

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/052,360	01/23/2002	Suzuko Fukao	00862.022492	3383
5514	7590	06/05/2006	EXAMINER	
FITZPATRICK CELLA HARPER & SCINTO 30 ROCKEFELLER PLAZA NEW YORK, NY 10112			BURLESON, MICHAEL L	
			ART UNIT	PAPER NUMBER
			2625	

DATE MAILED: 06/05/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/052,360	FUKAO, SUZUKO
	Examiner Michael Burleson	Art Unit 2626

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 16 March 2006.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-18 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-18 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1.) Certified copies of the priority documents have been received.
 2.) Certified copies of the priority documents have been received in Application No. _____.
 3.) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____.
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____.	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____.

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 03/14/2006 have been fully considered but they are not persuasive.
2. Applicant states that the reference of Hiratsuka fails to teach of designating an adjustment region and performing color adjustment of a color image using a function of the reference color, the adjusted color and the boundary of the adjustment region. Examiner disagrees with Applicant. Hiratsuka teaches of selecting from a color pallet (5) or a designated-color window (6) a designated adjustment color for the purpose of performing color adjustment of a color image (see abstract and column 7, lines 8-15).
3. Applicant also states that Hiratsuka fails to teach of designating a correction execution range and performing color adjustment within such correction execution range. Examiner disagrees with Applicant. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., designating a correction execution range and performing color adjustment within such correction execution range) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). The limitation that Applicant states that the reference Hiratsuka fails to teach is not claimed in the present application. Hiratsuka does teach of color adjustment parameters and color adjustment is performed

using these parameters (column 8,lines 1-67 and column 9,lines 1-10). Rejection of claims 1-18 is maintained.

Priority

1. Acknowledgment is made of applicant's claim for foreign priority under 35 U.S.C. 119(a)-(d).

Claim Rejections - 35 USC § 102

1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

2. Claims 1,2 and 5-13 are rejected under 35 U.S.C. 102(e) as being anticipated by Hiratsuka et al. US 6108441.

3. Regarding claim 1, Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65 and figure 5), which reads on an image processing apparatus for performing color adjustment for image data, comprising; designating means for designating, a reference color, an adjusted color of the reference color and

an adjustment region, including the reference color and the adjusted color, in a color space. Hiratsuka et al. teaches of determining if a pixel data are in LCH color space (column 8,lines 17-25), which reads on a region determining means for determining whether a pixel value of input image data is in the adjustment region. Hiratsuka et al. teaches of determining pixel data on color space in accordance with color adjustment parameters (column 9,lines 5-25), which reads on adjusted value calculating means for calculating an adjusted value of the image data on the basis of a function of the reference color, the adjusted color and a boundary of the adjustment region, if said region determining means determines that the pixel value of the image data is in the adjustment region.

4. Regarding claim 2, Hiratsuka et al. shows that the region has a geometric shape (figure 5), which reads on the adjustment region is defined as a geometric figure in the color space.

5. Regarding claim 5, Hiratsuka et al. shows an intersection of a straight line (figure 5), which reads on the adjusted value of the image data on the basis of an intersection of a straight line which connects the reference color and the image data and the contour of the adjustment region.

6. Regarding claim 6, Hiratsuka et al. teaches that an Euclidean distance is used in calculating color adjustment values (column 8, lines 35-45 and figure 5), which reads on said adjusted value calculating means calculates the adjusted value of the image data such that the adjustment amount linearly changes with respect to a distance between the image data and the reference color in the color space.

7. Regarding claim 7, Hiratsuka et al. teaches that an Euclidean distance is used in calculating color adjustment values (column 8, lines 35-45 and figure 5), which reads on said adjusted value calculating means calculates the adjusted value of the image data such that the adjustment amount linearly changes with respect to a distance between the image data and the reference color in the color space.

8. Regarding claim 8, Hiratsuka et al. teaches of a color pallet (5) (column 6,lines 57-67, column 7,lines 8-15 and column 9, lines 25-30), which reads on the image data is an element of a correction table for color matching.

9. Regarding claim 9, Hiratsuka et al. teaches that the designated adjustment color is converted to LCH color space (column 7,lines 1-20), which reads on a coordinate transforming means for transforming the image data into the coordinate system of a predetermined color space, wherein said region determining means and said adjusted value calculating means each perform operations on the image data transformed into the predetermined color space.

10. Regarding claim 10, Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65, column 8,lines 17-25 and figure 5), which reads on designating means designates the reference color, the adjusted color and the adjustment region as values in said predetermined color space.

11. Regarding claim 11, Hiratsuka et al. teaches of inverse operations performed on color values in LCH color space (column 9,lines 5-10), which reads on said coordinate transforming means inversely transforms the adjusted value, in the predetermined color

space, calculated by said adjusted value calculating means, into the color space coordinate system of the image data.

12. Regarding claim 12, Hiratsuka et al. teaches of inverse operations performed on color values in LCH color space (column 9,lines 5-10), which reads on said coordinate transforming means performs affine transformation and inverse transformation thereof.

13. Regarding claim 13, Hiratsuka et al. teaches a conversion matrix that is stored (column 7,lines 15-65), which reads on transformation matrix calculating means for calculating, on the basis of the reference color, the adjusted color and the adjustment region, a transformation matrix used by said coordinate transforming means and matrix storage means for storing the transformation matrix.

14. Regarding claim 15, Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65 and figure 5), which reads on an image processing method for performing color adjustment for image data, comprising the steps of; designating, a reference color, an adjusted color of the reference color and an adjustment region, including the reference color and the adjusted color, in a color space. Hiratsuka et al. teaches of determining if a pixel data are in LCH color space (column 8,lines 17-25), which reads on a determining whether a pixel value of input image data is in the adjustment region. Hiratsuka et al. teaches of determining pixel data on color space in accordance with color adjustment parameters (column 9,lines 5-25), which reads on calculating an adjusted pixel value of the image data on the basis of a function of the reference color, the adjusted color and a boundary of the adjustment

region, if it is determined in the region determination step that the pixel value of the image data is in the adjustment region.

15. Regarding claim 16, Hiratsuka et al teaches of a color pallet (5), color monitor (2) that displays a color image (4) before color adjustment and a color image in an after adjustment image window (7) for comparison (column 6,lines 57-67, column 7,lines 8-15 and column 9, lines 25-30). He also teaches of a color printer (10) (column 9,lines 47-49). This reads on image processing system for performing color matching based on a color correction table in an image processing apparatus in which a monitor and a printer are connected. Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65 and figure 5), which reads on designating means for designating, a reference color, an adjusted color of the reference color and an adjustment region, including the reference color and the adjusted color, in a color space. Hiratsuka et al. teaches of determining if a pixel data are in LCH color space (column 8,lines 17-25), which reads on a region determining means for determining whether a pixel value of input image data is in the adjustment region. Hiratsuka et al. teaches of determining pixel data on color space in accordance with color adjustment parameters (column 9,lines 5-25), which reads on adjusted value calculating means for calculating an adjusted pixel value of the image data on the basis of a function of the reference color, the adjusted color and a boundary to the adjustment region, if said region determining means determines that the pixel value of the image data is in the adjustment region.

16. Regarding claim 17, Arguments are analogous to those stated in the rejection of claim 1. A program that performs a program is inherently taught as evidenced by the computer (1) (figure 3 and column 6,lines 57-67).
17. Regarding claim 18, Hiratsuka et al. teaches of a hard disk (column 6,lines 62-64), which reads on a recording medium.

Claim Rejections - 35 USC § 103

18. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.
19. Claim 3 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hiratsuka et al. US 6108441 in view of Magee US 5231504.
20. Regarding claim 3, Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65 and figure 5), which reads on an image processing apparatus for performing color adjustment for image data, comprising; designating means for designating, a reference color, an adjusted color of the reference color and an adjustment region, including the reference color and the adjusted color, in a color space. Hiratsuka et al. teaches of determining if a pixel data are in LCH color space (column 8,lines 17-25), which reads on a region determining means for determining whether a pixel value of input image data is in the adjustment region. Hiratsuka et al.

teaches of determining pixel data on color space in accordance with color adjustment parameters (column 9,lines 5-25), which reads on adjusted value calculating means for calculating an adjusted value of the image data on the basis of a function of the reference color, the adjusted color and a boundary of the adjustment region, if said region determining means determines that the pixel value of the image data is in the adjustment region. Hiratsuka et al. shows that the region has a geometric shape (figure 5), which reads on the adjustment region is defined as a geometric figure in the color space.

21. Hiratsuka et al. fails to teach that the geometric figure is an ellipsoid.
22. Magee teaches of an elliptically shaped region (column 14,lines 10-14), which reads on the geometric figure is an ellipsoid.

The image processing apparatus of Hiratsuka et al. could have easily been modified with the elliptically shaped region of Magee. This modification would have been obvious to one skilled in the art at the time of the invention to represent the color adjustment region of an image processing apparatus.

23. Claim 4 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hiratsuka et al. US 6108441 in view of Kobayashi US 5937089.
24. Regarding claim 4, Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65 and figure 5), which reads on an image processing apparatus for performing color adjustment for image data, comprising; designating

means for designating, a reference color, an adjusted color of the reference color and an adjustment region, including the reference color and the adjusted color, in a color space. Hiratsuka et al. teaches of determining if a pixel data are in LCH color space (column 8,lines 17-25), which reads on a region determining means for determining whether a pixel value of input image data is in the adjustment region. Hiratsuka et al. teaches of determining pixel data on color space in accordance with color adjustment parameters (column 9,lines 5-25), which reads on adjusted value calculating means for calculating an adjusted value of the image data on the basis of a function of the reference color, the adjusted color and a boundary of the adjustment region, if said region determining means determines that the pixel value of the image data is in the adjustment region. Hiratsuka et al. shows that the region has a geometric shape (figure 5), which reads on the adjustment region is defined as a geometric figure in the color space.

25. Hiratsuka et al. fails to teach that the geometric figure is a polyhedron.
26. Kobayashi teaches of a polyhedron (column 5,lines 20-28), which reads on the geometric figure is a polyhedron.

The image processing apparatus of Hiratsuka et al. could have easily been modified with the polyhedron region of Kobayashi. This modification would have been obvious to one skilled in the art at the time of the invention to represent the color adjustment region of an image processing apparatus.

27. Claim 14 is rejected under 35 U.S.C. 103(a) as being unpatentable over Hiratsuka et al. US 6108441 in view of Ueda US 6172681.

28. Hiratsuka et al. teaches of a computer system (figure 3), designating a color before color adjustment, an adjustment color and teaches of a LCH color space (column 7,lines 8-65 and figure 5), which reads on an image processing apparatus for performing color adjustment for image data, comprising; designating means for designating, as parameters, a reference color, an adjusted color of the reference color and an adjustment region in a color space. Hiratsuka et al. teaches of determining if a pixel data are in LCH color space (column 8,lines 17-25), which reads on a region determining means for determining whether input image data is in the adjustment region. Hiratsuka et al. teaches of determining pixel data on color space in accordance with color adjustment parameters (column 9,lines 5-25), which reads on adjusted value calculating means for calculating an adjusted value of the image data on the basis of the parameters, if said region determining means determines that the image data is in the adjustment region. Hiratsuka et al. teaches of a color pallet (5) (column 6,lines 57-67, column 7,lines 8-15 and column 9, lines 25-30), which reads on the image data is an element of a correction table for color matching. Hiratsuka et al. teaches that the designated adjustment color is converted to LCH color space (column 7,lines 1-20), which reads on a coordinate transforming means for transforming the image data into the coordinate system of a predetermined color space, wherein said region determining means and said adjusted value calculating means each perform operations on the image data transformed into the predetermined color space.

29. Hiratsuka et al. fails to teach of a region determining means further determines that image data is inside a rectangular parallelepiped region containing the adjustment region in the color space and if said region determining means determines that the image data is inside the rectangular parallelepiped region, said coordinate transforming means transforms the coordinates of the image data.

30. Ueda teaches of a rectangular parallelepipeds (column 7,lines 40-60), which read on a region determining means further determines that image data is inside a rectangular parallelepiped region containing the adjustment region in the color space and if said region determining means determines that the image data is inside the rectangular parallelepiped region, said coordinate transforming means transforms the coordinates of the image data.

The image processing apparatus of Hiratsuka et al. could have easily been modified with the rectangular parallelepiped of Ueda. This modification would have been obvious to one skilled in the art at the time of the invention to represent the color adjustment region of an image processing apparatus.

Conclusion

31. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication should be directed to Michael Burleson whose telephone number is (571) 272-7460 and fax number is (571) 273-7460. The examiner can normally be reached Monday thru Friday from 8:00 a.m. – 4:30p.m. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kimberly Williams can be reached at (571) 272-7471

Michael Burleson
Patent Examiner
Art Unit 2626

Mib
May 26, 2006

KIMBERLY WILLIAMS
SUPERVISORY PATENT EXAMINER