13. Measurable Functions

Consider two measurable spaces $(\Omega, \mathcal{F}), (\Omega', \mathcal{F}')$, where $\mathcal{F}, \mathcal{F}'$ are σ -fields. Let $T: \Omega \to \Omega'$ be a mapping.

Definition: measurable

T is **measurable** if $\forall A' \in \mathcal{F}'$,

$$T^{-1}(A') = \{ \omega \in \Omega : T(\omega) \in A' \} \in \mathcal{F}.$$

We also say T is F/F' measurable or measurable F/F'.

Example. A r.v. X is measurable $F/\mathcal{B}(\mathbb{R})$.

Theorem: 13.1

 $(\Omega, \mathcal{F}), (\Omega', \mathcal{F}'), T : \Omega \to \Omega'.$

- (i) If $\mathcal{F}' = \sigma(\mathcal{A}')$ and if $T^{-1}(A') \in \mathcal{F} \ \forall \ A' \in \mathcal{A}'$, then T is measurable F/F'.
- (ii) Composition: If T is F/F' measurable, and $T': \Omega' \to \Omega''$ is measurable, given $(\Omega'', \mathcal{F}''), T'(T(x))$ is measurable \mathcal{F}'/F'' , then $T' \circ T$ is measurable F/F''.

Remark. The theorem from r.v. comes directly from (i), where we have $X^{-1}(-\infty, x]$ which is a closed interval. Instead of checking every inverse image of element in the generated σ -field is in \mathcal{F} , we check if the inverse image of every element in the set that generated the σ -field is in \mathcal{F} .

Notation. $T^{-1}A = T^{-1}(A)$.

Proof

(i) Consider a class of sets $\mathcal{G}' = \{A' \subseteq \Omega' : T^{-1}(A') \in \mathcal{F}\}$. Clearly $\mathcal{A}' \subseteq \mathcal{G}'$ by assumption. We claim that \mathcal{G}' is a σ -field on Ω' . Thus, $\sigma(\mathcal{A}') = \mathcal{F}' \subseteq \mathcal{G}'$. Therefore, any sets $A' \in \mathcal{F}'$ will map back (under T) to \mathcal{F} .

(ii) proof omitted.

Example. Space: $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ where μ assigns finite measure to bounded sets

in \mathbb{R} . Define a function $F: \mathbb{R} \to \mathbb{R}$,

$$F(x) = \begin{cases} \mu((0,x]) & \text{if } x \ge 0 \\ -\mu((x,0])) & \text{if } x < 0 \end{cases}$$

Property.

- 1) $F(x) < \infty \ \forall \ x \in \mathbb{R}$.
- 2) Non-decreasing, i.e. $x_1 \leq x_2 \Rightarrow F(x_1) \leq F(x_2)$.

Proof

Case. $0 \le x_1 \le x_2 \Rightarrow (0, x_1) \subseteq (0, x_2] \Rightarrow \mu((0, x]) \le \mu((0, x_2]) \Rightarrow F(x_1) \le F(x_2)$.

3) We can write $\mu((a,b])$ in terms of F: $\mu((a,b]) = F(b) - F(a)$. Case. $0 \le a \le b$. Then

$$\mu((a, b]) = \mu((0, b] \setminus (0, a])$$

$$= \mu((0, b]) - \mu((0, a])$$

$$= F(b) - F(a)$$

Case. $a < 0, b \ge 0$. Then

$$\mu((a,b]) = \mu((a,0]) + \mu((0,b])$$

= $-F(a) + F(b)$

4) F is right-continuous.

Proof

Suppose (x_n) is such that $x_n \searrow x$. We want to show $F(x_n) \searrow F(x)$. Case. $x \geq 0$, define $A_n = (0, x_n], A = (0, x]$. Then $A_n \searrow A$. By continuity from above (need $\mu(A_1) < \infty$) $\Rightarrow \mu(A_n) \searrow \mu(A) \Leftrightarrow F(x_n) \searrow F(x)$.

Theorem: 12.4

If F is a non-decreasing, right-continuous, real-valued $(\mathbb{R} \to \mathbb{R})$, then there exists a unique measure μ on $\mathcal{B}(\mathbb{R})$ such that $\mu((a,b]) = F(b) - F(a) \ \forall \ a \leq b$.

Proof

Define a measure μ on \mathcal{A} which is the collection of all intervals of the form (a,b] for a < b such that $\mu(\emptyset) = 0$ and $\mu((a,b]) = F(b) - F(a)$. Note that \mathcal{A} is a semiring and can generate the Borel sets. By Theorem 11.3, μ extends to $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$. Since $F : \mathbb{R} \to \mathbb{R}$, we cannot get infinity for the measure and can cover \mathbb{R} by these half closed intervals, so it is σ -finite. By Theorem 10.3 (note μ is σ -finite because intervals are finite and cover the reals), the extension is unique.

Note. Borel sets on \mathbb{R} can be generated by

- 1) open intervals on \mathbb{R}
- 2) closed intervals on \mathbb{R} .
- 3) half open intervals.
- 4) $(-\infty, a]$ or $(-\infty, a)$.
- 5) open sets on \mathbb{R} .

Claim.

1) A continuous function $f: \mathbb{R} \to \mathbb{R}$ is measurable.

Proof

We need to show that inverse image of a set in $\mathcal{B}(\mathbb{R})$ is in $\mathcal{B}(\mathbb{R})$. Take \mathcal{A} as all the open sets in \mathbb{R} . Then the inverse image of open sets is open since F is continuous. Thus by Theorem, 13.1, we are done.

2) $f_i: \Omega \to \mathbb{R}$ for i = 1, ..., k, each measurable $F/\mathcal{B}(\mathbb{R})$ and $g: \mathbb{R}^k \to \mathbb{R}$ measurable $\mathcal{B}(\mathbb{R}^k)/\mathcal{B}(\mathbb{R})$. Then $g(f_1(\omega), ..., f_k(\omega))$ is measurable $F/\mathcal{B}(\mathbb{R})$.

Proof

 f_i measurable implies $f(\omega) := (f_1(\omega), \dots, f_k(\omega))$ is measurable. Then the result follows from composition of functions.

3) Suppose $f: \Omega \to [-\infty, \infty]$ (extended reals) is measurable if $A \in \mathcal{B}(\mathbb{R}) \Rightarrow f^{-1}(A) \in \mathcal{F}$ and $\{\omega : f(\omega) = \infty\}$ and $\{\omega : f(\omega) = -\infty\}$ are in \mathcal{F} .

Theorem: 13.4

 (Ω, \mathcal{F}) . Consider a sequence of measurable functions, f_1, f_2, \ldots from $\Omega \to \mathbb{R}$. Then, the following are true:

- (i) $\sup_n f_n$, $\inf_n f_n$, $\lim \sup_n f_n$, $\lim \inf_n f_n$ are measurable.
- (ii) $\lim_{n\to\infty} f_n$ if it exists everywhere is measurable.
- (iii) $\{\omega : f_n(\omega) \text{ converges}\} \in \mathcal{F}$

Theorem

 $(\Omega, \mathcal{F}), f, g: \Omega \to \mathbb{R}$ measurable. Then

- (i) $\{\omega : f(\omega) > g(\omega)\} \in \mathcal{F}$.
- (ii) $\{\omega : f(\omega) = g(\omega)\} \in \mathcal{F}$.

Proof

(i) Note that for any real a>b, there exists a $r\in\mathbb{Q}$ such that a>r>b. Hence

$$\{\omega: f(\omega) > g(\omega)\} = \bigcup_{r \in \mathbb{Q}} \left[\{\omega: f(\omega) > r\} \cap \{\omega: g(\omega) < r\} \right].$$

The first set is the complement in \mathcal{F} since f is measurable, The second is also in \mathcal{F} since g is measurable, Their unions and intersections are in \mathcal{F} .

(ii)

$$\{\omega : f(\omega) = g(\omega)\} = (\{\omega : f(\omega) > g(\omega)\} \cup \{\omega : f(\omega) < g(\omega)\})^c \in \mathcal{F}.$$