

UIUC, 2013

Contents

- Mixture Model
 - Finite mixture
 - Infinite mixture
- Matrix Feature Model
 - Finite features
 - Infinite features(Indian Buffet Process)

Bayesian Nonparametrics

Models with undefined number of elements,

Dirichlet Process for infinite mixture models

- With various applications
 - Hierarchies
 - Topics and syntactic classes
 - Objects appearing in one image

Bayesian Nonparametrics

Models with undefined number of elements,

Dirichlet Process for infinite mixture models

- With various applications
 - Hierarchies
 - Topics and syntactic classes
 - Objects appearing in one image

- Cons
 - The models are limited to the case that could be modeled using DP.
 - i.e. set of observations are generated by only one latent component

• In practice there might be more complicated interaction between latent variables and observations

• In practice there might be more complicated interaction between latent variables and observations

- Solution
 - Looking for more flexible nonparametric models

• In practice there might be more complicated interaction between latent variables and observations

- Solution
 - Looking for more flexible nonparametric models
 - Such interaction could be captured via a binary matrix
 - Infinite features means infinite number of columns

• In practice there might be more complicated interaction between latent variables and observations

- Solution
 - Looking for more flexible nonparametric models
 - Such interaction could be captured via a binary matrix
 - Infinite features means infinite number of columns

$$\left\{\mathbf{X}_{i}\right\}_{i=1}^{N}$$

• Set of observation:

 $\left\{\mathbf{X}_{i}\right\}_{i=1}^{N}$

• Constant clusters, *K*

$$\{\mathbf{X}_i\}_{i=1}^N$$

- Constant clusters, *K*
- Cluster assignment for \mathbf{x}_i is $c_i \in \{1,...,K\}$

$$\{\mathbf{X}_i\}_{i=1}^N$$

- Constant clusters, *K*
- Cluster assignment for \mathbf{x}_i is $c_i \in \{1,...,K\}$
- Cluster assignments vector:

$$\{\mathbf{x}_i\}_{i=1}^N$$

- Constant clusters, *K*
- Cluster assignment for \mathbf{x}_i is $c_i \in \{1,...,K\}$
- Cluster assignments vector : $\mathbf{c} = [c_1, c_2, ..., c_N]^T$

• Set of observation:

$$\{\mathbf{x}_i\}_{i=1}^N$$

- Constant clusters, *K*
- Cluster assignment for \mathbf{x}_i is $c_i \in \{1,...,K\}$
- Cluster assignments vector : $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The probability of each sample under the model:

$$p(\mathbf{x}_i \mid \theta) = \sum_{k=1}^{K} p(\mathbf{x}_i \mid c_i = k) p(c_i = k)$$

• The likelihood of samples:

$$p(\mathbf{X} \mid \theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(\mathbf{x}_i \mid c_i = k) p(c_i = k)$$

• Set of observation:

$$\{\mathbf{x}_i\}_{i=1}^N$$

- Constant clusters, *K*
- Cluster assignment for \mathbf{x}_i is $c_i \in \{1,...,K\}$
- Cluster assignments vector : $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The probability of each sample under the model:

$$p(\mathbf{x}_i \mid \theta) = \sum_{k=1}^{K} p(\mathbf{x}_i \mid c_i = k) p(c_i = k)$$

$$p(\mathbf{X} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \sum_{k=1}^{K} p(\mathbf{x}_i \mid c_i = k) p(c_i = k)$$

• The prior on the component probabilities (symmetric Dirichlet dits.)

$$\theta \mid \alpha \sim \text{Dirichlet}(\frac{\alpha}{K},...,\frac{\alpha}{K}).$$

- Since we want the mixture model to be valid for any general component $p(x_j | c_j = i)$ we only assume the number of cluster assignments to be the goal of learning this mixture model!
- Cluster assignments: $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The model can be summarized as:

$$\begin{cases} \mathbf{\theta} \mid \mathbf{\alpha} \sim \text{Dirichlet}(\frac{\alpha}{K}, ..., \frac{\alpha}{K}). \\ c_i \mid \mathbf{\theta} \sim \text{Discrete}(\mathbf{\theta}) \end{cases}$$

- Since we want the mixture model to be valid for any general component $p(x_j | c_j = i)$ we only assume the number of cluster assignments to be the goal of learning this mixture model!
- Cluster assignments: $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The model can be summarized as:

$$\begin{cases} \mathbf{\theta} \mid \mathbf{\alpha} \sim \text{Dirichlet}(\frac{\alpha}{K}, ..., \frac{\alpha}{K}). \\ c_i \mid \mathbf{\theta} \sim \text{Discrete}(\mathbf{\theta}) \end{cases}$$

• To have a valid model, all of the distributions must be valid!

$$p(\mathbf{\theta} \mid \mathbf{c}) = \frac{p(\mathbf{c} \mid \mathbf{\theta}).p(\mathbf{\theta})}{p(\mathbf{c})}$$

- Since we want the mixture model to be valid for any general component $p(x_j | c_j = i)$ we only assume the number of cluster assignments to be the goal of learning this mixture model!
- Cluster assignments: $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The model can be summarized as:

$$\begin{cases} \mathbf{\theta} \mid \mathbf{\alpha} \sim \text{Dirichlet}(\frac{\alpha}{K}, ..., \frac{\alpha}{K}). \\ c_i \mid \mathbf{\theta} \sim \text{Discrete}(\mathbf{\theta}) \end{cases}$$

• To have a valid model, all of the distributions must be valid!

$$p(\mathbf{\theta} \mid \mathbf{c}) = \frac{p(\mathbf{c} \mid \mathbf{\theta}) \cdot p(\mathbf{\theta})}{p(\mathbf{c})} \Rightarrow \text{prior}$$

- Since we want the mixture model to be valid for any general component $p(x_j | c_j = i)$ we only assume the number of cluster assignments to be the goal of learning this mixture model!
- Cluster assignments: $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The model can be summarized as:

$$\begin{cases} \mathbf{\theta} \mid \mathbf{\alpha} \sim \text{Dirichlet}(\frac{\alpha}{K}, ..., \frac{\alpha}{K}). \\ c_i \mid \mathbf{\theta} \sim \text{Discrete}(\mathbf{\theta}) \end{cases}$$

• To have a valid model, all of the distributions must be valid! **likelihood**

$$p(\mathbf{\theta} \mid \mathbf{c}) = \frac{p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta})}{p(\mathbf{c})} \Rightarrow \text{prior}$$

- Since we want the mixture model to be valid for any general component $p(x_j | c_j = i)$ we only assume the number of cluster assignments to be the goal of learning this mixture model!
- Cluster assignments: $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The model can be summarized as:

$$\begin{cases} \mathbf{\theta} \mid \mathbf{\alpha} \sim \text{Dirichlet}(\frac{\alpha}{K}, ..., \frac{\alpha}{K}). \\ c_i \mid \mathbf{\theta} \sim \text{Discrete}(\mathbf{\theta}) \end{cases}$$

• To have a valid model, all of the distributions must be valid! **likelihood**

posterior
$$p(\theta | \mathbf{c}) = \frac{p(\mathbf{c} | \theta) p(\theta)}{p(\mathbf{c})}$$
 prior

- Since we want the mixture model to be valid for any general component $p(x_j | c_j = i)$ we only assume the number of cluster assignments to be the goal of learning this mixture model!
- Cluster assignments: $\mathbf{c} = [c_1, c_2, ..., c_N]^T$
- The model can be summarized as:

$$\begin{cases} \mathbf{\theta} \mid \mathbf{\alpha} \sim \text{Dirichlet}(\frac{\alpha}{K}, ..., \frac{\alpha}{K}). \\ c_i \mid \mathbf{\theta} \sim \text{Discrete}(\mathbf{\theta}) \end{cases}$$

• To have a valid model, all of the distributions must be valid! **likelihood**

posterior
$$p(\theta | \mathbf{c}) = \frac{p(\mathbf{c} | \theta) p(\theta)}{p(\mathbf{c})}$$
 prior $p(\mathbf{c}) = \frac{p(\mathbf{c} | \theta) p(\theta)}{p(\mathbf{c})}$ Marginal likelihood (Evidence)

$$p(\mathbf{c}) = \int_{\Delta_K} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta} \quad p(\mathbf{\theta}) = \left(D(\frac{\alpha}{K}, ..., \frac{\alpha}{K}) \right)^{-1} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}$$

$$p(\mathbf{c}) = \int_{\Delta_K} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta} \quad p(\mathbf{\theta}) = \left(D(\frac{\alpha}{K}, ..., \frac{\alpha}{K}) \right)^{-1} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}$$

$$m_k \square \sum_{k=1}^{N} \delta(c_i = k)$$

$$p(\mathbf{c}) = \int_{\Delta_K} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta} \quad p(\mathbf{\theta}) = \left(D(\frac{\alpha}{K}, ..., \frac{\alpha}{K}) \right)^{-1} \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

$$m_k \square \sum_{i=1}^N \delta(c_i = k) \quad \Rightarrow p(\mathbf{c} \mid \mathbf{\theta}) = \prod_{k=1}^K \theta_k^{m_k}$$

$$p(\mathbf{c}) = \int_{\Delta_{K}} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta} \quad p(\mathbf{\theta}) = \left(D(\frac{\alpha}{K}, ..., \frac{\alpha}{K}) \right)^{-1} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$$

$$m_{k} \square \sum_{i=1}^{N} \delta(c_{i} = k) \quad \Rightarrow p(\mathbf{c} \mid \mathbf{\theta}) = \prod_{k=1}^{K} \theta_{k}^{m_{k}}$$

$$p(\mathbf{c}) = \int_{\Delta_{K}} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta}$$

$$= \int_{\Delta_{K}} \frac{1}{D(\frac{\alpha}{K}, ..., \frac{\alpha}{K})} \prod_{k=1}^{K} \theta_{k}^{m_{k} + \frac{\alpha}{K} - 1} d\mathbf{\theta}$$

$$p(\mathbf{c}) = \int_{\Delta_{K}} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta} \quad p(\mathbf{\theta}) = \left(D(\frac{\alpha}{K}, ..., \frac{\alpha}{K}) \right)^{-1} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}$$

$$m_{k} \square \sum_{i=1}^{N} \delta(c_{i} = k) \quad \Rightarrow p(\mathbf{c} \mid \mathbf{\theta}) = \prod_{k=1}^{K} \theta_{k}^{m_{k}}$$

$$p(\mathbf{c}) = \int_{\Delta_{K}} p(\mathbf{c} \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta}$$

$$= \int_{\Delta_{K}} \frac{1}{D(\frac{\alpha}{K}, ..., \frac{\alpha}{K})} \prod_{k=1}^{K} \theta_{k}^{m_{k} + \frac{\alpha}{K} - 1} d\mathbf{\theta}$$

$$= \frac{\prod_{k=1}^{K} \Gamma\left(m_{k} + \frac{\alpha}{K}\right)}{\left(\Gamma\left(\frac{\alpha}{K}\right)\right)^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}, \quad \text{s.t.} \quad m_{k} = \sum_{i=1}^{N} \delta(c_{i} = k)$$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
- Since we always have limited samples in reality, we will have limited number of clusters used; so we define two set of clusters:

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
- Since we always have limited samples in reality, we will have limited number of clusters used; so we define two set of clusters:

$$K_{+}$$
 number of classes for which $m_k > 0$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
- Since we always have limited samples in reality, we will have limited number of clusters used; so we define two set of clusters:

$$K_{+}$$
 number of classes for which $m_k > 0$

$$K_0$$
 number of classes for which $m_k = 0$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
- Since we always have limited samples in reality, we will have limited number of clusters used; so we define two set of clusters:

 K_{+} number of classes for which $m_k > 0$

 K_0 number of classes for which $m_k = 0$

• Assume a reordering, such that $\forall k > K_+ \Rightarrow m_k = 0$; and $\forall k \leq K_+ \Rightarrow m_k > 0$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
- Since we always have limited samples in reality, we will have limited number of clusters used; so we define two set of clusters:

 K_{+} number of classes for which $m_k > 0$

 K_0 number of classes for which $m_k = 0$

• Assume a reordering, such that $\forall k > K_+ \Rightarrow m_k = 0$; and $\forall k \leq K_+ \Rightarrow m_k > 0$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
- Since we always have limited samples in reality, we will have limited number of clusters used; so we define two set of clusters:

 K_{\perp} number of classes for which $m_k > 0$

 K_0 number of classes for which $m_k = 0$

• Assume a reordering, such that $\forall k > K_+ \Rightarrow m_k = 0$; and $\forall k \leq K_+ \Rightarrow m_k > 0$

- Infinite clusters likelihood
 - It is like saying that we have : $K \rightarrow \infty$
 - Infinite dimensional multinomial cluster distribution.

• Now we return to the previous slides and set $K \rightarrow \infty$ in formulas

$$p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma\left(m_k + \frac{\alpha}{K}\right)}{\left(\Gamma\left(\frac{\alpha}{K}\right)\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}, \quad \text{s.t.} \quad m_k = \sum_{i=1}^{N} \delta(c_i = k)$$

• Now we return to the previous slides and set $K \rightarrow \infty$ in formulas

$$p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma\left(m_k + \frac{\alpha}{K}\right)}{\left(\Gamma\left(\frac{\alpha}{K}\right)\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}, \quad \text{s.t.} \quad m_k = \sum_{i=1}^{N} \delta(c_i = k)$$

$$\Gamma(x+1) = x\Gamma(x) \Rightarrow \Gamma(m_k + \frac{\alpha}{K}) = (m_k + \frac{\alpha}{K} - 1)...(\frac{\alpha}{K})\Gamma(\frac{\alpha}{K})$$

Infinite mixture model

• Now we return to the previous slides and set $K \rightarrow \infty$ in formulas

$$p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma\left(m_k + \frac{\alpha}{K}\right)}{\left(\Gamma\left(\frac{\alpha}{K}\right)\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}, \quad \text{s.t.} \quad m_k = \sum_{i=1}^{N} \delta(c_i = k)$$

$$\Gamma(x+1) = x\Gamma(x) \Rightarrow \Gamma(m_k + \frac{\alpha}{K}) = (m_k + \frac{\alpha}{K} - 1)...(\frac{\alpha}{K})\Gamma(\frac{\alpha}{K}) \Rightarrow \frac{\Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})} = (\frac{\alpha}{K})\prod_{j=1}^{m_k - 1} \left(j + \frac{\alpha}{K}\right)$$

Infinite mixture model

• Now we return to the previous slides and set $K \rightarrow \infty$ in formulas

$$p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma\left(m_k + \frac{\alpha}{K}\right)}{\left(\Gamma\left(\frac{\alpha}{K}\right)\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}, \quad \text{s.t.} \quad m_k = \sum_{i=1}^{N} \delta(c_i = k)$$

$$\Gamma(x+1) = x\Gamma(x) \Rightarrow \Gamma(m_k + \frac{\alpha}{K}) = (m_k + \frac{\alpha}{K} - 1)...(\frac{\alpha}{K})\Gamma(\frac{\alpha}{K}) \Rightarrow \frac{\Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})} = (\frac{\alpha}{K}) \prod_{j=1}^{m_k - 1} \left(j + \frac{\alpha}{K}\right)$$

$$\Rightarrow p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K})}{\left(\Gamma(\frac{\alpha}{K})\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} = \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k - 1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

Infinite mixture model

• Now we return to the previous slides and set $K \rightarrow \infty$ in formulas

$$p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma\left(m_k + \frac{\alpha}{K}\right)}{\left(\Gamma\left(\frac{\alpha}{K}\right)\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}, \quad \text{s.t.} \quad m_k = \sum_{i=1}^{N} \delta(c_i = k)$$

$$\Gamma(x+1) = x\Gamma(x) \Rightarrow \Gamma(m_k + \frac{\alpha}{K}) = (m_k + \frac{\alpha}{K} - 1)...(\frac{\alpha}{K})\Gamma(\frac{\alpha}{K}) \Rightarrow \frac{\Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})} = (\frac{\alpha}{K}) \prod_{j=1}^{m_k - 1} \left(j + \frac{\alpha}{K}\right)$$

$$\Rightarrow p(\mathbf{c}) = \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K})}{\left(\Gamma(\frac{\alpha}{K})\right)^K} \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} = \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k - 1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

If we set $K\to\infty$ the marginal likelihood will be $p(\mathbf{c})\to 0$. Instead we can model this problem, by defining probabilities on **partitions of samples**, instead of **class labels for each sample**.

- Define a partition of objects;
- Want to partition N objects into K_+ classes

- Define a partition of objects;
- Want to partition N objects into K classes
 Equivalence class of object partitions: [c] = {c | c | c | c}

- Define a partition of objects;
- Want to partition N objects into K_{+} classes Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0!K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0!K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0! K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow \lim_{K \to \infty} p([\mathbf{c}]) = \alpha^{K_+} \cdot 1 \qquad \cdot \prod_{k=1}^{K_+} \left(m_k - 1\right)! \quad \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0! K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow \lim_{K \to \infty} p([\mathbf{c}]) = \alpha^{K_+} \cdot 1 \qquad \cdot \prod_{k=1}^{K_+} \left(m_k - 1\right)! \quad \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

Valid probability distribution for an infinite mixture model

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0! K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow \lim_{K \to \infty} p([\mathbf{c}]) = \alpha^{K_+} \cdot 1 \qquad \cdot \prod_{k=1}^{K_+} \left(m_k - 1\right)! \quad \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Valid probability distribution for an infinite mixture model
- Exchangeable with respect to clusters assignments!

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0! K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow \lim_{K \to \infty} p([\mathbf{c}]) = \alpha^{K_+} \cdot 1 \qquad \cdot \prod_{k=1}^{K_+} (m_k - 1)! \quad \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Valid probability distribution for an infinite mixture model
- Exchangeable with respect to clusters assignments!
 - Important for Gibbs sampling (and Chinese restaurant process)

- Define a partition of objects;
- Want to partition N objects into K classes
- Equivalence class of object partitions: $[\mathbf{c}] = \{\mathbf{c}_i \mid \mathbf{c}_i \in \mathbf{c}\}$

$$p([\mathbf{c}]) = \sum_{\mathbf{c} \in [\mathbf{c}]} p(\mathbf{c}) = \frac{K!}{K_0!} \left(\frac{\alpha}{K}\right)^{K_+} \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow p([\mathbf{c}]) = \alpha^{K_+} \cdot \frac{K!}{K_0! K^{K_+}} \cdot \prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} \left(j + \frac{\alpha}{K}\right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

$$\Rightarrow \lim_{K \to \infty} p([\mathbf{c}]) = \alpha^{K_+} \cdot 1 \qquad \cdot \prod_{k=1}^{K_+} (m_k - 1)! \quad \cdot \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- Valid probability distribution for an infinite mixture model
- Exchangeable with respect to clusters assignments!
 - Important for Gibbs sampling (and Chinese restaurant process)
 - Di Finetti's theorem: explains why exchangeable observations are conditionally independent given some probability distribution

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 0$$

$$p(c_1 = 1) = \frac{1}{1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 1,$$
 $m_2 = 0$

$$p(c_2 = 1 | c_1) = \frac{1}{1+1}$$

$$p(c_2 = 2 | c_1) = \frac{1}{1+1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 1,$$
 $m_2 = 1,$ $m_3 = 0$

$$p(c_3 = 1 | c_{1:2}) = \frac{1}{2+1}$$

$$p(c_3 = 2 | c_{1:2}) = \frac{1}{2+1}$$

$$p(c_3 = 2 | c_{1:2}) = \frac{1}{2+1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 2,$$
 $m_2 = 1,$ $m_3 = 0$

$$p(c_4 = 1 | c_{1:3}) = \frac{2}{3+1}$$
 $p(c_4 = 3 | c_{1:3}) = \frac{1}{3+1}$

$$p(c_4 = 2 | c_{1:3}) = \frac{1}{3+1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 2,$$
 $m_2 = 2,$ $m_3 = 0$

$$p(c_5 = 1 | c_{1:4}) = \frac{2}{4+1}$$

$$p(c_5 = 2 | c_{1:4}) = \frac{2}{4+1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 2,$$
 $m_2 = 2,$ $m_3 = 1,$ $m_4 = 0$

$$p(c_6 = 1 | c_{1:5}) = \frac{2}{5+1}$$
 $p(c_6 = 3 | c_{1:5}) = \frac{1}{5+1}$

$$p(c_6 = 2 | c_{1:5}) = \frac{2}{5+1}$$
 $p(c_6 = 4 | c_{1:5}) = \frac{1}{5+1}$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 2$$
, $m_2 = 3$, $m_3 = 1$, $m_4 = 0$
 $p(c_7 = 1 | c_{1:6}) = \frac{2}{6+1}$
$$p(c_7 = 3 | c_{1:6}) = \frac{1}{6+1}$$

$$p(c_7 = 2 | c_{1:6}) = \frac{3}{6+1}$$

$$p(c_7 = 4 | c_{1:6}) = \frac{1}{6+1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 2,$$
 $m_2 = 3,$ $m_3 = 2,$ $m_4 = 0$

$$p(c_8 = 1 | c_{1:3}) = \frac{2}{7+1}$$

$$p(c_8 = 2 | c_{1:3}) = \frac{3}{7+1}$$

$$p(c_8 = 4 | c_{1:3}) = \frac{1}{7+1}$$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 3,$$
 $m_2 = 3,$ $m_3 = 2,$ $m_4 = 0$

$$p(c_9 = 1 | c_{1:3}) = \frac{3}{8+1}$$
 $p(c_9 = 3 | c_{1:3}) = \frac{2}{8+1}$

$$p(c_9 = 2 | c_{1:3}) = \frac{3}{8+1}$$
 $p(c_9 = 4 | c_{1:3}) = \frac{1}{8+1}$

$$p(c_{i} = k \mid c_{1}, ..., c_{i-1}) = \begin{cases} \frac{m_{k}}{i - 1 + \alpha} & k \leq K_{+} \\ \frac{\alpha}{i - 1 + \alpha} & k = K + 1 \end{cases}$$

$$m_1 = 3,$$
 $m_2 = 3,$ $m_3 = 2,$ $m_4 = 1$ $m_5 = 5$

$$m_2 = 3$$
,

$$m_3 = 2$$
,

$$m_{\Delta}=1$$

$$m_5 = 5$$

$$p(c_{10} = 1 | c_{1:4}) = \frac{3}{9+1}$$

$$p(c_{10} = 3 | c_{1:4}) = \frac{2}{9+1}$$

$$p(c_{10} = 5 | c_{1:4}) = \frac{1}{9+1}$$

$$p(c_{10} = 2 | c_{1:4}) = \frac{3}{9+1}$$

$$p(c_{10} = 4 | c_{1:4}) = \frac{1}{9+1}$$

$$p(c_{10} = 3 \mid c_{1:4}) = \frac{2}{9+1}$$

$$p(c_{10} = 5 \mid c_{1:4}) = \frac{1}{9+1}$$

$$p(c_{10} = 2 \mid c_{1:4}) = \frac{3}{9+1}$$

$$p(c_{10} = 4 \mid c_{1:4}) = \frac{1}{9+1}$$

CRP: Gibbs sampling

Gibbs sampler requires full conditional

$$p(c_i = k \mid \mathbf{c}_{-i}, \mathbf{X}) \propto p(\mathbf{X} \mid \mathbf{c}).p(c_i = k \mid \mathbf{c}_{-i})$$

Finite Mixture Model:

$$p(c_i = k \mid \mathbf{c}_{-i}) = \frac{m_{-i,k} + \frac{\alpha}{K}}{N - 1 + \alpha}$$

• Infinite Mixture Model:

$$p(c_{i} = k \mid \mathbf{c}_{-i}) = \begin{cases} \frac{m_{-i,k}}{N - 1 + \alpha} & m_{-i,k} > 0\\ \frac{\alpha}{N - 1 + \alpha} & k = K_{-i} + 1\\ 0 & \text{otherwise} \end{cases}$$

Beyond the limit of single label

- In Latent Class Models:
 - Each object (word) has only one latent label (topic)
 - Finite number of latent labels: LDA
 - Infinite number of latent labels: DPM
- In Latent Feature (latent structure) Models:
 - Each object (graph) has multiple latent features (entities)
 - Finite number of latent features: Finite Feature Model (FFM)
 - Infinite number of latent features: Indian Buffet Process (IBP)
 - Rows are data points
 - Columns are latent features.
 - Movie Preference Example:
 - Rows are movies: Rise of the Planet of the Apes
 - Columns are latent features:
 - Made in U.S.
 - Is Science fiction
 - Has apes in it ...

Latent Feature Model

		K	feat	ures		
	0.9	1.4	0	0	-0.3	
sts	-3.2	0	0.9	0		
N objects	0	0.2	-2.8			
N	1.8	0				
	-0.1					
	cor	ntii	nuc	us	$oldsymbol{F}$	

1	3	0	0	4	
5	0	3	0		
0	1	4			
2	0				
5					

• *F*: latent feature matrix

• **Z**: binary matrix

• V: value matrix

$$\mathbf{F} = \mathbf{Z} \otimes \mathbf{V}$$

• With p(F)=p(Z). p(V)

- Generating Z: (N*K) binary matrix
 - For each column k, draw π_k from beta distribution
 - For each object, flip a coin by Z_{ik}

$$\begin{cases} \pi_k \mid \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1) & \longleftarrow & (\pi_k, 1 - \pi_k) \sim Dir(\frac{\alpha}{K}, 1) \\ z_{ik} \mid \pi_k \sim \text{Bernoulli}(\pi_k) & \longleftarrow \end{cases}$$

- Generating Z: (N*K) binary matrix
 - For each column k, draw π_k from beta distribution
 - For each object, flip a coin by Z_{ik}

$$\begin{cases} \pi_k \mid \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1) & (\pi_k, 1 - \pi_k) \sim Dir(\frac{\alpha}{K}, 1) \\ z_{ik} \mid \pi_k \sim \text{Bernoulli}(\pi_k) & (\pi_k, 1 - \pi_k) \sim Dir(\frac{\alpha}{K}, 1) \end{cases}$$

• Distribution of Z:

- Generating Z: (N*K) binary matrix
 - $^{\scriptscriptstyle \square}$ For each column k, draw $\pi_{_k}$ from beta distribution
 - For each object, flip a coin by Z_{ik}

$$\begin{cases} \pi_k \mid \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1) & \longleftarrow & (\pi_k, 1 - \pi_k) \sim Dir(\frac{\alpha}{K}, 1) \\ z_{ik} \mid \pi_k \sim \text{Bernoulli}(\pi_k) & \longleftarrow & \bigcirc \end{cases}$$

- Generating Z: (N*K) binary matrix
 - $\,\,{}^{_{\square}}\,$ For each column k, draw $\pi_{_k}$ from beta distribution
 - For each object, flip a coin by Z_{ik}

$$\begin{cases} \pi_k \mid \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1) & \longleftarrow & (\pi_k, 1 - \pi_k) \sim Dir(\frac{\alpha}{K}, 1) \\ z_{ik} \mid \pi_k \sim \text{Bernoulli}(\pi_k) & \longleftarrow & \bigcirc \end{cases}$$

K features

• Distribution of Z :

$$p(\mathbf{Z} \mid \boldsymbol{\pi}) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik} \mid \pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1 - \pi_k)^{N - m_k}$$
$$p(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \int_{\pi_k} p(\pi_k \mid \alpha) p(z_{ik} \mid \pi_k) d\pi_k$$

- Generating Z: (N*K) binary matrix
 - $^{\scriptscriptstyle \square}$ For each column k, draw $\pi_{_k}$ from beta distribution
 - For each object, flip a coin by Z_{ik}

$$\begin{cases} \pi_{k} \mid \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1) & \longleftarrow & (\pi_{k}, 1 - \pi_{k}) \sim \text{Dir}(\frac{\alpha}{K}, 1) \\ z_{ik} \mid \pi_{k} \sim \text{Bernoulli}(\pi_{k}) & \longleftarrow \end{cases}$$

$$p(\mathbf{Z} \mid \boldsymbol{\pi}) = \prod_{k=1}^{K} \prod_{i=1}^{N} p(z_{ik} \mid \boldsymbol{\pi}_{k}) = \prod_{k=1}^{K} \boldsymbol{\pi}_{k}^{m_{k}} (1 - \boldsymbol{\pi}_{k})^{N - m_{k}}$$

$$p(\mathbf{Z} \mid \boldsymbol{\alpha}) = \prod_{k=1}^{K} \int_{\pi_{k}} p(\boldsymbol{\pi}_{k} \mid \boldsymbol{\alpha}) p(z_{\cdot k} \mid \boldsymbol{\pi}_{k}) d\boldsymbol{\pi}_{k}$$

$$= \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N - m_{k} + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

- Generating Z: (N*K) binary matrix
 - $^{\scriptscriptstyle \square}$ For each column k, draw $\pi_{_k}$ from beta distribution
 - For each object, flip a coin by Z_{ik}

$$\begin{cases} \pi_k \mid \alpha \sim \text{Beta}(\frac{\alpha}{K}, 1) & \longleftarrow & (\pi_k, 1 - \pi_k) \sim Dir(\frac{\alpha}{K}, 1) \\ z_{ik} \mid \pi_k \sim \text{Bernoulli}(\pi_k) & \longleftarrow \end{cases}$$

• **Z** is sparse:

$$\mathbb{E}\left[1^{T}\mathbf{Z}1\right] = K\mathbb{E}\left[1^{T}\mathbf{Z}\right] = K\sum_{i=1}^{N}\mathbb{E}\left[z_{ik}\right] = KN\mathbb{E}\left[\pi_{k}\right] = N\frac{\frac{\alpha}{K}}{1 + \frac{\alpha}{K}} \leq N\alpha$$

• Even $K \rightarrow \infty$

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k $h_4 = 2^3 + 2^7 + 2^9$

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k $h_4 = 2^3 + 2^7 + 2^9$
- Order features by h decreasingly

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k

 $h_{4} = 2^{3} + 2^{7} + 2^{9}$

• Order features by h decreasingly

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k

 $h_{4} = 2^{3} + 2^{7} + 2^{9}$

• Order features by h decreasingly

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k
 - Order features by h decreasingly

$$h_{\Delta} = 2^3 + 2^7 + 2^9$$

Z1 Z2 are *lof* equivalent iff lof(Z1) = lof(Z2) = [Z]

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k
 - Order features by h decreasingly

$$h_{\Delta} = 2^3 + 2^7 + 2^9$$

Z1 Z2 are *lof* equivalent iff lof(Z1) = lof(Z2) = [Z]

Describing [Z]:

$$K_h = \#\{i; h_i = h\}$$
 $K_+ = \sum_{i>0} K_h$
 $K = K_+ + K_0$

- Difficulty:
 - $P(Z) \rightarrow 0$
 - Solution: define equivalence classes on random binary feature matrices.
- *left-ordered form* function of binary matrices, *lof*(**Z**):
 - Compute history h of feature (column) k
- Order features by h decreasingly

$$\hat{h}_4 = 2^3 + 2^7 + 2^9$$

Z1 Z2 are *lof* equivalent iff lof(Z1) = lof(Z2) = [Z]

Describing [Z]:

$$K_h = \#\{i; h_i = h\}$$

$$K_+ = \sum_{i>0} K_h$$

$$K = K_+ + K_0$$

Cardinality of [Z]:

$$\binom{K}{K_0...K_{2^{N}-1}} = \frac{K!}{\prod_{h=0}^{2^{N}-1} K_h!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] | \alpha) = \Pr(Z | \alpha) \cdot card([Z])$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1) \\
\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N - m_{k} + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = {K \choose K_0 ... K_{2^{N} - 1}} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$Pr([Z] | \alpha) = Pr(Z | \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!} \frac{\frac{\alpha}{K} \Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N - m_{k} + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

$$= \frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}\right)^{K_{0}} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N - m_{k} + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K_{0}} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(N+1+\frac{\alpha}{K})}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=1}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K_{0}} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k}+1)}{\Gamma(N+1+\frac{\alpha}{K})}$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k}+1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^{N} - 1}} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^{N}-1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^{N}-1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{j=0}^{m_k-1} (j + \frac{\alpha}{K})$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = {K \choose K_0 ... K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$(m_k-1)! \cdot \frac{\alpha}{K}$$

Given:
$$\begin{cases}
\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1) \\
\Gamma(N + 1 + \frac{\alpha}{K})
\end{cases}$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^N - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$(m_k-1)! \cdot \frac{\alpha}{K} \frac{(N-m_k)!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^{N} - 1}} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left[\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)} \left[\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(N+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(N+1+\frac{\alpha}{K})} \prod$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\begin{cases}
\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1) \\
\Gamma(N + 1 + \frac{\alpha}{K})
\end{cases}$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^{N} - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left[\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)} \left[\frac{\Gamma(\frac{\alpha}{K} + 1) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(N+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(N+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + 1)}{\Gamma(N+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K})}{\Gamma(N+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + 1)}{\Gamma(M+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + 1)}{\Gamma(M+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + 1)}{\Gamma(M+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + 1)}{\Gamma(M+1+\frac{\alpha}{K})} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + 1)}{\Gamma(M$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{h=0}^{2^N - 1} K_h!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\prod_{k=0}^{K} K_{k}} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)} \left(\frac{\frac{N!}{\prod_{j=1}^{N} (j + \frac{\alpha}{K})}}{\prod_{j=1}^{K} (j + \frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} (m_{k} - 1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^{N} - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{j=1}^{2^{N}-1} K_{j}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\left(\prod_{j=1}^{N} \frac{1}{(1+\frac{\alpha/j}{K})} \right)^{K} \prod_{k=1}^{K_{+}} (m_{k} - 1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{j=1}^{2^{N}-1} K_{h}!} \left(\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\prod_{j=1}^{K} \Gamma(N+1+\frac{\alpha}{K})} \right)^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{j=1}^{N} (1 + \frac{\alpha/j}{K})^{-K} \prod_{k=1}^{K_{+}} (m_{k} - 1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^{N} - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left[\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \prod_{j=1}^{N} (1 + \frac{\alpha/j}{K})^{-K} \prod_{k=1}^{K_{+}} (m_{k} - 1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^{N} - 1}} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{j=1}^{2^{N}-1} K_{h}!} \left[\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\prod_{j=1}^{K} \Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$\prod_{j=1}^{N} (1 + \frac{\alpha/j}{K})^{-K} \prod_{k=1}^{K_{+}} (m_{k} - 1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{\prod_{k=0}^{2^{N}-1} K_{k}!} \left[\frac{\frac{\alpha}{K} \Gamma(\frac{\alpha}{K}) \Gamma(N+1)}{\Gamma(N+1+\frac{\alpha}{K})} \right]^{K} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{k} + \frac{\alpha}{K}) \Gamma(N-m_{k} + 1)}{\Gamma(\frac{\alpha}{K}) \Gamma(N+1)}$$

$$= \frac{K!}{K_{0}! \prod_{k=1}^{2^{N}-1} K_{k}!} \prod_{j=1}^{N} (1 + \frac{\alpha/j}{K})^{-K} \prod_{k=1}^{K_{+}} (m_{k} - 1)! \cdot \frac{\alpha}{K} \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^{N} - 1}} = \frac{K!}{\prod_{k=1}^{2^{N} - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{j=1}^{N} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha / j}{K})^{-K} \prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{k=1}^{2^{N-1}} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \left[\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!} \right]$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{j=1}^{N} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha / j}{K})^{-K} \left[\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!} \right]$$

$$\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

$$\frac{\alpha^{K_{+}}}{K^{K_{+}}} \prod_{k=1}^{K_{+}} (m_{k}-1)! \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^N - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \underbrace{\frac{K!}{K_0! \prod_{k=1}^{2^{N}-1} K_k!}} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \underbrace{\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K}}_{k=1} \underbrace{\frac{(N - m_k)!}{N!}}_{N!}$$

$$\frac{K!}{K_0! \prod_{k=1}^{2^{N}-1} K_k!} \frac{\alpha^{K_+}}{K^{K_+}} \prod_{k=1}^{K_+} (m_k - 1)! \frac{(N - m_k)!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{k=1}^{2^{N}-1} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

$$\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \frac{(N-m_{k})!}{N!}$$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^N - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{k=1}^{2^{N}-1} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \prod_{k=1}^{K_+} \frac{(m_k - 1)! \cdot \frac{\alpha}{K}}{N!} \frac{(N - m_k)!}{N!}$$

$$\frac{K!}{K_0!K^{K_+}}\frac{\alpha^{K_+}}{\prod_{k=1}^{2^{N}-1}K_k!}\prod_{k=1}^{K_+}(m_k-1)!\frac{(N-m_k)!}{N!}$$

Indian Buffet Process 1st Representation: $K \rightarrow \infty$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

Derive when $K \to \infty$: ($K_+ < \infty$ almost surely)

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{h=1}^{2^{N}-1} K_h!} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

$$\prod_{k=1}^{K_{+}} (m_{k}-1)! \frac{(N-m_{k})!}{N!}$$

Indian Buffet Process 1st Representation: $K \rightarrow \infty$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

Derive when $K \to \infty$: $(K_+ < \infty \text{ almost surely})$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \underbrace{\frac{K!}{K_0! \prod_{j=1}^{2^N - 1} K_h!}}^{N} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \underbrace{\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K}}_{k=1} \underbrace{\frac{(N - m_k)!}{N!}}_{N!}$$

$$\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

$$\frac{\alpha^{K_{+}}}{\prod_{h=1}^{2^{N}-1}K_{h}!} \qquad \prod_{k=1}^{K_{+}} (m_{k}-1)! \quad \frac{(N-m_{k})!}{N!}$$

Indian Buffet Process 1st Representation: $K \rightarrow \infty$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

Derive when $K \to \infty$: ($K_+ < \infty$ almost surely)

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \underbrace{\frac{K!}{K_0! \prod_{k=1}^{2^{N}-1} K_k!}}_{K_0! \prod_{k=1}^{2^{N}-1} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \underbrace{\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K}}_{K_0! \prod_{k=1}^{K_+} (N - m_k)!} \frac{(N - m_k)!}{N!}$$

$$\prod_{j=1}^{N} e^{-\frac{\alpha \mid j}{K}} \underbrace{\prod_{k=1}^{K_+} (m_k - 1)!}_{N!} \underbrace{\prod_{k=1}^{K_+} (m_k - 1)!}_{N!} \underbrace{\frac{(N - m_k)!}{N!}}_{N!}$$

Indian Buffet Process 1st Representation: $K \rightarrow \infty$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \begin{pmatrix} K \\ K_0 \dots K_{2^N - 1} \end{pmatrix} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

Derive when $K \to \infty$: $(K_+ < \infty \text{ almost surely})$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \underbrace{\frac{K!}{K_0! \prod_{j=1}^{N-1} K_h!}} \prod_{j=1}^{N} (1 + \frac{\alpha \mid j}{K})^{-K} \underbrace{\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K}}_{k=1} \underbrace{\frac{(N - m_k)!}{N!}}_{N!}$$

$$\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \frac{(N - m_k)!}{N!}$$

$$\frac{\alpha^{K_+}}{\prod_{h=1}^{2^N-1} K_h!}$$

$$\frac{\alpha^{K_{+}}}{\prod_{k=1}^{2^{N}-1} K_{k}!} \qquad \prod_{k=1}^{K_{+}} (m_{k}-1)! \frac{(N-m_{k})!}{N!}$$

Indian Buffet Process 1st Representation: $K \rightarrow \infty$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$card([Z]) = \binom{K}{K_0 \dots K_{2^{N} - 1}} = \frac{K!}{\prod_{k=0}^{2^{N} - 1} K_k!}$$

Derive when $K \to \infty$: $(K_+ < \infty \text{ almost surely})$

$$\Pr([Z] \mid \alpha) = \Pr(Z \mid \alpha) \cdot card([Z])$$

$$= \frac{K!}{K_0! \prod_{k=1}^{2^{N}-1} K_k!} \prod_{j=1}^{N} (1 + \frac{\alpha / j}{K})^{-K} \left[\prod_{k=1}^{K_+} (m_k - 1)! \cdot \frac{\alpha}{K} \cdot \frac{(N - m_k)!}{N!} \right]$$

$$= e^{-\alpha H_N} \qquad \frac{\alpha^{K_+}}{\prod_{k=1}^{2^{N}-1} K_k!} \qquad \prod_{k=1}^{K_+} (m_k - 1)! \quad \frac{(N - m_k)!}{N!}$$

$$H_N = \sum_{k=1}^{N} \frac{1}{N!} \prod_{k=1}^{N} (m_k - 1)! \quad \frac{(N - m_k)!}{N!}$$

$$H_N = \sum_{j=1}^{N} \frac{1}{j}$$
 Harmonic sequence sum

1st Representation: $K \rightarrow \infty$

Given:
$$\Pr(\mathbf{Z} \mid \alpha) = \prod_{k=1}^{K} \frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)$$

$$\Gamma(N + 1 + \frac{\alpha}{K})$$

$$\operatorname{card}([Z]) = \binom{K}{K_0 \dots K_{2^N - 1}} = \frac{K!}{\prod_{k=0}^{2^N - 1} K_k!}$$

Derive when $K \to \infty$: $(K_+ < \infty \text{ almost surely})$

$$Pr([Z] | \alpha) = Pr(Z | \alpha) \cdot card([Z])$$

$$=e^{-\alpha H_N} \frac{\alpha^{K_+}}{\prod_{k=1}^{2^N-1} K_k!} \prod_{k=1}^{K_+} \frac{(m_k-1)!(N-m_k)!}{N!}$$

Note:

- $\Pr([Z] | \alpha)$ is well defined because $K_+ < \infty$ a.s.
- $Pr([Z]|\alpha)$ depends on K_h :
 - The number of features (columns) with history *h*
 - Permute the rows (data points) does not change K_h (exchangeability)

• Indian restaurant with infinitely many infinite dishes (columns)

- Indian restaurant with infinitely many infinite dishes (columns)
 - The first customer tastes *first* $K_1^{(1)}$ dishes, sample $K_1^{(1)} \sim Poission(\alpha)$

- Indian restaurant with infinitely many infinite dishes (columns)
 - The first customer tastes *first* $K_1^{(1)}$ dishes, sample $K_1^{(1)} \sim Poission(\alpha)$
 - The *i*-th customer:
 - Taste a previously sampled dish with probability $\frac{m_k}{i+1}$
 - m_k : number of previously customers taking *dish* k

- Indian restaurant with infinitely many infinite dishes (columns)
 - The first customer tastes *first* $K_1^{(1)}$ dishes, sample $K_1^{(1)} \sim \text{Poission}(\alpha)$
 - The *i*-th customer:
 - Taste a previously sampled dish with probability $\frac{m_k}{i+1}$
 - m_k : number of previously customers taking *dish k*
 - Taste **following** $K_1^{(i)}$ new dishes, sample $K_1^{(i)} \sim \text{Poission}(\frac{\alpha}{i})$

- Indian restaurant with infinitely many infinite dishes (columns)
 - The first customer tastes *first* $K_1^{(1)}$ dishes, sample $K_1^{(1)} \sim Poission(\alpha)$
 - The *i*-th customer:
 - Taste a previously sampled dish with probability $\frac{m_k}{i+1}$
 - m_k : number of previously customers taking *dish k*
 - Taste **following** $K_1^{(i)}$ new dishes, sample $K_1^{(i)} \sim \text{Poission}(\frac{\alpha}{1})$

- Indian restaurant with infinitely many infinite dishes (columns)
 - The first customer tastes **first** $K_1^{(1)}$ dishes, sample $K_1^{(1)} \sim Poission(\alpha)$
 - The *i*-th customer:
 - Taste a previously sampled dish with probability $\frac{m_k}{i+1}$
 - m_k : number of previously customers taking *dish k*
 - Taste **following** $K_1^{(i)}$ new dishes, sample $K_1^{(i)} \sim \text{Poission}(\frac{\alpha}{i})$

- Indian restaurant with infinitely many infinite dishes (columns)
 - The first customer tastes **first** $K_1^{(1)}$ dishes, sample $K_1^{(1)} \sim \text{Poission}(\alpha)$
 - The *i*-th customer:
 - Taste a previously sampled dish with probability $\frac{m_k}{i+1}$
 - m_k : number of previously customers taking dish k
 - Taste **following** $K_1^{(i)}$ new dishes, sample $K_1^{(i)} \sim \text{Poission}(\frac{\alpha}{i})$

Indian Buffet Process 2^{st} Representation: Customers & Dishes $K_1^{(i)}$ $K_2^{(i)}$ $K_3^{(i)}$

Indian Buffet Process 2^{st} Representation: Customers & Dishes $K_1^{(i)}$ $K_2^{(i)}$ $K_3^{(i)}$

$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

Indian Buffet Process 2^{st} Representation: Customers & Dishes $K_1^{(i)}$ $K_2^{(i)}$ $K_3^{(i)}$

2st Representation: Customers & Dishes $K_1^{(i)}$ $K_2^{(i)}$ $K_3^{(i)}$

2st Representation: Customers & Dishes $K_1^{(i)}$ $K_2^{(i)}$ $K_3^{(i)}$

Indian Buffet Process 2st Poprosontation: Cus

2st Representation: Customers & Dishes $K_1^{(i)} = K_2^{(i)} = K_3^{(i)}$

2st Representation: Customers & Dishes $K_1^{(i)}$ $K_2^{(i)}$ $K_3^{(i)}$

2st Representation: Customers & Dishes $K_1^{(i)} = K_2^{(i)} = K_3^{(i)}$

2st Representation: Customers & Dishes

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

• Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{\frac{-\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

- Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)
- The permuted matrices are all of same lof equivalent class [Z]

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

- Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)
- The permuted matrices are all of same *lof* equivalent class [Z]
- Number of permutation:

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

- Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)
- The permuted matrices are all of same *lof* equivalent class [Z]

• Number of permutation:
$$\prod_{i=1}^{N} K_{1}^{(i)}$$

$$\prod_{i=1}^{N} K_{n}^{(i)}$$

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

- Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)
- The permuted matrices are all of same *lof* equivalent class [Z]
- Number of permutation: $\prod_{i=1}^{N} K_{1}^{(i)}$

$$\frac{\prod_{i}^{N} K_{1}^{(i)}}{\prod_{h=1}^{2^{N}-1} K_{h}!}$$

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

- Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)
- The permuted matrices are all of same *lof* equivalent class [Z]
- Number of permutation: $\prod_{i=1}^{N} K_{1}^{(i)}$ $P_{IBP}([Z] | \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{k=1}^{2^{N}-1} K_{h}!} \prod_{k=1}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$

From:
$$P_{new_dish} = \prod_{i}^{N} \frac{\left(\frac{\alpha}{i}\right)^{K_{1}^{(i)}} e^{-\frac{\alpha}{i}}}{K_{1}^{(i)}!} = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}}$$

$$\prod_{i}^{N} \left(\frac{1}{i}\right)^{K_{1}^{(i)}} P_{old_dishes} = \prod_{k}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

We have:
$$P_{IBP}(Z \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{i}^{N} K_{1}^{(i)}} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$
Note:

- Permute $K_1^{(1)}$, next $K_1^{(2)}$, next $K_1^{(3)}$,... next $K_1^{(N)}$ dishes (columns) does not change P(Z)
- The permuted matrices are all of same *lof* equivalent class [Z]
- Number of permutation:

2nd representation is equivalent to 1st representation

$$\frac{\prod_{i}^{N} K_{1}^{(i)}}{\prod_{j=1}^{2^{N}-1} K_{h}!} P_{IBP}([Z] \mid \alpha) = \frac{\alpha^{K_{+}} e^{-\alpha H_{N}}}{\prod_{j=1}^{2^{N}-1} K_{h}!} \prod_{k}^{K_{+}} \frac{(N - m_{k})! (m_{k} - 1)!}{N!}$$

Indian Buffet Process 3rd Representation: Distribution over Collections of Histories

- Directly generating the left ordered form (*lof*) matrix **Z**
- For each history *h*:
 - m_h: number of non-zero elements in h
 - Generate K_h columns of history h

$$K_h \sim \text{Poission}(\alpha \frac{(m_h - 1)!(N - m_h)!}{N!})$$

• The distribution over collections of histories

$$P(\mathbf{K}) = \prod_{h=1}^{2^{N}-1} \frac{\left(\alpha \frac{(m_{h}-1)!(N-m_{h})!}{N!}\right)^{K_{h}}}{K_{h}!} \exp\left\{-\alpha \frac{(m_{h}-1)!(N-m_{h})!}{N!}\right\}$$

$$= \frac{\alpha^{\sum_{h=1}^{2^{N}-1} K_{h}}}{\prod_{h=1}^{2^{N}-1} K_{h}!} \exp\left\{-\alpha H_{N}\right\} \prod_{h=1}^{2^{N}-1} \left(\frac{(m_{h}-1)!(N-m_{h})!}{N!}\right)^{K_{h}},$$

- Note:
 - Permute digits in h does not change m_h (nor P(K))
 - Permute rows means customers are exchangeable

- Effective dimension of the model K₊:
 - Follow Poission distribution: $K_+ \sim \text{Poission}(\alpha H_N)$
 - Derives from 2nd representation by summing Poission components
- Number of features possessed by each object:
 - Follow Possion distribution: Poission(α)
 - Derives from 2nd representation:
 - The first customer chooses $Poission(\alpha)$ dishes
 - The customers are exchangeable and thus can be purmuted
- Z is sparse:
 - Non-zero element
 - Derives from the 2^{nd} (or 1^{st}) representation: α
 - Expected number of non-zeros for each row is $N\alpha$
 - Expected entries in **Z** is

IBP: Gibbs sampling

Need to have the full conditional

$$p(z_{ik} = 1 | \mathbf{Z}_{-(ik)}, \mathbf{X}) \propto p(\mathbf{X} | \mathbf{Z}) p(z_{ik} = 1 | \mathbf{Z}_{-(ik)})$$

- ${\bf Z}_{-(n,k)}$ denotes the entries of ${\bf Z}$ other than ${\bf Z}_{nk}$.
- p(X|Z) depends on the model chosen for the observed data.
- By exchangeability, consider generating row as the last customer:

• By IBP, in which
$$p(z_{ik} = 1 | \mathbf{z}_{-ik}) = \frac{m_{-i,k}}{N}$$

- If sample $z_{ik}=0$, and $m_k=0$: delete the row
- At the end, draw new dishes from Pois($\frac{\alpha}{n}$) with considering $p(\mathbf{X} \mid \mathbf{Z})$
 - Approximated by truncation, computing probabilities for a range of values of new dishes up to a upper bound

More talk on applications

Applications

- As prior distribution in models with infinite number of features.
- Modeling Protein Interactions
- Models of bipartite graph consisting of one side with undefined number of elements.
- Binary Matrix Factorization for Modeling Dyadic Data
- Extracting Features from Similarity Judgments
- Latent Features in Link Prediction
- Independent Components Analysis and Sparse Factor Analysis

• More on inference

- Stick-breaking representation (Yee Whye Teh et al., 2007)
- Variational inference (Finale Doshi-Velez et al., 2009)
- Accelerated Inference (Finale Doshi-Velez et al., 2009)

References

- Griffiths, T. L., & Ghahramani, Z. (2011). The indian buffet process: An introduction and review. *Journal of Machine Learning Research*, 12, 1185-1224.
- Slides: Tom Griffiths, "The Indian buffet process".