ヴィタリの被覆補題

1

命題 1.1. (有限被覆補題). 距離空間 X で考える. B_1,\dots,B_N を適当な半径 (同じとは限らない) の有限個の球とする. このとき, 部分族

$$B_{k_1},\ldots,B_{k_m}$$

で、互いに disjoint で、

 $\cup B_i \subset 3B_{k_i}$

を満たし、任意の B_i に対して $B_i \subset 3B_{k_{i(i)}}$ を満たすものが存在する.

証明. N=1 のとき, 明らかに成り立つ. 帰納法 で示すわけだけど, 具体的なシチュエーションをみてみる. 正式な証明はこれを眺めてたら作れるとおもう. N=10 のとき成り立つとする. N=11 のときを考える. 半径最大の球が B_9 だったとする. B_9 と交わるのが B_1 , B_4 , B_5 , B_6 , B_9 で, B_2 , B_3 , B_7 , B_8 , B_{10} は B_9 と交わらないとする. 帰納法の仮定から B_2 , B_3 , B_7 , B_8 , B_{10} の中から条件をみたす部分族がとれる. それが B_2 , B_3 , B_8 だったとする.

 $B_1 \cup B_4 \cup B_5 \cup B_6 \cup B_9 \subset 3B_9$ $B_2 \cup B_3 \cup B_7 \cup B_8 \cup B_{10} \subset 3B_2 \cup 3B_3 \cup 3B_8$

みたいな状況になっている. つまるところ,

 B_9, B_2, B_3, B_8

が求める部分族となる.

命題 1.2. (無限被覆補題). 第二可算, あるいは可分な距離空間 X で考える. \mathcal{B} を,

 $\sup\{\operatorname{diam} B \mid B \in \mathcal{B}\} < \infty$

である球の族とする. このとき, 部分族 \mathcal{B}' で, \mathcal{B}' に属する球は互いに disjoint であり,

 $\cup_{B\in\mathcal{B}}\subset\cup_{B'\in\mathcal{B}'}5B'$

を満たし、任意の $B \in \mathcal{B}$ に対して、 $B \subset 5B'$ をみたす $B' \in \mathcal{B}'$ がとれるようなものが存在する.

証明. 気合い.