Updated: 2021-03-29

# 5.3Spark Continued

© 2015 Robin Hillyard



#### Spark Platform



Books: Learning Spark, Karau et al, (O'Reilly); Spark in Action (Manning).

### Under the hood

- As mentioned previously, Spark is built in Scala
  - You could easily write your own version of Spark
    - (in fact, that's kind of what Majabigwaduce is)
    - Basically, Spark is:
      - A "resilient distributed dataset" container (RDD);
      - A DAG (directed-acyclic graph) generator;
      - An interface to a resource manager (Yarn, MESOS, etc.);
      - A higher-level API for working with SQL;
      - A few other bits and pieces.
    - But getting the details right would take a lot of work, obviously — but the point is that Spark is just Scala set up to make parallel processing (map/reduce) easy

# Example of using RDD (SparkContext)

```
package edu.neu.csye._7200
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount extends App {
 def wordCount(lines: RDD[String], separator: String) = {
    lines.flatMap(_.split(separator))
         .map((_,1))
         .reduceByKey(_ + _)
 //For Spark 1.0-1.9
 val sc = new SparkContext(new SparkConf().setAppName("WordCount").setMaster("local[*]"))
 wordCount(sc.textFile("input//WordCount.txt")," ").foreach(println(_))
  sc.stop()
```

# How to invoke Spark?

- There are lots of ways:
  - spark-shell (like we did last week)
  - spark-submit –jar ....
  - Docker...
  - Databricks notebook
  - Zeppelin
  - AWS, etc. know how to run spark.

# Example of using RDD from Dataset

```
(using SparkSession: spark-sql)
 package edu.neu.csye._7200
 import org.apache.spark.rdd.RDD
 import org.apache.spark.sql.SparkSession
 object WordCount extends App {
   def wordCount(lines: RDD[String], separator: String) = {
     lines.flatMap(_.split(separator))
           map((_,1))
           .reduceByKey(_ + _)
   val spark = SparkSession
     .builder()
     .appName("WordCount")
     .master("local[*]")
     .getOrCreate()
   wordCount(spark.read.textFile("input//WordCount.txt").rdd,"
").collect().foreach(println(_))
   spark.stop()
 }
```

#### How does RDD work?

 As always if you want to answer a question like this: go to the <u>source!</u>

```
// Transformations (return a new RDD)

/**
    * Return a new RDD by applying a function to all elements of this RDD.
    */
def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
}

    withScope ensures that this RDD stays
    within the same hierarchy; ClassTag give
    us information about the class U at
    runtime; sc.clean ensures that the function
    f is serializable, etc.
```

 The point is that map doesn't really "do" anything: it simply creates a new *RDD* with function *f* and a reference to *this*.

### Persistence

#### Basically:

- since everything is done in memory, an RDD will be garbage-collected when there are no RDDs referencing it (that's to say until you create an *action* which corresponds to a *task*).
- If you want to avoid this: and keep an RDD around for longer, you can use *cache* or *persist*. (*cache* is just a form of *persist* but memory only—*persist* allows some or all to be save to disk).

# Broadcasting

- Suppose that you have a lookup table (or something similar) that will need to be used by each of the executors?
  - The table will have to be sent over the network for every task to be run on each executor.
  - If you know that will happen ahead of time, you can broadcast the table so that it only has to be sent to each executor once.
  - val xb = sc.broadcast(x)
  - Now, in our code, we refer to xb.value instead of x

#### Accumulators

- Information flows from the driver to the executors mostly in only one direction (other than the result of running a Spark task).
  - But suppose we want to keep count of the number of operations that happen on the executors, or the number of *None* values, *Failure* values, whatever...
    - It would be awkward to include this information in the return type, and that wouldn't really work if the executor threw an exception and failed.
    - The answer is to set up an accumulator: these are writeonly objects that you set up in the driver and which are updated by the executors.

# Spark Modules

#### Spark Platform



Books: Learning Spark, Karau et al, (O'Reilly); Spark in Action (Manning).

# SparkSQL

- What exactly is SparkSQL and why would you want to use it?
  - At first, SparkSQL was fairly primitive and it was better to use RDDs (or Hive).
  - But now (especially in Spark 2.0), SparkSQL has a very good optimizer which will create an execution plan for Spark which is potentially very efficient
  - Spark 2.x (and 1.6.3?) even allows you extend the optimizer with your own rules and node types.
  - Consequently, more and more Spark work is being done not, in Scala, not in Python, Java or R: but in SQL

## Datasets/Dataframes

- An alternative to using SQL is to set up a *Dataset* (or *Dataframe* in 1.6.1) and treat it similarly to an *RDD* (i.e. with Scala)
  - A *Dataframe* is untyped (basically a collection of tuples) but a *Dataset* has a type:
    - In 2.0, type Dataframe = Dataset[Row]
  - Dataframe/Dataset do not extend RDD. But you can get the underlying RDD with the rdd method.

# Spark SQL

- You can run SQL in several ways:
  - get a spark and make SQL queries;
  - get a spark and use the DataFrame or Dataset API:
    - DataFrames provide a DSL for structured data manipulation.

```
scala> val df = sqlContext.read.json("examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> df.show
+---+
lagel namel
| Inull|Michael|
  301 Andyl
| 19| Justin|
+---+
scala> df.printSchema
root
|-- age: long (nullable = true)
I-- name: string (nullable = true)
scala> df.select("name").show
   name l
+----+
| Michael |
   Andyl
| Justin|
+----+
```

# Joining

- SparkSQL supports various types of Join:
  - INNER, LEFT, OUTER, etc. etc.
  - There will be times when you can improve performance by using a *broadcast* join (aka "map" join) — same idea as broadcast variable.
  - However, Spark will do the broadcast for you if it knows the sizes of the tables in advance (e.g. you use a persistence format such as ORC).

### Reading CSV as DataFrame

The standard way to read a CSV file as a DataFrame is\*:

```
object Diamonds extends App {
 val spark: SparkSession = SparkSession
.builder()
   .appName("WordCount")
.master("local[*]")
    .getOrCreate()
diamonds.printSchema()
  diamonds.show()
```

\* see: https://docs.databricks.com/data/data-sources/read-csv.html

## Diamonds

```
root
|-- _c0: integer (nullable = true)
|-- carat: double (nullable = true)
|-- cut: string (nullable = true)
|-- color: string (nullable = true)
|-- clarity: string (nullable = true)
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: integer (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
```

| +   | ++++++++ |           |       |         |       |                |              |              | -    |         |   |
|-----|----------|-----------|-------|---------|-------|----------------|--------------|--------------|------|---------|---|
| _c0 | carat    | cut       | color | clarity | depth | table          | price        | х            | У    | z       |   |
| +   | +        | +         | +     | +       | +     | + <del>-</del> | <del>-</del> | <del>-</del> |      | <b></b> | - |
| 1   | 0.23     | Ideal     | E     | SI2     | 61.5  | 55.0           | 326          | 3.95         | 3.98 | 2.43    |   |
| 2   | 0.21     | Premium   | E     | SI1     | 59.8  | 61.0           | 326          | 3.89         | 3.84 | 2.31    |   |
| 3   | 0.23     | Good      | E     | VS1     | 56.9  | 65.0           | 327          | 4.05         | 4.07 | 2.31    |   |
| 4   | 0.29     | Premium   | I     | VS2     | 62.4  | 58.0           | 334          | 4.2          | 4.23 | 2.63    |   |
| 5   | 0.31     | Good      | J     | SI2     | 63.3  | 58.0           | 335          | 4.34         | 4.35 | 2.75    |   |
| 6   | 0.24     | Very Good | J     | VVS2    | 62.8  | 57.0           | 336          | 3.94         | 3.96 | 2.48    |   |
| 7   | 0.24     | Very Good | I     | VVS1    | 62.3  | 57.0           | 336          | 3.95         | 3.98 | 2.47    |   |
| 8   | 0.26     | Very Good | Н     | SI1     | 61.9  | 55.0           | 337          | 4.07         | 4.11 | 2.53    |   |
| 9   | 0.22     | Fair      | E     | VS2     | 65.1  | 61.0           | 337          | 3.87         | 3.78 | 2.49    |   |
| 10  | 0.23     | Very Good | Н     | VS1     | 59.4  | 61.0           | 338          | 4.0          | 4.05 | 2.39    |   |
| 11  | 0.3      | Good      | J     | SI1     | 64.0  | 55.0           | 339          | 4.25         | 4.28 | 2.73    |   |
| 12  | 0.23     | Ideal     | J     | VS1     | 62.8  | 56.0           | 340          | 3.93         | 3.9  | 2.46    |   |
| 13  | 0.22     | Premium   | F     | SI1     | 60.4  | 61.0           | 342          | 3.88         | 3.84 | 2.33    |   |
| 14  | 0.31     | Ideal     | J     | SI2     | 62.2  | 54.0           | 344          | 4.35         | 4.37 | 2.71    |   |
| 15  | 0.2      | Premium   | E     | SI2     | 60.2  | 62.0           | 345          | 3.79         | 3.75 | 2.27    |   |
| 16  | 0.32     | Premium   | E     | I1      | 60.9  | 58.0           | 345          | 4.38         | 4.42 | 2.68    |   |
| 17  | 0.3      | Ideal     | I     | SI2     | 62.0  | 54.0           | 348          | 4.31         | 4.34 | 2.68    |   |
| 18  | 0.3      | Good      | J     | SI1     | 63.4  | 54.0           | 351          | 4.23         | 4.29 | 2.7     |   |
| 19  | 0.3      | Good      | J     | SI1     | 63.8  | 56.0           | 351          | 4.23         | 4.26 | 2.71    |   |
| 20  | 0.3      | Very Good | J     | SI1     | 62.7  | 59.0           | 351          | 4.21         | 4.27 | 2.66    |   |
| +   | +        | +         | +     |         | +     | +              |              |              |      | ++      | _ |

only showing top 20 rows

### Reading CSV as DataSet

- There is no standard way to read a CSV file as a DataSet.
- You could use my *TableParser* library:
  - https://github.com/rchillyard/TableParser
  - https://scalaprof.blogspot.com/2019/04/new-projects.html

```
import MovieParser._
val mty: Try[Table[Movie]] = Table.parse("movies.csv")
val dy: Try[Seq[Movie]] = mty map (spark.createDataset(_.toSeq))
```

 This is the "proper" way to deal with a CSV file in Spark.

#### Spark Platform



Books: Learning Spark, Karau et al, (O'Reilly); Spark in Action (Manning).

## Why is GraphX interesting?

- GraphX is interesting because...
  - Graphs are interesting on their own.
    - Graphs represent relationships—and relationships are an important type of information.
    - Over the years, we have been seduced into thinking that tables are the most important way of modeling data (relational databases)
    - Actually, before relational databases, we had so-called codasyl databases which could represent graphs.
    - Graphs can store data whose structure is totally arbitrary and dynamic: trees, sparse matrices, key-value stores, tables, etc. (you might not always want to use a graph of course, but you could)
  - GraphX extends the Spark infrastructure (based on linear, but segmentable datasets—RDDs) and patterns to graph information.

# Some GraphX resources

- GraphX Programming Guide
- GraphX: Graph Analytics in Spark- Ankur Dave (UC Berkeley)

# An example (from programming guide)





#### Vertex Table

| ld | Property (V)          |
|----|-----------------------|
| 3  | (rxin, student)       |
| 7  | (jgonzal, postdoc)    |
| 5  | (franklin, professor) |
| 2  | (istoica, professor)  |

#### Edge Table

| SrcId | Dstld | Property (E) |  |  |
|-------|-------|--------------|--|--|
| 3     | 7     | Collaborator |  |  |
| 5     | 3     | Advisor      |  |  |
| 2     | 5     | Colleague    |  |  |
| 5     | 7     | PI           |  |  |

## An example

```
scala> import org.apache.spark._
import org.apache.spark._
                                                   Note that VertexId is a type alias for Long.
scala> import org.apache.spark.graphx._
import org.apache.spark.graphx._
                                                    case class Edge[ED](srcId: VertexId = 0, dstId: VertexId = 0,
scala> import ora.apache.spark.rdd.RDD
                                                    attr: ED = null.asInstanceOf(ED)) extends Serializable with
import org.apache.spark.rdd.RDD
scala> val users: RDD[(VertexId, __ring, String))] = Product
        sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
                             (5L, ("franklim", "prof")), (2Ĺ, ("istoica", "prof"))))
users: org.apache.spark.rdd.RDD[(org.apache_spark.graphx.VertexId, (String, String))] = ParallelCollectionRDD[0] at
parallelize at <console>:29
scala> val relationships: RDD[Edge[String]] =
        sc.parallelize(Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),
                             Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))
relationships: org.apache.spark.rdd.RDD[org.apache.spark.graphx.Edge[String]] = ParallelCollectionRDD[1] at
parallelize at <console>:29
scala> val defaultUser = ("John Doe", "Missing")
defaultUser: (String, String) = (John Doe, Missing)
scala> val graph = Graph(users, relationships, defaultUser)
graph: org.apache.spark.graphx.Graph[(String, String),String] = org.apache.spark.graphx.impl.GraphImpl@35ca1e22
scala> graph.triplets.collect
res1: Array[org.apache.spark.graphx.EdgeTriplet[(String, String),String]] =
Array(((3,(rxin,student)),(7,(jqonzal,postdoc)),collab), ((5,(franklin,prof)),(3,(rxin,student)),advisor),
((2,(istoica,prof)),(5,(franklin,prof)),colleague), ((5,(franklin,prof)),(7,(jgonzal,postdoc)),pi))
scala> graph.edges
res2: org.apache.spark.graphx.EdgeRDD[String] = EdgeRDDImpl[13] at RDD at EdgeRDD.scala:40
scala> res2.reverse
res3: org.apache.spark.graphx.EdgeRDD[String] = EdgeRDDImpl[20] at RDD at EdgeRDD.scala:40
```



#### Spark Platform



Books: Learning Spark, Karau et al, (O'Reilly); Spark in Action (Manning).

# Spark Streaming

- Spark Streaming...
  - is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams;
  - data can be ingested from many sources like Kafka, etc.
  - finally, processed data can be pushed out to filesystems, databases, and live dashboards.
  - in fact, you can apply Spark's <u>machine learning</u> and <u>graph</u> <u>processing</u> algorithms on data streams.



# Spark Streaming (contd.)

- Internally, it works as follows:
  - Spark Streaming receives live input data streams and divides the data into batches, which are then processed by the Spark engine to generate the final stream of results in batches.

