Exponential tamely

Paf:
$$P(y; 1) = b(y) \exp 2n T(y) - a(n)$$
 $b(y) - Base measure$
 $y = T(y) - Sufficient statistic$
 $y = T(y) - log-partition function$
 $a(n) - log-partition function$
 $a(n) - natural parameter$
 $T = T(y) = T(y) = T(y) - a(n)$
 $T = T(y) - a(n)$

$$P(y;n) < b(y) = ny$$

$$P(y;n) = \frac{b(y)e}{\int b(y)e^{-ny}dy} = \frac{b(y)e^{-ny} = A(1)}{\int b(y)e^{-ny}dy} = b(y)e^{ny} = a(n)$$

Bernoulli $P(\gamma; \varphi) = \varphi^{\gamma}(1-\varphi)^{1-\gamma}$ = exp[log[Pg(1-4)1-8]] $= exp \{ y log + (1-y) log (1-4) \}$ = exp{ log (+ log (1-4) } P(j; 1)= b(j)exp{1T(j) a(1)} b(y) = 11 = log (=) += 1 -> logistic T(y)=y $a(1)=-\log(1-\varphi)=\log(1+e^2)$

Thus Bernoulli distribution belongs to exponential family.

Gaussian

$$P(y) \mu, \sigma^{2} = \frac{1}{12\pi\sigma^{2}} \exp\left\{-\frac{1}{2} \frac{(y-\mu)^{2}}{\sigma^{2}}\right\}$$

$$= \frac{1}{2\pi} \exp\left\{-\frac{1}{2}(y-\mu)^{2}\right\}$$

$$= \left[\frac{1}{2\pi} \exp\left(-\frac{1}{2}y^{2}\right)\right] \cdot \exp\left\{\mu y - \frac{1}{2}\mu^{2}\right\}$$

$$P(y; \eta) = b(y) \cdot \exp\left\{\eta^{T}T(y) - a(\eta)\right\}$$

$$= \frac{1}{2\pi} \exp\left\{-\frac{1}{2}y^{2}\right\}$$

$$= \frac{1}{2\pi} \exp\left\{-\frac{1}{2}y^{2}\right\}$$

$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2}y^{2}\right)$$

$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2}y^{2}\right)$$

$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2}y^{2}\right)$$

=) Thus belongs to enponential family as well!

Properties of Exponential Family (1) Log P(7; 1) is concave in 1 MLE is concave in 1 NIL is convex in 1 Concave (2) E[y; 1] = 2 a(1) Convex (3) Var [y; 2] = 2 a(1) Convex (4) Convex

OLS: Ordinary Least Squares (Linear Reg.)
Emp Family is Granssian.

Emp Family is Gransian.

$$h_0(x) = E[y|n; \theta]$$

$$= n = 0$$

$$h_0(x) = 0$$

$$h_0(x) = 0$$

Logistic Regression

Exp. Family is Bernoulli, $h_{\theta}(n) = E[y|x; \theta]$ $= \phi = \frac{1}{1+e^{-\eta}} = \frac{1}{1+e^{-\theta}n}$ $= g(\theta^{\tau}x)$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Natural Model Parameters farameter OEIRd X(i) EIRd > 9: Poisson - ota(i)_ Gaussian: $\mu = g(\eta) = \eta$ Bernoulli: $\varphi = g(1) = \frac{1}{1+e^{-1}}$ 9 - Canonical Response funen. Y- response variable 9-1- Canonical link func? $h_{Q}(n) = E[y|x; \theta] = g(QTx)$

GLM (OTN)

* ASO called Softmax Reg.	Doda Type	Exp. Family Distrib	Name
	R	Caussian	Regression
	{0,1}	Bernoulli	classification
	{1,,K}	categorical	Multiclass *Class ification
	1N+	Poisson	Count Reg. Poisson Reg.
	IR+ (time)	Exponential, Gamma	Survival
	Bernoulli Distn	Beta	

(i) Make a choice of dist. acc. to data type.

(ii) Express in exp. form - a(1), b(y), T(y)

M, $\phi = g(1)$

(iii) Hypothesis $h_0(x) = g(0^Tx)$ This update true for (iv) $0 := 0 + \alpha (y^{(i)} - h_0(x^{(i)})) \cdot \chi^{(i)}$ all GIM.

. .

normalize $P(y=i|x;\theta) = \frac{\exp(\pi^T\theta_{[i]})}{\sum_{j} \exp(\pi^T\theta_{[j]})}$