Math 55b, Assignment #1, February 3, 2006 (due February 10, 2006)

Notations. \mathbb{N} = all positive integers.

 \mathbb{R} = all real numbers.

 \mathbb{C} = all complex numbers.

Problem 1 (Cauchy-Riemann equations). Let $m, n \in \mathbb{N}$. Let U an open subset of \mathbb{C}^n and W an open subset of \mathbb{C}^m and $f: U \to W$ be a map. Let (z_1, \dots, z_n) with $z_j = x_j + \sqrt{-1} y_j$ be the complex coordinates of \mathbb{C}^n which contains U and let (w_1, \dots, w_m) with $w_j = u_j + \sqrt{-1} v_j$ be the complex coordinates of \mathbb{C}^m which contains W so that

$$u_{j} = u_{j}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}), \quad v_{j} = v_{j}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n})$$

for $1 \leq j \leq m$ represent the map f. Let $P_0 \in U$ and $g : \mathbb{C}^n \to \mathbb{C}^m$ be a map which is \mathbb{R} -linear. Assume that g approximates f at P_0 to an order higher than the first in the sense that

$$\lim_{P \to P_0} \frac{\|(f(P) - f(P_0)) - g(P - P_0)\|}{\|P - P_0\|} = 0,$$

where the difference $P-P_0$ of the two points P_0 and P_1 is considered naturally as a vector in \mathbb{C}^n going from P_0 to P_1 and $\|\cdot\|$ means the Euclidean norm in the vector space \mathbb{C}^n or \mathbb{C}^m . Show that the map $g: \mathbb{C}^n \to \mathbb{C}^m$ is linear over \mathbb{C} if and only if the following Cauchy-Riemann equations

$$\frac{\partial u_j}{\partial x_k} = \frac{\partial v_j}{\partial y_k}, \quad \frac{\partial u_j}{\partial y_k} = -\frac{\partial v_j}{\partial x_k}$$

for $1 \le j \le m$ and $1 \le k \le n$ are satisfied at the point P_0 .

Problem 2 (Weierstrass nowhere differentiable function). Let 0 < b < 1 and a be an odd positive integer such that $ab > 1 + \frac{3\pi}{2}$. Let

$$f(x) = \sum_{n=0}^{\infty} b^n \cos(a^n \pi x).$$

Verify that the continuous function f(x) on \mathbb{R} is nowhere differentiable.

Hint: Fix $x \in \mathbb{R}$. For any $k \in \mathbb{N}$ write $a^k x = n_k + y_k$ uniquely with $-\frac{1}{2} \le y_k < \frac{1}{2}$ and $n_k \in \mathbb{N}$. Let $h_k = \frac{1-y_k}{a^k}$. Then

$$\left| \sum_{n=1}^{k-1} \frac{b^n \cos\left(a^n \pi \left(x + h_k\right)\right) - b^n \cos\left(a^n \pi x\right)}{h_k} \right| \le \frac{\pi \left(ab\right)^k}{ab - 1}$$

and the absolute value of the series

$$\sum_{n=k}^{\infty} \frac{b^n \cos\left(a^n \pi \left(x + h_k\right)\right) - b^n \cos\left(a^n \pi x\right)}{h_k}$$

is no less than the absolute value of its first term which is at least $\frac{2}{3}(ab)^k$.

Problem 3 (Differentiation term-by-term). Let $-\infty < a < b < \infty$ and $f_k:(a,b) \to \mathbb{R}$ for $k \in \mathbb{N}$. Assume that the second-order derivative $f_k''(x)$ of f_k at x exists for every $x \in (a,b)$ and $k \in \mathbb{N}$. Let C be a positive number and assume that $\sum_{k \in \mathbb{N}} |f_k''(x)| \le C$ for $x \in (a,b)$. Let $x_0 \in (a,b)$ and assume that the two series $\sum_{k \in \mathbb{N}} f_k(x_0)$ and $\sum_{k \in \mathbb{N}} f_k'(x_0)$ both converge, where $f_k'(x)$ means the first-order derivative of f_k at x. Show that the series $\sum_{k \in \mathbb{N}} f_k(x)$ converges at every $x \in (a,b)$ and can be differentiated term-by-term in the sense that the first-order derivative of the function $\sum_{k \in \mathbb{N}} f_k(x)$ at the point $x \in (a,b)$ is equal to $\sum_{k \in \mathbb{N}} f_k'(x)$. Verify that the same conclusion holds when $f_k: (a,b) \to \mathbb{R}$ is replaced by a vector-valued function $f_k: (a,b) \to \mathbb{R}^n$ (where $n \in \mathbb{N}$ is the same for all k) and the absolute value $|\cdot|$ is replaced by the norm $||\cdot||$.

Problem 4 (Chain rule for second-order derivatives). Let U and V be finite-dimensional \mathbb{R} -vector spaces (not necessarily of the same dimension), endowed with norms $\|\cdot\|$, and D be an open subset of U and G be an open subset of V. Let $f:D\to G$ and $P_0\in D$. We say that f is twice differentiable at P_0 if there exist an \mathbb{R} -linear map $A:U\to V$ and an \mathbb{R} -bilinear map $B:U\times U\to V$ such that f is approximated at P_0 by $f(P_0)+A(P-P_0)+\frac{1}{2}B(P-P_0,P-P_0)$ to an order higher than the second in the sense that

$$\lim_{P \to P_0} \frac{\left\| f(P) - \left(f(P_0) + A(P - P_0) + \frac{1}{2}B(P - P_0, P - P_0) \right) \right\|}{\left\| P - P_0 \right\|^2} = 0,$$

where $P - P_0$ is naturally regarded as an element of U. We call the \mathbb{R} -linear map $A: U \to V$ the first-order derivative of f at P_0 and call the \mathbb{R} -bilinear

map $B: U \times U \to V$ the second-order derivative of f at P_0 . Suppose W is a finite-dimensional \mathbb{R} -vector space endowed with a norm $\|\cdot\|$ and H is an open subset of W and $g: G \to H$ is a map. Let $Q_0 = f(P_0)$. Assume that $g: D \to H$ is twice differentiable at Q_0 with first-order derivative $S: V \to W$ at Q_0 and second-order derivative $T: V \times V \to W$ at Q_0 . Let $h = g \circ f$ so that h maps the open subset D of U to the open subset H of W. Denote by $X: U \to W$ the \mathbb{R} -linear map $S \circ A$ and denote by $Y: U \times U \to W$ the \mathbb{R} -bilinear map $S \circ B + T \circ (A \times A)$, where $A \times A: U \times U \to V \times V$ is defined by

$$U \times U \ni (P_1, P_2) \mapsto (A(P_1), A(P_2)) \in V \times V.$$

Show that h is twice differentiable at P_0 with X as its first-order derivative at P_0 and with Y as its second-order derivative at P_0 .

Problem 5 (Uniqueness of solutions of ordinary differential equations).

(a) Let $k \in \mathbb{N}$ and $-\infty < \alpha_j < \beta_j < \infty$ for $1 \le j \le k$ and $-\infty < a < b < \infty$. Let $\vec{\phi}(x, y_1, \dots, y_k)$ be an \mathbb{R}^k -valued function for $a \le x \le b$ and $\alpha_j \le y_j \le \beta_j$ for $1 \le j \le k$. Let $\vec{c} = (c_1, \dots, c_k)$ with $\alpha_j \le c_k \le \beta_j$ for $1 \le j \le k$. Let $\vec{y} = (y_1, \dots, y_k)$. A solution of the initial-value problem

$$\vec{y}' = \vec{\phi}(x, \vec{y}), \quad \vec{y}(a) = \vec{c}$$

is by definition a differentiable vector-valued function $\vec{f}(x) = (f_1(x), \dots, f_k(x))$ for $a \leq x \leq b$ such that $\vec{f}(a) = \vec{c}$ and $\vec{f}'(x) = \vec{\phi}\left(x, \vec{f}(x)\right)$ for $a \leq x \leq b$. Show that such a problem has at most one solution if there exists $A \in \mathbb{R}$ such that

$$\left\| \vec{\phi} \left(x, \vec{y} \right) - \vec{\phi} \left(x, \vec{z} \right) \right\| \le A \left\| \vec{y} - \vec{z} \right\|$$

for $\vec{y} = (y_1, \dots, y_k)$ and $\vec{z} = (z_1, \dots, z_k)$ with $\alpha_j \leq y_j \leq \beta_j$ and $\alpha_j \leq z_j \leq \beta_j$ for $1 \leq j \leq k$.

(b) Specialize Part (a) by considering the system

$$y_j' = y_{j+1} \quad (y = 1, \dots, k-1),$$

 $y_k' = f(x) - \sum_{j=1}^k g_j(x)y_j,$

where f, g_1, \dots, g_k are continuous \mathbb{R} -valued functions on [a, b], and derive a uniqueness theorem for solutions of the equation

$$y^{(k)} + g_k(x)y^{(k-1)} + \dots + g_2(x)y' + g_1(x)y = f(x),$$

subject to initial conditions

$$y(a) = c_1, y'(a) = c_2, \dots, y^{(k-1)}(a) = c_k.$$

 $\mathit{Hint:}$ This problem is from #28 and #29 of page 119 of Rudin's book. See the hints given there.