Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

ФАКУЛЬТЕТ: ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МАТЕМАТИКИ И МЕХАНИКИ

Кафедра: Прикладная математика

Отчёт по научно-исследовательской практике

Тема:

Осциллограмма движения для многопоршневого механизма

Выполнил студент:

Алексеев Данила Андреевич

Группа: 3821Б1ФИ1

Научный руководитель:

Доцент

Никифорова Ирина Владимировна

Нижний Новгород, 2024 г.

Содержание

1	Введение	2
2	Постановка задачи	9
3	Математическая модель	4

1 Введение

В современных инженерных и технических решениях широко используются механизмы, подверженные воздействию виброударных нагрузок. Эти нагрузки могут возникнуть как в результате внешних факторов, так и в процессе работы механизмов. Виброударные явления могут оказывать значительное воздействие на долговечность, надежность и эффективность механизмов, а также являются важным аспектом в области безопасности.

Данное исследование направлено на анализ и понимание динамических характеристик виброударных механизмов с целью оптимизации их конструкции, повышения стойкости к нагрузкам и снижения рисков возникновения аварийных ситуаций.

2 Постановка задачи

В рамках данного исследования будет разработана программа, предназначенная для визуализации влияния различных параметров виброударного механизма на показатели системы при его работе на многопоршневом механизме. Основное внимание будет уделено количеству поршней в механизме, рассматриваемому как ключевой параметр, определяющий его характеристики.

Целью исследования является анализ воздействия количества поршней на динамические свойства механизмов, а также создание программных инструментов для визуализации этой зависимости в виде графиков. Полученные результаты и визуализации смогут быть использованы для оптимизации конструкции виброударных механизмов и принятия соответствующих решений в процессе их проектирования.

3 Математическая модель

$$\begin{cases} \frac{d^2x}{d\tau^2} = m\cos(\tau) - p, & x > f(\tau) \\ \frac{dx}{d\tau}|_{+} = -R\frac{dx}{d\tau}|_{-} + (1+R)\frac{df(\tau)}{d\tau}, & x = f(\tau), & \dot{x} - \frac{df}{d\tau} < 0 \end{cases}$$

$$f(\tau) = \max(f_1(\tau), f_2(\tau), f_3(\tau)), \quad f_i(\tau) = \mathcal{E}_i - my_i \cos(\tau - \varphi_i), \quad i = 1, 2, 3$$