CUDA Memory Model 1

Prof. Seokin Hong

Agenda

- Matrix Multiplication
 - Basic Version
 - Tiled Version
- Review: Memory Hierarchy
- Importance of Memory Access Efficiency
- GPU Memory Hierarchy
- Improving Tiled Matrix Multiplication
- Impact of Memory on Parallelism

Matrix Multiplication is Fundamental in HPC

- Many algorithmic problems can be solved by means of matrix computation
 - Scientific computing
 - Pattern Recognition
 - Graph Analysis
- LINPACK relies heavily on the matrix multiplication
 - LINPACK is used for measuring the performance of Supercomputer

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	513,854.7	28,335
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371

Basic Matrix Multiplication

Matrix Multiplication

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} \\ b_{20} & b_{21} & b_{22} & b_{23} & b_{24} \\ b_{30} & b_{31} & b_{32} & b_{33} & b_{34} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

Matrix Multiplication

C_{ij} = dot product of A_i and B_j

$$\mathbf{C} = \begin{bmatrix} c_{00} & c_{01} & c_{02} & c_{03} & c_{04} \\ c_{10} & c_{11} & c_{12} & c_{13} & c_{14} \\ c_{20} & c_{21} & c_{22} & c_{23} & c_{24} \\ c_{30} & c_{31} & c_{32} & c_{33} & c_{34} \\ c_{40} & c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} \\ b_{20} & b_{21} & b_{22} & b_{23} & b_{24} \\ b_{30} & b_{31} & b_{32} & b_{33} & b_{34} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$$

$$c_{31} = \begin{bmatrix} a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \cdot \begin{bmatrix} b_{01} \\ b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

Row-major Matrix Layout in C/C++

logical layout:

physical layout: 1D array

re-interpret:

Matrix Multiplication

• C_{ij} = dot product of A_{i} and B_{j}

$$c_{31} = \begin{bmatrix} a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \cdot \begin{bmatrix} b_{01} \\ b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

```
int sum = 0;
for (int k = 0; k < WIDTH; ++k) {
          sum += a[i][k] * b[k][j];
}
c[i][j] = sum;</pre>
```

matmul-host.cu (1/2)

calculate matrix multiplication on CPU

```
//prepare data
const int WIDTH = 5;
int a[WIDTH][WIDTH];
int b[WIDTH][WIDTH];
int c[WIDTH][WIDTH] = \{ 0 \};
//make matrices A, B
for (int y = 0; y < WIDTH; ++y) {
                    for (int x = 0; x < WIDTH; ++x) {
                               a[y][x] = y + x;
                               b[y][x] = y + x;
```

```
\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \end{bmatrix}
```

matmul-host.cu (2/2)

calculate matrix multiplication on CPU

```
//calculation code
for (int y = 0; y < WIDTH; ++y) {
         for (int x = 0; x < WIDTH; ++x) {
                   int sum = 0;
                  for (int k = 0; k < WIDTH; ++k) {
                            sum += a[y][k] * b[k][x];
                   c[y][x] = sum;
```

		≻ x		
	M _{0,0}	M _{0,1}	M _{0,2}	M _{0,3}
	M _{1,0}	M _{1,1}	M _{1,2}	M _{1,3}
y	M _{2,0}	M _{2,1}	M _{2,2}	M _{2,3}
	M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}

$\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	1	2	3	4	$\lceil 0 \rceil$	1	2	3	4
1	2	3	4	5	1	2	3	4	5
2	3	4	5	6	2	3	4	5	6
3	4	5	6	7	3	4	5	6	7
4	5	6	7	8_	4	5	6	7	8

CUDA Matrix Multiplication

- C = A * B
 - Size: WIDTH x WIDTH
- Thread organization (layout)
 - One thread handles one element of C

$$\mathbf{C} = \begin{bmatrix} c_{00} & c_{01} & c_{02} & c_{03} & c_{04} \\ c_{10} & c_{11} & c_{12} & c_{13} & c_{14} \\ c_{20} & c_{21} & c_{22} & c_{23} & c_{24} \\ c_{30} & c_{31} & c_{32} & c_{33} & c_{34} \\ c_{40} & c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$$

CUDA Matrix Multiplication (1/2)

- C = A * B
 - Size: WIDTH x WIDTH

$\mathbf{C} = \begin{bmatrix} c_{00} & c_{01} & c_{02} & c_{03} & c_{04} \\ c_{10} & c_{11} & c_{12} & c_{13} & c_{14} \\ c_{20} & c_{21} & c_{22} & c_{23} & c_{24} \\ c_{30} & c_{31} & c_{32} & c_{33} & c_{34} \\ c_{40} & c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{34} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} \\ b_{20} & b_{21} & b_{22} & b_{23} & b_{24} \\ b_{30} & b_{31} & b_{32} & b_{33} & b_{34} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}$

Memory usage view:

- o read from A and B
- o to calculate:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

- o using:
 - a[i * WIDTH + k]
 - b[k * WIDTH + j];

CUDA Matrix Multiplication (2/2)

- One Block of threads compute matrix C
 - Each thread computes one element of C

Each thread

- loads a row of matrix A
- loads a column of matrix B
- Perform one multiply and addition for each pair of A and B elements

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

matmul-dev.cu (1/3): Kernel code

use WIDTH * WIDTH threads

```
global void mulKernel(int* c, const int* a, const int* b, const int WIDTH) {
      int x = threadIdx.x;
      int y = threadldx.y;
                                                       //[y][x] = y * WIDTH + x;
      int i = y * WIDTH + x;
      int sum = 0;
      for (int k = 0; k < WIDTH; ++k) {
               sum += a[y * WIDTH + k] * b[k * WIDTH + x];
      c[i] = sum;
```

matmul-dev.cu (2/3): Host Code

```
int main(void) {
  // host-side data
  const int WIDTH = 5;
  int a[WIDTH][WIDTH];
  int b[WIDTH][WIDTH];
  int c[WIDTH][WIDTH] = \{ 0 \};
  // make a, b matrices
  for (int y = 0; y < WIDTH; ++y) {
           for (int x = 0; x < WIDTH; ++x) {
                      a[y][x] = y * 10 + x;
                       b[y][x] = (y * 10 + x) * 100;
  // device-side data
  int *dev a = 0;
  int *dev b = 0;
  int *dev c = 0;
  //allocate device memory
  cudaMalloc((void**)&dev a, WIDTH * WIDTH * sizeof(int));
  cudaMalloc((void**)&dev b, WIDTH * WIDTH * sizeof(int));
  cudaMalloc((void**)&dev c, WIDTH * WIDTH * sizeof(int));
  // copy from host to device
  cudaMemcpy(dev a, a, WIDTH * WIDTH * sizeof(int), cudaMemcpyHostToDevice);
  cudaMemcpy(dev b, b, WIDTH * WIDTH * sizeof(int), cudaMemcpyHostToDevice);
```

matmul-dev.cu (3/3): Host Code

```
// launch a kernel on the GPU
dim3 dimBlock(WIDTH, WIDTH, 1); // x, y, z
mulKernel<<<1, dimBlock>>>(dev c, dev a, dev b, WIDTH);
CUDA CHECK( cudaPeekAtLastError() );
// copy from device to host
cudaMemcpy(c, dev_c, WIDTH * WIDTH * sizeof(int),
                cudaMemcpyDeviceToHost);
// free device memory
cudaFree(dev c);
cudaFree(dev a);
cudaFree(dev b);
// print the result
for (int y = 0; y < WIDTH; ++y) {
    for (int x = 0; x < WIDTH; ++x) {
     printf("%5d", c[y][x]);
     printf("\n");
return 0;
```

Tiled Matrix Multiplication

Thread Organization in the Simple Matrix Multiplication

- matrix → 2D layout
- small size matrix → a single block!

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

Any Problem?

- We used only one thread block...
- Each thread block can execute at most 1024 threads
 - o some old architecture can execute only 256 or 512 threads
- So, maximum matrix size is...
 - \circ 32 x 32 = 1024
 - with a single thread block...
- Many global memory accesses
 - Global memory is slow
 - o We will discuss it later!
- solution?
 - use multiple thread blocks!

Thread Organization (layout)

- matrix → 2D layout
- tiled approach : use multiple blocks

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

Simplified Thread Organization

assumption: square matrices

global size : WIDTH x WIDTH

■ tile → a block : TILE_WIDTH x TILE_WIDTH

grid : ceil(WIDTH / TILE_WIDTH) x ceil(WIDTH / TILE_WIDTH)

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

An Example of Thread Organization

- WIDTH = 8
- TILE_WIDTH = 2
- grid dimension = 4 x 4

block	block	block	block
(0,0)	(0,1)	(0,2)	(0,3)
block	block	block	block
(1,0)	(1,1)	(1,2)	(1,3)
block	block	block	block
(2,0)	(2,1)	(2,2)	(2,3)
block	block	block	block
(3,0)	(3,1)	(3,2)	(3,3)

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
P _{5,0}	P _{5,1}	P _{5,2}	P _{5,3}	P _{5,4}	P _{5,5}	P _{5,6}	P _{5,7}
P _{6,0}	P _{6,1}	P _{6,2}	P _{6,3}	P _{6,4}	P _{6,5}	P _{6,6}	P _{6,7}
P _{7,0}	P _{7,1}	P _{7,2}	P _{7,3}	P _{7,4}	P _{7,5}	P _{7,6}	P _{7,7}

An Example of Thread Organization

- WIDTH = 8
- TILE_WIDTH = 4
- grid dimension = 2 x 2

block	block
(0,0)	(0,1)
block	block
(1,0)	(1,1)

Poo	P _{0.1}	Pop	Pos	P _{0,4}	Рог	Poc	P _{0.7}
• 0,0	' 0,1	1 0,2	1 0,3	1 0,4	1 0,5	1 0,6	1 0,7
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
Pan	D	D	D	P _{4,4}	P ₄ -	Pac	D
1 4,0	F _{4,1}	1 4,2	1 4,3	' 4,4	1 4,5	1 4,6	F 4,7
				P _{5,4}			
P _{5,0}	P _{5,1}	P _{5,2}	P _{5,3}		P _{5,5}	P _{5,6}	P _{5,7}

Kernel Launch

```
const int WIDTH = 8;
const int TILE WIDTH = 4;
// Setup the execution configuration
dim3 dimGrid( ceil(WIDTH / TILE_WIDTH), ceil(WIDTH / TILE_WIDTH), 1);
dim3 dimBlock( TILE_WIDTH, TILE_WIDTH, 1 );
// Launch the device computation threads!
MatrixMulKernel <<<dimGrid, dimBlock>>> (dev_c, dev_a, dev_b, WIDTH);
```

Local Index vs Global Index

- For thread (1,2) of Block (0, 1)
 - blockldx.y = 0
 - blockldx.x = 1
- local index
 - o threadIdx.y = 1
 - \circ threadIdx.x = 0

- global index
 - y = blockldx.y * blockDim.y + threadldx.y
 t + 1 → 1
 x = blockldx.x * blockDim.x + threadldx.x
 - $1 * 2 + 0 \rightarrow 2$

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

Indices for Block (0,0)

general calculation:

```
o y = blockldx.y * blockDim.y + threadIdx.y
```

- o x = blockldx.x * blockDim.x + threadldx.x
- in the block (0,0)
 - \circ y = 0 * 2 + threadIdx.y
 - \circ x = 0 * 2 + threadIdx.x

y	=	0
V	=	1

Indices for Block (0,1)

general calculation:

```
o y = blockldx.y * blockDim.y + threadldx.y
```

- x = blockldx.x * blockDim.x + threadldx.x
- in the block (0,1)
 - \circ y = 0 * 2 + threadIdx.y
 - \circ x = 1 * 2 + threadIdx.x

y	=	0
V	=	1

Indices for Block (1,0)

general calculation:

```
    y = blockldx.y * blockDim.y + threadldx.y
    x = blockldx.x * blockDim.x + threadldx.x
```

■ in the block (1,0)

 \circ x = 0 * 2 + threadIdx.x

y	=	2
У	=	3

Indices for Block (1,1)

general calculation:

```
o y = blockldx.y * blockDim.y + threadldx.y
```

- x = blockldx.x * blockDim.x + threadldx.x
- in the block (1,1)
 - o y = 1 * 2 + threadIdx.y
 - \circ x = 1 * 2 + threadIdx.x

B _{0,0}	$B_{0,1}$	B _{0,2}	B_0	3
B _{1,0}	B _{1,1}	B _{1,2}	B_1	3
B _{2,0}	B _{2,1}	B _{2,2}	B ₂	3
B _{3,0}	B _{3,1}	B _{3,2}	B ₃	3

			-
/	=	2	1
		_	

Matrix Multiplication Kernel

```
_global___ void matmul(float* c, const float* a, const float* b, const int width) {
 int y = blockldx.y * blockDim.y + threadldx.y;
 int x = blockldx.x * blockDim.x + threadldx.x;
 float sum = 0.0F;
 for (register int k = 0; k < width; ++k) {
        float lhs = a[y * width + k];
        float rhs = b[k * width + x];
        sum += lhs * rhs;
 c[y * width + x] = sum;
```

Memory Hierarchy

Why Memory?: Von-Neumann Model

Memory Hierarchy

- How to create illusion of the ideal memory (fast, big, cheap)?
 - Have multiple levels of memory with different speeds and sizes and ensure most of the data is kept in the fast level

CPU Memory Hierarchy

DRAM Interface

CPU Memory Hierarchy

■ **L1I Cache**: 32~64 KB/core

■ L1D Cache: 32~64KB/core

■ **L2 Cache**: 256KB~1MB

■ L3 Cache: 1~2MB/core

Some CPUs use L3 Cache

Why does the Memory Hierarchy work well?

- Answer: Locality
 - Programs access a relatively small portion of their address space at any instant of time
- Two different types of locality

```
for (i = 0; i < 10; ++i) {
    j = 17 * i;
}</pre>
```

- Temporal locality
 - Data accessed recently are likely to be accessed again soon
 - E.g., instructions in a loop, induction variables
- Spatial locality
 - Data near those accessed recently are likely to be accessed soon
 - E.g., sequential instruction access, array data

Importance of Memory Access Efficiency

Poor Memory Access → **Poor Performance**

■ The poor performance is attributable to

- The long access latencies (hundreds of clock cycles)
- Finite access bandwidth (Giga bytes per second) of global memory

■ Compute-to-global-memory-access-ratio

- The number of calculations performed per each access to the global memory
- o used to calculate the expected performance level of a kernel code
- High compute-to-global-memory-access-ratio
 - → High performance

Expected Performance of the Matrix Multiplication Kernel

Assumption

- Matrix A and B are in the global memory (slow but big)
- Bandwidth of Global memory : 1000GB/s = 250 giga single-precision numbers per second
- Compute-to-global-memory-access-ratio of for-loop
 - # of Computation: 1 Addition + 1 Multiplication = 2
 - # of Global memory accesses : 1 for A and 1 for B = 2
 - Compute-to-global-memory-access-ratio = 1

```
for (register int k = 0; k < width; ++k)
{

float lhs = a[y * width + k];

float rhs = b[k * width + x];

sum += lhs * rhs;
}
```

- Expected Performance of for-loop = 250 GFLOP
 - Because compute-to-global-memory-access-ratio is 1 and 250 giga singleprecision numbers can be brought from global memory
- If peak performance of GPU is 12TFLOPS,
 - compute-to-global-memory-access-ratio should be 48 or higher

Agenda

- Matrix Multiplication
 - o Simple Version
 - o Tiled Version
- Review: Memory Hierarchy
- Importance of Memory Access Efficiency
- GPU Memory Hierarchy
- Improving Tiled Matrix Multiplication
- Impact of Memory on Parallelism