1 Suppose f is continuous on [0,1]. Prove that

5 points

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

2 Let $\{f_k\}$ be a sequence of continuously differentiable functions on [a,b] such that

5 points

- (i) $\lim_{k\to\infty} f_k = f_0$ pointwise on [a,b], and
- (ii) $\lim_{k\to\infty} f_k' = g$ uniformly on [a,b].

Prove that f_0 is differentiable on [a,b] and $f_0'=g$.