Download Crunchbase Datasets

source: GitHub (notpeter/crunchbase-data)

release: 2015-08-27

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

```
import pandas as pd
import numpy as np
from difflib import SequenceMatcher
import math

companies = pd.read_csv('https://raw.githubusercontent.com/notpeter/crunchbase-data/master/companies.csv')
investments = pd.read_csv('https://raw.githubusercontent.com/notpeter/crunchbase-data/master/investments.csv')
acquisitions = pd.read_csv('https://raw.githubusercontent.com/notpeter/crunchbase-data/master/acquisitions.csv')
rounds = pd.read_csv('https://raw.githubusercontent.com/notpeter/crunchbase-data/master/rounds.csv')
additions = pd.read_csv('https://raw.githubusercontent.com/notpeter/crunchbase-data/master/additions.csv')
```

https://www.kaggle.com/kbrookshier/crunchbase-startup-investments

→ Data Transformation

Required New Variables

Name	Description	Sparsity Level (Avg=69%)	Average
roundD	The company did a round D	98.8%	
roundC	The company did a round C	95.9%	
roundB	The company did a round B	92.5%	
roundA	The company did a round A	88.8%	
VentureCapital	Has venture capital (with missing values)	60.7%	
isTech	Is a tech company	0.0%	
target	The company was acquired by other or went to a public stock market (IPO)	0.0%	
roundD_raised_ amount	Raised amount of Round D	98.8%	\$40.449.855
roundC_raised_ amount	Raised amount of Round C	96.0%	\$21.162.205
roundB_raised_ amount	Raised amount of Round B	92.9%	\$14.968.688
roundA_raised_ amount	Raised amount of Round A	89.7%	\$7.640.412
investment_per _round	Total US Dollars invested per round of investment	61.5%	\$9.161.589
funding_total_u sd	Total funding in US dollars	61.5%	\$21.646.508
roundD_age	Company's age when it did its round D	98.8%	6,5
	Total number of investments made by	98.5%	2,7

ts	the company		
customer_count	Number of customers	98.3%	6,0
ipo_age	Company's age when it went to a public stock market	96.4%	7,7
roundC_age	Company's age when it did its round C	95.9%	5,4
total_acquisitio ns	Number of acquisitions made by the company	93.9%	2,2
competitor_acq uired_ipo	Number of competitors either acquired or IPO'd	93.1%	2,0
roundB_age	Company's age when it did its round B	92.5%	4,1
roundA_age	Company's age when it did its round A	88.7%	3,3
competitor_cou nt	Number of competitors	87.8%	3,2
age_Acquired	Company's age when acquired	87.1%	9,2
success_age	Age of company when it got acquired or went to a public stock market (IPO)	84.3%	8,6
top500_investor	Number of top500 investors in the company (Top 500 by number of investments made by investor)	81.2%	3,5
investors_per_r ound	Number of investors per round	70.0%	2,3
total_exp_foun ders_years	Total experience of founders in years	70.0%	9,5
age_first_fundi ng_year	Company's age when it received first funding	53.9%	3,2
funding_rounds	Number of funding rounds	53.9%	2,1
totalFounders	Number of founders	41.4%	1,7
total_experienc e_jobs_years	Total experience of total jobs in the company in years	28.8%	12,0
totaljobs	Total jobs of the company	23.9%	5,3
age_yrs	Actual age in years	0.0%	10,3

▼ Not-Age Variables

All except age variables - Total count: 21

```
df = pd.DataFrame(data=companies[['permalink', 'name']].values, columns = ['permalink', 'name'])
df
```

	permalink	name
0	/organization/-fame	#fame
1	/organization/-qounter	:Qounter
2	/organization/-the-one-of-them-inc-	(THE) ONE of THEM,Inc.
3	/organization/0-6-com	0-6.com
4	/organization/004-technologies	004 Technologies
66363	/organization/zznode-science-and-technology-co	ZZNode Science and Technology
66364	/organization/zzzzapp-com	Zzzzapp Wireless Itd.
66365	/organization/Áeron	ÁERON
66366	/organization/Ôasys-2	Ôasys
66367	/organization/Inovatiff-reklam-ve-tanıtım-hizm	İnovatiff Reklam ve Tanıtım Hizmetleri Tic
66368 ro	ws × 2 columns	

```
#roundD - 1 if company did a round-D else 0
df['roundD'] = np.zeros(df.shape[0])
#roundC - 1 if company did a round-C else 0
df['roundC'] = np.zeros(df.shape[0])
```

```
#roundB - 1 if company did a round-B else 0
df['roundB'] = np.zeros(df.shape[0])
#roundA - 1 if company did a round-A else 0
df['roundA'] = np.zeros(df.shape[0])
#VentureCapital = 1 if company has a venture else 0
df['VentureCapital'] = np.zeros(df.shape[0])
#IsTech = 1 if company is a Tech company else 0
df['IsTech'] = np.empty(df.shape[0])
df['IsTech'] = np.nan
tech keys = ['tech', 'analytics', 'software', 'elec', 'web', 'manufacturing', 'internet', 'auto', 'smart', 'e-', 'data', 'develop', 'product'
#target = 1 if company went into acquisition (or IPO) else 0
df['target'] = np.zeros(df.shape[0])
#roundD raised amount = total amount raised by company in D rounds
df['roundD raised amount'] = np.empty(df.shape[0])
df['roundD raised amount'][:] = np.nan
#roundC raised amount = amount raised by company in C rounds
df['roundC raised amount'] = np.empty(df.shape[0])
df['roundC raised amount'][:] = np.nan
#roundB raised amount = total amount raised by company in B rounds
df['roundB raised amount'] = np.empty(df.shape[0])
df['roundB raised amount'][:] = np.nan
#roundA raised amount = total amount raised by company in A rounds
df['roundA raised amount'] = np.empty(df.shape[0])
df['roundA raised amount'][:] = np.nan
#total_investments = total no. of investments made to the company
df['total_investments'] = np.empty(df.shape[0])
df['total_investments'][:] = np.nan
```

```
#investment per round = average fund raised per round
df['investment per round'] = np.empty(df.shape[0])
df['investment per round'][:] = np.nan
#funding total usd = total amound raised by company in all rounds
df['funding total usd'] = np.empty(df.shape[0])
df['funding total usd'][:] = np.nan
#total acquisitions = no. of times company went into acquisition (or IPO)
df['total acquisitions'] = np.zeros(df.shape[0])
#competitors count = no. of competitiors
df['competitors count'] = np.empty(df.shape[0])
df['competitors count'][:] = np.nan
#competitors acquired = no. of competitors went into acquisition (or IPO)
df['competitors acquired'] = np.empty(df.shape[0])
df['competitors acquired'][:] = np.nan
#country code = Country Code (if available)
df['country code'] = np.empty(df.shape[0])
df['country code'][:] = np.nan
#funding rounds = No of funding rounds company went in
df['funding rounds'] = np.empty(df.shape[0])
df['funding rounds'][:] = np.nan
#investors per round = average no. of investors per round
df['investors per round'] = np.empty(df.shape[0])
df['investors per round'][:] = np.nan
#top500 investors = average no. of investors per round
df['top500_investors'] = np.empty(df.shape[0])
df['top500 investors'][:] = np.nan
top investors = investments['investor name'].value counts()[:500].index.tolist()
for i in range(30800,31900):
  cn = df [loc[i]] nonmalink[]
```

```
cp = ui.ioc[i, permaiink ]
print("Companies completed:", i, " ,out of", companies.shape[0])
company_details = companies.loc[companies['permalink']==cp]
investments in company = investments.loc[investments['company permalink'] == cp]
company acquisitions = acquisitions.loc[acquisitions['company permalink'] == cpl
#Company Details:
company cat = company details.loc[i, 'category list']
if (isinstance(company cat,str)):
  ## isTech
  df.loc[i,'IsTech'] = 0
  for key in tech keys:
    if key in company cat.lower():
      df.loc[i,'IsTech'] = 1
      break
## funding rounds
df.loc[i, 'funding rounds'] = company details.loc[i, 'funding rounds']
try:
  ## investment per round
  df.loc[i,'investment per round'] = float(company details.loc[i,'funding total usd'])/float(company details.loc[i,'funding rounds
  ## funding total usd
  df.loc[i,'funding total usd'] = company details.loc[i,'funding total usd']
except:
  df.loc[i,'investment per round'] = np.nan
  df.loc[i, 'funding total usd'] = np.nan
## investor per round - will be replaced from data in Investments Details (if available)
df.loc[i, 'investors_per_round'] = 2
## total investments - will be replaced from data in Investments Details (if available)
df.loc[i,'total_investments'] = float(company_details.loc[i,'funding_rounds'])*2
```

```
## country code
df.loc[i,'country code'] = company details.loc[i,'country code']
#Investment Details:
if investments in company.shape[0] != 0:
 if 'D' in investments in company['funding round code'].tolist():
    ## roundD
    df.loc[i,'roundD'] = 1
    amt list = investments in company.loc[investments in company['funding round code']=='D']['raised amount usd']
    amt list.dropna()
    ## roundD raised amound
    df.loc[i,'roundD raised amount'] = np.mean(amt list)
  if 'C' in investments in_company['funding_round_code'].tolist():
    ## roundC
    df.loc[i,'roundC'] = 1
    amt list = investments in company.loc[investments in company['funding round code']=='C']['raised amount usd']
    amt list.dropna()
    ## roundC raised amound
    df.loc[i,'roundC raised amount'] = np.mean(amt list)
  if 'B' in investments in company['funding round code'].tolist():
    ## roundB
    df.loc[i,'roundB'] = 1
    amt list = investments in company.loc[investments in company['funding round code']=='B']['raised amount usd']
    amt list.dropna()
    ## roundB raised amound
    df.loc[i,'roundB raised amount'] = np.mean(amt list)
  if 'A' in investments in company['funding round code'].tolist():
    ## roundA
    df.loc[i,'roundA'] = 1
    amt list = investments in company.loc[investments in company['funding round code']=='A']['raised amount usd']
    amt_list.dropna()
    ## roundA raised amount
```

```
df.loc[i,'roundA raised amount'] = np.mean(amt list)
  ## VentureCapital
  if 'venture' in investments_in_company['funding_round_type'].tolist():
    df.loc[i,'VentureCapital'] = 1
  ## total investments
  df.loc[i,'total investments'] = investments in company.shape[0]
  ## investor per round
  df.loc[i, 'investors per round'] = investments in company.shape[0]/company details.loc[i, 'funding rounds']
  ## top500 investors
  df.loc[i,'top500 investors'] = 0
  for investor in investments in company['investor name'].tolist():
      if investor in top investors:
        df.loc[i,'top500 investors'] += 1
#Acquisition Details:
if company acquisitions.shape[0] != 0:
  ## target
  df.loc[i,'target'] = 1
 ## total acquisitions
  df.loc[i,'total acquisitions'] = company acquisitions.shape[0]
#Competition Details
competitors = companies.loc[companies['permalink']!=cp]
if (isinstance(company cat,str)):
   df.loc[i,'competitors count'] = 0
   df.loc[i,'competitors_acquired'] = 0
   for j in competitors.index:
   try:
      if SequenceMatcher(None,competitors.loc[j,'category list'],company cat).ratio()>0.7:
        ## competitors count
        df loc[i 'compotitions count'] +- 1
```

```
if competitors.loc[j,'permalink'] in acquisitions['company_permalink'].tolist():
    ## competitors_acquired
    df.loc[i,'competitors_acquired'] += 1
    except:
    continue

df.to_csv('/content/drive/MyDrive/StartUp_Project/NotAge21_66k_7a.csv', index=False)
```

▼ Age Variables

```
class Date:
    def init (self, d, m, y):
        self.d = d
        self.m = m
        self.v = v
monthDays = [31, 28, 31, 30, 31, 30,
             31, 31, 30, 31, 30, 31]
def countLeapYears(d):
   years = d.y
    if (d.m <= 2):
       years -= 1
    ans = int(years / 4)
    ans -= int(years / 100)
    ans += int(years / 400)
    return ans
def getDifference(dt1, dt2):
    n1 = dt1.y * 365 + dt1.d
    for i in range(0, dt1.m - 1):
        n1 += monthDays[i]
    n1 += countLeapYears(dt1)
    n2 = dt2.y * 365 + dt2.d
    for i in range (0 d+2 m - 1).
```

```
n2 += monthDays[i]
n2 += countLeapYears(dt2)

return (n2 - n1)
```

```
## roundX age - Company's age when it did its round X
df 4 = pd.DataFrame(data=investments.values)
roundA age = pd.DataFrame(columns = ['permalink', 'name', 'age'])
roundB age = pd.DataFrame(columns = ['permalink', 'name', 'age'])
roundC age = pd.DataFrame(columns = ['permalink', 'name', 'age'])
roundD age = pd.DataFrame(columns = ['permalink', 'name', 'age'])
df 4 = df 4[[0,1,15,16]]
for i in range(df 4.shape[0]):
  if df 4.iloc[i][15]=='A':
    start = df 4.iloc[i][1]
    j,k = (df 3.applymap(lambda x: str(x).startswith(start))).values.nonzero()
    start date = df 3.iloc[j[0]][11]
    end date = df 4.iloc[i][16]
    if type(start date) == float or type(end date) == float:
      continue
    st dt = [int(it) for it in start date.replace('-', ' ').split(' ')]
    ed dt = [int(it) for it in end date.replace('-', ' ').split(' ')]
    roundA age = roundD age.append({'permalink' : df 4.iloc[i][0], 'name' : df 4.iloc[i][1], 'age' : getDifference(Date(st dt[2],st o
                ignore_index = True)
  if df 4.iloc[i][15]=='B':
    start = df 4.iloc[i][1]
    j,k = (df_3.applymap(lambda x: str(x).startswith(start))).values.nonzero()
    start date = df 3.iloc[j[0]][11]
    end date = df 4.iloc[i][16]
    if type(start date) == float or type(end date) == float:
      continue
    st_dt = [int(it) for it in start_date.replace('-', ' ').split(' ')]
    ed dt = [int(it) for it in end_date.replace('-', ' ').split(' ')]
    roundB_age = roundD_age.append({'permalink' : df_4.iloc[i][0], 'name' : df_4.iloc[i][1], 'age' : getDifference(Date(st_dt[2],st_c
                ignore_index = True)
  if df 4.iloc[i][15]=='C':
    start = df / iloc[i][1]
```

```
i,k = (df 3.applymap(lambda x: str(x).startswith(start))).values.nonzero()
     start_date = df_3.iloc[j[0]][11]
     end date = df 4.iloc[i][16]
     if type(start date) == float or type(end date) == float:
           continue
     st dt = [int(it) for it in start_date.replace('-', ' ').split(' ')]
     ed dt = [int(it) for it in end_date.replace('-', ' ').split(' ')]
     roundC age = roundD age.append({'permalink' : df 4.iloc[i][0], 'name' : df 4.iloc[i][1], 'age' : getDifference(Date(st dt[2],st of action of a content of a conte
                                       ignore index = True)
if df 4.iloc[i][15]=='D':
     start = df 4.iloc[i][1]
     i,k = (df 3.applymap(lambda x: str(x).startswith(start))).values.nonzero()
     start date = df 3.iloc[j[0]][11]
     end date = df 4.iloc[i][16]
     if type(start date) == float or type(end date) == float:
           continue
     st dt = [int(it) for it in start date.replace('-', ' ').split(' ')]
     ed dt = [int(it) for it in end date.replace('-', ' ').split(' ')]
     roundD age = roundD age.append({'permalink' : df 4.iloc[i][0], 'name' : df 4.iloc[i][1], 'age' : getDifference(Date(st dt[2],st o
                                       ignore index = True)
```

```
ignore index = True)
```

Data Cleaning

Concat all rows for NotAge Variables

data transformation needed hours of processing thus data was split and distributed among team members to process parallely

```
df1 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 1.csv')[0:4400]
df2 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 2.csv')[4400:8800]
df3 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 3.csv')[8800:13200]
df4 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 4.csv')[13200:17600]
df5 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 5.csv')[22000:26400]
df6 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 5 (1).csv')[17600:22000]
df7 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 6.csv')[26400:30800]
df8a = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 7a.csv')[30800:31900]
df8b = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 7b.csv')[31900:33000]
df8c = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 7c.csv')[33000:34100]
df8d = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 7d.csv')[34100:35200]
df9 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 8.csv')[35200:39600]
df10 = pd.read csv('/content/drive/MyDrive/StartUp Project/NotAge21 66k 9.csv')[39600:44000]
df11 = pd.read csv('/content/drive/MyDrive/StartUp Project/final - 1c.csv')[44000:]
     /usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (19) have mixed types.Speci
       interactivity=interactivity, compiler=compiler, result=result)
df = pd.concat([df1,df2,df3,df4,df5,df6,df7,df8a,df8b,df8c,df8d,df9,df10,df11,])
df
```

t	roundA_raised_amount	total_investments	<pre>investment_per_round</pre>	<pre>funding_total_usd</pre>	total_acquisitions	competitors_count	compe
1	NaN	2.0	10000000.0	10000000.0	0.0	299.0	
1	NaN	4.0	350000.0	700000.0	0.0	19.0	
1	NaN	2.0	3406878.0	3406878.0	0.0	129.0	
1	2000000.0	1.0	2000000.0	2000000.0	0.0	1211.0	
1	NaN	1.0	NaN	NaN	0.0	4109.0	
1	1587301.0	1.0	1587301.0	1587301.0	0.0	1135.0	
1	NaN	3.0	28576.0	114304.0	0.0	14.0	
1	NaN	2.0	NaN	NaN	0.0	NaN	
1	NaN	1.0	18192.0	18192.0	0.0	20.0	
1	NaN	1.0	14851.0	14851.0	0.0	62.0	

Add Age Variable Columns (left join by company name & permalink)

```
df_age1 = pd.read_csv('/content/drive/MyDrive/StartUp_Project/actual_age.csv')
df_age2 = pd.read_csv('/content/drive/MyDrive/StartUp_Project/success_age.csv')
df_age3 = pd.read_csv('/content/drive/MyDrive/StartUp_Project/roundA_age.csv')
df_age4 = pd.read_csv('/content/drive/MyDrive/StartUp_Project/roundB_age.csv')
df_age5 = pd.read_csv('/content/drive/MyDrive/StartUp_Project/roundC_age.csv')
df_age6 = pd.read_csv('/content/drive/MyDrive/StartUp_Project/roundD_age.csv')
```

```
print(df_age2['permalink'].unique().shape, df_age1['permalink'].shape)
     (1435,) (41414,)
df age1.value counts(subset=['name'])
     name
     吃神马 ChiShenMa
                                      1
     Glownet
                                    1
     Globial
                                    1
     Globehook
                                    1
     Globeecom International
                                   1
     Rachel Joyce Organic Salon
                                   1
     RacerTimes
                                    1
     Racemi
                                    1
     Race Yourself
                                    1
     #HASHOFF
                                    1
     Length: 41414, dtype: int64
df age1.loc[df age1['name']=='500px']
                  permalink
                              name actual age
      264 /organization/500px 500px
                                          4094
df = df.merge(df age1, how='left', on = ['permalink', 'name'])
df = df.merge(df age2, how='left', on = ['permalink', 'name'])
df = df.merge(df_age3, how='left', on = ['permalink', 'name'])
```

Cleaning NaN Values

df = df.merge(df_age4, how='left', on = ['permalink','name'])
df = df.merge(df_age5, how='left', on = ['permalink','name'])
df = df.merge(df age6, how='left', on = ['permalink','name'])

funding total usd

competitors count

country code

actual age

success age

roundA age roundD age

dtype: int64

funding rounds

top500 investors

total acquisitions

competitors acquired

investors per round

12785

3148

3148

6958

21630

24954

61971 57273

64933

0

0

0

```
12/17/2020
                                                                    StartUp Classification.ipynb - Colaboratory
    df.isnull().sum()
          permalink
                                         0
                                         1
          name
          roundD
                                         0
                                         0
          roundC
                                         0
          roundB
          roundA
                                         0
          VentureCapital
                                         0
          IsTech
                                     3148
          target
                                         0
          roundD raised amount
                                    64772
          roundC raised amount
                                    62798
          roundB raised amount
                                    59626
          roundA_raised amount
                                    56112
          total investments
                                         0
          investment per round
                                    12785
```

```
#drop companies for which we dont have investments data
in investments = list(investments['company permalink'].unique())
for i in range(df.shape[0]):
  if df.loc[i,'permalink'] in in investments:
    if df.loc[i, 'roundD'] == 0:
      df.loc[i,'roundD_raised_amount'] = 0
    if df.loc[i, 'roundC'] == 0:
      df.loc[i,'roundC_raised_amount'] = 0
    if df.loc[i, 'roundB'] == 0:
```

```
df.loc[i, 'roundB_raised_amount'] = 0
if df.loc[i, 'roundA'] == 0:
    df.loc[i, 'roundA_raised_amount'] = 0
else:
    df = df.drop(index=i)
print(i)
```

df.isnull().sum()

permalink	0	
name	1	
roundD	0	
roundC	0	
roundB	0	
roundA	0	
VentureCapital	0	
IsTech	2429	
target	0	
roundD_raised_amount	90	
roundC_raised_amount	187	
roundB_raised_amount	469	
roundA_raised_amount	1495	
total_investments	0	
<pre>investment_per_round</pre>	8537	
<pre>funding_total_usd</pre>	8537	
total_acquisitions	0	
competitors_count	2429	
competitors_acquired	2429	
country_code	4990	
funding_rounds	0	
investors_per_round	0	
top500_investors	0	
actual_age	18637	
success_age	40774	
roundA_age	35643	
roundD_age	43303	
dtype: int64		

```
# take inverse of ages as new variables so that we can replace nan values with zeros and scale up to preserve significant digits
df['success age inverse'] = 10000/df['success age']
df['actual age inverse'] = 10000/df['actual age']
df['roundD age inverse'] = 10000/df['roundD age']
df['roundC age inverse'] = 10000/df['roundC age']
df['roundB age inverse'] = 10000/df['roundB age']
df['roundA age inverse'] = 10000/df['roundA age']
#fill nan values with 0
df[['roundA age inverse','roundB age inverse','roundD age inverse','success age inverse']] = df[['roundA age inverse','roundB age inverse']]
#drop original age columns
df = df.drop(columns = ['roundA age','roundB age','roundC age','success age','actual age'])
## drop companies with no name
df = df.dropna(subset = ['name'])
# redefine IsTech to remove nan values
tech keys = ['tech', 'analytics', 'software', 'elec', 'web', 'manufacturing', 'internet', 'auto', 'smart', 'e-', 'data', 'develop', 'product'
for i in df.index:
 for key in tech keys:
    if key in df.loc[i, 'name']:
      df.loc[i,'IsTech'] = 1
    else:
      df.loc[i,'IsTech'] = 0
    if (isinstance(companies.loc[i, 'category list'], str)):
      if key in companies.loc[i, 'category list']:
        df.loc[i,'IsTech'] = 1
      else:
        df.loc[i,'IsTech'] = 0
  print(i)
df
```

try_code	funding_rounds	investors_per_round	top500_investors	IsTech	succes_age_inverse	actual_age_inverse	roundD_age_inve
CHN	1.0	1.000000	0.0	0.0	NaN	0.000196	
USA	1.0	1.000000	0.0	0.0	NaN	0.000250	
HKG	1.0	1.000000	1.0	0.0	NaN	NaN	
USA	4.0	3.500000	4.0	0.0	NaN	0.000275	
USA	3.0	4.333333	7.0	0.0	NaN	0.000292	
CHN	1.0	1.000000	1.0	0.0	NaN	NaN	
HRV	4.0	0.750000	3.0	0.0	NaN	0.000319	
NaN	1.0	2.000000	0.0	0.0	NaN	0.000275	
USA	1.0	1.000000	1.0	0.0	NaN	0.000394	
NaN	1.0	1.000000	0.0	0.0	NaN	NaN	

```
#adding 2 extra variables

## status = current status of company (operational not operational)

## last_funding_at = year of last funding
for i in df.index:
    df.loc[i,'last_funding_at'] = int(companies.loc[i,'last_funding_at'][0:4])
    df.loc[i,'status'] = companies.loc[i,'status']
```

```
df.isnull().sum()
```

permalink	0
name	0
roundD	0
roundC	0
roundB	0
roundA	0
VentureCapital	0
target	0
roundD_raised_amount	90
roundC_raised_amount	187
roundB_raised_amount	469
roundA_raised_amount	1495
total_investments	0
<pre>investment_per_round</pre>	8537
<pre>funding_total_usd</pre>	8537
total_acquisitions	0
competitors_count	2429
competitors_acquired	2429
country_code	4990
funding_rounds	0
investors_per_round	0
top500_investors	0
IsTech	0
actual_age_inverse	18636
roundD_age_inverse	0
roundC_age_inverse	0
roundB_age_inverse	0
roundA_age_inverse	0
success_age_inverse	0
<pre>last_funding_at</pre>	0
status	0
dtype: int64	

```
## competitor = 0 if not found
df[['competitors_count','competitors_acquired']] = df[['competitors_count','competitors_acquired']].fillna(0)

## take roundUp integer for investors_per_round
df['investors_per_round'] = df['investors_per_round'].apply(np.ceil)
```

df.to_csv('/content/drive/MyDrive/StartUp_Project/Stratup_AllVariables_raw.csv')
df

de	funding_rounds	investors_per_round	top500_investors	IsTech	actual_age_inverse	roundD_age_inverse	roundC_age_inverse	r
·Ν	1.0	1.0	0.0	0.0	1.961554	0.0	0.0	
3A	1.0	1.0	0.0	0.0	2.498751	0.0	0.0	
(G	1.0	1.0	1.0	0.0	NaN	0.0	0.0	
3A	4.0	4.0	4.0	0.0	2.749519	0.0	0.0	
3A	3.0	5.0	7.0	0.0	2.919708	0.0	0.0	
ΙN	1.0	1.0	1.0	0.0	NaN	0.0	0.0	
٧۶	4.0	1.0	3.0	0.0	3.185728	0.0	0.0	
аN	1.0	2.0	0.0	0.0	2.749519	0.0	0.0	
3A	1.0	1.0	1.0	0.0	3.935458	0.0	0.0	
яN	1.0	1.0	0.0	0.0	NaN	0.0	0.0	

```
df['actual_age_inverse'] = df['actual_age_inverse'].fillna(df['actual_age_inverse'].median())
df_clean = df.dropna()
df_clean
```

	permalink	name	roundD	roundC	roundB	roundA	VentureCapital	target	roundD_raised_amount	roundC_ra:
0	/organization/0-6-com	0-6.com	0.0	0.0	0.0	1.0	1.0	0.0	0.0	
2	/organization/01games- technology	01Games Technology	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	/organization/0xdata	H2O.ai	0.0	0.0	1.0	1.0	1.0	0.0	0.0	
4	/organization/1	One Inc.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5	/organization/1-2-3-listo	1,2,3 Listo	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
44730	/organization/zytoprotec	Zytoprotec	0.0	0.0	0.0	1.0	1.0	0.0	0.0	
44731	/organization/zzish	Zzish	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
44732	/organization/zznode- science-and- technology-co	ZZNode Science and Technology	0.0	0.0	0.0	1.0	1.0	0.0	0.0	
44733	/organization/zzzzapp- com	Zzzzapp Wireless Itd.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
44735	/organization/Ôasys-2	Ôasys	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
32306 rows × 31 columns										

df_clean.isnull().sum()

permalink	0
name	0
roundD	0
roundC	0
roundB	0
roundA	0
VentureCapital	0

```
target
                        0
roundD raised amount
                        0
roundC_raised_amount
                        0
roundB_raised_amount
                        0
roundA raised amount
                        0
total investments
                        0
investment per round
                        0
funding_total_usd
total acquisitions
                         0
competitors count
                        0
competitors acquired
                        0
country code
                        0
funding rounds
investors per round
                         0
top500 investors
IsTech
actual age inverse
                        0
roundD age inverse
                        0
roundC age inverse
                        0
roundB age inverse
                        0
roundA age inverse
                        0
success age inverse
                        0
last funding at
                         0
status
                        0
dtype: int64
```

df_clean.to_csv('/content/drive/MyDrive/StartUp_Project/Stratup_AllVariables_cleaned.csv')

Data Visualization

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
%matplotlib inline
```

df= pd.read_csv('/content/drive/MyDrive/StartUp_Project/Stratup_AllVariables_cleaned.csv', index_col=0)
#df2= pd.read_csv('/content/drive/MyDrive/StartUp_Project/Stratup_AllVariables_raw.csv', index_col=0)
df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 32306 entries, 0 to 44735
Data columns (total 31 columns):

Data	COTAMINS (COCAT ST COT	umi 13) •	
#	Column	Non-Null Count	Dtype
0	permalink	32306 non-null	object
1	name	32306 non-null	object
2	roundD	32306 non-null	float64
3	roundC	32306 non-null	float64
4	roundB	32306 non-null	float64
5	roundA	32306 non-null	float64
6	VentureCapital	32306 non-null	float64
7	target	32306 non-null	float64
8	roundD_raised_amount	32306 non-null	float64
9	roundC_raised_amount	32306 non-null	float64
10	roundB_raised_amount	32306 non-null	float64
11	roundA_raised_amount	32306 non-null	float64
12	total_investments	32306 non-null	float64
13	<pre>investment_per_round</pre>	32306 non-null	float64
14	<pre>funding_total_usd</pre>	32306 non-null	float64
15	total_acquisitions	32306 non-null	float64
16	competitors_count	32306 non-null	float64
17	competitors_acquired	32306 non-null	float64
18	country_code	32306 non-null	object
19	funding_rounds	32306 non-null	float64
20	investors_per_round	32306 non-null	float64
21	top500_investors	32306 non-null	float64
22	IsTech	32306 non-null	float64
23	actual_age_inverse	32306 non-null	float64
24	roundD_age_inverse	32306 non-null	float64
25	roundC_age_inverse	32306 non-null	float64
26	roundB_age_inverse	32306 non-null	float64
27	roundA_age_inverse	32306 non-null	float64
28	success_age_inverse	32306 non-null	float64
29	last_funding_at	32306 non-null	float64
30	status	32306 non-null	object

```
dtypes: float64(27), object(4)
```

memory usage: 7.9+ MB

```
#numerical columns
df_num= df.drop(['permalink', 'name', 'country_code', 'status'], axis = 1)
df_num = df_num.astype('int64')
df_num
```

roundD	roundC	roundB	roundA	VentureCapital	target	roundD_raised_amount	roundC_raised_amount	roundB_raised_amount	round
0	0	0	1	1	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	1	1	1	0	0	0	20000000	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	1	1	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	1	1	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

ows × 27 columns

```
list(df_num.columns)
```

^{[&#}x27;roundD',

^{&#}x27;roundC', 'roundB',

^{&#}x27;roundA',

```
'VentureCapital',
'target',
'roundD_raised_amount',
'roundC_raised_amount',
'roundB raised amount',
'roundA raised amount',
'total investments',
'investment per round',
'funding_total_usd',
'total acquisitions',
'competitors count',
'competitors acquired',
'funding rounds',
'investors_per_round',
'top500 investors',
'IsTech',
'actual_age_inverse',
'roundD_age_inverse',
'roundC age inverse',
'roundB age inverse',
'roundA age inverse',
'success age inverse',
'last funding at']
```

```
df['status'].value_counts()[:].plot(kind='pie')
```

for i in df_num.columns:
 if (df_num[i].unique().shape[0]) <= 5:
 df_num[i].value_counts()[:].plot(kind='pie')
 plt.title(i)
 plt.show()
 else:
 plt.hist(df_num[i])
 plt.title(i)
 plt.show()</pre>

#correlation plot
print(df_num.corr())
sns.heatmap(df_num.corr())

	roundD	roundC	 success_age_inverse	<pre>last_funding_at</pre>
roundD	1.000000	0.401758	 -0.000102	0.002951
roundC	0.401758	1.000000	 0.014395	0.001184
roundB	0.200342	0.359153	 0.018651	-0.000024
roundA	0.047889	0.105287	 0.036630	-0.008181
VentureCapital	0.175929	0.268616	 0.015236	-0.004684
target	0.088053	0.135882	 0.370301	-0.000154
<pre>roundD_raised_amount</pre>	0.453083	0.214046	 -0.001222	-0.001342
<pre>roundC_raised_amount</pre>	0.237302	0.609607	 0.000108	-0.000293
<pre>roundB_raised_amount</pre>	0.034525	0.089407	 0.005318	0.001154
<pre>roundA_raised_amount</pre>	0.018394	0.049086	 0.006486	-0.007825
total_investments	0.389214	0.425100	 0.035646	-0.005224
<pre>investment_per_round</pre>	0.022259	0.024528	 -0.003190	0.000746
<pre>funding_total_usd</pre>	0.093968	0.089066	 -0.003327	0.004104
total_acquisitions	0.085524	0.132119	 0.362379	-0.000004
competitors_count	0.041189	0.057136	 -0.012390	-0.001806
competitors_acquired	0.038448	0.057766	 0.001424	0.000814
funding_rounds	0.356270	0.395135	 0.003291	0.005408
investors_per_round	0.144991	0.183733	 0.058426	-0.007335
top500_investors	0.416561	0.451100	 0.046574	-0.007096
IsTech	-0.006113	-0.001960	 -0.002740	-0.001620
actual_age_inverse	-0.129153	-0.166923	 -0.018393	0.003915
roundD_age_inverse	0.304668	0.140277	 0.001908	0.005123
roundC_age_inverse	0.316830	0.632523	 0.023781	-0.000175
roundB_age_inverse	0.102984	0.155651	 0.023006	0.001786
roundA_age_inverse	0.006933	0.026742	 0.030446	0.005111
success_age_inverse	-0.000102	0.014395	 1.000000	0.003832
<pre>last_funding_at</pre>	0.002951	0.001184	 0.003832	1.000000

[27 rows x 27 columns]
<matplotlib.axes._subplots.AxesSubplot at 0x7f12f3294748>

▼ XG-Boost Classification

```
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score
```

```
TITOMI SKIEGITI-METLICS IMPOLIT CONTRIBION_MGTLIX
from matplotlib import pyplot
import joblib
#XGB handles missing values very well, thus using raw data itself
df = pd.read csv('/content/drive/MyDrive/StartUp Project/Stratup AllVariables raw.csv', index col=0)
X = df.drop(columns = ['success age inverse', 'total acquisitions', 'target', 'name', 'permalink'])
Y = df.target
                                ō ō
le = LabelEncoder()
#transform country code
X['country code']=X['country code'].map(str)
le.fit(X['country code'])
X['country code'] = le.transform(X['country code'])
joblib.dump(le, '/content/drive/MyDrive/StartUp Project/country code label.joblib')
#transfor status
le.fit(X['status'])
X['status'] = le.transform(X['status'])
joblib.dump(le, '/content/drive/MyDrive/StartUp Project/status label.joblib')
     ['/content/drive/MyDrive/StartUp Project/status label.joblib']
X train, X test, y train, y test = train test split(X,Y,test size=0.2,random state=7)
# fit model on training data
model = XGBClassifier(max depth=70,n estimators=150,learning rate= 0.05)
eval set = [(X train, y train), (X test, y test)]
model.fit(X train, y train, early stopping rounds=15,eval metric=["error", "logloss"], eval set=eval set, verbose=True)
                                             validation 0-logloss:0.087473
     [55]
             validation 0-error:0.010869
                                                                              validation 1-error:0.070295
                                                                                                              validation 1-logloss
             validation 0-error:0.010702
                                             validation 0-logloss:0.085446
                                                                              validation 1-error:0.070407
                                                                                                              validation 1-logloss
     [56]
                                             validation 0-logloss:0.08354
             validation 0-error:0.010562
                                                                              validation 1-error:0.070295
                                                                                                              validation 1-logloss
     [57]
```

validation_0-logloss:0.081656

validation_0-logloss:0.079882

validation_1-error:0.070072

validation_1-error:0.070407

validation 0-error:0.010282

validation 0-error:0.010143

[58]

[59]

validation 1-logloss

validation 1-logloss

[60]	validation 0-error:0.009919	validation_0-logloss:0.078183	validation 1-error:0.069736	validation 1-logloss
[61]	validation_0-error:0.009752	validation_0-logloss:0.076547	validation_1-error:0.06996	validation 1-logloss
[62]	validation_0-error:0.009696	validation_0-logloss:0.074863	validation_1-error:0.069848	validation_1-logloss
[63]	validation_0-error:0.009416	validation_0-logloss:0.073141	validation_1-error:0.069848	validation_1-logloss
[64]	validation_0-error:0.009221	validation_0-logloss:0.071535	validation 1-error:0.069401	validation 1-logloss
[65]	validation_0-error:0.008969	validation_0-logloss:0.070041	validation_1-error:0.069177	validation 1-logloss
[66]	validation_0-error:0.008718	validation_0-logloss:0.068539	validation_1-error:0.069289	validation_1-logloss
[67]	validation_0-error:0.008578	validation_0-logloss:0.067167	validation_1-error:0.068507	validation_1-logloss
[68]	validation_0-error:0.00841	validation_0-logloss:0.065802	validation_1-error:0.068507	validation_1-logloss
[69]	validation_0-error:0.008271	validation_0-logloss:0.064422	validation_1-error:0.067836	validation_1-logloss
[70]	validation_0-error:0.008047	validation_0-logloss:0.063028	validation_1-error:0.067389	validation_1-logloss
[71]	validation_0-error:0.007963	validation_0-logloss:0.061653	validation_1-error:0.067166	validation_1-logloss
[72]	validation_0-error:0.007796	validation_0-logloss:0.060384	validation_1-error:0.067389	validation_1-logloss
[73]	validation_0-error:0.007656	validation_0-logloss:0.059231	validation_1-error:0.067166	validation_1-logloss
[74]	validation_0-error:0.007488	validation_0-logloss:0.058113	validation_1-error:0.066942	validation_1-logloss
[75]	validation_0-error:0.007405	validation_0-logloss:0.056955	validation_1-error:0.066272	validation_1-logloss
[76]	validation 0-error:0.007293	validation_0-logloss:0.055897	validation 1-error:0.066384	validation 1-logloss
[77]	validation 0-error:0.007181	validation_0-logloss:0.054873	validation_1-error:0.06616	validation_1-logloss
[78]	validation_0-error:0.007125	validation_0-logloss:0.053849	validation_1-error:0.065937	validation_1-logloss_
[79]	validation_0-error:0.006874	validation_0-logloss:0.052862	validation 1-error:0.065378	validation_1-logloss
[80]	validation 0-error:0.00665	validation_0-logloss:0.052063	validation 1-error:0.065601	validation_1-logloss
[81]	validation_0-error:0.006371	validation_0-logloss:0.051136	validation_1-error:0.065378	validation_1-logloss
[82]	validation_0-error:0.006343	validation_0-logloss:0.050259	validation_1-error:0.064931	validation_1-logloss
[83]	validation_0-error:0.006231	validation_0-logloss:0.049543	validation_1-error:0.065266	validation_1-logloss
[84]	validation_0-error:0.006203	validation_0-logloss:0.048687	validation_1-error:0.064484	validation_1-logloss
[85]	validation_0-error:0.006035	validation_0-logloss:0.048002	validation_1-error:0.064372	validation_1-logloss
[86]	validation_0-error:0.005896	validation_0-logloss:0.047376	validation_1-error:0.064148	validation_1-logloss
[87]	validation_0-error:0.005812	validation_0-logloss:0.046589	validation_1-error:0.063701	validation_1-logloss
[88]	validation_0-error:0.005784	validation_0-logloss:0.045939	validation_1-error:0.063813	validation_1-logloss
[89]	validation_0-error:0.005616	validation_0-logloss:0.045336	validation_1-error:0.063813	validation_1-logloss
[90]	validation_0-error:0.005588	validation_0-logloss:0.044648	validation_1-error:0.064037	validation_1-logloss
[91]	validation_0-error:0.005477	validation_0-logloss:0.043962	validation_1-error:0.063478	validation_1-logloss
[92]	validation_0-error:0.005337	validation_0-logloss:0.043398	validation_1-error:0.06359	validation_1-logloss
[93]	validation_0-error:0.005309	validation_0-logloss:0.042844	validation_1-error:0.063254	validation_1-logloss
[94]	validation_0-error:0.005281	<pre>validation_0-logloss:0.042328</pre>	validation_1-error:0.063031	validation_1-logloss
[95]	validation_0-error:0.005169	validation_0-logloss:0.041687	validation_1-error:0.062919	validation_1-logloss
[96]	validation_0-error:0.005085	validation_0-logloss:0.041176	validation_1-error:0.063478	validation_1-logloss
[97]	validation_0-error:0.004918	validation_0-logloss:0.040559	validation_1-error:0.062807	validation_1-logloss
[98]	validation_0-error:0.004834	validation_0-logloss:0.040026	validation_1-error:0.062249	validation_1-logloss
[99]	validation_0-error:0.004778	<pre>validation_0-logloss:0.039602</pre>	validation_1-error:0.062137	validation_1-logloss
[100]	validation_0-error:0.004722	<pre>validation_0-logloss:0.039077</pre>	validation_1-error:0.061913	validation_1-logloss
[101]	validation_0-error:0.004638	validation_0-logloss:0.038691	validation_1-error:0.062137	validation_1-logloss

```
validation 0-logloss:0.038306
                                                                         validation 1-error:0.062025
                                                                                                         validation 1-logloss
[102]
        validation 0-error:0.004638
                                        validation 0-logloss:0.037802
                                                                         validation 1-error:0.062025
                                                                                                         validation 1-logloss
[103]
        validation 0-error:0.004638
                                        validation 0-logloss:0.037348
                                                                         validation 1-error:0.062025
                                                                                                         validation 1-logloss
[104]
        validation 0-error:0.004527
                                        validation 0-logloss:0.036974
                                                                         validation 1-error:0.062137
                                                                                                         validation 1-logloss
[105]
        validation 0-error:0.004471
                                        validation 0-logloss:0.036613
       validation 0-error:0.004387
                                                                        validation 1-error:0.062025
                                                                                                         validation 1-logloss
[106]
       validation 0-error:0.004415
                                        validation 0-logloss:0.036167
                                                                                                         validation 1-logloss
[107]
                                                                         validation 1-error:0.062025
       validation 0-error:0.004387
                                        validation 0-logloss:0.035742
                                                                         validation 1-error:0.062137
                                                                                                         validation 1-logloss
[108]
       validation 0-error:0.004359
                                        validation 0-logloss:0.035335
                                                                         validation 1-error:0.06169
                                                                                                         validation 1-logloss
[109]
       validation 0-error:0.004331
                                        validation 0-logloss:0.035005
                                                                         validation 1-error:0.061578
                                                                                                         validation 1-logloss
[110]
       validation 0-error:0.004275
                                        validation 0-logloss:0.034654
                                                                                                         validation 1-logloss
[111]
                                                                         validation 1-error:0.061354
       validation 0-error:0.004219
                                                                         validation 1-error:0.060684
                                        validation 0-logloss:0.034281
                                                                                                         validation 1-logloss _
Γ1121
                                        validation 0-logloss.0 033961
                                                                                                         validation 1-logloss
Γ1121
        validation 0-proon:0 00/163
                                                                         validation 1-prron:0 060907
```

```
# make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print("Test Accuracy: %.2f%%" % (accuracy * 100.0))
```

Test Accuracy: 93.94%

```
# retrieve performance metrics
results = model.evals_result()
epochs = len(results['validation_0']['error'])
x_axis = range(0, epochs)

# plot log loss
fig, ax = pyplot.subplots()
ax.plot(x_axis, results['validation_0']['logloss'], label='Train')
ax.plot(x_axis, results['validation_1']['logloss'], label='Test')
ax.legend()
pyplot.ylabel('Log Loss')
pyplot.xlabel('Epochs')
pyplot.xlabel('Epochs')
pyplot.show()
# plot classification open.
```

```
fig, ax = pyplot.subplots()
ax.plot(x_axis, results['validation_0']['error'], label='Train')
ax.plot(x_axis, results['validation_1']['error'], label='Test')
ax.legend()
pyplot.ylabel('Classification Error')
pyplot.xlabel('Epochs')
pyplot.title('XGBoost Classification Error')
pyplot.show()
```

XGBoost Log Loss

```
from tabulate import tabulate

cm = confusion_matrix(y_pred = predictions,y_true = y_test[:], labels=[0,1])

rows = np.array([["Actual Failures"], ["Actual Successfull"]])

rows = np.concatenate((rows,cm), axis=1)

headers = ["No. of Samples", "Predicted Failure", "Predicted Successfull"]

table = tabulate(rows,headers, tablefmt="grid")

print(table)
```

No. of Samples	Predicted Failure	Predicted Successfull
Actual Failures	7702	177
Actual Successfull	365	704
0.00		IESL

Training Scores

```
\subseteq
```

```
y_pred = model.predict(X_train)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_train, predictions)
print("Train Accuracy: %.2f%%" % (accuracy * 100.0))
```

Train Accuracy: 99.60%

EDOCUS

```
from tabulate import tabulate
cm = confusion_matrix(y_pred = predictions,y_true = y_train[:], labels=[0,1])
rows = np.array([["Actual Failures"], ["Actual Successfull"]])
rows = np.concatenate((rows,cm), axis=1)
headers = ["No. of Samples", "Predicted Failure", "Predicted Successfull"]
table = tabulate(rows,headers, tablefmt="grid")
print(table)
```

```
model.save_model('/content/drive/MyDrive/StartUp_Project/xgb_model.json')
```

Logistic Regression

```
from sklearn.linear model import LogisticRegression
df = pd.read csv('/content/drive/MyDrive/StartUp Project/Stratup AllVariables cleaned.csv', index col=0)
X = df.drop(columns = ['success age inverse', 'total acquisitions', 'target', 'name', 'permalink'])
Y = df.target
le = joblib.load('/content/drive/MyDrive/StartUp_Project/country_code_label.joblib')
X['country code'] = X['country code'].map(str)
X['country code'] = le.transform(X['country code'])
le = joblib.load('/content/drive/MyDrive/StartUp_Project/status_label.joblib')
X['status'] = le.transform(X['status'])
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=13)
# define class weights
W = \{0:1, 1:1\}
# define model
lgr = LogisticRegression(random state=13, class weight=w)
# fit it
```

```
# test
y_pred = lgr.predict(X_test)
# performance
print(f'Test Accuracy Score: {accuracy_score(y_test,y_pred)}')

Test Accuracy Score: 0.8687712782420304
```

```
cm = confusion_matrix(y_pred = y_pred,y_true = y_test[:], labels=[0,1])
rows = np.array([["Actual Failures"], ["Actual Successfull"]])
rows = np.concatenate((rows,cm), axis=1)
headers = ["No. of Samples", "Predicted Failure", "Predicted Successfull"]
table = tabulate(rows,headers, tablefmt="grid")
print(table)
```

No. of Samples	'	Predicted Successfull
Actual Failures	5613	:
Actual Successfull	839	1

Training Scores

```
y_pred = lgr.predict(X_train)
# performance
print(f'Train Accuracy Score: {accuracy_score(y_train,y_pred)}')
```

Train Accuracy Score: 0.8750967342516638

```
cm = confusion_matrix(y_pred = y_pred,y_true = y_train[:], labels=[0,1])
rows = np.array([["Actual Failures"], ["Actual Successfull"]])
rows = np.concatenate((rows,cm), axis=1)
headers = ["No. of Samples", "Predicted Failure", "Predicted Successfull"]
table = tabulate(rows,headers, tablefmt="grid")
```

```
print(table)
```

No. of Samples	Predicted Failure	 Predicted Successfull
Actual Failures	22614	17
Actual Successfull	3211	2

```
joblib.dump(lgr, '/content/drive/MyDrive/StartUp_Project/lgr_model.joblib')
```

['/content/drive/MyDrive/StartUp_Project/lgr_model.joblib']

→ Data Imputation

To get good results with MLP we attempt to regain lost datapoint due to null values by imputing missing values.

Datawig is a package that does this job us. Based on deep learning techniques it imputes missing values of columns by using correlations & training NNs with other columns

https://github.com/awslabs/datawig

```
pip install datawig
import datawig
df_imputed = datawig.SimpleImputer.complete(df)

df_imputed.to_csv('/content/drive/MyDrive/StartUp_Project/Stratup_AllVariables_cleaned.csv')
```

MLP

```
# Binary Classification with Keras Neural Network
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit learn import KerasClassifier
from sklearn.model selection import cross val score
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import StratifiedKFold
# load dataset
df = pd.read csv('/content/drive/MyDrive/StartUp Project/Stratup AllVariables cleaned.csv', index col=0)
dataset = df.values
X = df.drop(columns = ['success age inverse','total acquisitions','target', 'name', 'permalink'])
Y = df.target
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded Y = encoder.transform(Y)
le = joblib.load('/content/drive/MyDrive/StartUp Project/country code label.joblib')
X['country code'] = X['country code'].map(str)
X['country code'] = le.transform(X['country code'])
le = joblib.load('/content/drive/MyDrive/StartUp Project/status label.joblib')
X['status'] = le.transform(X['status'])
X train, X test, y train, y test = train test split(X, encoded Y, test size=0.2, random state=13)
```

▼ BaseLine Model with 2 Layers

```
# baseline model
```

```
def create baseline():
 # create model
 model = Sequential()
 model.add(Dense(32, input dim=26, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))
 # Compile model
 model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
  return model
# evaluate model with dataset
estimator = KerasClassifier(build fn=create baseline, epochs=100, batch size=5, verbose=2)
kfold = StratifiedKFold(n splits=10, shuffle=True)
results = cross val score(estimator, X train, y train, cv=kfold)
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
     Epoch 23/100
     5815/5815 - 5s - loss: 0.6062 - accuracy: 0.8745
     Epoch 24/100
     5815/5815 - 5s - loss: 0.3777 - accuracy: 0.8745
     Epoch 25/100
     5815/5815 - 5s - loss: 0.3777 - accuracy: 0.8745
     Epoch 26/100
     5815/5815 - 5s - loss: 0.3777 - accuracy: 0.8745
     Epoch 27/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 28/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 29/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 30/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 31/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 32/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 33/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Epoch 34/100
     5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
     Fnoch 35/100
```

```
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 36/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 37/100
5815/5815 - 5s - loss: 0.3777 - accuracy: 0.8745
Epoch 38/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 39/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 40/100
5815/5815 - 5s - loss: 0.3777 - accuracy: 0.8745
Epoch 41/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 42/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 43/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 44/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 45/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 46/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 47/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 48/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 49/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 50/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 51/100
5815/5815 - 5s - loss: 0.3776 - accuracy: 0.8745
Epoch 52/100
```

▼ Deep Model with 4 Layers

```
def create_larger():
```

```
# create model
 model = Sequential()
 model.add(Dense(32, input dim=26, activation='relu'))
 model.add(Dense(16, activation='relu'))
 model.add(Dense(8, activation='relu'))
 model.add(Dense(1, activation='sigmoid'))
 # Compile model
 model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
  return model
# evaluate model with dataset
estimator = KerasClassifier(build fn=create larger, epochs=100, batch size=5, verbose=2)
kfold = StratifiedKFold(n splits=10, shuffle=True)
results = cross val score(estimator, X train, v train, cv=kfold)
#print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
     Epoch 22/100
     4652/4652 - 5s - loss: 0.3755 - accuracy: 0.8757
     Epoch 23/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 24/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 25/100
     4652/4652 - 5s - loss: 0.3757 - accuracy: 0.8757
     Epoch 26/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 27/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 28/100
     4652/4652 - 5s - loss: 0.3755 - accuracy: 0.8757
     Epoch 29/100
    4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 30/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 31/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
     Epoch 32/100
     4652/4652 - 5s - loss: 0.3755 - accuracy: 0.8757
     Epoch 33/100
     4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
```

```
Epoch 34/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 35/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 36/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 37/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 38/100
4652/4652 - 5s - loss: 0.3757 - accuracy: 0.8757
Epoch 39/100
4652/4652 - 5s - loss: 0.3757 - accuracy: 0.8757
Epoch 40/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 41/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 42/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 43/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 44/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 45/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 46/100
4652/4652 - 5s - loss: 0.3755 - accuracy: 0.8757
Epoch 47/100
4652/4652 - 5s - loss: 0.3755 - accuracy: 0.8757
Epoch 48/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 49/100
4652/4652 - 5s - loss: 0.3755 - accuracy: 0.8757
Epoch 50/100
4652/4652 - 5s - loss: 0.3756 - accuracy: 0.8757
Epoch 51/100
ACED/ACED For local DISTRICT DOCUMENTS OF OPEN
```

```
print("Deep MLP: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
```

Deep MLP: 87.57% (0.02%)

Final Model: We will be using *XGBoost* as our final model, as it performs substantially well compared to *Logistic Regression & MLP*