The Thinner Takes It All

Applications of thinned point processes in ecology

Andy Seaton

University of St Andrews

Acknowledgements

Dr Janine Illian, University of St Andrews University of St Andrews

Prof David Borchers,

Prof Finn Lindgren, University of Edinburgh

Dr Fabian Bachl, University of Edinburgh **Rick Camp**, University of St Andrews and US Geological Survey Dr David Miller, University of St Andrews

Overview

- $1. \ \, {\sf Distance \ Sampling \ and \ "Density \ Surface" \ Models}$
- 2. Spatial Capture-Recapture

Thinned Poisson Processes

Thinned Poisson Processes

Thinned Poisson Processes

Distance Sampling

Distance Sampling

Distance Sampling

Note the intercept assumed equal to 1

source: the birdist.com

Line transect example - whale survey

Line transect example - whale survey

source: wikicommons

source: Jack Jeffrey, US Fish and Wildlife Service

Point transect example

Recall that the intensity for detected points is $\tilde{\lambda}(s) = \lambda(s)p(s)$

Therefore,

$$\log \tilde{\lambda}(s) = \log \lambda(s) + \log p(s)$$

But $\log p(s)$ is typically not linear in it's parameters! (e.g. half-normal requires strictly positive variance parameter)

Solution: iterated INLA

Point transect example - iterated INLA

inlabru syntax example:

A slight problem: we did not know the exact location of the point, only the distance from the observer.

Solution: derive the appropriate intensity for this partial data

For a single point transect at location s_0 , letting $s(r,\theta) = s_0 + r[\cos\theta,\sin\theta]^T$, the intensity for points at distance r from s_0 is:

$$\tilde{\lambda}(r) = \int_{c(r)} \lambda(s(r,\theta))p(r)ds$$

$$= \int_{0}^{2\pi} r\lambda(s(r,\theta))p(r)d\theta$$

$$= 2\pi r\lambda(s_{0})p(r)$$

Add a $\log(2\pi)$ offset for not knowing θ and a $\log r$ offset to account for the fact that we consider a larger area with increasing distance.

Point transect example - take home messages

 Conceptually nice one-stage model - avoids binning points into counts and uncertainty propagation between two stages

Point transect example - take home messages

- Conceptually nice one-stage model avoids binning points into counts and uncertainty propagation between two stages
- Intensities can be derived for data even where you cannot draw a point on a map (more on this next)

Point transect example - take home messages

- Conceptually nice one-stage model avoids binning points into counts and uncertainty propagation between two stages
- Intensities can be derived for data even where you cannot draw a point on a map (more on this next)
- Iterated INLA a general tool for more than just fitting a thinning probability function

• capture-recapture methods have a long history of being used to estimated the size of a population

- capture-recapture methods have a long history of being used to estimated the size of a population
- spatial capture-recapture uses the location information of captures and recaptures

- capture-recapture methods have a long history of being used to estimated the size of a population
- spatial capture-recapture uses the location information of captures and recaptures
- a natural way to join capture-recapture data and spatial modelling

source: snow leopard conservancy trust

Spatial Capture-Recapture

Spatial Capture-Recapture

Spatial Capture-Recapture

$$\mathcal{L}(\Omega) \propto \exp\left(-\int \lambda(m{s}) p(m{s}|m{\phi}) \mathrm{d}m{s}
ight) \prod_{i=1}^n \int \pi(\Omega_i|m{\phi},m{s}_i) \lambda(m{s}_i) \mathrm{d}m{s}_i$$

$$\mathcal{L}(\Omega) \propto \exp\left(-\int \lambda(oldsymbol{s}) p(oldsymbol{s}|oldsymbol{\phi}) \mathrm{d}oldsymbol{s}
ight) \prod_{i=1}^n \int \pi(\Omega_i|oldsymbol{\phi},oldsymbol{s}_i) \lambda(oldsymbol{s}_i) \mathrm{d}oldsymbol{s}_i$$

 \bullet The thinning and the estimation of the activity centre location share parameters ϕ

$$\mathcal{L}(\Omega) \propto \exp\left(-\int \lambda(oldsymbol{s}) p(oldsymbol{s}|oldsymbol{\phi}) \mathrm{d}oldsymbol{s}
ight) \prod_{i=1}^n \int \pi(\Omega_i|oldsymbol{\phi},oldsymbol{s}_i) \lambda(oldsymbol{s}_i) \mathrm{d}oldsymbol{s}_i$$

- ullet The thinning and the estimation of the activity centre location share parameters ϕ
- Inference usually maximum-likelihood or Bayesian approach in MCMC

$$\mathcal{L}(\Omega) \propto \exp\left(-\int \lambda(oldsymbol{s}) p(oldsymbol{s}|oldsymbol{\phi}) \mathrm{d}oldsymbol{s}
ight) \prod_{i=1}^n \int \pi(\Omega_i|oldsymbol{\phi},oldsymbol{s}_i) \lambda(oldsymbol{s}_i) \mathrm{d}oldsymbol{s}_i$$

- \bullet The thinning and the estimation of the activity centre location share parameters ϕ
- Inference usually maximum-likelihood or Bayesian approach in MCMC
- Typically $\lambda(s)$ is assumed constant or linear combination of fixed effect covariates

$$\mathcal{L}(\Omega) \propto \exp\left(-\int \lambda(oldsymbol{s}) p(oldsymbol{s}|oldsymbol{\phi}) \mathrm{d}oldsymbol{s}
ight) \prod_{i=1}^n \int \pi(\Omega_i|oldsymbol{\phi},oldsymbol{s}_i) \lambda(oldsymbol{s}_i) \mathrm{d}oldsymbol{s}_i$$

- ullet The thinning and the estimation of the activity centre location share parameters ϕ
- Inference usually maximum-likelihood or Bayesian approach in MCMC
- Typically $\lambda(s)$ is assumed constant or linear combination of fixed effect covariates
- ullet Watch this space for $\lambda(m{s})$ a realisation of log-Gaussian Cox process...

• Thinning functions are a natural way to account for how ecologists observe point patterns

- Thinning functions are a natural way to account for how ecologists observe point patterns
- Complex observation processes can be represented as a thinning conditioning on auxiliary data (such as distances and other
 covariates) or being derived from a more complicated observation
 model (as in SCR)

- Thinning functions are a natural way to account for how ecologists observe point patterns
- Complex observation processes can be represented as a thinning conditioning on auxiliary data (such as distances and other
 covariates) or being derived from a more complicated observation
 model (as in SCR)
- General software for specifying thinning functions has the potential to be widely used

- Thinning functions are a natural way to account for how ecologists observe point patterns
- Complex observation processes can be represented as a thinning conditioning on auxiliary data (such as distances and other
 covariates) or being derived from a more complicated observation
 model (as in SCR)
- General software for specifying thinning functions has the potential to be widely used
- Potential for thinning to share information between for multiple observation processes e.g. citizen science, combining multiple data sources etc

Thanks for listening!