Transformations

Why transforms?

- Animate objects and camera
- Implementing rendering pipeline
- Because we can

Remember: Geometry Stage

transformations

- So far, discussion has been in screen space
- But model is stored in model space (a.k.a. object space)
- Three sets of geometric transformations:
 - Modeling transforms
 - Viewing transforms
 - Projection transforms

- All these transformations involve shifting coordinate systems (i.e., basis sets)
- That's what matrices do...
- Represent coordinates as vectors, transforms as matrices

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• Multiply matrices = concatenate transforms!

- Modeling transforms
 - Size, place, scale, and rotate objects parts of the model w.r.t.
 each other
 - Object coordinates → world coordinates

- Viewing transform
 - Rotate & translate the world to lie directly in front of the camera
 - Typically place camera at origin
 - Typically looking along -Z axis
 - World coordinates → view coordinates

- Projection transform
 - Apply perspective foreshortening
 - Distant = small: the pinhole camera model
 - View coordinates → screen coordinates

Rigid body transformation

Object transformed by transforming boundary points

Basic Transformations

Translation

 Translating a point from position P to position P' with translation vector T

$$P = \begin{pmatrix} x \\ y \end{pmatrix} \quad P' = \begin{pmatrix} x' \\ y' \end{pmatrix} \quad T = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

$$x' = x + t_x \quad y' = y + t_y$$

$$P' = P + T$$

Translation 3D

- For convenience we usually describe objects in relation to their own coordinate system
- We can translate or move points to a new position by adding offsets to their coordinates:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

Note that this translates all points uniformly

$$x' = x \cdot s_x, \quad y' = y \cdot s_y$$

example: a line scaled using $s_x = s_y = 0.33$ is reduced in size and moved closer to the coordinate origin

• Uniform scaling: $S_x = S_y$

• Uniform scaling: $S_x = S_y$

• Differential scaling: $S_x \neq S_y$

• uniform scaling: $S_x = S_y$

• differential scaling: $S_x \neq S_y$

fixed point:

Scaling 3D

Scaling operation

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} S_{\chi} x \\ S_{y} y \\ S_{z} z \end{pmatrix}$$

Matrix form

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
scaling matrix

Why Matrices?

- All transformations representable by a matrix multiplication
 - Uniform way of representing transformations
 - Matrix multiplications are associative
 - $(M_1 \cdot M_2) \cdot M_3 = M_1 \cdot (M_2 \cdot M_3)$
 - Composite Transformations can be premultiplied
 - Not **commutative** $M_1 \cdot M_2 \neq M_2 \cdot M_1$ which is also true for transformations

Transformation Order

Order matters

Rot * Trans * v

Rotation

• Rotation of an object by an angle θ around the origin

Rotation

• Positive angle \Rightarrow ccw rotation

$$x = r \cdot \cos\phi \qquad y = r \cdot \sin\phi$$

$$x' = r \cdot \cos(\phi + \theta)$$

$$= \underline{r \cdot \cos\phi \cdot \cos\theta} - \underline{r \cdot \sin\phi \cdot \sin\theta}$$

$$= \underline{x} \cdot \cos\theta - \underline{y} \cdot \sin\theta$$

$$y' = r \cdot \sin(\phi + \theta)$$

$$= r \cdot \cos\phi \cdot \sin\theta + r \cdot \sin\phi \cdot \cos\theta$$

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$
$$y' = x \cdot \sin \theta + y \cdot \cos \theta$$

This is easy to capture in matrix form

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- 3-D is more complicated
 - Need to specify an
 - Simple cases: rotation about X, Y, Z axes

- What does the 3-D rotation matrix look like for a rotation about the Z-axis?
 - Build it coordinate-by-coordinate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ z' \end{bmatrix} = \begin{bmatrix} \sin(\theta) & \cos(\theta) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$

- What does the 3-D rotation matrix look like for a rotation about the Y-axis?
 - Build it coordinate-by-coordinate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- What does the 3-D rotation matrix look like for a rotation about the X-axis?
 - Build it coordinate-by-coordinate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Rotation Matrices

- Remember basis!
- What does a z-rotation by o°, 90° do to the basis?
 (draw transformation of basis vectors)

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Rotation Matrices

- Rotation matrix is orthogonal
 - Columns/rows linearly independent
 - Columns/rows sum to 1
- The inverse of an orthogonal matrix is just its transpose:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ h & i & j \end{bmatrix}^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ h & i & j \end{bmatrix}^{T} = \begin{bmatrix} a & d & h \\ b & e & i \\ c & f & j \end{bmatrix}$$

- But how to represent translation as a matrix?
- Answer: with homogeneous coordinates

- Homogeneous coordinates: represent coordinates in 3 dimensions with a 4-vector
- Points: Directions:

$$(x, y, z) = \begin{bmatrix} x/w \\ y/w \\ z/w \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \qquad (x, y, z) = \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$

- How can we represent translation as a 4x4 matrix?
- A: Using the rightmost column:

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Homogeneous coordinates seem unintuitive, but they make graphics operations much easier
- Our transformation matrices are now 4x4:

$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Homogeneous coordinates seem unintuitive, but they make graphics operations much easier
- Our transformation matrices are now 4x4:

$$\mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Homogeneous coordinates seem unintuitive, but they make graphics operations much easier
- Our transformation matrices are now 4x4:

$$\mathbf{R}_{\mathbf{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Homogeneous coordinates seem unintuitive, but they make graphics operations much easier
- Our transformation matrices are now 4x4:

$$\mathbf{S} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse Matrices

translation

$$T^{-1}(t_x,t_y) = T(-t_x,-t_y)$$

rotation

$$R^{-1}(\theta) = R(-\theta)$$

scaling

$$S^{-1}(s_x, s_y) = S(1/s_x, 1/s_y)$$

Composite Transformations (1)

n transformations are applied after each other on a point P, these transformations are represented by matrices M₁, M₂, ..., M_n.

$$P' = M_{1} \times P$$

$$P'' = M_{2} \times P'$$

$$\dots$$

$$P^{(n)} = M_{n} \times P^{(n-1)}$$

shorter:
$$P^{(n)} = (M_n \times ...(M_2 \times (M_1 \times P))...)$$

Transformations are not commutative!

- Reversing the order in which a sequence of transformations is performed may affect the transformed position of an object.
- In (a), an object is first translated, then rotated. In (b), the object is rotated first, then translated.

- Now that we can represent translation as a matrix, we can composite it with other transformations
- Ex: rotate 90° about X, then 10 units down Z:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(90^{\circ}) & -\sin(90^{\circ}) & 0 \\ 0 & \sin(90^{\circ}) & \cos(90^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

- Now that we can represent translation as a matrix, we can composite it with other transformations
- Ex: rotate 90° about X, then 10 units down Z:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

- Now that we can represent translation as a matrix, we can composite it with other transformations
- Ex: rotate 90° about X, then 10 units down Z:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

- Now that we can represent translation as a matrix, we can composite it with other transformations
- Ex: rotate 90° about X, then 10 units down Z:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} x \\ -z \\ y+10 \\ w \end{bmatrix}$$