

GUIA DE ESTUDOS

Paulo César Lima Renato Ribeiro de Lima

Ficha catalográfica preparada pela Divisão de Processos
Técnicos da Biblioteca Universitária da UFLA
Espaço a ser preenchido pela biblioteca

[A ser preenchido posteriormente]

Espaço a ser preenchido pelo CEAD

ÍNDICE

UNIDADE 1 - PESQUISA CIENTÍFICA E ESTATÍSTICA	. 7
1.1 CIÊNCIA E MÉTODO CIENTÍFICO. 1.2 PESQUISA CIENTÍFICA. 1.3 A ESTATÍSTICA NA PESQUISA CIENTÍFICA. 1.3.1 Hipóteses Estatísticas. 1.3.2 Amostragem. 1.3.3 Estimação e Testes de Hipóteses. 1.3.3.1 Estimação.	10 11 12
1.3.3.2 Testes de Hipóteses	14
UNIDADE 2 – CONCEITOS E PRINCÍPIOS BÁSICOS DA ESTATÍST EXPERIMENTAL	
2.1 CONCEITOS GERAIS 2.1.1 Experimento 2.1.2 Variáveis 2.1.3 Variável Fator e Variável Resposta. 2.1.4 Tratamentos 2.1.5 Parcela Experimental 2.1.6 Bordadura. 2.2 PRINCÍPIOS BÁSICOS DA EXPERIMENTAÇÃO 2.2.1 Repetição 2.2.2 Aleatorização. 2.3 CONCEITOS FUNDAMENTAIS 2.3.1 Erro Experimental 2.3.2 Controle Local 2.3.3 Interação entre Fatores	19 19 21 22 22 23 25 25 26 29 29 31
UNIDADE 3 - PLANEJAMENTO EXPERIMENTAL	. 35
3.1 REQUISITOS PARA UM BOM EXPERIMENTO	. 36 37 37 38 38
4.1 CAUSAS DA VARIABILIDADE	46 . 47 50 56
UNIDADE 5 – COMPARAÇÕES ENTRE MÉDIAS DE TRATAMENTOS TESTE TUKEY	- 61
5.1 COMPARAÇÕES DAS MÉDIAS DUAS A DUAS 5.2 TESTE TUKEY	61 63
UNIDADE 6 - REGRESSÃO LINEAR SIMPLES	76
6.1 REGRESSÃO 6.2 REGRESSÃO LINEAR SIMPLES 6.2.1 Análise de Variância para Regressão 6.2.2 Coeficiente de Determinação 6.3 REGRESSÃO NA ANÁLISE DE VARIÂNCIA 6.3.1 Passos: Análise de Regressão na Análise de Variância	80 83 84 87

UNIDADE 7 – PRESSUPOSIÇÕES DA ANÁLISE DE VARIÂNCIA 99
7.1 HIPÓTESES FUNDAMENTAIS DA ANÁLISE DE VARIÂNCIA
UNIDADE 8 - DELINEAMENTOS EXPERIMENTAIS 115
8.1 DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) 115 8.1.1 Características 115 8.1.2 Aleatorização 116 8.1.3 Modelo Estatístico 117 8.1.4 Modelo Geral de Análise 117 8.2 DELINEAMENTO BLOCOS CASUALIZADOS (DBC) 119 8.2.1 Características 120 8.2.2 Aleatorização 121 8.2.3 Modelo Estatístico 121 8.2.4 Modelo Geral de Análise 122 8.3 DELINEAMENTO QUADRADO LATINO (DQL) 125 8.3.1 Características 125 8.3.2 Aleatorização 127 8.3.3 Modelo Estatístico 127 8.3.4 Modelo Geral de Análise 128
UNIDADE 9 - ENSAIOS FATORIAIS133
9.1 NOTAÇÃO 134 9.2 VANTAGENS E DESVANTAGENS 136 9.3 EFEITOS DOS FATORES 137 9.4 INTERAÇÃO ENTRE OS FATORES 140 9.5 O FATORIAL MAIS SIMPLES 144 9.6 FATORIAIS P X Q 149 9.7 FATORIAIS P X Q X S 157 9.8 ENSAIOS FATORIAIS COM UMA REPETIÇÃO 162 9.9 FATORIAIS FRACIONADOS 164
UNIDADE 10 - ENSAIOS FATORIAIS COM PARCELAS DIVIDIDAS 166
10.1 ANÁLISE DE VARIÂNCIA
BIBLIOGRAFIA 181
Tabela A.1. Distribuição F (F _{0,05})
Tabela A.2. Quantil superior da amplitude estudentizada para o teste de Tukey

UNIDADE 1 - PESQUISA CIENTÍFICA E ESTATÍSTICA

Nesta primeira unidade vamos apresentar os conceitos sobre Ciência, Pesquisa Científica e os Fundamentos da Estatística envolvidos na Experimentação

UNIDADE 1 – PESQUISA CIENTÍFICA E ESTATÍSTICA	Anotações:
1.1 CIÊNCIA E MÉTODO CIENTÍFICO	
Existem muitas definições e conceitos para "ciência". Escolhemos um conceito mais geral para que você possa começar a entender a importância da Estatística no desenvolvimento da Ciência.	
"A Ciência é um conjunto de conhecimentos obtidos através do Método Científico, organizados e verificáveis".	
As afirmações verificáveis são aquelas que podemos comprovar através de observações. As afirmações que não puderem ser comprovadas em experiências não constituem ciência. De uma forma geral também, podemos conceituar o <i>Método Científico</i> como:	
"Um conjunto de normas e procedimentos básicos necessários para a realização de experiências com o objetivo de produzir conhecimento".	

1.2 PESQUISA CIENTÍFICA

Se quisermos realizar uma **Pesquisa Científica** precisamos seguir as etapas do método científico. Estas etapas são apresentadas na Figura 1.1.

FIGURA 1.1. O Método Científico.

Observando a Figura 1.1 você pode entender como trabalham os pesquisadores:

Inicialmente, com o conhecimento do pesquisador, com a revisão de literatura e com as discussões sobre o tema, planejam todos os detalhes a serem estudados e definem os objetivos a serem atingidos;

Anotações:

Em sequência, procuram formular suposições (hipóteses) como possíveis soluções para o problema;	Anotações:
Através da observação dos processos envolvidos, obtêm informações que serão utilizadas para verificar se as suposições formuladas são explicações para o problema;	
Dessa forma, os resultados das pesquisas podem tornar-se novos conhecimentos.	
Podemos resumir os passos de uma pesquisa científica em:	
 Definição do Problema Formulação das Hipóteses Obtenção das Observações Análise das Observações Interpretação dos Resultados Publicação das Conclusões 	
1.3 A ESTATÍSTICA NA PESQUISA CIENTÍFICA A <i>Estatística</i> está inserida no Método Científico. Possui fundamentos teóricos que são comuns a todas as áreas	
do conhecimento e metodologias de planejamento de	

pesquisas e de análises de informações aplicadas a todas estas áreas.	Anotações:
Vamos falar dos fundamentos da estatística associados a cada etapa do Método Científico.	
1.3.1 Hipóteses Estatísticas	
Nas pesquisas científicas estamos interessados em explicar as relações causa-efeito entre características dos elementos envolvidos no estudo em foco.	
As hipóteses sobre as relações causa-efeito geralmente surgem do conhecimento teórico relacionado ao problema em estudo, mas podem surgir também com base em literatura ou pela observação do fenômeno.	
Lembre-se de que o sucesso de um estudo científico inicia-se com o maior entendimento e definição do problema a ser pesquisado, com a habilidade para formular os objetivos a serem atingidos e com a clareza na formulação das hipóteses a serem testadas.	
A <i>Hipótese Estatística</i> é uma formulação provisória de resposta ao problema investigado.	
Toda hipótese estatística deve ser passível de um teste de confirmação em experiências. Se os resultados	

obtidos em várias experiências não contradizem a hipótese ela será aceita como conhecimento científico.	Anotações:
1.3.2 Amostragem	
A maioria das pesquisas envolve populações infinitas ou extremamente grandes em que o estudo de todos os seus integrantes (<i>censo</i>) é inviável em função de a população ser infinita ou dos altos custos e do tempo necessário demandados.	
A teoria da amostragem estatística permite que tomemos uma parte representativa da população para a obtenção das informações necessárias às pesquisas.	
Designamos por <i>característica</i> à propriedade que distingue ou caracteriza cada elemento de uma amostra e vamos utilizar o termo <i>dado</i> para designar cada observação ou cada medida efetuada nas características destes elementos.	
As características dos elementos de uma população ou amostra podem ser consideradas como na Figura 1.2.	

FIGURA 1.2 Grupos de Características dos Indivíduos.

Em uma experiência, as características causais (*explicativas*) são aquelas responsáveis pelos efeitos que procuramos observar ou mensurar (*respostas*). As características estranhas também são características causais, mas desconhecidas ou consideradas como de menor importância em nosso estudo.

1.3.3 Estimação e Testes de Hipóteses

O objetivo das pesquisas é conhecer sobre os parâmetros da população Quando não for possível realizar um censo podemos empregar a amostragem. Através de amostras, não é possível determinar os parâmetros da população então nós usamos a inferência estatística para generalizar resultados obtidos em amostras para a população.

Anotações:

Você sabe quais são as diferenças entre Parâmetro, Estimativa e Estimador?

-		- 64	
Δn	ota	ıcõe	e
\sim			-

Em primeiro lugar, vamos relembrar o que é **parâmetro**: é o valor de uma função dos indivíduos de uma população para descrever uma característica qualquer.

Ao valor obtido de uma amostra para uma característica denominada Y através de uma função qualquer, f(Y), chamamos **estimativa** do respectivo parâmetro populacional e, à função f utilizada para obtê-lo chamamos **estimador** daquele parâmetro.

1.3.3.1 Estimação

A diferença entre uma estimativa e o parâmetro é chamada de **erro de estimação**. Cada indivíduo de uma amostra é a expressão da ação simultânea de muitas características, o que implica na existência de variabilidade entre os elementos da amostra. Podemos expressar o erro de estimação como uma função da variabilidade inerente à característica em estudo:

 Se a variabilidade for pequena, repetidas amostras da população, provavelmente, fornecerão estimativas similares implicando em que a estimativa obtida de uma amostra qualquer

provavelmente esteja mais próxima do valor do parâmetro;	Anotações:
 Se a variabilidade for grande a estimativa obtida de uma amostra qualquer provavelmente estará mais distante do valor do parâmetro. 	
1.3.3.2 Testes de Hipóteses	
O objetivo da análise estatística é avaliar as relações causa-efeito entre características dos elementos de uma amostra e possibilitar a inferência para a população. Isto é feito através dos testes de hipóteses .	
Você sabia que a estatística nunca prova nada?	
A estatística, considerando o erro de estimação, permite dimensionar a confiança que você pode ter no resultado de uma pesquisa ou então, a probabilidade de que você tome uma decisão incorreta ao aceitar ou ao rejeitar uma hipótese estatística.	
Para realizar um Teste de Hipótese siga os seguintes passos:	

- Formular uma hipótese a ser testada (H₀) e uma hipótese alternativa (H_a);
- Especificar do grau de confiança desejado ($\gamma=1-\alpha$);
- Escolher uma estatística de teste que avalie os desvios de H_0 e que tenha distribuição amostral conhecida (D_t);
- Calcular a estimativa do parâmetro através da amostra (D_c);
- Estabelecer uma Regra de Decisão sobre D_c e D_t.

A regra de decisão a ser usada no último passo admite quatro resultados possíveis, conforme apresentado na Tabela 1.1.

TABELA 1.1 Decisões e Tipos de Erros Associados aos Testes de Hipóteses.

H ₀	DECISÃO	RESULTADO
Verdadeira	Não rejeitar H₀	CORRETO
Verdadeira	Rejeitar H ₀	ERRO TIPO I
Falsa	Rejeitar H ₀	CORRETO
Falsa	Não rejeitar H_0	ERRO TIPO II

A probabilidade de se cometer o Erro Tipo I (rejeitar uma hipótese verdadeira) em um teste de hipótese qualquer é representada pela letra grega α . Usualmente

-			_
Λn	α	\sim	oc.
\sim	ota		CS.
		3	

4	_	ī	D	á	~	÷	10	
				74	6.1			-

chamamos α de <i>nível de significância</i> . O nível de confiança é dado por 1 - α .	Anotações:
A probabilidade de se cometer o Erro Tipo II (aceitar uma hipótese falsa) é representada por β.	
Desafio:	
Você é o pesquisador. Então:	
 a- Descreva um estudo simples a ser pesquisado na sua área. Descreva todos os detalhes conhecidos sobre o problema proposto. Formule os principais objetivos a serem alcançados. b- Formule uma hipótese a ser verificada no estudo, c- Indique as observações a serem coletadas visando a verificação da hipótese formulada. 	

UNIDADE 2 – CONCEITOS E PRINCÍPIOS BÁSICOS DA ESTATÍSTICA EXPERIMENTAL

Nesta unidade são apresentados os principais conceitos e os princípios fundamentais da experimentação

UNIDADE 2 – CONCEITOS E PRINCÍPIOS BÁSICOS DA ESTATÍSTICA EXPERIMENTAL	Anotações:
A <i>Estatística Experimental</i> trata das técnicas apropriadas ao planejamento e às análises dos dados de Experimentos.	
Os fundamentos dessas técnicas foram apresentados por R.A. Fisher (1890-1962) em <i>Statistical methods for research workers</i> (1925). Este livro era direcionado às áreas de biologia e agricultura e era essencialmente aplicado.	
2.1 CONCEITOS GERAIS	
Alguns termos e expressões são características da área experimental e frequentemente utilizadas em todas as etapas da experimentação. Vários termos utilizados têm origem na área agrícola e permanecem em uso até os dias de hoje, mas com conotação mais geral.	

indivíduos;

2.1.1 Experimento	_
	Anotações:
Um experimento é a realização de um procedimento	
em que algumas características explicativas são	
controladas pelo experimentador.	
2.4.2.1/ :/	
2.1.2 Variáveis	
A função numérica que estabelece a correspondência um	
a um entre as manifestações de uma característica e os	
valores de um conjunto numérico é denominada	
variável.	
Quando começarmos o estudo de um problema, iremos	
encontrar uma grande quantidade de variáveis	
envolvendo o processo em foco. A definição da	
relevância dessas variáveis e das hipóteses envolvendo	
as relações causa-efeito entre elas é uma etapa	
fundamental nesta fase de planejamento da pesquisa.	
As variáveis relevantes consideradas no estudo de um	
problema podem ser agrupadas em:	
→ Variáveis causais (c _i , i=1, 2,, n): aquelas que	
influenciam o desempenho dos elementos ou	

 \rightarrow Variáveis efeitos (e_i, j=1, 2,..., m): aquelas que exprimem o desempenho dos mesmos; Anotações: → Variáveis irrelevantes (causais ou efeitos): todas as outras variáveis inerentes aos elementos do processo mas sem interesse no estudo. A Figura 2.1 representa as variáveis em uma pesquisa. Variável c₁ Variável c₂ Variável c_n Variáveis **PROCESSO** Variáveis Irrelevantes **EM ESTUDO** Irrelevantes Variável e_m Variável e₁ Variável e₂ Variáveis Causais (c_i), Variáveis

FIGURA 2.1 Efeitos (e_i) e Outras Variáveis.

2.1.3 Variável Fator e Variável Resposta

2.1.3 variavei rator e variavei Resposta	
	Anotações:
No planejamento de um experimento devemos escolher	
a variável causal cujos efeitos queremos observar no	
experimento e as variáveis efeitos que iremos mensurar	
conforme os objetivos da pesquisa.	
,	
Às variáveis causais cujos efeitos queremos estudar	
denominamos fatores . Os valores que um fator assume	
são suas <i>categorias</i> (tipos, se o fator for uma variável	
qualitativa e níveis, se o fator for quantitativo).	
Às variáveis que iremos mensurar ou observar	
designamos <i>respostas</i> e valores obtidos para essas	
respostas são os dados .	
As outras variáveis causais, que podem ser relevantes	
ou não, deverão ser controladas através das técnicas	
experimentais para que as respostas obtidas sejam a	
expressão apenas do fator ou fatores em estudo (Figura	
2.2).	

FIGURA 2.2 Representação das Variáveis em um Experimento

2.1.4 Tratamentos

Se quisermos estudar apenas um fator em um experimento, as categorias desse fator são denominadas **tratamentos**. Para o caso queremos estudar dois ou mais fatores, os tratamentos são as combinações das categorias desses fatores.

2.1.5 Parcela Experimental

Unidade experimental ou **parcela experimental** é a quantidade de indivíduos de uma amostra em que aplicamos apenas um tratamento e tomamos uma única medida para cada variável resposta.

22	L	Р	a	a	п	n	a

Anotações:

A quantidade de material ou de indivíduos que define uma parcela (tamanho da parcela) depende basicamente da variabilidade inerente à variável resposta.

Existem procedimentos estatísticos apropriados para a determinação do tamanho e da forma de parcelas experimentais, fundamentados na teoria da amostragem. No entanto, na prática, o tamanho da parcela de um experimento frequentemente é escolhido por analogia a outros ensaios de mesma natureza e realizado em condições experimentais semelhantes.

2.1.6 Bordadura

Quando existir a possibilidade do tratamento aplicado a uma parcela influenciar ou ser influenciado pelos tratamentos aplicados nas parcelas vizinhas, cada parcela deverá dispor de uma quantidade de material a mais para servir de proteção contra esta interferência. Este parte da parcela que servirá de proteção é denominada **bordadura da parcela**.

Não podemos incluir a bordadura na obtenção dos dados das respostas. A área da parcela, excetuando-se a bordadura, é denominada **área útil da parcela** e apenas nela deverão ser efetuadas as avaliações.

•	Anotações:
1	
5 1	
1	
)	
9	
1	
5	
1	
1	
غ ا	
5	
1	
9	

Como exemplo vamos simular uma parcela constituída por 3 linhas de plantio de uma cultura qualquer, cada linha com 5 metros de comprimento. O espaçamento entre linhas de plantio é de 0,50 m e vamos colocar 10 plantas por metro linear. Iremos pesar as produções da linha central, eliminando-se 1 metro em cada extremidade das linhas. A Figura 2.3 mostra o detalhe desta parcela.

FIGURA 2.3 Detalhe de uma Parcela Experimental com Bordadura.

Anotações:	

2.2 PRINCÍPIOS BÁSICOS DA EXPERIMENTAÇÃO	Anotações:
Os princípios básicos da experimentação são: <i>repetição</i> e <i>aleatorização</i> . São denominados princípios básicos porque são os fundamentos mínimos necessários a todo experimento.	
2.2.1 Repetição	
A <i>repetição</i> consiste na aplicação de cada tratamento a mais de uma parcela experimental.	
A função da repetição é permitir a obtenção de uma estimativa da variabilidade atribuída a todas as variáveis consideradas irrelevantes ou não conhecidas e às variáveis explicativas que não foram controladas.	
Outra função atribuída ao aumento do número de repetições é a diminuição do erro experimental (veja a seguir, no item 2.3.1).	

Alguns procedimentos estatísticos permitem determinar o número necessário de repetições, geralmente considerando o grau de confiança requerido, a variabilidade do material experimental e os objetivos da pesquisa.	Anotações:
2.2.2 Aleatorização	
A aleatorização ou casualização consiste em um conjunto de regras que define o processo de distribuição das parcelas na área experimental.	
A função da casualização é evitar a tendenciosidade ou o viés dos efeitos das variáveis não controladas sobre os resultados obtidos no experimento permitindo que as estimativas e os testes de hipóteses sejam válidos.	
Para exemplificar a utilização desses termos e expressões, considere o experimento apresentado no exemplo seguinte.	
Exemplo 2.1	
Um engenheiro, interessado em estudar a resistência de fibras sintéticas utilizadas na confecção de vestuário, decidiu utilizar diferentes quantidades de algodão já que	

e sabido, de pesquisas anteriores, que a resistencia de
fibras sintéticas aumenta com a inclusão de algodão.
Como o produto final deve conter de 10 a 40% de
algodão, devido a outras características importantes
para a qualidade do produto, foram escolhidas as
quantidades de 15, 20, 25, 30 e 35% de algodão.
Também, decidiu-se testar cinco amostras de cada nível
de algodão tomando, como amostra, um atado de fibras
com 10 centímetros de diâmetro. As avaliações foram
feitas em apenas uma máquina e por um único técnico.
Fonte: Montgomery, D.C.

No exemplo 2.1, temos apenas um **fator** que são os teores de algodão na fibra com as **categorias** (ou níveis): 15, 20, 25, 30 e 35%. Como as categorias deste fator são expressas em uma escala intervalar, o fator é denominado quantitativo. Quando as categorias de um fator são expressas em uma escala nominal, o fator é denominado qualitativo.

A tensão ao rompimento corresponde à variável **resposta**. Os valores obtidos para a resistência das amostras são os **dados**.

Os **tratamentos** são: $T_1 = 15\%$ de algodão na fibra, $T_2 = 20\%$, $T_3 = 25\%$, $T_4 = 30\%$ e $T_5 = 35\%$ de algodão na fibra.

	Anotações:
?	
;	
;	
,	
_	
•	
1	
3	
I	
)	
<u>,</u>	
•	
ı	
•	
<u>,</u>	
-	
'	

Atenção:

	Anotações:
Se em outro experimento os fatores fossem Reagentes $(A \ e \ B)$ e uso ou não de um Catalisador, os tratamentos seriam: T_1 = reagente A sem catalisador; T_2 = reagente A com catalisador; T_3 = reagente B sem catalisador e T_4 = reagente B com catalisador (correspondentes às combinações dos reagentes com o catalisador).	
No Exemplo 2.1, cada parcela corresponde a um amarrado de fibras com dez centímetros de diâmetro e, neste caso, não foi necessário usar bordadura porque uma amostra sempre estava separada das outras.	
Nesse exemplo foram utilizadas 5 repetições (cinco amostras com cada teor de algodão), perfazendo 25 parcelas experimentais.	
A aleatorização consistiu em submeter as amostras ao teste de resistência em uma ordem determinada ao acaso.	

2.3 CONCEITOS FUNDAMENTAIS

fundamentais Os conceitos da Estatística Experimental são aqueles necessários à compreensão da metodologia estatística utilizada no planejamento, nas análises е na inferência dos resultados dos experimentos. Estes conceitos estão intimamente relacionados com a teoria da Amostragem, com a Inferência Estatística e com a modelagem do problema em estudo.

2.3.1 Erro Experimental

Vamos lembrar que as alterações nas respostas provocadas pelos fatores são o objeto da nossa pesquisa, mas outras variáveis consideradas de menor importância ou aquelas cujo controle não foi eficiente e, ainda, outras variáveis desconhecidas do pesquisador, também podem provocar mudanças nas respostas que vamos obter.

Estes efeitos estarão confundidos com os efeitos do fator em estudo provocando a variação que vamos observar nas respostas. Essa variação indesejada é denominada *Erro Experimental*.

Anotações:

O erro experimental pode fazer com que as inferências sejam tendenciosas ou até mesmo inviabilizar a utilização dos resultados das pesquisas.	Anotações:
O erro experimental também pode ser considerado como o desvio de ajuste (erro de estimação) do modelo proposto para explicar o efeito dos fatores sobre as respostas.	
Em se tratando de estudos de amostragem, ele sempre estará presente e assim as técnicas de planejamento, controle e de condução dos experimentos devem visar à minimização da quantidade dessas variáveis e de seus efeitos nas respostas, tornando constantes ou irrelevantes suas manifestações nos resultados.	
No Exemplo 2.1, algumas variáveis responsáveis pelo erro experimental poderiam ser: regulagem da máquina, variações na matéria prima e na preparação das fibras, variações no diâmetro da amostra e muitas outras relacionadas, principalmente com a condução do ensaio.	
Quando o pesquisador busca conhecer as variáveis envolvidas em um experimento e homogeneizar as condições experimentais através de, por exemplo, seleção do material experimental, treinamento de	

pessoal, aperfeiçoamento da técnica de condução além de outros, ele visa minimizar o erro experimental.	Anotações:
A precisão é função da variabilidade entre as medidas efetuadas nas parcelas. Precisão alta implica em que as observações iram fornecer estimativas mais próximas dos valores da população.	
Um processo de mensuração pode apresentar outro tipo de erro – o erro sistemático. Neste caso, as medidas obtidas são tendenciosas ou viesadas, subestimando ou superestimando os valores verdadeiros. Este tipo de erro não contribui para o erro experimental e, portanto, não afeta a precisão do experimento, mas reduz a eficiência.	
2.3.2 Controle Local	
O <i>controle local</i> consiste no agrupamento das parcelas de um experimento de maneira que os efeitos de variáveis estranhas, mas conhecidas, não sejam confundidos com os efeitos dos fatores.	
Geralmente os grupos de parcelas são denominados blocos e devem ser homogêneos, mas podem variar entre si.	

No Exemplo 2.1, supondo que, ao invés de apenas um técnico fossem utilizados quatro pessoas diferentes para conduzir o ensaio, poderíamos supor que a diferença de habilidade entre os quatro técnicos afetaria aleatoriamente a variável resposta. Uma solução para o controle desta variável seria distribuir uma amostra de cada um dos cinco tratamentos para cada técnico. Assim, cada pessoa (ou bloco) estaria avaliando todos os diferentes tratamentos com o mesmo critério pessoal.

Sempre que as categorias de várias variáveis puderem ser combinadas, seus efeitos serão confundidos, mas o controle simultâneo pelos blocos poderá ser efetuado. Para usar o Exemplo 2.1, supondo que as medições não pudessem ser realizadas em um mesmo dia da semana, além de serem necessários os quatro técnicos, o experimento poderia ser realizado em quatro dias diferentes, em cada dia um determinado técnico iria avaliar uma amostra de cada tratamento. Assim, os tratamentos em cada bloco (técnico-dia), estariam sendo avaliados com o mesmo grau de habilidade e sujeitos as mesmas condições climáticas. Os efeitos de diferença de habilidade dos técnicos e diferenças climáticas estariam confundidos entre si, mas não estariam confundidos com os efeitos das outras variáveis.

ı	Anotações:	
L		
L		
L		
L		
1.		
1-		
-		
1-		
-		
-		
-		
1-		
-		
-		
-		
-		
-		
-		
1-		
1		
-		
-		
1		
1-		

2.3.3 Interação entre Fatores	Anotações:
Nos experimentos com dois ou mais fatores, além dos efeitos dos fatores, podemos esperar por um outro efeito denominado interação entre os fatores.	
A <i>interação</i> entre dois ou mais fatores significa que os efeitos destas variáveis são relacionados ou que o efeito de um fator depende da categoria do outro fator. Neste caso, os efeitos observados nas variáveis respostas são funções dos efeitos de cada fator e dos efeitos das interações entres eles.	
Mais discussões sobre interação entre fatores serão apresentadas na unidade sobre ensaios fatoriais.	

UNIDADE 3 - PLANEJAMENTO EXPERIMENTAL

São apresentadas aqui as condições que afetam os resultados dos experimentos e os fatores que devem ser considerados no planejamento dos experimentos

UNIDADE 3 – PLANEJAMENTO EXPERIMENTAL	Anotações:
Os resultados dos experimentos são afetados pela ação dos tratamentos que estamos comparando, mas também, pelo efeito de variáveis estranhas que tendem a mascarar seus efeitos. Estas variações formam o erro experimental.	
As causas principais do erro experimental são:	
→ Variabilidade inerente ao material experimental onde foram aplicados os tratamentos e	
⇒ a falta de uniformidade na condução física do experimento.	
Para atingir os objetivos propostos em uma pesquisa, devemos procurar minimizar o erro experimental, maximizando a precisão de nossos experimentos com a realização de um bom planejamento e uma condução consciente.	

	Anotações:
3.1 Requisitos para um bom Experimento	
Um experimento fadado ao sucesso deve:	
 Ser simples, 	
• Ter precisão suficiente e ausência de erro	
sistemático,	
 Possibilitar análises estatísticas apropriadas, 	
 Fornecer conclusões com grande amplitude de 	
validade.	
Estes requisitos podem ser satisfeitos atentando pela:	
- Escolha do Material Experimental,	
- Seleção das Unidades Experimentais,	
- Seleção dos Tratamentos,	
- Agrupamento de Unidades Experimentais,	
- Utilização de técnicas mais refinadas.	
3.1.1 Escolha do Material Experimental	
Para certos tipos de estudo é desejável um material	
uniforme, cuidadosamente selecionado. Entretanto, na	I

seleção do material experimental, deve-se ter em mente a população a respeito da qual se deseja obter conclusões. Portanto, é importante empregar os tipos de materiais que serão realmente utilizados na prática.	Anotações:
3.1.2 Seleção das Unidades Experimentais	
No planejamento de experimentos de campo, tem-se feito numerosos estudos da variabilidade entre os rendimentos de cultivos em parcelas de diferentes tamanhos e formas submetidas a tratamentos uniformes.	
Em geral, a variabilidade decresce com o aumento na precisão, mas uma vez atingido o tamanho ideal, o aumento da precisão diminui rapidamente com tamanhos maiores. As parcelas retangulares são mais eficientes na superação da heterogeneidade do solo quando seu eixo maior está na direção da menor variação do solo. O critério para solucionar o melhor tamanho e forma da parcela é aquele no qual se obtém a máxima exatidão para um dado gasto de tempo e	
trabalho.	
3.1.3 Seleção dos Tratamentos Em certos casos, a seleção dos tratamentos tem um	

efeito notável sobre a precisão de um experimento. Por

exemplo, ao se estudar o efeito de um fertilizante, inseticida, fungicida ou herbicida, é mais útil determinar como as parcelas respondem a doses crescentes do produto do que decidir se duas doses sucessivas são ou não significativamente diferentes. Consequentemente, um conjunto apropriado de doses tornará possível planejar testes de significância que são mais sensíveis do que simplesmente comparar médias adjacentes em um conjunto.	Anotações:
3.1.4 Agrupamento de Unidades Experimentais	
O agrupamento planejado das unidades experimentais é chamado de controle local. Através de certas restrições	
na casualização dos tratamentos nas parcelas, é possível remover algumas fontes de variação, tais como	
variações na fertilidade do solo ou na disponibilidade de	
água ao longo da área experimental. O agrupamento das parcelas de modos diferentes dá origem aos diferentes	
delineamentos experimentais.	
3.1.5 Utilização de Técnicas mais Refinadas	
Uma técnica errônea pode aumentar o erro experimental	

e distorcer os efeitos dos tratamentos. A técnica é

responsabilidade do pesquisador. Uma técnica adequada

tem por objetivos:

a) A aplicação uniforme dos tratamentos - em experimentos de adubação, em que se deseja avaliar apenas os níveis de um dado nutriente, os demais deverão ser aplicados de forma uniforme em todas as unidades experimentais. Na prática, em experimentos de campo, consegue-se uma boa aplicação dos tratamentos, planejando-se com antecedência a pesagem dos materiais (adubos, rações, meio de cultura, etc.), ou a confecção de recipientes com peso conhecido.	Anotações:
 b) Proporcionar medidas adequadas e não viciadas dos efeitos dos tratamentos - freqüentemente, as medidas apropriadas são logo aparentes, no entanto, algumas vezes, o desenvolvimento e o método satisfatório de medidas requerem anos de investigação, como em pesquisas sociológicas. 	
c) Prevenir erros grosseiros, dos quais nenhum tipo de experimentação está inteiramente livre - a supervisão e comprovação adequada do trabalho dos ajudantes e um exame dos dados de cada unidade experimental, por parte do pesquisador, muito contribuirá para a descoberta e correção desses erros.	
d) Controlar influências externas de forma que cada tratamento produza seu efeito, quando submetidos a	

condições desejáveis e comparáveis. É difícil

generalizar a respeito do grau de controle necessário; pode-se fazer um balanço entre o ganho de precisão obtido e o custo. A produção artificial de enfermidades para experimentos sobre resistência a infecção exemplifica um caso onde a experimentação não pode avançar rapidamente sem controle sobre as condições externas.

Uma técnica deficiente pode introduzir variações adicionais de natureza mais ou menos aleatória. Tais variações adicionais, quando significativas, se revelam na estimação do erro que se calcula na análise de variância. Em casos onde os erros estimados por um pesquisador são consistentemente mais altos que os de outros, os quais utilizam material semelhante, aconselha-se ao pesquisador buscar a razão desta variação, a qual pode ser encontrada nas diferenças de técnicas utilizadas por ambos.

	Anotações:
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	
١	

UNIDADE 4 - ANÁLISE DOS DADOS DE UM EXPERIMENTO

Neste capítulo é mostrada a análise de variância e o teste F. As fórmulas de definição e as fórmulas práticas para os cálculos relativos à análise de variância são apresentadas. Através de um exemplo simples é mostrada a interpretação do resultado da análise de variância.

UNIDADE 4 - ANÁLISE DOS DADOS DE UM EXPERIMENTO

Você pode considerar de uma maneira simplista, que o objetivo em um experimento é comparar os tratamentos e saber se eles exercem o mesmo efeito em uma característica avaliada ou se pelo menos um deles tem efeito diferente de outro.

Será que podemos tomar uma decisão sobre o efeito dos tratamentos com base apenas em um resultado observado para cada um deles?

A maneira mais natural parece ser comparar as médias obtidas para cada um dos tratamentos analisando as diferenças entre elas. Mas quando fazemos várias observações em cada tratamento (repetições) para obtermos os valores médios, iremos observar que os valores variam entre si inclusive entre os valores de um mesmo tratamento.

- → Quais as causas desta variabilidade?
- → Quais as causas da variabilidade entre as observações de um mesmo tratamento?
- → Isto irá afetar a comparação entre as médias dos tratamentos?

Anotações:

4	1	Causas	da 1	/aria	hilida	aha
4.	1	Lausas	ua v	varia	DIIIUa	ıue

Todo conjunto de dados obtido em um experimento apresenta variabilidade entre seus componentes. Vamos considerar o exemplo seguinte.

Exemplo 4.1

Foram anotadas as produções de uma variedade de trigo recomendada para Minas Gerais. Foram plantadas no campo experimental da Universidade Federal de Lavras - UFLA, com semeadura realizada no mês de maio de 1997, sob regime de cultivo irrigado. O solo é um Latossolo Vermelho Amarelo, corrigido de acordo com a análise de terra, seguindo as recomendações da Comissão Centro Brasileira de Pesquisa do Trigo. Os tratos culturais e controle de pragas e doenças foram os comuns para a cultura. Foi obtido o peso de grãos na área útil de cada parcela (10 m^2) : $W = \{2,0; 2,2; 2,3; 2,5; 3,0; 3,2; 2,8; 2,9; 2,4; 2,7\}$.

Através de um cálculo simples podemos ter uma idéia da variabilidade desse conjunto de dados:

- calculamos a média destes dados (no caso, 2,6 kg);
- de cada dado do conjunto subtraímos a média;
- elevamos ao quadrado cada desvio obtido e

An	0	ta	ç	õe	S	:

40					
43	\mathbf{P}	2	α	n	-2

- s	omamos	os	resultados	obtendo	Soma	dos	Quadrados
do	s Desvios	(S	QD) que é i	uma med	ida de	varia	abilidade:

SQD = $(2,0-2,6)^2 + (2,2-2,6)^2 + ... + (2,7-2,6)^2 = 1,32 \text{ kg}^2$

Nesse exemplo, é razoável supor que toda a variabilidade observada no conjunto de dados W seja devida a:

- . heterogeneidade na fertilidade do solo,
- . variabilidade genética das sementes,
- . variações na condução do experimento (variações na correção do solo, na irrigação, na adubação, na condução, na colheita e pesagem e outros),
- outras causas aleatórias (ataques de pragas e doenças, etc).

Vamos considerar agora que as produções do conjunto W tenham sido devidas a duas variedades ao invés de uma variedade única e que o subconjunto W_A contenha as produções da variedade A e W_B as produções da outra variedade.

$$W_A = \{2,0; 2,2; 2,3; 2,5; 3,0\}$$
 Média = 2,4 kg $W_B = \{3,2; 2,8; 2,9; 2,4; 2,7\}$ Média = 2,8 kg

A variabilidade em cada um desses conjuntos é:

Anotações:

SQD dentro de W_A=

$$=(2,0-2,4)^2+(2,2-2,4)^2+...+(3,0-2,4)^2=0,58 \text{ kg}^2$$

Anotações:

SQD dentro de W_B=

$$=(3,2-2,8)^2+(2,8-2,8)^2+...+(2,7-2,8)^2=0,34 \text{ kg}^2$$

Essas variedades são os tratamentos que propositadamente foram incluídos no experimento. Nesse caso nosso interesse consiste em comparar as produções das duas variedades.

Aqui temos um experimento com dois tratamentos (variedades A e B de trigo) e com 5 repetições para cada um. A variabilidade observada nesse experimento provavelmente seja devida a:

- duas variedades de trigo,
- heterogeneidade na fertilidade do solo,
- variabilidade genética das sementes,
- variações na condução do experimento (variações na correção do solo, na irrigação, na adubação, nos tratos culturais, na colheita e pesagem e outros),
- outras causas aleatórias (ataques de pragas e doenças, outras).

Porque a soma da medida da variabilidade da variedade A com a da variabilidade de B não é igual à medida da variabilidade do conjunto todo?	Anotações:
4.2 Análise da Variabilidade	
As produções médias das variedades são 2,4 e 2,8 Kg/10m², respectivamente. Podemos concluir que a variedade B é mais produtiva? Podemos pensar que no plantio extensivo (grandes áreas, plantio comercial, etc), a variedade B irá produzir mais que a variedade A?	
Como existem outras variáveis afetando as médias alem do efeito das variedades, não podemos analisar apenas essas médias para decidir se a variedade B é "realmente" mais produtiva do que a variedade A.	
A técnica estatística para tentar respostas para problemas desse tipo foi introduzida por R. A. FISHER, na década de 20 e é chamada Análise de Variância.	
O primeiro passo consiste na formalização da hipótese a ser testada. A hipótese de nosso interesse é (releia o 1º parágrafo desta unidade): não existem diferenças entre os efeitos dos tratamentos na variável resposta.	

A hipótese que assume que os tratamentos têm o mesmo efeito ou de que os efeitos não diferem entre si, é denominada hipótese de nulidade e a notação utilizada é H ₀ .	Anotações:
Em geral, a hipótese de nulidade para os efeitos de I tratamentos (au_i) pode ser formalizada do seguinte modo:	
H_0 : $\tau_1 = \tau_2 = \cdots = \tau_I$	
A hipótese alternativa em geral é: existe pelo menos uma diferença entre efeitos dos tratamentos.	
A metodologia descrita a seguir irá utilizar os dados obtidos no experimento para justificar a aceitação ou a rejeição de H_{0} .	
4.2.1 Tabela da Análise de Variância	
A variabilidade presente em um ensaio é analisada com o auxílio de uma tabela padrão denominada: Tabela da Análise de Variância , cujo modelo é apresentado a seguir. As colunas dessa tabela referem-se a:	

FV – Fontes de Variação

	Anotações:
Nessa coluna são descritas as causas de variabilidade	
dos dados do experimento. Nosso interesse está em	
conhecer a variabilidade ENTRE os TRATAMENTOS.	
Todas as outras fontes de variabilidade são agrupadas	
em RESÍDUO .	
GL – Graus de Liberdade	
A cada fonte de variação está associado um número de	
graus de liberdade.	
SQ – Somas de Quadrados	
SQ Somas de Quadrados	
São as somas dos quadrados de desvios ou as medidas	
de variabilidade calculadas para cada fonte de variação.	
QM – Quadrados Médios	
São obtidos pela razão entre as Somas de Quadrados e	
os seus respectivos graus de liberdade. São as medidas	
de variabilidade para cada fonte de variação,	
comparáveis entre si.	

F_C – valor da estatística F

É o valor obtido para a comparação entre os quadrados
médios, dado pela razão entre o QM Entre Tratamentos
e o QM do Resíduo. É a estatística de teste apropriada
para o teste de hipótese sobre os quadrados médios.

TABELA 4.1 Modelo de Tabela de Análise de Variância.

FV	GL	SQ	QM	F _c
Entre Tratamentos	GLEntre	SQEntre	SQEntre/ GLEntre	QMEntre/ QMDentro
Dentro de Tratamentos	GLDentro	SQDentro	SQDentro/ GLDentro	
Total	GLTotal	SQTotal		

Na Tabela 4.1 observamos que Variabilidade Total existente nos dados do experimento esta dividida em:

Variabilidade Entre Tratamentos – provocada pelos tratamentos e por outras fontes de variabilidade e

Anotações:

Variabilidade Dentro de Tratamentos – provocada por várias fontes de variabilidade, exceto tratamentos.

-			- 64	
Δı	-	ra	cõe	\simeq c
\sim	100	u	-	

4.2.2 Procedimento Geral

Para facilitar o seu entendimento da análise de variância, vamos inicialmente considerar o exemplo genérico de um experimento com I tratamentos, cada tratamento com r_i repetições. Y é uma variável resposta qualquer e os dados obtidos serão representados por y_{ij} , onde i refere-se ao tratamento (i=1,2,...I) e j refere-se à repetição (j = r_1 , r_2 ,..., r_I). O número total de parcelas é $N = r_1 + r_2 + ... + r_I$.

Após a coleta dos dados, a organização em uma tabela como a seguir irá facilitar nossos cálculos.

		Repetiçõe	S		Totais de
Tratamentos	1	2		J	Tratamentos
1	y ₁₁	y ₁₂		y1r1	T ₁
2	y ₂₁	y ₂₂		y _{2r2}	T ₂
I	$y_{\rm I1}$	y ₁₂		y_{IrI}	T_{I}

•	assos necessários para o preenchimento da tabela nálise de variância são descritos a seguir.	Anotações:
E\/.	A variação obcominada entre todos os dados	
FV:	A variação observada entre todos os dados,	
	também chamada de Variação Total, é dividida em	
	Variação Entre Tratamentos (ou simplificadamente Tratamentos) e Variação Dentro de Tratamentos	
	(ou Resíduo).	
	(ou Residuo).	
GL:	Para ENTRE TRATAMENTOS: é a quantidade de	
	tratamentos menos uma unidade (I -1);	
	Para TOTAL: é o número total de parcelas menos	
	um (N - 1);	
	Para o RESÍDUO: é a soma dos graus de liberdade	
	dentro dos tratamentos. Dentro de cada	
	tratamento o número de graus de liberdade	
	corresponde ao número de repetições do	
	tratamento menos um (r _i - 1). Na prática, o grau	
	de liberdade para o resíduo é obtido pela diferença	
	entre o GLTotal e o GLTratamentos.	
SQ:		
	SQTotal: é a soma dos quadrados das diferenças	
	entre cada observação (y_{ij}) e a média geral do	
	experimento $(\overline{y}_{})$.	

SQTOTAL =	$\sum (y_{ij} -$	$(\bar{y}_{})^2$
	ij	

Anotações:

(fórmula de definição)

Desenvolvendo o 2º termo da expressão, chegamos a:

$$SQTOTAL = \sum_{ij} y_{ij}^2 - \frac{\left(\sum_{ij} y_{ij}\right)^2}{N}$$

(fórmula prática)

SQTratamentos: corresponde a soma dos quadrados das diferenças entre as médias de cada tratamento (\overline{y}_i) e a média geral lembrando que cada média de tratamento foi obtida de r_i repetições.

$$SQTRATAMENTOS = \sum_{i} r_{i} (\bar{y}_{i.} - \bar{y})^{2}$$

A fórmula prática, sendo T_i o total de cada tratamento (somas dos dados das repetições para o tratamento i) e r_i o número de repetições do tratamento i é:

SQTRATAMEN TOS	$-\sum_{i}T_{i}^{2}$	$(\sum_{ij} x_{ij})^2$
SQTRATAMEN 105	$-\sum_{i} \frac{1}{r_{i}}$	\overline{N}

Anotações:

SQResíduo: é o somatório das somas de quadrados dos desvios entre as repetições de cada tratamento e sua média, considerados todos os I tratamentos.

$$SQErro = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i.})^{2}$$

Na prática, fazemos: SQErro = SQTotal - SQTratamentos.

QM: Cada Quadrado Médio é obtido dividindo-se a Soma de Quadrados pelo respectivo número de Graus de Liberdade.

 $\mathbf{F_c}$: Corresponde à razão entre o QMratamentos e o QMResíduo.

Vamos usar novamente o Exemplo 4.1 determinando as somas de quadrados e apresentando os resultados da análise de variância na Tabela 4.2.

SQTotal =
$$2.0^2 + 2.2^2 + ... + 2.7^2 - 26^2 / 10 = 1.32$$

Anotações:

SQVariedades =
$$12^2/5 + 14^2/5 - 26^2/10 = 0,40$$

$$SQResiduo = 1,32 - 0,40 = 0,92$$

TABELA 4.2 Análise de Variância para as Produções das Duas Variedades de Trigo.

Fontes de Variação	GL	SQ	QM	F _C
Entre Variedades	1	0,40	0,40	3,33
Erro Experimental	8	0,92	0,12	
Total	9	1,32		

Desafio:

Para você calcular uma análise de variância, os dados da Tabela 4.3, são as produções de massa verde (t/ha) de uma cultivar de sorgo plantado em três diferentes espaçamentos. Apresente a análise da variância na tabela 4.4.

TABELA 4.3 Produções de Massa Verde (t/ha) de uma Cultivar de Sorgo.

Anotações:

	ES	SPAÇAMENTOS	
REPETIÇÕES	0,50	0,75	0,90
I	186	158	190
II	180	173	215
III	187	175	221
IV	181	174	195
V	184	170	210
TOTAIS	918	850	1.031

TABELA 4.4 Análise de Variância para as Produções de Massa Verde.

Fontes de Variação	GL	SQ	QM	F _C
Espaçamentos				
Resíduo				
Total				

4.2.3 Teste F

	Anotações:
Podemos considerar a análise de variância como um teste de hipótese sobre os efeitos dos tratamentos: H ₀ : não existem diferenças entre os efeitos dos tratamentos.	
Para o teste desta hipótese é necessário que os dados experimentais satisfaçam a algumas pressuposições. Estes requisitos são denominados Hipóteses Fundamentais da Análise de Variância e serão discutidos posteriormente. No momento, vamos considerar que estas pressuposições tenham sido satisfeitas.	
Se H ₀ for falsa, ou seja, existe pelo menos dois efeitos de tratamentos diferentes, as diferenças entre os reais efeitos dos tratamentos aumentarão o valor da SQTratamentos mas não afetarão a SQResíduo fazendo com que a razão entre QMTratamentos e QMResíduo seja maior que 1.	
Mas, se H ₀ for verdadeira, isto é, os efeitos dos tratamentos são iguais, o QMTratamentos e o QMResíduo serão estimativas do mesmo parâmetro e, portanto, a razão entre eles deverá ser próxima de 1.	

A distribuição de probabilidade para a razão entre duas
variâncias é conhecida como distribuição F. A estatística
F _C = QMTratamentos/QMErro tem distribuição de F com
(I-1) e $(N-1)$ graus de liberdade.

Com estas considerações e as condições estatísticas asseguradas pelo experimento podemos comparar os valores F_c e F_t , mas como estamos utilizando amostras, sempre nos defrontamos com o erro experimental. Por isto não podemos ter certeza em nossos resultados. Precisamos admitir um nível de confiança nas nossas decisões diferente de 100%. O nível de significância é o complemento do grau de confiança.

Como escolher o nível de significância (α)?

Geralmente toma-se α = 5% ou menor. Esta é a probabilidade do erro Tipo I, isto é, a probabilidade de rejeitarmos H₀ quando a mesma for verdadeira.

A maioria dos programas computacionais utilizados para a análise de variância determina o nível de significância exato para cada teste F em cada análise de variância. Quando este recurso não estiver disponível, deveremos utilizar tabelas prontas com os valores da distribuição F como aquela apresentada na Tabela A.1.

Anotações:	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Os valores obtidos nas tabelas da distribuição F, de acordo com o nível de significância escolhido, deverão ser comparados com o valor da estatística F_c da tabela da análise de variância.	Anotações:
Qual é a regra de decisão?	
Se o valor F_c for maior que o valor F tabelado, rejeita-se H_0 e consideramos o teste F significativo ao nível de $\alpha\%$ de probabilidade, isto é, admitimos que, com (100 - α)% de confiança, existe pelo menos uma diferença entre os efeitos dos tratamentos.	
Caso o valor F_c seja menor ou igual ao valor F ao nível de α %, não existem evidências para rejeitarmos H_0 . Consideramos o teste não-significativo ao nível de α %, isto é, as diferenças numéricas observadas entre as médias dos tratamentos são irrelevantes no contexto daquele experimento.	
Para os dados da Tabela 4.2, tomando $\alpha=5\%$ temos que $F_t=5,32$ (Tabela A.1). Pela regra de decisão, não existem evidências para rejeitar H_0 , portanto esse	

resultado indica que não existe diferença significativa entre as produtividades médias das duas variedades. A diferença observada entre as duas médias (2,4 para 2,8)

é considerada não-significativa.

A Figura 4.1 apresenta uma interpretação gráfica para o resultado do teste F para a Análise de Variância apresentada na Tabela 4.2.

Anotações:

 $RAH_0 = Região de Aceitação de <math>H_0$ $RRH_0 = Região de Rejeição de <math>H_0$

FIGURA 4.1 Interpretação Gráfica do Teste F (Tabela 4.2).

Desafio:

- a) Suponha que o teste F para a Tabela 4.2 tivesse sido significativo. Qual o resultado do experimento neste caso?
- b) Aplique o teste F na análise de variância da Tabela 4.4. Comente o resultado deste teste.

UNIDADE 5 – COMPARAÇÕES ENTRE MÉDIAS DE TRATAMENTOS – TESTE TUKEY

Você irá aprender a comparar as médias dos tratamentos para completar a análise de variância dos experimentos. Vamos utilizar o teste Tukey para identificar as diferenças significativas entre as médias dos tratamentos.

UNIDADE 5 – COMPARAÇÕES ENTRE MÉDIAS	DE
TRATAMENTOS - TESTE TUKEY	

Você já sabe que se o teste F para tratamentos na Análise de Variância for significativo, existem evidências para a não aceitação de H_0 como verdadeira, ao nível $\alpha\%$ de probabilidade, isto é, **existem efeitos diferenciados para, pelo menos dois tratamentos**.

Agora, o próximo passo será a identificação das diferenças existentes entre os tratamentos (caso sejam mais de dois tratamentos). Se o fator em estudo é uma variável qualitativa (variedades, tipos de adubos, diferentes dietas alimentares) o procedimento apropriado é o das comparações entre as médias dos tratamentos.

5.1 Comparações das Médias Duas a Duas

Se o experimento tem I tratamentos são possíveis $\frac{I!}{2!(I-2)!}$ combinações diferentes com as médias desses tratamentos, tomadas duas a duas.

Anotações:

Veja que para o exemplo da Tabela 5.1 são possíveis as comparações:

Anotações:

- m_A comparada com m_B
- m_A comparada com m_C
- m_B comparada com m_C

TABELA 5.1 Alturas de Plantas, em cm, de Três Cultivares de Milho.

	CULTIVARES			
Repetições	A	В	C	
I	1,62	1,91	2,15	
II	1,75	2,09	2,12	
III	1,71	1,88	1,99	
IV	1,80	2,10	2,15	
V	1,95	2,18	2,10	
VI	1,76	2,12	2,14	
VII	1,69	2,14	2,11	
Médias	1,75	2,06	2,11	

A análise de variância para o Exemplo 5.1 mostra que o teste F para tratamentos é significativo a 5% de probabilidade (Tabela 5.2).

TABELA 5.2 Análise de Variância para as Alturas Cultivares de Milho.

Anotações:

Fontes de Variação	GL	SQ	QM	Fc
Entre Cultivares	2	0,5165	0,2582	28,16 *
Resíduo	18	0,1651	0,0092	
Total	20	0,6815		

^{**} significativo ao nível de 5% de probabilidade

5.2 Teste Tukey

O teste mais utilizado na experimentação para a comparação das médias de tratamentos tomadas duas a duas é o teste Tukey.

Esse teste consiste em, para cada comparação entre duas médias, comparar a diferença entre elas com a diferença mínima significativa (DMS) calculada com o critério de Tukey. A regra de decisão é a de que se a diferença for maior que a DMS, o teste será significativo e as duas médias consideradas estatisticamente diferentes.

A DMS para o teste Tukey é dada por:

$$\mathsf{DMS} = q_{(I,v, \propto \%)} \sqrt{\frac{1}{2} \widehat{Var}(m_i - m_j)}$$

onde $q_{(I,\ v,\ lpha\%)}$ é a amplitude total estudentizada para
uso no teste Tukey ao nível de $\alpha\%$ de probabilidade para
I tratamentos e v graus de liberdade do Resíduo (Tabela
A2).

Anotações:

Se os tratamentos têm o mesmo número de repetições (J), a DMS é:

$$DMS = q_{(I,v)} \sqrt{\frac{QMErro}{J}}.$$

Para o exemplo da Tabela 5.1 obtemos $DMS_{5\%} = 3,33\sqrt{\frac{0,0092}{7}} = 0,13$ cm e os resultados são:

Comparação 1: 1,75 - 2,06 = -0,31cm

Como a diferença (em valor absoluto) é maior que a DMS (0,13), os tratamentos A e B têm médias diferentes, ao nível de 5% de probabilidade e, portanto, a altura média da cultivar B é superior à altura média da cultivar A.

Comparação 2: 1,75 - 2,11 = -0,36 cm

A cultivar C tem altura média estatisticamente superior à altura média da cultivar A.

Comparação 3: 2,	.06 - 2,11 = -0,05 cm	Anotações:
As cultivares B e (nível de 5% de prol	C tem as mesmas alturas médias ao pabilidade.	
Podemos apresenta como a seguir.	ar esses resultados em uma tabela	
	lturas Médias de Cultivares de ilho.	
Cultivares	Médias (*)	
Α	1,75 b	
В	2,06 a	
С	2,11 a	
(*) As médias seguidas da probabilidade.	mesma letra não diferem entre si ao nível de 5% de	
-	tico para a aplicação do teste Tukey, a um número maior de tratamentos é seguinte.	

□ 1 Cálcular a DMS;	
	Anotações:
□ 2 Ordenar as médias (ordem decrescente) e colocar	
a letra a para a primeira média. Esta será a	
primeira média base.	
☐ 3 Subtrair a DMS da média base, obtendo o	
intervalo: [(média base); (média base - DMS)].	
Toda média contida neste intervalo recebe uma	
mesma letra. A primeira média fora do intervalo	
recebe uma letra diferente. Se o intervalo contiver	
a última média terminou senão, continuar.	
a altima media terminoa senao, continuari	
□ 4 Mudar a base para a próxima média (sem saltar	
nenhuma). Se a média base for a última média,	
terminou senão, voltar ao passo 3.	
terrillioù seriao, voltar ao passo 3.	
Com as devidas alterações, o algoritmo se aplica	
analogamente, tomando-se as médias em ordem	
crescente e somando a DMS em cada passo.	
Exemplo 5.1	
·	
A Tabela 5.4 apresenta as produções, em Kg/parcela, de	
seis cultivares de arroz: A - Pratão; B - Dourado	
Precoce; C – Pérola; D – Batatais; E – IAC-4 e F – IAC-9.	
A análise de variância esta apresentada na Tabela 5.5.	

TABELA 5.4 Produções, em kg/parcela, obtidas de Seis Cultivares de Arroz.

-		- 01	
Λn	over:	200	LOC!
\sim	uu		C3.

Tratamentos						
Repetições	A	В	C	D	E	F
I	2,6	2,8	2,4	1,3	1,0	3,3
II	1,6	1,8	2,7	1,1	1,8	2,8
III	1,4	1,8	2,1	1,3	1,2	2,3
IV	2,4	3,0	2,4	1,4	0,8	2,6
V	2,0	2,4	3,1	1,7	1,9	2,8
Totais	10,0	11,8	12,7	6,8	6,7	13,8

TABELA 5.5 Análise de Variância para as Produções das Cultivares de Arroz.

Fontes de Variação	GL	SQ	QM	Fc
Entre Cultivares	5	9,11	1,82	9,58 **
Resíduo	24	4,52	0,19	
Total	29	13,63		

^{**} significativo ao nível de 1% de probabilidade

A aplicação do teste Tukey, utilizando o algoritmo descrito é:

1-> DMS =
$$q_{(6,24)} \sqrt{\frac{0,19}{5}} = 4,37 \times 0,194936 = 0,8$$

2->

E	2,8a	
С	2,8a 2,5	
В	2,4	
Α	2,4 2,0	
D	1,4	
E	1,3	

3-> 2.8 - 0.8 = 2.0

Todas as médias no intervalo [2,0 ; 2,8] são iguais à média base; a primeira média fora do intervalo recebe uma letra diferente:

F	2,8a	
С	2,5a 2,4a	
В	2,4a	
Α	2,0a	
D	2,0a 1,4 b	
E	1,3	

Foram colocadas letras a para as médias C, B e A por serem iguais a F e a letra b para a média D por ser a primeira diferente de F.

Como o intervalo anterior não incluiu a última média e a próxima média base não é a última média, muda-se a média base para a próxima média e repete-se o passo 3:

		_
Ċ	2,8a 2,5a 2,4a 2,0a 1,4 b	
В	2,4a	
Α	2,0a	
D	1,4 b	
E	1,3	

$$3 -> 2,5 - 0,8 = 1,7$$

F	2,8a 2,5a 2,4a 2,0a 1,4 b	
С	2,5a	
В	2,4a	
Α	2,0a	
D	1,4 b	
E	1.3	

Observe que todas as médias no intervalo [1,7; 2,5] são iguais à média base e a primeira média fora do intervalo já possui uma letra diferente. Neste caso não há alteração.

Como o intervalo anterior não incluiu a última média e a próxima média base não é a última média, muda-se a média base para a próxima média e repete-se o passo 3:

F	2,8a 2,5a 2,4a 2,0a 1,4 b	
C	2,5a	
В	2,4a	
Α	2,0a	
D	1,4 b	
_E	1,3	

3 -> 2,4 - 0,8 = 1,6

F	2 82
· ·	2,00
_	2,5a
В	2,4a
Α	2,0a
D	2,8a 2,5a 2,4a 2,0a 1,4 b
E	1,3

Anotações:

Observe que todas as médias no intervalo [1,6; 2,4] são iguais à média base e a primeira média fora do intervalo já possui uma letra diferente. Neste caso também não há alteração.

Como o intervalo anterior não incluiu a última média e a próxima média base não é a última média, muda-se a média base para a próxima média e repete-se o passo 3:

F	2,8a 2,5a 2,4a 2,0a 1,4 b	
С	2,5a	
В	2,4a	
Α	2,0a	
D	1,4 b	
E	1,3	

3 -> 2,0 - 0,8 = 1,2

F	2,8a	
С	2,8a 2,5a	
В	2,4a 2,0ab	
Α	2,0ab	
D	1,4 b 1,3 b	
E	1,3 b	

Observe agora que as médias no intervalo [1,2; 2,0] são iguais à média base (que já tem a letra) e uma das médias já tem uma letra b. A letra a não pode ser usada, mas a letra b foi usada para todas as médias neste intervalo (A, D e E).

Como o intervalo anterior incluiu a última média o processo terminou e o resultado final é apresentado na Tabela 5.6.

Anotações:

TABELA 5.6 Produções Médias (Kg/parcela) para Seis Cultivares de Arroz.

Cultivares	Produções Médias
Pratão	2,0 ab
Dourado Precoce	2,4 a
Pérola	2,5 a
Batatais	1,4 b
IAC-4	1,3 b
TACO	20 -

As médias seguidas da mesma letra, não diferem entre si pelo Teste Tukey, ao nível de 5% de probabilidade.

COMO INTERPRETAR ESTES RESULTADOS?

Uma possibilidade é:

As cultivares Dourado Precoce, Pérola e IAC-9 apresentaram as mesmas produtividades e superando as produtividades das cultivares Batatais e IAC-4. As cultivares Pratão, Batatais e IAC-4 apresentaram mesmas produtividades médias.

Anotações:			

		_	c:	_	_	_
	es	3	TI.	^	c	
_		•		u	-	_

 Abaixo estão os dados de Peso Médio Final (kg) em um experimento com diferentes aditivos (A, B, C e D) utilizados na ração para peixes. Foram utilizados 12 tanques de 500 litros de água com 20 peixes em cada um.

- 1.1 Coloque os dados do croqui em uma tabela Tratamentos x Repetições.
- 1.2 Apresente uma tabela com a análise de variância.
- 1.3 Apresente uma tabela com as médias dos tratamentos.
- 1.4 Comente os resultados que julgar relevantes.

-			~			
An	OT:	മഹ	n	α	c	
\sim	-	иъ	···	u	3	

2. Um experimento foi conduzido para comparar quatro cultivares de tomate quanto à textura dos frutos. As medidas foram realizadas em uma pequena porção da casca na região equatorial do fruto. Os valores obtidos são apresentados a seguir e estão expressos em Newton (N), onde valores mais altos correspondem a frutos mais firmes. Apresente a análise de variância e comente os resultados.

Α	D	Α	Α	В
15,1	17,5	11,4	13,7	26,5
Α	В	С	С	С
13,5	23,5	17,7	14,6	15,3
В	С	D	В	D
25,6	16,3	13,7	24,2	15,9
D	D	С	В	Α
15,3	16,5	15,6	22,3	13,2

3. Os dados seguintes são as produções, em Kg/parcela, de 5 cultivares de milho. Foi utilizado do delineamento Inteiramente Casualizado com quatro repetições. Apresente a análise de variância e comente os resultados.

	REPETIÇÕES			
CULTIVARES	I	II	III	IV
ESAL-2	2,6	3,2	2,8	2,8
SL 15	2,0	2,2	1,6	1,8
SL 7	1,9	1,8	2,0	2,0
IAC 18	1,2	1,1	1,3	1,4
IAC 38	2,2	2,2	2,2	2,3

Anotações:

4. As produções de repolho (kg/10m²) obtidas em um experimento em Delineamento Inteiramente Casualizado onde foram estudadas diferentes fontes de Nitrogênio estão apresentadas a seguir. Efetue a análise de variância e comente os resultados.

	REPETIÇÕES		
TRATAMENTOS	I	II	III
Nitrocálcio	66,2	61,3	79,5
Esterco de Curral	80,0	50,4	71,3
Uréia	75,5	61,0	65,6
Sulfato de Amônia	88,2	81,8	83,7
Testemunha	39,7	36,6	46,5

Anotações:				

UNIDADE 6 - ESTUDO DAS MÉDIAS - REGRESSÃO LINEAR

Nesse tópico são apresentadas as metodologias de Análise de Regressão Linear Simples e de Ajuste de Modelos de Regressão Polinomial na Análise de Variância.

UNIDADE 6 – ESTUDO DAS MÉDIAS – REGRESSÃO LINEAR SIMPLES	Anotações:
6.1 REGRESSÃO	
Em muitos estudos o objetivo é identificar a forma de relacionamento entre variáveis. O que procuramos é mensurar o quanto variáveis diferentes são relacionadas entre si e conseguir um modelo matemático que explique de que forma variáveis se relacionam.	
A análise de correlação avalia o grau de associação entre variáveis e a análise de regressão procura verificar a existência de uma relação funcional entre essas variáveis.	
A análise de regressão consiste na obtenção de uma função que explique a variação em uma variável (chamada variável dependente) pela variação dos valores de outra (s) variável (is), designada (s) variável (is) independente(s).	

Vamos considerar apenas duas variáveis: X como

dependem do pesquisador e uma variável dependente (Y) cujos valores são afetados pela variação em X.	Anotações:
O comportamento de Y em relação a X pode ser expresso por diversos modelos matemáticos: linear, quadrático, cúbico, exponencial, logarítmico e muitas outras.	
Se fizermos um gráfico simples (X, Y) poderemos ter uma idéia inicial de como se comportam os valores da variável dependente (Y) em função da variação da variável independente (X). Observando este gráfico você poderá tentar estabelecer o tipo de curva ou um modelo matemático que mais se aproxime dos pontos plotados. Veja os dados do Exemplo 6.1 quando apresentados na Figuras 6.1a e 6.1b.	
Exemplo 6.1 As produções médias de leite em kg (Y) de um grupo de vacas tratadas com diferentes níveis de proteína em % na ração (X) são apresentadas na Tabela 6.1.	
TABELA 6.1 Produções médias de leite em Kg. X 10 12 14 16 18 20 22 24 26 28	
Y 11,8 12,0 12,1 13,2 14,1 14,4 15,6 16,0 16,4 17,0	

FIGURA 6.1a Dispersão das Produções Médias de Leite em função dos Níveis de Proteína (%).

FIGURA 6.1b Curva de Tendência Linear para as Produções Médias de Leite em Função dos Níveis de Proteína (%).

Anotações:

Contudo, observamos que os pontos do gráfico
(diagrama de dispersão), não vão coincidir
perfeitamente com a curva do modelo matemático
proposto. Haverá na maior parte dos pontos, uma
distância entre os pontos do diagrama e a curva do
modelo matemático. Isto acontece, devido ao fato de
que o que está em estudo não é um fenômeno
matemático e sim um fenômeno natural ou um processo
que está sujeito a influências de muitas outras variáveis
não consideradas no estudo.

Assim, o objetivo da análise de regressão é obter um modelo matemático que melhor se aproxime dos valores observados de Y em função da variação em X. Chamamos este procedimento de ajuste de um modelo de regressão a um conjunto de dados de observação.

Na escolha do modelo para o estudo de regressão, devemos considerar:

- O modelo selecionado deve ser condizente tanto no grau como no aspecto da curva, para representar em termos práticos, o fenômeno em estudo;
- O modelo deve conter apenas as variáveis que são relevantes para explicar o fenômeno.

Anotações:

	Anotações:
6.2 REGRESSÃO LINEAR SIMPLES	
A regressão linear simples consiste em utilizar o modelo linear do 1º grau (modelo estatístico) para explicar a relação entre duas variáveis. O polinômio do 1º grau é definido por:	
$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$	
em que:	
Y_i corresponde ao i-ésimo valor da variável dependente; X_i corresponde ao i-ésimo valor da variável independente;	
eta_0 e eta_1 são os parâmetros do modelo (coeficiente linear e coeficiente angular, respectivamente);	
ϵ_i é o erro não observável que corresponde à distância entre o valor observado e o ponto correspondente na curva e i = 1, 2,, n.	
Um dos métodos que utilizamos para conhecer a relação funcional se baseia na obtenção de uma equação em que as distâncias entre os pontos observados e os pontos da	

curva do modelo matemático, sejam as menores

possíveis. Se considerarmos as distâncias ao quadrado,

este método é denominado de Método dos Mínimos Quadrados (MMQ).

Anotações:

Para obter a equação de regressão linear ajustada aos seus dados (x_i,y_i) você pode utilizar as fórmulas seguintes, que são os estimadores de MMQ de β_0 e β_1 :

$$\widehat{\beta}_1 = \frac{\sum_i^n x_i y_i - \frac{\sum_i^n x_i \sum_i^n y_i}{n}}{\sum_i^n x_i^2 - \frac{(\sum_i^n x_i)^2}{n}}$$

$$\widehat{\beta}_0 = \frac{\sum_i^n y_i}{n} - \widehat{\beta}_1 \frac{\sum_i^n x_i}{n}$$

Uma vez obtida estas estimativas, podemos escrever a equação estimada:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

Vamos ajustar o modelo de regressão linear simples aos dados do Exemplo 6.1

→ da tabela 6.1 obtemos:

$$\sum_{i} X_{i} = 10 + 12 + \dots + 28 = 190$$

$$\sum_{i} X_{i}^{2} = 10^{2} + 12^{2} + \dots + 28^{2} = 3940$$

$$\sum_{i} Y_{i} = 11,8 + \dots + 17,0 = 142,6$$

$$\sum_{i} Y_{i}^{2} = 11.8^{2} + ... + 17.0^{2} = 2067.38$$

$$\sum_{i} X_{i} Y_{i} = (10 \cdot 11.8) + (12 \cdot 12.0) + ... + (28 \cdot 17.0) = 2814$$

$$n = 10$$

Anotações:

 \rightarrow para o modelo proposto $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ temos:

$$\widehat{\beta}_1 = \frac{2814 - \frac{190 \times 142, 6}{10}}{3940 - \frac{(190)^2}{10}} = 0,3170$$

$$\widehat{\beta}_0 = \frac{142,6}{10} - 0,3170 \frac{190}{10} = 8,2370$$

→ resultado:

A equação de regressão estimada é: $\hat{Y}_i = 8,2370 + 0,3170 \, X_i$.

ATENÇÃO!

A equação estimada apenas estabelece uma relação funcional entre a variável dependente e a variável independente para representar o fenômeno em estudo. Portanto a simples obtenção da equação estimada não responde ao pesquisador se a variação da variável independente influencia significativamente na variação da variável dependente.

6.2.1 Análise de Variância para Regressã	5.2.1	L Análise	de	Variância	para	Regressã
--	-------	-----------	----	-----------	------	----------

Anotações:

Um teste de hipótese para os parâmetros (coeficientes da equação de regressão) pode nos fornecer um nível de confiança para a adequação do modelo ajustado aos dados.

A metodologia indicada para tal é realizar o teste F da análise de variância para a regressão com os dados observados em função do modelo proposto. Veja o modelo apresentado na Tabela 6.2.

TABELA 6.2 Modelo de Análise de Variância para os Modelos de Regressão.

FV	GL	SQ	QM	F
Regressão	р	SQReg	QMReg	F _c
Resíduo de	N-1-p	SQRes	QMRes	
Regressão				
Total	N-1	SQTotal		

Nesta análise, p é o número de coeficientes de regressão (não inclui o β_0) e N é o número de pares de observações.

A soma de quadrados para a regressão varia de acordo com o modelo em teste. Para o modelo de Regressão Linear Simples, p é igual a 1 e você obtém a Soma de

Quadrados para Regressão Linear utilizando a seguinte fórmula:

Anotações:

$$SQREG.\,LINEAR = \ \frac{\left[\sum_{i}^{n}x_{i}y_{i} - \frac{\sum_{i}^{n}x_{i}\sum_{i}^{n}y_{i}}{n}\right]^{2}}{\sum_{i}^{n}x_{i}^{2} - \frac{(\sum_{i}^{n}x_{i})^{2}}{n}}$$

As hipóteses estatísticas para o teste F são as seguintes:

 $H_0: \beta_1 = 0$, que significa dizer que a variável independente (X_i) não exerce influência na variável dependente, segundo o modelo proposto.

 $H_0: \beta_1 \neq 0$, o que significa dizer que a variável independente exerce influência na variável dependente, segundo o modelo proposto.

6.2.2 Coeficiente de Determinação

O coeficiente de determinação (\mathbb{R}^2) fornece uma informação auxiliar ao resultado da análise de variância da regressão, para verificar se o modelo proposto é adequado ou não para descrever o fenômeno.

O R^2 é obtido por: $\mathbf{R^2} = \frac{\mathbf{SQRegressão}}{\mathbf{sQTotal}}$. O valor de R^2 varia no intervalo de 0 a 1. Valores próximos de 1 indicam que o modelo proposto é adequado para descrever o fenômeno.

Vamos	testar	0	ajuste	do	modelo	de	regressão	linear
simples	aos da	do	s do Ex	em	plo 6.1			

Anotações:

→ Cálculo das somas de quadrados:

SQReg. Linerar =
$$\frac{\left[2814 - \frac{190 \times 142, 6}{10}\right]^2}{3940 - \frac{(190)^2}{10}} = 33, 1550$$

SQTotal =
$$\sum_{i=1}^{N} y_i^2 - \frac{(\sum_{i=1}^{N} y_i)^2}{N} = 2067,38 - (142,6)^2/10 = 33,9040$$

→ Análise de variância da regressão

TABELA 6.3 Análise de Variância para Regressão Linear Simples do Exemplo 6.1

FV	GL	SQ	QM	F _c
Regressão	1	33,1550	33,1550	354,22 * *
Resíduo	8	0,7490	0,0936	
Total	9	33,9040		

^{*} Significativo ao nível de 1% de probabilidade

Como o teste F foi significativo, rejeita-se H_0 ao nível de 1% de probabilidade. O modelo proposto (1° grau) é adequado para descrever a relação entre o nível de proteína na ração e produção de leite.

→ Coeficiente de Determinação

$$R^2 = \frac{\text{SQRegressão}}{\text{SQTotal}} = 33,1550/33,9040 = 0,978$$

Este valor de R² indica que 97,80% da variação total é explicada pela regressão linear simples ajustada.

→ Resultados:

Figura 6.2 Equação de Regressão para Produção de Leite em Função do Nível de Proteína na Ração.

O modelo ajustado esta apresentado na Figura 6.2. Esta equação nos indica que para cada aumento de 1% de proteína na ração, espera-se, em média, um aumento de 0,3170 kg na produção de leite. O ajuste foi considerado muito bom, pois apresentou um R² de 97,8% porém, deve ser ressaltado que este resultado é válido apenas

Anotações:

no intervalo estudado, ou seja, para nível de proteína na ração de 10 a 28%. Anotações: 6.3 REGRESSÃO NA ANÁLISE DE VARIÂNCIA Quando as categorias de um fator são níveis ou doses, significando que o fator é uma variável quantitativa, o procedimento apropriado para o estudo das médias dos tratamentos é a análise de regressão. Neste caso a variável independente será o fator e a variável dependente será a resposta (médias dos tratamentos). Neste estudo estaremos analisando apenas o ajuste dos modelos polinomiais para tentar explicar o efeito dos tratamentos na variável reposta. O polinômio de ordem p é da forma: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_n X_i^p$

Os modelos polinomiais mais comumente utilizados na

análise de regressão das médias de tratamentos são:

Polinômio do 1º grau Regressão Linear Simples:

Polinômio do 2º grau ou Regressão Quadrática	Polinômio	do 2º	grau o	u Regress	são Qua	drática
--	-----------	-------	--------	-----------	---------	---------

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

Anotações:

Polinômio do 3º grau ou Regressão Cúbica:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \varepsilon_i$$

O método de regressão polinomial na análise de variância consiste em determinar se um dos polinômios explica satisfatoriamente a relação entre os tratamentos utilizados e as médias dos tratamentos.

Para a escolha do modelo que melhor se ajusta às médias dos tratamentos utilizamos a significância do teste F, a significância dos testes sobre os parâmetros dos modelos e os coeficientes de determinação, como exemplificado a seguir.

- 6.3.1 Passos para a Análise de Regressão na Análise de Variância
- **PASSO 1.** Definir o fator para o qual será feita a análise de regressão.
- PASSO 2. Definir os modelos de regressão a serem testados. A metodologia empregada usa o teste F da análise de variância para testar apenas o coeficiente de regressão associado

ao tratamento (X) em seu maior expoente, testando-se assim o efeito de grau p.

Anotações:

Para cada polinômio, as hipóteses do teste F serão:

Efeito Linear: $H_0: \beta_1 = 0 \quad H_a \beta_1 \neq 0$

Efeito Quadrático: H_0 : $\beta_2 = 0$ H_a $\beta_2 \neq 0$

Efeito Cúbico: $H_0: \beta_3 = 0 \quad H_a \beta_3 \neq 0$

. . .

Efeito grau p: $H_0: \beta_p = 0 \quad H_a \beta_p \neq 0$

A cada efeito de regressão corresponde 1 grau de liberdade. Assim, é possível testar tantos efeitos de regressão quantos são os graus de liberdade para o fator;

- PASSO 3. Determinar as Somas de Quadrados para cada um destes efeitos de regressão. No quadro da Análise de Variância, testar os efeitos de regressão utilizando o Quadrado Médio do Erro Experimental para obter os valores F_c;
- **PASSO 4**. Através do teste F e do coeficiente de determinação (R²), definir o grau do polinômio que melhor se ajusta às médias da característica observada.

	Calculamos o R ² para cada modelo de	
	regressão através de:	Anotações:
	$R^2 = \frac{\sum (Somas\ de\ Quadrados\ dos\ Efeitos\ de\ Regress\~ao)}{Soma\ de\ Quadrados\ do\ Fator}$	
	Observe que no numerador da fórmula do R ² temos um somatório das somas de quadrados obtidas para cada efeito de regressão.	
	Observação: Os outros parâmetros dos modelos também devem ser testados para a escolha final do domelo.	
PASSO 5.	Obter as estimativas dos parâmetros do modelo de Regressão escolhido.	
Exemplo 6	.2	
adubação i	mento foi realizado para testar o efeito da nitrogenada (0, 100, 200 e 300 kg/ha de rogenado) na produção de milho. Veja os 6.4.	

TABELA 6.4 Produções de Milho (kg/parcela) para doses de adubo Nitrogenado.

Tratamentos	I	II	III	IV	Totais	Médias
0	49	47	52	50	198	49,50
100	53	58	52	60	223	55,75
200	62	52	74	63	251	62,75
300	72	68	58	67	265	66,25

TABELA 6.5 Análise de Variância das Produções de Milho.

FV	GL	SQ	QM	F _c
Doses de N	3	666,69	222,23	6,58*
Resíduo	12	405,25	33,77	
Total	15	1.071,94		

Passo 1. Considere que, neste estudo, o pesquisador esta interessado apenas na regressão linear.

Passo 2. A fórmula para o cálculo da soma de quadrados do efeito linear é:

Anotações:

$$SQEfeito \ linear = \frac{\left[\sum_{i}^{n}x_{i}y_{i} - \frac{\sum_{i}^{n}x_{i}\sum_{i}^{n}y_{i}}{n}\right]^{2}}{\sum_{i}^{n}x_{i}^{2} - \frac{(\sum_{i}^{n}x_{i})^{2}}{n}}.J$$

Anotações:

onde n é o número de médias, J é o número de repetições, $\mathbf{x_i}$ é o tratamento i, $\mathbf{y_i}$ é a média do tratamento i.

Utilizando a tabela auxiliar a seguir, facilmente obtemos a Soma de Quadrados Relativa ao Efeito Linear:

Tratamentos (X)	Médias (Y)	XY	Χ²
0	49,50	0	0
100	55,75	5.575	10.000
200	62,75	12.550	40.000
300	66,25	19.875	90.000
600	234,25	38.000	140.000

$$SQEL = \frac{\left[3.800 - \frac{(600)(234,25)}{4}\right]^{2}}{140.000 - \frac{(600)^{2}}{4}} \cdot 4 = \frac{(2862,5)^{2}}{50.000} \cdot 4 = 655,51$$

Passo 3. Teste F para os efeitos de regressão:

TABELA 6.6 Análise de Regressão para a Produção de Milho.

Fonte de Variação	GL	SQ	QM	Fc
Doses	(3)	(666,69)		
Efeito Linear	1	655,51	655,51	19,41*
Desvios de Regressão	2	11,18	5,59	<1
Resíduo	12		33,37	

Passo 4. Observa-se pela significância do teste F, que existe uma tendência linear para as produções de milho em função das doses de adubo nitrogenado.

Coeficiente de Determinação:

$$R^2 = 100.\frac{655,51}{666,69} = 98,3\%$$

Passo 5. Modelo de Regressão Linear:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

As estimativas de β_0 e β_1 são dadas por:

$$\hat{\beta}_1 = \frac{\sum XY - \frac{(\sum X)(\sum Y)}{n}}{\sum X^2 - \frac{(\sum X)^2}{n}} = \frac{2862,5}{50.000} = 0,0572$$

				m			
Δr	۱n	ta	0	n	ρ	S	
_	-	554	~	~	_	9	

$$\hat{\beta}_0 = \frac{\sum Y}{n} - \beta_1 \frac{\sum X}{n} = \frac{234,25}{4} - 0,0572 \frac{600}{4} = 49,9825$$

Anotações:

FIGURA 6.3 Equação de Regressão Linear para as Produções de Milho em Função de Diferentes Doses de Adubo Nitrogenado.

O ajuste do modelo linear às produções médias de milho foi muito bom ($R^2 = 98,3\%$). A equação ajustada mostra que a cada 1 kg/ha de adubo nitrogenado adicionado, espera-se um aumento médio na produção de 0,0572 kg/parcela.

Exemplo 6.3

Os dados a seguir referem-se às produções de grãos obtidas em um experimento de adubação em milho no qual os tratamentos foram as doses de 25, 50, 75 e 100 kg/ha de P_2O_5 além de uma testemunha que não recebeu a adubação fosfatada.

TABELA 6.7 Produções de Milho (Kg/parcela) para Doses de P_2O_5 .

		De	oses de P ₂ O ₅	5	
Repetições	0	25	50	75	100
I	8,38	7,15	10,07	9,55	9,14
II	5,77	9,78	9,73	8,98	10,17
III	4,90	9,99	7,92	10,24	9,75
IV	4,54	10,70	9,48	8,66	9,50

Nesse exemplo, o pesquisador está interessado em determinar o modelo de regressão que melhor explique o efeito da adubação com P_2O_5 na produção de milho. A análise de variância com regressão é apresentada na Tabela 6.8.

Anotações:

TABELA 6.8 Análise de Variância e Regressão para as Produções de Milho.

-			- 04		
Δ	nα	ทาล	ICC	les	:::
		-	~~	-	

Fontes de Variação	GL	SQ	QM	F	R ²
Doses de P ₂ O ₅	(4)	(40,0998)	10,0249	7,17*	-
Efeito Linear	1	22,1266	22,1266	15,82*	55,2%
Efeito Quadrático	1	11,2950	11,2950	8,07*	83,3%
Efeito Cúbico	1	5,8905	5,8950	4,21	-
Efeito de 4º Grau	1	0,7876	0,7876	0,56	-
Erro	15	20,9838	1,3989		
TOTAL	19	61,0836			

Os resultados do teste F e os valores dos coeficientes de determinação indicam que a regressão quadrática é o modelo apropriado para explicar a relação entre as doses de P_2O_5 e a produção de milho, neste exemplo.

FIGURA 6.4 Equação de Regressão para as Produções de Milho em Função de Diferentes Doses de P_2O_5 .

Observamos na Figura 6.4 que a produção de milho cresce segundo uma equação do segundo grau com o aumento das doses de P_2O_5 . Inicialmente há um aumento rápido da produção até um máximo de 10,09 kg/parcela para a dose 73,4 kg/ha aproximadamente. A partir desta dose a produção tende a diminuir. O ajuste foi bom ($R^2 = 83,1\%$).

Anotações:						

UNIDADE 7 - PRESSUPOSIÇÕES DA ANÁLISE DE VARIÂNCIA

A metodologia de análise dos dados obtidos em experimentos e apresentada na Estatística Experimental só é válida se algumas premissas forem satisfeitas pelos mesmos. Estas premissas são denominadas Hipóteses Fundamentais da Análise de Variância e serão vistas nessa unidade.

UNIDADE 7 – PRESSUPOSIÇÕES DA ANÁLISE DE	
VARIÂNCIA	

Nas décadas de 20 e 30, Ronald A. Fisher foi o pesquisador responsável pela análise de dados da Estação Experimental de Rothamsted de Londres, Inglaterra. Ele foi o pioneiro no uso de métodos estatísticos nos delineamentos experimentais.

Fisher desenvolveu a análise de variância como o primeiro método de análise de dados experimentais. A maioria das aplicações foi feita nas áreas de agricultura e biologia, mas atualmente, constitui uma das principais técnicas utilizadas em todas as áreas do conhecimento.

A utilização da Análise de Variância para um conjunto de dados provenientes de algum experimento pressupõe a verificação de algumas hipóteses.

	Allouigocol
0	
ío	
le	
s	
^ 0	
_	
as	
_	
а,	
as	
13	
.	
le	
_	
а	

Anotações

ı

7.1 HIPÓTESES FUNDAMENTAIS DA ANÁLISE DE VARIÂNCIA	Anotações:
As hipóteses fundamentais estão relacionadas ao modelo	
estatístico adotado em cada experimento:	
1. Os erros têm distribuição Normal (normalidade).	
 Os erros têm a mesma variância (homocedasticidade). 	
3. Os erros das observações não são correlacionados	
(independência).	
4. Os diferentes efeitos admitidos no modelo	
estatístico são aditivos (aditividade).	
7.1.1 Normalidade	
Quando essa hipótese não é satisfeita, além da introdução	
de erro no nível de significância do teste F e de outros, há	
uma perda de eficiência na estimação dos efeitos de	
tratamentos e uma correspondente perda de poder dos	
testes.	

São propostos diversos testes para a verificação de distribuição Normal dos erros, tais como: Kolmogorov-Smirnov, Shapiro-Wilks, assimetria e curtose, entre outros.	Anotações:
Outra ferramenta útil para a verificação da normalidade é o uso do papel normal de probabilidade onde devem ser plotados os resíduos (diferenças entre as observações e a média dos dados). A simples inspeção do gráfico fornece indícios sobre a normalidade.	
7.1.2 Homocedasticidade	
A falta de homogeneidade de variância é uma das mais graves quebras de suposição básica principalmente para os modelos não balanceados e os modelos de efeitos aleatórios.	
Através do gráfico resíduos versus o valor estimado (\hat{Y}_{ij})	
ou versus a variável X (tratamentos), podemos detectar a não homogeneidade de variância. Em geral, os resíduos não devem ser correlacionados com qualquer outra variável. Os gráficos devem apresentar a ausência de	
graves quebras de suposição básica principalmente para os modelos não balanceados e os modelos de efeitos aleatórios. Através do gráfico resíduos versus o valor estimado (\hat{Y}_{ij}) ou versus a variável X (tratamentos), podemos detectar a não homogeneidade de variância. Em geral, os resíduos não devem ser correlacionados com qualquer outra	

Também, existem vários testes para a verificação da homocedasticidade: teste de Anscombe e Tukey, teste de Bartlett, etc.	Anotações:
A heterogeneidade dos erros pode ser classificada como irregular e regular. A heterogeneidade é irregular quando aparentemente não existe uma relação entre médias e variâncias.	
No caso da heterogeneidade irregular um procedimento empregado é a exclusão de certos tratamentos ou subdividi-los de tal forma que, com os tratamentos restantes ou dentro de cada subdivisão, tenha-se homocedasticidade. Outra alternativa é decompor o quadrado médio do resíduo em componentes apropriados às comparações de interesse.	
A heterogeneidade do tipo regular usualmente decorre da não normalidade dos dados, existindo certa relação entre a média e a variância dos vários tratamentos.	
Sendo conhecida a distribuição da qual são provenientes os dados, a relação entre a média e a variância dos tratamentos também é conhecida e nestes casos, os dados podem ser transformados de modo que passem a ter distribuição aproximadamente normal e as médias e	

variâncias se tornem independentes, resultando também em variâncias homogêneas.	Anotações:
7.1.3 Independência	
Como independência dos erros entende-se que a probabilidade do erro de uma observação ter certo valor não depende dos valores dos erros de outras observações.	
Quando os erros são correlacionados, os testes de	
significância não são válidos. Há casos em que, devido a uma correlação positiva entre os erros, o teste de F leva a muitos resultados significativos. Em casos de correlação	
negativa, o valor da estatística F_{c} pode ser muito menor que um.	
A dependência entre os erros é comum em ensaios em que uma unidade é usada várias vezes como unidade experimental ou quando diferentes parcelas estão em contato físico direto.	
Como exemplo, é comum a correlação entre as observações de ensaios de campo onde a semelhança	
entre as observações de parcelas adjacentes é maior de que entre parcelas distantes ou em ensaios de	

laboratório, nas observações feitas por uma mesma pessoa ou durante determinado intervalo de tempo.	Anotações:
Em muitos experimentos as unidades experimentais são fisicamente distintas e a hipótese de independência é automaticamente satisfeita. Uma precaução efetiva consiste na aleatorização dos tratamentos.	
Plotando os resíduos na ordem em que os dados foram coletados (resíduos versus tempo) podemos verificar facilmente a existência de correlação entre eles. Quando os resíduos se distribuem de maneira desordenada, podemos pensar em não existência de correlação.	
7.1.4 Aditividade	
Os efeitos admitidos em um modelo estatístico devem ser aditivos.	
O modelo estatístico para o delineamento Blocos Casualizados, por exemplo, implica em que o efeito de um tratamento é o mesmo em todos os blocos e o efeito de um bloco é o mesmo em todos os tratamentos. Uma consequência da aditividade é que as diferenças entre os	
efeitos de dois tratamentos A e B, usualmente é estimada por:	

média	de	todas	observações	com	Α	-	média	de	todas	as
observ	'açõ	es con	n B.							

Anotações:

A Tabela 7.1 apresenta dois conjuntos de dados supondo um modelo aditivo $(y = t_i + b_j)$ e outro multiplicativo $(y = t_i \cdot b_j)$. Os modelos são apresentados sem erro experimental para facilitar a compreensão.

TABELA 7.1 Modelo Aditivos e Multiplicativos Admitida a Ausência de Erro.

	Мо	delo	Mod	lelo	Logaritmo do		
	Aditivo		Multiplicativo		Mod. Multiplicative		
	Bloco I	Bloco II	Bloco I	Bloco II	Bloco I	Bloco II	
Trat. A	10	20	10	20	1,00	1,30	
Trat. B	30	40	30	60	1,48	1,78	

Fonte: Steel e Torrie (1960)

A não aditividade resulta na heterogeneidade do erro e afeta o nível de significância para comparações entre os tratamentos. Há perda de precisão porque o Erro Experimental é acrescido do componente de não aditividade.

7.2 CASOS DE HIPÓTESES FUNDAMENTAIS NÃO	Anotações:
SATISFEITAS	
Quando uma destas hipóteses não é satisfeita, a análise	
de variância não tem validade como técnica de análise	
estatística e torna-se um simples tratamento matemático	
dos dados coletados. Para alguns destes casos podem	
existir alternativas simples.	
No majorio destas speces as falbas poetas promissas são	
Na maioria destes casos, as falhas nestas premissas são	
provocadas por: assimetria extrema, presença de erros	
grosseiros, comportamento anormal de certos	
tratamentos ou parte do experimento, não aditividade e	
variâncias como função das médias.	
Alguns dos métodos utilizados nestes casos são: omissão	
de determinada parte do experimento, subdivisão da	
variância residual, transformação prévia dos dados e	
outros.	
Em outros casos procura-se empregar outras técnicas de	
análise de dados, tais como: o método dos Mínimos	
Quadrados Ponderados para o caso de não	
homocedasticidade, o método dos Mínimos Quadrados	
Generalizados para o caso de erros correlacionados, a	

análise Não-Paramétrica para o caso de não normalidade	
e análise generalizada.	Anotações:
7.3 Transformação de Dados	
Vamos tratar aqui das técnicas de transformação de	
dados. Uma transformação adequada aos dados é aquela	
em que:	
A variância da variável transformada não é afetada por mudanças do valor módio:	
por mudanças do valor médio;	
A variável transformada é normalmente distribuída;	
• A escala de transformação é tal que a média	
aritmética estime imparcialmente a média	
verdadeira;	
 A escala de transformação é tal que os efeitos reais 	
são lineares e aditivos.	
Quando uma transformação de dados é feita, todas as	
comparações e estimativas de intervalo de confiança	
devem ser determinadas na nova escala, sendo que as	
médias podem ser transformadas para a escala original.	
	I

A mudança exata da escala é, em geral, difícil e a escolha de uma transformação adequada depende, em parte, da experiência do estatístico.	Anotações:
Devemos lembrar-nos de verificar se as hipóteses fundamentais foram satisfeitas após a escolha e aplicação de uma transformação de dados.	
O estudo das relações entre médias e variâncias de tratamentos pode sugerir uma transformação apropriada, veja Box e Cox (1964).	
As principais transformações utilizadas são: Raiz Quadrada, Logarítmica e Angular.	
7.3.1 Transformação Raiz Quadrada	
Esta transformação é utilizada para dados provenientes de contagens como: número de bactérias em uma placa, número de plantas ou insetos em uma dada área, número de defeitos ou acidentes. Geralmente eles se distribuem de acordo com a distribuição de Poisson, em que a média e a variância são iguais. Neste caso, a transformação raiz	

quadrada dos dados estabiliza a variância, além de torná-	
la independente da média.	Anotações:
A tupungényangén yait gundunda mada tamahéna nay yanda	
A transformação raiz quadrada pode também ser usada com dados de contagens em que a variância de X é	
proporcional à média de X, ou seja, $\sigma_x^2 = K\overline{X}$.	
Para a distribuição de Poisson tem-se K = 1 mas,	
frequentemente, encontra-se K > 1, o que indica que a distribuição dos erros tem uma variância maior que	
aquela de Poisson.	
Dados de porcentagem baseados em contagens com um denominador comum, sendo a amplitude de 0% a 20% ou	
de 80% a 100%, mas não ambas, podem também ser	
analisados utilizando-se a transformação raiz quadrada.	
Ouando os dados estão situados entre 2004 o 10004	
Quando os dados estão situados entre 80% e 100%, devem ser subtraídos de 100 antes da transformação. A	
mesma transformação é útil para porcentagens na mesma amplitude quando as observações provêm de uma mesma	
escala contínua, desde que médias e variâncias sejam aproximadamente iguais.	
aproximadamente iguais.	
Quando entre os dados ocorrem valores pequenos,	
inferiores a 10 e, principalmente, zeros, as	

<u>Estatistica Experimental</u>	
transformações $\sqrt{X+1/2}$, $\sqrt{X+1}$ ou $\sqrt{X}+\sqrt{X+1}$ estabilizam a variância mais efetivamente que \sqrt{X} , sendo X o valor observado.	Anotações:
A transformação raiz quadrada afeta o tipo de achatamento da distribuição de frequência dos erros e a medida de aditividade. Assim, se os efeitos de blocos e tratamentos são aditivos na escala original, geralmente não o serão na escala raiz quadrada ou vice versa. Contudo, a menos que efeitos de blocos e tratamentos sejam ambos grandes, efeitos que são aditivos em uma escala serão aproximadamente aditivos na escala raiz quadrada.	
As médias obtidas com os dados transformados são reconvertidas para a escala original, utilizando-se da operação inversa, ou seja, sendo elevadas ao quadrado. Os valores obtidos, geralmente são ligeiramente menores que as médias originais, porque a média de uma série de raízes quadradas é menor que a raiz quadrada da média original.	
7.3.2 Transformação Logarítmica	

A transformação logarítmica estabiliza a variância quando o desvio padrão na escala original varia diretamente com a média, ou seja, o coeficiente de variação é constante de

tratamento para tratamento. Esse tipo de relação entre	
média e desvio padrão é encontrado geralmente quando	
os efeitos são multiplicados em lugar de aditivos. Nessa	
situação, tal transformação, além de estabilizar a	
variância, produz aditividade nos efeitos e tende a	
normalizar a distribuição dos erros. A base 10 para o	_
logaritmo é a mais usada, por conveniência, contudo,	_
qualquer base é satisfatória.	_
	_
Essa transformação é usada para números inteiros	
	4

Essa transformação é usada para números inteiros positivos que cobrem uma grande amplitude, sendo que não pode ser usada diretamente quando ocorrem zeros ou quando alguns dos valores são menores que 10. Neste caso, é necessário ter-se uma transformação que equivale à transformação \sqrt{X} para valores pequenos e log X para valores grandes de X. A transformação $\log(X+1)$ é a que mais se aproxima da desejada.

As médias obtidas na escala logarítmica são convertidas para a escala original através da operação inversa, ou seja, utilizando-se antilogarítmos dos valores obtidos para essas médias estando, porém afetadas de um erro.

7.3.3 Transformação Angular ou arc sen $\sqrt{p/100}$

Esta transformação é utilizada para homogeneizar a variância residual dos dados de proporção X/N, ou porcentagens 100 (X/N), correspondentes a indivíduos

Anotações:

porcentagens cobrem uma grande amplitude de valores.
Admite-se que as proporções têm distribuição binomial
com média igual a μ e variância igual a $\mu(1-\mu)/N$. Desde
que as proporções têm distribuição binomial, essa
variância será máxima para $p=0.5$. As proporções
igualmente afastadas de 0,5 terão variâncias iguais e
quanto mais afastadas de 0,5, valores menores. A
transformação irá, pois, alterar as porcentagens
extremas, ou seja, aquelas de menores variâncias.

portadores de um dado atributo, em uma amostra de

tamanho N e é especialmente recomendada quando as

SNEDECOR e COCHRAN (1976) dizem que essa transformação também pode ser usada para proporções que estão sujeitas a outra causa de variação que não a binomial, sendo porem que a variância dessas proporções deve ser um múltiplo de μ (1- μ). Como, porém, esse produto varia pouco se as porcentagens estiverem todas entre 30% e 70%, a transformação angular será desnecessária. Essa transformação produzirá sensíveis alterações nos valores das porcentagens se estiverem entre 0% e 30% ou 70% e 100%. A transformação arc sen $\sqrt{\%}$ dará melhores resultados quando todas as porcentagens forem baseadas em denominadores iguais, porém, tem sido frequentemente usada quando são diferentes, especialmente, se são aproximadamente iguais.

Anotações:

Pode acontecer que a variável X/N não tenha distribuição binomial e que a transformação angular não atinja seu objetivo, como é o caso, muitas vezes, de dados de controle de pragas e moléstias no campo. Neste caso, deve-se considerar o numerador da proporção como a variável aleatória, podendo ser analisada utilizando-se uma das transformações citadas anteriormente.	Anotações:
A transformação raiz quadrada é recomendada para porcentagens entre 0% e 20% ou 80% e 100% sendo subtraídos de 100 antes da transformação.	

UNIDADE 8 - DELINEAMENTOS EXPERIMENTAIS

Vamos estudar nesta unidade as três maneiras de sorteio das parcelas experimentais, chamadas delineamentos experimentais. Vamos apresentar as características de cada um deles, conhecimento que é imprescindível para o planejamento dos experimentos.

UNIDADE 8 – DELINEAMENTOS EXPERIMENTAIS	Anotações:
Os Delineamentos Experimentais são as formas de distribuição das parcelas experimentais na área do experimento.	
Os delineamentos experimentais são: • Delineamento Inteiramente Casualizado • Delineamento Blocos Casualizados • Delineamento Quadrado Latino	
8.1 Delineamento Inteiramente Casualizado (DIC) 8.1.1 Características	
Esse delineamento é utilizado quando a variabilidade entre as parcelas experimentais for muito pequena, isto é, praticamente inexistente.	
Devido a esta exigência, você deve usá-lo em locais em que as condições experimentais possam ser bem controladas (laboratórios, casa de vegetação, terrenos com pouca heterogeneidade e outros similares).	

As vantagens deste delineamento são:	Anotações:
 o número de graus de liberdade para o Erro Experimental é máximo; 	
 o número de tratamentos e de repetições depende apenas do número de parcelas experimentais disponíveis; 	
é o delineamento mais simples de ser instalado e conduzido.	
A maior desvantagem é que toda a variabilidade existente irá compor o erro experimental, exceto apenas a variação entre os efeitos dos tratamentos.	
Se as condições do experimento não forem homogêneas podemos encontrar um erro muito grande, o que poderá comprometer os resultados obtidos.	
8.1.2 Aleatorização	
Nesse delineamento os tratamentos são designados aleatoriamente às parcelas experimentais. Este tipo de	

sorteio implica em que todo tratamento tenha a mesma	
chance de ser aplicado a qualquer parcela na área experimental.	Anotações:
8.1.3 Modelo Estatístico	
O modelo linear adequado para este delineamento é dado por:	
$y_{ij} = \mu + t_i + e_{ij}$	
onde y _{ij} é a observação feita na parcela para o	
tratamento i na repetição j ;	
μ representa uma constante inerente a toda parcela ;	
t _i representa o efeito do tratamento i ;	
e _{ij} representa o erro experimental na parcela i, j.	
8.1.3 Modelo Geral de Análise	
0.1.5 Modelo Geral de Allalise	
Considere um experimento com três tratamentos e duas	
repetições, instalado em DIC. A variável resposta é	
representadas por Y e os dados, observados nas parcelas,	
representados por y com os índices i e j referentes à,	
respectivamente, o tratamento e a repetição.	

Os dados podem ser colocados em uma tabela como em 8.1 e o modelo geral de análise de variância para os ensaios em DIC é apresentado na Tabela 8.2.

Anotações:

TABELA 8.1 Representação dos Dados de um Experimento em DIC com 3 Tratamentos e 2 Repetições.

		TRATAMENTOS		
Repetições	A	В	С	
I	y ₁₁	y ₂₁	y 31	
II	y 12	y 22	y 32	
TOTAIS	T ₁	T ₂	T ₃	G

TABELA 8.2 Modelo Geral de Análise para ensaios em DIC com I Tratamentos e J repetições.

Fontes de Variação	GL	SQ	QM	Fc
Tratamentos	I-1	SQTrat. ⁽²⁾	<u>SQ Trat.</u> I - 1	QM Trat. QM Erro
Erro Experimental	I(J-1)	SQErro ⁽³⁾	SQ Erro I(J-1)	
TOTAL	IJ-1	SQTotal (1)		

> Cálculos das Somas de Quadrados:

(1) $SQTotal = \sum y_{ij}^{2} - \frac{G^{2}}{N}$ s	sendo G = $\sum_{i} \sum_{j} y_{ij}$	e N = número
total de parcelas (I.J);		

(2)
$$SQTratamentos = \sum \frac{T_i^2}{J} - \frac{G^2}{N}$$
 sendo $T_i = \sum_i y_{ij}$ (total de cada tratamento);

(3) SQErro =
$$\sum_{i} \left(\sum_{j} y_{ij}^{2} - \frac{T_{i}^{2}}{J} \right) = SQTotal - SQTratamentos$$

8.2 Delineamento Blocos Casualizados (DBC)

No delineamento em blocos casualizados, o material experimental é dividido em grupos homogêneos, cada grupo constituindo uma repetição. Cada repetição ou bloco deve conter uma vez cada tratamento, no caso de blocos completos.

O objetivo em todas as etapas do experimento é manter o erro, dentro de cada bloco, tão pequeno quanto seja possível na prática. Na condução do ensaio deve ser

Anotações:

empregada uma técnica uniforme para todas as parcelas de um mesmo bloco. Quaisquer alterações na técnica de condução ou em outras condições que possam afetar os resultados devem ser feitas entre os blocos.	Anotações:
No campo esse agrupamento é feito quando as parcelas são dispostas na área experimental. Cada repetição deverá ser formada por um grupo compacto de parcelas, de forma tão aproximada quanto possível, pois se sabe que as parcelas vizinhas são mais semelhantes em fertilidade do que parcelas distantes.	
Em casos em que a colheita do ensaio deva estender-se por algum tempo é aconselhável que seja feita repetição por repetição, sendo que, chuvas e outros fatores podem produzir alterações no peso do material colhido de um dia para o outro.	
8.2.1 Características	
As principais características e vantagens em relação ao delineamento Inteiramente Casualizado são:	
 Permite o controle da influência de uma fonte de variação além do efeito de tratamentos, pelo agrupamento hábil das parcelas (controle local); 	

- Dentro de cada bloco (repetição), as condições ambientais devem ser homogêneas, podendo variar de	Anotações:
bloco para bloco;	
- As repetições podem ser distribuídas por uma área	
maior permitindo conclusões mais gerais.	
8.2.2 Aleatorização	
Quando as parcelas se acham agrupadas em blocos, os	
tratamentos são aleatoriamente designados às unidades	
dentro de cada bloco. Posteriormente, os blocos são	
sorteados na área experimental.	
8.2.3 Modelo Estatístico	
0.2.3 Modelo Estatistico	
A observação da parcela que recebe o tratamento i no	
bloco j (y _{ij}) é definida, estatisticamente, por:	
$y_{ij} = \mu + t_i + b_j + e_{ij}$	
com i = 1 2	
com i = 1, 2,, I e j = 1, 2,, J, onde:	
μ é uma constante inerente à toda	
observação;	

	t _i	é o efeito do tratamento i;		
	b _j	é efeito do bloco j;		Anotações:
	e _{ij}	é o erro na parcela i, j.		
8.2.4 Mode	elo Geral d	e Análise		
As fontes	de variaçã	o e os respectivos graus de l	iberdade	
para o de	lineamento	em blocos casualizados co	ompletos —	
são aprese	ntados na	Tabela 8.3.	_	

TABELA 8.3 Modelo de Análise de Variância para o Delineamento Blocos Casualizado com I Tratamentos e J Repetições.

Fontes de Variação	GL	SQ
Entre Blocos	J-1	SQBlocos
Entre Tratamentos	I-1	SQTratamentos
Erro	(I-1) (J-1)	SQErro
Total	IJ-1	SQTotal

As somas de quadrados são computadas através de:

SQTotal =	\sum	$\sum y_{ij}^2 - C$	۲
	i	j	

$$SQBlo\cos = \frac{1}{I}\sum_{j}B_{j}^{2} - C$$

$$SQT ratamentos = \frac{1}{J} \sum_{i} T_{i}^{2} - C$$

com $C = \frac{1}{N}G^2$; B_j o total do bloco j; T_i o total do tratamento i e G o total geral.

Exemplo 5.1

Os dados da Tabela 8.4 referem-se a um ensaio sobre a influência de quatro épocas de corte na produtividade de matéria verde de uma variedade de alfafa. As épocas estudadas foram A, B, C e D sendo A mais precoce e D mais tardia. Foi utilizado o delineamento Blocos Casualizados para controlar um possível gradiente de fertilidade do solo já que a área experimental apresentava uma declividade de 12%.

A análise de variância correspondente é apresentada na Tabela 8.5. As somas de quadrados foram calculadas como:

Correção
$$(C) = \frac{1}{24} (2.89 + 1.58 + ... + 1.00)^2$$

Anotações:

$$SQTratamentos = \frac{1}{6} \left[(15,40)^2 + (8,25)^2 + (11,04)^2 + (10,91)^2 \right] - C$$

$$SQBlo \cos = \frac{1}{4}[(9,32)^2 + (9,14)^2 + ... + (6,43)^2] - C$$

$$SQErro = SQTotal - SQTratamentos - SQBlo \cos$$

$$SQTotal = (2.89)^2 + (1.58)^2 + ... + (1.00)^2 - C$$

TABELA 8.4 Produções em Kg/parcela de matéria verde de alfafa.

Épocas de Corte					
Blocos	Α	В	С	D	Totais
I	2,89	1,58	2,29	2,56	9,32
II	2,88	1,28	2,98	2,00	9,14
III	1,88	1,22	1,55	1,82	6,47
IV	2,90	1,21	1,95	2,20	8,26
V	2,20	1,30	1,15	1,33	5,98
VI	2,65	1,66	1,12	1,00	6,43
Totais	15,40	8,25	11,04	10,91	45,60

TABELA 8.5 Análise de Variância para a produção de matéria verde (kg/parcela) de alfafa.

Fontes de Variação	GL	SQ	QM	F _c	F _{5%}
Entre Blocos	5	2,7590	0,5518	3,20*	2,90
Entre Épocas	3	4,3820	1,4607	8,47*	3,29
Erro	15	2,5866	0,1724		
Total	23				

Anotações:

A DMS para o te probabilidade é igual são apresentadas na que a produção foi r outras épocas, inclu matéria verde foi a m	Anotações:	
TABELA 8.6 Pro	duções Médias de Matéria Verde	
de	Alfafa.	
Épocas de Corte	Médias (kg/parcela)	
A (mais precoce)	2,57 a	
В	1,38 b	
С	1,84 b	
D	1,82 b	
* As médias seguidas da m pelo teste Tukey, ao nível de	esma letra não diferem estatisticamente entre si, e 5 % de probabilidade.	
8.3 Delineamento (Quadrado Latino (DQL)	
8.3.1 Características		
	Quadrado Latino, os tratamentos são ções de duas maneiras distintas.	

Essa sistematização dos blocos em duas direções designadas genericamente por "linhas" e "colunas", permite eliminar os efeitos de duas fontes de variação do erro experimental.

Anotações:

O esquema do delineamento para I tratamentos corresponde a um "quadrado" com I linhas e I colunas, contendo I^2 parcelas. Cada tratamento ocorre uma vez em cada linha e em cada coluna. Um dos possíveis arranjos para um ensaio com quatro tratamentos (A, B, C e D \acute{e} :

		COLUNAS				
LINHAS	1	2	3	4		
1	В	С	D	Α		
2	Α	В	С	D		
3	С	D	Α	В		
4	D	Α	В	С		

Linhas e Colunas são termos gerais para referenciar critérios de classificação e, assim, podem representar uma "espécie" de tratamentos. Se existir interação (dependência) entre os critérios de classificação e os tratamentos, a estatística F_c não tem distribuição de F e o teste não é válido.

O emprego do delineamento Quadrado Latino é muito comum em ensaios industriais, zootécnicos e outras

áreas. Em ensaios agronômicos é utilizado geralmente para controlar as diferenças de fertilidade em dois sentidos, nos ensaios de campo.	Anotações:
8.3.2 Aleatorização	
Em geral, é satisfatório tomar um quadrado latino qualquer, permutar as linhas e colunas e designar, ao acaso, os tratamentos às letras.	
Um processo mais rigoroso para a obtenção de um quadrado latino, aleatoriamente, é dado por FISHER e YATES (1948).	
8.3.3 Modelo Estatístico	
A observação da parcela na coluna j e na linha k, que recebe o tratamento i, é definida por:	
$y_{ijk} = \mu + t_i + c_j + l_k + e_{jk(i)}$	
com i, j e k = 1, 2,, I e:	

é a constante comum a todas as parcelas;

 t_{i} é o efeito do tratamento i;

c_j é o efeito da coluna j;

l_k é o efeito da linha k;

 $e_{jk(i)}$ representa o erro aleatório na parcela i,j,k.

8.3.4 Modelo Geral de Análise

Este modelo estatístico leva ao modelo de análise de variância apresentado na Tabela 8.7.

TABELA 8.7 Modelo da Análise de Variância para o delineamento Quadrado Latino com I tratamentos.

Fontes de Variação	GL	SQ
Linhas	I-1	SQLinhas
Colunas	I-1	SQColunas
Tratamentos	I-1	SQTratamentos
Erro	(I-1) (I-2)	SQErro
Total	I ² -1	SQTotal

Exemplo 8.2

Um experimento foi desenvolvido visando comparar a eficiência de técnicos treinados em amostragem. Uma cultura foi dividida em seis áreas, cada área sendo amostrada por seis técnicos diferentes. O amostrador

Anotações:

deveria escolher oito plantas que julgasse com altura representativa da área e anotar a altura média destas plantas. Para as análises estatísticas foi considerada a diferença entre a altura média da amostra e a verdadeira altura média da área correspondente (determinada pela medição de todas as plantas da área). Tais diferenças correspondem aos erros amostrais e são apresentadas na Tabela 8.8. Também foi anotada a ordem em que cada área foi amostrada.

	- *	- 64	_
Δn	ota	ഥവല	-
\sim	$-\omega$	ções	,

Com auxílio dos totais apresentados na Tabela 8.9 foi computada a análise de variância do exemplo (Tabela 8.10).

TABELA 8.8 Erros Amostrais Referentes às Alturas Médias de Trigo. Área Amostrada por Seis Técnicos (A, B, C, D, E e F).

Ordem			Áreas			
de	I	II	III	IV	V	VI
Visita						
1ª	3,5(F)	4,2(B)	6,7(A)	6,6(D)	4,1(C)	3,8(E)
2ª	8,9(B)	1,9(F)	5,8(D)	4,5(A)	2,4(E)	5,8(C)
3ª	9,6(C)	3,7(E)	-2,7F)	3,7(B)	6,0(D)	7,0(A)
4ª	10,5D)	10,2(C)	4,6(B)	3,7(E)	5,1(A)	3,8(F)
5 <u>ª</u>	3,1(E)	7,2(A)	4,0(C)	-3, (F)	3,5(B)	5,0(D)
6ª	5,9(A)	7,6(D)	-0,7(E)	3,0(C)	4,0(F)	8,6(B)

TABELA 8.9 Totais Para a Amostragem de Plantas de Trigo.

-		- 01	
Λn	over:	200	LOC!
\sim	uu		C3.

	Totais							
Critérios	1	2	3	4	5	6		
Tratamentos	36,4	33,5	36,7	41,5	16,0	7,2		
Áreas	41,5	34,8	17,7	18,2	25,1	34,0		
Visita	28,9	29,3	27,3	37,9	19,5	28,4		

TABELA 8.10 Análise de Variância para Amostragem de Plantas de Trigo.

Fontes de Variação	GL	SQ	QM	F _c	5 %
Tratamentos	5	155,60	31,12	9,35**	2,71
Áreas	5	78,87	15,77	4,74**	
Visita	5	28,60	5,72	1,72	
Erro	20	66,56	3,33		
Total	35	329,63			

As somas de quadrados foram calculadas como:

SQTotal =
$$3.5^2 + 4.2^2 + ... + 8.6^2 - C$$

SQTratamentos =
$$\frac{1}{6}$$
 (36,4² + 33,5² + ... + 7,2²) - C

SQOrdem Visita =
$$\frac{1}{6}$$
 (28,9² + 29,3² + ... + 28,4²) - C

SQÁreas =
$$\frac{1}{6}$$
(41,5² + 34,8² + ... + 34,0²) - C

Pela simples inspeção nos dados podemos verificar uma tendência consistente de superestimação das alturas das plantas, desde que apenas três dos trinta e seis erros amostrais tiveram valores negativos. O teste de F para

tratamentos, significativo ao nível de 5% mostra que a superestimação varia de técnico para técnico. Com a aplicação do teste de Tukey (DMS $_{5\%}$ = 3,1), verifica-se que a tendência é menor para os amostradores E e F, em relação aos outros.	Anotações:
Pelo teste de F observamos que a ordem em que dada área é amostrada não tem efeito na superestimação enquanto que esta tendência varia de área para área.	

UNIDADE 9 - ENSAIOS FATORIAIS

Nesta unidade vamos apresentar a análise de variância e o estudo das médias dos tratamentos para experimentos contendo mais de um fator. Apresentamos o importante conceito na estatística experimental denominado interação entre fatores.

UNIDADE 9 – ENSAIOS FATORIAIS	Anotações:
Os ensaios em que é estudado o efeito de apenas um fator são conhecidos como ensaios simples. Mas e se você quiser planejar um experimento para estudar o efeito de dois fatores ou mais fatores ao mesmo tempo como, por exemplo, comparar a produção de 4 cultivares de feijão (A, B, C e D) em três espaçamentos (0,50; 0,75 e 1,00 metros)?	
Uma possibilidade seria escolher um espaçamento e plantar as 4 cultivares, separando o mais produtivo. Em outro experimento seria plantada essa cultivar nos 3 diferentes espaçamentos procurando identificar aquele mais favorável.	
No entanto, esta não é uma boa alternativa porque, além de menos eficaz, a combinação ótima de cultivar e espaçamento só seria encontrada em uma situação especial. Os fatores em estudo podem se auto relacionar e o melhor nível de um fator poderia depender do nível do outro fator.	

A alternativa correta é estudar os dois fatores ao mesmo

tempo através dos experimentos denominados Fatoriais

em que os tratamentos são as combinações das categorias dos fatores.

-		- 64	
Λm	MOVE:	\sim	oc.
~11	IUL	acõ	63

No exemplo citado seriam plantados as 4 cultivares nos 3 espaçamentos, simultaneamente. Os tratamentos seriam:

Número do	Trat	amento	Notação	Notação
Tratamento	Cultivar E	spaçamento	1	2
1	А	0,50	A-0,50	A1
2	Α	0,75	A-0,75	A2
3	Α	1,00	A-1,00	A3
4	В	0,50	B-0,50	В1
5	В	0,75	B-0,75	B2
6	В	1,00	B-1,00	В3
7	С	0,50	C-0,50	C1
8	С	0,75	C-0,75	C2
9	С	1,00	C-1,00	C3
10	D	0,50	D-0,50	D1
11	D	0,75	D-0,75	D2
12	D	1,00	D-1,00	D3

9.1 Notação

A notação utilizada para os experimentos fatoriais é bem variada. No exemplo citado, suponha que tenha sido utilizado o delineamento Blocos Casualizados com 3 repetições. Este experimento seria designado por Ensaio Fatorial 4x3 em DBC com 3 repetições, sendo 4 cultivares e 3 espaçamentos.

Das ı	not	açĉ	íes _l	pos	síveis	pa	ara	os	tratar	nent	os,	devem	os
utiliza	ır	а	mai	s s	simple	S	е	info	rmativ	/a.	No	exem	olo
anterior, a notação 2 é mais concisa.													

Considere um ensaio Fatorial 2x2 (ou 2²) em DIC com 7 repetições sendo 2 cultivares e ausência e presença de calagem. Os tratamentos são:

Tratamento	Níveis dos	Notação	Notação	Notação
	Fatores	1	2	3
1	cultivar A	A-sem	A0	А
	sem calagem			
2	cultivar B	B-sem	В0	В
	sem calagem			
3	cultivar A	A-com	A1	A+
	com calagem			
4	cultivar B	B-com	B1	B+
	com calagem			

Considere ainda outro exemplo onde serão estudados os nutrientes N, P e K, cada qual estando presente ou ausente. Este ensaio é designado fatorial 2³ (ou 2x2x2), onde os tratamentos serão:

135	P	á	g	i	n	a	

Anotações:

Tratamento	Níveis dos	Notação 1	Notação 2
	Fatores		
1	sem nutrientes	(T)	000
2	só N	N	100
3	só P	Р	010
4	só K	K	001
5	NeP	NP	110
6	NeK	NK	101
7	РеК	PK	011
8	Todos os nutrientes	NPK	111

Anotações:			

9.2 Vantagens e Desvantagens

Os ensaios fatoriais permitem economia de tempo e recursos, mas principalmente, possibilitam conclusões mais amplas sobre os fatores incluindo o estudo da interação entre eles e maior precisão para as estimativas dos efeitos principais dos fatores

A desvantagem é o aumento rápido do número de tratamentos a medida que se aumenta o número de fatores ou o número de categorias dos fatores.

Se o delineamento utilizado for o de Blocos Casualizados, o aumento do tamanho do bloco pode acarretar perda de

eficiência se houver um aumento da heterogeneidade	
dentro do bloco.	Anotações:
9.3 Efeitos dos Fatores	
O efeito de um fator é a mudança na variável resposta	
provocada pela mudança de categoria desse fator.	
Quando estão envolvidos mais de um fator, define-se	
efeito simples como efeito de um fator em cada nível do	
outro, e efeito principal como a média dos efeitos	
simples do fator.	
EXEMPLO 9.1	
Veja os dados fictícios da produção de uma cultura em um	
experimento com duas doses de adubo nitrogenado e	
duas doses de adubo fosfatado conforme Tabela 9.1.	
A Tabela 9.2 é um quadro auxiliar com os totais dos	
tratamentos para auxiliar os cálculos dos efeitos dos	
fatores. Ela é construída colocando-se as categorias de	
um fator nas linhas e as categorias do outro fator nas	
colunas. Nas células dessa tabela são colocados os totais	
dos tratamentos correspondentes às somas dos dados das	
repetições. Nas margens da tabela são colocados os totais	
de linhas e de colunas.	

TABELA 9.1	Dados fictícios de um Ensaio Fatorial					
	com	dois	Fatores	(Nitrogênio	е	
	com dois Fatores (Nitrogênio e Fósforo) e dois níveis cada.					

-		- 64	_
Λm	MOVE TO	\sim	0
\sim	rote	ıçõe	э.

		Repetições				
Nitrogênio	Fósforo	Trat.	I	II	III	Totais
Nível 1	Nível 1	11	8	10	6	24
	Nível 2	12	10	14	12	36
Nível 2	Nível 1	21	15	12	15	42
	Nível 2	22	16	18	20	54

TABELA 9.2 Totais dos Tratamentos para o Exemplo 9.1.

	Fós	sforo	
Nitrogênio _	Nível 1	Nível 2	Totais
Nível 1	24(3)	36	60(6)
Nível 2	42	54	96
Totais	66(6)	90	144(12)

Vamos utilizar a tabela auxiliar de totais para calcular os efeitos dos fatores. Os efeitos para o Nitrogênio são:

Efeito Simples de Nitrogênio no nível 1 de Fósforo

$$= N: P_1 = \frac{42 - 24}{3} = +6$$

Anotações:

Efeito Simples de Nitrogênio no nível 2 de Fósforo

$$= N: P_2 = \frac{54 - 36}{3} = +6$$

Efeito Principal de Nitrogênio

$$=\frac{96-60}{6}=+6$$

Estes resultados indicam que, com a quantidade 1 de Fósforo a mudança da dose 1 para a dose 2 de Nitrogênio provoca um aumento médio na produção de 6 unidades. Se a dose de Fósforo for a 2, o efeito simples de Nitrogênio é o mesmo.

Estes dois resultados indicam que o efeito do Nitrogênio não está dependendo do Fósforo. Observe que o efeito de N em geral (considerando todas as categorias do P) é igual à média de seus efeitos simples.

Para o Fósforo, os efeitos são:

Efeito Simples de P no nível 1 de $N = P: N_1 = \frac{36 - 24}{3} = +4$

Efeito Simples de P no nível 2 de $N = P : N_2 = \frac{54 - 42}{3} = +4$	Anotações:
Efeito Principal de $P = \frac{96 - 66}{6} = +4$	
Como o efeito do Fósforo não depende do Nitrogênio, efeito simples de Fósforo é o mesmo qualquer que seja o nível de Nitrogênio escolhido.	
9.4 Interação Entre os Fatores	
Quando os efeitos simples de um fator não são os mesmos em todos os níveis de outro fator, diz-se que existe interação entre esses fatores.	
Para você fixar este importante conceito, vamos utilizar os dados da Tabela 9.3.	

Tabela 9.3 Totais das Produções para um Fatorial 2² com 4 Repetições e Ausência e Presença de Calagem e de Adubo com Potássio.

-		- 64	
Λn	over-		
\sim	ULC	içő(

	K	(
Calagem	0	50Kg/ha	Totais
Sem	80(4)	240	320(8)
Com	160	120	280
Totais	240(8)	360	600(16)

Os efeitos para o Potássio são:

Potássio Sem Calagem =
$$\frac{240 - 80}{4}$$
 = 40

Potássio Com Calagem =
$$\frac{120-160}{4}$$
 = -10

Potássio =
$$\frac{360 - 240}{8} = 15$$

Verifica-se que o efeito do Potássio depende da calagem: na ausência de Calagem, a adição de Potássio provoca um aumento médio de 40 unidades enquanto que, com a calagem, a adição do potássio provocou uma redução média de 10 unidades na produção.

Devido à existência de interação entre K e Calagem nesse exemplo, o efeito principal do fator representa a médias do que acontece nos diferentes níveis do outro fator (é a média dos efeitos simples).

Anotações:

Nesse exemplo, o efeito principal do Potássio é 15 unidades, o que leva à uma conclusão generalizada sobre seu efeito real.

Vejamos para o outro fator:

Calagem:
$$K_0 = \frac{160 - 80}{40} = 20$$

Calagem:
$$K_{50} = \frac{120 - 240}{4} = -30$$

Calagem =
$$\frac{280 - 320}{8} = -5$$

Como regra geral, quando não existir interação entre os fatores, basta estudar os seus efeitos principais, mas quando existir interação, devemos estudar os efeitos de um fator em cada nível do outro.

A Figura 9.1 ilustra os conceitos de efeitos dos fatores e interação.

Anotações:

FIGURA 9.1 Ausência de Interação (a), Presença de Interação (b) e (c).

Vemos na Figura 9.1 que, na ausência de interação entre os fatores, as retas são paralelas, significando que o efeito de um fator é o mesmo, independentemente do nível do outro fator.

A interação é positiva quando os fatores apresentam efeito sinérgico. O efeito conjunto dos fatores, nesse caso, é aumentar o resultado da combinação de seus níveis mais altos. Quando os fatores têm efeitos antagônicos, a interação é negativa.

9.5	0	Fato	rial	mais	Sim	ples
J.,	•	· ato	, i i a i	IIIGIS		7103

Anotações:

Um dos ensaios fatoriais mais simples é aquele com dois fatores com dois níveis cada. O Modelo Estatístico para este fatorial, considerando o Delineamento Inteiramente Causualisado é:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

onde i = 1,2 e j = 1,2 e:

 μ : representa uma constante comum a todas observações

 α_i : é o efeito do nível *i* do fator A;

 β_j : é o efeito do nível j no fator B;

 γ_{ii} : é o efeito da interação entre A e B;

 ε_{ijk} : é o erro experimental na parcela que recebe o nível i do fator A, o nível j do fator B e na repetição k.

EXEMPLO 9.2

Os dados da Tabela 9.4 referem-se ao tempo em segundos da reação entre duas concentrações de um reagente na presença e na ausência de um catalizador. A análise de variância considerando o delineamento Inteiramente Casualisado é apresentada na Tabela 9.5.

TABELA 9.4 Tempo de Reação (segundos) para um Catalisador (ausência e presença) e duas Concentrações (15% e 25%) de um Reagente.

Tratamentos	I	II	III	Totais
R15	28	25	27	80
R25	36	32	32	100
R15 + C	18	19	23	60
R25 + C	31	30	29	90

TABELA 9.5 Análise de Variância para o Exemplo 9.2 sem Considerar a Estrutura Fatorial.

FV	GL	SQ	QM	F _c
Tratamentos	3	291,67	97,22	24,80*
Erro	8	31,33	3,92	
Total	11	323,00		

Anotações:

Considerando a estrutura fatorial dos tratamentos, vamos decompor a soma de Quadrados para Tratamentos nas somas de quadrados relativas ao efeito dos fatores e suas interações, melhorando nossa análise.

Assim, as Fontes de Variação passam a ser todos os fatores e todas as possíveis interações entre eles. Para o cálculo das somas de quadrados dos fatores e das interações é interessante utilizar os quadros auxiliares de totais. A análise de variância apropriada aos ensaios com estrutura fatorial é apresentada na Tabela 9.6.

Reagente	Sem	Com	Totais
15%	80(3)	100	180(6)
25%	60	90	150
Totais	140(6)	190	330(12)

SQConcentração =
$$\frac{1}{6} [180^2 + 150^2] - \frac{330^2}{12} = 208,33$$

SQCatalisador =
$$\frac{1}{6} [140^2 + 190^2] - \frac{330^2}{12} = 75,00$$

A		-2-	
ДΠ	$^{\rm ora}$	çőe	95.
	~~~	~~~	~

SQ InteraçãoR x C =

$$= \frac{1}{3} \left[ 80^2 + 100^2 + 60^2 + 90^2 \right] - \frac{330^2}{12} - SQR - SQC = 8,34$$

Anotações:

TABELA 9.6 Análise de Variância para o Exemplo 9.2

F.V	GL	SQ	QM	F _c
Concentração	1	208,33	208,33	52,14*
Catalisador	1	75,00	75,00	19,13*
RxC	1	8,34	8,34	2,12
Erro	8	31,33	3,92	
Total	11	323,00		

^{*} Significativo ao nível de 5% de probabilidade

Nesse exemplo, embora exista interação entre Concentração e Catalisador, a análise de variância mostra que é muito pequena, isto é, não significativa. Em termos práticos é considerada inexistente e os efeitos dos fatores são representados por seus efeitos principais. Verifique que, nesse caso, os efeitos simples de um fator têm valores muito próximos.

TABELA 9.7 Efeitos Médios de Concentração (a) e de Catalisador (b) sobre os Tempos de Reação.

Reagente	Médias	Catalisador	Médias
15%	23,3	Sem	30,0
25%	31,7	Com	25,0
(a)		(b)	)

Chegamos aos resultados para cada fator, independentemente do outro e da não existência ou não significância da interação entre eles.

Na Tabela 9.7 observamos que o catalisador diminui o tempo de reação em 5 segundos, para qualquer concentração (15 ou 25%).

Com o aumento da concentração de 15 para 25%, o tempo de reação aumenta em 7,4 segundos em média (com ou sem catalisador).

		- 64	_
Δn	IOTZ	ഥവ	229
_	100		

## 9.6 Fatoriais p x q

# Anotações:

Nestes fatoriais vamos estudar dois fatores sendo um com p categorias e outro com q categorias. O modelo estatístico é semelhante ao modelo apresentado para os fatoriais 2² (dois fatores com dois níveis cada) com a diferença apenas no número de níveis dos fatores.

Para ensaio em blocos casualisados com k repetições, o modelo estatístico é:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + b_k + e_{ijk}$$

com i = 1,2,...,p e j = 1,2,...,q onde:

 $\mu$ : representa uma constante inerente a todas as parcelas;

 $\alpha_i$ : é o efeito do nível i do fator A;

 $\beta_i$ : é o efeito do nível j do fator B;

 $\gamma_{ij}$ : é o efeito da interação entre os fatore A e B;

 $b_k$ : é o efeito do bloco k;

 $e_{ijk}$ : é o erro experimental em cada parcela.

#### EXEMPLO 9.3

Anotações:

Os dados apresentados na Tabela 9.8 foram adaptados de um ensaio sobre a produção de matéria seca de forrageiras consorciadas com leguminosas. O ensaio foi montado segundo o esquema fatorial 3x4 em blocos casualisados, sendo 3 leguminosas (Azevém, Falaris e Festuca) e 3 doses de calagem além de uma testemunha (0, 1, 2 e 4 toneladas/ha).

TABELA 9.8 Teores de Matéria Seca (t/ha) de Gramíneas Forrageiras Consorciadas com Leguminosas em Diferentes Doses de Calagem.

	Leguminosas				
Calcário (t/ha)	Blocos	Azevém	Falaris	Festuca	
	I	1,97	4,48	6,46	
0	II	1,90	4,40	7,80	
	III	2,02	3,89	6,82	
	I	2,59	5,05	7,64	
1	II	2,40	5,00	7,80	
	III	2,63	4,98	7,82	
	I	2,83	5,55	5,37	
2	II	2,94	5,60	5,66	
	III	3,00	5,78	6,72	
	I	3,32	3,78	5,32	
4	II	4,80	4,20	5,48	
	III	5,00	3,65	4,90	

A Tabela 9.9 será utilizada para o cálculo das somas de quadrados dos fatores e da interação. A análise de variância é apresentada na Tabela 9.10.

# Anotações:

TABELA 9.9 Quadro Auxiliar de Totais para o Exemplo 9.3.

	Leguminosas					
Calcário	Azevem	Falaris	Festuca	Totais		
0	5,89(3)	12,77	21,08	39,74(9)		
1	7,62	15,03	23,26	45,91		
2	8,77	16,93	17,75	43,45		
4	13,12	11,63	15,70	40,45		
Totais	35,40 ₍₁₂₎	56,36	77,79	169,55(36)		

# **SQ Calcáreo =**

$$= \frac{1}{9} \left[ 39,74^2 + 49,91^2 + 43,45^2 + 40,45^2 \right] - \frac{169,55^2}{36} = 2,7000$$

# **SQ** Leguminosas =

$$= \frac{1}{12} \left[ 35,40^2 + 56,36^2 + 77,79^2 \right] - \frac{169,55^2}{36} = 74,8744$$

$$SQCxL =$$

$$= \frac{1}{3} \left[ 5,85^2 + 12,77^2 + ... + 15,70^2 \right] - \frac{169,55^2}{36} - 2,7000 - 74,8744 = 23,7608$$

TABELA 9.10 Análise de Variância dos Teores de Matéria Seca (Exemplo 9.3).

Causas de Variação	GL	SQ	QM	F _c	F _{5%}
Calcário (C)	3	2,70	0,90	5,29*	3,05
Leguminosas (L)	2	74,87	37,43	220,18**	
CxL	6	23,76	3,96	23,29**	3,44
Blocos	2	0,61	0,30	1,76	
Erro	22	3,70	0,17		
Total	35	105,64			

^{*} significativo ao nível de 5%

Na Tabela 9.10 observa-se que a interação foi significativa e devemos estudar os efeitos simples dos fatores. Para a interação entre dois fatores, existem duas possibilidades para o seu estudo.

As Tabelas 9.11 e 9.13 apresentam os estudos possíveis para a interação do Exemplo 9.3. Vamos estudar, inicialmente, o efeito das leguminosas em cada dose de calcário. Os cálculos das somas de quadrados são feitos com os totais da Tabela 9.10:

## Anotações:

^{**} significativo ao nível de 1 %

SO	Leguminosas	dentro	de	0 t	/ha	=
ЭŲ	Leguiiiiiosas	uenti 0	ue	UL	/ IIa	_

$$=1/3 [(5,89)^2 + (12,77)^2 + (21,08)^2] - 1/9 (39,74)^2$$

## SQ Leguminosas dentro de 1 t/ha =

$$=1/3 [(7,62)^2 + (15,03)^2 + (23,26)^2] - 1/9 (45,91)^2$$

# SQ Leguminosas dentro de 2 t/ha =

$$=1/3[(8,77)^2+(16,93)^2+(17,75)^2]-1/9(43,45)^2$$

# SQ Leguminosas dentro de 4 t/ha =

= 
$$1/3 [(13,12)^2 + (11,63)^2 + (15,70)^2] - 1/9 (40,45)^2$$

As produções médias são apresentadas na Tabela 9.12 onde foi aplicado o teste de Tukey. A DMS foi igual a 0,85 para a comparação das médias referentes às leguminosas em cada dose de calcário.

Anotações:

TABELA 9.11 Estudos das Leguminosas em cada dose de Calcário do Exemplo 9.3.

-			ıcõ		
$\Delta$	mr	MP2	$\sim$	oc.	
~	ı ıv.	,,,,,		-	

Causas de Variação	GL	SQ	QM	F _C
Leguminosas : 0 t/ha	2	38,57	19,28	113,44 **
Leguminosas : 1 t/ha	2	40,80	20,40	120,02 **
Leguminosas : 2 t/ha	2	16,43	8,22	48,33 **
Leguminosas : 4 t/ha	2	2,83	1,41	8,31 **
Erro	22	3,70	0,17	

TABELA 9.12 Produções Médias de Matéria Seca (kg/ha) e Teste de Tukey ( $\alpha = 5\%$ ) referentes ao Exemplo 9.3.

	Leguminosas					
Calcário	Azevém	Falaris	Festuca			
0	1,96 c	4,26 b	7,03 a			
1	2,54 c	5,01 b	7,75 a			
2	2,92 b	5,64 a	5,92 a			
4	4,37 b	3,88 c	5,23 a			

As médias seguidas da mesma letra nas linhas não diferem entre si, pelo teste de Tukey, ao nível de 5% de probabilidade.

Agora, vamos ver o estudo para comparar os efeitos das doses de calcário em cada leguminosa. As somas de quadrados e a análise dos resultados são:

# SQDoses dentro de Azevém =

$$=\frac{1}{3}\left[\left(5,89\right)^{2}+\left(7,62\right)^{2}+\left(8,77\right)^{2}+\left(13,12\right)^{2}\right]-\frac{1}{12}\cdot\left(35,40\right)^{2}$$

# **SQDoses**: Falaris =

$$=\frac{1}{3}\Big[(12,77)^2+(15,03)^2+(16,93)^2+(11,63)^2\Big]-\frac{1}{12}\cdot(56,36)^2$$

# **SQDoses**: Festuca =

$$=\frac{1}{3}\left[\left(21,08\right)^{2}+\left(15,03\right)^{2}+\left(17,75\right)^{2}+\left(15,70\right)^{2}\right]-\frac{1}{12}\cdot\left(77,79\right)^{2}$$

Anotações:						

Anotações: **TABELA 9.13 Desdobramento Doses** Calcário:Leguminosas com Análise de Regressão. Exemplo 9.3. R² Causas de Variação GL SQ QM  $F_{C}$ Calcário: Azevém 18,63** (3) (9,50)3,17 Efeito Linear 9,38 9,38 55,71 ** 98,7% 1 Efeito Quadrático 1 0,08 0,08 <1 Efeito 3º grau 1 0,04 0,04 <1 Calcário: Falaris 10,94** (3)(5,58)1,86 Efeito Linear 0,39 0,39 2,34 7,1% 1 29,65 ** Efeito Quadrático 4,99 4,99 96,5% 1 Efeito 3º grau 1 0,20 0,20 1,15 Calcário: Festuca 22,30** 3 (11,37) 3,79 48,05 ** Efeito Linear 1 8,09 8,09 71,1% Efeito Quadrático 0,17 0,17 1,03 72,6% Efeito 3º grau 18,49 ** 100,0% 1 3,11 3,11 22 3,70 0,17 **Erro** Para a leguminosa Azevém, o efeito das doses de calcário no teor de matéria seca pode ser explicado por uma reta cuja equação estimada é  $\hat{Y} = 1,9040 + 0,5977X$  com R² de 98,7%. Para Falaris, 0 modelo ajustado foi  $\hat{Y} = 4,1837 + 1,3844X - 0,3638X^2$ , R² igual a 96,5 %.

A equa	ação de regre	ssão ajusta	ada para	o efeito do ca	lcário	
na	matéria	seca	da	Festuca	foi	Anotações:
$\hat{Y} = 7.02$	267 + 2,8983 <i>X</i> -	$2,6167X^2 + 6$	$0,4450X^3$ .			

## 9.7 Fatoriais p x q x s

São os esquemas fatoriais com três fatores sendo um fator com p níveis, outro com q níveis e o terceiro fator com s níveis. O modelo estatístico para um fatorial pxqxs em blocos casualisados com J repetições é:

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \delta_{ijk} + b_{lk} + e_{ijkl}$$

onde  $\mu$  representa uma constante inerente a todas as parcelas; i= 1,2, ..., p, j= 1,2, ..., q e k= 1, 2,..., s e:

 $\alpha_i$ : é o efeito do nível *i* do fator A;

 $\beta_i$ : é o efeito do nível j do fator B;

 $\gamma_k$ : é o efeito do nível k do fator C;

 $\alpha\beta_{ii}$ : é o efeito da interação entre os fatores A e B;

 $\alpha \gamma_{ik}$ : é o efeito da interação entre os fatores A e C;

 $\beta \gamma_{ik}$ : é o efeito da interação entre os fatores B e C;

 $\delta_{\it ijk}$ : é o efeito da interação entre os fatores A , B e C;

 $b_{l}$ : é o efeito do bloco l;

 $e_{iikl}$ : é o erro experimental em cada parcela;

#### EXEMPLO 9.4

Os dados apresentados na Tabela 9.14 referem-se ao ganho em peso diário de leitões submetidos a dietas com suplementação de Lisina, Metionina e Proteína em um fatorial 3 x 3 x 3 em delineamento Blocos Casualizados.

TABELA 9.14 Ganho em Peso Médio Diário de Suínos em Diferentes Dietas.

Lisina	Metionina	Proteína	Bloco I	Bloco II	Totais
0,00	0,000	8	1,11	0,97	2,08
		12	1,31	1,13	2,44
		14	1,52	1,45	2,97
0.00	0,025	8	1,09	0,99	2,08
		12	1,14	1,12	2,26
		14	1,27	1,22	2,49
0.00	0,050	8	0,85	1,21	2,06
		12	0,98	1,22	2,20
		14	1,67	1,24	2,91
0,05	0,000	8	1,30	1,00	2,30
		12	1,44	1,27	2,71
		14	1,55	1,53	3,08
0.05	0,025	8	1,03	1,21	2,24
		12	1,14	1,30	2,44
		14	1,24	1,34	2,58
0.05	0,050	8	1,12	0,96	2,08
		12	1,44	1,08	2,52
		14	1,76	1,27	3,03
0,10	0,000	8	1,22	1,13	2,35
		12	1,26	1,14	2,40
		14	1,38	1,08	2,46
0.10	0,025	8	1,34	1,41	2,75
		12	1,36	1,30	2,66
		14	1,40	1,21	2,61
0.10	0,050	8	1,34	1,19	2,53
		12	1,48	1,35	2,83
		14	1,46	1,39	2,85
Totais			35,20	32,71	67,91

Anotações:						

Com os dados e totais da Tabela 9.14, calculamos as somas de quadrados para "Total" e "Blocos". Usamos os totais da Tabela 9.15 para os cálculos das somas de quadrados dos fatores e interações.

Anotações:

TABELA 9.15 Quadros Auxiliares de Totais para o Exemplo 9.4.

Metionina	0,00	0,05	0,10	Marginais
0,000	7,49(6)	8,09	7,21	27,79 ₍₁₈₎
0,025	6,83	7,26	8,02	22,11
0,050	7,17	7,63	8,21	23,01
Marginais	21,49 ₍₁₈₎	22,98	23,44	67,91 ₍₅₄₎

(a)

		Lisina		
Proteína	0,00	0,05	0,10	 Marginais
8	6,22(6)	6,62	7,73	20,47 ₍₁₈₎
12	6,90	7,67	7,89	22,46
14	8,37	8,69	7,92	24,98
Marginais	21,49	22,98	23,44	67,91
	<u> </u>	(h)	·	<u> </u>

(b)

		Metionina		
Proteína _	0,000	0,025	0,050	Marginais
8	6,73(6)	7,07	6,67	20,47
12	7,55	7,36	7,55	22,46
14	8,51	7,68	8,79	24,98
Marginais	22,79	22,11	23,01	67,91
		(c)		

159 | Página

# Dos totais em 9.15 (a):

# $SQLisina = \frac{1}{18} \left[ (21,49^{2}) + (22,98)^{2} + (23,44)^{2} \right] - \frac{1}{54} \cdot (67,91)^{2}$

$$SQMetionina = \frac{1}{18} [(22,79)^2 + (22,11)^2 + (23,01)^2] - \frac{1}{54} \cdot (67,91)^2$$

$$SQ(L \times M) = \frac{1}{6} [(7,49)^2 + (8,09)^2 + ... + (8,21)^2] - \frac{1}{54} \cdot (67,91)^2 - SQL - SQM$$

Dos totais em 9.15 (b), calculamos:

$$SQ \text{ Pr } oteina = \frac{1}{18} [(20,47)^2 + (22,46)^2 + (24,98)^2] - \frac{1}{54} \cdot (67,91)^2$$

$$SQ(L \times P) = \frac{1}{6} [(6,22)^2 + (6,62)^2 + ... + (7,92)^2] - \frac{1}{54} \cdot (67,91)^2 - SQL - SQP$$

Dos totais em 9.15 (c):

$$SQ(M \times P) = \frac{1}{6} [(6,73)^2 + (7,07)^2 + ... + (8,79)^2] - \frac{1}{54} \cdot (67,91)^2 - SQM - SQP$$

Calculamos a soma de quadrados para a interação do três fatores por:

Anotações:

 $SQ(L \times M \times P) = SQ(Tratament) - [SQL + SQM + SQP + SQLxM + SQLxP + SQMx]$ 

TABELA 9.16 Análise de Variância para o Exemplo 9.4.

Causas de Variação	GL	SQ	QM	F _c
Lisina (L)	2	0,1154	0,0577	3,01
Metionina (M)	2	0,0244	0,0122	< 1
Proteína (P)	2	0,5676	0,2838	14,81**
LxM	4	0,1636	0,0490	2,13
LxP	4	0,2006	0,0501	2,61
$M \times P$	4	0,1062	0,0265	1,38
LxMxP	8	0,0236	0,0029	< 1
Blocos	1	0,1148	0,1148	5,99*
Erro	26	0,4982	0,0192	
Total	53	1,8144		

Para Proteína, cujo efeito foi significativo, a análise de regressão é apresentada na Tabela 9.17 e a equação ajustada foi  $\hat{Y} = 0.8072 + 0.0397X$ . Para os outros fatores, as médias são apresentadas na Tabela 9.18.

TABELA 9.17 Análise de Regressão para o Efeito de Proteína no Ganho em Peso de Leitões.

## Anotações:

FV	GL	SQ	QM	Fc	R²
Proteína	(2)	(0,5676)			
Efeito Linerar	1	0,5307	0,5307	27,70 **	93,5 %
Efeito Quadrático	1	0,0369	0,0369	1,93	
Erro	26	0,4982	0,0192		

TABELA 9.18 Médias para o Ganho em Peso Diário de Leitões.

Metionina	0,000	Lisina	Médias
0,000	1,27 a	0,00	1,19 a
0,025	1,23 a	0,05	1,28 a
0,050	1,28 a	0,10	1,30 a

# 9.8 Ensaios Fatoriais com uma Repetição

Nos ensaios fatoriais, o número de tratamentos aumenta rapidamente com o número de fatores. Por exemplo, o fatorial 2⁵ tem 32 tratamentos, o 2⁶ tem 64 combinações, etc. Geralmente, desde que os recursos são limitados, o número de repetições que o experimentador pode empregar é restrito.

Em algumas situações o experimentador usa apenas uma
repetição completa do fatorial (a não ser que possa omitir
alguns dos fatores originais). Contudo, com apenas uma
repetição não é possível computar uma estimativa do erro
experimental e as hipóteses sobre os efeitos e interações
não podem ser testadas. Nesses casos, uma análise
aproximada é feita assumindo-se que algumas interações
de ordem mais elevada são desprezíveis e com
expectância $\sigma^2$ , que são combinadas para estimar o erro
experimental.

A prática de combinar interações de ordem elevada para estimar o erro experimental é sujeita a crítica. Se algumas dessas interações são significativas o erro estará superestimado e outros efeitos significativos poderão não ser detectados.

As interações que serão combinadas devem ser escolhidas antes de serem examinadas, evitando que a escolha recaia sobre aquelas cujos quadrados médios apresentem-se menores, subestimando assim, o erro experimental. Por exemplo, se na análise de um fatorial 2⁵ os efeitos A, B e C bem como as interações AB e AC são bastante grandes, provavelmente o valor da interação ABC será também elevado. Assim, ABC não deverá ser incluída no conjunto que será usado como estimativa do erro. Usualmente, o procedimento é recomendado para fatoriais a partir do 2⁴.

Anotações:

9.9 Fatoriais Fracionados	Anotações:
Assumindo que certas interações de ordem elevada são desprezíveis, as informações sobre os efeitos principais e interações de ordem mais baixa podem ser obtidas utilizando-se apenas uma fração do ensaio fatorial completo, isto é, somente certos tratamentos.	
Os fatoriais fracionados são bastante empregados em pesquisas industriais e em ensaios preliminares para a identificação dos fatores de maior importância (MONTGOMERY, 1976).	

## **UNIDADE 10 - ENSAIOS FATORIAIS COM PARCELAS DIVIDIDAS**

Vamos tratar de modelos fatoriais em que as parcelas experimentais são divididas em subparcelas nas quais são sorteadas as categorias de outro fator.

UNIDADE 10 - ENSAIOS FATORIAIS COM PARCELAS DIVIDIDAS	Anotações:
Nos ensaios fatoriais, os tratamentos são distribuídos nas parcelas de acordo com o procedimento apropriado ao delineamento empregado. Entretanto, outros procedimentos para a aleatorização são possíveis sem alteração da estrutura dos fatores.	
Uma das alternativas consiste no sorteio em etapas: inicialmente são sorteadas as categorias de um fator nas parcelas experimentais. Na segunda etapa do sorteio, as parcelas experimentais são subdivididas, formando subparcelas e as categorias do outro fator são sorteadas nessas subparcelas.	
Por exemplo, seja um ensaio em que são testadas quatro categorias do fator A em dois blocos. Um segundo fator B com três categorias pode ser incorporado ao ensaio, dividindo-se cada parcela com uma determinada categoria do fator A em três subparcelas.	
Anós a aleatorização o croqui do ensajo node ser	

representado como o da Figura 10.1.



requerer uma maior área experimental, dependendo do	
método de aplicação;	Anotações:
2 - Quando for requerido um maior grau de precisão	
para as comparações entre as categorias de um fator.	
Tator:	
Nesse caso, o fator de deverá ser designado às	
subparcelas.	
<ul> <li>3 - Para facilitar a instalação e condução do experimento.</li> </ul>	
схренитенео.	
Por exemplo, em um ensaio de comparação de variedades	
de arroz sob diferentes níveis de irrigação - o fator	
irrigação deverá ser designado às parcelas para maior	
facilidade operacional.	
4 - Quando um fator adicional deve ser incorporado a	
um ensaio simples já instalado impossibilitando o	
sorteio relativo ao esquema fatorial.	
Por exemplo, seja um ensaio planejado e já instalado com o objetivo de comparar as produções de massa verde de	
gramíneas forrageiras. Aproximando-se a época da	
colheita o pesquisador resolve efetuar três cortes em	

diferentes épocas para também estudar o efeito das épocas de corte.

_				
An	od:	ari.	õ٥	0
MII	vu	aw	~	Э,

Embora o ensaio tenha sido instalado em blocos casualizados com um fator apenas, pode-se analisar os efeitos de gramíneas e de cortes na produção, através do esquema de parcelas subdivididas.

Na Tabela 10.1 são apresentadas as causas de variação com os respectivos graus de liberdade para o esquema de parcelas subdivididas com dois fatores – fator A nas parcelas e fator B nas subparcelas, segundo os delineamentos básicos.

TABELA 10.1 Causas de Variação e Graus de Liberdade para o Esquema de Parcelas Subdivididas em Diferentes Delineamentos.

D	IC	D	ВС		DQL
FV	GL	FV	GL	FV	GL
-				Linhas	a-1
		Α		Colunas	a-1
Α	a-1	Blocos	r-1	Α	a-1
Erro a	a( r-1 )	Erro a	(a-1)(r-1)	Erro a	(a-1) (a-2)
Parcelas	ar-1	Parcelas	ar-1	Parcelas	a ² -1
В	b-1	В	b-1	В	b-1
AxB	(a-1) (b-1)	$A \times B$		$A \times B$	(a-1) (b-1)
Erro b	a(r-1) (b-1)	Erro b	a-1	Erro b	a(a-1)(b-
					1)
Total	abr-1	Total	abr-1	Total	abr-1

O modelo estatístico para o esquema de Parcelas Subdivididas, no delineamento blocos Casualizados é:

# Anotações:

$$Y_{iik} = \mu + \alpha_i + b_k + \alpha b_{ik} + \beta_i + \alpha \beta_{ii} + \varepsilon_{iik}$$

onde:

 $y_{iik}$ : é o valor observado na subparcela i, j, k;

 $\mu$ : é uma constante inerente a toda observação;

 $\alpha_i$ : é o efeito do *i*-ésimo nível do fator A (i = 1, 2,

..., I);

 $b_k$ : é o efeito do bloco k (k = 1, 2, ..., K);

 $lpha b_{ik}$ : representa o erro experimental a nível de parcelas ;

 $\beta_j$ : é o efeito do j-ésimo nível do fator B (j=1, 2, ..., J);

 $\alpha\beta_{ij}$ : é o efeito da interação entre os fatores A e B;

 $\varepsilon_{\scriptscriptstyle ijk}$  : é o erro experimental a nível de subparcelas.

#### EXEMPLO 10.1

Um ensaio for realizado em parcelas subdivididas com três variedades de alfafa nas parcelas e quatro épocas de corte final nas subparcelas (SNEDECOR e COX, 1956). As duas primeiras colheitas foram comuns a todas as

parcelas. As épocas de corte foram: A – sem corte; B – corte em 1º de setembro; C – corte em 20 de setembro e D – corte em 7 de outubro. Os dados de produção de matéria verde no ano seguinte aos cortes são apresentados na Tabela 10.2.

Anotações:

TABELA 10.2 Produções de Três Variedades de Alfafa em Quatro Diferentes Épocas de Corte em 1943. Dados em Toneladas por Acre.

Variedades         Datas         1         2         3         4         5         6           Ladak         A         2,17         1,88         1,62         2,34         1,58         1,66           B         1,58         1,26         1,22         1,59         1,25         0,94           C         2,29         1,60         1,67         1,91         1,39         1,12           D         2,23         2,01         1,82         2,10         1,66         1,10           Cossack         A         2,33         2,01         1,70         1,78         1,42         1,35           B         1,38         1,30         1,85         1,09         1,13         1,06           C         1,86         1,70         1,81         1,54         1,67         0,88           D         2,27         1,81         2,01         1,40         1,31         1,06           Ranger         A         1,75         1,95         2,13         1,78         1,31         1,30           B         1,52         1,47         1,80         1,37         1,01         1,31           C         1,55         1,61         1,82						Blocos		
B 1,58 1,26 1,22 1,59 1,25 0,94 C 2,29 1,60 1,67 1,91 1,39 1,12 D 2,23 2,01 1,82 2,10 1,66 1,10  Cossack A 2,33 2,01 1,70 1,78 1,42 1,35 B 1,38 1,30 1,85 1,09 1,13 1,06 C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13	Variedades	Datas	1	2	3	4	5	6
C 2,29 1,60 1,67 1,91 1,39 1,12 D 2,23 2,01 1,82 2,10 1,66 1,10  Cossack A 2,33 2,01 1,70 1,78 1,42 1,35 B 1,38 1,30 1,85 1,09 1,13 1,06 C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13	Ladak	Α	2,17	1,88	1,62	2,34	1,58	1,66
Cossack  A 2,33 2,01 1,70 1,78 1,42 1,35 B 1,38 1,30 1,85 1,09 1,13 1,06 C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger  A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13		В	1,58	1,26	1,22	1,59	1,25	0,94
Cossack A 2,33 2,01 1,70 1,78 1,42 1,35 B 1,38 1,30 1,85 1,09 1,13 1,06 C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13		С	2,29	1,60	1,67	1,91	1,39	1,12
B 1,38 1,30 1,85 1,09 1,13 1,06 C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13		D	2,23	2,01	1,82	2,10	1,66	1,10
B 1,38 1,30 1,85 1,09 1,13 1,06 C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13								
C 1,86 1,70 1,81 1,54 1,67 0,88 D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13	Cossack	Α	2,33	2,01	1,70	1,78	1,42	1,35
D 2,27 1,81 2,01 1,40 1,31 1,06  Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13		В	1,38	1,30	1,85	1,09	1,13	1,06
Ranger A 1,75 1,95 2,13 1,78 1,31 1,30 B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13		С	1,86	1,70	1,81	1,54	1,67	0,88
B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13		D	2,27	1,81	2,01	1,40	1,31	1,06
B 1,52 1,47 1,80 1,37 1,01 1,31 C 1,55 1,61 1,82 1,56 1,23 1,13								
C 1,55 1,61 1,82 1,56 1,23 1,13	Ranger	Α	1,75	1,95	2,13	1,78	1,31	1,30
		В	1,52	1,47	1,80	1,37	1,01	1,31
D 1,56 1,72 1,99 1,55 1,51 1,33		С	1,55	1,61	1,82	1,56	1,23	1,13
		D	1,56	1,72	1,99	1,55	1,51	1,33

	Anotações:
10.1 Análise de Variância	
As somas de quadrados para os efeitos principais e	
interação são calculadas com os totais da Tabela 10.3 (a)	
e para "blocos" e "parcelas" da Tabela 10.3 (b). Os	
resultados obtidos são apresentados nas Tabelas 10.4 e	
10.5.	
A soma de quadrados para parcelas é dada por:	
$SQParcelas = \frac{1}{4}(8,27)^2 + (7,84)^2 + + (5,07)^2 - \frac{1}{72} \cdot (114,97)^2$ .	

TABELA 10.3 Tabelas Auxiliares Para os Cálculos das Somas de Quadrados Referentes ao Exemplo 10.1.

# Anotações:

	\	/ariedades		
Datas	L	С	R	Totais
Α	11,25	10,59	10,22	32,06
В	7,84	7,81	8,48	24,13
С	9,98	9,46	8,90	28,34
D	10,92	9,86	9,66	30,44
Totais	39,99	37,72	37,26	114,97
		<i>(</i> )		

(a)

	Va	ariedades		
Blocos	L	С	R	Totais
1	8,27	7,84	6,38	22,49
2	6,75	6,82	6,75	20,32
3	6,33	7,37	7,74	21,44
4	7,94	5,81	6,26	20,01
5	5,88	5,53	5,06	16,47
6	4,82	4,35	5,07	14,24

(b)

TABELA 10.4 Análise de Variância Para o Exemplo 10.1.

Anotações:

GL	SQ	QM	F _c
5	4,1498	0,8300	6,09*
2	0,1780	0,0890	< 1
10	1,3623	0,1362	
17	5,6901		
3	1,9625	0,6542	23,36**
6	0,2105	0,0351	1,25
45	1,2586	0,0280	
71	9,1218		
	5 2 10 17 3 6 45	5 4,1498 2 0,1780 10 1,3623 17 5,6901 3 1,9625 6 0,2105 45 1,2586	5       4,1498       0,8300         2       0,1780       0,0890         10       1,3623       0,1362         17       5,6901       3         3       1,9625       0,6542         6       0,2105       0,0351         45       1,2586       0,0280

TABELA 10.5 Produções Médias (t/acre) de Três Variedades de Alfafa (Exemplo 10.1).

Datas	Médias	Variedades	Médias
Sem Corte	1,78 a	Ladak	1,67 a
1º de Setembro	1,34 c	Cossack	1,57 a
20 de Setembro	1,57 b	Ranger	1,55 a
7 de Outubro	1,69 ab		
( a )		( b )	1

Observamos por esses resultados que as diferentes épocas de corte afetam a capacidade de renovação do crescimento e restauração das reservas das raízes. Para uniformidade nas produções seria necessário que o último

corte fosse bastante cedo para permitir a recuperação ou	
bastante tardio para evitar a diminuição das reservas.	Anotações:
As menores produções relativas às datas de corte B e C (DMS _{TURKEY 5%} = 0,15 t/acre) também eram esperadas, porém nesta região, o final do mês de setembro é considerado uma época imprópria para o corte da alfafa e, no entanto, a produção relativa a época C superou a relativa a B.	
Outro fato não esperado foi a ausência da interação entre variedades e épocas de corte pois a variedade Ladak tem menor capacidade de renovar o crescimento após o corte e deveria ter-se comportado diferentemente das outras variedades.	
Esse exemplo também ilustra a necessidade de associação entre os resultados estatísticos, a experiência e o conhecimento do pesquisador na discussão e interpretação dos resultados observados experimentalmente.	

1	0.2	Fetudo	dae	Médias
•	<b>U</b>	ESTRICTO		MECHAS

Anotações:

As comparações entre as médias dos tratamentos nos ensaios em parcelas subdivididas envolvem diferentes erros padrões, considerando-se os dois tipos de erros: Erro a e Erro b. As variâncias dos contrastes entre duas médias de tratamentos são:

Entre duas médias do fator A=

$$= 2 \left[ \frac{QMErroa}{NiveisdeB \times N^{\circ} de \operatorname{Re} petições} \right]$$

Entre duas médias do fator B=

$$= 2 \left[ \frac{QMErrob}{NiveisdeA \times N^{\circ} de \operatorname{Re} petições} \right]$$

Entre duas médias de B em um mesmo nível de A=

$$= 2 \left[ \frac{QMErrob}{N^{\circ} de \operatorname{Re} petições} \right]$$

Entre duas médias de A em um mesmo nível de B=

$$= 2 \left[ \frac{QM"ErroCombinado"}{N^0 de \text{Re } petições} \right]$$

A comparação de duas médias do fator A em um mesmo nível de B envolve uma combinação dos dois erros. O QM e o GL desta combinação são calculados como:	Anotações:
QM "Erro Combinado" =	
$=\frac{\left[QMErroa+(NiveisdeB-1)QMErrob\right]}{NiveisdeB}$	
GL "Erro Combinado" =	
$= \frac{\left[QMErroa + (NiveisdeB - 1)QMErrob\right]^{2}}{\left[QMErroa\right]^{2}} + \frac{\left[(NiveisdeB - 1)QMErrob\right]^{2}}{GLErrob}$	
Para o Exemplo 10.1, as variâncias são:	
$\hat{V}ar$ (Entre duas médias de Variedades)=	
$=2\left(\frac{0,1362}{4\times6}\right)=0,0113$	
$\hat{V}ar$ (Entre duas médias de Datas)=	
$=2\left(\frac{0,9280}{3\times6}\right)=0,0031$	

# $\hat{V}ar$ (Duas médias de Datas, mesma Variedade)=

$$=2\left(\frac{0,0280}{6}\right)=0,0093$$

QM "Erro Combinado"=

$$= \frac{1}{4} [0,1362 + (4-1)0,0280] = 0,0551$$

**GL** "Erro Combinado"=

$$= \frac{\left[0,1362 + (4-1)0,0280\right]^2}{\left[0,1362\right]^2 + \left[(4-1)0,0280\right]^2} = 24,10 \approx 24$$

 $\hat{V}ar$  (Duas médias de variedades, mesma data)=

$$=2\left(\frac{0,0551}{6}\right)=0,1837$$

Lembrando que a DMS do teste Tukey é dada por  $DMS = q\sqrt{\frac{1}{2}\hat{V}ar(\hat{Y})}$ , onde  $\hat{V}ar(\hat{Y})$  representa a estimativa da variância da comparação, pode-se testar qualquer comparação entre duas médias por este teste.

Anotações:

10.3 Ensaios em Parcelas Sub-Subdivididas	Anotações:
Muitas variantes do esquema de parcelas subdivididas podem ser empregadas: uma delas consiste em subdividir cada subparcela em c unidades para a inclusão de um terceiro fator C com c categorias.	
O método de análise é uma expansão do método apresentado para o esquema de parcelas subdivididas: o fator A é testado com o erro a; o fator B e a interação AxB com erro b, o fator C e as interações AxC, BxC e AxBxC com o erro c. Para maiores detalhes e outras variantes veja COCHRAN e COX (1950), FEDERER (1955), STEEL e TORRIE (1960).	
10.4 Ensaios em Parcelas Subdivididas no Tempo	
Verifique que nos exemplos apresentados cada parcela é formada por subparcelas distintas. Em muitos ensaios, entretanto, são feitas observações sucessivas em uma mesma parcela (medidas repetidas) por um período de tempo.	

Por exemplo, em um ensaio em blocos casualizados para	
a comparação de variedades de alfafa, as produções são	Anotações:
determinadas por um período de anos, com dois cortes	,
por ano, geralmente.	
· · · · · ·	
A análise dos dados de um ensaio em parcelas	
subdivididas no tempo é semelhante a análise	
apresentada para parcelas subdivididas no espaço.	
Uma diferença consiste na inclusão da interação Fator B x	
Repetições no modelo. Essa interação é testada com o	
erro b. Outras diferenças estão relacionadas com as	
variâncias das comparações entre duas médias de	
tratamentos (veja Steel, Torrie e Dickey, 1997).	

## **BIBLIOGRAFIA**

BANZATTO, D.A. e S. N. KRONKA. *Experimentação Agrícola*. Jaboticabal, SP: FUNEP, 4ª Ed., 237p, 2006.

BARROS NETO, J. C. e Outros. *Planejamento e Otimização de Experimentos*. Unicamp, Campinas, SP, 1995.

BOX, G. E. P. e COX, D. R. *An analisis of transformatios*. Jornal of the Royal Statistical Society, series B, 26, 211-243, 1964.

BRIEN, C.J. Analysis of variance tables based on experimental structure. *Biometrics*, v.39, p.53-59, 1983.

COCHRAN, W. G. e G. M. COX. *Experimental Designs*. New York, Wiley, 1957.

FISHER, R.A. *The design of experiments*. Edinburgh, Oliver and Boyd, 248p, 1935.

GOMES, F. P. Curso de *Estatística Experimental*. ESALQ, Piracicaba, SP, Editora da USP, 9^a ed, 430p, 1981.

LAPPONI, J. C. *Estatística Usando o Excel*. Versões 4 e 5. São Paulo, SP, Lapponi Trein. e Ed. Ltda, 1995.

MONTGOMERY, D.C. *Design and Analysis of Experiments*. John Wiley & Sons, 649p., 1991.

SNEDECOR, G. W. e W. G. COCHRAN. *Statistical Methods*. Ames, Iowa State Univ. Press, 1976.

STEEL, R.G.D., TORRIE, J.H. e DICKEY, D.A. *Principles and Procedures of Statistics: a biometrical approach*. Mc Graw Hill, 666p, 1997.

Tabela A.1. Quantis superiores da distribuição  $F(F_{0,05})$  com  $v_1$  graus de liberdade do numerador e  $v_2$  graus de liberdade do denominador, para o valor de 5% da probabilidade  $\alpha$ , de acordo com a seguinte afirmativa probabilística:  $P(F > F_{0,05}) = 0,05$ .

		$\nu_{\mathrm{l}}$											
$\mathbf{v}_2$	1	2	3	4	5	6	7	8	9	10	11		
1	161,45	199,50	215,70	224,58	230,16	234,0	236,8	238,9	240,5	241,9	242,98		
2 3	18,51	19,00	19,16 9,27	19,25	19,30	19,33	19,35	19,37	19,38	19,40	19,40		
3 4	10,13 7,71	9,55 6,94	6,59	9,11 6,39	9,01 6,26	8,94 6,16	8,88 6,09	8,84 6,04	8,81 6,00	8,78 5,96	8,76 5,94		
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,70		
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,03		
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,60		
8 9	5,32 5,12	4,46 4,26	4,07 3,86	3,84 3,63	3,69 3,48	3,58 3,37	3,50 3,29	3,44 3,23	3,39 3,18	3,35 3,14	3,31 3,10		
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,23	3,18	2,98	2,94		
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,82		
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,72		
13 14	4,67 4,60	3,81 3,74	3,41 3,34	3,18 3,11	3,03 2,96	2,92 2,85	2,83 2,76	2,77 2,70	2,71 2,65	2,67 2,60	2,63 2,57		
15	4,54	3,68	3,29	3,06	2,90	2,79	2,70	2,64	2,59	2,54	2,51		
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,46		
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,41		
18 19	4,41 4,38	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,37		
20	4,38	3,52 3,49	3,13 3,10	2,90 2,87	2,74 2,71	2,63 2,60	2,54 2,51	2,48 2,45	2,42 2,39	2,38 2,35	2,34 2,31		
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32	2,28		
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30	2,26		
23 24	4,28 4,26	3,42	3,03	2,80	2,64 2,62	2,53 2,51	2,44 2,42	2,37 2,36	2,32 2,30	2,27 2,25	2,24 2,22		
24 25	4,24	3,40 3,39	3,01 2,99	2,78 2,76	2,62 2,60	2,51 2,49	2,42	2,30 2,34	2,30	2,25	2,22		
	ŕ					•	ĺ		ŕ				
26 27	4,23 4,21	3,37 3,35	2,97 2,96	2,74 2,73	2,59 2,57	2,47 2,46	2,39 2,37	2,32 2,31	2,27 2,25	2,22 2,20	2,18 2,17		
28	4,21	3,34	2,96	2,73	2,56	2,46	2,36	2,31	2,23	2,20	2,17		
<b>29</b>	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18	2,14		
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16	2,13		
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12	2,08	2,04		
50 60	4,03 4,00	3,18 3,15	2,79 2,76	2,56 2,53	2,40 2,37	2,29 2,25	2,20 2,17	2,13 2,10	2,07 2,04	2,03 1,99	1,99 1,95		
120	4,00 3,92	3,15 3,07	2,76 2,68	2,53 2,45	2,3 / 2,29	2,25 2,18	2,17	2,10 2,02	2,04 1,96	1,99	1,95 1,87		
240	3,88	3,03	2,64	2,43	2,25	2,14	2,05	1,98	1,92	1,87	1,83		
480	3,86	3,01	2,62	2,39	2,23	2,12	2,03	1,96	1,90	1,85	1,81		
960	3,85	3,01	2,61	2,38	2,22	2,11	2,02	1,95	1,89	1,84	1,80		
$\infty$	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88	1,83	1,79		

Continua ...

Tabela A.1. Continuação ...

	$\mathbf{v}_1$											
$\mathbf{v}_2$	12	13	14	15	20	30	40	60	120	240	$\infty$	
1	243,91	244,69	245,36	245,95	248,0	250,1	251,1	252,2	253,3	253,8	254,31	
2	19,41	19,42	19,42	19,43	19,45	19,46	19,47	19,48	19,49	19,49	19,50	
3 4	8,74	8,72	8,71	8,69	8,65	8,60	8,57	8,54	8,49	8,42	8,53	
4	5,91	5,89	5,87	5,86	5,80	5,75	5,72	5,69	5,66	5,64	5,63	
5	4,68	4,66	4,64	4,62	4,56	4,50	4,46	4,43	4,40	4,39	4,36	
6	4,00	3,98	3,96	3,94	3,87	3,81	3,77	3,74	3,70	3,69	3,67	
7	3,57	3,55	3,53	3,51	3,44	3,38	3,34	3,30	3,27	3,25	3,23	
8	3,28	3,26	3,24	3,22	3,15	3,08	3,04	3,01	2,97	2,95	2,93	
9	3,07	3,05	3,03	3,01	2,94	2,86	2,83	2,79	2,75	2,73	2,71	
10	2,91	2,89	2,86	2,85	2,77	2,70	2,66	2,62	2,58	2,56	2,54	
11	2,79	2,76	2,74	2,72	2,65	2,57	2,53	2,49	2,45	2,43	2,40	
12	2,69	2,66	2,64	2,62	2,54	2,47	2,43	2,38	2,34	2,32	2,30	
13	2,60	2,58	2,55	2,53	2,46	2,38	2,34	2,30	2,25	2,23	2,21	
14	2,53	2,51	2,48	2,46	2,39	2,31	2,27	2,22	2,18	2,15	2,13	
15	2,48	2,45	2,42	2,40	2,33	2,25	2,20	2,16	2,11	2,09	2,07	
16	2,42	2,40	2,37	2,35	2,28	2,19	2,15	2,11	2,06	2.03	2,01	
<b>17</b>	2,38	2,35	2,33	2,31	2,23	$\frac{1}{2},\frac{1}{15}$	2,10	2,06	2,01	1,99	1,96	
18	2,34	2,31	2,29	2,27	2,19	2,11	2,06	2,02	1,97	1,94	1,92	
19	2,31	2,28	2,26	2,23	2,16	2,07	2,03	1,98	1,93	1,90	1,88	
20	2,28	2,25	2,22	2,20	2,12	2,04	1,99	1,95	1,90	1,87	1,84	
21	2,25	2,22	2,20	2,18	2,10	2,01	1,96	1,92	1,87	1,84	1,81	
22	2,23	2,20	2,17	2,15	2,07	1,98	1,94	1,89	1,84	1,81	1,78	
$\overline{23}$	2,20	2,18	2,15	2,13	2,05	1,96	1,91	1,86	1.81	1,79	1,76	
24	2,18	2,15	2,13	2,11	2,03	1.94	1,89	1.84	1,79	1,76	1,73	
<b>25</b>	2,16	2,14	2,11	2,09	2,01	1,92	1,87	1,82	1,77	1,74	1,71	
26	2,15	2,12	2,09	2,07	1,99	1,90	1,85	1,80	1,75	1,72	1,69	
<b>2</b> 7	2,13	2,10	2,08	2,06	1,97	1,88	1,84	1,79	1,73	1,70	1,67	
28	2,12	2,09	2,06	2,04	1,96	1,87	1,82	1,77	1,71	1,68	1,65	
<b>29</b>	2,10	2,08	2,05	2,03	1,94	1,85	1,81	1,75	1,70	1,67	1,64	
<b>3</b> 0	2,09	2,06	2,04	2,01	1,93	1,84	1,79	1,74	1,68	1,65	1,62	
40	2,00	1,97	1,95	1,92	1,84	1,74	1,69	1,64	1,58	1,54	1,51	
50	1,95	1,92	1,89	1,87	1,78	1,69	1,63	1,58	1,51	1,48	1,44	
60	1,92	1,89	1,86	1,84	1,75	1,65	1,59	1,53	1,47	1,43	1,39	
120	1,83	1,80	1,78	1,75	1,66	1,55	1,50	1,43	1,35	1,31	1,25	
240	1,79	1,76	1,73	1,71	1,61	1,51	1,44	1,37	1,29	1,24	1,17	
<b>480</b>	1,77	1,74	1,71	1,69	1,59	1,48	1,42	1,35	1,26	1,20	1,12	
960	1,76	1,73	1,70	1,68	1,58	1,47	1,41	1,33	1,24	1,18	1,12	
$\infty$	1,75	1,73	1,69	1,67	1,57	1,46	1,39	1,33	1,22	1,15	1,00	
~	1,73	1,12	1,07	1,07	1,57	1,70	1,57	1,54	1,44	1,13	1,00	

Tabela A.2 Quantil superior da amplitude estudentizada para o teste de Tukey, em função do número de tratamentos (I) e dos graus de liberdade do resíduo (v), ao nível de 5% de probabilidade.

					Núme	ro de	tratar	mentos				
v	2	3	4	5	6	7	8	9	10	11	12	13
1	17,97	26,97	32,81	37,06	40,39	43,11	45,40	47,37	49,09	50,62	51,99	53,23
2	6,08	8,33	9,80	10,88	11,73	12,43	13,03	13,54	13,99	14,39	14,75	15,08
3	4,50	5,91	6,82	7,50	8,04	8,48	8,85	9,17	9,46	9,71	9,94	10,15
4	3,93	5,04	5,76	6,29	6,71	7,05	7,35	7,60	7,83	8,03	8,21	8,37
5	3,64	4,60	5,22	5,67	6,03	6,33	6,58	6,80	6,99	7,17	7,32	7,47
6	3,46	4,34	4,90	5,30	5,63	5,90	6,12	6,32	6,49	6,65	6,79	6,92
7	3,34	4,16	4,68	5,06	5,36	5,61	5,82	6,00	6,16	6,30	6,43	6,55
8	3,26	4,04	4,53	4,89	5,17	5,40	5,60	5,77	5,92	6,06	6,18	6,29
9	3,20	3,95	4,42	4,76	5,03	5,25	5,43	5,60	5,74	5,87	5,98	6,09
10	3,15	3,88	4,33	4,66	4,91	5,13	5,31	5,46	5,60	5,72	5,83	5,94
11	3,11	3,82	4,26	4,58	4,82	5,03	5,20	5,35	5,49	5,61	5,71	5,81
12	3,08	3,77	4,20	4,51	4,75	4,95	5,12	5,27		5,51	5,62	5,71
13	3,06	3,74	4,15	4,45	4,69	4,89	5,05	5,19		5,43	5,53	5,63
14	3,03	3,70	4,11	4,41	4,64	4,83	4,99	5,13	5,25	5,36	5,46	5,56
15	3,01	3,68	4,08	4,37	4,60	4,78	4,94	5,08	5,20	5,31	5,40	5,49
16	3,00	3,65	4,05	4,33	4,56	4,74	4,90	5,03	5,15	5,26	5,35	5,44
17	2,98	3,63	4,02	4,30	4,52	4,71	4,86	4,99	5,11	5,21	5,31	5,39
18	2,97	3,61	4,00	4,28	4,50	4,67	4,83	4,96	5,07	5,17	5,27	5,35
19	2,96	3,59	3,98	4,25	4,47	4,65	4,80		5,04	5,14	5,23	5,32
20	2,95	3,58	3,96	4,23	4,45	4,62		4,90	5,01	5,11	5,20	5,28
25	2,91	3,52	3,89	4,15	4,36	4,53		4,79	4,90	4,99	5,08	5,16
30	2,89	3,49	3,85	4,10	4,30	4,47	4,60	4,72	4,83	4,92	5,00	5,08
35	2,87	3,46	3,82	4,07	4,26	4,42	4,56	4,67	4,77	4,86	4,95	5,02
40	2,86	3,44	3,79	4,04	4,23	4,39	4,52	4,64	4,74	4,82	4,90	4,98
50	2,84	3,42	3,76	4,00	4,19	4,34	4,47	4,58	4,68	4,77	4,85	4,92
60	2,83	3,40	3,74	3,98	4,16	4,31	4,44	4,55	4,65	4,73	4,81	4,88
70	2,82	3,39	3,72	3,96	4,14	4,29	4,42	4,53	4,62	4,71	4,78	4,85
80	2,81	3,38	3,71	3,95	4,13	4,28	4,40	4,51	4,60	4,69	4,76	4,83
90	2,81	3,37	3,70	3,94	4,12	4,27	4,39	4,50	4,59	4,67	4,75	4,81
100	2,81	3,37	3,70	3,93	4,11	4,26	4,38	4,48	4,58	4,66	4,73	4,80
120	2,80	3,36	3,69	3,92	4,10	4,24	4,36	4,47	4,56	4,64	4,72	4,78
200	2,79	3,34	3,66	3,89	4,07	4,21	4,33	4,44	4,53	4,61	4,68	4,74
240	2,79	3,34	3,66	3,89	4,06	4,21	4,33	4,43	4,52	4,60	4,67	4,73
œ	2,77	3,31	3,63	3,86	4,03	4,17	4,29	4,39	4,47	4,55	4,62	4,68

## Continuação

Tabela A.2 Quantil superior da amplitude estudentizada para o teste de Tukey, em função do número de tratamentos (I) e dos graus de liberdade do resíduo (v), ao nível de 5% de probabilidade.

					Nú	mero c	de tra	tament	os				
v	14	15	16	17	18	19	20	25	30	40	45	50	60
1	54,35	55,38	56,33	57,21	58,03	58,79	59,51	62,52	64,86	68,36	69,74	70,94	72,98
2	15,37	15,65	15,90	16,14	16,36	16,57	16,77	17,60	18,27	19,30	19,71	20,07	20,70
3	10,34	10,52	10,68	10,84	10,98	11,11	11,24	11,78	12,20	12,86	13,13	13,36	13,75
4	8,52	8,66	8,79	8,91	9,03	9,13	9,23	9,66	10,00	10,53	10,74	10,92	11,24
5	7,60	7,72	7,83	7,93	8,03	8,12	8,21	8,58	8,87	9,33	9,51	9,67	9,95
6	7,03	7,14	7,24	7,34	7,43	7,51	7,59	7,92	8,19	8,60	8,77	8,91	9,16
7	6,66	6,76	6,85	6,94	7,02	7,10	7,17	7,48	7,73	8,11	8,26	8,40	8,63
8	6,39	6,48	6,57	6,65	6,73	6,80	6,87	7,16	7,40	7,76	7,90	8,03	8,25
9	6,19	6,28	6,36	6,44	6,51	6,58	6,65	6,92	7,15	7,49	7,63	7,75	7,96
10	6,03	6,12	6,20	6,27	6,34	6,41	6,47	6,74	6,95	7,28	7,41	7,53	7,73
11	5,90	5,99	6,06	6,14	6,20	6,27	6,33	6,58	6,79	7,11	7,24	7,35	7,55
12	5,80	5,88	5,95	6,02	6,09	6,15	6,21	6,46	6,66	6,97	7,10	7,21	7,40
13	5,71	5,79	5,86	5,93	6,00	6,06	6,11	6,36	6,55	6,86	6,98	7,08	7,27
14	5,64	5,72	5,79	5,85	5,92	5,97	6,03	6,27	6,46	6,76	6,87	6,98	7,16
15	5,58	5,65	5,72	5,79	5,85	5,90	5,96	6,19	6,38	6,67	6,79	6,89	7,07
16	5,52	5,59	5,66	5,73	5,79	5,84	5,90	6,13	6,31	6,60	6,71	6,81	6,98
17	5,47	5,55	5,61	5,68	5,74	5,79	5,84	6,07	6,25	6,53	6,64	6,74	6,91
18	5,43	5,50	5,57	5,63	5,69	5,74	5,80	6,02	6,20	6,47	6,58	6,68	6,85
19	5,39	5,46	5,53	5,59	5,65	5,70	5,75	5,97	6,15	6,42	6,53	6,63	6,79
20	5,36	5,43	5,49	5,55	5,61	5,66	5,71	5,93	6,11	6,37	6,48	6,58	6,74
25	5,23	5,30	5,36	5,42	5,47	5,52	5,57	5,78	5,94	6,20	6,30	6,39	6,55
30	5,15	5,21	5,27	5,33	5,38	5,43	5,48	5,68	5,83	6,08	6,18	6,27	6,42
35	5,09	5,15	5,21	5,26	5,32	5,36	5,41	5,60	5,76	6,00	6,09	6,18	6,33
40	5,04	5,11	5,16	5,22	5,27	5,31	5,36	5,55	5,70	5,94	6,03	6,11	6,26
50	4,98	5,04	5,10	5,15	5,20	5,25	5,29	5,47	5,62	5,85	5,94	6,02	6,16
60	4,94	5,00	5,06	5,11	5,16	5,20	5,24	5,42	5,57	5,79	5,88	5,96	6,09
70	4,91	4,97	5,03	5,08	5,12	5,17	5,21	5,39	5,53	5,75	5,84	5,91	6,05
80	4,89	4,95	5,00	5,05	5,10	5,14	5,18	5,36	5,50	5,72	5,80	5,88	6,01
90	4,88	4,93	4,99	5,04	5,08	5,12	5,17	5,34	5,48	5,69	5,78	5,86	5,98
100	4,86	4,92	4,97	5,02	5,07	5,11	5,15	5,32	5,46	5,67	5,76	5,83	5,96
120	4,84	4,90	4,95	5,00	5,04	5,09	5,13	5,30	5,43	5,64	5,73	5,80	5,93
200	4,80	4,86	4,91	4,96	5,00	5,04	5,08	5,25	5,38	5,59	5,67	5,74	5,86
240	4,79	4,85	4,90	4,95	4,99	5,03	5,07	5,24	5,37	5,57	5,65	5,72	5,85
∞	4,74	4,80	4,85	4,89	4,93	4,97	5,01	5,17	5,30	5,50	5,58	5,65	5,76

## Continuação

Tabela A.2 Quantil superior da amplitude estudentizada para o teste de Tukey, em função do número de tratamentos (I) e dos graus de liberdade do resíduo (v), ao nível de 5% de probabilidade.

					1	Número	de tra	tamento	s				-
v	70	80	90	100	150	200	400	600	800	1000	1400	1800	2000
1	74,65	76,07	77,30	78,39	82,47	85,26	91,69	95,27	97,74	99,62	102,39	104,42	105,26
2	21,22	21,67	22,06	22,41	23,75	24,69	26,90	28,16	29,03	29,70	30,68	31,40	31,70
3	14,08	14,35	14,59	14,81	15,60	16,14	17,37	18,05	18,52	18,87	19,40	19,78	19,94
4	11,50	11,73	11,93	12,10	12,75	13,20	14,25	14,85	15,26	15,58	16,04	16,39	16,53
5	10,18	10,37	10,54	10,70	11,26	11,66	12,57	13,09	13,45	13,72	14,14	14,44	14,56
6	9,37	9,55	9,70	9,84	10,36	10,71	11,54	12,00	12,32	12,57	12,93	13,20	13,31
7	8,83	8,99	9,13	9,26	9,74	10,07	10,84	11,27	11,57	11,79	12,13	12,37	12,48
8	8,43	8,59	8,73	8,84	9,30	9,61	10,34	10,74	11,03	11,24	11,56	11,79	11,88
9	8,13	8,28	8,41	8,53	8,96	9,26	9,96	10,34	10,61	10,82	11,12	11,34	11,44
10	7,90	8,04	8,17	8,28	8,70	8,98	9,65	10,03	10,29	10,49	10,78	11,00	11,08
11	7,71	7,85	7,97	8,08	8,48	8,76	9,41	9,77	10,03	10,22	10,50	10,71	10,80
12	7,55	7,69	7,81	7,91	8,30	8,58	9,21	9,56	9,81	10,00	10,27	10,48	10,56
13	7,42	7,55	7,67	7,77	8,15	8,42	9,04	9,38	9,62	9,81	10,08	10,28	10,36
14	7,31	7,44	7,55	7,65	8,03	8,29	8,89	9,23	9,47	9,65	9,91	10,11	10,19
15	7,21	7,34	7,45	7,55	7,92	8,17	8,76	9,10	9,33	9,51	9,77	9,96	10,04
16	7,13	7,25	7,36	7,46	7,82	8,07	8,65	8,98	9,21	9,39	9,64	9,83	9,91
17	7,06	7,18	7,28	7,38	7,74	7,98	8,56	8,88	9,10	9,28	9,53	9,72	9,79
18	6,99	7,11	7,21	7,31	7,66	7,90	8,47	8,79	9,01	9,18	9,43	9,61	9,69
19	6,93	7,05	7,15	7,24	7,59	7,83	8,39	8,71	8,93	9,09	9,34	9,52	9,60
20	6,88	7,00	7,10	7,19	7,53	7,77	8,32	8,63	8,85	9,02	9,26	9,44	9,51
25	6,68	6,79	6,89	6,97	7,30	7,52	8,05	8,35	8,56	8,71	8,95	9,12	9,19
30	6,54	6,65	6,74	6,83	7,14	7,36	7,87	8,16	8,36	8,51	8,74	8,90	8,97
35	6,45	6,55	6,64	6,72	7,03	7,24	7,74	8,02	8,21	8,36	8,58	8,74	8,81
40	6,38	6,48	6,57	6,65	6,95	7,15	7,64	7,91	8,10	8,25	8,46	8,62	8,69
50	6,27	6,37	6,46	6,54	6,83	7,03	7,50	7,76	7,94	8,09	8,30	8,45	8,51
60	6,21	6,30	6,39	6,46	6,75	6,94	7,40	7,66	7,84	7,98	8,18	8,33	8,39
70	6,16	6,25	6,34	6,41	6,69	6,88	7,33	7,58	7,76	7,89	8,09	8,24	8,30
80	6,12	6,22	6,30	6,37	6,64	6,83	7,28	7,53	7,70	7,83	8,03	8,18	8,24
90	6,09	6,19	6,27	6,34	6,61	6,80	7,23	7,48	7,65	7,78	7,98	8,12	8,18
100	6,07	6,16	6,24	6,31	6,58	6,77	7,20	7,44	7,61	7,75	7,94	8,08	8,14
120	6,04	6,13	6,21	6,28	6,54	6,72	7,15	7,39	7,56	7,69	7,88	8,02	8,07
200	5,97	6,06	6,13	6,20	6,46	6,63	7,05	7,28	7,44	7,56	7,75	7,88	7,94
240	5,95	6,04	6,11	6,18	6,44	6,61	7,02	7,25	7,41	7,53	7,71	7,85	7,90
- 00	5,86	5,95	6,02	6,08	6,33	6,50	6,88	7,10	7,25	7,37	7,54	7,67	7,72