GitHub

Taller de Seguimiento 1

Procesos estocásticos CM0433

Nombre: Juan David Rengifo Castro.

Código: 201810011101.

Tabla de Contenido

Pregunta 1	
Pregunta 2	2
Pregunta 3	3
Funciones	

Considere ζ_1, ζ_2, \ldots , una secuencia de variables aleatorias independientes y esperanza finita y sea $S_n = \sum_{i=1}^n \zeta_i$.

Pregunta 1

Fije n. Muestre que

$$M_m = \frac{S_{n-m}}{n-m}$$

para $0 \le m < n$ es una martingala.

Solución. Veamos que M_m es una martingala para un n fijo. Sin perder generalidad consideremos que $E(\zeta_i) = \mu < \infty$ para todo i. Claramente la esperanza del valor absoluto de la martingala es finita, puesto que:

$$\begin{split} E(|M_m|) &= E\left(\left|\frac{S_{n-m}}{n-m}\right|\right) \\ &= \frac{1}{n-m} E\left(\left|\sum_{i=1}^{n-m} \zeta_i\right|\right) \\ &= \frac{1}{n-m} \left[E(|\zeta_1|) + \dots + E(|\zeta_{n-m}|)\right] < \infty \end{split}$$

Lo anterior es cierto pues es una suma finita de números finitos multiplicada por un escalar finito.

Ahora,

$$M_{m+1} = \frac{\zeta_1 + \dots + \zeta_{n-m-1}}{n-m-1}$$
 y $M_m = \frac{\zeta_1 + \dots + \zeta_{n-m-1} + \zeta_{n-m}}{n-m}$, por lo tanto,

$$M_{m+1} - M_m = -\frac{\zeta_{n-m}}{n-m} + k(\zeta_1 + \dots + \zeta_{n-m-1}), \text{ donde } k = \frac{1}{n-m-1} - \frac{1}{n-m} = \frac{1}{(n-m-1)(n-m)} \text{ es una constante}.$$

Sea
$$A_m := \{ M_m = m_m, \dots, M_0 = m_0 \}$$
, entonces

$$\begin{split} E(M_{m+1} - M_m \mid A_m) &= E\left[\frac{\zeta_{n-m}}{n-m} + k(\zeta_1 + \dots + \zeta_{n-m-1}) \mid A_m\right] \\ &= \frac{1}{n-m} E(\zeta_{n-m} \mid A_m) + k\left[E(\zeta_1 \mid A_m) + \dots + E(\zeta_{n-m-1} \mid A_m)\right] \\ &= \frac{\mu}{n-m} + \frac{\mu(n-m-1)}{(n-m-1)(n-m)} = 0 \end{split}$$

Por lo tanto, M_m es una martingala.

Pregunta 2

Suponga que en una elección el candidato A obtiene a votos mientras el candidato B obtiene b votos. Suponiendo que el candidato A gana (a > b). Lo que se desea probar es que la probabilidad de que A siempre lidere durante el recuento de votos es (a - b)/n, donde n = a + b es el total de votantes.

Utilizando simulación muestre que es verdad.

Solución. Considerando una elección con 10 votos en total, se realizan diez mil simulaciones, para estimar la probabilidad de que el candidato A lidere el conteo de votos en todo momento. Esto se realiza para todas las posibles configuraciones donde A resulta ganador, es decir, para a = 6, ..., 10. Luego se presentan los resultados en una tabla junto a la probabilidad teórica y se evidencia consistencia en ambos valores para todos los escenenarios.

```
% Parameters.
n = 10;
nsim = 10000;
% Preallocation.
A = 6:10:
probs_sim = zeros(1, length(A));
probs_theo = probs_sim;
% Iterate the number of votes for A (a).
for i = 1:length(A)
    % Parameters.
    a = A(i);
    % nsim simulations to see if the candidate A lead
    % in all the counting.
    for j = 1:nsim
        probs_sim(i) = probs_sim(i) + simulation(n, a);
    % Simulated probability.
    probs_sim(i) = probs_sim(i) / nsim;
    % Theoretical probability.
    probs_theo(i) = (2*a - n) / n;
end
% Results.
T = table(A', probs_theo', probs_sim', ...
    'VariableNames', {'a', 'Teórico', 'Simulada'});
```

disp(T)

a	Teórico	Simulada
6	0.2	0.2048
7	0.4	0.4017
8	0.6	0.6015
9	0.8	0.7892
10	1	1

Pregunta 3

Utilizando el teorema de parada opcional muestre que la probabilidad de que A siempre lidere durante el recuento de votos es $\frac{a-b}{n}$.

Pista: Considere S_n con renovaciones $\zeta_i = 0$ con probabilidad 1/2 por un voto para el candidato A y $\zeta_i = 2$ con probabilidad 1/2 por un voto del candidato B.

Considere el evento

$$G = \{S_j < j, \forall j\}$$

¿G es realmente equivalente al evento {A lidera siempre el conteo de votos}?

Utilizando el resultado de la Pregunta 1 defina una martingala M_m y $T = \min\{m : M_m = 1 \lor m = n - 1\}$.

Finalmente, utilice el teorema de parada opcional para mostrar P(G) = (a - b)/n.

Solución

Sea S_n con renovaciones $\zeta_i=0$ con probabilidad 1/2 por un voto para el candidato A y $\zeta_i=2$ con probabilidad 1/2 por un voto del candidato B. Además, suponemos que el primer voto es para el candidato A. Es evidente que A liderará el conteo de votos para m ssi $M_m<1$, pero esto es equivalente a decir que $G=\{S_j< j, \forall j\}$, puesto que solo en este caso $n-m>S_{n-m}$.

Ahora, considerando un n fijo, entonces definimos un tiempo de parada como $T=\min\{m: M_m=1 \lor m=n-1\}$, es decir, A dejó de liderar en m o llegamos al final de la martingala con A liderarando. En el primer caso por definición de T $M_T=1$ y en el segundo $M_T=0$ dado que el primer voto es para A y por tanto $\zeta_1=S_1=0$. Lo anterior se aprecia con mayor claridad en la siguiente figura.

M = martingale(100, 0.5);

Dado que se cumplen los supuestos del teorema de parada opcional, sabemos que

$$E(M_T) = E(M_0)$$

Pero $M_0 = \frac{2b}{a+b}$ y $E(M_T) = 0 \cdot P(G) + 1 \cdot P(G^C)$. En consecuencia,

$$0 \cdot P(G) + 1 \cdot P(G^C) = \frac{2b}{a+b}$$

$$1 - P(G) = \frac{2b}{a+b}$$

$$P(G) = 1 - \frac{2b}{a+b} = \frac{a-b}{a+b} = \frac{a-b}{n}$$

Funciones

```
function [G, S, zeta] = simulation(n, a)
% Votes for A.
votes_a = randsample(n, a);
zeta = 2*ones(1, n);
zeta(votes_a) = 0;
S = cumsum(zeta);
% A lead the counting in every moment?
G = all(S < 1:n);</pre>
```

end % Returns all the martingale values for a given size (n) and a % a probability for voating A (prob), function M = martingale(n, prob) % Martingale calculus. zeta = [0, 2*(rand(1,n-1) > prob)];S = fliplr(cumsum(zeta)); m = 0:(n-1); $M = S \cdot / (n - m);$ % Plot martingale. plot(m, M, 'LineWidth', 1.5) grid on line([0, n-1], [1, 1]) ylim([0, max(1.1, max(M))]) xlim([0, n-1])ylabel('M_m'); xlabel('m') end