Рабочая тетрадь № 1

«Информатика — это наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность ее использования для принятия решений».

Большая российская энциклопедия, 2008.

«Информация — это сведения, независимо от формы их представления, воспринимаемые человеком или специальными устройствами как отражение фактов материального мира в процессе коммуникации».

ΓΟCT 7.0-99.

1. Теоретический материал

Бит — это минимальная единица измерения информации. Бит может принимать только два значения 0 или 1 [1, 2].

В вычислительных системах приняты следующие единицы измерения представления цифровых данных:

8 бит = 1 байт (1 Б),

1024 байт (1024 Б) = 1 килобайт (1 Кбайт),

1024 килобайт (1024 Кбайт) = 1 мегабайт (1 Мбайт),

1024 мегабайт (1024 Мбайт) = 1 гигабайт (1 Гбайт),

1024 гигабайт (1024 Гбайт) = 1 терабайт (1 Тбайт).

2. Пример

Задача:

Сколько битов в 3 Мбайт?

Решение:

3 Мбайт = 3 * 1024 Кбайт = 3* 1024 * 1024 Б = = 3* 1024 * 1024 * 8 бит = 25165824 бит

Ответ:

25165824 бит

	3. Задания
1.	Задача:
	Сколько битов в 4 Мбайт?
	Решение:
	Ответ:
2.	Задача:
	Сколько байтов в 2 Гбайт?
	Решение:
	Ответ:
3.	Задача:
	Переведите 6291456 байт в Мбайт?
	Решение:
	Ответ:

Формула $N = log_2 K$, где K — количество возможных состояний, а N — минимальное количество информации в битах, необходимое для описания состояний системы — формула Хартли [1, 2]. При вычислении по формуле Хартли может получено нецелое значение N. В этом случае значение необходимо округлить вверх до целого значения.

2. Пример Задача: Сколько бит нужно отвести на кодирование букв русского алфавита, если НЕ различать буквы Е и Ё? ШЩъыь Решение: Если не различать буквы Е и Ё, то в русском алфавите 32 буквы. Тогда: $\log_2 32 = 5$. Получилось целое число. Ответ: 5 бит Задача: Сколько бит нужно отвести на кодирование букв русского алфавита, если различать буквы Е и Ё? Решение: Если различать буквы Е и Ё, то в русском алфавите 33 буквы. Тогда: $\log_2 33 = 5,044$. Получилось не целое число. Поэтому округлим в верхнюю сторону до 6. Ответ: 6 бит

3. Задания 1. Задача: Сколько бит нужно отвести на ABCDEFGH кодирование букв английского алфавита? IJKLMNOP QRSTUVWX YZ

	Решение:
	Ответ:
2.	Задача:
	Сколько бит нужно отвести на кодирование гласных букв английского алфавита?
	Решение:
	Ответ:
3.	Задача:
	Сколько бит нужно отвести на кодирование согласных букв английского алфавита?
	Решение:
	Ответ:

Пусть теперь система может находиться в одном из K состояний с разными вероятностями [1]. В состоянии 1 с вероятностью p_1 , в состоянии 2 с вероятностью p_2 и продолжая рассуждения в состоянии K с вероятностью p_k , где $p_k \ge 0$. Тогда ценность знания, что система находится в состоянии p_k зависит от распределения вероятностей [1].

Фундаментальное понятие теории информации – энтропия информации. Под энтропией понимается мера неопределенности системы. Энтропией по Шеннону называется число

$$H = -\sum_{i=1}^{N} p_i \log_2(p_i).$$

Прирост информации – это уменьшение энтропии.

2. Пример

Задача:

Если двоечник не поступил в РТУ МИРЭА, то тут мало информации, потому что «мы это и так знали», а вот если он поступил, то это «новость»!

Полагая, что двоечник не поступает с вероятностью 0,9, а поступает с вероятностью 0,1, найдите энтропию по Шеннону [1].

Решение:

Частная энтропия для не поступления равна:

$$-0.9 * \log_2 0.9 = 0.137,$$

а для поступления равна:

$$-0.1 * \log_2 0.1 = 0.332.$$

А общая энтропия равна:

$$H = 0.137 + 0.332 = 0.469$$
.

Ответ:

H = 0,469.

3. Задания

1. **Задача:**

Найти энтропию подбрасывания одной монеты.

Решение:

	Ответ:
2.	Задача:
	Найти энтропию подбрасывания игральной кости.
	Решение:
	Ответ:
3.	Задача:
	\backslash Имеется очень загруженный сервер. Из-за этого с вероятностью $p_1=0$,6
	$\mid \hspace{-0.5cm} \hspace{-0.5cm} \mid$ сервер принимает запрос на обработку данных и с вероятностью $p_2 = 1$
	/ 0,4 отвергает его. Найти частные энтропии и общую энтропию системы.
	Решение:
	Ответ:

Кодирование — это процесс преобразования данных в цифровой формат для хранения, передачи и обработки в вычислительных системах.

Вся цифровая информация в вычислительных системах представляется в двоичном коде — наборе нулей и единиц. Двоичный код — это кодирование каждого объекта последовательностью бит.

На рисунке представлена таблица ASCII кодов символов английского алфавита с учетом прописных букв, знаков препинания, чисел, арифметических операций и некоторых других вспомогательных символов.

Таблица ASCII однозначно определяет 128 символов, расширенная ASCII таблица содержит 256 символов (1 байт) и включает русский алфавит.

						A	SCII	Coc	de Cl	hart	li .					
L	0	1	2	3	4	5	6	7	8	9	ιA	В	C	l D	ΙE	L F
Θ	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	&	-	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	٧	=	>	?
4	0	Α	В	С	D	Е	F	G	Н	Ι	J	K	١	М	N	0
5	Р	Q	R	S	T	U	٧	W	Χ	Υ	Z]	1]	^	_
6	,	а	b	С	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	S	t	u	V	W	Х	у	z	{		}	~	DEL

При кодировании символов всех алфавитов (японского, китайского и других) одного байта недостаточно, поэтому применяется Unicode, который измеряется двумя байтами — количество символов $2^{16} = 65536$.

2. Пример

Задача:

Найти ASCII код символа N

Решение:

Символ **N** находится на пересечении строки **4** и столбца **E**, поэтому он кодируется **4E**₁₆ в шестнадцатеричной системе счисления.

Ответ:

 $4E_{16}$

3. Задания 1. Задача: Найти АSCII код символа w (строчная буква). Решение: Ответ: 2. Задача: Найти символ по ASCII коду 75₁6.

	Решение:
	Ответ:
3.	Задача:
	Запишите слово student набором символов ASCII кода.
	Решение:
	Ответ:

Важная задача кодирования — это возможность обнаружения ошибок, которые возникают в процессе хранения и/или передачи информации [1].

Рассмотрим простейший способ обнаружения однократной ошибки — бит четности. Например, байт представлен восьмью битами. Тогда в пересылаемом сообщении добавляется девятый бит — бит четности, который равен единице, если количество бит в исходном байте нечетно и нулю, если количество бит четно.

Исходное	Пересылаемое	Полученное	Проворую			
сообщение	сообщение	сообщение	Проверка			
01101101	01101101 1	01101101 1	Ок. Чётное число единиц			
01010101	01010101 0	01010101 0	Ок. Чётное число единиц			
01011101	01011101 1	010 <mark>0</mark> 1101 1	Ошибка. Нечётное число			
01011101	010111011		единиц			
01011101	01011101 1	010111010	Ошибка. Нечётное число			
01011101	010111011		единиц			

	2. Пример
3ac	वेयपव:
	Добавьте бит чётности к следующему сообщению: 01101011 .
Per	шение:
\setminus /	В сообщении не четное число бит, поэтому в конце к нему нужно дописать
	единицу, чтобы пересылаемое сообщение содержало чётное число единиц,
$ \wedge $	т.е. 01101011 1
$/ \ \setminus$	
On	пвет:
	01101011 1
	2 Dayawag
	3. Задания
1.	Задача:
	Добавьте бит чётности к следующему сообщению: 11001001.
	Решение:

1.	Задача:
	Добавьте бит чётности к следующему сообщению: 11001001.
	Решение:
	Ответ:
2.	Задача:
	Добавьте бит чётности к следующему сообщению: 10100001.
	Решение:
	Ответ:
3.	Задача:
	Было принято следующее сообщение: 101011010 . Содержит ли оно
	ошибку?

Решен	ie:		
Ответ		 	

Рассмотрим еще подход к обнаружению ошибки — троировании бита в передаваемом сообщении. Пусть имеется один байт 10010010, тогда при передаче сообщения каждый бит будет троирован и сообщение примет вид (111)(000)(000)(111)(000)(000)(111)(000). Скобки в примере применены для наглядности представления записи. Каждая скобка соответствует одному биту исходного сообщения закодированного по методу троирования. Искажение одного бита в скобке позволит выявить возникшие ошибки (101)=1, (100)=0.

2. Пример

Задача:

Используя кодирование с избытком, закодируйте следующее сообщение: 10101101, троированием битов.

Решение:

111 | 000 | 111 | 000 | 111 | 111 | 000 | 111 |

Ответ:

1110001110001111111000111

2. Задача:

В предположении, что в трех идущих подряд битах не может быть более одной ошибки, восстановите следующее сообщение: 101000111001111101001111 .

Решение:

до	1 <mark>0</mark> 1	000	111	001	111	1 <mark>0</mark> 1	001	111
после	111	000	111	000	111	111	000	111
результат	1	0	1	0	1	1	0	1

Ответ:

10101101

	•	3. Задания
1.	3a	дача:
	\setminus /	Используя кодирование с избытком, закодируйте следующее сообщение:
		00111011, троированием битов.
	$/\setminus$	
	Pe	шение:
	X	
	On	пвет:
	\wedge	
2.	3a	дача:
	\setminus /	В предположении, что в трех идущих подряд битах не может быть более
	$ \setminus / $	одной ошибки, восстановите следующее сообщение:
	$ $	001011010110011010001111 .
	$/\setminus$	
	Pe	шение:
	\wedge	
	On	пвет:
	\wedge	
3.	3a	дача:
	\setminus /	В сообщении троировались байты (символы таблицы ASCII). Было
	$ \setminus / $	получено следующее сообщение:
	X	CCzoYomdmppSuRutptweeQrr_*RssacciBieeenn%Fccjee.
	/	COLOT Ontomposartator wee QII respectible comit/of eegee.
	$/ \setminus$	Восстановите исходное сообщение.

	Решение:
	Ответ:
ĺ	

Определим расстояние между символами кода. Пусть каждый символ кодируется последовательностью из N битов $x=(x_1,x_2,...x_N), y=(y_1,y_2,...,y_N)$. Расстояние $\rho(x,y)$ определим следующей формулой [1]:

$$\rho(x,y) = \sum_{i=1}^{N} |x_i - y_i|,$$

где x_i и y_i принимают значения ноль или единица. Представленная формула позволяет определить расстояние между представлениями символов в виде кода. Тогда n количество ошибок, которые можно исправить, если определить наименьшее из расстояний d определяется по следующей формуле:

$$d \ge 2n + 1$$
.

Обобщим, идея метода состоит в определении количество отличных битов в кодовом представлении символов. Далее из всех выбирается наименьшее значение — это значение с использованием формулы $d \ge 2n + 1$, позволяет найти количество ошибок, которые можно исправить. То есть, чтобы исправлять n ошибок, необходимо учитывать расстояние между любыми символами, которое должно быть не меньше 2n + 1.

2. Пример

1. **Задача:**

 Даны следующие коды:
 буква
 A
 B
 C

 код
 00000
 11100
 00111

Найти расстояние между кодами для В и С.

Решение:

0	0.0744	
<i>Um</i>	вет	

$$\rho(B,C) = \rho(11100,00111) = 4$$

Задача:

Сколько ошибок можно исправить при использовании кодов из предыдущего примера?

Решение:

Найдём минимальное расстояние d между кодами.

$$d = \min(3, 4, 3) = 3$$
$$d \ge 2n + 1 \qquad \to \qquad 3 \ge 2n + 1$$

Из этого условия найдем n. Получим n=1. Таким образом, всегда можно исправить 1 ошибку.

В

 \mathbf{C}

0011110

Ответ:

Можно гарантированно исправить 1 ошибку

3. Задания

Задача:

буква A Даны следующие коды: код | 0101010 | 1010100 |

Найти расстояние между кодами для В и С.

Решение:

Ответ:

	Тест 1
1.	Сколько бит в 1 Кбайт?
	1. 8192 бит 2. 75699 бит
	3. 4589 бит 4. 34773 бит
	Ответ:
2.	Сколько бит нужно отвести на кодирование одной игральной карты
	стандартной колоды из 36 карт?
	1.4 2.5 3.6 4.7
	Ответ:

3.	Сколько бит ну	жно отвести на	кодирование ди	вузначного десят	геричного	
	числа?					
	1.6	2.7	3. 8	4. 9		
	Ответ:					
4.	Если не прогули	вать занятия, то	вероятность сда	ть сессии на «х	орошо» и	
	«отлично» равна	, 0,7. Найдите эн	тропию системы	•		
	10,05	2. 0,91	3. 0,13	4. 0,88		
	Ответ:					
5.	Укажите ASCII код символа G					
	1. 67	2. 43	3. 6A	4. 47		
	Ответ:					
6.	Бит четности слу					
	1. исправлени	ия ошибок в дан	ных			
		ия ошибки в дан	ных			
		ия данных				
	/ \ 4. выравнива	ния данных				
	Ответ:					
7.	Если при перес	ылке сообщения	я в нём произоп	ило ДВЕ ошибк	и, то бит	
	четности					
		справить две оп	іибки			
		х обнаружить				
		т их обнаружит				
	/ 4. позволит исправить только одну ошибку					
	Ответ:					
8.	В предположени	и, что в трех и,	дущих подряд би	тах не может б	ыть более	
		ŕ	ановите сле	едующее со	общение:	
	00101110101010					
	1. 01100001	2. 011				
	3. 11100001	4. 010	000011			

	Ответ:
9.	Найдите, между какими кодами расстояние наибольшее
	1. 11100010 и 00001111
	\/ 2. 00010111 и 01110101
	3. 01011010 и 10110101
	/ \ 4. 10101010 и 10101101
	Ответ:
10.	Иконка на рабочем столе имеет разрешение 32х32 пикселя. На
	кодирование каждого пикселя отводится 24 бита. Найдите сколько бит
	нужно отвести на кодирование одной иконки.
	1. 54576 бит
	\/ 2. 32679 бит
	3. 16384 бит
	/ \ 4. 24576 бит
	Ответ:

Реализация задач на языке программирования Python

Для реализации задач необходимо установить интерпретатор языка Python. Среду разработки и интерпретатор можно бесплатно установить с официального сайта www.python.org. Также, можно бесплатно установить среду разработок Anaconda с сайта https://www.anaconda.com/products/individual. Однако, для начального ознакомления с синтаксисом языка можно использовать онлайн интерпретаторы, например, https://www.online-python.com.

1. Теоретический материал

Давайте создадим первую программу на Python.

print('Hello world!')

Функция print() выводит на экран сообщение в скобках. Кавычки окаймляют текст 'Hello world!'.

Функция input() используется для ввода данных с клавиатуры:

```
name = input('Введите имя')
print('Привет, ' + name)
```

Здесь name – имя переменной. Имена переменных используются для хранения значений. Символ + используется для соединения (конкатенации) строк.

Pythonсодержит все необходимые математические операции.

```
print(5 + 7) # сложение
print(4 * 5) # умножение
print(4 ** 3) # возведение в степень
```

После символа # записываются комментарии, которые игнорируются интерпретатором.

2. Пример

Задача:

Найти значение функции $f(x) = x^2 + 3x - 100$. Значение x вводится с клавиатуры.

Решение (код программы):

```
x = input('Введите x') # возвращается строка, не число x = float(x) # преобразуем строку в вещественное число y = x**2 + 3*x - 100 print(y)
```

3. Задания

1. Задача:

Выведите на экран вашу Фамилию, Имя и номер студенческой группы.

Решение (код программы):

2. **Задача:**

Введите с клавиатуры два числа и сложите их. Выведите результат на экран.

Решение (код программы):

3. **Задача:**

Найти значение функции $f(x) = x^5 - 2x^3 + 1$. Значение x вводится с клавиатуры.

Решение (код программы):

1. Теоретический материал

Примеры различных типов данных:

```
_string = 'строка' # строка
```

_integer = 12 # целое число

_float_1 = 3.14 # вещественное число

_float_2 = -2.7e-3 # -0.0027

_boolean = True # False

Тип переменной всегда можно узнать с помощью функции **type**()

print(type(_boolean)) # <class 'bool'>

В Python есть следующие операции сравнения: == (проверка на равенство), !=(не равняется), < , <=(меньше или равняется), >, >=

print(2+1 > 3*4) # False

В Python есть следующие логические операции: and(логическое И),or(логическое V), not(логическое отрицание).

print(not (3>1 and False)) # True

В Python есть также тип list (список), который позволяет хранить совокупность различных объектов:

```
empty_list = [] # пустой список
```

_list = [1, 3.14, 'свет', True, []] # список с элементами

empty_list.append(12) # добавление элемента

empty_list.append([2.7, 3])

print(empty_list, _list) #
_list[0] = 'перезаписываем первый элемент на этот текст'
print(_list, empty_list[1])

2. Пример

1. Задача:

Проверить тип результата сложения целого числа с вещественным.

Решение (код программы):

$$a = 12 + 3.14$$

print(type(a)) # функцияtуревозвращает тип её аргумента

2. Задача:

Определите истинность следующего выражения:

$$\frac{9}{3}$$
 > 2 * 3 or $\neg (12 \neq 3^2 + 3 \text{ and } 57 - 24 > 30)$

Решение (код программы):

print(9/3 > 2*3 or not(12 != 3**2+3 and 57-24 > 30))

3. Задания

1. **Задача:**

Напишите код для определения типа переменной strange, если:

strange = [[],1]

Решение (код программы):

2. **Задача:**

С помощью Python найдите такие значения xи y, которые обратят выражение в значение True.

Выражение: $(x \text{ or } y) \text{ and } (\neg x \text{ or } y) \text{ and } \neg (x \text{ and } y)$.

Решение (код программы):

3. *Задача*:

До

Добавьте в пустой список четыре любых значения и выведете их на экран в обратном порядке, использую для этого индексы элементов.

Решение (код программы):

1. Теоретический материал

Язык Python включает в себя множество полезных библиотек. Библиотека **math** является одной из таких. Она содержит все стандартные математические функции. Для использования библиотеку необходимо подключить:

import math as m

```
a = m.sin(m.pi/2) # sin\left(\frac{\pi}{2}\right)
b = m.sqrt(16) # \sqrt{16}
c_1 = m.e**2 # e^2
c_2 = m.exp(2) # e^2
d_1 = m.log(8, 2) # log_2(8)
d_2 = m.log2(8) # log_2(8)
e_1 = m.ceil(3.14) # округление вверх (ответ 4)
e 2 = m.ceil(2.7) # округление вверх (ответ 3)
```

2. Пример

1. **Задача:**

Написать программу для решения квадратного уравнения, через дискриминант: $3x^2 - 10x + 1 = 0$.

Решение (код программы):

```
import math as m
a, b, c = 3, -10, 1
D = b**2-4*a*c
x_1 = (-b-m.sqrt(D))/(2*a)
x_2 = (-b+m.sqrt(D))/(2*a)
print(x1, x2)
```

2. Задача:

Напишите программу для вычисления $\log_2(7*x)*\cos\left(\frac{x}{3}\right)$, где x вводит

Pe	ешение (код программы):
/	import math as m
\bigvee	x = float(input("Введите x: "))
$/ \setminus$	print(m.log2(7*x)*m.cos(x/3))

