Compilare in Stampatello

COGNOME:	
NOME:	
Matricola:	

Esercizio 1

Su un campione di 160 famiglie dell'Emilia-Romagna sono stati rilevati i consumi annui in beni tecnologici (dai espressi in migliaia di euro). Qui di seguito la distribuzione delle densità percentuali:

$[\mathbf{x}_j,$	$\mathbf{x}_{j+1})$	h_{j}
0.0	1.5	12.0833
1.5	3.0	23.7500
3.0	8.0	7.8750
8.0	20.0	0.5729

1.a (pt3.9/31) Calcolare il valore approssimativo della mediana.

1.b (pt1.2/31) Qual è la percentuale di famiglie spendono più del 55-esimo percentile $x_{0.55}$?

1.c (pt0.6/31) La media è pari a $\bar{x}=4$, senza disegnare l'istogramma, che forma distributiva dobbiamo aspettarci?

1.d (pt0.6/31) La spesa media è pari a 4.0009, mentre la varianza è pari a 10.6517. Se ogni famiglia diminuisse la propria spesa del 2%, quanto varrebbero la media e la varianza dei dati così trasformati?

Esercizio 2

2.a (pt3.9/31) Si consideri un'urna che ha 5 palline bianche, 5 nere e 5 verdi. Si estrae 3 volte **con** reinserimento. Sia X la variabile casuale che conta il numero di bianche su 3 estrazioni. Calcolare la probabilità che $X \le 1$.

2.b (pt1.2/31) Si consideri un'urna che ha 5 palline bianche, 5 nere e 5 verdi. Si estrae 3 volte **senza** reinserimento. Sia X la variabile casuale che conta il numero di bianche su 3 estrazioni. Calcolare la probabilità che $X \le 1$.

 ${\bf 2.c}~(pt0.6/31)$ Sia Xuna VC definita su $S_X=\{0,1,2,3\},$ posto Y=2Xricavare $S_Y.$

2.d (pt0.6/31) Sia X una VC, e siano $P(X \le 1) = 0.1$, P(X > 2) = 0.1. Calcolare

Esercizio 3

3.a (pt3.9/31) Un'urna contiene 2 palline numerate con $\boxed{0}$, 6 numerate con $\boxed{1}$ e 2 numerate con $\boxed{2}$. Si estrae 100 volte con reinserimento. Qual è la probabilità che la proporzione di palline col numero $\boxed{1}$ sia minore di 0.55?

Esercizio 4

4.a (pt0.9/31) Siano h_1 e h_2 due stimatori per θ , tali che

$$MSE(h_1) = \frac{\theta}{n^2}, \qquad MSE(h_2) = \frac{\theta}{n}$$

Quale dei due stimatori è più efficiente?

4.b (pt0.9/31) Siano T_1 e T_2 due test statistici per la stessa H_0 e con la stessa significatività α . Cosa significa dire che T_1 e più potente di T_2 ?

4.c (pt0.9/31) Definire la probabilità di significatività osservata.

4.d (pt0.9/31) Se in un test statistico che utilizza la statistica test t con 10 gradi di libertà $t_{\rm obs} = 1.4$, il $p_{\rm value}$ sarà maggiore o minore di 0.05? Perché?

Esercizio 5

Nel comune A si è condotta un'intervista per conoscere l'opinione dei cittadini sulla presenza di un inceneritore. Sono state intervistate 25 persone a cui è stato chiesto di esprimete l'opinione in una scala da zero a 100. È risultato un punteggio medio pari a $\hat{\mu}_A = 72.1$ con una standard deviation $\hat{\sigma}_A = 3.4$

5.a (pt0.9/31) Costruire un intervallo di confidenza al 95% per la proporzione dei favorevoli in popolazione.

5.b (pt3.0/31) Nel comune B si è condotta un'intervista analoga. Sono state intervistate 23 persone si è osservata una media pari $\mu_B = 69.6$ e una deviazione standard $\hat{\sigma}_B = 3.3$. Sotto ipotesi di omogeneità testare l'ipotesi che le medie dei due comuni siano uguali contro l'alternativa che siano diverse

Esercizio 6

Sono stati analizzati 15 comuni della provincia di Bologna e su ogni comune è stato rilevato il PIL pro capite del comune X, espresso in decine di migliaia di euro e un valore di percezione di qualità della vita Y (espresso su opportuna scala).

Qui di seguito le statistiche bivariate

$$\sum_{i=1}^{n} x_i = 29.3$$

$$\sum_{i=1}^{n} x_i^2 = 74.51$$

$$\sum_{i=1}^{n} x_i y_i = 242.81$$

$$\sum_{i=1}^{n} y_i = 110.8$$

$$\sum_{i=1}^{n} y_i^2 = 866.02$$

6.a (pt3.9/31) Stimare la previsione per x=1.6 nel modello di regressione dove Y viene spiegata da X.

6.b (pt1.2/31) Calcolare numericamente RSS:

$$RSS = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

6.c (pt0.6/31) Gli stimatori $\hat{\beta}_0$ e $\hat{\beta}_1$ sono consistenti? Perché?

6.d (pt0.6/31) Se in un modello di regressione con 11 dati, il residuo studentizzato del dato i è $\tilde{\epsilon}_i = 1.23$, cosa possiamo concludere?

6.e (pt0.6/31) Sia $\hat{\beta}_1$ lo stimatore dei minimi quadrati per β_1 . Scrivere il suo Standard Error teorico.