Tempo a disposizione: 2 ore e 30 minuti.

1. La seguente espressione

$$\mathcal{I}_{L_0}^{L_1}(\mathcal{C}_{L_1,L_0}^{L_0},\mathcal{I}_{L_0}^{L_1})$$

calcola qualcosa di utile? Se rimpiazziamo, nell'espressione sopra, la seconda occorrenza di  $\mathcal{I}_{L_0}^{L_1}$  con  $\mathcal{I}_{L_1}^{L_0}$ , cosa otteniamo?

- 2. Descrivere le regole di semantica operazionale strutturata per l'espressione aritmetica  $e_0 * e_1$ , secondo la disciplina di valutazione esterna-sinistra (ES). Mostrare un esempio di una espressione di quel tipo tale che la valutazione ES e quella IS (interna-sinistra) non sono uguali.
- 3. Costruire una grammatica G che generi il linguaggio  $L = \{a^{2n}b^mc^n \mid n, m \ge 0\}.$
- 4. Classificare il linguaggio L del punto precedente, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 5. Si consideri l'espressione regolare  $a(b|a)^*a$ . Si costruisca l'automa NFA M associato, secondo la costruzione vista a lezione. Si trasformi l'NFA M nell'equivalente DFA M', secondo la costruzione per sottoinsiemi vista a lezione.
- 6. Preso il DFA M' calcolato al punto precedente, si verifichi se è minimo; se non lo fosse, lo si minimizzi per ottenere un DFA M''; quindi si ricavi da M'' la grammatica regolare associata, seguendo la costruzione vista a lezione; quindi si semplifichi la grammatica ottenuta, eliminando i simboli inutili.
- 7. Se L è libero ed R è libero deterministico, il linguaggio  $L \cup \overline{R} = \{w \in A^* \mid w \in L \lor w \notin R\}$  è regolare o libero, oppure non libero? Giustificare la risposta.
- 8. Mostrare che  $L=\{a^{n+1}b^{2n}\mid n\geq 0\}$  è libero deterministico, costruendo un opportuno DPDA che riconosca L\$ per pila vuota.
- 9. Si consideri la seguente grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & \epsilon \mid \mathsf{a}AC \\ B & \rightarrow & \epsilon \mid \mathsf{b}SB \\ C & \rightarrow & \mathsf{cc} \mid \mathsf{c}C \end{array}$$

- (i) Si calcolino i First e i Follow per tutti i nonterminali. (ii) La grammatica G è di classe LL(1)? (iii) Si rimuovano le produzione epsilon per ottenere una grammatica G' senza produzioni epsilon, che sia equivalente (quindi che riconosca anche  $\epsilon$ ) a G.
- 10. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & \mathtt{a}A \mid S\mathtt{b} \\ A & \rightarrow & \mathtt{c} \mid \mathtt{a}A \end{array}$$

- (i) Determinare il linguaggio generato L(G). (ii) Verificare che G non è di classe LL(1). (iii) Manipolare la grammatica per ottenerne una equivalente G' di classe LL(1). (iv) Costruire il parser LL(1) per G'. (v) Mostrare il funzionamento del parser LL(1) su input acb.
- 11. Si consideri la grammatica G del punto precedente. (i) Costruire l'automa canonico LR(0). (ii) Costruire la tabella di parsing SLR(1) e verificare se ci sono conflitti. (iii) Mostrare il funzionamento del parser SLR(1) per l'input acb.

Corso di Linguaggi di Programmazione — Parziale di fine modulo Prova scritta  ${\bf A}$  del 18 Dicembre 2017

Tempo a disposizione: 2 ore e 30 minuti.

1. La seguente espressione

$$\mathcal{I}_{L_0}^{L_1}(\mathcal{C}_{L_1,L_0}^{L_0},\mathcal{I}_{L_0}^{L_1})$$

calcola qualcosa di utile? Se rimpiazziamo, nell'espressione sopra, la seconda occorrenza di  $\mathcal{I}_{L_0}^{L_1}$  con  $\mathcal{I}_{L_1}^{L_0}$ , cosa otteniamo?

- 2. Descrivere le regole di semantica operazionale strutturata per l'espressione aritmetica  $e_0*e_1$ , secondo la disciplina di valutazione esterna-sinistra (ES). Mostrare un esempio di una espressione di quel tipo tale che la valutazione ES e quella IS (interna-sinistra) non sono uguali.
- 3. Costruire una grammatica G che generi il linguaggio  $L = \{a^{2n}b^mc^n \mid n, m \ge 0\}.$
- 4. Classificare il linguaggio L del punto precedente, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 5. Si consideri l'espressione regolare  $a(b|a)^*a$ . Si costruisca l'automa NFA M associato, secondo la costruzione vista a lezione. Si trasformi l'NFA M nell'equivalente DFA M', secondo la costruzione per sottoinsiemi vista a lezione.
- 6. Preso il DFA M' calcolato al punto precedente, si verifichi se è minimo; se non lo fosse, lo si minimizzi per ottenere un DFA M''; quindi si ricavi da M'' la grammatica regolare associata, seguendo la costruzione vista a lezione; quindi si semplifichi la grammatica ottenuta, eliminando i simboli inutili.
- 7. Se L è libero ed R è libero deterministico, il linguaggio  $L \cup \overline{R} = \{w \in A^* \mid w \in L \lor w \notin R\}$  è regolare o libero, oppure non libero? Giustificare la risposta.
- 8. Mostrare che  $L=\{a^{n+1}b^{2n}\mid n\geq 0\}$  è libero deterministico, costruendo un opportuno DPDA che riconosca L\$ per pila vuota.
- 9. Si consideri la seguente grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & \epsilon \mid \mathtt{a}AC \\ B & \rightarrow & \epsilon \mid \mathtt{b}SB \\ C & \rightarrow & \mathtt{cc} \mid \mathtt{c}C \end{array}$$

- (i) Si calcolino i First e i Follow per tutti i nonterminali. (ii) La grammatica G è di classe LL(1)? (iii) Si rimuovano le produzione epsilon per ottenere una grammatica G' senza produzioni epsilon, che sia equivalente (quindi che riconosca anche  $\epsilon$ ) a G.
- 10. Si consideri la grammatica G con simbolo iniziale S:

$$S \rightarrow aA \mid Sb$$
  
 $A \rightarrow c \mid aA$ 

- (i) Determinare il linguaggio generato L(G). (ii) Verificare che G non è di classe  $\mathrm{LL}(1)$ . (iii) Manipolare la grammatica per ottenerne una equivalente G' di classe  $\mathrm{LL}(1)$ . (iv) Costruire il parser  $\mathrm{LL}(1)$  per G'. (v) Mostrare il funzionamento del parser  $\mathrm{LL}(1)$  su input acb.
- 11. Si consideri la grammatica G del punto precedente. (i) Costruire l'automa canonico LR(0). (ii) Costruire la tabella di parsing SLR(1) e verificare se ci sono conflitti. (iii) Mostrare il funzionamento del parser SLR(1) per l'input acb.

I) 
$$I_{Lo}^{l_1}(\mathcal{C}_{L_1,Lo}^{Lo}, I_{Lo}^{l_1}) = I_{Lo}^{l_0}$$
 senta senso  $I_{Lo}^{l_1}(\mathcal{C}_{L_1,Lo}^{l_0}, I_{Lo}^{l_0}) = \text{errore per che il compilatore si aspetia un prop. santio ul  $L_1$$ 

2) 
$$\langle e_0, G \rangle \rightarrow \langle e_0', G \rangle$$
  
 $\langle e_0 * e_1, G \rangle \rightarrow \langle e_0' * e_1, G' \rangle$ 

$$\langle e_{1}, G \rangle \rightarrow \langle e_{1}', G' \rangle$$
  $m \neq 0, 1$   $(n + m, G) \rightarrow \langle P, G \rangle$   $p = n \times m$ 

$$\langle 0 \times (2-5), 6 \rangle \longrightarrow_{ES} \langle 0, 6 \rangle$$
  
 $\langle 0 \times (2-5), 6 \rangle \longrightarrow_{IS}$ 

3) 
$$L = \{a^{2n} b^{m} c^{n} \mid m, m \ge 0\}$$
  
 $S \rightarrow aaSc \mid B$ 

$$B \rightarrow \epsilon \mid b \mid B$$

$$S \rightarrow b \mid b \mid b^{2} \mid$$

4) L= {a2n bm cn | n, m 20} non é zez dans

- Fissiams N>0 generico

- scepliam zel m 1212N Z= a b c.

- Pergeni uvw talich z= uvw, luvisne luiz1, deve enne  $V \in a^*$ . Sia  $V = a^T$   $J \gtrsim 1$ .

- Allow 3K=2. UVW&L

UV2N= 22N+5 6N cN EL

=> L mon é regolare

Le libero, prohé al punto 3) abbiamo de fimito una gr. libera che lo genera.

5) a (bla)\*a 



7) Llibero Rlibero det. LUR é libero ferché
- Rébero det. perché : ling. liberi det. sons
chiusi fer complementazione
- LUR é libero, perché : ling. liberi sons chiusi
per unione.



| 9)    | $S \rightarrow AB$                                                                                                                                                                                                                                |       | 1 First      | Folker             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|--------------------|
| ,     | A -> E   aAC                                                                                                                                                                                                                                      | 5     | a, b, 8      | \$,6               |
|       | B→ E   65B                                                                                                                                                                                                                                        | A     | a, E         | 6, \$, 6           |
|       | C -> cc/cC                                                                                                                                                                                                                                        | B     | 6,8          | \$, 6              |
|       |                                                                                                                                                                                                                                                   | E     |              | Ь, \$, с           |
| (ii)  | G mon è du classe LLC.<br>ad es in C -> ce I c C                                                                                                                                                                                                  | ce    |              |                    |
| (iii) | $S' \rightarrow \varepsilon   S$ $S \rightarrow AB   A   B$ $A \rightarrow aAC   aC$ $B \rightarrow bSB   bB   bS   b$ $C \rightarrow cc   cC$                                                                                                    |       | A, B, S}     |                    |
| 10)   | $A \rightarrow c \mid aA$ $S \rightarrow aA \mid ac$ $S \rightarrow aAb \mid aAb$ $S \rightarrow aAb$ | S     |              | , atc<br>A was atc |
|       | L(G) = { a c b m                                                                                                                                                                                                                                  | 1 1/2 | 7, 1100 00 0 |                    |

G mon i du clarse LL(1) perché é rexordive sx S -> Sb

$$G' = S \rightarrow aAS'$$

$$S' \rightarrow bS' 1 \mathcal{E}$$

$$A \rightarrow c | aA$$

| 4  | The state of the s | <u>u</u> |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 \$     |
| 61 | www.companies.com/www.com/com/com/com/com/com/com/com/com/com/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4        |

|           | E FINT (bs') NFINT(E) = B<br>FINT (bs') N FORW(S') = B<br>FINT(C) N FINT(aA) = B |  |
|-----------|----------------------------------------------------------------------------------|--|
| G'é LL(1) | E / Fiw (65') 1 Follow (5') = 5                                                  |  |
|           | (Fins(e) / Fins(ax)=0                                                            |  |

|     | a       |        |     | 4. Superior de la constante de |
|-----|---------|--------|-----|----------------------------------------------------------------------------------------------------------------|
| 5 5 | ; -aAS' | 5'-65' |     | 5-76                                                                                                           |
| SA  | A a A   |        | ASE |                                                                                                                |

| acb\$  | 5                 |
|--------|-------------------|
|        | aAS               |
| c 6 \$ | AS                |
| 6\$    | c s'<br>s'<br>bs' |
| \$     | 51                |
|        | 3                 |
|        | ok                |



|    | a   | 6  | C                     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----|-----|----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 01 | 52  |    |                       | The state of the s | 91 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1  |     | SF | Action and the second | ace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2  | <5  |    | 53                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 2  |     | R3 |                       | R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7  |     | RA |                       | R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 9  | < 5 |    | 53                    | And the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 7  |     | R4 |                       | R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7  |     | RZ |                       | Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | a de la constanta de la consta |  |

|   | First | Follow |
|---|-------|--------|
| 5 | a     | b B    |
| A | aic   | b1 \$  |