Jan 09, 2019

1 Natural estimator

1.1 Two-Stage-Least-Squares

- 1. \mathbf{x}_{1i}, v_i are observable and unobservable characteristics which effects on target variable \mathbf{y}_N .
- 2. \mathbf{x}_{2i}, a_i are observable and unobservable characteristics which effects on link formation (\mathbf{D}_N or \mathbf{G}_N)
- 3. $\mathbf{x}_i = \mathbf{x}_{1i} \cup \mathbf{x}_{2i}$

2SLS estimator is valid when $E[\mathbf{G}_N \boldsymbol{v}_N] = 0$. Specifically, the validity of the 2SLS estimator depends on the orthogonality condition $E[\boldsymbol{v}_N | \mathbf{Z}_N] = 0$ which is implied if $E[\boldsymbol{v}_N | \mathbf{X}_{1N}, \mathbf{D}_N] = 0$

$$\hat{\beta}_N^{2SLS} = (\mathbf{W}_N' \mathbf{Z}_N (\mathbf{Z}_N' \mathbf{Z}_N)^{-1} \mathbf{Z}_N' \mathbf{W}_N)^{-1} \mathbf{W}_N' \mathbf{Z}_N (\mathbf{Z}_N' \mathbf{Z}_N)^{-1} \mathbf{Z}_N' \mathbf{y}_N$$
(1)

where $\mathbf{W}_N = [\mathbf{G}_N \mathbf{y}_N, \mathbf{X}_{1N}, \mathbf{G}_N \mathbf{X}_{1N}]$ and $\mathbf{Z}_N = [\mathbf{X}_{1N}, \mathbf{G}_N \mathbf{X}_{1N}, \mathbf{G}_N^2 \mathbf{X}_{1N}].$

When the network matrix is endogenous, $E[\mathbf{G}_N \mathbf{v}_N] \neq 0$ and it may be that $E[\mathbf{v}_N | \mathbf{X}_{1N}, \mathbf{D}_N] \neq 0$

2 Identification of Peer Effect

2.1 Assumption 1

- (i) (\mathbf{x}_i, a_i, v_i) are i.i.d. for all i, i = 1, ..., N
- (ii) $\{u_{ij}\}_{i,j=1,\dots,N}$ are independent of $(\mathbf{X}_N,\mathbf{a}_N,\boldsymbol{v}_N)$ and i.i.d across (i,j) with cdf $\Phi(\cdot)$
- (iii) $E[\upsilon_i|\mathbf{x}_i, a_i] = E[\upsilon_i|a_i]$

Assumption 1(i) implies observable $(x)_i$ and unobservable a_i, v_i are randomly drawn, which is standard assumption in the peer effects literature. Assumption1(ii) assumes that link formation error u_{ij} is orthogoanl th all other observables and unobservables in the model. It means that u_{ij} from the link formation process does not influence outcomes y_1, \ldots, y_N , However we allow dependence between unobserved components a_i and v_i . Assumption 1(iii) assume that the dependence between \mathbf{x}_i and v_i exists only through a_i

2.2 Lemma 1 (Control Function of Peer Group of Endogeneity)

$$E[\upsilon_i|\mathbf{X}_N,\mathbf{D}_N,a_i] = E[\upsilon_i|a_i] \tag{2}$$

$$E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|a_{i}])(v_{i} - E[v_{i}|a_{i}]) | a_{i}] = E[\mathbf{z}_{i}v_{i}|a_{i}] - E[\mathbf{z}_{i}|a_{i}]E[v_{i}|a_{i}]$$

$$= E[E[\mathbf{z}_{i}v_{i}|a_{i}, \mathbf{X}_{1N}, \mathbf{G}_{N}]|a_{i}] - E[\mathbf{z}_{i}|a_{i}]E[v_{i}|a_{i}]$$

$$= E[\mathbf{z}_{i}E[v_{i}|a_{i}, \mathbf{X}_{1N}, \mathbf{G}_{N}]|a_{i}] - E[\mathbf{z}_{i}|a_{i}]E[v_{i}|a_{i}]$$

$$= E[\mathbf{z}_{i}E[v_{i}|a_{i}]|a_{i}] - E[\mathbf{z}_{i}|a_{i}]E[v_{i}|a_{i}]$$

$$= 0$$
(3)

as $y_i = \mathbf{w}_i' \beta^0 + v_i$

$$0 = E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|a_{i}])(y_{i} - \mathbf{w}_{i}'\beta) - E[y_{i} - \mathbf{w}_{i}'\beta|a_{i}]]$$

$$= E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|a_{i}])(v - E[v_{i}|a_{i}])'](\beta - \beta^{0}) + E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|a_{i}])(v_{i} - E[v_{i}|a_{i}])]$$

$$= E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|a_{i}])(v - E[v_{i}|a_{i}])'](\beta - \beta^{0})$$

$$\Leftrightarrow \beta = \beta^{0}$$

$$(4)$$

2.3 Assumption 2 (Rank condition)

$$E[(\mathbf{z}_i - E[\mathbf{z}_i|a_i])(\mathbf{w}_i - E[\mathbf{w}_i|a_i])'] has full rank$$
(5)

2.4 Theorem 3.1 (identification)

 β^0 is identified by moment condition

$$E[(\mathbf{z}_i - E[\mathbf{z}_i|a_i])(y_i - E[y_i|a_i] - (\mathbf{w}_i - E[\mathbf{w}_i|a_i])'\beta)] = 0 \Leftrightarrow \beta = \beta^0$$
(6)

2.5 Assumption 3

$$\mathbf{x}_{1i} \cap \mathbf{x}_{2i} = \emptyset$$

Under these assumption

$$E[\upsilon_i|\mathbf{X}_N, \mathbf{D}_N, a_i] = E[\upsilon_i|a_i] = E[\upsilon_i|\mathbf{x}_{2i}, a_i]$$
(7)

$$E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}])(v_{i} - E[v_{i}|\mathbf{x}_{2i}, a_{i}]) \mid \mathbf{x}_{2i}, a_{i}]$$

$$= E[\mathbf{z}_{i}v_{i}|\mathbf{x}_{2i}, a_{i}] - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}]E[v_{i}|\mathbf{x}_{2i}, a_{i}]$$

$$= E[E[\mathbf{z}_{i}v_{i}|a_{i}, \mathbf{X}_{1N}, \mathbf{G}_{N}]|\mathbf{x}_{2i}, a_{i}] - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}]E[v_{i}|\mathbf{x}_{2i}, a_{i}]$$

$$= E[\mathbf{z}_{i}E[v_{i}|\mathbf{x}_{2i}, a_{i}]|\mathbf{x}_{2i}, a_{i}] - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}]E[v_{i}|\mathbf{x}_{2i}, a_{i}]$$

$$= 0$$
(8)

2.6 Assumption 4 (Rank condition)

$$E[(\mathbf{z}_i - E[\mathbf{z}_i|\mathbf{x}_{2i}, a_i])(\mathbf{w}_i - E[\mathbf{w}_i|\mathbf{x}_{2i}, a_i])'] has full rank$$
(9)

$$0 = E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}])(y_{i} - \mathbf{w}_{i}'\beta) - E[y_{i} - \mathbf{w}_{i}'\beta|\mathbf{x}_{2i}, a_{i}]]$$

$$= E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}])(v - E[v_{i}|\mathbf{x}_{2i}, a_{i}])'](\beta - \beta^{0}) + E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}])(v_{i} - E[v_{i}|\mathbf{x}_{2i}, a_{i}])]$$

$$= E[(\mathbf{z}_{i} - E[\mathbf{z}_{i}|\mathbf{x}_{2i}, a_{i}])(v - E[v_{i}|\mathbf{x}_{2i}, a_{i}])'](\beta - \beta^{0})$$

$$\Leftrightarrow \beta = \beta^{0}$$

$$(10)$$

2.7 Theorem 3.2

 β^0 is identified by moment condition

$$E[(\mathbf{z}_i - E[\mathbf{z}_i|\mathbf{x}_{2i}, a_i])(y_i - E[y_i|\mathbf{x}_{2i}, a_i] - (\mathbf{w}_i - E[\mathbf{w}_i|\mathbf{x}_{2i}, a_i])'\beta)] = 0 \Leftrightarrow \beta = \beta^0$$
(11)

2.8 General Case

So far $\mathbf{x}_{1i} \cap \mathbf{x}_{2i} = \emptyset$, A more general case is when the regressor \mathbf{x}_{1i} is consist of two component $\mathbf{x}_{1i} = (\mathbf{x}_{11i}, \mathbf{x}_{12i})$, where \mathbf{x}_{11i} does not share any elements with \mathbf{x}_{2i} and $\mathbf{x}_{12i} \subset \mathbf{x}_{2i}$

3 Estimation

3.1 with a_i as control function

$$y_i - E[y_i|a_i] = (\mathbf{w}_i - E[\mathbf{w}_i|a_i])'\beta^0 + \upsilon_i - E[\upsilon_i|a_i]$$
(12)

Let $h(a_i) = (h^y(a_i), \mathbf{h}^w(a_i), \mathbf{h}^z(a_i)) := (E[y_i|a_i], E[\mathbf{w}_i|a_i], E[\mathbf{z}_i|a_i])$ and $\tilde{\mathbf{W}}_N = (\mathbf{w}_1 - \mathbf{h}^w(a_1), \dots, \mathbf{w}_N - \mathbf{h}^w(a_N))$, similarly define $\tilde{\mathbf{Z}}_N$, $\tilde{\mathbf{y}}_N$.

Suppose that we observe $\mathbf{h}(a_i)$ as $E[(\mathbf{z}_i - E[\mathbf{z}_i|a_i])(v_i - E[v_i|a_i])|a_i] = 0$,

$$\hat{\beta}_{2SLS}^{inf} = (\tilde{\mathbf{W}}_{N}' \tilde{\mathbf{Z}}_{N} (\tilde{\mathbf{Z}}_{N}' \tilde{\mathbf{Z}}_{N})^{-1} \tilde{\mathbf{Z}}_{N}' \tilde{\mathbf{W}}_{N})^{-1} \tilde{\mathbf{W}}_{N}' \tilde{\mathbf{Z}}_{N} (\tilde{\mathbf{Z}}_{N}' \tilde{\mathbf{Z}}_{N})^{-1} \tilde{\mathbf{Z}}_{N}' \tilde{\mathbf{y}}_{N}$$

$$(13)$$

as a_i is not observed and the function $\mathbf{h}(\cdot)$ are not known. A natural implementation of the infeasible estimator $\hat{\beta}_{2SLS}^{inf}$ is to replace $\mathbf{h}(a_i)$ in $\tilde{\mathbf{W}}_N, \tilde{\mathbf{Z}}_N$ and $\tilde{\mathbf{y}}_N$ with its estimate, say $\hat{\mathbf{h}}(\hat{a}_i)$

- (i) $h^l(a)$ is the l^{th} element in $\mathbf{h}(a)$ for $l=1,\ldots,L$ where L is the dimension of $(y_i,\mathbf{w}_i',\mathbf{z}_i')'$
- (ii) Sieve estimator $h^l(a) = \sum_{k=1}^{K_N} q_k(a) \alpha_k^l$
- (iii) $\mathbf{q}^K(a) = (q^1(a), \dots, q^{K_N}(a))$
- (iv) $\mathbf{Q}_N := \mathbf{Q}_n(\mathbf{a}_N) = (\mathbf{q}^K(a_1), \dots, \mathbf{q}^K(a_n))$
- (v) $\mathbf{h}^{l}(\mathbf{a}_{N}) = (h^{l}(a_{1}), \dots, h^{l}(a_{N}))$
- (vi) $\boldsymbol{\alpha}_N^l = (\alpha_1^l, \dots, \alpha_{K_N}^l)$
- (vii) b_i^l be the l^{th} element in $(y_i, \mathbf{w}_i', \mathbf{z}_i')'$ and $\mathbf{b}_N^l = (b_1^l, \dots, b_N^l)$

If $\mathbf{a}_N = (a_1, \dots, a_N)'$ is observed, we can estimate the unknown function $\mathbf{h}^l((a_N))$ by OLS of b_i^l on $\mathbf{q}^K(a_i)$ for $l = 1, \dots, L$

$$\hat{\mathbf{h}}^{l}(\mathbf{a}_{N}) = \mathbf{P}_{\mathbf{Q}_{N}} \mathbf{b}_{N}^{l} \tag{14}$$

where $\mathbf{P}_{\mathbf{Q}_N} = \mathbf{Q}_N (\mathbf{Q}_N' \mathbf{Q}_N)^{-1} \mathbf{Q}_N'$

Suppose $\hat{\mathbf{a}}_N = (\hat{a}_1, \dots, \hat{a}_N)'$ is the estimator of $\mathbf{a}_N = (a_1, \dots, a_N)'$. Denote $\hat{\mathbf{Q}}_N := \mathbf{Q}_n(\hat{\mathbf{a}}_N) = (\mathbf{q}^K(\hat{a}_1), \dots, \mathbf{q}^K(\hat{a}_N))$. Then the estimator of $\mathbf{h}^l((a_N))$ is defined by

$$\hat{\mathbf{h}}^l := \hat{\mathbf{h}}^l(\hat{\mathbf{a}}_N) = \mathbf{P}_{\hat{\mathbf{Q}}_N} \mathbf{b}_N^l \tag{15}$$

for l = 1, ..., L, and the estimator of β^0 is

$$\hat{\beta}_{2SLS} = (\mathbf{W}_N' \mathbf{M}_{\hat{\mathbf{Q}}_N} \mathbf{Z}_N (\mathbf{Z}_N' \mathbf{M}_{\hat{\mathbf{Q}}_N} \mathbf{Z}_N)^{-1} \mathbf{Z}_N' \mathbf{M}_{\hat{\mathbf{Q}}_N} \mathbf{W}_N)^{-1} \times \mathbf{W}_N' \mathbf{M}_{\hat{\mathbf{Q}}_N} \mathbf{Z}_N (\mathbf{Z}_N' \mathbf{M}_{\hat{\mathbf{Q}}_N} \mathbf{Z}_N)^{-1} \mathbf{Z}_N' \mathbf{M}_{\hat{\mathbf{Q}}_N} \mathbf{y}_N$$
(16)

where $\mathbf{M}_{\hat{\mathbf{Q}}_N} = I_N - \mathbf{P}_{\hat{\mathbf{Q}}_N}$

3.2 with (\mathbf{x}_{2i}, a_i) as control function

Let \hat{deg}_i be the degree of node i scaled by the Network size

$$\hat{deg}_i := \frac{1}{N-1} \sum_{j=1, \neq j}^{N} d_{ij,N}$$
(17)

Let $\phi * (\cdot)$ be the cdf of u_{ij} . Also let $\phi(\mathbf{x}_2, a)$ be the joint density function of (\mathbf{x}_{2i}, a_i) . Then for (\mathbf{x}_{2i}, a_i) , by the WLLN conditioning on (\mathbf{x}_{2i}, a_i)

$$\hat{deg}_i := \frac{1}{N-1} \sum_{j=1, \neq j}^{N} I(g(t(\mathbf{x}_{2i}, \mathbf{x}_{2j}), a_i, a_j))$$
(18)