Système de contrôle d'axes GalilV2

Auteur : J. Coquet

Version courante du document : 1.1

Date de création document : Mars 2007 Dernière modification : le 21 mai 2007

Historique des modifications

=======================================				
Date	Revision	Description	Auteur	Relecteur
13/03/07	1.0	Version initiale	J. Coquet	
21/05/07	1.1	Modifs mineures suite à relecture		A.Buteau

But de l'application	1
Structure matérielle et logicielle de l'application	2
Architecture matérielle	2
Architecture logicielle	3
Que sait faire GalilAxis (et le microcode embarqué)	3
Limitation connues de GalilAxis	4
Limitations sur les commandes proposées	4
Types d'axes supportés	4
Types de positionnement supportés	4
Interface logicielle Tango	5
Properties	5
Les attributs	6
Les commandes	8
Configuration logicielle	8
TODO : Suite de la doc	10
Documentation de la classe AxisRawDataReader(si besoin)	10
Documentation de la classe GalilSlit (si besoin)	10
	Structure matérielle et logicielle de l'application

1 But de l'application

Le système décrit dans ce document a été conçu pour permettre la commande générique d'axes motorisés.

Ces axes sont essentiellement destinés à être commandés en *positionnement*.

Une commande en vitesse est possible mais sans contrôle précis.

Ces axes sont constitués au minimum de :

- Moteur pas à pas avec ou sans codeur
- Moteur « servo » à courant continu ou bruhsless obligatoirement couplé à 1 ou 2 codeurs
- Moteur piezo avec retour de position par codeur ou analogique
- Des limit switch seront présents pour les mouvements finis (avec butées mécaniques)

Codeurs supportés :

- codeurs incrémentaux à signaux TTL ou RS422 avec ou sans Top 0 de position initiale
- codeur absolu norme SSI
- codeur sinus avec conversion TTL/RS422.

Un détecteur HOME de position initiale peut être présent (avec des limitations décrites plus bas)

2 Structure matérielle et logicielle de l'application

2.1 Architecture matérielle

2.2 Architecture logicielle

- Le device server ControlBox embarque les devices suivants :
 - o ControlBox pour les commandes du domaine de la ControlBox toute entière : version/révision, RESET, informations sur les erreurs de communication...
 - o GalilAxis permet un contrôle individuel d'1 moteur
 - o GalilSlit permet la gestion d'une fente à 2 volets pilotés par 2 moteurs indépendants
 - o AxisRawDataReader permet de voir les valeurs codeur, moteur; position commandées en unités hardware, pour des finalités de maintenance

3 Que sait faire GalilAxis (et le microcode embarqué)

GalilAxis est essentiellement conçu pour

- positionner un axe à une côte précise.
- la mise en position initiale de l'axe (déplacement de l'axe à une position connue par exemple limit switch de précision ou sur détecteur Home précis plus éventuellement sur le top 0 d'un codeur incrémental)

Il offre en plus

• Un mode de déplacement manuel (mode jog)

4.1 Limitations sur les commandes proposées

4.2 Types d'axes supportés

4.2.1 Axes testés

- Moteur Pas à pas seul
- Moteur Pas à pas avec codeur incrémental (ou Sinus + convertisseur TTL)

4.2.2 Axes en cours de validation

- Moteur Pas à pas avec codeur absolu SSI
- Moteur Servo (brush ou bruhsless) avec codeur incrémental (ou Sinus + convertisseur TTL)
- Moteur Servo (brush ou bruhsless) avec codeur absolu SSI
- Moteur Piezo sans retour de position
- Moteur Piezo avec retour de position analogique

4.3 Types de positionnement supportés

4.3.1 Sans codeur : Moteurs pas à pas uniquement

- Positionnement simple
- Positionnement avec rattrapage de jeu mécanique

4.3.2 Avec codeur :tous type de moteur

- Avec les moteurs de type « servo » (essentiellement les moteurs DC) il y a toujours un contrôle de suivi de trajectoire et l'axe se mettra en défaut si l'erreur de suivi est trop importante. Consulter le motoriste pour le réglage des paramètres d'erreur de suivi.
- Avec les moteurs Stepper, il est possible d'activer un mode dit de « maintenance de position » qui simule le suivi de trajectoire. En cas d'erreur de suivi , le contrôleur arrête le mouvement en cours, corrige l'erreur, et relance le mouvement, sans intervention.

4.3.3 Types de positionnement supportés

Positionnement simple

• Positionnement avec rattrapage de jeu mécanique

5 Interface logicielle Tango

5.1 Properties

Les properties sont créées automatiquement au démarrage du device, mais leurs valeurs doivent être saisies par l'utilisateur

	Numéro de l'axe pour la control box. Valeur possible : De A à H				
AxisNumber	On peut saisir également le numéro d'axe de 0 à 7.				
	(Pour les amateurs Galil les 4 lettres d'axe XYZW sont aussi supportés)				
	Correspondance:				
	0 1 2 3 4 5 6 7 A B C D E F G H				
	ABCDEFGH				
	X Y Z W				
	Doit être défini obligatoirement				
	Pas de valeur par défaut.				
AxisPositionRatio	Nombre d'unités utilisateur par pas codeur si présence codeur, par pas moteur si pas de codeur.				
	Exemple : unité utilisateur = 1 micron, 1 pas codeur = 100 nano, →AxisPositionRatio = 10.0				
	La formule utilisée est la suivante :				
	position_unités_utilisateurs = position codeur _unités_codeur * AxisPositionRatio - offset				
	peut être < 0. pour définir un sens de fonctionnement opposé au sens « motoriste »				
	Dans ce cas le device adapte les limit switch pour que les attributs et status soient				
	conformes au sens utilisateur défini par le signe de AxisPositionRatio				
	Valeur par défaut : 1.0				
AxisEncoderType	Type de codeur raccordé à l'axe.				
	• 0 : pas de codeur.				
	• 1 : codeur incrémental				
	• 2 : codeur absolu				
	Défaut = -1 (device en erreur) Doit être défini.				
	Attention: Toute modification de cette property définie par le motoriste implique une				
	intervention du motoriste pour reparamétrages internes dans la ControlBox.				
AxisInitType	Type de mise en position initiale de l'axe.				
	Chaîne ASCII décrivant la stratégie pour obtenir la position initiale				
	Possibilités :				
	• LSBWD : x; mise en position initiale sur le limit switch backward, x étant le nombre de fois ou il accoste le LimitSwitch backward avec des vitesses				
	décroissantes, x = [115] LEWD : x : idem LERWD : pour le limit quitab formand				
	 LSFWD: x; idem LSBWD, pour le limit switch forward FI: x; pour l'index du codeur incrémental, x = [-7+7] le signe donne le 				
	sens de la première recherche				
	• FH : x; pour le détecteur Home s'il existe, x = [-7+7] le signe donne le sens				
	de la première recherche				
	• DP ; pas de prise de référence ; utiliser Define position				
	 exemple d'abord rechercher le limit switch forward puis 3 fois l'index 				
	o LSFWD:1;FI:-3;				
	Valeur par défaut : DP				
A 1 1 1/2 1/1	Position initiale de l'axe en unités utilisateurs .				
AxisInitPosition	Cette valeur est chargée sur succès de la commande InitializeReferencePosition.				
	Valeur par défaut : 0.0				
FuebleMeintenene	Moteurs steppers avec codeurs uniquement. Valide la correction dynamique de				
EnableMaintenance	trajectoire				
Mode	Valeur par défaut : false (inhibé)				
AllowRemoteCbox	La RemoteCBox est la télécommande manuelle qui se branche directement sur la				
Allowkelliotecbox	ControlBox pour piloter « à vue » les axes. Cette télécommande utilise des E/S TOR de				
	la ControlBox. Dans certains cas (utilisation de ces E/S pour d'autres applications par				

	ex.) cette property permet d'inhiber (valeur = false) ou d'autoriser (valeur = true) cette	
	RemoteCBox.	
EnableDutyCycle	Cette Property est destinée aux motoristes. Elle n'est pas céée automatiquement. Elle	
LilabieDutyCycle	valide pour certains moteurs un comportement spécifique : le « Duty Cycle »	
	déterminant le pourcentage de temps pendant lequel le moteur peut être Power ON.	
	Utilisé pour certains moteurs sous vide et certains piezos sous vide avec le micro-code	
	spécifique « Duty Cycle ».	
	Cette property a true n'interdit pas une commande de déplacement moteur OFF.	
	La valeur par défaut est « false » (inhibé)	
Percent	Cette Property est destinée aux motoristes. Elle n'est pas céée automatiquement. Elle	
i ercent	permet de compenser une non-linéarité de l'axe dans certaines limites : voir doc du	
	micro-code.	
	Valeur par défaut : 1.0	
Dotry	Cette Property est destinée aux motoristes. Elle n'est pas céée automatiquement.	
Retry	Nombre de réessais avant que le positionnement ne soit déclaré en erreur.	
	Valeur par défaut : 5	

5.2 Les attributs

position	Read/Write				
position	 Read : position courante de l'axe en unités utilisateur 				
	Write : lance un positionnement à la valeur en unités utilisateur				
	La formule utilisée pour le calcul de la valeur lue est la suivante :				
	position unités utilisateurs = (CurrentEncoderPosition unités codeur * UserEncoderRatio)-				
	Offset				
acceleration	Read/Write				
acceleration	 Read : Accélération courante de l'axe. 				
	Write : modification de l'accélération				
	En unité utilisateur par seconde ²				
deceleration	Read/Write				
deceleration	 Read : Décélération courante de l'axe. 				
	Write : modification de la décélération				
	En unité utilisateur par seconde ²				
velocity	Read/Write				
velocity	Read : vitesse courante de l'axe.				
	Write: modification de la vitesse				
	En unité utilisateur par seconde				
accuracy	Read/Write				
accuracy	Précision du mouvement, fenêtre dans laquelle le positionnement est considéré comme				
	correct.				
	• Read : précision courante de l'axe.				
	Write : modification de la précision				
	En unité utilisateur.				
	Limite inférieure : 1 pas moteur.				
backlash	Read/Write				
Na Grandon	Compensation de jeu mécanique par approche du point de positionnement dans la direction				
	choisie par le signe de l'attribut.				
	• Read : distance courante de backlash.				
	Write: modification de la distance de backlash				
	En unité utilisateur				
offset	Read/Write				
	Offset ajouté à la position courante (attribut position). Laisse inchangées les positions				
	codeur et moteur.				
	• Read : Offset courant de l'axe.				
	Write : modification de l'offset				

En unité utilisateur

5.3 Les commandes

Forward	Commande un mouvement continu dans le sens + utilisateur selon UserDirection	
D		
Backward	Commande un mouvement continu dans le sens - utilisateur selon	
_	UserDirection	
Stop	Arrêt du mouvement en cours	
State	Retourne l'état de l'axe	
	 OFF: pas de communication 	
	• STANDBY : attente de commande	
	 MOVING : axe en déplacement 	
	• ALARM: axe en alarme (non bloquant)	
	• FAULT: axe en défaut (erreurs 2, 7, 14, 15)	
	• DISABLE : signale une erreur non traitée.	
Status	Texte d'erreur	
InitializeReferencePosition	Initialise l'axe à une position connue en fonction de la property	
	AxisInitType.	
	Exécute selon la property AxisInitType :	
	• recherche d'index	
	recherche de Home	
	• Recherche du limit switch dans le sens défini par signe de la	
	property AxisPositionRatio, puis charge la valeur de la property	
	AxisInitPosition	
MotorON	Validation du driver de puissance.	
MotorOFF	Inhibition du driver de puissance. Seulement possible après une commande	
	stop.	
	Attention: le moteur étant hors tension, la charge peut éventuellement	
	entraîner le moteur.	
DefinePosition	définit la position à la valeur utilisateur passée en argument	
ComputeNewOffset	on lui passe la position utilisateur a laquelle on voudrait être, elle calcule	
-	l'offset et en assure la mémorisation.	

6 Configuration logicielle

La ControlBox doit avoir été configurée par les motoristes. Les axes doivent être raccordés, testés par les motoristes.

Installez dans la Database Tango et configurez le nouveau DServer voir installation device ControlBox

Ajoutez la classe GalilAxis

7 TODO: Suite de la doc

- 7.1 Documentation de la classe AxisRawDataReader(si besoin)
- 7.2 Documentation de la classe GalilSlit (si besoin)