CS 161, Spring 2017 Week 9 Recitation

1. Another MST Algorithm

In this question you will design a new, greedy, algorithm for computing the minimum spanning tree (MST) T of a connected, weighted, undirected graph G = (V, E), with edge weights $w_{(u,v)}$ for edges $(u,v) \in E$.

(a) Consider the following Lemma:

Lemma. Consider any cycle in G, and let (u, v) be the edge in that cycle with maximum weight. There exists an MST of G that does *not* include edge (u, v).

Assuming that this lemma is true, design an algorithm that computes an MST of G by greedily/iteratively deleting edges.

(b) Prove the lemma from part (a).

2. Points in Space

Imagine a set of n points $X = \{x_1, \dots, x_n\}$ in some unknown space. The only thing we know about them is the distance d(x, y) between each pair of points x and y.

We would like to compute a partition of X into disjoint sets of points C_1, \ldots, C_k so as to maximize the minimum distance between any two points in different clusters. Each cluster must contain at least one point, and their union is the set X. More formally, we want a partition $\{C_1, \ldots, C_k\}$ of X that achieves

$$\max_{\substack{C_1, \dots, C_k \\ m \in C_i \\ j \neq j}} \min_{\substack{x \in C_i \\ y \in C_j \\ i \neq j}} d(x, y)$$

Give an efficient algorithm for this task.

Hint: Try using an MST algorithm as a sub-routine!