Bias and Fairness

IN DATA SCIENTIST JOB CHANGE PREDICTIONS

Claire Saint-Donat, Xiangyue Wang

Is this data scientist seeking a new job?

is the driving question behind the classification model we analyze.

Using a set of features about a given data scientist, the model categorizes them as either a "job seeker" or "non-job seeker".

The model was trained on features corresponding to each candidate's **current credentials**, **demographics** as well as **work experience**. Many of the features are categorical, some with high cardinality.

The Data

<u>The data</u> were published by a data science company looking to hire data scientists who successfully passed some certification courses conducted by the company. The data consist of features on those data scientists, including but not limited to:

GENDER

Gender of the candidate.

EDUCATION LEVEL

Ranging from "Primary School" to "PhD".

EXPERIENCE

Total experience in years.

CITY DEVELOPMENT INDEX

A numeric measure how developed is the city the person resides.

COMPANY SIZE

Size of the company the person currently works at.

What are the missing data?

How many are looking for a new role?

We see an imbalanced dataset; most trainees are not job-seeking

Who is looking for a new job?

Most job-seekers appear to be male

Non-Job Seeker

Job Seeker

Not provided Female

Other

Male

Training and City Development

Does the City Development Index play a role?

Interestingly, we see Job Seekers are frequently from cities with a lower CDI score

Are there other differences?

We see broadly similar patterns, but notable areas of difference

City Development Index By Years of Experience

Implementation

DATASET PREPARATION

Imputing of missing values, test/train split

MODEL TRAINING

SMOTE (Class Imbalance upsampling), Classification Models, Hypterparameter tuning

EVALUATION

Measuring accuracy, precision, recall and ROC AUC for each of the models trained and making final selection

SMOTE for Target Class Imbalance

- Majority class samples
- Minority class samples
- Randomly selected minority class sample x_i
- \bigoplus 5 *K*-nearest neighbors of x_i
- Randomly selected sample \hat{x}_i from the 5 neighbors
- Generated synthetic minority instance

Evaluation

SVC Score 78.4% 57.0% 65.0% 72.5% 46.6% 43.1% 63.6% Decision Tree Score Random Forest Score 79.0% 48.8% 57.2% 68.6% Tuned Random Forest Score 76.9% 10.7% 60.4% 54.3% SMOTE Random Forest Score 78.6% 49.5% 56.1% 68.6% Logisitc Regression Score 78.1% 34.2% 56.9% 63.0% **SMOTE Logistic Regression Score** 77.1% 74.4% 51.4% 76.2% KNN Score 77.8% 36.1% 55.5% 63.5%

Accuracy	Recall	Precision	ROC AUC Score
Support Vector Machine (SVM)		Decision Tree	

	Accuracy	Recall	Precision	ROC AUC Score
	Support Vector Machine (SVM)		Decision Tree	
Actual Non-Job Seeker	3726	385	3316	795
Actual Job Seeker	784	510	691	603
	Predicted Non-Job Seeker	Predicted Job Seeker	Predicted Non-Job Seeker	Predicted Job Seeker
Random Forest		Random Forest (w/Adjustments)		
Actual Non-Job Seeker	3639	472	4020	91
Actual Job Seeker	663	631	1155	139
	Predicted Non-Job Seeker	Predicted Job Seeker	Predicted Non-Job Seeker	Predicted Job Seeker
Logistic Regression		K-Nearest Neighbours (KNN)		
Actual Non-Job Seeker	3756	355	3737	374
Actual Job Seeker	828	466	827	467
	Predicted Non-Job Seeker	Predicted Job Seeker	Predicted Non-Job Seeker	Predicted Job Seeker
SMOTE Random Forest		SMOTE Logistic Regression		
Actual Non-Job Seeker	3610	501	3202	909
Actual Job Seeker	654	640	331	963
	Predicted Non-Job Seeker	Predicted Job Seeker	Predicted Non-Job Seeker	Predicted Job Seeker

Outcome Summary

GENDER

All measures demonstrate reasonable parity across gender groups, indicating no bias.

RELEVANT EXPERIENCE

The ADS has the tendency to label those with no relevant job experience as "job seekers" and those with relevant experience as "non-job_seeker."

EDUCATION LEVEL

The ADS is highly likely to label those with an undergraduate degree as "job-seekers", and those with high school diplomas as non-job-seekers, potentially taking opportunities away from the latter group.

EXPERIENCE

The more experience a person has, the less likely the ADS will think they are job-seeking. This puts older people at a disadvantage. Since they are not viewed as job-seeking, they will miss out on job opportunities and potential promotion.

CITY DEVELOPMENT

Being in a relatively lessdeveloped city automatically
makes the ADS think of a data
scientist as a "job-seeker".
Such a bias will bring benefits
to those living in those
relatively less developed cities,
but companies will waste
resources as a result and
potentially lose employees to
competing firms in more
developed cities.

Key Points

THE ADS IS ACCURATE, YET BIASED

While we believe that the ADS has high accuracy, it discriminates candidates based on experience (which correlates with age), location (city-development), and education.

Make sure you do enough research to support your points. It's also a good idea to pair data with visual aids like charts, graphs, or images.

MORE BALANCED DATA WILL IMPROVE THE MODEL

We recommend collecting or synthesizing more data, especially from those with low education.

References

Chakraborty, J., Majumder, S. & Menzies, T. Bias in Machine Learning Software: Why? How? What to Do?. Proceedings Of The 29th ACM Joint Meeting On European Software Engineering Conference And Symposium On The Foundations Of Soft-

ware Engineering. pp. 429-440 (2021),

Chawla, N., Bowyer, K., Hall, L. & Kegelmeyer, W. SMOTE: Synthetic Minority Over-sampling Technique. Journal Of Artificial Intelligence Research.

Joshuaswords HR data visualization & prediction. Kaggle. (April 2021)

Yan, S., Kao, H. & Ferrara, E. Fair Class Balancing: Enhancing Model Fairness without Observ-

ing Sensitive Attributes. Proceedings Of The 29th ACM International Conference On Information &

Knowledge Management. pp. 1715-1724 (2020)

