

FACULTY OF SCIENCE

Practical Course: Integrative Bioinformatics

Winter Term 2018/19 March 11 – 22

Photo: Shutterstock

Central Dogma of Biology (extended edition)

Omics-Layer Molecule Measurement **Central Dogma** NGS Genome Transcription Transcriptome RNA-seq (NGS) Microarray **Translation Proteome** Mass spectrometry Metabolism-Metabolome Mass spectrometry **NMR**

Trans-Omics Studies

- Until recently
 - Analysis of each level in central dogma studied individually
- Each level of molecules in the central dogma contain orthogonal information
 - With cheap and fast methods for data acquisition now try to include multiple levels to get the big picture of what is going on in cell

Idea

- Measure across multiple omicslayers
- Identify connections within each layer
- Identify connections between layers and phenotype

Structure of the Practical Course

Goal

Learn how to integrate biological data from multiple sources and omics-layers for integrative analysis

Procedure

- Intro presentations in the mornings
- Work on tasks for the day in jupyter notebooks
- Commit progress to github

Requirements

- Attendance on all days
- Project report (one tidy notebook per topic)

Day 3/4: Genome-wide association studies

Day 5/6: Differential expression analysis

Day 7/8: Biological pathways

- Williams et al., Systems
 proteomics of liver mitochondria function, Science
 352(6291):aad0189, June 10, 2016
- Wang et al., Joint mouse-human phenome-wide association to test gene function and disease risk, Nature Communications 7, 2016, Article number: 10464
- Andreux et al. Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits, Cell 150, September 14, 2012

BXD mouse strains

- Cross-bred between female C57BL/6J (B6) and male DBA/2J (D2)
 - Parents fully sequenced
 - Parents differ at 4.8M SNPs
 - Inbred for 20+ generations
- Generated in 4 distinct time frames
- 100+ different strains
- Well characterized
 - 4300 phenotypes characterized (categorical and quantitative)
 - Various expression levels
 measured in different tissue types

Genotype File Format

<pre>@name:BXD @type:riset</pre>		Genotype c	ollected from GeneN	letwork.ora		
@mat:B			nce analysis of B v	_	found in this publ	lication:
@pat:D		•	ouse-human phenome-		•	
@het:H					,	
@unk:U						
Chr	Locus	сМ	Mb	BXD1	BXD2	BXD5
1	rs6269442	0	3.482275	В	В	D
1	rs6365999	0	4.811062	В	В	D
1	rs6376963	0.895	5.008089	В	В	D
1	rs3677817	1.185	5.176058	В	В	D
1	rs8236463	2.081	5.579193	В	В	D
1	rs6333200	2.081	6.217921	В	В	D
1	rs6298633	2.367	6.820241	В	В	D
1	rs6241531	2.367	9.995925	В	В	D
1	rs6360236	3.263	11.073904	В	В	D
1	rs3722996	3.263	11.259432	В	В	D
1	D1Mit1	3.549	11.505582	В	В	D
1	D1Mit294	3.836	11.731387	В	В	D
1	rs13475728	3.836	12.71128	В	В	D
1	rs3655978	5.797	13.37307	В	В	В
1	rs3654866	5.797	13.697098	В	В	В
1	rs3669485	6.083	13.975252	В	В	В
1	rs3713198	6.083	14.464944	В	В	В
1	rs6291839	6.675	14.787217	В	В	В
1	rs13475735	6.675	14.977874	В	В	В
1	rs3088964	6.962	15.196882	В	В	В
1	rs13475737	6.962	15.444839	В	В	В
1	rs3678179	7.248	15.498263	В	В	В
1	rs6201380	7.248	15.801731	В	В	В

Data Set: Transcriptome

Data Set: Phenome

CLAMS: respiration measurements

HGTT: Glucose tolerance

test

NIBP: Noninvasive blood pressure measurements Cold response test

TSE: Basal activity recording

VO2Max: respiratory

measurements and distance

on treadmill

Activity Wheel: ad libitum access to activity running wheel

Tissue weight

Biochemistry: Biochemistry

measurements

Hematology: Cellular

analysis of blood after killing

Phenotype File Format

	A @format=c	CD_DiastolicBP_N	С	D	E HFD_DiastolicBP_N	F	G	H CD_SystolicBP_NI	4	J	K HFD_SystolicBP_N	L	M
			SE N			SE 🔻	NI =	_ ,	SE 🔻		IBP [mmHq] □	CE	N 🔻
_													
	C57BL/6J	93.5	4.140393356	8	77.1	3.078946364	8		4.140393356	8	111.5	5.483742205	
	DBA/2J	87.5	3.807886553	8	80.3	3.132491022	8		3.807886553	8	108.0	3.273268354	
	BXD1	89.2	5.453439282	5	78.2	6.938299503	5		5.887274412	5	104.6	5.065570057	5
	BXD2	77.0	6.570134448	4	76.2	3.839270764	5		3.859512059	4	107.8	3.2	
	BXD6	76.8	4.993996396	5	69.4	4.34281015	5		3.264965543	5	96.2	4.352011029	
	BXD8	83.8	5.921359641	4	70.0	3.31662479	4	111.0	6.757711644	4	95.8	2.672077843	5
	BXD11	73.0	4.582575695	3	66.4	4.34281015	5		3.282952601	3	92.4	2.249444376	
	BXD12	84.0	7.778174593	5	70.2	4.164132563	5		5.211525688	5	101.6	6.071243695	
	BXD16	78.0	4.708148964	4	89.3	4.216370214	6	108.5	3.570714214	4	113.0	3.812260921	6
	BXD27	83.8	5.132250968	5	90.5	0.645497224	4	107.8	4.715930449	5	108.3	1.701714821	4
	BXD32	65.4	6.79	10	62.0	4.04	6	103.8	4.48	10	108.0	4.4	
	BXD34	75.0	4.123105626	4	80.0	7.355270219	5	107.8	3.567795771	4	117.0	6.276941931	5
	BXD39	58.0	4.4	8	60.4	3	10	89.4	4.9	10	96.4	1.7	10
	BXD40	99.0	1.7	6	76.0	4.78	8	121.0	4	6	112.8	7.43	8
	BXD43	68.5	2.31	6	67.3	4.5	6	97.3	2.43	6	101.7	2.7	6
	BXD44	79.6	6.281349946	8	82.6	6.059047249	8	107.8	6.281349946	8	126.9	4.918759643	8
	BXD45	88.9	3.961590139	8	78.7	4.794412848	7		3.961590139	8	101.9	4.589992071	7
	BXD48	77.9	5.9	7	73.8	9.43	8	110.0	3.5	8	107.2	7.5	
20	BXD48a	77.8	4.8	6	74.0	3.405877273	6	109.7	3.15	6	111.3	3.826806037	6
	BXD49	68.3	5.7	8	73.8	9.4227	8	97.0	4.1	8	107.2	7.475	
	BXD50	58.6	4.2	8	73.8	3.4	8	96.0	4.4	8	105.6	2.64	8
	BXD51	75.6	2.235568799	8	62.5	4.747179614	8	101.6	2.235568799	8	98.6	3.375	
	BXD53	81.2	4.066939882	5	75.2	6.414047084	5	110.2	3.773592453	5	105.6	7.131619732	
	BXD55	93.0	1.224744871	4	87.8	9.498903445	4	122.0	1.224744871	4	116.0	3.807886553	4
	BXD56	73.6	4 206	8	85.2	5.8	8	104.0	4.34	8	119.9	3.6	
	BXD60 BXD61	91.6 79.9	4.296 2.572750983	8 7	93.2 79.8	4.1 3.514002602	10 8	117.2	3.723 2.572750983	8 7	122.4 110.4	1.5 4.690177807	10
	BXD61		3.803483656	8		4.032001165	8	111.0 103.5	2.562557582	8	110.4	2.99114182	
	BXD62	74.3 93.1	3.803483656	8	74.0 76.0	3.882193783	8	103.5	3.1	8	101.5	3.343103242	8
	BXD64	89.8	7.06	8	97.3	3.662193763	7		5.61	8	121.8	2.72	
	BXD65	80.9	4.17	8	79.5	2.52	8	109.5	4.87	8	101.0	1.9	8
	BXD65a	83.4	4.17	8	81.4	2.52 5.9	8	109.5	4.67	8	111.3	4.5	
	BXD65b	73.4	1.778	8	01.4	5.9	0	102.6	1.6437	8	111.5	4.5	0
	BXD66	75.8	2.962564044	8	76,8	5.174629041	8	102.6	2.6554358	8	106.5	2,464026902	8
36	BXD67	86.2	5.323532662	5	70.4	3.043024811	5	110.6		5	95.2	1.15758369	5
	BXD68	78.1	2.82	7	83.8	3.043024611	8	106.6	1.33	7	109.1	2.3	8
3/	DVDOQ	78.1	2.82	/	83.8	3./	8	100.6	1.33	/	109.1	2.3	ď

What data will we use in the course

- Integrate data
 - genotype
 - phenotype
 - gene expression
 - known metabolic and signaling networks
- Challenges
 - data formats
 - data types
 - different identifiers
 - missing data
 - large number of data points -> visualization
 - reproducibility

Specific topics of the course

- Data characterization
- Comparison of differences in traits across different environments
- Association between gene variants and phenotypic traits
- Association between gene variants and gene expression
- Differential gene expression analysis
- Relation of gene expression changes with potential effects in cellular processes (i.e., pathways)
- Visualization and reporting of results from biological data analysis

TECHNICAL INTRO

Jupyter Notebooks

- Run interactive python sessions in the browser and save results
- Start from command line with jupyter notebook

- Python data analysis library
- NumPy developed for numerical computing tasks
- Pandas developed for integrated data analysis
- Combine speed and memory efficiency of numpy arrays and matrices with R-style data frames into own data structure:

Series and DataFrame

- Series: 1D array of indexed data
- DataFrame: 2D array with flexible row indices and column names

- Offers many vectorized methods for data manipulation
- Pandas objects are automatically rendered as HTML tables in Jupyter notebooks

import pandas as pd

Show pandas version print pd.__version__

Pandas: Series objects

```
# One way to create a Series: from a list
s = pd.Series([0.25, 0.5, 0.75, 1.0])
# Obtain Series values as numpy array
s.values
# Obtain Series index as pd.Index object
s.index
# Access individual elements by index
s[1]
# Access slice of data by index
s[1:3]
# One way to create a Series with defined index
s = pd.Series([0.25, 0.5, 0.75, 1.0],
         index=['a', 'b', 'c', 'd'])
```


Pandas DataFrame objects

```
# One way to create a DataFram: from a list of lists
df = pd.DataFrame([[0.25, 0.5], [0.75, 1.0]],
           columns=['a', 'b'])
# Another way to create a DataFrame: from row dicts
df = pd.DataFrame([dict(a=0.25, b=0.5), dict(a=0.75, b=1.0)])
# Obtain DataFrame values as numpy array
df.values
# Obtain DataFrame index as pd.Index object
df.index
# Obtain DataFrame column names as pd.Index object
df.columns
# Access individual elements by index
df.ix[0, 'a']
# Slice rows by index
df[:10]
```


Pandas: reading and writing data

```
# Import text data from file (<fn> can also be a URL)
df = pd.read csv(<fn>, sep=<col sep>)
# Import first sheet of excel data from file
df = pd.read_excel(<fn>)
# Import all sheets in excel file
df = pd.read_excel(<fn>, sheetname=None)
# Export DataFrame to text file (with index)
df.write csv(<fn>, sep=<col sep>)
# Export DataFrame to text file (without index)
df.to_csv(<fn>, sep=<col_sep>, index=False)
# Export DataFrame to excel file
df.to_excel(<fn>, index=False)
```


Data munging with pandas

```
# Filter data based on specific value (by boolean indexing)
df.loc[df[<colname>] == 1]
df.loc[(df[<colname1>] == 1) & (df[<colname2>].isin(1, 2, 3)]
# Drop rows (= axis0)/columns (= axis1) with missing data
no_missing_df = df.dropna(axis=0, how='any')
# Drop duplicate rows
dedup_df = df.drop_duplicates(axis=0)
# Drop columns (axis=1) by name
df.drop([<colname1>, <colname2>], axis=1)
# Sort rows
df.sort_values(by=[<colnames>])
# Apply function to all rows in a column
df[<colname>].apply(lambda x: x.upper())
# Replace data in cells based on dict
df = df.replace({<colname>: {'a': 1, 'b': 2, ...}, ...})
```


Version Control and Git

- Track Changes
- Allows for collaborative development
 - Branching
 - Merging
 - Tagging
 - ...
- Allows you to revert to a previous state
- Typically, one central repository on a server where clients push to (CVS, SVN)

- Distributed version control system
- Created by Linus Torvalds
- No central repository
- Users keep entire code and history in local repository
- Network only required to push and pull changes from another repository
- Key concepts:
 - Snapshots
 - Commits
 - Repositories
 - Branches

Important Concepts

- A snapshot is a record of all files in the project at a given point in time
 - You decide when to take a snapshot
 - You can go back to **checkout** any snapshot
- A commit is the act of creating a snapshot and contains information about
 - How the files changed from the previous snapshot
 - A reference to the previous 'parent' commit
 - A hash code

Important Concepts

- A **repository** is a collection of all files and their history
 - Contains all commits
 - Can be local or remote (GitHub)
 - Cloning a repo downloads all the files into a local repo
 - Repos can push changes to or pull from another repository
- All commits live in a branch
 - There can be many branches
 - Typically, the main branch is called 'master'

Try it out!

http://onlywei.github.io/explain-git-with-d3

- Pull changes from GitHub (git pull)
- 2. Repeat:
 - Change code
 - 2. Add changed files to staging area (git add)
 - 3. Commit with human readable comment (git commit)
- 3. Push changes to GitHub (git push)

- Largest web-based git repository hosting service
- Provides both public (free) and private repositories
- You should already have a student account
- Adds extra functionality which is super useful:
 - A nice user interface
 - Documentation with markdown
 - Supports jupyter notebooks
 - Issue tracking
 - Wiki
 - Push and Pull requests
 - Continuous Integration

- ...

- 1. Log into github
- 2. Fork the course repository https://github.com/enetz/IntegratedBioinformatics
- 3. Clone your forked repository
- 4. Start jupyter notebook server from within your notebook directory
 - > cd <your dir>
 - > jupyter notebook
- 5. Start notebook Day1_Basics.ipynb
- 6. Take interactive tour of jupyter UI
- 7. Follow tasks in notebook
- 8. Commit and push your progress to your github repository