CS 446: Machine Learning Homework 12

Due on April 24, 2018, 11:59 a.m. Central Time

1.	13	points	Q-Learn	ing

(a)	State the Bellman optimality principle as a function of the optimal Q-function $Q^*(s, a)$, the expected reward function $R(s, a, s')$ and the transition probability $P(s' s, a)$, where s is the current state, s' is the next state and a is the action taken in state s .
	Your answer:
(b)	In case the transition probability $P(s' s,a)$ and the expected reward $R(s,a,s')$ are unknown, a stochastic approach is used to approximate the optimal Q-function. After observing a transition of the form (s,a,r,s') , write down the update of the Q-function at the observed state-action pair (s,a) as a function of the learning rate α , the discount factor γ , $Q(s,a)$ and $Q(s',a')$.
	Your answer:
(c)	What is the advantage of an epsilon-greedy strategy?
	Your answer:
(d)	What is the advantage of using a replay-memory?
	Your answer:

(e) Consider a system with two states S_1 and S_2 and two actions a_1 and a_2 . You perform actions and observe the rewards and transitions listed below. Each step lists the current state, reward, action and resulting transition as: S_i ; R = r; $a_k : S_i \to S_j$. Perform Q-learning using a learning rate of $\alpha = 0.5$ and a discount factor of $\gamma = 0.5$ for each step by applying the formula from part (b). The Q-table entries are initialized to zero. Fill in the tables below corresponding to the following four transitions. What is the optimal policy after having observed the four transitions?

i.
$$S_1; R = -10; a_1 : S_1 \to S_1$$

ii. $S_1; R = -10; a_2 : S_1 \to S_2$

iii.
$$S_2$$
; $R = 18.5$; $a_1 : S_2 \to S_1$

iv.
$$S_1$$
; $R = -10$; $a_2 : S_1 \to S_2$

Q	S_1	S_2
a_1	•	
a_2		•

Q	S_1	S_2
a_1	•	•
a_2	•	

Q	S_1	S_2
a_1	•	
a_2	•	

a_1	2	S_2	S_1	Q
a -				a_1
u_2				a_2

Your answer: