Química 2n Batx

Rodrigo Alcaraz de la Osa. Traducció: Òscar Colomar (🛩 @ocolomar)

Teories acid-base

Teoria d'Arrhenius

Proposada pel suec Svante Arrhenius el 1884, constitueix la primera definició moderna d'àcids i bases en termes moleculars:

Àcid Substància que es dissocia en aigua formant cations hidrogen (H⁺).

Base Substància que es dissocia en aigua formant anions hidròxid (OH⁻).

Teoria de Brønsted-Lowry

Proposada el 1923 independentement pel danès Johannes Nicolaus Brønsted i l'anglès Martin Lowry, es basa en la idea de parells d'àcid-base conjugats. Quan un àcid, HA, reacciona amb una base, B, l'àcid forma la seva base conjugada, A⁻, i la base forma el seu àcid conjugat, HB⁺, mitjançant l'intercanvi d'un protó (catió H⁺):

$$HA + B \implies A^- + HB^+$$

Àcid Substància capaç de cedir protons (H⁺) a una base: HA + H₂O \Longrightarrow A⁻ + H₃O⁺. Base Substància capaç d'acceptar protons (H⁺) d'un àcid: B + H₂O \Longrightarrow HB⁺ + OH⁻.

Aquesta teoria es considera una GENERALITZACIÓ de la teoria d'ARRHENIUS.

forca relativa dels àcids i bases

En funció de com d'ionitzat/ada o dissociat/ada se trobi un àcid o una base, distingim entre àcids/bases fortes i febles, termes que descriuen la facilitat per conduir l'electricitat (gràcies a la major o menor presència d'ions en la dissolució).

Grau d'ionització

També anomenat GRAU DE DISSOCIACIÓ, α , es defineix com el quocient entre la quantitat d'àcid/base ionitzat/ada i la quantitat d'àcid/base inicial:

$$\alpha = \frac{\text{quantitat d'àcid/base ionitzat/ada}}{\text{quantitat d'àcid/base inicial}}$$

Sol expressar-se en tant per cent (%).

Àcids i bases fortes Totalment ionitzats/des ($\alpha \approx 1$). Condueixen bé l'electricitat.

- Àcids: HClO₄, HI(ac), HBr(ac), HCl(ac), H₂SO₄ (1^a ionització) i HNO₃.
- Bases: Hidròxids de metalls alcalins i alcalinoterris.

Àcids i bases febles Parcialment ionitzats/des: $\alpha < 1$. Condueixen malament l'electricitat.

- Àcids: HF(ac), H₂S(ac), H₂CO₃, H₂SO₃, H₃PO₄, HNO₂ i àcids orgànics, com el CH₃COOH.
- Bases: NH₃ (o NH₄OH) i bases orgàniques nitrogenades, com amines.

Constant de dissociació

És una mesura de la FORTALESA d'un àCID/BASE en dissolució:

	ÀCID	BASE
EQUILIBRI	$HA + H_2O \longrightarrow A^- + H_3O^+$	$B + H_2O \implies HB^+ + OH^-$
CONSTANT	$K_{\rm a} = \frac{[{\rm A}^{-}][{\rm H}_{\rm 3}{\rm O}^{+}]}{[{\rm HA}]}$	$K_{\rm b} = \frac{[{\rm HB}^+][{\rm OH}^-]}{[{\rm B}]}$
COLOGARITME	$pK_a = -\log K_a$	$pK_{b} = -\log K_{b}$

Equilibri ionic de l'aigua

L'aigua és una substància anfipròtica (pot tant donar com acceptar un protó H^+), el que la permet actuar com a àcid o com a base (anfoterisme). L'equilibri iònic de l'aigua fa referència a la reacció química en la qual dues molècules d'aigua reaccionen per a produir un ió oxoni (H_3O^+) i un ió hidròxid (OH^-):

$$H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$$

La constant d'equilibri, anomenada **producte iònic de l'aigua**, i denotada per $K_{\rm w}$, es pot aproximar pel producte:

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}]$$

A 25 °C:

$$[H_3O^+] = [OH^-] = 10^{-7} \text{ M} \implies K_w = 10^{-14}$$

Relació entre K_a i K_b

Donat un àcid, HA, i la seva base conjugada, A⁻, podem multiplicar K_a i K_b :

$$K_{\rm a} \cdot K_{\rm b} = \frac{[{\rm A}^-][{\rm H}_3{\rm O}^+]}{[{\rm HA}]} \cdot \frac{[{\rm HA}][{\rm OH}^-]}{[{\rm A}^-]} = [{\rm H}_3{\rm O}^+][{\rm OH}^-] = K_{\rm w},$$

pel que (suposant T = 25 °C):

$$K_{a} \cdot K_{b} = K_{w} = 10^{-14}$$

 $pK_{a} + pK_{b} = pK_{w} = 14$

Concepte de pH

Es defineix el pH com el cologaritme de la concentració d'ions oxoni, H₃O⁺:

$$pH = -\log [H_3O^+]$$

Anàlogament es defineix el pOH en funció de la concentració d'ions hidròxid, OH-:

$$pOH = -\log[OH^{-}]$$

A partir de l'expressió del producte iònic de l'aigua, $K_{\rm w}$, prenent logaritmes:

$$[H_3O^+][OH^-] = K_w$$

 $log [H_3O^+] + log [OH^-] = log K_w$
 $-pH - pOH = -14$
 $pH + pOH = 14$

Traduïda i adaptada de https://www.coursehero.com/sg/cell-biology/ph-and-the-ph-scale/.

Volumetries de neutralització àcid-base

Una **valoració/titulació** és un mètode d'anàlisi química quantitativa per a determinar la concentració d'un àcid o base identificat (*analit*), neutralitzant-ho exactament amb una dissolució estàndard de base o àcid de concentració coneguda (**valorant**).

//www.coursehero.com/sg/general-chemistry/
quantitative-analysis-of-acids-and-bases/.

Corba de valoració/titulació de 25 mL d'àcid acètic 0.1 м amb hidròxid de sodi 0.1 м.

NEUTRALITZACIÓ: ÀCID + BASE — IRREVERSIBLE → SAL + AIGUA					
ANALIT	FORT	ÀCID FEBLE	BASE FEBLE		
PH (EQUIVALÈNCIA)	7	> 7	< 7		
INDICADOR (vira en medi)	NEUTRE	BÀSIC	ÀCID		

Indicadors acid-base

Un **indicador** de pH és un compost químic *halocròmic* (canvia de color —*vira*— davant canvis de pH) que s'afegeix en petites quantitats a una dissolució per a poder determinar visualment el seu pH (acidesa o basicitat). El canvi de color es denomina **viratge**.

Tornasol

Mescla soluble en aigua de diferents colorants extrets de LíQUENS. Absorbit en paper de filtre constitueix un dels indicadors de pH més antics utilitzats (~ 1300).

Taronja de metil (C₁₄H₁₄N₃NaO₃S)

Colorant azoderivat que vira de vermell a taronja-groc en MEDI ÀCID:

$$pH < 3.1 \implies pH > 4.4$$

Fenolftaleïna (C₂₀H₁₄O₄)

Indicador de pH incolor en medi àcid que vira a rosa en MEDI BÀSIC:

$$pH < 8.3 \implies 8.3 < pH < 10$$

Indicador universal

MESCLA D'INDICADORS (blau de timol, vermell de metil, blau de bromotimol i fenolftaleïna) que presenta canvis suaus de color en una àmplia gama de valors de pH.

RANG DE PH	< 3	3–6	7	8–11	> 11
MEDI	àcid fort	àcid feble	neutre	base feble	base fort
COLOR	vermell	taronja/groc	verd	blau	violeta

Química 2n Batx

Rodrigo Alcaraz de la Osa. Traducció: Òscar Colomar (9 @ocolomar)

Hidrolsi de sals

Quan una sal es dissol en aigua, es dissocia en els seus **ions**. Si aquests ions són capaços de reaccionar amb les molècules d'aigua i formar àcids o bases conjugats, diem que es produeix una reacció d'**hidròlisi**.

Traduïda i adaptada de

https://www.coursehero.com/sg/general-chemistry/solutions-are-in-equilibrium/.

Sals d'àcid fort i base forta

Quan els ions en els quals es dissocia una sal provenen d'àcids/bases fortes, no reaccionen amb aigua (hidrolitzen), perquè tendeixen a estar completament ionitzats:

$$KNO_3(s) \xrightarrow{H_2O} K^+(ac) + NO_3^-(ac)$$

 $K^+ + 2 H_2O \xrightarrow{\#} KOH + H_3O^+ NO_3^- + H_2O \xrightarrow{\#} HNO_3 + OH^-$

La dissolució resultant és neutra (pH = 7).

Sals d'àcid feble i base forta

En aquest cas l'ió provinent de l'àcid feble sí que s'hidrolitza:

$$CH_3COONa(s) \xrightarrow{H_2O} Na^+(ac) + CH_3COO^-(ac)$$
 $Na^+ + 2H_2O \xrightarrow{W} NaOH + H_3O^+ CH_3COO^- + H_2O \xrightarrow{K_b} CH_3COOH + OH^-$

La dissolució resultant és Bàsica (pH > 7).

Sals d'àcid fort i base feble

En aquest cas l'ió provinent de la base feble sí que s'hidrolitza:

$$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(ac) + Cl^-(ac)$$

$$NH_4^+ + H_2O \xrightarrow{K_a} NH_3 + H_3O^+ Cl^- + H_2O \xrightarrow{\#} HCl + OH^-$$

La dissolució resultant és àcida (pH < 7).

Sals d'àcid feble i base feble

En aquest cas tots dos ions s'hidrolitzen:

$$NH_4CN(s) \xrightarrow{H_2O} NH_4^+(ac) + CN^-(ac)$$

$$NH_4^+ + H_2O \xrightarrow{K_a} NH_3 + H_3O^+ CN^- + H_2O \xrightarrow{K_b} HCN + OH^-$$

 $K_a > K_b \Rightarrow \text{Ladissolució resultant és à cida (pH < 7)}.$

 $K_a = K_b \Rightarrow \text{Ladissolució resultant és neutre (pH = 7)}.$

 $K_{\rm b} > K_{\rm a} \Rightarrow {\rm Ladissoluci\acute{o}}$ resultant és Bàsica (pH > 7).

Dissolucions reguladores

També anomenades **dissolucions amortidores** o **tampó**, són dissolucions aquosas que consisteixen en una mescla d'un àcid o base feble i el seu conjugat corresponent. Mantenen el pH d'una dissolució pràcticament invariable enfront de petites addicions d'àcid o base a la mateixa gràcies a la neutralització de l'excés d'ions H₃O⁺ o OH⁻.

Tampó àcid feble + sal de la seva base conjugada

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

Suposant que les concentracions en l'equilibri són aproximadament iguals a les concentracions inicials, a partir de l'expressió de la constant d'acidesa K_a :

$$K_{\rm a} = \frac{[{\rm A}^-][{\rm H}_3{\rm O}^+]}{[{\rm HA}]},$$

podem aïllar la concentració d'ions oxoni, H₃O⁺:

$$[H_3O^+] = K_a \cdot \frac{[HA]}{[A^-]}$$

Prenent logaritmes i canviant de signe:

$$-\log [H_3O^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

$$pH = pK_a - \log \frac{[HA]}{[A^-]}$$

$$pH = pK_a + \log \frac{[base\ conjugada]}{[àcid]}$$

expressió que es coneix com equació de Henderson-Hasselbalch.

Tampó base feble + sal del seu àcid conjugat

$$B + H_2O \implies HB^+ + OH^-$$

Assumint de nou que les concentracions en l'equilibri són aproximadament iguals a les concentracions inicials, a partir de l'expressió de la constant de basicitat $K_{\rm b}$:

$$K_{\rm b} = \frac{[{\rm HB}^+][{\rm OH}^-]}{[{\rm B}]},$$

podem aïllar la concentració d'ions hidròxid, OH-:

$$[OH^{-}] = K_{b} \cdot \frac{[B]}{[HB^{+}]}$$

Prenent logaritmes i canviant de signe arribem a una altra forma de l'EQUACIÓ DE HENDERSON-HASSELBALCH:

$$pOH = pK_b + log \frac{[àcid conjugat]}{[base]}$$

Importància biològica del pH

 $Tampó H_2CO_3/HCO_3^-$ Regula el pH de la SANG \rightarrow pH = 7.40 ± 0.05:

$$CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow HCO_3^- + H^+$$

 $Tampó H_2PO_4^-/HPO_4^{2-}$ Regula el pH a l'interior de les cèl·lules \rightarrow pH ≈ 6.86 : $H_2PO_4^- \Longrightarrow HPO_4^{2-} + H^+$

Acids i bases rellevants

A nivell industrial

Àcido sulfúric (H_2SO_4) El compost químic més produït del món, obtingut a força d'hidratar SO_3 concentrat prèviament del SO_2 . El seu principal ús és per a crear àcid fosfòric que al seu torn s'empra en FERTILITZANTS.

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$
 (àcido fort)
 $HSO_4^- + H_2O \Longrightarrow SO_4^{2-} + H_3O^+$ (àcid feble)

Àcid nítric (HNO3) Emprat en la producció d'adobs, explosius i colorants:

$$HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$$
 (àcid fort)

A nivell de consum

Àcid acètic (CH_3COOH) Present en el vinagre, encara que principalment usat en la fabricació de fibres tèxtils.

$$CH_3COOH + H_2O \Longrightarrow CH_3COO^- + H_3O^+$$
 (àcid feble)

Amoníac (NH3) Emprat principalment en la producció de FERTILITZANTS.

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$
 (base feble)

Hidròxid de sodi (NaOH) Emprat sobretot en la fabricació de paper, teixits i productes de neteja.

NaOH
$$\longrightarrow$$
 Na⁺ + OH⁻ (base forta)

Problemes mediambientals

Pluja àcida Causada per l'emissió d'òxids de sofre i nitrogen, que, en contacte amb l'aigua, formen àcid sulfúric i àcid nítric, entre d'altres:

Òxids de sofre (SOx)	Òxids de nitrogen (NOx)		
$SO_2 + H_2O \longrightarrow H_2SO_3$ $SO_3 + H_2O \longrightarrow H_2SO_4$	$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$		

Es considera pluja àcida si pH < 5.5. Els seus principals EFECTES són:

- Acidificació d'aigües de (rius/llacs) i sòls.
- Deteriorament del patrimoni històric (ataca roques calcàries, a base de CaCO₃). Algunes solucions serien:
- Substituir combustibles fòssils per energies renovables.
- Ús de catalitzadors en vehicles.
- Addició d'un compost alcalí en rius i/o llacs per neutralitzar la seva acidesa.
- Tractament de monuments amb recobriments adequats, com el Ba $(OH)_2$, que reaccionen amb l'àcid sulfúric formant Ba SO_4 , evitant l'erosió.

Esmog Provinent de la contracció de SMOKE i FOG, fa referència a una contaminació atmosfèrica deguda sobretot a ÒXIDS DE NITROGEN (NOX), SOFRE (SOX), OZÓ (O3), fum i altres partícules. Es considerat un problema derivat de la industrialització moderna, tot i que és més comú en ciutats amb climes càlids, secs i amb molt de trànsit.

EFECTES:

• La presència d'ozó i òxids de nitrogen i sofre causa problemes respiratoris, especialment en ancians i nens/as.

Algunes de las solucions proposades són:

- Reduir les emissions d'òxids de nitrogen i de compostos orgànics volàtils.
- Reduir la contaminació.