$$(nd) \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$
 $(ndc) \rightarrow 0 \mid (nd)$
 $(ndcc) \rightarrow \varepsilon \mid (ndc)(ndcc)$
 $(natural) \rightarrow (nd)(ndcc)$
 $(total minúscula \rightarrow (natural))$
 $(total min$

Postulado 1

Es verdad:

- = 2 = 1 + 1
- 3 = 2 + 1
- 4 = 3 + 1 5 = 4 + 1

 - 6 = 5 + 1
 - 7 = 6 + 1
 - 8 = 7 + 1
- 9 = 8 + 1

Si n = m + 1 es verdad, k = m + 1 es verdad si y sólo si n y k son el mismo (natural).

Postulado 1" $n(ndc_1) = m(ndc_2) + 1$ es verdad si y sólo si una de las siguientes afirmaciones es verdad:

- n y m son el mismo $\langle natural \rangle$, $\langle ndc_1 \rangle$ es 1 y $\langle ndc_2 \rangle$ es 0. • $n \ y \ m \ \text{son el mismo} \ \langle natural \rangle$, $\langle ndc_1 \rangle \ \text{no es } 0$, $\langle ndc_2 \rangle \ \text{no es } 0$ y $\langle ndc_1 \rangle = \langle ndc_2 \rangle + 1$ es verdad.
- $\langle ndc_1 \rangle$ es 0, $\langle ndc_2 \rangle$ es 9, y n = m + 1 es verdad.
- No terminales con un $\langle natural \rangle$ como subíndice (p.ej. $\langle ndc_1 \rangle$, m_1) representan una cadena concreta, que puede ser cualquiera, que se pueda derivar de ese no terminal.

$$X^n \rightarrow X^m$$
 donde $n = m + 1$ es verdad.

*1"

Asignaciones

 $*^3$

Postulado 1'

$$Z_{\Omega} = 0; \rightarrow 0^{\Omega}$$

$$Z_{\Omega} = 1; \rightarrow 0^{\Omega}1^{\Omega}$$

$$Z_{\Omega} = n; \Rightarrow Z_{\Omega} = m;$$
 donde $n = m + 1$ es verdad.

Ejemplo

5

6

7

8

9

$$Z_{29} = 3;$$
 \Rightarrow
 $\begin{bmatrix} 3 & \cdots & \\ 6 & Z_{29} = 2; \\ 7 & 1^{29} & \\ 8 & \\ 9 & \\ \end{bmatrix}$

5 ...
6
$$Z_{29} = 1;$$
7 $\mathbf{1}^{29}$
8 $\mathbf{1}^{29}$

←:⟨natural⟩

La primera señal que pone es ←:1.

Señales que pone el expansor de instrucciones, apuntando a una instrucción.

Tres puntos (...) representa cualquier instrucción o cualquier expansión de instrucciones.

- Si pone una señal ←:m, la siguiente señal será ←:n, donde n = m + 1 es verdad.
- Las asociación de señales a instrucciones es: si la señal apunta a una (preinstrucción) queda ligada a esa (preinstrucción).
 - si la señal apunta a una macroinstrucción, y texto1 es el resultado de expandir esta
 - macroinstrucción, después de la expansión apuntará:
 - a la siguiente macroinstrucción ο ⟨preinstrucción⟩ si texto₁ es ε.
 - a la primera macroinstrucción o (preinstrucción) en $texto_1$ si $texto_1$ no es ϵ .

JUMP →

INIT →

1

$$Z_{\Omega} = Z_{\Omega}; \Rightarrow \varepsilon$$

JUMP

1

NADA →

$$\begin{array}{c}
\mathsf{JUMP} \\
1 \\
=^{\Omega} \\
*:i
\end{array}$$

 $Z_{\Omega} = Z_{\Phi}; \rightarrow Z_{1} = Z_{\Phi};$

 $\mathbf{0}^{\Omega}$

JUMP

 $\mathbf{1}^{\Omega}$

=^Ω
*:i

 $Z_1 = Z_{\Omega}; \rightarrow Z_1 = 0;$

 $\leftarrow: \mathbf{i}$ con Ω distinto de 1.

con Ω distinto de Φ .

Ejemplo

11

```
1 1
2 Z_1 = Z_{17};
3 0^{13}
4 JUMP
5 1^{13}
6 =^{13}
7 *^{11}
```

9

10

11

1 1
2
$$Z_1 = 0$$
;
3 JUMP
4 1 $\leftarrow:2$
5 $=^{17}$
6 $*^{:2}$
7 0^{13}
8 JUMP
9 1^{13}
10 $=^{13}$
11 $*^{:1}$

Cuando sólo quedan (*preinstrucciones*), el expansor:

Expansiones finales

- Por cada (id) que aparezca en alguna (preinstrucción) $x^{\cdot (id)}$:
 - añade al final una nueva instrucción '1' y una señal ←: i apuntando a esta instrucción.
 - sustituye todas las apariciones de .(id) por :i.
 - Asocia un (natural) a cada (preinstrucción) en el orden en que aparecen:

donde n es el $\langle natural \rangle$ asociado a la $\langle preinstrucción \rangle$ a la que apunta $\leftarrow :i$.

- a la primera (preinstrucción) le asocia 1.
- si a una $\langle preinstrucción \rangle$ le asocia m, a la siguiente le asociará n, donde n=m+1 es verdad.
- Por cada señal ←: i sustituye en ⟨macroinstrucciones⟩ todas las apariciones de : i por n,
- Expande las (preinstrucción) de la forma x^n .