Graph & BFS

Lecture 1

Graphs

- Extremely useful tool in modeling problems
- Consist of:
 - Vertices

Vertices can be considered "sites" or locations.

Edges represent connections.

Application

Air flight system

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flights = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Definition

- A graph G=(V, E) consists a set of vertices, V, and a set of edges, E.
- Each edge is a pair of (v, w), where v, w belongs to V
- If the pair is unordered, the graph is undirected; otherwise it is directed

An undirected graph

Definition

- Complete Graph
 - How many edges are there in an N-vertex complete graph?
- Bipartite Graph
 - What is its property? How can we detect it?
- Path
- Tour
- Degree of a vertices
 - Indegree
 - Outdegree
 - Indegree+outdegree = Even (why??)

Definition

Complete Graph

- ${}^{N}C_{2} = N(N-1)/2$
- How many edges are there in an N-vertex complete graph?
- Bipartite Graph

Graph's nodes can be divided into two groups and can make edges between these two groups.

- What is its property? How can we detect it?
- Path
- Tour
- Degree of a vertices
 - Indegree
 - Outdegree

An edge goes outward from a node and inward in another node

Indegree+outdegree = Even (why??)

Graph Variations

- Variations:
 - A connected graph has a path from every vertex to every other
 - In an undirected graph:
 - Edge (u,v) = edge (v,u)
 - No self-loops
 - In a directed graph:
 - Edge (u,v) goes from vertex u to vertex v, notated u→v

Graph Variations

- More variations:
 - A weighted graph associates weights with either the edges or the vertices
 - E.g., a road map: edges might be weighted w/ distance
 - A multigraph allows multiple edges between the same vertices
 - E.g., the call graph in a program (a function can get called from multiple points in another function)

Graphs

- We will typically express running times in terms of |E| and |V| (often dropping the |'s)
 - If |E| ≈ |V|² the graph is dense
 - If |E| ≈ |V| the graph is sparse
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Graph Representation

 Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.

Adjacency Matrix
 Use a 2D matrix to represent the graph

Adjacency List
 Use a 1D array of linked lists

Adjacency Matrix

- 2D array A[0..n-1, 0..n-1], where *n* is the number of vertices in the graph
- Each row and column is indexed by the vertex id
 - e,g a=0, b=1, c=2, d=3, e=4
- A[i][j]=1 if there is an edge connecting vertices i and j; otherwise,
 A[i][j]=0
- The storage requirement is Θ(n²). It is not efficient if the graph has few edges. An adjacency matrix is an appropriate representation if the graph is dense: |E|=Θ(|V|²)
- We can detect in O(1) time whether two vertices are connected.

Simple Questions on Adjacency Matrix

- Is there a direct link between A and B?
- What is the indegree and outdegree for a vertex A?
- How many nodes are directly connected to vertex A?
- Is it an undirected graph or directed graph?
- Suppose ADJ is an NxN matrix. What will be the result if we create another matrix ADJ2 where ADJ2=ADJxADJ?

$$ADJ2 = ADJ * ADJ$$

 $ADJ2[i][j] = \sum_{k} ADJ[i][k] * ADJ[k][j]$

So, an edge between [i][j] is created if there's edge between [i][k] and [j][k].

Adjacency List

- If the graph is not dense, in other words, sparse, a better solution is an adjacency list
- The adjacency list is an array A[0..n-1] of lists, where n is the number of vertices in the graph.
- Each array entry is indexed by the vertex id
- Each list A[i] stores the ids of the vertices adjacent to vertex i

Adjacency Matrix Example

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Adjacency List Example

Storage of Adjacency List

- The array takes up Θ(n) space
- Define degree of v, deg(v), to be the number of edges incident to v. Then, the total space to store the graph is proportional to:

- An edge e={u,v} of the graph contributes a count of 1 to deg(u) and contributes a count 1 to deg(v)
- Therefore, $\sum_{\text{vertex } v} \text{deg(v)} = 2\text{m}$, where m is the total number of edges
- In all, the adjacency list takes up $\Theta(n+m)$ space
 - If $m = O(n^2)$ (i.e. dense graphs), both adjacent matrix and adjacent lists use $O(n^2)$ space.
 - If m = O(n), adjacent list outperform adjacent matrix
- However, one cannot tell in O(1) time whether two vertices are connected

Adjacency List vs. Matrix

Adjacency List

- More compact than adjacency matrices if graph has few edges
- Requires more time to find if an edge exists

Adjacency Matrix

- Always require n² space
 - This can waste a lot of space if the number of edges are sparse
- Can quickly find if an edge exists

Path between Vertices

- A path is a sequence of vertices (v₀, v₁, v₂,..., v_k) such that:
 - For $0 \le i < k$, $\{v_i, v_{i+1}\}$ is an edge

Note: a path is allowed to go through the same vertex or the same edge any number of times!

 The length of a path is the number of edges on the path

Types of paths

- A path is simple if and only if it does not contain a vertex more than once.
- A path is a cycle if and only if v₀ = v_k
 - The beginning and end are the same vertex!
- A path contains a cycle as its sub-path if some vertex appears twice or more

Path Examples

Are these paths?

Any cycles?

What is the path's length?

- 1. {a,c,f,e}
- 1. {a,b,d,c,f,e}
- 1. {a, c, d, b, d, c, f, e}
- 2. {a,c,d,b,a}
- 1. {a,c,f,e,b,d,c,a}

Graph Traversal

- Application example
 - Given a graph representation and a vertex s
 in the graph
 - Find paths from s to other vertices
- Two common graph traversal algorithms
 - Breadth-First Search (BFS)
 - Find the shortest paths in an unweighted graph
 - Depth-First Search (DFS)
 - Topological sort
 - Find strongly connected components

BFS and Shortest Path Problem

- Given any source vertex s, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices
- What do we mean by "distance"? The number of edges on a path from s

Example

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2? 8, 6, 5, 4

Nodes at distance 3?

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a forest if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

- Every vertex of a graph contains a color at every moment:
 - White vertices have not been discovered
 - All vertices start with white initially
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search: The Code

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
  V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
While (Q not empty)
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] ==
 WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue(Q, v);
  color[u] = BLACK;
```


Vertex	r	S	t	u	V	W	X	у
color	W	W	W	W	W	W	W	W
d	∞	∞	∞	∞	∞	∞	∞	∞
prev	nil							

vertex	r	S	t	u	V	W	X	у
Color	W	G	W	W	W	W	W	W
d	∞	0	∞	∞	∞	∞	∞	∞
prev	nil							

vertex	r	S	t	u	V	W	X	у
Color	G	В	W	W	W	G	W	W
d	1	0	∞	∞	∞	1	∞	∞
prev	S	nil	nil	nil	nil	S	nil	nil

vertex	r	S	t	u	V	W	Х	у
Color	G	В	G	W	W	В	G	W
d	1	0	2	∞	∞	1	2	∞
prev	S	nil	W	nil	nil	S	W	nil

vertex	r	S	t	u	V	W	X	у
Color	В	В	G	W	G	В	G	W
d	1	0	2	∞	2	1	2	∞
prev	S	nil	W	nil	r	S	W	nil

vertex	r	S	t	u	V	W	X	у
Color	В	В	В	G	G	В	G	W
d	1	0	2	3	2	1	2	∞
prev	S	nil	W	t	r	S	W	nil

vertex	r	S	t	u	V	W	X	у
Color	В	В	В	G	G	В	В	G
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	X

vertex	r	s	t	u	V	W	X	у
Color	В	В	В	G	В	В	В	G
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	X

vertex	r	S	t	u	V	W	X	у
Color	В	В	В	В	В	В	В	G
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	X

vertex	r	S	t	u	V	W	X	у
Color	В	В	В	G	В	В	В	В
d	1	0	2	3	2	1	2	3
prev	S	nil	W	t	r	S	W	X

BFS: The Code (again)

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
  V-{s}
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
While (Q not empty)
{
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] ==
 WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue(Q, v);
  color[u] = BLACK;
```

Breadth-First Search: Print Path

```
Data: color[V], prev[V],d[V]
Print-Path(G, s, v)
{
  if(v==s)
   print(s)
   else if(prev[v]==NIL)
   print(No path);
  else{
   Print-Path(G,s,prev[v]);
   print(v);
```

Amortized Analysis

- Stack with 3 operations:
 - Push, Pop, Multi-pop
- What will be the complexity if "n" operations are performed?

BFS: Complexity

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
   for each vertex u ∈
  V-{s}
                          \mathbf{O}(\mathbf{V})
      color[u]=WHITE;
   prev[u]=NIL;
   d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
While (Q not empty)
           u = every vertex, but only once
                           (Why?)
  u = DEQUEUE(Q);
  for each v \in adj[u]
   if(color[v] == WHITE){
        color[v] = GREY; O(E)
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue(Q, v);
  color[u] = BLACK;
```

What will be the running time?

Total running time: O(V+E)

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
 - Shortest-path distance δ(s,v) = minimum number of edges from s to v, or ∞ if v not reachable from s
 - Proof given in the book (p. 472-5)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Application of BFS

- Find the shortest path in an undirected/directed unweighted graph.
- Find the bipartiteness of a graph.
- Find cycle in a graph.
- Find the connectedness of a graph.

Books

- Cormen Chapter 22 elementary Graph Algorithms
- Exercise you have to solve:
 - 22.1-5 (Square)
 - 22.1-6 (Universal Sink)
 - 22.2-6 (Wrestler)
 - 22.2-7 (Diameter)
 - 22.2-8 (Traverse)