401

$$f(x) \sim z$$

 $u \sim z$
 $f(u) \sim y // ff(x) \sim y$
 $(401a) f(f(\delta)) \sim y$.
 $(401b) f(f(v)) \sim y$.
 $(401c) f(v) \sim y$
 $(401c.a) v \sim f(\delta)$.
 $(401c.b) v \sim f(w)$
 $\delta \sim w$.

401c.b:

mostly LR strategy:

1)

$$\begin{array}{ccccc} f(x) & f(x) & f(f(x)) & f(f(\delta)) & f(\delta) & \delta \\ f(x) & f(x) & f(f(\delta)) & f(f(\delta)) & f(\delta) & \delta \end{array}$$

$$f(x)$$
 $f(\delta)$ $f(\frac{f(\delta)}{\delta}) \circ f(f(\delta))$ $f(\delta)$ δ $f(x)$ $f(x)$ $f(f(\delta))$ $f(f(\delta))$ $f(\delta)$ δ

$$f(\delta)$$
 $f(\delta)$ $f(f(\delta)) \bullet_2$ $f(f(\delta))$ $f(\delta)$ δ $f(\delta)$ $f(\delta)$ $f(f(\delta))$ $f(f(\delta))$ $f(\delta)$ δ

- •: Δ -term enters Γ -term
- •1 unification with Δ -term occurring at grey position
- •2 unification with Δ -term occurring at Γ -position
- o: propagation

402 - misc

$$\begin{split} & P(z,z,\delta), \neg P(f(x),f(y),y) \\ & P(z,f(z),f(f(\delta))), \neg P(f(x),y,y) \\ & P(u,f(z),f(f(\delta))), \neg P(f(x),y,y) \end{split}$$

403 - col change example

$$P(f(x), g(x)), \neg P(y, g(a))$$

403 - col change example with introduction

$$P(f(x), x, z, z), \neg P(\cdot, y, g(y), g(a))$$

$$\hline f(x) & x & z & z \\
 & \cdot & y & g(y) & g(a) \\
\hline f(x) & x & z & z \\
 & \cdot & x & g(x) & g(a) \\
\hline f(x) & x & z & z \\
 & \cdot & x & g(x) & g(a) \\
\hline f(x) & x & z & z \\
 & \cdot & x & g(x) & g(a) \\
\hline f(x) & x & z & z \\
 & \cdot & x & g(x) & g(a) \\
\hline f(x) & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 & \cdot & x & z & z \\
 &$$

^{•3} unification with Δ -term occurring at Δ -position