

Faculty of Electrical and Computer Engineering, Communications Laboratory, Deutsche Telekom Chair of Communication Networks

Compressed Compute-and-Forward with correlated audio signals

DRESDEN concept Exzellenz aus Wissenschaft und Kultur

Dresden, 14.07.2016

Table of Content

- 1. Introduction
 - Task
 - Motivation
- 2. Underlying Theroy
 - Crosscorrelation
 - Designed characteristical values
- 3. Basics of the Octave-Tool
- 4. Signals
 - Recorded Signals
 - Examples
- 5. Conclusion

Task

- develop software to correlate stereo audio streams
- develop models for characteristic values to describe correlation
- record audio signals

Underlying theory (crosscorrelation)

time domain

frequency domain

$$\psi_{xy}^E(\tau) = \int\limits_{-\infty}^{\infty} x(t) \cdot y(t+\tau) \,\mathrm{d}t \qquad \qquad \underline{\Psi}(\omega) = \underline{X}^*(\omega) \cdot \underline{Y}(\omega)$$
 [ISV, S. 48 f] $\int\limits_{-\infty}^{\infty} x(t) \cdot y(t+\tau) \,\mathrm{d}t \qquad \qquad \underline{\Psi}(\omega) = \underline{X}^*(\omega) \cdot \underline{Y}(\omega)$

$$\underline{\Psi}(\omega) = \underline{X}^*(\omega) \cdot \underline{Y}(\omega)$$
 [ISV, S. 180]

$$\underline{\Psi}(\omega) = \int_{-\infty}^{\infty} x(-t) * y(t) \cdot e^{-j\omega t} dt$$
 [ISV, S. 180]

convolution theorem

Underlying theory

[NT]Prof. Dr.-Ing. Dr. h.c. Gerhard P. Fettweis: Einführung in die Nachrichtentechnik. Technische Universität Dresden, Fakultät Elektrotechnik, Vodafone Stiftungslehrstuhl Mobile Nachrichtensysteme, D-01062 Dresden Sommersemester 2015

Designed Characteristical Values

- Aim: check what kinds of signals are suitable for compressed-sensing
 - → classify signals
- Categories: physical information and shape of cross-correlation
- express characteristics in numbers
 - -simplify characteristics
 - -developed parameters have to stay valid

Designed Characteristical Values - ripple

• Scale for energy distribution of the signal

$$ripple = \frac{\sum_{\text{der obsersten 5 Perzentile } x_i^2}{\sum_{i=1}^{N} x_i^2}$$

• $0 \le ripple \le 1$

Designed Characteristical Values - ripple

Designed Characteristical Values - sigma

Typical shape of a cross-correlation:

Find a scale for width of the peak

Designed Characteristical Values – sigma

Amplitude-demodulation to receive an "envelope":

Designed Characteristical Values – sigma

• Fit a bell-shaped curve to envelope:

$$y = a \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} + b$$

Take sigma as value

Octave script

- modular and easily extendable
- processing lots of files
- concise output format

	• 1	В	C	D 1	F	F	G	Н
1	File ▼	duration 🔻	rate 🔻	ripple 🔻	sigma 🔻	exp 🔻		t diff ▼
2	lucas bad m 2 (4.3s)+0.1s	0,1	44100	0,212309356			0,3279235	-0,0003401
3	lucas von flur in bad m (4.3s)+0.1s	0,1	44100	0,176322991	0,000901402	0,95876285	0,3512552	-0,0002494
4	trefftz fahrstuhl m (4.2s)+0.1s	0,1	44100	0,335269505	0,000982243	16,8825806	0,1860949	0,0001587
5	trefftz_oben_andere_seite_(4.1s)+0.1s	0,1		0,45868271				
6	lucas_bad_m_1_(4.4s)+0.1s	0,1		0,268880279				
7	trefftz_oben_andere_seite_m_(4.4s)+0.1s	0,1		0,315810482				
8	trefftz_oben_andere_seite_(4.2s)+0.1s	0,1		0,488886935				
9	trefftz_unten_(4.2s)+0.1s	0,1		0,500751228				
	trefftz_unten_(4s)+0.1s	0,1		0,479571512				
	trefftz_oben_andere_seite_(4s)+0.1s	0,1		0,487005541				
	lucas_bad_m_2_(4.1s)+0.1s	0,1		0,354844946				
	bruecke_hsz_strasse_parallel_(4.4s)+0.1s	0,1		0,241628489				
14	trefftz_oben_andere_seite_(4.3s)+0.1s	0,1		0,410178066				
	trefftz_unten_(4.1s)+0.1s	0,1		0,494284162				
	trefftz_oben_andere_seite_m_(4.2s)+0.1s	0,1		0,318519645				
	trefftz_oben_andere_seite_m_(4.3s)+0.1s	0,1		0,303908068				
	trefftz_oben_andere_seite_(4.4s)+0.1s	0,1		0,460084415				
19	trefftz_unten_(4.3s)+0.1s	0,1		0,398273708 0,266531232				
	bruecke_hsz_strasse_gegen_wand_(4.1s)+0.1s trefftz_fahrstuhl_m_(4.3s)+0.1s	0,1		0,409191729				
	lucas bad m 2 (4.2s)+0.1s	0,1 0,1		0,409191729				
	lucas bad m 1 (4.2s)+0.1s	0,1		0,428957288				
	bruecke hsz strasse gegen wand (4.3s)+0.1s	0,1		0,428937288				
	bruecke hsz strasse gegen wand (4.4s)+0.1s	0,1		0,286712318				
26	trefftz fahrstuhl m (4.4s)+0.1s	0,1		0,339297442				
	trefftz oben (4s)+0.1s	0,1		0,314482055				
28	trefftz oben andere seite m oben (4.1s)+0.1s	0,1		0,308697014				0,0005401
	trefftz wiese m bewegt (4.1s)+0.1s	0,1		0,230104292				-0.0108617
2.5		0,1	44100	0.137035065	0.004361503	1 7050000	0.5104100	0.00000

TU Dresden, 14.07.16

Compressed Compute-and-Forward with correlated audio signals

Folie 14 von 18

- Cardioid characteristic not omnidirectional characteristic
- Without primarily sound source low SNR
- With sound source less informations about the room characteristic
- Gauß-fit useful at ripple-factor > 0.3

Conclusion

- fairly simple models to classify correlation
- Octave tool for automated correlation of lots of data
- software can easily be extended with own models and analysis functions
- recorded enough audio material for about 500 sample signals
- compact excel spreadsheet for easy selection of test signals

»Wissen schafft Brücken.«