C+ud		
1005	ent number: * 523	
✓	There is only one optimal decision tree for a training dataset *	1/1
0	True	
•	False	✓
	Consider the following dataset for a binary classification problem. Which of the below is correct? $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0	0.1371	
•	Both are correct.	/
\bigcirc	None are correct.	
~	Bayes theorem is useful: *	1/1
	When we don't know the joint probability of A and B occurring together	
•	When we don't know the joint probability of A and B occurring together. If we want to calculate the probability of A occurring given B, but we only have	✓
O	When we don't know the joint probability of A and B occurring together. If we want to calculate the probability of A occurring given B, but we only have historic data of B	✓
	If we want to calculate the probability of A occurring given B, but we only have	\
0	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics.	*1/1
0	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction.	*1/1
0	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of:	*1/1
0	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging	*1/1
0	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting	*1/1
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest	*1/1
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model:	
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit.	
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model:	
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model: Accuracy Confusion matrix	
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model: Accuracy Confusion matrix Precision and recall	
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model: Accuracy Confusion matrix Precision and recall ROC	*1/1
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model: Accuracy Confusion matrix Precision and recall ROC The effectiveness of an SVM depends upon: *	*1/1
	If we want to calculate the probability of A occurring given B, but we only have historic data of B If we want to augment SVMs with probabilistic statistics. I have created a model that takes the entire dataset and uses it to train 5 models (logistic regression, KNN, a large and small decision tree, and a naive bayes model), then it uses those predictions as input to a neural network, which provides the final prediction. This is an example of: Bagging Boosting Stacking Random Forest You are predicting hit songs. You know that 1 song out of every 100 is a hit. Which metric is the least insightful for evaluating your model: Accuracy Confusion matrix Precision and recall ROC The effectiveness of an SVIM depends upon: * Selection of Kernel	*1/1