浙江大学 2023-2024 春夏学期概率论与数理统计期末考试

- 一. (36分) 填空题 (每空3分, 共36分; 各分布要求写出具体参数)
 - 1. 已知 $P(A) = 0.7, P(B) = 0.4, P(A-B) = 0.5, P(A \cup \overline{B}) = ____, P(B|\overline{A}) = ____.$

 - 3. 独立重复投掷一颗均匀的骰子 3 次, 令 X 表示这三次点数之和, Y 表示三次中最小的点数, Z 表示出现 1 点的次数, 则 E(X) =________, P(Y = 2) =________, P(X = 6|Z = 1) =________,
 - 4. 设正太总体 $X \sim N(\mu, \sigma^2), \mu \in R, \sigma^2 > 0$ 未知, $X_1, ... X_n$ 为来自该总体的简单随机样本, $n \geq 4$,
 - (1). $\left(\frac{X_1+X_2-X_3-\mu}{X_2+X_3-X_4-\mu}\right)^2$ 服从______分布,若 $\frac{(\overline{X}-X_1)^2}{a}\sim\chi^2(k)$,其中 \overline{X} 为样本均值,则 (a,k)=_____.
 - (2). 当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ 依概率收敛到______.
 - (3). 当 $\sigma = 2$ 已知时, 若 $n = 36, \overline{x} = 1.5$, 则检验 $H_0: \mu \geq 2$, $H_1: \mu < 2$ 的 p 值为______.
- 二. $(10 \, \text{分})$ 某人出门去甲地。若天气好,就骑共享单车去,所花时间 (单位: 分钟) 服从均匀分布 U(20,40);若天气不好,就步行至地铁站坐地铁,所花时间服从 U(30,50),若天气好的概率为 0.8,
 - (1). 求此人出门半小时后还没到甲地的概率。
 - (2). 若已知此人出门半小时后还没到甲地, 求他骑共享单车的概率。

三. (12 分) 设 X、Y 的联合分布律为

Y X	0	1	2
0	1/9	2/9	a
1	3/9	2/9	0

- (1). 求常数 a.
- (2). 求 Cov(X,Y), 并判断 X 与 Y 的相关性.
- (3). 求 $\{Y=1\}$ 的条件下,X 的条件分布函数 $F_{X|Y}(x|1)$.

四. (14 分) 设 $X \times Y$ 的联合密度函数为

$$f(x,y) = \begin{cases} e^{-x}, x > 0 \\ 0, 其他 \end{cases}$$

- (1). 分别求 X 与 Y 的边际密度函数 $f_X(x)$ 与 $f_Y(y)$, 并判断两者是否独立.
- (2). Rightharpoonup P(X < 0.5|Y = 1).
- (3). 求 E(XY).

五. (14分) 已知总体的概率密度函数:

$$f(x) = \begin{cases} 3\theta^{-3}x^2, 0 < x < \theta \\ 0, \text{其他} \end{cases}$$

 $X_1...X_n$ 是从总体中抽取的 n 个样本.

- (1). 求 θ 的矩估计 $\hat{\theta_1}$, 并判断是否是相合估计.
- (2). 当 n 足够大时, 求 $\hat{\theta_1}$ 的分布.
- (3). 求 θ 的极大似然估计 $\hat{\theta_2}$, 并判断是否是无偏估计.

六. (14 分) 有 A、B 两种小麦,发芽时间分别服从 $N_1(\mu_1,\sigma_1^2)$, $N_2(\mu_2,\sigma_2^2)$, 现分别从两种小麦中取 11 和 10 个样本,样本均值分别为 $\overline{x}=99.1,\overline{y}=88.9$,样本方差分别为 $s_1^2=0.94,s_2^2=0.88$,求:

- (1). $\frac{\sigma_1^2}{\sigma_2^2}$ 在置信水平为 0.95 下的双侧等尾置信区间, 并判断 σ_1^2 是否等于 σ_2^2 ?
- (2). 在 (1) 的基础上, $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$,在显著水平 $\alpha = 0.05$ 下检验 H_0 .