2

WHAT IS CLAIMED IS:

1		1.	An acoustic transducer for measuring a property of a fluid,
2	the acoustic tr	ansduc	er comprising:
3		an aco	ustic pulse generator; and
4		a buff	er assembly between the pulse generator and the fluid, the
5	buffer assemb	ly being	g composed of a core and a sleeve shrink fitted over the core
6	to form a clad	ding th	at reduces dispersion of the acoustic pulses traveling through
7	the core.		
1		2.	The acoustic transducer of claim 1 wherein the sleeve has a
2	thermal condu	ctivity	of at least 15 W/(m·K).
1		3.	The acoustic transducer of claim 1 wherein the sleeve is made
2	of titanium.		
1		4.	The acoustic transducer of claim 1 wherein the core has a
2	thermal condu	ctivity	of less than 15 W/(m·K).
1		5.	The acoustic transducer of claim 1 wherein the core has a
2	thermal condu	ctivity	of less than 1 W/(m·K).
1		6.	The acoustic transducer of claim 1 wherein the core is made
2	of fused silica		
1		7.	The acoustic transducer of claim 6 wherein the core is made
2	of a composite	of fus	ed silica and mica.
1		8.	The acoustic transducer of claim 1 wherein the sleeve is
2	secured to the	core by	y high temperature glass fusing.
1		9.	The acoustic transducer of claim 1 wherein the high

temperature glass fusing of the sleeve and core forms a hermitic seal.

1		10.	The acoustic transducer of claim 1 wherein the sleeve is
2	secured to the	core w	ith a refractory cement.
1		11.	The acoustic transducer of claim 1 wherein the sleeve is made
2	of metal.		
1		12.	The acoustic transducer of claim 1 further comprising:
2			mal management system mounted to the sleeve to transfer heat
3			erein the thermal management system is formed of a high
4			material and is arranged along the sleeve such that substantial
5			the environment from the thermal management system without
6	excessive temp	peratur	e increase at the pulse generator.
1		13.	The acoustic transducer of claim 12 wherein the thermal
2	management s	ystem	includes a plurality of fins.
		1.4	The acoustic transducer of claim 1 wherein the sleeve is made
1		14.	
2		aving	a bulk sound speed greater than a bulk sound speed of the core
3	material.		
1		15.	The acoustic transducer of claim 1 wherein the sleeve is made
2	of a material		a bulk sound speed less than a bulk sound speed of the core
3			n the sleeve is configured in a way that adds stiffness thereto.
3	material, and	WIICICI	if the siceve is comigated in a way man also consists when
1		16.	The acoustic transducer of claim 1 wherein during operation
2	at least a port		the core extends into the fluid which is being measured and
3			arranged to insulate the sides of the extended core portion from
4			while leaving the tip of the core in contact with the fluid such
5			re portion is not cladded.
~			•
1		17.	The acoustic transducer of claim 1 wherein the insulated
2	portion of the	core s	ides is insulated by an air gap formed by the sleeve.

1

1	18. In combination with an apparatus including a conduit through
2	which fluid flows, the improvement comprising:
3	an acoustic transducer for measuring a property of a fluid, the
4	acoustic transducer including an acoustic pulse generator and a buffer assembly
5	between the pulse generator and the fluid, the buffer assembly being composed of
6	a core formed of a low thermal conductivity material and a sleeve shrink fitted over
7	the core to form a cladding that reduces dispersion of the acoustic pulses traveling
8	through the core.
1	19. The combination of claim 18 wherein the sleeve is secured to
2	the core by high temperature glass fusing.
1	20. The combination of claim 18 wherein the sleeve is secured to
2	the core with a refractory cement.
1	21. The combination of claim 18 wherein the sleeve is made of
2	metal.
1	The combination of claim 18 further comprising:
2	a thermal management system mounted to the sleeve to transfer heat
3	from the sleeve, wherein the thermal management system is formed of a high
4	thermal conductivity material and is arranged along the sleeve such that substantial
5	heat is transferred to the environment from the thermal management system without
6	excessive temperature increase at the pulse generator.
1	23. The combination of claim 22 wherein the thermal management
2	system includes a plurality of fins.
1	The combination of claim 19 whomain during angustical at 1
1	24. The combination of claim 18 wherein during operation at least
2	a portion of the core extends into the fluid which is being measured and wherein the sleeve is arranged to insulate the sides of the extended core portion from heat from

4	the fluid while leaving the tip of the core in contact with the fluid such that the				
5	insulated core portion is not cladded.				
1	25. The combination of claim 18 wherein the insulated portion of				
2	the core sides is insulated by an air gap formed by the sleeve.				
1	26. A sampling system comprising:				
2	a fluid inlet for receiving a fluid;				
3	a dilution inlet for receiving a dilution gas;				
4	a mixing section for mixing at least a portion of the fluid with the				
5	dilution gas;				
6	a collection section for collecting a sample of the mixture; and				
7	a flow meter for measuring a flow related to the sampling system, the				
8	flow meter including an acoustic transducer for measuring the flow, the acoustic				
9	transducer including an acoustic pulse generator and a buffer assembly between the				
10	pulse generator and the fluid, the buffer assembly being composed of a core formed				
11	of a low thermal conductivity material and a sleeve shrink fitted over the core to				
12	form a cladding that reduces dispersion of the acoustic pulses traveling through the				
13	core.				
1	27. The sampling system of claim 26 wherein the flow meter				
2	includes a pair of acoustic transducers arranged in an opposed fashion in a conduit				
3	through which fluid flows for measuring the flow.				
1	28. A sampling system comprising:				
2	a sample line for sampling a fluid from a main conduit;				
3	a flow meter for measuring a flow of the fluid through the main				
4	conduit, the flow meter including an acoustic transducer for measuring the flow, the				
5	acoustic transducer including an acoustic pulse generator and a buffer assembly				
6	between the pulse generator and the fluid, the buffer assembly being composed of				
7	a core formed of a low thermal conductivity material and a sleeve shrink fitted over				
8	the core to form a cladding that reduces dispersion of the acoustic pulses traveling				
9	through the core;				

10	a dilution inlet for receiving a dilution gas;
11	a mixing section for mixing the fluid flow from the sample line with
12	the dilution gas at a generally fixed ratio;
13	a collection section for sampling the mixture, the mixture being
14	sampled at a rate generally proportional to the flow of the fluid through the main
15	conduit
1	29. The sampling system of claim 26 wherein the flow meter
2	includes a pair of acoustic transducers arranged in an opposed fashion in the main
3	conduit.