1. Introduction

B به A از B به B و B دو مجموعه غیر تهی باشند، تابع از A به B از A

 $f: A \rightarrow B$

رابطه ای است که به ازای هر $a \in Dom(f)$ ، مقدار f(a) ، مقدار ابطه ای است که به ازای هر

 $\{(a,f(a)) \mid a \in dom(f)\}$

توابع را نگاشت و یا تبدیل نیز می گویند. چون هر عضو $a \in A$ را فقط به یک عضو B منسوب می کنند. عضو a را آرگومان و $a \in A$ را تصویر a تابع a برای آرگومان a می نامند. a را تصویر a تحت a نیز می گویند.

مثال:

از هر عضو X فقط یک فلش خارج شده است. پس رابطه X فقط یک فلش خارج $f = \{(1,a),(2,a),(3,d),(4,c)\}$

یک تابع است.

مثال: برای $B=\{x,y,z\}$ و $A=\{1,2,3\}$ رابطه:

 $s = \{(1, x), (2, x), (1, y)\}$

تابع نیست زیرا:

 $S(1) = \{x, y\}$

یعنی از عنصر ۱، دو تا (بیش از یکی) فلش خارج شده است.

مثال: توابع در کامپیوتر اگر بیش از یک مقدار feturn کنند، آن ها را به صورت یک لیست بر می گردانند.

توابع را می توان به صورت فهرستی از **ورودی-خروجی** در نظر گرفت. بین آنها **روابط**ی پیدا کرده و **مدل (فرمول**) بدست آوریم. این روند در استقرای ریاضی استفاده می شود.

مثال: تابع همانی در A ، به صورت I_A نمایش می دهند:

 $I_A(a) = a$

است. $A \times A$ همان رابطه ی Δ که معرف عناصر قطر اصلی I_A

توابع ترکیبی: اگر g و g هرکدام تابع باشند. آن گاه gOf نیز تابع است: gOf(a)=g(f(a))

مثال: فرض كنيد:

$$f(a) = a+1$$

$$g(b) = 2b$$

تابع gOf را بدست آورید.

$$gOf(a) = g(f(a)) = g(a+1) = 2(a+1) = 2a+2$$

2. Functions' Attributes

فرض کنید f تابعی از A به B باشد.

Domain(f) = A :تابع f ، همه جا تعریف شده است اگر

Range(f) = B تابع f پوشا است اگر:

a = b آنگاه f(a) = f(b) آنگاه است اگر: هرگاه f آنگاه f تابع f آنگاه و تابع باشد.

مثال: فرض كنيد:

```
\begin{array}{l} \textit{alingl } A = \{ a \ 1 \ , \ a_2 \ , \ a_3 \} \\ \textit{alingl } A = \{ a \ 1 \ , \ a_2 \ , \ a_3 \} \\ \textit{alingl } A = \{ a \ 1 \ , \ a_2 \ , \ a_3 \} \\ \textit{alingl } A = \{ a \ 1 \ , \ a_2 \ , \ a_3 \} \\ \textit{b} \ 1, \ b \ 2, b \\ & \vdots \\ \textit{c} \ 1, \ c \\ & \vdots \\ \textit{d} \ 1, \ d \ 2, \ d \ 3, \ d \ 4 \\ & alignl B = \ \xi \end{array}
```

۳ ویژگی تابع (همه جا تعریف شده - پوشا - یک به یک) را در مورد روابط زیر بررسی کنید.

 $f = \{(a1,b2), (a2,b3), (a3,b1)\}$ $f = \{(a1,d2), (a2,d1), (a3,d4)\}$ $f = \{(b1,c2), (b2,c2), (b3,c1)\}$ $f = \{(d1,b1), (d2,b2), (d3,b1)\}$

حل:

تابع	همه جا تعریف شده	پوشا	یک به یک
A=a1,a2,a3	بله	بله	بله
$B = \{b1, b2, b3\}$	بله	خير	بله
$C = \{c1, c2\}$	بله	بله	خير
$D = \{d1, d2, d3, d4\}$	خير	خير	خير

مثال: فرض كنيد

$$A = \{1,2,3,4\}$$

$$B = \{a,b,c,d\}$$

$$f = \{(1,a),(2,a),(3,d),(4,c)\}$$

وارون f را بنویسید. مشخص کنید آیا f وارون پذیر است؟

حل: چون

$$f^{-1} = \{1, 2\}$$

یعنی ۲ تا (بیش از یکی) فلش از \mathbf{a} خارج شده، پس f^{-1} تابع نیست. بنابراین f وارون پذیر هم نیست.

: f را یک تناظر A و B خواهیم گفت، اگر f:A
ightarrow B و تناظر یک به یک: تابع

- همه جا تعریف شده
 - پوشا
 - یک به یک

باشد.

مثال: فرض كنيد:

$$A = \{a1, a2, a3\}$$

 $B = \{b1, b2, b3\}$

نشان دهید f1 خاصیت تناظر یک به یک دارد.

 $f1 = \{(a1,a2), (a2,b3), (a3,b1)\}$

هر ۳ خاصیت را دارد. بنابراین، تناظر یک به یک دارد.

3. The Dove Nest Principle

قضیه: فرض کنید: $f: A \to B$ تابعی با دامنه و برد متناهی باشد و

$$Dom(f) = |n|$$

 $Ran(f) = |n|$

در این صورت:

m=n اگر f یک به یک باشد، آن گاه: •

m < n اگر \mathbf{f} یک به یک نباشد، آنگاه: •

طبق قسمت دوم قضيه بالا، اصل لانه كبوتر را بدين گونه بيان مي كنيم.

اصل لانه کبوتر: اگر n کبوتر به m لانه منسوب شوند و m ، آن گاه دست کم یک لانه شامل ۲ کبوتر و یا بیشتر است.

مثال: نشان دهید از ۸ نفر دست کم روز تولد ۲ نفر از آن ها در یک روز هفته است.

حل:

8>7 طبق اصل لانه کبوتر، دست کم روز تولد دو نفر از آن ها در یک روز هفته است.

تعمیم اصل لانه کبوتر: اگر n کبوتر به m لانه منسوب شد. یکی از لانه ها دست کم، باید شامل

 $\lceil \frac{n}{m} \rceil$

كبوتر باشد.

مثال: از ۳۰ نفر

$$[\frac{30}{7}] = 5$$

۵ نفر رامی توان انتخاب نمود که روز تولد همه آن ها در یک روز هفته باشد.