Capillary Pressure and Saturation History

Capillary Pressure in Reservoir Rock

DRAINAGE AND IMBIBITION CAPILLARY PRESSURE CURVES

DRAINAGE

 Fluid flow process in which the saturation of the nonwetting phase increases

IMBIBITION

Fluid flow process in which the saturation of the wetting phase increases

Saturation History - Hysteresis

- Capillary pressure depends on both direction of change, and previous saturation history
- Blue arrow indicates probable path from drainage curve to imbibition curve at S_{wt}=0.4
- At S_m, nonwetting phase cannot flow, resulting in residual nonwetting phase saturation (imbibition)
- At S_{wi}, wetting phase cannot flow, resulting in irreducible wetting phase saturation (drainage)

Saturation History

• The same P_c value can occur at more than one wetting phase saturation

Rock Type

- Rock Type (Archie's Definition Jorden and Campbell)
 - Formations that "... have been deposited under similar conditions and ... undergone similar processes of later weathering, cementing, or re-solution..."
- Pore Systems of a Rock Type (Jorden and Campbell)
 - "A given rock type has particular lithologic (especially pore space) properties and similar and/or related petrophysical and reservoir characteristics"

Thomeer's Parameters for Capillary Pressure Curves

- Thomeer's Data
 - Mercury Injection drainage
 - Very high capillary pressures
- $(V_b)_{P\infty}$ The (assymptotically approached) fraction of bulk volume occupied by mercury at infinite capillary pressure (similar to previous parameter, irreducible wetting phase saturation)
- P_d Displacement Pressure, capillary pressure required to force nonwetting phase into largest pores (same as previously discussed)
- G Parameter describing pore-size distribution (similar to previous parameter, $1/\lambda$. Increasing G (or decreasing λ), suggests poor sorting, and/or tortuous flow paths)

Figures 2.4 and 2.5

- (Vb) $p = \infty$ is the fractional volume occupied by Hg at infinite pressure, or total interconnected pore volume.
- pd is the extrapolated Hg displacement pressure (psi);
 pressure required to enter largest pore throat.
- PT = PORE THROAT P-PORE

Fig. 2.4—Pores and pore throats in a pore-space system.

- factor; range in size and tortuosity of pore throats.
- Large **pd** = small pore thorats
- Large **G** = tortuous, poorly sorted pore thorats

Note variation in pore properties and permeability within a formation

Modfied from Jordan and Campbell, 1984, vol. 1

1000 800

THOMEER PARAMETERS G = 0.08 $p_d = 5.4$ $(V_b)_{\rho_{\infty}} = 30.1$

BV OCCUPIED BY Hg, %

Figure 2.8 30 20 10

size: lower fine sorting: very well sorted

1. Rock texture and pore space characteristics. 48X

2. Grain-to-grain relationships; pore space (P); biotite (mica) grain (B); small crystals on grain surface are silica overgrowths (SO), 200X

SANDSTONE, quartz.

80

100

lower fine, very well sorted, subrounded, slightly argillaceous, quartz (0.8% BV) and chert (0.4% BV) cement, pore-filling clay (0.7% BV) unconsolidated.

PV OCCUPIED BY MERCURY, percent

Modfied from Jordan and Campbell, 1984, vol. 1

1. Rock texture and pore space characteristics. 36X

 Rock fabric showing volcanic rock fragments (VRF) and intergranular pore space (P). Note altered texture of grain surfaces. 150X

SANDSTONE, lithic,

lower fine, moderately sorted, moderately argillaceous, calcite (0.8% BV) and opal (0.2% BV) cement, moderately consolidated.

Figure 2.9

size: lower fine sorting: moderately sorted

Modfied from Jordan and Campbell, 1984, vol. 1

 Rock texture and pore space characteristics. 36 X.

 Rock fabric showing volcanic rock fragments (VRF), intergranular pore space (P), and porefilling montmorillonite (M). Note altered grain surfaces. 150X.

THOMEER PARAMETERS

G = 0.15 $P_a = 10.1$ $(V_b)p_{\infty} = 17.5$

SANDSTONE, lithic

upper very fine, moderately sorted, moderately argillaceous, chlorite (2.3% BV) calcite (0.6% BV) and opal (0.4% BV) cement, pore-filling clay (1.1% BV), moderately consolidated.

Figure 2.10

size: upper very fine sorting: moderately sorted

Modfied from Jordan and Campbell, 1984, vol. 1

1. Rock texture and pore space characteristics. 48X

 Grain-to-grain relationships; intergranular pore space (P); and pore-filling clays (C). Note quartz grain silica overgrowths (SO) 200X

SANDSTONE, quartz,

lower fine, very well sorted, subrounded, slightly argillaceous, quartz (0.3% BV) chert (0.8% BV) and carbonate (4.5% BV) cement, pore-filling clay (2.5% BV), and iron minerals (1.2% BV), moderately consolidated.

Figure 2.11 -effect of significant cementing and clay

Modfied from Jordan and Campbell, 1984, vol. 1

MIOCENE "S" SAND CONTAINING "DISCRETE PARTICLE" KAOLINITE $\phi = 22.9\%$ $k_a = 1173 \; \mathrm{md}.$

TUSCALOOSA SAND CONTAINING "PORE-LINING" CHLORITE (C) $\phi = 25.7\%$ $k_a = 41 \text{ md}.$

VICKSBURG SAND CONTAIN:NG "PORE-BRIDGING" CHLORITE (C)

 $\phi = 19.1\%$ $k_a = 0.09 \text{ md}.$

Figure 2.12

Effect of Dispersed Clays

Modfied from Jordan and Campbell, 1984, vol. 1; after Neasham, 1977

Capillary Pressure in Reservoirs

Fluid Distribution in Reservoirs

RELATION BETWEEN CAPILLARY PRESSURE AND FLUID SATURATION

Saturation in Reservoir vs. Depth

- Results from two analysis methods (after ABW)
 - Laboratory capillary pressure curve
 - Converted to reservoir conditions
 - Analysis of well logs
 - Water saturation has strong effect on resistivity curves (future topic)

