

Forecasting Trend Time Series

Incorporating Steps and Trends

Trend Fitting

Where the time series has a trend, a <u>trend fitting and</u> <u>extrapolation</u> approach may be used for prediction

Trend fitting is a method where the time series is linked to **some function of a time index**

$$Y_t = f \text{ (time)}$$

A <u>linear trend</u> equation is typically assumed although it depends on the trend observed

Prediction is based on extrapolation by <u>substitution of</u> the appropriate value for the time index

Trend Fitting (cont)

Assuming a <u>linear</u> trend the equation is

$$\mathbf{Y}_{\mathsf{t}} = \mathbf{a} + \mathbf{b} * \mathbf{t}$$

where t = a time index and α and β are constants

The values of α and β typically estimated by regression of the time series (Y) against time index (t)

EXCEL has numerous alternative ways of estimating the above equation and/or trend fitting/extrapolation including the regression routine

Holts Exponential Smoothing (HES)

The two general methods already studied (MA, SES) are useful when the time series is **predominantly horizontal** but will **not be good predictors** when the **time series has other systematic components**

If the time series has a trend then MA and SES will be poor predictors

A simple **extension of the SES model (Holt's Model)** which incorporates a **trend component** can be used for better prediction

Like SES, <u>Holts Exponential Smoothing (HES)</u> uses a smoothing algorithm to **remove random influences** from the time series revealing the underlying systematic components.

HES Equations

HES is characterised by three equations;

1.
$$L_t = \alpha Y_t + (1 - \alpha) (L_{t-1} + T_{t-1})$$

2.
$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta)(T_{t-1})$$

$$3. \quad \mathbf{F}_{t+m} = \mathbf{L}_t + \mathbf{m} \mathbf{T}_t$$

The first equation is for <u>level</u>, the second for <u>trend</u> and the third is the <u>forecasting equation</u> for "<u>m" periods into</u> the <u>future</u>

HES Equations (cont)

 L_t = Smoothed level at period (t)

 Y_t = Actual time series value at period t

 α = Smoothing constant for level

T_t= Trend estimate at period t

 β = Smoothing constant for the trend (o <= β <= 1)

m = Number of periods ahead to be forecast

 F_{t+m} = Holt's forecast value for period t + m

HES (cont.)

The values of α , β are arbitrarily determined

Typically **between o and 1 inclusive** although some programs (eg MINITAB) ignore this restriction

Try different α , β to determine the "optimum" combination (as assessed by error criteria (MSE, MAE, MAPE)

SOLVER in EXCEL can also be used to find the optimum by minimising a chosen error criterion

Initialisation of the model requires initial estimates for L_t and T_t . L_t is usually the <u>initial time series</u> value (Y_1)

 T_t is usually the <u>average</u> of the <u>increase/decrease</u> in the first few periods (use either zero or (Y_2-Y_1) or $((Y_3-Y_1)/2)$)