Завдання експериментального туру IV етапу XLVI Всеукраїнської олімпіади з фізики 2009 року

8 клас

Завдання 1

Визначте довжину спіральної частини нитки лампи розжарювання.

Обладнання

Групове:

- скоч;
- ножиці:
- посудина з водою.

Індивідуальне:

- штатив з лапкою і кільцем;
- прозора плівка;
- лінійка;
- лампа для кишенькового ліхтарика з провідниками;
- батарейка;
- піпетка.

<u>У звіті:</u>

- надайте теоретичне обгрунтування вибраної методики;
- опишіть Вашу установку і принцип її дії;
- опишіть, які заходи були Вами вжиті для підвищення точності вимірів;
- перевірте одержаний результат прямим вимірюванням, не розбиваючи лампи.

Завдання 2

Визначте масу батарейки.

Обладнання

Групове:

посудина з підфарбованою водою

Індивідуальне:

- надувна кулька
- лінійка
- прозора гнучка трубка
- аркуш міліметрового паперу
- батарейка
- штатив з лапкою
- передня частина шприца

Увага! Підфарбовану воду не смакувати!

У звіті:

- надайте теоретичне обґрунтування вибраної методики;
- опишіть Вашу установку і принцип її дії;
- опишіть, які заходи були Вами вжиті для підвищення точності вимірів.

Задания экспериментального тура IV этапа XLVI Всеукраинской олимпиады по физике 2009 года

8 класс

Задание 1

Определите длину спиральной части нити лампы накаливания.

Оборудование

Групповое:

- скотч;
- ножницы:
- емкость с водой.

Индивидуальное:

- штатив с лапкой и кольцом;
- прозрачная пленка;
- линейка;
- лампа для карманного фонарика с проводниками;
- батарейка;
- пипетка.

В отчете:

- приведите теоретическое обоснование выбранной методики;
- опишите Вашу установку и принцип ее работы;
- опишите, какие мероприятия были Вами проведены для повышения точности измерений;
- проверить полученный результат прямым измерением, не разбивая лампочки.

Задание 2

Определите массу батарейки.

Оборудование

Групповое:

емкость с подкрашенной водой.

Индивидуальное:

- воздушный шарик;
- линейка:
- прозрачная гибкая трубка;
- лист миллиметровой бумаги;
- батарейка;
- штатив с лапкой;
- передняя часть шприца.

Внимание! Подкрашенную воду на вкус не пробовать!

В отчете:

- приведите теоретическое обоснование выбранной методики;
- опишите Вашу установку и принцип ее работы;
- опишите, какие мероприятия были Вами проведены для повышения точности измерений.

Завдання експериментального туру IV етапу XLVI Всеукраїнської олімпіади з фізики 2009 року 9 клас

ЗАВДАННЯ 1

Визначте внутрішній діаметр голки медичного шприца.

Обладнання

Групове:

- посудина з водою;
- годинник з секундною стрілкою.

Індивідуальне:

- медичний шприц з голкою;
- пластиковий стаканчик;
- лінійка.

<u>Увага!</u> Будьте обережні з голкою! Ковпачок з голки не знімати!

У звіті:

- опишіть Вашу установку та принцип її роботи;
- наведіть теоретичне обгрунтування обраного Вами способу вимірювань;
- вкажіть, як Ви добивались підвищення точності вимірювань;
- розрахуйте похибки вимірювання.

ЗАВДАННЯ 2

Визначте довжину спіральної частини нитки лампи розжарювання.

Обладнання

Групове:

- скоч;
- ножиці;
- посудина з водою.

Індивідуальне:

- штатив з лапкою і кільцем;
- прозора плівка;
- лінійка;
- лампа для кишенькового ліхтарика з провідниками;
- батарейка.

<u>У звіті:</u>

- надайте теоретичне обгрунтування вибраної методики;
- опишіть Вашу установку і принцип її роботи;
- опишіть, які заходи були Вами вжиті для підвищення точності вимірювань;
- розрахуйте похибку вимірювань;
- проведіть перевірку отриманого результату прямим вимірюванням (не розбиваючи лампочку).

Задания экспериментального тура IV этапа XLVI Всеукраинской олимпиады по физике 2009 года 9 класс

ЗАДАНИЕ 1

Определите внутренний диаметр иглы медицинского шприца.

Оборудование

Групповое:

- сосуд с водой;
- часы с секундной стрелкой.

Индивидуальное:

- медицинский шприц с иголкой;
- пластиковый стаканчик;
- линейка.

Внимание! Будьте осторожны с иголкой! Колпачок с иголки не снимать!

В отчете:

- опишите Вашу установку и принцип ее работы;
- приведите теоретическое обоснование выбранного Вами способа измерений;
- укажите, как Вы добивались повышения точности измерений;
- рассчитайте погрешности измерения.

ЗАДАНИЕ 2

Определите длину спиральной части нити лампы накаливания.

Оборудование

Групповое:

- скотч;
- ножницы;
- емкость с водой.

Индивидуальное:

- штатив с лапкой и кольцом;
- прозрачная пленка;
- линейка;
- лампа для карманного фонарика с проводниками;
- батарейка.

В отчете:

- приведите теоретическое обоснование выбранной методики;
- опишите Вашу установку и принцип ее работы;
- опишите, какие меры были Вами предприняты для повышения точности измерения;
- рассчитайте погрешность измерения;
- проведите проверку полученного результата прямым измерением (не разбивая лампочку).

Задания экспериментального тура IV этапа Всеукраинской олимпиады по физике

10 класс

Задача 1

Оборудование

Индивидуальное

- два шприца по 2 мл с иголками;
- прозрачный тонкий шланг (трубки ПХВ);
- стакан с чистой водой;
- линейка школьная;
- штатив лабораторный школьный с лапкой;
- миллиметровая бумага.

Групповое

- спирт медицинский 96% (объемных);
- скотч;
- ножницы.

Задание

Исследовать зависимость коэффициента поверхностного натяжения водного раствора спирта от его объемной концентрации.

Справочные данные: коэффициент поверхностного натяжения воды при комнатной температуре составляет 73 мН/м.

Теоретическая справка

Если выдувать пузырек воздуха через капилляр, погруженный в жидкость на небольшую глубину, то для этого необходимо дополнительное давление, прямо пропорциональное коэффициенту поверхностного натяжения жидкости.

Задача 2

Оборудование

Индивидуальное

- стаканчик на 80 мл;
- пипетка;
- фильтровальная бумага;
- полоска прозрачного пластика;
- источник постоянного напряжения на 9 В;
- вольтметр на 6 В с внутренним сопротивлением 6 кОм;
- резистор на 1 кОм;
- линейка;
- соединительные провода;

- миллиметровая бумага;
- пластилин:
- скрепки канцелярские с припаянными проводниками.

Групповое

- раствор сернокислого натрия водный 10% с добавлением фенолфталеина 1 л;
- часы с большим циферблатом и секундной стрелкой;
- ножницы.

Задание

Исследовать движение ионов гидроксила в электрическом поле

- 1. Разработайте методику измерения и соберите схему для определения средней скорости направленнго движения ионов гидроксила (ОН) в электрическом поле.
- 2. Определите скорость направленного движения ионов гидроксила в электрическом поле. Рассчитайте *подвижность* ионов гидроксила.
- =. Оцените радиус ионов гидроксила. Сравните полученный результат с размером молекулы воды. Прокомментируйте результат сравнения.

Справочные данные: коэффициент вязкости воды при комнатной температуре составляет $1,0\cdot 10^{-3}$ $\Pi\cdot c$

Теоретическая справка

При пропускании электрического тока через раствор сернокислого натрия на катоде происходит выделение металлического натрия, который, взаимодействуя с водой, образует гидрат окиси натрия:

$$Na^+ + e^- \rightarrow Na$$
;
 $2Na + 2H_2O \rightarrow 2NaOH + H_2^{\uparrow}$;
 $NaOH \leftrightarrow Na^+ + OH^-$.

Ионы гидроксила обнаруживаются с помощью фенолфталеина по фиолетовой окраске раствора. Под действием внешнего электрического поля ионы дрейфуют от катода к аноду, следовательно, область фиолетовой окраски распространяется в направлении от катода к аноду со средней скоростью движения ионов.

Подвижность ионов μ представляет собой отношение средней скорости движения ионов ν во внешнем поле к напряженности E этого поля.

Сила вязкого трения шарика, движущегося в жидкости, определяется по формуле Стокса:

$$F = 6\pi \eta r v,$$

где η - коэффициент вязкости, r - радиус шарика, v - его скорость.

В отчетах по обеим задачам приведите:

- теоретическое обоснование предложенной Вами экспериментальной методики;
- план проведения измерений;
- меры, которые Вы предприняли для обеспечения наименьшей погрешности измерений;
- таблицу с исходными данными, промежуточными и окончательными результатами;
- оценку погрешности измерений.

Задания экспериментального тура IV этапа Всеукраинской олимпиады по физике 11 класс

Задача 1 Оборудование

Индивидуальное

- штатив с горизонтально закрепленным стержнем;
- печенье овсяное 2 шт.;
- лазерный диск с тремя отверстиями по периметру;
- линейка:
- отрезок медной проволоки диаметром 0,45 мм и длиной 0,7-1 м;
- две монеты по 5 копеек (масса монеты 4.30 г).

Групповое

часы с большой секундной стрелкой (2-3 на группу).

Задание

- Изготовьте крутильный маятник, подвесив лазерный диск горизонтально на медной проволоке.
- 2. Пользуясь предоставленным оборудованием определите момент инерции *I* овсяного печенья относительно оси, проходящей через его центр масс перпендикулярно плоскости печенья.
- 3. Определите массу печенья.
- 4. Определите модуль упругости меди для деформации сдвига G.

Теоретическая справка

Момент инерции тела относительно некоторой оси характеризует его инертность при вращательном движении вокруг этой оси. Произведение углового ускорения тела на его момент инерции равен суммарному моменту сил, действующих на тело: $M = I \cdot \varepsilon$.

Это уравнение выражает второй закон Ньютона для вращательного движения.

Момент инерции тела зависит не только от массы тела, но и от его формы и размеров, а также от положения оси вращения. Так, момент инерции материальной точки массы m равен mr^2 , где r - расстояние от оси вращения. Момент инерции однородного диска массы m и радиуса r относительно оси, проходящей через центр перпендикулярно плоскости диска, составляет $mr^2/2$.

Теорема Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной оси, проходящей через его центр масс, и произведения массы тела на квадрат расстояния между этими осями.

Из теории упругости известно, что при $\partial e \phi o p m a \mu u$ закручивания момент силы, необходимый для закручивания цилиндрического стержня радиусом r и длиной l на угол ϕ , может быть рассчитан по формуле

$$M = G \cdot \frac{\pi r^4}{2l} \cdot \varphi,$$

где G - модуль упругости материала стержня для деформации сдвига.

Задача 2 Оборудование

Индивидуальное

- стаканчик на 80 мл;
- пипетка:
- фильтровальная бумага;
- полоска прозрачного пластика;
- источник постоянного напряжения на 9 В;
- вольтметр на 6 В с внутренним сопротивлением 6 кОм;
- резистор на 1 кОм;
- линейка:
- соединительные провода;
- миллиметровка;
- пластилин;
- скрепки канцелярские.

Групповое

- раствор сернокислого натрия водный 10% с добавлением фенолфталеина 1 л;
- часы с большим циферблатом и секундной стрелкой 2 на группу;
- ножницы 5 на группу.

Задание

Предложите методику определения дрейфовой скорости ионов гидроксила.

Рассчитайте подвижность ионов гидроксила и их радиус.

Проанализируйте полученные результаты и сравните рассчитанный радиус с характерным размером молекулы воды.

Справочные данные: коэффициент вязкости воды при комнатной температуре составляет $1,0\cdot 10^{-3}$ Па \cdot с

Теоретическая справка

При пропускании электрического тока через раствор сернокислого натрия на катоде происходит выделение металлического натрия, который, взаимодействуя с водой, образует гидрат окиси натрия:

$$Na^+ + e^- \rightarrow Na$$
;
 $2Na + 2H_2O \rightarrow 2NaOH + H_2^{\uparrow}$;
 $NaOH \leftrightarrow Na^+ + OH^-$.

Ионы гидроксила обнаруживаются с помощью фенолфталеина по фиолетовой окраске раствора. Под действием внешнего электрического поля ионы дрейфуют от катода к аноду, следовательно, область фиолетовой окраски распространяется в направлении от катода к аноду со скоростью дрейфа ионов.

 Π одвижность ионов μ представляет собой отношение скорости их дрейфа ν во внешнем поле к напряженности E этого поля.

Сила вязкого трения шарика, равномерно движущегося в жидкости, определяется по формуле Стокса:

$$F = 6\pi \eta r v$$
,

где η - коэффициент вязкости, r - радиус шарика, v - его скорость.

В отчетах к обеим задачам приведите:

- теоретическое обоснование предложенной Вами экспериментальной методики;
- план проведения измерений;
- меры, которые Вы предприняли для обеспечения наименьшей погрешности измерений;
- таблицу с исходными данными, промежуточными и окончательными результатами;
- оценку погрешности измерений.