2017-11-28

- For any α , projections of b onto αa are identical.
- Given m linear equations of one variable $a_i x = b_i$, for i = 1, ..., m. Let $\epsilon^2 = \sum (a_i \bar{x} b_i)^2$.
 - If there exists a solution x s.t. $(a_1, \ldots, a_m)x = (b_1, \ldots, b_m)$, then $\epsilon = 0$.
 - Otherwise, there is an approximation solution \bar{x} s.t. ϵ^2 is minimized.
 - Let $\frac{de^2}{d\bar{x}} = \sum 2a_i(a_i\bar{x} b_i) = 0$. Then, $\bar{x} = \frac{a^Tb}{a^Ta}$.
 - \bar{x} is the coefficient s.t. $\bar{x}a$ is the projection of b onto a.
- Given *m* linear equations of *n* variables $A_{m \times n} x = b_{m \times 1}$, where m > n. Let $\epsilon^2 = \sum (a_i \bar{x} b_i)^2$, where a_i 's are the rows of *A* for i = 1, ..., m.
 - The error vector $\epsilon = A\bar{x} b$ is perpendicular to every column of A, i.e., $A^{\top}(A\bar{x} b) = 0$. Then, $A^{\top}Ax = A^{\top}b$.
 - The sum of square error (SSE) $e^2 = ||A\overline{x} b||^2 = (A\overline{x} b)^{\mathsf{T}}(A\overline{x} b)$. Let $\frac{de^2}{d\overline{x}} = 2A^{\mathsf{T}}Ax 2A^{\mathsf{T}}b = 0$. Then, $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$.
- The **least square solution** to an inconsistent system Ax = b of m equations in n unknowns satisfies $A^{T}Ax = A^{T}b$, which is referred to as the **normal equations**.
- The properties of $A^{\mathsf{T}}A$:
 - Every entry of $A^{T}A$ is the inner product of the *i*-th column and *j*-th column of A.
 - Symmetric. $(A^{\mathsf{T}}A)^{\mathsf{T}} = A^{\mathsf{T}}A$.
 - $A^{\mathsf{T}}A$ has the same nullspace as A.
 - If Ax = 0, then $A^{T}Ax = 0$. Hence, $N(A) \subseteq N(A^{T}A)$.
 - If $A^{T}Ax = 0$, then $x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||^{2} = 0$ iff Ax = 0. Hence, $N(A^{T}A) \subseteq N(A)$.
 - Positive semidefinite.
- Lemma: If $A_{m \times n}$ has independent columns, then $A^{\mathsf{T}}A$ is nonsingular.
 - Rank(A) = n and $N(A) = \{0\}$. Hence, $N(A^{T}A) = \{0\}$.
- The least square solution to the inconsistent system Ax = b is the solution of $A^{T}Ax = A^{T}b$.
 - If the columns of A are linearly independent, then $A^{T}A$ is invertible. Hence, $x = (A^{T}A)^{-1}A^{T}b$.
 - Otherwise, $A^{\mathsf{T}}A$ is singular and $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ has infinitely many solutions.
- The normal equation $A^{T}Ax = A^{T}b$ is always consistent.
- Let A be an $m \times n$ matrix over \mathbb{R} . Let $b \notin C(A)$. The closest point to b in C(A) is $p = A(A^{T}A)^{-1}A^{T}b$. Let $P = A(A^{T}A)^{-1}A^{T}$.
 - P is the projection matrix that projects any vectors onto C(A).
 - The column space of P is identical to the column space of A, i.e., C(P) = C(A).
- An **orthogonal matrix** Q is a square matrix satisfying $Q^{\mathsf{T}}Q = I$, i.e., the columns of Q are orthonormal and $Q^{-1} = Q^{\mathsf{T}}$.
- Examples of orthogonal matrix: rotation matrix, permutation matrix.
- Proposition: Q preserves (1) length. $\forall x, \|Qx\| = \|x\|$. (2) inner product. $\forall x, y, \langle Qx, Qy \rangle = \langle x, y \rangle$. (3) angle. $\forall x, y, \angle(x, y) = \angle(Qx, Qy)$.