第六章 数据的机器级表示

数据的机器级表示

- 使用高级程序设计语言——C语言求解问题
 - 最基本的介绍(二-五章)
- 当一个C程序执行时,在计算机内部究竟发生 了什么?
 - 需要从最底层——计算机内表示数值的方式开始

数字

- 在现代计算机里,所有信息都是采用数字化的 形式表示的
- 整数、小数、文字、图像、声音等等

信息的最小单位——位/比特

- 在计算机内部,数以亿计、微小、快速的电子元件控制电子的流动
 - 这些元件对电路中电压的有无做出反应
- 如果存在电压用"1"表示,不存在电压用"0"表示
 - "0"和"1"被称为比特(bit),或位
 - "二进制位"(binary digit)的缩写

两种稳定状态

- 自然界的事物通常具有两种稳定的状态
 - 存储信息的磁盘
 - 使用1和0表示磁化和未磁化
 - 光盘
 - 使用1和0表示凹(聚光)和凸(散光)

接近0和远离0

- 计算机并不是区分电压的绝对不存在(即0) 和绝对存在(即1)
- 计算机电路区分的是接近0的电压和远离0的电压
 - 如果计算机把3.3伏的电压表示为1,把0伏的电压表示为0,那么2.9伏的电压也会被视作1,而0.2伏的电压会被当作0

二进制 对 十进制

- 如果采用十进制,就需要测量电压的具体值
 - 不仅比测量有和无要复杂
 - 而且要求电路的电压值必须稳定,不允许从3.3 伏波动到2.9伏

识别多个数值

- 计算机要解决一个真正的问题,必须能唯一的识别出许多不同的数值,而不仅仅是0和1
- 为了唯一的识别出多个数值,必须对多个位进 行组合

位组合

- 如果用8位(对应8根线路上的电压)
 - 使用01001110表示某一个特定值,用11100111表示另一个值
 - 最多能区分出256(即28)个不同的值
- 如果有/位,最多能区分出2/个不同的值
 - 这些*k*位的每一种组合都是一个编码,对应着某个特定的值

位运算

- 除了需要表示出不同的数值之外,还需要对这种表示出来的信息进行运算
 - 1679年,德国数学家莱布尼茨发表了一篇关于二进制表示及算术运算的论文
 - 英国数学家乔治·布尔在1854年给出了二进制的 逻辑运算,布尔代数即由此得名
 - 这些工作奠定了现代计算机工作的数学基础

数据类型

- 同一个数值,多种表示方法
 - 整数6
 - 十进制计数法, "6"
 - 一元计数法,"正一"
 - 罗马字符, vi
 - 二进制计数法, "0110"
- 某种表示法,编码,运算
 - 数据类型

计算机中的数据类型

- 如果在计算机上能对以某种表示法编码的信息 进行运算,这种特殊的表示法就可以被称为数 据类型
- 在大多数计算机上存在着多种数值表示方法
 - 用来表示进行算术运算的正负整数的二进制补码 整数
 - 用来表示从键盘输入计算机或显示在计算机显示 器上的字符的ASCII码
 - 类似于十进制"科学计数法"的浮点数数据类型

无符号整数

- 任务执行的次数
- 课程的选课人数
- -----

位置计数法——十进制

- 十进制系统
 - 十进制数286
 - 2在286中的位置决定了它表示200(2×10²),而8则表示 8×10¹
- 位置计数法,或定位数制
- 在十进制系统里, 10被称为数制中的基数或基

位置计数法——二进制无符号整数

- 采用位置计数法,二进制数表示无符号整数,基数为2,二进制数为0和1
 - 如果使用8位有效数字来表示数值,则数字30可以表示为 00011110
 - $0 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$

二进制无符号整数

- 使用2位数00, 01, 10, 11
- 使用3位数000, 001, 010, 011, 100, 101, 110, 111
- 使用 k位数,就可以表示从0到2k-1共2k个整数

有符号整数

- 将 *k*位的 2 ^k个不同的数字分为两半,一半表示 正数,另一半表示负数
- k=4, 2^k=16
 - 表示从+1到+7的正数,以及从-1到-7的负数—— 14个
 - 剩下2个
 - 0和?

正数

- 正数按照位置计数法直接表示
- k位,用 2^k 个码字的一半来表示从0到 $2^{k-1}-1$ 的 正数,最高位有一个0

k=4的正数

- 最大的正数: 7
- 以0开头

二进制表示	十进制
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
<mark>0</mark> 110	6
<mark>0</mark> 111	7

负数——原码

- k=4, $-1 \sim -7$?
- 最高位0: 正数(+)
- 最高位1:对应的负数(-)

二进制表示	十进制
0000	0
0001	1
0 010	2
<mark>0</mark> 011	3
0 100	4
<mark>0</mark> 101	5
<mark>0</mark> 110	6
<mark>0</mark> 111	7
1000	-0
1001	-1
1010	-2
1 011	-3
1 100	-4
1 101	-5
1 110	-6
1 111	-7

负数——反码

- k=4, $-1 \sim -7$?
- 对正数"按位取反"

二进制表示	十进制
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-7
1001	-6
1 010	-5
1011	-4
1100	-3
1101	-2
1 110	-1
1 111	-0

$$4+(-3)$$

- 采用与十进制加法相同的规则
 - 自右向左,一列一列的运算,如果某列的加法有进位,则立即加至它的左列
- 原码表示法 0100(4)+ 1011(-3)
 - = 1111 (-7)
- 反码表示法 0100(4) + 1100(-3)= 0000(0)

负数——补码

- k=4
- **●** 0 ~ +7
 - 位置记数法
- −8 ~ −1
 - 尽可能使逻辑电路最简单

二进制表示	十进制
0000	0
0001	1
0010	2
<mark>0</mark> 011	3
0100	4
0101	5
0110	6
<mark>0</mark> 111	7
1000	-8
1001	-7
1010	-6
1 011	-5
1100	-4
1 101	-3
1 110	-2
1 111	-1

算术逻辑单元

- 对负数表示法的选择是基于尽可能使逻辑电路最简单的想法
- 几乎所有的计算机都使用相同的基本结构——算术 逻辑单元(Arithmetic and Logic Unit, ALU)
 来进行加法运算
- ALU并不知道(也不关心)所加的两个位组合表示 什么,它只是简单的将二进制数相加

```
0100 (4)
+ 1101 (-3)
= 0001 (1)
```

$$A + (-A) = 0$$

二进制表示	十进制
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
<mark>0</mark> 110	6
0111	7
1000	
1001	-7
1010	-6
1 011	-5
1100	-4
1 101	-3
1 110	-2
1 111	-1

1000 ?

- 在对每个数值加0001后, 应得到正确的结果
- 1000: -8

$$=$$
 1001 (-7)

二进制表示	十进制
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
<mark>0</mark> 110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1 101	-3
1 110	-2
1 111	-1

1111, 0000, 0111, 1000

1111和0000: −1和01111 (−1)

$$=$$
 (1)0000 (0)

- 在做补码算术运算时
 - 这个进位总是被忽略
- 0111: +7
- 1000: -8

二进制表示	十进制
0000	0
0001	1
0010	2
<mark>0</mark> 011	3
0100	4
<mark>0</mark> 101	5
<mark>0</mark> 110	6
0111	7
1000	-8
1001	-7
1010	-6
1 011	-5
1 100	-4
1 101	-3
1 110	-2
1111	-1

K位组合

- $-2^{k-1} \sim 2^{k-1}-1$
 - 0后面跟k-1个1: 2^{k-1}-1
 - 1后面跟k-1个0: -2^{k-1}
 - k**↑**1: −1
- 32位ALU
 - 二进制补码类型整数从-2147483648到 2147483647

-A的表示

```
    A

    +
    A的反码

    =
    11····11 (-1)

    +
    00····01 (1)

    =
    00····00 (0)
```

- •-A的表示
 - 把A的反码加1
 - "取反加1"

示例

• -6的二进制补码表示是什么(采用4位表示)?

```
1. A: +6, 0110
2. A的反码 1001
3. 1001
+ 0001
= 1010 (-6)
• 验证
0110(6)
+ 1010(-6)
= (1)0000
```

二进制-十进制

- 一个8位的二进制补码数采取如下格式:
 - a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0
- 1. 检查最前面的a₇。如果是0,该整数是正数,就可以直接计算其数值。如果是1,该整数是负数,"取反加1"。
- 2. 计算:

$$a_6 \times 2^6 + a_5 \times 2^5 + a_4 \times 2^4 + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0$$

3. 如果原数值是负数,在前面加一个负号前 缀即可

示例

$$X = 01110110_{two}$$

= $2^6+2^5+2^4+2^2+2^1=64+32+16+4+2$
= 118_{ten}

$$X = 11110010_{two}$$
-X = 00001110
= $2^3+2^2+2^1=8+4+2$
= 14_{ten}
 $X = -14_{ten}$

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

十进制-二进制

- 如果一个正的二进制数的最右端的数字为1, 这个数为奇数;否则为偶数
- 8位二进制数(正数) $a_6 \times 2^6 + a_5 \times 2^5 + a_4 \times 2^4 + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0$
- 如何找到a; (i= 0, 1, ···6) 的值?

示例:+123

- 正数,最高位a7:0
 - $123 = a_6 \times 2^6 + a_5 \times 2^5 + a_4 \times 2^4 + a_3 \times 2^3 + a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0$
- 奇数, a₀: 1
- 在等式两端同时减去1
- 在等式两端同时除以2
- 奇数、a₁: 1
- 在等式两端同时减去1
- 在等式两端同时除以2
- **a**₂=0
- *a*₃=1
- *a*₄=1
- *a*₅=1
- *a*₆=1
- •二进制表示为 0111 1011

$$122 = a_6 \times 2^{6} + a_5 \times 2^{5} + a_4 \times 2^{4} + a_3 \times 2^{3} + a_2 \times 2^{2} + a_1 \times 2^{1}$$

$$61 = a_6 \times 2^{5} + a_5 \times 2^{4} + a_4 \times 2^{3} + a_3 \times 2^{2} + a_2 \times 2^{1} + a_1 \times 2^{0}$$

$$60 = a_6 \times 2^{5} + a_5 \times 2^{4} + a_4 \times 2^{3} + a_3 \times 2^{2} + a_2 \times 2^{1}$$

$$30 = a_6 \times 2^{4} + a_5 \times 2^{3} + a_4 \times 2^{2} + a_3 \times 2^{1} + a_2 \times 2^{0}$$

$$15 = a_6 \times 2^3 + a_5 \times 2^2 + a_4 \times 2^1 + a_3 \times 2^0$$

$$7 = a_6 \times 2^2 + a_5 \times 2^1 + a_4 \times 2^0$$

$$3 = a_6 \times 2^1 + a_5 \times 2^0$$

$$1 = a_6 \times 2^0$$

除2取余

- •将余数从高位向低位依次排列
- •1111011
- •正数,最高位为0
- •二进制表示为 0111 1011

总结

- 已知十进制数*N*,通过以下步骤可得其k位补码 表示
 - 1. 首先将M的绝对值通过"除2取余"的方法, 得到其绝对值的二进制表示;
 - 2. 如果原来的十进制数为正,则在二进制数前加0,得到k位结果;
 - 3. 如果原来的十进制数为负,在二进制数前加0,得到k位,然后再计算出这个补码的负数(即"取反加1"),得到结果。

结果 (215)₁₀ = (000000011010111)₂

或写为: 215D = 000000011010111B

注: 使用16位编码

算术运算

- 与十进制运算十分相似
- 加法运算
 - 从右到左进行,每次一位。在每次运算后,产生 一个"和"与一个"进位",进位在1的后面产生

减法运算

X^+X

- 把一个数 x 加上它自身
- 每位上的数字都向左移了一位

61+61

• 61可以表示为 0×2⁶+ 1×2⁵+ 1×2⁴+ 1×2³+ 1×2²+0×2¹+ 1×2⁰

- 61 + 61 = 2×61, 可以表示为 2×(0×2⁶+ 1×2⁵+ 1×2⁴+ 1×2³+ 1×2²+0×2¹+ 1×2⁰)
- 也就是 0×2⁷+ 1×2⁶+ 1×2⁵+ 1×2⁴+ 1×2³+0×2²+ 1×2¹
- 每位上的数字都向左移了一位

恰当的位数

- 为减少占用空间,会采用恰当的位数来表示数值
 - 6
 - 用4位(0110)
 - 用16位(0000 0000 0000 0110)
 - -6
 - 用4位(1010)
 - 用16位(1111 1111 1111 1010)

不同长度数值做加法

为了对两个具有不同长度的数值做加法,首先 必须将它们表示为相同的长度

00000000001110

+ 1100

7

14+(-4)

```
+ 0000 0000 0000 1110 (14)

+ 0000 0000 0000 1100 (12)

0000 0000 0001 1010 (26)

+ 1111 1111 1111 1100 (-4)

0000 0000 0000 1010 (10)
```

符号扩展

- 如果用0来扩展一个正数的左端,它的值不会 改变
- 如果用1来扩展一个负数的左端,其值亦不会 改变
- 在这两种情况中扩展的都是符号位,这种运算 被称为符号扩展(Sign-EXTension, SEXT)
- 用于对不同长度的数值之间的运算

溢出

• 使用4位补码数据类型, 计算2+6:

0010

+ <u>0110</u> 1000

- 计算结果为-8,为什么会出现错误?
 - 2加6等于8,大于+7,即大于0111,而0111是使用4位的补码数据类型能够表示的最大正数,因此8不能用4位的补码表示出来

溢出示例

$$0011$$
 (3) 1101 (-3) $+ 0110$ (6) $+ 1010$ (-6) 0111 (7)

检测溢出

- 如果
 - 两个数符号相同
 - 和的符号不同
- 一个负数和一个正数的和永远不会出现溢出

习题(1)

- 书面作业
 - 6.3
 - 6.4
 - 6.5
 - 6.7
 - 6.8

小数——定点小数

- 十进制,小数点,定点表示法(fixed point)
 - 3456. $78 = 3 \cdot 10^3 + 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0 + 7 \cdot 10^{-1} + 8 \cdot 10^{-2}$
- 二进制
 - 00011001. 110 = 1 2^4 + 1 2^3 + 1 2^0 + 1 2^{-1} + 1 2^{-2} => 25. 75 (2⁻¹ = 0.5 and 2⁻² = 0.25, etc.)

定点小数算术运算

- 没有新的运算——补码整数算术运算
- 小数点对齐

$$2^{-1} = 0.5$$

$$2^{-2} = 0.25$$

$$2^{-3} = 0.125$$

00101000.101 (40.625)

00100111.011 (39.375)

十进制数转换成二进制数

- (1)整数部分,采用除2取余法(倒除法)
- (2)小数部分,采用乘2取整法

例如:将(0.6875)10转换成二进制数 取整数部分 0.6875 1.3750 0.3750 **0**.7500 0 1.5000 0.5000 1.0000 0.0000 结果 (0.6875)₁₀ = (0.1011)₂

精度

- 如果十进制小数不能用有限位的二进制数表示, 则
- 根据精度取几位
 - 例如: $(0.414)_{10} \approx (0.01101)_2$ (取5位)
 - 或写为: 0.414D ≈ 0.01101B(取5位)

数值范围

- 阿佛加德罗常数 6.023×10²³ ?
- 32位补码整数
 - -2147483648 ~ 2147483647
 - $-2^{31} \sim +2^{31}-1$
 - 精度31位,数值范围231

精度 对 数值范围

- 6. 023×10²³
 - 数值范围——需要79位(二进制补码整数)
 - 精度——只需要4个十进制数(6023)
- 6. 626 x 10⁻³⁴
 - 需要>110位
- 问题:表示精度的位数过多,而表示范围的位数却不足

浮点数类型

- 类似于科学记数法
- 6. 023×10²³
 - •符号:+
 - 有效数字: 6.023
 - 分数
 - 指数: 23

浮点数类型

- 十进制: 科学计数法
 - 1.602 176 462 x 10⁻¹⁹
 - 1 \times 10⁸⁵ cm³
- 二进制: 浮点数
 - 定点数
 - 00011001. 110 = $1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$ => 25. 75
 - 浮动小数点
 - 00011001.110 \Rightarrow 1.1001110 \times 2⁴
 - 需要表示出:符号、指数(范围)、分数(精度)
 - IEEE (国际电气和电子工程师协会) 浮点数算术运算 标准

IEEE-754 单精度(float)浮点数

- 32 位
- 符号(S)
 - 0代表正数,1代表负数
- 指数: 8位
 - 无符号整数, 0 ~ 255
- 分数: 23 位

IEEE 浮点数算术运算标准

$$N = \begin{cases} (-1)^S \times 1.fraction \times 2^{\exp{onent}-127}, & 1 \le \text{exponent} \le 254 \\ (-1)^S \times 0.fraction \times 2^{-126}, & \text{exponent} = 0 \\ Infinity(+and-), & \text{exponent} = 255, & \text{fraction} = 0 \\ NaN(\text{not a number}), & \text{exponent} = 255, & \text{fraction} \ne 0 \end{cases}$$

- 符号位: (-1)^s
- 指数和分数
 - 1<=exponent<=254
 - exponent=0
 - exponent=255

1<=exponent<=254

$$N = (-1)^S \times 1. fraction \times 2^{\exp onent-127}$$

- 指数: 8 位
 - 无符号整数,表示从0到255
 - 为了表示出负数,实际上被表示的指数是该无符号整数减去127后得到的数值:
 - 2⁸ => 10000111 (= 135)
 - 2⁻¹²⁵ => 00000010 (= 2)
- 分数: 23 位
 - 规格化,实际表示的是24位的精度
 - 包括23位分数和二进制小数点左端的没有明确表示出来的一位1

exponent=00000000

$$N = (-1)^S \times 0. fraction \times 2^{-126}$$

- 指数是-126,得到的有效数字以0开头,后面 是23位二进制分数部分
 - 0 0000000 000010000000000000000
 - 开头的0表示它是正数
 - 接下来的8位,是一个零指数,意味着它的指数是-126

 - 2⁻⁵×2⁻¹²⁶, 得到2⁻¹³¹
- 这样就能表示很小的数
 - 当分数部分也全为0时,此时将表示数值0

exponent=111111111

$$N = \begin{cases} Infinity(+and-), & \text{fraction} = 0\\ NaN(\text{not a number}), & \text{fraction} \neq 0 \end{cases}$$

- 如果符号位为0,分数域全为0,那么该数表示正无穷
 - C语言中, 计算 "10.0/0" 时出现
- 如果符号位为1,分数域全为0,那么该数表示负无穷
 - -10. 0/0
- 如果分数域不全为0, 那么该数表示"非数值"
 - 0. 0/0. 0
 - 0.0*inf
 - inf/inf
 - inf-inf

IEEE 双精度浮点数

 64 位:
 1 11 位
 52 位

 s 偏移的指数
 分数

 $N = (-1)^s \times 1.$ fraction $\times 2^{(biased exp. - 1023)}$

- double precision (64 bit)
- 范围 和 精度:
 - 32 位:
 - 精度=> 大约 7 位
 - 范围=> 大约 10+/-38
 - 64 位:
 - 精度=>大约 15 位
 - 范围=> 大约 10+/-306

-45.8125

- 45.8125的二进制数表示为: 0101101.1101
- 规格化为1.011011101×2⁵,即
 1.011011101×2¹³²⁻¹²⁷
- 符号位应为1, 负数
- 指数部分为10000100, 即无符号整数132
- 分数部分是小数点后的23位, 01101110100000000000000
- 1 10000100 0110 1110 1000 0000 0000 000

- 0 01111010 00000000000000000000000
- 最高位为0,表示该数是个正数
- 跟着的8位代表无符号整数122,减去127,得 到实际指数为-5
- 最后23位都是0

- 0 10000101 1110000111100000000000
- 指数域
 - 无符号整数133, 由于133-127=6, 所以指数为+6
- 将分数域的小数点左边加一个1形成1.11100001111
- 将小数点向右移动6位,得到1111000.01111, 即120.46875

- 1 10000010 0010100000000000000000
- 符号位为1,表示负数
- 指数是130,表示130-127,即指数为3
- 将分数域的小数点左边加一个1形成1.00101
- 将小数点向右移动3位,得到1001.01,即-9.25

- 0 11111110 1111111111111111111111111
- 符号为正
- 指数是254-127, 即+127
- 因此, 结果约为2128

示例

- 1 0000000 0000000000000000000001
- 符号为负
- 指数域全为0,表示指数是-126
- 将分数域的小数点左边加一个0形成2-23
- 因此,结果为2⁻²³×2⁻¹²⁶,等于-2⁻¹⁴⁹

加法运算

- 与科学计数法类似
- 加法运算,需经过五步完成
 - 1、对指数操作: 首先使二数的指数相等
 - 2、分数运算:经指数相等操作后,即可直接对 分数做加法运算
 - 3、结果规格化:对运算结果进行规格化处理
 - 4、舍入操作:对丢失的位进行舍入处理
 - 5、判断溢出:判断指数是否溢出

十六进制表示法

十六进制表示法

- 由二进制的位置计数法发展而来
- 方便人们手工处理二进制数位

二进制-十六进制

• 16位二进制位组合(无符号整数)

$$a_{15}$$
 a_{14} a_{13} a_{12} a_{11} a_{10} a_{9} a_{8} a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}

• 计算如下:

$$2^{15} \times a_{15} + 2^{14} \times a_{14} + 2^{13} \times a_{13} + 2^{12} \times a_{12} + 2^{11} \times a_{11} + 2^{10} \times a_{10} + 2^{9} \times a_{9}$$

 $+2^{8} \times a_{8} + 2^{7} \times a_{7} + 2^{6} \times a_{6} + 2^{5} \times a_{5} + 2^{4} \times a_{4} + 2^{3} \times a_{3}$
 $+2^{2} \times a_{2} + 2^{1} \times a_{1} + 2^{0} \times a_{0}$

$$= 2^{12} \times \left[2^{3} \times a_{15} + 2^{2} \times a_{14} + 2^{1} \times a_{13} + 2^{0} \times a_{12}\right] + 2^{8} \times \left[2^{3} \times a_{11} + 2^{2} \times a_{10} + 2^{1} \times a_{9} + 2^{0} \times a_{8}\right] + 2^{4} \times \left[2^{3} \times a_{7} + 2^{2} \times a_{6} + 2^{1} \times a_{5} + 2^{0} \times a_{4}\right] + 2^{0} \times \left[2^{3} \times a_{3} + 2^{2} \times a_{2} + 2^{1} \times a_{1} + 2^{0} \times a_{0}\right]$$

$$=16^3 \times h_3 + 16^2 \times h_2 + 16^1 \times h_1 + 16^0 \times h_0$$

十六进制

$$h_3$$
= $2^3 \times a_{15}$ + $2^2 \times a_{14}$ + $2^1 \times a_{13}$ + $2^0 \times a_{12}$
 h_2 = $2^3 \times a_{11}$ + $2^2 \times a_{10}$ + $2^1 \times a_9$ + $2^0 \times a_8$
 h_1 = $2^3 \times a_7$ + $2^2 \times a_6$ + $2^1 \times a_5$ + $2^0 \times a_4$
 h_0 = $2^3 \times a_3$ + $2^2 \times a_2$ + $2^1 \times a_1$ + $2^0 \times a_0$
• h_3 , h_2 , h_1 , h_0 的值
• 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F

二进制	十六进制	十进制
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

二进制-十六进制

- 01101100010111110011110101101
- 首先,将这个位组合按照每四位进行分割
- 0110 1100 0101 1111 0011 1101 0110 1110
- 然后,将每四位转换为相等的十六进制数
- 6 C 5 F 3 D 6 E
- 其十六进制表示为 "x6C5F3D6E"

十六进制-二进制

- 将十六进制转换为二进制,则只需将每一位十 六进制转换为对应的4位二进制组合即可
 - 十六进制 "x41"
 - 二进制表示"0100 0001"

十六进制-十进制

- 十六进制数xE20A?
- 如果十六进制数E20A表示一个16位的二进制补码整数
- 首先将E20A的每个16进制符号转换为二进制, 即1110 0010 0000 1010
- 通过这个二进制表示,就可以知道该整数是负数,因为最高位为1
- 再转换为十进制

注意

- 十六进制计数法的采用方便了人们对数据的表 达
- 它能表达: 整数、浮点数……
 - •IEEE-754 fp numbers

八进制数(octal)

- 八进制数与二进制数之间的转换
 - 一位八进制数相当于3位二进制数,所以八进制数转换成二进制数,或二进制数转换成八进制数 很方便
- 例如: $(563)_8 = (101, 110, 011)_2$ $(0.764)_8 = (0.111, 110, 100)_2$

习题(2)

- 书面作业
 - 6. 10
 - 6.11
 - 6. 12
 - 6.13

ASCII

- 如何表示从键盘输入计算机或显示在显示器上的字符?
- American Standard Code for Information Interchange
- [áski],美国信息交换标准码,美国国家标准 局制定

ASCII

- 键盘上的每个键被一个唯一的ASCII码所识别
- 8个二进制位表示
- 在键盘上敲击某个键时,相应的8位码被存储, 并提供给计算机

标准ASCII码

D: 十进制表示 H: 十六进制表示

⇒ hh	ASCII		i⇒ hihr	ASCII		r≥ htr	ASCII		<i>≟///</i> /	ASCII	
字符	D	Н	字符	D	H	字符	D	H	字符	D	Н
NUL	0	00	SP	32	20	(a)	61	40	`	96	60
SOH	1	01	!	33	21	A	65	41	a	97	61
STX	2	02	"	34	22	В	66	42	b	98	62
ETX	3	03	#	35	23	C	67	43	C	99	63
EOT	4	04	\$	36	24	D	68	44	d	100	64
ENQ	5	05	%	37	25	E	69	45	e	101	65
ACK	6	06	&	38	26	F	70	46	f	102	66
BEL	7	07	1	39	27	G	71	47	g	103	67
BS	8	08	(40	28	H	72	48	h	104	68
HT	9	09)	41	29	I	73	49	i	105	69
LF	10	0A	*	42	2A	J	74	4A	j	106	6A
VT	11	0B	+	43	2B	K	75	4B	k	107	6B
FF	12	0C	,	44	2C	L	76	4C	1	108	6C
CR	13	0D	-	45	2D	M	77	4D	m	109	6D
SO	14	0E		46	2E	N	78	4E	n	110	6E
SI	15	0F	/	47	2F	0	79	4F	0	111	6F
DLE	16	10	0	48	30	P	80	50	p	112	70
DC1	17	11	1	49	31	Q	81	51	q	113	71
DC2	18	12	2	50	32	R	82	52	r	114	72
DC3	19	13	3	51	33	S	83	53	S	115	73
DC4	20	14	4	52	34	T	84	54	t	116	74
NAK	21	15	5	53	35	u	85	55	u	117	75
SYN	22	16	6	54	36	V	86	56	v	118	76
ETB	23	17	7	55	37	W	87	57	w	119	77
CAN	24	18	8	56	38	X	88	58	x	120	78
EM	25	19	9	57	39	Y	89	59	у	121	79
SUB	26	1A	:	58	3A	Z	90	5A	Z	122	7A
ESC	27	1B	;	59	3B	[91	5B	{	123	7B
FS	28	1C	<	60	3C	\	92	5C		124	7C
GS	29	1D	=	61	3D]	93	5D	}	125	7D
RS	30	1E	>	62	3E	۸	94	5E	~	126	7E
US	31	1F	?	63	3F	_	95	5F	DEL	127	7F

标准ASCII码

- 第0~32(20_H)号及第127(7F_H)号(共34个)是控制字符或通讯专用字符,其中第32号(20_H)是空格(Space)
- 第33~126号(共94个)是可见字符,包括了阿拉伯数字,英文字母,英文标点等,可以通过标准键盘直接输入

特点

- · 阿拉伯数字与其ASCII码之间的关系?
- ·大写字母与相应的小写字母ASCII码 之间的关系?
- · 字母表顺序与ASCII码之间的关系?
- 其他字符?
 - http://www.unicode.org/

没有新的运算-整数算术和逻辑运算

其他数据类型

- 字符串
 - 字符序列,以 NUL (0)结束
- 图像
 - 像素矩阵
 - 黑白: 1位 (1/0 = black/white)
 - · 彩色: red, green, blue (RGB) (每个8 位)
 - (0,0,0) black, (255,0,0) red, (255,255,255) white
 - 其他属性:透明度
 - 硬件支持
 - MMX
- 声音
 - 定点数序列

C语言中的数据类型

C语言中的数据类型——深入理解

- int, 二进制补码整数类型
- char , ASCII码
- double, 双精度浮点数
- 每种类型采用多少位二进制来表示,与具体计算机的指令集结构和编译器有关

char

- char 类型采用ASCII码表示
- 如果key是char类型的变量:
 - (('a' <= key) && (key <= 'z')) || (('A' <= key) && (key <= 'Z'))
- 表达式 "'a' <= key"中的 "<="运算符比较的就是变量key和字符a的ASCII码的大小
 - 整数运算

混合类型表达式

- 算术运算表达式
 - "i + 3.1", 其中i被声明为int类型, 3.1是浮点型字面常量
 - 将整数转换为浮点数,然后进行计算
- 整数与字符型运算
 - 字符型被转化为整数类型后再进行计算
 - "x + 'a'",如果int类型变量x取值为1,字符 'a'的ASCII码为97,则计算"1 + 97",表达式 的值为98

输入输出的格式说明

- 格式说明 "%d"
- 输出
 - 它使得列在格式用字符串后面的数值被显示为十进制数输出
 - 事实上,是将一个存储的二进制补码整数转化为ASCII码字符输出

printf ("25 plus 76 in decimal is %d. \n ", 25 + 76); 25 plus 76 in decimal is 101.

- 输入
 - 它把从键盘输入的数字解释为十进制数值
 - 事实上,是将输入字符的ASCII码转化为一个二进制补码整数存储

%x

- 格式说明 "%x"
- 输出
 - 将数值以十六进制数的形式被显示出来
 - printf ("25 plus 76 in hexadecimal is %x. \n", 25 + 76);
 - 25 plus 76 in hexadecimal is 65.
- 输入
 - 它把从键盘输入的数字解释为十六进制数值
 - 事实上,将输入字符的ASCII 码转化为一个二进制补码整数存储
 - scanf ("%x", &valueX);
 - 输入: A, AO, a, ae, 10, 0XA, 0x10
 - 存储: 10, 160, 10, 174, 16, 10, 16

%C

- 格式说明 "%c"
- 输出
 - 将该数值直接解释为ASCII字符显示
 - printf ("25 plus 76 as a character is %c. \n", 25 + 76);
 - 25 plus 76 as a character is e.
- 输入
 - scanf ("%c", &grade);
 - 事实上,这个过程是将输入的字符的ASCII码进行存储

输出示例: %d, %x, %o, %c

```
printf ("25 plus 76 in decimal is \%d. \n", 25 + 76);
printf ("25 plus 76 in hexadecimal is \%x. \n", 25 + 76);
printf ("25 plus 76 in octal is \%0. \n". 25 + 76):
printf ("25 plus 76 as a character is \frac{1}{5}c. \n", 25 + 76);

    %d:将"25 + 76"的结果以十进制数的形式显示出来

        将二进制 "0110 0101" 转换为 "101" 三个字符显示

    %x:将 "25 + 76"的结果以十六进制数的形式显示出来

        将二进制 "0110 0101" 转换为 "65" 两个字符显示

    %o:将 "25 + 76"的结果以八进制数的形式显示出来

        将二进制 "01 100 101" 转换为 "145" 两个字符显示

    %c:将 "25 + 76"的结果直接解释为ASCII字符显示

     • 二进制 "0110 0101" 解释为字符 "e"
  25 plus 76 in decimal is 101.
  25 plus 76 in hexadecimal is 65.
  25 plus 76 in octal is 145.
  25 plus 76 as a character is e.
```

%f

- 如果使用printf输出浮点数,则应该使用相应的格式说明"%f"
 - 将二进制浮点数转化为如"3.140000"形式的字符序列
- 如果变量radius被声明为float类型,需要使用格式说明 "%f" 输入
 - scanf ("%f", &radius);
 - 这个过程将键盘输入的如 "15.0" 类型的字符转 化为float类型浮点数,并进行存储

%If

- 如果变量radius被声明为double类型,则需要使用格式说明"%lf":
 - scanf ("%|f", &radius);
 - 将键盘输入的如 "15.0" 类型的字符转化为 double类型浮点数,并进行存储

十六进制字面常量

 十六进制字面常量使用前缀0x表示,零扩展 int memoryAddress = 0x30000000; int valueE = 0xE; printf("%d\n", valueE);

按位运算符

• 移至第七章

• 62-63=1是个错误的等式,能不能移动一个数字使得等式成立

习题(3)

- 书面作业
 - 6. 14
 - 6. 15
 - 6. 17

- 上机作业
 - 6. 18
 - 6. 19