This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEQUENCE LISTING 110> Anderson, Marilyn, A., Lay, Fung T., Heath, Robyn L. Plant-derived molecules and genetic sequences encoding same and uses therefor 18-01 <130> not yet assigned 2002-02-08 <140> <141> บรรพุ 60/267,271 <150> 2001-02-08 <151> <160> 61 <170> PatentIh version 3.0 <210> <211> 28 <212> DNA primer <213> <400> 1 28 ggaattccat atggctcgct ccttgtgc 2 <210> <211> 29 DNA M <212> primer <213> <400> 2 29 geggateete agttateeat tatetette <210> 3 <211> 24 DNA <212> <213> primer <400> 3 24 ccggatccag agaatgcaaa acag <210> 4 26 <211> <212> DNA <213> primer <400> 4 26 gggagctctt agttatccat tatctc <210> 5 <211> 31 <212> DNA <213> primer <400> 5

ggaatto	ctaa a	caat	ggct:	c go	tcct	tgtg	C								31
<210><211><212><213>		er												٠	
<400> gctctag		agtta	atcca	ıt ta	itcto	ttc									29
<210> <211> <212> <213>	7 141 DNA Nicot	ciana	a ala	ata											
<220> <221> <222>	CDS (1).	. (14:	L)												
<400> aga ga Arg Gl	7 a tgc u Cys	aaa Lys	aca Thr 5	gaa Glu	agc Ser	aac Asn	aca Thr	ttt Phe 10	cct Pro	gga Gly	ata Ile	tgc Cys	att Ile 15	acc Thr	48
aaa cc Lys Pr	a cca o Pro	tgc Cys 20	aga Arg	aaa Lys	gct Ala	tgt Cys	atc Ile 25	agt Ser	gag Glu	aaa Lys	ttt Phe	act Thr 30	gat Asp	ggt Gly	96
cat tg His Cy	t agc s Ser 35	aaa Lys	atc Ile	ctc Leu	aga Arg	agg Arg 40	tgc Cys	cta Leu	tgt Cys	act Thr	aag Lys 45	cca Pro	tgt Cys		141
<210><211><211><212><213>	8 47 PRT Nico	tian	a al	ata		,									
<400> Arg Gl	8 u Cys	Lys	Thr 5	Glu	Ser	Asn	Thr	Phe 10	Pro	Gly	Ile	Cys	Ile 15	Thr	
Lys Pr	o Pro	Cys 20	Arg	Lys	Ala	Cys	Ile 25	Ser	Glu	Lys	Phe	Thr 30	Asp	Gly	
His Cy	s Ser 35	Lys	Ile	Leu	Arg	Arg 40	Cys	Leu	Cys	Thr	Lys 45	Pro	Сув		
<210><211><211><212><213>	9 75 DNA Nico	tian	a al	ata											
<220> <221> <222>	CDS	. (75	}												
. 4 0 0 .	۵														

4 g

atg Met 1	gct Ala	cgc Arg	tcc Ser	ttg Leu 5	tgc Cys	ttc Phe	atg Met	gca Ala	ttt Phe 10	gct Ala	atc Ile	ttg Leu	gca Ala	agg Arg 15	atg Met		48
ctc Leu	ttt Phe	gtt Val	gcc Ala 20	tat Tyr	gag Glu	gtg Val	caa Gln	gct Ala 25									75
<210 <210 <210 <210	1> 2>	10 25 PRT Nicot	tiana	a ala	ata												
<40 Met 1	0> Ala	10 Arg	Ser	Leu 5	Cys	Phe	Met	Ala	Phe 10	Ala	Ile	Leu	Ala	Arg 15	Met	٠	
Leu	Phe	· Val	Ala 20	Tyr	Glu	Val	Gln	Ala 25									
<21 <21 <21 <21	1> 2>	11 99 DNA Nico	tian	a ala	ata												
<22 <22 <22	1>	CDS (1).	. (99)													
<40 gtg Val 1	+++	11 gat Asp	gag Glu	aag Lys 5	atg Met	act Thr	aaa Lys	aca Thr	gga Gly 10	gct Ala	gaa Glu	att Ile	ttg Leu	gct Ala 15	gag Glu		48
gaa Glu	gca Ala	aaa Lys	act Thr 20	ttg Leu	gct Ala	gca Ala	gct Ala	ttg Leu 25	ctt Leu	gaa Glu	gaa Glu	gag Glu	ata Ile 30	atg Met	gat Asp		96
aac Asn																	99
	1> 2>	12 33 PRT Nico	tian	a al	ata												
<40 Val 1	0> Phe	12 Asp	Glu	. L ys 5	Met	Thr	Lys	Thr	Gly 10	Ala	Glu	Ile	Leu	Ala 15	Glu		
Glu	Ala	a Lys	Thr 20	Leu	Ala	Ala	Ala	Leu 25	Leu	Glu	Glu	Glu	Ile 30	Met	Asp		
Asn	ı																
<21 <21		13 216															

٠,

- iv -

<21:		DNA Nico	tian	a ala	ata					•						
<22 <22 <22	1>	CDS (1).	. (21	6)												
<40	0 >	13														
atg	gct	cgc Arg	tcc Ser	ttg Leu 5	tgc Cys	ttc Phe	atg Met	gca Ala	ttt Phe 10	gct Ala	atc Ile	ttg Leu	gca Ala	agg Arg 15	atg Met	48
ctc Leu	ttt Phe	gtt Val	gcc Ala 20	tat Tyr	gag Glu	gtg Val	caa Gln	gct Ala 25	aga Arg	gaa Glu	tgc Cys	aaa Lys	aca Thr 30	gaa Glu	agc Ser	96
		ttt Phe 35														144
		agt Ser														192
		cta Leu	_		_		_									216
<210 <210 <210 <210	l> 2>	14 72 PRT Nicot	ciana	a ala	ata											-
<400) >	14														
Met 1	Ala	Arg	Ser	Leu 5	Cys	Phe	Met	Ala	Phe 10	Ala	Ile	Leu	Ala	Arg 15	Met	
Leu	Phe	Val	Ala 20	Tyr	Glu	Val	Gln	Ala 25	Arg	Glu	Cys	Lys	Thr 30	Glu	Ser	
Asn	Thr	Phe 35	Pro	Gly	Ile	Cys	Ile 40	Thr	Lys	Pro	Pro	Cys 45	Arg	Lys	Ala	
Cys	Ile 50	Ser	Glu	Lys	Phe	Thr 55	Asp	Gly	His	Cys	Ser 60	Lys	Ile	Leu	Arg	
Arg 65	Cys	Leu	Cys	Thr	Lys 70	Pro	Cys									
<210 <211 <212 <213	L> : 2> :	15 240 DNA Nicot	ciana	a ala	ata											
<220 <220 <220	L> (CDS	. (24)	o)												

<400> 1 aga gaa Arg Glu 1	tgc Cys	aaa Lys	aca Thr 5	gaa Glu	agc Ser	aac Asn	aca Thr	ttt Phe 10	cct Pro	gga Gly	ata Ile	tgc Cys	att Ile 15	acc Thr	48
aaa cca Lys Pro	cca Pro	tgc Cys 20	aga Arg	aaa Lys	gct Ala	tgt Cys	atc Ile 25	agt Ser	gag Glu	aaa Lys	ttt Phe	act Thr 30	gat Asp	ggt Gly	96
cat tgt His Cys	agc Ser 35	aaa Lys	atc Ile	ctc Leu	aga Arg	agg Arg 40	tgc Cys	cta Leu	tgt Cys	act Thr	aag Lys 45	cca Pro	tgt Cys	gtg Val	144
ttt gat Phe Asp 50	gag Glu	aag Lys	atg Met	act Thr	aaa Lys 55	aca Thr	gga Gly	gct Ala	gaa Glu	att Ile 60	ttg Leu	gct Ala	gag Glu	gaa Glu	. 192
gca aaa Ala Lys 65	act Thr	ttg Leu	gct Ala	gca Ala 70	gct Ala	ttg Leu	ctt Leu	gaa Glu	gaa Glu 75	gag Glu	ata Ile	atg Met	gat Asp	aac Asn 80	240
<211><212>	16 80 PRT Nico	tian	a ala	ata											
<400> Arg Glu 1	16 Cys	ГÀз	Thr 5	Glu	Ser	Asn	Thr	Phe 10	Pro	Gly	Ile	Cys	Ile 15	Thr	-
Lys Pro	Pro	Cys 20	Arg	Lys	Ala	Cys	Ile 25	Ser	Glu	Lys	Phe	Thr 30	Asp	Gly	
His Cys	Ser 35	Lys	Ile	Leu	Arg	Arg 40	Cys	Leu	Cys	Thr	Lys 45	Pro	Cys	Val	
Phe Asp 50	Glu	Lys	Met	Thr	Lys 55	Thr	Gly	Ala	Glu	Ile 60	Leu	Ala	Glu	Glu	
Ala Lys 65	Thr	Leu	Ala	Ala 70	Ala	Leu	Leu	Glu	Glu 75	Glu	Ile	Met	Asp	Asn 80	
<211> <212>	17 541 DNA Nico	tian	a al.	ata											
<220> <221> <222>	CDS	. (31	.8)												
<400> atg gct Met Ala 1	17 : cgc : Arg	tcc Ser	ttg Leu 5	tgc Cys	ttc Phe	atg Met	gca Ala	ttt Phe	gct Ala	atc Ile	ttg Leu	gca Ala	agg Arg 15	atg Met	48

- vi -

ctc Leu	ttt Phe	gtt Val	gcc Ala 20	tat Tyr	gag Glu	gtg Val	caa Gln	gct Ala 25	aga Arg	gaa Glu	tgc Cys	aaa Lys	aca Thr 30	gaa Glu	agc Ser	96
aac Asn	aca Thr	ttt Phe 35	cct Pro	gga Gly	ata Ile	tgc Cys	att Ile 40	acc Thr	aaa Lys	cca Pro	cca Pro	tgc Cys 45	aga Arg	aaa Lys	gct Ala	144
tgt Cys	atc Ile 50	agt Ser	gag Glu	aaa Lys	ttt Phe	act Thr 55	gat Asp	ggt Gly	cat His	tgt Cys	agc Ser 60	aaa Lys	atc Ile	ctc Leu	aga Arg	192
agg Arg 65	tgc Cys	cta Leu	tgt Cys	act Thr	aag Lys 70	cca Pro	tgt Cys	gtg Val	ttt Phe	gat Asp 75	gag Glu	aag Lys	atg Met	act Thr	aaa Lys 80	240
aca Thr	gga Gly	gct Ala	gaa Glu	att Ile 85	ttg Leu	gct Ala	gag Glu	gaa Glu	gca Ala 90	aaa Lys	act Thr	ttg Leu	gct Ala	gca Ala 95	gct Ala	288
ttg Leu	ctt Leu	gaa Glu	gaa Glu 100	gag Glu	ata Ile	atg Met	gat Asp	aac Asn 105	taa	ttag	gagat	ta 🤉	gaaga	aaat	ta	338
agga	atgca	igt a	atcac	acat	a at	caaag	gttt	tac	cttt	ctt	aaaa	agtgi	ag (ctaa	tgttgt	398
															caatcc	458
															tatggt	518
			aaaa													541
<21 <21 <21 <21	0> : 1> : 2> :	18 105 PRT	ciana													
<40 Met 1	0> Ala	18 Arg	Ser	Leu 5	Cys	Phe	Met	Ala	Phe 10	Ala	Ile	Leu	Ala	Arg 15	Met	
Leu	Phe	Val	Ala 20	Tyr	Glu	Val	Gln	Ala 25	Arg	Glu	Cys	Lys	Thr 30	Glu	Ser	
Asn	Thr	Phe 35	Pro	Gly	Ile	Cys	Ile 40	Thr	Lys	Pro	Pro	Сув 45	Arg	Lys	Ala	
Сув	Ile 50	Ser	Glu	Lys	Phe	Thr 55	Asp	Gly	His	Cya	Ser 60	Lys	Ile	Leu	Arg	
Arg 65	Cys	Leu	Cys	Thr	Lys 70	Pro	Cys	Val	Phe	Asp 75	Glu	Lys	Met	Thr	Lys 80	
Thr	Gly	Ala	Glu	Ile 85	Leu	Ala	Glu	Glu	Ala 90	Lys	Thr	Leu	Ala	Ala 95	Ala	

- vii -

100 105	
<210> 19 <211> 223 <212> DNA <213> Nicotiana alata	
<400> 19 ttagagatta gaagaaatta aggatgcagt atcacacata ataaagtttc tacctttctt aaaagtgtag ctaatgttgt gttttaattg gcttttagta gccttttatt acactttaaa taagtgtggc acttcaatcc tttgtgcaat cttgcactaa gtttatttgt gtacttttaa tgaaaatgac cttctatggt ctttggttaa aaaaaaaaaa	L
<210> 20 <211> 105 <212> PRT <213> peptide	
<pre><400> 20 Met Ala Arg Ser Leu Cys Phe Met Ala Phe Ala Ile Leu Ala Met Met 1</pre>	
Leu Phe Val Ala Tyr Glu Val Gln Ala Arg Glu Cys Lys Thr Glu Ser 20 25 30	
Asn Thr Phe Pro Gly Ile Cys Ile Thr Lys Pro Pro Cys Arg Lys Ala 35 40 45	
Cys Ile Ser Glu Lys Phe Thr Asp Gly His Cys Ser Lys Leu Leu Arg	
Cys Leu Cys Thr Lys Pro Cys Val Phe Asp Glu Lys Met Ile Lys 65 70 75 80	
Thr Gly Ala Glu Thr Leu Val Glu Glu Ala Lys Thr Leu Ala Ala Ala 90 95	
Leu Leu Glu Glu Ile Met Asp Asn 100 105	
<210> 21 <211> 105 <212> PRT <213> peptide	
<pre><400> 21 Met Ala Arg Ser Ile Phe Phe Met Ala Phe Leu Val Leu Ala Met Met 1 5 10 15</pre>	
Leu Phe Val Thr Tyr Glu Val Glu Ala Gln Gln Ile Cys Lys Ala Pro 20 25 30	
Ser Gln Thr Phe Pro Gly Leu Cys Phe Met Asp Ser Ser Cys Arg Lys 35 40 45	
Tyr Cys Ile Lys Glu Lys Phe Thr Gly Gly His Cys Ser Lys Leu Gln 50 55 60	

- viii -

Arg Lys Cys Leu Cys Thr Lys Pro Cys Val Phe Asp Lys Ile Ser Ser 65 70 75 80

Glu Val Lys Ala Thr Leu Gly Glu Glu Ala Lys Thr Leu Ser Glu Val 85 90 95

Val Leu Glu Glu Glu Ile Met Met Glu 100 105

<210> 22

<211> 78

<212> PRT

<213> peptide

<400> 22

Met Ala Asn Ser Met Arg Phe Phe Ala Thr Val Leu Leu Ile Ala Leu 1 5 10 15

Leu Val Thr Ala Thr Glu Met Gly Pro Met Thr Ile Ala Glu Ala Arg
20 25 30

Thr Cys Glu Ser Gln Ser His Arg Phe Lys Gly Pro Cys Ser Arg Asp 35 40 45

Ser Asn Cys Ala Thr Val Cys Leu Thr Glu Gly Phe Ser Gly Gly Arg
50 55 60

Cys Pro Trp Ile Pro Pro Arg Cys Phe Cys Thr Ser Pro Cys 65 70 75

<210> 23

<211> 78

<212> PRT

<213> peptide

<400> 23

Met Gly Arg Ser Ile Arg Leu Phe Ala Thr Phe Phe Leu Ile Ala Met

1 10 15

Leu Phe Leu Ser Thr Glu Met Gly Pro Met Thr Ser Ala Glu Ala Arg 20 25 30

Thr Cys Glu Ser Gln Ser His Arg Phe His Gly Thr Cys Val Arg Glu 35 40 45

Ser Asn Cys Ala Ser Val Cys Gln Thr Glu Gly Phe Ile Gly Gly Asn 50 55 60

Cys Arg Ala Phe Arg Arg Cys Phe Cys Thr Arg Asn Cys 65 70 75

<210> 24

<211> 77

<212> PRT

<213> peptide

<400> 24

fÜ

Ti.

- ix -

Met Lys Leu Ser Met Arg Leu Ile Ser Ala Val Leu Ile Met Phe Met

Ile Phe Val Ala Thr Gly Met Gly Pro Val Thr Val Glu Ala Arg Thr

Cys Glu Ser Gln Ser His Arg Phe Lys Gly Thr Cys Val Ser Ala Ser

Asn Cys Ala Asn Val Cys His Asn Glu Gly Phe Val Gly Gly Asn Cys

Arg Gly Phe Arg Arg Cys Phe Cys Thr Arg His Cys 70

<210> 25

<211> 47

<212> PRT

<213> peptide

<400> 25

Arg Glu Cys Lys Thr Glu Ser Asn Thr Phe Pro Gly Ile Cys Ile Thr

Lys Pro Pro Cys Arg Lys Ala Cys Ile Ser Glu Lys Phe Thr Asp Gly

His Cys Ser Lys Leu Leu Arg Arg Cys Leu Cys Thr Lys Pro Cys 40

<210> 26

<211> 47

<212> PRT

<213> peptide

<400> 26

Gln Ile Cys Lys Ala Pro Ser Gln Thr Phe Pro Gly Leu Cys Phe Met

Asp Ser Ser Cys Arg Lys Tyr Cys Ile Lys Glu Lys Phe Thr Gly Gly 20

His Cys Ser Lys Leu Gln Arg Lys Cys Leu Cys Thr Lys Pro Cys 40

<210> 27

<211> 47

<212> PRT

<213> peptide

<400> 27

Arg His Cys Glu Ser Leu Ser His Arg Phe Lys Gly Pro Cys Thr Arg

Asp Ser Asn Cys Ala Ser Val Cys Glu Thr Glu Arg Phe Ser Gly Gly 20

- X -

Asn Cys His Gly Phe Arg Arg Cys Phe Cys Thr Lys Pro Cys 40 28 <210> <211> 47 <212> PRT <213> peptide <400> 28 Arg Val Cys Glu Ser Gln Ser His Gly Phe His Gly Leu Cys Asn Arg Asp His Asn Cys Ala Leu Val Cys Arg Asn Glu Gly Phe Ser Gly Gly Arg Cys Lys Gly Phe Arg Arg Cys Phe Cys Thr Arg Ile Cys 40 29 <210> <211> 47 PRT <212> <213> peptide <400> 29 Arg Thr Cys Glu Ser Gln Ser His Arg Phe His Gly Thr Cys Val Arg Glu Ser Asn Cys Ala Ser Val Cys Gln Thr Glu Gly Phe Ile Gly Gly Asn Cys Arg Ala Phe Arg Arg Cys Phe Cys Thr Arg Asn Cys 40 <210> 30 <211> 47 <212> PRT <213> peptide <400> 30 Arg Ile Cys Arg Arg Ser Ala Gly Phe Lys Gly Pro Cys Val Ser Asn Lys Asn Cys Ala Gln Val Cys Met Gln Glu Trp Gly Glu Gly Gly Asn Cys Asp Gly Pro Leu Arg Arg Cys Lys Cys Met Arg Arg Cys 45 40 <210> <211> 51 PRT <212> peptide <213> <400> 31 Gln Lys Leu Cys Gln Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly Asn Asn Ala Cys Arg Asn Gln Cys Ile Asn Leu Glu Lys Ala Arg 20 25 30

His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr 35 40 45

Phe Pro Cys

<210> 32

<211> 20

<212> PRT

<213> peptide

<400> 32

Arg Asn Cys Glu Ser Leu Ser His Arg Phe Lys Gly Pro Cys Thr Arg

1 5 10 15

Asp Ser Asn Cys 20

<210> 33

<211> 51

<212> PRT

<213> peptide

<400> 33

Gln Lys Leu Cys Glu Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly
1 5 10 15

Asn Asn Asn Ala Cys Lys Asn Gln Cys Ile Asn Leu Glu Lys Ala Arg
20 25 30

His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr
35 40 45

Phe Pro Cys 50

<210> 34

<211> 51

<212> PRT

<213> peptide

<400> 34

Gln Lys Leu Cys Gln Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly
1 5 10 15

Asn Asn Asn Ala Cys Lys Asn Gln Cys Ile Arg Leu Glu Lys Ala Arg 20 25 30

His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr 35 40 45

Phe Pro Cys

50

<400> 38

- xii -

```
<210> 35
<211> 51
<212> PRT
      peptide
<213>
<400> 35
Gln Lys Leu Cys Glu Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly
Asn Asn Asn Ala Cys Lys Asn Gln Cys Ile Asn Leu Glu Lys Ala Arg
His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr
Phe Pro Cys
    50
<210> 36
<211> 52
<212> PRT
<213> peptide
<400> 36
Gln Lys Leu Cys Ala Arg Pro Ser Gly Thr Trp Ser Ser Gly Asn Cys
Arg Asn Asn Asn Ala Cys Arg Asn Phe Cys Ile Lys Leu Glu Lys Ser
Arg His Gly Ser Cys Asn Ile Pro Phe Pro Ser Asn Lys Cys Ile Cys
Tyr Phe Pro Cys
    50
<210> 37
       47
<211>
      PRT
<212>
<213> peptide
<400> 37
Lys Ile Cys Arg Arg Ser Ala Gly Phe Lys Gly Pro Cys Met Ser
Asn Lys Asn Cys Ala Gln Val Cys Gln Gln Glu Gly Trp Gly Gly Gly
            20
Asn Cys Asp Gly Pro Phe Arg Arg Cys Lys Cys Ile Arg Gln Cys
<210> 38
<211>
       47
       PRT
<212>
 <213> peptide
```

- xiii -

Asn Cys Asp Gly Pro Phe Arg Arg Cys Lys Cys Ile Arg Gln Cys
35 40 45

<210> 39 <211> 47 <212> PRT <213> peptide

Thr Gly Ser Cys Asp Asp His Cys Lys Asn Lys Glu His Leu Leu Ser 20 25 30

Gly Arg Cys Arg Asp Asp Val Arg Cys Trp Cys Thr Arg Asn Cys
35 40 45

<210> 40 <211> 48 <212> PRT <213> peptide

<400> 40
Arg Val Cys Met Gly Lys Ser Ala Gly Phe Lys Gly Leu Cys Met Arg
1 10 15

Asp Gln Asn Cys Ala Gln Val Cys Leu Gln Glu Gly Trp Gly Gly Gly 20 25 30

Asn Cys Asp Gly Val Met Arg Gln Cys Lys Cys Ile Arg Gln Cys Trp 35 40 45

<210> 41 <211> 48 <212> PRT <213> peptide

Asp His Asn Cys Ala Gln Val Cys Leu Gln Glu Gly Trp Gly Gly Gly 20 25

Asn Cys Asp Gly Val Ile Arg Gln Cys Lys Cys Ile Arg Gln Cys Trp 35 40 45

<210> 42 <211> 20 <212> PRT

- xiv -

<213> peptide <400> 42 Glu Val Cys Glu Lys Ala Ser Lys Thr Trp Ser Gly Asn Cys Gly Asn Thr Gly His Cys <210> 43 47 <211> <212> PRT <213> peptide <400> 43 Arg Val Cys Met Lys Gly Ser Gln His His Ser Phe Pro Cys Ile Ser 10 Asp Arg Leu Cys Ser Asn Glu Cys Val Lys Glu Glu Gly Gly Trp Thr 20 Ala Gly Tyr Cys His Leu Arg Tyr Cys Arg Cys Gln Lys Ala Cys 40 <210> 44 <211> 45 <212> PRT <213> peptide <400> 44 Asn Thr Cys Glu Asn Leu Ala Gly Ser Tyr Lys Gly Val Cys Phe Gly 5 Gly Cys Asp Arg His Cys Arg Thr Gln Glu Gly Ala Ile Ser Gly Arg 20 Cys Arg Asp Asp Phe Arg Cys Trp Cys Thr Lys Asn Cys 40 <210> 45 50 <211> PRT <212> <213> peptide <400> 45 Leu Cys Asn Glu Arg Pro Ser Gln Thr Trp Ser Gly Asn Cys Gly Asn 10 Thr Ala His Cys Asp Lys Gln Cys Gln Asp Trp Glu Lys Ala Ser His 20 Gly Ala Cys His Lys Arg Glu Asn His Trp Lys Cys Phe Cys Tyr Phe 40

Asn Cys 50 Į.,

- xv -

<210> 46 <211> 51 <212> PRT <213> peptide

<400> 46 Lys Leu Cys Asp Val Pro Ser Gly Thr Trp Ser Gly His Cys Gly Ser 10 15

Ser Ser Lys Cys Ser Gln Gln Cys Lys Asp Arg Glu His Phe Ala Tyr 20 25 30

Gly Gly Ala Cys His Tyr Gln Phe Pro Ser Val Lys Cys Phe Cys Lys 35 40 45

Arg Gln Cys 50

<210> 47 <211> 50 <212> PRT <213> peptide

Thr Gly His Cys Asp Asn Gln Cys Lys Ser Trp Glu Gly Ala Ala His

Gly Ala Cys His Val Arg Asn Gly Lys His Met Cys Phe Cys Tyr Phe 35 40 45

Asn Cys 50

<210> 48 <211> 46 <212> PRT <213> peptide

Asn Ala Ser Cys Asp Asp His Cys Lys Asn Lys Ala His Leu Ile Ser

Gly Thr Cys His Asp Trp Lys Cys Phe Cys Thr Gln Asn Cys 35 40 45

<210> 49 <211> 49 <212> PRT <213> peptide <400> 49

- xvi -

Asn Leu Cys Glu Arg Ala Ser Leu Thr Trp Thr Gly Asn Cys Gly Asn Thr Gly His Cys Asp Thr Gln Cys Arg Asn Trp Glu Ser Ala Lys His Gly Ala Cys His Lys Arg Gly Asn Trp Lys Cys Phe Cys Tyr Phe Asn Cys 50 <210> 79 <211> PRT <212> peptide <213> Leu Phe Val Ala Tyr Glu Val Gln Ala Arg Glu Cys Ala Arg Glu Ile Phe Thr Gly Leu Cys Ile Thr Asn Pro Gln Cys Arg Lys Ala Cys Ile Lys Glu Lys Phe Thr Asp Gly His Cys Ser Lys Ile Leu Arg Arg Cys Leu Cys Thr Lys Pro Cys Thr Gly Ala Glu Thr Leu Ala Glu Glu Ala Thr Thr Leu Ala Ala Ala Leu Leu Glu Glu Glu Ile Met Asp Asn 51 <210> <211> 105 <212> PRT <213> peptide Met Ala Arg Ser Val Cys Phe Met Ala Phe Ala Ile Leu Ala Val Met Leu Phe Val Ala Tyr Asp Val Glu Ala Lys Asp Cys Lys Thr Glu Ser Asn Thr Phe Pro Gly Ile Cys Ile Thr Lys Pro Pro Cys Arg Lys Ala Cys Ile Lys Glu Lys Phe Thr Asp Gly His Cys Ser Lys Ile Leu Arg Arg Cys Leu Cys Thr Lys Pro Cys Val Phe Asp Glu Lys Met Ile Lys Thr Gly Ala Glu Thr Leu Ala Glu Glu Ala Thr Thr Leu Ala Ala

Leu Leu Glu Glu Glu Ile Met Asp Asn

- xvii -

105 100

<210> 52

<211> 106

<212> PRT

<213> peptide

<400> 52

Met Ala Arg Ser Leu Cys Phe Met Ala Phe Ala Val Leu Ala Met Met 10

Leu Phe Val Ala Tyr Glu Val Gln Ala Lys Ser Thr Cys Lys Ala Glu

Ser Asn Thr Phe Pro Gly Leu Cys Ile Thr Lys Pro Pro Cys Arg Lys

Ala Cys Leu Ser Glu Lys Phe Thr Asp Gly Lys Cys Ser Lys Ile Leu

Arg Arg Cys Ile Cys Tyr Lys Pro Cys Val Phe Asp Gly Lys Met Ile

Gln Thr Gly Ala Glu Asn Leu Ala Glu Glu Ala Glu Thr Leu Ala Ala

Ala Leu Leu Glu Glu Met Met Asp Asn 100

<210> 53

<211> 47

<212> PRT

<213> peptide

Arg Thr Cys Glu Ser Gln Ser His Arg Phe Lys Gly Pro Cys Ser Arg

Asp Ser Asn Cys Ala Thr Val Cys Leu Thr Glu Gly Phe Ser Gly Gly 25

Arg Cys Pro Trp Ile Pro Pro Arg Cys Phe Cys Thr Ser Pro Cys 40

<210> 54

<211> 19

<212> PRT

<213> peptide

<400> 54

Arg Thr Cys Glu Ser Gln Ser His Arg Phe His Gly Thr Cys Val Arg 5

Glu Ser Asn

<210> 55

<211> 47

· - xviii -

	PRT peptid	le													
<400> Arg Thr 1	55 Cys G		Ser 5	Gln	Ser	His	Arg	Phe 10	Lys	Gly	Thr	Cys	Val 15	Ser	
Ala Ser		ys A	Ala	Asn	Val	Cys	His 25	Asn	Glu	Gly	Phe	Val 30	Gly	Gly	
Asn Cys	Arg G 35	Sly P	Phe	Arg	Arg	Arg 40	CÀa	Phe	Cys	Thr	Arg 45	His	Cys		
<211> <212>	56 1104 DNA Nicoti	ana	ala	.ta							•				
	CDS (1)((1104	4)												
<400> aag gct Lys Ala 1	56 tgt a Cys I	chr 1	tta Leu 5	aac Asn	tgt Cys	gat Asp	cca Pro	aga Arg 10	att Ile	gcc Ala	tat Tyr	gga Gly	gtt Val 15	tgc Cys	_. 48
ecg cgt	Ser G	gaa g Blu (gaa Glu	aag Lys	aag Lys	aat Asn	gat Asp 25	cgg Arg	ata Ile	tgc Cys	acc Thr	aac Asn 30	tgt Cys	tgc Cys	96_
gca ggc Ala Gly	acg a Thr I	rag (ggt Gly	tgt Cys	aag Lys	tac Tyr 40	ttc Phe	agt Ser	gat Asp	gat Asp	gga Gly 45	act Thr	ttt Phe	gtt Val	144
tgt gas Cys Glu 50	a gga g a Gly G	gag (Glu :	tct Ser	gat Asp	cct Pro 55	aga Arg	aat Asn	cca Pro	aag Lys	gct Ala 60	tgt Cys	acc Thr	tta Leu	aac Asn	192
tgt gat Cys Asp 65	cca a	aga Arg	att Ile	gcc Ala 70	tat Tyr	gga Gly	gtt Val	tgc Cys	ccg Pro 75	cgt Arg	tca Ser	gaa Glu	gaa Glu	aag Lys 80	240
aag aat Lys Asr	gat o n Asp A	Arg	ata Ile 85	tgc Cys	acc Thr	aac Asn	tgt Cys	tgc Cys 90	gca Ala	ggc Gly	acg Thr	aag Lys	ggt Gly 95	tgt Cys	288
aag tad Lys Tyr	c Phe S	agt : Ser .	gat Asp	gat Asp	gga Gly	act Thr	ttt Phe 105	gtt Val	tgt Cys	gaa Glu	gga Gly	gag Glu 110	tct Ser	gat Asp	336
cct aga Pro Arg	a aat o g Asn I 115	cca Pro	aag Lys	gct Ala	tgt Cys	cct Pro 120	cgg Arg	aat Asn	tgc Cys	gat Asp	cca Pro 125	aga Arg	att Ile	gcc Ala	384
tat ggg Tyr Gly	g att t	tgc Cys	cca Pro	ctt Leu	gca Ala	gaa Glu	gaa Glu	aag Lys	aag Lys	aat Asn	gat Asp	cgg Arg	ata Ile	tgc Cys	432

- xix -

	130					135					140					
acc Thr 145	aac Asn	tgt Cys	tgc Cys	gca Ala	ggc Gly 150	aaa Lys	aag Lys	ggt Gly	tgt Cys	aag Lys 155	tac Tyr	ttt Phe	agt Ser	gat Asp	gat Asp 160	480
gga Gly	act Thr	ttt Phe	gtt Val	tgt Cys 165	gaa Glu	gga Gly	gag Glu	tct Ser	gat Asp 170	cct Pro	aaa Lys	aat Asn	cca Pro	aag Lys 175	gcc Ala	528
tgt Cys	cct Pro	cgg Arg	aat Asn 180	tgt Cys	gat Asp	gga Gly	aga Arg	att Ile 185	gcc Ala	tat Tyr	Gly 999	att Ile	tgc Cys 190	cca Pro	ctt Leu	576
tca Ser	gaa Glu	gaa Glu 195	aag Lys	aag Lys	aat Asn	gat Asp	cgg Arg 200	ata Ile	tgc Cys	acc Thr	aac Asn	tgc Cys 205	tgc Cys	gca Ala	ggc Gly	624
aaa Lys	aag Lys 210	ggt Gly	tgt Cys	aag Lys	tac Tyr	ttt Phe 215	agt Ser	gat Asp	gat Asp	gga Gly	act Thr 220	ttt Phe	gtt Val	tgt Cys	gaa Glu	672
gga Gly 225	gag Glu	tct Ser	gat Asp	cct Pro	aaa Lys 230	aat Asn	cca Pro	aag Lys	gct Ala	tgt Cys 235	cct Pro	cgg Arg	aat Asn	tgt Cys	gat Asp 240	· 720
gga Gly	aga Arg	att Ile	gcc Ala	tat Tyr 245	ejà aaa	att Ile	tgc Cys	cca Pro	ctt Leu 250	tca Ser	gaa Glu	gaa Glu	aag Lys	aag Lys 255	aat Asn	768
gat Asp	cgg Arg	ata Ile	tgc Cys 260	aca Thr	aac Asn	tgt Cys	tgc Cys	gca Ala 265	ggc Gly	aaa Lys	aag Lys	ggc Gly	tgt Cys 270	aag Lys	tac Tyr	816
ttt Phe	agt Ser	gat Asp 275	gat Asp	gga Gly	act Thr	ttt Phe	gtt Val 280	tgt Cys	gaa Glu	gga Gly	gag Glu	tct Ser 285	gat Asp	cct Pro	aga Arg	864
aat Asn	cca Pro 290	aag Lys	gcc Ala	tgt Cys	cct Pro	cgg Arg 295	aat Asn	tgt Cys	gat Asp	gga Gly	aga Arg 300	att Ile	gcc Ala	tat Tyr	gga Gly	912
att Ile 305	tgc Cys	cca Pro	ctt Leu	tca Ser	gaa Glu 310	gaa Glu	aag Lys	aag Lys	aat Asn	gat Asp 315	cgg Arg	ata Ile	Cya Cya	acc Thr	aat Asn 320	960
tgt Cys	tgc Cys	gca Ala	ggc Gly	aag Lys 325	Lys	ggc Gly	tgt Cys	aag Lys	tac Tyr 330	ttt Phe	agt Ser	gat Asp	gat Asp	gga Gly 335	1111	1008
ttt Phe	att Ile	tgt Cys	gaa Glu 340	Gly	gaa Glu	tct Ser	gaa Glu	tat Tyr 345	Ala	agc Ser	aaa Lys	gtg Val	gat Asp 350	GIU	tat Tyr	1056
gtt Val	ggt Gly	gaa Glu 355	Val	gag Glu	aat Asn	gat Asp	ctc Leu 360	GIn	aag Lys	tct Ser	aag Lys	gtt Val 365	ATO	gtt Val	tcc Ser	1104

- XX -

<210> 57 <211> 368

<212> PRT

<213> Nicotiana alata

<400> 57

Lys Ala Cys Thr Leu Asn Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys

Pro Arg Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys

Ala Gly Thr Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val 45 40

Cys Glu Gly Glu Ser Asp Pro Arg Asn Pro Lys Ala Cys Thr Leu Asn 55

Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys Pro Arg Ser Glu Glu Lys 75 70 65

Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Thr Lys Gly Cys 90

Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp 110 100

Pro Arg Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Pro Arg Ile Ala 120 115

Tyr Gly Ile Cys Pro Leu Ala Glu Glu Lys Lys Asn Asp Arg Ile Cys 135 130

Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp 150 145

Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Lys Asn Pro Lys Ala 170 165

Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly Ile Cys Pro Leu 185 180

Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly 205 200 195

- xxi -

Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val Cys Glu 220 215 210 Gly Glu Ser Asp Pro Lys Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp 235 225 230 Gly Arg Ile Ala Tyr Gly Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn 250 Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr 260 Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Arg 280 275 Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly 300 295 Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn 310 305 Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr 330 325 Phe Ile Cys Glu Gly Glu Ser Glu Tyr Ala Ser Lys Val Asp Glu Tyr Val Gly Glu Val Glu Asn Asp Leu Gln Lys Ser Lys Val Ala Val Ser <210> 58 <211> 47 <212> PRT <213> Nicotiana alata <220> <221> misc_feature (1)..(1) <222> $\langle 223 \rangle X = R \text{ or } Q$ <220> <221> misc_feature <222> (2)..(2) <223> X = E or I or T <220>

į.

- xxii -

```
<221> misc_feature
      (2)..(2)
<222>
<223> X = E or I or T
<220>
<221> misc_feature
      (4)...(4)
<222>
<223> X = K or E
<220>
<221> misc_feature
      (5)..(5)
<222>
<223> X = T or A or S
<220>
<221> misc_feature
      (6)..(6)
<222>
<223> X = E or P or Q
<220>
      misc_feature
<221>
<222>
      (8)..(8)
<223> X = N or Q or H
<220>
<221> misc_feature
      (9)..(9)
<222>
<223> X = T or R
<220>
<221> misc_feature
<222> (11)..(11)
<223> X = P or K or H
<220>
<221> misc_feature
<222>
      (13)..(13)
<223> X = I or L or P or T
<220>
<221> misc_feature
       (15)..(15)
<222>
\langle 223 \rangle X = I or F or S or V
<220>
<221> misc_feature
       (16) . . (16)
<222>
<223> X = T or M or R or S
<220>
<221> misc_feature
       (17)..(17)
<222>
<223> X = K or D or E or A
<220>
 <221> misc_feature
 <222> (18)..(18)
```

FL)

- xxiii -

```
<223> X = P or S
<220>
<221> misc_feature
       (19)..(19)
<222>
\langle 223 \rangle X = P or S or N
<220>
      misc_feature
<221>
       (21) .. (21)
<222>
<223> X = R \text{ or } A
<220>
<221> misc_feature
<222> (22)..(22)
<223> X = K \text{ or } T \text{ or } S \text{ or } N
<220>
<221> misc_feature
<222>
       (23) . . (23)
<223> X = A or Y or V
<220>
<221> misc_feature
       (25)..(25)
<222>
<223> X = I or L or Q or H
<220>
<221> misc_feature
       (26)..(26)
 <222>
 <223> X = S or K or T or N
 <220>
 <221> misc_feature
        (28)..(28)
 <222>
 <223> X = K or G
 <220>
 <221> misc_feature
        (30) . . (30)
 <222>
 <223> X = T or S or I or V
 <220>
 <221> misc_feature
        (31)..(31)
 <222>
 <223> X = D or G
 <220>
 <221> misc_feature
 <222>
        (33)..(33)
 <223> X = H or R or N
 <220>
        misc_feature
 <221>
        (35)..(35)
 <222>
 <223> X = S or P or R
```

- xxiv -

```
<220>
<221> misc_feature
<222> (36) ... (36)
<223> X = K or W or A or G
<220>
<221> misc_feature
<222> (37)..(37)
\langle 223 \rangle X = I or L or F
<220>
<221> misc_feature
<222> (38)..(38)
<223> X = L or Q or P or R
<220>
<221> misc_feature
      (39)..(39)
<222>
<223> X = R or P
<220>
<221> misc_feature
<222> (40)..(40)
<223> X = R or K
<220>
<221> misc_feature
      (42)..(42)
<222>
\langle 223 \rangle X = L or F
<220>
<221> misc_feature
<222> (45)..(45)
<223> X = K or S or R
<400> 58
Xaa Xaa Cys Xaa Xaa Ser Xaa Xaa Phe Xaa Gly Xaa Cys Xaa Xaa
Xaa Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Glu Xaa Phe Xaa Xaa Gly
             20
Xaa Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Cys Thr Xaa Xaa Cys
                             40
<210> 59
<211> 32
 <212> PRT
<213> Nicotiana alata
 <220>
 <221> misc_feature
       (2)..(2)
 <222>
 <223> X = A or G or K
 <220>
 <221> misc_feature
```

```
<222> (3)..(3)
<223> X = R or N or L
<220>
<221> misc_feature
<222> (5) .. (5)
\langle 223 \rangle X = L or I or M
<220>
<221> misc_feature
<222> (6)..(6)
\langle 223 \rangle X = C or F or R
<220>
<221> misc_feature
<222> (7)..(7)
<223> X = F or L
<220>
<221> misc_feature
<222>
       (8)..(8)
<223> X = M or F or I
<220>
<221> misc_feature
<222>
       (9)..(9)
\langle 223 \rangle X = A or S
<220>
<221> misc_feature
<222> (10)..(10)
<223> X = F or T or A
<220>
<221> misc_feature
<222> (11)..(11)
<223> X = A or L or V or F
<220>
<221> misc_feature
<222> (12)..(12)
 \langle 223 \rangle X = I or V or L or F
 <220>
 <221> misc_feature
 <222> (13)..(13)
 <223> X = L or I
 <220>
 <221> misc_feature
        (14)..(14)
 <222>
 <223> X = A or I or M
 <220>
 <221> misc_feature
 <222> (15)..(15)
```

<223> X = M or A or F

```
<220>
<221> misc_feature
<222> (16)..(16)
<223> X = M or L
<220>
<221> misc_feature <222> (17)..(17)
\langle 223 \rangle X = L or I
<220>
<221> misc_feature
<222> (18)..(18)
\langle 223 \rangle X = F or V
<220>
<221> misc_feature
<222> (19)..(19)
<223> X = V or T or L
<220>
<221> misc_feature
<222>
       (20)..(20)
<223> X = A or T or S
<220>
<221> misc_feature
<222>
      (21)..(21)
<223> X = Y or T
<220>
<221> misc_feature
      (22)..(22)
<222>
<223> X = E or G
<220>
<221> misc_feature
<222>
       (23)..(23)
<223> X = V or M
<220>
<221> misc_feature
<222> (24)..(24)
<223> X = no amino acid or G
<220>
<221> misc_feature
       (25)..(25)
<222>
<223> X = no amino acid or P
<220>
<221> misc_feature
<222>
        (26)..(26)
<223> X = no amino acid or M or V
```

<220>

- xxvii -

```
<221> misc_feature
<222> (27)..(27)
<223> X = no amino acid or T
<220>
<221> misc_feature
<222> (28)..(28)
<223> X = no amino acid or I or S
<220>
<221> misc_feature
      (29)..(29)
<222>
<223> X = no amino acid or A or V
<220>
<221> misc_feature
<222> (30)..(30)
\langle 223 \rangle X = Q or E
<220>
<221> misc_feature
<222> (32)..(32)
<223> X = no amino acid or Q
<400> 59
5
25
           20
<210> 60
<211> 33
<212> PRT
<213> Nicotiana alata
<220>
<221> misc_feature
<222>
     (1)..(1)
<223> X = no amino acid or V
<220>
<221> misc_feature
      (2)..(2)
<222>
<223> X = no amino acid or F
<220>
<221> misc_feature
<222>
     (3)..(3)
<223> X = no amino acid or D
<220>
<221> misc_feature
<222>
      (4)..(4)
<223> X = \text{no amino acid or } E \text{ or } K
<220>
<221> misc_feature
```

- xxviii -

```
<222> (5)..(5)
<223> X = no amino acid or K or I
<220>
      misc_feature
<221>
      (6) .. (6)
<222>
<223> X = no amino acid or M or S
<220>
<221> misc_feature
<222> (7) ... (7)
<223> X = no amino acid or T or I or S
<220>
<221> misc_feature
      (8)∴.(8)
<222>
<223> X = no amino acid or K or E
<220>
<221> misc_feature
       (9)..(9)
<222>
<223> X = no amino acid or T or V
<220>
<221> misc_feature
       (10)..(10)
<222>
<223> X = no amino acid or G or K
<220>
<221> misc_feature
<222> (11) .. (11)
<223> X = no amino acid or A
<220>
<221> misc_feature
       (12)..(12)
 <222>
 <223> X = no amino acid or E
 <220>
 <221> misc_feature
 <222> (13)..(13)
 <223> X = no amino acid or I or T
 <220>
 <221> misc_feature
 <222>
       (14)..(14)
 <223> X = no amino acid or L
 <220>
       misc_feature
 <221>
        (15)..(15)
 <222>
 <223> X = no amino acid or A or V or G
 <220>
 <221> misc_feature
 <222> (16)..(16)
 <223> X = no amino acid or E
```


- xxix -

```
<220>
<221> misc_feature
<222>
      (17)..(17)
<223> X = no amino acid or E
<220>
<221> misc_feature
      (18)..(18)
<222>
<223> X = no amino acid or A
<220>
      misc_feature
<221>
      (19) . . (19)
<222>
<223> X = no amino acid or K
<220>
<221> misc_feature
<222> (20)..(20)
<223> X = no amino acid or T
<220>
<221> misc_feature
       (21)..(21)
<222>
<223> X = no amino acid or L
<220>
<221> misc_feature
<222> (22) .. (22)
<223> X = no amino acid or A or S
<220>
<221> misc_feature
<222> (23)..(23)
<223> X = no amino acid or A or E
<220>
<221> misc_feature
<222>
       (24)..(24)
<223> X = \text{no amino acid or A or V}
<220>
<221> misc_feature
      (25)..(25)
<222>
<223> X = no amino acid or L or V
<220>
<221> misc_feature
<222>
       (26)..(26)
       X = no amino acid or L
<223>
<220>
<221>
       misc_feature
       (27)..(27)
<222>
<223> X = no amino acid or E
<220>
```

DARROAS horizon de Grazin us doc-08/02/02

- XXX -

```
<221> misc_feature
<222> (28)..(28)
<223> X = no amino acid or E
<220>
<221> misc_feature <222> (29)..(29)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (30)..(30)
<223> X = no amino acid or I
<220>
<221> misc_feature
<222> (31)..(31)
<223> X = no amino acid or M
<220>
<221> misc_feature
<222>
      (32)..(32)
<223> X = no amino acid or D or M
<220>
<221> misc_feature
      (33)..(33)
<222>
<223> X = no amino acid or N or E
<400> 60
10
Xaa
<210> 61
<211> 112
<212> PRT
<213> Nicotiana alata
<220>
<221> misc_feature
      (2)..(2)
<222>
<223> X = A or G or K
<220>
<221> misc_feature
 <222>
       (3)..(3)
      X = R \text{ or } N \text{ or } L
 <223>
 <220>
 <221> misc_feature
      (5)..(5)
 <222>
 \langle 223 \rangle X = L or I or M
```


- xxxi -

```
<220>
       misc_feature
 <221>
       (6) . . (6)
 <222>
 <223> X = C or F or R
 <220>
 <221> misc_feature
 <222> (7)..(7)
 \langle 223 \rangle X = F or L
 <220>
 <221> misc_feature
 <222> (8)..(8)
 <223> X = M or F or I
 <220>
 <221> misc_feature
 <222>
        (9)..(9)
 \langle 223 \rangle X = A or S
<220>
 <221> misc_feature
        (10)..(10)
 <222>
 <223> X = F or T or A
 <220>
 <221> misc_feature
 <222> (11)..(11)
 <223> X = A or L or V or F
 <220>
 <221> misc_feature
 <222> (12)..(12)
<223> X = I or V or L or F
 <220>
 <221> misc_feature
 <222> (13)..(13)
 <223> X = L or I
 <220>
 <221> misc_feature
 <222> (14)..(14)
 <223> X = A or I or M
 <220>
  <221> misc_feature
  <222>
         (15)..(15)
  <223> X = M \text{ or A or F}
  <220>
  <221> misc_feature
         (16) . . (16)
  <222>
  \langle 223 \rangle X = M or L
```

<220>

- xxxii -

```
<221> misc_feature
      (17)..(17)
<222>
\langle 223 \rangle X = L or I
<220>
      misc_feature
<221>
      (18) ... (18)
<222>
\langle 223 \rangle X = F or V
<220>
      misc_feature
<221>
<222>
      (19)..(19)
<223> X = V or T or L
<220>
      misc_feature
<221>
<222> (20)..(20)
<223> X = A or T or S
<220>
<221> misc_feature
<222>
       (21)..(21)
<223> X = Y or T
<220>
<221> misc_feature
<222> (22)..(22)
\langle 223 \rangle X = E or G
<220>
<221> misc_feature
<222> (23)..(23)
<223> X = V or M
<220>
<221> misc_feature
<222>
       (24) .. (24)
<223> X = no amino acid or G
<220>
<221> misc_feature
      (25)..(25)
<222>
<223> X = no amino acid or P
<220>
<221> misc feature
<222>
       (26)..(26)
<223> X = no amino acid or M or V
<220>
       misc_feature
<221>
<222>
       (27)..(27)
       X = no amino acid or T
<223>
<220>
       misc_feature
<221>
<222>
       (28)..(28)
```

- xxxiii -

```
<223> X = no amino acid or I or S
<220>
<221> misc_feature
      (29)..(29)
<222>
<223> X = no amino acid or A or V
<220>
       misc_feature
<221>
<222>
       (30)..(30)
      X = Q \text{ or } E
<223>
<220>
<221> misc_feature
       (32)..(32)
<222>
<223> X = no amino acid or Q
<220>
       misc_feature
<221>
       (33)..(33)
<222>
<223> X = R \text{ or } Q
<220>
<221> misc_feature
<222>
       (34)..(34)
       X = E or I or T
<223>
<220>
       misc_feature
<221>
       (36) . . (36)
<222>
<223> X = K or E
<220>
       misc_feature
<221>
       (37)..(37)
<222>
<223> X = T or A or S
<220>
<221> misc_feature
<222>
       (38)..(38)
\langle 223 \rangle X = E or P or Q
<220>
       misc_feature
<221>
       (40)..(40)
<222>
<223> X = N or Q or H
<220>
       misc_feature
<221>
<222>
       (41) .. (41)
<223> X = T or R
<220>
       misc_feature
<221>
<222>
       (43)..(43)
<223> X = P or K or H
```



```
<220>
<221> misc_feature
      (45) . . (45)
<222>
<223> X = I or L or P or T
<220>
<221> misc_feature
      (47)..(47)
<222>
<223> X = I or F or S or V
<220>
<221> misc_feature
<222> (48)...(48)
<223> X = T or M or R or S
<220>
<221> misc_feature
<222> (49)..(49)
<223> X = K or D or E or A
<220>
<221> misc_feature
<222> (50)..(50)
<223> X = P or S
<220>
<221> misc_feature
<222>
       (51)..(51)
<223> X = P or S or N
<220>
      misc_feature
<221>
       (53)..(53)
<222>
<223> X = R or A
<220>
<221> misc_feature
 <222> (54)..(54)
 <223> X = K or T or S or N
 <220>
 <221> misc_feature
 <222> (55)..(55)
 <223> X = A or Y or V
 <220>
 <221> misc_feature
       (57)..(57)
 <222>
 <223> X = I or L or Q or H
 <220>
 <221> misc feature
        (58)..(58)
 <222>
 <223> X = S or K or T or N
 <220>
 <221> misc_feature
```

- XXXV -

```
<222> (60)..(60)
\langle 223 \rangle X = K or G
<220>
<221> misc_feature
       (62)..(62)
<222>
<223> X = T or S or I or V
<220>
<221> misc_feature
       (63)..(63)
<222>
<223> X = D or G
<220>
       misc_feature
<221>
<222>
        (65)..(65)
       X = H or R or N
<223>
<220>
       misc_feature
<221>
       (67)^{-}. (67)
<222>
<223> X = S or P or R
<220>
       misc feature
<221>
       (68)..(68)
<222>
       X = K \text{ or } W \text{ or } A \text{ or } G
<223>
<220>
        misc_feature
<221>
<222>
       (69)..(69)
        X = I \text{ or } L \text{ or } F
<223>
<220>
<221> misc_feature
        (70)..(70)
<222>
<223> X = L or Q or P or R
<220>
<221> misc_feature
        (71)..(71)
 <222>
 <223> X = R or P
 <220>
 <221> misc_feature
 <222>
        (72)..(72)
 <223> X = R or K
 <220>
 <221> misc_feature
        (74)..(74)
 <222>
 \langle 223 \rangle X = L or F
 <220>
 <221> misc_feature
 <222> (77)..(77)
 <223> X = K or S or R
```



```
<220>
      misc_feature
<221>
      (78)..(78)
<222>
<223> X = P or N or H
<220>
<221> misc_feature
<222>
      (80)..(80)
<223> X = no amino acid or V
<220>
      misc_feature
<221>
<222>
      (81)..(81)
      X = no amino acid or F
<223>
<220>
<221>
      misc_feature
<222>
      (82)..(82)
<223> X = no amino acid or D
<220>
<221> misc_feature
<222>
      (83)..(83)
      X = no amino acid or E or K
<223>
<220>
       misc_feature
<221>
<222>
      (84)..(84)
<223> X = no amino acid or K or I
<220>
<221> misc_feature
<222>
      (85) . . (85)
<223> X = no amino acid or M or S
<220>
<221> misc_feature
<222>
       (86)..(86)
<223> X = no amino acid or T or I or S
<220>
      misc_feature
<221>
       (87)..(87)
<222>
<223> X = no amino acid or K or E
<220>
<221>
       misc_feature
<222>
       (88)..(88)
       X = no amino acid or T or V
<223>
<220>
       misc_feature
<221>
       (89) . . (89)
<222>
       X = no amino acid or G or K
<223>
<220>
```

- xxxvii -

```
<221> misc_feature
      (90)..(90)
<222>
<223> X = no amino acid or A
<220>
<221> misc_feature
      (91)..(91)
<222>
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (92)..(92)
<223> X = no amino acid or I or T
<220>
<221> misc_feature
<222> (93)..(93)
<223> X = no amino acid or L
<220>
      misc_feature
<221>
       (94)..(94)
<222>
<223> X = no amino acid or A or V or G
<220>
<221> misc_feature
      (95)..(95)
<222>
<223> X = no amino acid or E
<220>
<221> misc_feature
       (96)..(96)
<222>
<223> X = no amino acid or E
<220>
<221> misc_feature
 <222> (97)..(97)
 <223> X = no amino acid or A
 <220>
 <221> misc feature
 <222> (98)..(98)
 <223> X = \text{no amino acid or } K
 <220>
 <221> misc_feature
 <222>
        (99) . . (99)
 <223> X = no amino acid or T
 <220>
 <221> misc_feature
        (100)..(100)
 <222>
 <223> X = no amino acid or L
 <220>
 <221> misc_feature
 <222> (101)..(101)
```

- xxxviii -

```
<223> X = no amino acid or A or S
<220>
<221> misc_feature
<222>
      (102)..(102)
<223> X = no amino acid or A or E
<220>
<221> misc_feature
      (103)..(103)
<222>
<223> X = no amino acid or A or V
<220>
<221>
     misc feature
<222>
      (104)..(104)
<223> X = no amino acid or L or V
<220>
<221> misc_feature
<222>
      (105)..(105)
<223> X = no amino acid or L
<220>
<221>
      misc_feature
      (106)..(106)
<222>
<223> X = no amino acid or E
<220>
<221> misc feature
<222> (107)..(107)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (108)..(108)
<223> X = no amino acid or E
<220>
<221>
     misc_feature
      (109)..(109)
<222>
<223> X = no amino acid or I
<220>
<221> misc_feature
      (110) .. (110)
<222>
<223> X = no amino acid or M
<220>
<221> misc_feature
      (111)...(111)
<222>
<223> X = no amino acid or D or M
<220>
<221>
      misc_feature
<222>
      (112)..(112)
\langle 223 \rangle X = no amino acid or N or E
```


<400	·> 6	1									·-	17	V	Vaa	Vaa
Met 1	Xaa	Xaa	Ser	Xaa 5	Xaa	Xaa	Xaa	Xaa	Xaa 10	Xaa	хаа	хаа	Add	15	Add
Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Xaa 25	Xaa	Xaa	Xaa	Xaa	Xaa 30	Ala	Xaa
Xaa	Xaa	Cys 35	Xaa	Xaa	Xaa	Ser	Xaa 40	Xaa	Phe	Xaa	Gly	Xaa 45	Cys	Xaa	Xaa
Xaa	Xaa 50	Xaa	Cys	Xaa	Xaa	Xaa 55	Cys	Xaa	Xaa	Glu	Xaa 60	Phe	Xaa	Xaa	Gly
Xaa 65	Cys.	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Cys	Xaa	Cys 75	Thr	Xaạ	Xaa	Сув	Xaa 80
Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa
Xaa	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa							