SERIAL NO.: 10/552,047

FILED: September 6, 2006

Page 3

AMENDMENTS TO THE CLAIMS

Please add or amend the claims to read as follows, and cancel without prejudice or disclaimer to resubmission in a divisional or continuation application claims indicated as cancelled:

1. (**Currently Amended**) An apparatus for providing a light beam with spatially varying polarization, the apparatus comprising:

two circumferentially curved reflectors positioned substantially opposite each other[[,]];

a polarizer positioned in an optical path between the two reflectors, for polarizing light reflected from one reflector before it reaches the other;

whereby a non-polarized light beam incident along a given axis on one of the reflectors is radially reflected off that reflector, acquires predetermined polarization from the polarizer and is then reflected off the second reflector to [[a]] produce an outgoing light beam of spatially varying polarization.

- 2. (Original) The apparatus as claimed in Claim 1, wherein the two reflectors comprise a diverging reflector and a converging reflector.
- 3. (Original) The apparatus as claimed in Claim 1, wherein the two reflectors comprise two converging reflectors.
- 4. (Original) The apparatus as claimed in Claim 1, wherein the two reflectors are spherical.
- 5. (Original) The apparatus as claimed in Claim 1, wherein the two reflectors are conical.
- 6. (Original) The apparatus as claimed in claim 5, wherein the two reflectors have each apex angle of between 20° and 75° with respect to the given axis.

SERIAL NO.: 10/552,047

FILED: September 6, 2006

Page 4

7. (Original) The apparatus as claimed in claim 1, wherein the two reflectors are

paraboloidal, with a common focus.

8. (Original) The apparatus as claimed in claim 1, wherein one of the two reflectors is

hyperboloidal and the other of the two reflectors is ellipsoidal, with a common focus.

9. (Original) The apparatus as claimed in claim 1 in which the polarizer is radially

polarizing with respect to the given axis.

10. (Original) The apparatus as claimed in claim 1 in which the polarizer is azimuthally

polarizing with respect to the given axis.

11. (Original) The apparatus as claimed in claim 1 in which the polarizer is diagonally

polarizing with respect to the given axis.

12. (Original) The apparatus as claimed in claim 1 in which the polarizer includes more

than one polarization orientation.

13. (Original) The apparatus as claimed in Claim 1 further comprising a quarter-wave

plate and a second plarizer positioned in a path of an outgoing beam after it leaves the two

reflectors.

14. (Original) The apparatus as claimed in Claim 13, wherein the second polarizer is

oriented at 45° with respect to the quarter-wave plate.

15. (Currently Amended) A method for providing a light beam with spatially varying

polarization, the method comprising:

providing two circumferentially curved reflectors positioned substantially

opposite each other[[,]];

SERIAL NO.: 10/552,047

FILED: September 6, 2006

Page 5

providing a polarizer positioned in an optical path between the two reflectors, for

polarizing light reflected from one reflector before it reaches the other; and

directing a non-polarized light beam along a given axis onto one of the two

reflectors, so that it is reflected off that reflector to the other reflector,

acquiring predetermined polarization as it passes through the polarizer, and

reflected off the other reflector as an outgoing light beam,

whereby the outgoing beam acquires varying spatial polarization.

16. (Original) The method as claimed in Claim 15, wherein providing two

circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing a diverging reflector and a converging reflector.

17. (Original) The method as claimed in Claim 15, wherein providing two

circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing two converging reflectors.

18. (Original) The method as claimed in Claim 15, wherein providing two

circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing two reflectors that are spherical.

19. (Original) The method as claimed in Claim 15, wherein providing two

circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing two reflectors that are conical.

20. (Original) The method as claimed in Claim 19, wherein providing two

circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing two reflectors, which have each apex angle of between 20° and

75° with respect to the given axis.

SERIAL NO.: 10/552,047

FILED: September 6, 2006

Page 6

21. (Original) The method as claimed in Claim 15, wherein providing two circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing two reflectors, which are paraboloidal, with a common focus.

22. (Original) The method as claimed in Claim 15, wherein providing two

circumferentially curved reflectors positioned substantially opposite each other the two

reflectors includes providing two reflectors one of which is hyperboloidal and the other

reflector is ellipsoidal, with a common focus.

23. (Original) The method as claimed in Claim 15, wherein providing a polarizer

positioned in an optical path between the two reflectors includes providing a polarizer, which

is radially polarizing with respect to the given axis.

24. (Original) The method as claimed in Claim 15, wherein providing a polarizer

positioned in an optical path between the two reflectors includes providing a polarizer, which

is azimuthally polarizing with respect to the given axis.

25. (Original) The method as claimed in Claim 15, wherein providing a polarizer

positioned in an optical path between the two reflectors includes providing a polarizer, which

is diagonally polarizing with respect to the given axis.

26. (Original) The method as claimed in Claim 15, wherein providing a polarizer

positioned in an optical path between the two reflectors includes providing a polarizer, which

includes more than one polarization orientation.

27. (Original) The method as claimed in Claim 15, further comprising providing a

quarter-wave plate and a second plarizer positioned in a path of an outgoing beam after it

leaves the two reflectors.

28. (Original) The method as claimed in Claim 27, wherein the second polarizer is

oriented at 45° with respect to the quarter-wave plate.