数据科学 2: Pandas 库

QuantEcon, 张帆

2019年12月16日

1 数据处理

该部分将介绍 Pandas 库,它是一个强大的分析结构化数据的工具集;它的使用基础是 Numpy (提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。

相关资料:

QuantEcon-Pandas

Pandas 中文

Pandas 官网

1.1 1. 基础概念

本部分将围绕 Series 和 DataFrame 两个概念做简要介绍 在开始之前,我们先导入 pandas 并起个别名"pd"

In [3]: import pandas as pd

%matplotlib inline

1.1.1 (1) Series

它是一种类似于一维数组的对象,是由一组数据 (各种 NumPy 数据类型) 以及一组与之相关的数据标签 (即索引) 组成。仅由一组数据也可产生简单的 Series 对象。

通过调用 pd.Series 函数即可创建 Series,这里以美国失业率数据为例。

```
In [3]: values = [5.6, 5.3, 4.3, 4.2, 5.8, 5.3, 4.6, 7.8, 9.1, 8., 5.7]
    years = list(range(1995, 2017, 2))

unemp = pd.Series(data=values, index=years, name="Unemployment")
```

In [4]: unemp


```
Out[4]: 1995
                 5.6
        1997
                 5.3
        1999
                 4.3
        2001
                 4.2
        2003
                 5.8
        2005
                 5.3
        2007
                 4.6
        2009
                 7.8
        2011
                 9.1
        2013
                 8.0
        2015
                 5.7
        Name: Unemployment, dtype: float64
```

In [6]: # 索引 unemp.index

Out[6]: Int64Index([1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015], dtype='.

In [7]: # 值 unemp.values

Out[7]: array([5.6, 5.3, 4.3, 4.2, 5.8, 5.3, 4.6, 7.8, 9.1, 8., 5.7])

In [8]: # 头部数据 unemp.head() Out[8]: 1995 5.6 1997 5.3 1999 4.3 2001 4.2 2003 5.8

Name: Unemployment, dtype: float64

In [9]: # 尾部数据

unemp.tail()

Out[9]: 2007 4.6 2009 7.8 2011 9.1 2013 8.0 2015 5.7

Name: Unemployment, dtype: float64

In [13]: # 趋势

unemp.plot()

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1ea1aabd2e8>

1.1.2 (2) DataFrame

DataFrame 是 Pandas 中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型 (数值、字符串、布尔型等),DataFrame 即有行索引也有列索引,可以被看做是由 Series 组成的字典。

通过调用 pd.DataFrame 函数即可创建 DataFrame,同样地,这里以美国失业率数据为例。

```
In [17]: data = {
    "NorthEast": [5.9, 5.6, 4.4, 3.8, 5.8, 4.9, 4.3, 7.1, 8.3, 7.9, 5.7],
```

```
"MidWest": [4.5, 4.3, 3.6, 4., 5.7, 5.7, 4.9, 8.1, 8.7, 7.4, 5.1],
            "South": [5.3, 5.2, 4.2, 4., 5.7, 5.2, 4.3, 7.6, 9.1, 7.4, 5.5],
            "West": [6.6, 6., 5.2, 4.6, 6.5, 5.5, 4.5, 8.6, 10.7, 8.5, 6.1],
            "National": [5.6, 5.3, 4.3, 4.2, 5.8, 5.3, 4.6, 7.8, 9.1, 8., 5.7]
        }
        unemp_region = pd.DataFrame(data, index=years)
        unemp_region
Out[17]:
              NorthEast MidWest South West National
                                        6.6
        1995
                   5.9
                            4.5
                                   5.3
                                                  5.6
        1997
                   5.6
                            4.3
                                   5.2
                                       6.0
                                                  5.3
        1999
                   4.4
                            3.6
                                   4.2
                                       5.2
                                                  4.3
        2001
                   3.8
                            4.0
                                  4.0
                                        4.6
                                                  4.2
        2003
                   5.8
                            5.7
                                  5.7
                                       6.5
                                                  5.8
        2005
                   4.9
                            5.7
                                  5.2
                                        5.5
                                                  5.3
        2007
                   4.3
                            4.9
                                  4.3
                                       4.5
                                                  4.6
        2009
                   7.1
                            8.1
                                  7.6
                                       8.6
                                                  7.8
        2011
                   8.3
                            8.7
                                  9.1 10.7
                                                  9.1
        2013
                   7.9
                            7.4
                                  7.4
                                       8.5
                                                  8.0
        2015
                   5.7
                            5.1
                                   5.5
                                       6.1
                                                  5.7
In [18]: # 索引
        unemp_region.index
Out[18]: Int64Index([1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015], dtype=
In [19]: # 值
        unemp_region.values
Out[19]: array([[ 5.9, 4.5, 5.3, 6.6, 5.6],
               [5.6, 4.3, 5.2, 6., 5.3],
               [4.4, 3.6, 4.2, 5.2, 4.3],
               [3.8, 4., 4., 4.6, 4.2],
               [5.8, 5.7, 5.7, 6.5, 5.8],
               [4.9, 5.7, 5.2, 5.5, 5.3],
               [4.3, 4.9, 4.3, 4.5, 4.6],
               [7.1, 8.1, 7.6, 8.6, 7.8],
               [8.3, 8.7, 9.1, 10.7, 9.1],
```

In [20]: # 头部

unemp_region.head()

Out[20]:		NorthEast	${\tt MidWest}$	South	West	National
	1995	5.9	4.5	5.3	6.6	5.6
	1997	5.6	4.3	5.2	6.0	5.3
	1999	4.4	3.6	4.2	5.2	4.3
	2001	3.8	4.0	4.0	4.6	4.2
	2003	5.8	5.7	5.7	6.5	5.8

In [21]: # 尾部

unemp_region.tail()

ot [21] :		NorthEast	${ t MidWest}$	South	West	National
	2007	4.3	4.9	4.3	4.5	4.6
	2009	7.1	8.1	7.6	8.6	7.8
	2011	8.3	8.7	9.1	10.7	9.1
	2013	7.9	7.4	7.4	8.5	8.0
	2015	5.7	5.1	5.5	6.1	5.7

In [22]: # 趋势

unemp_region.plot()

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x1ea1ab2cb38>

```
NorthEast
MidWest
South
West
National

1995.0 1997.5 2000.0 2002.5 2005.0 2007.5 2010.0 2012.5 2015.0
```

```
In [23]: # 特定值
         unemp_region.loc[1995, "NorthEast"]
Out[23]: 5.9
In [24]: unemp_region.loc[[1995, 2005], "South"]
Out[24]: 1995
                 5.3
         2005
                 5.2
         Name: South, dtype: float64
In [25]: unemp_region.loc[1995, ["NorthEast", "National"]]
Out[25]: NorthEast
                      5.9
         National
                      5.6
         Name: 1995, dtype: float64
In [26]: unemp_region.loc[:, "NorthEast"]
Out[26]: 1995
                 5.9
         1997
                 5.6
         1999
                 4.4
```

```
2001
                 3.8
         2003
                 5.8
         2005
                 4.9
         2007
                 4.3
         2009
                 7.1
         2011
                 8.3
         2013
                 7.9
         2015
                 5.7
         Name: NorthEast, dtype: float64
In [27]: unemp_region["MidWest"]
Out[27]: 1995
                 4.5
         1997
                 4.3
         1999
                 3.6
         2001
                 4.0
         2003
                 5.7
         2005
                 5.7
         2007
                 4.9
         2009
                 8.1
         2011
                 8.7
                 7.4
         2013
                 5.1
         2015
         Name: MidWest, dtype: float64
In [28]: # 计算
         unemp_region["West"]/100
Out[28]: 1995
                 0.066
         1997
                 0.060
         1999
                 0.052
         2001
                 0.046
         2003
                 0.065
         2005
                 0.055
         2007
                 0.045
         2009
                 0.086
         2011
                 0.107
         2013
                 0.085
```

```
2015
                0.061
        Name: West, dtype: float64
In [29]: #最大值
        unemp_region["West"].max()
Out[29]: 10.7
In [30]: #差值
        unemp_region["West"] - unemp_region["MidWest"]
Out[30]: 1995
                2.1
        1997
                1.7
        1999
                1.6
        2001
                0.6
        2003
                0.8
        2005
               -0.2
        2007
               -0.4
        2009
                0.5
        2011
                2.0
        2013
                1.1
        2015
                1.0
        dtype: float64
In [31]: # 相关性
        unemp_region.West.corr(unemp_region["MidWest"])
Out[31]: 0.9006381255384481
In [32]: unemp_region.corr()
Out[32]:
                   NorthEast
                               MidWest
                                           South
                                                      West National
        NorthEast
                   1.000000 0.875654 0.964415 0.967875 0.976016
        MidWest
                   0.875654 1.000000 0.951379 0.900638 0.952389
        South
                    0.964415 0.951379 1.000000 0.987259 0.995030
        West
                    0.967875  0.900638  0.987259  1.000000  0.981308
        National
                    0.976016 0.952389 0.995030 0.981308 1.000000
```

在计算时, 请注意数据类型的问题。

```
In [33]: str_unemp = unemp_region.copy()
        str_unemp["South"] = str_unemp["South"].astype(str)
        str_unemp.dtypes
Out[33]: NorthEast
                     float64
        MidWest
                     float64
        South
                      object
        West
                     float64
        National
                     float64
        dtype: object
In [34]: str_unemp.sum()
Out[34]: NorthEast
                                                  63.7
        MidWest
                                                    62
                     5.35.24.24.05.75.24.37.69.17.45.5
        South
                                                  72.8
        West
        National
                                                  65.7
        dtype: object
   会发现 South 列出了问题,这是由于 South 列数据为字符的缘故,因此 sum 计算体现为字符
的拼接
In [35]: #添加新列
        unemp_region["UnweightedMean"] = (unemp_region["NorthEast"] +
                                          unemp_region["MidWest"] +
                                          unemp_region["South"] +
                                          unemp_region["West"])/4
In [36]: unemp_region.head()
Out [36]:
              NorthEast MidWest South West
                                              National
                                                        UnweightedMean
                    5.9
        1995
                             4.5
                                    5.3
                                          6.6
                                                    5.6
                                                                  5.575
        1997
                    5.6
                             4.3
                                    5.2
                                                    5.3
                                                                  5.275
                                          6.0
        1999
                    4.4
                             3.6
                                    4.2
                                         5.2
                                                    4.3
                                                                  4.350
        2001
                    3.8
                             4.0
                                    4.0
                                          4.6
                                                    4.2
                                                                  4.100
        2003
                    5.8
                             5.7
                                    5.7
                                          6.5
                                                    5.8
                                                                  5.925
```

In [37]: # 改变特定值 unemp_region.loc[1995, "UnweightedMean"] = 0.0

In [38]: unemp_region.head()

Out[38]:		NorthEast	${ t MidWest}$	South	West	National	${\tt UnweightedMean}$
	1995	5.9	4.5	5.3	6.6	5.6	0.000
	1997	5.6	4.3	5.2	6.0	5.3	5.275
	1999	4.4	3.6	4.2	5.2	4.3	4.350
	2001	3.8	4.0	4.0	4.6	4.2	4.100
	2003	5.8	5.7	5.7	6.5	5.8	5.925

In [39]: # 重命名列名

unemp_region.rename(columns=names)

Out[39]:		NE	MW	S	W	National	${\tt UnweightedMean}$
	1995	5.9	4.5	5.3	6.6	5.6	0.000
	1997	5.6	4.3	5.2	6.0	5.3	5.275
	1999	4.4	3.6	4.2	5.2	4.3	4.350
	2001	3.8	4.0	4.0	4.6	4.2	4.100
	2003	5.8	5.7	5.7	6.5	5.8	5.925
	2005	4.9	5.7	5.2	5.5	5.3	5.325
	2007	4.3	4.9	4.3	4.5	4.6	4.500
	2009	7.1	8.1	7.6	8.6	7.8	7.850
	2011	8.3	8.7	9.1	10.7	9.1	9.200
	2013	7.9	7.4	7.4	8.5	8.0	7.800
	2015	5.7	5.1	5.5	6.1	5.7	5.600

In [40]: unemp_region.head()

Out[40]:		NorthEast	${ t MidWest}$	South	West	National	${\tt UnweightedMean}$
	1995	5.9	4.5	5.3	6.6	5.6	0.000
	1997	5.6	4.3	5.2	6.0	5.3	5.275
	1999	4.4	3.6	4.2	5.2	4.3	4.350
	2001	3.8	4.0	4.0	4.6	4.2	4.100
	2003	5.8	5.7	5.7	6.5	5.8	5.925

Pandas 在默认情况下会创建一个数据副本,以保护数据,并防止操作覆盖本应保留的信息。如果想改变原始数据,可按照如下操作 df.rename(columns=rename_dict, inplace=True),但是并不建议这样做。

```
In [41]: names = {"NorthEast": "NE",
                 "MidWest": "MW",
                 "South": "S",
                 "West": "W"}
        unemp_shortname = unemp_region.rename(columns=names)
        unemp_shortname.head()
Out [41]:
               NE
                                National UnweightedMean
                   MW
                         S
        1995 5.9 4.5 5.3 6.6
                                      5.6
                                                    0.000
        1997 5.6 4.3 5.2 6.0
                                                    5.275
                                      5.3
        1999 4.4 3.6 4.2 5.2
                                      4.3
                                                    4.350
        2001 3.8 4.0 4.0 4.6
                                      4.2
                                                    4.100
        2003 5.8 5.7 5.7 6.5
                                      5.8
                                                    5.925
```

1.2 2. 基本功能

首先下载样例数据

这里添加 parse_dates=["Date"] 的原因是,read_csv 只规定了基础的数据类型,但我们需要把 Date 列的数据读取为时间类型。

In [44]: unemp_raw.head()

Out[44]:	Date	state	LaborForce	${\tt UnemploymentRate}$
	0 2000-01-01	Alabama	2142945.0	4.7
	1 2000-01-01	Alaska	319059.0	6.3
	2 2000-01-01	Arizona	2499980.0	4.1
	3 2000-01-01	Arkansas	1264619.0	4.4
	4 2000-01-01	California	16680246.0	5.0

1.2.1 (1) 数据透视表

为了方便观察随着时间推移,不同州的失业率变化,我们需要一个"透视表"视图

```
.reset_index()
             .pivot_table(index="Date", columns="state", values="UnemploymentRate")
         )
         unemp_all.head()
Out[46]: state
                     Alabama Alaska Arizona Arkansas California Colorado \
         Date
         2000-01-01
                         4.7
                                  6.3
                                           4.1
                                                      4.4
                                                                  5.0
                                                                             2.8
         2000-02-01
                         4.7
                                  6.3
                                           4.1
                                                      4.3
                                                                  5.0
                                                                             2.8
         2000-03-01
                         4.6
                                  6.3
                                           4.0
                                                      4.3
                                                                  5.0
                                                                             2.7
         2000-04-01
                         4.6
                                           4.0
                                                      4.3
                                                                  5.1
                                                                             2.7
                                  6.3
         2000-05-01
                         4.5
                                  6.3
                                           4.0
                                                      4.2
                                                                  5.1
                                                                             2.7
                                                                         South Dakota \
         state
                     Connecticut Delaware Florida Georgia
                                                                 . . .
         Date
         2000-01-01
                              2.8
                                        3.5
                                                  3.7
                                                           3.7
                                                                                   2.4
                                                                 . . .
         2000-02-01
                              2.7
                                        3.6
                                                  3.7
                                                           3.6
                                                                                   2.4
         2000-03-01
                              2.6
                                        3.6
                                                  3.7
                                                                                   2.4
                                                           3.6
         2000-04-01
                              2.5
                                        3.7
                                                  3.7
                                                           3.7
                                                                                   2.4
                                                                 . . .
         2000-05-01
                              2.4
                                        3.7
                                                  3.7
                                                           3.7
                                                                                   2.4
                                                                 . . .
         state
                     Tennessee Texas
                                        Utah Vermont Virginia Washington \
         Date
         2000-01-01
                            3.7
                                   4.6
                                         3.1
                                                   2.7
                                                             2.6
                                                                          4.9
         2000-02-01
                            3.7
                                                             2.5
                                                                          4.9
                                   4.6
                                         3.1
                                                   2.6
         2000-03-01
                            3.8
                                   4.5
                                         3.1
                                                             2.4
                                                                         5.0
                                                  2.6
         2000-04-01
                            3.8
                                   4.4
                                         3.1
                                                   2.7
                                                             2.4
                                                                         5.0
         2000-05-01
                            3.9
                                   4.3
                                         3.2
                                                   2.7
                                                             2.3
                                                                         5.1
         state
                     West Virginia Wisconsin Wyoming
         Date
         2000-01-01
                                           3.2
                                5.8
                                                     4.1
         2000-02-01
                                5.6
                                           3.2
                                                     3.9
         2000-03-01
                                5.5
                                           3.3
                                                     3.9
         2000-04-01
                                5.4
                                           3.4
                                                     3.8
         2000-05-01
                                5.4
                                           3.5
                                                     3.8
```


5.0

5.0

5.0

5.1

5.1

3.7

3.7

3.7

3.7

3.7

4.2

4.2

4.3

4.3

4.3

3.3

3.2

3.2

3.3

3.5

4.7

4.7

4.6

4.6

4.6

4.6

4.6

4.5

4.4

4.3

In [49]: # 趋势 unemp.plot(figsize=(8, 6))

2000-01-01

2000-02-01

2000-03-01

2000-04-01

2000-05-01

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x1ea1ae896a0>

4.1

4.1

4.0

4.0

4.0

1.2.2 (2) 日期数据

```
In [51]: unemp.index
```

```
In [52]: # 特定值
unemp.loc["01/01/2000",:]
```

Out[52]: state

Arizona 4.1
California 5.0
Florida 3.7
Illinois 4.2
Michigan 3.3
New York 4.7
Texas 4.6

Name: 2000-01-01 00:00:00, dtype: float64

In [53]: unemp.loc["01/01/2000":"06/01/2000", :]

Out[53]:	state	Arizona	California	Florida	Illinois	Michigan	New York	Texas
	Date							
	2000-01-01	4.1	5.0	3.7	4.2	3.3	4.7	4.6
	2000-02-01	4.1	5.0	3.7	4.2	3.2	4.7	4.6
	2000-03-01	4.0	5.0	3.7	4.3	3.2	4.6	4.5
	2000-04-01	4.0	5.1	3.7	4.3	3.3	4.6	4.4
	2000-05-01	4.0	5.1	3.7	4.3	3.5	4.6	4.3
	2000-06-01	4.0	5.1	3.8	4.3	3.7	4.6	4.3

1.2.3 (3) 聚合操作

简单地说,聚合就是将多个值组合成单个值的操作,比如均值,方差,标准差,最值等。

In [55]: #均值

unemp.mean()

Out[55]: state

Arizona 6.301389
California 7.299074
Florida 6.048611
Illinois 6.822685
Michigan 7.492593
New York 6.102315
Texas 5.695370

dtype: float64

可以看到,聚合操作默认是按照列进行的,但是通过 axis 也可实现按行操作。

```
In [56]: unemp.var(axis=1).head()
Out[56]: Date
        2000-01-01
                     0.352381
        2000-02-01
                    0.384762
        2000-03-01
                    0.364762
        2000-04-01
                    0.353333
        2000-05-01
                     0.294762
        dtype: float64
In [57]: # 编写聚合
        # 我们将根据各州的平均失业水平是高于还是低于 6.5, 将各州分为"低失业率"或"高失业率"。
        def high_or_low(s):
            if s.mean() < 6.5:
                out = "Low"
            else:
                out = "High"
            return out
In [58]: unemp.agg(high_or_low)
Out[58]: state
                      Low
        Arizona
        California
                     High
        Florida
                     Low
        Illinois
                     High
        Michigan
                     High
        New York
                      Low
        Texas
                      Low
        dtype: object
In [59]: unemp.agg(high_or_low, axis=1).head()
Out[59]: Date
        2000-01-01
                     Low
        2000-02-01
                     Low
        2000-03-01
                     Low
```

2000-04-01 Low 2000-05-01 Low dtype: object

In [60]: # 多个函数

unemp.agg([min, max, high_or_low])

Out [60]: Arizona California Florida Illinois Michigan New York Texas 3.6 4.5 3.1 4.2 3.2 4.2 3.9 min 10.9 12.3 11.3 14.6 8.9 11.3 8.3 maxhigh_or_low Low High Low High High Low Low

1.2.4 (4) 内置变换

In [63]: unemp.head()

Out[63]: state Arizona California Florida Illinois Michigan New York Texas Date 2000-01-01 4.1 5.0 3.7 4.2 3.3 4.7 4.6 4.1 4.2 4.7 2000-02-01 5.0 3.7 3.2 4.6 2000-03-01 4.0 5.0 3.7 4.3 3.2 4.5 4.6 2000-04-01 4.3 4.4 4.0 5.1 3.7 3.3 4.6 2000-05-01 4.0 5.1 3.7 4.3 3.5 4.6 4.3

In [64]: # 变化率

unemp.pct_change().head()

Out[64]: state Arizona California Florida Illinois Michigan New York \ Date 2000-01-01 NaNNaNNaN NaNNaNNaN2000-02-01 0.00000 0.00 0.0 0.00000 -0.030303 0.000000 0.00 2000-03-01 -0.02439 0.0 0.02381 0.000000 -0.021277 2000-04-01 0.00000 0.02 0.0 0.00000 0.031250 0.000000 2000-05-01 0.00000 0.00 0.0 0.00000 0.060606 0.000000

state Texas

2000-01-01 NaN 2000-02-01 0.000000

```
2000-04-01 -0.022222
         2000-05-01 -0.022727
In [65]: #差值
        unemp.diff().head()
Out[65]: state
                    Arizona California Florida Illinois Michigan New York Texas
        Date
        2000-01-01
                        NaN
                                    NaN
                                             NaN
                                                       NaN
                                                                 NaN
                                                                           NaN
                                                                                  NaN
                        0.0
                                                       0.0
                                                                           0.0
                                                                                  0.0
        2000-02-01
                                    0.0
                                             0.0
                                                                -0.1
        2000-03-01
                                    0.0
                                             0.0
                                                                 0.0
                                                                          -0.1
                                                                                 -0.1
                       -0.1
                                                       0.1
         2000-04-01
                        0.0
                                    0.1
                                             0.0
                                                       0.0
                                                                 0.1
                                                                            0.0
                                                                                 -0.1
        2000-05-01
                        0.0
                                    0.0
                                             0.0
                                                       0.0
                                                                 0.2
                                                                           0.0
                                                                                 -0.1
In [66]: # 自编变换
        def standardize_data(x):
            mu = x.mean()
            std = x.std()
            return (x - mu)/std
In [68]: std_unemp = unemp.apply(standardize_data)
         std_unemp.head()
Out[68]: state
                     Arizona California
                                           Florida Illinois Michigan New York \
        Date
        2000-01-01 -1.076861
                               -0.935545 -0.976846 -1.337203 -1.605740 -0.925962
         2000-02-01 -1.076861
                               -0.935545 -0.976846 -1.337203 -1.644039 -0.925962
        2000-03-01 -1.125778
                               -0.935545 -0.976846 -1.286217 -1.644039 -0.991993
         2000-04-01 -1.125778
                               -0.894853 -0.976846 -1.286217 -1.605740 -0.991993
        2000-05-01 -1.125778
                               -0.894853 -0.976846 -1.286217 -1.529141 -0.991993
        state
                       Texas
        Date
        2000-01-01 -0.849345
         2000-02-01 -0.849345
         2000-03-01 -0.926885
```

2000-03-01 -0.021739

2000-04-01 -1.004424 2000-05-01 -1.081964

此处使用 apply 和 agg 均可,但是若操作涉及排序等操作时则需要用到 apply。相比较 agg 来说,apply 更一般。

```
In [69]: # 绝对值
```

abs_std_unemp = std_unemp.abs()

abs_std_unemp.head()

Out[69]:	state	Arizona	California	Florida	Illinois	Michigan	New York	\
	Date							
	2000-01-01	1.076861	0.935545	0.976846	1.337203	1.605740	0.925962	
	2000-02-01	1.076861	0.935545	0.976846	1.337203	1.644039	0.925962	
	2000-03-01	1.125778	0.935545	0.976846	1.286217	1.644039	0.991993	
	2000-04-01	1.125778	0.894853	0.976846	1.286217	1.605740	0.991993	
	2000-05-01	1.125778	0.894853	0.976846	1.286217	1.529141	0.991993	

state Texas
Date
2000-01-01 0.849345
2000-02-01 0.849345
2000-03-01 0.926885
2000-04-01 1.004424
2000-05-01 1.081964

In [70]: def idxmax(x):

return x.idxmax()
abs_std_unemp.agg(idxmax)

Out[70]: state

Arizona 2009-11-01
California 2010-03-01
Florida 2010-01-01
Illinois 2009-12-01
Michigan 2009-06-01
New York 2009-11-01
Texas 2009-08-01
dtype: datetime64[ns]

1.2.5 (5) 布尔选择

前面我们介绍了通过索引,列名等方式从数据集中找到特定的数据。但是有时,我们需要根据数据自身的特征来选择数据,比如:获取特定产品或客户 ID 的数据、分析与经济衰退相对应的数据等。此时可以使用布尔值来实现目的。

Out[71]:	state	Arizona	California	Florida	Illinois	Michigan	New York	Texas
	Date							
	2000-01-01	4.1	5.0	3.7	4.2	3.3	4.7	4.6
	2000-02-01	4.1	5.0	3.7	4.2	3.2	4.7	4.6
	2000-03-01	4.0	5.0	3.7	4.3	3.2	4.6	4.5
	2000-04-01	4.0	5.1	3.7	4.3	3.3	4.6	4.4
	2000-05-01	4.0	5.1	3.7	4.3	3.5	4.6	4.3

In [72]: unemp_small.loc[[True, True, True, False, False]]

Out [72]	state	Arizona	California	Florida	Illinois	Michigan	New York	Texas
	Date							
	2000-01-01	4.1	5.0	3.7	4.2	3.3	4.7	4.6
	2000-02-01	4.1	5.0	3.7	4.2	3.2	4.7	4.6
	2000-03-01	4.0	5.0	3.7	4.3	3.2	4.6	4.5

In [73]: unemp_small.loc[[True, False, True, False, True], :]

Out[73]:	state	Arizona	California	Florida	Illinois	Michigan	New York	Texas
	Date							
	2000-01-01	4.1	5.0	3.7	4.2	3.3	4.7	4.6
	2000-03-01	4.0	5.0	3.7	4.3	3.2	4.6	4.5
	2000-05-01	4.0	5.1	3.7	4.3	3.5	4.6	4.3

In [74]: unemp_small.loc[[True, True, True, False, False], [True, False, False,

Out[74]:	state	Arizona	New York	Texas
	Date			
	2000-01-01	4.1	4.7	4.6
	2000-02-01	4.1	4.7	4.6
	2000-03-01	4.0	4.6	4.5

```
In [75]: # 自创布尔值
         unemp_small["Texas"] < 4.5
Out[75]: Date
         2000-01-01
                       False
         2000-02-01
                       False
         2000-03-01
                       False
         2000-04-01
                        True
         2000-05-01
                        True
         Freq: MS, Name: Texas, dtype: bool
In [76]: unemp_small.loc[unemp_small["Texas"] < 4.5]</pre>
Out[76]: state
                     Arizona California Florida Illinois Michigan New York Texas
         Date
         2000-04-01
                         4.0
                                     5.1
                                              3.7
                                                                  3.3
                                                        4.3
                                                                             4.6
                                                                                    4.4
         2000-05-01
                         4.0
                                     5.1
                                              3.7
                                                        4.3
                                                                  3.5
                                                                             4.6
                                                                                    4.3
In [77]: # 自创布尔值
         unemp_small["New York"] > unemp_small["Texas"]
Out [77]: Date
         2000-01-01
                       True
         2000-02-01
                       True
         2000-03-01
                       True
         2000-04-01
                       True
         2000-05-01
                       True
         Freq: MS, dtype: bool
In [78]: big_NY = unemp_small["New York"] > unemp_small["Texas"]
         unemp_small.loc[big_NY]
Out [78]: state
                     Arizona California Florida Illinois Michigan New York Texas
         Date
                                                        4.2
         2000-01-01
                         4.1
                                     5.0
                                              3.7
                                                                  3.3
                                                                             4.7
                                                                                    4.6
         2000-02-01
                         4.1
                                     5.0
                                              3.7
                                                        4.2
                                                                  3.2
                                                                             4.7
                                                                                    4.6
         2000-03-01
                         4.0
                                     5.0
                                                        4.3
                                                                  3.2
                                                                             4.6
                                                                                    4.5
                                              3.7
         2000-04-01
                         4.0
                                     5.1
                                              3.7
                                                        4.3
                                                                  3.3
                                                                             4.6
                                                                                    4.4
         2000-05-01
                         4.0
                                     5.1
                                              3.7
                                                        4.3
                                                                  3.5
                                                                             4.6
                                                                                    4.3
```

```
In [79]: # 多重条件
         small_NYTX = (unemp_small["Texas"] < 4.7) & (unemp_small["New York"] < 4.7)</pre>
         small_NYTX
Out[79]: Date
         2000-01-01
                       False
         2000-02-01
                       False
         2000-03-01
                        True
         2000-04-01
                        True
         2000-05-01
                        True
         Freq: MS, dtype: bool
In [80]: unemp_small[small_NYTX]
Out[80]: state
                     Arizona California Florida Illinois Michigan New York Texas
         Date
         2000-03-01
                         4.0
                                     5.0
                                               3.7
                                                         4.3
                                                                   3.2
                                                                             4.6
                                                                                    4.5
         2000-04-01
                         4.0
                                     5.1
                                               3.7
                                                         4.3
                                                                   3.3
                                                                             4.6
                                                                                     4.4
         2000-05-01
                         4.0
                                     5.1
                                               3.7
                                                         4.3
                                                                   3.5
                                                                             4.6
                                                                                    4.3
In [81]: unemp_small["Michigan"].isin([3.3, 3.2])
Out[81]: Date
         2000-01-01
                        True
         2000-02-01
                        True
         2000-03-01
                        True
         2000-04-01
                        True
         2000-05-01
                       False
         Freq: MS, Name: Michigan, dtype: bool
In [82]: unemp_small.loc[unemp_small["Michigan"].isin([3.3, 3.2])]
Out[82]: state
                     Arizona California Florida Illinois Michigan New York Texas
         Date
                                                         4.2
         2000-01-01
                         4.1
                                     5.0
                                               3.7
                                                                   3.3
                                                                             4.7
                                                                                     4.6
         2000-02-01
                         4.1
                                     5.0
                                              3.7
                                                         4.2
                                                                   3.2
                                                                             4.7
                                                                                    4.6
         2000-03-01
                         4.0
                                     5.0
                                                         4.3
                                               3.7
                                                                   3.2
                                                                             4.6
                                                                                    4.5
         2000-04-01
                         4.0
                                     5.1
                                              3.7
                                                         4.3
                                                                   3.3
                                                                             4.6
                                                                                    4.4
```

1.3 3. 索引

1.3.1 (1) 自动对准

```
In [2]: url = "https://storage.googleapis.com/qeds/data/wdi_data.csv"
       df = pd.read_csv(url)
       df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 72 entries, 0 to 71
Data columns (total 7 columns):
country
              72 non-null object
              72 non-null int64
year
GovExpend
              72 non-null float64
Consumption
              72 non-null float64
Exports
              72 non-null float64
Imports
              72 non-null float64
GDP
              72 non-null float64
dtypes: float64(5), int64(1), object(1)
memory usage: 4.0+ KB
In [3]: df.head()
Out[3]:
          country
                  year
                        GovExpend
                                   Consumption
                                                  Exports
                                                            Imports
                                                                          GDP
                  2017
                                       1.095475 0.582831
                                                           0.600031 1.868164
          Canada
                         0.372665
        1 Canada
                  2016
                         0.364899
                                       1.058426
                                                0.576394
                                                           0.575775 1.814016
        2 Canada
                  2015
                         0.358303
                                       1.035208 0.568859
                                                           0.575793 1.794270
                  2014
          Canada
                         0.353485
                                       1.011988 0.550323
                                                           0.572344 1.782252
          Canada 2013
                         0.351541
                                       0.986400 0.518040 0.558636 1.732714
In [5]: df_small = df.head(5)
       df_small
Out[5]:
         country
                        GovExpend
                                   Consumption
                                                  Exports
                                                            Imports
                                                                          GDP
                  year
        0 Canada
                  2017
                         0.372665
                                       1.095475
                                                0.582831
                                                           0.600031
                                                                     1.868164
        1 Canada
                  2016
                         0.364899
                                       1.058426 0.576394
                                                           0.575775 1.814016
        2 Canada
                  2015
                         0.358303
                                       1.035208 0.568859
                                                           0.575793 1.794270
                  2014
          Canada
                         0.353485
                                       1.011988 0.550323
                                                           0.572344 1.782252
          Canada 2013
                         0.351541
                                       0.986400 0.518040 0.558636 1.732714
```

```
In [6]: df_tiny = df.iloc[[0, 3, 2, 4], :]
       df_tiny
Out[6]:
                        GovExpend Consumption
                                                Exports
                                                          Imports
                                                                        GDP
         country
                 year
                                      1.095475
                  2017
                                               0.582831
                                                         0.600031 1.868164
       0 Canada
                         0.372665
       3 Canada
                  2014
                         0.353485
                                               0.550323
                                                         0.572344 1.782252
                                      1.011988
       2 Canada
                  2015
                         0.358303
                                      1.035208 0.568859
                                                         0.575793 1.794270
       4 Canada 2013
                         0.351541
                                      0.986400 0.518040
                                                         0.558636 1.732714
In [7]: im_ex = df_small[["Imports", "Exports"]]
       im_ex_copy = im_ex.copy()
       im_ex_copy
Out[7]:
           Imports
                     Exports
       0 0.600031 0.582831
       1 0.575775 0.576394
       2 0.575793 0.568859
       3 0.572344 0.550323
       4 0.558636 0.518040
In [8]: im_ex + im_ex_copy
Out[8]:
           Imports
                     Exports
         1.200063 1.165661
       1 1.151550 1.152787
       2 1.151585 1.137718
         1.144688 1.100646
       4 1.117272 1.036081
In [9]: df_tiny
Out [9]:
         country year
                        GovExpend Consumption
                                                Exports
                                                          Imports
                                                                        GDP
       0 Canada
                  2017
                         0.372665
                                      1.095475 0.582831
                                                         0.600031
                                                                   1.868164
       3 Canada 2014
                        0.353485
                                      1.011988 0.550323
                                                         0.572344 1.782252
         Canada
                         0.358303
                                      1.035208 0.568859
                                                         0.575793 1.794270
                  2015
       4 Canada
                 2013
                         0.351541
                                      0.986400 0.518040
                                                         0.558636 1.732714
In [10]: im_ex_tiny = df_tiny + im_ex
        im_ex_tiny
```

```
Out[10]:
            Consumption
                           Exports
                                    GDP
                                         GovExpend
                                                      Imports country
                                                                        year
         0
                    NaN
                          1.165661
                                    NaN
                                                NaN
                                                     1.200063
                                                                   NaN
                                                                         NaN
         1
                    NaN
                               NaN NaN
                                                NaN
                                                          NaN
                                                                   NaN
                                                                         NaN
         2
                    NaN
                          1.137718 NaN
                                                NaN
                                                     1.151585
                                                                   NaN
                                                                         NaN
         3
                          1.100646 NaN
                                                NaN
                                                     1.144688
                                                                         NaN
                    NaN
                                                                   NaN
         4
                    NaN
                          1.036081 NaN
                                                NaN
                                                    1.117272
                                                                   NaN
                                                                         NaN
```

以上可以看出即使两个数据集的行与列不同,pandas可以帮助我们自动对准并完成运算。

1.3.2 (2) 设置索引

```
In [13]: # 设定年份为索引
```

df_year = df.set_index(["year"])
df_year.head()

```
Out[13]:
             country GovExpend Consumption
                                              Exports
                                                        Imports
                                                                     GDP
        year
        2017
              Canada
                       0.372665
                                   1.095475
                                             0.582831
                                                       0.600031
                                                                1.868164
        2016
              Canada
                       0.364899
                                   1.058426
                                             0.576394
                                                       0.575775
                                                                1.814016
        2015 Canada
                       0.358303
                                   1.035208 0.568859
                                                       0.575793
                                                                1.794270
        2014 Canada
                       0.353485
                                   1.011988 0.550323
                                                       0.572344
                                                                1.782252
        2013 Canada
                       0.351541
                                   0.986400 0.518040 0.558636
                                                                1.732714
```

In [14]: # 特定年份

df_year.loc[2010]

```
Out[14]:
                                                                                 GDP
                               GovExpend Consumption
                                                        Exports
                                                                  Imports
                      country
        year
         2010
                       Canada
                                0.347332
                                             0.921952 0.469949
                                                                 0.500341
                                                                            1.613543
         2010
                      Germany
                                0.653386
                                             1.915481 1.443735
                                                                            3.417095
                                                                1.266126
         2010 United Kingdom
                                0.521146
                                             1.598563 0.690824
                                                                 0.745065
                                                                            2.452900
         2010
                United States
                                2.510143
                                            10.185836 1.846280
                                                                 2.360183
                                                                           14.992053
```

In [15]: #2008 年和 2009 年数据差值

df_year.loc[2009].mean() - df_year.loc[2008].mean()

Out[15]: GovExpend 0.033317

Consumption -0.042998

Exports -0.121425

Imports -0.140042

GDP -0.182610

dtype: float64

In [16]: #2010 年美国的 GDP

df_year.loc[df_year["country"] == "United States", "GDP"].loc[2010]

Out[16]: 14.992052727

In [18]: #2010 年德国和英国的 GDP

df_year.loc[df_year["country"].isin(["United Kingdom", "Germany"]), "GDP"].loc[2010]

Out[18]: year

2010 3.4170952010 2.452900

Name: GDP, dtype: float64

这里出现了一个问题,我们如何知道两个"2010年"数据分别对应的是哪个国家?因为 isin 里UK 是首位,所以 GDP 首位就是指 UK 的?

In [19]: df_year.loc[2010]

Out[19]:	country	${\tt GovExpend}$	Consumption	Exports	Imports	GDP
year						
2010	Canada	0.347332	0.921952	0.469949	0.500341	1.613543
2010	${\tt Germany}$	0.653386	1.915481	1.443735	1.266126	3.417095
2010	United Kingdom	0.521146	1.598563	0.690824	0.745065	2.452900
2010	United States	2.510143	10.185836	1.846280	2.360183	14.992053

显然,我们上面的猜想是错误的。这反映了一个问题,仅仅将数据按年份对准是不够的。

1.3.3 (3) 分层索引

In [21]: wdi = df.set_index(["country", "year"])
 wdi.head(20)

Out[21]:		GovExpend	Consumption	Exports	Imports	GDP	
	country	year					
	Canada	2017	0.372665	1.095475	0.582831	0.600031	1.868164
		2016	0.364899	1.058426	0.576394	0.575775	1.814016
		2015	0.358303	1.035208	0.568859	0.575793	1.794270
		2014	0 353485	1 011988	0 550323	0 572344	1 782252

```
2013
                       0.351541
                                    0.986400 0.518040
                                                       0.558636
                                                                 1.732714
                2012
                       0.354342
                                    0.961226 0.505969
                                                       0.547756
                                                                 1.693428
                2011
                       0.351887
                                    0.943145 0.492349 0.528227
                                                                 1.664240
                2010
                       0.347332
                                    0.921952 0.469949
                                                       0.500341
                                                                 1.613543
                2009
                       0.339686
                                    0.890078 0.440692
                                                       0.439796
                                                                 1.565291
                2008
                       0.330766
                                    0.889602 0.506350
                                                       0.502281
                                                                 1.612862
                2007
                       0.318777
                                    0.864012 0.530453
                                                       0.498002
                                                                 1.596876
                2006
                       0.311382
                                    0.827643 0.524461
                                                       0.470931
                                                                 1.564608
                2005
                       0.303043
                                    0.794390 0.519950 0.447222 1.524608
                2004
                       0.299854
                                    0.764357 0.508657
                                                       0.416754
                                                                 1.477317
                2003
                       0.294335
                                    0.741796 0.481993
                                                       0.384199
                                                                 1.433089
                2002
                       0.286094
                                    0.721974 0.490465
                                                       0.368615
                                                                 1.407725
                2001
                       0.279767
                                    0.694230 0.484696
                                                       0.362023
                                                                 1.366590
                2000
                       0.270553
                                    0.677713 0.499526 0.380823
                                                                 1.342805
        Germany 2017
                       0.745579
                                    2.112009 1.930563 1.666348
                                                                 3.883870
                2016
                       0.734014
                                    2.075615 1.844949 1.589495 3.801859
In [22]: #2010 年美国 GDP
        wdi.loc[("United States", 2010), "GDP"]
        \#df\_year.loc[df\_year["country"] == "United States", "GDP"].loc[2010]
Out [22]: 14.992052727
In [23]: #2010 年美国和德国 GDP
        wdi.loc[(["United Kingdom", "Germany"], 2010), "GDP"]
Out[23]: country
                        year
                        2010
                               3.417095
        Germany
        United Kingdom 2010
                                2.452900
        Name: GDP, dtype: float64
In [24]: # 美国和加拿大数据
        wdi.loc[["United States", "Canada"]]
Out [24]:
                            GovExpend Consumption
                                                                             GDP
                                                    Exports
                                                              Imports
        country
                      year
        Canada
                      2017
                             0.372665
                                         1.095475 0.582831 0.600031
                                                                        1.868164
                      2016
                             0.364899
                                         1.058426 0.576394 0.575775
                                                                        1.814016
```

```
1.035208 0.568859 0.575793
              2015
                      0.358303
                                                                    1.794270
              2014
                      0.353485
                                   1.011988
                                              0.550323
                                                        0.572344
                                                                    1.782252
              2013
                      0.351541
                                   0.986400
                                              0.518040
                                                        0.558636
                                                                    1.732714
                                              0.505969
              2012
                      0.354342
                                   0.961226
                                                        0.547756
                                                                    1.693428
              2011
                      0.351887
                                   0.943145
                                              0.492349
                                                        0.528227
                                                                    1.664240
              2010
                      0.347332
                                   0.921952
                                              0.469949
                                                        0.500341
                                                                    1.613543
              2009
                      0.339686
                                   0.890078
                                              0.440692
                                                        0.439796
                                                                    1.565291
              2008
                      0.330766
                                   0.889602
                                              0.506350
                                                        0.502281
                                                                    1.612862
              2007
                      0.318777
                                   0.864012
                                             0.530453
                                                        0.498002
                                                                    1.596876
              2006
                      0.311382
                                   0.827643
                                             0.524461
                                                        0.470931
                                                                    1.564608
              2005
                      0.303043
                                   0.794390
                                              0.519950
                                                        0.447222
                                                                    1.524608
              2004
                      0.299854
                                   0.764357
                                              0.508657
                                                        0.416754
                                                                    1.477317
              2003
                      0.294335
                                   0.741796
                                              0.481993
                                                        0.384199
                                                                    1.433089
              2002
                      0.286094
                                   0.721974
                                              0.490465
                                                        0.368615
                                                                    1.407725
                      0.279767
              2001
                                   0.694230
                                             0.484696
                                                        0.362023
                                                                    1.366590
              2000
                      0.270553
                                   0.677713
                                             0.499526
                                                        0.380823
                                                                    1.342805
United States 2017
                      2.405743
                                  12.019266
                                              2.287071
                                                        3.069954
                                                                   17.348627
              2016
                      2.407981
                                  11.722133
                                              2.219937
                                                        2.936004
                                                                   16.972348
              2015
                      2.373130
                                  11.409800
                                              2.22228
                                                        2.881337
                                                                   16.710459
              2014
                      2.334071
                                  11.000619
                                              2.209555
                                                        2.732228
                                                                   16.242526
              2013
                      2.353381
                                  10.687214
                                              2.118639
                                                        2.600198
                                                                   15.853796
              2012
                      2.398873
                                  10.534042
                                              2.045509
                                                        2.560677
                                                                   15.567038
              2011
                      2.434378
                                  10.378060
                                              1.978083
                                                        2.493194
                                                                   15.224555
              2010
                      2.510143
                                  10.185836
                                              1.846280
                                                        2.360183
                                                                   14.992053
              2009
                      2.507390
                                  10.010687
                                              1.646432
                                                        2.086299
                                                                   14.617299
              2008
                      2.407771
                                  10.137847
                                              1.797347
                                                        2.400349
                                                                   14.997756
              2007
                      2.351987
                                  10.159387
                                              1.701096
                                                        2.455016
                                                                   15.018268
              2006
                      2.314957
                                   9.938503
                                              1.564920
                                                        2.395189
                                                                   14.741688
              2005
                      2.287022
                                   9.643098
                                              1.431205
                                                        2.246246
                                                                   14.332500
              2004
                      2.267999
                                   9.311431
                                              1.335978
                                                        2.108585
                                                                   13.846058
              2003
                      2.233519
                                   8.974708
                                              1.218199
                                                        1.892825
                                                                   13.339312
              2002
                      2.193188
                                   8.698306
                                              1.192180
                                                        1.804105
                                                                   12.968263
              2001
                      2.112038
                                   8.480461
                                              1.213253
                                                        1.740797
                                                                   12.746262
              2000
                      2.040500
                                              1.287739
                                                        1.790995
                                   8.272097
                                                                   12.620268
```

In [27]: #2005、2007、2009 年所有国家数据 wdi.loc[pd.IndexSlice[:, [2005, 2007, 2009]],:]

#wdi.loc[(["United Kingdom", "Germany"], 2010), "GDP"]

Out[27]:			GovExpend	Consumption	Exports	Imports	GDP
	country yea						
	Canada	2009	0.339686	0.890078	0.440692	0.439796	1.565291
		2007	0.318777	0.864012	0.530453	0.498002	1.596876
		2005	0.303043	0.794390	0.519950	0.447222	1.524608
	Germany	2009	0.645023	1.908393	1.260525	1.121914	3.283144
		2007	0.605624	1.894219	1.442436	1.213835	3.441356
		2005	0.591184	1.866253	1.175200	1.028094	3.213777
	United Kingdom	2009	0.519716	1.587152	0.653830	0.689011	2.411632
		2007	0.504549	1.644789	0.710200	0.767699	2.527327
		2005	0.490806	1.578914	0.640088	0.715951	2.403352
	United States	2009	2.507390	10.010687	1.646432	2.086299	14.617299
		2007	2.351987	10.159387	1.701096	2.455016	15.018268
		2005	2.287022	9.643098	1.431205	2.246246	14.332500

In [26]: wdi.loc[(:,[2005, 2007, 2009]), :]

```
File "<ipython-input-26-bde458006c3a>", line 1 wdi.loc[(:,[2005, 2007, 2009]), :]
```

SyntaxError: invalid syntax

此时, loc 不起作用,需要借助 pd.IndexSlice

In [28]: # 多索引列 wdiT = wdi.T

wdiT

Out[28]:	country	Canada						\
	year	2017	2016	2015	2014	2013	2012	
	${\tt GovExpend}$	0.372665	0.364899	0.358303	0.353485	0.351541	0.354342	
	Consumption	1.095475	1.058426	1.035208	1.011988	0.986400	0.961226	
	Exports	0.582831	0.576394	0.568859	0.550323	0.518040	0.505969	

Imports	0.600031	0.575775	0.575793	0.572344	0.558636	0.547756	
GDP	1.868164	1.814016	1.794270	1.782252	1.732714	1.693428	
country						United States	\
year	2011	2010	2009	2008		2009	
GovExpend	0.351887	0.347332	0.339686	0.330766		2.507390	
Consumption	0.943145	0.921952	0.890078	0.889602		10.010687	
Exports	0.492349	0.469949	0.440692	0.506350		1.646432	
Imports	0.528227	0.500341	0.439796	0.502281		2.086299	
GDP	1.664240	1.613543	1.565291	1.612862		14.617299	
country							\
year	2008	2007	7 20	06 2	2005	2004 2003	3
GovExpend	2.407771	2.351987	7 2.3149	57 2.287	7022 2.26	7999 2.233519)
Consumption	10.137847	10.159387	9.9385	03 9.643	3098 9.31	1431 8.974708	3
Exports	1.797347	1.701096	1.5649	20 1.431	.205 1.33	35978 1.218199)
Imports	2.400349	2.455016	2.3951	89 2.246	3246 2.10	8585 1.892825	5
GDP	14.997756	15.018268	3 14.7416	88 14.332	2500 13.84	6058 13.339312	2
country							
year	2002	2001	L 20	00			
GovExpend	2.193188	2.112038	3 2.0405	00			
Consumption	8.698306	8.480461	8.2720	97			
Exports	1.192180	1.213253	3 1.2877	39			
Imports	1.804105	1.740797	7 1.7909	95			
GDP	12.968263	12.746262	2 12.6202	68			

[5 rows x 72 columns]

In [30]: # 美国数据

wdiT.loc[:, "United States"]

Out[30]:	year	2017	2016	2015	2014	2013	2012
	${\tt GovExpend}$	2.405743	2.407981	2.373130	2.334071	2.353381	2.398873
	Consumption	12.019266	11.722133	11.409800	11.000619	10.687214	10.534042
	Exports	2.287071	2.219937	2.22228	2.209555	2.118639	2.045509
	Imports	3.069954	2.936004	2.881337	2.732228	2.600198	2.560677
	GDP	17.348627	16.972348	16.710459	16.242526	15.853796	15.567038

year	2011	2010	2009	2008	2007	2006	١
${\tt GovExpend}$	2.434378	2.510143	2.507390	2.407771	2.351987	2.314957	
Consumption	10.378060	10.185836	10.010687	10.137847	10.159387	9.938503	
Exports	1.978083	1.846280	1.646432	1.797347	1.701096	1.564920	
Imports	2.493194	2.360183	2.086299	2.400349	2.455016	2.395189	
GDP	15.224555	14.992053	14.617299	14.997756	15.018268	14.741688	
year	2005	2004	2003	2002	2001	2000	
${\tt GovExpend}$	2.287022	2.267999	2.233519	2.193188	2.112038	2.040500	
Consumption	9.643098	9.311431	8.974708	8.698306	8.480461	8.272097	
Exports	1.431205	1.335978	1.218199	1.192180	1.213253	1.287739	
Imports	2.246246	2.108585	1.892825	1.804105	1.740797	1.790995	
GDP	14.332500	13.846058	13.339312	12.968263	12.746262	12.620268	

In [32]: # 美国和加拿大数据

wdiT.loc[:, ["United States", "Canada"]]

Out[32]:	country	Canada						\	
	year	2017	2016	2015	2014	2013	2012		
	${\tt GovExpend}$	0.372665	0.364899	0.358303	0.353485	0.351541	0.354342		
	Consumption	1.095475	1.058426	1.035208	1.011988	0.986400	0.961226		
	Exports	0.582831	0.576394	0.568859	0.550323	0.518040	0.505969		
	Imports	0.600031	0.575775	0.575793	0.572344	0.558636	0.547756		
	GDP	1.868164	1.814016	1.794270	1.782252	1.732714	1.693428		
	country						United St	ates	\
	year	2011	2010	2009	2008			2009	
	GovExpend	0.351887	0.347332	0.339686	0.330766		2.50	7390	
	Consumption	0.943145	0.921952	0.890078	0.889602		10.01	10687	
	Exports	0.492349	0.469949	0.440692	0.506350		1.64	16432	
	Imports	0.528227	0.500341	0.439796	0.502281		2.08	36299	
	GDP	1.664240	1.613543	1.565291	1.612862		14.61	17299	
	country								\
	year	2008	200	7 20	06 2	005	2004	2003	
	GovExpend	2.407771	2.35198	7 2.3149	57 2.287	022 2.26	7999 2.2	233519	
	Consumption	10.137847	10.15938	7 9.9385	03 9.643	098 9.31	1431 8.9	974708	

```
Exports
                        1.701096
             1.797347
                                   1.564920
                                              1.431205
                                                         1.335978
                                                                    1.218199
Imports
             2.400349
                        2.455016
                                   2.395189
                                              2.246246
                                                         2.108585
                                                                    1.892825
GDP
             14.997756 15.018268 14.741688 14.332500 13.846058
                                                                   13.339312
country
                            2001
                                       2000
year
                 2002
GovExpend
             2.193188
                        2.112038
                                   2.040500
Consumption
             8.698306
                        8.480461
                                   8.272097
Exports
             1.192180
                        1.213253
                                   1.287739
Imports
                                   1.790995
             1.804105
                        1.740797
GDP
             12.968263 12.746262 12.620268
```

[5 rows x 36 columns]

In [33]: #2010 年美国和加拿大数据

wdiT.loc[:, (["United States", "Canada"], 2010)]

Out[33]:	country	Canada	United States
	year	2010	2010
	GovExpend	0.347332	2.510143
	Consumption	0.921952	10.185836
	Exports	0.469949	1.846280
	Imports	0.500341	2.360183
	GDP	1.613543	14.992053

1.3.4 (4) 重设索引

df.reset_index 方法将索引的一个或多个级别作为普通列移回到 DataFrame

In [34]: wdi.reset_index()

Out[34]:	country	year	${\tt GovExpend}$	${\tt Consumption}$	Exports	Imports	\
0	Canada	2017	0.372665	1.095475	0.582831	0.600031	
1	Canada	2016	0.364899	1.058426	0.576394	0.575775	
2	Canada	2015	0.358303	1.035208	0.568859	0.575793	
3	Canada	2014	0.353485	1.011988	0.550323	0.572344	
4	Canada	2013	0.351541	0.986400	0.518040	0.558636	
5	Canada	2012	0.354342	0.961226	0.505969	0.547756	
6	Canada	2011	0.351887	0.943145	0.492349	0.528227	

7	Canada	2010	0.347332	0.921952	0.469949	0.500341
8	Canada	2009	0.339686	0.890078	0.440692	0.439796
9	Canada	2008	0.330766	0.889602	0.506350	0.502281
10	Canada	2007	0.318777	0.864012	0.530453	0.498002
11	Canada	2006	0.311382	0.827643	0.524461	0.470931
12	Canada	2005	0.303043	0.794390	0.519950	0.447222
13	Canada	2004	0.299854	0.764357	0.508657	0.416754
14	Canada	2003	0.294335	0.741796	0.481993	0.384199
15	Canada	2002	0.286094	0.721974	0.490465	0.368615
16	Canada	2001	0.279767	0.694230	0.484696	0.362023
17	Canada	2000	0.270553	0.677713	0.499526	0.380823
18	Germany	2017	0.745579	2.112009	1.930563	1.666348
19	Germany	2016	0.734014	2.075615	1.844949	1.589495
20	Germany	2015	0.706115	2.033666	1.803081	1.527074
21	Germany	2014	0.685990	1.999953	1.712270	1.445409
22	Germany	2013	0.675471	1.979458	1.635030	1.394385
23	Germany	2012	0.666454	1.967390	1.607455	1.354122
24	Germany	2011	0.659528	1.941340	1.563277	1.355008
25	Germany	2010	0.653386	1.915481	1.443735	1.266126
26	Germany	2009	0.645023	1.908393	1.260525	1.121914
27	Germany	2008	0.626140	1.905520	1.470300	1.241057
28	Germany	2007	0.605624	1.894219	1.442436	1.213835
29	Germany	2006	0.596868	1.894219	1.319574	1.142552
	• • •				• • •	
42	United Kingdom	2011	0.521716	1.588172	0.735331	0.750540
43	United Kingdom	2010	0.521146	1.598563	0.690824	0.745065
44	United Kingdom	2009	0.519716	1.587152	0.653830	0.689011
45	United Kingdom	2008	0.513870	1.635333	0.713184	0.753502
46	United Kingdom	2007	0.504549	1.644789	0.710200	0.767699
47	United Kingdom	2006	0.499312	1.604404	0.717506	0.786134
48	United Kingdom	2005	0.490806	1.578914	0.640088	0.715951
49	United Kingdom	2004	0.471828	1.531808	0.593046	0.667995
50	United Kingdom	2003	0.452743	1.484092	0.562653	0.625696
51	United Kingdom	2002	0.434954	1.433861	0.546092	0.606795
52	United Kingdom	2001	0.418387	1.380779	0.533999	0.574277
53	United Kingdom	2000	0.401274	1.332093	0.523797	0.548044
54	United States	2017	2.405743	12.019266	2.287071	3.069954

55	United States	2016	2.407981	11.722133	2.219937	2.936004
56	United States	2015	2.373130	11.409800	2.22228	2.881337
57	United States	2014	2.334071	11.000619	2.209555	2.732228
58	United States	2013	2.353381	10.687214	2.118639	2.600198
59	United States	2012	2.398873	10.534042	2.045509	2.560677
60	United States	2011	2.434378	10.378060	1.978083	2.493194
61	United States	2010	2.510143	10.185836	1.846280	2.360183
62	United States	2009	2.507390	10.010687	1.646432	2.086299
63	United States	2008	2.407771	10.137847	1.797347	2.400349
64	United States	2007	2.351987	10.159387	1.701096	2.455016
65	United States	2006	2.314957	9.938503	1.564920	2.395189
66	United States	2005	2.287022	9.643098	1.431205	2.246246
67	United States	2004	2.267999	9.311431	1.335978	2.108585
68	United States	2003	2.233519	8.974708	1.218199	1.892825
69	United States	2002	2.193188	8.698306	1.192180	1.804105
70	United States	2001	2.112038	8.480461	1.213253	1.740797
71	United States	2000	2.040500	8.272097	1.287739	1.790995

GDP

- 0 1.868164
- 1 1.814016
- 2 1.794270
- 3 1.782252
- 4 1.732714
- 5 1.693428
- 6 1.664240
- 7 1.613543
- 8 1.565291
- 9 1.612862
- 10 1.596876
- 11 1.564608
- 12 1.524608
- 13 1.477317
- 14 1.433089
- 15 1.407725
- 16 1.366590
- 17 1.342805

- 18 3.883870
- 19 3.801859
- 20 3.718482
- 21 3.654924
- 22 3.577015
- 23 3.559587
- 24 3.542160
- 25 3.417095
- 26 3.283144
- 27 3.478602
- 28 3.441356
- 29 3.332692
-
- 42 2.493244
- 43 2.452900
- 44 2.411632
- 45 2.518585
- 46 2.527327
- 47 2.464591
- 48 2.403352
- 49 2.329987
- _____
- 50 2.27653851 2.202971
- 52 2.149246
- -----
- 53 2.089877
- 54 17.348627
- 55 16.972348
- 56 16.710459
- 57 16.242526
- 58 15.853796
- 59 15.567038
- 60 15.224555
- 61 14.992053
- 62 14.617299
- 63 14.997756
- 64 15.018268
- 65 14.741688

```
66 14.332500
         67
            13.846058
            13.339312
         68
         69 12.968263
         70 12.746262
         71 12.620268
         [72 rows x 7 columns]
1.4 4. 数据存储
In [3]: import pandas as pd
        import numpy as np
In [4]: # 生成一份数据集
       np.random.seed(42)
        df1 = pd.DataFrame(
            np.random.randint(0, 100, size=(10, 4)),
            columns=["a", "b", "c", "d"]
        )
       wanted_mb = 10
       nrow = 100000
       ncol = int(((wanted_mb * 1024**2) / 8) / nrow)
       df2 = pd.DataFrame(
           np.random.rand(nrow, ncol),
            columns=["x{}".format(i) for i in range(ncol)]
        )
       print("df2.shape = ", df2.shape)
       print("df2 is approximately {} MB".format(df2.memory_usage().sum() / (1024**2)))
df2.shape = (100000, 13)
df2 is approximately 9.918289184570312 MB
```

```
1.4.1 (1) csv
In [37]: print(df1.to_csv())
,a,b,c,d
0,51,92,14,71
1,60,20,82,86
2,74,74,87,99
3,23,2,21,52
4,1,87,29,37
5,1,63,59,20
6,32,75,57,21
7,88,48,90,58
8,41,91,59,79
9,14,61,61,46
In [40]: #数据集命名为 df1
        df1.to_csv("df1.csv")
In [41]: # 查看数据集 df1 是否创建
        import os
        os.path.isfile("df1.csv")
Out[41]: True
In [45]: #保存 df2 所需时间
        %time df2.to_csv("df2.csv")
Wall time: 3.94 s
In [50]: # 读取数据
        df1_csv = pd.read_csv("df1.csv", index_col=0)
        df1_csv.head()
Out [50]:
            a
                b
                    С
                       d
        0 51
              92 14 71
        1 60
              20 82 86
        2 74 74 87 99
        3 23
               2 21 52
           1 87 29 37
```

1.4.2 (2) Excel

```
In [46]: #第一个参数是工作簿名称,第二个是工作表名称
        df1.to_excel("df1.xlsx", "df1")
In [48]: #工作簿上写入多份数据集(多张数据表)
        with pd.ExcelWriter("df1.xlsx") as writer:
           df1.to_excel(writer, "df1")
           (df1 + 10).to_excel(writer, "df1 plus 10")
In [49]: %%time
        df2.to_excel("df2.xlsx")
Wall time: 38 s
In [51]: # 读取数据
        df1_xlsx = pd.read_excel("df1.xlsx", "df1", index_col=0)
        df1_xlsx.head()
Out [51]:
              b
           a
                  С
                      d
        0 51 92 14 71
        1 60
              20
                 82 86
        2 74 74 87 99
              2 21 52
        3
         23
           1 87
                 29 37
```

1.4.3 (3) feather

The feather file format was developed for very efficient reading and writing between Python and your computer.

```
In [1]: !pip install pyarrow
```

```
Requirement already satisfied: pyarrow in c:\users\van\anaconda3\lib\site-packages (0.15.1)

Requirement already satisfied: six>=1.0.0 in c:\users\van\anaconda3\lib\site-packages (from pyarrow pyarrow) |

Requirement already satisfied: numpy>=1.14 in c:\users\van\anaconda3\lib\site-packages (from pyarrow) |
```

distributed 1.21.8 requires msgpack, which is not installed.

You are using pip version 10.0.1, however version 19.3.1 is available.

You should consider upgrading via the 'python -m pip install --upgrade pip' command.

```
In [5]: import pyarrow.feather
       pyarrow.feather.write_feather(df1, "df1.feather")
In [6]: %%time
       pyarrow.feather.write_feather(df2, "df2.feather")
Wall time: 26.9 ms
In [7]: df1_feather = pyarrow.feather.read_feather("df1.feather")
       df1_feather.head()
Out[7]:
           a
               b
                   С
          51
              92
                 14 71
       1 60 20 82 86
       2 74 74 87 99
       3
          23
              2 21 52
           1 87 29 37
   对于同一份数据集 df2(10mb), 保存为 csv 格式需要 3.94s, excel 格式需要 38s, feather 格式
仅需要 26.9ms
1.5 5. 清洗数据
In [8]: import pandas as pd
       import numpy as np
In [9]: # 生成数据集
       df = pd.DataFrame({"numbers": ["#23", "#24", "#18", "#14", "#12", "#10", "#35"],
                          "nums": ["23", "24", "18", "14", np.nan, "XYZ", "35"],
                          "colors": ["green", "red", "yellow", "orange", "purple", "blue", "p
                          "other_column": [0, 1, 0, 2, 1, 0, 2]})
       df
Out[9]: numbers nums
                       colors other_column
       0
             #23
                   23
                        green
                                         0
             #24
       1
                   24
                          red
       2
                   18 yellow
             #18
                                         0
       3
             #14
                   14 orange
                                         2
       4
             #12 NaN purple
             #10 XYZ
                         blue
       5
                                         0
       6
             #35
                   35
                                         2
                        pink
```

1.5.1 (1) 字符串

```
In [10]: df["numbers"].mean()
```

ValueError

Traceback (most recent call last)

~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _ensure_numeric(x)

821 try:

--> 822 x = float(x)

823 except Exception:

ValueError: could not convert string to float: '#23#24#18#14#12#10#35'

During handling of the above exception, another exception occurred:

ValueError

Traceback (most recent call last)

~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _ensure_numeric(x)

824 try:

--> 825 x = complex(x)

826 except Exception:

ValueError: complex() arg is a malformed string

During handling of the above exception, another exception occurred:

TypeError

Traceback (most recent call last)

~\Anaconda3\lib\site-packages\pandas\core\nanops.py in f(values, axis, skipna, **kwds)

```
127
                        else:
--> 128
                            result = alt(values, axis=axis, skipna=skipna, **kwds)
    129
                    except Exception:
    ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in nanmean(values, axis, skipna)
    354
            count = _get_counts(mask, axis, dtype=dtype_count)
--> 355
            the_sum = _ensure_numeric(values.sum(axis, dtype=dtype_sum))
    356
    ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _ensure_numeric(x)
    827
                        raise TypeError('Could not convert {value!s} to numeric'
--> 828
                                        .format(value=x))
    829
           return x
    TypeError: Could not convert #23#24#18#14#12#10#35 to numeric
During handling of the above exception, another exception occurred:
    ValueError
                                              Traceback (most recent call last)
    ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _ensure numeric(x)
    821
                try:
--> 822
                    x = float(x)
                except Exception:
    823
    ValueError: could not convert string to float: '#23#24#18#14#12#10#35'
```

During handling of the above exception, another exception occurred:

```
ValueError
                                               Traceback (most recent call last)
    ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _ensure_numeric(x)
    824
                    try:
--> 825
                        x = complex(x)
    826
                    except Exception:
    ValueError: complex() arg is a malformed string
During handling of the above exception, another exception occurred:
    TypeError
                                              Traceback (most recent call last)
    <ipython-input-10-c62df3911a80> in <module>()
----> 1 df["numbers"].mean()
    ~\Anaconda3\lib\site-packages\pandas\core\generic.py in stat_func(self, axis, skipna,
   9587
                                              skipna=skipna)
   9588
                return self._reduce(f, name, axis=axis, skipna=skipna,
-> 9589
                                    numeric_only=numeric_only)
   9590
   9591
            return set_function_name(stat_func, name, cls)
    ~\Anaconda3\lib\site-packages\pandas\core\series.py in _reduce(self, op, name, axis, si
   3216
                                                   'numeric_only.'.format(name))
   3217
                    with np.errstate(all='ignore'):
-> 3218
                        return op(delegate, skipna=skipna, **kwds)
   3219
   3220
                return delegate. reduce(op=op, name=name, axis=axis, skipna=skipna,
    ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _f(*args, **kwargs)
```

```
75
                        try:
         76
                            with np.errstate(invalid='ignore'):
    ---> 77
                                return f(*args, **kwargs)
         78
                        except ValueError as e:
         79
                            # we want to transform an object array
        ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in f(values, axis, skipna, **kwds)
        129
                        except Exception:
        130
                            try:
    --> 131
                                result = alt(values, axis=axis, skipna=skipna, **kwds)
        132
                            except ValueError as e:
        133
                                # we want to transform an object array
        ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in nanmean(values, axis, skipna)
        353
                    dtype_count = dtype
        354
                count = _get_counts(mask, axis, dtype=dtype_count)
    --> 355
                the_sum = _ensure_numeric(values.sum(axis, dtype=dtype_sum))
        356
        357
                if axis is not None and getattr(the_sum, 'ndim', False):
        ~\Anaconda3\lib\site-packages\pandas\core\nanops.py in _ensure_numeric(x)
        826
                        except Exception:
        827
                            raise TypeError('Could not convert {value!s} to numeric'
    --> 828
                                             .format(value=x))
        829
                return x
        830
        TypeError: Could not convert #23#24#18#14#12#10#35 to numeric
In [11]: df["numbers_str"] = df["numbers"].str.replace("#", "")
In [13]: df["numbers_str"].mean()
Out[13]: 3320259160147.857
```

```
In [14]: df["colors"].str.contains("p")
Out[14]: 0
              False
         1
              False
         2
              False
         3
              False
         4
               True
         5
              False
         6
               True
         Name: colors, dtype: bool
In [15]: df["colors"].str.capitalize()
Out[15]: 0
               Green
         1
                 Red
         2
              Yellow
         3
              Orange
              Purple
         5
                Blue
         6
                Pink
         Name: colors, dtype: object
      (2) 类型转换
1.5.2
In [16]: df["numbers_numeric"] = pd.to_numeric(df["numbers_str"])
In [17]: df.dtypes
Out[17]: numbers
                             object
         nums
                             object
         colors
                             object
                              int64
         other_column
         numbers_str
                             object
         numbers_numeric
                              int64
         dtype: object
In [18]: df.head()
Out[18]:
           numbers nums
                         colors other_column numbers_str numbers_numeric
         0
               #23
                     23
                           green
                                                         23
                                                                          23
```

```
1
      #24
            24
                   red
                                               24
                                                                24
                                   1
      #18
2
            18
               yellow
                                   0
                                               18
                                                                18
3
      #14
            14
                orange
                                   2
                                               14
                                                                14
      #12 NaN
               purple
                                               12
                                                                12
```

In [19]: df["numbers_numeric"].astype(str)

Out[19]: 0 23 1 24 2 18 3 14 4 12 5 10 6 35

Name: numbers_numeric, dtype: object

In [20]: df["numbers_numeric"].astype(float)

Out[20]: 0 23.0 1 24.0 2 18.0 3 14.0 4 12.0 5 10.0 6 35.0

Name: numbers_numeric, dtype: float64

1.5.3 (3) 缺失数据

In [21]: df

Out[21]:	numbers	nums	colors	other_column	numbers_str	numbers_numeric
0	#23	23	green	0	23	23
1	#24	24	red	1	24	24
2	#18	18	yellow	0	18	18
3	#14	14	orange	2	14	14
4	#12	NaN	purple	1	12	12
5	#10	XYZ	blue	0	10	10
6	#35	35	pink	2	35	35

In [22]: # 找到缺失数据

df.isnull()

Out[22]:		numbers	nums	colors	other_column	numbers_str	numbers_numeric
	0	False	False	False	False	False	False
	1	False	False	False	False	False	False
	2	False	False	False	False	False	False
	3	False	False	False	False	False	False
	4	False	True	False	False	False	False
	5	False	False	False	False	False	False
	6	False	False	False	False	False	False

In [23]: # 列是否有缺失数据

df.isnull().any(axis=0)

Out[23]: numbers False
nums True
colors False
other_column False
numbers_str False
numbers_numeric False

dtype: bool

In [24]: # 行是否有缺失数据

df.isnull().any(axis=1)

Out[24]: 0 False

1 False

2 False

3 False

4 True

5 False

6 False

dtype: bool

In [25]: # 剔除缺失数据

df.dropna()

Out[25]: numbers nums colors other_column numbers_str numbers_numeric

0 #23 23 green 0 23 23

		#04	0.4	1	4	0.4	0.4
	1	#24	24	red	1	24	24
	2	#18	18	yellow	0	18	18
	3	#14	14	orange	2	14	14
	5	#10	XYZ	blue	0	10	10
	6	#35	35	pink	2	35	35
In [26]:	# *	外充缺失	数据				
	df.	fillna	(value	=100)			
Out[26]:	n	umbers	nums	colors	other_column	numbers_str	numbers_numeric
	0	#23	23	green	0	23	23
	1	#24	24	red	1	24	24
	2	#18	18	yellow	0	18	18
	3	#14	14	orange	2	14	14
	4	#12	100	purple	1	12	12
	5	#10	XYZ	blue	0	10	10
	6	#35	35	pink	2	35	35
In [28]:	# 1	使用后面	的值剂	· 充缺失值			
	df.	fillna	(metho	d="bfill	")		
Un+ [38] •	n	umborg	numa	colors	other column	numbora str	numbors numoris
Out[28]:		umbers					numbers_numeric
Out[28]:	0	#23	23	green	0	23	23
Out[28]:	0	#23 #24	23 24	green red	0	23 24	23 24
Out[28]:	0 1 2	#23 #24 #18	23 24 18	green red yellow	0 1 0	23 24 18	23 24 18
Out[28]:	0 1 2 3	#23 #24 #18 #14	23 24 18 14	green red yellow orange	0 1 0 2	23 24 18 14	23 24 18 14
Out[28]:	0 1 2 3 4	#23 #24 #18 #14 #12	23 24 18 14 XYZ	green red yellow orange purple	0 1 0 2 1	23 24 18 14 12	23 24 18 14 12
Out[28]:	0 1 2 3 4 5	#23 #24 #18 #14 #12 #10	23 24 18 14 XYZ XYZ	green red yellow orange purple blue	0 1 0 2 1	23 24 18 14 12	23 24 18 14 12
	0 1 2 3 4 5	#23 #24 #18 #14 #12 #10 #35	23 24 18 14 XYZ XYZ 35	green red yellow orange purple blue pink	0 1 0 2 1	23 24 18 14 12	23 24 18 14 12
Out[28]:	0 1 2 3 4 5 6	#23 #24 #18 #14 #12 #10 #35	23 24 18 14 XYZ XYZ 35 的值补	green red yellow orange purple blue pink 充缺失值	0 1 0 2 1 0 2	23 24 18 14 12	23 24 18 14 12
In [29]:	0 1 2 3 4 5 6 # #	#23 #24 #18 #14 #12 #10 #35 使用前面	23 24 18 14 XYZ XYZ 35 的值剂	green red yellow orange purple blue pink 充缺失值	0 1 0 2 1 0 2	23 24 18 14 12 10 35	23 24 18 14 12 10 35
	0 1 2 3 4 5 6 # (1)	#23 #24 #18 #14 #12 #10 #35 使用前面 fillnac	23 24 18 14 XYZ XYZ 35 的值剂 (methor	green red yellow orange purple blue pink 充缺失值 d="ffill colors	0 1 0 2 1 0 2 ")	23 24 18 14 12 10 35	23 24 18 14 12 10 35
In [29]:	0 1 2 3 4 5 6 # () df.	#23 #24 #18 #14 #12 #10 #35 使用前面 fillnac	23 24 18 14 XYZ XYZ 35 的值剂 (method nums 23	green red yellow orange purple blue pink 充缺失值 d="ffill colors green	0 1 0 2 1 0 2 ") other_column 0	23 24 18 14 12 10 35 numbers_str 23	23 24 18 14 12 10 35 numbers_numeric 23
In [29]:	0 1 2 3 4 5 6 # (1 n 0 1	#23 #24 #18 #14 #12 #10 #35 使用前面 fillnacumbers #23 #24	23 24 18 14 XYZ XYZ 35 的值补 (method) nums 23 24	green red yellow orange purple blue pink 充缺失值 d="ffill colors green red	0 1 0 2 1 0 2 ") other_column 0 1	23 24 18 14 12 10 35 numbers_str 23 24	23 24 18 14 12 10 35 numbers_numeric 23 24
In [29]:	0 1 2 3 4 5 6 # (1 0 1 2	#23 #24 #18 #14 #12 #10 #35 使用前面 fillnac tumbers #23 #24 #18	23 24 18 14 XYZ XYZ 35 的值剂 (methor nums 23 24 18	green red yellow orange purple blue pink 充缺失值 d="ffill colors green red yellow	0 1 0 2 1 0 2 ") other_column 0 1	23 24 18 14 12 10 35 numbers_str 23 24 18	23 24 18 14 12 10 35 numbers_numeric 23 24 18
In [29]:	0 1 2 3 4 5 6 # 4 df. 0 1 2 3	#23 #24 #18 #14 #10 #35 使用前面 fillnac ************************************	23 24 18 14 XYZ XYZ 35 的值补 (method nums 23 24 18 14	green red yellow orange purple blue pink 充缺失值 d="ffill colors green red yellow orange	0 1 0 2 1 0 2 ") other_column 0 1 0 2	23 24 18 14 12 10 35 numbers_str 23 24 18 14	23 24 18 14 12 10 35 numbers_numeric 23 24 18 18
In [29]:	0 1 2 3 4 5 6 # 6 df. n 0 1 2 3 4	#23 #24 #18 #14 #10 #35 使用前面 fillnac ************************************	23 24 18 14 XYZ XYZ 35 的值补 (methor) nums 23 24 18 14	green red yellow orange purple blue pink 充缺失值 d="ffill colors green red yellow orange purple	0 1 0 2 1 0 2 "') other_column 0 1 0 2	23 24 18 14 12 10 35 numbers_str 23 24 18 14 12	23 24 18 14 12 10 35 numbers_numeric 23 24 18 14 12
In [29]:	0 1 2 3 4 5 6 # 4 df. 0 1 2 3	#23 #24 #18 #14 #10 #35 使用前面 fillnac ************************************	23 24 18 14 XYZ XYZ 35 的值补 (method nums 23 24 18 14	green red yellow orange purple blue pink 充缺失值 d="ffill colors green red yellow orange	0 1 0 2 1 0 2 ") other_column 0 1 0 2	23 24 18 14 12 10 35 numbers_str 23 24 18 14	23 24 18 14 12 10 35 numbers_numeric 23 24 18 18

1.6 6. 数据变形

```
In [1]: import pandas as pd
        import numpy as np
        %matplotlib inline
In [2]: # 示例数据
        url = "https://storage.googleapis.com/qeds/data/bball.csv"
        bball = pd.read_csv(url)
        bball.info()
        bball
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8
Data columns (total 8 columns):
            9 non-null int64
Year
            9 non-null object
Player
            9 non-null object
Team
TeamName
           9 non-null object
           9 non-null int64
Games
Pts
           9 non-null float64
            9 non-null float64
Assist
            9 non-null float64
Rebound
dtypes: float64(3), int64(2), object(3)
memory usage: 656.0+ bytes
```

Out[2]:	Year	Player	Team	TeamName	Games	Pts	Assist	Rebound
0	2015	Curry	GSW	Warriors	79	30.1	6.7	5.4
1	2016	Curry	GSW	Warriors	79	25.3	6.6	4.5
2	2017	Curry	GSW	Warriors	51	26.4	6.1	5.1
3	2015	Durant	OKC	Thunder	72	28.2	5.0	8.2
4	2016	Durant	GSW	Warriors	62	25.1	4.8	8.3
5	2017	Durant	GSW	Warriors	68	26.4	5.4	6.8
6	2015	Ibaka	OKC	Thunder	78	12.6	0.8	6.8
7	2016	Ibaka	ORL	Magic	56	15.1	1.1	6.8
8	2016	Ibaka	TOR	Raptors	23	14.2	0.7	6.8

1.6.1 (1) 长宽变换

```
In [3]: # 宽数据 长数据
        #pandas.melt(frame, id vars=None, value vars=None,
        # var_name=None, value_name='value', col_level=None)
        #id vars: 不需要被转换的列名
        #value_vars: 需要转换的列名,如果剩下的列全部都要转换,就不用写了
        bball_long = bball.melt(id_vars=["Year", "Player", "Team", "TeamName"])
        bball_long
Out[3]:
                               TeamName variable
            Year Player Team
                                                   value
        0
                                                    79.0
            2015
                   Curry
                          GSW
                               Warriors
                                            Games
        1
            2016
                   Curry
                          GSW
                               Warriors
                                            Games
                                                    79.0
            2017
        2
                   Curry
                          GSW
                               Warriors
                                            Games
                                                    51.0
        3
            2015
                  Durant
                          OKC
                                Thunder
                                            Games
                                                    72.0
        4
            2016
                  Durant
                          GSW
                               Warriors
                                            Games
                                                    62.0
            2017
        5
                  Durant
                          GSW
                               Warriors
                                            Games
                                                    68.0
            2015
        6
                   Ibaka
                          OKC
                                Thunder
                                            Games
                                                    78.0
        7
            2016
                                                    56.0
                   Ibaka
                          ORL
                                  Magic
                                            Games
            2016
        8
                   Ibaka
                          TOR
                                Raptors
                                                    23.0
                                            Games
        9
            2015
                   Curry
                          GSW
                               Warriors
                                              Pts
                                                    30.1
           2016
                                                    25.3
        10
                   Curry
                          GSW
                               Warriors
                                              Pts
        11
            2017
                   Curry
                          GSW
                               Warriors
                                              Pts
                                                    26.4
        12
           2015
                  Durant
                          OKC
                                Thunder
                                              Pts
                                                    28.2
                                                    25.1
        13
           2016
                  Durant
                          GSW
                               Warriors
                                              Pts
        14
           2017
                  Durant
                          GSW
                               Warriors
                                              Pts
                                                    26.4
        15
           2015
                   Ibaka
                          OKC
                                Thunder
                                              Pts
                                                    12.6
           2016
                   Ibaka
                          ORL
                                  Magic
                                              Pts
                                                    15.1
        16
        17
            2016
                   Ibaka
                          TOR
                                Raptors
                                              Pts
                                                    14.2
            2015
                   Curry
                          GSW
                               Warriors
                                           Assist
                                                     6.7
        18
                                                     6.6
           2016
                   Curry
                          GSW
        19
                               Warriors
                                           Assist
        20
           2017
                          GSW
                                                     6.1
                   Curry
                               Warriors
                                           Assist
        21
           2015
                  Durant
                          OKC
                                Thunder
                                           Assist
                                                     5.0
        22
           2016
                  Durant
                          GSW
                               Warriors
                                           Assist
                                                     4.8
        23
           2017
                  Durant
                          GSW
                               Warriors
                                                     5.4
                                           Assist
        24
            2015
                   Ibaka
                          OKC
                                Thunder
                                           Assist
                                                     0.8
```

```
25
            2016
                    Ibaka
                            ORL
                                    Magic
                                             Assist
                                                        1.1
        26
            2016
                    Ibaka
                            TOR
                                  Raptors
                                             Assist
                                                        0.7
            2015
                    Curry
                            GSW
                                 Warriors
                                                        5.4
        27
                                            Rebound
        28
            2016
                    Curry
                            GSW
                                 Warriors
                                            Rebound
                                                        4.5
        29
            2017
                    Curry
                            GSW
                                 Warriors
                                            Rebound
                                                        5.1
        30
            2015
                   Durant
                            OKC
                                                        8.2
                                  Thunder
                                            Rebound
        31
            2016
                   Durant
                            GSW
                                 Warriors
                                            Rebound
                                                        8.3
            2017
                   Durant
                            GSW
                                 Warriors
                                            Rebound
                                                        6.8
        32
           2015
                    Ibaka
                           OKC
                                                        6.8
        33
                                  Thunder
                                            Rebound
        34
            2016
                    Ibaka
                            ORL
                                    Magic Rebound
                                                        6.8
        35
            2016
                    Ibaka
                            TOR
                                  Raptors
                                            Rebound
                                                        6.8
In [4]: # 长数据 宽数据
        #pivot_table(data, values=None, index=None, columns=None,aggfunc='mean',
        # fill_value=None, margins=False, dropna=True, margins_name='All')
        bball_wide = bball_long.pivot_table(
             index="Year",
             columns=["Player", "variable", "Team"],
             values="value"
        )
        bball_wide
Out[4]: Player
                   Curry
                                               Durant
                                                                                             \
        variable Assist Games
                                  Pts Rebound Assist
                                                            Games
                                                                            Pts
                                                                                       . . .
        Team
                     GSW
                            GSW
                                  GSW
                                           GSW
                                                   GSW
                                                        OKC
                                                               GSW
                                                                     OKC
                                                                            GSW
                                                                                  OKC ...
        Year
                                                                                       . . .
        2015
                     6.7
                           79.0
                                           5.4
                                                        5.0
                                                                                 28.2 ...
                                 30.1
                                                  {\tt NaN}
                                                              {\tt NaN}
                                                                    72.0
                                                                            NaN
                           79.0
                                 25.3
                                                                                  NaN ...
        2016
                     6.6
                                           4.5
                                                   4.8
                                                        NaN
                                                             62.0
                                                                     NaN
                                                                          25.1
        2017
                     6.1
                           51.0
                                 26.4
                                           5.1
                                                   5.4
                                                        NaN
                                                             68.0
                                                                     NaN
                                                                          26.4
                                                                                  NaN ...
        Player
                   Ibaka
        variable Assist Games
                                               Pts
                                                                 Rebound
                     TOR
        Team
                            OKC
                                  ORL
                                         TOR
                                               OKC
                                                      ORL
                                                            TOR
                                                                     OKC
                                                                          ORL
                                                                                TOR
        Year
        2015
                     NaN
                           78.0
                                  NaN
                                         NaN
                                              12.6
                                                      NaN
                                                            NaN
                                                                     6.8
                                                                          NaN
                                                                                NaN
        2016
                     0.7
                            NaN
                                 56.0
                                        23.0
                                               NaN
                                                     15.1
                                                           14.2
                                                                                6.8
                                                                     NaN
                                                                          6.8
        2017
                     NaN
                            NaN
                                  NaN
                                         NaN
                                               NaN
                                                      NaN
                                                            NaN
                                                                          NaN
                                                                     NaN
                                                                                NaN
```

[3 rows x 24 columns]

1.6.2 (2) 索引操作

In [5]: # 设置索引

bball2 = bball.set_index(["Player", "Year"])
bball2.head()

Out[5]: Team TeamName Games Pts Assist Rebound Player Year 79 30.1 6.7 Curry 2015 GSW Warriors 5.4 2016 GSW Warriors 79 25.3 6.6 4.5 51 26.4 2017 GSW Warriors 6.1 5.1 Durant 2015 OKC Thunder 72 28.2 8.2 5.0 2016 GSW Warriors 62 25.1 4.8 8.3

In [7]: # 转置

bball3 = bball2.T
bball3.head()

Out[7]:	Player	Curry			Durant			Ibaka	\
	Year	2015	2016	2017	2015	2016	2017	2015	
	Team	GSW	GSW	GSW	OKC	GSW	GSW	OKC	
	TeamName	Warriors	Warriors	Warriors	Thunder	Warriors	Warriors	Thunder	
	Games	79	79	51	72	62	68	78	
	Pts	30.1	25.3	26.4	28.2	25.1	26.4	12.6	
	Assist	6.7	6.6	6.1	5	4.8	5.4	0.8	

Player Year 2016 2016 Team ORL TOR TeamName Magic Raptors Games 56 23 Pts 15.1 14.2 Assist 1.1 0.7

stack 和 unstack

stack 和 unstack 是 python 进行层次化索引的重要操作。层次化索引就是对索引进行层次化分类,便于使用,这里的索引可以是行索引,也可以是列索引。

	store1	store2	store3
street1	1	2	3
street2	4	5	6

常见的数据的层次化结构有两种,一种是表格,一种是"花括号",即下面这样的两种形式: 表格在行列方向上均有索引,花括号结构只有"列方向"上的索引。

- stack: 将数据从"表格结构"变成"花括号结构",即将其列索引变成行索引。
- unstack: 数据从"花括号结构"变成"表格结构",即要将其中一层的行索引变成列索引。

参考资料:

Python--pandas--unstack() 与 stack()

In [8]: bball_wide

Out[8]:	Player	Curry				Duran	nt					 \
	variable	Assist	Games	Pts	Rebound	Assis	st	Games		Pts		
	Team	GSW	GSW	GSW	GSW	GS	SW OK	C GSW	OKC	GSW	OKC	
	Year											
	2015	6.7	79.0	30.1	5.4	Na	aN 5.	0 NaN	72.0	NaN	28.2	
	2016	6.6	79.0	25.3	4.5	4.	8 Na	N 62.0	NaN	25.1	NaN	
	2017	6.1	51.0	26.4	5.1	5.	4 Na	N 68.0	NaN	26.4	NaN	
	Player	Ibaka										
	variable	Assist	Games			Pts		Re	bound			
	Team	TOR	OKC	ORL	TOR	OKC	ORL	TOR	OKC	ORL	TOR	
	Year											
	2015	NaN	78.0	NaN	NaN :	12.6	NaN	NaN	6.8	NaN	NaN	
	2016	0.7	NaN	56.0	23.0	NaN	15.1	14.2	NaN	6.8	6.8	
	2017	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

[3 rows x 24 columns]

In [10]: #把列索引变为行索引bball_wide.stack()

Out[10]:	ut[10]: Player Curry variable Assist G						Ibaka						
			Assist	Games	Pts	Rebound	Assist	Games	Pts	Rebound	Assist	Games	
	Year	Team											
	2015	GSW	6.7	79.0	30.1	5.4	NaN	NaN	NaN	NaN	NaN	NaN	
		OKC	NaN	NaN	NaN	NaN	5.0	72.0	28.2	8.2	0.8	78.0	
	2016	GSW	6.6	79.0	25.3	4.5	4.8	62.0	25.1	8.3	NaN	NaN	
		ORL	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.1	56.0	
		TOR	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.7	23.0	
	2017	GSW	6.1	51.0	26.4	5.1	5.4	68.0	26.4	6.8	NaN	NaN	

Player

variable Pts Rebound Year Team 2015 GSW NaN NaN12.6 6.8 OKC 2016 GSW ${\tt NaN}$ NaNORL 15.1 6.8 TOR 14.2 6.8 2017 GSW NaNNaN

In [12]: # 对运动员的数据,按照 Year 和 Team 求均值 player_stats = bball_wide.stack().mean() player_stats

Out[12]: Player variable Curry Assist 6.466667 Games 69.666667 Pts 27.266667 5.000000 Rebound Durant Assist 5.066667 67.333333 Games 26.566667 Pts Rebound 7.766667

 Ibaka
 Assist
 0.866667

 Games
 52.333333

 Pts
 13.966667

Rebound 6.800000

dtype: float64

In [13]: # 对数据和球队, 按照 Year 和 Player 求均值

bball_wide.stack(level="Player")

Out[13]: vari	able	Assist		Games						,		
Team	ı	GSW	OKC	ORL	TOR	GSW	OKC	ORL	TOR	GSW	OKC	ORL
Year	Year Player											
2015	Curry	6.7	NaN	NaN	NaN	79.0	NaN	NaN	NaN	30.1	NaN	NaN
	Durant	NaN	5.0	NaN	NaN	NaN	72.0	NaN	NaN	NaN	28.2	NaN
	Ibaka	NaN	0.8	NaN	NaN	NaN	78.0	NaN	NaN	NaN	12.6	NaN
2016	Curry	6.6	NaN	NaN	NaN	79.0	NaN	NaN	NaN	25.3	NaN	NaN
	Durant	4.8	NaN	NaN	NaN	62.0	NaN	NaN	NaN	25.1	NaN	NaN
	Ibaka	NaN	NaN	1.1	0.7	NaN	NaN	56.0	23.0	NaN	NaN	15.1
2017	Curry	6.1	NaN	NaN	NaN	51.0	NaN	NaN	NaN	26.4	NaN	NaN
	Durant	5.4	NaN	NaN	NaN	68.0	NaN	NaN	NaN	26.4	NaN	NaN

variable	R	lebound			
Team	TOR	GSW	OKC	ORL	TOR
Year Player					
2015 Curry	NaN	5.4	NaN	NaN	NaN
Durant	NaN	NaN	8.2	NaN	NaN
Ibaka	NaN	NaN	6.8	NaN	NaN
2016 Curry	NaN	4.5	NaN	NaN	NaN
Durant	NaN	8.3	NaN	NaN	NaN
Ibaka	14.2	NaN	NaN	6.8	6.8
2017 Curry	NaN	5.1	NaN	NaN	NaN
Durant	NaN	6.8	NaN	NaN	NaN

In [14]: bball_wide.stack(level="Player").mean()

Out[14]: variable Team

Assist GSW

Sist GSW 5.92

OKC 2.90

ORL 1.10

	TOR	0.70
Games	GSW	67.80
	OKC	75.00
	ORL	56.00
	TOR	23.00
Pts	GSW	26.66
	OKC	20.40
	ORL	15.10
	TOR	14.20
Rebound	GSW	6.02
	OKC	7.50
	ORL	6.80
	TOR	6.80

dtype: float64

In [15]: bball_wide.stack(level=["Player", "Team"])

Out[15]:	varia	able		Assist	Games	Pts	Rebound
	Year	Player	Team				
	2015	Curry	GSW	6.7	79.0	30.1	5.4
		Durant		5.0	72.0	28.2	8.2
		Ibaka	OKC	0.8	78.0	12.6	6.8
	2016	Curry	GSW	6.6	79.0	25.3	4.5
		Durant	GSW	4.8	62.0	25.1	8.3
		Ibaka	ORL	1.1	56.0	15.1	6.8
			TOR	0.7	23.0	14.2	6.8
	2017	2017 Curry		6.1	51.0	26.4	5.1
		Durant	GSW	5.4	68.0	26.4	6.8

In [19]: player_stats

Out[19]: Player variable Curry Assist 6.466667 Games 69.666667 Pts 27.266667 Rebound 5.000000 5.066667 Durant Assist 67.333333 Games Pts 26.566667

Rebound 7.766667

Ibaka Assist 0.866667

Games 52.333333

Pts 13.966667

Rebound 6.800000

dtype: float64

In [17]: # 把行索引变为列索引 player_stats.unstack()

Out[17]:	variable	Assist	Games	Pts	Rebound
	Player				
	Curry	6.466667	69.666667	27.266667	5.000000
	Durant	5.066667	67.333333	26.566667	7.766667
	Tbaka	0.866667	52.333333	13.966667	6.800000

In [20]: player_stats.unstack().plot.bar()

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x1e662e22fd0>

In [21]: player_stats.unstack(level="Player")

Out[21]:	Player	Curry	Durant	Ibaka
	variable			
	Assist	6.466667	5.066667	0.866667
	Games	69.666667	67.333333	52.333333
	Pts	27.266667	26.566667	13.966667
	Rebound	5.000000	7.766667	6.800000

In [22]: player_stats.unstack(level="Player").plot.bar()

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x1e6631a0c50>

1.6.3 (3) 透视表

In [23]: bball

Out[23]: Year Player Team TeamName Games Pts Assist Rebound

0 2015 Curry GSW Warriors 79 30.1 6.7 5.4

```
79 25.3
                                                          6.6
                                                                    4.5
         1 2016
                   Curry GSW Warriors
                                                                    5.1
         2 2017
                   Curry
                          GSW
                               Warriors
                                             51 26.4
                                                          6.1
         3 2015 Durant
                          OKC
                                Thunder
                                             72 28.2
                                                          5.0
                                                                    8.2
                                             62 25.1
                                                                    8.3
         4 2016 Durant GSW Warriors
                                                          4.8
         5 2017
                  Durant
                          GSW
                               Warriors
                                             68 26.4
                                                          5.4
                                                                    6.8
         6 2015
                   Ibaka OKC
                                Thunder
                                             78 12.6
                                                          0.8
                                                                    6.8
         7 2016
                   Ibaka ORL
                                   Magic
                                             56 15.1
                                                                    6.8
                                                          1.1
         8 2016
                   Ibaka TOR
                                Raptors
                                             23 14.2
                                                          0.7
                                                                    6.8
In [24]: # 多行索引
         bball.pivot_table(index = ["Year", "Team"], columns = "Player", values = "Pts")
Out[24]: Player
                    Curry Durant Ibaka
         Year Team
         2015 GSW
                     30.1
                              {\tt NaN}
                                      NaN
                             28.2
                                     12.6
              OKC
                      NaN
         2016 GSW
                     25.3
                             25.1
                                      NaN
              ORL
                      {\tt NaN}
                              {\tt NaN}
                                     15.1
              TOR
                                     14.2
                      {\tt NaN}
                              {\tt NaN}
         2017 GSW
                     26.4
                             26.4
                                      NaN
In [25]: # 多列索引
         bball.pivot_table(index = "Year", columns = ["Player", "Team"], values = "Pts")
Out[25]: Player Curry Durant
                                    Ibaka
                  GSW
                                OKC
                                      OKC
                                            ORL
                                                  TOR
         Team
                         GSW
         Year
         2015
                 30.1
                         {\tt NaN}
                               28.2
                                     12.6
                                            NaN
                                                  NaN
         2016
                 25.3
                        25.1
                               NaN
                                      NaN
                                           15.1
                                                14.2
         2017
                        26.4
                 26.4
                               {\tt NaN}
                                      NaN
                                            NaN
                                                  NaN
In [26]: # 求最值
         bball.pivot_table(index="Year", columns="Player", values="Pts", aggfunc=max)
Out[26]: Player Curry Durant Ibaka
         Year
         2015
                  30.1
                          28.2
                                  12.6
         2016
                  25.3
                          25.1
                                  15.1
         2017
                  26.4
                          26.4
                                  {\tt NaN}
```

```
In [27]: # 有多少数值
        bball.pivot_table(index="Year", columns="Player", values="Pts", aggfunc=len)
Out[27]: Player Curry Durant Ibaka
        Year
        2015
                  1.0
                          1.0
                                 1.0
        2016
                  1.0
                          1.0
                                 2.0
        2017
                  1.0
                          1.0
                                 NaN
In [29]: # 多函操作
        bball.pivot_table(index="Year", columns="Player", values="Pts", aggfunc=[max, len])
Out [29]:
                                    len
                 max
        Player Curry Durant Ibaka Curry Durant Ibaka
        Year
        2015
                30.1
                       28.2 12.6
                                    1.0
                                           1.0
                                                 1.0
        2016
                25.3
                       25.1 15.1
                                                 2.0
                                    1.0
                                           1.0
        2017
                26.4
                       26.4
                             NaN
                                    1.0
                                           1.0
                                                 NaN
1.7 7. 数据合并
In [ ]: import pandas as pd
       %matplotlib inline
In [36]: # 示例数据
        url = "https://storage.googleapis.com/qeds/data/wdi_data.csv"
        wdi = pd.read_csv(url).set_index(["country", "year"])
        wdi.info()
        wdi2017 = wdi.xs(2017, level="year")
        wdi2017
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 72 entries, (Canada, 2017) to (United States, 2000)
Data columns (total 5 columns):
              72 non-null float64
GovExpend
              72 non-null float64
Consumption
```

Exports 72 non-null float64 Imports 72 non-null float64 GDP 72 non-null float64 dtypes: float64(5) memory usage: 3.2+ KB Out [36]: GovExpend Consumption Exports Imports GDP country Canada 0.372665 1.095475 0.582831 0.600031 1.868164 Germany 0.745579 2.112009 1.930563 1.666348 3.883870 United Kingdom 0.549538 1.809154 0.862629 0.933145 2.818704 United States 2.405743 12.019266 2.287071 3.069954 17.348627 In [33]: wdi2016_17 = wdi.loc[pd.IndexSlice[:, [2016, 2017]],:] wdi2016_17 Out [33]: GovExpend Consumption Exports Imports country year Canada 2017 0.372665 1.095475 0.582831 0.600031 1.868164 2016 0.364899 1.058426 0.576394 0.575775 1.814016 Germany 2017 0.745579 2.112009 1.930563 1.666348 3.883870 2016 0.734014 2.075615 1.844949 1.589495 3.801859 United Kingdom 2017 0.549538 1.809154 0.862629 0.933145 2.818704 2016 0.550596 1.772348 0.816792 0.901494 2.768241 United States 2017 2.405743 12.019266 2.287071 3.069954 17.348627 2016 2.407981 11.722133 2.219937 2.936004 16.972348 In [34]: sq_miles = pd.Series({ "United States": 3.8, "Canada": 3.8, "Germany": 0.137, "United Kingdom": 0.0936, "Russia": 6.6,

GDP

Out [34]: sq_miles country

sq_miles

}, name="sq_miles").to_frame() sq_miles.index.name = "country"

```
United States
                           3.8000
         Canada
                           3.8000
                           0.1370
         Germany
         United Kingdom
                           0.0936
         Russia
                           6.6000
In [35]: pop_url = "https://storage.googleapis.com/qeds/data/wdi_population.csv"
         pop = pd.read_csv(pop_url).set_index(["country", "year"])
         pop.info()
         pop.head(10)
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 72 entries, (Canada, 2017) to (United States, 2000)
Data columns (total 1 columns):
Population
              72 non-null float64
dtypes: float64(1)
memory usage: 1005.0+ bytes
Out [35]:
                       Population
         country year
         Canada 2017
                        36.540268
                 2016
                        36.109487
                 2015
                        35.702908
                 2014
                        35.437435
                        35.082954
                 2013
                 2012
                        34.714222
                 2011
                        34.339328
                 2010
                        34.004889
                 2009
                        33.628895
                 2008
                        33.247118
```

1.7.1 (1) contact

- As a measure of land usage or productivity, what is Consumption per square mile?
- What is GDP per capita (per person) for each country in each year? How about Consumption per person?
- What is the population density of each country? How much does it change over time?

To answer any of the questions from above, we will have to use data from more than one of our DataFrames.

In [37]: # 纵向堆叠

pd.concat([wdi2017, sq_miles], axis=0)

C:\Users\Van\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: Sorting because of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=True'.

To retain the current behavior and silence the warning, pass sort=False

Out[37]:		Consumption	Exports	GDP	${\tt GovExpend}$	${\tt Imports}$	\
	country						
	Canada	1.095475	0.582831	1.868164	0.372665	0.600031	
	Germany	2.112009	1.930563	3.883870	0.745579	1.666348	
	United Kingdom	1.809154	0.862629	2.818704	0.549538	0.933145	
	United States	12.019266	2.287071	17.348627	2.405743	3.069954	
	United States	NaN	NaN	NaN	NaN	NaN	
	Canada	NaN	NaN	NaN	NaN	NaN	
	Germany	NaN	NaN	NaN	NaN	NaN	
	United Kingdom	NaN	NaN	NaN	NaN	NaN	
	Russia	NaN	NaN	NaN	NaN	NaN	

	sq_miles
country	
Canada	NaN
Germany	NaN
United Kingdom	NaN
United States	NaN
United States	3.8000
Canada	3.8000
Germany	0.1370
United Kingdom	0.0936
Russia	6.6000

```
In [38]: # 横向堆叠 pd.concat([wdi2017, sq_miles], axis=1)
```

C:\Users\Van\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Sorting because of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=True'.

To retain the current behavior and silence the warning, pass sort=False

"""Entry point for launching an IPython kernel.

Out[38]:		GovExpend	Consumption	Exports	Imports	GDP	\
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164	
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870	
	Russia	NaN	NaN	NaN	NaN	NaN	
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704	
	United States	2.405743	12.019266	2.287071	3.069954	17.348627	
		sq_miles					
	Canada	3.8000					
	Germany	0.1370					
	Russia	6.6000					
	United Kingdom	0.0936					
	United States	3.8000					

```
In [39]: #What is Consumption per square mile?
    temp = pd.concat([wdi2017, sq_miles], axis=1)
    temp["Consumption"] / temp["sq_miles"]
```

C:\Users\Van\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: Sorting because of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=True'.

To retain the current behavior and silence the warning, pass sort=False

dtype: float64

1.7.2 (2) merge

In [40]: #和使用 contact 函数 (axis=1) 相比, Russia 数据不见了 pd.merge(wdi2017, sq_miles, on="country")

Out[40]:		GovExpend	Consumption	Exports	Imports	GDP	\
	country						
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164	
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870	
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704	
	United States	2.405743	12.019266	2.287071	3.069954	17.348627	
		sq_miles					
	country						
	Canada	3.8000					
	Germany	0.1370					
	United Kingdom	0.0936					
	United States	3.8000					

In [41]: # 年份信息丢失了

pd.merge(wdi2016_17, sq_miles, on="country")

Out [41	1]:	${\tt GovExpend}$	${\tt Consumption}$	Exports	${\tt Imports}$	GDP	\
	country						
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164	
	Canada	0.364899	1.058426	0.576394	0.575775	1.814016	
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870	
	Germany	0.734014	2.075615	1.844949	1.589495	3.801859	
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704	

```
United States
                          2.405743
                                      12.019266
                                                 2.287071
                                                            3.069954
                                                                      17.348627
         United States
                          2.407981
                                      11.722133 2.219937
                                                            2.936004 16.972348
                         sq_miles
         country
         Canada
                           3.8000
         Canada
                           3.8000
                           0.1370
         Germany
                           0.1370
         Germany
         United Kingdom
                           0.0936
         United Kingdom
                           0.0936
         United States
                           3.8000
         United States
                           3.8000
In [42]: pd.merge(wdi2016_17.reset_index(), sq_miles, on="country")
Out [42]:
                            year GovExpend Consumption
                   country
                                                            Exports
                                                                      Imports \
         0
                    Canada
                            2017
                                   0.372665
                                                 1.095475
                                                          0.582831
                                                                     0.600031
                    Canada 2016
         1
                                   0.364899
                                                 1.058426 0.576394
                                                                     0.575775
         2
                   Germany
                            2017
                                   0.745579
                                                 2.112009
                                                           1.930563
                                                                     1.666348
         3
                   Germany
                            2016
                                   0.734014
                                                 2.075615 1.844949
                                                                     1.589495
           United Kingdom
                            2017
                                   0.549538
                                                 1.809154 0.862629
                                                                     0.933145
           United Kingdom
                            2016
                                   0.550596
                                                 1.772348 0.816792
                                                                    0.901494
         5
         6
             United States
                            2017
                                   2.405743
                                               12.019266 2.287071
                                                                     3.069954
         7
             United States
                            2016
                                   2.407981
                                                11.722133 2.219937
                                                                     2.936004
                  GDP
                       sq_miles
         0
             1.868164
                         3.8000
             1.814016
                         3.8000
         1
         2
             3.883870
                         0.1370
             3.801859
                         0.1370
         3
         4
             2.818704
                         0.0936
             2.768241
                         0.0936
           17.348627
                         3.8000
            16.972348
                         3.8000
In [43]: # 合并多列
         pd.merge(wdi2016_17, pop, on=["country", "year"])
```

United Kingdom

0.550596

1.772348 0.816792 0.901494

2.768241

```
Out [43]:
                              GovExpend Consumption
                                                       Exports
                                                                  Imports
                                                                                 GDP \
         country
                        year
         Canada
                        2017
                               0.372665
                                            1.095475
                                                      0.582831
                                                                 0.600031
                                                                            1.868164
                        2016
                               0.364899
                                            1.058426 0.576394
                                                                0.575775
                                                                            1.814016
         Germany
                        2017
                               0.745579
                                            2.112009 1.930563
                                                                1.666348
                                                                            3.883870
                        2016
                               0.734014
                                            2.075615 1.844949
                                                                 1.589495
                                                                            3.801859
         United Kingdom 2017
                               0.549538
                                            1.809154 0.862629
                                                                0.933145
                                                                            2.818704
                        2016
                               0.550596
                                            1.772348 0.816792 0.901494
                                                                            2.768241
         United States
                        2017
                               2.405743
                                           12.019266 2.287071
                                                                3.069954 17.348627
                        2016
                               2.407981
                                           11.722133 2.219937 2.936004
                                                                          16.972348
                              Population
         country
                        year
         Canada
                        2017
                               36.540268
                        2016
                               36.109487
         Germany
                        2017
                               82.657002
                               82.348669
                        2016
         United Kingdom 2017
                               66.058859
                        2016
                               65.595565
         United States
                        2017
                              325.147121
                              323.071342
                        2016
In [44]: #What is GDP per capita (per person) for each country in each year?
         wdi_pop = pd.merge(wdi2016_17, pop, on=["country", "year"])
         wdi_pop["GDP"] / wdi_pop["Population"]
Out[44]: country
                         year
         Canada
                         2017
                                 0.051126
                         2016
                                 0.050237
         Germany
                         2017
                                 0.046988
                         2016
                                 0.046168
         United Kingdom
                         2017
                                 0.042670
                         2016
                                 0.042202
         United States
                         2017
                                 0.053356
                         2016
                                 0.052534
         dtype: float64
In [46]: #How about Consumption per person?
         wdi_pop["Consumption"] / wdi_pop["Population"]
```

```
Out [46]: country
                         year
         Canada
                         2017
                                 0.029980
                         2016
                                 0.029312
         Germany
                         2017
                                 0.025551
                         2016
                                 0.025205
         United Kingdom
                         2017
                                 0.027387
                         2016
                                 0.027019
         United States
                         2017
                                 0.036966
                         2016
                                 0.036283
         dtype: float64
In [51]: wdi2017_no_US = wdi2017.drop("United States")
         wdi2017_no_US
Out [51]:
                         GovExpend Consumption
                                                  Exports
                                                            Imports
                                                                           GDP
         country
         Canada
                                       1.095475 0.582831
                                                           0.600031 1.868164
                          0.372665
         Germany
                          0.745579
                                       2.112009 1.930563
                                                           1.666348 3.883870
         United Kingdom
                          0.549538
                                       1.809154 0.862629
                                                           0.933145 2.818704
In [52]: sq_miles_no_germany = sq_miles.drop("Germany")
         sq_miles_no_germany
Out [52]:
                         sq_miles
         country
         United States
                           3.8000
         Canada
                           3.8000
         United Kingdom
                           0.0936
         Russia
                           6.6000
In [47]: # 以左表为基准
         pd.merge(wdi2017, sq_miles, on="country", how="left")
Out [47]:
                         GovExpend Consumption
                                                             Imports
                                                                            GDP \
                                                  Exports
         country
         Canada
                          0.372665
                                       1.095475 0.582831
                                                           0.600031
                                                                       1.868164
         Germany
                          0.745579
                                       2.112009 1.930563
                                                           1.666348
                                                                       3.883870
         United Kingdom
                          0.549538
                                       1.809154 0.862629
                                                           0.933145
                                                                       2.818704
         United States
                          2.405743
                                      12.019266 2.287071 3.069954 17.348627
```

	Canada	3.8000					
	Germany	0.1370					
	United Kingdom	0.0936					
	United States	3.8000					
In [48]:	# 以右表为基准						
	pd.merge(wdi201	7, sq_miles	, on="country	", how="ri	ght")		
Out[48]:		GovExpend	Consumption	Exports	Imports	GDP	\
	country						
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164	
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870	
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704	
	United States	2.405743	12.019266	2.287071	3.069954	17.348627	
	Russia	NaN	NaN	NaN	NaN	NaN	
		sq_miles					
	country						
	Canada	3.8000					
	Germany	0.1370					
	United Kingdom	0.0936					
	United States	3.8000					
	Russia	6.6000					
In [53]:	# 内连接,相当于	交集操作					
	pd.merge(wdi201	7_no_US, sq	_miles, on="c	country", h	ow="inner")	
Out[53]:		GovExpend	Consumption	Exports	Imports	GDP	sq_miles
	country						_
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164	3.8000
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870	0.1370
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704	0.0936
In [54].	# 外连接, 相当于	- 并集操作					
III [0 1].	pd.merge(wdi201		miles no ger	many on="	country"	how="outer	")
	ba.mer 8e/Marsor	,_mo_ob, sq		marry, on-	country,	now- ourer	,

sq_miles

country

Out[54]:		GovExpend	Consumption	Exports	Imports	GDP	sq_miles			
	country									
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164	3.8000			
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870	NaN			
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704	0.0936			
	United States	NaN	NaN	NaN	NaN	NaN	3.8000			
	Russia	NaN	NaN	NaN	NaN	NaN	6.6000			
1.7.3	3) join									
<pre>In [55]: wdi2017.join(sq_miles, on="country")</pre>										
Out[55]:		GovExpend	Consumption	Exports	Imports	GDP	\			
	country									
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164				
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870				
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704				
	United States	2.405743	12.019266	2.287071	3.069954	17.348627				
		sq_miles								
	country									
	Canada	3.8000								
	Germany	0.1370								
	United Kingdom	0.0936								
	United States	3.8000								
In [56]:	pd.merge(wdi201	7, sq_miles	, left_on="co	untry", ri	ght_index=	True)				
Out[56]:		GovExpend	Consumption	Exports	Imports	GDP	\			
	country									
	Canada	0.372665	1.095475	0.582831	0.600031	1.868164				
	Germany	0.745579	2.112009	1.930563	1.666348	3.883870				
	United Kingdom	0.549538	1.809154	0.862629	0.933145	2.818704				
	United States	2.405743	12.019266	2.287071	3.069954	17.348627				
		sq_miles								
	country									
	Canada	3.8000								
	Germany	0.1370								
	J	-								

```
United Kingdom 0.0936
United States 3.8000
```

1.8 8. 分组操作

```
In [65]: import random
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
In [66]: C = np.arange(1, 7, dtype=float)
        C[[3, 5]] = np.nan
        df = pd.DataFrame({
            "A" : [1, 1, 1, 2, 2, 2],
            "B" : [1, 1, 2, 2, 1, 1],
            "C": C,
        })
        df
Out[66]:
           A B
                   С
        0 1
             1 1.0
          1 1 2.0
        1
        2
          1 2 3.0
        3 2 2 NaN
        4 2 1 5.0
        5 2 1 NaN
In [67]: #按照 A 列信息分组
        gbA = df.groupby("A")
In [69]: type(gbA)
Out[69]: pandas.core.groupby.groupby.DataFrameGroupBy
In [70]: gbA.get_group(1)
Out[70]:
           A B
                   C
        0 1 1 1.0
          1 1 2.0
        1
        2 1 2 3.0
```

```
In [71]: gbA.get_group(2)
Out[71]:
          A B
        3 2 2 NaN
        4 2 1 5.0
        5 2 1 NaN
In [72]: #按 A、B 列信息分组
        gbAB = df.groupby(["A", "B"])
        type(gbAB)
Out[72]: pandas.core.groupby.groupby.DataFrameGroupBy
In [73]: gbAB.get_group((1, 1))
Out[73]: A B
        0 1 1 1.0
        1 1 1 2.0
In [74]: # 使用函数
        gbAB.count()
Out [74]: C
        A B
        1 1 2
          2 1
        2 1 1
          2 0
In [75]: def num_missing(df):
           return df.isnull().sum()
In [76]: num_missing(df)
Out[76]: A
        В
        C
            2
        dtype: int64
In [77]: gbA.agg(num_missing)
```

```
Out [77]:
          В
               C
        Α
        1 0 0.0
        2 0 2.0
In [80]: df
Out[80]:
          A B
                  C
          1
             1 1.0
        0
          1
             1 2.0
        2
             2 3.0
          1
        3 2 2 NaN
        4 2 1 5.0
        5 2 1 NaN
In [78]: #B 列最小的 2 个数
        def smallest_by_b(df):
           return df.nsmallest(2, "B")
In [79]: gbA.apply(smallest_by_b)
Out [79]:
            A B
                   С
        Α
        1 0 1 1 1.0
          1 1 1 2.0
        2 4 2 1 5.0
          5 2 1 NaN
```

Sometimes, in order to construct the groups you want, you need to give pandas more information than just a column name.

Some examples are:

- Grouping by a column and a level of the index.
- Grouping time series data at a particular frequency.

pandas lets you do this through the pd.Grouper type.

```
freq="BQ",
            periods=df.shape[0]
        )
        df2 = df2.set_index("A")
        df2
Out[81]: B C
                       Date
        Α
        1 1 1.0 2019-12-31
        1 1 2.0 2020-03-31
        1 2 3.0 2020-06-30
        2 2 NaN 2020-09-30
        2 1 5.0 2020-12-31
        2 1 NaN 2021-03-31
In [86]: #freq = "A" 年频率
        #https://pandas.pydata.org/pandas-docs/stable/user_quide/timeseries.html#offset-alias
        df2.groupby(pd.Grouper(key="Date", freq="A")).count()
Out[86]:
                   в с
        Date
        2019-12-31 1 1
        2020-12-31 4 3
        2021-12-31 1 0
In [87]: df2.groupby(pd.Grouper(level="A")).count()
Out[87]:
           B C Date
        Α
        1 3 3
        2 3 1
                   3
In [88]: df2.groupby([pd.Grouper(key="Date", freq="A"), pd.Grouper(level="A")]).count()
Out[88]:
                     B C
        Date
                  Α
        2019-12-31 1 1 1
        2020-12-31 1 2 2
                  2 2 1
        2021-12-31 2 1 0
```

1.9 9. 时间序列

```
In [92]: #!pip install quandl
         import os
         import pandas as pd
         import matplotlib.pyplot as plt
         import quandl
         quandl.ApiConfig.api_key = os.environ.get("QUANDL_AUTH", "Dn6BtVoBhzuKTuyo6hbp")
         start_date = "2014-05-01"
         %matplotlib inline
In [94]: christmas_str = "2019-12-25"
         christmas = pd.to_datetime(christmas_str)
         print("The type of christmas is", type(christmas))
         christmas
The type of christmas is <class 'pandas._libs.tslibs.timestamps.Timestamp'>
Out[94]: Timestamp('2019-12-25 00:00:00')
In [95]: for date in ["December 25, 2019", "Dec. 25, 2019",
                      "Monday, Dec. 25, 2019", "25 Dec. 2019", "25th Dec. 2019"]:
             print("pandas interprets {} as {}".format(date, pd.to_datetime(date)))
pandas interprets December 25, 2019 as 2019-12-25 00:00:00
pandas interprets Dec. 25, 2019 as 2019-12-25 00:00:00
pandas interprets Monday, Dec. 25, 2019 as 2019-12-25 00:00:00
pandas interprets 25 Dec. 2019 as 2019-12-25 00:00:00
pandas interprets 25th Dec. 2019 as 2019-12-25 00:00:00
In [97]: christmas_amzn = "2019-12-25T00:00:00+ 00 :00"
         amzn_strftime = "%Y-%m-%dT%H:%M:%S+ 00 :00"
         pd.to_datetime(christmas_amzn, format=amzn_strftime)
Out[97]: Timestamp('2019-12-25 00:00:00')
```

```
In [98]: pd.to_datetime(["2017-12-25", "2017-12-31"])
Out[98]: DatetimeIndex(['2017-12-25', '2017-12-31'], dtype='datetime64[ns]', freq=None)
1.9.1
      (1) 提取数据
   Here, we have the Bitcoin (BTC) to US dollar (USD) exchange rate from March 2014 until
today.
In [100]: btc_usd = quandl.get("BCHARTS/BITSTAMPUSD", start_date=start_date)
          btc_usd.info()
          btc_usd.head()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2056 entries, 2014-05-01 to 2019-12-16
Data columns (total 7 columns):
Open
                     2056 non-null float64
High
                     2056 non-null float64
Low
                     2056 non-null float64
Close
                     2056 non-null float64
Volume (BTC)
                     2056 non-null float64
Volume (Currency)
                     2056 non-null float64
Weighted Price
                     2056 non-null float64
dtypes: float64(7)
memory usage: 128.5 KB
Out [100]:
                                               Close Volume (BTC) Volume (Currency) \
                        Open
                                High
                                         Low
          Date
          2014-05-01 449.00 465.88 447.97 460.97
                                                       9556.037886
                                                                          4.381969e+06
          2014-05-02 460.97 462.99 444.51 454.50
                                                       8269.891417
                                                                          3.731061e+06
          2014-05-03 452.00 454.50 431.00 439.00
                                                       7431.626480
                                                                          3.271086e+06
          2014-05-04 439.00
                              442.83 429.55 438.04
                                                       5154.407794
                                                                          2.245293e+06
          2014-05-05 435.88 445.00 425.00 433.00
                                                                          3.547855e+06
                                                       8188.082795
                      Weighted Price
          Date
          2014-05-01
                          458.554960
```

451.162018

2014-05-02

```
2014-05-03
                         440.157544
         2014-05-04
                         435.606483
         2014-05-05
                         433.294968
In [108]: #年
         btc_usd.loc["2015"].head()
Out[108]:
                                              Close Volume (BTC) Volume (Currency) \
                       Open
                               High
                                        Low
         Date
         2015-01-01 321.00 321.00 312.60 313.81
                                                      3087.436554
                                                                        9.745096e+05
         2015-01-02 313.82
                             317.01
                                     311.96
                                            315.42
                                                      3468.281375
                                                                        1.092446e+06
         2015-01-03 315.42
                             316.58
                                     280.00
                                             282.00 21752.719146
                                                                        6.475952e+06
         2015-01-04 280.00
                             289.39
                                     255.00
                                             264.00 41441.278553
                                                                        1.126676e+07
         2015-01-05 264.55
                             280.00
                                     264.07
                                             276.80
                                                      9528.271002
                                                                        2.596898e+06
                     Weighted Price
         Date
         2015-01-01
                         315.637119
         2015-01-02
                         314.981849
         2015-01-03
                         297.707695
         2015-01-04
                         271.872950
                         272.546601
         2015-01-05
In [103]: #月
         btc_usd.loc["August 2017"].head()
Out [103]:
                        Open
                                 High
                                                  Close Volume (BTC) \
                                           Low
         Date
         2017-08-01 2855.81 2929.17 2615.00 2731.00 12525.076691
         2017-08-02 2732.00 2760.00
                                       2650.00 2703.51
                                                          9486.625526
         2017-08-03 2703.51 2807.44
                                       2698.83
                                                2793.37
                                                          7963.697999
         2017-08-04 2793.34 2877.52
                                                2855.00
                                       2765.91
                                                          7635.821672
         2017-08-05 2851.01 3339.66
                                       2848.32 3263.62 16996.273101
                     Volume (Currency) Weighted Price
         Date
         2017-08-01
                          3.432280e+07
                                           2740.326259
         2017-08-02
                          2.570111e+07
                                           2709.193699
                          2.193830e+07
         2017-08-03
                                           2754.788542
```

	2017-08-04	2.1	65009e+07	2035.331/52								
	2017-08-05	5.3	86193e+07	3169	.043337							
In [104]:	# 月											
	btc_usd.loc["08/2017"].head()											
Out[104]:		Open	High	Low	Close	Volume (BTC)	\					
	Date											
	2017-08-01	2855.81			2731.00							
	2017-08-02	2732.00	2760.00	2650.00	2703.51	9486.625526						
	2017-08-03	2703.51	2807.44	2698.83	2793.37	7963.697999						
	2017-08-04	2793.34	2877.52	2765.91	2855.00	7635.821672						
	2017-08-05	2851.01	3339.66	2848.32	3263.62	16996.273101						
		Volume (Currency) Weighted Price										
	Date											
	2017-08-01	3.4	32280e+07	2740	.326259							
	2017-08-02	2.5	70111e+07	2709	.193699							
	2017-08-03	2.1	93830e+07	2754	.788542							
	2017-08-04	2.1	65009e+07	2835	3.331752							
	2017-08-05	5.3	86193e+07	3169	.043337							
In [105]:	# FI											
111 [100].	btc_usd.loc	["August	1 2017"]									
	DCC_usu.10C	L August	1, 2017]									
Out[105]:	Open		2.855810	e+03								
	High		2.929170	e+03								
	Low		2.615000	e+03								
	Close		2.731000	e+03								
	Volume (BTC)	1.252508	e+04								
	Volume (Cur	rency)	3.432280	e+07								
	Weighted Pr	ice	2.740326	e+03								
	Name: 2017-	08-01 00:	00:00, dt	ype: floa	t64							
In [106]:	# 日											
III [100];	# Dbtc_usd.loc	["08_01_0	017"]									
	bic_usu.10C	[00-01-2	OTI]									
Out[106]:	Open		2.855810	e+03								
	High		2.929170	e+03								

2.165009e+07

2017-08-04

2835.331752

Low 2.615000e+03 Close 2.731000e+03 Volume (BTC) 1.252508e+04 Volume (Currency) 3.432280e+07 Weighted Price 2.740326e+03

Name: 2017-08-01 00:00:00, dtype: float64

In [107]: # 区段

btc_usd.loc["April 1, 2015":"April 10, 2015"]

Out[107]:		Open	High	Low	Close	Volume (BTC)	Volume (Currency)	\
	Date							
	2015-04-01	243.93	246.83	239.32	246.69	6226.016464	1.513601e+06	
	2015-04-02	246.68	256.96	244.52	253.28	9806.822203	2.453664e+06	
	2015-04-03	253.22	256.67	251.23	254.19	5048.577376	1.283171e+06	
	2015-04-04	254.19	255.85	250.76	253.70	2769.281658	7.002845e+05	
	2015-04-05	253.60	261.00	251.65	260.54	5759.360160	1.479483e+06	
	2015-04-06	260.57	262.98	254.00	255.58	5960.677633	1.535495e+06	
	2015-04-07	255.54	256.62	251.50	253.72	6010.267582	1.528034e+06	
	2015-04-08	253.71	254.96	243.06	244.58	11663.656155	2.878712e+06	
	2015-04-09	244.84	246.30	238.47	243.43	7943.710541	1.932558e+06	
	2015-04-10	243.75	243.94	231.00	235.99	11549.630656	2.728444e+06	

Weighted Price

Date	
2015-04-01	243.109050
2015-04-02	250.199655
2015-04-03	254.164902
2015-04-04	252.875870
2015-04-05	256.883285
2015-04-06	257.604180
2015-04-07	254.237260
2015-04-08	246.810407
2015-04-09	243.281478
2015-04-10	236.236497

In [109]: # 属性

btc_usd.index.year

```
Out[109]: Int64Index([2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014,
                     2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019],
                    dtype='int64', name='Date', length=2056)
In [110]: btc_usd.index.day
Out[110]: Int64Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                      7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
                    dtype='int64', name='Date', length=2056)
In [111]: # 重置索引
         btc_date_column = btc_usd.reset_index()
         btc_date_column.head()
Out[111]:
                 Date
                         Open
                                 High
                                          Low
                                                Close Volume (BTC) Volume (Currency)
                                                        9556.037886
         0 2014-05-01 449.00 465.88 447.97
                                              460.97
                                                                          4.381969e+06
         1 2014-05-02 460.97 462.99 444.51 454.50
                                                        8269.891417
                                                                         3.731061e+06
         2 2014-05-03 452.00 454.50 431.00 439.00
                                                      7431.626480
                                                                         3.271086e+06
         3 2014-05-04 439.00 442.83 429.55 438.04
                                                        5154.407794
                                                                         2.245293e+06
         4 2014-05-05 435.88 445.00 425.00 433.00
                                                        8188.082795
                                                                         3.547855e+06
            Weighted Price
         0
                458.554960
                451.162018
         2
                440.157544
         3
                435.606483
                433.294968
In [112]: btc_date_column["Date"].dt.year.head()
Out[112]: 0
              2014
              2014
         2
              2014
         3
              2014
              2014
         Name: Date, dtype: int64
In [113]: btc_date_column["Date"].dt.month.head()
```

Out[113]: 0 5
1 5
2 5
3 5
4 5

Name: Date, dtype: int64

1.9.2 (2) 常用处理

滞后函数 shift

When doing time series analysis, we often want to compare data at one date against data at another date.

pandas can help us with this if we leverage the shift method.

Without any additional arguments, shift() will move all data forward one period, filling the first row with missing data.

In [114]: btc_usd.head()

Out[115]:

Date

2014-05-01

Out[114]:		Open	High	Low	Close	Volume (BTC)	Volume (Currency)	\
	Date							
	2014-05-01	449.00	465.88	447.97	460.97	9556.037886	4.381969e+06	
	2014-05-02	460.97	462.99	444.51	454.50	8269.891417	3.731061e+06	
	2014-05-03	452.00	454.50	431.00	439.00	7431.626480	3.271086e+06	
	2014-05-04	439.00	442.83	429.55	438.04	5154.407794	2.245293e+06	
	2014-05-05	435.88	445.00	425.00	433.00	8188.082795	3.547855e+06	
		Weighte	d Price					
	Date							
	2014-05-01	458	.554960					
	2014-05-02	451	.162018					
	2014-05-03	440	.157544					
	2014-05-04	435	.606483					
	2014-05-05	433	.294968					
In [115]:	btc_usd.shi	ft().hea	d()					

Low

NaN

NaN

Close Volume (BTC) Volume (Currency) \

NaN

NaN

Open

 ${\tt NaN}$

High

 ${\tt NaN}$

	2014-05-02	449.00	465.88	447.97	460.9	7 9556.0	37886	4.	.381969e+06	
	2014-05-03	460.97	462.99	444.51	454.5	0 8269.8	391417	3.	.731061e+06	
	2014-05-04	452.00	454.50	431.00	439.0	0 7431.6	626480	3.	.271086e+06	
	2014-05-05	439.00	442.83	429.55	438.0	4 5154.4	107794	2	. 245293e+06	
		Weighted	Price							
	Date									
	2014-05-01		NaN							
	2014-05-02	458.	554960							
	2014-05-03	451.	162018							
	2014-05-04	440.	157544							
	2014-05-05	435.	606483							
Tn [116].	((btc_usd -	- btc usd	chift()) / h+c	uad ah	if+()) ho	nd()			
III [110].	((btc_usu	bcc_asa.	SHITC()) / DCC_	usu . sii.	110()).116	id()			
Out[116]:		Open	. Н	igh	Low	Close	Volume	(BTC)	\	
	Date									
	2014-05-01	NaN	Γ :	NaN	NaN	NaN		NaN		
	2014-05-02	0.026659	-0.006	203 -0.0	07724	-0.014036	-0.	134590		
	2014-05-03	-0.019459	-0.018	337 -0.0	30393	-0.034103	-0.	101363		
	2014-05-04	-0.028761	-0.025	677 -0.0	003364	-0.002187	-0.	306423		
	2014-05-05	-0.007107	0.004	900 -0.0	10592	-0.011506	0.	588559		
		Volume (Currenc	y) Weig	ted P	rice				
	Date									
	2014-05-01		N	aN		NaN				
	2014-05-02		-0.1485	42	-0.01	6122				
	2014-05-03		-0.1232	82	-0.02	4391				
	2014-05-04		-0.3135	94	-0.01	0340				
	2014-05-05		0.5801	30	-0.00	5306				
Tn [117].	# 滞后三阶									
III [II/].	btc_usd.shi	f+(2) hos	a()							
	btc_usa.sm	iit(3).nea	ia ()							
Out[117]:		Open	High	Low	Clos	e Volume	(BTC)	Volume	(Currency)	\
	Date									
	2014-05-01	NaN	NaN	NaN	Nal	N	NaN		NaN	

NaN

 ${\tt NaN}$

NaN

NaN

NaN

NaN

NaN

NaN

2014-05-02

2014-05-03

NaN

NaN

NaN

 ${\tt NaN}$

	2014-05-04	449.00	465.88	447.97	460.97	9556.0	37886	4.	.381969e+06		
	2014-05-05	460.97	462.99	444.51	454.50	8269.8	391417	3.	731061e+06		
		Weighte	d Price								
	Date										
	2014-05-01		NaN								
	2014-05-02		NaN								
	2014-05-03		NaN								
	2014-05-04	458	.554960								
	2014-05-05	451	.162018								
In [118]:	<pre>In [118]: btc_usd.shift(-2).head()</pre>										
Out[118]:		Open	High	Low	Clogo	Volumo	(DTC)	Volumo	(Currency)	\	
out[110].	Date	open	man	LOW	CIOSE	VOTume	(D10)	VOIUME	(Currency)	\	
	2014-05-01	452 00	454 50	431.00	439.00	7431.6	526480	3	.271086e+06		
	2014-05-02		442.83	429.55	438.04		107794		245293e+06		
	2014-05-03			425.00	433.00	8188.0			547855e+06		
	2014-05-04	431.64		420.27	428.01	8041.1			439331e+06		
	2014-05-05			425.67	440.00	13248.3			.842712e+06		
		120.00	102100			1021011	710020				
		Weighte	d Price								
	Date										
	2014-05-01	440	.157544								
	2014-05-02	435	.606483								
	2014-05-03	433	.294968								
	2014-05-04	427	.713734								
	2014-05-05	441	.014383								
In [119]:	btc_usd.shi	ft(-2).t	ail()								
Out[119]:		Open	Hig	n L	ow Cl	ose Vol	Lume (B	TC) \			
	Date										
	2019-12-12	7255.94	7269.00	7007.	48 7059	0.03 20	012.3489	906			
	2019-12-13	7066.35	7225.2	3 7007.	00 7115	5.08 18	348.345	728			
	2019-12-14	7115.08	7115.08	3 7108.	00 7108	3.00	0.5029	977			
	2019-12-15	NaN	Nal	N N	aN	NaN	I	NaN			
	2019-12-16	NaN	Nal	N N	aN	NaN	I	NaN			

```
Volume (Currency) Weighted Price
          Date
          2019-12-12
                           1.433426e+07
                                            7123.150732
          2019-12-13
                           1.312936e+07
                                            7103.305577
                           3.578212e+03
          2019-12-14
                                            7114.063353
          2019-12-15
                                    NaN
                                                    NaN
          2019-12-16
                                                    NaN
                                    NaN
   滚动计算 rolling
In [120]: btc_small = btc_usd.head(6)
          btc_small
Out[120]:
                                               Close Volume (BTC) Volume (Currency) \
                        Open
                                High
                                         Low
          Date
          2014-05-01 449.00
                              465.88 447.97 460.97
                                                       9556.037886
                                                                          4.381969e+06
          2014-05-02 460.97
                              462.99 444.51
                                              454.50
                                                       8269.891417
                                                                          3.731061e+06
          2014-05-03 452.00 454.50 431.00
                                              439.00
                                                       7431.626480
                                                                          3.271086e+06
          2014-05-04 439.00
                              442.83
                                      429.55
                                              438.04
                                                       5154.407794
                                                                          2.245293e+06
          2014-05-05 435.88
                              445.00
                                      425.00
                                              433.00
                                                       8188.082795
                                                                          3.547855e+06
          2014-05-06 431.64
                              434.00
                                      420.27
                                              428.01
                                                       8041.198415
                                                                          3.439331e+06
                      Weighted Price
          Date
          2014-05-01
                          458.554960
          2014-05-02
                          451.162018
          2014-05-03
                          440.157544
          2014-05-04
                          435.606483
          2014-05-05
                          433.294968
          2014-05-06
                          427.713734
In [121]: #To compute the 2 day moving average (for all columns).
          btc_small.rolling("2d").mean()
Out[121]:
                         Open
                                                   Close Volume (BTC) \
                                  High
                                            Low
          Date
          2014-05-01 449.000
                               465.880
                                        447.970
                                                460.970
                                                           9556.037886
          2014-05-02 454.985
                               464.435
                                        446.240
                                                 457.735
                                                           8912.964652
          2014-05-03 456.485
                              458.745
                                        437.755 446.750
                                                           7850.758948
```

```
2014-05-04 445.500 448.665 430.275 438.520 6293.017137
2014-05-05 437.440 443.915 427.275 435.520 6671.245295
2014-05-06 433.760 439.500 422.635 430.505 8114.640605
```

Volume (Currency) Weighted Price

Date		
2014-05-01	4.381969e+06	458.554960
2014-05-02	4.056515e+06	454.858489
2014-05-03	3.501074e+06	445.659781
2014-05-04	2.758190e+06	437.882013
2014-05-05	2.896574e+06	434.450725
2014-05-06	3.493593e+06	430.504351

```
In [122]: fig, ax = plt.subplots(figsize=(10, 4))
    btc_usd["Open"].plot(ax=ax, linestyle="--", alpha=0.8)
    btc_usd.rolling("21d").max()["Open"].plot(ax=ax, alpha=0.8, linewidth=3)
    ax.legend(["Original", "21 day max"])
```

Out[122]: <matplotlib.legend.Legend at 0x1e664c82c18>

自定义函数

else:

return 0.0

In [124]: btc_small.rolling("2d").apply(is_volatile)

C:\Users\Van\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Currently, 'age """Entry point for launching an IPython kernel.

Out[124]:	Open	High	Low	Close	Volume (BTC)	Volume (Currency)	\
Date							
2014-05-01	0.0	0.0	0.0	0.0	0.0	0.0)
2014-05-02	1.0	1.0	1.0	1.0	1.0	1.0)
2014-05-03	1.0	1.0	1.0	1.0	1.0	1.0)
2014-05-04	1.0	1.0	0.0	0.0	1.0	1.0)
2014-05-05	1.0	1.0	1.0	1.0	1.0	1.0)
2014-05-06	1.0	1.0	1.0	1.0	1.0	1.0)
	Weigh	ted Pr	rice				
Date							
2014-05-01			0.0				
2014-05-02			1.0				
2014-05-03			1.0				
2014-05-04			1.0				
2014-05-05			1.0				
2014-05-06			1.0				

改变频率

In [125]: btc_usd.resample("BQ").mean()

Out[125]:		Open	High	Low	Close \
	Date				
	2014-06-30	546.296557	560.478689	534.375574	549.274426
	2014-09-30	536.939130	544.464239	523.571087	533.646087
	2014-12-31	358.113261	367.361413	347.553261	357.277935
	2015-03-31	242.648111	250.373889	233.306667	241.823889
	2015-06-30	236.023956	239.404396	232.456593	236.209451
	2015-09-30	255.205435	259.369348	250.738478	254.964565

2015-12-31	343.968043	354.843587	335.019783	346.029674
2016-03-31	409.723956	415.345165	402.351319	409.552747
2016-06-30	508.830549	519.757143	491.237582	511.820440
2016-09-30	614.719891	621.399783	604.309022	614.092500
2016-12-30	722.921538	732.714176	714.873846	726.758462
2017-03-31	1031.095275	1058.529451	998.373077	1032.510000
2017-06-30	1886.373956	1961.381868	1823.321319	1902.486484
2017-09-29	3452.060000	3578.992637	3312.851758	3471.192088
2017-12-29	9132.594945	9602.524725	8655.917473	9245.341978
2018-03-30	10654.949560	11107.304725	9981.257363	10571.343077
2018-06-29	7760.852637	7950.978132	7543.325275	7754.252637
2018-09-28	6792.599011	6950.023956	6639.782857	6797.711209
2018-12-31	5199.605319	5297.541809	5063.396915	5169.268191
2019-03-29	3737.812500	3799.089886	3676.291136	3742.059432
2019-06-28	7026.032308	7308.565604	6829.843407	7117.250110
2019-09-30	10429.423617	10693.213511	10038.982872	10384.737660
2019-12-31	8153.517403	8338.461818	7953.086753	8136.907922
	Volume (BTC)	Volume (Curre	ncy) Weighted	Price
Date				
2014-06-30	9692.850513	5.418439	e+06 547.	779109
2014-09-30	8921.203260	4.473120	e+06 533.	775317
2014-12-31	14487.630863	5.182557	e+06 357.	025437
2015-03-31	15871.493002	3.827028	e+06 242.	062305
2015-06-30	7568.650463	1.787362	e+06 236.	050265
2015-09-30	15057.220448	3.752239	e+06 255.	216907
2015-12-31	21987.668969	7.534306	e+06 345.	209689
2016-03-31	7276.401365	2.957477	e+06 409.	345434

3.332013e+06

2.364365e+06

3.501319e+06

9.767086e+06

2.482040e+07

5.001818e+07

1.498917e+08

1.711173e+08

8.196025e+07

509.388134

613.211596

724.799640

1029.350854

1897.089126

3446.717092

9150.932048

10536.375918

7744.048061

2016-06-30

2016-09-30

2016-12-30

2017-03-31

2017-06-30

2017-09-29

2017-12-29

2018-03-30

2018-06-29

5981.137422

3888.241125

4658.746976

9574.254814

11808.708093

14591.656328

15339.474034

16971.607663

10412.011976

2018-09-28	7098.911451	4.863160e+07	6790.558832
2018-12-31	8805.848653	3.969870e+07	5178.241610
2019-03-29	6446.776373	2.414045e+07	3737.221237
2019-06-28	10796.082022	8.051510e+07	7077.940876
2019-09-30	9112.727636	9.513540e+07	10360.841564
2019-12-31	6722.605362	5.535318e+07	8136.590657

In [126]: btc_usd.resample("2BQS").agg(["min", "max"])

Out[126]:		Open		High		Low		Close	\
		min	max	min	max	min	max	min	
	Date								
	2014-04-01	374.17	668.90	386.03	683.26	365.20	651.70	374.20	
	2014-10-01	0.00	426.64	0.00	453.92	0.00	390.48	0.00	
	2015-04-01	209.76	310.55	222.88	317.99	198.12	292.19	209.72	
	2015-10-01	235.87	464.53	239.06	502.00	235.00	453.50	237.15	
	2016-04-01	414.66	767.37	416.99	778.85	1.50	740.11	416.31	
	2016-10-03	607.19	1287.38	610.50	1350.00	604.99	1255.00	607.19	
	2017-04-03	1076.59	4921.71	1145.00	4979.90	1076.19	4671.09	1134.58	
	2017-10-02	4219.74	19187.78	4343.00	19666.00	4137.96	18465.00	4219.53	
	2018-04-02	5845.20	9827.04	6165.49	9948.98	5774.72	9670.68	5848.33	
	2018-10-01	3180.84	6604.76	3230.00	6756.00	3122.28	6553.13	3179.54	
	2019-04-01	4092.02	12927.44	4150.00	13880.00	4052.56	12030.43	4136.32	
	2019-10-01	6900.90	9547.32	7115.08	10350.00	6515.00	9254.68	6908.36	

		Volume (BTC)	Volume (Currency)		\
	max	min	max	min	
Date					
2014-04-01	670.14	1467.591402	29732.720362	9.159133e+05	
2014-10-01	426.63	0.000000	124188.885083	0.000000e+00	
2015-04-01	310.55	1946.293030	42308.005630	4.732609e+05	
2015-10-01	464.53	1253.006376	105959.259141	5.210775e+05	
2016-04-01	766.62	719.159825	33056.289644	4.709121e+05	
2016-10-03	1285.33	888.660021	36018.861120	5.460154e+05	
2017-04-03	4921.70	1804.450797	60278.946542	2.128068e+06	
2017-10-02	19187.78	4646.405621	70961.369658	2.032007e+07	
2018-04-02	9823.28	1098.628060	33035.904045	7.093171e+06	
2018-10-01	6604.75	839.297665	39775.389439	5.373482e+06	

2019-04-01	12920.54	1572.155427	37487.802426	1.506857e+07
2019-10-01	9557.08	0.502977	38751.800255	3.578212e+03

Weighted Price

	max	min	max
Date			
2014-04-01	1.561239e+07	376.976877	667.690345
2014-10-01	2.357627e+07	0.000000	420.127183
2015-04-01	9.091325e+06	214.884260	306.748292
2015-10-01	4.719959e+07	237.116083	461.494358
2016-04-01	2.225764e+07	415.569853	754.723539
2016-10-03	3.883046e+07	607.560859	1275.581651
2017-04-03	2.031684e+08	1127.151197	4808.168193
2017-10-02	7.721430e+08	4233.863791	19110.244062
2018-04-02	3.032200e+08	5936.398196	9827.536792
2018-10-01	1.773528e+08	3171.722851	6593.879882
2019-04-01	4.769830e+08	4121.008519	12723.686028
2019-10-01	3.644311e+08	6911.863388	9504.401543