# Chapter 3 -Signature

Section 3.1 -  $\Sigma$ -protocols and the Fiat-Shamir Heuristic

Interactive Proof of Knowledge

Zero-knowledge

Legitimate prover knows (x, w)



#### **Endomorphism Ring**

An endomorphism given an elliptic curve is an isogeny (mapping),  $\varphi : E \rightarrow E$ 

The collection of all endomorphisms along with addition and noncommutative multiplication for the endomorphism ring of an elliptic curve

$$(f+g)(P) = f(P) + g(P)$$

$$(f \circ g)(P) = f(g(P))$$

#### Three interactive phases

Public key: E<sub>A</sub>

Private key (knowledge):  $End(E_A)$ 



- 1) Commitment: Prover randomly generates  $(E_1, End(E_1))$ . Sends  $E_1$  to verifier.
- 2) Challenge: Verifier randomly generates  $\phi_{chall}$ :  $E_1 \rightarrow E_2$  and sends  $\phi_{chall}$  to prover.
- 3) Response: Prover uses  $\operatorname{End}(E_1)$  and  $\phi_{\operatorname{chall}}$  to compute  $\operatorname{End}(E_2)$ . Then uses this and its knowledge to compute  $\phi_{\operatorname{resp}} : E_A \to E_2$ . Sends this to Verifier

Verifier who has the public key and  $E_2$  can easily check if  $\phi_{resp}$  is a correct isogeny

There are some complications but this is the main idea

#### Fiat-Shamir Transform



Interactive to non-interactive proof of knowledge

Single signing and single verifying stage without explicit communication

Key difference is prover computes its own challenge using an unpredictable hash function that changes drastically for different commitments or different messages

#### SQIsign.KeyGen Algorithm

**Input:**  $1^{\lambda}$  where  $\lambda$  is the security parameter

Output: Secret signing key sk and public verification key pk

Output: found a boolean indicating whether computation succeeded

Select a random KLPT\_secret\_key\_prime\_size-bit prime  $D_{\text{secret}} \equiv 3 \bmod 4$ 

An element is chosen  $\gamma \in O_0$  using the FullRepresentInteger algorithm. Also a random positive a  $< D_{\text{secret}}$  is chosen. Then a secret ideal is computed:  $I_{\text{secret}} = O_0 (\gamma(a+i) + O_0(D_{\text{secret}}))$ 

 $\alpha$ , found := KeyGenKLPT<sub>2•</sub>( $I_{\text{secret}}$ )

KeyGenKLPT returns a quaternion that will be used to connect  $I_{\text{secret}}$  to an equivalent ideal (a multiple of  $I_{\text{secret}}$ ) with a different norm

$$\chi_{I}(lpha) = I rac{\overline{lpha}}{\mathrm{nrd}(I)} \qquad J_{\mathrm{secret}} := \chi_{I_{\mathrm{secret}}}(lpha)$$

J<sub>secret</sub> is that equivalent ideal with power-of-2 norm

 $\varphi_{\text{secret}}, \_, \text{found} := \text{IdealTolsogenyEichler}_{2 \bullet}(J_{\text{secret}}, \mathcal{O}_0, B_{0,T})$ 

$$E_0: y^2 = x^3 + x$$

 $B_{0,T}$  is a basis for  $E_0[T]$ , the T-torsion subgroup of  $E_0$  (all points  $P_0$  on  $E_0$  such that  $[T]P_0 = \infty$ )

This is efficiently calculated (because T is smooth) by an algorithm similar to Pohlig-Hellman

$$E_A, \varphi_{\mathsf{secret}} := \mathsf{Normalized}(\varphi_{\mathsf{secret}})$$

The public key,  $E_A$ , is found using the Normalized algorithm and  $\phi_{secret}$  is updated to map to this curve

$$B_{A,T} := \varphi_{\text{secret}}(B_{0,T})$$

 $\phi_{\text{secret}}$  is applied to find a basis for the T-torsion subgroup of  $E_A^{-1}$ 

Let 
$$P$$
 be a point generating  $\ker \varphi_{\text{secret}} \cap E_0[2^f]$   
 $(P,Q) := \mathsf{CompleteBasis}_{2^f,p+1}(E_0,P)$ 

P is one of the basis points of the  $2^f$ -torsion subgroup of  $E_0$ . The other one, Q, is found using the CompleteBasis algorithm

$$Q := \varphi_{\operatorname{secret}}(Q)$$

The generating point Q on  $E_0$  is mapped to its image on  $E_A$ 

Set 
$$pk := E_A$$
  
Set  $sk := (\alpha, B_{A,T}, Q)$   
end if  
return  $sk, pk, found$ 

The signing key (the knowledge) is the connecting quaternion, T-torsion subgroup basis, and mapped basis point Q