STA290Winter 2014

 $Selected\ presentation\ materials$

Contents

1	Orthogonal Projections for Fixed Vectors	3
	$\cdot 2/13/14$	
2	Projections for Gaussian Random Vectors	Ę
	$\cdot \ 2/13/14$	

Chapter 1

Orthogonal Projections for Fixed Vectors

For any two fixed vectors z_1, z_2 that are of equal dimension,

$$\langle z_1, z_2 \rangle = z_1 \cdot z_2 = z_1^T z_2$$

Suppose M is an m-dimensional linear space that is a subset of \mathbb{R}^d . Consequently, define M^{\perp} as the orthogonal compliment of M that has dimension d-m which can be defined with ϕ_k as mutually orthogonal vectors for k=1,...,d such that

$$\begin{split} M &= span\{\phi_1,...,\phi_m\} \\ M^\perp &= span\{\phi_{m+1},...,\phi_d\} \end{split}$$

Any vector $z \in \mathbb{R}^d$ can be uniquely represented as $x_1 + x_2 = z$ where $x_1 \in M$ and $x_2 \in M^{\perp}$, which is to say

$$M \oplus M^{\perp} = \mathbb{R}^d$$

For any $y \in \mathbb{R}^d$ notice that

$$y = \sum_{k=1}^{a} \langle y, \phi_k \rangle \phi_k$$

$$||y||^2 = \langle y, y \rangle = \sum_{k=1}^d \langle y, \phi_k \rangle^2$$

and the projection of y onto M is defined as $P_M y = \operatorname{argmin}_{w \in M} ||w - y||^2$, which can be expressed as

$$P_{M}y = \sum_{k=1}^{m} \langle y, \phi_k \rangle \phi_k$$
(1.1)

The following relation holds for the space M and its orthogonal compliment M^{\perp}

$$P_M y \perp P_{M^{\perp}} y$$
 i.e. $P_M y \perp (y - P_M y)$

Chapter 2

Projections for Gaussian Random Vectors

Assume a Gaussian setting where we consider Y a dimension $d \times 1$ vector of values and U as an orthogonal "rotation" matrix of dimension $d \times d$, where $I = U^T U$.

$$Y \sim N\left(0, \sigma^2 I_d\right) \quad \Rightarrow \quad UY \sim N\left(0, \sigma^2 I_d\right)$$

Several consequential results are expressed from the properties of fixed vectors with the orthogonal $\phi_1, ..., \phi_d$ representation where $M = span\{\phi_1, ..., \phi_m\}$.

$$\left(\begin{array}{c} \langle Y, \phi_1 \rangle \\ \vdots \\ \langle Y, \phi_d \rangle \end{array}\right) \sim N(0, \sigma^2 I_d) \tag{2.1}$$

$$||P_M Y||^2 = \sum_{k=1}^m \langle Y, \phi_k \rangle^2 \quad \sim \quad \sigma^2 \chi_m^2$$
(2.2)

$$P_M Y$$
 is independent of $(Y - P_M Y)$ (2.3)