Segmentación de objetos extraños en CT

Álvarez, Benjamin A01639669 Valle, José Carlos A01067268 Meza, Edna A01620484 Amaral, Jessica A01640373 Amador, Carlos Simón A01639035 Chagoya, Gerardo A01640083

Orozco, Paulina A01251267

Contenido

01

Introducción

02

Escala Hounsfield

03

Resolución espacial

04

Signal-to-noise ratio

05

Identificación y segmentación

06

Conclusión

Introducción

Introducción

La tomografía es una técnica de imagen médica usada para visualizar las estructuras internas del cuerpo humano.

Condiciones de tomográfo

- Capaz de registrar pixeles de 1 mm de distancia entre ellos
- Rotaciones de 0.9 o 1.8 grados
- 60-70 traslaciones con 200 rotaciones para 1 slice en 3 horas, 20 minutos

Reconstrucción

- Se realizó mediante la función iradon, que se utiliza para reconstruir imágenes a partir de sinogramas, utilizando la transformada de Radón inversa.
- La función toma como entrada el sinograma y un vector que especifica los ángulos de proyección correspondientes.
- Se seleccionó el filtro 'Ramlak' para suavizar la imagen reconstruida.
- Finalmente, se normaliza la intensidad de la imagen entre 0 y 1 utilizando el mínimo y el máximo valor de intensidad de la imagen reconstruida.

Escala de densidades

Es una escala numérica que se utiliza en tomografía computarizada para medir la atenuación de los rayos X en diferentes tejidos del cuerpo.

Hounsfield

Se elaboró una mezcla de agar-agar y agua a concentración de 0.01 gramos por mililitro.

Cada muestra:

- 20 ml de agua
- 0.2 g de agar-agar

Para crear diferentes densidades se le agregaron las siguientes cantidades de metamucil a cada muestra

#1 0.1 g

Densidad:
1.015 g/ml

#2 0.2 g

Densidad:
1.02 g/ml

#3 0.3 g

Densidad:
1.025 g/ml

Predefined threshold value	Minimum	Maximum
Bone (CT)	226	3071
Soft Tissue (CT)	-700	225
Enamel (CT, Adult)	1553	2850
Enamel (CT, Child)	2042	3071
Compact Bone (CT, Adult)	662	1988
Compact Bone (CT, Child)	586	2198
Spongial Bone (CT, Adult)	148	661
Spongial Bone (CT, Child)	156	585
Muscle Tissue (CT, Adult)	-5	135
Muscle Tissue (CT, Child)	-25	139
Fat Tissue (CT, Adult)	-205	-51
Fat Tissue (CT, Child)	-212	-72
Skin Tissue (CT, Adult)	-718	-177
Skin Tissue (CT, Child)	-766	-202

Método

- Se pre-procesa por medio de filtros de promedio y mediana.
- Se genera una máscara por medio de una binarización de límite 0.5, la cual muestra solo el cubo.
- Se multiplica la máscara por la imagen original (sin pre-procesamiento) y se promedia esta para obtener la densidad.

Método

Aire

• Densidad: 0,001 2

Intensidad: 0.25

• Tejido: -

Hounsfield: -1000 HU

Primera muestra

• Densidad: 1.025 g/ml

• Intensidad: 0.5381

Tejido: Hueso esponjoso

Hounsfield: 370.5 HU

Segunda muestra

• Densidad: 1.02 g/ml

Intensidad: 0.5094

• Tejido: Tejido muscular

• Hounsfield: 57 HU

Tercer muestra

• Densidad: 1.015 g/ml

• Intensidad: 0.0.4943

• Tejido: Tejido graso

• Hounsfield: -142 HU

Resolución espacial

LSF, ESF, FWHM

- Función de Difusión Lineal LSF representación gráfica de la respuesta de un sistema de imagen ante un objeto lineal.
- La Función de Punto del Sistema (ESF) es una función que representa la respuesta del sistema al escanear una línea delgada en la imagen.
- Anchura a media altura (FWHM) se utiliza para caracterizar la resolución espacial de un sistema de imagen.

Patrón de líneas

 Se emplea un fantoma con barras separadas por diferentes distancias que se reducen progresivamente para estimar la resolución del tomógrafo. Esto quiere decir que se obtiene su capacidad de diferenciar objetos separados por poca distancia.

Patrón de líneas

1 - 2 -3 - 4 - 5 - 6 - 7 mm

Fantoma con diferencia de densidad

Se tomó en cuenta la vista de un solo ángulo del objeto reconstruido de modo que se observa de forma clara la diferencia de densidades.

Razón señal a ruido

Relación señal-ruido SNR

Definición

Relación entre la amplitud al cuadrado o varianza de una señal con respecto a la varianza del ruido.

Procesamiento

Se genera una imagen ideal con la forma e intensidad del fantoma, luego se calcula el SNR.

Relación señal-ruido SNR

SNR =
$$\frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x, y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x, y) - \hat{f}(x, y)]^{2}}$$

SNR de fantomas

Fantoma 1: -5.25 dB Fantoma 2: -14.47 dB Fantoma 3: -12.87 dB

Segmentación

Pre-procesamiento:

- Filtro de media de 4x4, 10 veces
- Filtro de mediana de 3x3, 10 veces
- Binarización

Procesamiento:

- Detección de bordes Canny
- Uso de identificación de círculos, se aumentan 10 pixeles al radio para que el círculo rodee al objeto.

Detección de bordes

Conclusiones

- Obtuvimos un FWHM de 2 píxeles. Significa que la función tiene un ancho de 2 píxeles en su punto de mitad de altura, por lo que el sistema puede discernir detalles finos en la imagen, todos aquellos con al menos 2 píxeles (2mm) de distancia.
- La Función de Punto del Sistema así como la Función de Difusión Lineal tuvo una respuesta esperada, lo cual asegura que el sistema puede detectar con precisión objetos y bordes de alta frecuencia en la imagen.
- Obtuvimos una relación con los valores de Hounsfield con un coeficiente de determinación (R^2) de 0.92.
- El algoritmo de segmentación es capaz de reconocer entre múltiples tejidos con una alta resolución de contraste a partir de la regresión con la escala de Hounsfield.

