Graph Techniques for Cybersecurity

Benjamin Bowman
George Washington University
bbowman410@gwu.edu

Thank you ARCS Foundation!

Why Cybersecurity?

- Ransomware damage costs > \$4 B in 2017
- Damage related to cybercrime projected to hit **\$6 T** annually by 2021
- **20.4 B** loT devices by 2020
- 90% of Automobiles will be Internet Connected by 2020

Source: Symantec

Why Graphs?

- Cybersecurity relevant data highly amenable to graph representation
 - Network communication graph, program control flow graph, code property graphs

- Robust data structure capable of representing complex multimodal relationships
- Many analysis techniques ranging from traditional graph theory to more modern graph learning

Research Vision

Anomaly Detection via Network Log Analysis

Network Security Today

- 365 day average time to detection monitoring and detection techniques insufficient
- Largely signature based, reactionary, requires human expert input
- Algorithmic methods often focused on singular data types

Source: Lockheed Martin

Existing techniques fail to utilize the complex relationships between disparate yet related cyber data points

Network Behavior Modeling via Unsupervised Graph Learning

- Goal: Utilize unsupervised graph learning techniques on streaming graphs containing many different cyber-relevant logs to learn behavior and pattern-of-life of network entities
- **Key Idea:** Identify malicious behavior as series of behavior changes

Vulnerability Detection in Software Source Code

Vulnerability Detection Today

Vulnerabilities by Year

• 5000 vulnerabilities in 2013 vs 17000 in 2018

- Techniques fall into two main camps:
 pattern detection and similarity detection
- Patterns manually generated by human experts - not scalable

Source: NVD

Similarity detection typically based on exact matching - not flexible

Existing techniques are either good at finding one vulnerability in many programs, or finding many vulnerabilities in one program

vGraph: A Generalized Graph Representation for Vulnerability Detection and Discovery

 Goal: Be able to find many different vulnerabilities, in many different programs

System	Precision (%)	Recall (%)	F1 (%)
VUDDY	85	91	88
VulPecker	90	60	70
VulDeePecker	79	83	81
vGraph	92	89	90

Key Idea: Use a complex graph structure to represent only the structure highly related to the vulnerability

Apply approximate subgraph matching techniques

Conclusion

- Graphs are powerful representations of data and have an active research community
- Recent advancements in Machine Learning, Deep Learning, Al on graphs are proving very effective
- Cybersecurity tasks and data are highly amenable to a graph representation and analysis (e.g., vulnerability detection, network behavior modeling, etc)
- Advancements in cybersecurity will be critical to the future of our increasingly digital society

Thanks for Listening!

Thank you ARCS for your support!

Benjamin Bowman George Washington University bbowman410@gwu.edu