Aula 10: Circuitos com Diodos

Objetivos

- Aprender a utilizar diodos
- Implementar circuitos retificadores com diodos
- Implementar um circuito detector de pico com diodo
- Implementar circuitos do tipo ceifador e grampeador com diodos

Lista de material

• Osciloscópio, gerador de sinais e multímetro;

Resistor: 10 kΩ;
Capacitor: 1 μF;

• Diodo da série 1N4001 - 1N4007.

Instruções

Roteiro da experiência

1) **Retificador de Meia Onda.** Monte o circuito abaixo. Utilize $R_1 = 10 \text{ k}\Omega$.

Aplique na entrada V_{in} um sinal **triangular** com valor de pico $V_p = 10$ V, valor médio $V_m = 0$ V e frequência f = 1 kHz. Calcule o valor médio teórico da tensão de saída a partir de (1) (considerando diodo ideal) e de (2) (aproximação considerando a queda de tensão do diodo). Faça as medições dos valores de pico da tensão de entrada $(V_{i,p})$ e da tensão de saída $(V_{o,p})$ e dos valores médios da tensão de entrada $(V_{i,med})$ e da tensão de saída $(V_{o,med})$, preencha a Tabela 1 e compare com o valor teórico.

(1)
$$V_{o,med} = 0.25 \cdot V_p =$$

(2)
$$V_{o,med} \approx 0.25 \cdot (V_p - 0.7) =$$

Tabela 1

V _{i,p} [V]	V _{i,med} [V]	V _{o,p} [V]	V _{o,med} [V]

2) **Retificador com Filtro Capacitivo.** Monte o circuito abaixo. Utilize $R_1 = 10 \text{ k}\Omega$ e $C_1 = 1 \mu\text{F}$.

Mantenha o mesmo sinal de entrada do exercício anterior. Calcule ondulação teórica simplificada determinada pela equação (3). Faça as medições do valor médio da tensão de saída ($V_{o,med}$) e da ondulação da tensão de saída (ΔV_{o}), preencha a Tabela 2 e compare com o valor teórico.

$$(3) \Delta V_{o} \approx \frac{V_{p}}{C_{1}R_{1}f} =$$

Tabela 2

V _{o,med} [V]	ΔV ₀ [V]

3) Retificador de Onda Completa. Monte o circuito abaixo. Utilize R_1 = 10 k Ω .

Aplique na entrada V_{in} um sinal **triangular** com valor de pico $V_p = 10$ V, valor médio $V_m = 0$ V e frequência f = 1 kHz. Calcule o valor médio teórico da tensão de saída a partir de (4) (considerando diodo ideal) e de (5) (aproximação considerando a queda de tensão do diodo). Faça as medições dos valores de pico da tensão de entrada $(V_{i,p})$ e da tensão de saída $(V_{o,p})$ e dos valores médios da tensão de entrada $(V_{i,med})$ e da tensão de saída $(V_{o,med})$, preencha a Tabela 3 e compare com o valor teórico.

(4)
$$V_{o,med} = 0.5 \cdot V_p =$$

(5)
$$V_{o,med} \approx 0.5 \cdot (V_p - 0.7) =$$

Tabela 3

V _{i,p} [V]	V _{i,med} [V]	V _{0,p} [V]	$V_{o,med}$ [V]

4) **Detector de Pico.** Monte o circuito abaixo. Utilize $C_1 = 1 \mu F$.

Mantenha o mesmo sinal de entrada dos exercícios anteriores. Faça as medições do valor de pico da tensão de entrada $(V_{i,p})$ e do valor médio da tensão de saída $(V_{o,med})$ e preencha a Tabela 4. Por que esse circuito é conhecido como detector de pico?

Tabela 4

V _{i,p} [V]	V _{o,med} [V]

5) **Grampeador.** Monte o circuito abaixo. Utilize $C_1 = 1 \mu F$.

Mantenha o mesmo sinal de entrada dos exercícios anteriores. Faça as medições dos valores de pico a pico da tensão de entrada $(V_{i,pp})$ e da tensão de saída $(V_{o,pp})$, do valor mínimo da tensão de saída $(V_{o,mín})$, do valor máximo da tensão de saída $(V_{o,máx})$ e do valor médio da tensão de saída $(V_{o,med})$ e preencha a Tabela 5.

Tabela 5

V _{i,pp} [V]	V _{o,pp} [V]	V _{o,mín} [V]	V _{o,máx} [V]	$V_{o,med}[V]$

Altere o sinal de entrada momentaneamente para uma onda **quadrada**. Em seguida adicione um resistor $\mathbf{R}_1 = \mathbf{10} \ \mathbf{k} \Omega$ em paralelo com o diodo. Qual é o efeito observado? Compare cinco constantes de tempo do circuito RC ($\tau = R_1C_1$) com a metade do período do sinal aplicado.

6) Ceifador. Monte o circuito abaixo. Utilize R_1 = 10 $k\Omega$ e V_x = 5 V.

Retorne para o mesmo sinal de entrada **triangular** dos exercícios anteriores. Faça as medições dos valores de pico a pico da tensão de entrada $(V_{i,pp})$ e da tensão de saída $(V_{o,pp})$, do valor mínimo da tensão de saída $(V_{o,mín})$, do valor máximo da tensão de saída $(V_{o,máx})$ e preencha a Tabela 6.

Tabela 6

V _{i,pp} [V]	V _{o,pp} [V]	V _{o,mín} [V]	V _{o,máx} [V]