Упражнение к лабораторной работе номер 5

Фигура Лиссажу

Шуплецов А. А.

8 марта 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Шуплецов Александр Андреевич
- студент ФФМиЕН
- Российский университет дружбы народов
- https://github.com/winnralex

Выполнить упражнение по ознакомлению с программой *xcos*.

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

1)
$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

2)
$$A=B=1, a=2, b=4, \ \delta=0; \ \pi/4; \ \pi/2; \ 3\pi/4; \ \pi;$$

3)
$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

4)
$$A=B=1, a=2, b=3, \ \delta=0; \ \pi/4; \ \pi/2; \ 3\pi/4; \ \pi.$$

Выполнение лабораторной работы

Модель для построения фигуры Лиссажу в xcos.

Рис. 1: Модель для построения фигуры Лиссажу в хсоѕ

Внесем нужные данные в параметрах редактирования.

Рис. 2: Ввод параметров

Введем параметры в регистрирующее устройство.

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=2, \delta=0$ (рис. (fig:004?)). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. (fig:005?)-(fig:008?)).

Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 5: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 6: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Рис. 7: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Рис. 8: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Изменим параметр частоты на втором генераторе (рис. (fig:009?)).

Рис. 9: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=4, \delta=0$ (рис. (fig:010?)). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. (fig:011?)-(fig:014?)).

Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 11: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Рис. 12: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Рис. 13: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Рис. 14: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Изменим параметр частоты на втором генераторе (рис. (fig:015?)).

Рис. 15: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=6, \delta=0$ (рис. (fig:016?)). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. (fig:017?)-(fig:020?)).

Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 17: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Рис. 18: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Рис. 19: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Рис. 20: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Изменим параметр частоты на втором генераторе (рис. (fig:021?)).

Рис. 21: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=4, \delta=0$ (рис. (fig:022?)). Меняя фазу в первом генераторе на $\pi/4; \pi/2; 3\pi/4; \pi;$ соответственно получим другие фигуры Лиссажу (рис. (fig:023?)-(fig:026?)).

Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Рис. 23: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Рис. 24: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Рис. 25: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

Рис. 26: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

Я выполнил упражнение по ознакомлению с программой xcos.

Список литературы

Королькова А. В., Кулябов Д.С. "Материалы к лабораторным работам"