Math 231 Homework 5

Due Apr 15th Submit at the beginning of the class (Put into the box with your TA's name) Do the calculation and write the numbers during the process

- 1. Use the integral test to determine whether the series is convergent or divergent.
 - a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$
 - b) $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$
 - c) $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$
- 2. (a) Use the sum of the first 10 terms to estimate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$. How good is this estimate?
 - (b) Find a value of n so that ensure that the error in the approximation $s \approx s_n$ is less than 0.001.
- 3. Find all positive values of b for which the following series converges:

$$\sum_{n=1}^{\infty} b^{\ln(n)}$$

- 4. Determine whether the series converges or diverges:
 - (a) $\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$
 - (b) $\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$
 - (c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$
- 5. Show that the series is convergent. How many terms of the series do we need to add in order to find the sum of the indicated accuracy?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^6}$ (|error| < 0.00005)
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{10^n n!}$ (|error| < 0.000005)