Intelligent Systems (DVA439)

https://blackboard.mdh.se

Ning Xiong, Miguel Leon

Course examiner: Ning Xiong

About Ning Xiong

- Obtained M.Sc from Donghua Uinv. in Shanghai, 1989
- Ph.D from Uni. Kaiserslautern (Germany), 2000
- Guest researcher in FOI and KTH, 2000-2002
- Docent in artificial intelligence, 2010
- Professor in artificial intelligence, 2016

Research directions: fuzzy systems, CBR,
machine learning & big data
evolutionary computation
knowledge and information fusion

About Miguel Leon

- Master of Science from Univ. Granada in 2013
- Ph.D student at Mälardalen University since Aug. 2013
- Specialized in evolutionary computation algorithms
- Will be involved in supervision of course projects

General About the Course

- This course aims to offer a foundation of intelligent system techniques and their applications in various realworld domains. Students will acquire foundational knowledge and necessary skills to design and implement a system with "intelligent" functionality.
- Mixed form: lectures, mini-project, project meetings, and seminar

Content of Lectures

- Lecture 1: Intelligent agents
- Lecture 2: Fuzzy logic control
- Lecture 3: Fuzzy adaptive control
- Lecture 4: Decision analysis under uncertainty
- Lecture 5: Case-based reasoning and its relation to fuzzy reasoning
- Lecture 6: Multi-sensor data and information fusion
- Lecture 7: Evolutionary Multi-objective optimization
- Guest lecture: Intelligent systems in industry (Dr. Ella Olsson, SAAB)

Mini-Project in the Course

- The mini-project will take approximately 60% of the course period
- Students have freedom to select project topic and group members
- Opportunity to implement and test your own idea
- Problem-based learning
- Take more responsibility over the learning process
- Learn to define your problem, find a solution and solve it.
- Learn to set up appropriate goal given limited time and resources
- Learn to collaborate in groups
- Weekly project meeting with supervisors

Seminar

• Seminar (2018.03.15 13:15 --) Project presentation.

Each group must do presentation in 12 minutes followed by 3 minute discussion. The group presentation must be shared by all members. Every student has to attend this seminar.

Action Plan (Weeks 3-5)

Listening to lectures, communication with classmates for projects

Every group of project usually consists of 3-5 people

Every project group has to send their project title and group members (names and email address) to miguel.leonortiz@mdh.se before 21:00 of Feb. 04

 Announcing project titles and groups in Blackboard on Feb. 05., together with a Doodle link for booking first project meeting
 Every group has to select unoccupied time slot in doodle for the first project meeting, which is scheduled in week 6.

Action Plan (Weeks 6-8)

 Design phase of projects. During this period students have to search and read relevant papers, decide their goals, methods, and systems more exactly.

Additionally, Lecture 7 (Evolutionary multi-objective optimization) will be given in Week 7 (Febuary 15).

Course Plan (Weeks 9-10)

Implementation phase of projects.

Students have to work very intensively during this period to implement their methods with preliminary results.

Action Plan (Weeks 11)

Last phase of projects

- Students are expected to make demon to supervisor and write project reports during this week.
- Final project results must be presented at a seminar in week 11. Each group presentation has 12 minutes followed by 3 minute discussion. Each group has to send slides to miguel.leonortiz@mdh.se before 24:00 of March. 14.
- The final project reports should be handed in to Ning Xiong (ning.Xiong@mdh.se) by March 31.

Project Report

Every group is supposed to write a report with 10-12 pages to present their work. It must cover following parts:

- Abstract
- Introduction
- Related work
- Problem formulation
- Approach and method
- Results and analysis (possibly with suggestion for improvement)
- Conclusion
- References

Related Work Section

- Each student has to write comments on at least 2-3 relavant papers. It is student's own responsibility to search for and select related papers from the literature.
- Every student has to summarize the relevant paper and then write her/his own reflection.

 Each student has to mark the part of the text written by her/him in the section.

Examination

The examination of the course consists of written exam and mini-project. The written exam covers the theoretical knowledge studied from the lectures. The following are required to get a full grade of the course

- 1. Pass the written exam
- 2. Make good presentations at the seminar
- 3. Complete mini-project in group
- 4. Complete and submit final project report.

Overall Evaluation Criteria

	Full Points	Minimum Required Points
Written exam	40	20
Mini-project and report	40	20
Overall score	40	20

Overall score = 0.4*score of written exam + 0.6*score of project

Swedish Grade

5: if the overall score lies in the range [34,40];

4: if the overall score lies in the range [27, 33] **and** the scores on both parts (exam and project) are not fewer than 20;

3: if the overall score lies in the range [20, 26] **and** the scores on both parts (exam and project) are not fewer than 20.

ECT Grade

A: if the overall score lies in the range [34, 40]

B: if the overall score lies in the range [27, 33] **and** the scores on both parts (exam and project) are not fewer than 20;

C: if the overall score lies in the range [24, 26] **and** the scores on both parts (exam and project) are not fewer than 20;

D: if the overall score lies in the range [20, 23] **and** the scores on both parts (exam and project) are not fewer than 20;

Assessing Projects and Reports

Scoring Criteria	Full Points
Innovation and creativity	5
Technical soundness	12
Results and analysis	11
Presentation of report (organization, clarity, language)	12

 The score on presentation can vary among members of the group due to their writing on the relevant work

Course Literature

Suggested reference book

Norvig, Peter; Russell, Stuart Jonathan; Artificial intelligence: a modern approach, 3rd ed., Pearson Education, 2010, ISBN: 9780132071482, or a more recent version

- Various papers and articles associated with the lectures
- A lot of reading material in the blackboard
- Each lecture will recommend reference to read on the corresponding topic

19