Homework 15

2023年2月11日

5. 设样本 X_1, X_2, \cdots, X_n 是来自参数为 λ 的泊松分布总体,对检验问题

$$H_0: \lambda = \frac{1}{2} \leftrightarrow H_1: \lambda \neq \frac{1}{2},$$

取检验的拒绝域为 $\{(X_1, X_2, \dots, X_n) : \sum_{i=1}^{10} X_i \le 1 \text{ or } \ge 12\}.$

- (1) 求此检验在 $\lambda = 0.25, 0.5, 1$ 时的功效函数值, 并求出该检验的水平;
- (2) 求犯第一类错误的概率及在 $\lambda = 0.25, 0.75$ 时犯第二类错误的概率. **Sol.**
 - (1) 功效函数值

$$\beta_{\Psi}(\lambda) = 1 - P_{\lambda}(1 < \sum_{i=1}^{10} X_i < 12)$$
$$= 1 - \sum_{i=2}^{11} \frac{(10\lambda)^i}{i!} e^{-10\lambda},$$

 $\beta_{\Psi}(0.25) = 0.287$, $\beta_{\Psi}(0.5) = 0.046$, $\beta_{\Psi}(1) = 0.304$. 检验水平为0.046.

- (2) 犯第一类错误的概率为 $\beta_{\Psi}(0.5)=0.046,\ \lambda=0.25$ 时犯第二类错误的概率为 $1-\beta_{\Psi}(0.25)=0.713,\ \lambda=0.75$ 时犯第二类错误的概率为 $1-\beta_{\Psi}(0.75)=0.916.$
- 6. 设总体为均匀分布 $U(0,\theta), (X_1,X_2,\cdots,X_n)$ 是一组样本. 考虑检验问题

$$H_0: \theta > 3 \leftrightarrow H_1: \theta < 3$$
,

拒绝域取为 $W = \{X_{(n)} = \max\{X_1, X_2, \cdots, X_n\} \le 2.5\},$

- (1) 求此检验的功效函数和显著性水平;
- (2) 为使显著性水平达到0.05, 样本量n至少应取多大?

Sol.

(1) 功效函数

$$\beta_{\Psi}(\theta) = P(X_{(n)} \le 2.5)$$
$$= \left(\frac{2.5}{\theta}\right)^{n},$$

当 $\theta \ge 3$ 时, $\beta_{\Psi}(\theta) \le (5/6)^n$,因此显著性水平为 $(5/6)^n$.

- (2) 要使得 $(5/6)^n \le 0.05$, $n \ge 16.43$, 因此n至少取17.
- 12. 某机器制造出来的肥皂厚度为5cm. 今欲了解机器性能是否良好, 随机抽取10块肥皂作为样本, 测得平均厚度为5.3cm, 标准差为0.3cm, 设肥皂厚度服从正态分布, 试分析显著性水平0.05, 0.01下检验机器是否工作良好.

Sol.

考虑检验

$$H_0: \mu = 5 \text{ v.s. } H_1: \mu \neq 5,$$

显著性水平为 α 的一个检验为: 当 $-t_9(\alpha/2) < \sqrt{10}(\bar{X}-5)/S < t_9(\alpha/2)$ 时接受 H_0 , 否则拒绝 H_1 . 计算 $\sqrt{10}(\bar{X}-5)/S \approx 3.16$, 查表知 $t_9(0.025) \approx 2.26$, $t_9(0.005) \approx 3.25$, 因此在显著性水平为0.05下拒绝 H_0 , 在显著性水平为0.01下接受 H_0 , 也即在显著性水平为0.05下认为工作并非良好,而在显著性水平为0.01下认为工作良好.

- 14. 令 (X_1, X_2, \cdots, X_9) 是从正态总体 $N(\mu, \sigma^2)$ 中抽取的随机样本,假设样本均值 $\bar{X}=48$,样本方差 $\sigma^2=64$,在显著性水平5%下,检验
 - (1) $H_0: \mu \leq 40 \leftrightarrow H_1: \mu > 40;$
 - (2) $H'_0: \sigma^2 \ge 70 \leftrightarrow H'_1: \sigma^2 < 70.$

Sol.

- (1) $T = \sqrt{n}(\bar{X} \mu_0)/S = 3$, $t_8(0.05) = 1.86 < T$, 因此拒绝 H_0 .
- (2) $\chi^2 = (n-1)S^2/70 \approx 7.31$, $\chi^2_8(0.95) \approx 2.73 < \chi^2$, 因此不能拒绝 H_0 .
- 22. 装配一个部件可以采用不同的方法, 现在关心的是哪一种方法的效率更高. 现在从两种不同的装配方法中各抽取12种产品, 记录各自的装配时间(单位:min)如下:

甲方法/min	30	34	34	35	34	28	34	26	31	31	38	26
乙方法/min	26	32	22	26	31	28	30	22	31	26	32	29

假设两总体为正态总体,且方差相等,问这两种方法的装配时间有无显著不同 ($\alpha = 0.05$)?

Sol.

记甲方法的样本为 X_1,\cdots,X_{12} 独立同分布于 $N(\mu_1,\sigma^2)$,样本均值为 $\bar{X}=31.75$,样本方差为 $S_X^2=14.02$,乙方法的样本为 Y_1,\cdots,Y_{12} 独立同分布于 $N(\mu_2,\sigma^2)$,样本均值为 $\bar{Y}=27.92$,样本方差为 $S_Y^2=12.63$,检验问题为

$$H_0: \mu_1 - \mu_2 = 0 \ v.s. \ H_1: \mu_1 - \mu_2 \neq 0,$$

记

$$T = \frac{\sqrt{n/2}(\bar{X} - \bar{Y})}{\sqrt{(11S_X^2 + 11S_Y^2)/22}} \approx 2.57,$$

查表知 $t_{22}(0.025) = 2.0739$, $|T| > t_{22}(0.025)$, 因此拒绝 H_0 , 即在显著性水平为0.05下认为两种方法的装配时间有显著不同.