CLASE 4

LÓGICA COMBINACIONAL

CONTENIDO

Comparadores

Multiplexador

Demultiplexador

Binario a BCD

Un comparador de magnitudes es un circuito combinacional que compara dos números, A y B, y determina sus magnitudes relativas. El resultado de la comparación se especifica con tres variables binarias que indican si A>B, A=B o A < B

Funcionamiento del comparador.

Comparador de 1 bit:

Α	В	A = B	A > B	A < B
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	0	0

$$(A = B) = \overline{A \oplus B} = \overline{A \overline{B} + \overline{A} B}$$

$$(A > B) = A \overline{B}$$

 $(A < B) = \overline{A} B$

Funcionamiento del comparador.

Comparador de 4 bits.

En un comparador de 4 bits el procedimiento es el siguiente:

- A=B Deben ser iguales cada uno de sus bits.
- A>B Recorremos todos los bits de A y B desde el mas significativo hasta que A sea 1 y B sea 0.
- A<B Recorremos todos los bits de A y B desde el mas significativo hasta que A sea 0 y B sea 1.

Ejemplo funcionamiento:

- ▶ Son circuitos combinacionales con varias entradas y una única salida de datos. Están dotados de entradas de control capaces de seleccionar una, y sólo una, de las entradas de datos para permitir su transmisión desde la entrada seleccionada hacia dicha salida.
- ▶ Nombre alternativo: Mux

Multiplexor de 16 canales de entrada de 1 bit cada una.

Y MUX 16 a 1 (16x1)

- Multiplexor de 4 canales de entrada de 4 bits cada una.
- ▶Y
- ►Mux de 4 a 1 (4 x 1)

- Se pueden obtener multiplexores mas grandes a partir de mas pequenos.
- Se puede aumentar el numero de entradas o el numero de bits por cada entrada.

Aumento del numero de entradas

Aumento del numero de bits de cada entrada

- ► Es un circuito combinacional que tiene una entrada de información de datos y "n" entradas de control que sirven para seleccionar una de las 2^n salidas, por la que ha de salir el dato que está presente en la entrada.
- ▶ Es el proceso inverso al multiplexor.
- ▶ Nombre alternativo: Demux.

Demultiplexor de 4 salidas de 2 bits cada una Demux 1 a 4 (1x4)

Demultiplexor de 4 salidas de 1 bits cada una Demux 1 a 4 (1x4)

Decimal codificado en binario (BCD)

Símbolo decimal	Dígito BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

CÓDIGO BCD

CÓDIGO UTILIZADO PARA REPRESENTAR NÚMEROS DECIMALES MEDIANTE EL SISTEMA BINARIO, DONDE CADA DIGITO DECIMAL ES CODIFICADO CON 4 BITS.

CÓDIGO BCD

De decimal a BCD

DE BINARIO A BCD

Lamentablemente, de binario a BCD no podemos simplemente separar conjuntos de cuatro bits y esperar a que todo funcione. Se debe de seguir el siguiente algoritmo.

- Desplazar el número binario hacia la izquierda un bit.
- Si alguno de los dígitos tiene un valor igual o mayor a cinco, sumar tres.
- * Repetir los pasos 1 y 2 la cantidad de bits del número binario que se quiere convertir.

DE BINARIO A BCD

Proceso para pasar el numero 110100001 (417), a código BCD.

Operación	BCD			Binario
	Centenas (4 bits)	Decenas (4 bits)	Unidades (4 bits)	Número binario (9 bits)
Disposición inicial				110100001
Desplazar a la izquierda (1)			1	10100001
Desplazar a la izquierda (2)			11	0100001
Desplazar a la izquierda (3)			110	100001
Sumar tres a unidades			1001	100001
Desplazar a la izquierda (4)		1	0011	00001
Desplazar a la izquierda (5)		10	0110	0001
Sumar tres a unidades		10	1001	0001
Desplazar a la izquierda (6)		101	0010	001
Sumar tres a decenas		1000	0010	001
Desplazar a la izquierda (7)	1	0000	0100	01
Desplazar a la izquierda (8)	10	0000	1000	1
Sumar tres a unidades	10	0000	1011	1
Desplazar a la izquierda (9)	100	0001	0111	

DE BINARIO A BCD

- Utilizamos el código BCD para poder representar un numero binario en displays.
- Se utilizan los integrados 7447 o 7448. (Decodificadores de BCD a 7 segmentos).

