Language Technology

http://cs.lth.se/edan20/

Chapter 15: Lexical Semantics

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

October 3, 2019

Words and Meaning

Referred to as lexical semantics:

- Classes of words: If it is hot, can it be cold?
- Definition What is a meal? What is table?
- Reasoning: The meal is on the table. Is it cold?

Categories of Words

Expressions, which are in no way composite, signify substance, quantity, quality, relation, place, time, position, state, action, or affection. To sketch my meaning roughly, examples of substance are 'man' or 'the horse', of quantity, such terms as 'two cubits long' or 'three cubits long', of quality, such attributes as 'white', 'grammatical'. 'Double', 'half', 'greater', fall under the category of relation; 'in the market place', 'in the Lyceum', under that of place; 'yesterday', 'last year', under that of time. 'Lying', 'sitting', are terms indicating position, 'shod', 'armed', state; 'to lance', 'to cauterize', action; 'to be lanced', 'to be cauterized', affection.

Aristotle, Categories, IV. (trans. E. M. Edghill)

Representation of Categories

Classes

- Synonymy/Antonymy
- Polysemy
- Hyponyms/Hypernyms is_a(tree, plant), life form, entity
- Meronyms/Holonyms part_of(leg, table)
- Grammatical cases: [nominative I] broke [accusative the window] [ablative with a hammer]
- Semantic cases: [actor] broke [object the window] [instrument with a hammer]
- Case ambiguity (The window broke/ I broke the window)

Lexical Database

```
%% is_a(?Word, ?Hypernym)
is_a(hedgehog, insectivore).
is_a(cat, feline).
is_a(feline, carnivore).
is_a(insectivore, mammal).
is_a(carnivore, mammal).
is_a(mammal, animal).
is_a(animal, animate_being).
hypernym(X, Y) := is_a(X, Y).
hypernym(X, Y) := is_a(X, Z), hypernym(Z, Y).
```


Semantic Networks

An Example: WordNet

Nouns hyponyms/hypernyms

synonyms/antonyms

meronyms

Adjectives synonyms/antonyms

relational fraternal -> brother

Verbs Semantic domains (body function, change, com-

munication, perception, contact, motion, creation, possession, competition, emotion, cognition, social

interaction, weather)

Synonymy, Antonymy: (rise/fall, ascent/descent,

live/die)

"Entailment": succeed/try, snore/sleep

Semantics and Reasoning

The caterpillar ate the hedgehog.

Representation:

$$\exists (X,Y), caterpillar(X) \land hedgehog(Y) \land ate(X,Y).$$

Reasoning (inference):

It is untrue because the query:

?- predator(X, hedgehog)

X = foxes, eagles, car drivers, ...

but no caterpillar.

Lexicons

Words are ambiguous: A same form may have more than one entry and sense.

The Oxford Advanced Learner's Dictionary (OLAD) lists five entries for bank:

- 1 noun, raised ground
- 2 verb, turn
- noun, organization
- verb, place money
- noun, row or series

and five senses for the first entry.

Definitions

Short texts describing a word:

- A genus or superclass using a hypernym.
- Specific attributes to differentiate it from other members of the superclass. This part of the definition is called the *differentia specifica*.

bank (1.1): a land sloping up along each side of a canal or a river.

hedgehog: a small animal with stiff spines covering its back.

waiter: a person employed to serve customers at their table in a restaurant, etc.

Significance of the Sense

French	German	Danish
arbre	Baum	
	Holz	Træ
bois		
forêt	Wald	Skov

French	Welsh
	gwyrdd
vert	
bleu	glas
gris	•
	llwyd
brun	

Sense Tagging Using the Oxford Advanced Learner's Dictionary (OALD)

Sentence: The patron ordered a meal

Words	Definitions	Sense
The patron	Correct sense: A customer of a shop, restaurant,	1.2
	theater	
	Alternate sense: A person who gives money or sup-	1.1
	port to a person, an organization, a cause or an ac-	
	tivity	
ordered	Correct sense: To request somebody to bring food,	2.3
	drink, etc in a hotel, restaurant etc.	
	Alternate senses: To give an order to somebody	2.1
	To request somebody to supply or make goods, etc.	2.2
	To put something in order	3.4
a meal	Correct sense: The food eaten on such occasion	1.2
	Alternate sense: An occasion where food is eat	

Identifying Senses

Semantic tagging looks like POS tagging: it assumes the sense of a word depends on its context.

We analyze the interaction between **bank** and market finance in a model where bankers gather information through monitoring. . .

Statistical techniques optimize a sequence of semantic tags.

The context *C* of word *w* is defined as:

$$W_{-m}, W_{-m+1}, ..., W_{-1}, W, W_1, ..., W_{m-1}, W_m.$$

If w has n senses, $s_1..s_n$, the optimal sense given C is defined as:

$$\hat{s} = \underset{s_i, 1 \leq i \leq n}{\operatorname{arg\,max}} P(s_i | C).$$

Using Bayes' rule, we have:

$$\hat{s} = \underset{s_{i}, 1 \leq i \leq n}{\operatorname{arg \, max}} P(s_{i}) P(C|s_{i}),$$

$$= \underset{s_{i}, 1 \leq i \leq n}{\operatorname{arg \, max}} P(s_{i}) P(w_{-m}, w_{-m+1}, ..., w_{-1}, w_{1}, ..., w_{m-1}, w_{m-1})$$

Naïve Bayes

The Naïve Bayes classifier uses the bag-of-word approach.

We replace

$$P(w_{-m}, w_{-m+1}, ..., w_{-1}, w_1, ..., w_{m-1}, w_m | s_i)$$

with the product of probabilities:

$$\prod_{j=-m,j\neq 0}^m P(w_j|s_i).$$

SemCor is a sense-annotated corpus for English. Semisupervised and unsupervised algorithms

Language Technology http://cs.lth.se/edan20/

Using Dictionaries (Lesk and derived methods)

We analyze the interaction between **bank** and market **finance** in a model where bankers gather information through monitoring and screening

Maximally overlapping definitions (Oxford Advanced Learner's Dictionary, 1995):

- Bank:
 - Sense 1: The land sloping up along each side of a river or a canal; the ground near a river
 - Sense 3: An organization or a place that provides a financial service. Customers keep their **money** in the bank safely and it is paid out when needed by the means of cheques, etc.
- Finance:
 - Sense 1: The **money** used or needed to support an action project, etc; the management of **money**

Beyond Words: Predicates and Arguments

Dictionaries store information about how words combine with other words to form larger structures.

This information is called valence (cf. valence in chemistry) In the *Oxford Advanced Learner's Dictionary*, **tell**, sense 1, has the valence patterns:

tell something (to somebody) / tell somebody (something) as in:

- I told a lie to him
- I told him a lie

Both have the same predicate—argument representation:

tell.01(Speaker: I, Utterance: a lie, Hearer: him)

Case Grammar

Verbs have semantic cases (or semantic roles):

- An Agent Instigator of the action (typically animate)
- An Instrument Cause of the event or object in causing the event (typically animate)
- A Dative Entity affected by the action (typically animate)
- A Factitive Object or being resulting from the event
- A Locative Place of the event
- A Source Place from which something moves,
- A Goal Place to which something moves,
- A Beneficiary Being on whose behalf the event occurred (typically animate)
- A Time Time at which the event occurred
- An Object Entity that is acted upon or that changes, the general case.

Case Grammar: An Example

```
open(Object, {Agent}, {Instrument})
```

The door opened
John opened the door
The wind opened the door
John opened the door with a chisel

Object = door

Object = door and Agent = John

Object = door and Agent = wind

Object = door, Agent = John, and

Instrument = chisel

Parsing with Cases

The waiter brought the meal to the patron

Identify the verb **bring** and apply constraints:

Case	Type		Value
Agentive	Animate	(Obligatory)	The waiter
Objective (or theme)		(Obligatory)	the meal
Dative	Animate	(Optional)	the patron
Time		(Obligatory)	past

FrameNet

In 1968, Fillmore wrote an oft cited paper on case grammars.

Later, he started the FrameNet project:

http://framenet.icsi.berkeley.edu/

Framenet is an extensive lexical database itemizing the case (or frame) properties of English verbs.

In FrameNet, Fillmore no longer uses universal cases but a set of frames – predicate argument structures – where each frame is specific to a class of words.

The Impact Frame

Impact:

bang.v, bump.v, clang.v, clunk.v, collide.v, collision.n, crash.v, crash.n, crunch.v, glancing.a, graze.v, hit.v, hit.n, impact.v, impact.n, plop.v, plough.v, plunk.v, run.v, slam.v, slap.v, smack.v, smash.v, strike.v, thud.v, thump.v

Frame elements:

cause, force, impactee, impactor, impactors, manner, place, result, speed, sub_location, time.

The Revenge Frame

15 lexical units (verb, nouns, adjectives):

avenge.v, avenger.n, get back (at).v, get_even.v, retaliate.v, retaliation.n, retribution.n, retributive.a, retributory.a, revenge.n, revenge.v, revengeful.a, revenger.n, vengeance.n, vengeful.a, and vindictive.a

Five frame elements (FE):

Avenger, Punishment, Offender, Injury, and Injured_party.

The lexical unit in a sentence is called the target.

Annotation

- [<Avenger> His brothers] avenged [<Injured_party> him].
- With this, [<Avenger> El Cid] at once avenged [<Injury> the death of his son].
- [<Avenger> Hook] tries to avenge [<Injured_party> himself] [<Offender> on Peter Pan] [<Punishment> by becoming a second and better father].

FrameNet uses three annotation levels: Frame elements, Phrase types (categories), and grammatical functions.

GFs are specific to the target's part-of-speech (i.e. verbs, adjectives, prepositions, and nouns).

For the verbs, three GFs: Subject (Ext), Object (Obj), Complement (Dep), and Modifier (Mod), i.e. modifying adverbs ended by -ly or indicating manner

The Valence Pattern

Sent. 1	avenge	FE	Avenger	Injured_party		
		PT	NP	NP		
		GF	Ext	Object		
Sent. 2	avenge	FE	Avenger	Injury		
		PT	NP	NP		
		GF	Ext	Obj		
Sent. 3	avenge	FE	Avenger	Injured_party	Offender	Punishment
		PT	NP	NP	PP	PPing
		GF	Ext	Obj	Comp	Comp

Automatic Frame-semantic Analysis (Johansson, 2008)

Given a sentence:

I **told** him a lie

and a target word – tell –, find the semantic arguments.

In Propbank, the possible arguments of tell.01 are speaker (Arg0),

utterance (Arg1), and hearer (Arg2)

Input: a syntax tree:

Classification of Semantic Arguments (Johansson, 2008)

Two steps:

- Find the arguments,
- Determine the role (name) of each argument

The identification of semantic arguments can be modeled as a statistical classification problem.

What features are useful for this task? Examples:

- Grammatical function: subject, object, ...
- Voice: I told a lie / I was told a lie
- Semantic classes: I told him / the note told him
- Semantic class usually not available: use word instead

Feature Extraction (Johansson, 2008)

Given a dependency tree:

We select the three dependents of *told* and we extract features to determine if it is a semantic argument and its name.

Word	Grammatical function			
1	Subject	Active	speaker (Arg0)	
him	Indirect object	Active	hearer (Arg2)	30
lie	Direct object	Active	speaker (Arg0) hearer (Arg2) utterance (Arg0)	子が

Propbank

Semantic analysis often uses Propbank instead of Framenet because of Propbank's larger annotated corpus

CoNLL 2008 and 2009 used Propbank for their evaluation of semantic parsers.

CoNLL annotation format of the sentence:

The luxury auto maker last year sold 1,214 cars in the U.S.

ID	Form	Lemma	PLemma	POS	PPOS	Feats	PFeats	Head	PHead	Deprel	PDeprel	FillPred	Sense	APred1	APred2
1	The	the	the	DT	DT			4	4	NMOD	NMOD				
2	luxury	luxury	luxury	NN	NN			3	3	NMOD	NMOD			A1	
3	auto	auto	auto	NN	NN			4	4	NMOD	NMOD			A1	
4	maker	maker	maker	NN	NN	_	_	7	7	SBJ	SBJ	Ÿ	maker.01	A0	A0
5	last	last	last	JJ	JJ	_	_	6	6	NMOD	NMOD				
6	year	year	year	NN	NN	_	_	7	7	TMP	TMP	_	_	_	AM-TMP
7	sold	sell	sell	VBD	VBD	_	_	0	0	ROOT	ROOT	Ÿ	sell.01	_	
8	1,214	1,214	1,214	CD	CD	_	_	9	9	NMOD	NMOD			_	_
9	cars	car	car	NNS	NNS	_	_	7	7	OBJ	OBJ	_	_	_	A1
10	in	in	in	IN	IN	_	_	7	7	LOC	LOC	_	_	_	AM-LOC
11	the	the	the	DT	DT	_	_	12	12	NMOD	NMOD	_	_	With w	5/19/
12	U.S.	u.s.	u.s.	NNP	NNP	_	_	10	10	PMOD	PMOD	_		企	

Visualizing Dependencies

Syntactic dependencies:

Semantic dependencies (predicate-argument structures):

Alternative Visualization

Parsing Pipeline

Input sentence

The luxury auto maker last year sold 1,214 cars in the U.S.

Predicate identification

The luxury auto *maker* last year *sold* 1,214 cars in the U.S.

maker.??) (sell.??)

Predicate sense disambiguation

The luxury auto *maker* last year *sold* 1,214 cars in the U.S.

(maker.01) (sell.01)

Argument identification

The luxury auto maker last year sold 1,214 cars in the U.S.

Argument labeling

The luxury auto maker last year **sold** 1,214 cars in the U.S.

Parsing Components

Almost all the semantic parsers (or semantic role labelers) start with a parsing step: either dependencies or constituents.

The semantic parser consists of a sequence of classifiers.

Logistic regression is among the best classifiers.

Each classifier uses a set of features extracted from the previous steps.

Features for the Predicate Identification

Features used by Johansson and Nugues (2008) and values for *sold* in *The luxury auto maker last year sold 1,214 cars in the U.S.*

Feature	Value
PredForm	sold
PredLemma	sell
PredHeadForm	ROOT
PredHeadPOS	ROOT
PredDeprel	ROOT
ChildFormSet	{maker, year, cars, in}
ChildPOSSet	{NN, NNS, IN}
ChildDepSet	{SBJ, TMP, OBJ, LOC}
DepSubcat	SBJ+TMP+OBJ+LOC
ChildFormDepSet	{maker+SBJ, year+TMP, cars+OBJ, in ***********************************
ChildPOSDepSet	{NN+SBJ, NN+TMP, NNS+OBJ, IN+

EVAR

EVAR is a German project that aims at providing information on trains

EVAR's Case Grammar

- fahren1.1 (The train is going from Hamburg to Munich)
 - Instrument: noun group (nominative), Transport, obligatory
 - Source: prepositional group (Origin), Location, optional
 - Goal: prepositional group (Direction), Location, optional
- 2 fahren1.2 (I am going by train from Hamburg to Munich)
 - Agent: noun group (nominative), Animate, obligatory
 - Instrument: prepositional group (prep = mit), Transport, optional
 - Source: prepositional group (Origin), Location, optional
 - Goal: prepositional group (Direction), Location, optional
- 3 Abfahrt1.1 (The departure of the train at Hamburg for Munich)
 - Object: noun group (genitive), Transport, optional
 - Location: prepositional group (Place), Location, optional
 - Time: prepositional group (Moment), Time, optional

Application: Carsim

Identify the events (actions) and the semantic relations related to car accidents.

In Framenet, the **Impact** class consists of 38 verbs or nouns with the roles: **Impactor**, **Impactee**, **Impactees**

```
[<Impactor> The rock] HIT [<Impactee> the sand] with a thump Source: http://framenet.icsi.berkeley.edu/
```

In Carsim:

```
[ACTOR En personbil] körde [TIME vid femtiden] [TIME

på torsdagseftermiddagen] in [VICTIM i ett radhus] [LOC

i ett äldreboende] [LOC på Alvägen] [LOC i Enebyberg] [LOC
```

norr om Stockholm .

