Feed Forward and Backprop

Aziz Temirkhanov

LAMBDA lab Faculty of Computer Science Higher School of Economics

February 26, 2024

Outline

Introduction

Empirical Risk Minimization

Usually, when solving ML problems, one is seeking for solution to ERM **ERM**:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} = \mathcal{L}(\theta; x, y) \tag{1}$$

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(g_{\theta}(x_i), y_i)$$
 (2)

Networks

Assume, we have:

- $x \in \mathbb{R}^d$ data features
- $y \in \mathbb{R}$ target
- $\theta \in \Theta$ or $w \in W$ network parameters
- $f_{\theta}(x) = x_1 \times \theta_1 + x_2 \times \theta_2 + ... + x_n \times \theta_n$ a network parameterized by θ
- $\{(x_i, y_i)\}_{i=1}^{\ell}$ training set
- $\mathcal{L}(\hat{y}, y)$ loss function

To minimize empirical risk one can use gradient descent (usually, its stochastic version). Thus, the loss function (and f itself, of course) should be differentiable

Backpropagation

Q: How to compute $\nabla(L)$?

A: Use chain rule!

•
$$y = f(g(x)) \implies \frac{dy}{dx} = \frac{df}{dg} \times \frac{dg}{dx}$$

•
$$y = f(g_1(x), g_2(x), ..., g_n(x)) \implies$$

$$\frac{dy}{dx} = \sum_{i=1}^{n} \frac{df}{dg_i} \times \frac{dg_i}{dx}$$

Fully-Connected Netwroks

Now, let:

$$x \in \mathbb{R}^{d_0}, \qquad f_{\theta}(x) = \langle x, \theta \rangle = \theta^T \times x, \theta \in \mathbb{R}^{d_0}$$

Define: $\{z_i\}_{i=1}^k$ - logit, where k is a number of layers

- $z_1 = \theta_1 x$, $\theta_1 \in \mathbb{R}^{d_0 \times d_1}$
- $\bullet \ \ z_2 = \theta_2 z_1, \qquad \quad \theta_2 \in \mathbb{R}^{d_0 \times d_2}$
- $z_n = \theta_n z_{n-1}$, $\theta_n \in \mathbb{R}^{d_0 \times d_n}$

$$z_n = \theta_n \theta_{n-1} ... \theta_2 \theta_1 x, \theta \in \mathbb{R}^{d_{n0}},$$

still a linear function

Fully-Connected Networks

Let's add non-linearity!

activation function

$$\sigma(\cdot): \mathbb{R} \mapsto \mathbb{R}$$

Now, one can re-define z_i as:

$$z_i = \sigma(z_{i-1}\theta_i + b_i)$$

 $b_i \in \mathbb{R}^{d^i}$ - a bias vector to turn linear transform to affine

Fully-Connected Networks

To sum up:

linear layer

$$f(x; \theta, b) = \theta x + b \text{ or } f(x; W, b) = Wx + b$$

hidden(latent) representation or logit

$$z_i = (z_i^1, ..., z_i^{d_i})$$

non-linearity

$$\sigma(\cdot) = \sigma(z_i)$$

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + \exp^{-x}}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

tanh

$$tanh(x) = \frac{e^x - e^{-x}}{x^x + e^{-x}}$$

$$tanh'(x) = 1 - tanh^2(x)$$

ReLU

$$ReLU(x) = max(0, x)$$

Leaky ReLU

$$LeakyReLU(x) = max(\alpha x, 0)$$

Activation functions

Classification

Consider a multi-class classification problem:

$$\{(x_i,y_i)\}_{i=1}^\ell, \quad y_i \in \{1,...,C\}, \text{where } C \text{ is the number of classes}$$

Then, solve this optimization problem:

$$\min_{\theta} \mathcal{L}(f(\theta; x_i), y_i) = \frac{1}{n} \sum_{i=1}^{n} [f(\theta; x_i) \neq y_i]$$
 (3)

Softmax

The derivative of indicator function either does not exist or equals to zero

$$p = \begin{pmatrix} p(\hat{y}_i = 1) \\ p(\hat{y}_i = 2) \\ \vdots \\ p(\hat{y}_i = C) \end{pmatrix} (4)$$

$$z_i = \sigma(\theta_i z_{i-1} + b_i) \tag{5}$$

$$z_n = \theta_n \times z_{n-1} + b_n, z_n \in \mathbb{R}^{d_n}$$
 (6)

$$p = \{p_i\}_{i=1}^C, \quad p_i \le 0, \quad \sum_{i=1}^C p_i = 1$$
 (7)

Softmax

$$p(y = k) = p_k = softmax(z)_k = \frac{\exp z_k}{\sum_{j=1}^C \exp z_j}$$
 (8)

Let us now use the maximum likelihood estimation to train the network:

$$-\sum_{k=1}^{C} [k=y] \log p_k = -\log p_y \mapsto \min$$
 (9)

$$L = -\frac{1}{I} \sum_{i=1}^{I} \sum_{k=1}^{C} [y_i = k] \log p_k^{(i)} \mapsto \min$$
 (10)

Also, $-\log p_y$ is called Negative Log Likelihood, and that is a special case of Cross Entropy Loss

Log Softmax

$$logsoftmax(z_k) = \log \frac{\exp z_k}{\sum_{j=1}^{C} \exp z_j} = \log \exp z_k - \log \sum_{j=1}^{C} \exp z_j$$
 (11)

$$logsoftmax(z_k) = z_k - \log \sum_{j=1}^{C} \exp z_j$$
 (12)

$$logsoftmax(z_k) = z_k - \max_m z_m - \log \sum_{j=1}^C \exp z_j - \max_m z_m$$
 (13)

Cross-Entropy

$$CrossEntropyLoss(z, y) = -\sum_{i=1}^{C} q_i \log p_i,$$
 (14)

where $q_i = [i = y]$

