PSY515: Module 1 Lecture

Welcome to Quant 1 (aka Statistical Methods)

Goals of this course

- Understand the basic principles that underlie the type of statistical models that are widely used in Cognitive Science
- Learn how to select, implement, and interpret these statistical models
- Communicate the results of statistical analyses (through text and visualization)
- Incorporate best practices for open and reproducible research

Format

- Learn
 - Lectures
 - Labs
 - Readings
- Practice
 - Weekly Quizzes
 - Homework

- Demonstrate Mastery
 - Final Project
- Get Support
 - Journal Entries

My Goals

- Prepare you to both understand statistical analyses in the research you read and produce statistical analyses yourselves
- Create situations in which you can practice these skills that will help you throughout your career
- Challenge you to learn new things in a supportive environment
- Work together with you to make this a high-quality learning experience
- Give everyone an A

When are office hours?

You tell me!

Factors to consider:

- Lab sessions (that will prepare you for the homework) are on Thursdays.
- Homework is due on Tuesdays.
- It seems like Friday or Monday would be optimal, but I know that folks might not be on campus.
- I can hold office hours in person and/or virtually on Mondays or virtually (only) on Fridays.

A Quick Note about Al

- The use of AI is **not permitted** in this course.
- Why?
- I would like you to develop a deep understanding of how to run and interpret statistical analyses. Using AI to automate coding and interpretation will not help you learn and understand these concepts. It would be a disservice to you.

Questions?

- Please read the rest of the syllabus on your own.
- For the rest of today:
 - Descriptive Statistics, Models, and Distributions

Why do we describe data?

- Find errors in data entry or collection
- Understand your data
- Explore descriptive research questions
- Overall, there's a lot to learn from descriptive statistics.

Distributions

A **distribution** is a description of the [relative] number of times a variable X will take each of its unique values.

▶ Code

Question:

If I know nothing about someone, for example a participant in the survey, but I had to guess their Happiness rating, what would be the *best* number to guess?

The Mean!

If I don't have any other information, then the best "model" of my dataset would be the mean or average observation.

Mean, μ

- The **mean** is the average. The population mean is represented by the Greek symbol μ .
- Example: a set of numbers is: 7, 5, 8, 4, 9, 3.

For a vector x with length N, the mean (μ) of x is:

$$\mu = \frac{\Sigma(x_i)}{N} = \frac{7+5+8+4+9+3}{6} = \frac{36}{6} = 6$$

Properties of the mean

Example: a set of numbers is: 7, 5, 8, 4, 9, 3. The mean of these numbers is 6.

- The mean can take a value not found in the dataset.
- Fulcrum of the data

The mean is the fulcrum of the data

Properties of the mean

Example: a set of numbers is: 7, 5, 8, 4, 9, 3. The mean of these numbers is 6.

- The mean can take a value not found in the dataset.
- Fulcrum of the data
- The mean is strongly influenced by outliers.
- Deviations from the mean sum to 0

It's important to remember that the mean of a population (or group) may not represent well some (or any) members of the population.

Example: André-François Raffray and the French apartment

Other measures of central tendency

- The **Mean** only one measure of central tendency
- Median the middle point of the data
 - e.g., in the set of numbers 7, 10, 8, 3, 9, 3, 12, the median number is 8.
 - You can see this if you write them in order: 3 3 7 8 9 10
 12
- Mode the number that most commonly occurs in the distribution.
 - e.g., in the set of numbers above, the mode is 3 because it occurs twice.

Center and spread

- Distributions are most often described by their **center** (mean/median) and **spread** (variance/standard deviation).
- Typically, these two parameters are used in common inferential techniques.
- The mean represents the average score in a distribution. A good measure of spread will tell us something about how the typical score deviates from the mean.
- Why can't we use the average deviation?

Sums of squares

Our solution is to square deviations.

```
1 x = c(7, 5, 8, 4, 9, 3)
2 mean(x)

[1] 6

1 (deviation = x - mean(x))

[1] 1 -1 2 -2 3 -3

1 deviation^2

[1] 1 1 4 4 9 9

1 sum(deviation^2)

[1] 28
```

The sum of squared deviations is referred to as the Sum of Squares (SS).

Variance

We calculate the average squared deviation: this is our variance, σ^2 :

```
1 sum((x - mean(x))^2)/length(x)
[1] 4.666667
```

Standard Deviation

Standard deviation σ is the square root of the variance.

```
1 sqrt(sum(deviation^2)/length(deviation))
[1] 2.160247
```

The standard deviation is more interpretable than the variance. It can be thought of as the average distance of scores from the mean.

Skew

Skewness characterizes symmetry of a distribution.

In general, when building statistical models, we must not forget that the aim is to understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, and so on, but always about the real world, not an abstract mathematical world: our models are not the reality. Hand (2014)

Kurtosis

Kurtosis characterizes tail-heaviness of a distribution.

The Normal Distribution

Characteristics of the normal distribution

- The mean and standard deviation are independent.
- The distribution is unimodal and symmetric.
- The area of under the curve between corresponding locations, in standard deviation units, is the same regardless of μ and σ .
 - For example, in a normal distribution, approximately 68% of the area under the curve falls between 1σ below the mean and 1σ above mean—for every normal curve (regardless of the value of the mean and standard deviation).

► Code

All of these distributions are normal and have an equivalent area (proportion) that falls between one standard deviation below and one above their respective means.

Code

The Empirical Rule

In a normal distribution:

- Approximately 68% of the data falls within one standard deviation of the mean.
- Approximately 95% of the data falls within two standard deviations of the mean.
- Approximately 99.7% of the data falls within three standard deviations of the mean.

The Empirical Rule

Questions?

