Probability Theory: Hw1

Aamod Varma

September 11, 2025

Problem 2.10

We need to show that the indicator function 1_E is a discrete random variable. First we need to show that $1_E(\Omega)$ is countable.

We have,

$$1_E(\omega) = \begin{cases} 1 & \text{if } \omega \in E \\ 0 & \text{if } \omega \notin E \end{cases}$$

So for any $\omega \in \Omega$ we have either $1_E(\omega) = 1$ or $1_E(\omega) = 0$ hence we have $X(\Omega) = \{0, 1\}$ which is countable.

Now we need to show that $\forall a \in \mathbb{R}$ we have, $\{\omega : X(\omega) = a\} \in \mathscr{F}$. We see for a = 1 we have $\{\omega : X(\omega) = 1\} = E$ and we assume that $E \in \mathscr{F}$. Similarly we have for a = 0 that $\{\omega : X(\omega) = 0\} = \{\omega : \omega \notin E\} = E^c$. Using the properties of \mathscr{F} we know that $E^c \in \mathscr{F}$. Lastly if $a \neq 1, 0$ we have $\{\omega : X(\omega) \neq 1, 0\} = \phi$ and we know that $\phi \in E$.

Hence, we show that by definition the indicator function is a discrete random variable.

Problem 2.11

1. $U(\omega) = \omega$

First we check if $U(\Omega)$ is countable. As $U(\omega) = \omega$ we have,

$$U(\Omega) = U(\{1, \dots, 6\}) = \{U(\omega) : \omega \in \Omega\} = \{1, 2, 3, 4, 5, 6\}$$

which is countable. Now we check if for any $a \in \mathbb{R}$ it's preimage is in the family of events.

Take a=1 we have $\{\omega: X(\omega)=1\}=\{1\}\subset\Omega$. However, we see that $\{1\}\not\in\mathscr{F}$ which means that it fails the condition and hence U is not a discrete random variable.

2.
$$V(\omega) = \begin{cases} 1 & \text{if } \omega \text{ is even} \\ 0 & \text{if } \omega \text{ is odd} \end{cases}$$

We see that V maps all $\omega \in \Omega$ to either 0, 1. Hence, we have,

$$V(\Omega) = V(\{1, \dots, 6\}) = \{V(\omega) : \omega \in \Omega\}$$

Now, as $\omega \in \Omega$ can either be even or odd we have, $\{V(\omega) : \omega \in \Omega\} = \{0,1\}$ which is countable.

Now, consider any $a \in \mathbb{R}$ we need to see if it's preimage is in the family of events. For a=1 we have $\{\omega \in \Omega : X(\omega) = 1\} = \{\omega : \omega \text{ is even}\} = \{2,4,6\}$ and we see that $\{2,4,6\} \in \mathscr{F}$. Similarly for a=0 we have $\{\omega \in \Omega : X(\omega) = 0\} = \{\omega : \omega \text{ is odd}\} = \{1,3,5\}$ and we see that $\{1,3,5\} \in \mathscr{F}$. And lastly for $a \neq 1,0$ we have $\{\omega : X(\omega) \neq 1,0\} = \phi \in \mathscr{F}$. Hence, V satisfies both conditions making it a discrete random variable.

3. $U(\omega) = \omega^2$ First we check if $W(\Omega)$ is countable. We have,

$$W(\Omega) = \{W(\omega) : \omega \in \Omega\} = \{1^2, 2^2, \dots, 6^2\} = \{1, 4, 9, 16, 25, 36\}$$

which is obviously countable.

Now, consider any $a \in \mathbb{R}$ and we check the preimage of a. Take a = 1 we have $\{\omega : X(\omega) = 1\} = \{1\}$. But we see that $\{1\} \notin \mathcal{F}$. Hence W is not a discrete random variable.

Problem 2.24

We have X a discrete random variable having geometric distribution. Which means that,

$$\mathbb{P}(X = k) = p(1 - p)^{k-1}$$

We need to find $\mathbb{P}(X > k)$ or $\mathbb{P}(X = k + 1) + \mathbb{P}(X = k + 2) + \dots$ which is $\sum_{n=1}^{\infty} \mathbb{P}(X = k + n)$ as X is geometric we have,

$$\sum_{n=1}^{\infty} \mathbb{P}(X = k+n) = \sum_{n=1}^{\infty} p(1-p)^{k+n-1}$$
$$= p \sum_{n=1}^{\infty} (1-p)^{k+n-1}$$
$$= p((1-p)^k + (1-p)^{k+1} + \dots)$$

Now using sum of geometric series we have,

$$\mathbb{P}(X > k) = p((1-p)^k + (1-p)^{k+1} + \dots)$$

$$= p\frac{(1-p)^k}{p}$$

$$= (1-p)^k$$

Problem 4

We need value of c and α such that,

$$p(k) = \begin{cases} ck^{\alpha} & \text{for } k = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

is a mass function.

A mass function is defined as $p(x) = \mathbb{P}(X = x)$ if X is a discrete random variable. So we have $\mathbb{P}(X = k) = ck^{\alpha}$ if $k = 1, 2, 3, \ldots$ else $\mathbb{P}(X = k) = 0$. So we need $\sum_{k=1}^{\infty} \mathbb{P}(X = n) = ck^{\alpha} = 1$. So we have,

$$\sum_{k=1}^{\infty} ck^{\alpha} = 1$$
$$c\sum_{k=1}^{\infty} k^{\alpha} = 1$$

Now the summation only converges if $\alpha < -1$. Assume it converges to m then we can define $c = \frac{1}{m}$.

Problem 5

We need to show that $\mathbb{P}(X > m + n \mid X > m) = \mathbb{P}(X > n)$. In geometric distribution we know that $\mathbb{P}(X = k) = p(1-p)^{k-1}$ so we have $\mathbb{P}(X > n) = (1-p)^n$. Similarly we get,

$$\mathbb{P}(X>m+n\mid X>m)=\frac{\mathbb{P}((X>m)\cap (X>m+n))}{\mathbb{P}(X>m)}$$

Now if X > m and X > m + n as the first is included in the second it is equivalent to X > m + n so we have,

$$\begin{split} \mathbb{P}(X > m + n \mid X > m) &= \frac{\mathbb{P}((X > m) \cap (X > m + n))}{\mathbb{P}(X > m)} \\ &= \frac{\mathbb{P}(X > m + n)}{\mathbb{P}(X > m)} \\ &= \frac{(1 - p)^{m + n}}{(1 - p)^m} \\ &= (1 - p)^{m + n - m} = (1 - p)^n \\ &= \mathbb{P}(X > n) \end{split}$$

For the lack of geometric property we need $\mathbb{P}(X > m + n) = \mathbb{P}(X > n)\mathbb{P}(X > m)$

Problem 7

We have c types of coupons with each coupon equally likely as the others. We need to find probability of first n coupons do not form a complete set.

Let us begin by defining a discrete random variable $X:\Omega\to\mathbb{R}$ defined as the number of coupons collected before getting a complete set. So we have $\mathbb{P}(X=n)$ is the probability that we get a complete set within the first n coupons. So we need to find $\mathbb{P}(X>n)$ as that is the probability that we get a complete set only if we take more than n coupons. So we have,

$$\begin{split} \mathbb{P}(X < c) &= 0 \\ \mathbb{P}(X = c) &= c! \\ \mathbb{P}(X = c + 1) &= \binom{c+1}{c} c! c \\ \mathbb{P}(X = n) &= \binom{n}{c} c! c^{n-c} \end{split}$$

So our solution is,

$$\mathbb{P}(X > n) = \sum_{k=1}^{\infty} \binom{n+k}{c} c! c^{n+k-c}$$

$$\mathbb{P}(X > n) = c! c^{n-c} \sum_{k=1}^{\infty} \binom{n+k}{c} c^k$$