. 17473...

10 15

циального барьера (для водорода высота этого барьера равна примерно 1 МэВ), то эффективное сечение ядерной реакции представляет собой произведение геометрического сечения ядра на вероятность прохождения потенциального барьера. Для ядер изотопов водорода с энергией в десятки килоэлектронвольт длина волны де Бройля превышает радиус ядра, определяемый в классических экспериментах по рассеянию, и в качестве геометрического сечения следует принять величину $\pi \, \mathring{\pi}^2 = \pi \left(\frac{\hbar}{m \, v} \right)^2$. Вероятность подбарьерного перехода рассчитывается по

$$P = \exp \left\{ -\frac{2}{\hbar} \sqrt{2M} \int_{r}^{d} \sqrt{\frac{e^2}{r} - E} \, \mathrm{d} r \right\},\,$$

известной формуле Гамова

где E — энергия налетающего ядра, M — приведенная масса взаимодействующих ядер, а d — расстояние от ядра-мишени до точки, в которой $E=e^2/r$. Окончательные формулы для эффективных сечений реакций (d,d) и (d,t) имеют вид (в барнах; 1 барн = 10^{-24} см²):

$$\sigma_{d,d} = \frac{300}{E_{\text{EBB}}} e^{-\frac{46}{\sqrt{E_{\text{EBB}}}}},$$

$$\sigma_{d,t} = \frac{2 \cdot 10^4}{E_{\text{EBB}}} e^{-\frac{46}{\sqrt{E_{\text{EBB}}}}}.$$
(4.3)

1 100 100 11

В случае максвелловского распределения по известной зависимости $\sigma(v)$ легко рассчитать величину $\langle \sigma v \rangle$. Ход функции $\langle \sigma v \rangle$ для обеих реакций в интересующей нас области температур приведен на рис. 4.2. Как видно из графиков, значения $\langle \sigma v \rangle$ для

