EVALUATION ONLINE LEARNING LINKS WITH OPTIMIZATION AND GAMES

Université Paris-Saclay

SOLVING GAMES WITH LINE-SEARCH

This project builds on the chapter from the lecture notes about monotone operators.

Let $d\geqslant 1$, $\mathscr{X}\subset\mathbb{R}^d$ a nonempty closed convex set, h a regularizer with domain \mathscr{X} , $G:\mathscr{X}\to\mathbb{R}^d$ a monotone operator and $(\gamma_t)_{t\geqslant 1}$ a positive sequence.

We consider UMP iterates with time-dependent step-sizes. Let $((x_t, w_t, y_t, z_t))_{t \ge 1}$ be such that $((x_t, y_t))_{t \ge 1}$ is sequence of strict UMD iterates associated with regularizer b and dual iterates $(-\gamma_t G(w_t))$ and for $t \ge 1$,

- (i) $z_t \in \partial h(x_t)$,
- (ii) $\forall x \in \mathcal{X}, \langle z_t \gamma_t, x x_t \rangle \geqslant 1$,
- (iii) $w_t = \nabla b^*(z_t \gamma_t G(x_t)).$
- 1) Prove that if

$$\forall t \geqslant 1, \quad \gamma_t \left\langle \mathbf{G}(w_t), x_{t+1} - w_t \right\rangle \leqslant \mathbf{D}_b(x_{t+1}, x_t; \ y_t), \tag{1}$$

then for all $T \ge 1$,

$$\forall x \in \operatorname{dom} h, \quad \left\langle G(x), \bar{w}_{\mathrm{T}}^{(\gamma)} - x \right\rangle \leqslant \frac{\mathrm{D}_b(x, x_1; \ y_1)}{\sum_{t=1}^{\mathrm{T}} \gamma_t},$$

where
$$\bar{w}_{\mathrm{T}}^{(\gamma)} = \left(\sum_{t=1}^{\mathrm{T}} \gamma_t\right)^{-1} \sum_{t=1}^{\mathrm{T}} \gamma_t w_t$$
.

Hint. — Adapt the proof from the course.

The above guarantee encourages to choose values for γ_t that are large while satisfying condition (1).

2) Propose an algorithmic scheme ("line-search") for choosing a value for γ_t in the logarithmic scale $\left\{\sqrt{2}^k\right\}_{k\in\mathbb{Z}}$ so that condition (1) is satisfied.

We now consider the following regularizer. Let $m, n \geqslant 1$ and let $b : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be defined as

$$b(a,b) = h_{\text{ent}}(a) + h_{\text{ent}}(b), \quad (a,b) \in \mathbb{R}^m \times \mathbb{R}^n,$$

where h_{ent} denotes both the entropic regularizer on Δ_m and on Δ_n .

- 3) Prove that *h* is a regularizer with domain $\Delta_m \times \Delta_n$.
- 4) Prove that $(x_t)_{t \ge 1}$ and $(w_t)_{t \ge 1}$ are then uniquely determined.
- 5) Give an explicit expression for $(x_t)_{t\geqslant 1}$ and $(y_t)_{t\geqslant 1}$ in the special case of solving a two-player zero-sum game, and write the corresponding guarantee.
- 6) Perform numerical experiments in the context of solving two-player zerosum games to compare the performance of the above algorithm (with linesearch) with the same algorithm with no line-search, the exponential weights algorithm, RM, RM+, and their optimistic counterparts.