Analysing Content of large dCache Databases

Using Apache Spark to Improve Queries to dCache Databases

Christian Voß
DESY

Comparison between DESY-Hamburg dCache Installations

Write

Use dCache for Variety of Customers

Particle Physics

- DESY is a Tier-2 centre for ATLAS, CMS and LHCb
- Raw data centre for Belle II
- Tier-0 for ILC
- Host small on-site HEP communities

Research with Photons

- DESY hosts several on-site photon sources
- DESY hosts data for European XFEL
- Data analysis done on HPC w/ GPFS
- Role of dCache: archival of RAW data
- Second order analyses

Focus Today: Dealing with Photon Science Instances

dCache Operational Cross-Checks with Tape Library

Provide Tape Storage on

- DESY for Belle II, ILC, IT services
- Photon for PETRA 3, FLASH, CFEL, CSSB, and Machine Group
- XFEL for their raw/calibration/processed data
- Only European XFEL provides enough storage to store on disk and tape

Data Policies

- DESY: single tape copy
- XFEL: two copies on two independent systems,
 i.e. dCache disk and tape
- PETRA 3/FLASH: two copies on two different tape media

Ratio: Stored data to Available Space per Tape Instance

Monitor and Ensure Policies

How to Ensure the File Policies

How to monitor Entries in t_locationinfo and in the HSM

Check locality via SRM:

```
[vossc@naf-it01] ~ $ srmls -l srm://dcache-se-dot.desy.de:8443/pnfs/desy.de/dot/cta-dev/st.99.0 | awk -vFS=: 'NF==1{f=$0}/locality/{print f,$0}'
42582016 /pnfs/desy_de/dot/cta-dev/st.99.0 locality:NEARLINE
```

- How reliable is Locality: entry in t locationinfo and successful store
- dCache has no knowledge of quality of tape system, only the uri is known

HSM system usually keeping track of its inventory separately

Cross-checks to be done manually → DB dumps and scripts to compare

Limitations of Manual Checks

Extended Query Times for Large Databases

- Running external scripts on dumps can be tedious
- Running against a replica requires a lot of storage
- Queries typically not optimal
- Limited by size of the databases (for us 2.1TiB currently)

Photon dCache

- Last summer → had to make a major scan of dCache + tape archive
- Tape archival queries finished in a few minutes
- Gave up on dCache queries after many hours → encountered a death spiral
 - Query ran into backup period inducing further delays
 - Backup delayed ingest inducing further delays on scan query

Simple Example: Check if all Stored Files are known to HSM

Compare dCache with OSM for Photon dCache

- Remember OSMTemplate tag with entry StoreName: petra3:p11@osm maps directly into store in OSM
- Multiple stores in our instances → need to filter these

dCache

- Filter on t_storageinfo for specific store
- Find inumber, i.e. files, for a given store
- Find all entries in t_locationinfo for selected range for inumber that matches the HSM
- Query whole DB, no profit from cached data
- Worse → invalidate parts of the file system cache
- Write into output format (parse content of t locationinfo to extract bfid)

OSM

- Select corresponding store namespace in database
- Filter on bfid in location table read from dCache export
- Find associated tapes
- Merge into output list

A more Convenient Alternative

Using Table Joins and Memory to Store Data

- Looking for something more convenient than comparing output files → e.g. table joins
 - → Want a simple query for files without valid HSM location

- Avoid interference with production database
 - Needs space to save dumps and restore
 - Usually use a separate host for that: Our Limit: Find 3TB of performing disk space on a node

→ Can exercise the checks in memory

How to Combine/Overcome both Join and Space Limitation

Do Joined Searches in Memory with Apache Spark Cluster

- Checking our largest DB made us desperate
- Use Spark for billing/logging analyses since 2018
- Initial import large data set time intensive
- All further queries are fast/interactive

Can you Spark for our database analysis as well?

Apache Spark Cluster

Very Short Overview

- Spark consists of a scheduler and a number of workers
- Spark application controls the flow of data import and download of results
- Primary usage: large scale billing analyses

- Usually run on batch-nodes
- Import billing data via dCache using NFS
- DB analysis with different needs
 - Allow access to DB
 - Limit number clients and connections

Spark Workers

Connect Spark with PostgreSQL

Three Major Questions

- 1. Resources to import a database with ~500GiB of table size
 - Quite straight forward: use decommissioned dCache heads, while old CPUs they have enough memory and are not in use
- 2. How to make Spark aware of the database format
 - Use the regular Java driver for PostgreSQL
 - Expose the jar to Spark/make Spark aware of the driver

```
Singularity> pwd
/opt/spark/jars
Singularity> ls postgresql-42.2.22.jar
postgresql-42.2.22.jar
```

- 3. How to instruct Spark to split the workload among workers
 - Make Spark use the PostgreSQL driver
 - Configure connection
 - Configure the worker payload
 - Six worker
 - Split/partition by default index inumber
 - Observe six distinct connections with selections based on inumbers

```
t_inodes = sqlContext.read.format("jdbc")\
    .option("driver", "org.postgresql.Driver")\
    .option("url", "jdbc:postgresql://{}/chimera".format(db_host))\
    .option("dbtable", "t_inodes")\
    .option("user", user)\
    .option("numPartitions",6)\
    .option("partitionColumn", "inumber")\
    .option("lowerBound", low_inumber)\
    .option("upperBound", up_inumber)\
    .option("password", )\
    .load()
```

Modifications to dCache database

Extract the ID for the Tape File from its Location

Internal index and nearline location in form of an URI, nearline system keeps its internal ID

inumber	ilocation
896311558	osm://osm/?store=petra3&group=p06&bfid=021169072174.605a9c340be65f.413c11

bfid	slid	volid
021169072174.605a9c340be65f.413c11	96	3735
021169072174.605a9c340be65f.413c11	69	4032
021169072174.605a9c340be65f.413c11	248	5674

→ Make use of internal functions provided by Spark

```
split_location = pyspark_function.split(t_locationinfo.ilocation, '[&=]')
df_location = t_locationinfo.select("inumber","ilocation", "ictime", split_location.getItem(1).alias('istore'),\
                                    split location.getItem(3).alias('sGroup'),\
                                    split_location.getItem(5).alias('ibfid')).where("ilocation like 'osm://%'")
df_location.show(5,True)
                      ilocation|
                                              ictime|istore|
   inumber
                                                               sGroupl
                                                                                      ibfid
        12|osm://osm/?store=...|2014-12-05 21:06:...|
                                                              ttf2-13|00144fa0d390.5482...
       135|osm://osm/?store=...|2014-11-28 22:19:...
                                                              ttf2-13|00144fa0d390.5478...
                                                              ttf2-12|00144fa0d390.5076...
       168|osm://osm/?store=...|2012-10-11 19:17:...
       177|osm://osm/?store=...|2012-01-30 01:50:...
                                                              ttf2-12|00144fa0d390.4f25...
 318411187|osm://osm/?store=...|2017-09-02 05:22:...
                                                        ttf|ttf2-17-d|021169072174.59aa...
only showing top 5 rows
```

Linking up with the Tape Database

Perform the Join

After modification → two tables each with a unique identifier on which to join

Access to full table showing both information

Performing the Check

Or Let's Find Lost Data

Have full join → filter for null entries

- Find all 'lost' files → files kown to dCache but not the HSM
- Find all HSM orphans → file long since deleted on dCache

Need for Speed – What is the Advantage

Or is it Being German → 1M\$ solution for 10\$ Problem

- Advantage: no need for dedicated storage
 - → RAM/CPUs usually easy to find
- Comes down to scale → usually dump/import/join usually fine
 - At worst dump/restore will take 1h (~50M files)
 - Remember: Photon DB at DESY has 1000M files
- What is the actual time scale? → significant decrease in latency

Completed Stages (9)

7 Significant decrease in late

→ overall faster checks

Complete	d Stages (9)) Overall i	aster crit				
Stage Id +	Pool Name	Description		Submitted	Duration	Tasks	: Succeeded/Total
	default	collect at <ipython-input-5-1f08d7c6491c>:126</ipython-input-5-1f08d7c6491c>	+details	2022/05/16 20:20:05	15 s	-	6/6
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 18:57:31	0.2 s		1/1
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 15:58:57	3.0 h		6/6
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 15:58:57	0.2 s		1/1
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 07:42:36	8.3 h		6/6
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 07:42:36	97 ms		1/1
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 07:42:32	3 s		200/200
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 07:42:26	6 s		1/1
	default	count at NativeMethodAccessorImpl.java:0	+details	2022/05/16 07:42:26	2 s		1/1
SY.							

Files per Instance

938.3M

37.5M

46.8M

26.9M

77.1M

143.7M

Instances

CMS

DESY

XFEL

Expensive

Photon

NextCloud

ATLAS

Need for Speed – Is Speed-Up consistent?

Running Queries versus Database in Memory (Using Spark's Caching Capabilities)

• Lifetime → how stable is the Spark import

Running Applications (1)

Active for days, longer than the import is valid

Application ID	Name	Cores	Memory per Executor	Submitted Time	User	State		Duration	
app-20220520092427-0000 (ki	ll) dot-postgres-analysis	180	120.0 GB	2022/05/20 09:24:27	vossc	RUNNING		119.5 h	
									r .

Back to Photon dCache - Production Example

Using Spark to Check for Second Copy on Tape before Removal

- Follow up to our studies from Summer
- Users write many small files supposed to be stored on tape
- Make use of the Small File Plugin/HSM

Locality Check for a given beam-time

- Truth is on the offline cluster for the photon sources → their paths
- file packed → container flushed → tape system creates 2nd copy
- Import t_locationinfo → create table in Spark for small-files and tape-files based on URI → cache in Spark
- Import of tape t_location → create a joined table based in file-ids for all files in dCache and HSM → cache in spark
- Select all container files based on inumbers of the small files
- Store output → container and tapes for each file → trigger delete

Page 16

Summary

Using Spark for Checks Based on Database Queries

- Adapted Apache Spark to help us run (and finish) checks between dCache and our tape system
- Eliminates the need for additional large DB nodes (major benefit for us)
- Lucky: dCache, OSM/CTA use PostgreSQL
- Spark should be flexible enough to use other Java DB drivers as well
- Comparison with TSM → use a dump to CSV and import into Spark

- Global checks can be done quickly and easily
- Checks based on path need more effort:
 - Limiting factor is now the namespace lookup -> Spark cannot import PostgreSQL functions (path2inumber)
 - Still use direct queries to Chimera → need to improve skills with Spark to analyse t dirs recursively

• Take the last step → de-Jupyter-ise the checks to run on dedicated clusters

Thank you