Experiment Tracking

MLOps Zoomcamp

Important concepts

- ML experiment: the process of building an ML model
- Experiment run: each trial in an ML experiment
- Run artifact: any file that is associated with an ML run
- Experiment metadata: information about an ML experiment like the source code used, the name of the user, etc.

What's experiment tracking?

Experiment tracking is the process of keeping track of all the **relevant information** from an **ML experiment**, which includes:

- Source code
- Environment
- Data
- Model
- Hyperparameters
- Metrics
- ...

Why is experiment tracking so important?

In general, because of these 3 main reasons:

- Reproducibility
- Organization
- Optimization

Tracking experiments in spreadsheets

Why is not enough?

- Error prone
- No standard format
- Visibility & Collaboration

	A	В	С	D	E	F	G	Н	1
1		Accuracy	TP	FP	FN	TN	TOTAL	FP (%)	FN (%)
2	Baseline new phash	0.906	8213	721	446	2983	12363	5.83192%	3.6%
3	Baseline new phash	0.909	8210	693	482	3504	12889	5.37668%	3.7%
4	a)	0.908	8216	699	443	3005	12363	5.65235%	3.6%
5	b)	0.905	8137	702	438	2729	12006	5.84708%	3.6%
6	c)	0.908	8217	694	444	3032	12387	5.60130%	3.6%
7	d)	0.906	8147	706	431	2756	12040	5.86240%	3.6%
8	e)	0.906	8201	705	464	3030	12400	5.68548%	3.7%
9	f)	0.905	8135	700	446	2774	12055	5.80672%	3.7%
10	g)	0.906	8207	705	461	3036	12407	5.67825%	3.7%
11	h)	0.905	8126	691	460	2794	12071	5.72308%	3.8%
12	i)	0.906	8211	702	460	3042	12415	5.65445%	3.7%
13	j)	0.905	8134	694	456	2796	12080	5.74503%	3.8%
14	m)	0.908	8226	697	431	2934	12288	5.67220%	3.5%
15	n)	0.907	8145	686	422	2634	11887	5.77101%	3.6%
16	k)	0.908	8216	703	443	3072	12434	5.65653%	3.6%
17	I)	0.907	8142	693	437	2843	12115	5.71881%	3.6%
18	0)	0.907	6857	569	298	1550	9273	6.13070%	3.2%
19	p)	0.904	7966	693	411	2397	11467	6.04488%	3.6%
20	m) from MS	0.909	8223	689	434	2941	12287	5.60620%	3.5%
21	n) from MS	0.907	8155	687	413	2633	11887	5.78082%	3.5%
22	q)	0.909	7994	650	422	2682	11748	5.53428%	3.6%
23	r)	0.911	7445	583	339	1969	10336	5.63887%	3.3%
24	s)	0.909	6921	527	286	1236	8970	5.87886%	3.2%
25	r_new)	0.907	8194	707	498	3490	12889	5.48530%	3.9%
26									

MLflow

Definition: "An open source platform for the machine learning lifecycle" *

In practice, it's just a Python package that can be installed with pip, and it contains four main modules:

- Tracking
- Models
- Model Registry
- Projects

^{*} Official MLflow documentation: https://mlflow.org/

Tracking experiments with MLflow

The MLflow Tracking module allows you to organize your experiments into runs, and to keep track of:

- Parameters
- Metrics
- Metadata
- Artifacts
- Models

Along with this information, MLflow automatically logs extra information about the run:

- Source code
- Version of the code (git commit)
- Start and end time
- Author

mlf/ow demo

Model Management

Machine Learning Lifecycle

Source: https://neptune.ai/blog/ml-experiment-tracking

Model management

What's wrong with this?

- Error prone
- No versioning
- No model lineage

Logging models in MLflow

Two options:

Log model as an artifact

```
mlflow.log artifact("mymodel", artifact path="models/"
```

Log model using the method log model

```
mlflow.<framework>.log model(model, artifact path="models/"
```

MLflow Model Format

Model Registry

Motivation

Model Registry

MlflowClient Class

- A client of ...
 - an MLflow Tracking Server that creates and manages experiments and runs.
 - an MLflow Registry Server that creates and manages registered models and model versions.
- To instantiate it we need to pass a tracking URI and/or a registry URI:

```
from mlflow.tracking import MlflowClient

client = MlflowClient(tracking_uri="sqlite:///mlflow.db")
```

Model management in MLflow

The Model Registry component is a centralized model store, set of APIs, and a UI, to collaboratively manage the full lifecycle of an MLflow Model.

It provides:

- Model lineage,
- Model versioning,
- Stage transitions, and
- Annotations

MLflow in Practice

Different scenarios for running MLflow

Let's consider these three scenarios:

- A single data scientist participating in an ML competition
- A cross-functional team with one data scientist working on an ML model
- Multiple data scientists working on multiple ML models

Configuring MLflow

- Backend store
 - local filesystem
 - SQLAlchemy compatible DB (e.g. SQLite)
- Artifacts store
 - local filesystem
 - o remote (e.g. s3 bucket)
- Tracking server
 - no tracking server
 - localhost
 - remote

Remote tracking server

The tracking server can be easily deployed to the cloud

Some benefits:

- Share experiments with other data scientists
- Collaborate with others to build and deploy models
- Give more visibility of the data science efforts

Issues with running a remote (shared) MLflow server

- Security
 - Restrict access to the server (e.g. access through VPN)
- Scalability
 - Check <u>Deploy MLflow on AWS Fargate</u>
 - Check <u>MLflow at Company Scale</u> by Jean-Denis Lesage
- Isolation
 - Define standard for naming experiments, models and a set of default tags
 - Restrict access to artifacts (e.g. use s3 buckets living in different AWS accounts)

MLflow limitations (and when not to use it)

- Authentication & Users: The open source version of MLflow doesn't provide any sort of authentication
- Data versioning: to ensure full reproducibility we need to version the data used to train the model. MLflow doesn't provide a built-in solution for that but there are a few ways to deal with this limitation
- Model/Data Monitoring & Alerting: this is outside of the scope of MLflow and currently there are more suitable tools for doing this

MLflow alternatives

There are some paid alternatives to MLflow:

- Neptune
- Comet
- Weights & Biases
- and many more

