Bloom filters vs. space-efficient perfect hash

Recall that classic Bloom filters use roughly $1.44log_2(1/f)n$ bits per key, as seen in class (where $f=(1-p)^k$ is the failure probability minimized for $p\approx e^{-\frac{kn}{m}=1/2}$). The problem asks to extend the implementation required in Problem 10 by employing an additional random universal hash function $s:U\to [m]$ with $m=\lceil \frac{1}{f}\rceil$, called signature, so that $\mathbf{s}(\mathbf{x})$ is also stored (in place of \mathbf{x} , which is discarded). The resulting space-efficient perfect hash table T has now a one-side error with failure probability of roughly f, as in Bloom filters: say why. Design a space-efficient efficient implementation of T, and compare the number of bits per key required by T with that required by Bloom filters.

SOLUTION