CC2: 10 mai 2021: 10h-11h30 (1h; 1h20 pour les tiers temps)

On attachera le plus grand soin à la présentation et aux calculs. Aucun document ni appareil numérique autorisé. Le barême est indicatif. Les questions avec * sont plus difficiles (questions bonus).

Le sujet est recto-verso.

Exercice 1. (5 points). Répondre uniquement par vrai ou faux aux cinq assertions suivantes (on ne demande pas de justifier).

- 1. Si $A \in M_3(\mathbb{R})$ vérifie $A^2 = 0$, alors la transposée de A vérifie $A^{\top} = 0$.
- 2. Si un système linéaire homogène a plus d'inconnues que d'équations, alors il possède une infinité de solutions.
- 3. Soit a,b deux paramètres réels et soit le système linéaire dans \mathbb{R}^2

$$\begin{cases} x + ay = 1 \\ x + by = 0 \end{cases}.$$

Alors, il existe $a, b \in \mathbb{R}$ tels que ce système n'ait pas de solution.

- 4. Soit $n \in \mathbb{N}^*$. Si F et G sont deux sous-espaces vectoriels de \mathbb{R}^n de dimension 2 et 3 respectivement et en somme directe, alors $n \geq 5$.
- 5. La matrice A ci-dessous est inversible

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ -2 & -5 & 3 \\ 2 & 4 & 2 \end{array}\right).$$

Exercice 2. (4 points). Soit $a \in \mathbb{R}$ et A la matrice

$$A = \left(\begin{array}{ccc} a & 1 & 2 \\ 4 & 2 & 2 \\ 6 & 3 & 5 \end{array}\right).$$

- 1) Calculer le déterminant de A.
- 2) Pour chaque valeur de $a \in \mathbb{R}$, donner le rang de A (justifier).

Exercice 3. (8 points) Dans \mathbb{R}^4 , on pose $F = Vect(u_1, u_2)$ et $G = Vect(u_3, u_4, u_5)$ où :

$$u_1 = (1, -1, 0, 2)$$
; $u_2 = (0, -9, -9, 6)$; $u_3 = (1, 2, 3, 0)$; $u_4 = (0, -1, 2, -2)$; $u_5 = (3, 7, 7, 2)$.

- 1) Trouver une relation de liaison entre u_1 , u_2 , et u_3 . Quelle inégalité déduit-on sur $\dim(F \cap G)$?
- 2) Trouver une relation de liaison entre u_3 , u_4 , et u_5 puis déterminer dim(G) (justifier).
- 3) Montrer que $u_1 \notin Vect(u_2, u_4)$. Que peut-on en déduire sur la famille $\{u_1, u_2, u_4\}$?
- 4^*) A l'aide de ce qui précède, déterminer dim(F+G). Donner une base de F+G.

TSVP

Exercice 4. (8 points) Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \left(\begin{array}{rrr} 1 & -1 & -2 \\ -3 & -3 & -3 \\ 2 & 2 & 2 \end{array}\right).$$

- 1) Calculer une base de Ker(f) puis en déduire dim(Ker(f)) et rg(f) (le rang de f).
- 2) a) Calculer A^2 et A^3 .
- b) En déduire que f^2 est non nul et $f^3 = 0$ (ici $f^2 = f \circ f$ et $f^3 = f \circ f \circ f$).
- 3) On admet qu'il existe un vecteur $x \in \mathbb{R}^3$ tel que la famille $\{f^2(x), f(x), x\}$ soit une base de \mathbb{R}^3 . Donner la matrice de f dans cette base.
- 4^*) Montrer qu'il existe $x \in \mathbb{R}^3$ tel que la famille $\{f^2(x), f(x), x\}$ soit une base de \mathbb{R}^3 (indication : après avoir trouvé un vecteur $x \in \mathbb{R}^3$ judicieux, montrer que la famille est libre en appliquant f à une relation de liaison).