# 《大学物理 AII》作业 No.01 机械振动(参考答案)

\_\_ 学号 \_\_\_\_\_ 姓名 \_\_\_\_\_ 成绩 \*\*\*\*\*\*\*\*\*本章教学要求\*\*\*\*\*\*\*\*\*\* 班级

- 1、理解简谐振动的概念,掌握简谐振动的判据。
- 2、理解简谐振动三个特征量的意义和决定因素,掌握用旋转矢量法研究简谐振 动。
- 3、理解简谐振动的能量特征。
- 4、掌握同方向同频率简谐振动的合成规律。
- 5、理解同方向不同频率简谐振动的合成规律,了解拍现象。理解相互垂直简谐 振动的合成规律, 了解李萨如图。
- 6、了解阻尼振动、受迫振动和共振的运动特点。

# 一、填空题

1、描述简谐振动的三个特征量分别是: 振幅 A 、 角频率  $\omega$  、 初相位  $\varphi_{\alpha}$ ;

其中角频率 $\omega$ 由系统本身性质决定;振幅A 和初相位 $\omega$ 。由出初始条件决定。

2. 用 60N 的力拉一轻弹簧,可使其伸长 20cm。此弹簧下应挂 3.0 kg 的物体, 才能使弹簧振子作简谐振动的周期 $T = 0.2\pi$  (s)。

**解**: 弹簧的劲度系数 
$$k = \frac{F}{\Delta x} = \frac{60}{0.2} = 300 \left( \mathbf{N} \cdot \mathbf{m}^{-1} \right)$$
,弹簧振子周期  $T = 2\pi \sqrt{\frac{m}{k}}$ ,

质量 
$$m = \frac{T^2}{4\pi^2} \cdot k = \left(\frac{0.2\pi}{2\pi}\right)^2 \times 300 = 3.0 \text{ (kg)}$$

3. 两个同频率余弦交流电 $i_1(t)$ 和 $i_2(t)$ 的曲线 如图所示,则位相差 $\varphi_2 - \varphi_1 = -\pi/2$ 。



**解**:由图可知, $i_1(t)$ 的初相 $\varphi_1 = \frac{\pi}{2}$ ,

 $i_2ig(tig)$ 的初相 $\,arphi_2=0\,$ ,所以 $\,arphi_2-arphi_1=-\pi/2\,$ 。

4. 一质点作简谐振动, 其振动曲线如图 所示。根据此图,它的周期  $T = \frac{24}{7} s = 3.43s$ ,用余弦函数描述时初



相位
$$\varphi = \frac{4}{3}\pi$$
或 $-\frac{2}{3}\pi$ 。

解:由曲线和旋转矢量图

可知 
$$\frac{T}{12} + \frac{T}{2} = 2$$

周期 
$$T = \frac{24}{7} = 3.43$$
(s)

初相 
$$\varphi = \frac{4}{3}\pi$$
或  $-\frac{2}{3}\pi$ 。



5、一个系统做无阻尼自由振动时,其振动频率由系统自身固有频率决定;当其 做受迫振动时,其振动频率由 外界驱动力频率决定; 当阻尼不太大,且满足 外界驱动率频率与系统固有频率相等时 , 系统将产生共振现象。

### 二、选择题

1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度 $\theta$ ,如图所示,然 后由静止放手任其振动,从放手时开始计时。若用余弦函数表示 其运动方程,则该单摆振动的初相位为

[ C ](A)  $\theta$ ;

(B)  $\frac{3}{2}\pi$ ; (C) 0; (D)  $\frac{1}{2}\pi$ 

 $\mathbf{M}$ : t=0 时,摆角处于正最大处,角位移最大,速度为零, 用余弦函数表示角位移,  $\varphi = 0$ 。



[ B ] (A) 
$$T = 2\pi \sqrt{\frac{m_2 \Delta x}{m_1 g}}$$

(A) 
$$T = 2\pi \sqrt{\frac{m_2 \Delta x}{m_1 g}}$$
 (B)  $T = 2\pi \sqrt{\frac{m_1 \Delta x}{m_2 g}}$  (C)  $T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$  (D)  $T = 2\pi \sqrt{\frac{m_2 \Delta x}{(m_1 + m_2)g}}$ 

(C) 
$$T = \frac{1}{2\pi} \sqrt{\frac{m_1 \Delta x}{m_2 g}}$$

(D) 
$$T = 2\pi \sqrt{\frac{m_2 \Delta x}{(m_1 + m_2)g}}$$

**解**: 设弹簧劲度系数为 k,由题意, $m_2g = k \cdot \Delta x$ ,所以  $k = \frac{m_2g}{\Delta x}$ 。弹簧振子由弹簧和  $m_1$ 组

成,振动周期为
$$T=2\pi\sqrt{\frac{m_1}{k}}=2\pi\sqrt{\frac{m_1\Delta x}{m_2g}}$$
。





(B) 
$$\frac{1}{\pi} \sqrt{\frac{k}{m}}$$

(C) 
$$\frac{1}{2\pi}\sqrt{\frac{2k}{m}}$$

(C) 
$$\frac{1}{2\pi} \sqrt{\frac{2k}{m}}$$
 (D)  $\frac{1}{2\pi} \sqrt{\frac{k}{2m}}$ 



**解**:每一等份弹簧的劲度系数 k'=2k,两等份再并联,等效劲度系数 k''=2k'=4k,所 以振动频率

$$v = \frac{1}{2\pi} \sqrt{\frac{k''}{m}} = \frac{1}{2\pi} \sqrt{\frac{4k}{m}} = \frac{1}{\pi} \sqrt{\frac{k}{m}}$$

4. 一弹簧振子作简谐振动,总能量为 $E_1$ ,如果简谐振动振幅增加为原来的三倍, 重物的质量增加为原来的两倍,则它的总能量E变为

- [ D ] (A)  $E_1/9$
- (B)  $3E_1/2$  (C)  $3E_1$  (D)  $9E_1$

**解**: 原来的弹簧振子的总能量  $E_1 = \frac{1}{2}kA_1^2$ , 振幅增加为  $A_2 = 3A_1$ , k 不变,所以总能量

变为
$$E_2 = \frac{1}{2}kA_2^2 = 9\frac{1}{2}kA_1^2 = 9E_1$$
。

5. 一质点作简谐振动,周期为 T。质点由平衡位置向 x 轴负方向运动时,由平 衡位置到正的最大位移处这段路程所需要的最短时间为

- [ B ] (A)  $\frac{T}{4}$  (B)  $\frac{3T}{4}$  (C)  $\frac{T}{2}$

- (D)  $\frac{T}{2}$

解: 由矢量图可知,  $\Delta \varphi = \frac{3\pi}{2}$ ,  $\Delta t = \frac{\Delta \varphi}{2\pi} = \frac{3T}{4}$ 



#### 三、计算题

- 1. 一质量 m = 0.2kg 的物体,在弹性恢复力作用下沿 x 轴运动,弹簧的劲度系数 k = 20N·m<sup>-1</sup>。
  - (1) 求振动的周期 T 和角频率  $\omega$ ;
  - (2) 如果振幅 A = 10cm, t = 0 时位移  $x_0 = 5$ cm 处,物体沿 x 轴反向运动,求 初速度  $v_0$  及初相  $\varphi_o$ ;
  - (3) 写出该振动的表达式。

解: (1) 周期 
$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{0.2}{20}} = \frac{\pi}{5} s = 0.628 \text{ s}$$
  
角频率  $\omega = \frac{2\pi}{T} = \frac{2\pi}{0.2\pi} = 10 (\text{rad} \cdot \text{s}^{-1})$ 



(2) 由旋转矢量图可知初相 
$$\varphi = \frac{\pi}{3}$$
 , 初速度  $v_0 < 0$  。

由振幅公式 
$$A = \sqrt{x_0^2 + (-\frac{v_0}{\omega})^2}$$
 ,可得

$$v_0 = -\omega \sqrt{A^2 - x_0^2} = -10\sqrt{0.1^2 - 0.05^2} = -\frac{\sqrt{3}}{2} (\text{m} \cdot \text{s}^{-1}) = -0.866 (\text{m} \cdot \text{s}^{-1})$$

或由
$$\upsilon_0 = -\omega A \sin \varphi_0 = -10 \times 0.1 \sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2} (m \cdot s^{-1}) = -0.866 (m \cdot s^{-1})$$

(3) 振动方程为
$$x = A\cos(\omega t + \varphi) = 0.1\cos(10t + \frac{\pi}{3})$$
 (m)

- 2. 一质点作简谐振动, 其振动曲线如图所示。若质点的振动规律用余弦函数描述, 求:
  - (1) 振动方程;
  - (2) t = 1.5s 时速度大小;
  - (3) t=1s 时加速度大小。



解: 1) 由图所知: 
$$A = 0.2$$
m,  $T = 4$ s ,则  $\omega = \frac{2\pi}{T} = \frac{\pi}{2}$ 

由旋转矢量图知: 
$$\varphi_0 = \frac{\pi}{2}$$

故振动方程为: 
$$x = A\cos(\omega t + \varphi_0) = 0.2\cos(\frac{\pi}{2}t + \frac{\pi}{2})$$
 (m)



2) 速度为: 
$$v = -\omega A \sin(\omega t + \varphi_0) = -\frac{\pi}{10} \sin(\frac{\pi}{2}t + \frac{\pi}{2})$$
, 将  $t = 1.5$  s 代入:

$$v = -\frac{\pi}{10} \sin \frac{5\pi}{4} = \frac{\sqrt{2}\pi}{20} \approx 0.22 \text{ (m/s)}$$

3) 加速度为: 
$$a = -\omega^2 A \cos(\omega t + \varphi_0) = -\frac{0.1}{2} \pi^2 \cos(\frac{\pi}{2} t + \frac{\pi}{2})$$
, 将  $t = 1$ s 代入得: 
$$a = \frac{0.1}{2} \pi^2 = \frac{1}{20} \pi^2 \approx 0.49 \text{(m/s}^2)$$

3. 一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

$$x_1 = 0.02\cos(\omega t + \pi/4)$$

$$x_2 = 0.02\cos(\omega t + 19\pi/12)$$

$$19\pi/12$$
) (SI)

用旋转矢量法求其合振动的运动方程。

**解**:如矢量图可知:  $\Delta \varphi = \varphi_1 - \varphi_2 = \frac{\pi}{4} - (-\frac{5}{12}\pi) = \frac{2}{3}\pi$ 合成振幅  $A = A_1 = A_2 = 0.02(m)$ 。 合振动的初相  $\varphi = -(\frac{\pi}{3} - \frac{\pi}{4}) = -\frac{\pi}{12}$  (或  $\frac{23}{12}\pi$ ) 所以, 合振动方程为



- 4. 如图所示,桌面上一质量为m的滑块与劲度系数为k的弹簧相连,另一质量 为M=3m的滑块用一根轻绳绕过一个质量可忽略不计的定滑轮与滑块m连 接。t=0时弹簧处于原长状态且由此时松手系统开始振动,求滑块M的运动方 程。(以M的平衡位置为坐标原点,以向下方向为正方向,不计m与桌面的摩 擦力)。
- 解: 当 M 处于平衡位置时,设弹簧伸长 $x_0$ ,则有  $kx_0 = Mg(1)$ , 当 M 相对于平衡位置的位移为x时,有:



$$\begin{cases} Mg - T = Ma \\ T - k(x + x_0) = ma \end{cases} \Rightarrow Mg - k(x + x_0) = (M + m)a \quad (2), \\$$
将 (1) 及  $M = 3m$  代入 (2), 可得: 
$$-kx = 4ma = 4m \frac{d^2x}{dt^2} \Rightarrow \frac{d^2x}{dt^2} + \frac{k}{4m}x = 0, \quad$$
故  $\omega = \sqrt{\frac{k}{4m}}$ 。 又由题意知,t=0 时, $x_0 = -\frac{Mg}{k} = -\frac{3mg}{k}$ , $v_0 = 0$ ,则:

$$\phi_0 = \pi$$
 ,  $A = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}} = |x_0| = \frac{3mg}{k}$  故, $M$  的运动方程为: 
$$x = A\cos(\omega t + \phi_0) = \frac{3mg}{k}\cos(\sqrt{\frac{k}{4m}}t + \pi) .$$