

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2023

MARKS: 150

TIME: 3 hours

This question paper consists of 9 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

Copyright reserved Please turn over

1.1 Solve for x:

$$1.1.1 x^2 + x - 12 = 0 (3)$$

1.1.2
$$3x^2 - 2x = 6$$
 (answers correct to TWO decimal places) (4)

$$1.1.3 \sqrt{2x+1} = x-1 (4)$$

1.1.4
$$x^2 - 3 > 2x$$
 (4)

1.2 Solve for x and y simultaneously:

$$x + 2 = 2y$$
 and $\frac{1}{x} + \frac{1}{y} = 1$ (5)

1.3 Given: $2^{m+1} + 2^m = 3^{n+2} - 3^n$ where m and n are integers.

Determine the value of
$$m + n$$
. (4) [24]

- 2.1 Given the arithmetic series: $7 + 12 + 17 + \dots$
 - 2.1.1 Determine the value of T_{91} (3)
 - 2.1.2 Calculate S_{q_1} (2)
 - 2.1.3 Calculate the value of n for which $T_n = 517$ (3)
- 2.2 The following information is given about a quadratic number pattern:

$$T_1 = 3$$
, $T_2 - T_1 = 9$ and $T_3 - T_2 = 21$

- 2.2.1 Show that $T_5 = 111$ (2)
- 2.2.2 Show that the general term of the quadratic pattern is $T_n = 6n^2 9n + 6$ (3)
- 2.2.3 Show that the pattern is increasing for all $n \in \mathbb{N}$. (3) [16]

QUESTION 3

- 3.1 Given the geometric series: 3+6+12+... to *n* terms.
 - 3.1.1 Write down the general term of this series. (1)
 - 3.1.2 Calculate the value of k such that: $\sum_{p=1}^{k} \frac{3}{2} (2)^p = 98301$ (4)
- 3.2 A geometric sequence and an arithmetic sequence have the same first term.
 - The common ratio of the geometric sequence is $\frac{1}{3}$
 - The common difference of the arithmetic sequence is 3
 - The sum of 22 terms of the arithmetic sequence is 734 more than the sum to infinity of the geometric sequence.

Calculate the value of the first term. (5)
[10]

Sketched below is the graph of $f(x) = 2^x - 4$ for $x \in [-2; 4)$.

A and B are respectively the y- and x-intercepts of f.

- 4.1 Write down the equation of the asymptote of f. (1)
- 4.2 Determine the coordinates of B. (2)
- Determine the equation of k, a straight line passing through A and B in the form $k(x) = \dots$ (3)
- 4.4 Calculate the vertical distance between k and f at x = 1 (3)
- 4.5 Write down the equation of g if it is given that g(x) = f(x) + 4 (1)
- 4.6 Write down the domain of g^{-1} . (2)
- 4.7 Write down the equation of g^{-1} in the form y = ... (2) [14]

The graphs of $f(x) = -\frac{1}{2}(x-1)^2 + 8$ and $g(x) = \frac{d}{x}$ are drawn below. A point of intersection of f and g is g, the turning point of g. The graph g has g-intercepts at g-intercept at g

- 5.1 Write down the coordinates of the turning point of f. (2)
- 5.2 Calculate the coordinates of C. (2)
- 5.3 Calculate the value of d. (1)
- 5.4 Write down the range of g. (1)
- 5.5 For which values of x will $f(x).g(x) \le 0$? (3)
- 5.6 Calculate the values of k so that h(x) = -2x + k will not intersect the graph of g. (5)
- 5.7 h is a tangent to g at R, a point in the first quadrant. Calculate t such that y = f(x) + t intersects g at R. (4)

[18]

(4)

(5)

[16]

OUESTION 6

- Patrick deposited an amount of R18 500 into an account earning r% interest p.a., compounded monthly. After 6 months, his balance was R19 319,48.
 - 6.1.1 Calculate the value of r. (3)
 - 6.1.2 Calculate the effective interest rate. (2)
- Kuda bought a laptop for R10 000 on 31 January 2019. He will replace it with a new one in 5 years' time on 31 January 2024.
 - 6.2.1 The value of the old laptop depreciates annually at a rate of 20% p.a. according to the straight-line method. After how many years will the laptop have a value of R0? (2)
 - Kuda will buy a laptop that costs R20 000. In order to cover the cost price, he made his first monthly deposit into a savings account on 28 February 2019. He will make his 60th monthly deposit on 31 January 2024. The savings account pays interest at 8,7% p.a., compounded monthly. Calculate Kuda's monthly deposit into this account.
- Tino wins a jackpot of R1 600 000. He invests all of his winnings in a fund that earns interest of 11,2% p.a., compounded monthly. He withdraws R20 000 from the fund at the end of each month. His first withdrawal is exactly 1 month after his initial investment. How many withdrawals of R20 000 will Tino be able to make from this fund?

QUESTION 7

- 7.1 Determine f'(x) from first principles if $f(x) = -4x^2$ (5)
- 7.2 Determine:

7.2.1
$$f'(x)$$
 if $f(x) = 2x^3 - 3x$ (2)

7.2.2
$$D_x \left(7.\sqrt[3]{x^2} + 2x^{-5}\right)$$
 (3)

7.3 For which values of x will the tangent to $f(x) = -2x^3 + 8x$ have a positive gradient? (3) [13]

Given: $f(x) = -x^3 + 6x^2 - 9x + 4 = (x-1)^2(-x+4)$

- 8.1 Determine the coordinates of the turning points of f. (4)
- 8.2 Draw a sketch graph of f. Clearly label all the intercepts with the axes and any turning points. (4)
- Use the graph to determine the value(s) of k for which $-x^3 + 6x^2 9x + 4 = k$ will have three real and unequal roots. (2)
- 8.4 The line g(x) = ax + b is the tangent to f at the point of inflection of f. Determine the equation of g.
- 8.5 Calculate the value of θ , the acute angle formed between g and the x-axis in the first quadrant.

QUESTION 9

The diagram below represents a printed poster. Rectangle ABCD is the part on which the text is printed. This shaded area ABCD is 432 cm^2 and AD = x cm. ABCD is 4 cm from the left and right edges of the page and 3 cm from the top and bottom of the page.

9.1 Show that the total area of the page is given by:

$$A(x) = \frac{3456}{x} + 6x + 480\tag{3}$$

9.2 Determine the value of x such that the total area of the page is a minimum. (3) [6]

(2)

[18]

10.1 A and B are independent events. $P(A) = \frac{1}{3}$ and $P(B) = \frac{3}{4}$

Determine:

10.1.1 P(A and B) (2)

10.1.2 P(at least ONE event occurs) (2)

The probability that it will snow on the Drakensberg Mountains in June is 5%.

- When it snows on the mountains, the probability that the minimum temperature in Central South Africa will drop below 0 °C is 72%.
- If it does not snow on the mountains, the probability that the minimum temperature in Central South Africa will drop below 0 °C is 35%.
- 10.2.1 Represent the given information on a tree diagram. Clearly indicate the probabilities associated with EACH branch.
- 10.2.2 Calculate the probability that the temperature in Central South Africa will NOT drop below 0 °C in June 2024. (3)
- Ten learners stand randomly in a line, one behind the other.
 - 10.3.1 In how many different ways can the ten learners stand in the line? (1)
 - 10.3.2 Calculate the probability that there will be 5 learners between the 2 youngest learners in the line.

TOTAL: 150

(3)

(4)

[15]

INFORMATION SHEET

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} ; r \neq 1 \qquad S_n = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[1+i)^n - 1}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha .\cos \beta + \cos \alpha .\sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha .\cos \beta - \cos \alpha .\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\cos \alpha$$

$$\sin(\alpha - \beta) = \sin \alpha .\cos \beta - \cos \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha .\cos \beta + \cos \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha .\cos \beta + \cos \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha .\cos \beta + \cos \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha .\cos \beta + \cos \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha .\cos \beta + \cos \alpha .\sin \beta$$

 $\hat{\mathbf{v}} = a + b\mathbf{x}$

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2023

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 17 pages. *Hierdie nasienriglyne bestaan uit 17 bladsye.*

NOTE: • If a candidate answers a question TWICE, only mark the FIRST attempt.

Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

QUESTION 1/VRAAG 1

1.1.1	$x^2 + x - 12 = 0$	
	(x-3)(x+4)=0	✓ factors/formula
	x = 3 or x = -4	✓answer
		✓answer (3)
1.1.2	$3x^{2} - 2x = 6$ $3x^{2} - 2x - 6 = 0$ $x = \frac{2 \pm \sqrt{(-2)^{2} - 4(3)(-6)}}{2(3)}$ $x = 1,79 \text{ or } x = -1,12$	✓ standard form ✓ substitution into correct formula ✓ answer ✓ answer (4)
1.1.3	$\sqrt{2x+1} = x-1$ $2x+1 = (x-1)^{2}$ $2x+1 = x^{2} - 2x + 1$ $x^{2} - 4x = 0$ $x(x-4) = 0$ $x = 0 \text{ or } x = 4$ $x \neq 0 \text{ or } x = 4$	✓ squaring both sides ✓ standard form ✓ both <i>x</i> -values ✓ valid answer (4)
1.1.4	$x^{2}-2x > 3$ $x^{2}-2x-3 > 0$ $(x-3)(x+1) > 0$ $CV's: x = -1; x = 3$	✓ standard form ✓ critical values/factors
	x < -1 or $x > 3$	✓✓ answer (4)

NSC/NSS – Marking Guidelines/Na	

1.2	$\frac{1}{-} + \frac{1}{-} = 1 \dots \tag{1}$	
	$\begin{bmatrix} -+1 & \dots & (1) \\ x & y & & & \end{bmatrix}$	
	$x + 2 = 2y \qquad \dots \tag{2}$	
	x = 2y - 2	$\checkmark x = 2y - 2$
	$\frac{1}{2y-2} + \frac{1}{y} = 1$	✓substitution
	$y + 2y - 2 = 2y^2 - 2y$	
	$2y^2 - 5y + 2 = 0$	✓ standard form
	(2y-1)(y-2) = 0	
	$y = \frac{1}{2} \text{or} y = 2$	✓y-values
	x = -1 or $x = 2$	$\checkmark x$ -values (5)
	OR/OF	OR/OF
	$\frac{1}{x} + \frac{1}{y} = 1 \dots \tag{1}$	
	$x + 2 = 2y \qquad \dots \qquad (2)$ $y = \frac{x}{2} + 1$	$\checkmark y = \frac{x}{2} + 1$
	$\frac{1}{x} + \frac{1}{\frac{x}{2} + 1} = 1$	✓substitution
	$\frac{1}{x} + \frac{2}{x+2} = 1$	
	$x + 2 + 2x = x^{2} + 2x$ $x^{2} - x - 2 = 0$	✓standard form
	(x+1)(x-2) = 0	
	x = -1 or $x = 2$	✓ x-values
	$y = \frac{1}{2} \text{or} y = 2$	\checkmark y-values (5)

1.3	$2^{m+1} + 2^m = 3^{n+2} - 3^n$ $2^m (2+1) = 3^n (3^2 - 1)$	✓ factors
	$2^{m}(3) = 3^{n}(8)$ $2^{m}(3) = 3^{n}(2^{3})$ $\therefore m = 3 \text{ and } n = 1$	$\checkmark 2^{m}(3) = 3^{n}(2^{3}) \text{ (same bases)}$ $\checkmark m = 3 \text{ and } n = 1$
	$\therefore m+n=4$	$\checkmark m + n = 4 \tag{4}$
	OR/OF	OR/OF
	$2^{m+1} + 2^m = 3^{n+2} - 3^n$ $2^m (2+1) = 3^n (3^2 - 1)$ $2^m (3) = 3^n (8)$	✓ factors
	$2^{m}(3) = 3^{n}(2^{3})$ $2^{m-3} = 3^{n-1}$	$\checkmark 2^m(3) = 3^n(2^3) \text{ (same bases)}$
	Only true if $m-3=0$ and $n-1=0$ $\therefore m+n=4$	$\checkmark m - 3 = 0 \text{ and } n - 1 = 0$ $\checkmark m + n = 4$ (4)
		m+n=4 (4) [24]

QUESTION 2/VRAAG 2

2.1.1	7+12+17+	
2.1.1	$T_{n} = a + (n-1)d$ $T_{91} = 7 + (91-1)(5)$ $T_{91} = 457$	√d = 5 ✓ substitution into correct formula ✓ answer (3)
	OR/OF	OR/OF
	d=5	$\checkmark d = 5$
	$T_n = 5n + 2$	
	$T_{91} = 5(91) + 2$	✓ substitution $n = 91$
	$T_{91} = 457$	✓answer (3)
2.1.2	$S_n = \frac{n}{2} [2a + (n-1)d]$	
	$S_{91} = \frac{91}{2} [2 \times 7 + (91 - 1)(5)]$	✓ substitution into correct formula
	$S_9 = 21 \ 112$	✓answer (2)
		OR/OF
	OR/OF	ONO
	$S_n = \frac{n}{2}(a+l)$	(aubatitution into come at
	$S_{91} = \frac{91}{2} (7 + 457)$	✓ substitution into correct formula
	$S_{91} = 21 \ 112$	✓answer (2)
2.1.3	$T_n = 7 + (n-1)(5)$	✓ substitution into correct
	5n + 2 = 517 5n = 515	formula ✓ equate
	n = 313 $n = 103$	✓ equate ✓ answer (3)
2.2.1	$T_1 = 3$; $T_2 - T_1 = 9$ and $T_3 - T_2 = 21$	
	3 12 33 66 111 9 21 33 45	
		✓ constant second diff = 12
	12 12 12	✓ first differences : 33 and
	$T_5 = 3 + 9 + 21 + 33 + 45 = 111$	45
		(2)
	OR/OF	OR/OF
	2a = 12 $a = 6$	✓ constant second diff = 12
	a = 0 3(6) + b = 9	
	b = -9	
	$6-9+c=3$ $T_5 = 6(5)^2 - 9(5) + 6 = 111$	✓ substitute 5 (2)

(3) [**16**]

2.2.2	2a=12	$\checkmark 2a = 12$
	a=6	
	$3(6) + b = 9$ or $5 \times 6 + b = 21$	$\checkmark 3(6) + b = 9/5 \times 6 + b = 21$
	b = -9	$\checkmark 6-9+c=3 \tag{3}$
	6-9+c=3	$\checkmark 6-9+c=3$ (3)
	<i>c</i> = 6	
	$T_n = 6n^2 - 9n + 6$	
2.2.3	$T_n^{\ \ } = 12n - 9 > 0$	$\checkmark T_n^{\ /} = 12n - 9$
	$n > \frac{3}{4}$	$\checkmark T_n = 12n - 9$ $\checkmark n > \frac{3}{4}$
	4	$\frac{n}{4}$
	T_n is increasing for $n \in N$	✓ increasing for $n \in N$
	"	(3)
	ODION	OR/OF
	OR/OF	OR/O1
	$n = -\frac{b}{2a} = -\frac{-9}{2(6)}$	$\checkmark n = -\frac{b}{2a} = \frac{9}{2(6)}$ $\checkmark n = \frac{3}{4}$
	$n = \frac{3}{4}$	$\checkmark n = \frac{3}{4}$
	\therefore min at $n = 1$ for $n \in N$	
	T_n is increasing for $n \in N$	✓ increasing for $n \in N$

QUESTION 3/VRAAG 3

3.1.1	$T_n = ar^{n-1}$		
	$T_n = 3(2)^{n-1}$	$\checkmark T_n = 3(2)^{n-1}$	(1)
	$\sum_{p=1}^{k} \frac{3}{2} \cdot 2^p = 98\ 301$		
	$\sum_{p=1}^{k} \frac{3}{2} \cdot 2^p = 3 + 6 + 12 + \dots$	✓expansion	
	$\frac{n=k}{3[(2)^k-1]} = 98301$	$\checkmark n = k$	
	- -	✓ substitution into corre	ect
	$(2)^k = 32.768$	formula	
	$2^k = 2^{15}$ OR/OF $k = \log_2 32768$		
	$\therefore k = 15$	$\checkmark k = 15$	(4)
	$S_{22} = \frac{22}{2} [2a + 21(3)]$ $S_{22} = 22a + 693$	✓ substitution into S_n ✓ $S_{22} = 22a + 693$	
	$S_{\infty} = \frac{a}{1 - \frac{1}{3}}$ $= \frac{3a}{2}$	✓ substitution into S_{∞}	
	$\therefore 22a + 693 = \frac{3a}{2} + 734$ $44a + 1386 = 3a + 1468$ $41a = 82$ $a = 2$	$\checkmark S_{22} = S_{\infty} + 734$ $\checkmark \text{ answer}$	(5)
		 	[10]

QUESTION 4/VRAAG 4

4.1	y = -4	✓ y = -4	(1)
4.2	x – intercept: $0 = 2^x - 4$	✓ y = 0	
	$4 = 2^{x}$ $x = 2$	$\checkmark x = 2$	(2)
	∴ B(2;0)		
4.3	$y = 2^0 - 4 = -3$	$\checkmark y = -3$	
	$\therefore A(0;-3)$		
	y = mx + c	✓ gradient	
	$m=\frac{3}{2}$	gradient	
	$k(x) = \frac{3}{2}x - 3$ $k(1) = \frac{3}{2}(1) - 3 = \frac{-3}{2}$	✓equation	(3)
4.4	$k(1) = \frac{3}{3}(1) - 3 = \frac{-3}{3}$	√ k(1)	
	$f(1) = 2^{1} - 4 = -2$	$\checkmark f(1) = -2$	
	Vertical distance = $-\frac{3}{2} - (-2) = \frac{1}{2}$ units	✓answer	(3)
4.5	g(x) = f(x) + 4		
	$g(x) = 2^x ; x \in [-2; 4)$	$\checkmark g(x) = 2^x$	(1)
4.6	Range of $g: y \in \left[\frac{1}{4}; 16\right)$		
	Domain of $g^{-1}: x \in \left[\frac{1}{4}; 16\right)$ or/of $\frac{1}{4} \le x < 16$	$\checkmark \checkmark x \in \left[\frac{1}{4}; 16\right)$	(2)
4.7	$g: y=2^x$		
	$g^{-1}: x=2^y$	\checkmark swop x and y	
	$g^{-1}(x) = \log_2 x, \ x \in \left[\frac{1}{4}; 16\right)$	✓ equation	(2)
			[14]

QUESTION 5/VRAAG 5

5.1	(1;8)	$\checkmark x = 1 \checkmark y = 8$	(2)
5.2	$y = -\frac{1}{2}(0-1)^2 + 8$	$\checkmark x = 0$	
	$=7\frac{1}{2}$	✓ answer	(2)
	$C\left(0;\frac{15}{2}\right)$		
5.3	$8 = \frac{d}{1}$	✓ substitution (1;8)	(1)
5.4	$\therefore d = 8$ $y \in R \; ; \; y \neq 0$	✓ y ≠ 0	(1)
5.5	$-3 \le x < 0$ or $x \ge 5$ \mathbf{OR}/\mathbf{OF}	$\sqrt[4]{-3} \le x < 0$ $\sqrt[4]{x} \ge 5$	(2)
	$x \in [-3; 0) \cup [5; \infty)$		(3)
5.6	$-2x + k = \frac{8}{x}$ $-2x^{2} + kx - 8 = 0$ $\Delta = (k)^{2} - 4(-2)(-8)$ $k^{2} - 64 < 0$ $CV : k = 8 ; k = -8$	$ √-2x+k = \frac{8}{x} $ ✓ standard form ✓ substitution into Δ $ √ Δ < 0 \text{ or } Δ = 0 $	
	∴ $-8 < k < 8$ or/of $k \in (-8; 8)$	✓inequality	(5)
	OR/OF	OR/OF	
	$g'(x) = h'(x)$ $-\frac{8}{x^2} = -2$ $-8 = -2x^2$	$\checkmark - \frac{8}{x^2} \checkmark = -2$	
	$x = \pm 2$ $y = \pm 4$	✓ x-values ✓ y-values	
	For tangents: h(x) = -2x + k or $h(x) = -2x + k4 = -2(2) + k$ $-4 = -2(-2) + kk = 8$ $k = -8$		
	$\therefore -8 < k < 8 \qquad \text{or/of} \qquad k \in (-8; 8)$	✓inequality	(5)

	2	(4	4)
	$\therefore t = -\frac{7}{2}$	✓answer	
	$4 = \frac{15}{2} + t$		
		n(2)	
	$\therefore 4 = -\frac{1}{2}(2-1)^2 + 8 + t$	✓ h(2)	
	Tangent point of contact (2; 4)	J (2)	
	2	$\checkmark x = 2$ $\checkmark f(2)$	
	$f(2) = \frac{15}{2}$	$\checkmark x = 2$	
		OR/OF	
	OR/OF	OR/OF	
	2	(4	4)
	$\therefore t = -\frac{1}{2}$		4)
	$\therefore t = -\frac{7}{2}$	✓answer	
	$\cdot t - \frac{7}{7}$	✓answer	
	_	d on avvon	
	$4 = \frac{1}{2} + t$		
	$4 = \frac{15}{2} + t$		
	h(2) = 4	n(2)	
		$\checkmark h(2)$	
	$f(2) = \frac{15}{2}$	$\checkmark f(2)$ $\checkmark h(2)$	
	15	(((0)	
	$\dots \lambda = 2$		
	$\therefore x = 2$	$\checkmark x = 2$	
	$(x-2)^2 = 0$		
	$x^2 - 4x + 4 = 0$		
	$-2x^2 + 8x - 8 = 0$		
	$-2x^2 + 8x = 8$		
	λ		
	-2x+8=-		
	$-2x+8=\frac{8}{}$		
5.7	h(x) = -2x + 8		

QUESTION 6/VRAAG 6

	UN 0/VKAAG 0	
6.1.1	$A = P(1+i)^n$	
	$19319,48 = 18500 \left(1 + \frac{r}{1200}\right)^{6}$	✓ $n = 6$ ✓ substitution into correct
	$\left(1 + \frac{r}{1200}\right) = \sqrt[6]{1,04429}$	formula
	$\frac{r}{1200} = 0,00725$	
	r = 8.7%	✓answer (3)
6.1.2	$1 + \frac{i}{100} = \left(1 + \frac{8,7}{1200}\right)^{12}$	✓ substitution into correct formula
	r = 9,06%	✓answer (2)
6.2.1	$A = P(1-in)$ $0 = 10 \ 000(1-0.2n)$	✓ substitution into correct formula
	n=5	✓answer (2)
6.2.2	$F = \frac{x[(1+i)^n - 1]}{i}$	
	$20\ 000 = \frac{x \left[\left(1 + \frac{8,7}{1200} \right)^{60} - 1 \right]}{8,7}$	✓ i ✓ n ✓ whatitution into comment
	$\frac{8,7}{1200}$	✓ substitution into correct formula
	x = R267,26	✓ answer (4)
6.3	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$	
	$1600000 = \frac{20000 \left[1 - \left(1 + \frac{0,112}{12}\right)^{-n}\right]}{1600000}$	✓ substitution into correct formula
	$\frac{0,112}{12}$	
	$\frac{56}{75} = 1 - \left(1 + \frac{0,112}{12}\right)^{-n}$	
	$\left(1 + \frac{0,112}{12}\right)^{-n} = \frac{19}{75}$	
	$-n = \log_{\left(1 + \frac{0.112}{12}\right)} \left(\frac{19}{75}\right)$	✓ correct use of logs
	-n = -147,80 Tino will make 147 withdrawals of R20 000	$\checkmark - n = -147,80$ $\checkmark n = 147$
		(5)
		[16]

QUESTION 7/VRAAG 7

	ON TITUE IS	
7.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{-4(x+h)^2 - (-4x^2)}{h}$	✓ substitution into correct formula
	$f'(x) = \lim_{h \to 0} \frac{-4x^2 - 8xh - 4h^2 + 4x^2}{h}$	$f(x+h) = -4x^2 - 8xh - 4h^2$
	$f'(x) = \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$	✓simplification
	$f'(x) = \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$	✓ common factor
	$f'(x) = \lim_{h \to 0} (-8x - 4h)$	
	f'(x) = -8x	✓answer (5)
	OR/OF	OR/OF
	$f(x+h) = -4(x+h)^2 = -4x^2 - 8xh - 4h^2$	$f(x+h) = -4x^2 - 8xh - 4h^2$
	$f(x+h) - f(x) = -4x^{2} - 8xh - 4h^{2} - (-4x^{2})$ $= -8xh - 4h^{2}$	✓ simplification
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	Simplification
	$f'(x) = \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$	✓ substitution into correct formula
	$f'(x) = \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$	✓ common factor
	$f'(x) = \lim_{h \to 0} (-8x - 4h)$	
	f'(x) = -8x	✓answer (5)
7.2.1	$f(x) = 2x^3 - 3x$	$\checkmark 6x^2$
	$f'(x) = 6x^2 - 3$	√-3 (2)
7.2.2	$D_x \left[7.\sqrt[3]{x^2} + 2x^{-5} \right]$	
	$D_{x} \left[7.x^{\frac{2}{3}} + 2x^{-5} \right]$	$\checkmark x^{\frac{2}{3}}$
	$\frac{1}{14} - \frac{1}{1}$	✓ derivative with rational exp
	$=\frac{14}{3}x^{-\frac{1}{3}}-10x^{-6}$	$\checkmark -10x^{-6} \tag{3}$
7.3	$-6x^2 + 8 > 0$	
	$x^2 < \frac{8}{6}$	
	CV's: $x = -\frac{2}{\sqrt{3}}$ or $x = \frac{2}{\sqrt{3}}$	\checkmark CV's: $x = \pm \frac{2}{\sqrt{3}}$
	Positive for : $-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}$	✓✓ answer (3)
	V V V V	[13]

QUESTION 8/VRAAG 8

8.1	$f'(x) = -3x^2 + 12x - 9$	✓
	$-3x^2 + 12x - 9 = 0$	$f'(x) = -3x^2 + 12x - 9$
	$x^2 - 4x + 3 = 0$	$\checkmark f^{\prime}(x) = 0$
	(x-3)(x-1) = 0	
	$\therefore x = 3 \text{ or } x = 1$	✓ both <i>x</i> -values
	$f(3) = -(3)^3 + 6(3)^2 - 9(3) + 4 = 4$	
	$f(1) = -(1)^3 + 6(1)^2 - 9(1) + 4 = 0$	✓ both <i>y</i> -values
	∴ turning points are: (3; 4) and (1; 0)	(4)
8.2	$ \begin{array}{c c} & y \\ \hline & 4 \\ \hline & O \\ \hline & 1 \\ \hline & 1 \\ \hline & 1 \\ \hline & 3;4) \\ \hline & 4 \\ \hline & x \\ \hline \end{array} $	✓ y-intercept ✓ both x-intercepts ✓ both turning points ✓ shape
		(4)
8.3	$0 < k < 4$ or/of $k \in (0;4)$	✓✓ k between y-values
6.3	$0 < k < 4 \qquad \text{or/of} k \in (0; 4)$	of turning points (2)
8.4	f''(x) = -6x + 12 = 0	$\checkmark f''(x) = -6x + 12$
	x = 2	$\int f^{\prime\prime}(x) = 0$
	Max at (2; 2)	\checkmark x-value
		✓ y-value
	f'(2) = 3	✓ gradient at x -value
	$\therefore y - 2 = 3(x - 2) \text{or} 2 = 3(2) + c$ $g(x) = 3x - 4 g(x) = 3x - 4$	
	$g(x) = 3x - 4 \qquad \qquad g(x) = 3x - 4$	✓ equation of tangent
		(6)
	OR/OF	OR/OF
	Point of inflection: $x = \frac{3+1}{2}$	\checkmark \checkmark $\frac{3+1}{2}$
		_
	x = 2 Max at (2; 2)	\checkmark x-value
	Wax at (2, 2)	✓ y-value
	f'(2) = 3	✓ gradient at x -value
	$\therefore y - 2 = 3(x - 2)$ or $2 = 3(2) + c$	
	$g(x) = 3x - 4 \qquad \qquad g(x) = 3x - 4$	✓ equation of tangent (6)
8.5	$\tan \theta = 3$	\checkmark gradient of g
	$\therefore \theta = 71,57^{\circ}$	✓ answer (2)
		[18]

NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 9/VRAAG 9

9.1	432 = xb	400
	$\therefore b = \frac{432}{x}$	$\checkmark b = \frac{432}{x}$
	$A(x) = (x+8)\left(\frac{432}{x} + 6\right)$	$\checkmark (x+8)$ $\checkmark \left(\frac{432}{x} + 6\right)$
	$A(x) = 432 + 6x + \frac{3456}{x} + 480$	
	$A(x) = \frac{3456}{x} + 6x + 480$	(3)
9.2	$A(x) = 3456x^{-1} + 6x + 480$	$\checkmark 3456x^{-1} + 6x + 480$
	$A'(x) = -\frac{3456}{x^2} + 6$	$\checkmark A'(x) = -\frac{3456}{x^2} + 6$
	$-\frac{3456}{x^2} + 6 = 0$	
	$3456 = 6x^2$	
	$\therefore x = \sqrt{576} = 24 \mathrm{cm}$	✓answer (3)
		[6]

total area =
$$2(x+8)(3) + 2\left(\frac{432}{x}\right)(4) + \left(\frac{432}{x}\right)(x)$$

total area =
$$2(4)\left(\frac{432}{x} + 6\right) + (x)\left(\frac{432}{x} + 6\right)$$

total area =
$$4(4)(3) + 2(x)(3) + \left(\frac{432}{x}\right)(x) + 2\left(\frac{432}{x}\right)(4)$$

QUESTION 10/VRAAG 10

10.1.1		1
10.1.1	$P(A \text{ and } B) = P(A) \times P(B)$	1 2
	$=\frac{1}{3}\times\frac{3}{4}$	$\begin{array}{c} \checkmark \frac{1}{3} \times \frac{3}{4} \\ \checkmark \frac{1}{4} \end{array}$
		3 4
	$=\frac{1}{4}$	1
	$=\frac{4}{4}$	$\frac{\sqrt{4}}{4}$
		(2)
10.1.2	P(A or B) = P(A) + P(B) - P(A and B)	(-)
	$= \frac{1}{3} + \frac{3}{4} - \frac{1}{4}$	✓ substitution
	5 4 4	
	$=\frac{5}{6}$	✓ answer
	6	(2)
	OR/OF	OR/OF
	n l	
	$A \longrightarrow A \longrightarrow$	
	$\left(\begin{array}{c} \frac{1}{12} \left(\begin{array}{c} \frac{1}{4} \end{array}\right) \frac{1}{2} \end{array}\right)$	
	$P(A \text{ or } B) = \frac{1}{12} + \frac{1}{4} + \frac{1}{2} = \frac{5}{6}$	✓ substitution
	$\frac{\Gamma(A \text{ of } B)}{12} = \frac{1}{4} + \frac{1}{2} = \frac{1}{6}$	
		✓ answer
		(2)
10.2.1	D <0,72	
	B 0,72	
	0,05	✓ branch 1 with probabilities
	S Not B 0,28	
		✓ branch 2 with probabilities
	No S B $\sqrt{0.35}$	
	No S 0,95 B 0,35	✓ branch 3 with probabilities
	Not B 0,65	
	1101 D 0,03	
		(3)
10.2.2	P(NOT below 0°)	
	$= P(S; NOT below 0^{\circ}) + P(NS; NOT below 0^{\circ})$	✓ value of
	$= 0.05 \times 0.28 + 0.95 \times 0.65$	P(S; NOT below 0°)
	= 0,6315	✓ value of
	-,	P(NS; NOT below 0°)
		✓ answer
		(3)
10.3.1	n(S) = 10!	✓ 10! (1)
10.3.1	M(S) = 10:	(1)

10.3.2	4 Options;	
	$2 \times 8 \times 7 \times 6 \times 5 \times 4 \times 1 \times 3 \times 2 \times 1 = 80 640$	✓ (2×8!)
	$8 \times 2 \times 7 \times 6 \times 5 \times 4 \times 3 \times 1 \times 2 \times 1 = 80 640$	
	$8 \times 7 \times 2 \times 6 \times 5 \times 4 \times 3 \times 1 \times 1 \times 1 = 80 640$	
	$8 \times 7 \times 6 \times 2 \times 5 \times 4 \times 3 \times 2 \times 1 \times 1 = 80 640$	
	Total number of possibilities = 322 560	\checkmark 4(2 × 8!) or 322 560
	P(5 learners in between) = $\frac{322560}{10!} = \frac{4}{45}$	$\checkmark \frac{322560}{\text{n(S)}}$ (4)
	OR/OF	OR/OF
	$2 \times 8 \times 7 \times 6 \times 5 \times 4 \times 1 \times 3 \times 2 \times 1$ 4 possible starting positions	✓ (2×8!)
	$\therefore 4(2 \times 8! \times 1) = 322560$ $8(8!) = 322560$	\checkmark 4(2 × 8!) or 322 560
	322 560 4	322 560
	P(5 learners in between) = $\frac{322560}{10!} = \frac{4}{45}$	$\checkmark \frac{322560}{\mathrm{n(S)}}$
		(4)
		[15]

TOTAL/TOTAAL: 150