Problems

Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$. We describe the functions $f: X \longrightarrow Y$ and $g: X \longrightarrow Y$ in the following tables. Answer each part and give a reason for each negative answer.

n	f(n)
1	6
2	7
3	6
4	7
5	6

Aa. Is f one-to-one?

 $^{\mathsf{A}}\mathbf{d}$. Is g one-to-one?

b. Is *f* onto?

e. Is g onto?

c. Is *f* a correspondence?

f. Is g a correspondence?

0.1

A) Is f one-to-one?

No, f is not one-to-one because f(2) = f(4) .

A) Is f onto?

No, $\forall y \in Y \nexists \quad x \in X : f(x) = y$. For example, nothing is mapped on to 8 in Y.

A) Is f a correspondence?

No, f is a correspondence iff. it is both one-to-one and onto.

A) Is q one-to-one?

Yes, $\forall x_1, x_2 \in X : g(x_1) = g(x_2) \implies x_1 = x_2$

A) Is g onto?

Yes, $\forall y \in Y \quad \exists x \in X : f(x) = y$.

A) Is g a correspondence?

Yes, g is a correspondence iff. it is both one-to-one and onto.

0.2 Prove that the set of all infinite sequences over $\{0,1\}$ is uncountable.

Suppose that a corrspondence f existed between \mathbb{N} and the set of all infinite sequences over $\{0,1\}$ referred to as A.

f(n)
000
010
100
001
:

Lets now go about constructing x, a sequence in A but not represented by the mapping described by f. Construct x such that

- $x \neq f(1)$ by choosing the first digit to be 1.
- $x \neq f(2)$ by choosing the second digit to be 0.
- $x \neq f(3)$ by choosing the third digit to be 1.
- $x \neq f(4)$ by choosing the fourth digit to be the opposite of f(4)'s fourth digit and so on.
- x = 101...

By continuing this process, x will be a sequence that is not represented by f. This is a contradiction therefore the set of all infinite sequences over $\{0,1\}$ is uncountable.

0.3Use the result from the previous proof (item 2) to prove that the power set of any infinite countable set is uncountable.

Suppose that the power set of natural numbers, $2^{\mathbb{N}}$ is countable. Then $\exists f : \mathbb{N} \to 2^{\mathbb{N}}$.

i	f(i)	$1 \in f(i)$	$2 \in f(i)$	$3 \in f(i)$	$4 \in f(i)$	
1	N	(yes)	yes	yes	yes	
2	Ø	no	(no)	no	no	
3	the set of even numbers	no	yes	(no)	yes	
4	the set of odd numbers	yes	no	yes	(no)	
5	{1}	yes	no	no	no	
:	:	:	:	:	:	

Lets now go about constructing x, a set in $2^{\mathbb{N}}$ but not represented by the mapping described by f. Construct x by changing each element on the diagonal.

	$1 \in f(i)$	$2 \in f(i)$	$3 \in f(i)$	$4 \in f(i)$	
\boldsymbol{x}	no	yes	yes	yes	

By continuing this process, x will be a set that is not represented by f. This is a contradiction therefore the power set of \mathbb{N} is uncountable. Lastly, by the definition of countable there is a direct mapping from any infinitely countable set to N. Therefore the power set of any infinite countable set is uncountable.

$B = \{\langle M \rangle | M \text{ is a TM and } M \text{ accepts the two's complement of binary number } N \text{ whenever} \}$ it accepts N}. Prove that language B is undecidable

We assume that B is decidable. Suppose that H is a decider for B. ON input (M, N), where M is a TM and N is a string, H halts and accepts if M accepts N. Furthermore, H halts and rejects if M fails to accept N.

$$H(\langle M, N \rangle) = \begin{cases} \text{accept} & \text{if } M \text{accepts } N \\ \text{reject} & \text{if } M \text{does not accept N} \end{cases}$$

 $H(\langle M,N\rangle) = \begin{cases} \text{accept} & \text{if M accepts N} \\ \text{reject} & \text{if M does not accept N} \end{cases}$ Now we construct a new Turing machine \$D\$ with \$H\$ as a subroutine. This new TM calls \$H\$ to determine what \$M\$ does when the input to M is its own description $\langle M \rangle$. Once D has determined this information, it does the opposite.

 $D = \text{``On input } \langle M \rangle$, where M is a TM:

- 1. Run Hon input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept." So we have the following:

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

What happens when we run D with its own description $\langle D \rangle$ as input? In that case, we get

$$D(\langle D \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

No matter what D does, it is forced to do the opposite, which is a contradiction. Therefore, TM D and TM Hcan not exits. Language B is therefore undecidable.