MATH3424 Regression Analysis

Assignment 1

1. Using the following summary statistics

$$n = 20, \qquad \sum_{i=1}^{20} x_{i1} = 114, \qquad \sum_{i=1}^{20} x_{i2} = -136, \qquad \sum_{i=1}^{20} y_{i} = 222,$$

$$\sum_{i=1}^{20} x_{i1}^{2} = 860, \qquad \sum_{i=1}^{20} x_{i1}x_{i2} = -1025, \qquad \sum_{i=1}^{20} x_{i2}^{2} = 1228, \qquad \sum_{i=1}^{20} x_{i1}y_{i} = 1537,$$

$$\sum_{i=1}^{20} x_{i2}y_{i} = -1824, \qquad \sum_{i=1}^{20} y_{i}^{2} = 2950,$$

$$S_{x_{1}x_{1}} = 210.2, \qquad S_{x_{1}x_{2}} = -249.8, \qquad S_{x_{2}x_{2}} = 303.2, \qquad S_{x_{1}y} = 271.6,$$

$$S_{x_{2}y} = -314.4, \qquad S_{yy} = 485.8.$$

and

$$\begin{pmatrix} 210.2 & -249.8 \\ -249.8 & 303.2 \end{pmatrix}^{-1} = \begin{pmatrix} 0.227525 & 0.187453 \\ 0.187453 & 0.157737 \end{pmatrix},$$

to fit a model of y on x_1 and x_2 , i.e., do the following regression model,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \quad e_i \sim N(0, \sigma^2).$$

- (a) Assume that $\beta_0 = 2$.
 - i. Find the least squares estimates of the unknown parameters β_1 and β_2 . Then, write down the fitted line.
 - ii. Find the Residual Sum of Squares and the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
- (b) Assume that $2\beta_1 = \beta_2$.
 - i. Find the least squares estimates of the unknown parameters β_0 and β_1 . Then, write down the fitted line..
 - ii. Find the Residual Sum of Squares and the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
 - iii. Test H_0 : $\beta_1 = 2$ by <u>t-test</u> at significance level of $\alpha = 0.05$. Write down your test statistic, critical value and your conclusions clearly.
- (c) Assume that β_0, β_1 and β_2 are unknown.
 - i. Find the least squares estimates of the unknown parameters β_0 , β_1 and β_2 . Then, write down the fitted line.

- ii. Find Residual Sum of Squares and the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
- iii. Test the assumption in Part II that $H_0: 2\beta_1 = \beta_2$ against the alternative hypothesis that $H_1: 2\beta_1 \neq \beta_2$ at the significant level of $\alpha = 0.05$ by t-test. Write down the test statistic, the critical value and your conclusion clearly.
- 2. Consider a situation in which the regression data set is divided into two parts as follows.

x	y
x_1	y_1
x_2	y_2
:	:
x_{n_1}	$y_{\underline{n_1}}$
x_{n_1+1}	y_{n_1+1}
:	:
$x_{n_1+n_2}$	$y_{n_1+n_2}$

The model is given by

$$y_i = \beta_0^{(1)} + \beta_1 x_i + e_i$$
 for $i = 1, ..., n_1$
= $\beta_0^{(2)} + \beta_1 x_i + e_i$ for $i = n_1 + 1, ..., n_1 + n_2$

In other words there are two regression lines with common slope. Using the centered model,

$$y_i = \beta_0^{(1)^*} + \beta_1(x_i - \bar{x}_1) + e_i \quad \text{for } i = 1, \dots, n_1$$

$$= \beta_0^{(2)^*} + \beta_1(x_i - \bar{x}_2) + e_i \quad \text{for } i = n_1 + 1, \dots, n_1 + n_2$$
where $\bar{x}_1 = \sum_{i=1}^{n_1} \frac{x_i}{n_1}$ and $\bar{x}_2 = \sum_{i=n_1+1}^{n_1+n_2} \frac{x_i}{n_2}$.

Show that the least squares estimate of β_1 is given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1) y_i + \sum_{i=n_1+1}^{n_1+n_2} (x_i - \bar{x}_2) y_i}{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2 + \sum_{i=n_1+1}^{n_1+n_2} (x_i - \bar{x}_2)^2}.$$

Hint: Write the model in matrix form.

3. Consider the simple linear regression model, $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ for i = 1, 2, ..., n, show that the least squares slope is given by

$$\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n d_i \varepsilon_i$$
 where $d_i = \frac{x_i - \bar{x}}{S_{xx}}$

Also show that

$$\hat{\beta}_0 = \beta_0 + \bar{\varepsilon} - \bar{x} \sum_{i=1}^n d_i \varepsilon_i$$

4. For the model of $y_i = \beta_0 + \beta_1 x_{i1} + e_i$ for i = 1, ..., n, where $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$, find $E(y_i - \hat{y}_i)$ and $Var(y_i - \hat{y}_i)$.

Hint: Define

$$\hat{e}_{i} = y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1}$$

$$= y_{i} - \sum_{j=1}^{n} (c_{j} + d_{j}x_{i1})y_{j}$$

$$= \sum_{j=1}^{n} (\delta_{ij} - (c_{j} + d_{j}x_{i1}))y_{j}$$

where
$$c_j = \frac{1}{n} - \frac{(x_{j1} - \bar{x}_1)\bar{x}_1}{S_{x_1x_1}}$$
, $d_j = \frac{x_{j1} - \bar{x}_1}{S_{x_1x_1}}$ and $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

5. Fit the model of y on x_1 and x_2 , i.e.,

$$y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + e_i, \quad e_i \sim N(0, \sigma^2)$$

and get its fitted line by the method of least squares

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$

Now fit another model of x_2 on x_1 and \hat{y}_i , i.e.,

$$x_{i2} = \gamma_0 + \gamma_1 x_{i1} + \gamma_2 \hat{y}_i + \epsilon_i$$

Write down $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\gamma}_1$ and $\hat{\gamma}_2$ in terms of $S_{x_1x_1}$, $S_{x_1x_2}$, $S_{x_2x_2}$, S_{x_1y} , S_{x_2y} and S_{yy} . Hence or otherwise, prove that $\hat{\epsilon}_i = 0$ for all i.