Math 2311 — Assignment 1

Michael Walker

January 18, 2022

1. Determine if each of the following sets is a vector space.

(a)
$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x \ge y \right\}$$
 with the usual scalar multiplication and vector addition from \mathbb{R}^2

Answer: No, V is not a vector space.

Proof. let $(x_0, y_0)^T$, $(x_1, y_1)^T \in V$, and take the vector space operations on V to be the usual operations of *vector* addition and *scalar* multiplication; that is,

$$(x_0, y_0)^T + (x_1, y_1)^T = (x_0 + x_1, y_0 + y_1)^T$$
(1)

$$k(x_0, y_0)^T = (kx_0, ky_0)^T (2)$$

V is closed under scalar addition since $x_0 + x_1 \ge y_0 + y_1$

However, by properties of inequalities if the constant, k, is negative, we must reverse the symbol to preserve the inequality relation.

Given that k is negative,
$$x \geq y \rightarrow kx \leq ky$$

(b) Consider the set $W = \{ f \in F(-\infty, \infty) \mid f(1) = 0 \}$ with the usual scalar multiplication and vector addition from $F(-\infty, \infty)$. Is W a vector space?

Answer: Yes, W is a vector space.

Proof. Since we know that $F(-\infty, \infty)$ (with the usual operations) is a vector space, and since W is a subset of $F(-\infty, \infty)$ (with the same operations), it suffices to prove that W is a subspace of $F(-\infty, \infty)$. To this end we must show three things:

- (a) That W is non-empty.
- (b) That W is closed under addition.
- (c) That W is closed under scalar multiplication.

There exists a function $\mathbf{0}$ in $F(-\infty, \infty)$ defined by $\mathbf{0}(x) = 0$ for all x. Clearly $\mathbf{0}(1) = f(1) = 0$ so W is non-empty.

Now suppose f and g are two functions in W. We must show that f+g is in W.

Finally, to show that W is closed under scalar multiplication, suppose f is in W and k is a scalar, then

so (kf) is in W and W is closed under scalar multiplication.

Therefore W is a subspace of $F(-\infty, \infty)$ and hence is a vector space.

- 2. Let V be a vector space.
 - (a) If k is any scalar, prove that $k\vec{0} = \vec{0}$.

Proof.

$$k(\vec{0} + \vec{0}) = k\vec{0} + k\vec{0}$$
 (vector space axiom 7)

$$k\vec{0} = k\vec{0} + k\vec{0}$$
 (vector space axiom 4)

$$k\vec{0} + (-k\vec{0}) = (-k\vec{0}) + (k\vec{0} + k\vec{0})$$
 (vector space axiom 5)

$$k\vec{0} + (-k\vec{0}) = ((-k\vec{0}) + k\vec{0}) + k\vec{0}$$
 (vector space axiom 3)

$$\vec{0} = \vec{0} + k\vec{0}$$
 (vector space axiom 5)

$$= k\vec{0}$$
 (vector space axiom 4)

(b) Prove that the zero vector in V is unique.

Proof. We must show that there is only one vector, $\vec{0}$, with the property that $\vec{0} + \vec{v} = \vec{v} + \vec{0} = \vec{v}$.

Suppose $\vec{0_1}$ and $\vec{0}$ are zero vectors in V Then

$$\vec{0_1} = \vec{0_1} + \vec{0}$$
 (vector space axiom 4)
= $\vec{0} + \vec{0_1}$ (vector space axiom 2)
= $\vec{0}$ (vector space axiom 4)

Therefore $\vec{0_1} = \vec{0}$. So, the zero vector is unique.

3. Determine if each of the following are subspaces of M_{nn}

(a)
$$\{A \in M_{nn} | det(A) = 0\}$$

Answer: No, $\{A \in M_{nn} \mid \det(A) = 0\}$ is not a subspace of M_{nn} .

Proof.

$$\det \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0, \det \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\det \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$

(b) $\{A \in M_{nn} | tr(A) = 0\}$

Answer: Yes, $W = \{A \in M_{nn} | tr(A) = 0\}$ is a subspace of M_{nn} .

Proof. Let $[B = (b_{ii})] \in W$ be a square matrix of order n such that tr(B) = 0 and let k be any scalar.

The set W is non empty because if we let $a_{ii} = 0$ for all i then tr(A) = 0 therefore W contains the **0** matrices. It remains to show that W is closed under addition and scalar multiplication.

addition:

$$tr(A + B) = \sum_{i=1}^{n} (a_{ii} + b_{ii})$$

$$= \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii}$$

$$= tr(A) + tr(B)$$

$$= 0 + 0$$

$$= 0$$

multiplication:

$$tr(kA) = \sum_{i=1}^{n} (k \cdot a_{ii})$$
$$= k \cdot \sum_{i=1}^{n} a_{ii}$$
$$= k \cdot tr(A)$$
$$= k \cdot 0$$
$$= 0$$

To be clear, if we take some C = A + B such that A and B are in W, then for all $C = (c_{ii})$, the sum will be 0, so C is also in W. Therefore W is a subspace of M_{nn} .

(c) $\{A \in M_{nn} | A^T = A\}$

Answer: Yes, $W = \{A \in M_{nn} | A^T = A\}$ is a subspace of M_{nn} .

Proof. Let $[B = (b_{ij})] \in W$ be a square matrix of order n such that $b_{ij} = b_{ji}$, and let k be any scalar.

The set W is non empty because, if we let $[A = (a_{ij})] = 0$ for all (i, j) then W contains the $\mathbf{0}$ matrices. It remains to show that W is closed under addition and scalar multiplication.

addition:

$$C = (A + B)^{T}$$
$$= A^{T} + B^{T}$$
$$= A + B$$

multiplication:

$$(k \cdot A)^T = k \cdot A^T$$
$$= k \cdot A$$

so W is a subspace of M_{nn} .

- 4. Consider the following vectors in P_2 : $p_1 = 2 + x + 4x^2$, $p_2 = 1 x + 3x^2$, $p_3 = 3 + 2x + 5x^2$.
 - (a) Express the vector $g = 6 + 11x + 6x^2$ as a linear combination of p_1, p_2, p_3 .

Answer: $(p_1, p_2, p_3) = (4, -5, 1)$

Proof.

$$(6+11x+6x^{2}) = k_{0}(2+x+4x^{2}) + k_{1}(1-x+3x^{2}) + k_{2}(3+2x+5x^{2})$$

$$= (k_{0}2+k_{1}+k_{2}3) + (k_{0}x-k_{1}x+k_{2}2x) + (k_{0}4x^{2}+k_{1}3x^{2}+k_{2}5x^{2})$$

$$= (k_{0}2+k_{1}+k_{2}3) + (k_{0}-k_{1}+k_{2}2)x + (k_{0}4+k_{1}3+k_{2}5)x^{2}$$

$$\begin{bmatrix} 2 & 1 & 3 & | & 6 \\ 1 & -1 & 2 & | & 11 \\ 4 & 3 & 5 & | & 6 \end{bmatrix} \begin{bmatrix} 0 & 3 & -1 & | & -16 \\ 1 & -1 & 2 & | & 11 \\ 0 & 7 & -3 & | & -38 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & | & 11 \\ 0 & 3 & -1 & | & -16 \\ 0 & 7 & -3 & | & -38 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -1 & 2 & | & 11 \\ 0 & 1 & \frac{-1}{3} & | & \frac{-16}{3} \\ 0 & 7 & -3 & | & -38 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & | & 11 \\ 0 & 1 & \frac{-1}{3} & | & \frac{-16}{3} \\ 0 & 0 & \frac{-2}{3} & | & \frac{-2}{3} \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & | & 11 \\ 0 & 1 & 0 & | & -5 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 2 & | & 6 \\ 0 & 1 & 0 & | & -5 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & -5 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

 $\therefore (k_1, k_2, k_3) = (4, -5, 1)$

- (b) Does $\{p_1, p_2, p_3\}$ span P_2 ?
- (c) Is $\{p_1, p_2, p_3\}$ linearly independent?

Answer: Yes

Proof. Let $g = 0 + 0x + 0x^2$ then $[p1|p2|p3]\vec{x} = \vec{0}$ gives the trivial solution, therefore $\{p_1, p_2, p_3\}$ spans p_2 and $\{p_1, p_2, p_3\}$ is linearly independent.