Homological Constructions over a Ring of Characteristic 2

March 20, 2019

Throughout this chapter, let *R* be a ring of characteristic 2.

1 Constructing All Finitely-Generated Differential Graded R-Algebras

Theorem 1.1. Let S_w denote the weighted polynomial ring $R[x_1,...,x_n]$ with respect to the weighted vector $w=(w_1,...,w_n)$. Define the map

$$d:=\sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda},$$

where f_{λ} is a nonzero homogeneous polynomial in S_w of weighted degree $w_{\lambda}-1$ for all $\lambda=1,\ldots,n$. Then

- 1. d is a graded endomorphism $d: S_w \to S_w$ of degree -1 which satisfies Leibniz law.
- 2. Moreover, let $I \subset S_w$ be any d-stable homogeneous ideal such that $d(f_\lambda) \in I$ for all $\lambda = 1, ..., n$. Then d induces a map $\overline{d}: S_w/I \to S_w/I$, given by $\overline{d}(\overline{f}) = \overline{d(f)}$ for all $\overline{f} \in S_w/I$, and $(S_w/I, \overline{d})$ is a differential graded R-algebra.

Proof. We first show that d is a graded endomorphism $d: S_w \to S_w$ of degree -1 which satisfies Leibniz law:

• *R*-linearity: We have

$$d(r_1g_1 + r_2g_2) = \sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda} (r_1g_1 + r_2g_2)$$

$$= \sum_{\lambda=1}^n f_\lambda (r_1\partial_{x_\lambda} (g_1) + r_2\partial_{x_\lambda} (g_2))$$

$$= r_1 \sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda} (g_1) + r_2 \sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda} (g_2)$$

$$= r_1 d(g_1) + r_2 d(g_2),$$

for all $r_1, r_2 \in R$ and $g_1, g_2 \in S_w$.

• Leibniz law: We have

$$d(g_1g_2) = \sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda}(g_1g_2)$$

$$= \sum_{\lambda=1}^n f_\lambda (\partial_{x_\lambda}(g_1)g_2 + g_1\partial_{x_\lambda}(g_2))$$

$$= \left(\sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda}(g_1)\right) g_2 + g_1 \left(\sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda}(g_2)\right)$$

$$= d(g_1)g_2 + g_1 d(g_2),$$

for all $g_1, g_2 \in S_w$.

• Graded of degree -1: By R-linearity, we only need to check this on monomials. Let $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ be a monomial of weighted degree i. A term in $d(x_1^{\alpha_1} \cdots x_n^{\alpha_n})$ has the form $\alpha_{\lambda} f_{\lambda} x_1^{\alpha_1} \cdots x_{\lambda}^{\alpha_{\lambda}-1} \cdots x_n^{\alpha_n}$ where $\alpha_{\lambda} \equiv 0$

1 mod 3, and

$$\deg_w \left(\alpha_{\lambda} f_{\lambda} x_1^{\alpha_1} \cdots x_{\lambda}^{\alpha_{\lambda} - 1} \cdots x_n^{\alpha_n} \right) = \deg_w \left(f_{\lambda} x_1^{\alpha_1} \cdots x_{\lambda}^{\alpha_{\lambda} - 1} \cdots x_n^{\alpha_n} \right)$$

$$= \deg_w \left(f_{\lambda} \right) + \deg_w \left(x_1^{\alpha_1} \cdots x_{\lambda}^{\alpha_{\lambda} - 1} \cdots x_n^{\alpha_n} \right)$$

$$= w_{\lambda} - 1 + w_1 \alpha_1 + \cdots + w_{\lambda} (\alpha_{\lambda} - 1) + \cdots + w_n \alpha_n$$

$$= -1 + w_1 \alpha_1 + \cdots + w_{\lambda} \alpha_{\lambda} + \cdots + w_n \alpha_n$$

$$= -1 + i.$$

So every term in $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ has weighted degree -1 + i. This implies that d is graded of degree -1.

Now we will show that $(S_w/I, \overline{d})$ is a differential graded R-algebra. Since I is d-stable, the map \overline{d} is well-defined. The map \overline{d} inherits the properties of being a graded endomorphism of degree -1 which satisfies Leibniz law from d, thus we just need to show that $\overline{d}^2 = 0$, or in other words, that $d^2(g) \in I$ for all $g \in S_w$. So let $g \in S_w$. Then

$$d^{2}(g) = d\left(\sum_{\lambda=1}^{n} f_{\lambda} \partial_{x_{\lambda}}(g)\right)$$

$$= \sum_{\lambda=1}^{n} d(f_{\lambda} \partial_{x_{\lambda}}(g))$$

$$= \sum_{\lambda=1}^{n} d(f_{\lambda}) \partial_{x_{\lambda}}(g) + f_{\lambda} d(\partial_{x_{\lambda}}(g))$$

$$= \sum_{\lambda=1}^{n} d(f_{\lambda}) \partial_{x_{\lambda}}(g) \in I,$$

where we used the fact that $\partial^2_{x_\lambda}=0$ and $\partial_{x_\mu}\partial_{x_\lambda}=\partial_{x_\lambda}\partial_{x_\mu}$ to conclude that

$$\sum_{\lambda=1}^{n} f_{\lambda} d(\partial_{x_{\lambda}}(g)) = \sum_{\lambda=1}^{n} f_{\lambda} \sum_{\mu=1}^{n} f_{\mu} \partial_{x_{\mu}}(\partial_{x_{\lambda}}(g))$$
$$= 0.$$

Remark.

1. We often denote this differential graded *R*-algebra as $(S_w/I, f_1, \dots f_n)$ instead of $(S_w/I, \overline{d})$.

2. When we write "let $(S_w/I, f_1, \dots f_n)$ be a differential graded R-algebra", it is understood that the conditions in Theorem (1.1) are satisfied. Note that I is a *proper* ideal of S_w .

Proposition 1.1. Let $(S_w/I, f_1, ..., f_n)$ be a differential graded R-algebra and let g be a homogeneous polynomial in S of degree j such that d(g) is in I. Then $(S_w/\langle I, g \rangle, f_1, ..., f_n)$ and $(S/(I:g), f_1, ..., f_n)$ are differential graded R-algebras.

Proof. First note that $d(f_{\lambda}) \in I$ implies $d(f_{\lambda}) \in \langle I, g \rangle$ and $d(f_{\lambda}) \in I : g$ for all $\lambda = 1, ..., n$. So we just need to show that $\langle I, g \rangle$ and I : g are d-stable. Since d(g) is in I, Proposition (2.1) implies that $\langle I, g \rangle$ is d-stable. Therefore $S/\langle I, g \rangle$ is a differential graded R-algebra. To prove that I : g is d-stable, let $f \in I : g$. Then since $fg \in I$ and I is d-stable, it follows that $d(fg) = d(f)g + fd(g) \in I$. Which implies $d(f)g \in I$, since $d(g) \in I$. Therefore $d(f) \in I : g$, which implies that I : g is d-stable.

1.1 Classification of all Finitely-Generated Commutative Differential Graded R-Algebras

Theorem 1.2. Every finitely-generated commutative differential graded R-algebra is isomorphic to one described in Theorem (1.1).

Proof. Let (A, d_A) be a finitely generated differential graded R-algebra with generators a_1, \ldots, a_n . Then for each $\lambda = 1, \ldots, n$, we have $a_\lambda \in A_{w_\lambda}$, where $w_\lambda \in \mathbb{Z}_{\geq 0}$. Let S_w denote the weighted polynomial ring $R[x_1, \ldots, x_n]$ with respect to the weighted vector $w = (w_1, \ldots, w_n)$, and let $\varphi : S_w \to A$ be the unique morphism of graded R-algebras such that $\varphi(x_\lambda) = a_\lambda$ for all $\lambda = 1, \ldots, n$. Then A is isomorphic to $S_w/\text{Ker}(\varphi)$ as graded R-algebras. Choose $f_\lambda \in S$ such that $\varphi(f_\lambda) = d_A(a_\lambda)$ and define the map $d: S_w \to S_w$ as

$$d:=\sum_{\lambda=1}^n f_\lambda \partial_{x_\lambda}.$$

Then d is a graded endomorphism of degree -1 which satisfies Leibniz law, by Theorem (1.1). We claim that $Ker(\varphi)$ is d-stable and that $d(f_{\lambda}) \in Ker(\varphi)$ for all $\lambda = 1, ..., n$. We do this in two steps:

Step 1: We will show that $\varphi d = d_A \varphi$. It suffices to show that for all monomials m, we have $\varphi(d(m)) = d_A(\varphi(m))$. We prove this by induction on $\deg(m)$. For the base case $\deg(m) = 1$, we have $m = x_\lambda$ for some $\lambda \in \{1, \ldots, n\}$. Then

$$\varphi(d(x_{\lambda})) = \varphi(f_{\lambda})$$

$$= d_{A}(a_{\lambda})$$

$$= d_{A}(\varphi(x_{\lambda})).$$

Now suppose that $\varphi(d(m)) = d_A(\varphi(m))$ for all monomials m in S of degree less than i, where i > 1. Let $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ be a monomial in S whose degree is i + 1. We may assume that $\alpha_1, \alpha_\lambda \ge 1$ for some $\lambda \in \{1, \ldots, n\}$. Then using Leibniz law together with induction, we obtain

$$\begin{split} \varphi(d(x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}})) &= \varphi(d(x_{1}^{\alpha_{1}})x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}} + x_{1}^{\alpha_{1}}d(x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}})) \\ &= \varphi(d(x_{1}^{\alpha_{1}})\varphi(x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}}) + \varphi(x_{1}^{\alpha_{1}})\varphi(d(x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}})) \\ &= \varphi(d(x_{1}^{\alpha_{1}}))a_{2}^{\alpha_{2}}\cdots a_{n}^{\alpha_{n}} + a_{1}^{\alpha_{1}}\varphi(d(x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}})) \\ &= d_{A}(a_{1}^{\alpha_{1}})a_{2}^{\alpha_{2}}\cdots a_{n}^{\alpha_{n}} + a_{1}^{\alpha_{1}}d_{A}(a_{2}^{\alpha_{2}}\cdots a_{n}^{\alpha_{n}}) \\ &= d_{A}(a_{1}^{\alpha_{1}}a_{2}^{\alpha_{2}}\cdots a_{n}^{\alpha_{n}}) \\ &= d_{A}(\varphi(x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}})). \end{split}$$

This establishes Step 1.

Step 2: We show that $Ker(\varphi)$ is d-stable and that $d(f_{\lambda}) \in Ker(\varphi)$ for all $\lambda = 1, ..., n$. Let $g \in Ker(\varphi)$. Then by Step 1, we have

$$\varphi(d(f)) = d_A(\varphi(f))$$

$$= d_A(0)$$

$$= 0.$$

Thus $d(f) \in \text{Ker}(\varphi)$, which implies $\text{Ker}(\varphi)$ is d-stable. Step 1 also implies

$$\varphi(d(f_{\lambda})) = d_{A}(\varphi(f_{\lambda}))$$

$$= d_{A}(d_{A}(f_{\lambda}))$$

$$= 0,$$

for all $\lambda = 1, ..., n$.

Now Theorem (1.1) implies that $(S_w/\text{Ker}(\varphi), \overline{d})$ is a differential graded R-algebra. Moreover, Step 1 implies $\varphi: (S_w/\text{Ker}(\varphi), \overline{d}) \to (A, d_A)$ is an isomorphism of differential graded R-algebras.

2 Constructing the Differential Graded R-algebra $(S/I, r_1, ..., r_n)$

We now want to consider some special cases of Theorem (1.1). In particular, we want to consider the case where the weighted vector is w = (1, ..., 1). We will write S to denote the polynomial ring $R[x_1, ..., x_n]$ equipped with this grading. Let $r_1, ..., r_n$ be nonzero elements in R, and define $d : S \to S$ by

$$d:=\sum_{\lambda=1}^n r_\lambda \partial_{x_\lambda}.$$

Since $d(r_{\lambda}) = 0$ for all $\lambda = 1, ..., n$, it follows from Theorem (1.1) that $(S, r_1, ..., r_n)$ is a differential graded R-algebra. Moreover, if I is a d-stable ideal, then $(S/I, r_1, ..., r_n)$ is a differential graded R-algebra. The next proposition gives a necessary and sufficient condition for a finitely generated ideal I to be d-stable.

Proposition 2.1. Let I be a homogeneous ideal in S. Then I is d-stable if and only if for some generating set $F = \{f_1, \ldots, f_r\}$ of I, we have $d(f_{\lambda}) \in I$ for all $\lambda = 1, \ldots, r$.

Proof. One direction is trivial, so let's prove the other direction. Let $F = \{f_1, \ldots, f_r\}$ be a generating set for I such that $d(f_{\lambda}) \in I$ for all $\lambda = 1, \ldots, r$ and let $f \in I$. Since $\{f_1, \ldots, f_r\}$ generates I, we can write $f = \sum_{\lambda=1}^r q_{\lambda} f_{\lambda}$ for some $q_1, \ldots, q_r \in S$. Thus, by Leibniz law, we have

$$d(f) = d\left(\sum_{\lambda=1}^{r} q_{\lambda} f_{\lambda}\right)$$

$$= \sum_{\lambda=1}^{r} d(q_{\lambda} f_{\lambda})$$

$$= \sum_{\lambda=1}^{r} (d(q_{\lambda}) f_{\lambda} + q_{\lambda} d(f_{\lambda})) \in I.$$

Thus, *I* is *d*-stable.

2.1 Koszul Complex

Recall from Example (??) that the Koszul complex $\mathcal{K}(r_1,\ldots,r_n)$ is a differential graded R-algebra. Indeed, $\mathcal{K}(r_1,\ldots,r_n)$ is isomorphic to the differential graded R-algebra $(S/I,r_1,\ldots,r_n)$, where I is generated by $\{x_1^2,\ldots,x_n^2\}$. C learly I is d-stable since $d(x_\lambda^2)=0$ for all $\lambda=1,\ldots,n$.

Example 2.1. Let $R = \mathbb{F}_2[x,y]/\langle xy \rangle$ and let $r_1 = x$ and $r_2 = y$. Then S = R[u,v] has a differential graded R-algebra structure with the differential d given by

$$d := x \partial_u + y \partial_v$$
.

Using graded lexicographical ordering on the monomials, we can explicitly write *S* as a chain complex over *R* using matrices as the linear maps:

Now let I be the homogeneous ideal in S generated by $\{x^2, y^2\}$. Then $(S/I, r_1, r_2)$ is isomorphic to the Koszul complex $K(r_1, r_2)$. Using graded lexicographical ordering on the monomials, we can explicitly write S/I as a chain complex over R using matrices as the linear maps:

$$0 \longrightarrow R \xrightarrow{\begin{pmatrix} y \\ x \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} x & y \end{pmatrix}} R \longrightarrow 0$$

2.2 Blowup algebras

Proposition 2.2. Let Q be a finitely generated ideal in R with generating set $\{a_1, \ldots, a_n\}$. Then the blowup algebra $B_Q(R)$ can be given the structure of differential graded R-algebra.

Proof. Let $\varphi: S \to B_Q(R)$ be the unique graded R-algebra homomorphism such that $\varphi(x_\lambda) = ta_\lambda$ for all $\lambda = 1, \ldots, n$ and let $d := \sum_{\lambda=1}^n a_\lambda \partial_\lambda$. We claim that $\operatorname{Ker}(\varphi)$ is d-stable. Indeed, let $f \in \operatorname{Ker}(\varphi)$. Since $\operatorname{Ker}(\varphi)$ is homogeneous, we may assume that f is homogeneous. Write f and d(f) in terms of the monomial basis:

$$f = \sum_{\lambda=1}^{r} b_{\lambda} x_{1}^{\alpha_{1\lambda}} \cdots x_{n}^{\alpha_{n\lambda}} \quad \text{and} \quad d(f) = \sum_{\substack{1 \leq \mu \leq n \\ 1 \leq \lambda \leq r}} \alpha_{\mu\lambda} a_{\mu} b_{\lambda} x_{1}^{\alpha_{1\lambda}} \cdots x_{\mu}^{\alpha_{\mu\lambda}-1} \cdots x_{n}^{\alpha_{n\lambda}}.$$

where $b_{\lambda} \in R$ and $\alpha_{\mu\lambda} \in \mathbb{Z}_{\geq 0}$ for all $\lambda = 1, \dots, r$ and $\mu = 1, \dots n$. Observe that

$$0 = \varphi(f)$$

$$= \varphi\left(\sum_{\lambda=1}^{r} b_{\lambda} x_{1}^{\alpha_{1\lambda}} \cdots x_{n}^{\alpha_{n\lambda}}\right)$$

$$= \sum_{\lambda=1}^{r} b_{\lambda} \varphi(x_{1})^{\alpha_{1\lambda}} \cdots \varphi(x_{n})^{\alpha_{n\lambda}}$$

$$= t^{i} \left(\sum_{\lambda=1}^{r} b_{\lambda} a_{1}^{\alpha_{1\lambda}} \cdots a_{n}^{\alpha_{n\lambda}}\right)$$

implies that $\sum_{\lambda=1}^{r} b_{\lambda} a_{1}^{\alpha_{1\lambda}} \cdots a_{n}^{\alpha_{n\lambda}} = 0$. Therefore

$$\varphi(d(f)) = \varphi \left(\sum_{\substack{1 \leq \mu \leq n \\ 1 \leq \lambda \leq r}} \alpha_{\mu\lambda} a_{\mu} b_{\lambda} x_{1}^{\alpha_{1\lambda}} \cdots x_{\mu}^{\alpha_{\mu\lambda}-1} \cdots x_{n}^{\alpha_{n\lambda}} \right) \\
= \sum_{\substack{1 \leq \mu \leq n \\ 1 \leq \lambda \leq r}} \alpha_{\mu\lambda} a_{\mu} b_{\lambda} \varphi(x_{1})^{\alpha_{1\lambda}} \cdots \varphi(x_{\mu})^{\alpha_{\mu\lambda}-1} \cdots \varphi(x_{n})^{\alpha_{n\lambda}} \\
= t^{i-1} \left(\sum_{\substack{1 \leq \mu \leq n \\ 1 \leq \lambda \leq r}} \alpha_{\mu\lambda} a_{\mu} b_{\lambda} a_{1}^{\alpha_{1\lambda}} \cdots a_{\mu}^{\alpha_{\mu\lambda}-1} \cdots a_{n}^{\alpha_{n\lambda}} \right) \\
= t^{i-1} \left(\left(\sum_{\mu=1}^{n} \alpha_{\mu\lambda} \right) \left(\sum_{\lambda=1}^{r} b_{\lambda} a_{1}^{\alpha_{1\lambda}} \cdots a_{n}^{\alpha_{n\lambda}} \right) \right) \\
= 0.$$

Therefore $(S/\text{Ker}(\varphi), a_1, \dots, a_n)$ is a differential graded R-algebra where $S/\text{Ker}(\varphi) \cong B_O(R)$.

Remark. It isn't too difficult to show that this differential graded R-algebra is $(B_Q(R), \partial_t)$, where ∂_t is defined in the obvious way.

Example 2.2. Let $R = \mathbb{F}_2[x,y]/\langle y^2 + x^3 + x^2 \rangle$, \mathfrak{m} be the maximal ideal in R generated by $\{\overline{x},\overline{y}\}$, S denote the polynomial ring R[u,v], and $d = \overline{x}\partial_u + \overline{y}\partial_v$. There is a surjective R-algebra homomorphism from S to the blowup algebra at \mathfrak{m} given by

$$\varphi: S := \mathbb{F}_2[x, y, u, v] / \langle y^2 + x^3 + x^2 \rangle \to B_{\mathfrak{m}}(R),$$

where φ is induced by $\varphi(u) = t\overline{x}$ and $v \mapsto t\overline{y}$. Using Singular, we find that the kernel of φ is an ideal which is homogeneous in the variables u, v, and is generated by the set $\{f_1, f_2, f_3\}$, where

$$f_1 = \overline{x}v + \overline{y}u$$

$$f_2 = \overline{x}u^2 + u^2 + v^2$$

$$f_3 = \overline{x}^2u + \overline{x}u + \overline{y}v$$

Note that $d(f_1) = d(f_2) = d(f_3) \in \text{Ker}(\varphi)$. It follows from Proposition (2.1) that $\text{Ker}(\varphi)$ is d-stable, which we already knew from Proposition (2.2).

2.3 Homology Calculations

Proposition 2.3. Let $(S/I, r_1, ..., r_n)$ be a differential graded R-algebra. Suppose that there are $t_1, ..., t_n \in R$ such

$$\sum_{\lambda=1}^{n} t_{\lambda} r_{\lambda} = 1. \tag{1}$$

Then $H(S/I, r_1, ..., r_n) = 0$.

Proof. First note that $\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda} \notin I$, otherwise $d\left(\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda}\right) = 1 \notin I$ would imply that I is not d-stable. Let f be a homogeneous polynomial of degree i such $d(f) \in I$; so f represents a cycle of $(S/I, \overline{d})$. Then

$$d\left(\left(\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda}\right) f\right) = d\left(\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda}\right) f + \left(\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda}\right) d(f)$$

$$= \left(\sum_{\lambda=1}^{n} t_{\lambda} r_{\lambda}\right) f + \left(\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda}\right) d(f)$$

$$= f + \left(\sum_{\lambda=1}^{n} t_{\lambda} x_{\lambda}\right) d(f)$$

$$\equiv f \mod I.$$

thus $Ker(\overline{d}) = Im(\overline{d})$, which proves the claim.

Remark.

- 1. By setting I = 0, we also find that H(S) = 0.
- 2. The condition (1) is equivalent to saying that $\{r_1, \ldots, r_n\}$ generates the unit ideal.

2.3.1 Long Exact Sequence

It is straightforward to check that

$$0 \longrightarrow (S_w(-j)/(I:g),\overline{d}) \xrightarrow{g} (S/I,\overline{d}) \longrightarrow (S/\langle I,g\rangle,\overline{d}) \longrightarrow 0$$

$$\overline{f} \longmapsto \overline{fg}$$

$$(2)$$

is short exact sequence of chain complexes. The short exact sequence (2) gives rise to a long exact sequence in homology:

$$\cdots \longrightarrow H_{i+1}(S_w/\langle I,g\rangle) \xrightarrow{\lambda}$$

$$H_{i-j}(S_w/(I:g)) \xrightarrow{\cdot g} H_i(S_w/I) \longrightarrow H_i(S_w/\langle I,g\rangle) \xrightarrow{\lambda}$$

$$H_{i-j-1}(S_w/(I:g)) \xrightarrow{\cdot g} H_{i-1}(S_w/I) \longrightarrow \cdots$$

Let us work out the details of the connecting map: Let \overline{f} be a homogeneous element in $S_w/\langle I,g\rangle$ which represents a class in $H_i(S_w/\langle I,g\rangle)$. In particular, $f \in S$ and $d(f) \in \langle I,g\rangle$. We lift $\overline{f} \in S_w/\langle I,g\rangle$ to S_w/I and then apply d to get $\overline{d(f)} \in S_w/I$. Since $d(f) \in \langle I,g\rangle$, we can write d(f) = p + gq where $p \in I$. Thus, $\overline{d(f)} = \overline{gq}$, and this pulls back to \overline{q} in $S_w/(I:g)$.

3 Extra

3.1 Classifying *d*-Stable Ideals

Let $(R[x_1,...,x_n]/I,r_1,...,r_n)$ be a differential graded R-algebra. Suppose that there are $t_1,...,t_m \in R$ such that $\langle r_1,...,r_n\rangle = \langle t_1,...,t_m\rangle$ and $(R[y_1,...,y_m]/I,t_1,...,t_m)$ is also a differential graded R-algebra. Then for all $1 \le \lambda \le n$ and $1 \le \mu \le n$, there are $a_{\lambda\mu}$ and $b_{\lambda\mu}$ in R such that

$$r_{\lambda} = \sum_{\mu=1}^{m} a_{\lambda\mu} t_{\mu}$$
 and $t_{\mu} = \sum_{\lambda=1}^{n} b_{\lambda\mu} r_{\lambda}$.

Let $\varphi: R[x_1,\ldots,x_n] \to R[y_1,\ldots,y_m]$ be the unique graded R-algebra homomorphism such that $\varphi(x_\lambda) = \sum_{\mu=1}^m a_{\lambda\mu}y_\mu$ for all $\lambda=1,\ldots,n$. Then φ induces a graded R-algebra homomorphism $\overline{\varphi}: R[x_1,\ldots,x_n]/I \to R[y_1,\ldots,y_m]/\langle \varphi(I) \rangle$ which in turn induces a homomorphism of differential graded R-algebras $\overline{\varphi}: (R[x_1,\ldots,x_n]/I,r_1,\ldots,r_n) \to (R[y_1,\ldots,y_m]/\langle \varphi(I) \rangle,t_1,\ldots,t_m)$. Indeed, let us denote the differentials as

$$d_r := \sum_{\lambda=1}^n r_\lambda \partial_{x_\lambda}$$
 and $d_t := \sum_{\mu=1}^m t_\mu \partial_{y_\mu}$.

We first show that $\varphi d_r = d_t \varphi$. It is enough to show that $\varphi d_r(x_\lambda) = d_t \varphi(x_\lambda)$ for all $\lambda = 1, ..., n$. We have

$$d_t \varphi(x_{\lambda}) = d_t \left(\sum_{\mu=1}^m a_{\lambda \mu} y_{\mu} \right)$$

$$= \sum_{\mu=1}^m a_{\lambda \mu} t_{\mu}$$

$$= r_{\lambda}$$

$$= d_r(x_{\lambda})$$

$$= \varphi(d_r(x_{\lambda})).$$

Now we show that $(R[y_1,...,y_m]/\langle \varphi(I)\rangle,t_1,...,t_m)$ is a differential graded R-algebra. We do this by showing that $\langle \varphi(I)\rangle$ is d_t -stable. Let $\sum_{\kappa=1}^r g_\kappa \varphi(f_\kappa) \in \varphi(I)$. Then

$$d_t \left(\sum_{\kappa=1}^r g_{\kappa} \varphi(f_{\kappa}) \right) = \sum_{\kappa=1}^r d_t(g_{\kappa}) \varphi(f_{\kappa}) + \sum_{\kappa=1}^r g_{\kappa} d_t(\varphi(f_{\kappa}))$$
$$= \sum_{\kappa=1}^r d_t(g_{\kappa}) \varphi(f_{\kappa}) + \sum_{\kappa=1}^r g_{\kappa} \varphi(d_r(f_{\kappa})) \in \langle \varphi(I) \rangle.$$

Similarly, let $\psi: R[y_1, \ldots, y_m] \to R[x_1, \ldots, x_n]$ be the unique graded R-algebra homomorphism such that $\psi(y_\mu) = \sum_{\lambda=1}^n b_{\lambda\mu} x_\lambda$ for all $\mu=1,\ldots,m$. Then φ induces a graded R-algebra homomorphism $\overline{\psi}: R[y_1,\ldots,y_m]/\langle \varphi(I)\rangle \to R[x_1,\ldots,x_n]/\langle \psi(\varphi(I))\rangle$ which in turn induces a homomorphism of differential graded R-algebras $\overline{\psi}(R[y_1,\ldots,y_m]/\langle \varphi(I)\rangle,t_1,\ldots,t_m) \to (R[x_1,\ldots,x_n]/\langle \psi(\varphi(I))\rangle,r_1,\ldots,r_n)$.

3.1.1 Evalutation Map

Let $(S/I, r_1, \ldots, r_n)$ be a differential graded R-algebra such that I is contained in $\langle x_1, \ldots, x_n \rangle$. Let $Q = \langle r_1, \ldots, r_n \rangle$ and $\operatorname{Ev}_r : S \to R$ be the unique R-algebra homomorphism such that $\operatorname{Ev}_r(x_\lambda) = r_\lambda$ for all $\lambda = 1, \ldots, n$. We are interested in the ideal $\operatorname{Ev}_r(I)$ in R. Clearly we have $\operatorname{Ev}_r(I) \subset Q$. Suppose $a \in Q \setminus \operatorname{Ev}_r(I)$. Then $a = \sum_{\lambda=1}^n a_\lambda r_\lambda$ for some $a_\lambda \in R$. This implies $x := \sum_{\lambda=1}^n a_\lambda x_\lambda \notin I$. Now $J = I + \langle x, a \rangle$ is an ideal strictly larger than I such that I is I-stable I-stable

Proposition 3.1. Let $(S/I, r_1, ..., r_n)$ be a differential graded R-algebra and let $Q = \langle r_1, ..., r_n \rangle$ be an ideal in R. Suppose that $Ev_r(I) = 0$. Then there exists a unique homomorphism φ which makes the following diagram commute

3.1.2 Tensor product of differential graded R-algebras

Let $(R[x_1,...,x_n]/I,d_r)$ and $(R[y_1,...,y_m]/J,d_t)$ be two differential graded R-algebras, where

$$d_r := \sum_{\lambda=1}^n r_{\lambda} \partial_{x_{\lambda}}$$
 and $d_t := \sum_{\mu=1}^m t_{\mu} \partial_{y_{\mu}}$.

for r_{λ} , $t_{\mu} \in R$ for all $\lambda = 1, ..., n$ and $\mu = 1, ..., m$. Then their tensor product over R is

$$(R[x_1,\ldots,x_n]/I,d_r)\otimes_R (R[y_1,\ldots,y_m]/J,d_t)\cong (R[x_1,\ldots,x_n,y_1,\ldots,y_m]/(I+J),d_r+d_t).$$

Example 3.1. The Koszul complex $\mathcal{K}(r_1,\ldots,r_n)$ can be realized as a tensor product:

$$\mathcal{K}(r_1,\ldots,r_n)\cong\mathcal{K}(r_1)\otimes\cdots\otimes\mathcal{K}(r_n).$$

Let M be an R-module, and let $(S/I, r_1, \ldots, r_n)$ be a differential graded R-algebra. Recall that $(M \otimes_R S/I, d)$ is an (S/I)-module.