Roll No.	
	Academic Year 2019-20

Winter Semester

Introductory Computational Physics (CS201)

End-Semester Examination

Dhirubhai Ambani Institute of Information and Communication Technology

Time: 2 Hours Total Marks: 35

One-page question paper, 16 compulsory questions. Answer all the sub-parts of a question together. Marks for each question are indicated next to it. All terms and symbols carry their standard textbook meaning. **Physical constants**: $\epsilon_0 = 8.854 \times 10^{-12} \, \mathrm{Fm^{-1}}, \, \mu_0 = 4\pi \times 10^{-7} \, \mathrm{Hm^{-1}}, \, c = 3 \times 10^8 \, \mathrm{m \, s^{-1}}, \, h = 6.626 \times 10^{-34} \, \mathrm{J \, s}, \, G = 6.67 \times 10^{-11} \, \mathrm{kg^{-1} m^3 s^{-2}}, \, k_{\mathrm{B}} = 1.38 \times 10^{-23} \, \mathrm{J \, K^{-1}}, \, N_{\mathrm{A}} = 6.022 \times 10^{23} \, \mathrm{mol^{-1}}, \, e = 1.6 \times 10^{-19} \, \mathrm{C}, \, m_{\mathrm{e}} = 9.11 \times 10^{-31} \, \mathrm{kg}, \, m_{\mathrm{n}} \simeq m_{\mathrm{p}} = 1836 m_{e}$

- 1. Find the semi latus rectum and the eccentricity of $r = 24/(3+5\cos\theta)$. Identify the conic section. [2]
- 2. If $\mathbf{V} = (-4x 3y + az)\hat{x} + (bx + 3y + 5z)\hat{y} + (4x + cy + 3z)\hat{z}$ is irrotational, then find the values of the constants a, b and c.
- 3. Find the discriminant of $u_{xx} + 2u_{xy} + 5u_{yy} = 0$. Classify the partial differential equation. [2]
- 4. The acceleration due to gravity on the surface of a planet is $11 \,\mathrm{m\,s^{-2}}$ and its radius is $5.82 \times 10^4 \,\mathrm{km}$. Find the average density of the planet in c.g.s. units upto 2 places of decimal. [2]
- 5. The semi-major axis of a planetary orbit is 780×10^6 km. Find the orbital time period in earth years, if the mass of the Sun is 2×10^{30} kg.
- 6. The speed of an electron is measured with an uncertainty of $2 \times 10^4 \,\mathrm{m\,s^{-1}}$. What is the uncertainty in locating the electron?
- 7. Is the function $\psi(x) = (Ae^{-kx})/x$ a valid solution of Schrödinger's equation? Give two justifications for your answer, based on the form of ψ . (A and k are positive constants.)
- 8. A gamma-ray photon is emitted from a nuclear state that has a lifetime of 1.2×10^{-9} s. What is the uncertainty in the energy of the emitted photon in eV unit? [2]
- 9. The operator d^3/dx^3 operates on the eigenfunction $\psi = \exp(-ax)$. What is the eigenvalue? [2]
- 10. A travelling wave has the form $\psi(x,t) = a/[b+(2x+t)^2]$, in which a and b are constants, the unit of x is metre and the unit of t is second. Find the speed of the wave and its direction of propagation. [2]
- 11. State the criteria of attraction and repulsion for a force function $\mathbf{F} = F_0 \ln(r/r_0)\hat{r}$. The constants F_0 and r_0 have positive values.
- 12. Find the eccentricity, the focal distance and the semi latus rectum of $9x^2 + 16y^2 = 144$. [2.5]
- 13. A particle moves under a central force $\mathbf{F} = -Kr^2\hat{r}$. If the total energy of the particle is E, derive the formula of its speed. [2.5]
- 14. Given $\dot{x}=x^2+t^2,\,0\leq t\leq 0.2,\,x(0)=1,\,\Delta t=0.1,$ estimate x(0.2) up to 3 places of decimal, by Taylor's method of the second order. [2.5]
- 15. Given $\ddot{x} + 6\dot{x} + 10x = 0$, determine the eigenvalues, classify the damping and write the general solution of x(t) with arbitrary constants. [2.5]
- 16. Given $\mathbf{E} = (ar/\epsilon_0)\hat{r}$ (in which the constant $a = 5 \times 10^{-5}$) in the region $r \le 2 \,\mathrm{m}$, find both the charge density and the total charge enclosed within a spherical shell of radius $r = 2 \,\mathrm{m}$.