

Plasmid/Strain	Properties	Reference
	Em ^R	
pMutClpP	pMutin2 derivative; carrying the 5' part of the <i>B. subtilis</i> <i>clpP</i> gene; 8.9 kb; Ap ^R ; Em ^R	This work
Strains		
<i>E. coli</i>		
TOP10	<i>F mcrA Δ(mrr-hsdRMS-mcrBC)</i> <i>Φ80lacZΔM15 ΔlacX74 recA1 deoR</i> <i>araD139 Δ(ara-leu)7697 galU galK</i> <i>rpsL (Str^R) endA1 nupG</i>	Invitrogen
XL1-Blue	<i>recA1 endA1 gyrA96 thi-1 hsdR17</i> <i>supE44 relA1 lac [F^cproAB</i> <i>lacI^RZDM15 Tn10 (Tet^r)]</i>	Stratagene
<i>B. subtilis</i>		
168	<i>trpC2</i>	Kunst et al. 1997. The complete genome sequence of the Gram-positive bacterium <i>Bacillus subtilis</i> . Nature 390 :249-256.
168 <i>ΔssrA</i>	<i>trpC2, ssrA ; Sp^R</i>	This work
168 <i>IssrA^{DD}</i>	<i>trpC2, IssrA^{DD}; Tc^R</i> ; integration of pSsrADDTc in <i>ssrA::spec</i> in 168 <i>ΔssrA</i>	This work
WB600	<i>trpC, nprE, aprE, epr, bpf, mpr, nprB</i>	Wu et al. 1991. Engineering a <i>Bacillus subtilis</i> expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173 :4952-4958.
BSE-23	<i>ctpA; Sp^R</i>	E. Lee, unpublished
WB600 <i>ΔctpA</i>	<i>trpC, nprE, aprE, epr, bpf, mpr, nprB, ctpA; Sp^R</i>	This work
WB600 <i>ΔyvjB</i>	<i>trpC, nprE, aprE, epr, bpf, mpr, nprB yvjB; Tc^R</i>	This work
WB600 <i>IclpP</i>	<i>trpC, nprE, aprE, epr, bpf, mpr, nprB, Pspac-clpP; clpP-lacZ ; Em^R</i>	This work
WB600 <i>ΔssrA</i>	<i>trpC, nprE, aprE, epr, bpf, mpr, nprB, ssrA; Sp^R</i>	This work
WB600 <i>IssrA^{DD}</i>	<i>trpC, nprE, aprE, epr, bpf, mpr, nprB, IssrA^{DD}; Tc^R</i>	This work

Example 2

IL-3 Expression

When fused to the signal peptide of *B. licheniformis* α -amylase, human interleukin-3 can be secreted by *B. subtilis* (Van Leen et al. (1991), Biotechnology, 9: 47-52). Plasmid pLATIL3 contains the h-IL3 gene fused to the coding region of the *B. licheniformis* α -amylase (AmyL) signal peptide; in this plasmid expression of the hybrid AmyL-hIL3 gene is controlled by the *B. licheniformis* α -amylase promoter. During secretion, the AmyL signal peptide is removed from the AmyL-hIL3 precursor by signal peptidases, and mature hIL3 is released into the medium.

*Expression of the human IL-3 gene lacking an in-frame stop codon in wild-type *B. subtilis* and in an ssrA mutant.* Mutant 168 Δ ssrA was created, in which the ssrA gene is disrupted by insertion of a spectinomycin resistance cassette. The mutation was checked by PCR, and the absence of SsrA RNA in the mutant was confirmed by Northern blot analysis (Fig. 1A). Growth of 168 Δ ssrA was somewhat reduced compared to the wild-type strain (Fig. 1B), as reported recently by Muto et al. (2000. Requirement of transfer-messenger RNA for the growth of *Bacillus subtilis* under stresses. Genes Cells 5:627-635). They also observed that growth rates of cells without SsrA decreased with elevating temperatures ($> 45^{\circ}\text{C}$). In addition, our results show that growth is more affected at low temperatures ($< 25^{\circ}\text{C}$) than at temperatures between 30-45 $^{\circ}\text{C}$ (Fig. 2C), indicating a mild cold-sensitivity of growth in mutant 168 Δ ssrA.

Plasmid pLATIL3, a derivative of pGB/IL-322, contains an expression cassette for the production of human interleukin-3 (hIL-3) by Bacilli (Van Leen et al. 1991). In this construct, the *B. licheniformis* α -amylase (AmyL) signal peptide is used to direct secretion of mature hIL-3. As a model for SsrA-mediated peptide tagging in *B. subtilis*, a variant of plasmid pLATIL3 was created in which a transcription terminator is inserted into the AmyL-hIL3

gene, just in front of its stop codon. Transformation of this plasmid (pLATIL3TERM) into *B. subtilis* will result in *AmyL-hIL3* transcripts lacking in-frame stop codons. According to the tmRNA model for SsrA mediated tagging of proteins (Keiler et al. 1996), translation of these transcript will result

5 in ribosome stalling, and subsequently recruitment of SsrA, peptide tagging, and finally degradation of the tagged hIL-3 molecules by specific proteases.

To test this model in *Bacillus*, the extracellular proteins produced in cultures of *B. subtilis* 168 (pLATIL3TERM), 168 ΔssrA (pLATIL3TERM), and the control strain 168 (pLATIL3), were analyzed by Western blotting (Fig. 2).

10 Human IL-3 accumulated in the medium of strain 168 ΔssrA (pLATIL3TERM), but could not be detected in the medium of *B. subtilis* 168 (pLATIL3TERM) containing functional SsrA. These data indicate that *B. subtilis* SsrA has a role in a process in which proteins translated from mRNAs lacking an in-frame stop codon are degraded. In contrast, in cells without SsrA the hIL-3

15 molecules are released from stalled ribosomes by an SsrA-independent mechanism (see below). These molecules do not receive a peptide-tag and, therefore are not rapidly degraded by *B. subtilis*.

RNA isolation and Northern blotting. RNA was isolated with the TRIzol method according to the protocol provided by the manufacturer (Life

20 technologies), but with one modification: cells were incubated for 10 min at 37 °C with lysozyme (2 mg/ml) prior to lysis in TRIzol solution. Northern blotting was performed after electrophoresis of RNA through gels containing formaldehyde (Sambrook et al. 1989). To this purpose, Hybond-N+ nylon membrane from Amersham Pharmacia Biotech was used. The SsrA-specific

25 probe was amplified by PCR with the primers SsrAFRWDP (5' ACG TTA CGG ATT CGA CAG GGA TGG 3') (SEQ ID NO:_____) and SsrAREVP (5' GAG TCG AAC CCA CGT CCA GAA A 3') (SEQ ID NO:_____. Labeling of the probe, hybridization and detection was performed with the ECL direct nucleic acid labeling and detection system from Amersham Pharmacia Biotech

30 according to the manufacturer's instructions.