Haimeng Zhao

Last Updated: November 24, 2023

Email: haimengzhao@icloud.com GitHub: github.com/haimengzhao Website: hmzhao.me, Google Scholar

EDUCATION

Tsinghua University

Beijing, China

B.Sc. in Physics & Maths, Minor in Statistics, Advisor: Dongling Deng, Wei Zhu

2020–2024(Expected)

GPA: **3.96**/**4.00**, Major GPA: **4**/**4**, Rank: **1**/**100**; English: TOEFL 113/120 (25/Speaking), GRE 335/340

California Institute of Technology

Pasadena, CA, USA

Undergrad Research Fellow @ IQIM, Advisor: John Preskill, Matthias Caro, Hsin-Yuan Huang

2023 - Now

EPFL (École Polytechnique Fédérale de Lausanne)

Lausanne, Switzerland

Exchange, GPA: 6/6 (4 grad courses), Advisor: Giuseppe Carleo, Filippo Vicentini

2022 Fall

RESEARCH INTEREST

SKILLS

- How to better understand the universe, and how is understanding even possible?
- Quantum Information, Statistics & Learning Theory
- Quantum Many-body Physics: Theory & Computation
- AI for Science, especially Physics & Astrophysics
- Generative Learning, Neural Differential Equations
- Computational Physics: Neural Quantum States, Tensor Network, (Quantum) Monte Carlo, DFT. NetKet and NASA EMAC contributor.
- (Quantum) Machine Learning: (Quantum) Learning Theory, Variational Quantum Algorithms, Generative Learning, Neural Differential Equations.
- **Programming:** High performance scientific computing with Python & C++. Differentiable programming with JAX, PyTorch (6 years) & TensorFlow.

SELECTED PUBLICATIONS

- ¹Haimeng Zhao, Laura Lewis, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang, and Matthias Caro, "Learning Quantum States and Unitaries of Bounded Gate Complexity", (2023), arXiv:2310.19882, accepted by QIP 2024, in preperation for Nature Physics.
- ²Haimeng Zhao, Giuseppe Carleo, and Filippo Vicentini, "Empirical Sample Complexity of Neural Network Mixed State Reconstruction", (2023), arXiv:2307.01840, under review in Quantum.
- ³Haimeng Zhao, "Non-IID Quantum Federated Learning with One-shot Communication Complexity", Quantum Machine Intelligence 5, 3 (2023), short talk at QTML 2023 (acceptance rate 8%).
- ⁴Haimeng Zhao and Wei Zhu, "MAGIC: Microlensing Analysis Guided by Intelligent Computation", The Astronomical Journal **164**, 192 (2022).
- ⁵Haimeng Zhao and Wei Zhu, "Parameter Estimation in Realistic Binary Microlensing Light Curves with Neural Controlled Differential Equation", ICML Workshop on Machine Learning for Astrophysics (2022).
- ⁶Junyi Liu, Yifu Tang, **Haimeng Zhao**, Fangyu Li, and Jingyi Zhang, "CPS Attack Detection under Limited Local Information in Cyber Security: An Ensemble Multi-Node Multi-Class Classification Approach", ACM Transactions on Sensor Networks (2023).

SELECTED RESEARCH EXPERIENCE

The Complexity of Learning Physical Systems, Evolution, and Functions

Feb. 2023 - Now First Author [1]

Advisor: John Preskill, Matthias Caro, Hsin-Yuan Huang, IQIM @ Caltech

- Rigorously proved that #experiments needed to learn states/unitaries is linear in their circuit complexity.
- Established an exponential separation between average-case and worst-case unitary learning.
- Proved a computational efficiency transition point of learning at logarithmic circuit complexity.
- Formulated a unifying information-theoretic perspective on the quantum no-free-lunch theorem.
- Proved that certain unphysical functions cannot be efficiently implemented or learned in Nature.

• AI4Q: Sample Complexity of Neural Quantum State Tomography Aug. 2022 - Jul. 2023 Advisor: Giuseppe Carleo & Filippo Vicentini, Computational Quantum Science Lab @ EPFL First Author [2]

- Introduced control variates to control gradient variance and significantly reduce sample complexity.
- Discovered the temperature dependence of sample complexity behavior via theory and extensive numerics.
- Benchmarked different tomography methods and highlighted quantum-resource efficiency of various NQSs.

• AI4Astro: ML Framework for Realistic Microlensing Event Analysis Oct. 2021 - Sep. 2022 Advisor: Wei Zhu, Department of Astronomy @ Tsinghua First Author [4, 5]

- Introduced neural controlled differential equations to robustly learn *irregular* astronomical time-series.
- Developed a machine learning framework for microlensing data of realistic quality, listed on NASA EMAC.
- Accelerated microlensing analysis by $\times 10^5$ and successfully applied to real events for the first time.

• QAI: Non-IID Quantum Federated Learning Single authored work. Extending [6] to the quantum regime.

Jul. 2022 - Sep. 2022 Single Author [3]

- Proposed and studied the quantum data heterogeneity problem both theoretically and numerically.
- Quantized algorithms in [6], substantially more robust to heterogeneity and communication efficient.
- Services: reviewer for QIP 2024, QTML 2023, NeurIPS 2023, ICML 2023 ML4Astro, NeurIPS 2022 ML4PS, etc.

Selected Coursework

High Dimensional Probability*	A	Quantum Artificial Intelligence*	A
Interacting Quantum Matter*	6/6	Stat. Phys. of Computation*	6/6
Information Theory and Coding*	6/6	Biophysics*	6/6
Computational Quantum Physics*	A+	Solid State Physics	A+
Atom and Molecule Physics	A	General Relativity	A
Analytical Mechanics	A	Quantum Mechanics	A
Statistical Mechanics	A	Electrodynamics	A+
Complex Analysis	A+	Partial Differential Equations	A+

^{*} for graduate courses. Audited/self-taught: Quantum Field Theory, Lattice Field Theory, Topology, Group Theory, Theoretical Computer Science, Quantum Information Theory, Ultracold Atomic Physics.

SCHOLARSHIPS AND AWARDS

• Caltech Summer Undergraduate Research Fellowship	
• Tsinghua Highest Scholarship (清华特等奖学金, Highest Honor for Undergrads in Tsinghua, top 10)	2023
• National Scholarship (National Highest Honor for Undergrads)	
• Scholarship of the National Astronomical Observatory of China	
• Chi-sun Yeh Scholarship (Highest Honor for Physics Major), Tsinghua Xuetang Talents Program	
• ST. Yau College Maths Contest, Silver Medal (2 nd place) in Mathematical Physics	2022
• ST. Yau High School Science Award, Gold Medal (1st place) in Computer Science	2019