Programação Linear e Grafos

Sistemas de Informação - UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 3)

Teoria de Grafos

No século 18 havia na cidade de Königsberg famosa pôr ter um conjunto de sete pontes que cruzavam o rio Pregel, (Euler, 1736). Elas conectavam duas ilhas entre si e as ilhas com as margens. Pôr muito tempo os habitantes daquela cidade perguntava-se se era possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes pôr qualquer uma delas?

Define-se um **caminho de Euler** como sendo um caminho fechado passando uma **única vez por cada aresta** do grafo (percorrendo todas as arestas do grafo).

Todos os grafos que admitem um caminho de Euler são chamados de grafos de Euler.

Um grafo **G** é **conexo**, se existe pelo menos um caminho entre qualquer par de vértices em **G**.

Teorema: Um grafo conexo **G**, é um grafo de Euler se e somente se todos os seus vértices são de grau par.

Teorema: Um grafo orientado **G** contém um ciclo euleriano, se e somente se os graus de entrada e saída de cada vértice forem iguais.

 $V_1; V_2; V_6; V_7; V_2; V_3; V_4; V_5; V_1; V_6; V_8; V_1;$

Problema do carteiro chinês.

Encontrar o caminho de menor custo, partindo do vértice inicial, passando uma única vez pôr cada aresta, e passando pôr todas as arestas, voltando ao vértice inicial.

Há dois tipos de solução para esse problema:

Solução 1 – Quando o grafo é de Euler. Nesse caso, o caminho pode ser achado (e também seu respectivo custo).

Para isso, utiliza-se o algoritmo de Fleury.

Solução 2 — Quando o grafo não é de Euler. Nesse caso, algumas arestas terão que ser repetidas e utiliza-se um algoritmo diferente.

Solução 1: Algoritmo de Fleury

O algoritmo parte do pressuposto de que **G** é um grafo de **Euler**. Para executar o algoritmo, deve-se iniciar em qualquer vértice **v** e

atravessar as arestas de maneira arbitrária, seguindo os passos:

Passo 1 – Apague a aresta que foi visitada e, se algum vértice ficar isolada, apague-o também.

Passo 2 – Em cada estágio, use uma ponte somente se não houver alternativa. Isto é, nunca atravesse uma aresta se essa aresta divide o grafo em duas componentes (excluindo o vértice isolado).

Observação: uma ponte (istmo) é uma aresta do grafo G cuja remoção divide o grafo G em duas componentes conexas.

Solução 2

Quando o grafo G não é um grafo de Euler.

Passo 1 – Obter a matriz de distancia final (Floyd);

Passo 2 – Com a matriz de distancia final para os vértices de grau impar, construir todas as combinações de dois vértices e pegar a de menor valor

Passo 3: incluir as arestas correspondentes no grafo que agora será uma grafo de Euler;

Passo 4: aplicar o algoritmo de Fleury;

Exercício 2 da folha 4.

	V0	V1	V2	V3	V4	V5
V0	0	1		1		2
V1	1	0	4		5	
V2		4	0		3	1
V3	1			0		3
V4		5	3		0	1
V5	2		1	3	1	0

V0-V1 e V2-V4: 1+2

V0-V2 e V1-V4: 3+4

V0-V4 e V1-V2: 3+4

	V0	V1	V2	V3	V4	V5
V0	0	1	3	1	3	2
V1	1	0	4	2	4	3
V2	3	4	0	4	2	1
V3	1	2	4	0	4	3
V4	3	4	2	4	0	1
V5	2	3	1	3	1	0

						J
	V0	V1	V2	V3	V4	V5
V0		V1	V5	V3	V5	V5
V1	Vo		V2	Vo	Vo	Vo
V2	V5	V1		V5	V5	V5
V3	Vo	Vo	V5		V5	V5
V4	V5	V5	V5	V5		V5
V5	Vo	Vo	V2	V3	V4	

Ciclos e Caminhos Hamiltonianos.

Um ciclo hamiltoniano em um grafo conexo G é definido como um caminho simples fechado (os vértices são diferentes), isto é, passa-se em cada vértice de G exatamente uma vez, exceto o vértice inicial que também é final.

Portanto um **ciclo hamiltoniano** em um grafo de **n** vértices consiste de exatamente **n** arestas.

O **caminho hamiltoniano**, é um caminho simples, de comprimento **n-1**, para **n** vértices.

Teorema: uma condição suficiente (não necessária), para que um grafo simples **G** possua um **ciclo hamiltoniano**, é que o grau de cada vértice em **G** seja pelo menos igual a **n/2**, onde **n** é o número de vértices de **G**.

Problema do Caixeiro Viajante: determinar o menor caminho passando pôr todos os vértices e retornando ao vértice de origem. Teoricamente o problema pode ser resolvido da seguinte maneira:

- 1. Enumere todos os ciclos hamiltonianos
- 2. Escolha o de menor custo.

Se n = 10 então tenho 181.440 ciclos = 3024 minutos = 50,4 hs.

n = 15 então tenho 1382 anos

Solução: Método Algébrico: este método, envolve a geração de todos os caminhos simples pôr multiplicação sucessiva de matriz.

- Passo 1. Construir a matriz de adjacência A do grafo.
- Passo 2. Construir a matriz **B** (n x n) da seguinte forma:

 $\mathbf{b_{ii}} = \mathbf{v_{i}}$, se existe a aresta $(\mathbf{v_{i}}, \mathbf{v_{i}})$; 0 em caso contrário.

Passo 3. Faça $P_1 \leftarrow A$;

Passo 4. Faça $P_{i+1} \leftarrow B * P_i$ com i = 1 ... n-1 onde

 $P_{i+1}(k,k) = 0$, para todo k

 $P_{i+1}(s,t) = \sum (b(s,k) * P_i(k,t))$, com k variando até n-1.

Observe que na matriz P_{i+1} obtém-se todos os caminhos hamiltonianos de cardinalidade i+1, entre os vértices s e t.

	V ₀	V ₁	V ₂	V ₃	V ₄			V ₀	V ₁	V ₂	V ₃	V ₄
V_0	0	1	1	0	0				VoV1	VoV2		·
V_1	1	0	1	1	0			V1Vo		V1V2	V1V3	
V ₂	1	0	0	0	1			V2Vo				V2V4
V ₃	1	0	1	0	1			V3Vo		V3V2		V3V4
V ₄	1	0	0	1	0			V4Vo			V4V3	
V ₀			VoV1	Vo'	V2					VoV1V2	VoV1V3	VoV2V4
V ₁	V1\	/o		V1'	V2	V1V3		V1V2Vo V1V3Vo		V1V3V2		V1V3V4
V ₂	V2\	/o					V2V4	V2V4Vo	V2VoV1		V2V4V3	
V ₃	V3\	/o		V3'	V2		V3V4	V3V2Vo V3V4Vo	V3VoV1	V3VoV2		V3V2V4
V ₄	V4\	/o				V4V3		V4V3Vo		V4VoV2 V4V3V2		
Vo			VoV1	Vo'	V2					VoV1V3V2	VoV2V4V3	VoV1V3V4
V ₁	V1\	/o		V1'	V2	V1V3		V1V2V4Vo V1V3V2Vo V1V3V4Vo		V1V3VoV2	V1V2V4V3	V1VoV2V4 V1V3V2V4
V ₂	V2\	/o					V2V4	V2V4V3Vo			V2VoV1V3	
V ₃	V3\	/o		V3'	V2		V3V4	V3V2V4Vo	V3V2VoV1	V3VoV1V2 V3V4VoV2		V3VoV2V4
V ₄	V4\	/o				V4V3		V4V3V2Vo		V4VoV1V2 V4V3VoV2	V4VoV1V3	
Vo			VoV1	Vo	V2						VoV1V2V4V3	VoV1V3V2V4
V ₁	V1'	Vo		V1	.V2	V1V3		V1V2V4V3Vo V1V3V2V4Vo		V1V3V4VoV2	V1VoV2V4V3	V1V3VoV2V4
V ₂	V2	Vo					V2V4				V2V4VoV1V3	
V ₃	V3	Vo		V3	V2		V3V4			V3V4VoV1V2		
V ₄	V4	Vo				V4V3			V4V3V2VoV1	V4VoV1V3V2 V4V3VoV1V2		