MACHINE LEARNING

LAURA GARCÍA GONZÁLEZ Y LUCÍA MARTÍNEZ MIRAMONTES

ÍNDICE

- 1. INTRODUCCIÓN
- 2. PREPROCESAMIENTO
- 3. HIERARCHICAL CLUSTERING
- 4. PARTITIONAL CLUSTERING
- 5. DBSCAN
- 6. GAUSSIAN MIXTURE MODELS
- 7. CONCLUSIÓN

INTRODUCCIÓN

- Aplicación de técnicas de clustering sobre un conjunto de datos socioeconómicos para hallar agrupaciones naturales
- Preprocesamiento exhaustivo para igualar el peso de las variables
- Evaluación del efecto de los distintos parámetros

PREPROCESAMIENTO

Consistencia del formato:

- Datos estandarizados, sin inconsistencias de mayúsculas o espacios.
- Revisados los valores numéricos, sin valores fuera de rango.

Valores faltantes:

- Ninguna columna o fila tiene datos nulos → no se requirió imputación.

•Duplicados:

- Filas duplicadas eliminadas para evitar redundancia y optimizar el clustering.

Histogramas (variables numéricas) EducationNum Age 200 -50 60 70 80 CapitalGain HoursPerWeek 2500 -1000 -

OUTLIERS

CAPITAL GAIN

- •Distribución muy sesgada: muchos ceros y valores extremos.
- •Se aplicó transformación logarítmica:
 - •Reduce el efecto de los valores extremos.
 - •Maneja ceros de forma segura.
 - •Hace la variable más homogénea.
- •Aunque sigue siendo asimétrica, el rango se reduce, logrando una distribución más adecuada para el clustering.

VARIABLES REDUNDANTES Y ESCALADO

Correlación Education vs EducationNum:

- Codificación inicial sin orden \rightarrow correlación débil (0.383).
- Orden correcto aplicado → correlación muy alta (0.995).
- Conclusión: Education es redundante respecto a EducationNum.

• Escalado de variables numéricas:

- Se evaluó para evitar que variables con rangos mayores dominen el clustering.
- Métodos probados: StandardScaler y RobustScaler.

- •CapitalGain: Posible descomposición en dos componentes, variable con muchos ceros (86.5%) y valores extremoss:
 - •Binaria: indica si hay ganancias o no.
 - •Logarítmica: valores de ganancias para reducir asimetría
- •ldea descartada, correlación del 0.99 (coeficiente de Pearson)
- •Columnas categóricas: Gender, MaritalStatus, Relationship (Education eliminada por redundancia).

•Codificación:

- •Se descartó OrdinalEncoder (variables nominales, sin orden natural).
- •Gender: One-Hot Encoding, eliminando una columna por redundancia.
- •MaritalStatus y Relationship: One-Hot Encoding, cada categoría como columna binaria.

•Consideraciones:

- ·Aumenta dimensionalidad.
- •Permite aplicar clustering correctamente y obtener resultados comparables.

HIERARCHICAL CLUSTERING - EUCLIDEA

- •Se escogió el **dendrograma** Ward como el más adecuado.
- •Ward mostro un árbol más estable, saltos más largos, y fusión gradual, indicando agrupamientos naturales.
- •Conclusión: número de clusters óptimo entre 2 **y 4**.

Dendrograma (single linkage) 4.0 3.5 3.0 1.5 1.0 0.5 0.0 Muestras Dendrograma (average linkage)

HIERARCHICAL CLUSTERING -MANHATTAN

- •Euclídea → saltos claros en el dendrograma, permitiendo identificar clusters naturales.
- Manhattan → dendrograma poco informativo, sin agrupaciones intermedias claras.

HIERARCHICAL CLUSTERING -SILHOUTTE SCORE

- •Pico claro en K = 2, los datos tienen una separación natural en dos perfiles.
- •Estructura jerárquica débil, los coeficientes indican alto solapamiento de los clusters en general

valores numéricos

	Age	EducationNum	HoursPerWeek	CapitalGainLog
cluster				
0	49.25	9.98	42.59	0.00
1	48.17	11.42	43.34	8.91
2	37.67	10.79	37.94	0.00

valores categóricos

	MaritalStatus	Relationship	Gender
cluster			
0	Married-civ-spouse	Husband	Male
1	Married-civ-spouse	Husband	Male
2	Never-married	Not-in-family	Female

valores numéricos

Age		EducationNum	HoursPerWeek	CapitalGainLog
cluster				
0	43.04	10.41	40.09	0.00
1	48.17	11.42	43.34	8.91

valores categóricos

	MaritalStatus	Relationship	Gender
cluster			
0	Married-civ-spouse	Husband	Male
1	Married-civ-spouse	Husband	Male

HIERARCHICAL CLUSTERING — CLUSTERINGS FINALES

- Para K = 2 y K = 3: variable determinante es
 CapitalGainLog -> explica que haya una
 division en dos de los datos
- Variables cuantitativas a penas tienen peso (se mantienen constantes a lo largo de los distintos clusterings)

HIERARCHICAL CLUSTERING-CONCLUSIÓN

- •CapitalGain domina la formación de clusters, separando claramente a quienes tienen ganancias de los que no.
- •Edad, educación, horas trabajadas y género generan subgrupos que se fusionan al reducir k.
- •El clustering jerárquico no es arbitrario(se observaron más valores de k) pero las agrupaciones son mixtas y solapadas.
- •**k** = **4** podría capturar mejor subgrupos importantes, como mujeres jóvenes, no casadas y con alta educación.

PARTITIONAL CLUSTERING – REDUCCIÓN DE DIMENSIONALIDAD

- Reducción de dimensionalidad, reducir dominancia de las variables categóricas por cantidad excesiva de dummies y CapitalGain en el estudio de distancias
 - PCA valores numéricos escalados (n_components = 3)
 - MCA variables categóricas (n_components = 3)

Posibles correspondencias entre categóricas (Male-Husband, Female-Wife, "Husband-Married", etc.)

PARTITIONAL CLUSTERING - KMEANS

INERCIA (MÉTODO DE CODO)

COEFICIENTES SILHOUTTE

PARTITIONAL CLUSTERING — SILHOUTTE SCORES

- Valores positivos en casi su totalidad
- Bandas relativamente anchas y compactas
- El Segundo cluster recoge la mayoría de los datos
- Coeficientes bajos pero positivos, propios de datos Socioeconómicos
- Refuerzan la elección de k = 3

	MaritalStatus_top	MaritalStatus_pct	Relationship_top	Relationship_pct	Gender_top	Gender_pct
0	Married-civ-spouse	0.72	Husband	0.66	Male	0.79
1	Married-civ-spouse	0.38	Husband	0.3	Male	0.62
2	Married-civ-spouse	0.53	Husband	0.45	Male	0.62

	n_points	mean_age	mean_hours	mean_education	mean_gain
0	1051.0	50.46	46.86	12.27	7.41
1	4190.0	35.79	43.42	11.08	0.04
2	1814.0	58.17	30.20	8.33	0.29

PARTITIONAL CLUSTERING — RESULTS

DBSCAN

- Parámetros eps y min_samples
- Evaluación preliminar sobre un rango de valores para determinar min_samples fijo
- Entre 5 y 2*d (d = dimensionalidad de los datos)
- Se eligió min_samples = 7
 - Número de clusters razonable y estable

DBSCAN - REGLA DEL "CODO"

- Buscamos los valores en los que cambia el crecimiento lento a drástico
- Rango entre 0.6-1.2

DBSCAN - DISTINTOS EPS

- Se probaron distintos eps dentro del rango
- Visualización en 2D (se marcan los outliers detectados)
- Evaluación cuantitativa con coeficientes silhoutte
- Se escogió eps = 1.0 (mejor score y cantidad de

clusters adecuada)

	eps	clusters	noise_ratio	silhouette
0	0.6	25	14.755493	-0.216297
1	0.7	8	9.142452	-0.187598
2	0.8	6	4.833451	-0.039418
3	0.9	2	2.381290	0.192445
4	1.0	2	1.133948	0.245393
5	1.1	1	0.680369	NaN
6	1.2	1	0.326010	NaN

DBSCAN - CLUSTERING FINAL

- DBSCAN no consiguió identificar agrupamientos significativos e interpretables
- Un cluster de solo 6 individuos caracterizado por mujeres de mayor edad viudas
- No representa grupos naturales
- DBSCAN busca zonas de alta densidad claramente separadas, nuestros datos contienen mucho solapamiento y forman una gran nube

	MaritalStatus_top	MaritalStatus_pct	$Relationship_top$	Relationship_pct	Gender_top	Gender_pct
-1	Never-married	0.32	Not-in-family	0.44	Female	0.55
0	Married-civ-spouse	0.48	Husband	0.4	Male	0.65
1	Widowed	0.83	Not-in-family	0.83	Female	1.0

	n_points	mean_age	mean_hours	mean_education	mean_gain
-1	80.0	57.71	52.05	8.62	3.92
0	6969.0	43.55	40.42	10.57	1.17
1	6.0	68.50	17.83	9.17	8.12

GAUSSIAN MIXTURE MODELS

BIC y AIC disminuyen con k, lo que muestra que modelos con más componentes ajustan mejor, pero añaden complejidad.

```
k Silhouette BIC AIC
0 2 0.105205 -78508.459686 -79119.132462
1 3 0.083920 -102914.143979 -103833.583889
2 4 0.023485 -134431.041758 -135659.248802
3 5 0.040601 -154533.203453 -156070.177631
4 6 0.018695 -164022.203756 -165867.945068
5 7 0.016301 -180284.005757 -182438.514203
6 8 -0.004548 -192741.145031 -195204.420610
```

MaritalStatus_topMaritalStatus_pctRelationship_topRelationship_pctGender_topGender_pct0Never-married0.61Not-in-family0.51Male0.51Married-civ-spouse0.43Wife0.39Female0.792Married-civ-spouse1.0Husband1.0Male1.0

	n_points	mean_age	mean_hours	mean_education	mean_gain
0	2979.0	36.82	39.31	10.56	0.68
1	1310.0	48.27	35.36	10.14	0.93
2	2766.0	49.02	44.30	10.73	1.90

GMM – CLUSTERING FINAL

- Cluster 0: personas jóvenes, jornada moderada, menor ganancia de capital, solteros.
- Cluster 1: personas mayores, casadas, mujeres con rol de esposa.
- Cluster 2: personas mayores, casadas, hombres con rol de esposo

CONCLUSIONES

- •Escalado de variables esencial para evitar que rangos grandes (p.ej., *CapitalGain*) dominen la distancia.
- •PCA y MCA equilibran variables numéricas y categóricas, aunque pueden perder diferencias finas; posible mejora: discretizar variables continuas en rangos comparables.
- •Explorar distancias o métricas alternativas (Mahalanobis o métricas mixtas) podría mejorar la identificación de clusters y reducir outliers.
- DBSCAN: tamaños limitados.
- •GMM y KMeans: divisiones consistentes según edad, género, estado civil y ganancias.
- •En conjunto, el dataset presenta **3 clusters naturales**, y combinar métodos facilita detectar outliers y entender la estructura poblacional.

THANK YOU FOR YOUR ATTENTION