Exam Statistics

Bachelor Econometrics and Operations Research Bachelor Econometrics and Data Science Faculty of Economics and Business Administration Wednesday, March 30, 2022

Exam: Statistics

Code: E_EOR1_STAT
Coordinator: M.H.C. Nientker
Date: March 30, 2022

Time: 12:15 Duration: 2 hours

Calculator: Not allowed Graphical calculator: Not allowed

Number of questions: 4
Type of questions: Open
Answer in: English

Credit score: 88 credits counts for a 10

Grades: Made public within 10 working days

Number of pages: 2, including front page

- Read the entire exam carefully before you start answering the questions.
- Be clear and concise in your statements, but justify every step in your derivations.
- The questions should be handed back at the end of the exam. Do not take it home.

Good luck!

Question 1. Let X_1, \ldots, X_n be an independent and identically distributed sequence of random variables from a population in $\{g_{\mu} \mid \mu \in \mathbb{R}\}$, where

$$g_{\mu}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}, \quad x > 0.$$

Note that σ^2 is assumed to be known.

- (8 points) a. Show that the moment estimator $\hat{\mu}_{MOM}$ of μ_0 is equal to the sample average \overline{X} .
- (8 points) b. Calculate the mean squared error of $\hat{\mu}_{MOM}$.
- (8 points) c. Find a sufficient and complete statistic for μ_0 .
- (8 points) d. Find an UMVU estimator of μ_0^2 . Hint: start from \overline{X}^2 .

Question 2. Let X_1, \ldots, X_n be an independent and identically distributed sequence of random variables from a population in $\{g_\theta \mid \theta \in \Theta\}$, let W be an unbiased estimator for $\tau(\theta_0)$ and let T be a sufficient statistic for θ_0 .

- (8 points) a. Give the formal definition of sufficiency. What is the intuitive interpretation based on summarizing the data?
- (8 points) b. State the Rao-Blackwell theorem. Why do we need sufficiency for this result?

Question 3. Let X_1, \ldots, X_n be an independent and identically distributed sequence of random variables from a population in $\{g_{\lambda} \mid \lambda > 0\}$, where

$$g_{\lambda}(x) = \lambda e^{-\lambda x}, \qquad x > 0.$$

In this question you are allowed to use that $\mathbb{E}_{\lambda}X_1 = 1/\lambda$ and $\mathbb{V}\operatorname{ar}_{\lambda}X_1 = 1/\lambda^2$.

- (8 points) a. Show that $\hat{\lambda}_{ML} = 1/\overline{X}$ is the maximum likelihood estimator of λ_0 .
- (8 points) b. Show that \overline{X} is an UMVU estimator for $\tau(\lambda_0) = 1/\lambda_0$ using the Cramér-Rao lower bound.
- (8 points) c. Find an asymptotic distribution for $\hat{\lambda}_{ML}$ given the general result on the asymptotic distribution of maximum likelihood estimators. Make sure the asymptotic variance does not depend on λ_0 .

Question 4. Let X be Uniform(0,1) distributed, that is, it has pdf

$$g(x) = 1, \qquad 0 \le x \le 1.$$

(8 points) a. Show that the location scale family of g is $\{g_{(\mu,\sigma^2)} \mid \mu \in \mathbb{R}, \sigma^2 > 0\}$, where

$$g_{(\mu,\sigma^2)} = \frac{1}{\sigma}, \qquad \mu \le x \le \mu + \sigma.$$

(8 points) b. Use the factorization theorem to find a sufficient statistic T for (μ, σ^2) . Note that the domain of $g_{(\mu,\sigma^2)}$ depends on the parameters μ and σ^2 .