

Curso: Física General IV

Profesor: Juan Carlos Lobo Zamora

Tarea 1

Alumno:

García Downing Geovanny, 2020092224

II Semestre

2022

Un observador en la Tierra ve dos naves espaciales que se mueven en la misma dirección alejándose de la Tierra, para este observador la nave espacial A se desplaza con una rapidez de 0.50c y la nave espacial B lo hace con una rapidez de 0.80c.

- a) ¿Cuál es la velocidad de la nave espacial A medida por un observador que se encuentra en la nave espacial B?
- El observador de la nave espacial B envía pulsos de luz hacia la Tierra cada 2,00 s. El observador en la Tierra cada cuánto recibe estos pulsos de luz.

α,

$$\mathcal{U}_{x}' = \frac{\mathcal{U}_{x} - V}{C^{2}}$$

$$\frac{0.5C - 0.8C}{1 - 0.5 \cdot 08 \cdot 6^{2}} = -0.5C \uparrow_{//}$$

R/ La rebeidad de 4 con respecte a B es -o.sc seguin la dirección propuesto en el diagrama

b.

$$\Delta + = \frac{\Delta + 1}{\sqrt{1 - \frac{V^2}{C^2}}} = \frac{2.005}{\sqrt{1 - 0.8^2 c^2}} = 3,\overline{3} 5$$

RI El observador de la tierra recibe cacha 3,3 s

Un observador en el sistema de referencia O ve que caen rayos en forma simultánea en dos puntos a 100 m entre sí. El primer rayo lo observa caer en $x_1=y_1=z_1=0$ y $t_1=0$; el segundo en $x_2 = 100 \text{ m}$ $y_2 = z_2 = 0 \text{ y } t_2 = 0.$

- a) ¿Cuáles son las coordenadas de estos dos eventos en un sistema de referencia O´ que se mueve en la dirección $\hat{\imath}$ con una rapidez 0.70c con respecto a O.
- b) ¿A que distancia están los eventos en O´?
- c) ¿Los eventos son simultáneos en O´? En caso de no serlo, ¿Cuál es la diferencia temporal entre ellos, y cuál ocurre primero?

a.

$$X_{1}^{1} = \frac{X_{1} - V \cdot t_{1}}{\sqrt{1 - \frac{V^{2}}{G^{2}}}} =$$

$$\frac{0 - 0.7c \cdot 0}{\sqrt{1 - 0.7^2}} = 0$$

$$X_{2}^{\prime} = \frac{X_{2} - Vt_{2}}{\sqrt{1 - \frac{V^{2}}{C^{2}}}}$$

$$\frac{100 - 0.76-0}{\sqrt{1-0.72}} = 140,028$$

R/ Condenadas rayo 1 (0,0,0) (cordenadas rayo 2 (140,0,0)

$$\Delta X' = X'_{2} - X'_{1} = 140,028 - 0 = 140,028 m_{1}$$
R\ Se encentism a 140,000

RI se encuention a 140,028m

$$\frac{c.}{\Delta t} = x \Delta t' + \frac{xy}{c^2} (x_2' - x_1') \rightarrow \Delta t' = \frac{y}{c^2} (x_1' - x_2') = \frac{0.7}{C} (0-140)$$

$$= 344.7$$

= 326, 6 ns//

RI El observador 0' nota que suceden a un 11' = 326,7 ns' y nota que el rayo 1 cae antes que el rayo 1

Una nave espacial es lanzada desde la superficie de la Tierra con una velocidad de 0.600c que forma un ángulo de 50° por encima del eje x positivo que es la horizontal. Otra nave espacial se desplaza con una velocidad de 0.700c en la dirección x negativa. Calcule la magnitud y la dirección de la velocidad de la primera nave espacial según la mide el piloto de la segunda nave espacial.

$$V_{1x} = (66(50) \cdot 0, 6 \cdot C = 0, 3857 \cdot C)$$
 $V_{1y} = Sen(50) \cdot 0, 6 \cdot C = 0, 4596 \cdot C$

$$U_{x}^{1} = \frac{U_{x} - V}{1 - \frac{U_{x} \cdot V}{C^{2}}} = \frac{0.3857 \cdot 0.7}{1 - 0.3857 \cdot 0.7} = 0.855 \, \text{CP}$$

$$U_y' = \frac{U_y}{1 - \underbrace{U_{x} \cdot V}_{C^2}} \cdot \sqrt{1 - \underbrace{U_y^2/C^2}_{C^2}} = \frac{0.4596C}{1 - 9.4596 \cdot 0.7} \cdot \sqrt{1 - 0.4596^2} = 9.258C_3^2$$

R/ La velocidad de la segunda nave con respecto a la primera, medido desde la primera, es de 0,855c7+0,258cj

Calcule la cantidad de movimiento de un protón que se mueve con las siguientes velocidades [exprese el resultado en unidades del SI ($kg \cdot m/s$) y en MeV/c]

a) 0.010c

b) 0.50*c*

c) 0.90c

con m= 1,67×10⁻²⁷ kg

$$1M_e V/c = 5,36×10^{-22} kg \cdot m/s$$

$$\frac{q}{p} = \frac{m}{\sqrt{1 - \frac{V^2}{C^2}}} = \frac{m \cdot 0,010 \, C}{\sqrt{1 - 0,010^2}} = 5,01 \times 10^{-21} \text{kg} \cdot \text{m/s} = 935 \, \frac{\text{MeV}}{C}$$
b. m· 0,50C

b.
$$\frac{\text{m} \cdot \text{o,soc}}{\sqrt{1-G_1 \text{so}^2}} = 290 \times 10^{-19} \text{kg} \cdot \text{m/s} = 540, 62 \frac{\text{MeV}}{C}$$

$$\frac{C.}{\sqrt{1-0.90^2}} = 1.64 \times 10^{-18} \text{ Kg·m/s} = 1933,38 \quad \frac{\text{MeV}}{C} / \text{MeV}$$

Considere el siguiente proceso de desintegración $^{55}_{24}$ Cr $\rightarrow ^{55}_{25}$ Mn + e^- .

La masa del núcleo $^{55}\,\mathrm{Cr}$ es 54.9279 u, y la del $^{55}\,\mathrm{Mn}$ es 54.9244 u

Calcule cual es la máxima energía cinética que podría tener el electrón emitido.

Note

$$m_{e^{-}} = 911 \times 10^{-31} \text{ kg} \cdot \frac{1}{1,660 \times 10^{-27} \text{ kg}} = 548,76 \times 10^{-6} \text{ M}$$

= $548,76 \times 10^{-6} \text{ MeV} \cdot \frac{931,5 \text{ MeV}}{1\text{ MeV}} = 0,511168 \text{ MeV}_{e^{2}}$

$$\Delta_{m} = 54,9279 M - 54,9244 - 548,76 \times 10^{-6} M$$

$$= 2,95124 \times 10^{-3} M. \quad 931,4940 MeV_{c2} = 2,749 MeV_{c2}$$
Note que $Q = 2,749 MeV$

$$=) K = Q - mc^{2} = 2,749 MeV - 0,511168 \cdot MeV_{gc} \cdot 12^{2}$$

$$= 2,238 MeV$$

RI La máxima energía cinética es de 2,238 Nev

Un objeto se desintegra en dos fragmentos. Uno de ellos tiene una masa igual a $1 \text{ MeV}/c^2$ y una cantidad de movimiento de 1.75 MeV/c^2 en la dirección positiva del eje x. El otro fragmento tiene masa igual a 1.50 MeV/c^2 y una cantidad de movimiento de 2.005 MeV/c en la dirección positiva del eje y. Para el objeto original calcule:

Sea V = Voic

 $\sqrt{1,75^2+2,005^2}=2,661$

 $\frac{\sqrt{1-N_2}}{\sqrt{1-N_2}} = 1/35 \text{ MeV/c}$

 $\frac{m_2 V_2}{\sqrt{1 - V_2^2}} = 2.005 MeV_C$

⇒ 1, = 0,868·C

=>12 = 0,861.0

a) Su masa

b.

b) Su velocidad

Momento relativista

$$\frac{Mv_0}{\sqrt{1-v_0^2}} = 1,75 MeV/c1 + 2,005 MeV/c1$$

$$\frac{M = \frac{2,66}{V_0}}{\sqrt{1-V_0^2}}$$
Energía relativista

$$\frac{M_{s}^{\chi}}{\sqrt{1-V_{0}^{2}}} = \frac{M_{1}g^{\chi}}{\sqrt{1-V_{1}^{2}}} + \frac{M_{2}g^{\chi}}{\sqrt{1-V_{2}^{2}}}$$

$$\frac{2,66}{V_0} = \frac{1 \text{ MeV/c}^2}{\sqrt{1-0,868^2}} + \frac{1,5 \text{ MeV/c}^2}{\sqrt{1-0,801^2}}$$

$$\frac{q.}{\sqrt{1-V_0^2}} = \frac{2,66}{V_0} = M = 3,653 \text{ MeV}_{1/2}$$