第十六章 重积分

§1 二重积分的概念

平面图形的面积 可求面积?

P:平面有界图形

T:平行于坐标轴的直线网

小矩形△,分三类:

(i)
$$\Delta_i \subset P^o$$
;

(ii)
$$\Delta_i \cap \overline{P} = \Phi;$$

(iii)
$$\Delta_i \cap \partial P \neq \Phi$$
.

北京航空航天大學 BEIHANG UNIVERSITY

记: $S_p(T) =$ 所有第(i)类矩形的面积的和, $S_p(T) =$ 所有第(i),(iii)类矩形的面积的和,

易见 $0 \le s_p(T) \le S_p(T) \le \Delta(矩形)$

故对所有的直线网 $\{ s_p(T) \}$ 有上确界,数集 $\{ S_p(T) \}$ 有下确界。

记: $I_P = \sup_T \{S_p(T)\}, \quad P$ 的内面积 $\overline{I}_P = \inf_T \{S_p(T)\}, \quad P$ 的外面积

显然: $0 \le \underline{I}_P \le \overline{I}_P$.

定义1.1

给定平面图形P,若 $I_P = \overline{I}_P$,则称P为可求面积的. 称其共同值 $I_P = I_P = \overline{I}_P$ 为P的面积.

定理1.1平面有界图形P为可求面积的↔

 $\forall \varepsilon > 0$, 3直线网T, s.t $S_p(T) - s_p(T) < \varepsilon$.

推论1.2 $I_P = 0 \Leftrightarrow \overline{I}_P = 0$.

即对 $\forall \varepsilon > 0$, 3直线网T, s.t $S_P(T) < \varepsilon$.

证 "⇒"设P的面积为 I_P .由定义 $I_P = I_P = \overline{I}_P$.

故对∀ ε > 0, 分别存在直线网 T_1 , T_2 , 使得

$$S_P(T_1) > I_P - \frac{\varepsilon}{2}, S_P(T_2) < I_P + \frac{\varepsilon}{2}.$$

记 $T=T_1+T_2$,可证

$$s_P(T_1) \le s_P(T), S_P(T_2) \ge S_P(T).$$

于是
$$S_P(T) > I_P - \frac{\varepsilon}{2}, S_P(T) < I_P + \frac{\varepsilon}{2}.$$

从而对直线网T, $S_P(T)-S_P(T)<\varepsilon$.

设对 $\forall \varepsilon > 0$, 3直线网T, s.t $S_P(T) - s_P(T) < \varepsilon$.

于是 $\overline{I}_P - \underline{I}_P \leq S_P(T) - S_P(T) < \varepsilon$.

由 ϵ 的任意性,因此 $I_P = \overline{I_P}$,P可求面积.

定理1.3 平面有界图形P为可求面积的 $\Leftrightarrow I_{\partial P} = 0$

证 由定理1.1知,P可求面积的充要条件是:

対 $\forall \varepsilon > 0$, 3直线网T, s.t $S_P(T) - s_P(T) < \varepsilon$.

由于
$$S_{\partial P}(T) = S_P(T) - s_P(T)$$
,

所以 $S_{\partial P}(T) < \varepsilon$.

由上面的推论可知 $I_{\partial P}=0$.

定理1.4设 $f:[a,b] \to R$ 连续, 曲线L: y = f(x)的面积为零.

推论1.5分段光滑曲线 L: $\begin{cases} x = x(t), \\ y = y(t), \end{cases} (\alpha \le t \le \beta)$

所表示的平面光滑曲线 或分段光滑曲线的面积为零.

推论1.6由平面上光滑或分段光滑的曲线所围成的有界闭区域是可求面积的.

二重积分的概念

几何问题: 曲顶柱体的体积

曲面z = f(x, y)为顶, D为底的柱体

其中:D为可求面积的有界闭区域,

f(x,y)在D上非负连续.

北京航空航天大學

体积=?

采用"分割、求和、取极限"的方法

此京航空航天大學 BEIHANG UNIVERSITY 步骤如下:

先分割曲顶柱体的底, 并取典型小区域,

小平顶柱体体积 $f(\xi_i,\eta_i)\Delta\sigma_i$

用若干个小平顶柱体体积之和 近似表示曲顶柱体的体积, $\sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i$

曲顶柱体的体积

$$V = \lim_{\|T\| \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i.$$

定义 1. 2 设 f(x,y) 是有界闭区域 D 上的有界函 数,将闭区域D任意分成n个小闭区域 $\Delta\sigma_1$, $\Delta\sigma_2$, …, $\Delta\sigma_n$, 其中 $\Delta\sigma_i$ 表示第i个小闭区域, 也表示它的面积, 在每个 $\Delta \sigma_i$ 上任取一点 (ξ_i, η_i) , 作乘积 $f(\xi_i,\eta_i)\Delta\sigma_i$, $(i=1,2,\cdots,n)$, 并作和 $\sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}$,

如果当各小闭区域的直径中的最大值 λ 趋近于零时,这和式的极限存在,则称此极限为函数f(x,y)在闭区域 D 上的二重积分,记为 $\iint f(x,y)d\sigma$,

对二重积分定义的说明

- (1)在二重积分的定义中,对闭区域的划分是任意的.
- (2)当f(x,y)在闭区域上连续时,定义中和式的极限必存在,即二重积分必存在.

二重积分的几何意义

当被积函数大于零时,二重积分是柱体的体积. 当被积函数小于零时,二重积分是柱体的体积的 负值.

在直角坐标系下用平 行于坐标轴的直线网来划 分区域D,

则面积元素为 $d\sigma = dxdy$

故二重积分可写为

$$\iint\limits_{D} f(x,y)d\sigma = \iint\limits_{D} f(x,y)dxdy$$

特别地,区域
$$D$$
的面积 $S(D) = \iint_D 1 d\sigma = \iint_D d\sigma$.

设 f(x,y)在D上有界,

 $T:\sigma_1,\sigma_2,\cdots,\sigma_n$ 为D的一个分割,

作和式 $S(T) = \sum_{i=1}^{n} M_i \Delta \sigma_i$, f关于分割 T的上和;

$$s(T) = \sum_{i=1}^{m} m_i \Delta \sigma_i$$
, f关于分割 T的下和.

北京航空航天大学 BEIHANG UNIVERSITY

二重积分存在定理

定理1.4 f(x,y)在可求面积闭区域 D上有定义,则

- (1) f(x,y)在D上可积 $\Rightarrow f(x,y)$ 在D上有界;
- $(2) f(x,y) 在D上可积 \Leftrightarrow \lim_{\|T\| \to 0} S(T) = \lim_{\|T\| \to 0} s(T).$
- (3) f(x,y)在D上可积 \Leftrightarrow

$$\forall \varepsilon > 0, \exists T, s.t \ S(T) - s(T) < \varepsilon.$$

- (4) f(x,y) 在有界闭区域D上连续 $\Rightarrow f(x,y)$ 在D上可积.
- (5)设 f(x,y)在D上有界, 若f(x,y)的不连续点都落在

有限条的光滑曲线上,则f(x,y)在D上可积.

二重积分的性质

(二重积分与定积分有类似的性质)

性质1.1若f(x,y), g(x,y)在D上可积,则对任意 α , β , $\alpha f(x,y) + \beta g(x,y)$ 在D上也可积,且 $\iint_D [\alpha f(x,y) + \beta g(x,y)] d\sigma$ $= \alpha \iint_D f(x,y) d\sigma + \beta \iint_D g(x,y) d\sigma.$

性质1.2(保号性和保序性)

(1) 若f(x,y)在D上可积,且 $f(x,y) \ge 0$,则 $\iint_D f(x,y) d\sigma \ge 0$

特别若f(x,y)在D上非负连续,且不恒为 零,则 $\iint_{\Omega} f(x,y)d\sigma > 0$

(2)若f(x,y), g(x,y)在D上可积,且在 D上 $f(x,y) \ge g(x,y)$, 则

$$\iint_D f(x,y)d\sigma \ge \iint_D g(x,y)d\sigma.$$

性质1.3(区域可加性)

若f(x,y)在 D_1,D_2 上都可积, D_1,D_2 无公共内点,则f(x,y)在 $D=D_1\cup D_2$ 上也可积,且 $\iint f(x,y)d\sigma = \iint f(x,y)d\sigma + \iint f(x,y)d\sigma.$

性质1.4(绝对可积性)

若f(x,y)在D上可积,则 | f(x,y) | 在D上也可积,且

$$\left| \iint_{D} f(x,y) d\sigma \right| \leq \iint_{D} |f(x,y)| d\sigma.$$

性质1.5(估值不等式)

其中S(D)为区域D的面积.

性质1.6(积分中值定理)

若f(x,y)在有界闭区域 D上连续,则存在 $(\xi,\eta) \in D$,使得

$$\iint_{D} f(x,y)d\sigma = f(\xi,\eta) \cdot S(D)$$

例 1 不作计算,估计 $I = \iint_D e^{(x^2+y^2)} d\sigma$ 的范围,

其中**D**是椭圆闭区域: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ (0 < b < a).

解 区域 D 的面积 $\sigma = ab\pi$,

在D上
$$: 0 \le x^2 + y^2 \le a^2$$
,
 $: 1 = e^0 \le e^{x^2 + y^2} \le e^{a^2}$,
 $\sigma \le \iint_D e^{(x^2 + y^2)} d\sigma \le \sigma \cdot e^{a^2}$,
 $ab\pi \le \iint_D e^{(x^2 + y^2)} d\sigma \le ab\pi e^{a^2}$.

北京航空航天大學 BEIHANG UNIVERSITY

例 2 估计
$$I = \iint_{D} \frac{d\sigma}{\sqrt{x^2 + y^2 + 2xy + 16}}$$
的范围

其中 D: $0 \le x \le 1$, $0 \le y \le 2$.

解
$$: f(x,y) = \frac{1}{\sqrt{(x+y)^2+16}}$$
, 区域面积 $\sigma = 2$,

在
$$D$$
上 $f(x,y)$ 的最大值 $M = \frac{1}{4}$ $(x = y = 0)$

$$f(x,y)$$
的最小值 $m = \frac{1}{\sqrt{3^2 + 4^2}} = \frac{1}{5}$ $(x = 1, y = 2)$

故
$$\frac{2}{5} \le I \le \frac{2}{4}$$
 $\Rightarrow 0.4 \le I \le 0.5$.

例 3 判断
$$\iint_{r \le |x| + |y| \le 1} \ln(x^2 + y^2) dx dy$$
 的符号.

解 当
$$r \le |x| + |y| \le 1$$
时, $0 < x^2 + y^2 \le (|x| + |y|)^2 \le 1$,故 $\ln(x^2 + y^2) \le 0$;

又当
$$|x|+|y|<1$$
时, $\ln(x^2+y^2)<0$,

于是
$$\iint_{r \le |x|+|y| \le 1} \ln(x^2 + y^2) dx dy < 0.$$

例 4 比较积分 $\iint_D \ln(x+y)d\sigma$ 与 $\iint_D [\ln(x+y)]^2 d\sigma$

的大小, 其中 D 是三角形闭区域, 三顶点各为(1,0) (1,1), (2,0).

解 三角形斜边方程 x+y=2 在 D 内有 $1 \le x+y \le 2 < e$, 故 $0 \le \ln(x+y) < 1$

于是
$$\ln(x+y) > [\ln(x+y)]^2$$
,

因此
$$\iint_{D} \ln(x+y)d\sigma > \iint_{D} [\ln(x+y)]^{2} d\sigma.$$

例5 设f(x,y)是连续函数,求

$$\lim_{\rho \to 0} \frac{1}{\pi \rho^2} \iint_{x^2 + y^2 \le \rho^2} f(x, y) dx dy$$

解 根据积分中值定理 $\exists (\xi,\eta) \in D = \{(x,y) | x^2 + y^2 \le \rho^2\}$

$$\lim_{\rho \to 0} \frac{1}{\pi \rho^{2}} \iint_{x^{2} + y^{2} \le \rho^{2}} f(x, y) dx dy = \lim_{\rho \to 0} \frac{1}{\pi \rho^{2}} f(\xi, \eta) \sigma$$

$$= \lim_{\rho \to 0} \frac{1}{\pi \rho^2} f(\xi, \eta) \pi \rho^2 = f(0, 0).$$

小结

- 二重积分的基本概念
- 二重积分的几何意义: 曲顶柱体的体积
- 二重积分可积的条件
- 二重积分的基本性质

线性性质、保序性、保号性、区域可加性、 绝对可积性、估值不等式、积分中值定理