CMOSTEK

CMT2210LH

2.0-5.5V 供电 315/433.92/868/915MHz OOK 接收器

特性

- CMT2210LH 工作频率: 300 960 MHz
- OOK解调
- 数据率: 0.5 40 kbps
- 灵敏度: -109 dBm (3.0 kbps), 0.1% BER
- 接收器带宽: 330 kHz
- 镜像抑制比: 30 dB
- 最大可输入信号: 10 dBm
- 独立运行,天线进、数据出
- 无需寄存器配置
- 供电电压(可选):
 - 3.0 5.5 V (高电压模式)
 - 2.0 3.6 V (低电压模式)
- 低功耗: 4.5 mA @ 433.92 MHz
- 符合 RoHS 标准

说明

CMT2210LH 为低功耗、高性能的 OOK 射频接收 器,适用于 ISM 频段 315 / 433.92 / 868 / 915 MHz 及其临近频点的无线接收应用。CMT2210LH是真 正意义的即插即用型芯片。CMT2210LH 工作在 300 - 960 MHz 频段;射频频点的改变需通过选用 不同频率的晶体来实现,射频频点对应的晶体频率 可从 RFPDK 界面读出。该器件支持 0.5 - 40 kbps 的数据率范围,出厂缺省参数优化到 1 - 5 kbps 的数据率,非常适合与基于编码器或 MCU 的低成 本发射器配对使用。通过在 PCB 上断开或短接 VDD5V 和 VDDL 管脚, CMT2210/17LH 能够工 作在 3-5.5 V 或 2-3.6 V 两种供电电压区间。当 该芯片工作在 433.92 MHz 时, 仅需 4.5 mA 电流 便可实现 -109 dBm 的接收灵敏度。CMT2210LH 接收器搭配 CMT211x/5x 发射器便能实现高性价 比的射频应用方案。

应用

- 低成本消费电子电器应用
- 家庭和楼宇自动控制
- 红外接收器替换
- 工业监测和控制
- 无线计量读取
- 无线照明控制系统
- 无线报警和安全系统
- 遥控门禁系统(RKE)

订购信息

型号	封装	最小起订量
CMT2210LH-ESR	SOP8/ 编带	2,500 片
CMT2210LH-ESB	SOP8/ 管装	1,000 片
更多订购信息,	请参见 <u>第 15 页</u> 。	

CMT2210LH 管脚排列图

典型应用

图 1. CMT2210LH 典型应用原理图

备注:

- 1. 当 CMT2210LH 需要选择 3 5.5 V 工作电压范围时,不焊接 R0,即断开 VDD5V 与 VDDL 管脚之间的连接;
- 2. 当 CMT2210LH 需要选择 2 3.6 V 工作电压范围时, 取 R0 为 0 Ω, 即把 VDD5V 与 VDDL 管脚 短接在一起;
- 3. 串接 R1 到 VDD5V,以防止复杂环境下上电过程中供电电压波动造成的不良影响;
- 4. J1 为烧录口,建议在产品 PCB 上保留。

表 1. 典型应用的 BOM

に 且	2월 때	值(匹配到 //4 天线)				单位	供应商
标号	说明	315MHz	433.92MHz	868.35MHz	915MHz	中 12	供应商
X1	±20 ppm, SMD32*25 mm, 晶体	26.2774	27.1412	26.3236	26.1522	MHz	EPSON
L1	±10%, 0603 叠层电感	62	36	8.2	8.2	nΗ	Sunlord
L2	±10%, 0603 叠层电感	68	36	12	10	nΗ	Sunlord
C0	±0.25 pF, 0402 NP0, 50 V	3	3	-	-	pF	-
C1	±0.25 pF, 0402 NP0, 50 V	12	10	7.5	7.5	pF	-
C2	±20%, 0603 X7R, 25 V	0.1			uF	-	
C3	±20%, 0603 NP0, 50 V		47	70		pF	-
C4	±20%, 0603 X7R, 25 V		0	.1		uF	-
R0	3-5.5 V 工作环境下,不焊接;	0 / NC		Ω	_		
IXO	2-3.6 V 工作环境下,焊接 0R			32	_		
R1	串接保护电阻	4.7			Ω		
U1	CMT2210LH,2.0 – 5.5 V 供电					_	CMOSTEK
01	315/433.92/868/915 MHz OOK 接收器	-					CIVIOSTER

术语

本文所用到的术语描述如下:

AGC	自动增益控制	PC	个人计算机
AN	应用笔记	PCB	印刷电路板
BER	误比特率	PLL	锁相环
BOM	物料清单	PN9	伪随机数二进制序列
BSC	中心基本距离	POR	上电复位
BW	带宽	PUP	上电
DC	直流	QFN	四边形平面无引脚
EEPROM	电可擦除可编程只读存储器	RF	射频
ESD	静电释放	RFPDK	RF产品开发套件
ESR	等效串联电阻	RoHS	危害物质限用指令
IF	中频	RSSI	接收信号强度指示器
LNA	低噪声放大器	Rx	接收,接收器
LO	本地振荡器	SAR	逐次逼近寄存器
LPOSC	低功耗振荡器	SOP	小外形封装
Max	最大	SPI	串口
MCU	微控制器单元	TH	阈值
Min	最小	Tx	发射,发射器
MOQ	最小起订量	Тур	典型
NP0	具有温度补偿特性	VCO	压控振荡器
NC	未连接	XOSC	晶体振荡器
OOK	开关键控	XTAL/Xtal	晶体

www.cmostek.com

目录

1.	电气物	毕性	5
	1.1	推荐运行条件	5
	1.2	绝对最大额定值	
	1.3	接收器规格	6
2.	管脚指	描述	
2	山 形材	<u>+ 4</u> ℃	9
ა.	典望的	I.用E	
4.	典型区	过用原理图	
5.			12
	5.1	概述	
			13
	5.3	功能模块描述	13
			13
	•		13
	į		
	į		14
	į	5.3.5 晶体振荡器	14
			14
			15
7.	封装夕	ト形	
	T舌 対7ム	δ t2π	
10	. 文档多	E更记录表	19
11	联玄 才	र जी	20

1. 电气特性

 V_{DD} = 3.3V, T_{OP} = 25 °C, F_{RF} = 433.92 MHz,灵敏度是通过接收一个 PN9 序列及匹配至 50 Ω 阻抗下,0.1% BER 的标准下测得。除非另行声明,所有结果都是在评估板 CMT221xLH-EM 上测试得到。

1.1 推荐运行条件

表 2. 推荐运行条件

参数	符号	条件	最小	典型	最大	単位
运行电源电压	V	VDD5V 与 VDDL 开路,温度范 围在-40℃至+85℃	3.0		5.5	V
	V_{DD}	VDD5V 与 VDDL 短接, 温度范围在-40℃至+85℃	2.0		3.6	V
运行温度	T_OP		-40		85	$^{\circ}$ C
电源电压斜率			1			mV/us

1.2 绝对最大额定值

表 3. 绝对最大额定值[1]

参数	符合	条件	最小	最大	单位
电源电压	\/	VDD5V 与 VDDL 不短接	-0.3	5.5	V
电/尔电压	V_{DD}	VDD5V 与 VDDL 短接	-0.3	3.6	V
接口电压	V_{IN}		-0.3	$V_{DD} + 0.3$	V
结温	T _J		-40	125	$^{\circ}\mathbb{C}$
储藏温度	T _{STG}		-50	150	$^{\circ}\!\mathbb{C}$
焊接温度	T _{SDR}	持续至少30秒		255	$^{\circ}\mathbb{C}$
ESD 等级 ^[2]		人体模型(HBM)	-2	2	kV
栓锁电流		@ 85 ℃	-100	100	mA

备注:

- [1]. 超过"绝对最大额定参数"可能会造成设备永久性损坏。该值为压力额定值,并不意味着在该压力条件下设备功能受影响,但如果长时间暴露在绝对最大额定值条件下,可能会影响设备可靠性。
- [2]. CMT2210LH 是高性能射频集成电路,对本芯片的操作和装配要注意 ESD 的防护。

警告! ESD敏感器件. 对芯片进行操作的时候应注意做好ESD防范措施,以免芯片的性能下降或者功能丧失。

1.3 接收器规格

表 4. 接收器规格

参数	符号	条件	最小	典型	最大	单位
频率范围	F _{RF}	CMT2210LH	300		960	MHz
数据率	DR		0.5		40	kbps
	S ₃₁₅	F_{RF} = 315 MHz, DR = 3 kbps, BER = 0.1%		-109		dBm
目标的	S _{433.92}	$F_{RF} = 433.92 \text{ MHz}, DR = 3$ kbps, BER = 0.1%		-109		dBm
灵敏度	S _{868.35}	$F_{RF} = 868.35 \text{ MHz}, DR = 3$ kbps, BER = 0.1%		-108		dBm
	S ₉₁₅	F_{RF} = 915 MHz, DR = 3 kbps, BER = 0.1%		-108		dBm
饱和输入电平	P _{LVL}			10		dBm
	I _{DD315}	F _{RF} = 315 MHz		4.2		mΑ
工 炉 由 法	I _{DD433.92}	F _{RF} = 433.92 MHz		4.5		mΑ
工作电流	I _{DD868.35}	F _{RF} = 868.35 MHz		5.8		mΑ
	I _{DD915}	F _{RF} = 915 MHz		6.2		mΑ
频率综合器稳定 时间	T _{LOCK}	从晶体稳定震荡开始		150		us
		±1 MHz, 连续波干扰		32		dB
抗阻塞	BI	±2 MHz, 连续波干扰		42		dB
		±10 MHz, 连续波干扰		61		dB
输入3阶交调点	IIP3	频率偏移在 1 MHz 和 2 MHz 的 双音测试,最大系统增益设置		-23		dBm
	BW ₃₁₅	F _{RF} = 315 MHz		240		kHz
 接收器带宽 ^[1]	BW _{433.92}	F _{RF} = 433.92 MHz		330		kHz
按収益市见。 	BW _{868.35}	F _{RF} = 868.35 MHz		240		kHz
	BW ₉₁₅	F _{RF} = 915 MHz		240		kHz
接收器启动时间	T _{START-UP}	从上电到接收		4.5+T _{XTAL} ^[2]	_	ms

备注:

- [1]. 接收带宽有 120 / 240 / 330 / 400 kHz 这 4 个档位选项。芯片工作在 433.92 MHz 时,缺省配置接收带 宽为 330 kHz,其余工作频点的缺省接收带宽均为 240 kHz。如有必要,用户可通过 RFPDK 选择所需 要的接收带宽。
- [2]. T_{XTAL} 为晶体起振时间,高度依赖于晶体参数本身。

1.4 晶体振荡器

表 5. 晶体振荡器规格

参数	符号	条件	最小	典型	最大	参数
	F _{XTAL315}	F _{RF} = 315 MHz		26.2774		MHz
 晶体频率 ^[1]	F _{XTAL433.92}	$F_{RF} = 433.92 \text{ MHz}$		27.1412		MHz
田'体观学"	F _{XTAL868.35}	F _{RF} = 868.35 MHz		26.3236		MHz
	F _{XTAL915}	F _{RF} = 915 MHz		26.1522		MHz
晶体频率精度 ^[2]				±20		ppm
负载电容 ^[3]	C_LOAD	SMD32*25 mm 封装		15		pF
贝敦电谷 ^[5] 		49USSMD 或者 49S 封装		22		pF
晶体等效电阻	Rm				60	Ω
晶体启动时间[4]	T _{XTAL}			400		us

备注:

- [1]. CMT2210LH 可以直接用外部参考时钟通过耦合电容驱动 XOSC 管脚工作。外部时钟信号的峰峰值要求在 0.3 到 0.7 V 之间。
- [2]. 该值包括 (1) 初始误差; (2) 晶体负载; (3) 老化; 和(4) 随温度的改变。可接受的晶体频率误差受限于接收机的带宽和与之搭配的发射器之间射频频率偏差。
- [3]. 由于晶体封装不同导致寄生电容存在差异,推荐根据所用封装选用不同负载电容值的晶体。
- [4]. 该参数很大程度上与晶体相关。

www.cmostek.com

2. 管脚描述

图 2. CMT2210LH 管脚排列

表 6. CMT2210LH 管脚描述

管脚号	管脚名称	I/O	描述
1	GND	I	地
2	RFIN	ı	射频信号输入至芯片LNA
3	VDD5V		电源输入
4	VDDL	0	电源输出
5	DATA	0	烧录口 DATA 管脚和接收信号输出,建议保留烧录点
6	SCL	ı	烧录口 SCL 管脚,建议保留烧录点
7	CSB	Ī	烧录口 CSB 管脚,建议保留烧录点
8	XOSC	Ī	晶体振荡器输入,或外部参考时钟输入

3. 典型性能

图 3. 接收电流 vs 供电电压

图 4. 接收电流 vs 工作温度

图 5. 灵敏度 vs 供电电压

图 6. 灵敏度 vs 工作温度

图 7. 灵敏度 vs 数据率

图 8. 灵敏度 vs 误码率

4. 典型应用原理图

图 3. 典型应用原理图

应用注意事项:

- 1. 通用版图准则如下文所示:
 - 尽量用大片的连续地做铺地设计。
 - L1、L2、C0、C1 尽量靠近芯片,减少 LNA 的分布参数及其回路,防止回路过长,引入噪声信号。
 - 晶体 X1 应尽量靠近芯片 CMT2210LH 摆放,使晶体到芯片的连线尽量短。
 - 沿板边一周摆放尽量多的接地通孔,以减少射频信号的辐射及外界的干扰,过孔的间距要远小于 1/10 波长(工作频率)。
 - C2, C3, C4 尽量靠近 CMT2210LH 以实现更好滤波效果。
 - 晶体的金属外壳接地。
- 2. 如需了解更多设计细节,请参考《AN158 CMT221xLH 原理图及 PCB 版图设计指南》。

表 7. 匹配 315 / 433.92 MHz 典型应用的 BOM

标号	5.是		值(匹配到	J λ/4 天线)		出 注	供应金
你亏	标号 说明 说明	315MHz	433.92MHz	868.35MHz	915MHz	単位	供应商
X1	±20 ppm, SMD32*25 mm, 晶体	26.2774	27.1412	26.3236	26.1522	MHz	EPSON
L1	±10%, 0603 叠层电感	62	36	8.2	8.2	nΗ	Sunlord
L2	±10%, 0603 叠层电感	68	36	12	10	nΗ	Sunlord
C0	±0.25 pF, 0402 NP0, 50 V	3	3	-	-	pF	-
C1	±0.25 pF, 0402 NP0, 50 V	12	10	7.5	7.5	pF	-
C2	±20%, 0603 X7R, 25 V	0.1			uF	-	
С3	±20%, 0603 NP0, 50 V		4	70		pF	-
C4	±20%, 0603 X7R, 25 V		0	.1		uF	-
R0	3-5.5 V 工作环境下,不焊接;		0./	NC		Ω	_
IXO	2-3.6 V 工作环境下,焊接 0R	07 NC		32	-		
R1	串接保护电阻	4.7			Ω		
U1	CMT2210LH,2.0 – 5.5 V 供电				CMOSTEK		
	315/433.92/868/915 MHz OOK 接收器		-				CIVIOSTER

5. 功能描述

图 10. 功能模块图

5.1 概述

CMT2210LH 是一款数模混合设计的一体化接收机。该产品采用频率在 26 MHz 附近的晶体提供 PLL 的参考频率和数字时钟,支持数据率为 0.5 - 40 kbps 的 OOK 解调输出,并支持时间可配置的周期性复位,避免各种外部原因造成的死机现象。CMT2210LH 支持两个电压范围的工作场景,能胜任在 5V 系统的应用场合,也能选择作为 3 V 的系统应用。

该芯片采用 LNA + Mixer + IF-Filter + Limiter + PLL 的低中频结构实现 Sub-1G 以下频率的无线接收功能。模拟前端负责将射频信号下混频至中频,并通过 SAR-ADC 将实时的 RSSI 转换为 8-bit 的数字信号,送至内部做 OOK 解调和相关处理。同时,内部电路将中频信号下混频到零频(基带)并进行一系列滤波和判断处理,同时进行 AGC 动态控制模拟前端,最后把原始的信号解调出来,通过 DATA 管脚输出到片外。

芯片工作的参数均存储在内部一块 EEPROM 中,用户可以通过 RFPDK 进行修改或调整芯片的工作参数。

5.2 解调方式,频率及数据率

CMT2210LH 支持数据率从 0.5 - 40 kbps 的 OOK 解调, 出厂缺省参数优化到支持 1 - 5 kbps 的 数据率。CMT2210LH 支持 300 - 480 MHz 和 600 – 960 MHz 两个免费的 ISM 频段。下表给出 CMT2210LH 的解调方式、频率及数据率的信息。

参数	值	単位
解调方式	OOK	-
CMT2210LH 频率范围	300 – 480	MHz
OMIZZIULH <u></u>	600 - 960	IVITZ
数据率	0.5 – 40	kbps

表 8. 解调方式,频率及数据率

5.3 功能模块描述

5.3.1 射频前端与自动增益控制

CMT2210LH 是一个采用低中频架构的 OOK 调制信号接收器。接收器的射频前端由一个低噪声放大器 (LNA)、I/Q 混频器 (Mixer)、中频滤波器 (IF Filter)和一个宽带功率检测器组成(WB Power Detector)。射频前端将天线上所感应的射频输入信号放大、下变频至中频,以进行进一步处理。

借助于射频前端的宽带功率检测器和射频衰减网络,自动增益控制(AGC)环路通过调节射频前端增益,即使在带外强干扰的环境下也能获得最佳的系统线性度、选择性和灵敏度性能。

仅需一个低成本匹配电路,便可将 LNA 输入匹配至 50Ω 或其他类型的天线。

5.3.2 中频滤波器

射频前端来的信号,经由集成的 3 阶带通镜像抑制滤波器进行滤波。当该器件工作在 433.92 MHz 时,中频带宽为 330 kHz。中心频率以及带宽会根据选用的晶体频率自动做相应比例的调整。

5.3.3 接收信号强度指示器

中频滤波器输出的信号,经过后面的级联 I/Q 对数放大器放大后送入解调器进行解调。I/Q 两路对数放大器都包括有输入信号强度指示器(RSSI),这些指示器在 I/Q 路径内产生与输入信号幅度成正比的直流电平。这两条路径的电平之和被用作接收信号强度的指示,有超过 66 dB 的动态范围。

5.3.4 逐次逼近寄存器

CMT2210LH 内的 8-bit SAR-ADC 将 RSSI 的输出转化为数字信号,以便进行 OOK 信号解调。

5.3.5 晶体振荡器

CMT2210LH 采用的是单端的晶体振荡电路,为节省成本,晶体振荡所需的负载电容集成于芯片内。推荐使用精度在为±20 ppm,等效电阻(ESR) < 60 Ω,负载电容(C_{LOAD})为 15 pF 的晶体。

如果应用系统中有一个合适的时钟源能作为 CMT2210LH 的参考时钟,用户可以将其通过隔直电容驱动芯片的 XOSC 管脚。这将省去一颗晶体,进一步降低系统成本。推荐的时钟源幅度为 0.3 到 0.7 V 的峰峰值(在 XOSC 管脚处)。

5.3.6 频率综合器

频率综合器用于产生下变频 I/Q 混频器所需的本振(LO)频率。通过晶体或者外部时钟源提供的基准时钟,频率综合器可以产生所需求的射频工作频率。内部的高频谱纯度 VCO 工作于 2 倍的 LO 频率,无需片外电感,可靠上电后芯片便可稳定的工作。

6. 订购信息

表 9. CMT2210LH 订购信息

产品型号	描述	封装	包装	运行条件	最小订购量 / 整数倍
CMT2210LH-ESR ^[1]	2.0 – 5.5V供电300 - 960 MHz OOK接收器	SOP8	编带盘装	2 – 3.6 V 3 – 5.5 V -40 – 85 °C	2,500
CMT2210LH-ESB ^[1]	2.0 – 5.5V供电300 - 960 MHz OOK接收器	SOP8	管装	2 – 3.6 V 3 – 5.5 V -40 – 85 °C	1,000

备注:

[1]. "E" 代表扩展型工业产品等级,其支持的温度范围是从-40 到+85 ℃。

"S"代表 SOP8 的封装类型。

"R"代表编带及盘装类型,最小起订量 (MOQ) 是 2,500 片; "B"代表管装类型,最小订购量是 1,000 片。

如需了解更多产品及产品线信息,请访问 <u>www.cmostek.com</u>。

有关采购或价格需求,请联系 sales@cmostek.com 或者当地销售代表。

www.cmostek.com

7. 封装外形

CMT2210LH 的封装 SOP8 封装信息如下图及下表所示。

图 11. SOP8 封装

表 10. SOP8 封装尺寸

ht D	尺寸 (毫米 mm)			
符号	最小值	典型值	最大值	
А		-	1.75	
A1	0.10	-	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	-	0.48	
С	0.21	-	0.26	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е		1.27 BSC		
h	0.25	-	0.50	
L	0.50	-	0.80	
L1		1.05 BSC		
θ	0	-	8°	

8. 顶部丝印

图 12. CMT2210LH 顶部丝印

表 11. CMT2210LH 顶部丝印说明

丝印方式	激光
管脚 1 标记	圆圈直径 = 0.5 mm
字体高度	0.6 mm, 右对齐
字体宽度	0.3 mm
第一行丝印	CMT2210LH, 代表型号 CMT2210LH
第二行丝印	YYWW 是封装厂制定的日期编号。YY 代表年份的最后 2 位数, WW 代表工作周 ①②③④⑤⑥是内部追踪号

9. 其它文档

表 12. CMT2210LH 相关其它文档

文档号	文档名称	描述
AN157	CMT221xLH 配置指南	通过 RFPDK 配置 CMT2210LH 和 CMT2217LH 的 详细介绍
AN158	CMT221xLH 原理图及 PCB 版图设计指南	CMT2210LH和CMT2217LH原理图和版图设计规则,RF匹配网络和其他版图设计相关的设计注意事项

10. 文档变更记录表

表 13. 文档变更记录表

版本号	章节	变更描述	日期
0.1	所有	初始发布版本	2017-08-10
0.2	所有	勘误部分笔误	2017-09-21
0.3	1	Page 2,表 1,供电电压为 3.0 - 5.5 V	2018-02-07
0.5	所有	增加型号 CMT2217LH 及其相关描述	2018-08-22
0.6	所有	改为支持全频段;全文整合为 CMT2210LH 信息,去除 CMT2217LH 信息。	2021-12-14

11. 联系方式

无锡泽太微电子有限公司深圳分公司 深圳市南山区西丽街道万科云城 3 期 8 栋 A 座 30 楼

邮编: 518055

电话: +86-755-83231427 销售: <u>sales@cmostek.com</u> 技术支持: <u>support@cmostek.com</u>

网址: <u>www.cmostek.com</u>

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.