Class 13: RNA-Seq Analysis Mini-Project

Eric Jordahl

2022-11-09

Section 1: Differential Expression Analysis

```
library(DESeq2)
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
SRR493370
               hoxa1_kd
SRR493371
               hoxa1_kd
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                   918
                                                                         0
                   718
                                0
                                          0
                                                    0
ENSG00000279928
                                                               0
                                                                          0
                               23
                                         28
                                                    29
                                                              29
                  1982
                                                                        28
ENSG00000279457
ENSG00000278566
                 939
                                0
                                                     0
                                                                          0
```

ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(row.names(colData) == colnames(countData))
```

[1] TRUE

All match except we have to get rid of the zero count genes.

Q2

Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
keep.inds <- rowSums(countData) != 0
counts = countData[keep.inds,]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

QC with PCA

```
pca <- prcomp(t(counts), scale = TRUE)
summary(pca)</pre>
```

Importance of components:

```
plot(pca$x[,1], pca$x[,2], col=as.factor(colData$condition), pch=16)
```


Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
```

```
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                baseMean log2FoldChange
                                          lfcSE
                                                      stat
                                                               pvalue
               <numeric>
                             <numeric> <numeric> <numeric>
                                                            <numeric>
                 29.9136
                             0.1792571 0.3248216
ENSG00000279457
                                                  0.551863 5.81042e-01
ENSG00000187634 183.2296
                             0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                            -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                             0.7297556 0.1318599 5.534326 3.12428e-08
                             ENSG00000187583 47.2551
ENSG00000187642
                 11.9798
                             0.5428105 0.5215598 1.040744 2.97994e-01
                     padj
                 <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
```

Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff

```
summary(res)
```

ENSG00000187961 1.13413e-07 ENSG00000187583 9.19031e-01 ENSG00000187642 4.03379e-01

out of 15975 with nonzero total read count adjusted p-value < 0.1

There are 4349 upregulated genes and 4396 downregulated genes

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q4

Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[res$log2FoldChange > 2 ] <- "blue"</pre>
```

```
# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
mycols[res$log2FoldChange < -2] <- "red"
mycols[res$padj > 0.05] <- "green"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(abline(v=c(-2,2))</pre>
```


Adding Gene Annotation

Q5

Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                  "MAP"
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
                    "ONTOLOGY"
[21] "PMID"
                                   "REFSEQ"
                                                                  "UCSCKG"
                    "PROSITE"
                                                   "SYMBOL"
[26] "UNIPROT"
  res$symbol <- mapIds(org.Hs.eg.db,</pre>
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez <- mapIds(org.Hs.eg.db,</pre>
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name <- mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
```

```
'select()' returned 1:many mapping between keys and columns
```

head(res, 10)

multiVals="first")

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <c< td=""><td>haracter></td><td>•</td><td><pre><character></character></pre></td></c<></character>	haracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	na motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	ıcleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin h	nomology
ENSG00000187642	4.03379e-01	PERM1	84808	${\tt PPARGC1} \ {\tt and} \ $	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	oHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqu	itin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2: Pathway Analysis or Gene Set Enrichment

We can use gage() with KEGG and GO

```
library(gage)
  library(gageData)
  library(pathview)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                        "1551"
 [9] "1553"
              "1576"
                        "1577"
                                  "1806"
                                           "1807"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
                        "3615"
                                                     "54490"
                                                               "54575"
              "3614"
                                  "3704"
                                           "51733"
                                                                        "54576"
[25] "54577"
              "54578"
                        "54579"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                        "54963"
                                  "54600"
                                           "7172"
                                                     "7363"
                                                               "7364"
                                                                        "7365"
[33] "574537" "64816"
                        "7083"
                                  "7084"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                           "7378"
                                                     "7498"
                                                               "79799"
                                                                        "83549"
[49] "8824"
               "8833"
                        "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                         "10606"
                                   "10621"
                                            "10622"
                                                      "10623"
                                                                "107"
                                                                         "10714"
                "10201"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                            "11128"
                                                      "11164"
                                                                "112"
                                                                         "113"
 [17] "114"
                "115"
                         "122481" "122622"
                                            "124583" "132"
                                                                "158"
                                                                         "159"
                                                                "205"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                         "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721"
                                            "25885"
                                                      "2618"
                                                                "26289"
                                                                         "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                      "2982"
                                                                "2983"
                                                                         "2984"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                            "30833"
                                                      "30834"
                                                                "318"
                                                                         "3251"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                            "377841" "471"
                                                                "4830"
                                                                         "4831"
                                            "4882"
                                                      "4907"
                                                                         "50940"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                                                "50484"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                            "5137"
                                                      "5138"
                                                                "5139"
                                                                         "5140"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                      "5146"
                                                                "5147"
                                                                         "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                            "5153"
                                                      "5158"
                                                                "5167"
                                                                         "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                            "5315"
                                                      "53343"
                                                                "54107"
                                                                         "5422"
                                                      "5431"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                            "5430"
                                                                "5432"
                                                                         "5433"
                                   "5437"
                                                      "5439"
[113] "5434"
                "5435"
                         "5436"
                                            "5438"
                                                                "5440"
                                                                         "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                            "5558"
                                                      "55703"
                                                                "55811"
                                                                         "55821"
```

```
[129] "5631"
               "5634"
                        "56655" "56953"
                                           "56985"
                                                    "57804"
                                                             "58497"
                                                                       "6240"
                                                    "7498"
[137] "6241"
               "64425"
                        "646625" "654364"
                                           "661"
                                                             "8382"
                                                                       "84172"
[145] "84265"
               "84284"
                        "84618" "8622"
                                           "8654"
                                                    "87178"
                                                             "8833"
                                                                       "9060"
[153] "9061"
               "93034"
                        "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                             "956"
                                                                       "957"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
              54855
     1266
                         1465
                                   51232
                                              2034
                                                        2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  head(keggres$less)
                                          p.geomean stat.mean
hsa04110 Cell cycle
                                       8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                       9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                       1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                       3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                       3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                             q.val set.size
hsa04110 Cell cycle
                                       0.001448312
                                                        121 8.995727e-06
hsa03030 DNA replication
                                       0.007586381
                                                         36 9.424076e-05
hsa03013 RNA transport
                                       0.073840037
                                                        144 1.375901e-03
hsa03440 Homologous recombination
                                                         28 3.066756e-03
                                       0.121861535
hsa04114 Oocyte meiosis
                                       0.121861535
                                                        102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                         53 8.961413e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")


```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 downregulated pathways here for demo purposes only
keggrespathways_down <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids_down = substr(keggrespathways_down, start=1, stop=8)
keggresids_down</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

Section 3: Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater

p.geomean stat.mean

p.val

```
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
GO:0007610 behavior
                                                         427 2.195494e-04
                                          0.2243795
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3711390
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
$stats
```

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.530241	3.530241
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Section 4: Reactome Analysis

```
print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quenes.txt")
```

Q8

What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

sig_genes <- res[res\$padj <= 0.05 & !is.na(res\$padj), "symbol"]</pre>

The most significant Entities p-value is the Endosomal/ Vacuolar Pathway. The most significant pathways do not match the KEGG results. The likely difference between these results are because they are built from 2 separate databases.