20-R-WE-DK-4 July 30, 2020 10:53 AM				
20-R-WE-DK-4 Begi Inspiration: home	one work of	a Couple Monert		
	A frishee is thrown such that	its final angular velocity is omega = 9	9 rnd/s after heing in flight for t = 3s	
M,	As it flies, the wind applies a	constant moment, causing the frisbeen moment of the wind and the work of	e to rotate faster. If the frisbee was	
		disk with mass m = 0.175 kg and that	t it rotates about its center of gravity	
(1, 6)				
	$\omega = \omega_0 + \alpha t$	$9 = \alpha(3) \alpha$	73	
	Wz = W3+2X1	$700 d_5 = 0_5 + 5$.(3) DO DO=B.5 rad	
	54 7			
	TWC= M= ICX	16== = (0.175	5)(0.14)2= 0.001715	
	M= 6.00171	5(3) = 0.005145 Nm	<u> </u>	
	$U = M(0^2 - 0)$	$O = (O\Delta)M = ($.005145(13.5) = 0.06045	45 J