Biblioteca para comunicação ciente de localização geográfica entre dispositivos móveis

Renato A. Santos & Tonny C. Cordeiro

ravila.santos@gmail.com

costa.tonny@gmail.com

Departamento de Ciência da Computação IME – USP

Introdução

O GPS e a bússola digital são tecnologias que, embarcadas em dispositivos móveis, estão em crescente utilização.

São raras as aplicações que permitem que um dispositivo envie uma mensagem a outro pelo simples fato de estar "apontando" para ele.

O desenvolvimento de uma biblioteca pode, se bem sucedido, ser um agente motivador para criação de aplicativos com esse perfil por diversos programadores

Objetivos

- Permitir a comunicação entre dispositivos móveis baseada unicamente em referências geográficas, através de uma rede que dispense a utilização de um servidor externo.
- Criar a biblioteca GeoCommunication para facilitar o desenvolvimento de aplicações que utilizem as funcionalidades descritas no item anterior.

Objetivos

Como alcançá-los?

- Estudar o funcionamento dos sensores de orientação do Android
- Estudar o funcionamento do GPS no Android
- Estudar como criar e acessar uma rede wireless no Android
- Padronizar a comunicação entre as aplicações

Rede no Android

Para realizar a comunicação entre os dispositivos foi criada uma rede local (WLAN - *Wireless Local Area Network*) entre os celulares, sendo um deles o **ponto de acesso**.

Ponto de Acesso

Rede no Android

Por que ponto de acesso?

- o Diversos dispositivos Android possuem tal funcionalidade
- Não há necessidade de usar nenhuma infraestrutura externa
- Dificuldade de criar uma rede ad-hoc

Protocolo de Aplicação

Protocolo de Aplicação

Sintaxe •

ARV [dados da aplicação]

Informar a presença de um novo dispositivo na rede

ARVA [dados da aplicação]

Responder a uma mensagem do tipo ARV

IPMSG [IP de destino] [dados da aplicação]

Envio de mensagem baseado no endereço IP

GEOMSG [latitude origem] [longitude origem] [azimuth origem] [dados da aplicação]

Envio de mensagem baseado em coordenadas geográficas e orientação

Global Positioning System

- Obtenção de latitude e longitude
- Há 6 satélites visíveis em qualquer lugar da Terra

"Posicão + relógio" do GPS

∆t de transmissão da msg

 ΔS do receptor ao GPS

Algoritmo de Trilateração ⇒

Assisted GPS

Experimentos

Movimento com paradas a cada 2 metros

Sensores

 A API do Android permite obtenção de dados como acurácia e potência física, definição da frequência de amostragem etc.

Frequência (SENSOR_DELAY_)	Atraso (μs)
NORMAL	200.000
GAME	20.000
UI	60.000
FASTEST	0
Manual Android 3.0 (API Level 11)	?

Bússola Digital

- o medida: campo geomagnético em μT
- Possui um componente que aponta para o Polo Norte

 Como distinguir um movimento abrupto de uma distúrbio magnético?

Bússola Digital

Experimentos

Orientação da bússola de dispositivos

LG-P350f(1): -1,26º

LG-P350f(2): 24,39º

Samsung Galaxy SII: -03,12º

Samsung GT-S5570B: -33,14º

Acelerômetro

- o medida: aceleração em m/s²
- 1ª utilização em 2005, no celular Nokia 5500 sport device.
- Pode ser usado para detecção de movimento

- Força da gravidade é associada à medida, quando o dispositivo está em movimento
- Distúrbio no movimento de inclinação

Giroscópio

- o medida: velocidade angular em radianos/s
- 1º utilização em 2009, no acessório WII Motion Plus. Em 2010, no celular Nexus S.
- Possui rápidas respostas a mudanças de ângulos

Sujeito a erros de bias e drift.

Vetor de orientação

Utilização de filtros para diminuição de ruídos

Filtros

- Filtro Kalman: estimador com bons resultados
- Filtro complementar:

ângulo =
$$(\alpha)$$
 × $($ ângulo + giro × dt $)$ + $($ 1- $\alpha)$ × $($ x_acc $)$;

Integração

Filtro passa-baixa sobre o acelerômetro

Filtro passa-alta sobre a estimativa do ângulo do giro integrado

$$\alpha$$
 = 0,98 = constTempo
constTempo + dt

DNRF - Drift & Noise Removal Filter

Biblioteca

GeoCommunication

- o Desenvolvida em Java, especificamente para Android
- Seu código é aberto
- Disponível em http://www.github.com/ravila/TCC_Library

Biblioteca

Diagrama Caso de uso O

Biblioteca

Diagrama de classes •

Caso de Uso

Agradecimentos

Primeiramente, gostaríamos de agradecer ao apoio financeiro da FAPESP por meio de projeto coordenado pelo Professor Roberto Marcondes do Departamento de Ciência da Computação do IME.

Agradecemos, também, ao Professor Daniel Macedo Batista por suas grandes contribuições ao longo deste trabalho.

Por fim, queremos agradecer ao Professor Carlos Eduardo Ferreira e todo corpo docente deste curso.

Um grande obrigado.

