ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

информационная технология КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА

ИНФОРМАЦИИ

ФУНКЦИЯ ХЭШИРОВАНИЯ.

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

Предисловие

1 РАЗРАБОТАН Главным управлением безопасности связи Федерального агентства правительственной связи и информации и Всероссийским научно-исследовательским институтом стандартизации

ВНЕСЕН Техническим комитетом по стандартизации ТК 22 «Информационная технология» и Федеральным агентством правительственной связи и информации

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23.05.94 № 154
 - з введен впервые

С Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения госстандарта России

СОДЕРЖАНИЕ

1 Область применения					1
2 Нормативные ссылки					1
3 Обозначения				. '	I
4 Общие положения					2
5 Шаговая функция хэширования					3
6 Процедура вычисления хэш-функ	ции				4
Приложение А Проверочные приме	ры			:	6

ВВЕДЕНИЕ

Расширяющееся применение информационных технологий при создании, обработке, передаче и хранении документов требует в определенных случаях сохранения конфиденциальности их содержания, обеспечения полноты и достоверности.

Одним из эффективных направлений защиты информации является криптография (криптографическая защита), широко применяемая в различных сферах деятельности в государственных и

коммерческих структурах.

Криптографические методы защиты информации являются объектом серьезных научных исследований и стандартизации на национальных, региональных и международных уровнях.

Настоящий стандарт определяет процедуру вычисления хэш-

функции для любой последовательности двоичных символов.

Функция хэширования заключается в сопоставлении произвольного набора данных в виде последовательности двоичных символов и его образа фиксированной небольшой длины, что позволяет использовать эту функцию в процедурах электронной цифровой подписи для сокращения времени подписывания и проверки подписи. Эффект сокращения времени достигается за счет вычисления подписи только под образом подписываемого набора данных.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ -

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Функция хэширования

Information technology.
Cryptographic Data Security.
Hashing function

Дата введения

1995-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт определяет алгоритм и процедуру вычисления хэш-функции для любой последовательности двоичных символов, которые применяются в криптографических методах обработки и защиты информации, в том числе для реализации процедур электронной цифровой подписи (ЭЦП) при передаче, обработке и хранении информации в автоматизированных системах.

Определенная в настоящем стандарте функция хэширования используется при реализации систем электронной цифровой подписи на базе асимметричного криптографического алгоритма по ГОСТ Р 34.10.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 28147—89 Системы обработки информации. Защита криптографическая. Алгоритмы криптографического преобразования.

ГОСТ Р 34.10—94 Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма.

з обозначения

В настоящем стандарте используются следующие обозначения:

 B^* — множество всех конечных слов в алфавите $B = \{0,1\}$. Чтение слов и нумерация знаков алфавита (символов) осуществляются справа налево (номер правого символа в слове равен единице, второго справа — двум и т. д.).

|A| — длина слова A € В*.

 $V_{f k}(2)$ — множество всех бинарных слов длины ${f k}.$

 $A \parallel B$ — конкатенация слов A, $B \in B^*$ — слово длины |A| + |B|, в котором левые |A| символов образуют слово A, а правые |B| символов образуют слово B. Можно также использовать обозначение $A \parallel B = AB$.

A ^к — конкатенация k экземпляров слова A (A E B*).

 $N>_k$ — слово длины k, содержащее двоичную запись вычета $N \pmod{2^k}$ неотрицательного целого числа N.

 \widehat{A} — неотрицательное целое число, имеющее двоичную запись $A\ (A\in B^*)$.

побитовое сложение слов одинаковой длины по модулю 2.

 \oplus '— сложение по правилу $A \oplus B = \langle A + B \rangle_k$, (k=|A|=|B|).

M — последовательность двоичных символов, подлежащая хэшированию (сообщение в системах ЭЦП), М є В*.

h - хэш-функция, отображающая последовательность Me B* в

слово $n(M) \in V_{256}(2)$.

 $E_{\kappa}(A)$ — результат зашифрования слова A на ключе K с использованием алгоритма шифрования по ГОСТ 28147 в режиме простой замены (K \in V₂₅₆(2), $A \in$ V₆₄(2)).

Н — стартовый вектор хэширования.

е: = g — присвоение параметру е значения g.

4 ОБЩИЕ ПОЛОЖЕНИЯ

Под хэш-функцией h понимается зависящее от параметра $\{ \text{стартового} \$ вектора хэширования $\{ H, \}$ являющегося словом из $\{ V_{256}(2) \}$ отображение

h:
$$B^* - - - - V_{256}(2)$$
.

Для определения жэш-функции необходимы:

— алгоритм вычисления шаговой функции хэширования ж, т. е. отображения

$$x: V_{256}(2) \times V_{256}(2) \longrightarrow V_{256}(2);$$

— описание итеративной процедуры вычисления значения хэш-функции h.

5 ШАГОВАЯ ФУНКЦИЯ ХЭШИРОВАНИЯ

Алгоритм вычисления шаговой функции хэширования включает в себя три части, реализующие последовательно:

- генерацию ключей слов длины 256 битов;
- шифрующее преобразование зашифрование 64-битных подслов слова H на ключах K_i (i=1, 2, 3, 4) с использованием алгоритма по ГОСТ 28147 в режиме простой замены;
 - перемешивающее преобразование результата шифрования.
 - 5.1 Генерация ключей.

Рассмотрим
$$X = (b_{256}, b_{255}, \ldots, b_1) \in V_{256}(2)$$
.

Пусть
$$X = x_4 \|x_3\|x_2\|x_1 =$$

= $\eta_{16} \|\eta_{15}\| \dots \|\eta_1 =$
= $\xi_{32} \|\xi_{31}\| \dots \|\xi_1,$

тде
$$\mathbf{x_i} = (b_{1 \times 64}, \dots, b_{(i-1) \times 64+1}) \in V_{64}(2), i = \overline{1,4};$$

 $\eta_j = (b_{j \times 16}, \dots, b_{(j-1) \times 16+1}) \in V_{16}(2), j = \overline{1,16};$
 $\xi_k = (b_{k \times 8}, \dots, b_{(k-1) \times 8+1}) \in V_8(2), k = \overline{1,32}.$

Обозначают $A(X) = (x_1 \oplus x_2) |x_4| |x_3| |x_2|$

Используют преобразование Р: $V_{256}(2)$ — $V_{256}(2)$

слова ξ_{32} |... | ξ_1 в слово $\xi_{\phi(32)}$ |... | $\xi_{\phi(1)}$, где $\phi(i+1+4(k-1))=8i+k$, $i=0\div3$, $k=1\div8$.

Для генерации ключей необходимо использовать следующие мсходные данные:

- слова H, M ∈ V₂₅₆ (2);
- параметры: слова C_i (i=2, 3, 4), имеющие значения

$$C_2 = C_4 = 0^{256} \text{ in } C_3 = 18081^{16}0^{24}1^{16}0^8(0^81^8)^21^80^8(0^81^8)^4(1^80^8)^4.$$

При вычислении ключей реализуется следующий алгоритм:

1 Присвоить значения

$$i:=1, U:=H, V:=M.$$

2 Выполнить вычисление

$$W = U \oplus V, K_1 = P(W).$$

- 3 Присвоить i := i + 1.
- 4 Проверить условие і=5.

При положительном исходе перейти к шагу 7. При отрицательном — перейти к шагу 5.

5 Выполнить вычисление

$$U:=A(U) \oplus C_i$$
, $V:=A(A(V))$, $W:=U \oplus V$, $K_i=P(W)$.

TOCT P 34.11-94

6 Перейти к шагу 3.

7 Конец работы алгоритма.

5.2 Шифрующее преобразование

На данном этапе осуществляется зашифрование 64-битных подслов слова H на ключах K_{l} ($i=1,\,2,\,3,\,4$).

Для шифрующего преобразования необходимо использовать следующие исходные данные:

$$H = h_4 \|h_3 \|h_2 \|h_1$$
, $h_i \in V_{04}(2)$, $i = \overline{1,4}$

и набор ключей К1, К2, К3, К4.

Реализуют алгоритм зашифрования и получают слова

$$s_i = E_{K_i}(h_i)$$
, rae $i = 1, 2, 3, 4$.

В результате данного этапа образуется последовательность $S = s_4 \|s_3\| s_4$.

5.3 Перемешивающее преобразование

На данном этапе осуществляется перемешивание полученной последовательности с применением регистра сдвига.

Исходными данными являются:

слова H, $M \in V_{256}(2)$ и слово $S \in V_{256}(2)$.

Пусть отображение

$$\psi: V_{256}(2) \longrightarrow V_{256}(2)$$

преобразует слово

$$\eta_{16} \| \dots \| \eta_1, \ \eta_1 \in V_{16}(2), \ \mathbf{i} = \overline{1,16}$$

в слово

$$\eta_1 \oplus \eta_2 \oplus \eta_3 \oplus \eta_4 \oplus \eta_{13} \oplus \eta_{16} ||\eta_{16}|| \cdot \cdot \cdot ||\eta_2.$$

Тогда в качестве значения шаговой функции хэширования принимается слово

$$x(M, H) = \psi^{01}(H \oplus \psi(M \oplus \psi^{12}(S))),$$

где ψ^1 — i-я степень преобразования ψ .

6 ПРОЦЕДУРА ВЫЧИСЛЕНИЯ ХЭШ-ФУНКЦИИ

Исходными данными для процедуры вычисления значения функции h является подлежащая хэшированию последовательность $M \in B^*$. Параметром является стартовый вектор хэширования H произвольное фиксированное слово из V_{256} (2).

Процедура вычисления функции h на каждой итерации использует следующие величины:

 $M \in B^*$ — часть последовательности M, не прошедшая процедуры хэширования на предыдущих итерациях;

 $H \in V_{256}(2)$ — текущее значение хэш-функции;

 $\Sigma \in V_{256}(2)$ — гекущее значение контрольной суммы;

 $L \in V_{256}(2)$ — текущее значение длины обработанной на предыдущих итерациях части последовательности M.

Алгоритм вычисления функции h включает в себя этапы:

Этап 1

Присвоить начальные значения текущих величин

- 1.1 M = M
- 1.2 H = H
- 1.3 $\Sigma := 0^{256}$
- $1.4 L := 0^{256}$
- 1.5 Переход к этапу 2

Этап 2

2.1 Проверить условие |М|>256.

При положительном исходе перейти к этапу 3.

В противном случае выполнить последовательность вычислений:

- 2.2 L:= $\langle L+|M| \rangle_{256}$
- $2.3 M' := 0^{256-|M|} M'$
- 2.4 $\Sigma := \Sigma \oplus' M'$
- 2.5 H:=x(M', H)
- 2.6 H := x(L, H)
- 2.7 $H:=x(\Sigma, H)$
- 2.8 Конец работы алгоритма

Этап 3

3.1 Вычислить подслово $M_s \in V_{256}(2)$ слова $M_s (M=M_p \| M_s)$. Далее выполнить последовательность вычислений:

- 3.2 $H := x(M_s, H)$
- 3.3 L:= $\langle L+256 \rangle_{256}$
- 3.4 $\Sigma := \Sigma \oplus' M_s$
- 3.5 $M := M_p$

3.6 Перейти к этапу 2.

Значение величины H, полученное на шаге 2.7, является значением функции хэширования h (M).

Проверочные примеры для вышеизложенной процедуры вычисления хэш-функции приведены в приложении А.

ПРИЛОЖЕНИЕ А (справочное)

проверочные примеры

Заполнение узлов замены $\pi_1, \ \pi_2, \dots, \pi_8$ и значение стартового вектора хэширования H, указанные в данном приложении, рекомендуется использовать только в проверочных примерах для настоящего стандарта.

А.1 Использование алгоритма ГОСТ 28147

В качестве шифрующего преобразования в приводимых ниже примерах используется алгоритм ГОСТ 28147 в режиме простой замека.

При этом заполнение узлов замены $\pi_1, \pi_2, ..., \pi_8$ блока подстановки π

следующее:

1	8	7	6	5	4	3	2 -	1	
	1	D	4	6	7	5	Е	4	
יט 1	F	В	B	Č	Ď	8	В	À	
$\overset{1}{2}$	Ď	4	Ā	$\bar{7}$	A	1	4	9	
$\bar{3}$		i	0	1	1	Ď	C 6	$\frac{2}{2}$	
4 5	0 5 7	3	7	5	0 8	Ā 3	6	Ď	
5		F 5	2	F	8	3	D F	8 0	
6	A	5	D	D 8	9 F	9	I' A	E	
7	4	9	3	4	Ë	4 2 E	$\frac{\alpha}{2}$	6	
8 9 10	9 2 3 E	0 A E	6		4	F	A 2 3 8 1	B	
10	3	Ë		A 9	6	\mathbf{C}	8	I	
11	E	7	5	E	C	7 .	1	Ç.	
12	6 B	6	9 C	0	В	6	0	7	
13	B	8	Ë	. 3 B	2 5	0 9	7 5	F _ 5	
14	8 C	2 C	F E	2	3	B	9	~ 3	
15	1	C	17	4	J	D	· ·	_	

В столбце с номером j, $j=\overline{1,8}$, в строке с номером i, $i=\overline{0,15}$, приведено значение $\pi_1(i)$ в шестнадцатеричной системе счисления.

А.2 Представление векторов

Последовательности двоичных символов будем записывать как строки шестнадцатеричных цифр, в которых каждая цифра соответствует четырем знакам ее двоичного представления.

А.З Примеры вычисления значения хэш-функции

В качестве стартового вектора хэширования принимают, например, нулевой вектор

А.З.1 Пусть необходимо выполнить хэширование сообщения

M= 73657479 62203233 3D687467 6E656C20 2C656761 7373656D 20736920 73696854

Выполняют присвоение начальных значений:

текста

M=73657479 99203233 3D687467 6E656C20 9C656761 75.C356D 20736920 73696854 хэш-функции

суммы блоков текста

длины текста

Так как длина сообщения, подлежащего хэшированию, равна 256 битам (32 байтам),

M'=M=73657479 62203233 3D687467 6E656C20 2C656761 7373656D 20736920 73696854, το

нет необходимости дописывать текущий блок нулями,

Σ = M' = 73657479 62203233 3D687467 6E656C20 2C656761 7373656D 20736920 73696854

Переходят к вычислению значения щаговой функции хэширования к (М, Н). Вырабатывают ключи

K₃= 80B111F3 730DF216 850013F1 C7E1F941 620C1DFF 3ABAE91A 3FA109F2 F513B239

K₄= A0E2894E FF1B73F2 ECE27A00 E7B8C7E1 EE1D620C AC0CC5BA A804C05E A18B0AEC

Осуществляют зашифрование 64-битных подслов блока Н с помощью алгоритма по ГОСТ 28147.

Блок $h_1 = 000000000 000000000$ зашифровывают на ключе K_1 и получают $s_1 = 42ABBCCE \ 32BC0B1B$.

Блок $h_2 = 00000000 \ 000000000$ зашифровывают на ключе K_2 и получают $s_2 = 5203 EBC8 \ 5D9BCFFD$.

Блок h₃ = 00000000 00000000 зашифровывают на ключе K₃ и получают s₃ = = 8D345899 00FF0E28.

Блок h_4 =00000000 000000000 зашифровывают на ключе K_4 и получают s_4 == E7860419 1 OD2A562D.

Получают

Выполняют перемешивающее преобразование с применением регистра сдвига и получают

 $E = \kappa$ (M, H) = CF9A8C65 505967A4 68A03B8C 42DE7624 D99C4124 883DA687 561C7DE3 3315C034

Полага	ют Н=Е, вы	числяют и (I	., H):	
$K_i =$	CF68D956	9AA09C1C	8C3B417D	658C24E3
	50428833	59DE3D15	6776A6C1	A4248734
$K_2 =$	8FCF68D9	809AA09C	3C8C3B41	C7658C24
	BB504288	2859DE3D	666676A6	B3A42487
K ₃ ==	4E70CF97	3C8065A0	853C8CC4	57389A8C
	CABB50BD	E3D7A6DE	D1996788	6CB35B24
K ₄ =	584E70CF	C53C8065	48853C8C	1657389A
	EDCABB50	78E3D7A6	EED19867	7F5CB35B
S=	66B70F5E	F163F461	468A9528	61D60593
	E5EC8A37	3FD42279	3CD16/92D	DD783E86
E =	2B6EC233	C7BC89E4	2ABC2692	5FEA7285
	DD3848D1	C6AC997A	24F74E2B	09A3AEF7
Вновь	полагают Н=	:∃ и вычисл	яют ж (Σ, Н	1):
$K_1 =$	5817F104	0BD45D84	B6522F27	4AF5B00B
	A531B57A	9C8FDFCA	BB1EFCC6	D7A517A3
$K_2 =$	E82759E0	C278D950	15CC523C	FC72EBB6
	D2C73DA8	19A6CAC9	3E8440F5	C0DDB65A
$K_3 =$	77483AD9	F7C29CAA	EB06D1D7	841BCAD3
	F B C3DAA0	7CB555F0	D4968080	0A9E56BC
$K_4=$	A1157965	2D9FBC9C	088C7CC2	46FB3DD2
	7684ADCB	FA4ACA06	53EFF7D7	C0748708
S=	2AEBFA76	A85FB57D	6F164DE9	2951A581
	C31E7435	4930FD05	1F8A4942	550A582D
도=	FAFF37A6	15A81669	1CFF3EF8	B68CA247
	E09525F3	9F811983	2EB81975	D366C4B1
Таким	образом, рез	ультат хэши	рования есть	,
H=	FAFF37A6	15A81669	1CFF3EF8	B68CA247
	E09525F3	9F811983	2EB81975	D366C4B1
A.3.2 I	Пусть необход			ание сообщения
M = 7	365 74796220	3035203D	20687467 61	E656C20 73616820 65676173
	73656D2	6C616E69	6769726F 20	0656874 2065736F 70707553
) байтам писываю	ак длина соо и), то разбив от нулями. В	ают сообще	ние на два (эшированию, равна 400 бита блока и второй (старший) бло учают:
ШАГ	ì			
	00000 000000 00000 000000			
M = '	73616820	65676173	73656D20	6C616E69

2065736F

686D7273

616E6875

70707553

20206F6F

73697453

 $K_1 =$

6769726F

73736720

356C2070

20656874

61656965

67616570

K ₂ =	14477373	0C0C6165	1F01686D	4F002020					
	4C50656C	04156761	061D616E	1D277369					
K3=	CBFF1/4B8	6D04F30C	96051FFE	DFFFB000					
	35094CAF	72F9FB15	7CF006E2	AB1AE227					
K ₄ =	EBACCB00	F7006DFB	E5E16905	B0B0DFFF					
	BA1C3509	FD118DF9	F61B830F	F8C554E5					
S=	FF41797C	EEAADAC	2 43C9B1DF	2E14681C					
	EDDC2210	1EE1ADF9	FA67E757	DAFE3AD9					
=3.	F0CEEA4E A93BEFBD		C63D96C1 CBBB69CE	E5B51CD2 ED2D5D9A					
ШАГ	2								
H=	F0CEEA4E	368B5A60	C63D96C1	E5B51CD2					
	A93BEFBD	2634F0AD	CBBB69CE	ED2D5D9A					
M′ ==		1000000 00000 135 2 03D 20687							
$\mathbf{K}_1 =$	F0C6DDEB	CE3D42D3	EA968D1D	4EC19DA9					
	36E51683	8BB50148	5A6FD031	60B790BA					
$K_2 =$	16A4C6A9	F9DF3D3B	E4FC96EF	5309C1BD					
	FB68E526	2CDBB534	FE161C83	6F7DD2C8					
$K_3=$	C49D846D	1780482C	9086887F	C48C9186					
	9DCB0644	D1E641E5	A02109AF	9D52C7CF					
K ₄ =	BDB0C9F0	756E9131	E1F290EA	50E4CBB1					
	1CAD9536	F4E4B674	99F31E29	70C52AFA					
S=	62A07EA5	EF3C3309	2CE1B076	1/73D48CC					
	6881EB66	F5C7959F	63FCA1F1	D33C31B8					
2=	95BEA0BE	88D5AA02	FE3C9D45	436CE821					
	B8287CB6	2CBC135B	3E339EFE,	F6576CA9					
шаг :	3								
H=	95BEA0BE	88D5AA02	FE3C9D45	436CE821					
	B8287CB6	2CBC135B	3E339EFE	F6576CA9					
L=	$ L = \begin{array}{ccccccccccccccccccccccccccccccccccc$								
$K_1 =$	95FEB83E	BE3C2833	A09D7C9E	BE45B6FE					
	88432CF6	D56CBC57	AAE8136D	02215B39					
K ₂ =	8695FEB8	1BBE3C28	E2A09D7C	48BE45B6					
	DA88432C	EBD56CBC	7FABE813	F292215B					
K ₃ =	B9799501	141B413C	1EE2A062	0CB741/45					
	6FDA88BC	D0142A6C	FA80AA16	15F2FDB1					
K ₄ =	94B 97995	7D141B41	C21EE2A0	040CB741					
	34 6FDΛ88	46D0142 A	BDFA81AA	DC1562FD					
S=	D42336E0	2A0A6998	6C65478 A	3D08A1B9					
	9FDDFF20	4808E 86 3	94FD9D 6D	F776A7AD					

FOCT P 34.11-94

Ξ=	47E26AFD A3D97E7E	3E7278A1 A744CB43	7D473785 08AA4C24	06140773 3352C745				
ШАГ 4	V.							
H=	47E26AFD A3D97E7E	3E7278A1 A744CB43	7D473785 08AA4C24	06140773 3352C745				
$\Sigma =$	73616820 DBE2D48F	65676173 509A88B1	73656D20 40CDE7D6	6C61E1CE DED5E173				
$K_1 =$	340E7848 5B6AF7ED	83223 B67 1575DE87	025AAAAB 19E64326	DDA5F1F2 D2BDF236				
K ₂ =	03DC0ED0 A8B063CB	F4CD26BC ED3D7325	8B595F13 6511662 A	F5A4A55E 7963008D				
K3=	C954EF19 4A9D0277	D0779A68 78EF765B	ED37D3FB C4731191	7DA5ADDC 7EBB21B1				
$K_4 =$	6D12BC47 F2137F37	D9363D19 64E4C18B	1E3C696F 69CCFBF8	28F2DC02 EF72B7E3				
S=	790DD7 A 1 25EF9645	066544EA EE2C05DD	282 9563C A5ECAD 92	3C39D781 2511A4D1				
2=	0852F562 EAFBC135	3B89DD57 0613763A	AEB4781F 0D770AA6	E54DF14E 57BA1A47				
Таким образом, результат хэширования есть								
H=	0852F562 EAFBC135	3B89DD57 0613763A	AEB4781F 0D770AA6	E54DF14E 57BA1A47				

УДК 681.3.06:006.354

П85

OKCTY 5002

Ключевые слова: информационная технология, криптографическая защита информации, электронная цифровая подпись, асимметричный криптографический алгоритм, системы обработки информации, защита сообщений, подтверждение подписи, хэш-функция, функция хэширования

Редактор Л. В. Афанасенко Технический редактор Н. С. Гришанова Корректор А. С. Черноусова

Сдано в наб. 24.06.94

Подп. в печ. 19.08,94 Усл. п. л. 0,93. Уч.-изд. л. 0,84. Тираж 300 экз. С 1985.

Усл. 1

Усл. кр.-отт. **0,98**,