Şekildeki gibi eğim verilmiş hava masasında masanın yerden yüksekliği h=4,5 cm ve masanın uzunluğu d=60 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmistir. (g=981 cm/s²)

5-301 CIII	131	
Nokta	X _n (cm)	t _n ²
No		
0	0	0,00
1	0,4	0,01
2	1,2	0,04
3	2,9	0,09
4	5,4	0,16
5	8,4	0,25
6	12,1	0,36

Aşağıdaki saruyu bu verilere göre cevaplayınız.

Bir öğrenci tabloda verilen verilerden faydalanarak yandaki Konum-Zamanın Karesi grafiğini oluşturup noktalar için en ideal eğriyi çizmiştir. Buna göre öğrencinin grafik yardımı ile hesapladığı deneysel ivme değeri kaç cm/s²'dir?

Soru 2

Şekildeki gibi eğim verilmiş hava masasında masanın yerden yüksekliği h=4,5 cm ve masanın uzunluğu d=60 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmiştir. (g=981 cm/s²)

Nokta	X _n (cm)	t _n ²
No		
0	0	0,00
1	0,4	0,01
2	1,2	0,04
3	2,9	0,09
4	5,4	0,16
5	8,4	0,25
6	12,1	0,36

Aşağıldaki soruyu bu verillere göre cevaplayınız.

Teorik olarak hesaplanan ivme ile deneysel ivme arasındaki hata payı yaklaşık % kaçtır?

A 7,0

B 3,5

C 8,5

D 6,2

4,9

Konum değerleri yardımıyla elde edilen hız-zaman grafiği yandaki gibi olduğuna göre sistemin deneysel ivme değeri kaç cm/s^2 'dir?

A 452,0

B 416,7

C 482,8

D 443,3

380,8

Soru 4

Şekildeki gibi eğim verilmiş hava masasında masanın yerden yüksekliği h=6 cm ve masanın uzunluğu d=55 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmiştir.

Nokta	X _n (cm)
No	
0	0,7
1	1,7
2	4,4
3	8,6
4	14,1
5	19,6
6	26,0
7	37.2

Aşağıdaki soruyu bu verilere göre cevaplayınız.

 Hareketlinin 4. noktada sahip olduğu hızın değeri tablo yardımıyla hesaplandığında kaç bulunur?

A 55,0

B 45,0

C 40,0

D 50,0

E 35,0

Şekildeki gibi eğim verilmiş hava masasında masanın yerden yüksekliği h=6 cm ve masanın uzunluğu d=55 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmiştir.

Nokta	X _n (cm)
No	
0	0,7
1	1,7
2	4,4
3	8,6
4	14,1
5	19,6
6	26,0
7	37,2

Aşağıdaki soruyu bu verilere göre cevaplayınız.

1. Sistemde hareket eden diskin teorik ivmesinin büyüklüğünü ne kadardır? (g=981 cm/s²)

A 100,5

B 107,0

C 110,0

D 103,6

E 98,1

Düz bir yolda atılan bir diskin başlangıçtan itibaren konumu aşağıdaki tabloda verilmişken çizilen grafik yandaki gibidir.

Nokta numarası	Konum-x (cm)	Zaman-t (s)
0	0	0
1	3,0	0,1
2	6,1	0,2
3	9,2	0,3
4	12,2	0,4
5	15,5	0,5

Aşağıdaki soruyu bu bilgilere göre çözünüz.

Diskin ortalama sürat değerini tablodan faydalanarak cm/s biriminden bulunuz.

A 35,0

B 28,25

C 25,50

33,76

E 30,88

Soru 8 Puor: 5,00

Şekildeki sistem bir hava masası yardımı ile kurulmuştur. İpe bağlı ağırlık değiştirilerek yayın denge noktasından sapmaları işaretlenmiş ve ağırlık-uzama miktarı grafiği aşağıdaki gibi elde edilmiştir.

Aşağıdaki soruyu bu verilere göre cevaplayınız.

Sistemde kullanılan yayın yay sabiti (k) değeri kaç N/m'dir? (g=981 cm/s²)

A 0,91

B 0,68

C 0,85

D 0,60

E 0,74

Soru 9

Şekildeki sistem bir hava masası yardımı ile kurulmuştur. İpe bağlı ağırlık değiştirilerek yayın denge noktasından sapmaları işaretlenmiş ve ağırlık-uzama miktarı grafiği aşağıdaki gibi elde edilmiştir.

Aşağıdaki soruyu bu verilere göre cevaplayınız.

Yaydaki uzama miktarı 38 cm olduğunda yayda biriken potansiyel enerji değeri kaç Joule olur?

Soru 10 Puan: 5,00

Yanda görülen hava masası sistemi kullanılarak diske, eğik düzlem üzerinde α = 60°'lik açı ile eğik atış hareketi yaptırılmıştır. Masanın yerden yüksekliği h=6 cm ve masanın uzunluğu d=55 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmiştir. Ayrıca x-t grafiği de şekilde sunulmuştur.

Nokta No	X _n (cm)	Y _n (cm)
0	0	0
1	2	5
2	4	9
3	6	12
4	8	14
5	10	15
6	12	14
7	14	12
8	16	9
9	18	5
10	20	0

Aşağıdaki soruyu bu verilere göre cevaplayınız.

y-doğrultusundaki teorik ivme ve elde edilen V_{oy} değerleri kullanıldığında diskin çıkabileceği maksimum yükseklik değeri h_{maks} kaç cm bulunur? (981 cm/s^2)

Soru 11 Puor: 5,00

Yanda görülen hava masası sistemi kullanılarak diske, eğik düzlem üzerinde α = 60°'lik açı ile eğik atış hareketi yaptırılmıştır. Masanın yerden yüksekliği h=6 cm ve masanın uzunluğu d=55 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmiştir. Ayrıca x-t grafiği de şekilde sunulmuştur.

Nokta No	X _n (cm)	Y _n (cm)
0	0	0
1	2	5
2	4	9
3	6	12
4	8	14
5	10	15
6	12	14
7	14	12
8	16	9
9	18	5
10	20	0

Aşağıldaki soruyu bu verilere göre cevaplayınız.

y-doğrultusundaki ilk hız değeri (V_{oy}), x-doğrultusundaki hız ve $\alpha=60^\circ$ atış açısını kullanarak hesaplandığında kaç cm/s olarak bulunmuştur?

Soru 12 Puan: 5,00

Cisimlerin kütle değerlerini kulanarak hesapladığınız teorik ivme ile grafik yardımı ile elde edilmiş deneysel ivme arasında % kaç hata payı mevcuttur? ($g=981\ cm/s^2$)

A 3,2

B 8,0

C 6,6

D 45

E 11,0

Puan: 5,00

Ark üretecinin frekansının f=10 Hz olduğu yandaki dönme hareketi deneyinde M=1000~g,~R=3.5~cm,~m=550~g ve dönen makaranın çizgisel hızı V=175~cm/s'dir. $(l_{makara}=\frac{1}{2}MR^2)$

Aşağıdaki soruyu bu verilere göre cevaplayınız.

M kütleli dönen makaranın eylemsizlik momentinin değeri kg.m² biriminden nε kadardır?

- A 5,750
- B 6,125
- C 5,0
- D 6,750
- E 6,0

Puan: 5,00

Ark üretecinin frekansının f=10 Hz olduğu yandaki dönme hareketi deneyinde M=1000~g, R=3.5~cm, m=550~g ve dönen makaranın çizgisel hızı V=175~cm/s'dir. $(I_{makara} = \frac{1}{2}MR^2)$

Aşağıdaki soruyu bu verilere göre cevaplayınız.

M kütleli dönen diskin kinetik enerjisinin Joule cinsinden yaklaşık değeri nedir?

- A 0,766
- B 0,600
- C 0,700
- D 0,816
- E 0,650

Soru 15 Puan: 5,00

Eğik konuma getirilen hava masasında bulunan şekildeki Atwood Aleti ile yapılan deneyde üretecinin frekansı 10 Hz seçilmiştir. olarak Disklerin kütleleri M₁=650 g ve M2=1050 g olup masanın eğimi h=5.5 cm ve d=50olarak cm ayarlanmıştır.

Aşağıdaki soruyu bu verilere göre cevaplayınız.

Hesaplanan ortalama ivme değeri kullanılarak hesaplandığında ipte oluşan gerilmenin büyüklüğü kaç dyn olur? ($g=981 \ cm/s^2$)

Soru 17

Yanda görülen hava masası sistemi kullanılarak diske, eğik düzlem üzerinde yatay atış hareketi yaptırılmıştır. Masanın yerden yüksekliği h=5 cm ve masanın uzunluğu d=50 cm'dir. Ark üretecinin frekansı f=10 Hz olarak ayarlanmış olup arka arkaya aldığı noktaların tablosu aşağıda verilmiştir.

	A Yolu	A Yolu
Nokta	(y-	(x-
Numarası	izdüşümleri)	izdüşümleri)
	y (cm)	x (cm)
0	0	0
1	1,0	2,0
2	2,4	4,1
3	4,5	6,2
4	7,0	8,0
5	11,0	10,1

Aşağıldaki soruyu bu verillere göre cevaplayınız.

Diskin x doğrultusunda sahip o**l**duğu sürat değeri cm/s cinsinden ne kadard**ı**r?

A 24,6

B 23.0

C 20,4

D 21,6

E 22,5

Kütleleri eşit olan iki adet disk. sürtünmesiz bir sistemde sabit $\vec{\mathcal{V}}_A$ ve $\vec{\mathcal{V}}_B$ hareket hızları ile ederlerken çarpışma yapmaktadır. Frekansı 10 Hz olarak ayarlanmış ark jeneratörünün yardımıyla çizilen yerdeğiştirme ile orantılı hız vektörleri özdeş kare düzleminde şekilde gösterilmiştir. $\vec{\mathcal{V}}_A'$ ve $\vec{\mathcal{V}}_B'$ çarpışmadan sonraki hızlar ve her bir karenin kenar uzunluğu 1 cm'dir.

 $\vec{R} = \vec{R}'$

Aşağıdaki soruyu bu verilere göre cevaplayınız.

- I Momentum korunmuştur
- II. Kinetik enerji korunmuştur.
- III. Çarpışma, 'Tamamen esnek olmayan' çarpışmaya örnektir.

Yukarıdaki ifadelerden hangileri doğrudur?

- A Yalnız II
- B |-||-||
- C I-III
- D 1-11
- E Yainizi

Kütleleri eşit olan iki adet sürtünmesiz disk, bir sistemde sabit $\vec{\mathcal{V}}_A$ ve $\vec{\mathcal{V}}_B$ ile hızları hareket ederlerken çarpışma yapmaktadır. Frekansı 10 Hz olarak ayarlanmış ark jeneratörünün yardımıyla çizilen yerdeğiştirme ile orantılı hız vektörleri özdeş kare düzleminde şekilde gösterilmiştir. $\vec{\mathcal{V}}_A'$ ve $\vec{\mathcal{V}}_B'$ çarpışmadan sonraki hızlar ve her bir karenin kenar uzunluğu 1 cm'dir.

Aşağıdaki soruyu bu verilere göre cevaplayınız.

Çarpışan disklerin her birisinin kütlesi 550 g olduğuna göre çarpışmadan sonra sistemin kinetik enerji değeri kaç erg'tir?