Opérations relationnelles (4)

Jointure

- Lien entre relations exprimée par le contenu commun d'un champ
- L'opération de jointure peut-être vue comme une sélection des enregistrements obtenus par le produit cartésien des relations, dont les contenus du champ sur lequel on effectue la jointure sont égaux (équijointure)
- Notation R = R1 $\triangleright \triangleleft$ (R1 X R2)
- θ-jointure : jointure dont l'opérateur = est remplacé par un autre opérateur

T1

- semi-jointure : on ne garde dans R que les attributs correspondant à R1 ou R2
- jointure externe : inclut également les enregistrements avec valeurs indéfinies

Code	Nom	Prix	Stock
DT4300	Dell Precision 4300	900	3
DL4200	Dell Latitude 4200	900	3
SV2540	Sony Vaio 2540	1529	2

Ref	Processeur	HDD
DT4300	Core 2 Duo	250
IBMT42	Core 2 Quad	500
SV2540	Pentium	160

T2

Code	Nom	Prix	Stock	Processeur	HDD
DT4300	Dell Precision 4300	900	3	Core 2 Duo	250
SV2540	Sony Vaio 2540	1529	2	Pentium	160

Opérations relationnelles (5)

Division

- Version simplifiée : la relation premier opérande comprend 2 attributs, la seconde comprend un attribut commun avec la première
- Notation R = R1[A, B] \div R2[B]
- La relation résultat comprend :

T1

- l'attribut A de R1 qui ne figure pas dans R2
- les tuples formés par la valeur <a> telle qu'il existe dans R1 un tuple <a,b> pour tout appartenant à R2

Α	В
а	u
а	х
b	У
b	٧
С	u
С	Х
С	t
d	Х
d	у

В и х т2 **А** а с

T1[A,B] ÷ **T2[B]**

Agrégation (1)

- Permet de regrouper les enregistrements qui contiennent les mêmes valeurs
- Notation R = AGG(R1; X; B)
 - X : liste des attributs de R1 servant à définir le critère de regroupement
 - B : attribut agrégé
 - AGG: fonction d'agrégation (COUNT, SUM, MIN, MAX, AVG)
- Calcul de R:
 - tri suivant les valeurs de X : pour chaque valeur <x> de X, on a un groupe de n-uplets
 - pour chaque groupe, on applique la fonction d'agrégation qui renvoie une valeur y
 - pour chaque groupe, on génère un couple <x,y> à insérer dans R

L'algèbre relationnelle

Agrégation (2)

Code	Modèle	Cat	Nb
1	Peugeot 107	Α	3
2	Renault Clio	В	1
3	Fiat Panda	Α	2
4	Peugeot 207	В	5
5	Citroën C4	С	6
6	Volkswagen Polo	В	2

R = SUM (Location, Cat, Nb)

Location

Code	Modèle	Cat	Nb
1	Peugeot 107	А	3
3	Fiat Panda	А	2
2	Renault Clio	В	1
4	Peugeot 207	В	5
6	Volkswagen Polo	В	2
5	Citroën C4	С	6

Exercice 5 : film et catalogue (1)

Enoncé général

On considère les 2 relations Film et Catalogue.

- 1. trouvez la liste des titres films et leur format
- 2. est-il possible de faire une jointure sur le champ « Prix » de la relation « Film » et le champ « Numero_Film » de la relation « Catalogue » ?

Prix	Format	Туре	Nombre	Numero_Film
12	4/3	Couleur	3	2
4	16/9	Noir/Blanc	1	4
12	16/9	Couleur	1664	50
35	4/3	Noir/Blanc	890	12
12	16/9	Noir/Blanc	1	12

Film

Titre	Numero_Film
Le train qui passe	2
A toi!	4
Les chats du Sénégal	56
Le temps expliqué	111
Les impôts faciles	12

Exercice 5 : film et catalogue (2)

1. Jointure sur les champs « Numero_Film »

Prix	Format	Туре	Nombre	Numero_Film (F)	Numero_Film (C)	Titre
12	4/3	Couleur	3	2	2	Le train qui passe!
4	16/9	Noir/Blanc	1	4	4	A toi!
35	4/3	Noir/Blanc	890	12	12	Les impôts faciles
12	16/9	Noir/Blanc	1	12	12	Les impôts faciles

1. Projection sur les champs « Titre » et « Format »

Format	Titre
4/3	Le train qui passe!
16/9	A toi!
4/3	Les impôts faciles
16/9	Les impôts faciles

Exercice 5 : film et catalogue (3)

2. Jointure sur les champs « Prix » et « Numero_Film »

Prix	Format	Туре	Nombre	Numero_Film (F)	Numero_Film (C)	Titre
12	4/3	Couleur	3	2	12	Les impôts faciles
4	16/9	Noir/Blanc	1	4	4	A toi!
12	16/9	Couleur	1664	50	12	Les impôts faciles
12	16/9	Noir/Blanc	1	12	12	Les impôts faciles

Exercice 6 : calcul sur des agrégats (1)

Enoncé général

On considère la relation Film : quelle est la moyenne des prix de films par format ?

Prix	Format	Туре	Nombre	Numero_Film
12	4/3	Couleur	3	2
4	16/9	Noir/Blanc	1	4
12	16/9	Couleur	1664	50
35	4/3	Noir/Blanc	890	12
12	16/9	Noir/Blanc	1	12

Film

Exercice 6 : calcul sur des agrégats (2)

R = AVG (Film, Format, Prix)

Prix	Format	Туре	Nombre	Numero_Film
12	4/3	Couleur	3	2
35	4/3	Noir/Blanc	890	12
4	16/9	Noir/Blanc	1	4
12	16/9	Couleur	1664	50
12	16/9	Noir/Blanc	1	12

Film

Prix	Format
12	4/3
35	4/3
4	16/9
12	16/9
12	16/9

Prix	Format
23,5	4/3
9,33	16/9

Généralités

- La normalisation permet de vérifier la robustesse de la conception d'un modèle et facilite la mémorisation des données
- La normalisation permet d'éviter la redondance et les problèmes sous-jacents de cohérence ou de mise à jour
- La normalisation s'applique à toutes les entités et aux relations porteuses de propriétés
- Il existe 4 principaux types de formes normales, que nous allons détailler dans la suite de cette partie

Première forme normale

Principe

- Une relation est en première forme normale si à l'intersection de n'importe quelle ligne i et de colonne k, il n'y a qu'une seule valeur pour $t_J[A_K]$
- La première forme normale interdit donc la multivaluation
- Tout champ contient donc une valeur atomique

Exemple

<u>ISBN</u>	Titre	Auteurs
2100521578	Aide-mémoire Java	Vincent Granet, Jean-Pierre Regourd
2744023108	Javascript et Ajax	Tom Negrino, Doris Smith
2744021822	Java SE version 6	Louis Dirk, Peter Müller

Publication

Décomposition en 3 relations :

- Publication(<u>ISBN</u>, Titre)
- Auteur(NumAuteur, Nom, Prénom)
- Ecrire(ISBN, NumAuteur)

Importance de passer par une étape de modélisation !!!!

Deuxième forme normale

Principe

- Une relation est en deuxième forme normale si :
 - elle est en première forme normale
 - si un sous-ensemble de la clé n'est pas source de la dépendance fonctionnelle
- Autrement dit si les DF issues de la clé sont élémentaires
- Si la clé d'une relation est atomique, elle est en 2ème forme normale
- Si la relation n'est pas en 2ème forme normale, on la décompose en relations qui seront toutes en 2ème forme normale

Exemple

<u>Article</u>	<u>Fournisseur</u>	Adresse	Prix
Cuisinière	De Dietrich	Strasbourg	599
Hotte	Faure	Paris	159
Hotte	De Dietrich	Strasbourg	349
Robot	Kitchen Aid	New York	549

<u>Article</u>	Fournisseur	Prix
Cuisinière	De Dietrich	599
Hotte	Faure	159
Hotte	De Dietrich	349
Robot	Kitchen Aid	549

<u>Fournisseur</u>	Adresse
De Dietrich	Strasbourg
Faure	Paris
De Dietrich	Strasbourg
Kitchen Aid	New York

Troisième forme normale

Principe

- Une relation est en 3^{ème} forme normale si :
 - elle est en 2^{ème} forme normale
 - si toutes les DF issues de la clé sont **directes**
- A \rightarrow B est directe s'il n'existe pas d'attribut C tel que A \rightarrow C et C \rightarrow B
- La 3^{ème} forme normale interdit donc toute dépendance fonctionnelle dite transitive entre les champs
- Si la relation n'est pas en 3ème forme normale, on la décompose en relations qui seront toutes en 3ème forme normale

Exemple

<u>Code</u>	Marque	Nom	Couleur
22	Apple	IPod	Noir
599	Apple	IPhone	Blanc
3	Creative	Zen	Rouge
17	Microsoft	Zune	Noir

<u>Code</u>	Nom	Couleur
22	IPod	Noir
599	IPhone	Blanc
3	Zen	Rouge
17	Zune	Noir

<u>Marque</u>	Nom
Apple	IPod
Apple	IPhone
Creative	Zen
Microsoft	Zune

Forme normale de Boyce-Codd

Principe

- Une relation est en forme normale de Boyce-Codd si la source de chaque DF existant entre les attributs est clé de la relation
- Il s'agit donc du cas où une partie d'une clé dépend d'un champ
- Lors de la décomposition de la relation, plusieurs choix sont envisageables : il faut choisir la décomposition qui permet de reconstituer l'information sans générer des données supplémentaires

Exemple

<u>Réf</u>	<u>Marque</u>	Prix	Couleur
22	Apple	49	Noir
599	Apple	49	Blanc
3	Creative	12	Rouge
22	Tesqr	39	Vert
17	Microsoft	59	Noir

MP3(<u>Marque</u>, <u>Réf</u>, Prix)
Marque_coul(<u>Couleur</u>, Marque)

<u>Réf</u>	Prix	<u>Couleur</u>
22	49	Noir
599	49	Blanc
3	12	Rouge
22	39	Vert
17	59	Noir

<u>Marque</u>	Couleur	
Apple	Noir	
Apple	Blanc	
Creative	Rouge	
Tesqr	Vert	
Microsoft	Noir	

Exercice 7 : deuxième forme normale (1)

Enoncé général

On considère la relation **Film** présentée ci-après. Il ne peut y avoir 2 fois le même film avec le même format et les DVD sont en 16/9 et les VHS en 4/3.

La relation est-elle en deuxième forme normale?

Prix	Format	Туре	Nombre	Numero_Film	Support
12	4/3	Couleur	3	2	VHS
4	16/9	Noir/Blanc	1	4	DVD
12	16/9	Couleur	1664	56	DVD
35	4/3	Noir/Blanc	890	12	VHS
12	16/9	Noir/Blanc	1	12	DVD

Film

Exercice 7 : deuxième forme normale

Première forme normale ? → oui

Clé(s)?

- pas de clé candidate atomique
- couple « Numero_Film Format » comme clé primaire

Deuxième forme normale?

- DF entre « Support » et « Format » : un format n'a qu'un support
- On décompose donc la relation :

Prix	<u>Format</u>	Туре	Nombre	Numero_Film
12	4/3	Couleur	3	2
4	16/9	Noir/Blanc	1	4
12	16/9	Couleur	1664	56
35	4/3	Noir/Blanc	890	12
12	16/9	Noir/Blanc	1	12

<u>Format</u>	Support
4/3	VHS
16/9	DVD

FormatSup

Film

Conception de schémas

Généralités

- Il existe 2 familles de techniques pour la construction de schémas relationnels normalisés :
 - à partir d'une abstraction : modèle entité/association ou UML
 - à partir des attributs
- Pour la seconde technique, il existe 3 démarches de construction de schéma normalisés :
 - l'approche par synthèse
 - la méthode du graphe des dépendances fonctionnelles
 - l'approche par décomposition
- En guise d'aperçu, nous allons voir la première approche, par synthèse

Approche par synthèse (1)

Principe

- On liste tous les attributs
- On identifie les dépendances fonctionnelles (DF)
- Puis on suit l'algorithme de synthèse (voir diapo suivante)

Exemple

Attributs: P, F, N, PU, C, T

Dépendances fonctionnelles :

- f1 : $F \rightarrow N$
- f2 : P, F, N \rightarrow PU
- f3 : $P \rightarrow C$
- f4 : $P \rightarrow T$
- f5 : $C \rightarrow T$
- f6 : $N \rightarrow F$
- f7 : P, C \rightarrow T

Approche par synthèse (2)

Etape 1

On élimine dans les dépendances fonctionnelles exprimées les attributs redondants (en partie gauche avec au moins 2 attributs)

Calcul des attributs redondants

Calcul basé sur l'axiomatisation d'Armstrong:

- axiome 1 : **réflexivité** si Y \subseteq X alors X \rightarrow Y
- axiome 2 : **augmentation** si $X \rightarrow Y$, alors $\forall Z, XZ \rightarrow YZ$
- axiome 3 : **transitivité** si $X \rightarrow Y$ et $Y \rightarrow W$ alors $X \rightarrow W$

On peut déduire plusieurs règles de ces 3 axiomes :

- augmentation à gauche : si $X \rightarrow Y$, alors $\forall Z, XZ \rightarrow Y$
- **union** : si $X \rightarrow Y$ et $Y \rightarrow Z$, alors $X \rightarrow YZ$
- **pseudo-transitivité** : si $X \rightarrow Y$ et $YZ \rightarrow W$ alors $XZ \rightarrow W$
- **décomposition** : si $X \rightarrow YZ$ alors $X \rightarrow Y$ et $X \rightarrow Z$

Approche par synthèse (3)

Etape 1 – suite de l'exemple

```
\begin{array}{c} f1: F \rightarrow N \\ \hline f2: P, F, N \rightarrow PU \\ f3: P \rightarrow C \\ f4: P \rightarrow T \\ f5: C \rightarrow T \\ \hline f6: N \rightarrow F \\ \hline f7: P, C \rightarrow T \\ \end{array}
```

```
F \rightarrow N donc P,F \rightarrow N (augmentation)
F \rightarrow F (réflexivité) donc P,F \rightarrow F (augmentation)
P \rightarrow P (réflexivité) donc P,F \rightarrow P (augmentation)
P,F \rightarrow N et P,F \rightarrow F et P,F \rightarrow P donc P,F \rightarrow P,F,N
P,F \rightarrow P,F,N et P,F,N \rightarrow PU donc P,F \rightarrow PU (transitivité)
\Rightarrow N est donc redondant dans f2
```

```
f7
P \rightarrow C \text{ (f3) et } C \rightarrow T \text{ (f5) donc } P \rightarrow T \text{ (transitivit\'e)}
\Rightarrow C \text{ est donc redondant dans } f7
```


Approche par synthèse (4)

Etape 2

On élimine les dépendances fonctionnelles redondantes (celles qui peuvent être engendrées par transitivité)

Suite de l'exemple

f1:
$$F \rightarrow N$$

f2': $P, F \rightarrow PU$
f3: $P \rightarrow C$
f4: $P \rightarrow T$
f5: $C \rightarrow T$
f6: $N \rightarrow F$
f7': $P \rightarrow T$

f4 et f7 sont identiques de plus, $P \rightarrow C$ (f3) $et C \rightarrow T$ (f5) $\Rightarrow P \rightarrow T$ (f4) \Rightarrow f4 et f7 sont redondantes

f1: $F \rightarrow N$ f2': $P, F \rightarrow PU$ f3: $P \rightarrow C$ f5: $C \rightarrow T$ f6: $N \rightarrow F$

Approche par synthèse (5)

Etape 3

Regroupement des dépendances fonctionnelles selon les parties gauches

Suite de l'exemple

f1:
$$F \rightarrow N$$

f2': $P, F \rightarrow PU$
f3: $P \rightarrow C$
f5: $C \rightarrow T$
f6: $N \rightarrow F$

Toutes les parties gauches sont différentes

$$\begin{aligned} & H_1 = \{F \rightarrow N\} \\ & H_2 = \{P, F \rightarrow PU\} \\ & H_3 = \{P \rightarrow C\} \\ & H_4 = \{C \rightarrow T\} \\ & H_5 = \{N \rightarrow F\} \end{aligned}$$

Approche par synthèse (6)

Etape 4

Prise en compte des dépendances fonctionnelles doubles permettant de regrouper des ensembles Hi avec des clés équivalentes

Suite de l'exemple

$$\begin{aligned} &\mathsf{H}_1 \text{=} \{\mathsf{F} \to \mathsf{N}\} \\ &\mathsf{H}_2 \text{=} \{\mathsf{P}, \mathsf{F} \to \mathsf{PU}\} \\ &\mathsf{H}_3 \text{=} \{\mathsf{P} \to \mathsf{C}\} \\ &\mathsf{H}_4 \text{=} \{\mathsf{C} \to \mathsf{T}\} \\ &\mathsf{H}_5 \text{=} \{\mathsf{N} \to \mathsf{F}\} \end{aligned}$$

On peut regrouper H1 et H5

→ il faut choisir la clé primaire

Ici, on peut prendre F ou N, car il n'y a pas d'autre dépendances fonctionnelles avec F ou N comme source

Approche par synthèse (7)

Etape 5

Construction des relations

Suite de l'exemple

$$\begin{array}{c} H_1 = \{F \rightarrow N\} \\ H_2 = \{P, F \rightarrow PU\} \\ H_3 = \{P \rightarrow C\} \\ H_4 = \{C \rightarrow T\} \end{array}$$

$$\begin{array}{c} R_1 \ [\underline{F}, N] \\ R_2 \ [\underline{P}, F, PU] \\ R_3 \ [\underline{P}, C] \\ R_4 \ [\underline{C}, T] \end{array}$$

Généralités

- Nous avons défini dans les parties précédentes les différents opérateurs de l'algèbre relationnelle
- Dans cette partie, nous allons voir quelques exemples afin de comprendre comment exprimer des requêtes avec ces opérateurs

Rappels

```
- union : U
- intersection : \(\cap$
- différence : appartenance à une relation et pas à une autre /
- produit cartésien : combinaison des enregistrements X
- projection: extraction de certains champs (colonnes) R = \prod_x R1
- selection: extraction de certains tuples (lignes) suivant un prédicat R = \sigma_p R1
- jointure: lien entre relations par le contenu d'un champ R = R1 ▷< (R1.X = R2.Y) R2

    division

- agrégation : R = AGG(R1; X; B) avec :
                                   AGG fonction d'agrégation
                                   X critère de regroupement
                                                                                100
                                   B attribut
```

Base de données de travail (1)

- On considère la base de données suivante :
 - Chercheur [NC, NOMC]
 - **Projet** [NP, NOMP, NE, BUDGET]
 - **Equipe** [NE, NOME]
 - Aff [#NC, #NP]
- Les tables chercheur, Projet et Equipe décrivent les chercheurs, les projets et les équipes. La table Aff associe les chercheurs aux projets sur lesquels ils travaillent
- Les règles sont les suivantes :
 - une équipe comprend plusieurs chercheurs
 - un chercheur n'appartient qu'à une équipe
 - une équipe développe plusieurs projets
 - un projet n'est développé que par une équipe
 - les chercheurs d'un projet appartiennent à une même équipe

Base de données de travail (2)

Equipe

NE	NOME	
e1	Merlin	
e2	Parole	

Chercheur

NC	NOMC		
ch1	Jean		
ch2	Jacques		
ch3	Paul		
ch4	Pierre		
ch5	François		
ch6	Mathieu		
ch7	Jean		
ch8	Florent		
ch9	Michel		

Aff

NC	NP		
ch3	p5	ch5	p2
ch2	p5	ch8	p7
ch2	p4	ch8	p1
ch7	p4	ch8	p2
ch6	p4	ch8	p8
ch2	p6		
ch3	p6		
ch6	p6		
ch2	рЗ		
ch1	p1		
ch4	p1		
ch1	p2		
ch4	p2		
ch1	p8		
ch2	р9		
ch5	р8		
ch4	р8		

Projet

NP	NOMP	NE	BUDGET
р7	VACBI	e2	120000
р5	SRI	e1	160000
p1	HYPERMEDIA	e2	130000
p4	BIG	e1	110000
p6	DIABETO	e1	200000
p8	QUAERO	e2	500000
р9	VORTEX	e1	250000
p2	IMAGE	e2	140000
рЗ	VIDEO	e1	120000

Questions... et réponses (1)

Question 1

Restituer le nom du chercheur « ch1 »

$$\rightarrow$$
 RQ1 = \prod_{NOMC} ($\sigma_{NC = 'ch1'}$ Chercheur)

Question 2

Restituer le nom des chercheurs travaillant sur le projet « p5 »

R1 =
$$\sigma_{NP = 'p5'}$$
 Aff

R2 = R1 $<$ (R1.NC = Chercheur.NC) Chercheur

RQ2 = \prod_{NOMC} R2

Questions... et réponses (2)

Question 3

Restituer par chercheur le nombre de projets sur lequel ils travaillent

- → Agrégation avec :
 - AGG = COUNT
 - critère de regroupement = chercheur (NC)
 - attribut = projet (NP)

Question 4

Restituer par chercheur le nombre de projets sur lequel ils travaillent (nom du chercheur \leftrightarrow nombre de projets)

R1 = RQ3
$$\triangleright \triangleleft$$
 NC Chercheur

$$RQ4 = \prod_{NOMC, COUNT_NP} R1$$

Questions... et réponses (3)

Question 5

Restituer les noms des chercheurs qui ne travaillent pas sur le projet « IMAGE »

$$\rightarrow R1 = \sigma_{NOMP = 'IMAGE'} \text{ Projet}$$

$$R2 = \text{Aff } \triangleright_{NP} R1$$

$$R3 = \prod_{NC} R2$$

$$R4 = \prod_{NC} \text{ Chercheur}$$

$$R5 = R4 - R3$$

$$R6 = \text{ Chercheur } \triangleright_{NC} R5$$

$$RQ7 = \prod_{NOMC} R6$$