Notes from Unit 1 Finite Difference Time Domain

Tiago Vilela

December 26, 2020

1 Introduction

Finite Difference Time Domain (FDTD) method is a numerical analysis technique used to approximate solutions of differential equations.

Pros	Cons
Simple and intuitive;	High processing time for 3D problems;
Works on Field variables;	Complex geometry demands a lot of work.
Do not invert matrices;	
Double precision;	
Directly models nonlinear phenomenons and several mediums.	

1.1 Identification of Electromagnetic Problems

Continuous problems are caregorized based on:

- the solution region;
- the equation that describes the problem;
- border conditions associated to the problem.

Electromagnetic problems can usually be classified based on the equations that describe them. These can be integral or/and differential equations. Most of them can be defined by the following equation:

$$L\Phi = g \tag{1}$$

where L is a differential, integral, or integral-differential operator, g is the source (usually known) and Φ is the function to be solved.

$$a\frac{\partial^2 \Phi}{\partial x^2} + b\frac{\partial^2 \Phi}{\partial x \partial y} + c\frac{\partial^2 \Phi}{\partial y^2} + d\frac{\partial \Phi}{\partial x} + e\frac{\partial \Phi}{\partial y} + f\Phi = g \tag{2}$$

$$L = a\frac{\partial^2}{\partial x^2} + b\frac{\partial^2}{\partial x \partial y} + c\frac{\partial^2}{\partial y^2} + d\frac{\partial}{\partial x} + e\frac{\partial}{\partial y} + f$$
 (3)

where the coefficients a,b,c are functions of x and y, and and might be dependent on Φ , in case the Partial Differential Equation (PDE) is nonlinear. Additionally, the PDE is homogeneous if g(x,y) = 0 and non homogeneous if $g(x,y) \neq 0$.

1.2 Second Order Differential Equations

Derived from the equation $ax + bxy + cy^2 + dx + ey + f = 0$, the second order PDEs are classified by:

condition	case
b - 4ac < 0 $b - 4ac > 0$ $b - 4ac = 0$	eliptic hyperbolic parabolic

Table 1: Classification of Electromagnetic Problems

Case	Equation	Variables	Associated to
Eliptic	$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = g(x, y)$	a = c = 1 and $b = 0$	Stationary phenomenons
Hyperbolic	$\frac{\partial^2 \Phi}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \Phi}{\partial t^2}$ $\frac{\partial^2 \Phi}{\partial t^2}$ 1. $\frac{\partial^2 \Phi}{\partial t^2}$	$a = u^2$, $b = 0$ and $c = -1$	Propagation problems
Parabolic	$\frac{\partial^2 \Phi}{\partial x^2} = k \frac{\partial \Phi}{\partial t}$	a = 1 and $b = c = 0$	Slow change phenomenons

The solution Φ in a bounded region R is required to satisfy given conditions S, these are:

Table 2: Boundary Conditions

insi in a second conditions		
Condition	Equation	
Dirichlet Condition Neumann Condition Neumann Condition	$ \frac{\Phi(\mathbf{r}) = 0}{\frac{\partial \Phi(\mathbf{r})}{\partial n} = 0} $ $ \frac{\partial \Phi(\mathbf{r})}{\partial n} + \Phi(\mathbf{r}) + h(\mathbf{r}) = 0 $	