Topologia Algebrica

Topologia portami via.

Parigi 1905 H. Poincarè

Professore: Gilberto Bini

Umile scriba: *Gabriele Bozzola*

Ho scritto queste note come strumento personale per lo studio della topologia algebrica, e per questo motivo solo lontane dall'essere rigorose e sicuramente saranno ricche di errori e imprecisioni. Molte definizioni o concetti sono qui riportati perché, essendo uno studente di fisica, inizialmente ero a digiuno in merito ad argomenti che per gli studenti di matematica sono banalità. Queste note sono basate sulle lezioni del Professor Gilberto Bini dell'anno accademico 2016/2017, ma sono riportate in un ordine differente rispetto a quello cronologico, e alcune dimostrazioni sono state sistemate da me prima di essere scritte. I file .tex di questo documento sono tutti disponibili su GitHub all'indirizzo https://github.com/Sbozzolo/Topologia-Algebrica, chiunque lo desideri può forkarli e modificarli a piacere, correggendo i numerosi errori qui presenti.

Milano, 1 dicembre 2016

Gabriele Bozzola

Indice

1	Ricl	chimi di algebra e geometria 5						
	1.1	Richiami di algebra e geometria	5					
	1.2							
		37	12					
2	Om	nologia singolare 14						
	2.1	Introduzione	14					
	2.2	Simplessi singolari						
	2.3	Omologia singolare	20					
		2.3.1 $H_0(X)$	20					
		2.3.2 $H_1(X)$	23					
	2.4	Morfismi indotti	28					
	2.5	Successioni esatte	31					
		2.5.1 Omomorfismo di connessione	32					
	2.6	Omologia singolare relativa	35					
		1	36					
	2.7	Omologia singolare ridotta	38					
	2.8	Assiomi di una teoria omologica	42					
		2.8.1 Omologia ridotta per una qualsiasi teoria omologica	45					
	2.9	Omologia delle sfere	47					
		2.9.1 Teoria del grado	53					
		2.9.2 Escissione e omotopia	56					
3	Om	ologia cellulare	52					
	3.1	CW-complessi	62					
	3.2		64					
	3.3	Costruzione dell'omologia cellulare	74					
			80					
	3.4	Successione di Mayer-Vietoris	86					
4	Coo	omologia singolare	90					
	4.1		90					
	4.2		97					
	13		01					

Lista dei simboli e abbreviazioni

Simbolo	Significato	Pag.	Simbolo	Significato	Pag.
\mathbb{N}	Numeri naturali	3	\mathcal{S}^n	n-sfera	47
\mathbb{Q}	Numeri razionali	3	\mathcal{D}^n	n-disco	47
$\mathbb Z$	Numeri interi	3	\mathcal{D}^n_+	Calotta superiore	
\mathbb{R}	Numeri reali	5	·	dell'n-disco	47
\mathbb{C}	Numeri complessi	3	Ш	Unione disgiunta	62
\mathbb{F}	Campo generico	3	e(X)	Caratteristica di	
$ar{U}$	Chiusura di ${\cal U}$	3		Eulero di X	69
int(U)	Interno di ${\cal U}$	3	$\mathrm{P}^n(\mathbb{C})$	Spazio proiettivo	
\oplus	Somma diretta	3	~.	complesso	70
$\mathcal R$	Anello	5	\mathbb{C}^{\star}	Piano complesso	70
$\langle \dots \rangle$	Gruppo generato	6		privato dell'origine Prodotto tensore	70
Ker(f)	Nucleo di f	6	⊗ ()		90
$\operatorname{Im}(f)$	Immagine f	6	$\operatorname{Tor}_1()$	Modulo di torsione	95
X	Spazio topologico	7	$\operatorname{Hom}(A,B)$	Spazio degli omomorfismi da A	
\hookrightarrow	Inclusione	8		a B	101
\simeq	Spazi omeomorfi	8		u D	101
\sim_H	Relazione di				
	omotopia	9			
π_1	Gruppo				
	fondamentale	9			
$\xrightarrow{\sim}$	Omeomorfismo	12			
Δ_k	Simplesso standard	14			
\sim_{hom}	Relazione di				
	omologia	20			
V	Bouquet	28			
f_{\sharp}	Applicazione				
	indotta da f sulle	0.0			
¢	catene	28			
f_{\star}	Applicazione indotta da f sui				
	gruppi di omologia	29			
П	Somma topologica	43			
${\cal G}$	Gruppo dei				
	coefficienti	45			

2 Omologia singolare

2.1 Introduzione

Si introduce la teoria dell'omologia per semplificare problemi, infatti la teoria dell'omologia serve ad associare agli spazi topologici oggetti algebrici meno complicati dei gruppi di omotopia. Sono stati sviluppati diversi tipi di omologia:

- Omologia singolare
- · Omologia cellulare
- Omologia persistente¹
- Omologia simpliciale

Quello che farò sarà associare ad ogni spazio topologico (anche patologico) gruppi abeliani e omomorfismi a partire da applicazioni continue tra due spazi topologici. Fino a quando non sarà espressamente indicato, lavoro sempre con anello di base \mathbb{Z} , che quindi rimane sottinteso a meno di scriverlo esplicitamente.

2.2 Simplessi singolari

Definizione 2.2.1 In \mathbb{R}^{k+1} si definisce il **simplesso standard** Δ_k l'insieme:

$$\Delta_k = \{ (x_1, x_2, \dots) \in \mathbb{R}^{k+1} \mid \forall i \ 0 \le x_i \le 1 \ e \sum_{i=1}^{k+1} x_i = 1 \}$$

Le coordinate x_i sono dette **coordinate baricentrali**.

Osservazione 2.2.2 Alcuni esempi sono:

- Δ_0 è un punto.
- Δ_1 è un segmento, che è omeomorfo a [0,1].
- Δ_2 è un triangolo
- Δ_3 è un tetraedro
- ...

¹Questa ha numerose applicazioni pratiche, come la ricostruzione di immagini.

2 Omologia singolare

Figura 2.1: 1-Simplesso standard

Figura 2.2: Simplessi standard

Definizione 2.2.3 Dato uno spazio topologico X si definisce il k-simplesso singolare in X come un'applicazione continua $\sigma: \Delta_k \to X$.

Spesso conviene identificare il k-simplesso con la sua immagine in X. In questo modo uno 0-simplesso è un punto in X, mentre un 1-simplesso singolare potrebbe essere sia un segmento che un punto (se la mappa è costante). Siccome non c'è relazione tra la dimensione dello spazio di partenza e lo spazio di arrivo (ad esempio la curva di Peano) il simplesso può deformare, ed è per questo che è detto singolare.

Esempio 2.2.4 Un esempio di k-simplesso singolare in cui è particolarmente evidente la possibilità di fare l'identificazione è la mappa identità: $\mathbb{I}: \Delta_k \to \Delta_k$.

Osservazione 2.2.5 Quando è possibile faccio un abuso di notazione e identifico la mappa con la sua immagine nello spazio topologico.

Voglio costruire un complesso di gruppi abeliani e definire l'omologia singolare come l'omologia di tale complesso.

Definizione 2.2.6 Si definisce lo spazio delle k-catene singolari come il gruppo generato da tutte le possibili applicazioni continue da Δ_k a X, cioè:

$$S_k(X) = \langle \{\, g \mid g \text{ k-simplesso singolare in } X \,\} \rangle$$

Cioè:

$$S_k(X) = \{ \textit{combinazioni lineari finite a coefficienti interi:} \\ \sum_g n_g g \mid n_g \in \mathbb{Z}, g \ k-\textit{simplessi singolari di } X \}$$

 $S_k(X)$ è un gruppo abeliano con l'operazione somma definita naturalmente:

$$\sum_{g} n_{g}g + \sum_{h} n_{h}h = \sum_{g} n_{g}g + \sum_{g} n_{g}^{*}g = \sum_{g} (n_{g} + n_{g}^{*})g$$

Inoltre $\forall k < 0$ si pone $S_k(X) = 0$. Un elemento generico di $S_k(X)$ è una somma formale finita (cioè con un numero finito di coefficienti non nulli) su tutti i possibili k-simplessi singolari in X. Questa è una somma con tutte le giuste proprietà. Lo zero è la catena con tutti i coefficienti nulli, mentre l'inverso è la catena con i coefficienti opposti. Si nota che le catene sono somme formali di mappe e non sono esse stesse mappe.

Esempio 2.2.7 (k = 0) Se k = 0 allora $S_0(X)$ sono catene di punti ($g_0 : \Delta_0 \to X$, identifico l'applicazione con il punto in X sapendo che l'immagine di un punto è un punto)

$$S_0(X) = \{ \sum n_i p_i \mid n_i \in \mathbb{Z}, \ p_i \in X \}$$

A questo punto considero la successione S_{\bullet} (S sta per singolare), cioè:

$$\cdots \to S_{k+1}(X) \to S_k(X) \to S_{k-1}(X) \to \cdots \to S_0(X)$$

Per rendere S_{ullet} un complesso bisogna le applicazioni tra i vari S_k , queste applicazioni saranno il bordo. A questo scopo noto $h:\Delta_1\to X$ è arco, e posso ottenere una 0-catena prendendo i punti estremi dell'arco, infatti il bordo di un 1-simplesso è uno 0-simplesso. L'idea è quindi ottenere simplessi di ordine più piccolo prendendo il bordo dei simplessi. Questa operazione si generalizza con l'operatore faccia.

Figura 2.3: 1-Simplesso singolare

Definizione 2.2.8 Sia Δ_k un k-simplesso standard con $k \geq 0$ si definisce l'operatore **faccia** come la mappa $F_i^k: \Delta_{k-1} \to \Delta_k$ tale che $F_i^k(\Delta_{k-1})$ è una faccia di Δ_k .

L'operatore faccia prende un k-simplesso standard e lo immerge in un qualche senso in un simplesso più grande, ad esempio manda un punto in uno degli estremi di un segmento (nel caso k=0),

Esempio 2.2.9 (k = 2) *Per* k = 2 *vale che:*

$$\Delta_2 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1, \ 0 \le x_i \le 1 \ \forall i \}$$

Si definisce la base $e_0=(1,0,0)$ $e_1=(0,1,0)$ $e_2=(0,0,1)$, voglio vedere il bordo del triangolo come facce.

Figura 2.4: Azione dell'operatore faccia

Il segmento faccia i-esimo è quello che non contiene il vertice i-esimo, cioè dimentico un punto e gli altri punti diventano vertici del simplesso.

In generale se Δ_k è un simplesso standard si definisce la base canonica come (si noti che la base canonica è ordinata):

$$e_0 = (1, 0, 0, \dots)$$

 $e_1 = (0, 1, 0, \dots)$
 $e_2 = (0, 0, 1, \dots)$

Questi sono i vertici del simplesso, definisco l'azione dell'operatore faccia come:

$$\begin{cases} F_i{}^k(e_j) = e_{j+1} & \text{se } j \geq i \\ F_i{}^k(e_j) = e_j & \text{se } j < i \end{cases}$$

Esercizio 1 Dimostrare che se $[\cdot,\cdot]$ indica l'inviluppo convesso allora:

1. Per
$$j > i$$
 vale che $F_i^{k+1} \circ F_i^{k} = [e_0, \dots, \hat{e}_i, \dots, \hat{e}_j, \dots, e_k]$.

2. Per
$$j \leq i$$
 vale che $F_j^{k+1} \circ F_i^k = [e_0, \dots, \hat{e}_j, \dots, \hat{e}_{i+1}, \dots, e_k]$.

dove i cappucci indicano che quell'elemento è omesso.

Definizione 2.2.10 L'inviluppo convesso di un insieme U in \mathbb{R}^n è il più piccolo insieme convesso che contiene U, dove un insieme in \mathbb{R}^n si dice **convesso** se contiene il segmento che unisce ogni coppia di punti dell'insieme.

Definizione 2.2.11 Dato un k-simplesso singolare $\sigma: \Delta_k \to X$ una sua faccia è data dalla mappa $\sigma^{(i)}: \Delta_{k-1} \to X$ cioè la restrizione di σ sulla faccia i-esima del simplesso, cioè $\sigma^{(i)} = \sigma \circ F_i^{\ k}$, si definisce quindi il **bordo** come la mappa:

$$\partial \colon \Sigma_k(X) \to \Sigma_{k-1}(X)$$

$$\sigma \mapsto \sum_{i=0}^k (-)^i \sigma^{(i)}$$

dove $\Sigma_k(X)$ indica lo spazio dei k-simplessi singolari di X.

Il bordo sostanzialmente corrisponde alla somma alterna delle facce.

Figura 2.5: Azione di σ e $\sigma^{(i)}$

Esempio 2.2.12 (k=1**)** *Per* k=1 *vale che* $\partial_1 \sigma = p_1 - p_0$ *, infatti:*

$$\sigma^{0} = \sigma \circ F_{0}^{1} = \sigma(1) = p_{1}$$
 $\sigma^{1} = \sigma \circ F_{1}^{1} = \sigma(0) = p_{0}$

Il bordo è la somma con i segni alternati: $\partial_1 \sigma = p_1 - p_0$. Tecnicamente il bordo è una mappa quindi sarebbe più corretto scrivere $\partial_1 \sigma = \sigma^{(1)} - \sigma^{(0)}$ dove l'azione di queste due mappe è quella di mandare un estremo dell'intervallo [0,1] in p_0 o p_1 .

Si è quindi definito il bordo sui simplessi singolari, ma si può generalizzare la definizione sull'intero gruppo di catene $\partial_k: S_k(X) \to S_{k-1}(X)$ estendendo la definizione per linearità $\partial_k \left(\sum_g n_g g\right) = \sum_g n_g \partial_k g$, dove g sono simplessi singolari, che sono i generatori di S. A questo punto si (S_{\bullet}, ∂) è una successione di gruppi abeliani, per mostrare che è un complesso bisogna verificare che ∂_k è un omomorfismo e che soddisfa $\partial_k \circ \partial_{k+1} = 0$.

Proposizione 2.2.13 La mappa $\partial \colon S_k(X) \to S_{k-1}(X)$ è un omomorfismo.

Dimostrazione:

$$\partial_k \left(\sum_g n_g g + \sum_g m_g g \right) = \partial_k \left(\sum_g (m_g + n_g) g \right) = \sum_g (m_g + n_g) \partial_k g =$$

$$= \sum_g n_g \partial_k g + \sum_g m_g \partial_k g = \partial_k \left(\sum_g n_g g \right) + \partial_k \left(\sum_g m_g g \right)$$

Dove si è usato che la mappa di bordo è lineare.

Una volta verificato che $\partial_k \circ \partial_{k+1} = 0$ (spesso come notazione si pone $\partial^2 = 0$) il complesso sarà:

$$\dots \longrightarrow S_{k+1}(X) \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Proposizione 2.2.14 *Vale che* $\partial_k \circ \partial_{k+1} = 0$.

Dimostrazione: È sufficiente verificare la proprietà sui generatori, quindi se σ è un k-complesso singolare, cioè $\sigma: \Delta_k \to X$ continua:

$$\partial_k \circ \partial_{k+1} \sigma = \partial_k \left(\sum_{j=0}^{k+1} (-)^j (\sigma \circ F_j^{k+1}) \right) = \sum_{j=0}^{k+1} (-)^j \partial_k (\sigma \circ F_j^{k+1}) =$$

$$= \sum_{j=0}^{k+1} (-)^j \sum_{i=0}^k (-)^i (\sigma \circ F_j^{k+1}) \circ F_i^{k} = \sum_{j=0}^{k+1} \sum_{i=0}^k (-)^{j+i} \sigma \circ F_j^{k+1} \circ F_i^{k} =$$

Separo le somme con i < j e quelle con $i \ge j$:

$$=\sum_{0\leq i< j\leq k+1}(-)^{i+j}\sigma\circ F_j^{\ k+1}\circ F_i^{\ k}+\sum_{0\leq j\leq i\leq k}(-)^{i+j}\sigma\circ F_j^{\ k+1}\circ F_i^k=$$

Usando la proprietà degli inviluppi convessi si trova che se $j \leq i$ allora $F_j^{\,k+1} \circ F_j^{\,k} = F_{i+1}^{\,k+1} \circ F_k^{\,k}$, infatti se $j \leq i$ allora $i+1 \geq j$ quindi in entrambi i membri l'inviluppo convesso è $[e_0, \ldots \hat{e}_j, \ldots, \hat{e}_{i+1}, \ldots, e_k]$. Quindi:

$$= \sum_{0 \leq i < j \leq k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \leq j < i \leq k} (-)^{i+j} \sigma \circ F_{i+1}^{\ k+1} \circ F_j^{\ k} = 0$$

Dove nell'ultimo si è rinominato nel secondo termine i+1 con i, e ciò produce un segno meno che annulla la somma.

2.3 Omologia singolare

Definizione 2.3.1 Si definisce l'**omologia singolare** $H_k(X)$ dello spazio topologico X come l'omologia del complesso $(S_{\bullet}(X), \partial)$, cioè:

$$H_k(X) := H_k(S_{\bullet}(X)) = \frac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})}$$

Definizione 2.3.2 Sia $(S_{\bullet}(X), \partial)$ un complesso di moduli, gli elementi di $Ker(\partial_k)$ sono detti k-cicli. Un k-ciclo è quindi una k-catena con bordo nullo:

$$c \ ciclo \Leftrightarrow \partial c = 0$$

L'insieme dei k-cicli è indicato con $Z_k(X)$, cioè: $Z_k(X) = \operatorname{Ker}(\partial_k)$. Si indica invece con $B_k(X)$ l'insieme dei **bordi**, cioè le k-catene singolari che sono immagini di k+1-catene, cioè esplicitamente:

$$B_k(X) = \{ \eta \in S_k(X) \mid \exists b \in S_{k+1}(X), \partial b = \eta \}$$

Per definizione si ha quindi che $H_k(X)=Z_k(X)/B_k(X)$, cioè il gruppo di omologia è formato dai cicli modulo i bordi. Esplicitamente gli elementi di $H_k(X)$ sono classi di equivalenza tali che se $[\![c]\!]\in H_k(X)$ con $\partial c=0$ e $c_1\in [\![c]\!]$ allora $c_1-c\in B_k(X)$ e $\partial c_1=0$ quindi esiste b tale che $c_1-c=\partial b$. Cioè due elementi stanno nella stessa classe di equivalenza se differiscono per un bordo:

Definizione 2.3.3 Due elementi a, b si dicono **omologhi** se differiscono per un bordo.

$$a \sim_{hom} b \Leftrightarrow \exists c \mid \partial_k c = a - b$$

Osservazione 2.3.4 Vale che $H_k(X) = 0$ se e solo se $B_k(X) = Z_k(X)$, cioè se ogni ciclo è un bordo, come si è già osservato. In generale si ha che $B_k(X) \subseteq Z_k(X)$ e possono esserci cicli che non sono immagini di bordi.

Scopo del corso è studiare $H_k(X)$ e capire se si possono determinare a meno di isomorfismi, quello che si trova è In alcuni casi è possibile calcolare esplicitamente i gruppi di omologia, come nel caso dell'omologia cellulare.

2.3.1 $H_0(X)$

Proposizione 2.3.5 Sia X uno spazio topologico connesso per archi, allora $H_0 \cong \mathbb{Z}$, cioè è uno \mathbb{Z} -modulo libero di rango 1. In effetti $H_0(X)$ conta le componenti connesse per archi in X e quindi dà informazioni di natura geometrica.

 ${\bf Dimostrazione}:$ Calcolo H_0 a partire dalla definizione di omologia:

$$H_0(X) = \frac{Z_0(X)}{B_0(X)}$$

Ho il complesso:

$$\ldots \longrightarrow S_1(X) \xrightarrow{\partial_1} S_0(X) \xrightarrow{\partial_0} 0$$

Quindi $Z_0={
m Ker}(\partial_0)=S_0(X)$ in quanto ogni elemento di $S_0(X)$ viene mandato in 0. Quindi per ora ho che:

$$Z_0(X) = \text{Ker}(\partial_0) = S_0(X) \implies H_0(X) = \frac{S_0(X)}{B_0(X)}$$

Per definizione $B_0(X)=\operatorname{Im}(\partial_1)=\{x\in S_0(X)\mid \exists \alpha\in S_1(X),\ \partial_1(\alpha)=x\}.$ Ma $S_0(X)$ è il gruppo libero generato dagli 0-simplessi singolari, che sono mappe $\Delta_0\to X$, e siccome Δ_0 è un punto si possono identificare con i punti di X, perciò si può immaginare formalmente $S_0(X)$ come il gruppo libero generato dai punti di X. $B_0(X)$ è l'insieme delle coppie di punti di X che sono bordo di un 1-simplesso singolare, il quale è una mappa $\Delta_1\cong I\to X$, cioè è un arco. Siccome lo spazio è connesso per archi ogni coppia di punti è bordo di qualcosa, fissando un punto $x\in X$ sostanzialmente $B_0(X)$ lo si può immaginare come X stesso e quindi $H_0(X)\cong \mathbb{Z}$ in quanto quoziente tra un gruppo libero generato da un insieme di punti e l'insieme di punti stessi, quindi esiste un'unica classe di equivalenza che è quella di un punto, in quanto ogni coppia di punti è omologa essendo collegata da un arco.

Se ci sono più componenti connesse per archi posso ripetere il ragionamento senza connettere componenti distinte, quindi trovo che:

$$H_0(X) \cong \mathbb{Z}^{N_c}$$

Dove N_c è il numero di componenti connesse per archi di X con $N_c < +\infty$, in pratica $H_0(X)$ è generato da un insieme formato da un punto per ogni componente connessa per archi.

La mappa che realizza questo isomorfismo è nota come grado.

Definizione 2.3.6 Si definisce la mappa **grado** come l'applicazione che manda una catena in $S_0(X)$ nella somma dei suoi coefficienti:

$$\deg \colon S_0(X) \to \mathbb{Z}$$
$$\sum n_i p_i \mapsto \sum n_i$$

Proposizione 2.3.7 La mappa grado gode di alcune proprietà:

- 1. deg è un omomorfismo di gruppi abeliani
- 2. deg è suriettivo
- 3. $\operatorname{Ker}(\operatorname{deg}) \cong B_0(X)$

Se dimostro questa proprietà utilizando il primo teorema fondamentale di isomorfismo:

$$S_0(X)/B_0(X) \cong \operatorname{Im}(\operatorname{deg})$$

Ma deg è suriettiva, quindi $Im(deg) = \mathbb{Z}$, perciò:

$$H_0(X) = \frac{S_0(X)}{B_0(X)} \cong \mathbb{Z}$$

Dimostro quindi questa proposizione. Dimostrazione:

1. Sia $c_1 = \sum n_i p_i$ e $c_2 = \sum m_i q_i$, bisogna mostrare che:

$$\deg(c_1 + c_2) = \deg(c_1) + \deg(c_2)$$

ma:

$$c_1 + c_2 = \sum n_i p_i + \sum m_i q_i = \sum (n_i + m_i) r_i$$

dove r_i è quello comune tra le catene, oppure è zero se l'elemento è presente in solo uno delle due catene. Quindi:

$$\deg(c_1 + c_2) = \sum_{i} (n_i + m_i) = \sum_{i} n_i + \sum_{i} m_i = \deg(c_1) + \deg(c_2)$$

Alternativamente in modo più semplice si può osservare l'azione di deg sui generatori di $S_0(X)$, il quale possiede un solo generatore che viene mandato dalla mappa grado in 1, quindi si estende per linearità.

- 2. La mappa è suriettiva, è sufficiente prendere un punto $p \in X$ e la controimmagine di $m \in \mathbb{Z}$ è $\deg^{-1}(m) = mp$
- 3. Mostro che Ker(deg) = $B_0(X)$, e lo faccio m
sotrando che Ker(deg) $\subseteq B_0(X)$ e che Ker(deg) $\supseteq B_0(X)$.

Inizio con Ker(deg) $\subseteq B_0(X)$: sia $c \in \text{Ker}(\text{deg})$ cioè tale che deg(c) = 0, se $c = \sum n_i p_i$ allora $\sum n_i = 0$, voglio mostrare che $c \in B_0(X)$, cioè che $\exists b \in S_1(X)$ con $\partial_1 b = c$.

Fissato p_0 considero i p_i , ci sono archi λ_i che li uniscono a p_0 . b si può costruire in questo modo: siano $\lambda_i:[0,1]\to X$ con $\lambda_i(0)=p_0$ e $\lambda_i(1)=p_i$ allora:

$$c - \partial \left(\sum n_i \lambda_i\right) = c - \sum n_i \partial \lambda_i = c - \sum n_i (p_i - p_0) =$$
$$= c - \sum n_i p_i + \sum n_i p_0 = p_0 \sum n_i = 0$$

In cui si è usato che per ipotesi $c \in \operatorname{Ker}(\deg)$ quindi $\sum n_i = 0$ e che $c = \sum n_i p_i$. Ma quindi $c = \partial(\sum n_i \lambda_i)$ e definendo $\sum n_i \lambda_i = b$ si è trovato l'elemento b, per cui $\operatorname{Ker}(\deg) \subseteq B_0(X)$.

Mi rimane da mostrare che $B_0(X)\subseteq \mathrm{Ker}(\deg)$: mostro che se $c\in B_0(X)$ allora $c\in \mathrm{Ker}(\deg)$, cioè, $\deg(c)=0$. Siccome $c\in B_0(X)$ esiste $b\in S_1(X)$ tale che $c=\partial b$, ma $S_1(X)$ è lo spazio generato dagli 1-simplessi singolari, cioè dagli archi, quindi chiamando λ_i gli archi si può scrivere $b=\sum m_i\lambda_i$. A questo punto:

$$deg(c) = deg(\partial b) = \sum n_i deg(\partial \lambda_i) = 0$$

In quando $\partial \lambda_i = \lambda_i(1) - \lambda_i(0)$ e l'azione dell'operta
ore grado è quella di sommare i coefficienti, che sono opposti.

Siccome $Ker(deg) = B_0(X)$ in particular gli spazi sono isomorfi.

Per questo si può utlizzare il primo teorema dell'isomorfismo, come indicato all'inizio di questa dimostrazione. $\hfill\Box$

2.3.2 $H_1(X)$

Sia X spazio topologico e $x_0 \in X$, alla coppia (X,x_0) si associa il gruppo fondamentale $\pi_1(X,x_0)$, il quale in generale non è abeliano. Per questo motivo conviene studiare la versione abelianizzata: Ab $(\pi_1(X,x_0)) = \pi_1(X,x_0)/\pi_1(X,x_0)'$ dove ' indica il **gruppo derivato**, cioè il gruppo generato dai commutatori.

$$\pi_1(X, x_0)' = [\pi_1(X, x_0), \pi_1(X, x_0)] = \langle \{ [g, h] \mid g, h \in \pi_1(X, x_0) \} \rangle$$

Il gruppo derivato è il gruppo dei prodotti formali di elementi del tipo $aba^{-1}b^{-1}$, quando passo al quoziente questi oggetti si annullano e quindi ab=ba (infatti $aba^{-1}b^{-1}=1\Rightarrow aba^{-1}=b\Rightarrow ab=ba$), per questo si ottiene il gruppo abelianizzato.

Se X è connesso per archi allora mostrerò che $\mathrm{Ab}\left(\pi_1(X,x_0)\right)\cong H_1(X)$, quindi conoscendo il gruppo fondamentale si può calcolare anche il primo gruppo di omologia, che quindi è sostanzialmente formato dai lacci (modulo omotopia) che commutano tra loro.

Osservazione 2.3.8 Sia X uno spazio topologico connesso per archi e $\mathcal G$ un gruppo abeliano se esiste un omomorfismo di gruppi $\varphi:\pi_1(X)\to\mathcal G$ allora esiste $\varphi':\operatorname{Ab}(\pi_1(X))\to\mathcal G$ omomorfismo di gruppi abeliani.

$$\begin{array}{c}
\pi_1(X) \xrightarrow{\varphi} \mathcal{G} \\
\downarrow_P & \\
\text{Ab}(\pi_1(X))
\end{array}$$

dove P è la proiezione sul quoziente.

Dimostrazione: La definizione di φ' è naturale, questa è tale che $\varphi'(P(c)) = \varphi(c)$, ma bisogna controllare se questa è ben definita, cioè se prendendo rappresentanti equivalenti si ottengono le stesse immagini, cioè se considerati $c \sim_H d$ risulta che $\varphi(c) = \varphi(d)$. Se $c \sim_H d$ allora P(c) = P(d), e quindi c = d[x, y] per opportuni x e y, in quanto gli elementi in $\operatorname{Ab}(\pi_1(X))$ differiscono per commutatori. Applicando φ si ottiene $\varphi(c) = \varphi(d[x, y])$, siccome φ è omomorfismo:

$$\varphi(d[x,y]) = \varphi(d)\varphi([x,y]) = \varphi(d)\varphi(xyx^{-1}y^{-1}) = \varphi(d)\varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = \varphi(d)\varphi(xyx^{-1}y^{-1}) = \varphi(d)\varphi(xyx^{-1}y^$$

dove nell'ultimo passaggio ho utilizzato che il gruppo è abeliano. Si nota che questa osservazione dipende crucialmente dal fatto che il gruppo è abeliano. \Box

Per dimostrare che $\mathrm{Ab}\left(\pi_1(X)\right)\cong H_1(X)$ mi serve prima un lemma:

Lemma 2.3.9 Se $f \sim_H g$ allora $f \sim_{hom} g$, cioè se f e g sono lacci che definiscono lo stesso elemento nel gruppo fondamentale allora differiscono per un bordo ($f \sim_H g \Rightarrow f \sim_{hom} g$).

Dimostrazione: Siccome $f \sim_H g$ allora $\exists F$ continua tale $F: I \times I \to X$ tale che F(0, x) = f(x), F(1, x) = g(x) e $F(t, 0) = F(t, 1) = x_0$.

Figura 2.6: Omotopia: deforma f in g in modo continuo.

Figura 2.7: La relazione di equivalenza fa passare da un quadrato a un triangolo in quanto fa collassare un intervallo nel punto e_0

Voglio mostrare che f-g è bordo di un 2-simplesso. Identificando tutti i punti di un uno dei due intervalli con l'equivalenza $I \times I/\{0\} \times I$ si ottiene qualcosa che è omeomorfo a Δ_2 , F sullo spigolo $\{0\} \times I$ assume sempre lo stesso valore.

Siccome F rimane costante sul sottospazio su cui su quozienta, dove vale sempre x_0 , F induce $F': \Delta_2 \to X$ continua in cui e_0 viene mandato in x_0 :

$$I \times I \xrightarrow{F} X$$

$$\downarrow^{P} \xrightarrow{F'} X$$

$$I \times I/_{0 \times I} \simeq \Delta_{2}$$

Calcolo il bordo: $\partial F' = F'^{(0)} - F'^{(1)} + F'^{(2)} = K - g + f$ dove K è il cammino costante per definizione di omotopia, cioè è C_{x_0} . Se K fosse il bordo di qualcosa avrei finito ($\partial w = f - g$). Ma K è il 2-simplesso singolare costante uguale a x_0 , cioe $K \colon \Delta_2 \to \{x_0\}$, quindi il suo bordo:

$$\partial K = K^{(0)} - K^{(1)} + K^{(2)} = K^{(2)}$$

in quanto tutti i tre termini sono uguali a $k \colon \Delta_1 \to \{x_0\}$, quindi $\partial K = K^{(2)} = k$, cioè k è un bordo, perciò:

$$\partial F' = \partial k - F'^{(1)} + F'^{(2)} \Rightarrow \partial F' - \partial k = f - g \Rightarrow \partial (F' - k) = f - g$$

F'-k è 2-simplesso singolare, lo chiamo σ ed è tale che $\partial \sigma = f-g$, quindi f e g sono omologhi e σ è il 2-simplesso singolare che realizza l'omologia.

Proposizione 2.3.10 Se X è uno spazio topologico connesso per archi allora esiste un omomorfismo $\varphi \colon \operatorname{Ab}(\pi_1(X)) \to H_1(X)$, cioè si può passare dall'equivalenza omologica a quella omotopica.

Dimostrazione: Per dimostrare che $\operatorname{Ab}(\pi_1(X)) \cong H_1(X)$ trovo un omomorfismo di gruppi abeliani tra $\pi_1(X)$ a $H_1(X)$, infatti se costruisco $\varphi \colon \pi_1(X) \to H_1(X)$ omomorfismo di gruppi ottengo gratuitamente la mappa da $\operatorname{Ab}(\pi_1(X))$ a $H_1(X)$ per l'osservazione precedente.

$$\begin{array}{ccc}
\pi_1(X) & \xrightarrow{\varphi} & H_1(X) \\
\downarrow^P & & & \\
\text{Ab}(\pi_1(X)) & & & \\
\end{array}$$

Poi dovrò mostrare che questa mappa è invertibile, cioè $\exists \psi: H_1(X) \to A_1(X)$ tale che $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$ e $\psi \circ \varphi' = \mathbb{I}_{\mathrm{Ab}(\pi_1(X))}$.

Per il lemma appena dimostrato una possibile costruzione di φ è:

$$\varphi: \pi_1(X) \to H_1(X)$$
$$[f]_H \mapsto [f]_{hom} = \llbracket f \rrbracket$$

In tutto ciò non ho ancora utilizzato la connessione per archi.

Mostro che φ è omomorfismo, in questo modo anche φ' lo è. Siano $[f]_H, [g]_H \in \pi_1(X)$ voglio fare vedere che:

$$\varphi([f]_H[g]_H) = \varphi([f]_H) + \varphi([g]_H)$$

Questo è verso se e solo se:

$$\varphi([f \star g]_H) = [f]_{hom} + [g]_{hom}$$

Che è vera se e solo se:

$$[f \star g]_{hom} = [f + g]_{hom}$$

Questo è vero se e solo se i due rappresentati sono equivalenti, cioè se differiscono per un bordo, ovvero se:

$$\exists T: \Delta_2 \rightarrow X$$
 2-simples
so singolare tale che $\partial T = f + g - f \star g$

Cioè:

$$\partial T = T^{(0)} - T^{(1)} + T^{(2)} = f + g - f \star g$$

Una possibile costruzione parte tracciando la retta che congiunge due punti medi di due

Figura 2.8: Costruzione dell'omomorfismo

segmenti, quindi si richiede che T abbia valori costanti sulle rette parallele. \square Al momento la situazione è che ho $\varphi:\pi_1(X,x_0)\to H_1(X)$ omomorfismo di gruppi ben definito anche con X non necessariamente connesso per archi, e dato che $H_1(X)$ è abeliano ho $\varphi':\operatorname{Ab}(\pi_1(X))\to H_1(X)$ omomorfismo di gruppi abeliani. L'omomorfismo costruito è in realtà un isomorfismo, come afferma il **teorema di Hurewicz**.

Teorema 2.3.11 (Teorema di Hurewicz) Se X è uno spazio topologico connesso per archi allora $\varphi \colon \operatorname{Ab}(\pi_1(X)) \to H_1(X)$ è un isomorfismo, quindi $\operatorname{Ab}(\pi_1(X)) \cong H_1(X)$.

2 Omologia singolare

Figura 2.9: Dimostrazione della proposizione

Dimostrazione: Sketch of proof, la dimostrazione completa è piuttosto noiosa. Per dimostrare che φ' è isomorfismo o dimostro che è iniettiva e suriettiva o che ammette un inverso. Procedo con la seconda possibilità: mostro che $\exists \psi \colon H_1(X) \to \operatorname{Ab}(\pi_1(X))$ tale che ψ è inverso di φ' .

Considero un arco $f\colon \Delta_1 \to X$ con $f(0), f(1) \in X$. Siccome lo spazio è connesso per archi esiste un cammino da x_0 a f(0), cioè una funzione $\lambda_{f(0)}\colon I \to X$ tale che $\lambda_{f(0)} = x_0$ e $\lambda_{f(1)} = f(0)$. Lo stesso vale per x_0 e f(1). Questi archi sono orientati partendo da x_0 , posso considerare il cammino con verso opposto $\bar{\lambda}_{f(1)}$ e quindi costruire il laccio di base x_0 : $\lambda_{f(0)}\star f\star \bar{\lambda}_{f(1)}=:\tilde{f}$. Vale che $\psi(f)=[\![\tilde{f}]\!]$, dove $[\![\tilde{f}]\!]=P\left([\tilde{f}]\!]_H\right)$. Bisogna mostrare che:

- 1. ψ è ben definito, cioè se $f\sim_{hom} g$ allora $\psi(f)=\psi(g)$ e che ψ non dipende dalla scelta del cammino.
- 2. ψ è omomorfismo di gruppi
- 3. $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$
- 4. $\psi \circ \varphi' = \mathbb{I}_{Ab(\pi_1(X))}$

Lo studente interessato può verificare queste asserzioni.

Esercizio 2 Verificarli.

Una volta verificati si trova in particolare che $H_1(X) \cong \mathrm{Ab}\,(\pi_1(X))$.

Esempio 2.3.12

- $H_1(V_q) \cong \mathbb{Z}^{2g} \text{ con } g \geq 0$
- $H_1(\bigvee_{i=1}^k \mathcal{S}^1) \cong \mathbb{Z}^k$ con $\bigvee_{i=1}^k \mathcal{S}^1$ bouquet, cioè k circonferenze incollate in un punto.
- $H_1(\mathbb{R}^3 \mathcal{S}^1) \cong \mathbb{Z}$ (è un toro tappato)
- $H_1(U_1)\cong \mathbb{Z}_2$ dove U_1 è il piano proiettivo reale $\mathbb{P}^2(\mathbb{R})=\mathbb{R}^3-\set{0}/_{\sim}$ con $\underline{x}\sim\underline{y}$ se $\underline{x}=a\underline{y}$ con $a\in\mathbb{R}$

• $H_1(U_2)\cong \mathbb{Z}\oplus \mathbb{Z}_2$ dove U_2 è la bottiglia di Klein. Infatti $\pi_1(U_2)=\{a,b\mid aba^{-1}b^{-1}=1\}$ per abeliannizzarlo bisogna porre $aba^{-1}b=1$ e $aba^{-1}b^{-1}=1$ cioè $b^2=1$ e a libero: $\operatorname{Ab}\left(\pi_1(U_2)\right)=\{\underbrace{a,b\mid aba^{-1}b=1}_{\mathbb{Z}}\}$.

(b) Bottiglia di Klein, si nota che rispetto al toro di Clifford c'è una torsione nella a di destra

Figura 2.10: Bottiglia di Klein

Definizione 2.3.13 Siano (X, x_0) e (Y, y_0) due spazi topologici puntati, si definisce il **bouquet** $X \vee Y$ come lo spazio topologico definito da:

$$X \vee Y = X \coprod Y /_{\sim}$$

in cui \sim identifica x_0 con y_0 . In pratica si incollano X e Y per lo stesso punto.

2.4 Morfismi indotti

Sia $g\colon X\to Y$ mappa continua tra spazi topologici, allora g induce un'applicazione tra $H_k(X)$ e $H_k(Y)$. Infatti, considero $\sigma\colon \Delta_k\to X$ k-simplesso singolare, posso considerare la composizione con g definendno $g'\colon \Delta_k\to Y$ con $g'=g\circ\sigma$:

$$g' \colon \Delta_k \xrightarrow{\sigma} X \xrightarrow{g} Y$$

Siccome sia g che σ sono continue allora g' è continua, quindi è un k-simplesso singolare in Y. Si definisce g_{\sharp} come l'estensione di g' su tutte le k-catene per linearità:

$$g_{\sharp} \colon S_k(X) \to S_k(Y)$$
$$\sum_{\sigma} n_{\sigma} \sigma \mapsto \sum_{\sigma} n_{\sigma} g' = \sum_{\sigma} n_{\sigma} (g \circ \sigma)$$

Questa mappa è ben definita ed è lineare quindi g_{\sharp} è un omomorfismo di gruppi abeliani che manda k-catene in $S_k(X)$ in k-catene in $S_k(Y)$. Ora voglio ottenere un'applicazione a livello

di omologia singolare, quindi definisco q_{\star} .

$$g_{\star} \colon H_k(X) \to H_k(Y)$$

 $[c] \mapsto [g_{\sharp}(c)]$

Si dice che g è **covariante** perché va da X a Y, cioè rispetta il verso della applicazione g. Devo verificare se questa applicazione è ben definita, cioè non se dipende dalla scelta del rappresentate della classe. Considero $d \in S_k(X)$ tale che $\partial d = 0$, suppongo che $d \sim_{hom} c$, questo vale se e solo se [d] = [c] con $\partial c = 0$, mi chiedo è vero che $g_{\star}([d]) = g_{\star}([c])$? Devo cioè mostrare che $g_{\sharp}(d) \sim_{hom} g_{\sharp}(c)$, ma questo è vero se e solo se $\exists \tau \in S_{k+1}(Y)$ tale che $g_{\sharp}(d) - g_{\sharp}(c) = \partial \tau$. Siccome g_{\sharp} è omomorfismo allora deve essere $g_{\sharp}(d-c) = \partial \tau$, ma d e c sono omologhi per ipotesi, quindi:

$$\exists u \in S_{k+1}(X) \mid \partial u = d - c$$

Quindi $g_{\sharp}(\partial u)=g_{\sharp}(d-c)$, e questo implica che $[g_{\sharp}(d)]=[g_{\sharp}(c)]$, infatti trovo τ a partire da u:

$$g_{\sharp}(\partial u) = g_{\sharp} \left(\sum_{i=0}^{k+1} (-)^{i} u^{(i)} \right) = \sum_{i=0}^{k+1} (-)^{i} g_{\sharp}(u^{(i)}) = \sum_{i=0}^{k+1} (-)^{i} g \circ u^{(i)} =$$

$$= \sum_{i=0}^{k+1} (-)^{i} g \circ (u \circ F_{i}^{k+1}) = \sum_{i=0}^{k+1} (-)^{i} (g \circ u) \circ F_{i}^{k+1} =$$

$$= \sum_{i=0}^{k+1} (-)^{i} (g \circ u)^{(i)} = \partial (g \circ u)$$

Ma quindi $g_{\sharp}(\partial u) = \partial(g_{\sharp}(u))$ cioè:

$$g_{t}(d-c) = g_{t}(\partial u) = \partial(g_{t}(u)) = \partial \tau \quad \text{con } \tau = g_{t}(u)$$

Quindi g_{\star} è ben definita ed è omomorfismo in quanto è il passaggio a quoziente di omomorfismi. Noto in particolare che ho mostrato che $g_{\sharp}\circ\partial=\partial\circ g_{\sharp}$ in quanto l'ho mostrato sui generatori.

Esempio 2.4.1 Sia $j: \mathcal{S}^1 \to \mathcal{S}^2$ l'immersione di un equatore in una sfera allora $j_\star: H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^2)$ è una mappa costante in quanto \mathcal{S}^2 ha gruppo fondamentale banale quindi $H_1(\mathcal{S}^2)$ è banale. Si nota che j era iniettiva, ma j_\star è costante quindi non è più iniettiva.

Esempio 2.4.2 Se considero $S^1=\{\,z\in\mathbb{C}\mid |z|=1\,\}$

$$f \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$z \to z^4$$

Come è fatta $f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$? Si sa che $H_1(\mathcal{S}^1) \cong \mathbb{Z}$ in quanto il gruppo fondamentale di \mathcal{S}^1 è \mathbb{Z} che è già abeliano. C'è quindi un solo generatore, che posso prendere il simplesso

singolare:

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \to e^{2\pi i t}$$

Cioè in pratica $[\sigma] \to 1$, il laccio si avvolge su sè stesso una volta.

$$f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

$$[\sigma] \mapsto [f_{\sharp}(\sigma)] = [f \circ \sigma]$$

Si ha:

$$\Delta_1 \xrightarrow{\sigma} \mathcal{S}^1 \xrightarrow{f} \mathcal{S}^1$$

Con:

$$t \xrightarrow{\sigma} e^{2\pi i t} \xrightarrow{f} e^{8\pi i t}$$

Quindi:

$$f \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto e^{8\pi i t}$

Sostanzialmente $f \circ \sigma$ è un cammino in S^1 ed è quindi potenza di σ , che è l'unico generatore:

$$f \circ \sigma = \sigma^4 = \sigma \star \sigma \star \sigma \star \sigma$$

Cioè avvolgo il laccio quattro volte, quindi:

$$f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $[\sigma] \mapsto [\sigma^4]$

Cioè:

$$f_{\star} \colon \mathbb{Z} \to \mathbb{Z}$$

$$1 \mapsto 4$$

 f_{\star} è iniettivo ma non suriettivo (non tutti gli interi sono multipli di 4)

Osservazione 2.4.3 Siano X spazio topologico: $\mathbb{I}_X : X \to X$ allora:

$$(\mathbb{I}_X)_{\star}: H_k(X) \to H_k(X)$$
$$[c] \mapsto [(\mathbb{I}_X)_{\sharp}(c)] = [c]$$

Quindi $(\mathbb{I}_X)_{\star}$ è proprio l'identità a livello di gruppi di omologia, cioè:

$$(\mathbb{I}_X)_{\star} = \mathbb{I}_{H_k(X)}$$

Osservazione 2.4.4 Siano X, Y, Z spazi topologici e $f: X \to Y$, $g: Y \to Z$ funzioni continue, allora $g \circ f: X \to Z$ è continua, si ha quindi:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

E:

$$H_k(X) \xrightarrow{f_\star} H_k(Y) \xrightarrow{g_\star} H_k(Z)$$

Sono ben definite $g_{\star} \circ f_{\star} \colon H_k(X) \to H_k(Z)$ e $(g \circ f)_{\star} \colon H_k(X) \to H_k(Z)$, vale che $g_{\star} \circ f_{\star} = (g \circ f)_{\star}$, infatti se σ è simplesso singolare (poi basta estendere per linearlità):

$$(g \circ f)_{\star} ([\sigma]) = [(g \circ f)_{\sharp}(\sigma)] = [(g \circ f) \circ \sigma] = [g \circ (f \circ \sigma)] =$$
$$= [g_{\sharp}(f \circ \sigma)] = [g_{\sharp} \circ f_{\sharp}(\sigma)] = (g_{\star} \circ f_{\star})([\sigma])$$

Quindi sulla categoria degli spazi topologici questo fornisce un funtore covariante, in quanto questa associazione si comporta bene rispetto all'identità e alla composizione.

2.5 Successioni esatte

Considero due complessi (C_{\bullet}, ∂) e $(C'_{\bullet}, \partial')$, considero l'omomorfismo di \mathbb{Z} -moduli $F \colon (C_{\bullet}, \partial) \to (C'_{\bullet}, \partial')$ tale che $\forall k$ si formi un diagramma commutativo, cioè valga $F \circ \partial = \partial' \circ F$

Tutti i quadrati che si formano devono essere commutativi. Si pone questa richiesta di commutatività in quanto considerando $f\colon X\to Y$ e quindi $F=f_\sharp\colon (S_\bullet(X),\partial)\to (S_\bullet(Y),\partial')$ la condizione di commutatività è $f_\sharp\circ\partial=\partial'\circ f_\sharp$ che è proprio quella che ho utilizzato prima per mostrare che l'applicazione è ben definita a livello di omologia (avevo usato $g_\sharp\circ\partial=\partial\circ g_\sharp$). Una funzione F fatta in questo modo è detta **mappa tra complessi**.

Definizione 2.5.1 Si definisce una **successione esatta corta** di gruppi la successione:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

con α omomorfismo iniettivo, β omomorfismo suriettivo e $\mathrm{Ker}(\beta) = \mathrm{Im}(\alpha)$. Si nota che richiedere queste condizioni su α e β è equivalente a scrivere la successione esatta come:

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

Infatti indicando le mappe sottointese con $i\colon 0\to A$ e $j\colon C\to 0$ allora per l'esattezza vale che $\operatorname{Ker}(\alpha)=\operatorname{Im}(i)=0$ in quanto i è omomorfismo, ma $\operatorname{Ker}(\alpha)=0$ signflica che α è iniettiva, inoltre $\operatorname{Ker}(j)=\operatorname{Im}(\beta)=C$, quindi β è suriettiva. Quindi automaticamente $C\cong B/A$ infatti per il teorema fondamentale degli omomorfismi $B/\operatorname{Ker}(\beta)\cong\operatorname{Im}(\beta)\stackrel{\text{suriettività}}{=} C$, ma per l'esattezza $\operatorname{Ker}(\beta)=\operatorname{Im}(\alpha)$ quindi $\operatorname{Ker}(\beta)=\alpha(A)$ ed essendo α iniettiva $\alpha(A)\cong A$.

Definizione 2.5.2 Si definisce una successione esatta corta di complessi la successione:

$$0 \longrightarrow A_{\bullet} \stackrel{\alpha}{\longrightarrow} B_{\bullet} \stackrel{\beta}{\longrightarrow} C_{\bullet} \longrightarrow 0$$

con $(A_{\bullet}, \partial^A)$, $(B_{\bullet}, \partial^B)$ e $(C_{\bullet}, \partial^C)$ complessi, e α mappa tra complessi iniettiva, β mappa tra complessi suriettiva e deve valere che $\forall k$ sia $C_k \cong {}^{B_k}/{}_{A_k}$.

In modo più esteso questo significa:

Le colonne sono successioni esatte corte di Z-moduli, quindi l'immagine di α è uguale al nucleo e la mappa è iniettiva perciò la prima riga è formata da zero (infatti se è iniettiva il nucleo è zero), similmente siccome la mappa β è suriettiva quindi l'ultima riga è formata da zero. Inoltre tutti i quadrati sono commutativi.

2.5.1 Omomorfismo di connessione

A partire da una successione esatta corta posso passare all'omologia, se passo brutalmente all'omologia non ottengo una successione esatta, ma c'è il modo per indurre una successione esatta lunga:

Teorema 2.5.3 Una successione esatta corta di complessi induce una successione esatta lunga tale che sia fatta così:

$$\dots \longrightarrow H_p(A_{\bullet}) \xrightarrow{\alpha_{\star}} H_p(B_{\bullet}) \xrightarrow{\beta_{\star}} H_p(C_{\bullet}) \xrightarrow{\delta} H_{p-1}(A_{\bullet}) \xrightarrow{\alpha_{\star}} \dots$$

Esatta signfiica che $\forall p$:

$$Im(\alpha_{\star}) = Ker(\beta_{\star})$$

$$Im(\beta_{\star}) = Ker(\delta)$$

$$Im(\delta) = Ker(\alpha_{\star})$$

 δ è detto **omomorfismo di connessione** in quanto cambia il grado dell'omologia.

La scrittura estesa della successione è:

Dimostrazione: Per dimostrare il teorema bisogna:

- 1. Dimostrare che α_{\star} e β_{\star} sono ben definite
- Costruire l'omomorfismo di connessione e verificare che è effettivamente un omomorfismo
- 3. Mostare che la successione è esatta, cioè che

$$Im(\alpha_{\star}) = Ker(\beta_{\star})$$

$$Im(\beta_{\star}) = Ker(\delta)$$

$$Im(\delta) = Ker(\alpha_{\star})$$

Sketch of proof, la dimostrazione è lunga e noiosa.

Per costruire l'omomorfismo di connessione devo trovare un elemento in A_{k-1} a partire da uno in C_k . Sia $c \in C_k$ un ciclo, quindi tale che $\partial c = 0$, siccome β_k è suriettiva $\exists b \in B_k$ tale che $\beta_k(b) = c$, voglio recuperare un elemento $a \in A_{k-1}$, in questo modo posso definire l'azione dell'omomorfismo di connessione con $\delta \colon \llbracket c \rrbracket \mapsto \llbracket a \rrbracket$.

$$a \in A_{k-1}$$

$$\downarrow^{\alpha_{k-1}}$$

$$b \in B_k \xrightarrow{\partial} B_{k-1}$$

$$\downarrow^{\beta_k} \qquad \qquad \downarrow^{\beta_{k-1}}$$

$$c \in C_k \xrightarrow{\partial} C_{k-1}$$

Prendo il bordo per passare a B_{k-1} ($\partial b \in B_{k-1}$), poi applico β_{k-1} e usando la commutatività $\beta_{k-1} \circ \partial = \partial \circ \beta_k$:

$$\beta_{k-1}(\partial b) = \partial \beta_k(b) = \partial c = 0$$

Quindi $\beta_{k-1}(b)=0$, e quindi $\partial b\in \operatorname{Ker}(\beta_{k-1})$, ma le colonne sono esatte quindi $\partial b\in \operatorname{Im}(\alpha_{k-1})=\operatorname{Ker}(\beta_{k-1})$, perciò $\exists a\in A_{k-1}$ tale che $\alpha_{k-1}(a)=\partial b$, quindi a partire da $c\in C_k$ ho associato un elemento $a\in A_{k-1}$. Per scendere a livello di omologia a deve essere un ciclo, cioè $\partial a=0$, per verificarlo apllico α_{k-2} a ∂a e uso la commutatività:

$$\alpha_{k-2}(\partial a) = \partial \alpha_{k-1}(a) = \partial \partial b = 0$$

Ma α_{k-2} è iniettiva, quindi $\partial a=0$. Sono partito da un k-ciclo in C_k e ho trovato un k-1-ciclo in A_{k-1} , che è quello che mi proponevo di fare.

Ci sono un paio di dettagli da verificare:

- 1. È univoca la scelta dell'elemento *b*? Se non lo è ci sono problemi?
- 2. Se prendo in C_k un elemento c' che è omologo a c è sicuro che trovo un a' che è omologo ad a?

Se queste due problematiche non sono verificate l'applicazione a livello di non è ben definita. Verifico che comunque scelga una controimmagine di β_k si ottiene in A_{k-1} un elemento omologo ad a: suppongo di aver scelto la controimmagine $b' \in B_k$ e quindi valga $\beta_k(b') = \beta_k(b) = c$, allora:

$$\beta_k(b'-b) = 0 \iff b'-b \in \operatorname{Ker}(\beta_k) = \operatorname{Im}(\alpha_k)$$

Quindi esiste $a_0 \in A_k$ tale che $\alpha_k(\alpha_0) = b' - b$, prendendo il bordo:

$$\partial(b'-b) = \partial(\alpha_k(a_0)) \Rightarrow \partial b' - \partial b = (\partial \circ \alpha_k)(a_0) = \alpha_{k-1}(\partial a_0)$$

Ma per come costruisco l'omomorfismo di connessione $\partial b = \alpha_{k-1}(a)$, e analogamente $\partial b' = \alpha_{k-1}(a')$:

$$\alpha_{k-1}(a') - \alpha_{k-1}(a) = \alpha_{k-1}(\partial a_0) \Rightarrow \alpha_{k-1}(a' - a - \partial a_0) = 0$$

Ma α_{k-1} è iniettivo quindi $a'-a-\partial a_0=0$, e perciò $a'\sim_{hom}a$, in quanto a e a' differiscono per un bordo.

Per quanto riguarda la seconda questione considero $c'' \sim_{hom} c$ in C_k allora mostro che $a'' \sim_{hom} a$ in A_{k-1} , e così facendo mostro che l'applicazione è ben definita.

$$c'' \sim_{hom} c \iff \exists c_0 \in C_{k+1} \mid c'' - c = \partial c_0$$

Ma per la suriettività $\exists b, b''$ tale che $c = \beta_k(b), c'' = \beta_k(b'')$ e $c_0 = \beta_{k+1}(c_0)$, quindi:

$$\beta_k(b'') - \beta_k(b) = \partial c_0 \Rightarrow \beta_k(b'' - b) = \partial c_0 \Rightarrow \beta_k(b'' - b) = \partial (\beta_{k+1}(b_0)) = \beta_k(\partial b_0)$$

Quindi:

$$\beta_k(b''-b-\partial b_0)=0 \Rightarrow b''-b-\partial b_0 \in \operatorname{Ker}(\beta_k)=\operatorname{Im}(\alpha_k)$$

Perciò $\exists \tilde{a} \in A_k$ tale che $b'' - b - \partial b_0 = \alpha_k(\tilde{a})$, e applicando il bordo si ottiene $\partial b'' - \partial b - \partial \alpha_k(\tilde{a}) = 0$, quindi dalla definizione dell'omomorfismo di connessione e dalla commutatività:

$$\partial b'' - \partial b = \partial \alpha_k(\tilde{a}) \Rightarrow \alpha_{k-1}(a'') - \alpha_{k-1}(a) = \alpha_{k-1}(\partial \tilde{a})$$

Ma α_{k-1} è omomorfismo iniettivo quindi $a''-a-\partial \tilde{a}=0$ cioè $a''-a=\partial \tilde{a}$, quindi siccome a'' e a differiscono per un bordo sono omologhi.

Si può quindi definire δ su $[\![c]\!] \in H_p(C_k)$:

$$\delta(\llbracket c \rrbracket) = \llbracket \alpha \circ \partial \circ \beta^{-1}(c) \rrbracket$$

Questa è ben definita.

2.6 Omologia singolare relativa

Sia X uno spazio topologico e A sottospazio generico di X (anche improprio), cioè $A \hookrightarrow X$. Vorrei definire l'omologia singolare di X tenendo presente la presenza di A, cioè $H_k(X,A)$, il k-esimo gruppo di omologia singolare dellla coppia (X,A). Sia $S_k(A)$ lo spazio delle k-catene in A, cioè lo spazio generato dai simplessi singolari in A, la mappa di inclusione $i\colon A\to X$ induce una mappa $i_\sharp\colon S_k(A)\to S_k(X)$. Questa mappa è sicuramente iniettiva (basta vedere le catene di A come catene di X, per cui $S_k(A)\subseteq S_k(X)$). A questo punto la successione

$$0 \xrightarrow{h} S_k(A) \xrightarrow{i_{\sharp}} S_k(X) \xrightarrow{\beta} S_k(X) /_{S_k(A)} \xrightarrow{k} 0$$

è esatta infatti hiniettiva e β suriettiva. Vale che:

$$\operatorname{Im}(h) = \operatorname{Ker}(i_{\sharp}) = 0$$

$$\operatorname{Ker}(k) = \operatorname{Im}(\beta) = \frac{S_k(X)}{S_k(A)}$$

$$\operatorname{Ker}(\beta) = \operatorname{Im}(i_{\sharp})$$

di cui l'ultima è valida in quanto il nucleo della proiezione su un sottospazio è il sottospazio stesso e $\mathrm{Im}(i_\sharp)\cong S_k(A)$ in quanto i_\sharp è iniettiva. Pongo come notazione $S_k(X)/S_k(A)=S_k(X,A)$, in questo modo la successione diventa:

$$0 \longrightarrow S_k(A) \xrightarrow{i_{\sharp}} S_k(X) \xrightarrow{\beta} S_k(X,A) \longrightarrow 0$$

A partire da questa successione posso costruire una successione esatta corta di complessi (la mappa tra complessi è l'applicazione bordo):

I quadrati sono commutativi quindi questa successione esatta corta di complessi ne induce una esatta lunga. Si ottiene quindi:

$$\dots \longrightarrow H_k(A) \xrightarrow{\alpha_*} H_k(B) \xrightarrow{\beta_*} H_k(X,A) \xrightarrow{\delta} H_{k-1}(A) \longrightarrow \dots$$

Si definisce quindi in questo modo l'**omologia singolare della coppia** $H_k(X, A)$.

2.6.1 Successioni spezzanti

Definizione 2.6.1 (Prima definizione) Si dice che una successione esatta corta di Z-moduli:

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

spezza se esiste un endomorfismo continuo $\varphi \colon B \to B$ idempotente (cioè tale che $\varphi^2 = \varphi$) e tale che $\operatorname{Ker}(\varphi) = \operatorname{Im}(\alpha) = \operatorname{Ker}(\beta)$ oppure $\operatorname{Im}(\varphi) = \operatorname{Im}(\alpha) = \operatorname{Ker}(\beta)$

Sia $B=A\oplus C$ con A,C \mathbb{Z} -moduli, in quello che segue il ruolo di A e C può essere scambiato. A questi moduli sono associate la mappa di inclusione e di passaggio al quoziente:

$$i \colon A \to A \oplus C$$

 $a \mapsto (a,0)$

$$j \colon A \oplus C \to C$$

 $(a,c) \mapsto c$

La mappa i è iniettiva perché è un'inclusione, mentre j è suriettiva perché è un passaggio al quoziente, si può quindi costruire la successione esatta corta:

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} B = A \oplus C \stackrel{j}{\longrightarrow} C \longrightarrow 0$$

Ma esiste anche l'inclusione $s \colon C \to B$ e quindi ho;

$$C \xrightarrow{s} A \oplus C \xrightarrow{j} C$$
$$c \longmapsto (0,c) \longmapsto c$$

Vale che e $j \circ s = \mathbb{I}_C$. Se B è proprio somma diretta di A e C posso sempre fare questa costruzione, ma nelle successioni esatte generiche non è cosi. Una successione spezza quando ha un comportamento come questo, e la mappa s tale che $j \circ s = \mathbb{I}_C$ è detta **sezione dell'omomorfismo** $j : B \to C$.

Definizione 2.6.2 (Seconda definizione) Si dice che la successione esatta di Z-moduli

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

 ${\it spezza}$ se esiste una sezione da C a B o da B ad A, cioè:

$$\exists s \colon C \to B$$
 omomorfismo continuo tale che $\beta \circ s = \mathbb{I}_C$ oppure

 $\exists s' \colon B o A$ omomorfismo continuo tale che $s' \circ \alpha = \mathbb{I}_A$

Questo è equivalente a dire che $B=A\oplus s(C)$, infatti vale l'osservazione

Osservazione 2.6.3 Se la successione $0 \to A \to B \to C \to 0$ spezza allora $B \cong A \oplus s(C)$ con s sezione. Il viceversa l'ho già dimostrato, infatti se B si scrive come somma diretta la sezione è hangle

Dimostrazione: Per dimostrare che $B \cong A \oplus s(C)$ per prima cosa mostro che l'intersezione tra A e s(C) è vuota.

Siccome α è iniettiva allora $\alpha(A)\cong A$, inoltre $s(C)\subseteq B$ in quanto per ipotesi $s\colon C\to B$. Sia $x\in\alpha(A)\cap s(C)$, mostro che x=0.Siccome $x\in\alpha(A)$ allora esiste $a\in A$ tale che $x=\alpha(a)$ e siccome $x\in s(C)$ allora esiste $k\in C$ tale che x=s(k), naturalmente $\alpha(a)=s(k)$. Applicando β si ottiene $(\beta\circ\alpha)(a)=(\beta\circ s)(k)$, ma $\beta\circ\alpha=0$ in quanto la successione è esatta, quindi $(\beta\circ s)(k)=0$. Ma s è sezione quindi $\beta\circ s=\mathbb{I}_C$, quindi k=0, ma siccome s è omomorfismo allora s(k)=0, perciò x=s(k)=0.

A questo punto bisogna dimostrare che ogni elemento di B si scrive come somma di un elemento di $\alpha(A)$ e di un elemento di s(C).

Sia $b \in B$ allora $\beta(b) \in C$, ci sono due possibilità:

- 1. Se $\beta(b) = 0$ significa $b \in \text{Ker}(\beta) = \text{Im}(\alpha)$, quindi $b \in \text{Im}(a)$, cioè $\exists \alpha \in A$ tale che $b = \alpha(a)$ e quindi si scrive come elemento di A sommato a zero.
- 2. Se $\beta(b)=c\neq 0$ allora $b-s(t)\in B$, mostro che $b-s(t)\in {\rm Ker}(\beta)$ e quindi posso usare lo stesso ragionamento di prima.

$$\beta(b - s(t)) = \beta(b) - \beta(s(t)) = t - t = 0 \Rightarrow \beta(b - s(t)) \in \text{Ker}(b) = \text{Im}(\alpha)$$

Quindi esiste $a' \in A$ tale che $\alpha(a') = b - s(t)$ e quindi vale che $b = s(t) + \alpha(a')$

Siccome l'intersezione tra A e s(C) è vuota e ogni elemento di B si può scrivere come somma di un elemento di A e di uno di s(C) allora B è somma diretta di A e s(C).

Sostanzialmente una successione esatta corta spezza se vale il diagramma commutativo:

Esempio 2.6.4 (Successione non spezzante) Considero la successione:

$$0 \longrightarrow n\mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \stackrel{\beta}{\longrightarrow} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

Questa successione è esatta ma non spezza, infatti se spezzasse varrebbe che:

$$\mathbb{Z}_n \oplus n\mathbb{Z} \cong \mathbb{Z}$$

Ma questa non è possibile in quanto $n\mathbb{Z} \cong \mathbb{Z}$ e \mathbb{Z}_n non è banale. Più precisamente si vede che non può esistere una sezione $s \colon \mathbb{Z}_n \to Z$.

Proposizione 2.6.5 Le due definizioni di successione che spezza sono equivalenti, cioè se $\exists s \colon C \to B$ tale che $\beta \circ s = \mathbb{I}_C$ allora $\exists \varphi \colon B \to B$ tale che sia idempotente e che $\mathrm{Ker}(\varphi) = \mathrm{Ker}(\beta)$

Dimostrazione: Una possibile costruzione è $\varphi = s \circ \beta$, infatti:

$$\varphi^2 = s \circ \beta \circ s \circ \beta = s \circ \mathbb{I}_C \circ \beta = s \circ \beta = \varphi$$

Quindi φ è idempotente. Siccome s omomorfismo $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(s \circ \beta)$, mostro che $\operatorname{Ker}(s \circ \beta) \subseteq \operatorname{Ker}(\beta)$:

$$\operatorname{Ker}(\varphi) = \operatorname{Ker}(s \circ \beta) = \{ b \in B \mid (s \circ \beta)(b) = 0 \}$$

Quindi $s(\beta(b)) = 0$ cioè $\beta \circ s \circ \beta(b) = 0$ quindi $\beta(b) = 0$ che significa che $b \in \text{Ker}(\beta)$. Ma quindi $\text{Ker}(\beta) \subseteq \text{Ker}(s \circ \beta) \subseteq \text{Ker}(\beta)$ allora $\text{Ker}(s \circ \beta) = \text{Ker}(\beta)$. Rimane da mostrare il viceversa.

Esercizio 3 Mostrare che se esiste l'endomorfismo φ allora si può costruire una sezione.

Le due definizioni sono quindi equivalenti.

2.7 Omologia singolare ridotta

Fin ora ho parlato di omologia singolare $H_k(X)$, omologia singolare relativa $H_k(X,A)$, ora introduco l'omologia singolare ridotta.

Definizione 2.7.1 Sia X uno spazio topologico e $A = \{x_0 \in X\}$, è ben definita l'omologia relativa $H_k(X,A)$, si definisce questa come **omologia singolare ridotta** $\tilde{H}_k(X)$. L'omologia singolare ridotta è l'omologia relativa ad un punto.

Per costruire l'omologia singolare ridotta servono le k-catene in X e le k-catene in $\{x_0\}$

$$0 \longrightarrow S_k(\lbrace x_0 \rbrace) \longrightarrow S_k(X) \longrightarrow S_k(X)/S_k(\lbrace x_0 \rbrace) = S_k(X,\lbrace x_0 \rbrace) \longrightarrow \dots$$

In $S_k \sigma \colon \Delta_k \to \{x_0\}$ è simplesso sono le applicazioni costanti dal k-simplesso standard in $\{x_0\}$. Quindi $S_k(\{x_0\}) = \langle \sigma_k \rangle$, dato che σ_k è l'unica mappa che c'è.

Lemma 2.7.2 (Omologia di un punto) Sia $X = \{x_0\}$ con $x_0 \in X$, allora:

$$H_k(\{x_0\}) \cong \begin{cases} \mathbb{Z} & \textit{se } k = 0 \\ 0 & \textit{se } k \ge 1 \end{cases}$$

Dimostrazione: Il generico k-simplesso singolare in X è una mappa continua $\sigma_k \colon \Delta_k \to \{x_0\}$, quindi fissato k esiste un solo simplesso singolare, che è la mappa costante dal simplesso standard a x_0 . Il generico $S_k(X)$ quindi è il gruppo libero generato da questo simplesso singolare, cioè $S_k(X) = \langle \sigma_k \rangle$. A questo punto fissato k si può computare semplicemente il bordo di σ_k :

$$\partial \sigma_k = \sum_{i=0}^k (-)^i \sigma_k^{(i)} \, \operatorname{con} \, \sigma_k^{(i)} \colon \Delta_{k-1} \overset{F_k^{\ i}}{\to} \Delta_k \overset{\sigma_k}{\to} \{ \, x_0 \, \} \, \operatorname{cioè} \, \sigma_k^{(i)} = \sigma_{k-1}$$

Fissato k nella sommatoria che calcola il bordo tutte le quantita sono uguali, quindi la somma a segni alterni è nulla oppure è uguale a σ_{k-1} a seconda della parità di k.

$$\partial \sigma_k = \begin{cases} 0 & \text{se } k \text{ dispari} \\ \sigma_{k-1} & \text{se } k \text{ pari} \end{cases}$$

A questo punto si può calcolare facilmente il nucleo e l'immagine dell'operatore bordo:

$$\operatorname{Ker}(\partial_k) = \begin{cases} 0 & k \text{ dispari} \\ S_k(X) & k \ge 2 \text{ pari} \end{cases}$$

E:

$$\operatorname{Im}(\partial_{k+1}) = egin{cases} 0 & k ext{ dispari} \\ S_k(X) & k \geq 2 ext{ pari} \end{cases}$$

Infatti, se $k \ge 2$ ed è pari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

 $\sigma_k \mapsto \sigma_{k-1}$

quindi solo lo 0 è mandato in 0, mentre se è dispari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

 $\sigma_k \mapsto 0$

quindi tutto viene mandato in 0 Invece per k pari:

$$\partial_{k+1} \colon S_{k+1}(\lbrace x_0 \rbrace) \to S_k(\lbrace x_0 \rbrace)$$

 $\sigma_{k+1} \mapsto \sigma_k$

quindi l'immagine è il generatore, cioè tutto $S_k(X)$, mentre per $k \geq 2$ pari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

$$\sigma_k \mapsto 0$$

Quindi l'immagine è solo 0.

A questo punto se $k \ge 2 \operatorname{Im}(\partial_{k+1}) = \operatorname{Ker}(\partial_k)$, quindi:

$$H_k(X) = \frac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})} \cong 0$$

Invece se k=0 vale che $\mathrm{Ker}(\partial_0)=S_0(X)$, mentre $\mathrm{Im}(\partial_1)=0$ quindi:

$$\operatorname{Ker}(\partial_0)/_{\operatorname{Im}(\partial_1)} \cong S_0(X)$$

Questo è sostanzialmente l'unico caso in cui si può calcolare direttamente dalla definizione i gruppi di omologia. $\hfill\Box$

Proposizione 2.7.3 *Vale che:*

$$ilde{H}_k(X)\cong egin{cases} H_0(X)/\mathbb{Z} & \textit{se } k=0 \ H_k(X) & \textit{se } k\geq 1 \end{cases}$$

Dimostrazione: Per dimostrarlo uso la successione esatta lunga in omologia relativa:

$$\dots \longrightarrow H_{k+1}(\{x_0\}) \longrightarrow H_{k+1}(X) \longrightarrow \tilde{H}_{k+1}(X) \longrightarrow H_k(\{x_0\}) \longrightarrow \dots$$

Nel caso $k \ge 1$ tutti i gruppi di omologia del punto sono banali, quindi il complesso diventa:

$$0 \xrightarrow{i} H_{k+1}(X) \xrightarrow{\psi} \tilde{H}_{k+1}(X) \xrightarrow{j} 0$$

La successione è esatta quindi ψ è iniettiva, ma è suriettiva essendo una proiezione al quoziente, quindi è un isomorfismo e perciò $H_m(X)\cong \tilde{H}_m(X)$ per $m\geq 2$. Mi rimane da calcolare il caso k=1 e il caso k=0. Considero la successione esatta:

$$0 \to H_1(\{x_0\}) \to H_1(X) \to \tilde{H}_1(X) \to H_0(\{x_0\}) \to H_0(X) \to \tilde{H}_0(X) \to 0$$

So che $H_1(\lbrace x_0 \rbrace) = 0$ quindi:

$$0 \longrightarrow H_1(X) \stackrel{\varphi}{\longrightarrow} \tilde{H}_1(X) \stackrel{j}{\longrightarrow} H_0(\{x_0\}) \stackrel{i_\star}{\longrightarrow} H_0(X) \stackrel{\tau}{\longrightarrow} \tilde{H}_0(X) \longrightarrow 0$$

Inoltre so sempre dall'omologia di un punto che $H_0(\{x_0\})$ è il gruppo libero di rango uno, sia la classe di $\sigma_0 \colon \Delta_0 \to \{x_0\}$ il generatore. È definita una mappa di inclusione $i \colon \{x_0\} \to X$ che induce

$$i_{\star} \colon H_0(\{x_0\}) \to H_0(X)$$
$$\llbracket \sigma_0 \rrbracket \mapsto \llbracket i \circ \sigma_0 \rrbracket = \llbracket \sigma_0 \rrbracket$$

Poi si estende per linearità al generico elemento $c=k\sigma_0$ con $k\in\mathbb{Z}$, inoltre si è usato che $i\circ\sigma_0=\sigma_0$ perché σ_0 è lo 0-simplesso singolare costante che vale x_0 . In particolare $\mathrm{Im}(i_\star)=H_0(\{x_0\})$. Questa mappa indotta è iniettiva, infatti sia $c=k\sigma_0\in H_0(\{x_0\})$:

$$i_{\star}(\llbracket c \rrbracket) = \llbracket 0 \rrbracket \iff \llbracket i \circ c \rrbracket = \llbracket 0 \rrbracket \iff \exists u \in S_1(X) \text{ tale che } i \circ c - 0 = \partial u \Rightarrow i \circ c = \partial u$$

Ma $c=k\sigma_0$, quindi:

$$ki \circ \sigma_0 = \partial u \Rightarrow k \circ \sigma_0 = \partial u \Rightarrow c = \partial u$$

Ma quindi c e 0 differiscono per un bordo, quindi c è nella stessa classe di equivalenza di 0, cioè [c] = [0] e quindi $\mathrm{Ker}(i_\star) = 0$, cioè i_\star è iniettiva. Quindi $\mathrm{Ker}(i_\star) = 0$ da cui $\mathrm{Im}(j) = \mathrm{Ker}(i_\star) = 0$, perciò posso scrivere la successione esatta corta:

$$0 \longrightarrow H_1(X) \stackrel{\varphi}{\longrightarrow} \tilde{H}_1(X) \stackrel{j}{\longrightarrow} 0$$

Siccome φ è iniettiva ma e è anche suriettiva perché è proiezione sul quoziente allora è isomorfismo e quindi $H_1(X)\cong \tilde{H}_1(X)$. [NON SONO SICURO DI QUESTO, RIASCOLTARE!!!] Ma siccome $H_1(X)\cong \tilde{H}_1(X)$ allora la successione lunga iniziale diventa:

$$0 \longrightarrow H_1(X) \stackrel{j}{\longrightarrow} H_0(\lbrace x_0 \rbrace) \stackrel{i_{\star}}{\longrightarrow} H_0(X) \stackrel{\tau}{\longrightarrow} \tilde{H}_0(X) \longrightarrow 0$$

Quindi ora j è iniettiva perciò sono 0 va in 0:

$$0 \longrightarrow H_0(\{x_0\}) \xrightarrow{i_{\star}} H_0(X) \xrightarrow{\tau} \tilde{H}_0(X) \longrightarrow 0$$

Ma τ è suriettiva, quindi $\operatorname{Im}(\tau) = \tilde{H}_0(X)$, inoltre la successione è esatta quindi $\operatorname{Ker}(\tau) = \operatorname{Im}(i_\star) = H_0(\{x_0\})$, quindi $H_0(X)/H_0(\{x_0\}) \cong \tilde{H}_0(X)$ infatti $H_0(X)/\operatorname{Ker}(\tau) \cong \operatorname{Im}(\tau)$ per il teorema fondamentale dell'isomorfismo.

Quindi ho trovato che $\forall k \geq 1$ i gruppi di omologia singolare e omologia singolare ridotta sono isomorfi, mentre per k=0 ho trovato che:

$$\tilde{H}_0(X) = \frac{H_0(X)}{H_0(\{x_0\})} \cong \frac{H_0(X)}{Z}$$

Se voglio mostrare che $H_0(X) \cong \tilde{H}_0(X) \oplus \mathbb{Z}$ basta che mostro che esiste una sezione, ovvero che la successione esatta corta:

$$0 \longrightarrow H_0(X) \longrightarrow \tilde{H}_0(X) \longrightarrow \mathbb{Z} \longrightarrow 0$$

spezza. Questo è sempre vero, a meno di casi eccezionalmente patologici.

Esempio 2.7.4 Considero ad esempio $H_k(\mathcal{S}^n)$ con $n \geq 1$:

$$H_k(\mathcal{S}^n) \cong egin{cases} \mathbb{Z} & \textit{se } k \in \{\,0, n\,\} \ 0 & \textit{se } k
ot\in \{\,0, n\,\} \end{cases}$$

Fin ora so che:

$$H_1(\mathcal{S}^n)\congegin{cases} \mathbb{Z} & \textit{se } n=1 \ 0 & \textit{se } n\geq 2 \end{cases}$$

E che $H_0(S^n) \cong \mathbb{Z}$ per $n \geq 1$, vorrei calcolare gli altri gruppi di omologia, ma per farlo mi servono altri strumenti.

2.8 Assiomi di una teoria omologica

Definizione 2.8.1 (Teoria omologica secondo Eilenberg e Steenrod) Una **teoria omologica** sulla categoria di tutte le coppie di spazi topologici e mappe continue è un funtore che assegna ad ogni coppia di spazi (X,A) un gruppo abeliano $H_p(X,A)$ per il quale si pone $H_k(X) := H_k(X,\varnothing)$ e ad ogni applicazione continua $f: (X,A) \to (Y,B)$ un omomorfismo $f_\star\colon H_k(X,A) \to H_k(Y,B)$ con una trasformazione naturale $\delta_k\colon H_k(X,A) \to H_{k-1}(A)$, detta **omomorfismo di connessione** tale che siano soddisfatti i seguenti assiomi:

- 1. (Omotopia): se $f \sim_H g$ con $f, g: (X, A) \to (Y, B)$ mappe continue, allora $f_\star = g_\star$. Dove $f \sim_H g$ se esiste una funzione continua $F: X \times I \to Y$ tale che F(x, 0) = f(x), F(x, 1) = g(x) e $F(a, t) \subseteq B \ \forall a \in A \ e \ \forall t \in I$.
- 2. (Esattezza): Per ogni inclusione $i: A \hookrightarrow X$ e $j: X \hookrightarrow (X, A)$ la successione:

$$\dots \longrightarrow H_p(A) \xrightarrow{i_{\star}} H_p(X) \xrightarrow{j_{\star}} H_p(X,A) \xrightarrow{\delta_p} H_{p-1}(A) \longrightarrow \dots$$

è esatta.

- 3. (Dimensione): $H_k(P) = 0 \ \forall k \neq 0$ dove P è lo spazio formato da un solo punto.
- 4. (Additività): Se X è la somma topologica di spazi X_{α} allora $H_p(X) = \bigoplus_{\alpha} H_p(X_{\alpha})$
- 5. (Escissione): Se U è un aperto in X tale che $\bar{U} \subset \operatorname{int}(A)$ allora la mappa di inclusione di (X-U,A-U) in (X,A) induce un isomorfismo tra i gruppi di omologia:

$$H_k(X-U,A-U) \cong H_k(X,A) \quad \forall k \in \mathbb{N}$$

(cioè togliendo un opportuno insieme da (X, A) l'omologia non sente della escissione).

Per trasformazione naturale si intende che $\forall f \colon (X,A) \to (Y,B)$ il seguente diagramma è commutativo:

$$H_p(X,A) \xrightarrow{\delta} H_{p-1}(A)$$

$$\downarrow^{f_{\star}} \qquad \qquad \downarrow^{f'_{\star}}$$

$$H_p(Y,B) \xrightarrow{\delta} H_{p-1}(B)$$

dove $f'=f\big|_A$. Mentre la richiesta che sia funtore significa che se $f\colon (X,A)\to (Y,B)$ e $g\colon (Y,B)\to (Z,C)$ sono mappe continue allora $(g\circ f)_\star=g_\star\circ f_\star$ e che $(\mathbb{I}_X)_\star=\mathbb{I}_{H_k(X)}$.

L'omologia singolare relativa soddisfa tutti questi assiomi, ma non tutti sono stati ancora verificati, cioè l'omotopia e l'escissione.

Definizione 2.8.2 Sia $\{X_{\alpha}\}$ una famiglia di spazi topologici, si definisce la **somma topologica** $X = \coprod_{\alpha} X_{\alpha}$ come lo spazio topologico formato dall'unione disgiunta di tutti gli X_{α} equipaggiato con la **topologia debole**, ovvero un insieme è aperto se e solo se è aperto rispetto alla topologia di ogni X_{α} .

Proposizione 2.8.3 Esiste almeno una teoria che soddisfa gli assiomi di Eilenberg e Steenrod.

Dimostrazione: [MANCA DA SISTEMARE TUTTA QUESTA PROOF!!!] L'omologia singolare relativa soddisfa gli assiomi di Eilenberg e Steenrod, ne ripercorro la costruzione e metto in luce il collegamento con gli assiomi.

Ho introdotto gli spazi di k-catene e ho definito $S_k(X,A) = \frac{S_k(X)}{S_k(A)}$, poi ho costruito con l'operatore di bordo ∂ e la proiezione al quoziente P la successione esatta corta:

$$0 \longrightarrow S_k(A) \longrightarrow S_k(X) \longrightarrow S_k(X,A) = \frac{S_k(X)}{S_k(A)} \longrightarrow 0$$

Cioè in modo più esteso:

Posso costruire ∂' tale che i quadrati siano commutativi, cioè tale che $P \circ \partial = \partial' \circ P$, infatti: sia $c \in S_{k+1}(X)$ allora la sua immagine tramite P è la classe di equivalenza $P(c) = [c' \in S_{k+1}(X)$ tale che $c' - c \in S_{k+1}(A)]$, allora definisco $\partial'([c]_A) := [\partial c]_A$ dove con il pedice A indico la relazione di equivalenza indotta dalle k-catene in A, così la relazione è automaticamente soddisfatta.

Devo verificare che ∂' è ben definita cioè che se prendo elementi equivalenti ottengo elementi equivalenti. Se $c'\sim_A c$ allora $\exists a\in S_{k+1}(A)$ tale che c'-c=a, prendo il bordo

 $\partial c' - \partial c = \partial a$, ma $\partial a \in S_k(A)$ quindi $\partial c'$ e ∂c differiscono per un elemento in $S_k(A)$ e quindi $\partial c' \sim_A \partial c$ perciò l'applicazione è ben definita.

L'omologia relativa singolare è l'omologia singolare del complesso $S_{\bullet}(X,A)$, cioè per definizione:

$$H_k(X,A) = H_k(S_{\bullet}(X,A)) = \frac{\operatorname{Ker}(S_k(X,A) \to S_{k-1}(X,A))}{/\operatorname{Im}(S_{k+1}(X,A) \to S_k(X,A))}$$

Questo gruppo abeliano (in quanto è quoziente di gruppi abeliani) è detto gruppo di omologia relativa della coppia (X,A). Se in particolare $A=\varnothing$ allora riottengo $H_k(X,\varnothing)=H_k(X)$. Ho fatto un'associazione da una coppia a un gruppo, voglio verificare che questa sia funtoriale.

Sia $f:(X,A)\to (Y,B)$ continua tale che $f(A)\subseteq B$, definisco:

$$f_{\star} \colon H_k(X, A) \to H_k(Y, B)$$

$$\llbracket c \rrbracket_A \mapsto \llbracket f_{\dagger}(c) \rrbracket_B$$

I pedici A e B stanno a ricordare che l'omologia è relativa. Quindi ho;

 f_{t} esiste, infatti:

$$S_{k}(X) \xrightarrow{f} S_{k}(Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{k}(X)/S_{k}(A) \xrightarrow{f_{\sharp}} S_{k}(Y)/S_{k}(B)$$

 f_{\sharp} esiste perché $S_k(A) \to S_k(B)$ per la condizione $f(A) \subseteq B$ quindi simplessi singolari in A vanno a finire in simplessi singolari in B. Una volta che ho f_{\sharp} posso scendere a livello di omologia prendendo la classe di equivalenza.

Inoltre ho dimostrato che se $(X,A) \xrightarrow{f} (Y,B) \xrightarrow{g} (Z,C)$, allora $(g \circ f)_{\star} = g_{\star} \circ f_{\star}$ e $(X,A) \xrightarrow{\mathbb{I}_{X}} (X,A)$ allora $(\mathbb{I}_{X})_{\star} = \mathbb{I}_{H_{k}(X,A)}$.

Poi ho δ omomorfismo di connessione $\delta \colon H_{k+1}(X,A) \to H_k(A)$, ho che se ho una successione esatta di complessi:

$$0 \longrightarrow S_{\bullet}(A) \longrightarrow S_{\bullet}(X) \longrightarrow S_{\bullet}(X,A) \longrightarrow \dots$$

Esiste una successione lunga in omologia:

$$\dots \longrightarrow H_k(A) \longrightarrow H_k(X) \longrightarrow H_k(X,A) \stackrel{\delta}{\longrightarrow} H_{k-1}(A) \longrightarrow \dots$$

Ho dimostrato che $H_k(P)=H_k(P,\varnothing)=0$ per $k\geq 1$ e P insieme formato da un solo punto in X, inoltre so che $H_k(\coprod_{\alpha} X_{\alpha})\cong \bigoplus_{\alpha} H_k(X_{\alpha})$ con X_{α} varie componenti connesse per archi.

Mi rimangono da verificare l'invarianza omotopica e l'escissione.

Quindi gli assiomi di Eilenberg e Steenrod non definiscono una teoria vuota ma c'è almeno una teoria a soddisfarli, che è l'omologia singolare relativa.

In futuro verificherò gli assiomi mancanti.

2.8.1 Omologia ridotta per una qualsiasi teoria omologica

Sia $X \neq \emptyset$ spazio topologico e $p \in X$ punto $(P = \{p\})$, allora sono ben definite le applicazioni di inclusione i e la mappa costante ϵ :

$$i: P \to X$$

 $\epsilon: X \to P$

Si ha che $\epsilon \circ i = \mathbb{I}_P$ in quanto $P \xrightarrow{i} X \xrightarrow{\epsilon} P$. Dagli assiomi deriva l'esistenza di un'applicazione indotta sui gruppi di omologia: $\epsilon_\star \colon H_0(X) \to H_0(P)$, questa è suriettiva perché per le proprietà funtoriali $(\epsilon \circ i)_\star = (\mathbb{I}_p)_\star = \mathbb{I}_{H_0(p)}$ e $(\epsilon \circ i)_\star = \epsilon_\star \circ i_\star$ quindi $\epsilon_\star \circ i_\star = \mathbb{I}_{H_0(p)}$, quindi:

$$\forall y \in H_0(P)$$
vale che $(\epsilon_\star \circ i_\star)(y) = y$ quind
i $\epsilon_\star(i_\star(y)) = y$

Sia $i_{\star}(y)=x\in H_0(X)$ allora $\epsilon_{\star}(x)=y$, quindi ϵ_{\star} è suriettiva. A partire da ciò posso costruire una successione esatta, infatti per ora ho:

$$H_0(X) \xrightarrow{\epsilon_{\star}} H_0(P) \longrightarrow 0$$

Per il teorema fondamentale degli omomorfismi:

$$H_0(X)/_{\operatorname{Ker}(\epsilon_{\star})} \cong \operatorname{Im}(\epsilon_{\star}) = H_0(P)$$

Se ora considero la mappa iniettiva $\alpha \colon \operatorname{Ker}(\epsilon_\star) \hookrightarrow H_0(X)$, quindi tale che $\operatorname{Im}(\alpha) = \operatorname{Ker}(\epsilon_\star)$, la successione corta è automaticamente esatta (infatti $\epsilon_\star \circ \alpha = 0$, dato che in $H_0(P) \operatorname{Ker}(\epsilon_\star)$ è ridotto al solo 0):

$$0 \longrightarrow \operatorname{Ker}(\epsilon_{\star}) \xrightarrow{\alpha} H_0(X) \xrightarrow{\epsilon_{\star}} H_0(P) \longrightarrow 0$$

Inoltre, siccome $\epsilon_\star \circ i_\star = \mathbb{I}_{H_0(p)}$, la successione spezza perché esiste una sezione i_\star , perciò $H_0(X) \cong \operatorname{Ker}(\epsilon_\star) \oplus H_0(P)$. Si ha quindi che per qualsiasi teoria omologia che soddisfa gli assiomi di Eilenberg e Steenrod (infatti ho utilizzato solo gli assiomi), e quindi in particolare per l'omologia singolare relativa, si ha che $H_0(X) \cong \operatorname{Ker}(\epsilon_\star) \oplus H_0(P)$.

Generalmente si chiama $H_0(P)$ il **gruppo dei coefficienti** di una teoria omologica e viene denotato con $\mathcal G$. Nell'omologia singolare relativa questo è $\mathbb Z$. Inoltre si definisce $\operatorname{Ker}(\epsilon_\star) = \tilde H_0(X)$ **gruppo di omologia ridotta di ordine zero**, quindi ho trovato che $H_0(X) \cong \tilde H_0(X) \oplus \mathcal G$.

Cosa sono invece gli $\tilde{H}_k(X)$? Vorrei che fossero proprio $H_k(X)$, così come nel solo nel caso dell'omologia singolare.

Proposizione 2.8.4 In qualsiasi teoria omologica di Eilenberg e Steenrod, se $\tilde{H}_k(X)$ sono i gruppi di omologia ridotta allora:

$$H_k(X)\cong egin{cases} ilde{H}_0(X)\oplus \mathcal{G} & \textit{se }k=0\ ilde{H}_k(X) & \textit{se }k
eq 0 \end{cases}$$

 $\mathit{Con}\ \epsilon \colon X \to P\ \mathit{dove}\ P = \{\ p\ \}\ \mathit{con}\ p \in X.$

Dimostrazione: Considero $F: (X, A) \rightarrow (P, P)$ con:

$$F = \begin{cases} \epsilon_X \colon X \to P \\ \epsilon_A \colon A \to P \end{cases}$$

In generale:

$$0 \longrightarrow \operatorname{Ker}(\epsilon_X) \longrightarrow H_k(X) \xrightarrow{\epsilon_{\star}} H_k(P) \longrightarrow 0$$

Per $k \geq 1$ Ker $(\epsilon_X) = H_k(X)$, in quanto per gli assiomi $H_k(P) \cong 0$ se $k \geq 1$, quindi la successione si riduce a:

$$0 \longrightarrow \operatorname{Ker}(\epsilon_X) \longrightarrow H_k(X) \longrightarrow 0$$

Mentre per k=0 ho che $H_0(X)\cong \tilde{H}_0(X)\oplus \mathcal{G}$, quindi:

$$ilde{H}_k(X) = egin{cases} H_k(X) & \operatorname{per} k \geq 1 \\ ilde{H}_0(X) \oplus \mathcal{G} & \operatorname{per} k = 0 \end{cases}$$

Questo lo posso fare anche nel caso di una coppia.

$$0 \longrightarrow \operatorname{Ker}(F_{\star}) \longrightarrow H_k(X, A) \longrightarrow H_k(p, p) \longrightarrow 0$$

E si definisce $\tilde{H}_k(X,A) = \operatorname{Ker}(F_\star)$. Calcolo $H_k(P,P)$ con P spazio formato da un solo punto in X. So che c'è una successione esatta lunga per gli assiomi:

$$\dots \longrightarrow H_k(P) \longrightarrow H_k(P) \longrightarrow H_k(P,P) \longrightarrow H_{k-1}(P) \longrightarrow \dots$$

Cioè ho posto X=P e A=P. Ma io conosco l'omologia di un punto, che è nulla per $k\geq 1$ mentre vale il gruppo dei coefficienti per k=0. Supponendo $k\geq 2$ la successione diventa:

$$0 \longrightarrow H_k(P,P) \longrightarrow 0$$

E quindi $H_k(P, P) = 0$. Mentre se k = 1 allora:

$$\dots \to H_1(P) \to H_1(P) \to H_1(P,P) \to H_0(P) \to H_0(P) \to H_0(P,P) \to 0$$

Cioè siccome $H_1(P) \cong 0$:

$$0 \longrightarrow H_1(P,P) \stackrel{i}{\longrightarrow} H_0(P) \stackrel{j}{\longrightarrow} H_0(P) \stackrel{k}{\longrightarrow} H_0(P,P) \longrightarrow 0$$

Ma quindi ho $H_0(P) \to H_0(P)$ che sarebbe $H_0(A) \to H_0(X)$ e quindi la mappa che li collega è quella indotta dall'inclusione, che per X=A=P e l'indentità, ma per la funtorialità viene mandata nell'indentità, quindi j è isomorfismo. Per l'esattezza della successione $\mathrm{Ker}(j)=\mathrm{Im}(i)$, quindi posso riscrivere la prima parte della successione come:

$$0 \longrightarrow H_1(P,P) \longrightarrow 0$$

Da cui
$$H_1(P,P)=0$$
. Similmente $\operatorname{Ker}(k)=\operatorname{Im}(j)=H_0(P)$ quindi $H_0(P,P)=0$ perché $H_0(P,P)\cong H_0(P)\big/_{\operatorname{Ker}(k)}\cong H_0(P)\big/_{H_0(P)}=0$.

Corollario 2.8.5 Se X è uno spazio topologico contraibile allora $\tilde{H}_k(X) = 0$.

Dimostrazione: Se X è contraibile allora $X \sim_H P$ cioè $\exists f \colon X \to P$ e $\exists g \colon P \to X$ continue tali che $f \circ g \sim_H \mathbb{I}_P$ e $g \circ f \sim_H \mathbb{I}_X$, quindi per la funtorialità e l'assioma dell'omotopia vale che passando a livello di omologia: $f_\star \circ g_\star = \mathbb{I}_{H_k(P)}$ e $g_\star \circ f_\star = \mathbb{I}_{H_k(X)}$ quindi f_\star e g_\star sono inversi l'una dell'altra, ma sempre per la funtorialità: $(f \circ g)_\star = (\mathbb{I}_P)_\star$ e $(g \circ f)_\star = (\mathbb{I}_X)_\star$.

$$H_k(X) \cong H_k(P) \cong egin{cases} \tilde{H}_k(X) = 0 & \text{se } k \geq 1 \\ \tilde{H}_0(X) \oplus \mathcal{G} = \mathcal{G} & \text{se } k = 0 \end{cases}$$

Ma quindi $\mathcal{G} = H_0(P) = \tilde{H}_0(X) \oplus \mathcal{G}$ e quindi $\tilde{H}_0(X) = 0$. Un secondo importantissimo corollario è l'omologia delle sfere.

2.9 Omologia delle sfere

Teorema 2.9.1 (Omologia di dischi e sfere) Siano per $n \ge 1$:

$$S^{n} = \{ \underline{x} \in \mathbb{R}^{n+1} \mid ||\underline{x}||^{2} = 1 \}$$

$$\mathcal{D}^{n} = \{ \underline{x} \in \mathbb{R}^{n} \mid ||\underline{x}||^{2} \le 1 \}$$

$$\mathcal{D}^{n}_{+} = \{ \underline{x} \in \mathbb{R}^{n+1} \mid ||\underline{x}||^{2} \le 1, x_{n} \ge 0 \}$$

Allora in una qualsiasi teoria omologica avente ${\mathcal G}$ come gruppo dei coefficienti:

$$ilde{H}_k(\mathcal{S}^n) \cong egin{cases} \mathcal{G} & \textit{se } k = n \\ 0 & \textit{se } k
eq n \end{cases}$$
 $H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong egin{cases} \mathcal{G} & \textit{se } k = n \\ 0 & \textit{se } k
eq n \end{cases}$
 $H_k(\mathcal{S}^n, \mathcal{D}^n_+) \cong egin{cases} \mathcal{G} & \textit{se } k = n \\ 0 & \textit{se } k
eq n \end{cases}$

Quindi $\tilde{H}_k(\mathcal{S}^n) \cong H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_k(\mathcal{S}^n, \mathcal{D}^n_+).$

Dimostrazione: Comincio calcolando $H_k(\mathcal{S}^0, \mathcal{D}^0_+)$. Ho $\mathcal{S}^0 = \{-1, +1\}$ e $\mathcal{D}^0 = \{+1\}$. Siccome $\mathcal{D}^0 \subseteq \mathcal{S}^0$ per l'assioma dell'esattezza esiste una successione esatta in omologia:

$$\dots \longrightarrow H_k(\mathcal{D}^0) \longrightarrow H_k(\mathcal{S}^0) \longrightarrow H_k(\mathcal{S}^0, \mathcal{D}^0) \longrightarrow H_{k-1}(\mathcal{D}^0) \longrightarrow \dots$$

Per $k \geq 2$ $H_k(\mathcal{D}^0) = H_{k-1}(\mathcal{D}^0) \cong 0$ perché \mathcal{D}^0 è un punto, quindi la successione diventa:

$$0 \longrightarrow H_k(\mathcal{S}^0) \stackrel{i}{\longrightarrow} H_k(\mathcal{S}^0, \mathcal{D}^0) \stackrel{j}{\longrightarrow} 0$$

Ma per l'assione di additività, siccome S^0 è la somma di due punti $H_k(S^0) \cong 0$, siccome i è iniettiva perché la successione è esatta ed è suriettiva perché essendo la successione esatta $\operatorname{Im}(i) = \operatorname{Ker}(j) = H_k(S^0, \mathcal{D}^0)$ allora è isomorfismo quindi anche $H_k(S^0, \mathcal{D}^0) \cong 0$. Per calcolare i casi k = 1 e k = 0 considero la successione esatta:

$$\ldots \to H_1(\mathcal{D}^0) \to H_1(\mathcal{S}^0) \to H_1(\mathcal{S}^0, \mathcal{D}^0) \to H_0(\mathcal{D}^0) \to H_0(\mathcal{S}^0) \to H_0(\mathcal{S}^0, \mathcal{D}^0) \to 0$$

Cioè siccome l'omologia di un punto è nulla per $k \neq 0$:

$$0 \longrightarrow H_1(\mathcal{D}^0, \mathcal{S}^0) \xrightarrow{i} H_0(\mathcal{D}^0) \xrightarrow{j} H_0(\mathcal{S}^0) \longrightarrow H_0(\mathcal{S}^0, \mathcal{D}^0) \longrightarrow 0$$

Siccome $\mathcal{D}^0 \hookrightarrow \mathcal{S}^0$ in quanto $\{+1\} \hookrightarrow \{-1,+1\}$ è inieittiva a livello di omologia per l'assioma di addittività $j \colon H_0(\{+1\}) \to H_0(\{-1\}) \oplus H_0(\{+1\})$ è iniettiva, quindi $\operatorname{Ker}(j) = \operatorname{Im}(i) = 0$ quindi posso riscrivere la prima parte della successione come:

$$0 \longrightarrow H_1(\mathcal{S}^0, \mathcal{D}^0) \longrightarrow 0$$

Da cui $H_1(\mathcal{S}^0, \mathcal{D}^0) = 0$ per lo stesso ragionamento di prima. Infine per definizione $H_0(\mathcal{D}^0) = \mathcal{G}$ e per l'additività $H_0(\mathcal{S}^0) = \mathcal{G} \oplus \mathcal{G}$ quindi $H_0(\mathcal{S}^0, \mathcal{D}^0) \cong \mathcal{G} \oplus \mathcal{G}/_{\mathcal{G}} \cong \mathcal{G}$. In conclusione:

$$H_k(\mathcal{S}^0, \mathcal{D}^0) \cong egin{cases} \mathcal{G} & ext{se } k = 0 \\ 0 & ext{se } k
eq 0 \end{cases}$$

Mostro che $\tilde{H}_k(\mathcal{S}^n) \cong H_k(\mathcal{D}^n, \mathcal{S}^{n-1})$. Ho che \mathcal{S}^{n-1} è il bordo di \mathcal{D}^n quindi c'è una mappa naturale di inclusione e ponendo $X = \mathcal{D}^n$ e $A = \mathcal{S}^{n-1}$ è ben definita la successione esatta lunga:

$$\dots \rightarrow H_k(\mathcal{S}^{n-1}) \rightarrow H_k(\mathcal{D}^n) \rightarrow H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \rightarrow H_{k-1}(\mathcal{S}^{n-1}) \rightarrow H_{k-1}(\mathcal{D}^n) \rightarrow H_{k-1}(\mathcal{D}^n, \mathcal{S}^{n-1}) \rightarrow \dots$$

Per $k \geq 1$ $H_k(\mathcal{D}^n) = 0$ perché \mathcal{D}^n è contraibile, quindi ho la successione:

$$0 \to H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \to H_{k-1}(\mathcal{S}^{n-1}) \to H_{k-1}(\mathcal{D}^n) \to H_{k-1}(\mathcal{D}^n, \mathcal{S}^{n-1}) \to \dots$$

Se $k \ge 2$ la successione si riduce a:

$$0 \to H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \xrightarrow{i} H_{k-1}(\mathcal{S}^{n-1}) \to 0$$

Quindi i è inieittiva e suriettiva e perciò $H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_{k-1}(\mathcal{S}^{n-1}) \cong \tilde{H}_{k-1}(\mathcal{S}^{n-1})$. Per k=1 ho la successione:

$$0 \to H_1(\mathcal{D}^n, \mathcal{S}^{n-1}) \to H_0(\mathcal{S}^{n-1}) \to H_0(\mathcal{D}^n) \to H_0(\mathcal{D}^n, \mathcal{S}^{n-1}) \to 0$$

Quindi $H_1(\mathcal{D}^n, \mathcal{S}^{n-1}) = 0$ per i soliti motivi. Ma esiste $i \colon \mathcal{S}^{n-1} \hookrightarrow \mathcal{D}^n$ iniettiva, quindi esiste $i_\star \colon H_0(\mathcal{S}^{n-1}) \to H_0(\mathcal{D}^n)$. Ma \mathcal{D}^n è contraibile quindi posso prendere come generatore un punto di \mathcal{D}^n , e ne prendo uno sul bordo, cioè in \mathcal{S}^{n-1} , quindi:

$$i_{\star} \colon H_0(\mathcal{S}^{n-1}) \to H_0(\mathcal{D}^n)$$

 $\llbracket p \rrbracket \mapsto \llbracket p \rrbracket$

Quindi $H_0(\mathcal{D}^n,\mathcal{S}^{n-1})=0$ in quanto $H_0(\mathcal{S}^{n-1})\to H_0(\mathcal{D}^n)$ è iniettiva e suriettiva e $H_0(\mathcal{D}^n,\mathcal{S}^{n-1})\cong H_0(\mathcal{D}^n)\big/_{H_0(\mathcal{S}^{n-1})}\cong 0$. In conclusione ho trovato che $H_k(\mathcal{D}^n,\mathcal{S}^{n-1})=0$ per $k\in\{0,1\}$. Mi rimane da verificare l'ultimo, osservo intanto che $\mathcal{D}^n_+\simeq\mathcal{D}^n$, quindi in quello che segue sostanzialmente ometto il +.

Considero la successione esatta ($\mathcal{D}^n \subseteq \mathcal{S}^n$):

$$\dots \longrightarrow H_k(\mathcal{D}^n) \longrightarrow H_k(\mathcal{S}^n) \longrightarrow H_k(\mathcal{S}^n, \mathcal{D}^n) \longrightarrow H_{k-1}(\mathcal{D}^n) \longrightarrow \dots$$

Per $k \geq 2$ ho che $H_k(\mathcal{D}^n) \cong 0$ e che $H_{k-1}(\mathcal{D}^n) \cong 0$ quindi la successione diventa:

$$0 \longrightarrow H_k(\mathcal{S}^n) \longrightarrow H_k(\mathcal{S}^n, \mathcal{D}^n) \longrightarrow 0$$

Quindi $H_k(\mathcal{S}^n, \mathcal{D}^n) \cong H_k(\mathcal{S}^n) \cong \tilde{H}_k(\mathcal{S}^n)$ per $k \geq 2$. Per k = 1 la successione è:

$$0 \to H_1(\mathcal{S}^n) \to H_1(\mathcal{S}^n, \mathcal{D}^n) \to H_0(\mathcal{D}^n) \to H_0(\mathcal{S}^n) \to H_0(\mathcal{S}^n, \mathcal{D}^n) \to 0$$

Ma $H_0(X)$ conta le componenti connesse per archi di X quindi $H_0(\mathcal{D}^n) \cong H_0(\mathcal{S}^n)$ e per lo stesso motivo di prima $H_0(\mathcal{S}^n, \mathcal{D}^n) \cong 0$

$$H_k(\mathcal{S}^n, \mathcal{D}^n) = \begin{cases} H_k(\mathcal{S}^n) & \text{se } k \ge 1\\ 0 & \text{se } k = 0 \end{cases}$$

Rimane da vedere come si comportano i gruppi di omologia $\tilde{H}_k(\mathcal{S}^n)$ con $k\geq 1$. Per n=0 è noto perché sono \mathcal{S}^0 sono due punti, per k=0 anche perché sono connessi per archi, infine so che: $H_k(\mathcal{S}^n)\cong \tilde{H}_k(\mathcal{S}^n)$ per $k\geq 1$, ma anche che $H_k(\mathcal{S}^n,\mathcal{D}^n)\cong H_k(\mathcal{S}^n)$, se mostro che $H_p(\mathcal{S}^n,\mathcal{D}^n)\cong H_p(\mathcal{D}^n,\mathcal{S}^{n-1})$ allora $H_k(\mathcal{S}^n,\mathcal{D}^n)\cong H_k(\mathcal{D}^n,\mathcal{S}^{n-1})$. Ma ho mostrato che $H_k(\mathcal{D}^n,\mathcal{S}^{n-1})\cong H_{k-1}(\mathcal{S}^{n-1})$, quindi posso procedere per induzione:

$$\tilde{H}_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^n, \mathcal{D}^n) \cong H_k(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_{k-1}(\mathcal{S}^{n-1}) \cong \dots$$

Per far vedere che $H_p(\mathcal{S}^n) \cong H_p(\mathcal{D}^n, \mathcal{S}^{n-1})$ uso l'escissione: considero U intorno opportuno del polo nord di \mathcal{S}^n , per l'escissione:

$$H_p(\mathcal{S}^n, \mathcal{D}^n) \cong H_p(\mathcal{S}^n - U, \mathcal{D}^n - U)$$

Per l'equivalenza omotopica $H_p(\mathcal{S}^n - U, \mathcal{D}^n - U) \cong H_p(\mathcal{D}^n, \mathcal{S}^{n-1})$, in pratica deformo il buco facendolo retrarre.

Corollario 2.9.2 *Se il gruppo dei coefficienti è* \mathbb{Z} :

$$H_k(\mathcal{S}^n) \cong egin{cases} \mathbb{Z} & \textit{se } k \in \{\,0, n\,\} \ 0 & \textit{se } k
otin \{\,0, n\,\} \end{cases}$$

Questo risultato ha numerose conseguenze, infatti ho trovato uno strumento più fine del gruppo fondamentale che riesce a distinguere spazi diversi.

Corollario 2.9.3 $S^n \simeq S^m$ se e solo se n=m.

Dimostrazione: Se n=m vale che $\mathcal{S}^n=\mathcal{S}^m$ quindi in particolare $\mathcal{S}^n\simeq\mathcal{S}^m$ con la mappa identità. Assumo $n\neq m$ e senza perdita di generalità pongo n>m.

Per assurdo $S^n \simeq S^m$, quindi esiste un omomorfismo $F: S^n \xrightarrow{\sim} S^m$, quindi esiste anche l'omomorfismo inverso $G: S^m \xrightarrow{\sim} S^n$. Quindi esistono anche:

$$F_{\star}: H_k(\mathcal{S}^n) \to H_k(\mathcal{S}^m)$$
 e $G_{\star}: H_k(\mathcal{S}^m) \to H_k(\mathcal{S}^n)$

Ma $F \circ G = \mathbb{I}_{S^n}$ e $G \circ F = \mathbb{I}_{S^m}$ perché sono omeomorfismi, ma utilizzando la funtorialità si trova quindi che:

$$F_{\star} \circ G_{\star} = \mathbb{I}_{H_k(\mathcal{S}^m)}$$
 e $G_{\star} \circ F_{\star} = \mathbb{I}_{H_k(\mathcal{S}^n)}$

Da cui si deduce che F_{\star} e G_{\star} sono continue e sono inverse l'una dell'altra. Vale quindi che:

$$H_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^m) \ \forall k \ge 0$$

Se vale per ogni k in particolare vale per k=n, cioè:

$$H_n(\mathcal{S}^n) = H_n(\mathcal{S}^m)$$

Ma $H_n(\mathcal{S}^n) \cong \mathbb{Z}$ e $H_n(\mathcal{S}^m) \cong 0$ da cui $\mathbb{Z} \cong 0$, che è assurdo.

Corollario 2.9.4 (Invarianza topologica della dimensione) $\mathbb{R}^n \simeq \mathbb{R}^m$ se e solo se n=m.

Come si è visto non si riesce a dimostrare questo corollario utilizzano solo il gruppo fondamentale. **Dimostrazione**: Per assurdo esiste un omomorfismo $f\colon \mathbb{R}^n \stackrel{\sim}{\longrightarrow} \mathbb{R}^m$ con n>m>2. Con i vincolo imposti su m e n gli spazi sono contraibili, quindi il gruppo fondamentale è in entrambi i casi banale. Togliendo un punto $p\in \mathbb{R}^n$ e $f(p)\in \mathbb{R}^m$, e restringendo f in modo da ottenere l'omomorfismo $f'\colon \mathbb{R}^n-\{\,p\,\}\stackrel{\sim}{\longrightarrow} \mathbb{R}^m-\{\,f(p)\,\}$. Si sa inoltre che per $s\geq 2$ vale che $\mathbb{R}^s-\{\,q\,\}\simeq \mathcal{S}^{s-1}\times \mathbb{R}$, infatti è sufficiente mandare a 0 il punto q con una traslazione (che è certamente un omomorfismo) e quindi si ha:

$$\mathbb{R}^{k} - \{q\} \to \mathcal{S}^{k-1} \times \mathbb{R}^{+} \simeq \mathcal{S}^{k-1} \times \mathbb{R}$$
$$\underline{x} \mapsto \left(\underline{x}, \frac{\underline{x}}{||\underline{x}||}\right)$$

Quindi:

$$\mathbb{R}^n - \{p\} \simeq \mathbb{R}^m - \{f(p)\} \iff \mathcal{S}^{n-1} \times \mathbb{R} \simeq \mathcal{S}^{m-1} \times \mathbb{R}$$

Si ha la tentazione di eliminare $\mathbb R$ dalla precedente relazione, ma questo non si può fare come mostrano alcuni casi molto patologici. Tuttavia è possibile passare alla omotopia sapendo che $\mathcal S^k \times \mathbb R \sim \mathcal S^k$, da cui $\mathcal S^{n-1} \sim \mathcal S^{m-1}$. Ma l'omologia è invariante omotopico, cioè $H_k(\mathcal S^{n-1}) \cong H_k(\mathcal S^{m-1})$, utilizzando il trucco di prima scelgo k=n-1 e quindi:

$$H_{n-1}(\mathcal{S}^{n-1}) \cong H_{n-1}(\mathcal{S}^{m-1}) \iff \mathbb{Z} \cong 0$$

Che è assurdo. □

Corollario 2.9.5 S^{n-1} non è un retratto di deformazione di \mathcal{D}^n per $n \geq 2$

Dimostrazione: Si ricorda che:

$$\mathcal{D}^n = \{ \underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| \le 1 \} \quad \mathcal{S}^{n-1} = \partial \mathcal{D}^n = \{ \underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| = 1 \}$$

Chiaramente esiste $i: \mathcal{S}^{n-1} \hookrightarrow \mathcal{D}^n$.

Definizione 2.9.6 Uno spazio topologico Y si dice **retratto di deformazione** di un altro spazio topologico X tale che $Y \hookrightarrow X$ se esiste una funzione continua $r \colon X \to Y$ che inverte a meno di omotopia la mappa di inclusione $i \colon Y \to X$, cioè tale che soddisfa:

- 1. $r: X \to Y$ continua
- 2. $i \circ r \sim \mathbb{I}_X$
- 3. $r \circ i = \mathbb{I}_V$

Una mappa che soddisfa queste condizioni è detta retrazione.

Suppongo per assurdo che S^{n-1} è un retratto di deformazione di D^n , cioè che esiste una retrazione r. Passando all'omologia:

$$i_{\star} \colon H_{k}(\mathcal{S}^{n-1}) \to H_{k}(\mathcal{D}^{n})$$

$$r_{\star} \colon H_{k}(\mathcal{D}^{n}) \to H_{k}(\mathcal{S}^{n-1})$$

$$(i \circ r)_{\bullet} = (\mathbb{I}_{\mathcal{D}^{n}})_{\star} \text{ e } (r \circ i)_{\bullet} = (\mathbb{I}_{\mathcal{S}^{n-1}})_{\star}$$

Quindi:

$$i_{\star} \circ r_{\star} = \mathbb{I}_{H_k(\mathcal{D}^n)} e r_{\star} \circ i_{\star} = \mathbb{I}_{H_k(\mathcal{S}^{n-1})} \ \forall k \in \mathbb{N}$$

In particolare considero k = n - 1:

$$i_{\star} \colon H_n - 1(\mathcal{S}^{n-1}) \to H_n - 1(\mathcal{D}^n)$$

 $r_{\star} \colon H_n - 1(\mathcal{D}^n) \to H_n - 1(\mathcal{S}^{n-1})$

Cioè: $i_{\star} : \mathbb{Z} \to 0$. Considero un generatore α di $H_{n-1}(\mathcal{S}^{n-1}) \cong \mathbb{Z}$, cioè tale che $\langle \alpha \rangle = H_{n-1}(\mathcal{S}^{n-1})$ allora $i_{\star}(\alpha) = 0$ quindi $r_{\star} \circ i_{\star} = 0$, ma $(r \circ i)_{\star} = \mathbb{I}_{\mathcal{S}^{n-1}_{\star}}$ quindi significherebbe $\mathbb{I}_{\mathcal{S}^{n-1}_{\star}}(\alpha) = 0$, cioè che $\alpha = 0$, che è assurdo perché $\mathbb{Z} \neq \langle 0 \rangle$.

Teorema 2.9.7 (Teorema del punto fisso di Brouwer) Ogni funzione continua $g: \mathcal{D}^n \to \mathcal{D}^n$ con $n \geq 2$ ammette almeno un punto fisso in \mathcal{D}^n , cioè:

$$\exists \underline{x_o} \in \mathcal{D}^n \mid g(\underline{x_0}) = \underline{x_0}$$

Dimostrazione: Per assurdo g non ammette punto fisso cioè esisto $\underline{x} \in \mathcal{D}^n$ tale che $g(\underline{x}) \neq \underline{x}$. Sicuramente tuttavia $g(\underline{x}) \in \mathcal{D}^n$. Considero la retta l passante per \underline{x} e $g(\underline{x})$. Questa retta interseca il bordo di \mathcal{D}^n in due punti $\{p_1, p_2\}$:

$$l \cap \partial \mathcal{D}^n = l \cap \mathcal{S}^{n-1} = \{ p_1, p_2 \}$$

Definisco la mappa $r\colon \mathcal{D}^n\to \partial\mathcal{D}^n=\mathcal{S}^{n-1}$ tale che associ ad ogni punto del disco il punto di intersezione della retta $l_{\underline{x}}$ che gli sta più vicino (infatti in \mathbb{R}^n è ben definita una nozione di distanza). La retta $l_{\underline{x}}$ è ben definita in quanto per due punti distinti (e per ipotesi $g(\underline{x})\neq\underline{x}$) passa una e una sola retta.

Figura 2.11: Schema per n=2

Esercizio 4 Dimostrare che r è continua.

Ho una mappa di inclusione naturale:

$$i: \mathcal{S}^{n-1} \to \mathcal{D}^n$$

$$\underline{x} \mapsto \underline{x}$$

Se dimostro che r è una retrazione trovo un assurdo per il corollario precedentemente dimostrato. Devo verificare $r \circ i = \mathbb{I}_{\mathcal{S}^{n-1}}$ e $i \circ r \sim \mathbb{I}_{\mathcal{D}^n}$. La prima uguaglianza è certamente vera perché se $\underline{x} \in \partial \mathcal{D}^n$ allora l'intersezione del bordo del disco che gli sta più vicina corrisponde a \underline{x} stesso. Costruisco esplicitamente una relazione di omotopia per mostrare la seconda: Siccome \mathcal{D}^n è convesso è ben definita $G(t,\underline{x}) = (1-t)\underline{x} + tr(\underline{x})$ con $t \in [0,1]$. Questa è una buona omotopia in quanto $\forall t,\underline{x}$:

- G è continua
- $G(t,\underline{x}) \in \mathcal{D}^n$
- G(0,X) = x
- G(1,X) = r(x)

Quindi r è retrazione ma questo è assurdo.

2.9.1 Teoria del grado

Definizione 2.9.8 Ad ogni applicazione continua $\varphi \colon \mathcal{S}^n \to \mathcal{S}^n$ continua è possibile associare in modo univoco un numero intero, questo è il **grado**:

$$\varphi_{\star} \colon H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$$

 $\alpha \mapsto \deg(\varphi)\alpha$

con α generatore.

Si ha che $H_n(\mathcal{S}^n)\cong \mathbb{Z}$, quindi $H_n(\mathcal{S}^n)$ è il gruppo libero di rango 1 generato da un singolo n-ciclo che non è un bordo, cioè esiste una mappa $f\colon \mathbb{Z}\to H_n(\mathcal{S}^n)$ tale che $f(1)=\alpha, \alpha$ generatore, in questo modo $H_n(\mathcal{S}^n)=\langle \alpha\rangle$. Considero $\varphi\colon \mathcal{S}^n\to \mathcal{S}^n$ continua con $n\geq 1$, questa induce $\varphi_\star\colon H_n(\mathcal{S}^n)\to H_n(\mathcal{S}^n)$. L'azione di φ_\star si calcola facilmente, infatti sia $c\in H_n(\mathcal{S}^n)$ allora $c=p\alpha$ con $p\in \mathbb{Z}$, quindi:

$$\varphi_{\star}(c) = \varphi_{\star}(p\alpha) = \varphi_{\star}(\underbrace{\alpha + \alpha + \alpha + \ldots}_{|\mathbf{p}| \, \mathrm{volte}}) = \underbrace{\varphi_{\star}(\alpha) + \varphi_{\star}(\alpha) + \ldots}_{|\mathbf{p}| \, \mathrm{volte}} = p\varphi_{\star}(\alpha)$$

Ma $\varphi_{\star}(\alpha) \in H_n(\mathcal{S}^n)$ quindi si deve poter scrivere come multiplo di α : $\varphi_{\star}(\alpha) = d\alpha$ da cui: $\varphi_{\star}(c) = pd\alpha = dc$ con $d \in \mathbb{Z}$.

Osservazione 2.9.9 Questo numero d viene fuori dall'immagine di un generatore, ma non dipende dalla scelta del generatore, infatti:

Dimostrazione: Sia β un altro generatore, siccome α è un generatore si può scrivere $\beta = m\alpha$ con $m \in \mathbb{Z}$. Pongo come notazione:

$$\varphi_{\star}(\beta) = d(\beta)\beta \quad \varphi_{\star}(\alpha) = d(\alpha)\alpha$$

Allora:

$$d(\beta)\beta = \varphi_{\star}(\beta) = m\varphi_{\star}(\alpha) = md(\alpha)\alpha = d(\alpha)\beta$$

Da cui $d(\beta)\beta=\beta d(\alpha)$ cioè $(d(\beta)-d(\alpha))$ $\beta=0$, siccome questo vale per ogni α e β allora $d(\alpha)=d(\beta)$.

Esempio 2.9.10 (n=1) Ad esempio per n=1 e $p \in \mathbb{N}$ e la mappa

$$\varphi \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$z \mapsto z^p$$

Vale che deg $(\varphi) = p$, infatti prendo un generatore di S^1 :

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i t}$$

Applicando la mappa:

$$\varphi \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i pt}$$

Cioè $\varphi \circ \sigma = \sigma \star \sigma \star \cdots = p\sigma$ volte, e quindi $\deg(\varphi) = p$.

Proposizione 2.9.11 Siano $f, g: \mathcal{S}^n \to \mathcal{S}^n$ mappe continue, allora $\deg(g \circ f) = \deg(f) \deg(g)$.

Dimostrazione: Per la funtorialità $(g \circ f)_{\star} = g_{\star} \circ f_{\star}$ quindi:

$$(g \circ f)_{\star}(\alpha) = (g_{\star} \circ f_{\star})(\alpha) \Rightarrow g_{\star}(f_{\star}(\alpha)) = g_{\star}(\deg(f)\alpha) = \deg(f)g_{\star}(\alpha) = \deg(f)\deg(g)\alpha$$

Quindi:

$$\deg(f)\deg(g)\alpha = (g \circ f)_{\star}(\alpha) = \deg(g \circ f)\alpha$$

Siccome α è generatore: $\deg\left(g\circ f\right)=\deg\left(f\right)\deg\left(g\right)$.

Voglio usare la teoria del grado per un'applicazione del teorema della palla pelosa.

Proposizione 2.9.12 Considero riflessione rispetto al sottospazio $x_{n+1} = 0$ in \mathbb{R}^{n+1}

$$\rho \colon \mathcal{S}^n \to \mathcal{S}^n$$
$$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, -x_{n+1})$$

Il grado di questa applicazione è -1.

Dimostrazione: La dimostrazione è per induzione. Per n=1.

$$\rho \colon \mathcal{S}^1 \to \mathcal{S}^1$$
$$(x_0, x_1) \mapsto (x_0, -x_1)$$

Considero il generatore σ :

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$

$$t \mapsto (\cos(2\pi t), \sin(2\pi t))$$

Quindi:

$$\rho \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \mapsto (\cos(2\pi t), -\sin(2\pi t)))$$

Ma:

$$(\cos(2\pi t), -\sin(2\pi t))) = (\cos(-2\pi t), \sin(-2\pi t))) = (\cos(2\pi (1-t)), \sin(2\pi (1-t))))$$

Quindi $\rho \circ \sigma = \bar{\sigma} = -\sigma$ e quindi il grado è -1.

Suppongo che il risultato sia vero per \mathcal{S}^{n-1} mostro che è vero anche per \mathcal{S}^n . Ho dimostrato che

$$\tilde{H}_p(\mathcal{S}^n) \cong H_p(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_p(\mathcal{S}^n, \mathcal{D}^n)$$

Quindi considerando anche che ρ induce una mappa ρ_{\star} a livello di omologia:

$$H_n(\mathcal{S}^n) \xrightarrow{\rho_{\star}} H_n(\mathcal{S}^n)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$H_n(\mathcal{D}^n, \mathcal{S}^{n-1}) \qquad \qquad H_n(\mathcal{D}^n, \mathcal{S}^{n-1})$$

Ho anche che $H_n(\mathcal{D}^n, \mathcal{S}^{n-1}) \cong H_{n-1}(\mathcal{S}^{n-1})$, come ho dimostrato calcolando l'omologia delle sfere, quindi il diagramma diventa:

$$H_n(\mathcal{S}^n) \xrightarrow{\rho_{\star}} H_n(\mathcal{S}^n)$$

$$\downarrow^{\cong} \qquad \downarrow^{\cong}$$

$$H_{n-1}(\mathcal{S}^{n-1}) \xrightarrow{\rho_{\star}^{(n-1)}} H_{n-1}(\mathcal{S}^{n-1})$$

Ma per ipotesi induttiva per n-1 il grado è -1, quindi anche per n il grado è -1.

Considero l'applicazione antipodale che è quella che scambia di segno tutte le componenti:

$$A \colon \mathbb{R}^n \to \mathbb{R}^n$$
$$(x_1, \dots, x_n) \mapsto (-x, \dots, -x_n)$$

Questa è continua e vale che $A^2=\mathbb{I}_{\mathbb{R}^n}$. Definisco per $n\geq 2$ la restrizione della trasformazione antipodale su \mathcal{S}^{n-1} : $a=A|_{\mathcal{S}^{n-1}}$, vale che $a\colon \mathcal{S}^{n-1}\to \mathcal{S}^{n-1}$, infatti $\mathrm{Im}(a)=\mathcal{S}^{n-1}$. Quanto vale $\mathrm{deg}\,(a)$? Scrivo a come composizione di riflessioni:

$$a = \rho_n \circ \cdots \circ \rho_1$$

Per il risultato appena dimostrato:

$$\deg(a) = \deg(\rho_n \circ \cdots \circ \rho_1) = \deg(\rho_n) \deg(\rho_{n-1}) \ldots \deg(\rho_1) = (-)^n$$

Quindi $deg(a) = (-)^n$ e perciò cambia se n è pari o dispari.

Corollario 2.9.13 La mappa antipodale non è omotopicamente equivalente all'identità su S^n su n è pari.

Dimostrazione: Se le due applicazioni fossero omotope varrebbe che $a_{\star} = (\mathbb{I}_{\mathcal{S}^n})_{\star}$ quindi:

$$deg(a) = deg(\mathbb{I}_{S^n}) = (-)^{n+1} = 1$$

Questo è vero solo se n+1 è pari, ma se n è pari n+1 non può esserlo.

Ciò non dimostra che per n pari invece le due applicazioni sono omotope. Questa è una dimostrazione avanzata che richiede i gruppi di omotopia superiori con i quali si dimostra che se due applicazioni definite su S^n hanno lo stesso grado allora sono omotope.

Corollario 2.9.14 Sia $f: \mathcal{S}^n \to \mathcal{S}^n$ una mappa continua con n pari, allora esiste almeno un punto $\underline{x_0} \in \mathcal{S}^n$ tale che $f(\underline{x_0}) = \pm x_0$.

Dimostrazione: Per assurdo $f(x) \neq \pm x \ \forall x \in \mathcal{S}^n$. Sia $F: \mathcal{S}^n \times I \to \mathcal{S}^n$ con:

$$F(\underline{x},t) = \frac{tf(\underline{x}) + (1-t)\underline{x}}{||tf(\underline{x}) + (1-t)\underline{x}||}$$

 $\begin{array}{l} \forall \underline{x}, t \text{ vale che } F(\underline{x}, t) \in \mathcal{S}^n. \text{ La norma al denominatore non \`e mai nulla per ipotesi, infatti}\\ ||tf(\underline{x}) + (1-t)\underline{x}|| = 0 \text{ significa che } tf(\underline{x}) = (1-t)\underline{x}, \text{ quindi se } t = 0 \text{ allora } 0 = -\underline{x} \text{ ma } \underline{x} = 0 \not\in \mathcal{S}^n, \text{ se } t \neq 0 \text{ allora } f(\underline{x}) = \left(\frac{t-1}{t}\right)\underline{x}, \text{ ma } \underline{x}, f(\underline{x}) \in \mathcal{S}^n \text{ quindi } ||f(\underline{x})|| = ||\underline{x}|| = 1 \text{ equindi } 1 = \left|\frac{t-1}{t}\right|, \text{ ma } t \in (0,1], \text{ quindi non \`e possibile trovare } t. \end{array}$

Inoltre $F(\underline{x},0)=\underline{x}$ e $F(\underline{x},1)=f(\underline{x})$ quindi F è una relazione di omotopia tra f e l'identità.

Mostro che f è anche omotopa all'applicazione antipodale, così per la transitività della relazione di omotopia trovo l'assurdo.

Si definisce $G \colon \bar{\mathcal{S}}^n \times I \to \mathcal{S}^n$:

$$G(\underline{x},t) = \frac{-t\underline{x} + (1-t)f(\underline{x})}{||-t\underline{x} + (1-t)f(\underline{x})||}$$

Con i medesimi ragionamenti si trova che $\forall \underline{x}, t$ vale che $G(\underline{x}, t) \in \mathcal{S}^n$, e inoltre $G(\underline{x}, 0) = f(\underline{x})$ e $G(\underline{x}, 1) = -\underline{x}$ quindi G realizza l'omotopia con l'applicazione antipodale.

2.9.2 Escissione e omotopia

Dimostro che l'omologia singolare soddisfa gli assiomi verificando quelli che mi mancano che sono l'escissione e l'omotopia.

Teorema 2.9.15 Sia X uno spazio topologico, e A, B suoi sottospazi topologici con la topologia indotta tali che $B \subseteq A \subseteq X$ e $\bar{B} \subseteq \operatorname{int}(A)$, allora è possibile escindere il sottoinsieme B da A e da X, cioè l'inclusione $i \colon (X - B, A - B) \hookrightarrow (X, A)$ induce un isomorfismo a livello di omologia $i_\star \colon H_k(X - B, A - B) \xrightarrow{\sim} H_k(X, A)$.

Dimostrazione: Sia $\mathcal{U} = \{A, X - B\}$ un ricoprimento per X (infatti $X = A \cup X - B$). Considero le k-catene singolari in A $S_k(A)$, le k-catene singolari in X - B $S_k(X - B)$ e definisco $S_k^{\mathcal{U}}(X)$ il sottocomplesso generato dai simplessi singolari $\sigma \colon \Delta_k \to X$ tali che σ sia un \mathcal{U} -piccolo.

Definizione 2.9.16 Un simplesso singolare in X si dice \mathcal{U} -piccolo se esiste una suddivisione baricentrica di Δ_k tale che abbia immagine in U_α , dove $\mathcal{U} = \bigcup_\alpha U_\alpha$.

Definizione 2.9.17 La definizione di **suddivisione baricentrica** è piuttosto tecnica e noiosa, ma l'idea fondamentale è quella di spezzettare il simplesso a partire dal suo baricentro (che sempre univocamente determinabile) in tanti simplessi tanto piccoli da essere completamente contenuti negli insiemi del ricoprimento.

Sostanzialmente $S_k^{\mathcal{U}}(X)$ sono le catene somme di simplessi completamente contenuti in uno degli U_{α} che formano il ricoprimento.

Esercizio 5 Dimostrare che $X = int(A) \cup int(X - B)$.

Sostanzialmente è quindi possibile prendere insiemi aperti per formare il ricoprimento \mathcal{U} , infatti se A e/o X-B non fossero aperti potrei considerare il ricoprimento $\mathcal{U}=\{\operatorname{int}(A),\operatorname{int}(X-B)\}$. La dimostrazione del teorema di escissione si basa ora su alcune assunzioni di natura algebrica.

Osservazione 2.9.18 Vale che $S_k^{\mathcal{U}}(X) = S_k(A) + S_k(X - B)$. L'operazione di somma è ben definita perché i complessi sono \mathbb{Z} -moduli. Per mostrare che questa asserzione è vera la verifico sui generatori $\sigma \colon \Delta_k \to X$. Per definizione di $S_k^{\mathcal{U}}(X)$ se $\sigma \in S_k^{\mathcal{U}}(X)$ o $\sigma \in S_k(A)$ oppure $\sigma \in S_k(X - B)$, quindi $S_k^{\mathcal{U}}(X) \subseteq S_k(A) + S_k(X - B)$. Inoltre se $\sigma_1 \colon \Delta_1 \to A$ e $\sigma_2 \colon \Delta_k \to X - B$ allora $\sigma_1 + \sigma_2 \colon \Delta_k \to X$ e naturalmente $\sigma_1 + \sigma_2 \in S_k^{\mathcal{U}}(X)$, quindi vale l'inclusione e quindi vale l'uguaglianza.

Osservazione 2.9.19 (Terzo teorema degli omomorfismi) $Vale\,che\,S_k(A-B)=S_k(A)\cap S_k(X-B),\,questo\,\grave{e}\,ovvio.$

Figura 2.12: Situazione

Osservazione 2.9.20 Vale che:

$$S_k(X-B)/A-B \cong S_k^{\mathcal{U}}(X)/S_k(A)$$

Infatti ...

Osservazione 2.9.21 Vale che:

$$S_k(X-B) \xrightarrow{\qquad} S_k(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_k(X-B)/S_k(A-B) \xrightarrow{\qquad} S_k(X)/S_k(A)$$

Quindi usando le osservazioni precedenti è ben definito il diagramma:

Passando all'omologia della coppia:

$$H_p(X-B,A-B) \xrightarrow{\cong} H_p^{\mathcal{U}}(X,A)$$

$$H_p(X,A)$$

Per dimostrare l'escissione bisogna mostrare che φ è un isomorfismo, e questo può essere ottenuto mostrando che ψ è isomorfismo (così sarebbe φ composizione di isomorfismi), cioè devo dimostrare che $H_p^{\mathcal{U}}(X,A) \cong H_p(X,A)$.

Questo risultato dipende da altre due osservazioni:

Osservazione 2.9.22 Se X è uno spazio topologico e $\mathcal{U} = \{U_{\alpha}\}$ un suo ricoprimento di aperti allora $H_p^{\mathcal{U}}(X) \cong H_p(X)$.

A questo punto voglio passare all'omologia relativa. Considero $\mathcal{U} \cap A = \{U_{\alpha} \cap A\}$, questo è un ricoprimento aperto di A. Definisco:

$$S_k^{\mathcal{U}}(X,A) = \frac{S_k^{\mathcal{U}}(X)}{S_k^{\mathcal{U} \cap A}(A)}$$

Ho quindi la successione esatta corta:

$$0 \longrightarrow S_{k}^{\mathcal{U} \cap A}(A) \longrightarrow S_{k}^{\mathcal{U}}(X) \longrightarrow S_{k}^{\mathcal{U}}(X,A) \longrightarrow 0$$

Ma c'è anche la successione esatta corta:

$$0 \longrightarrow S_k(A) \longrightarrow S_k(X) \longrightarrow S_k(X,A) \longrightarrow 0$$

Quindi è ben definita la mappa tra successioni corte:

$$0 \longrightarrow S_k^{\mathcal{U} \cap A}(A) \longrightarrow S_k^{\mathcal{U}}(X) \longrightarrow S_k^{\mathcal{U}}(X,A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S_k(A) \longrightarrow S_k(X) \longrightarrow S_k(X,A) \longrightarrow 0$$

Queste successioni esatte corte ne inducono una esatta lunga in omologia:

$$\dots \to H_{i}^{\mathcal{U} \cap A}(A) \to H_{i}^{\mathcal{U}}(X) \to H_{i}^{\mathcal{U}}(X,A) \to H_{i_{1}}^{\mathcal{U} \cap A}(A) \to H_{i_{1}-1}^{\mathcal{U}}(X) \to \dots$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow \cong$$

$$\dots \to H_{i}(A) \longrightarrow H_{i}(X) \to H_{i}(X,A) \longrightarrow H_{i_{1}}(A) \longrightarrow H_{i-1}(X) \to \dots$$

In queste condizioni si può applicare il lemma dei cinque con il quale si trova immediatamente che $H_p^{\mathcal{U}}(X,A) \cong H_p(X,A)$.

Lemma 2.9.23 (Lemma dei cinque) Considerato il seguente diagramma formato da successioni esatte corte in cui ogni quadrato è commutativo:

Se $\alpha, \beta, \delta, \epsilon$ sono isomorfismi allora anche γ lo è.

Dimostrazione: [MANCA LA PROVA (HATCHER 129)]

Ora verifico l'assioma di omotopia. Riepilogo alcuni concetti: Siano X,Y spazi topologici e A,B sottospazi topologici di X e Y rispettivamente, siano $f_0\colon (X,A)\to (Y,B)$ e $f_1\colon (X,A)\to (Y,B)$ mappe continue con $f_0(A)\subseteq B$ e $f_1(A)\subseteq B$, f_0 e f_1 si dicono omotopicamente equivalenti se esiste una funzione continua $F\colon I\times X\to Y$ tale che $\forall x\in X$ $F(0,x)=f_0(x), F(1,x)=f_1(x)$ e $\forall t\in I$ $F(t,a)\in B$.

Teorema 2.9.24 Siano X,Y spazi topologici e A,B sottospazi topologici rispettivamente di X e Y, e $f_0, f_1 \colon (X,A) \to (Y,B)$ funzioni continue omotope, allora le mappe indotte da queste funzioni sui gruppi di omologia coincidono, cioè $(f_0)_\star = (f_1)_\star$, con $(f_0)_\star, (f_1)_\star \colon H_l(X,A) \to H_k(Y,B)$.

Dimostrazione: L'intervallo I è omeomorfo al simplesso standard Δ_1 , introducendo $\epsilon_1 \colon \Delta_0 \to I$ e $\epsilon_0 \colon \Delta_0 \to I$ definiti da: $\epsilon_i(e_0) = i$ con $i \in \{0,1\}$, allora il bordo dell'intervallo è $\partial I = \epsilon_1 - \epsilon_0$. Chiamo I con abuso di notazione il simplesso che manda Δ_1 in I, Sia $c \in S_q(X)$, cioè $c \in S_q(X)$ allora $I \times c \in S_{q+1}(I \times X)$, infatti

$$\begin{split} I \times x \colon \Delta_1 \times \Delta_1 \to I \times X \\ (t, x) \mapsto (I(t), c(x)) \end{split}$$

Il bordo di questa catena è:

$$\partial(I \times c) = \sum_{i=0}^{q} (-1)^{i+1} (I \times c)^{(i+1)} = (I \times C)^{(0)} - (I \times C)^{(1)} + \dots$$

Osservo che: [FIGURA]

$$= \epsilon_1 \times c - \epsilon_0 \times c - I \times \partial c$$

Definizione 2.9.25 Si definisce l'**operatore prisma** definendo la sua azione sui simplessi singolari e poi estendendo per linearità:

$$D \colon S_q(X) \to S_{q+1}(X)$$
$$c \mapsto I \times c$$

Esercizio 6 Verificare che l'operatore prisma è un omomorfismo.

Questo operatore sostanzialmente prende un simplesso e restituisce il prisma in figura. Per quanto detto sopra vale che:

$$\partial \circ D(c) + D \circ \partial(c) = \partial(I \times c) + I \times \partial c = \epsilon_1 \times c - \epsilon_0 \times c - I \times \partial c + I \times \partial c$$

Cioè:

$$\partial \circ D(c) + D \circ \partial(c) = \epsilon_1 \times x - \epsilon_0 \times c$$

Nella figura questo sono la faccia superiore e inferiore del prisma. Si definiscono le sezioni del prisma, con $t \in I$:

$$\eta_t \colon X \to I \times X$$

$$x \mapsto (t, x)$$

Le sezioni a t=0 e a t=1 (e anche le altre, ma non interessano) inducono una mappa sulle catene:

$$(\eta_i)_{\sharp} \colon S_k(X)S_k(I \times X)$$

 $c \mapsto \eta_i \circ c$

Ma $(\eta_i \circ c)(x) = (i, c(x)) = \epsilon_i(c)$, quindi $\partial \circ D(c) + D \circ \partial(c) = (\eta_1)_\sharp - (\eta_0)_\sharp$. Considero la relazione di omotopia $F \colon I \times X \to Y$, per definizione vale che $F(i,x) = f_i(x)$, e quindi $(F \circ \eta_i)(x) = f_i(x)$, cioè $F \circ \eta_i = f_i$. Essendo una funzione continua F induce una mappa sulle catene di simplessi: $F_\sharp \colon S_k(I \times X, I \times A) \to S_k(Y, B)$.

Considero $D \colon S_q(X,A) \to S_{q+1}(I \times X,I \times A)$, posso definire $G = F_\sharp \circ D$, questo è un omomorfismo tra $S_k(X,A)$ e $S_k(Y,B)$ in quanto composizione di omomorfismi. Sia $c \in S_q(X,A)$ allora:

$$\partial \circ G(c) = \partial (F_{\sharp} \circ D)(c)$$
$$G \circ \partial (c) = (F_{\sharp} \circ D)(\partial c)$$

 F_{\sharp} è un'applicazione tra complessi e si verifica che una chain map, cioè i quadrati che determina sono commutativi ($F_{\sharp} \circ \partial = \partial \circ F_{\sharp}$). In questo modo

$$\partial (F_{\sharp} \circ D)(c) + (F_{\sharp} \circ D)(\partial c) = F_{\sharp} \circ \partial \circ D(c) + F_{\sharp} \circ D \circ \partial(c) =$$

$$= F_{\sharp} \circ (\partial \circ D(c) + D \circ \partial(c)) = F_{\sharp} \circ ((\eta_{1})_{\sharp} - (\eta_{0})_{\sharp})(c)$$

2 Omologia singolare

Quindi $\partial \circ G + G \circ \partial = (f_1)_{\sharp} - (f_0)_{\sharp}$. Passando a livello di omologia considero k un q-ciclo in (X,A), quindi tale che $\partial k = 0$. Allora:

$$(f_1)_{\star}(k) = [(f_1)_{\sharp}(k)]$$

Ma:

$$(f_1)_{\sharp}(k) = (f_0)_{\sharp}(k) + \partial \circ G(k) + G \circ \partial(k)$$

Quindi in (Y,B) $[(f_1)_{\sharp}(k)] = [(f_0)_{\sharp}(k)]$ in quanto differiscono per un bordo. Quindi $(f_1)_{\star}(k) = (f_2)_{\star}(k)$, ma siccome questo è vero per ogni k allora deve essere $(f_1)_{\star} = (f_2)_{\star}$. \Box La mappa G è un esempio di omotopia di catena:

Definizione 2.9.26 Siano $(A_{\bullet}, \partial^A)$ e $(B_{\bullet}, \partial^B)$ complessi, e siano $\varphi, \psi \colon A_{\bullet} \to B_{\bullet}$ mappe continue tra complessi, φ e ψ si dicono **omotope** (chain homotopic) se esiste una mappa tra complessi $D \colon A_{\bullet} \to B_{\bullet+1}$ tale che $\partial \circ D + D \circ \partial = \varphi - \psi$. Si ha quindi il diagramma:

$$\ldots \longrightarrow A_{i+1} \xrightarrow{\partial^A} A_i \xrightarrow{\partial^A} A_{i-1} \longrightarrow \ldots$$

$$\dots \longrightarrow B_{i+1} \xrightarrow{\partial^B} B_i \xrightarrow{\partial^B} B_{i-1} \longrightarrow \dots$$

Indice analitico

 \mathcal{U} -piccolo, 57 k-catene singolari, 15 k-ciclo, 20 k-simplesso singolare, 15

Bordo, 18 Bouquet, 28

Coordinate baricentrali, 14

Eilenberg vedi Teoria omologica, 42 Elementi omologhi, 20

Grado, 21 Grado di una sfera, 53 Gruppo dei coefficienti di una teoria omologica, 45 Gruppo derivato, 23

Insieme convesso, 18 Inviluppo convesso, 18

Lemma dei cinque, 59

Mappa tra complessi, 31

Omologia singolare della coppia vedi Omologia singolare relativa, 36 Omologia singolare relativa, 36 Omologia singolare ridotta, 38 Omomorfismo di connessione, 32, 42 Omotopia di catena, 61 Operatore faccia, 16 Operatore prisma, 60

Retratto di deformazione, 51

Retrazione, 51

Sezione dell'omomorfismo, 37 Simplesso standard, 14 Somma topologica, 43 Steendord vedi Teoria omologica, 42 Successione esatta corta, 31, 32 Successione spezza, 36, 37 Suddivisione baricentrica, 57

Teorema del punto fisso, 52 Teorema di Hurewicz, 26 Teoria omologica, 42 Terzo teorema degli omomorfismi, 57 Topologia debole, 43