Département de Mathématiques et Informatique

BASES DE DONNEES

Chapitre 4

L'ALGEBRE RELATIONNELLE

1

Plan

- 1 Présentation
- 2 Les opérateurs ensemblistes
- 3 Les opérateurs spécifiques
- 4 Applications
- **5 -** Traitement des groupes

Présentation

I - Présentation

O Définition

- L'algèbre relationnelle est une théorie mathématique proche de la théorie des ensembles qui définit des opérations qui peuvent être effectuées sur des relations (ou tables) [Source Wikipédia]
- L'algèbre relationnelle regroupe un ensemble d'opérateurs qui s'appliquent sur des relations pour donner de nouvelles relations :

opérateur sur la relation ------ une nouvelle relation

Exemple: l'union de 2 relations

L'union de la relation PRODUITS et de la relation NOUVPRODS est une nouvelle relation

 Ces opérateurs sont l'équivalent de certains traitements classiques sur les fichiers et dispensent parfois de l'écriture de tout un programme.

3

L'algèbre relationnelle

I - Présentation

- On les retrouve dans les langages d'interrogation de données des S.G.B.D. tel que SQL (voir Chapitre 5).
- L'objectif de cette partie du cours sur l'algèbre relationnelle est de comprendre et d'utiliser ces opérateurs pour faciliter par la suite l'écriture de requêtes en SQL

Les opérateurs Les opérateurs Les opérateurs ensemblistes : union intersection différence produit cartésien Les opérateurs relationnels spécifiques : sélection projection division jointure

OPÉRATEURS ENSEMBLISTES	
	6

Union

II - Op. ensemblistes

Rappel

- □ R : étudiants inscrits à l'option Latin
- □ S: étudiants inscrits à l'option Grec
- $\, = \, T = R \, \cup \, S \, : \, \text{\'etudiants inscrits en langues anciennes} \,$

O Résultat relationnel

- Les tuples appartenant aux deux relations sont regroupés
- Les tuples identiques n'apparaissent qu'une seule fois
 - Rappel : il ne peut y avoir 2 tuples identiques dans une relation

O Contraintes

 Les deux relations doivent avoir le même nombre d'attributs respectivement de même type.

Relations union-compatibles

7

Union

II - Op. ensemblistes

O Exemple

R		
Α	В	
a	1	
b	2	
С	3	
d	4	
е	5	

T = R U S		
Α	В	
а	1	
b	2	
С	3	
d	4	
е	5	
а	3	
f	4	

Propriétés

 $Card(T) \leq Card(R) + Card(S)$

Degré (T) = Degré (R) = Degré (S)

Union

II - Op. ensemblistes

Notations

 \circ Propriété : l'union est commutative : $R \cup S = S \cup R$

9

Intersection

II - Op. ensemblistes

O Rappel

- $\,\,\,\,\,\,\,\,$ T = R $\,\,\cap\,\,$ S : étudiants inscrits en latin et en grec
- O Résultat relationnel
 - On prend les tuples identiques apparaissant dans les 2 relations
- **O** Contraintes
 - Les deux relations doivent être union-compatibles

Différence

II - Op. ensemblistes

Rappel

- □ T = R S : étudiants inscrits en latin seulement
- U = S R : étudiants inscrits en grec seulement
- O Résultat relationnel
 - On prend les tuples qui appartiennent à la première relation sans appartenir à la seconde
- **O** Contraintes
 - Les deux relations doivent être union-compatibles
 - La différence n'est pas commutative :

 $R - S \neq S - R$

13

Différence

II - Op. ensemblistes

O Exemple

R		
Α	В	
a	1	
b	2	
С	3	
d	4	
е	5	
T D 0		

T = R - S			
Α	В		
а	1		
d	4		
^	5		

S		
В		
3		
2		
3		
4		

U = S - R			
A B			
а	3		
f	4		

O Propriétés de la différence

$$Card(T) \le Card(R)$$

 $Card(U) \le Card(S)$

Degré (T) = Degré (R) = Degré (S)

Différence

II - Op. ensemblistes

Notations

$$T \leftarrow R - S$$

o Propriété : l'union n'est pas commutative : $R - S \neq S - R$

15

Produit Cartésien

II - Op. ensemblistes

```
O Rappel
```

```
 \begin{array}{ll} \hbox{$\neg$ Soit$} & \hbox{$R=\{\,r\,\}$} \\ & \hbox{$S=\{\,s\,\}$} \\ \hbox{$alors$} & \hbox{$T=R^*S=\{\,(\,r\,,s\,):r\in\,R$ et $s\in\,S\,\}$} \end{array}
```

O Résultat relationnel

```
    Soit R(A,B)
S(C,D,E)
alors T(A,B,C,D,E)
    avec Card (T) = Card (R)* Card (S)
Degré (T) = Degré (R) + Degré (S)
```

On combine donc chaque tuple de R avec chaque tuple de S.

Produit Cartésien

II - Op. ensemblistes

O Exemple

R		
Α	В	
а	1	
b	2	
С	3	
d	4	
е	5	

	S	
С	D	E
X	3	AB
Y	2	AC
Z	1	DE

T = R * S				
Α	В	С	D	E
а	1	X	3	AB
b	2	X	3	AB
С	3	X	3	AB
d	4	Х	3	AB
е	5	X	3	AB
а	1	Y	2	AC
b	2	Υ	2	AC
С	3	Y	2	AC
d	4	Y	2	AC
е	5	Y	2	AC
а	1	Z	1	DE
b	2	Z	1	DE
С	3	Z	1	DE
d	4	Z	1	DE
е	5	Z	1	DE

Card(T) = Card(R) * Card(S)

Degré (T) = Degré (R) + Degré (S)

17

Produit Cartésien

II - Op. ensemblistes

o Résultat relationnel

Soient R (A, B) une relation avec 2 attributs A et B

et S (C, D, E) une relation avec 3 attributs C, D, E

alors
$$T = R \otimes S = T (A, B, C, D, E)$$

avec Card(T) = Card(R) * Card(S)

Degré(T) = Degré(R) + Degré(S)

o On combine chaque tuple de R avec chaque tuple de S.

o Contraintes

- Il n'y a aucune contrainte sur les 2 relations intervenant dans le produit cartésien.
 On peut donc multiplier n'importe quelles relations.
- Le produit cartésien n'est pas une opération naturelle. Il permet de créer des relations qui seront exploitées par la suite par d'autres opérateurs.

 \circ Notations $T \leftarrow R \otimes S$

Produit Cartésien

II - Op. ensemblistes

- O Application
 - □ Soit les 2 relations suivantes de la base de données d'une université :
 - ETUDIANT:

degré : 20 cardinalité : 25 000

nombre d'octets par étudiant : 200

MODULE:

degré : 10 cardinalité : 800

nombre d'octets par module : 100

- On fait le produit cartésien ETUDIANT * MODULE
- □ 1°) Calculer le volume occupé par chacune des 2 relations (en MØ).
- 2°) Donner la signification de la relation obtenue par le produit.
- □ 3°) Calculer :
 - son degré,
 - sa cardinalité,
 - le nombre d'octets de chacun de ses tuples.
- 4°) Calculer son volume et conclure.

19

OPÉRATEURS RELATIONNELS

Sélection

III - Op. relationnels

O La nouvelle relation S contient les mêmes attributs que la relation de départ R.

O La sélection est l'opération de base de toute interrogation ou consultation de la base de données.

23

Projection

III - Op. relationnels

- **O** Définition
 - La projection crée une nouvelle relation qui ne contient que certains attributs de la relation de départ.

$$R(A,B,C,D,E) \longrightarrow S(A,B)$$

- Contraintes
 - Les tuples identiques ne sont pas conservés dans la relation créée.

Notations

Projection

III - Op. relationnels

O Exemples

	FACTURATION				
Nufact	Cocli	Nom	Corep	Montant	
001	C001	ALBERT	1	100,00	
002	C003	BERNARD	2	250,00	
003	C007	CLAUDE	6	550,90	
004	C003	BERNARD	2	290,00	
005	C015	DANIEL	1	800,00	
006	C007	CLAUDE	6	750,00	

 $\textsf{LISTFACT} \longleftarrow \pi_{\; \mathsf{Nufact}, \mathsf{Montant}} \; (\mathsf{Facturations})$

LISTECLI $\leftarrow \pi_{Cocli, Nom}$ (Facturations)

LISTEFACT		
Nufact	Montant	
001	100,00	
002	250,00	
003	550,90	
004	290,00	
005	800,00	
006	750,00	

LISTECLI		
Cocli	Nom	
C001	ALBERT	
C003	BERNARD	
C007	CLAUDE	
C015	DANIEL	

25

Division

III - Op. relationnels

O Définition

 Soit une relation R (A, B) qui sera appelée dividende, une relation S (A) qui sera appelée diviseur,

Le résultat de la division ou quotient est une relation T (B) telle que :

$$T(B) * S(A) \subset R(A,B)$$

- $\ ^{\square }$ La division permet de répondre aux questions du type :
 - Quels sont tous les ∈ T (B) qui correspondent à toutes les valeurs de <a> ∈ S (A) ?

Contraintes

- La relation dividende a 2 attributs.
- La relation diviseur n'a qu'un attribut.
- La relation quotient contient l'autre attribut du dividende.

O Notations

 $T \leftarrow DIVIDE(R,S,A)$

Division

III - Op. relationnels

O Exemple 1

Quels sont les étudiants qui ont obtenu tous les modules de Maths ? MATHEUX ← DIVIDE (RESULTAT, MATHS, MODULE)

Dividende

RESULTAT		
Etudiant	Module	
ALBERT	MAS301	
BERNARD	MAS302	
CLAUDE	MAS301	
DANIEL	MAS304	
ALBERT	MAS302	
CLAUDE	MAS302	
DANIEL	MAS301	
ALBERT	MAS305	
CLAUDE	MAS305	

Diviseur

MATHS
Module
MAS301
MAS302
MAS305

Quotient

RESULTATS est appelée la relation **dividende**, MATHS la relation **diviseur** ;

et la relation MATHEUX résultant de la division est appelée le quotient

27

Division

III - Op. relationnels

O Exemple 2

В

Dividende

b

Diviseur

Quotient

Т Α а

 $Card(T) \leq Card(R)/Card(S)$

Degré (R) = 2

Degré (T) = Degré (S) = 1

- La division peut être obtenue par une combinaison des autres

III - Op. relationnels

O Jointure

O Les deux relations doivent avoir un attribut de type semblable pour pouvoir effectuer la jointure.

- O La condition de jointure peut être
 - Une égalité : voir l'exemple (égalité sur le code client)

→ équi-jointure

- Ou toute autre condition exprimée avec les opérateurs de comparaison classiques : ≠, <, >, ...
- O Les deux attributs intervenant dans la condition doivent être définis sur le même domaine.

III - Op. relationnels

O Jointure

- O Utilisation
 - La jointure permet d'obtenir des résultats avec des données appartenant à plusieurs tables.
 - Elle permet parfois de reconstituer des relations qui avaient été éclatées lors du processus de normalisation
- O Notation

 $T \leftarrow JOIN(R, S, condition)$

- O Remarque : la jointure peut être considérée comme le résultat :
 - · d'un produit cartésien,
 - · puis d'une sélection.

III - Op. relationnels

O Jointure.

- O Différents types de jointures
 - · Equi-jointure:

La condition porte sur l'égalité des deux attributs.

Θ-jointure (on dit « téta-jointure ») :

L'opérateur de la condition est quelconque :

> ≥ < ≤ ≠

• Demi-jointure (droite, gauche, généralisée)

Equi-jointure complétée par les attributs sans correspondant :

- dans la relation de droite (DJD)
- dans la relation de gauche (DJG)
- dans les 2 relations : généralisée (JGENE)

33

Jointure

III - Op. relationnels

O Equi-jointure

- O Définition
 - · La condition porte sur l'égalité des valeurs des 2 attributs.
 - L'attribut commun peut ne pas être dupliqué dans le résultat (car ses valeurs sont identiques).

O Interprétation

- L'équi-jointure est une opération très fréquente.
- Les deux attributs de l'équi-jointure sont généralement :
 - la clé principale dans une relation R1,
 - la clé étrangère correspondante dans l'autre relation R2.
- Le résultat consiste à compléter logiquement la relation R2 avec les valeurs correspondantes de la relation R1.

III - Op. relationnels

○ Θ-jointure

- O Définition
 - La condition sur les deux attributs de même domaine fait appel à un opérateur de comparaison autre que l'égalité.
 - Θ représente alors cet opérateur:

> ≥ < ≤ ≠

 Les deux attributs de la condition doivent être conservés dans la nouvelle relation créée.

III - Op. relationnels

Ο Θ-jointure : Exercice

O Soient deux relations qui contiennent respectivement les notes de maths et d'informatique d'un groupe d'étudiants :

 $\begin{array}{ll} {\sf NOTEMATHS} \; (\; \; \underline{{\sf NOMETU}}, \; \; {\sf NOTEM} \; \;) \\ {\sf NOTEINFO} \; (\; \; \underline{{\sf NOMETU}} \; \; , \; \; {\sf NOTEI} \; \;) \end{array}$

- O Ecrire la jointure qui trouve les étudiants qui ont une meilleure note en maths qu'en informatique.
- O Exemple de relations de départ

NOTEMATHS		
NOMETU	NOTEM	
ALBERT	6	
BERNARD	12	
CLAUDE	8	
DANIEL 7		
EMILE 14		

NOTEINFO		
<u>NOMETU</u>	NOTEI	
ALBERT	8	
BERNARD	10	
DANIEL	8	
EMILE	7	
FREDERIC	14	

III - Op. relationnels

O Demi-jointure gauche

Définition

- La demi-jointure gauche est une équi-jointure complétée par les tuples constitués :
 - à gauche par les valeurs de l'attribut qui n'apparaissent pas dans l'équi-jointure (car elles n'ont pas de correspondants à droite),
 - à droite par des valeurs nulles (notées #).

39

Jointure

III - Op. relationnels

O Demi-jointure gauche : Exemple

FactErreurs ← DJG (Factures, Clients, Factures.Cocli = Clients.Cocli)

Factures

Nufact	Coclii#	Corep	Montant
001	C001	1	100.00
002	C003	2	250.00
003	C007	6	550.90
004	C003	2	290.00
005	C015	1	800.00
006	C007	6	750.00
007	C025	4	420.00
006	C007	6	750.00

Clients

Cocli	Nomcli
CO01	ALBERT
CO03	BERNARD
C007	CLAUDE
C015	DANIEL

FactErreurs

Nufact	Coclii	Corep	Montant	Nom
001	C001	1	100.00	ALBERT
002	C003	2	250.00	BERNARD
003	C007	6	550.90	CLAUDE
004	C003	2	290.00	BERNARD
005	C015	1	800.00	DANIEL
006	C007	6	750.00	CLAUDE
007	C025	4	420.00	#

III - Op. relationnels

O Demi-jointure gauche

O Interprétation

- Les demi-jointures permettent de conserver des tuples qui devraient disparaître par manque de cohérence entre les deux relations. Elles permettent donc de détecter certaines erreurs.
- Exemple : Le client C025 ne figure pas dans le relation CLIENT à cause d'une erreur de saisie ou d'une erreur de synchronisation dans les mises à jour

Applications

IV - Applications

O Schéma de la base de données

 $\textbf{CLIENT} \ (\ \underline{\textbf{COCLI}}, \ \textbf{NOMCLI} \ , \ \textbf{VILLE} \)$

 $\textcolor{red}{\textbf{PRODUIT}} \, (\, \textcolor{red}{\textbf{COPRO}} \, , \, \textbf{LIBELLE} \, , \, \textbf{PU} \,)$

 $\textbf{FACTURE} \; (\; \underline{\textbf{NUFACT}} \; , \; \textbf{DATEFACT} \; , \; \textbf{COCLI#} \; , \; \textbf{MONTANT} \;)$

DETAIL (NUFACT# , COPRO# , QTE)

Toutes ces relations sont en 3NF

43

Applications

IV - Applications

O Schéma de la base en extension

PRODUIT		
COPRO	LIBELLE	PU
P01	Agrafes	3.50
P02	Bristol	12.00
P03	Classeur	7.00
P04	Disquettes	25.00
P05	Equerre	1.50

FACTURE			
NUFACT	DATEFACT	COCLI#	MONTANT
001	05-02-2001	C001	100.00
002	10-08-2001	C003	250.00
003	15-12-2001	C007	550.90
004	10-02-2002	C003	290.00
005	01-03-2002	C001	800.00

CLIENT		
COCLI	NOMCLI	VILLE
C001	ALBERT	Toulouse
C003	BERNARD	Auch
C007	CLAUDE	Paris
C015	DANIEL	Toulouse
C025	EMILE	Paris

DETAIL		
NUFACT#	COPRO#	QTE
001	P01	10
001	P02	20
002	P01	15
002	P02	20
002	P05	5
003	P03	10
003	P05	5
004	P01	20
004	P03	30
004	P05	10
005	P03	20

Exercices

IV - Applications

- 1°) Trouver les factures de l'année 2001.
- 2°) Trouver les numéros de factures de l'année 2001 avec le nom des clients correspondants.
- 3°) Trouver les noms de tous les produits qui figurent sur la facture 003.
- 4°) Trouver les clients qui n'ont pas de facture.
- 5°) Trouver les produits qui n'ont pas été commandés en 2001.
- 6°) Trouver toutes les factures du client 'BERNARD'.

4

TRAITEMENT DE GROUPE

Traitements de groupe

V - Groupe

O Groupe

- O Sous-ensemble regroupant les lignes d'une relation ayant une caractéristique commune (généralement la même valeur d'un attribut)
- O Exemple:

Relation Factures

Nufact	Coclii#	Corep	Montant
001	C001	1	100.00
002	C003	2	250.00
003	C007	6	550.90
004	C003	2	290.00
005	C015	1	800.00
006	C007	6	750.00

49

Traitements de groupe

V - Groupe

O Traitement de groupe

O Calcul (somme, moyenne, ...) effectué sur l'ensemble des lignes du groupe.

Sous-ensemble 1

même valeur v₁ de <col1>

⇒ résultat 1

Sous-ensemble n

même valeur v_n de <col1>

⇒ résultat n

Traitements de groupe

V - Groupe

O Exemple de traitement de groupe : le cumul

O Notation

S ← CUMUL(R, A, B) où A est le champs servant au regroupement des tuples de R, B le champs sur lequel s'applique la fonction

O Chiffre d'affaires de chaque client RecapClis← CUMUL(Factures, Cocli , Montant)

Factures
Nufact Coolin Corep Montant

Nufact	Coclii#	Corep	Montant
001	C001	1	100.00
002	C003	2	250.00
003	C007	6	550.90
004	C003	2	290.00
005	C015	1	800.00
006	C007	6	750.00

→ RecapClis

Cumul
100.00
440.00
1050.90
800.00

On regroupe les lignes de la table Factures par code client (Cocli). A chaque changement de client, on copie le code client Cocli et la somme des montants des factures de ce client (Cumul)

51

Traitements de groupe

V - Groupe

- O Exemple de traitement de groupe : le compte
 - O Notation

T ← COMPTE (R, A, B) où A est le champs servant au regroupement des tuples de R, B le champs sur lequel s'applique la fonction

O Nombre de factures par client
NhFactCli← COMPTE(Factures

 $\mathsf{NbFactCli} \boldsymbol{\leftarrow} \, \, \boldsymbol{\mathsf{COMPTE}}(\mathsf{Factures}, \, \mathsf{Cocli}, \, \mathsf{Nufact})$

NbFactCli

On regroupe les lignes de la table Factures par code client. A chaque changement de client, on compte combien il y a de valeurs pour le champ Nufact