SI 3: Midterm 1 Review

1 Sets

Consider the following sets:

- $A:\{1,2,3,4,5\}$
- $B: \{2, 3, 4\}$
- $C: \{\{2\}, \{3\}, \{4\}\}$
- $D: \{Red, Green, Blue\}$

Define the Following:

- 1. $B \times D$
- 2. $D \times B$
- 3. $\mathcal{P}(B)$

Answer True or False for the following:

- 1. $B \in A$
- $2. \ B \subseteq A$
- 3. $C \subseteq A$
- $4. A \subseteq A$
- 5. $A \in A$
- 6. $2 \in C$
- 7. $A \in \mathbb{N}$
- 8. $A \subseteq \mathbb{N}$
- 9. $C \subseteq \mathbb{N}$
- 10. $\mathcal{P}(B) \in B$
- 11. $B \in \mathcal{P}(B)$
- 12. $B \subseteq \mathcal{P}(B)$
- 13. $\emptyset \in B$
- 14. $\emptyset \subseteq B$
- 15. $\emptyset \in \mathcal{P}(B)$
- 16. $\emptyset \subseteq \mathcal{P}(B)$

2 Functions

2.1 Identifying Co-Domains, Domains, and basic function properties

Identify Domain and Co-Domain

1. $f: A \rightarrow B$

2.
$$f(x) = x^2$$

3.
$$f(x) = \sum_{k=1}^{x} k$$

4.
$$f \circ g$$
; $f: B \to C$; $g: A \to B$

Find a function with the following properites:

1. $f: \mathbb{N} \to \mathbb{R}$, 1-1, not onto

2. $f: \mathbb{R} \to \mathbb{N}$, onto, not 1-1

3. $f: \mathbb{N} \to \{True, False\}$, not 1-1, onto

4. $\mathbb{N} \to \{\bullet\}$, not 1-1, onto

Is is possible to make $f(x) = \sqrt{x}$ a total function (i.e. a function defined across its entire Domain)? If so, how?

2.2 Using Function Definitions

$$f(m^{\hat{}}) = (m^{\hat{}}) + f(m)$$
$$f(0) = 0$$

Find f(5), show steps

You have seen this function before, what does it usually look like?

3 Inductive Proofs

3.1 Fill-in-Blanks

Prove:
$$m(n+p) = m \cdot n + m \cdot p$$

Proof.
$$\bullet [Basis] : 0(n+p) = 0 \cdot n + 0 \cdot p$$

$$0 \cdot n + 0 \cdot p = 0 + 0$$
$$= 0$$
$$= 0(n + p)$$

0 is an annihilator

0 is an annihilator

$$\bullet[IH]: \exists k \ s.t. \ k(n+p) = k \cdot n + k \cdot p$$

$$\bullet[IS]$$
: We need to show that _____

$$(k^{\curvearrowright})(n+p) = (n+p) + k(n+p)$$

$$= \underline{\qquad \qquad }$$

$$= n + k \cdot n + p + k \cdot p$$

$$= (k^{\curvearrowright})n + (k^{\curvearrowright})p$$

Definition of Multiplication

ΙH

Commutativity of Addition

3.2 Writing Proofs

Prove:
$$\sum_{i=0}^{n} 4^i = \frac{4^{n+1}-1}{3}$$

$$\forall n \in \{x \in \mathbb{N} | x > 0\}$$