Take-Home Assessment: Inferential Data Analysis in Python

Due Date: 24/11/2025

You can use this Kaggle dataset for multiple regression / inferential work: Student Performance (Multiple Linear Regression) — includes predictors for student performance. Kaggle

Alternatively, a House Prices / Regression / Income dataset works well. Eg: "Regression Dataset for Household Income Analysis" on Kaggle. <u>Kaggle</u>

Project Tasks / Requirements

Students must deliver a Python notebook (Jupyter) plus a formal report edited in latex(PDF). The notebook must be executable.

Below is a task breakdown. Each student must do all:

Task	Task Description	
#		
1	Data ingestion & exploration — load data, inspect structure, identify variable types, summarize data (mean, median, variance, quartiles).	
2	Assumption testing — check normality (Shapiro-Wilk + Q-Q), detect heteroscedasticity, and test homogeneity of variance (if grouping exists).	
3	Data transformation & outlier handling — apply log, sqrt, reciprocal, differences; handle outliers (trim / winsorize); compare before & after distributions (histograms, boxplots).	
4	Variable construction — derive at least two new variables (e.g. ratios, interaction terms, indices), store appropriately, keep originals.	
5	Model fitting & selection — fit multiple regression models (or ANOVA/sub-models), compare fit (R ² , adjusted R ² , AIC/BIC), select best.	
6	Hypothesis tests & confidence intervals — for key coefficients or means / proportions, test hypotheses and compute CIs.	
7	Interpretation & reporting — interpret parameter estimates, predictions, limitations, further research suggestions.	
8	Presentation & visualization — produce well-labeled plots, summary tables, and a slide deck / summary report.	

Deliverables

1. Python Notebook (.ipynb)

- i) Clear, commented code
- ii) Executable from start to finish
- iii) Includes plots and diagnostics

2. Written Report (PDF or Word)

- i) Introduction & objectives
- ii) Methods (assumptions, transformations, modeling)
- iii) Results with interpretation
- iv) Conclusions, limitations, and recommendations
- v) Appendices (variable dictionary, model summaries)

3. Presentation Deck (PowerPoint / PDF slides)

i) 5–7 slides summarizing key findings for non-technical audience

4. Data Files

- i) Original data (read-only)
- ii) Derived dataset versions with new variables

Marking Rubric

Component	Weight (%)
Data exploration & summary correctness	10
Assumption checks & diagnostics	10
Transformations & outlier handling	10
Variable derivation & management	10
Model fitting & selection logic	15
Hypothesis tests & confidence intervals	10
Interpretation & reporting quality	15
Visualizations & presentation clarity	10

Code quality & reproducibility	10
Total	100

Guidance Notes

- 1. Always preserve the original variables; when creating new ones, name them clearly (e.g. ln_gdp, pop_ratio).
- 2. Use diagnostic plots (histograms, Q-Q, residual plots) to validate transformations.
- 3. Compare models not just by R² but by parsimony (adjusted R², AIC/BIC).
- 4. Explain in words what your numbers mean (not just " $\beta 1 = 2.5$ " "this means an increase of 1 unit in X is associated with 2.5 units in Y, controlling for others").
- 5. Your slides should communicate key insights in non-technical language.