K Means Clustering

Mr. Pritam Prakash Shete
Computer Division, BARC
Centre for Excellence in Basic Sciences

Topics

- Introduction
- Unsupervised learning
- Clustering applications
- K means clustering
- Optimization objective
- Random initialization
- Number of clusters
- Advantages and disadvantages

Supervised Learning

- Training set $-\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
- Labeled dataset

Unsupervised Learning – What?

- Training set $-\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
- Unlabeled dataset

Unsupervised Learning – How?

- Find structure of data
- Group or cluster data
- Extract useful information about data

Applications

Market segmentation

Computing cluster organization

Social network analysis

Astronomical data analysis

Market Segmentation

- Customer database
- Group into market segments
- Serve market segments differently

Social Network Analysis

- Users send mails frequently
- Users receive mails frequently
- Coherence group of users

Computing Cluster Organization

- Compactness Similarity within a cluster
- Separation Difference between clusters
- Different nodes
 - Compute node
 - Data node
 - GPU vs CPU nodes
- Different applications

Astronomical Data Analysis

- Identify
 - Star clusters
 - Cosmic structures
- Anomaly detection
 - Brightness
 - Spectral characteristics

K Means Clustering

- Unsupervised learning Unlabeled dataset
- Centroid based algorithm
- Iterative algorithm
- K Number of pre-defined clusters
- Divide dataset into K different clusters
- Decrease distance between samples from same cluster
- Increase distance between samples from different clusters

Optimization Objective

- WCSS Within Cluster Sum of Squares
- Variations within a cluster

$$WCSS = \sum_{c=1}^{K} \sum_{p=1}^{Pn} (Centroid_c - Point_p)^2$$

Objective – Minimize WCSS

K Means Clustering Algorithm

- 1. Select number of clusters K
- 2. Select random K points as centroids
- 3. Cluster assignment
 - Assign each data point to closest centroid
- 4. Centroid movement
 - Compute centroids for new clusters
- 5. Repeat Steps 3 to 5 until
 - Maximum number of iterations
 - Minimum variation in cluster centers
 - No change in cluster centers

Random Initialization

- 1. Select maximum number of iterations
- 2. For each iteration
 - Select random K points as centroids
 - Compute K clusters
 - Compute WCSS value
 - Keep cluster centroids with minimum WCSS
- 3. Use cluster centroids with minimum WCSS

Elbow Method – Number Of Clusters

- 1. Select range of values for K
- 2. For each value of K
 - Compute WCSS value
- 3. Plots curve between
 - Calculated WCSS values
 - Number of clusters K
- 4. Best value of K Sharp reduction in WCSS

Elbow Method – Number Of Clusters

Advantages

- Easy to implement
- Computationally faster
- Works well with spherical clusters

Disadvantages

- Difficult to predict number of clusters K
- Random initialization Strong impact
- Sensitive to outliers
- Asymmetric clusters
- Good for spherical clusters only

Questions?

Thank you