Algorithmns and Datastructures Divide and Conquer, Master theorem

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithmns and Datastructures, March 2016

Structure

Divide and Conquer

Concept Maximum Subtotal

Recursion Equations

Substitution Method Recursion Tree Method

Master theorem

Master theorem (Simple Form)

Master theorem (General Form)

Structure

Divide and Conquer

Concept Maximum Subtotal

Substitution Method Recursion Tree Method Master theorem

Master theorem (Simple Form)

Master theorem (General Form)

Divide and Conquer Introduction

NE NE

Divide and Conquer Introduction

II EIBURG

NE NE

Concept:

■ Divide the problem into smaller subproblems

- Divide the problem into smaller subproblems
- Conquer the subproblems through recursive solving. If subproblems are small enough solve them directly

- Divide the problem into smaller subproblems
- Conquer the subproblems through recursive solving. If subproblems are small enough solve them directly
- Connect all subsolutions to solve the overall problem

- Divide the problem into smaller subproblems
- Conquer the subproblems through recursive solving. If subproblems are small enough solve them directly
- Connect all subsolutions to solve the overall problem
- Recursive application of the algorithm on smaller subproblems

- Divide the problem into smaller subproblems
- Conquer the subproblems through recursive solving. If subproblems are small enough solve them directly
- Connect all subsolutions to solve the overall problem
- Recursive application of the algorithm on smaller subproblems
- Direct solving of small subproblems

Structure

Divide and Conquer

Concept

Maximum Subtotal

Recursion Equations

Substitution Method

Recursion Tree Method

Master theorem

Master theorem (Simple Form)

Master theorem (General Form)

Divide and Conquer Maximum Subtotal

Divide and Conquer Maximum Subtotal

Input:

■ Progression X of n integers

A LANGE OF THE LAN

Input:

Progression X of n integers

Output:

Maximum sum of an uninterrupted subsequence of X and its index boundary

Divide and Conquer Maximum Subtotal

Input:

Progression X of n integers

Output:

Maximum sum of an uninterrupted subsequence of X and its index boundary

Output: Sum: 187, Start: 2, End: 6

Divide and Conquer Maximum Subtotal

Idea:

Idea:

Solve the left / right half of the problem recursive

Idea:

- Solve the left / right half of the problem recursive
- Combine both solutions into a overall solution

- Solve the left / right half of the problem recursive
- Combine both solutions into a overall solution
- The maximum is located in the left half (A) or the right half (B)

Idea:

- Solve the left / right half of the problem recursive
- Combine both solutions into a overall solution
- The maximum is located in the left half (A) or the right half (B)
- The maximum interval can overlap with the border (C)

Maximum Subtotal

Small problems are solved directly: $n = 1 \Rightarrow \max = X[0]$

- Small problems are solved directly: $n = 1 \Rightarrow \max = X[0]$
- Big problems are decomposed into two subproblems and solved recursivly. Subsolutions A and B are returned.

- Small problems are solved directly: $n = 1 \Rightarrow \max = X[0]$
- Big problems are decomposed into two subproblems and solved recursivly. Subsolutions A and B are returned.
- To solve C we have to calculate rmax and lmax

- Small problems are solved directly: $n = 1 \Rightarrow \max = X[0]$
- Big problems are decomposed into two subproblems and solved recursivly. Subsolutions A and B are returned.
- To solve C we have to calculate rmax and lmax
- Overall solution is maximum of A B C

Maximum Subtotal - Python

def maxSubArray(X, i, j):


```
Maximum Subtotal - Python
```

```
def maxSubArray(X, i, j):
    if i == j: # trivial case
        return (X[i], i, i)
    m = (i + j) / 2
```

```
def maxSubArray(X, i, j):
    if i == j: # trivial case
        return (X[i], i, i)

m = (i + j) / 2
        #Solutions for A and B
A = maxSubArray(X, i, m)
B = maxSubArray(X, m + 1, j)
```

```
def maxSubArray(X, i, j):
    if i == j: # trivial case
        return (X[i], i, i)
    m = (i + j) / 2
        #Solutions for A and B
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
        #rmax and lmax for bordercase C
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
```

```
def maxSubArray(X, i, j):
    if i == j: # trivial case
        return (X[i], i, i)
    m = (i + j) / 2
        #Solutions for A and B
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
        #rmax and lmax for bordercase C
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
        #Solution is maximum of A,B,C
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
    if i == j: # trivial case
        return (X[i], i, i)
    m = (i + j) / 2
        #Solutions for A and B
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
        #rmax and lmax for bordercase C
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
        #Solution is maximum of A,B,C
    return max([A, B, C], \
        key=lambda item: item[0])
        #Simplification: only maximum
```

Maximum Subtotal - Python

```
INI
REBURG
```

```
#Alternative trivial case
def maxSubArray(X, i, j):
```

```
#Alternative trivial case
def maxSubArray(X, i, j):
    # trivial: only one element
    if i == j:
        return (X[i], i, i)
```

```
#Alternative trivial case
def maxSubArray(X, i, j):
    # trivial: only one element
    if i == j:
        return (X[i], i, i)
    # trivial: only two elements
    if i + 1 = j:
        return max([
            (X[i], i, i).
            (X[j], j, i),
            (X[i] + X[j], i, j)
        ], key=lambda item: item[0])
    ... # continue as before
```

Maximum Subtotal - Python


```
#Implementation max
def max(a, b, c):
```

```
#Implementation max
def max(a, b, c):
    if a > b:
        if a > c:
           return a
        else:
            return c
```

```
#Implementation max
def max(a, b, c):
    if a > b:
        if a > c:
            return a
        else:
             return c
    else:
        if c > b:
             return c
        else:
             return b
```

Divide and Conquer Maximum Subtotal - Python

5

 ${\tt\#Alternative\ implementation\ max}$

```
#Alternative implementation max
```

```
def max(a, b):
    if a > b:
        return a
    else:
        return b
```

```
#Alternative implementation max

def max(a, b):
    if a > b:
        return a
    else:
        return b

def maxTripel(a, b, c):
    return max(max(a,b),c)
```



```
#Implementation left maximum
def lmax(X, i, j):
    maxSum = (X[i], i)
    s = X[i]
    # sum up from the lower index going up
    # (from left to right)
    for k in range(i+1, j+1):
        s += X[k]
        if s > maxSum[0]:
            maxSum = (s, k)
```

Maximum Subtotal - Python

```
#Implementation right maximum
def rmax(X, i, j):
    \max Sum = (X[j], j)
    s = X[i]
    # sum up from the upper index going down
    # (from right to left)
    for k in range(j-1, i-1, -1):
        s += X[k]
        if s > maxSum[0]:
            maxSum = (s, k)
```

return maxSum

Divide and Conquer Maximum Subtotal

Table: Imax example

index	i	<i>i</i> + 1		• • •	<i>j</i> − 1	j
X	58	-53	26	59	-41	31
sum	58	5	31	90	49	80
index X sum Imax	58	58	58	90	90	90

Maximum Subtotal

Table: Imax example

The sum and lmax are initialized with X[i]

Maximum Subtotal

Table: Imax example

- The sum and lmax are initialized with X[i]
- We iterate over X from i + 1 to j and update sum

NIEBURG

Maximum Subtotal

Table: Imax example

- The sum and lmax are initialized with X[i]
- We iterate over X from i + 1 to j and update sum
- If s > lmax then lmax gets updated

Maximum Subtotal

maxSubArray(-3,9,-4,7) in fact maxSubArray(X,0,3) with X=[-3,9,-4,7]


```
def maxSubArray(X, i, j):
    if i == j:
        return (X[i], i, i)
    m = (i + j) / 2
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
    if i == j:
        return (X[i], i, i)
    m = (i + j) / 2
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

0(1)

```
def maxSubArray(X, i, j):
    if i == j:
        return (X[i], i, i)
    m = (i + j) / 2
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

0(1)

0(1)

```
def maxSubArray(X, i, j):
    if i == j:
        return (X[i], i, i)
    m = (i + j) / 2
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                          # 0(1)
    if i == j:
        return (X[i], i, i)
                                          # 0(1)
    m = (i + j) / 2
                                          \# 0(1)
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                          # 0(1)
    if i == j:
        return (X[i], i, i)
                                          # 0(1)
    m = (i + j) / 2
                                          # 0(1)
    A = \max SubArray(X, i, m)
                                          \# T(n/2)
    B = \max SubArray(X, m + 1, j)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                           # 0(1)
    if i == j:
        return (X[i], i, i)
                                           # 0(1)
    m = (i + j) / 2
                                           # 0(1)
    A = \max SubArray(X, i, m)
                                           \# T(n/2)
    B = \max SubArray(X, m + 1, j)
                                           \# T(n/2)
    C1 = rmax(X, i, m)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                           # 0(1)
    if i == j:
        return (X[i], i, i)
                                           # 0(1)
    m = (i + j) / 2
                                           # 0(1)
    A = \max SubArray(X, i, m)
                                           \# T(n/2)
    B = \max SubArray(X, m + 1, j)
                                            T(n/2) 
    C1 = rmax(X, i, m)
                                           \# O(n)
    C2 = lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                           # 0(1)
    if i == j:
        return (X[i], i, i)
                                           # 0(1)
    m = (i + j) / 2
                                           # 0(1)
    A = \max SubArray(X, i, m)
                                           \# T(n/2)
    B = \max SubArray(X, m + 1, j)
                                            T(n/2) 
    C1 = rmax(X, i, m)
                                           \# O(n)
    C2 = lmax(X, m + 1, j)
                                           \# O(n)
    C = (C1[0] + C2[0], C1[1], C2[1])
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                          # 0(1)
    if i == j:
        return (X[i], i, i)
                                           # 0(1)
    m = (i + j) / 2
                                          # 0(1)
    A = \max SubArray(X, i, m)
                                          \# T(n/2)
    B = \max SubArray(X, m + 1, j)
                                           T(n/2) 
    C1 = rmax(X, i, m)
                                          \# O(n)
    C2 = lmax(X, m + 1, j)
                                          \# O(n)
    C = (C1[0] + C2[0], C1[1], C2[1]) # O(1)
    return max([A, B, C], \
        key=lambda item: item[0])
```

```
def maxSubArray(X, i, j):
                                          # 0(1)
    if i == j:
        return (X[i], i, i)
                                           # 0(1)
    m = (i + j) / 2
                                          # 0(1)
    A = \max SubArray(X, i, m)
                                          \# T(n/2)
    B = \max SubArray(X, m + 1, j)
                                           T(n/2) 
    C1 = rmax(X, i, m)
                                          \# O(n)
    C2 = lmax(X, m + 1, j)
                                          \# O(n)
    C = (C1[0] + C2[0], C1[1], C2[1])
                                          # 0(1)
    return max([A, B, C], \
                                          # 0(1)
        key=lambda item: item[0])
```

Recursion equation:

$$T(n) = \begin{cases} \underbrace{\Theta(1)}_{\text{trivial case}} & n = 1 \\ \underbrace{2 \cdot T\left(\frac{n}{2}\right)}_{\text{solving of subproblems}} + \underbrace{\Theta(n)}_{\text{cobination of solutions}} & n > 1 \end{cases}$$

Recursion equation:

$$T(n) = \begin{cases} \underbrace{\Theta(1)}_{\text{trivial case}} & n = 1 \\ \underbrace{2 \cdot T\left(\frac{n}{2}\right)}_{\text{solving of subproblems}} & \underbrace{\Theta(n)}_{\text{cobination of solutions}} & n > 1 \end{cases}$$

■ There exist two constants a and b with:

$$T(n) \le \begin{cases} a & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n & n > 1 \end{cases}$$

$$T(n) = \begin{cases} \underbrace{\Theta(1)}_{\text{trivial case}} & n = 1 \\ \underbrace{2 \cdot T\left(\frac{n}{2}\right)}_{\text{solving of subproblems}} + \underbrace{\Theta(n)}_{\text{cobination of solutions}} & n > 1 \end{cases}$$

There exist two constants a and b with:

$$T(n) \leq \begin{cases} a & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n & n > 1 \end{cases}$$

■ We define $c := \max(a, b)$:

$$T(n) \leq \begin{cases} c & n = 1\\ 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n & n > 1 \end{cases}$$

Maximum Subtotal - Illustration of T(n)

Figure: Illustration of the runtime

Maximum Subtotal - Illustration of T(n)

Figure: Illustration of the runtime

Maximum Subtotal - Illustration of T(n)

Figure: Illustration of the runtime

Figure: Illustration of the runtime

Maximum Subtotal - Illustration of T(n)

Figure: Illustration of the runtime

Maximum Subtotal - Illustration of T(n)

1 node processing n elements $\Rightarrow c \cdot n$

Figure: Recursion tree method

Maximum Subtotal - Illustration of T(n)

- 1 node processing n elements $\Rightarrow c \cdot n$
- 2 nodes processing $\frac{n}{2}$ elements $\Rightarrow 2c \cdot \frac{n}{2} = c \cdot n$

Figure: Recursion tree method

Maximum Subtotal - Illustration of T(n)

- 1 node processing n elements $\Rightarrow c \cdot n$
- 2 nodes processing $\frac{n}{2}$ elements $\Rightarrow 2c \cdot \frac{n}{2} = c \cdot n$
- 4 nodes processing $\frac{n}{4}$ elements $\Rightarrow 4c \cdot \frac{n}{4} = c \cdot n$

Figure: Recursion tree method

Maximum Subtotal - Illustration of T(n)

- 1 node processing n elements $\Rightarrow c \cdot n$
- 2 nodes processing $\frac{n}{2}$ elements $\Rightarrow 2c \cdot \frac{n}{2} = c \cdot n$
- 4 nodes processing $\frac{n}{4}$ elements $\Rightarrow 4c \cdot \frac{n}{4} = c \cdot n$
- 2^{i} nodes processing $\frac{n}{2^{i}}$ elements $\Rightarrow 2^{i} c \cdot \frac{n}{2^{i}} = c \cdot n$

Figure: Recursion tree method

Maximum Subtotal - Illustration of T(n)

- 1 node processing n elements $\Rightarrow c \cdot n$
- 2 nodes processing $\frac{n}{2}$ elements $\Rightarrow 2c \cdot \frac{n}{2} = c \cdot n$
- 4 nodes processing $\frac{n}{4}$ elements $\Rightarrow 4c \cdot \frac{n}{4} = c \cdot n$
- 2^{i} nodes processing $\frac{n}{2^{i}}$ elements $\Rightarrow 2^{i} c \cdot \frac{n}{2^{i}} = c \cdot n$
- *n* nodes processing 1 element $\Rightarrow c \cdot n$

Figure: Recursion tree method

Maximum Subtotal - Illustration of T(n)

Depth:

Maximum Subtotal - Illustration of T(n)

Depth:

■ Top level with depth i = 0

Maximum Subtotal - Illustration of T(n)

Depth:

- Top level with depth i = 0
- Lowest level with $2^i = n$ elements

$$\Rightarrow i = \log_2 n$$

Maximum Subtotal - Illustration of T(n)

Depth:

- Top level with depth i = 0
- Lowest level with $2^i = n$ elements

$$\Rightarrow i = \log_2 n$$

Runtime:

Depth:

- Top level with depth i = 0
- Lowest level with $2^i = n$ elements

$$\Rightarrow i = \log_2 n$$

Runtime:

■ A total of $log_2 n + 1$ levels with each cost of $c \cdot n$ The costs of merging the solutions and solving of the trivial problems are the same here

Depth:

- Top level with depth i = 0
- Lowest level with $2^i = n$ elements

$$\Rightarrow i = \log_2 n$$

Runtime:

■ A total of $log_2 n + 1$ levels with each cost of $c \cdot n$ The costs of merging the solutions and solving of the trivial problems are the same here

$$T(n) = c \cdot n \log_2 n + c \cdot n \in \Theta(n \log n)$$

■ Direct solution is slow with $O(n^3)$

- Direct solution is slow with $O(n^3)$
- Better solution with incremental update of sum was $O(n^2)$

- Direct solution is slow with $O(n^3)$
- Better solution with incremental update of sum was $O(n^2)$
- Divide and conquer approach results in $O(n \log n)$

- Direct solution is slow with $O(n^3)$
- Better solution with incremental update of sum was $O(n^2)$
- Divide and conquer approach results in $O(n \log n)$
- There is an approach running in O(n) if you assume that all subtotals are positive

Figure: Scanning the array in linear time

Maximum Subtotal - Python


```
#Implementation - linear runtime
def maxSubArray(X):
```

```
#Implementation - linear runtime
def maxSubArray(X):
    # sum, start index
    rMax, irMax = 0, 0 # current maximum
    tMax, itMax = 0, 0 # total maximum
```

Maximum Subtotal - Python

```
#Implementation - linear runtime
def maxSubArray(X):
    # sum, start index
    rMax, irMax = 0, 0 # current maximum
    tMax, itMax = 0, 0 # total maximum

for i in range(len(X)):
    if rMax == 0:
        irMax = i
    rMax = max(0, rMax + X[i])
```

```
#Implementation - linear runtime
def maxSubArray(X):
    # sum, start index
    rMax, irMax = 0, 0 # current maximum
    tMax, itMax = 0, 0 # total maximum
    for i in range(len(X)):
        if rMax == 0:
            irMax = i
        rMax = max(0, rMax + X[i])
        if rMax > tMax:
            tMax, itMax = rMax, irMax
    return (tMax, itMax)
```

Structure

Divide and Conquer
Concept
Maximum Subtotal

Recursion Equations

Substitution Method Recursion Tree Method Master theorem

Master theorem (Simple Form)
Master theorem (General Form

SE E

Recursion equation:

Recursion Equations

Recursion Equation

Recursion equation:

Recursion equation:

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ a \cdot T\left(\frac{n}{b}\right) + f(n) & n > n_0 \end{cases}$$

Recursion Equation

Describes the runtime for recursive functions:

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ a \cdot T\left(\frac{n}{b}\right) + f(n) & n > n_0 \end{cases}$$

■ n_0 is normally small, $f_0(n_0) \in \Theta(1)$

Recursion Equation

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ a \cdot T\left(\frac{n}{b}\right) + f(n) & n > n_0 \end{cases}$$

- n_0 is normally small, $f_0(n_0) \in \Theta(1)$
- Normally a > 1 and b > 1

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ a \cdot T\left(\frac{n}{b}\right) + f(n) & n > n_0 \end{cases}$$

- n_0 is normally small, $f_0(n_0) \in \Theta(1)$
- Normally a > 1 and b > 1
- Dependent on the strategy of solving T(n) f_0 is ignored

Recursion Equation

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ a \cdot T\left(\frac{n}{b}\right) + f(n) & n > n_0 \end{cases}$$

- n_0 is normally small, $f_0(n_0) \in \Theta(1)$
- Normally a > 1 and b > 1
- Dependent on the strategy of solving T(n) f_0 is ignored
- T(n) is only defined for integers of $\frac{n}{b}$ which is often ignored in benefit of a simpler solution

Structure

Divide and Conquer

Concept Maximum Subtotal

Recursion Equations Substitution Method

Recursion Tree Method

Master theorem

Master theorem (Simple Form)

Master theorem (General Form)

Recursion Equations

Substitution Method

Substitution Method:

Recursion Equations

Substitution Method

UNI FREIB

Substitution Method:

Guess the solution and prove it with induction

Substitution Method:

- Guess the solution and prove it with induction
- Example:

$$T(n) = \begin{cases} 1 & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 1 \end{cases}$$

Substitution Method:

- Guess the solution and prove it with induction
- Example:

Substitution Method

$$T(n) = \begin{cases} 1 & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 1 \end{cases}$$

■ Assumption: $T(n) = n + n \cdot \log_2 n$

Recursion Equations

Substitution Method

Recursion Equations

Substitution Method

Induction:

■ Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$

Substitution Method

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- Induction step (from $\frac{n}{2}$ to n):

Substitution Method

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

Substitution Method

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\stackrel{IA}{=} 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot \log_2 \frac{n}{2}\right) + n$$

Substitution Method

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\stackrel{!A}{=} 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot \log_2 \frac{n}{2}\right) + n$$

$$= 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot (\log_2 n - 1)\right) + n$$

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\stackrel{!A}{=} 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot \log_2 \frac{n}{2}\right) + n$$

$$= 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot (\log_2 n - 1)\right) + n$$

$$= n + n \log_2 n - n + n$$

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\stackrel{!A}{=} 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot \log_2 \frac{n}{2}\right) + n$$

$$= 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot (\log_2 n - 1)\right) + n$$

$$= n + n \log_2 n - n + n$$

$$= n + n \log_2 n$$

Substitution Method

Substitution Method:

Substitution Method

Substitution Method:

Alternative assumption

Substitution Method:

- Alternative assumption
- Example:

$$T(n) = \begin{cases} 1 & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 0 \end{cases}$$

Substitution Method:

- Alternative assumption
- Example:

Substitution Method

$$T(n) = \begin{cases} 1 & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 0 \end{cases}$$

■ Assumption: $T(n) \in O(n \log n)$

Substitution Method

Substitution Method:

- Alternative assumption
- Example:

$$T(n) = \begin{cases} 1 & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 0 \end{cases}$$

- Assumption: $T(n) \in O(n \log n)$
- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$

Substitution Method

Substitution Method

Induction:

■ Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$

Substitution Method

- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- Induction step (from $\frac{n}{2}$ to n):

Substitution Method

- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\leq 2 \cdot \left(c \cdot \frac{n}{2} \log_2 \frac{n}{2}\right) + n$$

- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\leq 2 \cdot \left(c \cdot \frac{n}{2} \log_2 \frac{n}{2}\right) + n$$

$$= c \cdot n \log_2 n - c \cdot n \log_2 2 + n$$

- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\leq 2 \cdot \left(c \cdot \frac{n}{2} \log_2 \frac{n}{2}\right) + n$$

$$= c \cdot n \log_2 n - c \cdot n \log_2 2 + n$$

$$= c \cdot n \log_2 n - c \cdot n + n$$

- Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\leq 2 \cdot \left(c \cdot \frac{n}{2} \log_2 \frac{n}{2}\right) + n$$

$$= c \cdot n \log_2 n - c \cdot n \log_2 2 + n$$

$$= c \cdot n \log_2 n - c \cdot n + n$$

$$\leq c \cdot n \log_2 n, \quad c \geq 1$$

Structure

Divide and Conquer

Concept Maximum Subtotal

Recursion Equations

Substitution Method

Recursion Tree Method

Master theorem

Master theorem (Simple Form)

Master theorem (General Form)

Recursion Tree Method

Recursion tree method:

Recursion Tree Method

Recursion tree method:

Can be used to make assumptions about the runtime

Recursion tree method:

- Can be used to make assumptions about the runtime
- Example:

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + \Theta(n^2) \le 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^2$$

Recursion Tree Method

$$T(n) = 3 \cdot T(\frac{n}{4}) + c \cdot n^2$$

Figure: Recursion tree of example

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^2$$

Figure: Recursion tree of example

Figure: Recursion tree of example

Figure: Levels of the recursion tree

Recursion Tree Method Costs

Costs of connecting the partial solutions:

(excludes the last layer)

Recursion Tree Method Costs

Costs of connecting the partial solutions:

(excludes the last layer)

Size of partial problems on level *i*: $s_i(n) = \left(\frac{1}{4}\right)^i \cdot n$

Recursion Tree Method Costs

Costs of connecting the partial solutions:

(excludes the last layer)

- Size of partial problems on level *i*: $s_i(n) = \left(\frac{1}{4}\right)^i \cdot n$
- Costs of partial problem on level i:

$$T_{i_p}(n) = c \cdot \left(\left(\frac{1}{4}\right)^i \cdot n\right)^2$$

Costs of connecting the partial solutions:

(excludes the last layer)

- Size of partial problems on level *i*: $s_i(n) = \left(\frac{1}{4}\right)^i \cdot n$
- Costs of partial problem on level i:

$$T_{i_p}(n) = c \cdot \left(\left(\frac{1}{4}\right)^i \cdot n\right)^2$$

Number of partial problems on level i: $n_i = 3^i$

Costs of connecting the partial solutions:

(excludes the last layer)

- Size of partial problems on level *i*: $s_i(n) = \left(\frac{1}{4}\right)^i \cdot n$
- Costs of partial problem on level *i*:

$$T_{i_p}(n) = c \cdot \left(\left(\frac{1}{4}\right)^i \cdot n\right)^2$$

- Number of partial problems on level *i*: $n_i = 3^i$
- Costs on level i:

$$T_i(n) = 3^i \cdot c \cdot \left(\left(\frac{1}{4} \right)^i \cdot n \right)^2 = \left(\frac{3}{16} \right)^i \cdot c \cdot n^2$$

Recursion Equations Recursion Tree Method Costs

REI

Costs of solving partial solutions: (only the last layer)

■ Size of partial problems on the last level: $s_{i+1}(n) = 1$

- Size of partial problems on the last level: $s_{i+1}(n) = 1$
- Costs of partial problem on the last level: $T_{i+1_p}(n) = d$

Recursion Tree Method Costs

Costs of solving partial solutions: (only the last layer)

- Size of partial problems on the last level: $s_{i+1}(n) = 1$
- Costs of partial problem on the last level: $T_{i+1}(n) = d$
- With this the depth of the tree is:

$$\left(\frac{1}{4}\right)^i \cdot n = 1 \qquad \Rightarrow n = 4^i \qquad \Rightarrow i = \log_4 n$$

- Size of partial problems on the last level: $s_{i+1}(n) = 1$
- Costs of partial problem on the last level: $T_{i+1_0}(n) = d$
- With this the depth of the tree is:

$$\left(\frac{1}{4}\right)^i \cdot n = 1 \qquad \Rightarrow n = 4^i \qquad \Rightarrow i = \log_4 n$$

Number of partial problems on the last level:

$$n_{i+1} = 3^{\log_4 n}$$

- Size of partial problems on the last level: $s_{i+1}(n) = 1$
- Costs of partial problem on the last level: $T_{i+1_0}(n) = d$
- With this the depth of the tree is:

$$\left(\frac{1}{4}\right)^i \cdot n = 1 \qquad \Rightarrow n = 4^i \qquad \Rightarrow i = \log_4 n$$

Number of partial problems on the last level:

$$n_{i+1} = 3^{\log_4 n} = n^{\log_4 3} \leftarrow \text{next slide}$$

- Size of partial problems on the last level: $s_{i+1}(n) = 1$
- Costs of partial problem on the last level: $T_{i+1_0}(n) = d$
- With this the depth of the tree is:

$$\left(\frac{1}{4}\right)^i \cdot n = 1 \qquad \Rightarrow n = 4^i \qquad \Rightarrow i = \log_4 n$$

Number of partial problems on the last level:

$$n_{i+1} = 3^{\log_4 n} = n^{\log_4 3} \leftarrow \text{next slide}$$

■ Costs on the last level: $T_{i+1}(n) = d \cdot n^{\log_4 3}$

REIBURG

■ transforming 3^{log₄ n} uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n} \right)$$

uses
$$n = 3^{\log_3 n}$$

transforming 3 log₄ n uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n} \right)$$
 uses $n = 3^{\log_3 n}$
= $\log_3 n \cdot \log_4 3$ uses $\log a^b = b \cdot \log a$

■ transforming 3^{log4} uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n}\right)$$
 uses $n = 3^{\log_3 n}$
= $\log_3 n \cdot \log_4 3$ uses $\log a^b = b \cdot \log a$

■ this proves the general log rule $\log_b c = \log_a c \cdot \log_b a$

Fun with logarithm

REIBURG

■ transforming 3^{log4} n uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n}\right)$$
 uses $n = 3^{\log_3 n}$
= $\log_3 n \cdot \log_4 3$ uses $\log a^b = b \cdot \log a$

- this proves the general log rule $\log_b c = \log_a c \cdot \log_b a$
- now the whole expression:

$$3^{\log_4 n} = 3^{\log_3 n \cdot \log_4 3}$$

uses reformulation above

Fun with logarithm

NI REIBURG

■ transforming 3^{log4} n uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n} \right)$$
 uses $n = 3^{\log_3 n}$
= $\log_3 n \cdot \log_4 3$ uses $\log a^b = b \cdot \log a$

- this proves the general log rule $\log_b c = \log_a c \cdot \log_b a$
- now the whole expression:

$$3^{\log_4 n} = 3^{\log_3 n \cdot \log_4 3}$$
 uses reformulation above
= $\left(3^{\log_3 n}\right)^{\log_4 3}$ uses $x^{a \cdot b} = (x^a)^b$

■ transforming 3^{log4} n uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n} \right) \qquad \text{uses } n = 3^{\log_3 n}$$
$$= \log_3 n \cdot \log_4 3 \qquad \text{uses } \log a^b = b \cdot \log a$$

- this proves the general log rule $\log_b c = \log_a c \cdot \log_b a$
- now the whole expression:

$$3^{\log_4 n} = 3^{\log_3 n \cdot \log_4 3}$$
 uses reformulation above
 $= \left(3^{\log_3 n}\right)^{\log_4 3}$ uses $x^{a \cdot b} = (x^a)^b$
 $= n^{\log_4 3}$

■ transforming 3^{log4} n uses general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n} \right)$$
 uses $n = 3^{\log_3 n}$
= $\log_3 n \cdot \log_4 3$ uses $\log a^b = b \cdot \log a$

- this proves the general log rule $\log_b c = \log_a c \cdot \log_b a$
- now the whole expression:

$$3^{\log_4 n} = 3^{\log_3 n \cdot \log_4 3}$$
 uses reformulation above
 $= \left(3^{\log_3 n}\right)^{\log_4 3}$ uses $x^{a \cdot b} = (x^a)^b$
 $= n^{\log_4 3}$

This term will recur in the master theorem.

Recursion Equations Total costs

FREIB

Recursion Equations

Total costs

Costs of level i:
$$T_i(n) = \left(\frac{3}{16}\right)^i \cdot c \cdot n^2$$

Recursion Equations Total costs

FEE

- Costs of level i: $T_i(n) = \left(\frac{3}{16}\right)^i \cdot c \cdot n^2$
- Costs of last level: $T_{i+1}(n) = d \cdot n^{\log_4 3}$

Total costs

- Costs of level i: $T_i(n) = \left(\frac{3}{16}\right)^i \cdot c \cdot n^2$
- Costs of last level: $T_{i+1}(n) = d \cdot n^{\log_4 3}$

$$T(n) = \underbrace{\sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i \cdot c \cdot n^2}_{\text{geometric series,}} + \underbrace{d \cdot n^{\log_4 3}}_{\text{geometric series,}} \in O(n^2)$$

$$\underbrace{\sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i \cdot c \cdot n^2}_{\text{geometric series,}} + \underbrace{d \cdot n^{\log_4 3}}_{\text{log}_4 3 < 1,} \in O(n^2)$$

$$\underbrace{constant}_{\text{even with infinite elements}} + \underbrace{constant}_{\text{slower than } n^2}$$

Total costs:

- Costs of level i: $T_i(n) = \left(\frac{3}{16}\right)^i \cdot c \cdot n^2$
- Costs of last level: $T_{i+1}(n) = d \cdot n^{\log_4 3}$

$$T(n) = \underbrace{\sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i \cdot c \cdot n^2}_{j=0} + \underbrace{d \cdot n^{\log_4 3}}_{j=0} \in O(n^2)$$

$$\underbrace{\sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i \cdot c \cdot n^2}_{j=0} + \underbrace{d \cdot n^{\log_4 3}}_{j=0} \in O(n^2)$$

$$\underbrace{\log_4 3 < 1}_{j=0}$$

$$\underbrace{\log_4$$

 Here: The costs of connecting the partial problems dominate

Recursion Equations

Geometric Series

Recursion Equations

Geometric Series

■ Geometric progression:

Quotient of two neighbored progression parts is constant

Geometric Series

- **Geometric progression:** Quotient of two neighbored progression parts is constant
- Geometric series: The series (cumulative sum) of a geometric progression

- FREE
- **Geometric progression:**Quotient of two neighbored progression parts is constant
 - **Geometric series:**The series (cumulative sum) of a geometric progression
- For |q| < 1:

$$\sum_{k=0}^{\infty} a_0 \cdot q^k = \frac{a_0}{1-q} \qquad \Rightarrow \text{constant}$$

- **Geometric progression:**Quotient of two neighbored progression parts is constant
- **Geometric series:**The series (cumulative sum) of a geometric progression
- For | *q* |< 1:

$$\sum_{k=0}^{\infty} a_0 \cdot q^k = \frac{a_0}{1-q} \qquad \Rightarrow \text{constant}$$

Therefore constant

Proof of $O(n^2)$:

NE NE

Proof of $O(n^2)$:

We know:

$$T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$$
$$\leq 3T\left(\frac{n}{4}\right) + c \cdot n^2$$

Proof of $O(n^2)$:

■ We know:

$$T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$$

$$\leq 3T\left(\frac{n}{4}\right) + c \cdot n^2$$

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) \leq k \cdot n^2$$

BURG

Proof of $O(n^2)$:

Recursion Equations

BURG

Proof of $O(n^2)$

Proof of $O(n^2)$:

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

NE NE

Proof of $O(n^2)$:

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

Proof of $O(n^2)$:

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

$$T(n) \leq 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^2$$

Proof of $O(n^2)$:

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

$$T(n) \le 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^2$$
$$\le 3k \cdot \left(\frac{n}{4}\right)^2 + c \cdot n^2$$

Proof of $O(n^2)$:

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

$$T(n) \le 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^{2}$$
$$\le 3k \cdot \left(\frac{n}{4}\right)^{2} + c \cdot n^{2}$$
$$= \frac{3}{16}k \cdot n^{2} + c \cdot n^{2}$$

Proof of $O(n^2)$:

■ Presumption: $T(n) \in O(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

$$T(n) \le 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^{2}$$

$$\le 3k \cdot \left(\frac{n}{4}\right)^{2} + c \cdot n^{2}$$

$$= \frac{3}{16}k \cdot n^{2} + c \cdot n^{2}$$

$$\le k \cdot n^{2} \qquad \text{for } k \ge \frac{16}{13}c$$

Structure

Divide and Conquer
Concept
Maximum Subtotal

Recursion Equations

Substitution Method Recursion Tree Method

Master theorem

Master theorem (Simple Form)
Master theorem (General Form

Recursion Equations

Master theorem

Master theorem:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

Approach to solve for a recursion equation of the form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

 \blacksquare T(n) is the runtime of an algorithm ...

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

- \blacksquare T(n) is the runtime of an algorithm ...
 - \blacksquare ... which divides a problem of size n in a partial problems

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

- \blacksquare T(n) is the runtime of an algorithm ...
 - ... which divides a problem of size *n* in *a* partial problems
 - ... which solves each partial problem recursively with a runtime of $T(\frac{n}{b})$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

- \blacksquare T(n) is the runtime of an algorithm ...
 - ... which divides a problem of size *n* in *a* partial problems
 - with a runtime of $T(\frac{n}{h})$
 - \blacksquare ... which takes f(n) steps to merge all partial solutions

Recursion Equations

Master theorem (Simple Form)

Master theorem:

In the examples we have seen that ...

- In the examples we have seen that ...
 - Either the runtime of connecting the solutions dominates

- In the examples we have seen that ...
 - Either the runtime of connecting the solutions dominates
 - Or the runtime of solving the problems dominates

- In the examples we have seen that ...
 - Either the runtime of connecting the solutions dominates
 - Or the runtime of solving the problems dominates
 - Or both have equal influence on runtime

- In the examples we have seen that ...
 - Either the runtime of connecting the solutions dominates
 - Or the runtime of solving the problems dominates
 - Or both have equal influence on runtime
- **Simple form:** Special case with runtime of connecting the solutions $f(n) \in O(n)$

Recursion Equations

Master theorem (Simple Form)

Simple form:

Simple form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \underbrace{c \cdot n}_{\text{total in general form}}, \quad a \ge 1, b > 1, c > 0$$

Simple form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \underbrace{c \cdot n}_{\text{total and f}}, \quad a \ge 1, b > 1, c > 0$$
was any $f(n)$
in general form

This yields a runtime of:

Simple form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \underbrace{c \cdot n}_{\text{total energy of the single}}, \quad a \ge 1, b > 1, c > 0$$

was any $f(n)$
in general form

This yields a runtime of:

Number of leaves

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b \\ \Theta(n \log n) & \text{if } a = b \\ \Theta(n) & \text{if } a < b \end{cases}$$

Figure: Simple recursion equation with a = 3, b = 2

Figure: Simple recursion equation with a = 3, b = 2

Figure: Simple recursion equation with a = 3, b = 2

■ Three partial problems with $\frac{1}{2}$ the size

Figure: Simple recursion equation with a = 3, b = 2

- Three partial problems with $\frac{1}{2}$ the size
- Solving the partial problems dominates (last layer, leaves)

Figure: Simple recursion equation with a = 3, b = 2

- Three partial problems with $\frac{1}{2}$ the size
- Solving the partial problems dominates (last layer, leaves)
- Runtime of $\Theta(n^{\log_b a})$

Figure: Simple recursion equation with a = 2, b = 2

Recursion Equations

Master theorem (Simple Form)

Figure: Simple recursion equation with a = 2, b = 2

Case 2: a = b

Figure: Simple recursion equation with a = 2, b = 2

Case 2: a = b

■ Two partial problems with $\frac{1}{2}$ the size

Figure: Simple recursion equation with a = 2, b = 2

Case 2: a = b

- Two partial problems with $\frac{1}{2}$ the size
- Each layer has equal costs, log *n* layers

Figure: Simple recursion equation with a = 2, b = 2

Case 2: a = b

- Two partial problems with $\frac{1}{2}$ the size
- Each layer has equal costs, log *n* layers
- Runtime of $\Theta(n \log n)$

Figure: Simple recursion equation with a = 2, b = 3

Figure: Simple recursion equation with a = 2, b = 3

Figure: Simple recursion equation with a = 2, b = 3

■ Two partial problems with $\frac{1}{3}$ the size

Figure: Simple recursion equation with a = 2, b = 3

- Two partial problems with $\frac{1}{3}$ the size
- Connecting all partial solutions dominates (first layer, root)

Figure: Simple recursion equation with a = 2, b = 3

- Two partial problems with $\frac{1}{3}$ the size
- Connecting all partial solutions dominates (first layer, root)
- Runtime of $\Theta(n)$

Master theorem (Simple Form)

For a recursion equation like

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n, \quad a \ge 1, b > 1, c > 0$$

Master theorem (Simple Form)

For a recursion equation like

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n, \quad a \ge 1, b > 1, c > 0$$

... yields to a runtime of:

For a recursion equation like

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n, \quad a \ge 1, b > 1, c > 0$$

... yields to a runtime of:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b \\ \Theta(n \log_b n) & \text{if } a = b \\ \Theta(n) & \text{if } a < b \end{cases}$$

For a recursion equation like

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n, \quad a \ge 1, b > 1, c > 0$$

... yields to a runtime of:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b \\ \Theta(n \log_b n) & \text{if } a = b \\ \Theta(n) & \text{if } a < b \end{cases}$$

■ Proof with *geometric series*: Number of operations per layer grows / shrinks by constant factor $\frac{a}{b}$

Structure

Divide and Conquer Concept Maximum Subtotal

Recursion Equations

Substitution Method Recursion Tree Method

Master theorem

Master theorem (Simple Form

Master theorem (General Form)

Recursion Equations

Master theorem (General Form)

Master theorem (general form):

Master theorem (general form):

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

■ Case 1: $T(n) \in \Theta(n^{\log_b a})$ if $f(n) \in \mathcal{O}(n^{\log_b a - \varepsilon})$, $\varepsilon > 0$ Solving the partial problems dominates (last layer, leaves)

Master theorem (general form):

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

- Case 1: $T(n) \in \Theta(n^{\log_b a})$ if $f(n) \in \mathcal{O}(n^{\log_b a \varepsilon})$, $\varepsilon > 0$ Solving the partial problems dominates (last layer, leaves)
- Case 2: $T(n) \in \Theta(n^{\log_b a} \log n)$ if $f(n) \in \Theta(n^{\log_b a})$ Each layer has equal costs, $\log_b n$ layers

Recursion Equations

Master theorem (General Form)

Master theorem (general form):

Master theorem (general form):

■ Case 3: $T(n) \in \Theta(f(n))$ if $f(n) \in \Omega(n^{\log_b a + \varepsilon})$, $\varepsilon > 0$ Connecting all partial solutions dominates (first layer, root)

Regularity condition:

$$a \cdot f\left(\frac{n}{b}\right) \le c \cdot f(n), \quad 0 \le c \le 1,$$

 $n > n_0$

Recursion Equations

Master theorem (General Form) - Case 1

Case 1 - Example:

if $f(n) \in O(n^{\log_b a - \varepsilon}), \ \varepsilon > 0$

Solving the partial problems dominates (last layer, leaves)

Recursion Equations

Master theorem (General Form) - Case 1

Case 1 - Example: $T(n) \in \Theta(n^{\log_b a})$ if $f(n) \in O(n^{\log_b a - \varepsilon})$, $\varepsilon > 0$ Solving the partial problems dominates (last layer, leaves)

■
$$T(n) = 8 \cdot T(\frac{n}{2}) + 1000 \cdot n^2$$

 $a = 8, \ b = 2, \ f(n) = 1000 \cdot n^2, \ \underbrace{\log_b a = \log_2 8 = 3}_{n^3 \text{ leaves}}$
 $f(n) \in \mathcal{O}(n^{3-\varepsilon}) \Rightarrow T(n) \in \Theta(n^3)$

Case 1 - Example: $T(n) \in \Theta(n^{\log_b a})$ if $f(n) \in O(n^{\log_b a - \varepsilon})$, $\varepsilon > 0$ Solving the partial problems dominates (last layer, leaves)

■
$$T(n) = 8 \cdot T(\frac{n}{2}) + 1000 \cdot n^2$$

 $a = 8, b = 2, f(n) = 1000 \cdot n^2, \underbrace{\log_b a = \log_2 8 = 3}_{n^3 \text{ leaves}}$
 $f(n) \in \mathcal{O}(n^{3-\varepsilon}) \Rightarrow T(n) \in \Theta(n^3)$

$$T(n) = 9 \cdot T(\frac{n}{3}) + 17 \cdot n$$

$$a = 9, \ b = 3, \ f(n) = 17 \cdot n, \ \underline{\log_b a = \log_3 9 = 2}$$

$$f(n) \in \mathcal{O}(n^{2-\varepsilon}) \Rightarrow T(n) \in \Theta(n^2)$$

$$n^2 \text{ leaves}$$

Master theorem (General Form) - Case 2

Case 2:

if
$$f(n) \in \Theta(n^{\log_b a})$$

Each layer has equal costs, log *n* layers

Master theorem (General Form) - Case 2

JNI REIBURG

Case 2: $T(n) \in \Theta(n^{\log_b a} \log n)$ if $f(n) \in \Theta(n^{\log_b a})$ Each layer has equal costs, $\log n$ layers

Master theorem (General Form) - Case 2

Case 2: $T(n) \in \Theta(n^{\log_b a} \log n)$ if $f(n) \in \Theta(n^{\log_b a})$ Each layer has equal costs, $\log n$ layers

■
$$T(n) = 2 \cdot T(\frac{n}{2}) + 10 \cdot n$$

 $a = 2, b = 2, f(n) = 10 \cdot n, \log_b a = \log_2 2 = 1$
 $f(n) \in \Theta(n^{\log_2 2}) \Rightarrow T(n) \in \Theta(n \log n)$
 $f(n) \in \Theta(n^{\log_2 2}) \Rightarrow T(n) \in \Theta(n \log n)$

Master theorem (General Form) - Case 2

Case 2: $T(n) \in \Theta(n^{\log_b a} \log n)$ if $f(n) \in \Theta(n^{\log_b a})$ Each layer has equal costs, $\log n$ layers

■
$$T(n) = 2 \cdot T(\frac{n}{2}) + 10 \cdot n$$

 $a = 2, b = 2, f(n) = 10 \cdot n, \log_b a = \log_2 2 = 1$
 $f(n) \in \Theta(n^{\log_2 2}) \Rightarrow T(n) \in \Theta(n \log n)$
 $f(n) \in \Theta(n^{\log_2 2}) \Rightarrow T(n) \in \Theta(n \log n)$

$$T(n) = T(\frac{2n}{3}) + 1$$

$$a = 1, \ b = \frac{2}{3}, \ f(n) = 1, \ \underbrace{\log_b a = \log_{3/2} 1 = 0}_{n^0 \text{ leaves} = 1 \text{ leaf}}$$

$$f(n) \in \Theta(n^{\log_{3/2} 1}) \Rightarrow T(n) \in \Theta(n^0 \log n) = \Theta(\log n)$$

Master theorem (General Form) - Case 3

Case 3:

$$\text{if } f(n) \in \Omega(n^{\log_b a + \varepsilon}), \ \varepsilon > 0$$

Connecting all partial solutions dominates (first layer, root)

Master theorem (General Form) - Case 3

Case 3: $T(n) \in \Theta(f(n))$

if
$$f(n) \in \Omega(n^{\log_b a + \varepsilon}), \ \varepsilon > 0$$

Connecting all partial solutions dominates (first layer, root)

Master theorem (General Form) - Case 3

Case 3:
$$T(n) \in \Theta(f(n))$$

if
$$f(n) \in \Omega(n^{\log_b a + \varepsilon}), \ \varepsilon > 0$$

Connecting all partial solutions dominates (first layer, root)

$$T(n) = 2 \cdot T(\frac{n}{2}) + n^2$$

$$a = 2, b = 2, f(n) = n^2, \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

Check if regularity condition also holds:

$$2 \cdot \left(\frac{n}{2}\right)^2 \le c \cdot n^2 \qquad \Rightarrow \frac{1}{2} \cdot n^2 \le c \cdot n^2 \qquad \Rightarrow c \ge \frac{1}{2}$$
$$\Rightarrow T(n) \in \Theta(n^2)$$

Master theorem (General Form)

Master theorem (General Form)

Master theorem:

Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

■ Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

$$a = 2, b = 2, f(n) = n \log n, \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

Master theorem (General Form)

Master theorem:

Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

$$a = 2, b = 2, f(n) = n \log n, \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

■ Case 1: $f(n) \notin O(n^{1-\varepsilon})$

Master theorem (General Form)

Master theorem:

Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

$$a = 2, b = 2, f(n) = n \log n, \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

- Case 1: $f(n) \notin O(n^{1-\varepsilon})$
- Case 2: $f(n) \notin \Theta(n^1)$

Master theorem (General Form)

Master theorem:

■ Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

$$a = 2, b = 2, f(n) = n \log n, \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

- Case 1: $f(n) \notin O(n^{1-\varepsilon})$
- Case 2: $f(n) \notin \Theta(n^1)$
- Case 3: $f(n) \notin \Omega(n^{1+\varepsilon})$

Master theorem (General Form)

Master theorem:

■ Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

$$a = 2, b = 2, f(n) = n \log n, \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

- Case 1: $f(n) \notin O(n^{1-\varepsilon})$
- Case 2: $f(n) \notin \Theta(n^1)$
- Case 3: $f(n) \notin \Omega(n^{1+\varepsilon})$

n log n is asymptotically larger than n, but not polynominal larger

Master theorem - Summary

Master theorem - Summary

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Three cases depending on the dominance of the terms

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

- Three cases depending on the dominance of the terms
- Case 1: Solving the partial problems is *polynominal* bigger than merging all solutions

$$T(n) \in \Theta(n^{\log_b a}),$$

$$T(n) \in \Theta(\text{number of leaves})$$

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

- Three cases depending on the dominance of the terms
- Case 1: Solving the partial problems is *polynominal* bigger than merging all solutions

$$T(n) \in \Theta(n^{\log_b a}),$$
 $T(n) \in \Theta(\text{number of leaves})$

■ Case 2: Each layer has equal costs

$$T(n) \in \Theta(n^{\log_b a} \log n)$$
, $\log n$ layers

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

- Three cases depending on the dominance of the terms
- Case 1: Solving the partial problems is *polynominal* bigger than merging all solutions

$$T(n) \in \Theta(n^{\log_b a}),$$
 $T(n) \in \Theta(n^{\log_b a})$

$$T(n) \in \Theta(\text{number of leaves})$$

- Case 2: Each layer has equal costs $T(n) \in \Theta(n^{\log_b a} \log n)$, $\log n$ layers
- Case 3: Connecting all partial solutions is *polynominal* bigger than solving all partial porblems $T(n) \in \Theta(f(n))$

■ General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson.

 Introduction to Algorithms.

 MIT Press, Cambridge, Mass, 2001
- MIT Press, Cambridge, Mass, 2001.

 [MS08] Kurt Mehlhorn and Peter Sanders.
- Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf.

[Wik] Master theorem

https://en.wikipedia.org/wiki/Master_theorem