Casper Formalized Pt I

Applying π -calculus

to modeling the Casper protocol

Vlad Zamfir, L.G. Meredith

Aims and goals

Formal specification of Casper

Specification mapped to reference implementation

Specification mapped to simulation

Methodology

Bootstrap Casper spec using interaction diagrams

Map interaction diagrams to initial π -calculus specification

Refine specification

Map refined specification to SpecialK

Map refined specification to Stochastic π -machine

Casper in interaction diagrams

Casper in π -calculus

Consensus: Validator <-> Validator interactions

How to turn interaction diagrams into π -calculus specs

Just walk this line to calculate the specification of the verifier's behavior and derive code

and this line to calculate the specification of the claimant's behavior and derive code

How to turn π -calculus specs into scala code


```
{ }
P,Q ::= 0
                                         [| a |](m) ![ [| v1 |](m), ..., [| vn |](m) ]
     a![ v1, ..., vn ]
                                         for([x1, ..., xn] \leftarrow [|a|](m)){
     a?( x1, ..., xn )P
                                             [|P|](m)(x1, ..., xn)
     P | Q
                                          spawn{ [| P |](m) }; spawn{ [| Q |](m) }
                                         { val q = \text{new Queue}(); [| P |](m[a <- q])}
     (new a)P
     ( def X( x1, ..., xn ) = P )[v1, ..., vn]
                                         object X {
                                             def apply(x1, ..., xn) = {
                                                [|P|](m) (x1, ..., xn)
     X[v1, ..., vn]
                                         X([| v1 |](m), ..., [| vn |](m))
            [|-|](-): (\pi-calculus, Map[Symbol, Queue]) -> Scala
```


applied π -calculus

How to specify a computational calculus

Modern presentations of computational calculi generalize generators and relations style presentations of universal algebra They are typically given in terms of

How to specify a computational calculus

Process calculi, like vector spaces, are two sorted algebraic structures

A morphism from one process calculus to another *preserves* computational dynamics

A morphism from one vector space to another *is* computational dynamics

Syntax

```
P,Q ::= 0

a![t]Q

a?(t)P

P | Q

(new a)P

( def X(t) = P)[u]

X[t]
```

```
t,u ::= val | var | fn(t1, ..., tN)
val ::= bool | int | string | double | ...
var ::= _ | X | Y | Z | ...
fn ::= x | y | z | ...
```

Structural congruence

The structural congruence of processes, noted \equiv , is the least congruence containing α -equivalence, \equiv_{α} , making (P, |, 0) into commutative monoids and satisfying

$$(\operatorname{new} x)(\operatorname{new} x)P \equiv (\operatorname{new} x)P$$

$$(\operatorname{new} x)(\operatorname{new} y)P \equiv (\operatorname{new} y)(\operatorname{new} x)P$$

$$((\operatorname{new} x)P) \mid Q \equiv (\operatorname{new} x)(P \mid Q)$$

Reduction rules

unify(t, u, s)
$$a?(t)P \mid a![u]Q \rightarrow Ps \mid Qs$$

$$P \rightarrow P'$$

$$P \mid Q \rightarrow P' \mid Q$$

$$P \rightarrow P'$$

$$(new a)P \rightarrow (new a)P'$$

$$P \equiv P' \quad P' \rightarrow Q' \quad Q' \equiv Q$$

$$P \rightarrow Q$$

Important properties of computational calculi

Confluence

lambda calculus is confluent

 π -calculus is **not** confluent

a![u1]Q1 | a?(t)P | a![u2]Q2 typical race condition