5 f(x) を区間 $[0,\pi]$ で連続な関数とする。関数 $f_1(x),f_2(x),\cdots$ を関係式

$$f_1(x) = f(x),$$

$$f_{n+1}(x) = 2\cos x + \frac{2}{\pi} \int_0^{\pi} f_n(t)\sin(x-t)dt \quad (n=1, 2, 3, \dots)$$

により定める。さらに,自然数nに対して

$$a_n = \frac{2}{\pi} \int_0^{\pi} f_n(t) \sin t dt, \quad b_n = \frac{2}{\pi} \int_0^{\pi} f_n(t) \cos t dt$$

とおく。

- (1) a_{n+1}, b_{n+1} を a_n, b_n を用いて表せ。
- (2) $c_n=a_n-1$ とおく。このとき, $c_{n+2}=-c_n$ が成立することを示し,一般項 c_n を a_1 と b_1 を用いて表せ。
- (3) a_n, b_n が n によらない定数となるような f(x) を 1 つ求めよ。