Basics of Quantitative Genetics

Peter von Rohr

27 September 2019

Background

- Central Dogma of Molecular Biology
- \rightarrow Genotypes are the basis for phenotypic expression
 - Start with simple model
- \rightarrow one locus that affects quantitative trait

Population

Terminology

- ▶ alleles: variants occuring at a given genetic Locus
- \blacktriangleright bi-allelic: only two alleles, e.g., G_1 and G_2 at a given locus G in population
- genotype: combination of two alleles at locus G in an individual
- **homozygous**: genotypes G_1G_1 and G_2G_2 where both alleles identical
- **heterozygous**: genotype G_1G_2 different alleles

Frequencies in Example Population

genotype frequencies

$$f(G_1G_1) = \frac{4}{10} = 0.4$$

$$f(G_1G_2) = \frac{3}{10} = 0.3$$

$$f(G_2G_2) = \frac{3}{10} = 0.3$$

allele frequencies

$$f(G_1) = f(G_1G_1) + \frac{1}{2} * f(G_1G_2) = 0.55$$

$$f(G_2) = f(G_2G_2) + \frac{1}{2} * f(G_1G_2) = 0.45$$

Hardy-Weinberg Equilibrium

▶ allele frequencies

$$f(G_1)=p\text{, }f(G_2)=q=1-p$$

genotype frequencies

Alleles	G_1	G_2
G_1 G_2	$\begin{split} f(G_1G_1) &= p^2 \\ f(G_1G_2) &= p*q \end{split}$	$\begin{split} f(G_1G_2) &= p*q \\ f(G_2G_2) &= q^2 \end{split}$

$$f(G_1G_1)=p^2 \text{, } f(G_1G_2)=2pq \text{, } f(G_2G_2)=q^2$$

Genotypic Values

Population Mean

lackbox Expected value of genotypic value V as discrete random variable

$$\begin{split} \mu &= V_{11} * f(G_1G_1) + V_{12} * f(G_1G_2) + V_{22} * f(G_2G_2) \\ &= a * p^2 + d * 2pq + (-a) * q^2 \\ &= (p-q)a + 2pqd \end{split}$$

Breeding Values Definition

The breeding value of an animal i is defined as two times the difference between the mean value of offsprings of animal i and the population mean.

Derivation of Breeding value for ${\cal G}_1{\cal G}_1$

	$Mates\;of\;S$	
	$f(G_1)=p$	$f(G_2)=q$
$Parent\ S$		
$f(G_1)=1$	$f(G_1G_1)=p$	$f(G_1G_2)=q$

Computation of Breeding value for ${\cal G}_1{\cal G}_1$

$$\mu_{11} = p * a + q * d$$

The breeding value BV_{11} corresponds to

$$\begin{split} BV_{11} &= 2*(\mu_{11} - \mu) \\ &= 2\left(pa + qd - [(p-q)a + 2pqd]\right) \\ &= 2\left(pa + qd - (p-q)a - 2pqd\right) \\ &= 2\left(qd + qa - 2pqd\right) \\ &= 2\left(qa + qd(1-2p)\right) \\ &= 2q\left(a + d(1-2p)\right) \\ &= 2q\left(a + (q-p)d\right) \end{split}$$

Computation of Breeding value for ${\cal G}_2{\cal G}_2$

$$\mu_{22} = pd - qa$$

The breeding value BV_{22} corresponds to

$$\begin{split} BV_{22} &= 2*(\mu_{22} - \mu) \\ &= 2\left(pd - qa - [(p-q)a + 2pqd]\right) \\ &= 2\left(pd - qa - (p-q)a - 2pqd\right) \\ &= 2\left(pd - pa - 2pqd\right) \\ &= 2\left(-pa + p(1-2q)d\right) \\ &= -2p\left(a + (q-p)d\right) \end{split}$$

Computation of Breeding value for ${\cal G}_1{\cal G}_2$

$$\mu_{12} = 0.5pa + 0.5d - 0.5qa = 0.5[(p-q)a + d]$$

The breeding value BV_{12} corresponds to

$$\begin{split} & = 2W_{12} \\ & = 2 * (\mu_{12} - \mu) \\ & = 2 \left(0.5(p-q)a + 0.5d - [(p-q)a + 2pqd] \right) \\ & = 2 \left(0.5pa - 0.5qa + 0.5d - pa + qa - 2pqd \right) \\ & = 2 \left(0.5(q-p)a + (0.5 - 2pq)d \right) \\ & = (q-p)a + (1-4pq)d \\ & = (q-p)a + (p^2 + 2pq + q^2 - 4pq)d \\ & = (q-p)a + (p^2 - 2pq + q^2)d \\ & = (q-p)a + (q-p)^2d \\ & = (q-p)\left[a + (q-p)d \right] \end{split}$$