UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales

TRABAJO PRÁCTICO INTEGRADOR DE PROGRAMACIÓN CONCURRENTE

Tren con 4 estaciones

Integrantes:

 SORIANO, JUAN.
 37.753.154

 VIGNOLLES, IVAN.
 36.407.987

 D'ANDREA, F. DAVID.
 33.178.206

DOCENTES: Micolini, Orlando. Ventre, Luis.

AÑO: 2017

Introducción y objetivos

Enunciado

En este práctico se debe resolver el problema de control de un circuito ferroviario. Como dato se propone la red de Petri que modela una planta con 4 estaciones, un vagón, sin barreras. La red debe ser modificada con el fin de modelar la planta requerida y evitar interbloqueos. Luego simular la solución en un proyecto desarrollado con la herramienta adecuada (explique porque eligió la herramienta usada).

La planta requerida está formada por 4 estaciones (Estación A, Estación B, Estación C y Estación D), una máquina y un vagón. La capacidad de la maquina es de 30 pasajeros, mientras que la capacidad del vagón es de 20 pasajeros. En cada estación los pasajeros pueden subir o bajar; no pudiendo descender en cada estación los pasajeros que han ascendido en esa (no es necesario identificar los pasajeros, solo número).

Los tramos de unión entre las estaciones A y B y las estaciones C y D tienen un paso a nivel. En este paso a nivel se debe controlar la barrera para el paso de los vehículos y el tren. La barrera debe bajar 30 metros antes que llegue el tren a paso nivel y subir después de 20 metros que el tren a atravesado el paso a nivel.

El tren debe detenerse en cada estación no menos de 10 segundos y debe arrancar una vez que hayan subido todos los pasajeros o no haya lugar en maquina ni vagón.

El sistema controlador debe estar conformado por distintos hilos, los cuales deben ser asignados a cada conjunto de responsabilidades afines en particular. Por ej. Manejar el tren, manejar las barreras, etc.

Realizar

- Colocar las restricciones a la RdP para evitar el interbloqueo, mostrarlo con la herramienta elegida y justificarlo.
- Colocar los tiempos en las estaciones (en las transiciones correspondientes).
- Hacer la tabla de eventos.
- Hacer la tabla de estados o actividades.
- Determinar la cantidad de hilos necesarios (justificarlo)
- Implementar dos caso de Políticas para producir:
 - o a. Prioridad a los pasajeros que bajan
 - o b. Prioridad a los pasajeros que suben
- Hacer el diagrama de clases.
- Hacer los diagramas de secuencias.
- Hacer el código.
- Hacer el testing.

Desarrollo

Utilizando el pipe 4 y 5, se dibujó y se analizó la red. A continuación se muestra la red implementada:

El análisis fue hecho sobre una red con 2 estaciones en lugar de 4 debido a las limitaciones que presenta el pipe a la hora de analizar redes grandes. Como se puede ver, no presenta deadlocks. Por otra parte, la red es limitada y se puede verlo fácilmente. Sin embargo, el pipe arroja que la red no es "Bounded", lo cual nos llamó la atención y se lo atribuimos a una mala implementación del análisis o un bug de la red al dibujarla.

Tabla de eventos

Descripción del evento	Transición
No hay más gente en A	!GENTE_A
No hay más gente en B	!GENTE_B
No hay más gente en C	!GENTE_C
No hay más gente en D	!GENTE_D
Tren espera 10 segundos para salir de A	10SEG_A
Tren espera 10 segundos para salir de B	10SEG_B
Tren espera 10 segundos para salir de C	10SEG_C
Tren espera 10 segundos para salir de D	10SEG_D

Auto cruza el pasonivel A-B	AUTO_CRUZA_A
Auto cruza el pasonivel C-D	AUTO_CRUZA_B
Auto se va del sistema en el pasonivel A-B	AUTO_SE_VA_A
Auto se va del sistema en el pasonivel C-D	AUTO_SE_VA_B
Se baja la barrera en el pasonivel A-B	BAJABAR_A
Conta baja da la máquina en la estación D	DAJAMAO D
Gente baja de la máquina en la estación B	BAJAMAQ_B
Gente baja de la máquina en la estación C	BAJAMAQ_C
Gente baja de la máquina en la estación D	BAJAMAQ_D
La gente se baja de la máquina	BAJAR_GENTE_MAQ
La gente se baja del vagón	BAJAR_GENTE_VAG
Se baja la barrera en el pasonivel C-D	BAJARBAR_C
Gente baja de la máquina en la estación A	BAJARMAQ
Gente baja del vagón en la estación A	BAJARVAG
Gente baja del vagón en la estación B	BAJAVAG_B
Gente baja del vagón en la estación C	BAJAVAG_C
Gente baja del vagón en la estación D	BAJAVAG_D
Se levanta la barrera en el pasonivel A-B	LEVANTABAR_A
Se levanta la barrera en el pasonivel C-D	LEVANTARBAR_C
Llega un auto a esperar el pasonivel A-B	LLEGA_AUTO_A
Llega un auto a esperar el pasonivel C-D	LLEGA_AUTO_B
Llega gente a la estación A	LLEGAGENTE_A
Llega gente a la estación B	LLEGAGENTE_B
Llega gente a la estación C	LLEGAGENTE_C
Llega gente a la estación D	LLEGAGENTE_D
Llega el tren a la estación A	LLEGATREN_A
Llega el tren a la estación B	LLEGATREN_B
Llega el tren a la estación C	LLEGATREN_C
Llega el tren a la estación D	LLEGATREN_D
El tren se llenó en la estación A	LLENO_A
El tren se llenó en la estación B	LLENO_B
El tren se llenó en la estación C	LLENO_C
El tren se llenó en la estación D	LLENO_D
El tren sale de A	SALETREN_A
El tren sale de B	SALETREN_B
L	I .

El tren sale de C	SALETREN_C
El tren sale de D	SALETREN_D
Sube gente a la máquina en la estación B	SUBEMAQ_B
Sube gente a la máquina en la estación C	SUBEMAQ_C
Sube gente a la máquina en la estación D	SUBEMAQ_D
Sube gente al vagón la estación B	SUBEVAG_B
Sube gente al vagón la estación C	SUBEVAG_C
Sube gente al vagón la estación D	SUBEVAG_D
La gente sube a la máquina	SUBIR_GENTE_MAQ
La gente sube al vagón	SUBIR_GENTE_VAG
Gente sube a la máquina en la estación A	SUBIRMAQ
Gente sube al vagón en la estación A	SUBIRVAG

Tabla de estados o actividades

Descripción del estado	Plaza
Tren esperando 10 segundos para salir de A	10_SEG_A
Tren esperando 10 segundos para salir de B	10_SEG_B
Tren esperando 10 segundos para salir de C	10_SEG_C
Tren esperando 10 segundos para salir de D	10_SEG_D
Auto ha pasado pasonivel entre A y B	AUTO_A_2
Auto a la espera de llegar al pasonivel A-B	AUTOS_A
Auto previo al pasonivel entre A y B	AUTOS_A_1
Auto a la espera de llegar al pasonivel C-D	AUTOS_B
Auto previo al pasonivel entre C y D	AUTOS_B_1
Auto ha pasado pasonivel entre C y D	AUTOS_B_2
Barrera baja en A-B	BARRERA_A
Barrera baja en C-D	BARRERA_B
Gente que se baja de la máquina en la estación	GENBAJMAQ
Gente que se baja del vagón en la estación	GENBAJVAG
Gente que se sube a la máquina en la estación	GENSUBMAQ
Gente que se sube al vagón en la estación	GENSUBVAG
Gente esperando al tren en la estación A	GENTE_EN_A
Gente esperando al tren en la estación B	GENTE_EN_B
Gente esperando al tren en la estación C	GENTE_EN_C
Gente esperando al tren en la estación D	GENTE_EN_D
Lugares disponibles en la máquina	LUGMAQ

Lugares disponibles en el vagón	LUGVAG
Lugares ocupados en la máquina	MAQUINA
Máximo de gente en el "universo"	MAX_GENTE
El tren no está en la estación A	NOHAYTREN_A
El tren no está en la estación B	NOHAYTREN_B
El tren no está en la estación C	NOHAYTREN_C
El tren no está en la estación D	NOHAYTREN_D
El tren puede salir de la estación A	PUEDE_SALIR_A
El tren puede salir de la estación B	PUEDESALIR_B
El tren puede salir de la estación C	PUEDESALIR_C
El tren puede salir de la estación D	PUEDESALIR_D
El tren está en la estación A	TREN_EN_A
El tren está en la estación B	TREN_EN_B
El tren está en la estación C	TREN_EN_C
El tren está en la estación D	TREN_EN_D
El tren está en alguna estación	TREN_EN_ESTACION
El tren está entre la estación B y la C	TREN_ENTRE_BYC
El tren está entre la estación D y la A	TREN_ENTRE_DYA
El tren está llegando a la estación B	TREN_LLEGANDO_B
El tren está llegando a la estación D	TREN_LLEGANDO_D
El tren está cruzando por el pasonivel A-B	TREN_PASONIVEL_A
El tren está cruzando por el pasonivel C-D	TREN_PASONIVEL_B
El tren está saliendo de la estación A	TREN_SALIENDO_A
El tren está saliendo de la estación C	TREN_SALIENDO_C
Lugares ocupados en el vagón	VAGON

Cantidad de hilos necesarios

Analizando el problema se llega a la conclusión de que, como fue dibujada la red, el tren se ejecuta con un thread debido a que es un conjunto de transiciones secuenciales. De la misma forma, los autos en los pasonivel tienen el mismo efecto, siempre y cuando se limite la cantidad máxima a 1. No fue posible agrupar muchas transiciones bajo la ejecución de un mismo hilo debido a la naturaleza del problema.

Política implementada

Se implementaron dos políticas, una para dar prioridad a los pasajeros que suben y otra a los que bajan, esto se ve reflejado en la matriz de política que se utiliza en el proyecto.

Diagrama de clases

Para visualizar el diagrama de clases con mayor detalle, se encuentra disponible en: https://github.com/SorianoJuan/ProgConcurrente-UNC

Diagrama de secuencias completo

Diagrama de secuencia (interacción Monitor - PetriNet)

Para visualizar el diagrama de secuencias con mayor detalle, se encuentra disponible en: https://github.com/SorianoJuan/ProgConcurrente-UNC

Código y testing

Se analizaron tanto los P-Invariantes como los T-Invariantes. En cada ejecución de un thread en el monitor, se chequean los P-Invariantes. Utilizando el log de salida del programa, en python, se parsea la salida y se validan los órdenes de ejecución de las transiciones.

El código con su testing correspondiente se encuentra disponible en: https://github.com/SorianoJuan/ProgConcurrente-UNC

Conclusiones

Durante la resolución del problema planteado, se fueron tomando distintos enfoques para solucionar inconvenientes como el del interbloqueo o evitar que la gente que subía en una estación, se bajara en otras. Para evitar esto último, se introdujeron plazas nuevas de gente que se subió en esa estación. Cuando el tren abandonaba dicha estación, la gente pasaba a la máquina o al vagón según correspondía.

Se le dió prioridad al tren por sobre los autos a la hora de utilizar la barrera para ajustarse a un problema del mundo real, en el cual cuando un tren cruza un paso nivel, la barrera siempre le da prioridad al mismo.

Por otra parte, se introdujeron plazas para limitar el marcado de la red y evitar utilizar una construcción del tipo "generador de tokens". Esto permitió que el Pipe pudiera realizar el análisis de estados que de otra manera hubiera sido imposible porque los generadores de tokens introducen infinitos estados a la red.

En este trabajo no se le dio un trato distinto a las transiciones que son decisiones con respecto a las que son acciones, todas fueron tratadas de la misma forma en el monitor, cada una con su cola de condiciones.

A modo de cierre, se puede decir que la abstracción con la que se implementó el código permite, en caso de cambiar el programa, simplemente dibujar una nueva red de petri, exportar los archivos correspondientes y la ejecución será la misma. Por otra parte, la red de petri se tornó bastante compleja, con lo que hubo que reducirla para analizarla con el Pipe. En caso de querer resolver un problema más complejo, se debe utilizar otra herramienta.

Bibliografía

- Programación Concurrente José Tomás Palma Méndez
- Java 7 Concurrency Cookbook Javier Fernández González
- Sistemas operativos William Stallings
- Petri Nets Fundamental Models, Verification and Applications