TREES!

ABOUT

Trees are a handy structure in Data Structures, and are also a part of Graph Theory.

TOPICS

1. Intro to Trees

2. Propositions & Theorems

3. Spanning Tree Algorithms

INTRO TO TREES

1. Intro to Trees

Connected Graph: A graph where there exists a walk between any two arbitrarily chosen nodes.

Simple Graph: A graph with no loops and no parallel edges.

Tree: A connected, simple graph with no cycles.

Notes

1. Intro to Trees

Connected Graph: A graph where there exists a walk between any two arbitrarily chosen nodes.

Simple Graph: A graph with no loops and no parallel edges.

Spanning Tree: Given some simple, connected graph G, a subgraph T is a spanning tree of G if T is a tree and every node in G is a node in T.

Notes

PROPOSITIONS & THEOREMS

Proposition 3: If you have a connected graph with a cycle in it, and you remove an edge from the cycle, then the graph is still connected.

Notes

Proposition 4: For a connected graph with at least one edge, if there are no cycles in the graph, then the graph has at least one vertex with degree 1.

Notes

Proposition 5: For any tree with at least one edge, the tree has at least two leaves.

Notes

Proposition 6: If a simple graph has a walk from vertex a to vertex b, then there is also a path from vertex a to vertex b.

Notes

Simple Graph: A graph with <u>no loops</u> and <u>no parallel edges</u>.

Walk: A series of alternating vertices/edges.

Trail: A walk with no repeated edges.

Theorem 7:

A tree with n edges has n + 1 vertices.

Notes

Simple Graph: A graph with <u>no loops</u> and <u>no parallel edges</u>.

Walk: A series of alternating vertices/edges.

Trail: A walk with no repeated edges.

Theorem 2:

A connected graph is Eulerian if (and only if) every node has an even degree.

Notes

Simple Graph: A graph with <u>no loops</u> and <u>no parallel edges</u>.

Walk: A series of alternating vertices/edges.

Trail: A walk with no repeated edges.

SPANNING TREE ALGORITHMS

(Basic) Spanning Tree Algorithm:

Input: A simple, connected graph G_0 .

Algorithm:

For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1} ... Choose an edge e in any cycle of G_{i-1} , and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1} .

Output: The final result G_k will be a spanning tree of G_n .

Notes

Simple Graph: A graph with <u>no loops</u> and <u>no parallel edges</u>.

Walk: A series of alternating vertices/edges.

Trail: A walk with no repeated edges.

First, we begin with some simple, connected graph.

- Input: A simple, connected graph G₀.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

First, we begin with some simple, connected graph.

Cycles, exist, so we will start the for loop.

Choose any arbitrary cycle in the graph.

- Input: A simple, connected graph G_0 .
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i.1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

First, we begin with some simple, connected graph.

Choose any edge from this cycle and remove it.

This takes us from the initial state, $G_{0,}$ to the next state, G_1 .

- Input: A simple, connected graph G_0 .
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i.1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i.1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_0 .
- For each $i \ge 1$, as long as there is a <u>cycle</u> in G_{i-1} ...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_0 .
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_0 .
- For each $i \ge 1$, as long as there is a <u>cycle</u> in G_{i-1} ...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i.1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_0 .
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i.1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1} ...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_0 .
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G_o.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1} ...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

We still have cycles, so we continue.

Identify a cycle...

Remove an edge...

- Input: A simple, connected graph G₀.
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i-1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

Now we have no more cycles, and we are done.

This is one of many possible spanning trees of the original graph, G_0 .

- Input: A simple, connected graph G_0 .
- For each i >= 1, as long as there is a <u>cycle</u> in G_{i.1}...
 - Choose an edge e in any cycle of G_{i-1}, and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1}.
- Output: The final result G_k
 will be a spanning tree of G₀.

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each k from $\{1, 2, ..., n\}$:

- Let $E_k = \{e \text{ an edge in } G : e \text{ has one endpoint in } T_{k-1} \text{ and the other endpoint not in } T_{k-1} \}$.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1} .

Output: The final result T_a is the tree returned by the algorithm.

Notes

Simple Graph: A graph with <u>no loops</u> and <u>no parallel edges</u>.

Walk: A series of alternating vertices/edges.

Trail: A walk with no repeated edges.

First, we begin with some simple, connected weighted graph.

We are going to build out a tree using the algorithm, and taking one edge at a time.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each k from $\{1, 2, ..., n\}$:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1} .

Output: The final result T_n is the tree returned by the algorithm.

We can start with any node, so I will start with node A. So $T_0 = \{v_A\}$ to start with.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let $E_k = \{e \text{ an edge in } G : e \text{ has one endpoint in } T_{k-1} \text{ and the other endpoint not in } T_{k-1} \}$.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1} .

Output: The final result T_n is the tree returned by the algorithm.

Next, we build E_1 , the list of edges in the graph that are connected to any nodes we currently have in the tree. For now, this means just the neighbors of A.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k,1}) to T_{k,1}.

Output: The final result T_n is the tree returned by the algorithm.

The connected edges have weights 2 and 1, so we choose the smallest one and put that edge – and its endpoint B – into our tree.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k,1}) to T_{k,1}.

The connected edges have weights 2 and 1, so we choose the smallest one and put that edge – and its endpoint B – into our tree.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1}.

Next, we look at all edges connected to A and B in the original graph, and identify which has the smallest weight.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k,1}) to T_{k,1}.

The next smallest edge is the connection from B to F, so we add that edge and F to the tree.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1} .

The next smallest edge is the connection from B to F, so we add that edge and F to the tree.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k,1}) to T_{k,1}.

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

We can choose either of the 3 edges, since they have the same weight.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1} .

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

We don't check any edges that are connecting nodes already in the tree.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_o = \{v_o\}$ be a tree with one node and no edges.

For each *k* from {1, 2, ..., n}:

- Let E_k = {e an edge in G: e has one endpoint in T_{k-1} and the other endpoint not in T_{k-1}}.
- Let e_k be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k,1}) to T_{k,1}.

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

And we continue...

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

And now we have covered all the nodes in the graph.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

The result is a minimal spanning tree.

Notes

Prim's Spanning Tree Algorithm:

Input: A simple, connected graph G with n + 1 nodes.

Initialize: Let v_o be any node in G, and let $T_0 = \{v_i\}$ be a tree with one node and no edges.

- For each *k* from {1, 2, ..., n}:
 Let *E_k* = {*e* an edge in *G*: *e* has one endpoint in T_{k-1} and the other endpoint not in T_{k-1} .
- Let e_{ι} be the edge in E_{ι} with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
- Let T_{ν} be the tree obtained by adding edge e_{ι} (along with its node not already in T_{k-1}) to T_{k-1} .

Conclusion

Trees!