Mo Tu We Th Fr Sa Su Date / /
LAB12
00
PROBLEM 1
No, not every dense graph hous
a hamiltonian cycle
Jue have a disconnected graph
G Whose components each have
a complete subgraph of G, then G is dense but me cant form a
G is dense but me cand form.
cycle to reach every edge.
Accumuna the graph is connected
Assuming the graph is connected $G=(V,E)$ it is dense j'

PROBLEM 3: bipartite matching : = 6 = AB, CD, 96 Size = 3

PROBLEM 4 G=(V,E) with n neithces Given ue obtain a TSP problem e We need a complete graph the to, H= Ky & a subgention

H= (VH, EH) 9 H. degine kand cost junetion C. let k=0 C: EH -7 M 80 yeéE C(e) = 11 y e & E It takes O(n2) time to do this

Now, very that a solution to He problem es yields a solution to ISP problem - Suppose G is hamiltoniam cycle in 6, we need -check C is He in H(H-9 new graph for TSP)
Since V=VH, is Cspanning? Hes - 1) C is still simple! YES. dreek & c Ce) ZK CEC Since each e in C belong & to E, C(e) = 0 8 C(e) = 0 = p we have very red that C is the Solution to the TSP problem me

Then, lets very that the solution to the TSP problem yields a solution to the HC problem Suppose & is a solution to the TSP problem ECC = 0 by the mapping done earlier Summation of integers (positive) can
only be zero if each edge weight

is valued to be zero'

e in c belongs to \(\pm \) = \(\pm \) C CE So C is a hansiltoniain cycle that crentes a graph 6, from the tamiltonian Gele problem

Quebon No.5
Given: Hamitonian cycle problem & NP-complete.
Proof: TSPis Np complete
Since we have HC as a NP complete problem
SAT POLY HC - (2)
'we proofed in question 2, He poly HE TSP
By using (Transitivity of Reducibelity):
SAT Poly HC Poly TSP
YOUR ARED TSP
or we can say that TSP is also NP-complete problem.
The is clear that weter appear output

