- 1. (7.2) Prove the "exercise" claims in Example 1.7 (the claims (c), (d), (g)).
 - (c) Let X be an uncountable set. The collection

$$\mathcal{M} := \{ E \subset X \mid E \text{ is at most countable or } X \setminus E \text{ is at most countable} \}$$

is a σ -algebra.

Proof. The collection \mathscr{M} is nonempty: Observe that $X \in \mathscr{M}$ since $X \setminus X = \emptyset$ is finite (similarly $\emptyset \in \mathscr{M}$). The collection \mathscr{M} is closed under countable unions: Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets from \mathscr{M} . We show that of $A = \bigcup_{i=1}^{\infty} A_i$ and $X \setminus A = X \setminus \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (X \setminus A_i)$, one of them is at most countable. If all the A_i are countable then A is a countable union of countable sets which is countable, in which case $A \in \mathscr{M}$. Otherwise at least one A_i , say A_j , is uncountable, so its complement $X \setminus A_j$ must be countable since $A_j \in \mathscr{M}$. Since $X \setminus A \subseteq A_j$ by construction, it follows that $X \setminus A$ is countable so that $A \in \mathscr{M}$ as desired.

The collection \mathcal{M} is closed under complements: If $E \in \mathcal{M}$ then one of $E, X \setminus E$ is countable, so the same can be said about the complement $X \setminus E$. It follows that $X \setminus E \in \mathcal{M}$.

Hence
$$\mathscr{M}$$
 is a σ -algebra.

(d) If $\mathcal{M} \subset 2^X$ is a σ -algebra, and E is any nonempty subset of X, then

$$\mathcal{M}_E := \{A \cap E \mid A \in \mathcal{M}\} \subset 2^E$$

is a σ -algebra on E.

Proof. Since $X \in \mathcal{M}$, it follows that $E = X \cap E \in \mathcal{M}_E$ so that the collection \mathcal{M}_E is nonempty. Consider a sequence of sets $(B_n)_{n=1}^{\infty}$ from \mathcal{M}_E , where by definition $B_n = A_n \cap E$ for some $A_n \in \mathcal{M}$, for each n. Then $B = \bigcap_{i=1}^{\infty} B_i = \bigcap_{i=1}^{\infty} A_i \cap E = E \cap (\bigcup_{i=1}^{\infty} A_i)$. But $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$, so $B \in \mathcal{M}_E$. Hence \mathcal{M}_E is closed under countable unions.

Let $B \in \mathcal{M}_E$ so that $B = A \cap E$ for some $A \in \mathcal{M}$. Then

$$E \setminus B = E \setminus (A \cap E) = E \cap (X \setminus (A \cap E))$$
$$= (E \cap (X \setminus A)) \cup (E \cap (X \setminus E))$$
$$= E \cap (X \setminus A),$$

but $X \setminus A \in \mathcal{M}$ so that $E \setminus B \in \mathcal{M}_E$. It follows that \mathcal{M}_E is closed under complementation.

Thus \mathcal{M}_E is a σ -algebra on E.

(g) If (Y, \mathcal{N}) is a measurable space and $f: X \to Y$, then the collection

$$f^{-1}(\mathcal{N}) = \left\{ f^{-1}(E) \mid E \in \mathcal{N} \right\} \subset 2^X$$

is a σ -algebra on X.

Proof. Let $\mathcal{M} = f^{-1}(\mathcal{N}) = \{f^{-1}(E) \mid E \in \mathcal{N}\} \subset 2^X$ be as above. Since $Y \in \mathcal{N}$, it follows that $f^{-1}(Y) = X \in \mathcal{M}$, so \mathcal{M} is nonempty.

Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets from \mathscr{M} , so that for each n, $A_n = f^{-1}(B_n)$ for some $B_n \in \mathscr{N}$. Using the fact that the preimage of a union is the union of the preimages, we obtain that $A = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} f^{-1}(B_i) = f^{-1}(\bigcup_{i=1}^{\infty} B_i)$. But because $\bigcup_{i=1}^{\infty} B_i \in \mathscr{N}$, it follows that $A \in \mathscr{M}$, so that \mathscr{M} is closed under countable unions.

Let $A \in \mathcal{M}$ so that $A = f^{-1}(B)$ for some $B \in \mathcal{N}$. The preimage of a complement is the complement of the preimage, so it follows that $X \setminus A = X \setminus f^{-1}(B) = f^{-1}(Y \setminus B)$. But $Y \setminus B \in \mathcal{N}$ so that $X \setminus A \in \mathcal{M}$. Hence \mathcal{M} is closed under complementation.

It follows that \mathcal{M} is a σ -algebra over X.

2. (7.3)

(a) Let X be a set and let $\mathscr{A} = (A_n)_{n=1}^{\infty}$ be a sequence of disjoint, nonempty subsets whose union is X. Prove that the set of all finite or countable unions of members of \mathscr{A} (together with \varnothing) is a σ -algebra. (A σ -algebra of this type is called *atomic*.)

Proof. Let \mathscr{M} be the set of all finite or countable unions of members of \mathscr{A} . Observe that X is given by the countable union $\bigcup_{i=1}^{\infty} A_i$, which is a countable union of members of \mathscr{A} , so $X \in \mathscr{M}$. (We could have also taken the empty union to see that $\emptyset \in \mathscr{M}$ also.) Thus \mathscr{M} is nonempty.

Let $(B_i)_{i=1}^{\infty}$ be a sequence of sets from \mathscr{M} . Then for each i, B_i is given by $\bigcup_{k \in I_i} A_k$ where for each i, I_i is a subset of the positive integers (and is hence countable). Note that $\bigcup_{i=1}^{\infty} I_i$ as a result is a countable subset of the positive integers. Thus $B = \bigcup_{i=1}^{\infty} B_i = \bigcup_{k \in \bigcup_{i=1}^{\infty} I_i} A_k$ is a countable union of elements of \mathscr{A} , so that $B \in \mathscr{M}$. Hence \mathscr{M} is closed under countable unions.

Let $B \in \mathcal{M}$ so that $B = \bigcup_{i \in I} A_i$ for some subset I of the positive integers \mathbb{Z}_+ . Note that $\mathbb{Z}_+ \setminus I$ (taken in \mathbb{Z}_+) is also a subset of the positive integers; it follows that $X \setminus B = (\bigcup_{i=1}^{\infty} A_i) \setminus (\bigcup_{i \in I} A_i) = \bigcup_{i \in \mathbb{Z}_+ \setminus I} A_i$ is a countable union of members of \mathscr{A} . Hence $B \in \mathcal{M}$, so that \mathscr{M} is closed under complementation also.

It follows that \mathcal{M} is a σ -algebra over X.

(b) Prove that the Borel σ -algebra $\mathscr{B}_{\mathbb{R}}$ is *not* atomic. (Hint: there exists an uncountable family of mutually disjoint Borel subsets of \mathbb{R} .)

Proof. Observe that each of the singleton sets $\{r\}$ for each $r \in \mathbb{R}$ are Borel: Sigma algebras are closed under countable intersections (by De Morgan's laws) so in particular we have $\{r\} = \bigcap_{n=1}^{\infty} (r - 1/n, r + 1/n)$ where (r - 1/n, r + 1/n) are open intervals in \mathbb{R} (hence Borel), which proves the above claim.

But we know that the real numbers are uncountable, and we seek to find a contradiction. To that end, suppose by contradiction that $\mathscr{B}_{\mathbb{R}}$ is atomic so that there exists a sequence $(A_n)_{n=1}^{\infty}$ of disjoint, nonempty subsets whose union is \mathbb{R} .

We should be able to form for any real number r the singleton set $\{r\}$ by taking a countable union of the A_i . Since the A_i are disjoint and nonempty, it would follow that there is an A_k appearing in this union that is actually just equal to $\{r\}$, and that the countable union is really just the union of the one set A_k .

Since this is true for any real number r, it would seem that either all of the A_i are singleton sets of real numbers, or that there exists an A_j with more than one element. We rule out the latter scenario: If A_j contains more than one element, e.g., it contains real numbers x, y, then it is impossible to form the Borel set $\{x\}$ as a countable union of the A_i since each of the A_i are disjoint.

It must follow then that each of the A_i s are singleton sets of real numbers. However, the real numbers are uncountable so that it is impossible for $\bigcap_{n=1}^{\infty} A_n$ to be equal to \mathbb{R} . This is a contradiction, so $\mathscr{B}_{\mathbb{R}}$ is not atomic.

3. (7.7) Prove that if X, Y are topological spaces and $f: X \to Y$ is continuous, then f is Borel measurable.

Proof. Let $\mathscr{P} \subset 2^Y$ be given by $\{E \subset Y \mid f^{-1}(E) \in \mathscr{B}_X\}$. We show that \mathscr{P} is a σ -algebra over Y.

Observe that \mathscr{P} is not empty since it contains Y: the preimage of Y under f is X, which is in \mathscr{B}_X .

Then take a sequence of sets $(A_n)_{n=1}^{\infty}$ in \mathscr{P} . Then $f^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} f^{-1}(A_i) \in \mathscr{B}_X$, so $\bigcup_{i=1}^{\infty} A_i \in \mathscr{P}$. So \mathscr{P} is closed under countable unions.

If $A \in \mathcal{P}$, then $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A) \in \mathcal{B}_X$, so $Y \setminus A \in \mathcal{P}$. So \mathcal{P} is closed under complements; it follows that \mathcal{P} is a σ -algebra over Y.

We show that every open set of Y is contained in \mathscr{P} . If $U \subseteq Y$ is open, then by continuity of f, the set $f^{-1}(U)$ is open in X. But \mathscr{B}_X is generated by the open sets of X so that $f^{-1}(U)$ is a Borel set of X, which means $U \in \mathscr{P}$. Since U was arbitrary, we have proved the claim.

Since the open sets of Y were contained in \mathscr{P} we have (by Proposition 1.9 in the notes) that the σ -algebra generated by the open sets of Y, the Borel σ -algebra \mathscr{B}_Y , is contained in \mathscr{P} . It follows that the preimage of any Borel set of Y under f is a Borel set of X, meaning f is Borel measurable as desired.