Differentially Private Online Task Assignment in Spatial Crowdsourcing: A Tree-based Approach

Qian Tao ¹, Yongxin Tong ¹, Zimu Zhou², Yexuan Shi ¹, Lei Chen³, Ke Xu¹

Outline

- Background and Motivation
- Problem Definition
- A Tree-based Framework
- Random Walk Acceleration
- Experimental Evaluation
- Conclusions

Spatial Crowdsourcing has penetrated in our life

- Spatial Crowdsourcing has penetrated in our life
- Privacy leakage draws attraction in recent years

Taxi Calling

Food Delivery

Logistics

Security Center 🔰 Emerging Threats 🔰 Uber announces new data breach affecting 57 million riders and drivers

Uber announces new data breach affecting 57 million riders and drivers

DoorDash confirms data breach affected 4.9 million customers, workers and merchants

Zack Whittaker @zackwhittaker / 4:21 am C

UPS Reveals Data Breach

Image Credits: DoorDash / file photo

POS Malware Compromises 105,000 Transactions at 51 Stores

Mathew J. Schwartz (Yeuroinfosec) · August 21, 2014 🔎

• A core operation of spatial crowdsourcing is task assignment.

Type	Applications	Issue	
Taxi Calling	Uber	Assign taxi-calling orders to drivers	
Food Delivery	GRUBHUB	Assign food orders to proper deliverers	
Logistics	ups	Assign delivery tasks to proper workers	

 How to make effective task assignment while protecting the location privacy of the tasks and workers?

Limitations of Existing Works

- Ignore a widely-researched and practical objective: minimizing total distance
- Lack of theoretical analysis of the effectiveness of the task assignment

H. To et al, Privacy-preserving online task assignment in spatial crowdsourcing with untrusted server. In ICDE 2018.

L. Wang et al, Location privacy-preserving task allocation for mobile crowdsensing with differential geo-obfuscation. In WWW 2017.

Outline

- Background and Motivation
- Problem Definition
- A Tree-based Framework
- Random Walk Acceleration
- Experimental Evaluation
- Conclusions

Problem Definition

- Crowd worker w
 - (x_w, y_w) : location of the worker w
- Spatial task (Dynamically appears)
 - (x_t, y_t) : location of the task t

Problem Definition

The Privacy-preserving Online Minimum Bipartite Matching Problem is as follows.

POMBM Problem

Given a set of workers W and a set of dynamically appearing tasks T, we aims to design a privacy mechanism \mathcal{M} such that

- The mechanism guarantees the Indistinguishability of the locations
- The mechanism enables matching algorithms with minimum total distance

Make effective task assignment

Location Protection from server

Problem Definition: Indistinguishability

We require a mechanism that satisfies Geo-Indistinguishability.

Geo-Indistinguishability

A mechanism is Geo-Indistinguishable on metric space \mathcal{X} if for any $x_1, x_2 \in \mathcal{X}$ and $z \in \mathcal{Z}$, where \mathcal{Z} is the projection space, $\mathcal{M}(x_1)(z) \leq e^{\epsilon d_{\mathcal{X}}(x_1, x_2)} \mathcal{M}(x_2)(z).$

Problem Definition

The Privacy-preserving Online Minimum Bipartite Matching Problem is as follows.

POMBM Problem

Given a set of workers W and a set of dynamically appearing tasks T, we aims to design a privacy mechanism \mathcal{M} such that

- The mechanism guarantees the Indistinguishability of the locations
- The mechanism enables matching algorithms with minimum total distance

Make effective task assignment

Location protection from server

Outline

- Background and Motivation
- Problem Definition
- A Tree-based Framework
- Random Walk Acceleration
- Experimental Evaluation
- Conclusions

Tree-based Framework

 Our solution is devised based on a tree-based framework.

HST Construction

Hierarchical Well-Separated Tree (HST)

The Well-Separated Tree is a tree space $\mathcal{T} = (V_T, d_T)$ embedded from an arbitrary space (V, d) such that

- Each leaf node corresponds to a point in V
- The distance on the tree from a node at level i to its parent is 2^{i+1}

HST Construction

 Augment the HST to a complete one by adding fake nodes.

Tree-based Framework

 Our solution is devised based on a tree-based framework.

 Main Idea: Project the exact location to one of the leaf nodes such that Geo-I is satisfied.

Geo-Indistinguishability

Exact node

A mechanism is Geo-Indistinguishability on metric space \mathcal{X} if for any $x_1, x_2 \in \mathcal{X}$ and $z \in \mathcal{Z}$,

$$\mathcal{M}(x_1)(z) \le e^{\epsilon d\chi(x_1, x_2)} \mathcal{M}(x_2)(z).$$

 Assign different projection weights to leaf nodes based on the distance to the exact

node.

nodes	distance
<i>o</i> ₁	0
f_1	4
$f_2 - f_3$	12
o_2 , $f_4 - f_6$	28
o_3 - o_4 , f_7 - f_{12}	60

 o_1, o_2, o_3, o_4

Observation:

Leaf nodes' distance to o_1 depends on their least common ancestor with o_1

 Key Point: Assign different projection weights to leaf nodes based on the distance to the

exact node.

$wt_i = e^{-d_i\epsilon} = e^{(4-2^{i+2})\epsilon}$	
16	
o_3, o_4)

nodes	distance
$L_1:o_1$	0
L_2 : f_1	4
$L_3:f_2-f_3$	12
$L_4: o_2, f_4 - f_6$	28
$L_5: o_3-o_4, f_7-f_{12}$	60

The projection O_3 , O_4 O_3 , O_4 O_3 , O_4 O_4

- $ightharpoonup L_i$ contains $c^{i-1}(c-1)$ nodes exactly
- The distance between the exact node and nodes in L_i is $d_i = 2^{i+2} 4$

 Key Point: Assign different projection weights to leaf nodes based on the distance to the exact node.

$$Pr_i = \frac{wt_i}{WT}$$
 The probability of a node in L_i being projected to

$$wt_i = e^{-d_i\epsilon} = e^{(4-2^{i+2})\epsilon}$$

The projection weight of a node in L_i

$$WT = 1 + \sum_{i=1}^{D} c^{i-1}(c-1)wt_i$$
 Total weight of all leaf nodes

L_i: the set of leaf nodes whose LCA with the exact node is located at level i

An Example

 $\epsilon = 1$

nodes	distance	weights	Prob
$L_0: o_1$	0		
$L_1:f_1$	4		
$L_2: f_2 - f_3$	12		
$L_3: o_2, f_4 - f_6$	28		
$L_4: o_3-o_4, f_7-f_{12}$	60		

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

An Example

 $\epsilon = 1$

	e^0		
nodes		eights	Prob
$L_0: o_1$	0	1	
$L_1:f_1$	4		
$L_2:f_2-f_3$	12		
$L_3: o_2, f_4 - f_6$	28		
$L_4: o_3-o_4, f_7-f_{12}$	60		

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

An Example

 $\epsilon=1$

nodes	distance	weights	Prob
L_0 : o_1	e^{-4}	1	
$L_1:f_1$	4	0.670	
L_2 : $f_2 - f_3$	12		
$L_3: o_2, f_4 - f_6$	28		
$L_4: o_3-o_4, f_7-f_{12}$	60		

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

An Example

 $\epsilon = 1$

nodes	distance	weights	Prob
$L_0:o_1$	0	_ 1	
$L_1:f_1$	e^{-12}	0.670	
$L_2: f_2 - f_3$	12	0.301	
$L_3: o_2, f_4 - f_6$	28		
$L_4: o_3-o_4, f_7-f_{12}$	60		

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

An Example

 $\epsilon = 1$

nodes	distance	weights	Prob
$L_0: o_1$	0	1	
$L_1:f_1$	4	0.670	
$L_2: f_2 - f_3$	e^{-28}	0.301	
$L_3: o_2, f_4 - f_6$	28	0.061	
$L_4: o_3-o_4, f_7-f_{12}$	60		

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

An Example

 $\epsilon = 1$

nodes	distance	weights	Prob
$L_0: o_1$	0	1	
$L_1:f_1$	4	0.670	
$L_2: f_2 - f_3$	12	0.301	
$L_3: o_2, f_4 - f_6$	e^{-60}	0.061	
$L_4: o_3-o_4, f_7-f_{12}$	60	0.002	

 o_1, o_2, o_3, o_4

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{wT}$$

An Example

 $\epsilon = 1$

 o_1, o_2

nodes	distance	weights	Prob
L_0 : o_1	0	1	0.394
$L_1:f_1$	4	0.670	0.264
$L_2: f_2 - f_3$	12	0.301	0.119
$L_3: o_2, f_4 - f_6$	28	0.061	0.024
L_4 : o_3 - o_4 , f_7 - f_{12}	60	0.002	0.001

$$WT = 1 + \sum_{i=1}^{4} 2^{i-1} \cdot wt_i = 2.532$$

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

 $Pr_i = \frac{WC_i}{WT}$

 o_1, o_2, o_3, o_4

An Example

 $\epsilon = 1$

nodes	distance	weights	Prob
$L_0: o_1$	0	1	0.394
$L_1:f_1$	4	0.670	0.264
$L_2: f_2 - f_3$	12	0.301	0.119
$L_3: o_2, f_4 - f_6$	28	0.061	0.024
$L_4: o_3-o_4, f_7-f_{12}$	60	0.002	0.001

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

Proof of Geo-Indistinguishability

Geo-Indistinguishability

A mechanism is Geo-Indistinguishability on metric space \mathcal{X} if for any $x_1, x_2 \in \mathcal{X}$ and $z \in \mathcal{Z}$, $\mathcal{M}(x_1)(z) \leq e^{\epsilon d_{\mathcal{X}}(x_1, x_2)} \mathcal{M}(x_2)(z).$

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

lvl(a, b): level of the least common ancestor of a and b

$$\mathcal{M}(x_1)(z) = Pr_{lvl(x_1,z)}$$

$$\mathcal{M}(x_2)(\mathbf{z}) = \mathbf{Pr}_{lvl(x_2,\mathbf{z})}$$

$$lvl(x_1, z) = 4$$

Proof of Geo-Indistinguishability

Geo-Indistinguishability

A mechanism is Geo-Indistinguishability on metric space \mathcal{X} if for any $x_1, x_2 \in \mathcal{X}$ and $z \in \mathcal{Z}$,

$$\mathcal{M}(x_1)(z) \le e^{\epsilon d_{\mathcal{X}}(x_1, x_2)} \mathcal{M}(x_2)(z).$$

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

Case 1: $lvl(x_1, z) > lvl(x_1, x_2)$

$$\Rightarrow lvl(x_2, z) = lvl(x_1, z)$$

$$\implies \mathcal{M}(x_1)(z) = \mathcal{M}(x_2)(z)$$

$$\Rightarrow$$
 Case 1 proved

Proof of Geo-Indistinguishability

Geo-Indistinguishability

A mechanism is Geo-Indistinguishability on metric space \mathcal{X} if for any $x_1, x_2 \in \mathcal{X}$ and $z \in \mathcal{Z}$,

$$\mathcal{M}(x_1)(z) \le e^{\epsilon d_{\mathcal{X}}(x_1, x_2)} \mathcal{M}(x_2)(z).$$

$$wt_i = e^{(4-2^{i+2})\epsilon}$$

$$Pr_i = \frac{wt_i}{WT}$$

Case 2: $lvl(x_1, z) \leq lvl(x_1, x_2)$

$$\Rightarrow lvl(x_2, z) \leq lvl(x_1, x_2)$$

$$\mathcal{M}(x_1)(z)/\mathcal{M}(x_2)(z)$$

$$= \Pr_{lvl(x_1,z)} / \Pr_{lvl(x_2,z)}$$

$$= e^{(2^{lvl(x_2,z)+2}-2^{lvl(x_1,z)+2})\epsilon}$$

$$< e^{(2^{lvl(x_1,x_2)+2}-2^2)\epsilon}$$

$$=e^{d_T(x_1,x_2)\epsilon}$$

⇒ Case 2 proved

Tree-based Framework

 Our solution is devised based on a tree-based framework.

Task Assignment

 Main Idea: Devise a greedy algorithm on the HST.

Task Assignment

- Analysis of HST-based Greedy:
 - The competitive ratio of the Tree-based Framework can be bounded by

The Matching with server unknowing truth locations

$$= \frac{M_{TBF}}{M_{OPT}} = O(\frac{1}{\epsilon^4} \cdot \log N \log^2 k)$$

N: Number of truth nodes in HST

k: Number of tasks /workers

ϵ: Privacy budget

The Optimal Matching even knowing all truth locations

The competitive ratio of HST-Greedy without privacy

An extra product related to privacy budget ϵ

Outline

- Background and Motivation
- Problem Definition
- A Tree-based Framework
- Random Walk Acceleration
- Experimental Evaluation
- Conclusions

Privacy Mechanism Revisited

• It takes $O(c^D)$ to enumerate the probability of all leaf nodes.

Question:How to accelerate the mechanism?

- Main Idea:
 - Start from the exact node and randomly walk up or down with some probability at each node
 - Repeat until another leaf node is reached

Algorithm Details:

 $pu_1 = 0.564$

 Phase I: Walk up until obtain a tail from the coin (at level k) with its head probability

$$pu_{k} = \frac{cw_{k+1}}{tw_{k}}$$

$$pu_{4} = 0$$

$$pu_{3} = 0.075$$

$$pu_{3} = 0.304$$

$$pu_{4} = 0$$

$$o_{1}, o_{2}, o_{3}, o_{4}$$

$$tw_{k} = \begin{cases} \sum_{i \geq k}^{D} c^{i-1}(c-1)wt_{i}, if \ k > 0 \\ w_{0} + \sum_{i=1}^{D} c^{i-1}(c-1)wt_{i}, if \ k = 0 \end{cases}$$

 tw_3

The total weights of leaf nodes outside level *k* (including level *k*)

- Algorithm Details:
 - Phase I: Walk up until obtain a tail from the coin (at level k) with its head probability

 tw_3

$$pu_k = \frac{tw_{k+1}}{tw_k}$$

The total weights of leaf nodes outside level *k* (including level *k*)

Algorithm Details:

 $pu_4=0$

 Phase I: Walk up until obtain a tail from the coin (at level k) with its head probability

 tw_3

$$pu_k = \frac{k+1}{tw_k}$$

$$\sum_{i=1}^{D} c^{i-1}(c-1)wt_i, ij$$

The total weights of leaf nodes outside level *k* (including level *k*)

- Algorithm Details:
 - Phase II: Walk down uniformly (except the subtree that has been passed) until reaching a leaf node

Subtree being walked down

- Algorithm Details:
 - Phase II: Walk down uniformly (except the subtree that has been passed) until reaching a leaf node

- Algorithm Details:
 - Phase II: Walk down uniformly (except the subtree that has been passed) until reaching a leaf node

- Algorithm Details:
 - Phase II: Walk down uniformly (except the subtree that has been passed) until reaching a leaf node

- Time Complexity:
 - Phase I: Walk up until obtain a tail from the coin (at level k) with its head probability
 - Phase II: Walk down uniformly (except the subtree that has been passed) until reaching a leaf node

Outline

- Background and Motivation
- Problem Definition
- A Tree-based Framework
- Random Walk Acceleration
- Experimental Evaluation
- Conclusions

Experimental Settings

- Compared Algorithms:
 - TBF:

Our tree-based framework + the random walk acceleration

State-of-the-art mechanism for location privacy

Lap-GR:

Laplacian Mechanism + The Greedy Algorithm

LAP-HG:

Representative task assignment algorithms with minimum total distance

Laplacian Mechanism + The HST-Greedy Algorithm

Experimental Settings

- Datasets:
 - Synthetic datasets: 200x200 Euclidean space

Parameters	Settings
T	1000, 2000, 3000 , 4000, 5000
W	3000, 4000, 5000 , 6000, 7000
mean μ	50, 75, 100 , 125, 150
standard deviation σ	10, 15, 20 , 25, 30
privacy budget ϵ	0.2, 0.4, 0.6 , 0.8, 1
applability (T	$4 \times 10^4 \times 10^$

Parameters for Normal distribution

Real datasets:

Trip records of passengers from Didi Chuxing

Parameters	Settings
collected date	2016/11/01,, 2016/11/30
T	range from 4245 to 5034
W	6000, 7000, 8000 , 9000, 10000
ϵ	0.2, 0.4, 0.6 , 0.8, 1

Experimental Results

Results on synthetic datasets

Results on seal datasets

Outline

- Background
- Problem Definition
- A Tree-based Framework
- Random Walk Acceleration
- Experimental Evaluation
- Conclusions

Contributions

 Devise a novel tree-based framework for private online task assignment

 Design a privacy mechanism to protect location privacy

analyze the effectiveness of the framework

Propose a random walk method for acceleration

dank u Tack ju faleminderit Asante ipi Tak mulţumesc

Salamat! Gracias
Terima kasih Aliquam

Merci Dankie Obrigado
köszönöm Grazie

Aliquam Go raibh maith agat
děkuji Thank you

gam