Electronic Devices and Characterization Lab Experiment 9

Prajwal Nayak, 22B4246

October 11, 2024

1 Aim of the Experiment

- 1. Obtain output and transfer characteristics of an N-channel enhancement type MOS-FET (NMOS).
- 2. Measure the trans-conductance and output resistance from the obtained characteristics.
- 3. Investigate the effect of body bias on the characteristics of the NMOS.

2 Experimental Setup

The components used in the experiment are:

- CD4007 IC (containing NMOS transistors)
- Potentiometers $(1 k\Omega) \times 2$
- Breadboard and connecting wires
- DC Power Supply

3 Transfer Characteristics (Linear Region)

- Biased the NMOS in the linear region by setting $V_{DS}=200\,\mathrm{mV}$.
- Vared V_{GS} from 0 V to 3 V, and measure the drain current I_D .
- Plotted the I_D vs V_{GS} characteristics to determine the threshold voltage V_T and the trans-conductance g_m .
- Applied linear regression on the points obtained. Got the $V_T=1341.037326$ and $g_m=\mathrm{slope}=0.000264985882726968$ A/V

Figure 1: Transfer Characteristics in the Linear Region (a) (Plot of I_D vs V_{GS}) (b) After applying regression

4 Transfer Characteristics (Saturation Region)

- Biased the NMOS in the saturation region by setting $V_{DS} = 3 \,\mathrm{V}$.
- Varied V_{GS} from 0 V to 3 V and measure I_D .
- Plotted the I_D vs V_{GS} characteristics to determine V_T and g_m in the saturation region.
- \bullet The VT = 238.24073130864 and gm = 0.000688848938017342

Figure 2: Saturation Region

5 Drain Characteristics

• Measure I_D vs V_{DS} by varying V_{DS} from 0 V to 5 V for different values of $V_{GS} = 1.5V, 2.5V, 3.5V$.

- Plot the drain characteristics for all three V_{GS} values.
- $\bullet\,$ We get the r_o for V_{GS} as 15.4185022026432 ${\rm k}\Omega$

Figure 3: Drain Characteristics for $V_{GS} = 1.5 \text{V}$, 2.5 V, 3.5 V

6 Body Effect

- $\bullet\,$ Bias the NMOS in the linear region with $V_{DS}=200\,\mathrm{mV}.$
- Vary $V_{SB} = 0V, 1V, 2V, 3V$ and measure the I_D vs V_{GS} characteristics.

Figure 4: I_D vs V_{GS} characteristics body effect

7 Formulae

7.1 Body Effect Equation

$$V_T = V_{T0} + \gamma \left(\sqrt{\phi_s + V_{SB}} - \sqrt{\phi_s} \right)$$

7.2 Trans-conductance

The trans-conductance is defined as:

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \bigg|_{\text{const } V_{DS}}$$

7.3 Output Resistance

The output resistance is:

$$r_o = \frac{\partial V_{DS}}{\partial I_D}\bigg|_{\text{const } V_{GS}}$$

7.4 Calculations for the body effect

V_{SB} (V)	V_T
0.2	1500
1.0	1200
2.0	1100
3.0	900

Figure 5: VT vs VSB

The formula for calculating the threshold voltage considering the body effect is:

$$V_T = V_{T0} + \gamma \left(\sqrt{\phi_s + V_{SB}} - \sqrt{\phi_s} \right)$$

Where:

- V_T : Threshold voltage with body bias.
- V_{T0} : Threshold voltage when $V_{SB} = 0$.
- γ : Body effect coefficient (to be calculated).
- $\phi_s = 0.9 V$: Surface potential.
- V_{SB} : Source-to-body voltage.

Calculations:

For $V_{SB} = 0.2 V$, $V_T = 1500 \, mA$:

$$\gamma = \frac{1500 - 0.6}{0.1001} \approx 14933.8$$

For $V_{SB} = 1.0 V$, $V_T = 1200 \, mA$:

$$\gamma = \frac{1200 - 0.6}{0.4297} \approx 2793.3$$

For $V_{SB} = 2.0 V$, $V_T = 1100 mA$:

$$\gamma = \frac{1100 - 0.6}{0.7533} \approx 1461.4$$

For $V_{SB} = 3.0 V$, $V_T = 900 mA$:

$$\gamma = \frac{900 - 0.6}{1.0263} \approx 877.5$$

8 Conclusion

The experiment successfully demonstrated the I-V characteristics of an NMOS transistor in both the linear and saturation regions. We also investigated the body bias effect and measured trans-conductance and output resistance.