МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №2 по курсу «Программирование графических процессоров»

Обработка изображений на GPU. Фильтры

Выполнил: Н.И. Лохматов

Группа: 8О-406Б

Преподаватель: А.Ю. Морозов

Условие

1. Цель работы: научиться использовать GPU для обработки изображений

2. Вариант 7: выделение контуров методом Собеля

Программное и аппаратное обеспечение

1. Графический процессор: Nvidia GeForce RTX 3050 Mobile

а. Количество потоковых процессоров: 2560

b. Частота ядра: 1552 МГц

с. Количество транзисторов: 8.7 млрд

d. Тех. процесс: 8 нм

е. Энергопотребление: 80 Вт

2. OC: Ubuntu 22.04

3. Текстовый редактор: VS Code

4. Компилятор: nvcc

Метод решения

Сначала приводим изображение к нужному формату данных. Основная работа происходит в ядре, где реализован алгоритм выделения контуров методом Собеля. Вычисляются индексы пикселей, которые обрабатываются текущим потоком. Задаются две маски — Мх и Му, которые используются для вычисления градиентов по направлениям х и у соответственно. Для каждого пикселя изображения выполняется обход соседних пикселей в окне 3х3. Каждый пиксель преобразуется в оттенок серого, используя коэффициенты для красного, зеленого и синего каналов. На основе полученных значений gx и gy вычисляется величина градиента. Полученное значение градиента нормализуется и записывается в выходной массив в формате uchar4.

Описание программы

Программа состоит из вспомогательных файлов для перевода изображения в бинарный файл и обратно и основного файла с кодом, в котором реализована функция main, в которой происходит предобработка данных, макрос для обработки ошибок и ядро, в котором выполняется основная работа.

Результаты

1. Зависимость времени выполнения программы от количества используемых потоков.

Количество	Время, w = 128рх, h	Время, w = 512рх, h	Время, w = 2048рх,
ПОТОКОВ	= 128рх (мс)	= 512рх (мс)	h = 2048px (mc)
$2 \times 2 \times 2 \times 2$	2.07	13.62	175.99
8×8×8×8	1.29	1.02	2.23
16×16×16×16	1.06	1.49	1.53
16×16×32×32	1.41	1.14	1.39
32×32×32×32	1.38	1.15	1.87

2. Сравнение программы на CUDA с $16\times16\times32\times32$ потоками и программы на CPU с одним потоком

Размер изображений	Время CUDA (мс)	Время СРИ (мс)
128×128	1.24	2.49
512×512	1,63	39.09
2048×2048	1.92	610.86

3. Примеры обработанных изображений

Выводы

Реализованный алгоритм успешно демонстрирует возможности использования GPU для обработки изображений. Применение метода Собеля позволяет эффективно выделять контуры, что может быть полезно в различных задачах компьютерного зрения и обработки изображений.