Lecture-03

- > Practicals [Linear, Ridge & Lasso, Logistic]
- > Naive Boya's Intution.
- + KNN algorithms

Practicals: [Linear Regression & Ridge and Lasso]

1970ggam:

from Sklewn. datasets impost load-boston

import pandas as pd

import Seaborn as Sns

import matphotlib. Pyplot as plt

% Matplotlib inline

df = load - boston ()

type (df) and wife out 2.00 and 1297

dataset = pd. Dataforome (df.data)

dataset. Columns = df. features_hames

dataset . head ()

Coneate dependent feature dataset ['price'] = df. tooget dataset . head () # Dividing the dataset into independent and dependent features X = dataset.iloc [:,:-1] # independent features Y= dataset. iloc [:, -1] # dependent features X. head () y-head() () with - will # Linean Regression from Skleson. linear_model import Linear Regression from Sklewn. Model_ Selection import Cross-val-Score lin- orez = Linean Regoression () MSe = Cross_val_Scone (lin_greg, X, y, Scoring = Mean_squared_error # return 5 value Output: [-12.460 30, -26.0486, -33.674, -80.762, Test -33.31360 Train Test Train Mean_mse = np. mean (mse) print (mean_mse) Test Train Outpot: -37.1318074

To predict with test data.

lin_ong. Predict() # To pass. the test data to make prediction.

#Ridge Regression

from Sklewin-linear-model import Ridge

from Skleam, model - Selection import Graid Search CV

Graidseach CV Play among all (d) parameter to give best (d)
Value for Our model.

Midge = Ridge ()

Panams = { alpha - [le-15, le-10, le-8, le-3, le-2, 1,5, 10, 20

Hean-Sayson = Graid Secorch (V (ridge, Parlams, Scoring = 'neg-

Hidge negresson - fit (x,y)

Print (nidge-negresson. best-poroms-) # return best of value Print (nidge-negresson. best-Score-) # return best mse

Outputs

{ 'alpha': 20}

-32.380250

Heon inco - 17. man (msc.)

(sem_ness) loss

17.13/2074

Mse for both pregnession,

Linear Reg Rige Reg

(-37)

But, Ridge also taries

This is best to greduce Overfitting.

because it is low.

In this Scenario, we get linear regression because it is good.

Lasso Regression (Same Code for Tidge but name Charge to Lasso)

Also play a n number of of farours like 30,35, 40, to give better accuracy.

we are already know (20055 Validation Splits the data and we also have test-train split.

Hode

from Skleoon. model_selection import torain-test_split

X-terain, X-test, y-terain, y-test = torain-test_split

(x, y, test-size = 0.33, grandom_state=42)

Then pass the Code like,

Mse = (noss-val-score (lin_neg, x-terain, y-terain, Scoring)

Like this I

What is difference between Cross validation and Trainless

Split ?

Some points,

Train-Test split only splits based on grandom state and test-size. It gives different accuracy when Changing the grandom state.

-> But, Gross Validation Porforms Correctly based on the CV Count.

Suppose, lok datapoints

 $CV = \frac{10}{10} = 1 \quad [for test] \quad [0 \text{ of}]$ $10 - 1 = 9 \quad [for teain] \quad 90 \text{ of} \quad .$

It gives in nomber of accuracy based on CV
Count and take better accuracy with the help
of mean.

Rumamban

test data.

(x, y, lost - Size - 0.34, Jundam

Like this

MSE, MAE, RMSE -> It is used for mainly to

Evaluate the prediction error rates. Lower Mse, MAE,

RMSE the closer is to [i.e cost function = 0] - It is

better fit.

Rand adjusted R2:

The R2 and adjusted R2 is used to evaluate Model performence like 80 %, 95 % and so on.

Both are regression evaluation metanics based on the Usage we can use. Mostly, MSE, MAE, RMSE is Used Only for evaluate prediction rates. R² and used Only for evaluate prediction rates. R² and adjusted R² are used to model performance.

Code:

Find Accomacy of the Model

y-pard = 91 idge - 9regeres sor. predict (x-test)

from Skleam, metaics import 912_Score

912_Score1 = 912_Score (y-pred, y-test)

Print (82 - score 1). and has roled it facilité set it

Output: 0.650955

650/0 Accuracy

Logistic Regression:

from Shlewn. linear_model import Logistic Regences ion

forom Sklewn. datasets imposit load-breast-Cancer

df = load_borerst_Cancer()

Independent feature

X = pd. Data Frame (df ['data'], Columns = df ['features_names'])

X. head () 1 sem of boom seed no see you

Dependent feature

y = pd. Dato frame (df['target'], columns = ('Target'])

y

Check dataset is balanced or imbalanced

y [' Target']: Value_Counts ()

3572 SPE troopini windows mestal mest out:

0 () 212 V (barg y) 212 - 5 come t smoot sor

The dataset is balanced One . ()

```
# Tmain Test Split
```

from Sklean. model_selection imposit toraink_test_split

X-terain, X-test, y-terain, y-test: torain-test_split

(x,y, test_size=0.33, grandom_slote=42)

Pagams = [{'C':[1,5,10]}, {'max_item': [100,150]}]

Model 1 = Logistic Regression (C=100, max_iten=100)

(pd las - apple [[511 E]

Model = Graid Search CV (model 1, Param - graid = params, Scoring = fi',

(V=5)

model. fit (x-tersin, y-tersin)

Chock best params () hope will be to

Model . best - params_

Outs (max_iter : 150)

model best-Score

9000 0.95751136

Ye por y-pored = model. Predict (x-test)

to A Poplarization

max he day it value is loo , why set the mox.

y- pred deposts initation pure to somewil & a D

Confusion Matrix

Confusion_materix (y-test, y-pered)

Out: array ([[63, 4],

[3, 118]], dfype = int 64)

Évaluate Metarics

from Skleson. meterics import Confusion_materix, classification_ ruport,

accuracy_Score (y-test, y-pried)

Classification_prepart (y-test, y-pred) # This show all the Precision, Recall and f1-Score.

Ramamber:

Max-iten default value is 100, why set the max-iten.

Because of Some time leades to infinite doop and

May be not converge.

C > 1 Invense of gregularization Strength

Ly weak Rozulonization
Ly Stanong Regularization

- > The weak oregularization, the penulty term added lost function is relatively small.
- It means the model's Coefficient (08) slope Can take larger values, allowing to fit the teraining datamore closely.
 - -> It is Suitable for large and Complex datasets and those's need to Capture intericate patterns in data.
 - > How even applied, The model Still Overfit and peruform
 poorly on new data.

Storong Regularization:

- The larger penalty torm in the loss function.
- -> The parally discourages the model coefficients taking large values, reducing impact on prediction.
- also prevent from fitting.
- It encourages the model to focus on the most important features and Prevents Overfilling.

Naive Bayes Intution: [Classification]

This algorithm is used for classification

Problem.

This algorithm is worked with the help of Baye's theorem.

a stab ralgoral bree good Rof aldative of the co Rolling a Dice, [Independent sevents]

{1,2,3,4,5,6} show at heilige research 6

P(1)=1/4, P(2)=1/4, P(3)=1/4, P(4)=1/6

So, this event is called as the independent event! sail it most plant agreet it -

Dependent events:

T no topping produce grant on T

P(Black Ball) = 3

after that down the, This is Dependent

P(Blue Ball) = 2/4 = 1/2

P (Black and Blue) = P (Black) * P (Blue / Black)

So, let's write

(xx)(x) = x(xx)(x)(x)(x)

Let's derive something,

m/x) q x (oules) q x (oules) q x (oules) q x (oules) q = (72 lou = g)]

So, let's write

Suppose the dataset Contains,

$$P(4=yes|x;) = P(yes) * P(x, |yes) * P(x_2 |yes) * P(x_3 |yes)$$

$$P(x_1) * P(x_2) * P(x_3) * P(x_4)$$

$$To fixed [constant]$$

$$P(y=No|x_i) = P(No) * P(x_1|No) * P(x_2|No) * P(x_3|No) * P(x_4|No)$$

$$P(x_1) * P(x_2) * P(x_3) * P(x_4)$$

$$Fixed [constant]$$

$$\chi_i \longrightarrow y_{es}$$
 N_0

In binony classification, we decide

So, let's apply normalization

frill but sol. to Alligamed & 100

$$P(Yes(xi) = 0.13 = 0.72 \Rightarrow 72\%$$

This is known as the intution of Naive Bayes.

Real woorld Example:

Consider the DATASET,

DAY	OUTLOOK	TEMPERATURE	HUMIDITY	QNIW	PLAY TENNIS
DI	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strang	No
D3	Overcast	Hot	High	weak	Yes
D4	Rain	mild	High	weak	Yes
D5	Rain	Cool	Normal	Weak	>6s
D6	Rain	Cool	Norma	Sterong	No
D7	Overcast	Cool	Normal	Sterong	Yes
28	Sunny	mild	High	Weak	No
Dq	Sunny	Cool	Normal	Weak	Yes
Dio	Rain	Mild	Normal	Utak	Yes
DII	Sunny	Mild	Nogima	Sterong	Yes
D12	overcast	Mild		Strong	
D_{13}	Overcact	Hot	fligh	5	1
Du	Rain	mild	Normal High	Weak	yes No

So, let's take outlook feature

Outlook:

Yes No P(y) P(No)Summy 2 3 3/4 3/5

Overcast 4 0 4/4 9/5

Rain 3 2 3/4 3/5

p(N) -> Probability of No for given collack Values

So, let's take the temperature feature

Temporature:

	v. av	Yes	No	P(y)	P(N)
Hof		2	2	2/9	2/5
Wild	della	1. 16 4	2	£10 m	24
	Xerd mark	Howard P.	_	4/9	1/5
Cold	Book 1	3 James 1	1	3/9	1/5
_	XOU	9 4	5	- Alim Loo	
Total	Jane Jane	9 emro 1		- Alim	Fair

Then also take a PLAN festione,

to dependent feature.

So, Conclude that

PLAY:

Suppose the new data will be Come, and word low!

-> (sunny, Hot) -> what is the O/P?

P(no / somy, but) . P(no) + (somy/no) + P(

So, let's find out

Musimalized P(xes/sonneld) =

P(yes | (Sunny, hot) = P(yes) *- P (sunny / yes) * P(Hot/yes)

P(sungy) & p(Hot)

That's why Just ig house because it is fixed]

(ford at My 1 29 + 29 tot moved on) & bear convent

(mod on) 1 + (tol = 2/63 =) 0.031

$$P(No/Sunny, hot) = P(No) + P(Sunny/No) + P(hot/No)$$

$$P(Sunny) + P(hot)$$

$$= 8/4 + 3/5 + 2/5$$

$$= 3/35 = 0.085$$

The final thing is Normalize, (told yours) -

= 0.267241 => 27%

Nonmalized P(No/Sunny, hot) = P(No/sunny, hot)

P(yes I sunny, hot) + P(No Isumy, hot)

Just apply formula (08) Subtract whole from 1.

= 1 - 0-267241

= 0-732 => 73%.

50,

P(yes (sunny, hot) = 27%

P (No (Sunny, hot) = 73 %

So, the thoushold Value is 0.5,

P (yes / Sunny, hot) 2 0,5

So, obivously take,

P (No (Sunny, hot) = 73 %

Therefore,

If a person play with (sunny, hot) -> 0/p?

The probability of No is high.

So, The Answer is No. goog and a se

This is all about the Maire Bayes for bingery Classification.

- + KNN means k-nearest neighbours.
- > It also supposet to solve both sugression and Classification peroblem.

Classification:

Suppose k=5

| K=5|
| Take 5 newrest

| Points and Calculate

P (yes Ismmy, hot) 2 0.5

In this case, maximum point.

Caking from blue group. So, the new point consider
as a blue group.

Blue point -3 (obiviously tis is less distance)

Black point -2

. noiterfication.

The Calculation is done by two distance formula,

> Eucledian Distance.

(x1, y1)

> Manhatten Distance

How Categorical feature plotted in KNN ?

Before applying KNN, The various feature encoding techniques will be used. This will be used to Convert Categorical feature into numerical values.

Then plot KNN.

Regoression:

Suppose k=5

Suppose k=5

K=5

K=5

Insurable distance.

And over ge

Take heroast five points distance and Calculate the average. This will be prediction.

k is the hyperparameter.

Apply the kvalue 1 to 50 and check the pronon grate.

If evonon grate is low, take this model for analysis.

K-henorest is working bad in two Cases one,

formula,

Eucledian distance =
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Manhatten distance =
$$\left[\left(x_2-x_1\right)+\left(y_2-y_1\right)\right]$$
 (ox) $\left[x_1-x_2\right]+\left[y_1-y_2\right]$

When Eucleidien and Manhattan distance avorate Use ?

Both the distance formula used depends nature of the data.

Euclidean distance tends to work well when the data is distributed in a Morre Circular Manner.

d Him It . spens While, The Manhattan distance Can be more

Suitable for Graid-like (00) lattice like structure.

(It means where Values are arranged in nows and columns).