Question 1 (Self-Conjugate Partitions, 30 points). Consider the partition of 13 into distinct odd parts given by 9+3+1=13. What is the corresponding self-conjugate partition of 13?

We need the partition with snakes of length 9, 3, and 1. It is shown below.

The partition is 5+3+3+1+1.

Question 2 (Multiple Colliding Pairs, 35 points). Suppose that n pigeons are placed into m holes with $n \ge m-1+2k$ for some positive integer k. Show that one can find k disjoint pairs of pigeons $(p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k)$ so that p_i and q_i were placed in the same hole for each i. Hint: use induction on k.

We proceed by induction on k. If k=1, this is just the pigeonhole principle. Assuming that this statement holds for a given value of k, we need to show it for k+1. Assume that $n \ge m-1+2(k+1)$. Since n > m, the pigeonhole principle implies that there is some pair of pigeons p, q placed in the same hole. Call these pigeons p_{k+1}, q_{k+1} . Removing these pigeons from the collection we have $n-2 \ge m-1+2k$ pigeons remaining. By the inductive hypothesis there are k disjoint pairs of these pigeons (p_i, q_i) , with each pair landing in the same hole. Adding (p_{k+1}, q_{k+1}) gives k+1 pairs of pigeons from our original collection. This completes the inductive step and proves our result.

Question 3 (Restricted Compositions, 35 points). In how many ways can one select integers a_1, a_2, a_3, a_4 with $1 \le a_i \le 9$ so that $a_1 + a_2 + a_3 + a_4 = 15$? You may leave your solution in terms of a closed formula and need not compute the numerical answer.

If we do not impose the upper bound on the a_i , we want the number of compositions of 15 into 4 parts, which is $\binom{15-1}{4-1} = \binom{14}{3}$. We need to remove from this the number of quadruples with $a_i \geq 10$ for some i. Note that at most one a_i is this large (otherwise the sum would be at least 20). Thus, it is enough to subtract the sum over i of the number of quadruples with $a_i \geq 10$. Subtracting 9 from a_i yields an arbitrary composition of 15-9=6 into 4 parts. Therefore the number of such compositions with $a_i \geq 10$ is $\binom{6-1}{4-1} = \binom{5}{3}$. Thus, the final answer is $\binom{14}{3} - 4\binom{5}{3}$.