Lecture 27: Asymptotic bias, variance, and mse

Asymptotic bias

Unbiasedness as a criterion for point estimators is discussed in §2.3.2.

In some cases, however, there is no unbiased estimator.

Furthermore, having a "slight" bias in some cases may not be a bad idea.

Let $T_n(X)$ be a point estimator of ϑ for every n.

If ET_n exists for every n and $\lim_{n\to\infty} E(T_n - \vartheta) = 0$ for any $P \in \mathcal{P}$, then T_n is said to be approximately unbiased.

There are many reasonable point estimators whose expectations are not well defined.

It is desirable to define a concept of asymptotic bias for point estimators whose expectations are not well defined.

Definition 2.11. (i) Let $\xi, \xi_1, \xi_2, ...$ be random variables and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$. If $a_n \xi_n \to_d \xi$ and $E|\xi| < \infty$, then $E\xi/a_n$ is called an *asymptotic expectation* of ξ_n .

(ii) Let T_n be a point estimator of ϑ for every n. An asymptotic expectation of $T_n - \vartheta$, if it exists, is called an asymptotic bias of T_n and denoted by $\tilde{b}_{T_n}(P)$ (or $\tilde{b}_{T_n}(\theta)$ if P is in a parametric family). If $\lim_{n\to\infty} \tilde{b}_{T_n}(P) = 0$ for any $P \in \mathcal{P}$, then T_n is said to be asymptotically unbiased.

Like the consistency, the asymptotic expectation (or bias) is a concept relating to sequences $\{\xi_n\}$ and $\{E\xi/a_n\}$ (or $\{T_n\}$ and $\{\tilde{b}_{T_n}(P)\}$).

The exact bias $b_{T_n}(P)$ is not necessarily the same as $\tilde{b}_{T_n}(P)$ when both of them exist.

Proposition 2.3 shows that the asymptotic expectation defined in Definition 2.11 is essentially unique.

Proposition 2.3. Let $\{\xi_n\}$ be a sequence of random variables. Suppose that both $E\xi/a_n$ and $E\eta/b_n$ are asymptotic expectations of ξ_n defined according to Definition 2.11(i). Then, one of the following three must hold: (a) $E\xi = E\eta = 0$; (b) $E\xi \neq 0$, $E\eta = 0$, and $b_n/a_n \to 0$; or $E\xi = 0$, $E\eta \neq 0$, and $a_n/b_n \to 0$; (c) $E\xi \neq 0$, $E\eta \neq 0$, and $(E\xi/a_n)/(E\eta/b_n) \to 1$.

If T_n is a consistent estimator of ϑ , then $T_n = \vartheta + o_p(1)$ and, by Definition 2.11(ii), T_n is asymptotically unbiased, although T_n may not be approximately unbiased.

In Example 2.34, $X_{(n)}$ has the asymptotic bias $b_{X_{(n)}}(P) = h_n(\theta)EY$, which is of order $n^{-(m+1)^{-1}}$.

When $a_n(T_n - \vartheta) \to_d Y$ with EY = 0 (e.g., $T_n = \bar{X}^2$ and $\vartheta = \mu^2$ in Example 2.33), a more precise order of the asymptotic bias of T_n may be obtained (for comparing different estimators in terms of their asymptotic biases).

Suppose that there is a sequence of random variables $\{\eta_n\}$ such that

$$a_n \eta_n \to_d Y$$
 and $a_n^2 (T_n - \vartheta - \eta_n) \to_d W$, (1)

where Y and W are random variables with finite means, EY = 0 and $EW \neq 0$.

Then we may define a_n^{-2} to be the order of $\tilde{b}_{T_n}(P)$ or define EW/a_n^2 to be the a_n^{-2} order

asymptotic bias of T_n .

However, η_n in (1) may not be unique.

Some regularity conditions have to be imposed so that the order of asymptotic bias of T_n can be uniquely defined.

We consider the case where $X_1, ..., X_n$ are i.i.d. random k-vectors with finite $\Sigma = \text{Var}(X_1)$. Let $\bar{X} = n^{-1} \sum_{i=1}^n X_i$, and $T_n = g(\bar{X})$, where g is a function on \mathcal{R}^k that is second-order differentiable at $\mu = EX_1 \in \mathcal{R}^k$.

Consider T_n as an estimator of $\vartheta = g(\mu)$.

By Taylor's expansion,

$$T_n - \vartheta = \left[\nabla g(\mu)\right]^{\tau} (\bar{X} - \mu) + \frac{1}{2} (\bar{X} - \mu)^{\tau} \nabla^2 g(\mu) (\bar{X} - \mu) + o\left(\frac{1}{n}\right),$$

where ∇g is the k-vector of partial derivatives of g and $\nabla^2 g$ is the $k \times k$ matrix of second-order partial derivatives of g.

By the CLT and Theorem 1.10(iii),

$$\frac{n}{2}(\bar{X} - \mu)^{\tau} \nabla^2 g(\mu)(\bar{X} - \mu) \to_d \frac{Z_{\Sigma}^{\tau} \nabla^2 g(\mu) Z_{\Sigma}}{2},$$

where $Z_{\Sigma} = N_k(0, \Sigma)$. Thus,

$$\frac{E[Z_{\Sigma}^{\tau} \nabla^2 g(\mu) Z_{\Sigma}]}{2n} = \frac{\operatorname{tr}(\nabla^2 g(\mu) \Sigma)}{2n}$$
 (2)

is the n^{-1} order asymptotic bias of $T_n = g(\bar{X})$, where tr(A) denotes the trace of the matrix A.

Example 2.35. Let $X_1, ..., X_n$ be i.i.d. binary random variables with $P(X_i = 1) = p$, where $p \in (0, 1)$ is unknown.

Consider first the estimation of $\vartheta = p(1-p)$.

Since $\operatorname{Var}(\bar{X}) = p(1-p)/n$, the n^{-1} order asymptotic bias of $T_n = \bar{X}(1-\bar{X})$ according to (2) with g(x) = x(1-x) is -p(1-p)/n.

On the other hand, a direct computation shows $E[\bar{X}(1-\bar{X})] = E\bar{X} - E\bar{X}^2 = p - (E\bar{X})^2 - Var(\bar{X}) = p(1-p) - p(1-p)/n$.

Hence, the exact bias of T_n is the same as the n^{-1} order asymptotic bias.

Consider next the estimation of $\vartheta = p^{-1}$.

In this case, there is no unbiased estimator of p^{-1} (Exercise 84 in §2.6).

Let $T_n = \bar{X}^{-1}$.

Then, an n^{-1} order asymptotic bias of T_n according to (2) with $g(x) = x^{-1}$ is $(1-p)/(p^2n)$. On the other hand, $ET_n = \infty$ for every n.

Asymptotic variance and mse

Like the bias, the mse of an estimator T_n of ϑ , $\mathrm{mse}_{T_n}(P) = E(T_n - \vartheta)^2$, is not well defined if the second moment of T_n does not exist.

We now define a version of asymptotic mean squared error (amse) and a measure of assessing different point estimators of a common parameter.

Definition 2.12. Let T_n be an estimator of ϑ for every n and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$. Assume that $a_n(T_n - \vartheta) \to_d Y$ with $0 < EY^2 < \infty$.

(i) The asymptotic mean squared error of T_n , denoted by $\operatorname{amse}_{T_n}(P)$ or $\operatorname{amse}_{T_n}(\theta)$ if P is in a parametric family indexed by θ , is defined to be the asymptotic expectation of $(T_n - \vartheta)^2$, i.e., $\operatorname{amse}_{T_n}(P) = \operatorname{EY}^2/\operatorname{a}_n^2$. The asymptotic variance of T_n is defined to be $\sigma_{T_n}^2(P) = \operatorname{Var}(Y)/\operatorname{a}_n^2$.

(ii) Let T'_n be another estimator of ϑ . The asymptotic relative efficiency of T'_n w.t.r. T_n is defined to be $e_{T'_n,T_n}(P) = \mathrm{amse}_{T_n}(P)/\mathrm{amse}_{T'_n}(P)$.

(iii) T_n is said to be asymptotically more efficient than T'_n if and only if $\limsup_n e_{T'_n,T_n}(P) \leq 1$ for any P and < 1 for some P.

The amse and asymptotic variance are the same if and only if EY = 0.

By Proposition 2.3, the amse or the asymptotic variance of T_n is essentially unique and, therefore, the concept of asymptotic relative efficiency in Definition 2.12(ii)-(iii) is well defined.

In Example 2.33, $\mathrm{amse}_{\bar{X}^2}(P) = \sigma_{\bar{X}^2}^2(P) = 4\mu^2\sigma^2/n$. In Example 2.34, $\sigma_{X_{(n)}}^2(P) = [h_n(\theta)]^2\mathrm{Var}(Y)$ and $\mathrm{amse}_{X_{(n)}}(P) = [h_n(\theta)]^2\mathrm{EY}^2$.

When both $\operatorname{mse}_{T_n}(P)$ and $\operatorname{mse}_{T'_n}(P)$ exist, one may compare T_n and T'_n by evaluating the relative efficiency $\operatorname{mse}_{T_n}(P)/\operatorname{mse}_{T'_n}(P)$.

However, this comparison may be different from the one using the asymptotic relative efficiency in Definition 2.12(ii), since the mse and amse of an estimator may be different (Exercise 115 in §2.6).

The following result shows that when the exact mse of T_n exists, it is no smaller than the amse of T_n .

It also provides a condition under which the exact mse and the amse are the same.

Proposition 2.4. Let T_n be an estimator of ϑ for every n and $\{a_n\}$ be a sequence of positive numbers satisfying $a_n \to \infty$ or $a_n \to a > 0$. Suppose that $a_n(T_n - \vartheta) \to_d Y$ with $0 < EY^2 < \infty$. Then

- (i) $EY^2 \le \liminf_n E[a_n^2(T_n \vartheta)^2]$ and
- (ii) $EY^2 = \lim_{n \to \infty} E[a_n^2(T_n \vartheta)^2]$ if and only if $\{a_n^2(T_n \vartheta)^2\}$ is uniformly integrable.

Proof. (i) By Theorem 1.10(iii),

$$\min\{a_n^2(T_n - \vartheta)^2, t\} \to_d \min\{Y^2, t\}$$

for any t > 0. Since $\min\{a_n^2(T_n - \vartheta)^2, t\}$ is bounded by t,

$$\lim_{n \to \infty} E(\min\{a_n^2(T_n - \vartheta)^2, t\}) = E(\min\{Y^2, t\})$$

(Theorem 1.8(viii)). Then

$$EY^{2} = \lim_{t \to \infty} E(\min\{Y^{2}, t\})$$

$$= \lim_{t \to \infty} \lim_{n \to \infty} E(\min\{a_{n}^{2}(T_{n} - \vartheta)^{2}, t\})$$

$$= \lim_{t \to \infty} \inf_{n \to \infty} E(\min\{a_{n}^{2}(T_{n} - \vartheta)^{2}, t\})$$

$$\leq \lim_{n \to \infty} \inf_{n \to \infty} E[a_{n}^{2}(T_{n} - \vartheta)^{2}],$$

where the third equality follows from the fact that $E(\min\{a_n^2(T_n-\vartheta)^2,t\})$ is nondecreasing in t for any fixed n.

(ii) The result follows from Theorem 1.8(viii).

Example 2.36. Let $X_1, ..., X_n$ be i.i.d. from the Poisson distribution $P(\theta)$ with an unknown $\theta > 0$.

Consider the estimation of $\vartheta = P(X_i = 0) = e^{-\theta}$.

Let $T_{1n} = F_n(0)$, where F_n is the empirical c.d.f.

Then T_{1n} is unbiased and has $\operatorname{mse}_{T_{1n}}(\theta) = e^{-\theta}(1 - e^{-\theta})/n$.

Also, $\sqrt{n}(T_{1n} - \vartheta) \rightarrow_d N(0, e^{-\theta}(1 - e^{-\theta}))$ by the CLT.

Thus, in this case $\operatorname{amse}_{T_{1n}}(\theta) = \operatorname{mse}_{T_{1n}}(\theta)$.

Consider $T_{2n} = e^{-\bar{X}}$.

Note that $ET_{2n} = e^{n\theta(e^{-1/n}-1)}$.

Hence $nb_{T_{2n}}(\theta) \to \theta e^{-\theta}/2$.

Using Theorem 1.12 and the CLT, we can show that $\sqrt{n}(T_{2n}-\vartheta) \to_d N(0,e^{-2\theta}\theta)$.

By Definition 2.12(i), $\operatorname{amse}_{T_{2n}}(\theta) = e^{-2\theta}\theta/n$.

Thus, the asymptotic relative efficiency of T_{1n} w.r.t. T_{2n} is

$$e_{T_{1n},T_{2n}}(\theta) = \theta/(e^{\theta} - 1),$$

which is always less than 1.

This shows that T_{2n} is asymptotically more efficient than T_{1n} .

The result for T_{2n} in Example 2.36 is a special case (with $U_n = \bar{X}$) of the following general result.

Theorem 2.6. Let g be a function on \mathbb{R}^k that is differentiable at $\theta \in \mathbb{R}^k$ and let U_n be a k-vector of statistics satisfying $a_n(U_n - \theta) \to_d Y$ for a random k-vector Y with $0 < E||Y||^2 < \infty$ and a sequence of positive numbers $\{a_n\}$ satisfying $a_n \to \infty$. Let $T_n = g(U_n)$ be an estimator of $\theta = g(\theta)$. Then, the amse and asymptotic variance of T_n are, respectively, $E\{[\nabla g(\theta)]^{\tau}Y\}^2/a_n^2$ and $[\nabla g(\theta)]^{\tau} \operatorname{Var}(Y) \nabla g(\theta)/a_n^2$.