1

Assignment

Aryan Jain - EE22BTECH11011*

Question: A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize

- (a) atleast once
- (b) exactly once
- (c) atleast twice?

Solution: Let us define:

Parameter	Value	Description
n	50	number of lotteries
p	0.01	probability of winning a prize
q	0.99	probability of not winning
$\mu = np$	0.5	mean of the distribution
$\sigma^2 = npq$	0.495	variance of the distribution
Y	0,1,2,3,,50	Number of successes

(a) using Gaussian

the Gaussian distribution function is defined as:

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (x \in Y)$$
 (1)

the Q-function from the gaussian distribution:

$$Q(x) = \int_{x}^{\infty} p_{Y}(t) dt$$
 (2)

$$= \int_{x}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt \quad from(1)$$
 (3)

The CDF of Y is given by:

$$F_Y(x) = \int_{-\infty}^x P_Y(t) dt \tag{4}$$

$$=1-\int_{r}^{\infty}P_{Y}(t)\,dt\tag{5}$$

$$=1-Q(x) \tag{6}$$

The probabbility of winning the prize atleast once is given by:

$$\Pr(Y \ge 1) = 1 - F_Y(0) \tag{7}$$

$$= Q(0) \quad from(6) \tag{8}$$

$$=0.5$$

(b) using Gaussian

the probability of the person winning the prize exactly once is given by:

$$p_Y(1) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(1-\mu)^2}{2\sigma^2}} \quad from(1)$$
 (10)

$$= 0.44$$
 (11)

(c) using Gaussian

the probability of the person winning the prize atleast twice is given by:

$$\Pr(Y \ge 2) = 1 - F_Y(1) \tag{12}$$

$$= Q(1) \quad from(6) \tag{13}$$

$$= 0.158$$
 (14)

Gaussian vs Binomial Table

Y	Gaussian	Binomial
atleast one	0.5	0.395
exactly one	0.441	0.305
atleast two	0.158	0.089

Gaussian vs Binomial graph

