# Graphs

## 1 Graph Operators

**Definition 1.1.** Let  $\mathscr{G}$  be a graph where V are its vertexes and  $\mathscr{E}$  are its edges, let  $f,g:L^2(V)$  and  $F,G\in L^2(\mathscr{E})$  be real valued functions, we define  $\langle f,g\rangle_{L^2(V)}:=\sum_{\mathscr{V}}a_if_ig_i,\ a_i\in\mathbb{R}$  and  $\langle F,G\rangle_{L^2(\mathscr{E})}:=\sum_{\mathscr{E}}w_{ij}F_{ij}G_{ij},\ w_{ij}\in\mathbb{R}$ .

### Definition 1.2. Graph gradient and divergence

Let  $f \in L^2(\mathcal{V})$  and  $F \in L^2(\mathcal{E})$  we define  $grad : L^2(\mathcal{V}) \to L^2(\mathcal{E})$  and  $div : L^2(\mathcal{E}) \to L^2(\mathcal{V})$ , such that  $(grad f)_{ij} = f_i - f_j$  and  $(div F)_i = \frac{1}{a_i} \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} w_{ij} F_{ij}$ .

**Proposition 1.1.** Let  $f \in L^2(V)$  and  $F \in L^2(\mathcal{E})$ :  $F_{ij} = -F_{ji}$  then  $\langle f, divF \rangle_{L^2(V)} = \langle gradf, F \rangle_{L^2(\mathcal{E})}$ , i.e.  $divF^{\dagger} = grad$ .

$$Proof. \ \ \sum_{\mathcal{V}} a_i f_i(divF)_i = \sum_{\mathcal{E}} w_{ij} F_{ij}(f_i - f_j) = \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} w_{ij} F_{ij} f_i \ \text{thus} \ a_i(divF)_i = \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} w_{ij} F_{ij}. \ \Box$$

#### Theorem 1.2. Fake Gauss theorem

Let  $F \in L^2(\mathscr{E})$ :  $F_{ij} = -F_{ji}$ , let  $\mathscr{A} \subset V$  then if  $a_i = w_{ij} = 1$  we have  $\sum_{\mathscr{A}} (divF)_i = \sum_{\partial^0 \mathscr{A}} F_{ij}$ .

 $\begin{array}{l} \textit{Proof.} \ \ \text{First of all we recall} \ \partial_{+}^{0}\mathscr{A} = \{(i,j) \in \mathscr{E}, i \in \mathscr{A}, j \in \mathscr{V} \setminus \mathscr{A}\}, \ \text{then we see that} \ \sum_{\mathscr{A}} (divF)_{i} = \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{V}: (i,j) \in \mathscr{E}} F_{ij} = \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{V} \setminus \mathscr{A}: (i,j) \in \mathscr{E}} F_{ij} + \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{A}: (i,j) \in \mathscr{E}} F_{ij} = \sum_{\partial_{+}^{0}\mathscr{A}} F_{ij} + \sum_{(i,j) \in \mathscr{A}^{2}} adj(\mathscr{A})_{ij} F_{ij} \ \text{ where since} \ adj(\mathscr{A})_{ij} = adj(\mathscr{A})_{ji} \ \text{we have by renaming dummy indexes} \ adj(\mathscr{A})_{ij} F_{ij} = -adj(\mathscr{A})_{ij} F_{ij} = 0. \end{array}$ 

Figure 1: Coboundary operator applied to A+B+C+D+E+F+U+V+W(green) and to A+B+C+D+E+F+U+V(green and red)



**Proposition 1.3.** The use of the coboundary operator makes sense only with antisimmetric functions on the edges, the antisimmetry of those function is somehow related to the orientation of surfaces.

*Proof.*  $\sum_{\partial^0 \sum_{i \in \mathscr{A}} i} F_{ij} = \sum_{\sum_{i \in \mathscr{A}} \partial^0 i} F_{ij}$  if an edge is in the coboundary of two different vertexes of  $\mathscr{A}$  it will be count twice, that means zero times in  $\mathbb{Z}_2$ , similarly for that same edge we would sum  $F_{ij} + F_{ji} = 0$ .

### Definition 1.3. Graph laplacian

Let  $f \in L^2(V)$  we have that  $\langle gradf, gradf \rangle = \langle div(gradf), f \rangle =: \langle \Delta f, f \rangle = \langle f, \Delta f \rangle$ , where  $\Delta : L^2(V) \to L^2(V)$  is the Laplacian.

Possibili approfondimenti interessanti:

- (i) Studio di equazioni differenziali sui grafi con gli operatori sopra definiti
- -Equazione del Calore
- $\frac{d(f_i)}{dt} = -c(\Delta f)_i$
- -Equazione di Schrödinger  $\frac{d(f_i)}{dt} = -c(\Delta f)_i + U_i f_i$
- -Equazione di Navier-Stokes
- -Equazione di continuità
- (ii) Vincolare l'apprendimento di funzioni a divergenza nulla delle edge tramite  $H^0$ , eventuale applicazione a flussi
- (iii) Definire il rotore per 2-simplessi e fare l'analogo con  $H_1$ , eventuale applicazione a reti elettriche tridimensionali