

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 13 (I) Muestre que los siguientes conjuntos M son subespacios cerrados no vacíos de $L^2((-1,1))$ y determine explícitamente la proyección P_M en cada caso.

(a) $M = \{ f \in L^2((-1,1)) : f(x) = f(-x) \text{ para casi todo } x \in (-1,1) \}.$

Demostración.

I) **M es no vacío:** Veamos que $f(x) = 0 \in M$, pues

$$\|f(x)\|_{L_2} = \left(\int_{-1}^1 |0|^2 dx\right)^{\frac{1}{2}} = 0 < \infty \quad y \quad f(-x) = 0 = f(x).$$

II) **M es cerrado:** Sea $(f_n)_{n=1}^{\infty}\subseteq M$ tal que $f_n\to f$ en $L^2(-1,1)$. Entonces, para todo $\epsilon>0$ existe $N\in\mathbb{Z}^+$ tal que si $n\geq N$, se cumple

$$\|f_n - f\|_{L^2(-1,1)} < \frac{\varepsilon}{2}.$$
 (1)

A continuación, definamos g(x) := f(-x) para $x \in (-1, 1)$, y veamos que

$$\begin{split} \|g - f\|_{L^{2}(-1,1)} &= \|g - f_{n} + f_{n} - f\|_{L^{2}(-1,1)} \\ &\leq \underbrace{\|g - f_{n}\|_{L^{2}(-1,1)}}_{\Delta} + \|f_{n} - f\|_{L^{2}(-1,1)}. \end{split} \tag{2}$$

Para estimar el término A, notamos que como $f_n(x) = f_n(-x)$ para casi todo $x \in (-1, 1)$, se tiene

$$\begin{split} A^2 &= \int_{-1}^1 |g(x) - f_n(x)|^2 \, dx = \int_{-1}^1 |f(-x) - f_n(x)|^2 \, dx \\ &= \int_{-1}^1 |f(-x) - f_n(-x)|^2 \, dx. \end{split}$$

Haciendo el cambio de variable u = -x, obtenemos

$$A^{2} = -\int_{1}^{-1} |f(u) - f_{n}(u)|^{2} du = \int_{-1}^{1} |f(u) - f_{n}(u)|^{2} du$$

$$= \|f - f_{n}\|_{L^{2}(-1,1)}^{2}.$$
(3)

Entonces, para $n \ge N$, usando las ecuaciones (1), (3) y (2), obtenemos:

$$\begin{split} \|g-f\|_{L^2(-1,1)} &\leq \|g-f_n\|_{L^2(-1,1)} + \|f_n-f\|_{L^2(-1,1)} \\ &= \|f-f_n\|_{L^2(-1,1)} + \|f_n-f\|_{L^2(-1,1)} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Como $\varepsilon > 0$ es arbitrario, concluimos que $\|g - f\|_{L^2(-1,1)} = 0$, es decir, f(x) = f(-x) para casi todo $x \in (-1,1)$, lo cual implica que $f \in M$. Por tanto, M es cerrado.

III) **M** es un subespacio: Sea f, $g \in M$, veamos que f + $g \in M$.

Por la definición del conjunto M, se cumple que f(x) = f(-x) y g(x) = g(-x) para casi todo $x \in (-1, 1)$. Esto significa que existen conjuntos de medida nula F y G tales que

$$f(x) = f(-x) \quad \forall x \in (-1, 1) \setminus F,$$

 $g(x) = g(-x) \quad \forall x \in (-1, 1) \setminus G.$

Además, por la subaditividad de la medida de Lebesgue, se tiene

$$0 < \mu(F \cup G) < \mu(F) + \mu(G) = 0$$

por lo tanto, F∪G también es un conjunto de medida nula. Como

$$(-1,1)\setminus (F\cup G)\subseteq (-1,1)\setminus F$$
, $(-1,1)\setminus G$,

se concluye que para casi todo $x \in (-1, 1) \setminus (F \cup G)$ se cumple

$$(f+g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f+g)(-x).$$

Así, $f + g \in M$.

Ahora, para f, sabemos que f(x) = f(-x) para casi todo $x \in (-1, 1) \setminus F$. Sea $\lambda \in \mathbb{R}$, entonces

$$(\lambda f)(x) = \lambda f(x) = \lambda f(-x) = (\lambda f)(-x)$$
,

para casi todo $x \in (-1,1) \setminus F$, lo cual implica que $\lambda f \in M$. Por lo tanto, M es un subespacio de H.

IV) **Proyección** P_M : Como M es un subespacio cerrado de $L^2((-1,1))$, para todo $f \in L^2((-1,1))$ la proyección ortogonal $P_M f$ está bien definida como la única $g \in M$ tal que

$$(f-g,h)=0$$
 para toda $h \in M$.

Definimos $g(x):=\frac{f(x)+f(-x)}{2}$. Notamos que $g\in L^2((-1,1))$, ya que $L^2((-1,1))$ es un espacio vectorial, y si $f\in L^2$, entonces también lo están f(-x) y su suma. Además,

$$g(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(-x) + f(x)}{2} = g(x),$$

por lo tanto, $g \in M$.

Ahora calculemos (f - g, h) para $h \in M$:

$$(f - g, h) = \int_{-1}^{1} \left[f(x) - \frac{f(x) + f(-x)}{2} \right] h(x) dx$$

$$= \int_{-1}^{1} \left[\frac{f(x)}{2} - \frac{f(-x)}{2} \right] h(x) dx$$

$$= \frac{1}{2} \int_{-1}^{1} f(x) h(x) dx - \frac{1}{2} \int_{-1}^{1} f(-x) h(x) dx$$

$$= B - A,$$

donde:

• B =
$$\frac{1}{2} \int_{-1}^{1} f(x)h(x) dx$$
,

•
$$A = \frac{1}{2} \int_{-1}^{1} f(-x)h(x) dx$$
.

Como $h \in M$, entonces h(x) = h(-x) para casi todo $x \in (-1,1)$. Usando el cambio de variable u = -x, tenemos:

$$A = \frac{1}{2} \int_{-1}^{1} f(-x)h(x) dx = \frac{1}{2} \int_{-1}^{1} f(-x)h(-x) dx$$
$$= -\frac{1}{2} \int_{1}^{-1} f(u)h(u) du = \frac{1}{2} \int_{-1}^{1} f(u)h(u) du = B.$$

Luego, como A = B, se concluye que:

$$(f - g, h) = B - A = 0.$$

Por lo tanto, $g = P_M f$ es la proyección ortogonal de f sobre M, y está dada por:

$$(P_M f)(x) = \frac{f(x) + f(-x)}{2}.$$

(b)
$$M = \left\{ f \in L^2((-1,1)) : \int_{-1}^1 f(x) dx = 0 \right\}.$$

Demostración.

I) **M es no vacío:** Consideremos la función f(x) = x. Notamos que $f \in L^2((-1, 1))$ porque

$$\int_{-1}^{1} |x|^2 dx = \int_{-1}^{1} x^2 dx = \frac{2}{3} < \infty.$$

Además,

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} x dx = 0.$$

Por lo tanto, $f(x) = x \in M$, y así concluimos que $M \neq \emptyset$.

II) M **es cerrado:** En primera instancia, notamos que podemos expresar M usando el producto interno de $L^2((-1,1))$:

$$M = \left\{ f \in L^2((-1,1)) : \int_{-1}^1 f(x) \, dx = 0 \right\} = \left\{ f \in L^2((-1,1)) : (f,1) = 0 \right\},$$

donde 1 es la función constante g(x) = 1.

Es importante mencionar que, para $f \in L^2((-1,1))$, tiene sentido calcular la integral

$$\int_{-1}^{1} f(x) dx,$$

porque $\mu((-1,1))=2<\infty.$ Además, usando la desigualdad de Cauchy–Schwarz, se tiene:

$$\left| \int_{-1}^{1} f(x) \, dx \right| \le \left(\int_{-1}^{1} 1^{2} \, dx \right)^{1/2} \left(\int_{-1}^{1} |f(x)|^{2} \, dx \right)^{1/2} = \sqrt{2} \, \|f\|_{L^{2}((-1,1))},$$

por lo que la integral es finita.

Notemos ahora que $L^2((-1,1)) \setminus M \neq \emptyset$, pues, por ejemplo, la función constante g(x) = 1 pertenece a $L^2((-1,1))$, pero no a M, ya que

$$(g,1) = \int_{-1}^{1} 1 \cdot 1 \, dx = 2 \neq 0.$$

Así, $g \notin M$. Sea ahora $f \in L^2((-1,1)) \setminus M$, entonces $(f,1) \neq 0$. Definimos:

4

$$\alpha := \left| \left(f, \frac{1}{\sqrt{2}} \right) \right| = \frac{1}{\sqrt{2}} |(f, 1)| > 0.$$

Sea $B:=B(f,\frac{\alpha}{2})$ la bola abierta en $L^2((-1,1))$ centrada en f y de radio $\frac{\alpha}{2}$. Si $g\in B$, entonces

$$\|g-f\|_{L^2}<\frac{\alpha}{2}.$$

Aplicando nuevamente la desigualdad de Cauchy-Schwarz, se obtiene:

$$\left| \left(g - f, \frac{1}{\sqrt{2}} \right) \right| \le \|g - f\|_{L^2} \cdot \left\| \frac{1}{\sqrt{2}} \right\|_{L^2} = \|g - f\|_{L^2} < \frac{\alpha}{2}.$$

Entonces,

$$\begin{split} \left| \left(g, \frac{1}{\sqrt{2}} \right) \right| &= \left| \left(f, \frac{1}{\sqrt{2}} \right) + \left(g - f, \frac{1}{\sqrt{2}} \right) \right| \\ &\geq \left| \left(f, \frac{1}{\sqrt{2}} \right) \right| - \left| \left(g - f, \frac{1}{\sqrt{2}} \right) \right| \\ &> \alpha - \frac{\alpha}{2} = \frac{\alpha}{2} > 0. \end{split}$$

Por lo tanto,

$$|(g,1)| = \sqrt{2} \cdot \left| \left(g, \frac{1}{\sqrt{2}}\right) \right| > \sqrt{2} \cdot \frac{\alpha}{2} > 0,$$

lo cual implica que $(g,1) \neq 0$, es decir, $g \notin M$. Así, $B \subseteq L^2((-1,1)) \setminus M$, y por lo tanto, $L^2((-1,1)) \setminus M$ es abierto.

Concluimos que M es cerrado en $L^2((-1,1))$.

III) M es subespacio: Recordemos que

$$M = \left\{ f \in L^2((-1,1)) : \int_{-1}^1 f(x) \, dx = 0 \right\}.$$

Sea f, $g \in M$ y $\lambda \in \mathbb{R}$. Entonces:

$$\int_{-1}^{1} (\lambda f(x) + g(x)) dx = \lambda \int_{-1}^{1} f(x) dx + \int_{-1}^{1} g(x) dx = \lambda \cdot 0 + 0 = 0.$$

Por tanto, $\lambda f + g \in M$, y así M es un subespacio vectorial de $L^2((-1,1))$.

IV) **Proyección ortogonal sobre** M: Sea $f \in L^2((-1,1))$, queremos encontrar $g \in M$ tal que

$$(f - g, h) = 0$$
 para toda $h \in M$,

es decir,

$$\int_{-1}^{1} (f(x) - g(x))h(x) dx = 0.$$

Proponemos

$$g(x) := f(x) - \frac{1}{2} \int_{-1}^{1} f(t) dt,$$

y veremos que $g = P_M f$.

Primero, verifiquemos que $g \in M$:

$$\int_{-1}^{1} g(x) dx = \int_{-1}^{1} \left(f(x) - \frac{1}{2} \int_{-1}^{1} f(t) dt \right) dx$$

$$= \int_{-1}^{1} f(x) dx - \frac{1}{2} \int_{-1}^{1} f(t) dt \cdot \int_{-1}^{1} dx$$

$$= \int_{-1}^{1} f(x) dx - \frac{1}{2} \int_{-1}^{1} f(t) dt \cdot 2$$

$$= \int_{-1}^{1} f(x) dx - \int_{-1}^{1} f(x) dx = 0.$$

Así, $g \in M$.

Ahora, tomemos $h \in M$ y calculemos (f - g, h):

$$(f - g, h) = \int_{-1}^{1} \left[f(x) - \left(f(x) - \frac{1}{2} \int_{-1}^{1} f(t) dt \right) \right] h(x) dx$$

$$= \int_{-1}^{1} \left(\frac{1}{2} \int_{-1}^{1} f(t) dt \right) h(x) dx$$

$$= \left(\frac{1}{2} \int_{-1}^{1} f(t) dt \right) \left(\int_{-1}^{1} h(x) dx \right).$$

Como $h \in M$, se tiene que $\int_{-1}^{1} h(x) dx = 0$, y por lo tanto:

$$(f-g,h)=0.$$

Así, $g = f(x) - \frac{1}{2} \int_{-1}^{1} f(t) dt$ es la proyección ortogonal de f sobre M, es decir,

$$(P_M f)(x) = f(x) - \frac{1}{2} \int_{-1}^{1} f(t) dt.$$

• $M = \{ f \in L^2((-1,1)) : f(x) = 0 \text{ para casi todo } x \in (-1,0) \}.$

Demostración.

I) M es no vacío: Consideremos la función característica

$$f(x) := \chi_{[0,1)}(x).$$

Entonces f(x) = 0 para todo $x \in (-1, 0)$, por lo tanto también se anula para casi todo $x \in (-1, 0)$, y claramente es medible. Verificamos que $f \in L^2((-1, 1))$:

$$\|f\|_{L^2((-1,1))}^2 = \int_{-1}^1 |f(x)|^2 dx = \int_{-1}^1 \chi_{[0,1)}(x) dx = \int_0^1 1 dx = 1.$$

Luego $f \in L^2((-1,1))$ y $f \in M$, de modo que $M \neq \emptyset$.

II) M es cerrado: Notemos que

$$f \in M \iff \int_{-1}^{0} |f(x)|^2 dx = 0 \iff \|\chi_{(-1,0)} f\|_{L^2((-1,1))} = 0,$$

donde $\chi_{(-1,0)}$ denota la función característica del intervalo (-1,0).

Sea $(f_n)_{n=1}^\infty\subseteq M$ tal que $f_n\to f$ en $L^2((-1,1))$. Queremos probar que $f\in M$, es decir, que

$$\|\chi_{(-1,0)}f\|_{L^2((-1,1))}=0.$$

Para ello, primero observamos que

$$\|\chi_{(-1,0)}f_n - \chi_{(-1,0)}f\|_{L^2((-1,1))} = \|\chi_{(-1,0)}(f_n - f)\|_{L^2((-1,1))}.$$

Usando la definición de la norma L²:

$$\begin{split} \|\chi_{(-1,0)}(f_n-f)\|_{L^2((-1,1))}^2 &= \int_{-1}^1 \left|\chi_{(-1,0)}(x)(f_n(x)-f(x))\right|^2 dx \\ &= \int_{-1}^0 |f_n(x)-f(x)|^2 dx. \end{split}$$

Como $f_n \to f$ en $L^2((-1,1))$, se tiene que

$$\int_{-1}^{0} |f_n(x) - f(x)|^2 dx \le \int_{-1}^{1} |f_n(x) - f(x)|^2 dx \to 0,$$

por lo que

$$\|\chi_{(-1,0)}f_n-\chi_{(-1,0)}f\|_{L^2((-1,1))}\to 0,$$

es decir,

$$\chi_{(-1,0)}f_n \to \chi_{(-1,0)}f$$
 en $L^2((-1,1))$.

Sea ahora $\epsilon>0$. Como $\chi_{(-1,0)}f_n\to\chi_{(-1,0)}f$, existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces

$$\|\chi_{(-1,0)}(f_n-f)\|_{L^2((-1,1))}<\epsilon.$$

Para $n \ge N$, se cumple:

$$\begin{split} \|\chi_{(-1,0)}f\|_{L^2((-1,1))} &= \|\chi_{(-1,0)}f - \chi_{(-1,0)}f_n + \chi_{(-1,0)}f_n\|_{L^2((-1,1))} \\ &\leq \|\chi_{(-1,0)}(f - f_n)\|_{L^2((-1,1))} + \|\chi_{(-1,0)}f_n\|_{L^2((-1,1))}. \end{split}$$

Como $f_n \in M$, se tiene $\chi_{(-1,0)}f_n(x) = 0$ para casi todo $x \in (-1,0)$, por lo que:

$$\|\chi_{(-1,0)}f\|_{L^2((-1,1))}<\epsilon.$$

Como $\varepsilon > 0$ es arbitrario, se deduce que:

$$\|\chi_{(-1,0)}f\|_{L^2((-1,1))}=0,$$

es decir, f(x) = 0 para casi todo $x \in (-1, 0)$, por lo tanto $f \in M$.

III) **M es subespacio:** Sean f, $g \in M$ y $\lambda \in \mathbb{R}$. Por definición de M, existen conjuntos de medida nula F y G tales que

$$f(x) = 0$$
 para todo $x \in (-1, 0) \setminus F$,

$$g(x) = 0$$
 para todo $x \in (-1, 0) \setminus G$.

Como $0 \le \mu(F \cup G) \le \mu(F) + \mu(G) = 0$, se sigue que $F \cup G$ es también de medida nula.

Además, como

$$(-1,0)\setminus (F\cup G)\subseteq (-1,0)\setminus F\quad y\quad (-1,0)\setminus (F\cup G)\subseteq (-1,0)\setminus G,$$

entonces para todo $x \in (-1, 0) \setminus (F \cup G)$,

$$(f+g)(x) = f(x) + g(x) = 0 + 0 = 0,$$

es decir, $f + g \in M$.

Por otro lado, si $x \in (-1,0) \setminus F$, entonces f(x) = 0, por lo tanto $\lambda f(x) = \lambda \cdot 0 = 0$, así que $\lambda f \in M$. Concluimos que M es un subespacio vectorial de $L^2((-1,1))$.

IV) **Proyección ortogonal sobre** M: Sea $f \in L^2((-1,1))$, queremos encontrar $g \in M$ tal que

$$(f - g, h) = 0$$
 para toda $h \in M$.

Tomemos $g = \chi_{[0,1)} f$ y veamos que $g = P_M f$. Claramente, g(x) = 0 para todo $x \in (-1,0)$, por lo cual $g \in M$.

Sea $h \in M$, entonces:

$$(f - g, h) = \int_{-1}^{1} (f(x) - \chi_{[0,1)}(x)f(x)) h(x) dx$$
$$= \int_{-1}^{1} \chi_{(-1,0)}(x)f(x)h(x) dx$$
$$= \int_{-1}^{0} f(x)h(x) dx = 0,$$

dado que h(x) = 0 para casi todo $x \in (-1, 0)$, pues $h \in M$.

Así concluimos que $g = \chi_{[0,1)} f = P_M f$.

(c) $M = \{ f \in L^2((-1,1)) : f(x) = 0 \text{ para casi todo } x \in (-1,0) \}.$

Demostración.

I) M es no vacío: Consideremos la función característica

$$f(x) := \chi_{[0,1)}(x)$$
.

Entonces f(x) = 0 para todo $x \in (-1, 0)$, por lo tanto también se anula para casi todo $x \in (-1, 0)$, y claramente es medible. Verificamos que $f \in L^2((-1, 1))$:

$$\|f\|_{L^2((-1,1))}^2 = \int_{-1}^1 |f(x)|^2 dx = \int_{-1}^1 \chi_{[0,1)}(x) dx = \int_0^1 1 dx = 1.$$

Luego $f \in L^2((-1,1))$ y $f \in M$, de modo que $M \neq \emptyset$.

II) M es cerrado: Notemos que

$$f \in M \iff \int_{-1}^{0} |f(x)|^2 dx = 0 \iff \|\chi_{(-1,0)} f\|_{L^2((-1,1))} = 0,$$

donde $\chi_{(-1,0)}$ denota la función característica del intervalo (-1,0).

Sea $(f_n)_{n=1}^\infty\subseteq M$ tal que $f_n\to f$ en $L^2((-1,1))$. Queremos probar que $f\in M$, es decir, que

$$\|\chi_{(-1,0)}f\|_{L^2((-1,1))}=0.$$

Para ello, primero observamos que

$$\|\chi_{(-1,0)}f_n - \chi_{(-1,0)}f\|_{L^2((-1,1))} = \|\chi_{(-1,0)}(f_n - f)\|_{L^2((-1,1))}.$$

Usando la definición de la norma L²:

$$\begin{split} \|\chi_{(-1,0)}(f_n - f)\|_{L^2((-1,1))}^2 &= \int_{-1}^1 \left| \chi_{(-1,0)}(x) (f_n(x) - f(x)) \right|^2 dx \\ &= \int_{-1}^0 |f_n(x) - f(x)|^2 dx. \end{split}$$

Como $f_n \to f$ en $L^2((-1,1))$, se tiene que

$$\int_{-1}^{0} |f_n(x) - f(x)|^2 dx \le \int_{-1}^{1} |f_n(x) - f(x)|^2 dx \to 0,$$

por lo que

$$\|\chi_{(-1,0)}f_n - \chi_{(-1,0)}f\|_{L^2((-1,1))} \to 0,$$

es decir,

$$\chi_{(-1,0)}f_n\to \chi_{(-1,0)}f\quad \text{en } L^2((-1,1)).$$

Sea ahora $\varepsilon > 0$. Como $\chi_{(-1,0)} f_n \to \chi_{(-1,0)} f$, existe $N \in \mathbb{N}$ tal que si $n \geq N$, entonces

$$\|\chi_{(-1,0)}(f_n-f)\|_{L^2((-1,1))}<\varepsilon.$$

Para $n \geq N$, se cumple:

$$\begin{split} \|\chi_{(-1,0)}f\|_{L^2((-1,1))} &= \|\chi_{(-1,0)}f - \chi_{(-1,0)}f_n + \chi_{(-1,0)}f_n\|_{L^2((-1,1))} \\ &\leq \|\chi_{(-1,0)}(f - f_n)\|_{L^2((-1,1))} + \|\chi_{(-1,0)}f_n\|_{L^2((-1,1))}. \end{split}$$

Como $f_n \in M$, se tiene $\chi_{(-1,0)}f_n(x)=0$ para casi todo $x\in (-1,0)$, por lo que:

$$\|\chi_{(-1,0)}f\|_{L^2((-1,1))}<\varepsilon.$$

Como $\varepsilon > 0$ es arbitrario, se deduce que:

$$\|\chi_{(-1,0)}f\|_{L^2((-1,1))}=0,$$

es decir, f(x) = 0 para casi todo $x \in (-1, 0)$, por lo tanto $f \in M$.

III) **M es subespacio:** Sean f, $g \in M$ y $\lambda \in \mathbb{R}$. Por definición de M, existen conjuntos de medida nula F y G tales que

$$f(x) = 0$$
 para todo $x \in (-1, 0) \setminus F$,

$$g(x) = 0$$
 para todo $x \in (-1, 0) \setminus G$.

Como $0 \le \mu(F \cup G) \le \mu(F) + \mu(G) = 0$, se sigue que $F \cup G$ es también de medida nula.

Además, como

$$(-1,0)\setminus (F\cup G)\subseteq (-1,0)\setminus F$$
 y $(-1,0)\setminus (F\cup G)\subseteq (-1,0)\setminus G$,

entonces para todo $x \in (-1, 0) \setminus (F \cup G)$,

$$(f+g)(x) = f(x) + g(x) = 0 + 0 = 0,$$

es decir, $f + g \in M$.

Por otro lado, si $x \in (-1,0) \setminus F$, entonces f(x) = 0, por lo tanto $\lambda f(x) = \lambda \cdot 0 = 0$, así que $\lambda f \in M$. Concluimos que M es un subespacio vectorial de $L^2((-1,1))$.

IV) **Proyección ortogonal sobre** M: Sea $f \in L^2((-1,1))$, queremos encontrar $g \in M$ tal que

$$(f-g,h)=0$$
 para toda $h \in M$.

Tomemos $g = \chi_{[0,1)}f$ y veamos que $g = P_M f$. Claramente, g(x) = 0 para todo $x \in (-1,0)$, por lo cual $g \in M$.

Sea $h \in M$, entonces:

$$(f - g, h) = \int_{-1}^{1} (f(x) - \chi_{[0,1)}(x)f(x)) h(x) dx$$
$$= \int_{-1}^{1} \chi_{(-1,0)}(x)f(x)h(x) dx$$
$$= \int_{-1}^{0} f(x)h(x) dx = 0,$$

dado que h(x)=0 para casi todo $x\in (-1,0)$, pues $h\in M$. Así concluimos que $g=\chi_{[0,1)}f=P_Mf$.

(II) Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Considere

$$K = \left\{ f \in L^2(\Omega) : \int_{\Omega} f(x) dx \ge 1 \right\}$$

(a) Muestre que K es un conjunto cerrado convexo de $L^2(\Omega)$.

Demostración. Notemos que

$$K=\left\{f\in L^2(\Omega): (f,1)\geq 1\right\},$$

donde $\Omega\subseteq\mathbb{R}^n$ es un abierto acotado. Entonces $0<\mu(\Omega)<\infty,$ y además:

$$\|1\|_{L^2(\Omega)} = \left(\int_{\Omega} 1^2 dx\right)^{1/2} = (\mu(\Omega))^{1/2}.$$

Sea $g\in L^2(\Omega)\setminus K$, es decir, $\alpha:=(g,1)<1$. Tomemos $\epsilon>0$ tal que $\alpha+\epsilon<1$, y definimos

$$\delta = \frac{\epsilon}{\|1\|_{L^2(\Omega)}} = \frac{\epsilon}{(\mu(\Omega))^{1/2}} > 0.$$

Sea $B=B(g,\delta)$ la bola abierta centrada en g de radio δ en $L^2(\Omega)$. Sea $f\in B$, entonces $\|f-g\|_{L^2(\Omega)}<\delta$. Usando la desigualdad de Cauchy-Schwarz, se tiene:

$$\begin{split} (f,1) &= (f-g,1) + (g,1) \\ &\leq \|f-g\|_{L^2(\Omega)} \cdot \|1\|_{L^2(\Omega)} + \alpha \\ &< \delta \cdot (\mu(\Omega))^{1/2} + \alpha = \epsilon + \alpha < 1. \end{split}$$

Por tanto, $f \notin K$, lo que implica que $B \subseteq L^2(\Omega) \setminus K$. Es decir, el complemento de K es abierto, y por lo tanto K es cerrado en $L^2(\Omega)$.

Ahora veamos que K es convexo. Sean f, $g \in K$ y $t \in [0, 1]$. Entonces:

$$(tf+(1-t)g,1)=t(f,1)+(1-t)(g,1)\geq t\cdot 1+(1-t)\cdot 1=1.$$

Por tanto, $tf + (1 - t)g \in K$, lo cual prueba que K es convexo.

(b) Determine la proyección sobre K, es decir, el operador P_K.

Demostración. Procedamos a calcular $P_K f$. Sea $f \in L^2(\Omega)$, queremos encontrar $g \in K$ tal que

$$(f-g, h-g) \le 0$$
 para toda $h \in K$.

Proponemos:

$$g(x) = f(x) + \chi_{(-\infty,1)}(C_f) \cdot \frac{1 - C_f}{\mu(\Omega)},$$

donde $C_f = \int_{\Omega} f(y) dy$.

Veamos que esta g cumple las condiciones requeridas. Consideramos dos casos:

Caso 1: Si $f \in K$, entonces $C_f \ge 1$, por lo que $\chi_{(-\infty,1)}(C_f) = 0$. Así,

$$g = f \in K$$
, $y(f - g, h - g) = (0, h - f) = 0 \le 0 \quad \forall h \in K$.

Entonces, $P_K f = f$.

Caso 2: Si $f \notin K$, entonces $C_f < 1$, así que $\chi_{(-\infty,1)}(C_f) = 1$ y:

$$\begin{split} \int_{\Omega} g(x) \, dx &= \int_{\Omega} \left(f(x) + \frac{1 - C_f}{\mu(\Omega)} \right) dx \\ &= \int_{\Omega} f(x) \, dx + \frac{1 - C_f}{\mu(\Omega)} \cdot \mu(\Omega) \\ &= C_f + (1 - C_f) = 1. \end{split}$$

Por tanto, $g \in K$.

Sea $h \in K$, definimos $C_h = \int_{\Omega} h(x) \, dx$. Entonces $C_h \ge 1$. Calculamos:

$$\begin{split} (f-g,h-g) &= \left(-\frac{1-C_f}{\mu(\Omega)},h-f-\frac{1-C_f}{\mu(\Omega)}\right) \\ &= -\frac{1-C_f}{\mu(\Omega)} \cdot \int_{\Omega} \left(h(x)-f(x)-\frac{1-C_f}{\mu(\Omega)}\right) dx \\ &= -\frac{1-C_f}{\mu(\Omega)} \left(C_h-C_f-\frac{1-C_f}{\mu(\Omega)} \cdot \mu(\Omega)\right) \\ &= -\frac{1-C_f}{\mu(\Omega)} (C_h-C_f-(1-C_f)) \\ &= -\frac{1-C_f}{\mu(\Omega)} (C_h-1). \end{split}$$

Como $1 - C_f > 0$ y $C_h - 1 \ge 0$, se concluye que

$$(f-g,h-g) \leq 0$$
.

De esta forma, $g = P_K f$.

Ejercicio 14 Sea H un espacio de Hilbert y $A \in L(H) = L(H, H)$ (el conjunto de funciones lineales continuas de H en H).

(I) Para $y \in H$ fijo, muestre que el funcional $\Phi_y : H \to \mathbb{R}$ dado por $x \mapsto (Ax, y)$ es lineal y continuo. Deduzca que existe un único elemento en H, que denotaremos por A^*y , tal que

$$(Ax, y) = (x, A^*y), \forall x \in H$$

Demostración. Probemos primero la linealidad del funcional. Sean $x_1, x_2 \in H$ y $\lambda \in \mathbb{R}$, como A es una funcion lineal y el producto interno es bilineal, tenemos

$$\begin{split} \Phi_{y}(x_{1} + \lambda x_{2}) &= (A(x_{1} + \lambda x_{2}), y) \\ &= (A(x_{1}) + \lambda A(x_{2}), y) \\ &= (Ax_{1}, y) + \lambda (Ax_{2}, y) \\ &= \Phi_{y}(x_{1}) + \lambda \Phi_{y}(x_{2}). \end{split}$$

Mostrando asi la linealidad. Para ver que es continuo basta con ver que es acotado, pero por la desigualdad de Cauchy-Schwartz tenemos que

$$\begin{aligned} |\Phi_{y}(x)| &= |(Ax, y)| \\ &\leq (Ax, Ax)^{\frac{1}{2}} (y, y)^{\frac{1}{2}} \\ &= ||Ax|| ||y||. \end{aligned}$$

Note que esto ultimo es debido a que H es un espacio de Hilbert, por lo que $\|\cdot\|$ es la norma en H inducida por el producto interno. Como por hipotesis $A \in L(H, H)$, asi sabemos que $\|Ax\| \le \|A\| \|x\|$, es decir $\|Ax\| \|y\| \le \|A\| \|y\| \|x\|$, pero como y es fijo, si tomamos $M = \|A\| \|y\|$ concluimos que

$$|\Phi_{\mathsf{u}}(\mathsf{x})| \leq M \|\mathsf{x}\|,$$

es decir Φ_y es actodado y por tanto continuo para cada y, por lo que $\Phi_y \in H^*$. Ahora por el teorema de representacion de Riesz-Frechet existe un unico elemento $z_y \in H$ tal que

$$\Phi_{y}(x)=(z,x).$$

Para todo $x \in H$. Note que este z_y es unico para cada y, por lo que denotaremos $z_y := A^*y$. Por la definicion de Φ_y y como el producto interno es simetrico conluimos la existencia de un unico elemento en H tal que

$$(Ax,y) = (x, A^*y).$$

 $\Omega^{\hat{}}\Omega$

(II) Muestre que $A^* \in L(H, H).A^*$ se llama el adjunto de A.

Demostración. Primero note que el operador A^* esta bien definido, ya que como dijimos en el anterior punto para cada y, existe un unico z_y , que definimos como $A^*y = z_y$, por lo que si es una funcion. Ahora veamos que es lineal, sean $y_1, y_2 \in H$ y $\lambda \in \mathbb{R}$ note que por la propiedad respecto al producto interno del operador tenemos que para todo $x \in H$

$$(x, A^*(y_1 + \lambda y_2)) = (Ax, y_1 + \lambda y_2)$$

$$= (Ax, y_1) + \lambda(Ax, y_2)$$

$$= (x, A^*y_1) + \lambda(x, A^*y_2)$$

$$= (x, A^*y_1 + \lambda A^*y_2),$$

note que usamos la bilinialidad del producto interno. Si ahora restamos y usamos la bilinealidad nuevamente obtenemos que

$$(x, A^*(y_1 + \lambda y_2) - (A^*y_1 + \lambda A^*y_2)) = 0,$$

para todo $x \in H$, si en particular tomamos $x = A^*(y_1 + \lambda y_2) - (A^*y_1 + \lambda A^*y_2)$, como el producto interno es no nulo para todo elemento diferente del 0, tenemos que

$$A^*(y_1 + \lambda y_2) - (A^*y_1 + \lambda A^*y_2) = 0,$$

es decir

$$A^*(y_1 + \lambda y_2) = A^*y_1 + \lambda A^*y_2.$$

Concluyendo asi la linealidad. Por ser lineal basta con ver que el operador es acotado, note que como la norma de H viene dada por el producto interno y por la desigualdad de Cauchy-Schwartz tenemos que

$$||A^*y||^2 = (A^*y, A^*y)$$

= |(A(A^*y), y)|
\(\le ||A(A^*y)|||y||,

Como $A \in L(H, H)$, tenemos que $||A(A^*y)|| \le ||A|| ||A^*y||$, Asi si llamamos M = ||A||

$$||A(A^*y)|||y|| \le M||A^*y|||y||,$$

y por tanto

$$||A^*y||^2 \le M||A^*y|||y||,$$

note que si $||A^*y|| = 0$, se tiene trivialmente la acotación, en cambio si $||A^*y|| > 0$, podemos dividir a ambos lados por esta cantidad obteniendo asi

$$||A^*y|| \le M||y||$$
.

Concluyendo que es acotado y por tanto continuo, asi $A^* \in L(H, H)$.

 $\hat{\Box} \Box$

(III) Verifique que $(A^*)^* = A$ y que $||A^*|| = ||A||$.

Demostración. Para la primera parte, sean $x, y \in H$, note que por la propiedad del adjunto tenemos que

$$(x, (A^*)^*y) = (A^*x, y)$$

= (y, A^*x)
= (Ay, x)
 $(x, Ay).$

Observe que en dos ocasiones usamos la simetria del producto interno. Luego por la

bilinealidad

$$(x, (A^*)^*y - Ay) = 0,$$

si tomamos $x = (A^*)^*y - Ay$, de manera similar a la prueba de la linealidad del adjunto, concluimos que $(A^*)^*y - Ay = 0$, luego $(A^*)^*y = Ay$, pero note que en este proceso y era arbitrario, por lo que como son iguales para todo y, podemos concluir que

$$(A^*)^* = A.$$

Para la segunda parte en el anterior numeral habiamos conluido que

$$||A^*y|| \le ||A|| ||y||.$$

Por lo que

$$\|A^*\| = \sup_{\substack{\|y\|=1\\y\in H}} \|A^*y\| \le \sup_{\substack{\|y\|=1\\y\in H}} \|A\| \|y\| = \|A\|.$$

Por lo que faltaria ver la otra desigualdad. Pero esto se ve facilmente ya que como $||A^*|| \le ||A||$, si reemplazamos A con A^* , tenemos que $||(A^*)^*|| \le ||A^*||$, luego por la anterior parte, como $(A^*)^* = A$, asi concluimos que

$$||A|| \leq ||A^*||.$$

De esta manera concluimos la igualdad de las normas.

 $\Box^{}\Box$

Ejercicio 15 Sea H un espacio de Hilbert y $M \subseteq H$ un subespacio cerrado. Considera la proyección ortogonal P_M . Muestre que

(I) P_M es lineal.

Demostración. Sean $f_1, f_2 \in H$, por hipótesis tenemos que M es un subespacio cerrado de H, así, el teorema de proyección ortogonal, existen únicos $y_1, y_2 \in M$ tales que

$$\langle f_1 - y_1, \nu \rangle = 0$$
 y $\langle f_2 - y_2, \nu \rangle = 0$ $\forall \nu \in M$,

donde $y_1 = P_M f_1$ y $y_2 = P_M f_2$ son las proyecciones ortogonales de $f_1 x$ y f_2 respectivamente. Es decir, para cualquier $f \in H$, existe un único vector $y \in M$ con $y = P_M f$ que minimiza la distancia de f a M

$$||f - y|| = \inf_{v \in M} ||f - v|| = \text{dist}(f, M).$$

Sea $\lambda \in \mathbb{R}$, utilizando linealidad del producto interno, tenemos que

$$0 = (f_1 - y_1, v) + \lambda(f_2 - y_2, v) = (f_1 + \lambda f_2 - (y_1 + \lambda y_2), v)$$
 para todo $v \in M$.

por unicidad de la proyección, $P_M(f_1 + \lambda f_2) = y_1 + \lambda y_2 = P_M(f_1) + \lambda P_M(f_2)$, es decir, el operador es lineal.

(II) $P_M^2 = P_M$ (esto es, aplicar dos veces el operador proyección da el mismo resultado).

Demostración. Para $f \in H$ al M ser subespacio cerrado existe por el teorema de proyección ortogonal un y tal que, $P_M(f) = y \in M$. Como $y \in M$, $P_M(y) = y$, luego,

$$P_M^2(f) = P_M(P_M(f)) = P_M(y) = y = P_M(f).$$

Por lo que tenemos que el operador es idempotente.

(III) $P_M^{\star} = P_M$, donde P_M^{\star} denota el adjunto de P_M (vea el Ejercicio 14).

Demostración. Veamos que el operador es autoadjunto, por el teorema de representación de Riesz al ser H un espacio de Hilbert y la proyección un operador lineal y continuo, entonces, para $x, y \in H$, tenemos que

$$\langle P_M(x), y \rangle = \langle x, P_M^*(y) \rangle$$
 para todo $x, y \in H$

Luego como M es un subespacio cerrado, M^{\perp} también es cerrado, entonces podemos escribir a los elementos del espacio como

$$x = P_M(x) + (x - P_M(x)), \quad y = P_M(y) + (y - P_M(y)),$$

donde $x - P_M(x) \in M^{\perp}$ y y $- P_M(y) \in M^{\perp}$. Entonces

$$\langle P_{M}(x), y \rangle = \langle P_{M}(x), P_{M}(y) + (y - P_{M}(y)) \rangle$$

= $\langle P_{M}(x), P_{M}(y) \rangle + \langle P_{M}(x), y - P_{M}(y) \rangle$

como $y-P_M(y)\in M^\perp$ entonces $\langle P_M(x),y-P_M(y)\rangle=0$, luego

$$\langle P_{M}(x), P_{M}(y) \rangle = \langle P_{M}(x) + x - P_{M}(x), P_{M}(y) \rangle$$
$$= \langle x, P_{M}(y) \rangle +$$

Por tanto, $P_M^* = P_M$, es decir, el operador es autoadjunto.

(IV) Rango $(P_M) = M$ y Kernel $(P_M) = M^{\perp}$.

Demostración. \Rightarrow Para $x \in M$, $P_M(x) = x$, luego $M \subseteq Rango(P_M)$.

 \Leftarrow Como M es un subespacio cerrado, tenemos que para todo $y \in H$ arbitrario pero fijo $P_M(y) \in M$, luego Rango $(P_M) \subseteq M$.

En el caso del Kernel, tenemos que $y \in \text{Kernel}(P_M)$ si y sólo si (y, v) = 0 para todo $v \in M$, es decir, $y \in M^{\perp}$, así Kernel $(P_M) = M^{\perp}$.

(V) Suponga que $P \in L(H)$. Entonces P es una proyección ortogonal sobre un subespacio cerrado de H si, y solo si, $P = P^2 = P^*$.

Demostración. \Rightarrow La demostración es trivial por lo realizado en los subpuntos (I)-(III) ya que L(H) es un espacio de Hilbert.

 \Leftarrow Suponga $P = P^2 = P^*$, entonces tenemos que P es una proyección además como P es autoadjunto y estamos en un espacio de Hilbert queremos probar que el Kernel (P^*) = $(Rango\ A)^{\perp}$ y siendo a M como M = Rango(P) veamos que M es un subespacio cerrado de H.

Ahora, supongamos que $x_1, x_2 \in M$. Como M = Rango(P), existen $u, v \in H$ tales que

$$P(u) = x_1$$
 y $P(v) = x_2$,

como P es idempotente y lineal, dado $\lambda \in \mathbb{R}$, se tiene que

$$P(P(x + \lambda x_2)) = P(x + \lambda x_2) = P(x) + \lambda P(x_2) = x + \lambda x_2.$$

Por lo que, $x + \lambda y \in M$, lo cual muestra que M es un subespacio vectorial de H.

Como $P \in L(H)$, entonces P es un operador acotado en un espacio de Hilbert, entonces, toda sucesión de Cauchy $\{x_n\} \subset H$ converge a algún $x \in H$. Queremos ver que M es cerrado por, tomemos $\{x_n\} \subset M$ una sucesión de Cauchy, por lo cual existen $\{y_n\} \subset H$ tales que $x_n = P(y_n)$. Sabemos que P es continuo puesto que es lineal y por definición es acotado, también es continuo, por lo que $\{x_n\} = \{P(y_n)\}$ es Cauchy en M si y solo si $\{u_n\}$ es Cauchy en H.

Sea $\epsilon>0$ arbitrario pero fijo, existe $N\in\mathbb{N}$ tal que si n,m>N, entonces $|x_n-x_m|<\epsilon,$ entonces

$$||P(x_n) - P(x_m)|| = ||P(x_n - x_m)||$$

 $\leq ||P|| ||x_n - x_m||$
 $\leq \varepsilon.$

como P es un operador continuo, entonces $P(x_n) \to P(x)$ con $x \in H$, y como $x_n = P(y_n)$, entonces $x_n \to P(x) \in M$. Por lo tanto, M es cerrado. Como M es un subespacio cerrado en un espacio de Hilbert y P es autoadjunto e idempotente entonces $x - P(x) \in Kernel(P)$, por lo cual P es la proyección ortogonal sobre M

Eiercicio 3

Considere los operadores de desplazamiento $S_r, S_l \in L(l^2)$, donde si $x = (x_1, x_2, ..., x_n, ...) \in l^2$, estos se definen como

$$S_r x = (0, x_1, x_2, \dots, x_{n-1}, \dots)$$

y

$$S_1x = (x_2, x_3, x_4, \dots, x_{n+1}, \dots)$$
.

 S_r se conoce como desplazamiento a derecha y S_1 como desplazamiento a izquierda.

(a) Determinar las normas $||S_r|| \le ||S_l||$.

Demostración. Sea $x=(x_1,x_2,\ldots)\in\ell^2$. Por definición de la norma de operador, se tiene

$$||S_r||_{\mathcal{L}(\ell^2)} = \sup_{||x||_{\ell^2} \le 1} ||S_r x||_{\ell^2}.$$

Dado que $S_r x = (0, x_1, x_2, \ldots)$, si denotamos $y = S_r x = (y_1, y_2, \ldots)$, entonces

$$\|S_r x\|_{\ell^2} = \left(\sum_{k=1}^{\infty} |y_k|^2\right)^{1/2} = \left(\sum_{k=2}^{\infty} |x_{k-1}|^2\right)^{1/2} = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{1/2} = \|x\|_{\ell^2}.$$

Por lo tanto,

$$\|S_r\|_{\mathcal{L}(\ell^2)} = \sup_{\|x\|_{\ell^2} \leq 1} \|S_r x\|_{\ell^2} \leq \sup_{\|x\|_{\ell^2} \leq 1} \|x\|_{\ell^2} = 1.$$

Como esta cota se alcanza, por ejemplo al tomar $x = e_1 = (1, 0, 0, ...)$, para el cual $\|x\|_{\ell^2} = 1$ y

$$S_r e_1 = (0, 1, 0, 0, ...), ||S_r e_1||_{\ell^2} = 1,$$

concluimos que

$$||S_r||_{\mathcal{L}(\ell^2)} = 1.$$

De forma análoga, el operador S_1 está definido por $S_1x = (x_2, x_3, ...)$. Si denotamos $y = S_1x$, entonces

$$\|S_1x\|_{\ell^2} = \left(\sum_{k=1}^{\infty} |y_k|^2\right)^{1/2} = \left(\sum_{k=2}^{\infty} |x_k|^2\right)^{1/2} \le \|x\|_{\ell^2},$$

por lo que

$$\|S_l\|_{\mathcal{L}(\ell^2)} \leq 1.$$

Esta cota también se alcanza, por ejemplo, con $x = e_2 = (0, 1, 0, ...)$, ya que

$$S_1e_2=(1,0,0,\ldots),\quad \|S_1e_2\|_{\ell^2}=1,$$

lo que implica que

$$||S_1||_{\mathcal{L}(\ell^2)}=1.$$

(b) Muestre que $EV(S_r) = \emptyset$.

Demostración. Sea $x=(x_1,x_2,\ldots)\in \ell^2$ y sea $\lambda\in\mathbb{R}$. Supongamos que $S_rx=\lambda x$. Entonces, por la definición del operador S_r , se tiene:

$$S_r x = (0, x_1, x_2, ...) = (\lambda x_1, \lambda x_2, ...).$$

Comparando componente a componente, se obtiene:

- En la primera coordenada: $0 = \lambda x_1$, por lo que si $\lambda \neq 0$, se deduce que $x_1 = 0$.
- En la segunda coordenada: $x_1 = \lambda x_2$, lo cual implica $x_2 = 0$ ya que $x_1 = 0$.

■ En general, para $i \ge 2$, se cumple que $x_{i-1} = \lambda x_i$, lo que por recurrencia implica que $x_i = 0$ para todo $i \ge 1$.

Por tanto, x = (0, 0, 0, ...).

Ahora, si $\lambda = 0$, se tiene que

$$S_r x = (0, x_1, x_2, ...) = (0, 0, 0, ...),$$

lo cual implica que $x_i = 0$ para todo $i \ge 1$, es decir, nuevamente x = (0, 0, 0, ...).

En ambos casos, el único vector que satisface $S_r x = \lambda x$ es el vector nulo. Por lo tanto, el núcleo de $S_r - \lambda I$ es trivial:

$$N(S_r - \lambda I) = \{0\},\$$

y concluimos que λ no es valor propio de S_r para ningún $\lambda \in \mathbb{R}$. Así,

$$\sigma_{\mathfrak{p}}(S_{\mathfrak{r}}) = \emptyset$$
.

(e) Muestre que $\sigma(S_1) = [-1, 1]$.

Demostración. Por el ítem a) sabemos que $||S_1||_{\ell^2} = 1$. Entonces, por un teorema visto en clase, se tiene que

$$\sigma(S_1) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le ||S_1|| = 1\}.$$

Supongamos que $\lambda \neq 0$ y que existe $x \in \ell^2$ tal que $S_1 x = \lambda x$. Esto implica que

$$(\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \dots) = (\lambda \mathbf{x}_1, \lambda \mathbf{x}_2, \lambda \mathbf{x}_3, \dots).$$

Por lo tanto, para todo $i \ge 1$, se cumple que

$$\chi_{i+1} = \lambda \chi_i$$
.

Este tipo de recurrencia implica que

$$x_i = \lambda^{i-1} x_1 \quad \text{para todo } i \geq 1.$$

Es decir, el vector x tiene la forma

$$x=(x_1,\lambda x_1,\lambda^2 x_1,\lambda^3 x_1,\dots)=x_1(1,\lambda,\lambda^2,\lambda^3,\dots).$$

Ahora bien, para que $x \in \ell^2$, debe cumplirse que

$$\sum_{n=1}^{\infty} |x_n|^2 = \sum_{n=1}^{\infty} |x_1 \lambda^{n-1}|^2 = |x_1|^2 \sum_{n=0}^{\infty} |\lambda|^{2n}.$$

La serie geométrica $\sum_{n=0}^{\infty} |\lambda|^{2n}$ converge si y solo si $|\lambda| < 1$. Por lo tanto, para que $x \in \ell^2$, se debe tener $|\lambda| < 1$.

Esto muestra que si $|\lambda|$ < 1, entonces λ es valor propio de S_1 , y así

$$A := \{\lambda \in \mathbb{R} : |\lambda| < 1\} \subseteq \sigma(S_1).$$

Como $\sigma(S_1)$ es un conjunto cerrado en \mathbb{R} , se sigue que

$$\overline{A} \subseteq \sigma(S_1) \subseteq \{\lambda \in \mathbb{R} : |\lambda| \le 1\}.$$

Pero $\overline{A} = \{\lambda \in \mathbb{R} : |\lambda| \le 1\}$, así que se concluye

$$\sigma(S_1) = \{\lambda \in \mathbb{R} : |\lambda| < 1\}.$$

(d) Muestre que $EV(S_1) = (-1, 1)$. Encuentre el espacio propio correspondiente.

Demostración. Ya se ha visto que si $|\lambda| < 1$, entonces existe un vector no nulo $x \in \ell^2$ tal que

$$x = x_1(1, \lambda, \lambda^2, \lambda^3, \dots),$$

y este pertenece a ℓ^2 si y solo si $\sum_{n=0}^{\infty} |\lambda|^{2n} < \infty$, lo cual ocurre si y solo si $|\lambda| < 1$. Por lo tanto, todos los $\lambda \in (-1,1)$ son valores propios de S_1 , y el espacio propio correspondiente está dado por

span
$$\{(1, \lambda, \lambda^2, \lambda^3, \ldots)\}$$
.

Veamos ahora que $\lambda = 1$ y $\lambda = -1$ no son valores propios de S_1 . Supongamos que $S_1x = \lambda x$ con $\lambda = \pm 1$, y $\lambda \in \ell^2 \setminus \{0\}$. Entonces, como antes,

$$x = x_1(1, \lambda, \lambda^2, \lambda^3, \ldots).$$

Para $\lambda = 1$, tendríamos $x = x_1(1, 1, 1, 1, \dots)$, y la norma cuadrada sería

$$||x||^2 = |x_1|^2 \sum_{n=0}^{\infty} 1 = \infty,$$

lo cual contradice que $x \in \ell^2$.

Análogamente, para $\lambda = -1$, tendríamos $x = x_1(1, -1, 1, -1, \dots)$, y nuevamente:

$$||x||^2 = |x_1|^2 \sum_{n=0}^{\infty} 1 = \infty,$$

por lo que $x \notin \ell^2$ tampoco en este caso.

Así, ni $\lambda=1$ ni $\lambda=-1$ son valores propios de $S_{\iota}.$

En conclusión,

$$\mathsf{EV}(S_{\iota}) = (-1,1).$$

(f) Determine los adjuntos S_r^* y S_1^* .

Solución: Recordemos que, en un espacio de Hilbert real como $\ell^2(\mathbb{R})$, el adjunto T^* de un operador $T \in \mathcal{L}(\ell^2)$ es el único operador tal que

$$(\mathsf{Tx},\mathsf{y})=(\mathsf{x},\mathsf{T}^*\mathsf{y})$$
 para todo $\mathsf{x},\mathsf{y}\in\ell^2$.

Sea $x = (x_1, x_2, x_3, ...) \in \ell^2$ y $y = (y_1, y_2, y_3, ...) \in \ell^2$.

Para S_r: recordemos que

$$S_r x = (0, x_1, x_2, x_3, \ldots).$$

Entonces

$$(S_r x, y) = \sum_{n=1}^{\infty} (S_r x)_n y_n = \sum_{n=1}^{\infty} x_{n-1} y_n \quad \text{(tomando } x_0 = 0\text{)}$$

$$= \sum_{n=2}^{\infty} x_{n-1} y_n = \sum_{m=1}^{\infty} x_m y_{m+1} = (x, z),$$

donde $z = (y_2, y_3, y_4, \ldots)$. Por tanto,

$$S_r^*y = (y_2, y_3, y_4, ...),$$

es decir,

$$S_r^*y = S_ly$$
.

Para S₁: recordemos que

$$S_1x = (x_2, x_3, x_4, \ldots).$$

Entonces

$$(S_{l}x, y) = \sum_{n=1}^{\infty} (S_{l}x)_{n}y_{n} = \sum_{n=1}^{\infty} x_{n+1}y_{n}$$
$$= \sum_{m=2}^{\infty} x_{m}y_{m-1} = (x, z),$$

donde $z = (0, y_1, y_2, y_3, ...)$. Por tanto,

$$S_1^* y = (0, y_1, y_2, ...),$$

es decir,

$$S_1^* u = S_r u$$
.

Por lo tanto, se cumple que

$$S_r^* = S_l, \quad y \quad S_l^* = S_r.$$

(c) Muestre que $\sigma(S_r) = [-1, 1]$.

Demostración. Primero, notamos que S_r es un operador lineal y acotado sobre el espacio de Hilbert real ℓ^2 , lo cual ya fue demostrado previamente. Además, en una prueba anterior también se encontró su adjunto, y se verificó que

$$S_r^* = S_\ell$$
.

Ahora, por la **Proposición 8.3.1**, la cual establece que si $T \in \mathcal{L}(H)$ para un espacio de

Hilbert H, entonces se tiene que

$$\sigma(\mathsf{T}) = \sigma(\mathsf{T}^*),$$

concluimos que

$$\sigma(S_r) = \sigma(S_r^*) = \sigma(S_\ell) = [-1, 1].$$

Esto demuestra que el espectro de $S_r = [-1, 1]$.

Demostración. Queremos mostrar que si $\lambda \in \rho(S_r)$, entonces $|\lambda| > 1$.

Recordemos que $S_r \in \mathcal{L}(\ell^2)$ y que si $\lambda \in \rho(S_r)$, entonces $R_{\lambda} = (\lambda I - S_r)^{-1} \in \mathcal{L}(\ell^2)$, es decir, R_{λ} es un operador acotado.

Sea $x = (x_1, x_2, ...) \in \ell^2$, y supongamos que $y = R_{\lambda}x$. Entonces

$$(\lambda I - S_r)y = x$$
 es decir, $\lambda y_n - y_{n-1} = x_n$, con $y_0 = 0$.

Despejando recursivamente obtenemos:

$$y_1 = \frac{x_1}{\lambda}, \quad y_2 = \frac{x_2 + y_1}{\lambda} = \frac{x_2}{\lambda} + \frac{x_1}{\lambda^2}, \quad \dots, \quad y_n = \sum_{k=1}^n \frac{x_k}{\lambda^{n-k+1}}.$$

Entonces,

$$y_n = \sum_{k=1}^n \lambda^{-(n-k+1)} x_k.$$

Supongamos ahora que $|\lambda| \leq 1$.Consideremos

$$x^{(N)}=(\underbrace{1,1,\ldots,1}_{N},0,0,\ldots),$$

que claramente están en ℓ^2 . Evaluamos $y^{(N)}=R_{\lambda}x^{(N)},$ y calculamos su norma:

$$y_n^{(N)} = \begin{cases} \sum_{k=1}^n \lambda^{-(n-k+1)} = \lambda^{-n} \sum_{j=1}^n \lambda^j = \lambda^{-n} \cdot \frac{\lambda(1-\lambda^n)}{1-\lambda}, & \text{si } n \leq N, \\ \sum_{k=1}^N \lambda^{-(n-k+1)} = \lambda^{-n} \sum_{j=n-N+1}^n \lambda^j, & \text{si } n > N. \end{cases}$$

En particular, para n = N, se tiene:

$$y_N^{(N)} = \sum_{k=1}^N \lambda^{-(N-k+1)} = \sum_{i=1}^N \lambda^{-i}.$$

Si $|\lambda| \leq 1$, entonces $|\lambda^{-1}| \geq 1$, y por tanto $\sum_{j=1}^N |\lambda^{-j}| \geq N$. Esto implica que $\|y^{(N)}\| \to \infty$ cuando $N \to \infty$, mientras que $\|x^{(N)}\| = \sqrt{N}$, así que

$$\frac{\|\mathbf{y}^{(N)}\|}{\|\mathbf{x}^{(N)}\|} \to \infty.$$

Esto contradice que R_{λ} sea un operador acotado. Por tanto, si $\lambda \in \rho(S_r)$, entonces necesariamente $|\lambda| > 1$. Como el espectro debe estar contenido en $\{\lambda \in \mathbb{C} : |\lambda| \leq \|S_r\| = 1\}$, y como ya probamos en un paso anterior que todo $|\lambda| < 1$ está en el resolvente, concluimos que:

$$\sigma(S_r) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

Ejercicio 4 Sea $1 \le p < \infty$ y consideremos el espacio $L^p((0,1))$, Dado $u \in L^p((0,1))$, definimos

$$Tu(x) = \int_{0}^{x} u(t)dt$$

(a) Demuestre que $T \in \mathcal{K}(L^p((0,1)))$.

Demostración. Probemos primero que efectivamente es un operador lineal y acotado. La linealidad del operador es clara ya que se hereda de la linealidad de la integral. Ahora por la desigualdad de Holder

$$\|u\|_{L^1} = \int_0^1 |u(t)| dt \le \|1\|_{L^{p'}} \|u\|_{L^p} = \|u\|_{L^p}.$$

donde p' es el conjugado de p. Asi tenemos que

$$||Tu||_{L^{p}} = \left(\int_{0}^{1} |Tu(x)|^{p} dx\right)^{1/p}$$

$$= \left(\int_{0}^{1} \left|\int_{0}^{x} u(t) dt\right|^{p} dx\right)^{1/p}$$

$$\leq \left(\int_{0}^{1} \left(\int_{0}^{1} |u(t)| dt\right)^{p} dx\right)^{1/p}$$

$$= \int_{0}^{1} |u(t)| dt$$

$$= ||u||_{L^{1}}$$

$$= ||u||_{L^{p}},$$

Concluyendo así que T es acotado y ademas particularmente tenemos que $\|T\| \le 1$. Faltaría ver que efectivamente es compacto el operador. Para esto usaremos el teorema de Kolmogorov. Riesz-Frechet enunciado en el Brezis. Para que no haya problemas como de igual manera $|h| \to 0$, tomaremos |h| < 1, asi si tomamos $f \in T(B)$, sabemos que existe

 $u \in B$ tal que Tu = f, luego si h < 0

$$\begin{split} \|\tau_h f - f\|_{L^p} &= \left(\int_0^1 |\tau_h f(x) - f(x)|^p \, dx\right)^{1/p} \\ &= \left(\int_0^1 |\tau_h T u(x) - T u(x)|^p \, dx\right)^{1/p} \\ &= \left(\int_0^1 |T u(x+h) - T u(x)|^p \, dx\right)^{1/p} \\ &= \left(\int_0^1 \left|\int_0^{x+h} u(t) \, dt - \int_0^x u(t) \, dt\right|^p \, dx\right)^{1/p} \\ &= \left(\int_0^1 \left|\int_{x+h}^x u(t) \, dt\right|^p \, dx\right)^{1/p} \\ &\leq \left(\int_0^1 \left(\int_{x+h}^x |u(t)| \, dt\right)^p \, dx\right)^{1/p} \end{split}$$

Como $u \in B$ por Holder como hicimos al inicio tenemos que

$$\int_{x+h}^x |u(t)|\,dt \leq \|\chi_{(x+h,x)}\|_{L^{p'}} \|u\|_{L^p} \leq |h|^{1/p'}$$

Así concluimos que cuando $|h| \to 0$, $||\tau_h f - f||_{L^p} \to 0$ para toda $f \in T(B)$, para el caso $h \ge 0$ la cuenta es análoga y solo cambia el orden de escritura en los intervalos de integración, por lo que el teorema citado nos dice que como (0,1) tiene medida finita y T(B) es acotado, luego la clausura de este conjunto de compacta en $L^p(0,1)$, asi concluimos que el operador es compacto.

 $Q^{*}Q$

(b) Determine EV(T) y σ (T).

Demostración. Dado que T es compacto, sabemos que $0 \in \sigma(T)$ y que $\sigma(T) \setminus \{0\} = EV(T) \setminus \{0\}$, entonces consideremos $\lambda \neq 0$, como $l^p(0,1) \subset L^1(0,1)$, por diferenciación de Lebesgue dada $u \in L^p(0,1)$ tenemos que

$$\lim_{h\to 0^+} \int_{x}^{x+h} u(y)\,dy = u(x)$$

Para casi todo $x \in (0, 1)$, se puede simplificar la elección de h > 0 ya que en caso contrario solo cambian los limites de integración. Así tenemos que la función

$$Tu(x) = \int_0^x u(t) dt$$

es derivable en casi toda parte en (0,1), luego si escogemos $u \neq 0$ tal que $Tu = \lambda u$,

tenemos por la derivavilidad que

$$u(x) = \lambda u'(x)$$

tomando $x \to 0^+$ nos damos cuenta de la formula de Tu que u(0) = 0 es la manera continua de extender a u al intervalo [0, 1), asi estamos resolviendo el problema de valor inicial

$$\begin{cases} u' = \frac{1}{\lambda}u \\ u(0) = 0 \end{cases}$$

La solución general de esta EDO es $u(x) = Ce^{x/\lambda}$, pero por la condición inicial C = 0, concluyendo que la u = 0, esto es una contradicción, así concluimos que $\sigma(T) = \{0\}$ y $EV(T) = \emptyset$, ya que lo anterior nos dice que $\mathbb{R} \setminus \{0\} \subset \rho(T)$.

 $\Omega^{"}\Omega$

(c) Dé una fórmula explícita para $(T - \lambda I)^{-1}$ cuando $\lambda \in \rho(T)$.

Demostración. Sea $u\in L^p(0,1)$ y $\lambda\neq 0$, por definición $f:=(T-\lambda I)u=Tu-\lambda u,$ si llamamos

$$h(x) = Tu(x)$$

Por lo visto en el item anterior sabemos que h es derivable para casi todo $x \in (0, 1)$ y que ademas $h' = u \operatorname{con} x \in (0, 1)$, asi tenemos el siguiente problema de valor inicial

$$\begin{cases} h - \lambda h' = f \\ h(0) = 0 \end{cases}$$

Luego la unica solucion de este PVI es

$$h(x) = -\frac{1}{\lambda} e^{x/\lambda} \int_0^x e^{-t/\lambda} f(t) dt$$

Por un argumento analogo a la parte b la parte integral de la solución es derivable en casi toda parte y en particular tenemos que por la regla del producto

$$h'(x) = -\frac{1}{\lambda^2} e^{x/\lambda} \int_0^x e^{-t/\lambda} f(t) dt - \frac{1}{\lambda} e^{-x/\lambda} f(x) e^{x/\lambda}$$

Asi como h' = u tenemos que

$$u(x) = -\frac{1}{\lambda^2} e^{x/\lambda} \int_0^x e^{-t/\lambda} f(t) dt - \frac{1}{\lambda} f(x)$$

Así como $u = (T - \lambda I)^{-1}f$, deducimos que el operador inverso es la formula dada, es decir

$$(T - \lambda I)^{-1} f = -\frac{1}{\lambda^2} e^{x/\lambda} \int_0^x e^{-t/\lambda} f(t) dt - \frac{1}{\lambda} f(x)$$

 $Q^{*}Q$

(d) Determine T*. Por definición

Demostración.

$$T^*: (L^p(0,1))^* \to (L^p(0,1))^*$$

$$\mu \to T^*\mu$$

Donde

$$T^*\mu:L^p(0,1)\to\mathbb{R}$$

$$f\to \langle T^*\mu,f\rangle:=\langle \mu,Tf\rangle.$$

Esto ultimo por la definición de adjunto. Ahora por el teorema de representación de Riesz, existe una única $g_{\mu} \in L^{p'}(0,1)$ tal que

$$\langle \mu, Tf \rangle = \int_0^1 g_{\mu}(x) Tf(x) dx.$$

De manera similar como $p<\infty,$ y el dual de L^p se identifica con $L^{p'}$, tenemos que existe única $h_{\mu}\in L^{p'}(0,1)$ tal que

$$\langle T^*, f \rangle = \int_0^1 h_{\mu}(x) f(x) dx$$

y por la igualdad dada previamente tenemos que

$$\int_0^1 h_{\mu}(x) f(x) dx = \int_0^1 g_{\mu}(x) Tf(x) dx.$$

Como f es arbitraria, manipulando el lado derecho de la igualdad tenemos que

$$\begin{split} \int_0^1 g_{\mu}(x) T f(x) \; dx &= \int_0^1 g_{\mu}(x) \int_0^x f(t) dt \, dx \\ &= \int_0^1 \int_0^x g_{\mu}(x) f(t) \; dt dx \\ &= \int_0^1 \int_t^1 g_{\mu}(x) f(t) \; dx dt \\ &= \int_0^1 f(t) \int_t^1 g_{\mu}(x) \; dx dt \end{split}$$

Por la unicidad obtenemos que

$$h_{\mu}(t) = \int_{t}^{1} g_{\mu}(x) dx = \int_{0}^{1} g_{\mu}(x) \chi_{(t,1)}(x) dx = \langle \mu, \chi_{(t,1)} \rangle.$$

Con esto el adjunto esta dado por

$$\langle T^*\mu, f \rangle = \int_0^1 \langle \mu, \chi_{(t,1)} \rangle f(x) dx.$$

 $Q_{\mu}Q_{\mu}$

Ejercicio 6 Considere $g \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R})$ (es decir, g es continua y acotada). Definimos el operador de multiplicación $M_q: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ dado por

$$M_q(f)(x) = g(x)f(x)$$

(a) Muestre que $\sigma(M_g) = \overline{\{g(x) : x \in \mathbb{R}\}}$.

Demostración. Como $g \in L^{\infty}(\mathbb{R})$, se tiene que $\|g\|_{\infty} < \infty$, y por lo tanto M_g es un operador lineal y acotado sobre $L^2(\mathbb{R})$, donde

$$\|M_g(f)\|_{L^2}^2 = \int_{\mathbb{R}} |g(x)f(x)|^2 dx \le \|g\|_{\infty}^2 \|f\|_{L^2}^2,$$

lo que implica que $M_q \in L(L^2(\mathbb{R}))$.

Como M_q es un operador de multiplicación, y por lo tanto, es autoadjunto puesto que,

$$\begin{split} \langle M_g(f), h \rangle &= \int_{-\infty}^{\infty} M_g(f)(x) \, h(x) \, dx \\ &= \int_{-\infty}^{\infty} g(x) f(x) h(x) \, dx \\ &= \int_{-\infty}^{\infty} f(x) g(x) h(x) \, dx \\ &= \int_{-\infty}^{\infty} f(x) \, M_g(h)(x) \, dx \\ &= \langle f, M_g(h) \rangle. \end{split}$$

Ahora veamos que $\sigma(M_g) = \overline{\{g(x) : x \in \mathbb{R}\}}$, sea $\lambda \in \{g(x) : x \in \mathbb{R}\}$, entonces, existe $x_0 \in \mathbb{R}$ tal que $g(x_0) = \lambda$. Como g es continua, tenemos que para todo $\varepsilon > 0$, existe $\delta > 0$ tal que si $|x - x_0| < \delta$, entonces $|g(x) - \lambda| < \varepsilon$.

Sea $f \in L^2(\mathbb{R})$ con soporte contenido en $(x_0 - \delta, x_0 + \delta)$ y $f \neq 0$. entonces,

$$\|(M_g - \lambda I)f\|_2^2 = \int_{\mathbb{R}} |g(x) - \lambda|^2 |f(x)|^2 dx < \varepsilon^2 \|f\|_2^2.$$

Si $M_g - \lambda I$ fuera invertible, existiría una constante C > 0 tal que,

$$\|(M_q - \lambda I)f\|_2 \ge C\|f\|_2$$
 para toda $f \in L^2(\mathbb{R})$,

lo cual contradice la desigualdad anterior cuando $\varepsilon \to 0$. Por tanto, $\lambda \in \sigma(M_g)$. Como el espectro $\sigma(M_g)$ es cerrado, se concluye que,

$$\overline{\{g(x):x\in\mathbb{R}\}}\subseteq\sigma(M_g).$$

Por otro lado, sea $\lambda \in \mathbb{C} \setminus \overline{g(\mathbb{R})}$. Entonces existe $\varepsilon > 0$ tal que $|g(x) - \lambda| \ge \varepsilon$ para todo $x \in \mathbb{R}$, definamos el operador

$$R_{\lambda}(f)(x) = \frac{f(x)}{g(x) - \lambda},$$

que es acotado porque,

$$\|R_{\lambda}(f)\|_{L^{2}}^{2} = \int_{\mathbb{R}} \left| \frac{f(x)}{g(x) - \lambda} \right|^{2} dx \leq \frac{1}{\varepsilon^{2}} \|f\|_{L^{2}}^{2}.$$

y satisface que

$$(M_g - \lambda I)R_{\lambda}(f)(x) = (g(x) - \lambda) \cdot \frac{f(x)}{g(x) - \lambda} = f(x).$$

lo cual implica que $(M_g - \lambda I)^{-1}$ existe y es acotado, por lo tanto $\lambda \notin \sigma(M_g)$, por lo que

$$\sigma(M_g)\subseteq \overline{g(\mathbb{R})}$$

Así,

$$\sigma(M_g)=\overline{g(\mathbb{R})}$$

(b) ¿Es el operador M_g compacto?

Solución. No, en general el operador M_g no es compacto, si el operador fuera compacto en $L^2(\mathbb{R})$ tenemos que cualquier sucesión acotada en una sucesión que tiene una subsucesión convergente en norma.

Tomemos a g(x) como la función constante uno la cual claramente es continua y acotada, es decir, $g \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R})$. Entonces M_g es el operador identidad en $L^2(\mathbb{R})$. Tomemos a $\{f_n\}_{n\in\mathbb{N}} \subset L^2(\mathbb{R})$ como una sucesión definida por

$$f_n(x) = \chi_{[n,n+1]}(x),$$

donde $\chi_{[n,n+1]}$ es la función característica del intervalo [n,n+1], esta sucesión es ortonormal en $L^2(\mathbb{R})$, y por tanto, acotada.

Aplicando M_g a cada f_n , tenemos que $M_g(f_n) = f_n$. Por tanto, la imagen de esta sucesión no tiene ninguna subsucesión convergente en norma, ya que las f_n son ortogonales entre sí y su distancia es constante.

Por lo tanto, M_q no es compacto.