Light-Weight Facial Landmark Prediction Challenge

Caffeine Valid

資工二 洪國瀚

資工二 方泓傑

工海三 劉虹伶

生機三 陳勳蒲

OUTLINE

- Our Performance
- Data Augmentation
- Model
- Loss function
- Experiments
- Reference

Our Performance

- Architecture: ShuffleNet Ver.2 with rotate, color and wing loss + data unbalance
- model Size: 10.09 MB
- NME Score
 - o Total score: 2.094

Data Augmentanion_transform

random Rotate

Original image

Color jitter

Original image

Data Augmentanion_Pose-based data balancing

Apply PCA (Principal Component Analysis) to the aligned training shapes and project the original shapes to the one dimensional space

Data Augmentanion_Pose-based data balancing

Head angle's histogram of train/validation datasets

train dataset

validation dataset

Model

- pointwise group convolution
- depthwise convolution
- Channel shuffle

ShufflenetV2[1][2]

• Spatial information

Swish activation function[4]

- Better performance in paper's experiment
- More smooth than ReLu

Loss function

MSE loss

$$MSE(x) = x^2$$

Wing loss

$$wing(x) = egin{cases} \omega \ln(1+|x|/\epsilon) \ , ext{if} \ |x| < \omega & rac{2}{|x|-C} \ , ext{otherwise} \end{cases}$$

Rectified wing loss

$$RWing(x) = egin{cases} 0 \ , ext{if} \ |x| < r \ \omega \ln(1 + (|x| - r)/\epsilon) \ , ext{if} \ r \leq |x| < \omega \ |x| - C \ , ext{otherwise} \end{cases}$$

Experiment___data augmentation

- Color Jitter
- Random Rotate
- Random Posterize
- Random Solarize
- Random GaussianBlur

	, ,		random Solarize	random GaussianBlur	color_jitter
score	4.661	4.81	4.85	5.015	4.59

Experiment___data augmentation

Pose-based data balancing

	origin	Pose-based data balancing	Pose-based data unbalancing
number of img	99756	142877	156510
score	4.661	4.746	4.488

Experiment___Model

Add ORB keypoint channel				
Original New_version				
NME	3.90	4.01		

Replace inception block (googlenet)				
Original New_version				
NME 3.90 3.98				

Experiment__Loss Function

Wing loss

MSE loss

160 -								
140 -								
120 -								
100 -								
80 -								
60 -								
40 -								
20 -								
0 —	0.025	0.050	0.075	0.100	0.125	0.150	0.175	

Loss	MSE	wing	rectified wing loss
function	loss	loss	
score	4.661	3.90	4.02

Experiment___hyperparameters

Shufflenet v2

model size	0.5x	1.5x	2.0x
(lr=0.0001)	(1.866MB)	(10.092MB)	(14.256MB)
score	4.39	4.59	4.31

Learning rate (model size=2.0x)	0.00005	0.0001	0.0005
score	4.594	4.31	4.92

Experiment___hyperparameters

Shufflenet_corr

model size	0.5x	1.5x (10.094MB)	2.0x
(lr=0.0001)	(1.868MB)		(14.259MB)
score	4.14	3.95	4.384

Experiment___hyperparameters

Wing loss:
$$wing(x) = egin{cases} \omega \ln(1+|x|/\epsilon) \ , ext{if } |x| < \omega \ |x| - C \ , ext{otherwise} \end{cases}$$

epsilon \ omega	10	14	20
2	3.90	3.91	4.05
3	3.96	3.99	4.02

Reference

[1]Ma, Ningning, et al. "Shufflenet v2: Practical guidelines for efficient cnn architecture design." *Proceedings of the European conference on computer vision (ECCV)*. 2018.

[2]Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

[3]Liu, Rosanne, et al. "An intriguing failing of convolutional neural networks and the coordconv solution." *Advances in neural information processing systems* 31 (2018).

[4]Ramachandran, Prajit, Barret Zoph, and Quoc V. Le. "Searching for activation functions." *arXiv preprint arXiv:1710.05941* (2017).

[5]Xiang Wang, Kai Wang, Shiguo Lian,, et al." A Survey on Face Data Augmentation" arXiv preprint arXiv:1904.11685.(2019)

[6]Feng, Z. H., Kittler, J., Awais, M., Huber, P., & Wu, X. J. (2018b). Wing loss for robust facial landmark localisation with convolutional neural networks. In IEEE conference on computer vision and pattern recognition (CVPR)

[7]Feng, Z. H., Kittler, J., Awais, M., Huber, P., & Wu, X. J. "Rectified Wing Loss for Efficient and Robust Facial Landmark Localisation with Convolutional Neural Networks."

Reference

Github:

- CoordConv code source :https://github.com/mkocabas/CoordConv-pytorch
- Shuffenet code source
 - :https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2
- Inception block code source
 :https://github.com/Lornatang/GoogLeNet-PyTorch/blob/master/googlenet_pytorch/model.
 py