1. IMPORTING ALL THE LIBRARIES

import numpy as np
import pandas as pd

 $import\ {\tt matplotlib.pyplot}\ as\ {\tt plt}$

import seaborn as sns

2. IMPORTING THE DATASET

df = pd.read_csv("Titanic-Dataset.csv")

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

	C-1	Nam No.11 Carries	D4
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	ılı
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

3. Checking for null values

```
df.isnull().any()
    PassengerId
                    False
    Survived
                    False
    Pclass
                    False
    Name
                    False
    Sex
                    False
                     True
    Age
    SibSp
                    False
    Parch
                    False
    Ticket
                    False
    Fare
                    False
    Cabin
                     True
    Embarked
                     True
    dtype: bool
df.isnull().sum()
    PassengerId
                      0
    Survived
    Pclass
                      0
                      0
    Name
                      0
    Sex
    Age
                    177
    SibSp
                      0
                      0
    Parch
    Ticket
                      0
                      0
    Fare
                    687
    Cabin
    Embarked
                      2
    dtype: int64
Dropping all the irrevelant columns
we drop cabin column because 77% of the data is null in that column
df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis = 1, inplace = True)
Impute the mean value of age in place of null values
df["Age"] = df["Age"].fillna(df["Age"].mode()[0])
As Embarked is also categorical value -- impute it with mode of the value
df["Embarked"] = df["Embarked"].fillna(df["Embarked"].mode()[0])
df.isnull().any()
    Survived
                 False
    Pclass
                 False
    Sex
                 False
                 False
    Age
    SibSp
                 False
    Parch
                 False
    Fare
                 False
    Embarked
                 False
    dtype: bool
   4. Data Visualization
```

sns.heatmap(df.corr(), annot = True)

<ipython-input-44-fe43ffffaf13b>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version
sns.heatmap(df.corr(), annot = True)

sns.barplot(x = "Embarked", y = "Survived", data = df, ci = None)

<ipython-input-14-6f27886c73a2>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(x = "Embarked", y = "Survived", data = df, ci = None)
<Axes: xlabel='Embarked', ylabel='Survived'>

df['Fare'].hist()

sns.boxplot(df.Age)

5. Outlier detection

As we see from the above two boxplots, fare and age columns have outliers that needs to be deleted so as to increase accuracy of prediction

FOR OUTLIERS IN AGE --- Using IQR method as it given better performance

```
Q1 = df['Fare'].quantile(0.25)
Q3 = df['Fare'].quantile(0.75)
IQR = Q3 - Q1
d = 1.5
lower_lim = Q1 -(d*IQR)
upper_lim = Q3 + (d*IQR)
df['Fare']=np.where(df['Fare']>upper_lim,upper_lim,np.where(df['Fare']<lower_lim,lower_lim,df['Fare']))
sns.boxplot(df['Fare'])</pre>
```

```
q1 = df['Age'].quantile(0.25)
q3 = df['Age'].quantile(0.75)
iqr = q3 - q1
D = 1.5
lower_lim1 = q1 -(D*iqr)
upper_lim1 = q3 + (D*iqr)
df['Age']=np.where(df['Age']>upper_lim1,np.where(df['Age']<lower_lim1,lower_lim1,df['Age']))</pre>
```

sns.boxplot(df.Age)

We also remove the outliers in SibSp and Parch columns

For SibSp

```
Q1 = df['SibSp'].quantile(0.25)

Q3 = df['SibSp'].quantile(0.75)

IQR = Q3 - Q1

d = 1.5

lower_lim = Q1 - (d*IQR)

upper_lim = Q3 + (d*IQR)

df['SibSp']=np.where(df['SibSp']>upper_lim,upper_lim,np.where(df['SibSp']<lower_lim,df['SibSp']))

sns.boxplot(df.SibSp)
```

```
<Axes: >
                                          2.5 -
                                          2.0 -
                                          1.5 -
                                          1.0 -
                                          0.5
 For Parch
 Q1 = df['Parch'].quantile(0.25)
Q3 = df['Parch'].quantile(0.75)
 IQR = Q3 - Q1
d = 1.5
 lower_lim = Q1 - (d*IQR)
upper_lim = Q3 + (d*IQR)
\label{lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim_oper_lim
 sns.boxplot(df.Parch)
                                   <Axes: >
                                                     0.04
                                                     0.02
                                                     0.00
                                          -0.02
                                          -0.04
```

0

Finally we again check if any columns have outliers

```
sns.boxplot(df)
```


6. Splitting the data into dependent and independent variables

₽		Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
	0	3	male	22.0	1.0	0.0	7.2500	S	ıl.
	1	1	female	38.0	1.0	0.0	65.6344	С	
	2	3	female	26.0	0.0	0.0	7.9250	S	
	3	1	female	35.0	1.0	0.0	53.1000	S	
	4	3	male	35.0	0.0	0.0	8.0500	S	

y.head()

4 0

Name: Survived, dtype: int64

7. Encoding the categorical columns

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

x["Sex"] = le.fit_transform(x["Sex"])
x["Embarked"] = le.fit_transform(x["Embarked"])
x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
0	3	1	22.0	1.0	0.0	7.2500	2	ılı
1	1	0	38.0	1.0	0.0	65.6344	0	
2	3	0	26.0	0.0	0.0	7.9250	2	
3	1	0	35.0	1.0	0.0	53.1000	2	
4	3	1	35.0	0.0	0.0	8.0500	2	

8. Feature Scaling -- Bringing all the independent variables in a single scalable format in order to process them

from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()

x_scaled = pd.DataFrame(ms.fit_transform(x), columns = x.columns)

9. Splitting the data in train test set

```
from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.2, random_state = 0)
```

x_train.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	\blacksquare
140	1.0	0.0	0.413462	0.0	0.0	0.232284	0.0	ıl.
439	0.5	1.0	0.548077	0.0	0.0	0.159977	1.0	
817	0.5	1.0	0.548077	0.4	0.0	0.563793	0.0	
378	1.0	1.0	0.336538	0.0	0.0	0.061134	0.0	
491	1.0	1.0	0.355769	0.0	0.0	0.110460	1.0	

x_test.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
495	1.0	1.0	0.413462	0.0	0.0	0.220285	0.0	ıl.
648	1.0	1.0	0.413462	0.0	0.0	0.115031	1.0	
278	1.0	1.0	0.086538	1.0	0.0	0.443746	0.5	
31	0.0	0.0	0.413462	0.4	0.0	1.000000	0.0	
255	1.0	0.0	0.509615	0.0	0.0	0.232284	0.0	

y_train.head()

Name: Survived, dtype: int64

y_test.head()

495 0 648 0 278 0 31 1 255 1

Name: Survived, dtype: int64

 $print(x_train.shape,\ x_test.shape,\ y_train.shape,\ y_test.shape)$

(712, 7) (179, 7) (712,) (179,)