Quiz 1

Your name here

1. True or False. Let $p(x_i, y_j)$ be the joint probability mass function, $i = 1 \dots n; j = 1 \dots m$. It follows that $\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = 1$.

Answer:

2. The following table display the joint probability distribution for (x_i, y_j) where x indicates whether or not someone participated in the job training program, and y whether or not someone is currently unemployed.

Job Training\Unemployment	0	1	p(x)
0	0.2	0.4	
1	0.2	0.2	
p(y)			

- a. Calculate the cumulative distribution function: F(1,0) =
- b. Calculate the marginal distribution for both Y and X, in other words, how many people are currently unemployed or employed; and how many people participated in the job training program, and how many did not. And fill in the cells in Table (1).
- c. Are X and Y independent of each other? Suppose that this is the true joint distribution, not an estimated one, so you do not have to worry about sampling errors.
- 3. Use the following data to study the joint distribution in R.

- a. Calculate the joint pmf using xtabs() command (otherwise the mosaic() below may give an error message).
- b. Calculate the marginal distribution for both x and y in R
- c. Plot a 3-D histogram of the joint distribution
- d. Plot a 2-D mosaic plot of the joint distribution
- e. Looking at these plots, can X and Y be independent?

Answer: