0.2) First Model (Polymer Model)

- Regular lattices, e.g., \mathbb{Z}^d
- Self-avoiding walk (SAW) (a polymer)

Example A self-avoiding walk

• Consider $\Omega = \{ \text{ all SAWs } \}$, define $H(\omega) = |\omega| \text{ where } \omega \in \Omega$ Let $n \in \mathbb{N}$, define $\lambda_n = \#$ SAWs of length n.

Observe: Given $n, m \ge 1$ Any SAW of length n+m can be decomposed into 2 SAWs of length n and m. $\Rightarrow \lambda_{n+m} \le \lambda_n \cdot \lambda_m$.

Figure $\lambda_{19} \leq \lambda_5 \cdot \lambda_{14}$

Exercise 1 $\mu \equiv \lim_{n \to \infty} (\lambda_n)^{\frac{1}{n}}$ exists and $\lambda_N \geq \mu^N$ for all $N \geq 1$.

SOL Note that $\forall n \in \mathbb{N}$, we have $(\lambda_n)^{\frac{1}{n}} \geq 0$, thus 0 is a lower bound of $\{(\lambda_n)^{\frac{1}{n}}\}_{n=0}^{\infty}$, therefore

$$\inf_{n \in \mathbb{N}_0} (\lambda_n)^{\frac{1}{n}} = K \in \mathbb{R}$$

Now, given $\varepsilon > 0$, $1^{\circ} \exists N_1 \in \mathbb{N}$ s.t.

$$K + \frac{\varepsilon}{2} > (\lambda_{N_1})^{\frac{1}{N_1}}$$

2° By division algorithm, $\forall n \geq N_1, \ \exists m, \ell \in \mathbb{Z} \text{ with } 0 \leq \ell \leq N_1 \text{ such that } n = mN_1 + \ell,$ thus

$$\lambda_n = \lambda_{mN_1 + \ell} \le (\lambda_{N_1})^m \cdot \lambda_{\ell}$$

therefore,

$$(\lambda_n)^{\frac{1}{n}} \leq (\lambda_{N_1})^{\frac{m}{n}} \cdot (\lambda_{\ell})^{\frac{1}{n}} = (\lambda_{N_1})^{\frac{1}{N_1} + \frac{\ell}{m}} \cdot (\lambda_{\ell})^{\frac{1}{n}} \leq (\lambda_{N_1})^{\frac{1}{N_1}} \cdot (\lambda_{\ell})^{\frac{1}{n}}$$

$$\leq (\lambda_{N_1})^{\frac{1}{N_1}} \cdot (\lambda_1)^{\frac{\ell}{n}} \leq (\lambda_{N_1})^{\frac{1}{N_1}} \cdot (\lambda_1)^{\frac{N_1}{n}}$$

Because of $\lim_{n\to\infty} (\lambda_{N_1})^{\frac{1}{N_1}} \cdot (\lambda_1)^{\frac{N_1}{n}} = (\lambda_{N_1})^{\frac{1}{N_1}}, \ \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow$

$$(\lambda_{N_1})^{\frac{1}{N_1}} + \frac{\varepsilon}{2} > (\lambda_{N_1})^{\frac{1}{N_1}} \cdot (\lambda_1)^{\frac{N_1}{n}} \ge (\lambda_n)^{\frac{1}{n}}$$

Therefore

$$K + \varepsilon = K + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} > \lambda_{N_1}^{\frac{1}{N_1}} + \frac{\varepsilon}{2} > (\lambda_n)^{\frac{1}{n}} \ge K.$$

Thus, $\mu = \lim_{n \to \infty} (\lambda_n)^{\frac{1}{n}} = K$ exists.

Next, for N > 1, we have $\forall n \in \mathbb{N}, \lambda_{nN} \leq (\lambda_N)^n$, thus $(\lambda_{nN})^{\frac{1}{nN}} \leq (\lambda_N)^{\frac{1}{N}}$. Note that $\{(\lambda_{nN})^{\frac{1}{nN}}\}_{n=1}^{\infty}$ is a subsequence of $\{(\lambda_n)^{\frac{1}{n}}\}_{n=1}^{\infty}$, therefore $\mu = \lim_{n \to \infty} (\lambda_{nN})^{\frac{1}{nN}} \leq (\lambda_N)^{\frac{1}{N}} \blacksquare$

Exercise 2 (a) In \mathbb{Z}^2 , $\mu \in (2,3)$

- (b) In \mathbb{Z}^3 , $\mu > 3$
- (c) In the triangular mesh, $\mu > 3$;
- (d) In the hexagonal mesh, $\mu < 2$
- (e) In $\mathbb{Z} \times \{0,1\}$ (i.e. a ladder), $\mu = \frac{1+\sqrt{5}}{2}$.

The triangular mesh

The hexagonal mesh

s_OL: We first show a fact:

Fact(ratio test and root test): Let $\{a_n\}_{n=1}^{\infty}$ be a sequence that take value in $(0, \infty)$. Then

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = K \in \mathbb{R} \Rightarrow \lim_{n \to \infty} \sqrt[n]{a_n} = K.$$

Proof. If $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=K\in\mathbb{R}$, then given $\varepsilon>0$, there exists $N_1>0$ such that

$$n \ge N_1 \Rightarrow \left| \frac{a_{n+1}}{a_n} - K \right| < \frac{\varepsilon}{2} \Rightarrow K - \frac{\varepsilon}{2} < \frac{a_{n+1}}{a_n} < K + \frac{\varepsilon}{2}$$

Note that
$$a_n = a_1 \times \frac{a_2}{a_1} \times \frac{a_3}{a_2} \times \dots \times \frac{a_n}{a_{n-1}} = a_1 \times \prod_{k=1}^{n-1} \frac{a_{k+1}}{a_k} = a_1 \times \prod_{k=1}^{N_1-1} \frac{a_{k+1}}{a_k} \times \prod_{k=N_1}^{n-1} \frac{a_{k+1}}{a_k}$$
.

Now define
$$Q = a_1 \times \prod_{k=1}^{N_1-1} \frac{a_{k+1}}{a_k}$$
, then $\sqrt[n]{a_n} = \sqrt[n]{Q} \times \prod_{k=N_1}^{n-1} \left(\frac{a_{k+1}}{a_k}\right)^{\frac{1}{n}}$, thus

$$\sqrt[n]{\mathcal{Q}} \times \left(K - \frac{\varepsilon}{2}\right)^{\frac{n - N_1 - 1}{n}} = \sqrt[n]{\mathcal{Q}} \times \prod_{k = N_1}^{n - 1} \left(K - \frac{\varepsilon}{2}\right)^{\frac{1}{n}} < \sqrt[n]{a_n} = \sqrt[n]{\mathcal{Q}} \times \prod_{k = N_1}^{n - 1} \left(\frac{a_{k + 1}}{a_k}\right)^{\frac{1}{n}} < \sqrt[n]{\mathcal{Q}} \times \prod_{k = N_1}^{n - 1} \left(K + \frac{\varepsilon}{2}\right)^{\frac{1}{n}} = \sqrt[n]{\mathcal{Q}} \times \left(K + \frac{\varepsilon}{2}\right)^{\frac{n - N_1 - 1}{n}}.$$

By the fact that

$$A(n) = \sqrt[n]{\mathcal{Q}} \times \left(K - \frac{\varepsilon}{2}\right)^{\frac{n - N_1 - 1}{n}} \to K - \frac{\varepsilon}{2}, \ B(n) = \sqrt[n]{\mathcal{Q}} \times \left(K + \frac{\varepsilon}{2}\right)^{\frac{n - N_1 - 1}{n}} \to K + \frac{\varepsilon}{2} \text{ as } n \to \infty, \text{ there is } N > N_1 \text{ such that } n \geq N \Rightarrow A(n) > K - \varepsilon \text{ and } B(n) < K + \varepsilon, \text{ thus}$$

$$K - \varepsilon < A(n) < \sqrt[n]{a_n} < B(n) < K + \varepsilon.$$

Therefore,
$$\lim_{n\to\infty} \sqrt[n]{a_n} = K$$
.

(a)

Remark. (a) Highly non-trivial to compute μ .

- (b) On the hexagonal lattice, it is shown that $\mu = \sqrt{2 + \sqrt{2}}$ (2010, Copin at el.)
- (c) By computer simulation, **Conjecture**: $Z_{\beta} = (\beta - \beta_c)^{-\gamma + o(1)}$ for $\beta \to \beta_c^+$, where γ only depends on that dimension of the lattice. In 2D, $\gamma = \frac{43}{32}$ (conjectured)
- (d) If we have $\lambda_N \sim \mu^N N^{\alpha}$, then Z_{β} can be computed to satisfy $Z_{\beta} \sim (\beta \beta_c)^{-1+\alpha}$, $\alpha = \frac{11}{32}$ in 2D (conjectured)

Exercise 3 How to sample SAWs with computer.

0.3) Bernoulli Percolation

We first consider \mathbb{Z}^d lattices,

• Bond percolation Give $p \in [0,1]$, consider $\omega = (\omega(e))_{e \in \mathbb{Z}^d}$ such that $\{\omega(e)\}_{e \in \mathbb{Z}^d}$ is i.i.d with $\omega(e) \sim \text{Brenoulli}(p)$.

If $\omega(e) = 1$, we say that e is open. If $\omega(e) = 0$, we say that e is closed.

Remark We got a model of random subgraph. By above of notation, we may also write ω for the random subgraph (consisting of that open edges).

- Site percolation Same thing with i.i.d Bernoulli(p), open means that the node can pass, closed means that the node can not pass.
- Notation:

 \mathbb{P}_p = The Bernoulli percolation of parameter p. ω_n a sample of \mathbb{P}_n

A bond percolation

A site percolation

Remark The terminology "Bernoulli percolation" stands for i.i.d, on the other hand, without independence, we simply say that we have a "percolation model", e.g. random cluster model.

For the following classes we use "percolation" to refer to Bernoulli percolation.

- Exercise 1 Show that a bond percolation is equivalent to a site percolation. How about the other way? Construct an example.
- **Question:** What are the interesting behavior when p varies? e.g. # component, size of component

p=0 is an empty graph, p=1 is a full graph.

• Connected component (cluster)

Let a, b be two vertex of \mathbb{Z}^d , we say that $a \sim b$ if exists an path in ω_p from a to b. It is clearly that \sim is an equivalence relation.

A connected component (cluster) is an element in equivalence classes of \sim

• Infinite cluster

A infinite cluster is a cluster of ω_p that has infinite edges and infinite vertex. Let $[O \leftrightarrow \infty]$ be the event in \mathbb{P}_p that O belongs to a infinite cluster.

$$\theta(p) = \mathbb{P}_p[O \leftrightarrow \infty].$$

1. Basic Properties of the Bernoulli Percolation

Consider $G = \mathbb{Z}^d$ or some "nice" graph.

1.1) Coupling (耦合)

• Given $p \leq p'$, how to compute $X \sim \text{Bernoulli}(p)$, $X' \sim \text{Bernoulli}(p')$? Consider $\mathcal{U} \sim \text{Uniform}([0,1])$, define $Y = \mathbf{1}_{\mathcal{U} \leq p}$, $Y' = \mathbf{1}_{\mathcal{U} \leq p'}$, we get

$$X\stackrel{(id)}{=}Y, \quad X'\stackrel{(id)}{=}Y', \quad Y\leq Y'. \quad a.s.(almost\ sure)$$

This is called a coupling.

- **Remark.** In coupling, usually we do not want independence, so that we can compute values between random variables.
- **Exercise 1** Construct a coupling between $\omega \sim \mathbb{P}_p$, $\omega' \sim \mathbb{P}_{p'}$ with $p \leq p'$, so that values between edges can be computed.

Wanted: $p \leq p' \Rightarrow \omega_p \leq \omega_p'(\Leftrightarrow \omega_p(e) \leq \omega_{p'}(e), \forall e \in E)$

- SoL: Let $\omega = (\omega(e))_{e \in G}$ such that $\{\omega(e)\}_{e \in G}$ is i.i.d. and $\omega(e) \sim \text{Uniform}([0,1])$. Define $\omega_p \sim \mathbb{P}_p$, $\omega_{p'} \sim \mathbb{P}_{p'}$ as $\forall e \in E$, $\omega_p(e) = \mathbf{1}_{\omega(e) \leq p}$, $\omega_{p'}(e) = \mathbf{1}_{\omega(e) \leq p'}$, thus, $p \leq p' \Rightarrow \forall e \in E$, $\omega_p(e) \leq \omega_{p'}(e)$.
- Exercise 2 Given $O \in V(G)$, define $\theta : [0,1] \to \mathbb{R}$ (percolation function). $p \mapsto \mathbb{P}_p([O \leftrightarrow \infty])$

Show that θ is increasing. In more general case, at must how many different θ function can be obtain?

sol: If $p \leq p'$, let $\omega_1 \sim \mathbb{P}_p$, $\omega_2 \sim \mathbb{P}_{p'}$, we use the definition of **Exercise 1**, we have $\omega_1 \stackrel{(id)}{=} \omega_p$, $\omega_2 \stackrel{(id)}{=} \omega_{p'}$, thus $\mathbb{P}_p([O \leftrightarrow \infty]) = \mathbb{P}_p([O \leftrightarrow \infty] \text{ in } \omega_1) = \mathbb{P}_p([O \leftrightarrow \infty] \text{ in } \omega_p)$,

similarly, $\mathbb{P}_{p'}([O \leftrightarrow \infty]) = \mathbb{P}_{p'}([O \leftrightarrow \infty] \text{ in } \omega_1) = \mathbb{P}_{p'}([O \leftrightarrow \infty] \text{ in } \omega_{p'})$. We note that ω_p is always a subgraph of $\omega_{p'}$ (by **Exercise 1**), thus $\{[O \leftrightarrow \infty] \text{ in } \omega_p\} \subseteq \{[O \leftrightarrow \infty] \text{ in } \omega_{p'}\}$, we have $\mathbb{P}_p([O \leftrightarrow \infty]) = \mathbb{P}_p([O \leftrightarrow \infty] \text{ in } \omega_p) \leq \mathbb{P}_{p'}([O \leftrightarrow \infty] \text{ in } \omega_{p'}) = \mathbb{P}_{p'}([O \leftrightarrow \infty])$. And, because of $\omega_1 \stackrel{(id)}{=} \omega_p$, where ω_1 is a arbitrary random variable with $\omega_1 \sim \mathbb{P}_p$ thus there are only one choice of θ . i.e., θ is well-defined. \blacksquare

• Define $p_c = \sup\{p \in [0,1] \mid \theta(p) = 0\}$

Exercise 3 Check the following properties:

- (a) The function $p \mapsto \theta(p)$ is right-continuous on [0,1].
- (b) The function $p \mapsto \theta(p)$ is left-continuous on $(p_c, 1)$.
- (c) Show that $p \mapsto \theta(p)$ is strictly increasing in $(p_c, 1]$.

I add a line.