

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 April 2002 (18.04.2002)

PCT

(10) International Publication Number
WO 02/31198 A2

(51) International Patent Classification⁷: **C12Q 1/68** MD 20815 (US). ENDRESS, Gregory, A. [US/US]; 408 Bridge Road, Florence, MA 01062 (US).

(21) International Application Number: **PCT/US01/31607**

(74) Agents: GRANT, Alan, J. et al.; Carella, Byrne, Bain, Gilfillan, Cecchi, Stewart & Olstein, 6 Becker Farm Road, Roseland, NJ 07068 (US).

(22) International Filing Date: 11 October 2001 (11.10.2001)

(25) Filing Language: English (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English

(81) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:

60/239,294	11 October 2000 (11.10.2000)	US
60/239,297	11 October 2000 (11.10.2000)	US
60/239,605	11 October 2000 (11.10.2000)	US
60/239,802	12 October 2000 (12.10.2000)	US
60/239,805	12 October 2000 (12.10.2000)	US
60/239,806	12 October 2000 (12.10.2000)	US
60/240,622	16 October 2000 (16.10.2000)	US
60/241,723	19 October 2000 (19.10.2000)	US
60/241,682	19 October 2000 (19.10.2000)	US
60/244,932	31 October 2000 (31.10.2000)	US

(71) Applicant (*for all designated States except US*): **AVALON PHARMACEUTICALS [US/US]**; 19 Firstfield Road, Gaithersburg, MD 20878 (US).

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/31198 A2

(54) Title: CANCER-LINKED GENES AS TARGETS FOR CHEMOTHERAPY

(57) Abstract: Cancer-linked gene sequences, and derived amino acid sequences, are disclosed along with processes for assaying potential antitumor agents based on their modulation of the expression of these cancer-linked genes. Also disclosed are antibodies that react with the disclosed polypeptides and methods of diagnosing and treating cancer using the gene sequences. A novel gene and polypeptide are also disclosed.

CANCER-LINKED GENES AS TARGETS FOR CHEMOTHERAPY

5

This application claims the benefit of U.S. provisional application Serial No. 60/239,294, filed 11 October 2000; 60/239,297, filed 11 October 2000; 60/239,605, filed 11 October 2000; 60/239,802, filed 12 October 2000; 10 60/239,805, filed 12 October 2000; 60/239,806, filed 12 October 2000; 60/240,622, filed 16 October 2000; 60/241,682, filed 19 October 2000; 60/241,723, filed 19 October 2000; and 60/244,932, filed 31 October 2000, the disclosures of which are hereby incorporated by reference in their entirety.

15

FIELD OF THE INVENTION

20 The present invention relates to methods of screening cancer-linked genes and expression products for involvement in the cancer initiation and facilitation process and the use of such genes for screening potential anti-cancer agents, including small organic compounds and other molecules.

25

BACKGROUND OF THE INVENTION

Cancer-linked genes are valuable in that they indicate genetic differences between cancer cells and normal cells, such as where a gene is expressed in a cancer cell but not in a non-cancer cell, or where said gene is over-expressed or expressed at a higher level in a cancer as opposed to normal or non-cancer cell. In addition, the expression of such a gene in a normal cell but not in a cancer cell, especially of the same type of tissue, can 30 indicate important functions in the cancerous process. For example, screening assays for novel drugs are based on the response of model cell based systems *in vitro* to treatment with specific compounds. Various measures of 35

cellular response have been utilized, including the release of cytokines, alterations in cell surface markers, activation of specific enzymes, as well as alterations in ion flux and/or pH. Some such screens rely on specific genes, such as oncogenes (or gene mutations). In accordance with the present 5 invention, a cancer-linked gene has been identified and its putative amino acid sequence worked out. Such gene is useful in the diagnosing of cancer, the screening of anticancer agents and the treatment of cancer using such agents, especially in that these genes encode polypeptides that can act as markers, such as cell surface markers, thereby providing ready targets for 10 anti-tumor agents such as antibodies, preferably antibodies complexed to cytotoxic agents, including apoptotic agents. .

15

BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided herein a set of genes related to, or linked to, cancer, or otherwise involved in the cancer initiating and facilitating process and the derived amino acid sequences 20 thereof.

In a particular embodiment, such genes are those corresponding to the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 and which encode polypeptides, including those comprising a sequence of SEQ ID NO: 25 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

More particularly, such genes whose expression is changed in cancerous, as compared to non-cancerous cells, from a specific tissue, for example, lung, where the gene would include a polynucleotide corresponding 30 to the nucleotide sequence of SEQ ID NO: 1 or sequences that are substantially identical to said sequence and/or encode the polypeptide with amino acid sequence of SEQ ID NO: 2 or a polypeptide differing therefrom by conservative amino acid substitutions..

It is another object of the present invention to provide methods of using such characteristic genes as a basis for assaying the potential ability of selected chemical agents to modulate upward or downward the expression of said cancer characteristic, or related, genes.

5

It is a further object of the present invention to provide methods of detecting the expression, or non-expression, or amount of expression, of said characteristic gene, or portions thereof, as a means of determining the cancerous, or non-cancerous, status (or potential cancerous status) of 10 selected cells as grown in culture or as maintained *in situ*.

It is a still further object of the present invention to provide methods for treating cancerous conditions utilizing selected chemical agents as determined from their ability to modulate (i.e., increase or decrease) the 15 characteristic gene, or its protein product.

The present invention also relates to a process for treating cancer comprising contacting a cancerous cell with an agent having activity against an expression product encoded by the genes, which process may be 20 conducted either *ex vivo* or *in vivo* and which product is disclosed herein. Such agents may comprise an antibody or other molecule or portion that is specific for said expression product. In a preferred embodiment, the polypeptide product of such genes is a polypeptide as disclosed herein, such as SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

25

DETAILED SUMMARY OF THE INVENTION

30 The present invention relates to processes for utilizing a nucleotide sequence for a cancer-linked gene (SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19) and the derived amino acid sequence (SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20) as targets for chemotherapeutic agents, especially anti-cancer agents.

Characteristic gene sequences whose expression, or non-expression, or change in expression, are indicative of the cancerous or non-cancerous status of a given cell and whose expression is changed in cancerous, as 5 compared to non-cancerous cells, from a specific tissue, are genes that include the nucleotide sequences disclosed herein or sequences that are substantially identical to said sequence, at least about 90% identical, preferably 95% identical, most preferably at least about 98% identical and especially where such gene has the sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 10 13, 15, 17 and 19. Such sequences have been searched within the GenBank database, with the following results.

The present invention relates to nucleotide sequences and derived polypeptides having the following characteristics:

15 A nucleotide sequence with Genbank Accession Numbers: NM_014109 and AA235448, representing an amplified bromodomain-containing protein in cancer that was identified with the following specific characteristics: **UniGene Cluster:** Hs. 46677; **Locus Link ID:** none; 20 **Sequence Information:** 1934 bp mRNA (cDNA is SEQ ID NO: 1) 1086 bp ORF and 362 amino acids (SEQ ID NO: 2) with **Chromosomal Location:** 8q24 (based on alignment to mapped human genomic sequence). The deposited information represented a prediction of coding sequence deduced from a cDNA clone of unknown function. In accordance with the present 25 invention, this message was up-regulated by at least 3-fold in lung cancer versus normal lung tissue. A search against the Prosite database reveals a domain with 100% similarity to the bromodomain 2 sequence, which is contained in a number of transcription factors. A key role for bromodomain proteins in maintaining normal proliferation is indicated by the implication of 30 several bromodomain proteins in cancer, with four of these identified at translocation breakpoints.

A novel gene identified based upon EST sequences present within dbEST. This novel gene represents a novel member of the family of Toll-like

receptors and a portion of the polypeptide derived therefrom has at least 39% sequence identity to human toll-like receptor 1. Five of the human Toll-like receptors (called TLRs 1-5) may be direct homologs of the corresponding fly molecule and may constitute an important component of innate immunity in

5 humans. Expression analysis shows that this gene is specifically expressed by B-lymphocytes. Characteristics were: **Genbank Accession Number for sample EST in cluster:** AA648836; **UniGene Cluster:** Hs.89206; **Locus Link ID:** 10330; **Cluster Name:** ESTs, Weakly similar to TLR6 [H.sapiens]; **Sequence Information:** 1274 bp mRNA (cDNA is SEQ ID NO: 3 with

10 encoded polypeptide SEQ ID NO: 4. The UniGene cluster is composed of 10 sequences, all derived from tonsil. Microarray expression analysis indicates specific expression in B-lymphocytes.

A nucleotide sequence with Genbank Accession Number: AB015631
15 with the following specific characteristics: **Genbank Accession Number:** AB015631; **UniGene Cluster:** Hs.8752; **Locus Link ID:** 10330; **Cluster Name:** Transmembrane protein 4; **Sequence Information:** 814 bp mRNA (cDNA is SEQ ID NO: 5 with encoded polypeptide as SEQ ID NO: 6) and **Chromosomal Location:** 12. The UniGene cluster is composed of over 22
20 sequences derived from a number of tissues. Strongest levels of expression in normal tissues were detected in skeletal muscle.

A nucleotide sequence with Genbank Accession Number: NM_014397, AB026289 and with the following specific characteristics: **UniGene Cluster:** Hs.9625; **Locus Link ID:** 27073; **Public Cluster Name:** SID6-1512, putative serine-threonine protein kinase; **Sequence Information:** 1597 bp mRNA (SEQ ID NO: 7), 921 bp ORF and 307 amino acids (and SEQ ID NO: 8) with **Chromosomal Location:** 9q33. From the record in Genbank the complete mRNA and protein sequences are obtained. SID6-1512 shares sequence similarity with murine NEK1, a kinase involved in cell cycle regulation. The UniGene cluster contains over 150 EST sequences from a variety of tissue sources. The top BLAST score was to protein kinase nek1, which contains an N-terminal protein kinase domain with about 42% identity to the catalytic domain of NIMA, a protein kinase that controls initiation of mitosis in

Aspergillus nidulans. In addition, both Nek1 and NIMA have a long, basic C-terminal extension and are therefore similar in overall structure.

A nucleotide sequence with Genbank Accession Number: NM_006035,
5 AF128625 and with the following specific characteristics: **UniGene Cluster:** Hs.12908; **Locus Link ID:** 9578; **Cluster Name:** CDC42-binding protein kinase beta (DMPK-like; MRCKbeta); **Sequence Information:** 6780 bp mRNA (SEQ ID NO: 9), 5136 bp ORF and 1711 amino acids (SEQ ID NO: 10) with **Chromosomal Location:** 14q32.3. The UniGene cluster contained over
10 215 EST sequences from a variety of tissue sources. The p21 GTPases, Rho and Cdc42, regulate numerous cellular functions by binding to members of a serine/threonine protein kinase subfamily. These functions include the remodeling of the cell cytoskeleton that is a feature of cell growth and differentiation. Two of these p21 GTPase-regulated kinases, the myotonic
15 dystrophy protein kinase-related Cdc42-binding kinases (MRCKalpha and beta), have been demonstrated to phosphorylate nonmuscle myosin light chain, a prerequisite for the activation of actin-myosin contractility. A BLAST search showed A portion of SEQ ID NO: 10 to have about 49% identity to human myotonic dystrophy kinase.

20

A nucleotide sequence with Genbank Accession Number: NM_002654 with the following specific characteristics: **UniGene Cluster:** Hs.198281; **Locus Link ID:** 5315; **Cluster Name:** Pyruvate kinase, muscle; **Sequence Information:** 2287 bp mRNA (SEQ ID NO: 11 with derived amino acid sequence SEQ ID NO: 12)) with **Chromosomal Location:** 15q22. This gene is a member of a small sub-family within the cdk family of protein kinases. PCTAIRE-3 appears to play a role in signal transduction in terminally differentiated cells. The cloning of the human and murine PCTAIRE-3 genes have been described but no other information is available in the scientific
25 literature. The UniGene cluster is composed of 64 sequences derived from a number of tissues. PCTAIRE-3 was expressed in colon adenocarcinomas tested and was expressed at a lower level or not at all in normal colon tissue samples tested.

A nucleotide sequence with Genbank Accession Number: NM_006293 with the following specific characteristics: **UniGene Cluster:** Hs.301; **Locus Link ID:** 7301; **Cluster Name:** TYRO3 protein tyrosine kinase; **Sequence Information:** 4364 bp mRNA (SEQ ID NO: 13 with derived amino acid sequence SEQ ID NO: 14) with **Chromosomal Location:** 15q15.1-q21.1. The UniGene cluster is composed of over 45 sequences derived from a number of tissues. Strongest levels of expression in normal tissues detected in brain. SEQ ID NO: 14 displays appreciable homology to a variety of receptor tyrosine kinases. For example, a portion of SEQ ID NO: 14 has at least about 43% identity to AXL receptor tyrosine kinase. Over-expression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140 kD axl tyrosine-phosphorylated protein.

A nucleotide sequence with Genbank Accession Number: NM_002969 with the following specific characteristics: **UniGene Cluster:** Hs.55039; **Locus Link ID:** 6300; **Cluster Name:** Mitogen-activated protein kinase 12; **Sequence Information:** 1457 bp mRNA (SEQ ID NO: 15 with derived amino acid sequence of SEQ ID NO: 16) with **Chromosomal Location:** 22q13.33. The UniGene cluster is composed of over 22 sequences derived from a number of tissues. The strongest levels of expression in normal tissues were detected in skeletal muscle. This sequence displays appreciable homology to a variety of mitogen-activated protein kinases, for example, with human mitogen-activated protein kinase p38delta. The p38 mitogen-activated protein kinases (MAPK) play a crucial role in stress and inflammatory responses and are also involved in activation of the human immunodeficiency virus gene expression.

A nucleotide sequence with Genbank Accession Number: W31344 with the following specific characteristics: **UniGene Cluster:** Hs.55444; **Locus Link ID:** unknown; **Cluster Name:** ESTs; **Chromosomal Location:** unknown. The UniGene cluster is composed of over 9 sequences, all of which are derived from parathyroid. The GenBank database shows an exact match to AF153819 (*Homo sapiens* inwardly-rectifying potassium channel Kir2.1). This match is entirely confined to the 3' untranslated region of the GenBank entry.

The translation product of thyrocacin and the Kir2.1 gene are identical; however, we cannot formally rule out the possibility that thyrocacin is a completely different gene that shares some splicing with Kir2.1. SEQ ID NO: 17 shows the nucleotide sequence for Kir2.1 and SEQ ID NO: 21 shows EST 5 cluster identified from expression analysis that is specific for thyroid adenocarcinoma. The derived amino acid sequence from SEQ ID NO: 17 is shown as SEQ ID NO: 18. The sequence of the EST cluster displays no obvious homology to known proteins. However, for the case where the EST cluster is simply the 3'-untranslated region of Kir2.1, this gene is an inwardly- 10 rectifying potassium channel.

A nucleotide sequence with Genbank Accession Number: AA133334, representing a Sox2-like HMG-box Oncogenically Expressed Sequence with the following specific characteristics: **UniGene Cluster:** Hs.129911; **Locus 15 Link ID:** none; **Sequence Information:** 1050 bp mRNA (bp = base pair, SEQ ID NO: 19), 264 bp ORF and 88 amino acids (SEQ ID NO: 20) with **Chromosomal Location:** unknown. SEQ ID NO: 19 is present as an EST (Expressed Sequence Tag) in the Gene Logic database. It has been elongated to 1050 bp by overlapping contigs in the public databases. The 20 unigene cluster indicates widespread expression and it was found that the message is upregulated by at least 3-fold in lung cancer versus normal lung tissue. This sequence significant homolgy with Ovis aries SOX-2 gene, and to a slightly lesser extent the murine SOX-2. The Sox gene family consists of a large number of embryonically expressed genes related via the possession of 25 a 79-amino-acid DNA-binding domain known as the HMG box. These genes are transcription factors likely to be involved in the regulation of gene expression.

The nucleotides and polypeptides, as gene products, used in the 30 processes of the present invention may comprise a recombinant polynucleotide or polypeptide, a natural polynucleotide or polypeptide, or a synthetic polynucleotide or polypeptide, preferably a recombinant polynucleotide or polypeptide.

Fragments of such polynucleotides and polypeptides as are disclosed herein may also be useful in practicing the processes of the present invention. For example, a fragment, derivative or analog of the polypeptide (SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20) may be (i) one in which one or more of the 5 amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another 10 compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to 15 be within the scope of those skilled in the art from the teachings herein.

In one aspect, the present invention relates to an isolated polynucleotide comprising a polynucleotide at least 65% identical to the polynucleotide of SEQ ID NO: 3, or its complement. In preferred embodiments, said isolated 20 polynucleotide comprises a polynucleotide that has sequence identity of at least 80%, preferably at least about 90%, most preferably at least about 95%, especially at least about 98% and most especially is identical to the sequence of SEQ ID NO: 3. An isolated polynucleotide of the invention may also include the complement of any of the foregoing.

25 In another aspect, the present invention relates to an isolated polypeptide, including a purified polypeptide, comprising an amino acid sequence at least 90% identical to the amino acid sequence of SEQ ID NO: 4. In preferred embodiments, said isolated polypeptide comprises an amino acid 30 sequence having sequence identity of at least 95%, preferably at least about 98%, and especially is identical to, the sequence of SEQ ID NO: 4. The present invention also includes isolated active fragments of such polypeptides where said fragments retain the biological activity of the polypeptide or where such

active fragments are useful as specific targets for cancer treatment, prevention or diagnosis.

The polynucleotides and polypeptides useful in practicing the processes
5 of the present invention may likewise be obtained in an isolated or purified form.
In addition, the polypeptide disclosed herein as being useful in practicing the
processes of the invention include different types of proteins in terms of function
so that, as recited elsewhere herein, some are enzymes, some are transcription
factors and other may be cell surface receptors. Precisely how such cancer-
10 linked proteins are used in the processes of the invention may thus differ
depending on the function and cellular location of the protein and therefore
modification, or optimization, of the methods disclosed herein may be desirable
in light of said differences. For example, a cell-surface receptor is an excellent
target for cytotoxic antibodies whereas a transcription factor or enzyme is a
15 useful target for a small organic compound with anti-neoplastic activity.

As used herein, the term "isolated" means that the material is removed
from its original environment (e.g., the natural environment if it is naturally
occurring). It could also be produced recombinantly and subsequently purified.
20 For example, a naturally-occurring polynucleotide or polypeptide present in a
living animal is not isolated, but the same polynucleotide or polypeptide,
separated from some or all of the coexisting materials in the natural system, is
isolated. Such polynucleotides, for example, those prepared recombinantly,
could be part of a vector and/or such polynucleotides or polypeptides could be
25 part of a composition, and still be isolated in that such vector or composition is
not part of its natural environment. In one embodiment of the present invention,
such isolated, or purified, polypeptide is useful in generating antibodies for
practicing the invention, or where said antibody is attached to a cytotoxic or
cytolytic agent, such as an apoptotic agent.

30

As known in the art "similarity" between two polypeptides is determined
by comparing the amino acid sequence and its conserved amino acid
substitutes of one polypeptide to the sequence of a second polypeptide.

The sequence information disclosed herein, as derived from the GenBank submissions, can readily be utilized by those skilled in the art to prepare the corresponding full-length polypeptide by peptide synthesis. The same is true for either the polynucleotides or polypeptides disclosed herein for
5 use in the methods of the invention.

As used herein, the terms "portion," "segment," and "fragment," when used in relation to polypeptides, refer to a continuous sequence of residues, such as amino acid residues, which sequence forms a subset of a larger
10 sequence. For example, if a polypeptide were subjected to treatment with any of the common endopeptidases, such as trypsin or chymotrypsin, the oligopeptides resulting from such treatment would represent portions, segments or fragments of the starting polypeptide. When used in relation to a polynucleotides, such terms refer to the products produced by treatment of said polynucleotides with
15 any of the common endonucleases.

The present invention further relates to a vector comprising any of the polynucleotides disclosed herein and to a recombinant cell comprising such vectors, or such polynucleotides or expressing the polypeptides disclosed
20 herein, especially the polypeptide whose amino acid sequence is the sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

Methods of producing such cells and vectors are well known to those skilled in the molecular biology art. See, for example, Sambrook, et al.,
25 Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), Wu et al, *Methods in Gene Biotechnology* (CRC Press, New York, NY, 1997), and *Recombinant Gene Expression Protocols*, in *Methods in Molecular Biology*, Vol. 62, (Tuan, ed., Humana Press, Totowa, NJ, 1997), the disclosures of which are hereby incorporated by reference.

30 In another aspect, the present invention relates to a process for identifying an agent that modulates the activity of a cancer-related gene comprising:

(a) contacting a compound with a cell containing a gene that corresponds to a polynucleotide having a sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 and under conditions promoting the expression of said gene; and

5 (b) detecting a difference in expression of said gene relative to when said compound is not present thereby identifying an agent that modulates the activity of a cancer-related gene.

10 In specific embodiments of the present invention, the genes useful for the invention comprise genes that correspond to polynucleotides having a sequence selected from SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19, or may comprise the sequence of any of the polynucleotides disclosed herein (where the latter are cDNA sequences). As used herein, "corresponding genes" refers to genes that encode an RNA that is at least 90% identical, preferably at least 95% identical, most preferably at least 98% identical, and especially identical, to an RNA encoded by one of the nucleotide sequences disclosed herein (i.e., SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19). Such genes will also encode the same polypeptide sequence as any of the sequences disclosed herein, preferably SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20, but may include differences in such amino acid sequences where such differences are limited to conservative amino acid substitutions, such as where the same overall three dimensional structure, and thus the same antigenic character, is maintained. Thus, amino acid sequences may be within 15 the scope of the present invention where they react with the same antibodies that react with polypeptides comprising the sequences of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 as disclosed herein.

20

25

As used herein, the term "conservative amino acid substitution" are defined herein as exchanges within one of the following five groups:

30 I. Small aliphatic, nonpolar or slightly polar residues:
Ala, Ser, Thr, Pro, Gly;

II. Polar, negatively charged residues and their amides:

Asp, Asn, Glu, Gln;

III. Polar, positively charged residues:

His, Arg, Lys;

IV. Large, aliphatic, nonpolar residues:

5 Met Leu, Ile, Val, Cys

V. Large, aromatic residues:

Phe, Tyr, Trp

In accordance with the present invention, model cellular systems using
10 cell lines, primary cells, or tissue samples are maintained in growth medium
and may be treated with compounds that may be at a single concentration or
at a range of concentrations. At specific times after treatment, cellular RNAs
are isolated from the treated cells, primary cells or tumors, which RNAs are
indicative of expression of selected genes. The cellular RNA is then divided
15 and subjected to analysis that detects the presence and/or quantity of specific
RNA transcripts, which transcripts may then be amplified for detection
purposes using standard methodologies, such as, for example, reverse
transcriptase polymerase chain reaction (RT-PCR), etc. The presence or
absence, or levels, of specific RNA transcripts are determined from these
20 measurements and a metric derived for the type and degree of response of
the sample to the treated compound compared to control samples.

In accordance with the foregoing, there is thus disclosed herein
processes for using a cancer-linked gene sequence (SEQ ID NO: 1, 3, 5, 7, 9,
25 11, 13, 15, 17 and 19) whose expression is, or can be, as a result of the
methods of the present invention, linked to, or used to characterize, the
cancerous, or non-cancerous, status of the cells, or tissues, to be tested.
Thus, the processes of the present invention identify novel anti-neoplastic
agents based on their alteration of expression of the polynucleotide sequence
30 disclosed herein in specific model systems. The methods of the invention may
therefore be used with a variety of cell lines or with primary samples from
tumors maintained *in vitro* under suitable culture conditions for varying periods
of time, or *in situ* in suitable animal models.

More particularly, genes have been identified that is expressed at a level in cancer cells that is different from the expression level in non-cancer cells. In one instance, the identified genes are expressed at higher levels in 5 cancer cells than in normal cells.

The polynucleotides of the invention can include fully operation genes with attendant control or regulatory sequences or merely a polynucleotide sequence encoding the corresponding polypeptide or an active fragment or 10 analog thereof.

In one embodiment of the present invention, said gene modulation is downward modulation, so that, as a result of exposure to the chemical agent to be tested, one or more genes of the cancerous cell will be expressed at a 15 lower level (or not expressed at all) when exposed to the agent as compared to the expression when not exposed to the agent. For example, the gene encoding the polypeptide of SEQ ID NO: 2 is expressed at a higher level in cells of lung cancer than in normal lung cells.

20 In a preferred embodiment a selected set of said genes are expressed in the reference cell, including the gene(s) sequences identified for use according to the present invention, but are not expressed in the cell to be tested as a result of the exposure of the cell to be tested to the chemical agent. Thus, where said chemical agent causes the gene, or genes, of the 25 tested cell to be expressed at a lower level than the same genes of the reference, this is indicative of downward modulation and indicates that the chemical agent to be tested has anti-neoplastic activity.

Sequences encoding the same proteins as any of SEQ ID NO: 2, 4, 6, 30 8, 10, 12, 14, 16, 18 and 20, regardless of the percent identity of such sequences, are also specifically contemplated by any of the methods of the present invention that rely on any or all of said sequences, regardless of how they are otherwise described or limited. Thus, any such sequences are available for use in carrying out any of the methods disclosed according to the

invention. Such sequences also include any open reading frames, as defined herein, present within the sequence of SEQ ID NO: 1.

The genes identified by the present disclosure are considered "cancer-related" genes, as this term is used herein, and include genes expressed at higher levels (due, for example, to elevated rates of expression, elevated extent of expression or increased copy number) in cancer cells relative to expression of these genes in normal (i.e., non-cancerous) cells where said cancerous state or status of test cells or tissues has been determined by methods known in the art, such as by reverse transcriptase polymerase chain reaction (RT-PCR) as described in the Example below. In specific embodiments, this relates to the genes whose sequences correspond to the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19. As used herein, the term "correspond" means that the gene has the indicated nucleotide sequence or that it encodes substantially the same RNA as would be encoded by the indicated sequence, the term "substantially" meaning about at least 90% identical as defined elsewhere herein and includes splice variants thereof.

The sequences disclosed herein may be genomic in nature and thus represent the sequence of an actual gene, such as a human gene, or may be a cDNA sequence derived from a messenger RNA (mRNA) and thus represent contiguous exonic sequences derived from a corresponding genomic sequence or they may be wholly synthetic in origin for purposes of practicing the processes of the invention. Because of the processing that may take place in transforming the initial RNA transcript into the final mRNA, the sequences disclosed herein may represent less than the full genomic sequence. They may also represent sequences derived from ribosomal and transfer RNAs. Consequently, the genes present in the cell (and representing the genomic sequences) and the sequences disclosed herein, which are mostly cDNA sequences, may be identical or may be such that the cDNAs contain less than the full genomic sequence. Such genes and cDNA sequences are still considered corresponding sequences because they both encode similar RNA sequences. Thus, by way of non-limiting example only, a

gene that encodes an RNA transcript, which is then processed into a shorter mRNA, is deemed to encode both such RNAs and therefore encodes an RNA complementary to (using the usual Watson-Crick complementarity rules), or that would otherwise be encoded by, a cDNA (for example, a sequence as disclosed herein). Thus, the sequences disclosed herein correspond to genes contained in the cancerous or normal cells used to determine relative levels of expression because they represent the same sequences or are complementary to RNAs encoded by these genes. Such genes also include different alleles and splice variants that may occur in the cells used in the processes of the invention.

The genes of the invention "correspond to" a polynucleotide having a sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 if the gene encodes an RNA (processed or unprocessed, including naturally occurring splice variants and alleles) that is at least 90% identical, preferably at least 95% identical, most preferably at least 98% identical to, and especially identical to, an RNA that would be encoded by, or be complementary to, such as by hybridization with, a polynucleotide having the indicated sequence. In addition, genes including sequences at least 90% identical to a sequence selected from SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19, preferably at least about 95% identical to such a sequence, more preferably at least about 98% identical to such sequence and most preferably comprising such sequence are specifically contemplated by all of the processes of the present invention as being genes that correspond to these sequences. In addition, sequences encoding the same proteins as any of these sequences, regardless of the percent identity of such sequences, are also specifically contemplated by any of the methods of the present invention that rely on any or all of said sequences, regardless of how they are otherwise described or limited. Thus, any such sequences are available for use in carrying out any of the methods disclosed according to the invention. Such sequences also include any open reading frames, as defined herein, present within any of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.

Further in accordance with the present invention, the term "percent identity" or "percent identical," when referring to a sequence, means that a sequence is compared to a claimed or described sequence after alignment of the sequence to be compared (the "Compared Sequence") with the described or 5 claimed sequence (the "Reference Sequence"). The Percent Identity is then determined according to the following formula:

$$\text{Percent Identity} = 100 [1-(C/R)]$$

10 wherein C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence wherein (i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence and (ii) each gap in the Reference 15 Sequence and (iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference; and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted 20 as a base or amino acid.

If an alignment exists between the Compared Sequence and the Reference Sequence for which the percent identity as calculated above is about equal to or greater than a specified minimum Percent Identity then the 25 Compared Sequence has the specified minimum percent identity to the Reference Sequence even though alignments may exist in which the hereinabove calculated Percent Identity is less than the specified Percent Identity.

30 As used herein and except as noted otherwise, all terms are defined as given below.

In accordance with the present invention, the term "DNA segment" or "DNA sequence" refers to a DNA polymer, in the form of a separate fragment

or as a component of a larger DNA construct, which has been derived from DNA isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the segment and its 5 component nucleotide sequences by standard biochemical methods, for example, using a cloning vector. Such segments are provided in the form of an open reading frame uninterrupted by internal nontranslated sequences, or introns, which are typically present in eukaryotic genes. Sequences of non-translated DNA may be present downstream from the open reading frame, 10 where the same do not interfere with manipulation or expression of the coding regions.

The term "coding region" refers to that portion of a gene which either naturally or normally codes for the expression product of that gene in its natural genomic environment, i.e., the region coding *in vivo* for the native 15 expression product of the gene. The coding region can be from a normal, mutated or altered gene, or can even be from a DNA sequence, or gene, wholly synthesized in the laboratory using methods well known to those of skill in the art of DNA synthesis.

20 In accordance with the present invention, the term "nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the proteins provided by this invention are assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being 25 expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

The term "expression product" means that polypeptide or protein that is the natural translation product of the gene and any nucleic acid sequence 30 coding equivalents resulting from genetic code degeneracy and thus coding for the same amino acid(s).

The term "active fragment," when referring to a coding sequence, means a portion comprising less than the complete coding region whose expression

product retains essentially the same biological function or activity as the expression product of the complete coding region.

The term "primer" means a short nucleic acid sequence that is paired
5 with one strand of DNA and provides a free 3'-OH end at which a DNA polymerase starts synthesis of a deoxyribonucleotide chain.

The term "promoter" means a region of DNA involved in binding of RNA polymerase to initiate transcription. The term "enhancer" refers to a region of
10 DNA that, when present and active, has the effect of increasing expression of a different DNA sequence that is being expressed, thereby increasing the amount of expression product formed from said different DNA sequence.

The term "open reading frame (ORF)" means a series of triplets coding
15 for amino acids without any termination codons and is a sequence (potentially) translatable into protein.

As used herein, reference to a DNA sequence includes both single stranded and double stranded DNA. Thus, the specific sequence, unless the
20 context indicates otherwise, refers to the single strand DNA of such sequence, the duplex of such sequence with its complement (double stranded DNA) and the complement of such sequence.

The present invention also relates to methods of assaying potential
25 antitumor agents based on their modulation of the expression of the gene sequence according to the invention and methods for diagnosing cancerous, or potentially cancerous, conditions as a result of the patterns of expression of the gene sequence disclosed herein as well as related gene sequence based on common expression or regulation of such genes.

30

In carrying out the foregoing assays, relative antineoplastic activity may be ascertained by the extent to which a given chemical agent modulates the expression of genes present in a cancerous cell. Thus, a first chemical agent that modulates the expression of a gene associated with the cancerous state

(i.e., a gene that includes one of the sequences of the invention as disclosed herein and present in cancerous cells) to a larger degree than a second chemical agent tested by the assays of the invention is thereby deemed to have higher, or more desirable, or more advantageous, anti-neoplastic activity than 5 said second chemical agent.

The gene expression to be measured is commonly assayed using RNA expression as an indicator. Thus, the greater the level of RNA (messenger RNA) detected the higher the level of expression of the corresponding gene. Thus, 10 gene expression, either absolute or relative, is determined by the relative expression of the RNAs encoded by such genes.

RNA may be isolated from samples in a variety of ways, including lysis and denaturation with a phenolic solution containing a chaotropic agent (e.g., 15 triazol) followed by isopropanol precipitation, ethanol wash, and resuspension in aqueous solution; or lysis and denaturation followed by isolation on solid support, such as a Qiagen resin and reconstitution in aqueous solution; or lysis and denaturation in non-phenolic, aqueous solutions followed by enzymatic conversion of RNA to DNA template copies.

20

Normally, prior to applying the processes of the invention, steady state RNA expression levels for the genes, and sets of genes, disclosed herein will have been obtained. It is the steady state level of such expression that is affected by potential anti-neoplastic agents as determined herein. Such steady 25 state levels of expression are easily determined by any methods that are sensitive, specific and accurate. Such methods include, but are in no way limited to, real time quantitative polymerase chain reaction (PCR), for example, using a Perkin-Elmer 7700 sequence detection system with gene specific primer probe combinations as designed using any of several commercially available software packages, such as Primer Express software., solid support based hybridization array technology using appropriate internal controls for quantitation, including filter, bead, or microchip based arrays, solid support based hybridization arrays using, for example, chemiluminescent, fluorescent, or electrochemical reaction 30 based detection systems.

The gene patterns indicative of a cancerous state need not be characteristic of every cell found to be cancerous. Thus, the methods disclosed herein are useful for detecting the presence of a cancerous condition within a tissue where less than all cells exhibit the complete pattern.

5 Thus, for example, a set of selected genes, comprising sequences corresponding to the sequence of SEQ ID NO: 1, may be found, using appropriate probes, either DNA or RNA, to be present in as little as 60% of cells derived from a sample of tumorous, or malignant, tissue while being absent from as much as 60% of cells derived from corresponding non-cancerous, or otherwise normal, tissue (and thus being present in as much as 10 40% of such normal tissue cells). In a preferred embodiment, such gene pattern is found to be present in at least 50% of cells drawn from a cancerous tissue, such as the lung cancer disclosed herein. In an additional 15 embodiment, such gene pattern is found to be present in at least 100% of cells drawn from a cancerous tissue and absent from at least 100% of a corresponding normal, non-cancerous, tissue sample, although the latter embodiment may represent a rare occurrence.

20 In another aspect the present invention relates to a process for determining the cancerous status of a test cell, comprising determining expression in said test cell of a gene sequence as disclosed herein and then comparing said expression to expression of said at least one gene in at least one cell known to be non-cancerous whereby a difference in said expression 25 indicates that said cell is cancerous.

In one embodiment, said change in expression is a change in copy number, including either an increase or decrease in copy number. In accordance with the present invention, said change in gene copy number may 30 be determined by determining a change in expression of messenger RNA encoded by said gene sequence.

Changes in gene copy number may be determined by determining a change in expression of messenger RNA encoded by a particular gene

sequence, especially that of Such change in gene copy number may be determined by determining a change in expression of messenger RNA encoded by a particular gene sequence, especially that of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19. Also in accordance with the present invention,
5 said gene may be a cancer initiating gene, a cancer facilitating gene, or a cancer suppressing gene. In carrying out the methods of the present invention, a cancer facilitating gene is a gene that, while not directly initiating or suppressing tumor formation or growth, said gene acts, such as through the actions of its expression product, to direct, enhance, or otherwise facilitate
10 the progress of the cancerous condition, including where such gene acts against genes, or gene expression products, that would otherwise have the effect of decreasing tumor formation and/or growth.

Although the presence or absence of expression of a gene corresponding to a sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 may be indicative of a cancerous status for a given cell, the mere presence or absence of such a gene may not alone be sufficient to achieve a malignant condition and thus the level of expression of such gene pattern may also be a significant factor in determining the attainment of a cancerous state. Thus,
20 while a pattern of genes may be present in both cancerous and non-cancerous cells, the level of expression, as determined by any of the methods disclosed herein, all of which are well known in the art, may differ between the cancerous versus the non-cancerous cells. Thus, it becomes essential to also determine the level of expression of a gene such as that disclosed herein,
25 including substantially similar sequences and sequences comprising said sequence, as a separate means of diagnosing the presence of a cancerous status for a given cell, groups of cells, or tissues, either in culture or *in situ*.

The level of expression of the polypeptides disclosed herein is also a measure of gene expression, such as polypeptides having sequence identical, or similar to any polypeptide encoded by the sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19, such as the polypeptide whose amino acid sequence is the sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

In accordance with the foregoing, the present invention further relates to a process for determining the cancerous status of a cell to be tested, comprising determining the level of expression in said cell of at least one gene that includes one of the nucleotide sequences selected from the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19, including sequences substantially identical to said sequences, or characteristic fragments thereof, or the complements of any of the foregoing and then comparing said expression to that of a cell known to be non-cancerous whereby the difference in said expression indicates that said cell to be tested is cancerous.

10

In accordance with the invention, although gene expression for a gene that includes as a portion thereof one of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19, is preferably determined by use of a probe that is a fragment of such nucleotide sequence, it is to be understood that the probe may be formed from a different portion of the gene. Expression of the gene may be determined by use of a nucleotide probe that hybridizes to messenger RNA (mRNA) transcribed from a portion of the gene other than the specific nucleotide sequence disclosed herein.

20

It should be noted that there are a variety of different contexts in which genes have been evaluated as being involved in the cancerous process. Thus, some genes may be oncogenes and encode proteins that are directly involved in the cancerous process and thereby promote the occurrence of cancer in an animal. In addition, other genes may serve to suppress the cancerous state in a given cell or cell type and thereby work against a cancerous condition forming in an animal. Other genes may simply be involved either directly or indirectly in the cancerous process or condition and may serve in an ancillary capacity with respect to the cancerous state. All such types of genes are deemed with those to be determined in accordance with the invention as disclosed herein. Thus, the gene determined by said process of the invention may be an oncogene, or the gene determined by said process may be a cancer facilitating gene, the latter including a gene that directly or indirectly affects the cancerous process, either in the promotion of a cancerous condition or in facilitating the progress of cancerous growth or

otherwise modulating the growth of cancer cells, either *in vivo* or *ex vivo*. In addition, the gene determined by said process may be a cancer suppressor gene, which gene works either directly or indirectly to suppress the initiation or progress of a cancerous condition. Such genes may work indirectly where
5 their expression alters the activity of some other gene or gene expression product that is itself directly involved in initiating or facilitating the progress of a cancerous condition. For example, a gene that encodes a polypeptide, either wild or mutant in type, which polypeptide acts to suppress of tumor suppressor gene, or its expression product, will thereby act indirectly to
10 promote tumor growth.

In accordance with the foregoing, the process of the present invention includes cancer modulating agents that are themselves either polypeptides, or small chemical entities, that affect the cancerous process, including initiation,
15 suppression or facilitation of tumor growth, either *in vivo* or *ex vivo*. Said cancer modulating agent may have the effect of increasing gene expression or said cancer modulating agent may have the effect of decreasing gene expression as such terms have been described herein.

20 In keeping with the disclosure herein, the present invention also relates to a process for treating cancer comprising contacting a cancerous cell with an agent having activity against an expression product encoded by a gene sequence as disclosed herein, such as the sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.

25 The proteins encoded by the genes disclosed herein due to their expression, or elevated expression, in cancer cells, represent highly useful therapeutic targets for "targeted therapies" utilizing such affinity structures as, for example, antibodies coupled to some cytotoxic agent. In such methodology, it is advantageous that nothing need be known about the endogenous ligands or binding partners for such cell surface molecules.
30 Rather, an antibody or equivalent molecule that can specifically recognize the cell surface molecule (which could include an artificial peptide, a surrogate ligand, and the like) that is coupled to some agent that can induce cell death

or a block in cell cycling offers therapeutic promise against these proteins. Thus, such approaches include the use of so-called suicide "bullets" against intracellular proteins

5 With the advent of methods of molecular biology and recombinant technology, it is now possible to produce antibody molecules by recombinant means and thereby generate gene sequences that code for specific amino acid sequences found in the polypeptide structure of the antibodies. Such antibodies can be produced by either cloning the gene
10 sequences encoding the polypeptide chains of said antibodies or by direct synthesis of said polypeptide chains, with *in vitro* assembly of the synthesized chains to form active tetrameric (H_2L_2) structures with affinity for specific epitopes and antigenic determinants. This has permitted the ready production of antibodies having sequences characteristic of
15 neutralizing antibodies from different species and sources.

Regardless of the source of the antibodies, or how they are recombinantly constructed, or how they are synthesized, *in vitro* or *in vivo*, using transgenic animals, such as cows, goats and sheep, using
20 large cell cultures of laboratory or commercial size, in bioreactors or by direct chemical synthesis employing no living organisms at any stage of the process, all antibodies have a similar overall 3 dimensional structure. This structure is often given as H_2L_2 and refers to the fact that antibodies commonly comprise 2 light (L) amino acid chains and 2 heavy (H) amino
25 acid chains. Both chains have regions capable of interacting with a structurally complementary antigenic target. The regions interacting with the target are referred to as "variable" or "V" regions and are characterized by differences in amino acid sequence from antibodies of different antigenic specificity.

30

The variable regions of either H or L chains contains the amino acid sequences capable of specifically binding to antigenic targets. Within

these sequences are smaller sequences dubbed "hypervariable" because of their extreme variability between antibodies of differing specificity. Such hypervariable regions are also referred to as "complementarity determining regions" or "CDR" regions. These CDR regions account for 5 the basic specificity of the antibody for a particular antigenic determinant structure.

The CDRs represent non-contiguous stretches of amino acids within the variable regions but, regardless of species, the positional locations of these critical amino acid sequences within the variable heavy 10 and light chain regions have been found to have similar locations within the amino acid sequences of the variable chains. The variable heavy and light chains of all antibodies each have 3 CDR regions, each non-contiguous with the others (termed L1, L2, L3, H1, H2, H3) for the respective light (L) and heavy (H) chains. The accepted CDR regions have 15 been described by Kabat et al, *J. Biol. Chem.* 252:6609-6616 (1977). The numbering scheme is shown in the figures, where the CDRs are underlined and the numbers follow the Kabat scheme.

In all mammalian species, antibody polypeptides contain constant 20 (i.e., highly conserved) and variable regions, and, within the latter, there are the CDRs and the so-called "framework regions" made up of amino acid sequences within the variable region of the heavy or light chain but outside the CDRs.

25 The antibodies disclosed according to the invention may also be wholly synthetic, wherein the polypeptide chains of the antibodies are synthesized and, possibly, optimized for binding to the polypeptides disclosed herein as being receptors. Such antibodies may be chimeric or humanized antibodies and may be fully tetrameric in structure, or may be dimeric and comprise only 30 a single heavy and a single light chain. Such antibodies may also include fragments, such as Fab and F(ab₂)' fragments, capable of reacting with and binding to any of the polypeptides disclosed herein as being receptors.

In one aspect, the present invention relates to immunoglobulins, or antibodies, as described herein, that react with, especially where they are specific for, the polypeptides having amino acid sequences as disclosed herein, preferably those having an amino acid sequence of one of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20. Such antibodies may commonly be in the form of a composition, especially a pharmaceutical composition.

The pharmaceutical compositions useful herein also contain a pharmaceutically acceptable carrier, including any suitable diluent or excipient, which includes any pharmaceutical agent that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Pharmaceutically acceptable carriers include, but are not limited to, liquids such as water, saline, glycerol and ethanol, and the like, including carriers useful in forming sprays for nasal and other respiratory tract delivery or for delivery to the ophthalmic system. A thorough discussion of pharmaceutically acceptable carriers, diluents, and other excipients is presented in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. current edition).

The process of the present invention includes embodiments of the above-recited processes wherein the cancer cell is contacted *in vivo* as well as *ex vivo*, preferably wherein said agent comprises a portion, or is part of an overall molecular structure, having affinity for said expression product. In one such embodiment, said portion having affinity for said expression product is an antibody, especially where said expression product is a polypeptide or oligopeptide or comprises an oligopeptide portion, or comprises a polypeptide.

30

Such an agent can therefore be a single molecular structure, comprising both affinity portion and anti-cancer activity portions, wherein said portions are derived from separate molecules, or molecular structures,

possessing such activity when separated and wherein such agent has been formed by combining said portions into one larger molecular structure, such as where said portions are combined into the form of an adduct. Said anti-cancer and affinity portions may be joined covalently, such as in the form of a
5 single polypeptide, or polypeptide-like, structure or may be joined non-covalently, such as by hydrophobic or electrostatic interactions, such structures having been formed by means well known in the chemical arts. Alternatively, the anti-cancer and affinity portions may be formed from separate domains of a single molecule that exhibits, as part of the same
10 chemical structure, more than one activity wherein one of the activities is against cancer cells, or tumor formation or growth, and the other activity is affinity for an expression product produced by expression of genes related to the cancerous process or condition.

15 In one embodiment of the present invention, a chemical agent, such as a protein or other polypeptide, is joined to an agent, such as an antibody, having affinity for an expression product of a cancerous cell, such as a polypeptide or protein encoded by a gene related to the cancerous process, especially a gene as disclosed herein according to the present invention.

20 Thus, where the presence of said expression product is essential to tumor initiation and/or growth, binding of said agent to said expression product will have the effect of negating said tumor promoting activity. In one such embodiment, said agent is an apoptosis-inducing agent that induces cell suicide, thereby killing the cancer cell and halting tumor growth..

25 Other genes within the cancer cell that are regulated in a manner similar to that of the genes disclosed herein and thus change their expression in a coordinated way in response to chemical compounds represent genes that are located within a common metabolic, signaling, physiological, or
30 functional pathway so that by analyzing and identifying such commonly regulated groups of genes (groups that include the gene, or similar sequences, disclosed according to the invention, one can (a) assign known genes and novel genes to specific pathways and (b) identify specific functions and functional roles for novel genes that are grouped into pathways with

genes for which their functions are already characterized or described. For example, one might identify a group of 10 genes, at least one of which is the gene as disclosed herein, that change expression in a coordinated fashion and for which the function of one, such as the polypeptide encoded by the sequence disclosed herein, is known then the other genes are thereby implicated in a similar function or pathway and may thus play a role in the cancer-initiating or cancer-facilitating process. In the same way, if a gene were found in normal cells but not in cancer cells, or happens to be expressed at a higher level in normal as opposed to cancer cells, then a similar conclusion may be drawn as to its involvement in cancer, or other diseases. Therefore, the processes disclosed according to the present invention at once provide a novel means of assigning function to genes, i.e. a novel method of functional genomics, and a means for identifying chemical compounds that have potential therapeutic effects on specific cellular pathways. Such chemical compounds may have therapeutic relevance to a variety of diseases outside of cancer as well, in cases where such diseases are known or are demonstrated to involve the specific cellular pathway that is affected.

The polypeptides disclosed herein, preferably those of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20, also find use as vaccines in that, where the polypeptide represents a surface protein present on a cancer cell, such polypeptide may be administered to an animal, especially a human being, for purposes of activating cytotoxic T lymphocytes (CTLs) that will be specific for, and act to lyze, cancer cells in said animal. Where used as vaccines, such polypeptides are present in the form of a pharmaceutical composition. The present invention may also employ polypeptides that have the same, or similar, immunogenic character as the polypeptides of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 and thereby elicit the same, or similar, immunogenic response after administration to an animal, such as an animal at risk of developing cancer, or afflicted therewith. Thus, the polypeptides disclosed according to the invention will commonly find use as immunogenic compositions.

The present invention also relates to a process that comprises a method for producing a product comprising identifying an agent according to one of the disclosed processes for identifying such an agent (i.e., the therapeutic agents identified according to the assay procedures disclosed herein) wherein said product is the data collected with respect to said agent as a result of said identification process, or assay, and wherein said data is sufficient to convey the chemical character and/or structure and/or properties of said agent. For example, the present invention specifically contemplates a situation whereby a user of an assay of the invention may use the assay to screen for compounds having the desired enzyme modulating activity and, having identified the compound, then conveys that information (i.e., information as to structure, dosage, etc) to another user who then utilizes the information to reproduce the agent and administer it for therapeutic or research purposes according to the invention. For example, the user of the assay (user 1) may screen a number of test compounds without knowing the structure or identity of the compounds (such as where a number of code numbers are used the first user is simply given samples labeled with said code numbers) and, after performing the screening process, using one or more assay processes of the present invention, then imparts to a second user (user 2), verbally or in writing or some equivalent fashion, sufficient information to identify the compounds having a particular modulating activity (for example, the code number with the corresponding results). This transmission of information from user 1 to user 2 is specifically contemplated by the present invention.

25

The genes useful in the methods of the invention disclosed herein are genes corresponding to a polynucleotide having the sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 or 19 and represent genes that may be over-expressed in malignant cancer, such as is a gene corresponding to SEQ ID NO: 1 for lung, the latter being expressed at least three fold higher in lung cancer samples as compared to normal lung tissues. In addition, in any given sample, not all cancer cells may express this gene a substantial expression thereof in a substantial number of such cells is sufficient to warrant a determination of a cancerous, or potentially cancerous, condition.

Thus, the polynucleotide sequences disclosed according to the present invention are expressed in cancer compared to normal tissue samples or may be expressed at a higher level in cancer as compared to normal tissues.

5 Further, such polynucleotide, or gene, sequence expression in normal tissues may correlate with individuals having a family history of cancer.

Such gene sequences may play a direct role in cancer progression, such as in cancer initiation or cancer cell proliferation/survival. For example, 10 one or more genes encoding the same polypeptide as one or more of the sequences disclosed herein represent novel individual gene targets for screening and discovery of small molecules that inhibit enzyme or other cellular functions, e.g. kinase inhibitors. Such molecules represent valuable therapeutics for cancer. In addition, small molecules or agents, such as small 15 organic molecules, that down-regulate the expression of these genes in cancer would represent valuable anti-cancer therapeutics. Expression of the gene in normal tissues may indicate a predisposition towards development of lung cancer. The encoded polypeptide might represent a potentially useful cell surface target for therapeutic molecules such as cytolytic antibodies, or 20 antibodies attached to cytotoxic, or cytolytic, agents. .

It should be cautioned that, in carrying out the procedures of the present invention as disclosed herein, any reference to particular buffers, 25 media, reagents, cells, culture conditions and the like are not intended to be limiting, but are to be read so as to include all related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another 30 and still achieve similar, if not identical, results. Those of skill in the art will have sufficient knowledge of such systems and methodologies so as to be able, without undue experimentation, to make such substitutions as will optimally serve their purposes in using the methods and procedures disclosed herein.

The present invention will now be further described by way of the following non-limiting example. In applying the disclosure of the example, it should be kept clearly in mind that other and different embodiments of the methods disclosed according to the present invention will no doubt suggest themselves to those of skill in the relevant art. The following example shows how a potential anti-neoplastic agent may be identified using one or more of the genes disclosed herein.

10

EXAMPLE

SW480 cells are grown to a density of 10^5 cells/cm² in Leibovitz's L-15 medium supplemented with 2 mM L-glutamine (90%) and 10% fetal bovine serum. The cells are collected after treatment with 0.25% trypsin, 0.02% EDTA at 37°C for 2 to 5 minutes. The trypsinized cells are then diluted with 30 ml growth medium and plated at a density of 50,000 cells per well in a 96 well plate (200 µl/well). The following day, cells are treated with either compound buffer alone, or compound buffer containing a chemical agent to be tested, for 24 hours. The media is then removed, the cells lysed and the RNA recovered using the RNAeasy reagents and protocol obtained from Qiagen. RNA is quantitated and 10 ng of sample in 1 µl are added to 24 µl of Taqman reaction mix containing 1X PCR buffer, RNAsin, reverse transcriptase, nucleoside triphosphates, ampliTaq gold, tween 20, glycerol, bovine serum albumin (BSA) and specific PCR primers and probes for a reference gene (18S RNA) and a test gene (Gene X). Reverse transcription is then carried out at 48°C for 30 minutes. The sample is then applied to a Perkin Elmer 7700 sequence detector and heat denatured for 10 minutes at 95°C. Amplification is performed through 40 cycles using 15 seconds annealing at 60°C followed by a 60 second extension at 72°C and 30 second denaturation at 95°C. Data files are then captured and the data analyzed with the appropriate baseline windows and thresholds.

The quantitative difference between the target and reference gene is then calculated and a relative expression value determined for all of the samples used. This procedure is then repeated for other genes functionally related to the gene as disclosed herein and the level of function, or 5 expression, noted. The relative expression ratios for each pair of genes is determined (i.e., a ratio of expression is determined for each target gene versus each of the other genes for which expression is measured, where each gene's absolute expression is determined relative to the reference gene for each compound, or chemical agent, to be screened). The samples are then 10 scored and ranked according to the degree of alteration of the expression profile in the treated samples relative to the control. The overall expression of the particular gene relative to the controls, as modulated by one chemical agent relative to another, is also ascertained. Chemical agents having the most effect on a given gene, or set of genes, are considered the most anti- 15 neoplastic.

20

25

WHAT IS CLAIMED IS:

1. A process for identifying an agent that modulates the activity of a cancer-related gene comprising:
 - 5 (a) contacting a compound with a cell containing a gene that corresponds to a polynucleotide having a sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 and under conditions promoting the expression of said gene; and
 - (b) detecting a difference in expression of said gene relative to when
10 said compound is not present thereby identifying an agent that modulates the activity of a cancer-related gene.
2. The process of claim 1 wherein said gene has a sequence selected
15 from the group consisting of SEQ ID NO: SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.
3. The process of claim 1 wherein the cell is a cancer cell and the
difference in expression is a decrease in expression.
20
4. The process of claim 2 wherein the cell is a cancer cell and the
difference in expression is a decrease in expression.
5. A process for identifying an anti-neoplastic agent comprising
25 contacting a cell exhibiting neoplastic activity with a compound first identified as a cancer related gene modulator using a process of one of claims 1 – 4 and detecting a decrease in said neoplastic activity after said contacting compared to when said contacting does not occur.
- 30 6. The process of claim 5 wherein said neoplastic activity is accelerated cellular replication.
7. The process of claim 5 wherein said decrease in neoplastic activity results from the death of the cell.

8. A process for identifying an anti-neoplastic agent comprising administering to an animal exhibiting a cancer condition an effective amount of an agent first identified according to a process of one of claims 1-7 and detecting a decrease in said cancerous condition.

5

9. A process for determining the cancerous status of a cell, comprising determining an increase in the level of expression in said cell of at least one gene that corresponds to a polynucleotide having a sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19
10 wherein an elevated expression relative to a known non-cancerous cell indicates a cancerous state or potentially cancerous state.

10. An antibody that reacts with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 4, 6, 8,
15 10, 12, 14, 16, 18 and 20.

11. The antibody of claim 10 wherein said antibody is a monoclonal antibody.

20 12. The antibody of claim 10 wherein said antibody is a recombinant antibody.

13. The antibody of claim 10 wherein said antibody is a synthetic antibody.

25 14. The antibody of claim 10 wherein said antibody further comprises a cytotoxic agent.

30 15. The antibody of claim 14 wherein said cytotoxic agent is an apoptotic agent.

16. A process for treating cancer comprising contacting a cancerous cell with an agent having activity against an expression product encoded by a

gene sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.

17. The process of claim 16 wherein said cancerous cell is contacted *in vivo*.

18. The process of claim 16 wherein said agent has affinity for said expression product.

10 19. The process of claim 18 wherein said agent is an antibody of claim 10 – 15.

15 20. An immunogenic composition comprising a polypeptide comprising an amino acid sequence with at least 90% identity to a sequence selected from the group consisting of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 and wherein and amino acid difference results only from conservative amino acid substitutions.

21. The immunogenic composition of claim 20 wherein said percent 20 identity is at least 95%.

22. The immunogenic composition of claim 20 wherein said percent identity is at least 98%.

25 23. The immunogenic composition of claim 20 wherein said polypeptide has the sequence of a member selected from the group consisting of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.

30 24. A process for treating cancer in an animal afflicted therewith comprising administering to said animal an amount of an immunogenic composition of claim 20-23 sufficient to elicit the production of cytotoxic T lymphocytes specific for said immunogenic composition.

25. The process of claim 24 wherein said animal is a human being.

26. A process for treating a cancerous condition in an animal afflicted therewith comprising administering to said animal a therapeutically effective amount of an agent first identified as having anti-neoplastic activity using the process of claim 8.

5 27. A process for protecting an animal against cancer comprising administering to an animal at risk of developing cancer a therapeutically effective amount of an agent first identified as having anti-neoplastic activity using the process of claim 8.

10 28. A method for producing a product comprising identifying an agent according to the process of claim 1 - 8 wherein said product is the data collected with respect to said agent as a result of said process and wherein said data is sufficient to convey the chemical structure and/or properties of said agent.

15

29. An isolated polynucleotide comprising a polynucleotide having at least 95% sequence identity to a member selected from the group consisting of SEQ ID NO: 3 or the complement thereof.

20 30. The isolated polynucleotide of claim 29 wherein said polynucleotide comprises the sequence of SEQ ID NO: 3.

31. An isolated polynucleotide comprising a polynucleotide selected from the group consisting of:

25 (a) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 4, and
 (b) the complement of (a).

32. An isolated polynucleotide comprising an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO: 4 and wherein any difference in sequence identity results only from conservative amino acid substitutions.

SEQUENCE LISTING

<110> Young, Paul
Horrigan, Stephen
Weaver, Zoe
Endress, Gregory

<120> Cancer-Linked Genes as Targets for Chemotherapy

<130> 689290-79

<150> US/60/239, 294
<151> 2000-10-11

<150> US/60/239, 297
<151> 2000-10-11

<150> US/60/239, 605
<151> 2000-10-11

<150> US/60/239, 802
<151> 2000-10-12

<150> US/60/239, 805
<151> 2000-10-12

<150> US/60/239, 806
<151> 2000-10-12

<150> US/60/240, 622
<151> 2000-10-16

<150> US/60/241, 682
<151> 2000-10-19

<150> US/60/241, 723
<151> 2000-10-19

<150> US/60/244, 932
<151> 2000-10-31

<160> 21

<170> PatentIn version 3.0

<210> 1
<211> 1934
<212> DNA
<213> Homo sapiens

<400> 1
ctgtcattca tgctttggaa aagtttactg tatatacatt agacattcct gttcttttg 60
gagtttagtac tacatccct gaagaaacat gtgcccgagg tattcgtgaa gctaagagaa 120
cagcaccaag tatagtgtat gttcctcata tccacgtgtg gtgggaaaata gttggaccga 180
cacttaaagc cacatttacc acattattac agaatattcc ttcatttgc ccagtttac 240
tacttgcaac ttctgacaaa ccccatccg cttgccaga agaggtgcaa gaattgttta 300
tccgtgatta tggagagatt tttaatgtcc agttaccgga taaagaagaa cgacaaaaat 360
tttttgaaga tttaattcta aaacaagctg ctaagcctcc tatatcaaaa aagaaagcag 420

ttttgcaggc	tttggaggta	ctcccaactg	caccaccacc	tgagccaaga	tcaactgacag	480
cagaagaagt	gaaacgacta	gaagaacaag	aagaagatac	atttagagaa	ctgaggattt	540
tcttaagaaa	tgttacacat	aggcttgcta	ttgacaagcg	attccgagtg	tttactaagc	600
ctgttgcacc	tgatgagggtt	cctgattatg	tcaactgtaat	aaagcaacca	atggaccttt	660
catctgtaat	cagtaaaatt	gatctacaca	agtatctgac	tgtgaaagac	tatggagag	720
atattgtatct	aatctgttagt	aatgcottag	aatacaatcc	agatagagat	cctggagatc	780
gtcttattag	gcatagagcc	tgtgcttaa	gagatactgc	ctatgccata	attaaagaag	840
aacttgcgtga	agactttgag	cagctctgt	aagaaattca	ggaatctaga	aagaaaagag	900
gttgttagctc	ctccaaatat	gccccgtt	actaccatgt	gatgccaaag	caaattccca	960
ctcttgg	tgataaaaaga	tcagaccagg	agcagaatga	aaagctaaag	acaccgagta	1020
ctcctgtggc	ttgcagca	cctgctcagt	tgaagaggaa	aattcgc	aaactcaact	1080
ggtaacttgg	caccataaaa	aagcgaagga	agatttcaca	ggcaaaaggat	gatagccaga	1140
atgcccata	tcacaaaatt	gagagtgata	cagaggaaac	tcaagacaca	agtgttagatc	1200
ataatgagac	cggaaacaca	ggagagtctt	cgtgtggaa	aatgaaaaaa	cagcaaattg	1260
cctctgaaag	caaactggaa	ttgagaaata	atccaaatac	ttgtaatata	gagaatgagc	1320
ttgaagactc	taggaagact	acagcatgt	cagaattgag	agacaagatt	gcttgtatg	1380
gagatgcttc	tagctctcg	ataatacata	tttctgtatg	aatgaagga	aaagaaatgt	1440
gtgttctgcg	aatgactcg	gctagacgtt	cccaggtaga	acagcagcag	ctcatca	1500
ttgaaaaggc	tttggcaatt	ctttctcagc	ctacaccctc	acttgttg	gatcatgagc	1560
gattaaaaaa	tcttttgaag	actgttgtt	aaaaaaagtca	aaactacaac	atatttcagt	1620
tggaaaattt	gtatgcagta	atcagccaaat	gtatttatcg	gcatgc	caag gaccatgata	1680
aaacatca	tattcagaaa	atggagcaag	aggttagaaaa	cttcagttgt	tccagatgt	1740
gatgtcatgg	tatcgagtt	tctttatatt	cagttccatat	ttaagt	catt tttgtcatgt	1800
ccgcctaatt	gatgttagat	gaaaccctgc	atctttaagg	aaaagattaa	aatgtaaaa	1860
taaaagtatt	taaactttcc	tgatatttt	gtacatatta	agataaatgt	catgtgtaa	1920
ataactgata	aata					1934

<210> 2
<211> 362
<212> PRT
<213> Homo sapiens

<400> 2
Met Asp Leu Ser Ser Val Ile Ser Lys Ile Asp Leu His Lys Tyr Leu
1 5 10 15

Thr Val Lys Asp Tyr Leu Arg Asp Ile Asp Leu Ile Cys Ser Asn Ala
 20 25 30

Leu Glu Tyr Asn Pro Asp Arg Asp Pro Gly Asp Arg Leu Ile Arg His
35 40 45

Arg Ala Cys Ala Leu Arg Asp Thr Ala Tyr Ala Ile Ile Lys Glu Glu
50 55 .60

Leu Asp Glu Asp Phe Glu Gln Leu Cys Glu Glu Ile Gln Glu Ser Arg
65 70 75 80

Lys Lys Arg Gly Cys Ser Ser Ser Lys Tyr Ala Pro Ser Tyr Tyr His
85 90 95

Val Met Pro Lys Gln Asn Ser Thr Leu Val Gly Asp Lys Arg Ser Asp
100 105 110

Pro Glu Gln Asn Glu Lys Leu Lys Thr Pro Ser Thr Pro Val Ala Cys
115 120 125

Ser Thr Pro Ala Gln Leu Lys Arg Lys Ile Arg Lys Lys Ser Asn Trp

130	135	140													
Tyr	Leu	Gly	Thr	Ile	Lys	Lys	Arg	Arg	Lys	Ile	Ser	Gln	Ala	Lys	Asp
145					150				155					160	
Asp	Ser	Gln	Asn	Ala	Ile	Asp	His	Lys	Ile	Glu	Ser	Asp	Thr	Glu	Glu
					165				170				175		
Thr	Gln	Asp	Thr	Ser	Val	Asp	His	Asn	Glu	Thr	Gly	Asn	Thr	Gly	Glu
					180			185			190				
Ser	Ser	Val	Glu	Glu	Asn	Glu	Lys	Gln	Gln	Asn	Ala	Ser	Glu	Ser	Lys
					195		200			205					
Leu	Glu	Leu	Arg	Asn	Asn	Ser	Asn	Thr	Cys	Asn	Ile	Glu	Asn	Glu	Leu
					210		215			220					
Glu	Asp	Ser	Arg	Lys	Thr	Thr	Ala	Cys	Thr	Glu	Leu	Arg	Asp	Lys	Ile
					225		230			235			240		
Ala	Cys	Asn	Gly	Asp	Ala	Ser	Ser	Ser	Gln	Ile	Ile	His	Ile	Ser	Asp
					245			250			255				
Glu	Asn	Glu	Gly	Lys	Glu	Met	Cys	Val	Leu	Arg	Met	Thr	Arg	Ala	Arg
					260			265			270				
Arg	Ser	Gln	Val	Glu	Gln	Gln	Leu	Ile	Thr	Val	Glu	Lys	Ala	Leu	
					275		280			285					
Ala	Ile	Leu	Ser	Gln	Pro	Thr	Pro	Ser	Leu	Val	Val	Asp	His	Glu	Arg
					290		295			300					
Leu	Lys	Asn	Leu	Leu	Lys	Thr	Val	Val	Lys	Ser	Gln	Asn	Tyr	Asn	
					305		310			315			320		
Ile	Phe	Gln	Leu	Glu	Asn	Leu	Tyr	Ala	Val	Ile	Ser	Gln	Cys	Ile	Tyr
					325				330			335			
Arg	His	Arg	Lys	Asp	His	Asp	Lys	Thr	Ser	Leu	Ile	Gln	Lys	Met	Glu
					340			345			350				
Gln	Glu	Val	Glu	Asn	Phe	Ser	Cys	Ser	Arg						
					355		360								
<210>	3														
<211>	1274														
<212>	DNA														
<213>	Homo sapiens														
<400>	3														
cacgaggcag	actgaagatt	gtggcttggt	attcacaggc	aggtttcaga	catttagatc									60	
tttcttttaa	tgactaacac	catgccttac	tgtggagaag	ctggcaacat	gtcacacac									120	
gaaattgttt	ttcaacatta	atactattat	ttggcagtaa	tccagattgc	tttgccacc									180	
aacctgaa	cata>tagagg	cagaaggaca	ggaataattc	tatttgttc	ctgttttgaa									240	
acttccatct	gtaaggctat	caaaaggaga	tgtgagagag	ggtatttgagt	ctggcctgac									300	
aatgcagttc	ttaaacccaaa	ggtccattat	gcttctcctc	tctgagaatc	ctgacttacc									360	
tcaacaacgg	agacatggca	cagtagccag	cttggagact	tctcagccaa	tgtcttgaga									420	
tcaagtgc	gacccaatat	acagggtttt	gagctcatct	tcatcattca	tatgaggaaa									480	
taagtggtaa	aatcatttggaa	aatacaatga	gactcatcag	aaacatttac	atattttgtta									540	

gtattgttat gacagcagag	ggtgatgctc	cagagctgcc	agaagaaaagg	gaactgatga	600
ccaaactgctc	caacatgtct	ctaagaaaagg	ttcccgaga	ttgacccca	660
cactggattt	atccataac	ctccttttc	aactccagag	ttcagatttt	720
ccaaactgag	agtttgatt	ctatgccata	acagaattca	acagctggat	780
ttgaattcaa	caaggagta	agatatttag	atttgtctaa	taacagactg	840
cttggatttt	actggcaggt	ctcaggtatt	tagattttc	tttaatgac	900
tgcctatctg	tgaggaagct	ggcaacatgt	cacacctgga	aatcctaggt	960
aaaaataca	aaaatcagat	ttccagaaaa	ttgctcatct	gcatctaaat	1020
taggattcag	aactttcct	cattatgaag	aagtgcct	gccccatctt	1080
aactgcacat	tgttttacca	atggacacaa	atttctgggt	tctttgcgt	1140
agacttcaaa	aatatttagaa	atgacaata	tagatggcaa	aagccaaattt	1200
aatatgcacg	aatatcttagt	ttagaacatg	ctaagacatc	ggttctattt	1260
ttgatttact	ctgg				1274

<210> 4
<211> 256
<212> PRT
<213> Homo sapiens

<400> 4
Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met Thr
1 5 10 15

Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu Met Thr
20 25 30

Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp Leu Thr Pro
35 40 45

Ala Thr Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu Phe Gln Leu Gln
50 55 60

Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg Val Leu Ile Leu Cys
65 70 75 80

His Asn Arg Ile Gln Gln Leu Asp Leu Lys Thr Phe Glu Phe Asn Lys
85 90 95

Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr
100 105 110

Trp Tyr Leu Leu Ala Gly Leu Arg Tyr Leu Asp Leu Ser Phe Asn Asp
115 120 125

Phe Asp Thr Met Pro Ile Cys Glu Glu Ala Gly Asn Met Ser His Leu
130 135 140

Glu Ile Leu Gly Leu Ser Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln
145 150 155 160

Lys Ile Ala His Leu His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr
165 170 175

Leu Pro His Tyr Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys
180 185 190

Leu His Ile Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg
195 200 205

Asp Gly Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly
 210 215 220

Lys Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu
 225 230 235 240

His Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu Trp
 245 250 255

<210> 5

<211> 814

<212> DNA

<213> Homo sapiens

<400> 5

agaatcccg	acagccctgc	tccctgcagc	caggtgttagt	ttcgggagcc	actggggcca	60
aagttagat	ccagcggtct	tccagcgctt	ggccacggc	ggcgccctg	ggagcagagg	120
tggagcgacc	ccattacgct	aaagatgaaa	ggctggggtt	ggctggccct	gcttctgggg	180
gccctgtgg	gaaccgcctg	ggctcgagg	agccaggatc	tccactgtgg	agcatgcagg	240
gctctgg	atgaactaga	atggaaatt	gcccaggtgg	accccaagaa	gaccattcag	300
atgggatctt	tccggatcaa	tccagatggc	agccagtcag	tggtgaggt	gccttatgcc	360
cgctcagagg	cccacctcac	agagctgtc	gaggagatat	gtgaccggat	gaaggagttat	420
ggggAACAGA	ttgatccttc	caccatcgc	aagaactacg	tacgtgttagt	ggccggaaat	480
ggagaatcca	gtgaactgga	cctacaaggc	atccgaatcg	actcagatata	tagcggcacc	540
ctcaagtttgc	cgtgtgagag	cattgtggag	gaatacggagg	atgaactcat	tgaattcttt	600
tcccggaggg	ctgacaatgt	taaagacaaa	cttgcagta	agcgaacaga	tctttgtgac	660
catgcccgc	acatatcgca	tgatgagcta	tgaaccactg	gagcagccca	cactggcttg	720
atggatcacc	cccaggaggg	gaaaatggtg	gcaatgcctt	ttatatatta	tgttttact	780
gaaaattaact	gaaaaatata	gaaaccaaaaa	gtac			814

<210> 6

<211> 182

<212> PRT

<213> Homo sapiens

<400> 6

Met Lys Gly Trp Gly Trp Leu Ala Leu Leu Leu Gly Ala Leu Leu Gly						
1	5	10	15			

Thr Ala Trp Ala Arg Arg Ser Gln Asp Leu His Cys Gly Ala Cys Arg						
20	25	30				

Ala Leu Val Asp Glu Leu Glu Trp Glu Ile Ala Gln Val Asp Pro Lys						
35	40	45				

Lys Thr Ile Gln Met Gly Ser Phe Arg Ile Asn Pro Asp Gly Ser Gln						
50	55	60				

Ser Val Val Glu Val Pro Tyr Ala Arg Ser Glu Ala His Leu Thr Glu						
65	70	75	80			

Leu Leu Glu Glu Ile Cys Asp Arg Met Lys Glu Tyr Gly Glu Gln Ile						
85	90	95				

Asp Pro Ser Thr His Arg Lys Asn Tyr Val Arg Val Val Gly Arg Asn						
100	105	110				

Gly Glu Ser Ser Glu Leu Asp Leu Gln Gly Ile Arg Ile Asp Ser Asp

115

120

125

Ile Ser Gly Thr Leu Lys Phe Ala Cys Glu Ser Ile Val Glu Glu Tyr
 130 135 140

Glu Asp Glu Leu Ile Glu Phe Phe Ser Arg Glu Ala Asp Asn Val Lys
 145 150 155 160

Asp Lys Leu Cys Ser Lys Arg Thr Asp Leu Cys Asp His Ala Leu His
 165 170 175

Ile Ser His Asp Glu Leu
 180

<210> 7

<211> 1597

<212> DNA

<213> Homo sapiens

<400> 7

gcggccgctg	cgccgcaaac	tcgtgtggga	cgcaccgctc	cagccgccc	cgggccagcg	60
caccggtccc	ccagcggcag	ccgagccc	ccgcgcgc	ttcgtgc	cgtgaggctg	120
gcatgcagga	tggcaggaca	gcccggcac	atgc	gagggagt	caacaac	180
tgc	ccccatg	gacccacaga	ggc	atccaa	cacgctgt	240
tttcgctgt	cgctggc	cttccagatc	gaaaaga	taggccc	agg acagttc	300
gagggttaca	aggccac	ctgtggac	aggaagac	tggctctgaa	gaaggtgc	360
atcttgaga	tgtggac	caaggcgagg	caggactgt	tcaaggagat	cggcctt	420
aagcaactga	accacccaaa	tatcatcaag	tattggact	cgtttatcga	agacaac	480
ctgaacattt	tgc	ggctgacgca	ggggac	cgcagatgat	caagtactt	540
aagaagcaga	agcggctcat	cccgaggagg	acat	ttgt	gcagctgt	600
agcgcgtgg	agcacatgca	ttcacggc	gtgatgc	gagacatcaa	gcctgcca	660
gtgttcatca	cagccacgg	cgtcgta	ctcggtg	ttgg	ccgcttctt	720
agctctgaga	ccaccgc	ccactcc	gtgggac	cctactacat	gtcaccgg	780
aggatccatg	agaacggcta	caacttca	tccgacat	gtt	ctgtctgt	840
tacgagatgg	cagcccttca	gagccctt	tatggagata	agatgaat	cttctcc	900
tgccagaaga	tgcgacgt	tgactac	ccactcc	gggagcacta	ctccgaga	960
ttacgagaac	tggcagcat	gtgc	ctgac	ttgg	ccgcttctt	1020
tacgtgcacc	agg	ccac	atctggat	ccagcac	ctgtctgt	1080
caccgtgc	tatcaaagcc	agcacc	tgcttact	gagtc	ctcttc	1140
ggccac	ttgg	tagcctagaa	cagctaa	gtt	cgagat	1200
gcccagc	acagcagat	ctgaaggc	acagctg	ggagg	ccaaaagg	1260
tcactgttgg	tca	aagtcc	tttatact	gac	ggcgc	1320
tcaataaggg	cagg	tttcc	tgatctgt	gg	ccat	1380
aatctttagg	gtattc	agcgagcc	ggagcc	gggg	gtt	1440
gagaccgtgt	gtt	tttcc	tgtatctt	gggg	ttt	1500
tcttgtatc	tttcaatca	agctgtgt	ttaat	ttt	ttt	1560
gaaaatcatt	ttttccgt	aaaaaaa	aaaaaa	aaaaaa	aaaaaa	1597

<210> 8

<211> 306

<212> PRT

<213> Homo sapiens

400> 8

Met Pro His Gly Gly Ser Ser Asn Asn Leu Cys His Thr Leu Gly Pro
 1 5 10 15

Val His Pro Pro Asp Pro Gln Arg His Pro Asn Thr Leu Ser Phe Arg

20	25	30
Cys Ser Leu Ala Asp Phe Gln Ile Glu Lys Lys Ile Gly Arg Gly Gln		
35	40	45
Phe Ser Glu Val Tyr Lys Ala Thr Cys Leu Leu Asp Arg Lys Thr Val		
50	55	60
Ala Leu Lys Lys Val Gln Ile Phe Glu Met Met Asp Ala Lys Ala Arg		
65	70	75
Gln Asp Cys Val Lys Glu Ile Gly Leu Leu Lys Gln Leu Asn His Pro		
85	90	95
Asn Ile Ile Lys Tyr Leu Asp Ser Phe Ile Glu Asp Asn Glu Leu Asn		
100	105	110
Ile Val Leu Glu Leu Ala Asp Ala Gly Asp Leu Ser Gln Met Ile Lys		
115	120	125
Tyr Phe Lys Lys Gln Lys Arg Leu Ile Pro Glu Arg Thr Val Trp Lys		
130	135	140
Tyr Phe Val Gln Leu Cys Ser Ala Val Glu His Met His Ser Arg Arg		
145	150	155
Val Met His Arg Asp Ile Lys Pro Ala Asn Val Phe Ile Thr Ala Thr		
165	170	175
Gly Val Val Lys Leu Gly Asp Leu Gly Leu Gly Arg Phe Phe Ser Ser		
180	185	190
Glu Thr Thr Ala Ala His Ser Leu Val Gly Thr Pro Tyr Tyr Met Ser		
195	200	205
Pro Glu Arg Ile His Glu Asn Gly Tyr Asn Phe Lys Ser Asp Ile Trp		
210	215	220
Ser Leu Gly Cys Leu Leu Tyr Glu Met Ala Ala Leu Gln Ser Pro Phe		
225	230	235
Tyr Gly Asp Lys Met Asn Leu Phe Ser Leu Cys Gln Lys Ile Glu Gln		
245	250	255
Cys Asp Tyr Pro Pro Leu Pro Gly Glu His Tyr Ser Glu Lys Leu Arg		
260	265	270
Glu Leu Val Ser Met Cys Ile Cys Pro Asp Pro His Gln Arg Pro Asp		
275	280	285
Ile Gly Tyr Val His Gln Val Ala Lys Gln Met His Ile Trp Met Ser		
290	295	300
Ser Thr		
305		
<210> 9		
<211> 6780		
<212> DNA		

<213> Homo sapiens

<220>

<221> misc_feature
<223> n=a,t,g or c

<400> 9					
gggcgggct gaggcgcg	ggggcgggcc	gccc gagctg	ggagggcggc	ggccgcgagg	60
ggaggagac gccccatgga	cccgcgggc	ccgcgcggcc	agactctcg	ccgtcgggac	120
ggagcccaag atgtcgcc	aggccgggc	gcgacgacgc	ggacggggcg	gcgaggaggc	180
gcccgtctg cccgggctcg	cagccgcca	gccccggagg	gcgcgcctg	acggactggc	240
cgagccgac gtgagaggcc	ggcgcgtctg	gagcgggccc	cgccgcacca	tgtcgccaa	300
ggtgccgctc aagaagctgg	agcagctgt	cctggacggg	ccctggcgca	acgagagcgc	360
cctgagcgctg gaaacgctgc	tcgacgtct	cgtctgcctg	tacaccgagt	gcagccactc	420
ggccctgcgc cgcgacaagt	acgtggccga	gttctcgag	tgggctaaac	cattacaca	480
gctggtaaaa gaaatgcagc	ttcatcgaga	agactttgaa	ataattaaag	taatttggaaag	540
aggtgctttt ggtgaggtt	ctgttgtcaa	aatgaagaat	actgaacgaa	tttatgcaat	600
gaaaatcctc aacaagtggg	agatgctgaa	aagagcagag	accgcgtgt	tccgagagga	660
gcccgtatgt ctgtgaacg	gcgactgcca	gtggatcacc	gcgcgtcact	acgccttca	720
ggacgagaac cacctgtact	tagtcatgga	ttactatgtg	gttggtgatt	tactgaccct	780
gctcagcaaa ttgaagaca	agcttccgga	agatatggcg	aggttctaca	tttggtaaat	840
ggtgcgtggcc attgactcca	tccatcagct	tcattacgtg	cacagagaca	ttaaacctga	900
caatgtcctt ttggacgtga	atggtcata	ccgcctggct	gactttggat	catgtttgaa	960
gatgaatgat gatggactg	tgcagtcc	cgtggccgt	ggcacacctg	actacatctc	1020
gcccggagatc ctgcaggcg	tggaggacgg	catgggcaaa	tacgggcctg	agtgtgactg	1080
gtggtctctg ggtgtctgca	tgtatgagat	gctctatgg	gaaacggcgt	tttatgcgga	1140
gtcactcg	gagacctatg	ggaagatcat	gaaccatgaa	gagcgattcc	1200
ccatgtcactg	gatgtatctg	aagaagcgaa	ggacacctatc	cagagactga	1260
agaacgcgg	ctggggcaga	atggaataga	ggatttcaaa	aagcatgcgt	1320
tctaaatgg gaaaatatac	gaaaccttaga	agcaccttat	attcctgatg	tgagcagtcc	1380
ctctgacaca tccaaactcg	acgtggatga	cgacgtctg	agaaaacacgg	aaatattacc	1440
tcctggttct cacacaggct	tttctggatt	acatttgcca	ttcatttgg	ttacattcac	1500
aacggaaagc tgttttctg	atcgaggctc	tctgaagagc	ataatgcgt	ccaacacatt	1560
aaccaaagat gaggatgtgc	agcgggac	ggagcacagc	ctgcagatgg	aagcttacga	1620
gaggaggatt cggaggctgg	aacaggagaa	gctggagctg	agcaggaagc	tgcagagtc	1680
cacccagacc gtgcagtccc	tccacggctc	atctcgcc	ctcagcaatt	caaaccgaga	1740
taaagaatc aaaaagctaa	atgaagaaat	cgaacgctt	aagaataaaa	tagcagattc	1800
aaacaggctg gagcgacagc	ttgaggacac	agtggcgctt	cgccaaagagc	gtgaggactc	1860
cacgcagcgg ctgcgggggc	tggagaagca	gcacccgcgt	gtccggcagg	agaaggagga	1920
gctgcacaag caactgggt	aagcctcaga	gcgttggaaa	tcccagccca	aggaactcaa	1980
agatgcccatt cagcagcgaa	agctggccct	gcaggagttc	tcggagctga	acgagcgcatt	2040
ggcagagctc cgtgcccaga	agcagaaggt	gtccggcag	ctgcagac	aggaggagga	2100
gatggaggtg gccacgcaga	aggtggacgc	catgcggcag	gaaatgcgga	gagctgagaa	2160
gctcaggaaa gagctggaa	ctcagcttga	tgtgctgtt	gctgaggcct	ccaaggagcg	2220
caagcttctg gacacagcg	agaacttctg	caagcaaatt	gaaagcgagc	tggaggccct	2280
caaggtgaag caaggaggcc	ggggagcggg	tgccaccta	gagcaccagc	aagagatttc	2340
caaaaatcaa tccgagctgg	agaagaaatg	cttattttat	gaagagaaat	tgtcagacg	2400
tgaggccctcc catgtcgtag	aagtggaaaa	tgtgaagaag	gaggtgcatt	attcagaaag	2460
ccaccagctg gccctgcaga	aagaaatctt	gatgttggaaa	gataagttt	aaaagtcaaa	2520
gcgagaacgg cataacgaga	tggaggaggc	agtaggtaca	ataaaagata	aatacgaacg	2580
agaaaagagcg atgtcggtt	atgaaaacaa	gaagctact	gctgaaaatg	aaaagctctg	2640
ttcccttctg gataaactca	cagctaaaa	tagacagctg	gaggatgagc	tgcaggatct	2700
ggcagccaag aaggagtcag	tggccactg	ggaagctcag	attgcgaaa	tcattcagtg	2760
ggtcagtgc gagaagat	cccggtt	ccttcaagct	tttgcttcca	agatgaccga	2820
agagctcgag gctttaggaa	gttcttagt	gggtcaaga	acactggacc	cgctgtggaa	2880
ggtgccgcgc agccagaagc	tggacatgtc	cgccgcggct	gagctgcagt	cgccctgg	2940
ggcggagatc cggccaaagc	agcttgc	ggaggagctc	aggaaggcata	aggacgc	3000
cctcacctt gaaagcaaac	taaaggattc	cgaagccaa	aacagagaat	tattagaaga	3060
aatggaaatt ttgaagaaaa	agatggaa	aaaattcaga	gcagatactg	ggctcaact	3120

tccagattt caggattcca tttttgagta tttcaacact gtcctcttg cacatgacct	3180
gacatttaga accagctcg ctatgtggca agaaacacaa gtcgcgaagc cagaagcgctc	3240
cccgctcgatg tctgtggctg catcagagca gcaggaggac atggctcgcc ccccgagag	3300
gccatccgct gtgccttgc ccaccacga ggcctgggtt ctggctggac cgaagccaaa	3360
agctcaccag ttcatcgatca agtccttctc cagccctact cagtgcagcc actgcacctc	3420
cctgtatgggtt gggctgatcc ggcaggccta cgccctgcgag gtgtgttccct ttgttgtcca	3480
cgtgtcctgc aaagacgggt ccccccaagggt gtgcccataa cctcccgagc agtccaagag	3540
gcctctgggc gtggacgtgc agcgaggcat cggAACAGCC tacaaaggcc atgtcaagg	3600
cccaaagccc acgggggtga agaagggtat gcagcgcgc tatgcagtgc tctgtgagtg	3660
caagctttc ctgtatgtatc tgcctgaagg aaaatccacc cagcctgggt tcattgcgag	3720
ccaagtctt gatctcagag atgacgagtt ttccgtgagc tcagtcctgg cctcagatgt	3780
cattcatgtc acaccccgag atattccatg tatattcagg gtgacggcct ctctctttagg	3840
tgcacccctt aagaccagct cgctgctat tctgacagaa aatgagaatg aaaagaggaa	3900
gtgggttggg attctagaag gactccagtc catccctcat aaaaacccgc tgaggaatca	3960
ggtcgtgcat gttcccttgg aaggctacga cagctcgctg cctctcatca aggccatcct	4020
gacagctgcc atcgtggatg cagacaggat tgcagtcggc ctagaagaag ggctctatgt	4080
catagagtc accccagatg tgatcgctcg tgccgctgac tgtaagaagg tacaccagat	4140
cgagcttgc cccagggaga agatcgtaat cctcctctgt ggcggaaacc accatgtgca	4200
cctctatccg tggctgtccc ttgatggagc ggaaggcagc tttgacatca agcttccgga	4260
aaccaaaggc tgccagctca tggccacggc cacactcaag aggaactctg gcacccgcct	4320
gtttgtggcc gtgaaaacggc tgatccttgc ttagatgtc cagagaacga agccattcca	4380
cagaaaaggc aatgagattg tggctccgg cagcgtgcag tgcctggcg tgctcaggga	4440
caggctctgt gtgggctacc cttctgggtt ctgcctgctg agcatccagg gggacgggca	4500
gcctctaaac ctggtaaattc ccaatgaccc ctgccttgcg ttcccttcac aacagtcttt	4560
tgatccctt tggctgtgg agctcgaaag cgaggagtagt ctgctttgtc tcagccacat	4620
gggactgtac gtggacccgc aaggccggag ggcacgcgcg caggagctca tggccctgc	4680
ggctcctgtc gcctgttagt gcagccccac ccacgtcactg gtgtacagcg agtatggcgt	4740
ggacgtctt gatgtgcgc ccattggatg ggtgcagacc atcggctgc ggaggataag	4800
gccccctgaac tctgaaggca ccctcaaccc cctcaactgc gaggctccac gtttgcata	4860
cttcaagagc aagttctcg gacgggttcc caacgtgcgg gacaccccg acaacagcaa	4920
gaagcagatg ctgcgcacca ggagcaaaag gcggttcgcc ttcaaggtcc cagaggaaga	4980
gagactgcag cagaggcggag agatgcttag agacccagaa ttgagatcca aaatgatatc	5040
caacccaaacc aacttcaacc acgtggccca catggggcca ggcacggca tgcaggtgct	5100
catggacctg cctctgtggt ctgtgcccccc ctcccaggag gaaaggccgg gccccgtcc	5160
caccaacccg gctcgccagc ctccatccag gaacaagccc tacatctcg ttcccttcac	5220
agggtggatcg gagccttagcg tgactgtgcc tctgagaagt atgtctgtc cagaccagg	5280
ctttgacaaa gagcctgatt cggactccac caaacactca actccatcga atagctccaa	5340
ccccagccgc ccacccgagcc ccaactcccccc ccacaggagc cagctcccccc tgcaggccct	5400
ggagcagccg gcctgtgaca ctcgaagccg ccagctcgcc acagggccca gggagctgg	5460
gatggccctcc agcgtcactg ccaagactga gcggggccctc cagtgttgc caaggaaatg	5520
tagaatact ttgttagatg ggagatgaag aagacaaatc ttattataa tattgtatcg	5580
ttttatgtccg cattgttcgt ggcagtagac cacatctgtt cgtctgcaca gctgtgaggc	5640
gatgctgttc catctgcaca tgaaggaccc ccatacagcc tgcctccac ccctgacaaac	5700
ccgagagggc atatggggcc ctgccaacac cacttcctca gcagaaaccc gtcatgacgc	5760
ggctgcttcg gaagcagacca tctggggaca cagcctcactt acccagttt ttcccttagtt	5820
cctgaaactt tccttaggacc ttaagagaat agtaggaggt cctatagcat tcccagtgtc	5880
actagaattt tgaagacagg aaagtggagg ttatgttgcgc gcctttttt catttagcca	5940
ttgcacagtc agtgcagaa gtcctgtga ccacctagtc atggacaaag gcccaggacc	6000
agtgcacacc tgcgtccctg tgcgtttaa gtcattctg gtcgcagcc atgaagtgtc	6060
accagtatct actactgtga agtcagctgt gctgtttcc attcgcttcc acggcttctg	6120
cctctgtcca taaaaccgc gatgtcgatg gtgcaggcag gcccgtggc ctgtgggtt	6180
gagggaaatgc agagccccag ggcgcacga agcagccact gggataaccc accccgcccc	6240
gcccccccccc cccccccccc cagtcnagncc cggaaatggc gccccgtga ttatgtaccc	6300
gtatgtatcg gtagacccac ccaacacact ctcgcacact ggcggccgc cacggcacag	6360
caatccctcg cgcgtggatt tcacccctacc ctttgtacca gatgttgatg gaccagctct	6420
gtggccctgt gtgcgtcagag gtcgttgatt aactgtggcg gcagacacag ctgtccaca	6480
gcttggggcca ggcttccct gtcctccac cggcggctg cttggcaagg ctgttcagga	6540
cgtgcacttc cccaaatgcgg cactgagttgg cccagcacca ctcggccctg ccacccact	6600
ccccctctgg gcctctgtc ggtggccac ctgggggtt ctggttttt actttttaa	6660

tgtaagtctc agtctttgtt attaattattt gaatttgtgag aacattttg aacaatttac 6720
 ctgtcaataa agcagaagac ggcagttta aagttaaaaaa aaaaaaaaaaaa 6780

<210> 10
<211> 1711
<212> PRT
<213> Homo sapiens

<400> 10
Met Ser Ala Lys Val Arg Leu Lys Lys Leu Glu Gln Leu Leu Leu Asp
1 5 10 15

Gly Pro Trp Arg Asn Glu Ser Ala Leu Ser Val Glu Thr Leu Leu Asp
20 25 30

Val Leu Val Cys Leu Tyr Thr Glu Cys Ser His Ser Ala Leu Arg Arg
35 40 45

Asp Lys Tyr Val Ala Glu Phe Leu Glu Trp Ala Lys Pro Phe Thr Gln
50 55 60

Leu Val Lys Glu Met Gln Leu His Arg Glu Asp Phe Glu Ile Ile Lys
65 70 75 80

Val Ile Gly Arg Gly Ala Phe Gly Glu Val Ala Val Val Lys Met Lys
85 90 95

Asn Thr Glu Arg Ile Tyr Ala Met Lys Ile Leu Asn Lys Trp Glu Met
100 105 110

Leu Lys Arg Ala Glu Thr Ala Cys Phe Arg Glu Glu Arg Asp Val Leu
115 120 125

Val Asn Gly Asp Cys Gln Trp Ile Thr Ala Leu His Tyr Ala Phe Gln
130 135 140

Asp Glu Asn His Leu Tyr Leu Val Met Asp Tyr Tyr Val Gly Gly Asp
145 150 155 160

Leu Leu Thr Leu Leu Ser Lys Phe Glu Asp Lys Leu Pro Glu Asp Met
165 170 175

Ala Arg Phe Tyr Ile Gly Glu Met Val Leu Ala Ile Asp Ser Ile His
180 185 190

Gln Leu His Tyr Val His Arg Asp Ile Lys Pro Asp Asn Val Leu Leu
195 200 205

Asp Val Asn Gly His Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Lys
210 215 220

Met Asn Asp Asp Gly Thr Val Gln Ser Ser Val Ala Val Gly Thr Pro
225 230 235 240

Asp Tyr Ile Ser Pro Glu Ile Leu Gln Ala Met Glu Asp Gly Met Gly
245 250 255

Lys Tyr Gly Pro Glu Cys Asp Trp Trp Ser Leu Gly Val Cys Met Tyr

260	265	270
Glu Met Leu Tyr Gly Glu Thr Pro Phe Tyr Ala Glu Ser Leu Val Glu		
275	280	285
Thr Tyr Gly Lys Ile Met Asn His Glu Glu Arg Phe Gln Phe Pro Ser		
290	295	300
His Val Thr Asp Val Ser Glu Glu Ala Lys Asp Leu Ile Gln Arg Leu		
305	310	315
Ile Cys Ser Arg Glu Arg Arg Leu Gly Gln Asn Gly Ile Glu Asp Phe		
325	330	335
Lys Lys His Ala Phe Phe Glu Gly Leu Asn Trp Glu Asn Ile Arg Asn		
340	345	350
Leu Glu Ala Pro Tyr Ile Pro Asp Val Ser Ser Pro Asp Thr Ser		
355	360	365
Asn Phe Asp Val Asp Asp Val Leu Arg Asn Thr Glu Ile Leu Pro		
370	375	380
Pro Gly Ser His Thr Gly Phe Ser Gly Leu His Leu Pro Phe Ile Gly		
385	390	395
Phe Thr Phe Thr Thr Glu Ser Cys Phe Ser Asp Arg Gly Ser Leu Lys		
405	410	415
Ser Ile Met Gln Ser Asn Thr Leu Thr Lys Asp Glu Asp Val Gln Arg		
420	425	430
Asp Leu Glu His Ser Leu Gln Met Glu Ala Tyr Glu Arg Arg Ile Arg		
435	440	445
Arg Leu Glu Gln Glu Lys Leu Glu Leu Ser Arg Lys Leu Gln Glu Ser		
450	455	460
Thr Gln Thr Val Gln Ser Leu His Gly Ser Ser Arg Ala Leu Ser Asn		
465	470	475
Ser Asn Arg Asp Lys Glu Ile Lys Lys Leu Asn Glu Glu Ile Glu Arg		
485	490	495
Leu Lys Asn Lys Ile Ala Asp Ser Asn Arg Leu Glu Arg Gln Leu Glu		
500	505	510
Asp Thr Val Ala Leu Arg Gln Glu Arg Glu Asp Ser Thr Gln Arg Leu		
515	520	525
Arg Gly Leu Glu Lys Gln His Arg Val Val Arg Gln Glu Lys Glu Glu		
530	535	540
Leu His Lys Gln Leu Val Glu Ala Ser Glu Arg Leu Lys Ser Gln Ala		
545	550	555
Lys Glu Leu Lys Asp Ala His Gln Gln Arg Lys Leu Ala Leu Gln Glu		
565	570	575

Phe Ser Glu Leu Asn Glu Arg Met Ala Glu Leu Arg Ala Gln Lys Gln
 580 585 590

 Lys Val Ser Arg Gln Leu Arg Asp Lys Glu Glu Glu Met Glu Val Ala
 595 600 605

 Thr Gln Lys Val Asp Ala Met Arg Gln Glu Met Arg Arg Ala Glu Lys
 610 615 620

 Leu Arg Lys Glu Leu Glu Ala Gln Leu Asp Asp Ala Val Ala Glu Ala
 625 630 635 640

 Ser Lys Glu Arg Lys Leu Arg Glu His Ser Glu Asn Phe Cys Lys Gln
 645 650 655

 Met Glu Ser Glu Leu Glu Ala Leu Lys Val Lys Gln Gly Gly Arg Gly
 660 665 670

 Ala Gly Ala Thr Leu Glu His Gln Gln Glu Ile Ser Lys Ile Lys Ser
 675 680 685

 Glu Leu Glu Lys Lys Val Leu Phe Tyr Glu Glu Glu Leu Val Arg Arg
 690 695 700

 Glu Ala Ser His Val Leu Glu Val Lys Asn Val Lys Lys Glu Val His
 705 710 715 720

 Asp Ser Glu Ser His Gln Leu Ala Leu Gln Lys Glu Ile Leu Met Leu
 725 730 735

 Lys Asp Lys Leu Glu Lys Ser Lys Arg Glu Arg His Asn Glu Met Glu
 740 745 750

 Glu Ala Val Gly Thr Ile Lys Asp Lys Tyr Glu Arg Glu Arg Ala Met
 755 760 765

 Leu Phe Asp Glu Asn Lys Lys Leu Thr Ala Glu Asn Glu Lys Leu Cys
 770 775 780

 Ser Phe Val Asp Lys Leu Thr Ala Gln Asn Arg Gln Leu Glu Asp Glu
 785 790 795 800

 Leu Gln Asp Leu Ala Ala Lys Lys Glu Ser Val Ala His Trp Glu Ala
 805 810 815

 Gln Ile Ala Glu Ile Ile Gln Trp Val Ser Asp Glu Lys Asp Ala Arg
 820 825 830

 Gly Tyr Leu Gln Ala Leu Ala Ser Lys Met Thr Glu Glu Leu Glu Ala
 835 840 845

 Leu Arg Ser Ser Ser Leu Gly Ser Arg Thr Leu Asp Pro Leu Trp Lys
 850 855 860

 Val Arg Arg Ser Gln Lys Leu Asp Met Ser Ala Arg Leu Glu Leu Gln
 865 870 875 880

 Ser Ala Leu Glu Ala Glu Ile Arg Ala Lys Gln Leu Val Gln Glu Glu
 885 890 895

Leu Arg Lys Val Lys Asp Ala Asn Leu Thr Leu Glu Ser Lys Leu Lys
 900 905 910
 Asp Ser Glu Ala Lys Asn Arg Glu Leu Leu Glu Glu Met Glu Ile Leu
 915 920 925
 Lys Lys Lys Met Glu Glu Lys Phe Arg Ala Asp Thr Gly Leu Lys Leu
 930 935 940
 Pro Asp Phe Gln Asp Ser Ile Phe Glu Tyr Phe Asn Thr Ala Pro Leu
 945 950 955 960
 Ala His Asp Leu Thr Phe Arg Thr Ser Ser Ala Ser Glu Gln Glu Thr
 965 970 975
 Gln Ala Pro Lys Pro Glu Ala Ser Pro Ser Met Ser Val Ala Ala Ser
 980 985 990
 Glu Gin Gln Glu Asp Met Ala Arg Pro Pro Gln Arg Pro Ser Ala Val
 995 1000 1005
 Pro Leu Pro Thr Thr Gln Ala Leu Val Leu Ala Gly Pro Lys Pro
 1010 1015 1020
 Lys Ala His Gln Phe Ser Ile Lys Ser Phe Ser Ser Pro Thr Gln
 1025 1030 1035
 Cys Ser His Cys Thr Ser Leu Met Val Gly Leu Ile Arg Gln Gly
 1040 1045 1050
 Tyr Ala Cys Glu Val Cys Ser Phe Ala Cys His Val Ser Cys Lys
 1055 1060 1065
 Asp Gly Ala Pro Gln Val Cys Pro Ile Pro Pro Glu Gln Ser Lys
 1070 1075 1080
 Arg Pro Leu Gly Val Asp Val Gln Arg Gly Ile Gly Thr Ala Tyr
 1085 1090 1095
 Lys Gly His Val Lys Val Pro Lys Pro Thr Gly Val Lys Lys Gly
 1100 1105 1110
 Trp Gln Arg Ala Tyr Ala Val Val Cys Glu Cys Lys Leu Phe Leu
 1115 1120 1125
 Tyr Asp Leu Pro Glu Gly Lys Ser Thr Gln Pro Gly Val Ile Ala
 1130 1135 1140
 Ser Gln Val Leu Asp Leu Arg Asp Asp Glu Phe Ser Val Ser Ser
 1145 1150 1155
 Val Leu Ala Ser Asp Val Ile His Ala Thr Arg Arg Asp Ile Pro
 1160 1165 1170
 Cys Ile Phe Arg Val Thr Ala Ser Leu Leu Gly Ala Pro Ser Lys
 1175 1180 1185
 Thr Ser Ser Leu Leu Ile Leu Thr Glu Asn Glu Asn Glu Lys Arg

1190	1195	1200
Lys Trp Val Gly Ile Leu Glu Gly Leu Gln Ser Ile Leu His Lys		
1205	1210	1215
Asn Arg Leu Arg Asn Gln Val Val His Val Pro Leu Glu Ala Tyr		
1220	1225	1230
Asp Ser Ser Leu Pro Leu Ile Lys Ala Ile Leu Thr Ala Ala Ile		
1235	1240	1245
Val Asp Ala Asp Arg Ile Ala Val Gly Leu Glu Glu Gly Leu Tyr		
1250	1255	1260
Val Ile Glu Val Thr Arg Asp Val Ile Val Arg Ala Ala Asp Cys		
1265	1270	1275
Lys Lys Val His Gln Ile Glu Leu Ala Pro Arg Glu Lys Ile Val		
1280	1285	1290
Ile Leu Leu Cys Gly Arg Asn His His Val His Leu Tyr Pro Trp		
1295	1300	1305
Ser Ser Leu Asp Gly Ala Glu Gly Ser Phe Asp Ile Lys Leu Pro		
1310	1315	1320
Glu Thr Lys Gly Cys Gln Leu Met Ala Thr Ala Thr Leu Lys Arg		
1325	1330	1335
Asn Ser Gly Thr Cys Leu Phe Val Ala Val Lys Arg Leu Ile Leu		
1340	1345	1350
Cys Tyr Glu Ile Gln Arg Thr Lys Pro Phe His Arg Lys Phe Asn		
1355	1360	1365
Glu Ile Val Ala Pro Gly Ser Val Gln Cys Leu Ala Val Leu Arg		
1370	1375	1380
Asp Arg Leu Cys Val Gly Tyr Pro Ser Gly Phe Cys Leu Leu Ser		
1385	1390	1395
Ile Gln Gly Asp Gly Gln Pro Leu Asn Leu Val Asn Pro Asn Asp		
1400	1405	1410
Pro Ser Leu Ala Phe Leu Ser Gln Gln Ser Phe Asp Ala Leu Cys		
1415	1420	1425
Ala Val Glu Leu Glu Ser Glu Glu Tyr Leu Leu Cys Phe Ser His		
1430	1435	1440
Met Gly Leu Tyr Val Asp Pro Gln Gly Arg Arg Ala Arg Ala Gln		
1445	1450	1455
Glu Leu Met Trp Pro Ala Ala Pro Val Ala Cys Ser Cys Ser Pro		
1460	1465	1470
Thr His Val Thr Val Tyr Ser Glu Tyr Gly Val Asp Val Phe Asp		
1475	1480	1485

Val Arg Thr Met Glu Trp Val Gln Thr Ile Gly Leu Arg Arg Ile
 1490 1495 1500
 Arg Pro Leu Asn Ser Glu Gly Thr Leu Asn Leu Leu Asn Cys Glu
 1505 1510 1515
 Pro Pro Arg Leu Ile Tyr Phe Lys Ser Lys Phe Ser Gly Ala Val
 1520 1525 1530
 Leu Asn Val Pro Asp Thr Ser Asp Asn Ser Lys Lys Gln Met Leu
 1535 1540 1545
 Arg Thr Arg Ser Lys Arg Arg Phe Val Phe Lys Val Pro Glu Glu
 1550 1555 1560
 Glu Arg Leu Gln Gln Arg Arg Glu Met Leu Arg Asp Pro Glu Leu
 1565 1570 1575
 Arg Ser Lys Met Ile Ser Asn Pro Thr Asn Phe Asn His Val Ala
 1580 1585 1590
 His Met Gly Pro Gly Asp Gly Met Gln Val Leu Met Asp Leu Pro
 1595 1600 1605
 Leu Ser Ala Val Pro Pro Ser Gln Glu Glu Arg Pro Gly Pro Ala
 1610 1615 1620
 Pro Thr Asn Leu Ala Arg Gln Pro Pro Ser Arg Asn Lys Pro Tyr
 1625 1630 1635
 Ile Ser Trp Pro Ser Ser Gly Gly Ser Glu Pro Ser Val Thr Val
 1640 1645 1650
 Pro Leu Arg Ser Met Ser Asp Pro Asp Gln Asp Phe Asp Lys Glu
 1655 1660 1665
 Pro Asp Ser Asp Ser Thr Lys His Ser Thr Pro Ser Asn Ser Ser
 1670 1675 1680
 Asn Pro Ser Gly Pro Pro Ser Pro Asn Ser Pro His Arg Ser Gln
 1685 1690 1695
 Leu Pro Leu Glu Gly Leu Glu Gln Pro Ala Cys Asp Thr
 1700 1705 1710

<210> 11
 <211> 2287
 <212> DNA
 <213> Homo sapiens

<400> 11		
ggctgaggca gtggctcctt gcacagcagc tgcacgcgcc gtggctccgg attttcttcg	60	
tctttgcagc gtagccccag tcgggtcagcg ccagaggacc tcagcagcca tgtcgaagcc	120	
ccatagtgaa gcccggactg ctttcattca gacccagcag ctgcacgcag ccatggctga	180	
cacattccctg gagcacatgt gccccttggc cattgattca ccacccatca cagccccggaa	240	
cactggcattc atctgtacca ttggcccaagc ttcccgatca gtggagacgt tgaaggagat	300	
gattaagtct ggaatgaatg tggctcgatct gaacttctct catggaaactc atgagtagatca	360	
tgcggagacc atcaagaatg tgccacagc cacggaaagc tttgcttctg accccatcct	420	

ctaccggccc	gttgcgtgtgg	ctctagacac	taaaggacct	gagatccgaa	ctgggctcat	480
caaggggcagc	ggcactgcag	agggtggagct	gaagaaggga	gccactctca	aaatcacgct	540
tgataacgcc	tacatggaaa	agtgtgacga	gaacatcctg	tggctggact	acaagaacat	600
ctgcaagggt	gtggaagtgg	gcagcaagat	ctacgtggat	gatgggctta	tttctctcca	660
ggtaagcag	aaagtgcgg	acttcctgg	gacggagggt	gaaaatgtg	gctccttggg	720
cagcaagaag	ggtgtgaaacc	ttcctggggc	tgctgtggac	ttgcctgtc	tgtcgagaa	780
ggacatccag	gatctgaagt	ttgggtcga	gcagatgtt	gatatgggt	ttgcgtcatt	840
catccgcaag	gcatctgtat	tccatgaagt	taggaaggtc	ctgggagaga	aggaaagaa	900
catcaagatt	atcagcaaaa	tcgagaatca	tgaggggtt	cgaggatgg	atgaaatcct	960
ggaggccagt	gatggatca	tggtggctcg	tggtgatcta	ggcattgaga	ttcctgcaga	1020
gaagggtctc	cttgcgtcaga	agatgtat	tggacgggtc	aaccgagctg	ggaagcctgt	1080
catctgtgt	actcagatgc	tggagagcat	gatcaagaag	ccccccccca	ctcgggctga	1140
aggcagtgt	gtggccaatg	cagtcctgga	tggagccgac	tgcacatgc	tgtctggaga	1200
aacagccaaa	ggggactatac	ctctggaggc	tgtgcgcatg	cagaacctga	ttgcccgtga	1260
ggcagaggct	gccatctacc	acttgcaatt	atttgaggaa	ctccggccgc	tggcccccatt	1320
taccagcgac	cccacagaag	ccaccggcgt	gggtggccgt	gaggcctcct	tcaagtgtcg	1380
cagtggggcc	ataatcgatcc	tcaccaagtc	tggcaggatct	gctcaccagg	tggccagata	1440
ccggccacgt	gccccatca	ttgctgtgac	ccgaaatccc	cagacagtc	gtcaggccca	1500
cctgtaccgt	ggcatcttcc	ctgtgtgt	caaggacca	gtccaggagg	cctgggctga	1560
ggacgtggac	ctccgggtga	actttgcatt	aatgttgc	aaggcccgag	gcttcttcaa	1620
gaagggagat	gtggcattt	tgctgacccg	atggccct	ggttccggct	tcaccaacac	1680
catgcgtgtt	gttctgtgc	cgtgatggac	cccagagccc	ctccctccagc	ccctgtccca	1740
cccccttccc	ccagccatc	cattagggca	gcaacgctt	tagaactcac	tctgggctgt	1800
aacgtggcac	tggtaggtt	ggacaccagg	gaagaagatc	aacgcctcac	tgaaacatgg	1860
ctgtgtttgc	agcctgctct	agtggacag	cccagagct	ggttccccc	tcatgtggcc	1920
ccacccaatc	aaggaaagaa	ggaggaatgc	tggactggag	gcccctggag	ccagatggca	1980
agaggggtgac	agcttcctt	cctgtgtgt	ctctgtccag	ttccctttaga	aaaaatggat	2040
gcccagagga	ctcccaaccc	tggcttgggg	tcaagaaaca	gcccagcaaga	gttaggggccc	2100
ttagggcaact	gggctgtgt	tccatttgaag	ccgactctgg	ccctggccct	tacttgcctc	2160
tctagctctc	taggcetetc	cagtttgac	ctgtccccac	cctccactca	gctgtcctgc	2220
agcaaacact	ccaccctcca	ccttccat	tccccacta	ctgcagcacc	tccaggccctg	2280
ttgcccgc						2287

<210> 12
<211> 531
<212> PRT
<213> Homo sapiens

<400> 12
Met Ser Lys Pro His Ser Glu Ala Gly Thr Ala Phe Ile Gln Thr Gln
1 5 10 15

Gln Leu His Ala Ala Met Ala Asp Thr Phe Leu Glu His Met Cys Arg
20 25 30

Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg Asn Thr Gly Ile Ile
35 40 45

Cys Thr Ile Gly Pro Ala Ser Arg Ser Val Glu Thr Leu Lys Glu Met
50 55 60

Ile Lys Ser Gly Met Asn Val Ala Arg Leu Asn Phe Ser His Gly Thr
65 70 75 80

His Glu Tyr His Ala Glu Thr Ile Lys Asn Val Arg Thr Ala Thr Glu
85 90 95

Ser Phe Ala Ser Asp Pro Ile Leu Tyr Arg Pro Val Ala Val Ala Leu

100	105	110
Asp Thr Lys Gly Pro Glu Ile Arg Thr Gly Leu Ile Lys Gly Ser Gly		
115	120	125
Thr Ala Glu Val Glu Leu Lys Lys Gly Ala Thr Leu Lys Ile Thr Leu		
130	135	140
Asp Asn Ala Tyr Met Glu Lys Cys Asp Glu Asn Ile Leu Trp Leu Asp		
145	150	155
Tyr Lys Asn Ile Cys Lys Val Val Glu Val Gly Ser Lys Ile Tyr Val		
165	170	175
Asp Asp Gly Leu Ile Ser Leu Gln Val Lys Gln Lys Gly Ala Asp Phe		
180	185	190
Leu Val Thr Glu Val Glu Asn Gly Gly Ser Leu Gly Ser Lys Lys Gly		
195	200	205
Val Asn Leu Pro Gly Ala Ala Val Asp Leu Pro Ala Val Ser Glu Lys		
210	215	220
Asp Ile Gln Asp Leu Lys Phe Gly Val Glu Gln Asp Val Asp Met Val		
225	230	235
Phe Ala Ser Phe Ile Arg Lys Ala Ser Asp Val His Glu Val Arg Lys		
245	250	255
Val Leu Gly Glu Lys Gly Lys Asn Ile Lys Ile Ile Ser Lys Ile Glu		
260	265	270
Asn His Glu Gly Val Arg Arg Phe Asp Glu Ile Leu Glu Ala Ser Asp		
275	280	285
Gly Ile Met Val Ala Arg Gly Asp Leu Gly Ile Glu Ile Pro Ala Glu		
290	295	300
Lys Val Phe Leu Ala Gln Lys Met Met Ile Gly Arg Cys Asn Arg Ala		
305	310	315
Gly Lys Pro Val Ile Cys Ala Thr Gln Met Leu Glu Ser Met Ile Lys		
325	330	335
Lys Pro Arg Pro Thr Arg Ala Glu Gly Ser Asp Val Ala Asn Ala Val		
340	345	350
Leu Asp Gly Ala Asp Cys Ile Met Leu Ser Gly Glu Thr Ala Lys Gly		
355	360	365
Asp Tyr Pro Leu Glu Ala Val Arg Met Gln Asn Leu Ile Ala Arg Glu		
370	375	380
Ala Glu Ala Ala Ile Tyr His Leu Gln Leu Phe Glu Glu Leu Arg Arg		
385	390	395
Leu Ala Pro Ile Thr Ser Asp Pro Thr Glu Ala Thr Ala Val Gly Ala		
405	410	415

gagctgacag tggagggac caggccaat ttgacaggct gggatccccaaaggac	1800
atcgtacgta tgcgtctc caatcgatt ggctgtggac cctggagtca gccactggtg	1860
gtcttcttc atgaccgtgc aggccagcag ggccttc acagccgc acatctggta	1920
cctgtgttcc ttgggtgtct aacggccctg gtgacggctg ctggccttgc cctcatcctg	1980
tttcgaaaga gacggaaaaga gacgcggttt gggcaaggct ttgacagtgt catggcccgg	2040
ggagagccag ccgttcaattt ccgggcagcc cggccttca atcgagaaaag gcccggagcgc	2100
atcgaggcca cattggacag cttgggacatc agcgatgaac taaaggaaaa actggaggat	2160
gtgctcatcc cagacgacatc gttcacccctg ggcggatgt tggcaaaagg agagtttgtt	2220
tcaagtgcggg agggccagctt gaagcaagag gatggcttct ttgtgaaagt ggctgtgaag	2280
atgctgaaag ctgacatcatc tgcctcaagc gacattgaag agttcctcag ggaaggcagct	2340
tgcataagg agtttgcacatc tccacacgtg gccaaacttgg tttgggttaag cctccggagc	2400
agggctaaag gccgtctcc catcccatg gtcatcttgc ccttcattgaa gcatggggac	2460
ctgcattgcct tcctgctcgc ctcccgattt ggggagaacc cctttaacctt acccctccag	2520
accctgtatcc gggtcatgtt ggacatttgc tgccgcatgg agtaccttagt ctctcgaaac	2580
ttcatccacc gagacctggc tgctcgaaat tgcattgtgg cagaggacatc gacagtgtgt	2640
gtggctgact tcggactctc cccgaagatc tacagtgggg actactatcg tcaaggctgt	2700
gcctccaaac tgctgtcaa gtggctggcc ctggagagcc tggccgacaa cctgtataact	2760
gtgcagagtg acgtgtggc gttcgggggtt accatgtggg agatcatgac acgtggcag	2820
acgccccatcg ctggcatcgaa acacgcttgc atttacaactt acctcattgg cgggaaaccgc	2880
ctgaaacagc ctccggatgtg tatggaggac gtgtatgtatc tcatgtacca gtgctggagt	2940
gctgacccca agcagccccc gagcttact tgcattgtggaa tggaaacttggaa acatcttgc	3000
ggccagctgt ctgtgtatcc tgccagccatc gacccttat acatcaacat cgagagagct	3060
gaggagccca ctgtggggc cagcctggag ctacctggca gggatcagcc ctacagtggg	3120
gctggggatg gcagtggcat gggggcagtg gttggcactc ccagtgtactg tcggatata	3180
ctcaccctcg gagggctggc tgagcagccca gggcaggcag agcaccagcc agagatccc	3240
ctcaatgaga cacagaggctt tttgtgtgtc cagcaagggtc tactgtccaca cagtagctgt	3300
tagccacag gcagagggca tcggggccat ttggccggct ctgggtggca ctgagctggc	3360
tgactaagcc cctgtgtacc ccagccca cagcaagggtg tggaggctcc tgggttagtc	3420
ctcccaagct gtgtgtggaa gcccggactt accaaatcac ccaatcccac ttcttcctgc	3480
aaccactctg tggccagctt ggcattcattt taggcattgg cttgtatggaa gtggggccagt	3540
cctgggtgtc tgaaccctagg cagctggcag gatgtgggtt gttatgtttc catggttacc	3600
atgggtgtgg atgcgtgtt ggggaggggca ggtccagctc tggggccctt accctcctgc	3660
tgagctgtccc ctgtgtctt agtgtatgc ttgagctgcc tccagctgg tggccagct	3720
attaccacac ttgggtttt aatatccagg tgcgtccctc caagtccagaa agagatgtcc	3780
ttgtatatt cccttttagg tgagggttgg taagggttgg gttatctcagg tctgtatctt	3840
caccatctt ctgattccgc accctgccta cgcaggaga agttgagggg agcatgttcc	3900
cctgcagctg accgggtcac acaaaggcat gctggaggatcc ccagccatc aggtggccct	3960
cttccaaagg cagcgtgcgc agccagcaag aggaagggtt gctgtgaggc ttggccagga	4020
gcaagtgagg ccggagagga gttcaggaaac ccttcctccat acccacaatc tgacacgct	4080
accaaataatc aaaatatctt aagactaaca aaggcagctg tgcattgtggcc caacccttct	4140
aaacgggtgac ctttagtgc aacttccctt ctaacttggac agcctttctt gtcccaagtc	4200
tccagagaga aatcaggccctt gatggggggg aattccttggaa acctggaccc cagccttgg	4260
ggggggccctt ctggaaatgca tggggccgggtt cctagctgtt agggacattt ccaagctgtt	4320
atggctgttt taaaatagaa ataaaatttga agactaaaga ccta	4364

<210> 14
<211> 882
<212> PRT
<213> Homo sapiens

<400> 14
Met Ala Leu Arg Arg Ser Met Gly Arg Pro Gly Leu Pro Pro Leu Pro
1 5 10 15

Leu Pro Pro Pro Arg Leu Gly Leu Leu Leu Ala Glu Ser Ala Ala
20 25 30

Ala Gly Leu Lys Leu Met Gly Ala Pro Val Lys Leu Thr Val Ser Gln

35	40	45
Gly Gln Pro Val Lys Leu Asn Cys Ser Val Glu Gly Met	Glu Glu Pro	
50	55	60
Asp Ile Gln Trp Val Lys Asp Gly Ala Val Val Gln Asn	Leu Asp Gln	
65	70	75
Leu Tyr Ile Pro Val Ser Glu Gln His Trp Ile Gly Phe	Leu Ser Leu	
85	90	95
Lys Ser Val Glu Arg Ser Asp Ala Gly Arg Tyr Trp Cys	Gln Val Glu	
100	105	110
Asp Gly Gly Glu Thr Glu Ile Ser Gln Pro Val Trp Leu	Thr Val Glu	
115	120	125
Gly Val Pro Phe Phe Thr Val Glu Pro Lys Asp Leu Ala	Val Pro Pro	
130	135	140
Asn Ala Pro Phe Gln Leu Ser Cys Glu Ala Val Gly Pro	Pro Pro Glu Pro	
145	150	155
Val Thr Ile Val Trp Trp Arg Gly Thr Thr Lys Ile Gly	Gly Pro Ala	
165	170	175
Pro Ser Pro Ser Val Leu Asn Val Thr Gly Val Thr Gln	Ser Thr Met	
180	185	190
Phe Ser Cys Glu Ala His Asn Leu Lys Gly Leu Ala Ser	Ser Arg Thr	
195	200	205
Ala Thr Val His Leu Gln Ala Leu Pro Ala Ala Pro Phe	Asn Ile Thr	
210	215	220
Val Thr Lys Leu Ser Ser Asn Ala Ser Val Ala Trp Met	Pro Gly	
225	230	240
Ala Asp Gly Arg Ala Leu Leu Gln Ser Cys Thr Val Gln	Val Thr Gln	
245	250	255
Ala Pro Gly Gly Trp Glu Val Leu Ala Val Val Val Pro	Val Pro Pro	
260	265	270
Phe Thr Cys Leu Leu Arg Asp Leu Val Pro Ala Thr Asn	Tyr Ser Leu	
275	280	285
Arg Val Arg Cys Ala Asn Ala Leu Gly Pro Ser Pro	Tyr Ala Asp Trp	
290	295	300
Val Pro Phe Gln Thr Lys Gly Leu Ala Pro Ala Ser Ala	Pro Gln Asn	
305	310	315
Leu His Ala Ile Arg Thr Asp Ser Gly Leu Ile Leu Glu	Trp Glu Glu	
325	330	335
Val Ile Pro Glu Ala Pro Leu Glu Gly Pro Leu Gly Pro	Tyr Lys Leu	
340	345	350

Ser Trp Val Gln Asp Asn Gly Thr Gln Asp Glu Leu Thr Val Glu Gly
 355 360 365
 Thr Arg Ala Asn Leu Thr Gly Trp Asp Pro Gln Lys Asp Leu Ile Val
 370 375 380
 Arg Val Cys Val Ser Asn Ala Val Gly Cys Gly Pro Trp Ser Gln Pro
 385 390 395 400
 Leu Val Val Ser Ser His Asp Arg Ala Gly Gln Gln Gly Pro Pro His
 405 410 415
 Ser Arg Thr Ser Trp Val Pro Val Val Leu Gly Val Leu Thr Ala Leu
 420 425 430
 Val Thr Ala Ala Ala Leu Ala Leu Ile Leu Leu Arg Lys Arg Arg Lys
 435 440 445
 Glu Thr Arg Phe Gly Gln Ala Phe Asp Ser Val Met Ala Arg Gly Glu
 450 455 460
 Pro Ala Val His Phe Arg Ala Ala Arg Ser Phe Asn Arg Glu Arg Pro
 465 470 475 480
 Glu Arg Ile Glu Ala Thr Leu Asp Ser Leu Gly Ile Ser Asp Glu Leu
 485 490 495
 Lys Glu Lys Leu Glu Asp Val Leu Ile Pro Glu Gln Gln Phe Thr Leu
 500 505 510
 Gly Arg Met Leu Gly Lys Gly Glu Phe Gly Ser Val Arg Glu Ala Gln
 515 520 525
 Leu Lys Gln Glu Asp Gly Ser Phe Val Lys Val Ala Val Lys Met Leu
 530 535 540
 Lys Ala Asp Ile Ile Ala Ser Ser Asp Ile Glu Glu Phe Leu Arg Glu
 545 550 555 560
 Ala Ala Cys Met Lys Glu Phe Asp His Pro His Val Ala Lys Leu Val
 565 570 575
 Gly Val Ser Leu Arg Ser Arg Ala Lys Gly Arg Leu Pro Ile Pro Met
 580 585 590
 Val Ile Leu Pro Phe Met Lys His Gly Asp Leu His Ala Phe Leu Leu
 595 600 605
 Ala Ser Arg Ile Gly Glu Asn Pro Phe Asn Leu Pro Leu Gln Thr Leu
 610 615 620
 Ile Arg Phe Met Val Asp Ile Ala Cys Gly Met Glu Tyr Leu Ser Ser
 625 630 635 640
 Arg Asn Phe Ile His Arg Asp Leu Ala Ala Arg Asn Cys Met Leu Ala
 645 650 655
 Glu Asp Met Thr Val Cys Val Ala Asp Phe Gly Leu Ser Arg Lys Ile
 660 665 670

Tyr Ser Gly Asp Tyr Tyr Arg Gln Gly Cys Ala Ser Lys Leu Pro Val
 675 680 685
 Lys Trp Leu Ala Leu Glu Ser Leu Ala Asp Asn Leu Tyr Thr Val Gln
 690 695 700
 Ser Asp Val Trp Ala Phe Gly Val Thr Met Trp Glu Ile Met Thr Arg
 705 710 715 720
 Gly Gln Thr Pro Tyr Ala Gly Ile Glu Asn Ala Glu Ile Tyr Asn Tyr
 725 730 735
 Leu Ile Gly Gly Asn Arg Leu Lys Gln Pro Pro Glu Cys Met Glu Asp
 740 745 750
 Val Tyr Asp Leu Met Tyr Gln Cys Trp Ser Ala Asp Pro Lys Gln Arg
 755 760 765
 Pro Ser Phe Thr Cys Leu Arg Met Glu Leu Glu Asn Ile Leu Gly Gln
 770 775 780
 Leu Ser Val Leu Ser Ala Ser Gln Asp Pro Leu Tyr Ile Asn Ile Glu
 785 790 795 800
 Arg Ala Glu Glu Pro Thr Val Gly Gly Ser Leu Glu Leu Pro Gly Arg
 805 810 815
 Asp Gln Pro Tyr Ser Gly Ala Gly Asp Gly Ser Gly Met Gly Ala Val
 820 825 830
 Gly Gly Thr Pro Ser Asp Cys Arg Tyr Ile Leu Thr Pro Gly Gly Leu
 835 840 845
 Ala Glu Gln Pro Gly Gln Ala Glu His Gln Pro Glu Ser Pro Leu Asn
 850 855 860
 Glu Thr Gln Arg Leu Leu Leu Gln Gln Gly Leu Leu Pro His Ser
 865 870 875 880

Ser Cys

<210> 15
 <211> 1457
 <212> DNA
 <213> Homo sapiens

<400> 15
 ggccgcttcg ggtttccgga ggggccccgag ggcggggcgag ggcgtcacgt gcgcgcggcc
 cgcggggccgg ttggtccccg ggcggggcgag gggccgtgcg cagcctgggt cggggtcggg
 ccgggggtcgg cacctggac atcccctgagg gaaggggccgg gagcgggagc gccccagcgg
 ccggcggggcg ggcggggcgag cggacgagcg ggcgggagcc ggcccggggc gcgcgcggag
 ggagccccgt ccccggtcgt gggggcaccg ccccgaggct ctgcgggtg ggcagctccc
 gggcctgcca ttagctctcc gccgcccggcc cgcaagtggct tttaccgcca ggaggtgacc
 aagacggcct gggaggtgcg cggcgtgtac cgggacctgc agcccgtggg ctcgggcgcc
 tacggcgcgg tggctcgcc cgtggacggc cgacccggcg ctaagggtggc catcaagaag
 ctgtatcggc cttccagtc cgagctgttc gccaagcgcg cttaccgcga gctgcgcctg
 ctcaagcaca tgcgccacga gaacgtgatc gggctgctgg acgtattcac tcctgatgag

accctggatg	acttcacgga	ctttcacctg	gtgatgccgt	tcatgggcac	cgacacctggc	660
aagctcatga	aacatgagaa	gctaggcgag	gaccggatcc	agttccctcg	gtaccagatg	720
ctgaaggggc	tgaggatat	ccacgcgtgcc	ggcatcatcc	acagagacct	gaagcccggc	780
aacctggctg	tgaacgaaga	ctgtgagctg	aagatccctgg	acttccggct	ggccaggcgag	840
gcagacagtg	agatgactgg	gtacgtggtg	accgggtggt	accgggctcc	cgaggtcatc	900
ttgaatttgg	tgcgctacac	gcagacggtg	gacatctggt	ccgtgggctg	catcatggc	960
gagatgatca	caggcaagac	gctgttcaag	ggcagcgcacc	acctggacca	gctgaaggag	1020
atcatgaagg	tgacggggac	gcctccggct	gagtttgtgc	agcggctgca	gagcgtatgag	1080
gccaagaaca	acatgaaggg	cctccccgaa	ttggagaaga	aggattttgc	ctctatccctg	1140
accaatgcaa	gcctctggc	tgtgaacctc	ctggagaaga	tgctgggtct	ggacgcggag	1200
cagcgggtga	cggcaggcga	ggcgctggcc	catccctact	tcgagtccct	gcacgacacg	1260
gaagatgagc	cccaggtcca	gaagtatgat	gactcccttg	acgacgttga	ccgcacactg	1320
gatgaatgg	agcgtgttac	ttacaaaagag	gtgctcagct	tcaaggctcc	ccggcagctg	1380
ggggccaggg	tctccaagga	gacgcctctg	tgaagatctc	tgggctccgg	ggtggcagtg	1440
aqgaccacact	tcacctt				.	1457

<210> 16
<211> 367
<212> PRT
<213> Homo sapiens

<400> 16
Met Ser Ser Pro Pro Pro Ala Arg Ser Gly Phe Tyr Arg Gln Glu Val
1 5 10 15

Thr Lys Thr Ala Trp Glu Val Arg Ala Val Tyr Arg Asp Leu Gln Pro
20 25 30

Val Gly Ser Gly Ala Tyr Gly Ala Val Cys Ser Ala Val Asp Gly Arg
35 40 45

Thr Gly Ala Lys Val Ala Ile Lys Lys Leu Tyr Arg Pro Phe Gln Ser
50 55 60

Glu Leu Phe Ala Lys Arg Ala Tyr Arg Glu Leu Arg Leu Leu Lys His
 65 70 75 80

Met Arg His Glu Asn Val Ile Gly Leu Leu Asp Val Phe Thr Pro Asp
85 90 95

Glu Thr Leu Asp Asp Phe Thr Asp Phe Tyr Leu Val Met Pro Phe Met
 100 105 110

Arg Ile Gln Phe Leu Val Tyr Gln Met Leu Lys Gly Leu Arg Tyr Ile
130 135 140

His Ala Ala Gly Ile Ile His Arg Asp Leu Lys Pro Gly Asn Leu Ala
145 150 155 160

Val Asn Glu Asp Cys Glu Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg
165 170 175

Gln Ala Asp Ser Glu Met Thr Gly Tyr Val Val Thr Arg Trp Tyr Arg
 180 185 190

Ala Pro Glu Val Ile Leu Asn Trp Met Arg Tyr Thr Gln Thr Val Asp
 195 200 205
 Ile Trp Ser Val Gly Cys Ile Met Ala Glu Met Ile Thr Gly Lys Thr
 210 215 220
 Leu Phe Lys Gly Ser Asp His Leu Asp Gln Leu Lys Glu Ile Met Lys
 225 230 235 240
 Val Thr Gly Thr Pro Pro Ala Glu Phe Val Gln Arg Leu Gln Ser Asp
 245 250 255
 Glu Ala Lys Asn Asn Met Lys Gly Leu Pro Glu Leu Glu Lys Lys Asp
 260 265 270
 Phe Ala Ser Ile Leu Thr Asn Ala Ser Pro Leu Ala Val Asn Leu Leu
 275 280 285
 Glu Lys Met Leu Val Leu Asp Ala Glu Gln Arg Val Thr Ala Gly Glu
 290 295 300
 Ala Leu Ala His Pro Tyr Phe Glu Ser Leu His Asp Thr Glu Asp Glu
 305 310 315 320
 Pro Gln Val Gln Lys Tyr Asp Asp Ser Phe Asp Asp Val Asp Arg Thr
 325 330 335
 Leu Asp Glu Trp Lys Arg Val Thr Tyr Lys Glu Val Leu Ser Phe Lys
 340 345 350
 Pro Pro Arg Gln Leu Gly Ala Arg Val Ser Lys Glu Thr Pro Leu
 355 360 365

<210> 17
 <211> 5243
 <212> DNA
 <213> Homo sapiens

<400> 17
 cttttcttgc aggacatgtt ctctggatgt cagctgagtc attaaagtaa ctctgcattgt 60
 cagtagacag accttggtag aaccacaagg ctccccagaga cacccatctc tcctcatttt 120
 tttggtgtgt gtgtcttcac cgaacattca aaactgttcc tccaaagcgt ttgcaaaaaa 180
 ctcagactgt tttccaaagc agaagcactg gagtccccag cagaagcgat gggcagtgtg 240
 cgaaccaacc gctacagcat cgtctttca gaagaagacg gtatgaagtt gcccaccatg 300
 gcagttgcaa atggcttgg gaacgggaag agttaagttcc acaccgaca acagtgcagg 360
 agccgcttgc tgaagaaaaga tggccactgt aatgttcaatgt tcatcaatgt gggtgagaag 420
 gggcaacggc acctcgcaga cattttccacc acgtgtgtgg acattcgctg gccgtggatg 480
 ctggtttatct tctgcctggc tttcgcttgc tcatggctgt tttttggctg tttttttgg 540
 ttgatagctc tgctccatgg ggacctggat gcatccaaag agggcaaagc ttgtgtgtcc 600
 gaggtcaaca gcttcacggc tgccttcctc ttctccattt agacccagac aaccataggc 660
 tatggttca gatgtgtcac ggtatgtgc ccaattgtgt ttttcatgtt ggtgttccag 720
 tcaatcgatgg gctgcatcat cgatgtttc atcatggcg cagtcatggc caagatggca 780
 aagccaaaga agagaaacga gactctgtc ttcatgtcaca atgccgtat tgccatgaga 840
 gacggcaagc tttttttgtat gtggcgatgt gccaatcttc ggaaagccaa cttgggtggaa 900
 gctcatgttc gggccacatgt cctccaaatcc agaattactt ctgaagggaa gtatatccct 960
 ctggatcaaa tagacatcaa tttttttttt gacagtggaa tcgatgttat atttctggtg 1020
 tccccaaatca ctatgttcca tggaaatgtt gaaagacatc ctttatgtt tttttttttt 1080
 caggacattt gcaacacgaga ctttggaaatc gtgggtcatac tggaaaggcat ggtggaaagcc 1140
 actggccatgtt gggccatgtt cttttttttt atgaaatccct gttttttttt 1200

cgctatgagc	ctgtgcttt	tgaagagaag	cactactaca	aagtggacta	ttccagggttc	1260
cacaaaacctt	acgaagtccc	caacactccc	ctttagtg	ccagagactt	agcagaaaaag	1320
aatatatcc	tctcaaattgc	aaattcattt	tgctatgaaa	atgaagtgc	cctcacaagc	1380
aaagaggaag	acgacagtga	aatggagtt	ccagaaagca	ctagtacgga	cacgccccct	1440
gacatagacc	ttcacaacca	ggcaagtgt	cctctagagc	ccaggccctt	acggcgagag	1500
tcggagat	gactgactga	ttccttctc	ggaatagtt	ctttacaaca	cggctgttg	1560
gtcagaggcc	caaaacagtt	atacagatga	cggtactgtt	caagatgggt	caagcaagcg	1620
gccacaaagg	actgaggca	gcacaatgtt	ttcaaaagaaa	gactgttaagc	tccatgatta	1680
gcataaaagca	ctaaccatgt	ctccatgtga	cccgtggca	catagatgtt	gtagaataag	1740
ttatgggtt	ttatgttttgc	tttgtgttt	ttccaaaact	tgaacttgca	ggcaaggcctt	1800
ggttgggtat	ttgatttac	cagaatgtt	ctcttaggg	aacaaggatg	tttttaatgg	1860
cataacaaag	gcaagactct	gccttaattt	ttgaaaagct	gctaactaca	tgaacacaaa	1920
tgtgtat	tgtgcagtg	tagtttcc	tttgcataat	tttaaagtca	gtgttgaatt	1980
ttattgaaag	ctcatgatgc	gcttcaaagt	ggcaagtatt	tggctattaa	ctgccaacaaac	2040
aagagcctga	tttttgagg	ccagtaattt	gttgctaga	attgattttt	tttctctctc	2100
tctttgttac	ataagggcat	tatgtacac	tagccgaatg	gtagcctctg	ggttgttgtt	2160
tttttctttt	cctccatgtat	gttaatgggt	tatctcaat	tttaagttaa	actacctaaa	2220
ataaaatacc	aagataatgc	atattttgc	acagtggagc	ttacactttaa	aagaaaacaa	2280
agccccatgg	gctgccttga	aatcaagaga	caataacttt	gaacctcagc	aagaccttga	2340
accggcggtt	cattttgcac	tttattcaga	aaatagagca	tcataactcac	cgagtctagt	2400
cagtgtat	ctttaaaaaa	tttgcctt	tcatgtact	tttttatttt	aagaggaaga	2460
agaagaaagg	ggcacacaca	cacaataccg	acgtctatcc	tttcctgcta	ggcagtgctg	2520
gccaggctca	tgtgtatgt	gcgagatgtt	gatgtactct	tatattttt	ttggcttttc	2580
cttttgcaca	ttccaaaattt	catttcataa	gacaagatct	tcataggacc	tccttggcat	2640
cctggcat	tcaaaactga	gccatccagc	atggaaagata	aatgggttta	aacccttgct	2700
gctgaattt	ttgcctggac	tgcaggaca	tcaccagccc	accttcaccc	tagggagat	2760
gccacacctg	gcctccacac	ttgcctttct	gatcagtctg	tctggattga	gtcctacagt	2820
gtcagatagg	gcggcaaatg	ccaaagcagg	gaaacaggga	ggtgtggaca	agccagttt	2880
atgcagcact	tcaaatcaag	tgcttaggaa	ggagaggaaa	cttgcctttt	ttatggcaga	2940
ggatagtaat	gaaaatgtct	cagtattttt	gggtcaatga	gagccataaaa	aatataacat	3000
aatcacaat	aaaggagata	atggtctaaa	acagctattt	cccttttctg	tgtgcatact	3060
tatgactgaa	tgtgagctaa	gcattttctc	ctgtggagcc	ctagagcagg	ttactaagga	3120
aggacacatt	gtttccaga	agcctccctt	gcctggctga	ctgccttgct	agaaacataaa	3180
ttttttttt	ctcaactgaag	ctcaataatg	gaactttttt	ttttttttt	tttaattttaa	3240
agttccctat	ttgtgaattt	ttggattact	gacttttctt	tttaatitgg	gtctcaaaat	3300
caactcttt	atgttattat	atctctgtat	gccattaaaa	aacagcttgc	tctagaatca	3360
tgtat	aaactgtat	ttgtgatgtt	ctctggttct	tgaacagcca	tatctgaatg	3420
ccgtgcctgc	aaaactatga	caatttttc	tgttttcagc	tttcagattt	gatggcttgg	3480
gaaactgagg	tgttattttt	aatgaaacaa	agaaagagat	gttaagaag	tgttgttttt	3540
agatccaaat	gtaaaggcag	gtttgggaag	gtgtttaaag	agttggagga	attggggatt	3600
gagttgtaaa	gaaaacttac	agaagaggca	acaattttgtt	tcttgacagt	gagaggat	3660
tgagggcttc	agctgctgt	attatgtat	tttgc当地	aaaataatca	aaccaaagag	3720
tattcagtga	tatgtaaattt	aatgaagat	acagtggaga	atgggggtga	ccacaaaaga	3780
ggctccccct	aaacacacag	tgc当地	taaaaagact	tgagaattt	gaaagggggt	3840
gggtatgggg	ggggcaagaa	agaggagggg	aaatcttca	acttatttct	gaaaaagaga	3900
aaaaaaatata	aaatttctgg	tgc当地	tgtttttca	agaaaaatttt	gcagaagcta	3960
tgtttttaaa	gtgtacattt	tataaagttt	atcagatatt	ttcatattta	aagccaaatg	4020
taaatagagg	tctgtaaaga	aaaataattt	ccatagaaag	tataatttca	gtgcagtaat	4080
ttctgagagc	tagtacat	atgctaccgg	ttagcatgtt	tttagcaaatt	atataaccagc	4140
tttataaggt	tcgtattgt	atgttcttct	gttattttt	tcagcatgga	ctgttcattt	4200
gaaacctttt	tctagttatt	agcgtttttaa	cagttacaag	ctttaaatgg	caattttttt	4260
ttttttttt	ttttttttttt	ttttttgtc	aagagccaa	acacagttaa	tgcacgacat	4320
tgattgctgc	attttacattt	caaaatattt	gtccttattt	actgggtctc	cttaattttat	4380
gtacacatgt	cattagaatg	cagacggagg	ggactcacca	tgaatatctg	gggttgattt	4440
ccagatgtgt	gttgcttctc	tattgcaagc	agattccctg	ttggattttac	ttcggatttt	4500
ttcccttttta	aagaattttt	gcccataatct	ggaagggcac	tatatttttgc	ggaggagccaa	4560
tagattcctg	gttatccat	ttttaaacaa	aatgttagaca	aagtgaactc	tattttgattt	4620
attgagaaag	gagtagtttt	ctatccctct	aagagtatac	ttgaatcaga	catttttaagg	4680
atgtcactat	ggcactgttgc	tcatttccaa	attcctagaa	aagtttgcatttt	tactttgttt	4740

ttattctgtt	aatgcattct	ttcttctt	tacttccttt	cttaccagta	cactcctatc	4800
tcaactctgt	ttatggatg	agttctgtcc	cgtaaaatcat	atttccotta	caattaataa	4860
atgtcaactc	atattttata	ataaacact	cagtaaaagc	aaaagcttgt	cctgagaagt	4920
agagttagtt	cttttcact	ctgtgtctaa	taatgttaag	gtgggaaaaaa	aaaaagtgtg	4980
gcatagctac	ctgccccatcc	ccaaccctca	gcaaagtaga	atctcttttc	tggttaatttt	5040
gggtttccgc	tctgggctct	ggcaagttga	acaatcctag	ccattgacaa	tcgtgatagt	5100
tatttttc	ccatttgctg	tcttttgta	tctaaagtct	tcctattgt	ctgcacaaaac	5160
catggattgt	acatattttt	atatattatg	tcttatttta	ttatttctaa	ataaaaaaaat	5220
aaaaaatgta	aaacaaattc	ttg				5243

<210> 18
<211> 427
<212> PRT
<213> Homo sapiens

<400> 18
Met Gly Ser Val Arg Thr Asn Arg Tyr Ser Ile Val Ser Ser Glu Glu
1 5 10 15

Asp Gly Met Lys Leu Ala Thr Met Ala Val Ala Asn Gly Phe Gly Asn
20 25 30

Gly Lys Ser Lys Val His Thr Arg Gln Gln Cys Arg Ser Arg Phe Val
35 40 45

Lys Lys Asp Gly His Cys Asn Val Gln Phe Ile Asn Val Gly Glu Lys
50 55 60

Gly Gln Arg Tyr Leu Ala Asp Ile Phe Thr Thr Cys Val Asp Ile Arg
65 70 75 80

Trp Arg Trp Met Leu Val Ile Phe Cys Leu Ala Phe Val Leu Ser Trp
85 90 95

Leu Phe Phe Gly Cys Val Phe Trp Leu Ile Ala Leu Leu His Gly Asp
100 105 110

Leu Asp Ala Ser Lys Glu Gly Lys Ala Cys Val Ser Glu Val Asn Ser
115 120 125

Phe Thr Ala Ala Phe Leu Phe Ser Ile Glu Thr Gln Thr Thr Ile Gly
130 135 140

Tyr Gly Phe Arg Cys Val Thr Asp Glu Cys Pro Ile Ala Val Phe Met
145 150 155 160

Val Val Phe Gln Ser Ile Val Gly Cys Ile Ile Asp Ala Phe Ile Ile
165 170 175

Gly Ala Val Met Ala Lys Met Ala Lys Pro Lys Lys Arg Asn Glu Thr
180 185 190

Leu Val Phe Ser His Asn Ala Val Ile Ala Met Arg Asp Gly Lys Leu
195 200 205

Cys Leu Met Trp Arg Val Gly Asn Leu Arg Lys Ser His Leu Val Glu
210 215 220

Ala His Val Arg Ala Gln Leu Leu Lys Ser Arg Ile Thr Ser Glu Gly
 225 230 235 240

Glu Tyr Ile Pro Leu Asp Gln Ile Asp Ile Asn Val Gly Phe Asp Ser
 245 250 255

Gly Ile Asp Arg Ile Phe Leu Val Ser Pro Ile Thr Ile Val His Glu
 260 265 270

Ile Asp Glu Asp Ser Pro Leu Tyr Asp Leu Ser Lys Gln Asp Ile Asp
 275 280 285

Asn Ala Asp Phe Glu Ile Val Val Ile Leu Glu Gly Met Val Glu Ala
 290 295 300

Thr Ala Met Thr Thr Gln Cys Arg Ser Ser Tyr Leu Ala Asn Glu Ile
 305 310 315 320

Leu Trp Gly His Arg Tyr Glu Pro Val Leu Phe Glu Glu Lys His Tyr
 325 330 335

Tyr Lys Val Asp Tyr Ser Arg Phe His Lys Thr Tyr Glu Val Pro Asn
 340 345 350

Thr Pro Leu Cys Ser Ala Arg Asp Leu Ala Glu Lys Lys Tyr Ile Leu
 355 360 365

Ser Asn Ala Asn Ser Phe Cys Tyr Glu Asn Glu Val Ala Leu Thr Ser
 370 375 380

Lys Glu Glu Asp Asp Ser Glu Asn Gly Val Pro Glu Ser Thr Ser Thr
 385 390 395 400

Asp Thr Pro Pro Asp Ile Asp Leu His Asn Gln Ala Ser Val Pro Leu
 405 410 415

Glu Pro Arg Pro Leu Arg Arg Glu Ser Glu Ile
 420 425

<210> 19

<211> 1050

<212> DNA

<213> Homo sapiens

<400> 19

tttatatttt	ttcagtgtcc	atatttcaaa	aattttattha	tctcaaactg	tgccataatgg	60
agtaaaaaact	taagttgaaa	atgtacctgt	tataaggatg	atatttagttc	aaatatataac	120
atggattctc	ggcagactga	ttcaaaataat	acagagccga	atcttttaaa	atacaactac	180
ggaaaataaa	ggggggaaaa	ccttaaaaata	tcacaataaa	tttacagaaaa	tattacaaac	240
cataagaaaa	tatttcaaac	acagtaattt	catggttttt	tttatctgaa	caaaatggaa	300
agttggatc	gaacaaaagc	tattataaat	taccaacgggt	gtcaacctgc	atggccattt	360
ttgcttttaa	cagtaagttt	taaaatttag	tacagtctaa	aacttttgcc	ctttttaaac	420
aagaccacag	agatggttcg	ccagtactta	ttctaatttt	ttccttttgt	acaattttta	480
aacaattaaa	atgtccaaat	ttgaataatt	ttcttctttt	cacgtttgca	actgtcctaa	540
atttcagctg	cagaatcaa	attcagcaag	aagcctctcc	ttgaaaaata	ttggcaaattt	600
ctcagcttat	aaacaatgga	cattttgatt	gccatgttta	tctcgataaa	tactgtacaa	660
aagttgcttg	caaataattaa	aacattttt	tcgtcgcttg	gagactagct	ctaaatattta	720
ttggtaaaga	cttttgcaaa	cttcctgcaa	agctcctacc	gtaccactag	aacttttaaa	780
aagtttttcg	tagctttctt	tcctccagat	ctatacaagg	tccattcccc	cgccctcccc	840

accctccccca	ggttttctct	gtacaaaaat	agtccccc	aaagaagtcc	aggatctc	900
tcataaaaagt	tttcttgc	gcatcg	gttgcgt	gtgtggatgg	gattgggtt	960
ctcttttgc	a gctgtc	tattt	gtgtgggt	atgggatttt	ttttttc	1020
gagcgtacc	ggtttctcc	atgctgtt				1050

<210> 20
<211> 88
<212> PRT
<213> Homo sapiens

<400> 20
Met Glu Lys Thr Arg Tyr Ala Gln Lys Glu Lys Gly Lys Lys Ile
1 5 10 15

Pro Ser Pro Thr Ala Asn Asp Ser Cys Lys Arg Glu His Gln Ser His
20 25 30

Pro His Ser Arg Lys Asn Arg Asp Ala Asp Lys Lys Thr Phe Met Arg
35 40 45

Glu Ile Leu Asp Phe Phe Leu Gly Asp Tyr Phe Cys Thr Glu Lys Thr
50 55 60

Trp Gly Gly Trp Gly Gly Arg Gly Asn Gly Pro Cys Ile Asp Leu Glu
65 70 75 80

Glu Arg Lys Leu Arg Lys Thr Phe
85

<210> 21
<211> 881
<212> DNA
<213> Homo sapiens

<400> 21
ttttttttt ttgtcaagag ccaagacaca ggttatgcac gacattgatt gtcattttt 60
accttcaaaa tatttgtcct tattgactgg gtctccttaa ttaatgtaca catgtcatta 120
aatgcagac ggaggggact caccatgaat attctgggtt gattccaga tgtgtgtgc 180
ttctctattt caagcagatt ccctgttga tttacttcgg atttattccc ttttaagaa 240
tttttgccca tatacttggaa ggcactatata ttttgggagg agccatagat tcctggttat 300
cctattttta aacaaaatgt agacaaatgt aactctattt tgattattga gaaaggagta 360
tttttctatc cctctaagag tataacttggaa tcagacattt taaggatgtc actatggcac 420
tgttgtcatt tccaaattcc tagaaaatgt tgttttactt tgtttttatt ctgttaatgc 480
attctttctt ctctttactt cctttcttac cagtagtac cttatctcaac tctgtttatt 540
tgatgagttc tgcccgtaa atcatattt ctttacaatt aataatgtc acttcatatt 600
ttataataaa ccactcagta aaagcaaaag ctgtcctga gaagtactct gtgtctaata 660
atgttaaggg catagctacc tgcccatccc caaccctcag caaagttagaa tctctttct 720
ggtaattttg ggttccgct ctgggcctg gcaagttgaa caatccatgc cattgacaat 780
cgtgatagtt attatttcc catttgcgtt cttttgcattt ctaaagtctt cctattgtac 840
tgcacaaacc atggattgta catattttta tatattatgt c 881