

RFID based Attendance Monitoring System

Academy of Technology

Department of Applied Electronics and Instrumentation Engineering

Project Guide: Prof. Hiranmoy Mandal

♦ Presented By:

Snehasish Malik (11), Bratati Rout (43), Ahana Das (57),

Debapriya Bose (41), Hirak Das (36), Soumalya Sen (10).

TOPICS

INTRODUCTION

Proposed system

- Δ Automates the attendance taking process.
- ∆ Reduces time and increases efficiency.
- △ Enforces Security.
- Δ Scalable, easy to manage and easy to monitor.

Reasons for adopting this System

RFID

- Digital information.
- Unique ID.
- Contactless.
- Great response time.

Arduino

- Open-source.
- Widely used.
- Cheap.
- Easy to program & debug.

Implementing IoT

- Digitalization of the process.
- Complete monitoring over the internet.
- Very little human effort required.

THEORY

Technology Used

- RC522 RFID reader is used for reading information from the RFID tags/cards.
- Arduino Uno or Nano is used as the microcontroller.
- LoRa is used as the communication layer and protocol.
- LCD is used to display the necessary information for visual aid.

Arduino

Provides an Unique ID.

Open-source in hardware and software and Inexpensive.

Line of Sight not required.

- Does not require an external programmer.
- - Contactless information sharing.

 Arduino IDE is supported in almost every OS.
- Battery-less operation.

- Ease of Programming.
- Can detect through obstacles.
- A very large and growing community.

- ☐ It has deep indoor coverage and provides long range capabilities.
- □ Low-power optimised, very suitable for battery operated IoT applications.
- □ Low-cost end node. Hence, provides a cheap yet strong communication possibilities.
- ☐ High capacity. Millions of messages per base station / gateway.

\mathbb{LCD}

- ☐ It can display 16 characters in a single line.
- ☐ It can display 2 such lines at once.
- ☐ It is helpful to understanding the current status of the process.
- It provides visual info to the user for better interactivity.

WORKING

Reading info from RFID Card

© COM5

Starting the RFID Reader...
234420852
234420852

✓ Autoscroll Show timestamp

Picture showing the RFID reader detecting and printing the Tag value.

Communicating using LoRa

The LoRa module is used to send and receive data packets to and from end nodes.

The same is shown below:

```
COM4
LoRa Sender
Sending packet: 0
Sending packet: 1
Sending packet: 2
Sending packet: 3
Sending packet: 4
Sending packet: 5
Sending packet: 6
Sending packet: 7
Sending packet: 8
Sending packet: 9
Sending packet: 10
```

Figure showing LoRa sending data packets

```
COM3
LoRa Receiver
Received packet 'hello beta 1' with RSSI -121
Received packet 'hello alpha 32' with RSSI -121
Received packet 'hello beta 2' with RSSI -121
Received packet 'hello alpha 33' with RSSI -122
Received packet 'hello beta 3' with RSSI -121
Received packet 'hello alpha 34' with RSSI -121
Received packet 'hello beta 4' with RSSI -122
Received packet 'hello alpha 35' with RSSI -122
Received packet 'hello beta 5' with RSSI -122
Received packet 'hello alpha 36' with RSSI -122
Received packet 'hello beta 6' with RSSI -121
Received packet 'hello alpha 37' with RSSI -122
Received packet 'hello beta 7' with RSSI -121
Received packet 'hello alpha 38' with RSSI -122
Received packet 'hello beta 8' with RSSI -121
Received packet 'hello alpha 39' with RSSI -122
Received packet 'hello beta 9' with RSSI -121
Received packet 'hello alpha 40' with RSSI -122
```

Figure showing LoRa receiving data packets

Customising the LCD

We are able to customise the LCD based on our needs like:

- ☐ Displaying a Welcome message.
- Status of the process.
- Necessary numbers and values.

Flowchart of the process

CONCLUSION

Points to bring forward

Automation

- ♦ Saves time.
- ♦ Reduces errors.
- Less human effort.

Advantageous

- Digitalization of data.
- Low response time.
- Simultaneous registering of attendance.

Low Cost

- Most of the components and software are open-source.
- Relatively cheaper than other comparable/similar technologies available.

Low maintenance

- ♦ Battery operated.
- Very low power consuming components and techniques.

Better Operability

- Simple Interface.
- Easy to use & operate.
- ♦ Abstract design.

Future Scope

- ♦ Adopt in other organisation to cater their needs.
- Include parts to enhance or change certain requirements.

THANK YOU 🔊

