Math104FinalPractice

Trustin Nguyen

December 16, 2023

Exercise 1:

• Suppose that $A \subseteq \mathbb{R}$ is a finite set. Prove that A cannot be dense in \mathbb{R} .

Proof. Suppose that A if finite, for contradiction. Then there exists a supremum of the set S. So for all $a \in A$, we have $a \le S$. Then we have

$$A \cap (S, \infty) = \emptyset$$

demonstrates and empty intersection with an open set. So A is not dense.

• Suppose that $A \subseteq \mathbb{R}$ satisfies the property:

A is bounded above, and sup $A \notin A$.

First, give an example of a set A which satisfies (*). Then, prove that any set A which satisfies (*) must have infinitely many elements.

Proof. One such set is A = (0,1). We have sup $A = 1 \notin (0,1)$. Suppose that we have a set that is bounded above and that sup $A \notin A$. Then for all $a \in A$, we have that $a \le \sup A$. Also, if we have M such that $a \le M$ for all $a \in A$, then $\sup A \le M$. Notice that our set must be non-empty. Then there exists an element such that $a_0 < \sup A$. Since a_0 is not the supremum, then there exists an element not in A larger. So $a_0 < a_1 < \sup A$. But we can continue this process forever. So the size of the set is infinite.

Exercise 2:

• Using the $\varepsilon - \delta$ definition of continuity, prove that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 6x - 5 is continuous on \mathbb{R} .

Proof. We need to show that $\forall \varepsilon > 0$, we have that $\exists \delta > 0$ such that if

$$|x - y| < \delta$$

then

$$|f(x) - f(y)| < \varepsilon$$

So we want to find when

$$|6x - 5 - (6y - 5)| < \varepsilon$$

$$|6x - 6y| < \varepsilon$$

$$6|x - y| < \varepsilon$$

$$|x - y| < \frac{\varepsilon}{6}$$

So there is a $\delta = \frac{\varepsilon}{6}$. And we are done.

• Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function. Must the set $g([0,1]) \subseteq \mathbb{R}$ be bounded? Must it be closed? Justify your answers.

Proof. We know that g([0,1]) is bounded. Suppose wlog that g([0,1]) is unbounded above. Then we have that there is a sequence $g(x_n)$ such that

$$g(x_1) < g(x_2) < \cdots$$

diverges to ∞ . Or we have $(a_n) < (g(x_n))$, where $a_n = n$.

Exercise 3:

• Prove that the series $\sum_{n=1}^{\infty} \frac{2+\sin n}{n^3+5}$ converges.

Proof. By comparison test, we have

$$\frac{2+\sin n}{n^3+5}\leqslant \frac{3}{n^3}$$

we also see that

$$\frac{3}{n^3} \leqslant \frac{1}{n^2}$$

when $n \ge 3$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, we have that $\sum_{n=1}^{\infty} \frac{2+\sin n}{n^3+5}$.

• Let $(a_n)_{n=1}^{\infty}$ be a sequence of strictly positive real numbers which satisfies $\lim_{n\to\infty} a_n = 2$. Determine if the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 \cdot a_n}$$

converges (always, sometimes, or never). Justify your answer.

Proof. The sequence always converges. Because we have that $\lim_{n\to\infty} a_n = 2$, this means that there is an N such that $\forall n > N$, we have

$$|a_n - 2| < 1$$

This means that

$$1 < a_n < 3$$

So we have that

$$\left| \frac{1}{n^2 \cdot a_n} \right| \le \frac{1}{n^2}$$

and that the RHS converges. Then so does the LHS by the comparison test. Since it converges when we sum for terms above N and for terms below N, we have that the entire sum converges. \Box

Exercise 4: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} .

• Prove that

$$\lim_{h \to 0^+} \frac{1}{h} \int_0^h f(x) \, dx = f(0)$$

Proof. Since f is continuous, then it is integrable, and we have

$$\lim_{h \to 0^+} \frac{1}{h} (F(h) - F(0)) = \lim_{h \to 0^+} F'(h) = f(0)$$

So this is the answer.

• Prove that if

$$\lim_{h\to 0^+}\frac{1}{h}\int_0^{1+h}f(x)\ dx \text{ exists (i.e. is some real number),}$$

then $\int_0^1 f(x) dx = 0$.

Proof.

Exercise 5:

• Consider the power series $\sum_{n=0}^{\infty} (\frac{1}{5})^n x^n$. Find all points $x \in \mathbb{R}$ for which this series converges.

Proof. This converges when

$$\lim \sup \left| \left(\frac{1}{5} \right)^n x^n \right|^{\frac{1}{n}} < 1$$

So we require

Now, checking the endpoints, we have

$$\sum_{n=0}^{\infty} 1^n$$

and

$$\sum_{n=0}^{\infty} (-1)^n$$

which both diverge. So the radius of convergence is (-5,5).

• Let $f(x) = \sum_{n=0}^{\infty} (\frac{1}{5})^n x^n$ for all x values for which the right-hand side is well-defined. Is f differentiable at x = 0? If so, explain why and find f'(0).

Proof. f is differentiable at x = 0 because the sum converges at x = 0. We need to verify that by the definition:

$$\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0}$$

converges. Then this is

$$\lim_{x \to 0} \frac{\sum_{n=0}^{\infty} (\frac{1}{5}x)^n - 1}{x} = \lim_{x \to 0} \frac{\sum_{n=1}^{\infty} (\frac{1}{5}x)^n}{x} = \lim_{x \to 0} \sum_{n=1}^{\infty} (\frac{1}{5})^n x^{n-1} = \frac{1}{5}$$

So this is the limit and the derivative.

Exercise 6: For $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be the function which satisfies

$$f_n(x) = \begin{cases} n & \text{if } x \in (0, \frac{1}{n}) \\ 0 & \text{if } x \in \{0\} \cup [\frac{1}{n}, 1]. \end{cases}$$

• Find the function $f:[0,1] \to \mathbb{R}$ so that $f_n \to f$ pointwise in [0,1], and justify.

Proof. The function converges to 0. We need to show that for all $x \in [0,1]$, we have for all $\varepsilon > 0$:

$$|f_n(x)| < \varepsilon$$

If we pick $n = \varepsilon/2$, we see that the function has a value of either $\varepsilon/2$ or 0 which is less than ε .

• Determine if $f_n \to f$ uniformly on [0, 1], and explain.

Proof. It converges uniformly because n does not depend on x.

Exercise 7:

- Show that if f is continuous with $f \ge 0$ and $\int_0^1 f(x) dx = 0$, then $f \equiv 0$.
- Give an example which shows the statement in the previous part may not be true if we do not assume f is continuous, and justify.

Exercise 8: Suppose that $(x_n)_{n=1}^{\infty}$ is convergent sequence in \mathbb{R} .

• Show that the set $\{x_n:n\in\mathbb{N}\}$ is compact. The set should be $\{x_n:n\in\mathbb{N}\}\cup\{\lim_{n\to\infty}x_n\}$.

Proof. We have that the set is bounded because it is a convergent sequence. This means that there is an N such that $\forall n > N$, we have

$$|x_n - L| < 1$$

Then we have that

$$-1 + L < x_n < 1 + L$$

So we see that (x_n) is bounded above by $\max(1+L,x_0,x_1,\ldots,x_N)$ and below by $\min(-1+L,x_0,x_1,\ldots,x_N)$. To show that it is closed, we need to prove that all the limits of any sequence in $M=\{x_n:n\in\mathbb{N}\}\cup\{\lim_{n\to\infty}x_n\}$ lies within the set. Suppose for contradiction that we had some other convergent series (y_n) where $y_n\in M$. Then we have

$$\lim_{n\to\infty} y_n = L' \neq L$$

Since there is infinitely many y_n , we must have some $x_m = y_n$ for any m > N. Consider the difference |L' - L|. First, we consider distances between y_i by the cauchy criterion, there is a B such that for all a, b > B, we have

$$|y_a - y_b| < |L' - L|/3$$

Now we also have a B' such that for all b' > B',

$$|y_{b'} - L'| < |L' - L|/3$$

and finally, there is a B" such that for some b'' > B'', we have

$$|y_{b''} - L| < |L' - L|/3$$

Now take $B''' = \max(B, B', B'')$, and we see that this situation is impossible, for some $y_{b'''}$ where b''' > B'''.

• Show that the set $\{x_n : n \in \mathbb{N}\}$ is not connected. The set should be assumed to have at least two distinct elements.

Proof. Suppose for contradiction that it was connected. Then we have that $J = \{x_n : n \in \mathbb{N}\}$ is a union of two open sets A_1, A_2 such that

$$- (A_1 \cap J) \cup (A_2 \cap J) = J,$$

-
$$A_1 \cap J$$
, $A_2 \cap J \neq \emptyset$,

$$- (A_1 \cap J) \cap (A_2 \cap J) = \emptyset.$$

Exercise 9: Suppose $f : \mathbb{R} \to \mathbb{R}$ is twice continuously differentiable (i.e. f' and f'' exist and are continuous on all of \mathbb{R}) with f(0) = 0 and f'(0) < 0.

• Prove that there exists $\varepsilon > 0$ such that

$$\frac{f(x)}{x} < 0$$

for all $x \in (-\varepsilon, \varepsilon) \setminus \{0\}$.

Proof. We see that

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}$$

Since $\frac{f(x)}{x}$ converges to some negative value, we have for $\epsilon=-\frac{f'(0)}{2}$ there is a δ such that for

$$|x| < \delta$$

we have

$$\left|\frac{f(x)}{x} - f'(0)\right| < \varepsilon$$

so this shows that $\frac{f(x)}{x}$ is less than 0 in an interval.

• Suppose f(1) = 1 (recall also from above that f(0) = 0 and f'(0) < 0). Show that for some $x \in [0,1]$ we must have f''(x) > 0.

Proof. By the MVT, we can see that there is an x_0 in (0,1) such that $f'(x_0) = 1$. Now applying the mean value theorem again, there exists an x_0' between $(0,x_0)$ such that

$$f''(x_0') = \frac{f'(x_0) - f'(0)}{x_0 - 0}$$

Then

$$f''(x_0') = \frac{1 - f'(0)}{x_0}$$

and because the numerator and denominator are positive, we have $f''(x'_0) > 0$. \Box