Math 449: Numerical Methods Homework 1

Wenzhen Zhu

- /. a) I = (0, 1] b) I = [0, 1) c) $I = [0, \infty)$

- y = x $y = x^2$
- 1 = x
- Simple iteration $x_{k+1} = \cos(x_k)$ always converges to $\xi = \cos \xi$ Use contraction mapping theorem to prove it.
 - Proof. Let $g(x) = \omega s(x)$ g is a contraction on [-1,1]

 - By MVT, for any $x_1, x_2 \in [-1, 1]$, we have
 - $|g(x_1) g(x_2)| = |g'(y)(x_1 x_2)|$
 - $\leq |\sin(\eta)| |x_1 x_2|$
 - $x \mapsto \sin(x)$ is monotonically increasing on $\left[-\frac{1}{2}, \frac{1}{2}\right]$,
 - in g'(x) > 0 on $x \in [-1, 1]$ $sin(y) \leq sin(1) \approx 0.84$
 - By contraction mapping theorem, L= sin(y)
 - so it has a unique fixed pt $\xi \in [-1,1]$.