Contexte

Job Scheduling

- n travaux (jobs)
- chacun ayant une durée d; de réalisation
- jobs à distribuer sur *m* machines
- toutes les machines sont identiques
- Objectif: minimiser le temps (Min Makespan)

Modélisation

Exemple

- n = 11 tâches
- m = 3 machines
- durées :

Tâche	1	2	3	4	5	6	7	8	9	10	11
Durée	2	7	1	3	2	6	2	3	6	2	5

М3	1	2		7			3	5
M2	4	2	2		6			
M1	1		3	2		6		

T=17

Discussion sur le Min Makespan

- Problème "difficile"
- Terme officiel : NP-complet
- Signification : pour des grandes valeurs de n et m, pas d'algo à la fois
 - rapide (temps d'exécution "raisonnable")

- toujours optimal (makespan minimum trouvé)
- Rem : étude exhaustive $\Rightarrow \sim m^n$ possibilités
- Solutions : heuristiques ou approximations
- Ici : approximations (2 algos)

List Scheduling Algorithm (LSA)

• Numéroter les *n* tâches dans un ordre arbitraire

Pour i de 1 à n affecter i à la première machine disponible FinPour

Modélisation

List Scheduling Algorithm (LSA) – Exemple

Tâche	1	2	3	4	5	6	7	8	9	10	11
Durée	2	7	1	3	2	6	2	3	6	2	5

List Scheduling Algorithm (LSA)

Propriété

LSA est un algorithme de 2-approximation

Signification : durée obtenue toujours ≤ 2 durée optimale

List Scheduling Algorithm (LSA) = 2-approximation

• T_{opt} = le temps optimal recherché

Modélisation

- T_{LSA} = le temps trouvé par LSA
- Bornes inférieures pour T_{opt} :
 - $T_{opt} \ge \max_{1 \le i \le n} d_i$ (maximum)
 - $T_{opt} \geq \frac{\sum_{i=1}^{n} d_i}{m}$ (moyenne)
 - en observant la machine qui travaille jusque T_{LSA} , on a

$$T_{LSA} \leq \frac{\sum_{i=1}^{n} d_i}{m} + \max_{1 \leq i \leq n} d_i$$

Conclusion:

$$T_{LSA} \leq 2 \cdot T_{opt}$$

Largest Processing Time (LPT)

 Numéroter les n tâches dans un l'ordre décroissant des longueurs

Pour i de 1 à n affecter i à la première machine disponible FinPour

Largest Processing Time (LPT) - Exemple

Tâche	2	6	9	11	4	8	1	5	7	10	3
Durée	7	6	6	5	3	3	2	2	2	2	1

M3 M2 M1

6	3	2	2	
6	5		2	
7	3		2 1	