Ingeniería Conocimiento Grado Informática

Introducción

- 1. Caracterización y perspectiva de agente.
- 2. Paradigmas principales.
- 3. Áreas de aplicación y ejemplos.

Caracterización

The field of artificial intelligence (AI) is concerned with the design and analysis of autonomous agents. These are software systems and/or physical machines, with sensors and actuators, embodied for example within a robot or an autonomous spacecraft. An **intelligent system** has to perceive its environment, to act rationally towards its assigned tasks, to interact with other agents and with human beings.

Computer Science
Curriculum 2008: An Interim Revision of CS 2001
December 2008
Association for Computing Machinery
IEEE Computer Society

¿Qué es un sistema inteligente?

- Sistema Inteligente
 - Agente inteligente o, mejor, racional

Concepto de Agente

Entidad que:

- percibe su entorno a través de sensores.
- modifica el entorno mediante actuadores.

Comportamiento de un agente

Teóricamente: función de agente

Mundo del aspirador

- Percepción: Situación, Suciedad en la casilla.
- Acciones: Derecha, Izquierda, Aspirar, NoOp
- Función de agente:

Si la casilla actual esta sucia entonces aspirar, sino ir a la otra casilla.

Mundo del aspirador

Secuencia Percepciones	Acción	
[A, Limpia]	Derecha	
[A, Sucia]	Aspirar	
[B, Limpia]	Izquierda	
[B, Sucia]	Aspirar	
[A, Limpia], [A, Limpia]	Derecha	
[A, Limpia], [A, Sucia]	Aspirar	
[A, Limpia], [A, Limpia], [A, Limpia]	Derecha	
[A, Limpia], [A, Limpia], [A, Sucia]	Aspirar	

Hasta ahora

- Secuencia de Percepciones.
- Acciones.
- Función de Agente.
- Pero también: entorno.
- Entorno sencillo: discreto (continuo), estático (dinámico), determinista (estocástico), único agente (multi), episódico (secuencial) pero parcialmente observable (totalmente).

¿Cómo determinar la calidad de un agente?

- Medida de rendimiento que cuantifique el grado de "éxito".
- Objetiva y externa.
- Desde el punto de vista del entorno.

- Mundo del aspirador:
 - Suciedad aspirada en turno de 8 horas.
 - Tiempo total en que el suelo está limpio.
 - Suelo limpio sin demasiado consumo eléctrico.

Agente racional

- Agente racional ideal, Russell, Norvig
 - "Aquel que para cada posible secuencia de percepciones, realiza la acción que se espera que maximice su medida de rendimiento, basándose en la evidencia proporcionada por su secuencia de percepción y el conocimiento que el agente mantiene almacenado."

¿Es el agente aspirador racional?

- Depende...
- Suponer:
- Entorno:
 - Geometría conocida, distribución inicial de suciedad desconocida.
 - Aspirar limpia una casilla y permanece limpia.
 - Derecha e Izquierda mueven al agente a la derecha y a la izquierda, salvo si le sacan del entorno (permanece).
- Percepciones: situación y suciedad (correctas).
- Acciones: Derecha, Izquierda, Aspirar, NoOp.
- Función de agente: Si la casilla actual esta sucia entonces aspirar, sino ir a la otra casilla.
- Rendimiento: 10 puntos por casilla limpia por instante de tiempo.

- Ningún otro agente obtendrá una mejor rendimiento esperado.
- ¿Os parece que el comportamiento es defectuoso?
- Entonces, definir otra medida de rendimiento.
- Suponer que no queremos al agente moviéndose en un entorno limpio.

Modificar ligeramente la medida anterior:
 10 puntos por casilla limpia por instante de tiempo.

- 10 puntos por casilla limpia por instante de tiempo
- -1 punto por cada movimiento.

- Para maximizar el rendimiento esperado, tenemos que cambiar la Función de agente:
 - Si la secuencia de percepciones incluye [A, Limpia] y [B, Limpia], en cualquier orden y posición, entonces seleccionar NoOp.
 - Si la casilla actual esta sucia entonces Aspirar, sino ir a la otra casilla.

- Un comportamiento perfecto requiera saber por adelantado el resultado de las acciones del agente: sólo se pide maximizar el rendimiento esperado.
- Excepto para entornos sencillos, invariables, el conocimiento inicial del agente no puede garantizar maximizar el rendimiento a largo plazo.
- Racionalidad normalmente requiere aprendizaje para proporcionar autonomía al agente.

Ejemplos de agentes y descripción REAS

Tipo de Agente	Medida de Rendimiento	Entorno	Actuadores	Sensores
Robot para la selección de componentes	Porcentaje de componentes clasificados en los cubos correctos	Cinta transportado ra con componente s, cubos	Brazo y mano articulados	Cámara, sensor angular
Controlador de una refinería	Maximizar la pureza, producción y seguridad	Refinería, operadores	Válvulas, bombas, calentadores, monitores	Temperatura, presión, sensores químicos
Tutor de Ingles interactivo	Maximizar la puntuación de los estudiantes en los exámenes	Conjunto de estudiantes, agencia examinadora	Visualizar los ejercicios, sugerencias, correcciones	Teclado de entrada

- La Función de agente no se implementa, pues no se suele conocer.
- Se implementa: Programa de agente.
- El Programa de agente utiliza solo la percepción actual del entorno.
- Utiliza la percepción actual del entorno y el conocimiento y memoria que pueda tener para seleccionar la acción actual.

Concepto de Agente y Programa de Agente

- Entidad que
 - percibe su entorno a través de sensores
 - modifica el entorno mediante actuadores

- La mayoría de los principios subyacentes a los sistemas inteligentes se pueden describir con 5 tipos básicos de Programas de agente.
- Agente reactivo simple.
- Agente reactivo basado en modelos.
- Agente basado en metas.
- Agente basado en utilidad.
- Agentes que aprenden

Agente reactivo simple

- Suficiente si la acción actual se puede tomar a partir de la percepción actual.
- Muchas tareas de clasificación:
 - Riesgo crediticio
 - Etiquetado de imágenes
 - Comportamiento anómalo en aeropuertos
 - Sistemas de diagnosis de fallos sencillo

- Entorno no totalmente observable, secuencial
- Mundo aspirador:
 - 10 puntos por casilla limpia por instante de tiempo
 - -1 punto por cada movimiento.
- Un agente reactivo simple no puede ser racional con esta función de rendimiento

Agente reactivo basado en modelos

- Puede generar comportamiento racional en numerosas tareas analíticas
- Sistemas basados en conocimiento para tareas analíticas:
 - Clasificación
 - Evaluación (Assessment)
 - Monitorización
 - Diagnosis

Limitaciones agente reactivo basado en modelos

- A veces, el agente necesita considerar su meta actual para seleccionar la mejor acción
- Agente aspirador en un edificio docente.
- Dos metas:
 - Limpieza
 - Silencio
- Aproximación sencilla:
 - Horas de clase: silencio.
 - Fuera del horario de docencia: limpieza

Agente basado en objetivos

- Puede ser sencilla, como el agente aspirador en el edificio de docencia.
- Generalmente, el agente tiene que considerar secuencias de acciones.

- Búsqueda: rutas, juegos
- Planificación: Horarios de clases, asignación de tiempos a tareas (Scheduling)

A veces el agente tiene que razonar sobre las metas.

- Porque hay metas contrapuestas (compromiso).
 - Agente aspirador en hospital: limpieza frente a silencio.
- Porque hay incertidumbre en la obtención de las metas: mejor jugada poker

2. Paradigmas principales

- No sólo técnicas de búsqueda
 - De interés en numerosos entornos (juegos, optimización de rutas, etc...)
- Incluyen conocimiento, implícito o explícito, sobre el problema a resolver

Paradigmas principales (basados en conocimiento)

- Sistemas basado en conocimiento (sistemas expertos)
- Razonamiento basado en casos
- Métodos de aprendizaje y minería de datos
- Razonamiento basado en modelos

- Identificación y explotación del conocimiento humano para la resolución de problemas
- Suposiciones básicas (sistemas expertos)
 - El conocimiento proviene de la experiencia
 - Los expertos codifican el conocimiento mediante asociaciones (heurística)
 - El conocimiento se puede extraer del experto y codificar mediante un Lenguaje de Representación de Conocimiento

- Estructura
 - SI antecedente ENTONCES consecuente
- Ejemplo
 - SI las diferencias de temperaturas son anormalmente altas Y las presiones se mantienen aproximadamente constantes ENTONCES sospechar fallo en sensores de temperatura

Ejemplo de MYCIN

- Diagnosis y terapia de enfermedades infecciosas
- Base de conocimiento: Reglas de Producción
 - if (1) the stain of the organism is gram-negative
 - (2) the morphology of the organisms is coccus
 - (3) the growth configuration of the organism is chains then there is a suggestive evidence (0.7) that the identity of the organisms is streptococcus
- Control: encadenamiento hacia atrás, meta-reglas
- Razonamiento aproximado: factores de certeza

Aplicaciones SE

- Numerosos dominios de aplicación:
 - Medicina, Mecánica, Electrónica, Control de Procesos, Aeronáutica, ...
- Numerosas tareas basadas en conocimiento:
 - Diagnosis, configuración, clasificación, ...
- Numerosos sistemas:
 - Representativos: MYCIN, INTERNIST, R1/XCONF...
 - Actuales: Expert systems with applications (An international Journal)

- Aproximación bien establecida
 - Metodologías (Ingeniería de conocimiento, Ontologías), sistemas
- Adecuada si
 - Suficiente experiencia
 - No hay otras fuentes de conocimiento
 - Suficientes observaciones
 - El sistema permanece estable

Inconvenientes aproximación SE

- Relacionadas con la experiencia
 - Dificultad tarea adquisición conocimiento
 - Disponibilidad experiencia/expertos
 - Dependencia del dispositivo
- Relacionado con el método de solución
 - Situaciones no previstas
 - Combinación de soluciones(ej: fallos múltiples)
 - Fragilidad
- Ingeniería de software
 - Obtención del conocimiento
 - Reutilización de conocimiento (tareas, dispositivos)
 - Mantenimiento de (la consistencia de) la base de conocimiento

Razonamiento basado en casos

- Caso: descripción de un problema y su solución
- Solución nuevo problema
 - Buscar caso(s) con descripción más similar
 - Adaptar solucion(es) y revisar resultado
 - Almacenar nuevo caso si interesante

Ciclo CBR

- Recuperar (retrieve) los casos más parecidos
- Reutilizar (reuse) la solución propuesta en los casos para tratar de resolver el problema
- Revisar (revise) la solución propuesta
- Almacenar (retain) la nueva solución como parte de un nuevo caso

Ventajas/inconvenientes aproximación CBR

Ventajas

- No requiere representación explícita del conocimiento
- Capacidad de aprendizaje
- Adecuado si no se dispone de modelo explícito

Inconvenientes

- Necesidad de casos previos
- Limitaciones de la etapa de REVISIÓN

- Permiten inferir conocimiento nuevo
 - Descripción de conceptos a partir de ejemplos etiquetados (clasificación)
 - Descubrimiento de conceptos a partir de ejemplos no etiquetados (clustering)
 - Descubrimiento de regularidades en datos
 - Mejora de la eficiencia

Ventajas/inconvenientes paradigma de aprendizaje

Ventajas:

- Permiten generar automáticamente conocimiento a partir de datos
- Adecuado si no se dispone de modelo explícito

Inconvenientes

- Necesidad de disponer de datos
- Habitualmente de utilidad sólo en alguna parte del proceso de solución

Razonamiento basado en modelos

Razonamiento basado en modelos

- Conocimiento: modelos (estructura, comportamiento) de los componentes del sistema
- Razonamiento: proceso de manipulación de los modelos hasta obtener solución del problema

Ventajas RBM

- Independiente de la experiencia
 - Aplicable a dispositivos nuevos
- Independencia del dispositivo
 - Problema de las variantes
- Soluciones complejas (ej: Fallos múltiples)
- Sólido y completo
 - Respecto a los modelos
- Mantenimiento y reutilización del conocimiento
 - Biblioteca de modelos (disponibles desde el diseño)

- Dificultad de obtención de los modelos
 - Procesos poco conocidos
 - Sistemas con numerosos componentes
 - Comportamientos complejos: dinámica, no linealidades, rango de validez de modelo...
- Mayor carga computacional del proceso de razonamiento
 - Limitaciones aplicaciones en tiempo real

3. Áreas de aplicación y ejemplos

Áreas de aplicación

- Planificación y Scheduling
- Configuración y diseño
- Diagnosis
- Control
- Visión
- Tecnologías del habla
- Robótica
- Lenguaje natural
- Análisis de transacciones
- Industria informática actual
 - navegadores, buscadores, gestor e-mail, reconocimiento matrículas aparcamientos, compras on-line ...

Áreas de aplicación

- Planificación y Scheduling
- Configuración y diseño
- Diagnosis
- Control
- Visión
- Tecnologías del habla
- Robótica
- Lenguaje natural
- Análisis de transacciones
- Industria informática actual
 - navegadores, buscadores, gestor e-mail, reconocimiento matrículas aparcamientos, compras on-line ...

- De gran interés por
 - Seguridad
 - Medio ambiental
 - Económicos
- Varios proyectos Europa, USA

- Diagnosis a bordo
- Diagnosis en el taller
- Elaboración de manuales
- Diagnosis, mantenimiento preventivo

Industria Aeroespacial

- Sistemas de Monitorización de las funciones básicas de naves espaciales (Health Managment Systems)
 - subsistemas de propulsión, guiado, "de vida"...
- Para detección, localización y reconfiguración
 - Satélites, lanzaderas...
 - ESA (European Espace Agency), NASA (National Space Agency),
 Deimos Space, IBERESPACIO, GMV Aerospatiale

Localización de fallos en copiadoras

Supervisión de procesos industriales

Aporta

- Atención continuada
- Seguridad
- Calidad homogénea

