Wydział Informatyki i Telekomunikacji Laboratorium Podstaw Elektroniki

Sprawozdanie z ćwiczenia

Tytuł Twierdzenie Thevenina		Rok akademicki 2019/2020
Data wykonania ćwiczenia 22.03.2020	Data oddania sprawozdania 25.03.2020	Kierunek Informatyka
Skład grupy laboratoryjnej 1. Dawid Królak 2. Michał Matuszak 3. Mateusz Miłkowski 4. Dominik Pawłowski	Rok, semestr, grupa Rok 1, semestr 2, grupa I2.1	

1. Cel ćwiczenia.

Zastosowanie twierdzenia Thevenina do rozwiązania problemu obliczenia wartości prądu płynącego w danym miejscu obwodu. Wykonanie cyfrowej symluacji dla tegoż problemu.

2. Podstawy teoretyczne.

Twierdzenie Thevenina - Prąd płynący przez odbiornik rezystancyjny R, przyłączony do dwóch zacisków AB dowolnego liniowego układu zasilającego prądu stałego jest równy ilorazowi napięciaU0mierzonego na zaciskach AB w stanie jałowym przez rezystancję R powiększoną o rezystancję zastępczą Rw układu zasilającego mierzoną na zaciskach AB.

Z twierdzenia tego wnioskujemy, że każdy obwód można przedstawić w następującej postaci:

Gdzie V1 to źródło tzw. *napięcia Thevenina*, a R1 to rezystor o wartości *rezystancji Thevenina*.

3. Obliczenia analityczne.

Obwód, dla którego wykonane zostaną obliczenia:

Przyjęte wartości rezystancji: R1 = R2 = R3 = R4 = R5 = $1 \text{k}\Omega$

Celem obliczeń jest znalezienie wartości prądów I1, I2, I3 płynących przez odpowiadające rezystory. Ponieważ przyjęte wartości rezystancji dla R1, R2 i R3 są takie same, oraz rezystory te są wpięte w obwód w sposób identyczny, obliczenia zostaną przeprowadzone tylko dla przypadku I1 - pozostałe wartości będą takie same.

I. Eliminacja rezystora z obwodu i obliczenie napięcia U_™ panującego na zaciskach A i B.

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3}$$

$$R_{23} = \frac{1000 \cdot 1000}{2000} = 500\Omega$$

$$U_{TH} = I \cdot R_{23} = \frac{V_1}{R_{23} + R_4 + R_5} R_{23} = \frac{5V}{500\Omega + 1000\Omega + 1000\Omega} \cdot 500\Omega = 1V$$

Zastąpienie źródła napięciowego zwarciem i obliczenie rezystancji zastępczej R_{TH} z perspektywy zacisków A i B.

$$R_{45} = 1000\Omega + 1000\Omega = 2000\Omega$$

$$R_{TH} = \frac{R_2 R_3 R_{45}}{R_2 R_3 + R_2 R_{45} + R_3 R_{45}} = \frac{1000 \cdot 1000 \cdot 2000}{1000 \cdot 1000 + 1000 \cdot 2000 + 1000 \cdot 2000}$$

$$R_{TH} = \frac{2000000000}{1000000 + 20000000 + 20000000} = \frac{20000000000}{50000000} = 400\Omega$$

Znając wartości U_{TH} oraz R_{TH} można przedstawić obwód w następującej postaci:

Gdzie V2 = U_{TH} , a R6 = R_{TH} .

Obliczenie prądu I₁ przepływającego przez R1:

$$I_1 = \frac{U_{TH}}{R_1 + R_{TH}} = \frac{1}{400 + 1000} = \frac{1}{1400}A = 0.000714A$$

Zgodnie z wcześniejszymi ustaleniami:

$$I_1 = I_2 = I_3 = \frac{1}{1400}A$$

4. Symulacja.

Podczas symulacji zmierzone zostaną napięcie i prąd płynący przez rezystor R1. Następnie wykonany zostanie uproszczony układ z źródłem napięcia generującym napięcie Thevenina oraz rezystorem o rezystancji Thevenina.

Symulowany obwód

Uruchomienie symulacji DC op pnt, usunięcie rezystora R1 i zmierzenie napięcia pomiędzy zacikami A i B.

Odczyt U_{TH} = 1000mV = 1V między zaciskami A i B.

 R_{TH} wynosi 400 Ω . Konstrukcja uproszczonego obwodu.

Wyniki otrzymane po wykonaniu symulacji DC op pnt:

Operating Point			
V(n001): V(n002): I(R2): I(R1): I(V1):	0.0007143	voltage voltage 4286 device_current 286 device_current 4286 device_current	

Odczytujemy wartość prądu I₁ płynacego przez R1: 0.000714286A.

5. Tabela wyników obliczeń i symulacji.

	Obliczenia	Symulacja
	$R_1 / R_2 / R_3$	$R_1/R_2/R_3$
U _{TH}	1V	1000mV = 1V
R _{TH}	400 Ω	400 Ω
I	0.000714 A	0.000714286 A

Wyniki symulacji pokrywają się z analitycznymi obliczeniami.

6. Wnioski i obserwacje.

Przeprowadzona symulacja poparta obliczeniami potwierdza twierdzenie Thevenina. Dowolny układ można uprościć do równoważnej, prostszej wersji. Twierdzenie to ma zastosowanie kiedy nie interesuje nas budowa wewnętrzna danego układu, a chodzi jedynie o odczytanie wyjściowych wartości.