Lexical Analysis Programming Languages

Sujit Kumar Chakrabarti

IIITB

Finite State Automata (FSA)

- 1 Non-deterministic FSA
- 2 Deterministic FSA

Example 1

Language: $(a|b) \star abb$

Example 1

Example 1

Language:

Example 1

Language: $(a|b) \star abb$

Example 2

Language: $aa \star |bb\star|$

Example 2

Language: $aa \star |bb\star|$

- \blacksquare Finite set of states -(S)
- \blacksquare Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow 2^S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$

- \blacksquare Finite set of states (S)
- \blacksquare Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow 2^S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$
- Acceptance of a string: When there exists a path corresponding to the input leading to an accepting state.

- \blacksquare Finite set of states (S)
- Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow 2^S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$
- Acceptance of a string: When there exists a path corresponding to the input leading to an accepting state.

Specific Properties

- The same state can transition to more than one states on the same symbol
- ϵ -transitions

- Finite set of states -(S)
- Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$
- Acceptance of a string: When there exists a path corresponding to the input leading to an accepting state.

- Finite set of states -(S)
- Alphabet (\sum)
- Transition function $(T: S \times \sum \to S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$
- Acceptance of a string: When there exists a path corresponding to the input leading to an accepting state.

Specific Properties

- Only one next-state on the same symbol
- No ϵ -transitions

Example 1

Example 1

Language:

Example 1

Language: $(a|b) \star abb$

NFA and DFA

- NFAs: Often more readable
- NFAs: Usually have fewer states

NFA and DFA

- NFAs: Often more readable
- NFAs: Usually have fewer states
- DFAs: Less readable
- DFAs: Larger number of states
- DFAs: Faster to simulate

NFA and DFA

- NFAs: Often more readable
- NFAs: Usually have fewer states
- DFAs: Less readable
- DFAs: Larger number of states
- DFAs: Faster to simulate
- Equally expressive ≡ Regular expressions (Regular languages)

Lexical Analysis Process

Lexical Analysis Process

Next

Simulation of FSAs