Grundlagen der Betriebs- und Volkswirtschaftslehre Teil 15

- 1. Grundlagen
- 2. Märkte & Güter
- 3. Ökonomie
- 4. Betriebstechnik
- 5. Management
- 6. Marketing
- 7. Finanz- & Rechnungswesen

Produktionsplanung

Sachliche Produktions-Teilplanung

Teilplan Zielvorschrift Erlösseite offen: Maximiere Gewinn! Produktionsprogrammplanung Erlösseite konstant: Minimiere Kosten! Innerbetriebliche Produktions-Minimiere Transportkosten! Standortplanung Minimiere Summe aus Bereitstellungsplanung Beschaffungs- und Lagerkosten! Fertigungsplanung Minimiere Stückkosten! Planung der Minimiere Entsorgungskosten! **Abfallwirtschaft**

Integration

planungs-

steuerungs-

systeme

Systeme)

(PPS-

durch

und –

Langfristige Produktionsprogrammplanung

 langfristige Planung der für Kunden angebotenen Produkte und Dienstleistungen.
 Teil der strategischen Planung, entscheidend für den Fortbestand des Unternehmens

Produktionsportfolio

Rahmenplanung

- Produktarten
- Produktmengen

Produktionsverfahren

Grundsatzentscheidung zum Fertigungstyp

- Manufakturbetrieb
- Massenfertigung

Fertigungstiefe

Grundsatzentscheidung

- Eigenerstellung
- Zulieferer

Kapazitätsrahmen

Rahmenplanung

- Betriebsmittel
- Stammpersonal

Planungsdeterminanten:

- Erwartete ökonomische und gesellschaftliche Entwicklungen (→ Marktforschung)
- Technische Neuentwicklungen
- Fertigungs- oder Absatzverwandtschaften
- Risikostreuung (z.B. Tennisbekleidung und Schianzüge)

Kurzfristige Produktionsprogrammplanung

- kurzfristige Planung der für Kunden angebotenen Produkte und Dienstleistungen unter optimaler Nutzung des Produktionsengpasses
- → Deckungsbeitragsrechnung

Deckungsbeitrag = Differenz zwischen Stückerlös und variablen Stückkosten

	Anzahl Produkte			
Anzahl Engpässe	Eins	Zwei	Mehrere	
Einer	Maximieren des Periodendeckungsbeitr ags durch Auslastung bis zur Kapazitätsgrenze. Bedingung: DB > 0	Ermitteln der Deckungsbeiträge pro Engpassbelastungseinheit (z.B. Maschinenminuten). Produktion zuerst jenes Produktes, mit dem höchsten Wert DB/Engpassbelastungs-einheit	Ermitteln der Deckungsbeiträge pro Engpassbelastungseinheit (z.B. Maschinenminuten). Produktion zuerst jenes Produktes, mit dem höchsten Wert DB/Engpassbelastungseinheit	
Mehrere	Ermitteln des absoluten Produktionsengpasses. Dort Auslastung bis zur Kapazitätsgrenze. Bedingung: DB > 0	Lösung durch lineare Optimierung m1 Kapazitätsrestriktion Maschine 1 Opt. m1 DB3 Möglicher Lösungsbereich DB4 Kapazitätsrestriktion Maschine 2 DB1 Opt. m2	Lösung durch lineare Optimierung mit der Simplex- Methode	

Fertigungsplanung: Fertigungsverfahren

Fertigungsplanung = Festlegung der Aufbauorganisation (**Fertigungsverfahren** = strategische Ebene) und der Ablauforganisation (**Produktionsablaufplanung** = operative Ebene) der Fertigung

Fertigungstypen

nach Anzahl der gefertigten Produkte

- Einzelfertigung
- Serienfertigung
- Sortenfertigung
- Massenfertigung

nach Organisation der Fertigung

- Werkstattfertigung
- Gruppenfertigung
- Fließfertigung

nach Ortsabhängigkeit der Fertigung

- ortsgebundene Fertigung
- ortsungebundene Fertigung

Art des Verfahrens	Charakteristikum	Beispiel
Einzelfertigung	einzelne Stücke oder Aufträge	Maßanzug Einfamilienhaus
Serienfertigung	mehrere Einheiten verschie- dener Produkte auf unter- schiedlichen Anlagen	PKW und LKW
Sortenfertigung	mehrere Einheiten verschie- dener Produkte auf gleichen Anlagen	Kollektion Wintermäntel oder Buchdruck
Massenfertigung	unbegrenzt viele Einheiten eines (mehrerer) Produkte auf gleichen Anlagen	Bier Koks

Kriterium	Werkstatt- fertigung	Fließ- fertigung
Kapitalintensität	Niedrig	Hoch
Kapitalkosten	Niedrig	Hoch
Personalqualifikation	Hoch	Niedrig
Arbeitsintensität	Hoch	Niedrig
Lohnstückkosten	Hoch	Niedrig
Transportwege	Lang	Kurz
Leerkosten	Hoch	Niedrig
Fixkostenanteil	Niedrig	Hoch
Flexibilität	Hoch	Niedrig

Produktionsplanungs- und –steuerungs-Systeme (PPS-Systeme)

- = ganzheitliche, IT-gestützte Systeme zur integrierten Mengen-, Kapazitäts-, Produktionsprogramm- und Terminplanung
- Ursprünglich: Integration der Produktionsplanung mit Modellen der linearen Programmierung mit simultaner Programm-, Losgrößen- und Maschinenbelegungsplanung (wegen zu großen Problemen u.a. beim Rechenaufwand gescheitert)
- Erste funktionierende Ansätze: einheitliches Datengerüst für die gesamt Produktionsplanung.
 - → MRP (Material Requirements Planning) zur Bestimmung der Sekundärbedarfe anhand vom Primärbedarf über die Stücklistenauflösung

System	Datenverwaltung	Planungsansatz	Zielerreichung
dezentrale Planung	unabhängig je Teilbereich	sukzessiv	gering
simultane PPS- Systeme	integriert	simultan	theoretisch maximal, praktisch gering
traditionelle PPS- Systeme	integriert	sukzessiv	gering bis mittel
neuere PPS-Systeme	integriert	sukzessiv mit Rückkopplungen	mittel bis hoch

Historische Entwicklung

Material Manufactu-Enterprise Ressource **Planning** Requirering ments Resource **Planning Planning ERP II** •ERP **ERP** Planung & Steuerung •MRP II über mehrere **MRP II** Finanzen Unterneh- Engineering •MRP men hinweg Marketing & **MRP** Produktion, Verkauf Terminplanu Material & Human ng & Kompo-Ressource Aktivitätennenten Management kontrolle Mengen Finanzen Zeit 1970 1980 1990 2000 2010

Schwächen traditioneller PPS-Systeme

- Verzicht auf Rückkoppelungen zwischen einzelnen Modulen
- Vernachlässigung der Kapazitätsplanung
- Vernachlässigung von Interdependenzen (z.B. Lagerplatz und Losgröße)
- Häufig nur einfache Heuristiken statt wissenschaftlichbetriebswirtschaftlicher Verfahren
- Durchlaufzeit-Syndrom: Abweichen der tatsächlichen Durchlaufzeiten von den geplanten → Verlängerung der realen Durchlaufzeiten da User sicherheitshalber Fertigungsaufträge frühzeitiger freigeben

Computer Integrated Manufacturing (CIM)

 Vermeidung überflüssiger Organisationsarbeiten und Planungsfehler durch Integration der technischen und betriebswirtschaftlichen Datenverwaltung

Komponente	Aufgabe
CAD	Computer Aided Design (Anfertigung von Konstruktionszeichnungen)
CAM	Computer Aided Manufacturing (Computersteuerung von Werkzeugmaschinen)
CAP	Computer Aided Planning (Arbeitsplanerstellung)
CAQ	Computer Aided Quality Assurance (Computergestützte Qualitätsrechnung)

ERP-System

Enterprise Ressource **P**lanning

= komplexe Anwendungssoftware zur Unterstützung der Ressourcenplanung eines gesamten Unternehmens

Kanban-Verfahren

- Entwickelt bei Toyota
- Anpassung eines PPS-Systems an kleine bebaubare Landflächen, Rohstoffknappheit, Unternehmensverbundenheit und Gruppendenken
 - Just-in-Time-Produktion
 - Sehr kleine Lagerbestände
 - Lean Production
 - · Verringerung der Durchlaufzeit
 - Lean Management
- Werkstücke werden nach dem Hol-Prinzip von der nachgelagerten Produktionsstufe über Laufkarten (japanisch: Kanban) angefordert

Voraussetzung:

- Geringe Bedarfsschwankungen
- Hoher Wiederholungsgrad der Fertigung
- Möglichst konstante Losgrößen

Probleme:

- Anfällig für größere Störungen (Systemzusammenbrüche)
- Keine Reihenfolge- und Maschinenbelegungsplanung

Lean Production

- = konsequente Ausrichtung von Produktionsprozessen am ökonomischen Prinzip durch
- Kostenminimierung durch Aufdecken von Unwirtschaftlichkeiten
- Zusammenführen von Kompetenz und Verantwortung
- Arbeiten in Netzwerken
- Vermeiden von Verschwendung und Fehlern
- Synchronisieren der Abläufe
- Bemühen um kontinuierliche Verbesserung (Kaizen, KVP)
- Umstrukturierung der Prozesse bei Bedarf

7 Elemente der Lean Production:

- 1. Angemessene technische Ausstattung
- 2. Wenig hierarchische Arbeitsorganisation
- 3. Konsequentes Qualitätsmanagement
- 4. Kontinuierlicher Verbesserungsprozess (KVP)
- 5. Qualifikation und Motivation
- 6. Just-in-Time Produktion
- 7. Wertschöpfungs- und Prozessorientierung

Lean Management

- optimale Befriedigung der Nachfragewünsche durch Kostensenkung einerseits und Steigerung der Produktqualität und Service andererseits
- Umfassendes Führungskonzept
- Optimierung des Wertschöpfungsprozesses

Entwicklungsperspektiven beim IT-Einsatz von PPS

- Entwicklung flexibler Fertigungssysteme
- Steuerung von NC-Maschinen (numeric-control)
- Vermeidung hoher Rüstkosten durch CAP und CAM
- Dezentralisierung der Planung
- Elektronische Leitstände
- Gleichzeitiger Einsatz von mehreren unterschiedlichen PPS-Systemen
- Verstärkter Einsatz elektronischer Kommunikationsmedien (Internet, Intranet)
- Bessere grafische Benutzeroberflächen
- Vermehrter Einsatz von Simulationstechniken
- Smart Factory
- Einsatz von Systemen der Künstlichen Intelligenz
 - Expertensysteme
 - Neuronale Netze

14