DBA3803 / DSC3216 Group Project

TheDailyProphet (Team 8)

E0318558 CHIAM XIU ZHEN

E0004365 GAN CHIN BOON

E0191659 LIM YUCHENG EAGAN

E0319030 NAI JING WEN, BERNESSA

E0200936 ZHOU KAI JING

Contents

1 Introduction / Data Preprocessing

2 Model 1 : Regression

Model 2 : Time Series

4 Model 3 : Clustering

5

Further Analysis / Conclusion

Section 1

Introduction & Data Preprocessing

Introduction

- Objectives
 - Understand market trends
- Recognize different market segments
- Forecast company revenues
- Predict stock prices

- Model Overview
 - Regression
 - Time Series
 - Clustering

Long vs Wide Data

Manual Feature Selection

- Key Financial Statement items selected
- Excludes Financial Ratios

Correlation Matrix Heatmap

- Used to quickly identify
 heavily correlated features
- Highly correlated features
 removed as part of feature
 selection

- 0.0

Correlation-based Feature Selection

- Further selection with correlation threshold of 0.8
- Graph on the left shows post-feature selection correlation matrix

-0.4

--0.2

Same feature selection
 process for time series and
 clustering datasets

Time Series Preprocessing

- Time series and clustering datasets
 were separately prepared
- Time Series data focuses on largest date range for analysis (to best capture market trends) → United Engineers Limited (UEL)
- UEL has >30 data points → Last 30 years of revenue data used for forecasting

Clustering Preprocessing

Clustering data focuses on the year
 with the most companies with
 complete info → 2014

Feature Scaling & Cross Validation

- Different features' values varies a lot (by many magnitudes) →
 Feature Scaling
- Train-test split (30% test-set size)
 → For out-of-sample cross
 validation

Section 2

Model 1: Regression

- Base Regression Models
 - OLS Linear Regression model
 - SK-Learn Linear Regression model
- Regularised Regression Models
 - Lasso (With L₁ Regularization)
 - Ridge (With L₂ Regularization)
 - Elastic Net Regression
- Other Regression Models
 - Random Forest Regressor

	RMSE
OLS (Variable Selection)	0.141528
Linear Regression	0.141515
Lasso Regression	0.141515
Ridge Regression	0.141509
Elastic Net Regression	0.141515
Random Forest Regression	0.007314

Best model has 10 Xs:

Results: Ordinary least squares

=======================================								
Model:	OLS			j. R-squar	red:	0.9	982	
Dependent Variable:	Market_Price_Curren	t_Securi	ty AI	C:		-92	271.4062	
Date:	2020-04-18 07:12		BI	C:		-91	194.8977	
No. Observations:	7749		Lo	g-Likeliho	ood:	464	46.7	
Df Model:	10		F-:	statistic	:	4.3	307e+04	
Df Residuals:	7738	7738 Pro		Prob (F-statistic):		: 0.6	0.00	
R-squared:	0.982		Sca	ale:		0.6	917672	
		Coef.	Std.Err.	t	P> t	[0.025	0.975]	
Intercept		0.0006	0.0016	0.3662	0.7142	-0.0026	0.0037	
Beta WS		-0.0036	0.0015	-2.3674	0.0179	-0.0066	-0.0006	
Cash Flow Per Share Cu	urrent Security	0.4952	0.0025	200.7017	0.0000	0.4904	0.5000	
Market Capitalisation	- /	0.1200	0.0028	43.3415	0.0000	0.1146	0.1254	
Book Value Per Share (0.4985	0.0029	172.0981	0.0000	0.4928	0.5042	
Reinvestment Rate Per	Share Current	-0.0042	0.0015	-2.7400	0.0062	-0.0072	-0.0012	
Net Sales Or Revenues	-	-0.1801	0.0020	-88.7741	0.0000	-0.1841	-0.1762	
Retained_Earnings		0.0794	0.0025	31.2161	0.0000	0.0744	0.0844	
Total_Liabilities		0.0253	0.0018	14.3315	0.0000	0.0218	0.0288	
General_Industry_Class	sification_Key_Item3	-0.0303	0.0077	-3.9162	0.0001	-0.0454	-0.0151	
General_Industry_Class	sification_Key_Item6	0.0086	0.0059	1.4518	0.1466	-0.0030	0.0201	
Omnibus:	12128.667		Durbin-Wa			2.00		
Prob(Omnibus):	0.000		Jarque-Be	ra (JB):		9611	1362.312	
Skew:	-9.851		Prob(JB):			0.00	30	
Kurtosis:	174.406		Condition	No.:		10		

OLS Regression model

- Based on Adjusted R², 10 variables
 were chosen
- OLS vs SK-Learn Regression model
- RMSE of <u>0.141528</u> vs <u>0.141515</u>
- Feature selection does not necessarily improve model performance
 - Model Parsimony reduces
 prediction variance but increases
 prediction bias → Could still lead
 to overall increase in model error
 - Random train-test split

Best alpha = 0.0 Best RMSE (Lasso Regression) = 0.14151472303855223

Best alpha = 8.72 Best RMSE (Ridge Regression) = 0.1415090718784026

Regularised Regression model

- Prevents overfitting by introducing penalty term
- Lasso Regression model
 - RMSE: 0.141515
- Ridge Regression model
- RMSE: 0.141509
- It is the only model that is better than previous Linear Regression Model
- Alpha parameter of 8.72
- Elastic Net Regression model
 - RMSE: 0.141515

- Random Forest Regression Model
 - RMSE: 0.007314
 - Improves <u>20 times</u> better than other models
 - Could be a case of overfitting

In Summary

- Ridge regression is the best based on our evaluation term of RMSE
- All other RMSE also only differ slightly
 Could be due to manual variable
 selection that resulted in a
 parsimonious model

RMSE

OLS (Variable Selection)	0.141528
Linear Regression	0.141515
Lasso Regression	0.141515
Ridge Regression	0.141509
ElasticNet Regression	0.141515

Random Forest Regression 0.007314

```
['Market Price - Current (Security)',
'Alpha (Security)',
'Beta (WS)',
'Cash Flow Per Share - Current (Security)',
'Market Capitalisation - Current (Security)',
'Book Value Per Share - Current (Security)',
'Reinvestment Rate - Per Share - Current',
'Net Sales Or Revenues',
'Retained Earnings',
'Total Liabilities',
'General Industry Classification (Key Item)_1',
'General Industry Classification (Key Item) 2',
'General Industry Classification (Key Item) 3',
'General Industry Classification (Key Item) 4',
'General Industry Classification (Key Item)_5',
'General Industry Classification (Key Item) 6'
```

Section 3

Model 2: Time Series

Methodologies

Time Series Decomposition Plot

Rationale: Providing accurate valuation of the companies

Forecast Variable: Revenue

Aim: Revenue projection for the next 5 years

Decomposition Plot

→ Additive trend

Methodologies

SARIMAX Model (Auto ARIMA with Backward Stepwise Selection)

Net Sales Or Revenues Forecast

BSS → Drops least significant variables (using p-values)

Model Evaluation Criterion: AIC

Forecasts	Y1	Y2	Y3	Y4	Y 5
Forecasted Revenue (\$)	406,000	1,660,000	2,950,000	2,130,000	1,010,000
Residual	192,000				

Section 4

Model 3 : Clustering

Clustering Analysis

K-Means Model

- 'k-means++' algorithm
- Improve initialization of cluster centers
- Identify more distinct clusters
- Improve overall clustering

Law of Parsimony

- Elbow graph method at inflection point
- Within cluster sum of squares (WCSS)
- Optimal number of clusters is 3

Cash Flow & Reinvestment Rate

Green Cluster : Startups / SMEs

- Negative reinvestment rates
- Near-zero cash flow per share
- Typical for startups and SMEs

Negative Reinvestment Rates

- Temporary lumpy capital expenditures
- Volatile working capital

Cash Flow & Reinvestment Rate

Blue Cluster : Large MNCs

- Positive stable cash streams
- Typically do not reinvest much
- Past the growth stage

Red Cluster : Growth / Expansion

- Near-zero cash flow per share
- Reinvestment rate depends on growth strategy

Revenue & Alpha

Alpha

- Performance against a benchmark
- Plotted against the company's revenue

Blue Cluster

- Big cash cow companies
- Large revenues from stable businesses
- Near-zero alpha due to accuratevaluation and well-established branding

Revenue & Alpha

Green Cluster

- Anomalous amount of investment returns
- Possibility of insider trading

Red Cluster

- Growing startups
- Do not have very high revenues
- High alphas to compensate higher risk

Section 5

Further Analysis & Conclusion

Insights

Start-Ups / SMEs

Growing Companies

MNCs

Overall market trend indicates a linearly increase

Revenue Forecasting: SARIMAX

Stock Price Prediction: Ridge Regression

Conclusion

Model does not account for external factors

Global Pandemics

Non-linear growth of technology firms

Conclusion

Important to account for qualitative factors

Company Transparency & Corporate Governance

Financial News

Conclusion

Important to account for qualitative factors

Other Techniques

Natural Language Processing

Thank You

