Zadanie 1A

Napisać program symulujący działanie automatu skończonego M=(Q, S, d, q_0 , F), gdzie Q={ q_0 , q_1 , q_2 , q_3 }, S={0, 1}, F={ q_0 }

Symulator powinien dla ciągów składających się symboli wejściowych rysować diagram przejść i zaznaczać aktualny stan przy wczytywanych kolejnych symbolach z ciągu. Po wczytaniu całego ciągu program powinien wyświetlić komunikat czy ciąg został zaakceptowany?

d	Wejścia	
Stany	0	1
q ₀	q ₂	q ₁
q ₁	q ₃	q o
q ₂	q o	q ₃
q ₃	q ₁	q ₂

1. Instrukcja obsługi

A. Uruchomienie programu

Aby uruchomić program należy pobrać bibliotekę pygame.

```
(base) iza@MacBook-Air-2 proj % /usr/local/bin/python3.12 -m pip
install pygame --break-system-packages
```

Po uruchomieniu programu (na przykład przez wpisanie w terminalu python3 automat.py) należy poczekać aż program poda komunikat o gotowości do przyjęcia ciągu wejściowego, a następnie wpisać taśmę wejściową i nacisnąć Enter.

Otworzy się wówczas okno z symulacją automatu.

B. Okno z symulacją

W nowym oknie pojawi się graf skierowany z czterema wierzchołkami q0, q1, q2 i q3 oznaczającymi cztery stany automatu skończonego. Połączone są one zgodnie z tabelą podaną w treści zadania.

Legenda

Wygląd	Cecha	Co oznacza
q2	Biały wierzchołek (q1, q2 lub q3)	Jeden ze stanów
q ₀	Niebieski wierzchołek (q0)	Stan początkowy
q ₀	Wierzchołek z obwódką (q0)	Stan końcowy (akceptujący)
q3	Pomarańczowy wierzchołek (q0, q1, q2 lub q3)	Aktualny stan
1	Zielony wierzchołek (q0)	Ostatni wierzchołek, jeżeli ciąg został zaakceptowany
q1	Czerwony wierzchołek (q0, q1, q2 lub q3)	Ostatni wierzchołek, jeżeli ciąg nie został zaakceptowany

Wygląd	Cecha	Co oznacza
1	Biała strzałka (wartość 1 lub 0)	Możliwe przejście pomiędzy stanami
1	Fioletowa strzałka (wartość 1 lub 0)	Aktualne przejście pomiędzy stanami

C. Wynik programu

Po wykonaniu wszystkich przejść program wypisze w terminalu kolejność przejść pomiędzy stanami.

Program zamknie okno automatycznie po ok. 6 sekundach od dojścia do ostatniego wierzchołka. Możliwe jest również zamknięcie okna przez kliknięcie znaku X w rogu.

Po zamknięciu okna program napisze w terminalu, czy ciąg został zaakceptowany czy nie.

2. Przykładowe zestawy danych

A. Przypadek akceptujący wejście

Ciągiem zaakceptowanym jest taki ciąg, który prowadzi do stanu należącego do stanów akceptujących, czyli w naszym przypadku do q0 (F={q0}).

Przykładem zaakceptowanego ciągu jest 10100101.

Kolejność odwiedzanych wierzchołków:

Ciąg ten wymusza przejście pomiędzy każdymi dwoma wierzchołkami pomiędzy którymi bezpośrednie przejście istnieje.

Działanie symulacji dla tego przykładu znajduje się w pliku przykład1.mov.

B. Przypadek nieakceptujący wejścia

Ciąg niezaakceptowany to taki, który nie prowadzi do stanu końcowego q0.

Przykładem takiego ciągu jest 1101.

Kolejność odwiedzanych wierzchołków:

Po zakończeniu ciągu wejściowego, symulacja pokaże komunikat "Ciąg nie został zaakceptowany", ponieważ ostatni stan (q3) nie jest stanem akceptującym.

Działanie symulacji dla tego przykładu znajduje się w pliku przykład2.mov.

3. Źródła

- pygame.org
- wikipedia.org
- wiedza własna
- 101computing.net