

Computer vision in the new era of Artificial Intelligence and Deep Learning

Visión por computador en la nueva era de la Inteligencia Artificial y el Deep Learning

Rubén Usamentiaga*, Alberto Fernández° *Universidad de Oviedo °TSK

Gijón 5 – 16 Abril 2021

- How computer learn
 - In supervised learning a model is build from labeled samples
 - The response under new inputs is generated using the model
 - As the problem becomes more difficult, more samples are needed

- Learning based on the scientific method
 - Propose an hypothesis
 - Data follows a linear model: the output is linearly related to the input
 - Adjust the model using a portion of the samples
 - Model training
 - Evaluate the model using a different portion of the samples
 - Model evaluation

- Supervised learning
 - Requires
 - Dataset: input data paired with desired outputs
 - Model: a function that given an input produces an output
 - Learning is just parameter estimation
 - Fit the model to the dataset

Training

```
for epoch in range(N):
    # Forward pass: Compute prediction by passing the input to the model
    prediction = model(input)

# Evaluate the model
    loss = criterion(prediction, desired_output)

# Perform a backward pass, and update the model
    loss.backward()
    optimizer.step()
```

Training = Minimize loss function

Training result

```
prediction = trained_model(new_input)
```

An accurate model predicts the expected result

Training using Stochastic Gradient Descent (SGD)

```
for epoch in range(N):
    for batch in range(M):

# Forward pass: Compute prediction by passing the input to the model
    prediction = model(input)

# Evaluate the model
    loss = criterion(prediction, desired_output)

# Perform a backward pass, and update the model
    loss.backward()
    optimizer.step()
```

Other popular training method:
Adam (adaptive moment estimation)