Матлог 8.8в

$$\forall x. \forall y. x \in \omega \land y \in \omega \implies x' = y' \implies x = y$$

Рассмотрим x,y — ординалы (из ω). Пусть x'=y'. Тогда $x\cup\{x\}=y\cup\{y\}$. Есть несколько случаев.

- 1. $x \in \{y\}$. Тогда немедленно x = y, ч.т.д.
- 2. $y \in \{x\}$. Тогда сразу y = x, ч.т.д.
- 3. Остаётся только $x \in y$ и $y \in x$. Вспомним определение транзитивного множества. Множество A называется транизитвным, если

$$\forall a. \forall b. a \in b \land b \in A \implies a \in A$$

Для элементов $z \in x$ в нашем случае это означает, что из $z \in x$ и $x \in y$ следует, что $z \in y$. Таким образом $z \in y$ для любого $z \in x$. Отсюда $x \subset y$. Аналогично $y \subset x$ следует из $y \in x$. Тогда x = y, ч.т.д.