```
# importing required packages
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings(action = 'ignore')

def heading(info):
    print("\n\n#### {} ####".format(info))

# read the dataset
dataSet = pd.read_csv('Banglore_traffic_Dataset.csv', encoding = 'unicode_escape')
```

13/10/24, 11:26 PM Logistic_reg.ipynb - Colab

print info about the data dataSet.info() heading("Sample data points from the dataset") dataSet.head(5)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8936 entries, 0 to 8935 Data columns (total 16 columns):

#	Column		Null Count	Dtype				
0	Date	8936	non-null	object				
1	Area Name	8936	non-null	object				
2	Road/Intersection Name	8936	non-null	object				
3	Traffic Volume	8936	non-null	int64				
4	Average Speed	8936	non-null	float64				
5	Travel Time Index	8936	non-null	float64				
6	Congestion Level	8936	non-null	float64				
7	Road Capacity Utilization	8936	non-null	float64				
8	Incident Reports	8936	non-null	int64				
9	Environmental Impact	8936	non-null	float64				
10	Public Transport Usage	8936	non-null	float64				
11	Traffic Signal Compliance	8936	non-null	float64				
12	Parking Usage	8936	non-null	float64				
13	Pedestrian and Cyclist Count	8936	non-null	int64				
14	Weather Conditions	8936	non-null	object				
15	Roadwork and Construction Activity	8936	non-null	object				
dtyp	es: float64(8), int64(3), object(5)							
memo	memory usage: 1.1+ MB							

Sample data points from the dataset

	Date	Area Name	Road/Intersection Name	Traffic Volume	Average Speed	Travel Time Index	Congestic Leve
0	2022- 01-01	Indiranagar	100 Feet Road	50590	50.230299	1.500000	100.00000
1	2022- 01-01	Indiranagar	CMH Road	30825	29.377125	1.500000	100.00000
2	2022- 01-01	Whitefield	Marathahalli Bridge	7399	54.474398	1.039069	28.34799
3	2022- 01-01	Koramangala	Sony World Junction	60874	43.817610	1.500000	100.00000
4	2022- 01-01	Koramangala	Sarjapur Road	57292	41.116763	1.500000	100.0000(

lets find the individual column statistics
heading("Stats about non-numeric values")
print(dataSet.describe(include = "object"))

heading("Stats about numeric values")
print(dataSet.describe(include = "number"))

#####	Stats	about	non-nume	eric	values	#####		
		_	_				 	_

	Date	Area Name	Road/Intersection	Name Weather	Conditions
count	8936	8936		8936	8936
unique	952	8		16	5
top	2023-01-24	Indiranagar	100 Feet	Road	Clear
freq	15	1720		860	5426

Roadwork and Construction Activity

count	8936
unique	2
top	No
freq	8054

Stats about numeric values

	Traffic Volume	Average Speed	Iravel lime Index	Congestion Level
count	8936.000000	8936.000000	8936.000000	8936.000000
mean	29236.048120	39.447427	1.375554	80.818041
std	13001.808801	10.707244	0.165319	23.533182
min	4233.000000	20.000000	1.000039	5.160279
25%	19413.000000	31.775825	1.242459	64.292905
50%	27600.000000	39.199368	1.500000	92.389018
75%	38058.500000	46.644517	1.500000	100.000000
max	72039.000000	89.790843	1.500000	100.000000

	Road Capacity Utilization	Incident Reports	Environmental Impact	\
count	8936.000000	8936.000000	8936.000000	
mean	92.029215	1.570389	108.472096	
std	16.583341	1.420047	26.003618	
min	18.739771	0.000000	58.466000	
25%	97.354990	0.00000	88.826000	
50%	100.000000	1.000000	105.200000	
75%	100.000000	2.000000	126.117000	
max	100.000000	10.000000	194.078000	

	Public Transport Usage	Traffic Signal Compliance	Parking Usage \
count	8936.000000	8936.000000	8936.000000
mean	45.086651	79.950243	75.155597
std	20.208460	11.585006	14.409394
min	10.006853	60.003933	50.020411
25%	27.341191	69.828270	62.545895
50%	45.170684	79.992773	75.317610
75%	62.426485	89.957358	87.518589

max 79.979744 99.993652 99.995049

	Pedestrian	and	Cyclist Count
count			8936.000000
mean			114.533348
std			36.812573
min			66.000000
25%			94.000000
50%			102.000000
75%			111.000000
max			243.000000

lets first verify how to target variable is distributed
heading("Target variable \"Traffic volume\" distribution")
sns.histplot(data = dataSet, x = "Traffic Volume")

Target variable "Traffic volume" distribution
<Axes: xlabel='Traffic Volume', ylabel='Count'>


```
# lets convert the categorical values to numeric
def convert_categorical_to_numeric(dataframe, categorical_cols):
    for col in categorical cols:
        if col in dataframe.columns:
            # create a mapping for the unique values in the column
            unique values = dataframe[col].unique()
            value_mapping = {label: idx for idx, label in enumerate(unique_value)
            # apply the mapping to convert to numeric
            dataframe[col] = [value_mapping[val] for val in dataframe[col]]
    return dataframe
# leaving date column as of now and converting other columns
# we will backup the original dataset
originalDataset = dataSet.copy()
# select the relevant columns and convert them
columnsToConvert = ["Roadwork and Construction Activity", "Weather Conditions", "
dataSet = convert categorical to numeric(dataSet, columnsToConvert)
heading("After conversion to numeric values")
print(dataSet[columnsToConvert].head())
\rightarrow
    ##### After conversion to numeric values #####
       Roadwork and Construction Activity
                                             Weather Conditions Area Name
    0
    1
                                          0
                                                               0
                                                                          0
    2
                                          0
                                                                          1
                                                               0
    3
                                          0
                                                                          2
    4
                                                                          2
       Road/Intersection Name
    0
                             0
    1
                             1
    2
                             2
    3
                             3
    4
```

drop unrequired columns based on corelation matrix
dropThem = ["Public Transport Usage", "Traffic Signal Compliance", "Parking UsadataSet = dataSet.drop(columns=dropThem)

heading("Final dataset columns")
print(dataSet.head())

##	##### Final dataset columns #####						
	Area Name Road/I	ntersection Name Tr	affic Volume	Average Speed \			
0	0	0	50590	50.230299			
1	0	1	30825	29.377125			
2	1	2	7399	54.474398			
3	2	3	60874	43.817610			
4	2	4	57292	41.116763			
	Travel Time Index	Congestion Level	Road Capacity	Utilization \			
0	1.500000	100.000000		100.000000			
1	1.500000	100.000000		100.000000			
2	1.039069	28.347994		36.396525			
3	1.500000	100.000000		100.000000			
4	1.500000	100.000000		100.000000			
	Incident Reports	Environmental Impac	t Pedestrian	and Cyclist Count			
0	0	151.18	80	111			
1	1	111.65	50	100			
2	0	64.79	8	189			
3	1	171.74	18	111			
4	3	164.58	34	104			

```
# seperate the input and target columns into numpy arrays
if isinstance(dataSet, pd.DataFrame):
    dataSet = dataSet.to_numpy()

# print(dataset)

X = dataSet[:, [0, 1, 3, 4,5,6,7,8,9]]

Y = dataSet[:, 2]

# adding extra column for intercepts

X = np.hstack((np.ones((X.shape[0], 1)), X))
heading("Printing X and Y variables for the model")
print(X[:5])
print(Y[:5])
```

$\overline{\mathbf{x}}$

```
##### Printing X and Y variables for the model #####
[[ 1.
                  0.
                                 0.
                                              50.23029856
                                                             1.5
  100.
                                                                        ]
                100.
                                 0.
                                             151.18
                                                           111.
 1.
                  0.
                                 1.
                                              29.37712471
                                                             1.5
  100.
                100.
                                 1.
                                             111.65
                                                           100.
                                                                        1
                                                             1.03906885
 1.
                  1.
                                 2.
                                              54.47439821
   28.34799386
                36.39652494
                                                           189.
                                 0.
                                              64.798
                                                                        1
                                 3.
                                              43.81761039
                                                             1.5
   1.
                  2.
  100.
                                                                        ]
                100.
                                 1.
                                             171.748
                                                           111.
                                                             1.5
 [ 1.
                  2.
                                4.
                                              41.11676289
  100.
                100.
                                             164.584
                                                           104.
                                                                        ]]
                                 3.
[50590. 30825. 7399. 60874. 57292.]
```

```
# shuffle the datasets
indices = np.arange(X.shape[0])
np.random.shuffle(indices)
X_shuffled = X[indices]
Y_shuffled = Y[indices]
# split the dataset into 80:20
split_ratio = 0.1
split_index = int(len(X_shuffled) * split_ratio)
X train = X shuffled[:split index]
Y_train = Y_shuffled[:split_index]
X test = X shuffled[split index:]
Y_test = Y_shuffled[split_index:]
print("Training set samples: ", X_train.shape[0])
print("Testing set samples: ", X_test.shape[0])
→ Training set samples: 893
    Testing set samples: 8043
def sigmoid(z):
    z = np.clip(z, -500, 500) # Prevent overflow
    return 1 / (1 + np.exp(-z))
def binary_cross_entropy(y, y_hat):
    n = len(y)
    loss = -np.mean(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat))
    return loss
```

```
class LogisticRegression:
    def __init__(self, learning_rate=0.001, n_iters=100000):
        self.learning_rate = learning_rate
        self.n iters = n iters
        self.weights = None
        self.bias = None
    def fit(self, X, y):
        n_samples, n_features = X.shape
        # Initialize weights and bias
        self.weights = np.zeros(n_features)
        self.bias = 0
        # Gradient descent
        for _ in range(self.n_iters):
            # Linear model: X @ w + b
            linear_model = np.dot(X, self.weights) + self.bias
            # Apply sigmoid to get predictions
            y_hat = sigmoid(linear_model)
            # Compute gradients
            dw = (1 / n_samples) * np.dot(X.T, (y_hat - y))
            db = (1 / n_samples) * np_sum(y_hat - y)
            # Update weights and bias
            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db
    def predict_proba(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        return sigmoid(linear_model)
    def predict(self, X):
        y hat = self.predict proba(X)
        return np.where(y_hat >= 0.5, 1, 0)
```

```
class Norm:
    def normalise(self,X):
        # Remove nan columns
        X = X[:, \sim np.isnan(X).any(axis=0)]
        self.mean = np.mean(X)
        self.std dev = np.std(X)
        return (X - self.mean) / (self.std dev + 1e-8) # Avoid division by 0
    def denormalize(self, X):
        return X*self.std dev+ self.mean
model = LogisticRegression(learning_rate=0.1, n_iters=1000)
Xnorm = Norm()
Ynorm = Norm()
#Normalizing data
X = Xnorm.normalise(X_train)
y = Ynorm.normalise(Y_train).flatten()
print(X)
print(y)
model.fit(X,y)
     [[0.
                  0.57142857 0.53333333 ... 0.14285714 0.32646079 0.12209302]
\rightarrow
                             0.93333333 ... 0.14285714 0.2414978 0.11046512]
      [0.
                  1.
      [0.
                                                        0.11180427 0.83139535]
                  0.
                             0.
                                        ... 0.
      [0.
                  0.28571429 0.2
                                       ... 0.14285714 0.41230865 0.20930233]
                                        ... 0.28571429 0.36079403 0.15697674]
      [0.
                  0.71428571 0.6
                  0.28571429 0.26666667 ... 0.71428571 0.42329587 0.13953488]]
     [0.32646079 0.2414978 0.11180427 0.34078105 0.09721854 0.73730938
     0.34570687 0.32314249 0.16725658 0.38002537 0.07070171 0.16551633
     0.2819367
                 0.19754889 0.04254786 0.36271126 0.7068401
                                                              0.32236085
     0.64930832 0.53535085 0.20747426 0.4118957 0.15066513 0.34364216
     0.54183996 0.06565791 0.57587824 0.39966965 0.39222193 0.38296021
     0.32991181 0.41124679 0.45137598 0.2812288 0.06792909 0.18066248
     0.26562546 0.09789694 0.29919181 0.62324868 0.45976757 0.33842138
     0.85325782 0.72980267 0.48423443 0.18830192 0.03170811 0.23617379
     0.58747014 0.53532136 0.45849925 0.16287644 0.43571365 0.13136006
     0.84468926 0.72248769 0.38897738 0.61363301 0.08670324 0.58398962
     0.24396071 0.16578179 0.02375896 0.49780255 0.49380586 0.729257
     0.24963868 0.17575141 0.63178775 0.09606819 0.12942807 0.64691915
     0.42586202 0.86256378 0.21433207 0.40767779 0.42214553 0.26513878
     0.15727222 0.36120697 0.51871516 0.63366074 0.34477775 0.36628027
     0.63162552 0.22509807 0.58452054 0.17752116 0.33961596 0.08255907
     0.38309294 0.4938796 0.17868625 0.20163407 0.36514468 0.39832758
```

```
0.02368522 0.67635607 0.30357196 0.43033065 0.44010854 0.15752293
0.06555467 0.19946612 0.34719641 0.29823319 0.16290594 0.43152523
0.35409846 0.31975046 0.36017462 0.46332183 0.60083178 0.25075952
0.20296139 0.51162139 0.49561986 0.20654514 0.61494558 0.49867268
0.18943751 0.51558859 0.34797806 0.70368404 0.56602661 0.3195145
0.34566263 0.42805946 0.30163997 0.19091231 0.46013627 0.12833673
0.34865646 0.39077663 0.61693655 0.30264283 0.39412441 0.38720762
0.30314426 0.53629472 0.76763118 0.64206707 0.65063564 0.35771171
          0.22496534 0.4704156 0.32700646 0.31163909 0.49100375
0.5721765
0.20467215 0.1628027 0.27469545 0.10764534 0.67025042 0.29845441
0.40188184 0.47752411 0.29224552 0.53661918 0.18439371 0.72682358
0.49101849 0.72838687 0.32497124 0.31777424 0.32535469 0.20840339
0.29391204 0.20807893 0.31731705 0.31068047 0.39643984 0.46702357
0.57947674 0.8086895 0.06346046 0.18743179 0.18172433 0.666062
0.37703153 0.19318349 0.41792762 0.51870041 0.05874111 0.30568091
0.43269032 0.33163732 0.75606878 0.43534495 0.64172787 0.63317406
0.32582662 0.4707843 0.22835737 0.66904109 0.50355426 0.35744624
0.20741527 0.68514586 0.04011444 0.40158688 0.2606259
0.49334867 0.34165118 0.23710291 0.18184231 0.52098634 0.20840339
0.74878329 0.18066248 0.47495797 0.50184349 0.67616435 0.05613073
0.49783205 0.25183612 0.43990207 0.39195646 0.17595788 0.40198508
0.50445388 0.46941274 0.28602189 0.12146418 0.46832139 0.0739905
0.56592337 0.35875881 0.1822995 0.19343421 0.26817686 0.49581158
          0.42328113 0.27381058 0.46873433 0.64045955 0.18547031
0.82275905 0.69790284 0.42732207 0.72524555 0.43242486 0.30274607
0.58727841 0.61696605 0.13702327 0.50016223 0.03723859 0.14132968
0.8584786
          0.34533817 0.32107778 0.07337109 0.19123676 0.36408282
0.28758517 0.19269681 0.14221455 0.21005516 0.52760818 0.31379229
0.16758104 0.20167832 0.5873374 0.22782645 0.16169661 0.45711294
0.12512167 0.66004483 0.42218978 0.23691119 0.51828747 0.48106362
0.05436097 0.49088576 0.26010972 0.25794178 0.35927499 0.65762617
0.26477008 0.59064095 0.63162552 0.59002153 0.1747338
0.6981683
          0.58745539 0.3967643 0.03133941 0.32085656 0.66952777
0.34769784 0.62279149 0.63908799 0.51377459 0.44528508 0.32551692
0.61047695 0.28248238 0.39023095 0.34032387 0.30541545 0.26220393
```

X_nt = Xnorm.normalise(X_test) Y_pred = model.predict_proba(X_nt) Y pred = Ynorm.denormalize(Y pred) print("Predictions:", Y_pred) #Error in terms of probabilities $MAPE = np.mean(np.abs((Y_test - Y_pred) / Y_test)) * 100$ heading("Printing the MAPE and first 10 predictions with actual values") print("MAPE: {} %".format(MAPE)) for i in range(10): print("\nPredicted value: {0} \t Actual value: {1}".format(Y_pred[i], Y_tes Predictions: [12422.33504507 15768.9228721 36283.27024499 ... 37970.861782 20606.22732013 29920.146546451 ##### Printing the MAPE and first 10 predictions with actual values ##### MAPE: 16.81712872415161 % Predicted value: 12422.335045071459 Actual value: 12973.0 Predicted value: 15768.922872096924 Actual value: 9272.0 Predicted value: 36283.27024498963 Actual value: 36313.0 Predicted value: 43321.16507847105 Actual value: 47890.0 Predicted value: 45759.81734744462 Actual value: 50330.0 Predicted value: 39945.41896939413 Actual value: 37482.0 Predicted value: 38439.589876817 Actual value: 35875.0 Predicted value: 18823.14782435385 Actual value: 16942.0 Predicted value: 13108.465452439883 Actual value: 7382.0

Actual value: 7929.0

Predicted value: 11749.400955343903