```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df=pd.read_csv('penguins_size.csv')
df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE

Univariate Analysis

sns.distplot(df.culmen_length_mm)

C:\Users\shrey\AppData\Local\Temp\ipykernel_24296\3594697359.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df.culmen_length_mm)
<Axes: xlabel='culmen_length_mm', ylabel='Density'>
```


Bi- Variate Analysis

sns.jointplot(x='culmen_depth_mm',y='flipper_length_mm',data=df)

<seaborn.axisgrid.JointGrid at 0x2d628ff1fd0>

c:\Python311\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.PairGrid at 0x2d629088d50>

descriptive statistics

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

Missing values

```
df.isnull().sum()

species 0
island 0
culmen_length_mm 2
culmen_depth_mm 2
flipper_length_mm 2
body_mass_g 2
sex 10
```

dtype: int64

Missing values

numerical columns

```
df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)
df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True)
df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)
```

Categorical column

outliers

```
sns.boxplot(df.body_mass_g) #no outliers detected
```


sns.boxplot(df.culmen_length_mm)

 $\verb|sns.boxplot(df.culmen_depth_mm)| \\$

sns.boxplot(df.flipper_length_mm)

```
<Axes: >
      230
Hence there are no outliers in the dataset.
correlation of independent variables with the target
df.dtypes
     species
                            object
                            object
     island
     culmen_length_mm
                           float64
     culmen_depth_mm
                           float64
     flipper_length_mm
                           float64
                           float64
     body_mass_g
     sex
                            object
     dtype: object
                                                                             I
      170
df_m=df.select_dtypes(exclude=['object'])
df_m.corr
     <bound method DataFrame.corr of</pre>
                                            culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g
                      39.10
                                         18.7
                                                            181.0
                                                                         3750.0
                      39.50
                                         17.4
                                                            186.0
                                                                         3800.0
     2
                      40.30
                                         18.0
                                                             195.0
                                                                         3250.0
     3
                      44.45
                                         17.3
                                                            197.0
                                                                         4050.0
     4
                      36.70
                                                            193.0
                                                                         3450.0
                                         19.3
                                                            197.0
                      44.45
                                                                         4050.0
     339
                                         17.3
                                                            215.0
                                                                         4850.0
     340
                      46.80
                                         14.3
     341
                      50.40
                                         15.7
                                                            222.0
                                                                         5750.0
     342
                      45.20
                                         14.8
                                                            212.0
                                                                         5200.0
     343
                      49.90
                                         16.1
                                                            213.0
                                                                         5400.0
     [344 rows x 4 columns]>
df.dtypes
                            object
     species
                            object
     island
     culmen_length_mm
                           float64
     culmen_depth_mm
                           float64
     flipper_length_mm
                           float64
     body_mass_g
                           float64
                            object
     dtype: object
```

Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.10	18.7	181.0	3750.0	2
1	0	2	39.50	17.4	186.0	3800.0	1
2	0	2	40.30	18.0	195.0	3250.0	1
3	0	2	44.45	17.3	197.0	4050.0	2
4	0	2	36.70	19.3	193.0	3450.0	1

df.corr().species.sort_values(ascending=False)

```
      species
      1.000000

      flipper_length_mm
      0.850819

      body_mass_g
      0.747547

      culmen_length_mm
      0.728706

      sex
      -0.003823

      island
      -0.635659

      culmen_depth_mm
      -0.741282

      Name: species, dtype: float64
```

Split the data into dependent and independent variables.

X=df.drop(columns=['species'],axis=1)
X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	2	39.10	18.7	181.0	3750.0	2
1	2	39.50	17.4	186.0	3800.0	1
2	2	40.30	18.0	195.0	3250.0	1
3	2	44.45	17.3	197.0	4050.0	2
4	2	36.70	19.3	193.0	3450.0	1

Y=df['species']

Y.head()

Name: species, dtype: int32

Scaling the data

from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
X_scaled.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0
1	1.0	0.269091	0.511905	0.237288	0.305556	0.5
2	1.0	0.298182	0.583333	0.389831	0.152778	0.5
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0
4	1.0	0.167273	0.738095	0.355932	0.208333	0.5

Split the data into training and testing

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)

Check the training and testing data shape.

X_train.shape

(275, 6)

X_test.shape

(69, 6)

Y_train.shape

(275,)

Y_test.shape

(69,)

• X