

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g_{MIN}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	18.56 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and, here all desired.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S 0.9D + 1.0W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S O 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>420.12</u>	<u>4504.12</u>	k
Compressive Load =	<u>3871.71</u>	4350.88	k
Lateral Load =	382.62	2453.53	k
Moment (Weak Axis) =	0.76	0.35	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 109082.7 in-lbs Resisting Force Required = 1652.77 lbs A minimum 132in long x 23in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2754.61 lbs to resist overturning. Minimum Width = Weight Provided = 4585.63 lbs Sliding Force = 565.62 lbs Use a 132in long x 23in wide x 18in tall Friction = 0.4 Weight Required = 1414.04 lbs ballast foundation to resist sliding. Resisting Weight = 4585.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 565.62 lbs Cohesion = 130 psf Use a 132in long x 23in wide x 18in tall 21.08 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2292.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width					
	23 in	24 in	25 in	<u>26 in</u>		
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.92 \text{ ft}) =$	4586 lbs	4785 lbs	4984 lbs	5184 lbs		

ASD LC		1.0D	.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W							
Width	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in
FA	1489 lbs	1489 lbs	1489 lbs	1489 lbs	1125 lbs	1125 lbs	1125 lbs	1125 lbs	1823 lbs	1823 lbs	1823 lbs	1823 lbs	-183 lbs	-183 lbs	-183 lbs	-183 lbs
FB	1481 lbs	1481 lbs	1481 lbs	1481 lbs	1575 lbs	1575 lbs	1575 lbs	1575 lbs	2155 lbs	2155 lbs	2155 lbs	2155 lbs	-2069 lbs	-2069 lbs	-2069 lbs	-2069 lbs
F _V	204 lbs	204 lbs	204 lbs	204 lbs	1036 lbs	1036 lbs	1036 lbs	1036 lbs	913 lbs	913 lbs	913 lbs	913 lbs	-1131 lbs	-1131 lbs	-1131 lbs	-1131 lbs
P _{total}	7556 lbs	7755 lbs	7955 lbs	8154 lbs	7286 lbs	7485 lbs	7684 lbs	7884 lbs	8564 lbs	8763 lbs	8962 lbs	9162 lbs	499 lbs	619 lbs	739 lbs	858 lbs
M	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3208 lbs-ft	3208 lbs-ft	3208 lbs-ft	3208 lbs-ft	5003 lbs-ft	5003 lbs-ft	5003 lbs-ft	5003 lbs-ft	2400 lbs-ft	2400 lbs-ft	2400 lbs-ft	2400 lbs-ft
е	0.52 ft	0.51 ft	0.50 ft	0.48 ft	0.44 ft	0.43 ft	0.42 ft	0.41 ft	0.58 ft	0.57 ft	0.56 ft	0.55 ft	4.81 ft	3.88 ft	3.25 ft	2.80 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	256.2 psf	254.6 psf	253.1 psf	251.7 psf	262.6 psf	260.7 psf	259.0 psf	257.4 psf	276.7 psf	274.3 psf	272.0 psf	269.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	460.6 psf	450.4 psf	441.1 psf	432.5 psf	428.6 psf	419.8 psf	411.7 psf	404.2 psf	535.6 psf	522.4 psf	510.2 psf	498.9 psf	250.8 psf	127.2 psf	105.0 psf	97.7 psf

Maximum Bearing Pressure = 536 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1689.2 \text{ ft-lbs}$

Resisting Force Required = 1762.60 lbs S.F. = 1.67

Weight Required = 2937.67 lbs Minimum Width = 23 in in Weight Provided = 4585.63 lbs A minimum 132in long x 23in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		23 in			23 in		23 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	294 lbs	680 lbs	225 lbs	878 lbs	2463 lbs	825 lbs	110 lbs	199 lbs	42 lbs	
F _V	226 lbs	222 lbs	230 lbs	166 lbs	162 lbs	179 lbs	227 lbs	223 lbs	228 lbs	
P _{total}	5971 lbs	6357 lbs	5902 lbs	6282 lbs	7868 lbs	6229 lbs	1770 lbs	1859 lbs	1702 lbs	
М	896 lbs-ft	887 lbs-ft	908 lbs-ft	671 lbs-ft	672 lbs-ft	713 lbs-ft	895 lbs-ft	885 lbs-ft	899 lbs-ft	
е	0.15 ft	0.14 ft	0.15 ft	0.11 ft	0.09 ft	0.11 ft	0.51 ft	0.48 ft	0.53 ft	
L/6	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	
f _{min}	150.1 psf	169.9 psf	145.2 psf	198.4 psf	273.4 psf	189.6 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	416.3 psf	433.2 psf	414.7 psf	397.6 psf	472.9 psf	401.3 psf	237.0 psf	233.5 psf	239.8 psf	

Maximum Bearing Pressure = 473 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 23in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.978 k	Maximum Axial Load =	3.121 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>40%</u>	Utilization =	<u>42%</u>
Diagonal Strut			
Maximum Axial Load =	1.638 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double she
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 46.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.938 in Max Drift, Δ_{MAX} = 0.674 in $0.674 \le 0.938$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 129 \text{ in}$$

$$J = 0.432$$

$$356.874$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 27.2 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

3.4.16.1

25.1 ksi

$$Rb/t =$$

 $\phi F_L =$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_1 = 38.9 \text{ ksi}$$

3.4.18

 $\phi F_L =$

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 129 \\ \mathsf{J} &= 0.432 \\ 226.951 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_I} &= 28.4 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2*\sqrt{(BpE))/(1.6b/t)} \\$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$
$$S2 = C_t$$
$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

 $\phi F_L =$

3.4.16.1N/A for Weak Direction

16.2

36.9

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.904 k-ft

3.4.18

h/t =

S1 =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ Cc = & 40 \\ S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk =$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L St =$

3.4.9

 $\begin{array}{lll} \textbf{b}/\textbf{t} = & 16.2 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phi}\textbf{F}_{L} = & \textbf{\phi}\textbf{c}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi}\textbf{F}_{L} = & 31.6 \text{ ksi} \\ \\ \textbf{b}/\textbf{t} = & 7.4 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phi}\textbf{F}_{L} = & \textbf{\phi}\textbf{y}\textbf{F}\textbf{c}\textbf{y} \end{array}$

33.3 ksi

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

43.717 mm

 $lx = 984962 \text{ mm}^4$

3.4.10

 $\phi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{\mathsf{b}} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & & 38.7028 \end{split}$$

$$S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \mathsf{\phiF}_{\mathsf{L}} &= \mathsf{\phib}[\mathsf{Bc-1.6Dc}*\sqrt{(\mathsf{LbSc})/(\mathsf{Cb}*\sqrt{(\mathsf{lyJ})/2})}] \end{split}$$

$\varphi F_L = 31.4$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_1 = 28.2 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

0.621 in³

27.5 mm

h/t =

$$\begin{array}{rcl} S1 = & 36.9 \\ m = & 0.65 \\ C_0 = & 27.5 \\ Cc = & 27.5 \\ S2 = & \frac{k_1 B b r}{m D b r} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L \text{WK} = & 28.2 \text{ ksi} \\ \text{Iy} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{X} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$

24.5

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Rb/t =

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

	IA —	27 3030 111111
		0.672 in ⁴
	y =	27.5 mm
	Sx =	0.621 in ³
1	C+	1 1CO L H

 $M_{max}St =$ 1.460 k-ft

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$
 $ly = 279836 \text{ mm}^4$
 0.672 in^4
 $x = 27.5 \text{ mm}$
 0.624 in^3

Sy = 0.621 in³

 $M_{max}Wk =$ 1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$J = 0.942$$
 98.9729

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 63.42$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t =
$$0.0$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

3.4.18

h/t =

N/A for Weak Direction

24.5

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ Iy = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.7854 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{.9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Υ	-46.9	-46.9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-58.278	-58.278	0	0
2	M14	V	-58.278	-58.278	0	0
3	M15	V	-90.067	-90.067	0	0
4	M16	V	-90.067	-90.067	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	132.451	132.451	0	0
	2	M14	V	100.663	100.663	0	0
	3	M15	V	52.98	52.98	0	0
	4	M16	У	52.98	52.98	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	450.782	2	972.701	1	.842	1	.004	1	0	1	0	1
2		min	-596.689	3	-1052.546	3	-50.566	5	264	4	0	1	0	1
3	N7	max	.043	9	1117.769	1	59	12	001	12	0	1	0	1
4		min	094	2	-72.855	3	-294.324	4	583	4	0	1	0	1
5	N15	max	.031	9	2978.238	1	0	2	0	2	0	1	0	1
6		min	-1.206	2	-323.17	3	-281.107	4	566	4	0	1	0	1
7	N16	max	1795.643	2	3346.833	1	0	2	0	2	0	1	0	1
8		min	-1887.328	3	-3464.71	3	-50.257	5	266	4	0	1	0	1
9	N23	max	.045	14	1117.769	1	12.377	1	.025	1	0	1	0	1
10		min	094	2	-72.855	3	-285.678	4	569	4	0	1	0	1
11	N24	max	450.782	2	972.701	1	047	12	0	12	0	1	0	1
12		min	-596.689	3	-1052.546	3	-51.213	5	266	4	0	1	0	1
13	Totals:	max	2695.812	2	10506.012	1	0	2						
14		min	-3080.926	3	-6038.681	3	-1007.07	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	126.589	1	431.034	1	-8.222	12	0	3	.303	1	0	4
2			min	6.06	12	-514.595	3	-190.156	1	011	1	.015	12	0	3
3		2	max	126.589	1	302.174	1	-6.419	12	0	3	.121	4	.524	3
4			min	6.06	12	-362.191	3	-146.298	1	011	1	.006	12	438	1
5		3	max	126.589	1	173.314	1	-4.615	12	0	3	.063	5	.865	3
6			min	6.06	12	-209.787	3	-102.439	1	011	1	047	1	722	1
7		4	max	126.589	1	44.454	1	-2.812	12	0	3	.032	5	1.025	3
8			min	6.06	12	-57.382	3	-58.581	1	011	1	143	1	852	1
9		5	max	126.589	1	95.022	3	-1.008	12	0	3	.004	5	1.002	3
10			min	6.06	12	-84.406	1	-25.342	4	011	1	187	1	828	1
11		6	max	126.589	1	247.427	3	29.137	1	0	3	008	12	.798	3
12			min	3.772	15	-213.266	1	-18.835	5	011	1	178	1	65	1
13		7	max	126.589	1	399.831	3	72.995	1	0	3	006	12	.411	3
14			min	-6.317	5	-342.126	1	-16.045	5	011	1	117	1	319	1
15		8	max	126.589	1	552.235	3	116.854	1	0	3	0	10	.167	1
16			min	-18.578	5	-470.986	1	-13.255	5	011	1	06	4	157	3
17		9	max	126.589	1	704.64	3	160.712	1	0	3	.162	1	.807	1
18			min	-30.84	5	-599.846	1	-10.464	5	011	1	072	5	908	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

19		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
11	19		10	max	126.589	1	857.044	3	204.571	1	.011	1	.38	1	1.6	1
22	20			min	6.06	12	-728.706	1	-120.987	14	0	12		12	-1.841	3
12	21		11	max	126.589	1	599.846	1		12	.011	1	.162	1	.807	1
24	22			min	6.06	12	-704.64	3	-160.712	1	0	3	.005	12	908	3
26	23		12	max	126.589	1	470.986	1	-4.402	12	.011	1	.058	4	.167	1
26				min	6.06	12		3	-116.854	1	0	3	004	1	157	3
26	25		13	max	126.589	1	342.126	1	-2.598	12	.011	1	.026	5	.411	3
28				min		12		3				3				
28			14			1				12	.011	1	002	15		3
15																
Section			15													_
32			1													
1			16													
34																
35			17													_
36			17													
36			10													-
19 max 126,588 1 514,595 3 190,156 1 011 1 3,033 1 0 1 1 38 min -51,223 5 -431,034 1 -8,56 5 0 3 -0.96 5 0 3 39 M14 1 max 64,792 4 451,801 1 -8,443 12 .006 3 .342 1 0 1 40 min 2,554 12 .395,361 3 -195,707 1 .009 1 .016 12 0 3 41 2 max 56,253 1 322,941 1 -6,639 12 .006 3 .17 4 .404 3 42 min 2,554 12 .280,926 3 .151,848 1 -0.09 1 .007 12 .463 1 43 3 max 56,253 1 194,081 1 -4,836 12 .006 3 .091 5 .671 3 3 44 min 2,554 12 .526,951 3 -107,99 1 .009 1 .021 1 .771 1 45 4 max 56,253 1 .65,221 1 .30,33 12 .006 3 .048 5 .802 3 46 min 2,554 12 .52,055 3 .64,131 1 .009 1 .123 1 .926 1 47 5 max 56,253 1 .62,38 3 -1,229 12 .006 3 .008 5 .795 3 48 min 2,203 15 .62,38 3 .12,29 12 .006 3 .008 5 .795 3 48 min 2,203 15 .63,639 1 .37,077 4 .009 1 .174 1 .927 1 49 6 max 56,253 1 .76,815 3 23,586 1 .006 3 .007 12 .653 3 .50 min .8,92 5 .192,499 1 .29,126 5 .009 1 .172 1 .774 1 .53 8 max 56,253 1 .91,251 3 .67,445 1 .006 3 .006 12 .373 3 .52 min .254 12 .50,555 3 .67,445 1 .006 3 .006 12 .373 3 .52 min .254 12 .50,686 3 .11,303 1 .006 3 .006 12 .373 3 .52 min .2554 12 .50,555 3 .50,686 3 .11,303 1 .006 3 .006 12 .373 3 .55 .50 min .2554 12 .50,686 3 .11,303 1 .006 3 .001 1 .177 1 .467 1 .55 .59 .59 .11 max 64,858 4 .579,079 1 .23,556 5 .009 1 .117 5 .596 3 .59 .11 max 56,253 1 .26,553 1 .26,556 5 .006 3 .011 1 .043 3 .55 .50 .006 3 .011 1 .043 .55 .006 .006 .006 .006 .			10													
38			40								-					
M14			19													
Mathematics			-													
41		<u>M14</u>	1													_
Main										_						
43 3 max 56.253 1 194.081 1 -4.836 12 .006 3 .091 5 .671 3 44 min 2.554 12 -166.491 3 -107.99 1 009 1 021 1 771 1 45 4 max 56.253 1 65.221 1 -3.033 12 .006 3 .048 5 .802 3 46 min 2.554 12 -52.055 3 -64.131 1 009 1 123 1 -926 1 47 5 max 56.253 1 763.88 3 -1.229 12 .006 3 .008 5 .795 3 48 min 2.203 15 -63.639 1 -37.077 4 -,009 1 -174 1 -927 1 49 6 max 56.253			2													
44 min 2.554 12 -166.491 3 -107.99 1 -0.09 1 -0.21 1 -771 1 45 4 max 56.253 1 65.221 1 -3.033 12 .006 3 .048 5 .802 3 46 min 2.554 12 -52.055 3 -64.131 1 .009 1 -123 1 .926 1 47 5 max 56.253 1 26.3639 1 -37.077 4 .009 1 -174 1 -927 3 48 min -2.203 15 -63.639 1 -37.077 4 -009 1 -174 1 -927 3 50 min -8.253 1 276.3630 5 -009 1 -172 1 -774 1 51 7 7 4 50.253 1 26.336 <				min												
45			3	max							.006	3		5_	.671	3
46				min		12		3								•
47	45		4	max	56.253	1	65.221	1	-3.033	12	.006	3	.048	5	.802	3
48	46			min	2.554	12	-52.055	3	-64.131	1	009	1	123	1	926	1
48	47		5	max	56.253	1	62.38	3	-1.229	12	.006	3	.008	5	.795	3
49	48				2.203	15	-63.639	1	-37.077	4	009	1	174	1	927	
50 min -8.92 5 -192.499 1 -29.126 5 009 1 172 1 774 1 51 7 max 56.253 1 291.251 3 67.445 1 .006 3 006 12 .373 3 52 min -21.181 5 -321.359 1 -26.336 5 009 1 117 1 467 1 53 8 max 56.253 1 405.686 3 11.303 1 .006 3 0 10 0 9 54 min -33.442 5 -450.219 1 -23.546 5 009 1 095 4 043 3 55 9 max 56.253 1 520.121 3 155.62 1 .006 3 .149 1 .608 1 57 10 max 77.119			6					3	23.586	1	.006	3	007	12		3
51 7 max 56.253 1 291.251 3 67.445 1 .006 3 006 12 .373 3 52 min -21.181 5 -321.359 1 -26.336 5 009 1 117 1 467 1 53 8 max 56.253 1 405.686 3 111.303 1 .006 3 0 10 0 9 54 min -33.442 5 -450.219 1 -20.546 5 009 1 095 4 043 3 55 9 max 56.253 1 520.121 3 155.162 1 .006 3 .149 1 .608 1 56 min -45.704 5 -579.079 1 -20.756 5 009 1 .117 5 596 3 57 10 max 77.119						5				5						
52 min -21.181 5 -321.359 1 -26.336 5 009 1 117 1 467 1 53 8 max 56.253 1 405.686 3 111.303 1 .006 3 0 10 0 9 54 min -33.442 5 -450.219 1 -23.546 5 009 1 095 4 043 3 55 9 max 56.253 1 520.121 3 155.162 1 .006 3 .149 1 .608 1 56 min -45.704 5 -579.079 1 -20.756 5 009 1 -117 5 596 3 57 10 max 777.19 4 634.557 3 199.021 1 .009 1 .36 1 1.377 1 58 11 max 56.253			7					3				3		12		_
53 8 max 56.253 1 405.686 3 111.303 1 .006 3 0 10 0 9 54 min -33.442 5 -450.219 1 -23.546 5 009 1 095 4 043 3 55 9 max 56.253 1 520.121 3 155.162 1 .006 3 .149 1 .608 1 56 min -45.704 5 -579.079 1 -20.756 5 009 1 117 5 596 3 57 10 max 77.119 4 634.557 3 199.021 1 .009 1 .36 1 1.377 1 58 min 2.554 12 -707.939 1 -123.255 14 006 3 .013 12 -1.286 3 59 11 min 2.554 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-321 359</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							-321 359									
54 min -33.442 5 -450.219 1 -23.546 5 009 1 095 4 043 3 55 9 max 56.253 1 520.121 3 155.162 1 .006 3 .149 1 .608 1 56 min -45.704 5 -579.079 1 -20.756 5 009 1 117 5 596 3 57 10 max 77.119 4 634.557 3 199.021 1 .009 1 -36 1 1.377 1 58 min 2.554 12 -707.939 1 -5.984 12 .006 3 .013 12 -1.286 3 59 11 max 64.858 4 579.079 1 -5.984 12 .009 1 .171 4 .608 1 60 min 2.554 12 -520.121			8													
55 9 max 56.253 1 520.121 3 155.162 1 .006 3 .149 1 .608 1 56 min -45.704 5 -579.079 1 -20.756 5 009 1 117 5 596 3 57 10 max 77.119 4 634.557 3 199.021 1 .009 1 .36 1 1.377 1 58 min 2.554 12 -707.939 1 -123.255 14 .006 3 .013 12 -1.286 3 60 min 2.554 12 -520.121 3 -155.162 1 006 3 .004 12 -596 3 61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 12 </td <td></td>																
56 min -45.704 5 -579.079 1 -20.756 5 009 1 117 5 596 3 57 10 max 77.119 4 634.557 3 199.021 1 .009 1 .36 1 1.377 1 58 min 2.554 12 -707.939 1 -123.255 14 006 3 .013 12 -1.286 3 59 11 max 64.858 4 579.079 1 -5.984 12 .009 1 .171 4 .608 1 60 min 2.554 12 -520.121 3 -155.162 1 006 3 .004 12 596 3 61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 1			9					_								$\overline{}$
57 10 max 77.119 4 634.557 3 199.021 1 .009 1 .36 1 1.377 1 58 min 2.554 12 -707.939 1 -123.255 14 006 3 .013 12 -1.286 3 59 11 max 64.858 4 579.079 1 -5.984 12 .009 1 .171 4 .608 1 60 min 2.554 12 -520.121 3 -155.162 1 006 3 .004 12 -596 3 61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 12 -2405.686 3 -111.303 1 -006 3 -011 1 -043 63 13 max 56.253 1<			<u> </u>			_										_
58 min 2.554 12 -707.939 1 -123.255 14 006 3 .013 12 -1.286 3 59 11 max 64.858 4 579.079 1 -5.984 12 .009 1 .171 4 .608 1 60 min 2.554 12 -520.121 3 -155.162 1 006 3 .004 12 596 3 61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 12 -405.686 3 -111.303 1 006 3 011 1 043 3 63 13 max 56.253 1 321.359 1 -2.377 12 .009 1 .046 5 .373 3 64 min 2.554 1			10													
59 11 max 64.858 4 579.079 1 -5.984 12 .009 1 .171 4 .608 1 60 min 2.554 12 -520.121 3 -155.162 1 006 3 .004 12 596 3 61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 12 -405.686 3 -111.303 1 006 3 011 1 043 3 63 13 max 56.253 1 321.359 1 -2.377 12 .009 1 .046 5 .373 3 64 min 2.554 12 -291.251 3 -67.445 1 006 3 117 1 467 1 65 14 max 56.253<			10													
60 min 2.554 12 -520.121 3 -155.162 1 006 3 .004 12 596 3 61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 12 -405.686 3 -111.303 1 006 3 011 1 043 3 63 13 max 56.253 1 321.359 1 -2.377 12 .009 1 .046 5 .373 3 64 min 2.554 12 -291.251 3 -67.445 1 006 3 117 1 467 1 65 14 max 56.253 1 192.499 1 574 12 .009 1 .006 5 .653 3 66 min 2.554 12 <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			11					1				-				
61 12 max 56.253 1 450.219 1 -4.181 12 .009 1 .089 5 0 9 62 min 2.554 12 -405.686 3 -111.303 1 006 3 011 1 043 3 63 13 max 56.253 1 321.359 1 -2.377 12 .009 1 .046 5 .373 3 64 min 2.554 12 -291.251 3 -67.445 1 006 3 117 1 467 1 65 14 max 56.253 1 192.499 1 574 12 .009 1 .006 5 .653 3 66 min 2.554 12 -176.815 3 -37.875 4 006 3 172 1 774 1 67 15 max 56.253 <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>			11					3								-
62 min 2.554 12 -405.686 3 -111.303 1 006 3 011 1 043 3 63 13 max 56.253 1 321.359 1 -2.377 12 .009 1 .046 5 .373 3 64 min 2.554 12 -291.251 3 -67.445 1 006 3 117 1 467 1 65 14 max 56.253 1 192.499 1 574 12 .009 1 .006 5 .653 3 66 min 2.554 12 -176.815 3 -37.875 4 006 3 172 1 774 1 67 15 max 56.253 1 63.639 1 20.273 1 .009 1 007 12 .795 3 68 min 2.257 15<			12	1												
63 13 max 56.253 1 321.359 1 -2.377 12 .009 1 .046 5 .373 3 64 min 2.554 12 -291.251 3 -67.445 1 006 3 117 1 467 1 65 14 max 56.253 1 192.499 1 574 12 .009 1 .006 5 .653 3 66 min 2.554 12 -176.815 3 -37.875 4 006 3 172 1 774 1 67 15 max 56.253 1 63.639 1 20.273 1 .009 1 007 12 .795 3 68 min 2.257 15 -62.38 3 -29.306 5 006 3 174 1 927 1 69 16 max 56.253 <td></td> <td></td> <td>12</td> <td></td> <td>_</td> <td></td>			12												_	
64 min 2.554 12 -291.251 3 -67.445 1 006 3 117 1 467 1 65 14 max 56.253 1 192.499 1 574 12 .009 1 .006 5 .653 3 66 min 2.554 12 -176.815 3 -37.875 4 006 3 172 1 774 1 67 15 max 56.253 1 63.639 1 20.273 1 .009 1 007 12 .795 3 68 min 2.257 15 -62.38 3 -29.306 5 006 3 174 1 927 1 69 16 max 56.253 1 52.055 3 64.131 1 .009 1 004 12 .802 3 70 min -8.837 5 <td></td> <td></td> <td>12</td> <td></td>			12													
65 14 max 56.253 1 192.499 1574 12 .009 1 .006 5 .653 3 66 min 2.554 12 -176.815 3 -37.875 4006 3172 1774 1 67 15 max 56.253 1 63.639 1 20.273 1 .009 1007 12 .795 3 68 min 2.257 15 -62.38 3 -29.306 5006 3174 1927 1 69 16 max 56.253 1 52.055 3 64.131 1 .009 1004 12 .802 3 70 min -8.837 5 -65.221 1 -26.516 5006 3123 1926 1 71 17 max 56.253 1 166.491 3 107.99 1 .009 1 0 3 .671 3 72 min -21.098 5 -194.081 1 -23.726 5006 31 4771 1 73 18 max 56.253 1 280.926 3 151.848 1 .009 1 .135 1 .404 3 74 min -33.359 5 -322.941 <td< td=""><td></td><td></td><td>13</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			13			_										
66 min 2.554 12 -176.815 3 -37.875 4 006 3 172 1 774 1 67 15 max 56.253 1 63.639 1 20.273 1 .009 1 007 12 .795 3 68 min 2.257 15 -62.38 3 -29.306 5 006 3 174 1 927 1 69 16 max 56.253 1 52.055 3 64.131 1 .009 1 004 12 .802 3 70 min -8.837 5 -65.221 1 -26.516 5 006 3 123 1 926 1 71 17 max 56.253 1 166.491 3 107.99 1 .009 1 0 3 .671 3 72 min -21.098 5			4.4													
67 15 max 56.253 1 63.639 1 20.273 1 .009 1 007 12 .795 3 68 min 2.257 15 -62.38 3 -29.306 5 006 3 174 1 927 1 69 16 max 56.253 1 52.055 3 64.131 1 .009 1 004 12 .802 3 70 min -8.837 5 -65.221 1 -26.516 5 006 3 123 1 926 1 71 17 max 56.253 1 166.491 3 107.99 1 .009 1 0 3 .671 3 72 min -21.098 5 -194.081 1 -23.726 5 006 3 1 4 771 1 73 18 max 56.253			14													
68 min 2.257 15 -62.38 3 -29.306 5 006 3 174 1 927 1 69 16 max 56.253 1 52.055 3 64.131 1 .009 1 004 12 .802 3 70 min -8.837 5 -65.221 1 -26.516 5 006 3 123 1 926 1 71 17 max 56.253 1 166.491 3 107.99 1 .009 1 0 3 .671 3 72 min -21.098 5 -194.081 1 -23.726 5 006 3 1 4 771 1 73 18 max 56.253 1 280.926 3 151.848 1 .009 1 .135 1 .404 3 74 min -33.359 5			4-													
69 16 max 56.253 1 52.055 3 64.131 1 .009 1 004 12 .802 3 70 min -8.837 5 -65.221 1 -26.516 5 006 3 123 1 926 1 71 17 max 56.253 1 166.491 3 107.99 1 .009 1 0 3 .671 3 72 min -21.098 5 -194.081 1 -23.726 5 006 3 1 4 771 1 73 18 max 56.253 1 280.926 3 151.848 1 .009 1 .135 1 .404 3 74 min -33.359 5 -322.941 1 -20.936 5 006 3 121 5 463 1			15													
70 min -8.837 5 -65.221 1 -26.516 5 006 3 123 1 926 1 71 17 max 56.253 1 166.491 3 107.99 1 .009 1 0 3 .671 3 72 min -21.098 5 -194.081 1 -23.726 5 006 3 1 4 771 1 73 18 max 56.253 1 280.926 3 151.848 1 .009 1 .135 1 .404 3 74 min -33.359 5 -322.941 1 -20.936 5 006 3 121 5 463 1														_		
71			16			1										
72 min -21.098 5 -194.081 1 -23.726 5 006 3 1 4 771 1 73 18 max 56.253 1 280.926 3 151.848 1 .009 1 .135 1 .404 3 74 min -33.359 5 -322.941 1 -20.936 5 006 3 121 5 463 1						5				5		3				
73			17	max		1								3		
74 min -33.359 5 -322.941 1 -20.936 5006 3121 5463 1	72			min		5	-194.081		-23.726	5	006	3		4	771	
74 min -33.359 5 -322.941 1 -20.936 5006 3121 5463 1	73		18	max	56.253	1	280.926	3	151.848	1	.009	1	.135	1	.404	3
						5				5		3		5		
	75		19	max	56.253	1	395.361	3	195.707	1	.009	1	.342	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
76			min	-45.621	5	-451.801	<u>1</u>	-18.145	5	006	3	144	5	0	3
77	M15	1	max	88.74	5	515.848	_1_	-8.411	12	.009	1_	.342	1	0	2
78			min	-59.364	_1_	-203.274	3	-195.673	1_	005	3	.016	12	0	12
79		2	max	76.479	5	368.003	1	-6.608	12	.009	1	.208	4	.208	3
80			min	-59.364	1_	-145.793	3	-151.814	1	005	3	.007	12	528	1
81		3	max	64.218	5	220.158	1	-4.805	12	.009	1	.118	5	.348	3
82			min	-59.364	1	-88.313	3	-107.955	1	005	3	021	1	879	1
83		4	max	51.956	5	72.312	1	-3.001	12	.009	1	.065	5	.419	3
84			min	-59.364	1	-30.832	3	-64.097	1	005	3	123	1	-1.054	1
85		5	max	39.695	5	26.649	3	-1.198	12	.009	1	.014	5	.422	3
86			min	-59.364	1	-75.769	2	-45.877	4	005	3	174	1	-1.052	1
87		6	max	27.434	5	84.129	3	23.62	1	.009	1	007	12	.356	3
88			min	-59.364	1	-223.378	1	-37.899	5	005	3	172	1	873	1
89		7	max	15.173	5	141.61	3	67.479	1	.009	1	006	12	.221	3
90			min	-59.364	1	-371.223	1	-35.109	5	005	3	117	1	518	1
91		8	max	2.912	5	199.091	3	111.338	1	.009	1	0	10	.024	2
92			min	-59.364	1	-519.068	1	-32.319	5	005	3	121	4	0	15
		9		-2.895	12	256.571	3	155.196	<u> </u>	.009	1	.149	1	.724	
93		9	max	-59.364	1	-666.913	1	-29.529	5		3	153	5	255	3
94		40	min		•					005					
95		10	max	-2.895	12	314.052	3	199.055	1	.005	3	.36	1	1.607	1
96		4.4	min	-59.364	1_	-814.758	1_	-127.749	14	009	1	.013	12	595	3
97		11	max	1.39	_5_	666.913	1_	-6.015	12	.005	3	.207	4	.724	2
98		1.0	min	-59.364	1_	-256.571	3	-155.196	1_	009	1	.005	12	255	3
99		12	max	-2.895	12	519.068	_1_	-4.212	12	.005	3	.115	5	.024	2
100			min	-59.364	1_	-199.091	3	-111.338	1_	009	1	011	1_	0	15
101		13	max	-2.895	12	371.223	_1_	-2.409	12	.005	3	.061	5	.221	3
102			min	-59.364	_1_	-141.61	3	-67.479	1_	009	1	117	1	518	1
103		14	max	-2.895	12	223.378	_1_	605	12	.005	3	.011	5	.356	3
104			min	-59.364	1	-84.129	3	-46.7	4	009	1	172	1	873	1
105		15	max	-2.895	12	75.769	2	20.238	1	.005	3	007	12	.422	3
106			min	-61.419	4	-26.649	3	-38.083	5	009	1	174	1	-1.052	1
107		16	max	-2.895	12	30.832	3	64.097	1	.005	3	004	12	.419	3
108			min	-73.68	4	-72.312	1	-35.293	5	009	1	123	1	-1.054	1
109		17	max	-2.895	12	88.313	3	107.955	1	.005	3	0	3	.348	3
110			min	-85.941	4	-220.158	1	-32.502	5	009	1	127	4	879	1
111		18	max	-2.895	12	145.793	3	151.814	1	.005	3	.134	1	.208	3
112			min	-98.203	4	-368.003	1	-29.712	5	009	1	158	5	528	1
113		19	max	-2.895	12	203.274	3	195.673	1	.005	3	.342	1	0	2
114				-110.464	4	-515.848	1	-26.922	5	009	1	192	5	0	5
115	M16	1	max	87.04	5	495.206	1	-8.122	12	.01	1	.304	1	0	2
116	IVITO			-135.014	1	-191.398		-190.375		007	3	.014	12	0	3
117		2	max		5	347.361	1	-6.319	12	.01	1	.158	4	.194	3
118				-135.014	1	-133.917	3	-146.517	1	007	3	.005	12	503	1
119		3		62.517	5	199.516	1	-4.516	12	.01	1	.089	5	.32	3
120		3		-135.014	1	-76.437	3	-102.658	1	007	3	046	1	83	1
121		4	max		5	51.671	1	-2.712	12	.01	1	.048	5	.377	3
122		-		-135.014						007	3	143	1		1
123		5			<u>1</u> 5	-18.956 38.525	3	-58.799 909	<u>1</u> 12	.01	<u> </u>	.011	5	98 .365	3
		5	max								_				
124		_		-135.014	1	-96.174	1	-33.903	4	007	3	187	1	953	1
125		6	max		5	96.005	3	28.918	1	.01	1	008	12	.285	3
126		-		-135.014	1_	-244.019	1_	-27.275	5	007	3	178	1	75	1
127		7	max		_5_	153.486	3	72.777	_1_	.01	1	005	12	.136	3
128				-135.014	_1_	-391.864	1_	-24.485	_5_	007	3	117	1	37	1
129		8	max		5	210.967	3	116.635	_1_	.01	1	0	10	.186	1
130				-135.014	_1_	-539.709	1_	-21.695	5_	007	3	085	4	082	3
131		9	max		12	268.447	3	160.494	1_	.01	1	.161	1	.919	1
132			min	-135.014	1_	-687.554	1_	-18.905	5	007	3	106	5	368	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
133		10	max	-6.263	12	325.928	3	204.352	1	.007	3	.379	1	1.829	1
134			min	-135.014	1	-835.4	1	-125.24	14	01	1	.014	12	723	3
135		11	max	-3.861	15	687.554	1	-6.305	12	.007	3	.164	4	.919	1
136			min	-135.014	1	-268.447	3	-160.494	1	01	1	.005	12	368	3
137		12	max	-6.263	12	539.709	1	-4.501	12	.007	3	.082	4	.186	1
138			min	-135.014	1	-210.967	3	-116.635	1	01	1	004	1	082	3
139		13	max	-6.263	12	391.864	1	-2.698	12	.007	3	.039	5	.136	3
140			min	-135.014	1	-153.486	3	-72.777	1	01	1	117	1	37	1
141		14	max	-6.263	12	244.019	1	894	12	.007	3	0	15	.285	3
142			min	-135.014	1	-96.005	3	-37.751	4	01	1	178	1	75	1
143		15	max	-6.263	12	96.174	1	14.941	1	.007	3	008	12	.365	3
144			min	-135.014	1	-38.525	3	-28.146	5	01	1	187	1	953	1
145		16	max	-6.263	12	18.956	3	58.799	1	.007	3	005	12	.377	3
146			min	-135.014	1	-51.671	1	-25.356	5	01	1	143	1	98	1
147		17	max	-6.263	12	76.437	3	102.658	1	.007	3	001	12	.32	3
148			min	-135.014	1	-199.516	1	-22.565	5	01	1	107	4	83	1
149		18	max	-6.263	12	133.917	3	146.517	1	.007	3	.103	1	.194	3
150			min	-135.014	1	-347.361	1	-19.775	5	01	1	12	5	503	1
151		19	max	-6.263	12	191.398	3	190.375	1	.007	3	.304	1	0	2
152			min	-135.014	1	-495.206	1	-16.985	5	01	1	142	5	0	5
153	M2	1	max	963.712	1	1.956	4	.814	1	0	12	0	3	0	1
154			min	-924.625	3	.476	15	-48.921	4	0	4	0	1	0	1
155		2	max	964.141	1	1.9	4	.814	1	0	12	0	1	0	15
156			min	-924.303	3	.463	15	-49.294	4	0	4	014	4	0	4
157		3	max	964.569	1	1.843	4	.814	1	0	12	0	1	0	15
158			min	-923.982	3	.449	15	-49.667	4	0	4	029	4	001	4
159		4	max		1	1.786	4	.814	1	0	12	0	1	0	15
160			min	-923.661	3	.436	15	-50.041	4	0	4	043	4	002	4
161		5	max	965.426	1	1.729	4	.814	1	0	12	0	1	0	15
162			min	-923.339	3	.423	15	-50.414	4	0	4	058	4	002	4
163		6	max	965.855	1	1.672	4	.814	1	0	12	.001	1	0	15
164			min	-923.018	3	.409	15	-50.787	4	0	4	072	4	003	4
165		7	max	966.283	1	1.616	4	.814	1	0	12	.001	1	0	15
166			min	-922.697	3	.396	15	-51.161	4	0	4	087	4	003	4
167		8	max	966.712	1	1.559	4	.814	1	0	12	.002	1	0	15
168			min	-922.375	3	.383	15	-51.534	4	0	4	102	4	004	4
169		9	max	967.14	1	1.502	4	.814	1	0	12	.002	1	0	15
170			min	-922.054	3	.369	15	-51.907	4	0	4	117	4	004	4
171		10	max	967.569	1	1.445	4	.814	1	0	12	.002	1	001	15
172		1.0	min	-921.732	3	.356	15	-52.281	4	0	4	132	4	004	4
173		11		967.997	1	1.388	4	.814	1	0	12	.002	1	001	15
174			min		3	.343	15	-52.654	4	0	4	147	4	005	4
175		12	max		1	1.332	4	.814	1	0	12	.003	1	001	15
176	_		min	-921.09	3	.329	15	-53.027	4	0	4	163	4	005	4
177		13			1	1.275	4	.814	1	0	12	.003	1	001	15
178		'	min	-920.768	3	.316	15	-53.401	4	0	4	178	4	006	4
179		14		969.283	1	1.218	4	.814	1	0	12	.003	1	001	15
180			min		3	.303	15	-53.774	4	0	4	194	4	006	4
181		15	max		1	1.161	4	.814	1	0	12	.003	1	002	15
182		1	min	-920.126	3	.289	15	-54.147	4	0	4	209	4	006	4
183		16	max		1	1.105	4	.814	1	0	12	.004	1	002	15
184		1	min		3	.274	12	-54.52	4	0	4	225	4	007	4
185		17	max		1	1.048	4	.814	1	0	12	.004	1	002	15
186		11	min	-919.483	3	.252	12	-54.894	4	0	4	241	4	007	4
187		18			1	.991	4	.814	1	0	12	.004	1	007	15
188		10	min	-919.162	3	.23	12	-55.267	4	0	4	257	4	007	4
189		19		971.425	1	.934	4	.814	1	0	12	.004	1	002	15
103		13	πιαλ	311.423		.504		.014		U	14	.004	<u> </u>	002	_ IJ

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
190			min	-918.84	3	.208	12	-55.64	4	0	4	273	4	008	4
191	M3	1	max	380.433	2	7.906	4	3.734	4	0	12	0	1	.008	4
192			min	-521.205	3	1.87	15	.008	12	0	4	029	4	.002	15
193		2	max	380.263	2	7.139	4	4.273	4	0	12	0	1	.004	4
194			min	-521.333	3	1.689	15	.008	12	0	4	028	4	0	12
195		3	max	380.093	2	6.372	4	4.812	4	0	12	0	1	.002	2
196			min	-521.461	3	1.509	15	.008	12	0	4	026	4	0	3
197		4	max		2	5.605	4	5.351	4	0	12	0	1	0	2
198			min	-521.588	3	1.329	15	.008	12	0	4	023	4	002	3
199		5	max	379.752	2	4.838	4	5.889	4	0	12	0	1	0	15
200			min	-521.716	3	1.148	15	.008	12	0	4	021	4	003	6
201		6	max		2	4.07	4	6.428	4	0	12	0	1	001	15
202			min	-521.844	3	.968	15	.008	12	0	4	019	4	005	6
203		7	max	379.411	2	3.303	4	6.967	4	0	12	0	1	001	15
204			min	-521.972	3	.788	15	.008	12	0	4	016	4	007	6
205		8	max	379.241	2	2.536	4	7.506	4	0	12	0	1	002	15
206		Ŭ	min	-522.099	3	.607	15	.008	12	0	4	013	5	008	6
207		9	max		2	1.769	4	8.044	4	0	12	.001	1	002	15
208		<u> </u>	min	-522.227	3	.427	15	.008	12	0	4	01	5	009	6
209		10	max	378.9	2	1.001	4	8.583	4	0	12	.001	1	003	15
210		10	min	-522.355	3	.247	15	.008	12	0	4	006	5	002	6
211		11	max	378.73	2	.283	2	9.122	4	0	12	.001	1	003	15
212			min	-522.483	3	042	3	.008	12	0	4	003	5	002	6
213		12	max	378.559	2	114	15	9.661	4	0	12	.002	4	002	15
214		12		-522.61	3	534		.008	12		4		12	002	
215		13	min		2	294	6 15	10.199	4	0	12	<u> </u>		009	15
216		13	max	378.389 -522.738	3	-1.301	6	.008	12		4		12	002	6
		14	min				15			0	12	<u> </u>			
217		14	max	378.219 -522.866	3	475		10.738	4	0	4		4	002	15
218		4.5	min			-2.068	6	.008	12	0	_	0	12	008	6
219 220		15	max	378.048	3	655 -2.836	1 <u>5</u>	.008	12	0	12	<u>.015</u> 0	12	002 007	15
		16	min	-522.994			15				12	.02			
221 222		16	max		2	835		.008	12	0			12	001	15
		17	min	-523.121	3	-3.603	6			0	4	0		006	6
223		17	max	377.708	2	-1.016	15	12.354	4	0	12	.025	4	001	15
224		4.0	min	-523.249	3	-4.37	6	.008	12	0	4	0	12	004	6
225		18	max	377.537	2	-1.196	15	12.893	4	0	12	.03	4	0	15
226		40	min	-523.377	3	-5.137	6	.008	12	0	4	0	12	002	6
227		19	max		2	-1.376	15	13.432	4	0	12	.036	4	0	1
228	N.4.4	4	min	-523.505	3	-5.904	6	.008	12	0	4	0	12	0	1
229	<u>M4</u>			1114.703	1	0	1	589	12	0	1	.026	4	0	1
230				-75.155	3			-293.345		0	1	0	12	0	1
231		2		1114.873		0	1	589	12	0	1	0	12	0	1
232		_		-75.027	3	0	1_4	-293.493		0	1	008	4	0	1
233		3		1115.043		0	1	589	12	0	1	0	12	0	1
234		A		-74.899	3	0	1	-293.64	4	0	1	042	4	0	1
235		4		1115.214		0	1	589	12	0	1	0	12	0	1
236		_	min		3	0	1	-293.788		0	1	075	4	0	1
237		5		1115.384	1	0	1	589	12	0	1	0	12	0	1
238				-74.644	3	0	1	-293.936		0	1	109	4	0	1
239		6		1115.554	1	0	1	589	12	0	1	0	12	0	1
240		-	min		3	0	1	-294.083		0	1	143	4	0	1
241		7		1115.725		0	1	589	12	0	1	0	12	0	1
242		_		-74.388	3	0	1	-294.231		0	1	<u>177</u>	4	0	1
243		8		1115.895		0	1	589	12	0	1	0	12	0	1
244			min		3	0	1	-294.379		0	1	211	4	0	1
245		9		1116.065		0	1	589	12	0	1	0	12	0	1
246			min	-74.133	3	0	1	-294.526	4	0	1	244	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1116.236	_1_	0	1	589	12	0	1	0	12	0	1
248			min	-74.005	3	0	1	-294.674	4	0	1	278	4	0	1
249		11	max	1116.406	_1_	0	1	589	12	0	1	0	12	0	1
250			min		3	0	1	-294.821	4	0	1	312	4	0	1
251		12	max	1116.576	_1_	0	1	589	12	0	1	0	12	0	1
252			min	-73.749	3	0	1	-294.969	4	0	1	346	4	0	1
253		13	max	1116.747	1	0	1	589	12	0	1	0	12	0	1
254			min	-73.622	3	0	1	-295.117	4	0	1	38	4	0	1
255		14	max	1116.917	1	0	1	589	12	0	1	0	12	0	1
256			min	-73.494	3	0	1	-295.264	4	0	1	414	4	0	1
257		15	max	1117.088	1	0	1	589	12	0	1	0	12	0	1
258			min	-73.366	3	0	1	-295.412	4	0	1	448	4	0	1
259		16	max	1117.258	1	0	1	589	12	0	1	0	12	0	1
260			min	-73.238	3	0	1	-295.56	4	0	1	481	4	0	1
261		17	max	1117.428	1	0	1	589	12	0	1	001	12	0	1
262			min	-73.111	3	0	1	-295.707	4	0	1	515	4	0	1
263		18	max	1117.599	1	0	1	589	12	0	1	001	12	0	1
264			min	-72.983	3	0	1	-295.855	4	0	1	549	4	0	1
265		19	max	1117.769	1	0	1	589	12	0	1	001	12	0	1
266			min	-72.855	3	0	1	-296.002	4	0	1	583	4	0	1
267	M6	1	max	3113.77	1	2.152	2	0	1	0	1	0	4	0	1
268			min	-3042.534	3	.289	12	-49.43	4	0	4	0	1	0	1
269		2	max	3114.198	1	2.107	2	0	1	0	1	0	1	0	12
270			min	-3042.213	3	.267	12	-49.803	4	0	4	014	4	0	2
271		3	max	3114.627	1	2.063	2	0	1	0	1	0	1	0	12
272			min	-3041.891	3	.245	12	-50.176	4	0	4	029	4	001	2
273		4	max	3115.055	1	2.019	2	0	1	0	1	0	1	0	12
274			min		3	.223	12	-50.55	4	0	4	044	4	002	2
275		5	max	3115.484	1	1.975	2	0	1	0	1	0	1	0	12
276			min	-3041.248	3	.201	12	-50.923	4	0	4	058	4	002	2
277		6		3115.912	1	1.93	2	0	1	0	1	0	1	0	12
278			min	-3040.927	3	.179	12	-51.296	4	0	4	073	4	003	2
279		7	max	3116.341	1	1.886	2	0	1	0	1	0	1	0	12
280			min		3	.157	12	-51.67	4	0	4	088	4	004	2
281		8	max	3116.769	1	1.842	2	0	1	0	1	0	1	0	12
282			min	-3040.284	3	.124	3	-52.043	4	0	4	103	4	004	2
283		9	max	3117.198	1	1.798	2	0	1	0	1	0	1	0	12
284			min	-3039.963	3	.091	3	-52.416	4	0	4	118	4	005	2
285		10	max	3117.626	1	1.753	2	0	1	0	1	0	1	0	12
286			min	-3039.642	3	.058	3	-52.79	4	0	4	134	4	005	2
287		11	max	3118.054	1	1.709	2	0	1	0	1	0	1	0	12
288				-3039.32	3	.024	3	-53.163	4	0	4	149	4	006	2
289		12		3118.483	1	1.665	2	0	1	0	1	0	1	0	12
290				-3038.999	3	009	3	-53.536	4	0	4	164	4	006	2
291		13		3118.911	1	1.621	2	0	1	0	1	0	1	0	12
292			min		3	042	3	-53.91	4	0	4	18	4	007	2
293		14	max	3119.34	1	1.576	2	0	1	0	1	0	1	0	3
294			min		3	075	3	-54.283	4	0	4	196	4	007	2
295		15		3119.768	1	1.532	2	0	1	0	1	0	1	0	3
296		ľ	min	-3038.035	3	108	3	-54.656	4	0	4	212	4	007	2
297		16		3120.197	1	1.488	2	0	1	0	1	0	1	0	3
298			min		3	142	3	-55.03	4	0	4	227	4	008	2
299		17		3120.625	1	1.444	2	0	1	0	1	0	1	0	3
300			min		3	175	3	-55.403	4	0	4	244	4	008	2
301		18		3121.054	1	1.399	2	0	1	0	1	0	1	0	3
302		0	min	-3037.071	3	208	3	-55.776	4	0	4	26	4	009	2
303		19		3121.482	1	1.355	2	0	1	0	1	0	1	0	3
		10	παλ	0121.TUZ		1.000		<u> </u>							

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC_
304			min	-3036.749	3	241	3	-56.15	4	0	4	276	4	009	2
305	M7	1	max		2	7.92	6	3.51	4	0	1	0	1	.009	2
306			min	-1635.399	3_	1.859	15	0	1	0	4	029	4	0	3
307		2		1582.404	2	7.153	6	4.049	4	0	1	0	1	.007	2
308			min	-1635.526	3_	1.679	15	0	1	0	4	028	4	001	3
309		3	max		2	6.386	6	4.588	4	0	1	0	1_	.004	2
310			min	-1635.654	3_	1.498	15	0	1	0	4	026	4	003	3
311		4		1582.063	2	5.618	6	5.127	4	0	1	0	1	.002	2
312			min	-1635.782	3_	1.318	15	0	1	0	4	024	4	004	3
313		5		1581.893	2	4.851	6	5.665	4	0	1	0	1	0	2
314			min	-1635.91	3_	1.137	15	0	1	0	4	022	4	005	3
315		6		1581.723	2	4.084	6	6.204	4	0	1	0	1_	001	15
316			min	-1636.037	3_	.957	15	0	1	0	4	019	4	006	3
317		7		1581.552	2	3.317	6	6.743	4	0	1	0	1	002	15
318			min	-1636.165	3	.777	15	0	1	0	4	017	4	007	3
319		8	max		2	2.55	6	7.282	4	0	1	0	1	002	15
320			min	-1636.293	3	.596	15	0	1	0	4	014	4	008	4
321		9	max		2	1.813	2	7.82	4	0	1	0	1	002	15
322			min	-1636.421	3	.362	12	0	1	0	4	01	4	009	4
323		10		1581.041	2	1.215	2	8.359	4	0	1	0	1_	002	15
324			min	-1636.548	3_	.04	3	0	1	0	4	007	4	009	4
325		11	max		2	.617	2	8.898	4	0	1	0	1_	002	15
326			min	-1636.676	3_	408	3	0	1	0	4	003	4	009	4
327		12	max	1580.7	2	.019	2	9.437	4	0	1	0	4	002	15
328			min	-1636.804	3_	857	3	0	1	0	4	0	1_	009	4
329		13	max	1580.53	2	305	15	9.975	4	0	1	.004	4	002	15
330			min	-1636.932	3_	-1.305	3	0	1	0	4	0	1_	009	4
331		14	max	1580.36	2	486	15	10.514	4	0	1	.009	4	002	15
332			min	-1637.059	3_	-2.054	4	0	1	0	4	0	1_	008	4
333		15		1580.189	2	666	15	11.053	4	0	1	.013	4	002	15
334		4.0	min	-1637.187	3	-2.821	4	0	1	0	4	0	1_	007	4
335		16		1580.019	2	846	15	11.592	4	0	1	.018	4	001	15
336			min	-1637.315	3	-3.588	4	0	1	0	4	0	1_	006	4
337		17		1579.849	2	-1.027	15	12.13	4	0	1	.023	4	001	15
338		10	min	-1637.443	3	-4.355	4	0	1	0	4	0	1_	004	4
339		18		1579.678	2	-1.207	15	12.669	4	0	1	.028	4	0	15
340			min	-1637.57	3	-5.123	4	0	1	0	4	0	1	002	4
341		19	max		2	-1.387	15	13.208	4	0	1	.034	4	0	1
342	140		min	-1637.698	3_	- 5.89	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1		2975.172	1_	0	1	0	1	0	1_	.024	4	0	1
344				-325.469		0	1	-284.046	_	0	1	0	1	0	1
345		2		2975.342	1_	0	1	0	1	0	1	0	1	0	1
346			min		3_	0	1	-284.194		0	1_	008	4	0	1
347		3		2975.513		0	1	0	1	0	1	0	1	0	1
348		-		-325.214		0	1	-284.341	4	0	1_	041	4	0	1
349		4		2975.683		0	1	0	1	0	1	0	1	0	1
350		_		-325.086		0	1	-284.489		0	1_	074	4	0	1
351		5		2975.853	1_	0	1	0	1	0	1	0	1	0	1
352				-324.958		0	1	-284.637		0	1	106	4	0	1
353		6		2976.024	1_	0	1	0	1	0	1	0	1	0	1
354		-	_	-324.831	3	0	1	-284.784		0	1_	139	4	0	1
355		7		2976.194	1_	0	1	0	1	0	1	0	11	0	1
356		_	min		3_	0	1	-284.932		0	1_	172	4	0	1
357		8		2976.364	1_	0	1	0	1	0	1	0	1	0	1
358		_		-324.575		0	1	-285.08	4	0	1_	204	4	0	1
359		9		2976.535		0	1	0	1	0	1	0	1	0	1
360			min	-324.447	3	0	1	-285.227	4	0	1	237	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC	_	
361		10		2976.705	1_	0	1	0	1	0	1_	0	1	0	1
362		4.4	min	-324.32	3	0	1	-285.375	4	0	1_	27	4	0	1
363		11		2976.875	1	0	1	0	1_1	0	<u>1</u> 1	0	1_4	0	1
364		10		-324.192	3	0	1	-285.522	4	0	1	303	4	0	1
365 366		12		2977.046 -324.064	<u>1</u> 3	0	1	0 -285.67	<u>1</u> 4	0	1	336	4	0	1
367		13		2977.216	<u> </u>	0	1	0	1	0	1	0	1	0	1
368		13	min	-323.936	3	0	1	-285.818	4	0	1	368	4	0	1
369		14		2977.386	<u> </u>	0	1	0	1	0	+	0	1	0	1
370		14	min	-323.809	3	0	1	-285.965	4	0	1	401	4	0	1
371		15		2977.557	_ <u></u>	0	1	0	1	0	1	0	1	0	1
372		10	min	-323.681	3	0	1	-286.113	4	0	1	434	4	0	1
373		16		2977.727	1	0	1	0	1	0	1	0	1	0	1
374				-323.553	3	0	1	-286.261	4	0	1	467	4	0	1
375		17		2977.897	1	0	1	0	1	0	1	0	1	0	1
376				-323.425	3	Ö	1	-286.408	4	0	1	5	4	0	1
377		18		2978.068	1	0	1	0	1	0	1	0	1	0	1
378			min	-323.298	3	0	1	-286.556	4	0	1	533	4	0	1
379		19	max	2978.238	1	0	1	0	1	0	1	0	1	0	1
380			min	-323.17	3	0	1	-286.704	4	0	1	566	4	0	1
381	M10	1	max	963.712	1	1.885	6	036	12	0	1	0	1	0	1
382			min	-924.625	3	.428	15	-49.383	4	0	5	0	3	0	1
383		2	max	964.141	1_	1.828	6	036	12	0	1	0	10	0	15
384			min	-924.303	3	.415	15	-49.756	4	0	5	014	4	0	6
385		3	max	964.569	1	1.772	6	036	12	0	1	0	12	0	15
386			min	-923.982	3	.402	15	-50.129	4	0	5	029	4	001	6
387		4	max		1_	1.715	6	036	12	0	_1_	0	12	0	15
388			min	-923.661	3	.388	15	-50.502	4	0	5	043	4	002	6
389		5	max		_1_	1.658	6	036	12	0	1_	0	12	0	15
390			min	-923.339	3	.375	15	-50.876	4_	0	5	058	4	002	6
391		6	max	965.855	1_	1.601	6	036	12	0	1	0	12	0	15
392			min	-923.018	3_	.362	15	-51.249	4	0	5	073	4	003	6
393		7	max	966.283	1_	1.544	6	036	12	0	1_	0	12	0	15
394		0		-922.697	3	.348	15	-51.622	4	0	5	088	4	003	6
395		8	max	966.712	1	1.488	6 15	036 51.006	12	0	1	102	12	0	15
396		9	min	967.14	<u>3</u> 1	.335 1.431	6	<u>-51.996</u> 036	<u>4</u> 12	0	<u>5</u> 1	103 0	12	003 0	15
397 398		9	max	-922.054	3	.322	15	-52.369	4	0	5	118	4	004	6
399		10	max		<u> </u>	1.374	6	036	12	0	1	0	12	0	15
400		10		-921.732	3	.308	15	-52.742	4	0	5	133	4	004	6
401		11		967.997	<u> </u>	1.317	6	036	12	0	1	0	12	004	15
402				-921.411	3	.295	15	-53.116	4	0	5	149	4	005	6
403		12		968.426	1	1.261	6	036	12	0	1	0	12	001	15
404		12		-921.09	3	.282	15	-53.489	4	0	5	164	4	005	6
405		13		968.854	1	1.204	6	036	12	0	1	0	12	001	15
406				-920.768	3	.268	15	-53.862	4	Ö	5	18	4	005	6
407		14		969.283	1	1.147	6	036	12	0	1	0	12	001	15
408				-920.447	3	.255	15	-54.236	4	0	5	196	4	006	6
409		15		969.711	1	1.09	6	036	12	0	1	0	12	001	15
410				-920.126	3	.241	15	-54.609	4	0	5	211	4	006	6
411		16	max		1	1.033	6	036	12	0	1	0	12	001	15
412				-919.804	3	.228	15	-54.982	4	0	5	227	4	006	6
413		17		970.568	1	.977	6	036	12	0	1	0	12	001	15
414				-919.483	3	.215	15	-55.356	4	0	5	243	4	007	6
415		18		970.997	1	.92	6	036	12	0	1	0	12	002	15
416				-919.162	3	.201	15	-55.729	4	0	5	259	4	007	6
417		19	max	971.425	1	.873	2	036	12	0	1	0	12	002	15

Schletter, Inc.HCV

Job Number : Model Name : Standard PV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC_
418			min	-918.84	3	.188	15	-56.102	4	0	5	276	4	007	6
419	M11	1	max	380.433	2	7.857	6	3.634	4	0	1	0	12	.007	6
420			min	-521.205	3	1.837	15	178	1	0	4	029	4	.002	15
421		2	max	380.263	2	7.09	6	4.173	4	0	1	0	12	.004	2
422			min	-521.333	3	1.656	15	178	1	0	4	028	4	0	15
423		3	max	380.093	2	6.323	6	4.711	4	0	1	0	12	.002	2
424			min	-521.461	3	1.476	15	178	1	0	4	026	4	0	3
425		4	max	379.922	2	5.556	6	5.25	4	0	1	0	12	0	2
426			min	-521.588	3	1.296	15	178	1	0	4	024	4	002	3
427		5	max	379.752	2	4.788	6	5.789	4	0	1	0	12	0	15
428			min	-521.716	3	1.115	15	178	1	0	4	022	4	003	4
429		6	max	379.582	2	4.021	6	6.328	4	0	1	0	12	001	15
430			min	-521.844	3	.935	15	178	1	0	4	019	4	005	4
431		7	max	379.411	2	3.254	6	6.866	4	0	1	0	12	002	15
432			min	-521.972	3	.755	15	178	1	0	4	016	4	007	4
433		8	max	379.241	2	2.487	6	7.405	4	0	1	0	12	002	15
434			min	-522.099	3	.574	15	178	1	0	4	013	4	008	4
435		9	max	379.071	2	1.719	6	7.944	4	0	1	0	12	002	15
436			min	-522.227	3	.394	15	178	1	0	4	01	4	009	4
437		10	max	378.9	2	.952	6	8.483	4	0	1	0	12	003	15
438		10	min	-522.355	3	.214	15	178	1	0	4	007	4	002	4
439		11	max	378.73	2	.283	2	9.021	4	0	1	0	12	002	15
440		11	min	-522.483	3	042	3	178	1	0	4	003	4	00 <u>2</u> 01	4
		12							4		1				
441		12	max	378.559	2	147	15	9.56	1	0		.001	5	002	15
442		40	min	-522.61	3	583	4	178	_	0	4	001	1	<u>01</u>	4
443		13	max	378.389	2	327	15	10.099	4	0	1	.005	5	002	15
444		4.4	min	-522.738	3	-1.35	4	178	1	0	4	001	1	009	4
445		14	max	378.219	2	508	15	10.637	4	0	1	.01	5	002	15
446		4.5	min	-522.866	3	-2.118	4	178	1	0	4	001	1	008	4
447		15	max	378.048	2	688	15	11.176	4	0	1	.014	5	002	15
448		40	min	-522.994	3	-2.885	4	178	1	0	4	001	1	007	4
449		16	max		2	869	15	11.715	4	0	1	.019	5	001	15
450			min	-523.121	3_	-3.652	4	178	1	0	4	002	1	006	4
451		17	max	377.708	2_	-1.049	15	12.254	4	0	1	.024	5	<u>001</u>	15
452			min	-523.249	3_	-4.419	4	178	1	0	4	002	1	004	4
453		18	max	377.537	2	-1.229	15	12.792	4	0	1	.029	4	0	15
454			min	-523.377	3	-5.187	4	178	1	0	4	002	1	002	4
455		19	max	377.367	2	-1.41	15	13.331	4	0	1	.035	4	0	1
456			min	-523.505	3	-5.954	4	178	1	0	4	002	1	0	1
457	M12	1		1114.703	_1_	0	1	12.795	1_	0	1	.025	4	0	1
458				-75.155	3	0	1	-286.065	4	0	1	001	1	0	1
459		2	max	1114.873	<u>1</u>	0	1	12.795	1	0	1	0	1	0	1
460			min	-75.027	3	0	1	-286.212	4	0	1	008	4	0	1
461		3	max	1115.043	1	0	1	12.795	1	0	1	.002	1	0	1
462			min	-74.899	3	0	1	-286.36	4	0	1	041	4	0	1
463		4	max	1115.214	1	0	1	12.795	1	0	1	.003	1	0	1
464			min	-74.771	3	0	1	-286.508	4	0	1	074	4	0	1
465		5	max	1115.384	1	0	1	12.795	1	0	1	.005	1	0	1
466				-74.644	3	0	1	-286.655	4	0	1	107	4	0	1
467		6		1115.554	1	0	1	12.795	1	0	1	.006	1	0	1
468			min	-74.516	3	0	1	-286.803	4	0	1	139	4	0	1
469		7		1115.725	1	0	1	12.795	1	0	1	.008	1	0	1
470				-74.388	3	0	1	-286.951	4	0	1	172	4	0	1
471		8		1115.895	1	0	1	12.795	1	0	1	.009	1	0	1
472			min	-74.26	3	0	1	-287.098	4	0	1	205	4	0	1
473		9		1116.065	1	0	1	12.795	1	0	1	.01	1	0	1
474				-74.133	3	0	1	-287.246		0	1	238	4	0	1
777			1111111	1 T. 100		U		201.240		U		.200			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1116.236	_1_	0	1	12.795	1	0	_1_	.012	_1_	0	1
476			min	-74.005	3	0	1	-287.393	4	0	1	271	4	0	1
477		11	max	1116.406	1	0	1	12.795	1	0	1	.013	1	0	1
478			min	-73.877	3	0	1	-287.541	4	0	1	304	4	0	1
479		12	max	1116.576	1	0	1	12.795	1	0	1	.015	1	0	1
480			min	-73.749	3	0	1	-287.689	4	0	1	337	4	0	1
481		13	max	1116.747	1	0	1	12.795	1	0	1	.016	1	0	1
482			min	-73.622	3	0	1	-287.836	4	0	1	37	4	0	1
483		14	max	1116.917	1	0	1	12.795	1	0	1	.018	1	0	1
484			min	-73.494	3	0	1	-287.984	4	0	1	403	4	0	1
485		15		1117.088	1	0	1	12.795	1	0	1	.019	1	0	1
486			min	-73.366	3	0	1	-288.132	4	0	1	437	4	0	1
487		16		1117.258	1	0	1	12.795	1	0	1	.021	1	0	1
488			min	-73.238	3	0	1	-288.279	4	0	1	47	4	0	1
489		17		1117.428	1	0	1	12.795	1	0	1	.022	1	0	1
490			min	-73.111	3	0	1	-288.427	4	0	1	503	4	0	1
491		18		1117.599	1	0	1	12.795	1	0	1	.024	1	0	1
492		10	min	-72.983	3	0	1	-288.575	4	0	1	536	4	0	1
493		19		1117.769	1	0	1	12.795	1	0	1	.025	1	0	1
494		13	min	-72.855	3	0	1	-288.722	4	0	1	569	4	0	1
495	M1	1	max	190.162	1	514.579	3	51.195	5	0	1	.303	1	0	3
496	1711		min	-8.56	5	-429.671	1	-126.421	1	0	3	096	5	011	1
497		2	max	190.767	1	513.605	3	52.437	5	0	1	.236	1	.216	1
498			min	-8.278	5	-430.969	1	-126.421	1	0	3	068	5	271	3
499		3	max	316.645	3	476.334	1	5.983	5	0	3	.169	1	.433	1
500			min	-191.284	2	-362.105	3	-125.889	1	0	1	041	5	531	3
501		4	max	317.099	3	475.036	1	7.224	5	0	3	.103	1	.182	1
502			min	-190.679	2	-363.079	3	-125.889	1	0	1	037	5	34	3
503		5	max		3	473.738	1	8.466	5	0	3	.036	1	003	15
504			min	-190.074	2	-364.052	3	-125.889	1	0	1	033	5	148	3
505		6	max	318.008	3	472.439	1	9.707	5	0	3	001	12	.044	3
506			min	-189.468	2	-365.026	3	-125.889	1	0	1	035	4	318	1
507		7	max	318.462	3	471.141	1	10.949	5	0	3	005	12	.237	3
508			min	-188.863	2	-366	3	-125.889	1	0	1	097	1	567	1
509		8	max	318.916	3	469.843	1	12.19	5	0	3	008	12	.43	3
510			min	-188.258	2	-366.973	3	-125.889	1	0	1	163	1	816	1
511		9	max	332.097	3	32.828	2	58.952	5	0	9	.095	1	.504	3
512			min	-108.544	2	.392	15	-182.174	1	0	3	14	5	929	1
513		10	max		3	31.529	2	60.193	5	0	9	0	12	.489	3
514			min	-107.938	2	0	5	-182.174	1	0	3	109	4	939	1
515		11		333.005	3	30.231	2	61.435	5	0	9	005	12	.475	3
516			min		2	-1.605	4	-182.174		0	3	098	4	947	1
517		12	max		3	230.586	3	159.164	5	0	1	.161	1	.413	3
518		1,2	min		5	-504.383	1	-122.894		0	3	215	5	836	1
519		13			3	229.612	3	160.405	5	0	1	.096	1	.292	3
520			min		5	-505.681	1	-122.894		0	3	13	5	57	1
521		14	max		3	228.639	3	161.647	5	0	1	.031	1	.171	3
522			min	-65.254	5	-506.979	1	-122.894		0	3	045	5	303	1
523		15		347.498	3	227.665	3	162.888	5	0	1	.04	5	.05	3
524			min	-64.971	5	-508.278	1	-122.894		0	3	034	1	035	1
525		16	max		3	226.691	3	164.13	5	0	1	.126	5	.242	2
526			min	-64.689	5	-509.576	1	-122.894		0	3	098	1	069	3
527		17	max		3	225.718	3	165.371	5	0	1	.213	5	.503	1
528			min		5	-510.874	1	-122.894		0	3	163	1	189	3
529		18	max		5	497.786	1	-6.263	12	0	5	.198	5	.252	1
530					1	-190.47	3	-136.344		0	2	233	1	094	3
531		19			5	496.487	1	-6.263	12	0	5	.142	5	.007	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
532			min	-190.371	1	-191.444	3	-135.176	1	0	2	304	1	01	1
533	<u>M5</u>	1	max	409.132	1	1714.029	3	102.308	5	0	1	0	1	.023	1
534			min	16.017	12	-1449.145	1	0	1	0	4	219	4	0	3
535		2	max	409.737	_1_	1713.056	3	103.549	5	0	1	0	1	.788	1
536			min	16.32	12	-1450.443	1	0	1	0	4	165	4	904	3
537		3	max	1019.76	3	1468.266	1	60.862	4	0	4	0	1	1.518	1
538			min	-703.702	2	-1175.603	3	0	1	0	1	111	4	-1.773	3
539		4	max	1020.214	3	1466.968	1	62.104	4	0	4	0	1	.744	1
540			min	-703.096	2	-1176.576	3	0	1	0	1	078	4	-1.153	3
541		5	max	1020.668	3_	1465.67	1	63.345	4	0	4	0	1_	.005	9
542			min	-702.491	2	-1177.55	3	0	1	0	1	045	4	532	3
543		6	max	1021.122	3_	1464.371	1	64.587	4	0	4	0	1	.09	3
544			min	-701.885	2	-1178.524	3	0	1	0	1	012	5	803	1
545		7	max	1021.576	3	1463.073	1	65.828	4	0	4	.023	4	.712	3
546			min	-701.28	2	-1179.497	3	0	1	0	1	0	1	-1.575	1
547		8	max	1022.03	3_	1461.775	1	67.07	4	0	4	.058	4	1.335	3
548			min	-700.675	2	-1180.471	3	0	1	0	1	0	1	-2.347	1
549		9	max	1045.719	3	108.561	2	191.475	4	0	1	0	1	1.54	3
550			min	-537.593	2	.393	15	0	1	0	1	201	4	-2.655	1
551		10	max	1046.173	3_	107.263	2	192.716	4	0	1	0	1	1.488	3
552			min	-536.988	2	.002	15	0	1	0	1	1	4	-2.686	1
553		11	max	1046.627	3_	105.964	2	193.958	4	0	1	.002	4	1.436	3
554			min	-536.382	2	-1.408	6	0	1	0	1	0	1	-2.716	1
555		12	max	1070.419	3	739.335	3	229.914	4	0	1	0	1	1.259	3
556			min	-373.31	2	-1578.861	1	0	1	0	4	315	4	-2.42	1
557		13	max	1070.873	3_	738.361	3	231.156	4	0	1	0	1	.869	3
558			min		2	-1580.159	1	0	1	0	4	193	4	-1.587	1
559		14	max	1071.327	3_	737.388	3	232.397	4	0	1	0	1	.48	3
560			min	-372.099	2	-1581.457	1	0	1	0	4	071	4	753	1
561		15		1071.781	3	736.414	3	233.639	4	0	1	.052	4	.136	2
562			min	-371.494	2	-1582.756	1	0	1	0	4	0	1	004	13
563		16		1072.235	3_	735.44	3	234.88	4	0	1	.176	4	.928	2
564			min	-370.889	2	-1584.054	1	0	1	0	4	0	1_	297	3
565		17		1072.689	_3_	734.467	3	236.121	4	0	_1_	.3	4	1.754	1
566			min	-370.283	2	-1585.352	1	0	1	0	4	0	1	685	3
567		18	max	-16.518	12	1679.826	1_	0	1	0	4	.323	4	.906	1
568			min	-409.318	_1_	-651.178	3	-30.765	5	0	1_	0	1	358	3
569		19	max	-16.215	12	1678.528	1_	0	1_	0	4	.308	4	.02	1
570			min	-408.713	_1_	-652.152	3	-29.524	5	0	1	0	1	014	3
571	<u>M9</u>	1	max		_1_	514.579	3	126.421	1	0	3	015	12	0	3
572			min	8.222	12	-429.671	1	6.06	12	0	4	303	1	011	1
573		2	max		1_	513.605	3	126.421	1	0	3	011	12	.216	1
574			min	8.524	<u>12</u>	-430.969	1	6.06	12	0	4	236	1	271	3
575		3	max		3_	476.334	1	125.889	1	0	1	008	12	.433	1
576			min	-191.284	2	-362.105	3	6.023	12	0	3	169	1	531	3
577		4		317.099	3_	475.036	1	125.889	1	0	1	005	12	.182	1
578				-190.679	2	-363.079	3	6.023	12	0	3	103	1	34	3
579		5		317.553	3_	473.738	1	125.889	1	0	1	002	12	003	15
580			min	-190.074	2	-364.052	3	6.023	12	0	3	046	4	148	3
581		6	max		3	472.439	1	125.889	1	0	1	.03	1	.044	3
582			min		2	-365.026	3	6.023	12	0	3	025	5	318	1
583		7		318.462	3_	471.141	1	125.889	1	0	1	.097	1	.237	3
584				-188.863	2	-366	3	6.023	12	0	3	011	5	567	1
585		8	max		3_	469.843	1	125.889	1	0	1	.163	1_	.43	3
586			min		2	-366.973	3	6.023	12	0	3	.002	15	816	1
587		9		332.097	3_	32.828	2	182.174	1	0	3	004	12	.504	3
588			min	-108.544	2	.399	15	8.574	12	0	9	174	4	929	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	332.551	3	31.529	2	182.174	1	0	3	.001	1	.489	3
590			min	-107.938	2	.007	15	8.574	12	0	9	109	4	939	1
591		11	max	333.005	3	30.231	2	182.174	1	0	3	.097	1	.475	3
592			min	-107.333	2	-1.555	6	8.574	12	0	9	064	5	947	1
593		12	max	346.136	3	230.586	3	204.462	4	0	3	007	12	.413	3
594			min	-62.271	10	-504.383	1	5.682	12	0	1	274	4	836	1
595		13	max	346.59	3	229.612	3	205.704	4	0	3	004	12	.292	3
596			min	-61.767	10	-505.681	1	5.682	12	0	1	165	4	57	1
597		14	max	347.044	3	228.639	3	206.945	4	0	3	001	12	.171	3
598			min	-61.262	10	-506.979	1	5.682	12	0	1	057	4	303	1
599		15	max	347.498	3	227.665	3	208.187	4	0	3	.053	4	.05	3
600			min	-60.758	10	-508.278	1	5.682	12	0	1	.002	12	035	1
601		16	max	347.952	3	226.691	3	209.428	4	0	3	.163	4	.242	2
602			min	-60.253	10	-509.576	1	5.682	12	0	1	.005	12	069	3
603		17	max	348.406	3	225.718	3	210.67	4	0	3	.274	4	.503	1
604			min	-59.749	10	-510.874	1	5.682	12	0	1	.008	12	189	3
605		18	max	-8.425	12	497.786	1	135.176	1	0	2	.282	4	.252	1
606			min	-190.976	1	-190.47	3	-88.476	5	0	3	.011	12	094	3
607	·	19	max	-8.123	12	496.487	1	135.176	1	0	2	.304	1	.007	3
608			min	-190.371	1	-191.444	3	-87.235	5	0	3	.014	12	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.092	1	.006	3	7.45e-3	1	NC	1	NC	1
2			min	701	4	008	3	002	2	-7.542e-4	3	NC	1	NC	1
3		2	max	.001	1	.295	3	.054	1	8.634e-3	1	NC	5	NC	2
4			min	701	4	142	1	025	5	-7.601e-4	3	851.483	3	5000.31	1
5		3	max	.001	1	.541	3	.13	1	9.818e-3	1	NC	5	NC	3
6			min	701	4	327	1	029	5	-7.66e-4	3	470.428	3	2026.855	1
7		4	max	0	1	.69	3	.196	1	1.1e-2	1	NC	5	NC	3
8			min	701	4	433	1	02	5	-7.719e-4	3	369.821	3	1334.791	1
9		5	max	0	1	.725	3	.23	1	1.219e-2	1	NC	5	NC	3
10			min	701	4	444	1	002	5	-7.778e-4	3	352.205	3	1132.998	1
11		6	max	0	1	.648	3	.223	1	1.337e-2	1	NC	5	NC	3
12			min	701	4	362	1	.01	15	-7.837e-4	3	393.494	3	1169.49	1
13		7	max	0	1	.483	3	.176	1	1.455e-2	1	NC	5	NC	3
14			min	701	4	208	1	.014	10	-7.896e-4	3	526.32	3	1483.349	1
15		8	max	0	1	.272	3	.104	1	1.574e-2	1	NC	4	NC	3
16			min	701	4	02	1	.005	10	-7.955e-4	3	921.797	3	2540.487	1
17		9	max	0	1	.148	1	.034	4	1.692e-2	1	NC	4	NC	2
18			min	701	4	.005	15	003	10	-8.014e-4	3	2895.158	3	7552.443	4
19		10	max	0	1	.224	1	.018	3	1.811e-2	1	NC	3	NC	1
20			min	701	4	005	3	012	2	-8.073e-4	3	1966.304	1	NC	1
21		11	max	0	12	.148	1	.032	1	1.692e-2	1	NC	4	NC	2
22			min	701	4	.005	15	02	5	-8.014e-4	3	2895.158	3	8812.784	1
23		12	max	0	12	.272	3	.104	1	1.574e-2	1_	NC	4	NC	3
24			min	701	4	02	1	02	5	-7.955e-4	3	921.797	3	2540.487	1
25		13	max	0	12	.483	3	.176	1	1.455e-2	1_	NC	5	NC	3
26			min	701	4	208	1	006	5	-7.896e-4	3	526.32	3	1483.349	
27		14	max	0	12	.648	3	.223	1	1.337e-2	1_	NC	5	NC	3
28			min	701	4	362	1	.009	15	-7.837e-4	3	393.494	3	1169.49	1
29		15	max	0	12	.725	3	.23	1	1.219e-2	1_	NC	5	NC	3
30			min	701	4	444	1	.016	12	-7.778e-4	3	352.205	3	1132.998	1
31		16	max	0	12	.69	3	.196	1	1.1e-2	1_	NC	5	NC	3
32			min	701	4	433	1	.014	12	-7.719e-4	3	369.821	3	1334.791	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.541	3	.13	1	9.818e-3	1	NC	5	NC	3
34			min	701	4	327	1	.01	12	-7.66e-4	3	470.428	3	2026.855	1
35		18	max	0	12	.295	3	.054	1	8.634e-3	1	NC	5	NC	2
36			min	701	4	142	1	.004	10	-7.601e-4	3	851.483	3	5000.31	1
37		19	max	0	12	.092	1	.006	3	7.45e-3	1	NC	1	NC	1
38			min	701	4	008	3	002	2	-7.542e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.148	3	.005	3	4.681e-3	1	NC	1	NC	1
40			min	524	4	305	1	002	2	-2.688e-3	3	NC	1	NC	1
41		2	max	0	1	.425	3	.038	1	5.646e-3	1	NC	5	NC	2
42			min	524	4	652	1	036	5	-3.295e-3	3	742.759	1	7237.42	1
43		3	max	0	1	.657	3	.105	1	6.611e-3	1	NC	15	NC	3
44			min	524	4	949	1	043	5	-3.902e-3	3	400.761	1	2506.804	1
45		4	max	0	1	.814	3	.169	1	7.576e-3	1	NC	15	NC	3
46			min	524	4	-1.159	1	028	5	-4.508e-3	3	301.999	1	1549.419	1
47		5	max	0	1	.882	3	.205	1	8.541e-3	1_	9139.988	15	NC	3
48			min	524	4	-1.266	1	003	5	-5.115e-3	3	268.354	1	1270.647	1
49		6	max	0	1	.861	3	.203	1	9.507e-3	1_	9146.024	15	NC	3
50			min	524	4	-1.27	1	.015	12	-5.722e-3	3	267.358	1	1283.268	1
51		7	max	0	1	.768	3	.163	1	1.047e-2	1_	NC	15	NC	3
52			min	524	4	-1.187	1	.013	10	-6.328e-3	3	292.394	1	1602.75	1
53		8	max	0	1	.633	3	.098	1	1.144e-2	_1_	NC	<u>15</u>	NC	3
54			min	524	4	<u>-1.053</u>	1	.005	10	-6.935e-3	3	344.793	1_	2710.484	1
55		9	max	0	1	.505	3	.049	4	1.24e-2	1	NC	15	NC	2
56			min	525	4	92	1	003	10	-7.542e-3	3	419.592	1_	5259.11	4
57		10	max	0	1	.446	3	.016	3	1.337e-2	1	NC	5	NC	1
58			min	525	4	857	1	01	2	-8.148e-3	3	467.569	1_	NC	1
59		11	max	0	12	.505	3	.03	1	1.24e-2	_1_	NC	<u>15</u>	NC	2
60			min	525	4	92	1	036	5	-7.542e-3	3	419.592	1_	7467.482	5
61		12	max	0	12	.633	3	.098	1	1.144e-2	1	NC	15	NC	3
62			min	525	4	-1.053	1	04	5	-6.935e-3	3	344.793	1_	2710.484	1
63		13	max	0	12	.768	3	.163	1	1.047e-2	_1_	NC	15	NC	3
64			min	525	4	-1.187	1	025	5	-6.328e-3	3	292.394	1_	1602.75	1
65		14	max	0	12	.861	3	.203	1_	9.507e-3	_1_	9145.668	15	NC	3
66			min	525	4	-1.27	1	0	15	-5.722e-3	3	267.358	1_	1283.268	
67		15	max	0	12	.882	3	.205	1	8.541e-3	1_	9139.544	15	NC	3
68			min	525	4	-1.266	1	.014	12	-5.115e-3	3	268.354	1_	1270.647	1
69		16	max	0	12	.814	3	.169	1	7.576e-3	_1_	NC	15	NC	3
70			min	525	4	-1.159	1	.012	12	-4.508e-3	3	301.999	_1_	1549.419	
71		17	max	0	12	.657	3	.105	1	6.611e-3	_1_	NC	15	NC	3
72			min	525	4	949	1	.008	12	-3.902e-3	3	400.761	<u>1</u>	2506.804	
73		18	max	0	12	.425	3	.051	4	5.646e-3	1	NC	_5_	NC	2
74		1.0	min	525	4	<u>652</u>	1	.002	10	-3.295e-3	3_	742.759	1	5056.37	4
75		19	max	0	12	.148	3	.005	3	4.681e-3	1	NC NC		NC NC	1
76			min	525	4	305	1	002	2	-2.688e-3	3	NC	1_	NC	1
77	M15	1_	max	0	12	.152	3	.005	3	2.257e-3	3	NC	1_	NC NC	1
78			min	427	4	304	1	002	2	-4.797e-3	1	NC	1_	NC NC	1
79		2	max	0	12	.316	3	.038	1	2.77e-3	3	NC 070 400	5_	NC 5000,000	2
80			min	427	4	689	1	048	5	-5.792e-3	1_	670.498	1_	5229.098	
81		3	max	0	12	.458	3	.105	1	3.284e-3	3	NC acc coo	<u>15</u>	NC ocoo ooc	3
82		4	min	427	4	<u>-1.016</u>	1	058	5	-6.788e-3	1	362.623	1_	2500.206	
83		4	max	0	12	.561	3	.169	1	3.798e-3	3	NC 074.070	<u>15</u>	NC	3
84		_	min	427	4	-1.245	1	04	5	-7.784e-3	1	274.376	1	1546.303	
85		5	max	0	12	.616	3	.206	1	4.312e-3	3	9152.015	<u>15</u>	NC	3
86			min	427	4	<u>-1.356</u>	1	008	5	-8.78e-3	1_	245.362	1_	1268.374	
87		6	max	0	12	.625	3	.204	1	4.826e-3	3	9160.508	<u>15</u>	NC 4000 004	3
88		-	min	427	4	<u>-1.35</u>	1	.015	12	-9.776e-3	1_	246.823	1_	1280.934	
89		7	max	0	12	.594	3	.164	1	5.34e-3	3	NC	15	NC	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

91		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
93	90			min	427	4	<u>-1.246</u>	1	.014	10	-1.077e-2	1_	273.93	1_	1599.254	
93			8													
94																-
96			9											<u>15</u>		
96			40									_		_1_		
98			10													
98			4.4									_				
99			11								6.368e-3					
100			12					-				•		•		
101			12													
102			12													
103			13							_						
106			1.1													
105			14													1
106			15					-				_		•		2
107			13													1
108			16									_				2
109			10													
110			17					-				•		•		
111			17			_										
112			18													
113			10													
114			10											•		
115			19									1		1		1
116		M16	1									3		1		1
117		IVITO														
118			2									•		•		
119											-8 0426-3					
120			3													
121																
122			4											•		3
123 5 max 0 12 .172 3 .23 1 7.013e-3 3 NC 5 NC 3 124 min 153 4 554 2 01 5 -1.124e-2 1 408.202 2 1133.391 1 125 6 max 0 12 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 126 min 153 4 466 2 .011 15 -1.231e-2 1 473.617 2 1168.083 1 127 7 max 0 12 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 128 min 153 4 297 2 .014 1 9.294e-3 3 NC 3 NC 3 130 min 153 4 087										_						
124			5								7 013e-3					3
125 6 max 0 12 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 126 min 153 4 466 2 .011 15 -1.231e-2 1 473.617 2 1168.083 1 127 7 max 0 12 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 128 min 153 4 297 2 .014 12 -1.338e-2 1 688.075 2 1477.932 1 129 8 max 0 12 0 5 .104 1 9.294e-3 3 NC 3 NC 3 130 min 153 4 087 2 .007 10 -1.44e-2 1 1563.606 2 2516.284 1 131 9 max 0 1			Ť		-						-1 124e-2					1
126 min 153 4 466 2 .011 15 -1.231e-2 1 473.617 2 1168.083 1 127 7 max 0 12 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 128 min 153 4 297 2 .014 12 -1.338e-2 1 688.075 2 1477.932 1 129 8 max 0 12 0 5 .104 1 9.294e-3 3 NC 3 NC 3 130 min 153 4 087 2 .007 10 -1.444e-2 1 1563.606 2 2516.284 1 131 9 max 0 12 .133 1 .044 4 1.005e-2 3 NC 2 NC 2 132 min 153 4 10			6									•				3
127 7 max 0 12 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 128 min 153 4 297 2 .014 12 -1.338e-2 1 688.075 2 1477.932 1 129 8 max 0 12 0 5 .104 1 9.294e-3 3 NC 2 2516.284 1 131 9 max 0 12 .133 1 .044 4 1.005e-2 3 NC 2 NC 2 NC 2 NC 2 NC 1 133 1 .044 4 1.005e-2 3 NC 5 NC 1 1 134 1					-											
128			7													3
129 8 max 0 12 0 5 .104 1 9.294e-3 3 NC 3 NC 3 130 min 153 4 087 2 .007 10 -1.444e-2 1 1563.606 2 2516.284 1 131 9 max 0 12 .133 1 .044 4 1.005e-2 3 NC 2 NC 2 132 min 153 4 103 3 002 10 -1.551e-2 1 4854.603 3 5914.511 4 133 10 max 0 1 .219 1 .013 3 1.082e-2 3 NC 5 NC 1 134 min 153 4 137 3 009 2 -1.658e-2 1 2006.311 1 NC 1 135 11 max 0 1 .133 1 .032					-											1
130 min 153 4 087 2 .007 10 -1.444e-2 1 1563.606 2 2516.284 1 131 9 max 0 12 .133 1 .044 4 1.005e-2 3 NC 2 NC 2 132 min 153 4 103 3 002 10 -1.551e-2 1 4854.603 3 5914.511 4 133 10 max 0 1 .219 1 .013 3 1.082e-2 3 NC 5 NC 1 134 min 153 4 137 3 009 2 -1.658e-2 1 2006.311 1 NC 1 135 11 max 0 1 .133 1 .032 1 1.005e-2 3 NC 2 NC 2 136 min 153 4 1			8					5	.104	1		3		3		3
131 9 max 0 12 .133 1 .044 4 1.005e-2 3 NC 2 NC 2 132 min 153 4 103 3 002 10 -1.551e-2 1 4854.603 3 5914.511 4 133 10 max 0 1 .219 1 .013 3 1.082e-2 3 NC 5 NC 1 134 min 153 4 137 3 009 2 -1.658e-2 1 2006.311 1 NC 1 135 11 max 0 1 .133 1 .032 1 1.005e-2 3 NC 5 NC 1 136 min 153 4 103 3 03 5 -1.551e-2 1 4854.603 3 8459.055 1 137 12 max 0 1								2		10			1563.606	2	2516.284	1
132 min 153 4 103 3 002 10 -1.551e-2 1 4854.603 3 5914.511 4 133 10 max 0 1 .219 1 .013 3 1.082e-2 3 NC 5 NC 1 134 min 153 4 137 3 009 2 -1.658e-2 1 2006.311 1 NC 1 135 11 max 0 1 .133 1 .032 1 1.005e-2 3 NC 2 NC 2 136 min 153 4 103 3 03 5 -1.551e-2 1 4854.603 3 8459.055 1 137 12 max 0 1 0 15 .104 1 9.294e-3 3 NC 3 NC 3 138 min 153 4 087<			9					1								2
133 10 max 0 1 .219 1 .013 3 1.082e-2 3 NC 5 NC 1 134 min 153 4 137 3 009 2 -1.658e-2 1 2006.311 1 NC 1 135 11 max 0 1 .133 1 .032 1 1.005e-2 3 NC 2 NC 2 136 min 153 4 103 3 03 5 -1.551e-2 1 4854.603 3 8459.055 1 137 12 max 0 1 0 15 .104 1 9.294e-3 3 NC 3 NC 3 138 min 153 4 087 2 031 5 -1.444e-2 1 1563.606 2 2516.284 1 139 13 max 0 1				min	153	4		3	002	10		1	4854.603		5914.511	
134 min 153 4 137 3 009 2 -1.658e-2 1 2006.311 1 NC 1 135 11 max 0 1 .133 1 .032 1 1.005e-2 3 NC 2 NC 2 136 min 153 4 103 3 03 5 -1.551e-2 1 4854.603 3 8459.055 1 137 12 max 0 1 0 15 .104 1 9.294e-3 3 NC 3 NC 3 138 min 153 4 087 2 031 5 -1.444e-2 1 1563.606 2 2516.284 1 139 13 max 0 1 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 140 min 153 4 297 <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>1</td>			10			1						3				1
135 11 max 0 1 .133 1 .032 1 1.005e-2 3 NC 2 NC 2 136 min 153 4 103 3 03 5 -1.551e-2 1 4854.603 3 8459.055 1 137 12 max 0 1 0 15 .104 1 9.294e-3 3 NC 3 NC 3 138 min 153 4 087 2 031 5 -1.444e-2 1 1563.606 2 2516.284 1 139 13 max 0 1 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 140 min 153 4 297 2 014 5 -1.338e-2 1 688.075 2 1477.932 1 141 max 0 1 .132 <td></td> <td></td> <td></td> <td></td> <td>153</td> <td>4</td> <td></td> <td>3</td> <td></td> <td>2</td> <td></td> <td>1</td> <td>2006.311</td> <td>1</td> <td></td> <td>1</td>					153	4		3		2		1	2006.311	1		1
137 12 max 0 1 0 15 .104 1 9.294e-3 3 NC 3 NC 3 138 min 153 4 087 2 031 5 -1.444e-2 1 1563.606 2 2516.284 1 139 13 max 0 1 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 140 min 153 4 297 2 014 5 -1.338e-2 1 688.075 2 1477.932 1 141 14 max 0 1 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 <	135		11	max	0	1	.133	1	.032	1		3	NC	2	NC	2
137 12 max 0 1 0 15 .104 1 9.294e-3 3 NC 3 NC 3 138 min 153 4 087 2 031 5 -1.444e-2 1 1563.606 2 2516.284 1 139 13 max 0 1 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 140 min 153 4 297 2 014 5 -1.338e-2 1 688.075 2 1477.932 1 141 14 max 0 1 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 <	136			min	153	4	103	3	03	5	-1.551e-2	1	4854.603	3	8459.055	1
139 13 max 0 1 .06 3 .177 1 8.534e-3 3 NC 5 NC 3 140 min 153 4 297 2 014 5 -1.338e-2 1 688.075 2 1477.932 1 141 14 max 0 1 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 .23 1 7.013e-3 3 NC 5 NC 3	137		12	max	0	1	0	15	.104	1		3	NC	3	NC	3
140 min 153 4 297 2 014 5 -1.338e-2 1 688.075 2 1477.932 1 141 14 max 0 1 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 .23 1 7.013e-3 3 NC 5 NC 3	138			min	153	4	087	2	031	5	-1.444e-2	1	1563.606	2	2516.284	1
140 min 153 4 297 2 014 5 -1.338e-2 1 688.075 2 1477.932 1 141 14 max 0 1 .132 3 .223 1 7.773e-3 3 NC 5 NC 3 142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 .23 1 7.013e-3 3 NC 5 NC 3			13			1	.06	3		1		3	NC	5		3
142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 .23 1 7.013e-3 3 NC 5 NC 3	140			min	153	4	297	2	014	5	-1.338e-2	1	688.075	2	1477.932	1
142 min 153 4 466 2 .008 15 -1.231e-2 1 473.617 2 1168.083 1 143 15 max 0 1 .172 3 .23 1 7.013e-3 3 NC 5 NC 3			14			1		3		1		3	NC	5		3
143	142				153	4	466	2	.008	15		1	473.617	2	1168.083	1
	143		15	max	0	1	.172	3				3		5		3
	144			min	152	4	554	2	.014	12	-1.124e-2	1	408.202	2	1133.391	1
			16			1						3		5		3
	146				152	4	536	2		12		1	420.028	2		1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

147		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) I /v Ratio	1 C	(n) I /z Ratio	I.C.
148	147			max												
149						4				12				1		
151	149		18	max	.001	1	.05	3	.057	4		3		5	NC	2
152	150			min	152	4	193	2	.004	10	-8.042e-3	1	948.047	1	4524.833	4
153 M2			19	max	.001	1	.091		.004	3	3.97e-3	3		1	NC	1
154	152			min	152	4	05		002	2		1		1		•
155		M2	1	_						1		5				2
1566				min								1_				•
157			2													
158										_		_				
159			3			_								_		
160						_										
161			4													
162												•				
163			5													
164												•		_		
165			ь	_												
166			7									•				-
167						_										_
1688			Ω							_						
169			0											_		
170			a			_						•				
171						-										
172			10									_				
173																
174			11									4		1		
175				_			005			4				1		4
176			12							1		4		1		1
177				min		3	005	3	137	4		1	NC	1	458.91	4
179	177		13	max	.002	1	0	15	.001	1		4	NC	1	NC	1
180				min	002	3	004			4		1		1		4
181			14			-				1		4		_1_		1
182				min			004		075	4		1		1		4
183			15													•
184 min 0 3 002 6 03 4 -1.873e-5 1 NC 1 2081.017 4 185 17 max 0 1 0 15 0 1 3.327e-3 4 NC 1 NC 1 186 min 0 3 002 6 015 4 -1.808e-6 1 NC 1 4241.977 4 187 18 max 0 1 0 15 0 1 3.442e-3 4 NC 1 NC 1 188 min 0 3 0 6 005 4 5.542e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 3.557e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 3.57e-3												1_		_		
185 17 max 0 1 0 15 0 1 3.327e-3 4 NC 1 NC 1 186 min 0 3 002 6 015 4 -1.808e-6 1 NC 1 4241.977 4 187 18 max 0 1 0 15 0 1 3.442e-3 4 NC 1 NC 1 188 min 0 3 0 6 005 4 5.542e-7 12 NC 1 NC<			16									4				
186 min 0 3 002 6 015 4 -1.808e-6 1 NC 1 4241.977 4 187 18 max 0 1 0 15 0 1 3.442e-3 4 NC 1 NC 1 188 min 0 3 0 6 005 4 5.542e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 3.557e-3 4 NC 1 NC 1 190 min 0 1 0 1 3.557e-3 4 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 -8.697e-4 4 NC 1 NC 1 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_1_</td><td></td><td></td><td></td><td>-</td></tr<>												_1_				-
187 18 max 0 1 0 15 0 1 3.442e-3 4 NC 1 NC 1 188 min 0 3 0 6 005 4 5.542e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 3.557e-3 4 NC 1 NC 1 190 min 0 1 0 1 0.379e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 -8.697e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 <			17			_								_1_		_
188 min 0 3 0 6 005 4 5.542e-7 12 NC 1 NC 1 189 19 max 0 1 0 1 0 1 3.557e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 1.379e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 -8.697e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 NC			40											1_		
189 19 max 0 1 0 1 0 1 3.557e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 1.379e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -8.697e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -1.49e-4 5 NC 1 NC 1 195 3 max 0 3 0 15 .032 4 5.7			18													
190 min 0 1 0 1 0 1 1.379e-6 12 NC 1 NC 1 191 M3 1 max 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 -8.697e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -1.49e-4 5 NC 1 NC 1 195 3 max 0 3 0 15 .032 4 5.762e-4 4 NC 1 NC 1 195 3 max 0 3 003 6 0 12 2.105e-6 12			10			_										
191 M3 1 max 0 1 0 1 -4.599e-7 12 NC 1 NC 1 192 min 0 1 0 1 0 1 -8.697e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -1.49e-4 5 NC 1 NC 1 195 3 max 0 3 0 15 .032 4 5.762e-4 4 NC 1 NC 1 195 3 max 0 3 003 6 0 12 2.105e-6 12 NC 1 NC 1 196 min 0 2 003 6 0 12			19													
192 min 0 1 0 1 0 1 -8.697e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -1.49e-4 5 NC 1 NC 1 195 3 max 0 3 0 15 .032 4 5.762e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 2.105e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .047 4 1.299e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12		MO	1			-				-						
193 2 max 0 3 0 15 .017 4 1.771e-5 1 NC 1 NC 1 194 min 0 2 002 6 0 12 -1.49e-4 5 NC 1 NC 1 195 3 max 0 3 0 15 .032 4 5.762e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 2.105e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .047 4 1.299e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 3.388e-6 12 NC 1 8141.528 5 199 5 max .001 3 002 15		IVIO				-		-								
194 min 0 2 002 6 0 12 -1.49e-4 5 NC 1 NC 1 195 3 max 0 3 0 15 .032 4 5.762e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 2.105e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .047 4 1.299e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 3.388e-6 12 NC 1 8141.528 5 199 5 max .001 3 002 15 .06 4 2.022e-3 4 NC 1 NC 1 200 min 0 2 007 6 0			2								1 7710 5					
195 3 max 0 3 0 15 .032 4 5.762e-4 4 NC 1 NC 1 196 min 0 2 003 6 0 12 2.105e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .047 4 1.299e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 3.388e-6 12 NC 1 8141.528 5 199 5 max .001 3 002 15 .06 4 2.022e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 4.67e-6 12 NC 1 NC 1 201 6 max .001 3 002 15				_												
196 min 0 2 003 6 0 12 2.105e-6 12 NC 1 NC 1 197 4 max 0 3 001 15 .047 4 1.299e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 3.388e-6 12 NC 1 8141.528 5 199 5 max .001 3 002 15 .06 4 2.022e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 4.67e-6 12 NC 1 7172.64 5 201 6 max .001 3 002 15 .073 4 2.745e-3 4 NC 1 NC 1 202 min 0 2 009 6 <td< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			3													
197 4 max 0 3 001 15 .047 4 1.299e-3 4 NC 1 NC 1 198 min 0 2 005 6 0 12 3.388e-6 12 NC 1 8141.528 5 199 5 max .001 3 002 15 .06 4 2.022e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 4.67e-6 12 NC 1 7172.64 5 201 6 max .001 3 002 15 .073 4 2.745e-3 4 NC 1 NC 1 202 min 0 2 009 6 0 12 5.953e-6 12 NC 1 6866.818 5			J													
198 min 0 2 005 6 0 12 3.388e-6 12 NC 1 8141.528 5 199 5 max .001 3 002 15 .06 4 2.022e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 4.67e-6 12 NC 1 7172.64 5 201 6 max .001 3 002 15 .073 4 2.745e-3 4 NC 1 NC 1 202 min 0 2 009 6 0 12 5.953e-6 12 NC 1 6866.818 5			4													
199 5 max .001 3 002 15 .06 4 2.022e-3 4 NC 1 NC 1 200 min 0 2 007 6 0 12 4.67e-6 12 NC 1 7172.64 5 201 6 max .001 3 002 15 .073 4 2.745e-3 4 NC 1 NC 1 202 min 0 2 009 6 0 12 5.953e-6 12 NC 1 6866.818 5			_											_		_
200 min 0 2 007 6 0 12 4.67e-6 12 NC 1 7172.64 5 201 6 max .001 3 002 15 .073 4 2.745e-3 4 NC 1 NC 1 202 min 0 2 009 6 0 12 5.953e-6 12 NC 1 6866.818 5			5													1
201 6 max .001 3 002 15 .073 4 2.745e-3 4 NC 1 NC 1 202 min 0 2 009 6 0 12 5.953e-6 12 NC 1 6866.818 5																5
202 min 0 2009 6 0 12 5.953e-6 12 NC 1 6866.818 5			6													
<u> </u>	203		7	max	.002	3	002	15	.085	4	3.468e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	<u>z [in]</u>				(n) L/y Ratio			
204			min	001	2	01	6	0	12	7.235e-6		8738.544	6	7007.801	
205		8	max	.002	3	003	15	.095	4	4.191e-3	4	NC 7000 004	1_	NC 7570.00	1
206			min	001	2	012	6	0	12	8.518e-6		7836.824	6	7576.63	5
207		9	max	.002	3	003	15	.106	12	4.914e-3	4	NC	2	NC OCOO OF	1
208		10	min max	001 .002	3	013 003	15	<u> </u>	4	9.8e-6 5.637e-3	<u>12</u> 4	7302.675 NC	<u>6</u> 3	8699.05 NC	<u>5</u>
210		10	min	002	2	003	6	0	12	1.108e-5	12	7042.789	6	NC	1
211		11	max	.003	3	003	15	.126	4	6.36e-3	4	NC	3	NC	1
212			min	002	2	013	6	0	12	1.237e-5		7018.793	6	NC	1
213		12	max	.002	3	003	15	.135	4	7.083e-3	4	NC	3	NC	1
214		12	min	002	2	013	6	0	12	1.365e-5	12	7232.524	6	NC	1
215		13	max	.003	3	003	15	.145	4	7.806e-3	4	NC NC	1	NC	1
216			min	002	2	012	6	0	12	1.493e-5	12	7728.603	6	NC	1
217		14	max	.003	3	002	15	.155	4	8.529e-3	4	NC	1	NC	1
218			min	002	2	011	6	0	12	1.621e-5	12	8617.674	6	NC	1
219		15	max	.004	3	002	15	.165	4	9.252e-3	4	NC	1	NC	1
220			min	003	2	009	6	0	12	1.75e-5	12	NC	1	NC	1
221		16	max	.004	3	001	15	.176	4	9.975e-3	4	NC	1	NC	1
222			min	003	2	008	1	0	12	1.878e-5	12	NC	1	NC	1
223		17	max	.004	3	0	15	.188	4	1.07e-2	4	NC	1	NC	1
224			min	003	2	006	1	0	12	2.006e-5	12	NC	1	NC	1
225		18	max	.004	3	0	15	.201	4	1.142e-2	4	NC	_1_	NC	1
226			min	003	2	005	1	0	12	2.134e-5	12	NC	1_	NC	1
227		19	max	.005	3	0	5	.216	4	1.214e-2	4_	NC	_1_	NC	2
228			min	003	2	003	1	0	12	2.263e-5	12	NC	1_	9752.687	1
229	M4	1	max	.003	1	.003	2	0	12	6.629e-5	_1_	NC	1_	NC	3
230			min	0	3	005	3	216	4	-4.343e-4	5	NC	_1_	115.056	4
231		2	max	.003	1	.003	2	0	12	6.629e-5	_1_	NC	1_	NC 107	3
232			min	0	3	004	3	<u>198</u>	4	-4.343e-4	5_	NC	1_	125.134	4
233		3	max	.002	1	.003	2	0	12	6.629e-5	1_	NC	1_	NC 407.405	3
234		4	min	0	3	004	3	181	4	-4.343e-4	5	NC NC	1_	137.125	4
235		4	max	.002	1	.002	2	0	12	6.629e-5	1_	NC NC	1_1	NC 454 500	3
236		_	min	0	3	004	3	164	4	-4.343e-4	5_	NC NC	1_	151.528	4
237		5	max	.002	3	.002	3	0	12	6.629e-5	1	NC NC	_ <u>1_</u>	NC 160,010	3
238		6	min max	<u> </u>	1	004 .002	2	<u>147</u> 0	12	-4.343e-4 6.629e-5	<u>5</u> 1	NC NC	1	169.019 NC	2
240		0	min	0	3	002	3	13	4	-4.343e-4	5	NC NC	1	190.535	4
241		7	max	.002	1	.002	2	<u>13</u> 0	12	6.629e-5	1	NC	1	NC	2
242		+-	min	0	3	003	3	114	4	-4.343e-4	5	NC	1	217.408	4
243		8	max	.002	1	.002	2	0	12	6.629e-5	1	NC	1	NC	2
244			min	0	3	003	3	099	4	-4.343e-4		NC	1	251.577	4
245		9	max	.001	1	.002	2	0	12	6.629e-5	1	NC	1	NC	2
246			min	0	3	003	3	084	4	-4.343e-4	5	NC	1	295.965	4
247		10	max	.001	1	.001	2	0	12	6.629e-5	1	NC	1	NC	2
248			min	0	3	002	3	07	4	-4.343e-4	5	NC	1	355.139	4
249		11	max	.001	1	.001	2	0	12	6.629e-5	1	NC	1	NC	1
250			min	0	3	002	3	057	4	-4.343e-4	5	NC	1	436.571	4
251		12	max	.001	1	.001	2	0	12	6.629e-5	1	NC	1	NC	1
252			min	0	3	002	3	045	4	-4.343e-4	5	NC	1	553.186	4
253		13	max	0	1	0	2	0	12	6.629e-5	1	NC	1	NC	1
254			min	0	3	002	3	034	4	-4.343e-4	5	NC	1	728.972	4
255		14	max	0	1	0	2	0	12	6.629e-5	1	NC	1	NC	1
256			min	0	3	001	3	024	4	-4.343e-4	5	NC	1	1012.73	4
257		15	max	0	1	0	2	0	12	6.629e-5	1	NC	1	NC	1
258			min	0	3	001	3	016	4	-4.343e-4	5	NC	1	1516.951	4
259		16	max	0	1	0	2	0	12	6.629e-5	1_	NC	1_	NC	1
260			min	0	3	0	3	01	4	-4.343e-4	5	NC	1_	2552.578	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	6.629e-5	_1_	NC NC	1	NC FOZO 445	1
262		10	min	0	3	0	3	005	4	-4.343e-4	5	NC	1_	5272.415	
263		18	max	0	1	0	2	0	12	6.629e-5		NC	1_	NC	1
264			min	0	3	0	3	001	4	-4.343e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	6.629e-5	_1_	NC	1	NC	1
266			min	0	1	0	1	0	1	-4.343e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.019	1	.018	2	0	1	1.624e-3	4	NC	3	NC	1
268			min	018	3	025	3	663	4	0	_1_	3497.834	2	94.638	4
269		2	max	.018	1	.016	2	0	1	1.731e-3	4	NC	3	NC	1
270			min	017	3	024	3	609	4	0	1_	3853.061	2	103.037	4
271		3	max	.017	1	.015	2	0	1_	1.838e-3	_4_	NC	3_	NC	_1_
272			min	016	3	023	3	555	4	0	1_	4284.7	2	113.008	4
273		4	max	.016	1	.013	2	0	1	1.945e-3	4	NC	3	NC	1
274			min	015	3	021	3	502	4	0	1	4815.495	2	124.961	4
275		5	max	.015	1	.011	2	0	1	2.052e-3	4	NC	1_	NC	1_
276			min	014	3	02	3	45	4	0	1	5477.633	2	139.45	4
277		6	max	.014	1	.01	2	0	1	2.16e-3	4	NC	1	NC	1
278			min	013	3	018	3	399	4	0	1	6317.898	2	157.243	4
279		7	max	.013	1	.008	2	0	1	2.267e-3	4	NC	1	NC	1
280			min	012	3	017	3	35	4	0	1	7406.461	2	179.429	4
281		8	max	.011	1	.007	2	0	1	2.374e-3	4	NC	1	NC	1
282			min	011	3	016	3	302	4	0	1	8852.603	2	207.593	4
283		9	max	.01	1	.006	2	0	1	2.481e-3	4	NC	1	NC	1
284			min	01	3	014	3	257	4	0	1	NC	1	244.118	4
285		10	max	.009	1	.005	2	0	1	2.588e-3	4	NC	1	NC	1
286			min	009	3	013	3	214	4	0	1	NC	1	292.717	4
287		11	max	.008	1	.004	2	0	1	2.696e-3	4	NC	1	NC	1
288			min	008	3	012	3	174	4	0	1	NC	1	359.454	4
289		12	max	.007	1	.003	2	0	1	2.803e-3	4	NC	1	NC	1
290		12	min	007	3	01	3	138	4	0	1	NC	1	454.78	4
291		13	max	.006	1	.002	2	0	1	2.91e-3	4	NC	1	NC	1
292		10	min	006	3	009	3	105	4	0	1	NC	1	598.023	4
293		14	max	.005	1	.003	2	0	1	3.017e-3	4	NC	1	NC	1
294		17	min	005	3	007	3	076	4	0.0176-3	1	NC	1	828.297	4
295		15	max	.004	1	<u>007</u> 0	2	070	1	3.124e-3	4	NC	1	NC	1
296		13	min	004	3	006	3	051	4	0	1	NC	1	1235.159	4
297		16	max	.003	1	0	2	0	1	3.232e-3	4	NC	1	NC	1
298		10		003	3	004	3	03	4	0	1	NC	1	2063.749	
		17	min		1	004 0	2		1	_		NC NC	1	NC	1
299		17	max	.002	3			0	-	3.339e-3	4		1		
300		40	min	002		003	3	<u>015</u>	4	0	1_1	NC NC	1	4208.898	4
301		18		.001	1	0	2	0	1	3.446e-3	4	NC NC	1	NC NC	1
302		40	min	001	3	001	3	005	4	0	1_1	NC NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	3.553e-3	4	NC NC	1_	NC NC	1
304	N 4-7		min	0	1	0	1	0	1	0	1	NC	1_	NC NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1_	NC NC	1
306			min	0	1	0	1	0	1	-8.675e-4	4	NC	1_	NC	1
307		2	max	0	3	0	15	.017	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-1.63e-4	4	NC	1_	NC	1
309		3	max	.002	3	0	15	.032	4	5.415e-4	4	NC	1_	NC	1
310			min	002	2	004	3	0	1	0	1_	NC	1	9844.906	4
311		4	max	.002	3	001	15	.047	4	1.246e-3	4	NC	_1_	NC	1_
312			min	002	2	006	3	0	1	0	1	NC	1	7544.2	4
313		5	max	.003	3	002	15	.06	4	1.951e-3	4	NC	_1_	NC	1
314			min	003	2	008	3	0	1	0	1	NC	1	6595.054	4
315		6	max	.004	3	002	15	.073	4	2.655e-3	4	NC	1	NC	1
316			min	004	2	01	3	0	1	0	1	NC	1	6252.916	4
317		7	max	.005	3	003	15	.084	4	3.36e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

318	Member	Sec	min	x [in] 005	LC 2	y [in] 011	LC	z [in]	LC 1		LC 1	(n) L/y Ratio		1	
318		8	min	.005	3	011 003	15	<u> </u>	4	4.064e-3	4	8822.972 NC	<u>4</u> 1	6302.232 NC	1
320		0	max	005	2	003 012	4	<u>.095</u>	1	0	1	7906.973	4	6701.593	
321		9	max	.006	3	003	15	.105	4	4.769e-3	4	NC	1	NC	1
322		9	min	006	2	003 013	4	0	1	0	1	7363.742	4	7518.009	4
323		10	max	.007	3	013 003	15	.115	4	5.473e-3	4	NC	1	NC	1
324		10	min	007	2	003 014	4	0	1	0	1	7098.216	4	8958.288	4
325		11	max	.008	3	003	15	.124	4	6.178e-3	4	NC	1	NC	1
326		1	min	008	2	014	4	0	1	0.1706-3	1	7071.129	4	NC	1
327		12	max	.009	3	003	15	.133	4	6.882e-3	4	NC	1	NC	1
328		12	min	008	2	013	4	0	1	0.0020 0	1	7283.936	4	NC	1
329		13	max	.01	3	003	15	.142	4	7.587e-3	4	NC	1	NC	1
330			min	009	2	013	4	0	1	0	1	7781.287	4	NC	1
331		14	max	.01	3	003	15	.152	4	8.291e-3	4	NC	1	NC	1
332			min	01	2	012	4	0	1	0	1	8674.33	4	NC	1
333		15	max	.011	3	002	15	.162	4	8.996e-3	4	NC	1	NC	1
334			min	011	2	01	4	0	1	0	1	NC	1	NC	1
335		16	max	.012	3	002	15	.172	4	9.7e-3	4	NC	1	NC	1
336			min	011	2	009	1	0	1	0	1	NC	1	NC	1
337		17	max	.013	3	001	15	.183	4	1.04e-2	4	NC	1	NC	1
338			min	012	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.013	3	0	15	.196	4	1.111e-2	4	NC	1	NC	1
340			min	013	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.014	3	0	15	.209	4	1.181e-2	4	NC	1	NC	1
342			min	014	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.013	2	0	1	0	1	NC	_1_	NC	1
344			min	0	3	01 <u>5</u>	3	209	4	-5.142e-4	4	NC	1_	118.616	4
345		2	max	.007	1	.012	2	00	1	0	1	NC	_1_	NC	1
346			min	0	3	014	3	192	4	-5.142e-4	4	NC	1_	129.011	4
347		3	max	.006	1	.011	2	0	1	0	1	NC	_1_	NC	1
348			min	0	3	013	3	175	4	-5.142e-4	4	NC	1_	141.38	4
349		4	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
350		_	min	0	3	012	3	<u>159</u>	4	-5.142e-4	4	NC NC	1_	156.237	4
351		5	max	.006	1	.01	2	0	1	0	1	NC	1_	NC 474.070	1
352		6	min	0	3	<u>011</u>	3	142	4	-5.142e-4	4	NC NC	1	174.278	4
353		6	max	.005	3	.009	3	0	1	0	1_1	NC NC	1	NC	1
354 355		7	min	.005	1	011 .008	2	126 0	1	-5.142e-4 0	<u>4</u> 1	NC NC	1	196.471 NC	1
356		+-	max	.005	3	01	3	111	4	-5.142e-4	4	NC NC	1	224.188	4
357		8		.004	1	.008	2	0	1	0	1	NC	1	NC	1
358			max min	0	3	009	3	096	4	-5.142e-4		NC NC	1	259.431	4
359		9	max	.004	1	.007	2	030	1	0	1	NC	1	NC	1
360			min	0	3	008	3	081	4	-5.142e-4	4	NC	1	305.214	4
361		10	max	.004	1	.006	2	0	1	0.1420 4	1	NC	1	NC	1
362		1.0	min	0	3	007	3	068	4	-5.142e-4	4	NC	1	366.249	4
363		11	max	.003	1	.006	2	0	1	0.1420 4	1	NC	1	NC	1
364			min	0	3	006	3	055	4	-5.142e-4	4	NC	1	450.241	4
365		12	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
366			min	0	3	006	3	043	4	-5.142e-4	4	NC	1	570.523	4
367		13	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
368			min	0	3	005	3	033	4	-5.142e-4	4	NC	1	751.839	4
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	024	4	-5.142e-4	4	NC	1	1044.525	4
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	016	4	-5.142e-4	4	NC	1	1564.617	4
373		16	max	.001	1	.002	2	0	1	0	1	NC	1_	NC	1
374			min	0	3	002	3	009	4	-5.142e-4	4	NC	1	2632.861	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

375	Member	Sec 17	max	x [in]	LC 1	y [in] .001	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		17	min	0	3	002	3	005	4	-5.142e-4	4	NC NC	1	5438.419	_
377		18	max	0	1	0	2	<u>.005</u>	1	0.1420 4	1	NC	1	NC	1
378		1.0	min	0	3	0	3	001	4	-5.142e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0.1420 4	1	NC	1	NC	1
380		15	min	0	1	0	1	0	1	-5.142e-4	4	NC	1	NC	1
381	M10	1	max	.006	1	.004	2	0	12	1.635e-3	4	NC	-	NC	2
382	IVITO		min	006	3	008	3	662	4	1.346e-5	12	NC	1	94.736	4
383		2	max	.006	1	.003	2	0	12	1.741e-3	4	NC	1	NC	2
384			min	005	3	008	3	608	4	1.264e-5	12	NC	1	103.144	4
385		3	max	.005	1	.003	2	<u>.000</u>	12	1.846e-3	4	NC	1	NC	2
386		T -	min	005	3	008	3	554	4	1.181e-5	12	NC	1	113.126	4
387		4	max	.005	1	.002	2	<u>.554</u> 0	12	1.952e-3	4	NC	1	NC	2
388		+-	min	005	3	007	3	501	4	1.099e-5	12	NC	1	125.091	4
389		5	max	.005	1	.001	2	<u>.501</u>	12	2.058e-3	4	NC	1	NC	2
390		+	min	004	3	007	3	449	4	1.016e-5	12	NC	1	139.596	4
391		6	max	.004	1	0	2	0	12	2.164e-3	4	NC	1	NC	1
392			min	004	3	007	3	398	4	9.339e-6	12	NC	1	157.408	4
393		7	max	.004	1	<u>.007</u>	2	<u>.590</u>	12	2.27e-3	4	NC	1	NC	1
394		+ '	min	004	3	007	3	349	4	8.514e-6	12	NC NC	1	179.619	4
395		8	max	.004	1	<u>007</u> 0	2	_ 549 _	12	2.375e-3	4	NC	1	NC	1
396		1	min	003	3	006	3	302	4	7.69e-6	12	NC	1	207.815	4
397		9	max	.003	1	<u>000</u>	2	0	12	2.481e-3	4	NC	1	NC	1
398		1 3	min	003	3	006	3	257	4	6.865e-6	12	NC NC	1	244.38	4
399		10	max	.003	1	000 001	2	<u>257</u> 0	12	2.587e-3	4	NC	1	NC	1
400		10	min	003	3	001	3	214	4	6.041e-6	12	NC NC	1	293.035	4
401		11	max	.003	1	000 001	15	<u>214</u> 0	12	2.693e-3	4	NC	1	NC	1
402		+ ' '	min	002	3	005	3	174	4	5.217e-6	12	NC	1	359.849	4
403		12		.002	1	005 001	15	<u>174</u> 0	12	2.798e-3	4	NC	1	NC	1
404		12	max	002	3	001 005	3	138	4	4.392e-6	12	NC NC	1	455.289	4
405		13	min max	.002	1	005 001	15	<u>136</u> 0	12	2.904e-3	4	NC NC	1	NC	1
406		13	min	002	3	001	4	105	4	3.568e-6	12	NC	1	598.706	4
407		14	max	.002	1	004 001	15	<u>105</u> 0	12	3.01e-3	4	NC	1	NC	1
408		14	min	002	3	001	4	076	4	2.743e-6	12	NC NC	1	829.272	4
409		15	max	.002	1	004	15	<u>076</u> 0	12	3.116e-3	4	NC	1	NC	1
410		15	min	001	3	003	4	051	4	1.919e-6	12	NC NC	1	1236.675	4
411		16	max	<u>001</u> 0	1	003	15	0	12	3.222e-3	4	NC	1	NC	1
412		10	min	0	3	003	4	03	4	1.095e-6	12	NC	1	2066.443	
413		17		0	1	<u>003</u> 0	15	03	12	3.327e-3	4	NC	+	NC	1
414		17	max min	0	3	002	4	015	4	1.272e-7	10	NC	1	4214.984	
415		1Ω	max	0	1	•	15	•	12	3.433e-3		NC NC	1	NC	1
416		10	min	0	3	001	4	005	4	-1.512e-5	1	NC NC	1	NC	1
417		19	max	0	1	0	1	_ 003 _	1	3.539e-3	4	NC	1	NC	1
418		19	min	0	1	0	1	0	1	-3.204e-5	1	NC NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.054e-5	1	NC	1	NC	1
420	IVI I		min	0	1	0	1	0	1	-8.637e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.017	4	-8.226e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.568e-4	4	NC	1	NC	1
423		3	max	0	3	0	15	.032	4	5.502e-4	5	NC	1	NC	1
424		-	min	0	2	004	4	0	1	-4.596e-5	1	NC	1	NC	1
425		4	max	0	3	004 001	15	.047	4	1.257e-3	4	NC	1	NC	1
426		+-	min	0	2	006	4	0	1	-7.421e-5	1	NC NC	1	7799.106	_
427		5	max	.001	3	000	15	.06	4	1.964e-3	4	NC NC	1	NC	1
428		5	min	0	2	002 008	4	<u>.06</u>	1	-1.025e-4	1	NC NC	1	6849.392	_
429		6	max	.001	3	008	15	.072	4	2.671e-3	4	NC NC	1	NC	1
430		U	min	0	2	002 01	4	001	1	-1.307e-4	1	9854.649	4	6531.142	_
431		7	max	.002	3	003	15	.084	4	3.378e-3	4	NC	1	NC	1
401		/	πιαχ	.002	J	003	ıΰ	.004	4	J.J/08-3	+	INC		INC	<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
432			min	001	2	011	4	001	1	-1.59e-4	1_	8466.17	4	6630.418	
433		8	max	.002	3	003	15	.094	4	4.085e-3	4	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.872e-4	_1_	7609.843	4_	7117.934	
435		9	max	.002	3	003	15	.105	4	4.791e-3	4	NC	2	NC	1
436			min	001	2	013	4	002	1	-2.155e-4	_1_	7104.588	4_	8090.333	4
437		10	max	.002	3	003	15	.114	4	5.498e-3	4	NC	3	NC	1
438		.	min	002	2	014	4	003	1	-2.437e-4	1_	6862.624	4_	9827.487	4
439		11	max	.003	3	003	15	.124	4	6.205e-3	4	NC 0040.004	3_	NC NC	1
440		40	min	002	2	014	4	003	1	-2.719e-4	1_	6848.381	4	NC NC	1
441		12	max	.003	3	003	15	.133	4	6.912e-3	4	NC 7004 074	3_4	NC NC	1
442		40	min	002	2	014	4	004	1	-3.002e-4	1_	7064.871	4	NC NC	1
443		13	max	.003	3	003	15	.142	4	7.619e-3	4	NC 7FFC FOO	1_4	NC NC	1
444		4.4	min	002	2	013	4	004	1	-3.284e-4	1_	7556.592	4	NC NC	1
445		14	max	.003	3	003	15	.152	4	8.326e-3	4	NC 0422 F02	1_1	NC NC	1
446		15	min	002	3	012	15	005 .162	1	-3.567e-4	1_	8432.502 NC	<u>4</u> 1	NC NC	1
447		15	max	.004 003	2	003 01	4	006	1	9.033e-3 -3.849e-4	<u>4</u> 1	9933.716	4	NC NC	1
449		16	min	.003	3	002	15	.173	4	9.74e-3	4	NC	1	NC NC	1
450		10	max min	003	2	002	4	006	1	-4.132e-4	1	NC NC	1	NC NC	1
451		17	max	.003	3	008 002	15	<u>006</u> .184	4	1.045e-2	4	NC NC	1	NC NC	1
452		11/	min	003	2	002	1	007	1	-4.414e-4	1	NC NC	1	NC	1
453		18	max	.003	3	001	15	.196	4	1.115e-2	4	NC	1	NC	1
454		10	min	003	2	005	1	008	1	-4.697e-4	1	NC	1	NC	1
455		19	max	.005	3	0	10	.21	4	1.186e-2	4	NC	1	NC	2
456		13	min	003	2	003	1	009	1	-4.979e-4	1	NC	1	9752.687	1
457	M12	1	max	.003	1	.003	2	.009	1	-3.18e-6	12	NC	1	NC	3
458	17112		min	0	3	005	3	21	4	-4.644e-4	4	NC	1	117.945	4
459		2	max	.003	1	.003	2	.009	1	-3.18e-6	12	NC	1	NC	3
460			min	0	3	004	3	193	4	-4.644e-4	4	NC	1	128.276	4
461		3	max	.002	1	.003	2	.008	1	-3.18e-6	12	NC	1	NC	3
462			min	0	3	004	3	176	4	-4.644e-4	4	NC	1	140.57	4
463		4	max	.002	1	.002	2	.007	1	-3.18e-6	12	NC	1	NC	3
464			min	0	3	004	3	16	4	-4.644e-4	4	NC	1	155.336	4
465		5	max	.002	1	.002	2	.006	1	-3.18e-6	12	NC	1	NC	3
466			min	0	3	004	3	143	4	-4.644e-4	4	NC	1	173.267	4
467		6	max	.002	1	.002	2	.006	1	-3.18e-6	12	NC	1	NC	2
468			min	0	3	003	3	127	4	-4.644e-4	4	NC	1	195.325	4
469		7	max	.002	1	.002	2	.005	1	-3.18e-6	12	NC	1_	NC	2
470			min	0	3	003	3	111	4	-4.644e-4	4	NC	1_	222.874	4
471		8	max	.002	1	.002	2	.004	1	-3.18e-6	12	NC	1_	NC	2
472			min		3	003	3	096	4	-4.644e-4		NC	1	257.903	4
473		9	max	.001	1	.002	2	.004	1_	-3.18e-6	12	NC	_1_	NC	2
474		ļ.,	min	0	3	003	3	082	4	-4.644e-4	4_	NC	1_	303.408	4
475		10	max	.001	1	.001	2	.003	1	-3.18e-6	12	NC	1_	NC	2
476			min	0	3	002	3	068	4	-4.644e-4	4_	NC	1_	364.071	4
477		11	max	.001	1	.001	2	.002	1	-3.18e-6	12	NC	1_	NC 447.550	1
478		10	min	0	3	002	3	0 <u>55</u>	4	-4.644e-4	4	NC	1_	447.553	4
479		12	max	.001	1	.001	2	.002	1	-3.18e-6	12	NC		NC FOT 400	1
480		40	min	0	3	002	3	044	4	-4.644e-4	4	NC NC	1_	567.103	4
481		13	max	0	1	0	2	.001	1	-3.18e-6	<u>12</u>	NC NC	1_1	NC 747 242	1
482		4.4	min	0	3	002	3	033	4	-4.644e-4	4	NC NC	1	747.313	4
483		14	max	0	1	0	2	.001	1	-3.18e-6	<u>12</u>	NC NC	1_1	NC	1
484		15	min	0	3	001	3	024	4	-4.644e-4	4	NC NC	1_1	1038.213	4
485		15	max	0	3	0	2	0	1	-3.18e-6	12	NC NC	1	NC 1555 124	1
486 487		16	min	0	1	001 0	2	016 0	1	-4.644e-4	<u>4</u> 12	NC NC	1	1555.124 NC	1
488		10	max	0	3	0	3	009	4	-3.18e-6	4	NC NC	1	2616.82	4
400			min	U	J	U	3	009	4	-4.644e-4	4	INC		2010.02	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-3.18e-6	12	NC	1	NC	1
490			min	0	3	0	3	005	4	-4.644e-4	4	NC	1	5405.127	4
491		18	max	0	1	0	2	0	1	-3.18e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-4.644e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-3.18e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-4.644e-4	4	NC	1	NC	1
495	M1	1	max	.006	3	.092	1	.701	4	1.699e-2	1_	NC	1_	NC	1
496			min	002	2	008	3	0	12	-2.192e-2	3	NC	1_	NC	1
497		2	max	.006	3	.045	1	.679	4	9.33e-3	4	NC	3	NC	1
498			min	002	2	002	3	007	1	-1.085e-2	3	2407.919	1	NC	1
499		3	max	.006	3	.008	3	.656	4	1.495e-2	4	NC	5	NC	1
500			min	002	2	007	2	01	1	-2.036e-4	1	1151.267	1	6396.007	5
501		4	max	.006	3	.029	3	.633	4	1.312e-2	4	NC	5	NC	1
502			min	002	2	066	1	009	1	-3.771e-3	3	718.651	1	4545.231	5
503		5	max	.006	3	.056	3	.61	4	1.129e-2	4	NC	15	NC	1
504			min	002	2	13	1	006	1	-7.435e-3	3	513.809	1	3614.799	5
505		6	max	.005	3	.087	3	.586	4	1.376e-2	1_	NC	15	NC	1
506			min	002	2	192	1	003	1	-1.11e-2	3	401.773	1	3057.863	5
507		7	max	.005	3	.116	3	.561	4	1.841e-2	1_	9896.054	15	NC	1
508			min	002	2	247	1	0	12	-1.476e-2	3	336.033	1	2673.762	4
509		8	max	.005	3	.141	3	.535	4	2.306e-2	_1_	8786.607	<u>15</u>	NC	1
510			min	002	2	292	1	0	12	-1.843e-2	3	297.316	1_	2398.944	4
511		9	max	.005	3	.157	3	.508	4	2.543e-2	1_	8208.642	15	NC	1
512			min	002	2	319	1	0	1	-1.837e-2	3	277.224	1_	2234.621	4
513		10	max	.005	3	.163	3	.479	4	2.628e-2	1_	8032.721	<u>15</u>	NC	1
514			min	002	2	329	1	0	12	-1.584e-2	3	271.207	1_	2190.497	4
515		11	max	.005	3	.159	3	.447	4	2.712e-2	<u>1</u>	8208.395	<u>15</u>	NC	1
516			min	002	2	319	1	0	12	-1.33e-2	3	277.567	1_	2247.335	4
517		12	max	.005	3	.145	3	.413	4	2.563e-2	1_	8786.044	15	NC	1
518			min	002	2	291	1	001	1	-1.091e-2	3	298.394	1_	2421.262	4
519		13	max	.005	3	.124	3	.375	4	2.063e-2	_1_	9894.982	15	NC	1
520			min	002	2	245	1	0	1	-8.732e-3	3	338.715	1_	2851.37	4
521		14	max	.005	3	.096	3	.335	4	1.563e-2	_1_	NC	15	NC	1
522			min	002	2	188	1	0	12	-6.553e-3	3	407.575	1_	3737.785	
523		15	max	.004	3	.065	3	.294	4	1.063e-2	1_	NC	15	NC	1
524			min	002	2	126	1	0	12	-4.373e-3	3	525.84	1_	5647.827	4
525		16	max	.004	3	.033	3	.254	4	1.e-2	4	NC	_5_	NC	1
526			min	002	2	062	1	0	12	-2.194e-3	3	744.149	1_	NC	1
527		17	max	.004	3	.003	3	.216	4	1.113e-2	4	NC	_5_	NC	1
528			min	002	2	004	2	0	12	-1.408e-5	3	1209.295	_1_	NC	1
529		18	max	.004	3	.046	1	.183	4	1.002e-2	_1_	NC	4	NC	1
530		4.0	min	002	2	024	3	0	12	-3.562e-3	3_	2555.858	1_	NC NC	1
531		19	max	.004	3	<u>.091</u>	1	.152	4	1.974e-2	1_	NC	1_	NC NC	1
532			min	002	2	05	3	001	1	-7.243e-3	3	NC	1_	NC	1
533	<u>M5</u>	1	max	.018	3	.224	1	.701	4	0	1_	NC	1_	NC	1
534			min	012	2	005	3	0	1	-4.133e-6	4	NC	1_	NC NC	1
535		2	max	.018	3	.108	1	.683	4	7.676e-3	4_	NC	5	NC 2005 044	1
536			min	012	2	.002	3	0	1	0	1_	983.466	1_	8895.344	
537		3	max	.018	3	.027	3	.662	4	1.512e-2	4	NC 400.054	<u>15</u>	NC 5400,400	1
538		4	min	012	2	024	1	0	1	0	1_	460.351	1_	5160.489	
539		4	max	.017	3	.084	3	.639	4	1.232e-2	4	9218.1	<u>15</u>	NC	1
540		-	min	011	2	184	1	0	1	0 547- 0	1_	279.819	1_	3938.297	4
541		5	max	.017	3	.165	3	.613	4	9.517e-3	4	6455.16	<u>15</u>	NC	1
542			min	011	2	359	1	<u> </u>	1	0 7400 2	1_	195.862	1_	3341.27	4
543		6	max	.017	3	.257	3	.587	4	6.716e-3	4	4972.198	<u>15</u>	NC	1
544		7	min	011	2	533	1	<u>0</u>	1	0	1_1	150.778	1_	2974.917	4
545		7	max	.016	3	.347	3	.561	4	3.916e-3	4	4115.309	<u>15</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio L		
546			min	011	2	692	1	0	1	0	1_	124.717	2000.012	
547		8	max	.016	3	.422	3	.535	4	1.115e-3	4_		5 NC	1
548			min	01	2	<u>818</u>	1	0	1	0	1_	109.554		
549		9	max	.016	3	.471	3	.509	4	0	1_		5 NC	1
550		40	min	01	2	898	1	<u>0</u>	1	-2.774e-6	5	101.778		4
551		10	max	.015	3	.489	3	.479	1	0 -2.677e-6	1		5 NC 1 2204.839	1 4
552 553		11	min max	01 .015	3	924 .476	3	<u> </u>	4	0	<u>5</u> 1	00110=	5 NC	1
554			min	01	2	897	1	44 7	1	-2.58e-6	5	101.916		
555		12	max	.015	3	.435	3	.414	4	7.916e-4	4		5 NC	1
556		12	min	01	2	815	1	0	1	0	1	110.009		
557		13	max	.014	3	.369	3	.376	4	2.781e-3	4		5 NC	1
558		'	min	01	2	685	1	0	1	0	1	125.9		
559		14	max	.014	3	.286	3	.334	4	4.77e-3	4		5 NC	1
560			min	01	2	522	1	0	1	0	1	153.437		4
561		15	max	.014	3	.193	3	.291	4	6.759e-3	4		5 NC	1
562			min	009	2	345	1	0	1	0	1	201.615	1 7068.532	4
563		16	max	.013	3	.098	3	.248	4	8.748e-3	4	9221.546 1	5 NC	1
564			min	009	2	169	1	0	1	0	1	292.663	1 NC	1
565		17	max	.013	3	.009	3	.21	4	1.074e-2	4		5 NC	1
566			min	009	2	013	2	0	1	0	1	491.452		1
567		18	max	.013	3	.113	1	.178	4	5.452e-3	4	NC !		1
568			min	009	2	068	3	0	1	0	1_	1066.522		1
569		19	max	.013	3	.219	1	.153	4	0	_1_	NC ·		1
570			min	009	2	137	3	0	1	-2.294e-6	4	NC '	110	1
571	<u>M9</u>	1	max	.006	3	.092	1	.701	4	2.192e-2	3	NC ·		1
572			min	002	2	008	3	001	1	-1.699e-2	_1_	NC '		1
573		2	max	.006	3	.045	1	.683	4	1.085e-2	3		NC NC	1
574			min	002	2	002	3	0	12	-8.238e-3	1_	2407.919	. 0.0	
575		3	max	.006	3	.008	3	.662	4	1.509e-2	4	NC 5		1
576		4	min	002	2	007	2	0	12	-1.074e-5	<u>10</u>	1151.267		
577		4	max	.006	3	.029	3	.638	12	1.182e-2	5	NC 5		1
578 579		5	min	002 .006	3	066 .056	3	<u> </u>	4	-4.45e-3 8.873e-3	1_		5 NC	1
580		J	max	002	2	13	1	<u>013</u> 0	12	-9.103e-3	<u>5</u> 1	513.809		4
581		6	min max	.002	3	.087	3	.587	4	1.11e-2	3		5 NC	1
582			min	002	2	192	1	0	12	-1.376e-2	1	401.773		
583		7	max	.005	3	.116	3	.561	4	1.476e-2	3		5 NC	1
584			min	002	2	247	1	0	1	-1.841e-2	1	336.033		
585		8	max	.005	3	.141	3	.535	4	1.843e-2	3		5 NC	1
586			min		2	292	1	001		-2.306e-2			1 2423.834	
587		9	max	.005	3	.157	3	.508	4	1.837e-2	3		5 NC	1
588			min	002	2	319	1	0	12		1		1 2227.766	4
589		10	max	.005	3	.163	3	.479	4	1.584e-2	3		5 NC	1
590			min	002	2	329	1	0	1	-2.628e-2	1	271.207	1 2191.758	4
591		11	max	.005	3	.159	3	.447	4	1.33e-2	3		5 NC	1
592			min	002	2	319	1	0	1	-2.712e-2	1	277.567	1 2256.359	4
593		12	max	.005	3	.145	3	.413	4	1.091e-2	3	8768.386 1	5 NC	1
594			min	002	2	291	1	0	12	-2.563e-2	1	298.394	1 2396.592	4
595		13	max	.005	3	.124	3	.375	4	8.732e-3	3		5 NC	1
596			min	002	2	245	1	0	12	-2.063e-2	1	338.715		
597		14	max	.005	3	.096	3	.334	4	6.553e-3	3		5 NC	1
598		H	min	002	2	188	1	002	1	-1.563e-2	1_	407.575		5
599		15	max	.004	3	.065	3	.291	4	6.341e-3	5		5 NC	1
600		40	min	002	2	126	1	006	1	-1.063e-2	<u>1</u>	525.84	. 0000.0.0	
601		16	max	.004	3	.033	3	.249	4	8.542e-3	5_	NC 5		1
602			min	002	2	062	1	009	1	-5.63e-3	1_	744.149	1 NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.211	4	1.079e-2	4	NC	5	NC	1
604			min	002	2	004	2	009	1	-6.284e-4	1	1209.295	1	NC	1
605		18	max	.004	3	.046	1	.179	4	5.068e-3	5	NC	4	NC	1
606			min	002	2	024	3	006	1	-1.002e-2	1	2555.858	1	NC	1
607		19	max	.004	3	.091	1	.153	4	7.243e-3	3	NC	1	NC	1
608			min	002	2	05	3	0	12	-1.974e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} C_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.