Transformation of Random Variable:

(1)
$$\times \sim P(1)$$

(2) $\times \sim P(1)$

(3) $\times \sim P(1)$

(4) $\times \sim P(1)$

(5) $\times \sim P(1)$

(6) $\times \sim P(1)$

(7) $\times \sim P(1)$

(8) $\times \sim P(1)$

(9) $\times \sim P(1)$

(10) $\times \sim P(1)$

(11) $\times \sim P(1)$

(12) $\times \sim P(1)$

(13) $\times \sim P(1)$

(14) $\times \sim P(1)$

(15) $\times \sim P(1)$

(16) $\times \sim P(1)$

(17) $\times \sim P(1)$

(17) $\times \sim P(1)$

(18) $\times \sim P(1)$

(19) $\times \sim P(1)$

Probability man full.

$$f(x) = y:$$

$$f(x) = 0 \quad x = \partial \partial$$

$$f(x) = y$$

 $P_y(y) = \frac{dn}{dy} p_n(n) ; x = f'(y)$

Py(y) = Px(n) | dn / dy /

multivariate change of variable.

Jacobian matrix
$$J = J_{x \to y} \stackrel{\triangle}{=} \frac{\partial (y_1, \dots, y_n)}{\partial (x_1, \dots, y_n)}$$

$$\stackrel{\triangle}{=} \left(\frac{\partial y_1}{\partial x_1} \dots \frac{\partial y_n}{\partial x_n} \right)$$

$$\stackrel{\partial}{=} \frac{\partial y_n}{\partial x_1} \dots \frac{\partial y_n}{\partial x_n}$$

Central Limit Theorem:

White Theorem:

No random variable with pdf
$$p(x_i)$$
 mean= M & variable S all one iid

 $S_N = \sum_{i=1}^N x_i$
 $p(S_N = S) = \frac{1}{\sqrt{\pi N}6^2}$ exp $\left(-\frac{(s - Nn)^2}{2N6^2}\right)$