Data Science UW Methods for Data Analysis

Introduction and Data Exploration Lecture 1 Stephen Elston

Course Purpose

- > This course focuses on essential concepts
- > We are building foundations for your data science skills
- > Course Objectives:
 - Become comfortable working with structured and unstructured data.
 - Learn methods to explore and understand data.
 - Understand the core concepts of statistics and probability.
 - Understand and implement various statistical procedures in Python
 - Understanding the mathematical basis of machine learning models.
 - Expand Python programming skills to be able to write and test quality code from scratch.
- > For more information about the course, please see the Canvas home page:
 - https://canvas.uw.edu/courses/1347202

Course Requirements and Grading

- > Attendance: You MUST attend at least 8 out of 10 classes. This is a non-negotiable UW requirement.
- > Need at least 75% cumulative grade to pass course
- > Grading is based on:
 - Quiz in Canvas most weeks: questions on concepts.
 - Discussion questions in Canvas, each week: easy credit!!
 - Homework for most modules
 - Milestone projects are more substantial to pull concepts together for you
- > Pay attention to the due dates. Late work in be penalized

Course Requirements and Grading

Homework and project guidelines

- > All homework assignments must use good Python coding technique
 - Use loops, list comprehensions, functions etc.
 - Don't just cut and paste code for multiple cases
 - If you have questions about coding, ask!
- > Results must be presented in a professional style
 - Presentation of results is a key data science skill
 - We must be able to understand your conclusions
- > The individual project must be complete and code explains (documented)

Office Hours and Contact Information

- > Use the forum on Canvas.
 - Answer other people's questions
 - You are responsible for reading the forum!
 - I will try to read and answer most days
 - Make sure you have your profile set to get notifications!!!
 - Make sure your email is correct in your profile!
- > Contact me at:
 - stephen.elston@quantia.com
- > When I'm *usually* available:
 - Off/on for simple things during work. (M-F 8am-5pm PST)
 - Sunday various afternoon/evening times.

Languages for data science

Skills every data scientist should have:

- > SQL is the 'lingua franca' of data access Data scientists need to access data!
- > R widely used for visualization, statistical analysis, and machine learning
- > Python 3 widely used for visualization, machine learning, big data APIs (e.g. Spark), deep learning APIs
 - We use Python 3 in this course
 - Use Anaconda stack for data science

Languages for data science

PYTHON

C++ UNIX SHELL

SQL Resources

SQL Tutorial and Resources

http://www.w3schools.com/sql/

Querying with Transact SQL Course, Graeme Malcom

https://www.edx.org/course/querying-transact-sql-microsoft-dat201x-3

R Data Science Resources

R Inferno, Pat Burns

http://www.burns-stat.com/pages/Tutor/R inferno.pdf

Python Data Science Resources

Numpy: https://numpy.org/

Matplotlib: https://matplotlib.org/

Pandas: https://pandas.pydata.org/

Statsmodels: https://www.statsmodels.org/stable/index.html

Seaborn: https://seaborn.pydata.org/

Scikitlearn: https://scikit-learn.org/stable/

GitHub

> Code, data and slides for this course are in a GitHub repository

https://github.com/StephenElston/DataScience410

> Install Git and GitHub for desk top

https://git-scm.com/download (Links to an external site.)Links to an external site.

https://help.github.com/desktop/guides/gettingstarted/installing-github-desktop/

Or, just download the zip files

Presentation and story telling

Important part of data science

- > Data science must have impact
- > Results only have impact if they are understood
- > Need to 'tell the story'
- > Draw clear conclusion
- > Evidence supports conclusion

Presenting results is hard!

Data analytic thinking

Thinking about problems using objective analysis of data

- > Define problem in terms of the business impact
- > Review available data sources
- > Explore the data
- > Try various models
- > Actionable results generate value
- > Support recommendations with data and analysis
- > Define metrics of success

Tips for story telling

Make the story clear

- > Occam's Razor
- > You will only hold attention for a short time
- > Don't distract your audience
- > Start with your conclusion
- > Support your conclusion with evidence
- > Few words = greater impact!

Don't obfuscate your message!

Short and simple has business impact

- > Minimize discussion of methodology and technical detail
- > Clear charts
 - Label axis
 - Minimize over-plotting
 - Simplify
- > Short simple tables
 - Label rows and columns
 - Highlight key point
 - Minimal rows and columns

Homework 1:

- > Use visualization and summary statistical methods to explore energy efficiency data set.
- > Data on over 750 buildings.
- > Energy efficiency of building measured as **heating load** or **cooling load**.

Don't panic!!:

- > Exercise is deliberately open-ended.
- > Exploration of a new data set is open-ended
- > Expect exploration to be iterative
 - Try several ideas before you find truly interesting relationships.
 - The real-world is hard to understand!!

You must submit:

- > ONE Jupyter notebook.
 - Your Python code must be clear and concise
 - You must explain what you are doing in text!
 - Your conclusions must be clearly written and supported by evidence from your analysis

Example conclusion:

The heating load of buildings depends on ... Evidence for this relationship can be seen by ... in the figure and by noting in the table above.

Summary

- > Data Science is at the intersection of
 - Technology, including programming: SQL, R, Python, etc.
 - Math, probability, and statistics the topic of this course
 - Domain knowledge
- > Presentation of results is a core skill
- > Iterative exploration of the data with visualization
 - Understand the relationships in the data
 - Use multiple views of data

