

Languages and Machines

L8: Turing machines

Jorge A. Pérez

Bernoulli Institute for Math, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Languages and Their Machines

Regular → Finite State Machines (FSMs)

Context-free
→ Pushdown Machines

Context-sensitive
→ Linearly-bounded Machines

Decidable → **Always-terminating Turing Machines**

 $\textbf{Semi-decidable} \quad \leftrightarrow \quad \textbf{Turing Machines}$

• Finite state machines (FSMs), in different flavors, fully characterize regular languages.

- Finite state machines (FSMs), in different flavors, fully characterize regular languages.
- There are, however, languages that are not regular. Example:

$$L_1 = \{ a^n \ b^n \ | \ n \geq 0 \}$$

Hence, FSMs cannot recognize languages such as L_1 .

- Finite state machines (FSMs), in different flavors, fully characterize regular languages.
- There are, however, languages that are not regular. Example:

$$L_1 = \{ a^n b^n | n \geq 0 \}$$

Hence, FSMs cannot recognize languages such as L_1 .

• Context-free languages strictly include regular languages, but also languages such as L_1 .

Pushdown machines, in different flavors, use a stack to fully

characterize context-free languages (including L_1).

- Finite state machines (FSMs), in different flavors, fully characterize regular languages.
- There are, however, languages that are not regular. Example:

$$L_1 = \{ a^n \ b^n \mid n \ge 0 \}$$

Hence, FSMs cannot recognize languages such as L_1 .

- Context-free languages strictly include regular languages, but also languages such as L_1 . Pushdown machines, in different flavors, use a stack to fully characterize context-free languages (including L_1).
- There are, however, languages that are not context-free.
 Example:

$$L_2 = \{ a^n \ b^n \ c^n \ | \ n \geq 0 \}$$

- Finite state machines (FSMs), in different flavors, fully characterize regular languages.
- There are, however, languages that are not regular. Example:

$$L_1 = \{ a^n b^n | n > 0 \}$$

Hence, FSMs cannot recognize languages such as L_1 .

- Context-free languages strictly include regular languages, but also languages such as L_1 .

 Pushdown machines, in different flavors, use a stack to fully characterize context-free languages (including L_1).
- There are, however, languages that are not context-free.
 Example:

$$L_2 = \{ a^n \ b^n \ c^n \ | \ n \geq 0 \}$$

• What kind of machines do we need to recognize L_2 ?

Outline

Turing Machines
Definition
Acceptance
Terminology

- A Turing machine (TM) may access and modify any memory position, using a sequence of elementary operations
- No limitation on the space/time available for a computation
- A finite state machine equipped with a tape, divided into squares, which can be written on as a result of a transition
- The head of the machine can move to the right or to the left, allowing the TM to read and manipulate the input as desired

- A Turing machine (TM) may access and modify any memory position, using a sequence of elementary operations
- No limitation on the space/time available for a computation
- A finite state machine equipped with a tape, divided into squares, which can be written on as a result of a transition
- The head of the machine can move to the right or to the left, allowing the TM to read and manipulate the input as desired

In other words, a transition:

- changes the state
- writes a symbol on the square scanned by the head
- moves the head

A (simple) **Turing machine** M is a quintuple $(Q, \Sigma, \Gamma, \delta, q_0)$ where

- Q is a set of states
- $q_0 \in Q$ is the start state
- Γ is the tape alphabet, a set of symbols disjoint from Q.
 Contains a blank symbol B, not in Σ
- $\Sigma \subseteq \Gamma \setminus \{\mathtt{B}\}$ is the input alphabet
- The transition function δ is a partial function such that

$$\delta: Q imes \Gamma o Q imes \Gamma imes \{L,R\}$$

If $\delta(q, X)$ is undefined then $\delta(q, X) = \bot$.

A (simple) **Turing machine** M is a quintuple $(Q, \Sigma, \Gamma, \delta, q_0)$ where

- Q is a set of states
- $q_0 \in Q$ is the start state
- Γ is the tape alphabet, a set of symbols disjoint from Q.
 Contains a blank symbol B, not in Σ
- $\Sigma \subseteq \Gamma \setminus \{\mathtt{B}\}$ is the input alphabet
- The transition function δ is a partial function such that

$$\delta: Q imes \Gamma o Q imes \Gamma imes \{L,R\}$$

If $\delta(q, X)$ is undefined then $\delta(q, X) = \bot$.

A set of accepting states $F \subseteq Q$ is possible but not indispensable for defining acceptance (see later).

A TM that reads the input string and interchanges symbols $\it a$ and $\it b$:

$$a/b R$$
 $a/a L$ $b/b L$ Q_2 Q_2

In state q_1 , label 'a/b R' indicates:

- symbol a is rewritten into b, and
- the head moves right.

A TM that reads the input string and interchanges symbols a and b:

A slightly more general machine:

The global state of the TM is determined by the state $q \in Q$, the contents of the tape (a string in Γ^*) and the position of the head

- A **configuration** of the TM is a string uqv in $\Gamma^*Q\Gamma^*$, in which:
 - u is a string on the tape to the left of the head
 - q is the **current** state
 - v is a string on the tape that begins under the head
- The initial configuration is q_0w , where $w\in \Sigma^*$ is the input string
- The first symbol of vB^{∞} is called the **current** symbol

Suppose X, Y, Z are tape symbols (in Γ). Moving to the next configuration:

$$\delta(q,X) = (r,Y,R) \Rightarrow u Z q X v \vdash u Z Y r v \ \delta(q,X) = (r,Y,L) \Rightarrow u Z q X v \vdash u r Z Y v \ \delta(q,X) = \bot \Rightarrow u q X v \vdash \bot$$

Suppose X, Y, Z are tape symbols (in Γ). Moving to the next configuration:

$$egin{array}{lll} \delta(q,X) = (r,\,Y,R) & \Rightarrow & u\,Z\,q\,X\,v dash u\,Z\,Y\,r\,v \ \delta(q,X) = (r,\,Y,L) & \Rightarrow & u\,Z\,q\,X\,v dash u\,r\,Z\,Y\,v \ \delta(q,X) = ota & \Rightarrow & u\,q\,X\,v dash ota \end{array}$$

- A computation is a sequence of steps, as defined by ⊢
- A TM computes a function f
 - if starting in q_0w , the final tape upon termination is always $\mathbb{B}^{\infty}u\mathbb{B}^{\infty}$, with u=f(w).

Example 1, Revisited

Computation for input abab:

$$ightarrow \left[q_0
ight
angle$$
 B a b a b B
HB $\left[q_1
ight
angle$ a b a b B
HB b $\left[q_1
ight
angle$ b a b B
HB b a $\left[q_1
ight
angle$ a b B
HB b a b $\left[q_1
ight
angle$ b B

$$\vdash$$
B b a b $\lfloor q_2 \rangle$ a B \vdash B b a $\lfloor q_2 \rangle$ b a B \vdash B b $\lfloor q_2 \rangle$ a b a B \vdash B $\lfloor q_2 \rangle$ b a b a B \vdash $\lfloor q_2 \rangle$ B b a b a B

Acceptance

 A TM M accepts by termination the language of the input strings w for which it terminates:

$$L(M) = \{w \in \Sigma^* \mid q_0w \vdash^* \bot\}$$

No need for accepting states.

Acceptance

 A TM M accepts by termination the language of the input strings w for which it terminates:

$$L(M) = \{w \in \Sigma^* \mid q_0w \vdash^* \bot\}$$

No need for accepting states.

 L(M) can also be defined by termination in an accepting state, extending M with a set F ⊆ Q:

$$L(M) = \{w \in \Sigma^* \mid \exists \mathit{q_f} \in \mathit{F}, \; u, v \in \Gamma^* : \mathit{q_0}w \vdash^* u \; \mathit{q_f} \; v \vdash \bot \}$$

• This definition can be reduced to the first one by letting F=Q. In fact, both definitions are equivalent.

A TM with accepting state(s):

Does it work? Why?

$$ightarrow$$
 B $\left[\mathit{q}_{0}
ight
angle$ a b b c c B

$$ightarrow$$
 B $[q_0
angle$ a b b c c B $ightarrow$ B A $[q_1
angle$ a b b c c B

$$ightarrow$$
 B $[q_0
angle$ a b b c c B $ightarrow$ B A $[q_1
angle$ a b b c c B $ightarrow$ B A a $[q_1
angle$ b b c c B

Computation for input aabbcc:

ightarrow B $[q_0
angle$ a a b b c c B ightarrow B A $[q_1
angle$ a b b c c B ightarrow B A a A $[q_2
angle$ b c c B A a A b $[q_2
angle$ c c B

Computation for input *aabbcc*:

ightarrow B $[q_0
angle$ a a b b c c B

 \vdash B A $[q_1\rangle$ a b b c c B

 \vdash B A a $[q_1
angle$ b b c c B

 \vdash B A a A $|q_2\rangle$ b c c B

 \vdash B A a A b $|q_2\rangle$ c c B

 \vdash B A a A b A $|q_3\rangle$ c B

Computation for input aabbcc:

ightarrow B $[q_0
angle$ a a b b c c B

 \vdash B A $[q_1\rangle$ a b b c c B

 \vdash B A a $[q_1
angle$ b b c c B

 $dash \mathtt{B} \hspace{0.1cm} A \hspace{0.1cm} a \hspace{0.1cm} A \hspace{0.1cm} [\hspace{0.1cm} q_2
angle \hspace{0.1cm} b \hspace{0.1cm} c \hspace{0.1cm} c \hspace{0.1cm} \mathtt{B}$

 \vdash B A a A b $|q_2\rangle$ c c B

 \vdash B A a A b A $[q_3\rangle$ c B

 \vdash B A a A b A c $\lceil q_3 \rangle$ B

Computation for input aabbcc:

 \vdash B A a A b A $\lceil q_4 \rangle$ c B

$$\vdash$$
B A a A b A $[q_4\rangle$ c B \vdash * $[q_4\rangle$ B A a A b A c B

Computation for input aabbcc:

$$\vdash$$
B A a A b A $[q_4\rangle$ c B \vdash * $[q_4\rangle$ B A a A b A c B \vdash * B A A A A A A A A A

Computation for input aabbcc:

Computation for input aabbcc:

Computation for input aabbcc: $\rightarrow B [q_0] a a b b c c B$

 \vdash B $A [q_1
angle a b b c c B$ \vdash B $A a [q_1
angle b b c c B$ \vdash B $A a A [q_2
angle b c c B$ \vdash B $A a A b [q_2
angle c c B$ \vdash B $A a A b A [q_3
angle c B$ \vdash B $A a A b A c [q_3
angle B$

Computation for input aabbcc:

 $\vdash_{\mathsf{B}} A \ a \ A \ b \ A \ [q_{4}\rangle \ c \ \mathsf{B}$ $\vdash^{*} \ [q_{4}\rangle \ \mathsf{B} \ A \ A \ A \ A \ A \ A \ [q_{3}\rangle \ \mathsf{B}$ $\vdash^{*} \ [q_{4}\rangle \ \mathsf{B} \ A \ A \ A \ A \ A \ A \ A \ B$ $\vdash \ \mathsf{B}[q_{0}\rangle \ A \ A \ A \ A \ A \ A \ [q_{0}\rangle \ \mathsf{B}$ $\vdash^{*} \ \mathsf{B} \ A \ A \ A \ A \ A \ [q_{5}\rangle \ A \ \mathsf{B}$

Further Terminology

A TM is always terminating if it terminates for every input.

Let L be a language.

- L is semi-decidable (or recursively enumerable, RE)
 if there exists a TM M such that L = L(M).
- L is decidable (or recursive)
 if there is an always terminating TM that accepts L by termination in an accepting state.
- If L is decidable, then it is also semi-decidable.
 The converse doesn't hold!

Taking Stock

This lecture (Sections 5.1 and 5.2):

- ▶ Turing machines
- Key terminology for TM-accepted languages

Next Lecture (Sections 5.3–5.8)

- Further examples of TMs
- Variants of TMs: multiple-track, multiple-tape, non-deterministic