Presentation 5, Group 2: Classical Meta-Analysis of Binomial Outcomes

Jan Hohenheim

2024-05-14

```
# Visual stuff
library(tidyverse)
library(broom)
library(ggthemes)
library(glue)
library(knitr)

# Meta analysis
library(lme4)
library(metafor)
theme_set(theme_solarized_2())
```

Source for theory: Chang BH, Hoaglin DC. Meta-Analysis of Odds Ratios: Current Good Practices

Data

Source: Pagliaro L, D'Amico G, Sorensen TI, et al. Prevention of first bleeding in cirrhosis. A meta-analysis of randomized trials of nonsurgical treatment

Table 1: Raw data

${\rm trial_id}$	$n_placebo$	n_active	$deaths_placebo$	$deaths_active$
1	36	35	14	2
2	53	56	29	12
3	18	16	6	6
4	22	23	6	4
5	46	49	34	30
6	60	53	14	13
7	60	53	27	15
8	69	71	26	16
9	41	41	19	10
10	20	21	2	0
11	41	42	18	18
12	35	33	21	20
13	138	143	23	46
14	51	55	24	19
15	72	73	14	18
16	16	13	4	2
17	28	21	8	6
18	19	18	6	7
19	24	22	5	5

```
offset <- 0.001
dat <- dat.raw |>
  mutate(
    trial_id = as.factor(trial_id),
  ) |>
  mutate(
    p_placebo = (deaths_placebo + offset) / (n_placebo + 2 * offset),
   p_active = (deaths_active + offset) / (n_active + 2 * offset)
  ) |>
  mutate(
    log_odds_control = log(p_placebo / (1 - p_placebo)),
   log_odds_active = log(p_active / (1 - p_active))
  ) |>
  mutate(
    log_or = log_odds_active - log_odds_control,
    var_log_or =
     1 / (deaths_placebo + offset) +
      1 / (n_placebo - deaths_placebo + offset) +
      1 / (deaths_active + offset) +
      1 / (n_active - deaths_active + offset)
 )
dat |>
  filter(trial_id != 10) |>
 ggplot(aes(x = log_or, y = trial_id)) +
```

```
geom_vline(xintercept = 0, linetype = "dashed") +
geom_point(size = 3) +
geom_errorbarh(aes(
    xmin = log_or - 1.96 * sqrt(var_log_or),
    xmax = log_or + 1.96 * sqrt(var_log_or)), height = 0) +
labs(
    title = "Forest plot of the included studies",
    x = "Log odds ratio",
    y = "Study ID"
)
```


Methods

For binomial outcomes, the measured effects are usually transformed to the log-odds ratio.

$$y_i := \log \left(\frac{p_i}{1 - p_i} \right)$$

Where p_i is the probability of the event in group i.

The variance of the log-odds ratio is approximated by

$$\mathrm{Var}(y_i) \approx \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

Where a,b,c,d are the number of events and non-events in the two groups:

	Responder	Non-Responder
Active	a	b
Placebo	\mathbf{c}	d

Fixed effect

The measurement y is an estimator of the underlying effect μ with an error term ϵ . μ is assumed to be the same for all studies, while ϵ varies between studies.

$$y_i = \mu + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

The estimator $\hat{\mu}$ is the weighted average of the individual studies' estimates:

$$\hat{\mu} = \frac{\sum \kappa_i y_i}{\sum \kappa_i}, \quad \kappa_i := \frac{1}{\sigma_i^2}$$

Where σ_i^2 is the variance inside the study *i*.

If the number of subjects in each group is large, the variance of $\hat{\mu}$ can be approximated by

$$\mathrm{Var}(\hat{\mu}) \approx \frac{1}{\sum \kappa_i}$$

In R, all of this is done quite simply with the rma function from the metafor package.

```
rma.fixed <- rma(</pre>
 yi = dat$log_or,
  vi = dat$var_log_or,
 method = "FE") # FE stands for "Fixed Effect"
rma.fixed |> summary()
rma.fixed mean <- rma.fixed$beta[[1]]
rma.fixed_se <- rma.fixed$se[1]</pre>
## Fixed-Effects Model (k = 19)
##
##
     logLik deviance
                            AIC
                                      BIC
                                                AICc
## -29.7597
              41.1666
                        61.5195
                                  62.4639
                                             61.7548
## I^2 (total heterogeneity / total variability):
## H^2 (total variability / sampling variability):
##
## Test for Heterogeneity:
## Q(df = 18) = 41.1666, p-val = 0.0014
## Model Results:
##
## estimate
                 se
                        zval
                                pval
                                         ci.lb
   -0.2528 0.1120 -2.2563 0.0241
                                      -0.4724
                                               -0.0332
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Random effects

 μ can now also vary between studies:

$$y_i = \mu_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Consequently, we now have to consider two sources of variation: The variance inside a study σ_i^2 and the variance between studies τ^2 :

$$Var(y_i) \approx \sigma_i^2 + \tau^2$$

The new estimator $\hat{\mu}'$ looks very similar to the fixed effect estimator, it only uses the new precision

$$\hat{\mu}' = \frac{\sum \kappa_i' y_i}{\sum \kappa_i'}, \quad \kappa_i' := \frac{1}{\sigma_i^2 + \tau^2}$$

Calculating the inter-study variance τ^2 not as straightforward. rma lets you choose between different estimators, but the default is already fairly unbiased.

The mixed effects model is more flexible than the fixed effect model, but assumes that y_i and σ_i^2 are independent, which is probably not the case for this kind of analysis. As such, no matter which τ^2 estimator is used, there will always be a bias.

The R code looks very similar to the fixed effect model, with the difference being that we omit the method argument. The default already uses a random effects model.

```
rma.random <- rma(</pre>
 yi = dat$log_or,
  vi = dat$var log or)
rma.random |> summary()
rma.random_mean <- rma.random$beta[[1]]</pre>
rma.random_se <- rma.random$se[1]</pre>
##
## Random-Effects Model (k = 19; tau^2 estimator: REML)
##
##
     logLik
             deviance
                             AIC
                                       BIC
                                                 AICc
## -23.4206
              46.8411
                         50.8411
                                   52.6219
                                             51.6411
##
## tau^2 (estimated amount of total heterogeneity): 0.2844 (SE = 0.1843)
## tau (square root of estimated tau^2 value):
## I^2 (total heterogeneity / total variability):
                                                      53.80%
## H^2 (total variability / sampling variability):
##
## Test for Heterogeneity:
## Q(df = 18) = 41.1666, p-val = 0.0014
##
## Model Results:
##
## estimate
                 se
                         zval
                                 pval
                                         ci.lb
##
   -0.3295 0.1757 -1.8754
                              0.0607
                                      -0.6739
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Using sample sizes directly

If one has access to the sample size, the model can use the numbers of events and participants directly. In this case, one can do a simple logistic regression. The response variable is the number of successes and events, and the explanatory variables are the trial number and whether the treatment was active or not.

Table 3: Data for logistic regression

$\underline{\text{trial}}\underline{\text{id}}$	treatment	deaths	n
1	placebo	14	36
2	placebo	29	53
3	placebo	6	18
4	placebo	6	22
5	placebo	34	46
6	placebo	14	60
7	placebo	27	60
8	placebo	26	69
9	placebo	19	41
10	placebo	2	20
11	placebo	18	41
12	placebo	21	35
13	placebo	23	138
14	placebo	24	51
15	placebo	14	72
16	placebo	4	16
17	placebo	8	28
18	placebo	6	19
19	placebo	5	24
1	active	2	35
2	active	12	56
3	active	6	16
4	active	4	23
5	active	30	49
6	active	13	53
7	active	15	53
8	active	16	71
9	active	10	41
10	active	0	21
11	active	18	42
12	active	20	33
13	active	46	143
14	active	19	55
15	active	18	73
16	active	2	13
17	active	6	21
18	active	7	18
19	active	5	22

```
glm.fixed <- glm(
  cbind(deaths, n - deaths) ~ trial_id + treatment,
  data = dat.glm,
  family = binomial)</pre>
```

```
glm.fixed |> summary()
glm.fixed_placebo <- tidy(glm.fixed) |>
 filter(term == "treatmentplacebo")
glm.fixed_mean <- -glm.fixed_placebo$estimate</pre>
glm.fixed_se <- glm.fixed_placebo$std.error</pre>
##
## Call:
## glm(formula = cbind(deaths, n - deaths) ~ trial_id + treatment,
       family = binomial, data = dat.glm)
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                0.29069 -4.767 1.87e-06 ***
                   -1.38568
## trial_id2
                     0.73788
                                0.34681
                                          2.128 0.03337 *
## trial_id3
                     0.62480
                                0.45864
                                          1.362 0.17311
## trial_id4
                    -0.01288
                                0.45826 -0.028 0.97758
## trial_id5
                                0.35938
                                         5.497 3.87e-08 ***
                     1.97540
## trial_id6
                     0.06967
                                0.36030
                                         0.193 0.84667
## trial_id7
                     0.70586
                                0.34502
                                          2.046 0.04077 *
                                0.33932
                                         1.158 0.24672
## trial_id8
                     0.39304
## trial_id9
                     0.63640
                                0.36685
                                         1.735 0.08278 .
## trial_id10
                    -1.73377
                                0.77910 -2.225 0.02606 *
## trial_id11
                     0.97614
                                0.36096
                                         2.704 0.00684 **
## trial_id12
                                0.37779
                                         4.389 1.14e-05 ***
                     1.65802
## trial id13
                     0.11725
                                0.31663
                                        0.370 0.71116
## trial_id14
                     0.86395
                                0.34688
                                         2.491 0.01275 *
## trial_id15
                    -0.02400
                                0.34815 -0.069 0.94505
                                0.54021 -0.226 0.82117
## trial_id16
                    -0.12211
## trial_id17
                                         0.707 0.47931
                     0.30130
                                0.42592
## trial_id18
                     0.62236
                                0.44734
                                          1.391 0.16415
                    -0.05055
                                0.45737
                                        -0.111 0.91199
## trial_id19
                                         2.634 0.00843 **
## treatmentplacebo 0.28655
                                0.10878
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 185.74 on 37 degrees of freedom
## Residual deviance: 47.80 on 18 degrees of freedom
## AIC: 230.01
```

Number of Fisher Scoring iterations: 4

Note that the above again assumes that μ is the same for all studies. We can extend this model to include a random effect for the study:

```
numeric treatment <-</pre>
  ifelse(dat.glm$treatment == "active", 1, 0)
glm.random <- glmer(</pre>
  cbind(deaths, n - deaths) ~
    trial_id +
    treatment +
    (-1 + numeric_treatment | as.numeric(trial_id)),
  data = dat.glm,
  family = binomial,
  nAGQ = 7)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00396281 (tol = 0.002, component 1)
glm.random |> summary(correlation=F)
glm.random_placebo <- summary(glm.random)$coefficients["treatmentplacebo",]</pre>
glm.random_mean <- -glm.random_placebo["Estimate"][[1]]</pre>
glm.random_se <- glm.random_placebo["Std. Error"][[1]]</pre>
## Generalized linear mixed model fit by maximum likelihood (Adaptive
     Gauss-Hermite Quadrature, nAGQ = 7) [glmerMod]
##
  Family: binomial (logit)
## Formula:
## cbind(deaths, n - deaths) ~ trial_id + treatment + (-1 + numeric_treatment |
##
       as.numeric(trial_id))
##
      Data: dat.glm
##
##
        AIC
                 BIC
                       logLik deviance df.resid
       81.5
               115.9
                        -19.7
                                   39.5
##
##
## Scaled residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -1.45860 -0.31914 0.00545 0.36480 1.12671
##
## Random effects:
## Groups
                         Name
                                            Variance Std.Dev.
   as.numeric(trial_id) numeric_treatment 0.1907
## Number of obs: 38, groups: as.numeric(trial_id), 19
##
## Fixed effects:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -1.20849
                                 0.34626 -3.490 0.000483 ***
## trial_id2
                     0.78898
                                 0.40026
                                           1.971 0.048705 *
## trial_id3
                     0.32515
                                 0.52335
                                          0.621 0.534409
                                 0.51564 -0.434 0.664493
## trial_id4
                    -0.22364
                                 0.42892
                                          4.238 2.25e-05 ***
## trial_id5
                     1.81790
## trial_id6
                    -0.25620
                                 0.42815 -0.598 0.549578
## trial_id7
                     0.56376
                                 0.39921
                                           1.412 0.157894
## trial_id8
                                 0.39435
                                           0.665 0.506079
                     0.26222
## trial_id9
                     0.53964
                                 0.42202
                                           1.279 0.201006
```

```
## trial_id10
             -1.92586 0.81477 -2.364 0.018095 *
## trial_id11
              ## trial_id12
               ## trial_id13
               ## trial_id14
               0.68129 0.40922 1.665 0.095941 .
               -0.42744 0.42782 -0.999 0.317749
## trial_id15
## trial_id16
               -0.34949 0.58708 -0.595 0.551640
## trial_id17
               ## trial_id18
               0.29941 0.51761 0.578 0.562954
## trial_id19
               -0.34567
                        0.52053 -0.664 0.506648
## treatmentplacebo 0.37365
                        0.15788 2.367 0.017953 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00396281 (tol = 0.002, component 1)
```

Comparison

```
comparison <- tibble(
  model = c("RMA Fixed effect", "RMA Random effects", "GLM Fixed effect", "GLM Random effects"),
  mean = c(rma.fixed_mean, rma.random_mean, glm.fixed_mean, glm.random_mean),
  se = c(rma.fixed_se, rma.random_se, glm.fixed_se, glm.random_se)
)
comparison |> kable(caption = "Comparison of the different models")
```

Table 4: Comparison of the different models

model	mean	se
RMA Fixed effect	-0.2527747	0.1120326
RMA Random effects	-0.3295016	0.1756970
GLM Fixed effect	-0.2865532	0.1087809
GLM Random effects	-0.3736463	0.1578842

```
comparison |>
  ggplot(aes(x = model, y = mean, ymin = mean - 1.96 * se, ymax = mean + 1.96 * se)) +
  geom_pointrange() +
  geom_hline(yintercept = 0, linetype = "dashed") +
  scale_x_discrete(limits = c(
    "RMA Fixed effect",
    "RMA Random effects",
    "GLM Fixed effect",
    "GLM Random effects")) +
  labs(
    title = "Comparison of the different methods",
    x = "Model",
    y = "Log odds ratio"
) +
  coord_flip()
```

