2020 考研-数学-基础阶段-线性代数 第一次测试卷(协议)解析

本试卷满分 100 分, 考试时间 30 分钟

姓名 得分
エコ

- 一、选择题: 共15分。下列每题给出的四个选项中,只有一个选项是符合题 目要求的
- 1、已知 \boldsymbol{A} , \boldsymbol{B} 均为 \boldsymbol{n} 阶方阵,则必有 ()
- (A) $(A + B)^2 = A^2 + 2AB + B^2$ (B) $(AB)^T = A^T B^T$
- (C) AB = O by, A = O if B = O (D) $|A + AB| = 0 \Leftrightarrow |A| = 0$ if |E + B| = 0

【答案】: (D)

【解析】: $|A+AB|=0 \Rightarrow |A(E+B)|=0 \Rightarrow |A|=0$ 或|E+B|=0;

$$|\mathbf{A}| = 0$$
 $\mathbf{E}|\mathbf{A} + \mathbf{B}| = 0 \Rightarrow |\mathbf{A}||\mathbf{A} + \mathbf{B}| = |\mathbf{A}(\mathbf{E} + \mathbf{B})| = 0$.

_			
序号	错误原因	学习建议	备注
27010	不清楚矩阵转置的运算法则	讲义第 142 页转置; 习题册第 165	
1		页第2题;注意体会两个矩阵相乘	
		后的转置运算。	
27010	不清楚矩阵乘法中不成立的运	讲义第 142 页不成立的运算法则;	
2	算法则	习题册第 165 页第 1 题;注意体会	
		矩阵乘法中不成立的运算法则。	
27010	不清楚方阵行列式的运算	讲义第 146 页方阵的行列式; 习题	
3		册第 166 页第 10 题;注意体会两个	
		方阵相乘后的行列式的运算。	
27010	其他;		
4			

二、解答题:请将正确答案及其解题过程写在题后的空白部分。

2、(本小题满分 25 分) 已知
$$|A|$$
 = $\begin{vmatrix} 3 & 0 & 1 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & -2 & 2 \end{vmatrix}$, 试求:

(1)
$$|A|$$
; (2) $A_{41} + A_{42} + A_{43} + A_{44}$; (3) $RM_{41} + M_{42} + M_{43} + M_{44}$.

【答案】: (1) -20; (2) 0; (3) -8。

【解析】: (1)
$$|A| = -\begin{vmatrix} 3 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & -2 & 2 \end{vmatrix} = -20$$
;

(2)
$$\boldsymbol{D}_4 = \begin{vmatrix} 3 & 0 & 1 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0;$$

(3)
$$M_{41} + M_{42} + M_{43} + M_{44} = -A_{41} + A_{42} - A_{43} + A_{44}$$

$$\boldsymbol{D}_{4}^{*} = \begin{vmatrix} 3 & 0 & 1 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix} = - \begin{vmatrix} 3 & 1 & 0 \\ 2 & 2 & 2 \\ -1 & -1 & 1 \end{vmatrix} = -8$$

序号	错误原因	学习建议	备注
27020	不清楚展开定理的内容	讲义第135页展开定理;讲义第135	
1		页例 1(1) 题以及习题册第 155 页	
		第2题;注意体会展开定理的内容。	
27020	不清楚行列式运算的基本性质	讲义第 133 页推论 3; 讲义第 133	
2		页例 2;注意体会行列式运算的基	
		本性质。	
27020	不清楚余子式与代数余子式的	讲义第 134 页余子式与代数余子	
3	定义	式;讲义第 136 页例 5;注意体会	
		余子式与代数余子式的定义。	
27020	计算型错误	建议1、2、3。	
4			
27020	其他;		_
5			

3、(本小题满分 20 分) 设
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
, 求 \mathbf{A}^n 。

【答案】:
$$\begin{bmatrix} 2 \cdot 4^{n-1} & 4^n & 0 & 0 \\ 4^{n-1} & 2 \cdot 4^{n-1} & 0 & 0 \\ 0 & 0 & 2^n & 4n \cdot 2^{n-1} \\ 0 & 0 & 0 & 2^n \end{bmatrix}.$$

【解析】:
$$\diamondsuit A = \begin{bmatrix} B & O \\ O & C \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix}$

因为
$$\begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix}$$
,则 $\mathbf{B}^n = 4^{n-1} \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$,又 $\mathbf{C}^n = \begin{bmatrix} 2^n & 4n \cdot 2^{n-1} \\ 0 & 2^n \end{bmatrix}$ 。

序号	错误原因	学习建议	备注
27030	不清楚矩阵分块的处理方法	讲义第 145 页分块矩阵小注; 讲义	
1		第 146 页例 8 以及习题册第 166 页	
		第8题;注意体会矩阵乘法或方幂	
		运算时利用矩阵分块的处理方法。	
27030	不清楚利用矩阵乘法的结合律	讲义第 143 页小结;讲义第 143 页	- Alexandrian
2	求解矩阵方幂的处理方法	例 4 例 5 以及习题册 165 页第 5 题;	
		注意体会利用矩阵乘法的结合律求	
		解矩阵方幂的处理方法。	
27030	不清楚利用矩阵分解求解矩阵	讲义第 144 页小结;讲义第 144 页	
3	方幂的处理方法	例7以及习题册第165页第3、4题;	
		注意体会利用矩阵分解求解矩阵方	
		幂的处理方法。	
27030	计算型错误	建议1、2、3。	
4			
27030	其他;		
5			

4、(本小题满分 20 分))设 A,B 为n阶矩阵,满足 $A^2 = E$, $B^2 = E$,且 $\left|A\right| + \left|B\right| = 0$, 求 $\left|A + B\right|$ 。

【答案】: 0。

【解析】: 因为A+B=A(A+B)B,所以有|A+B|=|A||B||A+B|,因为|A|+|B|=0, 所以|A+B|=0。

序号	错误原因	学习建议	备注
27040	不清楚和式求行列式计算的方	讲义第 149 页小结;讲义第 149 页	
1	法	例 15 以及习题册第 167 页第 15 题;	
		注意体会和式求行列式需要把行列	
		式化为矩阵相乘的形式然后再进行	
		行列式计算。	
27040	不清楚利用单位矩阵的变形将	讲义第 149 页小结;讲义第 149 页	
2	和式行列式转化为矩阵相乘的	例 16 以及习题册 167 页第 16 题;	
	方法	注意体会利用单位矩阵的变形将和	
		式行列式转化为矩阵相乘的方法。	
27040	计算型错误	建议1、2。	
3			
27040	其他;		
4			

5、(本小题满分 20 分)设 A,B 均为n阶正交矩阵,且行列式均小于零,记分块矩阵

$$P = \begin{bmatrix} O & A^T \\ B^T & O \end{bmatrix}$$
, $Q = \begin{bmatrix} O & |A|B \\ |B|A & O \end{bmatrix}$, 其中 $E > n$ 阶单位矩阵, 计算并化简 PQ 。

【答案】: -E。

【解析】:
$$PQ = \begin{bmatrix} O & A^T \\ B^T & O \end{bmatrix} \begin{bmatrix} O & |A|B \\ |B|A & O \end{bmatrix} = \begin{bmatrix} -E & O \\ O & -E \end{bmatrix} = -E$$
。

序号	错误原因	学习建议	备注
27050	不清楚分块矩阵的乘法运算	讲义第 145 页分块矩阵的运算;习	
1		题册第 166 页第 8 题;注意体会分	
		块矩阵的乘法运算。	
27050	不清楚矩阵乘法运算中成立的	讲义第 142 页成立的运算法则;讲	
2	运算法则	义第 143 页例 14 以及习题册 165 页	
		第1(3)题;注意体会矩阵与数的	
		乘法满足交换律。	
27050	不清楚正交矩阵的定义	讲义第 140 页常见矩阵 (7) 正交矩	
3		阵; 习题册 167 页第 16 题; 注意体	

		会正交矩阵的定义。	
27050	其他;		
4			

