Лабораторная работа №2

Линейные математические модели колебательных явлений

Мат. моделирование динамических процессов 1 БГУ, ММФ, 3 курс, 6 семестр специальность Компьютерная математика и системный анализ февраль 2022 ММФ, КМ и СА, доц. Лаврова О.А., доц. Щеглова Н.Л.

Объект моделирования -- пружинный осциллятор

Концептуальная постановка задачи

- Объектом исследования является физическое тело массы *m*, которое находится на одном конце пружины, второй конец пружины жестко закреплен. Тело имеет небольшие размеры по сравнению с длиной пружины, поэтому принимаем его за материальную точку.
- Тело движется вперед или назад по горизонтальной поверхности. Обозначим через r(t) координату тела вдоль оси пружины относительно положения равновесия r = 0, когда пружина не сжата и не растянута. Будем считать, что r(t) > 0, когда пружина растянута и r(t) < 0, когда она сжата.
- Расстояние между положением равновесия r = 0 и стенкой, к которой крепится пружина, равно L.
- Тело находится под действием **силы упругости** пружины. Сила упругости описывается <u>законом</u> $\underline{\Gamma y \kappa a} F = -k r$, где коэффициент упругости k = const > 0. Закон Гука является экспериментальным и справедлив при небольших отклонениях пружины от ее положения равновесия.
- Можно сделать допущение, что тело движется без трения. Предположение об отсутствии трения справедливо для небольших промежутков времени. Если учитывать сопротивление среды, то можно полагать, что сила трения пропорциональна скорости движения F_{тр} = -µ dr(t)/dt с коэффициентом трения µ = const > 0. Приведенная зависимость называется формулой Стокса и является допустимой при малых скоростях движения.
- На тело может действовать **внешняя сила**, например $F = F_0 \sin(t \omega_2)$.

Принимая во внимание, что в момент времени t = 0 пружину растянули на величину r_0 и сообщили телу скорость v_0 , требуется определить координату тела r(t) как функцию времени.

Задание 1. Гармонические колебания

Математическая модель пружинного осциллятора без учета сопротивления среды представляет собой задачу Коши для линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами следующего вида

$$\frac{d^2 r(t)}{dt^2} + \omega^2 r(t) = 0,$$

$$r(0) = r_0,$$

$$\frac{dr(0)}{dt} = v_0,$$
(1)

где $\omega = \sqrt{k/m} = \text{const} > 0$ -- собственная частота колебаний.

Задание 1.1 (Амплитуда колебаний)

Найдите условия на величины начальных данных r_0 и v_0 , при выполнении которых груз не может удариться о стенку. Для этого необходимо найти аналитическое решение математической модели (1) в виде $r(t) = A\cos(t\omega + \phi_0)$ и сформулировать условие $A \le L$. Здесь L -- это расстояние между положением равновесия $r \equiv 0$ и стенкой, к которой крепится пружина.

Найденное условие задает ограничения на применимость математической модели (1), так как при соударении со стеной тело испытывает дополнительную силу, которая должна быть учтена в математической модели.

Задание сформулировано на основе материала из [1, стр. 34, упр. 4].

Задание 1.2 (Динамическая визуализация с учетом соударения тела о стенку)

Осуществите динамическую визуализацию поведения пружинного осциллятора с возможностью интерактивного задания параметров модели ω , r_0 , v_0 , L.

В случае соударения со стенкой, к которой крепится пружина, остановите анимацию, например, с использованием выражения WhenEvent функции NDSolve или опции Method (значение EventLocator) функции NDSolve.

Справочную информацию можно найти по ссылкам https://reference.wolfram.com/language/ref/WhenEvent.html

http://reference.wolfram.com/language/tutorial/NDSolveEventLocator.html.

Задание 2. Колебания с учетом сопротивления среды

Полагаем, что на пружинный осциллятор воздействует сила трения, заданная формулой Стокса $F_{\rm Tp} = -\mu \, \frac{dr(t)}{dt}$, где коэффициент трения $\mu = {\rm const} > 0$.

Математическая модель пружинного осциллятора с учетом сопротивления среды представляет собой задачу Коши для линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами следующего вида

$$m\frac{d^2r(t)}{dt^2} = -kr(t) - \mu \frac{dr(t)}{dt},$$

$$r(0) = r_0,$$

$$\frac{dr(0)}{dt} = v_0.$$
(2)

Задание 2.1 (Качественный анализ по фазовому портрету)

Изобразите фазовые траектории для модели (2) для трех возможных типов поведения системы: затухающее колебание, критическое колебание, апериодическое затухание.

Для каждого типа поведения **проанализируйте** характер положения равновесия $r(t) \equiv 0$, $v(t) \equiv 0$ (узел, седло, фокус, центр или др.) и его устойчивость по фазовому портрету.

Задание 2.2 (Качественный анализ по теореме Ляпунова)

Определите собственные значения матрицы динамической системы, соответствующей математической модели (2).

По собственным значениям проанализируйте характер положения равновесия $r(t) \equiv 0$, $v(t) \equiv 0$ (узел, седло, фокус, центр или др.) и его устойчивость для различных типов поведения системы: затухающее колебание, критическое колебание, апериодическое затухание.

Задание 2.3 (Анализ частных случаев)

Проанализируйте, какому типу поведения соответствует движение пружинного осциллятора (m = 10кг, k = 10 H/m) в воздухе ($\mu = 1.82 \times 10^{-5} \text{ Hc/m}^2$), в воде ($\mu = 1.002 \times 10^{-3} \text{ Hc/m}^2$), в глицерине ($\mu = 1.49 \text{ Hc/m}^2$)? Приведенные значения для коэффициента трения μ соответствуют температуре 20°С.

Задание 3. Вынужденные колебания

Полагаем, что тело, закрепленное на пружине, движется без трения. Предположим, что на тело действует внешняя периодическая сила $F(t) = F_0 \sin(t \omega_2)$ с частотой $\omega_2 = \text{const} > 0$.

Математическая модель пружинного осциллятора без учета сопротивления среды под действием внешней силы представляет собой задачу Коши для линейного НЕоднородного дифференциального уравнения второго порядка с постоянными коэффициентами следующего вида

$$m\frac{d^2r(t)}{dt^2} = -kr(t) + F_0\sin(t\omega_2),$$

$$r(0) = r_0,$$

$$\frac{d^2r(0)}{dt} = v_0.$$
(3)

Задание 3.1 (Частное решение математической модели)

Постройте частное решение $r^*(t)$ математической модели (3) <u>при наличии резонанса</u> в виде $r^*(t) = t \, (C_1 \sin(\omega t) + C_2 \cos(\omega t))$, где $\omega = \sqrt{k/m}$ собственная частота колебаний. Построение осуществите на основе метода неопределенных коэффициентов для коэффициентов C_1 и C_2 с использованием возможностей символьных вычислений.

Постройте частное решение $r^*(t)$ математической модели (3) б<u>ез резонанса</u> в виде $r^*(t) = C \sin(\omega_2 t)$, где $\omega_2 \neq \omega$. Построение осуществите на основе метода неопределенных коэффициентов для коэффициента C с использованием возможностей символьных вычислений.

Задание 3.2 (Графики вынужденных колебаний)

Изобразите резонансное и нерезонансное <u>общее решение</u> математической модели (3) для произвольно заданных значений параметров модели ω , ω_2 , F_0 , r_0 , v_0 .

Задание 4. Система линейных химических реакций

Содержательная постановка задачи

Вещество X поступает в систему с постоянной скоростью k_1 , превращается в вещество Y со скоростью, пропорциональной концентрации вещества X, и коэффициентом пропорциональности k_2 = const > 0. Вещество Y выводится из системы со скоростью, пропорциональной концентрации вещества Y, и коэффициентом пропорциональности k_3 = const > 0. Принимая во внимание, что в момент времени t = 0 концентрация вещества X равна X_0 , а концентрация вещества Y равна Y_0 , требуется определить концентрации веществ как функции времени X(t), Y(t) при $t \ge 0$.

Задание 4.1 (Математическая модель)

По содержательной постановке задачи **сформулируйте** концептуальную поставку задачи и **постройте** математическую модель для концентрации веществ X(t) и Y(t).

Задание 4.2 (Качественный анализ устойчивости)

Исследуйте положение равновесия соответствующей динамической системы второго порядка на устойчивость. Исследование осуществите по фазовому портрету и по анализу собственных значений матрицы системы.

Задание 5* (необязательное). Математическая модель любовных отношений

В простейшем случае модель отношений между мужчиной и женщиной может быть описана с помощью линейной однородной динамической системы второго порядка, см. [8, стр. 138],

$$\frac{dIR(t)}{dt} = aR + bJ,$$

$$\frac{dIJ(t)}{dt} = cR + dJ,$$
(4)

где R(t) -- состояние влюбленности мужчины (Romeo), J(t) -- состояние влюбленности женщины (Juliet).

В зависимости от знаков параметров a, b, c, d, мужчина и женщина демонстрируют различные модели поведения.

Например, в случае, когда $a=0,\ b>0,\ c<0,\ d=0,$ см. пример [8, стр. 138], мужчина стремится следовать состоянию женщины (b > 0), тогда как женщина постоянно изменяет свое состояние на противоположное мужскому (c < 0).

В примере [8, стр. 138] по фазовому портрету анализируется ситуация, когда мужчина и женщина демонстрируют одинаковую модель поведения в отношениях: a < 0, b > 0, c = b, d = a.

Проработайте примеры в книге [8, стр. 138--139].

Выполните упражнения 5.3.1--5.3.6 из [8, стр. 144]. В частности, в упражнениях предложено проанализировать по фазовому портрету, к чему приводять следующие ситуации: упр. 5.3.4 -- мужчина и женщина демонстрируют противоположные модели поведения: c = -b, d = -a; упр. 5.3.6 -- мужчина никак не проявляет свои чувства: a = 0, b = 0.

Литература

- [1] А. А. Самарский, А. П. Михайлов. Математическое моделирование: Идеи. Методы. Примеры. -- М.: Физматлит, 2001.
- [2] А. А. Андронов, А. А. Витт, С. Э. Хайкин. Теория колебаний. -- М.: Физматлит, 1959.
- [3] Ч. Г. Эдвардс, Д. Э. Пенни. Дифференциальные уравнения и краевые задачи: моделирование и вычисление с помощью Mathematica, Maple и Matlab. -- М.: ООО "И.Д. Вильямс", 2008.
- [4] S. Heinz. Mathematical Modeling. -- Springer, 2011.
- [5] Р. А. Прохорова. Обыкновенные дифференциальные уравнения: учебное пособие. -- Мн.: БГУ, 2017. http://elib.bsu.by/handle/123456789/205697
- [6] В. В. Амелькин. Дифференциальные уравнения: учебное пособие. -- Мн.: БГУ, 2012. http://elib.bsu.by/handle/123456789/43871
- [7] Л. Д. Ландау, Е. М. Лифшиц. Теоретическая физика. Том 1. Механика. -- М.: Наука, 1988.
- [8] S.H. Strogatz. Nonlinear Dynamics and Chaos: with applications to physics, biology, chemistry, and engineering .-- Perseus Books Publishing, 1994.