Missing features

What if our data is not perfect?

What do we do about examples with missing features

- training examples
- test examples

We have thus far being treating this as an annoyance

- problem is important
- far from simple

The simplest thing to do would be to drop the example

- can't do it with a test example
- reduces amount of data in training

We could alternatively, drop the feature entirely

• the features missing among several examples may be disjoint

Either way, losing training data is not desirable, particularly for small datasets

- We will motivate the problem and illustrate the issues
- We will examine naive solutions
 - almost always bad!
- We will show an interesting solution using Random Forests
- Preview of clustering methods

The term **imputation** refers to creating a substitute for the missing value of a feature in one example.

To frame our discussion

Let

- Let f denote the index of a feature
 $\mathbf{x}^{(m')}$ be an example (either training or test) with missing feature $\mathbf{x}_f^{(m')}$
- $\hat{\mathbf{x}}^{(m')}$ be the imputed valued for $\mathbf{x}^{(m')}$

As usual let \mathbf{X}, \mathbf{y} be our labeled training examples.

$$\{(\mathbf{x^{(i)}}, \mathbf{y^{(i)}})|1 \leq i \leq m\}$$

Naive methods for imputation

Magic numbers

Let's start with a truly awful method: set $\hat{\mathbf{x}}_f^{(m')}$ to a "magic number"

- 0
- -999

Why is the magic number awful?

Consider a training set representing the population of NYC, with features Weight, Height, Age, etc.

Suppose Weight, which is at index f of example vector $\mathbf{x}^{(m')}$ is missing.

Setting $\hat{\mathbf{x}}_f^{(m')} = 0$ is awful because the imputed value is not likely

•
$$p(\mathbf{x}_f^{(m')}=0)pprox 0$$

Mean, median, percentile

How about something more likely, like the mean or median?

Better

•
$$p(\mathbf{x}_f^{(m')} = ar{\mathbf{x}}_f) > 0$$

Still not perfect.

- ullet What if $p(\mathbf{x}_f)$ were a bi-modal distribution
 - lots of examples with extreme values, few in the middle

So mean and median are better than magic numbers in many situations but not all.

Even worse:

Suppose example $\mathbf{x}^{(m')}$ is an infant: is $ar{\mathbf{x}}_f$ still reasonable ?

$$ullet \ p(\mathbf{x}_f^{(m')} = ar{\mathbf{x}}_f | \mathbf{x}_{ ext{Age}}^{(m')} < 1) pprox 0$$

So the mean, median etc.

- provides a reasonable imputation in a univariate sense
- provides a less reasonable imputation in a multivariate sense
 - conditional on other features like Age

Imputation depends on how the imputed value is used

Less obvious is that $\hat{\mathbf{x}}_f^{(m')}$ will be used for training some model.

So perhaps we should consider how the model that we are going to fit uses $\hat{\mathbf{x}}_f^{(m')}$.

To illustrate, consider

- Three people: A, B, C
- Each rating some movies from among: a, b, c, d, e
- on a scale of 0 to 5 stars

But some people have not rated some movies

• how do we impute a missing rating?

Suppose the model that uses this data

- uses a dot product to measure similarity among examples
 - e.g., a variant of KNN

Knowing this, we can show that different choices of $\hat{\mathbf{x}}_f^{(m')}$ influence the similarity metric.

```
In [6]: df
        print("A vs B")
        compare_subs(A,B)
        print("A vs C")
        compare subs(A,C)
Out[6]:
         A 4.0 5.0 1.0 NaN NaN NaN
         B 5.0 NaN NaN 5.0 4.0 NaN
         C NaN 2.0 4.0 NaN NaN 5.0
        A vs B
                Substitute 0: similarity= 0.38
                Substitute w/mean across each example's features: similarity= 0.94
                Center across each example's features, then Substitute 0: similarity=
        0.09
        A vs C
                Substitute 0: similarity= 0.32
                Substitute w/mean across each example's features: similarity= 0.87
                Center across each example's features, then Substitute 0: similarity=
        -0.56
```

- A versus B
 - missing values are paired against relatively high values
 - \circ Substituting 0 (a low value) reduces similarity
 - Substituting mean (a relatively high value) increase similarity
 - A is a tougher rater: A.mean() < B.mean()
 - in the end, A and B had only a single true point of comparison ("a")
 - o you made up the similarity
- A versus C:
 - NO feature "a" in common!
 - But at least A and B are closer than A and C for some substitutions

Cosine similarity

- is a scale dependent measure
 - so centering, scaling matter
 - Analogy
 - o difference between Covariance and Correlation
 - Correlation is Covariance of normalized (scaled) variables

The choice of $\hat{\mathbf{x}}_f^{(m')} = 0$ is **not** neutral if the data is not centered

- e.g., if 0 is the minimum of \mathbf{x}_f , rather than the average

Predictive methods for imputation

Hopefully the preceding examples illustrated some issues in imputation.

Can we do better?

Let $\mathbf{x}_{\bar{f}}$ denote the vector of features <code>excluding</code> the one at index f.

We can frame the imputation problem as finding

$$p(\mathbf{x}_f^{(m')}|\mathbf{x}_{ar{f}}^{(m')})$$

That is: find likely values for the missing feature, *given* values for the non-missing features.

How do we do this?

Machine Learning to the rescue!

- fit a model on the subset of training examples

Simple predictive imputation

Some ideas

- Naive Bayes
 - Assumption of distribution of features can compensate for missing features
- Regression

$$lacksquare \mathbf{x}_f = \Theta^T \mathbf{x}_{ar{f}}$$

 \circ feature f as a function of the other features

$$lacksquare \mathbf{x}_f = \Theta^T \mathbf{z}$$

 \circ **z** may be features, not present in **x**, that are believed to be correlated with **x**_f

Proximity based imputation

A proximity based method

- creates a proximity (opposite of distance) measure $prox(\mathbf{x}^{(m')}, \mathbf{x^{(i)}})$ between $\mathbf{x}^{(m')}$ and training example $\mathbf{x^{(i)}}$
- $\hat{\mathbf{x}}_f^{(m')}$ is the proximity weighted average of the values of the feature in the training set

$$\hat{\mathbf{x}}_f^{(m')} = \sum_{i=1, i
eq m'}^m prox(\mathbf{x}^{(m')}, \mathbf{x^{(i)}}) \mathbf{x}_f^{(\mathbf{i})}$$

That is

• the missing value should be similar to the feature value in training examples "similar" to $\mathbf{x}^{(m')}$.

The definition of proximity (similarity) will vary.

Note

For categorical $\mathbf{x}_f^{(m')}$ use the most frequent non-missing value

• where the frequency is weighted by proximities.

The method works for multiple missing features but we illustrate with a single one for simplicity.

Limitations

For the imputation of

$$p(\mathbf{x}_f^{(m')}|\mathbf{x}_{ar{f}}^{(m')})$$

we are implicitly assuming that if feature vectors $\mathbf{x^{(i)}}, \mathbf{x^{(i')}}$ are "similar" then so are their targets

$$\mathbf{y^{(i)}} pprox \mathbf{y}^{(i')}$$

With that limitation in mind there are related methods

- Clustering
 - find groups of examples with common features
 - K-means
 - PCA, Recommender systems
 - o Unsupervised Machine Learning: Preview of coming lecture!

Random Forest proximity method for missing data

There is an interesting method for using a Random Forest to impute missing data.

It is interesting because proximity is determined by both the features *and* the target so we are modeling

$$p(\mathbf{x}_f|\mathbf{y},\mathbf{x}_{ar{f}})$$

That is, it fits a model of \mathbf{x}_f given the features other than f and the target.

A test example with missing features doesn't have a target; we will see how this method adapts.

Missing feature in Training example

We will use a Random Forest to define a proximity measure.

Missing Value Imputation using Random Forest (https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1)

- Initialization
 - lacksquare Set $\hat{\mathbf{x}}_f^{(m')}$ to a "reasonable" guess
 - o Continuous: mean, median
 - o Categorical: most frequent
 - lacktriangledown Create the initial Random Forest $F_{(0)}$

- Iteration *i*:
 - Define the proximity to example $\mathbf{x}^{(i)}$

$$\circ \ prox(\mathbf{x}^{(m')},\mathbf{x^{(i)}}) = \# ext{ of trees in } F_{(i-1)} ext{ with } \mathbf{x}^{(m')},$$

 $\mathbf{x^{(i)}}$ in same leaf Update imputed value $\hat{\mathbf{x}}_f^{(m')}$

$$\hat{\mathbf{x}}_f^{(m')} = \sum_{i=1}^m prox(\mathbf{x}^{(m')}, \mathbf{x^{(i)}}) \mathbf{x}_f^{(i)}$$

lacktriangle Create next Random Forest $F_{(i)}$

Iterate until convergence.

The authors suggest 4-6 iterations suffice.

Missing feature in Test example

Method similar to that for a missing feature in a Training example, once we deal with a crucial difference

• there is **no label** for the test example (that's what we're trying to predict)

Suppose the classification target
$$\mathbf{y} \in C$$
 (i.e., the possible labels) $C = \{c_k | 1 \leq k \leq |C|\}$

- For each $c \in C$:
 $\hat{\mathbf{x}}_{f,c}^{(m')}$ is the imputed value obtained from the above by assuming $\mathbf{y}^{(m')} = c$
 - that is, run the missing feature for training algorithm assuming label of $\mathbf{x}^{(m')}$ is c

We now have one imputed value $\hat{\mathbf{x}}_{f,c}^{(m')}$ and final Random Forest per class c.

Which one do we choose?

Observe that the c^{th} Random Forest *should* predict class c given input $\mathbf{x}^{(m')}$ since we set $\mathbf{y}^{(m')}=c$

So we choose the forest and imputed value $\hat{\mathbf{x}}_{f,c}^{(m')}$

• from the class c in which $\mathbf{x}^{(m')}$ is most often classified as being in class c.

Now casting

The field of economic forecasting encounters a problem similar to missing data

- many economic indices are combinations of sub-indices
 - sub-indices published at different frequencies
 - sub-indices published on different days

The "total" index can't be computed until all sub-indices have been released.

So with respect to an "early" publication date, some sub-index data is missing.

Now-casting (a play on "forecasting") uses techniques to make early predictions of sub-index values

In some cases they use features z believed to be correlated with actual features x.

This is an example of using the equation

$$\mathbf{x}_f = \Theta^T \mathbf{z}$$

where ${f z}$ are not features in ${f x}_{ar f}$

Some uses:

- derive higher frequency values for low frequency data (annual GDP, monthly Manufacturing)
 - National Manufacturing employment may be highly correlated to Employment in a few states
 - state-level employment may be published
 - o at higher frequency
 - o earlier date
- Many of these low frequency features are *composites* of other features
 - some elements of the composite are released before others
 - a particularly influential component may be predictive of the composite

Now-casting site (https://www.now-casting.com/home)

Missing data imputation in sklearn

- <u>SimpleImputer, IterativeImputer (https://scikitlearn.org/stable/modules/impute.html)</u>
- <u>IterativeImputer</u> with different regression estimators (https://scikitlearn.org/stable/auto_examples/impute/plot_iterative_imputer_variants_compariso

```
In [7]: print("Done")
    Done
```