$$\begin{array}{lll} m\coloneqq 1 & & & \\ l\coloneqq 1 & & v_0\coloneqq 2\boldsymbol{\cdot}\sqrt{g\boldsymbol{\cdot}l} & & \varphi_0\coloneqq \frac{40}{180}\,\,\pi & a\coloneqq l & k\coloneqq 0.2 & & v_0\coloneqq 0 & & y\coloneqq \begin{bmatrix}v_0\\\varphi_0\end{bmatrix} & & w_0\coloneqq \sqrt{\frac{g}{l}} & & w_0\coloneqq v_0\coloneqq v_0$$

$$D(t,y) \coloneqq \begin{bmatrix} -w_0^2 \cdot y_1 \cdot 0 - 1 \cdot w_0^2 \cdot \sin\left(y_1\right) - k \cdot y_0 + a \cdot \sin\left(w_1 \cdot t\right) \\ y_0 \end{bmatrix} \qquad Z \coloneqq \operatorname{rkfixed}\left(y,0,9.9,2000,D\right) \qquad Z = 0$$

$$A \coloneqq \frac{1}{\sqrt{\left(w_0^2 - w^2\right)^2 + 4\left(\delta^2 \cdot w^2\right)}} = \begin{bmatrix} 0.102 \\ 0.102 \\ 0.102 \\ 0.102 \\ 0.102 \\ 0.102 \\ 0.102 \\ 0.103 \\ 0.103 \\ \vdots \end{bmatrix} \qquad \varphi \coloneqq \operatorname{atan}\left(\frac{2 \cdot \delta \cdot w}{w_0^2 - w^2}\right) = \begin{bmatrix} 0.002 \\ 0.002 \\ 0.002 \\ 0.003 \\ 0.003 \\ 0.004 \\ 0.004 \\ 0.005 \\ 0.005 \\ \vdots \end{bmatrix}$$

$$v_0 = 2 \cdot \sqrt{g \cdot l}$$
 $\varphi_0 = 2 \cdot \sqrt{g \cdot l}$

$$\varphi_0 := 0 \quad a := l \quad k := 0.2$$

=1

$$v_0 = \frac{\pi}{2}$$

$$y \coloneqq \begin{bmatrix} v_0 \\ \varphi_0 \end{bmatrix}$$

$$w_0 \coloneqq \sqrt{w_0}$$

 $m \coloneqq 1$

$$R(t,y) \coloneqq \begin{bmatrix} \frac{-g}{l} \cdot y_1 \cdot 0 - 1 \cdot w_0 \cdot \sin(y_1) - k \cdot y_0 + a \cdot \sin(w_1) \\ y_0 \end{bmatrix}$$

$$(A^{(i)})_{j} := \frac{A0}{m \cdot \sqrt{\left(w0^{2} - w_{j}^{2}\right)^{2} + 4 b_{i}^{2} \cdot w_{j}^{2}}}$$

$$f = 0, 0.1..40 =$$

$$d \coloneqq 0.1 \qquad w0 \coloneqq \sqrt{\frac{g}{l}} \qquad w \coloneqq w0 \qquad \text{ } f \coloneqq 0$$

$$A0 \coloneqq l \qquad b \coloneqq d \cdot w0 \qquad X(t) \coloneqq A0 \cdot e^{-b \cdot t} \cdot \cos(w \cdot t + f)$$

$$n = 1000$$

$$m:=3$$
 $step:=\frac{m}{n}$ 0 0.003 0.006 0.006

$$m := 3$$
 $step := \frac{m}{n}$
 $k := 0, step ... m = \begin{bmatrix} 0 \\ 0.003 \\ 0.006 \\ \vdots \end{bmatrix}$
 $z(t) := 3 \cdot \frac{t}{m}$ $z(k) = \begin{bmatrix} 0 \\ 0.003 \\ 0.006 \\ \vdots \end{bmatrix}$

$$A_1 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \\ \text{while } j \leq n \end{matrix} \right\| \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{30}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_2 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \\ \text{while } j \leq n \end{matrix} \right\| \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{30}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_2 \mapsto \left\| \begin{matrix} A_2 \mapsto A$$

$$A_{9} \coloneqq \begin{vmatrix} j \leftarrow 0 \\ \text{while } j \leq n \\ \\ \left(A\right)_{j} \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^{2} - w_{j}^{2}\right)^{2} + 4 b_{50}^{2} \cdot w_{j}^{2}}} \end{vmatrix} A_{10} \coloneqq \begin{vmatrix} j \leftarrow 0 \\ \text{while } j \leq n \\ \\ \left(A\right)_{j} \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^{2} - w_{j}^{2}\right)^{2} + 4 b_{100}^{2} \cdot w_{j}^{2}}} \end{vmatrix}$$

$$A_5 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \\ \text{while } j \leq n \end{matrix} \right\| \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{15}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \\ \text{while } j \leq n \end{matrix} \right\| \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| \left\| \begin{matrix} j \leftarrow j + 1 \end{matrix} \right\| A_6 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \end{matrix} \right\| \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \coloneqq \left\| \begin{matrix} j \leftarrow j + 1 \end{matrix} \right\| A_6 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \end{matrix} \right\| A_6 \coloneqq \left\| \begin{matrix} j \leftarrow 0 \end{matrix} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\| A_6 \mapsto \left(A \right)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^{\ 2} \right)^2 + 4 \ b_{20}^{\ 2} \cdot w_j^{\ 2}}} \right\|$$

$$A_{10} \coloneqq \begin{vmatrix} j \leftarrow 0 \\ \text{while } j \leq n \end{vmatrix}$$

$$\begin{vmatrix} (A)_j \leftarrow \frac{A0}{m \cdot \sqrt{\left(w0^2 - w_j^2\right)^2 + 4 b_{100}^{-2} \cdot w_j^2}}$$

