A modular approach to the K(2)-local sphere at the prime 3

Don Larson

University of Rochester

U of R Topology Seminar - April 6, 2012

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Q(2)

The homotopy of Q(2)

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

Some applications and directions

The homotopy of Q(2)

Some applications and directions

Background

Construction of Q(2)

$$\pi_k S^0 = \pi_{k+n} S^n \otimes \mathbb{Z}_{(p)} \quad \text{(for } n \gg k \geqslant 0\text{)}$$

Remark

One strategy is to find other spectra whose homotopy groups approximate π_*S^0 .

Examples

- 1. The spectrum *TMF* of topological modular forms helps account for $\pi_k S^0$ for $0 \le k \le 60$.
- 2. There exist spectra $\{L_{K(n)}S^0\}_{n=0,1,2,...}$ that play an analogous role.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

Bousfield localization

Theorem

Given a homology theory E, there exists a functor

$$L_E: \mathbf{S} \to \mathbf{S}$$

where $L_E X$ is "the part of X that E can see."

Remark

If $X \to Y$ induces $E_*X \cong E_*Y$, then $L_EX \simeq L_EY$.

Examples

- 1. If E = M is the mod p Moore spectrum, $L_E X = X_p^{\wedge}$.
- 2. If $E = H\mathbb{Q}$, $L_E X = X\mathbb{Q}$.
- 3. If E = K is complex K-theory, $\pi_{-2}L_ES^0 = \mathbb{Q}/\mathbb{Z}$.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of $\mathcal{Q}(2)$

Homology theories

Theorem (Landweber exactness)

Given a module M over $BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$, the functor $BP_*(-) \otimes M$ is a homology theory iff for each n > 0, multiplication by v_n in $BP_*/I_n \otimes M$ is monic, where $I_n = (p, v_1, v_2, \ldots, v_{n-1})$.

We will need the following three theories:

- 1. Johnson-Wilson: $E(n)_* = \mathbb{Z}_{(p)}[v_1, \dots, v_{n-1}, v_n^{\pm 1}]$
- 2. Lubin-Tate: $E_{n*} = W(\mathbb{F}_{p^n})[[u_1, \dots, u_{n-1}]][u^{\pm 1}]$
- 3. Morava K-theories: $K(n)_* = \mathbb{Z}/(p)[v_n, v_n^{-1}]$

Remark

The Morava K-theories K(n) are not Landweber exact.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of $\mathsf{Q}(2)$

The homotopy of $\mathsf{Q}(2)$

Chromatic homotopy theory

Theorem (Chromatic convergence)

Let
$$L_n = L_{E(n)}$$
. Then

$$S^0 \simeq \mathsf{holim}(L_0 S^0 \leftarrow L_1 S^0 \leftarrow L_2 S^0 \leftarrow \cdots)$$

There is a homotopy pullback square

$$L_{n}S^{0} \longrightarrow L_{K(n)}S^{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{n-1}S^{0} \longrightarrow L_{n-1}L_{K(n)}S^{0}$$

The building blocks of π_*S^0 are the spectra $L_{K(n)}S^0$, the K(n)-local spheres.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

▶ **2005:** Goerss, Henn, Mahowald and Rezk showed that $L_{K(2)}S^0$ at p=3 lies atop a 4-stage tower of fibrations analogous to

$$L_{K(1)}S^0 \rightarrow KO_2^{\wedge} \rightarrow KO_2^{\wedge}$$

at the prime 2.

▶ **2006:** Behrens (following Mahowald and Rezk) built a spectrum Q(2) and proved

$$DQ(2) \rightarrow L_{K(2)}S^0 \rightarrow Q(2)$$

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of $\mathcal{Q}(2)$

$$C_{/\mathbb{F}_9}: y^2 = x^3 - x$$

possesses a degree 2 isogeny $\psi: C \to C$ with kernel H < C and inducing $\psi^{\wedge}: C^{\wedge} \cong C^{\wedge}$. We say C has a $\Gamma_0(2)$ structure.

Theorem (Goerss-Hopkins-Miller)

There is a functor FGL \to Spectra sending C^{\wedge} to E_2 . Since ψ^{\wedge} is invariant under the action of $\operatorname{Aut}_{/\mathbb{F}_3}(C,H)\cong D_8$, it induces a map of spectra

where

$$\psi_d: E_2^{hD_8} \to E_2^{hD_8}$$
 $E_2^{hD_8} \simeq TMF_0(2)$

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

A semi-cosimplicial spectrum

We have $\operatorname{Aut}_{/\mathbb{F}_3}(\mathit{C})\cong \mathit{G}_{24}$, and

$$E_2^{hG_{24}} \simeq TMF$$

Proposition (Behrens)

There is a semi-cosimplicial diagram of spectra

$$Q(2)^{\bullet}: TMF \longrightarrow TMF \lor TMF_0(2) \xrightarrow{\psi_d} TMF_0(2)$$

Definition

$$Q(2) := \operatorname{holim} Q(2)^{\bullet}$$

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

$$\mathcal{M}_{\bullet}: \mathcal{M} \stackrel{\longleftarrow}{\longleftarrow} \mathcal{M} \coprod \mathcal{M}_{0}(2) \stackrel{\psi_{d}}{\longleftarrow} \mathcal{M}_{0}(2)$$

where \mathcal{M} is the moduli stack of non-singular elliptic curves over $\mathbb{Z}_{(3)}$:

and $\mathcal{M}_0(2)$ is the analogous stack of elliptic curves with a $\Gamma_0(2)$ structure.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of ${\sf Q}(2)$

Construction of Q(2)

The homotopy of Q(2)

Some applications and directions

- 1. The Bousfield-Kan spectral sequence for totalizations of cosimplicial spectra.
- 2. The chromatic spectral sequence

$$E_1^{s,t} = \pi_t(M_sQ(2)) \Rightarrow \pi_{t-s}Q(2)$$

where
$$M_sQ(2) \rightarrow L_sQ(2) \rightarrow L_{s-1}Q(2)$$
.

3. Compute the Adams-Novikov E_2 -term for Q(2) and add in the differentials using those from the ANSS for TMF.

$$(B,\Gamma) = (\mathbb{Z}_{(3)}[q_2, q_4, \Delta^{-1}], B[r]/(r^3 + q_2r^2 + q_4r))$$

represents the groupoid of elliptic curves of the form $y^2 = 4x(x^2 + q_2x + q_4)$.

Theorem

The ANSS E_2 -term for TMF is

$$\mathsf{Ext}^* := \mathsf{Ext}^*_\Gamma(B,B) = H^*(B \to \Gamma \to \Gamma^{\otimes 2} \to \Gamma^{\otimes 3} \to \cdots)$$

The ANSS for $TMF_0(2)$ is concentrated on the zero line, and gives

$$\pi_{2k}TMF_0(2) = B_k$$

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

onstruction on (2)

The homotopy of Q(2)

Recall that

$$\textit{Q}(2) = \mathsf{holim}(\textit{TMF} \,\rightarrow\, \textit{TMF} \,\vee\, \textit{TMF}_0(2) \,\rightarrow\, \textit{TMF}_0(2))$$

Proposition

The ANSS E_2 -term for Q(2) is the cohomology of the totalization of the double cochain complex $C^{*,*}$ given by

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of ${\sf Q}(2)$

The homotopy of Q(2)

where $1728\Delta = c_4^3 - c_6^2$.

Remark

After taking cohomology with respect to the vertical arrows, $C^{*,*}$ becomes

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

The ANSS for Q(2)

In the cochain complex

$$C^{0,*}:MF \xrightarrow{\Phi} B \oplus MF \xrightarrow{\Psi} B$$

the maps Φ and Ψ are sums of $\mathbb{Z}_{(3)}$ -module maps corresponding to the maps of spectra in $Q(2)^{\bullet}$.

Example

The map $\psi_d: TMF_0(2) \to TMF_0(2)$ corresponds to $\psi_d^*: B \to B$ defined by

$$q_2 \mapsto -2q_2, \quad q_4 \mapsto -4q_4 + q_2^2$$

and $\Psi = (\psi_d^* + 1) \oplus g$ for $g : MF \to B$.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

$$\psi_d: \mathcal{M}_0(2) \to \mathcal{M}_0(2)$$

and on the level of R-points,

$$(C, H) \mapsto (C/H, \widehat{H})$$

where \hat{H} is the kernel of the dual isogeny $\hat{\psi}: C/H \to C$.

Remark

The formula for $\psi_d^*: B \to B$ comes from studying the effect of above map on Weierstrass equations.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of Q(2)

Remarks

The only other possibly nontrivial differential is

$$d_2: \operatorname{Ext}^1 \to \operatorname{coker} \Psi$$

The next step is to use the ANSS differentials for TMF to complete the calculation of $\pi_*Q(2)$.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Q(2)

The homotopy of Q(2)

Background

Q(2)

Q(2)

Some applications and directions

For any prime p, there exist spectra Q(N) built from degree N isogenies of elliptic curves, as long as N is a topological generator of \mathbb{Z}_p^{\times} .

Theorem (Behrens 2009)

Let $p \ge 5$. There is a 1-1 correspondence that associates to each additive generator

$$\beta_{i/j,k} \in \operatorname{Ext}^{2,*}_{BP_*BP}(BP_*, BP_*)$$

a modular form $f_{i/j,k} \in MF_{2i(p^2-1)}$ satisfying certain congruence conditions.

Conjecture

The above theorem holds at p = 3.

Greek letter elements

Theorem (Behrens 2009)

Let $p \geqslant 5$. The spectrum Q(N) is E(2)-local, and the images of the homotopy elements $\alpha_{i,j}$ and $\beta_{i/j,k}$ under the homomorphism

$$\pi_* L_2 S^0 \to \pi_* Q(N)$$

are non-trivial.

Conjecture

The homotopy Greek letter elements $\beta_{i/j,k}^h$ are detected by the spectra Q(N) at the primes 2 and 3.

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Q(2)

Q(2)

The K(2)-local sphere

Theorem (Behrens 2006)

At p = 3, there is a cofiber sequence

$$D_{K(2)}Q(2) \to L_{K(2)}S^0 \to Q(2)$$

and the same is true at p = 5.

Open questions

- 1. Does this theorem for all *p* and *N*? If so, is there a uniform proof?
- 2. Describe the connecting map

$$Q(N) \rightarrow \Sigma D_{K(2)} Q(N)$$

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Construction of Q(2)

The homotopy of $\mathcal{O}(2)$

The End

Thank you!

A modular approach to the K(2)-local sphere at the prime 3

Don Larson

Outline

Background

Q(2)

The homotopy of Q(2)