Discrete Mathematics

Lecture 8: Principle of Inclusion and Exclusion

Murat Ak

Akdeniz University

October 25, 2023

Table of contents

- 1. Principle
- 2. Derangements

Question

How many numbers between 1 and 100 are divisible by either 3 or 5?

Solution

- We consider all 100 numbers from 1 to 100. +100
- We eliminate multiples of 3. {3,6,9,12,...,99}, which makes 33 numbers in total. -33
- We eliminate multiples of 5. {5, 10, 15, 25, ..., 100}, which makes 20 numbers in total. -20
- But we eliminated multiples of 15 twice! $\{15, 30, \dots, 90\}$ So we have to take them back again once. +6

Here set *A* is the set of numbers divisible by 3.

Question

How many numbers between 1 and 100 are divisible by either 3,5 or 7?

Question

How about the numbers between 1 and 100 are divisible by either 3,5,7 or 11?

General formula, conditions, etc.

Idea

When we want to count the number of situations where none of a set of conditions hold, we can use the Principle of Inclusion and Exclusion.

So, if you encounter a problem which you can boil down to a count of situations where no conditions are satisfied, you can use PIE.

Theorem (8.1 The principle of inclusion and exclusion)

Consider a set S, with |S|=n, and conditions $c_i, 1 \leq i \leq t$, satisfied by some of the elements of S. The number of elements of S that satisfy none of the conditions $c_i, 1 \leq i \leq t$ is denoted by $\bar{N}=N(\bar{c}_1\bar{c}_2\bar{c}_3\dots\bar{c}_t)$ where

$$ar{N} = N - \sum_{1 \leq i \leq t} N(c_i) + \sum_{1 \leq i < j \leq t} N(c_i c_j) - \ldots + (-1)^t N(c_1 c_2 c_3 \ldots c_t)$$

The Principle: None of the conditions

Proof idea of Theorem 8.1.

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

$$|A \cup B \cup C| =$$

$$|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$
 Book's proof focuses on how many times an element is counted.

- If an element satisfies no conditions: It is counted once.
- If it satisfies more than one condition: It is counted zero times in total.

Important terminology

Remember c_i denotes the i^{th} condition and $N(c_i)$ denotes the number of elements that satisfy c_i . To keep our calculations simpler, we write:

- $S_0 = N$
- $S_1 = \sum_{1 \leq i \leq t} N(c_i)$
- $S_2 = \sum_{1 \leq i < j \leq t} N(c_i c_j)$
- and in general:
- $S_k = \sum N(c_{i_1}c_{i_2}\ldots c_{i_k}), 1 \leq k \leq t.$

The Principle: At least one condition

Corollary (8.1)

The number of elements of S that satisfy at least one of the conditions $c_i, 1 \leq i \leq t$ is denoted by

$$N(c_1 \vee c_2 \vee c_3 \dots c_t) = N - \bar{N}.$$

8.5 (Number of solutions to equations with upper bounds on variables)

Let $x_1 + x_2 + x_3 + x_4 = 18$ where $x_i \ge 0$ for all $1 \le i \le 4$. How many solutions are there?

What if we have another condition $x_i < 7$ for all 1 < i < 4?

- Think about conditions so that
- The number we are looking for is the number of solutions where no conditions are satisfied

8.9 (An example where calculating $N(c_i)$ s is slightly harder.)

Six married couples are to be seated around a circular table. In how many ways can they arrange themselves so that no wife sits next to her husband?

8.8 (An example where conditions might not be perfectly symmetrical)

Euler's phi function. For $n \in \mathbb{Z}^+$, $n \ge 2$, let $\phi(n)$ be the number of positive integers m, where $1 \le m \le n$ and gcd(m,n)=1. In other words $\phi(n)=[$ number of positive integers smaller than n, and also relatively prime to n]. Example: $\phi(9)=6$ because of $\{1,2,4,5,7,8\}$

Example 8.10 Connecting villages a visual example

In a countryside there are five villages. An engineer wants to devise a system of two-way roads between these villages so that no village remains isolated. (In the figure, a and b are allowed whereas c and d are not.

Exactly m of the conditions

Theorem (8.2 Exactly m of the conditions)

The number of elements of S that satisfy exactly m of the conditions c_i , 1 < i < t is denoted by

$$E_m = S_m - {\binom{m+1}{1}} S_{m+1} + {\binom{m+2}{2}} S_{m+2} - \ldots + (-1)^{t-m} {t \choose t-m} S_t.$$

At least *m* of the conditions

Corollary (8.2 At least m of the conditions)

The number of elements of S that satisfy at least m of the conditions $c_i, 1 \le i \le t$ is denoted by

$$L_m = S_m - {m \choose m-1} S_{m+1} + {m+1 \choose m-1} S_{m+2} - \ldots + (-1)^{t-m} {t-1 \choose m-1} S_t.$$

Example 8.10 Connecting villages a visual example

Remember this example.

- How many road system isolate exactly 2 villages?
- How many isolate at least 2?
- How many isolate at most 2?

Derangements: Worst Bet Ever

Question

You guess the final table of Turkish Soccer Super Leage after week 34. If you guess only 1 team's place correctly, you will win. What is your chance? (Assume you know nothing about the teams.)

Derangements: Nothing Is In Its Right Place

Definition (Background reminder: McLaurin Series)

From elementary calculus we know that

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!},$$

so if we substitute x by -1, we get:

$$e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!},$$