MSIS 5503 – Statistics for Data Science – Fall 2021 - Assignment 2

- 1. You buy a lottery ticket to a lottery that costs \$10 per ticket. There are only 100 tickets available to be sold in this lottery. In this lottery there are one \$500 prize, two \$100 prizes, and four \$25 prizes.
 - a. Define the random variable.
 - b. Show its probability distribution in the form of a table.
 - c. Find your expected gain or loss.
 - d. What is the standard deviation of you gain or loss?
 - e. What type of skewness does the probability distribution represent?

Solution:

a. The random variable X = Gain/loss in Dollars from purchasing one ticket

b.

X = -10	X = 15	X = 90	X = 490
P(X) = 0.93	P(X) = 0.04	P(X) = 0.02	P(X) = 0.01

- c. E(X) = (-10)*(0.93) + 15*0.04 + 90*0.02 + 490*0.01 = -9.3 + 0.6 + 1.8 + 4.90 = -2 (Loss of \$2)
- d. $Var(X) = 0.93(-10 (-2))^2 + (15 (-2))^2(0.04) + (90 (-2))^2(0.02) + (490 (-2))^2(0.01) = 2661$ Therefore, Standard Deviation = SQRT(2816.31) = \$51.58
- e. The distribution is right-skewed because it has a long right-tail.
- 2. Consider the experiment of tossing two dice. Your random variable is **D**, the **square** of difference of the numbers showing on the faces of the two dice.
 - a. Show its probability distribution in the form of a table.
 - b. Find the mean, median and mode of the distribution.
 - c. Find the variance of **D**.
 - d. What type of skewness does the probability distribution represent?
 - e. Is the Chebychev inequality satisfied for c=1 and c=2? Show the calculations.

a. Show its probability distribution in the form of a table.

D	0	1	4	9	16	25	Sum
P(D)	0.1667	0.2778	0.2222	0.1667	0.1111	0.0556	1.0000
D*P(D)	0.0000	0.2778	0.8889	1.5000	1.7778	1.3889	5.8333
((D-E(D)^2)*P(D)	5.671296	6.489198	0.746914	1.671296	11.48457	20.40895	46.4722

b. Find the mean, median and mode of the distribution.

Mean = E(D) =
$$\sum_{c \in A} cP(W = c) = 70/36 = 5.8333$$

There is no exact median. We could say that median = 4, because the probability on either side of 2 is the same (16/36).

Mode = 1, because 1 occurs most frequently (10/36)

c. Find the variance of D.

Variance
$$V(D) = ((D-E(D)^2)*P(D) = 46.4722$$

d. What type of skewness does the probability distribution represent?

This probability distribution is right-skewed, with a long right-tail. The median will be less than the mean of 5.833.

e. Is the Chebychev inequality satisfied for c=1 and c=2? Show the calculations.

P (x >
$$\mu$$
 + c σ) + P (x < μ - c σ) < $\frac{1}{c^2}$ is the Chebychev inequality.
Here σ = Standard deviation = $\sqrt{V(D)}$ = 6.817

For c=1:

$$P(D > 5.8333 + 6.817) + P(D < 5.8333 - 6.817) < 1$$

$$P(D > 12.65) + P(D < -0.984) < 1$$

0.1666 + 0 < 1

Hence, the Chebychev inequality is satisfied.

For c=2:

$$P(D > 5.8333 + 2 * 6.817) + P(D < 5.8333 - 2 * 6.817) < 0.25$$

$$P(D > 19.4673) + P(D < -7.8007) < 0.25$$

0.0556 + 0 < 0.25

Hence, the Chebychev inequality is satisfied.

- 3. Suppose that about 85% of graduating students attend their graduation. A group of 22 graduating students is randomly chosen.
 - a. In words, define the random variable X.

X is the number of students who attend their graduation.

b. List the values that X may take on.

X=0,1,2,...,22

- c. Give the distribution of X. $X \sim Binomial(n=22, p=0.85)$
- d. How many are expected to attend their graduation?

Expected value of Binomial = np=22*0.85 = 18.7 students.

e. Find the probability that 17 or 18 attend.

$$P(X=17) = (22!/17!*5!) *(0.85)^{17}(0.15)^5 = 0.126;$$

$$P(X=18) = (22!/18!*4!) *(0.85)^{18}(0.15)^4 = 0.198$$

The probability that 17 or 18 will attend will be =0.324 because (X=17) and (X=18) are mutually exclusive.

f. Find the probability that at most 15 will attend (practice with calculator).

The probability that at most 15 will attend =
$$P(X \le 15) = 1 - P(X \ge 16) = P(16) + P(17) + ... + P(22) = 0.03684$$
.

g. Based on numerical values, would you be surprised if all 22 attended graduation? Justify your answer numerically.

 $P(X=22) = (22!/22!*0!) *(0.85)^{22}(0.15)^0 = 0.028$; Yes, because of the low probability it would be a surprise if all 22 attended.

- 4. For the previous problem, do the following using R. Copy and paste the R commands from the console, along with the output.
 - a. Find the probability that at least 16 will attend the graduation.
 - b. There is a 30% chance that at least _____ will attend the graduation.
 - c. There is a 10% chance that at most _____ will attend the graduation.
 - d. Show the table of probabilities and cumulative probabilities.
 - e. The empirical mean is and the empirical standard deviation is .
 - f. Show the histogram of the pmf and cdf.

```
> p16 <- 1 - pbinom(15, 22, 0.85, lower.tail = TRUE, log.p = FALSE)
> print(paste("Probability that at least 16 will attend is",round(p16, 4), sep = " "))
[1] "Probability that at least 16 will attend is 0.9632"
```

b. We need x such that P(X > x) = 0.30. That means, we need the 70^{th} percentile (quantile) of the distribution.

Answer:

```
qbinom(0.70, 22, 0.85, lower.tail = TRUE, log = FALSE) with answer = 20
```

c. We need x such that $P(X \le x) = 0.10$. That means, we need the 10^{th} percentile (quantile) of the distribution.

```
qbinom(0.10, 22, 0.85, lower.tail = TRUE, log = FALSE) with answer = 17
```

d.

e.

```
> #table of probabilities
> for (i in 0:nsize) {
   result[i+1] <- dbinom(i, nsize, prob, log = FALSE)</pre>
   xPx[i+1] \leftarrow i*result[i+1]
   x2Px[i+1] \leftarrow i*xPx[i+1]
   [1] "X = 0 probability = 0 cumumlative probability =
   "X = 1 probability = 0 cumumlative probability =
   "X = 2 probability = 0 cumumlative probability =
[1] "X = 3 probability = 0 cumumlative probability =
   "X = 4 probability = 0 cumumlative probability =
[1]
[1] "X = 5 probability = 0 cumumlative probability =
   "X = 6 probability = 0 cumumlative probability =
[1]
   "X = 7 probability = 0 cumumlative probability = 0"
[1] "X = 8 probability = 0 cumumlative probability =
   "X = 9 probability = 0 cumumlative probability = 0"
[1]
   "X = 10 probability = 0 cumumlative probability = 0"
[1]
   "X = 11 probability = 1e-04 cumumlative probability =
[1]
   "X = 12 probability = 5e-04 cumumlative probability = 7e-04"
[1]
   "X = 13 probability = 0.0023 cumumlative probability = 0.003"
[1]
   "X = 14 probability = 0.0084 cumumlative probability = 0.0114"
"X = 15 probability = 0.0255 cumumlative probability = 0.0368"
[1]
[1]
   "X = 16 probability = 0.0631 cumumlative probability = 0.0999"
   "X =
   "X = 17 probability = 0.1262 cumumlative probability = 0.2262"
"X = 18 probability = 0.1987 cumumlative probability = 0.4248"
[1]
   "X = 19 probability = 0.237 cumumlative probability = 0.6618"
[1]
[1] "X =
         20 probability = 0.2015 cumumlative probability = 0.8633'
[1] "X = 21 probability = 0.1087 cumumlative probability = 0.972"
[1] "X = 22 probability = 0.028 cumumlative probability = 1"
> # Checking the mean = np and variance = np(1-p)
> # Mean = sum of xPx
> Exp_val = sum(xPx)
> print(paste("The Expected Value is",round(Exp_val, 4), sep = " "))
[1] "The Expected Value is 18.7"
> # Var = sum of X2Px - (sum(xPx)^2)
> varian = sum(x2Px) - Exp_val*Exp_val
> print(paste("The standard deviation is",round(sqrt(varian), 4), sep = " "))
[1] "The standard deviation is 1.6748"
```


Binomial Cumulative Probability Plot 22 trials

