المباراة العامة للعلوم والتقنيات 2011

موضوع الرياضيات

أكاليمية الحسن الثاني للعلسوم والتقنسيات

وزارة التربية الواضنية والتعليم العسالي وتكوين الأنصر والبحدث العلسمي

المباراة العامة للعلوم والتقنيات 2011

مدة الإنجاز: 4 ساعات

الرياضيات

يوليوز 2011

حصلول معادلة تفاضلية خطية متجانسة

تعــاريف ورمــوز

تعصريف 1

نعتبر دالة f معرفة على \mathbb{R} ، وعددا صحيحا طبيعيا n يخالف الصفر.

. $f^{(0)} = f$ نضع بالتوافق

نقول أن الدالة f قابلة للاشتقاق مرة واحدة على $\mathbb R$ إذا كانت الدالة f قابلة للاشتقاق على $\mathbb R$ ؛ في هذه الحالة نضع $f^{(1)} = f'$ حيث f الدالة المشتقة للدالة f، ونسمى $f^{(1)}$ الدالة المشتقة رتبة f للدالة أ

نقول أن الدالة f قابلة للاشتقاق مرتين على $\mathbb R$ إذا كانت الدالة $f^{(1)}$ قابلة للاشتقاق على $\mathbb R$ ؛ في هذه الحالة نضع $f^{(2)} = (f^{(1)})'$ الدالة المشتقة للدالة $f^{(1)}$ ، ونسمى $f^{(2)} = (f^{(1)})'$ الدالة المشتقة رتبة $f^{(1)}$.

بالترجع، نقول أن الدالة f قابلة للاشتقاق n مرة على $\mathbb R$ إذا كانت الدالة $f^{(n-1)}$ قابلة للاشتقاق على $f^{(n)}$ الدالة نضع $f^{(n)}$ ونسمى $f^{(n)}$ الدالة المشتقة للدالة $f^{(n)}$, ونسمى $f^{(n)}$ الدالة المشتقة رتبة f للدالة f.

نرمز بُ \mathcal{F} لمجموعة الدوال المعرفة على \mathbb{R} و قابلة للاشتقاق n مرة على \mathbb{R} لكل عدد طبيعى n غير منعدم ؛ ونرمز ب \mathcal{P} لمجموعة الدوال الحدودية المعرفة على \mathbb{R} و التي معاملاتها أعداد حقيقية.

نتائج مقبولة يمكن استعمالها

أ- لـــتكن f و g دالتين من \mathcal{F} ، وليكن α عددا حقيقيا. لدينا $f+g\in\mathcal{F}$ و $f+g\in\mathcal{F}$ و كل عدد صحيح طبيعي f لدينا كذلك

$$(f+g)^{(n)} = f^{(n)} + g^{(n)}, \quad (\alpha f)^{(n)} = \alpha f^{(n)}.$$

 \mathcal{F} المجموعة \mathcal{P} تنتمى إلى المجموعة المنتمية إلى المجموعة المجموعة عنتمى المجموعة المخموعة الم

تعصريف 2

لتكن P دالة حدودية من \mathcal{P} معرفة، لكل x من \mathbb{R} ، بما يلى

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

بحيث n عدد صحيح طبيعي غير منعدم. نعتبر المعادلة التفاضلية (E_P) التالية

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y^{(1)} + a_0 y = 0$$
 (E_P)

المباراة العاملة للعلوم والتقنيات 2011

P تسمى هذه المعادلة التفاضلية بالمعادلة التفاضلية الخطية المتجانسة المرتبطة بالدالة الحدودية P وتسمى P بالدالة الحدودية المميزة للمعادلة التفاضلية الخطية المتجانسة P

تحقق f تان دالة f من المجموعة \mathcal{F} حل للمعادلة التفاضلية الخطية المتجانسة (E_P) إذا كانت

$$a_n f^{(n)} + a_{n-1} f^{(n-1)} + \dots + a_1 f^{(1)} + a_0 f = 0$$

أى أن لكل x من \mathbb{R} لدينا

$$a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \dots + a_1 f^{(1)}(x) + a_0 f(x) = 0$$

مثـــال و تذكير

ليكن λ عدداً حقيقياً ؛ نعتبر الدالة الحدودية P المنتمية إلى \mathcal{P} والمعرفة، لكل x من x، بما يلى

$$.P(x) = x - \lambda$$

هي الدالة الحدودية المميزة للمعادلة التفاضلية الخطية المتجانسة P

$$y' - \lambda y = 0$$
 (E_P)

من \mathcal{F} حل للمعادلة التفاضلية (E_P) إذا كانت f

$$f'(x) - \lambda f(x) = 0$$

 \mathbb{R} لكل x من

a ثُدُكر أن حلول هذه المعادلة التفاضلية الخطية المتجانسة هي الدوال هذه المعادلة التفاضلية الخطية عدد حقيقي.

الجزء الأول: نتسائسج أولسية تخص السدوال الحسدودية

المعرفة، لكل x من x من x المعرفة، لكل عدد صحيح طبيعي العابر الدالة الحدودية $\varepsilon_r(x) = x^r$.

أ- تحقق من أن لكل عدد صحيح طبيعي k ، وكل x من $\mathbb R$ لدينا

$$\begin{cases} \varepsilon_r^{(k)}(x) = r(r-1)\dots(r-k+1)x^{r-k}, & 1 \le k \le r ; \\ \varepsilon_r^{(k)}(x) = 0, & k \ge r+1. \end{cases}$$

k جبیعی کیل عدد صحیح طبیعی $arepsilon_r^{(k)}(0)$ لکل عدد صحیح طبیعی

بمایلی x من x معرفة، لکل من x معرفة من x دالة حدودية من x

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

بحیث n عدد صحیح طبیعی غیر منعدم.

 $a_k = \frac{P^{(k)}(0)}{k!}$ ان لکل عدد صحیح طبیعی k، محصور بین 0 و n، لدینا

ب- استنتج أن دالتين حدوديتين Q و R من \mathcal{P} متساويتان إذا، وفقط إذا، كانت معاملاتهما متساوية.

P = R - Q إشارة: يمكن اعتبار الدالة الحدودية

المباراة العاملة للعلوم والتقنيات 2011

عدد احقیقیا حیث $P(x)=(x-\lambda)Q(x)$ عدد احقیقیا حیث $P(x)=(x-\lambda)Q(x)$ عدد عدد احتین حدودیتن من $P(x)=(x-\lambda)Q(x)$ عدد احتین عدن عدد احتین عدن عدد احتین عدد احتی

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \qquad Q(x) = b_{n-1} x^{n-1} + \dots + b_1 x + b_0.$$

بين أن معاملات الدالتين الحدوديتن P و Q تحقق العلاقات التالية

$$\begin{cases} a_0 = -\lambda b_0 ; \\ a_k = b_{k-1} - \lambda b_k, & 1 \le k \le n-1 ; \\ a_n = b_{n-1}. \end{cases}$$

الجزء الثاني: دراســة معـادلات تفـاضلية خـطـية من الدرجـة الأولى

ليكن λ عددا حقيقيا و g دالة من المجموعة \mathcal{F} . نعتبر المعادلة التفاضلية الخطية التالية $y'-\lambda y=g$ (F_g).

x نقول أن دالة f من \mathcal{F} حل للمعادلة التفاضلية (F_g) إذا كانت f تحقق f من f من f

 (F_g) من \mathcal{F} حلا للمعادلة التفاضلية f -1

g الدالة المشتقة للدالة $x \mapsto f(x)e^{-\lambda x}$ الدالة الدالة الدالة أ

 $_{+}$ استنتج أن الدالة $_{f}$ يمكن كتابتها على الشكل التالى

$$f(x) = G(x)e^{\lambda x}, \quad x \in \mathbb{R}$$

 \mathbb{R} عيث G دالة أصلية للدالة $e^{-\lambda x}$ المعرفة على G

ج- تحقق أن كل دالة

$$h: x \longmapsto G(x)e^{\lambda x}$$

.(F_g) الخطية الخطية الخطية $x \mapsto g(x)e^{-\lambda x}$ دالة أصلية الخطية G

ان حلول $g(x)=R(x)e^{\lambda x}$ السؤال، نضع $G(x)=R(x)e^{\lambda x}$ السؤال، نضع $G(x)=R(x)e^{\lambda x}$ المعادلة التفاضلية الخطية $G(x)=R(x)e^{\lambda x}$ المعادلة التفاضلية الخطية G(x)=R(x) هي الدوال G(x)=R(x) هي الدوال G(x)=R(x) المعادلة التفاضلية الخطية G(x)=R(x) هي الدوال G(x)=R(x) المعادلة التفاضلية الخطية G(x)=R(x) المعادلة التفاضلية الخطية G(x)=R(x) المعادلة التفاضلية الخطية G(x)=R(x) المعادلة التفاضلية الخطية المعادلة السؤال

و ليكن α عددا حقيقيا يخالف العدد α . في هذا السؤال، نضع -3 R دالة حدودية من R لكل R من R لكل R لكل R لكل R لكل R من R

أ- ليكن μ عددا حقيقيا غير منعدم. بين أن الدوال الأصلية للدالة $x\mapsto R(x)e^{\mu x}$ هي الدوال $c\in\mathbb{R}$ عددا حقيقيا غير منعدم. و دودية من \mathcal{P} تحقق $x\mapsto R_1(x)e^{\mu x}+c$

$$.R_1'(x)$$
 + $\mu R_1(x)$ = $R(x)$, $x \in \mathbb{R}$

 R_1 بين وحدانية الدالة الحدودية

إشارة : يمكن استعمال مكاملة بالأجزاء.

 $x\mapsto S(x)e^{\alpha x}+ce^{\lambda x}$ بين أن حــلول المعــادلة التفــاضلية الخطــية (F_g) هى الدوال $S(x)e^{\alpha x}+ce^{\lambda x}$ و $S(x)e^{\alpha x}+ce^{\lambda x}$ التى تحقق $C\in\mathbb{R}$

$$.S'(x)$$
 + $(\alpha - \lambda)S(x)$ = $R(x)$, $x \in \mathbb{R}$

(E_{P}) الجزء الثالث : دراسـة بعـض المعادلات التفاضلية الخـطـية المتجـانسة من نـوع

لتكن P دالة حدودية من \mathcal{P} معرفة لكل x من x كما يلى

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

بحيث n عدد صحيح طبيعي غير منعدم. نعتبر المعادلة التفاضلية الخطية المتجانسة (E_P) التالية

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y^{(1)} + a_0 y = 0$$
 (E_P)

- lpha f+g الدالتان f و g من \mathcal{F} حلين للمعادلة (E_P) ، و lpha عددا حقيقيا، فإن الدالة (E_P) عددا حقيقيا، فإن الدالة (E_P) .
- \mathbb{R} من \mathbb{R} الخولى : $P(x) = x^n$ لكل x من \mathbb{R} نفترض في هذا السؤال أن $P(x) = x^n$ لكل x من \mathbb{R} . بين أن حلول المعادلة التفاضلية الخطية المتجانسة (E_P) هي الدوال الحدودية التي تنتمي إلى \mathcal{P} والتي لا تتعدى درجتها (E_P) .
 - \mathbb{R} الحالة الثانية $P(x)=(x-\lambda)^n$ لكل $P(x)=(x-\lambda)^n$ لكل $P(x)=(x-\lambda)^n$ لكل $P(x)=(x-\lambda)^n$ لكل $P(x)=(x-\lambda)^n$ لكن $P(x)=(x-\lambda)^n$ لكل $P(x)=(x-\lambda)^n$ لكن $P(x)=(x-\lambda)^n$ لكل $P(x)=(x-\lambda)^n$
 - أ- صيغة ليبنيتز الشتقاق جداء

لتكن f و أن لكل عدد صحيح \mathcal{F} . بين بالترجع أن الدالة f تنتمى إلى \mathcal{F} و أن لكل عدد صحيح طبيعي غير منعدم f لدينا

$$(fg)^{(r)} = \sum_{k=0}^{r} {r \choose k} f^{(k)} g^{(r-k)}$$

حيث نرمز ب $\binom{r}{k}$ الى العدد الصحيح الطبيعى المعرف كما يلى

$$\binom{r}{k} = \frac{r!}{k!(r-k)!}, \qquad 0 \le k \le r.$$

إشارة: يمكن استعمال صيغة باسكال التالية

$$\binom{r}{k} = \binom{r-1}{k-1} + \binom{r-1}{k}, \qquad 1 \le k \le r.$$

ب- بين أن المعادلة التفاضلية الخطية المتجانسة (E_P) هي المعادلة التفاضلية

$$\sum_{r=0}^{n} {n \choose r} (-\lambda)^{n-r} y^{(r)} = 0.$$

. R من x لکل $h(x)=f(x)e^{-\lambda x}$ نضع f دالة من f دالة من f

أحسب الدالة $h^{(n)}$ ، المشتقة رتبة n للدالة h، واستنتج أن الدالة f حل للمعادلة التفاضلية الخطية المتجانسة (E_P) إذا، وفقط إذا، وُجدت دالة حدودية R، تنتمى إلى P ولا تتعدى درجتها (n-1)، وتحقق

$$f(x) = R(x)e^{\lambda x}, \quad x \in \mathbb{R}.$$

يحققان λ يحققان ، \mathcal{P} من \mathcal{P} من السؤال أن هناک دالة حدودية Q من Q من السؤال أن هناک دالة $P(x) = (x - \lambda)Q(x), \quad x \in \mathbb{R}.$

أ- بين أن دالة f من \mathcal{F} حل للمعادلة التفاضلية الخطية المتجانسة (E_P) إذا، و فقط إذا، كانت الدالة $f_1 = f' - \lambda f$ الدالة $f_1 = f' - \lambda f$ الدالة يمكن استعمال نتائج السؤال 3 من الجزء الأول.

المباراة العاملة للعلوم والتقنيات 2011

ب- باعتماد مبدأ الترجع، أوجد طريقة أخرى للإجابة عن الاستنتاج المطلوب في السؤال 3-ج أعلاه دون اللجوء إلى استعمال صيغة ليبنيتز لاشتقاق جداء.

1 $\frac{1}{1}$ $\frac{1}{1}$ نعتبر المعادلة التفاضلية الخطية المتجانسة

$$y^{(4)} + y^{(3)} - 3y^{(2)} - 5y^{(1)} - 2y = 0,$$
 $(E_P).$

أ- تحقق أن الدالة الحدودية المميزة للمعادلة التفاضلية الخطية المتجانسة (E_P) هي الدالة الحدودية المعرفة، لكل x من \mathbb{R} ، بما يلى

$$P(x) = (x-2)(x+1)^3$$
.

 (E_P) هي النتائج السابقة، بين أن حلول المعادلة التفاضلية الخطية المتجانسة .2 الدوال $x\mapsto S(x)e^{-x}+ce^{2x}$ ، و $x\mapsto S(x)e^{-x}+ce^{2x}$ الدوال

، مثنى، مثنى مثنى، و لتكن $\lambda_1, \lambda_2, \dots, \lambda_r$ أعدادا حقيقية مختلفة مثنى، مثنى، -6 و n_1, n_2, \ldots, n_r أعدادا صحيحة طبيعية غير منعدمة ؛ نضع $n_1 + n_2 + \cdots + n_r$ ونرمز ب الدالة الحدودية المعرفة، لكل x من \mathbb{R} ، بما يلَّى

$$P(x) = (x - \lambda_1)^{n_1} (x - \lambda_2)^{n_2} \cdots (x - \lambda_r)^{n_r}.$$

بين بالترجع على n أن حلـول المعـادلة التفـاضلية الخطـية المتجانسة (E_P) هي الدوال $x \longmapsto P_1(x)e^{\lambda_1 x} + P_2(x)e^{\lambda_2 x} + \dots + P_r(x)e^{\lambda_r x}$

 n_k - 1 حيث لكل عدد p_k من المجموعة P_k ، $\{1,\ldots,r\}$ دالة حدودية من p_k دالة حدودية من المجموعة إشارة : يمكن استعمال نتائج السؤال 4-أ من الجزء الثالث.

7- تطبيق 2

أ- نعتبر دالة حدودية P معرفة، لكل x من \mathbb{R} ، بما يلى

$$P(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

- حيث a_0 يخالف الصفر $a_n, a_{n-1}, \ldots, a_1, a_0$ أعداد صحيحة نسبية و

 a_0 بين أنه إذا كان عدد صحيح نسبى u جذرا للدالة الحدودية P فإن u قاسم للعدد

ى- نأخذ P ىحىث

$$P(x) = x^3 - 2x^2 - 4x + 8, \quad x \in \mathbb{R}.$$

P(x) = 0 عمل الحدودية P(x) = 0 عمل الحدودية

ج- نعتبر الدالة الحدودية R المعرفة، لكل x من \mathbb{R} ، بما يلى

$$R(x) = x^6 - 2x^5 - x^4 + 4x^3 - x^2 - 2x + 1.$$

لیکن x عددا حقیقیا غیر منعدم ؛ نضع $(x+rac{1}{x})$ بین أن $y=(x+rac{1}{x})$ ثم استنتج أن

$$R(x) = (x+1)^2(x-1)^4.$$

أعط الحل العام في \mathcal{F} للمعادلة الخطية المتجانسة ullet

$$y^{(6)} - 2y^5 - y^{(4)} + 4y^3 - y^{(2)} - 2y' + y = 0.$$
