ป้ายยาว (longbanner)

1.5 second, 128MB

เรามีป้ายไม้แข็งความยาว H หน่วย (1 <= H <= 1,000,000) เราต้องการนำป้ายไปติดบนเสา เรามี เสาทั้งสิ้น N ต้น (1 <= N <= 100,000) ปักอยู่บนพื้นที่สามารถพิจารณาให้เป็นเส้นจำนวนได้ เสาต้นที่ i สำหรับ 1 <= i <= N ปักอยู่ที่พิกัด x[i] และมีความสูง y[i] (0<=x[i]<=1,000,000,000; 0<=y[i]<=1,000,000,000) เรารับประกันว่าในข้อมูลป้อนเข้าพิกัดของเสาจะเรียงลำดับกันและไม่มีการ ซ้ำกัน กล่าวคือ x[i] < x[i+1] สำหรับ 1 <= i < N

ป้ายดังกล่าวจะถูกติดที่ปลายเสา เพื่อความเสถียรเราต้องการจะติดที่เสาหลาย ๆ ต้น ดังนั้นใน การเลือกเสาที่จะนำป้ายไปติด ถ้าเป็นไปได้ควรจะมีความสูงที่เท่ากันทั้งหมด อย่างไรก็ตาม นั่นเป็น เงื่อนไขที่แทบเป็นไปไม่ได้ คุณจึงยินดีที่จะตัดปลายเสาบางเสาออก โดยที่รับประกันว่าจะตัดเสาที่เลือก แต่ละต้น ต้นละไม่เกิน L หน่วย (0 <= L <= 5) นอกจากนี้เนื่องจากความยาวป้ายเท่ากับ H หน่วย พิกัดของเสาระหว่างเสาต้นที่มีพิกัด x น้อยสุดกับมากสุดจะต้องไม่มากไปกว่า H หน่วย

ให้คุณเขียนโปรแกรมหาว่าจะสามารถเลือกเสาเพื่อติดป้ายให้ได้จำนวนเสามากที่สุดกี่เสา

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็มสามจำนวน N H และ L จากนั้นอีก N บรรทัดระบุข้อมูลของเสา บรรทัดที่ 1+i ระบุจำนวนเต็มสองจำนวน x[i] และ y[i]

ข้อมูลส่งออก

มีหนึ่งบรรทัด ระบุจำนวนเสามากที่สุดที่เลือกมาเพื่อติดป้ายได้

ปัญหาย่อย

- ปัญหาย่อย 1 (30%): N <= 1,000; y[i] <= 100,000
- ปัญหาย่อย 2 (30%): y[i] <= 100,000
- ปัญหาย่อย 3: (40%): ไม่มีเงื่อนไขเพิ่มเติมจากโจทย์

ตัวอย่าง 1

Input	Output
5 10 4	2
10 30	
13 8	(ใช้เสาที่ 2 กับ 3)
23 12	(2001 177 2 112 0)
30 30 60 30	

ตัวอย่าง 2

Input	Output
5 10 2	3
10 10	
12 50	(ใช้เสาที่ 1, 3, กับ 4)
13 12	(0 2001 111 1, 0, 112 1)
19 11	
20 13	