Plan

- Directions of Fea(LPP)
- Extreme directions of Fea(LPP)
- Representation Theorem for Fea(LPP)
- Necessary and sufficient conditions for the existence of optimal solutions
- Optimal solutions in atleast one corner point

• $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

then $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S = Fea(LPP).

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

then $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S = Fea(LPP). Throughout our discussion, $\mathbf{d} = [d_1, ..., d_n]^T$ will denote a column vector.

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

then $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S = Fea(LPP). Throughout our discussion, $\mathbf{d} = [d_1, ..., d_n]^T$ will denote a column vector.

• **Definition:** Given a non empty **convex set** S, $S \subset \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S if for all $\mathbf{x} \in S$, $\mathbf{x} + \alpha \mathbf{d} \in S$ for all $\alpha > 0$.

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

then $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S = Fea(LPP). Throughout our discussion, $\mathbf{d} = [d_1, ..., d_n]^T$ will denote a column vector.

- **Definition:** Given a non empty **convex set** S, $S \subset \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S if for all $\mathbf{x} \in S$, $\mathbf{x} + \alpha \mathbf{d} \in S$ for all $\alpha > 0$.
- If **d** is a direction of a convex set *S*, then for all $\gamma > 0$, $\mathbf{x} + \alpha \mathbf{d} = \mathbf{x} + (\frac{\alpha}{\gamma})\gamma \mathbf{d} \in S$ for all $\alpha > 0$,

- $Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}.$
- Observation 5: Suppose if a LPP has an unbounded feasible region, then there exists a vector d ≠ 0 such that starting from any x ∈ Fea(LPP) and moving in the positive direction of d, always gives elements of Fea(LPP).

then $\mathbf{d} \neq \mathbf{0}$ is called a **direction** of S = Fea(LPP). Throughout our discussion, $\mathbf{d} = [d_1, ..., d_n]^T$ will denote a column vector.

- Definition: Given a non empty convex set S, S ⊂ ℝⁿ,
 d ≠ 0 is called a direction of S if for all x ∈ S, x + αd ∈ S for all α ≥ 0.
- If **d** is a direction of a convex set S, then for all $\gamma > 0$, $\mathbf{x} + \alpha \mathbf{d} = \mathbf{x} + (\frac{\alpha}{\gamma})\gamma \mathbf{d} \in S$ for all $\alpha > 0$, $\Rightarrow \gamma \mathbf{d}$ is again a direction for all $\gamma > 0$.

• Directions $\mathbf{d}_1, \mathbf{d}_2$ of S are said to be distinct if $\mathbf{d}_1 \neq \gamma \mathbf{d}_2$ for any $\gamma > 0$ (or equivalently $\mathbf{d}_2 \neq \beta \mathbf{d}_1$ for any $\beta > 0$).

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min x + 2y

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min - x + 2ysubject to $x + 2y \ge 1$

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min - x + 2ysubject to $x + 2y \ge 1$ $-x + y \le 1$,

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min -x + 2ysubject to $x + 2y \ge 1$ $-x + y \le 1$, x > 0, y > 0.

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min -x + 2y subject to $x + 2y \ge 1$ $-x + y \le 1$, $x \ge 0, y \ge 0$.
- \bullet **d**₁ = [1, 1]^T, **d**'₁ = [2, 2]^T,...

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min -x + 2y subject to $x + 2y \ge 1$ $-x + y \le 1$, $x \ge 0, y \ge 0$.
- $\mathbf{d}_1 = [1, 1]^T$, $\mathbf{d}'_1 = [2, 2]^T$,... are all equal as directions of Fea(LPP).
- Similarly $\mathbf{d}_2 = [1, 0]^T$, $\mathbf{d}'_2 = [2, 0]^T$,...

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0

 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min -x + 2y subject to $x + 2y \ge 1$ $-x + y \le 1$, $x \ge 0, y \ge 0$.
- $\mathbf{d}_1 = [1, 1]^T$, $\mathbf{d}'_1 = [2, 2]^T$,... are all equal as directions of Fea(LPP).
- Similarly $\mathbf{d}_2 = [1,0]^T$, $\mathbf{d}_2' = [2,0]^T$,.. are all equal as directions of Fea(LPP).

- Directions d₁, d₂ of S are said to be distinct if d₁ ≠ γd₂ for any γ > 0
 (or equivalently d₂ ≠ βd₁ for any β > 0).
- Example 2: (revisited) Consider the problem, Min -x + 2y subject to $x + 2y \ge 1$ $-x + y \le 1$, $x \ge 0, y \ge 0$.
- $\mathbf{d}_1 = [1, 1]^T$, $\mathbf{d}'_1 = [2, 2]^T$,... are all equal as directions of Fea(LPP).
- Similarly $\mathbf{d}_2 = [1,0]^T$, $\mathbf{d}_2' = [2,0]^T$,... are all equal as directions of Fea(LPP).
- Whereas $\mathbf{d}_1 = [1, 1]^T$, $\mathbf{d}_2 = [1, 0]^T$ give two distinct directions.

 $S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0} \}$

 $S = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is given by

 $S = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is given by

 $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad A_{m \times n} \mathbf{d} \leq \mathbf{0}, \quad \mathbf{d} \geq \mathbf{0} \} \text{ or by }$

$$S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$$
 is given by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad A_{m \times n} \mathbf{d} \leq \mathbf{0}, \quad \mathbf{d} \geq \mathbf{0} \}$ or by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad \mathbf{a}_i^T \mathbf{d} \leq \mathbf{0}, \text{ for all } i = 1, 2, \dots, m, \quad \mathbf{d} > \mathbf{0} \}.$

$$S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$$
 is given by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad A_{m \times n} \mathbf{d} \leq \mathbf{0}, \quad \mathbf{d} \geq \mathbf{0} \}$ or by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad \mathbf{a}_i^T \mathbf{d} \leq \mathbf{0}, \text{ for all } i = 1, 2, \dots, m, \quad \mathbf{d} \geq \mathbf{0} \}.$

• If \mathbf{d}_1 , \mathbf{d}_2 are directions of S, then $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$ will again be a direction of S, for any α, β non negative

$$S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$$
 is given by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad A_{m \times n} \mathbf{d} \leq \mathbf{0}, \quad \mathbf{d} \geq \mathbf{0} \}$ or by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad \mathbf{a}_i^T \mathbf{d} \leq \mathbf{0}, \text{ for all } i = 1, 2, \dots, m, \quad \mathbf{d} \geq \mathbf{0} \}.$

• If \mathbf{d}_1 , \mathbf{d}_2 are directions of S, then $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$ will again be a direction of S, for any α, β non negative(as long as both α, β are not equal to zero, or $\alpha + \beta \neq 0$).

- Result: The set of all directions of
 - $S = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is given by

$$D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad A_{m \times n} \mathbf{d} \leq \mathbf{0}, \quad \mathbf{d} \geq \mathbf{0} \} \text{ or by }$$

$$D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \quad \mathbf{a}_i^T \mathbf{d} \leq 0, \text{ for all } i = \mathbf{0} \}$$

- 1, 2, ..., m, $d \ge 0$ }.
- If \mathbf{d}_1 , \mathbf{d}_2 are directions of S, then $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$ will again be a direction of S, for any α , β non negative(as long as both α , β are not equal to zero, or $\alpha + \beta \neq 0$).
- The set of all directions of S = Fea(LPP) is a convex set.

 Definition: A direction d of S is called an extreme direction of S, Definition: A direction d of S is called an extreme direction of S, if it cannot be written as a positive linear combination of two distinct directions of S, Definition: A direction d of S is called an extreme direction of S, if it cannot be written as a positive linear combination of two distinct directions of S, that is, if d an extreme direction of S and

• **Definition:** A direction **d** of *S* is called an **extreme direction** of *S*, if it **cannot** be written as a **positive linear combination** of two distinct directions of *S*, that is, if **d** an **extreme direction** of *S* and $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$, for $\alpha, \beta > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \in D$ then $\mathbf{d}_1 = \gamma \mathbf{d}_2$ for some $\gamma > 0$.

- **Definition:** A direction **d** of *S* is called an **extreme direction** of *S*, if it **cannot** be written as a **positive linear combination** of two distinct directions of *S*, that is, if **d** an **extreme direction** of *S* and $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$, for $\alpha, \beta > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \in D$ then $\mathbf{d}_1 = \gamma \mathbf{d}_2$ for some $\gamma > 0$.
- If D denotes the set of all directions of S ($D = \phi$ if S is bounded), then

- **Definition:** A direction **d** of *S* is called an **extreme direction** of *S*, if it **cannot** be written as a **positive linear combination** of two distinct directions of *S*, that is, if **d** an **extreme direction** of *S* and $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$, for $\alpha, \beta > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \in D$ then $\mathbf{d}_1 = \gamma \mathbf{d}_2$ for some $\gamma > 0$.
- If D denotes the set of all directions of S ($D = \phi$ if S is bounded), then $D' = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \geq \mathbf{0}, A\mathbf{d} \leq \mathbf{0}, \sum_i d_i = 1 \} \text{ is a set of all distinct directions of } S.$

- **Definition:** A direction **d** of *S* is called an **extreme direction** of *S*, if it **cannot** be written as a **positive linear combination** of two distinct directions of *S*, that is, if **d** an **extreme direction** of *S* and $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$, for $\alpha, \beta > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \in D$ then $\mathbf{d}_1 = \gamma \mathbf{d}_2$ for some $\gamma > 0$.
- If D denotes the set of all directions of S
 (D = φ if S is bounded), then
 D' = {d ∈ ℝⁿ : d ≥ 0, Ad ≤ 0, ∑_i d_i = 1} is a set of all distinct directions of S.
- Also each $\mathbf{d} \in D$ is of the form $\mathbf{d} = \alpha \mathbf{d}'$ for some $\mathbf{d}' \in D'$ where $\alpha = \sum_i \mathbf{d}_i (> 0)$.

- **Definition:** A direction **d** of *S* is called an **extreme direction** of *S*, if it **cannot** be written as a **positive linear combination** of two distinct directions of *S*, that is, if **d** an **extreme direction** of *S* and $\mathbf{d} = \alpha \mathbf{d}_1 + \beta \mathbf{d}_2$, for $\alpha, \beta > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \in D$ then $\mathbf{d}_1 = \gamma \mathbf{d}_2$ for some $\gamma > 0$.
- If D denotes the set of all directions of S
 (D = φ if S is bounded), then
 D' = {d ∈ ℝⁿ : d ≥ 0, Ad ≤ 0, ∑_i d_i = 1} is a set of all distinct directions of S.
- Also each $\mathbf{d} \in D$ is of the form $\mathbf{d} = \alpha \mathbf{d}'$ for some $\mathbf{d}' \in D'$ where $\alpha = \sum_i \mathbf{d}_i (> 0)$.

The set D' now looks exactly like the feasible region of a LPP.

• Since D' is like Fea(LPP) = S, if $D' \neq \phi$, D' must have atleast one extreme point.

- Since D' is like Fea(LPP) = S, if $D' \neq \phi$, D' must have at least one extreme point.
- Result: **d** is an extreme direction of *S* if and only if $\mathbf{d}' = \frac{\mathbf{d}}{\sum_i d_i}$ is an extreme point of D'.

- Since D' is like Fea(LPP) = S, if $D' \neq \phi$, D' must have atleast one extreme point.
- Result: **d** is an extreme direction of *S* if and only if $\mathbf{d}' = \frac{\mathbf{d}}{\sum_i d_i}$ is an extreme point of D'.
- If $D \neq \phi$, then $Fea(LPP) = S(\neq \phi)$ must have atleast one extreme direction.

- Since D' is like Fea(LPP) = S, if $D' \neq \phi$, D' must have atleast one extreme point.
- Result: **d** is an extreme direction of *S* if and only if $\mathbf{d}' = \frac{\mathbf{d}}{\sum_i d_i}$ is an extreme point of D'.
- If $D \neq \phi$, then $Fea(LPP) = S(\neq \phi)$ must have atleast one extreme direction.
- If $Fea(LPP) = S \neq \phi$ is unbounded then $D \neq \phi$ and S must have atleast one extreme direction.

- Since D' is like Fea(LPP) = S, if $D' \neq \phi$, D' must have atleast one extreme point.
- Result: **d** is an extreme direction of *S* if and only if $\mathbf{d}' = \frac{\mathbf{d}}{\sum_i d_i}$ is an extreme point of D'.
- If $D \neq \phi$, then $Fea(LPP) = S(\neq \phi)$ must have atleast one extreme direction.
- If $Fea(LPP) = S \neq \phi$ is unbounded then $D \neq \phi$ and S must have at least one extreme direction.
- The number of distinct extreme directions of S is finite (why?).

 The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to $n \mathbf{L} \mathbf{I}$ vectors,

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n **LI** vectors, so \mathbf{d} cannot lie on n **LI** hyperplanes of the (m+n) hyperplanes given by,

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n LI vectors, so \mathbf{d} cannot lie on n LI hyperplanes of the (m+n) hyperplanes given by,

$$\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}$$
 for $i = 1, 2, \dots, m$, and

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n **LI** vectors, so \mathbf{d} cannot lie on n **LI** hyperplanes of the (m+n) hyperplanes given by,

```
\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}\ for i = 1, 2, ..., m, and \{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_j^T \mathbf{d} = \mathbf{0}\}\ for j = 1, 2, ..., n.
```

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n **LI** vectors, so \mathbf{d} cannot lie on n **LI** hyperplanes of the (m+n) hyperplanes given by,

$$\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}\$$
 for $i = 1, 2, ..., m$, and $\{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_i^T \mathbf{d} = \mathbf{0}\}\$ for $j = 1, 2, ..., n$.

• If $\mathbf{d} \in D'$, is an extreme direction of S then it should lie on (n-1) LI hyperplanes of the above mentioned (m+n) hyperplanes,

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n **LI** vectors, so \mathbf{d} cannot lie on n **LI** hyperplanes of the (m+n) hyperplanes given by,

```
\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}\ for i = 1, 2, ..., m, and \{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_i^T \mathbf{d} = \mathbf{0}\}\ for j = 1, 2, ..., n.
```

If d ∈ D', is an extreme direction of S then it should lie on (n-1) LI hyperplanes of the above mentioned (m+n) hyperplanes, and the hyperplane {d ∈ Rⁿ : [1,1,...,1]d = 1}, which gives a collection of n LI hyperplanes.

- The extreme directions of S which are extreme points of D' (after suitable normalization) will lie on n LI hyperplanes defining D'.
- Since $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ cannot be orthogonal to n **LI** vectors, so \mathbf{d} cannot lie on n **LI** hyperplanes of the (m+n) hyperplanes given by,

```
\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}\ for i = 1, 2, ..., m, and \{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_i^T \mathbf{d} = \mathbf{0}\}\ for j = 1, 2, ..., n.
```

If d ∈ D', is an extreme direction of S then it should lie on (n-1) LI hyperplanes of the above mentioned (m+n) hyperplanes, and the hyperplane {d ∈ Rⁿ : [1,1,...,1]d = 1}, which gives a collection of n LI hyperplanes.

• Exercise: Check that if a $\mathbf{d} \in D$ lies on (n-1) LI hyperplanes (out of the (m+n) defining hyperplanes of D) given by $\{H_1, \ldots, H_{n-1}\}$, then $\{H, H_1, \ldots, H_{n-1}\}$ is LI where $H = \{\mathbf{d} \in \mathbb{R}^n : [1, 1, \ldots, 1]\mathbf{d} = 1\}$.

- Exercise: Check that if a $\mathbf{d} \in D$ lies on (n-1) LI hyperplanes (out of the (m+n) defining hyperplanes of D) given by $\{H_1, \ldots, H_{n-1}\}$, then $\{H, H_1, \ldots, H_{n-1}\}$ is LI where $H = \{\mathbf{d} \in \mathbb{R}^n : [1, 1, \ldots, 1]\mathbf{d} = 1\}$.
- Any $\mathbf{d} \in D$, which lies on (n-1) LI hyperplanes out of the (m+n) hyperplanes given by

- Exercise: Check that if a $\mathbf{d} \in D$ lies on (n-1) LI hyperplanes (out of the (m+n) defining hyperplanes of D) given by $\{H_1, \ldots, H_{n-1}\}$, then $\{H, H_1, \ldots, H_{n-1}\}$ is LI where $H = \{\mathbf{d} \in \mathbb{R}^n : [1, 1, \ldots, 1]\mathbf{d} = 1\}$.
- Any $\mathbf{d} \in D$, which lies on (n-1) LI hyperplanes out of the (m+n) hyperplanes given by $\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}$ for $i=1,2,\ldots,m$, and

- Exercise: Check that if a $\mathbf{d} \in D$ lies on (n-1) LI hyperplanes (out of the (m+n) defining hyperplanes of D) given by $\{H_1, \ldots, H_{n-1}\}$, then $\{H, H_1, \ldots, H_{n-1}\}$ is LI where $H = \{\mathbf{d} \in \mathbb{R}^n : [1, 1, \ldots, 1]\mathbf{d} = 1\}$.
- Any $\mathbf{d} \in D$, which lies on (n-1) LI hyperplanes out of the (m+n) hyperplanes given by $\{\mathbf{d} \in \mathbb{R}^n : \mathbf{a}_i^T \mathbf{d} = \mathbf{0}\}$ for $i=1,2,\ldots,m$, and $\{\mathbf{d} \in \mathbb{R}^n : -\mathbf{e}_j^T \mathbf{d} = \mathbf{0}\}$ for $j=1,2,\ldots,n$, is an extreme direction of S.

• Example 2: (revisited) Consider the problem, Min - x + 2y subject to

Example 2: (revisited) Consider the problem,
 Min -x + 2y
 subject to

Min
$$-x + 2y$$

subject to
 $x + 2y \ge 1$
 $-x + y \le 1$,

 $\begin{aligned} & \text{Min } -x + 2y \\ & \text{subject to} \\ & x + 2y \ge 1 \\ & -x + y \le 1, \\ & x \ge 0, y \ge 0. \end{aligned}$

Min
$$-x + 2y$$

subject to
 $x + 2y \ge 1$
 $-x + y \le 1$,
 $x \ge 0, y \ge 0$.

Min
$$-x + 2y$$

subject to
 $x + 2y \ge 1$
 $-x + y \le 1$,
 $x \ge 0, y \ge 0$.

Note that here the set of all directions of S is given by

• $D = \{ \mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} \leq 0, [-1, 1]\mathbf{d} \leq 0, \mathbf{d} \geq \mathbf{0} \}$. Also if $\mathbf{d} \in D$ is an extreme direction of S then it has to lie on exactly one of the hyperplanes given by

Min
$$-x + 2y$$

subject to
 $x + 2y \ge 1$
 $-x + y \le 1$,
 $x > 0, y > 0$.

- $D = \{ \mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} \le 0, [-1, 1]\mathbf{d} \le 0, \mathbf{d} \ge \mathbf{0} \}$. Also if $\mathbf{d} \in D$ is an extreme direction of S then it has to lie on exactly one of the hyperplanes given by
- (i) $\{\mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} = 0\},\$

subject to
$$x + 2y \ge 1$$

 $-x + y \le 1$, $x \ge 0, y \ge 0$.

Min - x + 2y

- $D = \{ \mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} \le 0, [-1, 1]\mathbf{d} \le 0, \mathbf{d} \ge \mathbf{0} \}$. Also if $\mathbf{d} \in D$ is an extreme direction of S then it has to lie on exactly one of the hyperplanes given by
- (i) $\{\mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} = 0\},\$
- (ii) $\{d \in \mathbb{R}^2 : [-1, 1]d = 0\},\$

• Example 2: (revisited) Consider the problem, Min - x + 2y

subject to
$$x + 2y \ge 1$$

 $-x + y \le 1$, $x \ge 0, y \ge 0$.

- D = {d∈ R²: [-1, -2]d ≤ 0, [-1, 1]d ≤ 0, d ≥ 0}.
 Also if d∈ D is an extreme direction of S then it has to lie on exactly one of the hyperplanes given by
- (i) $\{\mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} = 0\},\$
- (ii) $\{d \in \mathbb{R}^2 : [-1, 1]d = 0\},\$
- (iii) $\{d \in \mathbb{R}^2 : d_1 = 0\},$

• Example 2: (revisited) Consider the problem, Min - x + 2y

subject to
$$x + 2y \ge 1$$

 $-x + y \le 1$, $x > 0, y > 0$.

- D = {d∈ R²: [-1, -2]d ≤ 0, [-1, 1]d ≤ 0, d ≥ 0}.
 Also if d∈ D is an extreme direction of S then it has to lie on exactly one of the hyperplanes given by
- (i) $\{\mathbf{d} \in \mathbb{R}^2 : [-1, -2]\mathbf{d} = 0\},\$
- (ii) $\{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\},\$
- (iii) $\{d \in \mathbb{R}^2 : d_1 = 0\},$
- (iv) $\{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$

• Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.

- Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.
- Also if d ≥ 0, d ≠ 0, satisfies the condition d₁ = 0, then [-1,1]d ≤ 0 cannot be satisfied, hence such a d does not belong to D.

- Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.
- Also if d ≥ 0, d ≠ 0, satisfies the condition d₁ = 0, then [-1,1]d ≤ 0 cannot be satisfied, hence such a d does not belong to D.
- Hence if d ∈ D, is an extreme direction of S then it lies on of following Hyperplanes:

- Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.
- Also if d ≥ 0, d ≠ 0, satisfies the condition d₁ = 0, then [-1,1]d ≤ 0 cannot be satisfied, hence such a d does not belong to D.
- Hence if d ∈ D, is an extreme direction of S then it lies on of following Hyperplanes:
- $\bullet \ \{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\}, \, \{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$

- Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.
- Also if d ≥ 0, d ≠ 0, satisfies the condition d₁ = 0, then [-1,1]d ≤ 0 cannot be satisfied, hence such a d does not belong to D.
- Hence if d ∈ D, is an extreme direction of S then it lies on of following Hyperplanes:
- $\bullet \ \{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\}, \{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$
- $\mathbf{d}' = [1, 1]^T$ and any **positive scalar multiple** of \mathbf{d}' , are extreme directions of S = Fea(LPP).

- Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.
- Also if d ≥ 0, d ≠ 0, satisfies the condition d₁ = 0, then [-1,1]d ≤ 0 cannot be satisfied, hence such a d does not belong to D.
- Hence if d ∈ D, is an extreme direction of S then it lies on of following Hyperplanes:
- $\bullet \ \{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\}, \, \{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$
- $\mathbf{d}' = [1, 1]^T$ and any **positive scalar multiple** of \mathbf{d}' , are extreme directions of S = Fea(LPP).
- $\mathbf{d}'' = [1, 0]^T$ and any positive scalar multiple of \mathbf{d}'' , are extreme directions of S = Fea(LPP).

- Note that there exists no $d \ge 0$, $d \ne 0$ such that [-1, -2]d = 0.
- Also if d ≥ 0, d ≠ 0, satisfies the condition d₁ = 0, then [-1,1]d ≤ 0 cannot be satisfied, hence such a d does not belong to D.
- Hence if d ∈ D, is an extreme direction of S then it lies on of following Hyperplanes:
- $\bullet \ \{\mathbf{d} \in \mathbb{R}^2 : [-1, 1]\mathbf{d} = 0\}, \, \{\mathbf{d} \in \mathbb{R}^2 : d_2 = 0\}.$
- $\mathbf{d}' = [1, 1]^T$ and any **positive scalar multiple** of \mathbf{d}' , are extreme directions of S = Fea(LPP).
- $\mathbf{d}'' = [1, 0]^T$ and any positive scalar multiple of \mathbf{d}'' , are extreme directions of S = Fea(LPP).
- These are the only extreme directions of S = Fea(LPP).

• Theorem:

If $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty, then S has at least one extreme point.

• Theorem:

If $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty, then S has at least one extreme point.

 Remark: Note that the above result is not necessarily true for all polyhedral sets.

For example take any single half space, or say a straight line in \mathbb{R}^n , which are polyhedral sets, but does not have any extreme point.

• Theorem:

If $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty, then S has at least one extreme point.

- Remark: Note that the above result is not necessarily true for all polyhedral sets.
 For example take any single half space, or say a straight line in Rⁿ, which are polyhedral sets, but does not have.
 - line in \mathbb{R}^n , which are polyhedral sets, but does not have any extreme point.
- The theorem works for Fea(LPP) because of the non negativity constraints, that is because Fea(LPP) is given a supply of n LI hyperplanes, defining hyperplanes.

• Exercise: Can you find a nonempty polyhedral set S, $S \subset \mathbb{R}^2$ which has two defining hyperplanes but does not have any extreme point?

- Exercise: Can you find a nonempty polyhedral set S, S ⊂ R² which has two defining hyperplanes but does not have any extreme point?
- Exercise: Can you find a nonempty polyhedral set S, S ⊂ R³ which has two LI defining hyperplanes but does not have any extreme point?

- Exercise: Can you find a nonempty polyhedral set S, S ⊂ R² which has two defining hyperplanes but does not have any extreme point?
- Exercise: Can you find a nonempty polyhedral set S, S ⊂ R³ which has two LI defining hyperplanes but does not have any extreme point?
- Exercise: Is it possible to find a nonempty polyhedral set S, S ⊂ R³ which has three LI defining hyperplanes (not necessarily the nonnegativity constraints) but does not have any extreme point.

- Exercise: Can you find a nonempty polyhedral set S, S ⊂ R² which has two defining hyperplanes but does not have any extreme point?
- Exercise: Can you find a nonempty polyhedral set S, S ⊂ R³ which has two LI defining hyperplanes but does not have any extreme point?
- Exercise: Is it possible to find a nonempty polyhedral set S, S ⊂ R³ which has three LI defining hyperplanes (not necessarily the nonnegativity constraints) but does not have any extreme point.
- **Definition:** Given S, a nonempty subset of \mathbb{R}^n , and $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in S$, $\sum_{i=1}^k \lambda_i \mathbf{x}_i$, is called a convex combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$, where $0 \le \lambda_i \le 1$ for all $i = 1, 2, \dots, k$, and $\sum_{i=1}^k \lambda_i = 1$.

 All possible convex combinations of two distinct points gives a straight line segment with those two points as boundary points.

- All possible convex combinations of two distinct points gives a straight line segment with those two points as boundary points.
- All possible convex combinations of three non colinear points gives a triangle with those points as corner points.

- All possible convex combinations of two distinct points gives a straight line segment with those two points as boundary points.
- All possible convex combinations of three non colinear points gives a triangle with those points as corner points.
- All possible convex combinations of four points no three of which are colinear gives a quadrilateral.

- All possible convex combinations of two distinct points gives a straight line segment with those two points as boundary points.
- All possible convex combinations of three non colinear points gives a triangle with those points as corner points.
- All possible convex combinations of four points no three of which are colinear gives a quadrilateral.
- Result: Given $\phi \neq S \subset \mathbb{R}^n$, S is a convex set if and only if for all $k \in \mathbb{N}$, the convex combination of any k elements of S is again an element of S.

• Theorem: (Representation Theorem) If $S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty and if $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are the extreme points of S and $\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_r$ are the distinct extreme directions of S (the set of directions is empty if S is bounded) then $\mathbf{x} \in S$ if and only if • Theorem: (Representation Theorem) If $S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ is nonempty and if $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are the extreme points of S and $\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_r$ are the distinct extreme directions of S (the set of directions is empty if S is bounded) then $\mathbf{x} \in S$ if and only if $\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i + \sum_{i=1}^r \mu_i \mathbf{d}_i$ • Theorem: (Representation Theorem)

If $S = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is nonempty and if $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are the extreme points of S and $\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_r$ are the distinct extreme directions of S (the set of directions is empty if S is bounded) then $\mathbf{x} \in S$ if and only if

$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}_i + \sum_{j=1}^{r} \mu_j \mathbf{d}_j$$
 where $\mathbf{0} \le \lambda_i \le \mathbf{1}$ for all $i = 1, 2, \dots, k, \sum_i \lambda_i = \mathbf{1}$,

• Theorem: (Representation Theorem) If $S = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is nonempty and if $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are the extreme points of S and $\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_r$ are the distinct extreme directions of S (the set of directions is empty if S is bounded) then $\mathbf{x} \in S$ if and only if $\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i + \sum_{j=1}^r \mu_j \mathbf{d}_j$ where $0 \leq \lambda_i \leq 1$ for all $i = 1, 2, ..., k, \sum_i \lambda_i = 1$, and $\mu_i \geq 0$, for all i = 1, 2, ..., r.

- Theorem: (Representation Theorem) If $S = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is nonempty and if $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are the extreme points of S and $\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_r$ are the distinct extreme directions of S (the set of directions is empty if S is bounded) then $\mathbf{x} \in S$ if and only if $\mathbf{x} = \sum_{i=1}^k \lambda_i \mathbf{x}_i + \sum_{j=1}^r \mu_j \mathbf{d}_j$ where $0 \leq \lambda_i \leq 1$ for all $i = 1, 2, ..., k, \sum_i \lambda_i = 1$, and $\mu_i \geq 0$, for all i = 1, 2, ..., r.
- That is, x ∈ S ⇔ x can be written as a convex combination of the extreme points of S plus a non negative linear combination of the extreme directions of S.

• Observation 6: If S = Fea(LPP) is a nonempty bounded set then any $x \in S$ is a convex combination of the extreme points of S.

- Observation 6: If S = Fea(LPP) is a nonempty bounded set then any x ∈ S is a convex combination of the extreme points of S.
- Observation 7: Since D', the set of distinct directions of S (if it is nonempty) is a bounded set ($\mathbf{d} \ge \mathbf{0}$ and $\sum_{i=1}^{n} d_i = 1$),

- Observation 6: If S = Fea(LPP) is a nonempty bounded set then any x ∈ S is a convex combination of the extreme points of S.
- Observation 7: Since D', the set of distinct directions of S (if it is nonempty) is a bounded set (d ≥ 0 and ∑_{i=1}ⁿ d_i = 1), so any d ∈ D' is a convex combination of the extreme points of D'.

- Observation 6: If S = Fea(LPP) is a nonempty bounded set then any x ∈ S is a convex combination of the extreme points of S.
- Observation 7: Since D', the set of distinct directions of S (if it is nonempty) is a bounded set (d ≥ 0 and ∑_{i=1}ⁿ d_i = 1), so any d ∈ D' is a convex combination of the extreme points of D'.
- So any direction $\mathbf{d} \in D$ can be written as a nonnegative linear combination of the extreme directions of S.

Observation 8: Note that if there exists a d ∈ D such that
 c^Td < 0 then the LPP(*)

Observation 8: Note that if there exists a d ∈ D such that c^Td < 0 then the LPP(*)
 ((*) Min c^Tx,

Observation 8: Note that if there exists a d ∈ D such that c⁷d < 0 then the LPP(*)

((*) Min $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$)

- Observation 8: Note that if there exists a d ∈ D such that
 c^Td < 0 then the LPP(*)
 - ((*) Min $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$) does not have an optimal solution.

Observation 8: Note that if there exists a d ∈ D such that
 c^Td < 0 then the LPP(*)

((*) Min $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$) does not have an optimal solution.

Given $\mathbf{x} \in S$, and real M,

Observation 8: Note that if there exists a d ∈ D such that c^Td < 0 then the LPP(*)

((*) Min $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$) does not have an optimal solution. Given $\mathbf{x} \in S$, and real M, $\mathbf{c}^T (\mathbf{x} + \alpha \mathbf{d}) = \mathbf{c}^T \mathbf{x} + \alpha \mathbf{c}^T \mathbf{d} < M$,

$$\mathbf{c}^{\mathsf{T}}(\mathbf{x} + \alpha \mathbf{d}) = \mathbf{c}^{\mathsf{T}}\mathbf{x} + \alpha \mathbf{c}^{\mathsf{T}}\mathbf{d} < M$$
, for $\alpha > 0$ sufficiently large.

Observation 8: Note that if there exists a d ∈ D such that c^Td < 0 then the LPP(*)

((*) Min $\mathbf{c}^T \mathbf{x}$, subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$) does not have an optimal solution. Given $\mathbf{x} \in S$, and real M, $\mathbf{c}^T (\mathbf{x} + \alpha \mathbf{d}) = \mathbf{c}^T \mathbf{x} + \alpha \mathbf{c}^T \mathbf{d} < M$,

$$\mathbf{c}^{\mathsf{T}}(\mathbf{x} + \alpha \mathbf{d}) = \mathbf{c}^{\mathsf{T}}\mathbf{x} + \alpha \mathbf{c}^{\mathsf{T}}\mathbf{d} < M$$
, for $\alpha > 0$ sufficiently large.

• Exercise: If $\mathbf{c}^T \mathbf{d}_j \geq 0$ for all extreme directions \mathbf{d}_j of the nonempty and unbounded feasible region S of a LPP, then does it imply that $\mathbf{c}^T \mathbf{d} \geq 0$ for all directions $\mathbf{d} \in D$, of the feasible region S?

Exercise: If c^Td_j ≥ 0 for all extreme directions d_j of the nonempty and unbounded feasible region S of a LPP, then does it imply that c^Td ≥ 0 for all directions d ∈ D, of the feasible region S?
 Ans is yes.

- Exercise: If c^Td_j ≥ 0 for all extreme directions d_j of the nonempty and unbounded feasible region S of a LPP, then does it imply that c^Td ≥ 0 for all directions d ∈ D, of the feasible region S?
 Ans is yes.
- Observation 9: From the representation theorem of S we can see that if $S \neq \phi$ and $\mathbf{c}^T \mathbf{d}_j \geq 0$ for all j = 1, 2, ..., r, then LPP(*) has an optimal solution, and atleast one optimal solution is attained at an extreme point of S.

• Observation 10: From the representation theorem of S we can also see that if S = Fea(LPP) is nonempty and bounded then the LPP(*) has an optimal solution and the optimal value is attained in atleast one extreme point.

Observation 10: From the representation theorem of S we can also see that if S = Fea(LPP) is nonempty and bounded then the LPP(*) has an optimal solution and the optimal value is attained in atleast one extreme point.
 From the above observations we can conclude the

following:

- Observation 10: From the representation theorem of S we can also see that if S = Fea(LPP) is nonempty and bounded then the LPP(*) has an optimal solution and the optimal value is attained in atleast one extreme point.
 From the above observations we can conclude the following:
- Conclusion 1: If $S = Fea(LPP) \neq \phi$, then the LPP (*) has an optimal solution if and only if one of the following is true:

- Observation 10: From the representation theorem of S we can also see that if S = Fea(LPP) is nonempty and bounded then the LPP(*) has an optimal solution and the optimal value is attained in atleast one extreme point.
 From the above observations we can conclude the following:
- Conclusion 1: If $S = Fea(LPP) \neq \phi$, then the LPP (*) has an optimal solution if and only if one of the following is true:
- (i) S = Fea(LPP) is bounded (also seen before by using extreme value theorem)
 - (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \ge 0$ for all extreme directions \mathbf{d}_i of the feasible region S.

- Observation 10: From the representation theorem of S we can also see that if S = Fea(LPP) is nonempty and bounded then the LPP(*) has an optimal solution and the optimal value is attained in atleast one extreme point.
 From the above observations we can conclude the following:
- Conclusion 1: If $S = Fea(LPP) \neq \phi$, then the LPP (*) has an optimal solution if and only if one of the following is true:
- (i) S = Fea(LPP) is bounded (also seen before by using extreme value theorem)
 - (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \ge 0$ for all extreme directions \mathbf{d}_i of the feasible region S.

 Conclusion 2: If LPP (*) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.

- Conclusion 2: If LPP (*) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.
- Exercise: Give an example of a nonlinear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a closed and bounded polyhedral subset of \mathbb{R} , (what are these sets?) such that f has a minimum value in S but the minimum value is not attained at any extreme point of S.

- Conclusion 2: If LPP (*) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.
- Exercise: Give an example of a nonlinear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a closed and bounded polyhedral subset of \mathbb{R} , (what are these sets?) such that f has a minimum value in S but the minimum value is not attained at any extreme point of S.
- Conclusion 3: If S = Fea(LPP) is nonempty,

- Conclusion 2: If LPP (*) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.
- Exercise: Give an example of a nonlinear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a closed and bounded polyhedral subset of \mathbb{R} , (what are these sets?) such that f has a minimum value in S but the minimum value is not attained at any extreme point of S.
- Conclusion 3: If S = Fea(LPP) is nonempty, and there exists an $M \in \mathbb{R}$ such that for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} \ge M$,

- Conclusion 2: If LPP (*) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.
- Exercise: Give an example of a nonlinear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a closed and bounded polyhedral subset of \mathbb{R} , (what are these sets?) such that f has a minimum value in S but the minimum value is not attained at any extreme point of S.
- Conclusion 3: If S = Fea(LPP) is nonempty, and there exists an $M \in \mathbb{R}$ such that for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} \geq M$, then the LPP (*) has an optimal solution.

 To understand the significance of the previous result solve the following problems.

- To understand the significance of the previous result solve the following problems.
- Exercise: Give an example of a linear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is not a polyhedral subset of \mathbb{R} , such that $f(x) \ge 1$ but f does not have a minimum value in S.

- To understand the significance of the previous result solve the following problems.
- Exercise: Give an example of a linear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is not a polyhedral subset of \mathbb{R} , such that $f(x) \ge 1$ but f does not have a minimum value in S.
- Exercise: Give an example of a nonlinear function $f: S \to \mathbb{R}$, where $S \subset \mathbb{R}$ is a polyhedral subset of \mathbb{R} , such that $f(x) \ge 1$ but f does not have a minimum value in S.

 We can come to similar conclusions if we consider a linear programming problem, LPP(**) as We can come to similar conclusions if we consider a linear programming problem, LPP(**) as

(**)Max $\mathbf{c}^T \mathbf{x}$

 We can come to similar conclusions if we consider a linear programming problem, LPP(**) as

(**)Max $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$.

- We can come to similar conclusions if we consider a linear programming problem, LPP(**) as
 (**)Max c^Tx
- Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:

subject to Ax < b, x > 0.

- We can come to similar conclusions if we consider a linear programming problem, LPP(**) as
 - (**)Max $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$.
- Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:
 - (i) S = Fea(LPP) is bounded

- We can come to similar conclusions if we consider a linear programming problem, LPP(**) as
 - (**)Max $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$.
- Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:
 - (i) S = Fea(LPP) is bounded
 - (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \leq 0$ for all extreme directions \mathbf{d}_j of the feasible region S.

- We can come to similar conclusions if we consider a linear programming problem, LPP(**) as
 - (**)Max $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$.
- Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:
 - (i) S = Fea(LPP) is bounded (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \leq 0$ for all extreme directions \mathbf{d}_i of the feasible region S.
- Conclusion 2a: If a LPP (**) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.

 We can come to similar conclusions if we consider a linear programming problem, LPP(**) as
 (**)Max c^Tx

subject to Ax < b, x > 0.

- Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:
 - (i) S = Fea(LPP) is bounded (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \leq 0$ for all extreme directions \mathbf{d}_i of the feasible region S.
- Conclusion 2a: If a LPP (**) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.
- Conclusion 3a: If S = Fea(LPP) is nonempty, and there exists an $M \in \mathbb{R}$ such that for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} \leq M$,

- We can come to similar conclusions if we consider a linear programming problem, LPP(**) as
 (**)Max c^Tx
 subject to Ax < b, x > 0.
- Conclusion 1a: If $S = Fea(LPP) \neq \phi$, then the LPP (**) has an optimal solution if and only if one of the following is true:
 - (i) S = Fea(LPP) is bounded (ii) S = Fea(LPP) is unbounded and $\mathbf{c}^T \mathbf{d}_j \leq 0$ for all extreme directions \mathbf{d}_i of the feasible region S.
- Conclusion 2a: If a LPP (**) has an optimal solution then there exists an extreme point of the feasible region S, which is an optimal solution.
- Conclusion 3a: If S = Fea(LPP) is nonempty, and there exists an $M \in \mathbb{R}$ such that for all $\mathbf{x} \in S$, $\mathbf{c}^T \mathbf{x} \leq M$, then the LPP (**) has an optimal solution.