1 Let $e_0, e_1, ...$ be an orthonormal basis for \mathscr{H} and let $\alpha_0, \alpha_1, ...$ be complex numbers. Define $\mathscr{D} = \{h \in \mathscr{H} : \sum_0^\infty |\alpha_n \langle h, e_n \rangle|^2 < \infty\}$ and let $Ah = \sum_0^\infty \alpha_n \langle h, e_n \rangle e_n$ for h in \mathscr{D} . Then $A \in \mathscr{C}(\mathscr{H})$ with dom $A = \mathscr{D}$. Also, dom $A^* = \mathscr{D}$ and $A^*h = \sum_0^\infty \overline{\alpha_n} \langle h, e_n \rangle e_n$ for all h in \mathscr{D}

Exercise X.1.2: Prove claims in X.1.9

Since Hilbert Spaces in the chapter are assumed to be separable, to show that \mathscr{D} is dense we must show that for every $h \in \mathscr{H}$, there exists a sequence h_{\bullet} in \mathscr{D} that converges to h. Let $h = \sum_{0}^{\infty} \beta_{n} e_{n}$ where all but finite number of β_{n} are 0, ???

Next we have to show that A is closed, that is $\{h \oplus Ah : h \in \mathcal{D}\}$ is closed in $\mathcal{H} \oplus \mathcal{H}$. Again since \mathcal{H} is separable, this amounts to showing that the limit of an arbitrary sequence h_{\bullet} of \mathcal{D} is still in $h \oplus Ah$. Again not sure where to go from here.

To show that $A^*h = \sum_{0}^{\infty} \overline{\alpha_n} \langle h, e_n \rangle e_n$, start with $\langle Ah, k \rangle = \langle h, A^*k \rangle$. $\langle \sum_{0}^{\infty} \alpha_n \langle h, e_n \rangle e_n, k \rangle$