

Пусть вероятность появления 1 = 0.61, а появления 1 = 0.39

Тогда энтропия по Шеннону равна 0.9675

Сообщение состоит из 30 символов кадый имеет по 8 бит в кодах ASCII

Тогда 30 *8 = 240 символов

Количество информации при передаче сообщения без ошибок будет = 232,2

29 числа день рождения, тогда

Вероятность передачи ошибочно символа р=0.29

При возможной ошибочной передаче данных нужно использовать не обычную энтропию, а эффективную энтропию

He = H(X) - H(X|Y), где H(X) – энтропия сообщения

H(X|Y) —условная энтропия , показывающая потери информации

$$H(X) = 0.9675$$

$$H(X|Y) = -p * log2(p) - q*log2(q)$$
, где q=1-р

$$H(X|Y) = 0.869$$

$$He = 0.9675 - 0.869 = 0.0985$$

$$I = He * n = 23.64$$

Задание 2

Besman

B = 01000010

 $Xk = 0100\ 0010$

Подсчиатем количство проверочных символов r>=Log2k+1 =4

Необхожимо построить проверочную матрицу Н(12,8)

Чтобы в стобце было от 2х и более 1 и все столбцы уникальные

Первые k столбцов относятся κ битам, а после доавбялется единичная матрица r*r

1	0	0	1	0	1	1	0	1			
1	1	0	0	1	0	1	1		1		
0	1	1	1	0	0	1	1			1	
0	0	1	0	1	1	0	1				1

Т.к dmin=4, что говорит о мод коде Хемминга нужно пеерйти от dmin=3 к dmin=4, добавим единичную строку и нулевой столбец в нашу матрицу

1	0	0	1	0	1	1	0	1				0
1	1	0	0	1	0	1	1		1			0
0	1	1	1	0	0	1	1			1		0
0	0	1	0	1	1	0	1				1	0
1	1	1	1	1	1	1	1	1	1	1	1	1

Нужно эту матрицу привести к каноническому виду, сложим все значения каждого столбца по модулю два и запишем результат в последнюю строку

1	0	0	1	0	1	1	0	1				0
1	1	0	0	1	0	1	1		1			0
0	1	1	1	0	0	1	1			1		0
0	0	1	0	1	1	0	1				1	0
1	1	1	1	1	1	0	0	0	0	0	0	1

Следует проверить, чтобы каждый столбец имел нечетный вес 1

Подсчитаем проверочные биты для нашего сообщения

Сумма по модулю два левой части проверочной матрицы (каждой строки) и сообщения

0	1	0	0	0	0	1	1
1	0	0	1	0	1	1	0
1	1	0	0	1	0	1	1
0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	1
1	1	1	1	1	1	0	0

 $Xn = 0100 \ 0010 | \ 111111$

А) нет ошибок

 $Yn = 0100 \ 0010 | \ 111111$

Пересчиатем проверочные символы

U	1	U	U	U	Ü	I	1
1	0	0	1	0	1	1	0
1	1	0	0	1	0	1	1
0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	1
1	1	1	1	1	1	0	0

 $Yn2 = 0100 \ 0010 | \ 111111$

Складываем полученный проврочные биты и те, что получи пересчетом 11111 +или 11111= 00000,

Сигром нулевой – ошибок нет

Б)

Сделаем ошибку в первом бите

 $Yn = 1100\ 0010|\ 111111$

Пересчиатем проверочные символы

1	1	0	0	0	0	1	1
1	0	0	1	0	1	1	0
1	1	0	0	1	0	1	1
0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	1
1	1	1	1	1	1	0	0

 $Yn2 = 1100\ 0010|\ 00110$

Складываем полученный проврочные биты и те, что получи пересчетом 11111 +или 00110 = 11001,

Вес синдрома нечетный, значит одна ошибка, ищем соот столбец в провер матрице и видел что соот столбец 1

Определяем вектор ошибки Е=1000000000000

Yn2 +или $E = 0100 \ 0010 \ 111111$

Сообщегние вероное

в) две ошибки

Сделаем ошибку в первом бите и 4м

 $Yn = 1101 \ 0010 | \ 111111$

1	1	0	1	0	O	1	1	
1	0	0	1	0	1	1	0	
1	1	0	0	1	0	1	1	
0	1	1	1	0	0	1	1	
0	0	1	0	1	1	0	1	
1	1	1	1	1	1	0	0	

 $Yn2 = 1101\ 0010|\ 10011$

Складываем полученный проврочные биты и те, что получи пересчетом

11111 +или 10011= 01100, вес синдрома четный, значит две ошибки, две ошибки сиправить не можем, но если попытаем, то получим неверное сообщение, синдром оот 2 стошбцу

E=0100000000000

Yn2+E = 1001001010011 сообщение неверное

Задание 3

0100

0010

0110

Старший бит в 1 => 1110

R = log 2k + 1 = 3

Для r=3, возьмем порождающий полином $G(7,4) = X^3 + X + 1$

Т.к r=3, нужно $G * X^r = X^6+X^4+X^3$

Теперь составим порождающую матрицу для G

1	0	1	1	0	0	0
0	1	0	1	1	0	0
0	0	1	0	1	1	0
0	0	0	1	0	1	1

Данную матрицу нужно привести к каноническому виду(только левую часть)

1	0	0	0	1	0	1	1+3+4
0	1	0	0	1	1	1	2+4
0	0	1	0	1	1	0	3=3
0	0	0	1	0	1	1	4=4

Теперь можем составить проверочную матрицу H(7,4). Для этого, берем последние r столбцов пораждающей матрицы и записываем c проверочную и доавбляем единичную матрицу r*r как доп строки

H=

1	0	1
1	1	1
1	1	0
0	1	1
1	0	0
0	1	0
0	0	1

Транспонируем проверочную матрицу чотбы получить канонический вид

1	1	1	0	1	0	0
0	1	1	1	0	1	0
1	1	0	1	0	0	1

Посчиатем проверочные символы для нашего сообщение Xk = 1110

Переведём полиномиальный вид ~ X^3+X^2+X

$$X=Xk*Xr=(X^3+X^2+X)*X^3=X^6+X^5+X^4$$

В качестве порождающего полинома был выбран $G(7,4) = X^3 + X + 1$

Разделим X/G

X^6+X^5+X^4	X^3+X+1
X^6+X^4+X^3	X^3+X^2
X^5+X^3	
X^5+X^3+X^2	
X^2	

Остаток Х^2

Xn=X||R(X)|

Xn=1110|100

а) нет ошибок

Yn=1110|100

Поделим Үп на пораждающий полином С

X^6+X^5+X^4+X^2	X^3+X+1
X^6+X^4+X^3	X^3+X^2+x+1
X^5+X^3+X^2	
X^5+X^3+X^2	
0	

Остаок равен нулю => ошибок нет

Б) одна ошибка

Пусть в 3м бите

Yn=1100|100

Поделим Үп на пораждающий полином

X^6+X^5+X^2	X^3+X+1
X^6+X^4+X^3	X^3+X^2+x
X^5+X^4+X^3+X^2	
X^5+X^3+X^2	
X^4	
X^4+X^2+X	
X^2+X	

Остаок равен X^2+X , т.е синдром Sr = 110, 3й столбец 3 бит

En=0010000

Yn+En=1110|100

Верное сообщение

В) две ошибки

Пусть в 1м и 3м бите

Yn = 0.00 |100|

Поделим Үп на пораждающий полином

X^5+X^2	X^3+X+1
X^5+X^3+X^2	X^2+1
X^3	
X^3+X+1	
X+1	

Остаок равен X+1, т.е синдром Sr=011, 4й столбец 4 бит

En=0001000

Yn+En = 0101|100

неверное сообщение

Задание 4 Бесман Александр Александвроч