soluție problema marfa

Autor: profesor Szabó Zoltan – ISJ Mureş, Tg. Mureş

Problema se rezolvă cu programare dinamică.

Se observă că numărul de posibilități de transportare în ziua i depinde de configurațiile de transport existente în cele k-1 zile anterioare. (De exemplu dacă k=3 și în fiecare zi se transportă câte un dulap e șirul fibonacci dublu: 2, 4, 6, 10, 16, ...) în funcție de comenzile zilnice pe o săptămână, se obține următoarea recursivitate condiționată pentr k=3:

notăm cu ai comanda de pe ziua i, iar ci numărul de posibilități pentru primele i zile

i	a _i	condiții suplimentare	Ci
1	0		c ₁ = 1
	1		c ₁ = 2
	2		c ₁ = 1
2	0		c ₂ =c ₁ =1
	1		c ₂ =2c ₁ =4
	2		c ₂ =c ₁ =1
i≥3	0		C _i =C _{i-1}
	1	a _{i-1} =0 sau a _{i-2} =0	c _i =2c _{i-1}
		a _{i-1} =1 si a _{i-2} =1	C _i =C _{i-1} + C _{i-2}
		altfel	C _i =C _{i-1}
	2	a _{i-1} =1 sau a _{i-2} =1	C _i =C _{i-2}
		altfel	C _i =C _{i-1}

relațiile recursive pentru k=4 sunt mai complexe și rămâne sarcina voastră să le descoperiți.

- 1. Soluţia brută obţine 10 puncte (backtracking), însă ajută foarte mult la verificarea formulelor recursive.
- 2. O soluție recursivă are complexitate liniară O(z) și obține 60 de puncte.
- 3. Soluţie de 100 de puncte, complexitate O(n³log z)

Construim matricea caracteristică a recursivității, ţinând cont de faptul că formulele recursive se repet după n elemente. Matricea A o vom concepe astfel încât:

$$\begin{vmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{vmatrix} * \begin{vmatrix} c_1 \\ c_2 \\ c_n \end{vmatrix} = \begin{vmatrix} c_{n+1} \\ c_{n+2} \\ \dots \\ c_{2n} \end{vmatrix}$$

Observăm, că pentru o obține elementul șirului c de pe poziția z, trebuie să calculăm matricea A la puterea (z-1)/n, calculând elementul de pe poziția (z-1)%n + 1.