Exercice 1 - (CVD et suite)

Soit d > 0. Soit $g \in C^0([0,d])$ telle que $g(0) \neq 0$

- 1. Rappeler la caractérisation séquentielle de la limite.
- 2. Construire une fonction g_t continue par morceaux sur $[0, +\infty[$, bornée, telle que $\int_0^d e^{-tx^2} g(x) dx = \frac{1}{t} \int_0^{+\infty} e^{-x} g_t(x) dx$
- 3. Montrer que $\int_0^d e^{-tx^2} g(x) dx \underset{t \to +\infty}{\sim} \frac{g(0)}{t}$

Exercice 2 - (Série de fonctions)

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle positive et décroissante. $\forall n\in\mathbb{N}$, on pose $u_n(x)=a_nx^n(1-x)$ où $x\in[0,1]$

- 1. Montrer la convergence simple de la série de fonctions $\sum u_n$.
- 2. Montrer que cette série converge normalement si, et seulement si, il y a convergence de la série $\sum \frac{a_n}{n}$.
- 3. Montrer que la série de fonctions $\sum u_n$ converge uniformément si, et seulement si, $a_n \to 0$.

Exercice 3 - (Convergence uniforme?)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur [0,1] par $f_n(x) = \frac{2^n x}{1+2^n n x^2}$.

- 1. Etudier la CVS.
- 2. Calculer $I_n = \int_0^1 f_n(t)dt$ et la limite de I_n . En déduire que la suite (f_n) n'est pas uniformément convergente sur [0,1].
- 3. Prouver la non CVU d'une autre façon.

Exercice 4 - (Jolie relation)

 $\forall n \in \mathbb{N}$, on pose $u_n(x) = (-1)^{n+1}x^{2n+2}\ln(x)$ où $x \in]0,1]$ et $u_n(0) = 0$.

- 1. Calculer $\sum u_n(x)$.
- 2. Montrer que $\sum u_n$ CVU sur [0,1].
- 3. En déduire que $\int_0^\infty \frac{\ln(x)}{1+x^2} dx = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{(2n+1)^2}$

Exercice 5 - (Limite d'une série)

On considère une fonction $f: \mathbb{R} \to \mathbb{C}$, continue et telle qu'il existe un réel C > 0 tel que, pour tout $t \in \mathbb{R}$,

$$|f(t)| \le \frac{C}{1 + t^2}.$$

Pour tout h > 0, on pose :

$$S(h) = h \sum_{n=0}^{\infty} f(nh).$$

On fixe h > 0, et on considère la fonction

$$\phi_h: \mathbb{R}^+ \longrightarrow \mathbb{C}$$

$$t \longmapsto f\left(\left\lfloor \frac{t}{h} \right\rfloor h\right)$$

- 1. Montrer que $S(h) = \int_0^{+\infty} \phi_h(t)dt$.
- 2. Montrer que, pour tous $h \in]0;1]$ et $t \in [1;+\infty[$, on a :

$$|\phi_h(t)| \le \frac{C}{1 + (t-1)^2}.$$

3. En déduire que

$$S(h) \xrightarrow[h \to 0]{} \int_{0}^{+\infty} f(t)dt.$$

Exercice 6 - (CVS et CVU)

Étudier la convergence simple et uniforme sur \mathbb{R} de la suite de fonctions (f_n) donnée par $f_n(x) = \sin^n(x) \cos(x)$.

Questions de cours

- ξ est de classe C^{∞} sur $]1, +\infty[$
- Soit $\alpha \in \mathbb{R}.$ Déterminer la limite de la suite de terme général α

$$x_n = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-\frac{\alpha}{x}} dx$$

$$-\int_0^\infty \frac{\sqrt{t}}{e^t - 1} dt = \frac{\sqrt{\pi}}{2} \sum_{n=1}^\infty \frac{1}{n\sqrt{n}}$$