

T2. Microprocesadores: Aspectos Avanzados

FUNDAMENTOS DE ARQUITECTURA DE COMPUTADORES

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Parámetros principales de la CPU

- Frecuencia de reloj: Hz, MHz, GHz. Un hercio es un ciclo por segundo. Marca el paso de una instrucción atómica.
- Longitud de palabra: número de bits con los que la ALU puede operar simultáneamente (32, 64).
- Memoria interna: jerarquías de memoria.
 - Integrado en el micro (o adjunto):
 - Registros (1-8 bytes).
 - Memoria caché: nivel 1 (L1 ~16-128 KB), nivel 2 (L2 ~ 256KB-6MB), nivel 3 (L3 ~ 2-6 MB).
 - Memoria principal (RAM) ~ 1MB XGB.
- **Número de núcleos (core):** varios procesadores integrados en un solo chip: dual-core, quad-core...
- Buses internos: líneas internas de comunicación (backside bus: conecta la cache L1 con los demás elementos). Su ancho influye en el rendimiento.

Parámetros principales de la CPU (2)

- Repertorio de instrucciones: dos tendencias.
 - Juego complejo (CISC) de instrucciones vs.
 - Juego simplificado o reducido (RISC)
- Paralelismo a nivel de instrucción (ILP): ejecución simultánea de varias instrucciones. Distintas modalidades:
 - Segmentación (pipeline)
 - Superescalares...
- **Tecnología de integración:** mínima distancia entre los elementos que componen un transistor. A menor escala, más integración de componentes, menos consumo, menos disipación de calor, etc.
 - 130 nm \rightarrow 90nm \rightarrow 65nm \rightarrow 45nm \rightarrow 32 nm \rightarrow 22 nm \rightarrow ...
 - Dispositivos integrados: caché, controladora de memoria, gráficos...
- Compatibilidad: los computadores se agrupan en familias (PC, Apple,...) que comparten características y código máquina.

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores

FRECUENCIA DE RELOJ

- Indica la velocidad a la que un ordenador realiza sus operaciones más básicas: sumar dos números, transferir el valor de un registro a otro...
- Se mide en ciclos por segundo (hercios).
- Tiempo máximo (período) en que las señales eléctricas pueden moverse en las varias bifurcaciones de los muchos circuitos de un CPU.
- <u>Multiplicador de reloj</u>: adapta la señal de reloj del sistema (global)..
- Un problema importante cuando la velocidad del reloj aumenta, es la cantidad de calor que es disipado por la CPU.

Frecuencia de reloj: overclocking

- La frecuencia de reloj proporcionada por un fabricante nos asegura un correcto funcionamiento del procesador
- Esto no quiere decir que no se pueda poner al micro a funcionar a velocidades superiores: overclocking.
- Su éxito depende de la calidad del sistema de refrigeración que empleemos: de lo contrario, las consecuencias pueden ser desagradables.
- Normalmente para aumentar la velocidad del micro, lo que se hace es aumentar el multiplicador.
- Como sabemos, el multiplicador nos informa de cuantas veces es superior la velocidad del micro con respecto a la velocidad del resto de componentes (bus del sistema).

Procesamiento y temperatura

- El máximo valor de potencia consumida en Vatios aparece en el procesador.
- Existe una alta densidad de transistores, que se traduce en un consumo eléctrico y causa el aumento de la temperatura global.
- Para reducir esta temperatura existen varios métodos:
 - Reducir el voltaje:
 - Reducción en la potencia consumida
 - Aproximación inicial. No basta para reducir la temperatura adecuadamente.
 - **Disipador** que irradie la máxima cantidad de calor posible:
 - Estos elementos se unen al micro utilizando la mayor superficie de éste.
 - Para esta unión se suele utilizar una pasta especial termoconductora.
 - Utilización de un ventilador: se suele montar sobre el mismo disipador.
 - Soluciones extremas: introducir la placa base en una caja especial y rellenarla con nitrógeno líquido (refrigeración líquida).
- Nuevos objetivos: performance-per-watt benchmarks

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Longitud de Palabra

- Una palabra es una cadena finita de bits que son manejados como un conjunto por la máquina.
- Los ordenadores modernos normalmente tienen un tamaño de palabra de 16, 32 ó 64 bits (8 bits en el 8085).
 - Representación numérica: números enteros o números en coma flotante.
 - Direcciones: Los contenedores para direcciones de memoria tienen que ser capaces de expresar el rango necesario de valores.
 - Registros: Los registros son diseñados con un tamaño apropiado para el tipo de dato que almacenan, p.ej. enteros, números en coma flotante o direcciones.
 - Transferencia memoria-procesador.
 - **Instrucciones**: Las instrucciones máquina normalmente son fracciones o múltiplos de la longitud de palabra de la arquitectura.

Memoria interna

- Jerarquía de subsistemas de memoria tanto internos como externos para ofrecer al micro los datos cuanto antes.
- A mayor rapidez en el acceso a los datos, menor es la cantidad de información que se puede almacenar,
- Aumenta asimismo el precio por unidad de volumen.
- Los datos contenidos en cada nivel son un subconjunto de los datos en los niveles superiores.
- Hay dos tipos de memorias RAM en el mercado diferenciadas por su tecnología, precio y prestaciones.
 - DRAM usada en la memoria principal de los ordenadores.
 - SRAM usada en la memoria caché y los registros internos.

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Número de núcleos (core)

- Dual CPU Core Chip

 CPU Core and L1 Caches

 Bus Interface and L2 Caches
- La tendencia actual tiende a incrementar el número de núcleos o CPU integradas en un único CI: procesador multi-núcleo.
- Ejemplos
 - Dual-core (AMD Phenom II X2 o Intel Core Duo),
 - Quad-core (AMD Phenom II X4 e Intel 2010 core line),
 - Hexa-core (AMD Phenom II X6 o Intel Core i7 Extreme Edition).
- Los núcleos se pueden agrupar de forma fuerte o relajada, dependiendo de si comparten memoria caché o de cómo realizan el paso de mensajes entre ellos.
- Asimismo podemos encontrar núcleos homogéneos o heterogéneos.
- Las aplicaciones que más se benefician de esta arquitectura son aquellas fácilmente paralelizables (*):
 - Audio/video, cálculo científico, juegos, tratamiento de gráficos en 3D, etc.
 - Este tipo de software contiene múltiples hilos de ejecución (thread)
 - A su vez cada núcleo podría manejar varios "threads": Tecnología Hyperthreading.

Buses internos

- Sistema digital que transfiere datos entre los componentes de una computadora o entre computadoras.
- Está formado por cables o pistas en un circuito impreso, dispositivos como resistencias y condensadores además de circuitos integrados.
- Principales parámetros de un bus:
 - Anchura del camino de datos: indica cuantos bits pueden intercambiar simultáneamente el periférico y el microprocesador (8 a 64 bits ~ tamaño de palabra).
 - Velocidad: es el número de veces que el bus puede cambiar de estado por segundo (MHz). También se expresa mediante la velocidad de transferencia, en Mbps.
- Estos valores son inversamente proporcionales.
- Se debe a la interferencia entre las señales (crosstalk) y la dificultad de sincronizarlas.

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Repertorio de instrucciones

- Especificación que detalla las instrucciones que una CPU de un ordenador puede entender y ejecutar.
- Aspectos del procesador que influyen en la programación: tipos de datos, instrucciones, registros, arquitectura de memoria, interrupciones.
- CISC: computadores con juego de instrucciones complejo
 - Tendencia inicial y más extendida en la actualidad
 - Aumentan la variedad y complejidad de las instrucciones
 - Pero instrucciones complejas requieren más ciclos (>= 5)
 - Ejemplo: Intel 80x86. Instrucción división → varios ciclos
- RISC: computadores con juego reducido de instrucciones
 - Tendencia más moderna
 - Menos instrucciones (30 o 40), pero más rápidas y sencillas
 - Normalmente, basta un ciclo por instrucción
 - Ejemplo: DIGITAL DEC Alpha

Repertorio de Instr.: RISC vs. CISC

- Conjunto reducido de instrucciones.
- Las instrucciones suelen ocupar igual tamaño (palabra de memoria).
- Conjunto reducido de modos de direccionamiento.
- Conjunto reducido de tipos de datos.
- 1 instrucción, 1 ciclo:
 - Instrucciones más usuales están optimizadas: ejecución en un sólo ciclo.
 - Con respecto a los CISC, sustituyen una instrucción compleja, pero lenta, por varias instrucciones simples, muy rápidas.
 - No suelen utilizar microcódigo.
- Muchos registros:
 - Se manejan por bancos de registros (p.e., de 16 en 16 registros), de forma que cada programa puede tener su propio grupo de registros asignado (entorno multiprograma).
 - El conjunto de todos los registros se llama fichero de registros o register file.
 - Los registros son de propósito general: no hay PC específico, o SP

RISC Moderno

- Los diseños RISC se han implantado exitosamente en un gran número de plataformas y arquitecturas:
 - La línea MIPS Technologies inc. Para computadoras de Silicon Graphics, Nintendo 64, PS1, PS2, PSP.
 - La serie IBM Power para servidores
 - Power PC de Motorola e IBM para Mac (hasta 2006), sistemas empotrados de automóviles, routers y consolas (PS3 ~ CELL, Xbox 360, Wii).
 - Procesador SPARC y UltraSPARC de Sun y Fujitsu.
 - ARM para dispositivos móviles, PDAs, iPod, Nintendo DS, Game Boy Advance...

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Nociones básicas

- Un procesador de un núcleo a 2 Ghz. puede ser más eficiente que otro de cuatro núcleos a 4 GHz. ¿Por qué?
- Entran en juego otros componentes (caché, registros) así como los importantísimos algoritmos de ejecución.
- Un algoritmo se asemeja a una simple receta de cocina:
 - Algoritmo secuencial: huevo frito.
 - Algoritmo paralelizable: tortilla de patatas (*)
- Instrucciones no simultáneas → dos núcleos no significa que mejoremos por dos el rendimiento del procesador de un núcleo.
- Ejecución fuera de orden: adelantando trabajo

Tipos y niveles de paralelismo

- Tipos de paralelismo:
 - Paralelismo funcional: Aquel que se refleja en la lógica de la solución de un problema (en los diagramas de flujo y, por tanto, en el código).
 - <u>Paralelismo de datos</u>: Se consigue mediante el uso de estructuras de datos que permiten operaciones paralelas sobre sus elementos (vectores, matrices...)
- Niveles de paralelismo:
 - A nivel de instrucción (fine-grained)
 - A nivel de bucle o hebra(middle-grained)
 - A nivel de procedimiento (middle-grained)
 - A nivel de programa (coarse-grained)

S.O.

Clasificación de arquitecturas paralelas

- Taxomía de Flynn: Se basa en el número de unidades de control y de procesadores disponibles en el computador.
- Introdujo las nociones de:
 - Flujo de instrucciones simple (SI): La arquitectura tiene una única unidad de control que produce un único flujo de instrucciones
 - Flujo de instrucciones múltiple (MI): La arquitectura tiene múltiples unidades de control, cada una produciendo un flujo distinto de instrucciones
 - Flujo de datos simple (SD): Sólo hay un procesador que ejecuta un único flujo de datos
 - Flujo de *datos* múltiple (**MD**): Hay varios procesadores, cada uno de ellos ejecutando un flujo de datos distinto.

Clasificación de arquitecturas paralelas (2)

Taxonomia Flynn	Paralelismo funcional	Paralelismo de datos
SISD	Proc. Segmentados Proc. Superescalares Proc. VLIW	
SIMD		Proc. Vectoriales Proc. Matriciales
MIMD	Multiprocesadores Multicomputadores Clusters	

- **SISD:** Los sistemas monoprocesadores
- **SIMD.** La misma instrucción se ejecuta en varios procesadores sobre datos distintos. Cada procesador tiene su propia memoria de datos, pero la memoria para almacenar las instrucciones y la unidad de control son únicas. Ej: **procesadores vectoriales**
- MISD. No se ha construido ninguna arquitectura comercial.
- MIMD. Cada procesador coge sus propias instrucciones y opera con sus propios datos

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Medidas de Tiempo

- El tiempo de respuesta es aquel que transcurre desde que se lanza la aplicación hasta que ésta termina.
- Se divide en:
 - <u>Tiempo de CPU de usuario</u>: tiempo que la CPU invierte en ejecutar el programa.
 - <u>Tiempo de CPU de sistema</u>: tiempo que la CPU invierte en ejecutar las tareas que realiza el SO necesarias para ejecutar el programa.
 - <u>Tiempo de espera</u>: asociado a las esperas debidas a E/S o a la ejecución de otros programas simultáneamente

Tiempo de Ejecución

- TCPU = NI x CPI x TCICLO
 - NI = número de instrucciones en el programa.
 - TCICLO = tiempo de ciclo = 1/frecuencia de reloj.
 - CPI = ciclos por instrucción:
 - Suponemos que hay n tipos instrucciones y li es el número de instrucciones del tipo i.

$$CPI = \sum_{i=1}^{n} (CPI_i x I_i) / NI$$
 donde CPIi es el número de ciclos que requiere la instrucción del tipo *i*.

Factores que influyen en la mejora de prestaciones:

Factor	Medidas Afectadas	
Tecnología / Estructura y Organización	CPI y Tciclo	
Repertorio de instrucciones / Compilador	NI y CPI	

Ejecución de una instrucción

- Esquema moderno de cinco fases
- Mucho más complejo en cualquier procesador actual
- Podemos ejecutar varias instrucciones a la vez

Ejecución de una Instrucción (2)

Evaluación del Rendimiento

- La única medida fiable del rendimiento es el tiempo de ejecución de los programas reales.
 - MIPS = Frecuencia de reloj / (CPI-10⁶)
 - Fácil de entender
 - Dependen del repertorio de instrucciones
 - Varían entre programas en el mismo computador
 - Pueden variar inversamente al rendimiento
 - MFLOPS = (#operaciones punto flotante)/(T_{eiecución} 10⁶)
 - Hace referencia a operaciones, no a instrucciones.
 - Dependen del programa y de la máquina:
 - Cray-2 no tiene instrucción de dividir
 - Motorola 68882 tiene división, raíz cuadrada, seno y coseno
 - No todas las operaciones en punto flotante tardan lo mismo ->
 usar MFLOPS normalizados

Evaluación del rendimiento (2)

- Programas para evaluar el rendimiento: benchmarks
- Ejecuta siempre la misma secuencia de código: los resultados sobre un mismo equipo deberían coincidir siempre.
- Se utilizan los mismos recursos de los componentes hardware: los resultados pueden compararse entre una máquina y otra.
- Se componen de varios benchmarks específicos que sacan el máximo partido a cada componente: GPU, CPU, RAM, etc.
- Ponderación que da lugar a una "nota" final y que puede fácilmente compararse con otros resultados.

Ejemplo práctico

	Teléfono 1	Teléfono 2	
Set de instrucciones	ARMv7	ARMv7	
Núm. núcleos	2	4	
Tipo de núcleos	Krait	Cortex-A9	
Frec. núcleos	1.7	1.6	
RAM	1 GB	2 GB	
Resolución de la pantalla	1280×720	1280×720	
Sistema operativo	Android 4.1	Android 4.1	

Ejemplo Práctico (2)

	Sony Xperia SP	Samsung Galaxy Note II	% de mejora
Lanzamiento	04/2013	09/2012	-
CPU	Qualcomm MSM8960T Snapdragon S4 Pro	Samsung Exynos 4412 Quad	-
Núm. núcleos	2xKrait ARMv7	4xCortex-A9 ARMv7	-
Frec. núcleos	1.7	1.6	-
GPU	Adreno 320	Mali-400MP	-
RAM	1 GB	2 GB	-
AnTuTu benchmark	15117	13473	+12,20%
Quadrant Standard	7649	5472	+39.78
3DMark	10236	3346	+205.91%

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Tecnología de Integración

- El procesador en sí ocupa muy poco tamaño, aprox. 1cm x 1cm.
- En ese tamaño se pueden incluir hasta
 125 millones de transistores.
- El resto del "cuadrado" es necesario para poder realizar las conexiones con los pines.

Tecnología de Integración (2)

- Proceso de Integración:
 - Mejora de rendimiento: se puede subir la frecuencia de funcionamiento (las capacidades de puerta son menores y los transistores transicionan más rápido)
 - Ahorro de energía: se reducen los voltajes de funcionamiento
 - http://www.intel.com/technology/timeline.pdf
 - http://www.intel.com/technology/architecture-silicon/silicon.htm
 - Ley de Moore → Límite tecnológico (empírico).

Tecnología de Integración (3)

- Dispositivos integrados en la CPU.
 - A más cercanía del componente a la CPU, más rápido será el acceso.
 - Descargan al procesador principal de realizar gestiones: paraleliza su uso.

SoC Apple A6 (iPhone 5)

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Compatibilidad: Familias de micros

- Los microprocesadores se agrupan en familias, cuyos miembros son compatibles entre sí.
- Los miembros más modernos de la familia están diseñados para entender el código máquina de los miembros más antiguos, pero no a la inversa.
- Esto es lo que se suele denominar compatibilidad ascendente.
- Eso garantiza que existan muchas aplicaciones para los nuevos microprocesadores en el momento que salen al mercado.

Familias de micros: Arquitecturas

- x86
 - 16 bits: Intel 8086, 8088, 80186, 80188, 80286, ...
 - 32 bits: i386, i486, IA-32 (Pentium) ~ AMD Athlon
 - 64 bits: AMD K8 (Opteron), Athlon 64, K10 (Phenom) ~ Core 2 Duo, Core i3, i5, i7 (Nehalem)
- Sun SPARC: primera computadora RISC
- IBM Power PC (+ Motorola + Apple) → MAC (2006)
- DEC ALPHA: Samsumg, Compaq.
- ARM (Advanced RISC Machines)
- Procesadores CELL (PS3...)
- Procesadores VLIW: Intel Itanium 2 Transmeta Crusoe.
- •

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

<u>Bibliografía</u>

 Patterson y Hennessy: Estructura y Diseño de Computadores. Capítulo 4.

Enlaces Web

- Parámetros principales de la CPU
 - Frecuencia de reloj. Procesamiento y temperatura
 - Longitud de Palabra: Memoria interna
 - Número de núcleos. Buses internos
 - Repertorio de instrucciones
- Clasificación de las arquitecturas paralelas
- Evaluación del rendimiento
- Tecnología de integración
- Familias de microprocesadores
- Bibliografía
- Actividades

Actividades

- Realiza un pequeño trabajo (5 a 10 páginas), con sus correspondientes referencias bibliográficas, sobre uno de los sigues temas:
 - CISC vs. RISC
 - Medida y evaluación de prestaciones
 - Procesadores segmentados y super-escalares