Deep learning for Natural Language Processing and Machine Translation

2015.10.16

Seung-Hoon Na

Contents

- Introduction: Neural network, deep learning
- Deep learning for Natural language processing
 - Neural network for classification
 - Word embedding
 - General architecture for sequential labeling
 - Recent advances
- Neural machine translation
- Future plan

Deep learning: Motivation

- 기계 학습 방법에서 자질 추출 (Feature extraction)
 - > Handcrafted features 사용
 - _ 자질 추출 단계가 자동화되지는 않음
 - ◆지속적으로 자질 개선 필요
 - > 성능 개선 및 튜닝 요구 Feature vector

$$f(\mathbf{x}; \mathbf{w}) = \operatorname{argmax}_{\mathbf{y}} \mathbf{w} \cdot \boldsymbol{\Psi}(\mathbf{x}, \mathbf{y})$$

Deep learning

- ◆ 자질 추출 단계의 제거 또는 간소화
 - > 정교한 자질을 비선형 학습 과정에 내재시킴

Deep learning

Multi-layer perceptron

- ◆ 상위 은닉층은 하위 은닉층의 출력에 대한 **추상화 → 비선형성 모델**
- ◆ 다층 NN 구조로 추상 자질 내재가능
 - → 자질 튜닝 절차를 단순화 시킴

Neural Network

A neuron

- A general computational unit that takes n inputs and produces a single output
- Sigmoid & binary logistic regression unit
 - The most popular neurons
 - > Takes an n-dimensional input vector x and produces the scalar activation (output) a

$$a = \frac{1}{1 + \exp(w^T x + b)}$$

Neural network: Setting for Classification

- Input layer: Feature values
- Output layer: Scores of labels
- Softmax layer: Normalization of output values
 - To get probabilities of output labels given input

Neural network: Training

- **Training data:** Tr = $(x_1, g_1), ..., (x_N, g_N)$
 - $\bullet x_i$: i-th input feature vector
 - $g_i \in \{1, ..., K\}$: i-th target label

Objective function

Negative Log-likelihood (NLL)

$$L = -\sum_{(x,g)\in T} \log P(g|x)$$

Neural network: Training

Stochastic gradient method

- 1. Randomly sample (x, g) from training data
- lack 2. Define NLL for (x, g)

$$L = \log P(g|\mathbf{x})$$

- lacktriangle for each weight matrix $W \in oldsymbol{ heta}$
- 3. Compute gradients : $\frac{\partial L}{\partial W}$
- 4. Update weight matrix $W: W \leftarrow W \eta \frac{\partial L}{\partial W}$
- Iterate the above procedure

Output layer

$$L = \log P(g|x) = \log \frac{\exp(y_g)}{\sum \exp(y_i)} = y_g - \log \sum \exp(y_i)$$
softmax
$$\uparrow$$

$$y_1 \quad y_2 \quad y_i \quad y_{K-1} \quad y_K$$

Compute delta for i-th output node

$$\delta_i^o = \frac{\partial L}{\partial y_i} = \delta(i, g) - \frac{\exp(y_i)}{\exp \Sigma(y_i)} = \delta(i, g) - P(i|x)$$

• Vector form:
$$\boldsymbol{\delta}^o = \mathbf{1}_g - \begin{bmatrix} P(1|x) \\ \vdots \\ P(K|x) \end{bmatrix}$$

Output weight matrix W $y_g - log \sum exp(y_i)$

Compute gradient of w_{ij}

e gradient of
$$w_{ij}$$
 $h_j = g(z_j)$

$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial y_i} \frac{\partial y_i}{\partial w_{ij}} = \delta_i^o h_j$$

$$> \frac{\partial L}{\partial W} = \delta^o \mathbf{h}^{\mathrm{T}}$$

Hidden layer

$$y_g - log \sum exp(y_i)$$

Hidden layer

Output layer

$$h_j = g(z_j)$$

Compute delta for j-th hidden node

$$> \delta_j^h = \frac{\partial L}{\partial z_j} = \frac{\partial L}{\partial h_j} \frac{\partial h_j}{\partial z_j} = \frac{\partial h_j}{\partial z_j} \sum_i \frac{\partial L}{\partial y_i} \frac{\partial y_i}{\partial h_j} = g'(z_j) \sum_i \delta_i^O w_{ij}$$

$$> \delta^h = g'(\mathbf{z})^{\circ} \mathbf{W}^{\mathsf{T}} \delta^{\mathsf{o}}$$

Hidden weight matrix U

lacktriangle Compute gradient of u_{ij}

$$\frac{\partial L}{\partial u_{jk}} = \frac{\partial L}{\partial z_{j}} \frac{\partial z_{j}}{\partial u_{jk}} = \delta_{j}^{h} x_{k}$$

$$\frac{\partial L}{\partial u_{jk}} = \delta_{j}^{h} x^{T}$$

Deep learning for NLP

NN for Word embedding

Word embedding: Distributed representation

- Distributed representation
 - n-dimensional latent vector for a word
 - Semantically similar words are closely located in vector space

Word embedding matrix: Lookup Table

Word vector **x** is obtained from one-hot vector **e** by referring to lookup table

Word embedding matrix: context → input layer

• word seq $w_1 \cdots w_n \rightarrow$ input layer

n d dim input vector

Neural Probabilistic Language Model (Bengio '03)

Language models

- The probability of a sequence of words
- N-gram model

$$P(w_i|w_1,...,w_{i-1}) \approx P(w_i|w_{i-(n-1)},...,w_{i-1})$$

Neural probabilistic language model

- Estimate $P(w_i|w_{i-(n-1)}, \dots, w_{i-1})$ by neural networks for classification
- x: Concatenated input features (input layer)
- $\mathbf{y} = \mathbf{U} \tanh(\mathbf{d} + \mathbf{H}\mathbf{x})$
- $y = Wx + b + U \tanh(d + Hx)$

Neural probabilistic language model

Neural Probabilistic Language Model

$$P(w_t|w_{t-n+1},\cdots,w_{t-1}) = \frac{exp(y_{w_t})}{\sum exp(y_t)}$$
 Normalization for probabilistic value Output layer
$$\frac{Each \text{ node indicates a specific word}}{tanh}$$
 Hidden Layer
$$\frac{Each \text{ node indicates a specific word}}{to \text{ output layer}}$$
 Lookup table
$$\frac{w_{t-n+1}}{t}$$

$$\frac{w_{t-n+1}}{t}$$

$$\frac{w_{t-2}}{t}$$

$$\frac{w_{t-1}}{t}$$

NPLM: Discussion

- Limitation: Computational complexity
 - Softmax layer requires computing scores over all vocabulary words
 - Vocabulary size is very large

Ranking Approach for Word Embedding

- Idea: Sampling a negative example (Collobert & Weston '08)
 - ◆ s: a given sequence of words (in training data)
 - \bullet s': a negative example the last word is replaced with another word
 - \bullet f(s): score of the sequence s
 - Goal: makes the score difference (f(s) f(s')) large
 - Various loss functions are possible
 - > Hinge loss: $\max(0, 1 f(s) + f(s'))$

Ranking Approach for Word Embedding (Collobert and Weston '08)

Recurrent Neural Network (RNN) based Language Model

- ◆ NPLM: only (n-1) previous words are conditioned
 - > $P(w_i|w_{i-(n-1)}, \dots, w_{i-1})$
- RNNLM: all previous words are conditioned
 - > $P(w_i|w_1,...,w_{i-1})$

Recurrent Neural Network

$$h_t = f(x_t, h_{t-1})$$

$$z_t = Wh_{t-1} + Vx_t$$
 $h_t = g(z_t)$
 $y_t = Uh_t$

Recurrent Neural Network: Backpropagation Through Time

• Objective function: $L = \sum_t L(t)$

$$\frac{\partial L}{\partial \boldsymbol{U}} = \sum_{t} \boldsymbol{\delta}_{t}^{o} \boldsymbol{h}_{t}^{T}$$

$$\frac{\partial L}{\partial \mathbf{W}} = \sum_{t} \mathbf{\delta}_{t}^{h} \mathbf{h}_{t-1}^{T}$$

$$\frac{\partial L}{\partial \mathbf{V}} = \sum_{t} \mathbf{\delta}_{t}^{h} \mathbf{x}_{t}^{T}$$

$$\boldsymbol{\delta}_t^h = g'(\boldsymbol{z}_{t+1})^{\circ} \boldsymbol{W}^T \boldsymbol{\delta}_{t+1}^h + \boldsymbol{U}^T \boldsymbol{\delta}_t^o$$

Recurrent Neural Network: BPTT

• Objective function:
$$\mathbf{L} = \sum_{\mathbf{t}} L(t)$$

$$\delta_{t,t}^h = \mathbf{U}^\mathsf{T} \delta_t^o$$

$$\delta_{t-1,t}^h = g'(\mathbf{z}_t)^\circ \mathbf{W}^\mathsf{T} \delta_{t,t}^h$$

$$\delta_{t-2,t}^h = g'(\mathbf{z}_{t-1})^\circ \mathbf{W}^\mathsf{T} \delta_{t-1,t}^h$$

Compute gradient of L(t) w.r.t. params

$$\frac{\partial L(t)}{\partial \boldsymbol{U}} = \boldsymbol{\delta}_t^o \boldsymbol{h}_t^T$$

Given specific time t

$$\frac{\partial L(t)}{\partial \boldsymbol{W}} = \boldsymbol{\delta}_{t,t}^{h} \boldsymbol{h}_{t-1}^{T} + \boldsymbol{\delta}_{t-1,t}^{h} \boldsymbol{h}_{t-2}^{T} + \dots + \boldsymbol{\delta}_{1,t}^{h} \boldsymbol{h}_{0}^{T}$$

$$\frac{\partial L(t)}{\partial \mathbf{V}} = \boldsymbol{\delta}_{t,t}^{h} \boldsymbol{x}_{t}^{T} + \dots + \boldsymbol{\delta}_{1,t}^{h} \boldsymbol{x}_{0}^{T}$$

$$\frac{\partial L(t)}{\partial \boldsymbol{V}} = \boldsymbol{\delta}_{t,t}^{h} \boldsymbol{x}_{t}^{T} + \dots + \boldsymbol{\delta}_{1,t}^{h} \boldsymbol{x}_{0}^{T}$$

$$\frac{\partial L(t)}{\partial C(w)} = \sum_{t' \leq t: w_{t} = w} \boldsymbol{\delta}_{t',t}^{x} \quad \text{Lookup table}$$

Recurrent Neural Network: BPTT

Vanishing gradient & gradient explosion problems

$$\frac{\partial L(t)}{\partial \mathbf{W}} = \mathbf{\delta}_{t,t}^{h} \mathbf{h}_{t-1}^{T} + \mathbf{\delta}_{t-1,t}^{h} \mathbf{h}_{t-2}^{T} + \dots + \mathbf{\delta}_{1,t}^{h} \mathbf{h}_{0}^{T}$$

$$\mathbf{\delta}_{t-1,t}^{h} = g'(\mathbf{z}_{t})^{\circ} \mathbf{W}^{T} \mathbf{\delta}_{t,t}^{h}$$

$$\mathbf{\delta}_{t-2,t}^{h} = g'(\mathbf{z}_{t-1})^{\circ} \mathbf{W}^{T} \mathbf{\delta}_{t-1,t}^{h}$$

$$= g'(\mathbf{z}_{t-1})^{\circ} g'(\mathbf{z}_{t})^{\circ} \mathbf{W}^{T} \mathbf{\delta}_{t,t}^{h}$$

$$g'(z_k) \cdots {}^{\circ} g'(\mathbf{z}_{t-1}) {}^{\circ} g'(\mathbf{z}_t)$$

 $\mathbf{W}^T \dots \mathbf{W}^T \mathbf{W}^T$

Can easily become a very small or large number

Recurrent Neural Network: BPTT

Solutions to the exploding and vanishing gradients

◆ 1. Instead of initializing W randomly, start off from an identify matrix initialization

- 2. Use the Rectified linear units (ReLU) instead of the sigmoid function
 - The derivative for the ReLU is either 0 or 1

Experiments: NPLM

-		n	c	h	m	direct	mix	train.	valid.	test.
	MLP1	5		50	60	yes	no	182	284	268
	MLP2	5		50	60	yes	yes		275	257
	MLP3	5		0	60	yes	no	201	327	310
	MLP4	5		0	60	yes	yes		286	272
/	MLP5	5		50	30	yes	no	209	296	279
\	MLP6	5		50	30	yes	yes		273	259
1	MLP7	3		50	30	yes	no	210	309	293
	MLP8	3		50	30	yes	yes		284	270
1	MLP9	5		100	30	no	no	175	280	276
(MLP10	5		100	30	no	yes		265	252
	Del. Int.	3						31	352	336
	Kneser-Ney back-off	3							334	323
	Kneser-Ney back-off	4							332	321
	Kneser-Ney back-off	5							332	321
	class-based back-off	3	150						348	334
	class-based back-off	3	200						354	340
	class-based back-off	3	500						326	312
	class-based back-off	3	1000						335	319
	class-based back-off	3	2000						343	326
	class-based back-off	4	500						327	312
	class-based back-off	5	500						327	312

NPLM

Experiments: RNN LM

		PPL	WER		
Model	RNN	RNN+KN	RNN	RNN+KN	
KN5 - baseline	-	221	-	13.5	
RNN 60/20	229	186	13.2	12.6	
RNN 90/10	202	173	12.8	12.2	
RNN 250/5	173	155	12.3	11.7	
RNN 250/2	176	156	12.0	11.9	
RNN 400/10	171	152	12.5	12.1	
3xRNN static	151	143	11.6	11.3	
3xRNN dynamic	128	121	11.3	11.1	

Model	DEV WER	EVAL WER
Lattice 1 best	12.9	18.4
Baseline - KN5 (37M)	12.2	17.2
Discriminative LM [8] (37M)	11.5	16.9
Joint LM [9] (70M)	-	16.7
Static 3xRNN + KN5 (37M)	11.0	15.5
Dynamic 3xRNN + KN5 (37M)	10.7	16.3 ⁴

- ◆ LSTM: makes it easier for RNNs to capture long-term dependencies → Using gated units
 - Traditional LSTM (Hochreiter and Schmidhuer, 98)
 - Introduces input gate & output gate
 - Limitation: The output is close to zero as long as the output gate is closed.
 - Modern LSTM: Uses forget gate (Gers et al '00)
 - Variants of LSTM
 - Add peephole connections (Gers et al '02)
 - Allow all gates to inspect the current cell state even when the output gate is closed.

$$h^{(t)} = f(x^{(t)}, h^{(t-1)})$$

- $i^{(t)} = \sigma(W^{(i)}x^{(t)} + U^{(i)}h^{(t-1)})$ (Input gate)
- $f^{(t)} = \sigma(W^{(f)}x^{(t)} + U^{(f)}h^{(t-1)})$ (Forget gate)
- $o^{(t)} = \sigma \big(W^{(o)} x^{(t)} + U^{(o)} h^{(t-1)} \big)$ (Output/Exposure gate)
- $\tilde{c}^{(t)} = tanh(W^{(c)}x^{(t)} + U^{(c)}h^{(t-1)})$ (New memory cell)
- $c^{(t)} = f^{(t)} \circ \tilde{c}^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ (Final memory cell)
- $h^{(t)} = o^{(t)} \circ \tanh(c^{(t)})$

LSTM: Memory cell

- Input gate: Whether or not the input is worth preserving and thus is used to gate the new memory
- Forget gate: Whether the past memory call is useful for the computation of the current memory cell
- Final memory generation: Takes the advices of the forget and input gates to produce the final memory
- Output/Exposure gate: What parts of the memory needs to be explored in the hidden state
 - The purpose is to separate the final memory from the hidden state. The final memory contains a lot of information that is not necessarily required to be saved in the hidden state

Gated Recurrent Units

(Cho et al '14)
$$h^{(t)} = f(x^{(t)}, h^{(t-1)})$$

$$h^{(t)} = (f)x^{(t)}, h^{(t-1)})$$

> Alternative architecture to handle long-term dependencies

>
$$z^{(t)} = \sigma(W^{(z)}x^{(t)} + U^{(z)}h^{(t-1)})$$
 (Update gate)
> $r^{(t)} = \sigma(W^{(r)}x^{(t)} + U^{(r)}h^{(t-1)})$ (Reset gate)

$$r^{(t)} = \sigma(W^{(r)}x^{(t)} + U^{(r)}h^{(t-1)})$$
 (Reset gate)

$$>$$
 $\tilde{h}^{(t)} = tanh(r^{(t)} \circ Uh^{(t-1)} + Wx^{(t)})$ (New memory)

$$h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$$
 (Hidden state)

Gated Recurrent Units

Gated Recurrent Units

- New memory generation: A new memory $\tilde{h}^{(t)}$ is the consolidation of a new input word $x^{(t)}$ with the past hidden state $h^{(t-1)}$
- **Reset gate:** Determining how important $h^{(t-1)}$ is to the summarization $\tilde{h}^{(t)}$. It can completely diminish past hidden state if it is irrelevant to the computation of the new memory
- **Update gate:** Determining how much of $h^{(t-1)}$ should be carried forward to the next stage
- **Hidden state:** The hidden state $h^{(t)}$ is generated using the past hidden input $h^{(t-1)}$ and the new memory generated $\tilde{h}^{(t)}$ with the advice of the update gate

LSTM vs. GRU

(a) Long Short-Term Memory

(b) Gated Recurrent Unit

Neural Machine Translation: RNN Encoder-Decoder (Cho et al '14)

 Computing the log of translation probability Log P(y|x) by two RNNs

Neural Machine Translation

RNN Encoder Decoder

- RNN Search
 - RNN Encoder Decoder with Attention
- RNN Search Large Vocabulary

Sequence-to-Sequence Model

- LSTM
- Rare word model

Neural Machine Translation: RNN Encoder-Decoder (Cho et al '14)

- \bullet RNN for the encoder: input $x \rightarrow$ hidden state c
 - $> \boldsymbol{h}_t = f(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t)$
 - Encode a variable-length sequence into a fixed-length vector representation
 - Reads each symbol of an input sequence x sequentially
 - After reading the end of the sequence, we obtain a summary ${f c}$ of the whole input sequence: ${f c}={f h}_T$

RNN Encoder-Decoder (Cho et al '14)

- lacktriangle RNN for the decoder: Hidden state $c \Rightarrow$ Output y
 - $> \boldsymbol{h}_t = f(\boldsymbol{h}_{t-1}, \boldsymbol{y}_{t-1}, \boldsymbol{c})$
 - $P(y_t|y_{t-1},\cdots,y_1,c)=g(h_t,y_{t-1},c)$
 - Decode a given fixed-length vector representation back into a variable-length sequence
 - Generate the output sequence by predicting the next symbol y_t given the previous hidden state
 - Both y_t and h_t are conditioned on y_{t-1}
- How to define f?
 - Gated recurrent unit (GRU) is used to capture long-term dependencies

Using RNN Encoder-Decoder for Statistical Machine Translation

- Statistical machine translation
 - ▶ Generative model: $P(f|e) \propto p(e|f)P(f)$
 - -p(e|f): Translation model, p(f): Language model
 - > Log-linear model: $\log P(f|e) = \sum w_n f_n(f,e) + \log Z(e)$
 - In Phrase-based SMT
 - logP(e|f) is factorized into the translation probabilities of matching phrases in the source and target sents

Scoring phrase pairs with RNN Encoder-Decoder

- ➤ Train the RNN Encoder-Decoder on a table of phrase pairs → Use its scores as additional features
 - Ignore the normalized frequencies of each phrase pair
 - Existing translation prob in the table already reflects the frequencies of the phrase pairs

RNN Encoder-Decoder: Experiments

Training

- # hidden units: 1,000, # dim for word embedding: 100
- Adadelta & stochastic gradient descent
- Use Controlled vocabulary setting
 - Tmost frequent 15,000 words for both source & target languages
- All the out-of-vocabulary words are mapped to UNK

Models	BLEU		
Wiodels	dev	test	
Baseline	30.64	33.30	
RNN	31.20	33.87	
CSLM + RNN	31.48	34.64	
CSLM + RNN + WP	31.50	34.54	

English-to-French translation

Neural Machine Translation: Sequence-to-sequence (Sutskever et al 14)

- <EOS>: the end-of-sentence token
- > 1) a LSTM reads input sentence $m{x}$ which generates the last hidden state $m{v}$
- > 2) a standard LSTM-LM computes the probability of $y_1, \cdots, y_{T'}$ given the initial hidden state \boldsymbol{v}
 - $-P(y_1, \dots, y_{T'}|x_1, \dots, x_T) = \prod_t P(y_t|v, y_1, \dots, y_{t-1})$
 - $-P(y_t|v,y_1,\cdots,y_{t-1})$: Taking Softmax over all words

Can the LSTM reconstruct the input sentence?

Can this scheme learn the identity function?

 Answer: it can, and it can do it very easily. It just does it effortlessly and perfectly.

Sequence-to-Sequence Model (Sutskever et al 14)

- Two different LSTMs
 - > one for the input sentence
 - Another for the output sentence
- Deep LSTM (with 4 layer)
 - > 1,000 cell at each layer, 1,000 dimensional word embedding
 - Deep LSTM uses 8000 numbers for sentence representation
- Revising source sentence
 - \rightarrow ..., C', B', A' \rightarrow A, B, C,...
 - Backprop can notice the short-term dependencies first, and slowly extend them to long range dependencies
- Ensemble of deep LSTMs
 - LSTMs trained from Different initialization

Sequence-to-Sequence Model: End-to-end Translation Experiments

- English-to-French translation
- No SMT is used for reference model
- Input/Output vocabulary size: 160,000/80,000
- > Training objective: maximizing $\sum_{(S,T)} log P(T|S)$
- Decoding: Beam search

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Sequence-to-Sequence Model: Re-scoring Experiments

> Rescoring the 1000-best list of the baseline system

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Cho et al. [5]	34.54
Best WMT'14 result [9]	37.0
Rescoring the baseline 1000-best with a single forward LSTM	35.61
Rescoring the baseline 1000-best with a single reversed LSTM	35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs	36.5
Oracle Rescoring of the Baseline 1000-best lists	~45

Sequence-to-Sequence Model: Learned representation

 2-dimensional PCA projection of the LSTM hidden states

Sequence-to-Sequence Model: Learned representation

2-dimensional PCA projection of the LSTM hidden states

Sequence-to-Sequence Learning: Performance vs Sentence Length

Sequence-to-Sequence Learning: Performance on rare words

RNN Search: Jointly Learning to Align and Translate (Bahdanau et al '15)

- RNN Search: Extended architecture of RNN Encoder-Decoder
 - Encodes the input sentence into a seq of vectors using a bidirectional RNN
 - Context vector c
 - > Previously, the last hidden state (Cho et al '14)
 - Now, mixture of hidden states of input sentence at generating each target word
 - During decoding, chooses a subset of these vectors adaptively

RNN Search: Components

•
$$p(y_i|y_1, \dots, y_{i-1}) = g(y_{i-1}, s_i, c_i)$$

> An RNN hidden state

$$\bullet e_{ij} = a(s_{i-1}, h_j)$$

Alignment model

RNN Search: Encoder

◆ Bidirectional RNN

RNN Search: Decoder

- > compute alignment
- > compute context
- generate new output
- > compute new decoder state

RNN Search: Alignment model

Alignment model is jointly trained with all other components

RNN Search: Experiment – English-to-French

- Model
 - > RNN Search, 1,000 units
- Baseline
 - > RNN Encoder-Decoder, 1000 units
- Data
 - > English to French translation, 348 million words
 - 30000 words + UNK token for the networks, all words for Moses
- Training
 - > Stochastic gradient descent (SGD) with a minibatch of 80
- Decoding
 - Beam search (Sutskever '14)

RNN Search: Experiment – English-to-French

much better than RNN Encoder-Decoder

All	No UNK°
13.93	24.19
21.50	31.44
17.82	26.71
26.75	34.16
28.45	36.15
33.30	35.63
	13.93 21.50 17.82 26.75 28.45

without unknown words comparable with the SMT system

RNN Search: Large Target Vocabulary (Jean et al '15)

Decoding in RNN search

$$P(y_t|y_{< t},x) = \frac{1}{Z} \exp(w_t^T \phi(y_{t-1}, z_t, c_t) + b_t)$$

- Normalization constant
 - - Computationally inefficient
- Idea: Use only small V' of target vocabulary to approximate Z
 - Based on importance sampling (Bengio and Senecal, '08)

RNN Search: Large Target Vocabulary (Jean et al '15)

$$\nabla log p(y_t|y_{< t}, x) = \nabla \mathcal{E}(y_t) - \sum_{k: y_k \in V} P(y_k|y_{< t}, x) \nabla \mathcal{E}(y_k)$$

$$\mathcal{E}(y_j) = w_j^T \phi(y_{j-1}, z_j, c_j) + b_j$$

Energy function

Approximation by importance sampling

Expected gradient of the energy

$$\sum_{k:y_k \in V'} \frac{\omega_k}{\sum_{k':y_{k'} \in V'} \omega_{k'}} \nabla \mathcal{E}(y_k)$$
 Proposal distribution
$$\omega_k = \exp\{\mathcal{E}(y_k) - logQ(y_k)\}$$

RNN Search LV: Experiments

- Setting (Vocabulary size)
 - > RNN Search: 30,000 for En-Fr, 50,000 for En-Ge
 - > RNN Search LV: 500,000 source and target words

	RNNsearch	RNNsearch-LV	Google	Phrase	-based SMT
Basic NMT	29.97 (26.58)	32.68 (28.76)	30.6*		
+Candidate List	_	33.36 (29.32)	_		
+UNK Replace	33.08 (29.08)	34.11 (29.98)	33.1°	33.3*	37.03°
+Reshuffle (τ =50k)	_	34.60 (30.53)	_		
+Ensemble	_	37.19 (31.98)	37.5°		

(a) English→French

	RNNsearch	RNNsearch-LV	Phrase-based SMT
Basic NMT	16.46 (17.13)	16.95 (17.85)	
+Candidate List	_	17.46 (18.00)	
+UNK Replace	18.97 (19.16)	18.89 (19.03)	20.67\$
+Reshuffle	_	19.40 (19.37)	
+Ensemble	_	21.59 (21.06)	

(b) English→German

Sequence-to-Sequence Model: Rare Word Models (Luong et al '15)

Extend LSTM for NMT (Suskever '14)

Translation-specific approach

- For each OOV word, we make a pointer to its corresponding word in the source sentence
- The pointer information is later utilized in a postprocessing step
 - Directly translates OOV using a original dictionary
 - > or with the identify translation, if no translation is found

Rare Word Models (Luong et al '15)

Replacing rare words with UNK

Positional information is stored in target sentence

```
en: The <u>ecotax</u> portico in <u>Pont-de-Buis</u>, ...
```

fr: Le portique écotaxe de Pont-de-Buis,

en: The <u>unk</u> portico in <u>unk</u>...

fr: Le $\underline{unkpos_1}$ $\underline{unkpos_{-1}}$ de $\underline{unkpos_1}$...

Rare Word Models: Experiments

System	Vocab	Corpus	BLEU
State of the art in WMT'14 (Durrani et al., 2014)		36M	37.0
Standard MT + neural components			
Schwenk (2014) – neural language model	All	12M	33.3
Cho et al. (2014) – phrase table neural features	All	12M	34.5
Sutskever et al. (2014) – 5 LSTMs, reranking 1000-best lists	All	12M	36.5
Existing end-to-end NMT systems			
Bahdanau et al. (2015) – single gated RNN with search	30K	12M	28.5
Sutskever et al. (2014) – 5 LSTMs	80K	12M	34.8
Jean et al. (2015) – 8 gated RNNs with search + UNK replacement	500K	12M	37.2
Our end-to-end NMT systems			
Single LSTM with 4 layers	40K	12M	29.5
Single LSTM with 4 layers + PosUnk	40K	12M	31.8 (+2.3)
Single LSTM with 6 layers	40K	12M	30.4
Single LSTM with 6 layers + PosUnk	40K	12M	32.7 (+2.3)
Ensemble of 8 LSTMs	40K	12M	34.1
Ensemble of 8 LSTMs + PosUnk	40K	12M	36.9 (+2.8)
Single LSTM with 6 layers	80K	36M	31.5
Single LSTM with 6 layers + PosUnk	80K	36M	33.1 (+1.6)
Ensemble of 8 LSTMs	80K	36M	35.6
Ensemble of 8 LSTMs + PosUnk	80K	36M	37.5 (+1.9)

Grammar as Translation (Vinyals et al '15)

- Extended Sequence-to-Sequence Model
 - Two LSTMs + Attention (Bahdanau et al '15)
- Linearizing parse trees: Depth-first traversal

Grammar as Translation: Linearizing Parse Trees

John has a dog.

John has a dog . \rightarrow (S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

Sequence-to-Sequence Model: Parsing - Experiment Results

Parser	Training Set	WSJ 22	WSJ 23
baseline LSTM+D	WSJ only	< 70	< 70
LSTM+A+D	WSJ only	88.7	88.3
LSTM+A+D ensemble	WSJ only	90.7	90.5
baseline LSTM	BerkeleyParser corpus	91.0	90.5
LSTM+A	high-confidence corpus	93.3	92.5
LSTM+A ensemble	high-confidence corpus	93.5	92.8
Petrov et al. (2006) [12]	WSJ only	91.1	90.4
Zhu et al. (2013) [13]	WSJ only	N/A	90.4
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3
Huang & Harper (2009) [15]	semi-supervised	N/A	91.3
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1
Huang & Harper (2010) ensemble [17]	semi-supervised	92.8	92.4

Neural Network Transition-Based Parsing (Weiss et al '15)

NN Transition-Based Parsing: Experiments

Method	UAS	LAS	Beam
Graph-based			
Bohnet (2010)	92.88	90.71	n/a
Martins et al. (2013)	92.89	90.55	n/a
Zhang and McDonald (2014)	93.22	91.02	n/a
Transition-based			
*Zhang and Nivre (2011)	93.00	90.95	32
Bohnet and Kuhn (2012)	93.27	91.19	40
Chen and Manning (2014)	91.80	89.60	1
S-LSTM (Dyer et al., 2015)	93.20	90.90	1
Our Greedy	93.19	91.18	1
Our Perceptron	93.99	92.05	8
Tri-training			
*Zhang and Nivre (2011)	92.92	90.88	32
Our Greedy	93.46	91.49	1
Our Perceptron	94.26	92.41	8

Neural Network Graph-Based Parsing (Pei et al '15)

Neural Network Graph-Based Parsing (Pei et al '15)

NN Graph-Based Parsing: Experiments

	Models	Dev		Test		Speed (sent/s)
	Models	UAS	LAS	UAS	LAS	Speed (senus)
	MSTParser-1-order	92.01	90.77	91.60	90.39	20
	1-order-atomic-rand	92.00	90.71	91.62	90.41	55
First-order	1-order-atomic	92.19	90.94	92.19	92.19	55
	1-order-phrase-rand	92.47	91.19	92.25	91.05	26
	1-order-phrase	92.82	91.48	92.59	91.37	26
	MSTParser-2-order	92.70	91.48	92.30	91.06	14
Second-order	2-order-phrase-rand	93.39	92.10	92.99	91.79	10
	2-order-phrase	93.57	92.29	93.29	92.13	10
Third-order	(Koo and Collins, 2010)	93.49	N/A	93.04	N/A	N/A

Discussion: Research Topics

Neural Machine Translation

- DNNs represent words, phrases, and sentences in continuous space
- How to utilize more syntactic knowledge?
 - Recursive recurrent NN (Liu et al '14)
- Deep architecture may approximately represents input structure
- Neural Dependency Parsing
- Neural Language Model

Reference

- Mikolov Tomá¹, Karafiát Martin, Burget Luká¹, Èernocký Jan, Khudanpur Sanjeev: Recurrent neural network based language model, In: Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH 2010)
- Yoshua Bengio, Jerome Louradour, Ronan Collobert and Jason Weston, Curriculum Learning, ICML '09
- Yoshua Bengio, Réjean Ducharme and Pascal Vincent, A Neural Probabilistic Language Model, NIPS '01
- Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation, 2014
- S. Hochreiter, J. Schmidhuer, "Long short-term memory," Neural Computation, vol.9, no.8, pp.1735-1780, 1997.
- F. A. Gers, N. N. Schraudolph, J. Schmidhuer, Learning Precise Timing with LSTM Recurrent Networks, JMLR, 2002
- Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, 2014
- Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural Networks, NIPS '14
- N. Kalchbrenner and Phil Blunsom, Recurrent continuous translation models, EMNLP '13
- Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, ICLR '15
- Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, Wojciech Zaremba, Addressing the Rare Word Problem in Neural Machine Translation, ALC '15
- S´ebastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On using very large target vocabulary for neural machine translation. In ACL.
- Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey Hinton, Grammar as a Foreign Language, 15
- David Weiss, Chris Alberti, Michael Collins, Slav Petrov, Structured Training for Neural Network Transition-Based Parsing, ACL '15
- Wenzhe Pei, Tao Ge, Baobao Chang, An Effective Neural Network Model for Graph-based Dependency Parsing, EMNLP '15
- Shujie Liu, Nan Yang, Mu Li, and Ming Zhou, A Recursive Recurrent Neural Network for Statistical Machine Translation, ACL '14
- Jiajun Zhang and Chengqing Zong, Deep Neural Networks in Machine Translation: An Overview, IEEE Intelligent Systems '15