Chapitre 1

Suites numériques

I. Comportement d'une suite

1) Monotonie

Définitions:

On dit qu'une suite (u_n) définie sur \mathbb{N} est :

- **croissante** si et seulement si, pour tout entier naturel n, $u_{n+1} \ge u_n$.
- **décroissante** si et seulement si, pour tout entier naturel n, $u_{n+1} \le u_n$.

Une suite (u_n) est dite **monotone** lorsqu'elle est croissante ou décroissante.

Remarques:

Deux méthodes permettent l'étude de la monotonie d'une suite,

- **Méthode algébrique** : elle consiste à comparer directement u_n et u_{n+1} .
 - Soit en étudiant le signe de la différence $u_{n+1} u_n$.
 - ∘ Soit en comparant le quotient $\frac{u_{n+1}}{u_n}$ à 1 si, pour tout entier naturel $u_n \ge 0$.
- **Méthode fonctionnelle** : elle s'applique aux suites définies par une formule explicite de la forme $u_n = f(n)$ (f étant une fonction).

Elle consiste à étudier le sens de variation de f sur $[0; +\infty]$.

Le sens de variation de (u_n) s'en déduit.

Exemples:

• Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 2 n^2 + n + 5$.

On a:

$$u_{n+1} - u_n = 2(n+1)^2 + (n+1) + 5 - (2n^2 + n + 5)$$

$$u_{n+1} - u_n = 2n^2 + 4n + 2 + n + 1 + 5 - 2n^2 - n - 5$$

$$u_{n+1} - u_n = 4n + 3$$

 $u_{n+1}-u_n>0$ car $n\ge 0$, d'où $u_{n+1}>u_n$ pour tout $n\in\mathbb{N}$.

Donc (u_n) est strictement croissante.

Comme la fonction f définie par $f(x) = 2 x^2 + x + 5 \text{ sur } \mathbb{R}^+$.

• Soit la suite (v_n) définie sur \mathbb{N} par $\begin{cases} v_0 = -1 \\ v_{n+1} = v_n - 2 \end{cases}$

On a
$$v_{n+1} - v_n = v_n - 2 - v_n = -2$$
.

D'où $v_{n+1}-v_n < 0$ pour tout $n \in \mathbb{N}$. Donc (v_n) est strictement décroissante.

Contrairement à la fonction f définie par : $x \mapsto x - 2$ qui est croissante sur \mathbb{R} .

2) Suites bornées

Définitions:

Soit M et m deux nombres réels. On dit que la suite (u_n) est :

- majorée par M si, pour tout $n \in \mathbb{N}$, $u_n \leq M$. M est appelé un majorant de (u_n) .
- minorée par m si, pour tout $n \in \mathbb{N}$, $u_n \ge m$. m est appelé un minorant de (u_n) .
- **bornée** si elle est à la fois majorée et minorée.

Remarques:

• Une suite majorée admet une infinité de majorants.

En effet, si M est un majorant de (u_n) , tous les réels supérieurs à M sont également des majorants de (u_n) . De même, une suite minorée admet une infinité de minorants,

• Toute suite croissante est minorée par son premier terme et toute suite décroissante est majorée par son premier terme.

Exemples:

• Soit la suite (u_n) , définie pour tout $n \ge 1$, par $u_n = \frac{1}{n}$. Pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} > 0$.

Cette suite est donc minorée par 0, mais aussi par tout réel négatif.

• Soit la suite (u_n) , définie pour tout $n \ge 0$, par $u_n = n^2$. Pour tout $n \in \mathbb{N}$, $n^2 \ge 0$.

Cette suite est donc minorée par 0, qui est, en plus, le **minimum** de la suite, car il est atteint au rang 0.

Représentation graphique d'une suite bornée :

• Sur la droite numérique : tous les nombres u_n sont compris entre m et M.

• Dans le plan : tous les points de coordonnées $(n; u_n)$ sont situés entre les droites d'équations y=m et y=M.

II. Limites finies

1) <u>Définitions et propriétés</u>

Définition:

Soit une suite (u_n) et un réel ℓ .

On dit que (u_n) tend vers ℓ quand n tend vers $+\infty$ si tout intervalle ouvert I contenant ℓ (aussi *petit* soit-il) contient tous les termes u_n à partir d'un certain rang n_0 .

Exemple:

La suite (u_n) représentée ci-dessous semble avoir une limite ℓ . Autrement dit, on peut trouver une valeur de n_0 pour laquelle les termes de la suite sont aussi proches que l'on veut de ℓ .

Remarque:

Pour tout réel $\varepsilon > 0$, on peut trouver un rang n_0 tel que, pour tout entier $n \ge n_0$, on a :

$$\ell - \varepsilon < u_n < \ell + \varepsilon$$
 soit encore $u_n \in]\ell - \varepsilon$; $\ell + \varepsilon$, soit encore $|u_n - \ell| < \varepsilon$.

Propriété :

Si une suite (u_n) a une limite finie ℓ quand n tend vers $+\infty$, cette limite est **unique**.

On la note $\lim_{n\to+\infty} u_n = \emptyset$.

Définitions:

• Une **suite convergente** est une suite qui a pour limite un nombre réel ℓ .

On dit aussi que la suite converge vers ℓ .

• Une **suite divergente** est une suite qui ne converge pas.

Remarques:

- Si (u_n) converge vers ℓ , les suites (u_{n+1}) , (u_{2n}) , (u_{2n+1}) convergent aussi vers ℓ .
- Une suite convergente est bornée.

2) <u>Limites des suites usuelles</u>

Propriétés:

- $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$
- Pour tout $p \in \mathbb{N}^*$, les suites $\left(\frac{1}{n^p}\right)$ convergent vers 0.

$$\lim_{n\to+\infty}\frac{1}{n^p}=0$$

Algorithme:

Déterminer le rang à partir duquel $|q^n| < \varepsilon$ pour |q| < 1

```
n \leftarrow 0

Tant que |q^n| \ge \varepsilon faire

n \leftarrow n+1

Fin Tant que
```

Calculatrice:


```
=====APPROX ======

"Q="?→Q↓

"EPS="?→E↓

Ø→N↓

While Abs (Q^N)≥E↓

N+1→N↓

WhileEnd↓

"NØ=":N↓

TOP BTM SEC INU A↔3 CHO
```


III. Suites divergentes

1) Limite infinie

Définition:

Une suite (u_n) a pour limite $+\infty$ lorsque, pour tout réel A, l'intervalle de la forme A; $+\infty$ contient tous les termes a_n à partir d'un certain rang.

Autrement dit, pour tout réel A, on peut trouver un rang n_0 tel que, pour tout entier $n \ge n_0$, on a :

$$u_n \ge A$$
.

On le note
$$\lim_{n\to+\infty} u_n = +\infty$$
.

Exemple:

La suite (u_n) représentée ci-contre semble avoir pour limite $+\infty$.

En effet pour un réel A choisi, on peut déterminer le rang n_0 à partir duquel tous les termes sont supérieurs ou égaux à A.

Remarques:

- Lorsque $\lim_{n \to +\infty} u_n = +\infty$ on dit que la suite (u_n) diverge vers $+\infty$.
- Concrètement, les termes deviennent aussi grands qu'on le souhaite à partir d'un certain rang.
- De la même façon :

 u_n tend vers $-\infty$ quand n tend vers $+\infty$ si tout intervalle de la forme $]-\infty$; A[contient tous les termes u_n à partir d'un certain rang n_0 .

On le note
$$\lim_{n\to+\infty} u_n = -\infty$$
.

Limites des suites usuelles

Propriété :

Les suites
$$(\sqrt{n})$$
, (n^2) , (n^3) , ..., (n^p) , où $p \in \mathbb{N}^*$, ont pour limite $+\infty$.

2) Suites sans limite

Une suite n'a pas forcément de limite. On dit également qu'elle **diverge**.

Exemples:

- La suite (u_n) définie sur \mathbb{N} , par $u_n = (-1)^n$ est divergente.
 - En effet, un intervalle contenant 1 mais pas -1 ne contiendrait qu'un terme sur deux de la suite et ne répondrait donc pas à la définition de la limite d'une suite.
- La suite (v_n) définie sur \mathbb{N} , par $v_n = \sin n$ est divergente.

En effet les termes de la suite se répartissent uniformément dans l'intervalle [-1;1].

La suite (v_n) n'a donc pas de limite.

IV. Opérations sur les limites

Soit (u_n) et (v_n) deux suites. Soit ℓ et ℓ ' deux réels.

1) Somme de deux suites

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	e	l	l	+∞	-∞	+∞
et $\lim_{n\to+\infty}v_n=$	β'	+∞	-∞	+∞	-∞	-∞
alors $\lim_{n \to +\infty} (u_n + v_n) =$	l+l'	+∞	-∞	+∞	-∞	On ne peut pas conclure directement

Remarque:

Dans le cas où l'on ne peut pas conclure, on dit que l'on a une forme indéterminée.

2) Produit de deux suites

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	e	$\ell > 0$ ou $+\infty$	ℓ < 0 ou -∞	$\ell > 0$ ou $+\infty$	ℓ < 0 ou -∞	0
et $\lim_{n\to+\infty} v_n =$	6.	+∞	+∞	-∞	-∞	+∞ ou -∞
alors $\lim_{n\to+\infty} (u_n \times v_n) =$	l × l'	+∞	-∞	-∞	+∞	On ne peut pas conclure directement

3) Quotient de deux suites

On suppose que pour tout entier n, $v_n \neq 0$.

Cas où la suite *u* est positive à partir d'un certain rang.

$ \operatorname{Si} \lim_{n \to +\infty} u_n = $	l	e	0	$\ell > 0$ ou $+\infty$	$\ell > 0$ ou $+\infty$	+∞	+∞
$ \operatorname{et} \lim_{n \to +\infty} v_n = $	ℓ'≠0	+∞ ou -∞	0	$ \begin{array}{c} 0 \text{ avec} \\ v_n > 0 \end{array} $	0 avec $v_n < 0$	ℓ ′≠0	+∞ ou -∞
alors $\lim_{n\to+\infty} \frac{u_n}{v_n} =$	<u>e</u> ,	0	On ne peut pas conclure directement	+∞	-∞	$ \begin{array}{c} si \ell' > 0 \\ \hline -\infty \\ si \ell' < 0 \end{array} $	On ne peut pas conclure directement

Dans le cas où la suite *u* est négative à partir d'un certain rang, on construit un tableau analogue en utilisant la règle des signes.

Exemples:

Soit les suites (u_n) et (v_n) définies sur \mathbb{N} , par $u_n = \frac{2}{3n+5}$ et $v_n = n - \sqrt{n}$

- Pour la suite (u_n) , on a $\lim_{n\to +\infty} 2=2$ et par produit et somme $\lim_{n\to +\infty} (3n+5)=+\infty$. Par quotient, on obtient $\lim_{n\to +\infty} u_n=0$.
- Pour la suite (v_n) , on est dans un cas où on ne peut pas conclure directement. En effet, on ajoute une suite qui tend vers $+\infty$ ($w_n = n$) à une suite qui tend vers $-\infty$ ($u_n = -\sqrt{n}$).

En factorisant par n et en simplifiant, on a $v_n = n \times \left(1 - \frac{\sqrt{n}}{n}\right) = n \times \left(1 - \frac{1}{\sqrt{n}}\right)$

Or $\lim_{n \to +\infty} n = +\infty$ et par quotient puis somme $\lim_{n \to +\infty} \left(1 - \frac{1}{\sqrt{n}}\right) = 1$.

Par produit, on obtient $\lim_{n \to +\infty} v_n = +\infty$

V. Propriétés sur les limites

1) Limite infinie

Propriétés:

Soit deux suites (u_n) et (v_n) et un entier naturel N tels que pour tout entier $n \ge N$, $u_n \le v_n$.

• Théorème de minoration :

Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

• Théorème de majoration :

Si
$$\lim_{n\to+\infty} v_n = -\infty$$
 alors $\lim_{n\to+\infty} u_n = -\infty$

Exemple:

Soit la suite (u_n) définie sur \mathbb{N} , par $u_n = n + \sin(n)$.

Pour tout entier n, $\sin(n) \ge -1$, donc $u_n \ge n-1$.

Or $\lim_{n\to+\infty} (n-1) = +\infty$, donc d'après le théorème de minoration :

$$\lim_{n\to+\infty}u_n=+\infty.$$

2) Limite finie

Propriétés:

Soit deux suites (u_n) et (v_n) convergentes respectivement vers ℓ et ℓ' .

Si, à partir d'un certain rang, $u_n \le v_n$, alors $\ell \le \ell'$.

Exemple:

 (u_n) est une suite convergente vers un réel ℓ et, pour tout entier naturel $n, u_n < 2$.

D'après la propriété, on peut affirmer que $\ell \le 2$.

Théorème des gendarmes :

On considère trois suites (u_n) , (v_n) et (w_n) .

Soit un entier N et un réel ℓ .

On suppose que pour tout entier $n \ge N$: $u_n \le v_n \le w_n$.

Si les suites (u_n) et (w_n) convergent vers la même limite ℓ , alors la suite (v_n) converge également vers ℓ .

Remarques:

- Ce théorème permet de montrer que la suite (v_n) a une limite et de connaître cette limite.
- On en déduit que si $|u_n \ell| \le v_n$ à partir d'un certain rang avec $\lim_{n \to +\infty} v_n = 0$ alors $\lim_{n \to +\infty} u_n = \ell$.

VI. Suites arithmétiques

1) Rappels

Définition:

Une suite numérique (u_n) est **arithmétique** s'il existe un nombre r, appelé **raison** de la suite, tel que pour tout nombre entier naturel n, on ait :

$$u_{n+1} = u_n + r$$

Exemple:

La suite définie par $\left\{ \begin{array}{l} u_0=3 \\ u_{n+1}=u_n-5 \end{array} \right.$ est une suite arithmétique de raison -5.

Remarque:

Une suite (u_n) est arithmétique si, et seulement si, la variation absolue entre deux termes consécutifs $u_{n+1}-u_n$ est constante.

Propriété:

Soit (u_n) une suite arithmétique de premier terme u_0 et de raison r.

Pour tout entier naturel n, on a $u_n = u_0 + nr$.

Remarque:

Terme général en fonction de $n: u_n = u_0 + n \times r$ (formule explicite)

Exemple:

Soit la suite arithmétique
$$(u_n)$$
 définie par $\left\{ \begin{array}{l} u_0=3 \\ u_{n+1}=u_n-5 \end{array} \right.$

Son premier terme est $u_0=3$ et sa raison est -5.

On a, pour tout entier naturel n, $u_n = u_0 + nr = 3 + n \times (-5) = 3 - 5n$.

Ce qui permet, par exemple, de calculer directement le 8e terme : $u_7=3+7\times(-5)=-32$.

2) Limites

Propriété:

Soit (u_n) est une suite arithmétique de raison r.

On dit que les **variations** de la suite sont **linéaires**, car les points de sa représentation se situent sur une droite.

La raison de la suite arithmétique est le coefficient directeur de la droite correspondante, d'équation $y=rx+u_0$.

Exemple:

La suite arithmétique (u_n) , de premier terme $u_0=7$ et de raison -1,5, a pour représentation graphique des points situés sur la droite d'équation y=-1,5x+7.

VII. Suite géométrique

1) Rappels

Définition:

Une suite numérique (u_n) est **géométrique** s'il existe un nombre réel q, appelé **raison** de la suite, tel que, pour tout nombre entier naturel n, on ait :

$$u_{n+1} = q \times u_n$$

Exemples:

- La suite définie par $\left\{ \begin{array}{l} u_0=1 \\ u_{n+1}=3u_n \end{array} \right.$ est une suite géométrique de raison 3.
- Une ville peuplée de 800 habitants voit sa population augmenter de 5% par an.
 Donc chaque année, sa population est multipliée par 1+5%=1,05.
 Elle suit une progression géométrique de raison 1,05.

Remarque:

Une suite (u_n) est **géométrique** si, et seulement si, le **coefficient multiplicateur** entre deux termes consécutifs $\frac{u_{n+1}}{u_n}$ (ou la variation relative $\frac{u_{n+1}-u_n}{u_n}$) est **constant**.

Propriété:

Soit (u_n) une suite géométrique de premier terme u_0 et de raison q.

Pour tout entier naturel n, on a $u_n = u_0 \times q^n$.

Remarque:

Terme général en fonction de n: $u_n = u_0 \times q^n$ (formule explicite)

Exemples:

• Soit la suite géométrique (u_n) de premier terme $u_0=1$ et de raison 3.

On a, pour tout entier naturel n, $u_n = u_0 \times q^n = 1 \times 3^n = 3^n$.

Ce qui permet, par exemple, de calculer directement le terme de rang 5 : $u_4=3^4=81$.

• Une ville peuplée de 800 habitants voit sa population augmenter de 5% par an. Comme vu précédemment, cette population suit une progression géométrique de raison 1,05. En notant u_0 =800 le terme initial de cette suite, on peut déterminer le terme général :

$$u_n = u_0 \times q^n = 800 \times 1,05^n$$

Après 6 années, la ville comptera $u_6 = 800 \times 1,05^6 \approx 1072$ habitants.

2) <u>Limites</u>

- Si q=1, alors la suite (u_n) est constante. Donc (u_n) converge vers u_0 .
- Si q=0, alors la suite (u_n) est constante et vaut 0 à partir du second terme.
 Donc (u_n) converge vers 0.
- Si q < 0, alors la suite (u_n) n'a pas de variations régulières.
 - Si -1 < q < 0 alors (u_n) converge vers 0.
 - ♦ Si $q \le -1$ alors (u_n) diverge et n'admet pas de limite.

Exemple:

La suite géométrique (u_n) de premier terme $u_0=4$ et de raison $\frac{1}{2}$ admet la représentation graphique ci-contre.

3) Somme des termes

Propriété:

Soit (u_n) une suite géométrique de raison $q \neq 1$.

La formule suivante donne la somme des termes consécutifs :

Somme des termes d'une suite géométrique = premier terme $\times \frac{1 - \text{raison}^{\text{nombre de termes}}}{1 - \text{raison}}$

En particulier, pour une suite géométrique de premier terme u_0 :

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

<u>Démonstration</u>:

Soit (u_n) la suite géométrique de raison q. Donc $u_p = u_{p-1} \times q$ pour tout $p \in \mathbb{N}$.

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ qS = q(u_0 + u_1 + \dots + u_{n-1} + u_n) \end{cases}$$

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ qS = qu_0 + qu_1 + \dots + qu_{n-1} + qu_n \end{cases}$$

$$\begin{cases} S = u_0 + u_1 + \dots + u_{n-1} + u_n \\ qS = u_1 + u_2 + \dots + u_n + u_{n+1} \end{cases}$$

En soustrayant terme à terme, on obtient :

$$S - qS = u_0 - 0 + u_1 - u_1 + ... + u_n - u_n + 0 - u_{n+1}$$

Donc
$$S - qS = u_0 - u_{n+1} = u_0 - u_0 \times q^{n+1}$$

Ainsi
$$(1-q) S = u_0 (1-q^{n+1})$$
 et $S = u_0 \times \frac{1-q^{n+1}}{1-q}$.

Notation:

On utilise la notation suivante :
$$\sum_{k=0}^{n} u_k = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

Exemple:

La suite (u_n) est géométrique de premier terme $u_0=1$ et de raison 2.

On peut exprimer la somme des n+1 premiers termes :

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q} = 1 \times \frac{1 - 2^{n+1}}{1 - 2} = \frac{1 - 2^{n+1}}{-1} = 2^{n+1} - 1$$

Et par exemple, pour n=10, $S_{10}=1+2+4+8+16+32+...+1024=2^{11}-1=2047$.

Propriété:

La limite de la somme des termes d'une suite géométrique de premier terme u_0 et de raison q, avec $0 \le q < 1$, est égale à

$$\frac{u_0}{1-q}$$

Démonstration:

Nous avons vu que $S_n = u_0 + u_1 + u_2 + ... + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$.

Puisque $0 \le q < 1$, q^{n+1} a pour limite 0, donc S_n a pour limite $\frac{u_0}{1-q}$.

VIII. <u>Suites arithmético-géométrique</u>

1) <u>Définition</u>

Définition:

Une suite arithmético-géométrique est une suite définie par la donnée de son premier terme u_0 et de la relation de récurrence $u_{n+1} = au_n + b$, pour tout entier naturel n, où a et b sont des réels fixés.

Exemple:

La suite (u_n) , telle que $u_0=12$ et pour tout entier naturel n, $u_{n+1}=0,2u_n+4$ est une suite arithmético-géométrique.

2) Représentation graphique

Une suite arithmético-géométrique est une suite récurrente de la forme $u_{n+1} = f(u_n)$, ou f est la fonction, définie sur \mathbb{R} , par f(x) = ax + b.

Puisque f est une fonction affine, sa représentation graphique est une droite.

On sait alors représenter graphiquement les premiers termes de cette suite.

Exemple:

Avec l'exemple ci-dessus, on trace la droite Δ , d'équation y=0,2x+4 et la droite d, d'équation y=x. On place les termes de la suite sur l'axe des abscisses à l'aide de d et Δ .

3) <u>Terme général d'une suite arithmético-géométrique</u>

De la formule de récurrence à la formule explicite

Observons que si la suite (u_n) converge, alors sa limite ℓ est solution de l'équation $\ell=0,2\ell+4$.

Cette équation a pour solution $\ell = 5$.

Cela suggère de poser : pour tout entier naturel n, $v_n = u_n - 5$.

De $u_{n+1} = 0.2 u_n + 4$, on déduit : $u_{n+1} - 5 = 0.2 (u_n - 5)$ soit $v_{n+1} = 0.2 v_n$.

La suite (v_n) est géométrique de raison a=0,2 et de premier terme $v_0=u_0-5=7$.

D'où, pour tout n, $v_n = v_0 \times a^n$ soit $v_n = 7 \times 0.2^n$. Ainsi $u_n - 5 = 7 \times 0.2^n$ donc $u_n = 7 \times 0.2^n + 5$.

Méthode générale : détermination d'une formule explicite

Une suite numérique (u_n) vérifie $u_{n+1} = a u_n + b$, avec $a \ne 1$.

- On résout l'équation $\ell = a \ell + b$: elle a une solution unique c.
- On introduit la suite auxiliaire (v_n) définie par $v_n = u_n c$.

On prouve qu'elle est géométrique (de raison a); il en résulte que, pour tout entier naturel n, $v_n = a^n \times v_0$.

• On revient à la suite initiale : pour tout entier naturel n, $u_n = v_n + c$.

D'où l'expression : $u_n = a^n(u_0 - c) + c$.

4) Étude de la convergence

Sur notre exemple, la raison a=0,2 est telle que -1 < a < 1 donc $\lim_{n \to +\infty} 0, 2^n = 0$. Ainsi $\lim_{n \to +\infty} u_n = 0$.

Si on applique cette méthode dans le cas général, on obtient le résultat suivant :

Propriété:

Soit (u_n) la suite numérique définie par $u_{n+1}=a\,u_n+b$, avec -1< a<1. La suite (u_n) converge vers le nombre ℓ vérifiant $\ell=a\,\ell+b$.

Remarque:

On démontre que si $a \le -1$ ou a > 1, la suite est divergente (hormis le cas particulier ou $u_0 = c$, auquel cas elle est constante).