# Lower Bounds and Algorithms in the Linear Decision Tree Model

# AURÉLIEN OOMS ADVISOR: PROF. JEAN CARDINAL

MÉMOIRE PRÉSENTÉ EN VUE DE L'OBTENTION DU DIPLÔME DU MASTER EN SCIENCES INFORMATIQUES ANNÉE ACADÉMIQUE 2014 - 2015

UNIVERSITÉ LIBRE DE BRUXELLES

# Keywords

• Lower Bounds

## **Keywords**

- Lower Bounds
- Algorithms

## **Keywords**

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

#### Master's thesis contents

• Sorting, Merging and Sorting under Partial Information

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

- Sorting, Merging and Sorting under Partial Information
- Linial's algorithm (Linial [4] + efficient implementation)

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

- Sorting, Merging and Sorting under Partial Information
- Linial's algorithm (Linial [4] + efficient implementation)
- Sorting X + Y (naive approach + Fredman [2])

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

- Sorting, Merging and Sorting under Partial Information
- Linial's algorithm (Linial [4] + efficient implementation)
- Sorting X + Y (naive approach + Fredman [2])
- 3SUM, k-SUM, k-LDT (Grønlund and Pettie [3])

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

- Sorting, Merging and Sorting under Partial Information
- Linial's algorithm (Linial [4] + efficient implementation)
- Sorting X + Y (naive approach + Fredman [2])
- 3SUM, k-SUM, k-LDT (Grønlund and Pettie [3])
- Application of Meiser's Algorithm (Meiser [5])

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

- Sorting, Merging and Sorting under Partial Information
- Linial's algorithm (Linial [4] + efficient implementation)
- Sorting X + Y (naive approach + Fredman [2])
- 3SUM, k-SUM, k-LDT (Grønlund and Pettie [3])
- Application of Meiser's Algorithm (Meiser [5])
- Solve k-SUM using only o(n)-linear queries

#### Keywords

- Lower Bounds
- Algorithms
- Linear Decision Tree Model

- Sorting, Merging and Sorting under Partial Information
- Linial's algorithm (Linial [4] + efficient implementation)
- Sorting X + Y (naive approach + Fredman [2])
- 3SUM, k-SUM, k-LDT (Grønlund and Pettie [3])
- Application of Meiser's Algorithm (Meiser [5])
- Solve k-SUM using only o(n)-linear queries

## Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$\mathcal{S} = \{x_1, \dots, x_n\}$$

#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

#### Linear decision tree model and $\operatorname{ITLB}$

input 
$$S = \{x_1, \ldots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \ldots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \ldots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \ldots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \ldots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \dots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \ldots, x_n\}$$



#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

input 
$$S = \{x_1, \ldots, x_n\}$$





#### Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

#### Linear decision tree model and $\operatorname{ITLB}$

input 
$$S = \{x_1, \dots, x_n\}$$





 $\bullet = feasible solutions$ 

## Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

#### Linear decision tree model and ITLB

input 
$$S = \{x_1, \ldots, x_n\}$$





ullet = feasible solutions

$$\mathrm{ITLB} = \log(\# \bullet)$$

## Definition (Decision Tree Model)

We are allowed to ask questions to an oracle " $\leq$ " that are answered "yes" or "no". Each question asked to the oracle costs us a single unit. Every other operation can be carried out for free.

#### Linear decision tree model and $\operatorname{ITLB}$

input 
$$\mathcal{S} = \{x_1, \dots, x_n\}$$





 $\bullet = \mathsf{feasible} \; \mathsf{solutions}$ 

$$\mathrm{ITLB} = \log(\# \bullet)$$

input 
$$\mathcal{P} = (\mathcal{S} = \{x_1, \dots, x_N\}, <_{\mathcal{P}})$$

input 
$$\mathcal{P} = \left(\mathcal{S} = \left\{x_1, \dots, x_N\right\}, <_{\mathcal{P}}\right)$$



input 
$$\mathcal{P} = \left(\mathcal{S} = \left\{x_1, \dots, x_N\right\}, <_{\mathcal{P}}\right)$$



input 
$$\mathcal{P} = (\mathcal{S} = \mathcal{A} \cup \mathcal{B}, <_{\mathcal{P}})$$



$$\text{input } \mathcal{P} = \left(\mathcal{S} = \left\{\mathsf{a}_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} \mathsf{a}_{\mathsf{m}}\right\} \cup \left\{b_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} b_{\mathsf{n}}\right\}, <_{\mathcal{P}}\right)$$



$$\begin{array}{l} \text{input } \mathcal{P} = \left(\mathcal{S} = \left\{a_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} a_m\right\} \cup \left\{b_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} b_n\right\}, <_{\mathcal{P}}\right) \\ \mathcal{S} \end{array}$$



$$\text{input } \mathcal{P} = \left(\mathcal{S} = \left\{ \mathsf{a}_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} \mathsf{a}_m \right\} \cup \left\{ \mathsf{b}_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} \mathsf{b}_n \right\}, <_{\mathcal{P}} \right)$$





$$\text{input } \mathcal{P} = \left(\mathcal{S} = \left\{ \mathsf{a}_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} \mathsf{a}_m \right\} \cup \left\{ b_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} b_n \right\}, <_{\mathcal{P}} \right)$$





## Merging under Partial Information

$$\textbf{input} \,\, \mathcal{P} = \left(\mathcal{S} = \left\{ \mathsf{a}_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} \mathsf{a}_m \right\} \cup \left\{ \mathsf{b}_1 <_{\mathcal{P}} \cdots <_{\mathcal{P}} \mathsf{b}_n \right\}, <_{\mathcal{P}} \right)$$





ITLB = log e(P)



#### Merging under Partial Information

## Theorem (Linial [4])

Given a poset  $\mathcal{P}=(\{x_1,\ldots,x_N\}\,,<_{\mathcal{P}})$  covered by two chains  $\mathcal{A}$  and  $\mathcal{B}$ , we can always find a query  $x_i<^?x_j$  with  $x_i\in\mathcal{A},x_j\in\mathcal{B}$  such that the probability that  $x_i< x_j$  lies in the interval [1/3,2/3].

# Using dynamic programming

$$\mathcal{A} = \{a_1 < \dots < a_m\}, \mathcal{B} = \{b_1 < \dots < b_n\}, \mathcal{P} = (\mathcal{A} \cup \mathcal{B}, <_{\mathcal{P}})$$

### 3. Efficient Implementation of Linial's Algorithm

#### Using dynamic programming

$$\mathcal{A} = \{a_1 < \dots < a_m\}, \mathcal{B} = \{b_1 < \dots < b_n\}, \mathcal{P} = (\mathcal{A} \cup \mathcal{B}, <_{\mathcal{P}})$$

if  $|\mathcal{A}| = 0$  or  $|\mathcal{B}| = 0$ 

$$e(\mathcal{P}) = \begin{cases} 1 & \text{if } |\mathcal{A}| = 0 \text{ or } |\mathcal{B}| = 0 \\ e(\mathcal{P} \setminus \{a_1\}) & \text{if } a_1 <_{\mathcal{P}} b_1 \\ e(\mathcal{P} \setminus \{b_1\}) & \text{if } b_1 <_{\mathcal{P}} a_1 \\ e(\mathcal{P} \setminus \{a_1\}) + e(\mathcal{P} \setminus \{b_1\}) & \text{if } a_1 \text{ and } b_1 \text{ are incomparable in } \mathcal{P} \end{cases}$$

## 3. Efficient Implementation of Linial's Algorithm

#### Using dynamic programming

$$\mathcal{A} = \left\{ a_1 < \dots < a_m \right\}, \mathcal{B} = \left\{ b_1 < \dots < b_n \right\}, \mathcal{P} = \left( \mathcal{A} \cup \mathcal{B}, <_{\mathcal{P}} \right)$$

$$e(\mathcal{P}) = \begin{cases} 1 & \text{if } |\mathcal{A}| = 0 \text{ or } |\mathcal{B}| = 0 \\ e(\mathcal{P} \setminus \{a_1\}) & \text{if } a_1 <_{\mathcal{P}} b_1 \\ e(\mathcal{P} \setminus \{b_1\}) & \text{if } b_1 <_{\mathcal{P}} a_1 \\ e(\mathcal{P} \setminus \{a_1\}) + e(\mathcal{P} \setminus \{b_1\}) & \text{if } a_1 \text{ and } b_1 \text{ are incomparable in } \mathcal{P} \end{cases}$$

| $e(\mathcal{P})$                     | $e(\mathcal{P}\setminus\{b_1\})$ | $e(\mathcal{P}\setminus\{b_1,b_2\})$ | <br>1 |
|--------------------------------------|----------------------------------|--------------------------------------|-------|
| $e(\mathcal{P}\setminus\{a_1\})$     |                                  |                                      | :     |
| $e(\mathcal{P}\setminus\{a_1,a_2\})$ |                                  | ·                                    | :     |
| i i                                  |                                  |                                      | <br>: |
| 1                                    | • • •                            | • • •                                | <br>1 |

## 3. Efficient Implementation of Linial's Algorithm

#### Using dynamic programming

$$\mathcal{A} = \left\{ a_1 < \dots < a_m \right\}, \mathcal{B} = \left\{ b_1 < \dots < b_n \right\}, \mathcal{P} = \left( \mathcal{A} \cup \mathcal{B}, <_{\mathcal{P}} \right)$$

$$e(\mathcal{P}) = \begin{cases} 1 & \text{if } |\mathcal{A}| = 0 \text{ or } |\mathcal{B}| = 0 \\ e(\mathcal{P} \setminus \{a_1\}) & \text{if } a_1 <_{\mathcal{P}} b_1 \\ e(\mathcal{P} \setminus \{b_1\}) & \text{if } b_1 <_{\mathcal{P}} a_1 \\ e(\mathcal{P} \setminus \{a_1\}) + e(\mathcal{P} \setminus \{b_1\}) & \text{if } a_1 \text{ and } b_1 \text{ are incomparable in } \mathcal{P} \end{cases}$$

| $e(\mathcal{P})$            | $e(\mathcal{P}(b_1 < a_1))$ | $e(\mathcal{P}(b_2 < a_1))$ |   | 1 |
|-----------------------------|-----------------------------|-----------------------------|---|---|
| $e(\mathcal{P}(a_1 < b_1))$ | · · .                       |                             |   | : |
| $e(\mathcal{P}(a_2 < b_1))$ |                             | · · .                       |   | : |
| i:                          |                             |                             | ٠ | : |
| 1                           | • • •                       | • • •                       |   | 1 |

















#### Point Location in an Arrangement of Hyperplanes



#### k-SUM

Given a *n*-tuple  $S=(x_1,\ldots,x_n)$ ,  $x_i\in\mathbb{R}$ , decide whether there exists a k-tuple  $(x_{i_1},\ldots,x_{i_k})$  such that  $\sum_{i=1}^k x_{i_i}=0$ .

#### Algorithm (Idea of the algorithm)

**input**  $x \in \mathbb{R}^n$ , the point to be located.

- 1. Compute the position of x relative to a subset  $\mathcal{H}^*$  of  $\mathcal{H}$ , finding the cell C of  $\mathcal{H}^*$  containing x.
- **2.** For any hyperplane  $H_i$  not meeting  $C_i$ , deduce  $pv_i(x)$  then discard the hyperplane.
- **3.** Recurse on hyperplanes that are left.

#### Algorithm (Idea of the algorithm)

**input**  $x \in \mathbb{R}^n$ , the point to be located.

- 1. Compute the position of x relative to a subset  $\mathcal{H}^*$  of  $\mathcal{H}$ , finding the cell C of  $\mathcal{H}^*$  containing x.
- **2.** For any hyperplane  $H_i$  not meeting  $C_i$  deduce  $pv_i(x)$  then discard the hyperplane.
- 3. Recurse on hyperplanes that are left.

### Theorem (Bürgisser et al. [1])

If we choose  $O(\frac{n^2}{\epsilon}\log^2\frac{n}{\epsilon})$  hyperplanes uniformly at random from  $\mathcal H$  and denote this selection  $\mathcal H^*$  and if there is no hyperplane in  $\mathcal H^*$  intersecting a given simplex, then, with high probability, the number of hyperplanes of  $\mathcal H$  intersecting the simplex is less or equal to  $\epsilon|\mathcal H|$ .

#### Algorithm (Meiser's algorithm)

**input**  $x \in \mathbb{R}^n$ , the point to be located.

- **1.** Compute the position of x relative to a subset  $\mathcal{H}^*$ ,  $|\mathcal{H}^*| = O(n^2 \log^2 n)$ , of  $\mathcal{H}$ , finding the cell C of  $\mathcal{H}^*$  containing x.
- **2.** Build simplex S containing x and inscribed in C.
- **3.** For any hyperplane  $H_i$  not meeting **5**, deduce  $pv_i(x)$  then discard the hyperplane.
- 4. Recurse on the hyperplanes that are left.

### Theorem (Bürgisser et al. [1])

If we choose  $O(\frac{n^2}{\epsilon}\log^2\frac{n}{\epsilon})$  hyperplanes uniformly at random from  $\mathcal H$  and denote this selection  $\mathcal H^*$  and if there is no hyperplane in  $\mathcal H^*$  intersecting a given simplex, then, with high probability, the number of hyperplanes of  $\mathcal H$  intersecting the simplex is less or equal to  $\epsilon|\mathcal H|$ .







For any *g* Complexity

$$O\!\!\left(\left(\frac{n}{g}\right)^k (kg)^3 \log^3(kg)\right)$$

Query size

kg



For 
$$g = n^{\frac{k-1}{k}} = n^{1-\frac{1}{k}}$$

Complexity

$$O\left(n(kn^{1-\frac{1}{k}})^3\log^3(kn^{1-\frac{1}{k}})\right)$$

Query size

$$kn^{1-\frac{1}{k}}$$

#### **Conclusion**

• Lots of related problems

#### **Conclusion**

- Lots of related problems
- Some of them are well studied

#### **Conclusion**

- Lots of related problems
- Some of them are well studied
- Others have only weak lower bounds with no matching algorithm

#### **Conclusion**

- Lots of related problems
- Some of them are well studied
- Others have only weak lower bounds with no matching algorithm
- Still a lot of difficult open problems

#### **Conclusion**

- Lots of related problems
- Some of them are well studied
- Others have only weak lower bounds with no matching algorithm
- Still a lot of difficult open problems

#### **An Open Question**

• Is there an  $O(n^{2-\epsilon})$  algorithm for 3SUM?

#### 7. References

- Bürgisser, P., Clausen, M., and Shokrollahi, M. A. (1997). Algebraic complexity theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer.
- [2] Fredman, M. L. (1976). How good is the information theory bound in sorting? *Theoretical Computer Science*, 1(4):355–361.
- [3] Grønlund, A. and Pettie, S. (2014). Threesomes, degenerates, and love triangles. In *Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on*, pages 621–630. IEEE.
- [4] Linial, N. (1984). The information-theoretic bound is good for merging. SIAM Journal on Computing, 13(4):795–801.
- [5] Meiser, S. (1993). Point location in arrangements of hyperplanes. Information and Computation, 106(2):286–303.