

The Shortest Path Problem

(1) The shortest path: The path which has the minimum total weight, $W(u^*)=\min w_{st}$

Let G=(V,E) be a connected graph, from a starting point v_s to a terminal point v_t , find a path p which has the minimum total weight $\sum_{(v_i,v_j\in p)}w_{ij}$

And some problems such as minimum cost, minimum time, reliable line, can be transformed as the shortest path problem.

1. w_{ij}>0— classical Dijkstra method

• (1) Idea of the algorithm

Suppose we have found the shortest path p^* from v_s to v_t : v_s , ..., v_j , ..., v_k , ..., v_t .

- Then we have that, along the path p^* , the path from v_s to v_j or v_k , is the shortest path from v_s to v_j or v_k .

• (2) Process of the algorithm: — (label method)

Temporary T_j : An upper bound of the shortest distance from v_s to v_j .

Permanent P_j : The real shortest distance from $v_s to \ v_i$.

Each iteration of the algorithm will label at least one point as the permanent label.

(1) label v_1 as a P point, label other points as T points.

$$P(v_1) = 0$$
 $T(v_i) = +\infty$ $(i = 2, 3, \dots, 6)$

(2)
$$T(v_2) = \min[T(v_2), P(v_1) + w_{12}] = \min[+\infty, 0+3] = 3$$
$$T(v_3) = \min[T(v_3), P(v_1) + w_{13}] = \min[+\infty, 0+5] = 5$$

(3)
$$P(v_2) = 3$$

(4)
$$T(v_3) = \min[T(v_3), P(v_2) + w_{23}] = \min[5, 3+1] = 4$$

$$T(v_4) = \min[T(v_4), P(v_2) + w_{24}] = \min[+\infty, 3+2] = 5$$

$$T(v_5) = \min[T(v_5), P(v_2) + w_{25}] = \min[+\infty, 3+2] = 5$$

$$(5) \qquad P(v_3) = 4$$

(6)
$$T(v_5) = \min[T(v_5), P(v_3) + w_{35}] = \min[5, 4+4] = 5$$

(7)
$$P(v_4) = 5$$
 $P(v_5) = 5$

(8)
$$T(v_6) = \min[T(v_6), P(v_4) + w_{46}] = \min[+\infty, 5+4] = 9$$

(9)
$$T(v_6) = \min[T(v_6), P(v_5) + w_{56}] = \min[+\infty, 5+2] = 7$$

(10)
$$P(v_6) = 7$$

Back trace to obtain the shortest path from v₁ to v₆

$$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6$$

Example: obtain the shortest path from 1 to 8.

min $\{c_{12},c_{14},c_{16}\}=$ min $\{0+2,0+1,0+3\}=$ min $\{2,1,3\}=1$ $X=\{1,4\}, p_4=1$

min
$$\{c_{23}, c_{25}, c_{47}, c_{67}\}=$$
min $\{2+6, 2+5, 1+2, 3+4\}=$ min $\{8, 7, 3, 7\}=$ 3
$$X=\{1, 2, 4, 6, 7\}, p_7=3$$

min
$$\{c_{23}, c_{25}, c_{75}, c_{78}\}=$$
min $\{2+6, 2+5, 3+3, 3+8\}=$ min $\{8, 7, 6, 11\}=$ 6
$$X=\{1, 2, 4, 5, 6, 7\}, p_5=$$
6

min $\{c_{23}, c_{53}, c_{58}, c_{78}\}$ =min $\{2+6,6+9,6+4,3+8\}$ =min $\{8,15,10,11\}$ =8 $X=\{1,2,3,4,5,6,7\}, p_3=8$

min $\{c_{38}, c_{58}, c_{78}\}=$ min $\{8+6, 6+4, 3+7\}=$ min $\{14, 10, 11\}=10$ $X=\{1, 2, 3, 4, 5, 6, 7, 8\}, p_8=10$

Example 2

min
$$\{c_{12}, c_{13}\}=$$
min $\{0+4, 0+6\}=$ min $\{4, 6\}=4$
 $X=\{1, 2\}, p_4=4$

 $X=\{1,2,3\}, p_3=6$

min $\{c_{24}, c_{25}, c_{34}, c_{35}\}=$ min $\{4+5, 4+4, 6+4, 6+7\}=$ min $\{9, 8, 10, 13\}=$ 8 $X=\{1, 2, 3, 5\}, p_3=6$

$X = \{1,2,3,5\}$

min $\{c_{24}, c_{56}, c_{57}\}=$ min $\{4+5, 8+7, 8+6\}=$ min $\{9, 15, 14\}=$ 9 $X=\{1, 2, 3, 4, 5\}, p_4=9$

$X = \{1,2,3,4,5\}$

min { c_{46} , c_{47} , c_{56} , c_{57} }=min {9+9,9+7,8+5,8+6}=min {18, 16,13,14}=13X={1,2,3,4,5,6}, p_6 =13

$X = \{1,2,3,4,5,6\}$

min { c_{67} , c_{68} , c_{57} }=min {13+5,13+4,8+6}=min {18, 17, 14}=14X={1,2,3,4,5,6,7}, p_7 =14

Some concepts

Let this picture denote a pipeline network. v_1 is a starting point, v_7 is a terminal point, all other points are transfer points. The weight of the edge denotes the capacity of that pipeline.

What is the maximum flow from v_1 to v_7 ?

Directed graph G=(V,E)

Some concepts

1. Capacity network:

For a directed graph G= (V, E) ,let v_s be a starting point(indegree is 0) and v_t be a terminal point(outdegree is 0) ,other points be transfer points. We call this graph as a capacity network, G= (V, E, C).

2. Capacity and flow

capacity: the maximum flow allowed in the edge $(v_i,\,v_j)$ is the capacity of that edge, $c_{i\,j},$

flow: the real flow in the edge (v_i, v_j) , f_{ij} .

3. Feasible flow and maximum flow

If f_{ij} satisfy the following conditions:

(1) capacity condition: For each edge $(v_i, v_j) \in E$, we have $0 \le f_{ij} \le c_i$

Balance condition
$$\sum_{v_j \in A(v_i)} f_{ij} - \sum_{v_j \in B(v_i)} f_{ji} = \begin{cases} v(f) & i = s \\ 0 & i \neq s, t \\ -v(f) & i = t \end{cases}$$

 f_{ii} is a feasible flow of this capacity condition.

For each capacity network, there is a maximum flow.

The minimum cut

1. cut

divide the vertex sets into two nonempty sets S and

 $\overline{\mathbf{S}}$. S includes the vertex $oldsymbol{v}_s$, $\overline{\mathbf{S}}$ includes the vertex $oldsymbol{v}_t$

$$\left\{egin{array}{l} S igcup \overline{S} = V \ S igcap \overline{S} = \phi \ oldsymbol{\mathcal{V}}_i \in S, oldsymbol{\mathcal{V}}_t \in \overline{S} \end{array}
ight.$$

- the edge sets $(S,\overline{S}) = \{(v_i,v_j) | v_i \in S, v_j \in \overline{S}, (v_i,v_j \in A) \text{ is a cut } \}$
 - The sum of weights in this cut is called the capacity of the cut

$$C(S,\overline{S}) = \sum_{(v_i,v_j)\in(S,\overline{S})} C_{ij}$$

Each cut has its own capacity, the smallest one is the minimum cut.

$$S = (v_{s}, v_{2}) \quad \overline{S} = (v_{1}, v_{3}, v_{4}, v_{t})$$

$$(S, \overline{S}) = \{(v_{s}, v_{1}), (v_{2}, v_{4}), (v_{2}, v_{3})\}$$

$$C(S, \overline{S}) = l_{s1} + l_{24} + l_{23} = 7 + 6 + 5 = 18$$

v₁ is a starting point,v₅ is a terminal point.

S	\overline{S}	cut	capacity	
{v ₁ }	$\{v_2, v_3, v_4, v_5\}$	$\{(v_1, v_2), (v_1, v_3)\}$	6	
$\{v_1, v_2\}$	$\{v_3, v_4, v_5\}$	$\{(v_1, v_3), (v_2, v_5)\}$	7	
$\{v_1,v_3\}$	$\{v_2, v_4, v_5\}$	$\{(v_1, v_2), (v_3, v_4), (v_3, v_2)\}$	7	
$\{v_1, v_2, v_3\}$	$\{\mathbf{v_4},\mathbf{v_5}\}$	$\{(v_2, v_5), (v_3, v_4)\}$	5← Miı	ni
$\{v_1,v_4\}$	$\{v_2, v_3, v_5\}$	$\{(v_1, v_2), (v_1, v_3), (v_4, v_2), (v_4, v_5)\}$	12 cut	
$\{v_1, v_3, v_4\}$	$\{v_2,v_5\}$	$\{(v_1, v_2), (v_3, v_2), (v_4, v_2), (v_4, v_5)\}$	11	
$\{v_1, v_2, v_4\}$	$\{v_3, v_5\}$	$\{(v_1, v_3), (v_2, v_5), (v_4, v_5)\}$	12	
$\{v_1, v_2, v_3, v_4\}$	{v ₅ }	$\{(v_2, v_4), (v_4, v_5)\}$	8	

Maximum flow-Minimum cut Theory:

Augment chain

chain: a path from the starting point to the terminal point

Forward edge

Backward edge

Augment chain: Let f be a feasible flow, if there is a chain from v_s to v_t , and satisfy the following conditions

Saturated edge, unsaturated edge, gap

For the forward edges:

1. if $f_{ij}=c_{ij}$, from i to j is saturated

$$\begin{array}{c|c}
\hline
& c_{ij}=12 \\
\hline
& f_{ij}=12
\end{array}$$
(1, 2) is saturated

2, if $f_{ij} < c_{ij}$, from i to j is unsaturated

$$\begin{array}{c|c} c_{i,j}=12 \\ \hline \\ f_{i,j}=4 \end{array}$$

(1, 2) is unsaturated
The gap

$$\theta_{12} = c_{12} - f_{12} = 12 - 4 = 8$$

Fow all backward edges(from 3 to 5)

3 if $f_{ij}=0$, from j to i is saturated

$$c_{ij}=5$$

$$f_{ij}=0$$

(5, 3) is saturated

4. if $f_{ij}>0$, from j to i is unsaturated

$$c_{ij}=5$$

$$f_{ij}=5$$

(5, 3) is unsaturated The gap θ_{53} = f_{53} =5

Find the minimum gap

$$\theta^{+} = \min_{(\nu_{i}, \nu_{j}) \in \mu^{+}} \{c_{ij} - f_{ij}\}$$

$$\theta^{-} = \min_{(\nu_{i}, \nu_{j}) \in \mu^{-}} \{f_{ij}\}$$

$$\theta = \min\{\theta^{+}, \theta^{-}\}$$

Adjust the feasible flow

$$f_{ij}^{'} = \begin{cases} f_{ij} + \theta & (v_i, v_j) \in \mu^+ \\ f_{ij} - \theta & (v_i, v_j) \in \mu^- \\ f_{ij} & (v_i, v_j) \notin \mu \end{cases}$$

The new feasible flow becomes $f+\theta$

example

Augment chain 1: 1-2-4-6 $\theta = \min\{8, 2, 9\}=2$ V(f)=9

example

Augment chain 2: 1-3-5-6 $\theta = \min\{3, 1, 5\}=1$

$$V(f)=10$$

The meaning of an augment chain:

- •Along this augment chain, there is still a potential from Vs to Vt.
- According to the adjustment, we can increase the flow and still satisfy all the conditions. Hence the new flow is still feasible.

Corollary:

f is the maximum flow

There is no augment chain from v_s to v_t

Ford-Fulkerson label method

Step 1: find a feasible flow

Step 2: find an augment chain.

- (1) label the starting point (∞)
- (2) find a labeled point v_i , and check all its edges which lead to other unlabeled point:
 - A. If that edge is forward and $f_{ij} < c_{ij}$, then lebel v_j : $\theta_i = c_{ii} f_{ii}$
 - B. If that edge is backward and $f_{ji} > 0$, then label v_j : $\theta_i = f_{ii}$

If the terminal point has been labeled, then we find an augment chain. If the terminal point can't be labeled, the current flow is the maximum flow.

Step 3: adjust the flow (1) find the minimum gap

$$\theta = \min_{j} \left\{ \theta_{j} \right\}$$

(2) adjust the flow

$$f_1 = \begin{cases} f_{ij} & (i,j) \notin \mu \\ f_{ij} + \theta & (i,j) \in \mu^+ \\ f_{ij} - \theta & (i,j) \in \mu^- \end{cases}$$

When we get a new feasible f_1 , delete all the labels, go back to Step 2.

Example

For a given original feasible flow, obtain the maximum flow of this capacity network.

$$c_{ij} = f_{ij}$$
, v_4 , v_5 can't be labeled

Augment chain $\mu = \{(1,2), (3,2), (3,4), (4,7)\}, \mu^+ = \{(1,2), (3,4), (4,7)\}, \mu^- = \{(3,2)\},$ the minimum gap $\theta = \min\{\infty, 2, 3, 3, 7\} = 2$

The new feasible flow 6 (6) 8 (8) 3(3) 10(5) 1 4 **6** (6) \bullet 8 (7)

The second round label:

 $C_{ij}=f_{ij}$, v_4 , v_5 can't be labeled, go back to v_3

Augment chain $\mu = \mu^+ = \{(1,3), (3,4), (4,7)\},\$ the minimum gap $\theta = \min\{\infty, 4, 1, 5\} = 1$

The third round label:

Augment chain $\mu = \mu^+ = \{(1,3), (3,6), (6,4), (4,7)\}$, the minimum gap $\theta = \min\{\infty, 3, 1, 2, 4\} = 1$

The new feasible flow: 6 (6) 8 (8) **10(7** 5 3(3) **6** (6) 8 (8)

 v_7 can't be labeled, there is no augment chain from v_1 to v_7 , the current flow is the maximum flow,

$$v = f_{12} + f_{13} = 8 + 12 = 20$$

Example

