Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК	«Информатика	и управление).)	
КАФЕЛРА	ИУК4	«Программное	обеспечение	ЭВМ.	информационные
технологии»		<u>, </u>		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>

ЛАБОРАТОРНАЯ РАБОТА №4

«Задачи целочисленного линейного программирования»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б	(Подпись)	_ (<u>Карельский М.К.</u>)
Проверил:	(Подпись)	(Никитенко У.В.)
Дата сдачи (защиты):		
Результаты сдачи (защиты): - Баллы	пая оценка:	
- Оценк	a:	

Цель: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений при решении задач целочисленного линейного программирования на основе сравнения результатов.

Задачи: применить методы отсечений и комбинаторные методы к задаче программирования, указанной варианте, целочисленного В сравнить результаты, выдвинуть и обосновать гипотезу целесообразности использования того или иного подхода в зависимости от предложенной задачи и ее вариаций, результата, трудоемкости, сложности алгоритма, сложности обоснования применимости метода, вычислительной эффективности алгоритма.

Вариант 7

Найдите оптимальный план задачи целочисленного линейного программирования, используя

- первый алгоритм Гомори;
- второй алгоритм Гомори (x1 произвольное, x2 целое);
- метод ветвей и границ (решение проиллюстрируйте схемой).

$$z = 3x_1 + 4x_2 o min$$
 $5x_1 + 2x_2 \ge 12$
 $2x_1 + 5x_2 \ge 14$
 $x_1, x_2 \ge 0$
 $x_1, x_2 -$ целые

Решение:

Первый алгоритм Гомори:

Канонический вид:

$$z = 3x_1 + 4x_2 \rightarrow min$$

$$5x_1 + 2x_2 - x_3 = 12$$

$$2x_1 + 5x_2 - x_4 = 14$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Симплекс-таблица:

Базис	X1	X ₂	X ₃	X4	План
x_1	1	0	-5/21	2/21	32/21
X ₂	0	1	2/21	-5/21	46/21
Z	0	0	-1/3	-2/3	40/3

Решение в произвольных числах:

$$x_1 = \frac{32}{21} \approx 1.52$$

$$x_2 = \frac{46}{21} \approx 2.19$$

$$z = \frac{40}{3} \approx 13.33$$

Целые части:

$$[x_1] = 1$$
$$[x_2] = 2$$

Дробные части:

$$\{x_1\} = \frac{11}{21}$$
— наибольшая $\{x_2\} = \frac{4}{21}$

Дополнительные ограничения целочисленности:

$$\begin{aligned} q_1 - q_{11}x_1 - q_{12}x_2 - q_{13}x_3 - q_{14}x_4 &\leq 0 \\ q_1 &= 32/21 - 1 = 11/21 \\ q_{11} &= 1 - 1 = 0 \\ q_{12} &= 0 - 0 = 0 \\ q_{13} &= -5/21 + 1 = 16/21 \\ q_{14} &= 2/21 - 0 = 2/21 \\ 11/21 - 16/21x_3 - 2/21x_4 &\leq 0 \\ -16/21x_3 - 2/21x_4 + x_5 &= -11/21 \end{aligned}$$

Добавление строки:

Базис	x_1	X 2	Х3	X4	X5	План
x_1	1	0	-5/21	2/21	0	32/21
X ₂	0	1	2/21	-5/21	0	46/21
X5	0	0	-16/21	-2/21	1	-11/21
Z	0	0	-1/3	-2/3	0	40/3

Преобразование симплекс-таблицы:

Базис	Х1	x_2	X ₃	X_4	X_5	План
x_1	1	0	0	1/8	-5/16	27/16
X ₂	0	1	0	-1/4	1/8	17/8
Х3	0	0	1	1/8	-21/16	11/16
Z	0	0	0	-5/8	-7/16	-167/16

Дробные части:

$$\{x_1\}=rac{11}{16}$$
 $\{x_2\}=rac{1}{8}-$ наибольшая $\{x_3\}=rac{11}{16}$

Дополнительные ограничения целочисленности:

$$\begin{aligned} q_1 - q_{11}x_1 - q_{12}x_2 - q_{13}x_3 - q_{14}x_4 - q_{15}x_5 &\leq 0 \\ q_1 &= 27/16 - 1 = 11/16 \\ q_{11} &= 1 - 1 = 0 \\ q_{12} &= 0 - 0 = 0 \\ q_{-1}3 &= 0 - 0 = 0 \\ q_{14} &= 1/8 - 0 = 1/8 \\ q_{15} &= -5/16 + 1 = 11/16 \\ 11/16 - 1/8x_4 - 11/16x_5 &\leq 0 \\ -1/8x_4 - 11/16x_5 + x_6 &= -11/16 \end{aligned}$$

Добавление строки:

Базис	x_1	x_2	X ₃	x_4	x_5	X6	План
x_1	1	0	0	1/8	-5/16	0	27/16
X2	0	1	0	-1/4	1/8	0	17/8
Х3	0	0	1	1/8	-21/16	0	11/16
X6	0	0	0	-1/8	-11/16	1	-11/16
Z	0	0	0	-5/8	-7/16	0	-167/16

Преобразование симплекс-таблицы:

Базис	X 1	X ₂	Х3	X4	X5	X6	План
x_1	1	0	0	2/11	0	-5/11	2
X 2	0	1	0	-3/11	0	2/11	2
Х3	0	0	1	4/11	0	-21/11	2
X5	0	0	0	2/11	1	-16/11	1
Z	0	0	0	-6/11	0	-7/11	-14

Оптимальный целочисленный план:

$$x_1 = 2$$
$$x_2 = 2$$
$$z = 14$$

Второй алгоритм Гомори:

Канонический вид:

$$z = 3x_1 + 4x_2 \rightarrow min$$

$$5x_1 + 2x_2 - x_3 = 12$$

$$2x_1 + 5x_2 - x_4 = 14$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Симплекс-таблица:

Базис	X 1	X ₂	X ₃	X4	План
x_1	1	0	-5/21	2/21	32/21
x_2	0	1	2/21	-5/21	46/21
Z	0	0	-1/3	-2/3	40/3

 x_2 имеет дробную часть. Дополнительное ограничение:

$$\frac{2}{21}x_3 + \frac{\frac{46}{21}}{\frac{46}{21} - 1} \left(\frac{-5}{21}\right) x_4 \le \frac{46}{21}$$
$$-2/21x_3 - 20/357x_4 + x_5 = -4/21$$

Добавление строки:

Базис	Х1	X 2	X ₃	X4	X5	План
x_1	1	0	-5/21	2/21	0	32/21
X ₂	0	1	2/21	-5/21	0	46/21
X5	0	0	-2/21	-20/357	1	-4/21
Z	0	0	-1/3	-2/3	0	40/3

Преобразование симплекс-таблицы:

Базис	x_1	x_2	Х3	X_4	X_5	План
x_1	1	0	0	4/17	-5/2	2
X ₂	0	1	0	-5/17	1	2
Х3	0	0	1	10/17	-21/2	2
Z	0	0	0	-8/17	-7/2	-14

Оптимальный план:

$$x_1 = 2$$

 $x_2 = 2$
 $z = 14$

Метод ветвей и границ:

График системы:

Рис. 1. График системы

Минимум z = $\frac{266}{21} \approx 12.67$ достигается при $x_1 = \frac{46}{21} \approx 2.19$, $x_2 = \frac{32}{21} \approx 1.52$ Разобьем задачу 1 на подзадачи 11 и 12:

- 11: $x_1 \le 2$
- 12: $x_1 \ge 3$

Задача 11:

Рис. 2. Задача 11

Решение:

$$x_1 = 2$$

$$x_2 = 2$$

$$z = 14$$

Задача 12:

Рис. 3. Задача 12

Решение:

$$x_1 = 3$$

 $x_2 = 1.2$
 $z = 13.8$

Разобьем задачу 12 на подзадачи 121 и 122:

- $121: x_1 \ge 3, x_2 \le 1$
- $122: x_1 \ge 3, x_2 \ge 2$

Задача 121:

Рис. 4. Задача 121

Решение:

$$x_1 = 3.5$$

 $x_2 = 1$
 $z = 14.5$

Разобьем задачу 121 на подзадачи 1211 и 1212:

- 1211: $x_1 = 3$, $x_2 \le 1$ не имеет решения
- 1212: $x_1 \ge 4$, $x_2 \le 1$ дальнейшее ветвление ведет к увеличению z

Задача 122:

Рис. 5. Задача 122

Решение:

$$x_1 = 3$$
$$x_2 = 2$$
$$z = 17$$

Оптимальный план:

$$x_1 = 2$$

$$x_2 = 2$$

$$z = 14$$

Рис. 6. Метод ветвей и границ

Вывод: в ходе выполнения лабораторной работы были получены практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений при решении задач целочисленного линейного программирования на основе сравнения результатов.

приложения

Листинг: LW4_1.py:

```
from docplex.mp.model import Model
m = Model()
x 1 = m.integer var(name='x 1', lb=0)
x = m.integer var(name='x 2', lb=0)
m.add constraint(2 * x 1 + 5 * x 2 >= 12)
m.add constraint(5 * x 1 + 2 * x 2 >= 14)
m.minimize(3 * x 1 + 4 * x 2)
c = m.get cplex()
c.parameters.simplex.limits.iterations.set(100)
c.parameters.lpmethod.set(c.parameters.lpmethod.values.primal)
while c.solution.get status() != c.solution.status.optimal:
   c.solve()
   print("=== Симплекс-таблица ===")
    for tableau row in c.solution.advanced.binvarow():
        print(tableau row)
m.solve()
print("\n=== Решение задачи, где x 1 - целое, а x 2 - целое ===")
m.print solution()
     LW4_2.py:
from docplex.mp.model import Model
m = Model()
x 1 = m.continuous var(name='x 1', lb=0)
x = m.integer var(name='x 2', lb=0)
m.add\_constraint(2 * x_1 + 5 * x_2 >= 12)
m.add constraint(5 * x 1 + 2 * x 2 >= 14)
m.minimize(3 * x 1 + 4 * x 2)
c = m.get cplex()
c.parameters.simplex.limits.iterations.set(100)
c.parameters.lpmethod.set(c.parameters.lpmethod.values.primal)
while c.solution.get status() != c.solution.status.optimal:
   c.solve()
   print("=== Симплекс-таблица ===")
    for tableau row in c.solution.advanced.binvarow():
        print(tableau row)
m.solve()
```

```
print("\n=== Решение задачи, где x_1 - произвольное, а x_2 - целое ===") m.print solution()
```

LW4_3.py:

```
import itertools
from functools import reduce
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import sympy
from matplotlib.ticker import MultipleLocator
if name == ' main ':
    conditions = [
        lambda x_1, x_2: 2 * x_1 + 5 * x_2 >= 12,
        lambda x_1, x_2: 5 * x_1 + 2 * x_2 >= 14,
        lambda x 1, x 2: x 1 \Rightarrow= 3,
        lambda x 1, x 2: x 2 \Rightarrow= 2
    ]
    equalities = [
        lambda x_1, x_2: 2 * x_1 + 5 * x_2 - 12,
        lambda x 1, x 2: 5 * x 1 + 2 * x 2 - 14,
        lambda x 1, x 2: x 1 - 3,
        lambda x 1, x 2: x 2 - 2
    ]
    labels = [
        $^{$2} \times 1 + 5 \times 2 > = 12$^{$'},
        '$5 x 1 + 2 x 2 \Rightarrow 14$',
        '$x 1 >= 3$',
        '$x 2 >= 2$'
    ]
    colors = ['g', 'b', 'r', 'm']
    x 1 bounds = (-1, 7)
    x 2 bounds = (-1, 8)
    x 1 range = np.linspace(x 1 bounds[0], x 1 bounds[1], 250)
    x = 2 \text{ range} = \text{np.linspace}(x = 2 \text{ bounds}[0], x = 2 \text{ bounds}[1], 250)
    x 1s, x 2s = np.meshgrid(x 1 range, x 2 range)
    axis: plt.Axes
    figure, axis = plt.subplots()
    axis.set xlim(*x 1 bounds)
    axis.set ylim(*x 2 bounds)
    handles = []
    for equality in equalities:
        axis.contour(
             x 1s, x 2s, equality(x 1s, x 2s), [0],
```

```
colors=colors[equalities.index(equality)]
    handles.append(
        matplotlib.lines.Line2D(
            [], [], color=colors[equalities.index(equality)],
            marker="s", ls="",
            label=labels[equalities.index(equality)]
        )
    )
regions = [condition(x 1s, x 2s) for condition in conditions]
intersection = np.array(reduce(lambda x, y: x & y, regions))
extent = (x 1s.min(), x 1s.max(), x 2s.min(), x 2s.max())
plt.imshow(
    intersection.astype(int),
    extent=extent,
    origin="lower",
    cmap="Blues",
    alpha=0.25
)
plt.xlabel("$x 1$")
plt.ylabel("$x 2$")
axis.xaxis.set major locator(MultipleLocator(1))
axis.yaxis.set_major_locator(MultipleLocator(1))
axis.grid(color='w', linestyle='-')
plt.legend(handles=handles)
plt.show()
sym \times 1 = sympy.Symbol('x 1')
sym \times 2 = sympy.Symbol('x 2')
for equality 1, equality 2 in list(itertools.combinations(equalities, 2)):
    solution = sympy.solve(
        [
            equality_1(sym_x_1, sym_x_2), equality_2(sym_x_1, sym_x_2)
        ],
        [sym x 1, sym x 2], particular=True
    )
    x 1 = solution[sym x 1]
    x 2 = solution[sym x 2]
    if all(ineq(x 1, x 2) for ineq in conditions):
        print('Пересечение графиков ', end='')
        print(labels[equalities.index(equality 1)], end=' и ')
        print(labels[equalities.index(equality 2)])
        print(solution)
```