

Pair of linear equation in two variable

Mathematics

Lecture - 01

By - Ritik Sir

Topics

to be covered

- 1 Basics
- 2 Linear Equation in one variable
- 3 Linear Equation in two variable
- Pair of linear equation in two variable
- 5 Graphical Representation

Topic: Linear Equation in One Variable

P(2)=2+1

241=0

Grenge al Form.

02+6=0

Emitules finamuet 6

Solution Variable hi value equation satisfy

LHS=RHS

Topic: Linear Equation in Two Variable

x+y = 2

Greneval Form.

Howmany Solutions &

$$(5)+(0)=5$$

solutions.

Infinitemany solutions!

Topic : Pair of Linear Equation in Two Variable

A pair of values of the variables x and y satisfying each one of the equations in a given system of two simultaneous linear equations in x and y is called a solution of the system.

Topic: Solution

 $\mathbf{\#Q}$. Show that x = 2, y = 1 is a solution of the system of simultaneous linear

equations:

$$3x - 2y = 4$$

$$2x + y = 5$$

$$3x-3y=4$$
 $3(2)-2(1)=4$
 $3(2)+(1)=5$
 $4+1=5$

V=Y

$$a_{014}y = 5$$
 $a_{(2)}+(1)=5$
 $a_{(2)}+(1)=5$

Topic: Solution

#Q. Show that x = 2, y = 1 is not a solution of the system of simultaneous linear

$$\begin{array}{c}
\text{equations} \\
2x + 7y = 11 \\
x - 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

$$\begin{array}{c}
2x + 3y = 5 \\
2x + 3y = 5
\end{array}$$

Consistent System:

A system of simultaneous linear equations is said to be consistent, if it has at least one solution.

-> unique

-> Tryinite.

In-consistent System :

A system of simultaneous linear-equations is said to be in-consistent, if it has no solution.

-> Nosolution.

Topic: Graphical Representation of Linear Equations

- (i) The two lines intersect at one point.
- (ii) The two lines are parallel i.e. they do not intersect however far they are extended.

Intersecting lines

Parallel lines

Topic: Graphical Representation of Linear Equations

(iii) The two lines are coincident lines i.e. one line overlaps the other line.

Coincident lines

#Q. Solve graphically the system of equations:

$$x + y = 3$$
$$3x - 2y = 4$$

K	0	3
76	3	0

#Q. Show graphically that the system of equations

$$2x + 4y = 10$$

$$3x + 6y = 12$$

has no solution.

#Q. Show graphically that the system of equations

$$3x - y = 2$$

$$9x - 3y = 6$$
Consistend

has infinitely many solutions.

[CBSE 2008]

a224624(1=0

(ase-I

as t to -> unique Solution.

Cax-II

21 - bl = El - Infinit many solutions.

COX-III

az=bj fcz -> Nosolution.

$$3x + 2y + 2 = 0$$
 $02x + by + (2=0)$

- -> unique solution.
 - > Introsecting lines
 - -> Consistant eystom

Pair of lines	$\frac{a_1}{a_2}$	$\frac{b_1}{b_2}$	$\frac{c_1}{c_2}$	Compare the ratios	Graphical Representation	Algebraic Representation	Condition for solvability
x - 2y = 0 3x - 4y - 20 = 0	$\frac{1}{3}$	-2 -4	0 - 20	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecting lines	Exactly one solution or Unique Solution	System is consistent
2x + 3y - 9 = 0 4x + 6y - 18 = 0	$\frac{2}{4}$	$\frac{3}{6}$	- 9 - 18	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Coincident Lines	Infinitely many solutions	System is consistent
x + 32y - 4 = 0 2x + 4y - 12 = 0	$\frac{1}{2}$	$\frac{2}{4}$	-4 -12	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Parallel Lines	No Solutions	System is inconsistent

#Q. Find whether the following pair of linear equations is consistent or

inconsistent:
$$3x + 2y = 8$$
 and $6x - 4y = 9$

[Board Term - 1, 2016]

$$0_{1}=3$$
 $b_{1}=2$
 $C_{1}=-8$

$$65=-4$$

Homework

