(Appendix A Numbers, Inequalities, and Absolute Values)

1) Real Number System:

- (a) Rational number $Q = \left\{ r = \frac{n}{m}, \right.$ where n and m are integers and $m \neq 0 \right\}$
- (b) Irrational number = $R \setminus Q$
- 2) Rational number can be express as finite decimals or recurrence decimals.

Eg.
$$x = 2.31456173561735617356173 \dots = 2.314\overline{56173}$$

 $(10^5)(x) - x = 231456.173 - 2.314$ can be expressed as a fraction form.

3) Intervals

- (a) Open Interval : $(a, b) = \{x | a < x < b\}$
- (b) Closed interval : $[a, b] = \{x | a \le x \le b\}$
- (c) Half Open and Half Closed Interval:

$$(a,b] = \{x | a < x \leq b\}$$

4) Inequalities

- (a) Rules of Inequalities:
 - **1.** If a < b, then a + c < b + c.
 - **2.** If a < b and c < d, then a + c < b + d.
 - **3**. If a < b and c > 0, then ac < bc.
 - **4.** If a < b and c < 0, then ac > bc.
 - **5.** If 0 < a < b, then 1/a > 1/b.

- (b) Solutions of inequalities:
 - (i) Solve $(x \alpha)(x \beta) > 0$ where $\alpha < \beta$.

Key:
$$x < \alpha$$
 or $x > \beta$.

(ii) Solve $(x-\alpha)(x-\beta) < 0$ where $\alpha < \beta$.

Key:
$$\alpha < x < \beta$$
.

(iii) Solve $(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)>0$ where $\alpha<\beta<\gamma<\delta$.

Key:
$$x < \alpha$$
, $\beta < x < \gamma$ or $x > \delta$.

(iv) Solve $(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)^2>0$ where $\alpha<\beta<\gamma<\delta$.

Key:
$$\alpha < x < \beta$$
 or $x > \gamma$ and $x \neq \delta$).

5) Examples of inequalities:

Example 1

Solve the inequalities $4 \le 3x - 2 < 13$.

SOLUTION Here the solution set consists of all values of x that satisfy both inequalities. Using the rules given in $\boxed{2}$, we see that the following inequalities are equivalent:

$$4 \le 3x - 2 < 13$$

$$6 \le 3x < 15 \qquad \text{(add 2)}$$

$$2 \le x < 5 \qquad \text{(divide by 3)}$$

Therefore the solution set is [2, 5).

(Appendix A Numbers, Inequalities, and Absolute Values)

Example 2

Solve the inequality $x^2 - 5x + 6 \le 0$.

SOLUTION First we factor the left side:

$$(x-2)(x-3) \le 0$$

We know that the corresponding equation (x - 2)(x - 3) = 0 has the solutions 2 and 3. The numbers 2 and 3 divide the real line into three intervals:

$$(-\infty, 2) \qquad (2, 3) \qquad (3, \infty)$$

On each of these intervals we determine the signs of the factors. For instance,

$$x \in (-\infty, 2)$$
 \Rightarrow $x < 2$ \Rightarrow $x - 2 < 0$

Then we record these signs in the following chart:

x-2	x - 3	(x-2)(x-3)
_	-	+
+	_	_
+	+	+
	x - 2 - + +	x-2 x-3 + + + +

A visual method for solving Example 3 is to use a graphing device to graph the parabola $y=x^2-5x+6$ (as in Figure 4) and observe that the curve lies on or below the *x*-axis when $2 \le x \le 3$.

Example 3

Solve $x^3 + 3x^2 > 4x$.

SOLUTION First we take all nonzero terms to one side of the inequality sign and factor the resulting expression:

$$x^3 + 3x^2 - 4x > 0$$
 or $x(x-1)(x+4) > 0$

As in Example 3 we solve the corresponding equation x(x-1)(x+4)=0 and use the solutions x=-4, x=0, and x=1 to divide the real line into four intervals $(-\infty,-4)$, (-4,0), (0,1), and $(1,\infty)$. On each interval the product keeps a constant sign as shown in the following chart:

Interval	X	x - 1	x + 4	x(x-1)(x+4)
x < -4	_	_	_	_
-4 < x < 0	_	_	+	+
0 < x < 1	+	_	+	_
x > 1	+	+	+	+

Then we read from the chart that the solution set is

$$\{x \mid -4 < x < 0 \text{ or } x > 1\} = (-4, 0) \cup (1, \infty)$$

5) Absolute Value

The **absolute value** of a number a, denoted by |a|, is the distance from a to 0 on the real number line. Distances are always positive or 0, so we have

$$|a| \ge 0$$
 for every number a

(Appendix A Numbers, Inequalities, and Absolute Values)

In General.

$$|a| = a$$
 if $a \ge 0$

$$|a| = -a$$
 if $a < 0$

(a) Properties of absolute values:

Suppose that a and b are eal numbers, n is an integer.

Then

1.
$$|ab| = |a||b|$$

1.
$$|ab| = |a||b|$$
 2. $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$ $(b \neq 0)$

3.
$$|a^n| = |a|^n$$

Suppose a > 0. Then

4.
$$|x| = a$$
 if and only if $x = \pm a$

5.
$$|x| < a$$
 if and only if $-a < x < a$

6.
$$|x| > a$$
 if and only if $x > a$ or $x < -a$

(b) Examples

(i) Example 1

Solve
$$|x - 5| < 2$$
.

SOLUTION 1 By Property 5 of $\boxed{6}$, |x-5| < 2 is equivalent to

$$-2 < x - 5 < 2$$

Therefore, adding 5 to each side, we have

and the solution set is the open interval (3, 7).

(ii) Example 2

Solve $|3x + 2| \ge 4$.

SOLUTION By Properties 4 and 6 of $\boxed{6}$, $|3x + 2| \ge 4$ is equivalent to

$$3x + 2 \ge 4$$
 or $3x + 2 \le -4$

In the first case $3x \ge 2$, which gives $x \ge \frac{2}{3}$. In the second case $3x \le -6$, which gi $x \le -2$. So the solution set is

$$\left\{x \mid x \leq -2 \text{ or } x \geq \frac{2}{3}\right\} = (-\infty, -2] \cup \left[\frac{2}{3}, \infty\right)$$

(c) Triangular Inequality

If a and b are any real numbers, then

$$|a+b| \leq |a|+|b|$$

Example 1

If |x-4| < 0.1 and |y-7| < 0.2, use the Triangular Inequality to estimate |(x+y)-11|.

Solution:

In order to use the given information, we use the Triangle Inequality v a = x - 4 and b = y - 7:

$$|(x + y) - 11| = |(x - 4) + (y - 7)|$$

 $\leq |x - 4| + |y - 7|$
 $< 0.1 + 0.2 = 0.3$

Thus
$$|(x + y) - 11| < 0.3$$
.

(Appendix A Numbers, Inequalities, and Absolute Values)

6) Exercise:

1) Solve the inequalities in terms of intervals and illustrate the solution sets on the real number line.

(a)
$$-1 < 2x - 5 < 7$$

(b)
$$-5 \le 3 - 2x \le 9$$

(c)
$$2x-3 < x+4 < 3x-2$$

$$(d) x^2 + x > 1$$

(e)
$$(x+1)(x+2)(x+3) \ge 0$$

$$(f) \qquad -3 < \frac{1}{x} \le 1$$

2) Solve the equations for x:

(a)
$$|3x+5|=1$$

$$|\frac{2x-1}{x+1}| = 3$$

3) Solve the inequalities:

(a)
$$|x+5| \ge 2$$

(b)
$$|5x-2|<6$$

(c)
$$0 < |x-5| < \frac{1}{2}$$