

PROPOSITIONAL LOGIC 2

ARTIFICIAL INTELLIGENCE | COMP 131

- Automated reasoning
- Efficient satisfiability
- Questions?

Automated reasoning

Logical inference is used to create new sentences that logically follow from a given knowledge base.

■ The most used inference rules:

RULE	PREMISE	CONCLUSION
Modus Ponens	p, p o q	q
AND elimination	$p \wedge q$	p, q
Double negation	$\neg \neg p$	p
Unit resolution	$p \lor q, \neg q$	p
AND introduction	p,q	$p \wedge q$
Modus Tollens	$\neg q, p \rightarrow q$	$\neg p$

- There are two directions of search: forward and backward chaining.
- There is also the DPLL, a complete algorithm for deciding if a sentence is satisfiable.

KNOWLEDGE BASE

```
1 person_in_front_of_car \rightarrow brake
```

- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow → slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light \rightarrow brake
- 7 winter \rightarrow snow

FACTS

```
yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry
```

NEW FACTS

QUERY

INFERENCE

Automated reasoning

KNOWLEDGE BASE

- 1 person_in_front_of_car \rightarrow brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake

- 3 police_car → policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

FACTS

```
yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry
```

NEW FACTS

policeman

Automated reasoning FORWARD CHAINING

QUERY

Do we need to *Brake*?

INFERENCE

KNOWN **police_car**MP R3 police_car → policeman **policeman**

KNOWLEDGE BASE

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car → policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

FACTS

NEW FACTS

policeman ¬slippery

Automated reasoning

FORWARD CHAINING

QUERY

Do we need to *Brake*?

INFERENCE

MP

KNOWN police_car
MP R3 police_car → policeman
policeman

KNOWN dry
MT R5 slippery → ¬dry
DN ¬¬dry → ¬slippery

¬slippery

 $dry \rightarrow \neg slippery$

KNOWLEDGE BASE

- 1 person_in_front_of_car \rightarrow brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car → policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light \rightarrow brake
- 7 winter \rightarrow snow

FACTS

yellow_light

¬red_light

¬snow

police_car

¬person_in_front_of_car dry

NEW FACTS

policeman

¬slippery

QUERY

Do we need to Brake?

INFERENCE

KNOWN police_car

MP R3 police_car → policeman

policeman

KNOWN dry

MT R5 slippery $\rightarrow \neg dry$

DN $\neg\neg dry \rightarrow \neg slippery$

MP $dry \rightarrow \neg slippery$

¬slippery

KNOWN yellow_light

KNOWN policeman

KNOWN ¬slippery

MP R2 ((yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake

brake

CONCLUSION brake

Backward chaining: an approach alternative to forward chaining in which the query is **explicitly proven** with the given knowledge and work **backward** until all the facts are known.

KNOWLEDGE BASE

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car → policemar
- 4 snow → slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

QUERY

Do we need to Brake?

FACTS

yellow_light

¬red_light

 \neg snow

police_car

¬person_in_front_of_car

dry

Automated reasoning

brake

KNOWLEDGE BASE

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 $red_light \rightarrow brake$
- 7 winter \rightarrow snow

FACTS

QUERY

Do we need to *Brake*?

Automated reasoning

- 1 person in front of $car \rightarrow brake$
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red light \rightarrow brake
- 7 winter \rightarrow snow

FACTS

yellow_light ¬red_light

police_car ¬person_in_front_of_car

¬snow

dry

Automated reasoning

BACKWARD CHAINING

QUERY

Do we need to *Brake*?

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

QUERY

Do we need to *Brake*?

FACTS

yellow_light

¬red_light

¬snow

dry

police_car

¬person_in_front_of_car

Automated reasoning
BACKWARD CHAINING

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car → policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light \rightarrow brake
- 7 winter \rightarrow snow

Automated reasoning

BACKWARD CHAINING

QUERY

Do we need to *Brake*?

FACTS

yellow_light

¬red_light

¬snow

police_car

¬person_in_front_of_car

dry

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policemar
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red light → brake
- 7 winter \rightarrow snow

QUERY

Do we need to *Brake*?

FACTS

yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry

Automated reasoning

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- **3** police_car → policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light \rightarrow brake
- 7 winter \rightarrow snow

QUERY

Do we need to Brake?

FACTS

yellow_light

¬red_light

¬snow

police_car

¬person_in_front_of_car

dry

Automated reasoning

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

QUERY

Do we need to *Brake*?

FACTS

yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry

Automated reasoning

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

OUERY

Do we need to *Brake*?

FACTS

yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry

Automated reasoning

- (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- $snow \rightarrow slippery$
- slippery $\rightarrow \neg dry$
- winter \rightarrow snow

OUERY

Do we need to *Brake*?

yellow_light

¬red_light

¬snow

police_car

¬person_in_front_of_car

dry

Automated reasoning BACKWARD CHAINING

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police car → policemar
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

OUERY

Do we need to Brake?

FACTS

yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry

Automated reasoning

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery $\rightarrow \neg dry$
- 6 red_light → brake
- 7 winter \rightarrow snow

QUERY

Do we need to Brake?

FACTS

Automated reasoning

- 1 person_in_front_of_car → brake
- 2 (yellow_light \lor policeman) $\land \neg$ slippery) \rightarrow brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery → ¬dry
- 6 red_light → brake
- 7 winter \rightarrow snow

OUERY

Do we need to Brake?

FACTS

yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry

Automated reasoning

- 1 person_in_front_of_car → brake
- 2 (yellow_light ∨ policeman) ∧ ¬slippery) → brake
- 3 police_car \rightarrow policeman
- 4 snow \rightarrow slippery
- 5 slippery → ¬dry
- 6 red_light → brake
- 7 winter \rightarrow snow

QUERY

Do we need to *Brake*?

FACTS

yellow_light ¬red_light ¬snow
police_car ¬person_in_front_of_car dry

Automated reasoning

Automated reasoning

BACKWARD CHAINING

¬snow

police_car

¬person_in_front_of_car

dry

Automated reasoning

Efficient satisfiability

The Davis-Putman-Logemann-Loveland is a complete search algorithm for deciding if sentences are satisfiable:

- It uses Depth-First Search for backtracking
- DPLL requires that the knowledge base is represented in a CNF form
- It uses improvements to shorten the search:
 - Early possible termination
 - Pure symbol heuristic: the symbol appears only with one polarity (T or F)
 - Unit clause heuristic: the symbol appears alone in a sentence

DPLL(C, S, M):

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return F
- 3. If there is a (t, polarity v) = pure symbol(C), return $\text{DPLL}(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;
- 6. Return DPLL($C, R, M \cup \{P = \mathbf{T}\}$)

 V
 DPLL($C, R, M \cup \{P = \mathbf{F}\}$)

$$S = \{s, r, q, p\} \ M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

 $p \vee \neg q$

$$p \lor q \lor r \lor s \land \land \neg p \lor q \lor \neg r \land \land \land \land \land p \lor \neg q \lor r \lor s \land \land q \lor \neg r \lor \neg s \land \land \land \neg p \lor \neg s \land \land \land$$

{ }

Λ

$$S = \{s, r, q, p\} M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C),return DPLL $(C, S - u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSES

$$p \lor q \lor r \lor s \qquad \land$$

$$\neg p \lor q \lor \neg r \qquad \land$$

$$\neg q \lor \neg r \lor s \qquad \land$$

$$p \lor \neg q \lor r \lor s \qquad \land$$

$$q \lor \neg r \lor \neg s \qquad \land$$

$$\neg p \lor \neg s \qquad \land$$

$$p \lor \neg q \qquad \land$$

$$S = \{s, r, q, p\} \ M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C),return DPLL $(C, S - u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSES

$$p \lor q \lor r \lor s \land$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land$$

$$p \vee \neg q \vee r \vee s \wedge$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \vee \neg q \qquad \wedge$$

$$S = \{s, r, q, p\} \ M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSES

$$p \lor q \lor r \lor s \land$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land$$

$$p \lor \neg q \lor r \lor s \land$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \vee \neg q \wedge$$

$$S = \{s, r, q, p\} \ M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

$$p \lor q \lor r \lor s \land \land \neg p \lor q \lor \neg r \land \land \land \land p \lor \neg q \lor r \lor s \land \land$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \vee \neg q \wedge$$

$$S = \{s, r, q, p\} \ M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$$P = \{s\} R = \{r, q, p\}$$

6. Return

DPLL(
$$C, R, M \cup \{P = \mathbf{T}\}$$
) V DPLL($C, R, M \cup \{P = \mathbf{F}\}$)

CLAUSES

$$p \lor q \lor r \lor s \land$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land$$

$$p \lor \neg q \lor r \lor s \land$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \vee \neg q \wedge$$

$$S = \{s, r, q, p\} \ M = \{\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$$P = \{s\} R = \{r, q, p\}$$

6. Return

$$DPLL(C, R, M \cup \{P = \mathbf{T}\})$$

$$M \cup \{s = \mathbf{T}\}$$

 $\mathsf{DPLL}(\mathsf{C},R,M\ \cup \{P=\mathbf{F}\})$

CLAUSES

$$p \vee q \vee r \vee s \wedge$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land$$

$$p \lor \neg q \lor r \lor s \land$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \vee \neg q \wedge$$

$$S = \{r, q, p\} \ M = \{s = \mathsf{T}\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C),return DPLL $(C, S - u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

$$p \lor q \lor r \lor s \land$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land$$

$$p \lor \neg q \lor r \lor s \land$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \vee \neg q \wedge$$

{ }

 $\{s = T\}$

$$S = \{r, q, p\} \ M = \{s = \mathsf{T}\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If C contains an empty clause, return \mathbf{F}
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C),return DPLL $(C, S - u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

$$p \vee q \vee r \vee s \wedge$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land$$

$$p \vee \neg q \vee r \vee s \wedge$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s$$
 \land

$$p \vee \neg q \wedge$$

{ }

 $\{s = T\}$

$$S = \{r, q, p\} \ M = \{s = \mathsf{T}\}$$

- If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL(C, S - t, $M \cup \{t = v\}$)
- If there is a (u, polarity v) = unit clause(C), 4. return DPLL(C, S - u, $M \cup \{u = v\}$)
- $P = \mathbf{first}(S); R = \mathbf{rest}(S);$ 5.
- 6. Return $DPLL(C, R, M \cup \{P = T\})$ $DPLL(C, R, M \cup \{P = \mathbf{F}\})$

CLALISES

JEA O JE J		
$p \lor q \lor r \lor s$	Λ	= T
$\neg p \lor q \lor \neg r$	٨	
$\neg q \lor \neg r \lor s$	٨	= T

$$p \lor \neg q \lor r \lor s \land = \mathsf{T}$$

$$q \vee \neg r \vee \neg s \wedge$$

$$\neg p \lor \neg s \land$$

$$p \lor \neg q$$
 \land

$$S = \{r, q, p\} \ M = \{s = \mathbf{T}\}\$$

- If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return **F**
- If there is a (t, polarity v) = pure symbol(C), 3. return DPLL(C, S - t, $M \cup \{t = v\}$)
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL(C, S - u, $M \cup \{u = v\}$)
- P = first(S); R = rest(S);5.
- 6. Return $DPLL(C, R, M \cup \{P = T\})$ $DPLL(C, R, M \cup \{P = \mathbf{F}\})$

CLAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	Λ	
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	Λ	
$\neg p$	Λ	

Λ

$$\{ \}$$
 $s = T$

 $p \vee \neg q$

$$S = \{r, q, p\} \ M = \{s = T\}$$

- If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return **F**
- If there is a (t, polarity v) = pure symbol(C), 3. return DPLL(C, S - t, $M \cup \{t = v\}$)
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL(C, S - u, $M \cup \{u = v\}$)
- P = first(S); R = rest(S);5.
- 6. Return $DPLL(C, R, M \cup \{P = T\})$ $DPLL(C, R, M \cup \{P = \mathbf{F}\})$

CLAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	Λ	
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	Λ	
$\neg v$	\wedge	

Λ

$$\{s = T\}$$

 $p \vee \neg q$

$$S = \{r, q, p\} \ M = \{s = \mathsf{T}\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSES $p \lor q \lor r \lor s \quad \land$ $\neg p \lor q \lor \neg r \quad \land$ $\neg q \lor \neg r \lor s \quad \land$ $p \lor \neg q \lor r \lor s \quad \land$ $q \lor \neg r \quad \land$ $\neg p \quad \land$ $p \lor \neg q \quad \land$

= T

= T

= T

$$S = \{r, q, p\} \ M = \{s = \mathbf{T}\}\$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSLS		
$p \lor q \lor r \lor s$	Λ	= T
$\neg p \lor q \lor \neg r$	٨	
$\neg q \lor \neg r \lor s$	٨	= T

$$p \vee \neg q \vee r \vee s \wedge = \mathsf{T}$$

$$q \vee \neg r \wedge$$

$$\neg p$$
 \wedge

$$p \vee \neg q \qquad \wedge$$

$$\{ \}$$
 $s = T$

$$S = \{r, q, p\} \ M = \{s = \mathsf{T}\}\$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a $(t, \text{ polarity } v) = \text{pure symbol}(C), \quad (r, \mathbf{F})$ return DPLL $(C, S - t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

$$p \lor q \lor r \lor s \land = T$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land = \mathsf{T}$$

$$p \lor \neg q \lor r \lor s \land = \mathsf{T}$$

$$q \vee \neg r \wedge$$

$$\neg p$$
 \wedge

$$p \vee \neg q \wedge$$

$$\{s = T\}$$

$$S = \{r, q, p\} \ M = \{s = \mathsf{T}\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a $(t, \text{ polarity } v) = \text{pure symbol}(C), \quad (r, \mathbf{F})$ return DPLL $(C, S - t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSES

$$p \lor q \lor r \lor s \land = T$$

$$\neg p \lor q \lor \neg r \land$$

$$\neg q \lor \neg r \lor s \land = \mathsf{T}$$

$$p \lor \neg q \lor r \lor s \land = \mathsf{T}$$

Λ

$$q \vee \neg r$$

$$\neg p$$
 \wedge

$$p \vee \neg q \wedge$$

$$\{s = T\}$$

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

CLAUSES

$p \lor q$	v r v s	Λ	= T
¬n ∨	$a \vee \neg r$	٨	

$$\neg q \lor \neg r \lor s \land = \mathsf{T}$$

$$p \lor \neg q \lor r \lor s \land = \mathsf{T}$$

$$q \vee \neg r \wedge$$

$$\neg p$$
 \wedge

$$p \vee \neg q \wedge$$

{ }

$$\{s = T\}$$

$$\{s = T, r = F\}$$

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return $\text{DPLL}(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

 $p \lor q \lor r \lor s \land = T$

 $\neg p \lor q \lor \neg r \land$

 $\neg q \lor \neg r \lor s \land = \mathsf{T}$

 $p \lor \neg q \lor r \lor s \land = \mathsf{T}$

 $q \vee \neg r$

 $\neg p$ \wedge

 $p \vee \neg q \wedge$

{ }

 $\{s = T\}$

 $\{s = T, r = F\}$

Automated reasoning

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

LAUSLS		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	Λ	

$$\{s = T, r = F\}$$

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

LAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	Λ	

Aut mated reasoning

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

 $p \vee \neg q$

CLAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	

 $\{s = T\}$

 $\{s = T, r = F\}$

Λ

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return **F**
- If there is a (t, polarity v) = pure symbol(C), 3. return DPLL(C, S - t, $M \cup \{t = v\}$)
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL(C, S - u, $M \cup \{u = v\}$)
- P = first(S); R = rest(S);5.
- 6. Return $DPLL(C, R, M \cup \{P = T\})$ $DPLL(C, R, M \cup \{P = \mathbf{F}\})$

CLAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	Λ	

{ } $\{s = T\}$

 $\{s = T, r = F\}$

Automated reasoning

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a $(t, \text{ polarity } v) = \text{pure symbol}(C), \quad (q, \mathbf{F})$ return $\text{DPLL}(C, S - t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

 $p \vee \neg q$

CLAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$m \sim m \sim$	٨	= T
$p \lor \neg q \lor r \lor s$	Λ	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٨	= T

$$\{s = T\}$$

$$\{s = T, r = F\}$$

Λ

$$S = \{q, p\} \ M = \{s = T, r = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return $\text{DPLL}(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

CLAUSES		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	٨	

Λ

 $p \vee \neg q$

s = T r = F 2

{ }

 $\{s = T\}$

 $\{s = T, r = F\}$

$$S = \{p\} \ M = \{s = T, r = F, q = F\}$$

- If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL(C, S - t, $M \cup \{t = v\}$)
- If there is a (u, polarity v) = unit clause(C), 4. return DPLL(C, S - u, $M \cup \{u = v\}$)
- $P = \mathbf{first}(S); R = \mathbf{rest}(S);$ 5.
- 6. Return $DPLL(C, R, M \cup \{P = T\})$ $DPLL(C, R, M \cup \{P = \mathbf{F}\})$

CLALISES

LAUSLS		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	\wedge	

$$\{s = T, r = F\}$$

$${s = T, r = F, q = F}$$

$$S = \{p\} \ M = \{s = T, r = F, q = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- If C contains an empty clause, return F
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S); R = \mathbf{rest}(S);$

SLAUSLS		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg a$	Λ	

$$\{s = T, r = F\}$$

$${s = T, r = F, q = F}$$

$$S = \{p\} \ M = \{s = T, r = F, q = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg a$	Λ	= T

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$S = \{p\} \ M = \{s = T, r = F, q = F\}$

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg a$	Λ	= T

$$\{s = T\}$$

$$\{s = T, r = F\}$$

$${s = T, r = F, q = F}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$S = \{p\} \ M = \{s = T, r = F, q = F\}$

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \lor \neg a$	Λ	= T

$$S = \{p\} \ M = \{s = T, r = F, q = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If C contains an empty clause, return \mathbf{F}
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	Λ	= T

$$S = \{p\} \ M = \{s = T, r = F, q = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a $(t, \text{ polarity } v) = \text{pure symbol}(C), \quad (p, \mathbf{F})$ return DPLL $(C, S - t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	Λ	= T

$$\{s = T\}$$

$$\{s = T, r = F\}$$

$${s = T, r = F, q = F}$$

$$S = \{p\} \ M = \{s = T, r = F, q = F\}$$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), (p, F)return DPLL $(C, S - t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return DPLL $(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S)$; $R = \mathbf{rest}(S)$;

CLAUSES

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	٨	= T

 $\{s = T\}$

 $\{s = T, r = F\}$

 ${s = T, r = F, q = F}$

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C),return DPLL $(C, S - u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S); R = \mathbf{rest}(S);$

$S = \{\} M = \{s = T, r = F, q = F, p = F\}$

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg q$	٨	= T

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S); R = \mathbf{rest}(S);$

$S = \{\} M = \{s = T, r = F, q = F, p = F\}$

CLAUJLJ		
$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	Λ	
$p \vee \neg a$	Λ	= T

If (every
$$c \in C$$
 is **T**) \lor (C is empty), return **T**

- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S); R = \mathbf{rest}(S);$

$S = \{\} M = \{s = T, r = F, q = F, p = F\}$

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	٨	= T
$p \vee \neg q$	٨	= T

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C),return DPLL $(C, S - u, M \cup \{u = v\})$
- 5. $P = \mathbf{first}(S); R = \mathbf{rest}(S);$

$$S = \{\} M = \{s = T, r = F, q = F, p = F\}$$

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	٨	= T
$p \vee \neg q$	٨	= T

- 1. If (every $c \in C$ is **T**) \lor (C is empty), return **T**
- 2. If *C* contains an empty clause, return **F**
- 3. If there is a (t, polarity v) = pure symbol(C), return DPLL $(C, S t, M \cup \{t = v\})$
- 4. If there is a (u, polarity v) = unit clause(C), return $\text{DPLL}(C, S u, M \cup \{u = v\})$
- 5. P = first(S); R = rest(S);

$$S = \{\} M = \{s = T, r = F, q = F, p = F\}$$

$p \lor q \lor r \lor s$	٨	= T
$\neg p \lor q \lor \neg r$	٨	= T
$\neg q \lor \neg r \lor s$	٨	= T
$p \lor \neg q \lor r \lor s$	٨	= T
$q \vee \neg r$	٨	= T
$\neg p$	٨	= T
$p \vee \neg q$	٨	= T

Exercises from the textbook (chapter 7):

7.1, 7.4, 7.5, 7.7, 7.10

QUESTIONS?

ARTIFICIAL INTELLIGENCE COMP 131

FABRIZIO SANTINI