(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-310236

(43)公開日 平成7年(1995)11月28日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
D01F 8/1	l4 B			
C08L 67/0	M LPD			
D01F 6/6	3 0 5 A			

審査請求 未請求 請求項の数6 FD (全 6 頁)

(21)出願番号	特願平6-129565	(71)出願人 000000952	
		鐘紡株式会社	
(22)出願日	平成6年(1994)5月18日	東京都墨田区墨田五丁目17番4号	
		(71)出願人 000001993	
		株式会社島津製作所	
		京都府京都市中京区西ノ京桑原町1番	地
		(72)発明者 吉留 英雄	
		大阪府岸和田市天神山町3丁目6番15	号
		(72)発明者 大崎 拓司	
		兵庫県三田市弥生が丘1丁目3番1番	館
		608号	
		(72)発明者 近藤 義和	
		山口県防府市国衙2丁目5番31号	
		最終頁に	続く

(54) 【発明の名称】 熱融着性ポリ乳酸繊維

(57)【要約】

【構成】融点Taを有するポリ乳酸系重合体Aと、ポリ乳酸系重合体Bとからなる複合繊維である。ポリ乳酸系重合体Bはその融点Tbが前記融点Taより10℃以上低いか又は非晶性で融点を持たない。

【効果】生分解性を有すると共に熱融着性を有する。各種の生分解性を有する繊維構造物を製造するのに好適である。

【特許請求の範囲】

【請求項1】 融点Taを有するポリ乳酸系重合体Aと、ポリ乳酸系重合体Bとからなる複合繊維であって、前記ポリ乳酸系重合体Bはその融点Tbが前記融点Taより10℃以上低いか又は非晶性で融点を有しないものであることを特徴とする熱融着性ポリ乳酸繊維。

【請求項2】 ポリ乳酸系重合体Aが、L-乳酸単位またはD-乳酸単位を80モル%以上含有する、請求項1 記載の熱融着性ポリ乳酸繊維。

【請求項3】 複合繊維の横断面構造が芯鞘型であり、 且つ芯がポリ乳酸系重合体Aからなり、鞘がポリ乳酸系 重合体Bからなるものである、請求項1又は2記載の熱 融着性ポリ乳酸繊維。

【請求項4】 ポリ乳酸系重合体Aとポリ乳酸系重合体Bとからなる多層構造に複合化した複合繊維であって、その横断面構造が並列型(サイド・バイ・サイド)、又は多芯型、又は多重並列型(縞状)、又は同心円型、又は偏心円型、又は放射状型である、請求項1又は2記載の熱融着性ポリ乳酸繊維。

【請求項5】 ポリ乳酸系重合体A及び/又はポリ乳酸系重合体Bが、分子量300以上のポリエチレングリコールを0.1~15重量%共重合している、請求項1~4記載の熱融着性ポリ乳酸繊維。

【請求項6】 ポリ乳酸系重合体A及び/又はポリ乳酸系重合体Bが、脂肪族多価アルコール、脂環族多価アルコール、脂肪族多価カルボン酸、脂環族多価カルボン酸、脂肪族ヒドロキシカルボン酸、脂環族ヒドロキシカルボン酸、芳香族ヒドロキシカルボン酸よりなる群より選ばれた少なくとも一種の多官能基を有する化合物を0.1~15重量%共重合している、請求項1~5記載の熱融着性ポリ乳酸繊維。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、生分解性を有し不織布等の繊維構造物を製造するのに好適なポリ乳酸繊維に関するものである。

[0002]

【従来の技術】自然環境下で、例えば微生物により分解され最終的には炭酸ガスと水になる完全循環型生分解性ポリマーとして、ポリ乳酸が注目されている。ポリ乳酸は融点が高く結晶性も高いため、衣料用並びに工業用繊維としても有望であることが期待されている。しかしながら、従来は生体適合性を活かした手術糸(縫合糸)などのごく限られた用途が知られているに過ぎない。その理由は、ポリ乳酸を実用的な衣料用並びに工業用繊維とする技術確立の困難さに加え、繊維製品としての商品化技術の開発が遅れていたことによるものである。

[0003]

【発明が解決しようとする課題】本発明者らは、ポリ乳酸の生分解性を維持し、完全循環型生分解性の不織布や

織り・編み布等の繊維構造物を提供するために鋭意研究 した結果、本発明を完成した。本発明の目的は、生分解 性を有すると共に熱融着性を有し、各種の生分解性を有 する繊維構造物を製造するのに好適な熱融着性ポリ乳酸 繊維を提供するにある。

[0004]

【課題を解決するための手段】本発明の熱融着性ポリ乳酸繊維は、融点Taを有するポリ乳酸系重合体Aと、ポリ乳酸系重合体Bとからなる複合繊維であって、前記ポリ乳酸系重合体Bはその融点Tbが前記融点Taより10℃以上低いか又は融点を有しないものであることを特徴とするものである。

【0005】本発明に用いるポリ乳酸系重合体A(以下、「重合体A」と略記する)は結晶性の重合体で融点 Taを有するものである。これに対し、本発明に用いるポリ乳酸系重合体B(以下、「重合体B」と略記する)は融点Tbを有する結晶性のものが耐熱性に優れている点において好ましいが、融点を有しない非晶性のものを用いることもできる。融点Tbを有する場合、融点Tbは前記融点Taよりも10℃以上低い温度であり、両者の融点の差は好ましくは10~80℃、更に好ましくは30~60℃である。

【0006】本発明に用いる上記重合体Aは、L-乳酸単位又はD-乳酸単位を80モル%以上含有するボリ乳酸系重合体が好適である。ポリ乳酸には、光学異性体である、D体とL体とのあることが知られているが、両者を共重合すると融点は低下し、光学純度が十分に低くなると最早融点を示さない非晶性ポリ乳酸となる。重合体Aにおける乳酸単位の光学純度(D体又はL体の比率)は好ましくは80モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上である。

【0007】前述したように、重合体Bの融点Tbは、重合体Aの融点Taより10℃以上低いか、または融点を有しない非晶性のものである。融点の低いポリ乳酸系重合体あるいは非晶性のポリ乳酸系重合体を得るには、重合体Bにおける乳酸単位の光学純度を適宜調節することにより達成できる。即ち、光学純度を低下させると融点の低いものが得られ、更に低下させれば非晶性のものを得ることができる。

【0008】一般には乳酸を発酵法で生産するとし体が産生されるので、工業的にはLー乳酸の方が大量且つ安価に入手し易く、本発明に係るポリ乳酸系重合体は、通常Lー乳酸を主体とするものである。しかしながら、Dー乳酸を主体とする重合体であっても、Lー乳酸の場合と同様の物性のものを得ることができる。

【0009】本発明に用いる重合体A及び/又は重合体Bとしては、乳酸に分子量300以上のポリエチレングリコールを共重合したポリ乳酸系重合体を使用することもできる。この場合ポリエチレングリコールは、好ましくは0.1~15重量%程度共重合される。

【0010】また、重合体A及び/又は重合体Bは、脂肪族多価アルコール、脂環族多価アルコール、脂肪族多価カルボン酸、脂環族多価カルボン酸、脂肪族ヒドロキシカルボン酸、脂環族とドロキシカルボン酸、芳香族ヒドロキシカルボン酸等の多官能基を有する化合物、あるいはラクトン、環状エーテル類等の環状化合物等を、好ましくは0.1~10重量%、より好ましくは0.1~10重量%、更に好ましくは0.5~7重量%共重合したものであっても良い。これら多官能基を有する化合物または環状化合物を共重合することにより、溶融紡糸におけるボリ乳酸の流動性が改善され、紡糸操業性と糸質の向上を図ることができる。

【0011】本発明において、均質かつ高強度の良質な 繊維を得るためには、重合体Aの分子量は好ましくは5 万以上、より好ましくは10万以上、更に好ましくは1 5万以上のものである。更に、均質な繊維及び繊維製品 とするためには、重合体Aと重合体Bとの分子量差は、 好ましくは5万以下、より好ましくは3万以下、更に好ましくは2万以下である。重合体Aと重合体Bとの分子量差が5万を超えると紡糸安定性に欠ける傾向にあり、 得られた繊維の品質変動、バラツキが大きくなり、商品 価値を損なう虞がある。

【0012】本発明の熱融着性ポリ乳酸繊維は、上記重合体Aと上記重合体Bとを多層構造に複合化した複合繊維であって、その横断面構造は芯鞘型のほか、並列型(サイド・バイ・サイド)、多芯型、多重並列型(縞状)、同心円型、偏心円型、放射状型等を挙げることができる。いずれの横断面構造の場合も、少なくとも繊維表面の一部に重合体Bを露出させたものである。重合体Bが繊維表面に露出していない場合には、熱融着性が発現せず、本発明の目的を達することができない。したがって、複合繊維の横断面構造が芯鞘型においては、芯の部分が重合体Aで鞘の部分が重合体Bで構成されることになる。

【0013】また、上記複合繊維における重合体Aから構成された部分の比率は、好ましくは50重量%、より好ましくは60重量%以上、更に好ましくは70重量%以上であり、且つ95重量%以下のものが望ましい。上述のような複合繊維は、通常それぞれの横断面構造が得られるように設計された特殊口金を通して溶融紡糸して製造される。

【0014】本発明の熱融着性ポリ乳酸繊維を絡合させて不織布状となした後、エンボスマシンにより、重合体Bが融点を有するときはその融点より高く且つ重合体Aの融点より低い温度で加熱加圧すると、重合体Aは原形を保持したまま重合体Bが溶融し近接する他の繊維の重合体Bと融着され、不織布を得ることができる。

【0015】

【発明の効果】本発明の熱融着性ポリ乳酸繊維は、融点

の異なるポリ乳酸系重合体を複合した繊維からなるものであるため、所定温度で加熱加圧することにより、片方の重合体部分だけが溶融し、繊維の形態を保持しつつ繊維同士を熱融着することができる。

【0016】このため、本発明の熱融着性ポリ乳酸繊維を用いれば、全完全循環型生分解性不織布をノーバインダーで製造することが可能である。得られる不織布は十分な抗張力、引き裂き抵抗力、並びに剥離強度を有するために、土木・建設用袋、植生マット等の用途に適する。また、衣料用品、衛生用品としても好適であり、従来得られていない完全生分解性資材として利用効果が大である。特に、生体適合性の創傷被覆材として有用である。

【0017】また、本発明のフィラメント糸を経緯直交 積層して、又は低密度織物や紗となし、その交叉点を加 熱溶融して熱融着させることにより、超軽量ネットと し、新規な完全生分解性包装材を得ることもできる。更 に、織り編み布を熱カレンダーロールに通し、織り編み 目を熱融着させ、気密性布を得ることもできる。

[0018]

【実施例】

実施例1~3

L-乳酸より合成されたL-ラクチドを原料として溶融 重合して得たポリL-乳酸と、L-乳酸にD-乳酸を所 定比率で共重合して得たポリD/L共重合乳酸とを準備 した。得られたポリL-乳酸及び各種ポリD/L共重合 乳酸から、表1に示す如き融点のポリ乳酸を重合体A及 び重合体Bとして適宜選択し、これを構成成分として、 並列型(サイド・バイ・サイド型)の複合繊維を紡糸 し、延伸したのち、熱処理して熱融着性ポリ乳酸複合繊 維を製造した。

【0019】これら複合繊維をカットファイバーとなし、クリンプ(捲縮)加工したのち不織布を作成した。不織布のバインディングは熱エンボスにて行なった。ここでエンボス温度は、表1に示すような重合体Aの融点より低い範囲で適宜設定した。その結果は、表1に示す通りであった。なお、本明細書中の表における「引張強力」とは、50mm幅の短冊状試験片を引張り速度200%/分で変形させて測定した値であり、N=10の実測値範囲で示した。

【0020】比較例1~2

重合体A及び重合体Bとして、融点の差が10℃未満のポリ乳酸系重合体を選択した以外は、実施例1と同様にしてポリ乳酸複合繊維を製造した。引き続き、実施例1~3と同様にして不織布を作成した。その結果は、表1に示す通りであり、熱エンボスの効果が小さく、得られた不織布は物性値の劣るものであった。

[0021]

【表1】

	項目	実施例1	実施例 2	実施例3	比較例1	比較例 2
重合	融点 (℃)	170	178	130	175	1 0 0
体 A	D-乳酸の割合(モル%)	1	0	5	0	1 0
重合	融点 (℃)	1 3 0	ND	ND	168	9 5
体 B	D-乳酸の割 合(モル%)	5	1 5	1 5	1	1 0
引 不 不 不 重	ンボス温度 ℃ 振強力 (kg) 織布外観 磯布目付け 合体比率A/B 合評価(注2)	150 4~9 良好 43 50∕50	100 3~8 良好 45 60/40 ©	70 5~11 表面シワ 52 70/30 ○~◎	172 1~5 毛羽立ち 49 50/50	97 1以下 シワ、毛羽 46 50/50

(注1) ND:非晶性で融点なし。

(注2) ◎:極めて優れている。 ○:優れている。 △:劣る。

【0022】実施例4~6

重合体A及び重合体Bとして実施例1~3で用いたものと同様のポリ乳酸系重合体を用い、横断面構造を並列型に代えて、融点の高い方の重合体Aを芯とし且つ融点が低い方の重合体Bを鞘とする芯鞘型の熱融着性複合繊維を製造した。引き続き、実施例1と同様にして不織布を作成した。その結果は表2に示す通りであった。

【0023】比較例3~4

重合体A及び重合体Bとして比較例1,2で用いたものと同様のポリ乳酸系重合体を用い、横断面構造を並列型に代えて、融点の高い方の重合体Aを芯とし且つ融点の低い方の重合体Bを鞘とする芯鞘型の複合繊維を製造した。引き続き、実施例1と同様にして不織布を作成した。その結果は表2に示す通りであった。

[0024]

【表2】

項目	実施例 4	実施例 5	実施例 6	比較例3	比較例4
重合体Aの融点 ℃ 重合体Bの融点 ℃ エンボス温度 ℃ 引張強力 (kg) 不織布の外観 不織布目付け(g/m²) 重合体A/B比率	170 130 150 5~8 良好 50 60/40	178 ND 100 4~6 良好 45 60/40	130 ND 80 3~8 良好 49 60/40	175 168 172 1以下 毛羽あり 47 60/40	100 95 97 1以下 シワ発生 53 50/50
総合評価(注2)	0	0	0	Δ	Δ

(注2) ◎:極めて優れている。 △:劣る。

【0025】実施例7~11 ポリレー乳酸又はポリD/レー乳酸を多官能基を有する 化合物と、グリセリン又はポリエチレングリコールとを 表3に示す如き割合で共重合し、融点の異なる各種のポ リ乳酸系重合体を調製した。得られたポリ乳酸系重合体から、表3に示す如き融点のポリ乳酸を重合体A及び重合体Bとして適宜選択し、芯鞘型または並列型の横断面構造の複合繊維を溶融紡糸した。得られた複合繊維は熱融着性ポリ乳酸繊維であった。引き続き、実施例1と同

様にして不織布を作成した。その結果は表3に示す通りであった。

[0026]

【表3】

	項	目	実施例 7	実施例8	実施例 9	実施例10	実施例11
重合	融点	(°C)	173	172	169	167	177
体 A	共重合物 比率(重	_	GLC 1	G L C 2	PEG 1	PEG 3	無 0
重合	融点	(°C)	1 2 8	100*	100*	1 5 0	167
体 B	共重合物 比率(重		D 一乳酸 5	D-乳酸 10	D-乳酸 10	D-乳酸 2	PEG 3
エ引不不重	e 機維ス温度 大震強力 大震強の外側 大変の 大変の 大変の 大変の 大変の 大変の 大変の 大変の 大変の 大変の	E(℃) (kg) 見 け(g/m²) 3比率	芯鞘型 140 5~8 良好 44 60/40 ◎	芯 報 1 1 0 5 ~ 9 良 5 0 50 ∕ 50 ◎	並列型 100 4~8 良好 47 50/50 ○~◎	並列型 160 2~5 良好 51 40/60 ○~◎	芯鞘型 170 5~10 良好 46 30/70 ◎

(注2) ◎:極めて優れている。 ○:優れている。

(注3) * 印:若干不明瞭な融点。

(注4) GLC:グリセリン、 PEG:ポリエチレングリコール、

【0027】実施例12~15

表4に示す如き融点を有する重合体Aと重合体Bとからなる、芯鞘型複合フィラメント糸を製造した。得られた芯鞘型複合フィラメント糸は表4に示す如き性状の熱融着性ポリ乳酸繊維であった。得られた熱融着性ポリ乳酸繊維を低密度の紗に織り、120℃の熱カレンダーロールを通し、織り目間隔0.1mm~5mmの各種の空隙を持ち且つ目留めの効いた固い組織の紗を得た。その結果は、表4に示す通りであり、紅茶ティーバッグ等の食品用包装材として極めて好適であった。

【0028】尚、表4における「目ずれ強力」は、紗の 経緯方向とほぼ45度の傾きを持たせて短冊状に幅5cm の試験片を切り出し、引張り試験機で変形させ、経・緯 糸が剥離するに至る下限強力で表わした。

【0029】比較例5

重合体A及び重合体Bとして比較例1で用いたものと同様のポリ乳酸系重合体を用い、表4に示す如き性状の芯鞘型の複合繊維を製造した。引き続き、実施例12~15と同様にして紗を作成した。その結果は表4に示す通りであり、紅茶ティーバッグ等の食品用包装材に適するものではなかった。

[0030]

【表4】

	実施例15	比較例 5
重合体Aの融点℃ 173 170 178 重合体Bの融点℃ 128 130 ND 重合体A/B比率 50/40 70/30 50/50 繊度 (デニール) 24 36 75 糸強度 (g/d) 3~5 4~6 3~4 伸度 (%) 35~50 35~60 33~45 目ずれ強力 (kg) 3以上 3以上 1~1.8 ティーバッグ性能 ◎ ◎	1 7 7 1 6 7 40/60 2 4 3~5 30~60 0.5~1	175 168 60/40 36 4~6 25~60 0.1以下

(注1) ND:非晶性で融点なし。

(注2) ◎:極めて優れている。 ○:優れている。 △:劣る。

フロントページの続き

(72)発明者 梶山 宏史

山口県防府市鐘紡町4-1清明寮

(72)発明者 松井 雅男

大阪府高槻市北園町7番18号

(72)発明者 小関 栄一

京都府京都市中京区西ノ京桑原町1番地

株式会社島津製作所三条工場内

(72)発明者 藤井 康宏

京都府京都市中京区西ノ京桑原町1番地

株式会社島津製作所三条工場内