Partial Order & Cardinality

Summer 2016

Definitions

Definition 1. A relation on a set *S* is a subset *R* of $S \times S$.

Definition 2. A relation \leq on a set S which is reflexive, transitive, and antisymmetric is called a partial order; the pair (S, \leq) is called a partially ordered set (poset).

- i. *reflexive*: $x \le x$ for all $x \in S$
- ii. *transitive*: if $x \le y$ and $y \le z$ then $x \le z$ for all $x, y, z \in S$
- iii. *antisymmetric*: if $x \le y$ and $y \le x$ then x = y for all $x, y \in S$

Definition 3. A partial order \leq on S is a total order if it satisfies trichotomy.

iv. *trichotomy*: $x \le y$ or $y \le x$ for all $x, y \in S$

Definition 4. Let A and B be sets. Define the cardinality relation \leq on sets such that $|A| \leq |B|$ if there exists an injective function from A to B. We write |A| = |B| if there exists a bijection between A and B.

Schröder-Bernstein Theorem

Theorem 1. (Schröder-Bernstein) If $f: A \to B$ and $g: B \to A$ are injective functions, there exists a bijection $h: A \to B$.

Propositions

Proposition 1. *The relation of cardinality forms a partial order on sets.*

- i. reflexive: The identity forms a bijection from any set to itself.
- ii. *transitive*: Supposing $|A| \le |B|$ and $|B| \le |C|$, compose the resulting injective functions to form another injective function between A and C.

iii. antisymmetric: From Schröder-Bernstein, the definition for the cardinality relation implies transitivity.

Proposition 2. *The relation of cardinality forms a total order on sets.*

Proof. From Proposition 1, it suffices to show that trichotomy holds under this relation.