

Self-Interpretable Graph Learning with Sufficient and Necessary Explanations

Jiale Deng, Yanyan Shen **Shanghai Jiao Tong University**

1. Background

- GNNs show strong performance in graph learning tasks but lack transparency.
- To explain the predictions of GNNs:
 - Post-hoc methods extract salient substructures from the input graph as explanations, but they can be biased and inconsistent.
 - Self-interpretable methods can provide unbiased explanations by generating built-in explanations and making predictions based on the explanations.

2. Motivation

- Issues of Self-Interpretable Methods:
 - The quality of explanations determines the model performance.
 - An example (predicting the research area of an author node in coauthor network):

Sufficient & Necessary:

Ideal explanation capturing the rationale that v, a, b form an ML research group (clique).

Sufficient:

Contains the clique while *introduce noisy* edges (e,c) and (c,v).

Necessary:

Missing the salient clique.

Compromised performance!

 Key Insight: Promote the quality of explanations toward both sufficiency and necessity directions, encouraging the explanations to improve model performance.

3. Method

- Self-interpretable graph learning with SUfficient aNd NecessarY explanations (SUNNY-GNN) empowered by contrastive learning.
- Workflow:

- (1) Explanation generation: inputs edge embeddings, outputs edge importance mask M.
- (2) **Prediction** with generated explanation G_S .
- (3) Augmentations on G_{S} :
 - Positive samples G_S^+ : Sample edges from $G_C \setminus G_S$ and add them to G_S .
 - Negative samples G_S^- : Sample edges in G_S and add them to G_S .
 - How to sample? Simply sample by M may lead to:
 - Trivial samples impair the self-supervision signals→Solution: Enhance contrastive signal.
 - Distance coefficients δ : perturbations on edges closer to the target node v tend to have a greater impact to v than those on farther edges.
 - Unreliable samples mislead GNN training→Solution: Filter out unreliable ones with labels.
 - Confidence coefficients η : introducing noisy edges and removing irrelevant edges forms untrustworthy positive and negative samples, respectively.
- Optimization: $\min_{\Theta} \mathcal{L}_{pred} + \gamma \mathcal{L}_{cts}$ where ① Prediction loss: $\mathcal{L}_{pred} = -\frac{1}{|\mathcal{V}_{train}|} \sum_{v \in \mathcal{V}_{train}} \sum_{t=1}^{n} \mathcal{Y}_{vt} \log \hat{\mathcal{Y}}_{vt}$

and ② Contrastive loss: $\mathcal{L}_{cts}(v) = \mathbb{E}\left[-\log \frac{\eta_i^+ \exp(z_S^\top z_{S_i}^+/\tau)}{\sum_j \eta_j^+ \exp(z_S^\top z_{S_j}^+/\tau) + \sum_k \eta_k^- \exp(z_S^\top z_{S_k}^-/\tau)}\right] \Rightarrow \mathcal{L}_{cts} = \frac{1}{|\mathcal{V}_{train}|} \sum_{v \in \mathcal{V}_{train}} |\mathcal{V}_{train}| = \frac{1}{|\mathcal{V}_{train}|} = \frac{1}{|\mathcal{V}_{$

- Minimizing \mathcal{L}_{cts} means:
 - Pulling G_{ς}^+ closer to $G_{\varsigma} \to turning G_{\varsigma}$ to be more sufficient.
 - Pushing G_S^- distant from $G_S \to turning G_S$ to be more necessary.

4. Experiments

 Prediction performance (accuracy): SUNNY-GNN outperforms all baselines by 3.5% on average.

	Citeseer	Cora	Pubmed	Amazon	Coauthor-CS	Coauthor-Physics
GCN	69.84±0.7	81.20±0.7	77.68 ± 0.7	90.18±0.3	83.52±0.4	92.46±0.2
+ GSAT	$\textbf{70.90} {\pm} \textbf{1.1}$	81.48 ± 0.7	77.44 ± 0.3	88.36 ± 1.3	83.76 ± 0.6	$\overline{92.14\pm0.5}$
+ CAL	65.60 ± 1.1	75.72 ± 1.2	73.66 ± 0.8	84.32 ± 1.7	82.12 ± 1.2	91.26 ± 0.7
+ SE-GNN	68.90 ± 0.9	80.72 ± 0.1	77.56 ± 0.3	-	83.14 ± 0.8	-
+ ProtGNN	66.30 ± 2.1	77.48 ± 8.7	74.18 ± 3.3	82.46 ± 1.4	79.50 ± 3.7	88.80 ± 3.3
+ Sunny-GNN	$\underline{70.72{\pm0.8}}$	$\textbf{81.68} {\pm} \textbf{0.9}$	$\textbf{78.68} {\pm} \textbf{0.2}$	90.43 ± 0.4	$\textbf{85.03} {\pm} \textbf{1.1}$	$93.10 {\pm 0.8}$
Average impro. (%)	3.6↑	3.1 ↑	3.4↑	4.8 ↑	3.2↑	3.0↑
GAT	69.68±1.2	81.22±0.7	77.50±0.4	89.08±1.8	84.42±0.8	92.30±0.5
+ GSAT	69.42 ± 0.8	81.20 ± 0.7	77.04 ± 0.3	89.73 ± 0.4	84.37 ± 0.7	$\overline{91.90 \pm 0.8}$
+ CAL	67.64 ± 1.5	76.64 ± 1.1	74.74 ± 0.7	84.86 ± 11.5	78.69 ± 3.8	78.24 ± 5.1
+ SE-GNN	68.18 ± 1.1	79.46 ± 0.4	75.88 ± 0.4	-	83.71 ± 0.5	-
+ ProtGNN	69.90 ± 1.5	80.40 ± 0.9	76.84 ± 0.8	86.52 ± 0.3	80.95 ± 1.2	90.42 ± 2.3
+ Sunny-GNN	$\overline{71.30\pm0.7}$	$\textbf{82.18} {\pm} \textbf{1.3}$	$\textbf{78.14} {\pm} \textbf{0.3}$	$90.78 {\pm} 0.4$	85.13 ± 0.5	$93.06 \!\pm\! 0.6$
Average impro. (%)	3.2 ↑	3.1 ↑	2.3 ↑	3.0↑	3.4 ↑	6.0↑

• Explainability performance (fidelity): SUNNY-GNN outperforms the baselines by 13.1% on average.

	Citeseer		
	$fid_+ \uparrow$	$fid\downarrow$	
GCN			
+ GNNExplainer	72.27 ± 4.2	9.31 ± 3.4	
+ PGExplainer	82.09 ± 7.2	0.92 ± 2.6	
+ ReFine	83.01 ± 7.1	0.78 ± 0.5	
+ GSAT	86.75 ± 5.7	2.72 ± 1.1	
+ CAL	86.44 ± 4.3	12.25 ± 3.9	
+ Sunny-GNN	$\textbf{87.29} {\pm} \textbf{5.3}$	0.25 ± 0.4	
GAT			
+ GNNExplainer	52.95 ± 16.9	8.61 ± 10.1	
+ PGExplainer	76.80 ± 0.3	1.71 ± 2.8	
+ ReFine	77.78 ± 2.8	0.32 ± 1.3	
+ GSAT	72.52 ± 8.1	1.55 ± 1.3	
+ CAL	77.78 ± 6.5	11.46 ± 1.4	
+ Sunny-GNN	$79.25 {\pm} 2.4$	0.46 ± 0.5	

More Information

- Code: https://github.com/SJTU-Quant/SUNNY-GNN
- Contact us: jialedeng@sjtu.edu.cn

