TITLE GOES HERE

A. J. Martin

Supervisor: Dr Trent Mattner

October 20??

Thesis submitted for the degree of Honours in ??????

Declaration

Except where stated this thesis is, to the best of my knowledge, my own work and my supervisor has approved its submission.
Signed by student:
Date:
Signed by supervisor:
Date:

Acknowledgements

Abstract

	1	1		- 1
А	$\mathbf{b}\mathbf{s}$	τr	a	\mathbf{T}

Abstract

Contents

1	Introduction	2
	1.1 Theory	2
	1.1.1 Finite Differences	
2	The Squire-Long model	3
	2.1 Vorticity form	3
3	Flow Examples	4
	3.1 Rotating Flow	4
	3.2 Rankine Vortex	4
	3.3 Lamb-Oseen Vortex (Possibly Bachelor Vortex?)	4
4	Solver	5
	4.1 Computational Efficiency?	5
\mathbf{A}	ppendices	6
\mathbf{A}	Derivation of Squire-Long	7
В	Conclusion	8
\mathbf{C}	Code	9
	$C = C_0 d_0 1$	0

Introduction

1.1 Theory

Definition 1.1.1. Stream Function

Definition 1.1.2. Vorticity

Definition 1.1.3. Circulation

Theorem 1.1.4.

Lemma 1.1.5. 1.1.1 Finite Differences

First order:

Backward difference:

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \mathcal{O}(h)$$

Forward Difference

$$f'(x) = \frac{f(x+h) - f(x)}{h} + \mathcal{O}(h)$$

Central Differences

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2)$$

Backwards differences for a second derivative

$$f''(x) = \frac{f(x) - 2f(x-h) + f(x-2h)}{h^2}$$

Forwards

$$f''(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2}$$

Central

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

The Squire-Long model

2.1 Vorticity form

Azimuthal vorticity, η .

Flow Examples

- 3.1 Rotating Flow
- 3.2 Rankine Vortex
- 3.3 Lamb-Oseen Vortex (Possibly Bachelor Vortex?)

Solver

4.1 Computational Efficiency?

Appendices

Appendix A Derivation of Squire-Long

Appendix B

Conclusion

Appendix C

Code

C.1 Code1

Bibliography