Package 'ARPobservation'

August 29, 2016

Title Tools for Simulating Direct Behavioral Observation Recording Procedures Based on Alternating Renewal Processes

Description Tools for simulating data generated by direct observation recording. Behavior streams are simulated based on an alternating renewal process, given specified distributions of event durations and interim times. Different procedures for recording data can then be applied to the simulated behavior streams. Functions are provided for the following recording methods: continuous duration recording, event counting, momentary time sampling, partial interval recording, and whole interval recording.

Version 1.1

Maintainer James E. Pustejovsky <jepusto@gmail.com>

Author James E. Pustejovsky, with contributions from Daniel M. Swan

License GPL-3

VignetteBuilder knitr

Suggests plyr, reshape2, ggplot2, knitr, testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-11 07:38:57

R topics documented:

ARPobservation	2
augmented_recording	3
continuous_duration_recording	4
Dunlap	4
eq_dist	5
event_counting	6
F_const	
$F_{exp} \ \dots $	7
F_gam	7
F_gam_mix	8
F unif	9

2 ARPobservation

	F_weib	9
	incidence_bounds	10
	interim_bounds	12
	interval_recording	13
	logRespRatio	
	Moes	
	momentary_time_recording	16
	PIR_loglik	
	PIR_MOM	17
	prevalence_bounds	19
	reported_observations	20
	r_behavior_stream	21
	r_continuous_recording	22
	r_event_counting	23
	r_MTS	25
	r_PIR	26
	r_WIR	27
Index		29
muex		29
ARPob	servation ARPobservation	

Description

Tools for simulating different methods of observing alternating renewal processes

Details

ARPobservation provides a set of tools for simulating data based on direct observation of behavior. It works by first simulating a behavior stream based on an alternating renewal process, using specified distributions of event durations and interim times. Different procedures for recording data can then be applied to the simulated behavior stream.

The main function for simulating a behavior stream is r_behavior_stream. Currently, the event duration and interim time distributions must come from the class eq_dist. (See the documentation for this class for distributions that are currently implemented.)

Several different observation recording procedures can then be applied as filters to a simulated behavior stream. The following procedures are currently implemented:

- continuous_duration_recording
- momentary_time_recording
- event_counting
- interval_recording

To apply multiple procedures to the same behavior stream, use reported_observations. Data can also be simulated using the convenience functions r_PIR, r_WIR, r_MTS, r_continuous_recording, and r_event_counting. These functions wrap the behavior-stream generation step and the observation recording step into a single function. They are more memory efficient, but slightly less computationally efficient, than executing each step in turn.

augmented_recording 3

Author(s)

James E. Pustejovsky <jepusto@gmail.com>

augmented_recording

Applies augmented interval recording to a behavior stream

Description

Divides the observation session into intervals. Each interval is scored using partial interval recording, whole interval recording, and momentary time sampling (at the beginning of the following interval). The sum of the three scores is then recorded.

Usage

```
augmented_recording(BS, interval_length, rest_length = 0)
```

Arguments

```
BS object of class behavior_stream

interval_length
time length of each interval.

rest_length portion of each interval to exclude from observation. Default is zero. See details.
```

Details

Each behavior stream is divided into intervals of length interval_length. The last rest_length of each interval is excluded from observation. For example, for a stream length of 100, interval_length = 20, and rest_length = 5, the first interval runs from [0,15), the second interval runs from [20,35), etc.

Value

A matrix with rows equal to the number of intervals per session and columns equal to the number of behavior streams in BS.

Examples

```
BS <- r_behavior_stream(n = 5, mu = 3, lambda = 10,
F_event = F_exp(), F_interim = F_exp(), stream_length = 100)
augmented_recording(BS, interval_length = 20)
```

Dunlap Dunlap

```
continuous_duration_recording
```

Applies continuous duration recording to a behavior stream

Description

Calculates the proportion of session time during which behavior occurs.

Usage

```
continuous_duration_recording(BS)
```

Arguments

BS

object of class behavior_stream

Value

Vector of proportions.

Examples

Dunlap

Dunlap et al.(1994) data

Description

Single case design data measured with partial interval recording from a study of the effect of providing Choice between academic activities on the disruptive behavior of three elementary school students with emotional and behavioral disorders. For this data "No Choice" is the baseline phase. Data were extracted from the figures in the publication.

Usage

Dunlap

eq_dist 5

Format

A data frame with 58 observations on 7 variables

- ,1 Case The participant for whom the observation took place
- ,2 Phase The level of the observation ("Choice" vs. "No Choice")
- ,3 Session The observation session # for each participant
- ,4 outcome The summary PIR measurement for the observation session
- ,5 active_length The length of the active observation interval, in seconds
- ,6 rest_length The length of the recording interval, in seconds
- ,7 intervals The total number of intervals in the observation session

References

Dunlap, G., DePerczel, M., Clarke, S., Wilson, D., Wright, S., White, R., & Gomez, A. (1994). Choice making to promote adaptive behavior for students with emotional and behavioral challenges. Journal of Applied Behavior Analysis, 27 (3), 505-518.

eq_dist

Constructor for class eq_dist

Description

The eq_dist class consists of a pair of component functions for generating random variates from a specified distribution and the corresponding equilibrium distribution.

Usage

```
eq_dist(r_gen, r_eq)
```

Arguments

r_gen function for generating random deviates.

r_eq function for generating random deviates from the corresponding equilibrium distribution.

Details

Both functions must take arguments n and mean. Currently, the following distributions are implemented:

- F_exp Exponential
- F_gam Gamma
- F_gam_mix Mixture of two gammas
- F_weib Weibull
- F_unif Uniform
- F_const Constant

F_const

Value

Object of class eq_dist with components r_gen and r_eq.

event_counting

Applies event counting to a behavior stream

Description

Calculates the number of behaviors that begin during the observation session.

Usage

```
event_counting(BS)
```

Arguments

BS

object of class behavior_stream

Value

Vector of non-negative integers.

Examples

```
BS <- r_behavior_stream(n = 5, mu = 3, lambda = 10,
F_event = F_exp(), F_interim = F_exp(), stream_length = 100)
event_counting(BS)
```

F_const

Constant (degenerate) distribution and related equilibrium distribution

Description

Generation from a degenerate distribution and random number generation from the related equilibrium distribution, for use with $r_behavior_stream$.

Usage

```
F_const()
```

Value

Object of class eq_dist with components r_gen and r_eq.

The function $r_{gen}(n, mean)$ simply returns a vector of length n with all values equal to mean.

The function $r_{eq}(n, mean)$ generates random deviates from a uniform distribution on the interval (0, mean).

 F_{-} exp

Examples

```
hist(F_const()$r_gen(1000, 2))
hist(F_const()$r_eq(1000, 2))
```

F_exp

Exponential distribution and related equilibrium distribution

Description

Random number generation from exponential distributions, for use with r_behavior_stream.

Usage

```
F_exp()
```

Value

Object of class eq_dist with components r_gen and r_eq.

The function $r_{gen}(n, mean)$ generates random deviates from an exponential distribution with specified mean.

The function $r_{eq}(n, mean)$ generates random deviates from an exponential distribution with specified mean.

Examples

```
hist(F_exp()$r_gen(1000, 3))
hist(F_exp()$r_eq(1000, 3))
```

F_gam

Gamma distribution and related equilibrium distribution

Description

Random number generation from a gamma distribution and the related equilibrium distribution, for use with r_behavior_stream.

Usage

```
F_gam(shape)
```

Arguments

shape

shape parameter

Value

Object of class eq_dist with components r_gen and r_eq.

The function $r_gen(n, mean)$ generates random deviates from a gamma distribution with specified mean and shape parameters.

The function $r_{eq}(n, mean)$ generates random deviates from the equilibrium distribuion corresponding to the gamma distribution with specified mean and shape parameters.

Examples

```
hist(F_gam(2)$r_gen(1000, 3))
hist(F_gam(2)$r_eq(1000, 3))
```

F_gam_mix

Mixture of two gamma distributions and related equilibrium distribution

Description

Random number generation from a mixture of two gamma distributions and the related equilibrium distribution, for use with r_behavior_stream.

Usage

```
F_gam_mix(shape1, shape2, scale_ratio, mix)
```

Arguments

shape 1 shape parameter for first mixture component, k_1 shape 2 shape parameter for second mixture component, k_2

scale_ratio ratio of first scale component to second scale component, θ_1/θ_2

mix mixing proportion of first component, p

Value

Object of class eq_dist with components r_gen and r_eq.

The function r_gen(n, mean) generates random deviates from a mixture of two gamma distributions with specified mean, shape1, shape2, scale_ratio, and mix. The cumulative distribution function is given by

$$F(x) = p\Gamma(x; k_1, \theta_1) + (1 - p)\Gamma(x; k_2, \theta_2),$$

where $\Gamma(x; k, \theta)$ is the cumulative distribution function of a Gamma random variable with shape k and scale θ , and the scale parameters are determined by the specified mean and scale_ratio.

The function $r_{eq}(n, mean)$ generates random deviates from the equilibrium distribuion corresponding to the mixture of gamma distributions.

F_unif

Examples

```
hist(F_{gam_mix}(2, 2, 1 / 12, 3 / 5)$r_gen(1000, 20))
hist(F_{gam_mix}(2, 2, 1 / 12, 3 / 5)$r_eq(1000, 20))
```

F_unif

Uniform distribution and related equilibrium distribution

Description

Random number generation from a uniform distribution and the related equilibrium distribution, for use with r_behavior_stream.

Usage

```
F_unif()
```

Value

Object of class eq_dist with components r_gen and r_eq.

The function r_gen(n, mean) generates random deviates from a uniform distribution with specified mean μ on the interval $(0, 2\mu)$. The cumulative distribution function is given by $F(x) = x/2\mu$.

The function r_eq(n, mean) generates random deviates from the equilibrium distribution corresponding to a uniform distribution on the interval $(0, 2\mu)$. The cumulative distribution function is given by

$$F(x) = x(4\mu - x)/(4\mu^2).$$

Examples

```
hist(F_unif()$r_gen(1000, 2))
hist(F_unif()$r_eq(1000, 2))
```

F_weib

Weibull distribution and related equilibrium distribution

Description

Random number generation from a Weibull distribution and the related equilibrium distribution, for use with r_behavior_stream.

Usage

```
F_weib(shape)
```

Arguments

shape

shape parameter

10 incidence_bounds

Value

Object of class eq_dist with components r_gen and r_eq.

The function $r_{gen}(n, mean)$ generates random deviates from a Weibull distribution with specified mean and shape parameters.

The function $r_{eq}(n, mean)$ generates random deviates from the equilibrium distribuion corresponding to the Weibull distribution with specified mean and shape parameters.

Examples

```
hist(F_gam(2)$r_gen(1000, 3))
hist(F_gam(2)$r_eq(1000, 3))
```

incidence_bounds

Incidence bounds and confidence interval

Description

Calculates a bound for the log of the incidence ratio of two samples (referred to as baseline and treatment) based on partial interval recording (PIR) data, assuming that the behavior follows an Alternating Renewal Process.

Usage

```
incidence_bounds(PIR, phase, base_level, mu_U, p, active_length,
  intervals = NA, conf_level = 0.95, exponentiate = FALSE)
```

ArgumentsPIR

phase	factor or vector indicating levels of the PIR measurements.
base_level	a character string or value indicating the name of the baseline
mu_U	the upper limit on the mean event duration

p upper limit on the probability that the interim time between behavioral events is

level.

less than the active interval

vector of PIR measurements

intervals the number of intervals in the sample of observations. Default is NA

conf_level Coverage rate of the confidence interval. Default is .95.

exponentiate Logical value indicating if the log of the bounds and the confidence interval

should be exponentiated. Default is FALSE.

incidence_bounds 11

Details

The incidence ratio estimate is based on the assumptions that 1) the underlying behavior stream follows an Alternating Renewal Process, 2) the average event duration is less than mu_U, and 3) the probability of observing an interim time less than the active interval length is less than p.

The PIR vector can be in any order corresponding to the factor or vector phase. The levels of phase can be any two levels, such as "A" and "B", "base" and "treat", or "0" and "1". If there are more than two levels in phase this function will not work. A value for base_level must be specified - if it is a chaaracter string it is case sensitive.

For all of the following variables, the function assumes that if a vector of values is provided they are constant across all observations and simply uses the first value in that vector.

mu_U is the upper limit on the mean event durations. This is a single value assumed to hold for both samples of behavior

active_length This is the total active observation length. If the intervals are 15 seconds long but 5 seconds of each interval is reserved for recording purposes, active_length= 10. Times are often in seconds, but can be in any time unit.

intervals is the number of intervals in the observations. This is a single value and is assumed to be constant across both samples and all observations. This value is only relevant if the mean of one of the samples is at the floor or ceiling of 0 or 1. In that case it will be used to truncate the sample mean. If the sample mean is at the floor or ceiling and no value for intervals is provided, the function will stop.

Value

A list containing two named vectors and a single named number. The first entry, estimate_bounds, contains the lower and upper bound for the estimate of the incidence ratio. The second entry, estimate_SE, contains the standard error of the estimate. The third entry, estimate_CI, contains the lower and upper bounds for the confidence interval of the incidence ratio.

Author(s)

Daniel Swan dswan@utexas.edu

Examples

12 interim_bounds

interim_bounds	Interim bounds and confidence interval

Description

Calculates a bound for the log of the ratio of interim time of two samples (referred to as baseline and treatment) based on partial interval recording (PIR) data, assuming that the average event durations are equal across samples and that interim times are exponentially distributed.

Usage

```
interim_bounds(PIR, phase, base_level, conf_level = 0.95, intervals = NA,
  exponentiate = FALSE)
```

Arguments

PIR vector of PIR measurements

phase factor or vector indicating levels of the PIR measurements.

base_level a character string or value indicating the name of the baseline level.

conf_level Desired coverage rate of the calculated confidence interval. Default is .95.

intervals the number of intervals in the sample of observations. Default is NA

exponentiate Logical value indicating if the log of the bounds and the confidence interval

should be exponentiated. Default is FALSE.

Details

The interim ratio estimate is based on the assumptions that 1) the underlying behavior stream follows an Alternating Renewal Process, 2) the average event durations in each sample are equal, and 3) interim times follow exponential distributions.

The PIR vector can be in any order corresponding to the factor or vector phase. The levels of phase can be any two levels, such as "A" and "B", "base" and "treat", or "0" and "1". If there are more than two levels in phase this function will not work. A value for base_level must be specified; if it is a chaaracter string it is case sensitive.

intervals is the number of intervals in the observations. This is a single value and is assumed to be constant across both samples and all observations. If intervals is sent as a vector instead of a single value, the first value in the vector will be used. This value is only relevant if the mean of one of the samples is at the floor or ceiling of 0 or 1. In that case it will be used to truncate the sample mean. If the sample mean is at the floor or ceiling and no value for intervals is provided, the function will stop.

Value

A list with three named entries The first entry, estimate_bounds, contains the lower and upper bound for the estimate of the prevalence ratio. The second entry, estimate_SE, contains the standard errors for the upper and lower bounds. The third entry, estimate_CI, contains the lower and upper bounds for the confidence interval of the prevalence ratio.

interval_recording 13

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
# Estimate bounds on the interim time ratio for Carl from the Moes dataset
data(Moes)
with(subset(Moes, Case == "Carl"),
interim_bounds(PIR = outcome, phase = Phase, base_level = "No Choice"))
```

interval_recording

Applies interval recording to a behavior stream

Description

Divides the observation session into a specified number of intervals. For partial interval recording, each interval is scored according to whether the behavior is present at any point during the interval. For whole interval recording, each interval is scored according to whether the behavior is present for the duration.

Usage

```
interval_recording(BS, interval_length, rest_length = 0, partial = TRUE,
  summarize = TRUE)
```

Arguments

BS object of class behavior_stream

interval_length

time length of each interval.

rest_length portion of each interval to exclude from observation. Default is zero. See details. logical value indicating whether to use partial interval recording (TRUE) or whole

interval recording (FALSE).

summarize logical value indicating whether vector of moments should be summarized by

taking their mean.

Details

Each behavior stream is divided into intervals of length interval_length. The last rest_length of each interval is excluded from observation. For example, for a stream length of 100, interval_length = 20, and rest_length = 5, the first interval runs from [0,15), the second interval runs from [20,35), etc.

Value

If summarize = FALSE, a matrix with rows equal to the number of intervals per session and columns equal to the number of behavior streams in BS. If summarize = TRUE, a vector of proportions of length equal to the number of behavior streams in BS.

14 logRespRatio

Examples

logRespRatio

Calculate log-response ratio, variance, and confidence interval

Description

Estimates the log-response ratio (with or without bias correction), the variance of the log-response ratio, and the confidence interval for a given confidence level.

Usage

```
logRespRatio(observations, phase, base_level, conf_level = 0.95,
bias_correct = TRUE, exponentiate = FALSE)
```

Arguments

observations Vector of observations

phase Factor or vector indicating levels of the PIR measurements.

base_level a character string or value indicating the name of the baseline level.

conf_level Desired coverage rate of the calculated confidence interval. Default is .95.

Logical value indicating if the bias-corrected log-response ratio should be used.

Default is TRUE

exponentiate Logical value indicating if the log-response ratio should be exponentiated.

Details

The observations vector can be in any order corresponding to the factor or vector phase. The levels of phase can be any two levels, such as "A" and "B", "base" and "treat", or "0" and "1". If there are more than two levels in phase this function will not work. A value for base_level must be specified - if it is a chaaracter string it is case sensitive. If exponentiate = TRUE, the log-ratio and the confidence interval will be exponentiated, but the variance will be excluded from the output.

Value

If exponentiate = FALSE, a list with three named entries. The first entry, 1RR, is the estimated log-response ratio. The second entry, V_1RR, is the estimated variance of the log-response ratio. The third entry, CI, is a vector containing the endpoints of a confidence interval of conf_level coverage rate.

If exponentiate = TRUE, a list with two named entries. The first entry, RR, is the estimated response ratio. The second entry, CI, is a vector containing the endpoints of a confidence interval of conf_level coverage rate.

Moes 15

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
# Estimate the log response ratio and its variance for Carl from Moes dataset
data(Moes)
with(subset(Moes, Case == "Carl"),
logRespRatio(observations = outcome, phase = Phase, base_level = "No Choice"))
```

Moes

Moes(1998) data

Description

Single-case design data from a study that using partial interval recording (PIR) examining the impact of choice-making in a homework tutoring context on disruptive behavior. In this data "No Choice" is the baseline phase. Data were extracted from the figure in the publication.

Usage

Moes

Format

A data frame with 80 observations on 7 variables

- ,1 Case The participant for whom the observation took place
- ,2 Phase The level of the observation ("Choice" vs. "No Choice")
- ,3 Session The observation session # for each participant
- ,4 outcome The summary PIR measurement for the observation session
- ,5 active_length The length of the active observation interval, in seconds
- ,6 rest_length The length of the recording interval, in seconds
- ,7 intervals The total number of intervals in the observation session

References

Moes, D. R. (1998). Integrating choice-making opportunities within teacher-assigned academic tasks to facilitate the performance of children with autism. Research and Practice for Persons with Severe Disabilities, 23 (4), 319-328.

PIR_loglik

```
momentary_time_recording
```

Applies momentary time recording to a behavior stream

Description

Evaluates the presence or absence of the behavior at fixed moments in time.

Usage

```
momentary_time_recording(BS, interval_length, summarize = TRUE)
```

Arguments

BS object of class behavior_stream

interval_length

length of interval between moments.

summarize logical value indicating whe

logical value indicating whether vector of moments should be summarized by taking their mean.

Value

If summarize = FALSE, a matrix with length n_intervals + 1 and width equal to the number of behavior streams in BS. If summarize = TRUE, a vector of proportions of length equal to the number of behavior streams in BS. Note that if summarize = TRUE, the initial state of the behavior stream is excluded when calculating the mean, so the proportion is based on n_intervals values.

Examples

PIR_loglik

Calculate log-likelihood

Description

Calculates the log-likelihood of within-session PIR data

Usage

```
PIR_loglik(phi, zeta, U, c, d)
```

PIR_MOM 17

Arguments

phi	value for prevalence
zeta	value for incidence
U	a vector containing interval-level PIR data
С	the length of the active interval
d	the length of the recording interval

Details

phi must be a value between 0 and 1, inclusive of 0 and 1. \ codezeta must be a value greater than 0.

The vector U should only contain values of 1 or 0.

c must be some positive value in whatever time units the observation took place in (typically seconds). d must be some non-negative value - a d of zero represents a PIR observation where no time was set aside for recording.

Value

The value of the log-likelihood

Author(s)

Daniel Swan dswan@utexas.edu

DTD 11011	
PIR_MOM	Moment estimator for prevalence and incidence, with bootstrap confi-
	dence intervals

Description

Estimates prevalance and incidence for two samples, along with the ratios of each parameter, assuming that the behavior follows an '. Also provides boostrap confidence intervals.

Usage

```
PIR_MOM(PIR, phase, base_level, intervals, interval_length, rest_length = 0,
Bootstraps = 2000, conf_level = 0.95, exponentiate = FALSE,
seed = NULL)
```

18 PIR_MOM

Arguments

PIR vector of PIR measurements

phase factor or vector indicating levels of the PIR measurements.

base_level a character string or value indicating the name of the baseline level.

intervals the number of intervals in the sample of observations

interval_length

the total length of each interval

rest_length length of the portion of the interval devoted to recording. Default is 0

Bootstraps desired number of bootstrap replicates. Default is 2000

conf_level Desired coverage rate of the calculated confidence interval. Default is .95.

exponentiate a logical indicating whether the row corresponding to the ratio of treatment to

baseline should be exponentiated, with the default as FALSE.

seed seed value set in order to make bootstrap results reproducible. Default is null

Details

The moment estimators are based on the assumption that the underlying behavior stream follows an Alternating Poisson Process, in which both the event durations and interim times are exponentially distributed.

Value

A dataframe with six columns and three rows corresponding to baseline, treatment, and the log ratio or ratio (depending upon the value of exponentiate) of treatment to baseline

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
# Estimate prevalence and incidence ratios for Carl from the Moes dataset
data(Moes)
with(subset(Moes, Case == "Carl"),
PIR_MOM(PIR = outcome, phase = Phase, intervals = intervals,
interval_length = (active_length + rest_length), rest_length = rest_length,
base_level = "No Choice", seed = 149568373))
```

prevalence_bounds 19

prevalence_bounds	Prevalence bounds and confidence interval
-------------------	---

Description

Calculates a bound for the log of the prevalence ratio of two samples (referred to as baseline and treatment) based on partial interval recording (PIR) data, assuming that the behavior follows an Alternating Renewal Process.

Usage

```
prevalence_bounds(PIR, phase, base_level, mu_L, active_length, intervals = NA,
  conf_level = 0.95, exponentiate = FALSE)
```

Arguments

PIR vector of PIR measurements

phase factor or vector indicating levels of the PIR measurements.

base_level a character string or value indicating the name of the baseline level.

mu_L the lower limit on the mean event duration active_length length of the active observation interval

intervals the number of intervals in the sample of observations. Default is NA.

conf_level Coverage rate of the confidence interval. Default is .95.

exponentiate Logical value indicating if the log of the bounds and the confidence interval

should be exponentiated. Default is FALSE.

Details

The prevalence ratio estimate is based on the assumptions that 1) the underlying behavior stream follows an Alternating Renewal Process and 2) the average event duration is greater than mu_L.

The PIR vector can be in any order corresponding to the factor or vector phase. The levels of phase can be any two levels, such as "A" and "B", "base" and "treat", or "0" and "1". If there are more than two levels in phase this function will not work. A value for base_level must be specified - if it is a chaaracter string it is case sensitive.

For all of the following variables, the function assumes that if a vector of values is provided they are constant across all observations and simply uses the first value in that vector.

mu_L is the lower limit on the mean event durations. This is a single value assumed to hold for both samples of behavior

active_length This is the total active observation length. If the intervals are 15 seconds long but 5 seconds of each interval is reserved for recording purposes, active_length= 10. Times are often in seconds, but can be in any time unit.

intervals is the number of intervals in the observations. This is a single value and is assumed to be constant across both samples and all observations. This value is only relevant if the mean of one

20 reported_observations

of the samples is at the floor or ceiling of 0 or 1. In that case it will be used to truncate the sample mean. If the sample mean is at the floor or ceiling and no value for intervals is provided, the function will stop.

Value

A list with three named entries. The first entry, estimate_bounds, contains the lower and upper bound for the estimate of the prevalence ratio. The second entry, estimate_SE, contains the standard error of the estimate. The third entry, estimate_CI, contains the lower and upper bounds for the confidence interval of the prevalence ratio.

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
# Estimate bounds on the prevalence ratio for Carl from Moes dataset
data(Moes)
with(subset(Moes, Case == "Carl"),
   prevalence_bounds(PIR = outcome, phase = Phase, base_level = "No Choice",
   mu_L = 10, active_length = active_length, intervals = intervals))
```

reported_observations Applies multiple recording procedures to a behavior stream

Description

This is a convenience function that allows multiple recording procedures to be applied to a single behavior stream. Results are reported either per behavior stream or as summary statistics, averaged over multiple behavior streams.

Usage

```
reported_observations(BS, data_types = c("C", "M", "E", "P", "W"),
  interval_length = 1, rest_length = 0, n_aggregate = 1)
```

Arguments

BS	object of class behavior_stream
data_types	list of recording procedures to apply to the behavior stream. See details.
interval_length	
	time length of each interval used to score momentary time recording and interval recording procedures.
rest_length	portion of each interval to exclude from observation for interval recording. See documentation for interval_recording.
n_aggregate	number of observations over which to calculate summary statistics.

r_behavior_stream 21

Details

The following recording procedures are currently implemented

- C continuous duration recording
- M momentary time recording
- E event counting
- P partial interval recording
- W whole interval recording

Value

If n_aggregate = 1, a data frame with one column per procedure listed in data_types and length equal to the number of behavior streams in BS. If n_aggregate > 1, a list containing two data frames: one with sample means and one with sample variances, both taken across n_aggregate behavior streams.

Examples

r_behavior_stream

Generates random behavior streams

Description

Random generation of behavior streams (based on an alternating renewal process) of a specified length and with specified mean event durations, mean interim times, event distribution, and interim distribution.

Usage

```
r_behavior_stream(n, mu, lambda, F_event, F_interim, stream_length,
   equilibrium = TRUE, p0 = 0, tuning = 2)
```

Arguments

n number of behavior streams to generate

mu vector of mean event durations
lambda vector of mean interim time

F_event distribution of event durations. Must be of class eq_dist.

F_interim distribution of interim times. Must be of class eq_dist.

stream_length length of behavior stream

equilibrium logical; if TRUE, then equilibrium initial conditions are used; if FALSE, then p0 is

used to determine initial state and normal generating distributions are used for

event durations and interim times.

p0 vector of initial state probabilities. Only used if equilibrium = FALSE, in

which case default is zero (i.e., behavior stream always starts with an interim

time).

tuning controls the size of the chunk of random event durations and interim times. Ad-

justing this may be useful in order to speed computation time.

Details

Generates behavior streams by repeatedly drawing random event durations and random interim times from the distributions as specified, until the sum of the durations and interim times exceeds the requested stream length. The vectors mu, lambda, and p0 are recycled to length n.

Value

An object of class behavior_stream containing two elements.

Examples

r_continuous_recording

Generates random samples of continuously recorded behavior streams

Description

Random generation of behavior streams (based on an alternating renewal process) of a specified length and with specified mean event durations, mean interim times, event distribution, and interim distribution, summarized as the total proportion of time the behavior of interest occurred.

Usage

```
r_continuous_recording(n, mu, lambda, stream_length, F_event, F_interim,
   equilibrium = TRUE, p0 = 0, tuning = 2)
```

r_event_counting 23

Arguments

n number of behavior streams to generate

mu mean event duration lambda mean interim time

stream_length length of behavior stream

F_event distribution of event durations. Must be of class eq_dist.

F_interim distribution of interim times. Must be of class eq_dist.

equilibrium logical; if TRUE, then equilibrium initial conditions are used; if FALSE, then p0 is

used to determine initial state and normal generating distributions are used for

event durations and interim times.

p0 Initial state probability. Only used if equilibrium = FALSE, in which case

default is zero (i.e., behavior stream always starts with an interim time).

tuning controls the size of the chunk of random event durations and interim times. Ad-

justing this may be useful in order to speed computation time.

Details

Generates behavior streams by repeatedly drawing random event durations and random interim times from the distributions as specified, until the sum of the durations and interim times exceeds the requested stream length. Then applies a continuous recording filter to the generated behavior streams.

Value

A vector of proportions of length n.

Author(s)

Daniel Swan <dswan@utexas.edu>

Examples

r_event_counting

Generates random samples of event counts

Description

Random generation of behavior streams (based on an alternating renewal process) of a specified length and with specified mean event durations, mean interim times, event distribution, and interim distribution, summarized as the total number of behaviors that began during the recording session

24 r_event_counting

Usage

```
r_event_counting(n, mu, lambda, stream_length, F_event, F_interim,
   equilibrium = TRUE, p0 = 0, tuning = 2)
```

Arguments

n number of behavior streams to generate

mu mean event duration
lambda mean interim time

stream_length length of behavior stream

F_event distribution of event durations. Must be of class eq_dist.

F_interim distribution of interim times. Must be of class eq_dist.

equilibrium logical; if TRUE, then equilibrium initial conditions are used; if FALSE, then p0 is

used to determine initial state and normal generating distributions are used for

event durations and interim times.

p0 Initial state probability. Only used if equilibrium = FALSE, in which case

default is zero (i.e., behavior stream always starts with an interim time).

tuning controls the size of the chunk of random event durations and interim times. Ad-

justing this may be useful in order to speed computation time.

Details

Generates behavior streams by repeatedly drawing random event durations and random interim times from the distributions as specified, until the sum of the durations and interim times exceeds the requested stream length. Then applies an event counting filter to the generated behavior streams.

Value

A vector of behavior counts of length n.

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
r_event_counting(n = 5, mu = 2, lambda = 4, stream_length = 20,

F_event = F_exp(), F_interim = F_exp())
```

 r_MTS 25

r_MTS

Generates random momentary time sampling behavior streams

Description

Random generation of behavior streams (based on an alternating renewal process) of a specified length and with specified mean event durations, mean interim times, event distribution, and interim distribution, which are then coded as momentary time sampling data with given interval length between moments.

Usage

```
r_MTS(n, mu, lambda, stream_length, F_event, F_interim, interval_length,
  summarize = FALSE, equilibrium = TRUE, p0 = 0, tuning = 2)
```

Arguments

n number of behavior streams to generate

mu mean event duration
lambda mean interim time
stream_length length of behavior stream

F_event distribution of event durations. Must be of class eq_dist.

F_interim distribution of interim times. Must be of class eq_dist.

interval_length

length of time between moments

summarize logical value indicating whether the vector of moments should be summarized

by taking their mean, excluding the first moment in each row.

equilibrium logical; if TRUE, then equilibrium initial conditions are used; if FALSE, then p0 is

used to determine initial state and normal generating distributions are used for

event durations and interim times.

p0 Initial state probability. Only used if equilibrium = FALSE, in which case

default is zero (i.e., behavior stream always starts with an interim time).

tuning controls the size of the chunk of random event durations and interim times. Ad-

justing this may be useful in order to speed computation time.

Details

Generates behavior streams by repeatedly drawing random event durations and random interim times from the distributions as specified, until the sum of the durations and interim times exceeds the requested stream length. Then applies a momentary time sampling filter to the generated behavior streams.

Value

If summarize = FALSE, a matrix of logicals with rows equal to n and length equal to (stream_length/interval_length) + If summarize = TRUE, a vector of means of length n.

26 r_PIR

Author(s)

Daniel Swan dswan@utexas.edu

Examples

r_PIR

Generates random partial interval recording behavior streams

Description

Random generation of behavior streams (based on an alternating renewal process) of a specified length and with specified mean event durations, mean interim times, event distribution, and interim distribution, which are then coded as partial interval recording data with given interval length and rest length.

Usage

```
r_PIR(n, mu, lambda, stream_length, F_event, F_interim, interval_length,
  rest_length = 0, summarize = FALSE, equilibrium = TRUE, p0 = 0,
  tuning = 2)
```

Arguments

n number of behavior streams to generate

mu mean event duration
lambda mean interim time
stream_length length of behavior stream

F_event distribution of event durations. Must be of class eq_dist.

F_interim distribution of interim times. Must be of class eq_dist.

interval_length

total interval length

rest_length length of any recording time in each interval

summarize logical value indicating whether the behavior streams should by summarized by

taking their mean

equilibrium logical; if TRUE, then equilibrium initial conditions are used; if FALSE, then p0 is

used to determine initial state and normal generating distributions are used for

event durations and interim times.

 $r_{-}WIR$ 27

p0	Initial state probability. Only used if equilibrium = FALSE, in which case default is zero (i.e., behavior stream always starts with an interim time).
tuning	controls the size of the chunk of random event durations and interim times. Adjusting this may be useful in order to speed computation time.

Details

Generates behavior streams by repeatedly drawing random event durations and random interim times from the distributions as specified, until the sum of the durations and interim times exceeds the requested stream length. Then applies a partial interval recording filter to the generated behavior streams.

Value

If summarize = FALSE, a matrix with rows equal to n and a number of columns equal to the number intervals per session. If summarize = TRUE a vector of means of length n.

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
# An unsummarized set of PIR observations
r_PIR(n = 5, mu = 2, lambda = 4, stream_length = 20,
    F_event = F_exp(), F_interim = F_exp(),
    interval_length = 1, rest_length = 0)

# A summarized set of of PIR observations
r_PIR(n = 5, mu = 2, lambda = 4, stream_length = 20,
    F_event = F_exp(), F_interim = F_exp(),
    interval_length = 1, rest_length = 0,
    summarize = TRUE)
```

r_WIR

Generates random whole interval recording behavior streams

Description

Random generation of behavior streams (based on an alternating renewal process) of a specified length and with specified mean event durations, mean interim times, event distribution, and interim distribution, which are then coded as whole interval recording data with given interval length and rest length.

Usage

```
r_WIR(n, mu, lambda, stream_length, F_event, F_interim, interval_length,
  rest_length = 0, summarize = FALSE, equilibrium = TRUE, p0 = 0,
  tuning = 2)
```

28 r_WIR

Arguments

n number of behavior streams to generate

mu mean event duration
lambda mean interim time
stream_length length of behavior stream

F_event distribution of event durations. Must be of class eq_dist.

F_interim distribution of interim times. Must be of class eq_dist.

interval_length

total interval length

rest_length length of any recording time in each interval

summarize logical value indicating whether the behavior streams should by summarized by

taking their mean

equilibrium logical; if TRUE, then equilibrium initial conditions are used; if FALSE, then p0 is

used to determine initial state and normal generating distributions are used for

event durations and interim times.

p0 Initial state probability. Only used if equilibrium = FALSE, in which case

default is zero (i.e., behavior stream always starts with an interim time).

tuning controls the size of the chunk of random event durations and interim times. Ad-

justing this may be useful in order to speed computation time.

Details

Generates behavior streams by repeatedly drawing random event durations and random interim times from the distributions as specified, until the sum of the durations and interim times exceeds the requested stream length. Then applies a whole interval recording filter to the generated behavior streams.

Value

If summarize = FALSE, a matrix with rows equal to n and a number of columns equal to the number intervals per session. If summarize = TRUE a vector of means of length n.

Author(s)

Daniel Swan dswan@utexas.edu

Examples

```
# An unsummarized set of WIR observations
r_WIR(n = 5, mu = 2, lambda = 4, stream_length = 20,
    F_event = F_exp(), F_interim = F_exp(),
    interval_length = 1, rest_length = 0)

# A summarized set of of WIR observations
r_WIR(n = 5, mu = 2, lambda = 4, stream_length = 20,
    F_event = F_exp(), F_interim = F_exp(),
    interval_length = 1, rest_length = 0,
    summarize = TRUE)
```

Index

```
*Topic datasets
    Dunlap, 4
    Moes, 15
ARPobservation, 2
ARPobservation-package
         (ARPobservation), 2
augmented_recording, 3
continuous_duration_recording, 2, 4
Dunlap, 4
eq_dist, 2, 5, 6-10, 21, 23-26, 28
event_counting, 2, 6
F_const, 5, 6
F_exp, 5, 7
F_gam, 5, 7
F_{gam_mix}, 5, 8
F_unif, 5, 9
F_{weib}, 5, 9
incidence_bounds, 10
interim\_bounds, 12
interval_recording, 2, 13, 20
logRespRatio, 14
Moes, 15
momentary_time_recording, 2, 16
PIR_loglik, 16
PIR_MOM, 17
prevalence_bounds, 19
r_behavior_stream, 2, 6-9, 21
r_continuous_recording, 2, 22
r_event_counting, 2, 23
r_{MTS}, 2, 25
r_PIR, 2, 26
r_WIR, 2, 27
reported\_observations, 2, 20
```