Metropolis Monte Carlo Simulation: Q & A

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Metropolis Inequalities

- Q: Why my ising.c doesn't compile on USC Discovery cluster* (discovery.usc.edu)?
- A: Please load the standard software module and use Gnu C compiler (gcc) instead of cc.

```
[anakano@discovery1]$ module purge
[anakano@discovery1]$ module load usc
[anakano@discovery1]$ gcc -o ising ising.c -lm
[anakano@discovery1]$ ./ising
Input JdivT HdivT Sta_step
0.2 0.0 2000000
avgM & sigM = -6.847660e-01 3.389275e+01
```

Remember to plot the absolute value of magnetization

^{*}We are not providing a class account on Discovery for this course, but you are welcome to use it if you already have an account.

Metropolis Inequalities

Q: How to handle exp_val = exp(-δV/k_BT) = 1?
A: Either accept it unconditionally or conditionally with probability 1; let us (arbitrarily) pick: if (exp_val > 1.0) {}
Q: How to accept an attempt with probability exp_val?

A: Let us use

else if ((rand()/(double)RAND_MAX) <= exp_val) {} Always true for exp_val =1.0, and correct probability if exp_val is rational with denominator $RAND_MAX$ and $rand() \in [1,RAND_MAX]$.*

```
// Our pick for assignment 3
if (exp_val > 1.0) {
   s[i][j] = s_new;
   runM += 2.0*s_new;
}
else if (rand()/(double)RAND_MAX <= exp_val) {
   s[i][j] = s_new;
   runM += 2.0*s_new;
}</pre>
```

^{*}Linear-congruential random-number generator would return an integer in the range [1,RANDMAX-1], while certain library returns [0,RANDMAX], introducing 10⁻⁹ discretization error (which we have in general *exp_val* values anyways).

Metropolis Inequalities (2)

Q: Could we get over with just one if statement (no else)?

A: Yes we can, though with slightly more computation.

```
// Not our pick for assignment 3
if (exp_val > 1.0) {
    s[i][j] = s_new;
    runM += 2.0*s_new;
}
else-if (rand()/(double)RAND_MAX <= exp_val) {
    s[i][j] = s_new;
    runM += 2.0*s_new;
}</pre>
```

Magnetization Histogram

Q: Why so many zero entries in my histogram?

A: Spin flip conserves the parity of the total magnetization, thus no occurrence of odd magnetization.

$$runM \leftarrow L^2 = 400 \ (L = 20) \ // \ Initialization (cold start)$$

 $runM += 2 \times s_new \ // \ At each spin flip$

This is perfectly fine

Or eliminate all zero entries

Proving Metropolis Algorithm

Q: How much detailed is required?

A: Just show that Metropolis transition-probability matrix: (1) satisfies the detailed-balanced condition; and consequently (2) fixed-point property, *i.e.*, the desired probability is its eigenvector with eigenvalue 1.

Metropolis Transitionprobability matrix

$$\pi_{m,n} = \overbrace{\min(\frac{\rho_m}{\rho_n}, 1)}^{\text{accept/reject}} \text{symmetric attempt}$$

Detailed-balance condition

$$\pi_{mn}\rho_n = \pi_{nm}\rho_m$$

Equal population flux

Fixed-point

$$\Pi \boldsymbol{\rho} = 1 \bullet \boldsymbol{\rho}
\sum_{n} \pi_{mn} \rho_{n} = \rho_{m}$$

Once you get there, stuck forever

(Filtering) Since all other eigenvalues are less than 1 in absolute value, we get there no matter what is the initial probability

Q: What Is α_{mn} in Ising MC?

States:
$$m, n \in \left\{ s^N = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_N \end{pmatrix} \middle| s_i = \uparrow, \downarrow; i = 1, \dots, N \right\}$$
 $\pi_{m,n} = \underbrace{\min(\frac{\rho_m}{\rho_n}, 1)}^{\text{accept/reject attempt}} \underset{\alpha_{m,n}}{\text{attempt}}$

Attempt matrix:
$$\alpha_{m,n} = \begin{cases} 1/N & Hamming_distance(m,n) = 1 \\ 0 & \text{else} \end{cases}$$

Example: N = 3 ($2^N = 8$ states)

Q: Where Is Matrix-Vector Multiplication?

A: The probability density vector is replaced by an ensemble of individual MC sequences in Markov-chain MC; the ensemble average is then replaced by time average.

$$\rho^{(t+1)} = \Pi \rho^{(t)}$$
MC steps
$$2 \quad 1 \quad 0$$

$$0 \quad ud \quad sates$$

$$0 \quad du \quad sates$$

$$0 \quad dd$$

Example: Two-Level System

$$\Pi = \uparrow \begin{pmatrix} a & 1-b \\ 1-a & b \end{pmatrix} = \begin{pmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{pmatrix} \quad (a = 0.6, b = 0.7)$$

$$0.8 \qquad 0.6 \qquad 0.9 \qquad 0.4 \qquad 0.7$$

$$0.2 \qquad 0.2 \qquad 0.2 \qquad 0.3 \qquad 0.4 \qquad 0.2$$
Day

$$\begin{pmatrix} p_{\uparrow}^{(t)} \\ p_{\downarrow}^{(t)} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{pmatrix}^{t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{t \to \infty} \begin{pmatrix} 0.4286 \\ 0.5714 \end{pmatrix} \frac{3/7}{4/7}$$
 Equilibrium probability

A Metropolis Monte Carlo

Your only knowledge = equilibrium probability distribution

$$\mathbf{\rho} = \begin{pmatrix} 3/7 \\ 4/7 \end{pmatrix}$$

A choice of attempt matrix

$$\alpha_{\uparrow\downarrow} = \alpha_{\downarrow\uparrow} = 1$$

Detailed-balanced transition-probability matrix

$$\Pi = \begin{pmatrix} \pi_{\uparrow\uparrow} & \pi_{\uparrow\downarrow} \\ \pi_{\downarrow\uparrow} & \pi_{\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} 1 - \alpha_{\downarrow\uparrow} & \alpha_{\uparrow\downarrow}(\rho_{\uparrow}/\rho_{\downarrow}) \\ \alpha_{\downarrow\uparrow} & 1 - \alpha_{\uparrow\downarrow}(\rho_{\uparrow}/\rho_{\downarrow}) \end{pmatrix} \\
= \begin{pmatrix} 1 - 1 & 1 \cdot 3/4 \\ 1 & 1 - 1 \cdot 3/4 \end{pmatrix} = \begin{pmatrix} 0 & 3/4 \\ 1 & 1/4 \end{pmatrix}$$

Q: How to represent the probability distribution?

A: An ensemble of many samples

Ensemble-Average MC

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define NTRY 20 /* # of MC trials */
#define NENS 1000000 /* ensemble size */
#define TRNS 3.0/4.0 /* up-to-down conditional probability */
int main() {
  int s; /* spin state: 0 = up; 1 = down */
  int hist[NTRY][2]; /* histgram */
  int try, walker;
  srand((unsigned)time((long *)0));
  for (try=0; try<NTRY; try++) for (s=0; s<2; s++) hist[try][s] = 0;
  for (walker=0; walker<NENS; walker++) {</pre>
    s = 0; /* up on day 0 */
    ++(hist[0][s]);
    for (try=1; try<NTRY; try++) {</pre>
      if (s == 0) s = 1; /* unconditional down move */
      else if (rand()/(double)RAND MAX < TRNS) s = 0; /* conditional up move */
      ++(hist[try][s]); /* accumulate the average */
  for (try=0; try<NTRY; try++) printf("%d %d %d\n",try,hist[try][0],hist[try][1]);
 return 0;
```

Ensemble-Average MC Result

Time-Average MC

```
#include <stdio.h>
                                               Replace ensemble average by
#include <stdlib.h>
                                               time average of one walker
#include <time.h>
#define NTRY 1000 /* ensemble size */
#define TRNS 3.0/4.0 /* up-to-down conditional probability */
int main() {
  int s; /* spin state: 0 = up; 1 = down */
  int hist[NTRY][2]; /* histgram */
  int try, i;
  srand((unsigned)time((long *)0));
  for (try=0; try<NTRY; try++) for (s=0; s<2; s++) hist[try][s] = 0;
  s = 0; /* up on day 0 */
  ++(hist[0][s]);
  for (try=1; try<NTRY; try++) {</pre>
    if (s == 0) s = 1; /* unconditional down move */
    else if (rand()/(double)RAND MAX < TRNS) s = 0; /* conditional up move */
    for (i=0; i<2; i++) hist[try][i] = hist[try-1][i];
    ++(hist[try][s]); /* accumulate the average */
  }
  for (try=0; try<NTRY; try++)</pre>
    printf("%d %d %d\n",try,hist[try][0],hist[try][1]);
  return 0;
                                                           Ergodic hypothesis
}
```

Time-Average MC Result

Try	Uр	Down
0	1	0
		1
1 2	1 2	
		1
3	2	2
4	3	2
5	3	3
6	4	3
7	4	4
8	4	5
9	5	5
10	5	6
11	6	6
12	6	7
13	6	8
14	7	8
15	7	9
16	7	10
17	8	10
18	8	11
19	9	11
20	9	12

Cumulative histogram

Q: Need Equilibration Steps?

A: Yes, statistics should be taken after the memory of the initial configuration is lost

Metropolis MC vs. Kinetic MC

- **Metropolis MC:** Given probability density ρ_{α} ($\alpha = 1, ..., N_{\text{states}}$) calculate statistical average of a physical quantity as $\langle A \rangle = \Sigma_{\alpha} \rho_{\alpha} A_{\alpha}$ where the transition-probability matrix $\pi_{\alpha\beta}$ is an artifact for importance sampling
- **Kinetic MC:** Given transition-rate matrix $\pi_{\alpha\beta}$ (calculated, e.g., based on the transition state theory) & initial distribution $\rho_{\alpha}(t=0)$, obtain the time variation of $\rho_{\alpha}(t)$ by solving the master equation represented by an ensemble of state samples, $d\rho_{\alpha}/dt = -\Sigma_{\beta}\pi_{\beta\alpha}\rho_{\alpha} + \Sigma_{\beta}\pi_{\alpha\beta}\rho_{\beta}$

Metropolis Algorithm?

Equation of State by Fast Computing Machines

Journal of Chemical Physics 21 (6), 1087-1093 (1953) Received March 6, 1953; Published June 1953

NICHOLAS METROPOLIS
ARIANNA W. ROSENBLUTH
MARSHALL N. ROSENBLUTH
AUGUSTA H. TELLER
Los Alamos Scientific Laboratory

Los Alamos Scientific Laboratory

EDWARD TELLER

Department of Physics, University of Chicago

Who invented the algorithm ..?

ARIANNA & MARSHALL ROSENBLUTH

not

Nicholas Metropolis

https://www.youtube.com/watch?v=MaSGXhsMk1

A slide taken from a recent presentation by Michael Klein, giving proper credit to the creators of the "Metropolis algorithm" (M. Klein)

https://aiichironakano.github.io/phys516/Battimelli-ComputerMeetsPhysics-Springer20.pdf, p. 29

RIP Arianna

Arianna W. Rosenbluth

From Wikipedia, the free encyclopedia

Arianna Rosenbluth (September 15, 1927 – December 28, 2020) was an American physicist who contributed to the development of the Metropolis–Hastings algorithm. She wrote the first full implementation of the Markov chain Monte Carlo method.

Contents [hide]

- 1 Early life and education
- 2 Career
- 3 Personal life
- 4 Death
- 5 References

Early life and education [edit]

Arianna Rosenbluth (née Wright) was born on September 15, 1927, in Houston, Texas.

Death [edit]

Arianna died on December 28, 2020 in the greater Los Angeles, California area.

Coordinate Transformation?

- **Box-Muller algorithm:** For a harmonic oscillator, $u(x) = Kx^2/2$, Boltzmann probability density (which is Gaussian $p(x) \propto \exp(-u(x)/k_BT) = \exp(-Kx^2/2k_BT)$ can be generated by coordinate transformation
- **Boltzmann generator:** Machine learning of coordinate transformation such that the probability density is Gaussian in the transformed coordinate system, z(x), for complex, multidimensional u(x)

F. Noe et al. Science **365**, 1001 ('19)

