MATH-411 Numerical Analysis—Homework 6 Rochester Institute of Technology, Fall 2022

Due: Monday November 21, 2022 at 11.59pm EST.

Instructor: Blessing Emerenini

E-mail: boesma@rit.edu

Remark:

• All assignments are uploaded on MyCourses as pdf.

- You can discuss ideas on how to tackle the problems on Piazza but do not post solutions.
- Please show all your work clearly. If the assignment involves MATLAB, please turn in your code and figures as well.
- Do you put your answers on your code comments, I strongly ask that you write down your answers for any assignment (homework and projects) on a different sheet (handwritten or typeset), include your figures and tables on this sheet and all your supporting calculations and narratives.
- 1. Consider the following nonlinear autonomous initial value problem in $\mathbb R$ with $f \in C^2$:

$$y' = f(y), \qquad \qquad y(0) = y_0$$

(a) As we discussed in class, one way you can derive numerical ODE methods is by re-writing the ODE through integrating and then applying a quadrature method. Write this ODE in integral form and use the mid-point quadrature rule to derive the *mid-point method* with uniform time-step *h*:

$$y_{n+1} = y_n + hf(\frac{y_{n+1} + y_n}{2}).$$

- (b) Prove that the truncation error, $y(t_{n+1})-[y(t_n)+hf(\frac{y(t_{n+1})+y(t_n)}{2})]$, is $O(h^3)$ for this method. (Hint: expand first $y(t_{n+1})$ and $y(t_n)$ around $\tau_n=t_n+\frac{h}{2}$ and then expand $f(\frac{1}{2}(y(t_{n+1})+y(t_n)))$.)
- (c) Based on your result from (b) and our results in class, what is the order of the method (that is, the global error)?
- 2. Give the order and stability type for each of the following multi-step methods.

(a)
$$w_{j+1} = 3w_j - 2w_{j-1} + \frac{h}{12}(13f_{j+1} - 20f_j - 5f_{j-1})$$

(b)
$$w_{j+1} = \frac{4}{3}w_j - \frac{1}{3}w_{j-1} + \frac{2}{3}hf_{j+1}$$

(c)
$$w_{i+1} = \frac{4}{3}w_i - \frac{1}{3}w_{i-1} + \frac{h}{0}(4f_{i+1} + 4f_i - 2f_{i-1})$$

(d)
$$w_{j+1} = 2w_j - w_{j-1} + \frac{h}{2}(f_{j+1} - f_{j-1})$$

3. Remember that Legendre polynomials were the set of polynomials that are orthogonal on [-1,1] (meaning $\int_{-1}^{1} \phi_n(x) \phi_m(x) dx = 0$ if $m \neq n$. As we discussed in class, orthogonality can be

1

generalized to include a weight function w(x) so that functions are orthogonal on [a,b] with respect to w(x) if $\int_a^b \phi_n(x)\phi_m(x)w(x)dx=0$ if $m\neq n$.

The Gaussian quadratue method we derived in class is for weight function w(x) = 1, but the same process for deriving the Gaussian quadrature formula generalizes to any weight function. Keeping this in mind, find the three points x_j and the weights w_j for the three-point Gaussian quadrature formula with weighting function $w(x) = x^2$, that is find the x_j and w_j such that

$$\int_{-1}^{1} f(x)x^{2}dx \approx \sum_{j=1}^{3} f(x_{j})w_{j}.$$