BUSINESS ANALYTICS DR. BRENDA MULLALLY

WHAT ARE THE EXTREME VALUES? SHAPE/DISPERSION OF VARIABLE

- STANDARD DEVIATION IS A STATISTICAL TECHNIQUE USED TO INFORM ABOUT THE VARIATION IN THE VALUES OF A VARIABLE.
- THE STANDARD DEVIATION IS A NUMBER SHOWING BY HOW MUCH A GROUP DIFFERS FROM THE MEAN VALUE OF THE GROUP.
- EXAM RESULTS, HEIGHT, AGE,

EMPIRICAL RULES FOR INTERPRETING STANDARD DEVIATION

- THE INTERPRETATION OF THE STANDARD DEVIATION CAN BE STATED AS THREE EMPIRICAL RULES.
 - IF THE VALUES OF A VARIABLE ARE APPROXIMATELY NORMALLY DISTRIBUTED (SYMMETRIC AND BELL-SHAPED), THEN THE FOLLOWING RULES HOLD:
 - APPROXIMATELY 68% OF THE OBSERVATIONS ARE WITHIN ONE STANDARD DEVIATION OF THE MEAN.
 - APPROXIMATELY 95% OF THE OBSERVATIONS ARE WITHIN TWO STANDARD DEVIATIONS OF THE MEAN.
 - APPROXIMATELY 99.7% OF THE OBSERVATIONS ARE WITHIN THREE STANDARD DEVIATIONS OF THE MEAN.

EMPIRICAL RULES FOR BASEBALL SALARIES

(SLIDE 2 OF 3)

• THE EMPIRICAL RULES SHOULD BE APPLIED WITH CAUTION, ESPECIALLY WHEN THE DATA ARE CLEARLY SKEWED, AS ILLUSTRATED BY THE CALCULATIONS FOR BASEBALL SALARIES BELOW.

14	Н	1	J	K	L	M	N	0
1	Do empirical rules apply?				_			
2		Lower endpoint	Upper endpoint	#below lower	# above upper	% below lower	% above upper	% between
3	Rule 1	-\$1,229,688	\$7,839,797	0	108	0%	13.20%	86.80%
4	Rule 2	-\$5,764,430	\$12,374,539	0	54	0%	6.60%	93.40%
5	Rule 3	-\$10,299,172	\$16,909,281	0	19	0%	2.32%	97.68%

IS THE CHART SYMMETRICAL? MEASURES OF SHAPE

IS THE CHART SYMMETRICAL? MEASURES OF SHAPE

- SKEWNESS OCCURS WHEN THERE IS A LACK OF SYMMETRY.
 - □ A VARIABLE CAN BE **SKEWED TO THE RIGHT** (OR **POSITIVELY SKEWED**)

 BECAUSE OF SOME REALLY *LARGE* VALUES (E.G., REALLY LARGE BASEBALL SALARIES).
 - OR IT CAN BE **SKEWED TO THE LEFT** (OR **NEGATIVELY SKEWED**) BECAUSE OF SOME REALLY *SMALL* VALUES (E.G., TEMPERATURE LOWS IN ANTARCTICA).
- ☐ IN EXCEL, A MEASURE OF SKEWNESS CAN BE CALCULATED WITH THE SKEW FUNCTION.

SKEWNESS

Skewness

The coefficient of Skewness is a measure for the degree of symmetry in the variable distribution.

Negatively skewed distribution or Skewed to the left Skewness <0

Normal distribution Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

IS THE CHART SYMMETRICAL? MEASURES OF SHAPE

- KURTOSIS HAS TO DO WITH THE "FATNESS" OF THE TAILS OF THE DISTRIBUTION RELATIVE TO THE TAILS OF A NORMAL DISTRIBUTION. IT CAN ALSO BE SAID THE DATA LOOKS FLATTER COMPARED TO NORMAL DISTRIBUTION.
- □ A DISTRIBUTION WITH HIGH KURTOSIS (POSITIVE NUMBER) HAS MANY MORE EXTREME VALUES, ONE WITH LOW KURTOSIS (NEGATIVE NUMBER) HAS FEW EXTREME VALUES.
- ☐ IN EXCEL, KURTOSIS CAN BE CALCULATED WITH THE KURT FUNCTION.

KURTOSIS

- CURVE 1 IS NORMAL
- CURVE 2 IS A LEADING CURVE
- CURVE 3 IS A FLAT CURVE

• ALL THREE ARE SYMMETRICAL AROUND THE MEAN.