

Single Source Path Length

- 1. Create path length array to keep length of vertex from start vertex.
- 2. push start on queue & mark it. length Lstart] = 0
- 3. pop the vertex.
- 4. push all its non-marked neighbors on the queue, mark them.
- 5. For each such vertex calculate length as length[neighbor] = length[current] + 1
- 6. print <u>current vertex</u> to that <u>neighbor</u> <u>vertex edge.</u>
- 7. repeat steps 3-6 until queue is empty.
- 8. Print path length array.

Path length tree: (4-1), (4-3), (1-0) (1-2) (3-5)

Spanning Tree

- Tree is a graph without cycles. Includes all V vertices and V-1 edges.
- <u>Spanning tree</u> is <u>connected sub-graph</u> of the <u>given graph</u> that contains all the vertices and <u>sub-set of edges</u>.
- Spanning tree can be created by removing few edges from the graph which are causing cycles to form.
- One graph can have multiple different spanning trees.
- In weighted graph, spanning tree can be made who has minimum weight (sum of weights of edges). Such spanning tree is called as Minimum Spanning Tree.
- Spanning tree can be made by various algorithms.
 - ✓ BFS Spanning tree
 - ✓ DFS Spanning tree
 - Prim's MST Minimal Spanning Tree
 - ✓ Kruskal's MST

DFS Spanning Tree

- 1. push starting vertex on stack & mark it.
- 2. pop the vertex.
- 3. push all its non-marked neighbors on the stack, mark them and also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until stack is empty.

Spanning tree: (0,1) (0,2) (0,3) (3th) (315)

T(V)=0(V2)

BFS Spanning Tree

- 1. push starting vertex on queue & mark it.
- 2. pop the vertex.
- 3. push all its non-marked neighbors on the queue, mark them and also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until queue is empty.

Spanning tree: (0-1) (0-2) (0-3) (1-4) (3-5)

 $T(v) = O(v^2)$

Kruskal's Algorithm (MST)

- 1. Sort all the edges in ascending order of their weight.
- 2. Pick the smallest edge.

Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge.

Else, discard it.

3. Repeat step 2 until there are (V-1) edges in the spanning tree.

S	J Wt	
	3-11	
6	5-1~	
0	1-2V	V= 7
3	2-2/	'
	3 - 3 ×	V-1 edge
2	0 - 4 X	(6)
3	6 - 4 V	
2	5-5%	
4	6 - 6	
3	4 - 7	
3	5 - 8	
ſ	la - 10	

Union Find Algorithm

- 1. Consider all vertices as disjoint sets (parent = -1).
- 2. For each edge in the graph ms~
 - 1. Find set(root) of first vertex. (SYC)
 - 2. Find set(root) of second vertex. (dest)
 - 3. If both are in same set(same root), cycle is detected.
 - 4. Otherwise, merge(Union) both the sets i.e. add root of first set under second set

Union Find Algorithm

Balanced binary tree


```
int height (Node trav) {
    if Ctrav = = null) return 0;
    int hl = height (frav.left);
int hl = height (frav. right);
    if(hl == -1 11 Mr == -1)
           return -1:
    if (Math.ales(hl-hr)>1)
         return -1;
     int mex = he > hr & hd: hr;
     return max +1;
```


Validate binary search tree

Binary tree zigzag level order traversal

Minimum depth of binary tree

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com