.

Ejercicio 1

Sea $X_1, \ldots, X_n \sim F_\theta$ i.i.d., es decir una muestra aleatoria de variables independientes e idénticamente distribuidas con distribución F_θ , donde θ es un parámetro desconocido. Sea $\widehat{\theta} = \widehat{\theta}(X_1, \ldots, X_n)$ un estimador de θ basado en la muestra. Probar que

$$MSE(\widehat{\theta}) = \mathbb{B}^2(\widehat{\theta}) + \mathbb{V}(\widehat{\theta})$$

.

Ejercicio 2

En esta segunda parte supondremos que $X_1, \ldots, X_n \sim \mathcal{U}(0,\theta)$ i.i.d. con $\theta = 3$ y usaremos las m = 1000 estimaciones de θ calculadas para n = 5, n = 30, n = 50 y n = 100 que obtuvimos en la guía de "Actividades de Clase - Unidad 3" utilizando $\widehat{\theta}$ y utilizando $\widehat{\theta}$.

Sesgo:

1. Computar el Sesgo empírico de $\widehat{\theta}$ para cada $n=5,\;n=30,\;n=50$ y n=100 mediante la expresión

$$\left(\frac{1}{m}\sum_{i=1}^{m}\widehat{\theta}^{i}\right) - \theta$$

(Es decir, que se obtendrán 4 valores de sesgos diferentes)

- 2. Repetir el ítem anterior para $\widetilde{\theta}.$
- 3. Graficar n vs. el Sesgo empírico de cada uno de los estimadores, todo en un mismo gráfico y utilizar el color rojo para los valores referidos a $\hat{\theta}$ y azul para los de $\tilde{\theta}$.

Varianza:

4. Computar la Varianza empírica de $\widehat{\theta}$ para cada $n=5,\,n=30,\,n=50$ y n=100 mediante la expresión

$$\frac{1}{m}\sum_{i=1}^{m}\left(\widehat{\theta}^{i}-\overline{\widehat{\theta}}\right)^{2}$$

(Es decir, que se obtendrán 4 valores de varianzas diferentes)

- 5. Repetir el ítem anterior para $\widetilde{\theta}$.
- 6. Graficar n vs. la Varianza empírica de cada uno de los estimadores, todo en un mismo gráfico y utilizar el color rojo para los valores referidos a $\widehat{\theta}$ y azul para los de $\widetilde{\theta}$.

Error Cuadrático Medio:

7. Computar el Error cuadrático medio empírico de $\widehat{\theta}$ para cada $n=5,\,n=30,\,n=50$ y n=100 mediante la expresión

$$EMSE = \frac{1}{m} \sum_{i=1}^{m} (\widehat{\theta}^{i} - \theta)^{2}$$

(Es decir, que se obtendrán 4 valores de errores diferentes)

- 8. Repetir el ítem anterior para $\widetilde{\theta}$.
- 9. Graficar n vs. el EMSE de cada uno de los estimadores, todo en un mismo gráfico y utilizar el color rojo para los valores referidos a $\widehat{\theta}$ y azul para los de $\widetilde{\theta}$.

Conclusión:

10. Finalmente, ¿qué se puede deducir de todos los gráficos representados?