МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский государственный национальный исследовательский университет»

Механико-математический факультет

Кафедра фундаментальной математики

УДК 514.76

Вихляев Егор Сергеевич

Неабелевы аналоги гомотопических групп топологических пространств

Направление 01.03.01 Математика

Курсовая работа

Научный руководитель: Доцент кафедры фундаментальной математики _____ Волочков А.А.

Оглавление

	Введение	2
1	Фундаментальная группа окружности	4
2	Фундаментальная группа 2-сферы	6
3	Фундаментальная группа тора	7
4	Фундаментальная группа бутылки Клейна	9
5	Фундаментальная группа действительной проективной плоскости	11
За	аключение	13
Д	ополнение	14
	5.1 Деформационный ретракт	14
	5.2 Фундаментальная группа произведения пространств	14
	5.3 Клеточный комплекс	14
	5.4 Фактор-пространство	15
	5.5 Нормальная подгруппа	15
	5.6 Свободная группа	16
	5.7 Группоиды	16
	5.8 Группоид I	17
	5.9 Пушауты	17
	5.10 Теорема Зейферта – Ван Кампена	18
	5.11 Свободное произведение или амальгама	21
	5.12 Лента Мёбиуса	21
П	итература	23

Введение

В настоящей работе $S^n=\{x\in\mathbb{R}^{n+1}:||x||=1\}$ — единичная п-мерная сфера, $\pi_1(X)$ — группа классов эквивалентности по гомотопии петель, содержащихся в топологическом пространстве X или, иными словами, фундаментельная группа топологического пространства X. Фундаментальная группа — это первая и простейшая гомотопическая группа.

Мы изучаем фундаментальный группоид и его вычисление в некоторых случаях. Чем вызван интерес к данной теме?

Фундаментальный группоид представляет собой мощный инструмент в топологии и алгебраической геометрии, предоставляя альтернативный способ анализа топологических пространств. В отличие от фундаментальной группы, которая изучает свойства линейных петель в пространстве, фундаментальный группоид учитывает не только точные петли, но и их взаимодействие в контексте топологической структуры.

Цель данной курсовой работы - изучение фундаментального группоида и разработка методов его вычисления в конкретных сценариях. Рассмотрим различные аспекты теории фундаментального группоида, его взаимосвязь с фундаментальной группой, а также применение в конкретных примерах.

Ключевые темы, затрагиваемые в работе, включают в себя теорию группоидов, базовые определения фундаментального группоида, алгоритмы вычисления и примеры его применения, клеточные комплексы, пушауты и теорема Зейферта — Ван Кампена.

В главе 1 мы исследуем и вычисляем фундаментальную группу простейшего топологического пространства — окружности S^1 , используя дискретный группоид $\{0,1\}$ и пушауты. Эта фундаментальная группа настолько важна, что позволит вычислить фундаментальные группы всех последующих пространств.

В главе 2 мы разбираемся с вычислением фундаментальной группы 2-сферы относительно произвольной точки p с помощью подходящего покрытия и впервые применяем теорему Зейферта — Ван Кампена.

В главе 3 вычисляется фундаментальная группа тора, посредством использования таких понятий, как свободная группа, деформационный ретракт, нормальная подгруппа и свойств фундаментальных групп.

В главе 4 переходим к изучению фундаментальной группы бутылки Клейна. Здесь мы используем такие понятия, как фактор-пространство, полупроизведение, а так же применяем теорему Зейферта — Ван Кампена.

В главе 5 мы подходим к вычислению фундаментальной группы действи-

тельной проективной плоскости. Применяем клеточные комплексы, теорему Ван Кампена, деформационный ретракт. Рассматриваем ленту Мебиуса в качестве вспомогательного инструмента при вычислении.

Эта тема представляет интерес для тех, кто занимается топологией и алгебраической геометрией, и другими областями, где алгебраические методы играют важную роль.

Цель: Изучение важных понятий алгебраической топологии — фундаментального группоида и фундаментальной группы, вычисление их для некоторых топологических пространств.

Задачи:

- 1. Вычислить фундаментальную группу окружности.
- 2. Вычислить фундаментальную группу 2-сферы.
- 3. Вычислить фундаментальную группу тора.
- 4. Вычислить фундаментальную группу бутылки Клейна.
- 5. Вычислить фундаментальную группу действительной проективной плоскости.

Фундаментальная группа окружности

Теорема 1.0.1. Существует изоморфизм $\pi_1(S^1, 1) \cong \mathbb{Z}$.

Доказательство. Пусть $\chi_1 = S^1 \setminus \{i\}, \chi_2 = S^1 \setminus \{-i\}, A = \{-1,1\}, A_1 = \{1\}$, где $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.

Тогда χ_1, χ_2 — стягиваемые пространства, в то время как χ определим как топологическую сумму двух стягиваемых компонент. Поэтому, $\pi_1(\chi_2, A)$ изоморфна группоиду I (см. 5.8), а $\pi_1(\chi, A)$ изоморфна дискретному группоиду $\{0, 1\}$ (см. 5.7). Таким образом, имеем пушаут (см. 5.9),

$$\begin{cases}
0,1 \\
\downarrow \\
I \xrightarrow{g} \\
\pi(S^1,1)
\end{cases}$$

где 0 — тривиальная группа и g — полностью определяется как морфизм тем, что g(i) = ϕ .

Приведенный пушаут подразумевает следующее: если $f:I\to K$ — любой морфизм в a группы K, то существует единственный морфизм (см. 5.7) $h:\pi_1(S1,1)\to K$ такой, что hg=f. В частности, пусть $f:I\to Z$ — морфизм такой, что f(i)

— единичный элемент Z, тогда существует единственный морфизм $h:\pi_1(S1,1)\to Z$ такой, что $h(\phi)=1$.

Пусть $\kappa:\mathbb{Z}\to\pi_1(S^1,1)$ будет морфизмом $n\longmapsto n\phi$. Ясно, что $h\kappa(1)=1$ и так же $h\kappa=1:\mathbb{Z}\to\mathbb{Z}$. С другой стороны,

$$\kappa hg(i) = \kappa f(i) = \kappa(1) = \phi = g(i).$$

Поэтому $\kappa hg = g$. Тогда и $\kappa h = 1 : \pi_1(S^1, 1) \to \pi(S^1, 1)$.

Доказательство также показывает, что ϕ является порождающим фундаментальной группы $\pi_1(S^1,1)$. Чтобы определить ϕ , пусть θ_i будет единственным элементом $\pi_1\chi_i(1,-1)$ (i=1,2) и $\phi_i=u_i\theta_i$ в $\pi S^1(1,-1)$. Деформационный ретракт (см. 5.1) r' удовлетворяет равенству

$$r'\phi_2 = -\phi_1 + \phi_2,$$

и если мы возьмем изоморфизм $\pi_1\chi_2A\to I$, который посылает θ_2 в i, то делаем вывод, что

$$\phi = -\phi_1 + \phi_2.$$

Ясно, что ϕ — это класс пути $t \to e^{2\pi i t} = \cos(2\pi t) + i * \sin(2\pi t)$ (петля) длины 1. \square

Теорема 1.0.2. Если K - связный клеточный комплекс (см. 5.3) и $\nu \in K^0$, тогда группоид $\pi K^1 K^0$ – это свободный группоид и фундаментальная группа $\pi (K^1, \nu)$ – это свободная группа с порождающими $r_1 - r_0 + 1$, где r_n – число n-клеток клеточного комплекса K, n = 0, 1.

Доказательство. K^1 получается путём присоединения 1-клетки к K^0 , то есть,

$$K^1 = K^0 \sqcup_f (\Lambda \times E^1),$$

где Λ – дискретное множество, « × » – декартово произведение и $f: \Lambda \times S^0 \to K^0$ – отображение присоединения клетки. Пусть $C = \Lambda \times S^0$; поскольку K^1 связно, $f[C] = K^0$. Поскольку $\pi(\Lambda \times S^0)C$ и πK^0K^0 – дискретные группоиды (и так же $(\Lambda \times E^1, \Lambda \times S^0)$ – корасслоение) морфизма

$$\overline{f}: \pi(\Lambda \times E^1)C \to \pi K^1 K^0,$$

что является универсальным морфизмом. При этом, $\pi(\Lambda \times E^1)C$ – изоморфна $\Lambda \times I$.

Фундаментальная группа 2-сферы

Теорема 2.0.1. Существует изоморфизм $\pi_1(S^2, p) \cong 0$.

Доказательство. Пусть $U_{\epsilon}=S^2\setminus\{\epsilon e_3\}$, $\epsilon\in\{\pm 1\}$. Тогда U_1,U_{-1} - два диска, являющиеся подходящим покрытием. Каждое из множеств U_1 и U_{-1} будет открытым непересекающимся подмножеством сферы S^2 . U_1 будет содержать всю сферу S^2 за исключением северного полюса, а U_{-1} будет содержать всю сферу S^2 за исключением южного полюса. Пересечение $U_1\cap U_{-1}$ представляет собой экватор W сферы S^2 и оно линейно связно. Ясно, что U_1 и U_{-1} – односвязны. Зафиксируем точку $p\in W$.

Таким образом, имеем следующий пушаут:

$$\pi(U_1 \cap U_{-1}, p) \xrightarrow{i_n} \pi(U_1, p)$$

$$\downarrow^{i_s} \qquad \qquad \downarrow^{i_s}$$

$$\pi(U_{-1}, p) \xrightarrow{i_n} \pi(S^2)$$

На диаграмме: $\pi_1(U_1 \cap U_{-1}) \simeq \mathbb{Z}$, $\pi_1(U_1) \simeq 0$, $\pi_1(U_{-1}) \simeq 0$, $i_n: U_1 \cap U_{-1} \hookrightarrow U_1$, $i_s: U_1 \cap U_{-1} \hookrightarrow U_{-1}$. Применяя теорему Зейферта — Ван Кампена, получаем, что $\pi_1(S^2, p) \simeq 0$ — тривиальна.

Фундаментальная группа тора

Теорема 3.0.1. Существует изоморфизм $\pi_1(T^2) \cong \mathbb{Z} \times \mathbb{Z}$.

Доказательство. Изобразим следующую диаграмму:

На диаграмме: U – прямоугольник, V – открытый диск, $X = U \cup V$ – тор. Если идти по открытому диску V против часовой стрелки, то, учитывая направления обхода по сторонам U, имеем следующее слово: $aba^{-1}b^{-1}$. Тогда, группа $\langle a,b \mid aba^{-1}b^{-1} = \{e\}\rangle$ – свободная группа тора (см. 5.6) с двумя порождающими a и b.

Деформационный ретракт изображенного на диаграмме пространства X представляет из себя букет двух окружностей, изображенных на диаграмме ниже, где $\overline{U} = S^1 \cup S^1, \overline{V} \cong \bullet$:

Мы знаем, что $\pi_1(S^1) \cong \mathbb{Z}$, при этом ясно, что $\pi_1(\overline{V}) \cong \{e\}$ – тривиальна. Поскольку пересечение $\overline{U} \cap \overline{V}$ содержит единственный элемент $\{e\}$, то и нормальная

подгруппа (см. 5.5) $N=\{e\}$ – тривиальна, т.к. тривиальны все её порождающие \Rightarrow $\Rightarrow \pi_1(\overline{U})\cong \pi_1(S^1)\times \pi_1(S^1)\cong \mathbb{Z}\times \mathbb{Z}$ (см. 5.2).

Таким образом, имеем следующие тождественные пушауты:

$$\pi_{1}(U \cap V) \xrightarrow{i_{d}} \pi_{1}(\overline{U}) \qquad \qquad \mathbb{Z} \xrightarrow{i_{d}} \mathbb{Z} \times \mathbb{Z}$$

$$\downarrow_{i_{d}} \qquad \qquad \downarrow_{j_{n}} \qquad \qquad \downarrow_{j_{n}} \qquad \qquad \downarrow_{j_{n}}$$

$$\pi_{1}(\overline{V}) \xrightarrow{j_{n}} \pi_{1}(T^{2}) \qquad \qquad \{e\} \xrightarrow{j_{n}} \mathbb{Z} \times \mathbb{Z}$$

Здесь $i_d:X\to \overline{U}, j_n:\overline{U}\to T^2$. Значит, $\pi_1(X)=\pi_1(T^2)\cong \mathbb{Z}\times \mathbb{Z}$.

Фундаментальная группа бутылки Клейна

Теорема 4.0.1. Существует изоморфизм $\pi_1(K) \cong \mathbb{Z} \rtimes \mathbb{Z}$.

Доказательство. Бутылку Клейна можно представить в виде следующего фактор-пространства (см. 5.4):

Пусть пространство A_1 представляет из себя следующую фигуру:

В то же время, пространство A_2 представим следующим образом:

Тогда $A_1 \cap A_2$:

Мы видим, что $A_1\cong \mathbb{Z}\rtimes \mathbb{Z}=F(a,b)$, поскольку $A_1 \searrow \{$ пунктирная рамка $\}$, и $A_2\cong \{e\}$, поскольку $A_2 \searrow \{x\}\cong \{e\}$. Кроме того, $A_1\cap A_2 \searrow S^1$.

Пусть $\langle w \rangle \in \pi_1(A_1 \cap A_2)$. Тогда $j_1(w) = e$, пока $j_{1_*} : \pi_1(A_1 \cap A_2) \mapsto \pi_1(A_2) = e$. Отсюда следует, что $(j_2j_1)_*(w) = e \in \pi_1(A_1 \cap A_2) \Rightarrow (j_2j_1)_*(w)$ и $e \in \pi_1(A_1 \cap A_2)$. Кроме того, $(i_2)_*(i_1)_*(w) = abab^{-1}$ в $\pi_1(A_1 \cap A_2)$. Поэтому, по теореме Ван Кампена (см. 5.10):

$$\pi_1(K) = \frac{\pi_1(A_1) * \pi_1(A_2)}{N} = \frac{F(a,b) * \{e\}}{\langle abab^{-1} \rangle} \cong \frac{F(a,b)}{\langle aba = b \rangle} = \mathbb{Z} \rtimes \mathbb{Z}.$$

Фундаментальная группа действительной проективной плоскости

Теорема 5.0.1. Существует изоморфизм $\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$.

Доказательство. Построим структуру клеточного комплекса для $\mathbb{R}P^2$. мы можем применить теорему Ван Кампена, положив, что $\mathbb{R}P^2 = A \cup B$, где:

A — розовый диск, B — пурпурное кольцо, $A \cup B$ — маленькое пурпурно-розовое кольцо. По Ван Кампену:

$$\pi_1(\mathbb{R}P^2) = \pi_1(A) *_{\pi_1(A \cap B)} \pi_1(B),$$

где * - свободное произведение или амальгама (см. 5.11).

 $\pi_1(A)\cong 1=\langle 1\mid\varnothing
angle$, т.к. A – просто диск, стягиваемый в точку.

 $A \cup B$ — кольцо, деформационный ретракт которого суть круг. Его порождающим элементом допустим γ , тогда $\pi_1(A \cup B) \cong \mathbb{Z} = \langle \gamma \mid \varnothing \rangle$.

Аналогично с $B: \pi_1(B) \cong \mathbb{Z} = \langle b \mid \varnothing \rangle$. Таким образом, имеем

$$\pi_1(\mathbb{R}P^2) = 1 *_{\mathbb{Z}} \mathbb{Z}.$$

Теперь определимся с тем, что представляет из себя группа $1*_{\mathbb{Z}}\mathbb{Z}$. Для этого найдем репрезентацию группы $\pi_1(\mathbb{R}P^2)$. Для этого необходимо провести амальгамацию, т.е. перечислить порождающиие и отношения группы $\pi_1(A)$ и $\pi_1(B)$ наряду с новыми отношениями, которые мы обнаруживаем, рассматривая $\pi_1(A \cap B)$:

$$\pi_1(\mathbb{R}P^2) = \langle \text{пор. } \pi_1(A), \text{пор. } \pi_1(B) \mid \text{ отн.я } \pi_1(A), \text{ отн. } \pi_1(B), i_{A_*}([\gamma]) = i_{B_*}([\gamma]) \rangle =$$

$$= \langle 1, b \mid i_{A_*}([\gamma]) = i_{B_*}([\gamma]).$$

Здесь, $i_{A_*}:\pi_1(A\cap B)\to\pi_1(A)$ – гомоморфизм, индуцированный инъективным отображением $i_A:A\cap B\hookrightarrow A$, и аналогично $i_{B_*}:\pi_1(A\cap B)\to\pi_1(B)$ – гомоморфизм, индуцированный $i_B:A\cap B\hookrightarrow B$. Поэтому единственная сложность в поиске $\pi_1(\mathbb{R}P^2)$ заключается в том, какими отображениями должны ыть i_{A_*} и i_{B_*} . Первый вариант прост, поскольку $\pi_1(A)=1$ подразумевает, что i_{A_*} должен быть тривиальным отображением, т.е.

$$i_{A_*}([\gamma]) = 1.$$

Но чтобы найти образ γ под i_{B_*} , мы должны немного подумать о отношениях b и γ . Гомоморфизм полностью определяется тем, куда он сопоставляет порождающие. Вернемся к исходной фигуре и посмотрим этапы построения:

Мы видим, что b является основной окружностью ленты Мёбиуса (см. 5.12), тогда как γ является его граничной окружностью.Отсюда, отношение между b и γ следующее: каждая петля по кругу γ соответствует двум петлям вокруг b. Отсюда следует, что

$$i_{B_*}([\gamma]) = b^2.$$

Это позволяет записать итоговое представление:

$$\pi_1(\mathbb{R}P^2) = \langle 1, b \mid 1 = b^2 \rangle = \mathbb{Z}/2\mathbb{Z}.$$

Заключение

В рамках данной курсовой работы были успешно достигнуты поставленные цели, заключавшиеся в освоении методов вычисления фундаментальных группо-идов в определенных случаях. Рассмотрены пять различных топологических пространств, для каждого из которых проведены вычисления фундаментальных группоидов.

Первой задачей было вычисление фундаментальной группы окружности. Полученный результат дал нам представление о связанных петлях на окружности и их гомотопических классах.

Затем были рассмотрены фундаментальные группоиды для 2-сферы, тора, бутылки Клейна и действительной проективной плоскости. В каждом случае были определены группоиды, описывающие связи между петлями и точками данных пространств.

Полученные результаты подчеркивают важность и применимость концепции фундаментальных группоидов в топологии. Анализ структуры этих группоидов позволяет лучше понять топологические свойства различных пространств и их геометрические особенности.

Также следует отметить, что вычисление фундаментальных группоидов имеет практическую значимость в различных областях математики и физики, таких как теория узлов, теория струн и алгебраическая топология.

Дополнение

5.1 Деформационный ретракт

Определение 5.1.1. Деформационный ретракт – это подмножество топологического пространства, которое является одновременно его подпространством и связано с ним особым образом. Например, если задано топологическое пространство X, то его подмножество A является деформационным ретрактом, если существует непрерывно отображение $f: X \to A$, такое, что ограничение f на A является тождественным, т.е. равносторонним отображением, а $f(x) \subseteq A \ \forall x \in X$.

Грубо говоря, процесс деформационного ретракта заключается в том, что мы получаем новое топологическое пространство, удаляя из исходного некоторые точки или части его поверхности, при этом сохраняя основные топологические свойства.

5.2 Фундаментальная группа произведения пространств

Теорема 5.2.1. $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$, если X и Y связны.

Доказательство. Одно из основных свойств топологии произведения заключается в том, что отображение $f: Z \to X \times Y$ является непрерывным тогда и только тогда, когда отображения $g: Z \to X$ и $h: Z \to Y$, определенные как f(z) = (g(z), h(z)), оба непрерывны. Следовательно, петля f в пространстве $X \times Y$ с базой (x_0, y_0) эквивалентна паре петель g в X и h в Y с базами соответственно в x_0 и y_0 . Точно так же, гомотопия f_t петли в $X \times Y$ эквивалентна паре гомотопий g_t и h_t соответствующих петель в X и Y. Таким образом, мы получаем биекцию $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0), [f] \mapsto ([g], [h])$. Очевидно, что это гомоморфизм группы и, следовательно, изоморфизм.

5.3 Клеточный комплекс

Определение 5.3.1. Клеточный комплекс – это хаусдорфово топологическое пространство K, представленное в видле объединения $\bigcup_{q=0}^{inf} \bigcup_{i \in I_q} e_i^q$ попарно нпеересекающихся множеств e_i^q («клеток») таким образом, что для каждой клетки e_i^q

существует отображение q-мерного шара D^q в K (характеристическое отображение, отвечающее клетке e_i^q), сужение которого на внутренность $IntD^q$ шара D^q представляет собой гомеоморфизм $IntD^q \approx e_i^q$. При этом предполагаются выполненными следующие аксиомы:

- (C): Граница $e_i^q = \overline{e}_i^q e_i^q$ клетки e_i^q содержится в объединении конечного числа клеток e_i^r с r < q.
- (W): М
ножество $F\subset K$ замкнуто тогда и только тогда, когда для любой клетки
 e^q_i замкнуто пересечение $F\cap \overline{e}^q_i$.

Обозначения аксиом (С) и (W) являются стандартными; они происходят от английских слов «closure finite» и «weak topology».

5.4 Фактор-пространство

Теорема 5.4.1. Фактор-пространство \mathbb{V}/\mathbb{V}_1 является линейным пространством, базис которого состоит из классов, порожденных векторами, образующими базис \mathbb{V} относительно \mathbb{V}_1 . Обратно, если из каждого базисного класса факторпространства взять по одному вектору, то получим базис \mathbb{V} относительно \mathbb{V}_1 .

Доказательство. Положим:

$$\alpha \overline{X} + \beta \overline{Y} = \overline{\alpha X + \beta Y} .$$

Введенное таким образом определение корректно, т.е. не зависит от выбора представителей класса:

. если
$$X_1 \equiv_{\mathbb{V}_1} X, \ Y_1 \equiv_{\mathbb{V}_1} Y,$$
 то $\alpha X_1 + \beta Y_1 \equiv_{\mathbb{V}_1} \alpha X + \beta Y$.

Легко проверяются свойства линейного пространства.

Далее,

$$\alpha_1 X_1 + \dots + \alpha_k X_k \in \mathbb{V}_1 \quad \iff \quad \alpha_1 X_1 + \dots + \alpha_k X_k \equiv_{\mathbb{V}_1} \mathbb{O}$$

и, на основании (??):

$$\iff \alpha_1 \overline{X_1} + \dots + \alpha_k \overline{X_k} = \overline{\mathbb{O}}.$$

Линейная независимость X_1, \ldots, X_k относительно \mathbb{V}_1 эквивалентна линейной независимости классов $\overline{X_1}, \ldots, \overline{X_k}$ факторпространства.

5.5 Нормальная подгруппа

Определение 5.5.1. Подгруппа H группы G называется нормальной подгруппой, если $\forall x \in G, \forall h \in H: x \cdot h \cdot x^{-1} \in H$.

Свойства:

- 1. Подгруппа H группы G нормальна $\leftrightarrow \forall x \in$ выполнено $xHx^{-1} = H$.
- 2. Любая подгруппа абелевой группы нормальна.

5.6 Свободная группа

Определение 5.6.1. Свободной группой, порождённой множеством A, называется группа, порождённая элементами этого множества и не имеющая никаких соотношений, кроме соотношений, определяющих группу.

Свойства:

- 1. Следующее свойство является характеристическим для свободной группы порождённой множеством $A \subset F_A$: для любой группы G и любое отображение $A \to G$ продолжается до гомоморфизма групп $F_A \to G$ при том единственным образом.
- 2. Все свободные группы, порождённые равномощными множествами, изоморфны.
- 3. Свободная группа F_n изоморфна свободному произведению n копий \mathbb{Z} .
- 4. Подгруппа свободной группы свободна.
- 5. Любая группа G есть факторгруппа некоторой свободной группы F_A по некоторой её подгруппе. За A могут быть взяты образующие G.

5.7 Группоиды

Определение 5.7.1. Пусть G - множество, а G_1 - множество всех морфизмов (стрелок) между элементами G. Тогда группоид G определяется как пара (G,G_1) , где

- Каждому морфизму f ставится в соответствие исходный объект x (называемый доменом) и конечный объект y (называемый кодоменом).
- Для каждой пары объектов x, y существует множество морфизмов G(x, y) (называемых группоидами между x и y).

Определение 5.7.2. Морфизм f из объекта x в объект y в группоиде G записывается как $f: x \to y$.

Определение 5.7.3. Категория группоидов определяется аналогично категории групп. Она состоит из группоидов в качестве объектов и морфизмов между группоидами в качестве стрелок. Композиция морфизмов должна быть определена, и должны соблюдаться аксиомы композиции.

Определение 5.7.4. Группоиды G и H называются изоморфными (обозначается как $G \cong H$), если существует биективный морфизм $f: G \to H$, такой что для любых объектов x, y в G выполняется $G(x, y) \cong H(f(x), f(y))$.

Определение 5.7.5. Морфизм $f: G \to H$ является изоморфизмом тогда и только тогда, когда f биективен.

Примеры группоидов:

- 1. **Дискретный группоид:** Каждый объект имеет только тождественный морфизм.
- 2. Множество и его биекции: Группоид, где объекты элементы множества, а морфизмы биекции между этими элементами.
- 3. Направленный граф: Вершины графа объекты, рёбра морфизмы.
- 4. **Группоид** $\{0,1\}$ **по умножению:** Множество объектов $\{0,1\}$, морфизмы определены умножением: $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$.

5.8 Группоид I

Определение 5.8.1. Односвязный группоид с двумя объектами 0,1 имеет большое значений в нашей работе и будет обозначаться как I, при этом единственный элемент I(0,1) будет обозначим как ι . В частности, фундаментальный группоид I на множестве $\{0,1\}$ точно равен I, что обозначается символически $\pi_1\mathbb{I}\{0,1\} = I$.

5.9 Пушауты

Определение 5.9.1. Пусть у нас есть топологическое пространство X и два вложенных в него подпространства A и B. Рассмотрим также два непрерывных отображения $f:A\to Z$ и $g:B\to Z$ в некоторое топологическое пространство Z. Пушаут X по отношению к A и B, иногда обозначаемый как $X\cup_Z Y$ или $X\sqcup_Z Y$, определяется следующим образом:

- 1. Берется объединение носителей A и B внутри X, то есть $A \cup B \subseteq X$.
- 2. Рассматривается факторпространство $X/(A \cup B)$, где точки из $A \cup B$ считаются эквивалентными и объединены в одну точку.
- 3. Отображения f и g индуцируют отображение $X/(A \cup B) \to Z$, обозначаемое [f,g], которое превращает классы эквивалентности в соответствующие точки в Z.

Рассмотрим пример. Диаграмма

морфизмов категории C называется пушаутом (отображений i1,i2), если:

- 1. Диаграмма коммутативна, то есть $u_1i_1 = u_2i_2$.
- $2. \ u1, u2$ являются ϕ -универсальными для свойства 1, то есть, если диаграмма

морфизмов категории C коммутативна, то существует единственный морфизм $v: C \to C'$ такой, что $vu_1 = v_1, vu_2 = v_2$.

5.10 Теорема Зейферта – Ван Кампена

Лемма 1. Если пространство X является объединением коллекции связных по пути открытых множеств A_{α} , каждое из которых содержит базовую точку $x_0 \in X$, и если каждое пересечение $A_{\alpha} \cap A_{\beta}$ связно по пути, то каждая петля в X в точке x_0 гомотопна произведению петель, каждая из которых содержится в одном из множеств A_{α} .

Доказательство. Для петли $f:I\to X$ в базовой точке x_0 утверждается, что существует разбиение $0=s_0< s_1<\ldots< s_m=1$ отрезка I такое, что каждый подотрезок $[s_{i-1},s_i]$ отображается f в одно из множеств A_α . Именно, поскольку f непрерывна, каждая точка $s\in I$ имеет окрестность V_s , отображаемую f в какоето A_α . Мы можем взять V_s в виде интервала, замыкание которого отображается в одно A_α . Компактность I подразумевает, что конечное число таких интервалов покрывает I. Конечное множество концов этих интервалов определяет желаемое разбиение I.

Обозначим A_{α} , содержащее $f([s_{i-1},s_i])$, через A_i , и пусть f_i - это путь, полученный ограничением f на $[s_{i-1},s_i]$. Тогда f представляется как композиция $f_1 \cdot \ldots \cdot f_m$, где f_i - это путь в A_i . Поскольку предполагается, что $A_i \cap A_{i+1}$ связно по

пути, мы можем выбрать путь g_i в $A_i \cap A_{i+1}$ от x_0 до точки $f(s_i)$ в $A_i \cap A_{i+1}$. Рассмотрим петлю $(f_1g_1)(g_1f_2g_2)\dots(g_{m-1}f_m)$, которая гомотопна f. Эта петля представляет собой композицию петель, каждая из которых лежит в одном из A_{α} , как указано в скобках.

Теорема 5.10.1. Если X представляет собой объединение связных по пути открытых множеств A_{α} , каждое из которых содержит базовую точку $x_0 \in X$, и если каждое пересечение $A_{\alpha} \cap A_{\beta}$ связно по пути, то гомоморфизм $\Phi : *_{\alpha} \pi_1(A_{\alpha}) \to \pi_1(X)$ является сюръективным. Если, более того, каждое пересечение $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ связно по пути, то ядро Φ - это нормальная подгруппа N, порожденная всеми элементами вида $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega)^{-1}$ для $\omega \in \pi_1(A_{\alpha} \cap A_{\beta})$, и, следовательно, Φ порождает изоморфизм $\pi_1(X) \approx *_{\alpha} \pi_1(A_{\alpha})/N$.

Доказательство. Мы уже доказали первую часть теоремы о сюръективности Φ в Лемме 1.15. Чтобы доказать более сложную часть теоремы, связанную с ядром Φ как N, мы вводим некоторую терминологию. Факторизацией элемента $[f] \in \pi_1(X)$ мы будем называть формальное произведение $[f_1] \cdot \ldots \cdot [f_k]$, где:

- 1. Каждый f_i это петля в некотором A_α в базовой точке x_0 , и $[f_i] \in \pi_1(A_\alpha)$ класс гомотопии f_i .
- 2. Петля f гомотопна $f_1 \cdot \ldots \cdot f_k$ в X.
- 3. Факторизация [f] представляет собой слово в $*_{\alpha}\pi_1(A_{\alpha})$, возможно, несокращенное, которое отображается в [f] через Φ . Сюръективность Φ эквивалентна тому, что каждый $[f] \in \pi_1(X)$ имеет факторизацию.

Мы также заботимся об уникальности факторизаций. Две факторизации [f] считаются эквивалентными, если они связаны последовательностью следующих двух видов движений или их обратными:

- 1. Объединение соседних терминов $[f_i][f_{i+1}]$ в один термин $[f_if_{i+1}]$, если $[f_i]$ и $[f_{i+1}]$ принадлежат одной и той же группе $\pi_1(A_\alpha)$.
- 2. Рассмотрение термина $[f_i] \in \pi_1(A_\alpha)$ как принадлежащего группе $\pi_1(A_\beta)$ вместо $\pi_1(A_\alpha)$, если f_i петля в $A_\alpha \cap A_\beta$.

Первое движение не меняет элемент $*_{\alpha}\pi_1(A_{\alpha})$, определенный факторизацией. Второе движение не изменяет образа этого элемента в факторгруппе $Q = *_{\alpha}\pi_1(A_{\alpha})/N$, по определению N. Таким образом, эквивалентные факторизации дают одинаковый элемент в Q.

Если мы сможем показать, что любые две факторизации [f] эквивалентны, это означает, что отображение $Q \to \pi_1(X)$, вызванное Φ , инъективно, и, следовательно, ядро Φ точно равно N, и доказательство будет завершено.

Пусть $[f_1] \cdot \ldots \cdot [f_k]$ и $[f'_1] \cdot \ldots \cdot [f'_\ell]$ будут двумя факторизациями [f]. Сложные пути $f_1 \cdot \ldots \cdot f_k$ и $f'_1 \cdot \ldots \cdot f'_\ell$ тогда гомотопны, поэтому пусть $F: I \times I \to X$

будет гомотопией от $f_1 \cdot \ldots \cdot f_k$ к $f'_1 \cdot \ldots \cdot f'_\ell$. Существуют разбиения $0 = s_0 < s_1 < \ldots < s_m = 1$ и $0 = t_0 < t_1 < \ldots < t_n = 1$, такие что каждый прямоугольник $R_{ij} = [s_{i-1}, s_i] \times [t_{j-1}, t_j]$ отображается F в одно A_α , которое мы обозначим как A_{ij} . Эти разбиения могут быть получены путем покрытия $I \times I$ конечным числом прямоугольников $[a,b] \times [c,d]$, каждый из которых отображается в одно A_α , используя компактность, а затем разбиения $I \times I$ объединением всех горизонтальных и вертикальных линий, содержащих грани этих прямоугольников. Мы можем предположить, что разбиение s подразделяет разбиение, дающее произведения $f_1 \cdot \ldots \cdot f_k$ и $f'_1 \cdot \ldots \cdot f'_\ell$. Поскольку F отображает окрестность R_{ij} в A_{ij} , мы можем искривить вертикальные стороны прямоугольников R_{ij} , чтобы каждая точка $I \times I$ лежала максимум в трех R_{ij} . Мы можем предположить, что есть как минимум три строки прямоугольников, так что мы можем выполнить это искажение только для прямоугольников в промежуточных строках, оставив верхние и нижние строки неизменными. Давайте переименуем новые прямоугольники R_1, R_2, \ldots, R_{mn} , упорядочив их, как показано на рисунке.

Если γ - это путь в $I \times I$ от левого края до правого, то ограничение $F|\gamma$ - это петля в базовой точке x_0 , так как F отображает и левую, и правую грани $I \times I$ в x_0 . Пусть γ_r - это путь, разделяющий первые r прямоугольников R_1, \ldots, R_r от оставшихся прямоугольников. Таким образом, γ_0 - это нижняя грань $I \times I$, а γ_{mn} - верхняя грань. Мы переходим от γ_r к γ_{r+1} , перекатывая через прямоугольник R_{r+1} .

Давайте назовем углы R_r вершинами. Для каждой вершины v с $F(v) \neq x_0$ мы можем выбрать путь g_v от x_0 до F(v), который лежит в пересечении двух или трех A_{ij} , соответствующих R_r , содержащих v, так как мы предполагаем, что пересечение любых двух или трех A_{ij} является связным. Тогда мы получаем факторизацию $[F|\gamma_r]$, вставляя соответствующие пути g_vg_v в $F|\gamma_r$ в последовательные вершины, как в доказательстве сюръективности Φ в Лемме 1.15. Эта факторизация зависит от некоторых выборов, поскольку петля, соответствующая сегменту между двумя последовательными вершинами, может лежать в двух разных A_{ij} , когда существуют два разных прямоугольника R_{ij} , содержащих эту грань. Однако различные выборы этих A_{ij} изменяют факторизацию $[F|\gamma_r]$ на эквивалентную факторизацию. Кроме того, факторизации, ассоциированные с последовательными путями γ_r и γ_{r+1} , эквивалентны, так как перекатывание γ_r через R_{r+1} в γ_{r+1} меняет $F|\gamma_r$ на $F|\gamma_{r+1}$ гомотопией внутри A_{ij} , соответствующей R_{r+1} , и мы можем выбрать это A_{ij} для всех сегментов γ_r и γ_{r+1} в R_{r+1} .

Мы можем добиться того, чтобы факторизация, связанная с γ_0 , была эквивалентна факторизации $[f_1] \cdot \ldots \cdot [f_k]$, выбрав путь g_v для каждой вершины v вдоль нижнего края $I \times I$ так, чтобы он лежал не только в двух A_{ij} , соответствующих R_s , содержащих v, но также лежал в A_α для f_i , содержащего v в своей области определения. В случае, если v - это общий конец областей определения двух последовательных f_i , мы имеем $F(v) = x_0$, поэтому нет необходимости выбирать g_v для таких v. Таким же образом, мы можем предположить, что факторизация, связанная с конечным γ_{mn} , эквивалентна $[f'_1] \cdot \ldots \cdot [f'_\ell]$. Поскольку факторизации, связанные со всеми γ_r , эквивалентны, мы заключаем, что факторизации $[f_1] \cdot \ldots \cdot [f_k]$

5.11 Свободное произведение или амальгама

Допустим, у нас есть две группы G_1 и G_2 , и подгруппы H и K, которые являются подгруппами G_1 и G_2 соответственно. Тогда свободное произведение (амальгама) групп $G_1 *_H G_2$ — это группа, которая получается путем объединения G_1 и G_2 с учетом их пересечения H, и при этом сохраняются отношения, заданные подгруппами H и K.

Формально, амальгама групп $G_1*_HG_2$ определяется как фактор-группа ($G_1*_{G_2}$)/N, где $G_1*_{G_2}$ - свободное произведение G_1 и G_2 , а N - нормальная подгруппа, порожденная множеством { $h^{-1}k \mid h \in H, k \in K$ }.

5.12 Лента Мёбиуса

Определение 5.12.1. Лента Мёбиуса - это двумерное топологическое пространство, получаемое из полосы бумаги путем введения отношения эквивалентности, которое идентифицирует точки на противоположных сторонах полосы с использованием полуоборота (поворота на 180 градусов).

Свойства Ленты Мёбиуса в топологии:

- 1. Односторонность (несвязность): Лента Мёбиуса является неориентируемой и односторонней поверхностью. Это означает, что её поверхность не разделяется на две стороны, и по ней можно пройти от любой точки до любой другой без пересечения границы.
- 2. Одна Граница: У ленты Мёбиуса существует всего одна граница, которая охватывает всю её длину.
- 3. Неориентируемость: На ленте Мёбиуса невозможно определить направление вектора нормали, что делает её неориентируемой.
- 4. Одна Грань (Страница): Лента Мёбиуса обладает единственной гранью (или страницей), то есть её поверхность является связной и непрерывной.
- 5. Топологическая Эквивалентность с Цилиндром: Лента Мёбиуса топологически эквивалентна цилиндру, но не эквивалентна плоскости.
- 6. Несохранение Ориентации: Лента Мёбиуса служит примером топологического объекта, который не сохраняет ориентацию в трехмерном пространстве.
- 7. Поверхность с Краем: Лента Мёбиуса имеет край, который представляет собой одномерное топологическое пространство.

8. Афинная Плоскость: Лента Мёбиуса является примером неориентируемой афинной поверхности.

Эти свойства делают ленту Мёбиуса интересным объектом в топологии и математике, а также она служит примером для понимания топологических концепций.

Литература

- [1] Brown R. Topology and Groupoids. 3rd изд. Deganwy, United Kingdom: BookSurge Publishing, 2020. 539 с.
- [2] Brown R., Higgins P.J., Sivera R. Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical higher homotopy groupoids. 1st изд. European Mathematical Society, 2011. 703 с.
- [3] Hatcher A. Algebraic Topology. 1st изд. Cambridge: Cambridge University Press, 2001. 556 с.
- [4] Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию: Учеб. пособие для вузов. 1 изд. М.: Высш. школа, 1980. 295 с.
- [5] Фоменко А.Т., Фукс Д.Б. Курс гомотопической топологии: Учеб. пособие для вузов. 1-е изд. М.: Наука. Гл. ред. физ.-мат. лит., 1989. 528 с.
- [6] Масси У., Столлингс Дж. Алгебраическая топология: Введение. 1-е изд. М.: Издательство «Мир», 1977. 343 с.