10. Congruência módulo n

Seja n um natural positivo. Dizemos que dois números inteiros a e b são congruentes módulo n se os restos das divisões inteiras de a e b por n forem iguais. De forma equivalente, dois inteiros a e b são congruentes módulo n se a-b é múltiplo de a. Denotamos esta relação por

$$a = b \mod n$$

ou

$$a \equiv_n b$$
.

- 1. Averigue se são verdadeiras:
 - (a) $75 = 12 \mod 9$.
 - (b) $75 = 12 \mod 3$.
 - (c) $88 = 11 \mod 5$.
 - (d) $88 = 11 \mod 11$.
 - (e) $1234 = 5678 \mod 1111$.
 - (f) $17 = 23 \mod 2$.
 - (g) $3m + 1 = m 1 \mod 2$, para qualquer inteiro m.
 - (h) $4m + 5 = m 1 \mod 2$, para qualquer inteiro m.
 - (i) $4m+7=6n-3 \mod 2$, para quaisquer inteiros m e n.
- 2. Seja n um natural positivo e sejam a, a_1 , a_2 , b, b_1 , b_2 e c inteiros. Mostre as seguintes afirmações:
 - (a) Se $a = b \mod n$, então $a + c = b + c \mod n$.
 - (b) Se $a_1 = b_1 \mod n$ e $a_2 = b_2 \mod n$, então $a_1 + a_2 = b_1 + b_2 \mod n$.
 - (c) Se $a = b \mod n$, então $ac = bc \mod n$.
 - (d) Se $a_1 = b_1 \mod n$ e $a_2 = b_2 \mod n$, então $a_1 a_2 = b_1 b_2 \mod n$.
- 3. Dê cinco exemplos de inteiros que sejam congruentes módulo n com a para cada um dos seguintes pares de valores de a e n:

(a)
$$a = 2, n = 6$$
;

- (b) a = 7, n = 3;
- (c) a = -7, n = 3;
- (d) a = 3, n = 11;
- (e) a = 0, n = 5;
- (f) a = 111, n = 1111.
- 4. Para os seguintes valores de a e n, indique o único natural r tal que $0 \le r < n$ e $a = r \mod n$.
 - (a) a = 10, n = 6;
 - (b) a = 17, n = 3;
 - (c) a = -17, n = 3;
 - (d) a = 55, n = 11;
 - (e) a = 2, n = 5;
 - (f) a = 11111, n = 1111.
- 5. Relações.
 - **Reflexividade.** Uma relação R é *reflexiva* num conjunto A se para quaiquer $a \in A$,

$$aRa$$
.

Anti-reflexividade. Uma relação R é anti--reflexiva num conjunto A se para quaiquer $a \in A$,

$$\neg aRa$$
.

Simetria. Uma relação R é *simétrica* se para quaisquer a, b,

$$aRb \Rightarrow bRa$$
.

Anti-simetria. Uma relação R é anti-simétrica se para quaisquer a, b,

$$aRb \Rightarrow \neg bRa$$
.

Transitividade. Uma relação R é *transitiva* se para quaisquer a, b, c,

$$(aRb \wedge bRc) \Rightarrow aRc.$$

Equivalência. Uma relação R é de *equivalência* num conjunto A se é reflexiva em A, simétrica e transitiva.

Diga de quais destas propriedades goza a relação de congruência módulo n em \mathbb{Z} .