Exercise sheet 3 by Maximilian Richter and Christian Heppe

2. Neutrons in the gravitational field

1. Asymptotic behaviour

To observe the asymptotic behaviour of the Numerov-method, we plotted two solutions for $\epsilon = 1$ and $\epsilon = 2$ from x = 0 to x = 30 with a stepsize of h = 0.001. As one can clearly see, the values go to positive or negative infinity, depending on the value of ϵ .

2. Eigenvalues ϵ_n of Schrödinger's equation

In order to determine the eigenvalues ϵ_n of Schrödinger's equation we used the property, that they belong to normalizable eigenfuctions with $\psi(x) \to 0$ for $x \to \infty$. As one can see in part 1 of this exercise, the asymptote changes its sign from $\epsilon = 1$ to 2, this means there is an eigenvalue in between those values. With this approach we could determine the first four eigenvalues ϵ_n to 3 decimals after the comma. The values all have been found with a stepsize of h = 0.001 for the algorithm.

$$\epsilon_1 = 1.018$$
 $\epsilon_2 = 3.248$
 $\epsilon_3 = 4.820$

 $\epsilon_4 = 6.163$

Extra: Solution for classical zone

