An Enchiridion for Topological Data Analysis

Bastian Rieck

This talk

And now for something completely different...

Enchiridion, derived from the two Greek words $\hat{\epsilon}\nu$ (en, "in") and $\chi\epsilon$ ip (kheír, "hand") refers to a small manual, in particular one that contains *practical advice*.

Here: practical advice on topological data analysis

What is topological data analysis?

- Many data sets "in the wild" are assumed to have a smooth underlying structure
- This referred to as the manifold hypothesis
- Topological data analysis aims to describe these manifolds
- Invariant to stretching and bending

A simple example

What is the shape of this set of points?

Technically, a set of points does not have a "shape". Still, we *perceive* the points to be arranged in a circle. How can we quantify this?

Vietoris-Rips complex construction

Vietoris-Rips complex construction

Vietoris-Rips complex construction

Vietoris-Rips complex construction

Vietoris-Rips complex construction

Formalization

- "Squinting" leads to different scales at which we look at the data
- For small scales, we see only points
- For medium scales, we see a circle
- For large scales, we see a blob

Small scale

Formalization

- "Squinting" leads to different scales at which we look at the data
- For small scales, we see only points
- For medium scales, we see a circle
- For large scales, we see a blob

Medium scale

Formalization

- "Squinting" leads to different scales at which we look at the data
- · For small scales, we see only points
- For medium scales, we see a circle
- For large scales, we see a blob

Large scale

Even more formalization

- Algebraic topology finds invariant properties of high-dimensional objects
- The k^{th} Betti number β_k counts the number of k-dimensional "holes" in a manifold $\mathcal M$ your data
- Can be generalized to (almost) any mathematical object data set
- Key word: simplicial homology

$$0 \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

$$Z_d := \ker \partial_d$$

 $B_d := \operatorname{im} \partial_{d+1}$
 $H_p := Z_p / B_p = \ker \partial_p / \operatorname{im} \partial_{p+1}$

Connecting Betti numbers and squinting

Letting ϵ denote our squinting parameter, i.e. our scale, let's track Betti numbers! Here, only β_0 (connected components) and β_1 (circles).

Both β_0 and β_1 change at certain values of ϵ .

Persistence diagrams

If a topological feature is *created* at ϵ_i and *destroyed* at ϵ_i , store a point (ϵ_i, ϵ_i) in the persistence diagram.

Persistence diagrams are diagrams in \mathbb{R}^2 . They can serve as fingerprints of your data.

Some nice properties

- There are metrics for persistence diagrams¹
- There are kernels for persistence diagrams²

¹Bottleneck distance, Wasserstein distance

²Multi-scale kernel, indicator function kernel, Riemannian manifold kernel...

But what is it good for?

Basic recipe

- Define different levels of "squinting" at your data set: scales of distances, weights in networks, time, ...
- Calculate persistence diagrams (one for each dimension)
- Use kernel or distance measure to assess dissimilarity

Applications

- Finding patterns in unstructured data sets ("point clouds" and general feature spaces)
- Describing structures in natural images
- · Characterizing graphs

How does it work?

Calculate degree of graph nodes to obtain different scales at which the graph can be viewed (or use node/edge weights, if available). Track occurrence of β_0 (connected components) and β_1 (cycles).

Original unweighted graph

$$\epsilon = 2, \beta_0 = 2$$
 $\beta_1 = 0$

$$= 3, \beta_0 = 4, \\ \beta_1 = 0$$

$$\epsilon = 3, \beta_0 = 1$$

 $\beta_1 = 1$

$$\epsilon = 2, \beta_0 = 2,$$
 $\epsilon = 3, \beta_0 = 4,$ $\epsilon = 3, \beta_0 = 1,$ $\epsilon = 3, \beta_0 = 1,$ $\beta_1 = 0$ $\beta_1 = 1$ $\beta_1 = 2$

Experiments

Name	Graphs	Nodes (avg.)	Edges (avg.)	Node labels	Edge labels
DD	1178	284.32	715.66	✓	X
IMDB-BINARY	1000	19.77	96.53	×	×
IMDB-MULTI	1500	13.00	65.94	×	×
MUTAG	188	17.93	19.79	✓	✓
NCI1	4110	29.87	32.30	✓	×
NCI109	4127	29.68	32.13	✓	×
PROTEINS	1113	39.06	72.82	✓	×
REDDIT-BINARY	2000	429.63	497.75	×	×
REDDIT-MULTI-5k	4999	508.52	594.87	×	X

Compare topology-based network analysis against *graph kernels* (special algorithms for assessing the dissimilarity of two graphs).

DBSSE Bastian Rieck 15 June 2018 1

Results

Name	Best known method	TDA	Difference
DD ¹	0.80	0.72	0.08
IMDB-BINARY ²	0.67	0.73	-0.06
IMDB-MULTI ²	0.45	0.52	-0.07
MUTAG ³	0.88	0.95	-0.07
NCI1 ²	0.80	0.68	0.12
NCI109 ²	0.85	0.61	0.24
PROTEINS ²	0.76	0.76	0.00
REDDIT-BINARY ²	0.78	0.88	-0.10
REDDIT-MULTI-5k ²	0.55	0.48	0.07

Bastian Rieck

Nino Shervashidze et al. "Weisfeiler–Lehman Graph Kernels". In: Journal of Machine Learning Research 12 (Nov. 2011), pp. 2539–2561

² Pinar Yanardag and S.V.N. Vishwanathan. "Deep Graph Kernels". In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2015, pp. 1365–1374

 $^{^3\,\}text{Mahito Sugiyama et al.\,"graphkernels: R and Python packages for graph comparison". In: \textit{Bioinformatics}\ 34.3\ (2018), pp. 530–532$

Want to know more?

Find out if TDA can help with *your* data by visiting https://is.gd/topology and try your own graph data³ or contact me at bastian.rieck@bsse.ethz.ch.

³Some setup is required, though...