Lecture 40: V-statistics and the weighted LSE

Let $X_1, ..., X_n$ be i.i.d. from P.

For every U-statistic U_n as an estimator of $\vartheta = E[h(X_1,...,X_m)]$, there is a closely related V-statistic defined by

$$V_n = \frac{1}{n^m} \sum_{i_1=1}^n \dots \sum_{i_m=1}^n h(X_{i_1}, \dots, X_{i_m}).$$
 (1)

As an estimator of ϑ , V_n is biased; but the bias is small asymptotically as the following results show.

For a fixed sample size n, V_n may be better than U_n in terms of their mse's.

Proposition 3.5. Let V_n be defined by (1).

(i) Assume that $E|h(X_{i_1},...,X_{i_m})| < \infty$ for all $1 \le i_1 \le \cdots \le i_m \le m$. Then the bias of V_n satisfies

$$b_{V_n}(P) = O(n^{-1}).$$

(ii) Assume that $E[h(X_{i_1},...,X_{i_m})]^2 < \infty$ for all $1 \le i_1 \le \cdots \le i_m \le m$. Then the variance of V_n satisfies

$$Var(V_n) = Var(U_n) + O(n^{-2}),$$

where U_n is the U-statistic corresponding to V_n .

To study the asymptotic behavior of a V-statistic, we consider the following representation of V_n in (1):

$$V_n = \sum_{j=1}^m \binom{m}{j} V_{nj},$$

where

$$V_{nj} = \vartheta + \frac{1}{n^j} \sum_{i_1=1}^n \cdots \sum_{i_j=1}^n g_j(X_{i_1}, ..., X_{i_j})$$

is a "V-statistic" with

$$g_{j}(x_{1},...,x_{j}) = h_{j}(x_{1},...,x_{j}) - \sum_{i=1}^{j} \int h_{j}(x_{1},...,x_{j}) dP(x_{i})$$

$$+ \sum_{1 \leq i_{1} < i_{2} \leq j} \int \int h_{j}(x_{1},...,x_{j}) dP(x_{i_{1}}) dP(x_{i_{2}}) - \cdots$$

$$+ (-1)^{j} \int \cdots \int h_{j}(x_{1},...,x_{j}) dP(x_{1}) \cdots dP(x_{j})$$

and $h_j(x_1,...,x_j) = E[h(x_1,...,x_j,X_{j+1},...,X_m)].$

Using an argument similar to the proof of Theorem 3.4, we can show that

$$EV_{nj}^2 = O(n^{-j}), j = 1, ..., m,$$
 (2)

provided that $E[h(X_{i_1},...,X_{i_m})]^2 < \infty$ for all $1 \le i_1 \le \cdots \le i_m \le m$. Thus,

$$V_n - \vartheta = mV_{n1} + \frac{m(m-1)}{2}V_{n2} + o_p(n^{-1}), \tag{3}$$

which leads to the following result similar to Theorem 3.5.

Theorem 3.16. Let V_n be given by (1) with $E[h(X_{i_1},...,X_{i_m})]^2 < \infty$ for all $1 \le i_1 \le \cdots \le i_m \le m$.

(i) If $\zeta_1 = Var(h_1(X_1)) > 0$, then

$$\sqrt{n}(V_n - \vartheta) \to_d N(0, m^2 \zeta_1).$$

(ii) If $\zeta_1 = 0$ but $\zeta_2 = \text{Var}(h_2(X_1, X_2)) > 0$, then

$$n(V_n - \vartheta) \to_d \frac{m(m-1)}{2} \sum_{j=1}^{\infty} \lambda_j \chi_{1j}^2,$$

where χ_{1j}^2 's and λ_j 's are the same as those in Theorem 3.5.

Theorem 3.16 shows that if $\zeta_1 > 0$, then the amse's of U_n and V_n are the same. If $\zeta_1 = 0$ but $\zeta_2 > 0$, then an argument similar to that in the proof of Lemma 3.2 leads to

$$\operatorname{amse}_{V_n}(P) = \frac{m^2(m-1)^2 \zeta_2}{2n^2} + \frac{m^2(m-1)^2}{4n^2} \left(\sum_{j=1}^{\infty} \lambda_j\right)^2$$
$$= \operatorname{amse}_{U_n}(P) + \frac{m^2(m-1)^2}{4n^2} \left(\sum_{j=1}^{\infty} \lambda_j\right)^2$$

(see Lemma 3.2). Hence U_n is asymptotically more efficient than V_n , unless $\sum_{j=1}^{\infty} \lambda_j = 0$.

Example 3.28. Consider the estimation of μ^2 , where $\mu = EX_1$.

From the results in §3.2, the U-statistic $U_n = \frac{1}{\frac{n(n-1)}{n}} \sum_{1 \leq i < j \leq n} X_i X_j$ is unbiased for μ^2 .

The corresponding V-statistic is simply $V_n = \bar{X}^2$.

If $\mu \neq 0$, then $\zeta_1 \neq 0$ and the asymptotic relative efficiency of V_n w.r.t. U_n is 1. If $\mu = 0$, then

$$nV_n \to_d \sigma^2 \chi_1^2$$
 and $nU_n \to_d \sigma^2 (\chi_1^2 - 1)$,

where χ_1^2 is a random variable having the chi-square distribution χ_1^2 . Hence the asymptotic relative efficiency of V_n w.r.t. U_n is

$$E(\chi_1^2 - 1)^2 / E(\chi_1^2)^2 = 2/3.$$

The weighted LSE

In the linear model

$$X = Z\beta + \varepsilon, \tag{4}$$

the unbiased LSE of $l^{\tau}\beta$ may be improved by a slightly biased estimator when $V = \text{Var}(\varepsilon)$ is not $\sigma^2 I_n$ and the LSE is not BLUE.

Assume that Z is of full rank so that every $l^{\tau}\beta$ is estimable.

If V is known, then the BLUE of $l^{\tau}\beta$ is $l^{\tau}\ddot{\beta}$, where

$$\ddot{\beta} = (Z^{\tau}V^{-1}Z)^{-1}Z^{\tau}V^{-1}X \tag{5}$$

(see the discussion after the statement of assumption A3 in §3.3.1).

If V is unknown and V is an estimator of V, then an application of the substitution principle leads to a weighted least squares estimator

$$\hat{\beta}_w = (Z^{\tau} \hat{V}^{-1} Z)^{-1} Z^{\tau} \hat{V}^{-1} X. \tag{6}$$

The weighted LSE is not linear in X and not necessarily unbiased for β .

If the distribution of ε is symmetric about 0 and \hat{V} remains unchanged when ε changes to $-\varepsilon$, then the distribution of $\hat{\beta}_w - \beta$ is symmetric about 0 and, if $E\hat{\beta}_w$ is well defined, $\hat{\beta}_w$ is unbiased for β .

In such a case the LSE $l^{\tau}\hat{\beta}$ may not be a UMVUE (when ε is normal), since $\text{Var}(l^{\tau}\hat{\beta}_w)$ may be smaller than $\text{Var}(l^{\tau}\hat{\beta})$.

Asymptotic properties of the weighted LSE depend on the asymptotic behavior of \hat{V} . We say that \hat{V} is consistent for V if and only if

$$\|\hat{V}^{-1}V - I_n\|_{\max} \to_p 0, \tag{7}$$

where $||A||_{\max} = \max_{i,j} |a_{ij}|$ for a matrix A whose (i,j)th element is a_{ij} .

Theorem 3.17. Consider model (4) with a full rank Z. Let $\check{\beta}$ and $\hat{\beta}_w$ be defined by (5) and (6), respectively, with a \hat{V} consistent in the sense of (7). Assume the conditions in Theorem 3.12. Then

$$l^{\tau}(\hat{\beta}_w - \beta)/a_n \rightarrow_d N(0, 1),$$

where $l \in \mathcal{R}^p$, $l \neq 0$, and

$$a_n^2 = \text{Var}(l^{\tau} \check{\beta}) = l^{\tau} (Z^{\tau} V^{-1} Z)^{-1} l.$$

Proof. Using the same argument as in the proof of Theorem 3.12, we obtain that

$$l^{\tau}(\breve{\beta}-\beta)/a_n \to_d N(0,1).$$

By Slutsky's theorem, the result follows from

$$l^{\tau}\hat{\beta}_w - l^{\tau}\check{\beta} = o_p(a_n).$$

Define

$$\xi_n = l^{\tau} (Z^{\tau} \hat{V}^{-1} Z)^{-1} Z^{\tau} (\hat{V}^{-1} - V^{-1}) \varepsilon$$

and

$$\zeta_n = l^{\tau} [(Z^{\tau} \hat{V}^{-1} Z)^{-1} - (Z^{\tau} V^{-1} Z)^{-1}] Z^{\tau} V^{-1} \varepsilon.$$

Then

$$l^{\tau} \hat{\beta}_w - l^{\tau} \check{\beta} = \xi_n + \zeta_n.$$

The result follows from $\xi_n = o_p(a_n)$ and $\zeta_n = o_p(a_n)$ (details are in the textbook).

Theorem 3.17 shows that as long as \hat{V} is consistent in the sense of (7), the weighted LSE $\hat{\beta}_w$ is asymptotically as efficient as $\check{\beta}$, which is the BLUE if V is known.

By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the LSE $l^{\tau}\hat{\beta}$ w.r.t. the weighted LSE $l^{\tau}\hat{\beta}_w$ is

$$\frac{l^{\tau}(Z^{\tau}V^{-1}Z)^{-1}l}{l^{\tau}(Z^{\tau}Z)^{-1}Z^{\tau}VZ(Z^{\tau}Z)^{-1}l},$$

which is always less than 1 and equals 1 if $l^{\tau}\hat{\beta}$ is a BLUE (in which case $\hat{\beta} = \check{\beta}$).

Finding a consistent \hat{V} is possible when V has a certain type of structure.

Example 3.29. Consider model (4). Suppose that $V = \text{Var}(\varepsilon)$ is a block diagonal matrix with the *i*th diagonal block

$$\sigma^2 I_{m_i} + U_i \Sigma U_i^{\tau}, \qquad i = 1, ..., k, \tag{8}$$

where m_i 's are integers bounded by a fixed integer m, $\sigma^2 > 0$ is an unknown parameter, Σ is a $q \times q$ unknown nonnegative definite matrix, U_i is an $m_i \times q$ full rank matrix whose columns are in $\mathcal{R}(W_i)$, $q < \inf_i m_i$, and W_i is the $p \times m_i$ matrix such that $Z^{\tau} = (W_1 W_2 \dots W_k)$. Under (8), a consistent \hat{V} can be obtained if we can obtain consistent estimators of σ^2 and Σ .

Let $X = (Y_1, ..., Y_k)$, where Y_i is an m_i -vector, and let R_i be the matrix whose columns are linearly independent rows of W_i . Then

$$\hat{\sigma}^2 = \frac{1}{n - kq} \sum_{i=1}^k Y_i^{\tau} [I_{m_i} - R_i (R_i^{\tau} R_i)^{-1} R_i^{\tau}] Y_i \tag{9}$$

is an unbiased estimator of σ^2 .

Assume that Y_i 's are independent and that $\sup_i E|\varepsilon_i|^{2+\delta} < \infty$ for some $\delta > 0$. Then $\hat{\sigma}^2$ is consistent for σ^2 (exercise). Let $r_i = Y_i - W_i^{\tau} \hat{\beta}$ and

$$\hat{\Sigma} = \frac{1}{k} \sum_{i=1}^{k} \left[(U_i^{\tau} U_i)^{-1} U_i^{\tau} r_i r_i^{\tau} U_i (U_i^{\tau} U_i)^{-1} - \hat{\sigma}^2 (U_i^{\tau} U_i)^{-1} \right]. \tag{10}$$

It can be shown (exercise) that $\hat{\Sigma}$ is consistent for Σ in the sense that $\|\hat{\Sigma} - \Sigma\|_{\text{max}} \to_p 0$ or, equivalently, $\|\hat{\Sigma} - \Sigma\|_p = 0$ (see Exercise 116).