L	Т	Р	С
4	0	0	4

Course Code: INT303

Semester: VI

DATA WAREHOUSING & DATA MINING

Course Objectives

This course will help the learner to construct a data warehouse for analytical processing and apply data mining techniques to uncover interesting patterns.

UNIT - I 15 Periods

Data warehousing And OLAP: Basic concepts - Data Warehouse Modeling - Data cube and OLAP - **Data cube technology:** Data cube computation - Preliminary concepts. **Data Mining:** Introduction - Data Objects and Attribute Types - Basic Statistical Descriptions of Data, Measuring data similarity and dissimilarity. **Data Preprocessing:** Overview - Data cleaning - Data Integration - Data Reduction - Data Transformation and Data Discretization

UNIT - II 15 Periods

Mining Frequent Patterns, Associations, and Correlations: Basic Concepts - Frequent Itemset Mining Methods - Pattern evaluation methods, Pattern Mining in Multilevel, Multidimensional Space. Classification: Basic concepts - Bayes classification methods - Decision tree induction

UNIT - III 15 Periods

Cluster Analysis: Cluster Analysis - Partitioning Methods - Hierarchical Methods - Density Based Methods - Grid based methods - Evaluation of clustering. **Outlier Analysis:** Introduction - Extreme Value Analysis - Probabilistic Models - Clustering for Outlier Detection - Distance-Based Outlier Detection - Density-Based Methods

UNIT - IV 15 periods

Applications: Mining Text Data: Introduction - Document Preparation and Similarity Computation - specialized Clustering Methods for Text - Topic Modeling. Mining Time Series Data: Introduction -Time Series Preparation and Similarity - Time Series Forecasting - Time Series Motifs. Mining Graph Data: Introduction - Matching and Distance Computation in Graphs Transformation-Based Distance Computation - Frequent Substructure Mining in Graphs

TEXT BOOKS

- 1. Charu C.Aggarwal. *Data Mining: The Text Book*, Springer International Publishing, Switzerland. 2015.
- 2. Jiawei Han, Micheline Kamber, and Jian Pei. *Data Mining: Concepts and Techniques*, Morgan Kaufman, Third Edition, 2012.

REFERENCES

- 1. Mohammed J. Zaki, and Wagner Meira Jr. *Data Mining and Analysis Fundamental Concepts and Algorithms*, Cambridge University Press, 2014.
- 2. Alex Berson, and Stephen J. Smith. *Data Warehousing, Data Mining and OLAP,* TataMcGraw Hill, 2012.
- 3. Ian H. Witten, Eibe Frank and Mark A. Hall. *Data Mining Practical Machine LearningTools and Techniques*, Morgan Kaufman, Third Edition, 2011.
- 4. Vikram Pudi and P.Radhakrishna. *Data Mining*. Oxford University Press: 2009.

5. Margaret H. Dunham. *Data Mining: Introductory and Advanced Topics*. Pearson Education, Sixth Impression, 2009.

ONLINE MATERIAL

1. https://nptel.ac.in/courses/106105174/

UNITWISE LEARNING OUTCOMES

Upon successful completion of each unit, the learner will be able to

Unit I	Describe the basics of data warehousing, data cube computation	
	Evaluate preprocessing techniques for sample data	
Unit II	Illustrate frequent patterns from data	
	Analyze data mining functionality such as classification	
Unit III	Apply any kind of basic clustering techniques for knowledge discovery	
	Illustrate outlier detection techniques to identify abnormal data	
Unit IV	Choose mining techniques to other kinds of data such as text data, time series data and Graph data	
	Analyze merits and demerits of mining techniques to other kinds of data	

COURSE LEARNING OUTCOMES

Upon successful completion of this course, the learner will be able to

- Build a data warehouse, data cube and generate results and insights for analytical queries
- Evaluate preprocessing techniques on data of a given task.
- Illustrate frequent item sets and patterns from any structured data
- · Compare different classification and clustering techniques
- Demonstrate outlier detection techniques to identify anomalies
- Recommend mining techniques to other kinds of data such as text, time series and Graph data