CONCOURS COMMUNS POLYTECHNIQUES

ÉPREUVE SPÉCIFIQUE-FILIÈRE MP

MATHÉMATIQUES I

DURÉE: 4 heures

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n° 99-018 du 01.02.99.

Le problème proposé a pour but la démonstration d'un théorème relatif aux contractions d'un espace de Banach et l'étude, grâce à ce théorème, d'une équation fonctionnelle.

Si X et Y sont des ensembles, Y^X désigne l'ensemble des applications de X dans Y.

Si X est un ensemble non vide, \mathcal{N}_{∞} désigne la norme de la convergence uniforme sur l'espace vectoriel des applications bornées de X dans \mathbb{R} : $\mathcal{N}_{\infty}(f) = \sup(\{|f(x)| / x \in X\})$.

Partie I : Convergence uniforme dans $\mathcal{C}([0,1],\mathbb{R})$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy, pour \mathcal{N}_{∞} , de $\mathcal{C}([0,1],\mathbb{R})$.

- **1.** Montrer que, pour tout $x \in [0,1]$, $(f_n(x))_{n \in \mathbb{N}}$ converge. Soit f la limite simple de la suite $(f_n)_{n \in \mathbb{N}}$.
- **2.** Montrer que f est bornée et que $\mathcal{N}_{\infty}(f_n f) \underset{n \to \infty}{\longrightarrow} 0$.
- **3.** Justifier que $(\mathcal{C}([0,1],\mathbb{R}),\mathcal{N}_{\infty})$ est un espace de Banach.
- **4.** Soit $(u_n)_{n\in\mathbb{N}}$ la suite de $\mathcal{C}([0,1],\mathbb{R})$ définie par: $u_n(x)=e^{x^n}$ pour tout $x\in[0,1]$. Montrer que, pour tout $x\in[0,1], (u_n(x))_{n\in\mathbb{N}}$ converge. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle de Cauchy pour \mathcal{N}_{∞} ?
- **5.** Soit $(v_n)_{n\in\mathbb{N}}$ la suite de $\mathcal{C}([0,1],\mathbb{R})$ définie par: $v_n(x) = \int_0^x e^{t^n} dt$ pour tout $x\in[0,1]$. Montrer que $(v_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1] vers un élément v de $\mathcal{C}([0,1],\mathbb{R})$.

Partie II : Théorème du point fixe de Banach

Soit $(E, \|\cdot\|)$ un espace de Banach réel, soit A un sous-ensemble fermé non vide de E et soit $T \in A^A$ vérifiant: il existe $\alpha \in [0, 1[$ tel que $\|T(x) - T(y)\| \le \alpha \|x - y\|$ pour tout $(x, y) \in A^2$ (on dit que T est contractante ou encore que T est une contraction).

- 1. Soit $(x,y) \in A^2$ tel que: T(x) = x, T(y) = y. Montrer que x = y.
- **2.** Soit $a \in A$, on définit $(a_n)_{n \in \mathbb{N}}$ par: $a_0 = a, \ a_{n+1} = T(a_n)$
 - **2.1** Montrer que: $||a_{n+1} a_n|| \le \alpha^n ||a_1 a_0||$. En déduire que si $(n, p) \in \mathbb{N} \times \mathbb{N}^*$ on a:

$$||a_{n+p} - a_n|| \le ||a_1 - a_0|| \left(\sum_{i=0}^{p-1} \alpha^{n+i}\right).$$

- **2.2** Montrer que $(a_n)_{n\in\mathbb{N}}$ est convergente et que sa limite est élément de A.
- **2.3** Montrer que T possède un unique point fixe qui est la limite de $(a_n)_{n\in\mathbb{N}}$. On établit ainsi le théorème du point fixe de Banach: « Toute contraction T d'un fermé non vide A d'un espace de Banach possède un point fixe unique, de plus si $a \in A$, la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0 = a$, $a_{n+1} = T(a_n)$, converge vers ce point fixe ».

- **3.** On suppose que A = E, soit alors, $U \in E^E$ définie par: U(x) = x + T(x).
 - **3.1** Montrer que U est une bijection continue de E sur E.
 - **3.2** Montrer que, pour tout $(x, y) \in E$ on a:

$$||U^{-1}(x) - U^{-1}(y)|| < (1 - \alpha)^{-1} ||x - y||$$

(U est donc un homéomorphisme de E sur E).

- **4.** Soit $\mathcal{L}(E) = \{V \in E \mid (V \text{ linéaire et } V \text{ continue})\}$, on note encore $||V|| = \sup(\{||V(x)|| \mid ||x|| \le 1\})$ la norme subordonnée de $V \mid (V \in \mathcal{L}(E))$; soit I l'identité de E.
 - **4.1** Soit $V \in \mathcal{L}(E)$ telle que ||V|| < 1, montrer que V est contractante.
- **4.2** Soit $(V_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{L}(E)$ et soit $V\in\mathcal{L}(E)$ tels que: $||V_n||<1$ pour tout $n\in\mathbb{N}, ||V||<1$, $||V_n-V||\underset{n\to\infty}{\longrightarrow} 0$.

Soit $y \in E$ alors, d'après 3, $I + V_n$ et I + V sont des isomorphismes de E; on peut donc définir $(x_n)_{n \in \mathbb{N}} = ((I + V_n)^{-1}(y))_{n \in \mathbb{N}}$ et $x = (I + V)^{-1}(y)$, montrer que: $||x_n - x|| \underset{n \to \infty}{\longrightarrow} 0$ (on aura intérêt à écrire: $V(x) - V_n(x_n) = (V(x) - V_n(x)) + (V_n(x - x_n))$).

Partie III : Une transformation de $\mathcal{C}([0,1],\mathbb{R})$

Soit $\varphi:[0,1]\times[0,1]\times\mathbb{R}\longrightarrow\mathbb{R}$, on dira que φ est de type \mathcal{U} si: φ est continue et, il existe $r\in\mathbb{R}_+$ tel que l'on ait:

 $|\varphi(x,y,z)-\varphi(x,y,z')\leqslant r|z-z'| \text{ pour tout } (x,y,z,z')\in [0,1]\times [0,1]\times \mathbb{R}\times \mathbb{R}.$

- 1. Montrer que s'il existe $(\Psi, M) \in \mathcal{C}^1(R^3, R) \times \mathbb{R}$, tel que: $\varphi = \Psi_{[0,1] \times [0,1] \times \mathbb{R}}$ et $\left| \frac{\partial \Psi}{\partial z}(x, y, z) \right| \leqslant M$ pour tout $(x, y, z) \in [0, 1] \times [0, 1] \times \mathbb{R}$, alors φ est de type \mathcal{U} .
- **2.** On suppose que φ est de type \mathcal{U} .
 - **2.1** Soit $u \in \mathcal{C}([0,1],\mathbb{R})$, montrer que pour tout $x \in [0,1]: (y \longmapsto \varphi(x,y,u(y))) \in \mathcal{C}([0,1],\mathbb{R})$.
- **2.2** Montrer que l'on peut définir $T_{\varphi}: \mathcal{C}([0,1],\mathbb{R}) \longrightarrow \mathbb{R}^{[0,1]}$ par: $(T_{\varphi}(u))(x) = \int_{0}^{1} \varphi(x,y,u(y)) \, \mathrm{d}y$. Montrer que, pour tout $u \in \mathcal{C}([0,1],\mathbb{R}), T_{\varphi}(u) \in \mathcal{C}([0,1],\mathbb{R})$.
 - 2.3 Montrer que l'on a:

$$\mathcal{N}_{\infty}(T_{\varphi}(u_1) - T_{\varphi}(u_2)) \leqslant r\mathcal{N}_{\infty}(u_1 - u_2)$$

pour tous $(u_1, u_2) \in \mathcal{C}([0, 1], \mathbb{R})^2$.

- **2.4** On définit, pour $\lambda \in \mathbb{R}$, $S_{(\varphi,\lambda)}: \mathcal{C}([0,1],\mathbb{R}) \longrightarrow \mathcal{C}([0,1],\mathbb{R})$ par: $S_{(\varphi,\lambda)}(u) = u + \lambda T_{\varphi}(u)$. On suppose r > 0, montrer que l'on a: $\lambda \in]-\frac{1}{r}, \frac{1}{r}[\Longrightarrow S_{(\varphi,\lambda)}$ est un homéomorphisme de $(\mathcal{C}([0,1],\mathbb{R}), \mathcal{N}_{\infty})$ sur lui même.
- **3.** Soit $\mu \in \mathcal{C}([0,1]^2,\mathbb{R})$, soit $\varphi:[0,1]\times[0,1]\times\mathbb{R}\longrightarrow\mathbb{R}$ définie par: $\varphi(x,y,z)=\mu(x,y)z$; on supposera $\mu\neq 0$.
 - **3.1** Montrer que φ est de type \mathcal{U} et que si

$$\lambda \in \left] - \frac{1}{\mathcal{N}_{\infty}(\mu)}, \frac{1}{\mathcal{N}_{\infty}(\mu)} \right[$$

alors on a: $S_{(\varphi,h)}$ est un isomorphisme de $(\mathcal{C}([0,1],\mathbb{R}),\mathcal{N}_{\infty})$ sur lui même.

3.2 Soit (μ_n) une suite de $\mathcal{C}([0,1]^2,\mathbb{R})$ telle que: $\mathcal{N}_{\infty}(\mu_n-\mu) \underset{n\to\infty}{\longrightarrow} 0$. On note $\|\cdot\|_{\infty}$ la norme subordonnée, associée à \mathcal{N}_{∞} , définie sur $\mathcal{L}(\mathcal{C}([0,1],\mathbb{R}))$. Si $(\varphi_n)_{n\in\mathbb{N}}$ est la suite de $\mathcal{C}([0,1]\times[0,1]\times\mathbb{R},\mathbb{R})$ définie par $\varphi_n(x,y,z) = \mu_n(x,y)z$, montrer que: $\|T_{\varphi_n} - T_{\varphi}\| \underset{n\to\infty}{\longrightarrow} 0$.

Partie IV : Étude d'une application

On considère l'équation intégrale de Fredholm: (E) $w(x) = x + \int_0^1 \sin(xy)w(y) \, \mathrm{d}y$. Une solution de (E) (s'il en existe) est donc un élément w de $\mathbb{R}^{[0,1]}$ tel que, pour tout $x \in [0,1]$, on ait: $w(x) = x + \int_0^1 \sin(xy)w(y) \, \mathrm{d}y$. On s'intéresse à la résolution de (E) dans $\mathcal{C}([0,1],\mathbb{R})$.

- 1. Montrer, en utilisant III) que (E) possède une solution unique $w \in \mathcal{C}([0,1],\mathbb{R})$.
- **2.** Soit $(v_n)_{n\in\mathbb{N}}$ la suite de $\mathcal{C}([0,1]^2,\mathbb{R})$ définie par: $v_n(x,y) = \sum_{i=1}^n \frac{(-1)^{i+1}}{(2i-1)!} (xy)^{2i-1}$. Pour $n \in \mathbb{N}^*$ on définit l'équation intégrale (E_n) par: $w_n(x) = x + \int_0^1 v_n(x,y)w_n(y)\,\mathrm{d}y$.
 - **2.1** Montrer que (E_1) possède une solution unique $w_1 \in \mathcal{C}([0,1],\mathbb{R})$ et expliciter w_1 .
- **2.2** Montrer que, pour tout $n \ge 2$, la résolution de (E_n) se ramène à celle d'un système linéaire que l'on explicitera.
- **2.3** Montrer, en utilisant III.3), que si $n \ge 2$ alors (E_n) possède une solution unique $w_n \in \mathcal{C}([0,1],\mathbb{R})$ (on aura intérêt à montrer que:

$$-1 \in \left] -\frac{1}{\mathcal{N}_{\infty}(v_n)}, \frac{1}{\mathcal{N}_{\infty}(v_n)} \right[$$

si $n \ge 2$).

2.4 Montrer que $\mathcal{N}_{\infty}(w_n - w) \xrightarrow[n \to \infty]{} 0$.