Speeding Up Association Rules Mining

Mining Massive Datasets

Prof. Carlos Castillo

Topic 14

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

Speeding up candidate generation

Level-wise pruning trick

- Let F_k be the set of frequent k-itemsets
- Let C_{k+1} be the set of (k+1)-candidates
- $I \in C_{k+1}$ is frequent only if all the k-subsets of I are frequent
- Pruning
 - Generate all the k-subsets of I
 - If any one of them does not belong to F_k , then remove I

Candidates generation

- A Naïve Approach
 - Check all the possible combinations of frequent itemsets
- An Example of the Naïve Approach
 - itemsets: {abc} {bcd} {abd} {cde}
 - $\{abc\} + \{bcd\} = \{abcd\}$
 - $\{bcd\} + \{abd\} = \{abcd\}$
 - $\{abd\} + \{cde\} = \{abcde\}$
 -

Candidates generation (cont.)

- Introduction of Ordering
 - Items in U have a lexicographic ordering
 - Itemsets can be order as strings
- A Better Approach
 - Order the frequent k-itemsets
 - Merge two itemset if the first k-1 items of them are the same

Candidates generation (cont.)

- Example
 - k-itemsets: {abc} {abd} {bcd}
 - {abc} + {abd} = {abcd}
- k-itemsets: {abc} {acd} {bcd}
 - No (k+1) -candidates
- Early stop is possible
 - Do not need to check {abc} +{bcd} after checking {abc} + {acd}
- Do we miss {abcd}?
 - No, due to the Downward Closure Property

Improving computation of support

Naïve support counting

Naïve counting:

For each candidate $I_i \in C_{k+1}$ For each transaction T_j in TCheck whether I_i appears in T_i

- Limitation
 - Inefficient if both $|C_{k+1}|$ and |T| are large

Support counting with a data structure

- A Better Approach
 - Organize the candidate patterns in C_{k+1} in a data structure
- Use the data structure to accelerate counting
 - Each transaction in T_i examined against the subset of candidates in C_{k+1} that might contain T_i

Data structured for support counting based on hashing

Naïve counting:

: Hashed counting:

For each $I_i \in C_{k+1}$

For each $T_i \in T$

For all $T_i \in T$

For $I_i \in hashbucket(T_i, C_{k+1})$

If $I_i \subseteq T_i$

If $I_i \subseteq T_j$

Add to $sup(I_i)$

Add to $sup(I_i)$

Which candidates are relevant?

Imagine 15 candidate itemsets of length 3:

```
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
```

Now, suppose we look for this transaction:

```
{1 2 3 5 6}
```


Here we depict only the candidates that appear in the transaction (10 out of 15)

Hash tree for itemsets in C_{k+1}

- A tree with fixed degree r
- Each itemset in C_{k+1} is stored in a leaf node
- All internal nodes use a hash function to map items to one of the r branches (can be the same for all internal nodes)
- All leaf nodes contain a lexicographically sorted list of up to max_leaf_size itemsets

Example hash tree

r=3 max_leaf_size=3

Candidate itemsets

```
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
```


Important: itemsets are sorted!

Example hash tree (cont.)

Example hash tree (cont.)

Example hash tree (cont.)

Exercise: Use the hash tree to determine which candidates might be in this transaction

Enumeration-tree algorithms: Lexicographic tree

- There is a node in the tree for each frequent itemset
- The root of the tree contains the null itemset
- If $I = \{i_1, i_2, ..., i_k\}$ then the parent of I in the tree is $\{i_1, i_2, ..., i_{k-1}\}$

Example

Note that, unlike the lattice, a parent can only be extended with an item that is lexicographically larger

Enumeration tree algorithm

```
Algorithm Generic Enumeration Tree (Transactions: \mathcal{T},
             Minimum Support: minsup)
begin
  Initialize enumeration tree \mathcal{ET} to single Null node;
  while any node in \mathcal{ET} has not been examined do begin
     Select one of more unexamined nodes \mathcal{P} from \mathcal{ET} for examination;
     Generate candidates extensions C(P) of each node P \in \mathcal{P};
     Determine frequent extensions F(P) \subseteq C(P) for each P \in \mathcal{P} with support counting;
     Extend each node P \in \mathcal{P} in \mathcal{ET} with its frequent extensions in F(P);
  end
  return enumeration tree \mathcal{ET};
end
```

Enumeration-tree-based implementation of Apriori

- Apriori constructs the enumeration tree in a breadth-first manner
- Apriori generates candidate (k+1)-itemsets by merging two frequent k-itemsets of which the first k-1 items are the same ⇒ extension in the enumeration-tree

Summary

Things to remember

- Support and confidence on a rule
- Downward closure property
 - every subset of a frequent itemset is also frequent
 - hence, if an itemset X has a subset that is not frequent, X cannot be frequent
- Methods for candidate generation, pruning
- Algorithms for fast support computation

Exercises for this topic

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 4.9 → 9-10
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises 6.2.7 → 6.2.5 and 6.2.6
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises 5.10 → 9-12