

Which description should we use for a cure? Problem: Leight = Sa SI+f(x) 2 Jx $h = f(x) \cdot \Delta x$ h = f(x)d= 50x2+(f'(x)0x)2 = 0x 5 (+f'(x)2 Rewrite f(x) as (t, f(t)) **f**(t) = (t, f(t)) 8 Then it's parameterised & I'm OK Consider df'(t) = (1, f'(t)) velocity is f'(t), speed E | f'(t) |also direction vector of the curve

Listance travelled (length) = $\int_{\alpha}^{b} | f'(t) | | dt$

$$x(t) = (t,t)$$

$$x(t)$$

$$y(t) = (t_1t^2)$$

$$y(t) = (t_1^2t^2)$$

$$y(t) = (t_1^3t^3)$$

$$t = 2$$

$$y(t) = (t_1^3t^3)$$

$$t = 3$$

$$x'(t) = 1$$

$$y'(t) =$$

ρ - γ	
Define the arc-length paremeterisation of a curve (ALP)	
to be the parameter Bation where the archength is	
the parameter, i.e. given	2
Define the arc-length paremeterisation of a curve (ALP) to be the parameterisation where the archength is the parameter, i.e. given $S(u) = \int_{a}^{b} X'(t) X'(t) dt$	
Ja	
Athet-value where u = 0	
define X (S) to be the ALP s.t.	
Sa 11x (t) 11 dt = s	
i.e. the arc-length under ALP gives your paramet. back.	er
T A P a st by to be to the	
Ingeneral, an ALP exists, but may be hard to	
construct.	
The ALP is the parameterisation of the curve where	<u>. </u>
your speed is a constant of 1	
The ALP is the parameterization of the curve where your speed is a constant of 1 i.e. $ \mathbf{X}'(s) = 1$ unit direction vector unit tangent vector	
$ \mathbf{x}'(s) = \sqrt{\mathbf{x}'(s)} - \mathbf{x}'(s) = 1$	
X'(s) x'(s) = 1 Product Rule	2
x'(s) x'(s) + x(s)x'(s)= 0 (fg)' = fg +g'f	

