第三章 平面与空间直线 §3.2 平面与点的相关位置

研制者: 吴炳烨

高等教育出版社 高等教育电子音像出版社

教学内容: 点到平面的距离, 平面划分空间问题

教学内容: 点到平面的距离, 平面划分空间问题

教学目的: 掌握点到平面距离公式的推导及其应用

教学内容: 点到平面的距离, 平面划分空间问题

教学目的: 掌握点到平面距离公式的推导及其应用

教学重难点: 点到平面的离差与距离的联系与区别

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况.

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况.点在平面上的条件是点的坐标满足平面的方程,

等学校数学专业基础课程《解析几何》 🏶 吴炳烨研制 🌘 第三章 平面与空间直线 🏶 §3.2 平面与点的相关位置 🏶 3/10

□ 点与平面间的距离

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程,点不在平面上时需要考虑点到平面的距离及平面的侧等问题.

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程,点不在平面上时需要考虑点到平面的距离及平面的侧等问题.

□ 点与平面间距离的定义 一点与平面上的点之间的最短距离, 叫做该点与平面之间的距离。

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程,点不在平面上时需要考虑点到平面的距离及平面的侧等问题.

哈点与平面间距离的定义 一点与平面上的点之间的最短距离, 叫做该点与平面之间的距离.

如图, MM' \bot 平面 π , M' 为垂足, P 为 π 上的任意点,

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程,点不在平面上时需要考虑点到平面的距离及平面的侧等问题.

哈点与平面间距离的定义 一点与平面上的点之间的最短距离, 叫做该点与平面之间的距离.

如图, MM' 上平面 π , M' 为垂足, P 为 π 上的任意点,

🔲 点与平面间的距离

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程, 点不在平面上时需要考 虑点到平面的距离及平面的侧等问题.

□ 点与平面间距离的定义 一点与平面上的点之间的最短距离, 叫做该 点与平面之间的距离.

如图, MM' \bot 平面 π , M' 为垂足, P 为 π 上的任意点, 则有

 $|\overrightarrow{MM'}| \le |\overrightarrow{MP}|,$

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程, 点不在平面上时需要考 虑点到平面的距离及平面的侧等问题.

□ 点与平面间距离的定义 一点与平面上的点之间的最短距离, 叫做该 点与平面之间的距离.

如图, $MM' \perp$ 平面 π , M' 为垂足, P 为 π 上的任意点, 则有

 $|\overrightarrow{MM'}| < |\overrightarrow{MP}|,$

当且仅当点 P与 M' 重合时等号成立, 故 $|\overrightarrow{MM'}|$ 为点 M 与平面 π 间的距离.

空间中平面与点的相关位置,包括点在平面上与点不在平面上两种情况. 点在平面上的条件是点的坐标满足平面的方程,点不在平面上时需要考虑点到平面的距离及平面的侧等问题.

□ 点与平面间距离的定义 一点与平面上的点之间的最短距离, 叫做该点与平面之间的距离.

如图, MM' \perp 平面 π , M' 为垂足, P 为 π 上的任意点, 则有

 $|\overrightarrow{MM'}| \le |\overrightarrow{MP}|,$

当且仅当点 P 与 M' 重合时等号成立, 故 |MM'| 为点 M 与平面 π 间的距离. 因 此,过点引平面的垂线得垂足,则该点与垂 足间的距离即为该点与平面间的距离.

 $^{oldsymbol{
optimizer}}$ 点与平面间离差的定义 如果自点 M_0 到平面 π 引垂线, 其垂足为 Q(如图),

 $^{\text{CO}}$ 点与平面间离差的定义 如果自点 M_0 到平面 π 引垂线, 其垂足为 Q(如图),

 $^{oldsymbol{
abla}}$ 点与平面间离差的定义 如果自点 M_0 到平面 π 引垂线, 其垂足为 Q(如图),

 $^{oldsymbol{
abla}}$ 点与平面间离差的定义 如果自点 M_0 到平面 π 引垂线, 其垂足为 Q(如图),

点与平面间离差的定义 如果自点 M_0 到平面 π 引垂线, 其垂足为 Q (如图), 那么向量 $\overline{QM_0}$ 在平面 π 的单位法向量 \mathbf{n}^0 上的射影叫做点 M_0 与平面 π 间的离差, 记做

$$\delta = \Re n_0 \overrightarrow{QM_0}.$$

容易看出, 空间的点与平面的离差, 当且仅当点 M_0 位于平面 π 的单位 法向量 \mathbf{n}^0 所指向的一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 同向(如图), 离差 $\delta > 0$;

容易看出, 空间的点与平面的离差, 当且仅当点 M_0 位于平面 π 的单位 法向量 \mathbf{n}^0 所指向的一侧, $\overrightarrow{QM_0}$ 与 \mathbf{n}^0 同向(如图), 离差 $\delta > 0$; 在平面 π 的另一侧, $\overrightarrow{QM_0}$ 与 n^0 方向相反, 离差 $\delta < 0$;

容易看出, 空间的点与平面的离差, 当且仅当点 M_0 位于平面 π 的单位 法向量 \mathbf{n}^0 所指向的一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 同向(如图), 离差 $\delta > 0$; 在平面 π 的另一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 方向相反, 离差 $\delta < 0$;

容易看出, 空间的点与平面的离差, 当且仅当点 M_0 位于平面 π 的单位 法向量 \mathbf{n}^0 所指向的一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 同向(如图), 离差 $\delta>0$; 在平面 π 的另一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 方向相反, 离差 $\delta<0$; 当且仅当 M_0 在平面 π 上时, 离差 $\delta=0$.

容易看出,空间的点与平面的离差,当且仅当点 M_0 位于平面 π 的单位 法向量 \mathbf{n}^0 所指向的一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 同向(如图), 离差 $\delta>0$; 在平面 π 的另一侧, $\overline{QM_0}$ 与 \mathbf{n}^0 方向相反, 离差 $\delta<0$; 当且仅当 M_0 在平面 π 上时, 离差 $\delta=0$. 显然, 离差的绝对值 $|\delta|$, 就是点 M_0 与平面 π 之间的距离 d.

点
$$M_0$$
 与平面 $\mathbf{n}^0 \cdot \mathbf{r} - p = 0$ 间的离差为

$$\delta = \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - p,$$

这里
$$r_0 = \overrightarrow{OM_0}, p = |\overrightarrow{OP}|$$
.

点 M_0 与平面 $\mathbf{n}^0 \cdot \mathbf{r} - p = 0$ 间的离差为

$$\delta = \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - p,$$

这里 $r_0 = \overrightarrow{OM_0}, p = |\overrightarrow{OP}|.$

证

点 M_0 与平面 $\mathbf{n}^0 \cdot \mathbf{r} - p = 0$ 间的离差为

$$\delta = \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - p,$$

这里 $r_0 = \overrightarrow{OM_0}, p = |\overrightarrow{OP}|.$

证 根据定义,有

$$\delta = \Re _{{m n}^0} \overrightarrow{QM_0}$$

点 M_0 与平面 $\mathbf{n}^0 \cdot \mathbf{r} - p = 0$ 间的离差为

$$\delta = \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - p,$$

这里 $r_0 = \overrightarrow{OM_0}, p = |\overrightarrow{OP}|.$

证 根据定义,有

$$\delta = \Re \, \overrightarrow{N_0} \, \overrightarrow{QM_0} = \boldsymbol{n}^0 \cdot (\overrightarrow{OM_0} - \overrightarrow{OQ})$$

点 M_0 与平面 $\mathbf{n}^0 \cdot \mathbf{r} - p = 0$ 间的离差为

$$\delta = \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - p,$$

这里 $r_0 = \overrightarrow{OM_0}, p = |\overrightarrow{OP}|.$

证 根据定义,有

$$\delta = \Re \overrightarrow{s}_{n^0} \overrightarrow{QM_0} = n^0 \cdot (\overrightarrow{OM_0} - \overrightarrow{OQ}) = n^0 \cdot (r_0 - q)$$

$$= \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - \boldsymbol{n}^0 \cdot \boldsymbol{q},$$

$$\delta =$$
射影 $_{m{n}^0}\overrightarrow{QM_0} = m{n}^0 \cdot (\overrightarrow{OM_0} - \overrightarrow{OQ}) = m{n}^0 \cdot (m{r}_0 - m{q})$

$$= \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - \boldsymbol{n}^0 \cdot \boldsymbol{q},$$

其中
$$\mathbf{q} = \overrightarrow{OQ}$$
,

$$\delta = \textit{射影}_{\boldsymbol{n}^0}\overrightarrow{QM_0} = \boldsymbol{n}^0 \cdot (\overrightarrow{OM_0} - \overrightarrow{OQ}) = \boldsymbol{n}^0 \cdot (\boldsymbol{r}_0 - \boldsymbol{q})$$

$$= \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - \boldsymbol{n}^0 \cdot \boldsymbol{q},$$

其中 $q = \overrightarrow{OQ}$, 而 Q 在平面 $n^0 \cdot r - p = 0$ 上, 因此 $n^0 \cdot q = p$,

$$\delta =$$
射影 $_{m{n}^0}\overrightarrow{QM_0} = m{n}^0 \cdot (\overrightarrow{OM_0} - \overrightarrow{OQ}) = m{n}^0 \cdot (m{r}_0 - m{q})$

$$= \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - \boldsymbol{n}^0 \cdot \boldsymbol{q},$$

其中 $q = \overrightarrow{OQ}$, 而 Q 在平面 $n^0 \cdot r - p = 0$ 上, 因此 $n^0 \cdot q = p$, 所以

$$\delta = \boldsymbol{n}^0 \cdot \boldsymbol{r}_0 - p.$$

$$\delta =$$
射影 $_{m{n}^0}\overrightarrow{QM_0} = m{n}^0 \cdot (\overrightarrow{OM_0} - \overrightarrow{OQ}) = m{n}^0 \cdot (m{r}_0 - m{q})$

推论1

点
$$M_0(x_0,y_0,z_0)$$
 与平面 $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0$ 之间的离差 为

$$\delta = x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p.$$

推论1

点 $M_0(x_0,y_0,z_0)$ 与平面 $x\cos\alpha+y\cos\beta+z\cos\gamma-p=0$ 之间的离差 为

$$\delta = x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p.$$

推论2

点 $M_0(x_0, y_0, z_0)$ 与平面 Ax + By + Cz + D = 0 之间的距离为

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

求下列各点坐标:

- (1) 在 y轴上且到平面 x + 2y 2z 2 = 0 距离等于4个单位的点;
- (2) 在 z 轴上且到点 M(1,-2,0) 与到平面 3x-2y+6z-9=0 距离相等的点;
- (3) 在 x 轴上且到平面 12x 16y + 15z + 1 = 0 和 2x + 2y z 1 = 0 距离相等的点.

求下列各点坐标:

- (1) 在 y轴上且到平面 x + 2y 2z 2 = 0 距离等于4个单位的点;
- (2) 在 z 轴上且到点 M(1,-2,0) 与到平面 3x-2y+6z-9=0 距离相等的点;
- (3) 在 x 轴上且到平面 12x 16y + 15z + 1 = 0 和 2x + 2y z 1 = 0 距离相等的点.

答案: (1) (0,7,0), (0,-5,0);

求下列各点坐标:

- (1) 在 y轴上且到平面 x + 2y 2z 2 = 0 距离等于4个单位的点;
- (2) 在 z 轴上且到点 M(1,-2,0) 与到平面 3x-2y+6z-9=0 距离相等的点;
- (3) 在 x 轴上且到平面 12x 16y + 15z + 1 = 0 和 2x + 2y z 1 = 0 距离相等的点.

答案: (1) (0,7,0), (0,-5,0);

 $(2) (0,0,-2), (0,0,-\frac{82}{13});$

求下列各点坐标:

- (1) 在 y轴上且到平面 x + 2y 2z 2 = 0 距离等于4个单位的点;
- (2) 在 z 轴上且到点 M(1,-2,0) 与到平面 3x-2y+6z-9=0 距离相等的点;
- (3) 在 x 轴上且到平面 12x 16y + 15z + 1 = 0 和 2x + 2y z 1 = 0 距离相等的点.

答案: (1) (0,7,0), (0,-5,0);

- $(2) (0,0,-2), (0,0,-\frac{82}{13});$
- $(3) (2,0,0), (\frac{11}{43},0,0).$

设平面 π 的一般方程为

$$Ax + By + Cz + D = 0,$$

设平面 π 的一般方程为

$$Ax + By + Cz + D = 0,$$

那么空间中任意一点 M(x,y,z) 对平面的离差为

$$\delta = \lambda (Ax + By + Cz + D),$$

设平面 π 的一般方程为

$$Ax + By + Cz + D = 0,$$

那么空间中任意一点 M(x,y,z) 对平面的离差为

$$\delta = \lambda (Ax + By + Cz + D),$$

其中
$$\lambda = \frac{\pm 1}{\sqrt{A^2 + B^2 + C^2}}$$
 为平面 π 的法式化因子,

设平面 π 的一般方程为

$$Ax + By + Cz + D = 0,$$

那么空间中任意一点 M(x,y,z) 对平面的离差为

$$\delta = \lambda (Ax + By + Cz + D),$$

其中 $\lambda = \frac{\pm 1}{\sqrt{A^2 + B^2 + C^2}}$ 为平面 π 的法式化因子, 所以有

$$Ax + By + Cz + D = \frac{\delta}{\lambda}.$$

 $^{\circ}$ 对于平面 π 同侧的点, δ 的符号相同;

高等學校數學专业基础课程《解析几何》 * 吴炳烨研制 * 第三章 平面与空间直线 * 83.2 平面与点的相关位置 * 9/10 * 对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. *

高等學校數學专业基础课程《解析几何》 * 吳炳烨研制 * 第三章 平面与空间直线 * §3.2 平面与点的相关位置 * 9/10 * 对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. 这是因为若两个点 M_1 与 M_2 同侧时, $\overline{Q_1M_1}$ 与 $\overline{Q_2M_2}$ 同向(如图);

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. δ 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图);

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. δ 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图); 若 异侧时, $\overrightarrow{Q_1M_1}$ 与 $\overrightarrow{Q_2M_2}$ 反向.

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图); 若异侧时, Q_1M_1 与 Q_2M_2 反向.

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图); 若异侧时, Q_1M_1 与 Q_2M_2 反向. 由此知平面 $\pi: Ax + By + Cz + D = 0$ 将空间划分成两个部分:

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图); 若异侧时, Q_1M_1 与 Q_2M_2 反向. 由此知平面 $\pi:Ax+By+Cz+D=0$ 将空间划分成两个部分: 某一部分的点 $Ax+By+Cz+D=\frac{\delta}{\lambda}>0$;

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图); 若 异侧时, Q_1M_1 与 Q_2M_2 反向. 由此知平面 $\pi:Ax+By+Cz+D=0$ 将空间划分成两个部分: 某一部分的点 $Ax+By+Cz+D=\frac{\delta}{\lambda}>0$; 另外一部分的点, 有 $Ax+By+Cz+D=\frac{\delta}{\lambda}<0$;

对于平面 π 同侧的点, δ 的符号相同; 对于在 π 异侧的点, δ 的符号相反. 这是因为若两个点 M_1 与 M_2 同侧时, Q_1M_1 与 Q_2M_2 同向(如图); 若异侧时, Q_1M_1 与 Q_2M_2 反向. 由此知平面 $\pi:Ax+By+Cz+D=0$ 将空间划分成两个部分: 某一部分的点 $Ax+By+Cz+D=\frac{\delta}{\lambda}>0$; 另外一部分的点, 有 Ax+By+Cz+D=0.

判别点 M(2,-1,1) 和 N(1,2,-3) 在由下列相交平面所构成的同一个二面角内, 还是分别在相邻二面角内,或是在对顶的二面角内?

- (1) $\pi_1: 3x y + 2z 3 = 0 \Rightarrow \pi_2: x 2y z + 4 = 0;$
- (2) $\pi_1: 2x y + 5z 1 = 0 \implies \pi_2: 3x 2y + 6z 1 = 0.$

判别点 M(2,-1,1) 和 N(1,2,-3) 在由下列相交平面所构成的同一个二面角内, 还是分别在相邻二面角内,或是在对顶的二面角内?

- (1) $\pi_1: 3x y + 2z 3 = 0 = \pi_2: x 2y z + 4 = 0;$
- (2) $\pi_1: 2x y + 5z 1 = 0 \ \, \exists \ \, \pi_2: 3x 2y + 6z 1 = 0.$

答案: (1) 相邻二面角内;

判别点 M(2,-1,1) 和 N(1,2,-3) 在由下列相交平面所构成的同一个二面角内, 还是分别在相邻二面角内,或是在对顶的二面角内?

- (1) $\pi_1: 3x y + 2z 3 = 0 \ \ \ \pi_2: x 2y z + 4 = 0;$
- (2) $\pi_1: 2x y + 5z 1 = 0 \ \, \exists \ \, \pi_2: 3x 2y + 6z 1 = 0.$

答案: (1) 相邻二面角内;

(2) 对顶二面角内.

判别点 M(2,-1,1) 和 N(1,2,-3) 在由下列相交平面所构成的同一个二面角内, 还是分别在相邻二面角内,或是在对顶的二面角内?

- (1) $\pi_1: 3x y + 2z 3 = 0 + \pi_2: x 2y z + 4 = 0;$
- (2) $\pi_1: 2x y + 5z 1 = 0 \ \, \exists \ \, \pi_2: 3x 2y + 6z 1 = 0.$

答案: (1) 相邻二面角内;

(2) 对顶二面角内.

