7. HYPOTHESIS TESTING

Introduction, hypothesis test on mean and variance

Introduction

Inferential statistics

- Inferential statistics can be divided into two parts.
 - Parameter estimation
 - Hypothesis testing
- Hypothesis testing is a huge topic, and we will not cover everything. But hopefully we can introduce the basic concept of it.
- The hypothesis tests that we will cover relates to the population parameter (population mean, variance)

Hypothesis tests

- The objective of hypothesis tests:
 - To test whether a sample data support or reject a claim regarding a population.
- The process:
 - Someone makes a claim regarding a population
 - Collect sample data
 - Analyse sample data
 - Make decision whether to support or reject the claim

Hypothesis tests

- Important concepts:
 - Null and alternative hypotheses
 - Critical value, rejection regions, and tails of a test
 - Type I and Type II errors
 - Test statistic

Two hypotheses

For every hypothesis test, there will be two hypotheses or statements related to the population.

\square Null hypothesis, H_0 :

is a claim or statement about a population parameter that is assumed to be true until it is declared false

\square Alternative hypothesis, H_1 :

is a claim or statement about a population parameter that will be declared true if the null hypothesis is declared to be false

Two hypotheses

- The two hypotheses cannot both be true.
 - Either H_0 is true, and H_1 is false;
 - $lue{}$ Or H_0 is false, and H_1 is true.
- □ The hypothesis test assumes that the null hypothesis to be true...
- And try to find evidence to reject it.

Example

- Consider as a nonstatistical example, a person has been indicted for committing a crime and is being tried in a court.
- □ The judge or jury can make one of the two possible decisions:
 - the person is not guilty
 - the person is guilty
- □ During the trial, the person is presumed not guilty. It is the prosecutor's job to prove that he has committed the crime and hence, is guilty.
- In this case, the null and alternative hypotheses are:
 - \blacksquare H_0 : The person is not guilty
 - \blacksquare H_1 : The person is guilty

Type I and Type II errors

- Sample data is used to determine if the null hypothesis should be rejected. Because this decision is based on sample data, there is a possibility that an incorrect decision can be made.
- □ There are four possibilities:

		Reality	
		H_0 is true	H_0 is false
Desiries	Do not reject H_0	Correct decision	Type II error
Decision	Reject H_0	Type I error decision	

Type I and Type II errors

- □ A Type I error occurs when a true null hypothesis is rejected.
- □ A Type II error occurs when a false null hypothesis is not rejected.
- We denote the probabilities of making Type I and Type II errors as α and β , respectively:

```
\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ is true})

\beta = P(\text{Type II error}) = P(\text{Do not reject } H_0 | H_0 \text{ is false})
```

 α is also called the significance level of the test and is chosen before hypothesis test is performed. Normally, α is chosen to be 1%, 5%, or 10%.

Type I and Type II errors

- \square We want both α and β to be as low as possible so that making correct decision is more likely.
- □ However, for a fixed sample size, that is not possible.
 - \blacksquare If α decreases, β will increase
 - \blacksquare If β decreases, α will increase
- \square We can reduce both α and β by increasing sample size.

- □ In the court case example, the hypotheses are:
 - $\blacksquare H_0$: The person is not guilty
 - $\blacksquare H_1$: The person is guilty
- □ The two possible incorrect judgement or decisions are:
 - The person is found guilty by the court, although in reality he has not made the crime. (Type I error)
 - The person is found not guilty by the court, although in reality he has made the crime. (Type II error)

Critical value, rejection regions, and test statistic

Rejection and nonrejection region

- □ The figure represents the court case.
- The 0 on the left marks the point that there is no evidence against the person.
- As we have more and more convincing evidence, we move further to the right.
- We mark a point C on the horizontal axis to divide how to decide the outcome.

Rejection and nonrejection region

- The point C is called critical point or critical value.
- If "evidence < C", we do not reject H_0 . If "evidence > C", we reject H_0
- \square The region at which the H_0 will be rejected is called rejection region.
- \square The region at which the H_0 will not rejected is called nonrejection region.

Test statistic

- □ The test statistic is a value calculated from the sample data that is used in the hypothesis test.
- □ The conclusion of a hypothesis test depends on this value.
- \square If the test statistic is in the rejection region, H_0 will be rejected.
- $\hfill\Box$ Otherwise, if the test statistic is in the nonrejection region, H_0 will not be rejected.
- More on this when we go through specific cases.

The p-value

- □ For making conclusion on the test, there are two approaches:
 - The critical value approach: compare the test statistic and the critical value or rejection region
 - The *p*-value approach: calculate 'p-value' and compare with the significance level
- The p-value is the probability of obtaining test results at least as extreme as the result observed from data, under the assumption that the null hypothesis is correct.
- If p-value $< \alpha$, then H_0 is rejected. Otherwise, if p-value $> \alpha$, then H_0 is not rejected.

p-value interpretation

<i>p</i> -value > 0.10	None or very little evidence against H_0
0.05 < <i>p</i> -value < 0.10	Weak evidence against H_0
0.01 < <i>p</i> -value < 0.05	Strong evidence against H_0
<i>p</i> -value < 0.01	Very strong evidence against H_0

- oxdot The smaller the p-value the more evidence there is against H_0 .
- For example, if the p-value is less than 0.0001, then we have extremely strong evidence to reject H_0 and support H_1

Hypothesis tests on parameter value

Another example on hypothesis test

- A soft drink company claim on average, its cans contain at least 355 ml of soda. A consumer agency wants to check whether the company's claim is valid and collect a sample of 100 cans. Then it is found that the sample mean is 352 ml.
- Is the company's claim valid?
- \square Let μ be the population mean of soda content in the cans.
- □ The two hypotheses:

 - H_1 : μ < 355 ml

Hypothesis tests for parameter value

- In hypothesis tests for parameter value:
 - Null hypothesis, *H*₀
 - Will always contain the equality: =, \leq , \geq
 - Eg: $\mu = 0$, $\mu \le 5$
 - \blacksquare Alternative hypothesis, H_1
 - Will always contain inequality: ≠, <, >
 - Eg: $\mu \neq 0$, $\mu > 5$
- Remember that we are testing on population parameters, not sample statistics.
 - \blacksquare Eg: we test on μ that is unknown, not \bar{x} that is known

Exercise

- State the null and alternative hypotheses:
 - a) A manufacturer claims that the average lifetime of its lightbulbs is 8000 hours. A consumer association want to test whether the average lifetime of the lightbulb is less than the manufacturer's claim.
 - b) The diameter of tennis balls manufactured by a factory must have a mean of 3 inches. The factory's manager is worried if the tennis balls manufactured does not meet the specification and wants to test it.
 - c) A dairy processing company claims that the variance of the amount of fat in the whole milk processed by the company is no more than 0.25. You suspect this is wrong and collect a random sample to test the claim.

- a) M: average lifetime of lightbulbs

 Ho: M > 8000 Chanufacturers claim) (u = 8000)

 Hi: M < 8000
- b) Mi mean diameter of tennis balls.
 - Ho: M = 3
 - $H_i: M \neq 3$
 - c) t^2 : variance of the amount of fat in milk H_0 : $t^2 \le 0.25$ (company's claim) H_1 : $t^2 > 0.25$

Rejection regions

□ Two-tailed test

- (M, 15 just some value)
- $\blacksquare H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$
- Reject H_0 if |test statistic| > critical value|
- □ *p*-value is twice the area to the right of the positive test statistic, or twice the area to the left of the negative test statistic..

Rejection regions

- Left-tailed test $H_0: \mu = \mu_0; H_1: \mu < \mu_0$
 - \blacksquare Reject H_0 if test statistic < critical value
 - p-value is the area to the left of the test statistic

Rejection regions

- □ Right-tailed test:
 - $\blacksquare H_0: \mu = \mu_0; H_1: \mu > \mu_0$
 - \blacksquare Reject H_0 if test statistic > critical value
 - p-value is the area to the right of the test statistic

Hypothesis test steps

- □ In general, these are the steps for performing hypothesis test:
 - 1. Choose the significance level α
 - 2. State the null and alternative hypotheses
 - Calculate the test statistic
 - Make conclusion based on the test statistic
- □ As mentioned, there are two approaches for making conclusion:
 - The critical value approach
 - The *p*-value approach

Making conclusion

- □ In hypothesis test, decision is made whether to reject H_0 or not to reject H_0 .
- \square If H_0 is rejected, then the test supports H_1 .
- \square The conclusion of the test can be made on H_0 or H_1 :

Decision	Claim on H_0	Claim on $oldsymbol{H_1}$
Reject H_0	There is enough evidence to reject H_0	There is enough evidence to support H_1
Do not reject H_0	There is not enough evidence to reject H_0	There is not enough evidence to support H_1

Exercise

- □ The director of a medical hospital feels that on average, her surgeons perform fewer operations per year than the national average of 211. She selected a random sample of surgeons to test this belief.
 - State the null and alternative hypotheses.
 - If the null hypothesis is rejected, state the conclusion that can be made.
 - If the null hypothesis is not rejected, state the conclusion that can be made.

a)
$$M = average operations per year performed by surgeons in the hospital.

Ho: $M > 211$

Ho: $M < 211$ (director's belief)$$

b) There is enough eindence to support the director's be lief that the average operations per year performed by surgeons in the hospital is less than the notional average (evidence to support 41) c) There to not enough evidence to support the director's beliet. (not enough evidence to support HI).

Hypothesis test for population mean (one population)

Hypothesis test for population mean (one population)

- In this test, we want to test for a normally distributed population, whether:
 - $\blacksquare H_0$: $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$ (two-tailed test)
 - $\blacksquare H_0$: $\mu = \mu_0$ vs H_1 : $\mu < \mu_0$ (left-tailed test)
 - $\blacksquare H_0$: $\mu = \mu_0$ vs H_1 : $\mu > \mu_0$ (right-tailed test)

for some value μ_0

□ Note that we use equality sign "=" for all the null hypotheses above for simplicity.

Hypothesis test for population mean (one population)

- □ There are many cases:
 - $\Box \sigma$ is known
 - $lue{\sigma}$ is unknown but the sample size is large
 - $lue{\sigma}$ is unknown but the sample size is small
- □ Each case has different test statistic and/or distribution to be used.
- We will focus on the first two cases only that uses normal distribution

Case 1: σ is known

□ If H_0 is assumed to be true, then $\bar{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$.

 \Box If σ is known,

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

can be used as the test statistic. We know that if H_0 is true, then this value follows the standard normal distribution.

This test is also called the z-test.

Case 1: σ is known

$oldsymbol{H_0}$ and $oldsymbol{H_1}$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	
Test statistic	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$			
Decision rule	Reject H_0 if $ z > z_{\alpha/2}$	Reject H_0 if $z < -z_{\alpha}$	Reject H_0 if $z>z_{\alpha}$	
<i>p</i> -value	2P(Z> z)	P(Z < z)	P(Z > z)	
Rejection region and critical value	Critical Region $-z_{\underline{\alpha}} \qquad z_{\underline{\alpha}}$	Critical Region $-z_{\alpha}$	z_{α}	

Critical values

□ For normal distribution, here are the critical values:

Significance level $lpha$	Left-tailed $(-z_lpha)$	Right-tailed (z_lpha)	Two-tailed $(z_{lpha/2})$
0.10	-1.28	1.28	<u>+</u> 1.645
0.05	-1.645	1.645	<u>+</u> 1.96
0.01	-2.33	2.33	<u>+</u> 2.576

Example

- A researcher believes that the mean age of medical doctors in a large hospital system is older than the average age of doctors in the United States, which is 46. Assume the population standard deviation is 4.2 years. A random sample of 30 doctors from the system is selected, and the mean age of the sample is 48.6. Test the claim at $\alpha=0.05$. Given $z_{0.05}=1.645$.
- □ Step 1: state the hypotheses:

$$H_0$$
: $\mu = 46$, H_1 : $\mu > 46$

□ Step 2: calculate the test statistic

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{48.6 - 46}{4.2 / \sqrt{30}} = 3.391$$

Example

- □ Step 3: Make conclusion
 - Reject H_0 if the test statistic $z > z_\alpha = 1.645$.
 - \blacksquare In this case, it is found that z>1.645.
 - Therefore, we have enough evidence to reject H_0 .
 - There is enough evidence to support the claim that the mean age is more than national average.

Exercise

A researcher wishes to test the claim that the average cost of tuition and fees at a four-year public college is greater than \$5700. She selects a random sample of 9 four-year public colleges and finds the mean to be \$5950. The population standard deviation is assumed to be \$659. Is there evidence to support the claim at $\alpha = 0.05$? Use $z_{0.05} = 1.645$

(2) Test statistic:
$$\frac{\pi}{2} = \frac{\pi - 100}{4 / \ln} = \frac{5950 - 5700}{659 / \sqrt{9}} = 1.138$$

(3) Conclusion:

Reject No +2 > 2x = 1-645.

We found that & < 2x.

we to not have enough evidence to rejet 1/6.

There is not enough evidence to support that the average cost of fuition is greater than \$5.700.

Case 2: σ is unknown but sample size is large

 \square If σ in not known and $n \ge 30$, we can use the sample standard deviation s as an estimate for σ and use

$$z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

as the test statistic. Under the null hypothesis, this value follows approximately the standard normal distribution.

Case 2: σ is unknown but sample size is large

H_0 an	dH_1
----------	--------

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu \neq \mu_0$

$$H_0: \mu = \mu_0$$

$$H_0$$
: $\mu = \mu_0$

 $H_1: \mu \neq \mu_0$

$$H_1: \mu < \mu_0$$

$$H_1: \mu > \mu_0$$

Test statistic

$$z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Decision rule

Reject H_0 if $|z| > z_{\alpha/2}$

Reject H_0 if $z < -z_{\alpha}$

Reject
$$H_0$$
 if $z > z_{\alpha}$

p-value

2P(Z > |z|)

P(Z < z)

Rejection region and critical value

Example

- A researcher claims that the average wind speed in a certain city is 8 miles per hour. A sample of 32 days has an average wind speed of 8.2 miles per hour and a standard deviation 0.6 mile per hour. At $\alpha = 0.05$, is there enough evidence to reject the claim? Use the p-value approach.
- □ Step 1: Hypotheses

$$H_0: \mu = 8, \qquad H_1: \mu \neq 8$$

□ Step 2: Test statistic

$$z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{8.2 - 8}{0.6/\sqrt{32}} = 1.886$$

Example

- Step 3: Conclusion
 - p-value = $2 \times P(Z > |1.886|) = 2(0.0294) = 0.0588$.
 - ho-value > lpha = 0.05.
 - \blacksquare Therefore, we do not have enough evidence to reject H_0 .
 - There is not enough evidence to reject the claim that the average wind speed is 8 miles per hour.

Exercise

The management of Priority Health Club claims that its members lose an average of 10 pounds or more within the first month after joining the club. A consumer agency that wanted to check this claim took a random sample of 36 members of this health club and found that they lost an average of 9.2 pounds within the first month of membership with the standard deviation of 2.4 pounds. Test the claim using 1% significance level using the *p*-value approach.

$$H_0: M = 10$$
 (M > 10) (claim)

 $H_1: M < 10$
 $Z = \frac{\pi - M_0}{s/t_0} = \frac{9.2 - 10}{24/\sqrt{36}} = -2$

p-value = P(2 < 2) = P(2 < -2) = P(2 > 2)= 0-02275

Reject to A p-value < x =0.01

In this case p-value > \alpha.

We do not have enough evidence to reject to.

There is not enough evidence to reject the doin made by the dub.

Case 3: σ is unknown and sample size is small

 \square If σ is not known and n < 30, we can use

$$t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$$

as the test statistic. This value follows the t-distribution with n-1 degrees of freedom

This test is called the t-test.

Case 3: σ is unknown and sample size is small

H_0	and	H_1
-------	-----	-------

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0$$

$$H_1: \mu > \mu_0$$

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Decision rule

Reject H_0 if $|t| > t_{\alpha/2, n-1}$

 $H_0: \mu = \mu_0$

Rejection region and critical value

Hypothesis test for population means (two populations)

Difference between two population means

- $lue{}$ Suppose we have two sample means, $ar{X}_1$ and $ar{X}_2$
 - lacksquare $ar{X}_1$ is a sample mean from a $N(\mu_1, \sigma_1^2)$ population with sample size n_1
 - lacksquare $ar{X}_2$ is a sample mean from a $N(\mu_2,\sigma_2^2)$ population with sample size n_2
- In this case, we want to compare the two population means, μ_1 and μ_2 by taking the difference $\mu_1 \mu_2$.
- □ Two cases:
 - Paired/dependent samples
 - Independent samples

Dependent samples

In this case, each observation in the first sample has its pair in the second sample, and the sample size must be the same.

Example:

- Marks for the first and second tests for the same students
- Weights before and after a weight loss program for the same people
- □ To perform hypothesis test, we take the difference for each pair, $d = x_1 x_2$, and perform hypothesis test on the difference like we did in the one population case.

Independent samples

- □ Few cases:
 - $lue{\sigma}_1$ and σ_2 are known
 - $lue{\sigma}_1$ and σ_2 are not known but the sample size is large
 - $lue{\sigma}_1$ and σ_2 are not known, sample size is small and $\sigma_1=\sigma_2$
 - $lue{\sigma}_1$ and σ_2 are not known, sample size is small and $\sigma_1
 eq \sigma_2$

 We focus on the first two cases only because they use normal distribution

The hypotheses

- □ For test involving two population means, we are interested in the difference between the two means.
- \square Here are the three possible tests, for a given value of δ_0 :
 - $\blacksquare H_0: \mu_1 \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 \mu_2 \neq \delta_0 \text{ (two-tailed test)}$
 - $\blacksquare H_0: \mu_1 \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 \mu_2 < \delta_0 \text{ (left-tailed test)}$
 - $\blacksquare H_0: \mu_1 \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 \mu_2 > \delta_0 \text{ (right-tailed test)}$
- \square In most cases, we use $\delta_0 = 0$.

Case 1: variances are known

If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$, then $\overline{X}_1 \sim N\left(\mu_1, \frac{\sigma_1^2}{n_1}\right)$, $\overline{X}_2 \sim N\left(\mu_2, \frac{\sigma_2^2}{n_2}\right)$, and

$$\bar{X}_1 - \bar{X}_2 \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

- \square If H_0 is assumed true, then $\mu_1 \mu_2 = \delta_0$
- □ Test statistic:

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

follows the standard normal distribution

H_0	and	H_1
-------	-----	-------

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 \neq \delta_0$

$$H_0: \mu_1 - \mu_2 = \delta_0$$

$$H_0: \mu_1 - \mu_2 = \delta_0$$
 $H_0: \mu_1 - \mu_2 = \delta_0$
 $H_1: \mu_1 - \mu_2 < \delta_0$ $H_1: \mu_1 - \mu_2 > \delta_0$

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Decision rule

p-value

$$|z| > z_{\alpha/2}$$

$$2P(7 > |z|)$$

Reject H_0 if

$$2P(Z > |z|)$$

Reject H_0 if $z < -z_{\alpha}$

Reject
$$H_0$$
 if $z > z_{\alpha}$

Rejection region and critical value

Example

A study using two random samples of 35 people each found that the average amount of time those in the age group of 26–35 years spent per week on leisure activities was 39.6 hours, and those in the age group of 46–55 years spent 35.4 hours. Assume that the population standard deviation for those in the first age group found by previous studies is 6.3 hours, and the population standard deviation of those in the second group found by previous studies was 5.8 hours. At $\alpha = 0.05$, can it be concluded that there is a significant difference in the average times each group spends on leisure activities? Use $z_{0.025} = 1.96$.

$$n_1 = 35$$
 $n_2 = 35$
 $n_1 = 39-6$
 $n_2 = 35-4$
 $n_1 = 6.3$
 $n_2 = 35-4$

$$H_0: M_1 - M_2 = 0$$
 $H_1: M_1 - M_2 \neq 0$

$$\int_{-N_1}^{2} + \int_{-N_2}^{2}$$

$$=$$
 $(39-6-35-4)-0$

$$\frac{1}{36} + \frac{5-8^2}{35}$$

Reject No A (2)> Za/2

We have enough evidence to reject tho.

There is enough evidence to conclude that there is a significance différence in the amount of lersure activities between the two grants.

Case 2: variances unknown but size sample is large

If the population standard deviations are not known but the sample size is large, the sample standard deviations s_1 and s_2 can be used as estimates for σ_1 and σ_2 , respectively

Test statistic:

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

follows the standard normal distribution

Case 2: variances unknown but size sample is large

H_0	and	H_1
-------	-----	-------

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 \neq \delta_0$

$$H_0: \mu_1 - \mu_2 = \delta_0 H_1: \mu_1 - \mu_2 < \delta_0$$

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 > \delta_0$

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Decision rule

$$|z| > z_{\alpha/2}$$

$$2P(7 > |z|)$$

Reject H_0 if

Reject
$$H_0$$
 if $z < -z_{\alpha}$

Reject
$$H_0$$
 if $z > z_{\alpha}$

p-value

$$2P(Z > |z|)$$

Rejection region and critical value

Example

A researcher hypothesizes that the average number of sports that colleges offer for males is greater than the average number of sports that colleges offer for females. A random sample of the number of sports offered by 50 colleges for males and 50 colleges for females gives the average of 8.6 sports and 7.9 sports for males and females, respectively, and a standard deviation of 3.3 for both groups. At $\alpha = 0.10$, is there enough evidence to support the claim?

$$n_2 = 50$$

$$S_1 = 3.3$$

$$\mathcal{H}_{D}$$
: $\mathcal{M}_{1} - \mathcal{M}_{2} = 0$

$$\mu_1: \mu_1 - \mu_2 > 0$$

$$\int \frac{S_1^2}{N_1} + \frac{S_2}{N_2}$$

$$=(8-6-7.9)-6$$

There is not enough
eidence to support the
claim that the average
number of sports for vales
is note than for females.

Case 3: variances unknown, sample size is small and $\sigma_1 = \sigma_2$

If the variances are unknown, the size sample is small, but the two variances are (assumed to be) equal, then we can use the following pooled variance as an estimate:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Test statistic:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

follows the t-distribution with $n_1 + n_2 - 2$ degrees of freedom.

Case 3: variances unknown, sample size is small and $\sigma_1 = \sigma_2$

H_0	and	H_1
-------	-----	-------

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 \neq \delta_0$

$$H_0: \mu_1 - \mu_2 = \delta_0$$
 $H_0: \mu_1 - \mu_2 = \delta_0$
 $H_1: \mu_1 - \mu_2 < \delta_0$ $H_1: \mu_1 - \mu_2 > \delta_0$

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 > \delta_0$

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Decision rule

Reject
$$H_0$$
 if $|t| > t_{\alpha/2,n_1+n_2-2}$

Rejection region and critical value

Case 4: variance unknown and sample size is small

Test statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

follows the t-distribution with the following degrees of freedom:

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$$

This is also called Welch's t-test.

Case 4: variance unknown and sample size is small

H_0	and	H_1
-------	-----	-------

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 \neq \delta_0$

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 < \delta_0$

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 > \delta_0$

Test statistic

$$t = \frac{(x_1 - x_2) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Decision rule

Reject H_0 if $|t| > t_{\alpha/2,\nu}$

Rejection region and critical value

Other hypothesis tests

Hypothesis test for proportion

- Sometimes we want to test for proportion. Eg:
 - Does the proportion of customers that prefer the new product higher than the old product?
 - Is the voter turnout higher than last year?
- Examples of hypotheses:
 - $H_0: p = 0.5 \text{ vs } H_1: p > 0.5$
 - $H_0: p_1 = p_2 \text{ vs } H_1: p_1 \neq p_2$
- One population test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

which follows approximately the standard normal distribution for large n.

Two population proportions:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$$

which follows approximately the standard normal distribution for large n_1 and n_2 .

Hypothesis test for variance

- We can also perform hypothesis test on variance, for normally distributed populations.
- One population variance:

 - H_0 : $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 > \sigma_0^2$ (right-tailed test) for a given value σ_0^2

Test statistic (one population):

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

follows the chi-square distribution with n-1 degrees of freedom

Hypothesis test for variance

Two population variances:

$$\blacksquare H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 \neq \sigma_2^2$$

$$\blacksquare H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 < \sigma_2^2$$

$$\blacksquare H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 > \sigma_2^2$$

□ Test statistic (two populations):

$$F = \frac{S_1^2}{S_2^2}$$

follows the \emph{F} -distribution with n_1-1 and n_2-1 degrees of freedom

Group	Prefer new procedure	Prefer old procedure	No preference
Nurses	100	80	20
Doctors	50	120	30

- When given a contingency table, we may want to test whether the variables are independent or not.
- In the table above, suppose a new procedure is administered to patients in a large hospital.
- The researcher then ask the question, Do the doctors feel differently about this procedure from the nurses, or do they feel basically the same way?
 - Are the opinion about the procedure independent of the profession?

Test of independence

Hypotheses:

 \blacksquare H_0 : The two variables are independent

 \blacksquare H_1 : The two variables are dependent

Test statistic:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

follows the chi-square distribution with degrees of freedom equal to (number of rows minus 1) \times (number of columns minus 1) where

O is the observed frequency

■ E is the expected frequency. $E = \frac{\text{(row total)(column total)}}{\text{grand total}}$

Analysis of variance (ANOVA)

- □ The Analysis of variance (ANOVA) is a procedure used to test the equality of means of three or more populations.
- Hypotheses:
 - H_0 : All population means are equal $(\mu_1 = \mu_2 = \cdots = \mu_k)$
 - \blacksquare H_1 : At least two population means are different
- It uses the test statistic

$$F = \frac{\text{Between group variance}}{\text{Within group variance}}$$

which follows the \emph{F} -distribution with k-1 and n-1 degrees of freedom

Analysis of variance (ANOVA)

Summary

- Introduction to hypothesis tests
 - Null and alternative hypotheses
 - Type I and Type II errors
 - Critical value, rejection region, test statistic, p-value
 - Making conclusion
- Hypothesis test for population mean (one population)
 - Variance known
 - Variance unknown and sample size is large
 - Variance unknown and sample size is small

Summary

- Hypothesis test for population means (two populations)
 - Paired/dependent samples
 - Independent samples
 - Variances known
 - Variances unknown and sample size is large
 - Variances unknown, sample size is small and $\sigma_1 = \sigma_2$
 - Variances unknown, sample size is small and $\sigma_1 \neq \sigma_2$
- Other hypothesis tests
 - Tests for proportion
 - Tests for variance
 - Test of independence
 - ANOVA