© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°09

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Solution 1

1.

$$\begin{split} \mathbb{U}_4 &= \{1, i, -1, -i\} \\ \mathbb{U}_6 &= \left\{1, e^{\frac{i\pi}{3}}, e^{\frac{2i\pi}{3}}, -1, e^{\frac{4i\pi}{3}}, e^{\frac{5i\pi}{3}}\right\} \\ \mathbb{U}_4 \cap \mathbb{U}_6 &= \{-1, 1\} = \mathbb{U}_2 \\ G &= \left\{1, e^{\frac{i\pi}{6}}, e^{\frac{i\pi}{3}}, i, e^{\frac{2i\pi}{3}}, e^{\frac{5i\pi}{6}}, -1, e^{\frac{7i\pi}{6}}, e^{\frac{4i\pi}{3}}, -i, e^{\frac{5i\pi}{3}}, e^{\frac{11i\pi}{6}}\right\} = \mathbb{U}_{12} \end{split}$$

Ainsi card $\mathbb{U}_4 = 4$, card $\mathbb{U}_6 = 6$, card $\mathbb{U}_4 \cap \mathbb{U}_6 = 2$ et card G = 12.

- **2.** Soit $z \in \mathbb{U}_{m \wedge n}$. On a donc $z^{m \wedge n} = 1$. Puisque m et n sont des multiples de $m \wedge n$, on a également $z^m = 1$ et $z^n = 1$. Donc $z \in \mathbb{U}_m \cap \mathbb{U}_n$. Ainsi $\mathbb{U}_{m \wedge n} \subset \mathbb{U}_m \cap \mathbb{U}_n$.
- 3. Soit $z \in \mathbb{U}_m \cap \mathbb{U}_n$. On a donc $z^m = 1$ et $z^m = 1$. D'après le théorème de Bezout, il existe $(u, v) \in \mathbb{Z}^2$ tel que $mu + nv = m \wedge n$. Ainsi $z^{m \wedge n} = (z^m)^u (z^n)^v = 1$ et $z \in \mathbb{U}_{m \wedge n}$. Ainsi $\mathbb{U}_m \cap \mathbb{U}_n \subset \mathbb{U}_{m \wedge n}$.
- **4.** Soit $z \in G$. Il existe donc $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$ tels que $z = z_1 z_2$. Dans ce cas, $z^{m \vee n} = z_1^{m \vee n} z_2^{m \vee n}$. Mais comme $m \vee n$ est un multiple de m, $z_1^{m \vee n} = 1$. De même, $m \vee n$ étant un multiple de n, $z_2^{m \vee n} = 1$. Ainsi $z^{m \vee n} = 1$ et $z \in \mathbb{U}_{m \vee n}$. Ainsi $G \subset \mathbb{U}_{m \vee n}$.
- 5. Soit $z \in \mathbb{U}_{m \vee n}$. Par le théorème de Bezout, il existe $(u,v) \in \mathbb{Z}^2$ tel que $um + vn = m \wedge n$. Posons $m' = \frac{m}{m \wedge n}$ et $n' = \frac{n}{m \wedge n}$. Remarquons que m' et n' sont entiers. On peut alors poser $z_1 = z^{vn'}$ et $z_2 = z^{um'}$. On a bien $z = z_1 z_2$ puisque um' + vn' = 1. De plus, $\frac{mn}{m \wedge n} = m \vee n$ donc $z_1^m = z^{v(m \vee n)} = 1$ et $z_2^n = z^{u(p \vee n)} = 1$. Ainsi $z = z_1 z_2$ avec $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$. Donc $z \in G$. Ainsi $\mathbb{U}_{m \vee n} \subset G$.

Solution 2

- **1. a.** Puisque a > 1 et n > 0, $a^n + 1 > 2$. Puisque $a^n + 1$ est premier et distinct de 2, il est impair. Ainsi a^n est pair et donc a est pair.
 - **b.** On a $a^k \equiv -1[a^k + 1]$, puis $(a^k)^m \equiv -1[a^k + 1]$. Puisque m est impair, $a^{km} \equiv -1[a^k + 1]$ i.e. $a^n + 1 \equiv 0[a^k + 1]$. Ainsi $a^k + 1$ divise $a^n + 1$. Puisque $a^n + 1$ est premier, on en déduit que $a^k + 1 = 1$, ce qui est exclu car $a \neq 0$, ou $a^k + 1 = a^n + 1$. Puisque a > 1, on obtient k = n et donc m = 1.
 - **c.** On déduit de la question précédente que *n* n'admet pas de diviseur premier impair. Le seul diviseur premier de *n* est donc 2. Le théorème de décomposition en facteurs premiers assure alors que *n* est une puissance de 2.

1

2. a. Soit $n \in \mathbb{N}$.

$$F_{n+1} - 1 = 2^{2^{n+1}} = (2^{2^n})^2 = (F_n - 1)^2$$

© Laurent Garcin MP Dumont d'Urville

b. On raisonne par récurrence. On a bien $F_1 - 2 = 3 = F_0$. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $F_{n+1} = (F_n - 1)^2 + 1$. Alors, d'après la question précédente

$$F_{n+1} - 2 = (F_n - 1)^2 - 1 = F_n(F_n - 2) = F_n \prod_{k=0}^{n-1} F_k = \prod_{k=0}^n F_k$$

Par récurrence, $F_n - 2 = \prod_{k=0}^{n-1} F_k$ pour tout $n \in \mathbb{N}^*$.

- c. On a $n \in \mathbb{N}^*$ et on peut appliquer la question précédente. Ainsi $F_n 2 = \prod_{k=0}^{n-1} F_k$ ou encore $F_n \prod_{k=0}^{n-1} F_k = 2$. D'une part, $F_m \wedge F_n$ divise F_n et, d'autre part, $F_m \wedge F_n$ divise F_m donc $\prod_{k=0}^{n-1} F_k$ puisque m < n. Ainsi $F_m \wedge F_n$ divise 2. Par ailleurs, F_n est impair donc $F_m \wedge F_n = 1$.
- **3.** a. Puisque p divise F_n , $2^{2^n} \equiv -1[p]$. En élevant au carré, $2^{2^{n+1}} \equiv 1[p]$ donc $2^{n+1} \in A$.
 - **b.** A est une partie non vide (d'après la question précédente) de \mathbb{N}^* : elle admet donc un minimum.
 - c. Notons q et r le quotient et le reste de la division euclidienne de 2^{n+1} par m. On a donc $2^{n+1} = qm + r$ avec $0 \le r < m$. De plus, $q \in \mathbb{N}$ puisque 2^{n+1} et m sont positifs. Ainsi $2^{2^{n+1}} = (2^m)^q \cdot 2^r$. Or $m \in A$ donc $2^m \equiv 1[p]$ puis $(2^m)^q \equiv 1[p]$. Finalement $2^{2^{n+1}} \equiv 2^r[p]$. Or $2^{n+1} \in A$ donc $2^r \equiv 1[p]$. Si on avait r > 0, on aurait $r \in A$ et r < m, ce qui est impossible car $m = \min A$. Ainsi r = 0 de sorte que m divise 2^{n+1} .
 - **d.** Il s'ensuit que m est une puissance de 2. Il existe donc un entier naturel $q \le n+1$ tel que $m=2^q$. Supposons $q \le n$. Puisque $2^{2^q} \equiv 1[p]$, on obtient en élevant à la puissance 2^{n-q} , $2^{2^n} \equiv 1[p]$. Or p divise F_n donc $2^{2^n} \equiv -1[p]$. Ainsi $2 \equiv 0[p]$ i.e. p divise 2. Puisque p est premier, on aurait p=2, ce qui est impossible car F_n est impair.
 - **e.** Puisque F_n est impair, $p \neq 2$ et donc p est impair. En particulier, 2 est premier avec p. D'après le petit théorème de Fermat, $2^{p-1} \equiv 1[p]$ et $p-1 \in A$.
 - **f.** En écrivant à nouveau la division euclidienne de p-1 par m, la minimalité de m montre que m divise p-1 i.e. $p \equiv 1[m]$. Puisque $m = 2^{n+1}$, $p \equiv 1[2^{n+1}]$.