Devoir surveillé n°03

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1

BECEAS 2021 – Un calcul de $\zeta(2)$

On pose, pour tout entier naturel n,

$$C_n = \int_0^{\frac{\pi}{2}} (\cos x)^{2n} dx$$
 et $D_n = \int_0^{\frac{\pi}{2}} x^2 (\cos x)^{2n} dx$

1. Etablir, pour tout $n \in \mathbb{N}^*$, l'égalité

$$C_n = (2n - 1)(C_{n-1} - C_n)$$

2. Etablir, pour tout $n \in \mathbb{N}^*$, les égalités

$$\int_0^{\frac{\pi}{2}} (\sin x)^2 (\cos x)^{2n-2} dx = \frac{C_n}{2n-1} = \frac{C_{n-1}}{2n}$$

3. Etablir, pour tout $n \in \mathbb{N}^*$, l'égalité

$$C_n = (2n-1)nD_{n-1} - 2n^2D_n$$

4. Etablir, pour tout $n \in \mathbb{N}^*$, l'égalité

$$\frac{1}{n^2} = 2\left(\frac{\mathbf{D}_{n-1}}{\mathbf{C}_{n-1}} - \frac{\mathbf{D}_n}{\mathbf{C}_n}\right)$$

- **5. a.** Justifier, pour tout réel $x \in \left[0, \frac{\pi}{2}\right]$, la minoration $\sin x \ge \frac{2}{\pi}x$.
 - **b.** En déduire, pour tout $n \in \mathbb{N}$, la majoration

$$D_n \le \frac{\pi^2}{4} \cdot \frac{C_n}{2n+2}$$

6. Prouver l'égalité

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

1

EM Lyon 2022 - Etude de séries oscillantes

Exercice 2

Soit d un entier, $d \ge 2$. Soit $\omega = (\omega_n)_{n \ge 1}$ une suite périodique de période d, c'est-à-dire telle que

$$\forall n \in \mathbb{N}^*, \ \omega_{n+d} = \omega_n$$

Dans ce problème, on s'intéresse à la nature (convergente ou divergente) de la série $\sum u_n(\lambda)$ de terme général

$$\forall n \ge 1, \ u_n(\lambda) = \frac{\omega_n + \lambda}{n}$$

où λ est un complexe. On note plus simplement $u_n = u_n(0)$ pour tout $n \ge 1$.

- 1. Supposons, dans cette question uniquement, qu'il existe un complexe λ tel que $\sum u_n(\lambda)$ converge. Montrer que pour tout complexe $\mu \neq \lambda$, la série $\sum u_n(\mu)$ diverge.
- **2.** Dans cette question, on choisit $\lambda = 0$.

Pour tout $n \in \mathbb{N}^*$, on note S_n la somme partielle associée à la série $\sum u_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{\omega_k}{k}$.

- **a.** Pour tout entier naturel m, exprimer $\frac{1}{md+1}\sum_{k=1}^d \omega_{md+k}$ en fonction de $\Omega=\sum_{k=1}^d \omega_k$.
- **b.** Montrer que

$$S_{(m+1)d} - S_{md} \frac{1}{md+1} \sum_{k=1}^{d} \omega_{md+k} + \mathcal{O}_{m \to +\infty} \left(\frac{1}{m^2}\right)$$

- c. En déduire une condition nécessaire et suffisante sur Ω pour la que la série $\sum_{m \in \mathbb{N}} (S_{(m+1)d} S_{md})$ converge.
- **d.** Montrer *très soigneusement* que la condition obtenue à la question précédente est une condition nécessaire et suffisante pour que la série $\sum u_n$ converge.
- 3. Montrer qu'il existe une unique complexe λ tel que la série $\sum u_n(\lambda)$ converge.
- **4. Une généralisation.** Dans cette question, on se donne une suite croissante $(a_n)_{n\geq 1}$ de réels, telle que $a_1>0$ et $\lim_{n\to +\infty} a_n=+\infty$. On suppose que $\Omega=0$. On pose pour tout $n\geq 1$,

$$u_n = \frac{\omega_n}{a_n}$$
 et $T_n = \sum_{k=1}^n \omega_k$

Par souci de commodité, on note également $T_0 = 0$.

- **a.** Montrer que la suite $(T_n)_{n\geq 1}$ est bornée.
- **b.** Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} u_k = \frac{T_n}{a_{n+1}} + \sum_{k=1}^{n} T_k \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right)$$

- **c.** Montrer que la série $\sum T_k \left(\frac{1}{a_k} \frac{1}{a_{k+1}} \right)$ converge.
- **d.** Montrer que la série $\sum u_k$ converge.

Problème 1 – D'après EM Lyon 2000

Dans tout ce problème, a est un réel tel que 0 < a < 1.

I Calcul d'une somme et d'une intégrale

1 Pour tout $n \in \mathbb{N}^*$ et tout $x \in [0, \pi]$, on note

$$C_n(x) = \sum_{k=1}^n \cos(kx)$$

Montrer que pour tout $x \in]0, \pi]$

$$\frac{1}{2} + C_n(x) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)}$$

2 Soit $n \in \mathbb{N}^*$. Justifier l'existence de l'intégrale $J_n = \int_0^\pi \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)} dx$ et calculer sa valeur.

Soit φ l'application définie sur $]0,\pi]$ par $\varphi(x)=\frac{\cos(ax)-1}{\sin\left(\frac{x}{2}\right)}$. Justifier que φ peut se prolonger en une fonction de classe \mathcal{C}^1 sur $[0,\pi]$.

4 On note pour $n \in \mathbb{N}^*$, $I_n = \int_0^\pi \varphi(x) \sin\left(\left(n + \frac{1}{2}\right)x\right) dx$. Justifier que la suite (I_n) converge vers 0.

II Calcul de la somme d'une série

On note pour $n \in \mathbb{N}^*$, $u_n = \int_0^{\pi} \cos(ax) \cos(nx) dx$.

5 Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} u_k = -\frac{\sin(\pi a)}{2a} + \frac{1}{2} I_n + J_n$$

6 En déduire que la série $\sum_{n \in \mathbb{N}^*} u_n$ converge et calculer sa somme.

7 Calculer, pour tout $n \in \mathbb{N}^*$, u_n en fonction de a et n.

8 Etablir que

$$2\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}a}{n^2 - a^2} = \frac{\pi}{\sin(\pi a)} - \frac{1}{a}$$

III Calcul d'une intégrale

Dans cette partie, α désigne un réel tel que $\alpha > 1$.

9 Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{dt}{1+t^{\alpha}}$.

On note alors

$$F(\alpha) = \int_0^{+\infty} \frac{dt}{1 + t^{\alpha}} \qquad G(\alpha) = \int_0^1 \frac{dt}{1 + t^{\alpha}} \qquad H(\alpha) = \int_1^{+\infty} \frac{dt}{1 + t^{\alpha}}$$

10 10.a Justifier que pour tout réel $t \in [0, 1]$ et tout $n \in \mathbb{N}$,

$$\frac{1}{1+t^{\alpha}} = \sum_{k=0}^{n} (-1)^{k} t^{k\alpha} + (-1)^{n+1} \frac{t^{(n+1)\alpha}}{1+t^{\alpha}}$$

10.b Montrer que

$$\lim_{n \to +\infty} \int_0^1 \frac{t^{(n+1)\alpha}}{1 + t^{\alpha}} = 0$$

10.c En déduire que la série $\sum_{k\in\mathbb{N}}\frac{(-1)^k}{k\alpha+1}$ converge et que $G(\alpha)=\sum_{k=0}^{+\infty}\frac{(-1)^k}{k\alpha+1}$.

11 11.a A l'aide du changement de variable $u = t^{1-\alpha}$, montrer que

$$H(\alpha) = \frac{1}{\alpha-1} G\left(\frac{\alpha}{\alpha-1}\right)$$

et en déduire que

$$H(\alpha) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n\alpha - 1}$$

11.b Etablir que

$$F(\alpha) = 1 + 2 \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 \alpha^2 - 1}$$

12 Conclure que

$$F(\alpha) = \frac{\pi}{\alpha \sin\left(\frac{\pi}{\alpha}\right)}$$