CS 121 Introduction

1 Policies and Procedures

1.1 Grading

There will be numerous programming assignments. It is expected that students will do their own work on all components of the programs—unless otherwise specified.

Quizzes will normally be given approximately weekly on the material covered since the last quiz. Knowledge of material presented in this class is cumulative!

There will be two exams (tests) and a final exam. The focus of the exams will be discussed before the exam, but knowledge is cumulative.

The course will be graded on the basis of 90% and above is an A, 80%–89% a B, 70%–79% a C, etc.

1.2 Academic Dishonesty

Cheating on exams or homework will be heavily penalized. Students may receive an F on the assignment/course if it is determined they have violated the University of Idaho Academic Integrity Policy.

1.3 Computer Usage/Misuse

Misuse of computers and files is a felony in the state of Idaho! See the University of Idaho Computer Use Policy document available from Computer Services for details.

1.4 Knowledge

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it.

—Samuel Johnson, Boswell's Life of Johnson

1.5 Linked Lists

Interviewer: What is a linked list?

Interviewee: it's a data structure used exclusively at job

interviews.

Interviewer: ...silence

8/20/22, 1:39 PM

1.6 Textbooks

What college is like when you don't use slugbooks 8/21/16, $1:33~\mathrm{PM}$

https://twitter.com/coliegestudent/status/767459610932510720

Recommended textbook:

DATA STRUCTURES AND PROGRAM DESIGN IN C++

ROBERT L. KRUSE ALEXANDER J. RYBA

1.7 Road to Success

On the road to success, There are no shortcuts.

1.8 Effort

THE MOST MOTIVATIONAL POSTER EVER

 $1.01^{365} = 37.8$

 $0.99^{365} = 0.03$

Motivation?

Success != Failure

What is success?

Modes for success?

Modes for failure?

Curiosity's Seven Minutes of Terror

http://www.youtube.com/watch?v=ISmWAyQxqqs

Sample grade report

AAAA, **Astudent** 9457 CS 121

Final score: 90 December 22, 2020

Test scores: Quizzes: 13

Quiz scores: 9 13 9 13 13 18 13 13 18 19 18 18 13 Adjusted Quiz scores: 0 13 9 13 13 18 13 13 18 19 18 18 13

Programs: 6

Totals:

Absences: 0
Test total: 0

Adjusted quiz total: 178 / 190 Adjusted program total: 108 / 120

Percentiles:

Before multiplying by weighting factors: 376 / 410 : 91.707

After multiplying by weighting factors: 85.100 / 93.000 : 91.505

Failure Modes

- Don't do the programming assignments.
- Don't come to class.
- Skip class on quiz days.
- Do something else during class.
- Personal life (can't control everything).

DFMEA (Design Failure Mode and Effect Analysis) is the application of the Failure Mode and Effects Analysis (FMEA) method specifically to product/service design.

Success Modes

- Do all the programming assignments (start early).
- Attend / Participate in class.
- Take all quizzes.
- Pay attention during class.
- Take notes during class.
- Program the examples discussed in class.

No guarantee, but you will do much better than if you do the opposite.

Expectation: You will do all required work and whatever it takes for you to know the material.

This is a three unit class!

Old rule of thumb: Three (3) hours outside of class for every hour in class.

Rules for Success

- 1. Show up.
- 2. Show up on time.
- 3. Do all the required work.

2 Books

Recommended

Data Structures and Program Design in C++, Kruse and Ryba, Prentice Hall, 1999.

Future

C++ Primer (5th Edition), Stanley B. Lippman
The C Programming Language, Kernighan & Ritchie
Coders at Work, Apress

	INTRODUCTION
Part One Concepts.	
CHAPTER 1	BASIC ALGORITHM ANALYSIS 3
CHAPTER Z	TEMPLATES
Part Two The Basic	5
CHAPTER 3	####Y5
Сняртек 4	KITVECTORS
CHAPTER 5	MULTI-DIMENSIONAL ARRAYS 107
Сняртек Б	LINKED LISTS 147
CHAPTER 7	STACKS AND QUEUES
Сняртек В	HASH TABLES
Сняртек 9	TYING IT TOGETHER! THE BASICS 241
Part Three Recursion and Trees	
CHAPTER 10	RECURSION
CHAPTER 11	TREES
CHAPTER 12	KINARY TREES 359
Сняртек 13	KINARY SEARCH TREES 389
CHAPTER 14	PRIORITY QUEUES AND HEAPS 407

CHAPTER 15	GAME TREES AND MINIMAX TREES431
Сняртея 16	TYING IT TOGETHER! TREES463
•	
CHAPTER 17	GRAPHS
Сняртек 18	USING GRAPHS FOR ATT FINITE STATE MACHINES
Сняртек 19	TYING IT TOGETHER! GRAPHS 563
Part Five Algorithm	ıs597
CHAPTER ZO	SORTING DATA 599
CHAPTER 21	DATA COMPRESSION 645
CHAPTER 22	RANDOM NUMBERS
CHAPTER 23	Pathfinding
Сняртек 24	TYING IT TOGETHER! ALGORITHMS 769
CONCLUSION	
Part Six Appendix	es799
Ярреноїх Я	# C++ PRIMER
APPENDIX &	THE MEMORY LAYOUT OF A COMPUTER PROGRAM
APPENDIX C	INTRODUCTION TO SDL 847
Appendix D	INTRODUCTION TO THE STANDARD TEMPLATE LIBRARY
	INDEX

3 Introduction to Data Structures

3.1 Key concepts

What is a data type?

A data type is defined by a programming language or a programmer to specify the kind (type) of an object.

What is a data structure?

A data structure is a construct that is defined within a programming language to store a collection of data.

What is an ADT (Abstract Data Type)?

An ADT is a collection of data and a set of operations on the data.

What is the difference between an ADT and a data structure?