

Stavanger, December 17, 2024

Theoretical exercise 3 ELE520 Machine Learning

Problem 1

We shall design a pattern recognition system to classify 2-dimensional feature vectors $\{x\}$ to class ω_1 ('×'), or class ω_2 ('o'). As a basis for this work, we have performed measurements so that 4 feature vectors are available as training vectors:

$$\mathcal{X}_1 = \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0 \end{pmatrix} \right\} \tag{1}$$

for class ω_1 , and

$$\mathcal{X}_2 = \left\{ \begin{pmatrix} 3\\1 \end{pmatrix}, \begin{pmatrix} 2\\3 \end{pmatrix} \right\} \tag{2}$$

for class ω_2 .

- a) Plot the training vectors in the x_1x_2 -plane translated to the augmented feature space which will be used in the following. estimate the a priori probabilities.
- b) We want to design a discriminant function on the form:

$$g(\boldsymbol{x}) = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{y}. \tag{3}$$

where $\mathbf{x} = (x_1 \ x_2 \ 1)^T$. This is the same data set as in the example collection where straightforward linear regression was attempted and shown not to produce any result meaningful for discrimination.

Use the LS-method to determine θ . Determine and draw the decision boundary defined by θ .

- c) What is the effect on the decision boundary of changing y_4 to -0.5.
- d) Use the LMS-method to determine $\boldsymbol{\theta}$. Choose the starting point $\boldsymbol{\theta}^{(1)} = (1\ 1\ 1)^t$. Set the threshold value to $\theta = 1$, and let $\mu = 0.5$. Remember that the learning rate is updated according to $\mu(i) = \mu/i$. Compute $\boldsymbol{\theta}^{(i)}$ for i = 2, 3, 4, ... until convergence and sketch the decision boundary defined by $\boldsymbol{\theta}$. Compare the resulting decision boundary with the one you found in subtask a). The resulting boundary will be a far shot from solving the problem.

You can do better with the threshold value set to $\theta = 0.5$ and learning rate set to $\mu = 1$, but 16 iterations will be needed to reach convergence. If you have some time to spend and prefer this to watching TV, you might consider doing this.

Problem 2

The problem of defining a generalised linear discriminant function to discriminante the vectors in a labelled two-class problem can be expressed

$$X\theta = y \tag{1}$$

where \boldsymbol{X} is the $N \times \hat{l}$ matrix¹ where the *n*th row is the vector \boldsymbol{x}_n^T and \boldsymbol{y} be the vector $\boldsymbol{y} = (y_1, \dots, y_N)^T$.

- a) Explain why this equation is not generally solvable.
- b) Show that the vector $\boldsymbol{\theta}$ giving the best approximation in the sense of the minimum squared error $\|\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y}\|^2 = (\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y})^T(\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y})$ between the right and left side in the equation is given by

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{2}$$

- c) Find an expression for the quadratic distance using the solution from the previous task.
- d) Show that the problem is linearly separable if

$$\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T = \boldsymbol{I} \tag{3}$$

where I is the identity matrix.

Problem 3

Consider the data sets with samples x_i .

$$\mathcal{X}_1 = \left\{ \begin{pmatrix} -3 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \tag{1}$$

for class ω_1 , and

$$\mathcal{X}_2 = \left\{ \begin{pmatrix} -4\\-1 \end{pmatrix} \right\} \tag{2}$$

 $^{{}^{1}\}hat{l} = l + 1$

for class ω_2 . We want to find the discriminant function $g(\boldsymbol{x}) = \boldsymbol{\theta}^T \boldsymbol{x}$ that solves the inequalities $\mathbf{a}^T \boldsymbol{y}_i > (<)0$ for class $\omega_1(\omega_2)$.

The batch perceptron algorithm is given:

Algorithm 3. (Batch Perceptron)

```
1 begin initialize \boldsymbol{\theta}^{(\cdot)}, \mu(\cdot), criterion \theta, i \leftarrow 0

2 do i \leftarrow i+1

3 \boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} + \mu(i) \sum_{\boldsymbol{x} \in \mathcal{X}_i} y_n \boldsymbol{x}

4 until |\mu(i) \sum_{\boldsymbol{x} \in \mathcal{X}_i} y_n \boldsymbol{x}| < \theta

5 return \boldsymbol{\theta}

6 end
```

Note that Xi is the set of misclassified samples for iteration i.

- a) Determine the labels, $y_n, n = 1, 2, ..., 3$ for each sample.
- b) Plot the lines defined by $\boldsymbol{\theta}^T \boldsymbol{x}_i = 0$ for all the samples.
- c) Indicate the positive and negative sides of the lines and identify the solution region.
- d) Apply the algorithm letting the initial values be $\boldsymbol{\theta}^{(1)} = 0$, $\mu(1) = 1$, criterion $\theta = 0$. Let $\mu(i) = 1$.
- e) As above, but let let $\mu(i) = 1/i$.