This article was downloaded by: [171.67.34.205]

On: 24 May 2013, At: 09:36 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T

3JH, UK

Critical Reviews in Food Science and Nutrition

Publication details, including instructions for authors and subscription information: $\underline{\text{http://www.tandfonline.com/loi/bfsn20}}$

Rapid Detection of Chemical Hazards (Toxins, Dioxins and PCBs) in Seafood

Ioannis S. Arvanitoyannis ^a , Konstantinos V. Kotsanopoulos ^a & Anna Papadopoulou ^a

^a Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Str, 38446, 38446 Nea Ionia Magnessias, Volos, Hellas, Greece Phone: +30 24210 93104 Fax: +30 24210 93104 Accepted author version posted online: 24 May 2013.

To cite this article: Ioannis S. Arvanitoyannis, Konstantinos V. Kotsanopoulos & Anna Papadopoulou (2013): Rapid Detection of Chemical Hazards (Toxins, Dioxins and PCBs) in Seafood, Critical Reviews in Food Science and Nutrition, DOI:10.1080/10408398.2011.641132

To link to this article: http://dx.doi.org/10.1080/10408398.2011.641132

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Rapid Detection of Chemical Hazards (Toxins, Dioxins and PCBs) in Seafood

Ioannis S. Arvanitoyannis*, Konstantinos V. Kotsanopoulos and Anna Papadopoulou

Department of Ichthyology and Aquatic Environment

School of Agricultural Sciences

University of Thessaly

38446 Nea Ionia Magnessias

Volos, Hellas (Greece)

Fytokou Str, 38446

Tel.: +30 24210 93104

Fax: +30 24210 93137

e-mail: parmenion@uth.gr

*whom all correspondence should be addressed to

Contents

- 1. Introduction
- 2. Seafood toxins
- 2.1.1. Natural toxins
- 2.1.2. Neurotoxic Shellfish Poisoning (NSP)
- 2.1.3. Diarrhetic Shellfish Poisoning (DSP)
- 2.1.4. Paralytic shellfish poisoning (PSP)
- 2.1.5. Amnesic Shellfish Poisoning (ASP)
- 2.1.6. Scombroid fish poisoning (SFP)
- 2.1.7. Puffer fish poisoning (PFP)
- 2.1.8. Ciguaterra fish poisoning (CFP)
- 2.1.9. Hallucinogenic fish poisoning (HFP)
- 2.2. Chemical toxins
- 3. Rapid detection method of seafood toxins
- 3.1. Bioassays methods

- 3.2. Chemical methods and Biochemical techniques
- 3.3. Immunological assays/immunochemical methods
- 3.4. Biochemistry and molecular techniques (DNA-based methods)
- 4. The limit of detection of methods (LOD)
- 5. Risk characterization
- 6. Conclusions

Annex 1

Annex 2

References

APPENDIX 1. Natural toxins – abbreviations

APPENDIX 2. Rapid methods- abbreviations

Abstract

Among the various hazards occurring in fish and seafood chemical hazards and in particular toxins [ciguatera, scombroid fish poisoning (SFP), paralytic shellfish poisoning (PSP), neurotoxic (brevetoxic) shellfish poisoning (NSP), puffer fish poisoning (PFP), diarrhetic shellfish poisoning (DSP)] have an important place in food poisoning cases. On the other hand,

some of the chemical hazards are often due to the pollution of the environment [heavy metals, dioxins, polychlorinated biphenyls (PCBs) and Halogenated aromatic hydrocarbons (HAHs)] and their detection is neither rapid nor facile. As a result there was a great need for developing new rapid and effective methods towards the chemical hazards determination mainly because of their high toxicity. The aim of this review is to provide the information about the new up-to-date detection techniques (Immunological, Chemical & Biochemical, Molecular assays) in conjunction with detection limits. The latter is made possible by means of inclusion of seven comprehensive and, in most case cases, much extended tables. A reference is also made on risk characterization of toxins in view of their importance with regard to food contamination or poisoning.

Keywords: toxins, chemical hazards, detection methods, detection limits, immunochemical, molecular assays

1. Introduction

Fish and shellfish are among the most important foods for the human dietary balance. However, accumulation of toxins in these foods is a major problem because it can easily lead to food-poisoning. (Garthwaite, 2000). Seafood is a very important food because of its high proteinic level as well as its rich content in beneficial lipids. Specifically, the long chain omega-3 fatty acids are widely known for their nutritional value (Moon & Choi, 2008). It has been shown that fishes contain a large amount of nutrients such as proteins, vitamins, traces, decreased concentrations of saturated fats and increased levels of omega-3

polyunsaturated fatty acids. It is thought that among other nutritional advantages, the latter contribute significantly to the prevention of coronary heart disease (Domingo & Bocio, 2007).

For hundreds of years people have been aware that consumption of fish and shellfish can cause food-poisoning and can even lead to death. The nature of these food-borne incidents has been chemically and biologically examined only over the last 70 years (Luckas, 1992). Filter-feeding mollusks such as clams, oysters and mussels as well as several fishes can produce toxic substances for humans during the presence of "red tides". The latter are formed due to the rapid development of specific algae species, which are frequently harmless. However, some of these species can form dangerous toxic substances that, transmitted throughout the food chain, can negatively affect or even cause the death of zooplankton, shellfish or humans that consume these products either directly or indirectly (Palleschi et al., 2000).

The most important diseases caused by finfish and shellfish in the US are among others the ciguatera disease, scombroid fish poisoning (SFP), paralytic shellfish poisoning (PSP), neurotoxic (brevetoxin) shellfish poisoning (NSP), and puffer fish poisoning (PFP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP). Symptoms appear after consumption of tissues contaminated with toxic substances capable of maintaining their chemical structure at normal cooking temperatures. The presence of these substances can not be identified by organoleptic tests (Ahmed, 1991).

Toxicity level is usually assessed with the mouse bioassay (MBA). During this procedure, a sample of the shellfish is inserted by injection into mice. Death of mice indicates the presence of toxins (Garthwaite, 2000). MBA is widely used in the seafood industrial field, but several issues of ethical background remain unsolved (e.g. experiments on animals) (Humpage *et*

al, 2007). Innovative analytical techniques frequently applied include High Performance Liquid Chromatography (HPLC), Liquid Chromatography - Mass Pectrometry (LC-MS), immunoassay, cellular bioassays and molecular probes. These methods significantly contribute to the control of the procedure and the detection of the environmental conditions and fishes related to toxins' formation. These innovative techniques can be achieved in shorter periods of time. They are also more accurate and are not distinguished by any ethical constraints (Garthwaite, 2000).

Several experiments and epidemiological data indicate that marine pollutants can be responsible for the cause of toxicity in exposed organisms such as neurotoxicity and immune dysfunction. A few substances (e.g. algal toxins) are mainly characterized by high levels of toxicity, while others, such as dioxins and polychlorinated biphenyls (PCBs), are also very harmful because they lead to chronic effects derived from exposure at low levels of the toxin for long periods of time (Hahn, 2002). The hazards arising from the exposure to seafood that contain numerous microbial factors, parasites and natural toxic substances are common in all countries and should be assessed at a global level.

2. SEAFOOD TOXINS

2.1.1. Natural toxins

Unicellular algae particles (mainly 20 to 200 mm size) consist a significant part of the plankton consumed by mussels, oysters and scallops. The prevalence of appropriate environmental conditions and the maintenance of several parameters such as light, temperature, salinity, water column stability and nutrients, at suitable levels can lead to excessive growth of only a few

algae species that can reach to millions of cells / litre causing discolourness of the seawater. It is believed that only a small percentage of dinoflagellate species (about 30 from 2000) form toxic substances leading to human toxicosis after consumption of fish or shellfish (http://www.foodstandards.gov.au/_srcfiles/TR14.pdf).

Numerous neurogical gastrointestinal, and cardiovascular syndromes can occur due to exposure to toxins. Many of these syndromes can lead to death or long-term morbidity (Sobel & Painter, 2005). One of the basic shellfish poisonings is PSP which can rarely be mortal. It seems to cause respiratory paralysis. Other significant poisonings include DSP which leads to acute gastrointestinal symptoms and can result in the formation of stomach tumors, NSP which leads to respiratory problems, and ASP which can even cause irreversible brain damage accompanied with short-term memory loss (http://www.foodstandards.gov.au/_srcfiles/TR14.pdf). HPLC techniques can be applied to detect and measure PSP toxins in shellfish. PSP toxins are characterized by a weak naturally derived chromophore and modification is essential before the application of the method. After oxidation in alkaline solution, a purine is developed, which behaves as fluorescent in acidic solution. The purines are assessed by fluorescence detection (Ben-Gigirey & Villar-Gonzalez, 2008).

2.1.2. NSP

NSP causes incoordination, paralysis and convulsions and appears after exposure to the lipid soluble brevetoxins (BpTX) (Garthwaite, 2000). BpTX is a group of neurotoxins formed by marine algae such as *Karenia brevis* and act

cumulatively throughout the marine food chain, leading to toxicosis of marine animals and people exposed to seafood (Selwood et al., 2008). BpTX belong to polyether ladder toxins. Numerous of these lipid-soluble cyclic polyether substances have been fully examined, but due to their chemically unstable nature, their analysis is still quite incomplete (http://www.foodstandards.gov.au/_srcfiles/TR14.pdf). Gymnodiniuim breve (=Ptychodiscus brevis) is responsible for the formation of these toxic substances. It is proved that the latter are subject to modification by shellfish. National regulations define the maximum permitted level (MPL) of these compounds at 80µg brevetoxin/ 100 g flesh (or 20 standard mouse units/ 100g flesh) (Garthwaite, 2000). The excessive growth of Karenia brevis (Gymnodiniuim breve) leads to the formation of increased levels of BpTX in seawater, which can have direct effects on fish, birds and marine mammals, resulting in generalized epizootic incidents. BpTX' consumption causes toxicity even at significantly decreased levels. As a result, it is obvious that the levels of these substances should be analytically assessed with sensitive and accurate techniques in order to find the substances at sub symptomatic stages (Naar, 2002). NSP results in a variety of gastrointestinal and neurogical problems such as nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Among the most important neurogical symptoms, partial paralysis and respiratory distress have been repeatedly observed (Watkins et al., 2008).

2.1.3. DSP

DSP occurs after exposure to okadaic acid (OA) and analogues, such as the lipid-soluble dinophysis toxins DTX-(1-3) (Garthwaite, 2000). Consumption of mussels, scallops, or clams fed mainly with *Dinophysis fortii* or *D. acuminata* and other species of *Dinophysis* and possibly *Prorocentrum*, can result in DSP (Ahmed, 1991).

The basic indications of exposure are diarrhea incidents, and the disease can be characterized as self-limiting. In contrast with diarrhea caused by bacteria, indications frequently start within 30 min to a few hours after consuming shellfish that contain the substances (Garthwaite, 2000). DSP toxins can be categorized into three different groups depending on their carbon skeleton (Fremy et al., 1999). According to several studies, these groups are: okadaic acid groups and DX-toxins (dinophysistoxins), pectenotoxins group (PTXs) (e.g. PTX 1-7), and yessotoxins (YTXs) such as yessotoxin and homoyessotoxin (Alfonso et al, 2004, Ciminiello et al, 2007, Fremy et al, 1999, Rossini, 2005) and azaspiracids (AZAs) (Krock et al, 2008, Stobo et al, 2005). Furey et al (2002) and James et al (2002) reported that Azaspiracis (AZA), a toxic substance, which has recently detected leads to azaspiracid poisoning (AZP) after human exposure to contaminated shellfish. OA toxins and PTXs are formed by dinoflagellates such as Dinophysis and Prorocentrum (Fremy et al., 1999), while Protoceratium reticulatum and Lingulodinium polyedrum have been connected to the formation of YTXs (http://www.foodstandards.gov.au/_srcfiles/TR14.pdf).

2.1.4. PSP

PSP can cause severe health problems basically characterized by neurological disorders (Lehane, 2001). It basically occurs after exposure to PSP toxins through ingestion of bivalves fed with toxin-producing dinoflagellate. (Okumura *et al*, 2005).

Shellfish and specifically mussels, clams, oysters, and scallops feed on dinoflagellate microorganisms and their consumption can cause the appearance of PSP syndrome. A toxic substance defined as saxitoxin (STX) is the causal agent of this disease (Watters, 1995). PSP is a very severe intoxication, which can easily be mortal.

Numerous PSPs such as STXs, gonyautoxins (GTXs) C-toxins (Humpage *et al*, 2007) and connected substances (neosaxitoxin - NeoSTX) and decarbamoylsaxitoxin (dcSTX) were analyzed and named (Louzao *et al*, 2001).

STX is formed by many Gonyaulax species such as *Gonyaulax catenella*, *G. tanrarensis*, *G. excavata*, *G. polyedra*, *G. monilata*, *Gymnodinium breve*, *G. veneficum*, *G. splendens* (Bates *et al*, 1978). *Aphanizomenon* sp. is a group of cyanobacteria living in fresh water and considered responsible for the formation of PSP (Humpage *et al*, 2007).

The hazards related to this kind of toxins have led to the requirement for new analytical methods such as several biological, physicochemical, and immunochemical tests (Usleber *et al*, 2001). The disease can only affect the nervous system (Sobel & Painter, 2005) and causes numbness, tingling and burning of the lips and skin, giddiness, ataxia and fever. Due to the lack of particular antidote, only symptomatic therapy can be followed (Garthwaite, 2000).

2.1.5. ASP

The domoic acid (DA) is a water-soluble toxic substance that leads to ASP (Garthwaite, 2000). It has been detected in several varieties of the diatom *Nitzschia pungena* and concentrated in mussels and clams in Atlantic Canada mainly during the excessive growth of the microorganism population (Ahmed, 1991). Furthermore, *Chondriu aurmutund* was firstly identified as producer organism of DA. DA can cause very acute neurotoxicosis and can be categorized to a group of excitatory neurotransmitting toxins (Wright, 1995).

The symptomatology of the disease can be summarized to loss of balance, nausea, headache, disorientation, and vomiting incidents. It can finally lead to irreversible degradation of short-term memory (Garthwaite, 2000). Figure 1 represents the effects of depuration time on domoic acid contents of mussels (*Mytilus galloprovincialis*) and accumulation of the same toxin in tissues of mussels (*Mytilus edulis*) exposed for 4 days to toxic *Pseudo-nitzschia multiseries*.

2.1.6. SFP or HFP

Scombroid intoxication can be caused by consumption of fish contaminated with increased quantities of free histamine. The illness can be defined as histamine fish poisoning (HFP) (or SFP). It is proved that SFP was connected with ingestion of scombroids such as tuna, mackerel, bonito, and saury. Also different groups of fishes have been detected to contain the responsible toxin. Some of them are: mahi-mahi (dolphin fish), bluefish, jack mackerel, amberjack, skipjack, herring, sardine,

and anchovy. SFP is highly related to symptomatology of gastrointestinal, neurological, hemodynamic, and coetaneous nature (Ahmed, 1991).

Histamine is a toxic substance that belongs to biogenic amines. Putrescine and cadaverine are also included in this group of chemical substances. Histamine toxin is formed in the fish flesh by decarboxylating free histidine by bacteria that have the enzyme histidine decarboxylase. Histamine formation can be optimally performed at 25°C (Kerr *et al*, 2002). Free histidine, which is necessary for the formation of the toxin, can be detected in increased quantities in groups of fishes connected to SFP (Ahmed, 1991).

Histidine decarboxylase enzyme is formed by particular species of bacteria naturally found on fishes. According to Taylor et al. (1979), a histamine-producing strain of *Klebsiella pneumonia* was detected in tuna sashimi associated with an incident of SFP.

2.1.7. PFP

Tetrodoxin (TTX) is known for its increased neurotoxicity. It has been detected in puffer fish, and its ingestion is quite dangerous for people who do not take preventive measures before consumption of these fishes. It is also very interesting from a scientific point of view due to its particular chemical structure (Nakamura et al., 1984). The accumulation of the toxin takes place mainly in the ovaries and liver of numerous species of Tetraodontidae fish. It has a direct effect on the nervous system, leading to paralysis if inserted in the organism through the oral cavity, or by subcutaneous route. Several articles deal with the

origin of the toxin in marine organisms (Simidu et al., 1987). The same toxin has been also detected in specific species of octopus (Hokoma, 1988). PSP can occur after consumption of bivalve mussels (mussels, clams, oysters and scallops) fed with dinoflagellates that form toxins. Due to its high toxicity the toxin can lead to death and as a result is considered as extremely poisonous.

Symptomatology includes neurological disorders that can mainly occur after consuming contaminated shellfish. In nonlethal incidents, symptoms last for several days. Among symptoms, tingling, numbness and burning of the lips and fingertips; ataxia; giddiness; staggering; drowsiness; dry throat and skin; incoherence; dysphasia; aphasia; rash and fever are the most frequently observed (Ahmed, 1991).

2.1.8. CFP

Ciguaterra poisoning (CFP) is caused by ingestion of a phycotoxin formed by the benthic algae *Gambierdiscus toxicus*. The toxin can generally be ingested by humans through consumption of fin-fish, clams and marine snails that contain the substance. The lipophilic ciguatoxins (CTX) are characterized by high toxicity and present symptoms related to NSP toxins, even though CFP incidents are considered more acute, causing intense vomiting and diarrhea (Garthwaite, 2000).

The chemical formula of CTX can be described as $C_{60}H_{88}O_{19}$ and is a polyether that belongs to PbTX. Its toxicity is estimated to be 100 times higher than that of tetrodotoxin (TTX) (Ahmed, 1991). CFP is most frequently detected in tropics and subtropics and consists a major hazard for humans. It is related to the ingestion of CTX, which is a low Dalton lipid

polyesther (Hokama et al., 1987). It usually causes alternating feeling of hot and cold, muscular aches, tingling and numbness of lips, tongue and perioral region. Symptomatology intensity can be very high leading to inability of performing basic movements for long periods of time (Ahmed, 1991).

2.1.9. HFP

Hallucinogenic fish poisoning (HFP) or "dreamfish poisoning" is among the most well-examined diseases in Hawaii. It can be the result of the ingestion of specific mullet, goatfish, surmullet, manini tangs, and nenuerudder fish and can only be detected at specific periods during the year (e.g. during summer). Hallucinations, insomnia, intense nightmares, weakness, circumferential chest pain, and burning of the throat are quickly observed after consumption of contaminated fishes (Ahmed, 1991). It is important to mention that the abbreviation HFP can be referred to both "histamine fish poisoning" and "hallucinogenic fish poisoning" which should not be correlated. **Table 1.1** summarizes the natural toxins, their description and their occurrence.

2.2. Chemical toxins

It is proved that numerous toxins can be found in oceans worldwide. Both natural existent compounds and substances derived from human processes can present toxic properties. Among the most well known toxins, inorganic and organic metals, petroleum and combustion derived hydrocarbons, toxic substances formed by marine animals, chlorinated pesticides and

halogenated aromatic hydrocarbons (HAHs) are the most important. These substances can be detected inside sediments, dissolved in water, in the sea surface microlayer or isolated from numerous fishes and shellfishes such as different organisms consumed by humans or animals (Hahn, 2002).

As regards chemical substances (e.g. methyl mercury and PCBs), consumption of marine species is the main cause of human intoxication (Bordajandi et al., 2006; Lana et al., 2008). HAHs are of high scientific concern because of their massive production, their capability of remaining in the environment for long periods of time, and the high toxicity level of several of their compounds (congeners) (Hahn, 2002). The most important HAHs are the polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polyhalogenated biphenyls (PCBs and PBBs), polyhalogenated biphenyl ethers (PCDEs and PBDEs) and Hexachlorobenzene (HCB) derived from chlorine gas and pesticide formation (Opheim, 2004). Mercury (Hg) is categorized among the most toxic substances found in the environment (Reyes et al., 2008). It can be detected in several chemical forms. Organically derived sources of Hg (e.g. methylmercury) are frequently detected in fishes and shellfishes and their toxicity is much more potent than that of the inorganic sources (Kuballa et al., 2008). After ingestion, Hg ban be rapidly inserted in the circulatory system of humans and animals (Moore, 2000).

The main heavy metals derived from industrial procedures and released to the environment are Mercury, Lead, Chromium, and Arsenic. Quantities of heavy metals also exist naturally in the environment (Opheim, 2004). Furthermore, a large variety of HAH isomers and congeners of various numbers and points of their halogen substituents' have been detected and analyzed for their toxicity. These numerous substances and their numerous levels of toxicity as well as their effect on

microorganisms makes the assessment of the existent hazards very difficult (Hahn, 2002). The European Food Safety Authority (EFSA) has recently developed a hazard evaluation procedure for Hg contamination in marine animals (Kuballa et al., 2008).

PBDEs are usually applied for the production of polymers used to electronic devices. According to Wu et al. (2008), PCBs were historically used as coolants and lubricants in transformers and capacitors and as hydraulic and heat exchange fluids in electrical/ electronic equipment (EEEs)". It has been repeatedly proved that organisms can accumulate increased amounts of particular organic toxins, directly related to the amounts of these toxins in each region. Animals feeding in water can usually accumulate high concentrations of these substances in their bodies through the consumption of contaminated food and their exposure to toxins. The above fact is usually defined as bioconcentration, bioaccumulation or biomagnification. The examination of these bioconcentration compounds is very important especially when their concentration increases over time (Mackay & Fraser, 2000).

Aquatic Biocide Tributyltin (TBT) is also included among the most usual toxic substances related to the environment and there are several articles that cite a vast number of negative impacts on production, development and longevity of many marine animals (Burton *et al*, 2002).

Numerous methods have been developed for the measurement of toxic contents in the marine environment. Among them, gas chromatography using electron capture or mass spectrometry is frequently applied giving very accurate and reliable results (Hahn, 2002).

Many pesticides such as DDT, toxaphene, chlordane, lindane and HCH (Opheim, 2004) as well as several resins and additives, anti-oxidants, and other chemical substances were applied by industries during the last decades. Many of these compounds were included in the National Priorities List (NPL) site in 1984 after lindane detection in groundwater and DDT detection in soil. It was proved that DDT and its primary metabolites, dichlorodiphenyl-dichloroethane (DDD) and dichlorodiphenyl-chloroethane (DDE) were extremely harmful for marine animals (Hinck *et al*, 2008).

Many alterations of biochemical nature or particular "biomarkers" have widely used during the last 20 years as methods for detecting toxins. This trend was the result of growing knowledge about toxins. One of the most well evaluated biomarker used to detect dioxins and related chemical substances, is the inducted cytochrome P450 1A (CYP1A). Furthermore, numerous in vitro bioassays can be used to detect the existence of dioxin-like substances (Hahn, 2002).

Several methods such as gas chromatography (GC), HPLC including atomic fluorescence spectrometry, atomic emission spectrometry, atomic absorption spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), are frequently used to analytically determine different mercury types (Reyes *et al*, 2008). Many articles indicate the negative results on humans derived from insertion of toxins into the human body. These negative results can be basically summarized to weakness of immune system, damages on reproductive organs and the presence of different incidents of cancer. The toxicity degree is highly related to several agents such as toxin quantity, exposure parameters (period of exposure, frequency of ingestion) as well as age and health (Opheim, 2004).

It is proved that many toxic substances can be found in several marine animals used as human food. The assessment of toxins' concentrations and their distribution over time and different regions is essential for ensuring the safety of consumers. Although chemical techniques are very accurate, they can be characterized by high cost of implementation and cannot be used to elicit large bulks of information on biological activity of each substance. Further investigation on seafood toxins is required for the minimization of the related hazards (Hahn, 2002).

A brief description of chemicals and their occurrence in seafood is given in **Tables 2.1** and **2.2**.

3. Rapid detection method of seafood toxins

3.1. Bioassays methods

Biological methodology is related with the examination of the potential effects of toxic substances on animals and cells. The MBA was firstly employed for sanitary assessment of shellfish. The method is applicable to acetone abruption of mussel digestive gland (Fremy et al., 1999). Bates et al. (1978) counted the toxic effects of several toxin-producing dinoflagellates by applying mouse and fish bioassays and a chemically based test for STX. The dinoflagellates, derived from natural blooms. Detection of STX was not possible in any sample of dinoflagellates except *Gonyaulax catenella* and *Gonyaulax excavata*. More toxic substances were detected in *Gyrnrwdinium brave*, *Anrphidlnium rnrrnl*, *Gonyaulax excavata* and *GonyaWax*

catenella by applying fish and mouse bioassays. The majority of dinoflagellates were found to contain no toxins. Finally, a *Mytilus edulis* (blue mussels) sample caught in Spain was detected to be rich in saxitoxin.

According to Nicholson et al. (2002), the mouse synaptoneurosome assay is capable of measuring toxic substances that interact with site 5 on the voltage-gated sodium channel (e.g. brevetoxins and ciguatera toxic substances), which lead to NSP. Standard STX was shown to be a very effective inhibitor of the membrane depolarization of the sodium channel activator veratridine. Furthermore, inhibition of veratridine-induced depolarization was evident in samples contaminated with PSP toxins. It was finally demonstrated that the mouse synaptoneurosome assay is as sensitive as the official CD1 mouse assay for measuring toxicity.

Nowadays, bioassays are widely used to evaluate the toxicity of DSP and PSP on cultivated cells that can be used instead of rodent bioassays. According to Manger et al. (2003), a PSP cell bioassay was formed after modification. The method was proved to be as quick as in vitro techniques for sodium-channel-enhancing toxins and was developed in the basis of a STX-dependent antagonism of the quick in vitro impacts of two different toxins (PbTX or CTX). After examining both normally formed PSP residues using antagonism cell bioassay and MBA, it was proved that they were highly correlated.

Okumura et al. (2005) developed a new technique for detecting PSP by applying neuroblastoma cell culture with MTX as a Ca²⁺ agonist to the cell membrane. Maitotoxin (toxin connected with the reduction of incubation time to 6 h) and WST-8 (a dehydrogenase which is applied to determine the existence of tetrazolium salt) were used. After the HPLC analysis, it was determined that the amounts (μ M) of GTX₁, GTX₂, GTX₃ and GTX₄ were 47.8, 31.5, 6.75 and 8.70, respectively. The mean

total toxicity was estimated at 172.4 MU equiv./ml, while the corresponding toxicity calculated after mouse bioassay was about 175.3 MU equiv./ml. It is therefore obvious that the two results ranged at similar levels.

According to Kerr et al. (1999,) the in vitro rat hippocampal slice can be used in order to effectively determine marine algal toxic substances such as saxitoxin, brevetoxin, and domoic acid. A particular electrophysiological signature was also recorded for each toxic substance. PbTX (PbTX3, 50-200 nM) reduced significantly the orthodromic population spike amplitude, while antidromic population spikes and field EPSPs were slightly limited. DA (100 nM) presented a huge, enhancement in amplitude mic spikes that could be reversed. Field EPSP and fiber spike examination proved that the method is suitable for determining toxin levels that range among 25-200 nM. It was concluded that the in vitro prepared hippocampal slice can be effectively used for determining and analyzing STX, PbTX, and DA.

Humpage et al. (2007) examined a neuro-2A cell-related assay for the assessment of the toxic effects of PSPs derived from freshwater cyanobacteria. To better evaluate the method, the neuroblastoma assay was achieved in different experiments in Paris (France) and Adelaide (Australia). Similar results were extracted. It was demonstrated that the method was effective on determining STX neurotoxins in freshwater cyanobacteria, and could be also effectively used for the identification of particular toxic substances that cannot be assessed through chromatographic methods.

Shimojo & Iwaoka (2000) examined a quick hemolysis assay aiming at reporting sodium channel-particular toxic substances presented in the marine environment. The technique was highly connected to the mouse neuroblastoma sample culture assay for sodium channel particular toxins using red blood cells (RBCs) from the red tilapia (*Sarotherodon*

mossambicus). The above technique has the advantage of optimizing the implementation of live animal bioassay testing for toxic compounds. Veratridine, which is a sodium channel activator and ouabain used to inhibit Na⁺/K⁺ ATPase, can react with the tilapia RBCs by influencing on the permeable characteristics of the cell membrane. In this method, RBCs were applied for the detection of particular sodium toxins of biological origin. Pure concentrations of a sodium channel-specific toxic substance could be used to reduce hemolysis at a level of about 0.3 mg/ml STX, 3.5 mg/ml for neo-STX, 3.0 mg/ml for GTX, and 5.0 mg/ml for TTX (by using ouabain and veratridine). CTX content was estimated at 50 mg/ml.

Croci et al. (1997) examined the development of a technique mainly connected to direct microscopy of alterations in the morphology of BGM cell cultures. It was demonstrated that the MBA and the above assay were highly correlated when carried out on mussels (*M. galloprovincialis*), which contained OA toxin. OA content of about 100, 50 and 25ng/100µl led to irreversible damages of the monolayer of the cells after the first hour of exposure. Lower concentrations caused moderate alterations (cell rounding, vacuolization and death of 35-40% of the cells) after passing 2 and 3 hours, leading to extended cell damage (death of the 90-95% of the cells) within 4-5 hr after exposure. Hahn (2002) evaluated a number of biomarkers and bioassay techniques for the detection of dioxin-like substances in the sea. Several biomarkers assessed in fish and shellfish are defined, in terms of toxin concentration, in vivo. In the same way, in vitro biomarker data, recorded in cell culture bioassays, can be effectively applied to evaluate the level of 'dioxin equivalents' in samples of environmental matrices. As a result, all degrees of effectiveness of numerous in vitro bioassays for toxic substances, such as receptor-binding techniques, DNA-binding and transcriptional activation of native (CYP1A) or reporter (luciferase) genes, can be easily evaluated and recorded.

For the achievement of a microtiter filter-based receptor assay (*in vitro* assay) developed with the aim of detecting toxic substances, the necessary equipment is essential for the implementation of the process and is based on conventionally formed liquid scintillation counting for evaluating the resulting data. The development of a very effective assay for the PSP toxins based on the enhanced specific interaction of these substances with their biological receptor was achieved by Doucette et al (1997). It was proved that the receptor binding assay can accurately estimate toxicity determined by mouse bioassay, and that it is a quick and low-cost method that can be used instead of live animal testing for determining PSP toxicity values in fish, shellfish and algae samples (Doucette *et al*, 1997).

3.2. Chemical methods and Biochemical techniques

Chromatographic processes were among the principal techniques applied in an effort to substitute conventional toxindetection methods. All groups of toxic substances require the implementation of very specific assays and the absence of
chromophores on most toxins makes derivatisation reaction essential for toxin detection. Chromatographic techniques using
UV or fluorescence applications can now be used for most shellfish toxic compounds (Garthwaite, 2000). The detection of a
few types of natural-existent toxins (e.g. DSP toxins) can be achieved by applying HPLC, capillary electrophoresis (CE) and
capillary electrochromatography (CEC) with UV, fluorescence detection (FLD), MS detection and immunoaffinity
chromatography (IAC) (Gago-Martinez *et al*, 2003). The recent development of HPLC-MS analytic technique and its
application on shellfish toxins has resulted in immediate advance of production, accumulation, depuration, and chemical

knowledge of toxins. LC-MS is based on an interface method to transfer a decreased quantity of the HPLC flow into the mass spectrometer. Two interface techniques can be used: 1) ion-spray/electrospray (ESI) and 2) atmospheric pressure chemical ionization (APCI) (Garthwaite, 2000). Liquid and gas chromatography (LG & GC) and MS consist the common guide for the usual toxicological examinations in the seafood industries (Palleschi et al., 2000). It was recently proved that the most adequate techniques are those relied on LC/MS (Garthwaite, 2000).

Tandem mass spectrometers, and mainly hybrid equipment such as triple-quadrupole linear ion-trap methods, are considered to have increased sensitivity and effectiveness, but the need for application in a laboratory environment and trained staff is vital to draw safe conclusions. New methods combining liquid chromatographs coupled with tandem mass spectrometers (LC-MS-MS) have extended orifices by demanding increased pumping capacities. As a result, LC-MS-MS technology could be effectively used in field and specifically in oceanography (e.g. examination of toxic bloom behavior and toxin transfer through food webs) (Krock *et al*, 2008).

According to Sullivan et al. (1985), the HPLC is basically applied to detect and assess the quantity of OA, DTX1 and DTX2. Moreover, HPLC is effectively used to determine PSP toxins in shellfish. The application of HPLC compared with MBA techniques was examined by Sullivan et al. (1983). Toxic substances of PSP in shellfish were examined and measured by applying a HPLC and a common AOAC mouse bioassay. The two methods were highly correlated at levels equal or lower than 80µg toxin/100g, Increased quantities of toxins led to small deviations from the actual values.

The first study of pectenotoxin-2 (PTX-2) in algae (*Dinophysis fortii*), connected to poisoning due to consumption of seafood in Europe, was accomplished by Draisci et al (1996). The substance was detected both in crude methanolic phytoplankton samples and in the neutral fraction. The methods applied included reversed phase HPLC combined with UV diode-array detection (LC-UV-DAD) or mass spectrometry (LC-MS) and LC-MS-MS. Furthermore, OA was detected in *D. fortii* samples and measured at 15 pg/cell. Determination of the quantities of PTX-2 was impossible due to the fact that there was no available pure toxin. Nevertheless, the increased PTX-2:OA levels indicated important levels of PTX-2 in the *D. fortii* samples.

Yin et al. (2008) studied the formation of an interface to connect HPLC with atomic fluorescence spectrometry (AFS) in order to separate and detect inorganic mercury, methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg). In hyphenated applications, formic acid in mobile phase was effectively applied as reaction reagent for UV-CVG. Optimization of detection limits was defined at 0.085 μg/l for inorganic mercury, 0.033 μg/l for MeHg, 0.029 μg/l for EtHg and 0.038 μg/l for PhHg. The technique was evaluated by determining certified reference material DORM-2. The UV-CVG with the use of formic acid, made the procedure easier limiting at the same time the required cost.

Hess et al. (2000) evaluated the information extracted from an inter-laboratory examination carried out by 4 laboratories. The examination compared the HPLC-UV and LC-MS techniques applied with the aim of detecting and measuring the quantity of DA in standard solutions and in shellfish extracts. Firstly, 3 of the laboratories applied HPLC only or combined with ultraviolent technique. The quantities of DA found in samples were all among accepted levels. Then, a gonad homogenate

that included higher levels (one order of magnitude) of DA also range among accepted levels. Similar quantities of DA were found by applying LC-UV or LC-MS method.

James et al. (2000) developed a quick and effective, isocratic fluorimetric LC technique, by applying 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) in order to derivatise and implement the technique for analyzing DA in marine phytoplankton and shellfish tissues. DA from shellfish samples was recovered at a level of >95%. After application of a strong anion exchange SPE cartridge for cleaning-up the extracts, determination reached at 6 ng DA/g mussel tissue. It was proved that this innovative technique was very effective in measuring DA in shellfish and phytoplankton (*Pseudonitzschia* sp).

Anderson *et al* (1989) implemented HPLC techniques to determine toxicity level of the dinoflagellate *Gymnodinitun* catenatum in northwest Spain region. Increased levels of the low potency sulfocarbamoyl toxins (ca. 90-95 mole %) were found in dinoflagellate samples, but toxicity value was mostly influenced by STX measured at 5-10% of the total concentration.

Furthermore, Wu et al. (2005) evaluated the extracted data with experiments on toxin-contaminated shellfish-foods collected from Shanghai seafood markets. PSP and DSP toxins in shellfish tissues were firstly assessed by a MBA and further examination took place by applying HPLC to chemically define each toxic substance. As regards MBA, it was proved that 8 extracts contained PSP toxins and 7 extracts contained DSP toxins. HPLC implementation demonstrated PSP levels of about 0.2 to 1.9 μg/100 g tissues mainly including gonyautoxins 2/3 (GTX2/3). As concerns DSP, detection of OA was achieved in 3 samples, and its levels were among 3.2 and 17.5 μg/100 g of sample. Dinophysistoxins (DTX1), was also detected in one

sample. It was proved that, higher percentages of gastropod (*Neverita didyma*) and scallop (*Argopecten irradians*) contained PSP and DSP toxins, and the majority of the toxic samples was found in Tongchuan and Fuxi.

According to Bouaïcha et al. (1997), micellar electrokinetic chromatography (MEKC) was developed and used to effectively and quickly determine the existence of OA in phytoplankton and shellfish samples. A detection limit of 40 pg was defined. The UV intensities of of the substance evaluated at 200 nm presented optimum linearity at values among 40-640 pg. Detection of OA was achieved in mussels spiked with 10 ng/g whole tissue. Existence of OA and dinophysistoxin-2 was detected in the crude extract of all dinoflagellate *Prorocentrum lima* samples.

Unialgal samples of the *Protogonyaulax* (=Gonyaulax) tamarensis/cateneta species complex, which belongs to dinoflagellates and is considered responsible for causing PSP, were toxically examined by HPLC. The study was carried out by Cembella et al. (1987). *Protogonyaulax* samples from different geographical regions such as northeastern Pacific (British Columbia), eastern Canada, Portugal, the United Kingdom and New Zealand were assessed. Concentrated quantities of toxic substances were significantly different between regions, but the toxin ratios of individual samples were maintained at relatively stable levels. Samples collected in the Plymouth (U.K.) did not contain toxins while in two samples from Vancouver Island, small amounts of toxins were found after application of HPLC. For the same samples, mouse bioassay detected no toxins. It was proved that no correlation could take place between toxicity or toxic substances and morphology.

According to Dickey et al. (1990), OA was detected in samples of the Caribbean dinoflagellate *Prorocentrum concave*. Purification of the toxic substance was achieved through normal and reversed-phase column chromatography and

determination was accomplished using 1H NMR and MS. OA has been also repeatedly determined as a toxic substance contained *P. lima* (Ehrenberg) Dodge. Both *P. concavum* and *P. lima*, are responsible for causing ciguatera and as a result this substance may be highly connected with this poisoning.

Powell & Doucette (1999) compared an effective receptor binding assay for determining PSP toxic substances in shellfish and algal samples, with the usually applied HPLC technique. Increased correlation was observed among all receptor-based STX levels except from zooplankton extracts and the result were similar with those extracted through HPLC. Although PSP receptor binding technique cannot be used to describe toxin composition, it is a very effective and quick method for evaluating PSP-like toxic levels in both laboratory and field extracts.

Except from the useful data extracted through the use of LC-MS, information can also be obtained by applying LC/MS/MS. Jorgensen & Jensen (2004) published an article, which examines and analyzes the distribution route of DSP toxins in 13 consignments of Danish blue mussels, during 2002 and 2003. The concentration of DSP toxic substances was examined with the use of LC combined with tandem MS technique, and the average detected rates in the 13 consignments ranged between $58-243 \mu g/ kg$. Distribution pattern of DSP toxic substances was highly homogenized (relative standard deviation $\approx 7-19\%$).

Analysis of clams and blue mussels (Mytilus edulis) from 1999-2004 was achieved with the use of LC combined with LC/MS/MS. The purpose of the study was the detection of DSP toxin esters. Concentration of total okadaic acid equivalents was recorded between 224 to 2516 μ g/ kg in surf clams. The existing concentration of OA esters of the total OA and

derivatives was estimated to be between 83 and 98% (mean 95%). The corresponding concentration of total OA and derivatives was detected between 43 and 1631 μ g/ kg in blue mussels. The rate of OA esters was 21 to 86%, mean 59% of all OA derivatives (Jorgensen *et al*, 2005).

Application of HPLC technique on extracted samples of shellfish and phytoplankton derived from the Gulf of Mexico proved the existence of toxic substances (0.162n µg/g shellfish) and DA (2.1 pg/cell phytoplankton). The existence of DSP and ASP toxins in a place where no other incidents were ever reported may demonstrate that human poisoning can be caused when accumulation of toxins is feasible Dickey et al, 1992).

The development of a quick and effective HPLC-UV technique was achieved with the aim of analyzing DA and analogues in shellfish without the requirement of SPE application. Isocratic chromatographic separation of DA and its isomers from shellfish samples and from the prevalent aminoacid, tryptophan was carried out giving special attention to the mobile phase pH. The most appropriate pH was detected at 2.5. The DA assay was very accurate; %RSD=1.63 and %RSD=3.7, and was effectively used for the examination of numerous samples from different shellfish species (López-Rivera *et al*, 2005).

According to Stobo et al. (2005) an innovative technique based on LC/MS was successfully applied to examine the presence of OA dinophysistoxin-1 (DTX-1), DTX-2, YTX, homoYTX, 45-hydroxy-YTX, 45-hydroxyhomo-YTX, pectenotoxin-1 (PTX-1), PTX-2, azaspiracid-1 (AZA-1), AZA-2, and AZA-3. Methanol-water (80%, v/v) was used for the extraction of toxins while C8 reversed-phase column was used for the analysis of samples. The technique was evaluated for its ability of detecting OA, YTX, PTX-2, and AZA-1 in 4 species of shellfish (mussels, *Mytilus edulis*; cockles, *Cerastoderma*

edule; oysters, *Crassostrea gigas*; king scallop, *Pecten maximus*) selected from United Kingdom (UK). The validated linear range was estimated at 13-250 μg/kg for OA, PTX-2, and AZA-1 and 100-400 μg/kg for YTX. Recovery was about 72-120 and precision was about 1-22%. It was proved that the method was effective enough, providing reliable results.

The HPLC technique gives the advantage of detecting a variety of amines by examining a single sample while the examination takes about 40 min to be applied (Wills et al, 1987). Draisci et al (1999) applied a LC-MS technique for determining DSP toxins and examined the potential use of a new method that combines LC-MS with ionspray ionization to directly determine different DSP toxic substances in mussels and phytoplankton. The examined substances were: YTX, OA and four of its analogues, dinophysistoxins (i.e. DTX-1, DTX-2, DTX-2B, DTX-2C), and pectenotoxins (PTXs), involving PTX-2, two PTX-2 secoacids (PTX-2SAs), PTX-2SA, 7-epi-PTX-2SA, and AC1, the three isomers highly connected to PTX-2. Analysis of extracts that contain toxic substances can be carried out through reversed-phase, positive ion mode SIM LC-MS. PTX-2SAs and AC1 were detected in phytoplankton and shellfish from Ireland and shellfish samples from Italy. Furtherome, PTX-2 was detected in Irish phytoplankton. YTX was detected in shellfish extracts from Italy. Four isomers of OA were found in Irish extracts (OA, DTX-2 and DTX-2B were detected in shellfish, and OA, DTX-2 and DTX-2C were found in phytoplankton). Puente et al (2004) studied the development of a very sensitive and quick technique for the detection of OA, DTXs and PTXs in shellfish and phytoplankton by applying LC-MS/MS with minimally prepared extracts. Five DSP toxic substances were separated on a C18 column (Luna-2, 150 mm x 2.1 mm, 5 micron). For the formation of a multiple reaction monitoring (MRM) technique, the optimum combined precursor-product ions were defined: OA (803/255), DTX2 (803/255),

DTX1 (817/255), PTX2SAs (875/137) and PTX2 (857/137). The method was proved to be very accurate, even detecting quantities of 1 pg (on-column). The method could easily assess the quantity of DSP toxins in phytoplankton even when only a few cells were available (N = 12-40). In *D. acuta* quantities of OA (7.0 pg), DTX2 (11 pg) and PTX2 (7.2 pg) were found.

LC-MS/MS is an extremely sensitive technique used for the detection of toxic substances when only minimal quantities of extracts are available for examination. Through this technique, identification and quantification of DSP toxins in shellfish and phytoplankton can be effectively carried out (Draisci et al., 1996). Krock *et al* (2008) applied a triple-quadrupole linear ion-trap hybrid LC-MS-MS method to determine the existence and quantity of toxins such as DA, gymnodimine, spirolides, dinophysistoxins, OA, PTXs, YTSs, and azaspiracids (AZAs). Numerous phycotoxins were found in North Sea plankton extracts. Domoic acid and 20-methylspirolide G were the substances found in the largest quantities. A lot of crude cultures (>100) were diluted and examined for the existence of AZAs growth for a long period of time. One of the cultures that were found contaminated with AZA, was used for the isolation of a dinoflagellate. It was demonstrated that any mass spectrometer can be used in ship laboratories without presenting any problems due to on-ship conditions. LC-MS-MS is a very significant technique for examining phycotoxins in plankton.

Wu et al (2008), evaluated the concentrations of PBDEs and PCBs in water and numerous aquatic animals from a reservoir near to e-waste recycling industries in China, and examined the degree of bioaccumulation of these substances in the animals. Increased quantities of PBDEs [52.7 to 1702 ng/g wet weight (ww)] and PCBs (20.2-25958 ng/g ww) were detected many biota species in comparison to reference samples (13.0-20.5 ng/g ww for PBDEs and 75.4-82.8 ng/g ww for PCBs). log BAF

(bioaccumulation factor) was estimated at 2.9 to 5.3 for PBDEs and at 1.2 to 8.4 for PCBs, and was highly related to congeners and species.

The examination aiming at determining the levels of MeHg in a cod-sample was carried out by Inagaki et al (2008). A cod fish was caught close to Japan. The sample was powdered and put into 600 bottles (10 g). Sterilization was achieved with gamma-ray irradiation. The samples were certified by applying isotope dilution gas chromatography combined with pled plasma mass spectrometry (SSID-GC-ICPMS). The samples were extracted according to two different methodologies: KOH/methanol and HCl/methanol extractions using ethylation or phenylation. Moreover, the total mercury was assessed by ID-ICPMS and the contained Hg was determined by GC-ICPMS. The estimated MeHg level was about 0.58 ± 0.02 mg/kg. According to Kuballa et al. (2008), the contents of mercury and methylmercury in marine animals (tilapia, sword fish, mackerel) can be evaluated using GC-AED technique. Several alkaline and acidic digestion processes were assessed. The optimum choice was the digestion of 0.5 g sample in methanolic potassium hydroxide solution. Gas chromatography and atomic emission detection were applied for quantifying the sample. It was demonstrated that the process was very effective with a detection limit of about 6.1 μ g/kg for methylmercury. A 91 \pm 19% of the substance was finally recovered. In the study of Bayen et al. (2005), the concentrations of numerous heavy metals (i.e. As, Cd, Cu, Pb, Hg) and POPs (PCBs, PBDEs, as well as organochlorine pesticides) were determined in 20 species of marine animals using ICP-MS and GC/MS. The average heavy metal contents were determined from minimum to 14.2 µg/g wet weight (ww) for As (shark), to 0.50 µg/g ww for Cd (kunning), to 25.5 µg/g ww for Cu (gray prawn), to 0.58 µg/g ww for Hg (eel), and to 1.21 µg/g ww for Pb (salmon).

Chlordane, PCBs, and p,p'-DDT [2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane] as well as other connected chemical substances were the basic POPs detected in seafood, and mainly in salmon fillets and green mussels. PBDE levels in salmon (2.75 ng/g ww) were significantly decreased in comparison to the increased content of PCBs (28.5 ng/g ww). According to the same author "daily intake of As, DDTs, heptachlor, and PCBs in seafood exceeded the conservative cancer benchmark concentrations set by the U.S. Environmental Protection Agency (EPA), indicating that a lot of people can be in danger in Singapore over a lifetime from seafood consumption". Hermanussen et al. (2008) determined increased contents of PCDD/Fs in marine turtles, mammals and seafood from Queensland in Australia. The HRGC–HRMS technique was used for carrying out the analysis. The PBDE concentration estimated was decreased in comparison to marine biota from the northern hemisphere, presenting decreased input into Queensland region. However, it was previously proved that increased quantity of PBDE was contained in human milk and sera in Australia. As a result, it was demonstrated that transfer of PBDEs can take place in in Australian seawater.

A large number of different species of fish and shellfish were bought from several fish markets of Dalian, Tianjin and Shanghai in China and examined for PCBs and OCPs as well as DDTs, HCHs, HCB, and CHLs, by applying GC and GC-ECD. The levels PCBs found in seafood from Dalian, Tianjin and Shanghai were about 1.11 to 8.04 ng/g, 1.26 to 5.60 ng/g and 0.83 to 11.4 ng/g on as regards wet weight, respectively. The contents were decreased in comparison with samples from developed countries (e.g. Japan and Italy). Mean contents of HCB, HCHs, CHLs and DDTs were estimated at 0.38, 0.92, 0.47 and 28.9 ng/g, respectively.

Several biochemical techniques are mainly relied to the natural inhibition of OA, DTX1 and DTX2 by protein phosphatases type 1 (PP1) and 2A (PP2A) *in vitro*. Honkanen *et al* (1996) examined the application of an effective rapid phosphatase assay (PP2A) for detecting OA in oyster samples. The method was proved capable of determining toxic levels of $OA \ge 0.2 \,\mu\text{g/g}$.

3.3. Immunological assays/immunochemical methods

Immunoassays can be widely used for the determination of shellfish toxins (Garthwaite, 2000). Antibodies are biochemical molecules characterized by high complexity. Their production by an organism is the result of the insertion of a foreign material known as antigen. Polyclonal antibodies have been applied for decades. Both monoclonal and polyclonal antibodies are very effective tools for diagnostic kits (Kalamaki *et al*, 1997).

One of the most applied processes is the enzyme linked immunosorbent assay (ELISA). ELISAs are characterized by low cost of application and require short period of time for their conduction. As a result, they can be effectively applied for examining large bulks of extracts. Immunoassays are carried out by applying antibodies, which lead to appropriate structures of toxins. The selection of the proper antibody is essential for the determination of the correct toxic levels (Garthwaite, 2000).

Radioimmunoassays and enzyme immunoassays are very sensitive techniques used to quantify several biologically active small molecular structures (Naar *et al*, 2002). In Sandwich ELISA, antibodies are fixed to a solid phase (e.g. the inside walls of test cubes). In a Gold Labeled Immunosorbent Assay test, antibodies used for the detection of a bacterium are connected

tocolloidal gold. Then, a sample can be put into the sample port of the test kit. In the Enzyme-Linked Fluorescent Immunoassay (ELFA), the inner place of a device used as a pipette, comprises a mixture of antibodies against a single antigen of a bacterium (Kalamaki *et al*, 1997).

The bacterium *Vibrio cholerae* is responsible for the appearance of cholera, an illness directly connected to water and fisheries' contamination. The formation of the bacterium colonies leads to the production of cholera toxin (CT) causing diarrhea in humans. An effective flow injected liposome immunoanalysis (FILIA) method was formed for the detection of CT. CT levels were determined with the development of a sandwich complex between the immobilized antibody and GM1 liposomes. According to the procedure, the extract was initially inserted into the column, and then injection of liposomes followed. The use of the octyl glucopyranoside led to the release of the molecules from the liposomes. The molecules were then quantified. The detection limit of the method was estimated at 6.6 x 10⁻¹⁷ g/ml in 200 μL of extracts (Ho *et al*, 2008). Latex Agglutination techniques are relied on integration of antibody-coated colored latex compounds when special antigens exist. The Immunodiffusion/Motility Enrichment Test integrates both accurate enrichment and antibody antigen reactions. The Immunoblot ELISA technique implementation is based on populations of bacteria that grown on an agar plate (Kalamaki *et al*, 1997).

Immunosensors (or immunochemical sensors) are specific devices that use an antibody-relied biorecognition molecular structure, for recognizing toxins. The Immunomagnetic Separation (IMS) method can be alternatively applied instead of selective enrichment. Most of immunosensors used today for one-shot sensors can indirectly detect substances by applying

enzyme and fluorescent labels. Electrochemical Immunosensors affinity sensors are mostly based on the application of electroactive label, and especially labeling and amplification methods (Palleschi et al, 2000).

Several methods for the preparation of ganglioside-incorporated liposomes have also widely used for the development of toxin-detection assays. It is proved that liposomes can be more effectively applied in diagnostics than enzyme-relied assays. Liposomes can contain sites for ligands. Also, increased amounts of dye or different markers can be found in their cavity, effectively producing intense signals. Moreover, ganglioside-liposomes are characterized by easier preparation processes before implementation, in comparison to immunoliposomes, which were previously used in diagnostic tests (Ahn & Durst, 2008).

Naar et al (2002) studied the implementation of a rapid, effective and accurate ELISA technique used for the quantification of brevetoxins in fisheries. The study also demonstrated that brevetoxins produced by *Karenia brevis* in Seawater, Shellfish, and Mammalian Body Fluid can be effectively found even when very decreased quantities are disposable and in slightly prepared samples. The process is based on secondary biotinylated antibodies, streptavidine-horseradish peroxidase conjugate, and chromogenic enzyme substrate. The detection limit for this type of toxic substances in spiked oysters was about 2.5µg/100 g sample.

Implementations of immunochemically based methods for PSP toxic substances are relied on microtiter plate enzyme immunoasays and enzyme-linked immunofiltration assays for detecting the toxic compounds and immunoaffinity

chromatography (IAC) for extract cleanup. Enzyme immunoassay (EIA) is preferred mainly due to the simple and quick integration of the process, and the very accurate results, in comparison to other techniques (Usleber *et al*, 2001).

Hokama et al (1987) examined the development of a quick enzyme immunoassay stick test, characterized high simplicity, for detecting ciguatoxin and connected polyether substances in fish extracts. The method can be applied for the examination of seafood responsible for causing ciguatera poisonings, fishes caught together with contaminated samples, fishes that do not contain toxic substances, and near shore reef fishes. The catches collected from regions connected to ciguatera incidents gave toxicity levels of 45%, 80.6% and 42.5% as regards Hawai, Kauai and Oahu, respectively, for *Ctenochaetus stigosus*. The fishes that contained toxins and led to poisonings were proved positive with the stick examination, demonstrating the effectiveness of the method.

The formation of the radioimmunoassay (RIA) process was achieved by applying ciguatoxin after purification. Antibodies were firstly prepared in sheep and rabbits by injecting the toxin in conjunction with human serum albumin. The detection of ciguatoxin and connected polyethers in fishes can be achieved by applying monoclonal antibodies in the stick enzyme immunoassay.

Ahn & Durst (2008) examined the formation of a very acute bioassay for detecting CT in specific seafood extracts, with the use of ganglioside-conjugated liposomes. For the conduction of the experiment, samples were spiked with different levels of CT. The limit of detection (LOD) was significantly enhanced in the majority of cases, in comparison to the LOD in the buffer system. It was revealed that bioassays with ganglioside-liposomes can be used for the direct detection of the toxic

substances in the field, by testing seafood quickly (≈20 min) and effectively, without requiring complicated procedures and devices.

According to the study of Wong (1996), food samples that contained different levels of CT were used for carrying out a quick technique based on the implementation of monoclonal antibody (Mab) enzyme immunoassay, with the aim of detecting *Clostridium botulinum* type E. Hybridomas secreting specific Mab against the type E epitope were formed. A number of these hybridomas (5) were prepared and maintained in liquid N₂. Immunoglobulin subisotyping demonstrated that these Mabs were related to the IgG. Production of increased amounts of Mabs was achieved in ascites dilution. After purification of Mabs, a biotin-avidin double sandwich enzyme-linked immunosorbent assay was used to determine the toxic levels of the bacterium in seafoods at concentrations of about 1-10 MLDs/ml (5-10 pg/ml).

Kania et al. (2003) examined the use of polyclonal antibodies (pAbs) for the detection of DA. ELISA method was used to evaluate the process. The optimized horseradish peroxidase (HRP) ELISA was characterized by a detection limit of about 0.6ng/ml (ppb) and a efficiency of application at 0.8–300 ppb DA. A screen-printed electrode (SPE) technique was applied in order to quantify DA. It was proved that DA detection tests for ELISA had a deviation level of $\pm 12\%$, while SPE was estimated to have a deviation level of about $\pm 25\%$.

According to Kawatsu & Hamano (2000), an indirect competitive enzyme immunoassay (idc-EIA) was used for the examination of 10 samples of blue mussels (Mytilus edulis) from Japan in order to evaluate their concentration in DA. The

method was relied on an anti-domoic acid monoclonal antibody. It was proved that the toxin existed in all extracts at concentrations of about 0.11-1.81 ng/g mussel flesh.

A reversed-phase liquid chromatographic technique using UV radiation at (242 nm) for detecting toxic substances was assessed in comparison to a radioimmunoassay method used for the detection of domoic acid. After the examination of numerous seafood extracts (razor clams, anchovies, crabs) its was proved that both methods presented similar results as regards spiked samples of mussels and rat serum. The latter were effectively detected at concentrations level of about 0.15-7.3μg/g of DA (Lawrence et al., 1994).

A new electrochemical enzyme-linked immunosorbent assay used for detecting DA was formed by applying a screen-printed electrode device with a monoclonal antibody. The latter was used for determining the detected molecules. It was demonstrated that competitive immunoassays for the detection of DA can be effectively applied and that the immunosensor used for detecting DA presents a common range of detection and a detection limit appropriate for "on-site" regulation (Micheli et al., 2004).

The study of Kreuzer et al. (2002) examines the application of a screen-printed electrode (SPE) method for determining numerous seafood toxic substances (e.g. okadaic acid, brevetoxin, domoic acid and tetrodotoxin). A screen-printed carbon electrode in conjunction with amperometric determination of p-aminophenol at +300 mV vs. Ag/AgCl, were applied for signal assessment. ELISA was firstly applied for the development of all toxins, prior to applying SPE. The SPE technique is characterized by high simplicity and it is relatively cheap while integrating an examination at about 30 min. Moreover,

examinations can be effectively carried out in the field. Recovery tests on specific toxic substances were proved very accurate presenting a $\pm 10\%$ deviation for the exact value.

Two new techniques, a competitive direct enzyme-linked immunosorbent assay (cdELISA) and a competitive indirect ELISA (ciELISA), were applied for the determination of antibodies and the detection of DA in blue mussels and clams. When blue mussel matrix was used, the detection limit was estimated at <25 ng/g, while the overall recovery level was measured at 25-500 ng/g. The effectiveness of cdELISA was also revealed by using HPLC. Determination of DA in shellfish extracts demonstrated that 10 of the 15 samples contained DA at concentrations lower than 50 ng/g (Yu *et al*, 2004).

Two test kits: the DSP-CheckTM kit from UBE Industries and the OA ELISA kit from Rougier Bio-tech were applied for the detection of toxins. MIST AlertTM was assessed for determination of PSP toxins in shellfish. Numerous types of shellfish collected from the UK shellfish toxin-monitoring program, were examined. All extracts were found to be contaminated with toxins at concentrations of about 80 µg STX equivalents/100 g shellfish flesh. Detection of toxins was effectively achieved in almost all extracts with STX concentrations of >40 microg equivalents/100 g. It was demonstrated that MIST Alert can be used as an initial detection method for PSPs. It is also important to mention that these kits can be easily used by humans with no technical or scientific knowledge providing very accurate results (Mackintosh *et al*, 2002).

Numerous extracts of mussels (*Mytilus sp.*) were examined for OA and connected substances by applying four different techniques (HPLC procedure, solid-phase immunobead assay, enzyme-linked immunosorbent assay and idiotypic-anti-idiotypic competitive immunoassay). The experiments were conducted with animals collected form *Dinophysis sp.* blooms or

processed seafood implicated in human DSP incidents. Homogenized hepatopancreas gland tissue was used for the conduction of the tests. All samples presented the same results, but it was demonstrated that quantitative immunochemical techniques with microplate readers were characterized by higher sensitivity in comparison to HPLC (lowest detection limits of 0.02 mu g OA/g hepato-pancreas and 0.4 mu g as regards immunoassays and HPLC, respectively) (Fremy *et al*, 1994).

3.4. Biochemistry and molecular techniques (DNA-based methods)

Molecular methods are relied on the determination of a small piece of the microorganisms' genome. The selection of the sequence is essential for the conduction of the procedure and is highly connected to the target of each process (detection or typing).

PCR is used for amplification of viral or bacterial nucleic acid without the requirement of previous culture or use of isolated strains from the extract, which is very significant for determining non-culturable viruses or stressed bacteria. The PCR technique is very selective and can detect the substances even when just a few cells are available in the extract (Pommepuy & Guyader, 1998).

Kumar et al. (2001) examined the existence of Shiga-toxigenic *Escherichia coli* (STEC) in Indian fish and fisheries. According to this study, after isolation of *E. coli* from numerous seafoods (e.g. fresh fish, clams) and water, the samples were tested for the detection of STX, hlyA and rfbO157 genes by applying PCR. After the conduction of the experiment it was proved that 5% of clams and 3% of fish extracts contained non-O157 STEC, indicating that STEC can be transmitted through

these foods. It was finally demonstrated that STEC is contained in many seafood products in India, and non-O157 serotype is the most usually detected.

A TaqMan PCR assay was used for the determination *V. cholerae* in pure cultures, oysters, and synthetic seawater. Probe formed from the nonclassical hemolysin (*hly*A) sequence of the bacterium was used. Sixty bacterial strains were examined. The method was very sensitive in a range of values between 6 to 8 cfu/g as regards spiked raw oyster and 10 cfu/g as regards synthetic seawater. The required time for the complete conduction of the method was about 3 h. It was proved that the TaqMan probe and primer formed can be applied to rapidly detect the existence of *V. cholerae* in oysters and seawater without requiring any preparation of the samples (Lyon, 2001).

An effective PCR assay (TaqMan assay) used for the quantification of the bacterium *Clostridium botulinum* type E was examined by Kimura *et al* (2001). The method included amplification of a 280-bp sequence from the botulinum neurotoxin type E (BoNT/E) gene, hydrolysis of an internal fluoregenic probe and control over intensity enhancement of fluorescence during PCR. It was proved that the technique was very sensitive and accurate. During the examination of contaminated jack mackerel, the range of detection was estimated at 10² to 10⁸ cfu/ml or g indicating the sensitivity of the method. much earlier than toxin could be detected by mouse assay. It was finally demonstrated that the assessment of BoNT/E DNA using this technique was very effective in estimating the potential hazards of this type.

According to Jinneman et al. (2003), a multiplex real-time PCR technique for the determination of the *stx1* and *stx2* genes of Shiga toxin-forming *E. coli* and a specific single-nucleotide polymorphism in the *E. coli* O157:H7/H⁻ *uidA* gene was

evaluated. It was proved that the technique provided 98.6% sensitivity and 100% specificity after examination of 138 samples. It was also very efficient (≥1.89), with a detection limit of 6 cfu/reaction. Furthermore, Bowers et al (2000) evaluated the development of a real-time PCR-relied assay that could rapidly and accurately detect *Pfiesteria piscicida* and *P. shumwayae* in different cultures and water samples. It was demonstrated that the method could be used to quantify the detected microorganisms. The same method couldbe otentially applied for field-relied experiments.

V. cholerae O1 and V. cholerae non-O1 strains detected in different samples in São Paulo, Brazil, during cholera epidemics were evaluated for the existence of toxic substances. Furthermore, other V. cholerae O1 strains detected in extracts in Peru and Mexico, and V. cholerae O139 strains detected in India were assessed for the existence of CTX and ZOT (zonula occludens toxin gene) by applying PCR. A modified DNA-extraction technique was used to effectively recover genomic DNA from vibrios. It was demonstrated that the toxins can be detected by PCR and the same method can also be used for the evaluation of the epidemiological route of V. cholerae (Rivera et al, 1995).

Rapid methods (Biological, Chemical, Biochemistry, Molecular and Immunochemical) for toxin detection is given in **Table 3.1** and rapid detection methods detections of seafood toxins is given in **Table 3.2**.

4. The limit of detection of methods (LOD)

Determination of dietary exposure to shellfish toxins cannot be achieved by following the methodology for detection of different substances, mainly due to the sporadic cases and incidents of contamination, and the important fluctuations of time

and spaces as regards poisonings and detection of toxins. 'Most of extracts examined presented minimal concentrations of toxins or absence of toxic substances. Exception is the existence of an algal bloom. In this case toxic levels are increased significantly. As a result, the determination of an overall mean or median contaminant degree of toxin to evaluate the medium degree of consumption cannot be successfully used (http://www.foodstandards.gov.au/_srcfiles/TR14.pdf).

Several rapid techniques can indirectly evaluate the toxicity by measuring the potential hazards and as a result they can be applied for the establishment of limits (Kalamaki *et al*, 1997). The limit of detection of rapid methods (LOD) is given in **Table 4.1**.

5. Risk characterization

Nowadays, different toxic substances found in the aquatic environment lead to contamination of fish and fisheries causing several problems to the aquaculture industry. Distribution of toxins is global and can rapidly cause death to large populations of fishes or can make these foods hazardous requiring their removal from the market and resulting in substantial financial losses (Wright, 1995).

The severity and duration of many intoxication incidents related to ingestion of seafood toxins makes these substances a very significant public health subject. Nevertheless, the knowledge on the organs affected by the different tya commonly pes of toxins and the critical toxic concentrations are very incomplete making it difficult to determine safe exposure limits. Moreover,

acceptable daily intake (ADI) defined for aquatic has been any kind of substances not toxic (http://www.foodstandards.gov.au/ srcfiles/TR14.pdf).

The degree of the potential hazard from seafood consumption is highly related to the species of finfish and shellfish and the region of harvesting. Generally speaking, the preventive measures are based on minimization of harvesting from hazardous regions making known that some species and regions are of high risk and on the implementation of different other methods (e.g., freezing foods before raw consumption, informing consumers for the advantages of proper cooking etc.) (Ahmed, 1992).

Marine toxins are characterized by high heat stability and therefore are almost unaffected by cooking processes. These toxins can lead to different neurological, gastrointestinal, and cardiovascular diseases that can even cause death or long-term morbidity. Common and rapid clinical diagnostic examinations have not been establishes for these substances and diagnosis is relied on symptoms and any possible ingestion of seafood in the proceeding 24 h. When humans affected by aquatic toxins are in immediate danger of dying, the possibility of toxin contamination and hospitalization in an intensive care unit as well as providing artificial ventilation (when required) are essential measures for the recovery of the patients (Sobel & Painter, 2005).

Incidents of seafood poisonings due to ingestion of toxins are frequently presented in numerous regions all over the world. Also, it is proved that more and more toxic substances, and especially phycotoxins, are determined every year (Rossini, 2005).

Table 5.1. displays various regional outbreaks of seafood toxins, the assessment of toxins in seafood, clinical symptoms of this toxicity and the specific, symptomatic and supportive medical treatments that were given in incidents.

Finally, the diagnosis of seafood poisoning are based on the clinical scenario and the patient's recent fish-eating history. Total outbreaks are associated with gastrointestinal (GI), cardiovascular, neurological and neuropsychiatric symptoms and signs.

6. Conclusions

Among the different types of hazards found in fish and seafood, chemical hazards and especially toxins such as BpTX, OA, PSP toxins, DA, etc. and PCBs, are considered especially hazardous for the health of consumers and are responsible for a high number of food-borne poisonings worldwide. Natural toxins are usually derived from several toxic algae species, which constitute the food of different molluscs. A large number of neurogical, cardiovascular and gastrointestinal diseases (NSP, DSP, PSP, ASP, SFP, PFP, etc.) occur due to consumption of these substances. The main chemical toxins occurring in fish and seafood are methyl mercury and PCBs. Their high toxicity and potential accumulation in ecosystems make them very severe hazards. Therefore, many methods such as GC, MS, biomarkers as well as several bioassays and immunochemical/immunological techniques, have been developed and used for the detection of these compounds, targeting to ensuring the safety of consumers. Moreover, biochemical and molecular techniques like PCR can be effectively applied for the rapid detection of toxic substances.

As a concluding remark, it can be said that despite the tremendous amount of research on the substances concerned, the limitations of the methods demonstrate the urgent need to improve the currently available techniques and develop even more effective methods with the aim to providing safe fish and seafood products.

	APPENDIX 1		
	A. Natural toxins - abbreviations	S	
Disease	Full name	Natural toxins	Expl
			icati
			on
CFP	Ciguatera fish poisoning	CTXs	Cigu
			atoxi
			ns
		MTX	Mait
			otoxi
			n
SFP or HFP	Scombroid fish poisoning or histamine fish poisoning	Hist	Histi
			dine
PSP	Paralytic shellfish poisoning	STX	Saxit
			oxin
		NEO	1-
			hydr
			oxys
			axito

			xin
		dcNEO	decar
			bam
			oyln
			eosa
			xitox
			in
		dc-STX	decar
			bam
			oylsa
			xitox
			in
		Cl-4	N-
			Sulp
			hoca
			rbam
			oyl
			toxin
			s
		GTX	Gon
			yaut
			oxin
NSP or BSP	Neurotoxic shellfish poisoning or Brevetoxic shellfish poisoning	PbTx	Brev
			etoxi
			ns
		Cl, C2, B1	Sulf

			ocar
			bam
			oyl
			toxin
			s
PFP	Puffer fish poisoning	TTX	Tetr
			odot
			oxin
DSP	Diarrhetic shellfish poisoning	OA	Oka
			daic
			acid
		DTXs	Dino
			phys
			istox
			ins
		DTX-I	Dino
			phys
			istox
			in-1
			or
			35m
			ethyl
			okad
			aic
			acid
		DTX-2	Dino

			phys
			istox
			in-2
		DTX-3	Dino
			phys
			istox
			in-3
		PTXs	Pect
			enot
			oxin
		PTX-2	Pect
			enot
			oxin-
			2
		YTX	Yess
			otoxi
			n
		AZAs	Azas
			pirac
			ids
ASP	Amnesic shellfish poisoning	DA	Dom
			oic
			acid
HFP	Hallucinogenic fish poisoning or dreamfish poisoning	DOM	Dom
			oic
			acid

	B. Chemical toxins - abbreviations		
HAHs	Halogenated aromatic hydrocarbons	PCDDs	Poly
			chlor
			inate
			d
			dibe
			nzo-
			p-
			dioxi
			ns
		PCDFs	Poly
			chlor
			inate
			d
			dibe
			nzof
			uran
			s
		PCDEs	Poly
			halo
			gena
			ted
			diph
			enyl
			ether
			s

PCDD/Fs	Poly
	chlor
	inate
	d
	dibe
	nzo-
	p-
	dioxi
	ns
	and
	dibe
	nzof
	uran
	s
DLPCBs	Diox
	in-
	like
	poly
	chlor
	inate
	d
	biph
	enyls
PCBs	Poly
	chlor
	inate
	d

В	
e	
PAH P	PAH
C	
c	
a	
a	
h	
0	
b	
DL-PCBs D	DL-PC
ir	
li	
p	
cl	
ir	
d	
b	
e	
TCDD 3	TCDD
4	
5	
p	
a	
0.	
p	

		yl
		PCB
		-126
	TBT	Aqu
		atic
		bioci
		de
		tribu
		tyltin
	OCPs	Orga
		noch
		lorin
		e
		pesti
		cides
	НСВ	Hexa
		chlor
		oben
		zene
	HCHs	Hexa
		chlor
		ocyc
		lohe
		xane
		isom
		ers

		CHLs	Chlo
			rdan
			e
			com
			poun
			ds
POPs	Persistent organic pollutants	PBDEs	Orga
			noch
			lorin
			e
			pesti
			cides
			,
			poly
			brom
			inate
			d
			diph
			enyl
			ether
			S
МеНд	Methylmercury	EtHg	Ethy
			lmer
			cury
		PhHg	Phen
			ylme

			rcury
DDT	Dichloro-Diphenyl-Trichloroethane	DDE	Dich
			lorod
			iphe
			nyldi
			chlor
			oeth
			ylen
			e
		DDD	Dich
			lorod
			iphe
			nyldi
			chlor
			oeth
			ane
	Γ. Chemical toxins of microorgan	isms - abbreviations	•
cfx	Choleratoxin		
zot	Zonula occludens toxin		
STEC	Shiga toxin E. coli		
BT	Botulinum neurotoxin		
LPS	Lipoppollysaccharides		
DT	Diphtheria toxin		
TT	Tetanus toxin		

Attention: The definition of HFP has two interpretations like HFP (Histamine fish poisoning) and HFP (hallucinogenic fish poisoning) and they should not be confused.

ACCEPTED MAINUS	CRIFI		
APPENDIX 2			
Rapid methods - abbreviations			
Methods- abbreviations	Explication		
AAS	Atomic absorption		
	spectrometry		
AES	Atomic emission		
	spectrometry		
AFS	Atomic fluorescence		
	spectrometry		
APCI	Atmospheric pressure		
	chemical ionisation		
API	Atmospheric pressure		
	ionization		
BGM	Buffalo green monkey kidney		
	cell cultures		
bead-ELISA	Bead-enzyme-linked		
	immunosorbent assay		
CE	Capillary electrophoresis		
CEC	Capillary		
	electrochromatography		

cELISA	Competitive enzyme-linked
	immunosorbent assay
CID in LC-MS-MS	Collision-induced
	dissociation in multiple
	tandem mass spectrometry
CRF	Chromatographic response
	function
CZE	Capillary zone
	electrophoresis
ECD	Capillary electrophoresis
	detection
EI	Electron impact mass
	spectrum
EIA	Microtiter plate enzyme
	immunoassay
ELIFA	Enzyme-linked
	immunofiltration assay
ELISA	Enzyme-linked
	immunosorbent assay
cdELISA	Competitive direct enzyme-
	linked immunosorbent assay
ciELISA	Competitive indirect ELISA
ERICs-PCR	Enterobacterial repetitive
	intergenic consensus
	sequences- Polymerase chain
	reaction-based

ESI	Ion-spray/ electrospray
ESI	Electrospray ionisation
FAB	Fast atom bombardment
FD	Fluorescence detection
FI-CV-AFS	Flow injection-cold vapor-
	atomic fluorescence
	spectroscopy
FIA	Flow injection analysis
FIA-MS	Flow injection analysis- Mass
	spectrometry
FILIA	Flow injection liposome
	immunoanalysis
FLD	Fluorescence detection
FRET	Fluorescence resonance
	energy transfer
GC	Gas chromatography
GC-AED	Gas chromatography with
	atomic emission detection
GC-ECD	Gas chromatographic system
	with electron capture
	detection
GC-MS	Gas chromatography-mass
	spectrometry
HPCE	High-performance capillary
	electrophoresis
HPLC	High performance liquid

	chromatography
HPLC-AFS	HPLC with atomic
	fluorescence spectrometry
HPLC-ICP-MS	High performance liquid
	chromatography and
	inductively coupled plasma
	mass spectrometry
HPLC-MS	High performance liquid
	chromatography-mass
	spectrometry
HPTLC	High performance thin layer
	chromatography
HRGC-HRMS	High-resolution gas
	chromatography/
	high-resolution mass
	spectrometry
HR-MS	High resolution mass
	spectrometry
IAC	Immunoaffinity
	chromatography
ICP-MS	Inductively coupled plasma-
	mass spectrometry
IMS	Immunomagnetic separation
	technique
IP	Immunoprecipitation tests
ISP	Ion spray liquid

	chromatography
ISP	Ionspray
ISP	Onspray interface
ISP	Ion-pair chromatography
LC	Liquid chromatography
LC-FLD	Liquid chromatog raphy-
	fluorimetric detection
LC-FL	Liquid Chromatography -
	fluorescence detection
LC/MS	Liquid chromatography-
	mass spectrometry
LC with fluorimetric, SRM µLC-MS-MS	Liquid chromatography with
	fluorimetric, mass
	spectrometric and tandem
	mass spectrometric
LC ISP-MS	Ionspray liquid
	chromatography-mass
	spectrometry
LC-MS/MS	Liquid chromatography-
	multiple tandem mass
	spectrometry
LC-MS-MS	Highly sensitive triple-
	quadrupole linear ion-trap.
LC-MS, LC-MS-MS	Mass spec trometry and
	tandem mass spectrometry
LC MS and HPLC/fluorescence	Liquid chromatography with

	mass spectrometry and high
	performance liquid
	chromatography/
	fluorescence
LC-UV	Liquid Chromatography with
	UltraViolet absorption
	detection
LC-u.vDAD	High-performance liquid
	chromatography either by
	U.V. diode-array detection
LC-ESI-MS	Liquid chromatography-
	electrospray ionization mass
	spectrometry
LFIC	Lateral Flow Immuno-
	Chromatography
LIF	Laser-induced fluorescence
LM	Light microscopy
Mab	Monoclonal antibody
	(enzyme immunoassay)
MBA	Mouse bioassay
MEKC	Micellar electrokinetic
	chromatography
MEKC with UV	Micellar electrokinetic
	chromatography with
	ultraviolet detection

MEKC-LIF	Micellar electrokinetic
	capillary chromatography
	(MEKC) in conjunction with
	laser-induced fluorescence
	(LIF) detection
MGB	Minor-groove binder
MIST AlertTM	Recently a commercial
	antibody-based rapid
	qualitative test
MRM	Multiple reaction monitoring
	mass spectrometry
MS	Mass spectrometry
MS-MS	Tandem mass spectrometry
MT	Mouse lethality test
NMR	Nuclear Magnetic Resonance
OR	Orifice potential
PCR	Polymerase chain reaction-
	based assays
PF	Permeability factor
PFU	Plaque-forming unit
PSPase-based assay	Protein phosphatase-based
	assay
RBA	Receptor Binding Assay
Real-time PCR STEC method	Real-time polymerase chain
	reaction-based assays-Shiga
	toxin-producing E.coli

RI	Radioimmunoassay
RIA	Radioimmuno-assays
RIAs	Radioimmunoassays
RIC	Reconstructed ion current
	profile
SIM	Selected-ion-monitoring
	mode chromatogram
SPE	Solid phase extraction
RT	Reversed-phase fluorimetric
RT-PCR	Reverse transcriptase-
	Polymerase chain reaction-
	based assays
SEC	Size exclusion
	chromatography
SEM	Scanning electron
	microscopy
SIDMS	Speciated isotope dilution
	mass spectrometry
SIM	Selected ion monitoring
	mode
SPE	Electrochemical, screen-
	printed electrode system,
	immunosensors
SRM	Selected reaction monitoring
SSID-GC-ICPMS	Species-specific isotope
	dilution gas chromatography

	inductively coupled
	plasma mass spectrometry
TaqMan assay	Thermus aquaticus DNA
	polymerase
TC-CC	Tissue culture assays- cell
	culture
TCID	Tissue culture infectious dose
TLC	Thin layer chromatography
The real-time PCR- MGB	The real-time polymerase
	chain reaction-based assays
	and minor-groove binder
UV	Ultraviolet radiation
UVD	Ultraviolet absorbance
	detection

References

Ahmed, F. E. (1991). Naturally Occurring Seafood Toxins. Journal of Toxicology-*Toxin Reviews*. **10**(3): 263-287.

Ahmed, F. E. (1992). Review: Assessing and managing risk due to consumption of seafood contaminated with microorganisms, parasites, and natural toxins in the US. *International Journal of Food Science and Technology*. **27**: 243-260.

Ahn, S., and Durst, R. A. (2008). Detection of cholera toxin in seafood using a ganglioside-liposome immunoassay. *Analytical and Bioanalytical Chemistry*. **391**: 473-478.

Ahn-Yoon, S., DeCory, T. R., and Durst, R. A. (2004). Ganglioside–liposome immunoassay for the detection of botulinum toxin. *Analytical and Bioanalytical Chemistry*. **378**: 68-75.

Ahasan, H. A. M. N., Mamun, A. A., Karim, S. R., Bakar, M. A., Gazi, E. A., and Bala, C. S. (2004). Paralytic Complications of Puffer Fish (Tetrodotoxin) Poisoning. *Singapore Medical Journal*. **45**(2): 73-74.

Alfonso, A., Vieytes, M.R., Yasumoto, T., and Botana, L.M. (2004). A rapid microplate fluorescence method to detect yessotoxins based on their capacity to activate phosphodiesterases. *Analytical Biochemistry*. **326**: 93-99.

Anderson, D. M., Sullivan, J. J., and Reguera, B. (1989). Paralytic shellfish poisoning in northwest Spain: the toxicity of the dinoflagellate *Gymnodinium catenatum*. *Toxicon*. **27**(6): 665-674.

Bates, H. A., Kostriken, R., and Rapoport, H. (1978). The occurrence of saxitoxin and other toxins in verious dinoflagellates. *Toxicon.* **16**: 595-601.

Bayen, S., Koroleva, E., Lee, H. K., and Obbard, J. P. (2005). Persistent Organic Pollutants and Heavy Metals in Typical Seafoods Consumed in Singapore. *Journal of Toxicology and Environmental Health*, *Part A.* **68**: 151-166.

Ben-Gigirey, B., and Villar-Gonzalez, A. (2008). Chemical Analysis in Seafood freshwater toxins. Taylor & Francis, Boca Raton, US.

Blanco, J., de la Puente, M. B., Arévalo, F., Salgado, C., and Moroño, Á. (2002). Depuration of mussels (*Mytilus galloprovincialis*) contaminated with domoic acid. *Aquat. Living Resour.* **15**: 53-60.

Bordajandi, L. R., Martin, I., Abad, E., Rivera, J., and Gonzalez, M. J. (2006). Organochlorine compounds (PCBs, PCDDs and PCDFs) in seafish and seafood from the Spanish Atlantic Southwest Coast. *Chemosphere*. **64**: 1450-1457.

Bouaicha, N., Hennion, M. C., and Sandra, P. (1997). Determination of okadaic acid by micellar electrokinetic chromatography with ultraviolet detection. *Toxicon*. **35**(2): 273-281.

Bourdy, G., Cabalionb, P., Amade, P., and Laurenta, D. (1992). Traditional remedies used in the Western Pacific for the treatment of ciguatera poisoning. *Journal of Ethnopharmacology*. **36**: 163-114.

Bowers, H. A., Tengs, T., Glasgow, H. B., Burkholadder, J. M., Rublee, P. A. and Oldach, D. W. (2000). Development of Real-Time PCR Assays for Rapid Detection of *Pfiesteria piscicida* and Related Dinoflagellates. *Applied and environmental microbiology*. **66**(11): 4641-4648.

Buchholz, U., Mouzin, E., Dickey, R., Moolenaar, R., Sass, N., and Mascola, L. (2000). Haff Disease: From the Baltic Sea to the U.S. Shore. *Emerging Infectious Diseases*. **6**(2): 192-195.

Burton, J. E., Dorociak, I. R., Schwedler, T. E., and Rice, C. D. (2002). Circulating lysozyme and hepatic CYP1A activities during a chronic dietary exposure to tributyttin (TBT) and 3,3',4,4',5- pentachlorobbiphenyl (PCB-126) mixtures in channel catfish, *Ictalurus punctatus. Journal of Toxicology and Environmental Health*, *Part A.* **65**: 589-602.

Butera, R., Prockop, L. D., Buonocore, M., Locatelli, C., Gandini, C., and Mano, L. (2000). Mild ciguatera poisoning: case reports with neurophysiological evaluations. *Muscle Nerve*. **23**: 1598-1603.

Canadian guidelines for chemical contaminants and toxins in fish and fish products. (2007). Canadian Food Inspection Agency. Available at: http://www.inspection.gc.ca/english/fssa/fispoi/man/samnem/app3e.shtml. Accessed 21 September 2011.

Carvalho, C. M. L., Matos, A. I. N. M., Mateus, M. L., Santos, A. P. M., and Batoréu, M. C. C. (2008). High-Fish consumption and risk prevention: assessment of exposure to methylmercury in Portugal. *Journal of Toxicology and Environmental Health*, *Part A.* **71**: 1279-1288.

Cembella, A. D., Sullivan, J. J., Boyer, G. L., Taylor, F. J. R., and Andersen, R. J. (1987). Variation in paralytic shellfish toxin composition within the *Pmtogonyaulax tamarensislcatenella* species complex; Red tide dinoflagellates. *Biochemical Systematics and Ecology.* **15**(2): 171-188.

Chan, H. M., Chan, K. M. and Dickman, M. (1999). Organochlorines in Hong Kong Fish. *Marine Pollution Bulletin*. **39**(1-12) : 346-351.

Chen, H. C., Kung, H. F., Chen, W. C., Lin, W. F., Hwang, D. F., Lee, Y. C., and Tsai, Y. H. (2008). Determination of histamine and histamine-forming bacteria in tuna dumpling implicated in a food-borne poisoning. *Food Chemistry*. **106**: 612-618.

Smith, W., and Hokama, Y. (1998). Ciguatera Fish Poisoning-Texas, 1997. *The Journal of the American Medical Association*. **280**(16): 1394-1395.

Ciminiello, P., Dell'Aversano, C., Fattorusso, E., Forino, M., Grauso, L., Magno, S. G., Poletti, R., and Tartaglione, L. (2007). Desulfoyessotoxins from adriatic mussels: a new problem for seafood safety control. *Chemical Research in Toxicology*. **20**(1): 95-98.

Codd, G. A., Bell, S. G., Kaya, K., Ward, C. J., Beattie, K. A., and Metcalf, J. S. (1999). Cyanobacterial toxins, exposure routes and human health. *European Journal of Phycology*. **34**: 405-415.

Codd, G. A., Morrison, L. F., and Metcalf, J. S. (2005). Cyanobacterial toxins: risk management for health protection. *Toxicology and Applied Pharmacology*. **203**: 264-272.

Croci, L., Cozzi, L., Stacchini, A., Medici, D., and Toti, L. (1997). A rapid tissue culture assay for the detection of okadaic acid and related compounds in mussels. *Toxicon*. **35**(2): 223-230.

De Haro, L., Hayek-Lanthois, M., Joossen, F., Affaton, M. F., and Jouglard, J. (1997). [Mass ciguatera poisoning after eating barracuda in Mexico: prognostic and therapeutic implications]. *Tropical Medicine*. **57**(1): 55-58.

Dickey, R. W., Fryxell, G. A., Granade, H. R., and Roelke, D. (1992). Detection of the marine toxins okadaic acid and domoic acid in shellfish and phytoplankton in the gulf of Mexico. *Toxicon*. **30**(3): 355-359.

Dickey, R. W., Bobzin, S. C., Fauikner, D. J., Bencsath, A., and Andrzejewski, D. (1990). Identification of okadaic acid from a caribbean Dinoflagellate, *Prorocentrum concayum*. *Toxicon*. **28**(4): 371-377.

Domingo, J. L., and Bocio, A. (2007). Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: A literature review. *Environment International*. **33**: 397-405.

Doucette, G. J., Margaret, M. L., Ramsdell, J. S., and Van Dolah, F. M. (1997). Development and preliminary validation of a microtiter plate-based receptor binding assay for paralytic shellfish poisoning toxins. *Toxicon*. **35**(5): 625-636.

Draisci, R., Lucentini, L., Giannetti, L., Boria, P., and Poletti, R. (1996). First report of pectenotoxin-2 (PTX-2) in algae (*Dinophisis fortii*) related to seafood poisoning in Europe. *Toxicon*. **34**(8): 923-935.

Draisci, R., Lucentini, L., Giannetti, L., Boria, P., and Stacchini, A. (1995). Detection of diarrhoetic shellfish toxins in mussels fromitally by Iionspray liquid chromatography-mass spectrometry. *Toxicon*. **33**(12): 1591-1603.

Draisci, R., Palleschi, L., Giannetti, L., Lucentini, L., James, K. J., Bishop, A. G., Satake, M., and Yasumoto, T. (1999). New approach to the direct detection of known and new diarrhoeic shellfish toxins in mussels and phytoplankton by liquid chromatography-mass spectrometry. *Journal of Chromatography* A. **847**: 213-221.

Emborg, J., and Dalgaard, P. (2006). Formation of histamine and biogenic amines in cold-smoked tuna: An investigation of psychrotolerant bacteria from Samples implicated in cases of histamine fish poisoning. *Journal of Food Protection*. **69**(4): 897-906.

Feldman, K. A., Werner, S. B., Cronan, S., Hernandez, M., Horvath, A. R., Lea, C. S., Au, A. M., and Vugia, D. J. (2004). A large outbreak of scombroid fish poisoning associated with eating escolar fish (*Lepidocybium flavobrunneum*). *Epidemiology and Infection*. **133**: 29-33.

Foekema, E. M., Deerenberg, C. M., and Murk, A. J. (2008). Prolonged ELS test with the marine flatfish sole (*Solea solea*) shows delayed toxic effects of previous exposure to PCB 126. *Aquatic Toxicology*. **90**: 197-203.

Foo, L. Y. (1975). Scombroid-type poisoning induced by the ingestion of smoked kahawai. *New Zeland Medical Journal*. **81**(540): 476-477.

Furey, A., Brana-Magdalena, A., Lehane, M., Moroney, C., James, K. J., Satake, M. and Yasumoto, T. (2002). Determination of azaspiracids in shellfish using liquid chromatography/tandem electrospray mass spectrometry. *Rapid Communications in Mass Spectrometry*. **16**: 238-242.

Fremy, J. M., Puech, L., Krys, S. and Dragacci, S. (1999). Recent advances in analytical procedures for the detection of diarrhetic phycotoxins: a review. *Journal of Applied Phycology*. **11**: 377-384.

Fremy, J. M., Park, D. L., Gleizes, E., Mohapatra, S. K., Goldsmith, C. H., and Sikorska, H. M. (1994). Application of immunochemical methods for the detection of okadaic acid in mussels. *Journal of Natural Toxins*. **3**: 95-105.

Gago-Martinez, A., Pineiro, N., Aguete, E. C., Vaquero, E., Nogueiras, M., Leão, J. M., Rodriguez-Vàzquez, J. A. and Dabek-Zlotorzynska, E. (2003). Further improvements in the application of high-performance liquid chromatography, capillary electrophoresis and capillary electrochromatography to the analysis of algal toxins in the aquatic environment. *Journal of Chromatography A.* **992**: 159-168.

Garthwaite, I. (2000). Keeping shellfish safe to eat: A brief review of shellfish toxins, and methods for their detection. *Trends* in Food Science & Technology. **11**: 235-244.

Hahn, M. E. (2002). Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment. *The Science of the Total Environment*. **289**: 49-69.

Hall, M. (2003). Something fishy: Six patients with an unusual cause of food poisoning. *Emergency Medicine*. **15**: 293-295. Henny, C. J., Kaiser, J. L., and Grove, R. A. (2009). PCDDs, PCDFs, PCBs, OC pesticides and mercury in fish and osprey eggs from Willamette River, Oregon (1993, 2001 and 2006) with calculated biomagnification factors. *Ecotoxicology*. **18**: 151-173.

Hermanussen, S., Matthews, V., Papke, O., Limpus, C. J., and Gaus, C. (2008). Flame retardants (PBDEs) in marine turtles, dugongs and seafood from Queensland, Australia. *Marine Pollution Bulletin*. **57**: 409-418.

Hesp, B. R., Harrison. J. C., Selwood, AI., Holland, P. T., and Kerr, D. S. (2005). Detection of domoic acid in rat serum and brain by direct competitive enzyme-linked immunosorbent assay (cELISA). *Analytical and Bioanalytical Chemistry*. **383**: 783-786.

Hess, P., Morris, S., Stobo, L. A., Brown, N. A., McEvoy, J. D. G., Kennedy, G., Young, P. B., Slattery, D., McGovern, E., McMahon, T., and Gallacher, S. (2005). LC-UV and LC-MS methods for the determination of domoic acid. *Trends in Analytical Chemistry*. **24**(4): 358-365.

Hinck, J. E., Norstrom, R. J., Orazio, C. E., Schmitt, C. J., and Tillitt, D. E. (2009). Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility. *Environmental Pollution*. **157**: 582-591.

Hitzfeld, B. C., Höger, S. J., and Dietrich, D. R. (1999). Cyanobacterial Toxins: Removal during Drinking Water Treatment, and Human Risk Assessment. *Environmental Toxicology*. **108**(1): 113-122.

Ho, J. A., Wu, L. C., Huang, M. R., Lin, Y. J., Baeumner, A. J., and Durst, R. A. (2008). Application of ganglioside-sensitized liposomes in a flow injection immunoanalytical system for the determination of cholera toxin. *Analytical Chemistry*. **79**(1): 246-250.

Hokama, Y. (1988). Ciguatera Fish Poisoning. Journal of Clinical Laboratory Analysis. 2: 44-50.

Hokama, Y., Shirai, L. K., Iwamoto, L. M., Kobayashi, M. N., Goto, C. S., and Nakagawa, L. K. (1987). Assessment of a rapid enzyme immunoassay stick test for the detection of ciguatoxin and Rrelated polyether toxins in fish tissues. *Biological Bulletin*. **172**: 144-153.

Honkanen, E. R., Stapleton, J. D., Bryan, D. E., and Abercrombie, J. (1996). Development of a protein phosphahase-based assay for the detection of phosphatase inhibitors in crude whole cell and animal extracts. *Toxicon.* **34** (11/12): 1385-1392.

Hummert, C., Reichelt, M., and Luckas, B. (1997). Automatic HPLC-UV Determination of Domoic Acid in Mussels and Algae. *Chromatographia*. **45**: 284-288.

Humpage, A. R., Ledreux, A., Fanok, S., Bernard, C., Briand, J-F., Eaglesham, G., Parageorgiou, J., Nicholson, B., and Steffensen, D. (2007). Application of the Neuroblastoma assay for paralytic Sshellfish poisons to neurotoxic freshwater Cyanobacteria: interlaboratory calibration and comparison with other methods of analysis. *Environmental Toxicology and Chemistry*. **26**(7): 1512-1519.

Hung, Y. M., Hung, S. Y., Chou, K. J., Huang, N. C., Tung, C. N., Hwang, D. F., and Chung, H. M. (2005). Short report: Persistent bradycardia caused by ciguaoxin poisoning after barracuda fish eggs ingestion in southern Taiwan. *American Journal of Tropical Medicine and Hygiene*. **73**(6): 1026-1027.

Hwang, D. F., Chang, S. H., Shisau, C. Y., and Cheng, C. C. (1995). Biogenic Amines in the Flesh of Sailfish (*Istiophorus plafypferus*) Responsible for Scorn broid Poisoning. *Journal of food science*. **60**(5): 926-928.

Iannuzzi, M., D'Ignazio, N., Bressy, L., and De Sio, A. (2007). Severe scombroid fish poisoning syndrome requiring aggressive fluid resuscitation in the emergency department: two case reports. *Minerva anestesiologica*. **73**(9): 481-483.

Ibelings, B. W., and Chorus, I. (2007). Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review. *Environmental Pollution*. **150**: 177-192.

Inagaki, K., Kuroiwa, T., Narukawa, T., Yarita, T., Takatsu, A., Okamoto, K., and Chiba, K. (2008). Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis. *Analytical and Bioanalytical Chemistry*. **391**: 2047-2054.

Indrasena, W. M., and Gill, T. A. (1998). Fluorometric detection of paralytic shellfish poisoning toxins. *Analytical Biochemistry*. **264**: 230-236.

Inoue, M., and Hirama, M. (2004). Evolution of a Practical Total Synthesis of Ciguatoxin CTX3C. *Accounts of Chemical Research*. **37** (12): 961-968.

James, K. J., Furey, A., Lehane, M., Ramstad, H., Aune, T., Hovgaard, P., Morris, S., Higman, W., Satake, M., and Yasumoto, T. (2002). First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. *Toxicon.* **40**: 909-915.

James, K. J., Bishop, A. G., Gillman, M., Kelly, S. S., Roden, C., Draisci, R., Lucentini, L., Giannetti, L., and Boria, P. (1997). Liquid chromatography with fluorimetric, mass spectrometric and tandem mass spectrometric detection for the investigastion of the seafood-toxin-producing phytoplankton, *Dinophysis acuta*. *Journal of chromatography A.* **777**: 213-221.

James, K. J., Gillman, M., Lehane, M., and Gago-Martinez, A. (2000). New fluorimetric method of liquid chromatography for the determination of the neurotoxin domoic acid in seafood and marine phytoplankton. *Journal of Chromatography A*. **871**: 1-6.

Jellett, J. F., Roberts, R. L., Laycock, M. V., Quilliam, M. A., and Barrett, R. E. (2002). Detection of paralytic shellfish poisoning (PSP) toxins in shellfish tissue using MIST Alerte, a new rapid test, in parallel with the regulatory AOAC[®] mouse bioassay. *Toxicon.* **40**: 1407-1425.

Jinneman, K. C., Yoshitomi, K. J., and Weagant, S. D. (2003). Multiplex Real-Time PCR Method To Identify Shiga Toxin Genes *stx1* and *stx2* and *Escherichia coli* O157:H7/H⁻ Serotype. *Applied and environmental microbiology*. **69**(10): 6327-6333. Jørgensen, K., Scanlon, S., and Jensen, L. B. (2005). Diarrhetic shellfish poisoning toxin esters in Danish blue mussels and surf clams. *Food Additives and Contaminants*. **22**(8): 743-751.

Jørgensen, K., and Jensen, L. B. (2004). Distribution of diarrhetic shellfish poisoning toxins in consignments of blue mussel. *Food Additives and Contaminants*. **21**(4): 341-347.

Kalamaki, M., Price, R. J., and Fung, D. Y. C. (1997). Rapid methods for identifying seafood microbial pathogens *and toxins*. *Journal of Rapid Methods and Automation in Microbiology*. **5**: 87-137.

Kania, M., Kreuzer, M., Moore, E., Pravda, M., Hock, B., and Guilbault, G. (2003). Development of polyclonal antibodies against domoic acid for their use in electrochemical biosensors. *Analytical Letters*. **36**(9): 1851-1863.

Kawatsu, K., and Hamano, Y. (2000). Determination of domoic acid in japanese mussels by enzyme immunoassay. *Journal of AOAC International.* **83**(6): 1384-1386.

Kerr, D. S., Briggs, D. M., and Saba, H. I. (1999). A neurophysiological method of rapid detection and analysis of marine algal toxins. *Toxicon*. **37**: 1803-1825.

Kerr, M., Lawicki, P., Aguirre, S., and Rayner, C. (2002). Effect of Storage Conditions on Histamine Formation in Fresh and Canned Tuna. Victorian *Government Department of Human Services*, Edition 1. Available at: http://portal.organic-edunet.eu/index.php?option=com_content&view=article&id=7425&catid=1&Itemid=103. Accessed 21 September 2011.

Kimura, B., Kawasaki, S., Nakano, H., and Fujii, T. (2001). Rapid, Quantitative PCR Monitoring of Growth of *Clostridium botulinum* Type E in Modified-Atmosphere-Packaged Fish. *Applied and environmental microbiology*. **67**(1): 206-216.

Kreuzer, M. P., Pravda, M., O'Sullivan, C. K., Guilbault, G. G. (2002). Novel electrochemical immunosensors for seafood toxin analysis. *Toxicon*. **40**: 1267-1274.

Krock, B., Tillmann, U., John, U., and Cembella, A. (2008). LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. *Analytical and Bioanalytical Chemistry*. **392**: 797–803.

Kuballa, T., Leonhardt, E., Schoeberl, K., and Lachenmeier, D. W. (2009). Determination of methylmercury in fish and seafood using optimized digestion and derivatization followed by gas chromatography with atomic emission detection. *European Food Research and Technology.* **228**: 425–431.

Kumar, H. S., Karunasagar, I., Karunasagar, I., Teizou, T., Shima, K., and Yamasaki, S. (2004). Characterisation of Shiga toxin-producing Escherichia coli (STEC) isolated from seafood and beef. *FEMS Microbiology Letters*. **233**: 173-178.

Kumar, H. S., Otta, S. K., Karunasagar, I., and Karunasagar, I. (2001). Detection of Shiga-toxigenic Escherichia coli (STEC) in fresh seafood and meat marketed in Mangalore, India by PCR. *Letters in Applied Microbiology*. **33**: 334-338.

Lana, R., Vavrova, M., Caslavsk, J., Skoumalova, M., Bilkova, A., and Sucman, E. (2008). PCBs in Samples from the Environment of the Southern Moravia Region, Czech Republic. *Bulletin of Environmental Contamination and Toxicology*. **81**: 574-77.

Lassus, P., Fremy, J. M., Ledoux, M., Bardouil, M., and Bohec, M. (1989) Patterns of Experimental contamination by protogonyauiax tamarensis in some frence commercial shellfish. *Toxicon*. **27**(12): 1313-1321.

Laurent, D., Kerbrat, A. S., Darius, H. T., Girard, E., Golubic, S., Benoit, E., Sauviat, M. P., Chinain, M., Molgo, J., and Pauillac, S. (2008). Are cyanobacteria involved in Ciguatera Fish Poisoning-like outbreaks in New Caledonia? *Harmful Algae*. **7**: 827-838.

Lawrence, J. F., Cleroux, C., and Truelove, J. F. (1994). Comparison of high-performance liquid chromatography with radioimmunoassay for the determination of domoic acid in biological samples. *Journal of Chromatography A.* **662**: 173-177. Lawrence, I. F., and Scott, P. M. (2000). HPLC Methods for the Determination of Mycotoxins and Phycotoxins. *Techniques*

and Instrumentation in Analytical Chemistry. **21**: 413-456.

Lechuga-Deveze, C. H., and Sierra-Beltran, A. P. (1995). Documented case of ciguatera on the Mexican Pacific coast. *Natural Toxins*. **3**(6): 415-418.

Lehane, L., and Lewis, R. J. (2000). Ciguatera: recent advances but the risk remains. *International Journal of Food Microbiology*. **61**: 91-125.

Lehane, L., and Olley, J. (2000). Histamine fish poisoning revisited. *International Journal of Food Microbiology*. **58**: 1-37.

Lehane, L. (2001). Paralytic shellfish poisoning: a potential public health problem. *Medical Journal of Australia*. 1: 29-31.

Lipps, B. V. (2002). *In vitro* assay of biological and chemical toxins using antibodies against lethal toxin neutralizing factor. Journal of Venomous Animals and Toxins. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-

7930200200020003&lng=en&nrm=iso&tlng=en. Accessed 21 September 2011.

Lyon, W. J. (2001). TaqMan PCR for Detection of *Vibrio cholerae* O1, O139, Non-O1, and Non-O139 in Pure Cultures, Raw Oysters, and Synthetic Seawater. *Applied and Environmental Microbiology*. **67**(10): 4685-4693.

López-Rivera, A., Suárez-Isla, B. A., Beaudry, P. P. E. C. G., Hall, S., Furey, M. F. A. A., and James, K. J. (2005). Improved high-performance liquid chromatographic method for the determination of domoic acid and analogues in shellfish: effect of pH. *Analytical and Bioanalytical Chemistry*. **381**: 1540-1545.

Lozano-León, A., Torres, J., Osorio, C. R., and Martínez-Urtaza, J. (2003). Identification of *tdh*-positive *Vibrio* parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. *FEMS Microbiology Letters*. **226**(2): 281-284.

Louzao, M. C., Vieytes, M. R., Baptista de Sousa, J. M. V., Leira, F., and Botana, L. M. (2001). A fluorimetric method based on changes in membrane potential for screening paralytic shellfish toxins in mussels. *Analytical Biochemistry*. **289**: 246-250. Luckas, B. (1992). Phycotoxins in seafood-toxicological and chromatographic aspects. *Journal of Chromatography*. **624**: 439-456.

Mackay, D., and Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. *Environmental Pollution*. **110**(3): 375-391.

Mackintosh, F. H., Gallacher, S., Shanks, A. M., and Smith, E. A. (2002). Assessment of MIST AlertTM, a commercial qualitative assay for detection of paralytic shellfish poisoning toxins in bivalve molluscs. *Journal of AOAC International*. **85**(3): 632-641.

Mafra Jr, L. L., Bricalj, V. M., and Fennel, K. (2010). Domoic acid uptake and elimination kinetics in oysters and mussels in relation to body size and anatomical distribution of toxin. *Aquatic Toxicology*. **100**: 17-29.

Maire, R., Dreiding, K., and Wyss, P. A. (1992). Incidence and clinical aspects of scombroid fish poisoning. *Schweiz Med Wochenschr.* **122**(50): 1933-5.

Manger, R. L., Leja, L. S., Lee, S. Y., and Hungerford, J. M. (2003). Detection of Paralytic Shellfish Poison by Rapid Cell Bioassay: Antagonism of Voltage-Gated Sodium Channel Active Toxins in vitro. *Journal of AOAC International*. **86**(3): 540-543.

Mankiewicz, J., Tarczymska, M., Walter, Z., and Zalewski, M. (2003). Natural toxins from Cyanobacteria. *Acta Biologica Cracoviensia Series Botanica*. **45**(2): 9-20.

Melinek, R., Rein, K. S., Schultz, D. R., and Baden, D. G. (1994). Brevetoxin PbTx-2 Immunology: Differential epitope recognition by antibodies from two goats. *Toxicon*. **32**(8): 883-890.

Micheli, L., Radoi, A., Guarrina, R., Massaud, R., Bala, C., Moscone, D., and Palleschi, G. (2004). Disposable immunosensor for the determination of domoic acid in shellfish. *Biosensors and Bioelectronics*. **20**: 190-196.

Mines, D., Stahmer, S., and Shepherd, S. M. (1997). Poisonings: food, fish, shellfish. *Emergency Medicine Clinics of North America*. **15**: 157-77.

MMWR (2006) Ciguatera Fish Poisoning-Texas, 1998, and South Carolina, 2004. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5534a2.htm. Accessed 21 September 2011.

Moon, H., B., and Choi, H. G. (2008). Human exposure to PCDDs, PCDFs and dioxin-like PCBs associated with seafood consumption in Korea from 2005 to 2007. *Environment International*. **35**: 279-284.

Moon, H. B., and Ok, G. (2006). Dietary intake of PCDDs, PCDFs and dioxin-like PCBs, due to the consumption of various marine organisms from Korea. *Chemosphere* **62**: 1142-1152.

Moore, C. J. (2000). A Review Of Mercury In The Environment (Its Occurrence In Marine Fish). Office of Environmental Management Marine Resources Division South Carilina Department of Natural Resources. Available at: http://www.dnr.sc.gov/marine/img/mm_paper.pdf. Accessed 21 September 2011.

Morris, P. D., Campbell, D. S., and Freeman, J. I. (1990). Ciguatera fish poisoning: An outbreak associated with fish caught from North Carolina coastal waters. *Southern Medical Journal*. **83**(4): 379 382.

Muller, G. J., Lamprecht, J. H., Barnes, J. M., De Villiers, R. V. P., Honeth, B. R., and Hoffman, B. A. (1992). Scombroid poisoning. Case series of 10 incidents involving 22 patients. *South African Medical Journal*. **81**(8): 427-430.

Naar, J., Bourdelais, A., Tomas, C., Kubanek, J., Whitney, P. L., Flewelling, L., Steidinger, K., Lancaster, J., and Baden, D. G. (2002). A competitive ELISA to detect brevetoxins from *karenia brevis* (formerly *Gymnodinium breve*) in seawater, shellfish and mammalian body fluid. *Environmental Health Perspectives*. **110**(2): 179-185.

Nakamura, M., Oshima, Y., and Yasumoto, T. (1984). Occurrence of Saxitoxin in puffer fish. Toxicon. 22(3): 381-385.

Nijjar, M. S., MacKenzie, P. M., and Brown, J. A. (1992). A procedure for large-scale purification of domoic acid from toxic blue mussels (*Mytilus edulis*). *Molecular and Cellular Biochemistry*. **115**: 213-217.

Nicholson, R. A., Li, G. H., Buenaventura, E., and Graham, D. (2002). A rapid and sensitive assay for paralytic shellfish poison (PSP) toxins using mouse brain synaptoneurosomes. *Toxicon*. **40**: 831-838.

Noone, J. (1996). A case of ciguatera fish poisoning. *Emergency Nurses Association*. **22**: 101-104.

Oguri, H., Hirama, M., Tsumuraya, T., Fujii, I., Maruyama, M., Uehara, H., and Nagumo, Y. (2003). Synthesis-based approach toward direct sandwich immunoassay for ciguatoxin CTX3C. *Journal of the American Chemical Society*. **125**: 7608-7612.

Ohnuma, S., Higa, M., Hamanaka, S., Matsushima, K., and Yamamuro, W. (2001). Internal Medicine. 40: 833-835.

Okumura, M., Tsuzuki, H., and Tomita, B-I. (2005). A rapid detection method for paralytic shellfish poisoning toxins by cell bioassay. *Toxicon.* **46**: 93-98.

Opa, J. L., Stephenson, L., Goggin, D., Lalara, E., Hansen-Kanrhoi, M., Fairley, M., and Krause, V. (2006). Reporting of ciguatera food poisoning. *The Northern Territory Disease Control Bulletin*. **13**(3): 1-2.

Opheim, J. (2004). Environmental toxins. CEO of Nordic Naturals. Available at: http://www.onlynaturalpet.com/images/nntoxins.pdf. Accessed 21 September 2011.

Osborne, N. J. T., Webb, P. M., and Shaw, G. R. (2001). The toxins of Lyngbya majuscula and their human and ecological health effects. *Environment International*. **27**: 381-392.

Palleschi, G., Moscone, D., and Micheli, L. (2000). The rapid detection of toxins in food: a case study. **In**: Rapid and on-line instrumentation for food quality assurance. pp. 116-135. Tothill, I. E., Woodhead Publishing in Food Science and Technology, Cambridge, England.

Palafox, N. A., and Buenconsejo-Lum, L. E. (2001). Ciguatera fish poisoning: review of clinical manifestations. *Journal of Toxicology – Toxin Reviews*. **20**(2): 141-160.

Pérez-Arellano, J. L., Luzardo, O. P., Brito, A. P., Cabrera, M. H., Zumbado, M., Carranza, C., Angel-Moreno, A., Dickey, R. W., and Boada, L. D. (2005). Ciguatera fish poisoning, Canary Islands. *Emerging Infectious Diseases*. **11**(12): 1981-1982.

Pierce, R. H., and Kirkpattrick, G. J. (2001). Innovative Techniques for harmful algal toxin analyses. *Environmental Toxicology and Chemistry*. **20**(1): 107-114.

Pleasance, S., Quilliam, M. A., De Freitas, A. W. S., Marr, J. C., and Cembella, A. D. (1990). Ion-spray mass spectrometry of marine toxins. II. Analysis of diarrhetic shellfish toxins in plankton by liquid chromatography/mass spectrometry. *Rapid Communications in Mass Spectrometry*. **4**: 206-213.

Pleasance, S., Thibault, P., and Kelly, J. (1992). Comparison of liquid-junction and coaxial interforces for capillary electrophoresis-mass spectrometry with application to compounds of concern to the aquaculture industry. *Journal of Chromatography.* **591**: 325-339.

Pommepuy, M., and Guyader, F. (1998). Molecular approaches to measuring microbial marine pollution. *Current Opinion in Biotechnology*. **9**: 292-299.

Pottier, I., Vernoux, J. P., and Lewis, R. J. (2001). Ciguatera fish poisoning in the Caribbean islands and Western Atlantic. Reviews of Environmental Contamination & Toxicology. **168**: 99-141.

Powell, C. L., and Doucette, J. G. (1999). A receptor binding assay for paralytic shellfish poisoning toxins: recent advances and applications. *Natural Toxins*. **7**: 393-400.

Puente, P. F., Saez, M. J. F., Hamilton, B., Lehane, M., Ramstad, H., Furey, A., and James, K. J. (2004). Rapid determination of polyether marine toxins using liquid chromatography-multiple tandem mass spectrometry. *Journal of Chromatography A*. **1056**: 77-82.

Quilliam, M. A., Sim, P. G., McCulloch, A. W., and McInnes, A. G. (1989). High-performance liquid chromatography of domoic acid, a marine neurotoxin, with application to shellfish and plankton. *International Journal of Environmental Analytical Chemistry*. **36**: 139-154.

Quilliam, M. A., Thomas, K., and Wright, J. L. C. (1998). Analysis of domoic acid in shellfish by thin-layer chromatography. *Natural Toxins*. **6**: 147-152.

Quilliam, M. A. (1995). Analysis of diarrhetic shellfish poisoning toxins in shellfish tissue by liquid chromatography with fluorometric and mass spectrometric detection. *Journal of AOAC International.* **78**(2): 555-569.

Quod, J. P., and Turquet, J. (1996). Ciguatera in reunion island (Swindian ocean): Epidemiology and clinical patterns. *Toxicon*. **34**(7): 779-785.

Report of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in Bivalve Molluscs. Advance pre-publication copy. (2004). Available at: ftp://ftp.fao.org/es/esn/food/biotoxin_report_en.pdf. Accessed 21 September 2011.

Reyes, L. H., Rahman, G. M. M., Fahrenholz, T., and Kingston, H. M. S. (2008). Comparison of methods with respect to efficiencies, recoveries, and quantitation of mercury species interconversions in food demonstrated using tuna fish. *Analytical and Bioanalytical Chemistry*. **390**: 2123-2132.

Rivera, I. G., Chowdhury, M. A. R., Sanchez, P. S., Sato, M. I., Huq, A., Colwell, R. R., and Martins, M. T. (1995). Detection of cholera (cfx) and zonula occludens (zot) toxin genes in Vibrio cholerae 01, 0139 and non-01 strains. *World Journal of Microbiology & Biotechnology*. **11**: 572-577.

Rossini, G. P. (2005). Functional assays in marine biotoxin detection. Toxicology. 207: 451-462.

Russell, F. E., and Egen, N. B. (1991). Ciguateric Fishes, Ciguatoxin (CTX) and Ciguatera Poisoning. *Journal of Toxicology* – *Toxin Reviews*. **10**(1): 37-62.

Australia New Zealand Food Authority (2001) Shellfish toxins in food. A Toxicological Review and Risk Assessment. Available at: http://www.foodstandards.gov.au/_srcfiles/TR14.pdf. Accessed 21 September 2011.

Selwood, A. I., Ginkel, R., Wilkins, A. L., Munday, R., Ramsdell, J. S., Jensen, D. J., Cooney, J. M., and Miles, C. O. (2008). Semisynthesis of *s*-desoxybrevetoxin-B2 and brevetoxin-B2, and assessment of their acute toxicities. *Chemical Research in Toxicology*. **21**: 944-950.

Shimojo, R. Y., and Iwaoka, W. T. (2000). A rapid hemolysis assay for the detection of sodium channel-specific marine toxins. *Toxicology.* **154**: 1-7.

Shumway, S. E. (1990). A Review of the Effects of Algal Blooms on Shellfish and Aquaculture. *Journal of World Aquaculture Society*. **21**(2): 65-103.

Sigmundsdóttir, G., Magnússon, S., Ingólfsson, R., Thorvaldsdóttir, I. R., Haraldsdóttir, V., and Gíslason, D. (2005). Scombroid poisoning at an Icelandic restaurant. *Laeknabladid*. **91**(3): 251-253.

Simidu, U., Noguchi, T., Hwang, D. F., Shida, Y., and Hashimoto, K. (1987). Marine Bacteria Which Produce Tetrodotoxin. Applied and Environmental Microbiology. **53** (7): 1714-1715

Smart, D. R. (1992). Scombroid poisoning. A report of seven cases involving the Western Australian salmon, *Arripis truttaceus*. *Medical Journal*. **157**(11-12): 748-51.

Sobel, J., and Painter, J. (2005). Illnesses caused by marine toxins. Clinical Infectious Diseases. 41: 1290-1296.

Stell, I. M. (1997). Trouble with tuna: two cases of scombrotoxin poisoning. *Journal of Accident & Emergency Medicine*. **14**: 110-117.

Stobo, L. A., Lacaze, J-P. C. L., Scott, C. A., Gallacher, S., and Smith, E. A. (2005). Liquid chromatography with mass spectrometry- detection of lipophilic shellfish toxins. *Journal of AOAC International*. **88**(5): 1371-1382.

Streftaris, N., and Zenetos, A. (2006). Alien Marine Species in the Mediterranean- the 100 'Worst Invasives' and their Impact.

Mediterranean Marine Science. **7**(1): 87-118.

Sullivan, J. J., Simon, M. G., and Iwaoka, W. T. (1983). Comparison of HPLC and Mouse Bioassay Methods for Determining PSP Toxins in Shellfish. *Journal of food science*. **48**: 1312-1314.

Sullivan, J. J., Wekell, M. M., and Kentala, L. L. (1985). Application of HPLC for the determination of PSP toxins in shellfish. *Journal of food science*. **50**: 26-29.

Swaddiwundhipong, W., Kunasol, P., Sangwanloy, O., and Srisomporn, D. (1989). Foodborne disease outbreaks of chemical etiology in Thailand, 1981-1987. *The Southeast Asian journal of tropical medicine and public health.* **20**(1): 125-132.

Takai, S., Sawada, T., and Isobe, M. (2003). Convergent synthesis of the E'FGH ring fragment of ciguatoxin 1B via an acetylene cobalt complex strategy. *The Journal of Organic Chemistry*. **68**(8): 3225-3231.

Takai, A., Sasaki, K., Nagai, H., Mieskes, G., Isobe, M., Isono, K., and Yasumoto, T. (1995). Affinity of okadaic acid to type 1 and type 2A protein phosphatases is markedly reduced by oxidation of 27-hydroxyl group. *Biochemical Journal.* **306**: 657-666 Taylor, S. L., and Speckhard, M. W. (1983). Isolation of Histamine-Producing Bacteria From Frozen Tuna. *Marine Fisheries Review.* **45**(4-6): 35-39.

Taylor, S. L., Guhertz, L. S., Leatherwood, M., and Lieber, E. R. (1979). Histamine Production by Klebsiella pneumoniae and an Incident of Scombroid Fish Poisoningt. *Applied and Environmental Microbiology*. 274-278.

Terao, K., Ito, E., Yanagi, T., and Yasumoto, T. (1986). Histopathological studies on experimental marine toxin poisoning. I. ultrastructural changes in the smallintestine and liver of suckling mice induced by dinophysistoxin-1 and pectenotoxin-1. *Toxicon*. **24**(11-12): 1141-1151.

Thibault, P., Pleasance, S., and Laycock, M. V. (1991). Analysis of paralytic shellfish poisons by capillary electrophoresis. *Journal of Chromatography*. **542**: 483-501.

Tsai, Y. H., Kung, H. F., Lee, T. M., Chen, H. C., Chou, S. S., Wei, C., and Hwang, D. F. (2005). Determination of histamine in canned mackerel implicated in a food borne poisoning. *Food Control.* **16**: 579-585.

Tsai, Y. H., Hsieh, H. S., Chen, H. C., Cheng, S. H., Chai, T., and Hwang, D. F. (2007). Histamine level and species identification of billfish meats implicated in two food-borne poisonings. *Food Chemistry*. **104**: 1366-1371.

Usleber, E., Dietrich, R., Burk, C., Schneider, E., and Martibauer, E. (2001). Immunoassay Methods for Paralytic Shellfish Poisoning Toxins. *Journal of AOAC international.* **84**(5): 1649-1656.

Usleber, E., Schneid, E., and Terpla, G. (1991). Direct enzyme immunoassay in microtitration plate and test strip format for the detection of saxitoxin in shellfish. *Letters in Applied Microbiology*. **13**: 275-277.

Verhoef, P. A., Kertesy, S. B., Estacion, M., Schilling, W. P., and Dubyak, G. R. (2004). Maitotoxin induces biphasic interleukin-1β secretion and membrane blebbing in murine macrophages. *The American Society for Pharmacology and Experimental Therapeutics Molecular Pharmacology.* **66**: 909-920.

Wallace, B. J., Guzewich, J. J., Cambridge, M., Altekruse, S., and Morse, D. L. (1999). Seafood-Associated Disease Outbreaks in New York, 1980-1994. *American Journal of Preventive Medicine*. **17**(1): 48-54.

Watkins, S. M., Reich, A., Fleming, L. E., and Hammond, R. (2008). Neurotoxic Shellfish Poisoning. *Marine drugs*. **6**: 431-455.

Watters, M. R. (1995). Organic neurotoxins in seafoods. Clinical Neurology and Neurosurgery. 97: 119-124.

Wictome, M., Newton, K. A., Jameson, K., Dunnigan, P., Clarke, S., Gaze, J., Tauk, A., Foster, K. A., and Shone, C. C. (1999). Development of in vitro assays for the detection of botulinum toxins in foods. *FEMS Immunology and Medical Microbiology*. **24**: 319-323.

Wills, R. B. H., Silalahi, J., and Wootton, M. (1987). Simultaneous determination of food-related amines by high-performance liquid chromatography. *Journal of liquid chromatography*. **10**(14): 3183-3191.

Whittle, K., and Gallache, S. (2000). Marine toxins. *British Medical Bulletin.* **56**(1): 236-253.

Wong, C. K., Hung, P., Lee, K. L. H., and Kam, K. M. (2005). Study of an outbreak of ciguatera fish poisoning in Hong Kong. *Toxicon.* **46**: 563-571.

Wong, P. C. K. (1996). Detection of *Clostridium botulinum* type E toxin by monoclonal antibody enzyme immunoassay. *Journal of Rapid Methods and Automation in Microbiology*. **4**: 191-206.

Wu, M. L., Yang, C. C., Yang, G. Y., Ger, J., and Deng, J. F. (1997). Scombroid fish poisoning: an overlooked marine food poisoning. *Veterinary & Human Toxicology*. **39**(4): 236-41.

Wu, J. P., Luo, X. J., Zhang, Y., Luo, Y., Chen, S. J., Mai, B. X., and Yang, Z. Y. (2008). Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. *Environment International*. **34**: 1109-1113.

Wu, J. Y., Zheng, L., and Wang, J. H. (2005). Contamination of shellfish from Shanghai seafood markets with paralytic shellfish poisoning and diarrhetic shellfish poisoning toxins determined by mouse bioassay and HPLC. *Food Additives and Contaminants*. **22**(7): 647-651.

Wright, J. L. C. (1995). Dealing with seafood toxins: present approaches and future options. *Food Research International*. **28**(4): 341-358.

Wu, S. F., and Chen, W. (2003). An outbreak of scombroid fish poisoning in a kindergarten. *Acta Paediatrica Taiwan*. **44**(5): 297-9.

Yang, N., Matsuda, M., Kawano, M., and Wakimoto, T. (2006). PCBs and organochlorine pesticides (OCPs) in edible fish and shellfish from China. *Chemosphere*. **63**: 1342-1352.

Yasumoto, T., Murata, M., Oshima, Y., and Sano, M. (1985). Diarrheic shellfish toxins. *Tetrahedron*. **41**(6): 1019-1025.

Yen, G. C., and Hsieh, C. L. (1991). Simultaneous Analysis of Biogenic Amines in Canned Fish by HPLC. *Journal of Food Science*. **56**(1): 158-160.

Yin, Y., Liu, G., He, B., Shi, J., and Jiang, G. (2008). Simple interface of high-performance liquid chromatography–atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent. *Journal of Chromatography A.* **1181**: 77-82.

Yu, F. Y., Liu, B. H., Wu, T. S., Chi, T. F., and Su, M. C. (2004). Development of a sensitive enzyme-linked immunosorbent assay for the determination of domoic acid in shellfish. *Journal of Agricultural and Food Chemistry*. **52**: 5334-5339.

Zhao, J. Y., Thibault, P., and Quilliam, M. A. (1997). Analysis of domoic acid and isomers in seafood by capillary electrophoresis. *Electrophoresis*. **18**: 268-216.

Shellfish toxins / Disease	Natural toxins	Seafoods involved	References
Ciguatera fish poisoning	Ciguatoxin-1, (phycotoxin produced by	Shellfish (clams, mussels, and oysters)	Pierce &
(CFP)	Gambierdiscus toxicus, Prorocentrum		Kirkratrick,
	concavum, P. lima, Ostreopsis siamensis, O.		2001
	lenticularis and O. ouata)	Sponges: Halichondria okadai and H.	Dickey et al,
		melanodocia	1990
		Ctenochaetus strigosus and Thunnus	Hokama, 1988
		thynnus	
	Ciguatoxin-1 (phycotoxin produced by	Clam Ruditapes philippinarum	Okumura et al,
	Gambierdiscus toxicus), maitotoxin, scaritoxin		2005
		Red tilapia Sarotherodon mossambicus,	Shimojo &
		A. triostegus, M. cephalus, and K.	Iwaoka, 2000
		sandsicensis)	
		Finfish (barracuda, amberjack, horseye	Kalamaki et al,
		jack, black jack, other large species of	1997
		jack, king mackerel, large groupers and	
		snappers) and Ctenochaetus striatus	
		Cigua, Reef fish (grouper, snapper,	Watters, 1995
		amberjack, barracuda, ulua, surgeonfish)	

		Ctenochaetus strigosus and Thunnus	Hokama, 1987
		thynnus	
	CTX3C and 51-hydroxyCTX3C	100 species of fishes	Inoue & Hirama,
			2004
	CTX3C	Butter clams (Saxidomas giganteus)	Manger et al,
			2003
		Reef fish*	Oguri et al, 2003
	CTX1B and CTX4B	Moray eel	Takai <i>et al</i> , 2003
	CTX (phycotoxin produced by Gambierdiscus	Subtropical and tropical fin-fish, clams	Garthwaite,
	toxicus)	and marine snails	2000
	CTX (phycotoxin produced by Prorocentrum	Amberjack, snapper, grouper, barracuda,	Ahmed, 1991
	concavum)	goatfish, and reef fish belonging to the	
		Carangidae	
	Maitotoxin (MTX) producd by Gambierdiscus	Clam Ruditapes philippinarum	Okumura et al,
	toxicus		2005
			Verhoef et al,
			2004
Scombroid fish poisoning	Histamine, putrescine and cadaverine	Mahi mahi, tuna, mackerel, bonito,	Kerr et al, 2002
(SFP) or histamine fish		skipjack and bluefish	
poisoning (HFP)		Scombridae (tuna and mackerel) and	Lehane & Olley,
		Scomberesocidae (saury) as well as non-	2000
		scombroid species (mahi-mahi, sardines,	
		pilchards, anchovies, herring, marlin and	
		bluefish) can also be involved	
		Scombridae (tuna, mackerel, skipjack and	Watters, 1995

		mahimahi (bonito) or marlin)	
		Raw molluscan shellfish, finfish,	Ahmed, 1992
		fresh/frozen mahimahi (dolphin fish),	
		tuna, and bluefish, amberjack, snappers,	
		groupers, barracuda, goatfish and other	
		carnivorous fishes	
		Tuna, bonito, mackerel and eel	Yen & Hsieh,
			1991
		Puffer fish	Wills et al, 1987
	Histamine	Istiophorus platypterus	Hwang et al,
			1995
		Mahi mahi, tuna, mackerel, bonito and	Kalamaki <i>et al</i> ,
		skipjack	1997
Paralytic shellfish poisoning	Carbamate toxins: Saxitoxin (STX)	Mussels, oysters, clams and scallops	Garthwaite,
(PSP)			2000
		Mussels, clams (Alaskan butter clam	Watters, 1995
		Saxidomus giganteus), oysters and	
		scallops	
		Scallop or mussels	Yasumoto et al,
			1985
	Saxitoxin (produced by different species of	All filter-feeding molluscs	Kalamaki et al,
	dinoflagellate Prorogonyaula sp.)		1997
	Saxitoxins produced by Alexandrium sp.	Commercially harvested shellfish	Report of the
			Joint
			FAO/IOC/WHO,

Shellfish (e.g., mussels, clams, scallops) Shell clams (<i>Mya arenaria</i>), blue mussels (<i>Mytilus edulis</i>), and scallop viscera (<i>Placopecten magellanicus</i>) Pyrodinium bahamense var. compressa Bivalve molluscs (mussels, clams,	Luckas, 1992 Indrasena & Gill, 1998 Wright, 1995 Ahmed, 1991
(Mytilus edulis), and scallop viscera (Placopecten magellanicus) Pyrodinium bahamense var. compressa	Gill, 1998 Wright, 1995
(Mytilus edulis), and scallop viscera (Placopecten magellanicus) Pyrodinium bahamense var. compressa	Gill, 1998 Wright, 1995
(Mytilus edulis), and scallop viscera (Placopecten magellanicus) Pyrodinium bahamense var. compressa	Gill, 1998 Wright, 1995
(Mytilus edulis), and scallop viscera (Placopecten magellanicus) Pyrodinium bahamense var. compressa	Gill, 1998 Wright, 1995
(Mytilus edulis), and scallop viscera (Placopecten magellanicus) Pyrodinium bahamense var. compressa	Gill, 1998 Wright, 1995
(Placopecten magellanicus) Pyrodinium bahamense var. compressa	Wright, 1995
Pyrodinium bahamense var. compressa	
•	
Bivalve molluscs (mussels, clams,	Ahmed, 1991
	1
oysters, scallops)	
Shellfish	Cembella <i>et al</i> ,
	1987
	Rossini, 2005
	, , , , , , , , , , , , , , , , , , , ,
Shellfish (clams, mussels, and oysters)	Pierce &
	Kirkratrick,
	2001
Filter-feeding shellfish	Garthwaite,
	2000
Molluses	Ahmed, 1991
	Kalamaki <i>et al</i> ,
Shemish	1997
Shellfish: green-shell mussels	Melinek <i>et al</i> ,
Sh Sh Sh	nellfish

	Ptychodiscus brevis		1994
			Kerr et al, 1999
	PbTx-2, PbTx-3, PbTx-9 or a mixture of the	Oysters	Naar et al, 2002
	three toxins		
	Semisynthesis of S-Desoxybrevetoxin-B2 and	Mussels (Perna canaliculus)	Selwood et al,
	Brevetoxin-B2 (toxic marine dinoflagellate		2008
	alga Karenia brevis)		
Puffer fish poisoning (PFP)	Tetrodotoxin (TTX) and chiriquitoxin	Puffer or globe fish	Rossini, 2005
		Seafood and mussels	Kreuzer et al,
			2002
		Red tilapia Sarotherodon mossambicus	Shimojo &
		and fishes A. triostegus, M. cephalus, and	Iwaoka, 2000
		K. sandsicensis	
		Puffer fish (family Tetraodontidae),	Watters, 1995
		salamanders and colored frogs Japanese	
		ivory and trumpet shellfish, the California	
		newt, and the Australian blue-ringed	
		octopus	
		Buffer fish belonging to the genus	Ahmed, 1992
		Sphoeroides	
		Puffer or globe fish	Ahmed, 1991
	Palytoxin	Puffer fish	Wright, 1995
			Ahmed, 1991
	Purified T ₁ and T ₂ with TTX	Three species of puffer fish, Takifugu	Nakamura et al,
		poecilonotus, T. vermicularis and T.	1984

		radiates. Responsible dinoflagellate:	
		Protogonyaulax tamarensis	
Diarrhetic shellfish	Okadaic acid (OA)	Shellfish: clams, mussels and oysters	Garthwaite,
poisoning (DSP)			2000
			Pierce &
			Kirkratrick,
			2001
		Mussels	Bouaicha et al,
			1997
	OA derivatives named dinophysistoxins	Mussels: Mytilus edulis	Puente et al,
	(DTXs) dinophysistoxin-1 or 35methylokadaic		2004
	acid (DTX-1), dinophysistoxin-2 (DTX-2),	Mussels: Mytilus edulis and M.	Croci et al, 1997
	and dinophysistoxin-3 (DTX-3) (diatoms	galloprovincialis	
	Dinophysis acuta/ acuminate/ sacculus/ fortii/	Mussels: Mytilus galloprovincialis	Draisci et al,
	caudate, Phalachroma rotundatum,		1995
	Prorocentrum lima)	Sponge Halichondria okadai, Irish	Wright, 1995
		mussels and Japanese group	
		Blue mussel Mytilus edulis, scallops	Luckas, 1992
		Putinopecten yessoensis, European	
		mussels and Japanese scallops	
		Mussels, clams and scallops	Ahmed, 1991
		Bivalve molluscs globally	Report of the
			Joint
			FAO/IOC/WHO,
			2004
	35(S) -Methylokadaic acid	Oysters	Honkanen et al,

		1996
	Scallops and Japanese mussels	Yasumoto et al,
		1985
Neutral toxins: consists polyether-lactones of	of Mussels: Mytilus edulis	Rossini, 2005
the pectenotoxin group (PTXs) such as	Mollusks	Draisci et al,
pectenotoxin-2 (PTX-2 lipid soluble toxin)		1996
	Mussels	Terao <i>et al</i> , 1986
	Bivalve molluscs globally	Report of the
		Joint
		FAO/IOC/WHO,
		2004
Yessotoxin (YTX) (responsible diatoms	Adriatic mussels	Ciminiello et al,
Protoceratium reticulatum and Lingulodiniu	um	2007
polyedrum), a brevetoxin-type polyether and	d Mussels	Krock et al,
its analogue 45hydroxyyessotoxin (45-OH		2008
YTX), Desulfoyessotoxins (1 -	Mussels: <i>Mytilus eduliς</i> , cockles:	Stobo et al, 2005
DesulfocarboxyhomoYTX and 4	Cerastoderma edule, oysters: Crassostrea	
DesulfocarboxyhomoYTX) and azaspiracid	s gigas, king scallop: Pecten maximus	
(AZAs) formed by algae Dinophysis fortii o	Scallop Patinopecten yessoensis and	Alfonso et al,
D. acuminata and other species of Dinophys	sis, mussels Mytilus galloprovincialis	2004
possibly Prorocentrum ilma and	Cultivated Irish mussels and Portuguese	Fremy et al,
Protoperidinium species (P. crassipes)	mussels	1999
	Bivalve molluscs	Report of the
		Joint
		FAO/IOC/WHO
		2004

Amnesic shellfish poisoning	Domoic acid (DA or DOM) (neurotoxic amino	Blue mussel (Mytilus edulis), clam	Rossini, 2005
(ASP)	acid)	(Meretrix lusoria) and oyster	
		(Crassostrea gigas)	
		Shellfish	Hesp et al, 2005
			Kania et al, 2003
		Mussel (Mytilus edulis) and clams Siliqua	James et al,
		patula	2000
	DA formed by some varieties of the diatom	Shellfish: clams, mussels and oysters	Garthwaite,
	Nitzschia pungena, N. pseudodelicatissima,		2000
	Pseudonitzschia australis/ seriata/ pungens/	Blue mussels (Mytilus edulis L.)	Quilliam et al,
	multiseries		1998
			Nijjar et al, 1992
		Mussels and clams	Ahmed, 1991
		Blue mussels	Report of the
			Joint
			FAO/IOC/WHO,
			2004
	Domoic acid produced by red macroalgae	Mussels	Micheli et al,
	Chondria armata (algae of the family		2004
	Rhodomelaceae)	Razor clams and blue mussels (Mytilus	Wright, 1995
		edulis)	
		Blue mussels (Mytilus edulis L.)	Quilliam et al,
			1989

ACCEPTED MANUSCRIPT* Reef fish: Snapper, Mullet, Grouper, Surgeonfish, Jack, Moray eel, Amberjack, Parrot fish, Barracuda, Sea bass (Noone, 1996).

	Table 2	1. Chemical toxins	
Chemical fish toxins	Source of Environmental Pollution	Fishes and shellfishes most likely to be contaminated	Reference
	Willamette River and lower	 Largescale sucker (Catastomus macrocheilus), 	Henny et al,
	Santiam River, Headwater	 Northern pikeminnow (Ptychocheilus oregonensis 	2008
	Reservoirs or Upper River	 Mountain whitefish (Prosopium williamsoni) 	
		 Smallmouth bass (Micropterus dolomieui) 	
		 Largemouth bass (Micropterus salmoides) 	
		 Black crappie (Pomoxis nigromaculatus) 	
		 Bluegill (Lepomis macrochirus) 	
		 Brown bullhead (Ameiurus nebulosus) 	
		Rainbow trout (Oncorhynchus mykiss)	
		 Coastal cutthroat trout (Oncorhynchus clarki clarki) 	
		Carp (Cyprinus carpio)	
		■ Bullheads (<i>Ameiurus sp.</i>)	
		 White crappie (Pomoxis annularis) 	
	 Marine species from bays and 	■ Green turtle (<i>Chelonia mydas</i>)	Hermanusse
	coastal waters from	 Hawksbill turtle (Eretmochelys imbricata) 	n et al, 2008
	Queensland, Australia	 Flatback turtle 	
		 Dugong (Dugong dugon) 	
		 Banana prawn (Penaeus merguiensis) 	
		 Mudcrab (Scylla serrata) 	
		Mullet (Mugil cephalus)	
		 Yellow-fin bream (Acanthopagrus australis) 	
		■ Flathead (<i>Platycephalus fuscus</i>)	
		■ Longtom (Tylosurus gavialoides)	
		■ Tailor (<i>Pomatomus saltrix</i>)	
		Jelly-fish	

	 Carnivorous loggerhead turtles 	
	 Hawksbill 	
Spanish Atlantic Southwest	■ Wegde sole (Dicologoglossa cuneata)	Bordajandi
Coast	■ Common sole (<i>Solea vulgaris</i>)	et al, 2006
	 White seabream (Diplodus sargus) 	
	■ Sardine (<i>Sardina pilchardus</i>)	
	 Angler fish (Lophius piscatorius) 	
	■ Two shellfish species (<i>Donax trunculus</i> and <i>Chamelea gallina</i>)	
	■ Common cuttlefish (Sepia officinalis)	
	 Prawns (Parapenaeus longirostris) 	
Korea	■ Squid (<i>Todarodes pacificus</i>)	Moon & Ok,
	 Alaska pollack (Theragra chalcogramma) 	2006
	 Mackerel (Scomber japonicus) 	
	 Yellow croaker (Pseudosciaena manchurica) 	
	 Anchovy (Engraulis japonica) 	
	■ Tuna (Thunnus thynnus)	
	■ Hairtail (<i>Trichiurus lepturus</i>)	
	■ Clam (Tapes philippinarum)	
	Crab (Portunus trituberculatus)	
	■ Shrimp (Solenocera melantho)	
	 Olive flounder (Paralichthys olivaceus) 	
	 Octopus (Octopus minor) 	
	 Spanish mackerel (Scomberomorus niphoniu) 	
	 Oyster (Crassostrea gigas) 	
	■ Saury (Cololabis saira)	
	■ Cod (Gadus macrocephalus)	
	Rockfish (Sebastes schlegeli)	
	Coast	- Hawksbill Spanish Atlantic Southwest Coast - Wegde sole (Dicologoglossa cuneata) - Common sole (Solea vulgaris) - White seabream (Diplodus sargus) - Sardine (Sardina pilchardus) - Angler fish (Lophius piscatorius) - Two shellfish species (Donax trunculus and Chamelea gallina) - Common cuttlefish (Sepia officinalis) - Prawns (Parapenaeus longirostris) Korea - Squid (Todarodes pacificus) - Alaska pollack (Theragra chalcogramma) - Mackerel (Scomber japonicus) - Yellow croaker (Pseudosciaena manchurica) - Anchovy (Engraulis japonica) - Tuna (Thunnus thynnus) - Hairtail (Trichiurus lepturus) - Clam (Tapes philippinarum) - Crab (Portunus trituberculatus) - Shrimp (Solenocera melantho) - Olive flounder (Paralichthys olivaceus) - Octopus (Octopus minor) - Spanish mackerel (Scomberomorus niphoniu) - Oyster (Crassostrea gigas) - Saury (Cololabis saira) - Cod (Gadus macrocephalus)

Polychlorinated Biphenyls (PCBs),	European, North American,Asian and African areas	 Eel (Conger myriaster) Flounder (Eopsetta grigorjewi) Catfish (Parasilurus asotus) Ark shell (Scapharca subcrenata) Angler fish (Lophiomus setigerus) Filefish (Thamnaconus modestus) Ray (Raja kenojei) Mussel (Mytilus edulis) Herring (Clupea pallasii) Scomber japonicus, Clupea pallasii, Conger myriaster, Thunnus thynnus, Trichiurus lepturus, Scomberomorus niphoniu 	Domingo & Bocio, 2007
polycyclic aromatic hydrocarbons (PAH) - Dioxin-like polychlorinated biphenyls (DL-PCBs) - TCDD (3,3',4,4',5 pentachlorobiphenyl PCB-126) - Aquatic biocide tributyltin	 The North sea in the Netherlands Willamette River and lower Santiam River The Environment of the Southern Moravia Region, Czech Republic 	 Flatfish sole (Solea solea) Northern pikeminnow (Ptychocheilus oregonensis Smallmouth bass (Micropterus dolomieui) Largescale sucker (Catastomus macrocheilus) Barbus barbus 	Foekema et al, 2008 Henny et al, 2008 Lana et al, 2008

(TBT)	 PCB isomers and congeners 	 Flathead flounder 	Yang et al,
- Organochlorine pesticides	(ng/g wet wt.) in fish and	 Halfbreak fish 	2006
(OCPs)	shellfish from Dalian, Tianjin	 Small yellow croaker 	
- Pentachlorobenzene (QCB)	and Shanghai in China	White sardine	
- Octachlorostyren (OCS)		Escallop	
- Hexachlorobenzene (HCB)		Tilefish	
- Hexachlorocyclohexane		Chubmackerel	
isomers (HCHs)		 Bastard halibut 	
- Chlordane compounds		 Rock bream 	
(CHLs, including		 Razor clam 	
transchlordane, cis-		 Yellow porgy 	
chlordane, trans-nonachlor		Perch	
and cis-nonachlor)		 Egg of Perch Pacific cutlassfish 	
		 Crucian carp 	
		 Octopus 	
		 Squid 	
	Organochlorine pesticides (ng/g	 Dotted gizzard shad 	
	wet wt.) in fish and shellfish	■ Eel	
	from Dalian, Tianjin and	 Gray mullet 	
	Shanghai in China	Chub-mackerel	
		 Red tongue sole 	
		■ Hen clam	
		 Squid 	
		 Octopus 	
		Codfish	
		 Jack knife clam 	
		 Black Chinese roach 	

		 Gurnard 	
		 Small yellow croaker 	
		 Pacific cut-lassfish 	
		 Dotted gizzard shad 	
	Commercial food amended with	• Channel catfish (<i>Ictalurus punctatus</i>)	Burton et al,
	canola oil solutions containing		2002
	PCB-126 or TBT at 0, 1, or 100		
	ppb		
	 Organochlorines 	■ Tilapia (<i>Tilapia mossambica</i>)	Chan et al,
	(polychlorinated biphenyls,	 Big head (Aristichthys nobilis) 	1999
	RDDTs, hexachlorobenzene,	 Grass carp (Ctenopharyngodon idellus) 	
	hexachlorocyclo hexanes,	 Mud carp (Cirrhunus molitorella) 	
	chlordanes, mirex and dieldrin)	 Napolean wrasse (Cheilinus undulates) 	
	from the Shing Mun Riverin	 Grouper (Epinephelus akaara) 	
	Hong Kong	 Grouper (Epinephelus coioides) 	
		 Gold line sea bream (Rhabdosargus sarba) 	
		 Ochiai Macau sole (Heteromycteris matsubarai) 	
		 Freshwater grouper (Micropterus spp) 	
		 Golden thread (Nemipterus virgatus) 	
		 Flat head (Platycephalus indicus) 	
		 Big eye (Priacanthus tayenus) 	
		 White pomfret (Stromateoides argenteus) 	
		 Hair tail (Trichiurus haumela) 	
		 Rabbit fish (Siganus canaliculatus) 	
Heavy metals (As, Cd, Cu, Hg, Pb),	■ Willamette River and lower	■ Salmo salar, Penaeus monodon, Perna viridis, Pectinidae sp.,	Bayen et al,
total mercury (THg) and persistent	Santiam River	Selaroides leptolepis	2005

organic pollutants (POPs) such as		 Whitefish (Prosopium williamsoni) 	Henny et al,
organochlorine pesticides,			2008
polybrominated diphenyl ethers			
(PBDEs) and dioxins and furans			
Polybrominated diphenyl ethers	 Electronic waste (e-waste) 	Chinese mysterysnail (Cipangopaludina chinensis)	Wu et al,
(PBDEs)	recycling site in South China.	Prawn (Macrobrachium nipponense)	2008
		 Mud carp (Cirrhinus molitorella) 	
		 Crucian carp (Carassius auratus), 	
		 Northern snakehead (Ophicephalus argus) 	
		■ Water snake (Enhydris chinensis)	
Methylmercury (MeHg) - inorganic	 Seafood samples from Yantai 	■ Dogfish (Squalus acanthias)	Yin et al,
mercury, ethylmercury (EtHg) and	port, China	 Ruditapes philippinarum 	2008
phenylmercury (PhHg)		 Sinonovacula constricta 	
		 Neverita didyma 	
		 Saxidomus purpuratus 	
		 Scapharca subcrenata 	
	■ Japan	Cod fish	Inagaki <i>et al</i> ,
		 Cod muscle powder 	2008
	 Aquatic environment 	■ Tuna fish	Reyes et al,
			2008
	■ DA	■ Tilapia	Kuballa et
		■ Sword fish	al, 2008
		 Mackerel 	
		 Halibut 	
		■ Hake	

Chlordane and DDT organochlorine	■ In the dock of Sesimbra in the Portuguese coast ■ In the Hong Kong waters, in	 Bass Common mussel Shrimp Coalfish Redfish Swordfish (Aphanopus carbo) Dogfish Tintureira (Prionace glauca) Dogfish Anequim (Isurus oxyrhinchus) Ray (Raja oxyrhinchus) Dogfish Carocho (Centroscymnus coelolepsis) Dogfish Lixa (Centrophorus squamosus) Sapata (Deania calceus) Dogfish Cação (Gauleorhinus galeus) Sardine (Sardina pilchardus) Mackerel shad (Trachurus trachurus) Octopus (Octopus vulgaris) Gold line sea bream (Rhabdosargus sarba) 	Carvalho et al, 2008 Chan et al,
Pesticides (dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDTs, including o,p'-DDE, p,p'-DDE, o,p'- DDD, p,p'-DDD, o,p'-DDT and p,p'-DDT)	local waters from inland rivers to estuarine regions and in the South China Sea	 Freshwater grouper (Micropterus spp) Grouper (Epinephelus akaara) 	1999
Halogenated aromatic hydrocarbons (HAHs) such as chlorinated dioxins, dibenzofurans and biphenyls	 Willamette River and lower Santiam River 	 Northern pikeminnow (Ptychocheilus oregonensis Smallmouth bass (Micropterus dolomieui) Largescale sucker (Catastomus macrocheilus) 	Henny <i>et al</i> , 2008

comprise a major group of marine	 On the Coosa River at 	 McIntosh bass 	Hinck et al,
contaminants. Polychlorinated	Childersburg, the Alabama	 Largemouth bass (Micropterus salmoides) 	2008
dibenzo-p-dioxins (PCDDs),	River at Eureka Landing, the		
polychlorinated dibenzofurans	Tombigbee River at Lavaca,		
(PCDFs), polychalogenated diphenyl	and the Mobile River at Bucks		
ethers (PCDEs and PBDEs), and	 DDTs, including o,p'-DDE, 	 Dotted gizzard shad 	Yang et al,
several other classes of compounds	p,p'-DDE, o,p'-DDD, p,p'-	■ Eel	2006
(isomers and congeners)	DDD, o,p'-DDT and p,p'-DDT	 Gray mullet 	
	in fish and shellfish collected	 Chub-mackerel 	
	from Dalian, Tianjin and	 Red tongue sole 	
	Shanghai in China	 Hen clam 	
		Squid	
		 Octopus 	
		Codfish	
		 Jack knife clam 	
		 Black Chinese roach 	
		 Gurnard 	
		 Small yellow croaker 	
		 Pacific cut-lassfish 	
		 Dotted gizzard shad 	
	 In Hong Kong market 	■ Tilapia (<i>Tilapia mossambica</i>)	Chan et al,
		 Rhabdosargus sarba 	1999
		 Epinephelus akaara 	
		 Micropterus spp 	
		 Platycephalus indicus 	
		 Siganus canaliculatus 	

*No information available

Toxins of microorganisms	Microorganism	Fish/shellfish	Environmental source	Reference
Cholera (cfx) toxin and zonula	Vibrio cholerae 01, 0139 and non-01	Clam, Shrimp and Salmon	Autochthonous bacterial species	Ahn & Durst,
occludens (zot) toxin	strains		in aquatic environments	2008
, ,				Rivera et al,
				1995
Phycotoxins	Algae, dinoflagellates, and cyanobacteria	Pelagic species	Periodic blooms of algae "red	Luckas, 1992
	or blue-green algae		tides"	
Cyanotoxins (anatoxins,	Cyanobacteria: Microcystis sp. (including	Mussels (Mytilus edulis, Anodonta	Waterblooms: Proliferations of	Ibelings &
microcystins, nodularins,	e.g. M. aeruginosa, M. flos aquae and M.	cygnea), fish: carp (Hypophthalmichthys	freshwater toxin-producing	Chorus, 2007
cylindrospermopsin)	viridis), and Planktothrix (P. agardhii and	molitrix), Tilapia rendallii, freshwater	cyanobacteria are simply called	
	P. rubescens) Nodularia spumigena,	snail (Bellamya aeruginosa, Melanoides	"cyanobacterial blooms" or "toxic	
	Anabaena sp., Aphanizomenon sp.	tuberculata), crayfish (Cherax	algal blooms."	
		quadricarinatus), prawns (Penaeus		
		monodon, Palemon modestus,		
		Macrobrachium nipponensis) and red		
		swamp crayfish (Procamburus clarkii),		
		oysters (Pinctada maxima)		
Shiga toxin (STEC) and E. coli	Escherichia coli	Clam and fish	Autochthonous bacterial species	Kumar et al,
heat-stable toxin (STa), single-			in marine environments	2004
nucleotide polymorphism				Kalamaki et
(SNP)				al, 1997
Type E toxin, Botulinum	Clostridium botulinum	Salmon		Ahn-Yoon et
neurotoxin (BT)				al, 2004
				Wong, 1995
				Wictome et

				al, 1999
Cytotoxin	Cyanobacteria (mainly	Mussels (Mytilus edulis), freshwater clams	-	Mankiewicz
	Cylindrospermopsis raciborskii and	and fish such as flounder (Platichthys		et al, 2003
	Umezakia natans)	flesus) or salmon		Hitzfeld et al,
Dermatotoxins including	Tropical and subtropical marine benthic			1999
aplysiatoxins,	cyanobacteria such as Oscillatoria,			
debromoaplysiatoxins and	Lyngbya and Schizothrix			
lyngbyatoxins				
Irritant toxins -	Cyanobacteria such as Salmonella			
Lipoppollysaccharides (LPS)				
Hepatotoxins	Microcystis (Microcystis aeruginosa),			
	Planktothrix, Anabaena, Nodularia,			
	Nostoc and Umezakia			
Diphtheria toxin (DT)	Corynebacterium diphtheriae	In water and maybe in shellfish and fish	NA*	Kalamaki et
Tetanus toxin (TT)	Clostridium tetani			al, 1997
Other Toxins	Pfiesteria piscicida and P. shumwayae	Shellfish and tropical fishes	Autochthonous bacterial species	Bowers et al,
			in aquatic environments	2000

^{*}No information available

Table 3.1. Rapid methods (Biological, Chemical, Biochemical, Molecular and Immunochemical) for toxin detection							
Biological methods	Biological methods Methods Fish/ Shellfish Reference						

A	In vivo bioassays:	Mouse bioassay (MBA)	Clams Saxidomas giganteus	Manger et
				al, 2003
	Deliberate exposure of test animals to		Clams, mussels, and oysters	Pierce &
	contaminants or contaminated materials. Either			Kirkratrick,
	in the field, e.g. caging studies, or in the			2001
	laboratory.		Mussel	Fremy et al,
				1999
			Seafood	Wictome et
				al, 1999
			Mussels	Terao et al,
				1986
			Blue mussels: Mytilus edulis	Bates et al,
				1978
		Receptor Binding Assay (RBA)	Shellfish	Report of
				the Joint
				FAO/IOC/W
				HO, 2004
		Cytotoxicity assays: Mouse neuroblastoma cells lines	Cyanobacteria C. raciborskii	Humpage et
		rat cerebellar neurones (neuro-2a neuroblastoma cells)	and in shellfish	al, 2007
		Hemolysis assay for the detection of sodium channel	Fish: Red tilapia	Shimojo &
		(SC)	Sarotherodon mossambicus	Iwaoka,
				2000
		Rats bioassay: primary cultures of rat hepatocytes	Shellfish: Green-shell	Kerr et al,
		Rabbit skin permeability factor (PF) assay	mussels	1999
		Mosquito bioassay	=	Usleber et
				al, 1991

В	In vitro bioassays- In vitro Functional Assays	Measure receptor-binding	Shellfish: Butter clams	Manger et
	Bioassays employing cultured cells or cellular	Enzyme Inhibition	Saxidomas giganteus	al, 2003
	extracts.	Changes in gene expression in cultured cells		
		Sodium channels assays	Tilapia	Shimojo &
			(Sarotherodon mossambicus)	Iwaoka,
				2000
		Cytotoxicity assays (Cytotoxicity bioassays utilize cell	Clams, mussels, and oysters	Pierce &
		culture of neuroblastoma mouse cells to provide		Kirkratrick,
		voltage-sensitive sodium channel receptor sites for		2001
		assay of sodium channel-specific phycotoxins)		
		Voltage-sensitive sodium channels (VSSC)	Shellfish	Inoue &
				Hirama,
				2004
			Carnivorous fish	Takai et al,
				2003
		Neuroblastoma assays	Molluscs	Report of
				the Joint
				FAO/IOC/W
				НО, 2004
		A microtiter plate-based receptor binding assay	Shellfish: Common bivalve	Doucette et
		Solidphase radioreceptor assay	molluses, including Mytilus	al,1997
			californianus, Mytilus edulis,	
			Saxidomus nuttalli and	
			Crassostrea giga, Clams and	
			oysters	
		Mouse synaptoneurosome assay	Shellfish: Mussels and other	Nicholson et

		CD1 mouse injection assay	bivalve species: scallops,	al, 2002
			geoducks, butterclams, razor	
			clams, little clams and fresh	
			oysters	
		A protein phosphatase-based assay in vitro	Oyster	Honkanen et
		phosphatases type 1 (PP1) and 2A (PP2A)		al, 1996
			Carnivorous fish	Takai et al,
				1995
			Bivalve molluscs	Report of
				the Joint
				FAO/IOC/W
				HO, 2004
С	In vivo biomarkers: biochemical, physiological,	Commonly used biomarkers of exposure and effect.	Fish and shellfish	Hahn, 2002
	or other types of biological changes that indicate			
	the presence or effects of xenobiotic			
	compounds.			
D	Cell culture bioassays	The YI adrenal cell assay	Shellfish: Clam Ruditapes	Okumura et
			philippinarum	al, 2005
	Cells in culture are referred to variously as in	Buffalo green monkey (BGM) kidney cell cultures	Mytilus galloprovincialis	Croci et al,
	vitro, in vivo, or ex vivo, depending on the			1997
	perspective and bias of the investigator.			
	Application of cell culture bioassays.			
		Chemical methods and Biochemical techniques		

A	Numerous chemical methods such as SEM are	Gas chromatography (GC)		Bordajandi
	used for the detection of toxins.			et al, 2006
		Gas chromatography (GC) with detection by electron	Fish: Barbus barbus	Lana et al,
		capture or mass spectrometry (MS) -or capillary		2008
		electrophoresis (ECD)	Alaska butter clam	Luckas,
			Saxidomus giganteus	1992
			Dinoflagellates: P. concavtun	Dickey et al,
			and P. lima	1990
		SSID-GC-ICPMS	Cod fish	Inagaki <i>et al</i> ,
				2008
		Ion-spray/ electrospray (ESI)	Shellfish	Garthwaite,
	_	Scanning electron microscopy (SEM)		2000
	_	Light microscopy (LM)		
		High-performance liquid chromatography (HPLC)	Ruditapes Mphilippinarum	Okumura et
		with fluorimetric detection (FOD)		al, 2005
			Clams, mussels and oysters	Pierce &
				Kirkratrick,
				2001
			Algae Tetraselmis suesica-	Garthwaite,
			Chlorophyceae and	2000
			Skeletonema costatum	
			Scallops and mussels	Fremy et al,
				1999
			Molluscan	Powell &
				Doucette,
				1999

	Se	axidomus giganteus,	Luckas,
	M	Molluscs (Myrilus edulis),	1992
	sh	hellfish, bivalves, mussels	
	cl	lams (Protothaca stuminea)	
	В	Blue mussel	Anderson et
	(A	Mytilus galloprovincialis)	al, 1989
	В	Blue mussels (Mytilus edulis),	Lassus et al,
	oy	ysters (Crassostrea gigas),	1989
	sc	callops (Pecten maximus)	
	ar	nd clams (Ruditapes	
	pi	hilippinarum)	
	Si	hellfish	Cembella et
			al, 1987
	R	Rockfish, Salmon, Lobster,	Wills et al,
	aı	nd Shrimp	1987
	M	Aussels (Mytilus edulis)	Sullivan et
	В	Butter clams (Saxidomus	al, 1985
	gi	iganteus), Littleneck Clams	
	li	ttleneck clams	
	(.	(Protothaca staminea)	
	Pi	uffer fish: Takifugu	Nakamura et
	pe	oecilonotus, T. vermicularis	al, 1984
	ar	nd <i>T.radiates</i>	
	В	Butter clams, Littleneck	Sullivan et
	cl	lams, Oysters, Mussels	al, 1983
	HPLC-ICP-MS T	`una fish	Reyes et al,

		2008
HPLC-UV and LC-MS	Shellfish: Scallops	Hess et al,
		2005
Gel-filtration chromatography	Shellfish	Garthwaite,
		2000
Ion-exchange chromatography	Shellfish: Mussels and	Draisci et al,
	phytoplankton Dinophysis	1999
	spp., Prorocentrum spp.,	
	Protoceratium	
	Reticulatum, Lingulodinium	
	polyedrum	
Thin-layer chromatography (TLC)	Shellfish: Blue mussels	Quilliam et
		al, 1998
Ion spray liquid chromatography-mass spectrometry	Shellfish: mussels (<i>Mytilus</i>	Draisci et al,
(LC ISP-MS)	galloprovincialis) and algae	1995
	such as Dinophysis fortii, D.	Garthwaite,
	sacculus, D. tripos, and	2000
	another species similar to	
	D.acuminata	
Alkaline oxidation method (the alkaline peroxidation	Shellfish	Garthwaite,
technique)		2000
Liquid chromatography (LC)	Phytoplankton: Dinophysis	James et al,
	acuta	1997
	Oysters (Crassostrea	Dickey et al,

	virginica) and phytoplankton	1992
LC-MS/MS	Mussels and Dinoflagellate	Krock et al,
	Protoperidinium crassipes	2008
	Danish surf clams (Spisola	Jorgensen et
	sp.) and blue mussels (Mytilus	al, 2005
	edulis)	Puente et al,
		2004
	Clams, mussels, and oysters	Pierce &
		Kirkratrick,
		2001
		Garthwaite,
		2000
LC-MS	Mussels (Mytilus edulis)	Stobo et al,
	cockles (Cerastoderma edule)	2005
	oysters (Crassostrea gigas)	
	king scallop (Pecten	
	maximus)	
	Scallops and mussels	Fremy et al,
		1999
LC-UV	Shellfish: mussel <i>Mytilus</i>	James et al,
	edulis, clams Siliqua patula,	2000
	and phytoplankton	
	Pseudonitzchia australis	
LC-ESI-MS	Mytilus chilensis, Venus	López-
	antiqua, Pecten jacobaeus	Rivera et al,

		and Pecten maximus	2005
			Quilliam,
			1995
	Micellar electrokinetic capillary chromatography	Clams, mussels, and oysters	Pierce &
	(MEKC) in conjunction with laser-induced		Kirkratrick,
	fluorescence (LIF) detection (MEKC-LIF)		2001
	Micellar electrokinetic chromatography (MEKC) with	Shellfish: Mussels and	Bouaïcha et
	ultraviolet (UV) detection	dinoflagellate Prorocentrum	al, 1997
		lima	
	Microplate fluorescence method	Shellfish: Scallop	Alfonso et
	(active phosphodiesterases)	Patinopecten yessoensis and	al, 2004
		mussels Mytilus	
		galloprovincialis	
	FI-CV-AFS	Prionace Mglauca, Isurus	Carvalho et
		oxyrhinchu, Xiphias gladius	al, 2008
	Fluorimetric assays	Shellfish: Shell clams	Indrasena &
	Fluorometric Detection Periodic acid, t-butyl	(Mya arenaria), blue mussels	Gill, 1998
	hydroperoxide, and hydrogen peroxide	(Mytilus edulis), and scallop	Louzao et al,
	Biosensors	viscera (Placopecten	2001
		magellanicus)	
	Capillary electrophoresis (CE) combined with UV	Mussels, clams and anchovies	Zhao et al,
			1997
Atomic spectroscopy	Fast atom bombardment mass spectrometry (FAB-MS)	Blue mussels	Quilliam et
		(Mytilus edulis L.)	al, 1989
	Atomic absorption spectrometry (AAS)	Dogfish and muscle	Yin et al,
	Inductively coupled plasma mass spectrometry	-	2008

		(ICP-MS)		
		Atomic fluorescence spectrometry (AFS)	_	
		Atomic emission spectrometry (AES)	_	
	In	nmunological assays/ immunochemical methods	_L	
A	Immunoassays using chemical-specific	Enzyme-linked immunosorbent assay (ELISA)	Clam and fish	Kumar et al,
	antibodies prepared in sheeps and rabbits,			2004
	following immunization with conjugates of the		Shellfish: Oysters	Naar et al,
	polyether toxins - Gold Labeled Immunosorbent		dinoflagellate Karenia brevis	2002
	Assay test		and Mammalian Body Fluid	
			Clams, mussels, and oysters	Pierce &
				Kirkratrick,
				2001
			Scallops and mussels	Fremy et al,
				1999
			Seafood	Wictome et
				al, 1999
		Competitive direct enzyme-linked immunosorbent	Mytilus edulis, Meretrix	Yu et al,
		assay (cdELISA) and a competitive indirect ELISA	lusoria, Crassostrea gigas	2004
		(ciELISA)		
		The Immunoblot ELISA	Shellfish and fish	Kalamaki et
		Indirect enzyme immunoassay (EIA)- IDR Histamine	Reef fish	al, 1997
		EIA Test		
		Enzyme immunoassay (EIA) in microtitration plate	Mussel (Mytilus edulis)	Kawatsu &
		(ELISA) and a test strip EIA		Hamano,
				2000
			Mussel and clam	Usleber et

		al, 1991
Competitive enzyme-linked immunosorbent assay	Shellfish: Mussel	Hesp et al,
(cELISA)		2005
Enzyme activity-based assays (Development of a	Shellfish: Oyster, marine	Honkanen et
protein phosphatase-based assay (PP2A)	dinoflagellates, commonly	al, 1996
	belonging to the genus	
	Dinophysis	
Immunoaffinity chromatography (IAC)	Shellfish: Clams, mussels,	Usleber et
	and oysters	al, 2001
		Fremy et al,
		1999
Enzyme-linked immunofiltration assays		Kalamaki et
Microtiter plate enzyme immunoassay (EIA)		al, 1997
Dipstick and enzyme-linked immunofiltration assay		
(ELIFA) formats		
LFIC Lateral Flow Immuno-Chromatography	Molluscs	Report of
		the Joint
		FAO/IOC/W
		НО, 2004
Immunomagnetic Separation (IMS) technique	Shellfish	Kalamaki et
		al, 1997

В	The stick test immunoassay (monoclonal	MISTAlert TM (Commercial Qualitative Assay)	Shellfish: Bivalve	Jellett et al,
	antibodies in the stick enzyme immunoassay) -		Molluscs (Mytilus edulis),	2002
	filter paper from air or water samples		scallop (Pecten maximus),	Mackintosh
			queen scallops (Aquapecten	et al, 2002
			opercularis) razor fish (Ensis	Pierce &
			arcuata) native oysters	Kirkratrick,
			(Ostrea edulis), and pacific	2001
			oysters (Crassostrea gigas)	
		Immunodiffusion/Motility Enrichment Test	Shellfish	Kalamaki et
				al, 1997
		Monoclonal antibody enzyme immunoassay (Mab)	Seafood	Wong, 1996
		Enzyme Immunoassay Stick test	Fish: Ctenochaetus strigosus	Hokama et
		(Biosense®, DSP Check® test, Rougier Bio-Tech®)	and Thunnus thynnus	al, 1987
			Dinoflagellate:	
			Gambierdiscus toxicus	
		Latex agglutination assay	Clams, mussels, and oysters	Kalamaki et
				al, 1997
C	Radioimmuno-assays (RIA) and enzyme-linked	The radioimmunoassay procedure mixes a known	Shellfish: Clams, mussels,	Pierce &
	immunosorbent assays (ELISA)	amount of radio-labeled toxin with purified antibody	and oysters	Kirkratrick,
		receptor, followed by the addition of the unknown		2001
		toxin sample	Mussels, clams, anchovies	Lawrence et
			and crab	al, 1994
D	Immuno-liposome assay	A ganglioside-liposome immunoassay Gangliosides,	Clam, Shrimp and Salmon	Ahn &
		sialic acid containing glycosphingolipids		Durst, 2008
			Salmon	Ahn-Yoon et
				al, 2004

				Micheli et
				al, 2004
				Kreuzer et
				al, 2002
	Bio	ochemistry and molecular techniques (DNA-based methods)		
A	Polymerase chain reaction (PCR)-based assays	DNA-binding (gel shift)	Shellfish	Rivera et al,
		Native responses in cell culture (CYP1A)		1995
В	Molecular techniques based on the detection of	Real-Time PCR Assays	Seawater, shellfish ant	Bowers et
	a part of the microorganism's genome such as		tropical fishes	al, 2000
	verocytotoxin genes VT1 and VT2, the Lamb	DNA-extraction method	In modified-atmosphere-	Kimura et
	gene, the Sth toxin gene, the uidA gene, the		packaged fish (jack mackerel)	al, 2001
	glycine decarboxylase gone, the listeriolysin O	DNA-DNA hybridization technique, ERIC	Clams, mussels, oysters and	Kumar et al,
	hly gene, 16S and 23S rRNA	(enterobacterial repetitive intergenic consensus	fish	2001
		sequences (ERICs)-PC		Kalamaki et
		Multiplex PCR plus hybridization PCR DNA probe		al, 1997
		RT-PCR		
		cc (cell culture)- RT-PCR RT-seminested-PCR	Shellfish: Autochthonous	Rivera et al,
		RT-PCR nested-PCR plus hybridization RFLP (RV)-	bacterial species in aquatic	1995
		RNA	environments	
		Multiplex PCR		
		AFLP-PCR (amplified fragment length polymorphism)		
		Multiplex Real-Time PCR Method	Seafood	Jinneman et al, 2003
		TaqMan PCR assay	Shellfish: Raw Oysters and	Lyon, 2001

Rep-PCR	Synthetic Seawater	
cRT-PCR	1	
RADP-PCR	-	
Ac-PCR	-	
Minor-groove binder (MGB)	Mussels (Mytilus edulis and	Croci et al,
The real-time PCR MGB	Mytilus galloprovincialis)	1997
PCR- fluorescence resonance energy transfer (FRET)	-	
Real-time PCR STEC method		

	Table 3.2. Rapid methods detections of seafood toxins				
Rapid	Toxins	Fish or shellfish	Experimental/ Procedure	Referen	
detection				ce	
of					
seafood					
toxins					
(Methods					
)					
Cell	Saxitoxin (STX) or	Butter clams Saxidomas giganteus	Cell suspensions were inserted into microtiter 96-well	Manger	
bioassay:	brevetoxin (PbTx) or		culture plates using 200 μL per well of either Neuro-2a	et al,	
antagonis	ciguatoxin (CTX)		cells at 5x10 ⁵ cells/ml or SK-N-SH cells at ca 2x10 ⁵	2003	
m cell			cells/ml.		
bioassay			• Incubation (37° C for 6–8 h), processing with MTT and		
the mouse			detection on a multi well scanning spectrophotometer		

bioassay			followed	
(MBA)				
Mouse brain synaptone uro-somes (in vitro assay)	STX	Shellfish: Mussels and other bivalve species: scallops, geoducks, butterclams, razor clams, little clams and fresh oysters	 The brain was chopped into pieces with a razor blade and the tissue parts were homogenized in 2.5 ml saline using a Teflon homogenizer. Resuspended material centrifugation (1000g for 15 min) and final synaptoneurosomal pellet followed Processing at 4°C 	Nichols on et al, 2002
A microtiter plate-based receptor binding assay	STX	Shellfish: Common bivalve molluscs, including Mytilus californianus /edulis, Saxidomus nuttalli and Crassostrea giga. Clams and oysters. Dinoflagellate species of the genus Alexandrium	 Tissue homogenate centrifugation at 54,000 g for 15 min at 4°C and the supernatant discarded. Working stock solution containing 5.0 nM [³H] STX made up in 75 mM HEPES/140 mM NaCI buffer, pH 7.5. Preparation of unlabeled STX solutions for development of a standard curve (use of a STX dihydrochloride standard). Incubation for 1 hr at 4°C and filtering (MultiScreen TM vacuum manifold) 	Doucett e <i>et al</i> , 1997
Bioassay cell-based Neuro-2A neuroblas toma toxicity assay	STXs, GTX1 to GTX6 and decarbamoyl (dc)- GTX1 to dcGTX4, C toxins (C1 to C4)	Shellfish: Using the cyanobacteria, C. raciborskii	 Use of pure toxins the neuroblastoma assay: STX, neoSTX, dcSTX, an epimeric mix of GTX2/3, an epimeric mix of GTX1/4, and GTX5. Neuro-2A cell-based bioassay: Addition of 25,000 cells to each well of a 96-well microtiter plate and incubation for 24 h. Addition of veratridine (0.05 mM) and ouabain (0.5 	Humpa ge et al, 2007

Bioassay:	STX, Tetrodotoxin (TTX)	Fish: Red tilapia (Sarotherodon	mM), along with the sample (20 μl in a 200μl total volume), to the culture medium (RPMI-1640 with 300 mg/L of L-glutamine and without sodium bicarbonate but with 10% newborn calf serum, 110 mg/L of sodium pyruvate, 2 g/L of sodium bicarbonate, 62.5 mg/L of penicillin G, and 100 mg/L of streptomycin sulfate, adjusted to pH 7.4±0.05) • A sodium channel activator resulted in enhanced sodium	Shimoj
mouse	and (CTX-a)	mossambicus). Dinoflagellate	permeability and ouabain, an inhibitor of Na ⁺ /K ⁺ ATPase	0&
neuroblas	,	(<i>Prorocentrum mexicanum</i>) and fish	in combination samples potentially contaminated with	Iwaoka,
toma		(A. triostegus, M. cephalus, and K.	biotoxin.	2000
tissue		sandsicensis)	Toxins were placed in sterilized 0.1-M acetic acid,	
culture			respectively, at 0°C, and opened as required.	
assay for			Veratridine, 1-mM in acidic (pH 2) distilled water, at	
sodium			4°C.	
channel			 Dillutions of extracts in 20% MeOH (200 μg/ml). 	
using red			RBCs within 4-6 h in all the test wells	
blood				
cells				
(RBCs).				
Hemolysi				
s assay				
for the				
detection				
of sodium				
channel				

Cell bioassay: further modificat ions of the cell- bioassay, MBA and HPLC	Maitotoxin (MTX)	Shellfish: Clam (Ruditapes philippinarum)	Cultured MTX, a marine toxin of ciguatera fish poisoning, which limits incubation period to 6 h when applied to the microplate 15 min prior to the end of the incubation -antagonism WST-8, a dehydrogenase for the dectection of water-soluble tetrazolium salt.	Okumu ra et al, 2005
Develop	OA, DTX-1 (35	Shellfish: Oyster, marine	Purification of he catalytic subunit of PP2A to apparent	Honkan
ment of a	methylokadaic acid) and	dinoflagellates, commonly	homogeneity using G-75 in the place of Ultrogel-AcA44.	en et al,
protein	DSP toxins	belonging to the genus Dinophysis	• Conduction of assays at 30°C for 10 min.	1996
phosphata			 Termination after addition of 100 μ1 of 1 NH₂SO₃ 	
se-based			containing 1 mM K ₂ HPO ₄ .	
assay				
(PP2A)				
Tissue	OA	Mussels: Mytilus edulis and M.	Preparation of standard stock solution containing 20 pg	Croci et
culture		galloprovincialis	OA/ml by dissolving OA standard in methanol.	al,
assay			Suspention of the residue in triple-distilled water	1997
(TC-CC)			containing 0.8% NaCl (w/v). 0.1 % glucose (w/v), 2%	
(direct			foetal bovine serum (v/v), 0.5% Tween 60 (v/v), pH 7.4.	
microsco			Clarification of the suspension was clarified by addition	
pic			of carbon black and, after 5 min of centrifugation at	
observati			1200rpm collection of the supernatant.	
on of			Cells were checked for morphological changes each	
toxin-			hour for the first 7 hr of incubation, and at 24 hr.	
induced				

morpholo				
gical				
changes				
in (BGM)				
cell				
cultures).				
In vitro	Combination of toxins:	Shellfish: Green-shell mussels	Field EPSP and fiber spike analysis, extracellular field	Kerr et
rat	STX, PbTx and DA		potentials were recorded from the pyramidal cell layer	al,
hippocam			and dendritic field of hippocampal region CA1.	1999
pal slice			Toxins were washed in for 30-45 min, and washed out	
preparatio			(45-90 min).	
n				
Histopath	DTX ₁ and PTX ₁	Shellfish: Mussels	Induction of ultrastructural changes in the small intestine	Terao
ological			and liver of suckling mice by dinophysiatoxin-1 and	et al,
studies:			pectrnotoxin-1.	1986
Sequrntia			Autopsy of animals and organs.	
1			For electron microscopy pieces of the duodenum, the	
ultrastruct			liver and kidney were put in a cold 2%	
ural			paraformaldehyde- glutaraldehyde solution for 12 hr and	
changes			then postfixed in 1% OsO ₄ , for 2 hr.	
in mouse			After 15 min the duodenum and upper portion of the	
digestive			small intestine became distended and contained mucoid,	
organs			but not bloody, fluid.	
after				
injections				
of				
dinophysi				

stoxin-1				
and				
pectrnoto				
xin-1				
Fluoresce	STX: neosaxitoxin	Shell clams (Mya arenaria), blue	Testing of periodic acid, t-butyl hydroperoxide, and	Indrase
nce	(NEO), gonyautoxin 1	mussels (Mytilus edulis), and scallop	hydrogen peroxide.	na &
detection	and 4 (GTX 1/4),	viscera (Placopecten magellanicus)	Hydrogen peroxide was the most convenient and	Gill,
(FLD)	gonyautoxin 2 and 3, C	Dinoflagellate, Gonyaulax catenella	efficient oxidant (the fluorescence could be detected	1998
	toxins, and B toxins		after incubation at 100°C for 3-5min).	
			Fractionation of freeze-dried powder on a Bio-Gel P2	
			column (2.5 3 72 cm).	
High-	STX, NEO, GTX1/4,	Shellfish: Gastropod (Neverita	Labeling of samples and duly delivered to the laboratory	Wu et
performa	GTX2/3, Okadaic acid	didyma) and scallop (Argopecten	for analysis, or stored at -20°C.	al,
nce liquid	(OA) and	irradians) clams (Ruditapes	MBA: addition of 0.1M HCl (pH: 3).	2005
chromato	dinophysistoxin-1	philipinensis, Cyclina sinensis,	The mixture was boiled for 5min	
graphy	(DTX1)	Pinna pectinata), and mussels	 Cntrifugation for 15min at 3000 rpm. 	
(HPLC)		(Perna viridis)	Ingection into three female KM strain mice.	
and MBA			HPLC analysis: Addition of 500 ml 0.03M periodic acid,	
			0.3M Na ₂ HPO ₄ and 0.3 M ammonium formate mixture	
			(1:1:1, v/v/v) to 100 ml shellfish, RP-18 column	
			(4.6x150mm)	
Comparis	Neurotoxins (GTX II,	Shellfish (Butter clams, Littleneck	Extraction of samples	Sulliva
on of	GTX III, STX) N-1	clams, Oysters, Mussels): The	Samples assayed by the mouse bioassay.	n et al,
HPLC	hydroxy toxins (NEO,	neurotoxins are produced by	HPLC analyses on both amino and cyano columns using	1983
and the	GTX I-IV)	Gonyaulax sp.	methanol and ammonium phosphate buffer mobile	
standard	sulfocarbamoyl toxins		phases.	

AOAC -	(Cl, C2, Bl)		Preparation of toxin standards (0-10 ppm) in 0.03 M	
MBA			acetic acid for all of the toxins.	
HPLC	All the PSP toxins (B1,	Shellfish: Mussels (Mytilus edulis)	An aliquot of the supernate was removed and frozed (-	Sulliva
and MBA	B2, C1, C2, GTX I, GTX	Butter clams (Saxidomus giganteus),	20°C).	n et al,
	II, GTX III, GTX IV,	Littleneck Clams littleneck clams	• The extracts were thawed and 40 μl TCA solution (40%	1985
	NEO, STX)	(Protothaca staminea).	trichloroacetic acid (PH 4.5).	
		Dinoflagellate	Separation of the toxins on a PRP-1 column by ion	
		(Gonyaulux sp.) blooms	interaction chromatography, using .a mobile phase	
			containing hexane and heptanes sulfonic acids as ion-	
			pair reagents, ammonium as the cocation and methanol	
			as organic modifier.	
FLD	Neurotoxins: GTX, C	Shellfish: Mussel	• Suspension of 0.5 x 10 ⁶ cells placed in stirred quartz	Louzao
	toxins, STX, and related		microcuvette in the thermostated cell holder in a RF-500	et al,
	compounds: NeoSTX and		spectro- fluorometer.	2001
	dcSTX		• Growth of cells in 25 cm ² tissue culture flasks at 37°C in	
			5% CO ₂ .	
			Subculture by transferring cells released by the	
			application of 0.1% trypsin.	
HPLC	Validation of 11-[3H]	Molluscan shellfish: with algal	Validation of 11-[3H]-tetrodotoxin as an alternative	Powell
with	tetrodotoxin as an	extracts dinoflagellates:	radioligand to the [3H]-saxitoxin.	&
microplat	alternative radioligand to	Alexandrium tamarense and A.	• Incubation for 1 h at 4°C, filtered and washed with 200	Doucett
e	the [3H]-saxitoxin	lusitanicum	ml ice-cold buffer.	e, 1999
scintillati			Cetrifugation of samples for HPLC analysis (12000 rev	
on			min ⁻¹ , 1 min, 4°C).	
technolog			Cleaned using a C-18 sep-pak light solid phase	
y and			extraction cartridge.	

Site-			• Filtration (0.2 mm filter).	
specific				
binding				
characteri				
stics				
(Assay				
Character				
ization)				
HPLC	STX and TTX	Puffer fish: Takifugu poecilonotus,	The amounts of pooled livers, ovaries and digestive	Nakam
		T. vermicularis and T.radiates.	tracts obtained from each species for initial extraction.	ura et
		Toxic dinoflagellate <i>Protogonyaulax</i>	Visualization of toxins under u.v. light (365 nm) after	al,
		tamarensis	spraying with 1% hydrogen peroxide and heating the	1984
			cellulose strips at 130°C for 5 min.	
			• Elution of Bio-Rex 70 column (1x100 cm) and the	
			column with 500 ml of 0.04 N acetic acid and 200 ml of	
			1.5 N acetic acid solutions.	
			Electrophoresis on cellulose strips in 0.083 NTris - HCI	
			buffer (pH 8.7) at 0.6 mA/cm for 10 min	
Chemical	STX	Mytilus edulis (blue mussels)	Sonication of lyophilized dinofiagellate (Gonyaulax	Bates et
assay and		dinofiagellate (Gonyaulax catenella)	catenella) cells for 10 min.	al,
MBA			One mouse unit of STX is the unit lethal to a 20 g mouse	1978
			in 15 min.	
HPLC	STX, carbamate toxins	Shellfish: Blue mussel (Mytilus	Growth of cultures in 2 liter flasks with 1 liter of	Anders
	(GTX I, GTX II, GTX IV,	galloprovincialis) and dinoflagellate	seawater-based at 20°C under a 14:10h light: dark cycle,	on et al,
	dc-GTX II, dc-GTX-III)	Gymnodinitun Catenatum	Sulfocarbamoyl toxins (ca. 90-95 mole %), 35°C Using	1989
	and Cl, C2, Bl (PSP)		fluorescence detector: Excitation-340 nm (15 nm slit) and	

			 Emission-400 nm (20 nm slit). 400 microliters of the supernatant was filtered through 0.45 μm LC3S filters into a teflon capped, borosilicate auto-analyzer vial. Column: Hamilton Co., PRP-1, 15 cm x 4.1 mm, 10 μm packing. Column: Flow 1.3 ml/ min. Fluorescence detector Excitation-340 nm (15 nm slit). 	
			Emission-400 nm (20 nm slit)	
HPLC	GTX ₁ GTX ₂ , GTX ₃ and	Shellfish: Alga Protogonyaulax	Cells for toxin detection were harvested.	Cembel
	GTX ₄	(Gonyaulax) Tamarensisl catenella,	The HPLC was recalibrated after every five samples by	la et al,
		Pmtogonyaulax catenella species	chromatographing a standard mixture of toxins diluted in	1987
			0.03 N HOAc	
HPLC	GTX3 and GTXa/	Shellfish: Blue mussels (Mytilus	Culture in 10 liter glass bottles filled with sea-water,	Lassus
	epiGTXs GTX2	edulis), oysters (Crassostrea gigas),	(30%) filtered on 0.22 um membrane.	et al,
		scallops (Pecten maximus) and	• 10 to 15 shellfish were fed with a daily rate of 0.5 liter of	1989
		clams (Ruditapes philippinarum),	culture medium.	
		Algae Tetraselmis suesica-	HPLC column remained at 35°C.	
		Chlorophyceae and Skeletonema	Post-column reaction was performed with periodic acid	
		costatum. Dinoflagellate	in a 1 ml reaction coil maintained at 90°C	
		Protogonyaulax tamarensis		
Liquid	Okadaic acid (OA) and	Shellfish: Oysters (Crassostrea	• Establishment of viable cultures from water (29.5°C).	Dickey
chromato	domoic acid (DA)	virginica) and phytoplankton	Sonication of suspensions for 10 min.	et al,
graphy			• Filtration: 0.45 and 0.2 μm filter.	1992
(LC) and			• Drying vacuum at 40°C.	
HPLC			The preparations were redissolved in 10.0 ml of aqueous	
			10% acetonitrile.	

Liquid	OA, dinophysistoxins	Shellfish: mussels (Mytilus edulis)	 Storage at -60°C. Application of HPLC. Separation of five DSP toxins on aC18 column using an 	Puente
chromato	(DTX); pectenotoxin-2	marine phytoplankton, Dinophysis	acetonitrile-water gradient with ammonium acetate as an	et al,
graphy–	(PTX2) and pectenotoxin-	acuta	eluent modifier.	2004
multiple	2 seco acids		ESI in negative mode, was applied for the formation of	
tandem			the molecule in relation to ion, [M-H], for each toxin.	
mass				
spectrom				
etry (LC -				
MS/MS)				
Liquid	OA, DTX-1, DTX-2,	Mussels (Mytilus edulis), cockles	Extraction of toxins from shellfish using Methanol-water	Stobo
chromato	Yessotoxin (YTX),	(Cerastoderma edule), oysters	(80% v/v).	et al,
graphy	homoYTX, 45-hydroxy-	(Crassostrea gigas), king scallop	Analyzation with a C8 reversed-phase column with a 5	2005
with mass	YTX, 45 hydroxyhomo-	(Pecten maximus)	mM ammonium acetate-acetonitrile mobile phase under	
spectrom	YTX, PTX-1, PTX-2,		gradient conditions (pH 6.8).	
etry	Azaspiracid (AZA-1),		• Termination of reaction with HCl (18.5 μL, 2.5M).	
(LC/MS)	AZA-2, and AZA-3		• Filtration of extract (0.2 μm cellulose acetate filter).	
			The flow rates, injection volumes, and column	
			temperatures were 0.25 ml/min, 5 µL, and 25°C for the	
			multiple toxins.	
Mass	Desulfoyessotoxins	Adriatic mussels	Measurement of NMR spectra on a Varian Unity	Ciminie
spectrom	1-Desulfocarboxyhomo		Inova700 spectrometer.	llo et
etry (MS)	YTX and 4-		CD3OD was applied as an internal standard.	al,
and	Desulfocarboxyhomo		Negative ESI spectra were achieved on a API-2000 triple	2007
Biologica	YTX		quadrupole MS equipped with a turbo ion spray source.	

l material hampers spectrosc opic analysis (NMR) Spectral Measure ments			HPLC separations were performed on a Varian apparatus. Waters 490 MS UV detector (230 nm) C18column	
LC-MS with ionspray ionization	Diarrhoeic toxins: YTX, OA and four dinophysistoxins (i.e. DTX-1, DTX-2, DTX-2B, DTX-2C), and PTXs involving PTX-2, two PTX-2 secoacids (PTX-2SAs), PTX-2SA, 7-epi-PTX-2SA, and AC1	Shellfish: Mussels and phytoplankton Dinophysis sp., Prorocentrum sp., Protoceratium reticulatum, Lingulodinium polyedrum	 Analysis on 20 CULC pump liquid chromatographies run with a total run time of 20 min. The mobile phase was acetonitrile-water (0.1% TFA), for positive ion mode experiments and acetonitrile-water (2 mM ammonium acetate). Separations on a microcolumn packed with Supelcosil LC18-DB, under isocratic conditions 	Draisci et al, 1999
Normal and reversed- phase column chromato graphy	OA	Shellfish: Dinoflagellate, Prorocentrum concavum and species P. lima	 Samples were chromatographed on silica gel using chloroform-methanol gradients. Reversed phase C-I8 HPLC of toxic fractions obtained from silica gel separations were achieved on a RP18 column eluted with 10% water in methanol at a flow rate of 4ml/min. Recordence of NMR spectra on an instrument consisting of an Oxford 360 MHz superconducting magnet, a 	Dickey et al, 1990

Ion-spray liquid chromato graphy- mass spectrom etry (LC ISP-MS)	OA and DTX-1	Mussels (Mytilus galloprovincialis) and algae such as Dinophysis fortii, D. sacculus, D. tripos, and another species similar to D. acuminata	 Nicolet 118.0E FT data system and 292B pulse programmer. Concentration of cultures by filtration at 30 days during the mid-exponential phase of growth, (4°C, centrifugation: 16,270g 20 min). Extraction of 1 g of homogenized mussel digestive glands three times with 8 ml of acetone each time for 2 min. Polypropylene glycols (PPG) PPG 1000 and PPG 2000. Standard stock solutions including 10 μg/ml of OA and DTX-1 acquired from pure compounds by dilution with methanol. Separation of DSP toxins on analytical column packed with Supelcosil LC18-DB, with a mobile phase of CH₃CN-H₂₀ (90:10) (0.1% TFA) and flow rate of 0.8 ml/min. For LC ISP-MS, a 20:1 split of the column effluent was applied. Flow rate: 40μl/min to the MS. 	Draisci et al, 1995
Micellar	OA and DTX-2 (DSP)	Shellfish: Mussels and dinoflagellate	HP 3D-CE system was applied.	Bouaïc
electrokin		Prorocentrum lima	The new column was preconditioned by flushing it with	ha et al,
etic			several column volumes (c.10 µ1) of borate buffer (12.5	1997
chromato			mM, pH 9.2) and running buffer.	
graphy			• Analyzed at 20±1°C.	
with			 Voltage: 30 kV with positive polarity. 	
ultraviole			• The residue was redissolved in 50 μ1 methanol for	

t detection (MEKC) with ultraviole t (UV) detection			analysis.	
A triple- quadrupol e linear ion-trap hybrid LC-MS- MS system	Phycotoxins and novel toxigenic plankton: DA, gymnodimine, spirolides, DTXs, OA, PTXs, YTXs, and AZAs	Shellfish: Mussels. Dinoflagellate Protoperidinium crassipes	 Harvesting of cell pellets from the plankton net tows. Centrifugation suspended in 500μL methanol, and transferred to a FastPrep tube with 0.9 g lysing matrix D. A N2-22 nitrogen generator transferred N₂ at 7 bar solvent reservoir, in-line degasser (G1379A), binary pump (G1311A), refrigerated autosampler (G1329A/G1330B), and temperature-controlled column oven (G1316A). The analytical column (50x2 mm) was packed with 3-μm BDS 120 Å and remained at 20°C. 	Krock et al, 2008
LC with fluorimetr ic (SRM)	OA and its isomer, DTX-2	Dinophysis acuta	 Extraction of unialgal samples and analysis by LC and prodigy C₁₈ column (flow-rate 0.5 ml/min). Fluorimetric detection of toxins. Identification of DSP toxins detected using isocratic micro LC with μLC-MS-MS and μLC-MS of the BAP with an ionspray (IS) interface couple to an atmospheric pressure ionization (API), 13-15 min for OA and DTX-2 respectively 	James <i>et al</i> , 1997
HPLC	PTX-2 and OA	Shellfish: Mollusks Dinoflagellate	Acetonitrile, methanol, trifluoracetic acid (TFA),	Draisci

followed		Dinophysis fortii	methylene chloride, ammonium hydroxide.	et al,
either by			PTXs detection through analysis of the crude methanolic	1996
UV			D. fortii extract by LC-UV-DAD.	
diode-			• The residue was maintained at -30°C.	
array			Dissolvation with 1 ml of methanol and injection of 20	
detection			μ1.	
(LC-UV-			Fractionation of DSP toxin by alumina column.	
DAD) or			·	
LC-MS				
and LC-				
MS-MS				
LC/MS/	DSP toxins only OA and	Shellfish: Danish surf clams (Spisola	• Cooking and freezing of samples at -18°C.	Jorgens
MS	esters of OA	sp.) and blue mussels (Mytilus	Homogenization of sample (200-400 g) in a kitchen	en et al,
		edulis)	blender.	2005
			 Certification of OA standard (24.1 μg/ml) in methanol. 	
			Extraction of 1g for 3 min on a shaker with 12 ml	
			methanol.	
			Addition of 500 ml 2.5M NaOH to 3ml sample and	
			heating at 45°C for 1 h.	
			LC system: HP 1100 system.	
HPLC-	DA	Shellfish: Scallops	Manipulation and analysis of standard solutions,	Hess et
UV and			shellfish extracts and homogenates.	al,
LC-MS			LC-MS: API 150ex, Ionspray source and coupled to an	2005
			Agilent 1100 series LC and autosampler and column	
			thermostat compartment (held at 20°C).	
			• Ion-spray voltage: 5 kV, the orifice and ring voltage: 10	

			and 160 V, respectively, quantification was applied	
			using the protonated $[M + H]^+$ ion of DA at m/z 312.	
LC-FL	DA	Shellfish: Mussel (Mytilus edulis)	7-fluoro-4-nitro- 2,1,3-benzoxadiazole (NBD-F) and	James
		tissue, clams Siliqua patula, and	trifluoroacetic acid and formic acid were applied.	et al,
		marine phytoplankton	Certification of reference shellfish material (MUS-1B)	2000
		Pseudonitzchia australis	(38.3±0.8 mg domoic acid /g) and calibration solution	
			(DACS-1C).	
			Sample was analyzed by LC–FL.	
			Mixture of NBD-F in acetonitrile (1 mg/ ml, 50 ml) and	
			0.1 M sodium borate (50 ml) with sample or standard	
			solution (50 ml) for 3 min with addition of 1 M HCl (50	
			ml) to the mixture. (LC-10AD), column oven (CTO-	
			10A) and fluorescence detector (RF-551).	
			• Isocratic chromatography with acetonitrile-water (40:60)	
			- 0.1% TFA, solvent flow (1.0 ml/min) with a Luna C_{18}	
			column and a precolumn (30x4.6 mm, 5 mm) at 35°C.	
			• Fluorimetric detection (λ_{ex} =470, 530 nm).	
HPLC-	DA	Blue mussels (Mytilus edulis L.),	MSL-300 NMR spectrometer, UV absorbance detection	Quillia
UV-DAD		algae of the family Rhodomelaceae	(200nm), LC-18 solid phase extraction cartridge, pH 6-7,	m et al,
			dry 0.22pm filter, built-in HP1040 DAD and HP79994	1989
			data system, DR5 solvent delivery system, variable	
			volume (1 to 25μL) injector were used.	
			Columns (25cm x 4.6mm I.D. or 2.1 mm I.D.) packed	
			with 5pm 201TP were used at 40°C, column using a 20	
			μL injection and linear gradient elution from 5% to 25%	
			acetonitrile over 25min at 1 ml/ min, 242 nm, duration:	

			5min.	
HPLC-	DA and its isomers,	Mussel (Mytilus chilensis, Venus	HPLC: a solvent delivery pump (P1000), auto-injector	López-
UV	isodomoic acid D and epi-	antique, Pecten jacobaeus and	(AS3000), and a variable wavelength detector (UV100),	Rivera
method	domoic acid	P. maximus)	1.2 ml/min with a Luna- C18(2) column at 40°C, were	et al,
(LC-UV			used.	2005
and LC-			 Injected volume was 50 μl and the chromatographic run 	
ESI-MS)			time was 15.0 min.	
			LC-ESI-MS: using acetonitrile-water (11:89) containing	
			0.035% TFA (pH 2.5), solvent flow (0.2 ml/min), Luna	
			C18(2) column (150·2.0 mm, 5 μ m) at 40°C,	
			• Injected flow at 3 μl/min, capillary temperature: 195°C,	
			source voltage: 4.20 kV, source current: 100 μA.	
HPLC-	DA	Mussels, clams, anchovies and crab	• HPLC: 20μ1 of loop and a reversed-phase C ₁₈ column	Lawren
RIA			(LC-18, 150 x 2.1 mm I.D., 5 pm) were used.	ce et al,
			Monitoring of effluent with a diode array UV absorbent	1994
			detector set to 242 nm.	
			Mobile phase: 0.2% (v/v) formic acid plus 12% (v/v)	
			acetonitrile in water (pH 3.0).	
			• Flow-rate: 0.5 ml/min.	
			• RIA: polyclonal antibodies derived from rabbits, 1.0-8.0	
			ng/ ml in PBS, pH 7.0.	
			Mixing of tubes with a vortex mixer and incubation	
			(4°C).	
HPLC	DA	Blue mussels (Mytilus edulis)	Hepatopancreas: Treatment of the homogenate with a	Nijjar
and BMA			mixture of chloroform and methanol (1:1, v/v).	et al,
			HPLC: Packaging of glass column (75 x 3.0cm I.D.).	1992

		Spectrophotometer: 180 and 300 nm.	
LC/MS/	DA	Samples of 400 g (blue mussels) were used.	Jorgens
MS		Maintainance at -18°C before analysis.	en &
		0.5 ml was taken and the methanol evaporated with	Jensen,
		nitrogen.	2004
		Dissolve of the residue in 200 ml high-performance	
		liquid chromatography mobile phase. The LC system:	
		HP 1100 system.	
		• The mobile phase: acetonitrile/water (85/15) with 0.1%	
		formic acid.	
		• Use of a Waters Spherisorb S5 ODS1, 2.1x250 mm	
		(25°C).	
		• Flow rate: 200μl min ⁻¹ .	
		Injected volume: 25 ml.	
		Mass spectrometry: Use of a triple quadrupole Z-spray	
		mass spectrometer (electrospray capillary: 3.2 kV and	
		the cone at 15 V).	
TLC	DA	Strong anion-exchange (SAX) SPE columns: 3 ml	Quillia
method		portions of methanol, water and methanol-water were	m et al,
		used.	1998
		• Glass TLC plates (10x20 cm with a 250 mm thick layer	
		of silica gel 60 with F254 indicator).	
		Plates: in a sealed glass chamber with a butanol–acetic	
		acid—water system (3:1:1), were allowed to dry in a fume	
		hood for 1 h.	
		Fluorescence-quenched spots: a handheld short-wave	

			UV lamp (254 nm). DA gives a distinct yellow color.	
CE -	DA and isodomoic acids	Mussels, clams and anchovies	CE buffers were purchased: viz., sodium citrate (20 mM,	Zhao et
UVD			pH 2.0), sodium tetra-borate (20 mM, pH 9.0), sodium	al,
			phosphate (20 mM, pH 9.0) and sodium3	1997
			(cyclohexylamino)-l-propanesulfonate (CAPS, 20 mM,	
			pH 11.5).	
			A model PT3000 Polytron homogenizer equipped with a	
			PT-DA- 3012/2T generator.	
			• Injections used a 50mbar push for 0.2 min and separation	
			potentials were 25-30 kV, 0.45 pm filter into a storage	
			bottle and seal tightly (>30 min).	
HPLC	Histamine	Puffer fish (Rockfish, Salmon,	A modified partition column (HPX-72-0 in the -OH)	Wills et
		Lobster and Shrimp)	with a injector, Model 6000A pump, Model 730 data	al,
			module and UV detectors Model 441 operating a t 214	1987
			nm and Model 480 operating at 208 nm were used for	
			the conduction of HPLC.	
			The UV wavelengths were choosen by examining the	
			UV spectrum of each compound in a spectrophotometer.	
			Analysis: 40 min.	
HPLC	Histamine	Tuna, bonito, mackerel and eel	Addition of 2M sodium hydroxide (1 mL) and 10 PL of	Yen &
			benzoyl chloride mixed on a vortex mixer.	Hsieh,
			• Dissolution of residue in 500 JLL of methanol.	1991
			• Injection of 5 μL aliquots for HPLC analysis.	
			L-6200 pump, a Rheodyne Model 7125 syringe loading	
			sample injector, a Model L- 4200 UV-VIS detector set	
			at 254 nm, and a Mode1 D-2000 integrator.	

NMR Spectrosc opy, LC- MS and HR-MS	PbTxs: metabolites <i>S</i> -desoxybrevetoxin-B2 and brevetoxin-B2	Mussels (Perna canaliculus)	 A 100 RP-18 reverse-phasec olumn using a gradient elution system with a mixture of methanol and water in 10 min. Preparative separations by stepwising gradient elution on 200-mg C18. Dissolution of S Desoxybrevetoxin-B2: N-Boc-L-cysteine (10 mg) in water (2.5 ml). Addition of 0.05 M Na₂CO₃ (1.5 ml). Brevetoxin-B2. S-Desoxybrevetoxin-B2:1 mg brevetoxin-B was dissolved in methanol (0.5 ml), and 1% H₂O₂ (4 ml). 3 μm C18(2) 50 x 2 mm column maintained at 30°C. Connection to Micromass Quattro Ultima triple-quadrupole mass spectrometer using electrospray ionization. 	Selwoo d et al, 2008
Microplat e fluoresce nce method (active phosphod iestera- ses)	YTX	Scallop Patinopecten yessoensis and mussels Mytilus galloprovincialis	 Quantification of the fluorescence fall in a plate reader. Phosphodiesterase, 30:50- cyclic nucleotide specific from bovine brain, and other chemicals from Sigma. Measurement of the PDE activity in a 96-well plate with a final volume of 100l. 	Alfonso et al, 2004
HRGC- HRMS	PBDEs	Marine turtles, dugongs and seafood	 Column (10 m, 0.18 mm ID, 0.18 lm film thickness). Positive identification and quantification of PBDE 	Herman ussen et

			analytes - retention time: 0.2 s of the retention time of	al,
			the corresponding 13C12-labelled-surrogate standard.	2008
GC -	PCBs	Fish: Barbus barbus	Gas chromatograph was develoed with two electron	Lana et
ECD			capture detectors (μΕCD, ⁶³ Ni, temp. 300°C) and two	al,
			columns.	2008
			• Use of a HT-8 fused silica capillary column (50m x 0.22	
			mm x 0.25 μm) in order to analyze column of different	
			polarity (DB-17MS, 60 m x 0.25 mm x 0.25 μm).	
			• PTV injection: 90°C for 6s, increased to 350°C at	
			750°C/min, held for 5 min and then to 220°C at	
			10°C/min.	
			• Injection: 2 μL. Carrier gas: hydrogen - linear speed 27	
			cm/s.	
GC-MS	PBDEs and PCBs	Mysterysnail (Cipangopaludina	Storage of biota samples at -20 °C until analysis.	Wu et
		chinensis) mud carp (Cirrhinus	• CBs 65 and 204 for PCBs; CDE 99 (2,2',4,4',5-	al,
		molitorella) crucian carp (Carassius	pentachlorodiphenyl ether), 13C12-PCB 141 and 13C12-	2008
		auratus), northern snakehead	BDE 209 for PBDEs.	
		(Ophicephalus argus), water snake	• ADB-XLB capillary column (30 m×250 μm i.d.×0.25	
		(Enhydris chinensis) mud carp,	μm film thickness) was applied for the determination of	
		(Cirrhinus molitorella)	the tri- to hepta-BDEs.	
			Quantification of PCBs by a GC coupled with mass	
			selective detector.	
			A DB-5 MS column.	
			• Injector and detector temperatures: at 260 and 230 °C,	
			respectively.	
			• Electron energy: 70 eV (scan time of 0.8 s).	

GC/LRM S-ITD in the MS/MS	PCBs, PCDDs and PCDFs	Dicologoglossa cuneata, Solea vulgaris, Diplodus sargus, Sardina pilchardus, Lophius piscatorius, Donax trunculus, Chamelea gallina, Sepia officinalis and Parapenaeus longirostris	 Analyses on a GC CP-3800 formed with an ion trap detector and an 8200CX autosampler. Injection in the splitless mode (4 μl; injection rate: 0.5 μl/s; 100°C (2min), at 200°C/min to 300°C; splitless time, 2 min) on a BPX-5 capillary column. Column temperature: 60°C (3min), at 30°C/min to 200°C (3 min), at 3°C/min to 230°C (15 min), at 5°C/min to 270°C (15 min). 	Bordaja ndi et al, 2006
HRGC/H RMS	DLPCBs, PCDFs, dioxin- like PCBs	Scomber Japonicus, Clupea pallasii, Conger myriaster, Thunnus thynnus, Trichiurus lepturus, Scomberomorus niphoniu, Parasilurus asotus, Scapharca subcrenata, Todarodes pacificus, Tapes philippinarum, Scapharca subcrenata	 Seventeen 2, 3, 7, 8-substituted PCDD/F congeners and 12 DLPCB congeners (PCB 77, 81, 123, 118, 114, 105, 126, 167, 156, 157, 169 and 189) were used. Digestion of edible tissues (approximately 80 g) in 200 ml of 1 N ethanolic KOH solution for 2 h by mechanical shaking. Purification of the eluted fractions on an activated alumina column with 3% methylene chloride in hexane and 50% methylene chloride in hexane. Capillary columns: SP-2331column. 	Moon & Choi, 2008
GC and GC-ECD	PCBs, OCPs, p,p'-DDE, HCB, HCHs, CHLs and DDTs	Shellfish and chub-mackerel	 1 M KOH in ethanol for 24h. GC column was a DB-1 capillary column (30 m ·0.25 mm) coated with dimethyl polysiloxane at 0.25 μm film thickness. GC–ECD: 70°C (held for 1 min) -180°C at 20°C/min, increase to 260 C at a rate of 2°C/min. Injector and detector temperatures: 250°C and 300°C, respectively. 	Yang et al, 2006

			 Helium: carrier gas at a flow rate of 2 ml/min. Nitrogen: make-up gas at a flow rate of 60 ml/min. 	
ICP-MS	Heavy metals As, Cd, Cu, Hg, and Pb	Green mussel and dogfish	 Vessel containing 10 ml concentrated HNO₃. Ramp to 115°C in 10 min, hold for 10 min. Analysis of samples: ICP-MS. 	Bayen et al, 2005
GC/MS	POPs (PCBs, PBDEs, and organochlorine pesticides)	Green mussel	 DB-5ms capillary column with gas flow of helium at 35 cm/min. The GC oven program: 50°C held for 1 min, 20°C/min to 150°C held for 5 min, 3°C/min to 250°C, 10°C/min to 300°C held for 10 min. Operation of the detector in EI mode with SIM. 	
SSID- GC- ICPMS	²⁰² Hg-enriched methylmercury (MeHg)	Cod fish (Gadus sp.)	 Both the standard and spiked solutions were maintained at -20°C. Addition of 20 ml of 25% wt/v KOH methanol solution. Ultrasonication of the mixture at 60°C for 2 h. Mechanical shaking (1h). Addition of 1 ml of methanol, 2 g of NaCl, and 1 ml of 6 M HCl. Ultrasonication of the resulting mixture at 60 °C for 5 min. GC column: HP 5msi (30 m× 0.25 mm i.d., 0.25 μm film thickness). Temperature: 70 °C for the phenyl derivatization and 100 °C (1 min hold) to 300°C (30 °C min-1, hold 2 min). 	Inagaki et al, 2008
ICP-MS and	Methylmercury (CH ₃ Hg ⁺)	Tuna fish	 C18 reversed-phase column (150 mm×4.6 mm, 2 μm). Equilibrated of the HPLC column with at least 50 ml of 	Reyes et al,

HPLC-			mobile phase [50 mM pyridine, 0.5% (w/v) L-cysteine,	2008
ICP-MS			5% (v/v) methanol at pH 3] prior to the injection of	
			mercury compounds.	
			The chromatographic separation obtained with a flow	
			rate of 1 ml /min.	
			HPLC: inert modular system equipped with a 709 IC	
			pump, a software interface and a 838 autosampler	
HPLC-	Inorganic mercury,	Dogfish and muscle	P680 HPLC Pump.	Yin et
AFS	MeHg, EtHg and PhHg		 Column CLC-ODS, 15 cm length, 6.0mm I.D., 5μm, 	al,
(ICP-MS,			Mobile phase A: 3% (v/v) CH ₃ CN, 240 mol L-1	2008
UV-			HCOONH ₄ –HCOOH (pH 2.8), 0.01% 2	
CVG)			mercaptoethanol; B: 30% (v/v) CH ₃ CN, 240 mol L	
			¹ HCOONH ₄ –HCOOH (pH 2.8), 0.01% 2-	
			mercaptoethanol; 0–11 min: Flow rate: 1.4 ml min ⁻¹ ,	
			Injection 100μL. Power of UV lamp Mercury lamp,	
			20W. PTFE tube, 0.5m length, 0.8mm I.D., 1.2mm O.D.	
GC- AED	Methylmercury (Hg ²⁺)	Fish species (tilapia, sword fish,	Methylmercury (II) chloride, tetramethyl ammonium	Kuballa
		mackere, Common mussel, Shrimp,	hydroxide solution (25% in H_2O) and methyl <i>tert</i> -butyl.	et al,
		Coalfish)	A model 6890 GC with a programmable temperature	2008
			vaporizer-based injector and an AED HP-G2350.	
			 Using split less injection mode (1 μL, 1.5 min.) and 	
			helium as carrier gas, 25 °C for 0.01 min followed by an	
			increase of 8.0 °C/s up to 260 °C, and maintained for 10	
			min.	
			 Emissions: 254 nm (Hg) and 248 nm (C) (5.0 Hz). 	
FI-CV-	МеНд	Prionace Mglauca, Isurus	Digestion of samples (0.2 g wet fish) with 2.5 ml of 65%	Carvalh

AFS		oxyrhinchu, Centroscymnus	HNO_3 and 1 ml of 35% H_2O_2 .	o et al,
		coelolepsis, Centrophorus squamosus, Gauleorhinus galeus, Xiphias gladius, Aphanopus carbo,	 A flow injection system: multichannel peristaltic pump and a six-way injection valve. Flow rate: 2.5 ml/min of 3 <i>M</i> HCl and of the reductant 	2008
		Raja oxyrhinchus, Deania calceus,	solution (3% SnCl ₂ in 15% (HCl).	
		Sardina pilchardus, Trachurus trachurus, Octopus vulgaris		
GC-ECD	DDT and ratios of o,p'- versus p,p'-isomers in	Fish: Gambusia affinis	Analyses: GCs with cool on-column capillary injection systems and autosamplers.	Hinck et al,
	total DDT		 Analytical columns: 60-m x 0.25-mm x 0.25 mm DB-5 (5% phenyl, 95% methylsilicone) and DB-17 (50% phenyl, 50% methylsilicone;). The hydrogen carrier gas was pressure regulated at 25 psi. Temperature: initial 60°C, immediately 150°C at 15°C/min, 250°C at 1°C/min, and 320°C at 10°C/min. 	2008
Immunoa ssay Methods: microtiter plate	STX and NEO for Paralytic shellfish poisoning (PSP)	Shellfish: Clams, mussels, and oysters	The use of IAC columns for sample cleanup is is very important for trace level measurement of analytes in foods and environmental samples.	Usleber et al, 2001
enzyme immunoa says (ELISA and IAC)				
MIST	STX for PSP TM	Crassostria gigas, Protothaca	Extracts tissues: were preserved at 5°C and examined by	Jellett

Alert TM		staminea, Mytilus sp., Panopea	applying MIST Alerte.	et al,
test kits		generosa, Saxidomus giganteus,	Tests were evaluated after 20 min.	2002
with the		Clinocardium sp., Siliqua patula,	• The samples were frozen at -20°C.	
regulator		Mytilus trossulus, Chlamys sp.,		
y AOAC®		Panopea generosa, Chlamys sp.,		
mouse		Chlamys opercularis, Chlamys sp.,		
bioassay		Mactromeris polynyma, Ensis sp.,		
		Paphies subtrianguata, Mya		
		arenaria, Panopea generosa, Perna		
		canaliculus, Saccostrea glomerata,		
		Paphies australis, Tresus capax,		
		Macoma nasuta, Mytilus edulis,		
		Austovenus stutchburyi, Pecten		
		novaezelandiae		
MIST	Neurotoxins (STX and	Sellfish: Bivalve Molluscs (Mytilus	MIST Alert kit: contain strips that contain antibodies and	Mackin
Alert TM	derivatives) PSP TM	edulis), offshore scallop (Pecten	colored particles, a band with toxin analogs, and a band	tosh et
		maximus), queen scallops	of antibody detection reagent.	al,
		(Aquapecten opercularis) razor fish	Addition of 100 ml of each mixture to the sample pad on	2002
		(Ensis arcuata) native oysters	the strips and examination after 20 min for the presence	
		(Ostrea edulis), and pacific oysters	or absence of 'T' and 'C' lines.	
		(Crassostrea gigas)		
The	STX (dc-STX, neo-STX,	Shellfish: Mussel and clam	A polyclonal antiserum against STX, raised in rabbits	Usleber
conjugati	GTX1, GTX4, B2)		immunized with STX coupled to keyhole limpet	et al,
on of			haemocyanin by formaldehyde processing.	1991
STX to			 Preparation of activated HRP (4 mg). 	
horseradi				
sh				

peroxidas e (HRP) by a novel adaptatio n of the periodate method in a microtitra				
tion ELISA				
and in a test strip				
EIA				
Electroch emical immunos ensors, a screen- printed electrode (SPE) system	OA, PbTx, domoic acid (DA) and TTX	Seafood and mussels	 Disposable screen-printed carbon electrode with amperometric detection of paminophenol at 300 mV vs. Ag/AgCl, formed by the label, alkaline phosphatase, was applied for signal assessment. Analysis period: 30 min. Purchase of Sephadex PD-10 columns. 	Kreuzer et al, 2002
c-ELISA and LC- MS	DA	Shellfish: Mussels	Injection of Sprague-Dawley rats with saline, 0.5, 1 or 2 mg/kg DOM.	Hesp <i>et al</i> , 2005

idc-EIA	Blue mussels (Mytilus edulis)	 LC-MS: a 50 mg C18 SPE column and the eluent. cELISA: anti-DOM antibodies conjugated to horseradish peroxidase for 1 h in the dark, 0.3M H₂SO₄ and absorbance at 450 nm read after 5 minutes. An anti-domoic acid monoclonal antibody DA-3, EIA readerModel 550, C18 cartridges-Containing 360 mg octadecylsilica, Hitrap affinity column-NHS-activated, 1 ml capacity were required. LC: 200 ml sample loop, reversed-phase ODS column with cartridge guard column, variable-wavelength UV detector set to 242 nm. idc-EIA: 0.05 ml DA solutions as standards (0, 0.1, 1, and 10 ng/ ml in PBS), goat anti-mouse IgG peroxidase conjugate, color reaction, and absorbance was measured at 450 nm 	Kawats u & Haman o, 2000
Electroch emical	Mussels	 SPEs for the immunosensor development. Spectrophotometric ELISA applied prior to transferring 	Micheli et al,
immunos		the assay to the SPEs.	2004
ensor		Analysis period: 150 min.	
coupled		A model 550-Microplate Reader was applied at 405 nm,	
to		BSA-DA conjugate (2.5µg/ml, 50 µl per well) in CB, pH	
differenti		9.6.	
al pulse		• Voltam-metry: 0-600mV, scan rate: 300 mV/s, pulse	
voltamme		amplitude: 70mV, pulse width: 50 ms	
try (DPV)			
cdELISA	Blue mussel (Mytilus edulis), clam	Conjugation of DA to KLH and BSA, were tested in four	Yu et

and	(Meretrix lusoria), oyster	rabbits, with two rabbits for each immune-gen (2 L of BS	al,
ciELISA	(Crassostrea gigas)	for 72 h at 4 °C with two changes of buffer).	2004
		iELISA: Addition of 0.1 ml of diluted antidomoic acid	
		antiserum.	
		After incubation (37 °C for 1 h)and washing with PBS-	
		Tween, 0.1 ml of goat anti-rabbit IgG-HRP addtition of	
		conjugate and incubation at 37°C for 45 min was	
		performed.	
		 cdELISA: Incubation at 4°C, application of PBS and 	
		blocking with BSA-PBS (0.17 ml per well; 0.1% BSA in	
		0.01 M PBS) at 37°C for 30 min.	
		• HPLC: 25 cm x 4.0 mm, 5 μm, C18 reverse phase	
		column conjucted with a 4 cm x 4.0 mm, 5 μm, mobile	
		phase.	
ELISA	Shellfish and diatom	Use of polyclonal antibodies (pAbs).	Kania
	Pseudonitzschia pungens	 Microwell plates remained at 4°C with 5μg/ ml DAOVA 	et al,
		dissolved in carbonate buffer (200 ml).	2003
		After incubation and washing the plates, addition of 200	
		ml of a goat a-rabbit IgG labeled with biotin was	
		performed.	
		Buffer for electrochemical detection: 50mM Tris,100mM	
		NaCl, 1mM MgCl ₂ , 0.1mM ZnCl ₂ (pH 9.0).	
PbTxs	Oysters. Dinoflagellate Karenia	Secondary biotinylated antibodies, streptavidine-	Naar et
	brevis and Mammalian Body Fluid	horseradish peroxidase conjugate, and chromogenic	al,
		enzyme substrate, were used.	2002
		Flat-bottomed 96-well polystyrene immunoplates were	

Enzyme Immunoa ssay Stick test	Ciguatoxin (CTX) and related polyether toxins	Fish: Ctenochaetus strigosus and Thunnus thynnus Dinoflagellate: Gambierdiscus toxicus	 coated with 100 μL of PbTx-3-bovine serum albumin (BSA) conjugate or BSA alone by incubation for 1 hr at 25°C. Insertion of each stick 5 times into the flesh at 1 s/insertion. Examination of all samples with six sticks; three in the dorsal-anterior and three in the ventral-posterior portions of the fish. 	Hokam a, 1988
ELISA	CTX3C	Reef fish	 Use of haptenic groups (surface area > 400 Å2) for the production of mAbs. Immunization of Balb/c mice with KLH-conjugate mixed with RIBI adjuvant. Using to capture CTX3C and mAb 3D11 as a detector. Conjuction of mAb 3D11 (1 mg) with HRP using an EZ-Link Plus Activated Peroxidase Kit. Coating with 50 μL of mAb 10C9 (4.3 μg/ ml) in PBS at 4°C. The absorbance at 450 nm was calculated with a microtiter plate reader. 	Oguri et al, 2003
Bead- ELISA, Vero cell cytotoxici ty assay, PCR and colony	Shiga toxin-producing Escherichia coli (STEC) and E. coli heat-stable toxin (STa)	Seafood: Clam and fish	 The organisms remained in Luria Bertani (LB) broth in a shaker incubator at 37°C. Growth of standard E. coli strains carrying cloned stx₁ and stx₂ genes in LB-medium. 	Kumar et al, 2004

hybridisat				
ion for				
the				
detection				
of stx ₁				
and stx ₂				
genes				
A	Cholera toxin (CT) from	Seafood samples were obtained from	Preparation of ganglioside-incorporated liposomes by	Ahn &
gangliosi	Vibrio cholerae	a local supermarket: Clam, Shrimp	extrusion freezing and thawing, from a mixture of DPPC,	Durst,
de-		and Salmon	DPPG, cholesterol and GM1, in a molar ratio of	2008
liposome			40.3:4.2:40.9:1.3.	
immunoa			Preparation of test strips.	
ssay				
Gangliosi	Botulinum neurotoxin	Salmon	In a sandwich-based, hybrid receptor immunoassay, BT	Ahn-
de-	(BT) produced by		detection can be performed through the formation of a	Yoon et
liposome	Clostridium botulinum		colored band on a nitrocellulose membrane strip.	al,
immunoa			The assay can be performed in 20 min.	2004
ssay			Immobilization of anti-BT antibodies in narrow zones on	
			plastic-backed nitrocellulose (NC) membrane sheets.	
Mab	Clostridium botulinum	Seafood	Generation of hybridomas secreting specific Mab against	Wong,
	type E toxin		the type E epitope.	1996
			Selection of 5 potent stable hybridomas, which were	
			cloned, propagated, and preserved in liquid nitrogen.	
Vitro	Botulinum protein		Dilution of culture supernatants to 1 ng ml 31	Wictom
assays:	neurotoxin (types A to G)		(neurotoxin) in 50 mM, 150 mM NaCl, 1 mg ml31	e et al,
MBA,			bovine serum albumin, pH 7.4 and preservation at -70°C.	1999

highly specific zinc endoprote ases and ELISA	PCBs (PCB-126) and TBT	Channel catfish (<i>Ictalurus</i> punctatus)	 Formation of a peptide substrate representing residues 60 to 94 of human VAMP isoform 1. Preparation of columns wth cyanogens bromide activated Sepharose 4B. The columns were maintained at 4°C. Determination of ethoxyresorufin <i>O</i>-deethylase activity. 210µl assay buffer (150 ml of 2.67 mM 7-ethoxyresorufin in 50 mM Tris–1M NaCl buffer, pH 7.8). 	Burton et al, 2002
			 A microplate reader and mouse monoclonal antibody C10-7 were used at 405. Visualization of alkaline phosphatase activity by adding <i>p</i>-nitrophenol phosphate dissolved in diethanol- amine buffer (1 mg/ml, pH 9.0). 	
Real-	Toxins from Pfiesteria	Seawater, shellfish ant tropical	Elution of DNA with 100 ml of elution buffer and	Bowers
Time	piscicida and P.	fishes	maintainance at 220°C.	et al,
PCR	shumwayae		The primers and probes were formed by applying the	2000
Assays			Primer Express software and an alignment of 100	
and SEM			dinoflagellates ribosomal DNA sequences.	
Multiplex	Shiga Toxin Genes stx1	Seafood	The combined stringent magnesium concentration (2)	Jinnem
Real-	and stx2 and STEC		mM) and temperature (63°C for 25 s) led to false-	an et al,
Time	O157:H7/H Serotype		negative result for <i>stx2</i> with strain EDL 933.	2003
PCR				
Method				
PCR	Shiga-toxigenic	Fresh fish, clams and water	Homogenization of 25 g of samples in 225 ml modified	Kumar
	Escherichia coli (STEC)		EC broth and incubation for 6 h at 37°C.	et al,

	stx, hlyA and rfb _{O157}		Escherichia coli EDL 933 was used as positive control.	2001
	genes		PCR, primers: 5'GCG ATC CCA A 3', 5' CCG CAG	
			CCA A 3', 5'AAC GCG CAA C 3' and 5' GTG GAT	
			GCG A 3'. E. coli were grown in 3 ml Luria Bertani	
			broth for 18 h and centrifuged at 10 000 g for 10 min.	
			Lysate was amplified in a 50 µl reaction mixture	
			containing 1'PCR buffer, 200 μmol l ⁻¹ deoxynucleotide	
			triphosphate mix, 0·5 μmol l ⁻¹ of each primer and 2·5 U	
			taq polymerase	
PCR	Cholera (cfx) and zonula	Shellfish: Autochthonous bacterial	Thiosulphatelcitrateibile salts/sucrose (TCBS) agar was	Rivera
	occludens (zot) toxin	species in aquatic environments	used.	et al,
	from Vibrio cholerae 01,		Collection of cells from an 18-h 106ml LB culture and	1995
	0139 and non-01 strains		resuspention in 9.5 ml of TE buffer amended with 250 μl	
			10% SDS solution and 2.5 μl proteinase K.	
			• ctx primers: CTX1 and CTX ₃ .	
			 zot primers: ZOT₁ and ZOT₄. 	
TaqMan	Cholera toxin (ctx),	Shellfish: Raw Oysters, and	Duration of the procedure: 3 h.	Lyon,
PCR	zonula occludens toxin	Synthetic Seawater	• Quantification of <i>Vibrio</i> cells.	2001
assay	(zot), and accessory		Growth of <i>Vibrio</i> species in BHI broth supplemented	
	cholera toxin (ace). Vibrio		with 3% (wt/vol) NaCl at 35°C, (dilution into APW, and	
	cholerae O1, O139, Non-		plated onto TBSC and BHI).	
	O1, and Non-O139		The PCR mixture was maintained at 50°C for 5 min and	
			denatured at 95°C for 10 min.	
PCR	Clostridium botulinum	In modified-atmosphere-packaged	Application of the hydrolysis of an internal fluoregenic	Kimura
	neurotoxin type E (bont/e)	fish (jack mackerel)	probe and monitoring of the increase in the intensity of	et al,
	gene)		fluorescence during Pc.	2001

	Achievement of accurate and quantification of the <i>C</i> .
	botulinum type E toxin gene.

Methods	Toxin	The limit of detection (LOD)	References
Mouse bioassay	STX, TTX and CTX	0.2 μg/ml STX equiv. /100 g	Manger et al,
			2003
			Sullivan et al,
			1985
	OA and its derivatives (DTX and DTXJ)	< 1 μg/g	Croci et al, 1997
	Botulinum toxin (BT)	1μg	Lipps, 2002
	PSP toxins	0.4 μg/g	Wright, 1995
	DA	> 50 pg/g	
	B 1-2	6.1 μM	Luckas, 1992
	Cl and C2	59 μM and 3.9 μM	
	GTXI, II, III, IV	0.5 μM, 1.0 μM, 0.6 μM, 0.5 μM respectively	
	NEO and STX	0.4 μM and 0.5 μM	
Mouse or rat bioassays	AZAs	0.16 mg/kg	Report of the
			Joint
			FAO/IOC/WHO
			2004
Histopathological	Dinophysis-toxin-1 (DTX ₁) and Pectenotoxin-1	50 μg/kg	Terao et al, 1986
studies: Sequrntial	(PTX ₁)		
ultrastructural changes			
were studied in mouse			
digestive organs			
Cell-bioassay	Maitotoxin	0.07 MU equiv./ ml	Okumura et al,
	Saxitoxin	0.2 MU equiv./ ml	2005
Neuroblastoma assays	PbTx-3	0.03 mg/kg	Report of the
			Joint
			FAO/IOC/WHO,

			2004
1. Bioassay: mouse	STX, TTX, and	1. 0.3 -50 μg/ml STX- TTX0.010 -10 μg/ml for	Shimojo &
neuroblastoma tissue	CTX-a	CTX	Iwaoka, 2000
culture assay for		2. 0.004 μg/kg STX, 0.010 μg/kg TTX, 0.12	
sodium channel using		μg/kg CTX	
RBCs.			
2.HPLC			
1) Bioassay cell-	Neurotoxic STXs, GTX1 to GTX6 and	1) 72 μg/g	Humpage et al,
based Neuro-	decarbamoyl	2) 2.0 μg/g	2007
2A	(dc)-GTX1 to dcGTX4, C toxins (C1 to C4)		
neuroblastoma			
toxicity assay			
2) LC-MS/MS			
Tissue culture assay:	OA	0.5 ng /100 μ1	Croci et al, 1997
cytotoxicity technique			
witch based on the			
direct microscopic			
observation of toxin-			
induced morphological			
changes in BGM cells			
1) Microplate	TTX and STX	1) 5 ng STX equiv./ mL	Powell &
scintillation		2) A wavelength of 330 nm	Doucette, 1999
technology		3) 50 nM STX equiv.	
2) HPLC			
Protocol:			
fluorescent			

derivatives by			
post-column			
oxidation, both	1		
toxins			
3) HPLC			
1) Mouse	All the PSP toxins (B1, B2,C1,C2, GTX I, GTX II,	1) 35 μg saxitoxin (STX)/100g	Sullivan et al,
bioassay	GTX III, GTX IV, NEO,STX)	2) < 10 to 56 μg STX/100g	1985
2) HPLC			
Mouse bioassay and	Botulinum neurotoxin	10 pg of neurotoxin/	Wictome et al,
ELISA		ml (0.5 MLD50/ ml)	1999
Comparison of HPLC	Neurotoxins (GTX II, GTX III,STX) N-l hydroxy	1) 20 μg per 100g meat/ GTX II, GTX III and	Sullivan et al,
and Mouse Bioassay	toxins (neosaxitoxin and gonyautoxins I and IV)	STX (HPLC)	1983
	sulfocarbamoyl toxins (Cl, C2, Bl)	2) 200 μg/100g meat GTX I, GTX IV and NEO	
		(HPLC)	
		3) 80 μg toxin/100g (Bioassay)	
HPLC	Histamine	0.05- 0.04 (μg) (208-214 nm)	Wills et al, 1987
	GTXs	80 μg/100 g	Lassus et al,
			1989
	STX	7.1 x 10 ⁶ μg STX	Anderson et al,
		Equiv./ cell	1989
HPLC-FLD	OA	40 ng/g	Lawrence &
			Scott, 1993
HPLC-IMS	OA	10 ng/g for OA toxin	Pleasance et al,
			1990
HRGC/HRMS	PCDDs /Fs	0.004 pg/g wet	Moon & Choi,
	HCDD/Fs	0.01 pg/g wet	2008

	OCDD/F and non-ortho PCBs	0.02 pg/g wet	
	mono-ortho PCBs	0.04 pg/g wet	
HPLC	GTX ₁ , GTX ₂ , GTX ₃ and GTX ₄	0.17 pg STX equivalents cell ⁻¹	Cembella <i>et al</i> , 1987
	STX	40 μg saxitoxin per 100 g	Luckas, 1992
	STX	0.014 Mμ (20-μl injection)	
	NE0	0.065 μM (20-μl injection)	
	GTX	0.006 μM (20-μl injection)	
	C 1-2		
	Bl	0.040 μM (20-μl injection)	
	B2	0.150 μM (20-μl injection)	
	GTX2/3	0.2 -1.9 mg/100 g tissues	Wu et al, 2005
	OA	3.2 - 17.5 mg/100g tissues	
HPLC (pH 2.5)	DA and its isomers	< 25 ng/ml (0.62 μg/g)	López-Rivera et al, 2005
HPLC	²⁰² Hg	0.46±0.02 μg/L	Reyes et al,
	Hg ²⁺ and CH ₃ Hg ⁺	0.78±0.08 μg/L	2008
HPLC-UV	Brevetoxins	0.2 ng/ ml	Naar <i>et al</i> , 2002
HPLC-UV or -MS	DA	0.6-2.5 μg/g	Hess et al, 2005
HPCE-UV	PSP toxins	200 nm	Thibault et al,
			1991
	DA	0.3 ng	Quilliam <i>et al</i> , 1989
HPCE-RIA		0.05-0.1 μg/g	Lawrence et al, 1994
HPLC-AFS	Hg	0.085 μgL ⁻¹	Yin et al, 2008

	МеНд	0.033 μgL ⁻¹	
	EtHg	0.029 μgL ⁻¹	
	PhHg	$0.038~\mu\mathrm{gL}^{-1}$	
CE with ion-spray MS	OA	16 ng	Pleasance <i>et al</i> , 1992
CE - UVD	DA	220 ng/ ml or 3pg or 150 ng/g	Zhao et al, 1997
LC–MS with ionspray ionization	OA, GTX, DTXs PTXs and AC1	at m/z 803 for toxin	Draisci <i>et al</i> , 1999
LC/MS	OA, DTXs, YTXs, PTXs, AZAs	40 μg/kg for OA, PTX-2, and AZA-1	Stobo et al, 2005
		100 μg/kg for YTX	
	DA	< 0.008 μg DA/ml	López-Rivera et
		(0.2 μg DA/g tissue)	al, 2005
LC-MS/MS	OA, DTX, PTX2 and pectenotoxin-2seco acids	< 1 pg 0.002 μg/ml	Puente et al,
		0.007 μg/ml OA	2004
		0.054 μg/ml DTX2	
LC and HPLC	OA and DA	0 .162 μg/g OA	Dickey et al,
		2 .1 pg/cell DA	1992
LC with fluorimetric (SRM) and (μLC-MS- MS)	OA and its isomer, dinophysistoxin-2 (DTX-2)	0.025 ng	James <i>et al</i> , 1997
LC-UV-DAD	PTX-2 and OA	200 nm	Draisci <i>et al</i> , 1996
LC-FL	DA	1 ng/ ml	Quilliam <i>et al</i> , 1989
LC-UV	OA	0.5 μg/g tissue	James et al,
	DA	0.02-0.03 μg/g	2000

LC-ISP-MS	OA, DTX-I and their isomers	0.04 μg of toxin per g	Draisci et al,
			1995
LC-MS-MS	DA, OA, DTX 1-2, PTX-2, PTX-2 seco acid, PTX-	0.3 ng/NT DA	Krock et al,
	11, YTX, AZA-1	0.085 ng/NT OA	2008
		0.15 ng/NT DTX 1-2	
		0.25 ng/NT PTX-2	
		0.07 ng/NT PTX-2	
		0.13 ng/NT PTX-11	
		0.05 ng/NT YTX	
		0.015 ng/NT AZA-1	
	OA	12 μg kg ⁻¹	Jorgensen et al,
			2005
	OA and DTX1	5 μg kg ⁻¹	Jorgensen &
			Jensen, 2004
GC- AED	Hg ²⁺	6.1 μg/kg	Kuballa et al,
			2008
GC/LRMS-ITD in the	PCBs, PCDDs and PCDFs	0.03-0.3 μg/l	Bordajandi et al,
MS/MS			2006
GC-IT-MS	All organochlorine	0.1 ng g ⁻¹	Chan et al, 1999
GC/MS	Chlordane	0.04 ng/g ww	Bayen et al,
	DDTs	0.04 to 0.09 ng/g ww	2005
	PCNB	0.04 ng/g ww	
	PCBs	0.01 to 0.2 ng/g ww	
	PBDEs	0.01 to 0.03 ng/g ww	
	Methoxychlor	0.12 ng/g ww	
GC- ECD	PCBs	1 μg/kg	Lana et al, 2008

	o,p'-DDE	0.81 ng g ⁻¹ ww	Hinck et al,
	o,p'-DDD	0.10 ng g ⁻¹ ww	2008
	o,p'-DDT	0.10 ng g ⁻¹ ww	
	p,p'-DDE	2.4 ng g ⁻¹ ww	
	p,p'-DDD	0.18 ng g ⁻¹ ww	
	p,p'-DDT	0.47 ng g ⁻¹ ww	
	pentachlorobenzene	0.07 ng g ⁻¹ ww	
	hexachlorobenzene	0.14 ng g ⁻¹ ww	
	total PCBs;	61 ng g ⁻¹ ww	
TLC-UV	DA	0.3 μg	Quilliam et al,
			1998
HRGC-HRMS	PBDEs	0.01-3.4 ng g ⁻¹ lipid weight	Hermanussen et
			al, 2008
MEKC with UV	OA and dinophysistoxin-2	40 pg	Bouaïcha et al,
		190 nm. of UV	1997
A neurophysiological	Saxitoxin (PbTX3) brevetoxin and DA	50 nM	Kerr et al, 1999
method: in vitro rat			
hippocampal slice			
preparation			
ELISA	Botulinum toxin	0.04μg	Lipps, 2002
	Brevetoxins (PbTx)	2.5 μg/100 g	Naar et al, 2002
	CTX3C	5 ng/ ml (5 nM)	Oguri et al, 2003
	DA	0.6 ng/ml	Micheli et al,
			2004
cdELISA		0.02 ng/ ml	Yu et al, 2004
ciELISA		<25 ng/g	

ELISA or ABC system		0.6 ng/ ml (ppm) or 0.8-300 ppb DA	Kania et al, 2003
ELISA the test strip	STX	3 ng/g or 7 pg/ml or 0.35 pg/assay (ELISA) and 4 ng/g	Usleber et al,
assay EIA		or 200 pg/ml (EIA)	1991
Electrochemical immunosensors	OA, PbTx, DA and Ttx	2 ppb DA, 1.5 ppb OA, 0.016 ppb Ttx, ppb PbTx	Kreuzer <i>et al</i> , 2002
Electrochemical	DA	5 ng/ml	Micheli <i>et al</i> ,
immunosensor- DPV		3 lig/illi	2004
Enzyme Immunoassay	Ciguatoxin (CTX)	0.125 ug/kg	Hokama, 1988
Stick test			
Immunoassay Methods	STX, NEO, dc-STX, GTX 2/3	7 pg/ ml STX (EIAs)	Usleber et al,
		200 pg/ ml NEO (EIAs)	2001
		80 ng/g STX (ELIFA)	
		250 ng/g dc-STX, GTX 2/3, and NEO (ELIFA)	
Ganglioside-liposome immunoassay	Cholera toxin	3×10 ³ fg/ ml	Ahn & Durst, 2008
Ganglioside-liposome	Botulinum neurotoxin (BT)	15 pg/ ml (immunoliposome assay)	Ahn-Yoon et al,
immunoassay and		10 pg/ ml	2004
mouse bioassay		(mouse bioassay)	
PP2A	OA	20 μg OA/ 100 g (0.2 pg/g)	Honkanen et al,
			1996
Fluorimetric assay	Saxitoxin	1 ng saxitoxin equivalents/ml	Louzao et al,
(FLD)			2001
	STX, NEO, GTX 1/4, GTX 2 and 3, C toxins, and B	1.01 ng/ml	Indrasena &
	toxins		Gill, 1998
FI-CV-AFS	Mercury (Hg)	0.035 mg/g	Carvalho et al,
			2008

Microplate fluorescence	YTXs	>0.5 μM (fluorescence by high performance liquid	Alfonso et al,
method		chromatography 2 µM (mousse bioassay)	2004
A microtiter plate-based	STX	5 ng saxitoxin/ml 40μg STX equiv./100 g tissue	Doucette et al,
receptor binding assay		(mouse bioassay)	1997
Mab	C.botulinum type E toxin	1 MLDs/ml (5-10 pg/ml)	Wong, 1996
MIST Alert TM and	STX	>40 μg STX equiv./100 g (MIST Alert TM)	Mackintosh et
mouse bioassay		80 μg STX equiv./100 g (MBA)	al, 2002
MIST Alert TM test kits		40 μg STX equiv./100 g (MIST Alert TM)	Jellett et al, 2002
with mouse bioassay		32 μg STX equiv./100 g (mouse bioassay)	
Spectrometry	PSP toxins	40-80 pg PSP per 100 g	Kania et al, 2003
PP2A	OA	0.02 μg/g OA	Honkanen et al,
			1996
ICP-MS	As	0.05 μg/g ww	Bayen et al,
	Pb	0.18 μg/g ww	2005
	Cd	0.11 μg/g ww	
	Cu	0.30 μg/g ww	
	Hg	0.02 μg/g ww	
HRP system	DA	0.2 ppb	Ciminiello et al,
			2007
Real-Time PCR Assays	Toxins from Pfiesteria piscicida	0.6 cell	Bowers et al,
			2000
Multiplex Real-Time	Shiga toxin-producing E. coli (STEC)	6 CFU/ reaction	Jinneman et al,
PCR Method			2003
PCR assay	Clostridium (botulinum neurotoxin type E (bont/e)	10 ² CFU/ml	Kimura et al,
	gene)		2001
TaqMan PCR assay	Vibrio cholerae O1, O139, Non-O1, and Non-O139	6 CFU/g and 10 CFU/ ml	Lyon, 2001

		Table 5.1. Outbr	eaks of seafood	toxins, assessment	of toxins in seafood and clinical s	symptoms of toxicity	7	
Outbrea	Responsible toxin	Fish or shellfish	Year/ date	Region /	Symptoms	Deaths/ incidents	Corrective actions of	Refer
k				Country			incidents/Pharmacology	ence
Ciguate	Ciguatoxins	Amberjack	23/7/1774	New Hebrides	Heating and reddening of the	Patients: 6 men	Recovery in 4 days	Watte
ra fish	(CTXs)				face, with headache and			rs,
poisoni					inflammation of the whole			1995
ng					skin; vomiting and diarrhea			
(CFP)					followed, with pangs in the			
					intestines; pain in the body			
CFP.		Blackish fish	1801	Island of	Convulsions, potential death	150 men	-	Russe
During		(Vieille)		Rodriquez,				11 &
the				Mauritius				Egen,
British								1991
Naval								
invasio								
n of								
Mauriti								
us								
CFP	1	Mackerel	1967	Queensland	While viscera such as liver,	2 cases	No available preventive	Leha
					intestines and gonads		or remedial medical	ne &
							treatment	Lewis
								,

							2000
	Tropical fish	1980-1990	Western Pacific,	Symptoms of poisoning	Several cases	Stomach pumping and	Bour
	(barracudas,		France	appear 2-30 h after ingestion		early administration of	dy et
	groupers, sea			of toxic fish. Numbness, a		apomorphine.	al,
	perch, moray eels,			prickling sensation in the lips,		Antispasmodics and	1992
	sharks)			tongue and throat, general		antiemetics, and	
				weakness and nausea,		vitamins Br, Bg, B12	
				cramps, abdominal pains,		complex, colchicine,	
				vomiting and profuse		acetylsalicylic acid and	
				diarrhea) and neurological		calcium gluconate	
				disorders: itching (pruritus),		injections.	
				articular pains and asthenia,		Acetylcholine secretion	
				can lead to paralysis, coma		(lidocaine and	
				and death		tocainide, phentolamine	
						and calcium gluconate	
	Barracuda	6/3/1982	Bahamas	Nausea, vomiting, and	Numerous crew	Evacuation for	Clive
				muscle weakness	members	hospitalization and	r,
						treatment	2007
	Clam, Ruditapes	1983	Manila,	Consistence with ciguatera	30 persons,	Pralidoxime	Streft
	philippina-rum and		Indonesia	fish poisoning	4-65 years		aris &
	barracuda						Zenet
							os,
							2006
CFP	Dried barracuda	1983	Canada	Neurologic symptoms	30 persons	Hospitalized without	Cana
An	brought back from					direct danger	da
Ontario	Jamaica and red						Healt

market	snapper						h,
							1997
CFP	Barracuda	29/10/1985	Vermont	Consistence with ciguatera	2 persons, a	Tocainide and	Clive
Both				fish poisoning	woman 48 years	glucocorticoids	r,
had					and a man 30		2007
eaten					years		
fish at a							
local							
restaura							
nt							
CFP	Serranidae fish:	1986-1994	Island of	Gastrointestinal symptoms:	159 Outbreaks		Quod
	Acanthuridae and		Reunion (SW	diarrhea, nausea/vomiting			&
	Siganida (Variola		Indian ocean)	and abdominal pain.			Turqu
	louti, Plectropomus		Mascareignes	Neurological symptoms:			et,
	sp., Epinephelus		islands	paresthesia, with numbness			1996
	sp.)			and tingling of the			
				extremities, and dysesthesia			
				with inversion of sensation of			
				cold/warm			
	Barracuda	1990	Coast of North	Typical symptoms	2 persons	Antiemetic	Leha
			Carolina				ne &
							Lewis
							,
							2000
	Barracuda, dolphin		North Carolina	Gastrointestinal and	10 persons	Treating with a	Morri
	fish (mahimahi)		coastal waters	neurologic symptoms		syndrome resembling	s et

	and yellow-fin tuna	ı				CFP	al,
							1990
	Amberjack	1993	Florida	Prickling of lips, tongue and		Antiemetics and	Clive
	(Seriola sp.)			throat, numbness, headache,		antidiarrheals,	r,
				arthralgia, erythema		phentolamine, reserpine	2007
						and calcium gluconate	
	Serranidae and		Alijos Rocks,		A fishing boat	-	Lech
	Labridae		300 miles off		crew		uga-
			East Magdalena				Deve
			Bay, Southern				ze et
			Baja California				al,
							1995
	Shark		Madagascar	Burning perioral pain,	188 persons,	-	Sobel
				parasthesias, ataxia, cranial	Fifty patients		&
				nerve palsies, coma,	(27%) died		Paint
				convulsions, and respiratory			er,
				distress			2005
CFP	Oven-baked	1996	Quebec	Neurologic symptoms:	5 persons	diphenhydramine	Cana
Montre	barracuda			paresthesia in the form of		chlorhydrate	da
al				numbness in the hands and		(Benadryl®),	Healt
restaura				feet, pruritus, and sensitivity		loperamide	h,
nt				to air, epigastric burning,		(Imodium®), oxygen	1997
				copious vomiting, diarrhea,		and intravenous	
				abdominal pain, shivering		medication	
				and dyspnea			
CFP.	Amberjack		Hawaii	Gastrointestinal symptoms:	69-year-old	Atropine 1 mg IV,	Noon

Consum				Nausea, vomiting, diarrhea,	Japanese-	Promethazine	e,
ption of				abdominal pain. Neurologic	American	(Phenergan), 10 mg	1996
amberja				symptoms: Paresthesias	woman	IV, was given for the	
ck				hot/cold temperature		nausea and vomiting.	
				sensation reversal, weakness,			
				arthralgias, myalgias, dental			
				pain, sensation of loose teeth,			
				blurred vision, photophobia,			
				neck stiffness, headache,			
				chills, diaphoresis, pruritis of			
				hands and feet.			
				Cardiovascular symptoms:			
				bradycardia, hypotension			
CFP					I		
	Coral trout	1997	Australia	Gastrointestinal and	Australian	Oral treatments	Leha
	(Plectropomus sp.)			neurological symptoms	family		ne &
							Lewis
							,
							2000
	Barracuda in		Anti-Poison		30 persons	250 ml of 20%	De
	Mexico		Center of			mannitol	Haro
			Marseille,				et al,
			France				1997
	Barracuda and red	21/10/1997	Texas	Gastrointestinal symptoms	17 people	No hospitalization,	Smith
	snapper caught			(nausea, vomiting, diarrhea,		supportive measures	&
1	_		1	_		Í	1

		Bank of the			neurologic symptoms (muscle			ma,
		Bahamas			pain, weakness, dizziness,			1998
					numbness or itching of the			
					mouth, hands, or feet)			
CFP in		Snapper and	1998	Houston, Texas	Gastrointestinal symptoms,	Two cases		MM
dinner		barracuda fillets			including diarrhea, abdominal	(woman aged 50		WR,
party in		both caught from			pain, nausea, and vomiting,	years and a man		2006
Housto		an oil-rig platform			arm and leg weakness,	aged 56 years)		
n,		off the Texas Gulf			muscle aches and stiffness,			
Texas		Coast			burning on urination and hot-			
					cold temperature sensation			
					reversal			
CFP	-	Reef fish,	•		Diarrhea, vomiting, and	101 outbreaks:	Intravenous treatment	Sobel
		especially			cramping, hypotension,	374 persons, 30	with mannitol	&
		barracuda			bradycardia, and tachycardia	of whom were		Paint
						hospitalized and		er,
						1 of whom died		2005
		Coral trout and reef	3-4/ 1999	Hong Kong	Gastrointestinal symptoms	200 people	Hospital	Leha
		fish				affected and 100		ne &
						hospitalised		Lewis
								,
								2000
		Barracuda	2000	Cuba	Weakness, pruritus, perioral	Four Italians	Oral fluids, antiemetics,	Buter
					and distal extremity		and antihistamines.	a et
					paresthesias		Intravenous mannitol	al,
								2000

	C-CTX-1 and C-	Dinoflag.	2001	Western Atlantic	Gastrointestinal,	Numerous	Intravenous injection of	Pottie
	CTX-2	Gambierdiscus		and the	cardiovascular, and	outbreaks	D-mannitol	r et
		toxicus:		Caribbean	neurological signs and			al,
		barracudas, jacks,		waters	symptoms			2001
		snappers, groupers						
CFP.	Cyanobacteria as	Giant clams	2001-2005	Loyalty Islands	Gastrointestinal disorders,	35 people	Herbal medicine: Over	Laure
In a	Hydrocoleum K	(Tridacna spp.)		Province, New	general fatigue, pain in the		64 species of plants are	nt et
tribe	tzing			Caledonia	limbs and joints, reversal of		used for anti-diarrheal,	al,
from					hot and cold sensations and		anti-dysenteric or	2008
Lifou					tingling sensation upon		antispasmodic effects,	
					contact with water.		for arthralgias and	
					Sometimes, cardiovascular		myalgias, analgesia,	
					symptoms like hypotension		and antiallergic effects	
					were also noted			
CFP	CTXs	Reef fishes:	2004	Hong Kong	Gastrointestinal and	823 outbreaks	Vasopressors, vitamins	Wong
		Cheilinus			neurological symptoms.	involving 3159	B1, B6, B12 complex,	et al,
		undulatus,			Hypothermia (rectal body	persons	and C, calcium	2005
		Epinephelus			temperature below 33°C),		gluconate, colchicine,	
		coioides,			diarrhoea, reduced locomotor		corticosteroids and	
		Plectropomus			activity, body weight		aspirin	
		areolatus,			depression at 4 days, and			
		Plectropomus			mouse death time within 24 h			
		leopardus						
CFP.	1	Barracuda	10/8/2004	South Carolina	Gastrointestinal symptoms	Two persons	Intravenous fluids,	MM
Barracu					such as nausea, vomiting, and		promethazine for	WR,
da					diarrhea and neurologic		nausea, gatifloxacin,	2006

caught					symptoms such as weakness,		and low doses of	
approxi					tingling, pruritus and tooth		dopamine	
mately					pain, heartbeat, hypotension,			
60					dizziness, severe, generalized			
miles					pruritus			
southea								
st of								
Charlest								
on,								
South								
Carolin								
a								
CFP.	-	Amberjack	1/2004	Coast of the	Diarrhea, nausea/vomiting,	5 people	Hospitalized	Pérez
Two		(Seriola Rivoliana)		Canary Islands,	metallic taste, heart rhythm			-
fisherm				Spain	disturbances, systemic,			Arell
en					fatigue itching, dizziness and			ano et
capture					neurologic manifestations			al,
d a 26-					(myalgia, peripheral			2005
kg					paresthesia, perioral			
amberja					numbness and reversal of hot			
ck					and cold sensations)			
CFP	-	Eggs of barracuda	2005	Southern Taiwan	Nausea, vomiting, watery	Three members	Atropine totaling 40 mg	Hung
		fish			diarrhea, and myalgias about	of a family	over 2 days	et al,
					1 hour. Numbness of the lips			2005
					and extremities followed the			
					gastrointestinal symptoms			
					about 2 hours after ingestion.			

					Further symptoms:			
					hyperthermia, hypotension,			
					bradycardia, and			
					hyperreflexia			
		Big reef fish	2006	Groote Eylandt	Muscle and abdominal pains,	14 cases	Royal Darwin Hospital	Opa
		Diagramma		in the East	nausea, vomiting, diarrhea.	(Indigenous	(RDH) for observation	et al,
		labiosum		Arnhem region	Numbness of: mouth,	Australians)	and management. All	2006
				of the Northern	headache, sweating, difficult		people were treated	
				Territory	walking, weakness, muscle		normal saline to	
					pains, chills dizziness,		maintain blood pressure	
					numbness of feet, inability to		and cardiotropics	
					move arms/legs, temperature		(atropine)	
					inversion, fever, salivation,			
					shortness of breath, numbness			
					of hands, burning /pain with			
					cold water, itchy skin			
Scombr	Histamine	Tuna fish	1966-1991	Switzerland	Most patients had erythema	76 incidents	-	Maire
oid fish					(87%), half complained of			et al,
poisoni					headache and one third had			1992
ng					gastroin-tetinal symptoms.			
(SFP)								
SFP. In			1970-1973	United States	Patients, 86% experienced	40 children. In		Clive
a school					nausea, 55% diarrhea, 44%	1973, more		r,
lunch					headaches and 32% rashes	than 200		2007
progra						consumers		
m								

SFP	Histamine and	Canned mackerel	1973	Wellington area	Gastrointestinal and	Three incidents	Anti-histamine therapy	Foo,
	saurine	and smoked			neurological symptoms			1975
		kahawai						
HFP	Histamine	Tailor (Pomatomus	1973-1975	Australia	Rash, urticaria, oedema and	Several incidents	Medical attention.	Leha
(Histam		saltatrix), salmon			localised inflammation),		Treatment not always	ne &
ine fish		(Arripis			gastrointestinal (nausea,		necessary	Olley,
poisoni		truttaceus), tuna			vomiting, diarrhoea),			2000
ng)					haemodynamic (hypotension)			
HFP		Canned skipjack	1974	Solomon Islands	Neurological (headache,		Antihistamine	
		tuna		in New Zealand	palpitations, tingling,		treatment (diphenhy	
					burning, itching)		dramine,	
					bronchospasm and respiratory		chlorpheniramine,	
					distress		cimetidine) and induced	
							emesis	
SFP		Tuna and mackerel	1976-	Britain	Gastrointestinal and	250 suspected	Antihistamines,	Hwan
			1986		neurological symptoms	incidents	hydration, antiemetics	g et
								al,
								1995
SFP. A	Histamine <i>K</i> .	Tuna sashimi	1978	San		1 outbreak	-	Taylo
Japanes	pneumoniae			Francisco				r &
e								Speck
restaura								hard,
nt								1983
SFP.	Histamine	Pacific amberjack	31/12 1985	Alabama and	Diastolic hypotension, and	10 people	Antihistamine,	Clive
Three		fish	and	Tennessee	bronchospasm		hydration, antiemetics	r,
restaura			4/1/1986					2007

nts								
nts SFP		Frozen mahi mahi imported from Taiwan Puffer fish	7 /1987	Albuquerque in New Mexico Britain	Nausea, vomiting, diarrhea, headache, fever, flushing, and rapid pulse rate Rash, diarrhoea, flushing and headache	Two people 258 incidents. Of 240 fish samples from these incidents, 101 contained 5 mg histamine /100 g	Patients treated with Benadryl, activated charcoal, and ipecac in a hospital emergency room. Antihitamine therapy	Leha ne & Olley, 2000
	Ichthyosarcotoxis m	Cape yellowtail (Seriola lalandii)	1990	Tygerberg, South Africa	Skin rash, diarrhoea, palpitations, headache, nausea and abdominal cramps, paraesthesia, an unusual taste sensation and breathing difficulties	fish 10 incidents, involving 22 patients		Mulle r et al, 1992
HFP	Histamine	Smoked fish	3/1990- 6/1993	New Zealand	Typical symptoms: allergy	19 outbreaks	Carboxyl, imidazole, amine	Leha ne & Olley, 2000
SFP.		Australian salmon, Arripis truttaceus	1992	Western Australian	Erythema and urticaria of the skin, facial flushing and sweating, palpitations, hot	7 patients	Parenterally administered promethazine	Smart , 1992

				flushes of the body,		(antihistamines) or	
				headache, nausea, vomiting		repeated doses of	
				and dizziness.		promethazine	
SFP.	The flesh of	7/1994	Changhua	Rashes, urticaria, nausea,	12 people	-	Hwan
The	Istiophorus		Prefecture,	vomiting, diarrhea, flushing,			g et
suspect	platypterus		Western Taiwan	tingling and itching of the			al,
ed				skin			1995
fillets							
were							
from a							
seafood							
supplier							
of							
Pingtun							
g							
Prefectu							
re in							
souther							
n							
Taiwan							
SFP.	Fish of Makaira	1996	Taiwan	Flush, dizziness, blurred	55 people	Antihistamines	Wu et
Questio	Euthynnus			vision and skin rashes after			al,
nnaire				eating lunch			1997
intervie							
ws were							
given to							
persons							

who ate							
lunch in							
the							
same							
cafeteri							
a							
SFP	Tuna	1997	United Kingdom	Headache, flushing, rash, and	Two cases	Antihistamines	Stell,
				diarrhoea	(45 and 31 male	(chlorpheniramine and	1997
					year old)	cimetidine)	
SFP at	Puffer fish	25/11/1997	Taiwan	Hyperemia, particularly on	94 cases	Antihistamines	Wu &
one				the face and neck, nausea and			Chen,
kinderg				vomiting, abdominal pain,			2003
arten				pruritus, headache and			
				dizziness and diarrhea			
SFP	Blue fish, sardines,	1998-2002	United States	Tingling and burning	167 outbreaks		Sobel
	anchovies,			sensations around the mouth,	703 persons, 38		&
	amberjack, and			headache, facial flushing,	of whom were		Paint
	mahi-mahi			palpitations, profuse	hospitalized		er,
				sweating, truncal rash and			2005
				pruritis, abdominal cramps,			
				nausea, and diarrhea			
Histami	Yellowfin tuna	2001	Yokohama,	Palpitations, dyspnea,	Eight cases	200 mg of	Ohnu
ne	(Thunnus		Kanagawa	headache and facial flushesb		hydrocortisone sodium	ma et
poisoni	cdbacares)			without diarrhea or vomiting		succinate	al,
ng at a				Headache, flushing,	Six patients	200 mg of	2001
restaura				palpitations, peppery tast,		hydrocortisone sodium	

nt					nausea, diarrhea and		succinate, Saiseikai	
					erythema		Kanagawaken Hospital	
SFP	-	General manufactural	12/2001	Tr.:	De la discrission de la constant	2		Turi
SFP		Canned mackerel	12/2001	Taipei	Rash, urticaria, nausea,	3 patients		Tsai
				Prefecture,	vomiting, diarrhea, flushing,			et al,
				northern Taiwan	and tingling and itching of			2005
					the skin			
HFP		Yellow fin tuna	2003	Australia	Abnormal Taste,	Four patients	Metoprolol 50 mg bd,	Hall,
		(Thunnus			paraesthesiae or numbness	(41, 52, 59 and	aspirin 150 mg daily,	2003
		albacares) with			diarrhoea, headache, rash and	27 years old)	trandolapril 1 mg daily	
		wasabe and			hypotension		and Specific treatment	
		Japanese spices					(a combination of H1	
							and H2 blockers	
							promethazine 10-50 mg	
							and ranitidine 150-300	
							mg)	
					Circumoral paraesthesia	Two persons	Symptoms had resolved	
					and diarrhoea		by midnight	
SFP		Escolar fish	11/8/2003	California, USA	A peppery taste, numbness of	42 people	H2-antagonist such as	Feld
		(Lepidocybium			the tongue, headache,		cimetidine or	man
		flavobrunneum)			flushing and sweating,		ranitidine,	et al,
					dizziness, nausea, diarrhoea,		acetaminophen,	2004
					and shortness of breath		diphenhydramine	
		Cold-smoked tuna	2004	Denmark	Gastrointestinal and	3 cases –		Embo
					neurological symptoms	11 persons		rg &
								Dalga
								ard,

								2006
		Billfish: Makaira	5/2004	Pingtung,	Rash, nausea, diarrhea, and	59 people		Tsai
		nigricans		southern Taiwan	flushing, but all recovered			et al,
		Xiphias gladius	12/2004	Taichung,	within 24 h			2007
				central Taiwan				
SFP at	-	Raw tuna	2005	Iceland	Erythema over the face and	4 cases		Sigm
an					neck within two hours,			undsd
Icelandi					sweating, a feeling of intense			óttir
c					thirst and palpitations			et al,
restaura								2005
nt in a								
mixed								
salad								
SFP	1	Tuna (Thunnus	3 /2006	Chiayi	rash, nausea, diarrhea,	7 cases		Chen
		thynnus)		Prefecture,	flushing, and tingling and			et al,
				southern Taiwan	itching of skin			2008
		Tuna, mackerel,	2007	Napoli, Italy	Slurred speech, blurred	2 persons: 18-16	Patient went to a	Iannu
		skipjack, bonito,			vision, loss of muscular	years old	hospital equipped with	zzi et
		marlin			strength, wheezing,		a hyperbaric chamber.	al,
					tachypnea, marked		Fluid therapy corrected	2007
					hypotension		the DO ₂ /VO ₂ unbalance	
PSP	STX	Shellfish	1970-1990	Canada	A tingling sensation around	60 persons	Continuous mechanical	Repor
(Paralyt					the lips, gums, and tongue,		support of respiration is	t of
ic					numbness in fingertips and		advisable in severe	the
shellfis					toes, which progresses to the		cases	Joint
h					arms, legs and neck within 4-			FAO/

poisoni					6 hours			IOC/
ng)								WHO
								,
								2004
	Saxitoxin	Mytilus edulis	1981	Prince Edward	Vomiting, respiratory	106 illnesses and	Ozone treatments,	Shum
				Island, Canada	difficulties and paralysis,	3 human deaths	mechanical ventilation,	way,
					hypoxia and hypercapma		gastric decon	1990
							tamination	
PSP and	Saxitoxin and	Horseshoe crabs	1981-1987	Thailand	Gastrointestinal and	8 outbreaks	Appropriate preventive	Swad
SFP	tetradotoxin	and mussels			neurological symptoms			diwu
								dhipo
								ng et
								al,
								1989
PSP	Saxitoxin (STX)	Clam soup	1987	Guatemala	Weak hypotensive, death,	187 cases with	In severe cases	Clive
					cardiovascular collapse,	26 deaths	respiratory paralysis is	r,
					despite respiratory support		common, and death	2007
							may occur if respiratory	
							support is not provided.	
	STX	Crustaceans,	1998-2002	United States	Tingling or numbness begin	43 persons	No antidote exists, and	Sobel
		gastropods and fish			periorally and spread to the		supportive treatment,	&
					neck and face, headache,		including artificial	Paint
					nausea, vomiting, and		ventilation (when	er,
					diarrhea		necessary), is the	2005
							mainstay of therapy	
Puffer	Tetrodotoxins	Puffer fish and	1974 -1983	Pacific around	Numbness of face and	646 incidents,	Usually within 3 h.	Whitt

fish	(TTXs)	fugu		China and	extremities, floating	and of them 179	Artificial respiration	le &
poisoni				Japan	sensation, weakness,	deaths		Galla
ng					ascending paralysis,			cher,
(PFP)					respiratory failure,			2000
					cardiovascular collapse, death			
PFP.		Pufferfish and	1977	Italy	Bright red, sometimes itchy	Three deaths	No known antidote;	Clive
They		mislabelled as			rash on face neck and chest		Supportive therapy:	r,
consum		angler fish			hot flushing and sweating,		gastric decontamination	2007
mated					tingling of the lips, mouth		and aggressive airway	
of					and tongue, headache,		management	
frozen					burning in the mouth and			
pufferfi					peppery taste			
sh								
importe								
d from								
Taiwan								
PFP		Pufferfish and fugu	1983 -1992	Japan	Ingling of the lips and tongue,	449 cases and 49	No antidote for	Mine
					general warmth, euphoria and	deaths	tetrodotoxin; treatment	s et
					exhilaration, perioral		is aimed at limiting the	al,
					paresthesia, nausea and		absorption of	1997
					dizziness, respiratory failure,		tetrodotoxin by gastric	
					bradycardia and hypotension		lavage	
		Fugu (puffer fish)	29/4/1996	California	Onset of symptoms began	Three cases	All three persons were	Clive
		brought from Japan			approximately 3-20 minutes		transported by	r,
					after ingestion		ambulance to a local	2007

							emergency department	
	Histamine	Fish	1996	Taiwan	Facial flush, dizziness,	Two outbreaks	Antihistamine therapy	Leha
					diarrhoea, headache,		including return of	ne &
					conjunctival hyperaemia and		vision, was rapid	Olley,
					hypotension. Loss of vision			2000
					in association with atrial			
					tachycardia			
	TTX	Puffer fish:	2002	Khulna,	Perioral paraesthesia	Eight families:	There is no specific	Ahas
		blowfish, toadfish,		Bangladesh	weakness of both lower	37 patients.	treatment reffered:	an et
		globefish,			limbs, paraesthesia,	Eight patients	Medical help	al,
		balloonfish,			headache, difficulty in	died		2004
		patkafish and fugu			respiration, nausea and			
					vomiting, blurring of vision,			
					and vertigo			
Amnesi	Domoic acid	Blue mussels	1987	Prince Edward	Gastrointestinal and	156 cases:	Supportive	Clive
c	(DA)	(Mytilus		Island, in eastern	neurological symptoms	22 individuals		r,
shellfis		edulis)		Canada		were		2007
h						hospitalized and		
poisoni						three elderly		
ng						patients		
(ASP)						eventually died		
		Mussels		The Prince	Vomiting, cramps, diarrhea,	107 persons: 19		Sobel
				Edward	agitation, seizures, coma,	persons were		&
				Islands,	profuse respiratory	hospitalized and		Paint
				Canada	secretions, and circulatory	4 persons died		er,
					instability			2005;

								Hum
								mert
								et al,
								1997
Diarrhet	Okadaic acid	Mussels	1995	Netherlands	Acute diarrhoea, nausea,	8 people	Inhibition of essential	Whitt
ic	(OA) and	originating from			vomiting, abdominal pain,		protein phosphatases.	le &
shellfis	dinophysistoxins	Ireland			and chills		Not detected by	Galla
h	(DTXs)						bioassay.	cher,
poisoni								2000
ng								
(DSP)								
NSP	Brevetoxin	Barracuda,	1998-2002	United States	Symptoms typically resolve	2 outbreaks:	Supportive treatment	Sobel
		grouper, sea bass,			within 48 h after onset	persons, 1 of		&
		snapper, and				whom was		Paint
		amberjack				hospitalized		er,
								2005
Haff	Cyanobacterial	Cyanobacterial	1920s-	Polish and	Gastrointestinal and	Large numbers	Antibiotics include	Codd
disease:	toxin	blooms	1940s	Swedish coasts	neurological symptoms	of human cases	cyclic molecules	et al,
people		Oscillatoria spp.				of illness and		1999
ate fish						deaths		
Haff	Biotoxins	Buffalo fish	1984-1992	United States	Myalgia, Muscular stiffness,	Two cases	All patients were	Buch
disease		(Ictiobus			Pain to light touch, Dry	(Texas 1984)	hospitalized, none died,	holz
in a		cyprinellus)			mouth, Painful breathing,	four cases	and the median hospital	et al,
superm					Chest pain, Nausea or	(Texas 1996)	stay was 3 days.	2000
arket					vomiting, Numbness of	two cases	Treatment consisted of	
(Califor					thighs, Numbness of whole	(Los Angeles,	Intravenous fluids, in	

nia) or					body	California, 1985)	addition to mannitol or	
alive						two cases (San	bicarbonate	
from a						Francisco,		
fish						California, 1986)		
tank at								
a								
market								
(Missou								
ri)								
Cyanob	Cyanobacterial	Solomon Dam	1979	Palm Island,	Vomiting, headache,	139 children and	Intravenous therapy	Codd
acte-rial	toxins	C. raciborskii		Queensland,	abdominal pain with tender	10 adults		et al,
				Australia	hepatomegaly, lethargy,			1999
					diarrhoea, acidosis, and			
					injury to the liver, kidneys,			
					lungs, adrenals and intestine			
Cyanob	Lyngbya	Surgeon fish butter	1983	Lahaina, Maui,	Dermatitic, respiratory and	1 outbreak		Osbor
acterial	majuscula	fly fish damsel fish		НІ	eye effects			ne et
bloom		and puffer fish						al,
								2001
Cyanob	Cyanobacterial	Blooms of	1993	Bahia, Brazil	Gastroenteritis outbreak	2000 cases of	Copper sulphate as an	Codd
acterial	toxins	Microcystis and				gastroenteritis,	algicide during water	et al,
poisoni		Anabaena				including 88	treatment	1999
ng						deaths		
Untreat	1	Planktothrix	1994	Sweden	Gastroenteritis outbreak	70 to 80 people	Water treatment	1
ed		agardhii						
water		(Oscillatoria						

from		agardhii)						
the								
eutrophi								
c River								
Kavling								
ean, the								
outlet of								
Lake								
Vombsj								
on								
Cyanob	Cyanobacterial	Lyngbya majuscula	1996-97	Moreton Bay	Rashes, blisters, allergic	Hundreds of		•
acterial	blooms	Cylindrosp-	1997-98	Queensland	reactions resembling hay	swimmers and		
poisoni		ermopsis			fever, asthma, conjunctivitis,	fishermen		
ng		raciborskii			and ear and eye irritation			
(blue-								
green								
algae)								
Cyanob	Cyanobacterial	Microcystis,	2000	China and Brazil	Gastroenteritis, nausea,	Several deaths	Improve water	Codd
acterial	hepatotoxins	Anabaena,			vomiting, fevers, flu-like		treatment to longer	et al,
poisoni		Anabaenops			symptoms, sore throat,		term, including	2005
ng		Cylindrospermopsi			blistered mouth, ear and eye		inreservoir remedial	
		s Raphidiopsis			irritation, rashes, myalgia,		action to reduce	
		and <i>Nodularia</i>			abdominal pains including		cyanobacterial growth	
					painful hepatomegaly,			
					pulmonary consolidation,			
					visual disturbances, kidney			
					damage, and liver damage			

31% by	Vibrio vulnificus	Whitefish, finfish	1980-1994	New York	Mild gastrointestinal	3959 illnesses,		Walla
finfish,	and V.	(clams, oysters,			symptoms, numbness and	76		ce et
Norwal	parahaemolyticus	mussels), bluefish,			tingling	hospitalizations,		al,
k virus		tuna, salmon,				and 4 deaths		1999
42%,		shrimp, crab,						
scombr		lobster seafood						
otoxin		chowder						
44% of								
outbrea								
ks								
Kanaga	Vibrio	Raw oyster	8-9/ 1999	Galicia	Gastrointestinal symptoms	64 cases	Nine case patients were	Loza
wa	parahaemolyticus			(northwest			hospitalized. Antibiotic	no-
phenom				Spain)			susceptibility	León
enon: a								et al,
typical								2003
outdoor								
street								
market								

Legend

Figure 1: Effects of depuration time on domoic acid contents of mussels (*Mytilus galloprovincialis*) stored at 22°C (Blanco et al., 2002) and accumulation of the same toxin in tissues of mussels (*Mytilus edulis*) exposed for 4 days to toxic *Pseudonitzschia multiseries* (at 12°C) (Mafra et al., 2010).

