### Problem 1

The state transition diagram of a Deterministic Finite Automaton (DFA) is given below.



Figure 1: Automata for Problem 1

- (a) Heuristically derive the regular expression for the language recognized by this DFA.
- (b) Produce a Type-3 grammar for the language recognized by this DFA.

## Problem 2

For the given regular expression,



- (a) Heuristically find its automata
- (b) Construct the DFA for this NFA.

#### Problem 3

Consider the grammar rules in BNF (Backus-Naur form) notation given below:

$$< S > ::= \lambda \mid a \mid a < S > \mid a < A > \mid b < B > < A > ::= b < B > ::= b$$

- (a) Heuristically, draw the NFA diagram of the automata with this grammar.
- (b) Heuristically, find it's regular expression.
- (c) Construct the DFA for this NFA.



$$\begin{array}{c} 9_{0} \rightarrow 1q_{1} \\ q_{1} \rightarrow 0q_{2} \\ q_{2} \rightarrow 1q_{2} \mid 0q_{3} \\ q_{3} \rightarrow 0q_{3} \mid 1q_{4} \mid 1 \\ q_{4} \rightarrow 1q_{2} \mid 0q_{3} \mid 2 \end{array}$$

a)

# Problem 4

Let  $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ does not contain } 011 \text{ as a substring}\}$ 

- (a) Draw the deterministic finite automaton (DFA) for L as a state transition diagram.
- (b) Give a Type-3 grammar for this language.
- (c) Write the regular expression for this language.

## Problem 5

Minimize the following automata using table-filling algorithm. Show equivalent states and re-draw the minimized automata.



Figure 2: Automata for Problem 5

## Problem 6

For the given automata,

- (a) Heuristically derive the regular expression for the language recognized by the NFA whose state transition diagram is given aside.
- (b) Build the equivalent DFA for this NFA.

## Problem 4

Let  $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ does not contain } 011 \text{ as a substring}\}$ 

- (a) Draw the deterministic finite automaton (DFA) for L as a state transition diagram.
- (b) Give a Type-3 grammar for this language.
- (c) Write the regular expression for this language.

c) 
$$S_1 = S_1 1 \sqrt{\lambda}$$
  $S_1 = 1^*$   
 $S_2 = S_1 0 \sqrt{S_2} 0 \sqrt{S_3} 0$   $S_2 = 1^* 0 + S_2 0 + S_2 10$   
 $S_3 = S_2 1$   $S_2 = S_2 (10+0) + 1^* 0$   
 $S_2 = 1^* 0 (10+0)^*$   
REGEX =  $1^* 0 (10+0)^*$ 



| b) S <sub>1</sub> → 15 <sub>7</sub> | 052 11   | 0 ) λ |
|-------------------------------------|----------|-------|
| S2 -> OS2                           | 153 10 1 | 1 12  |
| $s_3 \rightarrow 0 s_L$             |          | '     |

# Problem 5

Minimize the following automata using table-filling algorithm. Show equivalent states and re-draw the minimized automata.



| 1  | 01    | 1  |
|----|-------|----|
| 90 | $q_4$ | 91 |
| 9, | 95    | 92 |
| 92 | qb    | 93 |
| 93 | 97    | 9, |
| 94 | 90    | 95 |
| 95 | 99    | 96 |
| 96 | 92    | 97 |
| 97 | 93    | 93 |

| j                | 90 | 9, | 92 | q,       | q <sub>4</sub> | 95 | 96 | 97                 |
|------------------|----|----|----|----------|----------------|----|----|--------------------|
| 90               | =  | X  | X  | (94 Mg)  | Х              | X  | X  | 1                  |
| 9,               |    | 2  | X  | $\times$ | X              | X  | X  | X                  |
| $\overline{q_2}$ |    |    | -  | X        | Χ              | χ  | X  | X                  |
| 93               |    |    |    | 17       | X              | X  | X  | X                  |
| 94               |    |    |    |          | (1)            | X  | X  | (q <sub>0</sub> ,4 |
| 95               |    |    |    |          |                | =  | 1× | 1X                 |
| 96               |    |    |    |          |                | _  | ╞  | X                  |
| 97               |    |    |    |          |                |    | L  | Ξ                  |

$$q_0 N q_3 \rightarrow (q_4, q_7)$$

$$q_4 N q_7 \rightarrow (q_0, q_3)$$

|    | 0  | 1          |              |
|----|----|------------|--------------|
| 50 | 53 | $\delta_1$ | $(q_0, q_3)$ |
| Sı | Sy | Sı         | ۹,           |
| 52 | Sz | 50         | 92           |
| 53 | So | Sy         | (94,97)      |
| Sy | Sı | Ss         | q z          |
| 55 | 52 | SU         | 96           |

#### Problem 6

For the given automata,

- (a) Heuristically derive the regular expression for the language recognized by the NFA whose state transition diagram is given aside.
- (b) Build the equivalent DFA for this NFA.
- (c) Produce the Type-3 grammar recognized by the DFA you found in (b).





 $5_{31}b \rightarrow R(q_3) = \{q_{01}a_3\} \{5_5\}$  $5_{41}a \rightarrow R(q_1) \cup R(q_4) = \{q_{11}q_{21}q_4\} S_7$ 





## Problem 7: The Grammar of Laughter

Long before emojis and keysmashing (random atmak) people would express their amusement by typing sequences of characters resembling "haha". The rules for producing haha's are:

- There should be at least 2 "ha"s.
- The first "ha" consists of exactly one h followed by one a.
- Any "ha" after the first can have a variable number of h's and a's depending on the intensity of the associated laughter.
- Expressions beginning with a and ending with h are not acceptable.

Some examples of acceptable haha's are: haha, hahaaaa, hahhhaaaaaa, hahhaaahaa...

From the first homework, regular expression of the problem was

$$hahh^*a(a+hh^*a)^*$$

Grammar of the problem was

- (a) Heuristically, draw the NFA diagram of the automata with this grammar.
- (b) Construct the DFA for this NFA.

#### Problem 8

Using a systematic approach, check whether each of the following regular expression couples are disjoint, and if they are not, find the shortest non-empty  $(\neq \lambda)$  string that matches both of them.

(a) 
$$L_1 = a(ab)^*b$$
 and  $L_2 = a(a \vee b)^*ab$ 

(b) 
$$L_1 = a(ab)^*a$$
 and  $L_2 = a(a \lor b)^*ba$  and

d) 
$$L_1: \rightarrow \stackrel{q}{\searrow} \stackrel{q}{\longleftrightarrow} \stackrel{(s_2)}{\longleftrightarrow} \stackrel{q}{\longleftrightarrow} \stackrel{(s_3)}{\longleftrightarrow} \stackrel{h}{\longleftrightarrow} \stackrel{q}{\longleftrightarrow} \stackrel{q}{\longleftrightarrow} \stackrel{q}{\longleftrightarrow} \stackrel{q}{\longleftrightarrow} \stackrel{h}{\longleftrightarrow} \stackrel{h}{\longleftrightarrow} \stackrel{h}{\longleftrightarrow} \stackrel{q}{\longleftrightarrow} \stackrel{$$