Algorithms

Dana Shapira Lesson #3: Greedy Algorithms Part II

Huffman codes

Example

	α	b	С	d	e	f
Frequency	45	13	12	16	9	5
Fixed-length Codeword	000	001	010	011	100	101
Variable-lengt	h 0	101	100	111	1101	1100

Which one is cheaper?

Prefix-free Codes

- Codes in which <u>no</u> codeword is also a <u>prefix</u> of some other codeword.
 - Example:

	α	b	С	d	е	f
Variable-length codeword	0	101	100	111	1101	1100

110001001101

- easy to encode and decode using prefix codes.
- No Ambiguity !!
- It is possible to show that the optimal data compression achievable by a character code can <u>always be achieved</u> with a prefix code.

Prefix-free Codes

	α	Ь	С	d	е	f
Variable-length codeword	0	101	100	111	1101	1100
Variable-length codeword	0	101	100	111	110	1100

FACE = 11000100110

- 1100 = 110 0 = "f"
- or
- 1100 = 110 + 0 = "ea"

4

Prefix-free Codes

- Represented as a binary tree
 - each edge represents either 0 or 1
 - 0 means "go to the left child"
 - 1 means "go to the right child."
 - each leaf corresponds to the sequence of Os and 1s traversed from the root to reach it, i.e. a particular code
- Since no prefix is shared, all legal codes are at the leaves, and decoding a string means following edges, according to the sequence of Os and 1s in the string, until a leaf is reached.

Tree Representation

1101

	α	ь	с	d	e	f		α	Ь	С	d
Frequency	45	13	12	16	9	5	Frequency	45	13	12	16
Fixed-length codeword	000	001	010	011	100	101	Variable-length codeword	0	101	100	111

5

Huffman Algorithm

- Greedy
 - The <u>two smallest nodes</u> are chosen at each step, and this local decision results in a globally optimal encoding tree.
- bottom-up manner
 - Starts with a set of $|\Sigma|$ leaves and performs a sequence of $|\Sigma|$ 1 "merging" operations to create the final tree.

Professor David A. Huffman (August 9, 1925 - October 7, 1999)

Huffman Algorithm

 ${ t HUFFMAN}({\it \Sigma})$

1 n $\leftarrow |\Sigma|$

2 Q $\leftarrow \Sigma$

What is the running time?

3 for $i \leftarrow 1$ to n - 1

4 do ALLOCATE-NODE(z)

5 $left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)$

6 $right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)$

7 $w[z] \leftarrow w[x] + w[y]$

S = INSERT(Q, z)

9 return EXTRACT-MIN(Q)

.

Huffman Algorithm

Optimality of Huffman Codes

Theorem:

Given weights $w_1,...,w_n$. Huffman Algorithms assigns code lengths $I_1,...,I_n$ such that $\sum_{i=1}^n w_i I_i$ is minimal.

Lemma 1:

An optimal code for a file is always represented by a <u>full</u> <u>binary tree</u>, in which every non-leaf node has <u>two</u> children.

Lemma 2:

In an optimal tree the two lowest weights w_{n-1} and w_n are in the lower level.

10

Optimality of Huffman Codes

Lemma 3:

In an optimal tree the two lowest weights w_{n-1} and w_n can be assumed to be brothers.