```
Priority Applications (No Type Date): DE 1005540 A 19990210
Patent Details:
Patent No Kind Lan Pg
                        Main IPC
                                     Filing Notes
DE 19905540 A1 13 H02K-001/32
WO 200048291 A2 G
                      H02K-001/32
   Designated States (National): JP US
   Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LU
   MC NL PT SE
Abstract (Basic): DE 19905540 A1
        NOVELTY - The electric machine has an external stator and an
    internal, rotatably mounted rotor with a rotor plate packet (18) and a
    rotor shaft (4) rotationally securely fixed to the rotor plate packet.
   . The rotor is hollow and a coolant can be passed between the rotor plate
    packet and the rotor shaft.
        USE - Especially a motor for driving a vehicle.
        ADVANTAGE - Has improved coolant transport and the machine bearing
    is protected against damage.
        DESCRIPTION OF DRAWING(S) - The drawing shows a schematic sectional
    representation of an electrical machine
        rotor plate packet (18)
        rotor shaft (4)
        pp; 13 DwgNo 1/12
Derwent Class: X11; X21
International Patent Class (Main): H02K-001/32
International Patent Class (Additional): H02K-001/28; H02K-001/30;
 H02K-009/02; H02K-009/06
?s pn=de 8811379
      S2
              0 PN=DE 8811379
?s an=de 8811379
              0 AN=DE 8811379
      S3
?s pn=ep 1091468
           1 PN=EP 1091468
     S4
?t 4/7
 4/7/1
DIALOG(R) File 351: Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.
```


® BUNDESREPUBLIK DEUTSCHLAND

(5) Int. Cl.⁷: **H 02 K 1/32** H 02 K 9/02

DEUTSCHES
PATENT- UND
MARKENAMT

- ② Aktenzeichen:② Anmeldetag:
- 199 05 540.8 10. 2. 1999
- (3) Offenlegungstag: 17. 8
- 17. 8. 2000

(1) Anmelder:

ZF Friedrichshafen AG, 88046 Friedrichshafen, DE

② Erfinder:

Bachmann, Max, 88339 Bad Waldsee, DE

(5) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

JP 10042501 A., In: Patent Abstracts of Japan;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (4) Elektrische Maschine
- (18) Es wird eine elektrische Maschine (2) mit einem außenliegenden Stator und einem innenliegenden, drehbar gelagerten Rotor vorgeschlagen, der ein Rotorblechpaket (18) und eine mit dem Rotorblechpaket (18) drehfest verbundene Rotorwelle (4) aufweist. Der Rotor ist hohl ausgebildet und in dem Bereich zwischen Rotorblechpaket (18) und Rotorwelle (4) kann ein Kühlmedium hindurchgeführt werden.

Die Erfindung betrifft eine elektrische Maschine insbesondere als Elektromotor zum Antreiben von Fahrzeugen nach dem Oberbegriff von Anspruch 1.

Derartige Maschinen sind häufig Asynchronmaschinen, die mit einem Stator und einem in dem Stator vorgesehenen Rotor ausgebildet sind. Der Rotor wird als Kurzschlußläufer ausgebildet und besteht vorzugsweise aus elektrisch leitfähigem Aluminium, das in Form eines Druckgusses zum Rotor 10 geformt wird. Das Aluminium wird bei der Herstellung in die vom Blechpaket des Rotors gebildeten Nuten eingegossen und an den Stirnseiten des Rotors werden die Aluminiumstränge aus den jeweiligen Nuten zu einem Ring zusammengeschlossen und damit kurzgeschlossen (Kurzschlußkäfig). Die Asynchronmotoren sind vorwiegend hoch ausgenutzte Motoren, deren Wärmeentwicklung eine optimierte Kühlung verlangen.

Eine derartige elektrische Maschine ist beispielsweise aus der EP 0 484 548 B1 bekannt. Die verwendeten elektrischen 20 Maschinen weisen einen innenliegenden Rotor mit Rotorwelle und Rotorblechpaket und einen außenliegenden Stator auf. Die elektrische Maschine ist mit dem Kühlkreislauf des Fahrzeuges verbunden.

Ein besonderes Problem bei der Kühlung derartiger elektrischer Maschinen besteht in der Lagerung der Rotorwelle und in deren Dichtungen. Die von der Rotorwelle auf die Lager übertragenen Temperaturen führen zu Beschädigungen an den Lagern und damit nach kurzer Zeit zum Ausfall der Maschine. Wegen hoher Temperaturen in der Motorwelle entstehen in der Lagerung hohe Differenztemperaturen zwischen Lagerinnenring und Lageraußenring.

Gleichzeitig ist der Transport eines Kühlmediums in der elektrischen Maschine durch die baulich bedingte räumliche Begrenzung erschwert, wodurch die anfallenden Temperaturen insbesondere bei hoch ausgenutzten Maschinen nur schwer aus der Maschine abgeführt werden können.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine elektrische Maschine aufzuzeigen, die einen verbesserten Transport des Kühlmediums ermöglicht und 40 die Lagerung der Maschine vor Beschädigungen schützt.

Die Aufgabe wird gelöst durch die Erfindung mit den Merkmalen von Anspruch 1. Ausgestaltungen des erfinderischen Gedankens sind Gegenstand von Unteransprüchen.

Die von elektrischen Maschinen erzeugte Wärme muß 45 zur Kühlung der Maschine an ein Kühlmedium abgegeben werden, daß mit der Maschine in Verbindung bringbar ist. Ein vorteilhaftes Kühlmedium stellt die Luft dar, die ihrerseits mit geeigneten Mitteln wieder rückgekühlt wird oder sich gegen andere Luft austauscht. Luft ist ein hervorragender Isolator, so daß in der elektrischen Maschine keine besonderen elektrischen Isolationen durchgeführt werden müssen, um die verschiedenen Bauteile der Maschine gegen Kurzschlußprobleme zu schützen, die im Zusammenhang mit dem Kühlmedium auftreten könnten. Um das Kühlmedium in der Maschine sicher zu führen, müssen mögliche Strömungshindernisse weitestgehend vermieden werden.

Erfindungsgemäß wird in einer elektrischen Maschine, die einen außenliegenden Stator und einem innenliegenden, drehbar gelagerten Rotor, ein Rotorblechpaket und eine mit dem Rotorblechpaket drehfest verbundene Rotorwelle aufweist, der Rotor hohl ausgebildet und in dem Bereich zwischen Rotorblechpaket und Rotorwelle ein Kühlmedium hindurch geführt. Dazu kann die Rotorwelle unmittelbar im Rotorblechpaket drehfest angeordnet sein oder es kann in einer vorteilhaften Ausgestaltung zwischen dem Rotorblechpaket und der Rotorwelle eine hohle Zwischenwelle vorgesehen sein, auf der das Rotorblechpaket angeordnet ist. Eine

andere Ausgestaltung zeigt die Rotorwelle als eine Stegwelle, die an ihrem Umfang eine Anzahl von Stegen aufweist. In einer vorteilhaften Ausgestaltung sind Mittel zwischen der Rotorwelle und der Zwischenwelle bzw. dem Rotorblechpaket vorgesehen zur Förderung des Kühlmediums. Dazu weist in einer Ausgestaltung die Rotorwelle Stege auf, die in Form von Leitradschaufeln ausgebildet sind.

Eine Ausgestaltung zeigt die Rotorwelle in Form eines Schneckenförderers ausgebildet. Eine weitere Ausgestaltung weist zwischen der Rotorwelle und der Zwischenwelle bzw. dem Rotorblechpaket wenigstens eine Lüftereinrichtung auf.

Eine weitere vorteilhafte Ausgestaltung zeigt die Rotorwelle mit Lüftereinrichtungen an wenigstens einem ihrer axialen Enden zur Vergrößerung des Fördervolumens oder des Förderdruckes des Kühlmediums. Bei einer Ausgestaltung stellen die Lüftereinrichtungen am Ende der Rotorwelle ein Lüfterrad dar.

In einer Ausgestaltung ist die Rotorwelle als separates Gesenkschmiedeteil oder Feingußteil gefertigt und in die hohle Zwischenwelle bzw. das Rotorblechpaket zur Erreichung eines Preßsitzes eingepreßt. Dabei ist die Rotorwelle in einer vorteilhaften Ausgestaltung aus einem schlecht wärmeleitenden Material hergestellt, vorzugsweise aus einem hochlegierten Stahl oder aus Titan.

In einer vorteilhaften Ausgestaltung stoßen die Rotorwelle und die hohle Zwischenwelle bzw. das Rotorblechpaket zur Bildung kleiner Wärmeübergangsflächen nur an nahezu linienförmigen Berührungsflächen aneinander an. Dabei ist in einer Ausgestaltung zur Bildung einer Rotorwelle, die viel Kühlmedium zwischen sich und der Zwischenwelle bzw. dem Rotorblechpaket vorbeiführen läßt bei gleichzeitiger ausreichender Stabilität, der Querschnitt der Rotorwelle in der Form eines Sterns mit vier Zacken ausgebildet. In einer weiteren Ausgestaltung ist zur Bildung einer Rotorwelle, die viel Kühlmedium zwischen sich und der Zwischenwelle bzw. dem Rotorblechpaket vorbeiführen läßt und zur Bildung einer großen Wärmeübergangsfläche bei gleichzeitiger hoher Aufnahme von Spannungsenergie, die Rotorwelle in der Form von drei sichelförmigen Stegen ausgebildet.

Eine weitere Ausgestaltung weist Elemente auf zur Unterstützung einer drallfreien Zuführung des Kühlmediums zum Rotor. In einer Ausgestaltung sind die Stege unterbrochen und liegen nicht auf ihrer gesamten Länge an der Hohlwelle an.

In einer weiteren vorteilhaften Ausgestaltung ist ein Wärmetauscher in die elektrische Maschine integriert. Der Wärmetauscher kann Kühlrohre aufweisen, die den Stator umgeben und die Kühlrohre können zur Wärmeübertragung mit Kühlrippen in Verbindung stehen. In den Kühlrippen können Kühlrohre vorgesehen sein, die mit den Kühlrohren, die den Stator umgeben, verbindbar sind und diese Kühlrohre in den Kühlrippen können in einer Ausgestaltung unter einem Winkel zu den Kühlrohren montiert sein, die den Stator umgeben. Eine Ausgestaltung zeigt die Kühlrippen in einem separaten Bauteil angeordnet, das in Form einer Kühlwanne an die elektrische Maschine montierbar ist.

Eine vorteilhafte Ausgestaltung verwendet Luft als Kühlmedium.

Die Erfindung wird anhand von Figuren näher beschrieben.

Es zeigen:

Fig. 1 eine elektrische Maschine mit sternförmiger Steg-5 welle;

Fig. 2 einen Schnitt durch Stegwelle und Rotorwelle nach Fig. 1;

Fig. 3 einen Schnitt durch den Wärmetauscher nach Fig.

Fig. 4 eine elektrische Maschine mit sichelförmiger Stegwelle;

Fig. 5 einen Schnitt durch Stegwelle und Blechpaket nach Fig. 4;

Fig. 6 eine elektrische Maschine mit Lüftereinrichtung in der Rotorwelle;

Fig. 7 einen Schnitt durch Stegwelle und Rotorwelle nach Fig. 6;

Stegwelle;

Fig. 9 einen Schnitt durch den Wärmetauscher mit Kühl-

Fig. 10 einen weiteren Schnitt durch den Wärmetauscher mit Kühlwanne;

Fig. 11 einen Schnitt durch die Kühlwanne nach Fig. 9

Fig. 12 einen Schnitt durch die Kühlwanne nach Fig. 10. Die Fig. 1 zeigt eine elektrische Maschine 2 mit einer Rotorwelle 4, die in einer ersten Lagerung 6 und in einer zwei- 20 ten Lagerung 8 drehbar in einem Gehäuse 10 gelagert ist. Die Rotorwelle 4 weist eine Verzahnung 11 auf, über die die elektrische Maschine 2 mit weiteren und hier nicht gezeigten Elementen des Antriebsstranges zusammenwirkt. In dem Gehäuse 10 ist ein Statorblechpaket 12 angeordnet, durch das die Statorwicklung 14 hindurchragt. Mit einem geringen Luftspalt 16 beabstandet liegt radial innerhalb des Statorblechpakets 12 ein Rotorblechpaket 18, das von Metallstäben 20, vorzugsweise aus Aluminium durchdrungen wird. Eine Kappe 24 ist an dem Rotorblechpaket 18 mit Ver- 30 schraubungen 22 befestigt. Alternativ können die Metallstäbe 20 auch in das Rotorblechpaket 18 in einem Druckgußverfahren eingepreßt werden. Das Rotorblechpaket 18 sitzt auf einer runden, hohlen Zwischenwelle 26 auf. Innerhalb der Zwischenwelle 26 ist die Rotorwelle 4 drehfest an- 35 geordnet, beispielsweise mit Preßsitz eingepreßt. Die Rotorwelle 4 kann jedoch unmittelbar in das Rotorblechpaket 18 eingepreßt sein. Die Rotorwelle 4 weist vier Stege 28 auf, die in der Form eines Sternes angeordnet sind (siehe Fig. 2). Die Stege 28 weisen in der hier gezeigten Anordnung Aus- 40 sparungen 29 auf, so daß die Stege 28 nicht auf ihrer vollen Länge an der Innenwand der hohlen Zwischenwelle 26 anliegen. In den Zwischenräumen 30 zwischen den Stegen 28 kann ein erstes Kühlmedium, vorzugsweise Luft, durch die Zwischenwelle 26 bzw. das Rotorblechpaket 18 gefördert werden. Dazu ist an einem axialen Ende des Rotorblechpaketes 18 ein Lüfterrad 32 angeordnet, das eine Strömung des Kühlmediums hervorruft. An dem anderen axialen Ende des Rotorblechpaketes 18 ist ein Blechring 34 vorgesehen, der das durch einen Wärmetauscher 36 strömende Kühlmedium 50 drallfrei in Richtung auf die Rotorwelle 26 leitet. Der Wärmetauscher 36 weist Kühlrippen 38 (siehe Fig. 3) auf, die das Kühlmedium durchströmt und die in der hier gezeigten Ausgestaltung von dem Gehäuseteil 40 gebildet werden. Die Kühlrippen 38 sind nach außen von einem Deckel 42 55 begrenzt, der an das Gehäuseteil 40 angeschraubt ist.

In dem Gehäuseteil 40 sind Kühlrohre 44 vorgesehen, durch die ein zweites Kühlmedium strömt. Die vom ersten Kühlmedium im Wärmetauscher 36 über die Kühlrippen 38 auf die Kühlrohre 44 übertragene Wärme wird vom zweiten 60 Kühlmedium von der elektrischen Maschine 2 wegtransportiert. Gleichzeitig kann vom Statorblechpaket 12 Wärme auf die Kühlrohre 44 übertragen werden, wodurch eine Kühlung des Statorblechpaketes 12 erfolgt.

In der in Fig. 4 gezeigten Anordnung weist die elektrische 65 Maschine 2 eine Rotorwelle 4 auf, die drei sichelförmig gebogene Stege 46 besitzt. Die sichelförmig geschwungene Form der Stege 46 erlaubt ein hohes Arbeitsvermögen be-

züglich der aufzunehmenden Spannungsenergie beim Einpreßvorgang der Stegwelle 4 in das Blechpaket 18. Dabei können Setzungen und Fertigungstoleranzen egalisiert bzw. aufgefangen werden.

Die Kühlrohre 48 sind in der hier gezeigten Ausführungsform mit einem rechtwinkligen Querschnitt versehen. Die Lagerung 50, die hier als Rollenlager ausgeführt ist, weist hinter einer Kappe 52 ein Fettdepot auf.

In der Fig. 6 befinden sich innerhalb der Zwischenwelle Fig. 8 eine elektrische Maschine mit schneckenförmiger 10 26 keine Stege, sondern Lüftereinrichtungen 54, wobei in der hier gezeigten Anordnung an jedem axialen Ende der Zwischenwelle 26 eine Einrichtung 54 vorgesehen ist. Der Innenring 56 der Lüftereinrichtung 54 ist über eine Verzahnung 58 drehfest mit der Rotorwelle 4 verbunden (siehe Fig. 7). Der Außenring 60 ist über eine Verzahnung 62 drehfest mit der Zwischenwelle 26 verbunden. Die Flügel 64 der Lüftereinrichtung 54 transportieren das erste Kühlmedium, auch hier vorzugsweise Luft, durch die hohle Zwischenwelle 26 bzw. das Rotorblechpaket 18. Die Berührungsflächen zum Wärmeübergang zwischen Zwischenwelle 26 und Rotorwelle 4 sind hier sehr begrenzt.

> Die in der Fig. 8 gezeigte Ausführungsform weist eine Rotorwelle 4 auf, die wie ein Schneckenförderer geformt ist. Die Stege sind schneckenförmig gewunden und können so bei Rotation das erste Kühlmedium durch die hohle Zwischenwelle 26 fördern. Auch hier beschränkt sich die Berührungsfläche zwischen der Zwischenwelle 26 und der Rotorwelle 4 auf quasi linienförmige Berührungsflächen entlang der Stege, so daß der Wärmeübergang weitgehend gering gehalten werden kann. Gleichzeitig kann wie bei allen vorher beschriebenen Ausführungsformen das Material der Rotorwelle 4 so gewählt sein, daß eine schlechte Wärmeleitung erzielt wird. Als derartige Materialien eignen sich insbesondere hochlegierte Stähle oder Titan.

> In den Fig. 9 bis Fig. 12 werden unterschiedliche Ausgestaltungen des Wärmetauschers 36 beschrieben.

> In der Fig. 9 sind die Kühlrohre 44 so angeordnet, daß sie nur über einen Teil ihres Umfanges im Gehäuseteil 40 eingebettet sind. Der andere Teil des Umfanges strahlt die vorhandene Wärme in Richtung auf die Kühlrippen 38 ab, die in einer Kühlwanne 66 angeordnet sind, die wiederum von außen gekühlt wird. Die Kühlwanne 66 ist mit dem Gehäuse 10 verbunden. Die Fig. 11 zeigt einen Schnitt durch den Wärmetauscher 36 nach Fig. 9. Die Kühlrohre 44 ragen bis nahe an die Kühlrippen 38 heran, so daß die Wärme gut aufgenommen werden kann. Mit Verschraubungen 68 ist die Kühlwanne 66 an das Gehäuse 10 angeschraubt.

> Auch in der Fig. 10 sind die Kühlrohre 44 so angeordnet, daß sie nur über einen Teil ihres Umfanges im Gehäuseteil 40 eingebettet sind. Der andere Teil des Umfanges strahlt die vorhandene Wärme in Richtung auf die Kühlrippen 38 ab, die in einer Kühlwanne 66 angeordnet sind. Die Kühlwanne 66 ist mit dem Gehäuse 10 verbunden. Mit den Kühlrohren 44 sind hier in Strichen dargestellte Kühlrohre 70 verbunden, die sich innerhalb des Bereichs der Kühlrippen 38 befinden und diese durchdringen und die die Kühlrohre 44 unter einem Winkel von 90° kreuzen. Dabei durchziehen die Kühlrohre 70 vorzugsweise die Kühlrippen 38 in der Form eines Mäanders und sind am Anfang und Ende mit den Kühlrohren 44 verbunden. Die Kühlrohre 70 können auch von einem niedrig temperierten Kühlmedium durchflossen sein, das von außerhalb dem Motor zugeführt wird.

> Die Fig. 12 zeigt einen Schnitt durch den Wärmetauscher 36 nach Fig. 10. Die Kühlrohre 44 ragen bis nahe an die Kühlrippen 38 heran, so daß die Wärme gut aufgenommen werden kann. Die Kühlrippen 38 bilden hier einen separaten Kühler 72, der in der Kühlwanne 66 angeordnet ist. Die Kühlrippen 38 sind von den Kühlrohren 70 durchzogen, wo-

6

bei die Strömung des zweiten Kühlmediums in je zwei nebeneinander liegenden Kühlrohren 70 jeweils in die entgegengesetzte Richtung erfolgt. Mit Verschraubungen 68 ist die Kühlwanne 66 an das Gehäuse 10 angeschraubt.

Rotor und Stator können in kompakter Bauweise ausgeführt werden und damit eine hohe Ausnutzung der Maschine erreicht werden. Die elektrischen Leistungsdaten des Rotors werden in der erfindungsgemäßen Maschine nicht beeinflußt. Die Luftansaugung in der Nähe der Wellenmitte ist für die Druckerzeugung der Lüftung von Vorteil.

Bezugszeichen

2 elektrische Maschine 15 4 Rotorwelle 6 Lagerung 8 Lagerung 10 Gehäuse 11 Verzahnung 20 12 Statorblechpaket 14 Statorwicklung 16 Luftspalt 18 Rotorblechpaket 20 Metallstab 22 Verschraubung 25 24 Kappe 26 Zwischenwelle 28 Steg 29 Aussparung 30 Zwischenraum 30 32 Lüfterrad 34 Blechring 36 Wärmetauscher 38 Kühlrippe 35 40 Gehäuseteil 42 Deckel 44 Kühlrohr 46 Steg 48 Kühlrohr 50 Lagerung 40 52 Kappe 54 Lüftereinrichtung 56 Innenring 58 Verzahnung 60 Außenring 62 Verzahnung 64 Flügel 66 Kühlwanne 68 Verschraubung 50 70 Kühlrohr 72 Kühler

Patentansprüche

1. Elektrische Maschine (2) mit einem außenliegenden 55 Stator und einem innenliegenden, drehbar gelagerten Rotor, der ein Rotorblechpaket (18) und eine mit dem Rotorblechpaket (18) drehfest verbundene Rotorwelle (4) aufweist, dadurch gekennzeichnet, daß der Rotor hohl ausgebildet ist und in dem Bereich zwischen Rotorblechpaket (18) und Rotorwelle (4) ein Kühlmedium hindurch geführt werden kann.

Elektrische Maschine (2) nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Rotorblechpaket (18) und der Rotorwelle (4) eine hohle Zwischenwelle 65 (26) vorgesehen ist, auf der das Rotorblechpaket (18) angeordnet ist.

3. Elektrische Maschine (2) nach Anspruch 1 oder 2,

dadurch gekennzeichnet, daß die Rotorwelle (4) als eine Stegwelle ausgebildet ist, die an ihrem Umfang eine Anzahl von Stegen (28, 46) aufweist.

- 4. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Rotorwelle (4) an wenigstens einem ihrer axialen Enden Lüftereinrichtungen (32) aufweist zur Vergrößerung des Fördervolumens oder des Förderdruckes des Kühlmediums.
- 5. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Lüftereinrichtungen (32) am Ende der Rotorwelle (4) als ein Lüfterrad ausgebildet ist.
- 6. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zwischen der Rotorwelle (4) und der Zwischenwelle (26) bzw. dem Rotorblechpaket (18) wenigstens eine Lüftereinrichtung (54) vorgesehen ist zur Förderung des Kühlmediums.
- 7. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rotorwelle (4) Stege (28, 46) aufweist, die in Form von Leitradschaufeln ausgebildet sind.
- 8. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rotorwelle (4) in Form eines Schneckenförderers ausgebildet ist.
- 9. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Rotorwelle (2) und die hohle Zwischenwelle (26) bzw. das Rotorblechpaket (18) zur Bildung kleiner Wärmeübergangsflächen nur an nahezu linienförmigen Berührungflächen aneinander anstoßen.
- 10. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zur Bildung einer Rotorwelle (4), die viel Kühlmedium zwischen sich und der Zwischenwelle (26) bzw. dem Rotorblechpaket (18) vorbeiführen läßt bei gleichzeitiger ausreichender Stabilität, der Querschnitt der Rotorwelle (4) in der Form eines Sterns mit vier Stegen (28) ausgebildet ist.
- 11. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zur Bildung einer Rotorwelle (4), die viel Kühlmedium zwischen sich und der Zwischenwelle (26) bzw. dem Rotorblechpaket (18) vorbeiführen läßt und zur Bildung einer großen Wärmeübergangsfläche bei gleichzeitiger hoher Aufnahme von Spannungsenergie, die Rotorwelle (4) in der Form von drei sichelförmigen Stegen (46) ausgebildet ist.
- 12. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Stege (28, 46) unterbrochen sind und nicht auf ihrer gesamten Länge an der Zwischenwelle (26) bzw. dem Rotorblechpaket (18) anliegen.
- 13. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Rotorwelle (4) als separates Gesenkschmiedeteil oder Feingußteil gefertigt ist und in die hohle Zwischenwelle (26) bzw. das Rotorblechpaket (18) zur Erreichung eines Preßsitzes eingepreßt ist.
- 14. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Rotorwelle (4) aus einem schlecht wärmeleitenden Material hergestellt ist.
- 15. Elektrische Maschine (2) nach Anspruch 14, dadurch gekennzeichnet, daß das schlecht wärmeleitende Material ein hochlegierter Stahl ist.

16. Elektrische Maschine (2) nach Anspruch 14, dadurch gekennzeichnet, daß das schlecht wärmeleitende Material Titan ist.

17. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß Elemente 5 (34) zur Unterstützung einer drallfreien Führung des Kühlmediums vorgesehen sind.

18. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß ein Wärmetauscher (36) in die elektrische Maschine (2) integriert 10 ist.

19. Elektrische Maschine (2) nach Anspruch 18, dadurch gekennzeichnet, daß der Wärmetauscher (36) Kühlrohre (44, 48) aufweist, die den Stator umgeben.
20. Elektrische Maschine (2) nach Anspruch 19, dadurch gekennzeichnet, daß die Kühlrohre (44, 48) zur Wärmeübertragung mit Kühlrippen (38) in Verbindung stehen

21. Elektrische Maschine (2) nach Anspruch 20, dadurch gekennzeichnet, daß die Kühlrippen (38) in einem separaten Bauteil angeordnet sind, das in Form einer Kühlwanne (66) an die elektrische Maschine (2) montierbar ist.

22. Elektrische Maschine (2) nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß in den Kühlrippen 25 (38) Kühlrohre (70) vorgesehen sind.

23. Elektrische Maschine (2) nach Anspruch 22, dadurch gekennzeichnet, daß die Kühlrohre (70) in den Kühlrippen (38) unter einem Winkel zu den Kühlrohren (44, 48) montiert sind, die den Stator umgeben.

24. Elektrische Maschine (2) nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß das Kühlmedium Luft ist.

Hierzu 8 Seite(n) Zeichnungen

35

45

40

50

55

60

- Leerseite -

Nu:
Int. :
Offenlegungstag:

Num Int. Cl.:

Offenlegungstag:

Nu Int. C.: Offenlegungstag:

Num Int. Cl.: Offenlegungstag:

Nu :

DE 199 05 540 A1 H 02 K 1/32

Offenlegungstag: 17. August 2000

Num
Int. Cl.:

Nu int. :
Offenlegungstag:

Num. Int. Cl.': Offenlegungstag:

