Compiler-Based Autotuning Technology

Lecture 3: A Closer Look at Polyhedral Compiler Technology

Mary Hall July, 2011

* This work has been partially sponsored by DOE SciDAC as part of the Performance Engineering Research Institute (PERI), DOE Office of Science, the National Science Foundation, DARPA and Intel Corporation.

Polyhedral Compiler Technology

· Definition:

- Represent iteration spaces of loop nests as sets of integervalued points in regions of spaces
- A set S is a polyhedron if it can be represented by a system of inequalities Ax <= b

Advantages:

- Mathematical representation provides elegant and robust representation for manipulation and code generation
- Suitable for loop nest computations, where subscripts and loop bounds are affine
- Systems dating back to early 1990s, but renewed interest and production implementations in recent years
 - Graphite (gcc), Polly (LLVM), R-Stream (Reservoir), Omega, CLooG, PLUTO, ISL, piplib, PPL, LooPo,...

Outline for Today's Lecture

1. Abstractions

- a. Dependence graph
- b. Iteration space representation
- c. Code transformations rewrite iteration spaces
- d. Scanning polyhedra for code generation
- 2. More transformations: tiling, unroll-and-jam
- 3. Advanced concepts for imperfect loop nests
 - a. Sequencing statements
 - b. Aligning iteration spaces
 - c. Code generation for imperfect loop nests
- 4. Extended example: LU without pivoting

1. Guide to Abstractions

1. Guide to Implementation

Compiler Internal Representation, Abstract Syntax Tree

1. Example: Matrix-Vector Multiply

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```


1a. Guide to Abstractions: Dependence Graph

1a. Data Dependence

Definition:

A data dependence is an ordering on a pair of memory operations that must be preserved to maintain correctness.

Two memory accesses are involved in a data dependence if they may refer to the same memory location and one of the references is a write.

A data dependence can either be between two distinct program statements or two different dynamic executions of the same program statement.

Two important uses of data dependence information (among others):
 Parallelization: no data dependence between two computations → parallel execution safe

Locality optimization: absence of data dependences & presence of reuse → reorder memory accesses for better data locality

1a. Data Dependence of Scalar Variables

```
True (flow) dependence

a = a

Anti-dependence

a = a

Quiput dependence

a = a

Input dependence (for locality)

= a

= a
```

Definition:

Data dependence exists from a reference instance I to I' iff either i or i' is a write operation I and I' refer to the same variable I executes before I'

1a. Fundamental Theorem of Dependence

Theorem 2.2 from Allen/Kennedy:

- Any reordering transformation that preserves every dependence in a program preserves the meaning of that program.

Result: Use data dependence analysis to determine whether dependences are preserved by transformations, including parallelization.

Reference: "Optimizing Compilers for Modern Architectures: A Dependence-Based Approach", Allen and Kennedy, 2002, Ch. 2.

1a. Data Dependence of Array Variables Equivalence to Integer Programming

- Determine if F(I) = G(I'), where I and I' are iteration vectors, with constraints I,I' >= L, U>= I, I'
- Example:

Inequalities:

$$1 \leftarrow iw \leftarrow 100$$
, ir = $iw - 1$, ir $\leftarrow 100$ integer vector I , $AI \leftarrow b$

- Integer Programing is NP-complete
 - O(size of the coefficients)
 - $-O(n^n)$

1a. Calculating Data Dependences using Omega+ Calculator

· Example:

```
for (i=2; i<=100; i++)
A[i] = A[i-1];
```

 Define relation iw = i, and iw = ir-1 in the iteration space 2 <= i <= 100.

```
R := \{[iw] -> [ir] : 2 <= iw, ir <= 100 && iw < ir && iw = ir - 1\};
```

Result: {[iw] -> [iw+1] : 2 <= iw <= 99}

1a. Dependences in Matrix-Vector Multiply

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```


1a. Dependences in Matrix-Vector Multiply

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```

- b and c are read only: no dependence
- Each I=[i,j] iteration accesses the same a[i] for all 50 values of j: dependence "carried" by j loop

1a. How Dependences are Used in CHILL

- Dependence graph analyzed to determine safety of code transformations and determine correctness
- After each transformation, the dependence graph is updated to maintain consistency
- An annotation allows the user to indicate that certain dependences can be ignored by the system (related to \$IVDEP in vectorizing compilers)

In remainder of course, we will not discuss dependences, but their careful handling is essential to guarantee correctness

1b. Guide to Abstractions: Iteration Spaces

1b. Represent Loop Nest Iteration Space

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```

Iteration space defined by:

$$I := \{[I_1, ..., I_n] : LB_1 \le I_1 \le UB_1 \&\& ... LB_n \le I_n \le UB_n\};$$

In this case:

$$11 := \{[i,j] : 0 \le i \le 100 \&\& 0 \le j \le 50\};$$

1c. Guide to Abstractions: Transformations

transformed code

1c. Transformations Manipulate Iteration Space

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```

Initial iteration space:

I1 :=
$$\{[i,j]: 0 \le i \le 100 \&\& 0 \le j \le 50\};$$

Permutation:

$$P := \{[i,j] \rightarrow [j,i]\};$$

1d. Guide to Abstractions: Code Generation

1d. Scan Polyhedra to Convert Iteration Spaces Back to Loops for Code Generation

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```

Output of codegen I1

```
for(t1 = 0; t1 <= 99; t1++) {
  for(t2 = 0; t2 <= 49; t2++) {
    s1(t1,t2);
  }
}
```

Initial iteration space:

```
11 := \{[i,j] : 0 \le i \le 100 \&\& 0 \le j \le 50\};
```

Permutation:

```
P := \{[i,j] \rightarrow [j,i]\};
```

Generate code:

codegen P:I1;

Output of codegen P:I1

```
for(t1 = 0; t1 <= 49; t1++) {
  for(t2 = 0; t2 <= 99; t2++) {
    s1(t2,t1);
  }
}
```


2. More Transformations: Tiling

```
for (i=0; i<100; i++)
for (j=0; j<50; j++)
a[i] = a[i] + c[j][i]*b[j];
```

Initial iteration space:

```
11 := \{[i,j] : 0 \le i \le 100 \&\& 0 \le j \le 50\};
```

Tiling (i loop, tile size = 4):

```
T:=\{[i,j]->[ii,i,j] : exists (a : ii = 4a && a >= 0 && ii <= i < ii + 4)\};
```

Generate code:

```
codegen T:I1;
```

Output of codegen I1

```
for(t1 = 0; t1 <= 99; t1++) {
  for(t2 = 0; t2 <= 49; t2++) {
    s1(t1,t2);
  }
}</pre>
```

Output of codegen T:I1

```
for(t1 = 0; t1 <= 96; t1 += 4) {
  for(t2 = t1; t2 <= t1+3; t2++) {
    for(t3 = 0; t3 <= 49; t3++) {
      s1(t2,t3);
    }
  }
}</pre>
```


2. More Transformations: Unroll, Unroll-and-Jam

```
Output of codegen r0, r1;
      for (i=0; i<100; i++)
                                                 for(t1 = 0; t1 \le 98; t1 += 2) {
         for (j=0; j<=i; j++)
                                                  for(t2 = 0; t2 \le t1; t2++) 
             c[i][i] += val;
                                                   s1(t1,t2);
                                                   s2(t1,t2);
Initial iteration space:
   11 := \{[i,j] : 0 \le i \le 100 \&\& 0 \le j \le i\};
                                                 s2(t1,t1+1);
Unrolling (i loop, unroll factor = 2):
s0: c[i][j]+= val; s1: c[i+1][j]+=val;
r0:={[i,j]: exists (a: i=2a && 0<=i<100 && 0<=j<=i)};
r1:=\{[i,j]: exists (a: i=2a && 0<=i<100 && 0<=j<=i+1)\};
Generate code:
   codegen r0,r1;
```


3. Advanced Concepts: Imperfect Loop Nests

```
for (i=0; i<100; i++)

s0: a[i] = 0;

for (j=0; j<50; j++)

s1: a[i] = a[i] + c[j][i]*b[j];
```

- Suppose each vector element is initialized to 0.
- How do we represent imperfect iteration spaces?

3a. Advanced Concepts: Sequencing in Imperfect Loop Nests

```
for (i=0; i<100; i++)

s0: a[i] = 0;

for (j=0; j<50; j++)

s1: a[i] = a[i] + c[j][i]*b[j];
```

 We add an auxiliary loop to sequence subloops in an imperfect nest.

$$I(s0) := \{[0,i,0,j] : 0 \le i \le 100 \&\& j = 0\};$$

 $I(s1) := \{[0,i,1,j] : 0 \le i \le 100 \&\& 0 \le j \le 50\};$

3b. Advanced Concepts: Aligning Imperfect Loop Nests to a Common Iteration Space

Alignment example:

Alternative alignment for s2 (j=n-2) leads to less efficient code.

3b. Advanced Concepts: Code Generation of Imperfect Loop Nests

Iteration spaces:

```
r1:={[0,i,0,j] : 0<=i<100 && j=0};
r2:={[0,i,1,j] : 0<=i<100 && 1<=j<50};
r3:={[0,i,1,j] : 0 <= i, j < 50};
```

 Code generation optimizes the combining of iteration spaces to derive efficient results in the presence of imperfect loop nests

Output of codegen r1, r2, r3;

```
for(t2 = 0; t2 \le 99; t2++) {
 s1(0,t2,0,0);
 if (t2 \le 49) {
  for(t4 = 0; t4 \le 49; t4++) {
    s2(0,t2,1,t4);
    s3(0,t2,1,t4);
 if (t2 >= 50) {
  for(t4 = 0; t4 \le 49; t4++) {
    s2(0,t2,1,t4);
```


4. LU Decomposition: Abstractions

4. LU Decomposition: Abstractions

transformed code

4. CHILL Transformation Script for LU

```
DO K=1,N-1
DO I=K+1,N
s1 A(I,K)=A(I,K)/A(K,K)
DO I=K+1,N
DO J=K+1,N
A(I,J)=A(I,J)-A(I,K)*A(K,J)
```

separate perfect and imperfect loop nests

separate non-overlapping read and write accesses

```
permute([1,2,3])
           tile(1,3,Tj,1)
           \operatorname{split}(1,2,L2 \le L1-2)
           permute(3, 2, [2, 4, 3])
           permute(1,2,[3,4,2])
           split(1,2,L2 \ge L1-1)
           tile(4,2,Ti1,2)
           split(4,3,L5 \le L2-1)
           tile(4,5,Tk1,3)
           tile(4,5,Tj1,4)
           datacopy([[4,1]],4,false,1)
           datacopy([[4,2]],5)
           unroll(4,5,Ui1)
TRSM
           unroll(4,6,Uj1)
           datacopy([[5,1,]],3,false,1)
           tile(1,4,Tk2,2)
           tile(1,3,Ti2,3)
           tile(1,5,Ti2,4)
           datacopy([[1,1]],4,false,1)
GEMM
           datacopy([[1,2]],5)
           unroll(1,5,Ui2)
           unroll (1,6,Uj2)
```

CHiLL Script Source: Chun Chen

4. Automatically-Generated LU Code

```
REAL*8 P1(32,32),P2(32,64),P3(32,32),P4(32,64)
           OVER1=0
           OVER2=0
           DO T2=2.N.64
            IF (66<=T2)
             DO T4=2,T2-32,32
              DO T6=1,T4-1,32
               DO T8=T6,MIN(T4-1,T6+31<del>)</del>
                DO T10=T4,MIN(T2-2,T4+31)
                                                                                          data copy
                  P1(T8-T6+1,T10-T4+1)=A(T10,T8)
               DO T8=T2,MIN(T2+63,N)-
                DO T10=T6,MIN(T6+31,T4-1)
                  P2(T10-T6+1,T8-T2+1)=A(T10,T8)
                                                                      unroll by 4
               DO T8=T4,MIN(T2-2,T4+31)
                 OVER1=MOD(-1+N.4)
                DO T10=T2,MIN(N-OVER1,T2+60),4
TRSM
                  DO T12=T6.MIN(T6+31.T4-1)
                   A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
                   A(T8,T10+1)=A(T8,T10+1)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+1-T2+1)
                   A(T8,T10+2)=A(T8,T10+2)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+2-T2+1)
                   A(T8,T10+3)=A(T8,T10+3)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+3-T2+1)
                 DO T10=MAX(N-OVER1+1,T2),MIN(T2+63,N)
                  DO T12=T6.MIN(T4-1.T6+31)
                   A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
                                                                                            unroll cleanup
               DO T6=T4+1.MIN(T4+31.T2-2)
               DO T8=T2,MIN(N,T2+63)
                 DO T10=T4,T6-1
                  A(T6,T8)=A(T6,T8)-A(T6,T10)*A(T10,T8)
```


4. Automatically-Generated LU Code

```
IF (66<=T2)
             DO T4=1,T2-33,32
               DO T6=T2-1,N,32
                DO T8=T4,T4+31-
                 DO T10=T6,MIN(N,T6+31)
                  P3(T8-T4+1,T10-T6+1)=A(T10,T8)
                                                                                         data copy
                DO T8=T2,MIN(T2+63,N)-
                 DO T10=T4,T4+31
                  P4(T10-T4+1,T8-T2+1)=A(T10,T8)
                DO T8=T6,MIN(T6+31,N)
                                                                        unroll by 4
                 OVER2=MOD(-1+N,4)
GEMM
                 DO T10=T2,MIN(N-OVER2,T2+60),4
                  DO T12=T4.T4+31
                   A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
                   A(T8,T10+1)=A(T8,T10+1)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+1-T2+1)
                   A(T8,T10+2)=A(T8,T10+2)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+2-T2+1)
                   A(T8,T10+3)=A(T8,T10+3)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+3-T2+1)
                 DO T10=MAX(T2,N-OVER2+1),MIN(T2+63,N)
                  DO T12=T4.T4+31
                   A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
             DO T4=T2-1.MIN(N-1.T2+62)
                                                                                         unroll cleanup
             DO T8=T4+1,N
               A(T8,T4)=A(T8,T4)/A(T4,T4)
 Mini-LU
              DO T6=T4+1,MIN(T2+63,N)
               DO T8=T4+1,N
                A(T8,T6)=A(T8,T6)-A(T8,T4)*A(T4,T6)
```


Summary of Lecture

- Polyhedral compiler frameworks becoming more common
 - Mathematical manipulation of iteration spaces for transformations and code generation
 - Mostly applicable to affine domain
- Key concepts/abstractions
 - Dependence graph
 - Iteration spaces
 - Transformations rewrite iteration spaces
 - Code generation scans resulting iteration spaces to convert back to loops
- CHiLL-specific concepts
 - Auxiliary loops and alignment represent imperfect loop nests
 - Transformation and code generation algorithms manipulate this expanded iteration space

References

Other polyhedral and related compiler frameworks.

- **CLooG:** N. Vasilache, C. Bastoul, A. Cohen, "Polyhedral Code Generation in the Real World," Compiler Construction, A. Mycroft and A. Zeller ed., Lecture Notes in Computer Science, Springer Berlin / Heidelberg Publisher, pp. 185-201, Volume: 3923, 2006.
- **Graphite:** J. Sjödin, S. Pop, H. Jagasia, T. Grosser, A. Pop, "Design of Graphite and the Polyhedral Compilation Package". GCC Summit, 2009.
- **LooPo:** M. Griebl and C. Lengauer. "The Loop Parallelizer LooPo Announcement". In David Sehr, editor, Languages and Compilers for Parallel Computing (LCPC '96), number 1239, Lecture Notes in Computer Science, pp. 603-604, Springer-Verlag, 1997.
- F. Quillere, S. Rajopadhye, D. Wilde, "Generation of Efficient Nested Loops from Polyhedra". International Journal of Parallel Processing (IJPP), Volume 28, Number 5, pp. 469-498, Oct 2000.
- Omega: The Omega Calculator and Library, version 1.1.0 Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, Dave Wonnacott, Nov. 1996. http://www.cs.umd.edu/projects/omega/.
- **PLUTO:** U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, "PLUTO: A Practical and Fully Automatic Polyhedral Program Optimization System," Proc. ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation (PLDI 08), June 2008.
- WraPIT: S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam. Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies.

 International Journal of Parallel Programming, 34(3):261-317, June 2006.

ACACES 2011, L3: Polyhedral Compiler Technology