

Alcohols, Phenols and Ethers

Classification of alcohols and phenols:

• Mono, di, tri or polyhydric -

• On the basis of hybridisation -

- a. Primary, secondary and tertiary
- b. Allylic alcohols

1. Benzylic alcohols

a. Vinylic alcohol

b. Phenol

Classification of ethers:

- Simple or symmetrical –
 C₂H₅OC₂H₅, C₆H₅OC₆H₅
- Mixed or unsymmetrical C₂H₅OCH₃, CH₃OC₆H₅

Common names of some phenols:

- Preparation of alcohols -
- 1. From alkenes
- 2. Acid catalysed hydration

$$CH_3CH = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH - CH_3$$
OH

[According to Markovnikov's rule]

1. Hydroboration – oxidation

- 1. From carbonyl compounds
- 2. By reduction of aldehydes and ketones.

Aldehydes give 1° and ketones give 2° alcohols.

1. By reduction of carboxylic acids and esters

RCOOH
$$\xrightarrow{\text{(i) LiAlH}_4}$$
 RCH₂OH (Carboxylic acid) (1° alcohol)

1. From Grignard reagents

$$C = O + R - Mg - X \longrightarrow \left[\begin{array}{c} C - OMg - X \end{array} \right] \xrightarrow{H_2O} C - OH + Mg (OH) X$$

$$R$$
Adduct

Methanol gives 1°, other aldehydes give 2°, and ketones give 3° alcohols.

- Preparation of phenols –
- 1. From haloarenes

1. From benzenesulphonic acid

1. From diazonium salts

$$NH_2$$
 $NaNO_2 + HCl$
 $NaNO_2 + HCl$

1. From cumene

Boiling points:

- 1. The boiling points of alcohols and phenols increase with increase in number of carbon atoms as it involves increase in van der Waals forces.
- 2. The boiling points of alcohols decrease with increase of branching. This is because van der Waals forces decrease with decrease in surface area.

Solubility:

- 1. Alcohols and phenols form H-bonds, so they are soluble in water.
- 2. Their solubility decreases with increase in size of alkyl/aryl groups.

Reactions that involve cleavage of O – H bond

- 1. Acidity of alcohols and phenols
- 2. Reaction with metals

$$2R - O - H + 2Na \longrightarrow 2R - O - Na + H_2$$

Sodium alkoxide

Phenols react with aq. NaOH to form sodium phenoxides.

Acidity of alcohols

The increasing order of acidity of alcohols is

Acidity of phenols

Phenols are more acidic than alcohols and water.

Electron-withdrawing groups increase the acidity of phenols while electron-releasing groups decrease the acidity of phenols.

Esterification

$$Ar/R - OH + R'COCI \xrightarrow{Pyridine} Ar/ROCOR' + HCI$$

Acid Chloride

Acetylation of salicylic acid

• Reactions that involve cleavage of C – O bond in alcohols

$$R - OH + HX \xrightarrow{ZnCl_2} R - X + H_2O$$

Lucas test – Used for distinguishing between 1°, 2° and 3° alcohols. (Lucas reagent – Concentrated HCl and anhydrous ZnCl₂)

Reaction with phosphorus trihalide

$$3R - OH + PX_3 \longrightarrow 3R - X + H_3PO_3(X = Cl,Br)$$

Dehydration

Treated with concentrated H_2SO_4 or H_3PO_4 or Anhyd. $ZnCl_2$, or Al_2O_3

$$C_2H_5OH \xrightarrow{Conc. H_2SO_4} CH_2 = CH_2 + H_2O$$

The order of increasing reactivity towards dehydration is 1° alcohol < 2° alcohol < 3° alcohol

Oxidation (also known as dehydrogenation)

It involves formation of a carbon–oxygen double bond.

Oxidising agent - Acidified KMnO₄

Oxidising agent is Anhyd. CrO₃

Pyridinium chlorochromate (PCC)

Oxidising agent → Heated Cu at 573 K

3° alcohols do not undergo oxidation

- 1. Electrophilic aromatic substitution reaction
- 2. Nitration

$$\begin{array}{c|c} OH & OH & OH \\ \hline \\ OH & OH \\ \hline \\ O-Nitrophenol & NO_2 \\ \hline \\ P-Nitrophenol \\ \hline \end{array}$$

The o-isomer is steam volatile due to intramolecular H-bonding while the p-isomer is less volatile due to intermolecular H-bonding. So, they can be separated by steam distillation.

1. Halogenation

OH
$$\begin{array}{c}
 & \text{OH} \\
\hline
& \text{Br}_2 \text{ in CS}_2 \\
\hline
& 273 \text{ K}
\end{array}$$

$$\begin{array}{c}
 & \text{P-Bromophenol} \\
& \text{(Minor)}
\end{array}$$
OH
$$\begin{array}{c}
 & \text{OH} \\
& \text{P-Bromophenol} \\
& \text{(Minor)}
\end{array}$$
OH
$$\begin{array}{c}
 & \text{OH} \\
& \text{Br}
\end{array}$$

1. Kolbe's reaction

1. Reimer-Tiemann reaction

2 – Hydroxybenzaldehyde (Salicylaldehyde)

1. Reaction of phenol with zinc dust

$$+$$
 Zn \rightarrow $+$ ZnO

1. Oxidation

$$\begin{array}{c|c}
OH & O \\
\hline
Na_2Cr_2O_7 & O \\
\hline
H_2SO_4 & O
\end{array}$$

Benzoquinone

Methanol (CH₃OH)

Preparation

- Earlier produced by destructive distillation of wood
- Catalytic hydrogenation of carbon monoxide

Properties

- Colourless liquid
- Boiling point = 337 K
- Highly poisonous Small quantities cause blindness and large quantities cause even death.

Uses

- As a solvent in paints and varnishes
- In the preparation of formaldehyde (HCHO)

Ethanol (C₂H₅OH)

Preparation

- By fermentation
- By hydration of ethane

Properties

- Colourless liquid
- Boiling point = 351 K

Uses

- As a solvent in manufacture of paint and a number of carbon compounds
- Denaturation of alcohol Commercial alcohol becomes unfit for drinking by mixing methanol in it

Ethers:

- Preparation of ethers –
- 1. By dehydration of alcohols

$$\begin{array}{c|c} & & H_2 S O_4 \\ \hline & 413 \text{ K} \\ \hline & & C_2 H_5 O C_2 H_5 \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\$$

1. Williamson synthesis

$$R - X + R' - \ddot{O} Na \longrightarrow R - \ddot{O} - R' + NaX$$

- 1. But in case of 2° and 3° halides, instead of substitution, elimination takes place, resulting in alkenes.
- 2. Phenols are converted into ethers.

- Physical properties of ethers –
- 1. Boiling points:

The boiling points of ethers are lower than those of alcohols of comparable molecular masses due to the presence of H-bonding in alcohols.

· Chemical reactions of ethers:

1. Cleavage of C - O bond

2. Least reactive; under drastic conditions with excess of hydrogen halides, the C – O bond is cleaved

$$R - O - R + HX \longrightarrow RX + R - OH$$

 $R - OH + HX \longrightarrow R - X + H_2O$

1. The order of increasing reactivity of hydrogen halides is HCI < HBr < HI

- 1. Electrophilic substitution
- 2. Halogenation

OCH₃

Br₂ in

Ethanoic acid

$$P$$
-Bromoanisole

(Major)

OCH₃
 P -Bromoanisole

(Minor)

1. Friedel Craft's alkylation

1. Friedel Craft's acylation

4-Methoxyacetophenone (Major)

1. Nitration