ST2131 AY21/22 SEM 2

github/jovyntls

01. COMBINATORIAL ANALYSIS

tricky - E18, E20-22, E23, E26

The Basic Principle of Counting

- combinatorial analysis → the mathematical theory of counting
- basic principle of counting \rightarrow Suppose that two experiments are performed. If exp1 can result in any one of m possible outcomes and if, for each outcome of exp1, there are n possible outcomes of exp2, then together there are mn possible outcomes of the two experiments.
- generalized basic principle of counting \rightarrow If r experiments are performed such that the first one may result in any of n_1 possible outcomes and if for each of these n_1 possible outcomes, and if ..., then there is a total of $n_1 \cdot n_2 \cdot \cdots \cdot n_r$ possible outcomes of r experiments.

Permutations

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event.

N2 - there are n! different arrangements for n objects.

N3 - there are $\frac{n!}{n_1! n_2! \dots n_r!}$ different arrangements of n objects, of which n_1 are alike, n_2 are alike, ..., n_r are alike.

Combinations

N4 - $\binom{n}{r} = \frac{n!}{(n-r)! \, r!}$ represents the number of different groups of size r that could be selected from a set of n objects when the order of selection is not considered

N4b -
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$

Proof. If object 1 is chosen $\Rightarrow \binom{n-1}{r-1}$ ways of choosing the remaining objects. If object 1 is not chosen $\Rightarrow \binom{n-1}{n}$ ways of choosing the remaining objects.

N5 - The Binomial Theorem -
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Proof. by mathematical induction: n=1 is true; expand; sub dummy variable; combine using N4b; combine back to final term

Multinomial Coefficients

 $\mathbf{N6} \cdot {n \choose n_1,n_2,\dots,n_r} = \frac{n!}{n_1!\,n_2!\dots n_r!} \text{ represents the number of possible divisions of } n_1!$ n distrinct objects into r distinct groups of respective sizes n_1, n_2, \ldots, n_3 , where $n_1 + n_2 + \cdots + n_r = n$

$$\begin{array}{l} \textit{Proof.} \text{ using basic counting principle,} \\ &= \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \dots \binom{n-n_1-n_2-n_{r-1}}{n_r} \\ &= \frac{n!}{(n-n_1)!} \sum_{\substack{n_1 \mid n_1 \mid n_$$

$$\begin{array}{l} \text{N7 - The Multinomial Theorem: } (x_1 + x_2 + \dots + x_r)^n \\ = \sum\limits_{(n_1,\dots,n_r): n_1 + n_2 + \dots + n_r = n} \frac{n!}{n_1! \, n_2! \, \dots n_r!} x_1^{n_1} \, x_2^{n_2} \, \dots x_r^{n_r} \end{array}$$

Number of Integer Solutions of Equations

N8 - there are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \dots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$, $x_i > 0$, $i = 1, 2, \ldots, r$! cannot be directly applied to N8 as 0 value is not included

N9 - there are $\binom{n+r-1}{r-1}$ distinct *non-negative* integer-valued vectors (x_1, x_2, \dots, x_r) satisfying $x_1 + x_2 + \dots + x_r = n$

Proof. let
$$y_k = x_k + 1 \Rightarrow y_1 + y_2 + \cdots + y_r = n + r$$

02. AXIOMS OF PROBABILITY

Sample Space and Events

- sample space → The set of all outcomes of an experiment (where outcomes are not predictable with certainty)
- event → Any subset of the sample space
- **union** of events E and $F \to E \cup F$ is the event that contains all outcomes that are either in E or F (or both).
- intersection of events E and $F \to E \cap F$ or EF is the event that contains all outcomes that are both in E and in F.
- **complement** of $E \to E^c$ is the event that contains all outcomes that are *not* in E.
- **subset** $\to E \subset F$ is all of the outcomes in E that are also in F.
 - $E \subset F \land F \subset E \Rightarrow E = F$

DeMorgan's Laws

$$(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c$$

Proof. to show LHS \subset RHS: let $x \in (\bigcup_{i=1}^n E_i)^c$ $\begin{array}{l} \Rightarrow x\notin \bigcup_{i=1}^n E_i \Rightarrow x\notin E_1 \text{ and } x\notin E_2\dots \text{ and } x\notin E_n\\ \Rightarrow x\in E_1^c \text{ and } x\in E_2^c\dots \text{ and } x\in E_n^c \end{array}$ $\begin{array}{c} \Rightarrow x \in \bigcap_{i=1}^n E_i^c \\ \text{to show RHS} \subset \text{LHS: let } x \in \bigcap_{i=1}^n E_i^c \end{array}$

$$(\bigcap_{i=1}^{n} \mathbf{E_i})^{\mathbf{c}} = \bigcup_{i=1}^{n} \mathbf{E_i^{\mathbf{c}}}$$

Proof. using the first law of DeMorgan, negate LHS to get RHS

Axioms of Probability

definition 1: relative frequency

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

problems with this definition:

- 1. $\frac{n(E)}{n}$ may not converge when $n \to \infty$
- 2. $\frac{n(E)}{n}$ may not converge to the same value if the experiment is repeated

definition 2: Axioms

Consider an experiment with sample space S. For each event E of the sample space S, we assume that a number P(E) is definned and satisfies the following 3 axioms:

- 1. 0 < P(E) < 1
- 2. P(S) = 1
- 3. For any sequence of mutually exclusive events E_1, E_2, \ldots (i.e., events for which $E_i E_i = \emptyset$ when $i \neq j$),

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

P(E) is the probability of event E

Simple Propositions

$$\mathbf{N1} \cdot P(\emptyset) = 0$$

N2 -
$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i)$$
 (aka axiom 3 for a finite n)

N3 - strong law of large numbers - if an experiment is repeated over and over again, then with probability 1, the proportion of time during which any specific event E occurs will be equal to P(E).

N6 - the definitions of probability are mathematical definitions. They tell us which se functions can be called **probability functions**. They do not tell us what value a probability function $P(\cdot)$ assigns to a given event E.

probability function \iff it satisfies the 3 axioms.

N7 - $P(E_c) = 1 - P(E)$

N8 - if $E \subset F$, then P(E) < P(F)

N9 - $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

N10 - Inclusion-Exclusion identity where n=3

$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$
$$-P(EF) - P(EG) - P(FG)$$
$$+ P(EFG)$$

N11 - Inclusion-Exclusion identity -

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots$$

$$+ (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots$$

$$+ (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

Proof. Suppose an outcome with probability ω is in exactly m of the events E_i , where m > 0. Then

LHS: the outcome is in $E_1 \cup E_2 \cup \cdots \cup E_n$ and ω will be counted once in $P(E_1 \cup E_2 \cup \cdots \cup E_n)$

- the outcome is in exactly m of the events E_i and ω will be counted exactly $\binom{m}{1}$ times in $\sum_{i=1}^{n} P(E_i)$
- the outcome is contained in ${m \choose 2}$ subsets of the type $E_{i_1}E_{i_2}$ and ω will be counted ${m \choose 2}$ times in $\sum_{i_1 < i_2} \overset{\frown}{P}(E_{i_1}E_{i_2})$
- ... and so on

hence RHS =
$$\binom{m}{1}\omega - \binom{m}{2}\omega + \binom{m}{3}\omega - \cdots \pm \binom{m}{m}\omega$$
 = $\omega\sum_{i=0}^{m}\binom{m}{i}(-1)^i$ = binomial theorem where $x=-1,y=1=0$ = LHS

e.g. For an outcome with probability ω and n=3

• Case 1. $w = P(E_1 E_2)$ LHS = ω RHS = $(\omega + \omega + 0) - (\omega + 0 + 0) + 0 = \omega$

• Case 2. $\omega = P(E_1 \cap E_2 \cap E_3)$ RHS = $(\omega + \omega + \omega) - (\omega + \omega + \omega) + \omega = \omega$

N12 -

(i)
$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i)$$

(ii)
$$P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j)$$

(iii)
$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j) + \sum_{k < j < i} P(E_i E_j E_k)$$

$$\begin{split} \textit{Proof.} \quad & \bigcup_{i=1}^{n} E_{i} = E_{1} \cup E_{1}^{c} E_{2} \cup E_{1}^{c} E_{2}^{c} E_{3} \cup \cdots \cup E_{1}^{c} E_{2}^{c} \ldots E_{n-1}^{c} E_{n} \\ & P(\bigcup_{i=1}^{n} E_{i}) = P(E_{1}) + P(E_{1}^{c} E_{2}) + P(E_{1}^{c} E_{2}^{c} E_{3}) + \cdots + P(E_{1}^{c} E_{2}^{c} \ldots E_{n-1}^{c} E_{n}) \end{split}$$

Sample Space having Equally Likely Outcomes

tricky - 14, 15, 16, 18, 19, 20

Consider an experiment with sample space $S = \{e_1, e_2, \dots, e_n\}$. Then

 $P(\{e_1\}) = P(\{e_2\}) = \cdots = P(\{e_n\}) = \frac{1}{n} \quad \text{or} \quad P(\{e_i\}) = \frac{1}{n}.$ N1 - for any event E, $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# \text{ of outcomes in } E}{n}$

increasing sequence of events $\{E_n, n \geq 1\} \rightarrow$

 $E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \cdots$

$$\begin{split} &\lim_{n\to\infty}E_n=\bigcup_{i=1}^\infty E_i\\ & \text{decreasing sequence} \text{ of events } \{E_n,n\geq 1\}\to\\ &E_1\supset E_2\supset\cdots\supset E_n\supset E_{n+1}\supset\ldots\\ &\lim_{n\to\infty}E_n=\bigcap_{i=1}^\infty E_i \end{split}$$

03. CONDITIONAL PROBABILITY AND INDEPENDENCE

tricky - E6, urns (p.37)

Conditional Probability

N1 - if
$$P(F)>0$$
. then $P(E|F)=\frac{P(E\cap F)}{P(F)}$
N2 - multiplication rule - $P(E_1E_2\dots E_n)=P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\dots P(E_n|E_1E_2\dots E_{n-1})$

N3 - axioms of probability apply to conditional probability

- 1. 0 < P(E|F) < 1
- 2. P(S|F) = 1 where S is the sample space
- 3. If E_i $(i \in \mathbb{Z}_{\geq 1})$ are mutually exclusive events, then

$$P(\bigcup_{1}^{\infty} E_i|F) = \sum_{1}^{\infty} P(E_i|F)$$

N4 - If we define Q(E) = P(E|F), then Q(E) can be regarded as a probability function on the events of S, hence all results previously proved for probabilities apply.

- $Q(E_1 \cup E_2) = Q(E_1) + Q(E_2) Q(E_1 E_2)$
- $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) P(E_1E_2|F)$
- theorem of total probability: $Q(E_1) = Q(E_1|E_2)Q(E_2) + Q(E_1|E_2^c)Q(E_2^c)$

Total Probability & Bayes' Theorem

conditioning formula - $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$ tree diagram -

$$P(F) \rightarrow F \xrightarrow{P(E|F)} E \qquad P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)}$$

$$P(E|F^c) \rightarrow E \qquad P(F^c|E) = \frac{P(EF^c)}{P(E)} = \frac{P(F^c) \cdot P(E|F^c)}{P(E)}$$

$$P(E|F^c) \rightarrow E \qquad P(F^c|E) = \frac{P(EF^c)}{P(E)} = \frac{P(F^c) \cdot P(E|F^c)}{P(E)}$$

Total Probability

theorem of total probability - Suppose F_1, F_2, \ldots, F_n are mutually exclusive events such that $\bigcup_{i=1}^n F_i = S$, then $P(E) = \sum_{i=1}^n P(EF_i) = \sum_{i=1}^n P(F_i) P(E|F_i)$

Bayes Theorem

$$P(F_j|E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E|F_j)}{\sum_{i} P(F_i)P(E|F_i)}$$

application of bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let *A* be the event that the person test positive for a disease.

 B_1 : the person has the disease. B_2 : the person does not have the disease.

true positives: $P(B_1 \mid A)$ false positives: $P(A \mid B_2)$ false negatives: $P(\bar{A} \mid B_1)$ true negatives: $P(\bar{A} \mid B_2)$

Independent Events

N1 - E and F are independent $\iff P(EF) = P(E) \cdot P(F)$

N2 - E and F are independent $\iff P(E|F) = P(E)$

N3 - if E and F are independent, then E and F^c are independent.

N4 - if E, F, G are independent, then E will be independent of any event formed from F and G. (e.g. $F \cup G$)

N5 - if E, F, G are independent, then P(EFG) = P(E)P(F)P(G)

N6 - if E and F are independent and E and G are independent,

 $\Rightarrow E$ and FG are independent

N7 - For independent trials with probability p of success, probability of m successes before n failures, for $m, n \geq 1$,

method 1 method 2
$$P_{n,m} = \sum_{k=n}^{P_{n-1,m}} A \text{ win} P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} = P(\text{exactly } k \text{ successes in } m+n-1 \text{ trials})$$

recursive approach to solving probabilities: see page 85 alternative approach

04. RANDOM VARIABLES

Random Variables

method 1

- random variable
 → a real-valued function defined on the sample space
- X is a **Bernoulli r.v.** with parameter p if \rightarrow

$$p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1 - p, & x = 0 \text{ ('failure')} \end{cases}$$

 $\begin{array}{lll} \textbf{commutative} & E \cup F = F \cup E & E \cap F = F \cap E \\ \textbf{associative} & (E \cup F) \cup G = E \cup (F \cup G) & (E \cap F) \cap G = E \cap (F \cap G) \\ \textbf{distributive} & (E \cup F) \cap G = (E \cap F) \cup (F \cap G) & (E \cap F) \cup G = (E \cup F) \cap (F \cup G) \\ \textbf{DeMorgan's} & (\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c & (\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c \\ \end{array}$