해시함수

https://youtu.be/Wia5lTlc9g0

Contents

해시함수란?

해시함수 안전성

전용 해시함수

• 특성 (1): 일방향성

• 특성 (2) : 쇄도 효과(Avalanche Effect) -> 무결성 검증, 전자서명

• 응용 (1) : 무결성 검증 멜로리 메시지 메시지 Hash Hash function function 해시값 해시값

- **역상 저항성 (Preimage resistance)** 어떤 해시 값이 주어졌을 때 h=H(m)를 만족하는 그 입력값 m을 찾는 것이 어렵다는 성질
 - 2ⁿ보다 적은 복잡도
 - Ex) SHA-1은 160bit의 해시값, 즉 2¹⁶⁰개의 메시지

- 제 2 역상 저항성 (Second preimage resistance)
 어떤 입력값 m이 주어졌을 때, 동일한 해시 값 h가 나오는 다른 입력값 m' 을 찾는 것이 어렵다는 성질 (즉, h=H(m) 일 때, h=H(m') 인 m'을 찾는 것이 어렵다는 성질)
 - 2ⁿ보다 적은 복잡도
 - Ex) SHA-1은 160bit의 해시값, 즉 2¹⁶⁰개의 메시지
 - 무결성 검증, 전자서명에 중요

- 충돌 저항성 (Collision resistance)
 - 같은 해시값을 갖는 서로 다른 입력값 m, m'을 찾는 것이 어렵다는 성질 (즉, H(m)=H(m') 을 만족하면서 m≠m 인 m, m'을 찾는 것이 어렵다는 성질)
 - 2^{n/2}보다 적은 복잡도 (생일 역설)
 - Ex) SHA-1은 160bit의 해시값, 즉 2⁸⁰개의 메시지
 - => SHA-1 은 약 2⁶⁰~2⁶³의 복잡도로 충돌쌍 공격이 가능!

• 생일 역설

$$egin{align} ar{p}(n) &= 1 imes \left(1 - rac{1}{365}
ight) imes \left(1 - rac{2}{365}
ight) imes \cdots imes \left(1 - rac{n-1}{365}
ight) \ &= rac{365 imes 364 imes 363 imes \cdots imes (365-n+1)}{365^n} \ &= rac{365!}{365^n (365-n)!} \end{split}$$

$$p(n) = 1 - \frac{365!}{365^n(365 - n)!}$$

약 40%~50%를 넘어가면 안전하지 않다고 판단!

n	p(n)
1	0.0%
5	2.7%
10	11.7%
20	41.1%
23	50.7%
30	70.6%
40	89.1%
50	97.0%
60	99.4%
70	99.9%
100	99.99997%
200	99.999999999999999999998%
300	(100 - (6×10 ⁻⁸⁰))%
350	(100 - (3×10 ⁻¹²⁹))%
365	$(100 - (1.45 \times 10^{-155}))\%$
366	100%
367	100%

• 생일 역설

임의의 어느 두 사람의 생일이 다를 확률은 => <u>365</u> * <u>364</u> = <u>365 * 364</u> = <u>364</u> 365 365 365 365

n명 중에 임의의 두 사람을 짝지을 수 있는 경우의 수는 $=> {}_{n}C_{2}$

즉, n명 중에 임의의 두 사람을 짝 지었을 때 생일이 같을 확률은 => p(n) = 1 - 364^{nC2} 365

• 충돌쌍 공격의 복잡도가 2^{n/2}인 이유

For
$$1 < i < j < 2^{n/2}$$

 $h_i = h_j$

• 충돌쌍 공격의 복잡도가 2^{n/2}인 이유

임의의 어느 두 해시값이 다를 확률은
$$=> \frac{2^n}{2^n} * \frac{2^n-1}{2^n} = \frac{2^n-1}{2^n} = 1+\frac{1}{2^n}$$

임의의 두 해시값을 짝지을 수 있는 경우의 수는 $=> 2^{n/2}C_2 = 2^{n-1}$

즉, n개의 해시값에서 임의의 두 해시값을 짝 지었을 때 해시값이 다를 확률은 $\bar{p}(n) = \begin{bmatrix} 1+\underline{1} \\ -2^n \end{bmatrix} 2^{n-1} = \begin{bmatrix} 1+\underline{1} \\ -2^n \end{bmatrix} - 2^n - 2^{-1} = e^{-1/2}$ n개의 해시값에서 임의의 두 해시값을 짝 지었을 때 해시값이 같을 확률은

1 - $e^{-1/2}$ = 9‡ 0.39

• 해시함수로써 사용되기 위해서 만들어진 함수 Ex) MD4, MD5, SHA-series(SHA-0, 1, 256, 384, 512)

	SHA-1	SHA-256	SHA-384	SHA-512
메시지 다이제스트 길이 (해시값)	160	256	384	512
메시지 최대 길이	2 ⁶⁴	2 ⁶⁴	2 ¹²⁸	2 ¹²⁸
블록 길이	512	512	1024	1024
단어 길이	32	32	64	64
단계 수	80	64	80	80
충돌쌍 공격에 대한 복잡도	2 ⁸⁰	2 ¹²⁸	2 ¹⁹²	2 ²⁵⁶

• SHA-1 {0, 1}* -> {0, 1}¹⁶⁰ (단, * < 2⁶⁴)

	SHA-1
메시지 다이제스트 길이 (해시값)	160
메시지 최대 길이	2 ⁶⁴
블록 길이	512
단어 길이	32
단계 수	80
충돌쌍 공격에 대한 복잡도	2 ⁸⁰

- SHA-1 과정
 - (1) 패딩

M = M||100..000|M의 길이정보| => 512의 최소의 배수

- (2) W₀ ~ W₇₉ 계산
- (3) 블록 처리
- (4) 단계 별 처리

	SHA-1
메시지 다이제스트 길이 (해시값)	160
메시지 최대 길이	2^{64}
블록 길이	512
단어 길이	32
단계 수	80
충돌쌍 공격에 대한 복잡도	2 ⁸⁰

• SHA-1 구조 (Merkle-Damgard 구조)

	SHA-1
메시지 다이제스트 길이 (해시값)	160
메시지 최대 길이	2 ⁶⁴
블록 길이	512
단어 길이	32
단계 수	80
충돌쌍 공격에 대한 복잡도	2 ⁸⁰

$$W_t = (W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3)} < < 1$$

$$A_0 = 67 \ 45 \ 23 \ 01$$

 $B_0 = EF \ CD \ AB \ 89$
 $C_0 = 98 \ BA \ DC \ FE$
 $D_0 = 10 \ 32 \ 54 \ 76$
 $E_0 = C3 \ D2 \ E1 \ F0$

$$K_0 \sim K_{19} = 5A 82 79 99$$

 $K_{20} \sim K_{39} = 6E D9 EB A1$
 $K_{40} \sim K_{59} = 8F 1B BC DC$
 $K_{60} \sim K_{79} = CA 62 C1 D6$

$$f_0 \sim f_{19} = (B \text{ and } C) \text{ or (not B and D)}$$

 $f_{20} \sim f_{39} = B \text{ xor C xor D}$
 $f_{40} \sim f_{59} = (B \text{ and C}) \text{ or (C and D) or (D and B)}$
 $f_{60} \sim f_{79} = B \text{ xor C xor D}$

Q&A

