

Pesquisa Operacional

3 de setembro de 2024

Prof. Warley Gramacho wgramacho@uft.edu.br

Dada uma solução básica primal viável para o (PPL).

Se $z_j - c_j \geqslant 0$, $\forall j \in I_N$, a solução dada é uma solução ótima. PARE.

Caso contrário, escolhe-se um $k \in I_N$ para o qual $z_k - c_k < 0$;

se $\alpha_k = +\infty$, a solução do (PPL) é ilimitada. PARE.

se $\alpha_k < +\infty$, faremos $x_k = \alpha_k$, acarretando $x_{B(s)} = 0$, a coluna a k ocupará o lugar da coluna $a_{B(s)}$ em B.

MUDANÇA DE BASE

$$x_1 \le 4$$

 $+ x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

 $z = 3x_1 + 5x_2$

maximizar
$$z = 3x_1 + 5x_2$$
 sujeito a:

$$x_1 \le 4$$

 $+ x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

Associaremos às restrições não triviais as variáveis de folga $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$ tais que o (PPL) fique sob a seguinte forma:

maximizar
$$z = 3x_1 + 5x_2$$
 sujeito a:

$$\begin{array}{cccc} x_1 & & \leq & 4 \\ & + & x_2 & & \leq & 6 \\ 3x_1 + 2x_2 & & \leq & 18 \\ x_1, & x_2 \geqslant 0 & & & \end{array}$$

Associaremos às restrições não triviais as variáveis de folga $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$ tais que o (PPL) fique sob a seguinte forma:

maximizar
$$z = 3x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5$$
 sujeito a:

$$x_1 + x_3 = 4$$

 $x_2 + x_4 = 6$
 $3x_1 + 2x_2 + x_5 = 18$

$$x_j \geqslant 0, \ j = 1, 2, 3, 4, 5.$$

$$A = (a_1 \ a_2 \ a_3 \ a_4 \ a_5) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix}$$
$$b = \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix}$$
$$c = (3 \ 5 \ 0 \ 0 \ 0).$$

1ª Solução básica:

$$I_{B} = \{3, 4, 5\}, I_{N} = \{1, 2\},$$

$$B(1) = 3, B(2) = 4, B(3) = 5,$$

$$B = (a_{3} \ a_{4} \ a_{5}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I, \log B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{B} = (0 \ 0 \ 0), \ u = c_{B}B^{-1} = (0 \ 0 \ 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (0 \ 0 \ 0),$$

$$\bar{x}_{B} = B^{-1}b = \begin{pmatrix} \bar{x}_{3} \\ \bar{x}_{4} \\ \bar{x}_{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix}$$

$$\bar{z} = c_{B}B^{-1}b = ub = (0 \ 0 \ 0) \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = 0$$

$$z_{1} = ua_{1} = (0 \ 0 \ 0) \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = 0 \qquad \Rightarrow \qquad z_{1} - c_{1} = 0 - 3 = -3 \implies 0,$$

$$z_{2} = ua_{2} = (0 \ 0 \ 0) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 0 \qquad \Rightarrow \qquad z_{2} - c_{2} = 0 - 5 = -5 \implies 0,$$

$$y_{1} = B^{-1}a_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

$$y_{2} = B^{-1}a_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

sujeito a:

$$z = 0 + 3x_1 + 5x_2$$

 $x_3 = 4 - x_1$
 $x_4 = 6 - x_2$
 $x_5 = 18 - 3x_1 - 2x_2$
 $x_i \ge 0, j = 1, \dots, 5$

Fazendo $x_1 = x_2 = 0$ teremos $x_3 = 4$, $x_4 = 6$, $x_5 = 18$ fornecendo z = 0. Faremos uma das variáveis x_1 ou x_2 crescer de valor, provocando o aumento de z. Tomemos, por exemplo, x_2 para ter seu valor aumentado, isto é, faremos a coluna a 2 entrar na nova base. Como $L_1 = \{2,3\}$, pois $y_{12} = 0$, $y_{22} = 1$ e $y_{32} = 2$, passaremos a calcular α_2 :

$$\alpha_2 = \min\left\{\frac{\overline{x}_{B(2)}}{y_{22}}, \frac{\overline{x}_{B(3)}}{y_{32}}\right\} = \min\left\{\frac{6}{1}, \frac{18}{2}\right\} = 6 = \frac{\overline{x}_{B(2)}}{y_{22}},$$

logo $a_{B(2)}$ deixará a base, sendo substituída pela coluna a_2 .

2ª Solução básica:

$$I_{B} = \{3, 2, 5\}, \quad I_{N} = \{1, 4\},$$

$$B(1) = 3, \quad B(2) = 2, \quad B(3) = 5,$$

$$B = (a_{3} \ a_{2} \ a_{5}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \quad \log B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

$$c_{B} = (0 \ 5 \ 0), \quad u = c_{B}B^{-1} = (0 \ 5 \ 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} = (0 \ 5 \ 0),$$

$$\bar{x}_{B} = B^{-1}b = \begin{pmatrix} \bar{x}_{3} \\ \bar{x}_{2} \\ \bar{x}_{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix}$$

$$\bar{z} = c_{B}B^{-1}b = ub = (0 \ 5 \ 0) \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = 30$$

$$z_{1} = ua_{1} = (0 \ 5 \ 0) \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = 0 \qquad \Rightarrow \qquad z_{1} - c_{1} = 0 - 3 = -3 \geqslant 0,$$

$$z_{4} = ua_{4} = (0 \ 5 \ 0) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 5 \qquad \Rightarrow \qquad z_{4} - c_{4} = 5 - 0 = 5 \geqslant 0.$$

Calcularemos o essencial para a passagem à terceira solução básica, isto é, a_1 entrará na nova base; necessitamos obter α_1 para saber qual a coluna de B que será substituída por a_1 .

$$y_1 = B^{-1}a_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} y_{11} \\ y_{21} \\ y_{31} \end{pmatrix},$$

logo $L_1 = \{1, 3\}$ e

$$\alpha_1 = \min_{i \in L_1} \left\{ \frac{\overline{x}_{B(1)}}{y_{i1}}, \frac{\overline{x}_{B(3)}}{y_{i1}} \right\} = \min \left\{ \frac{4}{1}, \frac{6}{3} \right\} = \frac{6}{3} = 2 = \frac{\overline{x}_{B(3)}}{y_{31}} = \frac{\overline{x}_5}{y_{31}},$$

Assim sendo $a_5 = a_{B(3)}$ deixará a base.

3ª Solução básica:

$$I_{B} = \{3, 2, 1\}, \quad I_{N} = \{4, 5\},$$

$$B(1) = 3, \quad B(2) = 2, \quad B(3) = 1,$$

$$B = (a_{3} \ a_{2} \ a_{1}) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{pmatrix}, \quad \log B^{-1} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$c_{B} = (0 \ 5 \ 3), \quad u = c_{B}B^{-1} = (0 \ 5 \ 3) \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = (0 \ 3 \ 1),$$

$$\bar{x}_{B} = B^{-1}b = \begin{pmatrix} \bar{x}_{3} \\ \bar{x}_{2} \\ \bar{x}_{1} \end{pmatrix} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}$$

$$\bar{z} = c_{B}B^{-1}b = ub = (0 \ 3 \ 1) \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = 36$$

$$z_4 = ua_4 = (0\ 3\ 1) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 3 \qquad \Rightarrow \qquad z_4 - c_4 = 3 - 0 = 3 \geqslant 0,$$

$$z_5 = ua_5 = (0\ 3\ 1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 1 \qquad \Rightarrow \qquad z_5 - c_5 = 1 - 0 = 1 \geqslant 0.$$

Como $z_j-c_j\geqslant 0$, $\forall j\in I_N$, esta solução básica (3ª solução) é ótima.

Então $x_1=2$, $x_2=6$, $x_3=2$, $x_4=x_5=0$ é uma solução ótima, fornecendo z=36.

Acrescentaremos uma variável artificial $g_i \ge 0$ à esquerda de cada restrição. Suporemos $b_i \ge 0$, i = 1, 2, ..., m. Teríamos o seguinte conjunto de restrições:

$$\sum_{j=1}^{n} a_{ij}x_j + g_i = bi \qquad i = 1, 2, \dots, m$$

$$x_j \ge 0, \quad j = 1, 2, \dots, n,$$

$$g_i \ge 0, \quad i = 1, 2, \dots, m.$$

Construiremos um outro problema de programação linear

(PA) : minimizar
$$\sum_{i=1}^{m} g_i$$

Sujeito a:

$$\sum_{j=1}^{n} a_{ij}x_j + g_i = bi \qquad i = 1, 2, \dots, m$$

$$x_j \geqslant 0, \quad j = 1, 2, \dots, n,$$

$$g_i \geqslant 0, \quad i = 1, 2, \dots, m.$$

É fácil verificar que as variáveis $x_j=0,\ j=1,2,\ldots,n$ e $g_i=b_i\geqslant 0$ estão associadas a uma solução básica de (PA) satisfazendo restrições do mesmo. Esta solução básica será tomada como solução inicial para a solução de (PA) utilizando o método do simplex para o caso de minimização, lembrando que min $z=-\max(-z)$

Se a base final da solução ótima de (PA) não contiver nenhuma coluna associada às variáveis artificiais g_i , $i=1,2,\ldots,m$ esta será também uma base primal viável do (PPL) original.

Exemplo

Se tivermos as restrições seguintes:

$$x_1 + 2x_2 \ge 4$$

$$-3x_1 + 4x_2 \ge 5$$

$$2x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

Introduzindo as variáveis de folga x_3 , x_4 e x_5 , temos:

$$x_1 + 2x_2 - x_3 = 4$$

$$-3x_1 + 4x_2 - x_4 = 5$$

$$2x_1 + x_2 + x_5 = 6$$

$$x \ge 0$$

Essa matriz não tem uma identidade como submatriz; podemos então introduzir três variáveis artificiais de forma a obter uma variável básica viável inicial. No entanto, note que a variável x_5 tem coeficiente 1; portanto, precisamos apenas acrescentar 2 variáveis artificiais ao problema:

$$x_1 + 2x_2 - x_3 + x_6 = 4$$

$$-3x_1 + 4x_2 - x_4 + x_7 = 5$$

$$2x_1 + x_2 + x_5 = 6$$

$$x \ge 0$$

Aqui, temos uma variável básica viável inicial dada por $x_5 = 6$, $x_6 = 4$, $x_7 = 5$. O resto das variáveis são não-básicas e têm valor 0. É claro que para voltarmos ao problema original, gostaríamos que as variáveis artificiais eventualmente assumissem o valor nulo.

Δ

Regra de Bland (Método primal de simplex)

- ▶ Critério de entrada (problema de maximização): a_p entra na base se $z_p c_p < 0$ e p for o menor índice entre todos os $j \in I_N$ tais que $z_j c_j < 0$.
- Critério de saída: a_s sai da base se $\frac{\overline{X}_s}{y_{Ip}} = \min_{y_{ip}} > 0$, $i = 1, 2, ..., m \left\{ \frac{\overline{X}_{B(i)}}{y_{Ip}} \right\} = \theta$, onde s = B(I) e s é o menor índice entre todos aqueles para as quais $\frac{\overline{X}_{B(i)}}{y_{Ip}} = \theta$

Caso aplicarmos a regra de Bland durante a resolução de um problema de progamação linear, utilizando o método primal do simplex, nunca haverá ciclo, isto é, o método do simplex convergirá.

Atividade

min
$$x_1 - 2x_2$$

s.a. $x_1 + x_2 \ge 2$
 $-x_1 + x_2 \ge 1$
 $x_2 \le 3$
 $x_1, x_2 \ge 0$.

- P. Belfiore and L.P. Fávero, *Pesquisa operacional para cursos de engenharia*, Elsevier Editora Ltda., 2013.
- Maristela Oliveira dos Santos, *Notas de aula de introdução à pesquisa operacional*, Agosto 2010.
- M.C. Goldbarg and H.P.L. Luna, *Otimização combinatória e programação linear:* modelos e algoritmos, CAMPUS RJ, 2005.
- N. MACULAN and M.H.C. Fampa, Otimização linear, EdUnB, 2006.