

《摸鱼学导论》课程论文

题	目:	论摸鱼中的工程创新前沿
作	者:	摸个鱼先
年	级:	1
专	<u> </u>	摸鱼科学与工程
项目制名称:		摸鱼项目
指导教师:		xxx 教授

摸鱼大学

2024年11月

论摸鱼中的工程创新前沿

摘 要

your abstract here.

1 绪论

这里概括性用一段话介绍一下本研究的重要性与意义。

1.1 研究背景与意义

NeRF 是自 2019 年兴起的基于神经隐式表示的新型视觉合成方法 [1]。

1.2 研究内容

如下流程图 1所示:

图 1: 本文研究工作流程图

2 公式与图片

请用 xelatex 编译,推荐使用 overleaf。本模板参考了: PhilFan's Notebook-Latex 备忘录的相关模板,在此致以感谢!

2.1 公式

具体的,光线的关系如下式(1):

$$\mathbf{C}(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_m}^{t} \sigma(\mathbf{r}(s))ds\right). \tag{1}$$

2.2 图片

而光线的关系图则如下图(2)所示:

图 2: zju_char[1]

参考文献

[1] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, August 2020. arXiv:2003.08934 [cs].