Universal polarization of sharp codes in the Leech lattice

Peter Dragnev* Purdue University Fort Wayne, USA

30th Applications of Computer Algebra - ACA 2025

Given a spherical code $C \subset \mathbb{S}^{n-1}$ and a potential h, the discrete h-potential of C is given as $U_h(x,C) = \sum_{y \in C} h(x \cdot y)$. A spherical $\tau = 2k-1$ or $\tau_{1/2}$ -design (a τ -design with vanishing moments of order $\tau + 2$ and $\tau + 3$), that can be embedded in k or k+1 parallel hyperplanes is called PULB-optimal, i.e. attains a polarization universal lower bound below. For a PULB-optimal code C and very broad class of potentials the location of the global minima of $U_h(x,C)$ are universal and independent of h. Two PULB-optimal codes C and D are called PULB-optimal pair (C,D) if the universal minima of $U_h(x,C)$ are the points of D and vice versa, the universal minima of $U_h(x,D)$ are the points of C. We call a PULB-optimal pair maximal if D is the set of all universal minimal of $U_h(x,C)$ and vice versa. We shall show that some remarkable universally optimal codes embedded in the Leech lattice give rise to maximal PULB-pairs.

^{*}Joint work with S. Borodachov, P. Boyvalenkov, D. Hardin, E. Saff, M. Stoyanova