Raport 6

Dane testowe do kompresji

W tabelach zamieszczono jedynie pierwsze 5 elementów, aby nie zajmować zbyt dużo miejsca.

Dane testowe do kompresji, algorytm RLE

Dane	Dane	Dane	Rozmiar	Rozmiar	Czy
oryginaln	skompresowa	zdekompresowa	oryginaln	skompresowan	oryginał =
e	ne	ne	у	у	dekompresj
					a
[1, 1, 1, 1, 2]	[4, 1, 1, 2, 4]	[1, 1, 1, 1, 2]	112	156	True
[1, 2, 3, 1, 2]	[1, 1, 1, 2, 1]	[1, 2, 3, 1, 2]	72	220	True
[5, 1, 5, 1, 5]	[1, 5, 1, 1, 1]	[5, 1, 5, 1, 5]	104	220	True
[-1, -1, -1, -5, -5]	[3, -1, 2, -5, 1]	[-1, -1, -1, -5, -5]	96	204	True
[0.0, 0.0, 0.0, 0.0, 0.0]	[520, 0]	[0, 0, 0, 0, 0]	4160	128	True
[0, 1, 2, 3, 4]	[1, 0, 1, 1, 1]	[0, 1, 2, 3, 4]	4168	8412	True
[1.0, 0.0, 0.0, 0.0, 0.0]	[1, 1, 7, 0, 1]	[1, 0, 0, 0, 0]	392	292	True
[1.0, 1.0, 1.0, 0.0, 0.0]	[3, 1, 21, 0, 3]	[1, 1, 1, 0, 0]	1176	328	True
[1.0, 1.0, 1.0, 1.0, 1.0]	[10, 1]	[1, 1, 1, 1, 1]	80	168	True

Dane testowe do kompresji, algorytm ByteRun

	I		ı		
Dane	Dane	Dane	Rozmiar	Rozmiar	Czy
oryginaln	skompresowa	zdekompresowa	oryginaln	skompresowan	oryginał =
e	ne	ne	у	у	dekompresj
					a
[1, 1, 1, 1,	[-3, 1, 0, 2, -3]	[1, 1, 1, 1, 2]	112	156	True
2]					
[1, 2, 3, 1,	[8, 1, 2, 3, 1]	[1, 2, 3, 1, 2]	72	156	True
2]					
[5, 1, 5, 1,	[3, 5, 1, 5, 1]	[5, 1, 5, 1, 5]	104	196	True
5]					

[-1, -1, -1,	[-2, -1, -1, -5,	[-1, -1, -1, -5, -5]	96	180	True
-5, -5]	3]				
[0.0, 0.0,	[-127, 0, -127,	[0, 0, 0, 0, 0]	4160	192	True
0.0, 0.0,	0, -127]				
0.0]	_				
[0, 1, 2, 3,	[127, 0, 1, 2,	[0, 1, 2, 3, 4]	4168	4284	True
4]	3]				
[1.0, 0.0,	[0, 1, -6, 0, 0]	[1, 0, 0, 0, 0]	392	292	True
0.0, 0.0,					
0.0]					
[1.0, 1.0,	[-2, 1, -20, 0, -	[1, 1, 1, 0, 0]	1176	328	True
1.0, 0.0,	2]				
0.0]	_				
[1.0, 1.0,	[-9, 1]	[1, 1, 1, 1, 1]	80	168	True
1.0, 1.0,					
1.0]					

Obrazy do kompresji

Job title	The formal title of the position
Reports to	The title of the position that the job incumbent reports to

Job purpose

Provide a brief description of the general nature of the position; an overview of why the job exists; and what the job is to accomplish.

The job purpose is usually no more than four sentences long

Duties and responsibilities

List the primary job duties and responsibilities using headings and then give examples of the types of activities under each heading. Using headings and giving examples of the types of activities to be done allows you to develop a flexible job description that encourages employee to 'work outside the box' and within reason, discourages "that's not my job".

- Identify between three and eight primary duties and responsibilities for the position
- · List the primary duties and responsibilities in order of importance
- · Begin each statement with an action verb
- · Use the present tense of verbs
- Use gender neutral language such as s/he
- Use generic language such a photocopy instead of Xerox
- Where appropriate use qualifiers to clarify the task where, when, why or how often – for example instead of "greet visitor to the office" use "greet visitors to the office in a professional and friendly manner"
- Avoid words that are open to interpretation for example instead of "handle incoming mail" use "sort and distribute incoming mail"

Qualifications

State the minimum qualifications required to successfully perform the job. These are the qualifications that are necessary for someone to be considered for the position.

All qualifications must comply with provincial human rights legislation.

Qualifications include:

- Education
- · Specialized knowledge
- Skills
- Abilities

Nr zdję cia	Rozmi ar orygin alny	Rozmiar skompres owany RLE	Rozmiar skompres owany ByteRun	Stopień kompresji RLE	Stopień kompresji ByteRun	Czy orygina ł = dekom presja RLE	Czy orygina ł = dekom presja ByteRu n
Obr	18681	1130966	6735500	1.651825676	2.773602553	True	True
az 1	600	8		9341062	6337316		
Obr	15364	3000613	1556383	0.512055335	0.987211636	True	True
az 2	800	2	6	8893443	0002765		
Obr	11788	1943604	2032004	6.065433082	5.801563382	True	True
az 3	800			047577	749246		

Skompresowane wektory są przechowywane w klasie CompressedData, która zawiera: Skompresowaną tablice, informacje o oryginalnym kształcie I informacje o rozmiarze całego obiektu, czyli rozmiaru tablicy + rozmiaru informacji o kształcie.

Porównanie macierzy przed I po kompresji w celu sprawdzenia, czy została uzyskana oryginalna macierz, wykonywane jest poprzez funkcję

np.array_equal()

Obserwacje I wnioski

Obrazy proste, o ograniczonej liczbie kolorów, w których te same barwy często występują obok siebie, są skutecznie kompresowane przy użyciu algorytmów opracowanych podczas zajęć laboratoryjnych. Jednak w przypadku zastosowanego kolorowego obrazu, rozmiar pliku po kompresji okazał się większy niż rozmiar oryginału — i to dla obu badanych algorytmów. Warto też dodać, że dla niektórych danych testowych sporą różnicę zrobiło przechowywanie informacji o oryginalnym kształcie danych w tej samej klasie. Choć sam rozmiar danych po kompresji jest mniejszy, tak rozmiar całkowitej paczki danych spowodował że dane testowe zajmują więcej miejsca niż zajmowały przed kompresją.

Wynika z tego, że zarówno algorytm RLE, jak i ByteRun, sprawdzają się dobrze w przypadku danych, w których często powtarzają się identyczne elementy znajdujące się w bezpośrednim sąsiedztwie. Gdy natomiast dane są zróżnicowane lub mimo niewielkiej różnorodności te same wartości nie pojawiają się obok siebie, algorytmy te nie tylko zawodzą w zmniejszaniu rozmiaru, ale wręcz mogą prowadzić do jego zwiększenia.