MENU SEARCH INDEX

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 05219428

(43) Date of publication of application: 27.08.1993

(51)Int.CI.

HO4N 5/232 GO6F 15/62 HO4N 5/225

(21)Application number: 04047626

(22)Date of filing: 04.02.1992

(71)Applicant: (72)Inventor:

FUJI PHOTO FILM CO LTD
UENO HITOSHI

MATSUURA KOJI FUNAZAKI FUMIHIRO

(54) IMAGE PICKUP SYSTEM, ELECTRONIC CAMERA, COMPUTER SYSTEM CONTROLLING ELECTRONIC CAMERA, AND THEIR CONTROL METHOD

(57)Abstract:

PURPOSE: To reduce the transmission time of picture data from the electronic camera to the host computer. CONSTITUTION: Picture data picked up by the electronic camera 10 and representing an object image are stored in a picture memory 15. Upon the receipt of a pre-view picture command from a host computer 30, the picture data stored in the picture memory 15 are thined by 1/8 at a thining circuit 21 and reduced. The reduced picture data are sent to the host computer 30, and displayed on a display device 40 as a pre-view picture. A desired area and a magnification (resolution) are designated on the pre-view picture and a get command is given, then main picture data in a designated area and magnification are sent from the electronic camera 10 to the host computer 30.

LEGAL STATUS

[Date of request for examination]

20.11.1995

Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

2948974

02.07.1999

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

MENU

SEARCH

INDEX

(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2948974号

(45)発行日 平成11年(1999) 9月13日

(24)登録日 平成11年(1999)7月2日

(51) Int.Cl. ⁸		識別記号		F I			
H 0 4 N	5/232		<u> </u>	H04N	5/232	. Z	
G06T	1/00	·			5/225	Z	
H 0 4 N	5/225	•		G06F	15/62	320 P	

請求項の数28(全 24 頁)

(21)出願番号	特願平4-4762 6	(73)特許権者	000005201
•		`	富士写真フイルム株式会社
(22)出顧日	平成4年(1992)2月4日		神奈川県南足柄市中沼210番地
,	, , , , , , , , , , , , , , , , , , , ,	(72)発明者	上野 仁志
(65)公開番号	特開平5-219428		東京都港区西麻布2丁目26番30号 富士
(43)公開日	平成5年(1993) 8月27日		写真フイルム株式会社内
等 查 請求日	平成7年(1995)11月20日	- (72)発明者	松浦 康治
日本田山田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	+m; +(1330)11/12011	(10))0934	東京都港区西麻布2丁目26番30号 富士
•			写真フイルム株式会社内
	•	(70) Ph 117 +	
		(72)発明者	舟崎 文博
			東京都港区西麻布 2 丁目26番30号 富士
			写真フイルム株式会社内
•		(74)代理人	弁理士 牛久 健司
		審査官	杉山 務
			品数百に締ぐ
	•		最終頁に続く

(57)【特許請求の範囲】

【請求項1】 被写体を撮影し、撮影した被写体像を表わす画像データを生成する電子的撮像処理手段を備えた電子カメラ、および表示装置と入力装置を備え、上記電子カメラと通信路により接続されたコンピュータ・システムから構成され、

上記電子カメラが,

上記電子的撮像処理手段によって生成された画像データ を記憶する画像メモリ.

上記画像メモリに記憶されている画像データによって表わされる画像の縮小画像を表わす縮小画像データを生成する縮小画像データ生成手段、および上記コンピュータ・システムからプレビュー指令が与えられたときに、上記縮小画像データ生成手段に縮小画像データを生成させ、この縮小画像データを上記コンピュータ・システム

2

に伝送する第1の応答手段を備え,

上記コンピュータ・システムが、

上記入力装置を通してプレビュー入力が与えられたとき に、上記プレビュー指令を上記電子カメラに伝送する第 1の指令手段、

上記プレビュー指令に応答して上記電子カメラの上記第 1の応答手段から伝送された縮小画像データを受信した ときに、その縮小画像データによって表わされるプレビュー縮小画像を上記表示装置に表示させる第1の表示制 10 御手段、

上記第1の表示制御手段による表示制御のもとに上記表示装置に表示された上記プレビュー縮小画像上において主画像を切出すべき領域を指定する主画像切出領域指定手段, および上記主画像切出領域指定手段によって指定された領域に対応する上記主画像を表わす画像データを

取込むためのゲット入力を与えるための手段を備えてい る, 撮像システム。

【請求項2】 上記コンピュータ・システムの上記第1 の指令手段が上記プレビュー指令に先だち撮影指令を上 記電子カメラに伝送するものであり,

上記電子カメラが、上記撮影指令に応答して上記電子的 撮像処理手段に被写体像の撮影を開始するよう制御する 撮影制御手段をさらに備えている,

請求項1に記載の撮像システム。

【請求項3】 上記電子カメラが、

主画像の倍率と主画像を切出すべき領域とを指定するデ ータを含むゲット指令が上記コンピュータ・システムか ら与えられたときに、指定された領域の画像データにつ いて指定された倍率の主画像データを作成して上記コン ピュータ・システムに伝送する第2の応答手段をさらに 備え.

上記コンピュータ・システムが,

上記グット指令に応答して上記電子カメラの上記第2の 応答手段から伝送された主画像データを受信したとき に、この主画像データによって表わされる主画像を上記 20 接続されている、請求項1に記載の撮像システム。 表示装置に表示させる第2の表示制御手段をさらに備え ている.

請求項1に記載の撮像システム。

【請求項4】 上記第2の応答手段は、指定された倍率 が1以下のときには、上記画像縮小手段に上記画像メモ リに記憶されている画像データを指定された倍率で縮小 させることにより主画像データを作成するものである、 請求項3に記載の撮像システム。

【請求項5】 上記電子カメラが、被写体像を拡大して 結像させるズーム機構と、上記ズーム機構による拡大倍 30 率を検知する手段とをさらに備え、

上記ズーム機構によって被写体像が拡大されているとき には上記コンピュータ・システムの上記入力装置におい て1を超える倍率の指定が可能である。

請求項3に記載の撮像システム。

【請求項6】 上記コンピュータ・システムの表示装置 において、上記プレビュー縮小画像と上記主画像とが別 個の表示領域に表示される, 請求項3に記載の画像シス テム。

【請求項7】 上記コンピュータ・システムが内部主メ モリと外部記憶装置とをさらに備え,

上記入力装置が上記内部主メモリと外部記憶装置のいず れか一方を選択する選択手段をさらに備え、

上記コンピュータ・システムが、受信した主画像データ を, 上記選択手段による選択に応じて, 上記内部主メモ リまたは外部記憶装置のいずれか一方に記憶させる記憶 制御手段を備えている.

請求項3に記載の撮像システム。

【請求項8】 上記コンピュータ・システムが、上記内 部主メモリの残容量と受信した主画像データの容量とを 50 テムから与えられたときに、指定された領域の画像デー

算出し、これらの容量を上記表示装置に表示するように 制御する手段をさらに備えている、請求項7に記載の撮 像システム。

【請求項9】 上記コンピュータ・システムが、上記電 子カメラの電子的撮像処理手段による被写体像の撮影の ための制御パラメータを上記入力装置において設定しか つ設定された制御パラメータを上記電子カメラに伝送す る制御パラメータ指令手段をさらに備え,

上記電子カメラの上記電子的撮像処理手段は,上記制御 10 パラメータ指令手段によって与えられた制御パラメータ に応じて撮像処理を実行する、

請求項1に記載の撮像システム。

【請求項10】 上記電子カメラに、上記電子的撮像処 理手段によって撮像された被写体像を表示するモニタ表 示装置が設けられている、または接続されている、請求 項1に記載の撮像システム。

【請求項11】 上記コンピュータ・システムに、上記 電子カメラの上記電子的撮像処理手段によって撮像され た被写体像を表示するモニタ表示装置が設けられまたは

上記表示装置,入力装置,第1の指令 【請求項12】 手段および上記第1の表示制御手段が上記電子カメラに 設けられ、

上記電子カメラに通信路により接続されたコンピュータ ・システムには内部主メモリおよび外部記憶装置が設け られている,

請求項1に記載の撮像システム。

【請求項13】 上記表示装置,入力装置,第1の指令 手段ならびに上記第1および第2の表示制御手段が上記 電子カメラに設けられ、

上記電子カメラに通信路により接続されたコンピュータ ・システムには内部主メモリおよび外部記憶装置が設け られている。

請求項3に記載の撮像システム。

【請求項14】 コンピュータ・システムと接続可能か つ交信可能であり、

被写体を撮影し、撮影した被写体像を表わす画像データ を生成する電子的撮像処理手段、

上記電子的撮像処理手段によって生成された画像データ 40 を記憶する画像メモリ,

上記画像メモリに記憶されている画像データによって表 わされる画像の縮小画像を表わす縮小画像データを生成 する縮小画像データ生成手段,

接続された上記コンピュータ・システムからプレビュー 指令が与えられたときに、上記縮小画像データ生成手段 に縮小画像データを生成させ、この縮小画像データを上 記コンピュータ・システムに伝送する第1の応答手段, および主画像の倍率と主画像を切出すべき領域とを指定 するデータを含むゲット指令が上記コンピュータ・シス

タについて指定された倍率の主画像データを作成して上 記コンピュータ・システムに伝送する第2の応答手段, を備えた電子カメラ。

【請求項15】 接続された上記コンピュータ・システ ムから与えられる撮影指令に応答して上記電子的撮像処 理手段に被写体像の撮影を開始するよう制御する撮影制 御手段をさらに備えている,請求項14に記載の電子カメ

【請求項16】 電子カメラと接続可能かつ交信可能で あり,

表示装置,

プレビュー入力を与えるための入力装置,

上記入力装置を通してプレビュー入力が与えられたとき に、プレビュー指令を上記電子カメラに伝送する第1の 指令手段,

上記プレビュー指令に応答して上記電子カメラから伝送 された縮小画像データを受信したときに、その縮小画像 データによって表わされるプレビュー縮小画像を上記表 示装置に表示させる第1の表示制御手段,

上記第1の表示制御手段による表示制御のもとに上記表 20 プレビュー指令を上記電子カメラに与え、 示装置に表示された上記プレビュー縮小画像上において 主画像を切出すべき領域を指定する主画像切出領域指定 手段、および上記主画像切出領域指定手段によって設定 された領域に対応する上記主画像を表わす画像データを 取込むためのゲット入力を与えるための手段,

を備えたコンピュータ・システム。

【請求項17】 上記第1の指令手段が上記プレビュー 指令に先だち撮影指令を上記電子カメラに伝送するもの である、請求項16に記載のコンピュータ・システム。

【請求項18】 上記入力装置を通して、主画像の倍率 30 と, 主画像を切出すべき領域の指定と, 主画像のゲット 入力とが与えられたときに、この与えられた倍率と領域 とを指定するデータを含むゲット指令を上記電子カメラ に伝送する第2の指令手段、および上記ゲット指令に応 答して上記電子カメラから伝送された主画像データを受 信したときに、この主画像データによって表わされる主 画像を上記表示装置に表示させる第2の表示制御手段を さらに備えている.

請求項16に記載のコンピュータ・システム。

に設けられ、

上記入力装置に上記内部主メモリと外部記憶装置のいず れか一方を選択する選択手段がさらに設けられ、

受信した主画像データが、上記選択手段による選択に応 じて、上記内部主メモリまたは外部記憶装置のいずれか 一方に記憶される,

請求項16に記載のコンピュータ・システム。

【請求項20】 上記電子カメラによる被写体像の撮影 のための制御パラメータを上記入力装置において設定し

する制御パラメータ指令手段をさらに備えている、請求 項16に記載のコンピュータ・システム。

【請求項21】 被写体を撮影し、撮影した被写体像を 表わす画像データを生成する電子カメラ,および上記電 子カメラと接続されたコンピュータ・システムから構成 される撮像システムの制御方法であり,

上記電子カメラが,

上記コンピュータ・システムから撮影指令が与えられた ときに、被写体を撮影し、撮影した被写体像を表わす画 10 像データを生成し、この生成した画像データを画像メモ リに記憶し.

上記コンピュータ・システムからプレビュー指令が与え られたときに、上記画像メモリに記憶されている画像デ ータによって表わされる画像の縮小画像を表わす縮小画 像データを生成し、この縮小画像データを上記コンピュ ータ・システムに転送するよう制御し,

上記コンピュータ・システムが、

撮影入力が与えられたときに上記撮影指令を上記電子カ メラに与え, プレビュー入力が与えられたときに, 上記

上記プレビュー指令に応答して上記電子カメラから転送 された縮小画像データを受信したときに、その縮小画像 データによって表わされるプレビュー縮小画像を表示装 置に表示させるよう制御し,

上記表示装置に表示された上記プレビュー縮小画像上に おいて主画像を切出すべき領域を指定し、

主画像のゲット入力が与えられたときに、指定された領 域を表わす画像データを取込むためのゲット指令を上記 電子カメラに転送する,

撮像システムの制御方法。

【請求項22】 上記コンピュータ・システムが内部主 メモリと外部記憶装置とをさらに備えている撮像システ ムにおいて.

上記コンピュータ・システムが、受信した主画像データ を, 選択入力に応じて, 上記内部主メモリまたは外部記 憶装置のいずれか一方に記憶するよう制御する,

請求項21に記載の撮像システムの制御方法。

【請求項23】 上記コンピュータ・システムが、上記 電子カメラの電子的撮像処理手段による被写体像の撮影 【請求項19】 内部主メモリと外部記憶装置とがさら 40 のための制御パラメータを設定しかつ設定した制御パラ メータを上記電子カメラに転送し,

> 上記電子カメラが上記コンピュータ・システムによって 与えられた制御パラメータに応じて撮像処理を実行する よう制御する.

請求項21に記載の撮像システムの制御方法。

【請求項24】 コンピュータ・システムと接続可能か つ交信可能な電子カメラが,

上記コンピュータ・システムから撮影指令が与えられた ときに,被写体を撮影し,撮影した被写体像を表わす画 かつ設定された制御パラメータを上記電子カメラに伝送 50 像データを生成し、この生成した画像データを画像メモ

リに記憶し.

上記コンピュータ・システムからプレビュー指令が与え られたときに、上記画像メモリに記憶されている画像デ ータによって表わされる画像の縮小画像を表わす縮小画 像データを生成し、この縮小画像データを上記コンピュ ータ・システムに転送し,

主画像を切出すべき領域を指定するデータを含むゲット 指令が上記コンピュータ・システムから与えられたとき に、指定された領域の画像データについて指定された倍 ムに転送する、電子カメラの制御方法。

【請求項25】 上記コンピュータ・システムから与え られた撮影指令に応答して被写体像の撮影を開始するよ う制御する、請求項24に記載の電子カメラの制御方法。

【請求項26】 電子カメラと接続可能かつ交信可能な コンピュータ・システムが,

撮影入力が与えられたときに撮影指令を上記電子カメラ に与え.

プレビュー入力が与えられたときに、プレビュー指令を 上記電子カメラに転送し、

上記プレビュー指令に応答して上記電子カメラから転送 された縮小画像データを受信したときに、その縮小画像 データによって表わされるプレビュー縮小画像を表示装 置に表示するよう制御し,

上記表示装置に表示された上記プレビュー縮小画像上に おいて主画像を切出すべき領域を指定し、

主画像のゲット入力とが与えられたときに、指定された 領域を表わす画像データを取込むためのゲット指令を上 記電子カメラに伝送し,

上記ゲット指令に応答して上記電子カメラから伝送され 30 た主画像データを受信したときに、この主画像データに よって表わされる主画像を表示装置に表示するよう制御

コンピュータ・システムの制御方法。...

【請求項27】 内部主メモリと外部記憶装置とがさら に設けられたコンピュータ・システムにおいて、

受信した主画像データを、選択入力に応じて、上記内部 主メモリまたは外部記憶装置のいずれか一方に記憶する よう制御する.

請求項26に記載のコンピュータ・システムの制御方法。 【請求項28】 上記電子カメラによる被写体像の撮影 のための制御パラメータを設定しかつ設定した制御パラ メータを上記電子カメラに転送するよう制御する、請求 項26に記載のコンピュータ・システムの制御方法。

【発明の詳細な説明】

[0001]

【技術分野】この発明は撮像システム、電子カメラおよ び電子カメラを制御するコンピュータ・システム、なら びにそれらの制御方法に関する。

[0002]

【背景技術】被写体を撮影し、撮影した被写体像を表わ すアナログ映像信号またはディジタル画像データを出力 する電子カメラには、ビデオ・カメラ、スチル・ビデオ カメラ(電子スチル・カメラ)、ディジタル・スチル ・ビデオ・カメラ (ディジタル電子スチル・カメラ) 等

【0003】これらの電子カメラでは例外なく、シャッ タ・レリーズはもちろん、露光量(絞り値およびシャッ タ速度), ホワイト・バランス等の撮像および画像処理 率の主画像データを作成して上記コンピュータ・システ 10 のためのいわゆるカメラ制御パラメータの設定(自動設 定の場合を除いて) は電子カメラに設けられたスイッチ ・ボタン等を用いて電子カメラ側で行なわれていた。

> 【0004】電子カメラ、とりわけディジタル画像デー タが得られるディジタル・タイプの電子カメラはコンピ ュータ・システムと結合された応用の展開が可能である ので、最近注目を集めている。たとえば、電子カメラか、 ら得られる被写体像を表わす画像データをコンピュータ ・システムに設けられている光ディスク、磁気ディスク 等の記録媒体に保存したり、これらを編集することによ 20 り、ニュー・メディアを作成することができる。このニ ュー・メディアは画像による広報,広告,資料の提示, 情報の提供等に利用することができる。

【0005】このようなニュー・メディア作成のために は電子カメラで撮影により得られた画像データをコンピ ュータ・システムに伝送しなければならない。一般に画 像データは大容量のものであるから伝送のために長い時 間がかかる。

【0006】電子カメラで撮影した被写体像を表わす画 像データを記録媒体に格納する前に, 被写体が適切に撮 影されているかどうかを調べることは重要である。撮影 が適切でなければ撮影のやり直しが必要である。

【0007】被写体が適切に撮影されているかどうかを 視覚的に調べるためには、電子カメラから得られるディ ジタル画像データによって表わされる被写体像を表示装 置に表示する必要がある。被写体像をコンピュータ・シ ステムに設けられた表示装置の画面上に表示しようとす ると、全画像データを電子カメラからコンピュータ・シ ステムに伝送することが必要となり、上述のように伝送 時間が長くかかり能率的ではない。

40 【0008】上述のように撮影のためのカメラ制御パラ メータの設定は電子カメラにおいて行なわれる。撮影条 件を変更するたびに、コンピュータ・システムの操作者 が電子カメラの設置場所まで行って調整するのは煩雑で

【0009】さらに、電子カメラによって撮影された被 写体像の全体を常に記録媒体に格納するのが好ましいと は限らない。撮影された被写体像の一部のみしか必要な い場合もある。必要な画像データのみを切出して記録媒 体に格納すればその容量の節約になる。また、記録媒体 50 に格納する画像を必要に応じて拡大、縮小することも要 求される。

【0010】このような観点から、電子カメラとコンピュータ・システムとを結合させて構成される撮像システムでは、撮影のための操作、画像データ通信のための操作、画像データの記録媒体への格納のための操作等をすべてコンピュータ・システムにおいて行なえるようにすることが望まれる。

[0011]

【発明の開示】この発明の主な目的は、撮影画像の確認 のための、および記録媒体への格納のための画像データ の電子カメラからコンピュータ・システムへの伝送を迅 速に短時間で行なえるようにすることにある。

【0012】この発明の他の目的は、記録媒体に格納するために適するように加工された画像データを電子カメラから得ることができるようにすることにある。

【0013】この発明のさらに他の目的は、電子カメラによる撮影および撮影のための条件の設定をコンピュータ・システムにおいてできるようにすることにある。

【0014】この発明による撮像システムは、被写体を撮影し、撮影した被写体像を表わす画像データを生成する電子的撮像処理手段を備えた電子カメラ、および表示装置と入力装置を備え、上記電子カメラと通信路により接続されたコンピュータ・システムから構成される。

【0015】上記電子カメラが、上記電子的撮像処理手段によって生成された画像データを記憶する画像メモリ、上記画像メモリに記憶されている画像データによって表わされる画像の縮小画像を表わす縮小画像データを生成する縮小画像データ生成手段、および上記コンピュータ・システムからプレビュー指令が与えられたときに、上記縮小画像データ生成手段に縮小画像データを生 30成させ、この縮小画像データを上記コンピュータ・システムに伝送する第1の応答手段を備えている。

【0016】上記コンピュータ・システムは、上記入力 装置を通してプレビュー入力が与えられたときに、上記 プレビュー指令を上記電子カメラに伝送する第1の指令 手段、上記プレビュー指令に応答して上記電子カメラの 上記第1の応答手段から伝送された縮小画像データを受 信したときに、その縮小画像データによって表わされる プレビュー縮小画像を上記表示装置に表示させる第1の 表示制御手段、上記第1の表示制御手段による表示制御 のもとに上記表示装置に表示された上記プレビュー縮小 画像上において主画像を切出すべき領域を指定する主画 像切出領域指定手段、および上記主画像切出領域指定手 段によって指定された領域に対応する上記主画像を表わ す画像データを取込むためのゲット入力を与えるための 手段を備えている。

【0017】この発明はまた、上記撮像システムの制御方法、上記撮像システムを構成する電子カメラおよびコンピュータ・システム、ならびにそれらの制御方法を提供している。

10

【0018】この発明によると、コンピュータ・システ ムから電子カメラにプレビュー指令を与えると、電子カ メラにおいて撮像された被写体像の縮小画像を表わす縮 小画像データが生成される。生成された縮小画像データ がコンピュータに伝送される。表示装置に縮小画像が表 示される。画像データのデータ量は少ないので伝送時間 を短縮することができる。表示されたプレビュー縮小画 像を見て、良好な画像が得られているかどうかを判断す ることができる。さらに、コンピュータ・システムにお 10 いて、表示されたプレビュー縮小画像上において主画像 を切出すべき領域を指定することができる。この領域の 指定に応じて、指定された領域の主画像データを電子カ メラからコンピュータ・システムに送信するように、電 子カメラを構成できる。所望の領域の主画像データをコ ンピュータ・システムの表示装置に表示したり、記録媒 体に格納したりすることができるようにもなる。 -

【0019】この発明の好ましい実施態様においては、 上記電子カメラは、主画像の倍率と主画像を切出すべき 領域とを指定するデータを含むゲット指令が上記コンピ 20-ュータ・システムから与えられたときに、指定された領 域の画像データについて指定された倍率の主画像データ を作成して上記コンピュータ・システムに伝送する第2 の応答手段をさらに備えている。

【0020】上記コンピュータ・システムは、上記入力 装置を通して、主画像の倍率と、主画像を切出すべき領 域の指定と、主画像のゲット入力とが与えられたとき に、この与えられた倍率と領域とを指定するデータを含 む上記ゲット指令を上記電子カメラに伝送する第2の指 令手段、および上記ゲット指令に応答して上記電子カメ ラの上記第2の応答手段から伝送された主画像データを 受信したときに、この主画像データによって表わされる 主画像を上記表示装置に表示させる第2の表示制御手段 をさらに備えている。

[0021]

【0022】また、電子カメラからコンピュータ・システムに伝送される主画像データは指定された領域内のもののみであるから、全領域の画像データに比べてデータ量が一般に小さく、伝送時間の短縮にも役立つ。

【0023】この発明のさらに他の実施態様においては、上記コンピュータ・システムは上記プレビュー指令に先だち撮影指令を上記電子カメラに伝送する。上記電子カメラは、上記撮影指令に応答して上記電子的撮像処理手段に被写体像の撮影を開始するよう制御する。

【0024】このようにして、コンピュータ・システムにおいて電子カメラのシャッタ・レリーズを行なうことができる。

【0025】この発明のさらに他の実施態様によると, 上記コンピュータ・システムは,上記電子カメラの電子 的撮像処理手段による被写体像の撮影のための制御パラ 50 メータを上記入力装置において設定しかつ設定された制 御パラメータを上記電子カメラに伝送する制御パラメー タ指令手段をさらに備えている。上記電子カメラの上記 電子的撮像処理手段は、上記制御パラメータ指令手段に よって与えられた制御パラメータに応じて撮像処理を実 行する。

【0026】コンピュータ・システムにおいて,電子カメラの撮影条件を表わす制御パラメータを設定することができるので,電子カメラにすべての撮影操作をコンピュータ・システムで行なうことができるようになる。

[0027]

【実施例】図1はこの発明の実施例を示すもので、撮像 システムの構成を示している。

【0028】撮像システムは、被写体OBを撮影し被写体像を表わす画像データを生成する電子カメデ10および電子カメラ10と通信路により接続されたホスト・コンピュータ30とから構成されている。電子カメラ10はたとえばディジタル電子スチル・カメラである。

【0029】電子カメラ10には被写体像を表示するためのモニタ表示装置25が接続されている。モニタ表示装置25は電子カメラ10と一体化されたビューファインダであってもよい。

【0030】ホスト・コンピュータ30には表示装置40が接続されており、表示装置40に電子カメラ10を用いて撮影した被写体像や、後に詳述するカメラ制御パラメータ、キャプチャ・コマンド等が表示される。またホスト・コンピュータ30には入力装置としてのキーボード36およびマウス37、ならびに画像データの記録のための光ディスク装置38が接続されている。

【0031】図2は図1に示す撮像システムの電気的構成を示すプロック図である。

【0032】電子カメラ10の撮影動作、画像データの加工および送信処理等はホスト・コンピュータ30から送信されるコマンドに基づいて動作するCPU17によって統括される。ホスト・コンピュータ30から送信されるコマンドの受信およびホスト・コンピュータ30への画像データの送信のために、電子カメラ10には通信インターフェイス22が含まれている。

【0033】電子カメラ10には被写体像を結像するための絞り、ズーム・レンズ機構等を含む撮像光学系11、被写体像の結像位置に配置され、撮影した被写体像を表わす映像信号を出力するCCD12、CCD12から出力される映像信号に、色分離、白バランス調整、黒バランス調整等を施してRGB信号を得るプロセス回路13が含まれている。撮像光学系11における絞りの制御およびズーム量の調整、CCD12におけるいわゆる電子シャッタ制御(ショット・タイミングおよびシャッタ速度の制御)ならびにプロセス回路13における白バランスおよび黒バランスの調整はカメラ制御レジスタ16から出力される制御信号にもとづいて行なわれる。

【0034】電子カメラ10にはさらに、プロセス回路13 50

12

から出力されるRGB信号をディジタル画像データに変換するアナログ/ディジタル (A/D) 変換回路14, A /D変換回路14において変換されたディジタル画像データを記憶する画像メモリ15, 画像を縮小するために適当な割合で1 画素分の画像データを間引く間引回路21ならびに主メモリ20が含まれている。主メモリ20にはホスト・コンピュータ30に送信する画像データを一時的に記憶する転送バッファ20A, ならびにズーム量の調整,シャッタ制御,白バランスおよび黒バランスの調整のための10 カメラ制御パラメータを記憶するカメラ制御パラメータ記憶部20Bが設けられている。画像メモリ15は少なくとも1フレーム分の画像データを記憶できる容量をもつ。【0035】さらに電子カメラ10には撮影した被写体像

【0035】さらに電子カメフ10には破影した被与体像をモニタ表示装置25に表示するためにディジタル画像データをアナログ映像信号に変換するディジタル/アナログ(D/A)変換回路23が含まれている。

【0036】ホスト・コンピュータ30にはCPU31が含まれており、CPU31によってホスト・コンピュータ30の動作が統括される。ホスト・コンピュータ30に接続さ20~れたキーボード36およびマウス37からCPU31に与えられる入力信号にもとづいてCPU31は後述する各種のデータ、コマンド等を作成する。

【0037】またホスト・コンピュータ30には通信インターフェイス33が含まれており、CPU31によって作成されたデータやコマンドの電子カメラ10への送信および電子カメラ10から送信される画像データの受信がこの通信インターフェイス33を通して行なわれる。

【0038】さらにホスト・コンピュータ30には主メモリ32および表示メモリ34が含まれている。主メモリ32に30 は、電子カメラ10から送信される画像データを記憶する転送バッファ32A、およびキーボード36またはマウス37によって表示装置40の画面上に設定された露光量、黒バランス、白バランスなどのカメラ制御パラメータを記憶するカメラ制御パラメータ記憶部32Bが含まれている。表示メモリ34には表示装置40に表示される画像、文字および記号を表わすデータが記憶される。

【0039】ホスト・コンピュータ30には光ディスク装置38が接続され、光ディスク装置38において画像データが光ディスクに記録される。

【0040】鎖線で示すようにホスト・コンピュータ30にモニタ表示装置25Aを付属させ、このモニタ表示装置25Aと電子カメラ10とを直接に接続し、電子カメラ10において撮影した被写体像をこのモニタ表示装置25Aに表示してホスト・コンピュータ30を操作しながら見ることができるようにしてもよい。

【0041】図3および図4はこの撮像システムにおける撮像、伝送、表示、記録等の処理手順を示すフローチャートであり、図3はホスト・コンピュータ30における処理手順を、図4は電子カメラにおける処理手順をそれぞれ示している。図5は表示装置40の画面に設定される

各種領域を示すものである。図6は表示装置40の画面に 設定される各種領域のうち一部の領域の表示例を示すも ので、主としてセットアップ領域の表示例を示してい る。図7から図21は表示装置40に表示される画面の例を 示している。

【0042】ホスト・コンピュータ30の電源が入れられ ると表示装置40に初期画面が表示される(図3ステップ 61) 。

【0043】表示装置40の画面には、図5に示すように メニュー表示領域106, セットアップ領域100, キャプ 10 チャ・コマンド入力領域102 , プレビュー画像表示領域 101. カメラ制御パラメータ表示領域104 , パラメータ 設定領域105 および主画像表示領域103 が必要に応じて 表示される。また図5には示されていないが、後述する ようにプレビュー画像表示領域101 にプレビュー画像を 表示したときにプレビュー画像の画素レベル・ヒストグ ラムを表示するためのヒストグラム・ウィンドウが表示 装置40の画面に表示される。初期画面にはメニュー表示 領域106, セットアップ領域100, キャプチャ・コマン ド入力領域102 , プレビュー画像表示領域101 およびカ メラ制御パラメータ表示領域104 が表示される。

【0044】メニュー表示領域106には「ファイル」, 「エディット」、「セットアップ」などのメニューが表 示される。「ファイル」は光ディスクに記録されている データを主メモリ32に転送する処理、主メモリ32に記憶 されているデータを光ディスクに転送する処理などを行 なうときにマウス37を用いてクリックされる。「エディ ット」は光ディスクに記録されているデータを読出して そのデータによって表わされる画像を特定の領域に表示 するときにマウス37を用いてクリックされる。「セット アップ」はカメラ制御パラメータを設定するときにクリ ックされる。

【0045】「セットアップ」をクリックすることによ り始まるカメラ制御データのセットアップ処理(図3ス テップ62) について、図6から図17を参照して以下に説 明する。カメラ制御パラメータのセットアップはホスト ・コンピュータ30と電子カメラ10とが通信しながら行な われる。

【0046】セットアップの項目には大別すると図6に 示すように、セレクトとアジャストとがある。セレクト にはインプット, フラッシュ, 露出, ポジ/ネガおよび LUT (ルックアップテーブル) の各項目が含まれる。 アジャストには露出、黒バランスおよび白バランスが含 まれる。「セットアップ」がクリックされると、これら の項目がセットアップ領域に表示される。

【0047】「インプット」は入力される画像データの 発生源、態様等を選択するときにクリックされる。「イ ンプット」がクリックされると、上記発生源、態様等を 表わす項目が表示される。図6には画像データの発生源 の一例として「カメラ」 (電子カメラ10を意味する) が 50 クトのうち, 「インプット」について「カメラ」が,

示されている。電子カメラ10から画像データを取込むと きにはこの「カメラ」がクリックされる。

【0048】「フラッシュ」はフラッシュ発光をさせる かどうかを設定するもので、「フラッシュ」がクリック されると「オン」および「オフ」が表示され、マウス37 を用いていずれか一方を選択することができる。

【0049】露光量の調整に関しては、電子カメラ10に おいて露出を自動的に調整するオート(AE)機能,ホ スト・コンピュータ30において操作者が露出を設定する リモート機能および電子カメラ10において操作者が露出 を設定するマニュアル機能の3種類がある。「露出」は 上記の3種類の機能のいずれかを選択するときにクリッ クされる。セレクトの「露出」がクリックされると、

「AE」、「リモート」および「マニュアル」が表示さ れ、操作者はマウス37を用いてこれらのうちのいずれか の機能を選択することができる。

【0050】「ポジ/ネガ」はポジティブ撮影(通常の 撮影)とするか、ネガティブ撮影(白、黒レベルを反転 したもので、ネガフィルムの撮影などに適している)と 20 するかを設定するもので、「ポジ/ネガ」がクリックさ れると「ポジ」および「ネガ」が表示され、いずれか一 方を選択することができる。

【0051】「LUT」は階調特性を設定するものであ る。調整可能な階調特性には「デフォルト」および「L UT1」~「LUT5」がある。「デフォルト」はあら かじめ定められた最も一般的な階調特性であり、「LU T1」~「LUT5」はこの撮影システムの利用者が任 意に定めることができる階調特性の種類を示す。「LU T」がクリックされると、「デフォルト」および「LU T1」~「LUT5」が表示され、いずれかが選択され る。

【0052】アジャストの「露出」は「リモート」モー ドで、すなわちホスト・コンピュータ30において露光量 を設定するときにクリックされる。「露出」がクリック されることにより表示装置40の表示画面のパラメータ設 定領域105 に露光量設定のために適した内容が表示さ れ、露出の設定がホスト・コンピュータ30において可能 となる。

【0053】「黒バランス」は黒バランスを調整するも のである。「黒バランス」がクリックされることにより 表示装置40の表示画面のパラメータ設定領域105 に黒バ ランス調整に適した画面が表示され、黒バランス調整が 可能となる。

【0054】「白バランス」は白バランス調整をするた めのものである。「白バランス」がクリックされること により表示装置40の表示画面のパラメータ設定領域105 に白バランス調整に適した画面が表示され、白バランス 調整が可能となる。

【0055】図7は、上述したセットアップ項目のセレ

40

「フラッシュ」について「オフ」が、「ポジ/ネガ」について「ポジ」が、「LUT」について「LUT1」がそれぞれ設定された状態の表示例を示しており、これらの設定された項目はカメラ制御パラメータ表示領域104に表示される。「セレクト」の5項目はどの順序で設定してもよいが、ここでは最後に「露出」が設定されることになるものとする。

【0056】露光量の調整のために「AE」,「リモート」または「マニュアル」のいずれかのモードを設定するために、セットアップ領域100に表示されるセレクト 10の「露出」をクリックすると、「AE」,「リモート」および「マニュアル」が表示される。マウス37を用いていずれかのモードが選択される。

【0057】たとえば、「リモート」がクリックされたとすると、図8に示すようにカメラ制御パラメータ表示領域104の「露出」に「リモート」と表示される。

【0058】上述したように「リモート」はホスト・コ る。スクロール・バー105 R, 105 Bの長さによって表 ンピュータ30において操作者が露光量を調整するモード わされる赤、青についての設定値はそれぞれ数字で表示 であるから、操作者は、図9に示すように「アジャス される。 ト」の「露出」をクリックする。すると、図10に示すよ 20 【0067】「OK」の表示がクリックされると、これ うに表示装置40の表示画面のパラメータ設定領域105 において黒バランス設定値が受信され、この設定値にし において黒バランス設定値が受信され、この設定値にし

【0059】露光量はこの実施例においては絞り値により調整される。シャッタ速度は固定である。もっともシャッタ速度も設定可能としてもよいのはいうまでもない。

【0060】図10に示すパラメータ設定領域105において、絞り値のレンジ (開放絞り値:オープンFおよび全閉絞り値:クローズF) および現在の絞り値 (現在値F) が表示される。現在値Fは電子カメラ10における絞 30りの現在の絞り値であり、電子カメラ10からホスト・コンピュータ30に伝送されてきたものが表示される。

【0061】操作者はマウス37を用いてスクロール・バー105 Aの長さを変えることにより所望の絞り値を設定することができる。スクロール・バー105 Aの長さによって表わされる絞り値は現在値として数字で表示される。操作者が「OK」の表示をクリックすると、そのときのスクロール・バー105 Aの長さによって表わされる校り値に設定される。設定された絞り値は、図11に示すようにカメラ制御パラメータ表示領域104 に表示される。設定された絞り値についてのセットアップ・データは電子カメラ10に送信され、カメラ制御パラメータ記憶領域20Bに記憶され、設定絞り値になるように絞りが調整される(図4ステップ81、82)。

【0062】パラメータ設定領域105 には「取消」の表示もあり、これをクリックすることにより設定絞り値をキャンセルすることができる。

【0063】次に黒バランス調整について説明する。

【0.064】図12に示すようにセットアップ領域100 に にしたがって表示される「黒バランス」がクリックされると、図13に 50 プ81,82)。

示すようにパラメータ設定領域105 に黒バランス調整に 適した内容が表示される。

16

【0065】「露出」に関しては上述したように「セレクト」の項目で「AE」、「リモート」および「マニュアル」のいずれかを選択することができたが、黒バランスに関しては「セレクト」の項目に含まれていない。そこで、黒バランス調整についても自動調整が選択できるようにパラメータ設定領域105には「オート」の表示が含まれている。操作者が「オート」をクリックすると、その旨がホスト・コンピュータ30から電子カメラ10に伝送され、電子カメラ10において自動的に黒バランス調整が行なわれる(図4ステップ81、82)。

【0066】黒バランス調整は赤と青について行なわれる。絞り値の設定と同じように、マウス37を操作してスクロール・バー105 R, 105 Bの長さを所望の値となるように調整することにより黒バランス調整が行なわれる。スクロール・バー105 R, 105 Bの長さによって表わされる赤、青についての設定値はそれぞれ数字で表示される。

20 【0067】「OK」の表示がクリックされると,これらの設定値は電子カメラ10に送信される。電子カメラ10 において黒バランス設定値が受信され,この設定値にしたがって黒バランス調整が行なわれる(図4ステップ81,82)。パラメータ設定領域105には「取消」も表示される。

【0068】黒バランス設定値は図14に示すようにカメラ制御パラメータ表示領域104に表示される。白バランス調整も黒バランス調整と同様にして行なわれる。

【0069】図15に示すようにセットアップ領域100に表示される「白バランス」がクリックされると、図16に示すようにパラメータ設定領域105に白バランス調整に適した内容が表示される。

【0070】白バランス調整についても黒バランス調整と同様に自動調整が選択できるようにパラメータ設定領域105に「オート」の表示が含まれている。操作者が「オート」をクリックすると、その旨がホスト・コンピュータ30から電子カメラ10に伝送され、電子カメラ10において自動的に黒バランス調整が行なわれる(図4ステップ81、82)。

【0071】白バランス調整も赤と青について行なわれる。白バランス調整においてもマウス37を操作してスクロール・バー105 R, 105 Bの長さを所望の値となるようにして行なわれる。スクロール・バー105 R, 105 Bの長さによって表わされる赤、青についての設定値はそれぞれ数字で表示される。

【0072】「OK」の表示がクリックされると、これらの設定値は電子カメラ10に送信される。電子カメラ10において白バランス設定値が受信されると、この設定値にしたがって白バランス調整が行なわれる(図4ステップ81 82)

【0073】このようにしてセットアップ・モードにおいて設定されたすべてのカメラ制御データは図17に示すようにカメラ制御データ表示領域104 に表示されるとともに、ホスト・コンピュータ30の主メモリ30のカメラ制御パラメータ記憶部32Bおよび電子カメラ10の主メモリ20のカメラ制御パラメータ記憶部20Bに記憶される。電子カメラ10においてはカメラ制御パラメータ記憶部20Bに記憶されたカメラ制御データにもとづいた調整が行なわれる。

【OO74】さらにフォーカシングのためのレンズ位置, ズーム倍率などもカメラ制御パラメータ記憶部32Bに記憶するようにしてもよい。

【0075】続いてキャプチャ・コマンド入力領域102 について説明する。

【0076】図18に示すようにキャプチャ・コマンド入力領域102には、「インプット」、「フレーム」、「ショット」、「ゲット」、「ウィンドウ」、「ファイル」、「X」、「Y」、「W」、「H」、「残容量」、「データ量」および「倍率」が表示され、プレビュー画像表示領域101には電子カメラ10が撮影している被写体像が表示される。

【0077】「インプット」および「フレーム」はモニ タ表示装置25に表示する画像を表わす映像信号をどこか ら得るかということを選択するためのものである。「イ ンプット」モードでは、CCD12から得られる映像信号 がプロセス回路13を経て、画像メモリ15を通すことな く、直接にモニタ表示装置25に与えられる。CCD12は 通常のNTSC駆動 (640 ×480 画素) とハイビジョン 駆動 (1280×960 画素) とを選択的に切替えることが可 能なものである。モニタ表示装置25はNTSCレートで 動作するので、「インプット」モードではCCD12はN TSC駆動される。これに対して「フレーム」モード は、画像メモリ15に蓄えられている画像データをD/A 変換回路23を経てモニタ表示装置25に与え、その画像デ ータによって表わされる画像を表示させるものである。 プロセス回路13から出力されるスルーの映像信号(「イ ンプット」モード)と、D/A変換回路23から出力され る映像信号 (「フレーム」モード) とを切替えるため に、CPU17によって制御される切替回路26が設けられ ている。

【0078】図18においては「フレーム」に黒丸の表示が加えられており、「フレーム」モードが設定されていることを表わす。図4に示すステップ83~90の処理も「フレーム」モードにおける動作を示している。

【0079】「ショット」は電子カメラ10に被写体を撮影させ、かつこの撮影により得られた画像データを間引いてホスト・コンピュータに伝送させる指令を与えるものである。「ショット」のクリックに応答して電子カメラ10で撮影されることにより得られる画像データは一旦画像メモリ15に蓄えられ、後述するように1/8に縮小50

されてホスト・コンピュータ30に伝送され、プレビュー画像表示領域101 にプレビュー画像として表示される。 被写体像の撮影はCCD12のハイビジョン駆動により行なわれる。また、「ショット」指令が与えられると自動的に「フレーム」モードになり、モニタ表示装置25には画像メモリ15に蓄えられた画像データによって表わされる画像が表示される。

18

【0080】「ショット」がクリックされることにより表示装置40の画面にプレビュー画像の画素レベル・ヒス10トグラムを表示するヒストグラム・ウィンドウ107が表示される。ヒストグラム・ウィンドウ107にプレビュー画像の色レベル分布が表示されるので、最適な撮影条件の設定に利用できる。

【0081】「ゲット」は電子カメラ10において撮影により得られた画像データを最終的にホスト・コンピュータ30に取込むことを指令するものであり、「フレーム」モードにおいて意義がある。一般的には、後述するように、「ショット」のクリックによりプレビュー画像表示領域101に表示させ、領域や倍率(解像度)を指定した20 のちに「ゲット」がクリックされる。

【0082】「ウィンドウ」および「ファイル」は「ゲット」指令によって取込むべき画像データの行先を指定するものである。「ウィンドウ」がクリックされると、電子カメラ10から伝送された画像データは主メモリ32の転送バッファ32Aに格納されるとともに、表示装置40の主画像表示領域103にその画像データによって表わされる像が表示される。「ファイル」がクリックされると、電子カメラ10から伝送された画像データは主メモリ32の転送バッファ32Aに格納されたのち、必要に応じて加工されながら、光ディスク装置38によって光ディスクに格納される。

【0083】「X」、「Y」、「W」および「H」はプレビュー画像上において、「ゲット」指令によって取込むべき画像領域を指定するためのものである。図19に示すように「X」および「Y」は指定領域の一角の点のX、Y座標を表わし、「W」は指定領域の幅を、「H」は指定領域の高さをそれぞれ表わしている。マウス37の操作によってこれら「X」、「Y」、「W」および「H」の値を入力することにより所望の領域を指定する40ことができる。

【0084】倍率は「ゲット」指令によって取込むべき画像の解像度を選択するためのもので、この実施例では1倍,0.5倍,0.25倍および0.125倍のうちのいずれかをマウス37により選択することができる。撮像光学系11に含まれるズーム機構における拡大率をホスト・コンピュータ30において設定可能であれば撮影倍率を1倍を超える値にすることも可能となる。この実施例では、電子カメラ10のズーム機構を操作者が手動で操作して拡大したときのみ、倍率として1を超える値が設定される。

【0085】「残容量」はホスト・コンピュータ30の主

メモリ32の転送バッファ32Aの残容量を示すものであ る。

【0086】「データ量」は「ゲット」指令に応答して 電子カメラ10から送信される画像データの量を示すもの である。

【0087】再び図3および図4を参照して、ホスト・ コンピュータ30のキャプチャ・コマンド入力領域102 か らの各種指令の入力に応答して、電子カメラ10で被写体 を撮像し、撮像により得られた画像データをホスト・コ ンピュータ30に伝送して、表示装置40に表示する処理に ついて統一的に説明する。

【0088】上述したセットアップ処理(図3ステップ 62) が終了すると、ホスト・コンピュータ30は、「ショ ット」のクリック待ち (ステップ63) または領域指定, 倍率および撮影した画像データの取込み先の指定待ち (ステップ68) になる。

【0089】「ショット」がクリックされると(ステッ プ63), CPU31によってショット・コマンドが作成さ れる (ステップ64)。作成されたショット・コマンドは 電子カメラ10に送信される。

【0090】続いて、プレビュー・コマンドが作成され る(図3ステップ65)。このプレビュー・コマンドは、 撮像により得られた画像データを縮小(この実施例では 一律に1/8) した上で送信せよという指令であり、電 子カメラ10に送られる。

【0091】電子カメラ10においてショット・コマンド が受信されると (図4ステップ83), 既に設定されてい るカメラ制御パラメータの条件下で被写体OBの撮影お よび必要な画像データ処理が行なわれる。

[0092] 撮像, 処理により得られる画像データは画 30 像メモリ15に記憶される(図4ステップ84)。

【0093】続いて、電子カメラ10においてプレビュー ・コマンドが受信されると (図4ステップ85), インプ ット・モードであればフレーム・モードとなり、画像メ モリ15に記憶されている画像データが読出され間引回路 21に与えられる。間引回路21において、水平方向に160 画素, 垂直方向に120 画素の画像データとなるように画 像データが1/8に均一に間引かれる。間引かれた画像 データは間引回路21から転送バッファ20Aに与えられー 時記憶される (図4ステップ86)。 転送バッファ20Aに 一時記憶された画像データが、ホスト・コンピュータ30 に送信される。

【0094】ホスト・コンピュータ30において電子カメ ラ10から送信された1/8に縮小された画像データが受 信されると、このプレビュー画像データは転送バッファ 32Aに一時記憶される (図3ステップ66)。 転送バッフ ァ32Aに記憶されている画像データは転送バッファ32A から読出され表示メモリ34に与えられ、この画像データ によって表わされるプレビュー画像がプレビュー画像表 示領域101 に表示される (図3ステップ67)。プレビュ 50 ち、取込み先が「ウィンドウ」(主メモリ)の場合に

一画像表示領域101 に表示されたプレビュー画像の一例 が図18に示されている。

20

【0095】操作者はこのプレビュー画像を見て、所望 のアングル,大きさ,画質等の像が得られているかどう かを確認することができる。もし必要ならばカメラ制御 パラメータの再設定(図3ステップ62)を行なってもよ

【0096】所望の画像データが得られたかどうかをホ スト・コンピュータ30において見るためには電子カメラ 10からホスト・コンピュータ30に撮像画像データを伝送 する必要がある。一駒分の画像データは上述のように12 80×960 画素 (1画素当り1パイトとすると1228Kバイ ト. カラーの場合にはこの3倍)とデータ量がきわめて 多いので、データ伝送に長い時間がかかる。上述のよう にプレビュー画像データについては1/8に縮小して電 子カメラ10からホスト・コンピュータ30に伝送している ので伝送時間を短くすることができる。

【0097】操作者がプレビュー画像を見て良好な画像 が得られていることを確認すると、撮像した画像データ 20 を最終的に取込む必要がある。一駒全体 (1280×960) の画像データを取込んでもよいが、一般には一部分のみ が必要な場合が多い。そこで操作者はプレビュー画像上 で図19に示すように、取込むべき画像の領域、倍率およ び取込み先を指定する(図3ステップ68でYES)。続い て操作者は「ゲット」をクリックする(図3ステップ69 でYES)。すると、指定された領域、倍率を含むゲット ・コマンドが作成され、電子カメラ10に送信される(図 3ステップ70)。

【0098】上述したように、拡大画像が欲しい場合に は操作者は電子カメラ10のズーム機構を手動操作して所 望の倍率に設定することができる。この場合には操作者 は再び「ショット」をクリックして、被写体の撮影、プ レビューを繰返す。

【0099】電子カメラ10においてゲット・コマンドが 受信されると (図4ステップ88), 指定された領域の画 像データが画像メモリ15から読出される。

【0100】倍率が1より小さいときには画像メモリ15 から読出された画像データは間引回路21に与えられ、設 定された倍率に応じた間引きが行なわれる。画像データ 40 は転送バッファ20Aに一時記憶されたのち(図4ステッ プ89), ホスト・コンピュータ30に送信される(図4ス テップ90)。

【0101】このように真に必要な領域についての画像 データのみが電子カメラ10から送信されるので、画像デ ータの伝送時間を短縮することができる。

【0102】電子カメラ10から送信された画像データは ホスト・コンピュータ30において受信される(図3ステ ップ71)。画像データが受信されると、この画像データ は先に指定されている取込み先に転送される。すなわ

は、受信した画像データは主メモリ32の転送バッファ32 Aに記憶されるとともに、その画像データによって表わ される画像が図20に示すように表示装置40の主画像表示 領域103 に表示される(図3ステップ73)。取込み先が 「ファイル」の場合には、受信した画像データは一旦主 メモリ32に記憶されたのち、必要に応じ加工され、光デ ィスク装置38に転送されて、光ディスクに記録される (図3ステップ75)。このときには主画像表示領域103 には画像は表示されない(図21参照)が、表示するよう にしてもよい。

【0103】操作者は取込み先を「ウィンドウ」にして おいて主画像表示領域103 に表示された被写体像を見た のちに、「ファイル」をクリックしてもよい。それに応 答して主メモリ32に記憶されている画像データは光ディ スクに記録される(図3ステップ74でYES , ステップ7 5)。「ファイル」をクリックすることなく、再度「シ ョット」指令からやり直すようにしてももちろんよい 【0104】キャプチャ・コマンド入力領域102 には主 メモリ32の残容量および伝送されてきた画像データのデ ータ量が表示されているので、これらの量を見ながら操 20~ 作者は上述したような各種の指令を入力することができ る。主メモリ32の残容量が電子カメラ10から伝送されて くる画像データのデータ量よりも少ないときには「ゲッ ト」指令の入力を禁止するようにすることが好ましい。 【0105】図22は他の実施例を示すもので、撮像シス テムの電気的構成を示すブロック図である。この図にお いて図2に示すものと同一物には同一符号を付して説明 を省略する。

【0106】図22に示す撮像システムは図2に示す撮像 システムと比較すると電子カメラ10Aに表示装置40, キ 30 ーボード36、マウス37が接続されている点で異なってい る。電子カメラ10Aは通信インターフェイス24を介して 磁気ディスク39Aおよび光ディスク39Bに画像データの 記録が可能なホスト・コンピュータ30Aと通信可能であ る。

【0107】このような電子カメラ10においては、表示 装置40. キーボード36またはマウス37を用いて設定され たカメラ制御パラメータはカメラ制御レジスタ16に直接 に記憶される。撮像により得られた画像データはホスト ・コンピュータ30Aに送られることなく表示装置40に与 40 22, 24, 33 通信インターフェイス えられ、プレビュー画像および主画像の表示が行なわれ る。そして、必要な領域で所望の倍率の画像データのみ がホスト・コンピュータ30Aに伝送され、磁気ディスク 39Aもしくは光ディスク39Bに記録または主メモリ18の 転送バッファ18Aに記憶することができるようになる。

【図面の簡単な説明】

【図1】撮像システムの全体構成を示している。

22

【図2】撮像システムの電気的構成を示すプロック図で ある。

【図3】ホスト・コンピュータにおける処理手順を示す フローチャートである。

【図4】電子カメラにおける処理手順を示すフローチャ ートである。

【図5】表示装置に表示される複数の表示領域を示して 10 いる。

【図6】表示装置の一部の領域に表示される内容を示し ている。

【図7】表示装置における表示例を示している。

【図8】表示装置における表示例を示している。

【図9】表示装置における表示例を示している。

【図10】表示装置における表示例を示している。-

【図11】表示装置における表示例を示している。

【図12】表示装置における表示例を示している。

【図13】表示装置における表示例を示している。

【図14】表示装置における表示例を示している。

【図15】表示装置における表示例を示している。

【図16】表示装置における表示例を示している。

【図17】表示装置における表示例を示している。

【図18】表示装置における表示例を示している。

【図19】表示装置における表示例を示している。

【図20】表示装置における表示例を示している。

【図21】表示装置における表示例を示している。

【図22】他の実施例を示すもので,撮像システムの電 気的構成を示すブロック図である。

【符号の説明】

10, 10A 電子カメラ

11 撮像光学系

12 CCD

13 プロセス回路

14 A/D変換回路

15 画像メモリ

17, 31 CPU

18, 20, 32 主メモリ

21 間引回路

30, 30A ホスト・コンピュータ

36 キーボード

37 マウス

40 表示装置

【図6】

[図2]

【図7】 ·

[図8]

【図9】

【図10】

【図11】

【図12】

[図13]

1

【図14】

[図15]

【図16】

【図17】

【図18】

[図19]

【図20】

【図21】

[図22]

フロントページの続き

(56)参考文献 特開 平4-4679 (JP, A)

特開 昭63-69383 (JP, A)、

特開 平1-185077 (JP, A)

特開 平4-887 (JP, A)

特開 平1-114834 (JP, A)

(58)調査した分野(Int.Cl.6, DB名)

H04N 5/232

G06T 1/00

H04N 5/225