

REC'D 23 APR 2004

WIPO PCT

PCT / SE 2004 / 0 0 0 5 6 1

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

REGISTANT (71)

71) Sökande Micromuscle AB, Linköping SE Applicant (s)

(21) Patentansökningsnummer 0301144-2 Patent application number

(86) Ingivningsdatum
Date of filing

2003-04-17

Stockholm, 2004-04-14

För Patent- och registreringsverket For the Patent- and Registration Office

Narita Öun

Avgift Fee

> PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

116182 AST 2003-04-16

TITLE:

5 Method for producing a device

TECHNICAL FIELD:

The invention relates to a method for producing a micromachined layered device comprising a membrane layer and a first layer on one side of the membrane layer and a second layer on the opposite side of the membrane layer.

15

20

25

30

35

BACKGROUND:

fabrication of small devices, Batch verv such electronics, sensors, and actuators, can be based on wafer handling systems, where the wafer functions as a substrate on to which the device is built during the production steps. The production of such devices mostly done using a stacking method. The device is built by stacking layer on layer. Each layer can be of a different material, have a different thickness, and can be continuous over the device or laterally confined. The lateral shape of the layer can be defined by including a patterning step based on standard photolithography and Common microfabrication microfabrication technologies. ion diffusion, steps are for instance oxidation, deposition of material using e.g. spincoating, physical and chemical deposition methods, removal of materials using e.g. wet and dry etching methods. For an overview of such methods it is referred to G.T.A. Kovacs, and M. Albin, "Silicon micromachining; Petersen, Sensors to systems", Analytical chemistry, 1996, 68, p.

407A-412A. In the last step the device can be removed from the substrate. Common methods are dicing and sacrificial layer. A method called "differential adhesion" is also used.

5

10

15

20

In dicing, the device, such as integrated circuits (computer chips) that has been built on a silicon wafer, is subsequently cut out using a saw. In this case the substrate becomes a part of the product. This can be a drawback, since the properties suitable for a material to hold a device during process not necessarily go together with the properties required for the final device.

layer method uses an intermediate, sacrificial sacrificial layer between the substrate and device. The device is built up onto the sacrificial layer. The device is then released from the substrate by removing the sacrificial layer, e.g. by dissolving the layer using an etchants etchant or solvent. These appropriate solvents can damage the layers of the device. Also, the removal process can take hours for large area devices.

The differential adhesion method is based on the poor adhesion between the top layer of the substrate and the bottom layer of the device. The device is built up using the above mentioned microfabrication steps. As a last step in the production the device is removed from the substrate, by "peeling" it loose. The technique of differential adhesion is described in US 6 103 399.

30

35

•••••

25

All of the above production methods however have the disadvantage that these processes are bottom up processes. Only one side is available for processing. Layers are added on top of each other on one side of the device. This means that sensible materials that are added on the bottom side of the devices might be damaged by chemicals during the

process. Due to the device design, these layers cannot be added at a later stage in the process, as this means that they will be on the topside of the device. Inversion of the process steps, i.e. starting with the "top layers" on the substrate is not always possible either. Which, for instance, is the case for processes such as electroplating and electropolymerisation where an electrically conducting seed layer is needed. The device can only be built as substrate/seed layer/electoplated layer and not vice versa.

10

5

SUMMARY OF THE INVENTION:

It is therefore an object of the invention to solve the above-described problems.

The problems are solved by the method according to the invention which method comprises the following steps:

- a) a membrane layer is applied on a substrate;
- b) a window in the substrate is opened so as to free the membrane layer in order to enable the adding of layers from both sides of the membrane layer while the substrate is made into a frame that supports the membrane layer during the processing;
- 25 c) at least one layer is added on each side of the membrane either simultaneously or on one side at a time;
 - d) the device is cut out and removed from the substrate frame.

30

•:--:

By the word membrane is meant a thin film of one or more layers of material that sometime during the process is hanging freely between the substrate parts and is being accessible for processing from both sides.

35

By the expression layered devices is meant not only

products consisting of several layers of thin film but also devices comprising other non continuous components than thin films, such as laterally patterned structures. The method according to the invention makes both sides of device accessible for processing. In this way a more free choice of processing can take place. Material layers that are sensible to chemicals used in the process can be deposited at a later stage.

5

25

30

35

-:--:

10 A further advantage of the method according to the invention is that the invention makes it possible to cut out the device without further processing, e.g. etchants.

Another advantage of the method according to the present invention is that the substrate does not form part of the final device. According to the method the device is cut out of the supporting frame. This is an advantage over prior art, since a device comprising the substrate when in use would be so thick that the device possibly would not work.

Yet another advantage of the method according to the present invention is that the method is suitable for batch fabrication of fragile devices.

Different methods can be used for performing step b) of the method including any of the following methods: laser ablation, wet chemical etching, dissolving, and dry etching including reactive ion etching and sputter etching.

Different methods can be used for performing step d) of the method including any of the following methods: wet chemical etching, dry etching including reactive ion etching and sputter etching, dicing/sawing, cutting with scissors or a knife, laser ablation, or punching. Step d) may be divided into two steps, where the device is partially cut out in a first step, then activated, followed by a step where the device is completely cut out from the substrate. Step d) may also be a one step action, after which the device is partially cut out in a first step, then further processed in a following step e) after the cutting out of the device. Further processing includes activating the device and may also include other processing steps.

5

10

20

25

30

35

The method can comprise further steps in addition to step a) to d). For instance, a patterning step to alter the lateral dimensions of an added layer, using for instance photolithography or soft lithography.

The substrate may be of a polymeric material, a semiconductor material, e.g. silicon or a metal, including alloys, such as titanium, stainless steel. Other materials such as glass are also suitable for the substrate layer.

The device layers, i.e. all/any of the layers of the final device, both the membrane layer and the layers added thereafter, may be made of different materials chosen for the purpose of use. For instance, can the device layers be made of layers of metals, metal oxides, or an alloy of metals, including gold, platinum, titanium, stainless steel, aluminium oxides, and a nickel-titanium alloy. Also ceramics, such as hydroxyapatite can be used as a device layer. Other suitable materials for the device layers are conducting polymers, including pyrrole, aniline, thiophene, paraphenylene, vinylene, and phenylene polymers and copolymers thereof, including substituted forms of the

different monomers.

Also polymers such as polyimide, polyamide, polyurethane, poly-(tetrafluorethylene), poly-(dimethylsiloxan) (silicon rubber), poly(methylmethacrylate), polyesters, poly(vinyl chloride), and polyethylene, including copolymers and substituted forms of the different monomer thereof, epoxies, and resins are suitable as device layers.

The invention also relates to a device produced by the above method wherein the device is a microactuator. This means that it is an actuator that has a lateral dimension in the micrometre to centimetre scale and a thickness in the nanometre to millimetre scale.

15

5

Preferably, but not necessarily, the methods steps a) to d) are performed in alphabetical order.

layer of the device is deposited on the substrate. Hereafter, the substrate is selectively removed, e.g. by wet chemically etching, under the membrane layer over an area that at least is slightly larger than the final device size. Now, the membrane is freely hanging in the substrate support frame and can be accessed from both sides for additional processing, such as adding one or more layers on either side or both sides. In the last step the device is removed from the frame.

30

DESCRIPTION OF THE FIGURES

Figure 1 schematically shows the production steps according to one embodiment of the invention.

35

Figure 2 shows a device after that it is removed from the

substrate and the device in an activated state.

Figure 3 schematically shows the production steps according to a second embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION:

5

25

30

35

Figure 1 discloses one embodiment of the invention. In figure 1 the production steps are schematically shown. As an example, the production method of an electro-active polymer actuator is shown. However, the invention is not limited to the fabrication of such devices.

As a substrate 1, a thick sheet of titanium is used. The substrate may be of different configurations, such as wafers, pieces, foils, and discs and different materials including metals, semiconductors, plastics, and glass. The substrate may be made in other configurations also, provided that the parameters for enabling are fulfilled.

For instance that there is a plane area on the substrate for adding layers. The substrate 1 exhibits a first side A, and a second opposing side B. On side A of the substrate 1, a membrane layer 2 of gold is deposited using for instance

thermal evaporation or sputtering (Fig. 1A).

Hereafter, a layer of photoresist 3 is deposited in a conventional manner on both sides of the substrate 1 (Fig. 1B). Using standard photolithography, a pattern on side B of the substrate 1 is opened (Fig. 1C). Hereafter, the titanium substrate 1 is wet chemically etched. The substrate 1 is etched until the gold layer 2 is reached. Now a gold membrane has been fabricated, that can be processed on either or both sides (Fig. 1D). In order to make the actuator device, device processing is continued on side B of the substrate 1 while the protective photoresist layer 3 on side A is not removed. This photoresist layer 3 will protect side A during processing of side B. A layer of

example of

polypyrrole 4 is deposited on side B of the gold layer 2 using electropolymerisation from an aqueous electrolyte containing pyrrole monomers and a salt (Fig. 1E).

The protective photoresist layer 3 is removed (Fig. 1F) and 5 a structural polymer layer 5 is deposited on side A, for instance using spin coating (Fig. 1G).

The actuator 6 is now finished and can be cut out from the substrate 1 in its final lateral shape (Fig 1H). This can be done for instance using wet chemical etching, Reactive Ion Etching, sawing, cutting with scissors or a knife, laser ablation, or punching. Fig. 1I shows the finished, cut out device.

15

20

25

30

35

10

Figure 2 shows how the actuator 6 will be activated when it has been cut out and removed from the substrate 1. In Fig. 2A the actuator 6 is in its unactivated, newly produced state. In Fig 2B the actuator has been activated and is in a bent state. This kind of actuator is electrochemically activated. More information about these electrochemical E. in found can be actuators polymer other microactuators and PPy of "Microfabrication conjugated polymer devices", J. Micromech. Microeng., 1999, 9(1), pp. 1-18.

The process scheme described above is an in this case an electrochemical, fabricating a device, and 5,

polymer actuator. The method is not limited to the process of fabricating a three-layer actuator. Those skilled in the art notice that other combinations are possible. The layers can each comprise of several materials, or thicknesses. The layers 4 and 5 do not have to be continuous layers but can also comprise of patterned shaped elements. beams or rod structures e.q. structures can be added, on either or both sides. Figure 3 shows an example of such a device. Here, four materials are used, two being patterned. The steps of fabricating the membrane are not shown, but can be made in a manner corresponding to that shown in Fig. Fia. 1D. 1A to whereafter the photoresist has been removed. the structure shown in Fig. 1D but without the photoresist is the starting point in Fig. 3A. After the fabrication of the membrane, patterned structures 7 of a fourth material are deposited on side A of the membrane (Fig. 3A). Hereafter, a second layer 4 is deposited on side B (Fig. 3B), followed by a patterned third layer 5 on side A (Fig. 3C). Finally, the device 8 is cut out of the substrate 1 (Fig. 3D). Fig 3E shows the finished device 8, which can be used outside the substrate.

15

20

25

30

5

10 .

The addition of materials to the device can be done on one side at the time as shown in Fig. 1 and Fig. 3, but also on both sides simultaneously. Some deposition methods, such as conducting substrate, electrochemical deposition on a require that when only processing one side, the other side is protected in order not to deposit on that side as well. For instance, a layer of photoresist could be used for this 1E. 1D and Fig. purpose as is shown in Fig. deposition methods, including spin coating and physical vapour deposition, only cover one side and do not need such a protection layer, as is shown in Fig. 1F through Fig. 1G. The sequence onto which side the materials are added is of but depends on process importance to the method, parameters such as the materials to be added, the device, and production methods. One could deposit all materials on one side first and finish on the other side, or deposit on either side alternatingly. With alternatingly means that one or several layers are deposited on one side and then on the other side.

35

In another embodiment of the invention the device, for

instance a microactuator is fabricated according to step a through c (Fig.1A through 1G). Hereafter the device is partially cut out followed by further processing. Next, the device is completely cut out and thus removed from the substrate. Now that the device has been removed from it supporting frame, it can be used as intended, e.g. as a microactuator. An advantage with this method is that several microactuators may be activated in one action.

5

In the figures the fabrication of one device is shown. The method includes batch fabricating many such devices simultaneously by having many such devices on a single substrate. The devices that are manufactured simultaneously can be both identical and different.

CLAIMS:

. 5

15

- 1. Method for producing a micromachined layered device comprising a membrane layer and a first layer on one side of the membrane layer and a second layer on the opposite side of the membrane layer, the method comprising the following steps:
- a) a membrane layer is applied on a substrate;
- b) a window in the substrate is opened so as to free the
 membrane layer in order to enable the adding of layers
 from both sides of the membrane layer while the
 substrate is made into a frame that supports the
 membrane layer during the processing;
 - c) at least one layer is added on each side of the membrane either simultaneously or on one side at a time;
 - d) the device is cut out and removed from the substrate frame.
- 2. Method for producing a micromachined layered device according to claim 1 wherein step b) is made through any of the following methods: laser ablation, wet chemical etching, solvating, dry etching including reactive ion etching and sputter etching.

25

30

35

- 3. Method for producing a micromachined layered device according to claim 1 or 2, wherein step d) is made through any of the following methods: wet chemical etching, reactive ion etching, dicing/sawing, cutting with scissors or a knife, laser ablation, or punching.
- 4. A method for producing a micromachined layered device according to any of the preceding claims, wherein steps a-d can consist of a patterning step, to alter the lateral dimensions/, using for instance photolithography or soft lithography.

5. Method for producing a micromachined layered device, according to any of the preceding claims, wherein the substrate is made of a polymeric material, a semiconductor material such as silicon, a metal such as, titanium, an alloy such as stainless steel, or glass.

5

30

35

- 6. Method for producing a micromachined layered device, according to any of the preceding claims, the method may include the adding of further layers wherein any of the layers, including the membrane layer(s), may consist of a layer of a metal, metal oxides, or an alloy of metals, including gold, platinum, titanium, stainless steel, aluminiumoxide, and a nickel-titanium alloy. Also ceramics, such as hydroxyapatite can be used as a device layer.
- 7. Method for producing a micromachined layered device, according to any of the preceding claims, the method may include the adding of further layers wherein any of the layers, including the membrane layer(s), may consist of a layer of a conducting polymer, including pyrrole, aniline, thiophene, para-phenylene, vinylene, and phenylene polymers and copolymers thereof, including substituted forms of the different monomers.
 - 8. Method for producing a micromachined layered device, according to any of the preceding claims, the method may include the adding of further layers wherein any of the layers, including the membrane layer(s), may consist of a layer of a polymer including polyimide, polyamide, polypoly-(tetrafluorethylene), polyurethane, rubber), (dimethylsiloxan) (silicon poly(vinyl poly(methylmethacrylate), polyesters, chloride), and polyethylene including copolymers and substituted forms of the different monomer thereof,

epoxies, resins, and composites.

- 9. Method for producing a micromachined layered device, according to any of the preceding claims wherein first step a) is being performed consisting of the first layer of 5 the device being deposited on the substrate layer; hereafter, in step b) the substrate being selectively removed, e.g. by wet chemically etching, under the first layer over an area that at least is slightly larger than the final device size; hereafter, in step c) when the 10 membrane is freely hanging in the substrate support frame and can be accessed from both sides for additional processing, further at least one layer is added on each side of the membrane either simultaneously or at one side at a time; subsequently in step d) the device is removed 15 from the frame.
- 10. Method for producing a micromachined layered device, according to any of the preceding claims, wherein step d)
 20 is divided into two steps, where the device is partially cut out in a first step, then further processed, followed by a step where the device is completely cut out from the substrate.
- 25 11. Method for producing a micromachined layered device, according to any of the preceding claims, wherein the device is an actuator and wherein the method comprises a step e) where the actuator is activated following step d).
- 30 12. A device produced by the method according to any of the preceding claims.
 - 13. A device according to claim 12 the device is a microactuator.

1/4

Fig. 1

2/4 Fig. 1 - cont.

Fig. 2

Fig. 3

ABSTRACT:

5

Method for producing a micromachined layered device comprising a membrane layer and a first layer on one side of the membrane layer and a second layer on the opposite side of the membrane layer, the method comprising the following steps:

- d) a membrane layer is applied on a substrate;
- e) a window in the substrate is opened so as to free the membrane layer in order to enable the adding of layers from both sides of the membrane layer while the substrate is made into a frame that supports the membrane layer during the processing;
- f) at least one layer is added on each side of the membrane either simultaneously or on one side at a time;
 - d) the device is cut out and removed from the substrate frame.

20 (Fig. 1)

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

×	BLACK BORDERS
Ø	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
×	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox