

Workshop Arduino

O que é o Arduino?

Especificações

Microcontrolador	ATmega328
Flash Memory	32KB
SRAM	2KB
EEPROM	1KB
Frequência do CLK	16MHz
Entradas analógicas	8
Entradas e saídas digitais	22 (6 PWM)
Tensão de entrada	7-12 V
Corrente máxima por saída	40mA

Arduino IDE

```
sketch_feb22a | Arduino 1.8.5
                                                        \times
File Edit Sketch Tools Help
  sketch_feb22a
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
                              Arduino Nano, ATmega328P on COM10
```

- Editar o código
- Compilar o código
- Programar o Arduino
- Serial Monitor
- Serial Plotter

Estrutura do código

- Inclusão de bibliotecas
- Declaração de MACROS
- void setup()
- void loop()

```
#include <exemplo.h>
#define SAIDA1 5
#define ENTRADA1 2

void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}
```


Controlo de Fluxo e Variáveis

- If... else
- while
- do... while
- switch... case
- for
- continue
- break

int	16 bits
float	32 bits
long	32 bits
char	8 bits
byte	8 bits
bool	8 bits

https://www.arduino.cc/reference/en/

Função pinMode()

```
pinMode(pin, mode);
```

Argumentos:

- pin numero do pin que queremos configurar
- mode Existem três configurações possíveis:
 - INPUT (definido por defeito)
 - OUTPUT
 - INPUT_PULLUP

Função digitalRead()

```
digitalRead(pin);
```

Argumentos:

 pin – numero do pin onde queremos medir uma tensão "ler"

Retorno:

- HIGH valor na entrada aproximadamente 5V
- LOW valor na entrada aproximadamente 0V

Função digitalWrite()

```
digitalWrite(pin, value);
```

Argumentos:

- pin numero do pin onde queremos colocar um valor de tensão "escrever"
- value:
 - HIGH Coloca 5V na saída
 - LOW Coloca OV na saída

Como funciona a Breadboard?

Como funciona o LED?

Como funciona o botão?

Resistência

$$V = I * R$$

https://www.eeweb.com/tools/ 4-band-resistor-calculator

Exercício 1

- Configurar uma saída
- Acender o LED

fritzing

Solução exercício 1

```
#define LED 3

void setup() {
   pinMode(LED,OUTPUT);
}

void loop() {
   digitalWrite(LED,HIGH);
}
```


Exercício 2

- Configurar uma saída e uma entrada
- Acender o LED quando o botão está pressionado

fritzing

Solução exercício 2

```
#define BOTAO 2
#define LED 3
void setup() {
  pinMode (BOTAO, INPUT);
  pinMode (LED, OUTPUT);
}
void loop() {
  if(!digitalRead(BOTAO)){
    digitalWrite (LED, HIGH);
  }else{
    digitalWrite (LED, LOW);
```


Circuito pull-up

Exercício 3

- Configurar uma saída e uma entrada pull-up
- Acender o LED quando o botão está pressionado

fritzing

Solução exercício 3

```
#define BOTAO 2
#define LED 3
void setup() {
  pinMode (BOTAO, INPUT PULLUP);
  pinMode (LED, OUTPUT);
void loop() {
  if(!digitalRead(BOTAO)){
    digitalWrite (LED, HIGH);
  }else{
    digitalWrite (LED, LOW);
  }
```


Função analogRead()

```
analogRead(pin);
```

Argumentos:

 pin – numero do pin onde queremos ler o valor analógico (0-7)

Retorna:

• Inteiro entre 0 e 1023

Função analogWrite()

```
analogWrite(pin, value);
```

Argumentos:

- pin numero do pin onde queremos escrever um valor
- value numero inteiro entre 0(sempre desligado) e 255(sempre ligado) que corresponde ao duty cycle do sinal de saída.

PWM

Saídas PWM

Função map()

```
map(value, fromLow, fromHigh, toLow, toHigh);
```

Argumentos:

- Value: o numero(variável) a mapear
- fromLow: limite mínimo do valor presente em value
- from High: limite máximo dos valor presente em value
- toLow: limite mínimo do valor retornado
- toHigh: limite máximo do valor retornado

Retorna:

Valor mapeado

Exercício 4

- Acender o LED apenas quando o botão esta a ser pressionado
- Alterar a intensidade do led consoante a leitura do sensor

fritzing

Divisor de tensão

$$V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$$

Solução exercício 4

```
#define BOTAO 2
#define LED 3
void setup() {
  pinMode (BOTAO, INPUT_PULLUP);
  pinMode (LED, OUTPUT);
void loop() {
  int sensor, led;
  sensor = analogRead(0);
  led = map(sensor, 0, 1023, 0, 255);
  if(!digitalRead(BOTAO)){
    analogWrite (LED, led);
  }else{
    analogWrite(LED, LOW);
```


Comunicação Serial

Função Serial.begin()

```
Serial.begin(speed);
```

Argumentos:

 Speed: Velocidade da baud rate em bits por segundo

Velocidades: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200

Função Serial.parseInt()

```
Serial.parseInt();
```

Procura pelo próximo valor convertível para int na porta serial

A conversão termina quando não foram lidos nenhuns caracteres durante um tempo especificado(Serial.setTimeout()) ou quando um valor que não é dígito é lido

Função Serial.available()

```
Serial.available();
```

Obter o número de bytes (caracteres) disponíveis para leitura da porta serial

```
if (Serial.available()!=0) {
   analogWrite(LED, Serial.parseInt());
}
```


Função Serial.println()

```
Serial.println(value);
```

Argumentos:

 value – Valor a ser enviado por serial para o computador. Pode ser qualquer tipo de variável, por exemplo um int, char, string.

Retorna:

Numero de bytes enviados

Exercício 5

- Enviar por porta serial:
 - 0 quando o botão não está pressionado
 - valor entre 0 e 255 quando o botão está a ser pressionado, esse valor deve ser proporcional ao valor medido pelo LDR
- Alterar a intensidade do led consoante a leitura da porta Serial, são valido valores entre 0 e 255

Solução exercício 5

```
#define BOTAO 2
#define LED 3
#define LDR 0
void setup() {
  pinMode (BOTAO, INPUT PULLUP);
  pinMode (LED, OUTPUT);
  Serial.begin(9600);
void loop() {
  int sensor, led;
  sensor = analogRead(LDR);
  led = map(sensor, 0, 1023, 0, 255);
  if(!digitalRead(BOTAO)){
    Serial.println(led);
  }else{
    Serial.println(0);
  if(Serial.available()!=0){
    analogWrite(LED, Serial.parseInt());
```


Exercício 6

 Tornar o botão persistente, um toque no botão deve ligar o envio do valor medido pelo LDR se o envio estava desligado e vice-versa

fritzing

Solução exercício 6

```
#define BOTAO 2
#define LED 3
#define LDR 0
bool state = false, curr = false, prev = false;
                                                       if(!state){
                                                         Serial.println(led);
void setup() {
                                                       }else{
  pinMode (BOTAO, INPUT PULLUP);
                                                         Serial.println(0);
  pinMode(LED, OUTPUT);
  Serial.begin(9600);
                                                       if (Serial.available()!=0) {
                                                         analogWrite(LED, Serial.parseInt());
void loop() {
                                                       }
  int sensor, led;
  sensor = analogRead(LDR);
                                                       prev = curr;
  led = map(sensor, 0, 1023, 0, 255);
  curr = digitalRead(BOTAO);
  if (curr == LOW && prev == HIGH) {
    state = !state;
```


Debounce

Função delay()

```
delay(time);
```

Argumentos:

 time – tempo em milissegundos que o programa fica parado

Exercício 7

```
#define BOTAO 2
#define LED 3
#define LDR 0
bool state = false, curr = false, prev = false;
void setup() {
  pinMode (BOTAO, INPUT PULLUP);
 pinMode (LED, OUTPUT);
 Serial.begin(9600);
void loop() {
  int sensor, led;
  sensor = analogRead(LDR);
  led = map(sensor, 0, 1023, 0, 255);
  curr = digitalRead(BOTAO);
  if(curr == LOW && prev == HIGH) {
    state = !state;
```

```
if(!state) {
    Serial.println(led);
}else{
    Serial.println(0);
}

if(Serial.available()!=0) {
    analogWrite(LED, Serial.parseInt());
}

prev = curr;

delay(100);
```