Relazioni

Proprietà di relazioni
Risultati di Dualità
Teorema di caratterizzazione
Definizione di Funzione
Composizione di funzioni
Chiusura per composizione
Funzioni parziali, iniettive e surgettive
Biiezioni

Proprietà di relazioni

- Relazione Totale: per tutti gli $a \in A$ esiste **ALMENO** un $b \in B$ tale che $(a,b) \in R$
- Relazione Surgettiva: per tutti i $b \in B$ esiste **ALMENO** un $a \in A$ tale che $(a,b) \in R$
- Relazione Univalente: per tutti gli $a \in A$ esiste **AL PIU'** un $b \in B$ tale che $(a,b) \in R$
- Relazione Iniettiva: per tutti i $b \in B$ esiste **ALMENO** un $a \in A$ tale che $(a,b) \in R$

Risultati di Dualità

- R è totale se e solo se $R^{op}:B\leftrightarrow A$ è surgettiva e viceversa
- R è univalente se e solo se $R^{op}:B\leftrightarrow A$ è iniettiva e viceversa

Teorema di caratterizzazione

Per tutti gli insiemi A e B, per tutte le relazioni $R:A\leftrightarrow B$

- R è **totale** se e solo se $Id_A \subseteq R; R^{op}$
- R è surgettiva se e solo se $Id_B \subseteq R^{op}; R$
- R è univalente se e solo se $R^{op}; R \subseteq Id_B$

Relazioni 1

• R è iniettiva se e solo se $R; R^{op} \subseteq Id_A$

Definizione di Funzione

Dati due insiemi A e B, una relazione $R:A\leftrightarrow B$ è funzione se è totale e univalente

$$orall a \in A, ext{esiste esattamente un } b \in B ext{ tale che } (a,b) \in R$$

Una funzione la scriviamo f:A o B specificando che f(a)=b con $a\in A,b\in B$

Composizione di funzioni

Per tutti gli insiemi A,B,C e tutte le funzioni f:A o B e g:B o C

Chiusura per composizione

Per tutti gli insiemi A,B,C e tutte le relazioni $R:A\leftrightarrow B$ e $S:B\leftrightarrow C$ vale che:

- Se R e S sono **totali**, allora R;S è totale
- Se R e S sono **univalenti,** allora R;S è univalente
- Se R e S sono **surgettive,** allora R;S è surgettiva
- Se R e S sono **iniettive,** allora R;S è iniettiva

Funzioni parziali, iniettive e surgettive

• Le funzioni sono totali e univalenti

Le funzioni surgettive sono anche surgettive

$$f:A \rightarrow B, \forall b \in B$$
 esiste almeno un $a \in A$

• Le funzioni iniettive sono anche iniettive

$$f:A o B, orall x,y\in A, x
eq y o f(x)
eq f(y)$$

• Le funzioni parziali sono solo univalenti

f:A o B ma esistono $a\in A$ che non vanno in B

Bijezioni

Dati due insiemi A e B, una relazione $R:A\leftrightarrow B$ è una bilezione se è totale, univalente, surgettiva e iniettiva

$$\forall a \in A \text{ esiste esattamente un } b \in B \text{ tale che } (a,b) \in R$$

 $\forall b \in B \text{ esiste esattamente un } a \in A \text{ tale che } (a,b) \in R$

Per tutti gli insiemi A,B,C e biiezioni i:A o B,j:B o C vale che:

- $ullet id_A:A o A$ è una bilezione
- i; j è una bilezione
- $ullet i^{op}$ è una biiezione

R è una biiezione se e solo se $Id_A=R;R^{op}$ e $Id_b=R^{op};R$

Data $R:A\leftrightarrow B$, una relazione $S:B\leftrightarrow A$ è **l'inversa** di R se $Id_A=R;S$ e $Id_B=S;R$

 $R:A\leftrightarrow B$ è **invertibile** se esiste almeno una relazione inversa

R è bijettiva **solo se** è invertibile

Se esiste una biiezione i:A o B scriviamo $A\cong B$