

RLChina 2020

Lecture 2: Foundations of Reinforcement Learning

— from policy methods to PAC bounds analysis

Prof. Jun Wang UCL

July 28, 2020

Table of content

- Recap (yesterday's lecture)
 - MDPs
 - Value iterations and policy iterations
 - Tabular Q-Learning
- Policy approaches
 - Markov chains
 - Policy gradient
- Computational learning theory
 - ► PAC learning concepts
 - Learning bound for finite H
- ► Theoretical analysis
 - Approximate dynamic programming
 - Performance bounds
 - Sample complexity

Main references

- machine learning and learning theory books¹²
- reinforcement learning books³⁴
- approximate dynamic programming 45
- this slide is adopted from our upcoming book chapter⁶

¹Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

²Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning:* From theory to algorithms. Cambridge university press, 2014.

³Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

⁴Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

⁵Ŕemi Munos. Introduction to Reinforcement Learning and multi-armed bandits. NETADIS Summer School. 2013.

Table of content

- Recap
 - MDPs
 - Value iterations and policy iterations
 - Tabular Q-Learning
- Policy approaches
 - Markov chains
 - Policy gradient
- Computational learning theory
 - ► PAC learning concepts
 - Learning bound for finite H
- Theoretical analysis
 - Approximate dynamic programming
 - Performance bounds
 - Sample complexity

Markov Decision Process(MDP)

Definition:

- ▶ an MDP M is a tuple $\{S, A, Pr(s'|s, a), r(s, a, s')\}$
- ▶ \mathbb{S} : state space; a state $s \in \mathbb{S}$
- ▶ \mathbb{A} : action space; an action $a \in \mathbb{A}$
- ightharpoonup system dynamics: Pr(s'|s,a)
- reward: $r(s, a, s')^7$

$$R(s,a) := \mathbb{E}_{s' \sim \Pr(s'|s,a)}[r(s,a,s')].$$

⁷For the MDP with known state transition Pr(s'|s, a), the stochastic reward r(s, a, s') can be reduced to a deterministic one as

Policy

- a policy specifies what an agent should do in a specific circumstance
- ▶ it is a mapping from the history to a (deterministically or randomly) action at present: π_k : $(s_0, a_0, s_1, a_1, \dots, s_k) \mapsto a_k$
 - Markovian policy $\pi_k : s_k \mapsto a_k$
 - stationary policy $\pi_k = \pi_{k+1}$ for any k
 - ightharpoonup deterministic policy: $a := \pi(s)$
 - randomized policy $\Pr(a|s) := \pi(s|a)$ is often considered for an RL setup as it helps explore the environments

Objectives

an agent chooses a policy in order to maximise one of the following possible objectives:

1. total reward MDP over a finite horizon,

$$J(\pi) := \mathbb{E}\left[\sum_{k=0}^{N} R(s_k, \pi(s_k))\right];$$

2. discounted reward MDP over an infinite horizon,

$$J(\pi) := \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R(s_k, \pi(s_k))\right], \text{ for } 0 < \gamma < 1;$$

3. average reward MDP over an infinite horizon (ergodic reward),

$$J(\pi) = \lim_{K \to \infty} \mathbb{E}\left[\frac{1}{K+1} \sum_{k=0}^{K} R(s, \pi(s))\right]$$

Policy evaluation and optimisation

given the objective, the two core questions in an MDP are:

- 1. how good is a policy? \implies policy evaluation
- 2. what is the optimal policy? \implies policy optimisation

Value function and Q function

1. **policy evaluation** value function: the expected discounted rewards under a policy π starting from state s,

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R(s_k, \pi(s_k)) | s_0 = s\right],$$

and the corresponding action-value function (Q function), the expected reward of taking a particular action, under a policy

$$Q^{\pi}(s) := R(s,\pi(s)) + \mathbb{E}_{s' \sim \Pr(s'|s,\pi(s))}[V^{\star}(s')].$$

2. **policy optimisation** the value function optimising the policy gives the optimal value function,

$$V^{\star}(s) := \max_{\pi} \mathbb{E} \left[\sum_{k=0}^{\infty} R(s_k, \pi(s_k)) | s_0 = s \right].$$

By the same token, the optimal Q function is

$$Q^{\star}(s) := \max_{a} R(s,a) + \mathbb{E}_{s' \sim \Pr(s'|s,a)}[V^{\pi}(s')].$$

Solving the value function and Q function

- model-based approaches when the state transition and the reward function are known and given, the MDP can be solved by dynamic programming (DP) [Bel57], e.g., value iteration or policy iteration
- model-free approaches if the state transition and the reward function are not given, one can solve MDP with reinforcement learning (RL) by learning the solution through interactions with the environment

Bellman equation: how good a policy is

evaluation is also known as prediction. by splitting the immediate reward from $V^\pi(s)$ as

$$V^{\pi}(s) = \mathbb{E}\left[\gamma^{0}R(s_{0}, \pi(s_{0}))|s_{0} = s\right] + \mathbb{E}\left[\sum_{k=1}^{\infty} \gamma^{k}R(s_{k}, \pi(s_{k}))|s_{0} = s\right]$$

$$=R(s, \pi(s)) + \mathbb{E}_{s' \sim \Pr(s'|s, \pi(s))}\left[\sum_{k=1}^{\infty} \gamma^{k}R(s_{k}, \pi(s_{k}))|s_{1} = s'\right]$$

$$=R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s'|s, a) \underbrace{\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k}R(s_{k}, \pi(s_{k}))|s_{0} = s'\right]}_{=V^{\pi}(s')}$$

we can obtain the $Bellman\ equation$ for policy π as

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi(s)) V^{\pi}(s'). \tag{1}$$

Value iteration for evaluating a policy

when $\Pr(s'|s,a)$ and R(s,a) are given, V^{π} can be computed with either value iteration sketched in Algorithm 1

Algorithm 1 value iteration for evaluating a policy

- 1: initialise π and V arbitrarily
- 2: repeat
- 3: $V(s) \leftarrow R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi(s)) V(s'), \ \forall s$
- 4: until convergence

both π and V functions can be as a form of tables (tabular).

Bellman optimality equation: optimal policy

optimisation is also called as control. by splitting the reward, we can obtain the *Bellman optimality equation* as

$$V^{\star}(s) = \max_{a \in \mathbb{A}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V^{\star}(s').$$
 (2)

when $\Pr(s'|s,a)$ and R(s,a) are given, the optimal value function and the optimal policy can be directly solved with value iteration [Bel57] and policy iteration [How60], respectively.

(value iteration)
$$V(s) \leftarrow \max_{a \in \mathbb{A}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s')$$
 (3)
(policy iteration) $\pi(s) \leftarrow \arg\max_{a \in \mathbb{A}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V^{\pi}(s')$ (4)

Algorithm 2 Value iteration for optimising a policy

- 1: Initialize π and V arbitrarily
- 2: repeat
- 3: $V(s) \leftarrow \max_{a \in \mathbb{A}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s'), \ \forall s$ value improvement
- 4: until convergence
- ightharpoonup value iteration computes the optimal value function V^{\star} under the optimal policy
- using $V^*(s)$, the optimal policy π^* can be calculated from the Bellman optimality equation by

$$a^\star = \pi^\star(s) = rg \max_{a \in \mathbb{A}} R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) V^\star(s').$$

Algorithm 3 Policy iteration for optimising a policy

- 1: Initialize π and V arbitrarily
- 2: repeat
- 3: repeat
- 4: $V(s) \leftarrow R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi(s)) V(s'), \ \forall s$ \triangleright Policy evaluation using Algorithm 1
- 5: until Convergence
- 6: $\pi(s) \leftarrow \arg\max_{a \in \mathbb{A}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s'), \ \forall s \ \triangleright$ Policy improvement
- 7: until convergence
- policy iteration directly generates the optimal policy

VI and PI: convergence analysis

Let $\mathbb F$ be the space of functions on domain $\mathbb S$. Define the Bellman *policy* operator $T^\pi:\mathbb F\mapsto\mathbb F$ and the Bellman *optimality* operator $T:\mathbb F\mapsto\mathbb F$ as

$$T^{\pi}V(s) := R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a)V(s'), \ \forall s,$$
 (5)

$$TV(s) := \max_{a \in \mathbb{A}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s') \ \forall s$$
 (6)

VI and PI: convergence analysis

- hese two operators are mappings from one value function V(s) to another TV(s)
- ▶ also they are both *monotonic* and *contraction* mappings (with respect to the ∞ -norm), i.e.,
 - 1. monotonicity, if $V(s) \ge U(s)$ for any s,

$$T^{\pi}V(s) \geq T^{\pi}U(s); \tag{7}$$

$$TV(s) \ge TU(s)$$
 (8)

2. contraction, for any U, V,

$$||T^{\pi}V - T^{\pi}U||_{\infty} \le \gamma ||V - U||_{\infty} \tag{9}$$

$$||TV - TU||_{\infty} \le \gamma ||V - U||_{\infty} \tag{10}$$

Monotonicity proof

the inequality (7) follows from

$$T^\pi V(s) - T^\pi U(s) = \sum_{s'} \Pr(s'|s,\pi(s))(V(s') - U(s')) \geq 0.$$

the inequality (8) follows from, for any a,

$$R(s,a) + \sum_{s'} \Pr(s'|s,a)V(s') \ge R(s,a) + \sum_{s'} \Pr(s'|s,a)U(s').$$

Contraction mapping proof

The inequality (9) follows from

$$\begin{split} &\| \mathit{T}^{\pi} \mathit{V} - \mathit{T}^{\pi} \mathit{U} \|_{\infty} = \max_{\mathit{s}} \gamma \sum_{\mathit{s'}} \Pr(\mathit{s'}|\mathit{s}, \pi(\mathit{s})) |\mathit{V}(\mathit{s'}) - \mathit{U}(\mathit{s'})| \\ \leq & \gamma \Big(\sum_{\mathit{s'}} \Pr(\mathit{s'}|\mathit{s}, \pi(\mathit{s})) \Big) \max_{\mathit{s'}} |\mathit{V}(\mathit{s'}) - \mathit{U}(\mathit{s'})| \leq \gamma \|\mathit{U} - \mathit{V}\|_{\infty}. \end{split}$$

The inequality (10) follows from

$$||TV - TU||_{\infty} = \max_{s} |\max_{a} \{R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a)V(s')\}$$

$$- \max_{a} \{R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a)U(s')\}|$$

$$\leq \max_{s, a} |R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a)V(s')$$

$$- R(s, a) - \gamma \sum_{s'} \Pr(s'|s, a)V(s')|$$

$$= \gamma \max_{s, a} |\sum_{s'} \Pr(s'|s, a)(V(s') - U(s'))|$$

$$\leq \gamma \Big(\sum_{s'} \Pr(s'|s, a)\Big) \max_{s'} |V(s') - U(s')| \leq \gamma ||V - U||_{\infty}.$$

Contraction mapping proof

for any contraction operator (take T for example), we have a unique fixed point $V^* = TV^*$ by Cauchy convergence theorem⁸. We therefore have the convergence as

$$||V_{k+1} - V^*||_{\infty} = ||TV_k - TV^*||_{\infty}$$

$$\leq \gamma ||V_k - V^*||_{\infty} \leq \dots \leq \gamma^{k+1} ||V_0 - V^*||_{\infty} \to 0.$$

⁸

[▶] a sequence of real numbers (a_n) is said to be a Cauchy Sequence if $\forall \epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $m, n \geq N$ then $|a_n - a_m| < \epsilon$

[▶] theorem (Cauchy Convergence Criterion): If (a_n) is a sequence of real numbers, then (a_n) is convergent if and only if (a_n) is a Cauchy sequence

Policy iteration: convergence

policy iteration monotonically improves the policy by

$$V^{\pi_{k+1}} = (I - \gamma P^{\pi k+1})^{-1} R^{\pi_{k+1}}$$

$$\geq (I - \gamma P^{\pi_{k+1}})^{-1} (V^{\pi_k} - \gamma P^{\pi_{k+1}} V^{\pi_k})$$

$$= V^{\pi_{\text{old}}},$$
(11)

where (11) follows from

$$R^{\pi_{k+1}} + \gamma P^{\pi_{k+1}} V^{\pi_k} = T^{\pi_{k+1}} V^{\pi_k} = TV^{\pi_k} \ge V^{\pi_k}$$

$$\iff R^{\pi_{k+1}} \ge (I - \gamma P^{\pi_{k+1}}) V^{\pi_k}.$$

by the monotone convergence theorem⁹, $V^{\pi^\star}=\lim_{k\to\infty}V^{\pi_k}$ exists and satisfies

$$V^{\pi^*} = TV^{\pi^*}$$

which satisfies the Bellman optimality equation.

 $^{^9}$ If a sequence of real numbers is increasing and bounded above, then its supremum is the limit.

Problems with VI and PI

- continuous states and action. both VI and PI fail when the states and actions are continuous
- curse of dimensionality. both VI and PI involve iterative scheme over the whole state space. The algorithm is not scalable with respect to the size of the state space
- partial observable states. in reality, the states may not be fully observable. the partial observability model leads to a partially observable MDP (POMDP)
- unknown model. using DP to solve an MDP requires knowledge of Pr(s'|s,a) and R(s,a). These quantities are costly or even impossible to acquire, especially for huge state space and action space.
 - nevertheless, the agent can collect samples of state transitions $s, a \rightarrow s'$ and associated reward r(s, a, s') through interaction with the environment.
 - this suits machine learning and motivates the development of reinforcement learning

Q learning

- Q-learning [Wat89] learns from the estimated optimal value function
- ▶ it defines action-value function $Q^{\pi}(s, a)$ for policy π , which reflects the future reward for different actions under π as

$$\begin{split} Q^{\pi}(s,a) &= \sum_{s'} \Pr(s'|s,a) \Big(r(s,a,s') + \gamma V^{\pi}(s') \Big) \\ &= \sum_{s'} \Pr(s'|s,a) \Big(r(s,a,s') + \gamma Q^{\pi}(s',\pi(s')) \Big). \end{split}$$

▶ the optimal $Q^*(s, a)$ is related to the optimal value function $V^*(s) = \max_a Q^*(s, a)$, thus

$$Q^{\star}(s,a) = \sum_{s'} \Pr(s'|s,a)[r(s,a,s') + \gamma \max_{a'} Q(s',a')].$$

▶ plugging $Q(s, a) = Q^*(s, a)$ into the value iteration for optimising policy and **replace the expectation with its sample**, we have

$$\begin{aligned} & \textbf{(Q-learning)} \quad Q(s, \textbf{\textit{a}}) \leftarrow Q(s, \textbf{\textit{a}}) + \alpha[r + \gamma \max_{\textbf{\textit{a}}'} Q(s', \textbf{\textit{a}}') - Q(s, \textbf{\textit{a}})]. \end{aligned}$$

sample of $Q^*(s,a)$

Roadmap

Table of content

- Recap
 - ► MDPs
 - Value iterations and policy iterations
 - ► Tabular Q-Learning
- Policy approaches
 - Markov chains
 - Policy gradient
- Computational learning theory
 - ► PAC learning concepts
 - Learning bound for finite H
- Theoretical analysis
 - Approximate dynamic programming
 - Performance bounds
 - Sample complexity

Markov chains: an example

- sunny, rainy, and cloudy are called the states of the Markov chain
- ▶ if the weather is currently *sunny*, what is the prediction for the next few days according to the model?

n-step transition probability

► The *n*-step transition probability of a Markov chain is the probability that it goes from state *i* to state *j* in exactly *n* steps (transitions):

$$p_{ij}^{(n)} := P(S_{n+m} = j | S_m = i)$$

define $P = (p_{ij})$ the transition matrix; then the *n*-step transition matrix is given by *n* powers of the matrix:

$$P^{(n)} = P^n$$
, for $n \ge 1$

p(i to j in n steps) = sum of probabilities of all paths i to j in n steps

$$p_{ij}^{(n+m)} = \sum_{k} p_{ik}^{(m)} p_{kj}^{(n)}$$

n-step transition probability: an example

$$P^3 \approx \begin{pmatrix} 0.574 & 0.259 & 0.167 \\ 0.556 & 0.222 & 0.222 \\ 0.537 & 0.259 & 0.204 \end{pmatrix}; P^{10} \approx \begin{pmatrix} 0.563 & 0.250 & 0.187 \\ 0.562 & 0.250 & 0.187 \\ 0.562 & 0.250 & 0.188 \end{pmatrix}$$

- regardless of the initial weather $q^{(1)}$ is, $q^{(1)} \cdot P^n$ seems to approach $\tilde{q} \approx (0.563, 0.250, 0.188)$ as n grows
- if we multiply the vector \tilde{q} with P, we almost get \tilde{q} again, e.g., \tilde{q} is almost an eigenvector of P with eigenvalue 1

n-step transition probability: an example

$$P^3 pprox egin{pmatrix} 0.574 & 0.259 & 0.167 \\ 0.556 & 0.222 & 0.222 \\ 0.537 & 0.259 & 0.204 \end{pmatrix}; P^{10} pprox egin{pmatrix} 0.562 & 0.250 & 0.187 \\ 0.562 & 0.250 & 0.187 \\ 0.562 & 0.250 & 0.188 \end{pmatrix}$$

- ▶ a distribution q over the states is *stationary distribution* of the Markov chain with transition matrix P if $q = q \cdot P$
- q could be interpreted as the long-term visitation rate

But not all Markov chain has the stationary distribution

this Markov chain has infinitely many stationary distributions, for example q=(1,0,0), $q^*=(0,0,1)$, and $q^*=(0.2,0,0.8)$. The states u and w are called absorbing states, since they are never left once they are entered (dead-ends)

Ergodic Markov chains

- even without dead-ends, a graph may not have well-defined long-term visit rates;
 - requirement 1: there is a path from any state to any other state
 - requirement 2: the states cannot be partitioned such that the random walker visits the partitions sequentially (no loop!)
- in an Ergodic Markov Chains:
 - ▶ The $p^{(n)}$ has settled to a limiting value q

$$p_{ij}^{(n)} o q_j, ext{ as } n o \infty$$

- ▶ This value is independent of initial state $q^{(1)}$
- lacktriangle The $q^{(n)}$ also approaches this limiting value: $q_i^{(n)}
 ightarrow q_j$
- where *q* is the unique stationary distribution of the chain (i.e. the limiting distribution is the stationary distribution)

Go back to RL: the objective function

- **>** suppose a policy, denoted as π_{θ} , is parameterised by θ
- the expected reward (as the objective):

$$J(\theta) = \sum_{s \in S} d^{\pi}(s) V^{\pi}(s) = \sum_{s \in S} d^{\pi}(s) \left(\sum_{a \in A} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \right)$$

where $d^{\pi}(s) := \lim_{t \to \infty} p\left(S_t = s \mid s_0, \pi_{\theta}\right)$ is the stationary distribution of the Markov chain when the agent starts from s_0 and following policy π_{θ} for t steps

- When π_{θ} is given, as the time progresses, the probability that the agent ends up with one state becomes unchanged (regardless of s_0) if the underlying Markov chain is *ergodic*
- we thus drop s_0 in $J(\theta)$

Policy gradient

the expected reward (as the objective):

$$J(\theta) = \sum_{s \in S} d^{\pi}(s) V^{\pi}(s) = \sum_{s \in S} d^{\pi}(s) \left(\sum_{a \in A} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \right)$$

where $d^{\pi}(s) := \lim_{t \to \infty} p\left(S_t = s \mid s_0, \pi_{\theta}\right)$

- **proof** gradient ascent moves θ toward the direction suggested by the gradient $\nabla_{\theta} J(\theta)$ to find the best θ for π_{θ} that produces the highest return
- but, computing $\nabla_{\theta} J(\theta)$ is tricky as it depends on both the action selection (directly determined by π_{θ}) and the stationary distribution of states d^{π} (indirectly determined by π_{θ})
- given that the environment is generally unknown, it is difficult to estimate the effect on the state distribution by a policy update.

Policy gradient theorem

Policy gradient theorem¹⁰: for an MDP,

$$abla_{ heta} J(heta) = \sum_{s \in S} d^{\pi}(s) \left(\sum_{a \in A} Q^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a \mid s)
ight)$$

▶ It provides a nice reformation of the objective function that does not involve the derivative of the state distribution $\frac{\partial d^{\pi}(s)}{\partial \theta}$

Policy gradient theorem [SB98]: the proof

$$\nabla_{\theta} \left(\operatorname{E} \left[\sum_{k=1}^{\alpha} \gamma^{k-1} r_{t+k} \mid s_{t} = s_{0}, \pi \right] \right) = \nabla_{\theta} V^{\pi} \left(s_{0} \right) = \nabla_{\theta} \left(\sum_{a \in A} Q^{\pi} \left(s_{0}, a \right) \pi_{\theta} \left(a \mid s_{0} \right) \right)$$

$$= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) + \pi_{\theta} \left(a \mid s_{0} \right) \nabla_{\theta} Q^{\pi} \left(s_{0}, a \right) \right) \quad \text{product rule}$$

$$= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) + \pi_{\theta} \left(a \mid s_{0} \right) \nabla_{\theta} \left(\sum_{s', r} P \left(s', r \mid s, a \right) \left(r + V^{\pi} \left(s' \right) \right) \right) \right) \text{ expand}$$

$$= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) + \pi_{\theta} \left(a \mid s_{0} \right) \left(\sum_{s', r} P \left(s', r \mid s_{0}, a \right) \nabla_{\theta} V^{\pi} \left(s' \right) \right) \right) \text{ remove } r$$

$$= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) + \pi_{\theta} \left(a \mid s_{0} \right) \left(\sum_{s'} P \left(s' \mid s_{0}, a \right) \nabla_{\theta} V^{\pi} \left(s' \right) \right) \right) \text{ marginalise } r \text{ out}$$

$$= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) \right) + \sum_{a \in A} \pi_{\theta} \left(a \mid s_{0} \right) P \left(s' \mid s_{0}, a \right) \nabla_{\theta} V^{\pi} \left(s' \right) \right)$$

$$= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) \right) + \sum_{s'} \left(\sum_{a \in A} \pi_{\theta} \left(a \mid s_{0} \right) P \left(s' \mid s_{0}, a \right) \right) \nabla_{\theta} V^{\pi} \left(s' \right)$$

Policy gradient theorem [SB98]: the proof

we thus have the following recursive form of the gradient:

$$\begin{split} \nabla_{\theta} V^{\pi} \left(s_{0} \right) &= \sum_{a \in A} \left(Q^{\pi} \left(s_{0}, a \right) \nabla_{\theta} \pi_{\theta} \left(a \mid s_{0} \right) \right) \\ &+ \sum_{s'} \left(\sum_{a \in A} \pi_{\theta} \left(a \mid s_{0} \right) P \left(s' \mid s_{0}, a \right) \right) \nabla_{\theta} V^{\pi} \left(s' \right) \end{split}$$

to simplify this, we have:

$$abla_{ heta}V^{\pi}\left(s_{0}
ight)=arphi\left(s_{0}
ight)+\sum_{s'}P^{\pi}\left(s'\mid s_{0}
ight)
abla_{ heta}V^{\pi}\left(s'
ight),$$

where $\varphi(s_0) := \sum_{a \in A} (Q^{\pi}(s_0, a) \nabla_{\theta} \pi_{\theta}(a \mid s_0))$ and Markov transition $P^{\pi}(s' \mid s_0) := \sum_{a \in A} \pi_{\theta}(a \mid s_0) P(s' \mid s_0, a)$

Policy gradient theorem [SB98]: the proof

▶ We now consider the following visitation sequence:

$$s_0 \xrightarrow{a \sim \pi_{\theta}(. \mid s_0)} s' \xrightarrow{a \sim \pi_{\theta}(. \mid s')} s'' \xrightarrow{a \sim \pi_{\theta}(\mid s'')} \dots \xrightarrow{a \sim \pi_{\theta}(. \mid .)} s$$

▶ and denote the probability of transitioning from state s_0 to state s with policy π_θ after k step as

$$P^{\pi}\left(s''\mid s_{0},k\right)\equiv\sum_{s'}P^{\pi}\left(s''\mid s',k-1\right)P^{\pi}\left(s'\mid s_{0}\right)$$

- where we have $P^{\pi}(s \mid s_0, 0) = 1$ if $s = s_0$ and $P^{\pi}(s \mid s_0, 0) = 0$ if $s \neq s_0$ (because it happened already!)
- ► Let us now go back to unroll the gradient of the value function:

$$\nabla_{\theta}V^{\pi}\left(s_{0}\right) = \varphi\left(s_{0}\right) + \sum_{S'}P^{\pi}\left(s'\mid s_{0}\right)\nabla_{\theta}V^{\pi}\left(s'\right)$$

Policy gradient theorem: the proof

let us now go back to unroll the gradient of the value function:

$$\begin{split} &\nabla_{\theta}V^{\pi}\left(\mathbf{s}_{0}\right) = \varphi\left(\mathbf{s}_{0}\right) + \sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s}_{0}\right)\nabla_{\theta}V^{\pi}\left(\mathbf{s}'\right) \\ &= \varphi\left(\mathbf{s}_{0}\right) + \sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s}_{0},1\right)\left[\varphi\left(\mathbf{s}'\right) + \sum_{s'}P^{\pi}\left(\mathbf{s}''\mid\mathbf{s}'\right)\nabla_{\theta}V^{\pi}\left(\mathbf{s}''\right)\right] \\ &= \varphi\left(\mathbf{s}_{0}\right) + \left[\sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s}_{0},1\right)\varphi\left(\mathbf{s}'\right)\right] + \left[\sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s},1\right)\sum_{s''}P^{\pi}\left(\mathbf{s}''\mid\mathbf{s}'\right)\nabla_{\theta}V^{\pi}\left(\mathbf{s}''\right)\right] \\ &= \varphi\left(\mathbf{s}_{0}\right) + \left[\sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s}_{0},1\right)\varphi\left(\mathbf{s}'\right)\right] + \left[\sum_{s''}\sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s},1\right)P^{\pi}\left(\mathbf{s}''\mid\mathbf{s}'\right)\nabla_{\theta}V^{\pi}\left(\mathbf{s}''\right)\right] \\ &= \varphi\left(\mathbf{s}_{0}\right) + \left[\sum_{s'}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s}_{0},1\right)\varphi\left(\mathbf{s}'\right)\right] + \left[\sum_{s''}P^{\pi}\left(\mathbf{s}'\mid\mathbf{s},2\right)\nabla_{\theta}V^{\pi}\left(\mathbf{s}''\right)\right] \\ &= \sum_{s\in\mathcal{S}}\sum_{k=0}^{\infty}P^{\pi}\left(\mathbf{s}\mid\mathbf{s}_{0},k\right)\varphi(\mathbf{s}) = \sum_{s\in\mathcal{S}}\sum_{k=0}^{\infty}\left[P^{\pi}\left(\mathbf{s}\mid\mathbf{s}_{0},k\right)\sum_{a\in\mathcal{A}}\left(Q^{\pi}(\mathbf{s},a)\nabla_{\theta}\pi_{\theta}(a\mid\mathbf{s})\right)\right] \end{split}$$

Policy gradient theorem: the proof

• if we define $d^{\pi}(s) := \sum_{k=0}^{\alpha} P^{\pi}(s \mid s_0, k)$ as the non-normalised visitation probabilities of state s (starting from s_0), the following

$$\nabla_{\theta} V^{\pi}(s_0) = \sum_{s \in S} \sum_{k=0}^{\alpha} \left[P^{\pi}(s \mid s_0, k) \sum_{a \in A} (Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a \mid s)) \right]$$

becomes

$$abla_{ heta}V^{\pi}\left(s_{0}
ight) = \sum_{s \in S}d^{\pi}(s)\sum_{a \in A}\left(Q^{\pi}(s,a)
abla_{ heta}\pi_{ heta}(a \mid s)
ight)$$

- ▶ in the episodic case, $d^{\pi}(s)$ the average length of an episode; in the continuing case it is 1.
- ▶ a Markov chain is ergodic $\rightarrow d^{\pi}(s)$ a unique (non-normalised) stationary visiting prob. regardless of s_0

REINFORCE

in order to make an unbiased estimation, the gradient can be further written as¹¹:

$$\begin{split} \nabla_{\theta} V^{\pi}\left(s_{0}\right) &= \sum_{s \in S} d^{\pi}(s) \sum_{a \in A} \left(Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a \mid s)\right) \\ &\propto \sum_{s \in S} \mu(s) \sum_{a \in A} \left(\pi_{\theta}(a \mid s) Q^{\pi}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(a \mid s)}{\pi_{\theta}(a \mid s)}\right) \\ &= & \mathrm{E}_{s \sim \mu, a \sim \pi} \left[Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\right] \\ &= & \mathrm{E}_{s \sim \mu, a \sim \pi} \left[G_{t} \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\right] \\ &\text{where } \mathrm{E}_{s \sim d^{\pi}, a \sim \pi} \left[G_{t} \mid s, a\right] = Q^{\pi}(s, a) \end{split}$$

- so the gradient update is $\theta_{t+1} = \theta_t + \alpha G_t \nabla_{\theta} \ln \pi_{\theta}(a \mid s)$
- ▶ it is Monte Carlo Policy Gradient as REINFORCE uses the complete return from time *t*, which includes all future rewards up until the end for the episode

¹¹Ronald J Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: Machine learning 8.3-4 (1992).

PG algorithm

Algorithm 4 Policy gradient with Monte-Carlo simulator

- 1: Initialize θ
- 2: repeat
- Sample trajectories $\{\tau_i\}$ with horizon H using $\pi_{\theta}(a|s)$ 3:

4:
$$G_{i,t} \leftarrow \sum_{t=t'}^{H} \gamma^{t-t'} R(s_{i,t}, a_{i,t})$$

- 5: $V_t \leftarrow \frac{1}{M} \sum_{i=1}^{M} G_{i,t}$
- 6: $A(s_{i,t}, a_{i,t}) \leftarrow G_{i,t} V_t$
- $\Delta \leftarrow \sum_{i,t} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) A(s_{i,t},a_{i,t})$ 7:
- $\theta \leftarrow \theta + \alpha \Delta$
- 9: until convergence

typically replace $Q^{\pi_{\theta}}(s, a)$ with advantage function

$$A^{\pi_{ heta}}(s,a) := Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s).$$

Table of content

- Recap
 - ► MDPs
 - Value iterations and policy iterations
 - ► Tabular Q-Learning
- Policy approaches
 - Markov chains
 - Policy gradient
- Computational learning theory
 - ► PAC learning concepts
 - Learning bound for finite H
- Theoretical analysis
 - Approximate dynamic programming
 - Performance bounds
 - Sample complexity

Probably Approximately Correct (PAC) learning

- learnability is a key concept in ML:
 - what concepts can be learned?
 - ▶ how efficient is a particular learning method?
 - what is inherently hard to learn?
 - how many examples are needed in order to learn a concept successfully?
 - is there any generic model and theory about learnability?
- ► the Probably Approximately Correct (PAC) learning framework [Val84] is designed to answer the following two critical questions:
 - 1. sample complexity how many training examples do we need to converge to a successful hypothesis with a high probability?
 - computational complexity how much computational effort is needed to converge to a successful hypothesis with a high probability?

PAC: definition and notation

- ➤ X as the set of all possible instances or examples, e.g., the set of images containing faces or non-faces classes
- Y is the concept class, a set of target concepts y, e.g., face, non-face
- ▶ consider $f: X \rightarrow Y = \{0,1\}$ the target concept to learn
- define D the target distribution, a fixed probability distribution over X. We shall make sure that the training and test examples are drawn according to D
- define a set of training samples as S and a set of concept hypotheses H, e.g., the set of all linear classifiers

the learning problem is to, given a limited set of sample S, learn a hypothesis $h: X \to Y \in H$ that approximating f. note that f may be in H or may not.

PAC: definition and notation

- we then define two types of errors in order to understand the approximation
- true error or generalisation error of h is given as $R(h) = \Pr_{x \sim D} [h(x) \neq f(x)] = E_{x \sim D} [1_{h(x) \neq f(x)}],$
- whereas the average error of h on the training sample S is given according to the empirical distribution \hat{D} for the set S: $\hat{R}_S(h) = \Pr_{x \sim \hat{D}} \left[h(x) \neq f(x) \right] = E_{x \sim \hat{D}} \left[1_{h(x) \neq f(x)} \right] = \frac{1}{m} \sum_{i=1}^m h(x_i) \neq f(x_i).$
- ▶ note that $R(h) = E_{S \sim D^m} \left[\hat{R}_S(h) \right]$, where D^m is a distribution of sampling S according to D.

PAC

Definition PAC Learning [Val84]: A concept class Y is PAC-learnable if there exists an algorithm $L(S) \rightarrow h$ such that:

▶ for all $y \in Y$ and $\delta > 0$ and $\varepsilon > 0$ and all distributions D,

$$\Pr_{S \sim D^{m}} \left[R\left(h\right) \leq \varepsilon \right] \geq 1 - \delta$$

▶ for samples S of size $m \ge \text{poly}(1/\varepsilon, 1/\delta)$, where poly() is a polynomial function.

PAC makes use of $\delta>0$ to define the confidence $1-\delta$ (probabilistically) and $\varepsilon>0$ the accuracy $1-\varepsilon$ (approximate correct)

A concept class Y is thus PAC-learnable if the hypothesis returned by the algorithm after observing a number of points polynomial in $1/\varepsilon$ and $1/\delta$ is approximately correct (error at most ε) with high probability (at least $1-\delta$)

Learning bound for finite H - consistent case

theorem: let H be a finite set of functions from X to $\{0,1\}$ and L an algorithm that for any target concept $y \in Y$ and sample S returns a consistent¹² hypothesis $h_S: R_S(h_S) = 0$. then, for any $\delta > 0$, with probability at least $1 - \delta$

$$R(h_S) \leq \underbrace{\frac{1}{m}(\log |H| + \log \frac{1}{\delta})}_{\epsilon}$$
 generalisation bound

the upper bound increases with $\log |H|$ or the related term $log_2 |H|$, which can be interpreted as the number of bits needed to represent H

• Equivalently $P_{S,D^m}[R(h_S) < \epsilon] > 1 - \delta$ holds if

$$m \geq \frac{1}{\epsilon} (\log |H| + \log \frac{1}{\delta})$$

 $^{^{12}}$ a hypothesis set is consistent if it admits no error on training sample S0.40 $_{47/73}$

Learning bound for finite H - consistent case

▶ **proof**: for any $\epsilon > 0$, we define $H_{\epsilon} = \{h \in H : R(h) > \epsilon\}$ We then have:

$$\begin{aligned} Pr[\exists h \in H_{\epsilon} : \hat{R}_{S}(h) = 0] & \Leftarrow R > \epsilon \cup R_{S}(h) = 0 \\ = & Pr[\hat{R}_{S}(h_{1}) = 0 \cup ... \cup \hat{R}_{S}(h_{|H_{\epsilon}|}) = 0] \\ \leq & \sum_{h \in H_{\epsilon}} Pr[R_{S}(h) = 0] & \Leftarrow \text{ union bound} \\ \leq & \sum_{h \in H_{\epsilon}} (1 - \epsilon)^{m} & \Leftarrow \text{ no error in any } m \text{ samples} \\ \leq & |H|(1 - \epsilon)^{m} & \Leftarrow |H_{\epsilon}| \leq |H| \\ \leq & |H|e^{-m\epsilon} & \Leftarrow 1 - \epsilon \leq e^{-\epsilon} \end{aligned}$$

Learning bound for finite *H*: inconsistent Case

- ▶ no $h \in H$ is a consistent hypothesis
- the typical case in practice: difficult problems, complex concept class
- but, inconsistent hypotheses with a small number of errors on the training set can be useful
- need a more powerful tool: Hoeffding's inequality

Hoeffding's inequality

corollary: for any $\epsilon > 0$ and any hypothesis $h: X \to \{0, 1\}$ the following inequalities holds:

$$Pr[|R(h) - \hat{R}(h)| \ge \epsilon] \le 2e^{-2m\epsilon^2}$$

this is due to:

$$Pr[R(h) - \hat{R}(h) \ge \epsilon] \le e^{-2m\epsilon^2}$$

$$Pr[\hat{R}(h) - R(h) \ge \epsilon] \le e^{-2m\epsilon^2}$$

proof can be derived directly from Hoeffding's inequality [MRT18]

Learning bound for finite *H*: inconsistent Case

▶ **theorem**: H is a finite hypothesis set. for any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall h \in H, R(h) \leq \hat{R}_{S}(h) + \sqrt{\frac{log|H| + log\frac{2}{\delta}}{2m}}$$

proof: By the union bound, we have

$$\begin{aligned} ⪻[max_{h\in H}|R(h)-\hat{R}_{S}(h)|\geq\epsilon]\\ =⪻[|R(h_{1})-\hat{R}_{S}(h_{1})|\geq\epsilon\cup...\cup|R(h_{|}H|)-\hat{R}_{S}(h_{|}H|)|\geq\epsilon]\\ \leq&\Sigma_{h\in H}Pr[|R(h)-\hat{R}_{S}(h)|\geq\epsilon] &\Leftarrow union\ bound\\ \leq&2|H|e^{-2m\epsilon^{2}} &\Leftarrow apply\ previous\ corollary \end{aligned}$$

Estimation and approximation errors

▶ H is a set of functions mapping from X to $\{0,1\}$. The excess error (generalised error against Bayesian error 13 R^*) of a $h \in H$ can be decomposed as follows:

$$R(h_S) - R^* = \underbrace{(R(h_S) - \inf_{h \in H} R(h) + \underbrace{(\inf_{h \in H} R(h) - R^*)}_{approximation}}$$

- ightharpoonup estimation error: it depends on the hypothesis h_S selected. it measures the error due to the samples
- ► approximation error: it measures how well the Bayes error can be approximated using *H*

¹³The infimum of the errors achieved by any measurable functions: $\min\{P[0|x], P[1|x]\}$

Table of content

- Recap
 - ► MDPs
 - Value iterations and policy iterations
 - Tabular Q-Learning
- Policy approaches
 - Markov chains
 - Policy gradient
- Computational learning theory
 - ► PAC learning concepts
 - Learning bound for finite H
- Theoretical analysis
 - Case study: approximate dynamic programming
 - Performance bounds function approximation
 - Sample complexity sampling-based

Approximate methods

- when the state space is huge, approximate the value function by (parameterised) function approximators, e.g., linear model or neural networks
- ▶ In general, ADP (Approximate DP) approximates the optimal value function V^* by finding V in some function space $\mathcal V$ as

$$V = \operatorname*{arg\;min\;distance}_{U \in \mathcal{V}}(V^\star, U)$$

with some distance metric and use the approximator \boldsymbol{V} to generate a greedy policy as

$$\pi(s) = \underset{a}{\operatorname{arg max}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s).$$

- Most modern RL algorithms can be viewed as solving ADP by sampling the transition Pr(s'|s, a) and rewards r(s, a, s')
- Unlike DP, ADP algorithms may not converge as the composition of Bellman operator T and projection onto the function space V is not a contraction general, resulting in oscillating and even divergent behavior like Q-learning
- Nevertheless, we can analyze its performance bounds and sample complexity bounds

ADP performance bounds

- DP is guaranteed to converge and consequently leads to convergence of RL with tabular MDP
- Unlike DP, not all ADP algorithms converge and ADP may not find the actual (optimal) value functions for V* is not necessarily in V
- ▶ The performance gap of a policy π generated from V and the actual optimal policy π^* has certain theoretic upper bounds
- One is given by difference between the optimal value function and the approximator V itself

$$\|\underbrace{V^\star - V^\pi}_{\text{performance gap}}\|_{\infty} \leq \frac{2\gamma}{1-\gamma} \|\underbrace{V^\star - V}_{\text{approximation error}}\|_{\infty}.$$

This follows from

$$||V^{*} - V^{\pi}||_{\infty} \leq ||V^{*} - T^{\pi}V||_{\infty} + ||T^{\pi}V - T^{\pi}V^{\pi}||_{\infty}$$

$$\leq ||TV^{*} - TV||_{\infty} + \gamma ||V - V^{\pi}||_{\infty}$$

$$\leq \gamma ||V^{*} - V||_{\infty} + \gamma (||V - V^{*}||_{\infty} + ||V^{*} - V^{\pi}||_{\infty})$$

$$\leq \frac{2\gamma}{1 - \gamma} ||V^{*} - V||_{\infty}.$$
(12)

AVI and API

- this approximation error defined bound motivates algorithms such as AVI and API to minimise the approximation error
- ▶ formally, the approximate value iteration (AVI) is written as

(**AVI**)
$$V_{k+1} = \operatorname{Proj}_{\mathcal{V}} TV_k$$

with projection $\operatorname{Proj}_{\mathcal{V}}V=\arg\min_{V'\in\mathcal{V}}\|V-V'\|$ for certain norm $\|\cdot\|$; and

the approximate policy iteration (API) is written as

$$(\mathbf{API}) \quad \pi_{k+1}(s) = \arg\max_{a} R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) V(s'),$$

with $V \approx V^{\pi_k}$.

- in particular, the value function V in API is obtained through approximation in a function space $\mathcal V$
- \blacktriangleright expect that if V is close to V^* then the policy π will be close to optimal

Bounds by Bellman residual

▶ Apart from bound by approximation error, it is also possible to bound the performance with the Bellman residual as [WB93]

$$\|\underbrace{V^{\star} - V^{\pi}}_{\text{performance gap}}\|_{\infty} \le \frac{2}{1 - \gamma} \|\underbrace{TV - V}_{\text{Bellman residual}}\|_{\infty}, \tag{13}$$

where T is the Bellman optimality operator. This follows by combing

$$||V^{*} - V||_{\infty} \leq ||V^{*} - TV||_{\infty} + ||TV - V||_{\infty}$$

$$\leq \gamma ||V^{*} - V||_{\infty} + ||TV - V||_{\infty} \leq \frac{1}{1 - \gamma} ||TV - V||_{\infty}$$

and

$$||V - V^{\pi}||_{\infty} \le ||V - TV||_{\infty} + ||TV - V^{\pi}||_{\infty}$$

$$\le ||TV - V||_{\infty} + \gamma ||V - V^{\pi}||_{\infty} \quad (\text{By } TV = T^{\pi}V)$$

$$\le \frac{1}{1 - \gamma} ||TV - V||_{\infty}$$

Bellman residual minimisation

this Bellman residual bound motivates one to minimise the Bellman residual, which leads to Bellman residual minimisation

(BRM)
$$\min_{V \in \mathcal{V}} \|TV - V\|$$

for some norm $\|\cdot\|$

Performance bounds of AVI

- ▶ the role of V_k in AVI is similar to that of the **target network** in DQN:
- ▶ AVI bound [BT96]: after *K* iterations, we have

$$\|V^{\star} - V^{\pi_{K}}\|_{\infty} \le \frac{2\gamma}{(1-\gamma)^{2}} \max_{0 \le k \le K} \|TV_{k} - V_{k+1}\|_{\infty} + \frac{2\gamma^{K+1}}{1-\gamma} \|V^{\star} - V_{0}\|_{\infty}.$$

In particular, if

$$\tilde{V} = \operatorname{Proj}_{\mathcal{V}} T \tilde{V}$$

with $\tilde{\pi}$ being a greedy policy with respect to $R + \gamma P \tilde{V}$, then

$$\|V^{\star} - V^{\tilde{\pi}}\|_{\infty} \leq \frac{2}{(1-\gamma)^2} \inf_{V \in \mathcal{V}} \|V^{\star} - V\|_{\infty}.$$

Performance bounds of AVI: the proof

▶ by letting $\varepsilon = \max_{0 \le k \le K} \|TV_k - V_{k+1}\|_{\infty}$, we can derive

$$||V^{*} - V_{k+1}||_{\infty} \leq ||TV^{*} - TV_{k}|| + ||TV_{k} - V_{k+1}||_{\infty}$$

$$\leq \gamma ||V^{*} - V_{k}||_{\infty} + \varepsilon,$$

and thus,

$$\|V^{\star} - V_{k}\|_{\infty} \leq (1 + \gamma + \dots + \gamma^{K-1})\varepsilon + \gamma^{K}\|V^{\star} - V_{0}\|_{\infty}$$

$$\leq \frac{1}{1 - \gamma}\varepsilon + \gamma^{K}\|V^{\star} - V_{0}\|_{\infty}.$$

The first result follows by combining (12)

let the projection use the infinity norm, then the AVI is contractive with fixed point $\tilde{V} = \operatorname{Proj}_{\mathcal{V}} T \tilde{V}$ and we can obtain

$$\|V^{\star} - V\|_{\infty} \le \|V^{\star} - \operatorname{Proj}_{\mathcal{V}} V^{\star}\|_{\infty} + \|\operatorname{Proj}_{\mathcal{V}} V^{\star} - \tilde{V}\|_{\infty}$$

with $\|\operatorname{Proj}_{\mathcal{V}} V^{\star} - \tilde{V}\|_{\infty} = \|\operatorname{Proj}_{\mathcal{V}} T V^{\star} - \operatorname{Proj}_{\mathcal{V}} T \tilde{V}\| \leq \gamma \|V^{\star} - \tilde{V}\|_{\infty}$. the second result then follows from using (12).

Performance bounds of API

▶ API bound [BT96]: the asymptotic performance bound is

$$\limsup_{k\to\infty}\|V^\star-V^{\pi_k}\|_\infty \leq \frac{2\gamma}{(1-\gamma)^2}\limsup_{k\to\infty}\|V_k-V^{\pi_k}\|_\infty.$$

Performance bounds of API: the proof

- let $e_k = V_k V^{\pi_k}$ denote the approximation error, $g_k = V^{\pi_{k+1}} V\pi_k$ the performance gain and $I_k = V^* V^{\pi_k}$ the loss of using π_k instead of π^*
- we can show that the next policy cannot be much worse than the current one as

$$g_k \geq -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k.$$

▶ the loss at the next iteration is bounded by the current loss as

$$I_{k+1} \leq \gamma P^{\pi^*} I_k + f_k$$

where
$$f_k = \gamma [P^{\pi_{k+1}}(I - \gamma P^{\pi_{k+1}})^{-1}(I - \gamma P^{\pi_k}) - P^{\pi^*}]e_k$$

by taking the limit on both sides, we can obtain

$$\begin{split} (I - \gamma P^{\pi^{\star}}) \limsup_{k \to \infty} I_k &\leq \limsup_{k \to \infty} f_k \\ \limsup_{k \to \infty} I_k &\leq (I - \gamma P^{\pi^{\star}})^{-1} \limsup_{k \to \infty} f_k. \end{split}$$

This leads to

$$\begin{split} \limsup_{k \to \infty} \|I_k\|_{\infty} & \leq \frac{\gamma}{1 - \gamma} \|P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}\|_{\infty} \|e_k\|_{\infty} \\ & \leq \frac{\gamma}{1 - \gamma} (\frac{1 + \gamma}{1 - \gamma} + 1) \|e_k\|_{\infty} + \frac{2\gamma}{(1 - \gamma)^2} \|e_k\|_{\infty}, \end{split}$$

which validates the result

Performance bounds of BRM

▶ BRM [WB93]: if $V_{\mathtt{BRM}} = \operatorname{arg\,min}_{V \in \mathcal{V}} \|TV - V\|_{\infty}$,

$$\|V^\star - V_{\mathtt{BRM}}^\pi\| \leq rac{2(1+\gamma)}{1-\gamma} \inf_{V \in \mathcal{V}} \|V^\star - V\|_\infty.$$

Proof. Note that

$$||TV - V||_{\infty} \le ||TV - TV^*||_{\infty} + ||V^* - V||_{\infty}$$

$$\le (1 + \gamma)||V^* - V||_{\infty}.$$

The bound follows by combing

$$\begin{split} \| \mathit{TV}_{\mathtt{BRM}}^{\pi} - \mathit{V}_{\mathtt{BRM}}^{\pi} \|_{\infty} &= \inf_{\mathit{V} \in \mathcal{V}} \| \mathit{TV} - \mathit{V} \|_{\infty} \\ &\leq & (1 + \gamma) \inf_{\mathit{V} \in \mathcal{V}} \| \mathit{V}^{\star} - \mathit{V} \|_{\infty} \end{split}$$

and (13).

Sample-based ADP: sample complexity

- ▶ RL essentially solve ADP with sampled transition and rewards
- from statistical learning, the *prediction error* of RL comes from two sources:
 - 1. **approximation error**, error due to the projection operation;
 - 2. **estimation error**, since both the Bellman operator and projection are evluated with samples.
- error propagation of sample-based ADP can be analyzed by using tools such as McDiarmid's inequality, if

$$\sup_{x_1,\ldots,x_n,x_i'} |f(x_1,\ldots,x_i,\ldots,x_n) - f(x_1,\ldots,x_i',\ldots,x_n)| \le c_i,$$

we have

$$\Pr(|f(x_1,\ldots,x_n)-\mathbb{E}[f(x_1,\ldots,x_n)]|\geq \varepsilon)\leq \exp(-\frac{2\varepsilon}{\sum_{i=1}^n c_i}).$$

 combing the sample error and performance bounds before, the generalisation bound (performance guarantee) of sample-based ADPs can be derived

Sample complexity: sampling-based AVI

- consider following setup [MS08]: sample i.i.d. n states $s^{(i)} \sim \mu$, and from each state-action pair $s^{(i)}$, a, generate m one-step transition samples from a simulator $s_a^{(i,j)} \sim \Pr(\cdot|s^{(i)},a)$
- iterate AVI with **fitted value functions** K times:

$$V_{k+1} = \arg\min_{V \in \mathcal{V}} \sum_{i=1}^{n} |V(s^{(i)}) - \max_{a} [r(s^{(i)}, a) + \frac{\gamma}{m} \sum_{j=1}^{m} V_{k}(s_{a}^{(i,j)})]|^{2}.$$

Sample complexity: sampling-based AVI

▶ With probability at least $1 - \delta$,

$$\begin{split} \|V^{\star} - V^{\pi_{K}}\|_{\infty} &\leq \frac{2\gamma}{(1-\gamma)^{2}} C^{1/p} d(T\mathcal{V}, \mathcal{V}) + O(\gamma^{k}) \\ &+ O(\frac{V(\mathcal{V}) \log(1/\delta)}{n})^{1/4} + O(\frac{\log(1/\delta)}{m})^{1/2}, \end{split}$$

where

$$d(TV, V) := \sup_{V \in V} \inf_{V' \in V} \|TV - V'\|_{2,\mu}, \text{ with } \|V\|_{2,\mu} = (\sum_{x} \mu(x)V(x)^2)^{1/2}$$

measures the Bellman residual of the space \mathcal{V} , the constant C satisfies $1 \leq C \leq \Pr(\cdot|s,a)/\mu(\cdot)$ for any s and a, and $V(\mathcal{V})$ is the capacity measure of \mathcal{V} (i.e., pseudo-dimension¹⁴).

▶ In addition to the AVI with fitted value iteration [MS08], PAC bounds for finite-time analysis has also been developed for API such as LSPTD/LSPI by [LGM12] and BRM-based PI by [Mai+10]

¹⁴The Pseudo-dimension, also referred to the Pollard dimension, is a generalization of the VC-dimension to real-valued functions:

Deep Q learning and its sample complexity

- ▶ finite time bound of Q-learning with non-linear multi-layer ReLU unit and i.i.d. samples have been studied [YXW19]
- the major result states that, with high probability,

$$\|Q^{\pi_{K}} - Q^{\star}\|_{1,\mu} \le C \frac{\phi_{\mu,\sigma} \cdot \gamma}{(1-\gamma)^{2}} |\mathbb{A}| (\log n)^{1+2\xi^{*}} n^{(\alpha^{*}-1)/2} + \frac{4\gamma^{K+1}}{1-\gamma} \cdot \max_{s,a} R(s,a),$$

where n is the number of samples, $C>0, \xi^*$ and α^* is some constant, $\phi_{\mu,\sigma}$ is related to concentration coefficients of underlying Markov chain

▶ this was further extended to non i.i.d. samples by [XG19]. With high probability, the bound decreases at rate $1/\sqrt{K}$ with sufficiently network width m as

$$\frac{1}{K}\sum_{k=0}^K \mathbb{E}[(Q(s,a;\theta_k)-Q^{\star}(s,a))^2] \leq O\left(\frac{1}{m^{1/6}}+\frac{1}{\sqrt{K}}\right)$$

Concluding remarks

References I

Dimitri P Bertsekas and John N Tsitsiklis.

Neuro-Dynamic Programming. Athena Scientific, 1996.

Ronald A Howard. *Dynamic Programming and Markov Processes*. MIT Press, 1960.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. "Finite-sample analysis of least-squares policy iteration". In: *The Journal of Machine Learning Research* 13 (2012), pp. 3041–3074.

Odalric-Ambrym Maillard et al. "Finite-sample analysis of Bellman residual minimization". In: *Asian Conference on Machine Learning (ACML)*. 2010, pp. 299–314.

References II

Rémi Munos and Csaba Szepesvári. "Finite-time bounds for fitted value iteration". In: *Journal of Machine Learning Research* 9 (2008), pp. 815–857.

Řemi Munos. Introduction to Reinforcement Learning and multi-armed bandits. NETADIS Summer School, 2013.

Shai Shalev-Shwartz and Shai Ben-David.

Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

References III

Richard S Sutton et al. "Policy gradient methods for reinforcement learning with function approximation".

In: Advances in Neural Information Processing Systems (NeurIPS). 1999, pp. 1057–1063.

Leslie G Valiant. "A theory of the learnable". In: Communications of the ACM 27.11 (1984), pp. 1134–1142.

Christopher John Cornish Hellaby Watkins. "Learning From Delayed Rewards". PhD Thesis. University of Cambridge, 1989.

References IV

Ronald J. Williams and Leemon C. Baird III. *Tight* performance bounds on greedy policies based on imperfect value functions. Tech. rep. NU-CCS-93-14, College of Computer Science, Northeastern University. 1993.

Ronald J Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: *Machine learning* 8.3-4 (1992).

Shuang Wu and Jun Wang. Decision making and AI: a white paper. 2020.

Pan Xu and Quanquan Gu. "A finite-time analysis of q-learning with neural network function approximation". In: arXiv preprint arXiv:1912.04511 (2019).

References V

Zhuoran Yang, Yuchen Xie, and Zhaoran Wang. "A theoretical analysis of deep Q-learning". In: *arXiv* preprint arXiv:1901.00137 (2019).