EE364m Exercise Set 1

Siddhartha Parupudi

January 2024

1.1

a). V is a uniformly convex Banach Space. We have to show that

$$\pi_C(x) := \underset{y \in C}{\operatorname{argmin}} ||y - x||$$

exists and is unique.

WLOG, Assume x = 0 and $0 \notin C$. Therefore,

$$\pi_C(x) := \underset{y \in C}{\operatorname{argmin}} \ ||y||$$

From the property of norm, since $0 \notin C$, ||y|| > 0. Therefore, $\pi_C(x)$ exists. Suppose $\pi_C(x)$ was not unique. i.e $\exists y_1$ and y_2 both of which minimise ||y||.

WLOG, let

$$||y_1|| = ||y_2|| = 1$$

. (V is closed under scalar multiplication).

$$y_1 \neq y_2 \implies ||y_1 - y_2|| \neq 0$$

i.e
$$\exists$$
 an $\epsilon \in \mathbb{R}$ s.t $||y_1 - y_2|| > \epsilon > 0$

Since $||y_1|| = ||y_2|| = 1$, $||y_1 - y_2|| \le 2$. Since V is uniformly convex, the above conditions imply that $\exists \delta = \delta(\epsilon) > 0$ s.t

$$\left\| \frac{y_1 + y_2}{2} \right\| \le 1 - \delta$$

- . Contradiction, as $||y_1|| = ||y_2|| = 1$ were minimisers of $||\cdot||$.
- **b).** Let $\|\cdot\| = \|\cdot\|_1$ be the ℓ_1 -norm. Consider x = 0. Consider the Convex set C to be the line segment

$$||\mathbf{x}||_1 = 1, |x_1| \le 0, |x_i| \ge 0 \forall i > 2$$

All points on C satisfy $||y||_1 = 1$,

Therefore, $\pi_C(x) = \underset{y \in C}{\operatorname{argmin}} ||y - x|| = ||y||$ is not unique.

Hence, \mathbb{R}^n is not uniformly convex with ℓ_1 -norm

c). Let $\|\cdot\|=\|\cdot\|_{\infty}$ be the ℓ_{∞} -norm. Consider x=0. Consider the Convex set C to be the line segment

$$||\mathbf{x}||_{\infty} = 1, x_1 = 1$$

All points on C satisfy $||y||_{\infty} = 1$ Therefore, $\pi_C(x) = \underset{y \in C}{\operatorname{argmin}} ||y-x|| = ||y||$ is not unique.

Hence, \mathbb{R}^n is not uniformly convex with $\ell_\infty\text{-norm}$

Figure 1: Illustration for n=2.