Schematic of adaptive optics system

Feedback loop: next cycle corrects the (small) errors of the last cycle

e.g. SHACK-HARTMANN WAVEFRONT SENSOR or PYRAMID WAVEFRONT SENSOR

Part II - PSF theory

Optical Path Difference

This is the deviation of the wavefront from 'perfect'... when talking of an image being formed by a converging wavefront,

THE DEVIATION OF THE WAVEFRONT FROM THE PERFECT SPHERICAL CONVERGING WAVE

is the optical path difference.

In a collimated beam such as an interferometer, the deviation of a wavefront from the perfect, flat wavefront is the OPD.

OPD(x,y) is a real function in 'pupil space', dimensions of LENGTH usually At wavelength it is expressed in RADIANS of PHASE: $\phi(x,y) = (2 \pi / \lambda) OPD(x,y)$

diverging spherical

UNFOCUSSED IMAGES MEASURE THE MIRRORS

S. BASINGER

Phase aberrations in cycles per diameter

Think Fourier

Sine wave aberration is a pair of delta functions in its 'Fourier transform domain'

At small amplitudes this corresponds to pair of bright spots in the PSF: pupil: $exp(i\phi) \sim 1 + i\phi$ image: $\delta(0) + FT(sine)$

As size of aberration increases, exp(iφ) expansion gets higher order terms. Quadratic terms produce spots at twice the separation...

Choosing the amount of defocus

What is the best defocus to use?

Signal strength for given spatial frequency of aberration (number of ripples across mirror) is periodic in 1/defocus

B. Dean, C. Bowers, "Diversity Selection for Phase-Diverse-Phase-Retrieval," JOSA, 20(8), 2003, pp. 1490-1504

Missel Algorithm

Goal: Derive high-resolution exit pupil amplitude and phase maps

Pupil amp constraint: Enforce amplitude, zero outside pupil, or free everywhere

Misell-Gerchberg-Saxton (MGS) algorithm

MGS in this case - a mapping from one guess at the phase, $f_1(x)$, to a better estimate, $f_2(x)$, using a known pupil function and image data I(k)

- Assume a pupil function A(x) and a first-guess phase f₁(x)
- Calculate $a(k) = F[(A(x) \exp \{i f_1(x)\}] = b(k) \exp \{i g(k)\}$ (b is real)
- Use measured data for intensity I(k) replace b(k) with sqrt(I(k))
- Now we have sqrt(I(k)) exp {i g(k)}
- Back-transform it we write this as $C(x) \exp\{i f_2(x)\}$
- This gives us our revised estimate of the phase, f₂(x)
- Now write the pupil field using known pupil A instead of C: $A(x) \exp \{i f_2(x)\}$
- And do the same operations to get the next estimate, $f_3(x)$, for the phase

Keep going till you are happy. It WILL converge but not necessarily to the right phase -

- Incorrect A(x)
- Improperly reduced data I(k) (CR, flats, photon noise, real pixel response,...)
- Difference between FFT samples and physical pixels, etc.