Chapter 1

- Chapter 1
 - Introduction
 - Stress
 - Normal Stress
 - Tangential Stress
 - Fluid
 - 1-1 The No-Slip Condition
 - Definition
 - 1-2 System and Control Volume
 - Definition
 - Classifications
 - Closed System
 - Open System

Introduction

Stress

Stress is defined as the force per unit area

Normal Stress

$$\sigma = \frac{\mathrm{d}F_n}{\mathrm{d}A}$$

In a fluid at rest, the **normal stress** is called **pressure P**

Tangential Stress

$$\tau = \frac{\mathrm{d}F_t}{\mathrm{d}A}$$

Fluid

A substance in the liquid or gas phase is referred to as a fluid

A fluid **deforms continuously** under the influence of a shear stress, no matter how small and approaches a certain rate of strain

1-1 The No-Slip Condition

Definition

A fluid in direct contact with a solid "sticks" to the surface due to viscous effects

The fluid property responsible for the no-slip condition and the development of the boundary layer is viscosity

1-2 System and Control Volume

Definition

A **system** is defined as a quantity of matter or a region in space chosen for study

The mass or region outside the system is called the **surroundings**

The real or imaginary surface that separates the system from its surroundings is called the **boundary**

Classifications

Closed System

a system consists of a fixed amount of mass and no mass can cross its boundary

Open System

a system where both mass and energy can cross the boundary of a control volume