Problem Set 2

These problems have been selected from the Course Textbook by Cover and Thomas.

- **2.14** Entropy of a sum. Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s , respectively. Let Z = X + Y.
 - (a) Show that $H(Z \mid X) = H(Y \mid X)$. Argue that if X, Y are independent, then $H(Z) \geq H(X)$ and $H(Z) \geq H(Y)$. Thus, the addition of *independent* random variables adds uncertainty.
 - (b) Give an example of (necessarily dependent) random variables in which H(X) > H(Z) and H(Y) > H(Z).
 - (c) Under what conditions does H(Z) = H(X) + H(Y)?
- **2.16** Bottleneck. Suppose that a (nonstationary) Markov chain starts in one of n states, necks down to k < n states, and then fans back to m > k states. Thus, $X_1 \to X_2 \to X_3$, that is, $p(x_1, x_2, x_3) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)$, for all $x_1 \in \{1, 2, ..., n\}$, $x_2 \in \{1, 2, ..., k\}$, $x_3 \in \{1, 2, ..., m\}$.
 - (a) Show that the dependence of X_1 and X_3 is limited by the bottleneck, by proving that $I(X_1; X_3) \leq \log k$.
 - (b) Evaluate $I(X_1; X_3)$ for k = 1, and conclude that no dependence can survive such a bottleneck.
- **2.17** Pure randomness and bent coins. Let X_1, X_2, \ldots, X_n denote the outcomes of independent flips of a bent coin. Thus, Pr(Xi=1)=p, Pr(Xi=0)=1-p, where p is unknown. We wish to obtain a sequence Z_1, Z_2, \ldots, Z_K of fair coin flips from X_1, X_2, \ldots, X_n . Toward this end, let $f: \mathcal{X}^n \to \{0,1\}^*$ (where $\{0,1\}^* = \{\epsilon,0,1,00,01,\ldots\}$ is the set of all finite-length binary strings, including the empty string ϵ) be a mapping so that $(Z_1, Z_2, \ldots, Z_K) = f(X_1, X_2, \ldots, X_n)$ where $Z_i \sim \text{Bernoulli}(\frac{1}{2})$ (and the Z_i are independent) and K may depend on (X_1, \ldots, X_n) . In order that the sequence Z_1, Z_2, \ldots appear to be fair coin flips, the map f from bent coin flips to fair flips must have the property that all 2^k sequences (Z_1, Z_2, \ldots, Z_k) of a given length k have equal probability (possibly 0), for $k = 1, 2, \ldots$ For example, for n = 2, the map $f(01) = 0, f(10) = 1, f(00) = f(11) = \epsilon$ (the empty string) has the property that $Pr(Z_1 = 1 \mid K = 1) = Pr(Z_1 = 0 \mid K = 1) = \frac{1}{2}$. Give reasons for the following

inequalities:

$$nH(p) \stackrel{(a)}{=} H(X_1, \dots, X_n)$$

$$\stackrel{(b)}{\geq} H(Z_1, Z_2, \dots, Z_K, K)$$

$$\stackrel{(c)}{=} H(K) + H(Z_1, \dots, Z_K \mid K)$$

$$\stackrel{(d)}{=} H(K) + E(K)$$

$$\stackrel{(e)}{\geq} E(K).$$

Thus, no more than nH(p) fair coin tosses can be derived from (X_1, \ldots, X_n) , on the average. Exhibit a good map f on sequences of length n = 4.

- **2.19** Infinite entropy. This problem shows that the entropy of a discrete random variable can be infinite. Let $A = \sum_{n=2}^{\infty} (n \log^2 n)^{-1}$. [It is easy to show that A is finite by bounding the infinite sum by the integral of $(x \log^2 x)^{-1}$.] Show that the integer-valued random variable X defined by $Pr(X = n) = (An \log^2 n)^{-1}$ for $n = 2, 3, ..., \text{ has } H(X) = +\infty$.
- **2.21** Markov's inequality for probabilities. Let p(x) be a probability mass function. Prove, for all d > 0, that

$$Pr(p(X) \le d) \log \frac{1}{d} \le H(X).$$

2.27 Grouping rule for entropy. Let $\mathbf{p} = (p_1, p_2, \dots, p_m)$ be a probability distribution on m elements (i.e., $p_i \geq 0$ and $\sum_{i=1}^m p_i = 1$). Define a new distribution \mathbf{q} on m-1 elements as $q_1 = p_1, q_2 = p_2, \dots, q_{m-2} = p_{m-2}$, and $q_{m-1} = p_{m-1} + p_m$. In other words, the distribution \mathbf{q} is the same as \mathbf{p} on $\{1, \dots, m-2\}$, while the last mass q_{m-1} of \mathbf{q} is the sum of the last two masses p_{m-1} and p_m of \mathbf{p} . Show that

$$H(\mathbf{p}) = H(\mathbf{q}) + (p_{m-1} + p_m)H\left(\frac{p_{m-1}}{p_{m-1} + p_m}, \frac{p_m}{p_{m-1} + p_m}\right).$$

3.4 AEP. Let X_i be i.i.d. $\sim p(x), x \in \mathcal{X}$. Let $\mu = E(X)$ and $H = -\sum p(x) \log p(x)$. Let

$$A^n = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log p(x^n) - H \right| \le \epsilon \right\},$$

and let

$$B^{n} = \left\{ x^{n} \in \mathcal{X}^{n} : \left| \frac{1}{n} \sum_{i=1}^{n} X_{i} - \mu \right| \le \epsilon \right\}.$$

- (a) Does $P(X^n \in A^n) \to 1$ as $n \to \infty$?
- (b) Does $P(X^n \in A^n \cap B^n) \to 1$ as $n \to \infty$?
- (c) Show that $|A^n \cap B^n| \leq 2^{n(H+\epsilon)}$ for all n.
- (d) Show that $|A^n \cap B^n| \ge \frac{1}{2} 2^{n(H-\epsilon)}$ for n sufficiently large.

3.5 Sets defined by probabilities. Let X_1, X_2, \ldots be an i.i.d. sequence of discrete random variables over \mathcal{X} with entropy H(X). Let

$$C_n(t) = \{x^n \in \mathcal{X}^n \colon p(x^n) \ge 2^{-nt}\}.$$

- (a) Show that $|C_n(t)| \leq 2^{nt}$.
- (b) For which values of t does $P(X^n \in C_n(t)) \to 1$ as $n \to \infty$?
- **3.7** AEP and source coding. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer ones.
 - (a) Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer ones.
 - (b) Calculate the probability of observing a source sequence for which no codeword has been assigned.
 - (c) Use Chebyshev's inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).
- **3.13** Calculation of typical set. To clarify the notion of a typical set $A_{\epsilon}^{(n)}$ and the smallest set of high probability $B_{\delta}^{(n)}$, we will calculate these sets for a simple example. Consider a sequence of i.i.d. binary random variables, X_1, X_2, \ldots, X_n , where the probability that $X_i = 1$ is 0.6 (and therefore the probability that $X_i = 0$ is 0.4).
 - (a) Calculate H(X).
 - (b) With n=25 and $\epsilon=0.1$, which sequences fall in the typical set $A_{\epsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical set? (This involves computation of a table of probabilities for sequences with k ones, $0 \le k \le 25$, and finding those sequences that are in the typical set.
 - (c) How many elements are there in the smallest set that has probability at least 0.9?
 - (d) How many elements are there in the intersection of the sets in parts (b) and (c)? What is the probability of this intersection?