Discrete Structures. CSCI-150. Spring 2015.

Homework 7.

Due Fri. Mar 27, 2015.

Problem 1 (Graded)

For $a, b \in \mathbb{Z}$, prove that if $a \mid b$ and $b \mid a$ then a = b or a = -b.

Problem 2

For positive $a, b \in \mathbb{Z}$, prove that if $a \mid b$ and $a \mid (b+2)$ then a=1 or a=2.

Problem 3 (Graded)

First, prove that k(k+1) is even for any $k \in \mathbb{Z}$.

Then, for positive $n \in \mathbb{Z}$, prove that if n is odd then $8 \mid (n^2 - 1)$.

Hint: An integer x is even if and only if $2 \mid x$.

Problem 4 (Graded)

For positive $a, b, c \in \mathbb{Z}$, prove that if $c = \gcd(a, b)$ then $c^2 \mid ab$.

Problem 5

Prove that for all positive $n \in \mathbb{Z}$:

$$3 \mid (n^3 + 2n).$$

It can be done either by induction, or by cases.

The proof by induction is standard. If you decide to prove it by cases, consider the remainder (n rem 3), it can be equal to 0, 1, or 2, so we can say that for any n: n = 3k, or n = 3k + 1, or n = 3k + 2.

Problem 6 (Graded)

Using Euclidean algorithm, compute

- (a) gcd(234, 54)
- (b) gcd(416, 175)

(Write each step of the algorithm execution)