Sampling numbers of smoothness classes via ℓ^1 -minimization

Thomas Jahn
Catholic University of Eichstätt-Ingolstadt
thomas.jahn@ku.de

Coauthor(s): Tino Ullrich, Felix Voigtlaender

Special session: Function recovery and discretization problems

We study the recovery problem for functions $\Omega \to \mathbb{C}$ belonging to a given quasi-Banach smoothness space \mathcal{F} given only m function values. The worst-case L^2 -approximation error in this setup, i.e.,

$$\varrho_m(\mathcal{F})_{L^2} = \inf_{t_1, \dots, t_m \in \Omega} \inf_{R: \mathbb{C}^m \to L^2} \sup_{\|f\|_{\mathcal{F}} \le 1} \|f - R(f(t_1), \dots, f(t_m))\|_{L^2},$$

is called the mth sampling number of \mathcal{F} . We derive new upper bounds for the sampling numbers through an explicit nonlinear recovery map R which is based on ℓ^1 -minimization (basis pursuit denoising). In relevant cases such as mixed and isotropic weighted Wiener spaces or mixed-smoothness Sobolev spaces, sampling numbers in L^2 can be upper bounded by best n-term trigonometric widths in L^{∞} , i.e.,

$$\sigma_n(f; \mathcal{B})_{L^{\infty}} = \inf_{\substack{J \subseteq I, \#J \le n, \\ (c_j)_{j \in J} \in \mathbb{C}^J}} \left\| f - \sum_{j \in J} c_j b_j \right\|_{L^{\infty}}$$

with $\mathcal{B} = (b_j)_{j \in I}$ being the Fourier basis.

With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $n^{-1/2}$ compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed-smoothness Sobolev functions from $S_p^r W$ on the d-torus with a logarithmically better rate of convergence than any linear method can achieve when 1 and <math>d is large.

[1] T. Jahn, T. Ullrich, F. Voigtlaender: Sampling numbers of smoothness classes via ℓ^1 -minimization, J. Complexity 79:101786, 2023.