20)23 경	영경제대	학 학술제	· 참가보고서	
제 목	화재 위적	험성 지표 개'	발 및 활용	(팀	l명 : 푸앙가디언즈)
	성명	학번	생년월일	연락처	E-mail
	이호용	20203374	19960531	010-5599-6677	bkupshoot@gmail.com
신청팀 인적사항	곽수민	20180942	19991211	010-3181-3803	ytnals3803@naver.com
	권동구	20196130	20000318	010-6698-4492	donggu5654@naver.com
	박정현 유태권	20205602 20196746	20020121	010-6866-3569 010-5388-6038	petite0121@naver.com ytg000629@naver.com
			l	I	1
선정주제	건물 안	선성 데이터	마이닝 및 분석	석을 통한 위험성 지표	표 개발
주제 선정 이유 (사회적 현상과 관련지어 서술)	인명 피하 대한민피하 인명 대한민피하 원 2021년 5 건수의 6 1,589명(차지 바라적 의 응용 바라 이 및 라이	는 2,242명(시 - 공식 전자정 는 평균적으. 액은 2012년 해를 거듭할수 =에는 건축/5 66.2%를 차지 85.7%), 1,046 화재 중 건축, 의다. 건물의 화재 (건물의 화재 (건물의 화재 (건물의 화재 (건물의 하자	사망 310명, 부 성부 누리집에 로 매년 2,300 2,894억 원어 목 큰 폭으로 가조물 화재의 하고 있으며, 5,802백만 원(5 /구조물 화재 위험도를 예측 이고 예방하는 성 데이터 마임워크를 개빌 이 이용한다면	따르면 지난 10년간 이여 명이 발생하고 있 에서 2017년 5,069억, 은 증가하고 있음을 알 발생 건수가 23,9977 사망자 240명(87.0%) 95.2%)의 재산 피해를 가 매년 가장 큰 인명 에 큰 도움이 될 것 이닝 및 분석을 통해 '했다. 이러한 지표를	해는 5,607억 원이다. 화재에 의한 다. 또한 2021년 1조 991억 수 있다. 건으로 전체 화재 , 부상자 : 발생시킴으로써 , 재산피해 규모를 면, 화재로 인한 이다.
	화재에 9	의한 피해는 :	크게 재산 피형	해와 인명피해로 구분	된다.
	화재 발생 발생여부 개발했다	-(인명피해)를	는 재산피해약 예측하여 화	(재산 피해)과 인명피 재 위험성 지표 (이하	해 화재피해등급)를
	결과는 🧦	지역 단위로 : 건물 단위의	제공되기 때문	배와 관련된 데이터 기 산정해 오고 있다. 하기 ○에 실제 정책이나 화 활용하기에는 어려움	재안전점검 우선순위
주제 분석 및 연구 - -	Departm 단위로 3 우선순위 Forest)	ient, AFRD)어 화재위험도를 l를 결정하는 기반으로 개빌 면적, 층수, 필	서 구축한 Fi 예측하여 화 것이 주목적(よ되어 약 71%	한타 소방청 (Atlanta I rebird가 대표적이다. 대 발생 위험도가 높은 이다. 해당 모델은 랜년 의 정확도를 보였으나 인 변수만을 활용했다	Firebird는 건물 은 건물의 점검 덤포레스트(Random 나. 건물에 관한
	│ 있는 건 ┆	물 데이터를 🖣	중심 으로 다잉	부, 국가공간정보포탈 f한 변수들을 고려한 함재피해등급 을 산정 ⁶	등에서 관리되고 화재 관련 융합 하는 연구를 진행했다.
	또한 실/	시간으로 동적	1인 데이터를	수집하고 처리하기 위	리한 소켓 프로그래밍 -

	Y	및 분산 처리 시스템	을 통하여 선제적인 대응이 기	능한 시스템을 구축했다.						
	주제의 현실 적용 가능성	현장안전센터거리, 기 화재발생시각 등이 고	화재 발생 시 재산 피해액 및 인명피해 예측을 위해 사용한 변수들로 현장안전센터거리, 기온, 풍속, 가시거리, 실효습도, 전기사용량, 가스사용량, 화재발생시각 등이 고려되었다. 위에 나타난 대부분 변수는 화재가 발생하기 이전에 실시간으로 수집하고							
		업데이트할 수 있다. 대용량 데이터 처리에 이를 통해 건물 화재	변수는 화재가 발생하기 이전 ⁽ 즉, 화재피해등급 변화의 실시 견딜 수 있는 시스템 을 구축 발생에 대한 사전 대비 가 가 모를 사전에 예측하고 인지할	간 모니터링 이 가능하며 [:] 했다. 등하며 화재피해등급에						
현실성 및 지속가능성		화재 예방과 더불어 회 신속하고 선제적인 대	화재 발생 시 건물 소유자, 시 처를 하는 데 도움을 줄 수 있	설 관리자, 정부 기관 등이 있다.						
기탁/16/8	주제의	다양한 변수를 고려힌 화재피해등급을 좀 더	층, 건물 유동 인구 등 더 많은 나다면 모델의 정확도를 향상힐 세분화하는 것이 가능하며 등 넓힐 수 있을 것이다.	수 있다. 이를 통해						
	발전 가능성 및 타당성	및 개선이 용이하다. 전략 모델 을 바탕으로	한 데이터가 동적으로 수집되고 더 나은 지표를 개발함에 따라 모델 확장 기반에 용이하다. 이를 통해 계속 변화하는 상황 속에서 최적화된 대처 한국 모델을 바탕으로 화재피해등급 업데이트를 한다면 효과적인 대응 기반을 수립할 수 있을 것이다.							
	주제에 대한 분석의	화재 위험도 지표는 현재 '화재 위험 지수'라는 명칭으로 사용 중에 있다. 하지만 이러한 위험도 지표는 특정 지역에 한정하여 일정 기간의 상대적인 화재 위험 수치를 나타냈을 뿐 건물 단위로 실시간으로 모니터링 할 수 있는 지표는 아직 존재하지 않는다. 또한 국외 사례까지 확장하여 살펴보았을 때도 화재가 발생할 확률을								
	차별성 및 독창성	예측하는 모델은 있지 예측한 모델은 없다. 이러한 상황 속에서 '	학명하여 철퍼보였을 때도 와/ 만 화재 발생으로 인한 피해? 화재피해등급'은 실시간으로 7 로이 활용될 수 있을 것이다.	액 혹은 사상자 여부를						
		건물 단위로 데이터를 때문에 전기/가스 사용 건물별로 수집했다.	· 융합하여 화재피해등급을 예 용량, 날씨 데이터, 화재 출동	측 하는 것이 목적이기 현황 등 다양한 데이터를						
		데이터명	설명	출처						
창의성 및 전문성		전기에너지	2020년 건물별 전기에너지 사용량							
		가스에너지	2020년 건물별 가스에너지 사용량	- 건축데이터 개방						
	의견 도출의 논리 및 과정	화재출동현황	사망인명피해수, 화재발생 시각, 현장안전센터거리, 시간단위날씨 (기온, 풍속), 가시거리, 재산피해액	서울소방재난본부						
		상대습도	2017~2020년 시간별 상대 습도 데이터	기상청						
		서울시 건축물대장 법 정동 코드정보	법정동 코드, 시군구코드, 법 정동명, 시군구명 등	서울 열린데이터 광장						
		L	1							

데이터 전처리

- 변수 선택 : 결측치가 1% 이상인 칼럼을 제거하고 분석 목적에 맞지 않는 데이터를 분류했다.
- 실효습도 변수 생성 : 실효습도란 화재 예방을 목적으로 사용하기 위해 고안된 것으로 건조도를 나타낸다. 평균습도에 지나온 시간에 따른 가중치를 두어 산출하게 되고 건조한 날이 연속되는 경우 실효습도는 낮아지고 불이 날 가능성은 커지게 된다. 기상청에서 얻은 상대습도 데이터를 기준으로 계산하여 2017년~2020년의 실효습도 변수를 생성했다.

결측치

- 4개의 변수(현장소방지역대거리, 기온, 풍속, 풍향)에서 각각 4, 3, 34, 34개의 결측치를 발견했다.
- 현장소방지역대거리 : 인접 주소의 거리로 대체했다.
- 기온 : 일별 평균 기온으로 대체했다.
- 풍속, 풍향 : 풍속과 풍향은 시간 별로 변화하는 폭이 크기 때문에 일별 평균 풍속과 풍향으로 대체하지 않고 삭제했다.

이상치

- 변수별 기술 통계량을 확인해 보고 이상치로 의심되는 값들이 존재하는지 확인했다.
- 총 6개의 변수(현장소방서거리, 현장안전센터거리, 시간단위가시거리, **재산피해액**, 전기사용량, 가스사용량)에서 이상치로 의심되는 값들을 확인했다.
- 분포 형태에 따라 이상치 확인에 유리한 방법들이 다르다. 변수들의 분포가 다양했기에 여러 가지 방법을 활용하여 이상치를 탐지했다.
 - Graphical method : Box-plot, Scatter plot을 통해 시각적으로 이상치를 확인했다.
 - **z-score** : 각 변수를 표준화하여 z-score 값을 통해 3표준편차 이상의 값들을 확인했다.
 - DBSCAN(Density-based spatial clustering of applications with noise)
 알고리즘: 클러스터의 수를 지정하기 어려운 상황이었기 때문에
 K-Means의 대안으로 이상치 탐지에 적합한 밀도 기반의 DBSCAN
 알고리즘을 사용했다.
 - 추가적으로 변수별 특징을 고려하여 결측치 대체 및 제거했다.
- 현장소방서거리, 현장안전센터거리, 시간단위가시거리
 - Box-plot의 1.5*IQR 범위를 벗어나고 z-score의 값이 3표준편차 이상인 값을 이상치로 판별하고 동별 평균 거리로 대체했다.

• 재산피해액

- 변수 특성상 제거하지 않는 것이 맞지만 분석의 정확도를 위해 극단값에 있는 한 개의 이상치를 제거했다.
- 전기사용량(KWh), 가스사용량(KWh)
 - Box-plot을 확인한 결과 max(Q3 + (1.5 * IQR)) 이상의 값들이 각각 246개, 270개가 확인됐다.
 - z-score 값을 확인한 결과 각각 3표준편차 이상의 216개, 261개의 값들을 확인했다.
 - 이상치로 의심되는 값들 중 분석의 정확도를 위해 총 59개의 값들을 제거했다.

데이터 병합

- 화재출동현황 데이터셋을 기준으로 전처리한 데이터들을 병합했다.
- 전기에너지와 가스에너지는 주소를 기준으로 병합했고 실효습도 변수는 화재발생일자를 기준으로 병합했다.

	사망인명피해수	화재발생시	현장안전센터거리	시간단위기온	시간단위풍속	시간단위가시거리	재산피해액	실효습도	전기사용량(KWh)	가스사용량(KWh)
0	0	0	3	0.2	2.2	491	13391	54.273750	18096.210463	11774.10017
1	0	15	2	9.3	1.9	703	35	49.554054	18096.210463	11774.10017
2	0	20	1	-4.2	1.8	2000	308	31.607682	18096.210463	11774.10017
3	0	10	1	-4.4	4.5	558	184	50.355768	18096.210463	11774.10017
4	0	3	3	1.5	5.9	634	877	43.742292	18096.210463	11774.10017

모델링 기법

- 인명피해발생여부 로지스틱 회귀분석
 - 총 8개의 변수(현장안전센터거리, 시간단위 (기온, 풍속, 가시거리), 실효습도, 전기사용량(KWh), 가스사용량(KWh), 화재발생시각)를 바탕으로 인명피해발생여부에 대해 모델링을 진행했다.
 - 각 변수별 결과는 다음과 같았으며, 예측 정확도는 92.7%를 기록했다.

	coef	std err	z	P> z	[0.025	0.975]
현장안전센터거리	0.0038	0.031	0.121	0.903	-0.058	0.066
시간단위기온	0.0801	0.037	2.177	0.029	0.008	0.152
시간단위풍속	0.1648	0.032	5.176	0.000	0.102	0.227
시간단위가시거리	-0.0140	0.032	-0.434	0.664	-0.077	0.049
실효습도	-0.1159	0.037	-3.129	0.002	-0.188	-0.043
전기사용량(KWh)	-0.0240	0.041	-0.587	0.557	-0.104	0.056
가스사용량(KWh)	0.0685	0.040	1.733	0.083	-0.009	0.146
화재발생시각_새벽	-2.7225	0.080	-34.033	0.000	-2.879	-2.566
화재발생시각_저녁	-3.4376	0.096	-35.714	0.000	-3.626	-3.249
화재발생시각_주간	-3.0664	0.051	-59.747	0.000	-3.167	-2.966

- 추정된 로지스틱 회귀식을 바탕으로 인명피해발생 확률을 계산하여 지표 산출에 활용했다.
- 재산 피해액 다중선형 회귀분석
 - 인명피해발생여부 예측을 위해 사용한 독립변수 그대로 사용하여 재산피해액에 대해 모델링을 진행했다.
 - 종속변수로 사용된 재산피해액의 경우 편차가 심해 분산 안정화 변환 방법 중 하나인 로그 변환을 진행한 뒤 사용했다.

0 L							_ '' ''	J //	1 *		
		0.224					Dep. Variable:	재산	피해액 R-square	d (uncentered):	0.831
	coef	std err	t	P> t	[0.025	0.975]	Model:		OLS Adj. R-square	d (uncentered):	0.831
센터거리	0.1964	0.020	9.969	0.000	0.158	0.235	Method:	Least S	quares	F-statistic:	8342.
단위기온	-0.0288	0.002	-16.452	0.000	-0.032	-0.025	Date:	Fri, 05 Ma	y 2023 P	rob (F-statistic):	0.00
단위풍속	0.1095	0.016	6.979	0.000	0.079	0.140	Time:	19	9:48:36	Log-Likelihood:	-38466.
가시거리	0.0005	2.85e-05	18.965	0.000	0.000	0.001	No. Observations:		17001	AIC:	7.695e+04
							Df Residuals:		16991	BIC:	7.703e+04
실효습도	0.0536	0.001	39.122	0.000	0.051	0.056	Df Model:		10		
량(KWh)	1.615e-05	2.03e-06	7.950	0.000	1.22e-05	2.01e-05	Covariance Type:	nor	nrobust		
량(KWh)	-1.84e-06	1.3e-06	-1.411	0.158	-4.4e-06	7.16e-07	Omnibus:	431.122	Durbin-Watson:	1,989	
시각_새벽	1.5449	0.069	22.545	0.000	1.411	1.679	Prob(Omnibus):	0.000	Jarque-Bera (JB):	464.087	
각_저녁	1.0991	0.068	16.068	0.000	0.965	1.233	Skew:	0.403	Prob(JB):	1.68e-101	
니 각_주 간	1.4202	0.060	23.504	0.000	1.302	1.539	Kurtosis:	3.063	Cond. No.	1.84e+05	

- 각 변수별 결과는 다음과 같으며, MAE(Mean Absolute Error)는 1.8287을 기록했다.
- 모델의 설명력을 나타내는 지표인 R-Squared의 값이 83.1%로 높게 나와 설명력이 높은 모델임을 확인할 수 있었다.
- 추정된 선형회귀식을 바탕으로 예상 In(재산피해액)을 계산하여 지표 산출에 활용했다.

결과

• 모델링 결과 인명피해 발생여부는 정확도 92.7%, 재산 피해액은 R-squared 83.1%, MAE 1.8287을 기록하며 준수한 성능을 보여주었다. 이러한 모델을 바탕으로 인명피해 발생 확률과 예상피해액 값을 추출했고, 화재피해등급을 도출하는 데에 활용했다.

<화재피해등급 도출>

- 재산 피해액 모델이 예측한 값에 MinMax Scaler를 적용하여 0~1 사이의 값(이하 재산피해지수)으로 표현했다.
- 사상자 발생 여부 모델은 0~1 사이의 확률값을 출력할 수 있다. 이 예측 확률에 MinMax Scaler을 적용하여 마찬가지로 0~1 사이의 값(이하 인명피해지수)으로 표현했다.
- 재산 피해액 지수와 인명피해지수를 곱한 값에 제곱근을 취하고 100을 곱한 값으로 얻은 화재피해지수를 통해 최종적으로 화재 피해 등급을 도출했다.

 $X_{\pi \wedge \pi \cap \pi \cap \pi} = MinMax(\hat{y}_{\alpha \wedge \pi \cap \pi})$

 $X_{\mathcal{O}\mathcal{B}II\mathcal{H}X\mathcal{I}} = MinMax(\hat{y}_{\mathcal{O}\mathcal{B}II\mathcal{H}})$

Y한재피해지수 = \sqrt{X} 재산피해지수 * X인명피해지수 * 100

 $(0 \le Y_{\stackrel{\circ}{S} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A} \stackrel{\circ}{A}} \le 100)$

화재피해등급	화재피해지수	건물 수
1	66 이상	26개
2	33 이상 66 미만	1,744개
3	33 미만	19,482개
		총 21,252개

전공융합 적절성

화재 출동 데이터, 기후 데이터, 건물 정보 데이터 등 화재와 관련된 통계 데이터를 수집했고, **기술 통계량**을 통해 이상치가 존재할 확률이 높은 변수를 뽑아 그래프 적 방법을 통해 이상치를 탐지했다.

이상치와 결측치에 적절히 대처한 최종 데이터를 통계적 기법인 **로지스틱 회귀분석**을 통해 인명피해 확률을, **다중 선형 회귀분석**을 통해 재산 피해액을 예측했다.

위 모델을 통해 화재위험지수를 계산했으며 **실시간으로 데이터 스트림 및** 처리가 가능한 **프레임워크**를 구성했다.

의의 및 기대효과

건물 화재에 대한 화재 피해(인명피해, 재산 피해)를 예측하는 모델을 활용하여 '화재피해등급'을 산출할 수 있다.

화재피해등급의 변수 특성상 실시간 모니터링이 가능하며 건물 단위로 모델링을 진행하였기에 **실시간 건물 단위 모니터링**이 가능하다.

이를 활용한다면 건물 화재 발생에 대한 **피해의 크기와 범위를 미리 파악**할 수 있으며 화재 발생 시 건물 소유자, 시설 관리자, 정부 기관 등이 신속하고 선제적인 대처를 할 수 있기에 상황에 맞는 **최적화된 대응 전략을 수립**하여 화재 발생에 의한 **피해를 최소화**할 수 있을 것이다.