Aplicação da Prova de Diagonal de Cantor Profa. Laís Salvador (Adaptado de J.L. Rangel – Linguagens Formais)

Teorema: O conjunto 2^N dos subconjuntos dos naturais (N) não é um conjunto enumerável.

Dem.: por "diagonalização".

Uma vez que a definição de conjunto enumerável se baseia na existência de uma função com certas propriedades, devemos mostrar que tal função não existe, e a demonstração será feita por contradição (ou redução ao absurdo).

Suponhamos que o conjunto $2^{\mathbb{N}}$ é enumerável. Isto significa que existe uma enumeração de $2^{\mathbb{N}}$, ou seja uma sobrejeção f: $\mathbb{N} \to 2^{\mathbb{N}}$. Assim, para cada elemento A de $2^{\mathbb{N}}$ (um conjunto A de naturais), existe um número i tal que f(i) = A.

Vamos considerar o conjunto X definido a seguir:

$$X = \{ j \in \mathbb{N} \mid j \notin f(j) \}$$

Por exemplo, se assumirmos a seguinte enumeração:

$$f(0) = \{1,3,4\} \quad f(3) = \{0,1,3\}$$

$$f(1) = \{0,3\} \quad f(4) = \{5\}$$

$$f(2) = \{2,4,5\} \quad f(5) = \{1,2\}$$

temos:

$X = \{0,1,4,5,...\}$

Como X é um conjunto de naturais, $X \in 2^N$. Entretanto, veremos que X não faz parte da enumeração definida por f. Seja k um natural qualquer. Duas possibilidades podem ocorrer:

 \square ou $k \in f(k)$, e neste caso $k \notin X$, \square ou $k \notin f(k)$, e neste caso $k \in X$.

Nos dois casos os conjuntos X e f(k) diferem em pelo menos um elemento. Assim,

$$X \neq f(k) \forall k$$

Portanto X não faz parte da enumeração definida por f, caracterizando-se uma contradição. Consequentemente, $2^{\rm N}$ não é enumerável.

Esta técnica de demonstração recebeu o nome de *diagonalização*, desenvolvida no final do século XIX pelo matemático russo Georg Cantor (1845-1918). Por que diagonalização ou diagonal de Cantor?

Inicialmente representamos um conjunto $A \subseteq N$ por uma sequência infinita de bits:

se i \in A, o i-ésimo símbolo da sequência será 1; caso contrário, será 0.

Por exemplo, para

$$A = \{1, 3, 4\}$$

temos a seguinte sequência de bits:

Assim, se fizéssemos uma tabela de bits infinita onde cada linha i correspondesse ao conjunto f(i) da enumeração, $i \in \mathbb{N}$, por exemplo:

		0	1	2	3	4	5	•••	Conjuntos Exemplos
f(0)	0	0	1	0	1	1	0		$f(0) = \{1,3,4\}$
f (1)	1	1	0	0	1	0	0		$f(1) = \{0,3\}$
f (2)	2	0	0		0	1	1	•••	$f(2) = \{2,4,5\}$
f (3)	3	1	1	0	1	0	0		$f(3) = \{0,1,3\}$
f (4)	4	0	0	0	0	0	1		$f(4) = \{5\}$
f (5)	5	0	1	1	0	0	0		$f(5) = \{1,2\}$
•••	•••		•••			•••			

O conjunto $X = \{ j \in \mathbb{N} \mid j \notin f(j) \}$

seria definido invertendo o que se encontra na diagonal principal (D) da tabela, pois:

- ☐ se na posição (k,k) se encontra um 1, indicando que $k \in f(k)$, na linha correspondente a X teríamos um 0 na k-ésima coluna, indicando que $k \notin X$, ☐ se na posição (k,k) se encontra um 0, indicando que $k \notin f(k)$, na linha
- correspondente a X teríamos um 1 na k-ésima coluna, indicando que $k \in X$. Para qualquer $k \in \mathbb{N}$.

No exemplo acima teríamos:

$$D = \{0,0,1,1,0,0...\}$$

$$X = D' = \{1,1,0,0,1,1..\}$$

Lembrando que $X = \{0, 1, 4, 5,...\}$ usando a notação usual de conjuntos.

Então, como encaixar X na enumeração definida por f?

Vamos tentar colocar X numa linha **k** da nossa matriz:

		0	1	2	3	4	5	•••	k
f (0)	0	0	1	0	1	1	0		
f(1)	1	1	0	0	1	0	0		
f (2)	2	0	0	1	0	1	1	•••	•••
f (3)	3	1	1	0	1	0	0	•••	•••
f (4)	4	0	0	0	0	0	1	•••	
f (5)	5	0	1	1	0	0	0	•••	•••
•••							•••		
X=	k	1	1	0	0	1	1		?
f(k)									

O que acontece na posição (k,k)? Ela não pode ser definida, caracterizando-se uma contradição.

Podemos ver que, para qualquer k, $f(k) \neq X$. Para isso, basta notar que k pertence a exatamente um dos dois conjuntos f(k) e X. Portanto, qualquer que fosse a enumeração de 2^N , X não pertenceria a ela.

Exercício:

Provar que o conjunto dos números reais x, 0 < x < 1, é não enumerável.

Fonte:

Apostila do prof. José Lucas Rangel - Capítulo 0: http://www.tecmf.inf.puc-rio.br/LFA