Test #2 Solutions

- (1) (5 points each) True or false? Prove your response.
 - (a) (5 points) A space X is isometric to its completion \tilde{X} iff X is complete.

Answer: True. Suppose that X is a metric space and \tilde{X} is its completion. Let i be the natural embedding of X into \tilde{X} as constructed in class. Recall that i is an isometry, so therefore it is injective. First, suppose that X is complete. Then we want to show that i is surjective and hence is an isomorphism. Suppose that $[(p_n)]$ is an element of \tilde{X} . Let (p_n) be a representative Cauchy sequence of $[(p_n)]$ in X. Since X is complete, there is an $x \in X$ such that $p_n \to x$. Consider $i(x) = [(x, x, x, \ldots)]$. Then

$$\tilde{d}(i(x), [(p_n)]) = \lim_{n \to \infty} d(i(x)_n, p_n) = \lim_{n \to \infty} d(x, p_n) = 0$$

because $p_n \to x$. Therefore $i(x) \sim (p_n)$, so $i(x) = [(p_n)]$. Therefore i is surjective as claimed. On the other hand, suppose that X is isometric to \tilde{X} . We proved in class that \tilde{X} is complete, so X must also be complete.

(b) (5 points) Let $B = \{\vec{x} \in \mathbb{R}^2 : ||\vec{x}|| < 1\}$. Suppose that $f : B \to B$ and $\exists r < 1$ such that, $\forall \vec{x}, \vec{y} \in B$, $||f(\vec{x}) - f(\vec{y})|| \le r||\vec{x} - \vec{y}||$. Then f has a unique fixed point.

Answer: False. For example, let $f: B \to B$ be the map given by

$$f(x,y) = (\frac{1}{2}x + \frac{1}{2}, \frac{1}{2}y).$$

Let's check that f is a contraction mapping from B to itself. Let (x,y) in B. Then

$$||f(x,y)||^2 = (\frac{1}{2}x + \frac{1}{2})^2 + (\frac{1}{2}y)^2$$

$$= \frac{1}{4}(x^2 + 2x + 1 + y^2)$$

$$\leq \frac{1}{4}(x^2 + y^2) + \frac{1}{4}(2|x| + 1)$$

$$< \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 3$$

$$= 1.$$

So $f(x,y) \in B$ if (x,y) is. Also,

$$d(f(x,y), f(a,b)) = \sqrt{\left(\frac{1}{2}x + \frac{1}{2} - (\frac{1}{2}a + \frac{1}{2})\right)^2 + \left(\frac{1}{2}y - \frac{1}{2}b\right)^2}$$
$$= \frac{1}{2}\sqrt{(x-a)^2 + (y-b)^2}$$
$$= \frac{1}{2}d((x,y), (a,b)),$$

so f is a contraction with $r=\frac{1}{2}$. However, f does not have a fixed point in B. Notice that f is also a contraction mapping from \mathbb{R}^2 to itself. Since \mathbb{R}^2 is complete, it follows that f has a unique fixed point in \mathbb{R}^2 . If we can check that this fixed point is not in B we will be done. But $f(1,0)=(\frac{1}{2}\cdot 1+\frac{1}{2},\frac{1}{2}\cdot 0)=(1,0)$, and $\|(1,0)\|=1$, so (1,0) is the fixed point and it is not in B.

(c) (5 points) Suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$. If a local linear approximation to f at \vec{x}_0 is defined, then f is differentiable at \vec{x}_0 .

Answer: True. By the definition in the notes, a local linear approximation is a linear operator L such that $f(x) = f(x_0) + L(x - x_0) + o(x - x_0)$. Such a thing can only exist if f is differentiable. If f has partial derivatives, then one can define something that looks like a local linear transformation. However, this "tangent plane" will only be a true local linear approximation if it is an accurate approximation to f for any f near f near f which would imply that f is differentiable and f and f is differentiable.

(2) (10 points) Consider the space $l^p = \{(x_n) : \sum_{n=1}^{\infty} |x_n|^p < +\infty\}$ with the norm $\|(x_n)\|_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$. For the purposes of this problem, you may assume that l^p is a vector space and $\|\cdot\|_p$ is a norm on l^p . Prove that l^p is complete with respect to the norm topology.

Answer: Suppose that (x^k) is a Cauchy sequence of elements of l^p . We must first find a candidate limit $x \in l^p$ and then prove that $x^k \to x$ in the l^p norm.

As proved in the first part of the semester, since (x^k) is l^p -Cauchy, it is l^p -bounded. That is, $\exists M > 0$ such that $\forall k \in \mathbb{N}, ||x^k||_p < M$.

Let $\epsilon > 0$. Since (x^k) is Cauchy, $\exists K \in \mathbb{N}$ such that $\forall j, k > K$, $\|x^k - x^j\|_p < \epsilon$. Recall that each element of this sequence, x^k , is itself a sequence, denoted $(x_n)^k$. Let j, k > K and choose $n \in \mathbb{N}$. Note that

$$|x_n^k - x_n^j| = (|x_n^k - x_n^j|^p)^{\frac{1}{p}} \le \left(\sum_{n=1}^{\infty} |x_n^k - x_n^j|^p\right)^{\frac{1}{p}} < \epsilon.$$

Therefore, for each fixed n, the sequence of real numbers (x_n^k) is also Cauchy. Thus, by the completeness of \mathbb{R} , there exists a real number x_n so that $(x_n^k) \to x_n$. Define $x := (x_n)$.

We must show that $x \in l^p$. That is, $\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{2}} < +\infty$. Choose $N \in \mathbb{N}$ and

consider $\left(\sum_{n=1}^{N}|x_n|^p\right)^{\frac{1}{p}}$. For $n=1\ldots N, \exists K_n\in\mathbb{N}$ such that $\forall k>K_n, |x_n^k-x_n|<\frac{\epsilon}{\sqrt[p]{N}}$ by the term-wise convergence proved in the previous paragraph. Let $K=\max\{K_n:n=1\ldots N\}$. Let k>K. By the triangle inequality,

$$\left(\sum_{n=1}^{N} |x_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{N} |x_n - x_n^k|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{N} |x_n^k|^p\right)^{\frac{1}{p}}.$$

Since $k > K_n$ for each $n \leq N$, we then have

$$\left(\sum_{n=1}^{N} |x_n|^p\right)^{\frac{1}{p}} < \left(\sum_{n=1}^{N} \frac{\epsilon^p}{N}\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{N} |x_n^k|^p\right)^{\frac{1}{p}}$$

$$= \epsilon + \left(\sum_{n=1}^{N} |x_n^k|^p\right)^{\frac{1}{p}}$$

$$\leq \epsilon + \left(\sum_{n=1}^{\infty} |x_n^k|^p\right)^{\frac{1}{p}}$$

$$< \epsilon + M$$

where M is the bound on $||x^k||_p$ found above. If we now let $\epsilon \to 0$, we find that

$$\left(\sum_{n=1}^{N} |x_n|^p\right)^{\frac{1}{p}} \le M.$$

Finally, letting N go to infinity, we may conclude that $||x||_p \leq M$. Therefore $x \in l^p$ as claimed.

Finally, we must show that $(x^k) \to x$ in the l^p topology. Let $\epsilon > 0$. As above, since (x^k) is Cauchy, $\exists K \in \mathbb{N}$ such that $\forall j, k > K$, $||x^k - x^j||_p < \frac{\epsilon}{3}$. Let k > K.

Choose $N \in \mathbb{N}$ and consider $\left(\sum_{n=1}^{N}|x_n^k-x_n|^p\right)^{\frac{1}{p}}$. For $n=1\ldots N, \ \exists K_n \in \mathbb{N}$ such that $\forall k>K_n, \ |x_n^k-x_n|<\frac{\epsilon}{3\sqrt[p]{N}}$ as above. Let $J=\max\{K_n:n=1\ldots N\}$. Let $j>\max\{J,K\}$. By the triangle inequality,

$$\left(\sum_{n=1}^{N}|x_n^k - x_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{N}|x_n^k - x_n^j|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{N}|x_n^j - x_n|^p\right)^{\frac{1}{p}}.$$

Since $j > K_n$ for each $n \leq N$, and both j and k are greater than K, we then have

$$\left(\sum_{n=1}^{N} |x_n^k - x_n|^p\right)^{\frac{1}{p}} < \left(\sum_{n=1}^{\infty} |x_n^k - x_n^j|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{N} \frac{\epsilon^p}{3^p N}\right)^{\frac{1}{p}} < \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{2\epsilon}{3},$$

Finally, letting N go to infinity, we may conclude that $||x^k - x||_p \le \frac{2\epsilon}{3} < \epsilon$. Therefore $x^k \to x$ as claimed.

(3) (10 points) Prove that the collection of polynomials is dense in the space $L^2([0,1])$ with respect to the topology generated by the L^2 -norm.

Answer: First, note that any polynomial is continuous, so therefore each polynomial can be considered as an element of $L^2([0,1])$ by the natural imbedding i. Let \mathcal{P} represent the set of polynomials on [0,1]. Let $[(f_n)]$ be any element of $L^2([0,1])$, and let $\epsilon > 0$. We must show that $\exists p \in \mathcal{P}$ such that $\tilde{d}([(f_n)],p) < \epsilon$. Note that, by definition, $\tilde{d}([(f_n)],p) = \lim_{n\to\infty} d(f_n,p) = \lim_{n\to\infty} \sqrt{\int_0^1 |f_n(x) - p(x)|^2 dx}$.

Recall that (f_n) is a sequence of continuous functions which is Cauchy with respect to the L^2 -norm. Choose N so that, $\forall n, m > N$, $d(f_n, f_m) < \frac{\epsilon}{2}$. Consider f_{N+1} . By the Weierstrass Approximation Theorem, there exists a polynomial p so that $\sup_{x \in [0,1]} (|f_{N+1}(x) - p(x)|) < \frac{\epsilon}{2}$. Then

$$d(f_{N+1}, p) = \sqrt{\int_0^1 |f_{N+1}(x) - p(x)|^2 dx} < \sqrt{\int_0^1 \left(\frac{\epsilon}{2}\right)^2 dx} = \sqrt{\left(\frac{\epsilon}{2}\right)^2 \cdot 1} = \frac{\epsilon}{2}.$$

Therefore, for all n > N, $d(f_n, p) \le d(f_n, f_{N+1}) + d(f_{N+1}, p) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ by the triangle inequality. Hence, $\lim_{n\to\infty} d(f_n, p) \le \epsilon$ and \mathcal{P} is dense in $L^2([0, 1])$ as claimed.

(4) Consider a first-order linear differential equation

$$\frac{dy}{dt} = p(t)y(t),$$

where p is a given continuous function. We showed in class that y is a solution of this equation and the initial condition y(0) = 0 if and only if y is a fixed point of the operator $F: C([0,1]) \to C([0,1])$ given by $F(y)(t) = \int_0^t p(s)y(s)ds$.

(a) (8 points) Prove that F is a bounded linear operator from C([0,1]) to itself and compute its operator norm.

Answer: To begin with, note that if $p \equiv 0$ then F is the zero operator, which is clearly a bounded linear operator from C([0,1]) to itself with operator norm 0. Therefore we will assume throughout that p is not identically zero, and thus $||p||_{\infty} > 0$.

First we must show that F is an operator from C([0,1]) to itself. That is, F(f) is continuous on [0,1] if f is. Clearly if pf is identically zero then $Ff \equiv 0$, so we may assume that $||pf||_{\infty} > 0$. Let $\epsilon > 0$. Choose $\delta > 0$ so that $\delta < \frac{\epsilon}{||pf||_{\infty}}$ and let $x, y \in [0,1]$ be chosen so that $|x-y| < \delta$. Without loss of generality suppose that $x \geq y$. Then consider F(f)(x) - F(f)(y):

$$|F(f)(x) - F(f)(y)| = \left| \int_0^x p(s)f(s)ds - \int_0^y p(s)f(s)ds \right|$$

$$= \left| \int_y^x p(s)f(s)ds \right|$$

$$\leq \int_y^x |p(s)||f(s)|ds$$

$$\leq ||pf||_{\infty}|x - y|$$

$$< ||pf||_{\infty} \frac{\epsilon}{||pf||_{\infty}}$$

$$= \epsilon.$$

Hence F(f) is uniformly continuous if f is bounded.

Next, we need to check that F is linear. Let $f, g \in C([0,1])$ and $a, b \in \mathbb{R}$. Then

$$F(af + bg)(t) = \int_0^t p(s)[af(s) + bg(s)]ds$$
$$= a \int_0^t p(s)f(s)ds + b \int_0^t p(s)g(s)ds$$
$$= aF(f) + bF(g)$$

by the linearity properties of the integral, so F is indeed a linear operator. Finally, we need to show that F is bounded and compute its operator norm. Let $f \in C([0,1])$. Then $F(f)[t] = \int_0^t p(s)f(s)ds \le \|f\|_\infty \int_0^t |p(s)|ds$. Since p is continuous, $\int_0^1 |p(s)|ds$ is finite. Therefore,

$$||F(f)||_{\infty} \le \sup_{t \in [0,1]} \left(||f||_{\infty} \int_0^t |p(s)| ds \right) \le \left(\int_0^1 |p(s)| ds \right) ||f||_{\infty},$$

and F is a bounded operator from C([0,1]) to itself. I claim that $||F||_{oper} = \int_0^1 |p(s)| ds$. The calculation just completed shows that $||F||_{oper} \le \int_0^1 |p(s)| ds$. To see the opposite inequality, let $f(t) = \frac{|p(t)|}{p(t)}$ for t such that $p(t) \ne 0$, and f(t) = 0 if p(t) = 0. The function f, which is called sgn(p), is 1 where p > 0, 0 where p = 0, and -1 where p < 0. It may not be continuous, but we proved in class that since it has at most countably many jump discontinuities, for any $\epsilon > 0$, it is possible to come up with a function g which is continuous so that $\int_0^1 |f(t) - g(t)| dt < \frac{\epsilon}{||p||_{\infty}}$. This g will equal f whenever f is either positive or negative but will close the gap across the jumps with straight line segment. Therefore, unless f is f in f in

$$F(g)[1] = \int_{0}^{1} p(s)g(s)ds$$

$$= \int_{0}^{1} p(s)f(s)ds + \int_{0}^{1} p(s)(g(s) - f(s))ds$$

$$\geq \int_{0}^{1} p(s)f(s)ds - \int_{0}^{1} |p(s)||g(s) - f(s)|ds$$

$$\geq \int_{0}^{1} p(s)f(s)ds - ||p(s)||_{\infty} \int_{0}^{1} |g(s) - f(s)|ds$$

$$> \int_{0}^{1} p(s)f(s)ds - ||p(s)||_{\infty} \frac{\epsilon}{||p||_{\infty}}$$

$$= \int_{0}^{1} p(s)f(s)ds - \epsilon$$

$$= \int_{0}^{1} p(s)\frac{|p(s)|}{p(s)}ds - \epsilon$$

$$= \int_{0}^{1} |p(s)|ds - \epsilon$$

Therefore, $\int_0^1 |p(s)| ds - \epsilon \le ||F(g)||_{\infty}$. Since $||g||_{\infty} = 1$, we may conclude that $||F||_{oper} = \sup\{||Fg||_{\infty} : ||g||_{\infty} = 1\} \ge \int_0^1 |p(s)| ds - \epsilon$. Hence $\int_0^1 |p(s)| ds - \epsilon \le ||F||_{oper} \le \int_0^1 |p(s)| ds$. Letting $\epsilon \to 0$, we may conclude that $||F||_{oper} = \int_0^1 |p(s)| ds$ as claimed.

(b) (5 points) Prove directly, using the $\epsilon - \delta$ definition of the limit, that F is a continuous operator from C([0,1]) to itself.

As above, note that if $p \equiv 0$, then $F(f) \equiv 0$ for any $f \in C([0,1])$, so, for any $\epsilon > 0$ and any $f, g \in C([0,1]), ||F(f) - F(g)||_{\infty} = ||0 - 0||_{\infty} = 0 < \epsilon$ so in this case F is trivially continuous. Therefore we may assume that p is not identically zero and hence that $\int_0^1 |p(s)| ds > 0$. Define $M = \int_0^1 |p(s)| ds$. Let $\epsilon > 0$. Let $f \in C([0,1])$ and let $\delta = \frac{\epsilon}{M}$. Suppose that $g \in C([0,1])$ with

 $||f-g||_{\infty} < \delta$. Then

$$||F(f) - F(g)||_{\infty} = ||F(f - g)||_{\infty}$$

$$= \sup_{0 \le t \le 1} \left| \int_0^t p(s)[f(s) - g(s)] ds \right|$$

$$\le \sup_{0 \le t \le 1} \int_0^t |p(s)||f(s) - g(s)| ds$$

$$\le \int_0^1 |p(s)||f(s) - g(s)| ds$$

$$\le ||f - g||_{\infty} \int_0^1 |p(s)| ds$$

$$< \frac{\epsilon}{M} M$$

$$= \epsilon$$

Hence $||Ff - Fg||_{\infty} < \epsilon$ as desired, so F is indeed continuous.

(c) (2 points) Explain in complete sentences why the result of part (b) is not surprising.

First, we proved in part (a) that F is a bounded linear operator. In class we proved that all bounded linear operators are continuous. Second, in class we proved that, at least for small times, F is a contraction mapping. In class we proved that all contraction mappings are continuous. (If we apply that argument to larger times we will see that F is always Lipschitz.) Therefore we have several reasons to expect that F is continuous without referring directly to the $\epsilon - \delta$ definition.

(5) (10 points) The following is a true statement:

Theorem 1. Suppose that $[(f_n)] \in W^{1,2}([0,1])$. Then $[(f_n)]$ has a representative fwhich is continuous. (That is, $\exists f: [0,1] \to \mathbb{R}$ such that $\lim_{n\to\infty} \|f_n - f\|_{W^{1,2}} = 0$ and f is continuous.)

Corrected Proof; Corrections in Red. Let $[(f_n)] \in W^{1,2}([0,1])$, and choose a representative sequence (f_n) of $[(f_n)]$. Then (f_n) is Cauchy with respect to the $W^{1,2}$ -norm, so $||f_n||_{W^{1,2}}$ is bounded by some constant M for all n. Also, by definition of $W^{1,2}$, $f_n \in C^1([0,1])$ for each n. Fix n. Let $x, y \in [0,1]$. Without loss of generality, assume $x \geq y$. Then consider $|f_n(x) - f_n(y)|$:

$$|f_n(x) - f_n(y)| = |\int_y^x f'_n(t)dt|$$

$$\leq \int_y^x |1 \cdot f'_n(t)|dt$$

$$\leq \sqrt{\int_y^x |1|^2 dt} \int_y^x |f'_n(t)|^2 dt$$

$$\leq \sqrt{|x - y|} ||f'_n||_{L^2}$$

$$\leq M\sqrt{|x - y|}$$

using Hölder's inequality. Now, if $\epsilon > 0$, let $\delta = (\frac{\epsilon}{M})^2$, and let $x, y \in [0, 1]$ with $|x - y| < \delta$. Then by the calculations above, regardless of n,

$$|f_n(x) - f_n(y)| \le M\sqrt{|x - y|} < M\sqrt{\delta} = M\sqrt{(\frac{\epsilon}{M})^2} = M\frac{\epsilon}{M} = \epsilon,$$

so the functions (f_n) are equicontinuous. Next, let $x \in [0,1]$ and note that

$$|f_n(x)| \le |f_n(x) - f_n(y)| + |f_n(y)|$$

for any $y \in [0, 1]$ by the triangle inequality. So,

$$|f_n(x)| = \int_0^1 |f_n(x)| dy$$

$$\leq \int_0^1 |f_n(x) - f_n(y)| dy + \int_0^1 |f_n(y)| dy$$

$$\leq \int_0^1 M \sqrt{|x - y|} dy + \sqrt{\int_0^1 |f_n(y)|^2} dy$$

$$\leq M + M$$

$$= 2M$$

by Hölder's inequality again. This inequality tells us that the functions (f_n) are uniformly bounded, since this bound does not depend on n. Hence, by the Arzela-Ascoli theorem, there exists a subsequence (f_{n_k}) of (f_n) which converges uniformly to some function f. Then since f_{n_k} is continuous for all k, f is continuous. Since (f_n) is Cauchy and (f_{n_k}) is a subsequence of (f_n) , $\lim_{k\to\infty} d(f_k, f_{n_k}) = 0$, so $[(f_n)] = [(f_{n_k})]$ and hence f is a valid, continuous representative of the given equivalence class. \square