Компьютерное моделирование Моделирование динамических систем. Дифференциальные уравнения. Черновик

Кафедра ИВТ и ПМ

2018

План

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Прошлые темы

- Что такое динамическая система?
- ▶ Примеры?
- Динамическая система противопоставляется ... ?

Прошлые темы

- Что такое динамическая система?
- ▶ Примеры?
- Динамическая система противопоставляется ... ?
- Примеры статических систем?

Современная наука стала возможной тогда, когда было решено самое первое дифференциальное уравнение

вольный перевод цитаты Дэвида Берлински

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?

- Что такое дифференциальное уравнение?
- Что такое однородное дифференциальное уравнение (ОДУ)?
- Простой пример ДУ?

- Что такое дифференциальное уравнение?
- ▶ Что такое однородное дифференциальное уравнение (ОДУ)?
- Простой пример ДУ?

$$\frac{dv_{x}}{dt} = g$$
 или

$$\dot{V}_{x}=g$$

Что является решением дифференциального уравнения?

- ▶ Что является решением дифференциального уравнения?
- Какие решения бывают?

- Что является решением дифференциального уравнения?
- Какие решения бывают?
- Что такое общее решение?
- Что такое частное решение?
- Как получить из общего решения частное?

▶ Как представить общее решение ДУ графически?

Что такое численный метод?

- Что такое численный метод?
- Как численно определить производную известной функции в точке?

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения

Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Динамическая система

- ▶ Изменяется с течением времени t
- ightharpoonup Состояния системы s(t)
- ightharpoonup Состояние системы может быть представлено вектором $s(t)=(s_1(t),s_2(t),...,s_n(t))$
- Чаще всего описываются дифференциальными уравнениями
- ▶ Примеры: маятник, популяция животных, движение автомобиля, поток людей, ...

Способы представления

Дискретная система

$$s(t + \Delta t) = f(s(t))$$

где Δt - приращение времени, f - некоторая функция определяющая состояние системы на следующем шаге

Непрерывная система

$$\dot{s} \equiv \frac{ds}{dt} = f(s(t))$$

Всегда ли первой производной достаточно?

Состояние может зависеть от второй производной: непрерывная система

Предположим, что состояние системы зависит ещё и от второй производной

$$\dot{s} + \ddot{s} = f(s)$$

Обозначим

$$y = \dot{s}$$
$$\dot{y} = f(s) - y$$

Обозначим

$$u(t) \equiv f_1[s(t), y(t)]$$

 $\dot{u} = g(u)$

Состояние может зависеть от второй производной: дискретная система

$$s(t + \Delta t) = f(s(t)) + s(t - \Delta t)$$

Аналогично непрерывной системе

$$y(t + \Delta t) = \dot{s}$$
$$s(t + \Delta t) = f(s(t)) + y(t)$$

Обозначим

$$u(t) \equiv f_1[s(t), y(t)]$$

$$u(t + \Delta t) = g(u(t))$$

Состояние может зависеть от второй производной: непрерывная система

Если f явно зависит от t

$$\dot{s}=f(s,t)$$

$$\dot{s} = f(s, y)$$

$$\dot{y} = 1$$

для
$$y(0) = 0$$

$$u(t) \equiv f_1[s(t), y(t)]$$
$$\dot{u} = g(u)$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Balance equations

При описании динамических моделей используются уравнения вида

изменение величины = прирост - убыль

или для непрерывной системы

$$\dot{s} = f(s) = \text{creation rate} - \text{destruction rate}$$

Balance equations

Аналогично для дискретного случая:

$$s(t+\Delta t)-s(t)=$$
 (creation rate $-$ destruction rate) Δt

При $\Delta t o 0$ дискретный случай переходит в непрерывный, т.к.

$$\lim_{\Delta t o 0} rac{s(t+\Delta t)-s(t)}{\Delta t} = \dot{s}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Уравнение учитывающие пространство и время

- Предыдущие примеры не учитывали пространство, но часто это важно (распределение вещества, температуры и т.д.)
- ightharpoonup Необходимо учесть движение чего-либо из некоторого объёма V через его поверхность ∂V
- ▶ Причём отнести это движение к единице времени

Уравнение учитывающие пространство и время

входящий поток исходящий поток

(на касательной к поверхности) - поток не покидающий данный объём V dS (тёмно серый участок) - площадь поверхности ∂V с нормалью n

Уравнение учитывающие пространство и время

 $\rho(t,x)$ - плотность исследуемой величины (массы, заряда, ...)

$$s(t) = \int_{V} \rho(t, x) dV$$

Уравнение равновесия:

 $\dot{s} = -\mathsf{flux} \; \mathsf{through} \; \mathsf{surface} + \mathsf{volumic} \; \mathsf{creation/destruction} \; \mathsf{rate}$

знак минус в формуле выше появляется из-за того, что выходящий поток считается положительным, а он должен уменьшать некоторую величину внутри объёма V.

Обозначим поток (flux) как j;

изменение исследуемой величины в заданном объёме (creation/destruction rate) -

$$\Sigma = \int_{V} \sigma dV$$

где σ - характеризует изменение s (помимо потока) в заданном объёме, например для задачи о диффузии σ описывает источник диффундирующего вещества

$$\dot{s} + \oint_{\partial V} j \cdot n dS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

Обозначим поток (flux) как j;

изменение исследуемой величины в заданном объёме (creation/destruction rate) -

$$\Sigma = \int_{V} \sigma dV$$

где σ - характеризует изменение s (помимо потока) в заданном объёме, например для задачи о диффузии σ описывает источник диффундирующего вещества

$$\dot{s} + \oint_{\partial V} j \cdot ndS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

Обозначим поток как j

$$\Sigma = \int_{V} \sigma dV$$

$$|\dot{s} + \oint_{\partial V} j \cdot ndS = \Sigma$$

Согласно теореме Остроградского-Гаусса ...

$$\int_{V} \dot{s} dV + \int_{V} \nabla j \cdot n dV = \int_{V} \sigma dV$$
$$\dot{s} + \nabla j \cdot n = \sigma$$

где
$$abla = \left\{ rac{\partial}{\partial x}, rac{\partial}{\partial y}, rac{\partial}{\partial z}
ight\}.$$

Пример

Уравнение диффузии

Уравнение диффузии для одномерного случая

$$\frac{\partial}{\partial t}c(x,t)=D\frac{\partial^2}{\partial x^2}c(x,t)+f(x,t),$$

где c(x,t) концентрация диффундирующего вещества, а f(x,t) — функция, описывающая источники вещества, D=const коэффициент диффузии.

Пример

Уравнение диффузии

Уравнение диффузии для одномерного случая

$$\frac{\partial}{\partial t}c(x,t)=D\frac{\partial^2}{\partial x^2}c(x,t)+f(x,t),$$

где c(x,t) концентрация диффундирующего вещества, а f(x,t) — функция, описывающая источники вещества, D=const коэффициент диффузии.

Чему равны \dot{s} , \dot{j} и σ ?

Пример

Уравнение диффузии

Уравнение диффузии для одномерного случая

$$\frac{\partial}{\partial t}c(x,t)=D\frac{\partial^2}{\partial x^2}c(x,t)+f(x,t),$$

где c(x,t) концентрация диффундирующего вещества, а f(x,t) — функция, описывающая источники вещества, D=const коэффициент диффузии.

Чему равны \dot{s} , j и σ ?

$$\dot{s} = \frac{\partial}{\partial t}c(x, t)$$

$$j = D\frac{\partial}{\partial x}c(x, t)$$

$$\sigma = f(x, t)$$

Пример Уравнение диффузии

Уравнение диффузии для трёхмерного случая

$$\frac{\partial}{\partial t}c(\vec{r},t)=D\Delta c(\vec{r},t)+f(\vec{r},t),$$

где
$$\Delta =
abla^2$$

Пример Уравнение теплопроводности

Уравнение диффузии для трёхмерного случая

$$\frac{\partial u}{\partial t} - a^2 \Delta u = f(\mathbf{r}, t),$$

где a — положительная константа (число a^2 является коэффициентом температуропроводности), $\Delta = \nabla^2$ — оператор Лапласа и $f(\vec{r},t)$ — функция тепловых источников. Искомая функция $u=u(\vec{r}),t)$ задает температуру в точке с координатами \vec{r} в момент времени t.

Пример уравнение Навье-Стокса

$$rac{\partial ec{v}}{\partial t} = -(ec{v}\cdot
abla)ec{v} +
u\Deltaec{v} - rac{1}{
ho}
abla p + ec{f}$$

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения

Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Требуется проинтегрировать однородное дифференциальное уравнение

$$\dot{s} = f(s, t)$$

на интервале $t_0 < t < t_f$ если известно $s(t=t_0) = s_0$

Не все интегралы могут быть вычислены аналитически или аналитическое интегрирование может быть сложным.

Во время численного интегрирования важно знать об ошибке вычисления

Для примера возьмём ранее рассмотренную модель популяции

$$\dot{s}=f(s,t)$$

$$f(s,t)=v\left(1-\frac{P}{C}\right)s$$

Аналитическое решение:

$$P(t) = \frac{C}{1 + \frac{C - P_0}{P_0} e^{-vt}}$$

Далее сравним точное решение с численным.

Используем ряд Тейлора

$$s(t) = \sum_{k=0}^{\infty} \frac{s^{(k)}(t_0)}{k!} (t - t_0)^k$$

где $s^{(k)}(t_0)$ означает производную k-го порядка.

Пусть $t-t_0=\Delta t$, тогда

$$s(t_0 + \Delta t) = \sum_{k=0}^{\infty} \frac{s^{(k)}}{k!} \Delta t^k$$

Выделим слагаемые для k = 0, 1:

$$s(t_0 + \Delta t) = s(t_0) + s'(t_0)\Delta t + \mathcal{O}(\Delta t^2)$$

Отбросим $\mathcal{O}(\Delta t^2)$:

$$s(t_1) = s(t_0) + \dot{s}(t_0) \Delta t$$

Заменим $\dot{s}(t_0) = f(s, t_0)$:

$$s(t_1) = s(t_0) + f(s, t_0) \Delta t$$

Явная схема Эйлера (Explicit Euler Scheme)

Тогда уравнение можно использовать для определения состояния $s(t_i)$ в каждый следующий момент времени t_{i+1} :

$$s(t_{i+1}) = s(t_i) + f(s, t_i) \Delta t$$

где
$$t_{i+1} - t_i = \Delta t$$

- выражение дискретно по времени
- производную (но не саму функцию) можно выразить из дифференциального уравнения $\dot{s}(t_0) = f(s,t_0)$:
- аналитическое выражение для функции искать не нужно
- значение функции явно зависит только от известного значения функции в предыдущий момент времени и от производной

Явная схема Эйлера (Explicit Euler Scheme)

Сравнение численного решения и точного (слайд 36)

Явная схема Эйлера (Explicit Euler Scheme)

- ightharpoonup Возможно потеря устойчивости при решениях жёстких систем с большими больших значениями Δt
- Накопление ошибки

неявная схема Эйлера (Explicit Euler Scheme)

Явная схема:

$$s_{i+1} = s_i + f(s_i, t_i) \Delta t$$

Будем вычислять s_{i-1} вместо s_{i+1}

$$s_{i-1} = s_i - f(s_i, t_i) \Delta t$$

Выразим s_i :

$$s_i = s_{i-1} + f(s_i, t_i) \Delta t$$

тогда s_{i+1}

$$s_{i+1} = s_i + f(s_{i+1}, t_{i+1}) + \Delta t$$

Неявная схема Эйлера (Explicit Euler Scheme)

Неявная схема Эйлера

$$s_{i+1} = s_i + f(s_{i+1}, t_{i+1})\Delta t$$

Явная схема Эйлера

$$s_{i+1} = s_i + f(s_i, t_i) \Delta t$$

Неявная схема Эйлера (Explicit Euler Scheme)

Неявная схема Эйлера (Explicit Euler Scheme)

Пример: $\dot{s}=-10s(t)$, $t_0=0$, $s_0=1$ Решение:

Неявная схема Эйлера (Explicit Euler Scheme)

Пример:
$$\dot{s} = -10s(t)$$
, $t_0 = 0$, $s_0 = 1$
Решение: $s = s_0 exp(-10t)$

Явная схема

Неявная схема Эйлера (Explicit Euler Scheme)

Пример:
$$\dot{s} = -10s(t)$$
, $t_0 = 0$, $s_0 = 1$

Решение: $s = s_0 exp(-10t)$

Явная схема

$$s_{i+1} = s_i(1 - 10\Delta t)$$

Решение не устойчиво

Неявная схема

Неявная схема Эйлера (Explicit Euler Scheme)

Пример:
$$\dot{s} = -10s(t)$$
, $t_0 = 0$, $s_0 = 1$

Решение: $s = s_0 exp(-10t)$

Явная схема

$$s_{i+1} = s_i(1 - 10\Delta t)$$

Решение не устойчиво

Неявная схема $s_{i+1} = s_i/(1+10\Delta t)$

Пунктиром показано решение с помощью явной схемы

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения

Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Пример: уравнение диффузии Постановка задачи

Рассмотрим простое уравнений диффузии в одномерном пространстве, причем f(x,t)=0

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

$$t\in[t_0,t_f],\ x\in[x_0,x_f]$$

Граничные условия:

$$C(x_0,t)=C_0$$

$$C(x_f,t)=C_1$$

Начальные условия:

$$C(x, t_0) = C_x$$

- lacktriangle разделим пространство на N+1 точек. $N=(x_f-x_0)/\Delta x$
- координата каждой следующей точки вычисляется: $x_{i+1} = x_0 + i\Delta x, x_f = x_N$
- ightharpoonup концентрация в каждой точке $_i \equiv C(x_i)$

Используя ряд Тейлора запишем C_{i+1} и C_{i-1} с учётом первой и второй производной:

$$C_{i+1} = C_i + \Delta x \frac{\partial C_i}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 C_i}{\partial x^2}$$

$$C_{i-1} = C_i - \Delta x \frac{\partial C_i}{\partial x} - \frac{\Delta x^2}{2} \frac{\partial^2 C_i}{\partial x^2}$$

Сложим уравнения:

$$\frac{\partial^2 C_i}{\partial x^2} = \frac{C_{i-1} - 2C_i + C_{i+1}}{\Delta x^2}$$

перепишем уравнение:

$$\frac{\partial^2 C_i(t)}{\partial x^2} = \frac{C_{i-1}(t) - 2C_i(t) + C_{i+1}(t)}{\Delta x^2}$$

Чтобы учесть множество x_i соответствующих одному значению t $\mathbf{C}(t) = (C(x_0,t),C(x_1,t),...,C(x_N,t))^T$

Запишем рассматриваемое дифференциальное уравнение в матричном виде 1

$$\frac{\partial \mathbf{C}(t)}{\partial x} = \frac{D}{\Delta x^2} A \mathbf{C}(t)$$

¹это будет соответствовать системе из дифференциальных уравнений

$$\frac{\partial \mathbf{C}(t)}{\partial x} = \frac{D}{\Delta x^2} A \mathbf{C}(t)$$

где
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & 1 & -2 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Таким образом получено (матричное) однородное ДУ

Пример: уравнение диффузии Дискретизация времени

Пример: уравнение диффузии Пример вычислений

Outline

Прошлые темы

Динамическая система

Дифференциальные уравнения Формальное определение

Моделирование динамических систем

Balance equations

Уравнение учитывающие пространство и время

Численное интегрирование

Однородные дифференциальные уравнения Дифференциальные уравнения в частных производных

Общая характеристика динамических систем

Эволюция динамической системы - изменение состояний во времени.

Состояние динамической системы может быть представлено вектором \vec{s} . Этот вектор задаёт положение системы в её фазовом пространстве.

Фазовое пространство – пространство, каждая точка которого соответствует одному и только одному состоянию из множества всех возможных состояний системы.

Главное требование к выбору пространства состоит в том, что задание начального состояния должно однозначно определять эволюцию системы.

траектория динамической системы - это множество состояний, пройденных ДС в ходе движения Решение ОДУ задает фазовую кривую, траекторию, или орбиту ДС

Размерность фазового пространства равно числу неизвестных, а время входит в графики только параметрически

Уравнения описывающие популяцию хищников (c) и их жертв (a).

$$\frac{da}{dt} = k_a a(t) - k_{c,a} c(t) a(t)$$

$$\frac{dc}{dt} = -k_c c(t) + k_{a,c} c(t) a(t)$$

Размерность фазового пространства - 2, так как неизвестных две - величины заданные функциями c(t) и a(t)

фазовая плоскость и траектории в этой фазовой плоскости описывающие колебания маятника без трения (слева) и с трением (справа).

изображение с http://www.ega-math.narod.ru/Nquant/Chaos.htm

- ▶ Представление решения ОДУ в фазовом пространстве позволяет компактно представить несколько решений
- кроме того, при $t \to \infty$ целые семейства решений стремятся к точками (или кривым) на фазовом пространстве
- по размерности фазового пространства можно судить о числе степеней свободы динамической системы
- ▶ Однако выбор фазового пространства не всегда однозначен

Равновесие

Рассмотрим автономное 2 ДУ:

$$\dot{s} = f(s)$$

Положениями равновесия системы называются такие точки s фазового пространства, что f(s) = 0.

Циклом называется периодическая траектория, а именно график такого решения, что $s(t+T_0,x_0)=s(t,x_0)$ для некоторого $T_0>0$, $\forall t\in \mathbf{R}$

Разбиение фазового пространства на траектории называется фазовым портретом.

 $^{^2}$ автономные ДУ - частный случай системы дифференциальных уравнений, когда аргумент t системы не входит явным образом в функции, задающие систему

Устойчивость

- ▶ Положение равновесия ДС называется устойчивым по Ляпунову, если для $\forall \varepsilon > 0$ существует $\delta > 0$ такое, что для $\forall x_0, ||x_0 \tilde{x}|| < \delta$ выполняется неравенство $||x(t, x_0) \tilde{x}|| < \varepsilon$
- lacktriangle асимптотически устойчивым, если $||x(t,x_0)- ilde x|| o 0$ при $t o \infty$

Устойчивость

Точки равновесия (слева направо, сверху вниз): центр, устойчивый узел, устойчивый фокус, седло, неустойчивый узел, неустойчивый фокус

• Как представить решение ДУ y' = c, где c = const с помощью явной и неявной схем Эйлера?

- Как представить решение ДУ y' = c, где c = const с помощью явной и неявной схем Эйлера?
- Как представить решение ДУ y' = 2y + 3, с помощью явной и неявной схем Эйлера?

▶ Как найти особые точки ОДУ?

- Как найти особые точки ОДУ?
- ▶ В чём разница между особыми точками и точками равновесия?

- Как найти особые точки ОДУ?
- В чём разница между особыми точками и точками равновесия?
- Для чего определение особых точек ДУ может быть полезно?

- Как найти особые точки ОДУ?
- В чём разница между особыми точками и точками равновесия?
- Для чего определение особых точек ДУ может быть полезно?
- В чём разница между математическим моделированием и компьютерным моделированием?

- Как найти особые точки ОДУ?
- В чём разница между особыми точками и точками равновесия?
- Для чего определение особых точек ДУ может быть полезно?
- В чём разница между математическим моделированием и компьютерным моделированием?
- Что выгоднее для исследования динамической системы: проводить несколько симуляций или исследовать дифференциальные уравнения, описывающие систему?

- Что такое фазовое пространство?
- Какой размерности фазовое пространство соответствует модели популяции Мальтуса?
- Какой размерности фазовое пространство соответствует логистической модели популяции?
- Какой размерности фазовое пространство соответствует модели движения материальной точки брошенной под углом к горизонту?
- Определите (не строго) своими словами устойчивость по Ляпунову и асимптотическую устойчивость.

Ссылки

▶ habr.com/post/268507/ - Фазовые портреты «на пальцах» или что можно узнать о решениях диффура, не решая его Использованы материалы курса Simulation and modeling of natural processes coursera.org/learn/modeling-simulation-natural-processes/

Ссылки

Материалы курса

github.com/ivtipm/computer-simulation