Zadanie 1. (1 pkt)

Który z niżej wymienionych metali jest najsilniejszym reduktorem?

- A. Sód.
- B. Żelazo.
- C. Miedź.
- D. Złoto.

Szereg elektrochemiczny	
Układ	E° [V]
Na/Na+	-2,72
Fe/Fe ²⁺	-0,44
Cu/Cu ²⁺	0,34
Au/Au ³⁺	1,52

Zadanie 2. (1 pkt)

Spośród poniższych odpowiedzi zaznacz tę, która przedstawia prawidłowy wzór strukturalny (zapis elektronowy kropkowy) pojedynczej cząsteczki tlenku siarki(IV).

- A. :O:S::O:
- B. : Ö : S : Ö :
- C. :Ö::Š:Ö:
- D. :Ö::S::Ö

Zadanie 3. (1 pkt)

Jon $H^+(proton)$ w roztworach wodnych występuje w postaci jonu oksoniowego o wzorze H_3O^+ . Zapis $[H_3O^+]$ oznacza stężenie molowe jonów H_3O^+ w roztworze, wyrażone w mol/dm^3 .

Wartość pH danego roztworu jest funkcją logarytmiczną stężenia jonów H_3O^+ . Jeżeli pH roztworu wynosi 3, to stężenie molowe jonów H_3O^+ w tym roztworze wynosi 10^{-3} mol/dm³, jeżeli pH jest równe 7 to $[H_3O^+]$ wynosi 10^{-7} mol/dm³, a jeśli pH roztworu wynosi 10, to stężenie jonów oksoniowych wynosi 10^{-10} mol/dm³.

Roztwór kwasu HX ma pH = 4, a roztwór kwasu HY pH = 6. Zaznacz zdanie prawdziwe:

- A. [H₃O⁺] w roztworze kwasu HY jest 100 razy większe niż w roztworze kwasu HX.
- B. Kwas HY jest kwasem mocniejszym od kwasu HX.
- C. [H₃O⁺] w roztworze kwasu HY jest 100 razy mniejsze niż w roztworze kwasu HX.
- D. $[H_3O^+]$ w roztworze kwasu HX jest 10 razy większe niż w roztworze HY.

Zadanie 4. (1 pkt)

Dokończ zdanie zaznaczając prawidłową odpowiedź: "Promieniowanie gamma (γ)..."

- A. Jest promieniowaniem sztucznym.
- B. Najczęściej występuje bezpośrednio po promieniowaniu α lub β ⁻.
- C. Zatrzymywane jest przez kartkę papieru.
- D. Jest promieniowaniem niskoenergetycznym.

Zadanie 5. (1 pkt)

Reakcja opisana równaniem:

$$Tl^{+} + 2Ce^{4+} \rightarrow Tl^{3+} + 2Ce^{3+}$$

przebiega w układzie, wobec katalizatora, w kilku etapach zgodnie z podanymi poniżej równaniami:

$$Ag^{+} + Ce^{4+} \rightarrow Ag^{2+} + Ce^{3+}$$
 etap szybki
 $Tl^{+} + Ag^{2+} \rightarrow Tl^{2+} + Ag^{+}$ etap wolny
 $Tl^{2+} + Ce^{4+} \rightarrow Tl^{3+} + Ce^{3+}$ etap szybki

Rolę katalizatora w opisanej powyżej reakcjach odgrywa:

- A. Ag^+
- B. Ce³⁺
- C. T1³⁺
- $D. \hspace{0.5cm} Tl^{2+}$

Zadanie 6. (1 pkt)

Otrzymywanie stopów metali możliwe jest dzięki:

- A. Występowaniu wiązania metalicznego w łączonych metalach.
- B. Różnym temperaturom topnienia łączonych metali.
- C. Posiadaniu przez łączone metale tej samej liczby elektronów walencyjnych.
- D. Różnej gęstości łączonych metali.

Zadanie 7. (1 pkt)

Pierwiastek to:

- A. Zbiór atomów o jednakowej liczbie masowej.
- B. Zbiór atomów o jednakowej liczbie neutronów.
- C. Zbiór atomów o jednakowej liczbie atomowej.
- D. Zbiór atomów o jednakowej liczbie nukleonów.

Zadanie 8. (1 pkt)

Cieplo pochlaniane lub wydzielane przez reagujące ze sobą substancje, zmierzone pod stałym ciśnieniem, to entalpia reakcji (ΔH). Zmiana entalpii może być ujemna lub dodatnia:

 $\Delta H < 0$, w przypadku, kiedy układ traci ciepło, w wyniku czego probówka ogrzewa się,

 $\Delta H > 0$, w przypadku, kiedy układ pobiera ciepło z otoczenia, w wyniku czego probówka oziębia się;

W probówce zmieszano stały wodorotlenek baru, Ba(OH)₂, ze stałym tiocyjanianem amonu, NH₄SCN. Po pewnym czasie zaobserwowano między innymi powstanie bezbarwnego roztworu oraz oziębienie się probówki. Wskaż zdanie prawdziwe:

- A. Reakcja jest endoenergetyczna (endotermiczna), a ΔH jest ujemna.
- B. Reakcja jest endoenergetyczna (endotermiczna), a ΔH jest dodatnia.
- C. Reakcja jest egzoenergetyczna (egzotermiczna), a ΔH jest ujemna.
- D. Reakcja jest egzoenergetyczna (egzotermiczna), a ΔH jest dodatnia.

Zadanie 9. (1 pkt)

Wskaż zdanie prawdziwe.

- A. Odmiany alotropowe węgla mają identyczną strukturę (budowę).
- B. Diament cechuje duża odporność chemiczna.
- C. Grafit nie przewodzi prądu elektrycznego.
- D. Odmiany alotropowe węgla mają te same właściwości fizyczne i chemiczne.

Zadanie 10. (1 pkt)

Zaznacz odpowiedź, w której podana jest prawdziwa właściwość katalizatora.

- A. Zmienia reakcję egzoenergetyczną w reakcję endoenergetyczną.
- B. Zmniejsza wydajność reakcji chemicznej.
- C. Umożliwia otrzymanie produktu reakcji w krótszym czasie.
- D. Zmienia reakcję endoenergetyczną w reakcję egzoenergetyczną.

Zadanie 11. (1 pkt)

Wodór występuje w przyrodzie w postaci trzech izotopów tworząc dwuatomowe cząsteczki. Najbardziej rozpowszechnionym z izotopów wodoru jest prot, który stanowi 99,98% wszystkich nuklidów tego pierwiastka. Ilość deuteru określana jest na 0,015%, a radioaktywny tryt stanowi pozostałą, śladową ilość.

Uzupełnij poniższą tabelę dotyczącą izotopów wodoru.

Nazwa izotopu	Liczba masowa	Liczba atomowa	Liczba neutronów
Prot			
Deuter			
Tryt			

Zadanie 12. (2 pkt)

Pierwiastek X występuje w przyrodzie w postaci dwóch stałych izotopów, a jego masa atomowa wynosi 69,72u. Najbardziej rozpowszechniony izotop pierwiastka X ma w jądrze 38 neutronów, a jego masa wynosi 68,92557u i stanowi 60,1% naturalnej mieszaniny izotopowej. Jednostką masy atomowej jest 1u (unit).

Zidentyfikuj pierwiastek X, a następnie oblicz masę drugiego z jego izotopów. Na podstawie obliczonej masy określ liczbę masową drugiego izotopu. Wynik podaj w postaci zapisu AX wstawiając w miejsce X symbol pierwiastka.
Drugi izotop pierwiastka X:
Zadanie 13 (3 pkt) Do 5 gramów tlenku sodu dodano 80 gramów wody destylowanej po czym całość wymieszano do całkowitego roztworzenia substancji. Otrzymano roztwór jednorodny o gęstości 1,00 g/cm ³ .
a) Napisz w formie cząsteczkowej równanie zachodzącej reakcji.
b) Oblicz stężenie molowe otrzymanego roztworu. Wynik podaj z dokładnością do dwóch
miejsc po przecinku.
Odpowiedź: Stężenie otrzymanego roztworu wynosiło

Informacja do zadania 14 – 15

Przeprowadzono doświadczenia opisane poniższymi schematami:

Zadanie 14. (1 pkt)

Zadanie 15. (2 pkt)

Probówka II:

Probówka III:

Wskaż doświadczenie (numer probówki), w której nie zaobserwowano żadnych zmian.

Przedstaw, w formie jonowej skróconej, równania reakcji zachodzących w probówkach II i III lub zaznacz, że reakcja nie zachodzi.

Zadanie 16. (3 pkt)

Dysproporcjonowanie (dysmutacja) to szczególny rodzaj reakcji utlenienia-redukcji, w której związek (substrat) jednocześnie ulega utlenieniu i redukcji. Przykładem takiego procesu może być reakcja bromu z wodorotlenkiem sodu, w której produktami są między innymi dobrze rozpuszczalne w wodzie: bromian(V) sodu o wzorze NaBrO₃ oraz bromek sodu.

Napisz <u>jonowe skrócone</u> równanie reakcji bromu z wodnym roztworem wodorotlenku sodu. Współczynniki stechiometryczne dobierz metodą bilansu elektronowego lub metodą jonowo-elektronową zapisując odpowiednie równania reakcji utlenienia i redukcji.

a) Bilans elektronowy:
Równanie reakcji utlenienia:
Równanie reakcji redukcji:
Rowname reakcji redukcji.
b) Jonowe skrócone równanie reakcji:
Zadanie 17. (1 pkt) Ałuny to grupa związków nieorganicznych będących podwójnymi siarczanami(VI) metali występujących na I stopniu utlenienia (M^I) lub jonu amonowego oraz metali występujących na III stopniu utlenienia (M^{III}) o ogólnym wzorze: $M^I_2SO_4 \cdot M^{III}_2(SO_4)_3 \cdot 24H_2O$. Nazwy systematyczne ałunów tworzy się analogicznie do nazw systematycznych hydratów, wymieniając siarczany(VI) w kolejności alfabetycznej kationów i oddzielając je od siebie kreską ($-$).
Korzystając z informacji wstępnej do zadania podaj nazwę systematyczną soli o wzorze:
$K_2SO_4\cdot Al_2(SO_4)_3\cdot 24\ H_2O$

Zadanie 18. (2 pkt)

Używając wzoru półstrukturalnego (grupowego) podaj wzór produktu reakcji 3,3-dimetylobut-1-enu z wodorem oraz podaj jego nazwę systematyczną. Określ liczbę wszystkich izomerów konstytucyjnych tego związku.
Wzór związku:
Nazwa systematyczna:
Liczba tworzonych izomerów:
Zadanie 19. (2 pkt) Głównymi składnikami benzyny są węglowodory nasycone (alkany) posiadające 5-12 atomów węgla w łańcuchu.
a) Uzupełnij poniższe zdania wybierając i podkreślając właściwe odpowiedzi.
Benzyna jest mieszaniną <i>jednorodną / niejednorodną</i> . Spalanie benzyny jest procesem <i>egzoenergetycznym / endoenergetycznym</i> .
b) Wyjaśnij, dlaczego płonącej benzyny nie można gasić wodą.

Zadanie 20. (2 pkt)

W skład spalin samochodowych wchodzą takie substancje jak: tlen, tlenek węgla(II), tlenek azotu(II), tlenek azotu(IV) oraz węglowodory o wzorze ogólnym C_xH_y . Podstawowym celem reaktorów katalitycznych jest zmniejszenie ilości zanieczyszczeń wydalanych w gazach spalinowych. W wyniku katalizowanych reakcji utleniania i redukcji związki węgla spalane są do CO_2 i wody, a związki azotu do N_2 . Jako katalizatory używa się metali szlachetnych, np. platyny spełniających rolę utleniacza lub rodu pełniącego funkcję reduktora.

a) Korzystając z informacji wstępnej do zadania podaj wzory sumaryczne wszystkich cząsteczek jakie ulegają przekształceniu w dwutlenek węgla i wodę (schemat 1) oraz wzory sumaryczne wszystkich cząsteczek ulegających przekształceniu w azot (schemat 2).

Schemat 1:
Schemat 2:
$\cdots \qquad \stackrel{katalizator}{\longrightarrow} \mathbf{N}_2$
wzory sumaryczne cząsteczek
b) Podaj nazwę metalu pełniącego rolę katalizatora w przekształcaniu związków azotu w azot.
Zadanie 21. (2 pkt) Jedną z najbardziej toksycznych naturalnych substancji jest botulina - białko o masie molowej 150 000 g/mol, którą produkują pewne bakterie na zepsutej lub źle zakonserwowanej żywności. Bakterie produkujące botulinę są wrażliwe na wysokie temperatury, dlatego zatrucia tą toksyną zdarzają się bardzo rzadko. Dawka śmiertelna (LD ₅₀) trucizny, to taka jej ilość, która powoduje zgon 50% populacji badanych zwierząt. Jednostką LD ₅₀ może być liczba gramów trucizny na g ciała danego zwierzęcia (liczba gramów trucizny/g masy ciała) lub liczba cząsteczek trucizny / jednostka masy ciała danego zwierzęcia (np. liczba cząsteczek/g). Dawka śmiertelna dla botuliny (LD ₅₀ botuliny) w przypadku myszy wynosi 0.00003 μg/kg. Oblicz liczbę cząsteczek botuliny, która spowoduje zgon 50% populacji mysz. Wynik podaj w jednostce liczba cząsteczek / kg. (1 g = 10 ⁶ μg).
Odpowiedź: Liczba cząsteczek botuliny wynosi

Zadanie 22. (2 pkt)

Ropa naftowa w przemyśle petrochemicznym poddawana jest destylacji frakcjonowanej, w wyniku której otrzymuje się poszczególne frakcje takie jak: nafta ($T_{wrzenia}$ =180–250°C), benzyna ($T_{wrzenia}$ =40–180°C), gazy ($T_{wrzenia}$ <40°C), mazut ($T_{wrzenia}$ >500°C) lub olej napędowy ($T_{wrzenia}$ =250-350°C).

Uzupełnij poniższą tabelę wpisując wymienione w informacji wstępnej do zadania nazwy frakcji, zgodnie ze wzrostem liczby atomów węgla w cząsteczkach, otrzymywanych podczas destylacji ropy naftowej.

Kolejność otrzymywanych frakcji	Nazwa frakcji
1	
2	
3	
4	
5	

Zadanie 23. (3 pkt)

Zaprojektuj doświadczenie, którego przebieg pozwoli na potwierdzenie, że reakcja zobojętniania jest reakcją egzoenergetyczną (egzotermiczną). W tym celu:

a) Uzupełnij schemat doświadczenia: podkreśl nazwy odczynników, które – po dodaniu do siebie – umożliwią zaobserwowanie przebiegu doświadczenia.

b) Opisz zmiany możliwe do zaobserwowania w czasie doświadczenia
c) Przedstaw, w formie jonowej skróconej, równanie zachodzącej reakcji.

Zadanie 24. (2 pkt)

3

Woda to nazwa zwyczajowa powszechnie znanego, używanego i niezbędnego do życia związku chemicznego. Prawidłowa nazwa systematyczna związku o wzorze cząsteczkowym H_2O wg Międzynarodowej Unii Chemii Czystej i Stosowanej (IUPAC) to oksydan. Woda występuje naturalnie w trzech stanach skupienia. W warunkach standardowych (ciśnienie 1013hPa, temperatura 298K) jest cieczą. Gęstość wody w temperaturze 4° C wynosi $1g/cm^3$.

	a 298K) jest cieczą. Gęstość wody w temperaturze 4°C wynosi 1g/cm ³ .	u,
	bę moli cząsteczek wody w 1 dm³ czystej wody w temperaturze 4°C. Wynik podścią do dwóch miejsc po przecinku.	daj
Odpowiedź.	: Liczba moli cząsteczek wody w 1 dm³ czystej wody	
sztucznych.	5. (2 pkt) (PE) to związek wielkocząsteczkowy wchodzący w skład popularnych tworz Cząsteczki PE zbudowane są wyłącznie z atomów węgla i atomów wodow w metodą otrzymywania polietylenu jest polimeryzacja etenu.	
a) Narysuj (merów).	fragment cząsteczki polietylenu zbudowanej z 3 powtarzających się fragmento	ów
b) Podaj trz	zy przykłady zastosowania polietylenu (PE).	
	Przykład zastosowania	
1		
2		