- **Задача 1.** Найдется ли n, при котором многочлен $1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}$ имеет более одного корня из \mathbb{R} ?
- **Задача 2.** Может ли уравнение $x(x^2-1)(x^2-1000)=\alpha$ при некотором $\alpha\in\mathbb{R}$ иметь 5 целых корней?
- **Задача 3.** Пусть $k \in \mathbb{R}$, функция f определена на [a,b] и дифференцируема на (a,b), причем $|f'(x)| \leq k$ при всех $x \in (a, b)$. Докажите, что при любых $x, y \in (a, b)$ выполнено неравенство $|f(x) - f(y)| \leq k|x - y|$.
- **Задача 4.** Пусть $n \in \mathbb{N}$, n не является точной четвёртой степенью. Докажите, что тогда $\{\sqrt[4]{n}\} > \frac{1}{4}n^{-3/4}$.
- **Задача 5.** Найдите суммы: **a)** $1 + 2x + 3x^2 + \cdots + nx^{n-1}$; **6)** $C_n^1 + 2C_n^2x + \cdots + nC_n^nx^{n-1}$.
- **Задача 6. а)** Точка с координатами (x(t), y(t)) движется в плоскости xOy так, что в каждый момент времени t выполнено y'(t) = 1/x(t), x'(t) = -1/y(t). В некий момент времени точка имела координаты (12, 3). Может ли она в какой-нибудь другой момент иметь координаты (6, 5)? Нарисуйте траекторию движения точки. **б)** Те же вопросы для точки, движущейся по закону y'(t) = -x(t), x'(t) = y(t).
- **Задача 7.** а) Для каждого x из множества $\{-2, -1, -1/2, -1/3, 0, 1/3, 1/2, 1, 2\}$ нарисуйте на плоскости pOq график прямой, задающейся уравнением $x^3 + px + q = 0$. Докажите, что все прямые вида $x^{3} + px + q = 0$ на плоскости pOq касаются некоторой кривой. Что это за кривая?
- **б)** Задайте уравнением множество таких точек (p,q), что многочлен $x^3 + px + q$ имеет кратный корень. Нарисуйте на плоскости это множество, а также множества таких точек (p,q), что $x^3 + px + q$ имеет три разных корня, корень кратности 2, корень кратности 3, не имеет действительных корней.
- в) Сколько корней у многочлена $x^3 10x + 12$?
- г) Исследуйте геометрически число корней уравнения $x^3 + px + q = 0$ на отрезке [-1; 1].
- **Задача 8.** Пусть f определена на [0,1] и дифференцируема на (0,1), причём $f(0)=0,\ f(1)=1.$ Докажите, что тогда найдутся такие различные $s, t \in [0, 1]$, что $f'(s) \cdot f'(t) = 1$.
- Задача 9. Петя идёт а) по плоскому полю; б) по холмистой местности из пункта A в пункт B, нигде не останавливаясь. Всегда ли на его пути найдётся точка, вектор скорости в которой параллелен AB?
- **Задача 10.** Вычислите пятьдесят седьмую производную в нуле у функции $\arcsin(x^{13} + x^{22})$.
- **Задача 11.** Докажите, что у многочлена $x^{1024} + a_1 x^{512} + a_2 x^{256} + \dots + a_9 x + a_{10}$, где $a_1, \dots, a_{10} \in \mathbb{R}$, может быть не более 11 различных положительных действительных корней.
- **Задача 12.** Пусть P(x) многочлен степени n>1, имеющий n различных корней x_1,\ldots,x_n . Докажите, что справедливо равенство $\frac{1}{P'(x_1)} + \frac{1}{P'(x_2)} + \cdots + \frac{1}{P'(x_n)} = 0.$
- **Задача 13.** Функция f дифференцируема на \mathbb{R} . Верно ли, что f' ограничена на любом отрезке?
- **Задача 14*.** Найдите все такие дифференцируемые $f: \mathbb{R} \to \mathbb{R}$, что $f'(\frac{x+y}{2}) = \frac{f(y) f(x)}{y-x}$ при любых $x \neq y$.
- **Задача 15*.** Решите в натуральных числах: $x^y = y^x$. (Указание: изучите функцию $f(x) = x^{1/x}$).
- **Задача 16*.** (Правило Лопиталя) Пусть функции f и g дифференцируемы на интервале (a,b), причем
- g' не обращается в ноль на (a,b) и **a)** $\lim_{x\to b} f(x) = \lim_{x\to b} g(x) = 0;$ **6)** $\lim_{x\to b} f(x) = \lim_{x\to b} g(x) = +\infty.$ Пусть существует предел $\lim_{x\to b} \frac{f'(x)}{g'(x)} = k$. Докажите, что предел $\lim_{x\to b} \frac{f(x)}{g(x)}$ существует и равен k.
- **Задача 17*.** Останется ли верным правило Лопиталя, если заменить в условии b и/или k на $\pm \infty$?
- **Задача 18*.** Найдите пределы: **a)** $\lim_{x \to 0} \frac{\operatorname{tg} x x}{x \sin x}$; **б)** $\lim_{x \to +\infty} \ln x / x^{\alpha}$ при $\alpha > 0$; **в)** $\lim_{x \to +0} x^{x}$.
- **Задача 19*.** Пусть $f: \mathbb{R} \to \mathbb{R}$ дважды дифференцируемая функция на отрезке [0, a], f(0) = f(a) = 0и f'' непрерывна на отрезке [0,a]. **a)** Докажите, что при $a=\pi$ справедливо утверждение: «существует такая точка $\xi \in (0, a)$, что $f''(\xi) + f(\xi) = 0$ ». **б)** Верно ли утверждение предыдущего пункта для a = 3?
- **Задача 20**.** Существует ли непрерывная на \mathbb{R} функция, ни в одной точке не имеющая производной?
- **Задача 21.** а) Функция f дифференцируема n раз на \mathbb{R} , и для каждой точки $a \in \mathbb{R}$ одна из функций $f, f', f'', \dots, f^{(n)}$ обращается в ноль в точке a. Докажите, что f — многочлен степени не более чем n-1. **б)**** Функция f определена и бесконечно дифференцируема на \mathbb{R} , $f^{(n)}$ — ее n-тая производная. Пусть для каждого $a \in \mathbb{R}$ найдется такое $n \in \mathbb{N}$, что $f^{(n)}(a) = 0$. Докажите, что f — многочлен.

$ \begin{array}{c cccc} 4 & 5 & 5 \\ a & 6 \end{array} $	6 6 a 6	7 7 a 6	7 7 в г	8 9 a	9 6	10	11	12	13 14	15	16 a	16 1 б	$27 1_{\epsilon}$	8 18 1 6	18 B	19 a	19 б	20	21 a	21 б