EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 11 – DERS 1 29 Nisan 2025

Dr. Sibel ÇİMEN

Örnek: Dizi Dedektörü (Yakalayıcısı)

Q(†)	Q(†+1)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Moore modeline göre ardışıl devre sentezi gerçekleyelim.

1001 dizisi dedekte edilecek (içiçe geçen 1001 dizileri de dedekte edilsin).

Durum kodlaması yapılır. A:000 , B:001, C:011, D:010, E:111 olsun.

Şim	diki Du	ırum	Input	Gelec	ek Du	rum	Flip flop inputs				Output		
Q ₂	Q_1	Q_0	X	Q ₂	Q_1	Q_0	J ₂	K ₂	J_1	K ₁	Jo	Ko	Z
0	0	0	0	0	0	0	0	X	0	X	0	X	0
0	0	0	1	0	0	1	0	X	0	X	1	×	0
0	0	1	0	0	1	1	0	X	1	X	X	0	0
0	0	1	1	0	0	1	0	X	0	X	X	0	0
0	1	1	0	0	1	0	0	X	X	0	X	1	0
0	1	1	1	0	0	1	0	X	X	1	×	0	0
0	1	0	0	0	0	0	0	X	X	1	0	X	0
0	1	0	1	1	1	1	1	X	X	0	1	X	0
1	1	1	0	0	1	1	×	1	X	0	X	0	1
1	1	1	1	0	0	1	×	1	X	1	X	0	1
	Diğer	1	X	×	X	X	×	X	X	X	X	X	×
girişler													

Örnek: Dizi Dedektörü (Yakalayıcısı)

Moore modeline göre ardışıl devre sentezi gerçekleyelim.

Şimdiki Durum Input			Gelecek Durum			Flip flop inputs					Output		
Q ₂	Q_1	Q_0	X	Q ₂	Q_1	Q_0	J ₂	K ₂	J_1	K_1	Jo	K ₀	Z
0	0	0	0	0	0	0	0	X	0	X	0	X	0
0	0	0	1	0	0	1	0	X	0	X	1	X	0
0	0	1	0	0	1	1	0	X	1	X	X	0	0
0	0	1	1	0	0	1	0	X	0	X	X	0	0
0	1	1	0	0	1	0	0	X	X	0	×	1	0
0	1	1	1	0	0	1	0	X	X	1	X	0	0
0	1	0	0	0	0	0	0	X	X	1	0	X	0
0	1	0	1	1	1	1	1	X	X	0	1	X	0
1	1	1	0	0	1	1	×	1	X	0	X	0	1
1	1	1	1	0	0	1	×	1	X	1	X	0	1
	Diğer	1	X	×	X	X	×	X	X	X	X	X	×
girişler								-					

		JZ IÇIN:		
Q_2Q_1	00	01	11	10
00	0	0	0	0
01	0	1	0	0
11	ф	ф	ф	ф
10	ф	ф	ф	ф

 $J_2 = Q_1 \cdot \overline{Q_0} \cdot x$

12 icin.

$$J_{2} = Q_{1} \cdot \overline{Q_{0}} \cdot x$$

$$K_{2} = 1$$

$$J_{1} = Q_{0} \cdot \overline{x}$$

$$K_{1} = \overline{Q_{0}} \cdot \overline{x} + Q_{0} \cdot x$$

$$J_{0} = x$$

$$K_{0} = \overline{x} \cdot Q_{1} \cdot \overline{Q_{2}}$$

Örnek: Dizi Dedektörü (Yakalayıcısı)

Moore modeline göre ardışıl devre sentezi gerçekleyelim.

Devre Çizilir.

$$J_2 = Q_1 \cdot \overline{Q_0} \cdot x$$

$$K_2 = 1$$

$$J_1 = Q_0.\,\bar{x}$$

$$K_1 = \overline{Q_0}.\bar{x} + Q_0.x$$

$$J_0 = x$$

$$K_0 = \bar{x}. Q_1. \overline{Q_2}$$

Örnek: 010 Dizi Dedektörü

Mealy Modeline Göre

Moore Modeline Göre

Örnek: 010 Dizi Dedektörü

Mealy Modeline Göre

Durum Tablosu Çizilir ve Seçilecek Flip-Flop'a göre FF'ların giriş uçlarına ilişkin minimal fonksiyonlar bulunur. Sonra devresi çizilir.

Örnek: 010 Dizi Dedektörü

Mealy Modeline Göre

Aynı örnekteki devreyi JK Flip-Flop'lar, 4x1 MUX'lar ve NOT kapıları ile gerçekleyelim.

Örnek: 010 Dizi Dedektörü

Moore Modeline Göre

Durum Tablosu Çizilir ve Seçilecek Flip-Flop'a göre FF'ların giriş uçlarına ilişkin minimal fonksiyonlar bulunur. Sonra devresi çizilir.

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.
- 4. 'Lojik Devreler', Prof. Dr. Ertuğrul ERİŞ Ders Notları, 1995.