תורת ההסתברות -1 סיכום

2024 בדצמבר 3

תוכן העניינים

4	29.10.2024 - 1	שיעור	1
4	מבוא הקורס	1.1	
4	מרחבי מדגם ופונקציית הסתברות	1.2	
7	31.10.2024 - 1	תרגול	2
7	מרחבי הסתברות סופיים ובני־מניה	2.1	
9	31.10.2024 - 2	שיעור	3
9	השלמה לטורים דו־מימדיים	3.1	
9	תכונות של פונקציות הסתברות	3.2	
10	פרדוקס יום ההולדת	3.3	
11	5.11.2024 - 3	שיעור	4
11	מכפלת מרחבי הסתברות בדידים	4.1	
12	ניסויים דו־שלביים	4.2	
14	7.11.2024 - 2	תרגול	5
14	פתרון שאלות הסתברותיות	5.1	
	· ·		_
16	7.11.2024 - 4		6
16	חסמי איחוד ורציפות	6.1	
17	עיקרון ההכלה וההדחה	6.2	
19	12.11.2024 - 5	שיעור	7
19	הסתברות מותנית	7.1	
21	14.11.2024 - 3	תרגול	8
21	הסתברות מותנית	8.1	
21	ניסוי דו־שלבי על־ידי הסתברות מותנית	8.2	
23	14.11.2024 - 6	שיעור	9
23	אי־תלות	9.1	
25	19.11.2024 - 7	שיעור	10
25	אי־תלות	10.1	
25	משתנים מקריים	10.2	
27	21.11.2024 - 4	תרגול	11
27	אי־תלות	11.1	
27	משתנים מקריים	11.2	
29	21.11.2024 - 8	שיעור	12
29	משתנים מקריים — המשך	12.1	
30	י קשרים בין משתנים־מקריים		
32	25.11.2024 - 9	שיעור	13

13.1 וקטורים מקריים	רים מקריים
8.11.2024 — 5 מרגול	28.11.2024
14.1 משתנים מקריים	זנים מקריים
11.2024 – 10 שיעור 15	28.11.2024 —
15.1 התפלגות תחת הו	לגות תחת התניה
12.2024 – 11 שיעור 16	3.12.2024 —
16.1 אי־תלות משתנינ	זלות משתנים מקריים
16.2 התפלגות גאומטו	לגות גאומטרית

29.10.2024 - 1 שיעור 1

מבוא הקורס 1.1

נלמד לפי ספר שעוד לא יצא לאור שנכתב על־ידי אורי עצמו, הוא עוד לא סופי ויש בו בעיות ואי־דיוקים, תשיג את הספר הזה. כן יש הבדל בין הקורס והספר אז לא לסמוך על הסדר שלו גם כשאתה משיג אותו, אבל זו תוספת מאוד נוחה. יש סימון של כוכביות לחומר מוסף, כדאי לעבור עליו לקראת המבחן כי זה יתן לנו עוד אינטואיציה והעמקה של ההבנה.

נשים לב כי ענף ההסתברות הוא ענף חדש יחסית, שהתפתח הרבה אחרי שאר הענפים הקלאסיים של המתמטיקה, למעשה רק לפני 400 שנה נשאלה על־ידי נזיר במהלך חקר של משחק אקראי השאלה הראשית של העולם הזה, מה ההסתברות של הצלחה במשחק.

נעבור לדבר על פילוסופיה של ההסתברות. מה המשמעות של הטלת מטבע מבחינת הסתברות? ישנה הגישה של השכיחות, שמציגה הסתברות כתוצאה במקרה של חזרה על ניסוי כמות גדולה מאוד של פעמים. יש כמה בעיות בזה, לרבות חוסר היכולת להגדיר במדויק אמירה כזו, הטיות שנובעות מפיזיקה, מטבעות הם לא מאוזנים לדוגמה. הבעיה הראשית היא שלא לכל בעיה אפשר לפנות בצורה כזאת. ישנה גישה נוספת, היא הגישה האוביקטיבית או המתמטית, הגישה הזו בעצם היא תרגום בעיה מהמציאות לבעיה מתמטית פורמלית. לדוגמה נשאל את השאלה מה ההסתברות לקבל 6 בהגרלה של כל המספרים מ־1 עד מיליון. השיטה ההסתברותית קובעת שאם אני רוצה להוכיח קיום של איזשהו אוביקט, לפעמים אפשר לעשות את זה על־ידי הגרלה של אוביקט כזה והוכחה שיש הסתברות חיובית שהוא יוגרל, וזו הוכחה שהוא קיים. מה התחזיות שינבעו מתורת ההסתברות? לדוגמה אי־אפשר לחזות הטלת מטבע בודדת, אבל היא כן נותנת הבנה כללית של הטלת 1000 מטבעות, הסתברויות קטנות מספיק יכולות להיות זניחות ובמקרה זה נוכל להתעלם מהן. לפחות בתחילת הקורס נדבר על תרגום של בעיות מהמציאות לבעיות מתמטיות, זה אומנם חלק פחות ריגורזי, אבל הוא כן חשוב ליצירת קישור בין המציאות לבין החומר הנלמד.

דבר אחרון, ישנה השאלה הפילוסופית של האם באמת יש הסתברות שכן לא בטוח שיש אקראיות בטבע, הגישה לנושא מבחינה פיזיקלית קצת השתנתה בעת האחרונה וקשה לענות על השאלה הזאת. יש לנו תורות פיזיקליות שהן הסתברותיות בעיקרן, כמו תורת הקוונטים, תורה זו לא סתם הסתברותית, אנחנו לא מנסים לפתור בעיות הסתברותיות אלא ממש משתמשים במודלים סטטיסטיים כדי לתאר מצב בעולם. לדוגמה נוכל להסיק ככה מסקנה פשוטה שאם מיכל גז נפתח בחדר, יהיה ערבוב של הגז הפנימי ושל אוויר החדר, זוהי מסקנה הסתברותית. החלק המדהים הוא שתורת הקוונטים מניחה חוסר דטרמניזם כתכונה יסודית ועד כמה שאפשר לראות יש ניסויים שמוכיחים שבאמת יש חוסר ודאות בטבע. דהינו שברמה העקרונית הפשוטה באמת אין תוצאה ודאית בכלל למצבים כאלה במציאות.

1.2 מרחבי מדגם ופונקציית הסתברות

הגדרה 1.1 (מרחב מדגם) מרחב מדגם הוא קבוצה לא ריקה שמהווה העולם להסתברות.

. על־פי רוב שיבר במרחב איבר במרחב איבר מסמנה $\omega\in\Omega$ בסמנה המדגם איבר במרחב מסמנה

נוכל להגיד שמרחב במדגם הוא הקבוצה של האיברים שעליה אנחנו שואלים בכלל שאלות, זהו הייצוג של האיברים או המצבים שמעניינים אותנו. בהתאם נראה עכשיו מספר דוגמות שמקשרות בין אובייקטים שאנו דנים בהם בהסתברות ובהגדרה פורמלית של מרחבי מדגם עבורם.

דוגמה 1.1 (מרחבי הסתברות שונים) נראה מספר דוגמות למצבים כאלה:

- $\Omega = \{H,T\}$ הטלת מטבע תוגדר על־ידי הטלת
- $\Omega = \left\{ H, T \right\}^3$ הטלת שלושה מטבעות תהיה באופן דומה
 - $\Omega = [6] = \{1, \dots, 6\}$ הטלת קוביה היא
- . הטלת מטבע ואז אם יוצא עץ (H) אז מטילים קוביה ואם פלי (T) אז מטילים קוביה אז מטילים אז אז אם יוצא עץ (H) הטלת מטבע ואז אם יוצא עץ (H, $\Omega=\{H1,H2,H3,\ldots,H6,T1,\ldots,T8\}=\{H,T\} imes\{1,\ldots,8\}$ במקרה זה נסמן
 - . $\Omega=S_{52}$ דהינו בלבד, דהינו מספרית כרשימה שלנו יהיה סימון של הקלפים מחדב ממקרה מחדב ממקרה מחדב שלנו יהיה סימון יהיה מחדב את $\Omega=\{1,\dots,52\}^{52}$ או מוכל גם לסמן במקום את $\Omega=\{1,\dots,52\}^{52}$

 ω בדוגמה זו קל במיוחד לראות שכל איבר בקבוצה מתאר מצב סופי כלשהו, ואנו יכולים לשאול שאלות הסתברותיות מהצורה מה הסיכוי שנקבל מסוים מתוך Ω , זאת ללא התחשבות בבעיה שממנה אנו מגיעים. נבחן עתה גם דוגמות למקרים שבהם אין לנו מספר סופי של אפשרויות, למעשה מקרים אלה דומים מאוד למקרים שראינו עד כה.

 $\Omega=\mathbb{N}\cup\{\infty\}$ הוא המדגם מרחב שיוצא שיוצא עד מטבע מטילים אסופיים) מרחבי דוגמה 1.2 מרחבי מדגם דוגמה

 $\Omega=\mathbb{R}_+\cup\{\infty\}$ היא חלקיק, התפרקות מדידת מדידת לבחון דומה באופן באופן

הגדרה כך שמתקיים פונקציית הסתברות (פונקציית הסתברות יהי פונקציה ליהי פונקציית הסתברות פונקציית הסתברות יהי מרחב מדגם מדגם וותהי

$$\sum_{\omega \in \Omega} p(\omega) = 1$$

אז פונקציה זו נקראת פונקציית הסתברות.

למעשה פונקציית הסתברות היא מה שאנחנו נזהה עם הסתברות במובן הפשוט, פונקציה זו מגדירה לנו לכל סיטואציה ממרחב המדגם מה הסיכוי שנגיע אליה, כך לדוגמה אם נאמר שהטלת מטבע תגיע בחצי מהמקרים לעץ ובחצי השני לפלי, אז זו היא פונקציית ההסתברות עצמה, פונקציה שמחזירה חצי עבור עץ וחצי עבור פלי, נראה מספר דוגמות.

p(H)=lpha,p(T)=1-lpha נגדיר, נגדיר $\Omega=\{H,T\}$ נגדיר נגדיר מטבע) נגדיר 1.3 פונקציית הסתברות מטבע) נגדיר נגדיר מטבע

ולכן זו
$$\sum_{n=1}^\infty 2^{-n}=1$$
 בדוגמה זו נקבל $p(\omega)=egin{cases} 2^{-\omega}&\omega\in\mathbb{N}\\ 0&\omega=\infty \end{cases}$ ולכן זו $\Omega=\mathbb{N}\cup\{\infty\}$ נגדיר נגדיר $\Omega=\mathbb{N}\cup\{\infty\}$ ולכן זו ארז פונקציית התחברות

נבחין כי הדוגמה האחרונה מתארת לנו התפלגות של דעיכה, זאת אומרת שלדוגמה אם קיים חלקיק עם זמן מחצית חיים של יחידה אחת, פונקציית הסתברות זו תניב לנו את הסיכוי שהוא התפרק לאחר כמות יחידות זמן כלשהי.

.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
 כי אכן כחין כי $p(\omega) = \frac{1}{\omega(\omega+1)}$ ו רי $\Omega = \mathbb{N}$ נגדיר 1.5 דוגמה 1.5

. $\mathrm{Supp}(p)=\{\omega\in\Omega\mid p(\omega)>0\}$ הוא p של התומך התומך התומך.

נבחין כי התומך הוא למעשה קבוצת האיברים שאפשרי לקבל לפי פונקציית ההסתברות, כל שאר המצבים מקבלים 0, משמעו הוא שאין אפשרות להגיט אליו

 $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ הערה נבחין כי תמיד

 $A^C=$ ב מסומן מסומן המשלים מאורע עבור מאורע. $\mathcal F$ עבור תסומן כל המאורעה, קבוצה של מרחב מסומן מאורע מאורע (מאורע) אורע המשלים מסומן ב־ $\Omega\setminus A$

 \mathcal{F} וקבוצת מאורעות (פונקציית הסתברות) נגדיר עתה פונקציית הסתברות שאיננה נקודתית. יהי מרחב מדגם Ω וקבוצת מאורעות

:הבאות התכונות את המקיימת $\mathbb{P}:\mathcal{F} \rightarrow [0,\infty)$ תהי

$$\mathbb{P}(\Omega) = 1$$
 .1

סדרת שונים שונים סדרת אורעות סדרת $\{A_i\}_{i=1}^\infty\subseteq\mathcal{F}$.2

$$\sum_{i\in\mathbb{N}} \mathbb{P}(A_i) = \mathbb{P}(\bigcup_{i\in\mathbb{N}} A_i)$$

דהינו, הפונקציה סכימה בתת־קבוצות בנות מניה.

 (Ω,\mathcal{F}) לפונקציה כזו נקרא פונקציית ההסתברות על

טענה הסתברות הסתברות על Ω אז נקודתית נקודתית הסתברות פונקציית הסתברות על על על על הסתברות מענה 1.6 על על

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega)$$

אז \mathbb{P}_n היא פונקציית הסתברות.

הוכחה. נוכיח ששתי התכונות של פונקציית הסתברות מתקיימות.

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega) \ge 0$$

שכן זהו סכום אי־שלילי מהגדרת p, בנוסף נקבל מההגדרה של p כי

$$\mathbb{P}_p(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1$$

וקיבלנו כי התכונה הראשונה מתקיימת.

תהי $\{A\}_{i=1}^{\infty} \in \mathcal{F}$ אז נקבל

$$\sum_{i \in \mathbb{N}} \mathbb{P}_p(A_i) = \sum_{i \in \mathbb{N}} \left(\sum_{\omega \in A_i} p(\omega) \right) = \sum_{\omega \in \bigcup_{i \in \mathbb{N}} A_i} p(\omega) = \mathbb{P}_p(\bigcup_{i \in \mathbb{N}} A_i)$$

. הסתברות העכונה אכן פונקציית וקיבלנו כי חלכן מתקיימת השנייה השנייה ולכן בי

נשים לב כי בעוד פונקציית הסתברות נקודתית מאפשרת לנו לדון בהסתברות של איבר בודד בקבוצות בנות מניה, פונקציית הסתברות למעשה מאפשרת לנו לדון בהסתברות של מאורעות, הם קבוצות של כמה מצבים אפשריים, ובכך להגדיל את מושא הדיון שלנו. מהטענה האחרונה גם נוכל להסיק שבין שתי ההגדרות קיים קשר הדוק, שכן פונקציית הסתברות נקודתית גוררת את קיומה של פונקציית הסתברות כללית.

31.10.2024 - 1 מרגול 2

amir.behar@mail.huji.ac.il המתרגל הוא אמיר,

מרחבי הסתברות סופיים ובני־מניה 2.1

ניזכר בהגדרה למרחב הסתברות, המטרה של הגדרה זו היא לתאר תוצאות אפשריות של מצב נתון.

הגדרה ($\Omega, \mathcal{F}, \mathbb{P}$) באשר הסתברות מרחב הסתברות מרחב

$$\forall A \in \mathcal{F}, \mathbb{P}(A) > 0$$
 .1. חיוביות:

$$\mathbb{P}(\Omega) = 1$$
 :נרמול .2

$$orall \{A_i\}_{i=1}^\infty \in \mathcal{F}, (orall i, j \in \mathbb{N}, i \neq j \implies A_i \cap A_j = \emptyset) \implies \sum_{i \in I} \mathbb{P}(A_i) = \mathbb{P}(\bigcup_{i \in I} A_i)$$
 3.

תרגיל $A,B\in\mathcal{F}$, הוכיחו מרחב ($\Omega,\mathcal{F},\mathbb{P}$) יהי יהי מרגיל מרגיל

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

לסכום ולקבל
$$\mathbb{P}(B)=\mathbb{P}(B-(A\cap B))+\mathbb{P}(A\cap B)$$
 וגם
$$\mathbb{P}(A)=\mathbb{P}(A-(A\cap B))+\mathbb{P}(A\cap B)$$
 נוכל אם כן לסכום ולקבל
$$\mathbb{P}(A)+\mathbb{P}(B)=\mathbb{P}(A-(A\cap B))+\mathbb{P}(A\cap B)+\mathbb{P}(B-(A\cap B))+\mathbb{P}(A\cap B)=\mathbb{P}(A\cup B)+\mathbb{P}(A\cap B)$$

נבחין כי השוויון האחרון נובע מהזרות של קבוצות אלה.

לטענה שקול לטענה $\mathbb{P}(A)=\frac{|A|}{|\Omega|}$ דהינו אחידה, דהינו נגדיר כי חופית, $\mathcal{F}=2^\Omega$ סופית, סופית סופית מעתה שמתקיים $\mathcal{F}=2^\Omega$ אורך פרק זה נגדיר מעתה שמתקיים $\mathcal{F}=2^\Omega$ סופית, $\mathcal{F}=2^\Omega$ אורך פרק זה נגדיר מעתה שמתקיים $\mathcal{F}=2^\Omega$ אורך פרק זה נגדיר מעתה מעתה בירות בירו

תרגיל 2.2 מטילים קוביה הוגנת, מה ההסתברות שיצא מספר זוגי?

אחידה.
$$\mathbb{P}$$
עם $\Omega=[6]=\{1,\dots,6\}$ עם פתרון נגדיר

$$\mathbb{P}(A)=rac{|A|}{|\Omega|}=rac{3}{6}=rac{1}{2}$$
 נרצה לחשב את $A=\{2,4,6\}$ ולכן נקבל גרצה

?תרגיל 2.3 מטילים מטבע הוגן שלוש פעמים, מה ההסתברות שיצא עץ בדיוק פעמיים, ומה ההסתברות שיצא עץ לפחות פעמיים?

$$\Omega = \{TTT, TTP, TPT, PTT, \dots\}$$
 פתרון נגדיר

 $\mathbb{.P}(A) = \frac{3}{8}$ היא ההסתברות נקבל ולכן איז, $A = \{TTP, TPT, PTT\}$ נגדיר הראשון עבור המקרה איז

 $A = A \cup \{TTT\}$ במקרה השני נקבל $B = A \cup \{TTT\}$ במקרה השני

תרגיל n מטילים קוביה הוגנת n פעמים.

- .1 מה ההסתברות שתוצאת ההטלה הראשונה קטנה מ־24
- 2. מה ההסתברות שתוצאת ההטלה הראשונה קטנה שווה מתוצאת ההטלה השנייה?
 - 3. מה ההסתברות שיצא 1 לפחות פעם אחת?

$$\Omega = [6]^n = \{(x_1, \dots, x_n) \mid x_i \in [6]\}$$
 פתרון נגדיר

$$\mathbb{P}(A) = \frac{3 \cdot 6^{n-1}}{6^n} = \frac{1}{2}$$
 ולכן $A = \{(x_1, \dots, x_n) \in \Omega \mid x_1 < 4\}$.1

ולכן נקבל ,
$$B=\{(x_1,\ldots,x_n)\in\Omega\mid x_1\leq x_2\}=\bigcup_{i=1}^6\{(x_1,i,x_3,\ldots,x_n)\in\Omega\mid x_i\leq i\}$$
 .2

$$\mathbb{P}(B) = \sum \mathbb{P}(B_i) = \sum \frac{i \cdot 6^{n-2}}{6^n} = \frac{\sum_{i=1}^6 i}{6^2} = \frac{6 \cdot 7}{6^2 \cdot 2} = \frac{7}{12}$$

$$.C^C = \{(x_1,\ldots,x_n)\in\Omega\mid \forall i,x_1\neq 1\}$$
 בהתאם $.C = \{(x_1,\ldots,x_n)\in\Omega\mid \exists i,x_i=1\}$.3 .5 $.\mathbb{P}(C^C) = \frac{5^n}{6^n}\implies \mathbb{P}(C) = 1 - \frac{5^n}{6^n}$

תרגיל 2.5 חמישה אנשים בריאים משמאל לאנשים הולי שפעת עומדים בשורה. מה ההסתברות שחולי השפעת נמצאים משמאל לאנשים הבריאים?

 $\Omega=\{X\subset [10]\mid |X|=5\}$ שכן $\Omega=\binom{10}{5}$ שכן נקבל (הסידורים של 0,1 כשיש חמישה מכל סוג. לכן נקבל ($\Omega=\binom{10}{5}$ שכן $\Omega=\binom{10}{5}$ שכן $\Omega=\binom{10}{5}$ בהתאם ובהתאם $\Omega=\binom{10}{5}$ בוכל גם להגדיר $\Omega=S_{10}$ כאשר חמשת המספרים הראשונים מייצגים בריאים וחמשת האחרונים מייצגים חולים.

. $\mathbb{P}(A)=rac{5!5!}{10!}$ וכך נקבל |A|=5!5! ולכן ולכן $A=\{\pi\in\Omega\mid\pi(\{1,2,3,4,5\})\subseteq\{1,2,3,4,5\}\}$ במקרה זה נקבל

31.10.2024 - 2 שיעור 3

3.1 השלמה לטורים דו־מימדיים

נגדיר הגדרה שדרושה לצורך ההרצאה הקודמת כדי להיות מסוגלים לדון בסכומים אינסופיים בני־מניה.

אז נגדיר או $i \in I$ לכל $a_i \geq 0$ ו רי $\{a_i\}_{i \in I}$ אם בת־מניה) או הגדרה סכום סכום הגדרה או גדרה הגדרה

$$\sum_{i \in I} a_i = \sup \left\{ \sum_{i \in J} \mid J \subseteq I, J \text{ is finite} \right\}$$

מכונות של פונקציות הסתברות 3.2

נעבור עתה לבחון פונקציות הסתברות ואת תכונותיהן, נתחיל מתרגיל שיוצק תוכן לתומך של פונקציית הסתברות:

בשיעור הקודם ראינו את ההגדרה והטענה הבאות:

הגדרה בחות הסתברות מתאימה לנקודתית) בהינתן פונקציית הסתברות נקודתית p נגדיר הסתברות פונקציית הסתברות מתאימה לנקודתית

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega)$$

טענה 3.3 היא פונקציית הסתברות. \mathbb{P}_p

טענה זו בעצם יוצרת קשר בין פונקציות הסתברות לפונקציות הסתברות נקודתיות, ומאפשרת לנו לחקור את פונקציות ההסתברות לעומק באופן פשוט הרבה יותר. נשתמש עתה בכלי זה.

היא בדידה ש- \mathbb{P} , אז נאמר ש- \mathbb{P} , אז נאמר

מענה 3.5 שאינן בדידות. בפרט, עבור מדגם ההסתברות $\Omega = [0,1]$ קיימת שאינן בדידות. בפרט, עבור מדגם ההסתברות שאינן ביידות.

$$\forall a, b \in \mathbb{R}, 0 < a < b < 1 \implies \mathbb{P}([a, b]) = b - a$$

דוגמה 1.1 עבור p(n)=1ידו פונקציית הגדרה או תניב ש־ $\sum_{n\in\mathbb{N}}p(n)=1$ ולכן זו פונקציית בחלב הגדיר $\Omega=\mathbb{N}$ ולכן נוכל להגדיר $\sum_{n\in\mathbb{N}}\frac{1}{n^2}=\frac{\pi^2}{6}<\infty$ ידוע כי כי $\sum_{n\in\mathbb{N}}\frac{1}{n^2}=\frac{\pi^2}{6}<\infty$ ידוגמה 3.1 הסתברות. נחשב את $\mathbb{P}_p(A)$ עבור $\mathbb{P}_p(A)$

$$\mathbb{P}_p(A) = \sum_{n \in A} p(n) = \sum_{k \in \mathbb{N}} p(2k) = \frac{1}{\frac{\pi^2}{6}(2k)^2} = \frac{6}{\pi^2} \frac{1}{4} \sum_{k \in \mathbb{N}} \frac{1}{k^2} = \frac{1}{4}$$

נסביר, הגדרנו פונקציית הסתברות של דעיכה, דהינו שככל שהמספר שאנו מבקשים גדול יותר כך הוא פחות סביר באופן מעריכי (לדוגמה זמן מחצית חיים), ואז שאלנו כמה סביר המאורע שבו נקבל מספר זוגי.

משפט 3.6 (תכונות פונקציית הסתברות) $\mathbb P$ פונקציית הסתברות על $(\Omega,\mathcal F)$, אז

- $\mathbb{P}(\emptyset) = 0$.
- $\mathbb{P}(\bigcup_{i\in I}A_i)=\sum_{i\in I}\mathbb{P}(A_i)$ אם $\{A_i\}_{i\in I}$ מאורעות זרים בזוגות, אם $\{A_i\}_{i\in I}$.2
 - $\mathbb{P}(A) \leq \mathbb{P}(B)$ אם $A \subseteq B$ מאורעות אז $A \subseteq B$.3
 - A לכל מאורע $\mathbb{P}(A) < 1$.4
 - $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$ מתקיים A מאורע.

הוכחה. נוכיח את התכונות

. בלבד. $\mathbb{P}(\emptyset)=0$ שכן כל איחוד של קבוצות ריקות הוא זר, לכן אילו $\mathbb{P}(\emptyset)\neq0$ נקבל ישר סתירה, נסיק כי $\mathbb{P}(\emptyset)=0$ בלבד. .1

ונקבל בסיגמא־אדיטיביות ונקבל ונשתמש לכל ונשתמש לכל אלכל לכל $A_i=\emptyset$.2

$$\mathbb{P}(\bigcup_{i \in I} A_i) = \mathbb{P}(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mathbb{P}(A_i) = \sum_{i \in I} \mathbb{P}(A_i)$$

- $\mathbb{P}(D)=\mathbb{P}(A)+\mathbb{P}(B\setminus A)\geq \mathbb{P}(A)$ נקבל $D=A\cup (B\setminus A)$ נשתמש בתכונה 2 על $B,B\setminus A$, אלו הן קבוצות זרות כמובן, אם נגדיר ($B\setminus A$).
 - $A\subseteq \Omega$ ומ־ מתכונה 1 מירות מערכונה 4.
 - $A^C=\mathbb{P}(\Omega)=\mathbb{P}(A)+\mathbb{P}(A^C)$ ניזכר כי $A^C=\Omega\setminus A^C$ ולכן ולכן $A^C=\Omega\setminus A$ ניזכר כי .5

נעבור עתה לאפיון של פונקציות הסתברות בדידות, נבין מתי הן כאלה ומתי לא.

משפט 3.7 (תנאים שקולים לפונקציית הסתברות בדידה) אם $(\Omega, \mathcal{F}, \mathbb{P})$ אם לפונקציית הסתברות בדידה) משפט

- היא פונקציית הסתברות בדידה \mathbb{P} .1
- $\mathbb{P}(A)=1$ בת־מניה כך בת־מניה, כלומר קיימת קבוצה $A\in\mathcal{F}$ בת־מניה, כלומר קיימת כלומר \mathbb{P} .2
 - $\sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = 1 .3$
 - $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$ מתקיים $A \in \mathcal{F}$ מאורע. 4

, Supp $(p)=\{\omega\in\Omega\mid p(\omega)>0\}$ נניח שי $p:\Omega\to[0,\infty)$ עבור עבור $p:\Omega\to[0,\infty)$ פונקציית הסתברות נקודתית. נסתכל על וניח ש־ $A=\mathrm{Supp}(p)$ בת־מניה. נקבל

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega) = \sum_{\omega \in \Omega} p(\omega) = \mathbb{P}(\Omega) = 1$$

ולכן נקבל $A=(A\cap S)\cup (A\cap S^C)$ דו איחוד מר כי $\mathbb{P}(S^C)=0$ נראה לכן בת־מניה. לכן בת־מניה. לכן בת־מניה. לכן בת-מניה. לכן בת-מניה. לכן פול בת-מניה. לכן בת-מניה.

$$\mathbb{P}(A) = \mathbb{P}(A \cap S) + \mathbb{P}(A \cap S^C) = \mathbb{P}(A \cap S) + 0 = \sum_{\omega \in A \cap S} \mathbb{P}(\{\omega\}) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$$

- .3 נקבל את נבחר $A=\Omega$ נקבל את טענה: $4\implies 3$
- מהתרגיל היא פונקציית הסתברות נקודתית. קרשה אז פולכן אולכן $p:\Omega \to [0,\infty)$ ולכן על־ידי אז פונקציית הסתברות נקודתית. אז הערגיל יולכן $p:\Omega \to [0,\infty)$ היא הסתברות נקודתית. אז לכל אז $S=\mathrm{Supp}(p)$ היא הסכום נובע ש־ $S=\mathrm{Supp}(p)$

$$\mathbb{P}(A) = \mathbb{P}(A \cap S) + \mathbb{P}(A \cap S^C) = \mathbb{P}(A \cap S) = \sum_{\omega \in A \cap S} \mathbb{P}(\{\omega\}) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}) = \sum_{\omega \in A} p(\omega) = \mathbb{P}_p(A)$$

3.3 פרדוקס יום ההולדת

פרדוקס יום ההולדת הוא פרדוקס מוכר הגורס כי גם בקבוצות קטנות יחסית של אנשים, הסיכוי שלשני אנשים שונים יהיה תאריך יום הולדת זהה הוא גבוה במידה משונה. הפרדוקס נקרא כך שכן לכאורה אין קשר בין מספר הימים בשנה לבין הסיכוי הכל־כך גבוה שמצב זה יקרה, נבחן עתה את הפרדוקס בהיבט הסתברותי.

נניח שכל תאריכי יום ההולדת הם סבירים באותה מידה ונבחן את הפרדוקס. נגדיר $\Omega=[365]^k$ עבור R מספר האנשים בקבוצה נתונה כלשהי. $\Omega=[365]^k$ נניח שכל תאריכי יום ההולדת הם סבירים באותה מידה ונבחן את הפרדוקס. נגדיר $P(A)=\mathbb{P}_p(A)=\frac{|A|}{365^k}$ נקבל $P(\omega)=\frac{1}{365^k}$ בשל המורכבות נבחן את המשלים $R=\{\omega\in\Omega\mid\exists 1\leq i\neq j\leq k,\omega_i=\omega_j\}$ בשל המורכבות נבחן את המשלים $R=\{\omega\in\Omega\mid\exists 1\leq i\neq j\leq k,\omega_i=\omega_j\}$ נציב ונחשב: $R=\{0,0\}$ נציב ונחשב:

$$\mathbb{P}(A^C) = \frac{|A^C|}{365^k} = \prod_{i=1}^k \frac{365 - (i-1)}{365} = \prod_{i=1}^k (1 - \frac{i-1}{365})$$

מהנוסחה שלים יש סבירות של חצי שלפחות בערך $\frac{1}{2}$, דהינו בערך בערך של חצי שלפחות של מהנוסחה לבער מהנוסחה שליבלנו נראה לבער אנשים ועלבת לבער של האנו יום.

5.11.2024 - 3 שיעור 4

מכפלת מרחבי הסתברות בדידים

ניזכר תחילה במרחבי הסתברות אחידים

$$\mathbb{P}_p(A) = rac{|A|}{|\Omega|}$$
 4.2 מסקנה

נבחין כי במקרים מסוימים ההסתברות שלנו מורכבת משני מאורעות בלתי תלויים, במקרים אלה נרצה להגדיר מכפלה של מרחבי ההסתברות.

על־ידי $q:\Omega_1 imes \Omega_2 o [0,\infty)$ אם נגדיר בידים הסתברות $(\Omega_2,\mathcal{F}_2,\mathbb{P}_{p_2})$ ו ר $(\Omega_1,\mathcal{F}_1,\mathbb{P}_{p_1})$ אם מכפלת הסתברויות אברה 4.3 מרחב מכפלת הסתברויות אם מכפלת הסתברויות המכפלת הסתברויות וויינים מכפלת הסתברויות אם מכפלת הסתברויות מכפלת הסתברויות אם מכפלת הסתברויות מכפלת מכפלת הסתברויות מכפלת הסתברוית מכפלת $q(\omega_1,\omega_2) = p(\omega_1) \cdot p(\omega_2)$

טענה 4.4 q פונקציית הסתברות נקודתית.

הוכחה. נשתמש ישירות בהגדרה ונחשב

$$\sum_{(\omega_1,\omega_2)\in\Omega_1\times\Omega_2} q(\omega_1,\omega_2) = \sum_{\omega_1\in\Omega_1,\omega_2\in\Omega_2} q(\omega_1,\omega_2) = \sum_{\omega_1\in\Omega_1} \left(\sum_{\omega_2\in\Omega_2} p_1(\omega_1)p_2(\omega_2)\right) = \sum_{\omega_1\in\Omega_1} p_1(\omega_1) = 1$$

עתה כשהוכחנו טענה זו, יש לנו הצדקה אמיתית להגדיר את $(\Omega_1 imes \Omega_2, \mathcal{F}_{1,2}, \mathbb{P}_q)$ כמרחב הסתברות, ונקרא לו מרחב מכפלה.

טענה 4.5 אם $(\Omega_1 imes \Omega_2, \mathcal{F}_{1,2}, \mathbb{P}_q)$ אחיד אף הוא. מרחב המכפלה $(\Omega_1, \mathcal{F}_2, \mathbb{P}_{p_2})$ ו־ $(\Omega_1, \mathcal{F}_1, \mathbb{P}_{p_1})$ אחיד אף הוא.

הוכחה.

$$q(\omega_1, \omega_2) = p_1(\omega_1)p_2(\omega_2) = \frac{1}{|\Omega_1|} \cdot \frac{1}{|\Omega_2|} = \frac{1}{|\Omega_1 \times \Omega_2|}$$

מאורע מכפלה. בקרא לארג $A \times B$ מהצורה מאורע

. $\mathbb{P}_a(A imes \Omega_2) = \mathbb{P}_{p_1}(A)$ בפרט . $\mathbb{P}_q(A imes B) = \mathbb{P}_{p_1}(A) \cdot \mathbb{P}_{p_2}(B)$ טענה 4.7 במרחב מכפלה 4.7

$$\sum_{\substack{(\omega_1,\omega_2)\in A\times B}} q(\omega_1,\omega_2) = \sum_{\omega_1\in A,\omega_2\in B} q(\omega_1,\omega_2) = \sum_{\omega_1\in A} \left(\sum_{\omega_2\in B} p_1(\omega_1)p_2(\omega_2)\right) = \sum_{\omega_1\in A} p_1(\omega_1)\mathbb{P}_{p_2}(B) = \mathbb{P}_{p_1}(A)\mathbb{P}_{p_2}(B)$$

k עצים שיצאו k בהינתו n בהינתו מטבע כלשהו. מה ההסתברות שיצאו

עבור ההטלה $\alpha \leq 1$ עבור α עבור גדיר α עוד נגדיר α עוד נגדיר α עבור ההטלה אראשונה, $\Omega_1 = \{0,1\}$ בהתאם נקבל $\Omega = \left\{0,1\right\}^n$, וכן

$$q(\omega_1, \dots, \omega_n) = \prod_{i=1}^n p(\omega_i) = \prod_{i=1}^n \alpha^{\omega_i} \cdot (1-\alpha)^{1-\omega_i} = \alpha^{\sum_{i=1}^n \omega_i} (1-\alpha)^{n-\sum_{i=1}^n \omega_i}$$

 $q(\omega) = \alpha^\omega \cdot \left(1-lpha
ight)^{1-\omega}$ יביידי על-ידי המקרה את המקרה לתאר לתאר כי היינו כי נבחין

$$A = \{(\omega_1, \dots, \omega_n) \in \Omega \mid \sum_{i=1}^n \omega_i = k\}$$

11

נקבל מהביטוי שמצאנו כי

$$\mathbb{P}_{q}(A) = \sum_{(\omega_{1}, \dots, \omega_{n}) \in A} q(\omega_{1}, \dots, \omega_{n}) \sum_{\sum_{i=1}^{n} \omega_{i} = k} \alpha^{\sum_{i=1}^{n} \omega_{i}} (1 - \alpha)^{n - \sum_{i=1}^{n} \omega_{i}} = |A| \alpha^{k} (1 - \alpha)^{n - k} = \binom{n}{k} \alpha^{k} (1 - \alpha)^{n - k}$$

דוגמה אנבחן עתה את המקרה של הטלות הוגנות ובחינת המקרה שחצי מההטלות לפחות יצאו עץ, זאת־אומרת שנבחן את הדוגמה הקודמת כאשר נבחל נבחן עתה את המקרה של הטלות הוגנות ובחינת המקרה של מכירים $m!\simeq\sqrt{2\pi m}(rac{m}{e})^m$ ואז נוכל להסיק $lpha=rac{1}{2}$ ה מנוסחת סטרלינג שאנחנו לא מכירים

$$\mathbb{P}_{q}(A) = \binom{2m}{m} \frac{1}{2^{m}} \simeq \frac{\sqrt{4\pi m} \left(\frac{2m}{e}\right)^{2m}}{\left(\sqrt{2\pi m} \left(\frac{k}{e}\right)^{m}\right)^{2} 2^{2m}} = \frac{\sqrt{4\pi m}}{2\pi m} = \frac{1}{\sqrt{\pi m}}$$

4.2 ניסויים דו־שלביים

נניח בניסוי השני כך שלכל תוצאה בניסוי מרחב החברות בדידה עבור הניסוי העון, ונניח שיש מרחב הניסוי העני כך שלכל תוצאה בניסוי הערכות ($\Omega_1,\mathcal{F}_1,\mathbb{P}_{p_1}$) מרחב הסתברות בדידה עבור בניסוי השני. לכל $p_{\omega_1}:\Omega_2\to [0,\infty)$ שפונקציית הסתברות נקודתית תשתנה בהתאם בניסוי השני. לכל $q(\omega_1,\omega_2)=p_1(\omega_1)\cdot p_{\omega_1}(\omega_2)$, כאשר $q(\omega_1,\omega_2)=p_1(\omega_1)\cdot p_{\omega_1}(\omega_2)$, כאשר $q(\omega_1,\omega_2)=p_1(\omega_1)\cdot p_{\omega_1}(\omega_2)$

טענה 4.8 פונקציית הסתברות. \mathbb{P}_{q}

הוכחה.

$$\sum_{(\omega_1,\omega_2)\in\Omega_1\times\Omega_2} q(\omega_1,\omega_2) = \sum_{\omega_1\in\Omega_1} \left(\sum_{\omega_2\in\Omega_2} p_1(\omega_1) p_{\omega_1}(\omega_2) \right) = \sum_{\omega_1\in\Omega_1} p_1(\omega_1) \left(\sum_{\omega_2\in\Omega_2} p_{\omega_1}(\omega_2) \right) = \sum_{\omega_1\in\Omega_1} p_1(\omega_1) = 1$$

עוד נגדיר . $p_1(H)=p_1(T)=rac{1}{2}$ נגדיר , $\Omega_2=\{1,\dots,8\}$ ר ו' $\Omega_1=\{H,T\}$ 4.3 דוגמה 1.

$$p_H(\omega_2) = \begin{cases} \frac{1}{6} & 1 \le \omega_2 \le 6 \\ 0 & \text{else} \end{cases}, \qquad p_T(\omega_2) = \frac{1}{8}$$

מהגדרה זו נקבל

$$q(\omega_1, \omega_2) = \begin{cases} \frac{1}{12} & \omega_1 = H, \omega_2 \in [6] \\ 0 & \omega_1 = H, \omega_2 \in \{7, 8\} \\ \frac{1}{16} & \omega_1 = T, \omega_2 \in [8] \end{cases}$$

 $\mathbb{P}(A \cup B) < \mathbb{P}(A) + \mathbb{P}(B)$ משפט 4.9 מאורעות אם A, B אם איז (חסם האיחוד) אם

הוכחה.

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \uplus (B \setminus A)) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \leq \mathbb{P}(A) + \mathbb{P}(B)$$

נוכל להשתמש בחסם האיחוד כדי להוכיח גרסה כללית יותר של המשפט:

 $\mathbb{P}(igcup_{i=1}^k A_i) \leq \sum_{i=1}^k \mathbb{P}(A_i)$ משפט 4.10 משפט 4.10 אר־שוויון בול) אם

נגדיר עם הסתברות עם $\Omega=[m]^k$ נחזור לבחון עם הסתברות הפעם נבחן גרסה כללית נגדיר עם הסתברות עם הסתברות אחידה. נגדיר 4.4 נחזור לבחון את פרדוקס יום ההולדת, הפעם נבחן גרסה כללית יותר של הרעיון. אנו או בחן את המשלים $A=\{\omega\in\Omega\mid\exists 1\leq i< j\leq k,\omega_i=\omega_j\}$

$$A^C = \{\omega \in \Omega \mid \forall 1 \leq i, j \leq k, i \neq j \implies \omega_i \neq \omega_j\}$$

נחשב

$$|A^C| = m(m-1)\cdots(m-(k-1))$$

בהתאם

$$\mathbb{P}(A^C) = \frac{\prod_{i=0}^{k-1} (m-i)}{m^k} = \prod_{i=0}^{k-1} \frac{m-i}{m^k} = \prod_{i=0}^{k-1} (1 - \frac{i}{m})$$

נזכור ש-אקבל, ונוכל לקבל, ונוכל לקבל איט, א $x\in\mathbb{R},1+x\leq e^x$

$$\prod_{i=0}^{k-1} (1-\frac{i}{m}) \leq \prod_{i=0}^{k-1} e^{-\frac{i}{m}} = \exp(-\frac{1}{m} \sum_{i=0}^{k-1} i) = e^{-\frac{k(k-1)}{2m}}$$

.0-ל ביחס קרוב מקבלים מקבלים ל-10 ביחס ליוב ל-2k

וגם
$$A_{ij}=\{\omega\in\Omega\mid\omega_i=\omega_j\}$$
 עבור $A=\bigcup_{i,j\in[k]}A_{ij}$ נגדיר הפעם נגדיר הפעם אבור וג

$$i \neq j \implies \mathbb{P}(A_{ij}) = \frac{|A_{ij}|}{m^k} = \frac{m \cdot m^{k-2}}{m^k} = \frac{1}{m}$$

ועתה

$$\mathbb{P}(A) \le \sum_{\substack{i \ne j \\ i, j \in [k]}} \mathbb{P}(A_{ij}) = \sum_{\substack{i \ne j \\ i, j \in [k]}} \frac{1}{m} = \binom{k}{2} \frac{1}{m} = \frac{k(k-1)}{2m}$$

לכן אם קטן משותף ליום־הולדת אז ההסתברות ל $\sqrt{2m}$ ל כיחס לכן אם לכן לכן אם לכן אז ההסתברות ל

7.11.2024 - 2 תרגול 5

5.1 פתרון שאלות הסתברותיות

נתחיל בבחינת טענה שימושית לביצוע חישובי הסתברות:

מענה 5.1 (נוסחת ההסתברות השלמה) יהי $(\Omega,\mathcal{F},\mathbb{P})$ מרחב הסתברות, Ω לכל לכל Ω

$$\mathbb{P}(B) = \sum_{A \in A} \mathbb{P}(A \cap B)$$

.A-ו מניח שיש מרחב הסתברות ויש חלוקה בת מניה של המרחב, אז לכל מאורע ההסתברות שלו היא הסכום על החלוקה על החיתוך של החלוקה ו-A

. אדיטיביות. מסיגמא־אדיטיביות איחוד דר, ולכן איחוד איחוד אדיטיביות א $B = \biguplus A \in \mathcal{A}$

. מוטלת המטה קווי מוטלת קווית נקודתית באחת עם אותה בעלת מוטה קוביה קוביה התגיל הרגיל קוביה אותה פאות פאות המחברות החברות המחברות החברות החבר

מה ההסתברות שתוצאת ההטלה הראשונה התקבלה פעם אחת ויחידה?

אנו רוצים את אנו רוצים אנו . $\mathbb{P}(x_1,\ldots,x_5)=p(x_1)\cdots p(x_5)$ ונגדיר חוצים אנו נגדיר נגדיר נגדיר פתרון נגדיר

$$B = \{(x_1, \dots, x_5) \in \Omega \mid \forall j \neq 1, x_j \neq x_1\}$$

$$\mathbb{P}(B \cap A_i) = \frac{i}{21} \cdot \left(1 - \frac{i}{21}\right)^4$$

על־ידי שימוש בנוסחת ההסתברות השלמה נקבל

$$\mathbb{P}(B) = \sum_{i=1}^{6} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{6} \frac{i}{21} (1 - \frac{i}{21})^4$$

נראה עתה דוגמה לשימוש בחסם האיחוד בן־המניה, אותו נראה בהרצאה הבאה

טענה 5.2 (חסם האיחוד הבן־מניה) אם $(\Omega,\mathcal{F},\mathbb{P})$ אז מתקיים ($\Omega,\mathcal{F},\mathbb{P}$) אז מתקיים

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i \in \mathbb{N}} \mathbb{P}(A_i)$$

תרגיל n בין הצבעה פתקי משלשלים k משלשלים 5.2 תרגיל

מה ההסתברות שאין קלפי עם יותר מפתק אחד?

$$.|\Omega|={n+k-1\choose k-1}$$
 נחשב ונקבל . $\Omega=\{(x_1,\ldots,x_n)\mid 0\leq x_i,x_1+\cdots+x_n=k\}$ פתרון נגדיר את המאורע. $A=\{(x_1,\ldots,x_n)\in\Omega\mid x_i\leq 1\}$ נגדיר את המאורע.

ננסה לחסום את המשלים.

$$\Omega \setminus A = \{(x_1, \dots, x_n) \in \Omega \mid \exists i, x_i > 2\}$$

אז נוכל להגדיר אז נוכל $A_i = \{(x_1, \dots, x_n) \in \Omega \mid x_i \geq 2\}$ אם נגדיר

$$\Omega \setminus A = \bigcup_{i \in [n]} A_i$$

. נחשב את ההסתברות של כל A_i , מתקבל $A_i = \binom{n+k-3}{k-3}$ מהשיקול של סכימת הפתרונות השלמים תוך התעלמות משני פתקים. לכן

$$\mathbb{P}(A_i) = \frac{|A_i|}{|\Omega|} = \frac{\binom{n+k-3}{k-3}}{\binom{n+k-1}{k-1}} = \frac{k(k-1)}{(k+n-1)(k+n-2)}$$

מחסם האיחוד נובע

$$\mathbb{P}(\Omega - A) \le \sum_{i=1}^{n} \frac{k(k-1)}{(k+n-1)(k+n-2)} = n \cdot \frac{k(k-1)}{(n+k-1)(n+k-2)}$$

 $\mathbb{.P}(A) \geq 1 - n \cdot \frac{k(k-1)}{(n+k-1)(n+k-2)}$ להסיק שוב נוכל משלים מעבר ועל־ידי ועל

 $\mathbb{P}(A) \xrightarrow[n \to \infty]{} 1$ אז נובע $n \to \infty$ אז נובע לכן נבחן את המקרה שלכן מאוד גדולים, לכן נבחן את המקרה שלכן את המגמה כאשר המספרים מאוד גדולים, לכן נבחן את מספר הפתקים לא משתנה) הולך וגדל ומתקרב לסיכוי מלא. בהינו כאשר יש כמות קלפיות הולכת וגדלה הסיכוי שיהיה פתק יחיד בכל אחת (מספר הפתקים לא משתנה) הולך וגדל ומתקרב לסיכוי מלא. נראה עתה דוגמה לשימוש במרחבי ניסוי דו־שלביים:

2m בין לבין לבין מספר עוד מספר עוד נגריל היה בין לm בין למספר שנגריל מספר מה ההסתברות מפר לm

:m נבנה פונקציית הסתברות עבור הניסוי השני, נניח שבניסוי השני קיבלנו

$$p_m(k) = \begin{cases} \frac{1}{m} & k \le m \\ 0 & k > m \end{cases}, \qquad q(m,k) = \begin{cases} \frac{1}{mn} & k \le m \\ 0 & k > m \end{cases}$$

נגדיר השניה איא אתוצאת ההגרלה שניה איא לכן לכן לכדיר אמאורע המאורע לכן לכדיר אורע

$$\mathbb{P}(A_k) = \mathbb{P}(\{(m, k) \in \Omega \mid m \le k\}) = \sum_{m=1}^{n} q(m, k) = \sum_{m=k}^{n} \frac{1}{mn}$$

נבחין כי המעבר האחרון אכן תקין, שכן קיבענו את המשתנה השני, זאת אומרת שעכשיו במקום להסתכל על מספר שיותר קטן ממספר אחר, אנו בוחנים את המספר החוסם מלמעלה, המספר הגדול יותר.

לדוגמה

$$\mathbb{P}(A_n) = \frac{1}{n^2}, \qquad \mathbb{P}(A_1) = \sum_{m=1}^n \frac{1}{mn} = \frac{1}{n} \sum_{m=1}^n \frac{1}{m} \approx \frac{\log n}{n}$$

m=n/2 נבחן דוגמה הפעם של השאלה של כהמשך כהמשר נבחן דוגמה נבחן נבחן

n/2ה גדול מספר אצי השניה שבהגרלה שבהגרלה השניה בהתחלה המאורע בהתחלה השניה נגדיר נגדיר אוות בהתחלה השניה ו- $B_{n/2}$

$$\mathbb{P}(B_{n/2}) = \mathbb{P}(\bigcup_{k \ge n/2}^{n} A_k) = \frac{1}{n} \sum_{k \ge \frac{n}{2}}^{n} \sum_{m=k}^{n} \frac{1}{m} = \frac{1}{n} \sum_{m=\lceil \frac{n}{2} \rceil}^{n} \frac{\frac{n}{2} + 1 - n + m}{m}$$

כמו בשאלה הקודמת, גם הפעם נרצה להבין מגמה כללית, ולכן נבדוק את הביטוי כאשר n שואף לאינסוף, דהינו שהמספרים שאפשר להגדיל הולכים וגדלים בכמותם:

$$\lim_{n\to\infty}\mathbb{P}(B_{n/2})=\lim_{n\to\infty}\frac{1}{n}\sum_{m=\lceil\frac{n}{2}\rceil}^n\frac{1+m-\frac{n}{2}}{m}$$
 נבחין כי
$$\sum_{m=1}^n\frac{1}{m}=\log(n)+e+o(\frac{1}{m})$$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{m=\lceil\frac{n}{2}\rceil}^n\frac{1+m-\frac{n}{2}}{m}=\lim_{n\to\infty}\frac{1}{2}+\frac{n}{2n}(\log(n)-\log(\frac{n}{2})+o(\frac{1}{n}))+\frac{1}{n}(\log(n)-\log(\frac{n}{2})+o(\frac{1}{n}))$$

$$=\frac{1}{2}+\frac{1}{n}\log 2$$

7.11.2024 - 4 שיעור 6

בשיעור הקודם דיברנו על מרחבי מכפלה וניסויים דו־שלביים. ברור לנו כי על-ידי שרשור דומה לתהליך של ניסוי דו־שלבי נוכל לבנות ניסוי בשיעור הקודם דיברנו על מחסם האיחוד מאפשר לנו לפשט חישובים שבהם $\mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$. השימוש של חסם האיחוד מאפשר לנו לפשט חישובים שבהם אנחנו רוצים הבנה כללית של ההתנהגות של מרחב ההסתברות.

הסמי איחוד ורציפות 6.1

 $n\in\mathbb{N}$ לכל $A_n\subseteq A_{n+1}$ אם עולה עולה נקראת נקראת מאורעות מאורעות מאורעות סדרת (סדרת מאורעות מאורעות הגדרה 6.1 לכל

 $A_{\infty} = igcup_{n \in \mathbb{N}} A_n$ נסמן 6.2 סימון

משפט 6.3 משפט רציפות פונקציית ההסתברות) אם אם הדרת מאורעות עולה אז (משפט פונקציית פונקציית ההסתברות) א

$$\mathbb{P}(A_{\infty}) = \lim_{n \to \infty} \mathbb{P}(A_n)$$

 $x_n o a$ המשפט האס אכל של ההקבלה בים היא היא היא בפונקציות רגילות, עבור בפונקציות רציפות של לקונספט של לקונספט של רציפות בפונקציות רגילות, עבור $f: \mathbb{R} o \mathbb{R}$ המשפט נקרא כך בשל ההקבלה של לקונספט של רציפות בפונקציות רגילות, עבור היא היא הקיים $f(x_n) o f(a)$

 $B_1=A_1\setminus\emptyset=A_1$ כאשר מנדיר נגדיר בדיר מנדיר מנדיר מנדיר מולה.

:ור זר: $\biguplus_{n=1}^m B_n = A_m$ גראה כי מתקיים

 $\omega\in A_n\setminus A_{n-1}=B_n$ כי לכל להסיק כי $\omega\notin A_{n-1}$ אבל הבל אבל כך שי $\omega\in A_m$ כי לכל $\omega\in A_m$ כי לכל $\omega\notin A_n$ מינימלי כך שי $\omega\in A_n$ אז $\omega\in B_n=A_n\setminus A_{n-1}$ אם לכל $\omega\notin A_n$ ולכן $\omega\notin A_n$ ולכן שי שולכן אז $\omega\in B_n=A_n\setminus A_{n-1}$

$$\sum_{n=1}^{m} \mathbb{P}(B_n) = \mathbb{P}(A_m)$$

וגם

$$\sum_{n=1}^{\infty} \mathbb{P}(B_n) = \mathbb{P}(\biguplus_{n=1}^{\infty} B_n) = \mathbb{P}(\bigcup_{m=1}^{\infty} \left(\biguplus_{n=1}^{\infty} B_n\right)) = \mathbb{P}(\bigcup_{m=1}^{\infty} A_m)$$

מצד שני מהגדרת הגבול

$$\sum_{n=1}^{\infty} \mathbb{P}(B_n) = \lim_{m \to \infty} \sum_{n=1}^{m} \mathbb{P}(B_n) = \lim_{m \to \infty} \mathbb{P}(A_m)$$

 $n\in\mathbb{N}$ לכל ל $A_{n+1}\subseteq A_n$ כך שמתקיים ל $\left\{A_n
ight\}_{n=1}^\infty$ מאורעות נגדיר סדרת נגדיר נגדיר מאורעות (סדרת מאורעות סדרת מאורעות הגדרה 6.4 לכל

נוכל להסיק מהעובדה שמשלים של סדרה עולה הוא סדרה יורדת ונקבל

6.5 טענה

$$\mathbb{P}(\bigcap_{n\in\mathbb{N}}A_n)=\lim_{n\to\infty}\mathbb{P}(A_n)$$

טענה אז מחלעות אז סדרת אחרעות אם אם אם הבן־מניה) אם מתקיים אם מחלעות אז מתקיים טענה (חסם האיחוד הבן־מניה) אם אם מענה

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$$

ולכן עולה סדרה זוהי אוהי אולה ולכן. אוהי ולכן נגדיר אולה ולכן אוהי ולכן. נגדיר אולה ולכן ולכו

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \mathbb{P}(\bigcup_{m=1}^{\infty} B_m) = \lim_{m \to \infty} \mathbb{P}(B_m) \le \lim_{m \to \infty} \sum_{n=1}^{m} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

6.2 עיקרון ההכלה וההדחה

טענה 6.7 אם A,B מאורעות אז

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

נקבל , $C=A\setminus B,D=A\cap B,E=B\setminus A$ נקבל, נגדיר.

$$A = C \uplus D$$
, $B = D \uplus E$, $A \cup B = C \uplus D \uplus E$

ונקבל

$$\mathbb{P}(A) = \mathbb{P}(C) + \mathbb{P}(D), \quad \mathbb{P}(D \cup B) = \mathbb{P}(D) + \mathbb{P}(E)$$

ולכן

$$\mathbb{P}(A \cup B) = \mathbb{P}(C) + \mathbb{P}(D) + \mathbb{P}(E)$$

A,B,C משפט 6.8 (הכלה והפרדה לשלושה מאורעות) עבור שלושה מאורעות

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - (\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)) + \mathbb{P}(A \cap B \cap C)$$

משפט 6.9 (הכלה הפרדה ל- \mathbf{n} מאורעות, אז הייו הפרדה ל-הכלה הפרדה משפט הכלה הפרדה ל-

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i=1}^{n} \sum_{j=1}^{i-1} \mathbb{P}(A_i \cap A_j) + \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} \mathbb{P}(A_i \cap A_j \cap A_k) + \dots$$

אם נגדיר $A_{I} = igcap_{i \in I} A_{i}$ לכל $I \subseteq [n]$ אז נקבל

$$\mathbb{P}(\bigcup_{n=1}^{n} A_i) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{\substack{I \subseteq [i] \\ |I| = k}} \mathbb{P}(A_I) = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|+1} \mathbb{P}(A_I)$$

את משפט זה נוכיח בהמשך הקורס.

נראה דוגמה לבעיה קלאסית במקרים אלה.

n מעטפות לא הגיע שאף מכתב ההסתברות לכל תיבה, אחת לכל תיבות מעטפות מעטפות מעטפות מעטפות ההתאמה) אחת לכל תיבות מעטפות ליעדו

 $A = \{\omega \in \Omega \mid \forall i, \omega(i) \neq i\}$ מרחב מרחב $\Omega = S_n$ פתרון נגדיר פתרון מרחב

נבחן את המשלים,
$$A_i=\{\omega\in\Omega\mid\omega(i)=i\}$$
 עבור $A^C=\{\omega\in\Omega\mid\exists i,\omega(i)=i\}=\bigcup_{i=1}^nA_i$, נחשב $\mathbb{P}(A_i)=\frac{|A_i|}{|\Omega|}=\frac{(n-1)!}{n!}=\frac{1}{n}$

לקבל j < i עבור $\mathbb{P}(A_i \cap A_j)$ נקבל מקרה של במקרה

$$\mathbb{P}(A_i \cap A_j) = \frac{|A_i \cap A_j|}{|\Omega|} = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

נוכל להמשיד את התהליד הזה. ונקבל

$$\mathbb{P}(A_I) = \frac{|\bigcap_{i \in I} A_i|}{|\Omega|} = \frac{(n - |I|)!}{n!} = \frac{1}{n(n-1)(n-2)\cdots(n-(I+1))}$$

כעת נותר להשתמש בנוסחה להכלה והדחה, ונקבל

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{\substack{I \subseteq [n] \\ |I| = k}} \frac{(n-k)!}{n!} = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!} = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!}$$

נשים לב כי רצינו לחשב את המשלים למאורע, לכן

$$\mathbb{P}(A) = 1 - \mathbb{P}(\bigcup_{i=1}^{n} A_i) = 1 + \sum_{k=1}^{n} \frac{(-1)^k}{k!} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \xrightarrow[n \to \infty]{} e^{-1}$$

נקבל שאוסף התמורות ללא נקודת שבת הוא

$$|A^n| = n! \sum_{l=0}^n \frac{(-1)^l}{l!}$$

נגדיר קבוצה חדשה

$$D_k = \{ \omega \in S_n \mid \exists i, \omega(i) = i \} = \bigcup_{\substack{I \subseteq [n] \\ |I| = k}} D_I$$

ונבחין כי

$$D_I = \{ \omega \in S_n \mid \forall i \in I, \omega(i) = i, \forall i \notin I, \omega(i) \neq i \}$$

ולכן

$$\mathbb{P}(D_k) = \sum_{\substack{I \subseteq [n] \\ |I| = k}} \mathbb{P}(D_I)$$

$$= \sum_{\substack{I \subseteq [n] \\ |I| = k}} \frac{|D_I|}{n!}$$

$$= \sum_{\substack{I \subseteq [n] \\ |I| = k}} \frac{(n-k)! \sum_{l=0}^n \frac{(-1)^l}{l!}}{n!}$$

$$= \binom{n}{k} \frac{(n-k)!}{n!} \sum_{l=0}^n \frac{(-1)^l}{l!}$$

$$= \frac{1}{k!} \sum_{l=0}^n \frac{(-1)^l}{l!}$$

$$\xrightarrow[n \to \infty]{} \frac{e^{-1}}{k!}$$

12.11.2024 - 5 שיעור 7

7.1 הסתברות מותנית

הגדר להיות של A,B (הסתברות מותנית) אורעות, האסתברות מאורעות A,B (הסתברות מותנית) הגדרה הגדרה להיות

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

אם מטילים שתי קוביות מאוזנות, מה ההסתברות שיצא 3 בקוביה הראשונה בהינתן שהסכום הוא 8? **דוגמה 7.1** אם מטילים שתי קוביות מאוזנות, מה

$$.B=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$$
 וכן וכן גדיר $A=\{(3,i)\in\omega\mid 1\leq i\leq 6\}$ וכן גדיר כמובן $\Omega=[6]^2$ נגדיר כמובן $\Omega=[6]^2$ נגדיר כמובן $\Omega=[6]^2$ וכן גדיר במובן $\Omega=[6]^2$ ובובן $\Omega=[6]^2$ ובובן $\Omega=[6]^2$ ובובן $\Omega=[6]^2$ ובוב

 $\mathbb{P}_B:\mathcal{F} o[0,\infty)$ זהינו $\mathbb{P}_B(A)=\mathbb{P}(A\mid B)$, נגדיר $\mathbb{P}(B)>0$, נגדיר מאורע עם הסתברות פוקציית הסתברות אז \mathbb{P}_B אז \mathbb{P}_B היא פונקציית הסתברות

. היא אי־שלילית $\mathbb{P}_B(A)$ היא הוכחה.

וראה גח

$$\mathbb{P}_B(\Omega) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = 1$$

ולבסוף

$$\mathbb{P}_B(\biguplus_{i \in I} A_i) = \frac{(\mathbb{P}_B(\biguplus_{i \in I} A_i)) \cap B}{\mathbb{P}(B)} = \frac{\mathbb{P}_B(\biguplus_{i \in I} A_i \cap B)}{\mathbb{P}(B)} = \sum_{i \in I} \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)} = \sum_{i \in I} \mathbb{P}_B(A_i)$$

. $\mathbb{P}''=\mathbb{P}'_C$ י ביסמן $\mathbb{P}'=\mathbb{P}_B$ נסמן , $\mathbb{P}(B\cap C)>0$ מענה C,B ידי הייו לידי יהיו C,B יהיי מענה אז לכל מאורע מתקיים $\mathbb{P}''=\mathbb{P}_{B\cap C}$ אז לכל מאורע $\mathbb{P}''(A)=\mathbb{P}(A\mid B\cap C)$

הוכחה.

$$\mathbb{P}''(A) = \mathbb{P}'_C(A) = \frac{\mathbb{P}'(A \cap C)}{\mathbb{P}'(C)} = \frac{\mathbb{P}_B(A \cap C)}{\mathbb{P}_B(C)} = \frac{\frac{\mathbb{P}(B \cap (A \cap C))}{\mathbb{P}(B)}}{\frac{\mathbb{P}(B \cap C)}{\mathbb{P}(B)}} = \mathbb{P}_{B \cap C}(A)$$

מצאנו כי התניה חוזרת היא אסוציאטיבית ולכן נוכל לדבר על הסתברות מותנית בכמה מאורעות ללא התייחסות לסדר שלהם, למעשה התנייה מותנית היא קומוטטיבית כפי שאפשר לראות בהוכחה.

אז מאורע הדים של Ω ו־ Ω של בת־מניה חלוקה החלקה נניח נניח נניח מותנית) נניח בהסתברות השלמה בהסתברות מאורע מסקנה לוניח מסקנה אווים מסקנה מאורע מאורע מאורע מאורע מסקנה אווים מסקנה אווים מסקנה אווים מסקנה אווים מסקנה מאורע מאורע מאורע מאורע מסקנה אווים מסקנה אווים מסקנה מאורע מאורע מאורע מאורע מסקנה אווים מסקנה אווים מסקנה מאורע מאורע מאורע מאורע מסקנה אווים מסקנה אווים מסקנה מסקנה מאורע מאורע מאורע מאורע מסקנה אווים מסקנה מסקנה מסקנה מאורע מאורע מאורע מאורע מאורע מסקנה אווים מסקנה מסקנה מאורע מאורע מאורע מאורע מאורע מסקנה מסקנה מסקנה מסקנה מאורע מאורע מאורע מאורע מאורע מסקנה מסקנה מאורע מאור

$$\mathbb{P}(B) = \sum_{i \in \mathbb{N}} \mathbb{P}(A_i) \mathbb{P}(B \mid A_i)$$

הוכחה.

$$\mathbb{P}(A_i)\mathbb{P}(B\mid A_i) = \mathbb{P}(A_i)\frac{\mathbb{P}(B\cap A_i)}{\mathbb{P}(A_i)} = \mathbb{P}(B\cap A_i)$$

ולכן

$$\biguplus_{i \in \mathbb{N}} (B \cap A_i) = B \implies \mathbb{P}(B) = \sum_{i \in \mathbb{N}} \mathbb{P}(B \cap A_i)$$

$$\mathbb{P}_A(B) = \frac{\mathbb{P}(B)}{\mathbb{P}(A)} \mathbb{P}_B(A)$$

הוכחה. ישירות מהגדרה נסיק

$$\mathbb{P}_{A}(B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B)}{\mathbb{P}(A)} \cdot \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(A)} \mathbb{P}_{B}(A)$$

מסקנה 7.6 (כלל השרשרת)

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$$

תרגיל 7.1 מטילים מטבע הוגן. אם יוצא עץ נוסעים לתל־אביב ואם יוצא פלי אז ונסעים לחיפה. כשנוסעים לתל־אביב יש הסתברות של אחוז אחד לפנצ'ר, ובנסיעה לחיפה יש הסתברות של 2 אחוז לפנצ'ר.

מה ההסתברות לפנצ'ר ומה ההסתברות שנסעו לתל־אביב?

פתרום שיהיה פנצ'ר, בהתאם ההסתרות לגדיר לנסוע לתל־אביב לתל-אביב לתל-אביב בהתאם בגדיר או לנסוע לתל-אביב לתל-אביב ל

$$\mathbb{P}(A^C) = \mathbb{P}(A) = \frac{1}{2}, \qquad \mathbb{P}(B \mid A) = 0.01, \mathbb{P}(B \mid A^C) = 0.02$$

בהתאם

$$\mathbb{P}(B) = \mathbb{P}(A)\mathbb{P}(B \mid A) + \mathbb{P}(A^C) + \mathbb{P}(B \mid A^C) = \frac{1}{2}0.01 + \frac{1}{2}0.02 = 0.015$$

באשר לשאלה השנייה נקבל

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \mathbb{P}(B \mid A) = \frac{\frac{1}{2}}{0.015} \cdot 0.01 = \frac{1}{3}$$

נבחין כי התוצאה יצאה מאוד אלגנטית כתוצאה מהמטבע ההוגן, אילו הוא היה לא הוגן היינו מקבלים חישוב שונה במקצת, אך תקף באותה המידה.

דוגמה 7.2 (מונטי הול) יש שלוש דלתות, בוחרים אחת, מנחה פותח דלת שלא נבחרה ומאחוריה אין כלום, מה שאומר שמאחורי אחת הדלתות הסגורות יש אוצר ובאחרות יש עז. המנחה מציע לכם להחליף את הדלת שבחרתם.

קשה למדל את הבעיה הזו, שכן חסר תיאור והגדרה, אז נאמר שהגרלנו מספר ב־[3], נניח שבחרנו 1, נניח שהמנחה גם במכוון תמיד בוחר דלת ריקה. נוסיף את ההנחה שאם האוצר מאחורי דלת 1 אז המנחה פותח את 2 או 3, וההסתברויות שוות.

 $\mathbb{P}(B_3\mid A_2)=1, \mathbb{P}(B_2\mid A_3)=1, \mathbb{P}(B_3\mid \mathsf{Lick})$ נעבור להגדרה, A_i מההנחות שלנו היא שהמנחה פותח את דלת B_i יו היא שהמנחה ב־ B_i יו ב־ B_i יו ב- $B_$

 $:\mathbb{P}(A_1\mid B_2)$ נרצה לחשב את

$$\mathbb{P}(A_1 \mid B_2) = \frac{\mathbb{P}(A_1)}{\mathbb{P}(B_2)} \cdot \mathbb{P}(B_2 \mid A_1) = \frac{\frac{1}{6}}{\mathbb{P}(B_2)}$$

וגם

$$\mathbb{P}(B_2) = \mathbb{P}(A_1)\mathbb{P}(B_2 \mid A_1) + \mathbb{P}(A_2)\mathbb{P}(B_2 \mid A_2) + \mathbb{P}(A_3)\mathbb{P}(B_2 \mid A_3) = \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 1 = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} + \frac{1$$

14.11.2024 - 3 תרגול 8

8.1 הסתברות מותנית

אנייה יצא 6? מטילים זוג קוביות הוגנות ושונות. נתון שסכום תוצאותיהן גדול מעשר, מה ההסתברות שבהטלה השנייה יצא 6?

. אחידה \mathbb{P} עם עם $\Omega = \left[6 \right]^2$ גדיר נגדיר פתרון

עוד נגדיר
$$B=\{(x,6)\in\Omega\}$$
 וכן $A=\{(x,y)\in\Omega\mid x+y>10\}$ לכן

$$\mathbb{P}(B\mid A) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)} = \frac{\frac{|A\cap B|}{|\Omega|}}{\frac{|A|}{|\Omega|}} = \frac{|A\cap B|}{|A|} = \frac{2}{3}$$

תרביל 8.2 אדם מחפש מכתב, זכור לו במעורפל בהסתברות $0 \leq p \leq 1$ שהניח שולחן העבודה. ממגירות שולחן העבודה.

. בשולחן מצא את מגירות הראשונות ב־k המגירות חיפש מגירות מגירות מגירות מגירות בשולחן המגירות מגירות האדם חיפש ב

מה ההסתברות שהמכתב בשולחן?

 $\mathbb{P}(A\mid B_k)$ את מחפשים אנו הראשונות. אנו מהמירות מאורע אחת המכתב לא המכתב המכתב אחת המאורע שהמכתב בשולחן ו־ B_k המכתב לא באף אחת מ־A לכן

$$\mathbb{P}(A \mid B_k) = \frac{\mathbb{P}(A \cap B_k)}{\mathbb{P}(B_k)}$$

עוד אנו יודעים כי

$$\mathbb{P}(A) = p, \mathbb{P}(B_k) = 1 - \frac{kp}{n}$$

אזי

$$\frac{\mathbb{P}(A \cap B_k)}{\mathbb{P}(B_k)} = \frac{\frac{(n-k)p}{n}}{\frac{n-kp}{n}} = \frac{(n-k)p}{n-kp}$$

תרגיל 8.3 האדם הוא מתודי והחליט להפסיק את החיפוש אם ההסתברות שהמכתב בשולחן קטנה מ $rac{1}{4}$.

החיפוש? פסיק מגירות, עד שהאדם לכל תיבדקנה מגירות, כמה מגירות, מגירות מגירות שישו $p=\frac{3}{4}$

פתרון

$$\frac{1}{4} > \mathbb{P}(A \mid B_k) = \frac{(10 - k)\frac{3}{4}}{10 - \frac{3k}{4}} \iff k > \frac{89}{11}$$

נבדוק לכל היותר 8 מגירות.

8.2 ניסוי דו־שלבי על־ידי הסתברות מותנית

טענה 1.8 נניח שנתון ניסוי דו־שלבי על $\Omega_1 imes \Omega_2$ עם פונקציית הסתברות נקודתית p_ω על $\omega \in \Omega_1$ ולכל Ω_1 ולכל Ω_2 עם פונקציית הסתברות נקודתית על Ω_2 .

אם $\Omega_1 imes \Omega_2$ אם פונקציה על פונקציה על

$$\mathbb{P}(\{a, x\}) = p(a), \qquad \mathbb{P}(\{x, b\} \mid \{(a, x)\}) = p_a(b)$$

אז ₪ היא פונקציית הסתברות יחידה המתאימה לניסוי הדו־שלבי.

נובע נובע, $(a,b)\in\Omega_1 imes\Omega_2$ יהי יהי הוכחה.

$$\mathbb{P}(\{(a,b)\}) = \mathbb{P}(\{(a,x)\}) \cdot \mathbb{P}(\{(x,b)\} \mid \{(a,x)\}) = p(a) \cdot p_a(b) = q(a,b)$$

 \mathbb{P} של של נקודתית נקודתית של q

נבחין שוב כי בעוד כל ניסוי דו־שלבי, ניתן לבחון אותו כניסוי מותנה, הכיוון ההפוך לא בהכרח מתקיים; לא כל ניסוי מותנה הוא ניסוי דו־שלבי. נבחן דוגמות לשימוש בקשר זה.

תרגיל 8.4 בשוק ישנם שלושה סוגי מחשבים. חצי מסוג ראשון, 30% מסוג שני ו־20% מסוג שלישי.

 $rac{1}{20}$ הסיכוי שמחשב מסוג ראשון יתקלקל בשנתו הראשונה הוא עשירית, הסיכוי לסוג שני הוא חמישית והסיכוי למחשב מהסוג השלישי הוא

קונים מחשב באקראי מבין מחשבי השוק, מה ההסתברות שהוא יתקלקל בשנתו הראשונה?

. בשנתו הראשונה בשנתו התקלקל שהמחשב התקלקל מסוג Iו המאורע שקנינו מחשב שקנינו מחשב מסוג C_i ו נסמן פתרון נסמן

$$\mathbb{P}(C_1) = rac{l}{2}, \mathbb{P}(C_2) = rac{3}{10}, \mathbb{P}(C_3) = rac{1}{5}$$
 עוד נתון

נתונים לנו גם
$$\mathbb{P}(B\mid C_1)=\frac{1}{10}, \mathbb{P}(B\mid C_2)=\frac{1}{5}, \mathbb{P}(B\mid C_3)=\frac{1}{20}$$
 מנוסחת ההסתברות השלמה נובע

$$\mathbb{P}(B) = \mathbb{P}(B \mid C_1)\mathbb{P}(C_1) + \mathbb{P}(B \mid C_2)\mathbb{P}(C_2) + \mathbb{P}(B \mid C_3)\mathbb{P}(C_3)$$

תרגיל 8.5 במבחן אמריקאי לכל שאלה 4 אפשרויות ובדיוק 1 נכונה. סטודנטית ניגשת למבחן עם האסטרטגיה הבאה:

- . אם היא יודעת את התשובה היא עונה נכונה.
- אם היא לא יודעת את התשובה אז היא בוחרת תשובה אקראית.

נתון כי הסטודנטית יודעת את התשובה ל־90% משאלות הבחינה.

בוחרים שאלה באקראי, ונתון שהסטודנטית ענתה עליה נכון, מה ההסתברות שהיא ידעה את התשובה.

. נכחן שהסטודנטית ענתה וב־B את התשובה, וב־לשה עה שהסטודנטית ענתה נכון. פתרון נסמן ב-A את המאורע שהסטודנטית ענתה נכון.

$$\mathbb{.P}(B\mid A)=1, \mathbb{P}(B\mid A^C)=\frac{1}{4}$$
 וגם כי $\mathbb{P}(A)=\frac{9}{10}$ כי אנו יודעים כי

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \mathbb{P}(B \mid A) = \frac{\frac{9}{10} \cdot 1}{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A) + \mathbb{P}(B \mid A^C) \cdot \mathbb{P}(A^C)} = \frac{\frac{9}{10}}{\frac{9}{10} + \frac{1}{4} \cdot \frac{1}{10}} = \frac{\frac{9}{10}}{\frac{37}{40}} \approx 0.973$$

14.11.2024 - 6 שיעור 9

אי־תלות 9.1

הגדרה (מאורעות בלתי-תלויים) מאורעות המקיימים (מאורעות בלתי-תלויים) אורעות הגדרה (מאורעות בלתי-תלויים) אורעות הגדרה (מאורעות בלתי-תלויים) הערה בובע שמתקיים הערה בובע האחריים מאורעות האחריים מאורעות האחריים האחריים מאורעות האורעות האורעות האחריים מאורעות האורעות האורעות

$$\mathbb{P}(A \mid B) = \mathbb{P}(A), \qquad \mathbb{P}(B \mid A) = \mathbb{P}(B)$$

 $\Omega_1 imes\Omega_2$ המכפלה מרחב של הסתברות של פונקציית עם $\mathbb P$ עם ועובדים $B\subseteq\Omega_2$ ו המכפלה אם הערה (תזכורת) הערה ערה ועובדים אור $B\subseteq\Omega_2$ ור אור אינו שמתקיים עם $\mathbb P(A imes B)=\mathbb P_1(A)\cdot\mathbb P_2(B)=\mathbb P(A imes\Omega_2)\cdot\mathbb P(\Omega_1 imes B)$

 $\Omega = [6]^2$ אז קוביות, אז מטילים שתי אוגמה 9.1

.7 הוא הקוביות שסכום המאורע ו־Bהמאורע בקוביה בקובית שיצא בקוביה האורע מאורע איצא $A = \{4\} imes [6]$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{1}{6}, \qquad \mathbb{P}(B) = \frac{|B|}{|\Omega|} = \frac{1}{6}$$

יחישוב חיתוד המאורעות יניב

$$\mathbb{P}(A \cap B) = \frac{|A \cap B|}{|\Omega|} = \frac{|\{(4,3)\}|}{36} = \frac{1}{36} = \mathbb{P}(A)\mathbb{P}(B)$$

אז המאורעות בלתי־תלויים.

מענה 9.2 הלויים וכן A ו־ Ω בלתי־תלויים וכן A ו־ Ω בלתי־תלויים.

$$\mathbb{P}(A\mid B)=\mathbb{P}(A)$$
 אז $\mathbb{P}(B)>0$. בלתי־תלויים B בלתי־תלויים .2

. היים. Bו־ם בלתי תלויים אז גם Bו־ם בלתי תלויים. 3

הוכחה. נוכיח את הטענה השלישית

$$\mathbb{P}(B \cap A^C) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(B) - \mathbb{P}(B)\mathbb{P}(A) = \mathbb{P}(B)(1 - \mathbb{P}(A)) = \mathbb{P}(B)\mathbb{P}(A^C)$$

 A,A^{C} במעבר הראשון השתמשנו בנוסחת ההסתברות השלמה על במעבר במעבר

אם בזוגות בלתי בלתי נקראים לא נקראים אם (אי־תלות בזוגות אם אי־תלות מגדרה 9.3 אגדרה הגדרה אם אי־תלות בזוגות אם אי

$$\forall 1 \leq i < j \leq n, \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$$

מתקיים אם לכל [n] אם לכל B_1,\ldots,B_n מאורעות בקבוצת בלתי־תלוי בקבוצת מאורעות מאורע אם לכל מתקיים מאורע

$$\mathbb{P}(A \mid \bigcap_{i \in I} B_i) = \mathbb{P}(A)$$

. דהינו A ו־ $\bigcap_{i \in I} B_i$ בלתי־תלוי

 $\{B_1,B_2\}$ בלתי־תלוי בקבוצה A אבל A אבל B_2 רו בלתי־תלויים ורA בלתי־תלויים בקבוצה A כך ש־A בלתי־תלויים וגם בA בלתי־תלויים וגם בA בלתי־תלויים וגם בלתי־תלויים וגם בלתי־תלויים וגם בA בלתי־תלויים וגם באנים וגם בA בלתי־תלויים וגם באנים וגם

. $\{B_1,\dots,B_n,B_1^C,\dots,B_n^C\}$ טענה A בלתי תלוי ב־ $\{B_1,\dots,B_n\}$ אם ורק אם אם $\{B_1,\dots,B_n\}$

הוכחה. הכיוון השני הוא טריוויאלי, לכן נוכיח את הכיוון הראשון בלבד.

נראה ש־A בלתי־תלויים. בקבוצה $\bigcap_{i\in I}B_i$ ור בקבוצה A מתקיים שלכל ([n+1] מתקיים. בלתי־תלויים. בלתי־תלוית בקבוצה A בלתי־תלות כבר מתקיים. אם A אז לפי ההנחה חוסר התלות כבר מתקיים.

אחרת נגדיר אחרת ומכאן ולכן $J=I\setminus\{n+1\}$ ולכן נובע אחרת נגדיר

$$\mathbb{P}((\bigcap_{i \in I} B_i) \cap A) = \mathbb{P}((\bigcap_{i \in J} B_i) \cap B_1^C \cap A)$$

$$= \mathbb{P}(\bigcap_{i \in J} B_i \cap A) - \mathbb{P}(\bigcap_{i \in J} B_i \cap B_1 \cap A)$$

$$= \mathbb{P}(\bigcap_{i \in J} B_i) \mathbb{P}(A) - \mathbb{P}(\bigcap_{i \in J} B_i \cap B_1) \mathbb{P}(A)$$

$$= \mathbb{P}(\bigcap_{i \in J} B_i \cap B_1^C) \mathbb{P}(A)$$

$$= \mathbb{P}(\bigcap_{i \in I} B_i) \mathbb{P}(A)$$

ומצאנו כי ניתן להוסיף איבר, בשל כך נוכל לבצע את התהליך איטרטיבית ולקבל את המבוקש.

מתקיים $I\subseteq [n]$ אם לכל אי־תלויה בלתי־תלויה (אי־תלויה אם לכל אורעות הגדרה אברעות אורעות אורע

$$\mathbb{P}(\bigcap_{i\in I} A_i) = \prod_{i\in I} \mathbb{P}(A_i)$$

מסקנה 9.7 של מאורעות היא גם כל תת-קבוצה אז גם בלתי-תלויים, אז גם בלתי-תלויה. בלתי-תלויה מסקנה 9.7 אם מסקנה אז גם בלתי-תלויים, אז גם כל המסקנה אז גם בלתי-תלויים, או בלתי-תלויים, או בלתי-תלויים, או בלתי-תלויים, או בלתי-תלויים, או בלתי-תלויים

. בפרט A_1,\ldots,A_n בלתי־תלויים בזוגות בלתי־תלויים בלתי־תלויים בזוגות בפרט

 $\{A_1,\ldots,A_n\}\setminus\{A_i\}$ טענה A_i בלתי־תלויה ב- $\{A_1,\ldots,A_n\}$ בלתי־תלויה ב- פענה לכל ענה אם לכל לכן בלתי־תלויה ב- לחי

 $\mathbb{P}(igcap_{i\in I}A_i\cap A_1)=$ רוצים להראות ש־ $I\subseteq\{2,\ldots,n\}$, כלומר לכל $\{A_2,\ldots,A_n\}$, כלומר לכל לא תלוי ב- $\{A_1\cap A_1\}$ לא תלוי ב- $\{A_1\cap A_1\}$ על-ידי $\mathbb{P}(igcap_{i\in I}A_i)\mathbb{P}(A_1)$

$$\mathbb{P}(\bigcap_{i\in I}A_i\cap A_1)=(\prod_{i\in I}\mathbb{P}(A_i))\mathbb{P}(A_1)=\mathbb{P}(\bigcap_{i\in I}A_i)\mathbb{P}(A_1)$$

|I|=k כאשר $I\subseteq [n]=\{i_1,\ldots,i_k\}$ תהי תהי $\mathbb{P}(\bigcap_{i\in I}A_i)=\prod_{i\in I}\mathbb{P}(A_i)$ מתקיים מתקיים ו $I\subseteq [n]$ כאשר לכיוון השני. צריך להראות שלכל ל $A_i=[n]$ מתקיים לפי ההנחה בלתי-תלוי ב־ $A_i=[n]$ לכן נקבל באינדוקציה

$$\mathbb{P}(\bigcap_{l=1}^{k} A_{i_{l}}) = \mathbb{P}(A_{i_{1}} \cap (\bigcap_{l=2}^{k} A_{i_{l}})) = \mathbb{P}(A_{i_{1}}) \cdot \mathbb{P}(\bigcap_{l=2}^{k} A_{i_{l}}) = \mathbb{P}(A_{i_{1}})\mathbb{P}(A_{i_{2}})\mathbb{P}(\bigcap_{l=3}^{k} A_{i_{l}}) = \cdots = \mathbb{P}(A_{i_{1}}) \cdots \mathbb{P}(A_{i_{k}})$$

19.11.2024 - 7 שיעור 10

10.1 אי־תלות

נראה הגדרה שקולה לאי־תלות

הגדרה אם בלתי־תלויים A_1, \ldots, A_n (שקולה לאי־תלויים אם בלתי־תלויים אם ורק אם

$$\forall I \subseteq [n], \mathbb{P}((\bigcap_{i \in I} A_i) \cap (\bigcap_{i \in [n] \setminus I} A_i^C)) = \prod_{i \in I} \mathbb{P}(A_i) \prod_{i \in [n] \setminus I} \mathbb{P}(A_i^C)$$

את השקילות של ההגדרות נראה בתרגיל.

 \mathbb{P}_B ,Bים בהינתן המותנית ההסתברות לפי פונקציית הם בלתי-תלויים בהינתן בהינתן בלתי-תלויים באורעות ב

. פעמים חותו מטבע משק מטבע באקראי משק בוחרים 10.1 דוגמה 10.1 בוחרים מטבע באקראי

. מטבע מטבע שנבחר שנבחר המטבע, בחירת בחירת בהינתן בלתי־תלוי בלתי־תלוי בהטלה ב' בא עץ אין בהטלה בהינתן בחירת בהינתן בחירת מטבע בלתי־תלוי בהינתן בחירת מטבע בחירת בהינתן ב

נרצה לנסות לתת הגדרה חדשה עבור מקרים אינסופיים, נראה שיתקיים

$$\forall I \subseteq \mathbb{N}, \mathbb{P}(\bigcap_{i \in I} A_i = \prod_{i \in I} \mathbb{P}(A_i))$$

אבל היא לא מועילה לנו, נגדיר במקום זאת

הגדרה בלתי־תלויים אם בלתי־תלויה מאורעות ל A_1,A_2,\dots (הויים בלתי־תלויים בתי־תלויים מגדרה (קבוצה בלתי־תלויה בלתי־תלויה מתקיים ללל קבוצה פופית אורעות החדש לכל קבוצה לו מתקיים אורעות החדש לכל קבוצה פופית אורעות מתקיים לא החדש החדש החדשה החדש

הערה (מכפלה אינסופית) נגדיר מכפלה אינסופית על-ידי

$$\prod_{i \in \mathbb{N}} a_i = \prod_{i=1}^{\infty} a_i = \lim_{N \to \infty} \prod_{i=1}^{N} a_i$$

טענה 10.3 אם אחרעות סדרת A_1, A_2, \ldots אם 10.3 טענה

$$\mathbb{P}(\bigcap_{i\in\mathbb{N}}A_i)=\prod_{i\in\mathbb{N}}\mathbb{P}(A_i)$$

הובעות נובע ההסתברות פונקציית סדרה אורדת סדרה פונקציית ההסתברות נובע הוכחה. נגדיר וורדת סדרה סדרה סדרה החודת סדרה החודת מובע

$$\mathbb{P}(\bigcap_{i\in\mathbb{N}}A_i) = \mathbb{P}(\bigcap_{n\in\mathbb{N}}B_n) = \lim_{n\to\infty}\mathbb{P}(B_n) = \lim_{N\to\infty}\prod_{i=1}^N\mathbb{P}(A_i) = \prod_{i=1}^\infty\mathbb{P}(A_i)$$

 $.\mathbb{P}(igcap_{i\in\mathbb{N}}A_i)=0$ אז $\mathbb{P}(A_i)=p<1$ דוגמה 10.2 אם בלתי־תלויים בלתי־תלויים אם 10.2 אם

לדוגמה בהטלה אינסוף פעמים של מטבע הסיכוי שייצא עץ הוא אפס. דוגמה זו קצת בעייתית שכן כלל לא הראינו כי מרחב זה קיים ומוגדר, אבל המשמעות היא שעבור מרחבי מדגם הולכים וגדלים, אז ההסתברות המבוקשת שואפת להיות אפס.

משתנים מקריים 10.2

עד כה היינו צריכים לבצע ניתוח מלא של הסיטואציה כדי להגיע למסקנה, גם אם בהרבה מקרים שונים הגענו לבדיוק אותה המסקנה, המטרה של משתנים מקריים הוא לבודד את הרעיון הזה ולתקוף אותו.

. משתנה מקרי) יהי ($\Omega, \mathcal{F}, \mathbb{P}$) מרחב הסתברות, פונצקיה מ־ Ω (משתנה מקרי) יהי (משתנה מקרי) מהדרה 10.4 מהדרה

X,Y,Z סימון לדוגמה למשתנים, נהוג לסמן משתנים מקריים בסימונים שאנו רגילים שמשמשים למשתנים, לדוגמה X,Y,Z

הערה השם קצת מטעה, אלו הם לא משתנים, ושווה לחשוב עליהם בתור מצבים מקריים יותר.

יוצא שאם מטבע, אונ במטרה במטרה (f(H)=2, f(T)=-3 על־ידי על $f:\Omega \to \mathbb{R}$ הפונקציה את מטבע, ונגדיר הטלת מטבע, נניח ($G=\{H,T\}$ נניח אוני מטבעות ואם מתקבל פלי אז נקבל שני מטבעות.

 $\Omega = \left[6
ight]^2$ נרצה להטיל עתי החל אדבר על דבר לדבר לדבר קוביות ונרצה להטיל נגדיר נרצה נרצה 10.4 דוגמה

נגדיר שמהוות משתנה מקרי עבור פונקציות נגדיר $X_1(a,b)=b$ יצרנו דומה נגדיר עבור אל-ידי עבור אל-ידי אל-ידי $X_1:\Omega\to\mathbb{R}$ יצרנו פונקציות עבור ההטלה האנייה, נגדיר גם עבור הסכום, Y(a,b)=a+b ועבור ההטלה השנייה, נגדיר גם עבור הסכום, א

. המרחב שירות של עבודה עבודה האסתברות מורכב מרחב לנו איזשהו האסיתי של הגדרה האסיתי של הגדרה איז, יש לנו איזשהו קישור מורכב במרחב אונבחין בכוח האסיתי של הגדרה איז, יש לנו איזשהו האסתברות ללא עבודה ישירות מול המרחב.

ידי מקרי משתנה מקרי אז נגדיר אז מאורע אם ממאורע) אם מחרה מקרי משתנה מקרי משתנה (משתנה מקרי משתנה מקרי משתנה מקרי אז מאורע

$$1_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$

 $1_{A^C} = 1 - 1_A \; .1 \; \; \;$ מענה 10.7 מענה של משתנים מקריים מקריים משרנים (תכונות של

$$1_{A \cap B} = 1_A \cdot 1_B$$
 .2

$$1_{A \cup B} = \max\{1_A, 1_B\}$$
 .3

. שיש i נקודות שבת המאורע שיש A_i , $\Omega = S_n$ בוגמה **10.5**

$$X = \sum_{i=1}^n X_i$$
נסמן $X_i = 1_{A_i}$ נסמן

 $X_1 \in \{2,4,6\}$ זאת במקום במקום נכתוב $\{(a,b) \in [6]^2 \mid a \in \{2,4,6\}\}$ זוגית ההטלה הראשונה הקודמות הקודמות החטלה ווגית

הגדר להיות אם $X \in S$, המאורע משתנה מקרי אם אם אם משתנה מקרי) אם משתנה ממשתנה משתנה (מאורע מושרה ממשתנה מקרי) אם אם אם הגדר להיות

$$X^{-1}(S) = \{ \omega \in \Omega \mid X(\omega) \in S \}$$

. ודומים. $\mathbb{P}(X=s), \mathbb{P}(X\leq s)$ את נכתוב נכתוב דומה ובאופן דומה $\mathbb{P}(X\in S)$ על־ידי על־ידי $\mathbb{P}(\{x\in S\})$ בהתאם נכתוב

. משתנה א מחברות, ויהי הסתברות, מרחב מקרי) מקרי מקרי, ממשתנה מושרית מושרית פונקציית ($\Omega, \mathcal{F}, \mathbb{P}$) משתנה מקרי

על־ידי $\mathbb{P}_X:\mathcal{F}_\mathbb{R} o[0,\infty)$ על־ידי

$$\mathbb{P}_X(S) = \mathbb{P}(X \in S) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in S\})$$

X מכונה ההתפלגות של \mathbb{P}_X

 $(\mathbb{R},\mathcal{F}_{\mathbb{R}})$ טענה 10.10 היא פונקציית הסתברות על \mathbb{P}_X

הוכחה.

$$\forall S, \mathbb{P}_X(S) = \mathbb{P}(X \in S) > 0$$

וכן

$$\mathbb{P}_X(\mathbb{R}) = \mathbb{P}(X \in \mathbb{R}) = \mathbb{P}(\Omega) = 1$$

ולבסוף סיגמא־אדיטיביות:

$$\forall S_1, S_2, \dots, \mathbb{P}_X(\biguplus_{n \in \mathbb{N}} S_n) = \mathbb{P}(X \in \biguplus_{n \in \mathbb{N}} S_n)$$

$$= \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in \biguplus_{n \in \mathbb{N}} S_n\})$$

$$= \mathbb{P}(\biguplus_{n \in \mathbb{N}} \{X \in S_n\})$$

$$= \sum_{n \in \mathbb{N}} \mathbb{P}(X \in S_n)$$

$$= \sum_{n \in \mathbb{N}} \mathbb{P}_X(S_n)$$

21.11.2024 - 4 תרגול 11

אי־תלות 11.1

 $(\Omega, \mathcal{F}, \mathbb{P})$ נניח מרחב הסתברות נניח

תרגיל 11.1 בכד שלושה מטבעות, שניים הוגנים ואחד שמוטבע עץ על שני צדדיו.

שולפים מטבע באקראי ואז מטילים אותו פעמיים.

?האם ההטלה ההטלה בתוצאת ההטלה השנייה?

. פתרון נסמן ב־iאת את שבהטלה ה־iיצא עץ.

. אנו שטבע ששלפנו שטבע המאורע גם F גם נסמן תלויים, הח A_1,A_2 אנו שואלים אנו שואלים

$$\mathbb{P}(A_1) = \mathbb{P}(A_1 \mid F)\mathbb{P}(F) + \mathbb{P}(A_1 \mid F^C)\mathbb{P}(F^C) = \frac{1}{2} \cdot \frac{2}{3} + 1 \cdot \frac{1}{3} = \frac{2}{3}$$

אנו רוצים לבדוק את התלות ולכן נחשב

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1 \cap A_2 \mid F)\mathbb{P}(F) + \mathbb{P}(A_1 \cap A_2 \mid F^C)\mathbb{P}(F^C) = \frac{1}{4} \cdot \frac{2}{3} + 1 \cdot \frac{1}{3} = \frac{1}{2} \neq \frac{4}{9} = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$$
ולכן הם תלווים.

 $.c=\sum_{n\in\mathbb{N}}rac{1}{n^2}=rac{\pi^2}{6}$ כאשר $\mathbb{P}(\{n\})=rac{1}{c\cdot n^2}$ ור נגדיר $\Omega=\mathbb{N}$ נגדיר 11.2 נגדיר

 $\forall k \in \mathbb{N}, A_k = k\mathbb{N} = \{kn \mid n \in \mathbb{N}\}$ נגדיר

?האם תלויה $\{A_k\}_{k\in\mathbb{N}}$ האם

פתרון

$$\mathbb{P}(A_k) = \sum_{n \in \mathbb{N}} \mathbb{P}(\{k_n\}) = \sum_{n \in \mathbb{N}} \frac{1}{ck^2 n^2} = \frac{1}{ck^2} \sum_{n \in \mathbb{N}} \frac{1}{n^2} = \frac{1}{k^2}$$

ולכן

$$\mathbb{P}(A_2 \mid A_4) = 1 \neq \frac{1}{4} = \mathbb{P}(A_2)$$

ולכן המאורעות תלויים ובכלל הקבוצה לא בלתי־תלויה.

בלתי־תלויה? בלתי־תלויה בגדיר אחברים בלתי־תלויה? בלתי־תלויה? נגדיר קבוצת בלתי־תלויה?

(או פירוק לגורמים ראשוניים, אז מהמשפט היסודי של האריתמטיקה ראשוניים, אז האשוניים, אז מהמשפט היסודי של יהיו $p_1,\ldots,p_m\in P$

$$A_{p_1} \cap \dots \cap A_{p_m} = A_{p_1 \dots p_m}$$

ולכן

$$\mathbb{P}(A_{p_1} \cap \dots \cap A_{p_m}) = \mathbb{P}(A_{p_1 \dots p_m}) = \frac{1}{(p_1 \dots p_m)^2} = \frac{1}{p_1^2} \dots \frac{1}{p_m^2} = \mathbb{P}(A_{p_1}) \dots \mathbb{P}(A_{p_m})$$

נגדיר גם $B=igcap_{p\in P}A_p^C=\{1\}$ נגדיר גם

$$\frac{6}{\pi^2} = \frac{1}{c} = \mathbb{P}(B) = \prod_{p \in P} (1 - \frac{1}{p^2})$$

מסקנה א לכל לכל לכל מסקנה משמעותית מסקנה נוכל נוכל 11.1 מסקנה מסקנה נוכל מסקנה מסקנה בי

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \prod_{p \in P} \left(1 - \frac{1}{ps}\right)^{-1} = \zeta(s)$$

. מטא פונקציית אוילר אוילר אוילר מטא של רימן, וזו זהות של s־הערך הי

מסקנה לא טור סופי, לכן ש אינסוף האוניים. π נוכל להסיק אי-רציונליות שבשל אי-רציונליות מסקנה מסקנה מסקנה מסקנה אי-רציונליות אינסוף האיונליות מסקנה מסקנה מסקנה אינסוף ראשוניים.

משתנים מקריים 11.2

אנו רוצים להסתכל על משתנה מקרי כדרך להסתכל מחדש על מרחב ההסתברות ובפרט פונקציית ההסתברות באופן נוסף, זה בתורו יאפשר לנו לפתור בעיות בדרך חדשה ואולי אף פשוטה יותר, כפי שנראה בהמשך. הידה. $\mathbb{P}=\left[6\right]^2$ ו־ $\mathbb{P}=\left[6\right]^2$ ווכל להגדיר בדינו נוכל להגדיר שמתאר סכום הטלת שתי קוביות הוגנות, דהינו נוכל להגדיר על־ידי $X:\Omega \to \mathbb{R}$ בהתאם נגדיר בהתאם נגדיר על־ידי $X:\Omega \to \mathbb{R}$

$$\operatorname{rng}(X) = \{2, \dots, 12\}$$

נעבור לחישוב הסתברויות

$$\mathbb{P}(X = 2) = \frac{1}{36},$$

$$\mathbb{P}(X = 3) = \frac{2}{36},$$

$$\mathbb{P}(X = 4) = \frac{3}{36},$$

$$\mathbb{P}(X = 5) = \frac{4}{36},$$

$$\mathbb{P}(X = 6) = \frac{5}{36},$$

$$\mathbb{P}(X = 7) = \frac{6}{36},$$

$$\mathbb{P}(X = 8) = \frac{5}{36}$$

וכן הלאה, בהתאם נוכל להסיק

$$\forall E \subseteq \mathbb{R}, \mathbb{P}(X \in E) = \mathbb{P}_X(E \cap \operatorname{rng}(X)) = \sum_{i \in E \cap \operatorname{rng}(X)} \mathbb{P}(X = i)$$

 X_i נסמן את ביחס את ביחס אות את ביחס אולכן ולכן ולכן ולכן ההטלה המאלה את גומא גומאן ולכן ולכן ולכן ו

$$orall n\in\{2,\dots,12\}, \mathbb{P}(X=n)=\sum_{i=1}^6\mathbb{P}(X_1=i)\mathbb{P}(X_2=n-i)$$

$$=\sum_{i=1}^6\frac{1}{6}\min\{6-i,0\}$$

$$=\frac{1}{36}|\{\{1,\dots,6\}\cap\{n-1,\dots,n-6\}\}|$$
 אם נגדיר $\operatorname{rng}(Y)=\{0,\dots,5\}$ אז $Y=X(\mod 6)$ אם נגדיר $\operatorname{rng}(Y)=\{0,\dots,5\}, \mathbb{P}(Y=n)=\mathbb{P}(X=n\vee X=n+6\vee X=n+12)$

$$\forall n \in \{0, \dots, 5\}, \mathbb{P}(Y = n) = \mathbb{P}(X = n \lor X = n + 6 \lor X = n + 12)$$

$$= \frac{1}{36} \cdot |\{1, \dots, 6\} \cap \{n + 12, \dots, n - 6\}|$$

$$= \frac{6}{36} = \frac{1}{6}$$

21.11.2024 - 8 שיעור 12

-משתנים מקריים משתנים 12.1

. בדידה הסתברות פונקציית או בדיד אם בדיד משתנה מקרי משתנה מקרי בדיד משתנה או משתנה מקרי בדיד משתנה מקרי בדיד או משתנה מקרי בדיד או משתנה מקרי בדיד משתנה מקרי בדיד או משתנה מקרי בדיד משתנה מש

 $p_X:\mathbb{R} o [0,\infty)$ במקרה Xיש ל-Xהתפלגות נקודתית במקרה ל-

הערה נבחין כי גם אם מרחב ההסתברות הוא לא בדיד, נוכל להגדיר משתנה מקרי בדיד עליו.

 $\mathbb{P}(A)=p$ ונניה $X=1^A$ ו הייר $A\in\mathcal{F}$ נגדיר 12.1 דוגמה 12.1

 $\mathbb{P}_X(S)=\mathbb{P}(\Omega)=1$ ואז $\Omega=X^{-1}(S)$ אז $\{0,1\}\in S$ אז אם $S\subseteq\mathcal{F}_\mathbb{R}$ אם אם אם א

 $\mathbb{P}_X(S)=\mathbb{P}(A)=p$ ואז $A=X^{-1}(S)$ אז 0
otin S אבל $1 \in S$ אם $1 \in S$

 $\mathbb{P}_X(S)=\mathbb{P}(\emptyset)=0$ ואז $\emptyset=X^{-1}(S)$ אז $A^C=X^{-1}(S)$ אז $1\notin S$ הי חם לבסוף אם לבסוף אם לבסוף אם א

על־ידי $p_X:\mathbb{R} o [0,\infty)$ אם נגדיר

$$p_X(s) = \begin{cases} p & s = 1\\ 1 - p & s = 0\\ 0 & \text{else} \end{cases}$$

אז מתקיים

$$\mathbb{P}_X(S) = \sum_{s \in S} p_X(s)$$

הגדרה נקודתית שם יש לו פרמטר עם ברנולי מתפלג מקרי משתנה משתנה (התפלגות ברנולי) משתנה התפלגות התפלגות משתנה לו התפלגות נקודתית משתנה משתנה לו התפלגות ברנולי

$$p_X(s) = \begin{cases} p & s = 1\\ 1 - p & s = 0\\ 0 & \text{else} \end{cases}$$

. החיים, אבל אלה הסטנדרטי, אבל השימוש מתכתב או מועיל או מאוד מאוד אלה אלה אלה $X \sim \mathrm{Ber}(p)$ במקרה זה נסמן

נשאל את עצמנו את השאלה האם כל משתנה מקרי מתפלג ברנולי של מציין של מאורע. אילו מחקבל משתנה מקרי מתפלג משתנה געוולי אומרים איא אילו מאורע ממד, נראה את בהמשך ממד, נראה את בהמשך הפרק. אומרים ש־X שווה למציין של A כמעט תמיד, נראה זאת בהמשך הפרק.

נמשיך לעוד מקרים.

הגדרה (משתנה מקרי קבוע משתנה מקרי X הוא הגדרה 12.3 הגדרה מקרי משתנה מקרי המ

$$p_X(s) = \begin{cases} 1 & s = c \\ 0 & \text{else} \end{cases}$$

. עבור c קבוע כלשהו

אם $\mathbb R$ אם סופית על תת-קבוצה על נקרא נקרא מקרי משתנה מקרי אחיד משתנה (משתנה מקרי אחיד) אודרה הגדרה אחיד משתנה מקרי אחיד

$$p_X(s) = \begin{cases} \frac{1}{|S|} & s \in S \\ 0 & \text{else} \end{cases}$$

 $X \sim U(S)$ במקרה זה נסמן

הגדרה 12.5 (התפלגות גאומטרית) א מתפלג האומטרית עם פרמטר p אם

$$p_X(s) = \begin{cases} (1-p)^{s-1} p & s \in \{1, 2, \dots\} \\ 0 & \text{else} \end{cases}$$

 $X\sim \mathrm{Geo}(p)$ ונסמן

לפעמים הגדרה זו תסומן אחרת על־ידי מדידת המקרים שבהם יצאה ההסתברות למאורע הראשון בלבד.

התפלגות זו מתארת את המקרה שניסינו לקבל תוצאה בהסתברות בין שני מקרים וקיבלנו אותה בפעם ה־s.

הגדרה 12.6 (התפלגות בינומית) X מתפלג בינומית עם פרמטרים n ו־p אם

$$p_X(s) = \begin{cases} \binom{n}{s} p^s (1-p)^{n-s} & s \in \{1, 2, \dots\} \\ 0 & \text{else} \end{cases}$$

 $X \sim \text{Bin}(n, p)$ ונסמן

מאפשר לנו לחשב את מספר המטבעות המוטים שיצאו על צד מסוים. ולבסוף

הגדרה עם פרמטר מתפלג מתפלג (התפלגות פואסונית התפלגות התפלגות התפלגות התפלגות אם בתחור או הגדרה ל λ

$$p_X(s) = \begin{cases} e^{-\lambda} \frac{\lambda^s}{s!} & s \in \{0, 1, 2, \dots\} \\ 0 & \text{else} \end{cases}$$

 $X \sim \operatorname{Po}(\lambda)$ ונסמן

בפעם הראשונה ההתפלגות הזו הופיעה בהקשר של מספר החיילים שנהרגו מבעיטה מהסוס שלהם, התפלגות שהייתה מהותית עד מלחמת העולם דראשונד

12.2 קשרים בין משתנים־מקריים

דוגמה הטלות שתי הטלות סכום $Y=X_1+X_2$ שוב הנגדיר שתי קוביות, אחיד להטלת אחיד מרחב $\Omega=\left[6\right]^2$

$$X_1(a,b) = a, X_2(a,b) = b, Y(a,b) = a + b$$

.בתרגול מצאנו את הערכים של p_Y לכל ערך אפשרי

Z של מה ההתפלגות של ($Z \in [6]$, ונשאל מה ההתפלגות של בדיר אביר (מנדיר גם $Z = Y \mod 6$

$$p_Z(1) = \mathbb{P}(Z=1) = \mathbb{P}(Y=7) = \frac{1}{6}$$

באופן דומה

$$p_Z(2) = \mathbb{P}(Z=2) = \mathbb{P}(Y=2) + \mathbb{P}(Y=8) = \frac{1}{36} + \frac{5}{36} = \frac{1}{6}$$

 $Z\sim U([6])$ נסיק כילי מתקיים מחישוב כזה ש־ $p_Z(n)=rac{1}{6}$ לכל מתקיים מחישוב כזה ש

 $X \stackrel{a.s.}{=} Y$ במעט תמיד אז נסמן ער המקיימים ש־X = Yהמקיימים אם אם שמעט תמיד אז נסמן (משתנים שווים שמעט המיד) אם הגדרה

 $\mathbb{P}(\{\omega\in\Omega\mid X(\omega)
eq Y(\omega)\})=0$ אם ורק אם וכון אם וזה $\mathbb{P}(\{\omega\in\Omega\mid X(\omega)=Y(\omega)\})=1$ זה כמובן שקול להגדרה כי

הוכחה. נשים לב לעובדה הבאה, אם $X(\omega)=Y(\omega)$ ו־ $X(\omega)=Z(\omega)$ ו־ $X(\omega)=X(\omega)$ כלומר הבאה, אם לב לעובדה הבאה, אם אונים אונים אונים לב

$$\{\omega \in \Omega \mid X(\omega) = Y(\omega)\} \cap \{\omega \in \Omega \mid Y(\omega) = Z(\omega)\} \subseteq \{\omega \in \Omega \mid X(\omega) = Z(\omega)\}$$

ובהתאם גם

$$\{\omega \in \Omega \mid X(\omega) \neq Y(\omega)\} \cup \{\omega \in \Omega \mid Y(\omega) \neq Z(\omega)\} \supseteq \{\omega \in \Omega \mid X(\omega) \neq Z(\omega)\}$$

אז מחסם האיחוד נקבל

$$0 \le \{\omega \in \Omega \mid X(\omega) \ne Z(\omega)\} \le 0 + 0$$

 Ω טענה ווא יחס שקילות על מרחב כל המשתנים־המקריים על $\stackrel{a.s.}{=}$

הוכחה. ראינו עתה טרנזיטיביות, וסימטריה ורפלקסיביות נובעות ישירות מההגדרה.

 $?X_1 \stackrel{a.s.}{=} X_2$ תרגיל 2.2 האם בדוגמה קודם מתקיים 12.2

. שלא. שלא. $\mathbb{P}(X_1=X_2)=rac{1}{6}$ מתקיים מתקיים מתרון מחישוב מתקיים $\mathbb{P}(X_1=X_2)=rac{1}{6}$ נבחין כי גם $\mathbb{P}(X_1\neq Z)\geq \mathbb{P}(X_1=2,Z=3)=\mathbb{P}(\{(2,1)\})=rac{1}{36}$ נבחין כי גם

באופן יותר כללי גם אם יש מאורעות שיש להם אותה ההסתברות, אין הכרח שיהיה קשר לשוויון שלהם כמעט תמיד.

 $\mathbb{P}_Y=\mathbb{P}_X$ אם למשתנים מקריים שווי התפלגות, דהינו מקריים מקריים מקריים מקריים מקריים מקריים מקריים אווי התפלגות, אם למשתנים מקריים X,Y שווי התפלגות, אם למשתנים מקריים $\mathbb{P}(X \in \mathcal{F}_\mathbb{R}, \mathbb{P}_X(S))=\mathbb{P}(Y^{-1}(S))$ אז נאמר שהם שווי התפלגות ונסמן $X \stackrel{d}{=} Y$ מאמר שהם שווי התפלגות ונסמן $X \stackrel{d}{=} Y$

 $X \stackrel{d}{=} Y$ אבל $X \stackrel{a.s.}{=} Y$ האם אובה $X \stackrel{a.s.}{=} X$ אבל $X \stackrel{d}{=} Y$ אבל $X \stackrel{a.s.}{\neq} X$ אובה $X \stackrel{a.s.}{=} X$ אז גם $X \stackrel{a.s.}{=} X$ אז גם $X \stackrel{d}{=} X$

 $. orall S \in \mathcal{F}_{\mathbb{R}}, \mathbb{P}(X \in S) = \mathbb{P}(Y \in S)$ שר שינרצה להוכיח אונרצה $X \stackrel{a.s.}{=} Y$ מתקיים לכל $S \in \mathcal{F}_{\mathbb{R}}$

$$0 \neq \mathbb{P}(X \neq Y) \geq \mathbb{P}(X \in S, Y \notin S) = 0$$

ובהתאם

$$\mathbb{P}(X \in S) = \mathbb{P}(X \in S, Y \in S) + \overbrace{\mathbb{P}(X \in S, Y \notin S)}^{=0} = \mathbb{P}(X \in S, Y \in S)$$

 $\mathbb{.P}(Y \in S) = \mathbb{P}(X \in S, Y \in S)$ כמו־כן גם

25.11.2024 - 9 שיעור 13

13.1 וקטורים מקריים

ניזכר בהגדרה 12.1:

הגדרה (משתנה מקרי בדיד) משתנה מקרי נקרא בדיד אם \mathbb{P}_X פונקציית הסתברות בדידה, כלומר

$$orall S\in\mathcal{F}_X, \mathbb{P}_X(S)=\sum_{s\in S}p_X(s)$$

$$.p_X(s)=\mathbb{P}(X=s)=\mathbb{P}(X^{-1}(s))=\mathbb{P}(\{\omega\in\Omega\mid X(\omega)=s\})$$
 כאשר

גם דיברנו על סוגים שונים של התפלגות, לדוגמה

$$\forall i \in [6], p_X(i) = \frac{1}{6} \iff X \sim U([6])$$

או באופו דומה

$$\forall k \in \{0, \dots, n\}, p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

שכן $X\stackrel{d}{=}Y$ אז א $X=1_{\{H\}},Y=1_{\{T\}}$ ור $\Omega=\{H,T\}$, אז מטבע, 13.1 דוגמה 13.1 נגדיר הטלת מטבע,

$$p_X(s) = p_Y(s) = \begin{cases} \frac{1}{2} & s = 0\\ \frac{1}{2} & s = 1\\ 0 & \text{else} \end{cases}$$

 $\overset{a.s.}{X}
eq Y$ ולכן $\mathbb{P}(X=Y)=0$ אבל גם

 $f(X)\stackrel{d}{=}f(Y)$ אז $f\in\mathcal{F}_{\mathbb{R} o\mathbb{R}}$ טענה 13.1 אם $X\stackrel{d}{=}Y$ זי $X\stackrel{d}{=}Y$ אז

 $. orall S \in \mathcal{F}_{\mathbb{R}}, \mathbb{P}_{Z}(S) = \mathbb{P}_{W}(S)$ שריך להוכיח W = f(Y), Z = f(X) הוכחה. נגדיר

$$\mathbb{P}_{Z}(S) = \mathbb{P}(Z \in S)$$

$$= \mathbb{P}(\{\omega \in \omega \mid Z(\omega) \in S\})$$

$$= \mathbb{P}(\{\omega \in \omega \mid f(X(\omega)) \in S\})$$

$$= \mathbb{P}(\{\omega \in \omega \mid X(\omega) \in f^{-1}(S)\})$$

$$= \mathbb{P}(X \in f^{-1}(S))$$

$$= \mathbb{P}_{X}(f^{-1}(S))$$

$$= \mathbb{P}_{Y}(f^{-1}(S))$$

$$= \mathbb{P}(\{\omega \in \omega \mid Y(\omega) \in f^{-1}(S)\})$$

$$= \mathbb{P}(\{\omega \in \omega \mid f(Y(\omega)) \in S\})$$

$$= \mathbb{P}(W \in S)$$

$$= \mathbb{P}_{W}(S)$$

 $X:\Omega o \mathbb{R}^n$, \mathbb{R}^n במקום ל-קום מקרי וקטור מקרי) וקטור מקרי וקטור (וקטור מקרי) אגדרה 13.2 הגדרה

 $\mathbb{P}_X(S) = \mathbb{P}(X \in S)$ ההגדרה זו, לדוגמה פרט זהות נשארות נשארות כלל

המוטיב שלנו הוא היכולת לבנות כמה משתנים מקריים ולעבוד איתם כיציר בודד, לדוגמה עבור $X=(X_1,X_2)$ משתנים מקריים.

הוא $X=(X_1,\dots,X_n)$ אם יחיד על Ω יחיד מקריים מקריים אוליות) אם הוליות שוליות שוליות משותפת התפלגות מקריים מקריים מקריים ונקראת ההתפלגות שלו נקראת ההתפלגות המשותפת של המוגדר על Ω וההתפלגות שלו נקראת ההתפלגות המשותפת של המוגדר על מקריים ווידי או מקריים המשותפת של המוגדר של מקריים ווידי או מקריים המשותפת של המוגדר של מקריים ווידי או מקריים ווידי מקריים ווידים ווידי מקריים ווידים ווידים

. ההתפלגויות של כל אחד מ X_1,\ldots,X_n נקראות ההתפלגויות השוליות.

השם מקריים אז X_1, X_2 אם X_1, X_2 אם הוקטור בודד מתוך משתנה משרנה של משתנה את להבין את מהגישה שבה נוכל להבין את ההסתברות של

$$\mathbb{P}_{X_1}(S) = \mathbb{P}_{(X_1, X_2)}(S \times \mathbb{R}) = \mathbb{P}(\{\omega \in \Omega \mid (X_1(\omega), X_2(\omega)) \in S\})$$

. הזהות. פונקציית אבו $X:\Omega o \mathbb{R}^2$ כאשר אבו $X:\Omega o \mathbb{R}^2$ אם אבו $X:\Omega o X=(X_1,X_2)$ אז איז אוות. אוות. פונקציית אבו $X:\Omega o X=[6]^2$ אם אבו 13.3 אם אבו אינים אינית הזהות.

את $E = \{(s,y) \in \mathbb{R}^2 \mid s \leq t\}$ את נבחן נבחן 13.4 דוגמה

$$\mathbb{P}_{(X,Y)}(E) = \mathbb{P}(X \le Y)$$

התברות הסתברות פונקציית משותפת (התפלגות של פונקציית הסתברות המקרי אם פונקציית הסתברות בדידה, אז נאמר שההתפלגות בדידה X_1,\dots,X_n של בדידה אז נאמר שההתפלגות המשותפת של החידה בדידה.

טענה 13.5 ההתפלגות של כל אחד מ X_1,\dots,X_n בדידה אם ורק אם הדתפלגות של כל אחד מ X_1,\dots,X_n בדידה.

הוכחה. נוכיח את הכיוון הראשון.

. כזו. $S\in\mathcal{F}_\mathbb{R}$ קבוצה בת־מניה, נבחר בת־מניה על־ידי אם ורק אם ורק אם זה זה זה בדידה, אך גניח נניח נניח צל-ידי אם ורק אם ורק אם אם ורק אם בדידה אוניח מידי מידי ביידי אוניח אונ

 $S\subseteq S_1 imes\mathbb{R}$ אבל $\mathbb{P}_{X_1}(S_1)=\mathbb{P}_{(X_1,X_2)}(S_1 imes\mathbb{R})$ לכן הראשונה, לכן אבל אבל את ההטלה את את ב־

לכן הוא הוא ולכן הוא בת־מניה, S_1 , ולכן קבוצה על־ידי קבוצה אולכן לכן X_1

נעבור לכיוון השני.

נניח ש $S_1,S_2\in\mathcal{F}_\mathbb{R}$ בנות־מניה, לכן בדידים, בדידים X_1,X_2

 $\mathbb{P}(X_1 \in S_1) = \mathbb{P}(X_2 \in S_2) = 1$ כך ש

 $\mathbb{P}((X_1, X_2) \in S_1 \times S_2) = \mathbb{P}(X_1 \in S_2, X_2 \in S_2) = 1$ לכן

בת־מניה. $S_1 imes S_2 imes$ נובע שלכן בנות־מניה בנות־מניה. S_1, S_2

כמובן לווקטורים בגודל n>2 ההוכחה דומה.

28.11.2024 - 5 תרגול 14

משתנים מקריים 14.1

בהרצאה זו נניח שכל המשתנים המקריים הם בדידים.

אז $\mathbb{P}(A)>0$ כך ש־ $A\subseteq\Omega$ ו ר־ $X:\Omega o\mathbb{R}^d$ אם בדידים מקריים משרתנים התניה 14.1 התניה במשתנים או

$$\forall S \subseteq \mathbb{R}^d, \mathbb{P}_{X \mid A}(S) = \mathbb{P}(X \in S \mid A) = \mathbb{P}_A(X \in S)$$

מתקיים $S,T\subset\mathbb{R}^d$ אם לכל אם בלתי־תלויים בלתי־תלויים אם בדידים אם מקריים בדידים אם אם בלתי־תלויים אם 14.2 (אי־תלות במשתנים מקריים בדידים)

$$\mathbb{P}(X \in S, Y \in T) = \mathbb{P}(X \in S) \cdot \mathbb{P}(Y \in T)$$

 $Z = X_1 + X_2$ יהיו ונגדיר בלתי־תלויים $X_1, X_2 Geo(p)$ יהיו יהיו 14.1 תרגיל

- Zו X_1 את ההתפלגות המשותפת של 1.
- $\{1,\ldots,n-1\}$ מתפלג אחיד על $X_1 \mid \{Z=1\}$. בראו ש

k-1 ושלא הצלחנו שלא שכן זוהי ההסתברות שלא $\mathbb{P}(W=k)=(1-p)^{k-1}p$ ו וי $Supp(W)=\mathbb{N}$ אז שכן זוהי ההסתברות שלא הצלחנו ויזכר שאם פעמים ובניסיון ה־k הצלחנו, עבור איזושהי פעולה.

$$Supp(X_1, Z) \subseteq \mathbb{N}^2$$

m < n אם הוקטור, אכן מיד תמיד כי אנו יודעים אבל הווקטור, אבל הווקטור, אבל ישירות מההגדרה ישירות אבל אנו

$$P_{(X_1,Z)}(m,n) = \mathbb{P}(X_1 = m, Z = n)$$

$$= \mathbb{P}(X_1 = m, X_2 = n - m)$$

$$= \mathbb{P}(X_1 = m) \cdot \mathbb{P}(X_2 = m - n)$$

$$= (1 - p)^{m-1} p (1 - p)^{n-m-1} p$$

$$= p^2 (1 - p)^{n-2}$$

ולכן נסיק

$$P_{(X_1,Z)}(n,n) = \begin{cases} 0 & m \ge n \\ p^2 (1-p)^{n-2} & m < n \end{cases}$$

. נבחן את $\{Z=n\}$ ונבין מה התומך.

$$Supp(X_1 \mid \{Z=1\}) = \{1, \dots, n-1\}$$

שכן ההתפלגות נעבור לחישוב ההתפלגות עם $Supp(X_1)=\mathbb{N}$ שכן ל־ X_1 יחד חסם ל־ל־מהווה סכום ולכן מייצג סכום ולכן מייצג אווה חסם ל

$$\mathbb{P}(X = m \mid Z = n) = \frac{\mathbb{P}(X = m, Z = n)}{\mathbb{P}(Z = n)} = \frac{p^2 (1 - p)^{n-2}}{\mathbb{P}(Z = n)}$$

אבל

$$\mathbb{P}(Z=n) = \mathbb{P}(X_1 + X_2 = n) = \sum_{i=1}^{n-1} \mathbb{P}(X_1 = i, X_2 = n - i) = \sum_{i=1}^{n-1} p^2 (1-p)^{n-2} = (n-1)p^2 (1-p)^{n-2}$$

זוהי קונבולוציה, לכן נוכל להסיק

$$\mathbb{P}(X_1 = m \mid Z = n) = \frac{p^2(1-p)^{n-2}}{(n-1)p^2(1-p)^{n-2}} = \frac{1}{n-1}$$

. השנייה ההטלה ההטלה ערצאת ו־Y תוצאת ההטלה השנייה בסמן ערכון בסמן בסמן ה

לכן
$$Y\mid\{X=1\}\sim Ber(p)$$
וגם ש־ $Y\mid\{X=0\}\sim Ber(rac{1}{2})$ לכן לכן אנו גם יודעים שמתקיים

$$\mathbb{P}(Y=1) = \mathbb{P}(Y=1 \mid X=0) \mathbb{P}(X=0) + \mathbb{P}(Y=1 \mid X=1) \mathbb{P}(X=1) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot p = \frac{1}{4} + \frac{p}{2}$$

תרגיל 14.3 יהיו $X\sim Ber(p)$ ו ב'תי־תלווים. $X\sim Ber(p)$ יהיו 14.3 תרגיל

 $X\cdot Y$ חשבו את ההתפלגות אל

פתרון נתחיל ונראה כי

$$Supp(XY) = \{0, 1\},\$$

וכן גם XY בהתפלגות ברנולי כלשהי, אך

$$\mathbb{P}(XY = 1) = \mathbb{P}(X = 1, Y = 1) = \mathbb{P}(X = 1)\mathbb{P}(Y = 1) = pq$$

 $.XY \sim Ber(pq)$ ולכן

28.11.2024 - 10 שיעור 15

15.1 התפלגות תחת התניה

בהינתן אז אפשר לדבר על התפלגות $\mathbb{P}(A)>0$ ש־ט מאורע היה מקרי יהי X משתנה מקרי בהינתן אז אפשר לדבר על התפלגות (התפלגות משתנה מקרי במקרה אז משתנה מקרי במקרה במקרה X במקרה משתנה X במקרה היה במקרה היה במקרה היה משתנה מקרי במקרה היה משתנה מקרי במקרה היה משתנה משתנה מקרי במקרה היה משתנה משתנה משתנה מקרי במקרה היה משתנה מקרי במקרה היה משתנה משת

$$\mathbb{P}_{X|A}(S)=\mathbb{P}_A(X\in S)=\mathbb{P}(\{X\in S\}\mid A)$$
 עענה 15.2 אם $\mathbb{P}(Y\in S)>0$ כך ש־ $S\in\mathcal{F}_\mathbb{R}$ ר כך אז $S\in\mathcal{F}_\mathbb{R}$ יז אז $S\in\mathcal{F}_\mathbb{R}$ י אז $S\in\mathcal{F}_\mathbb{R}$ ר אז $S\in\mathcal{F}_\mathbb{R}$ י אז $S\in\mathcal{F}_\mathbb{R}$ ר אז

אז $S=[3,\infty)$ ר בניח $X,Y\sim U([6])$ נניח נניח 15.1 דוגמה

$$X \mid X \in S \sim U(\{3,4,5,6\}), \qquad Y \mid Y \in S \sim U(\{3,4,5,6\})$$

הגדרה משתנים מקריים $X\in S,Y\in T$ המאורעות אם לכל אם בלתי־תלויים בלתי־תלויים אור בלתי־תלויים אם בלתי־תלויים אורעות משתנים מקריים אורעות הגדרה אורעות בלתי־תלויים אורעות הגדרה שמתקיים בלתי־תלויים אורעות שמתקיים

$$\mathbb{P}(X \in S, Y \in T) = \mathbb{P}(X \in S) \cdot \mathbb{P}(Y \in T)$$

טענה 15.4 אם X=s מתקיים שs=t וX=t בלתי־תלויים אם ורק אם לכל X=t מתקיים ש $S,t\in\mathbb{R}$ מתקיים אז X וX בלתי־תלויים. טענה זו שקולה לטענה שמתקיים

$$\mathbb{P}(X = s, Y = t) = \mathbb{P}(X = s) \cdot \mathbb{P}(Y = t)$$

מתקיים $S,T\in\mathcal{F}_\mathbb{R}$ לכל מתקיים ונראה כי הכיוון השני ונראה לכן ושימשו בהגדרה, ושימשו שימשו הוראה לכן מתקיים לכל הראשון הוא מתקיים מתקיים או מתקיים ושימשו בהגדרה.

$$\mathbb{P}(X \in S, Y \in T) = \mathbb{P}(X \in S)\mathbb{P}(Y \in T)$$

נבחין כי

$$\begin{split} \mathbb{P}(X \in S, Y \in T) &= \mathbb{P}(X \in S \cap Supp(X), Y \in T \cap Supp(Y)) \\ &= \sum_{\substack{s \in S \cap Supp(X) \\ t \in T \cap Supp(Y)}} \mathbb{P}(X = s, Y = t) \\ &= \sum_{\substack{s \in S \cap Supp(X) \\ t \in T \cap Supp(Y)}} \mathbb{P}(X = s) \mathbb{P}(Y = t) \\ &= \sum_{\substack{s \in S \cap Supp(X) \\ t \in T \cap Supp(Y)}} \left(\sum_{\substack{t \in T \cap Supp(Y)}} \mathbb{P}(X = s) \mathbb{P}(Y = t) \right) \\ &= \left(\sum_{\substack{s \in S \cap Supp(X) \\ s \in S \cap Supp(X)}} \mathbb{P}(X = s) \right) \left(\sum_{\substack{t \in T \cap Supp(Y)}} \mathbb{P}(Y = t) \right) \\ &= \mathbb{P}(X \in S) \mathbb{P}(Y \in T) \end{split}$$

מענה 15.5 התפלגות X ו־X+Y ו־X+Y בלתי־תלויים קובע ביחידות את ההתפלגות המשותפת.

 $p_{(X,Y)}(s,t)=p_X(s)p_Y(t)$ את קובע את בלתי־תלויים p_Y ו־ p_X

טענה X,Yיים. $Y \stackrel{d}{=} Z$ אז $X,Y \mid X = s \stackrel{d}{=} Z$ מתקיים $S \in Supp(X)$ בלתי־תלויים. בדידים ונניה מקריים בדידים ונניה שלכל

הוכחה. מנוסחת ההסתברות השלמה נובע

$$\begin{split} \mathbb{P}(Y = t) &= \sum_{s \in Supp(X)} \mathbb{P}(X = s) \mathbb{P}(Y = t \mid X = s) \\ &= \sum_{s \in Supp(X)} \mathbb{P}(X = s) \mathbb{P}(Z = t) \\ &= \mathbb{P}(Z = t) \end{split}$$

עבור החלק השני נבחין כי

$$\mathbb{P}(X=s,Y=t) = \mathbb{P}(X=s)\mathbb{P}(Y=t \mid X=s) = \mathbb{P}(X=s)\mathbb{P}(Z=t) = \mathbb{P}(X=s)\mathbb{P}(Y=t)$$

. מענה f(X),g(Y) אז $f,g\in\mathcal{F}_{\mathbb{R} o\mathbb{R}}$ בלתי־תלויים בלתי־תלויים מקריים מקריים בלתי-תלויים מקריים אם 15.7 אם

מתקיים $S,T\in\mathcal{F}_{\mathbb{R}}$ שלכל שלכה להראות צריך צריק הוכחה.

$$\mathbb{P}(f(X) \in S, g(Y) \in T) = \mathbb{P}(f(X) \in S)\mathbb{P}(g(Y) \in T)$$

אבל ראינו כבר כי

$$\mathbb{P}(f(X) \in S, g(Y) \in T) = \mathbb{P}(X \in f^{-1}(S), Y \in g^{-1}(T))$$

אבל גם

$$\mathbb{P}(X \in f^{-1}(S), Y \in g^{-1}(T)) = \mathbb{P}(f(X) \in S)\mathbb{P}(g(Y) \in T)$$

 $\mathbb{P}(X=1,Y=1)=rac{1}{2}
eq rac{1}{2}\cdot rac{1}{2}$ דוגמה שכן $X^2,rac{1}{Y}$ אז אז בלתי-תלויים אז $X^2,rac{1}{Y}$ אז בלתי-תלויים אז בלתי-תלויים אז דוגמה 15.2

בכיוון ההפוך אם g(Y) ו־f(X) ש בלתיים אם אם אם אם לא בלתי־תלויים בלתי־תלויים אבל או אוררים ש $X=Y\sim Ber(\frac{1}{2})$ אוררים בכיוון ההפוך אם בלתי־תלויים.

 $S_1,\dots,S_n\in\mathcal{F}_\mathbb{R}$ אם לכל אם בלתי־תלויים אז הם יקראו משתנים מקריים, אז הייו יהיו יהיו בלתי־תלויים בלתי־תלויים אז הם יקראו אז הם יקראו משתנים מקריים. $\{X_i\in S_i\}_{i\in[n]}$ אם בלתי־תלויים.

 $\mathbb{P}(X+Y=s,Z=t)=\mathbb{P}(X+Y=t)$ אנו צריכים להראות ש־X+Y=t אם בלתי־תלויים, האם גם בלתי־תלויים, האם גם בלתי־תלויים? אנו צריכים להראות שX+Y=t אם בלתי־תלויים, האם גם X+Y=t בלתי־תלויים. $S\in\{0,1,2\},t\in\{0,1\}$ אם בין בין בלתי־תלויים.

נבחר לדוגמה את $\mathbb{P}(X+Y=1,Z=1)=\mathbb{P}(X=0,Y=1,Z=1)+\mathbb{P}(X=1,Y=0,Z=1)=\frac{1}{8}+\frac{1}{8}$ ונוכל להמשיך כך ולראות שהטענה אכן מתקיימת.

. בלתי־תלויים הם $1_{A_1},\dots,1_{A_n}$ אם ורק אם בלתי־תלויים הם A_1,\dots,A_n המאורעות מאורעות תרגיל תרגיל

 $0.1 = i_0 < i_1 < \dots < i_k = n$ טענה שיש אינדקסים בלתי־תלויים מקריים מקריים משתנים X_1, \dots, X_n טענה טענה

$$X_0 = (X_{i_0}, \dots, X_{i-1}), \dots Y_k = (X_{i_{k-1}}, \dots, X_{i_k})$$
 נגדיר

3.12.2024 - 11 שיעור 16

אי־תלות משתנים מקריים 16.1

נמשיך עם מהלך ההרצאה הקודמת.

 $1=b_0<$ טענה X_1,\ldots,X_n יהיו ללא השפעה על ההוכחה) משתנים מקריים (יכולים להיות גם וקטורים מקריים ללא השפעה על ההוכחה) $X_1 = (X_{b_0+1}, \dots, X_{b_1}), \dots, Y_k = (X_{b_{k-1}+1}, \dots, X_{b_k})$ נגדיר $b_1 < \dots < b_k = n$

אז
$$Y_1, \ldots, Y_k$$
 בלתי־תלויים.

אז
$$Y_1,\ldots,Y_k$$
 בלתי־תלויים. Y_1,\ldots,Y_k אז Y_2 בלתי-תלויים. $X_1,\ldots,X_7 o (X_1,X_2,X_3), (X_4,X_5), (X_6,X_7)$ כדוגמה,

$$\mathbb{P}(\forall i\in k,Y_i=s_i)=\prod_{i=1}^k\mathbb{P}(Y_i=s_i)$$
נניח ש־ $S_i=(a_{i1},\ldots,a_{id_i})$ ולכן נסיק מחוסר התלות של א ולכן נסיק מחוסר התלות איז א ולכן נסיק מחוסר התלות של

$$\prod_{i=1}^{k} \mathbb{P}(Y_i = s_i) = \prod_{i=1}^{k} \mathbb{P}(\forall 1 \le j \le d_i, X_{b_{i-1}+j} = a_{ij}) = \prod_{i=1}^{k} \prod_{j=1}^{d_i} \mathbb{P}(X_{b_{i-1}+j} = a_{ij})$$

אבל

$$PP(\forall i \in k, Y_i = s_i) = \mathbb{P}(\forall j = X_j = c_j) = \prod_{j=1}^h \mathbb{P}(X_j = c_j) = \prod_{i=1}^k \prod_{j=1}^{d_i} \mathbb{P}(X_{b_{i-1}+j} = a_{ij})$$

עבור

$$c = (\overbrace{a_{11}, \dots, a_{1d_1}}^{s_1}, \dots, \overbrace{a_{k1}, \dots, a_{kd_1}}^{s_k})$$

ומצאנו כי השוויון אכן מתקיים ו Y_1, \ldots, Y_k בלתי־תלויים.

 $Y_i = (X_{b_{i-1}+1}, \dots, X_{b_i})$ בל ש־ $d_i = b_i - b_{i-1}$ ו־ $0 = b_0 < b_1 < \dots < b_k = n-1$ בלתי־תלויים בלתי־תלויים מסקנה בלתי־תלויים ו־ X_1, \dots, X_n בלתי־תלויים. $\{f_i(Y_i)\}_{i=1}^k$ אז $f_i:\mathbb{R}^{d_i} o\mathbb{R}$ באשר f_1,\ldots,f_k וים.

, כנביעה מהמסקנה, כנביעה אז גם $X_1+X_2,\ldots,X_3+X_4,\ldots,X_{n-1}+X_n$ אז גם אז גם בלתי־תלויים אז בלתי־תלויים אז גם בלתי־תלויים אז גם אז גם בלתי־תלויים אונים או

באופן דומה גם $X_1 + X_2 + X_3, \ldots$ באופן דומה באופן

כרעיון אנו יכולים לחלק משתנים מקריים לווקטורים בלתי־תלויים, ואז להפעיל פונקציה, שלא משנה את חוסר התלות, על כל הקבוצה.

דוגמה 16.2 נניח ש־ A_1,\ldots,A_5 מאורעות בלתי־תלויים, אז המאורעות A_1,\ldots,A_5 נניח ש־ A_1,\ldots,A_5 מאורעות בלתי־תלויים, אז המאורעות פאורעות בלתי־תלויים, אז המאורעות פאורעות בלתי־תלויים, אז המאורעות בלתי־תלויים, אונים בלתי־תלוים, אונים בלתי־תלויים, אונים בלתי־תלוים, אונים בלתי־תלוים, אונים בלתי־תלוים, אונים בלתי־תלוים, אונים בל עושים שימוש A_i ושימוש המקריים האופייניים של במסקנה שימוש במסקנה.

נבחין כי דרישת סופיות קבוצת המשתנים המקריים היא לא תנאי הכרחי

מתקיים אם לכל אם בלתי־תלויים מקריים משתנים משתנים בלתי־תלויים בלתי־תלויים מקריים מקריים מקריים משתנים מקריים בלתי־תלויים מקריים בלתי־תלויים מקריים בלתי־תלויים. X_1, \ldots, X_n

טענה 16.4 אם $S_n\in\mathcal{F}_\mathbb{R}$ לכל בלתי־תלויים בלתי־תלויים לכל אם 16.4 טענה

$$\mathbb{P}(\forall n \in \mathbb{N}, X_n \in S_n) = \prod_{n \in \mathbb{N}} \mathbb{P}(X_n \in S_n)$$

נשאל את עצמנו אם מצב זה בכלל אפשרי, נראה טענה ללא הוכחה שעונה על שאלה זו.

 $Ber(\frac{1}{2})$ סענה 16.5 מענה מקריים מקריים סדרת סדרת משתנים איימת

טענה 16.6 סדרה כזו בהכרח לא מוגדרת על מרחב בדיד.

בדיד. $(\Omega, \mathcal{F}, \mathbb{P})$ ־ ש־ כזו ונניח ש X_1, \ldots בדיד.

נניה ש־ $\Omega \in X_i(\omega_0)$ נסמן $\mathbb{P}(\{\omega_0\})>0$ רי $\omega_0\in\Omega$, אז $\omega_0\in\Omega$, אז

$$0 \underset{n \to 0}{\longleftarrow} \left(\frac{1}{2}\right)^n = \mathbb{P}(\forall i \le n, X_i = s_i) \ge \mathbb{P}(\forall i \in \mathbb{N}, X_i = s_i) \ge \mathbb{P}(\{\omega_0\}) > 0$$

וקיבלנו סתירה לקיום ω_0 כזה.

16.2 התפלגות גאומטרית

ניזכר בהגדרה 12.5, אשר מדברת על ניסוי שאנו עושים שוב ושוב עד שאנו מצליחים.

0 עבור <math>Ber(p) אם אמתפלגים מקריים מקריים מקריים מקריים משתנים X_1, X_2, \ldots אם 16.7 מענה

 $Y\sim Geo(p)$ אז $Y=\min\{k\mid X_k=1\}$ זנסמן

נבחין כי Y מייצג בחירת המופע הראשון של 1 בהתפלגות ברנולי, נזכיר כי היא מייצגת הגרלה יחידה, לדוגמה הטלת מטבע בודד. נעבור להוכחה.

לכן משתנים בלתי־תלויים, אבל דו $X_1=X_2=\cdots=X_{l-1}=0$ הוא המאורע אבל הוא המאורע הוא אבל דו אבל אבל הוא המאורע

$$\mathbb{P}(X_1 = \dots = X_{l-1} = 0, X_l = 1) = \mathbb{P}(X_1 = 0) \dots \mathbb{P}(X_{l-1}) \mathbb{P}(X_l = 1) = (1 - p)^{l-1} p$$

זוהי התפלגות גאומטרית.

הערה הסכום הוא

$$\sum_{l=1}^{\infty} (1-p)^{l-1} p = 1$$

ולכן המקרה שבו אין מינימום כפי שהגדרנו לא רלוונטי להגדרה, וניתן להתעלם ממנו.

מה יקרה אם נגדיר ככה $Y_1=Y_1$ וסדרת החיסורים העבורו קיבלנו 1 בפעם השנייה וכן הלאה, אז Y_2-Y_1 וסדרת החיסורים היא בלתי מה יקרה אם נגדיר אר אינטואיטיבית אך לא מובנת מאליו.

הגדרות ומשפטים

4	נדרה 1.1 (מרחב מדגם)
5	גדרה 1.2 (פונקציית הסתברות נקודתית)
5	\ldots גדרה 1.3 (תומך)
5	1.4 מדרה 1.4 (מאורע) מדרה בער מאורע) אורע
5	נדרה 1.5 (פונקציית הסתברות)
7	גדרה 2.1 (מרחב הסתברות)
9	גדרה 3.1 (סכום קבוצת בת־מניה)
9	נדרה 3.2 (פונקציית הסתברות מתאימה לנקודתית)
9	גדרה 3.4 (מרחב הסתברות בדיד)
9	שפט 3.6 (תכונות פונקציית הסתברות)
10	שפט 3.7 (תנאים שקולים לפונקציית הסתברות בדידה)
11	4.1 מרחב הסתברות אחיד) מדרה 4.1 מרחב הסתברות אחיד) מדרה וועדה בהחברות אחיד
11	גדרה 4.3 (מרחב מכפלת הסתברויות)
11	מאורע שוליים ומאורע מכפלה)
12	שפט 4.9 (חסם האיחוד)
12	4.10 שפט 4.10 (אי־שוויון בול) שפט
16	גדרה 6.1 (סדרת מאורעות עולה)
16	שפט 6.3 (משפט רציפות פונקציית ההסתברות)
16	$\dots\dots\dots\dots$ סדרת מאורעות יורדת) מדרה 6.4 (סדרת מאורעות יורדת) גדרה
17	שפט 6.8 (הכלה והפרדה לשלושה מאורעות)
17	m nשפט 6.9 (הכלה והפרדה ל־ $ m n$ מאורעות) מאורעות) פטיט הכלה והפרדה ל־
19	גדרה 7.1 (הסתברות מותנית)
23	גדרה 9.1 (מאורעות בלתי־תלויים)
23	נדרה 9.3 (אי־תלות בזוגות)
23	גדרה 9.4 (קבוצה בלתי־תלויה)
24	גדרה 9.6 (אי־תלות קבוצת מאורעות)
25	גדרה 10.1 (שקולה לאי־תלות)
25	גדרה 10.2 (קבוצה בת־מניה בלתי־תלויה)
25	10.4 (משתנה מקרי)
26	10.6 (משתנה מקרי מושרה ממאורע) מדרה 10.6 (משתנה מקרי מושרה מאורע)
26	גדרה 10.8 (מאורע מושרה ממשתנה מקרי)
26	גדרה 10.9 (פונקציית הסתברות מושרית ממשתנה מקרי)
29	גדרה 12.1 (משתנה מקרי בדיד)
29	גדרה 12.2 (התפלגות ברנולי)
29	12.3 נדרה 12.3 (משתנה מקרי קבוע) נדרה 12.3 השתנה מקרי קבוע).
29	12.4 משתנה מקרי אחיד)
29	גדרה 12.5 (התפלגות גאומטרית)
29	גדרה 12.6 (התפלגות בינומית)
30	גדרה 12.7 (התפלגות פואסונית)
30	גדרה 12.8 (הסתברות כמעט תמיד)
30	
31	נדרה 12.11 (משתנים מקריים שווי התפלגות)

32	•	 				 					•			 																(,-	זקו	רנ	קטו	۱)	13.	ה 2.	דר.	λi
33		 				 															(IJ	יליו	W	יות	גוי	ופק	והו	ית ו	תפ	משר	ת נ	לגו	ותפי	7)	13.	ה 3'	נדר	17,
33		 				 																			. (דה'	בדי	ית ו	תפ	משר	ת נ	לגו	ותפי	7)	13.	יה 1	נדר	17,
34		 				 								 									(ם	ידי	בד	ים	ורי	מק	ים	א תנ	מנ	הב	ותני	7)	14.	ה 1	נדר	λil
34		 				 																(ם	ידי	בד	ם	וריי	מק	ים	תנ	מש	ז ב	לוו.	זי-ת	₹)	14.	ה 2	נדר	λi
36		 				 								 							צ) .	אורי	מז	תן:	הינ	י ב	קר	ז מ	ונה	משר	ת נ	לגו	ותפי	7)	15.	ה 1	נדר	λil
36		 				 																			(2	יייב	זקר	ם מ	נביב	ושח	ז מ	לוו.	זי־ת	₹)	15.	ה 3	נדר	λil
37		 				 															. (ֹויה]	תל	-קר	בלו	ם	ריי	מק	ם	תני	מש	ות	ןברצ <u>,</u>	7)	15.	ה 8	נדר	17
38		 				 				 						ם)	ררר	זלו	י-ר	יח	ו בל	ייים	זקר	ם מ	בינ	שח	י מ	שכ	יה	מנ-	בת	יה ו	זבוצ	2)	16.	3 7	נדר	הג