Your name is: ______ Your group is: _____

1	2	3	4	5	6	7	8	9	\sum
/1.1	/1.1	/1.1	/1.1	/1.1	/1.1	/1.1	/1.1	/1.2	/10

- 1. Let \mathbb{R}^3 be an oriented Euclidean space; let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ be such that $\|\mathbf{a}\| = 1$, $\|\mathbf{b}\| = 3$, and $\angle \widehat{\mathbf{a}, \mathbf{b}} = \frac{\pi}{6}$. Then, find $\|(-2 \cdot \mathbf{a} + 3 \cdot \mathbf{b}) \times (3 \cdot \mathbf{a} \mathbf{b})\|$.
- 2. Let \mathbb{R}^3 be a 3-dimensional Euclidean space; let \mathcal{A} be an orthonormal basis for \mathbb{R}^3 ; let

$$M_1 = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} + \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix} \right\rangle \quad \text{and} \quad M_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + \left\langle \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\rangle$$

be two linear varieties in \mathbb{R}^3 (all coordinates are with respect to \mathcal{A}). Then, find the distance between M_1 and M_2 .

3. Let \mathbb{V} be a 3-dimensional vector space over the field of reals, \mathbb{R} ; let \mathcal{A} be an ordered basis for \mathbb{V} ; let a quadratic form $q \in \mathcal{Q}(\mathbb{V})$ be specified by the following equality

$$q(\mathbf{x}) = x_1^2 + 6 \cdot x_2^2 + 4 \cdot x_3^2 + 4 \cdot x_1 x_2 - 2 \cdot x_1 x_3,$$

where $[x_1 \ x_2 \ x_3]^T = [\mathbf{x}]_{\mathcal{A}}$. Then, is q positive definite?

- 4. Let \mathbb{V} be a 2-dimensional vector space the field of reals, \mathbb{R} ; let \mathcal{A} be an ordered basis for \mathbb{V} ; let a linear operator $\varphi \in \mathcal{L}(\mathbb{V})$ be specified by its coordinate matrix $T(\varphi, \mathcal{A}) = \begin{bmatrix} -1 & 1 \\ -1 & -3 \end{bmatrix}$. Then, is φ diagonalizable?
- 5. Let \mathbb{V} be a 4-dimensional Euclidean space; let $\mathcal{A} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ be an orthonormal basis for \mathbb{V} ; let $\mathbf{a} = 2 \cdot \mathbf{e}_1 + \mathbf{e}_2 3 \cdot \mathbf{e}_3 2 \cdot \mathbf{e}_4$ and $\mathbf{a} = \mathbf{e}_2 + \mathbf{e}_3 + 2 \cdot \mathbf{e}_4$. Then, find the 2-volume of the 2-parallelotope $P(\mathbf{a}, \mathbf{b})$.
- 6. Let \mathbb{V} be a 3-dimensional vector space over the field of reals, \mathbb{R} ; let $\mathcal{A} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be an ordered basis for \mathbb{V} ; let

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 7 \cdot x_2 y_2 + 2 \cdot x_3 y_3 + x_2 y_3 + x_3 y_2,$$

where $[x_1 \ x_2 \ x_3]^T = [\mathbf{x}]_{\mathcal{A}}$ and $[y_1 \ y_2 \ y_3]^T = [\mathbf{y}]_{\mathcal{A}}$, be the scalar product on \mathbb{V} ; let $\mathbf{a} = \mathbf{e}_1 - \mathbf{e}_2 + 2 \cdot \mathbf{e}_3$ and $\mathbf{b} = 2 \cdot \mathbf{e}_1 - \mathbf{e}_3$. Then, find the angle between \mathbf{a} and \mathbf{b} .

- 7. Let \mathbb{V} be a 3-dimensional Euclidean space; let $\mathcal{A} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be an orthonormal basis for \mathbb{V} ; let S be the linear span of the vectors $\mathbf{a} = -\mathbf{e}_2 + \mathbf{e}_3$ and $\mathbf{b} = \mathbf{e}_1 + \mathbf{e}_2$; let $\mathbf{x} = -2 \cdot \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$. Then, find $\mathrm{rj}_S(\mathbf{x})$.
- 8. Let \mathbb{R}^4 be a 4-dimensional Euclidean space; Let \mathcal{A} be an orthonormal basis for \mathbb{R}^4 ; let

$$M = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} + \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \\ -5 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} \right\rangle$$

be a linear variety in \mathbb{R}^4 (all coordinates are with respect to \mathcal{A}). Then, find a system of linear equations whose solution set equals M.

9. Let \mathbb{V} be a 3-dimensional vector space over the field of reals, \mathbb{R} ; let \mathcal{A} be an ordered basis for \mathbb{V} ; let a quadratic form $q \in \mathcal{Q}(\mathbb{V})$ be specified by the following equality

$$q(\mathbf{x}) = x_1 x_2 + 2 \cdot x_1 x_3$$

where $[x_1 \ x_2 \ x_3]^T = [\mathbf{x}]_{\mathcal{A}}$. Then, find a normal basis for q.