

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF MATHEMATICS & STATISTICS

MODULE CODE: MA4702 SEMESTER: Annual Repeats 08/09

MODULE TITLE: Technological Mathematics 2 DURATION OF EXAM: 2.5 hours

LECTURER: Mr J. O'Shea GRADING SCHEME:

Examination: 100%

EXTERNAL EXAMINER:

INSTRUCTIONS TO CANDIDATES

Answer 5 questions, one each from sections A, B, C, D, and any one other question.

Mathematics tables may be used.

University of Limerick approved calculators may be used

SECTION A				
1 (a)	(i) (ii) (iii)	$f(x) = 3 - x$, find the composite function $f \circ f(x)$. Prove that the function $g(x) = x \sin(x)$ is even. Find $f^{-1}(x)$ the inverse of the function $f(x) = \log_e(x+3)$.	10	
1 (b)	(i) (ii)	Evaluate $tan^{-1}(4)$. Sketch the graph of $sin^{-1}(x)$ (The principal value of the inverse sine curve) indicating clearly the domain and range of the function.	5	
1 (c)		Using their definition in terms of exponentials, prove the following hyperbolic identity: $\cosh^2 x = \frac{1}{2} (1 + \cosh 2x).$	5	
2		Consider the function $y = f(x) = x^4 - 4x^3$ (i) Find the x and y intercepts of $f(x)$. (ii) Find the critical points of $f(x)$ and classify them. (iii) Find the two points of inflection. (iv) Find the x values for which $y = f(x)$ is concave up/down. (v) Determine the behaviour of y as $x \to +\infty$ and as $x \to -\infty$.	2 6 3 2	
		(vi) Sketch the graph of $y = f(x)$ illustrating the features of the curve obtained in parts (i-v).	5	

Marks

SECTION B

- 3 (a) Evaluate the following definite and indefinite integrals
 - (i) $\int 3x^2 \cos(x^3 2) dx$.
 - (ii) $\int_{3}^{4} \frac{2x-6}{x^2-6x+10} \ dx.$
 - (iii) Use integration by parts to find $\int x \cos x dx$. 15
 - (b) An object moves in a straight line with velocity $v(t) = \sin 4t$. It starts from position s = 0 at time t = 0. Find the distance travelled at all times $t \ge 0$.

- **4 (a)** Find the area bounded by the curve $y = x^2 3x + 2$ and the line y = x + 2.
 - (b) Use Simpson's rule with 4 equal subintervals to find an approximation for $\int_{1}^{2} \sqrt{1+x^{3}} dx.$

 $z = \sinh (4x + 3y - 5).$

Marks **SECTION C** 5 (a) Find the sum of the telescoping series $\sum_{n=1}^{\infty} \frac{2}{(2n-1)(2n+1)} .$ 5 **(b)** (i) Prove that the series $\sum_{n=1}^{\infty} \frac{n+4}{3n+5}$ is divergent. Test the following series for convergence (ii) $\sum_{n=1}^{\infty} \frac{3n^2 - 1}{n^3 + 4n}$ (iii) $\sum_{n=1}^{\infty} \frac{4^n}{(n+1)!} .$ 15 Find the Maclaurin series of e^{2x} up to and including the term containing x^3 . 6 (a) Use your answer to approximate $e^{0.4}$. 10 Find all the first and second partial derivatives of the function **(b)**

10

SECTION D			
7.	Write down Maple 12 commands which implement the following: (Do not attempt to find the answers or Maple 12 output)		
(a)	Evaluate $\left(\frac{7^3 - \sqrt{21} + 312}{\sqrt{7}}\right)^4$ to 20 significant digits.	3	
(b)	Substitute $x = \frac{4}{5}$ into $x^3 \ln x$.	2	
(c)	Find the factors of the cubic polynomial		
	$3x^3 - 12x^2 - 100 + 44x$.	3	
(d)	Plot $y = \cos^{-1} x$ for $-3 \le x \le 4$.	3	
(e)	Find the first derivative of $\frac{6\sin^2 x}{8 + e^{2x}}$ with respect to x and simplify the answer.	3	
(f)	Find the second derivative of $\frac{6\sin^2 x}{8 + e^{2x}}$ with respect to x and simplify the answer.	3	
(g)	Evaluate the definite integral $\int_{-1}^{4} \cosh x \tan x dx$.	3	

SECTION D			
8.	The output of a Maple 12 session, investigating the properties of some function $y = f(x)$ is represented on the next page .		
(a)	Based on this output		
	(i)	Find the x and y intercepts of $f(x)$ (if any).	
	(ii)	Find the x and y coordinates of all maxima and minima of $f(x)$ (if any).	
	(iii)	Find the x and y coordinates of all points of inflection of $f(x)$.	
	(iv)	Discuss the behaviour of $f(x)$ as $x \to +\infty$ and as $x \to -\infty$.	15
(b)		on the information given in the output, plot $y = f(x)$ in the in $-3 \le x \le 3$, labelling the parts found in (a).	5

Maple 12 Output:

$$solve(y = 0);$$

$$subs(x=0,y);$$

$$y1 := diff(y, x) :$$

 $solve(y1 = 0);$

$$subs(x = 2.5774, y);$$

$$subs(x = 1.4226, y);$$

$$y2 := diff(y1, x)$$
:

$$evalf(subs(x = 2.5774, y2));$$

evalf
$$(subs(x = 1.4226, y2));$$

$$evalf(solve(y2 = 0));$$

$$subs(x = 2, y);$$

evalf (
$$subs(x = 10000, y)$$
);

evalf (*subs* (
$$x = -10000, y$$
));

1, 2, 3

-6

$$2 + \frac{1}{3}\sqrt{3}, 2 - \frac{1}{3}\sqrt{3}$$

2

0

$$9.99400110010^{11}$$

 -1.00060011010^{12}