40 sind Gemische von in 3,4-Stellung durch bestimmte Gruppen substituierten Monosäuren und in der EP-A 340 512 deren Verwendung als Feststoffelektrolyte in Wasser. Zur antistatischen Ausrüstung von Kunststoff-Formteilen werden die in der EP-A 340 512 beschriebenen Polythiophene unmittelbar auf den Formteilen durch chemische Oxidation der Thiophen-Derivate in situ erzeugt. Je nach verwendetem Oxidationsmittel können Oxidationsprodukte des Thiophen aus getrennten Lösungen nacheinander oder aber aus einer Lösung aufgebracht werden.

61en Polythiophene weisen zwar gute elektrische Eigenschaften auf und verleihen den Kunststoff-Formteile aufbringen lassen, diesen Kunststoff-Formteilen gute antistatische Eigenschaften, sie entsprechen trotzdem nicht den technischen Anforderungen, weil die Praxis der antistatischen Ausrüstungen aus wäßrigem Medium anstrebt und außerdem verlangt wird, daß die Ausrüstungen lange Standzeiten und gute Verarbeitungseigenschaften aufweisen, d.h. sich leicht verarbeiten lassen und nach dem Aufbringen innerhalb möglichst kurzer Zeit eine antistatische Beschichtung liefern.

62 wurde gefunden, daß die den in der EP-A 340 512 beschriebenen Polythiophenen in Gegenwart von Polysäuren nicht nur mit hoher Geschwindigkeit polymerisiert, sondern in Wasser beständige Zubereitungen mit den gewünschten guten Verarbeitungseigenschaften ergeben, und daß man mit Hilfe dieser Zubereitungen transparente, von der Farbe unabhängige antistatische Überzüge auf Kunststoff-Formteilen erzeugen kann.

63r diese Zubereitungen kommen neben Wasser auch andere protische Lösungsmittel wie Alkohole wie Methanol, Ethanol und Isopropanol sowie Mischungen von Wasser und anderen mit Wasser mischbaren organischen Lösungen wie Aceton in Betracht. Der Durchmesser der Dispersionspartikel kann bis $10 \mu\text{m}$ reichen; vorzugsweise ist er ganz besonders bevorzugt bis $1 \mu\text{m}$.

64 größere Teilchendurchmesser, so kommt auf den Kunststoffoberflächen zum Ausdruck die Ladungen der Partikel noch ein Abstandshaltereffekt, insbesondere bei γ -Strahlung hinzu.

65 daher Dispersionen von Polythiophenen, die aus Struktureinheiten der Formel

- R₁ und R₂ unabhängig voneinander für Wasserstoff oder eine C₁-C₄-Alkylgruppe stehen oder zusammen einen gegebenenfalls substituierten C₁-C₄-Alkylen-Rest, vorzugsweise in n g gegebenenfalls durch Alkylgruppen substituierten Methylen-, einen gegebenenfalls durch C₁-C₁₂-Alkyl- oder Phenylgruppen substituierten Ethylen-1,2-Rest, einen Propylen-1,3-Rest oder einen Cyclohexylen-1,2-Rest bilden,
 5 in Gegenwart von Polyanionen.
 Für R₁ und R₂ seien als C₁-C₄-Alkylgruppen vor allem die Methyl- und Ethylgruppe genannt.
 Als Vertreter der gegebenenfalls substituierten C₁-C₄-Alkylenreste, die R₁ und R₂ zusammen bilden können, seien vorzugsweise die Alkylen-1,2-Reste genannt, die sich von den 1,2-Dibrom-alkanen ableiten,
 10 wie sie beim Bromieren von α -Olefinen, wie Ethen, Propen-1, Hexen-1, Octen-1, Decen-1, Dodecen-1 und Styrol erhältlich sind; außerdem seien genannt der Cyclohexylen-1,2-, Butylen-2,3-, 2,3-Dimethyl-butylen-2,3- und Pentylen-2,3-Rest.
 Bevorzugte Reste für R₁ und R₂ sind der Methylen-, Ethylen-1,2- und Propylen-1,3-Rest, besonders bevorzugt ist der Ethylen-1,2-Rest.
 15 Als Polyanionen dienen die Anionen von polymeren Carbonsäuren, wie Polyacrylsäuren, Polymethacrylsäuren, oder Polymaleinsäuren und polymeren Sulfonsäuren, wie Polystyrolsulfonsäuren und Polyvinylsulfonsäuren. Diese Polycarbon- und -sulfonsäuren können auch Copolymeren von Vinylcarbon- und Vinylsulfonsäuren mit anderen polymerisierbaren Monomeren, wie Acrylsäureestern und Styrol, sein.
 Das Molekulargewicht der die Polyanionen liefernden Polysäuren beträgt vorzugsweise 1000 bis 2 000
 20 000, besonders bevorzugt 2000 bis 500 000. Die Polysäuren oder ihre Alkalosalze sind im Handel erhältlich, z.B. Polystyrolsulfonsäuren und Polyacrylsäuren, oder aber nach bekannten Verfahren herstellbar (siehe z.B. Houben-Weyl, Methoden der organischen Chemie, Bd. E 20 Makromolekulare Stoffe, Teil 2, (1987), S. 1141 u.f.).
 Anstelle der für die Bildung der erfindungsgemäßen Dispersionen aus Polythiophenen und Polyanionen erforderlichen freien Polysäuren, kann man auch Gemische aus Alkalosalzen der Polysäuren und entsprechenden Mengen an Monosäuren einsetzen.
 25 Die erfindungsgemäßen Polythiophen-Dispersionen in Gegenwart von Polyanionen werden durch oxidative Polymerisation von 3,4-Dialkoxy-thiophenen der Formel

30

35

in der

- R₁ und R₂ die unter Formel (I) angegebene Bedeutung haben,
 mit für die oxidative Polymerisation von Pyrrol üblichen Oxidationsmitteln und/oder Sauerstoff oder Luft in Gegenwart der Polysäuren, bevorzugt in wässrigem Medium, bei Temperaturen von 0 bis 100 °C erhalten
 40 Durch die oxidative Polymerisation erhalten die Polythiophene positive Ladungen, die in den Formeln nicht dargestellt sind, da ihre Zahl und ihre Position nicht einwandfrei feststellbar sind.
 Zur Polymerisation werden die Thiophene der Formel (II), Polysäure und Oxidationsmittel in einem organischen Lösungsmittel oder - vorzugsweise - in Wasser gelöst und die Lösung solange bei der vorgesehenen Polymerisationstemperatur gerührt, bis die Polymerisation abgeschlossen ist.
 45 Bei Verwendung von Luft oder Sauerstoff als Oxidationsmittel wird in die Thiophen, Polysäure und gegebenenfalls katalytische Mengen an Metallsalzen enthaltende Lösung solange Luft oder Sauerstoff eingeleitet bis die Polymerisation abgeschlossen ist.
 In Abhängigkeit von Ansatzgröße, Polymerisationstemperatur und Oxidationsmittel kann die Polymerisationszeit zwischen wenigen Minuten und bis zu 30 Stunden betragen. Im allgemeinen liegt die Zeit zwischen
 50 30 Minuten und 10 Stunden. Die Stabilität der Dispersionen lässt sich durch während oder nach der Polymerisation zugefügte Dispergatoren wie Dodecylsulfonat verbessern.
 Die nach der Polymerisation vorliegenden Zubereitungen können unmittelbar zur Antistatikausrüstung der Kunststoff-Formteile verwendet, d.h. unmittelbar auf diese Formteile nach bekannten Verfahren, z.B. durch Tränken, Besprühen, Tiefdruck, Rakeln, Streichen usw. aufgebracht werden. Nach dem Entfernen des Lösungsmittels, z.B. des Wassers, liegt unmittelbar die von dem Polythiophen auf dem behandelten Formteil gebildete, von der Luftfeuchtigkeit unabhängige antistatische Schicht vor.
 Als Oxidationsmittel können die für die oxidative Polymerisation von Pyrrol geeigneten Oxidationsmittel verwendet werden; diese sind beispielsweise in J. Am. Chem. Soc. 85, 454 (1963) beschrieben. Bevorzugt

sind aus praktischen Gründen preiswerte und leicht handhabbare Oxidationsmittel, z.B. Eisen-III-Salze wie FeCl₃, Fe(ClO₄)₃ und die Eisen-III-Salze organischer Säuren und organische Reste aufweisender anorganischer Säuren, ferner H₂O₂, K₂Cr₂O₇, Alkali- und Ammoniumpersulfat, Alkaliperborat, Kaliumpermanganat und Kupfersalze, wie Kupfertetrafluoroborat. Außerdem wurde gefunden, daß sich Luft und Sauerstoff, gegebenenfalls in Gegenwart katalytischer Mengen Metallionen, wie Eisen-, Cobalt-, Nickel-, Molybdän- und Vanadiumionen, mit Vorteil als Oxidationsmittel verwenden lassen.

Die Verwendung der Persulfate und der Eisen-III-salze organischer Säuren und der organische Reste aufweisenden anorganischen Säuren hat den großen anwendungstechnischen Vorteil, daß sie nicht korrosiv wirken.

Als Eisen-III-Salze organischer Säuren seien beispielsweise die Eisen-III-Salze der Schwefelsäurehalbestär von C₁-C₂₀-Alkanolen, z.B. das Fe-III-Salz des Laurylsulfates genannt.

Als Eisen-III-Salze organischer Säuren seien beispielsweise genannt: die Fe-III-Salze von C₁-C₂₀-Alkylsulfonsäuren, wie der Methan- und der Dodecansulfonsäure; aliphatischen C₁-C₂₀-Carbonsäuren wie der 2-Ethylhexylcarbonsäure; aliphatischen Perfluorcarbonsäuren, wie der Trifluoressigsäure und der Perfluoroctansäure; aliphatischen Dicarbonsäuren, wie der Oxalsäure und vor allem von aromatischen, gegebenenfalls durch C₁-C₂₀-Alkylgruppen substituierten Sulfonsäuren wie der Benzolsulfonsäure, p-Toluolsulfonsäure und der Dodecylbenzolsulfonsäure.

Es können auch Gemische dieser vorgenannten Fe-III-Salze organischer Säuren eingesetzt werden.
Für die oxidative Polymerisation der Thiophene der Formel II werden theoretisch je Mol Thiophen 2,25 Äquivalente Oxidationsmittel benötigt (siehe z.B. J. Polym. Sc. Part A Polymer Chemistry Vol. 26, S. 1287 (1988)).

Praktisch wird das Oxydationsmittel jedoch in einem gewissen Überschuß, z.B. einem Überschuß von 0,1 bis 2 Äquivalenten je Mol Thiophen angewendet.

Bei Verwendung schwach saurer Polysäuren, wie der Polyacrylsäuren, kann es vorteilhaft sein, diesen Polysäuren zur Erhöhung der Polymerisationsgeschwindigkeit starke Monosäuren, wie Salzsäure, Schwefelsäure oder aromatische Sulfonsäuren zuzusetzen.

Bei der oxidativen Polymerisation werden die erfundungsgemäß zu verwendenden Polysäuren in einer solchen Menge eingesetzt, daß auf 1 Mol Thiophen der Formel (II) 0,25 bis 10, vorzugsweise 0,8 bis 8, Säuregruppen der Polysäure entfallen.

Für die oxidative Polymerisation werden die Thiophene der Formel (II) und die Polysäuren in einer solchen Menge Lösungsmittel gelöst, so daß stabile Polythiophen-Dispersionen erhalten werden, deren Feststoffgehalt zwischen 0,5 und 55 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, beträgt.

Zur Erzielung besser haftender und kratzfester Beschichtungen können den Polythiophen-Salz-Zubereitungen auch noch wasserlösliche, bzw. in Wasser suspendierbare polymere Bindemittel, z.B. Polyvinylalkohol oder Polyvinylacetat-Dispersionen zugesetzt werden.

Bei säureempfindlichen Kunststoff-Formteilen und zur Schonung der zum Aufbringen verwendeten Geräte kann es vorteilhaft sein, in den erfundungsgemäß Polythiophen-Salz-Zubereitungen vor dem Aufbringen auf die Kunststoff-Formteile überschüssige freie Säuregruppen durch Zugabe von Alkali- oder Erdalkalihydroxiden, Ammoniak oder Aminen zu neutralisieren.

Die Dicke der Schichten, in denen die erfundungsgemäß Polythiophen-Dispersionen auf die antistatisch auszurüstenden Kunststoff-Formteile aufgebracht werden, beträgt nach dem Trocknen in Abhängigkeit von der gewünschten Leitfähigkeit des Formkörpers und der gewünschten Transparenz der Beschichtung 0,001 bis 100 µm.

Das Entfernen der Lösungsmittel nach dem Aufbringen der Lösungen kann durch einfaches Abdampfen bei Raumtemperatur erfolgen. Zur Erzielung höherer Verarbeitungsgeschwindigkeiten ist es jedoch vorteilhafter, die Lösungsmittel bei erhöhten Temperaturen, z.B. bei Temperaturen von 20 bis zu 150 °C, bevorzugt 40 bis zu 100 °C, zu entfernen.

Die Herstellung der Polythiophendispersionen kann in Gegenwart von Polymerlatices bzw. Polymerdispersionen erfolgen, die saure Gruppen (Salze) wie -SO₃⁻, -COO⁻, -PO₃²⁻ aufweisen. Der Gehalt an sauren Gruppen liegt vorzugsweise über 2 Gew.-%, um eine ausreichende Stabilität der Dispersion zu gewährleisten. Die Teilchengrößen der Dispersionen liegen im Bereich von 10 nm bis 1 µm, vorzugsweise im Bereich von 40 bis 400 nm.

Polymere die für diesen Zweck geeignet sind werden beispielsweise in DE-A 25 41 230, DE-A 25 41 274, DE-A 28 35 856, EP-A-0 014 921, EP-A-0 069 671, EP-A-0 130 115, US-A-4 291 113 beschrieben.

Die Polymerdispersionen bzw. Latices können aus linearen, verzweigten oder vernetzten Polymeren bestehen. Die vernetzten Polymerlatices mit hohem Gehalt an sauren Gruppen sind in Wasser quellbar und werden als Mikrogel bezeichnet. Derartige Mikrogel werden beispielsweise in US 4 301 240, US 4 677

050 und US 4 147 550 b schrieb n.

Als Substrate, die nach dem erfindungsgemäßen Verfahren antistatisch bzw. elektrisch-leitfähig ausgerüstet werden, seien vor allem Formkörper aus organischen Kunststoffen, insbesondere Folien aus Polycarbonaten, Polyamiden, Polyethylenen, Polypropylenen, Polyvinylchlorid, Polyester, Celluloseacetat und

- 5 Cellulose genannt, aber auch anorganische Werkstoffe, z.B. Glas oder keramische Wirkstoffe aus Aluminiumoxid und/oder Siliciumdioxid sind nach dem erfindungsgemäßen Verfahren antistatisch ausrüstbar.

Die erfindungsgemäßen Polythiophendispersionen können auch zur antistatischen Ausrüstung von heißziegelfähigen Folien, wie sie in DE-A 38 38 652 beschrieben sind, eingesetzt werden.

- Wegen ihrer Transparenz eignen sich die erfindungsgemäß erhältlichen Beschichtungen insbesondere 10 zur antistatischen Ausrüstung von fotografischen Materialien, insbesondere Filmen, z.B. Schwarz-Weiß-, Colornegativ- und Umkehrfilmen, vorzugsweise in Form einer Rückseitenschicht, das heißt, in einer Schicht, die auf der den Silberhalogenidemulsionsschichten abgewandten Seite des Schichtträgers aufgebracht wird,

Die Polythiophendispersion wird vorzugsweise in einer Menge von 0,01 bis 0,3 g/m², vorzugsweise 0,02 bis 0,2 g/m² aufgetragen.

- 15 Ein weiterer Gegenstand der Erfindung ist ein fotografisches Material, das eine Antistatikschicht mit einer erfindungsgemäßen Polythiophendispersion aufweist.

Beispiel 1

- 20 In eine Lösung aus 2,0 g (11 mmol SO₃H-Gruppen) Polystyrolsulfonsäure (MG 4000), 0,5 g 3,4-Ethylendioxythiophen (3,5 mmol) und 0,05 g Eisen-III-sulfat (0,2 mmol) in 20 ml Wasser wird 24 Stunden bei Raumtemperatur Luft eingeleitet; in dieser Zeit färbt sich die Reaktionsmischung hellblau,

Anschließend wird die Zubereitung mit einem Handcoater (Näpfilmdicke 25 µm entsprechend einer Trockenfilmdicke von etwa 2,5 µm) auf eine Polycarbonatfolie aufgerakelt. Die beschichtete Folie wird bis 25 zur Gewichtskonstanz getrocknet und anschließend bei 0 % rel. Feuchte 24 Stunden gelagert.

Es wird eine transparente, hellblau gefärbte Folie erhalten; Oberflächenwiderstand (R_{OB}) der Folie: 10⁷ Ω (bei 0 % rel. Feuchte).

Wird die Folie in gleicher Weise mit einer auf ein Drittel verdünnten Zubereitung beschichtet (Trockenfilmdicke der Beschichtung: etwa 1 µm), so wird eine transparente, schwach hellblau gefärbte Folie erhalten; Oberflächenwiderstand (R_{OB}) der Folie: 10⁸ Ω (bei 0 % rel. Feuchte).

Wird die Polycarbonatfolie mit der Polythiophen-Zubereitung beschichtet, deren pH-Wert mit 10 gew.-%iger Natronlauge auf 8 eingestellt worden war (Trockenfilmdicke: etwa 1,5 µm), so wird ebenfalls eine transparente, hellblau gefärbte Folie erhalten; Oberflächenwiderstand (R_{OB}) der Folie: 3 x 10⁷ Ω (bei 0 % rel. Feuchte).

- 35 Wird die Folie mit einer 10 gew.-%igen Lösung von Polystyrolsulfonsäurenatriumsalz (handelsübliches Antistatikum) beschichtet (Trockenfilmdicke: etwa 2,5 µm), so beträgt der Oberflächenwiderstand (R_{OB}) der Folie > 10⁹ Ω (bei 0 % rel. Feuchte).

Beispiel 2

- 40 Die Lösung von 2,7 g (0,01 Mol) Kaliumperoxidisulfat in 50 ml Wasser wird unter Röhren mit 1,8 g (0,01 Mol SO₃H) Polystyrolsulfonsäure (MG 4000) und 1,4 g (0,01 Mol) 3,4-Ethylendioxy-thiophen versetzt und anschließend 24 Stunden bei Raumtemperatur gerührt. Anschließend wird die Zubereitung mit 300 ml Wasser verdünnt und auf eine Cellulosetriacetatfolie aufgerakelt. Die beschichtete Folie wird bei Raumtemperatur bis zur Gewichtskonstanz getrocknet und anschließend 24 Stunden bei 0 % rel. Feuchte gelagert.

Trockenfilmdicke der Beschichtung: etwa 0,5 µm; es wird eine fast farblose transparente Folie erhalten; Oberflächenwiderstand (R_{OB}) der Folie: 2 x 10⁷ Ω.

Beispiel 3

- 50 In die Lösung aus 10 g (54 mmol SO₃H) Polystyrolsulfonsäure (MG 4000), 0,25 g (1 mmol) Fe-III-Sulfat und 2,5 g (0,18 mmol) 3,4-Ethylendioxy-thiophen in 100 ml Wasser wird unter Röhren bei 60 °C 8 Stunden Luft eingeleitet.

Mit der so erhaltenen hellblauen Zubereitung wird eine Polycarbonatfolie beschichtet; die Folie wird bei 55 70 °C vom Lösungsmittel befreit (Trockenfilmdicke: etwa 2,5 µm). Die Folie wird 24 Stunden bei 0 % rel. Feuchte gelagert. Es wird eine transparente, schwach hellblau gefärbte Folie erhalten; Oberflächenwiderstand (R_{OB}) der Folie: 2 x 10⁶ Ω.

Wird die Polycarbonatfolie mit der mit Wasser auf ein Drittel verdünnten hellblauen Zubereitung

beschichtet, so weist die erhaltene farblose transparente Folie einen Oberflächenwiderstand (R_{OB}) von $8 \times 10^6 \Omega$ auf.

Beispiel 4

5

Eine gemäß Beispiel 3 hergestellte Polythiophen-Zubereitung wird mit einem 1:1-Methanol-Wasser-Gemisch auf einen Feststoffgehalt von 0,8 Gew.-% verdünnt. Diese Zubereitung wird auf einer Gießmaschine mittels einer üblichen Anspülwalze auf eine mit einer handelsüblichen Haftschiicht versehene Polyesterfilmunterlage aufgetragen. Der beschichtete Film wird bei $70^\circ C$ getrocknet; der Feststoffauftrag auf dem Film beträgt nach dem Trocknen 150 mg/m^2 .

Die fast farblose, transparente Antistatikschicht weist bei 0 % relativer Feuchtigkeit einen Oberflächenwiderstand (R_{OB}) von $3 \times 10^6 \Omega$ auf.

Eine gleichwertige Antistatikbeschichtung wird bei gleichem Auftrag auch auf einer mit einer handelsüblichen Haftschiicht versehene Triacetatfilmunterlage erhalten.

15

Beispiel 5

In die Lösung von 6 g (30 mmol SO_3H) Polystyrolsulfonsäure (MG 4000), 0,15 g (0,6 mmol) Eisen-III-sulfat und 1,0 g (7 mmol) 3,4-Ethylendioxythiophen in 100 ml Wasser wird bei $80^\circ C$ 6 Stunden lang Luft eingeleitet.

Die Polymerisationsmischung wird nach dem Abkühlen auf Raumtemperatur mit einem 1:1-Methanol-Wasser-Gemisch auf einen Feststoffgehalt von 4 Gew.-% verdünnt.

Diese Zubereitung wird wie in Beispiel 4 beschrieben auf eine mit einer handelsüblichen Haftschiicht versehene Polyethylenterephthalat-Folie aufgebracht. Der Feststoffauftrag beträgt nach dem Trocknen bei $70^\circ C$ etwa 60 mg/m^2 . Die fast farblose, transparente Antistatikbeschichtung weist bei 0 % relativer Feuchtigkeit einen Oberflächenwiderstand $5 \times 10^8 \Omega$ auf.

Beispiel 6

30 In die Lösung von 5 g (26 mmol SO_3H) Polystyrolsulfonsäure (MG 4000) und 0,6 g (4 mmol) 3,4-Ethylendioxythiophen in 50 ml Wasser wird bei $50^\circ C$ 24 Stunden lang Luft eingeleitet. Die so erhaltene Polymerisationsmischung wird mit einem Handcoater auf eine Polycarbonatfolie aufgerakelt (Naßfilmdicke: 25 μm entsprechend einer Trockenfilmdicke von etwa 2,5 μm). Die beschichtete Folie wird bis zur Gewichtskonstanz getrocknet.

35 Der Oberflächenwiderstand der Folie beträgt bei 0 % relativer Feuchtigkeit $10^9 \Omega$.

Beispiel 7

In die Lösung von 5,5 g (26 mmol SO_3Na) Polystyrolsulfonsäure-(MG 4000)-Na⁺-Salz, 3,0 g (17 mmol) 40 p-Toluolsulfonsäure, 2,5 g (17 mmol) 3,4-Ethylendioxythiophen und 0,25 g (1 mmol) Eisen-III-sulfat in 100 ml Wasser wird 16 Stunden bei 40 bis $50^\circ C$ unter Röhren Luft eingeleitet.

Die erhaltene Polythiophen-Zubereitung wird anschließend mit 200 ml Wasser und 100 ml Methanol verdünnt und auf eine Polycarbonatfolie aufgerakelt.

Die Beschichtung weist nach dem Trocknen (Trockenfilmdicke etwa 0,7 μm) einen Oberflächenwiderstand (R_{OB}) von $7 \times 10^7 \Omega$ auf.

Beispiel 8

Die gemäß Beispiel 7 bereitete Polythiophen-Zubereitung wird mit 400 ml Wasser verdünnt und nach 50 Zugabe von 5,0 g Polyvinylalkohol solange gerührt, bis eine homogene Zubereitung entstanden ist.

Die Zubereitung wird auf eine Polycarbonatfolie aufgerakelt. Nach dem Trocknen (Trockenfilmdicke etwa 0,7 μm) weist die Antistatikbeschichtung einen Oberflächenwiderstand (R_{OB}) von $1,5 \times 10^8 \Omega$ (bei 0 % relativer Feuchtigkeit) auf.

Beispiel 9

Auf eine vorderseitig mit einer Haftschiicht versehenen transparenten Triacetat-Unterlage von 125 μm Stärke wird auf die Vorderseite ein lichtempfindlicher Mehrschicht naufbau der nachstehenden Zusammensetzung:

setzung gegossen.

Die Mengenangaben beziehen sich jeweils auf 1 m²; der Silberhalogenid-Auftrag entspricht der äquivalenten Menge AgNO₃; alle Silberhalogenid-Emulsionen sind mit 0,1 g 4-Hydroxy-6-methyl-1,3,3a,7-tetra-azainden pro 100 g AgNO₃ stabilisiert.

5

Schichtaufbau: (Vorderseite)

1. Schicht: (Antihaloschicht)

10	0,2 g	schwarzes Kolloidales Silber
	1,2 g	Gelatine
	0,1 g	UV-Absorber UV 1
	0,2 g	UV-Absorber UV 2
	0,02 g	Trikresylphosphat
15	0,03 g	Dibutylphthalat

2. Schicht: (Mikrat-Zwischenschicht)

20	0,25 g	AgNO ₃ einer Mikrat-Ag (Br,I)-Emulsion: mittlerer Korn-Ø = 0,07 µm, 0,5 Mol-% Iodid
	1,0 g	Gelatine
	0,05 g	farbiger Kuppler RM 1
	0,10 g	Trikresylphosphat

3. Schicht: (niedrig empfindlich rotsensibilisierte Schicht)

25	2,2 g	AgNO ₃ , 4 Mol-% Iodid, mittlerer Korndurchmesser 0,45 µm, rotsensibilisiert
	2,0 g	Gelatine
	0,6 g	farbloser Blaugrünkuppler C 1
		emulgiert in 0,5 g Trikresylphosphat (TKP)
30	50 mg	farbiger Blaugrünkuppler RM 1 und
	30 mg	DIR-Kuppler DIR 1 emulgiert in 20 mg TKP.

4. Schicht: (hochempfindliche rotsensibilisierte Schicht)

35	2,8 g	AgNO ₃ , 8,5 Mol-% Iodid mittlerer Korndurchmesser 0,8 µm, rotsensibilisiert
	1,8 g	Gelatine
	0,15 g	farbloser Blaugrünkuppler C 2

emulgiert mit 0,15 g Dibutylphthalat (DBP).

40 3. Schicht: (Trennschicht)

0,7 g	Gelatine
0,2 g	2,5-Diisooctylhydrochinon emulgiert mit 0,15 g DBP

45 6. Schicht: (niedrigempfindliche grünsensibilisierte Schicht)

50	1,8 g	AgNO ₃ einer spektral grünsensibilisierten Ag(Br,I)-Emulsion mit 4,5 Mol-% Iodid und einem mittleren Korndurchmesser von 0,4 µm, grünsensibilisiert,
	1,6 g	Gelatine
	0,6 g	Purpurkuppler M 1
	50 mg	Maskenkuppler YM 1
		emulgiert mit 50 mg TKP,
	30 mg	DIR-Kuppler DIR 2
		emulgiert in 20 mg DBP
55	30 mg	DIR-Kuppler DIR 3
		emulgiert in 60 mg TKP

7. Schicht: (hochempfindliche grünsensibilisierte Schicht)

2,2 g AgNO₃, mit 7 Mol-% Iodid und einem mittleren Korndurchmesser von 0,7 µm, grünsensibilisiert,
 1,4 g Gelatine
 0,15 g Purpurkuppler M 2
 5 emulgiert mit 0,45 g TKP,
 30 mg Maskenkuppler gemäß 6. Schicht emulgiert mit 30 mg TKP

8. Schicht: (Trennschicht)

10 0,5 g Gelatine
 0,1 g 2,5-Diisooctylhydrochinon emulgiert mit 0,08 g DBP

9. Schicht: (Gelbfilterschicht)

15 0,2 g Ag (gelbes kolloidales Silbersol)
 0,9 g Gelatine
 0,2 g 2,5-Diisooctylhydrochinon emulgiert mit 0,16 g DBP

10. Schicht: (niedrigempfindliche blauempfindliche Schicht)

20 0,6 g AgNO₃, 4,9 Mol-% Iodid, mittlerer Korndurchmesser von 0,45 µm, blausensibilisiert,
 0,85 g Gelatine
 0,7 g Gelbkuppler Y 1
 emulgiert mit 0,7 g TKP,
 25 0,5 g DIR-Kuppler DIR 3, emulgiert mit 0,5 g TKP

11. Schicht: (hochempfindliche blauempfindliche Schicht)

30 1,0 g AgNO₃, 9,0 Mol-% Iodid, mittlerer Korndurchmesser 0,9 µm, blausensibilisiert
 0,85 g Gelatine,
 0,3 g Gelbkuppler gemäß 10. Schicht emulgiert mit 0,3 g TKP

12. Schicht: (Schutz- und Härtungsschicht)

35 0,5 g AgNO₃ einer Mikrat-Ag(Br,I)-Emulsion, mittlerer Korndurchmesser 0,07 µm 0,5 Mol-% Iodid,
 1,2 g Gelatine
 0,4 g Härtungsmittel der Formel
 (CH₂ = CH-SO₂-CH₂-CONH-CH₂-)₂-
 40
 1,0 g Formaldehydfänger der Formel

UV-1

Gewichtsverhältnis: x : y = 7:3

UV-2

M 1

M 2

Y1

RM1

25

YM1

40

DIR 1

55

DIR 2

DIR 3

C 1

C 2

50 Die Gesamtschichtdicke (trocken) des Color-Aufbaus beträgt 24 µm.

Antistatiksichten (Rückseiten)

Auf die unsubstrierte Rückseite des oben beschriebenen lichtempfindlichen Colormaterials bringt man die in Tabelle 1 aufgelisteten Antistatiksichten 1a+2a mit den Deckschichten 1b+2b auf. Die Antistatikschicht 3a (ohne Deckschicht) wird auf eine rückseitig zusätzlich mit einer Haftschicht vers. hene Triacetat-Unterlage aufgebracht.

Die Herstellung des Antistatikums Polythioph n/PSS geschieht wie folgt:

Man versetzt eine Lösung von 1,2 g Kaliumperoxydisulfat in 200 ml Wasser unter Rühren mit 10,0 g Polystyrolsulfonsäure (MG 4000) und 2,8 g 3,4-Ethylendioxy-thiophen und röhrt anschließend noch 24 Stunden bei Raumtemperatur. Danach wird die Dispersion mit 300 ml Wasser verdünnt (= Stammdispersion; Polythiophen/PSS-Gehalt: 2,6 Gew.-%).

- 5 Die in der Tabelle unter den Antistatikschichtn angegebenen Leitfähigkeitswerte (gemessen als Oberflächenwiderstand (OFW) in Ohm pro Quadrat, angegeben als Ω/\square bei verschiedenen rel. Luftfeuchtigkeiten) verdeutlichen den Vorteil der erfindungsgemäßen neuen Antistatikschichten auf Polythiophenbasis:
1. Die OFW-Werte der polythiophenhaltigen Schichten sind im Vergleich zur reinen PSS-Schicht (= Vergleichstyp 1) um 2 Zehnerpotenzen niedriger;
 - 10 2. auch bei sehr geringen Luftfeuchtigkeiten (10 %) ändert sich die Oberflächenleitfähigkeit der Polythiophenschichten im Gegensatz zum Vergleichstyp nicht, und
 3. ist die Leitfähigkeit der Polythiophenschichten permanent, d.h. sie bleibt nach der Entwicklung erhalten.

15 Beispiel 10

64,6 g einer Dispersion auf Basis von 47,5 Gew.-% Methacrylsäurermethylester, 47,5 Gew.-% Butadien und 5 Gew.-% 2-Acrylamido-2-methylpropansulfonsäure, Natriumsalz, mittlerer Teilchendurchmesser 171 nm, in Wasser mit einem Feststoffgehalt von 31 Gew.-% werden mit 500 ml Wasser verdünnt. Nach 20 Zugabe von 5,4 g Kaliumperoxydisulfat, 2,0 g Polystyrolsulfonsäure und 8,0 g 3,4-Ethylendioxythiophen wird die Dispersion 24 Stunden bei Raumtemperatur gerührt. Während dieser Zeit wird Luft durch die Dispersion geleitet.

Die Zubereitung wird in einer Menge von 200 mg/m² (Trockensubstanz) auf eine Polyesterfolie gegossen. Nach dem Trocknen erhält man eine klare Beschichtung mit einer optischen Dichte von 0,01 im 25 ortho-Bereich (weißes Licht) und einem Oberflächenwiderstand von $6 \cdot 10^7 \Omega/\square$.

30

35

40

45

50

55

Tab 11 1

	Antistatikschicht	Vergleichsbeispiel		
		1a	2a	3a
5	Polystyrolsulfonsäure-Na-Salz (13 gew.-%ig in H ₂ O) [ml]	33	-	-
10	Polythiophen/PSS [g]	-	3	3
15	Wasser [ml]	2	247	484
20	Methanol [ml]	365	100	500
25	Aceton [ml]	600	650	-
30	Netzmittel (4 gew.-%ig in Wasser)	-	-	10
35	Polyethylendispersion (5 gew.-%ig in H ₂ O) [ml]	-	-	3
40	Naßauftrag [ml]	16	20	20
45	Deckschicht	1b	2b	-
50	Cellulosediacetat (10 gew.-%ig in Aceton [ml]	20	20	
55	Methanol [ml]	530	330	
60	Aceton [ml]	430	630	
65	Wasser [ml]	19	17	
70	Polyethylendispersion (5 gew.-%ig in H ₂ O [ml])	1	3	
75	Naßauftrag [ml]	15	15	
80	OFW [Ω/\Box] bei 50 % RF bei 10 % RF	$2 \cdot 10^9$ $5 \cdot 10^{10}$	$5 \cdot 10^7$ $6 \cdot 10^7$	$3 \cdot 10^7$ $3 \cdot 10^7$
85	nach der Entwicklung bei 50 % RF opt. Dichte (weiß)	$> 10^{12}$	$9 \cdot 10^7$	$6 \cdot 10^7$
90		0,06	0,07	0,07

Beispiel 11a) Herstellung des Polythiophens:

In eine Lösung aus 50 g Polystyrolsulfonsäure, 6,0 g Kaliumperoxidisulfat und 14,0 g 3,4-Ethylendioxytiophen in 1000 ml Wasser wird 24 Stunden bei Raumtemperatur unter Rühren Luft eingeblasen. Die Zubereitung hat einen Feststoff-Gehalt von 5,7 Gew.-% (1 h 100 °C) und ist gebrauchsfertig.

b) Herstellung der Antistatikschicht:

Auf eine Polyethylen-terephthalat-Unterlage (PET), die mit einer Haftschicht aus einem Terpolymerlatex aus Vinylidenchlorid/Methacrylat/Itaconsäure und kolloidaler Kieselsäure mit einer Oberfläche von 100 m²/g versehen ist, bringt man eine Zusammensetzung aus 66 ml der obigen Polythiophenzubereitung und 2 ml einer 5 gew.-%igen Netzmittellösung in 932 ml Wasser auf.

Naßauftrag: 50 m²/l; Gi Geschwindigkeit: 5 m/min; Trockentemp ratur: 120 °C/2 min.

Man erhält eine nahezu farblose Schicht mit folgenden Oberflächenleitfähigkeit n:

OFW [Ω/□] bei 30 % RF vor fotografischer V arbeitung: 0,7·10⁹

nach fotografischer V arbeitung: 4·10⁹

5

Die Schicht ist also permanent antistatisch.

Beispiel 12

- 10 Die gemäß Beispiel 11 hergestellte Antistatikschicht wird zusätzlich mit einer Deckschicht aus 1 g/m² Polymethylmethacrylat (PMMA) überschichtet. Diese wird aus einem Lösungsmittelgemisch aus Aceton/Methoxypropanol 80/20 vergossen. Die transparente Antistatikschicht hat folgende Oberflächenwiderstände [Ω/□].

15

30 % RF/21°C	60 % RF/21°C
--------------	--------------

20

vor fotografischer Entwicklung	$1,6 \cdot 10^{10}$	$0,15 \cdot 10^{10}$
nach fotografischer Entwicklung	$1 \cdot 10^{10}$	$0,03 \cdot 10^{10}$

26

Müßt man kapazitiv die Abklingzeit der elektrischen Aufladung [RC in msec] so erhält man folgende Werte:

30

30 % RF/21°C

35

vor fotografischer Entwicklung	0,53
nach fotografischer Entwicklung	1,1

40

Wie aus den Werten ersichtlich ist, zeigen die erfindungsgemäßen Antistatikschichten neben hoher Leitfähigkeit sehr gute Permanenz, wobei die Oberflächenleitfähigkeit nach Entwicklung noch zunimmt.

Beispiel 13

Besonders gute Oberflächenleitfähigkeiten erhält man mit einer Antistatikschicht der folgenden Zusammensetzung:

50

55

	Polythiophenzubereitung gem.		
	Beispiel 11 (5,7 gew.-%ig)	66	ml
5	Wasser	820	ml
	Isopropanol	100	ml
	Polyurethandispersion,		
10	40 gew.-%ig	1,5	ml
	Polyethylendispersion,		
	2,5 gew.-%ig	15	ml
15	Netzmittel, 10 gew.-%ig	1,5	ml
			1000 ml

20 Auftrag: 30 m²/l; Gießgeschwindigkeit: 8 m/min; Trockentemperatur 130 °C/1,25 min

	OFW [Ω/◻]:	30 % RF/21°C	60 % RF/21°C
25			
	vor fotografischer	$\langle 0,1 \cdot 10^8$	$\langle 0,1 \cdot 10^8$
	Entwicklung		
30	nach fotografischer	$3 \cdot 10^8$	
	Entwicklung		
	RC [sec]		
35			
	vor fotografischer	$\langle 0,0064$	
	Entwicklung		
40	nach fotografischer	0,05	
	Entwicklung		

Überschichtet man diese Antistatikschicht mit einer Deckschicht aus PMMA gemäß Beispiel 12, so mißt
45 man etwas geringere Oberflächenleitfähigkeiten (= höhere OFW-Werte), die für Verblitzungen entscheidende kurze Abklingzeit für elektrostatische Aufladungen bleibt unverändert kurz, vor allem auch noch nach der Entwicklung.

50

55

OFW [Ω/\square]: 30 % RF/21°C 60 % RF/21°C

5 vor fotografischer 3 · 10^9 0,04 · 10^9
 Entwicklung
 nach fotografischer 0,3 · 10^9
 10 Entwicklung

RC [msec]

15 vor fotografischer <0,0064
 Entwicklung
 nach fotografischer <0,0064
 20 Entwicklung

Optische Dichte der Schichten: Ortho: 0,01
 (350-630 nm)
 25 UV: 0,01
 (370 nm)

30 Patentansprüche

1. Dispersionen von Polythiophenen, die aus Struktureinheiten der Formel

40 aufgebaut sind, in der
 R_1 und R_2 unabhängig voneinander für Wasserstoff oder eine C₁-C₄-Alkylgruppe stehen oder zusammen einen gegebenenfalls substituierten C₁-C₄-Alkylen-Rest bilden.
 in Gegenwart von Polyanionen.

- 45 2. Polythiophen-Dispersionen gemäß Anspruch 1, dadurch gekennzeichnet, daß R_1 und R_2 zusammen einen gegebenenfalls durch Alkylgruppen substituierten Methylen-, einen gegebenenfalls durch C₁-C₁₂-Alkyl- oder Phenylgruppen substituierten Ethylen-1,2-Rest, einen Propylen-1,3-Rest oder einen Cyclohexylen-1,2-Rest bilden.
- 50 3. Polythiophen-Dispersionen gemäß Anspruch 1, dadurch gekennzeichnet, daß sich die Polyanionen von polymeren Carbonsäuren oder polymeren Sulfonsäuren ableiten.
- 55 4. Polythiophen-Dispersionen gemäß Anspruch 1, dadurch gekennzeichnet, daß sich die Polyanionen von Poly(meth)acrylsäuren oder Polystyrolsulfonsäuren ableiten.
5. Verfahren zur Herstellung der Polythiophen-Dispersionen gemäß Anspruch 1, dadurch gekennzeichnet, daß man 3,4-Dialkoxythiophene der Formel

5

in der

R₁ und R₂ die in Anspruch 1 angegebene Bedeutung haben,
 mit für die oxidative Polymerisation von Pyrrol üblichen Oxidationsmitteln und/oder Sauerstoff oder Luft
 in Gegenwart der Polysäuren bei Temperaturen von 0 bis 100 °C oxydativ polymerisiert.

10

- 6. Verfahren zur antistatischen Ausrüstung von Kunststoff-Formteilen, dadurch gekennzeichnet, daß man Polythiophendispersionen gemäß Anspruch 1 einsetzt.
- 7. Verfahren zur antistatischen Ausrüstung von Kunststoff-Formteilen, dadurch gekennzeichnet, daß man wässrige Zubereitungen der Polythiophendispersionen einsetzt.
- 8. Verfahren zur antistatischen Ausrüstung von fotografischen Materialien, dadurch gekennzeichnet, daß man eine Schicht, enthaltend Polythiophendispersionen gemäß Anspruch 1 aufträgt.
- 20 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man die Polythiophendispersionen in einer Menge von 0,001 bis 0,3 g/m² einsetzt.
- 10. Fotografisches Material mit einer Antistatikschicht, dadurch gekennzeichnet, daß die Schicht wenigstens ein Polythiophenpolysäure-Zubereitung gemäß Anspruch 1 aufweist.

25

30

35

40

45

50

55