

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 Claim 1 (original): A method for calibrating parameters of
2 sensor elements in a sensor array, comprising:
3 receiving an output signal of at least two sensor elements
4 signal in reaction to an input signal from a signal source;
5 estimating a cross-correlation between the output signals of
6 at least two of said sensor elements;
7 optimising a difference between the estimated
8 cross-correlation and a cross-correlation model; and thereby
9 estimating said parameters from the optimised difference;
10 wherein a cross-correlation model is used as represented by
11 the mathematical equation:

$$R = G B G^H + D$$

12 in which equation:

13 R represents a cross-correlation matrix,
14 G represent a gain matrix comprising gain parameters,
15 G^H represents the Hermitian conjugate of the gain matrix,
16 D represents a ((block) diagonal) noise matrix comprising
17 noise parameters and
18 B represents a matrix comprising information about the
19 signal source.

1 Claim 2 (original): A method as claimed in claim 1, wherein
2 said difference is a least square difference.

1 | Claim 3 (currently amended) : A method as claimed in claim 1
2 | ~~or 2~~, wherein the cross-correlation is obtained by
3 | determining a time-averaged covariance matrix from the
4 | output signals.

1 | Claim 4 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the sensor array is
3 | a single polarization or non-polarized sensor array.

1 | Claim 5 (currently amended) : A method as claimed in claim 1,
2 | wherein the sensor elements are dual polarization sensor
3 | elements for receiving a dual polarised signal.

1 | Claim 6 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein said method is
3 | performed for output signals of the sensor elements
4 | generated in reaction to input signals from at least three
5 | signal sources with different polarizations.

1 | Claim 7 (original) : A method as claimed in claim 4, wherein
2 | said optimising comprises:
3 | minimising a difference between a weighted logarithm of the
4 | estimated cross-correlation and a weighted logarithm of the
5 | cross-correlation and
6 | estimating the gain of at least one of the sensor elements
7 | from said difference.

1 | Claim 8 (original) : A method as claimed in claim 7, wherein
2 | the logarithm is weighted by a weighting matrix with matrix
3 | values relating to said gain parameters.

1 | Claim 9 (currently amended) : A method as claimed in claims 7
2 | ~~or 8~~claim 7, wherein said optimising and said estimating
3 | gain parameters are performed at least a first time and a
4 | second time, wherein in the first time an uniform weight is
5 | used for all output signals and in the second time the
6 | weight is used in dependence on the gain estimated in the
7 | first time for the respective output signals.

1 | Claim 10 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of claims 7-11~~claim 7, wherein said optimising comprises an
3 | operation as represented by the mathematical equation:

4 |
5 | $\{g_{est}\} = \text{argmin}_{g,k} (\| W J \text{vec}(\ln(R_{est}) - \ln(g g^H) + 2\pi k i) \|_F)^2$
6 | , in which equation:

7 | g_{est} represents the parameter to be estimated;

8 | g represents a variable;

9 | g^H represents the Hermitian conjugate of the variable;

10 | J represent a selection matrix which puts zeros on the main
11 | diagonal;

12 | k represents a phase unwrapping vector containing integer
13 | values; ;

14 | W represents a weighting matrix; and

15 | R_{est} represents the estimated cross-correlation.

1 | Claim 11 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the signal source is
3 | a satellite in orbit around a celestial body.

1 | Claim 12 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the signal source is
3 | a pulsar.

1 | Claim 13 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the output signals
3 | have a low signal to noise ratio.

1 | Claim 14 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the sensor elements
3 | are antennas in a phased array antenna.

1 | Claim 15 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the sensor elements
3 | are electro-magnetic sensors elements.

1 | Claim 16 (currently amended) : A method as claimed in ~~any one~~
2 | ~~of the preceding claims~~claim 1, wherein the sensor elements
3 | are acoustical sensor elements.

1 | Claim 17 (currently amended) : A calibration system for
2 | calibrating parameters of sensor elements in a sensor array,
3 | , comprising
4 | at least two inputs, each connectable to an output of an
5 | sensor element in a sensor array;
6 | a correlation estimator device for estimating a correlation
7 | between the output signals of at least two of said sensor
8 | elements
9 | an optimiser device for optimising a difference between the
10 | estimated cross-correlation and a cross-correlation model
11 | and thereby estimating said parameters from the optimised
12 | difference;
13 | a memory device containing the cross-correlation model,
14 | which model is represented by the mathematical equation:
15 |
$$R = G \cdot B \cdot G^H + D$$

16 | in which equation:

17 R represents a cross-correlation matrix,
18 G represent a gain matrix comprising gain parameters,
19 G^H represents the Hermitian conjugate of the gain matrix,
20 D represents a noise matrix comprising noise parameters and
21 B represents a matrix comprising information about the
22 signal source
23 and—.

1 Claim 18 (currently amended) : A calibration system as
2 claimed in claim 17, wherein the sensor array is a dual
3 polarised sensor array.

1 Claim 19 (original) : A calibration system as claimed in
2 claim 17, wherein the sensor array is a single polarization
3 or non-polarized sensor array.

1 Claim 20 (currently amended) : An array signal processing
2 system calibrated with a method as claimed in ~~any one of~~
3 ~~claims 1-17~~ claim 1.

1 Claim 21 (currently amended) : A computer program product,
2 comprising program code for performing steps of a method as
3 claimed in ~~any one of claims 1-17~~ claim 1 when run on a
4 programmable device.

1 Claim 22 (original) : A data carrier comprising data
2 representing a computer program product as claimed in
3 claim 21.