

MÉTHODE QUADTREE (2D) - OCTREE (3D) ILLUSTRATION SUR UN EXEMPLE EN 2D

MÉTHODE BASÉE SUR LES ARBRES

Point de départ :

- Une géométrie
- Une description discrète de la géométrie (points, arêtes, triangles en 3D ...)

Plusieurs étapes :

- I) Création d'une boite englobante
- II) Création d'un arbre par rapport à un critère géométrique ou une spécification de tailles requises
- III) Équilibrage de l'arbre
- IV) Création du maillage

Ces méthodes vont créer des maillages en triangles ou en tétraèdres.

I) CRÉATION DE LA BOÎTE ENGLOBANTE

lci le point de départ est une description discrète de la géométrie

Créer une boîte englobante

II) CRÉATION DE L'ARBRE

1) Initialisation de l'arbre par un carré

II) CRÉATION DE L'ARBRE

- 2) Parcours des points frontières :
- · rechercher la case le contenant
- si autre entité à l'intérieur, subdiviser sinon ok

II) CRÉATION DE L'ARBRE

- 3) Parcours des arêtes :
- rechercher les cases sans point
- si plusieurs arêtes à l'intérieur, subdiviser sinon ok

III) ÉQUILIBRAGE DE L'ARBRE

Le niveau des quadrants adjacent ne doit pas être différent de plus d'un facteur.

L'équilibrage sert à faciliter l'étape IV (création du maillage) ; ainsi qu'à obtenir un maillage avec des tailles équilibrées.

1) Création des triangles internes en choisissant un des six patterns ci-dessous.

- 2) Création des triangles contenant une entité frontière
- Un noeud dans le quadrant

- 2) Création des triangles contenant une entité frontière
- Pas de noeud dans le quadrant (juste un segment d'arête)

3) Retirer l'extérieur

Le maillage est obtenu!

AVANTAGES ET PROBLÈMES DE CETTE MÉTHODE

- I) Coût : beaucoup de recherche dans l'arbre. Importance de la rapidité de cette procédure : Importance des structures de données.
- II) Représentation de la frontière : on ne retrouve pas exactement la frontière initiale ! Dépendance aux transformations géométriques.
- III) Maillage à optimiser : contraintes dues à la grille sous-jacente. Aucun critère de qualité est pris en compte dans la construction.
- IV) Convergence : Aucun soucis en 2D. La seule difficulté en 3D réside dans la présence de 2 surfaces proches. Il faut s'assurer d'avoir un point entre les 2 (par exemple en bougeant un point de la grille.)

	Robuste	Performance	Qualité
Quadtree	+		
Delaunay		+	
Frontal			+

Pour récupérer des maillages et du code : http://annabellecollin.perso.math.cnrs.fr/Mesh/CodeInitial.zip

