

Deep Learning for Embedded Vision System

Hai Tao, Dr.

Credits to all my colleagures who make this presntation possible

Jan. 11th, 2017 Vion Technologies Co., Ltd.

Vion Technologies: A Leader in the Field of Computer Vision

- Vion Technologies Co. Ltd., founded in 2005, currently employs 200+ talented staffs. The company is developing CV HW/SW total solutions for intelligent transportation systems (ITS), smart video surveillance systems and business intelligence systems.
- Huge potential for CV products in ToB markets
 - Every year more than 40 million surveillance cameras are sold globally (IDC data analysis)
 - High resolution (720p, 1080p, even 4K resolution) IP cameras are replacing the D1 resolution analog cameras
 - Better algorithms enable more applications in ToB applications
 - High performance, low power consumption, low cost processors are available

- IOT+Computer Vision, Where Are the Applications?
- Embedded CV Hardware
- GPU, VPU, and FPGA

Smart Traffic

Intersection violation capture & smart plate number recognition & light control

Transit & emergency vehicle lane use capture

Smart parking management

Parking Violation Capture

Smart People Counting

Malls

Transit People Counting

Retail Stores

Subway People Counting

Cultural Attraction Guest Traffic

Theatre People Counting

VionVision

Public Security, City Management, Banking, Rail, **Border Control and Many More ...**

Security & Counterterrorism: Fighting Security & Counterterrorism: Chasing

Banking: ATM Protection

Mining: Production Safety

Intruder Alerts

- IOT+Computer Vision, Where Are the Applications?
- Embedded CV Hardware
- GPU, VPU, and FPGA

- Sensor rich (multi-axis/temp)
- 3/6/8MP 25fps
- High performance platform
- 3G/4G/WIFI
- Smart traffic industry

Smart Traffic Camera

- Integrated image sensing and analysis
- Wifi probe & iBeacon
- POE powered
- Patented exterior design, screw free installation
- H.264 real-time video output
- 2-year data storage

Bus People Counting

- Integrated image sensing and analysis
- RS485, GPIO
- Patented exterior design specially for transit
- H.264real-time video output
- 2-year data storage
- IP65, sealed against dust & water

Spec: 4K resolution 4/3' CCD, Ambarella processor, Xilinx FPGA module

Applications: ePolice at road intersections, covering 4 lanes. The first 4K@25fps

ePolice in the world

Release data: 2016 Q3

Smart Cameras - People Counting

Spec: ARM processor, compact form format

Applications: People counting for Shopping malls and retail stores.

Release Date: 2016 Q3

Tarsier I Module - A Step to Smart Edge Device

Smart Cameras Design- Bus Traffic Counting

Back-End GPU Processing Units

- GPU platform, 300
 GFLOPS
- Analog/IP Video Input
- 2.5 inch hardrive &
 EMMC
- USB3.0, dual gigabyte
 LAN

Front End Control Terminal

- High performance ,
 300 GFLOPS
- 4 3.5" hard drives
- USB 3.0
- Dual gigabyte network ports

Smart Video & Audio Analysis Terminal

- Dual GPU, 600 GFLOPS
- 8 analog video & audio input
- Hard drive & EMMC storage
- 4 alarm in, 2 out

High Density GPU Cluster Server

- 40 nVidia GPUs
- 80ch 1080P H.264 decoding
- Processing up to 160ch@D1 or 80ch@1080p

Back-End GPU Processing Units - StarNet I

Applications: ITS, crowd management, IVS in

various industries

Release date: Q3,2016

- IOT+Computer Vision, Where Are the Applications?
- Embedded CV Hardware
- GPU, VPU, and FPGA

• Nvidia TK1: **120ms**/frame

Movidius MA2450: 140ms/frame

Nvidia Tegra K1: CNN Implementation

- GPU for detection (relatively low frequency) and CPU for tracking
- Memory footprint is optimized via buffer sharing and TK1's unified mem mechanism
- Maximize CPU & GPU utilization via nvidia asynchronous ops and streams.
- cuDnn library for general layers
- Non-standard layers are implemented based on fine-tuned kernels
- 1x1 convolution, Balance between MACs & accuracy
- Balance between depth & width, depth for more representative power

- fp16 is used with no accuracy loss
- Net architecture is tuned based on depth, width, kernel size
- Convolution/bias/relu/pooling -> combined layer
- All combined layer operations run in the on-chip CMX memory
- DDR and CMX exchange data when a combined layer is completed
- Implement 2D convolution in assembly kernel
- Bias, relu and pooling are done via processor intrinsics
- Make full use of the underlying "SIMD" shave architecture

Output feature map oriented strategy

Put each shave in charge of several output feature maps, with load balanced among all shaves

Input feature map oriented strategy

each shave processor could take charge of "a band" of input feature maps, and compute all output channels of that spatial "band"

The above strategies are employed according to each layer's specific configurations, to minimize the amount of data transferred.

FPGA and DNN - Pottwal Project

COMPARE &	ZU4EV ■	ZU5EV	ZU7EV • >
System Logic Cells (K)	192	256	504
Memory (Mb)	18.5	23.1	38.0
DSP Slices	728	1,056	1,728
Video Code Unit (VCU)	1	1	1
Maximum I/O Pins	252	252	464

Zynq® UltraScale+™ MPSoCs: EV Block Diagram

FPGA and DNN - *Pottwal Project*The detection of neural

network(Faster_ofGNN)al network (Faster_RCNN)

Most of the computation:

$$X = \sum_{i=0}^{n} x_i w_i$$

$$Y = \begin{cases} 0, & X < 0 \\ X, & X \ge 0 \end{cases}$$

Softmax, NMS, Coordinate inversion and so on

Design Features

- Global pipeline
- Ping-Pong
- Reduced data interaction
- SIMD
- Int8

FPGA and DNN - Pottwal Project

Performance

Up to 8 channels of 1080p@30 detection

• Effective performance: 1.2T ops

• PE computational efficiency: 87.2%

• Latency: 11.5ms

Platform	Performance(Effective)	Power	Performance per Watt
Our FPGA Platform	1.2T ops	7W	171.4G ops/W
NVIDIA TX1	220G ops	10W	22G ops/W
NVIDIA TK1	55G ops	10W	5.5G ops/W
Movidius MA2450	40G ops	1.5W	27G ops/W

VionVisionVision without Limits!

Vion Core Team

Hai Tao, Dr., Founder&CEO
Tsinghua Univ. BS'91, MS'93; UIUC
PdD'99; Sarnoff 99-01; UCSC
Assoc.&Tenured Prof. 01-10. US NSF
2004 Young Career Award. Pulished
150+ papers in CV, 10+ US patents.

Tianshu Wang, Product Director
Xian Jiaotong Univ. BS'93,PhD'03;
Microsoft Research 97-03, IBM
Research 03-10; Lenovo Research 10-16,
joined Vion in 2016.

Jun Song, CTO
Tsinghua Univ. Math, BS'01, MS'04;
Responsible for all R&D work.
Leads the smart traffic product core
development & hardware system design.

Fan Yang, Director, Smart Counting
Tsinghua Univ. EE, BS'03, MS'06;
Manager: business intelligence group;
Manager: smart counting product line.

Yu Lin, Director, Vision System
Tsinghua Univ. AE, BS'03, MS'06;
Manager: smart city product line;
Manager: face recognition and
intelligent video analysis group.

Xiang Zheng, Director, ITS
Tsinghua, CS, BS'01, MS'04; CV
algorithm expert; data department
manager; Rich vision product
experience.

- decrease the model size, less than 1 million params
- limit the complextity to 1.5GMAC, < 2% of VGG

- Detection Rate >89% (FDDB)
- 5% lower than VGG (0.2FP/frame)
- Face detection scale from 20 pixels to 400 pixels
- Detection Rate >83% for real unconstrained local scenarios (illumination, expression, occlusion, pose)