0.1 多元函数的连续性和微分

我们的极限采用聚点定义,即只需要沿着有定义的地方趋近即可.

例题 0.1 设
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
,证明 f 沿着每条射线
$$\begin{cases} x = t\cos\alpha, & t > 0, \alpha \in [0, 2\pi) \\ y = t\sin\alpha, & t > 0, \alpha \in [0, 2\pi) \end{cases}$$
 趋于 $(0,0)$ 时

都趋于 0, 但是 f 在 (0,0) 不连续

笔记 本结果表明, 使用极坐标求二重极限不一定正确. 实际上, 我们用极坐标求二重根极限时, 都是固定 α , 再令 $t \to 0$ 求极限. 因此得到的只是沿着每个过原点的射线 (与 x 轴的夹角为 α) 趋于 (0,0) 的极限, 比如还可以沿 $y = kx^2$ 这条曲线趋于 (0,0).

证明 一方面,

$$\lim_{t\to 0^+} f(t\cos\alpha,t\sin\alpha) = \lim_{t\to 0^+} \frac{t^3\cos\alpha\sin\alpha}{t^4\cos^4\alpha + t^2\sin^2\alpha} = \lim_{t\to 0^+} \frac{t\cos\alpha\sin\alpha}{t^2\cos^4\alpha + \sin^2\alpha} = 0,$$

另外一方面

$$\lim_{x \to 0^+} f(x, kx^2) = \lim_{x \to 0^+} \frac{kx^4}{x^4 + k^2x^4} = \frac{k}{1 + k^2}.$$

故 f 在 (0,0) 不连续. 矛盾!

 $\frac{1}{2}$ 实际上, 使用极坐标变换求极限时, 只需要在 $t \to 0$ 的时候让 α 也发生变化 (不再固定 α), 再求极限才能得到正确的极限值, 但这样反而不方便求极限.

那么什么时候固定 α 后求出来的极限就是原函数的极限呢? 实际上只需要极限关于 $\alpha \in [0, 2\pi)$ 一致, 因为你直接考察定义 $\varepsilon - \delta$ 语言即可. 实际做题中可以体现为

$$\lim_{t \to 0^+} \sup_{\alpha \in [0, 2\pi)} |f(t \cos \alpha, t \sin \alpha) - A| = 0$$

更直白的, 你需要得到形如

$$|f(t\cos\alpha, t\sin\alpha) - A| \le g(t)$$

的不等式且 $\lim_{t\to 0^+} g(t) = 0$.

命题 0.1

设二元函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义, 若对 $\forall \alpha \in [0,2\pi)$, 都有

$$\lim_{t\to 0^+} f(a+t\cos\alpha, b+t\sin\alpha) = A \in \mathbb{R},$$

并且

$$\lim_{t\to 0^+} \sup_{\alpha\in[0,2\pi)} |f(t\cos\alpha,t\sin\alpha) - A| = 0,$$

或者存在函数 g(t) 满足对 $\forall \alpha \in [0, 2\pi)$, 都有

$$|f(a+t\cos\alpha, b+t\sin\alpha) - A| \leqslant g(t), \quad \lim_{t\to 0^+} g(t) = 0,$$

则

$$\lim_{(x,y)\to(a,b)} f(x,y) = A.$$

证明 显然条件 $\lim_{t\to 0^+}\sup_{\alpha\in[0,2\pi)}|f(t\cos\alpha,t\sin\alpha)-A|=0$ 和条件存在函数 g(t) 满足对 $\forall \alpha\in[0,2\pi)$, 都有

$$|f(a+t\cos\alpha, b+t\sin\alpha) - A| \le g(t), \quad \lim_{t \to a^+} g(t) = 0$$

等价. 由 $\lim_{t\to 0+} g(t) = 0$ 知, $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得

$$|g(t)| < \varepsilon, \ \forall t \in (0, \delta).$$

П

对 $\forall (x, y)$, 満足 $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, 令

$$t = \sqrt{(x-a)^2 + (y-b)^2}, \ \alpha = \arctan \frac{y-b}{x-a},$$

则 $x = a + t \cos \alpha, y = b + t \sin \alpha$. 于是

$$|f(x,y)-A|=|f(a+t\cos\alpha,b+t\sin\alpha)-A|\leqslant g(t)<\varepsilon,\ \forall (x,y)\in B\left((a,b),\delta\right).$$

例题 0.2 计算

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x + y}$$

证明 考虑

$$|f(t\cos\alpha, t\sin\alpha)| = t^2 \left| \frac{\cos^3\alpha + \sin^3\alpha}{\cos\alpha + \sin\alpha} \right| = t^2 |\cos^2\alpha + \sin^2\alpha - \cos\alpha\sin\alpha| \le 2t^2,$$

于是

$$0 \le \lim_{t \to 0^+} |f(t\cos\alpha, t\sin\alpha)| \le 2 \lim_{t \to 0^+} t^2 = 0$$

故我们得到了

$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x + y} = 0.$$

例题 0.3 设 f 在 (0,0) 连续且满足

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - xy}{x^2 + y^2} = a > 0$$

求 a 的范围使得 f 在 (0,0) 一定取到极值. 再求 a 的范围使得 f 在 (0,0) 一定取不到极值. **笔记** 注意到 $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ 不存在, 但是

$$\left| \frac{xy}{x^2 + y^2} \right| \le \frac{1}{2}$$

即猜测 $\frac{1}{2}$ 是 a 的分界点. 证明 由条件容易得到

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - xy}{x^2 + y^2} = a$$

$$\implies \lim_{(x,y)\to(0,0)} f(x,y) = a \cdot \lim_{(x,y)\to(0,0)} (x^2 + y^2) + \lim_{(x,y)\to(0,0)} xy = 0$$

$$\implies f(0,0) = \lim_{(x,y)\to(0,0)} f(x,y) = 0$$

以及

$$f(x, y) = (a + g(x, y))(x^2 + y^2) + xy$$
, $\lim_{(x,y)\to(0,0)} g(x, y) = 0$.

当 $a > \frac{1}{2}$, 当 (x, y) 足够靠近 0 使得 $g(x, y) > \frac{1}{2} - a$. 此时我们有

$$f(x,y) = (a+g(x,y))(x^2+y^2) + xy > \frac{1}{2}(x^2+y^2) + xy = \frac{1}{2}(x+y)^2 \ge 0$$

故 $a > \frac{1}{2}$ 时, f 在 (0,0) 处取得极小值.

当
$$0 < a < \frac{1}{2}$$
, 当 (x,y) 足够靠近 0 使得 $-a < g(x,y) < \frac{1-2a}{4}$, 则此时当 $x > 0$, $y > 0$ 有 $f(x,y) > 0$. 但是
$$f(x,y) = (a+g(x,y))(x^2+y^2) + xy < \frac{1+2a}{4}(x^2+y^2) + xy$$

又
$$\frac{1+2a}{4}(x^2+y^2)+xy$$
 在 $y=-x$ 上有

$$\frac{1+2a}{4}2x^2 - x^2 = \frac{2a-1}{2}x^2 < 0,$$

$$f(x, y) = \frac{1}{2}(x + y)^2 + x^2(x^2 + y^2) > 0,$$

即 (0,0) 是极值. 但是考虑 $f(x,y) = \frac{1}{2}(x^2 + y^2) + xy - x(x^2 + y^2)$, 就有

$$f(x, -x) = x^2 - x^2 - 2x^3 = -2x^3 < 0, x > 0,$$

$$f(x,x) = x^2 + x^2 - 2x^3 = 2x^2 - 2x^3 > 0, 0 < x < 1.$$

即 (0,0) 不是极值.

定理 0.1

设 u = f(x, y), v = g(x, y) 在区域 $D \subset \mathbb{R}^2$ 上有连续偏导数,则 u 与 v 之间有函数关系当且仅当

$$J = \frac{\partial(u, v)}{\partial(x, v)} = 0.$$

证明 必要性. 假定 u, v 满足 F(u, v) = 0, 则由 F(u, v) = F[f(x, y), g(x, y)] 可知

$$F'_u \cdot f'_x + F'_v g'_x = 0, \quad F'_u f'_v + F'_v g'_v = 0.$$

注意到 F'_u, F'_v 不同时为 0, 故上述方程组存在非零解, 从而有 $J = \frac{\partial(u,v)}{\partial(x,y)} = 0$. 充分性. 若 u'_x, u'_y, v'_x, v'_y 全为 0, 则 u,v 是常数, 从而有关系 u = cv. 若上述四个值有一个非 0, 例如是 $v'_y \neq 0$, 则由隐函数存在定理, 可从 v = g(x, y) 可确定函数 $y = \psi(x, v)$. 代入 u = f(x, y) 可得 $u = f(x, \psi(x, v))$, 记为 F(x, v). 因此,我们有

$$0 = J = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} F'_x + F'_v v'_x & F'_v v'_y \\ v'_x & v'_y \end{vmatrix} = F'_x v'_y.$$

由此知 $F'_{x} = 0$. 这说明 F 不是 x 的函数, 即 u = F(v).

例题 0.4 设 $xf'_x + yf'_y = 0$, 证明 $f \in \frac{y}{x}$ 的函数.

证明 注意到

$$\begin{vmatrix} f_x' & f_y' \\ -\frac{y}{x^2} & \frac{1}{x} \end{vmatrix} = \frac{1}{x^2} \left(x f_x' + y f_y' \right) = 0, \frac{\partial \left(\frac{y}{x} \right)}{\partial x} = -\frac{y}{x^2}, \frac{\partial \left(\frac{y}{x} \right)}{\partial y} = \frac{1}{x}$$

我们由定理 0.1知 f 是 $\frac{y}{r}$ 的函数.

定理 0.2 (用矩阵判定极值)

设 f 是某个区域 $V \subset \mathbb{R}^n$ 的二阶连续可微函数, 我们定义其 Hess(黑塞) 矩阵为

$$Hf = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \leqslant i,j \leqslant n},$$

则对 $\mathbf{x}_0 \in V$ 满足 $\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = 0, i = 1, 2, \cdots, n$ 有

- 1. $Hf(\mathbf{x}_0)$ 是正定的,则 \mathbf{x}_0 是 f 严格极小值点;
- 2. $Hf(\mathbf{x}_0)$ 是负定的,则 \mathbf{x}_0 是 f 严格极大值点;
- 3. $Hf(\mathbf{x}_0)$ 是不定的 (既不是正定, 也不是负定), 则 \mathbf{x}_0 不是 f 极值点;
- 4. 若 \mathbf{x}_0 是 f 极小值点,则 $Hf(\mathbf{x}_0)$ 是半正定的;

5. 若 \mathbf{x}_0 是 f 极大值点,则 $Hf(\mathbf{x}_0)$ 是半负定的.

证明

定义 0.1

我们称 $f: \mathbb{R}^2 \to \mathbb{R}$ 为齐 $n(n \in \mathbb{N})$ 次函数, 如果 f 满足

$$f(tx, ty) = t^n f(x, y), \forall x, y \in \mathbb{R}, t > 0.$$

命题 0.2 (齐次函数基本性质)

若 $f \in D^2(\mathbb{R}^2)$, 则 f 是齐 n 次函数的充要条件是

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf.$$

证明 若 f 是齐 n 次函数,则

$$f(tx, ty) = t^n f(x, y), \forall x, y \in \mathbb{R}, t > 0.$$

两边对t求导得

$$x\frac{\partial f}{\partial x}(tx, ty) + y\frac{\partial f}{\partial y}(tx, ty) = nt^{n-1}f(x, y),$$

于是

$$tx\frac{\partial f}{\partial x}(tx,ty)+ty\frac{\partial f}{\partial y}(tx,ty)=nt^nf(x,y)=nf(tx,ty),$$

再令 $\mathbf{x} = tx$, $\mathbf{y} = ty$, 即证.

反过来若

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$$

成立, 固定 $x,y \in \mathbb{R}$ 并考虑 g(t) = f(tx,ty). 则有

$$tg'(t) = tx\frac{\partial f}{\partial x}(tx,ty) + ty\frac{\partial f}{\partial y}(tx,ty) = nf(tx,ty) = ng(t).$$

故解微分方程得 $g(t) = Ct^n$, 从而将 g(1) = f(x, y) 代入得 C = f(x, y), 于是

$$g(t) = f(tx, ty) = t^n f(x, y).$$

这就证明了

$$f(tx, ty) = t^n f(x, y), \forall x, y \in \mathbb{R}, t > 0.$$

例题 **0.5** 设 $\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$ 且 $u(0, y) = y^2, u(x, 1) = \cos x, 求 u.$

证明 对 $\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$ 两边关于 y 积分得 $\frac{\partial u}{\partial x} + u = C(x)$. 由 $u(x, 1) = \cos x$ 得

$$\frac{\partial u}{\partial x}(x,1) = -\sin x \Rightarrow \frac{\partial u}{\partial x}(x,1) + u(x,1) = C(x) = \cos x - \sin x.$$

又

$$\frac{\partial (ue^x)}{\partial x} = e^x \left(\frac{\partial u}{\partial x} + u \right) = e^x (\cos x - \sin x) \Rightarrow ue^x = e^x \cos x + C_2(y),$$

我们有

$$u(x, y) = \cos x + C_2(y)e^{-x}$$
.

现在

$$y^2 = u(0, y) = 1 + C_2(y) \Rightarrow C_2(y) = y^2 - 1.$$

故

$$u(x, y) = \cos x + (y^2 - 1)e^{-x}$$
.

例题 0.6 设 l_1, l_2 夹角为 $\varphi \in (0, \pi)$ 且 f 连续可微, 证明

$$\left| \frac{\partial f}{\partial x} \right|^2 + \left| \frac{\partial f}{\partial y} \right|^2 \leqslant \frac{2}{\sin^2 \varphi} \left[\left| \frac{\partial f}{\partial l_1} \right|^2 + \left| \frac{\partial f}{\partial l_2} \right|^2 \right].$$

证明 由可微时方向导数计算公式有

$$\frac{\partial f}{\partial l_1} = \cos a \cdot \frac{\partial f}{\partial x} + \sin a \cdot \frac{\partial f}{\partial y},$$
$$\frac{\partial f}{\partial l_2} = \cos(a + \varphi) \cdot \frac{\partial f}{\partial x} + \sin(a + \varphi) \cdot \frac{\partial f}{\partial y},$$

则

$$\begin{pmatrix} \frac{\partial f}{\partial l_1} \\ \frac{\partial f}{\partial l_2} \end{pmatrix} = \begin{pmatrix} \cos a & \sin a \\ \cos(a + \varphi) & \sin(a + \varphi) \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}.$$

于是

$$\left| \frac{\partial f}{\partial l_1} \right|^2 + \left| \frac{\partial f}{\partial l_2} \right|^2 = \left(\frac{\partial f}{\partial l_1} \quad \frac{\partial f}{\partial l_2} \right) \left(\begin{array}{c} \frac{\partial f}{\partial l_1} \\ \frac{\partial f}{\partial l_2} \end{array} \right)$$

$$= \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right) \left(\begin{array}{c} \cos a & \sin a \\ \cos (a + \varphi) & \sin (a + \varphi) \end{array} \right)^T \left(\begin{array}{c} \cos a & \sin a \\ \cos (a + \varphi) & \sin (a + \varphi) \end{array} \right) \left(\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \right)$$

$$= \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right) \left(\begin{array}{c} \cos^2 a + \cos^2 (a + \varphi) & \sin (a + \varphi) \cos (a + \varphi) + \sin a \cos a \\ \sin (a + \varphi) \cos (a + \varphi) + \sin a \cos a \end{array} \right) \left(\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \right).$$

利用

$$\begin{pmatrix} \cos^2 a + \cos^2(a + \varphi) & \sin(a + \varphi)\cos(a + \varphi) + \sin a \cos a \\ \sin(a + \varphi)\cos(a + \varphi) + \sin a \cos a & \sin^2 a + \sin^2(a + \varphi) \end{pmatrix}$$

的特征值为 $1 \pm \cos \varphi$ 和Rayleigh quotient(瑞丽商) 的基本性质, 我们知道

$$\left|\frac{\partial f}{\partial x}\right|^2 + \left|\frac{\partial f}{\partial y}\right|^2 \leqslant \frac{1}{1 - \left|\cos\varphi\right|} \left[\left|\frac{\partial f}{\partial l_1}\right|^2 + \left|\frac{\partial f}{\partial l_2}\right|^2\right] \leqslant \frac{2}{\sin^2\omega} \left[\left|\frac{\partial f}{\partial l_1}\right|^2 + \left|\frac{\partial f}{\partial l_2}\right|^2\right],$$

即证. 上式最后一个不等式是因为

$$\frac{1}{1 - |\cos \varphi|} \geqslant \frac{2}{\sin^2 \varphi}$$

$$\iff 1 - |\cos \varphi| \leqslant \frac{\sin^2 \varphi}{2}$$

$$\iff 2 - 2|\cos \varphi| \leqslant 1 - \cos^2 \varphi$$

$$\iff \cos^2 \varphi - 2|\cos \varphi| + 1 \geqslant 0$$

$$\iff (|\cos \varphi| - 1)^2 \geqslant 0.$$

例题 0.7 设 D 为单位圆盘, 考虑 $f \in C^1(D) \cap C(\overline{D})$ 且 $|f| \leq 1$, 证明: 存在 D 中的一个点 (x_0, y_0) 使得

$$\left|\frac{\partial f}{\partial x}(x_0, y_0)\right|^2 + \left|\frac{\partial f}{\partial y}(x_0, y_0)\right|^2 \le 16.$$

 $\hat{\mathbf{y}}$ 笔记 摄动想法, 考虑 $g(x,y) = f(x,y) + \varepsilon(x^2 + y^2)$, 其中 ε 待定. 此外很多同学疑惑构造函数咋来的, 实际上这是完全没有必要的! 因为大家几乎都是记的. 本题有一些更高端的技术可以加强到最佳系数.

证明 考虑 $g(x,y) = f(x,y) + 2(x^2 + y^2)$, 则由 $|f| \le 1$ 知 $g|_{\partial D} \ge 1$, $g(0,0) = f(0,0) \le 1$. 故 g 最小值在 D 内取到. 又由 $g \in C(D)$, 从而存在 D 中的一个 g 的最小值点 (x_0,y_0) 使得 $\frac{\partial g}{\partial x}(x_0,y_0) = 0$, 即

$$\frac{\partial f}{\partial x}(x_0, y_0) = -4x_0, \frac{\partial f}{\partial y}(x_0, y_0) = -4y_0,$$

这就得到了证明.

命题 0.3

设 f(x,y) 是 D 上的二元函数且偏导数都存在, 令 $x = r\cos\theta$, $y = r\sin\theta$, $g(r,\theta) = f(r\cos\theta, r\sin\theta)$, 则

$$r\frac{\partial g}{\partial r} = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y},$$
$$\frac{\partial g}{\partial \theta} = -y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y}.$$

证明 直接求导得证.

例题 0.8 设 $\lim_{r=\sqrt{x^2+y^2}\to+\infty} \left(x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}\right)=a>0$, 证明 f 在 \mathbb{R}^2 取得最小值.

 \dot{r} 本题关键是有一个隐藏条件: 条件极限关于角度 θ 的一致性

 $\widehat{\mathbf{Y}}$ 笔记 积累想法设 $g(r,\theta)=f(r\cos\theta,r\sin\theta)$, 则

$$r\frac{\partial g}{\partial r} = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}, \frac{\partial g}{\partial \theta} = -y\frac{\partial f}{\partial x} + x\frac{\partial f}{\partial y}.$$

即联想命题 0.3.

证明 注意到

$$\lim_{r \to +\infty} r g_r' = \lim_{r \to +\infty} r \frac{\partial g}{\partial r} = a > 0,$$

于是存在 $r_0 > 0$ 使得 $g'_r > 0$, $\forall r \ge r_0$. 则此时

$$g(r, \theta) \geqslant g(r_0, \theta), \forall r \geqslant r_0, \theta \in [0, 2\pi),$$

故 g 的最小值在 $D = \{(r, \theta): r \in [0, r_0], \theta \in [0, 2\pi)\}$ 取到, 因此 $\min_{\substack{r \in [0, r_0], \theta \in [0, 2\pi]}} g(r, \theta)$ 为 g 最小值.

例题 0.9 设 $f \in \mathbb{R}^2$ 上的连续可微函数且 f(0,1) = f(1,0), 证明存在单位圆周上两个不同的点使得 $y \frac{\partial f}{\partial x} = x \frac{\partial f}{\partial y}$.

🔮 笔记 联想命题 0.3.

$$g(0) = g\left(\frac{\pi}{2}\right) = g(2\pi).$$

由 Rolle 中值定理知, 存在 $\theta_1 \neq \theta_2 \in [0, 2\pi)$, 记 $x_i = \cos \theta_1, y_i = \sin \theta (i = 1, 2)$, 使得

$$g'(\theta_1) = g'(\theta_2) = 0$$

$$\iff \begin{cases}
-\sin\theta_1 \frac{\partial f}{\partial x} (\cos\theta_1, \sin\theta_1) + \cos\theta_1 \frac{\partial f}{\partial y} (\cos\theta_1, \sin\theta_1) = 0, \\
-\sin\theta_2 \frac{\partial f}{\partial x} (\cos\theta_2, \sin\theta_2) + \cos\theta_2 \frac{\partial f}{\partial y} (\cos\theta_2, \sin\theta_2) = 0.
\end{cases}$$

$$\iff \begin{cases}
y_1 \frac{\partial f}{\partial x} (x_1, y_1) = x_1 \frac{\partial f}{\partial y} (x_1, y_1), \\
y_2 \frac{\partial f}{\partial x} (x_2, y_2) = x_2 \frac{\partial f}{\partial y} (x_2, y_2).
\end{cases}$$

即单位圆周上有两个不同的点, 使得 $y \frac{\partial f}{\partial x} = x \frac{\partial f}{\partial y}$.

例题 0.10

- 1. 设 $f \in C^1(\mathbb{R}^2)$, f(0,0) = 0 且 $|\nabla f| \leq 1$, 证明 $|f(1,2)| \leq \sqrt{5}$.
- 2. 设 $f \in C^1(\mathbb{R}^2)$, f(0,0) = 0 且

$$\left| \frac{\partial f}{\partial x} \right| \le 2|x - y|, \left| \frac{\partial f}{\partial y} \right| \le 2|x - y|,$$

证明: $|f(5,4)| \leq 1$.

注 梯度及其模定义为 $\nabla f \triangleq \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right), |\nabla f| \triangleq \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}.$

注 第二问如果和上一问完全类似,取积分路径为连接 (0,0),(5,4) 的线段,那么由第一型曲线积分和第二型曲面积分的联系和 Cauchy 不等式 (离散版本) 我们有

$$|f(5,4)| = \left| \int_{(0,0)}^{(5,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \right| = \left| \int_{(0,0)}^{(5,4)} \left(\frac{\partial f}{\partial x} \cos \left(\widehat{t,x} \right) + \frac{\partial f}{\partial y} \sin \left(\widehat{t,x} \right) \right) ds \right|$$

$$\leq \int_{(0,0)}^{(5,4)} |\nabla f| ds \leq \sqrt{8} \int_{(0,0)}^{(5,4)} |x - y| ds$$

$$= \frac{\sqrt{8}}{5} \int_{0}^{5} x \sqrt{1 + \left(\frac{4}{5} \right)^{2}} dx = \sqrt{82}.$$

其中 $\left(\cos\left(\widehat{t,x}\right),\sin\left(\widehat{t,y}\right)\right)$ 为积分路径曲线正切向的方向余弦. 没能成功的原因就是两类曲线积分转换时的损失,没有充分利用题目条件: 当 y=x 时,f 的两个偏导数都为 0. 上述证明中选取的积分路径与 y=x 这条直线关系不大.

证明

1. 注意到

$$f(1,2) - f(0,0) = \int_{(0,0)}^{(1,2)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$

这里积分路径待定. 于是由第一型曲线积分和第二型曲面积分的联系和 Cauchy 不等式 (离散版本) 得

$$|f(1,2)| = \left| \int_{(0,0)}^{(1,2)} \left(\frac{\partial f}{\partial x} \cos\left(\widehat{t,x}\right) + \frac{\partial f}{\partial y} \sin\left(\widehat{t,x}\right) \right) ds \right|,$$

$$\leq \int_{(0,0)}^{(1,2)} |\nabla f| ds \leq \int_{(0,0)}^{(1,2)} 1 ds$$

其中 $\left(\cos\left(\widehat{t,x}\right),\sin\left(\widehat{t,y}\right)\right)$ 为积分路径曲线正切向的方向余弦. 为了得到这个方法最佳的估计, 我们取积分路径为连接 (0,0),(1,2) 的线段, 这恰好给出了 $|f(1,2)| \leq \sqrt{5}$.

路径为连接 (0,0),(1,2) 的线段, 这恰好给出了 $|f(1,2)| \leq \sqrt{5}$. 2. 先沿着 $y=x,0 \leq x \leq 4$ 积分, 此时知积分 $\int_{(0,0)}^{(4,4)} \left(\frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y\right)$ 为 0. 于是

$$|f(5,4)| = \left| \int_{(0,0)}^{(5,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \right| = \left| \int_{(4,4)}^{(5,4)} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right) \right|$$
$$= \left| \int_{4}^{5} \frac{\partial f}{\partial x} dx \right| \leqslant 2 \int_{4}^{5} |x - 4| dx = 1.$$