Mathématiques en MP

Cours complet

Soeung Raphaël

15 décembre 2024

Sommaire

I	Topologie des espaces vectoriels normés		
	A	Structure d'espace vectoriel normé	
	В	Distance associée à une norme, boules et sphères	
	C	Convexité dans les espaces vectoriels normés	
	D	Suites à valeurs dans un espace vectoriel normé	
II	Espa	aces préhilbertiens réels	
	Δ	Produit scalaire	

I Topologie des espaces vectoriels normés

Contexte

Soit $(\mathbb{K}, +, \times)$ un corps et $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel.

A Structure d'espace vectoriel normé

Définition — **Norme**

Est dite norme sur E toute application N de E dans \mathbb{R}_+ vérifiant :

- \longrightarrow axiome de séparation : $\forall x \in E, N(x) = 0 \implies x = 0_E$;
- \longrightarrow absolue homogénéité : $\forall x \in E, \ \forall \lambda \in \mathbb{K}, \ N(\lambda \cdot x) = |\lambda| \times N(x);$
- \longrightarrow sous-additivité : $\forall (x, y) \in E^2$, $N(x + y) \le N(x) + N(y)$.

Une application de E dans \mathbb{R}_+ sous-additive vérifiant l'absolue homogénéité est dite semi-norme sur E.

Définition — Espace vectoriel normé

On définit un espace vectoriel normé par la donnée d'un couple (E, N) où E est un espace vectoriel et N une norme sur E.

Exemple

(i) Soit $n \in \mathbb{N}^*$, $((E_i, N_i))_{i \in [\![1,n]\!]}$ une famille finie d'espaces vectoriels normés. On appelle $E = \prod_{i=1}^n E_i$ l'espace vectoriel produit. On peut définir une norme sur E en notant N l'application de E dans R+ définie par :

$$\forall (x_i)_{1 \le i \le n} \in E, N((x_i)_{1 \le i \le n}) = \max \left(\{ x \in R_+ | \exists i \in [[1, n]], x = N(x_i) \} \right).$$

Démonstration

(i) → axiome de séparation :

Soit tout $x = (x_i)_{1 \le i \le n} \in E$ tel que N(x) = 0.

Pour tout $i \in [1, n]$:

$$0 \le N_i(x_i) \le N(x)$$

$$\iff 0 \le N_i(x_i) \le 0$$

$$\iff N_i(x_i) = 0$$

Alors x = 0 par axiome de séparation.

→ absolue homogénéité :

Soit
$$\lambda \in \mathbb{K}$$
 et $x = (x_i)_{1 \le i \le n} \in E$.

Il existe $i \in [1, n]$ tel que $N_i(x_i) = N(x)$.

Ainsi, pour tout $j \in [1, n]$:

$$N_{j}(x_{j}) \leq N_{i}(x_{i})$$

$$\iff |\lambda| \times N_{j}(x_{j}) \leq |\lambda| \times N_{i}(x_{i})$$

$$\iff N_{i}(\lambda \cdot x_{i}) \leq N_{i}(\lambda \cdot x_{i})$$

Donc $N_i(\lambda \cdot x_i) = N(\lambda \cdot x)$.

→ sous-additivité:

Soit
$$x = (x_i)_{1 \le i \le n} \in E$$
 et $y = (y_i)_{1 \le i \le n} \in E$.

Pour tout $i \in [1, n]$, avec la sous-additivité de la norme :

$$N_i(x_i + y_i) \le N_i(x_i) + N_i(y_i) \le N(x) + N(y)$$

$$\implies N(x + y) \le N(x) + N(y)$$

Définition — Vecteur unitaire

Dans un espace vectoriel normé, tout vecteur de norme 1 est dit vecteur unitaire.

Dans un espace vectoriel normé (E, N), nous pouvons construire un vecteur unitaire à partir de tout vecteur non nul :

$$\forall x \in E, N\left(\frac{1}{N(x)} \cdot x\right) = \frac{1}{N(x)} \times N(x) = 1.$$

Proposition — Continuité de la norme

La norme est 1-lipschitzienne donc continue. Soit *N* une norme sur E.

$$\forall (x, y) \in E^2, |N(x) - N(y)| \le N(x - y).$$

Démonstration Soit $(x, y) \in E^2$. Par sous-additivité de la norme :

$$N(x) = N(x - y + y) = N((x - y) + y) \le N(x - y) + N(y)$$

$$\iff N(x) - N(y) \le N(x - y).$$

Alors, par absolue homogénéité de la norme :

$$N(y) - N(x) \le N(y - x)$$

$$\iff -(N(x) - N(y)) \le N(x - y).$$

Donc: $|N(x) - N(y)| \le N(x - y)$.

B Distance associée à une norme, boules et sphères

Définition — **Distance**

Soit X un ensemble. Une application $d \colon X^2 \longrightarrow \mathbb{R}_+$ est dite distance sur X lorsque les propriétés suivantes sont vérifiées :

- (i) axiome de séparation : $\forall (x, y) \in X^2, d(x, y) = 0 \iff x = y;$
- (ii) symétrie : $\forall t(x, y) \in X^2, d(x, y) = d(y, x)$;
- (iii) inégalité triangulaire : $\forall (x, y, z) \in X^3, d(x, z) \leq d(x, y) + d(y, z)$.

Définition — Espace métrique

On définit un espace métrique par la donnée d'un couple (X, d) où X est un ensemble non vide et d une distance sur X.

Définition — Distance associée à une norme

Soit (E, N) un sous-espace vectoriel normé. On appelle distance associée à N l'application d_N de E^2 dans \mathbb{R}_+ définie par : $\forall (x, y) \in E^2$, $d_N(x, y) = N(x - y)$.

Proposition — La distance associée à une norme est une distance

Soit (E, N) un espace vectoriel normé, d_N la distance associée à N. Alors d_N est une distance sur E.

Démonstration

(i) Soit $(x, y) \in E^2$. Par axiome de séparation :

$$d_N(x, y) = 0 \iff N(x - y) = 0 \iff x - y = 0 \iff x = y;$$

(ii) Soit $(x, y) \in E^2$. Par absolue homogénéité de la norme :

$$d_N(x, y) = N(x - y) = N((-1) \cdot (y - x)) = |-1| \times N(y - x)$$

= 1 \times N(y - x) = N(y - x) = d_N(y, x);

(iii) Soit $(x, y, z) \in E^3$. Par sous-additivité de la norme :

$$d_{N}(x,z) = N(x-z) = N(x-y+y-z)$$

$$= N((x-y) + (y-z)) \le N(x-y) + N(y-z)$$

$$\iff d_{N}(x,z) \le d_{N}(x-y) + d_{N}(y-z).$$

Définition — Distance d'un point à une partie

Soit (X, d) un espace métrique, A une partie non vide de X et $x \in X$. On définit la distance de x à A par : $d(x, A) = \inf(\{\delta \in \mathbb{R}_+ | \exists y \in X, d(x, y) = \delta\})$.

L'existence de la d(x, A) est assurée par la propriété de la borne inférieure sur \mathbb{R} et le fait que A est non vide.

Définition — Boules et sphères

Soit (X, d) un espace métrique, $a \in X$ et $r \in \mathbb{R}_+^*$. On définit les ensembles suivants :

- \longrightarrow boule ouverte de centre a et de rayon $r: B(a,r) = \{x \in X | d(a,x) < r\};$
- \longrightarrow boule fermée de centre a et de rayon $r : \overline{B}(a,r) = \{x \in X | d(a,x) \le r\}$;
- \longrightarrow sphère de centre a et de rayon $r: S(a,r) = \{x \in X | d(a,x) = r\}$.

Définition — Partie bornée

Soit (X, d) un espace métrique, A une partie de X. On dit que A est bornée lorsqu'il existe une boule qui la contient, ou plus formellement, si l'assertion suivante est vraie :

$$\exists (a,r) \in X \times \mathbb{R}^*_{\perp}, \forall x \in A, d(a,x) < r.$$

Proposition — Caractérisations d'une partie bornée

Soit (X, d) un espace métrique et $A \subset X$. Les trois assertions suivantes sont équivalentes :

- (i) A est bornée : $\exists (a,r) \in X \times \mathbb{R}_+^*, \forall x \in A, d(a,x) < r;$
- (ii) $\{\delta \in \mathbb{R} + | \exists (x, y) \in A^2, d(x, y) = \delta \}$ est une partie bornée de R_+ ;
- (iii) $\forall a \in X, \exists r \in \mathbb{R}_+^*, \forall x \in A, d(a, x) < r.$

Démonstration

 $(i) \Longrightarrow (ii)$

Soit $(a, r) \in X \times \mathbb{R}_+^*$ tel que pour tout $x \in A$, d(a, x) < r. Pour tout $(x, y) \in A^2$, par symétrie de la distance et inégalité triangulaire :

$$d(x, y) \le d(x, a) + d(a, y)$$

$$\iff d(x, y) \le d(a, x) + d(a, y) \le 2r.$$

Donc $\{\delta \in \mathbb{R} + | \exists (x, y) \in A^2, d(x, y) = \delta \}$ est une partie bornée de R_+ .

 $(ii) \Longrightarrow (iii)$

Si $\{\delta \in \mathbb{R} + | \exists (x, y) \in A^2, d(x, y) = \delta\}$ est une partie bornée de R_+ , alors il existe $M \in \mathbb{R}_+^*$ tel que pour tout $(x, y) \in A^2$, $d(x, y) \leq M$.

Si A est vide alors (iii) est vraie par principe du tiers exclu car sa négation est fausse.

Supposons alors que A est non vide. Soit $y \in a$. Pour tout $(a, x) \in X \times A$:

$$d(a, x) \leq d(a, y) + d(y, x) \leq d(a, y) + M$$
.

Ainsi, en notant r = d(a, y) + M + 1, on a $A \subset B(a, r)$.

Donc (iii) est vraie.

 $(iii) \Longrightarrow (i)$

Si (iii) est vraie, alors puisque *X* est non vide, (i) est vraie.

Proposition — Caractérisation d'une partie bornée dans un espace vectoriel normé Soit (E, N) un espace vectoriel normé et $A \subset E$.

$$\exists (a,r) \in E \times \mathbb{R}^*_+, \forall x \in A, d_N(a,x) < r \iff \exists M \in \mathbb{R}_+, \forall x \in A, N(x) \leqslant M.$$

Démonstration

Supposons qu'il existe $(a, r) \in E \times \mathbb{R}_+^*$ tel que pour tout $x \in A$, $d_N(a, x) < r$. Pour tout $x \in A$, par homogénéité et sous-additivité de la norme :

$$d_N(a,x) < r \iff N(a-x) < r$$

$$\iff N(x-a) + N(a) < r + N(a)$$

$$\implies N(x) < r + N(a)$$

Supposons qu'il existe $M \in \mathbb{R}_+$ tel que pour tout $x \in A$, $N(x) \leq M$. Pour tout $x \in A$:

$$N(x - 0_E) = N(x) < M + 1 \iff x \in B(0_E, M + 1).$$

Donc $A \subset B(0_E, M + 1)$. A est donc bornée.

Définition — Application bornée

Soit (X, d) un espace métrique, une application à valeurs dans X est dite bornée lorsque son image est une partie bornée de X.

C Convexité dans les espaces vectoriels normés

Définition — **Segment**

Pour tout $(a, b) \in E^2$, on appelle segment d'extrémités a et b l'ensemble noté [a, b] défini par :

$$[a, b] = \{m \in E | \exists t \in [0, 1], m = (1 - t) \cdot a + t \cdot b\}.$$

Définition — Partie convexe

Une partie C non vide de E est dite convexe lorsque pour tout $(a,b) \in C^2$, $[a,b] \subset C$, ou plus formellement, lorsque l'assertion suivante est vraie :

$$\forall (a, b) \in C^2, \forall t \in [0, 1], (1 - t) \cdot a + t \cdot b \in C.$$

Proposition — Convexité et symétrie centrale des boules dans un espace vectoriel normé

Soit (E, N) un espace vectoriel normé, toute boule associée à la distance d_N est symétrique par rapport à son centre et convexe; c'est-à-dire, pour tout $(c, r) \in E \times \mathbb{R}_+^*$:

- (i) $\forall u \in B(c, r), c (u c) = 2 \cdot c u \in B(c, r)$
- (ii) $\forall (a, b) \in B(c, r)^2, \forall t \in [0, 1], (1 t) \cdot a + t \cdot b \in B(c, r)$

Démonstration

(i) Soit $u \in B(c, r)$. Alors:

$$d_N(c, 2 \cdot c - u) = N(c - (2 \cdot c - u)) = N(c - u)$$

$$\iff d_N(c, 2 \cdot c - u) = d_N(c, u)$$

Ainsi, $d_N(c, 2 \cdot c - u) \leq r$.

Ce faisant, $2 \cdot c - u \in B(c, r)$. Donc B(c, r) est symétrique par rapport à son centre c.

(ii) Soit $(a, b) \in B(c, r)^2$ et $t \in [0, 1]$.

$$d_N(c, (1-t) \cdot a + t \cdot b) = N(c - ((1-t) \cdot a + t \cdot b))$$

$$= N((1-t) \cdot (c-a) + t \cdot (c-b))$$

$$\implies d_N(c, (1-t) \cdot a + t \cdot b) \le (1-t) \times N(c-a) + t \times N(c-b)$$

$$\implies d_N(c, (1-t) \cdot a + t \cdot b) < r^{1}$$

Ainsi, $(1 - t) \cdot a + t \cdot b \in B(c, r)$.

Donc B(c, r) est convexe.

D Suites à valeurs dans un espace vectoriel normé

Définition — Convergence d'une suite à valeurs vectorielles

Soit (E, N) un espace vectoriel normé, $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ et $l \in E$. On dit que $(u_n)_{n \in \mathbb{N}}$ est convergente

^{1.} (1-t) et t ne pouvant être simultanément nuls, on a : $(1-t) \times N(c-a) < (1-t) \times r$ ou $t \times N(c-a) < t \times r$.

vers l pour la norme N lorsque la suite numérique $(d_N(u_n, l))_{n \in \mathbb{N}}$ est convergente de limite nulle; ou plus formellement, lorsque l'assertion suivante est vraie :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant n_{0}) \implies d_{N}(u_{n}, l) < \varepsilon$$

On dit alors que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente lorsqu'il existe un vecteur $l\in E$ tel que $(u_n)_{n\in\mathbb{N}}$ est convergente vers l, et divergente lorsqu'elle n'est pas convergente.

Proposition — Unicité de la limite pour une même norme des suite à valeurs vectorielles convergentes

Soit (E, N) un espace vectoriel normé, $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ et $(l, l') \in E^2$. Si $(u_n)_{n \in \mathbb{N}}$ converge vers l et l' pour la norme N, alors l = l'.

Démonstration

Avec l'inégalité triangulaire :

$$\forall n \in \mathbb{N}, d_N(l, l') \leq d_N(l, u_n) + d_N(u_n, l').$$

Alors, comme $(d_N(l, u_n))_{n \in \mathbb{N}}$ et $(d_N(u_n, l'))_{n \in \mathbb{N}}$ sont des suites à valeurs réelles, avec la symétrie de la distance :

$$\lim_{n\to\infty} d_N(l-l') = \lim_{n\to\infty} d_N(u_n,l) + \lim_{n\to\infty} d_N(u_n,l') = 0.$$

Ainsi $d_N(l-l')=0$.

Donc l = l' par axiome de séparation de la distance.

Proposition — Bornitude des suites à valeurs vectorielles convergentes

Toute suite à valeurs vectorielles convergentes est bornée.

Démonstration

Soit (E, N) un espace vectoriel normé, $l \in E$ et $(u_n)_{n \in \mathbb{N}}$ une suite convergente vers l.

Soit $r \in \mathbb{R}_+^*$. Il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, si $n \ge n_0$ alors $d_N(u_n, l) < r$.

On pose $H = \{d \in R_+ | \exists n \in [0, n_0], d_N(u_n, l) = d\}$, et $M = \max(H \cup \{r\}) + 1$.

Alors pour tout $n \in \mathbb{N}$, $d_N(l, u_n) < M$ par symétrie de la distance.

Donc $(u_n)_{n\in\mathbb{N}}$ est bornée.

Proposition — Caractérisation de la convergence d'une suite à valeurs vectorielles pour la norme produit

Soit $p \in \mathbb{N}^*$, $((E_i, N_i))_{i \in [\![1,p]\!]}$ une famille finie d'espaces vectoriels normés. On note (E, N) l'espace vectoriel produit muni de sa norme produit associé à la famille $((E_i, N_i))_{i \in [\![1,p]\!]}$.

Soit
$$(u_n)_{n\in\mathbb{N}} = \left((u_{i,n})_{i\in\llbracket 1,p\rrbracket}\right)_{n\in\mathbb{N}} \in E^{\mathbb{N}}.$$

Alors $(u_n)_{n\in\mathbb{N}}$ est convergente si et seulement si pour tout $i\in [[1,p]]$, $(u_{i,n})_{n\in\mathbb{N}}$ est convergente, auquel cas l'égalité suivante est vérifiée :

$$\lim_{n\to\infty}u_n=(\lim_{n\to\infty})u_{i,n})_{1\leqslant i\leqslant p}.$$

Démonstration

 \Longrightarrow Supposons que $(u_n)_{n\in\mathbb{N}}$ est convergente de limite $l=(l_i)_{1\leqslant i\leqslant p}$.

Soit $n \in \mathbb{N}$ tel que $n \ge n_0$ et $i \in [1, p]$.

$$\forall n \in \mathbb{N}, 0 \leq N(u_{i,n} - l_i) \leq N(u_n - l)$$

$$\implies 0 \leq \lim_{n \to \infty} N(u_{i,n} - l) \leq \lim_{n \to \infty} N(u_n - l)$$

$$\implies \lim_{n \to \infty} N(u_{i,n} - l) = 0$$

Donc pour tout $i \in [[1, p]], (u_{i,n})_{n \in \mathbb{N}}$ converge vers l_i .

Supposons que pour tout $i \in [[1, p]], (u_{i,n})_{n \in \mathbb{N}}$ converge vers l_i . Alors :

$$\forall n \in \mathbb{N}, 0 \leq N(u_n - l) \leq \sum_{i=1}^p N_i(u_{i,n})$$

$$\implies 0 \leq \lim_{n \to \infty} N(u_n - l) \leq \lim_{n \to \infty} \sum_{i=1}^p N_i(u_{i,n})$$

$$\implies 0 \leq \lim_{n \to \infty} N(u_n - l) \leq \sum_{i=1}^p \lim_{n \to \infty} N_i(u_{i,n})$$

$$\implies 0 \leq \lim_{n \to \infty} N(u_n - l) \leq 0$$

$$\implies \lim_{n \to \infty} N(u_n - l) = 0$$

Espaces préhilbertiens réels II

A Produit scalaire

Définition — Produit scalaire

Soit E un \mathbb{R} -espace vectoriel. On appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive, c'est-à-dire toute application $\langle \cdot | \cdot \rangle : E \times E \longrightarrow \mathbb{R}$:

- $\longrightarrow \text{ bilin\'eaire}: \forall (x,y,z) \in E^3, \ \forall (\lambda,\mu) \in \mathbb{R}^2, \langle \lambda \cdot x + \mu \cdot y, z \rangle = \lambda \times \langle x,z \rangle + \mu \times \langle y,z \rangle;$
- \longrightarrow absolue homogénéité : $\forall x \in E, \ \forall \lambda \in \mathbb{K}, \ N(\lambda \cdot x) = |\lambda| \times N(x);$ \longrightarrow sous-additivité : $\forall (x, y) \in E^2, \ N(x + y) \leq N(x) + N(y).$