10 A student investigates how the time taken for a ball to roll down a slope changes with the distance from the bottom of the slope.

This is the student's method.

- place a ball on the slope 10 cm from the bottom of the slope
- release the ball and start a stopwatch
- stop the stopwatch when the ball arrives at the bottom of the slope
- record the time taken for the ball to roll down the slope
- repeat for different distances from the bottom of the slope
- (a) Complete the table by placing a tick (\checkmark) to show which variables are the independent, dependent and control variables in this investigation.

(4)

	Independent	Dependent	Control
Surface of slope			
Angle of slope			
Distance travelled			
Time taken			

(b) The table shows the student's results.

Distance travelled in cm	Time taken in s	
10	0.41	
20	0.58	
30	0.71	
40	0.82	
50	0.91	

(i) Plot the student's data on the grid.

(1)

(ii) Draw a best fit curve.

(1)

(iii) The student concludes that the results obey this relationship

 $distance \div (time^2) = constant$

Use the student's data to deduce whether the student's results support this conclusion.

.....

(Total for Question 10 = 10 marks)

(4)