NOMBRE: JORGE DE GOYENECHE

SECCIÓN / Nº LISTA: 1/42

PUNTAJE: 6 / 6

Que grande dies Joeger, soy hel regular

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE ÎNGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1'2022

Interrogación 1

Pregunta 1

 $\exists_{x}.(x \lor \beta) = (\exists_{x}.x) \lor (\exists_{x}.\beta)$

(~)

Asuminos que

3x. (x(x) V B(x)) se comple

- => Existe un a tol que x(a) v B(a) = 1
- => (SPD6) tenemos que \propto (d) = 1 pxz un caxo
- => Como existe un a, 3x. x(x)
- ⇒ Retomando el segundo termino, (∃x. x(x)) v (∃x. B) yo que existe el caso en que "à" haga reidadero a(x) y aquel caro donde "à haga veidadero B(x), por lo que el conectivo de disgunción permanere entre ellos para abarcar las posibilidades y por disgunción no so realectado el valor de reidad

 (\leftarrow)

Asuminos que

 $(\exists_{x.\,\alpha(x)}) \vee (\exists_{x.\,\beta(x)}) = 1$

When I asternated to super the section of the secti

CHRISTAL CHARLESTAN

STATES

AND SUPPRISON OF CASO 49

(506)]x.a(x)=1

Es deur existe " à ta

x(0)-1

Por propiedades de disjercion tenemos que

x(3) v B(2) = 1

Jo que Blal prede ser positivo o regativo y el valor de verded se mantiene

Por lo tento

3x.(x(x)vB(x)).

Para el caso contrerio (B) es lo mismo.

Bich

NOMBRE: JORGE DE COMMECHE

SECCIÓN / Nº LISTA: 1 /42

PUNTAJE: 4,1 /

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1'2022

Interrogación 1

Pregunta 2

Separación de terminos

Yx. 3y. 3z.

Place todo nunero"x" existe un "j tol que existe un" tol que

7 (to.7 (x=0) → L(x,0))

No se emple que para todo numero" i , este sea distinto de "x" y entonces "x sea manor à v

 $\Lambda \neg (\forall v. \neg (y=v) \rightarrow L(y \not v))$

Y tamporo se comple que para todo numero v, este sea distinto de "y y entonces "y sea menor à v"

1 3r. 3s. M(r,r,y) 1 M(s,s,z) 1 S(y,z,x)

y se comple que existe un"r"y"s" tal que "r" moltopheado por" es igual a"y" y "s"
moltopheado por "s" es igual a" # y "y mas "è es igual a "x"

X es le sume de cuadados de rys

X=0 3= 5 y=1 2-5 X = 12+52 -> x sumo de 4+2=0 Felsa X=0 y+==0 y=12 y=0 x 2=0 Z=5 r=0 . 5=0 7 (tu.7(x=u) -> X4U Yu.7 (x=u) -> x < U 1 3 011 V 13 VOICO X=1 7(1=0) 1 - 10 X Es tolos + 0,5,1 6505 X=0 1 ps beiness extresion - (An. - (R=n) -> [(x'n)] donde 7(0=0) = 0 por onte no recesaramente 0<0 V You - tener los siquentes cosos: 2) $\chi=0$ dende $\tau(0=u)=1$ pare todo u>0 y entonces O(u), local tambéen Como la expresion $\{u, \forall (x=u) \rightarrow L(x,u) \in \mathcal{E}(x,u) \in \mathcal{E}(x,u) \}$ Se ruelle negative y en les conjunuones de la formula todas son ambalas y el tx retorna un valor de Falsona que para O no se comple. * Bien demostrado +1,2,1 Ademis X debe sumo de cadados perfectos, lo que tomposo se complisó pora todox. +1 ,, - Fello mencionar que x ≠0 e y ≠0

```
2 - 2.1
                                                                                                                                              j + K + 2 x + 1 + m
                                                      3m. m/g, K, ?
                                                                                                             L(n,m) M(m,x,j), M(m,y,k), M(m,z,p)
   2)
       (q=5xm) x (X=exm) x (m > n) . qE. xE. (E). mE. nY =: Q
                                                                                                                                     ~ 7(( j= k) v ( k=ρ) v (j= p) v (j= 1) v (K=1) v(p= 1)
                                                                                                                                                  v (j=m) v (K=m) v (p=m))
[Ω:= \frac{\frac{1}{2}}{2} \rightarrow \frac{1}{2} \r
                                                 (j=1)v(K=1)v(p=1)) A Jx. Jy. Jz. (M(m,x,j) A M(m,y,K) A M(m,z,p)))
                                                                M < M

M \cdot X = J

M \cdot Y = K

M \cdot Z = P

M \cdot Z = P
                                  Tenemos
                     Existiró un numero tel que es major que este y es divisible por j, K y p todos numeros despeden ser distintos distintos, para cerificar su divisibilidad se muitiplica por numeros que preden ser distintos.
Pare todo
                        o no y j, Kyp deben cer distintos a 1 E No y > m, lo que quede englobado
                           en un 7 (V). + 0,3 per explicación
         - El numero "1" no la podras definir directamiente, tiene que
                   ser mediante alguna formula
        - Se pedian tres divisores distintos para m, es decir,
                       M(x,j, m) , M(y,jz,m) , M(z,js, m)
```

NOMBRE: JORGE DE GOSENECHE

SECCIÓN / Nº LISTA: 1/42

PUNTAJE: 3,5 /6

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN P3.b 1/6

Sp,p-q,q,q+r) = r

{p,p+q,q+r} = q

fp,p=q,q=()=(

IIC1253 — Matemáticas Discretas — 1'2022

Interrogación 1

Pregunta 3

P3.0.6/6

3) Sea Σ redundante y α ε Σ tq Σlasta

Demoste YB -> Σ = β <=> Σ | γα | = β

 (\rightarrow)

 $\Sigma = \{ \kappa_1, ..., \kappa_n, \kappa \} \neq \mathbb{R}$ Suponemes que le comple que $\bigwedge_{i=1}^n \kappa_i (V_i, ..., V_n) = 1$ persons relocción $V_i, ..., V_n$ coolquer

y Z ⊨B

Si extremos alt. tq

 $\sum |\gamma_{\alpha}\rangle + \alpha$ Como α es consecueros lógico del subconjunto de \sum se seguro compliendo spe $\sum_{i=1}^{n} \alpha_i (V_{i_1...,V_{ii}}) = 1$ Pere los volueuros que sotisticis le consecueros lógico y pir lo tonto $\sum |\gamma_{\alpha}\rangle + \beta$

1

Asumimos que

5 Hay = B

I sobemos que

Z//d/ =x

Por lo tanto siempre que se cumplo que \(\Lambda ai (Vanyon) = 1 paro Va, . Vo una valueción cualquero ex valdre 1 y al introducirlo al conjunto no combiaré su validee donde verenos dos casas

Donde, por tribibled $\Sigma \models B$ es verdeders ye que no se piede predeur su comportamenta. V

2 - (\(\lambda \(\alpha \(\lambda \) \(\lambda \(\lambda \) \(\lambda \(\lambda \) \(\lambda \) \(\lambda \(\lambda \) \(\lambda \) \(\lambda \) \(\lambda \(\lambda \) \

Donde, como ya vineos, & es consevences lógica del conjunto y tiene valor 1 y por ende ZEB es reidodero ye que sienpre que Zlloxy lo sez 1 x y Ellasulay lo set V

3/3

YNEE. JB. ZEBAZYBB Z = No redundante b) Ellas # x txes

Si el conjunto I no es redundante significa que

YNEE. ENAYKX

necesariamente es una formula disyontiva puesto que Como toda fórmula co prede representer de la forma (DNF) la cual es puede tener conjuncciones Kons: = x1(x) V x2(x) V LV xn(x)

Ponde cedo X: (x) adquere un valor de verdad al ser evaluada en la valuación x

le formula B que es chavella disjuntive de la forma Por lo tanto

Asimilarió coda formula di dento del conjunto, y como ninguna es redundante, existe una formula B que el serla simplificación de la representación de la formula X,

Ki = Pi

1,0/6

JUNA FORMA DNF no

y por ende:

Z = Bi y Z | Y αis ≠ β,

Ja que no sere consecueren logica de su respectivo di al extrecilo.

Entregas un B que sigue Laidea pedida, pero no es correcto, no de muestras Lopedido NOMBRE: JORGE DE COYENECHÉ

PUNTAJE:

SECCIÓN / Nº LISTA: 1/42

X1

V (No. V Vb.)

PONTIFICIA UNIVERSIDAD CATÁLICA

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1'2022

Interrogación 1

Pregunta 4

1