Research Trend Analysis and Future Prediction using Deep Learning

Team Members:

Muhammad Talha Tahir (<u>mtalhatahir2001@gmail.com</u>) 2024MSCS227 Haseeb Ahmed (<u>haaseebahmed319@gmail.com</u>) 2024MSCS221 Muhammad Usama (<u>utari7302@gmail.com</u>) 2024MSCS222

Subject: Deep Learning (MSCS)

Project Title: Analysis of Research Trends from Academic Papers and Prediction of Emerging

Research Areas

1. Introduction

In this project, we aim to extract, analyze, and predict research trends across various Computer Science domains over the past several decades. We collected a large dataset of research papers, analyzed the data for past trends and citation impact, clustered research topics, and finally built a deep learning model to predict emerging research areas.

The complete workflow covered:

- Web scraping for data collection
- Data cleaning and standardization
- Exploratory data analysis (EDA)
- Research topic clustering
- Citation impact analysis
- Future trend prediction using LSTM (deep learning)

2. Data Collection

For data collection, we developed a custom **Scrapy** spiders (Python framework) to automate extraction of metadata from research journal websites, primarily focusing on the Elsevier and Springer platform.

Challenges:

- **Bot Detection:** Elsevier actively detects and blocks non-human traffic. We faced captchas and IP blocks frequently.
- **Solution:** We integrated **ScraperAPI** (a proxy API service) which provided rotating proxies and user-agent spoofing. Using free credits from ScraperAPI, we were able to significantly bypass blocking mechanisms.

Dataset Details:

- Total papers collected: 4971
- Coverage years: 1984 2025
- Fields extracted:
 - Title
 - Abstract
 - Year
 - Citation count
 - Author(s) with country
 - $\circ \quad \text{Keywords} \\$

Note: A few journals were skipped due to ScraperAPI usage limits.

3. Data Cleaning

Data cleaning was performed using simple Python scripts.

Steps:

- Removal of invalid Unicode characters from titles and abstracts.
- Dropping papers with completely missing abstracts or titles.
- Standardization of year format to ensure consistency.

Overall, missing data was **not a major issue**; only a few records were discarded.

4. Exploratory Data Analysis (EDA)

Key Insights Explored:

1. Number of Papers Published per Year

2. Keyword Popularity Over Time

3. Top Author Countries

4. Average Citation Count per Year

5. Research Topic Clustering

We used a deep learning-based approach to group similar research papers into thematic clusters.

Methodology:

- **Embeddings:** We used **Sentence-BERT** (all-MiniLM-L6-v2) to generate semantic embeddings for the abstracts.
- Clustering: We applied KMeans clustering.
 - The optimal number of clusters (k=5) was selected using the Silhouette Score method.

Topic Labeling:

 KeyBERT + manual review were used to label each cluster based on common keywords.

Final Clusters:

```
cluster_labels = {
    0: "Activity Recognition using CNNs",
    1: "Others", # (Small cluster with mixed topics)
    2: "Swarm Intelligence & Task Scheduling",
    3: "Processor Modeling & Simulation",
    4: "Network Simulation & Sensor Networks"
}
```


6. Citation Impact Analysis

We analyzed how impactful each cluster was based on total and average citations.

• **Citation-Weighted Trends:** Papers were weighted by citation counts rather than only raw counts.

• Impact Insights:

- o Activity Recognition topics showed high recent citation growth.
- Processor Modeling had consistent but moderate citation averages.

7. Deep Learning Based Future Trend Prediction

Model Architecture:

- Model: LSTM-based Recurrent Neural Network
- Input: Each input sample was a sequence of the past 5 years' topic trends (paper counts per topic).
- Output: Predicted paper counts per topic for the following year (2026).

Data Preparation:

The dataset was structured as a time series.

- For each sample, 5 consecutive years' topic counts were used as input, and the paper counts of the immediate next year were set as the target label.
- This method ensures that the model learns temporal patterns across topics.

Technical Details:

- model = Sequential()
- model.add(LSTM(64, activation='relu', input_shape=(5, 5)))
- model.add(Dense(5))

model.compile(optimizer='adam', loss='mse')

Training Details:

• Loss function: Mean Squared Error (MSE)

Optimizer: AdamEpochs: 100

TensorFlow version: 2.15.0 (trained on GPU)

The model minimized the MSE loss between the predicted and actual topic distributions year-by-year, learning the underlying sequence patterns across the research topics.

Prediction Year:

2026

Observations:

- "Activity Recognition using CNNs" is expected to grow further.
- "Network Simulation & Sensor Networks" maintains steady momentum.
- "Others" category remains unpredictable due to diverse topics.

8. Conclusion

- We successfully extracted, cleaned, and analyzed nearly 5000 research papers from 1984 to 2025.
- EDA revealed important patterns in research volume, keyword popularity, and country-wise contributions.
- Using deep learning (Sentence-BERT embeddings + LSTM), we effectively clustered papers into meaningful topics.
- Citation analysis allowed us to evaluate the real-world impact of research areas.
- Our LSTM-based forecasting suggests strong growth in "Activity Recognition using CNNs" and continued relevance for network simulation studies.

Future Work:

- Apply more complex forecasting models (e.g., Transformer-based time series models)
- Improve cluster labeling using advanced NLP techniques (e.g., topic modeling LDA+BERT hybrids)