Lógica El

Justifique todas as suas respostas.

- 1. (a) Mostre que $(p_0 \land \neg p_1) \leftrightarrow (p_0 \rightarrow \neg p_1)$ não é um teorema em DNP.
 - (b) Prove que, para quaisquer $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$, se $\Gamma \vdash \varphi \land \psi$, então $\Gamma \cup \{\neg \varphi\}$ é sintaticamente inconsistente.
- 2. Considere o tipo de linguagem L = Arit.

Sejam
$$t_0 = s(x_1 + s(0)), \ \psi = \exists x_0(x_0 < x_0) \lor \exists x_1 \neg (x_0 < x_1) \ e \ \varphi = \forall x_0(x_0 \times 0 = 0).$$

Seja $NATS = (\mathbb{N}_0, \overline{})$ a estrutura usual de tipo L .

- (a) Indique $\psi[t_0/x_0]$ e diga se x_0 está livre para t_0 em ψ .
- (b) Defina por recursão estrutural a função $f: \mathcal{T}_L \to \mathbb{N}_0$ que a cada $t \in \mathcal{T}_L$ faz corresponder o número de ocorrências do símbolo de função + em t.
- (c) Dê exemplo de um termo t de tipo L tal que $\bar{t}_{\alpha}=3$ para toda a atribuição α em NATS.
- (d) Defina uma estrutura de tipo L com domínio $\{0, a\}$.
- (e) Quantas estruturas de tipo L existem com domínio $\{0, a\}$?
- (f) Mostre que a fórmula φ é verdadeira em NATS.
- (g) Verifique se $\models \varphi$.
- 3. Seja L = Arit e sejam E_1 e E_2 as estruturas standard de tipo L com domínios \mathbb{Z} e \mathbb{Q} , respetivamente. Para cada i = 1, 2, seja $\Gamma_i = \{ \varphi \in \mathcal{F}_L \mid \varphi \text{ \'e verdadeira em } E_i \}$. Mostre que $\Gamma_2 \not\subseteq \Gamma_1$.

Cotações	1.	2.	3.
	2+2	1+2+2+2+2+2+3	2