Ultime considerazioni sui sistemi lineari

Consideriamo un sistema lineare

con A ∈ Un (K) invertibile

Allora, per definizione, 3 A-1 E Mn(K) tala che A-1 = In. Quindi abbiano:

 $A^{-1}AX = A^{-1}b \implies In X = A^{-1}b \implies X = A^{-1}b$. $X \in solution d_1(x)$ allow

Viceversa si verifica facilmente che $X=A^{-1}b$ è solution di (*): $AA^{-1}b=Inb=b$.

Otteniamo dunque che il sistema (x) possiede un'unica soluzione data da:

X - A-1 b.

Proposition (HETODO DELL'INVERSA)

Sia A∈ Un(K) una matrice invertibile e b∈Un, (K). Allora il sistema cineare

AX = 6

possiede l'unica soluzione X = A-16.

Esempio: L'unica soluzione del sistema limare.

$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$A \qquad \times \qquad b$$

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0 & 3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1/3 & -1/3 & 0 \\ 2/3 & -1/3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 2 \\ 2 \end{pmatrix}$$

esercizio 4
foglio 2

Come calcalare l'inversa di una matrice?

Purtroppo daremo solo un accenno in questo corso, ma è utile sapere che l'algoritmo di Gauss-Jordan può essere Utilizzato per calcolare in modo efficiente l'inversa di una matrice.

Se esiste una successione di operazioni elementari che "trasformano" A nella matrice identità, allora A è invertibile. Idea: Più precisamente, se Pr. Pr sono le motrici elementari corrispondenti alla operazioni di cui sopra (come spiegato nell'ultimo esercizio del foglio 3), allora si ha: Pr -- Pr A = In Quindi A-1 = Pr... Pr. Di consequenza A-1 può essere calcalata ellettuando la stesse operazioni su In: Pr---Pr (A ! In) = (In ! Pr---Pr) A appoure qui Esempio : Riprendiano la matrice precedente: $A = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 2 \end{pmatrix}.$ Per determinant l'inversa di A affianca mo ad A la matrice identità ed effettuia mo operazioni sulla matrice 3×6 così ottenuta finche non otteniamo nel primo blocco la matrice identité. l'inversa di A 0341000 $R_1 \longleftrightarrow R_3$

Ī	wiC																			
	Se	(x	۸,	, 2m	, (١٠,	٠, ٤,	n) ∈	Se	,	al	lora	a	idd.	am	0				
												4					A	i= 1,		M.
												+ 1 Xν ≃ C								
		and (717	94) 1		70	(in ()	(wt y	(n) =	Uia	(14	· + a	in A	7 /	7119	4	11 @	,,,,,	<u>~</u>	U.
マ)		50	(-	χ.	2.	NE	<u> </u>			٦ (-	2 .	24		<u> </u>	5	¥) - V			
ر ح		50	(,	M ,	-, ^(w) C		_	_,	~ (~~/-	الا رـــ	,		-		, ,			
		Din																		
		Se	(5	۷,	-, Xv	`)€	So	=>	Qį	12h	+	+ 0	in2	cn =	0,	٧i	= 1	,	, wu	
		H	x c	iau	ن	che i=e	ow V	chi	ر عاطاح	(x	ر. حد	, 2cm)	= (Nα	,/	22	~) (E S	. 00	
		Ì	Qiı	کلار	+ 3	ain	(Ax	<u>~) =</u>	λο	رزعك	(4	+ 1a	いいろ	·s =	٦ (c	بالابنا	+	+ a,	n Xn	\= o
								,							1,		"I			
	L	. , P	ppr	ieto		٦, 4	۷e	3	for	ww	, di	S	5 (יי ענ	`So{	to Sa	2a 3	io.		Ц
	+	; ;	W	gen	eral	٠,	per	· CM	Φ	خوم	બેર્ક	velh	0110	ملا	V :	SU	K	de	fini	amo
	$\bar{\mathcal{D}}$	નું :	Si	a	V (mo	े ध्यः	tio	wh	مدزصا	ی د	s K								_
		•	,						1 9!			dice				0	VETT	ORV	ALE	Se'
				1						;	7	cazic								
			2) A	W	14 / U	J ₂ €	W	, (シィナし	η¥ ∈	W	- (1	XI e	مال 2 ج	olu uwo	eir (au	Peh	σ	
			3) \	w	e V	J ,	ΥХ	EK	٠, ٦٠	w∈	K	(u	ر م	منتك	30 01 :	risk	etho	>	
													م ج	العام ص	irc irc	Serie (الانك	a tic	she.	boc
05	se	rvaz	Noi		• .	S; ,	voti	ch	u 1	لم ر	50061	;eto		3 in	nb6	ca	بط	u !	0 € 4 ď	. W
						A	2 2 2	per	λ=	ص د	ak	(w	, es 110	1356	0.0	ر = د	<u>o</u>	E \	XJ.	1
					•	_ o.	softe eli.	rent	5,0 3,0	veth	0	رو مو	ě	سرنا.	0 5	li) Eas	io u	ello	زمار محص	k:
						21	ione	Ðπ	:ced	enh										
						- Tu	He (de al	ri M	on Pri	età o av	disce	elem	enti	da 1	/ i	w 2	Jank V	9	li e
						V	ě	OND	ક્લ્વટ	io ve'	Horic	sle .								

Esempi

- 1) L'insieme delle soluzioni di un sistema lineare omogeno a n'incognite e coefficient in K è un soltospazio vettoriale di Kn.
 - 2) Sia V = K^N e W:= \$\langle (0, \times_2, \ldots, \times_n\rangle): \times_i \in \times \times_n\rangle.

 W \tilde{\times} un sottospazio vettoriale di V. Infatti:

@ (0, ..., 0) EW => W + Ø.

2 siano x = (0, x2, ..., xn), y=(0, y2, ..., yn) ∈ W.

Allora 2+1/2= (0, x2+1/2, ..., xn+1/n) ∈ W

Prima coordinato

3 Siano 2=(0, 22,..., 2n) EW, $\lambda \in K$.

Allora 2:2 = (0, 2x2, ..., 2xn) E W

Avrenum polito concludere che W è un soltragazo vettoriale anche osservando che W rappresenta l'insieme delle soluzioni del sistema lineare omageneo:

 $JX_1 = 0$

3) $V = IR^3$

W= 1 (x,y, z) E 1R3 : x+y+z=42

W non & un satospazio vettoriale poichi (0,0,0) & W.

vertore vullo

4) Ogni spazio vettoriale V ha due sottospazi vettoriali

Wr = 1 09, done 0 è il vettore mullo di V.

 $W_2 = V$.

5) Sia V una spazio rettoriale su K e sia $v \in V$, $v \neq 0$, un vettore non vulla.

<v>= 120, 2 € K4

é un sottospasio vettoriale costituito da tutti i multipli

Infalti:

2) Siano z, y e < 00> e siano 2, µ e k tali che z=20, y= µv.

Allow $\times + \underline{y} = \lambda \underline{v} + \mu \underline{v} = (\lambda + \mu) \underline{v} = \times + \underline{y} \in \langle \underline{v} \rangle$

3) Sia x < <v> e sia le K tale che x = lv.

Allore, Vaek, az = alv E <v>.

Tale sottospazio prende il nome di retto vettoriale. Il nome è giustificato dolla sequente interpreta zione geometrica:

Sia $V = \mathbb{R}^2$ e $\sigma = (1,1)$.

Allora < v> = \(\lambda \lambda (1,1) : \lambda \in 1\text{1R} \forall = \forall (2,2) : \lambda \in 1\text{R} \overline{\gamma} = $= d(x,y) \in \mathbb{R}^2 : z = g \cdot q.$

Quindi <1> Corrisponde alla retta di equazione y= x:

Più in generale se $v = (a,b) \in \mathbb{R}^2$ allora $<v > \tilde{e}$ la retta passante per l'origine definita dall'equazione:

bx - ay = 0.

Si noti quindi che l'insieme dei punhi di una retta del piano che non passa per l'origine mon è un sottospazio vettoriale di IR² (poiché nod contiene il vettore nulo (00)). Parleremo in questo caso di "retta affine" invece che retta vettoriale. Osservazioni: