

INTRODUCTION TO DASK

Dask

- Looks a lot like Pandas, but automatically breaks dataframes into smaller chunks (partitions)
- When processing the data, it works on each partition one at a time, storing the active piece in memory and the rest on hard drive

"Hey DASK, load this data for me."

"Hey DASK, load this data for me."

NO CAN DO.

RAM

"Hey DASK, load this data for me."

PARTITION I

PARTITION_3

PARTITION_2

PARTITION_4

METADATA

THERE ARE 4 PARTITIONS

PARTITION_1 CONNECTS TO PARTITION_2

PARTITION_2 CONNECTS TO PART.....

Let's see how this helps us by asking a simple question of our data.

SUM OF SQFT: 1,453,797 HOUSES SEEN SO FAR: 1000

SUM OF SQFT: 2,356,128 HOUSES SEEN SO FAR: 2000

SUM OF SQFT: 4,111,128 HOUSES SEEN SO FAR: 3000

SUM OF SQFT: 5,213,001 HOUSES SEEN SO FAR: 3612

SUM OF SQFT: 5,213,001 HOUSES SEEN SO FAR: 3612

HOW DOES DASK DO ALL THAT?

Lazy Evaluation

- One of the key differences between Pandas and Dask is that Dask considers how to do things before doing them.
- Dask makes a plan of action before doing anything, and only executes that plan once the result is required.
- This means Dask can pre-plan how to move the data around, what values to record from each partition, and what order to do all the operations.

Let's imagine we want to...

- Multiply the length of a building by it's width to compute the square footage (our dataset has length and width)
- Find the mean square footage of all buildings in our sample.

This will take 2 steps. So let's see how this would be handled in Pandas and Dask.

Pandas

Me: Hey pandas, I'd like to multiply these two columns together and...

Pandas: DID IT RIGHT NOW YES I'M AWESOME

Me: Oh, okay. Uhh. Well, can we calculate the mean of that?

Pandas: THE MEAN OF WHAT? WHAT ARE YOU TALKING ABOUT.

Dask

Me: Hey dask, I'd like to multiply these two columns together and...

Dask: Uh-huh

Dask's Checklist

Multiply columns 1 & 3

Dask

Me: Hey dask, I'd like to multiply these two columns together and...

Dask: Uh-huh

Me: Then let's take the mean of that new thing.

Dask: Sure thing. Want the answer now?

Dask's Checklist

- Multiply columns 1 & 3
- Mean of new column
- · Return answer back to user

Dask – Making a Plan

DAGs

- Dask creates plans like that one by creating Directed
 Acyclic Graphs (DAGs) which are task graphs that flow data through processes.
- These DAGs can then be parallelized by different cores as available, and also work as a single plan to optimize calculation across big data.
- We'll talk more about DAGs during our Spark discussion.

Lazy Evaluation

- To make DAGs, Dask has two different types of behaviors:
 Transformations and computations.
- So if we wanted to filter some data we'd do something like:

```
df2 = df[df['sqft'] > 1000]
# df2 is currently a plan of action
df2.compute() # now it's a dataframe
```

Dask also...

- ... integrates directly with SkLearn/Numpy
- ... can manage parallelization through it's own cluster creation method
- ... allows streaming data
- ... can do parallelized machine learning

Dask and ML

- SkLearn will convert Dask data into a single numpy array behind the scenes, which means if your data is too big for RAM, you might not be able to SkLearn
- If you want to do ML on the partitions you can either manually load each partition and use a partial fit, or use Dask_ML.

Dask - Summary

- Extends the "workable data" size from fits in RAM to fits on disk, by partitioning data
- Optimizes calculations via DAGs and lazy evaluation
- Maintains a similar API and feel to Pandas
- Provided an easy parallelization tool for Pandas-able data

QUESTIONS?

Cites

Pixel speech bubbles: https://pixelspeechbubble.com/

