COMP20007 Design of Algorithms

Dynamic Programming Part 2: Knapsack Problem

Daniel Beck

Lecture 20

Semester 1, 2020

Knapsack

<u>item</u>	weight	value
1	2	\$12
2	ł	\$ 10
3	3	\$ 20
4	V	\$ 15

#	weight 2	value.
件 (I)	2	12
(2)	1	(0
<u>(み)</u>	3	20
(4)	ν	20 15
(1,2)	3	22 37 27
(1,3)	5	32
(1,4)	4	2/
(>13)	4	30
(2,4)	3	25
(314)	5	3.5
(1,2,3)	6	42
(1,2,4) 5	3.7
(1,3,4		47
(2,3,		43
	3,4)8	57

$$F((1,2),5) = (1,2)$$

 $F((1,2,3),5) = (1,3)$

h.		
Hem	weight	value
t	2	\$ 12
9	1	¢10
3	3	\$ 20
4	ع	\$ 15

capacity =
$$5 = W$$

Flerate over Flems $\tilde{l} = 0 \cdots n$
Flerate over capacity $0 \cdots W$

NOW KNAPSACK
$$K=F(i,j)$$

max value $F(n,w)$

base case:
$$F(0,1) = 0$$
, $F(1,0) = 0$
0 item. (capacity 1 item, 0 capacity

find
$$F(i,j) = ? F(i-1,j)$$

if $wi > j$: $F(i,j) = F(i-1,j)$
else $wi < j$:
if $i \notin solution : F(i,j) = F(i-1,j)$
else $i \in solution$ $F(i,j) = V_1 + P(i-1,j-W_i)$
value capacity
of i

The Knapsack Problem

Given *n* items with

- weights: w_1, w_2, \ldots, w_n
- values: v_1, v_2, \ldots, v_n
- knapsack of capacity W

find the most valuable selection of items that will fit in the knapsack.

The Knapsack Problem

Given *n* items with

- weights: w_1, w_2, \ldots, w_n
- values: v_1, v_2, \ldots, v_n
- knapsack of capacity W

find the most valuable selection of items that will fit in the knapsack.

We assume that all entities involved are positive integers.

item	weight	value	
1	2	\$12	
2	1	\$10	
3	3	\$20	
4	ک	\$15	
CAPACITY = 5			

to look at what item is racinded.

(subset of item)
backtrack
0 F(4,5) > F(3,5) (item 4 is include)
}4.

- (3) look at item 2

 F(213) is F(1.3)

 Item 2 is included

 \$4,2
- (4) look at item / $F(2-1, 3-W_2) \rightarrow F(1, 2)$ F(1,2) > F(0,2) item (is include $\{4,2,1,\frac{1}{2}\}$

Example 2: The Knapsack Problem

Express the solution recursively:

$$K(i,j) = 0 \text{ if } i = 0 \text{ or } j = 0$$

Otherwise:

$$K(i,j) = \begin{cases} max(K(i-1,j), K(i-1,j-w_i) + v_i) & \text{if } j \geq w_i \\ K(i-1,j) & \text{if } j < w_i \end{cases}$$

Example 2: The Knapsack Problem

Express the solution recursively:

$$K(i,j) = 0 \text{ if } i = 0 \text{ or } j = 0$$

Otherwise:

$$K(i,j) = \begin{cases} max(K(i-1,j), K(i-1,j-w_i) + v_i) & \text{if } j \geq w_i \\ K(i-1,j) & \text{if } j < w_i \end{cases}$$

For a bottom-up solution we need to write the code that systematically fills a two-dimensional table.

The table will have n+1 rows and W+1 columns.

Example 2: The Knapsack Problem

```
function KNAPSACK(v[1..n], w[1..n], W)
Twithlife \{ \text{ for } i \leftarrow 0 \text{ to } n \text{ do } K[i,0] \leftarrow 0 \}
the first \{ \text{ for } j \leftarrow 1 \text{ to } W \text{ do } K[0,j] \leftarrow 0 \}
for j \leftarrow 1 \text{ to } n \text{ do } 0 \}
for j \leftarrow 1 \text{ to } M \text{ do } 0 \}
                                            if i < w_i then
                                                     K[i, j] \leftarrow K[i-1, j]
                                             else
                                                     K[i, j] \leftarrow max(K[i-1, j], K[i-1, j-w_i] + v_i)
                           return K[n, W]
```

 To some extent the bottom-up (table-filling) solution is overkill: It finds the solution to every conceivable sub-instance.

- To some extent the bottom-up (table-filling) solution is overkill: It finds the solution to every conceivable sub-instance.
- Most entries cannot actually contribute to a solution.

- To some extent the bottom-up (table-filling) solution is overkill: It finds the solution to every conceivable sub-instance.
- Most entries cannot actually contribute to a solution.
- In this situation, a top-down approach, with memoing is preferable.

- To some extent the bottom-up (table-filling) solution is overkill: It finds the solution to every conceivable sub-instance.
- Most entries cannot actually contribute to a solution.
- In this situation, a top-down approach, with memoing, is preferable.
- To keep the memo table small, make it a hash table.

function
$$KNAP(i,j)$$
 \triangleright Uses a global hashtable if $i=0$ or $j=0$ then return 0 call value directly instead if key (i,j) is in hashtable then return the corresponding value (that is, $K(i,j)$) again if $j < w_i$ then $k \leftarrow KNAP(i-1,j)$ else $k \leftarrow max(KNAP(i-1,j), KNAP(i-1,j-w_i) + v_i)$ insert k into hashtable, with key (i,j) return k

Knapsack - Complexity

Time (and space) complexity of Knapsack is $\Theta(nW)$ From capacit

Knapsack - Complexity

- Time (and space) complexity of Knapsack is $\Theta(nW)$
- This is called pseudopolynomial time: the algorithm is polynomial in the value of the input, not its length.
 - Counting Sort is another example. O(n+W)| largest element
 | în array

Knapsack - Complexity

- insertion sort $O(n^2)$ 32 bit rateger $O((326)^2) = O((0246^2) = O(6^2)$ but all int has constant bit length • Time (and space) complexity of Knapsack is $\Theta(nW)$ This is called pseudopolynomial time: the algorithm is polynomial in the value of the input, not its length. Counting Sort is another example. Pseudopolynomial is not in general polynomial because it
- is exponential in the number of bits.

since It is related N= 11110

to the value of N= 11110

the the value of length 5

the representation length 5

value 30

value 0(2) value b2

matters

exponential algorithm

• Dynamic Programming recipe:

- Dynamic Programming recipe:
 - Split into subproblems.
 - Solutions overlap. -> store solution and reuse.

- Dynamic Programming recipe:
 - Split into subproblems.
 - Solutions overlap.
- A DP solution for Knapsack results in a pseudopolynomial time algorithm.

- Dynamic Programming recipe:
 - Split into subproblems.
 - Solutions overlap.
- A DP solution for Knapsack results in a pseudopolynomial time algorithm.
 - Uses two "variables" to split the problem.
 - Can use memoing to speed it up.

- Dynamic Programming recipe:
 - Split into subproblems.
 - Solutions overlap.
- A DP solution for Knapsack results in a pseudopolynomial time algorithm.
 - Uses two "variables" to split the problem.
 - Can use memoing to speed it up.

global data structure that can be Next lecture: the last one! (before the revision) we for

pach recursive

- Dynamic Programming recipe:
 - Split into subproblems.
 - Solutions overlap.
- A DP solution for Knapsack results in a pseudopolynomial time algorithm.
 - Uses two "variables" to split the problem.
 - Can use memoing to speed it up.

Next lecture: the last one! (before the revision)

$$P = NP$$
?