Exercise Sheet 10

Discrete Mathematics, 2020.10.24

1. Show that the equation

$$f(m,n) = 2^m(2n+1) - 1$$

defines a one-to-one correspondence between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

- 2. We know that F(x) = 1/3 + x/3 is an injection from [0,1] to (0,1), and G(x) = x is an injection from (0,1) to [0,1]. Please construct a bijection from [0,1] to (0,1) according to the proof of Berstein's Theorem.
- 3. Prove: for any sets A, B, and C:
 - (a) $A \approx A$.
 - (b) If $A \approx B$, then $B \approx A$
 - (c) If $A \approx B$ and $B \approx C$, then $A \approx C$

Notice: if you want to use some properties about injections, surjections and bijections which are not mentioned in class, you need to prove them first.

- 4. We proved in class that if $F: A \to B$ is a function, then $R = \{(a,b) \mid F(a) = F(b)\} \subseteq A \times A$ is an equivalence relations. Now, you need to prove the reverse direction: if $R \subseteq A \times A$ is an equivalence relation on A, then there exists a set B and a function $F: A \to B$ such that $R = \{(a,b) \mid F(a) = F(b)\}$.
 - a) Let $B = \{[a]_R \mid a \in A\}$ be the partition defined by R. Prove that $F = \{(a, [a]_R) \mid a \in A\} \subseteq A \times B$ is a function.
 - b) Prove that this F defined above is a surjection from A to B.
 - c) Prove that $R = \{(a, b) \mid F(a) = F(b)\}.$
- 5. Suppose R_1 and R_2 are equivalence relations on A_1 and A_2 , respectively.
 - a) Let $R \subseteq (A_1 \times A_2) \times (A_1 \times A_2)$ be the relation that $\{((a_1, a_2), (b_1, b_2)) \mid a_1 R_1 b_1 \wedge a_2 R_2 b_2\}$. Prove R is an equivalence relation on $A_1 \times A_2$.
 - b) Let $B_1 \subseteq \mathcal{P}(A_1)$, $B_2 \subseteq \mathcal{P}(A_2)$ and $B \subseteq \mathcal{P}(A_1 \times A_2)$ be corresponding partitions of R_1 , R_2 and R. Prove that $B_1 \times B_2 \approx B$.