Личные записи по матану $^{\beta}$

@keba4ok

18 октября 2021г.

Некоторые материалы с практик и лекций для подготовки к контрольным и экзаменам.

Содержание

Задача 1. Интегралы с параметром.	2
Грубые оценки	2
Разбиение на части.	2
Интегрирование по параметру	2
Использование комплексов	3
Задача 2. Многомерное интегрирование.	3
Задача 3. Перестановка пределов интегрирования.	4
Задача 4. Замена переменной.	4
Решение примера КР.	5
Краткий лекционный материал.	6
Введение	6
Системы множеств и функции на них.	6
Счётная аддитивность.	7
Теорема Лебега-Каратеодори.	8
Измеримость	9
Интеграл Лебега	10
Пространства суммируемых функций	13
Разное из неуспетого	13
Краткий четвёртый семестр.	15
Введение	15
Лифференциальные формы и пути	

Задача 1. Интегралы с параметром.

Грубые оценки.

Задача (1.3.1).

$$\lim_{\alpha \to 0} \int_{1-\alpha}^{1+\alpha} \frac{dx}{\alpha + x^2(\alpha + \alpha^3)} \ge \lim_{\alpha \to 0} \frac{2\alpha}{\alpha + (1+\alpha)^2(\alpha + \alpha^3)} \ge 1$$
$$\le \lim_{\alpha \to 0} \frac{2\alpha}{\alpha + (1-\alpha)^2(\alpha + \alpha^3)} \le 1$$

Задача (1.3.2).

$$\lim_{R \to +\infty} \int_0^{\pi} e^{-R\sin\theta} d\theta \ge \lim_{R \to +\infty} \int_0^{\pi} e^{-R\theta} d\theta = -\frac{e^{-R\theta}}{R} \Big|_0^{\pi} =$$
$$= -\frac{-e^{-R\frac{\pi}{2}}}{R} + \frac{1}{R}.$$

Разбиение на части.

Посредством замены переменных.

Задача (1.3.4).

$$\lim_{R \to +\infty} \int_0^{\pi} e^{-\sin R\theta} d\theta = [R] \frac{1}{R} \int_0^{\pi} e^{-\sin \theta} d\theta.$$

Интегрирование по параметру.

Теорема 1. Пусть $f:[a,b]\times[c,d]\to\mathbb{R}$ - непрерывная функция , дифференцируемая по первой переменной и такая, что $\frac{\partial f}{\partial x}(x,y)$ тоже непрерывна. Тогда

$$\frac{\partial}{\partial x} \int_{c}^{d} f(x, y) dy = \int_{c}^{d} \frac{\partial f}{\partial x}(x, y) dy. \tag{1}$$

Теорема 2. Пусть с или d бесконечно и существуют g и h - непрерывные на [c,d] такие, что к условиям непрерывности добавляются

$$\left| \frac{\partial f}{\partial x}(x,y) \right| \le h(y), |f(x,y)| \le g(y)$$

u

$$\int_{c}^{d} h(y)dy < \infty, \ \int_{c}^{d} g(y)dy < \infty,$$

тогда формула (1) также верна.

Задача (1.5.1).

$$\int_0^1 \frac{x^b - x^a}{\ln x} dx = [H_{\varepsilon}(t) = \int_0^{1-\varepsilon} \frac{x^t}{\ln x} dx] = H_{\varepsilon}(b) - H_{\varepsilon}(a) =$$
$$= \int_a^b H_{\varepsilon}'(t) dt = \int_a^b \frac{dt}{t+1}.$$

Использование комплексов.

Задача (1.5.2). a > 0.

$$\int_0^\infty \frac{\sin x}{x} e^{-ax} dx.$$

$$\frac{\partial}{\partial a} \int_0^\infty \frac{\sin x}{x} e^{-ax} dx = -\int_0^\infty \sin x e^{-ax} dx =$$

$$= -\int_0^\infty \sin x e^{-ax} dx = -\int_0^\infty \frac{e^i x - e^{-ix}}{2i} e^{-ax} dx =$$

$$= -\frac{1}{2i} \int_0^\infty (e^{(i-a)x} - e^{-(i+a)x}) dx = \frac{1}{2i} \left[\frac{1}{i-a} + \frac{1}{i+a} \right] = \frac{-1}{1+a^2}.$$

Теорема 3 (Интеграл Френеля).

$$\int_0^\infty \sin(x^2)dx = \frac{1}{2}\sqrt{\frac{\pi}{2}}.$$

Задача 2. Многомерное интегрирование.

Теорема 4 (Тождество Фубини).

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dy \right) dx = \int_{\mathbb{R}^2} f(x,y) dx dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dx \right) dy$$

 $Утверждение\ 1.\ Пусть\ \Omega$ - (приличная) область в $\mathbb{R}^2.$

$$\int_{\Omega} f(x,y)dxdy = \int_{\mathbb{R}^2} f(x,y)\chi_{\Omega}(x,y)dxdy =$$

$$= \int_{C}^{D} \int_{c(x)}^{d(x)} f(x,y)dydx = \int_{A}^{B} \int_{a(y)}^{b(y)} f(x,y)dxdy.$$

Задача (4.1.3). $f(x,y)=x^2,\,\Omega=\{x^2+y^2\leq 1\}.$

$$\int_{\Omega} f(x,y)dxdy = \int_{0}^{1} \int_{-\sqrt{1+x}}^{\sqrt{1+x}} x^{2}dydx =$$

$$= \int_{0}^{1} 2\sqrt{1-x}x^{2}dx$$

Задача 3. Перестановка пределов интегрирования.

Чертим график области (ну она же должна быть 2-х или 3-ч мерной, поэтому возможно), затем отслеживаем согласно yms. 1 новые границы, а функция под интегралом остаётся той же самой.

Задача 4. Замена переменной.

Пусть $\Omega_1, \Omega_2 \subset \mathbb{R}^d$ - открытые и, возможно, связные области. Пусть также есть $\Phi: \Omega_1 \to \Omega_2$ такая, что $\Phi \in C^1(\overline{\Omega_1})$ и Φ - биекция между данными областями. Тогда

$$\int_{\Omega_2} f(y)dy = \int_{\Omega_1} f(\Phi(x))d\Phi(x) =$$

$$= \int_{\Omega_1} f(\Phi(x))|\det \Phi_x|dx.$$

В частности, при d=2, и при $\Phi(x,y)=(\Phi^1(x,y),\Phi^2(x,y)),$

$$d\Phi_{(x,y)} = \begin{pmatrix} \frac{\partial \Phi^1}{\partial x}(x,y) & \frac{\partial \Phi^2}{\partial x}(x,y) \\ \frac{\partial \Phi^1}{\partial y}(x,y) & \frac{\partial \Phi^2}{\partial y}(x,y) \end{pmatrix},$$

$$\det d\Phi|_{(x,y)} = \Phi_1^1 \cdot \Phi_2^2 - \Phi_1^2 \cdot \Phi_2^1,$$

откуда получается результат замены:

$$\int_{\Omega_1} f(\Phi(x,y)) |\Phi_1^1 \cdot \Phi_2^2 - \Phi_1^2 \cdot \Phi_2^1| dx dy.$$

Пример(ы) 1. Полярная замена. $\Omega_1 = \{(r,\varphi)|r>0, \varphi\in(0,2\pi)\},\ \Omega_2 = \mathbb{R}\setminus\{0\}$. Тогда $\Phi^1 = r\cos\varphi,\ \Phi^2 = r\sin\varphi,$

$$d\Phi = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -r\sin \varphi & r\cos \varphi \end{pmatrix}$$

И определитель, как нетрудно понять, будет равен r. В трёхмерном случае получается, конечно, *сферическая замена*.

$$x = \rho \cos \varphi \sin \theta,$$

$$y = \rho \sin \varphi \sin \theta,$$

$$z = \rho \cos \theta.$$

Пример(ы) 2. Экспоненциальная замена. $\Phi = (e^{u_1}, e^{u_2}, \ldots)$, тогда $\det = e^{u_1 + u_2 + \cdots}$.

Решение примера КР.

Задача (1).

$$\int_0^{\frac{\pi}{2}} \log(\sin^2 x + a\cos^2 x) dx, \ a \ge 0$$

Задача (2). Вычислить интеграл от функции $u(x,y)=x^2+y$ по области, ограниченной параболами $y=x^2$ и $x=y^2$.

$$\int_0^1 \int_{x^2}^{\sqrt{x}} (x^2 + y) dy dx = \int_0^1 y x^2 + \frac{y^2}{2} \Big|_{x^2}^{\sqrt{x}} dx = \int_0^1 x^2 \sqrt{x} + \frac{x}{2} - 1,5x^4 dx = \frac{2}{7} + \frac{1}{4} - \frac{3}{10}$$

Задача (3). Изменить порядок интегрирования

$$\int_{0}^{r} \int_{x}^{\sqrt{2rx-x^{2}}} f(x,y) dy dx = \int_{0}^{r} \int_{r-\sqrt{r^{2}-y^{2}}}^{y} f(x,y) dx dy$$

Задача (4).

$$\iiint_{U} \frac{dxdydz}{\sqrt{x^2 + y^2 + (z - 2)^2}} = \iiint_{U'} \frac{rdrd\varphi d\theta}{\sqrt{r^2 - 2r\cos\theta + 4}}$$

Краткий лекционный материал.

Введение

Пусть X - некоторое универсальное пространство, а $\mathfrak A$ - набор его подмножеств.

Определение 1. \mathfrak{A} - *полукольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$ тоже лежит в \mathfrak{A} , а их разность $A \backslash B$ представляется в виде конечного объединения попарно дизъюнктных множеств из \mathfrak{A} .

Определение 2. \mathfrak{A} - *кольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$, объединение $A \cup B$ и разность $A \setminus B$ лежат в \mathfrak{A} .

Определение 3. $\mathfrak A$ - *алгебра множеств*, если оно кольцо, и для любого $A \in \mathfrak A$ множество X тоже лежит в $\mathfrak A$.

Примечание 1. При рассуждении о полукольцах разумно думать о

$$P(\mathbb{R}^n) = \{ \prod_{i=1}^n [a_i, b_i); a_i, b_i \in \overline{\mathbb{R}} \},$$

то есть, о полуинтервалах на прямой, в частности.

Определение 4. \mathfrak{A} , \mathfrak{B} - полукольца, тогда их *произведение*:

$$\mathfrak{C}=\mathfrak{A}\times\mathfrak{B}=\{A\times B, A\in\mathfrak{A}, B\in\mathfrak{B}\}.$$

Утверждение 2 (полукольцо).

$$A_1, A_2, A_3 \in \mathfrak{A} \Rightarrow A_1 \setminus (A_2 \cup A_3) = \bigsqcup_{1}^{N} C_j$$

и это аналогично обобщается до вычитания больших объединений.

Определение 5. Функция $\mu: \mathfrak{A} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ называется **мерой**, если для любых попарно дизъюнктных множеств $A_1, \dots A_k \in \mathfrak{A}$ и таких, что $\bigsqcup_{i=1}^k A_i \in \mathfrak{A}$, верно равенство $\mu(\bigsqcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(A_i)$

Примечание 2. Данное свойство называется аддитивностью

Утверждение 3. Мера, определённая на полукольце, монотонна: если $A, B \in \mathfrak{A}$, и $B \subseteq A$, то $\mu(B) \leq \mu(A)$.

Системы множеств и функции на них.

Определение 6. Пусть $\mathfrak A$ - полукольцо, и $A \in \mathfrak A$. Определим функцию-индикатор (или характеристическую функцию):

$$\chi_A(x) = \begin{cases} 1, \text{ если } x \in A, \\ 0, \text{ если } x \notin A \end{cases}$$

Определение 7. Простая функция - это функция вида $f(x)=\sum_{i=1}^n a_i\chi_{A_i}(x),$ где $A_i\in\mathfrak{A}$ и $a_i\in\mathbb{R}$

Примечание 3. Сумма и произведение простых функций - простые функции.

Определение 8. Пусть $\mathfrak A$ - полукольцо, μ - мера и f - простая функция (всё пока что конечно). Тогда элементарным интегралом называется

$$\int f(x)dx = \sum a_i \mu(A_i)$$

Утверждение 4. Рассмотрим свойства интеграла:

• Линейность. Если у нас есть две простые функции: f и g, а также два числа: $\alpha, \beta \in \mathbb{R},$ тогда

$$\int \alpha f + \beta g = \alpha \int f + \beta \int g.$$

 \bullet Монотонность. Пусть f и g - простые функции, а также $f \leq g.$ Тогда

$$\int f \le \int g.$$

Примечание 4. Для доказательства практически всего нужно просто рассмотреть дизъюнктное подразбиение данных функций.

Определение 9. Пусть \mathfrak{A} , \mathfrak{B} - полукольца с мерами μ и ν соответственно. Определим их произведение $\lambda: \mathfrak{A} \times \mathfrak{B} \to \mathbb{R}_{>0} \cup \{+\infty\}$ по правилу $\lambda(A \times B) = \mu(A)\nu(B)$.

Счётная аддитивность.

Определение 10. Пусть даны $\mathfrak{B} \subseteq \mathcal{P}(X)$ - набор подмножеств множества X, и функция $\mu: \mathfrak{B} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$. Эта функция называется счётно-аддитивной (или σ -аддитивной), если для любого не более чем счётного набора попарно дизъюнктных множеств $\{B_i\}$ таких, что их объединение $B = \coprod B_i$ лежит в \mathfrak{B} , верно равенство $\mu(B) = \sum \mu(B_i)$

Определение 11. Мера μ , определённая на полукольце (кольце, алгебре и т.д.) $\mathfrak{A} \subseteq \mathcal{P}(X)$, называется *регулярной*, если для любого $A \in \mathfrak{A}$:

- $\mu(A) = \inf_{G \in \mathfrak{A}, A \subset G, G \text{ otkphitoe}} \mu(G)$
- $\bullet \ \mu(A) = \sup_{K \in \mathfrak{A}, K \subset A, K \text{ Komilart}} \mu(K)$

Теорема 5 (*Александров*). Регулярная конечно аддитивная мера μ , опрелелённая на кольце в топологическом пространстве, счётно аддитивна.

Определение 12. Если в определении алгебры сказать, что объединение и пересечение должны быть счётными, то мы получим σ -алгебру.

Примечание 5. Пересечение σ -алгебр - σ -алгебра.

Определение 13. Порождённая σ -алгебра для $\mathfrak{B} \subset 2^X$ - $\overline{\mathfrak{B}}$ - наименьшая σ -алгебра, содержащая \mathfrak{B} .

Утверждение 5. Если $\mathfrak A$ - алгебра, из $\{E_n\}_1^\infty\subset\mathfrak A$ следует, что $\cap_1^\infty E_n\subset\mathfrak A$, то $\mathfrak A$ - σ -алгебра.

Определение 14. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ - полукольцо с (конечно-аддитивной) мерой μ . Определим функцию $\mu^* : \mathcal{P}(X) \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ по правилу $\mu^*(A) = \inf(\sum \mu(A_i) | \{A_i\} \in \mathfrak{A}, \bigcup A_i \supset A)$ (т.е. инфимум по всем покрытиям множества A элементами полукольца) и назовём её внешней мерой.

Утверждение 6.

- $\mu^*(A) \le \mu(A)$;
- Монотонность: если $A \subseteq B$, то $\mu^*(A) \le \mu^*(B)$;
- Счётная полуаддитивность: Если $\{A_i\} \in \mathfrak{A}$, и $\bigcup A_i \in \mathfrak{A}$ то $\mu^*(\bigcup A_i) \leq \sum \mu^*(A_i)$;
- Если μ счётно-аддитивна, то $\mu_{\mathfrak{M}}^* = \mu$.

Теорема Лебега-Каратеодори.

Определение 15. Пусть X - множество произвольной природы. Монотонную и счётнополуаддитивную функцию $\gamma: \mathcal{P}(X) \to \mathbb{R}_{\geq 0} \cup \{\infty\}$, такую, что $\gamma(\emptyset) = 0$, мы назовём *пред*мерой на множестве X.

Определение 16. Множество $E \subseteq X$ называется γ -измеримым, если для любого $A \subseteq X$ верно равенство $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$ или, что равносильно, $\gamma(A) = \gamma(A \cap E) + \gamma(A \cap E^c)$.

Примечание 6. Внешняя мера - это предмера.

Теорема 6 (*Теорема Лебега-Каратеодори*). Пусть γ - предмера на множестве X, u $\Sigma \subseteq \mathcal{P}(X)$ - набор всех γ -измеримых подмножеств. Тогда:

- Σ σ -алгебра;
- $\gamma_{\upharpoonright \Sigma}$ счётно-аддитивная мера на Σ ;
- Пусть $\mathfrak A$ полукольцо на X, u μ (конечно) аддитивная мера на нём. Если мы определим $\gamma := \mu^*$, то $\Sigma \supset \overline{\mathfrak A}$.

Определение 17. Пусть $P(\mathbb{R}^n)$ - полукольцо ячеек с естественной мерой μ (которая, как мы помним, счётно-аддитивна). Множества, измеримые относительно внешней меры μ^* , образуют σ -алгебру (будем обозначать её Σ) и называются измеримыми по Лебегу, а μ^* от них обозначается буквой λ и называется мерой Лебега.

Определение 18. Рассмотрим $\mathfrak{B} = \overline{P(\mathbb{R}^n)}$ - σ -алгебра, натянутая на полукольцо яче-ек $P(\mathbb{R}^n)$. Она состоит из всевозможных счётных объединений и пересечений элементов $P(\mathbb{R}^n)$ и называется *Борелевской \sigma-алгеброй*. Эта алгебра содержит, например, все открытые множества (так как любое открытое множество в \mathbb{R}^n можно представить в виде дизъюнктного объединения ячеек).

Примечание 7. Любое измеримое по Борелю множество также измеримо и по Лебегу (в силу п.3 теоремы Лебега-Каратеодори), но обратное неверно.

Утверждение 7. Пусть γ - предмера на X. Если $E\subseteq X$, и $\gamma(E)=0$, то E - γ -измеримо. Как следствие, любое подмножество γ -измеримого и имеющего предмеру ноль множества также измеримо.

Утверждение 8. Канторово множество имеет мощность континуум, измеримо по Борелю (а, значит, и по Лебегу) и имеет меру Лебега, равную нулю.

Определение 19. Мера на полукольце $\mathfrak{A} \subseteq \mathcal{P}(X)$ называется σ -конечной, если исходное множество X представляется в виде счётного объединения $\bigcup A_n$, где $A_i \in \mathfrak{A}$, и $\mu(A_i) < \infty$.

Утверждение 9 (о структуре измеримых множеств). Пусть $A \in \Sigma$ - (измеримое по Лебегу) множество. Тогда оно представимо в виде разности $B \setminus E$, где $B \in \mathfrak{B}$, а $\lambda(E) = 0$.

Утверждение 10. Пусть $P(\mathbb{R}^n)$ - полукольцо ячеек, Σ - измеримые по Лебегу подмножества, λ - мера Лебега, и Δ ($\mathfrak{B}\subseteq\Delta\subseteq\Sigma$) - какая-то другая σ -алгебра со своей мерой ν такая, что $\nu_{\mid\mathfrak{B}}=\lambda_{\mid\mathfrak{B}}$. Тогда $\nu_{\mid\Delta}=\lambda_{\mid\Delta}$

Утверждение 11.

- Мера Лебега инвариантна относительно сдвига. А именно, если $E \in \Sigma$, и $r \in \mathbb{R}^n$, то $\lambda(E+r)=\lambda(E)$
- Пусть μ какая-то счётно-аддитивная мера на \mathfrak{B} , инвариантная относительно сдвига. Тогда $\mu = c\lambda$ для некоторой константы c.

Измеримость.

Определение 20. Пусть у нас есть (X, Σ, μ) и (Y, Δ, ν) . $f: X \to Y$ измеримо, если $\forall A \in \Delta$, $f^{-1}(A) \in \Sigma$.

Примечание 8. Обозначим тройку (X, Σ, μ) как пространство-мера, причём обычно считают μ счётно аддитивной.

Определение 21. Пусть у нас есть (Y, Δ, μ) и множество $\mathfrak{B} \subset \mathcal{P}(Y)$. *Расширение*, наименьшая сигма-алгебра, которая это \mathfrak{B} содержит - $\overline{\mathfrak{B}}$. Если она совпадает с Δ , то \mathfrak{B} - образующее множество в Δ . Это множество можно и желательно выбирать как можно меньше.

Пример(ы) 3. Пусть $X = \mathbb{R}^n$, $\Sigma = B(X)$, что можно выбрать поменьше? Можно рассмотреть *диадические разбиения*, то есть, все такие кубики, вершины которых лежат в двоично-рациональных точках. То есть, набор кубиков, устроеный как

$$[\frac{p_1}{2^k},\frac{p_1+1}{2^k})\times [\frac{p_2}{2^k},\frac{p_2+1}{2^k})\times \ldots \times [\frac{p_n}{2^k},\frac{p_n+1}{2^k}).$$

Обозначим это разбиение как D. Ясно, что любое открытое множество G в \mathbb{R}^n представимо в виде объединения $G = \bigcup D_i$ кубиков из D. Как следствие, D порождает Борелевскую σ -алгебру. При этом, если есть два кубика, то они либо не пересекаются, либо один находится внутри другого. Таким образом, можно считать, что все D_i попарно дизъюнктны.

Утверждение 12. Пусть G_1 и G_2 - области в \mathbb{R}^n , и $f:G_1\to G_2$ - гомеоморфизм, и дополнительно $f\in Lip(G_1)$. Пусть также есть измеримое по Лебегу множество $B\subset \Sigma_\lambda,\, B\subset G_1,$ тогда f(B) тоже измеримо по Лебегу (Лебегово)

Определение 22. Функция

$$f:(X,\Sigma,\mu)\to\mathbb{R}$$
 (или \mathbb{C}),

называется измеримой по Лебегу, если она измерима в вышеупомянутом смысле.

Определение 23. Пусть $f: X \to \mathbb{R}$, тогда

$$E_a(f) = \{x \in X : f(x) < a\}$$

- множества Лебега.

Примечание 9. Множества $\{x \in X : f(x) > a\}, \{x \in X : f(x) \geq a\}$ и $\{x \in X : f(x) \leq a\}$ также иногда называются множествами Лебега.

Утверждение 13. Отображение $f: X \to \mathbb{R}$ измеримо тогда и только тогда, когда $E_a(f) \in X$ для любого a.

Утверждение 14. Если у нас есть измеримые функции f_1 и f_2 , то их сумма $f_1 + f_2$ и произведение f_1f_2 тоже измеримы. Если X - метрическое пространство, и f_2 непрерывна, то $\frac{f_1}{f_2}$ также измерима там, где знаменатель не обращается в ноль.

Утверждение 15. Пусть теперь $\{f_i\}_{i=1}^{\infty}$ - измеримые фукнции. Тогда их поточечный супремум $f(x) = \sup_i \{f_i(x)\}$ также измерим.

Примечание 10. Аналогично, измеримы фукнции $\inf_i \{f_i(x)\}$, $\limsup_{i \in I} f_i(x) = \inf_m \sup_{k>m} f_i(x)$ и $\lim_i f_i(x)$ (если существует).

Интеграл Лебега.

Пусть есть функция $f: X \to \mathbb{R}$.

- 1. Разобъём её на положительную и отрицательную части: $f = f_+ f_-$, где, напомним, $f_+(x) = \max(f(x), 0)$ и $f_-(x) = -\min(f(x), 0)$ (заметим, что f_+ и f_- наотрицательные функци).
- 2. Если мы определим интеграл Лебега I(f) для неотрицательных функций, то сможем определить и для произвольной функции $g = g_+ g_-$: $I(g) = I(g_+) I(g_-)$ при условии, что хотя бы один из интегралов $I(g_+)$ и $I(g_-)$ меньше бесконечности. Если же оба интеграла равны бесконечности, то определить интеграл Лебега от функции g мы не можем.
- 3. Таким образом, наша текущая цель определить интеграл Лебега от неотрицательной измеримой функции $f: X \to \mathbb{R}$. Для этого мы будем пользоваться определёнными ранее простыми функциями.

Пусть $f(x) = \sum_{k=1}^n a_k \chi_{E_k}(x)$ - простая функция, E_k - измеримые множества. Для неё мы уже определяли $I(f) = \sum_{k=1}^n a_k \mu(E_k)$.

Идея: Приблизить произвольную функцию простыми.

Теорема 7 (*Малая теорема Леви*). Даны неотрицательные простые функции f и $\{g_i\}_{i=1}^{\infty}$. Также $g_i(x) \leq g_{i+1}(x)$, и для почти любого x есть предел $\lim_{i \to \infty} g_i(x) = f(x)$. Тогда $\lim_{i \to \infty} I(g_i) = I(f)$.

Лемма 1. Дана неотрицательная измеримая функция f. Тогда существует последовательность неотрицательных простых функций $\{f_i\}$, почти всюду монотонно возрастающих (no i) κ f.

Определение 24. Дана неотрицательная измеримая функция $f: X \to \mathbb{R}$. Тогда величина $I(f) := \sup\{I(h), h - \text{простая функция, и } 0 \le h \le f\}$ называется *интегралом Лебега*.

Ceoйcmeo(a) (Интеграл Лебега, часть 1).

- Монотонность: Если $0 \le f_1 \le f_2$, то $I(f_1) \le I(f_2)$
- Аддитивность с простой функцией: f измеримая функция, и $0 \le \phi \le f$ простая функция. Тогда $I(f) = I(f-\phi) + I(\phi)$.
- *Неравенство Чебышёва*: Даны неотрицательная измеримая функция f, вещественное число a и соответствующее множество Лебега $E_a = \{x : f(x) \ge a\}$. Тогда $f \ge a\chi(E_a)$, и $I(f) \ge I(a\chi(E_a)) = a \cdot \mu\{x : f(x) \ge a\}$.

Теорема 8. f и $\{f_n\}$ - измеримые неотрицательные функции на пространстве c конечной мерой. Известно, что $\{f_n\}$ почти всюду монотонно возрастает κ f. Тогда $I(f_n)$ монотонно возрастает κ I(f).

Ceoйство(a) (Интеграл Лебега, часть 2).

- Интеграл Лебега от функции f можно определить не как супремум по всем простым функция, а как предел интеграла простых функций, стремящихся к f.
- Линейность: Если f_1, f_2 измеримые неотрицательные, то $I(f_1 + f_2) = I(f_1) + I(f_2)$.
- Если I(f) = 0, то f = 0 почти везде.

Определение 25. Множество E называется σ -конечным, если оно представляется в виде счётного объединения множеств конечной меры.

Утверждение 16. Пусть $f \ge 0$ - измерима, $I(f) < \infty$. Тогда её носитель $\sup(f) = \{x : f(x) \ne 0\}$ - σ -конечное множество.

Пусть задана измеримая функция $f \geq 0$. Для любого измеримого множества $E \in \Sigma$ можно рассмотреть функцию от множества E, определённую по правилу $I(f, E) = I(f \cdot \chi_E)$

Теорема 9. Дана последовательность вложенных друг в друга множеств $\{E_i\}$, $E_{i+1} \subseteq E_i$, $\mu\{E_1\} < \infty$, $I(f, E_1) < \infty$ $u E = \bigcap_i E_i$. Тогда

$$I(f, E) = \lim_{i \to \infty} I(f, E_i)$$

 Π римечание 11. Далее мы будем обозначать I(f) через $\int f d\mu$

Теорема 10 (*Лемма Фату*). Пусть $\{f_n\}$ - последовательность неотрицательных измеримых функций. Тогда

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \liminf_{n \to \infty} f_n d\mu$$

Определение 26. Окончательное определение интеграла Лебега. Дана измеримая функция $f: X \to \overline{\mathbb{R}}$. Определим функции $f_+ = \max\{f,0\}$ и $f_- = \max\{-f,0\}$. Тогда f_+ и f_- измеримы и неотрицательны. Мы уже умеем определять $\int f_+ d\mu$ и $\int f_- d\mu$. Если оба эти интеграла равны бесконечности, то определить $\int f d\mu$ мы не можем, в противном же случае положим $\int f d\mu = \int f_+ d\mu - \int f_- d\mu$

Определение 27. Функция f называется *суммируемой*, если оба интеграла $\int f_+ d\mu$ и $\int f_- d\mu$ конечны или, что равносильно, конечен и $\int |f| d\mu$

Ceoйство(a) (Интеграл Лебега, часть 3).

- Монотонность: $f_1 \leq f_2 \implies \int f_1 d\mu \leq \int f_2 d\mu$
- Линейность для суммируемых функций: Если f_1, f_2 суммируемые функции, то $\int (f_1 + f_2) d\mu = \int f_1 d\mu + \int f_2 d\mu$

Теорема 11. Теоремы о предельных переходах под знаком интеграла:

1. Монотонный предельный переход. Пусть (X, Σ, μ) - пространство с мерой, $\{f_n\}$ - последовательность функций, $f_n \nearrow f$ почти всюду и $\int_X f_1 d\mu < \infty$. Тогда существует

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$$

- 2. То же самое, только теперь $f_n \searrow f$.
- 3. **Лемма Фату**. Пусть (X, Σ, μ) пространство с мерой, $\{f_n\}$ последовательность неотрицательных измеримых функций, $u \int \inf_{k>1} f_k d\mu < \infty$. Тогда

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \liminf_{n \to \infty} f_n d\mu$$

4. Теорема о мажорируемой сходимости. Пусть (X, Σ, μ) - пространство с мерой, $\{f_n\}$ - последовательность измеримых функций, почти всюду сходящаяся κ f (но, возможно, не монотонно). Предположим, есть суммируемая функция $g \ge 0$ такая, что $|f_n| < g$ u |f| < g. Тогда

$$\int f_n d\mu \to \int f d\mu$$

 $npu \ n \to \infty$

Определение 28. Пусть μ , ν - две меры на одной и той же σ -алгебре пространства X. Мы говорим, что ν - абсолютно непрервна относительно μ , если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что из того, что $\mu(E) < \delta$ следует, что $\nu(E) < \varepsilon$. В частности, из того, что $\mu(E) = 0$, следует, что $\nu(E) = 0$.

Утверждение 17. Если μ - σ -конечная мера, то $I_f(E)$ абсолютно непрерывна относительно неё

Пусть $(\mathfrak{A}, \Sigma, \mu)$ и $(\mathfrak{B}, \Delta, \nu)$ - пространства с мерами. Можно построить полукольцо $R = \mathfrak{A} \times \mathfrak{B} = \{X \times Y | X \in \mathfrak{A}, Y \in \mathfrak{B}\}$ и определить на нём σ -аддитивную меру $\mu \otimes \nu(X \times Y) = \mu(X)\nu(Y)$. По теореме Лебега-Каратеодори в $\mathfrak{A} \times \mathfrak{B}$ есть σ -алгебра Θ множеств, измеримых относительно $\mu \otimes \nu$.

Пусть $(\mathfrak{A}, \Sigma, \mu)$, $(\mathfrak{B}, \Delta, \nu)$ - пространства с мерами, $(\mathfrak{A} \times \mathfrak{B}, \Theta, \mu \otimes \nu)$ - их произведение. Если у нас есть функция $F(x,y): \mathfrak{A} \times \mathfrak{B} \to \mathbb{R}$, то она, с одной стороны, может быть измеримой относительно $\mu \otimes \nu$, а, с другой стороны, при фиксированном $x \in \mathfrak{A}$ быть измеримой относительно ν . Хотелось бы понять, как все эти махинации связаны между собой.

Теорема 12 (*Теорема Тонелли*). Пусть $F: \mathfrak{A} \times \mathfrak{B} \to \mathbb{R}$ - неотрицательная измеримая функция, меры μ и ν σ -конечны. Тогда «всё можно»:

- 1. При почти всех $x \in \mathfrak{A}$ функция $\phi_x(y) = F(x,y) : \mathfrak{B} \to \mathbb{R}$ измерима
- 2. При почти всех $y \in \mathfrak{B}$ функция $\psi_{v}(x) = F(x,y) : \mathfrak{A} \to \mathbb{R}$ измерима
- 3. $\Phi(x) = \int_{\mathfrak{B}} \phi_x(y) d\nu$ измерима
- 4. $\Psi(y) = \int_{\mathfrak{N}} \psi_y(x) d\mu$ измерима
- 5. $\int_{\mathfrak{A}} \Phi(x) d\mu = \int_{\mathfrak{B}} \Psi(y) d\nu = \int_{\mathfrak{A} \times \mathfrak{B}} F(x,y) d\mu \otimes \nu$ Альтернативная запись:

$$\int_{\mathfrak{A}} \left(\int_{\mathfrak{B}} F(x,y) d\nu \right) d\mu = \int_{\mathfrak{B}} \left(\int_{\mathfrak{A}} F(x,y) d\mu \right) d\nu = \int_{\mathfrak{A} \times \mathfrak{B}} F(x,y) d\mu \otimes \nu$$

Теорема 13 (*Теорема Фубини*). F(x,y) - суммируемая (но уже, возможно, не положительная) относительно $\mu \otimes \nu$ функция. Тогда «всё можно».

Пространства суммируемых функций.

Пусть $(\mathfrak{A}, \Sigma, \mu)$ - пространство с мерой. Как обычно, на всякий случай считаем меру σ -конечной.

Определение 29. $L^1(\mathfrak{A},\Sigma,\mu)=\{f:\int_{\mathfrak{A}}|f|d\mu<\infty\}$. Хотелось бы определить норму $||f||_{L^1}:=\int_{\mathfrak{A}}|f|d\mu$, но вот незадача: норма может быть равна нулю, когда функция отлична от нуля на непустом множестве нулевой меры. Поэтому мы будем подразумевать, что наши функции определены с точностью до множества меры нуль, а, если быть точным, введём отношение эквивалентности $f\sim g\iff f-g=0$ почти везде, и будем подразумевать не сами функции, а их классы.

Утверждение 18. $L^{1}(0,1)$ - нормированное пространство:

- 1. $||f|| \ge 0, f = 0 \iff ||f|| = 0$
- $2. ||\alpha f|| = |\alpha| \cdot ||f||$
- 3. $||f_1 + f_2|| \le ||f_1|| + ||f_2||$

Утверждение 19. $L^1(0,1)$ - полное пространство: если $\{f_n\}\in L^1$ - последовательность Коши, то существует $f\in L^1$ такая, что $||f_n-f||\to 0$ при $n\to\infty$

Теорема 14 (*Теорема Мюнца*). Рассмотрим последовательность функций $\{t^{\lambda_n}\}$, где $0 = \lambda_0 < \lambda_1 < \lambda_2 < \dots$ Следующие утверждения эквивалентны:

- 1. Любую функцию $f \in C[0,1]$ можно равномерно приблизить «обобщёнными полиномами» $\sum_{k=0}^N \alpha_k t^{\lambda_k}$
- 2. Ряд $\sum_{k=1}^{\infty} \frac{1}{\lambda_k} = \infty$

Лемма 2 (Лемма Урысона). Пусть X - Хаусдорфово пространство, $K \subset G \subset X$, K - компакт, G - открытое. Тогда существует непрерывное отображение $f: X \to [0,1]$ такое, что $f_{\upharpoonright K} = 1$ и $f_{\upharpoonright X \setminus G} = 0$.

Определение 30. Пусть $f, g \in L^1(\mathbb{R})$. Их свёрткой называется функция $h(t) = (f*g)(t) = \int_{\mathbb{R}} f(t-\tau)g(\tau)d\tau$. Очень похоже на умножение полиномов.

Cвойство(a) (Свёртки).

- 1. Коммутативность: f * q = q * f
- 2. Дистрибутивность: $f * (g_1 + g_2) = f * g_1 + f * g_2$
- 3. $||f * g|| \le ||f|| \cdot ||g||$

Разное из неуспетого.

Определение 31. $f_n \stackrel{\mu}{\to} f$ (*cxodumcs no мере*), если (и только если) $\forall \varepsilon > 0$

$$\mu\{x: |f(x)-f_n(x)|>\varepsilon\} \xrightarrow[n\to\infty]{} 0.$$

Утверждение 20. Если f_n сходятся к f почти всюду, то они сходятся к ней также и по мере.

Утверждение 21. Если $f_n \xrightarrow{\mu} f$, то существует подпоследовательность f_{n_k} таких, что они сходятся к f почти всюду.

Теорема 15 (*Tеорема Егорова*). $\mu(X) < \infty$, $f_n \to f$ почти всюду. Тогда $\forall \delta > 0 \; \exists E \subset X$, $\mu(X \setminus E) < \delta$ и f_k сходятся κ f на E.

Теорема 16 (*Теорема Лузина*). Слудующие утверждения эквивалентны:

- f измерима на [0,1];
- $\forall \delta > 0 \ \exists E \subset [0,1] \ u \ g \in C[0,1] : \mu(E) > 1 \delta \ u \ f|_E = g|_E.$

Утверждение 22. Любую функцию из $L^1(\mathbb{R})$ можно приблизить по L^1 -норме непрерывными функциями с компактными носителем.

Теорема 17 (*Теорема Радона-Никодима*). Пусть (X, \mathfrak{A}, μ) - пространство с мерой, μ - σ -конечна. Если мера $\nu : \mathfrak{A} \to \mathbb{R}$ абсолютно непрерывна относительно μ ($\mu(A) = 0 \Rightarrow \nu(A) = 0$), то $\exists f : X \to \mathbb{R}$: $\nu(A) = \int_A f d\mu$.

Теорема 18 (*Неравенство Гёльдера*). $f\in L^p,\ g\in L^q,\ \frac{1}{p}+\frac{1}{q}=1\ (p,q\geq 1),\ mor\partial a\ fg\in L^1\ u$

$$||fg||_{L^1} \le ||f||_{L^p} \cdot ||g||_{L^q}$$

Следствие 1.

$$||f||_{L^p} = \sup_{g \in L^q, ||g||_{L^q} = 1} \int fg d\mu.$$

Теорема 19 (*Неравенство Йенсена*). μ - вероятностная мера, Ψ - выпукла и суммируема, f суммируема. Тогда

$$\Psi(\int f d\mu) \le \int \Psi(f) d\mu.$$

Теорема 20 (*Неравенство Минковского для интегралов*). $(X,\mathfrak{A},\mu), (Y,\mathfrak{B},\nu)$ - пространства с σ -конечными мерами. f - $\mu \otimes \nu$ - измеримая, p>1. Тогда

$$||\int_{Y} f(x,y)f\nu||_{L^{p}(\mu)} \le \int_{Y} ||f(x,y)||_{L^{p}(\mu)} d\nu$$

Cледствие 2. При 1 верно, что

$$\left| \left| ||f(x,y)||_{L^{p}(\mu)} \right| \right|_{L^{q}(\nu)} \le \left| \left| ||f(x,y)||_{L^{q}(\nu)} \right| \right|_{L^{p}(\mu)}.$$

Теорема 21 (Формула Стокса). $\Omega \subset \mathbb{R}^2$, $\omega \in W^1$ - 1-форма (f(x,y)dx + g(x,y)dy) - всё кусочно гладкое. Тогда

$$\int \int_{\Omega} d\omega = \int_{\partial \Omega} \omega.$$

(при обходе по часовой стрелке)

надо будет докидать третий семестр...

Краткий четвёртый семестр.

Введение

Определение 32. f - аналитическая в $G \subset \mathbb{C}$ - открытом, если для любого $z_0 \in G$, существует $B(z_0,r), r>0$, такой, что шар лежит в G, f(z) представляется в виде степенного ряда $\sum_{n>0} a_n (z-z_0)^n$. При этом ряд сходится абсолютно и равномерно на $B(z_0,r)$.

Определение 33. $\varphi =$ голоморфна в $G \subset \mathbb{C}$, открытом, если для любого $z_0 \in G$,

$$\exists \lim_{z \to z_0} \frac{\varphi(z) - \varphi(z_0)}{z - z_0} = \varphi'(z_0).$$

Теорема 22. Аналитичность равносильна голомор ϕ ности.

Утверждение 23 (Отступление про голоморфность.). Каждую функцию $\varphi: G \to \mathbb{C}$ можно рассматривать как функцию $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ согласно следующему правилу:

$$\varphi(x+iy) = u(x+iy) + iv(x+iy),$$

где $u,v:G\to\mathbb{R}.$ И для гладкости в комплаексном смысле, обе эти функции должны быть гладкими и удовлетворять следующим соотношениям:

$$\lim_{z \to z_0} \frac{\varphi(z) - \varphi(z_0)}{z - z_0} = \lim_{x \to 0} \frac{\varphi(z_0 + x) - \varphi(z_0)}{x} = u'_x + iv'_x;$$

$$= \lim_{y \to 0} \frac{\varphi(z_0 + iy) - \varphi(z_0)}{iy} = v'_y - iu'_y.$$

Определение 34. Уравнения Коши-Римана

$$u'_x = v'_y;$$

$$v'_x = -u'_y.$$

Примечание 12. Голоморфные преобразования можно отождествить с поворотными гомотетиями, что можно заметить из соответствующих им матриц.

Определение 35. Отображение, которое в малом переводит окружность в окружность, называется *конформным*.

Теорема 23 (Лиувилля). В \mathbb{R}^n (n > 2) любое конформное отображение получается из стереографических проекций.

Дифференциальные формы и пути.

Определение 36. Дифференциальная форма - сумма вида

$$F = \sum_{k=1}^{n} f_k(x) dx_k,$$

где f_k - непрерывные функции.

Определение 37. *Путь* - отображение из отрезка в \mathbb{R}^n .

$$\gamma:[a,b]\to\mathbb{R}^n$$
.

Утверждение 24.

$$\int_{\gamma} F := \int_{a}^{b} (f(\gamma(t)), \gamma'(t))_{\mathbb{R}^{n}} dt = \int_{a}^{b} \sum_{k=1}^{n} f_{k}(\gamma(t)) \gamma'_{k}(t) dt.$$

Примечание 13. γ - кусочно-гладкая.

Cвойство(a).

- $\int_{\gamma} F$ не зависит от параметризации;
- $\bullet \int_{\gamma^{-1}} F = -\int_{\gamma} F;$
- линейность;
- Пусть $\gamma_1:[a,b]\to\mathbb{R}^n,\ \gamma_2:[b,c]\to\mathbb{R}^n,$ причём $\gamma_1(b)=\gamma_2(b).$ Тогда

$$\int_{\gamma_1 \oplus \gamma_2} F = \int_{\gamma_1} F + \int_{\gamma_2} F.$$

Утверждение 25 (Основная оценка).

$$\left| \int_{\gamma} F \right| \le \sup_{x \in \gamma} \left(\sum_{k=1}^{n} |f_k(x)|^2 \right)^{\frac{1}{2}} \cdot l(\gamma).$$

Определение 38. Дифференциальная форма F называется *точной*, если существует H такая, что

$$F = dH = \sum_{k=1}^{n} \frac{\partial H}{\partial x_k} dx_k.$$

 $Утверждение\ 26.\ Пусть\ F$ - точная дифференциальная форма, тогда

$$\int_{\gamma} F = H(\gamma(b)) - H(\gamma(a)),$$

где H - первообразная.

Теорема 24. Пусть F - дифференциальная форма некоторой области G в \mathbb{R}^n с непрерывными коэффициентами. Тогда следующие утверждения равносильны:

- $\int_{\gamma} F$ зависит только от $\gamma(a)$ и $\gamma(b)$;
- $\int_{\gamma} F = 0$ для любой замкнутой γ ;
- у F есть первообразная.

Предметный указатель

γ -измеримое множество, 8
σ -аддитивная функция, 7
σ -алгебру, 7
σ -конечная мера, 8
σ -конечное множество, 11
Абсолютно непрерывная мера, 12
Алгебра множеств, 6
Борелевская σ -алгебра, 8
Внешняя мера, 7
Диадическое разбиение, 9
Дифференциальная форма, 15
Замена
полярная, 4
экспоненциальная, 4
Измеримая по Лебегу функция, 9
Измеримость, 9
Интеграл
Френеля, 3
элементарный, 7
Интеграл Лебега, 10
Кольцо множеств, 6
Лемма
Урысона, <mark>13</mark>
Фату, 11
Малая теорема Леви, 10
Mepa, 6
Лебега, 8
Множества, измеримые по Лебегу, 8
Неравенство
Гёльдера, <mark>14</mark>
Йенсена, <mark>14</mark>
Минковского, <mark>14</mark>
Чебышёва, <mark>10</mark>
Отображение
конформное, <u>15</u>
Полукольцо множеств, 6
Предмера, 8
Простая функция, 6
Пространство-мера, 9
Путь, 15
Регулярная мера, 7
Свёртка функций, 13
Суммируемая функция, 11
Счётная полуаддитивность, 8
Счётно-аддитивная функция, 7
Теорема

Егорова, 14 Лебега-Каратеодори, 8 Лузина, 14 Мюнца, 13 Радона-Никодима, 14 Тонелли, 12 Фубини, 12 о мажорируемой сходимости, 12 о структуре измеримых множеств, 8 Тождество Фубини, 3 Уравнения Коши-Римана, 15 Форма точная, 16 Формула Стокса, 14 Функция аналитическая, 15 голоморфная, 15 Функция-индикатор, 6 Характеристическая функция, 6