Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Tutorial Sheet 2

1. Find the limit of the following sequences. (a)
$$x_n = \frac{3n^2 + 2n + 1}{n^2 + 1}$$
 (b) $x_n = \frac{(3n+1)(n-2)}{n(n+3)}$ (c) $x_n = (-1)^n \left(\frac{2}{n+2}\right)$ (d) $x_n = \frac{n+1}{2n+3}$

(e)
$$x_n = \sqrt{4n^2 + n} - 2n$$
. (f) $x_n = \sqrt{n^2 + n} - \sqrt{n^2 + 1}$.

- 2. Use Sandwich theorem to prove that
 - (a) $\lim_{n \to \infty} \frac{1}{n} \sin^2 n = 0$.
 - (b) $\lim \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2} \right] = 0.$
 - (c) $\lim \left[\frac{n}{n^3+1} + \frac{2n}{n^3+2} + \dots + \frac{n^2}{n^3+n} \right] = \frac{1}{2}$
 - (d) $\lim \sqrt[n]{(a^n + b^n)} = b$, where 0 < a < b
- 3. Use Monotone convergence theorem to prove that $\{x_n\} = \{\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}\}$ is convergent.
- 4. Show that the sequence $\{\frac{1}{n}\}$ is a Cauchy sequence.
- 5. Show that the sequence $\{x_n\} = \{ny^{n-1}\}$, where $y \in (0,1)$ is a convergent sequence.
- 6. Show that the sequence $\{x_n\} = \{\frac{4^{3n}}{3^{4n}}\}$ converges to zero.
- 7. Show that $\lim_{n\to\infty} \sqrt[n]{n+1} = 1$.
- 8. State whether the following statements are true/false. Give proper justifications.
 - (a) A sequence can have exactly two limits.
 - (b) A sequence must have at least one limit.
 - (c) A bounded sequence must have a limit.
 - (d) An unbounded sequence will never have a limit.
 - (e) A monotone sequence must have a limit.
 - (f) A monotone sequence which is bounded above, must have a limit.

1

(g) A bounded monotone sequence must have a limit.