QIP 2020

A polynomial-time algorithm for ground states of spin trees

Nilin Abrahamsen

Local Hamiltonians

• Many-body spin system: n local Hilbert spaces $\mathfrak{H}_{\mathsf{V}} \simeq \mathbb{C}^d$,

$$\mathfrak{H}=\bigotimes_{v\in V}\mathfrak{H}_v,\quad |\mathfrak{H}|=d^n.$$

Local Hamiltonians

• Many-body spin system: n local Hilbert spaces $\mathfrak{H}_{\mathsf{v}} \simeq \mathbb{C}^d$,

$$\mathfrak{H}=\bigotimes_{v\in V}\mathfrak{H}_v,\quad |\mathfrak{H}|=d^n.$$

• Local Hamiltonian:

$$H = \sum_{e \in E} H_e \otimes I_{V \setminus e}.$$

• where $H_{(v,w)} \in \operatorname{Herm}(\mathfrak{H}_v \otimes \mathfrak{H}_w)$.

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $\|H_{\text{e}}\| \leq 1.$ Assume spectral gap $\Delta(H) = \Omega(1).$

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $\|H_{\text{e}}\| \leq 1.$ Assume spectral gap $\Delta(H) = \Omega(1).$

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $\|H_{\mathrm{e}}\| \leq 1$. Assume spectral gap $\Delta(H) = \Omega(1)$.

Output:

1. Ground state(s)

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $\|H_{\mathsf{e}}\| \leq 1$. Assume spectral gap $\Delta(H) = \Omega(1)$.

Output:

- 1. Ground state(s)
- A priori dⁿ parameters.

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $||H_e|| \leq 1$. Assume spectral gap $\Delta(H) = \Omega(1)$.

Output:

- 1. Ground state(s)
- A priori dⁿ parameters.
- Tensor network state Ansatz?
 Requires entanglement bound!

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $||H_e|| \leq 1$. Assume spectral gap $\Delta(H) = \Omega(1)$.

Output:

- 1. Ground state(s)
- A priori dⁿ parameters.
- Tensor network state Ansatz?
 Requires entanglement bound!

Input:

- 1. G = (V, E),
- 2. Interactions $(H_e)_{e \in E}$.

 $\|H_{\mathsf{e}}\| \leq 1$. Assume spectral gap $\Delta(H) = \Omega(1)$.

Output:

- 1. Ground state(s)
- A priori dⁿ parameters.
- Tensor network state Ansatz?
 Requires entanglement bound!

For $\Delta = o(1)$ QMA-hard [Kempe-Kitaev-Regev] even in 1D [Aharonov-Gottesman-Irani].

Efficient classical algorithm for spin chains (1D)

Efficient classical algorithm for spin chains (1D)

matrix product states
[Vidal]

Efficient classical algorithm for spin chains (1D)

matrix product states
[Vidal]

1D area law
[Hastings]
[Arad-Kitaev-Landau-Vazirani]

Efficient classical algorithm for spin chains (1D)

1D algorithm [Landau-Vazirani-Vidick] matrix product states [Vidal] 1D area law [Hastings] [Arad-Kitaev-Landau-Vazirani]

Other geometries e.g. lattices

Interaction tree

Interaction tree

• Assumption: fractal dimension $\beta < 2$.

Interaction tree

- Assumption: fractal dimension $\beta < 2$.
- Result: Area law and efficient classical algorithm

Interaction tree

- Assumption: fractal dimension $\beta < 2$.
- Result: Area law and efficient classical algorithm

First area law and efficient algorithm beyond spin chains

 $\mathcal{N}_{v \in T}(r) = \{ \text{vertices connected to v by path in T of length} \le r \}.$

 $\mathcal{N}_{v \in T}(r) = \{ \text{vertices connected to v by path in T of length} \le r \}.$

Condition:

$$|\mathcal{N}_{v \in T}(r)| = O(r^{\beta})$$
 for discrete fractal dimension $\beta < 2$.

2D DLA $\beta \approx 1.7$ [M83]

Definition

Discrete fractal dimension of T:
$$\beta = \sup_{v \in V, r > C} \frac{\log |\mathcal{N}_{v \in T}(r)|}{\log r}$$
.

Definition

Discrete fractal dimension of T:
$$\beta = \sup_{v \in V, r > C} \frac{\log |\mathcal{N}_{v \in T}(r)|}{\log r}$$
.

Deterministic example:

Model of branched polymers [Blumen et al. Macromolecules]

3D Vicsek tree

$$\beta = \log_3 7 = 1.77...$$

Results

Local Hamiltonian H on T with eigs $E_0 = \cdots = E_{D-1} < E_D \le \cdots$.

Ground states Spectral gap
$$\mathcal{Z}=\ker\left(H-E_0\right) \quad |\mathcal{Z}|=D \quad \Delta=E_D-E_{D-1}$$

Results

Local Hamiltonian H on T with eigs $E_0 = \cdots = E_{D-1} < E_D \leq \cdots$.

Ground states Spectral gap
$$\mathcal{Z} = \ker (H - E_0)$$
 $|\mathcal{Z}| = D$ $\Delta = E_D - E_{D-1}$

Theorem (Area law)

Let $T = L \sqcup R$ be a partition with $|\partial L| = O(1)$ and let $|\psi\rangle \in \mathcal{Z}$. There exists $|\phi\rangle \approx |\psi\rangle$ with

$$|\phi\rangle = \sum_{i=1}^{r} |\phi_i^L\rangle |\phi_i^R\rangle, \qquad r = D \exp(\tilde{O}(\Delta^{-\frac{\beta}{2-\beta}})).$$

Results

Local Hamiltonian H on T with eigs $E_0 = \cdots = E_{D-1} < E_D \leq \cdots$.

$$\begin{array}{ll} \text{Ground states} & \text{Spectral gap} \\ \mathcal{Z} = \ker \left(H - E_0 \right) & |\mathcal{Z}| = D & \Delta = E_D - E_{D-1} \end{array}$$

Theorem (Area law)

Let $T = L \sqcup R$ be a partition with $|\partial L| = O(1)$ and let $|\psi\rangle \in \mathcal{Z}$. There exists $|\phi\rangle \approx |\psi\rangle$ with

$$|\phi\rangle = \sum_{i=1}^{r} |\phi_i^L\rangle |\phi_i^R\rangle, \qquad r = D \exp(\tilde{O}(\Delta^{-\frac{\beta}{2-\beta}})).$$

Theorem (Algorithm)

If $D=n^{O(1)}$, can compute $\tilde{\mathcal{Z}}\prec\mathfrak{H}$ such that w.h.p. $\tilde{\mathcal{Z}}\approx_{\epsilon}\mathcal{Z}$ where $\epsilon=1/n^{10}$. Time complexity:

$$n^{O(\Delta^{-\frac{\beta+1}{2-\beta}})}$$
.

For subspaces $\mathcal{Y}, \mathcal{Z} \prec \mathfrak{H}$:

Definition

• $\mathcal{Y} \succ_{\delta} \mathcal{Z}$ if: For all unit $|z\rangle \in \mathcal{Z}$,

$$||P_{\mathcal{Y}}|z\rangle||^2 \ge 1 - \delta$$

• \approx_{δ} means " \succ_{δ} AND \prec_{δ} ".

For subspaces $\mathcal{Y}, \mathcal{Z} \prec \mathfrak{H}$:

Definition

• $\mathcal{Y} \succ_{\delta} \mathcal{Z}$ if: For all unit $|z\rangle \in \mathcal{Z}$,

$$||P_{\mathcal{Y}}|z\rangle||^2 \ge 1 - \delta$$

• \approx_{δ} means " \succ_{δ} AND \prec_{δ} ".

Given $\tilde{\mathcal{Z}} \approx_{\delta} \mathcal{Z}$, how to improve δ ?

Definition (AGSP [Arad-Landau-Vazirani-Vidick])

 $A \in \mathsf{Herm}(\mathfrak{H})$ is a σ -approximate projector (AGSP) onto $\mathcal{Z} \prec \mathfrak{H}$ if

For subspaces $\mathcal{Y}, \mathcal{Z} \prec \mathfrak{H}$:

Definition

• $\mathcal{Y} \succ_{\delta} \mathcal{Z}$ if: For all unit $|z\rangle \in \mathcal{Z}$,

$$||P_{\mathcal{Y}}|z\rangle||^2 \ge 1 - \delta$$

• \approx_{δ} means " \succ_{δ} AND \prec_{δ} ".

Given $\tilde{\mathcal{Z}} \approx_{\delta} \mathcal{Z}$, how to improve δ ?

Definition (AGSP [Arad-Landau-Vazirani-Vidick])

 $A \in \mathsf{Herm}(\mathfrak{H})$ is a σ -approximate projector (AGSP) onto $\mathcal{Z} \prec \mathfrak{H}$ if

1. $AZ \subset Z$ (hence $AZ^{\perp} \subset Z^{\perp}$).

For subspaces $\mathcal{Y}, \mathcal{Z} \prec \mathfrak{H}$:

Definition

• $\mathcal{Y} \succ_{\delta} \mathcal{Z}$ if: For all unit $|z\rangle \in \mathcal{Z}$,

$$||P_{\mathcal{Y}}|z\rangle||^2 \ge 1 - \delta$$

• \approx_{δ} means " \succ_{δ} AND \prec_{δ} ".

Given $\tilde{\mathcal{Z}} \approx_{\delta} \mathcal{Z}$, how to improve δ ?

Definition (AGSP [Arad-Landau-Vazirani-Vidick])

 $A \in \mathsf{Herm}(\mathfrak{H})$ is a σ -approximate projector (AGSP) onto $\mathcal{Z} \prec \mathfrak{H}$ if

- 1. $AZ \subset Z$ (hence $AZ^{\perp} \subset Z^{\perp}$).
- 2. A is a Dilation on \mathcal{Z} .

For subspaces $\mathcal{Y}, \mathcal{Z} \prec \mathfrak{H}$:

Definition

• $\mathcal{Y} \succ_{\delta} \mathcal{Z}$ if: For all unit $|z\rangle \in \mathcal{Z}$,

$$||P_{\mathcal{Y}}|z\rangle||^2 \ge 1 - \delta$$

• \approx_{δ} means " \succ_{δ} AND \prec_{δ} ".

Given $\tilde{\mathcal{Z}} \approx_{\delta} \mathcal{Z}$, how to improve δ ?

Definition (AGSP [Arad-Landau-Vazirani-Vidick])

 $A \in \mathsf{Herm}(\mathfrak{H})$ is a σ -approximate projector (AGSP) onto $\mathcal{Z} \prec \mathfrak{H}$ if

- 1. $AZ \subset Z$ (hence $AZ^{\perp} \subset Z^{\perp}$).
- 2. A is a Dilation on \mathcal{Z} .
- 3. A is σ -Lipschitz on \mathcal{Z}^{\perp} .

Viable subspaces

Let
$$T = \Omega_1 \sqcup \cdots \sqcup \Omega_k$$

so $\mathfrak{H} = \mathfrak{H}_{\Omega_1} \otimes \cdots \otimes \mathfrak{H}_{\Omega_k}$

Find local "solutions" $\mathcal{V}_j \prec \mathfrak{H}_{\Omega_j}$ such that $\mathcal{V}_1 \otimes \cdots \otimes \mathcal{V}_k \succ_{\delta} \mathcal{Z}$.

Viable subspaces

Let
$$T = \Omega_1 \sqcup \cdots \sqcup \Omega_k$$

so $\mathfrak{H} = \mathfrak{H}_{\Omega_1} \otimes \cdots \otimes \mathfrak{H}_{\Omega_k}$

Find local "solutions" $\mathcal{V}_j \prec \mathfrak{H}_{\Omega_j}$ such that $\mathcal{V}_1 \otimes \cdots \otimes \mathcal{V}_k \succ_{\delta} \mathcal{Z}$.

Definition ([Arad-Landau-Vazirani-Vidick])

Given $\mathcal{Z} \prec \mathfrak{H}_{LR}$ in bipartite \mathfrak{H}_{LR} . $\mathcal{V} \prec \mathfrak{H}_{L}$ is δ -viable for \mathcal{Z} if

$$\mathcal{V} \otimes \mathfrak{H}_R \succ_{\delta} \mathcal{Z}$$
.

Viable subspaces

Let
$$T = \Omega_1 \sqcup \cdots \sqcup \Omega_k$$

so $\mathfrak{H} = \mathfrak{H}_{\Omega_1} \otimes \cdots \otimes \mathfrak{H}_{\Omega_k}$

Find local "solutions" $\mathcal{V}_j \prec \mathfrak{H}_{\Omega_j}$ such that $\mathcal{V}_1 \otimes \cdots \otimes \mathcal{V}_k \succ_{\delta} \mathcal{Z}$.

Definition ([Arad-Landau-Vazirani-Vidick])

Given $\mathcal{Z} \prec \mathfrak{H}_{LR}$ in bipartite \mathfrak{H}_{LR} . $\mathcal{V} \prec \mathfrak{H}_{L}$ is δ -viable for \mathcal{Z} if

$$\mathcal{V} \otimes \mathfrak{H}_R \succ_{\delta} \mathcal{Z}$$
.

Given $\mathcal{V} \prec \mathfrak{H}_L$ which is δ -viable for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ in bipartite \mathfrak{H}_{LR} . How to improve \mathcal{V} ?

Given $\mathcal{V} \prec \mathfrak{H}_L$ which is δ -viable for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ in bipartite \mathfrak{H}_{LR} . How to improve \mathcal{V} ?

Let $OP_L = \{ \text{Linear operators } \mathfrak{H}_L \to \mathfrak{H}_L \}.$

Definition (σ -PAP)

A σ -PAP for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ is a **subspace** $\mathcal{A} \prec \mathit{OP}_L$ such that $\mathcal{A} \otimes \mathit{OP}_R$ contains a σ -AGSP onto \mathcal{Z} .

Given $\mathcal{V} \prec \mathfrak{H}_L$ which is δ -viable for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ in bipartite \mathfrak{H}_{LR} . How to improve \mathcal{V} ?

Let $OP_L = \{ \text{Linear operators } \mathfrak{H}_L \to \mathfrak{H}_L \}.$

Definition (σ -PAP)

A σ -PAP for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ is a **subspace** $\mathcal{A} \prec OP_L$ such that $\mathcal{A} \otimes OP_R$ contains a σ -AGSP onto \mathcal{Z} .

 $A \prec OP_L$ is viable for some σ -AGSP $A \in OP_{LR}$.

Given $\mathcal{V} \prec \mathfrak{H}_L$ which is δ -viable for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ in bipartite \mathfrak{H}_{LR} . How to improve \mathcal{V} ?

Let $OP_L = \{ \text{Linear operators } \mathfrak{H}_L \to \mathfrak{H}_L \}.$

Definition (σ -PAP)

A σ -PAP for $\mathcal{Z} \prec \mathfrak{H}_{LR}$ is a **subspace** $\mathcal{A} \prec \mathit{OP}_L$ such that $\mathcal{A} \otimes \mathit{OP}_R$ contains a σ -AGSP onto \mathcal{Z} .

 $A \prec OP_L$ is viable for some σ -AGSP $A \in OP_{LR}$.

Goal: Given region $L \subset T$, construct σ -PAP $\mathcal A$ with

$$|\mathcal{A}| \cdot \sigma \ll 1.$$

1D algorithm

1D algorithm [Arad-Landau-Vazirani-Vidick]:

Bird's eye view of algorithm

Bird's eye view of algorithm

Tree (this work)

META-tree

Given interaction tree

META-tree

Given interaction tree

Output state encoded as tensor network on META-tree:

Constructing a σ -PAP

Given subtree $L \subset V$ with $|\partial L| = O(1)$.

Objective: Construct $\sigma\text{-PAP }\mathcal{A}\prec\mathfrak{H}_{\mathit{L}}$ with target $pprox\mathcal{Z}$, and

$$\sigma\cdot |\mathcal{A}|\ll 1.$$

Constructing a σ -PAP

Given subtree $L \subset V$ with $|\partial L| = O(1)$.

Objective: Construct σ -PAP $\mathcal{A} \prec \mathfrak{H}_L$ with target $\approx \mathcal{Z}$, and

$$\sigma \cdot |\mathcal{A}| \ll 1$$
.

Constructing a $\sigma\text{-PAP}$

Objective:

Construct σ -PAP $\mathcal{A} \prec \mathfrak{H}_L$.

Constructing a σ -PAP

Objective:

Construct σ -PAP $\mathcal{A} \prec \mathfrak{H}_L$.

Lemma

Can construct $A \prec OP_L$ such that $I, H, \dots, H^m \in A_L \otimes OP_{BR}$, and

$$|\mathcal{A}| = m^{m/s + |B|}$$

A is **degree**-m **viable** for H.

Proof.

pigeonhole principle [Arad-Kitaev-Landau-Vazirani].

Lemma

 ${\mathcal A}$ degree-m viable for ${\mathcal H}$ \Rightarrow ${\mathcal A}$ is $\sigma ext{-PAP}$ for ${\mathcal Z}$ where

$$\sigma = \exp\Big[-\Omega\Big(m\sqrt{\Delta \over \|H\|}\Big)\Big].$$

Lemma

 ${\mathcal A}$ degree-m viable for H \Rightarrow ${\mathcal A}$ is σ -PAP for ${\mathcal Z}$ where

$$\sigma = \exp\left[-\Omega\left(m\sqrt{\frac{\Delta}{\|H\|}}\right)\right].$$

Proof.

$$\mathcal A$$
 degree- m viable for H

 ${\cal A}$ viable for Chebyshev AGSP [Arad-Kitaev-Landau-Vazirani].

Lemma

 \mathcal{A} degree-m viable for \tilde{H} \Rightarrow \mathcal{A} is σ -PAP for \mathcal{Z} where

$$\sigma = \exp\Big[-\Omega\Big(\frac{\mathit{m}}{\sqrt{\mathit{lbij}}}\Big)\Big] \xrightarrow{\mathit{trunc}} \exp\Big[-\Omega\Big(\frac{\mathit{m}}{\sqrt{|\mathit{Bi}|}}\Big)\Big].$$

Proof.

$${\mathcal A}$$
 degree- m viable for ${ ilde H}$

 ${\cal A}$ viable for Chebyshev AGSP [Arad-Kitaev-Landau-Vazirani].

Lemma

We can construct A such that $I, H, \dots, H^m \in A_L \otimes OP_{BR}$, and

$$|\mathcal{A}|=m^{\mathbf{m}/\mathbf{s}+|B|}.$$

Lemma

A is σ -PAP for Z where

$$\sigma = \exp \Big[-\Omega\Big(\frac{\mathit{m}}{\sqrt{|\mathit{phi}|}}\Big) \Big] \xrightarrow{\mathit{trunc}} \exp \Big[-\Omega\Big(\frac{\mathit{m}}{\sqrt{|\mathit{B}|}}\Big) \Big].$$

Lemma

We can construct A such that $I, H, \dots, H^m \in A_L \otimes OP_{BR}$, and

$$|\mathcal{A}| = m^{\mathbf{m/s} + |B|}.$$

Lemma

A is σ -PAP for Z where

$$\sigma = \exp \Big[-\Omega \Big(\frac{\mathbf{m}}{\sqrt{|\mathcal{B}|}} \Big) \Big] \xrightarrow{\mathit{trunc}} \exp \Big[-\Omega \Big(\frac{\mathbf{m}}{\sqrt{|\mathcal{B}|}} \Big) \Big].$$

By fractal dimension bound:

$$|B| \ll s^2$$

Lemma

We can construct A such that $I, H, \ldots, H^m \in A_L \otimes OP_{BR}$, and

$$|\mathcal{A}| = m^{m/s + |B|}.$$

Lemma

A is σ -PAP for \mathcal{Z} where

$$\sigma = \exp \Big[-\Omega \Big(\frac{\mathbf{m}}{\sqrt{|\mathcal{B}|}} \Big) \Big] \xrightarrow{\mathit{trunc}} \exp \Big[-\Omega \Big(\frac{\mathbf{m}}{\sqrt{|\mathcal{B}|}} \Big) \Big].$$

By fractal dimension bound:

$$|B| \ll s^2 \Rightarrow \frac{m}{\sqrt{|B|}} \gg m/s$$

Lemma

We can construct A such that $I, H, \dots, H^m \in A_L \otimes OP_{BR}$, and

$$|\mathcal{A}| = m^{m/s + |B|}.$$

Lemma

A is σ -PAP for Z where

$$\sigma = \exp \Big[-\Omega \Big(\frac{\mathbf{m}}{\sqrt{|\mathcal{B}|}} \Big) \Big] \xrightarrow{trunc} \exp \Big[-\Omega \Big(\frac{\mathbf{m}}{\sqrt{|\mathcal{B}|}} \Big) \Big].$$

By fractal dimension bound:

$$|B| \ll s^2 \Rightarrow \frac{m}{\sqrt{|B|}} \gg m/s \Rightarrow \sigma |A| \ll 1.$$

PAP constructed.

Open Questions

Extension to k-regular trees?

Does 3D lattice UST satisfy $\beta < 2$?

Thanks!

- [Hallgren-Nagaj-Narayanaswami] "The local Hamiltonian problem on a line with eight states is QMA-complete." arXiv preprint arXiv:1312.1469 (2013).
- [Aharonov-Gottesman-Irani] "The power of quantum systems on a line." Communications in Mathematical Physics 287.1 (2009): 41-65.
- [Bausch-Cubitt-Lucia] "Undecidability of the spectral gap in one dimension." arXiv preprint arXiv:1810.01858 (2018).
- [Vidal] Guifré Vidal.

Efficient classical simulation of slightly entangled quantum computations.

Phys. Rev. Lett., 91:147902, Oct 2003.

[Kempe-Kitaev-Regev] Julia Kempe, Alexei Kitaev, and Oded Regev.

The complexity of the local hamiltonian problem.

In Kamal Lodaya and Meena Mahajan, editors, FSTTCS 2004: Foundations of Software Technology and Theoretical

Computer Science, pages 372–383, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Aharonov et al.] Dorit Aharonov, Aram W Harrow, Zeph Landau, Daniel Nagaj, Mario Szegedy, and Umesh Vazirani.

Local tests of global entanglement and a counterexample to the generalized area law.

In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 246–255. IEEE, 2014.

[Anshu-Arad-Gosset]

Entanglement subvolume law for 2d frustration-free spin systems.

arXiv preprint arXiv:1905.11337, 2019.

[Arad-Kitaev-Landau-Vazirani] Itai Arad, Alexei Kitaev, Zeph Landau, and Umesh Vazirani.

An area law and sub-exponential algorithm for 1d systems. arXiv preprint arXiv:1301.1162, 2013.

[Arad-Kuwahara-Landau] Itai Arad, Tomotaka Kuwahara, and Zeph Landau.

Connecting global and local energy distributions in quantum spin models on a lattice.

Journal of Statistical Mechanics: Theory and Experiment, 2016(3):033301, 2016.

[Arad-Landau-Vazirani] Itai Arad, Zeph Landau, and Umesh Vazirani.

Improved one-dimensional area law for frustration-free systems.

Physical review b, 85(19):195145, 2012.

[Arad-Landau-Vazirani-Vidick] Itai Arad, Zeph Landau, Umesh Vazirani, and Thomas Vidick.

Rigorous RG algorithms and area laws for low energy eigenstates in 1D.

Communications in Mathematical Physics, 356(1):65–105, 2017.

[BM11] Martin T Barlow and Robert Masson.

Spectral dimension and random walks on the two dimensional uniform spanning tree.

Communications in mathematical physics, 305(1):23–57, 2011.

[B67] Adi Ben-Israel.

On the geometry of subspaces in euclidean n-spaces. SIAM Journal on Applied Mathematics, 15(5):1184–1198, 1967.

[BLPS01] Itai Benjamini, Russell Lyons, Yuval Peres, Oded Schramm, et al.

Uniform spanning forests.

The Annals of Probability, 29(1):1–65, 2001.

[Blumen et al. *Macromolecules*] A Blumen, Ch von Ferber, A Jurjiu, and Th Koslowski.

Generalized vicsek fractals: Regular hyperbranched polymers. *Macromolecules*, 37(2):638–650, 2004.

[Brandão-Harrow] Fernando GSL Brandao and Aram W Harrow. Product-state approximations to quantum states.

Communications in Mathematical Physics, 342(1):47–80, 2016.

[Bravyi-Gosset-Köng-Temme] Sergey Bravyi, David Gosset, Robert König, and Kristan Temme.

Approximation algorithms for quantum many-body problems. *Journal of Mathematical Physics*, 60(3):032203, 2019.

[CF16] Christopher T Chubb and Steven T Flammia.
Computing the degenerate ground space of gapped spin chains in polynomial time.

Chicago Journal OF Theoretical Computer Science, 9:1–35, 2016.

[CM16] Toby Cubitt and Ashley Montanaro. Complexity classification of local hamiltonian problems. SIAM Journal on Computing, 45(2):268–316, 2016.

[EG11] Glen Evenbly and Guifré Vidal.

Tensor network states and geometry.

Journal of Statistical Physics, 145(4):891–918, 2011.

[G06] Aurél Galántai and Cs J Hegedűs.
Jordan's principal angles in complex vector spaces.

Numerical Linear Algebra with Applications, 13(7):589–598, 2006.

[H06] Matthew B Hastings.

Solving gapped hamiltonians locally.

Physical review b, 73(8):085115, 2006.

[Hastings] Matthew B Hastings.

An area law for one-dimensional quantum systems.

Journal of Statistical Mechanics: Theory and Experiment, 2007(08):P08024, 2007.

[H91] Peter Hilton and Jean Pedersen.

Catalan numbers, their generalization, and their uses.

The Mathematical Intelligencer, 13(2):64-75, 1991.

[K14] M Kliesch, C Gogolin, MJ Kastoryano, A Riera, and J Eisert.

Locality of temperature.

Physical review x, 4(3):031019, 2014.

[Landau-Vazirani-Vidick] Zeph Landau, Umesh Vazirani, and Thomas Vidick.

A polynomial time algorithm for the ground state of one-dimensional gapped local hamiltonians.

Nature Physics, 11(7):566, 2015.

[L99] Gregory F Lawler.

Loop-erased random walk.

In *Perplexing problems in probability*, pages 197–217. Springer, 1999.

[M83] Paul Meakin.

Diffusion-controlled cluster formation in two, three, and four dimensions.

Physical Review A, 27(1):604, 1983.

[M15] Andras Molnar, Norbert Schuch, Frank Verstraete, and J Ignacio Cirac.

Approximating gibbs states of local hamiltonians efficiently with projected entangled pair states.

[P91] Robin Pemantle.

Choosing a spanning tree for the integer lattice uniformly. *The Annals of Probability*, pages 1559–1574, 1991.

[SDV06] Y-Y Shi, L-M Duan, and Guifre Vidal.

Classical simulation of quantum many-body systems with a tree tensor network.

Physical review a, 74(2):022320, 2006.

[S12] Brian Swingle.

Entanglement renormalization and holography.

Physical Review D, 86(6):065007, 2012.

[V08] Guifré Vidal.

Class of quantum many-body states that can be efficiently simulated.

Physical review letters, 101(11):110501, 2008.

[W92] Steven R White and Reinhard M Noack.

Real-space quantum renormalization groups.

Physical review letters, 68(24):3487, 1992.

[W10] David B Wilson.

Dimension of the loop-erased random walk in three dimensions.

Physical Review E, 82(6):062102, 2010.