Course

<u>Progress</u>

<u>Dates</u>

Discussion

Resources

☆ Course / Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks) / Lecture 5. Linear Regression

Introduction; Lecture Overview

<u>Start of transcript. Skip to the end.</u>

So today we will talk about linear regression.

And I would like to remind you, our general

supervised framework, and so far we can see that in the case of classification.

So let's look back at the role of classification

▶ 0:00 / 0:00

1.25x

×

cc 60

Video Download video file Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Introduction Exercise

1/1 point (graded)

Which of the following is true about linear regression? Choose all those apply.

lacksquare The observed value, y, is a real number. i.e. $y \in \mathbb{R}$

lacksquare The predictor f is a linear function of the feature vectors. i.e. $f(x) = \sum_{i=1}^d heta_i x_i + heta_0$

The observed value y is a discrete integer.

The observed value y is a category, as in classification.

Submit

You have used 1 of 3 attempts

Discussion

Hide Discussion

by recent activity 🗸

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Lecture 5. Linear Regression / 3. Introduction

Add a Post

Answered correctly on the first attempt but did not get the score
Lanswered correctly on the first attempt but did not get the score. Then I tried another options.

2

● Week 2!

Show all posts

~	Week 1 was pretty much meh! In terms of lectures provided and but i must say these week 2 lectures by professor regina came as a big	2
Q	Classification shows the extent of belonging to a category In a classification problem, we classify the point based on the sign of the signed distance. If we normalise the distance to the units of ou	2
Q	Congratulations Prof. Barzilay Hats off to Prof. Barzilay for her [Squirrel Al Award][1] winning!!! With Nobel prize Prof. Esther Duflo in Data Analysis in Social Science an	19
2	Handwritten lecture_notes Check out my notes for this lecture: https://drive.google.com/drive/folders/172YN9JMYWjb-6k6Sd3USa4TInUKSROWr?usp=sharing	22
Q	Congratulations! Congratulations dear Professor!	1
?	Question for recitation part of Unit1: How do we choose range of values for alpha? To find alpha star. We have range of values in the example showcased in the last video of the Unit1 Recitation. I am not clear how do w	2
?	Empirical Risk - exercise 1 grader error ? Empirical Risk: 1. Please check the solution for the first exercise 2. Show discussion button it is not working, can not add posts	4
Q	Empirical Risk and Model Performance Clarification Under video 4 (Empirical Risk), does the Empirical Risk and Model Performance question assume a linear regression model, or any mod Community TA	2

< Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

,

Donate

© 2020 edX Inc. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>