(a)
$$F = xz' + y'z' + yz' + xy' = \Sigma(0, 2, 4, 5, 6)$$

x^{yz}	00	01	11	10
0	1	0	0	1
1	1	1	0	1

$$F = z' + xy'$$
 (Sum of Product)
 $F = (x + z')(y' + z')$ (Product of Sum)

3.15 (a)
$$F(x, y, z) = \Sigma(0, 1, 3, 5, 7)$$

 $d = \Sigma(2, 4, 6)$

$$F = 1$$

(b)
$$F = \Sigma(0, 4, 8, 10, 14)$$

 $d = \Sigma(2, 6, 12)$

$$F = D'$$

3.20
$$F = BC(D + C)A + (BC' + DE') + BD'$$

$$= ABCD + ABC + BC' + DE' + BD'$$

$$= [[(A' + B' + C' + D')' + (A' + B' + C')' + (B' + C)' + (D' + E)' + (B' + D)']']'$$

3.24 $F(A, B, C, D) = \Sigma(1, 5, 8, 9, 10, 11, 12, 13, 15)$

$$F(A, B, C, D) = C'D + AB' + AC' + AD \rightarrow (\mathbf{a}) \text{ AND-OR}$$

$$= ((C'D)'(AB')'(AC')' (AD)')'$$

$$= ((C+D')(A'+B)(A'+C)(A'+D'))' \rightarrow (\mathbf{b}) \text{ OR-NAND}$$

$$= ((C+D')' + (A'+B)' + (A'+C)' + (A'+D')' \rightarrow (\mathbf{c}) \text{ NOR-OR}$$

$$= ((C'D)' (AB')' (AC')' (AD)')' \rightarrow (\mathbf{d}) \text{ NAND-NAND}$$

$$F(A, B, C, D) = (A + D)(A + C')(B' + C' + D)$$
 \rightarrow (e) OR-AND
= $((A + D)' + (A + C')' + (B' + C' + D')')'$ \rightarrow (f) NOR-NOR
= $(A'D')' (A'C)' (BCD')'$ \rightarrow (g) NAND-AND

$$f = abc' + b'd' + a'd' + b'cd'$$

ab ^{cd}	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	1	0	
10	1	0	0	1

$$g = (a + b + c' + d') (a' + b' + d) (a' + d')$$

ab cd	00	01	11	10
00	1	1	0	1
01	1	1	1	1
11	0	0	0	0
10	1	0	0	1

Group the overlapping is $F = fg = \Sigma(0, 2, 4, 5, 8, 10)$

ab cd	00	01	11	_10
00	1	0	0	1
01	1	0	0	1
11	0	0	0	0
10	1	0	0	1

$$F = a'd' + b'd'$$