

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Noções de probabilidade

Marcelo Gorges

Experimentos aleatórios

Existem certos experimentos que, embora sejam repetidos de maneiras idênticas, não apresentam os mesmos resultados. Como exemplos:

- Lançamento de um dado;
- Lançamento de uma moeda;
- Resultado de um jogo de roleta;
- Número sorteado em um bingo;

Enfim, são inúmeros os experimentos que podem ser realizados da mesma forma, ou seja, pelo mesmo procedimento, tais que não se pode precisar com exatidão o resultado, a estes tipos de experimentos chamamos de experimentos aleatórios.

Outras definições

Espaço amostral (U)

É o conjunto de todos os possíveis resultados de um experimento aleatório.

Evento (E)

É qualquer subconjunto do espaço amostral. Evento elementar: é qualquer subconjunto unitário do espaço amostral.

Evento certo

É todo o evento que coincide com o espaço amostral, por exemplo:

No lançamento de um dado, ocorrer um número menor do que 7. Este evento é certo, pois no lançamento de um dado todos os possíveis resultados são menores do que 7.

Evento impossível

É todo o evento vazio, ou seja, não existe a possibilidade da ocorrência do evento, por exemplo:

No lançamento de um dado, ocorrer um número maior do que 6. Este evento é impossível, pois no lançamento de um dado, não existe resultado maior do que 6.

Espaço amostral equiprovável

É quando todos os eventos elementares tiverem a mesma chance de ocorrência.

Probabilidade

Seja U um espaço amostral equiprovável e E um de seus eventos. Denomina--se probabilidade do evento E o número P(E) tal que:

$$P(E) = \frac{n(E)}{n(U)}$$

Sendo:

n(E): o número de elementos do evento E.

n(U): o número de elementos do espaço amostral.

Exemplos:

- 1. Qual o espaço amostral dos seguintes experimentos?
 - a) lançamento de um dado.

Solução:

$$U = \{1, 2, 3, 4, 5, 6\}$$

b) lançamento de uma moeda.

Solução:

c) lançamento de duas moedas.

Sendo C= cara e K= coroa, temos:

Solução:

$$U = \{CC, CK, KC, KK\}$$

2. No lançamento de um dado, determine os eventos A: sair um número par; B sair um número primo.

Solução:

Evento
$$A = \{2, 4, 6\}$$

Evento
$$B = \{2, 3, 5\}$$

- **3.** Uma urna contém 3 bolas azuis e 3 bolas verdes. Dessa urna são retiradas, sucessivamente, 3 bolas.
 - a) Use a árvore de possibilidades para demonstrar todos os possíveis resultados, ou seja, o espaço amostral.

Solução:

A representa as bolas azuis e V, as verdes. Tem-se:

Assim sendo, o espaço amostral será: $U = \{(AAA), (AAV), (AVA), (AVV), (VAA), (VAV), (VVV)\}.$

b) Qual a probabilidade de saírem todas as bolas da mesma cor?

Solução:

O número de elementos do espaço amostral é dado por:

$$n(U) = 8$$

O número de elementos do evento é dado por:

$$n(E) = 2$$
, pois: $E = \{(AAA), (VVV)\}$

Desta forma:

$$P(E) = \frac{2}{8} = \frac{1}{4}$$
 ou 25%

4. No lançamento de dois dados honestos, qual a probabilidade de que a diferença, em módulo, entre os números das faces voltadas para cima seja menor que 2?

Solução:

O número de elementos do espaço amostral pode ser dado pelo princípio fundamental da contagem, da seguinte forma:

n(U) = 6. 6 = 36, pois são 6 opções de resultados em cada dado. Observe o quadro a seguir com todas as 36 possibilidades:

2.º dado

2. ddd0						
	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
	2 3 4 5	1 (1,1) 2 (2,1) 3 (3,1) 4 (4,1) 5 (5,1)	1 (1,1) (1,2) 2 (2,1) (2,2) 3 (3,1) (3,2) 4 (4,1) (4,2) 5 (5,1) (5,2)	1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3) 4 (4,1) (4,2) (4,3) 5 (5,1) (5,2) (5,3)	1 2 3 4 1 (1,1) (1,2) (1,3) (1,4) 2 (2,1) (2,2) (2,3) (2,4) 3 (3,1) (3,2) (3,3) (3,4) 4 (4,1) (4,2) (4,3) (4,4) 5 (5,1) (5,2) (5,3) (5,4)	1 2 3 4 5 1 (1,1) (1,2) (1,3) (1,4) (1,5) 2 (2,1) (2,2) (2,3) (2,4) (2,5) 3 (3,1) (3,2) (3,3) (3,4) (3,5) 4 (4,1) (4,2) (4,3) (4,4) (4,5) 5 (5,1) (5,2) (5,3) (5,4) (5,5)

O número de elementos do evento é dado por:

n(E) = 16, observe no quadro a seguir os resultados favoráveis destacados:

				2.º dado			
		1	2	3	4	5	6
	1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
0	2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
1.º dado	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
	4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$E = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4), (4,5), (5,4), (5,5), (5,6), (6,5), (6,6)\}$$

Desta forma:

$$P(E) = \frac{16}{36} = \frac{4}{9}$$
 ou 44,44% aproximadamente.

Exercícios

- 1. No lançamento simultâneo de uma moeda e um dado, defina o espaço amostral e os eventos A (ocorrência de sair cara e um número par); B (ocorrência de sair cara e um número menor que 3) e C (ocorrência de sair coroa e um número maior que 2).
- No lançamento simultâneo de duas moedas, determinar a probabilidade de se obter:
 - a) duas caras;
 - b) uma cara e uma coroa.

3.	Três moedas são lançadas simultaneamente. Qual a probabilidade de ocorrer cada um dos seguintes eventos?
	a) faces idênticas nas três moedas;
	b) coroa em uma só moeda;
	c) duas coroas e uma cara;
	d) nenhuma coroa;
	e) pelo menos uma coroa;
	f) no máximo uma cara.
4.	Uma urna contém 3 bolas brancas, 4 verdes e 5 amarelas. Retirando-se uma bola da urna, qual a probabilidade de que ela seja branca ou amarela?
5.	Escolhido, aleatoriamente, um elemento do conjunto dos divisores positivos de 30, determinar a probabilidade de que ele seja par.
6.	Um casal planeja ter quatro filhos. Qual é a probabilidade:
	a) de nascerem duas meninas e dois meninos?
	b) de nascerem todas meninas?
7.	Retiradas duas cartas simultaneamente de um baralho de 52 cartas, qual a

probabilidade de saírem dois ases? (lembrando: um baralho possui 4 ases)

Probabilidade condicional

Eventos dependentes

Analise a seguinte situação:

Um dado é lançado, neste caso já vimos que o espaço amostral é $U = \{1, 2, 3, 4, 5, 6\}$.

Consideremos o evento A: sair o número 3, ou seja, $A = \{3\}$, desta forma:

$$P(A) = \frac{1}{6}$$
 ou 16,6% aproximadamente.

Agora, consideremos o evento B: sair o número 3, sabendo que saiu um número ímpar, ou seja, $B = \{3\}$.

Entretanto, perceba que o espaço amostral foi modificado, passando a ser $U = \{1, 3, 5\}$, desta forma:

$$P(A) = \frac{1}{3}$$
 ou 33,3% aproximadamente.

Esta situação exemplifica o que é *probabilidade condicional*, isto é, ao dizer que o número que saiu é impar, a probabilidade do evento "sair o número 3", foi modificada pelo evento condicionante "saiu um número ímpar", ou seja, passou de 16,6% para 33,3% aproximadamente, pois o espaço amostral foi reduzido.

Desta forma, podemos indicar a probabilidade de ocorrer o evento A condicionado a B, ou seja, probabilidade de ocorrer A sabendo que B já ocorreu da seguinte forma:

p(A/B), e para esta situação temos:

$$p(A/B) = \frac{1}{3}$$

Eventos independentes

Analise a seguinte situação:

Se lançarmos um dado e uma moeda. Seja A o evento "sair o número 4" e B o evento " sair uma cara". Observemos que:

O espaço amostral é:

 $U = \{1C, 2C, 3C, 4C, 5C, 6C, 1K, 2K, 3K, 4K, 5K, 6K\}$, sendo C (cara) e K (coroa), desta forma, n(U) = 12.

Evento A = {4C, 4K}, portanto: p(A) =
$$\frac{2}{12} = \frac{1}{6}$$

Evento B = {1C, 2C, 3C, 4C, 5C, 6C}, portanto: p(B) = $\frac{6}{12} = \frac{1}{2}$
Evento A \cap B = {4C}, portanto: p(A \cap B) = $\frac{1}{12}$
Assim:
p(A/B) = $\frac{p(A \cap B)}{p(A)} = \frac{\frac{1}{12}}{\frac{1}{6}} = \frac{1}{2}$ ou 50%

Perceba que, $p(B) = p(B/A) = \frac{1}{2}$, a probabilidade de "sair uma cara" não é afetada por "sair o número 4" no lançamento do dado, isto é, a probabilidade de ocorrer B, não depende da ocorrência de A, neste caso, dizemos que os eventos são independentes.

Desta forma, também é verdade que p(A) = p(A/B).

Sabendo que:
$$p(A/B) = \frac{p(A \cap B)}{p(B)}$$
, então, temos:

$$p(A \cap B) = p(A/B) \cdot p(B) = p(A) \cdot p(B)$$

Essa igualdade é denominada de Teorema do Produto.

Exemplo:

Num conjunto de 500 peças, 450 delas estão em excelentes condições. Duas delas são retiradas, sucessivamente, ao acaso, sem reposição. Qual é a probabilidade de que a primeira peça defeituosa seja encontrada na segunda retirada?

O espaço amostral é: n(U) = 500

Evento A: sair uma peça em bom estado, portanto: $p(A) = \frac{450}{500} = \frac{9}{10}$ Evento B: sair uma peça defeituosa, portanto: $p(B) = \frac{50}{400}$

Como os eventos são independentes, temos:

$$p(A \cap B) = p(A) \cdot p(B) = \frac{9}{10} \cdot \frac{50}{499} = \frac{45}{499}$$
 ou 9,01% aproximadamente.

Probabilidade da união de dois eventos

A probabilidade do evento A ou B é igual à soma das probabilidades dos eventos A e B, subtraída da probabilidade do evento A \cap B, ou seja,

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Veja a seguinte situação:

Uma urna contém 30 bolas, numeradas de 1 a 30. Retirando-se uma bola ao acaso, qual a probabilidade de que seu número seja múltiplo de 4 ou 5?

O espaço amostral é: n(U) = 30

Evento A: número múltiplo de 4, A = {4, 8, 12, 16, 20, 24, 28}, portanto: p(A) = $\frac{7}{30}$

Evento B: número múltiplo de 5, B = {5, 10, 15, 20, 25, 30}, portanto: $p(B) = \frac{6}{30}$

Evento A \cap B: números múltiplos de 4 e 5, A \cap B = {20}, portanto: p(A \cap B) = $\frac{1}{30}$

Desta maneira, temos:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

 $p(A \cup B) = \frac{7}{30} + \frac{6}{30} - \frac{1}{30} = \frac{12}{30} = \frac{2}{5}$ ou 40%

Entretanto, se a interseção entre os eventos A e B fosse o conjunto vazio, isso quer dizer que os eventos A e B são mutuamente exclusivos ou excludentes, desta forma teríamos:

$$p(A \cup B) = p(A) + p(B)$$

E esta igualdade é denominada de Teorema da Soma.

Probabilidade do evento complementar

Sejam A e B dois eventos de um espaço amostral U, sabendo que A união com B é igual ao espaço amostral U e que A intersecção com B é igual a conjunto vazio, ou seja, A e B são mutuamente exclusivos. Portanto, dizemos que A e B são complementares.

Desta forma, temos:

$$p(A) = 1 - p(B)$$

Assim, vamos analisar a seguinte situação:

Seja A o evento: retirada de uma carta de ouro de um baralho de 52 cartas. Calcule p(A) e seu complementar.

Solução:

O espaço amostral é: n(U) = 52

Evento A: sair uma carta de ouro, portanto: $p(A) = \frac{13}{52} = \frac{1}{4}$

Chamando o seu complementar de p(B), temos então:

$$p(A) = 1 - p(B)$$

$$p(B) = 1 - p(A)$$

$$p(B) = 1 - \frac{1}{4} = \frac{3}{4}$$

Exercícios

- **8.** Em uma cidade, 15% da população são meninos que não podem votar (menores de 16 anos). Se 55% da população são homens, qual é a probabilidade de que um homem selecionado ao acaso não possa votar?
- **9.** Uma pesquisa sobre preferências musicais levantou as seguintes informações sobre um grupo de pessoas:

	Rock	МРВ	Samba
Homens	50	40	30
Mulheres	30	60	40

Definindo que H: homem; M: mulher; R: rock; M: MPB e S: samba, e supondo que cada pessoa deu uma única resposta, determine:

a)
$$p(M/S)$$

b)
$$p(H/R)$$

10.	Vinte por cento (20%) de uma população tem deficiência de uma certa vita-
	mina devido a uma alimentação não equilibrada. Cinco por cento (5%) das
	pessoas com essa deficiência de vitamina têm certa doença. Qual é a proba-
	bilidade de que uma pessoa selecionada ao acaso tenha a doença e a defici-
	ência de vitamina?

11. Num grupo de 200 estudantes, 60 gostam de Português, 40 gostam de Física e 20 gostam de ambos. Escolhendo-se um estudante ao acaso, qual é a probabilidade dele gostar de Português ou de Física?

- **12.** Considere o lançamento de dois dados. Determine:
 - a) a probabilidade de se obter com a soma dos resultados, um total de 7 pontos.

b) a probabilidade de não se obter uma soma de 7 pontos.

13. Em uma fábrica de componentes eletrônicos duas máquinas, A e B, realizam a solda de sensores. Após essa etapa todos os sensores são testados, conforme a política de qualidade da empresa, e então ou são rejeitados ou são aprovados e continuam no processo produtivo. De acordo com o gerente, a probabilidade de que um sensor venha da máquina A e seja rejeitado é de 2%, enquanto que a probabilidade de que um sensor venha da máquina B e seja aprovado é de 45%. Sabendo que metade da produção é soldada na máquina A e metade na máquina B, complete a tabela abaixo com as probabilidades de cada evento e responda as questões:

	Aprovados	Rejeitados	Total
Máquina A		2%	50%
Máquina B	45%		
Total			

a) Qual é a probabilidade de que um sensor escolhido aleatoriamente tenha sido rejeitado?

b) Qual é a probabilidade de que um sensor escolhido aleatoriamente tenha sido soldado na máquina B?

c) Qual é a probabilidade de que um sensor escolhido aleatoriamente tenha sido soldado na máquina A e aprovado?

d) Sabendo que um sensor escolhido aleatoriamente tenha sido soldado na máquina A, qual é a probabilidade de que ele tenha sido rejeitado?

e) Sabendo que um sensor escolhido aleatoriamente tenha sido rejeitado, qual é a probabilidade de que ele tenha sido soldado na máquina B?

Gabarito

Noções de probabilidade

1. Sendo C, cara e K, coroa.

O espaço amostral é: U = {C1, C2, C3, C4, C5, C6, K1, K2, K3, K4, K5, K6}

Evento
$$A = \{C2, C4, C6\}$$

Evento
$$B = \{C1, C2\}$$

Evento C = {K3, K4, K5, K6}

2. Sendo C, cara e K, coroa.

O espaço amostral é $U = \{CC, CK, KC, KK\}, n(U) = 4;$

a)
$$A = \{CC\}$$
, assim: $n(A) = 1$
 $P(A) = \frac{1}{4}$ ou 25%

b)
$$B = \{CK, KC\}, assim: n(B) = 2$$

 $P(B) = \frac{2}{4} \text{ ou } 50\%$

3. Sendo C, cara e K, coroa.

O espaço amostral é U = {CCC, CCK, CKC, CKK, KCC, KCK, KKC, KKK}, n(U) = 8;

a)
$$A = \{CCC, KKK\}, assim: n(A) = 2$$

 $P(A) = \frac{2}{8} = \frac{1}{4} \text{ ou } 25\%$

- b) B = {CCK, CKC, KCC}, assim: n(B) = 3 P (B) = $\frac{3}{8}$ ou 37,5%
- c) $C = \{CKK, KKC, KCK\}, assim: n(C) = 3$ $P(C) = \frac{3}{8}$ ou 37,5%

d) D = {CCC}, assim: n(D) = 1
P (D) =
$$\frac{1}{8}$$
 ou 12,5%

- e) $E = \{CCK, CKC, CKK, KCC, KCK, KKC, KKK\}, assim: n(B) = 7$ P (E) = $\frac{7}{8}$ ou 87,5%
- f) $F = \{CKK, KCK, KKC\}, assim: n(B) = 3$ $P(F) = \frac{3}{8} \text{ ou } 37,5\%$
- **4.** Sendo B, bola branca, V, bola verde e A, bola amarela.

O espaço amostral é $U = \{B, B, B, V, V, V, V, A, A, A, A, A, A\}$, n(U) = 12;

O Evento A = $\{B, B, B, A, A, A, A, A\}$, assim: n(A) = 8

$$P(A) = \frac{8}{12} = \frac{2}{3}$$

ou 66,66% aproximadamente.

O espaço amostral do experimento são os números divisores de 30, isto é, D (30) = {1, 2, 3, 5, 6, 10, 15, 30}, n(U) = 8
 Os números pares, ou seja, evento A = {2, 6, 10, 30}, n(A) = 4
 Portanto:

$$P(A) = \frac{4}{8} = \frac{1}{2}$$
 ou 50%

a) Sendo H: menino e M: menina.

O espaço amostral é U = {HHHH, HHHM, HHMH, HHMM, HMHH, HMHM, HMMH, HMMM, MHHH, MHHM, MHMH, MHMM, MMHH, MMHM, MMMH, MMMM},

$$n(U) = 16$$
:

6.

O Evento A = {HHMM, HMHM, HMMH, MHHM, MHHM, MHMH, MMHH}, assim:

$$n(A) = 6$$

P (A) = $\frac{6}{16}$ ou 37,5%

b) Sendo H: menino e M: menina.

O espaço amostral é U = {HHHH, HHHM, HHMH, HHMM, HMHH, HMHM, HMMH, HMMM, MHHH, MHHM, MHMH, MHMM, MMHH, MMHM, MMMH, MMMM},

$$n(U) = 16;$$

O Evento $B = \{MMMM\}$, assim:

$$n(A) = 1$$

P (A) = $\frac{1}{16}$ ou 6,25%

7. O espaço amostral tem n(U) = 52 . 51= 2652 elementos.

> O evento estudado é formado pelos arranjos de dois ases. Como o baralho tem quatro ases temos pelo princípio fundamental da contagem que:

$$n(A) = 4 . 3 = 12$$

Assim:

$$P(A) = \frac{12}{2652} = \frac{1}{221}$$

8.
$$p(A) = \frac{15\%}{55\%} = \frac{3}{11}$$

ou 27,27% aproximadamente.

9. a)
$$p(M/S) = \frac{p(M \cap S)}{p(S)} = \frac{\frac{40}{250}}{\frac{70}{250}} = \frac{4}{7}$$

b)
$$p(H/R) = \frac{p(H \cap R)}{p(R)} = \frac{\frac{50}{250}}{\frac{80}{250}} = \frac{5}{8}$$

10. Evento A, ter deficiência de uma certa vitamina.

Evento B, pessoas do grupo A que tem certa doenca.

p (A
$$\cap$$
 B) = 20% . 5% = 0,2 . 0,05 = 0,01 ou 1%

11.

Evento A: gostam de Port., n(A) = 60,

portanto: p (A) =
$$\frac{60}{200}$$

Evento B: gostam de Fís., n(B) = 40, portanto: p (A) = $\frac{40}{200}$

Evento A \cap B: gostam de ambos, $n(A \cap B) = 20$, portanto: $p(A \cap B) = \frac{20}{200}$ Desta maneira, temos:

p (A
$$\cup$$
 B) = p(A) + p(B) - p(A \cap B)
p (A \cup B) = $\frac{60}{200} + \frac{40}{200} - \frac{20}{200} = \frac{2}{5}$ ou 40%

12.

 a) O espaço amostral é formado por 36 resultados possíveis, ou seja, n(U) = 36.

O evento A: soma igual a 7, A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, assim, n(A) = 6, portanto:

$$p(A) = \frac{6}{36} = \frac{1}{6}$$

b) Sendo p(B) o complementar de p(A), então:

p (B) = 1 - p (A)
p (B) =
$$1 - \frac{1}{6} = \frac{5}{6}$$

13.

	Aprovados	Rejeitados	Total
Máquina A	48%	2%	50%
Máquina B	45%	5%	50%
Total	93%	7%	100%

2) 704.	
a) 7%;	
b) 50%;	
c) 48%;	
d) 4%;	
e) aproximadamente 71,4%.	
	-

 -

Matemática Elementar II: situações de matemática do ensino médio no dia a dia