IIT Jodhpur

Biological Vision and Applications

Module 03-09: Hierarchical Bayesian Model

Hiranmay Ghosh

An example

The bags can have marbles

Specific knowledge and Generic knowledge

- Specific Knowledge
 - ▶ When we sample marbles from a particular bag, we gain knowledge about that bag
 - e.g. uniformity of colors and color of marbles in that bag
- Generic Knowledge
 - When we sample marbles from several bags, we gain knowledge about all bags
 - ... even those are not sampled
 - e.g. uniform color of marbles in each bag
- Specific knowledge about several bags lead to generic knowledge
 - ► This is an instance of inductive reasoning or inductive generalization
 - The process of gaining generic knowledge is also known as meta-learning

Modeling the problem

- Let $\vec{\theta}_i$ represent the model parameters for bag i
 - $\vec{\theta}_i = (\theta_{ii}, i = 1 \dots n)$
 - ightharpoonup j represents the different colors. $\sum_i \theta_{ij} = 1$
- In HBM
 - $ightharpoonup \vec{\theta}$ is are modeled as probabilistic functions of some hyper-parameters
 - ► The hyper-parameters represent a higher (more abstract) level of knowledge
- A common approach is to use Dirichlet distribution
 - In this example, parameters can be $\alpha, \vec{\beta}$
 - \triangleright α represents the heterogeneity of colors of the marbles in the individual bags
 - \triangleright $\vec{\beta}$ representing the average color distribution across all the bags

On Dirichlet distribution

- Beta Distribution
 - ightharpoonup A probability distribution function with two parameters (α, β)

$$p(\theta)_{\alpha,\beta} = \frac{1}{k} \cdot \theta^{\alpha-1} \cdot (1-\theta)^{\beta-1}$$

- where $k = \frac{\Gamma(\alpha).\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
- where $\Gamma(x) = \int_{t=0}^{\infty} t^{x-1} e^{-t} dt$
- Dirichlet Distribution (a generalization of Beta distribution)
 - $\vec{\theta} = (\theta_1, \theta_2 \dots \theta_n)$
 - $\vec{\alpha} = (\alpha_1, \alpha_2 \dots \alpha_n)$

 - where $k = \frac{\prod_{i=1}^{n} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{n} \alpha_i)}$

https://leimao.github.io/blog/Introduction-to-Dirichlet-Distribution/

Hierarchical Bayesian Model

A graphical depiction

Discussions

- The models for the bags are linked with hyper-parameters $\alpha, ec{eta}$
 - ightharpoonup Are learned together with θ s
 - ▶ An observation for one bag serves as an observation for the other bags too
 - ightharpoonup Hyper-parameters $\alpha, \vec{\beta}$ are learned together with the parameters θ_i s
- $\vec{\theta_i}$ is a probabilistic function of $\alpha, \vec{\beta}$
 - $ightharpoonup \alpha$, $ec{beta}$ impose constraints on values of $ec{ heta}$ is
 - Priors for $\vec{\theta}_i$ s (no observations) are closer to actual values
 - $ightharpoonup ec{ heta_i}$ can be learned (reliably estimated) from less number of observations
- Hyper-parameters represent more abstract knowledge
- It is possible to model $\alpha, \vec{\beta}$ with even higher level of knowledge ...
 - Further inductive generalization is possible
 - Generalization from one problem to another will be efficient for similar problems

Quiz 03-09

End of Module 03-09