Solving Recurrence Relations, Median Selection

(Class 9)

From Book's Chapter 4

- We solved the recurrence relation in previous class using values and then guessing the overall pattern.
- We will also study other methods to solve the recurrence relations.
- Let's consider the ratios $\frac{T(n)}{n}$ for powers of 2.

•
$$T(1)/1 = 1$$

•
$$T(2)/2 = 2$$

•
$$T(4)/4 = 3$$

•
$$T(8)/8 = 4$$

•
$$T(16)/16 = 5$$

•
$$T(32)/32 = 6$$

The pattern suggests that:

$$\frac{T(n)}{n} = \log_2 n + 1$$

$$T(n) = n (\log_2 n + 1)$$

$$T(n) = n \log_2 n + n$$

Eliminating Floor and Ceiling

- Floor and ceilings are difficult to deal with.
- If n is assumed to be a power of 2, $(2^k = n)$, this will simplify the recurrence to:

$$T(n) = \begin{cases} 1, & if \ n = 1 \\ T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n, & if \ n > 1 \end{cases}$$

$$T(n) = \begin{cases} 1, & if \ n = 1 \\ 2T\left(\frac{n}{2}\right) + n, & if \ n > 1 \end{cases}$$

• Here the floor and ceiling operators are eliminated.

Solving the Recurrence

- Why we want to solve this recurrence relation.
- Because we want a closed form expression of T(n).
- And simplify the whole expression for better comparison and future uses.

The Iteration Method

- We used the iteration method in previous class where we use summations to solve the running times.
- Let's expand the recurrence:

$$T(n) = 2T(\frac{n}{2}) + n$$

$$= 2\left(2T(\frac{n}{4}) + \frac{n}{2}\right) + n$$

$$= 4T(\frac{n}{4}) + n + n$$

Again expand:

$$= 4\left(2T\left(\frac{n}{8}\right) + \frac{n}{4}\right) + n + n$$
$$= 8T\left(\frac{n}{8}\right) + n + n + n$$

Again expand:

$$= 8\left(2T\left(\frac{n}{16}\right) + \frac{n}{8}\right) + n + n + n$$
$$= 16T\left(\frac{n}{16}\right) + n + n + n + n$$

• If n is a power of 2 then let $n = 2^k$ or $k = \log n$.

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + (n+n+n+\dots+n)$$

$$= 2^k T\left(\frac{n}{2^k}\right) + kn$$

$$= 2^{(\log n)} T\left(\frac{n}{2^{(\log n)}}\right) + (\log n)n$$

$$= nT(1) + n\log n$$

$$= n + n\log n$$

 This was the iteration method where we expand the recurrence relations.

Merge Sort Recurrence Tree (Book's Page No 95 (Chapter 4)

- We can also solve the recursion relation using "recursion tree method".
- At the end of this tree, nodes will contain single items.
- Levels are from level 0 to level $\log n + 1$.

A Complex Example

- The iteration method we used earlier will be used in other examples too.
- For example, we take another example.

$$T(n) = \begin{cases} 1, & if \ n = 1 \\ 3T\left(\frac{n}{4}\right) + n, & if \ n > 1 \end{cases}$$

- We can say this algorithm divide the data into 3 parts.
- And the $T\left(\frac{n}{4}\right)$ term can be the time of one part.
- \bullet Then n means the algorithm will combine these parts.

- Assume n to be a power of 4,i.e., $n = 4^k$ and $k = log_4 n$.
- Why we take power of 4?
- So that we can solve the $\frac{n}{4}$ term.

• Let's expand the recurrence:

$$T(n) = 3T(\frac{n}{4}) + n$$

$$= 3\left(3T(\frac{n}{16}) + \frac{n}{4}\right) + n$$

$$= 9T(\frac{n}{16}) + 3(\frac{n}{4}) + n$$

$$= 27T(\frac{n}{64}) + 9(\frac{n}{16}) + 3(\frac{n}{4}) + n$$

• And so on.

$$T(n) = 3^k T\left(\frac{n}{4^k}\right) + 3^{k-1} \left(\frac{n}{4^{k-1}}\right) + \dots + 9\left(\frac{n}{16}\right) + 3\left(\frac{n}{4}\right) + n$$
$$= 3^k T\left(\frac{n}{4^k}\right) + \sum_{i=0}^{k-1} \frac{3^i}{4^i} n$$

• With $n = 4^k$ and T(1) = 1

$$T(n) = 3^{k}T\left(\frac{n}{4^{k}}\right) + \sum_{i=0}^{k-1} \frac{3^{i}}{4^{i}}n$$

$$= 3^{\log_{4} n}T\left(\frac{n}{4^{\log_{4} n}}\right) + \sum_{i=0}^{(\log_{4} n)-1} \frac{3^{i}}{4^{i}}n$$

$$= 3^{\log_{4} n}T(1) + \sum_{i=0}^{(\log_{4} n)-1} \frac{3^{i}}{4^{i}}n$$

$$= n^{\log_{4} 3} + \sum_{i=0}^{(\log_{4} n)-1} \frac{3^{i}}{4^{i}}n$$

• We used the formula: $a^{\log_b n} = n^{\log_b a}$.

• n remains constant throughout the sum and $\frac{3^{i}}{4^{i}} = (\frac{3}{4})^{i}$; we thus have:

$$T(n) = n^{\log_4 3} + n \sum_{i=0}^{(\log_4 n) - 1} (\frac{3}{4})^i$$

• The sum is a geometric series; recall that for $x \neq 1$.

$$\sum_{i=0}^{m} x_i = \frac{x^{m+1} - 1}{x - 1}$$

- The iteration method will result in some sort of series e.g., geometric series.
- So, we can solve it with summations.

• In this ease $x = \frac{3}{4}$ and $m = \log_4 n - 1$.

• We get:

$$T(n) = n^{\log_4 3} + n \frac{\frac{3^{\log_4 n - 1 + 1}}{4} - 1}{\frac{3}{4} - 1}$$

Applying the log identity once more

$$(\frac{3}{4})^{\log_4 n} = n^{\log_4(\frac{3}{4})}$$

$$= n^{\log_4(3 - \log_4 4)}$$

$$= n^{\log_4(3 - 1)}$$

$$= \frac{n^{\log_4 3}}{n}$$

After putting this term in original equation:

$$T(n) = n^{\log_4 3} + n \frac{\frac{n^{\log_4 3}}{n} - 1}{\frac{3}{4} - 1}$$

$$= n^{\log_4 3} + \frac{n^{\log_4 3} - n}{-\frac{1}{4}}$$

$$= n^{\log_4 3} + 4(n - n^{\log_4 3})$$

$$= 4n - 3n^{\log_4 3}$$

• With $\log_4 3 \approx 0.79$, we finally have the result!

$$T(n) = 4n - 3n^{\log_4 3}$$

$$\approx 4n - 3n^{0.79}$$

So, we can say that:

$$T(n) \in O(n)$$

Selection Problem

- Now we see another example in divide and conquer strategy.
- From a given set of numbers, we have to find the rank of a particular number.
- Let the input set is:

 Rank of a number means how much other numbers are smaller than particular number.

- For example, what is the rank of 10?
- The first solution comes in our mind is to compare 10 with all other numbers.
- And then count the number of elements smaller than 10.

 $Rank = Number\ of\ elements\ smaller\ than\ 10\ +\ 1$

- So, Rank of 10 is 5.
- Similarly, the rank of 8 is 4.

- What if we have to find the rank of all the n numbers?
- It means our algorithm will have 2 loops.
- Hence, we will get the running time as $O(n^2)$.
- One main loop and other nested loop, where we take an element and compare it to all other elements of the input set.

Another approach is to sort these numbers.

Position	1	2	3	4	5	6	7	8	9
Numbers	2	5	7	8	10	15	21	37	41

- We can sort these numbers using merge sort in $O(n \log n)$.
- After sorting we store the sorted numbers in an array and also create a position array.
- We can also use a hash table, having key as the number and its value as its rank.
- The lookup can take O(n) running time.

Median

- The selection problem has another useful purpose, to calculate median.
- In Mathematics, the median is defined as the middle value of a sorted list of numbers.
- Of particular interest in statistics is the median.

- In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution.
- For a data set, it may be thought of as "the middle" value.

- If n is odd, then the median is defined to be element of rank (n+1)/2.
- When n is even, there are two choices: n/2 and (n+1)/2.
- In statistics, it is common to return the average of these two elements.

$$Median = \frac{\frac{n}{2} + \frac{n+1}{2}}{2}$$

Median vs Average

- Medians are useful as a measure of the central tendency of a set especially when the distribution of values is highly skewed.
- For example, the median income in a community is a more meaningful measure than average.
- Suppose 7 households have monthly incomes 15000, 17000, 20000, 100000, 80000, 150000 and 160000.

- In sorted order, the incomes are 15000, 17000, 20000, 80000, 100000, 150000, 160000.
- The median income is 80000; median is element with rank 4:

$$\frac{(7+1)}{2} = 4$$

The average income is 77428.

- Suppose the income 160000 goes up to 450000.
- The median is still 8000 but the average goes up to 118857.
- Clearly, the average is not a good representative of the majority income levels.
- In the next class, we will discuss more efficient divide and conquer algorithm to solve the selection problem.