1. Într-un triunghi dreptunghic ABC avem $m(\hat{A}) = 90^{\circ}$, BC = 5 şi AB = 4. Atunci aria triunghiului ABCeste: (9 pct.)

Soluţie. Din Teorema lui Pitagora, rezultă a doua catetă $AC = \sqrt{BC^2 - AB^2} = \sqrt{5^2 - 4^2} = 3$. Triunghiul BAC poate fi privit ca una dintre ipostazele congruente $\Delta BAC \equiv \Delta CDB$ determinate de diagonala AC în dreptunghiul ABDC.

Deci aria triunghiului ABC este jumătate din aria dreptunghiului, $\frac{AB \cdot AC}{2} = \frac{4 \cdot 3}{2} = 6$. (a)

Altfel. (cale mai lungă, pentru cei care nu observă că o catetă poate fi considerată ca bază iar cealaltă catetă ca înălțime în triunghiul dreptunghic). Folosim două teoreme din ciclul primar: Teorema lui Pitagora, de unde a doua catetă, $AC = \sqrt{BC^2 - AB^2} = \sqrt{5^2 - 4^2} = 3$ și Teorema înălțimii, de unde înălțimea AD(corespunzătoare ipotenuzei) este raportul dintre produsul catetelor și ipotenuză, $AD = \frac{AB \cdot A\dot{C}}{BC} = \frac{3 \cdot 4}{5} =$ $\frac{12}{5}$. Aria este deci 1/2 din produsul dintre ipotenuză și înălțimea aflată, $\frac{BC \cdot AD}{2} = \frac{5 \cdot \frac{12}{5}}{2} = \frac{12}{2} = 6$. (a)

Altfel. Din Teorema lui Pitagora, rezultă a doua catetă $AC = \sqrt{BC^2 - AB^2} = \sqrt{5^2 - 4^2} = 3$, deci avem lungimile laturilor triunghiului dat: 3, 4, 5. Putem aplica Teorema Heron: aria este $\sqrt{p(p-a)(p-b)(p-c)}$, unde p este semiperimetrul $p = \frac{3+4+5}{2} = 6$. Aria cerută este deci $\sqrt{6(6-3)(6-4)(6-5)} = \sqrt{6\cdot 3\cdot 2\cdot 1} = \sqrt{6\cdot 3\cdot 2\cdot 1}$ $\sqrt{36} = 6$. (a)

2. Dacă $\sin x = \frac{\sqrt{3}}{2}$, atunci $\cos^2 x$ este: (9 pct.) a) $\frac{1}{\sqrt{2}}$; b) $\frac{1}{2}$; c) $\frac{3}{4}$; d) $\frac{1}{4}$; e) 1; f) 0.

Soluție. Din formula trigonometrică fundamentală, $\cos^2 x = 1 - \sin^2 x = 1 - (\frac{\sqrt{3}}{2})^2 = \frac{1}{4}$.

3. Soluția ecuației $\sin^3 x = \cos^3 x$ din intervalul $[0, \pi]$ este: (9 pct.)

a)
$$x = \frac{\pi}{3}$$
; b) $x = \frac{\pi}{5}$; c) $x = \frac{5\pi}{6}$; d) $x = \frac{\pi}{4}$; e) $x = \frac{2\pi}{3}$; f) $x = \frac{3\pi}{4}$.

admite o unică soluție în D. Deci ecuația dată are soluție unică $x = \frac{\pi}{4} \in [0, \pi]$.

4. Distanța de la punctul M(-1,2) la dreapta de ecuație d: 3x + 4y - 3 = 0 este: (9 pct.)

a)
$$\frac{2}{5}$$
; b) 1; c) 5; d) $\frac{1}{5}$; e) 2; f) $\frac{5}{2}$.

Soluție. Folosim formula distanței de la un punct $A(x_A,y_A)$ la dreapta d:ax+by+c=0, dată de $d=\frac{|a\cdot x_A+b\cdot x_B+c|}{\sqrt{a^2+b^2}}$. Obținem $d=\frac{|3\cdot (-1)+4\cdot 2-3|}{\sqrt{3^2+4^2}}=\frac{2}{5}$. (a)

Altfel. Distanța cerută este egală cu distanța de la M la proiecția N_* a acestui punct pe d. Aflăm proiecția intersectând dreapta d cu dreapta d' perpendiculară pe d care trece prin M. Rescriem ecuația dreptei

intersectand dreapta
$$d$$
 cu dreapta d' perpendiculara pe d care trece prin M . Rescriem ecuația dreptei $d: y = -\frac{3}{4}x + \frac{3}{4}$, deci panta acesteia este $m = -\frac{3}{4}$, si deci dreapta normală d' are ecuația $d': y - y_M = -\frac{1}{m}(x - x_M) \Leftrightarrow y - 2 = \frac{4}{3}(x + 1) \Leftrightarrow 4x - 3y + 10 = 0$. Atunci $\{N_*\} = d \cap d': \begin{cases} 3x + 4y = 3 \\ 4x - 3y = -10 \end{cases} \Leftrightarrow \begin{cases} x = -31/25 \\ 4x - 3y = -10 \end{cases}$

$$\begin{cases} x = -31/25 \\ y = 42/25 \end{cases}, \text{ deci distanța cerută este } d = d(M, N_*) = \sqrt{(-1 - (-\frac{31}{25}))^2 + (2 - \frac{42}{25})^2} = \frac{2}{5}. \quad \textbf{(a)}$$

Altfel. Notând x=t în ecuație, obținem punctul generic al dreptei $N=(t,\frac{3(1-t)}{4}),\,t\in\mathbb{R}$. Aflăm valoarea parametrului $t\in\mathbb{R}$ pentru care distanța de la M la N își atinge minimul. Avem $d(M,N)=f(t)=\sqrt{(t-(-1))^2+(\frac{3(1-t)}{4}-2)^2}$. Pentru a evita calculele cu radicali, observăm că funcțiile f și $g=f^2$ își ating minimul pentru aceeași valoare t_* . Calculăm deci $g(t)=f^2(t)=(t+1)^2+(\frac{3(1-t)}{4}-2)^2=\frac{25t^2+62t+41}{16}$, iar pentru aflarea punctului său de minim, avem $g'(t)=0\Leftrightarrow t=t_*=-\frac{31}{25}$. Pentru $t=t_*$, punctul mobil N devine punctul N_* , piciorul perpendicularei duse din M pe d, deci distanța căutată este $d=d(M,N_*)$. Obținem succesiv $N_*=N|_{t=t_*}=(-\frac{31}{25},\frac{42}{25})$, deci $d=d(M,N_*)=\sqrt{(-1-(-\frac{31}{25}))^2+(2-\frac{42}{25})^2}=\frac{2}{5}$. Observăm că d reprezintă valoarea minimă a funcției distanță f, $d=f(t_*)=f(-\frac{31}{25})=\frac{2}{5}$. (a)

- 5. Fie M mulțimea valorilor parametrului $m \in \mathbb{R}$ pentru care dreptele de ecuații $d_1: mx + y = 2$ și $d_2: x + my = 1$ sunt paralele. Atunci: (9 pct.)
 - a) $M = \{1\}$; b) $M = \{-1\}$; c) $M = \emptyset$; d) $M = \{0\}$; e) $M = \{-1, 0, 1\}$; f) $M = \{-1, 1\}$.

Soluție. Condiția de paralelism revine la: $\frac{m}{1} = \frac{1}{m} \neq \frac{2}{1}$, deci $m \in \{-1,1\}$ și $-1 \neq 2$. Prin urmare $M = \{-1,1\}$. (f)

- 6. Se consideră triunghiul ABC de vârfuri A(0,2), B(2,0) și C(4,0). Centrul cercului circumscris triunghiului ABC are coordonatele: (9 pct.)
 - a) $(\frac{3}{2}, 3)$; b) (0, 3); c) (3, 0); d) $(\frac{3}{2}, \frac{3}{2})$; e) (3, 3); f) $(0, \frac{3}{2})$.

Soluție. Mijlocul segmentului AB este M(1,1), panta dreptei AB este $m=\frac{y_B-y_A}{x_B-x_A}=\frac{-2}{2}=-1$, deci mediatoarea segmentului AB (perpendicularea pe AB care trece prin M) are ecuația $m_1:y-y_M=-\frac{1}{m}(x-x_M)\Leftrightarrow y=x$. Mijlocul segmentului BC este N(3,0), deci mediatoarea segmentului BC (perpendicularea pe BC care trece prin N) are ecuația $m_2:x=3$. Centrul căutat se află la intersecția celor două mediatoare, deci satisface sistemul: $\begin{cases} x=y\\ x=3 \end{cases} \Leftrightarrow \begin{cases} x=3\\ y=3 \end{cases}, \text{ deci este punctul } (x,y)=(3,3).$

Altfel. Centrul căutat (x, y) este egal depărtat de cele trei vârfuri ale triunghiului. Egalitatea celor trei distanțe se scrie:

$$\sqrt{(x-0)^2 + (y-2)^2} = \sqrt{(x-2)^2 + (y-0)^2} = \sqrt{(x-4)^2 + (y-0)^2} \Leftrightarrow (x-0)^2 + (y-2)^2 = (x-2)^2 + (y-0)^2 = (x-4)^2 + (y-0)^2 \Leftrightarrow x^2 + y^2 - 4y + 4 = x^2 + y^2 - 4x + 4 = x^2 + y^2 - 8x + 16 \Leftrightarrow -4y + 4 = -4x + 4 = -8x + 16 \Leftrightarrow 1 - y = 1 - x = 4 - 2x \Leftrightarrow x = y = 3,$$

deci s-a obținut punctul de coordonate (3,3).

- 7. Să se determine valoarea parametrului $m \in \mathbb{R}$ pentru care vectorii $\bar{u} = (2m+1)\bar{i} + 3\bar{j}$ și $\bar{v} = -\bar{i} + \bar{j}$ sunt ortogonali. (9 pct.)
 - a) m = 0; b) m = 1; c) $m = -\frac{1}{2}$; d) $m = \frac{1}{2}$; e) m = -1; f) m = -2.

Soluție. Condiția de ortogonalitate se scrie $\langle \bar{u}, \bar{v} \rangle = 0 \Leftrightarrow (2m+1) \cdot (-1) + 3 \cdot 1 = 0 \Leftrightarrow m = 1$. (b)

- 8. Valoarea expresiei $E = 2\cos 60^{\circ} \cdot \operatorname{ctg} 45^{\circ} \cdot \operatorname{tg} 30^{\circ} \cdot \sin 90^{\circ}$ este: (9 pct.)
 - a) $E = -\frac{\sqrt{3}}{3}$; b) $E = \frac{\sqrt{3}}{3}$; c) E = 0; d) $E = \frac{\sqrt{3}}{6}$; e) $E = \frac{\sqrt{2}}{2}$; f) E = 1.

Soluţie. Obţinem $E = 2\cos 60^\circ \cdot \operatorname{ctg} 45^\circ \cdot \operatorname{tg} 30^\circ \cdot \sin 90^\circ = 2 \cdot \frac{1}{2} \cdot 1 \cdot \frac{1}{\sqrt{3}} \cdot 1 = \frac{\sqrt{3}}{3}$.

- 9. Se dau vectorii $\bar{u} = \sqrt{3}\,\bar{i} \bar{j}$ și $\bar{v} = -\sqrt{3}\,\bar{i} + 2\bar{j}$. Calculați $||\bar{u} + \bar{v}||$. (9 pct.)
 - a) 0; b) 2; c) 1; d) 4; e) 3; f) $\sqrt{3}$.

Soluție. Obținem $\bar{u} + \bar{v} = (\sqrt{3}\,\bar{i} - \bar{j}) + (-\sqrt{3}\,\bar{i} + 2\bar{j}) = 0\bar{i} + 1\bar{j}$, deci $||\bar{u} + \bar{v}|| = \sqrt{0^2 + 1^2} = 1$. (c)

10. Fie *n* numărul soluțiilor ecuației $\sin x + \cos x = \sqrt{2}$ care aparțin intervalului $\left[\frac{\pi}{4}, \frac{17\pi}{4}\right]$. Atunci: **(9 pct.)** a) n = 3; b) n = 5; c) n = 0; d) n = 2; e) n = 4; f) n = 1.

Soluţie. Deoarece $\sin x + \cos x = \sin x + \sin(\frac{\pi}{2} - x) = 2\sin\frac{\pi}{4}\cos(x - \frac{\pi}{4}) = 2\cdot\frac{\sqrt{2}}{2}\cos(x - \frac{\pi}{4}) = \sqrt{2}\cos(x - \frac{\pi}{4})$, după simplificare prin $\sqrt{2}$, ecuația se rescrie:

$$\cos\left(x-\frac{\pi}{4}\right)=1 \Leftrightarrow x-\frac{\pi}{4} \in \left\{2k\pi \mid k \in \mathbb{Z}\right\} \Leftrightarrow x \in \left\{2k\pi+\frac{\pi}{4} \mid k \in \mathbb{Z}\right\}.$$

Dar în intervalul dat $\left[\frac{\pi}{4}, \frac{17\pi}{4}\right]$ se află doar soluțiile $\left\{\frac{\pi}{4}, 2\pi + \frac{\pi}{4}, 4\pi + \frac{\pi}{4}\right\} = \left\{\frac{\pi}{4}, \frac{9\pi}{4}, \frac{17\pi}{4}\right\}$, și deci n = 3. (a) Altfel. Notăm $s = \sin x$, $c = \cos x$, iar ecuația revine la sistemul

$$\left\{\begin{array}{ll} s+c=\sqrt{2} \\ s^2+c^2=1 \end{array}\right. \Leftrightarrow \left\{\begin{array}{ll} s+c=\sqrt{2} \\ (\sqrt{2}-c)^2+c^2=1 \end{array}\right. \Leftrightarrow \left\{\begin{array}{ll} s+c=\sqrt{2} \\ 2c^2-2\sqrt{2}c+1=0 \end{array}\right. \Leftrightarrow \left\{\begin{array}{ll} s+c=\sqrt{2} \\ (c\sqrt{2}-1)^2=0 \end{array}\right. \Leftrightarrow \left\{\begin{array}{ll} c=1/\sqrt{2} \\ s+c=\sqrt{2}, \end{array}\right.$$

deci $\cos x = \sin x = \sqrt{2}/2$, de unde $x \in \{2k\pi + \frac{\pi}{4} \mid k \in \mathbb{Z}\}$. Continuăm ca în rezolvarea anterioară și obținem n=3. (a)

Altfel. Împărțim ecuația prin $\sqrt{2}$ și prelucrăm membrul stâng,

$$\sin x \cdot \frac{\sqrt{2}}{2} + \cos x \cdot \frac{\sqrt{2}}{2} = 1 \Leftrightarrow \sin x \cdot \cos \frac{\pi}{4} + \cos x \cdot \sin \frac{\pi}{4} = 1 \Leftrightarrow \sin \left(x + \frac{\pi}{4}\right) = 1$$
$$\Leftrightarrow x + \frac{\pi}{4} \in \left\{2k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\right\} \Leftrightarrow x \in \left\{2k\pi + \frac{\pi}{4} \mid k \in \mathbb{Z}\right\}.$$

Continuăm ca în rezolvările anterioare și obținem n=3. (a)

Altfel. Prin ridicare la pătrat (deci introducând "soluții suplimentare"), ecuația devine

$$(\sin x + \cos x)^2 = 2 \Leftrightarrow 2\sin x \cos x = 1 \Leftrightarrow \sin 2x = 1 \Leftrightarrow x \in \left\{k\pi + \frac{\pi}{4} \mid k \in \mathbb{Z}\right\}.$$

Se observă că valorile $x \in \left\{ (2k+1)\pi + \frac{\pi}{4} \mid k \in \mathbb{Z} \right\}$ nu verifică ecuația inițială (prin înlocuire obținem $-\sqrt{2} = \sqrt{2}$, fals). Deci ecuația dată este satisfăcută doar de valorile $x \in \left\{ 2k\pi + \frac{\pi}{4} \mid k \in \mathbb{Z} \right\}$. Continuăm ca în rezolvările anterioare și obținem n=3. ⓐ