Poznámky

1. Prepočet PID → PSD

Použitím vzťahov pre výpočet q₀, q₁, q₂

Typ náhrady:	$q_{\scriptscriptstyle{0}}$	q_1	q_2
Obdĺžniková náhrada (backward)	$q_0 = P \left(1 + \frac{T_v}{T_i} + \frac{T_d}{T_v} \right)$	$-P\!\!\left(1\!+\!\frac{2T_d}{T_V}\right)$	$\frac{PT_d}{T_V}$
Obdĺžniková náhrada (forward)	$q_0 = P(1 + \frac{T_d}{T_v})$	$q_1 = -P(1 - \frac{T_v}{T_i} + 2\frac{T_d}{T_v})$	$q_2 = P \frac{T_d}{T_v}$
Lichobežníková náhrada	$q_0 = P(1 + \frac{T_v}{2T_i} + \frac{T_d}{T_v})$	$q_1 = -P(1 + 2\frac{T_d}{T_v} - \frac{T_v}{2T_i})$	$q_2 = P \frac{T_d}{T_v}$

Aproximatívnym prepočtom použitím obdĺžnikovej, lichobežníkovej náhrady

$$G_R(s) = P\left(1 + \frac{1}{T_i s} + T_d s\right) = P + \frac{P}{T_i s} + P T_d s$$

Obdĺž. náhrada "forward", s=(z-1)/T):

$$G_R(s) = P + \frac{P}{T_i} \frac{T}{z - 1} + \frac{PT_d}{T} (z - 1)$$

Obdĺž. náhrada "backward", s=(z-1)/Tz)

$$G_R(s) = P + \frac{P}{T_i} \frac{T}{z - 1} + \frac{PT_d}{T} (z - 1)$$

$$G_R(s) = P + \frac{P}{T_i} \frac{Tz}{(z - 1)} + \frac{PT_d}{T} \frac{(z - 1)}{z}$$

Úpravou dostaneme koeficienty uvedené v tabuľke.

2. Určenie prechodovej funkcie v Matlabe

G(s) → **G(z)**: Bez správne určenej prechodovej funkcie h(t) sa nedopracujeme k očakávanému výsledku…

V Matlabe získame prechodovú funkciu príkazom *ilaplace* z Toolboxu Symbolic.

```
>> syms s
>> Gss=0.065/(0.35*s^3+0.06*s^2+0.003*s) %G(s)/s
Gss = 13/(200*((7*s^3)/20 + (3*s^2)/50 + (3*s)/1000))
>> h=ilaplace(Gss) %výpočet inverznej Laplaceovej transformacie
h = 65/3 - (65*(cos((2^{(1/2)*3^{(1/2)*t})/70) +
    2^{(1/2)*3^{(1/2)*sin((2^{(1/2)*3^{(1/2)*t)/70)})/(3*exp((3*t)/35))}
>> h=vpa(h,3) % uprava
h = 21.67 - (21.67*(cos(0.035*t) + 2.449*sin(0.035*t)))/exp(0.0857*t)
```

Stabilita spojitých a diskrétnych systémov

Spojitý systém je **asymptoticky stabilný**, ak jeho póly/vlastné čísla ležia *v otvorenej ľavej polrovine komplexnej roviny*. Systém je **na hranici stability**, ak sa jeho póly nachádzajú *v otvorenej ľavej polrovine komplexnej roviny s výnimkou jednoduchých pólov na imaginárnej osi* (jeden reálny pól alebo jedna dvojica komplexne združených oólov). Vo všetkých ostatných prípadoch je **systém nestabilný**.

Diskrétny systém je **asymptoticky stabilný**, ak jeho póly/vlastné čísla ležia *vnútri jednotkového kruhu*. Systém je **na hranici stability**, ak sa jeho póly nachádzajú *v otvorenej ľavej polrovine komplexnej roviny s výnimkou jednoduchých pólov na jednotkovej kružnici* (jeden reálny pól alebo jedna dvojica komplexne združených oólov).

Vo všetkých ostatných prípadoch je systém nestabilný.

Vyšetrovanie stability diskrétnych systémov

1. Výpočtom pólov URO

Diskrétny lineárny systém je asymptoticky stabilný, ak všetky póly diskrétnej prenosovej funkcie sú umiestnené v jednotkovom kruhu

$$A(z) = (z-z_1)(z-z_2)...(z-z_n)$$

2. Použitím bilineárnej transformácie

$$z = \frac{w+1}{w-1}$$

(zobrazenie jednotkového kruhu na imaginárnu os. Vnútro jednotkového kruhu sa zobrazí do ľavej polroviny w-roviny). Na vyšetrenie stability je potom možné použiť rovnaké metódy ako pre spojité systémy.

Stabilita <u>aproximovaných</u> diskrétnych prenosových funkcií

Pri použití jednotlivých typov aproximácií (obdĺžniková pravá/ľavá, lichobežníková) sa ľavá (stabilná) polrovina v "s" – komplexnej rovine zobrazí do "z"- komplexnej roviny na oblasť vyznačenú sivou farbou (obrázky zobrazujú jej polohu vzhľadom na jednotkový kruh).

Backward differences

Tustin

Forward differences

Určovanie originálov k Z-obrazom funkcií (spätná Z-transformácia)

Môžeme použiť 3 postupy:

- 1. rozvojom do mocninového radu
- 2. rozkladom na parciálne zlomky
- 3. metódou rezíduí
- Rozvoj do mocninového radu vychádza z definície
 Z-transformácie.

$$F(z) = Z\{f(kT)\} = Z\{f(k)\} = \sum_{k=0}^{\infty} f(k)z^{-k} = f(0)z^{0} + f(1)z^{-1} + f(2)z^{-2} + \dots$$

Výslednú postupnosť hodnôt diskrétnej funkcie dostaneme delením čitateľa menovateľom (*long division*).

Rovnaký postup platí pre delenie polynómov v kladných i záporných mocninách.

2. Rozklad na parciálne zlomky

Odporúčaný postup:

- Rozklad na parciálne zlomky realizovať pre Y(z)/z
 Následne jednotlivé parciálne zlomky prenásobiť z
- Nájsť originály k Z-obrazom jednotlivých zlomkov z tabuľky Z-transformácií
- 3. Metóda rezíduí analógia Heavisideovho rozvojového vzorca pre spätnú Laplaceovu transformáciu. Získame predpis v uzavretej forme.

$$y(kT) = \sum_{i} \frac{1}{(r_i - 1)!} \lim_{z \to z_i} \frac{d^{r_i - 1}}{ds^{r_i - 1}} [(z - z_i)^{r_i} Y(z) z^{k - 1}]$$

Príklad 1: Určte originál k Z-obrazu diskrétnej funkcie

$$X(z) = \frac{z}{z^2 - 3z + 2}$$

- delením čitateľa menovateľom
- rozkladom na parciálne zlomky

Riešenie - delenie čitateľa menovateľom:

$$z: (z^{2} - 3z + 2) = z^{-1} + 3z^{-2} + 7z^{-3} + 15z^{-4} + \cdots$$

$$x(0) = 0$$

$$x(1) = 1$$

$$x(2) = 3$$

$$x(3) = 7$$

$$x(4) = 15$$

Matlab:

deconv – delenie polynómov; ak chceme získať koeficienty pri záporných mocninách do delenca je potrebné doplniť nuly stairs – vykreslenie "schodovitého" priebehu

Riešenie – rozkladom na parciálne zlomky:

$$X(z) = \frac{z}{z^2 - 3z + 2}$$

$$X(z) = \frac{z}{z^2 - 3z + 2}$$

[r,p,k]=residue(1,[1-32])

$$\frac{X(z)}{z} = \frac{1}{z - 2} - \frac{1}{z - 1}$$

$$X(z) = \frac{z}{z-2} - \frac{z}{z-1}$$

$$x(k) = 2^k - 1$$

$$x(0) = 0$$

 $x(1) = 1$
 $x(2) = 3$
 $x(3) = 7$
 $x(4) = 15$
:

Príklad 1: Určte originál k Z-obrazu diskrétnej funkcie

$$X(z) = \frac{z}{z^2 - 3z + 2}$$

- rozkladom na parciálne zlomky
- delením čitateľa menovateľom

Príklad 2: Vypočítajte diskrétnu prechodovú funkciu h(kT) systému, ktorého prenosová funkcia je

$$G(z) = \frac{0.6796z + 0.4912}{z^2 - 0.9926z + 0.3829}$$

Diskrétna prenosová funkcia bola získaná prepočtom zo spojitej prenosovej funkcie s periódou vzorkovania T=0.8s

$$G(s) = \frac{3}{s^2 + 1.2s + 1}$$

