

Statistics and Data Science for Engineers E178 / ME276DS

Time series analysis
Part 1

Time series decomposition

Time series forecasting

Classical approach

- 1. Model the deterministic signal: μ_t
- 2. Model the stochastic signal: \boldsymbol{s}_t
- 3. Combine the two: $\hat{y}_t = \mu_t + s_t$

Neural networks

- Recurrent neural networks ... memory .
- Attention networks ... not cour.

Forecasting the deterministic signal μ_t

$$\mu_t = \bar{\mu}_t + \tilde{\mu}_t - \text{seasonal} \,.$$

- 1. Separate training and testing data.
- 2. Estimate the long-term trend $\bar{\mu}_t$... moving arways / convolution Kernel.
- 3. Estimate the seasonal component $\tilde{\mu}_t$
- 4. Combine the two, observe the residual, ... it should be stationary.
- 5. Compute the forecast

Example: Forecasting the average yearly Sun spots

	avgspots
Date	
1749-01-31	96.7
1749-02-28	104.3
1749-03-31	116.7
1749-04-30	92.8
1749-05-31	141.7
2020-09-30	0.6
2020-10-31	14.4
2020-11-30	34.0
2020-12-31	21.8
2021-01-31	10.4

3265 rows × 1 columns

1. Separate training and testing data.

2. Estimate the long-term trend $ar{\mu}_t$

$$\bar{\mu}_t = y_t * k_t$$

 k_t ... period-length smoothing kernel

4. Combine the two, observe the residual

5. Compute the forecast

5.1. Forecast the long-term trend

5.2. Add in the seasonal component

$$\mu_t = \bar{\mu}_t + \tilde{\mu}_t$$

