Apuntes de clases de Teoría de números

Grupo Estudiantil de Matemática

Actualizado a la fecha 14 de enero del 2018

Prefacio

Estos son los apuntes de clases de Teoría de números organizado por el Grupo Estudiantil de Matemática durante los meses de enero y febrero del año 2018.

Muchas gracias al Instituto de Matemática y Ciencias Afines por brindarnos sus ambientes para llevar a cabo las clases.

Por favor, cualquier sugerencia o aviso de error escribir a gem@uni.edu.pe o caznaranl@uni.pe.

Carlos Aznarán

Und. Jimmy Espinoza Palacios

Miembro del GEM Facultad de Ciencias Und. Bruno Goicochea Vilela

Presidente del GEM Facultad de Ciencias

Tabla de contenido

Ta	bla de	e contenido	3
1	Intro	oducción	4
	1.1.	Divisibilidad	4
	1.2.	Máximo común divisor	5
	1.3.	Números primos	8
2	Ejercicios		
	2.1.	Lista N°1	2
	2.2.	Divisibilidad	4

Capítulo 1

Introducción

I. Principio de inducción matemática

Sea \mathcal{P} un conjunto de números naturales tal que

- a) $1 \in \mathcal{P}$.
- b) Si $n \in \mathcal{P} \implies n + 1 \in \mathcal{P}$.

$$\mathcal{L} \cdot \mathbb{P} = \mathbb{N}$$
.

II. Principio del buen orden

Si \mathcal{A} es un conjunto no vacío de \mathbb{N} , entonces \mathcal{A} posee un elemento mínimo.

1.1. Divisibilidad

Definición 1.1. Sean d y n dos números enteros, se denotará

$$d \ divide \ a \ n \iff existe \ c \in \mathbb{Z} \ tal \ que \ n = c \cdot n$$

 $como \ a \mid n$.

Si d no divide a n, es decir, si $\forall c \in \mathbb{Z} : n \neq c \cdot d$, se denotará como $d \nmid n$.

Propiedades de la operación

- 1) $n \mid n$ para cualquier $n \in \mathbb{N}$ (Reflexividad).
- 2) Si $d \mid n$ y $n \mid m$, entonces $d \mid m$. (Transitividad).
- 3) Si $d \mid n$ y $d \mid m$, entonces $d \mid an + bm \ \forall a, b \in \mathbb{Z}$.
- 4) Si $d \mid n$, entonces $ad \mid an$.
- 5) Si $ad \mid an \operatorname{con} a \neq 0$, entonces $d \mid n$.
- **6)** $1 \mid n$ para cualquier $n \in \mathbb{N}$.
- 7) $n \mid 0$ para cualquier $n \in \mathbb{N}$.
- **8)** Si $0 \mid n$, entonces n = 0.
- 9) Si $d \mid n$ y $n \neq 0$, entonces $|d| \leq |n|$.
- **10)** Si $d \mid n \text{ y } n \mid d$, entonces |d| = |n|.
- 11) Si $d \mid n \text{ con } d \neq 0$, entonces $\left(\frac{n}{d}\right) \mid n$.

1.2. Máximo común divisor

Definición 1.2. Sean a, b y d números enteros. Si $d \mid a$ y $d \mid b$, entonces d es un divisor común de a y b.

Teorema 1.1. Dados los números enteros a y b, existe un divisor común d de a y b de la forma d = ax + by para cualesquiera $x, y \in \mathbb{Z}$.

Prueba: Por inducción matemática en K = |a| + |b|.

Si K = 0, entonces a = b = 0, esto es, $d = 0 \cdot a + 0 \cdot b$. \checkmark

Supongamos que se cumple para $K=0,1,\ldots,n-1$. (Hipótesis de inducción matemática).

Demostraremos para K = n = |a| + |b|

Sin pérdida de generalidad, suponga que $|a| \ge |b|$. Así, si |b| = 0, entonces b = 0 y $|a| = n \implies d = n = (1)(\pm 1) + 0 \cdot b$.

Si $|b| \ge 1$, entonces para los números |a| - |b| y |b| se cumple la hipótesis:

$$\underbrace{|a|-|b|}_{\geqslant 0}+|b|=|a|-\cancel{b}|+\cancel{b}|=|a|<|a|+|b|=n.$$

Existe $d \in \mathbb{Z}$, $d \mid |a| - |b|$ y $d \mid |b|$. Además:

$$d = (|a| - |b|) x' + |b|y' \qquad \forall x', y' \in \mathbb{Z}$$

$$d = |a| \underbrace{x'}_{x''} + |b| \underbrace{y'}_{y''}$$

$$d = \underbrace{|a|}_{a,-a} x'' + \underbrace{|b|}_{b,-b} y''$$

$$d = a \underbrace{x''}_{\pm x'} + b \underbrace{y''}_{\pm y'}$$

Pero d | |a| y d | |b|, así d | |a| - |b|.

∴ Esto cumple la condición.

Teorema 1.2. Sean a y b números enteros, existe solo un número $d \in \mathbb{Z}$ tal que

- 1) $d \ge 0$.
- **2)** $d \mid a \ y \ d \mid b$.
- 3) Si $e \mid a \lor e \mid b$, entonces $e \mid d$ para cualquier $e \in \mathbb{Z}$.

Prueba: Por la definición 1.2 y por el teorema 1.1, existe un d con las siguientes propiedades:

 $d \mid a$

$$d \mid b$$

d = ax + by

Es claro que -d también cumple esto. Elegimos |d| = ax' + by' que cumpla 1) y 2).

Si $e \mid a \neq b$, entonces de la propiedad 3) $e \mid ax' + by' = |d|$.

Así, $e \mid |d|$, en consecuencia $e \mid d$ y |d| satisface 3).

Si existiese un d' que cumpla 1), 2) y 3), entonces de la afirmación 3):

$$d \mid a \vee d \mid b \implies d \mid d'. \tag{1.1}$$

De forma similar:

$$d' \mid a \vee d' \mid b \implies d' \mid d. \tag{1.2}$$

Pero de (1.1) y (1.2) junto con la propiedad 10) se obtiene que d = d'.

Definición 1.3. Este número d es llamado máximo común divisor de a y b y se denota como mcd(a, b) o (a, b).

Observación 1.1. Si el mcd(a, b) = 1, entonces a y b son llamados coprimos, primos entre sí (PESI) o primos relativos.

Algunas propiedades del máximo común divisor

- 1) (a,b) = (b,a).
- **2)** (a, (b, c)) = ((a, b), c).
- 3) (ac, bc) = |c|(a, b).
- **4)** (a,1) = (1,a) = 1.
- **5**) (a,0) = (0,a) = |a|.

Teorema 1.3. Si $a \mid bc$ y si (a, b) = 1, entonces $a \mid c$.

Demostración. Como (a,b)=1, entonces existen $\tilde{x}, \tilde{y} \in \mathbb{Z}$ de modo que

$$1 = a\tilde{x} + b\tilde{y} \tag{1.3}$$

Pero si multiplicamos (1.3) por c resulta

$$c = a(c\tilde{x}) + b(c\tilde{y}) \tag{1.4}$$

Así, $a \mid cx y a \mid cy$ (explicar).

1.3. Números primos

Definición 1.4. El número $n \in \mathbb{N}$ es llamado número primo si sus divisores positivos son 1 y n. Cuando n no es primo, será llamado número compuesto.

Teorema 1.4. Cada natural n > 1 o es primo o producto de números primos.

Prueba: Por inducción sobre n.

Para n=2

Supongamos que se cumple para n = 2, 3, ..., k - 1.

Demostraremos para n = k.

- *) Si k es un número primo.
- *) Si k no es un número primo, entonces k tiene por lo menos un divisor d > 1, por lo que $k = d \cdot c \cos 1 < c < k$ y 1 < d < k.

Se cumple la hipótesis para c y d, entonces c y d son primos o productos de primos.

$$c = p_1 p_2 \cdots p_k$$
 $(p_i : \text{primo}, k \ge 1).$
 $d = q_1 q_2 \cdots q_m$ $(q_i : \text{primo}, m \ge 1).$

Así, $n = c \cdot d = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_m$ (se cumple la inducción).

Teorema 1.5. Existen infinitos números primos.

Prueba: Supongamos que $\mathbb{P} = p_1 p_2 \cdots p_k$ es el conjunto de todos los números primos que existen. Definimos:

$$N = p_1 p_2 \cdots p_k + 1$$

¿Qué tipo de número es N, es un primo o uno compuesto? Claro está que N es mayor que p_i , $\forall i = 1, \dots k$.

$$N = p_1 p_2 \cdots p_k + 1 = q_1 q_2 \cdots q_t.$$

$$\frac{q_i \mid p_1 p_2 \cdots p_k + 1}{q_i \mid p_1 p_2 \cdots p_k}$$

$$\frac{q_i \mid p_1 p_2 \cdots p_k}{q_i \mid 1 \quad (\Longrightarrow \longleftarrow)}$$

.: Existen infinitos números primos.

Teorema 1.6. Si p es un número primo y $p \nmid a$, entonces (p, a) = 1.

Demostración. Sea d el máximo común divisor de p y a (ya que el teorema 1.1 nos asegura su existencia), d = (p, a), entonces

$$d \mid p \mid y \mid d \mid a$$
.

Teorema 1.7. Sea p un número primo. Si $p \mid ab$, entonces $p \mid a \circ p \mid b$.

Demostración: Supongamos que $p \nmid a (p \mid a \checkmark)$, entonces (p, a) = 1, en consecuencia, $p \mid ab$.

$$a \mid bc \quad y \quad (a,b) = 1 \implies a \mid c.$$

 $\therefore p \mid b$.

Teorema 1.8. Cada entero n > 1 se representa de forma única como producto de primos no necesariamente distintos, sin importar el orden.

Prueba: Por inducción en n. Cuando n=2 (se cumple: 2,3,...,n-1.) $n=p_1p_2\cdots p_s=q_1q_2\cdots q_t$ (s=t). $(s,t\geqslant 1)$ $p_1\mid q_1q_2\cdots q_t\implies p_1\mid q_1\implies p_1=q_1$.

Observación 1.2. Si se desea representar a n como producto de primos distintos (donde cabe la posibilidad en que se repitan algún número pri-

$$n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} = \prod_{i=1}^k p_i^{a_i}$$

Teorema 1.9. Si $n = \prod_{i=1}^r p_i^{a_i}$, entonces un divisor de n tiene la forma

$$\prod_{i=1}^r = p_i^{c_i}, \quad 0 \leqslant c_i \leqslant a_i.$$

Observación 1.3. Sea la sucesión de números primos

$$p_1=2, p_2=3, p_3=5,\ldots,$$

entonces $n = \prod_{i=1}^{\infty} p_i^{a_i}, a_i \geqslant 0.$

mo), podemos escribir:

Teorema 1.10. Sean $a = \prod_{i=1}^{\infty} p_i^{a_i} y b = \prod_{i=1}^{\infty} p_i^{b_i}$, entonces el máximo común divisor de a y b es

$$(a,b) = \prod_{i=1}^{\infty} p_i^{c_i} \geqslant 0$$
, donde $c_i = \min\{a_i, b_i\} \leqslant a_i, b_i$.

Demostración: *) $\prod_{i=1}^{\infty} p_i^{c_i} \mid a \wedge \prod_{i=1}^{\infty} p_i^{c_i} \mid b$.

*)
$$e \mid a \quad \wedge \quad e \mid b, e = \prod_{i=1}^{\infty} p_i^{e_i}$$
.

Pero, $e_i \leqslant a_i$ y $e_i \leqslant b_i$,

$$\implies e_i \leqslant \min\{a_i, b_i\} = c_i.$$

$$e = \prod_{i=1}^{\infty} p_i^{e_i} \mid \prod_{i=1}^{\infty} p_i^{c_i} = (a, b).$$

Teorema 1.11. Sean a y b números enteros con b > 0, entonces existen únicos q, $r \in \mathbb{Z}$ tal que:

$$a = bq + r$$
, $0 \le r < b$.

Además, $r = 0 \iff b \mid a$.

Demostración: Fijando \underline{b} y por inducción en $a \in \mathbb{N}$. Si a = 0, entonces $a = b \cdot 0 + 0$. \checkmark

Supongamos que se cumple para $a = 0, 1, \dots, k - 1$.

Para a = k. $k - 1 = b \cdot q' + r'$, $0 \le r' < b$.

$$\longrightarrow k = bq' + (r' + 1). \quad 1 \le r' + 1 < b + 1.$$

- •) Si $1 \le r' + 1 < b \checkmark$
- •) Si $r' + 1 = b \rightarrow r' = b 1 \Longrightarrow$

Capítulo 2

Ejercicios

2.1. Lista N°1

- 1. Un número racional $a/b \operatorname{con}(a,b) = 1$ se llama fracción reducida. Si la suma de dos fracciones reducidas es un entero, es decir, si (a/b) + (c/d) = n. Demostrar que entonces |b| = |d|.
- **2.** Si (a, b) = 1, entonces (a + b, a b) o es 1 o es 2.
- **3.** Si (a, b) = 1, entonces $(a + b, a^2 ab + b^2)$ o es 1 o es 3.
- **4.** Si (a,b) = 1, entonces $(a^n, b^k) = 1$ para todo $n \ge 1, k \ge 1$.
- 5. Un entero se llama sin cuadrados si no es divisible por el cuadrado de ningún primo. Probar que, para cada $n \ge 1$, existen a > 0 y b > 0, unívocamente determinados, tales que $n = a^2b$, en donde b es sin cuadrados.
- **6.** Probar que $\frac{21n+4}{14n+3}$ es irreducible para todo número natural n.
- 7. Sean $\{a,b,x,y\}\subset\mathbb{N}$. Si (a,b)=1 y $ab=c^n$, probar que $a=x^n$ y $b=y^n$ para algunos x,y enteros positivos.
- **8.** Hallar $(a^{2^m} + 1, a^{2^n} + 1)$ en función de a.

- **9.** Sean $\{a,b,x,y\}\subset\mathbb{N}$. Si (a,b)=1 y $x^a=y^b$ entonces probar que $x=n^b$ e $y=n^a$ para algún entero positivo.
- **10.** Si $\{a,m,n\}\subset \mathbb{N}$ con a>1, probar que $\left(a^m-1,a^n-1\right)=a^{(m,n)}-1$.
- 11. Sea n un entero positivo y sea S un conjunto de enteros positivos menores o iguales a 2n tal que si a y b están en S y a y b son diferentes, entonces a no divide a b. Hallar el máximo número de elementos de S.
- **12.** Hallar todos los pares de enteros positivos (a, b) tales que $a \mid b+1$ y $b \mid a+1$.
- **13.** Hallar todos los pares de enteros positivos (a, b) tales que $a \mid 8b+1$ y $b \mid 8a+1$.
- 14. Halle todos los números enteros positivos n tales que el conjunto $\{n, n+1, n+2, n+3, n+4, n+5\}$ puede ser particionado en dos subconjuntos de modo que el producto de los números en cada subconjunto sea igual.
- 15. Sea m y n números enteros tales que:

$$\frac{m}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{1318} + \frac{1}{1319}$$

Probar que m es divisible por 1979. Ayuda: 1979 es un número primo.

Mis notas de estudio

Divisibilidad

Definición 2.1. Un entero b es divisible por un entero a, no cero, si existe un entero x tal que b = ax y se escribe $a \mid b$. En el caso en que b no sea divisible por a se escribe $a \nmid b$.

Teorema 2.1. Sean $\{a, b, c, x, y\} \subset \mathbb{Z}$, las siguientes proposiciones son verdaderas:

1) Si $a \mid b$, entonces $a \mid bc$ para cualquier entero c.

Prueba:

De la definición (2.1) se sigue que existe algún entero m tal que $b=a\cdot m$. Ahora, sea $c\in\mathbb{Z}$ fijo y arbitrario. Así, el número $bc=a\cdot m(c)$ y de (2.1) existe un entero d=m(c) tal que $b=a\cdot d$, por lo tanto $a\mid bc$.

1) Si $a \mid b \ y \ b \mid c$, entonces $a \mid c$.

Prueba:

De la definición (2.1) se sigue que existen los entero m_1 y m_2 tales que $b=a\cdot m_1$ y $c=b\cdot m_2$. Pero c es igual a $b\cdot m_2=(a\cdot m_1)\cdot m_2=a\cdot (m_1\cdot m_2)$, es decir, existe un entero $m_3=m_1\cdot m_2$ tal que $c=a\cdot m_3$, por lo tanto, de (2.1) $a\mid c$.

1) Si $a \mid (b_1, b_2, \dots, b_n)$ para algún $n \in \mathbb{N}$, entonces $a \mid \sum_{j=1}^n b_j x_j$ para cualesquiera x_j .

Prueba:

De la definición (2.1) se sigue que existen n números m_1,m_2,\ldots,m_n tales que $b_j=a\cdot m_j$ cuando $j\in\{1,2,\ldots,n\}$.

1) Si $a \mid b \ y \ b \mid a$, entonces $a = \pm b$.

Prueba:

