Determinanten

Definition. Die **Determinante** $D = \det(A)$ einer **quadratischen** n-reihigen Matrix $A = (a_{ik})_{i,k=1,...,n}$ ist gegeben durch folgende **rekursive Berechnungsvorschrift**:

(1) Falls n = 1, also $A = (a_{11})$, dann ist

$$\det(A) = \det(a_{11}) = a_{11}$$

.

(2) Falls n > 1, dann gilt

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

$$= \sum_{k=1}^{n} (-1)^{1+k} a_{1k} D_{1k}$$

$$= a_{11}D_{11} - a_{12}D_{12} + \dots + (-1)^{1+n}a_{1n}D_{1n},$$

wobei $D_{ij} = \det(A^{ij})$ die Unterdeterminante ist, die aus D durch Streichen den i-ten Zeile und der j-ten Spalte entsteht.

(Entwicklung nach der 1. Zeile.)

Bemerkungen:

- (1) Determinanten sind nur für quadratische Matrizen erklärt!
- (2) Durch diese Entwicklungsvorschrift wird die Berechnung einer *n*reihigen Determinante auf die Berechnung von *n*(*n*−1)-reihigen Determinanten zurückgeführt (**rekursive Vor- schrift**).
- (3) Für 2- und 3-reihige Determinanten kann man daraus **vereinfachte Berechnungsvorschriften** ableiten. Höhere Determinanten n > 3 werden zunächst mit **Determinantengesetzen** vereinfacht und dann nach einer Zeile (oder Spalte) entwickelt.

Unterdeterminante.

Die aus einer n-reihigen Determinante $D = \det(A)$ durch **Streichung der** i-**ten Zeile und** k-**ten Spalte** entstehende (n-1)reihige Determinante heißt **Unterdeterminante** $D_{ik} = \det(A^{ik})$, i, k = 1, ..., n.

$$D_{ik} = \begin{vmatrix} a_{11} & \dots & a_{1,k-1} & a_{1,k+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,k-1} & a_{i-1,k+1} & \dots & a_{i-1,n} \\ \hline a_{i+1,1} & \dots & a_{i+1,k-1} & a_{i+1,k+1} & \dots & a_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{n,k-1} & a_{n,k+1} & \dots & a_{nn} \end{vmatrix}$$

2- und 3-reihge Determinanten

Satz:

(1) Die Determinante $D = \det A$ einer 2×2 -Matrix $A = (a_{ik})$ lässt sich (außer durch Entwicklung nach einer Reihe oder Spalte) vereinfacht berechnen durch

$$D := \det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

(2) Die Determinante $D = \det A$ einer 3×3 -Matrix $A = (a_{ik})$ lässt sich (außer durch Entwicklung nach einer Reihe oder Spalte) vereinfacht berechnen durch

$$D := \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33})$$

(Regel von Sarrus).

Diese Regeln gelten nur für 2- bzw. 3-reihige Determinanten!

Laplacescher Entwicklungssatz:

Die rekursive Berechnung von D ist für beliebige Determinanten bzgl. **jeder** Zeile und **jeder** Spalte möglich. Die entsprechenden Rekursionsformeln (mit den durch Streichen der i-ten Zeilen und k-ten Spalten aus D entstandenen $(n-1)\times (n-1)$ - Unterdeterminanten) lauten:

Entwicklung nach der k-ten Spalte:

$$D = \begin{vmatrix} a_{11} & \dots & a_{1k} & \dots & a_{1n} \\ \vdots & & \vdots & & \\ a_{n1} & \dots & a_{nk} & \dots & a_{nn} \end{vmatrix} = \sum_{l=1}^{n} (-1)^{l+k} a_{lk} D_{lk} \qquad (k = 1, \dots, n)$$

Entwicklung nach der i-ten Zeile:

$$D = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \sum_{l=1}^{n} (-1)^{i+l} a_{il} D_{il} \quad (i = 1, \dots, n)$$

Die Faktoren $(-1)^{(1+l)}, \ldots, (-1)^{(n+l)}$ bzw. $(-1)^{(l+1)}, \ldots, (-1)^{(l+n)}$ ergeben dabei die "Schachbrettregel" für die Vorzeichenwahl

+	_	+	_	+	
_	+	_	+	_	
+	_	+	_	+	
_	+	_	+	_	

Determinantengesetze

• Wenn die zugrundeliegende Matrix transponiert wird, bleibt die Determinante unverändert.

$$\det A = \det A^T \quad \text{bzw.} \quad \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{nn} \end{vmatrix}$$

• Multiplikationssatz für Determinanten

$$\det(AB) = \det(BA) = \det A \cdot \det B$$

• Wird die *n*-reihige Matrix A mit einem Skalar λ multipliziert, so multipliziert sich der Wert der Determinante mit λ^n . D.h.

$$\det(\lambda A) = \lambda^n \det A, \quad \lambda \in \mathbb{R}$$

(! dann werden <u>alle</u> n Zeilen der Determinante mit λ multipliziert).

• Die Determinante einer n-reihigen Dreiecksmatrix $A = (a_{ik})$ ist gleich dem Produkt der Hauptdiagonalelemente, d.h.

 $\det A = a_{11}a_{22}...a_{nn}$ falls A Dreiecksmatrix.

- Beim Vertauschen zweier Zeilen (oder Spalten) ändert die Determinante ihr Vorzeichen.
- Multipliziert man <u>eine</u> Zeile oder <u>eine</u> Spalte von A mit einer reellen Zahl λ , so multipliziert sich der Wert der Determinante ebenfalls mit λ .

Beispielsweise

$$\begin{vmatrix} \lambda a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Umgekehrt gilt also:

- Eine Determinante wird mit einem Skalar λ multipliziert, indem man die Elemente <u>einer</u> beliebigen Zeile (oder einer beliebigen Spalte) mit λ multipliziert.
- Besitzen die Elemente einer beliebigen Zeile (oder Spalte) einen gemeinsamen Faktor λ , so darf dieser vor die Determinante gezogen werden.

• Addiert man zu einer Zeile (oder Spalte) einer Determinante das Vielfache einer weiteren Zeile (oder Spalte), so ändert sich der Wert der Determinante nicht.

Beispielsweise

$$\begin{vmatrix} a_{11} & a_{12} + \lambda a_{11} & a_{13} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} + \lambda a_{n1} & a_{n3} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

- Der Wert einer Determinante ist Null, falls alle Elemente einer Zeile (oder Spalte) Null sind.
- Der Wert einer Determinante ist Null, falls zwei Zeilen (oder Spalten) zueinander proportional sind.

Beispielsweise, für $\lambda \in \mathbb{R}$,

$$\begin{vmatrix} a_{11} & \lambda a_{11} & a_{13} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \lambda a_{n1} & a_{n3} & \dots & a_{nn} \end{vmatrix} = 0$$

- Der Wert einer Determinante ist Null, wenn eine Zeile (oder Spalte) als Linearkombination der übrigen Zeilen (oder Spalten) darstellbar ist.
- Genau dann ist der Wert einer Determinante von Null verschieden, wenn alle Zeilen (oder Spalten) linear unabhängig sind.