Data Mining INFS 4203/7203

Miao Xu

miao.xu@uq.edu.au

The University of Queensland, 2020 Semester 2

Last week: text retrieval

 Retrieve relevant documents in a document collection based on a user's query

TF-IDF for documents

For all **documents**:

- Remove stop words, convert to lower case, stemming
- Put words in all documents together, sorting in alphabetical order to have a word list
- Construct TF vector for each document
- Construct IDF vector
- Get the TF-IDF vector for each document
- Normalize the TF-IDF vector to unit length

TF-IDF for query

For the **query**:

- Remove stop words, convert to lower case, stemming
- Use the word list constructed upon all documents
- Construct TF vector
- Get the TF-IDF vector by the IDF vector of documents
- Normalize the TF-IDF vector to unit length

- Calculate the Cosine Similarity between query vector and document vectors
- The similarity values are then used to rank the documents

TF-IDF vs. word embedding

- Both feature extraction methods for text
- Word embedding (usually refer to learning-based feature extraction such as word2vec):
 - Based on deep learning technique
 - Each word is embedded as a "vector"
 - If trained on large datasets, can be reused across different data sets
- TF-IDF
 - Each word is embedded as a "value"
 - Document related, cannot be reused

Latent Semantic Indexing vs. PCA

- Applications on different context
 - LSI used specially in text domain
- Different motivations
 - -LSI finds the best subspace in the document-word matrix
 - -PCA keeps the features with the greatest variances in data
- Technically, applying PCA to document-word matrix--LSI

Lecture 11: Mining Web Data

Web data

- Web is an unique phenomenon
 - —The scale, the distributed nature of its creation, the openness of the underlying platform, and the diversity of applications

- Two primary types of data
 - Web content information
 - Document data, linkage data
 - Web usage data
 - Web transactions, ratings, user feedback, web logs

Applications on the web

- Content-centric applications
 - -Cluster or classify web documents
 - Web crawling
 - -Web search

- Usage-centric applications
 - Recommender systems

Content-centric applications

Web crawling

The PageRank algorithm

Usage-centric applications

Recommender system

Content-centric applications

Web crawling

The PageRank algorithm

Usage-centric applications

Recommender system

Web crawling

Motivations

- Resources on the Web are dispensed widely across globally distributed sites
- Sometimes, it is necessary to download all the relevant pages at a central location
- Universal crawling
 - -Crawl all pages on the Web (search engine)
- Preferential crawling
 - Crawl pages related to a particular subject or belong to a particular site

A basic crawler algorithm

- Start with a set of seeds, which are a set of URLs given as parameters
 - -Seeds are added to a URL request queue/frontier set
- Crawler fetches pages from the requested queue/frontier set
- Fetched pages are parsed to find link tags that might contain other useful URLs to fetch
 - —New URLs are added to the request queue/frontier set
- Continue until no more new URLs or disk full

Select the URL to fetch

- Breadth-first
- Depth-first

- Frequency-based
 - Most universal crawlers are incremental crawlers that are intended to refresh previous crawls
 - Choose web pages less visited before
- PageRank-based
 - Choose web pages with high PageRank value

Combatting spider traps

- The crawling algorithm maintains a list of previously visited URLs for comparison
 - So, it tends to visit distinct Web pages
- However, many sites create dynamic URLs
 - -http://www.examplesite.com/page1
 - -http://www.examplesite.com/page1/page2
 - -Limit the maximum size of the URL
 - -Limit the number of URLs from a site

Preferential crawling

- Attempts to download only those pages that are about a particular topic
- Rely on the "belief" that pages about a topic tend to have links to pages about the same topic
 - Popular pages for a topic are typically used as seeds
- Crawler uses text classifiers to decide whether a page is on topic or not

Preferential crawling-con't

- Only visit those links from a page that are determined to be relevant by a pre-trained classifier, or,
- Crawler visits pages with priority based on the relevance score assigned by a pre-trained classifier
- How to determine relevance?
 - Parent-based: score of a parent page is distributed to all page it links
 - Anchor-based: score is determined on the anchor text to that page (anchor text: visible words that hyperlinks display when linking to another page)

Content-centric applications

Web crawling

The PageRank algorithm

Usage-centric applications

Recommender system

The PageRank algorithm

- First and best-known algorithm used by Google Search to rank web pages
- Larry Page and Sergey Brin developed PageRank at Stanford University in 1996 as part of a research project

Basic idea

Rank webpages according to importance (called PR value)

- Importance is determined by
 - More pages linked to it, more importance
 - -If pages linked to it are important, then the page is important

 Intuitively, it measures the likelihood that a person randomly clicking on links will arrive at any particular page

National World Lifestyle Travel Entertainment Technology Finance Sport

A simplified PageRank algorithm

- A page p_i has n_i links out, and one of the links is to page p
- There are totally m pages linking to page p
- The Page Rank value PG(p) is defined as

$$PG(p) = \sum_{i=1}^{m} PG(p_i)/n_i$$

 By assigning some initial PG values to all webpages, the process continues until convergence or nearly convergence (the difference is within a small threshold)

More about Google Search

 Two weeks ago, Google released a documentary film about the 22 years' history of Google Search:

Trillions of Questions, No Easy Answers: A (home) movie about how Google Search works

- Some fun facts:
 - -15% query per day is "never seen before" ----Alice in Wonderland
 - How Google deal with wrong results and offensive search predictions
 - ... (explore by yourself)

My dear, here **we** must **run** as fast as **we can**, just to **stay** in place.

Content-centric applications

Web crawling

The PageRank algorithm

Usage-centric applications

Recommender system

The Age of Web Search has come to an end

- …long live the Age of Recommendations
- Chris Anderson in "The Long Tail"
 - —"We are leaving the age of information and entering the age of recommendation"
- CNN Money, "The race to create a 'smart' Google":
 - —"The Web, they say, is leaving the era of search and entering one of discovery. What's the difference? Search is what you do when you're looking for something. Discovery is when something wonderful that you didn't know existed, or didn't know how to ask for, finds you"

Everything is personalized

Recommendation in Amazon

Customers Who Bought This Item Also Bought

Recommender Systems Handbook Francesco Ricci Hardcover

\$167.73

Algorithms of the Intelligent Web Haralambos Marmanis

大大大大(14)

Paperback \$26.76 Collective incline pec

Programming Collective Intelligence: ...

Toby Segaran

大大大大(91)

Paperback \$25.20

Machine Learning: A Probabilistic ...

> Kevin P. Murphy

*********(15)

Hardcover

\$81.00

Data Mining: Practical Machine Learning ...

> Ian H. Witten

★★★☆☆(29)

Paperback

\$42.61

In e-commerce

Related Items Recommendations - Example 1

In social media

Entertainment

Point of Interest (POIs)

Why using recommender systems

- Value for the customer
 - Find things that are interesting
 - Narrow down the set of choices
 - Help explore the space of options
 - Discover new things
 - Entertainment

— ...

Why using recommender systems

- Value for the provider
 - Personalized service for the customer to increase user experience
 - Increase trust and customer loyalty
 - –Increase sales, click through rates…
 - Obtain more knowledge about customers

— ...

Recommender system

- Given
 - -User data (with or without demographics, situational context)
 - -Item data (with or without description of item characteristics)
 - User-Item Interaction matrix
- Find
 - Relevance score between user and item, which is used for ranking

Purpose and success criteria

- Prediction perspective
 - -Predict to what degree users like an item
 - Most popular criterion in research (why?)
- Exploration perspective
 - -Serendipity
 - -Users will be happy but did not know about the existence
- Interaction perspective
 - –Convince/persuade users
- . . .

Serendipity

- Unsought finding
- Do not recommend items that user already knows or would have found anyway
- Expand the user's taste into neighbouring areas

Convince/persuade users

Recommend "The Next Three Days" based on your interested in Iron Man 2, John Q and X-Men Origins: Wolverine

Three friends have watched this

Personalized recommendation

Collaborative filtering

Content-based recommendation

Hybrid: combinations of various inputs, and/or composition of different mechanism

	Pros	Cons
Collaborative	Serendipity of results, learns market segments	Requires some form of rating feedback, cold start for new users and new items
Content-based	No community (other users) required, comparison between items possible	Content descriptions necessary, cold start for new users, no surprises

What works

- Depends on the domain and particular problem
- However, in the general case, it has been demonstrated that Collaborative Filtering (CF) is better than contentbased
- Other factors impacting the result
 - Data pre-processing: outlier removal, denoising, removal of global effects (e.g. individual user's bias...)
 - -Combining methods through **Ensemble**

Libraries or tools

- Recommender 101
 - https://ls13-www.cs.tudortmund.de/homepage/recommender101/index.shtml
- MyMediaLite
 - http://www.mymedialite.net/
- RecQ
 - —<u>https://github.com/Coder-Yu/RecQ</u>

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - Used by large, commercial e-commerce sites in many domains
 - -Well-studied, various algorithms exist
- Approach
 - —Use the "wisdom of the crowd" to recommend items
 - Only require user-item interaction information
- Basic assumption and idea
 - Customers who had similar tastes in the past, will have similar tastes in the future

Pure CF approach

- Input
 - A matrix of given user-item ratings
- Output
 - A numerical prediction indicating to what degree the current user will like or dislike a certain item (explicit feedback)
 - A top-N list of recommended items (implicit feedback)

User-based collaborative filtering

Given an "active user" Alice:

- Find a set of users (peers/nearest neighbours) who liked the same items as Alice in the past
- Find the set of items not rated by Alice but neighbours
- For each item, (weighted) average their ratings in neighbours to predict Alice's rating
- Recommend the item with the highest ratings/ Rank the items according to the ratings

Example of CF

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

How to measure the similarity?

Ratings can be different, but relative ratings may be the

same

Similarity based on relative ratings: Pearson correlation

Pearson correlation

Notation

- -a, b: users
- $-r_{a,p}$: ratings of user a for item p
- -P: set of items rated by both a and b
- $-\overline{r_a}$: average rating of user a
- $-\overline{r_b}$: average rating of user b
- Pearson correlation:

$$PearsonCorrelation(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \overline{r_a})(r_{b,p} - \overline{r_b})}{\sqrt{\sum_{p \in P} (r_{a,p} - \overline{r_a})^2} \sqrt{\sum_{p \in P} (r_{b,p} - \overline{r_b})^2}}$$

Pearson correlation

Average rating for Alice on item 1 to item 4: 4
Average rating for User1 on item 1 to item 4: 2.25

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Relative rating of Alice: 1, -1, 0, 0

Relative rating of User 1: 0.75, -1.25, -0.25, 0.75

$$PearsonCorrelation = \frac{1 \times 0.75 + (-1) \times (-1.25) + 0 + 0}{\sqrt{1^2 + (-1)^2} \sqrt{0.75^2 + (-1.25)^2 + (-0.25)^2 + 0.75^2}}$$
$$= \frac{2}{1.414 \times 1.658} = 0.85$$

Example of CF

	ltem1	Item2	Item3	Item4	Item5		
Alice	5	3	4	4	?		
User1	3	1	2	3	3		sim = 0,85
User2	4	3	4	3	5		sim = 0,70
User3	3	3	1	5	4	4	sim = 0,00
User4	1	5	5	2	1	4	sim = -0,79

How to predicate the rating of Alice for item 5?

How to predicate the rating of Alice for item 5?

Basic idea

- -Calculate each neighbour's relative rating for item 5
- Weighted average the relative ratings from neighbours by the
 Pearson correlation to form the relative rating of Alice for item 5
- –Convert the relative rating back to the absolute rating by adding $\overline{r_a}$

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in NN} sim(a,b) \times (r_{b,p} - \overline{r_b})}{\sum_{b \in NN} sim(a,b)}$$

Example of prediction

	Item1	Item2	Item3	Item4	Item5		
Alice	5	3	4	4	?		
User1	3	1	2	3	3		sim = 0,85
User2	4	3	4	3	5		sim = 0,70
User3	3	3	1	5	4	4	sim = 0,00
User4	1	5	5	2	1	4	sim = -0,79

Average rating for Alice on item 1 to item 4: 4

Average rating for User1 on item 1 to item 4: 2.25

Average rating for User2 on item 1 to item 4: 3.5

Assume we only consider 2 nearest neighbours here: User 1 and User 2

$$pred(Alice, item 5) = 4 + \frac{0.85 \times (3 - 2.25) + 0.70 \times (5 - 3.5)}{0.85 + 0.70}$$

=5.0887

Summary

Content-centric applications

Web crawling

The PageRank algorithm

Usage-centric applications

- Recommender system
 - Paradigms of recommender system
 - Collaborative filtering

Final-term review

Lecture1	Introduction to data mining
Lecture2	Association Rule Mining
Lecture3	Clustering 1
Lecture4	Clustering 2
Lecture5	Anomaly detection
Lecture6	Classification 1
Lecture7	Classification 1 - continue
Lecture8	Classification 2
Lecture9	Classification 3
Lecture10	Mining text data
Lecture11	Mining web data

What is data mining

"Data mining is the analysis of (often large)
observational data sets to find unsuspected
relationships and to summarize the data in novel
ways that are both understandable and useful to
the data owner."

[D. Hand et al., Principles of Data Mining]

Association rule mining

- Definition
- Application
- Support and confidence
- Apriori property
- Association rule mining algorithm
 - The Apriori algorithm
 - Rule generation

Clustering

- Definition
- Application
- Distance
 - Manhattan distance, Euclidean distance, Chebyshev distance (at least one of them will be test)
- SSE
- Three methods to do clustering

Anomaly detection

- Definition
- Applications
- Outlier vs. noise
- Four techniques to do anomaly detection

Classification

- Definition
- Missing values/normalization/curse of dimensionality
- Multi-class classification to binary classification
- Generalization and overfitting
- Cross-validation
- Evaluation: accuracy, precision, recall, F1 measurement
- Three classification algorithms and other classification methods based on them

More on the calculation in classification

Decision tree:

- —If asked to construct a decision tree for the given training set, please describe the final constructed tree in plain language; NO procedure required
- -Calculation based on continuous values
- -Calculation based on Gain ratio
- But related concepts may be tested

Naïve Bayes

- Briefly show the procedure to do classification (with example later)
- -Use Laplacian correction if necessary
- -Calculation on continuous features such as Income/Sales... based on the univariate gaussian distribution will be tested!!!

k-NN

- Briefly show the procedure to do classification (with example later) with specified distance
- If not explicitly asked, no normalization

Mining text data

- Concept
- Measures: precision, recall, F1
- The vector space model
 - -TF-IDF vector and retrieval based on TF-IDF vector

Mining web data

- Collaborative filtering
 - -Ideas and workflow
 - -NO calculation tested in final-term

Form

- Online exam, BB test, invigilated by Proctor U
 - —It may take up to 30 minutes to connect you with a proctor, however your exam timer does not start until your proctor starts your exam.
 - After an exam is started, you will have the duration of the exam to complete and submit your response.
- Time: Nov. 19th
- Duration: two and a half hours (the duration includes 30 minutes of technical time)
- Allowed materials: calculator/blank scrap paper

Exam information

- Mock exam
 - -2.5 hours duration
 - Multiple trials are allowed
 - Mimic the situation of network problem/ computer restart... just in case

Mock exam

Instructions

INSTRUCTIONS

Timed Test This test has a time limit of 2 hours and 30 minutes.

Timer Setting This test will save and submit automatically when the time expires.

Force Completion This test can be saved and resumed at any point until time has expired. The timer will continue to run if you leave the test.

Multiple Attempts This test allows multiple attempts.

Click Begin to start: Mock Final-Term Exam. Click Cancel to go back.

You will be previewing this assessment and your results will not be recorded.

Click Begin to start. Click Cancel to quit.

Mock exam

Test information at the head

- Seven questions appear in one page, with several sub questions each
- Additionally, question 8:

QUESTION 8

Please use this space to specify any assumptions you have made in completing the exam and which questions those assumptions relate to. You may also include queries you may have made with respect to a particular question, should you have been able to 'raise your hand' in an examination room.

Short answer

QUESTION 1

- a. [2 marks] Briefly describe the meaning of association rule in association rule mining
- b. [2 marks] Briefly describe the meaning of strong association rule in association rule mining
- c. [2 marks] Given the frequent k-itemsets, list the steps to generate the frequent (k+1)-itemsets from frequent k-itemsets.

Problem Solving

QUESTION 5

We have some data about whether people go to watch a football game. The data includes three attributes: whether the ξ star in the game or not:

Tid	Weekend	Friends	Star there	Watch?
1	No	Yes	No	No
2	Yes	Yes	No	No
3	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes
5	No	Yes	Yes	Yes
6	No	Yes	No	Yes
7	Yes	Yes	No	No
8	Yes	Yes	Yes	Yes
9	Yes	No	No	Yes
10	Yes	No	No	No
11	No	No	No	Yes

- a. [5 marks] Construct a decision tree from the provided dataset to predict whether people will watch the football game;
- b. [2 marks] Briefly discuss the advantage of using Gain Ratio-based splitting criterion compared to Information Gain-bas
- c. [2 marks] Briefly describe the two pruning methods in decision tree.

Decision tree construction:

Only show the constructed tree. No procedure

needed.

Calculation

Given a data set below, answer the following questions.

Tid	Home Owner	Marital Status	Annual Income	Class
1	Yes	Single	125K	No
2	No	Married	120K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	120K	No
8	No	Married	85K	Yes
9	No	Married	75K	No
10	No	Single	120K	Yes

- a. [2 marks] What is the "Attribute conditional independence" assumption for Naïve Bayesian classifier?
- b. [4 marks] Predict the class label of a given test record X: (Home Owner: Yes, Marital Status: Single, Annual Income: 80K) using the Naïve Bayesian Classifier.

Briefly show the procedure: (only an example of procedure, not the answer to this guestion)

P(X|Yes) is in proportion to P(Yes)P(HO = Yes|Yes) P(MS = Single|Yes) P(AI = 80K|Yes) =

0.1*0.2*0.3*0.4 = 0.0024

P(X|No) is in proportion to P(No)P(HO = Yes|No) P(MS = Single|No) P(AI = 80K|No) = P(X|No)

 $0.5*0.6*0.7*0.8 = 0.168 \times 0.0024$

so we predict it as No

Calculation

OUESTION 7

Given a two-dimensional data set below, answer the following questions.

(x, y)	Class
(0, 5)	+
(2, 3)	+
(4, 3)	+
(5, 5)	-
(6,7)	-
(8, 5)	-
(3, 7)	+
(4, 10)	-
(7, 9)	+

a. [1 mark] What is the basic idea of a k-NN method?

No need to do normalization without explicitly asked Briefly show the procedures:

T T T Paragraph V Arial ∨ 3 (12pt) ∨ := - != - T - Ø - Ø

The Manhattan distance from (a, b) to all the 9 points are: 1, 2, 3, 4, 5, 6, 7, 8, 9. The 3-nearest neighbours are (x1, y1) +, (x2, y2) -, (x3, y3) +. By majority voting, (a,b) is classified as +

b. [2 marks] Classify a new data point p = (4, 5) using Manhattan distance and majority vote by 3- nearest neighbours.

 Please note that the questions may not be ranked from the easiest to the hardest

CONTACT time

Q&A before the final exam:

- Nov. 17th 4:00 pm to 6:00 pm
- Nov. 18th 4:00 pm to 6:00 pm

Help links besides technical

Preparing for online exam success

Library services ▼ Research tools & techniques ▼ Collections ▼ Borrowing & requesting ▼

Preparing for online exam success

has / Library services / For students

These strategies will help you prepare for and avoid issues during your online exams.

- · Check your IT set up
- · Access the Library resources you need
- · Reading time is included in the exam duration
- Save your work progress and evidence regularly
- Time allowance for submitting and uploading your completed online exam
- eAssessment in Semester 2, 2020 Inspera Assessment

Check your IT set up

Online supervised (invigilated) exams

Check what you need to do to prepare **before** the online supervised (invigilated) exam. Also read the ProctorU FAOs

All online exams

Help links besides technical

 https://my.uq.edu.au/information-and-services/studentsupport/health-wellbeing

Health and wellbeing

We provide a range of programs and counselling services to help improve your confidence and overall physical and mental wellbeing.

Check out some common help topics or keep scrolling for more information.

Support for anxiety Increasing self-confidence Support for loneliness Make an appointment with a UQ counsellor Mental health & wellbeing at UQ Mental Health Champions Request a student welfare check Wellbeing workshops

