OVERFLOW Predictions

John C. Vassberg

Technical Fellow
The Boeing Company
Long Beach, CA 90807, USA

AIAA CFD Drag Prediction Workshop 19^{th} Applied Aerodynamics Conference

Anaheim, CA 9-10 June, 2001

OUTLINE

- SOLUTION PROCEDURE
- CONVERGENCE HISTORIES
- PRESSURE COMPARISONS
- FLOW VIZ
- DRAG POLARS
- CFD-TO-TEST CORRECTION
- DRAG-RISE
- SUMMARY

SOLUTION PROCEDURE

OVERFLOW: Version 1.8M

- Central Difference
- Spalart-Allmaras, Fully Turbulent
- Full Convergence (No Restarts)
 - st Alpha Mode: Monitored C_L and C_D
 - * Full Multigrid: 150/150/3000 Iterations
- MPI Parallel Processing
 - * Six HP-C3610s, Each w/ 2 GB RAM
 - * Switched 100BaseT Ethernet
 - * Nominally \simeq 13 Hours per Solution

SOLUTION PROCEDURE

DRAG POLARS

- Alpha Sweeps at 10 Mach Numbers
- Interpolate lpha on C_L

DRAG-RISE

- Compute $C_L = (.3, .4, .5, .6) \pm 0.001$
- Interpolate C_D on C_L^2
- $-M_{DD}$ at $\frac{\partial C_D}{\partial M}=$ 0.05

• TOTAL OF 53 FLOW SOLUTIONS

DLR-F4 WING/BODY CONFIGURATION

DLR-F4 WING/BODY CONFIGURATION

DLR-F4 WING/BODY CONFIGURATION

DLR-F4 WING/BODY CONFIGURATION

PRESSURE COMPARISONS

FLOW VIZ

FLOW VIZ

DRAG POLARS

DLR-F4 WING/BODY CONFIGURATION

CFD-TO-TEST CORRECTIONS

CFD-TO-TEST CORRECTIONS

DLR-F4 WING/BODY CONFIGURATION CFD-TO-TEST CORRECTIONS

CFD-TO-TEST CORRECTIONS

DLR-F4 WING/BODY CONFIGURATION

DLR-F4 WING/BODY CONFIGURATION

DLR-F4 WING/BODY DRAG DIVERGENCE BOUNDARY

BREGUET-RANGE EQUATION

$$Range = \frac{M*L}{D}*\frac{a}{SFC}*\ln\left(\frac{W_0 + W_f}{W_0}\right)$$

where,

M is Mach Number,

L is Lift,

D is Drag,

a is Speed of Sound,

SFC is Specific Fuel Consumption,

 W_0 is Weight of Aircraft at Landing,

 W_f is Weight of Fuel Burnt.

DLR-F4 WING/BODY CONFIGURATION

SUMMARY

OVERFLOW SOLUTIONS

- Drag Polars = 10
- Drag-Rises = 4
- Solutions = 53
- About One Month Total Wall Clock

APPLIED CFD-TO-TEST CORRECTIONS

FLO22 With & Without Laminar Runs

ACCURATE OVERFLOW DRAG POLARS

- Fall Within Test Data Scatter, $0.2 \le C_L \le 0.6$
- Polar Slope $(e_{viscous})$ Slightly Off