القسم : السنة الثانية من سلك البكالوريا المادة : الفيزياء والكيمياء

الفيزياء (12,5pts)

> التمرين الاول: (6,00)

 $\, {
m D} \,$ تصطدم حزمة ضوئية أحادية اللون بسلك رفيع قطره $\, a \,$ ، نضع خلف السلك شاشة عي مسافة

نعتبر خلال التمرين D>>L

- 1. ماهي الظاهرة الممكن مشاهدتها على الشاشة؟
 - 2. ماهي طبيعة الضوء ؟علل جوابك
- λ وطول الموجة α وقطر السلك α وطول الموجة λ
 - λ و Δ و D البقعة المركزية ابدلالة Δ و و ف
 - استنتج العوامل المؤثرة على هذه الظاهرة مبرزا نوع التأثير
- L_1 التوالي ضوئين أحادي اللون طول موجّنيهما على λ_1 و λ_2 فنحصل على بقعتين مركزيتين طولاهما على التوالي λ_1 و λ_2 بحيث λ_2 المحيث λ_2 على بقوابك قارن λ_2 و λ_1 على جوابك
 - نضع أمام حزمة ضوئية أحادية اللون على التوالي سلكين مختلفين القطرين a_1 و a_2 فنحصل على الشكلين (أ) و (ب) حدد الشكل الموافق لكل سلك علما أن $a_2 < a_1$ علل جوابك

(6,50pts) التمرين الثانى: (6,50pts)

ينبعث مصباح ضوئي ثلاثة أضواء أحادية اللون أطوال موجاتها على التوالي في الفراغ هي:

 $\lambda_3 = 768$ nm و $\lambda_2 = 589$ nm و $\lambda_1 = 434$ nm

يرد الضوء المنبعث من المصباح على وجه موشور بحيث الضوء المنبعث من الموشور على شائلة بيضاء E

- 1. ماذا ستلاحظ على الشاشة؟
 - 2. ما اسم الظاهرة؟
- 3. بماذا نفسر هذه الظاهرة؟
- 4. اعط علاقات الموشور مبرزا اسم كل مقدار
- 5. أعط قانوني ديكارت الاول والثاني (عند الوجه الاول والوجه الثاني)
- نقوم بإدارة الموشور الى أن نحصل على زاوية أنحراف دنوي $m D_m$ أي عند تكون زاوية الورود على الوجه مساوية لزاوية الانكسار على الوجه الثاني على الوجه الثاني الموجه الموجه
 - D_{m} و A الانكسار n بدلالة زاوية الموشور
 - نقيس زاوية الانحراف الدنوية لكل من الاشعاعات المنبعة من المصباح وندونها في الجدول $A{=}60^{\circ}$

78	82	93	D_{m}
768	589	434	λ(nm)
			n

أتمم ملأ الجدول

- أوجد سرعات انتشار الإشعاعات الثلاثة داخل الموشور
- 9. أحسب ترددات هذه الإشعاعات في الفراغ وفي الموشور
- الموشور استنتج أطوال موجات هذه الاشعاعت الثلاثة داخل الموشور $c{=}3.10^8 m.s^{-1}$

(7,50pts) الكيمياء

(7,50pts) التمرين الثالث: (7,50pts)

ندرس تطور التفاعل الكيميائي الناتج عن تأكسد أيونات اليودور $_{\rm I}$ بواسطة الماء الاوكسيجيني $_{\rm C=0,10mol.L}^{\rm H_2O_2}$ عند الحظة $_{\rm C=0,10mol.L}^{\rm T}$ محلول يودور البوتاسيوم تركيزه $_{\rm C=0,10mol.L}^{\rm T}$ محمض بواسطة حمض الكبرتيك بافراط مع $_{\rm C=0,10mol.L}^{\rm T}$

نتمكن بواسطة تقنية معينة من تحديدتركيز تتائي اليود المتكون في لحظات مختلفة، حيث ندون النتائج في الجدول التالي:

ť	1420	1178	930	682	434	126	0	t(s)
	6,53	6,26	5,84	5,16	4 ,06	1,74	0	[I ₂]mmol/L
								X(mmol)

 H_2O_2/H_2O I_2/I^- فيه هما: المز دوجتين المتدخلتين فيه هما: 1. أكتب المعادلة الكيميائية للتفاعل علما المز دوجتين المتدخلتين فيه هما

2. هل الخليط البدئي استيكيومتري؟

أنشيئ جدول التقدم

الخليط V الخليط X(t) و والتقدم X(t) و الحجم الخليط 4

حدد قيمة النقدم القصوي الموافقة للحظة 't انتهى خلالها النحول الكيميائي واستنتج قيمة ثنائي اليود النظرية الناتجة عند انتهاء
 التحول الكيميائي

6. اتمم ملأ الجدول

7. مثل منحنى تقدم التفاعل x بدلالة الزمن t

8. كيف تتغير السرعة الحجمية للتفاعل؟ علل جوابك

9. أوجد تركيب الخليط عند اللحظة t=300s

10. عرف زمن نصف التفاعل ثم حدد قيمته

JENKAL RACHIO