

逻辑与计算机设计基础实验

与课程设计

实验一

EDA工具与实验平台

施青松

Asso. Prof. Shi Qingsong College of Computer Science and Technology, Zhejiang University zjsqs@zju.edu.cn

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙人学系统结构与系统软件实验室

实验目的

- 1. 熟悉掌握Xilinx ISE EDA开发平台
- 2. 熟悉了解SWORD4.0 FPGA 开发平台
- 3. 学习运用Xilinx ISE平台输入逻辑设计、综合、时序 (行为)仿真及设计约束(时序、引脚)
- 4. 学习运用Xilinx ISE平台下载流代码进行物理验证
- 5. 初步了解Verilog HDL语言

实验环境

实验设备

- 1. 计算机(Intel Core i3以上,1GB内存以上)系统
- 2. SWORD4.0 开发板
- 3. Xilinx ISE14.7及以上开发工具

材料

无

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙人学系统结构与系统软件实验室

实验任务

- 1. 学习Xilin ISE 开发平台安装,并了解运行环境
- 2. 设计简单组合逻辑电路,并建立Xilin ISE设计管 理工程 (Project)
- 3. 采用逻辑图形输入逻辑功能描述, 并进行编辑、 调试、综合、行为仿真,设计约束(时序、引脚)、 实现及流代码下载运行与物理验证

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙大学系统结构与系统软件实验室

一个简单的逻辑实例:逻辑图

○ 某楼房的单元三层楼梯通道共用一盏灯,每一层楼都各安装一只开关,它能独立地控制这盏的开关,设计楼道灯的控制电路

S3	S2	S1	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$F = \overline{S}_{3}\overline{S}_{2}S_{1} + \overline{S}_{3}S_{2}\overline{S}_{1} + S_{3}\overline{S}_{2}\overline{S}_{1} + S_{3}S_{2}S_{1}$$

图 2-6 楼道灯控逻辑电路

·个简单的逻辑实例:硬件描述

◎ 改变控制要求,一旦灯打开后,延时若干秒后自动关闭, 重新设计楼道灯的控制电路

```
`timescale 1ns / 1ps
module lamp Controler(input wire clk,
                        input wire S1,
                        input wire S2,
                        input wire S3,
                         output wire F
parameter COUNTER=8;
reg y;
reg [COUNTER-1:0] count;
Initial begin
                             //初始化
 count<=8'hFFFFFFF;
 y=0;
end
```

```
assign w=S1||S2||S3;
   always@(posedge clk)
     if(w || count < 8'hFFFFFFF)
     begin
       y=1;
       count<=count+1:
     end
     else begin
       v=0;
       count<=count;
     end
    assign F=y;
endmodule
```

注: wire 信号变量,导线类型,ISE称为"NET",说明可以省略 reg 寄存器变量,结果不一定是寄存器,用 "<="赋值

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙人学系统结构与系统软件实验室

ISE启动

◎启动Xilinx ISE系统软件,双击桌面的图标

进入ISE开发环境

打开ISE集成开发平台

采用原理图输入逻辑功能描述

建立ISE实现数字系统设计工程

□ 【步骤1】以图形描述方式建立楼道控制的工程文

件: lamp_Ctrl.ise

(1) 点击左上方file, 选择new project新建project

(2) Project命名:Lab1-1 top-level source type选择:schematic

>	New Project Wizard		
Ereate New Project Specify project 1	t .ocation and type.		
Enter a name, loca	tions, and comment for the project		
Name:	1ab1-1		
Location:	D:\FPGA_work\Sword-Logic\lab1-1		
Working Directory:	D:\FPGA_work\Sword-Logic\lab1-1		
Description:	楼道灯定时控制		
Select the type of Top-level source t	top-level source for the project ype: V		
More Info	Next > Cance	1	

(3) 点击Next到设备属性页

选择开发平台参数

Family: Kintex7 Device: XC7K325T

Package: FFG676 Speed: -2 计算机学院 系统结构与系统软件实验室

(4) 设置完开发平台详细属性信息后, 点击Finish新建工程模板

显示工程属性如下图所示,如果有有误可以退回重新选择:

□ 【步骤2】创建Schematic输入模板及源文件: lamp_Ctrl.sch

(1) 在Source窗口下空白处用鼠标右健点击New Source如下图 所示(也可以从Project菜单进行):

(2) 点击后,出现如图窗口,选择schematic作为源类型、输入文件名lamp_Ctrl,确认Add to project被选中:

计算机学院 系统结构与系统软件实验室

连续点击Next,接着点Finish出现如下编辑窗口:

大学 计算机学院 系统结构与系统软件实验室

- □ 【步骤3】用逻辑电路图描述输入楼道灯控逻辑电路
 - ,并进行编辑

■ 在Sources窗口中,点击右向箭头至Symbols界面,进入选

择器件窗口

Symbol Name Filter
Orientation
Rotate O
Symbol Info
Symbols Options

- 在器件窗口中选择所需的 器件拖到图形输入窗口
- 当一个器件被安置后按下 ESC键来取消,以便选择 下一个器件
- 用导线(add wire)连接逻辑端口
- 对顶层输入/输出需要加上相应的缓冲: add IO Marker(buffer和 Iomake) 并修改命名
- 在Tools菜单选择Check Schematic可检查连线规则

■ 楼道灯控逻辑电路输入完成后,无错误后保存 浙江大学 计算机学院 系统结构与系统软件实验室 ■ 在Sources窗口,选择Synthesis/Implementation,并选中文件 lamp_Ctrl.sch;

■ 在Processes窗口中用鼠标点击"+Design Utilities"的"+"号,展开菜单,并双击"Check Design Rules", 检查输入电路规则。若有错误排除输入错误

查看电路综合后是如何描述

□ 【步骤4】 查看分析输入电路的硬件描述代码

■ 在Sources窗口,选择Synthesis,并选中文件lamp_Ctrl.sch

■ 在Processes窗口中用鼠标点击"+Design Utilities"的"+"号,展开菜单,并双击"View HDL Functional Modle",可查看分析输入电路编译后的硬

设计仿真激励代码

- □ 【步骤5】设计楼道灯控制电路的仿真激励代码: lamp Ctrl test.tbw
 - (1) 在源窗口选择Verilog HDL(schematic)文件(要选中.v或.sch文件)。
 - (2) 在Source窗口下空白处用鼠标右健点击New Source
 - (3) 在New Source Type向导中,选择Verilog Test Fixture作为源类型,输入文件名: lamp_Ctrl_test到文件名框

浙江大学

计算机学院 系统结构与系统软件实验室

(4) 点击Next,选择要仿真的模块,再点击Next弹出summary摘要窗口。点击Finish进入激励代码模板编辑窗口

- (5) 设计激励代码。在激励代码模板编辑窗口输入激励代码
- □ 参考代码:

```
integer i;
initial begin
              S1 = 0;
              S3 = 0;
              S2 = 0;
      for(i=0;i \le 7;i=i+1)begin
      {S1,S2,S3} <= i;
      #20;
      end
end
```

(6)运行激励代码,作行为仿真(模拟)

在Design窗口选中Simulation

WING UNITED

在Processes窗口双击Simulate Behavioral Model

仿真结果如下:

计算机学院 系统结构与系统软件实验室

□ 【步骤6】建立用户时序约束并为模块端口 指定引脚分配

- 建立User Constraints files,输入顶层输出信号与芯片封装引脚关系
- 编辑完成后保存为lamp_Ctrl.ucf 文件
- 参考参数如下:

```
NET "S3" LOC = AE13 | IOSTANDARD = LVCMOS15;

NET "S2" LOC = AF13 | IOSTANDARD = LVCMOS15;

NET "S1" LOC = AF10 | IOSTANDARD = LVCMOS15;

NET "F" LOC = U21 | IOSTANDARD = LVCMOS18;
```

当端口信号非常多时,建议直接编辑UCF文件

- 在Source窗口下选mplementation;
- 在Processes窗口下选择→Implement Design。

□ 【步骤8】生成模块的FPGA流代码 并下载进行物理验证

- THE UNITED TO
- 1) 用JTAG下载数据线将PC机USB口与SWORD4.0的"J11"端口连接。
- 2) 将12伏的DC电源连接到SWORD4.0的 "CN1"电源插座
- 3)打开SWORD4.0平台电源

下载步骤

- 1) 从Sources窗口的选择Implementation
- 2) 在Sources窗口中选择lamp_Ctrl.sch
- 3) 在Processes窗口中,用鼠标点击"+Generate Programming File"
- 4) 双击 Configure Device (iMPACT) 选项

4) 双击 Configure Device (iMPACT) 选项。出现如下图Configure Devices 对话框。

5) 在图 中选择Configure devices using Boundary-Scan chain (JTAG)。

6) 确认Automatically connect to a cable and identify Boundary-Scan

chain已被选中。

7) 点击Finish按钮。

- 8) 如果跳出一个消息框显示"已找到两个设备",请点击 Ok按钮继续。而连接到JTAG chain 的设备将在 iMPACT窗口中显示。
- 9) 接下来将会出现一个Assign New Configuration File对话框。这时从文件列表中选择lamp_Ctrl.bit文件并打开,将会为JTAG chain 上的xc3s200 设备指定配置文件

- 10) 如果有警告窗口弹出,点击 OK 按钮即可。
- 11) 选择 Bypass 以跳过其他余下的设备。
- 12) 鼠标右键点击xc7k325t device 的图标,然后在弹出菜单中选择 Program...,此时将会打开Programming Properties对话框。
- 13) 点击OK按钮可以对硬件设备进行下载编程,如下图:

浙江大学 计算机学院 系统结构与系统软件实验室

采用Verilog HDL输入逻辑功能描述

除设计描述输入不同其余完全类同

建立FPGA实现数字系统设计工程

□【步骤1】Verilog描述方式建立楼道控制的

工程文件: lamp_Controler.ise

(1) 点击左上方file, 选择new project新建 一个project。

(2) Project命名:lamp_Ctrl.ise top-level source type选择:HDL

Enter a Name and Location for the	
Project Name:	Project <u>L</u> ocation
lamp_Controler	E:\Xilinx\Test01\lamp_Controler
Select the Type of Top-Level Sour	ce for the Project
HDL	<u>×</u>
HDL Schematic EDIF NGC/NGO	
More Info	< Back Next > Cancel

(3) 点击Next到设备属性页

、 选择开发平台参数

New Project Vizard - Dev	ice Properties□×					
Select the Device and Design Flow for the Project						
Property Name	Value					
Product Category	All					
Family	Spartan3 🔻					
Device	XC3S200					
Package .	FT256					
Speed	-4					
	1-,					
Top-Level Source Type	Schematic					
Synthesis Tool	XST (VHDL/Verilog)					
Simulator	ISE Simulator (VHDL/Verilog)					
Enable Enhanced Design Summary						
Enable Message Filtering						
Display Incremental Messages						
J.						
More Info	< Back Next > Cancel					

Family: Kintex-7 Device: XC7k325t

Package:FFG676 Speed:-2

浙江大学

计算机学院 系统结构与系统软件实验室

设置完开发平台详细属性信息后, 点击NEXT,再点击NEXT进入

2	New Project Vizard - Project Summary	_ 🗆 ×
Ī		
	Project Navigator will create a new project with the following specifications:	
	Project:	_
	Project Name: lamp_Controler	
	Project Path: E:\Xilinx\Test01\lamp_Controler	
	Top Level Source Type: HDL	
	Device:	
	Device Family: Spartan3	
-	Device: xc3s200	
	Package: ft256	
	Speed: -4	
	Synthesis Tool: XST (VHDL/Verilog)	
	Simulator: ISE Simulator (VHDL/Verilog)	
1	Enhanced Design Summary: enabled	
	Message Filtering: disabled	-1
	J message resources	•
	< Back Finish Ca	ncel

□【步骤2】创建VerilogHDL输入模板及源文件: lamp_Controler.v

(1) 在Source窗口下空白处用鼠标右健点击New Source

- (2) 点击后,在对话窗口,选择Verilog Modul作为源类型、输入文件名lamp_Controler.v、确认Add to project被选中
- New Source Vizard Select Source Type BMM File 🌂 IP (Coregen & Architecture Wizard) MEM File D Schematic Implementation Constraints File File name: 🗞 State Diagram lamp Controler ¬¹Test Bench WaveForm 🖹 User Document Location: V Verilog Module E:\Xilinxs\lamp Controler Wiverilog Test Fixture . . . Wa VHDL Module VHDL Library P VHDL Package Wall Test Bench Add to project Next > More Info < Back Cancel

连续点击Next,接着点Finish出现如下编辑窗口: 定义输入输出端口引脚名(Port Name)

Port Name	Direction Bus MSB	LSB
clk	input	
S1	input	
S2	input 💆 🗌	
S3	input 🗸 🗌	
F	output 💛 🔃	
	input	
	input 💌 🔼	
	input 💌 🖂	
	input 💌 🖂	
	input 💌 🖂	
	input 🗸 🗀	

此时可以不填写, 在生成模块编辑模板中输入

沙大学 计算机学院 系统结构与系统软件实验室

点击Next, 然后在New SourceInformation对话框点击Finish

,完成New Source File Verilog HDL模板的创建

```
V lamp_Controler. v∗
                      lamp Controler
    // Module Name:
  9 // Project Name:
  10 // Target Devices:
     // Tool versions:
  11
     // Description:
  12
  13
     11
     // Dependencies:
  15
 16 // Revision:
  17
     // Revision 0.01 - File Created
  18
     // Additional Comments:
  19
     77
     20
 21
     module lamp Controler(clk, S1, S2, S3, F);
  22
         parameter COUNTER=8;
  23
         input clk;
  24
        input S1;
 25
        input S2;
 26 >
       input S3;
 27
         output F;
  28
 29 🔀
 30
  31
      endmodule
```


□【步骤3】用VerilogHDL描述方式输入 楼道灯控逻辑电路代码

□进行编辑

■ 在代码编辑窗口中用Verilog HDL语言,输入,编辑电路逻辑功能。电路代码输入完后保存编辑文件。

```
V lamp_Controler. v*
       module lamp_Controler(clk, S1, S2, S3, F);
  22
            parameter COUNTER=8;
  23
           input clk;
  24
           input S1:
  25
           input S2;
  26
           input S3;
  27
           output F:
  28
           wire w:
  29
           reg y;
  30
           reg [COUNTER-1:0] count;
  31
  32
       initial
  33
          count<=0;
  34
  35
          assign w=S1||S2||S3;
  36
          always@(posedge clk)
  37
              if (w || count < 8'hFFFF)
              begin
  39
                 y=1;
  40
              end
  41
              else
  42
                 v=0;
  43
          always@(posedge clk)
  44
              if (w || count<8'hFFF)
  45
                 count <= count +1;
  46
          else
  47
                 count <= count;
  48
          assign F=y;
       endmodule
```


□【步骤4】楼道控制电路代码综合

- 在Sources窗口,选择Synthesis/Implementation,并选中文件 lamp_Controler.v;
- 在Processes窗口中用鼠标点击"+Synthesize-XST"的"+"号,展开菜单,并双击"View RTL Schematic"

■ 综合结果如下图:

□【步骤5】建立楼道灯控制电路的基准 测试波形文件: lamp_Controler_tbw.tbw

- (1) 在源窗口选择Verilog HDL文件(要选中.v或.sch文件)。
- (2) 在Source窗口下空白处用鼠标右健点击New Source如。所示。
- (3) 在New Source Type向导中,选择Test Bench WaveForm作为源类型,输入文件名: lamp_Controler_tbw到文件名框

- (4)点击Next,出现如下图示,设置时间参数。
- 在这里根据电路的器件类型或电路的要求选择触发类型(上升沿触发、下降沿触发、双边沿触发)。
- 需要设置时钟频率、启动时间和输出延时
- 那个输入信号设置作为基准 single clock
- 本示例电路是时序电路,在Clock Imformation设为Single Clock,其余选项如图所示。点击finish,系统弹出Test Bench WaveForm编辑窗口。

□ 【步骤6】建立仿真激励输入波形,并运行。 行为模拟",验证电路功能

(1) 在Test Bench WaveForm编辑窗口中,通过点击左键改变输入端的高低电平。根据设计要求,这里用真值表的输入取值设置S1、S2、S3为脉冲。输入激励设置并保存,它的文件扩展名为.tbw。

lamp_control	ler_t v b	.tbw*
End Time: 40000 ns		20 ns 3660 ns 7300 ns 10940 ns 14580 ns 18220 ns 21860 ns 25500 ns 29140 ns 32780 ns
🛺 clk	0	
ৣ S1	0	
ৣ11 S2	0	
₹11 83	0	
₹∏ F	0	
(> < 0 >	

(2) 进行波形行为仿真(模拟), 结果如下:

注意S1、S2、S3的脉冲间隔

□ 【步骤7】建立用户时序约束并为模块的端。 口指定引脚分配

- 本示例是时序电路首先要做时钟约束,然后再做电路的 FPGA引脚约束。
- 时序约束(Entering Timing Constraints)过程如下:
- 1. 在Sources窗口,选择Synthesis/Implementation并选中**lamp_Controlerl** HDL源文件。
 - 在processes窗口中点击User Constraints processes group 边上的"+"符号,双击Create Timing Constraints 运行建立时间约束

□ ISE 运行编译、综合后自动生成用户约束文件(User Constraints File (UCF))并将得到如图 2-40的提示信息 (**注意**: 你也可以通过选择Project-> Create New Source 来生成新的UCF 文件。):

□ 点击是(Yes) lamp_Controlerl.ucf文件将加入到你的工程中,

Xilinx约束编辑器将自动打开

浙江大学 计算机学院 系统结构与系统软件实验室

2. 在时钟节点名域(Clock Net Name field)中选中作为时钟的clk, 然后选择工具栏上的 Period 按 钮或双击空的周期域 (empty Period field)系统显示时钟周期对话框

nitial active edge used for OFFSET value is set to Hi		— PERIOD	_	 	OK Cancel
<u> </u>	→ *	- INPUT_JI	TTER		Help
TIMESPEC Name:					
TS_CLOCK					
Clock Net Name:					
CLOCK					
Clock Signal Definition Specify Time					
Time:	40		Jnits:	ns	
Start HII	GН	O Start L	.ow		
	50		Jnits:	%	

在时间域里键入40ns,并点击OK

3.选择工具栏上的 Pad to Setup 按钮,或者双击空的 Pad to Setup域,弹出显示 Pad to Setup对话框:

		×
	Active edge defined by PERIOD	Cancel Apply Help
Time Requirement OFFSET: 10		Units: ns 🕶
Relative to Clock Pad Net: Relative to Clock Edge: Comment:	CLOCK	V

OFFSET设置: 10, 然后点击OK

选择工具栏上的 Clock to Pad 钮,或者双击空的 Clock to Pad 域,弹出显示 Clock to Pad对话框:

🏖 Clock to Pad		X
	Data OFFSET Active edge defined by PERIOD	OK Cancel Apply Help
Time Requirement OFFSET: 10		Units: ns 💌
Relative to Clock Pad Net: Relative to Clock Edge: Comment:	CLOCK	>

OFFSET设置: 10, 然后点击OK

保存时间约束。关闭约束编辑器。

□【步骤7】~【步骤11】与前面图形输入时相同。

■ lamp_Controler.ucf 引脚约束内容

```
NET "clk" LOC = "T9"; (T代表板子上的系统时钟信号)。
NET "F" LOC = "P11"; (P11代表板子上的LD7指示灯)。
NET "S1" LOC = "m13"; (m13代表板子上的push0按钮)。
NET "S2" LOC = "m14"; (m14代表板子上的push1按钮)。
NET "S3" LOC = "113"; (L13代表板子上的push2按钮)。
```


END