Лабораторная работа 5

Вероятностные алгоритмы проверки чисел на простоту

Греков Максим Сергеевич

Содержание

1	Цел	ь работы													4
2	Опи	ісание													5
	2.1	Простое число													5
	2.2	Проверка на простоту													5
	2.3	Типы алгоритмов													5
	2.4	Вероятностные алгоритмы													6
	2.5	Количество тестов	 •		•	•	•		•	•	•		•	•	6
3	Алг	оритмы													7
	3.1	Тест Ферма													7
	3.2	Вычисление символа Якоби													8
	3.3	Тест Соловэя-Штрассена													8
		Тест Миллера-Рабина													9
4	Рез	ультаты													10
5	Выв	ЗОДЫ													11

List of Figures

3.1	Тест Ферма	7
3.2	Вычисление символа Якоби	8
3.3	Тест Соловэя-Штрассена	8
3.4	Тест Миллера-Рабина	9
4.1	Результаты	10

1 Цель работы

- Ознакомиться с определением простых чисел
- Изучить свойства простых чисел и подходы к их обнаружению
- Реализовать вероятностные алгоритмы проверки чисел на простоту

2 Описание

2.1 Простое число

Пусть а - целое число. Числа ± 1 , $\pm a$ называются тривиальными делителями числа a.

Целое число р называется простым, если оно не является делителем единицы и не имеет других делителей, кроме тривиальных.

В противном случае число р называется составным.

Например, числа ± 2 , ± 3 , ± 5 , ± 7 , ± 11 , ± 13 , ± 17 , ± 19 , ± 23 , ± 29 являются простыми.

2.2 Проверка на простоту

Проверка чисел на простоту является составной частью алгоритмов генерации простых чисел, применяемых в криптографии с открытым ключом.

Алгоритмы проверки на простоту можно разделить на вероятностные и детерминированные.

2.3 Типы алгоритмов

Детерминированный алгоритм всегда действует по одной и той же схеме и гарантированно решает поставленную задачу (или не дает никакого ответа).

Вероятностный алгоритм использует генератор случайных чисел и дает не гарантированно точный ответ.

2.4 Вероятностные алгоритмы

Вероятностные алгоритмы в общем случае не менее эффективны, чем детерминированные (если используемый генератор случайных чисел всегда дает набор одних и тех же чисел, зависящих от входных данных, то вероятностный алгоритм становится детерминированным).

Для проверки на простоту числа n вероятностным алгоритмом выбирают случайное число a (1 < a < n) и проверяют условия алгоритма.

Если число n не проходит тест по основанию a, то алгоритм выдает результат «Число n составное», и число n действительно является составным.

2.5 Количество тестов

Если же n проходит тест по основанию a, ничего нельзя сказать о том, действительно ли число n является простым.

Последовательно проведя ряд проверок таким тестом для разных а и получив для каждого из них ответ «Число n, вероятно, простое», можно утверждать, что число n является простым с вероятностью, близкой к 1.

Рассмотрим такие вероятностные алгоритмы как тест Ферма (рис. 3.1), Соловэя-Штрассена (рис. 3.3) (а также алгоритм вычисления символа Якоби (рис. 3.2)), Миллера-Рабина (рис. 3.4), и выполним с их помощью проверки (рис. 4.1).

3 Алгоритмы

3.1 Тест Ферма

```
5  def fermat(n: int) -> bool:
6    a = randint(2, n-2)
7    r = (a**(n-1)) % n
8    return r == 1
```

Figure 3.1: Тест Ферма

3.2 Вычисление символа Якоби

```
if not even(t):
def jacobi(a: int, b: int):
                                                         if b % 8 in (3, 5):
    def even(x): return x % 2 == 0
    if math.gcd(a, b) != 1:
       return 0
                                                     if a % 4 == b % 4 == 3:
    if a < 0:
       a = -a
                                                     a = b % c
       if b % 4 == 3:
                                                     b = c
                                                     if a == 0:
   while True:
       t = 0
                                                     return r
       while even(a):
```

Figure 3.2: Вычисление символа Якоби

3.3 Тест Соловэя-Штрассена

```
def solovay_strassen(n: int) -> bool:
    a = randint(2, n-1)
    if math.gcd(a, n) > 1:
        return False
    if (a**((n-1)//2) - jacobi(a, n)) % n != 0:
        return False
        return True
```

Figure 3.3: Тест Соловэя-Штрассена

3.4 Тест Миллера-Рабина

Figure 3.4: Тест Миллера-Рабина

4 Результаты

Figure 4.1: Результаты

5 Выводы

- Ознакомились с определением простых чисел
- Изучили свойства простых чисел и подходы к их обнаружению
- Реализовали вероятностные алгоритмы проверки чисел на простоту