無機化学

	~_
Н	777
_	7.

第Ⅰ部	遷移元素	2
1	性質	2
2	鉄・コバルト・ニッケル	2
2.1	鉄	2
2.2	硫酸鉄(Ⅱ)7水和物	3
2.3	塩化鉄(III)6 水和物	4
2.4	鉄イオンの反応	4
2.5	塩化コバルト(Ⅱ)	4
2.6	硫酸ニッケル(Ⅱ)	4
3	銅	5
3.1	銅	5
3.2	硫酸銅(Ⅱ)5 水和物	6
3.3	銅(Ⅱ)イオンの反応	6
3.4	銅の合金	6
4	銀	6
4.1	銀	6
4.2	銀(I)イオンの反応	7
4.3	難溶性化合物の溶解性	7
5	クロム・マンガン	7
5.1	単体	8
5.2	クロム酸カリウム・二クロム酸カリウム	8
5.3	過マンガン酸カリウム	8
5.4	マンガンの安定な酸化数	9
第Ⅱ部	3 APPENDIX	10
А	気体の乾燥剤	10
В	水の硬度	10
С	錯イオンの命名法	10
D	金属イオンの難容性化合物	11
E	金属イオンの系統分離	13

第Ⅰ部

遷移元素

d 軌道・f 軌道(内殻)の秋に電子が入っていき、最外殻電子の数は[1]1か2

(②ランタノイド・③アクチノイド:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

1 性質

- 単体は密度が4大きく、融点が5高い金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは⑥白色のものが多い
- 安定な[7]錯イオンを形成しやすい(8]d 軌道に空きがある)
- 単体や化合物は (9) 触媒になるものが多い*1
- 酸化数が $\left\{ \begin{array}{c} 小さい \\ 大きい \end{array} \right\}$ 酸化物は $\left\{ \begin{array}{c} \boxed{10 \cuple 2007 cm} \\ \boxed{11 \cup be} \end{array} \right\}$ 剤

2 鉄・コバルト・ニッケル

2.1 鉄

2.1.1 性質

- ・ 常温で 12 強磁性
- ◆ イオン化傾向が水素より 13大きい
 - [14]強酸と反応([15]濃硝酸には[16]不動態となり反応しない)
- 17高温の水蒸気と反応して 18 緻密な 19 黒錆が生成(酸化被膜)
- 湿った空気中では 20 粗い 21 赤錆を生成

酸化鉄(III)	Fe_2O_3	22 赤褐色	23 常磁性
四酸化三鉄	Fe_3O_4	24 <u>黒</u> 色	25 強磁性
酸化鉄(II)	FeO	26黒色	27 <mark>発火</mark> 性

軟鋼	28 鉄鋼	29	30ステンレス鋼	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	31 Cr, Ni	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*1} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

2.1.2 製法

鉄の製錬工業的製法

2.1.3 反応

• 塩酸との反応

$$Fe + 2 HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

• 高温の水蒸気との反応

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2 \uparrow$$

- 微量に含まれる炭素・鉄・水による $\overline{54}$ 局部電池($\overline{55}$ 食塩 などが溶けていたら反応速度上昇) 正極($\overline{56}$ C) $O_2 + 2 H_2 O + 4 e^- \longrightarrow 4 O H^-$ 負極($\overline{57}$ Fe) Fe \longrightarrow Fe²⁺⁺ $2 e^-$
- 58水酸化鉄(Ⅱ) の生成

$$Fe^{2+} + 2OH^{-} \longrightarrow Fe(OH)_{2}$$
 (59)緑色)

- 連やかに 60 水酸化鉄 (Ⅱ) が酸素により酸化 4 Fe(OH)₂ + O₂ + 2 H₂O → 4 Fe(OH)₂
- 61水酸化鉄(Ⅲ)の脱水

$$\operatorname{Fe}(\operatorname{OH})_3 \longrightarrow \operatorname{FeO}(\operatorname{OH}) + \operatorname{H}_2\operatorname{O}$$
(酸化水酸化鉄(III)濃橙色) $2\operatorname{Fe}(\operatorname{OH})_3 \longrightarrow \operatorname{Fe}_2\operatorname{O}_3 \cdot n\operatorname{H}_2\operatorname{O} + (3-n)\operatorname{H}_2\operatorname{O}$ (62]赤褐色) (エバンスの実験)

2.2 硫酸鉄(Ⅱ)7水和物

化学式: [63] FeSO₄·7 H₂O

2.2.1 性質

- (64) 青緑色の固体
- Fe²⁺ 半反応式

$$\overline{(65)}$$
Fe²⁺ \longrightarrow Fe³⁺ + e⁻

● 空気中で表面が[66]Fe₂(SO₄)₃([67]黄褐色)

2.2.2 製法

鉄に 68 希硫酸を加えて、蒸発濃縮

 $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2 \uparrow$

2.3 塩化鉄(Ⅲ)6水和物

化学式: [69] FeCl₃·6 H₂O

2.3.1 性質

- (70)黄褐色で(71)潮解性のある固体
- 72 酸性

($\overline{(73)} \text{Fe}^{3+} + \text{H}_2\text{O} \Longrightarrow \text{FE}(\text{OH})^{2+} + \text{H}^+$ $K_1 = 6.0 \times 10^{-3} \text{ mol/L}$)

2.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

$$\begin{split} \operatorname{Fe} + 2 \operatorname{HCl} & \longrightarrow \operatorname{FeCl}_2 + \operatorname{H}_2 \uparrow \\ 2 \operatorname{FeCl}_2 + \operatorname{Cl}_2 & \longrightarrow 2 \operatorname{FeCl}_3 \end{split}$$

2.4 鉄イオンの反応

	NaOH	$K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6]$		
Fe^{2+}	(74)Fe(OH) ₂ ↓	$\text{Fe}_2[\text{Fe}(\text{CN})_6]\downarrow$	$KFe[Fe(CN)_6] \downarrow$	75変化なし	76変化なし
77 淡緑色	78 緑白色	79青白色	80濃青色	81 淡緑色	82)淡緑色
Fe^{3+}	83)Fe(OH) ₃ ↓	$KFe[Fe(CN)_6]\downarrow$	Fe[Fe(CN) ₆]aq	84)Fe ²⁺ aq	$[Fe(NCS)]^{2+}$
85 黄褐色	86)赤褐色	87 濃青色	88]暗褐色	89 淡緑色	90血赤色

- Fe²⁺, Fe³⁺ は、 91 OH⁻ とも 92 OH⁻ とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは [93]同一物質

2.5 塩化コバルト(II)

化学式: 94 CoCl₂

2.5.1 性質

- [95]青色で[96]潮解性のある固体
- 6水和物は 97 淡赤色
- 塩化コバルト紙を用いた 98 水の検出
- CO³⁺ は [99] NH₃ と錯イオンを形成

2.6 硫酸ニッケル(Ⅱ)

化学式: [100]NiSO₄

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は 101 NH₃ と錯イオンを形成

3 銅

3.1 銅

3.1.1 性質

- 102赤色の金属光沢
- 他の金属とさまざまな色の[103]合金
- 展性・延性が 104 大きく、電気・熱伝導性が 105 高い
- イオン化傾向が水素より 106 低く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(107)酸に溶解)が生成108赤色の酸化銅(I)乾・109青緑の錆(110)緑青)湿

3.1.2 製法

銅の製錬 **粗銅**・ 111 電解精錬 **純銅** 工業的製法 112 高炉 113 黄銅鉱(「114 CuFeS₂)・ 115 コークス ・ 116 石灰石 ・ 117 ケイ砂 を高温で反応 FeSiO₃

<u> 119転炉</u> 硫化銅(I)に<u>120酸素</u>を吹き付けて、<u>121)粗銅</u>にする。

$$2 \operatorname{Cu}_2 S + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Cu}_2 O + 2 \operatorname{SO}_2$$

 $\operatorname{Cu}_2 S + 2 \operatorname{Cu}_2 O \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_2$

3.1.3 反応

• 銅と希硝酸

$$3 \,\mathrm{Cu} + 8 \,\mathrm{HNO}_3 \longrightarrow 3 \,\mathrm{Cu}(\mathrm{NO}_3)_2 + 4 \,\mathrm{H}_2\mathrm{O} + 2 \,\mathrm{NO} \uparrow$$

• 銅と濃硝酸

$$Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2 \uparrow$$

• 銅と熱濃硫酸

$$Cu + 2 H_2 SO_4 \longrightarrow CuSO_4 + 2 H_2 O + SO_2 \uparrow$$

- 空気中で 1000°C 未満で加熱して、 (122)黒色の (123)酸化銅 (Ⅱ) 生成
 2 Cu + O₂ → 2 CuO
- さらに 1000° C 以上で加熱して、(124)赤色の(125)酸化銅(1)生成 4 CuO $\longrightarrow 2$ Cu $_2$ O + O $_2$
- 銅イオンから水酸化銅(Ⅱ)の生成

$$\operatorname{Cu_2}^+ + 2\operatorname{OH}^- \longrightarrow \operatorname{Cu}(\operatorname{OH})_2 \downarrow$$

・ 水酸化銅(Ⅱ)とアンモニアの反応
 Cu(OH)₂ + 4 NH₃ → [Cu(NH₃)₄]²⁺ + 2 OH⁻

• 水酸化銅(Ⅱ)の加熱

$$Cu(OH)_2 \longrightarrow CuO + H_2O$$

3.2 硫酸銅(Ⅱ)5 水和物 4 銀

3.2 硫酸銅(Ⅱ)5水和物

3.2.1 性質

- [126] 青色の固体 (結晶中の [127] [Cu(H₂O)₄]²⁺の色)
- 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ $\xrightarrow{128|3}$ 水和物 $\xrightarrow{113^{\circ}\text{C}}$ $\xrightarrow{129|1}$ 水和物 $\xrightarrow{150^{\circ}\text{C}}$ $\xrightarrow{130|\text{無水和物}}$ $\xrightarrow{650^{\circ}\text{C}}$ $\xrightarrow{131|\text{ 酸化鲖 (II)}}$ $\xrightarrow{133|6}$ $\xrightarrow{142}$ $\xrightarrow{1429}$ $\xrightarrow{1429}$

- ◆ Cu²⁺ による (134) 殺菌作用(農薬)
- 還元性を持つ有機化合物の検出*2
 135赤色の酸化銅(I)が生成

3.2.2 製法

銅に<u>136</u> 濃硫酸 をかけてから <u>137 加熱</u>。

3.2.3 反応

3.3 銅(Ⅱ) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S(138 全液性)
Cu^{2+}	[139]Ca(OH) ₂ ↓	$[140][Ca(NH_3)_4]^{2+}$ aq	[141] [CuCl ₄] ²⁻ aq	142]CuS↓
143青色	144青白色	145 深青 色	[146]黄緑色	147黒色

- 炎色反応: 148 青緑色
- 加熱すると 149分解
- Cu²⁺ は [150] NH₃ と錯イオンを形成し、 [151] OH⁻ とは形成しない

3.4 銅の合金

[152] 黄銅 (真鍮)	<u>153洋銀</u> (洋白)	154)白銅	[155]青銅	156 ジュラルミン
157 Zn	158)Zn, Ni	(159)Ni	160) <mark>Sn</mark>	161 AI (主成分)
適度な強度と加工性	柔軟で錆びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽くて丈夫
楽器・水道用具	食器・装飾品	五十円玉・五百円玉	像	航空機・車両

4 銀

4.1 銀

4.1.1 性質

- 展性・延性が 162 大きく、電気・熱伝導性が 163 最も高い
- イオン化傾向が水素より (164)小さい(165)酸化力のある酸((166)硝酸・(167)熱濃硫酸) と反応
- 空気中で酸化しにくいが、 [168]硫化水素とは容易に反応

4.1.2 製法

● 銅の電解精錬の [169] 陽極泥 工業的製法

^{*&}lt;sup>2</sup> フェーリング液・ベネディクト液

4.2 銀(I)イオンの反応 5 クロム・マンガン

銀の化合物の熱分解・光分解
 酸化銀の熱分解 2 Ag₂O → 4 Ag + O₂
 ハロゲン化銀 AgX の感光 2 AgX → 2 Ag + X₂

4.1.3 反応

• 銀と希硝酸

$$3 \,\mathrm{Ag} + 4 \,\mathrm{HNO_3} \longrightarrow 3 \,\mathrm{AgNO_3} + 2 \,\mathrm{H_2O} + \mathrm{NO} \uparrow$$

• 銀と濃硝酸

$$Ag + 2 HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$$

• 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + 2\,\mathrm{H}_2\mathrm{O} + \mathrm{SO}_2 \,\uparrow$$

• 銀と硫化水素

$$4 \operatorname{Ag} + 2 \operatorname{H}_2 \operatorname{S} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Ag}_2 \operatorname{S} + 2 \operatorname{H}_2 \operatorname{O}$$

4.2 銀(I) イオンの反応

[170]硝酸銀水溶液

	少量の塩基	過剰の NH ₃	HCl	H_2S (171 全液性)	K_2CrO_4
Ag^{2+}	[172]Ag ₂ O↓	[173][Ag(NH ₃) ₂] ⁺	174)AgCl↓	175 Ag ₂ S↓	176)Ag ₂ CrO ₄ ↓
177 <u>無</u> 色	178 褐色	<u>179無</u> 色	180	181)黒色	182 赤褐色

• 銀と少量の塩基

$$2 \operatorname{Ag}^+ + 2 \operatorname{OH}^- \longrightarrow \operatorname{Ag}_2 \operatorname{O} \downarrow + \operatorname{H}_2 \operatorname{O}$$

銀と過剰の NH₃

$$Ag_2O + 4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]^+ + 2OH^-$$

● 銀と HCl

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow$$

銀と H₂S

$$2 \operatorname{Ag}^+ + \operatorname{S_2}^- \longrightarrow \operatorname{Ag}_2 \operatorname{S} \downarrow$$

● 銀と K₂CrO₄

$$AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^-$$

4.3 難溶性化合物の溶解性

		HNO_3	NH_3	NaS_2O_3	KCN
${ m Ag_2S}\!\downarrow$	183 黑色	[184] <mark>溶ける</mark>	[185]溶けない	[186]溶けない	〔187〕 <mark>溶ける</mark>
$Ag_2O\downarrow$	188 褐色	[189] <mark>溶ける</mark>	190 <u>溶ける</u>	[191] <mark>溶ける</mark>	<u> 192)溶ける</u>
AgCl↓	193 白色	[194]溶けない	195 溶ける	[196] <mark>溶ける</mark>	<u> 197)溶ける</u>
$\mathrm{AgBr}\!\downarrow$	198)淡黄色	[199]溶けない	200 やや溶ける	[201] 溶ける	(202)溶ける
AgI↓	203黄色	(204)溶けない	(205)溶けない	[206]溶ける	(207)溶ける
溶解している物質	208無色	209 Ag $^+$ (AgNO ₃)	$[210][Ag(NH_3)_2]^+$	$[211][Ag(S_2O_3)_2]^{3-}$	[212][Ag(CN) ₂] ⁻

5 クロム・マンガン

化学式: [213]Cr・[214]Mn

5.1 単体 5 クロム・マンガン

5.1 単体

5.1.1 性質

- [215]強酸と反応((216)Crは(217)濃硝酸には(218)不動態となり反応しない)
- 空気中で錆び(219)にくい ((220)不動態) ⇒(221)ステンレス鋼 (Fe, Cr, Ni) クロム
 空気中で錆び(222)やすい マンガン
- **223二クロム**合金(Fe, Cr, Mn)(電熱線・発熱体)

5.1.2 反応

• クロムと希塩酸

```
Cr + 2 HCl \longrightarrow CrCl_2 + H_2 \uparrow (Cr^{2+}:青色)
```

• マンガンと希塩酸

 $Mn + 2 HCl \longrightarrow MnCl_2 + H_2 \uparrow (Mn^{2+} : (224) 淡桃色)$

5.2 クロム酸カリウム・二クロム酸カリウム

化学式: [225]K₂CrO₄ · [226]K₂Cr₂O₇

5.2.1 性質

• 二つは平衡状態にある

```
(227) 2 \operatorname{CrO_4}^{2-} + \operatorname{H}^+ \qquad \Longrightarrow \qquad (228) \operatorname{Cr_2O_7}^{2-} + \operatorname{OH}^-
```

(229)<u>塩基</u>性・(230)黄色

[231]酸性・[232]赤橙色

(233)酸化剤として反応 ニクロム酸カリウム

(234)Cr₂O₇²⁻ + 14 H⁺ + 6 e⁻ \Longrightarrow 2 Cr³⁺ + 7 H₂O ((235)硫酸酸性下)

5.2.2 製法

- 1. クロム(III)イオンに少量の水酸化ナトリウム水溶液を加える ${
 m Cr}^3+3\,{
 m OH}^-\longrightarrow {
 m Cr}({
 m OH})_3\downarrow$
- 2. さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える) $\mathrm{Cr}(\mathrm{OH})_3 + \mathrm{OH}^- \longrightarrow [\mathrm{Cr}(\mathrm{OH})_4]^-$
- 3. 過酸化水素水を加えて加熱

$$2 \left[Cr(OH)_4 \right]^- + 3 H_2 O_2 + 2 OH^- \longrightarrow 2 CrO_4^{2-} + 8 H_2 O$$

5.2.3 反応

• クロム酸イオンと銀イオン

```
\operatorname{CrO_4}^{2-} + 2\operatorname{Ag}^+ \longrightarrow \operatorname{Ag_2CrO_4} \downarrow (236)赤褐色)
```

• クロム酸イオンと銀イオン

```
\operatorname{CrO_4}^{2-} + \operatorname{Ba}^{2+} \longrightarrow \operatorname{BaCrO_4} \downarrow (237)黄色)
```

• クロム酸イオンと銀イオン

```
CrO_4^{2-} + Ag^{2+} \longrightarrow PbCrO_4([238]黄色)
```

5.3 過マンガン酸カリウム

化学式: 239 MnO₂

5.3.1 性質

- 240 黒紫色の固体
- [241]酸化剤として反応

```
      (242)硫酸酸性
      (243)MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O

      中・塩基性
      (244)MnO_4^- + 2H_2O + 3e^- \longrightarrow MnO_2 + 4OH^-
```

5.3.2 製法

- 2. (a) 酸性にする $3\operatorname{MnO_4}^{2^-} + 4\operatorname{H}^+ \longrightarrow 2$

$$3 \text{MnO}_4^{2-} + 4 \text{H}^+ \longrightarrow 2 \text{MnO}_4^- + \text{MnO}_2 + 2 \text{H}_2 \text{O} \text{ (MnO}_4^{2-} : 247$$
 色/ MnO $_4^- : 248$ 赤紫色)

(b) 電気分解する

(②49陽極) $MnO_4^{2-} \longrightarrow MnO_4^{-} + e^{-}$

5.4 マンガンの安定な酸化数

残留酸素の定量(ウィンクラー法)

- 1. マンガン(III)イオンを含む水溶液に塩基を加える $\mathrm{Mn}^{2+} + 2\,\mathrm{OH}^- \longrightarrow \mathrm{Mn}(\mathrm{OH})_2 \downarrow$
- 2. 水酸化マンガン(II)が水溶液中の溶存酸素と速やかに反応 $2\operatorname{Mn}(\mathrm{OH})_2 + \mathrm{O}_2 \longrightarrow 2\operatorname{MnO}(\mathrm{OH})_2$
- 3. 希硫酸を加える

 $MnO(OH)_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 3H_2O$ (250)酸化剤)

第Ⅱ部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は[251] U字管につめて、液体の乾燥剤は[252] 洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)		
酸性	版出: 253 十酸化四リン 254 P ₄ O ₁₀		新外 4 计 州·	塩基性の気体([255]NH ₃)		
段江	256) 濃硫酸	257 H_2 SO_4	塩基性の気体 (255) 塩基性の気体 (255) 257) 投票 塩基性の気体 (255) センルビ全で センルビ全で セルビ全で セルビ全で セルビ会で セルビ会で セルビ会で セルビ会び ではない ではない	+ (258)H ₂ S ((259)還元剤)		
中性	(260)塩化カルシウム	261)CaCl ₂	ほレノビ会ナ	262]NH ₃		
十庄	(263) シリカゲル	264SiO ₂ · n H ₂ O	(254)P ₄ O ₁₀ 塩基 (257)H ₂ SO ₄ 酸性・中性 + (2 (261)CaCl ₂ (34)SiO ₂ ⋅ nH ₂ O はとんど全て (266)CaO 中性・塩基性	特になし		
塩基性	(265)酸化カルシウム	266)CaO	市州、岩甘州	酸性の気体		
恒玄江	267 ソーダ石灰	268 CaO ≿ NaOH) 中庄·塩基住	269 Cl ₂ , (270 HCl, (271 H ₂ S, (272 SO ₂ , (273 CO ₂ , (274 NO ₂		

B 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

 $egin{align*} & \raisetangle & \raisetangl$

C 錯イオンの命名法

(主に遷移) 金属イオンに対して、[276] 非共有電子対を持つ[277] 分子や[278] イオンが[279] 配位結合

「配位子の数(数詞)配位子 金属 (価数) 酸 (陰イオンの場合) イオン」

金属イ	イオン	Ag ⁺	Cu	ı ⁺	Cu^{2+}	Zn^{2+}		Fe ²⁺	$\mathrm{Fe^{3+}}$	Co^{3+}	Ni ²⁺	Cr^{3+}	Al^{3+}	
配位	边数	(2	280) <mark>2</mark>		281 <mark>4</mark>		<u> 282)6</u>							
(283) <u>直線</u> 系 (284) <u>正方</u> 形 (285) <u>正四面体</u> 形 (286) <u>正八面体</u> 形														
数	1		2	2	3	4		5		6	3 7 8		8	
数詞	287	モノ	288	3)ジ	[289] - !	<u> </u>	-ラ	291 ~>	/タ	[292]ヘキサ	29	93)ヘプタ	294) 🛨	クタ
			295	ビス	296 トリ	<u> </u>								
配位子	2	NH_3			$\mathrm{CN^-}$ $\mathrm{H_2O}$			$ m OH^ m Cl^ m H_2$		H_2N-C	CH ₂ CH ₂	- NH ₂		
名称	29	7アン	ミン	298	シアニド	(299) <u>アクア</u>			299)アクア (300)ヒドロキシド (301)クロリド (302)エチレン		301 クロリド		チレンジフ	<u> マミン</u>

エチレンジアミン \dots 1 分子あたり 2 か所で $\boxed{303}$ 配位結合

する (2 座配位子) (304 キレート 錯体)

• $[Zn(OH)_4]^{2-}$

305 テトラヒドロキシド亜鉛(Ⅱ)酸イオン

• $[Zn(NH_3)_4]^{2+}$

[306]テトラアンミン亜鉛(Ⅱ)イオン

• $[Ag(S_2O_3)_2]^{3-}$

(307)ビス (チオスルファト) 銀(1) イオン

• $\left[\text{Cu}(\text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2) \right]^{2+}$

308 ビス(エチレンジアミン)銅(Ⅱ)イオン

D 金属イオンの難容性化合物

	Cl ⁻	$\mathrm{SO_4}^{2-}$	$ m H_2S$	$\mathrm{H_2S}$	OH^-	OH^-	$ m NH_3$
			 酸性	中・塩基性	NH3	過剰	過剰
K^+	(309)沈殿しない	(310)沈殿しない	(311)沈殿しない	(312)沈殿しない	(313)沈殿しない	(314)沈殿しない	(315)沈殿し
	316)無色	317無色	318無色	319無色	320無色	321無色	(322) m
Ba ²⁺	(323)沈殿しない	(324)BaSO ₄	325)沈殿しない	326)沈殿しない	327)沈殿しない	328)沈殿しない	(329)沈殿し
	330無色	331)	332)無色	333)無色	334)無色	335)無色	(336) m
Sr^{2+}	(337)沈殿しない	338)SrSO ₄	(339)沈殿しない	(340)沈殿しない	(341)沈殿しない	(342)沈殿しない	(343)沈殿し
	344無色	345	346)無色	347無色	348無色	349無色	(350) m
Ca ²⁺	(351)沈殿しない	352)CaSO ₄	(353)沈殿しない	(354)沈殿しない	355)Ca(OH) ₂	(356)Ca(OH) ₂	(357)Ca((
	(358)無色	359 白 色	360 <u>無</u> 色	361)無色	362 白	363 白 色	(364) <u></u>
Na ⁺	(365)沈殿しない	(366)沈殿しない	(367)沈殿しない	(368)沈殿しない	(369)沈殿しない	370 沈殿しない	(371)沈殿し
	<u>372)無</u> 色	373)無色	374)無色	375 <u>無</u> 色	376)無色	377 <u>無</u> 色	(378) m
Mg^{2+}	379 沈殿しない	380 沈殿しない	381 沈殿しない	(382)沈殿しない	383 Mg(OH) ₂	(384)Mg(OH) ₂	(385)沈殿し
	386)無色	387 <u>無</u> 色	388)無色	(389)無色	390 白 色	391)	(392) m
Al ³⁺	(393)沈殿しない	(394)沈殿しない	395)沈殿しない	(396)AI(OH) ₃	397)AI(OH) ₃	[398][AI(OH) ₄]	(399)AI(C
	(400)無色	(401)無色	(402)無色	403	(404)	405)	(406) <u></u>
Mn ²⁺	(407)沈殿しない	(408)沈殿しない	(409)沈殿しない	410 MnS	(411)Mn(OH) ₂	(412)Mn(OH) ₂	(413)Mn(0
	<u>414無</u> 色	<u>415無</u> 色	<u>416無</u> 色	417 淡桃 色	418 白 色	419 白	(420) <u>É</u>
Zn ²⁺	(421)沈殿しない	(422)沈殿しない	(423)沈殿しない	(424)ZnS	(425)Zn(OH) ₂	(426)[Zn(OH) ₄] ²⁻	427][Zn(NI
	(428)無色	(429)無色	(430)無色	(431) <u>台</u> 色	432	(433)無色	(434) m
Cr^{3+}	(435)沈殿しない	(436)沈殿しない	(437)沈殿しない	(438)沈殿しない	439 Cr(OH) ₃	[440][Cr(OH) ₄]	(441)Cr(C
	(442)無色	443 <u>無</u> 色	(444)無色	445 無色	446)灰緑色	447)緑色	[448]灰糸
Fe ²⁺	(449)沈殿しない	(450)沈殿しない	(451) <mark>沈殿しない</mark>	452 FeS	453 Fe(OH) ₂	(454)Fe(OH) ₂	(455)Fe(C
	(456)無色	457 <u>無</u> 色	458 <u>無</u> 色	459 <u>黒</u> 色	460 緑白 色	461 緑白	(462)緑白
Fe ³⁺	(463)沈殿しない	(464)沈殿しない	465)Fe ²⁺	466)FeS	467 Fe(OH) ₃	468 Fe(OH) ₃	469 Fe(C
0.1	<u>470)無</u> 色	<u>471)無</u> 色	472)淡緑色	<u>473</u> <u>黒</u> 色	(474) <mark>赤褐</mark> 色	<u>[475]赤褐</u> 色	476)赤衫
Cd^{2+}	477 沈殿しない	478)沈殿しない	479 CdS	(480)CdS	481)Cd(OH) ₂	482)Cd(OH) ₂	483 [Cd(NI
0.1	<u>484)無</u> 色	<u>485)無</u> 色	486)黄色	<u>(487)黄</u> 色	488 白色	489 白 色	(490) m
Co ²⁺	491)沈殿しない	(492)沈殿しない	493 CoS	494)Co(OH) ₂	(495)Co(OH) ₂	496 Co(OH) ₂	(497)Co((
2	498)無色	499無色	500黒色	501青色	502青色	503青色	504)青
Ni ²⁺	(505)沈殿しない	506 沈殿しない	507 NiS	508 Ni(OH) ₂	509 Ni(OH) ₂	510 Ni(OH) ₂	511 [Ni(NF
a 2±	512無色	513無色	514黒色	515 緑白色	516 緑白色	517 緑白色	518青紫
Sn ²⁺	(519)沈殿しない	(520)沈殿しない	(521)SnS	522 SnS	(523) Sn(OH) ₂	[524][Sn(OH) ₄] ²⁻	525)Sn(C
D1 2±	(526 <u>無</u> 色	(527 <u>無</u> 色	528褐色	529褐色	530 <u>台</u> 色	531 白色	532 <u>⊨</u>
Pb ²⁺	533 PbCI	534 PbSO ₄	535 PbS	536 PbS	537 Pb(OH) ₂	538 [Pb(OH) ₄] ²⁻	539 Pb(0
G 2±	540白色	541 白色	542黒色	543黒色	544白色	545無色	546 <u>≐</u>
Cu ²⁺	547 沈殿しない	548 沈殿しない	549 CuS	550 CuS	551)Cu(OH) ₂	552 Cu(OH) ₂	553 [Cu(NI
TT 2±	554無色	555無色	556 白 色	557白色	558青白色	559青白色	560深電
Hg ²⁺	(561)沈殿しない	562 沈殿しない	563 HgS	564 HgS	565 HgO	566 HgO	567 Hg
TT 21	568無色	569無色	570黒色	571黒色	572黄色	573黄色	574)黄
Hg ₂ ²⁺	575)Hg ₂ Cl ₂	576 沈殿しない	577 HgS	578 HgS	579 HgO	580 HgO	581 Hg
	<u>582</u> 色	<u>583無</u> 色	584]黒色	<u>[585]黒</u> 色	<u>586</u>	<u>587</u>	588)黄

	Cl ⁻	$\mathrm{SO_4}^{2-}$	$_{ m H_2S}$	$_{ m H_2S}$	OH^-	OH^-	NH_3
			酸性	中・塩基性	NH3	過剰	過剰
Ag^+	[589]AgCI	590 沈殿しない	591 Ag ₂ S	592 Ag ₂ S	593 Ag ₂ O	(594)Ag ₂ O	[595][Ag(N
	596	(597)無色	<u>[598]黒</u> 色	599黒色	600褐色	601 褐色	(602) m

E 金属イオンの系統分離