Theorem 2.1

31. Juli 2014

Um die Konvergenz zeigen zu können verwenden wir das folgende Theorem:

Satz 1. Angenommen für jedes kompakte $K \subset E$,

$$\sum_{l} |l| \sup_{x \in K} \beta_l(x) < \infty \tag{1}$$

und es existiert ein $M_K > 0$, so dass

$$|F(x) - F(y)| \le M_K |y - x|, \qquad x, y \in K \tag{2}$$

Angenommen X_n erfüllt (2.3), $\lim_{n\to\infty} X_n(0) = x_0$, und X erfüllt

$$X(t) = x_0 + \int_0^t F(X(s))ds, \qquad t \ge 0.$$
 (3)

Dann gilt für jedes t > 0,

$$\lim_{n \to \infty} \sup_{s \le t} |X_n(s) - X(s)| = 0 \qquad a.s.$$
 (4)

Satz 2 ([1], Theorem 2.1). Angenommen für jedes $K \subset E$ kompakt, gilt

$$\sum_{x \in X} |l| \sup_{n_s(x) \in K} \beta_l(n_s(x)) < \infty, \quad s \in T \subset \mathbb{R}_+$$
 (5)

und es existiert ein M_K , so dass:

$$|F(n_s) - F(\tilde{n}_s)| \stackrel{!}{<} M_K |n_s - \tilde{n}_s|, \quad M_K \in \mathbb{R}_+$$
 (6)

Angenommen

Falls aus $K\to\infty$ auch $n_0^K\to n_0$ folgt, dann lässt sich beweisen, dass das mutationsfreie System ν_t^K mit $K\to\infty$ gegen ein deterministisches System

konvergiert. Ein solches deterministisches System muss folgende Differentialgleichung erfüllen:

$$\begin{pmatrix}
\dot{n}(x) \\
\dot{n}(y) \\
\vdots
\end{pmatrix} = \begin{pmatrix}
n(x) \cdot (b(x) - d(x) - \sum_{y \in X} c(x, y) \cdot n(y) \\
\vdots \\
n(0) = n_0
\end{pmatrix},$$
(7)

Die Konvergenz folgt unmittelbar aus [1, **Thm 2.1**], also reicht es die Bedingungen (2.6) und (2.7) in [1, **Thm 2.1**] zu prüfen:

Satz 3. Unser Modell erfüllt die Bedingungen von [1, Theorem 2.1].

Beweis. Wir gehen zunächst von einer dimorphen Population $X=\{x,y\}$ aus. Dann sind:

$$n_1 = \begin{pmatrix} n_1^x \\ n_1^y \end{pmatrix}, \quad n_2 = \begin{pmatrix} n_2^x \\ n_2^y \end{pmatrix}$$

zwei Lösungen der Differentialgleichung

$$F\binom{n^{x}}{n^{y}} = \binom{\dot{n}^{x}}{\dot{n}^{y}} = \binom{n^{x}(b(x) - d(x) - c(x, x)n^{x} - c(x, y)n^{y})}{n^{y}(b(y) - d(y) - c(y, y)n^{y} - c(y, x)n^{x})}$$
(8)

ausgewertet zu einem Zeitpunkt $s \in \mathbb{R}_+$.

Endliche Raten:

Bedingung 2.6 aus [1, **Thm 2.1**] zu prüfen ist in unserem Fall sehr einfach. Unser Merkmalsraum und die verwendeten Raten sind endlich. Damit haben wir stets eine endliche Summe über endliche Raten, welche natürlich wieder endlich ist.

Lipschitz-Stetigkeit:

Bedingung 2.7 aus [1, Thm 2.1] fordert die Lipschitz-Stetigkeit für

$$\left| F \begin{pmatrix} n_1^x \\ n_1^y \end{pmatrix} - F \begin{pmatrix} n_2^x \\ n_2^y \end{pmatrix} \right| \stackrel{!}{<} M_K \left| \begin{pmatrix} n_1^x \\ n_1^y \end{pmatrix} - \begin{pmatrix} n_2^x \\ n_2^y \end{pmatrix} \right|, \quad M_K \in \mathbb{R}_+$$

Zunächst wählen wir $\varepsilon := |n_1 - n_2| = \sqrt{|n_1^x - n_2^x|^2 + |n_1^y - n_2^y|^2}$, daraus folgt:

$$|n_1^x - n_2^x| \le \varepsilon$$

$$|n_1^y - n_2^y| \le \varepsilon$$
(9)

Falls es ein $c \in \mathbb{R}_+$ gibt mit

$$|F(n_1)_1 - F(n_2)_1| \le \varepsilon \cdot c$$

$$|F(n_1)_2 - F(n_2)_2| \le \varepsilon \cdot c$$
(10)

So folgt wegen

$$|F(n_1) - F(n_2)| = \sqrt{(F(n_1)_1 - F(n_2)_1)^2 + (F(n_1)_2 - F(n_2)_2)^2}$$

$$\leq \sqrt{(\varepsilon \cdot c)^2 + (\varepsilon \cdot c)^2}$$

$$= \sqrt{2} \cdot \varepsilon \cdot c < \infty \Rightarrow \text{Behauptung}$$
(11)

Also bleibt nur noch (10) zu prüfen. Für F_1 und F_2 ist dabei das Vorgehen analog, daher wird nur F_1 vorgestellt:

$$|F(n_{1})_{1} - F(n_{2})_{1}| = |(n_{1}^{x} - n_{2}^{x})(b(x) - d(x)) - ((n_{1}^{x})^{2} - (n_{2}^{x})^{2}) \cdot c(x, x)$$

$$- ((n_{1}^{y})^{2} - (n_{2}^{y})^{2}) \cdot c(x, y)|$$

$$\leq |\underbrace{(n_{1}^{x} - n_{2}^{x})}(b(x) - d(x))|$$

$$\leq \varepsilon$$

$$+ |(n_{1}^{x} - n_{2}^{x})(n_{1}^{x} + n_{2}^{x}) \cdot c(x, x)|$$

$$+ |(n_{1}^{y} - n_{2}^{y})(n_{1}^{y} + n_{2}^{y}) \cdot c(x, y)|$$

$$\leq \varepsilon \cdot (|b(x) - d(x)| + |\underbrace{n_{1}^{x} + n_{2}^{x}}(c(x, x) + |n_{1}^{y} + n_{2}^{y}| \cdot c(x, y))$$

$$\leq \varepsilon \cdot (c_{1} + c_{2} \cdot c(x, x) + c_{3} \cdot c(x, y))$$

$$= \varepsilon \cdot c$$

wie schon erwähnt folgt durch analoges Vorgehen für y, dass (9) für unser Modell gilt.

Tatsächlich kann für Fälle mit mehr als 2 Merkmalen durch analoges Vorgehen die selben Abschätzungen gemacht werden die alle zum gleichen Ergebnis führen.

Schließlich folgt für alle Fälle durch (11) die Behauptung.

Literatur

[1] Stewart N Ethier and Thomas G Kurtz. *Markov processes: characterization and convergence*, volume 282. John Wiley & Sons, 2009.