Memory networks для вопросно-ответных систем Практикум на ЭВМ 2017/2018

Шамшиев Мамат Мамбетович

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

10 мая 2018 г.

Пример Q&A задачи

І: Саша пошел на кухню.

І: Саша взял сок.

I: Саша отправился в офис.

I: Саша оставил сок там.

І: Саша пошел домой.

Q: Где сок?

А: Офис

Q: Где Саша?

А: Дом

Memory Networks

У большинства алгоритмов машинного обучения отсутствует простой способ использования долговременной внешней памяти (потенциально, очень большой).

Идея: добавить компоненту долговременной памяти и обучать модель эффективно её использовать.

Компоненты Memory Network

- Память m множество ячеек памяти m_i .
- 4 потенциально обучаемые компоненты:
 - I (input feature map): преобразование входных данных во внутреннее признаковое представление.
 - **G** (generalization): обновление памяти по новым входным данным.
 - **O** (output feature map): генерация внутреннего представления выхода модели по текущему состоянию памяти и входным данным.
 - R (response): преобразование выхода из внутренного представления в желаемый формат ответа.

Схема работы Memory Network

По входным данным x схема работы модели имеет следующий вид:

- **1** Перевод x во внутреннее признаковое представление I(x).
- ② Обновление памяти: $m_i = G(I(x), m), \forall i$.
- § Выход модели во внутреннем признаковом представлении: o = O(I(x), m).
- **4** Перевод выхода в желаемый формат ответа: r = R(o).

Базовая модель MemNN

• О: генерирует выход модели с помощью k вспомогательных предложений из памяти. При k=2:

$$o_1=O_1(x,m)=rgmax s_O(x,m_i)$$
 $o_2=O_2([x,\,m_{o_1}],m)=rgmax s_O([x,\,m_{o_1}],m_i),$ где s_O — функция, измеряющая сходство между

предложениями x и m_i .

- R: переводит выход в ответ из одного слова: $r = \operatorname*{argmax}_{w \in W} s_R([x, \, m_{o_1}, \, m_{o_2}], w)$
- $s(x,y) = F_x(x)^{\top} \mathbf{U}^{\top} \mathbf{U} F_y(y)$, где $\mathbf{U} \in \mathbb{R}^{n \times d}$, F_x и F_y преобразования, переводящие исходные текстовые предложения в d-мерное признаковое пространство.

Базовая модель MemNN. Обучение

Минимизируем margin ranking loss по параметрам $\mathbf{U_O}$ и $\mathbf{U_R}$:

$$\sum_{\substack{m \neq m_{o_1} \\ m \neq m_{o_2}}} \max(0, \gamma - s_O(x, m_{o_1}) + s_O(x, m)) + \sum_{\substack{m \neq m_{o_2} \\ r' \neq r}} \max(0, \gamma - s_O([x, m_{o_1}], m_{o_2}) + s_O([x, m_{o_1}], m)) + \sum_{\substack{r' \neq r} \\ r' \neq r}} \max(0, \gamma - s_R([x, m_{o_1}, m_{o_2}], r) + s_R([x, m_{o_1}, m_{o_2}], r'))$$

Расширения базовой модели. Последовательность слов

Рассмотрим усложнение базовой модели, в качестве входа которой подается поток слов, который только предстоит разделить на предложения и вопросы. Для этого добавим к модели обучаемую функцию сегментации:

$$seg(c) = W_{seg}^{\top} \mathbf{U}_S F_{seg}(c)$$

При обучении минимизируем следующую функцию потерь:

$$\textstyle \sum_{c \in C} \max(0, \gamma - seg(c)) + \sum_{c' \in C'} \max(0, \gamma + seg(c')),$$

где C — множество всех вспомогательных предложений, C' — все остальные сегменты в обучающей выборке.

Расширения базовой модели. Хэширование

Идея: отнести входное представление I(x) к одному или нескольким кластерам и вычислять функцию сходства только для m_i из этих кластеров.

- Хэширование слов
- Кластеризация векторных представлений слов

End-to-end MemNN

End-to-end MemNN. Ограничение параметров

Для облегчения процесса обучения и уменьшения количества параметров некоторые матрицы объединяют:

- Adjacent: $W^{\top} = C^K$; $B = A^1$; $A^{k+1} = C^k$, k = 1, ..., K-1.
- Layer-wise: $A^1 = A^2 = \cdots = A^K$; $C^1 = C^2 = \cdots = C^K$

End-to-end MemNN. Представление предложений

Пусть
$$x_i = \{x_{i_1}, x_{i_2}, \dots, x_{i_n}\}$$
 - предложение из n слов.

- \bullet Bag-of-words: $m_i = \sum_j Ax_{ij}, \ c_i = \sum_j Cx_{ij}, \ u = \sum_j Bq_j$
- Position encoding: $m_i=\sum_j l_j\odot Ax_{ij}$, где $l_{kj}=(1-j/n)-(k/d)(1-2j/n)$, где d размерность embedding'a.

End-to-end MemNN. Время

Во многих задачах помимо информации о содержании предложений, также важен и временной контекст.

- $m_i = \sum_j A x_{ij} + T_A(i)$, где $T_A(i)$ i-ая строка некоторой обучаемой матрицы T_A .
- $c_i = \sum_j C x_{ij} + T_C(i)$, где $T_C(i)$ i-ая строка некоторой обучаемой матрицы T_C .

Эксперименты на bAbl Q&A датасет

- 20 различных наборов заданий на понимание содержания текста и нахождение логических связей
- Необходимо ответить на вопрос после прочтения истории
- Небольшой словарь слов, простой язык
- Разные задания требуют нахождения разных логических связей

```
Sam walks into the kitchen.
Sam picks up an apple.
Sam walks into the bedroom.
Sam drops the apple.
Q: Where is the apple?
A. Bedroom
```

```
Brian is a lion.
Julius is a lion.
Julius is white.
Bernhard is green.
Q: What color is Brian?
A. White
```

Источники

- Jason Weston, Sumit Chopra & Antoine Bordes "Memory networks"
- Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus "End-To-End Memory Networks"