Sprint 1 : Cervical spine fracture detection

Intro

- Over 1.5 million spine fractures occur annually
- Analyzing medical images can often be a difficult and time consuming process

--->It is increasingly urgent to use artificial intelligence instead of human force for Cervical Spine Fracture Detection

Product Mission

- Developing a computer-aided diagnosis software
- Quickly detecting the location of any vertebral fractures
- Improving the accuracy of detection of bone fractures
- Providing a user-friendly interface for radiologists to use

Unlike identifying manually, our product is totally automatic and easy to use with human-comparable accuracy

Users: Radiologists

User Stories

As a radiologist, I want a computer software to help me detect spine fractures so that we can increase the work efficiency and reduce the possibility of undetected fractures.

Comprehensive literature review

Preprocessing—Training model

 The preprocessing part: each CT image is duplicated to a set of three images, and then the images are cropped and centered to the middle of spine bones. All of the processed images are resized to a resolution of 384x384.

The training part: Resnet-50 is used to extract the feature maps

Bidirectional Network of LSTM (BLSTM) to generate label

Minimum Valuable Product

 An algorithm that can automatically detect cervical spine fractures with reasonable resources in several minutes

Can provide accurate fracture segmentation with little or no manual modification

Development environment

- Pycharm
 - To develop and debug program on local machines
- Github
 - To cooperate and control the code version
- Anaconda
 - For better python environment management
- Cuda
 - For faster training speed by GPU computing

Technologies

- Pytorch
 - Popular deep learning framework, open source and with community support
- O PyTorch

- Pydicom
 - To process dicom tag files
- **U-Net CNN**
 - Widely used in medical image segmentation
- Resnet
 - Some successful examples to review
- PvQt5
 - Widely used GUI toolkit
 - Cross-platform
- AWS, Google Cloud Platform

Next Sprint

Download the kaggle dataset in dicom format and view the data

- Process the dicom file with pydicom module
 - Data Preprocessing (Normalization, Windowing, Centering)

- Implement a simple CNN model with pytorch
 - Coding and debugging

Train with a small size dataset to test our model

Thanks!