Análise da Complexidade de Algoritmos Recursivos I

Joaquim Madeira 13/04/2021

Sumário

- Recap
- Algoritmos recursivos
- Calcular x^n
- Inverter a ordem dos elementos de um array
- Calcular o valor de um determinante
- As Torres de Hanói
- Exercícios adicionais
- Sugestões de leitura

Recapitulação

Transform-and-Conquer

Estratégia T&C – Heap Sort

Dado um array de n elementos

Construir uma MAX-HEAP

Repetir (n-1) vezes

Levar o maior elemento da MAX-HEAP para posição final — 1 TROCA Reorganizar os elementos não ordenados para MAX-HEAP — 1 x fixHeap

Algoritmo in-place !!

Heap Sort

Transformação

2

•••

n-2 n-1

4

3

Reposicionar o maior dos não ordenados

Reposicionar o maior dos não ordenados

MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO
MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	MAIOR ELEMENTO	•••
MAIOR ELEMENTO	•••	•••	•••	•••	•••	•••	•••

•••

•••

•••

1 troca

1 troca

••• •••

Heap Sort

```
void heapSort( int a[], int n ) {
     heapBottomUp(a, n);
     for( int i = n - 1; i > 0; i-- ) {
           swap( &a[0], &a[i] );
           fixHeap(a, 0, i); // Só a[0] pode
                                  // necessitar de ser
                                  // reposicionado!!
```

Construção de uma MAX-HEAP

Reposicionamento para garantir ordem

```
void fixHeap( int a[], int index, int n ) {
       int child;
       for( int tmp = a[index]; leftChild(index) < n; index = child ) {
               child = leftChild(index);
                                                                           // The largest
               if( child != (n-1) \&\& a[child + 1] > a[child]) child++; // moves up,
               if( tmp < a[child] ) a[index] = a [child];</pre>
                                                                           // if needed
               else break;
       array[index] = tmp;
                                                                   // Final position
```

Análise da Complexidade – Comparações

- Construção inicial da MAX-HEAP : O(n)
- Ordenação do array : O(n log n)

$$O(n) + O(n \log_2 n) = O(n \log_2 n)$$

• $O(n \log_2 n)$ no pior caso e no caso médio !! \odot

Exemplo – Construção da MAX-HEAP

0	1	2	3	4	5
2	9	7	6	5	8

2	9	7	6	5	8
2	9	8	6	5	7
2	9	8	6	5	7
9	2	8	6	5	7
9	6	8	2	5	7

reposicionar

reposicionar reposicionar

• Fazer, representando graficamente a MAX-HEAP

Exemplo – Ordenação

0	1	2	3	4	5	_
9	6	8	2	5	7	

9	6	8	2	5	7
7	6	8	2	5	9
8	6	7	2	5	9
5	6	7	2	8	9
7	6	5	2	8	9
2	6	5	7	8	9

trocar reorganizar trocar reorganizar trocar

•••

UA - Algoritmos e Complexidade Joaquim Madeira 12

Algoritmos recursivos

UA - Algoritmos e Complexidade Joaquim Madeira 13

Algoritmos recursivos

- Oferecem soluções concisas e elegantes
- MAS, nem sempre podem ser usados EFICIÊNCIA
- Podem ser um primeiro passo para o desenvolvimento de um posterior algoritmo iterativo
- Decomposição do problema inicial em subproblemas mais simples e do mesmo tipo
 - Desenvolvimento Top-Down

Estratégia de decomposição

- Identificar o(s) caso(s) recursivo(s)
 - Problemas do mesmo tipo
 - Diminuição da "dificuldade"
- Identificar o(s) caso(s) de base / de paragem
 - São atingíveis ?

$$n! = n \times (n-1)!$$

$$0! = 1$$

Decomposição em subproblemas

- Diminuir-para-Reinar / Decrease-and-Conquer
 - Resolver 1 só subproblema em cada passo do processo recursivo
 - Lista / cadeia de chamadas recursivas

- Dividir-para-Reinar / Divide-and-Conquer
 - Resolver 2 ou mais subproblemas em cada passo do processo recursivo
 - Árvore de chamadas recursivas

Decrease-(by half)-and-conquer technique.

Tipos de algoritmos – Recursividade Simples

- Diminuir-para-Reinar
- Executada 1 só chamada recursiva em cada passo
- Fatorial, mdc, travessia de um array / uma lista, procura binária, ...
- Facilmente transformável num algoritmo iterativo, usando um ciclo

• Sugestão: implementar alguns destes algoritmos

Tarefa 1

 Função recursiva para calcular o mdc(a, b), usando o Algoritmo de Euclides

 Função recursiva para procurar um valor num array de n elementos inteiros, usando a estratégia de Procura Sequencial

Está feita

UA - Algoritmos e Complexidade Joaquim Madeira

Tipos de algoritmos – Recursividade Múltipla

- Dividir-para-Reinar
- Executadas 2 ou mais chamadas recursivas em cada passo
- Sucessão de Fibonacci, Combinações, ...
- Usar STACK para transformar num algoritmo iterativo

• Sugestão: implementar alguns destes algoritmos

Tarefa 2

• Função recursiva para calcular **C(n, p)**, usando a recorrência subjacente ao Triângulo de Pascal

Está feita

Eficiência computacional

- Overhead associada a cada chamada recursiva
 - Salvaguarda do contexto
 - ...
- MAS, nalguns casos, também ineficiência intrínseca
 - Recalcular inúmeras vezes os mesmos valores
 - Repetir as mesmas operações
- A estratégia de Programação Dinâmica é uma possível alternativa, para determinados problemas

Análise Formal da Complexidade

- Identificar a operação mais relevante
- Obter uma expressão recorrente para o número de operações efetuadas
- Se possível, desenvolver a expressão para obter uma "fórmula fechada"

• Vamos ilustrar / aprender analisando exemplos

Calcular $\boldsymbol{x^n}$

Calcular x^n

```
x^n = x \times x^{n-1}, n > 0x^0 = 1
```

```
double p(double x, unsigned int n) {
    if(n > 0) return x * p(x, n - 1);
    return 1;
}

Está feito
```

Contar o número de multiplicações

$$M(0) = 0$$

 $M(n) = 1 + M(n - 1), n > 0$

Desenvolvimento telescópico – Quando para ?

$$M(n) = 1 + M(n - 1) = 2 + M(n - 2) = \dots = k + M(n - k)$$

 $M(n) = n + M(0) = n$

$$M(n) \in \mathcal{O}(n)$$

Tarefa 3

- Há outros algoritmos recursivos para o cálculo de potências de expoente natural
- Por exemplo:

$$\chi^n = \chi^{\left[\frac{n}{2}\right]} \times \chi^{\left[\frac{n}{2}\right]}$$

- Quais são os casos de base ?
- Qual é o número de multiplicações efetuadas ?
- Sugestão: implementar e comparar

Inverter a ordem dos elementos de um array com n elementos

Inverter a ordem dos elementos

```
void inverter(int* v, int esq, int dir) {
    if(esq < dir) {
        trocar(&v[esq], &v[dir]);
        inverter(v, esq + 1, dir - 1);
    }
}</pre>
```

Nº de trocas de elementos ?

$$T(1) = 0$$
 $T(2) = 1$
 $T(n) = 1 + T(n-2), n > 2$

$$T(n) = 1 + T(n-2) = 2 + T(n-4) = \dots = k + T(n-2k)$$

• Nº par de elementos vs Nº impar de elementos

Nº de trocas de elementos ?

$$T(n) = k + T(n - 2k)$$

• Seja o nº de elementos par e maior do que 2

$$n - 2k = 2 \implies T(n) = \frac{n-2}{2} + T(2) = \frac{n}{2}$$

- Tarefa: fazer para n impar
- Verificar que para ambos os casos:

$$T(n) = \left| \frac{n}{2} \right|$$

32

Calcular o valor de um determinante usando o Teorema de Laplace

Exemplo – Desenvolver pela 1º coluna

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 9 & 9 \end{vmatrix} = 1 \times \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 4 \times \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 7 \times \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix}$$

$$= 1 \times [5 \times 9 - 8 \times 6] - 4 \times [2 \times 9 - 8 \times 3] + 7 \times [2 \times 6 - 5 \times 3]$$

= 0

 Estratégia recursiva: decomposição em determinantes de menor dimensão

Um possível algoritmo recursivo

```
double Laplace( matriz A, unsigned int n ) {
      if( n == 1 ) return A[0][0];
      sinal = -1; soma = 0;
      for( i = 0; i < n; i++ ) {
             aux = subMatriz(A, i, 0); // retira a 1º coluna e a linha i
             sinal *= -1;
             soma += sinal * A[i][0] * Laplace(aux, n - 1);
      return soma;
```

35

Nº de multiplicações efetuadas ?

$$\bullet M(n) = \begin{cases} 0, n = 1 \\ 2 \times n + n \times M(n-1), n \ge 2 \end{cases}$$

- *n* iterações do ciclo
- $2 \times n$ multiplicações explícitas
- n chamadas recursivas

Nº de multiplicações efetuadas?

$$\bullet M(n) = \begin{cases} 0, n = 1 \\ 2 \times n + n \times M(n-1), n \ge 2 \end{cases}$$

- Não há uma "fórmula fechada" !!
- Verificar a rapidez com que cresce usando o Wolfram Alpha

•
$$M(n) \approx 2(e-1)n! \Rightarrow M(n) \in O(n!)$$

37

[Wikipedia]

As Torres de Hanói

Função recursiva

```
torresDeHanoi('A', 'B', 'C', 8);
void torresDeHanoi(char origem, char auxiliar, char destino, int n) {
 if (n == 1) {
   contadorGlobalMovs++;
   moverDisco(origem, destino); // Imprime o movimento
   return;
  // Divide-and-Conquer
  torresDeHanoi(origem, destino, auxiliar, n - 1);
  contadorGlobalMovs++;
  moverDisco(origem, destino);
  torresDeHanoi(auxiliar, origem, destino, n - 1);
```

Tarefa – Nº de movimentos realizados ?

- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 1 + 2 M(n-1)

$$M(n) = 2^n - 1$$

• Fazer o desenvolvimento telescópico e obter "fórmula fechada"

Verificar que se obtém um algoritmo EXPONENCIAL

Está feito

Exercícios adicionais

Análise formal – Funções do próximo slide

- Obter uma expressão para o resultado de cada função
- Obter uma expressão para o nº de chamadas recursivas efetuadas

Confirmar os resultados obtidos com o Wolfram Alpha

https://www.wolframalpha.com/

Resultado? – № de chamadas recursivas?

```
unsigned int
                                                       unsigned int
C1(0) = 0
                r1(unsigned int n) {
                                                       r2(unsigned int n) {
                                                                                  C2(0) = 0
C1(n)=1+C1(n-1)
                                                                                  C2(1) = 0
                                                         if(n == 0) return 0;
                   if(n == 0) return 0;
                                                                                  C2(n) = 1+C2(n-2)
R1(n) = 1 + R1(n-1)
                   return 1 + r1(n - 1);
                                                         if(n == 1) return 1;
                                                                                  R2(n)=n+R2(n-2)
                                                         return n + r2(n - 2);
                                                                                   C4(0) = 0
                                                                                   C4(n) = 2 + 2C4(n-1)
                 unsigned int
                                                       unsigned int
C3(0)=0
                r3(unsigned int n) {
                                                       r4(unsigned int n) {
                                                                                   R4(n) = 1 + 2R4(n-1)
C3(n) = 1 + C3(n-1)
                  if(n == 0) return 0;
                                                        if(n == 0) return 0;
R3(n) = 1 + 2R3(n-1)
                   return 1 + 2 * r3(n - 1);
                                                         return 1 + r4(n - 1) + r4(n - 1);
```

Sugestões de leitura

Sugestões de leitura

- J. J. McConnell, Analysis of Algorithms, 1st Edition, 2001
 - Capítulo 1: secções 1.5 e 1.6

- A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd
 Edition, 2012
 - Capítulo 2: secções 2.4 e 2.5
 - Apêndice B