

Ray Tracing

Rendered by PovRay 3.5

(Free open-source software)

Ray Tracing

Best for specular and transparent objects

Partly physics-based: geometric optics

A pixel should have the color of the object point that projects to it

Backwards Ray Tracing Algorithm

How Many Levels of Recursion Should We Use?

The more the better
Infinite reflections at the limit
But at increasing computational expense

Stages of Ray Tracing

Setting the camera and the image plane

Computing a ray from the eye to every pixel and trace it in the scene

Computing object-ray intersections

Computing shadow, reflected, and refracted rays at each intersection

Setting Up the Camera

Image Parameters

Width 2W, Height 2H Number of pixels $N_c \times N_r$

Camera coordinate system (eye, u,v,n)

Image plane at n = -N

Pixel Coordinates in Camera Coordinate System

Lower left corner of pixel P(r,c) has

coordinates in camera space:

$$u_c = -W + W \frac{2c}{N_c - 1}, \quad c = 0, 1, \dots, N_c - 1,$$

$$v_r = -H + H \frac{2r}{N_r - 1}, \quad r = 0, 1, \dots, N_r - 1,$$

Reminder: Lines

Representations of a line (in 2D)

- Explicit $y = \alpha x + \beta$ $y = m(x - x_0) + y_0; \quad m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0}$
- Implicit $f(x, y) = (x x_0)dy (y y_0)dx$ if f(x, y) = 0 then (x, y) is **on** the line f(x, y) > 0 then (x, y) is **below** the line f(x, y) < 0 then (x, y) is **above** the line
- Parametric $x(t) = x_0 + t(x_1 x_0)$ $y(t) = y_0 + t(y_1 - y_0)$ $t \in [0,1]$ for line segment, or $t \in [-\infty,\infty]$ for infinite line $P(t) = P_0 + t(P_1 - P_0) \quad \text{or} \quad P(t) = P_0 + t \mathbf{v}$ $P(t) = (1 - t)P_0 + tP_1$

Ray Through Pixel

Lower left corner of pixel

Camera coordinates: $P(r,c) = (u_c, v_r, -N)$

World coordinates: $P(r,c) = \text{eye} - N\mathbf{n} + u_c\mathbf{u} + v_r\mathbf{v}$

Ray through pixel:

$$\begin{aligned} \operatorname{ray}(r,c,t) &= \operatorname{eye} + t(P(r,c) - \operatorname{eye}) \\ &= \operatorname{eye} + t\left(-N\mathbf{n} + W\left(\frac{2c}{N_c - 1} - 1\right)\mathbf{u} + H\left(\frac{2r}{N_r - 1} - 1\right)\mathbf{v}\right) \end{aligned}$$

Ray-Object Intersections

Intersection of ray with unit sphere at origin:

$$ray(t) = S + tc$$
$$Sphere(P) = |P| - 1 = 0$$

Sphere(ray(t)) = 0
$$\Rightarrow$$

 $|S + t\mathbf{c}| - 1 = 0 \Rightarrow$
 $(S + t\mathbf{c}) \cdot (S + t\mathbf{c}) - 1 = 0 \Rightarrow$
 $|\mathbf{c}|^2 t^2 + 2(S \cdot t\mathbf{c}) + |S|^2 - 1 = 0$

This is a quadratic equation

Solving the Quadratic Equation

$$|\mathbf{c}|^2 t^2 + 2(S \cdot \mathbf{c})t + |S|^2 - 1 = 0$$

 $At^2 + 2Bt + C = 0$

$$t_h = -\frac{B}{A} \pm \frac{\sqrt{B^2 - AC}}{A}$$
$$= -\frac{S \cdot \mathbf{c}}{|\mathbf{c}|^2} \pm \frac{\sqrt{(S \cdot \mathbf{c})^2 - |\mathbf{c}|^2 (|S|^2 - 1)}}{|\mathbf{c}|^2}$$

If
$$(B^2 - AC) = 0$$
 one solution

If
$$(B^2 - AC) < 0$$
 no solution

If
$$(B^2 - AC) > 0$$
 two solutions

How Do We Deal With Transformed Primitives?

Where does S + tc intersect the transformed sphere G?

Affine Transformation

Implicit equation G(P) = 0

Untransformed implicit equation F(P') = 0

$$P = \mathbf{M}P' \Rightarrow P' = \mathbf{M}^{-1}P$$

Affine Transformation

$$P = MP' \Rightarrow P' = M^{-1}P$$
$$F(P') = F(T^{-1}(P)) = 0 \Rightarrow$$
$$F(T^{-1}(S + tc)) = 0$$

Which means that we can intersect the inversetransformed ray with the untransformed primitive

Final Intersection

Inverse transformed ray

$$\mathbf{r}'(t) = \mathbf{M}^{-1} \begin{bmatrix} S_x \\ S_y \\ S_z \\ 1 \end{bmatrix} + t \mathbf{M}^{-1} \begin{bmatrix} c_x \\ c_y \\ c_z \\ 0 \end{bmatrix} = S' + t \mathbf{c}'$$

Drop 1 and 0 to get r'(t) in 3D space

For each object

- Inverse transform ray, getting S' + tc'
- Find *t_h* for intersection with the untransformed object
- Use t_h in the untransformed ray S + tc to find the point of intersection with the transformed object

Shadow Ray

For each light source, intersect shadow ray (from point P towards light source) with all objects

Reflected Ray

Raytrace the reflected ray

$$\begin{aligned} \mathsf{Ray}(t) &= S + t\mathbf{c} \\ \mathsf{Ray}_{\mathsf{rf}}(t) &= P + t\mathbf{v} \\ \mathbf{v} &= -2(\mathbf{n} \cdot \mathbf{c})\mathbf{n} + \mathbf{c} \end{aligned}$$

Summary: Raytracing

Recursive algorithm

```
function Main for each pixel (c,r) on screen  determine \ ray \ r_{c,r} \ from \ eye \ through pixel \\ color(c,r) = raytrace(r_{c,r}) \\ end \ for \\ end \\ function \ raytrace(r) \\ find \ closest \ intersection P \ of \ ray \ r \ with \ objects \\ clocal = Sum(shadowRays(P,Light_i)) \\ c_{rfl} = \ raytrace(r_{rfl}) \\ c_{rfa} = \ raytrace(r_{rfa}) \\ return \ c = clocal + k_{rfl} \ ^tc_{rfl} + k_{rfa} \ ^tc_{rfa} \\ end \\ end
```


A Ray Tracer in Postscript!

%! Tiny RayTracing by HAYAKAWA, Takashi(h-takasi@isea.is.titech.ac.jp) /p/floor/S/add/A/copy/n/exch/1/index/J/ifelse/r/roll/e/sqrt/H{count 2 idiv exch repeat}def/q/gt/h/exp/t/and/C/neg/T/dup/Y/pop/d/mul/w/div/s/cvi/R/rlineto{load def}H/c(j1idj2id42rd)/G(140N7)/Q(31c85d4)/B(V0R0VRVC0R)/K(WCVW)/U(4C577d7)300 T translate/I(3STinTinTinY)/1(993dC99Cc96raN)/k(XEE9!&1|J)/Z(blxclSdC9n5dh)/j(43r)/O(Y43d9rE3IaN96r63rvx2dcaN)/z(&93r6IQO2Z4o3AQYaNlxS2w!)/N(3A3Axelnwc)/W 270 def/L(1i2A00053r45hNvQXz&vUX&U0vQXzFJ!FJ!J)/D(cjS5o32rS4oS3o)/v(6A)/b(7o)/F(&vGYx4oGbxSd0ng&3IGbxSGY4Ixwca3AlvvUkbQkdbGYx4ofwnw!&vlx2w13wSb8Z4wS!J!)/X(4I3Ax52r8Ia3A3Ax65rTdCS4wiso5IxmwTTd32rCST0q&eCST0q&D1!&EYE0!J!&EYEY0!J0q/V def/x(jd5o32rd4odSS)/a(1CD)/E(YYY)/o(1r)/f(nY9wn7wpSpslt1S){[n{() T0 4 3 r put T(/)q{T9}q{Cvn}{s}J}{s}J}{(\$p{{[}{1]J}J} cvx}forall]cvx def}H K{K{L setgray moveto B fill}for Y}for showpage

Efficiency Issues

Computationally expensive

- avoid intersection calculations
 - Voxel grids
 - BSP trees
 - Octrees
 - Bounding volume trees
- optimize intersection calculations
 - try recent hit first
 - reuse info from numerical methods

Advanced Concepts

Participating media

Translucency

Sub-surface scattering (e.g., human skin)

Aperture effects, depth of field

Photon mapping

- Combination of eye-based and light-based ray tracing
- · Good for rendering caustic effects

Caustics

Depth of Field and Aperture Effects

Hexagonal aperture

Ray Tracing Summary

Recursive

Computationally expensive

Good for reflection and refraction effects

Comparison

Ray tracing vs Radiosity

Direct Lighting

Indirect Lighting