

Table of values

Fungsi
$$f$$
 dengan $f(x)=\frac{x^3-1}{x-1}$ mempunyai domain alami $D_f=\{x\in\mathbb{R}:x\neq 1\}.$

Perhatikan $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3$ (terdefinisi), walaupun f(1) tidak terdefinisi (karena $1 \not\in D_f$).

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$
$$= \lim_{x \to 1} x^2 + x + 1$$
$$= 3.$$

Catatan

 $\lim_{x\to 1}\frac{x^3-1}{x-1}=3 \ \ \text{bermakna nilai} \ f(x) \ \ \text{dapat dibuat sedekat} \\ \text{mungkin ke 3 jika} \ x \ \text{cukup dekat dengan 1, tapi} \ x\neq 1.$

Intuisi Limit.

Notasi
$$\lim_{x \to c} f(x) = L$$
 berarti jika x dekat dengan c , maka $f(x)$ dekat dengan L .

Catatan

Ide limit berkaitan dengan perilaku fungsi di sekitar x=c, tapi

tidak di x = c.

Bahkan, f(x) tidak harus terdefinisi di x = c.

Contoh 1

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

х	$\frac{\sin x}{x}$
1.0	0.84147
0.1	0.99833
0.01	0.99998
↓	\
0	?
1	1
-0.01	0.99998
-0.1	0.99833
-1.0	0.84147

Contoh 2

 $\lim_{x\to 1} [\![x]\!] \text{ tidak ada}.$

 $\lim_{x\to 2}[\![x]\!]$ tidak ada.

 $\lim_{x\to 3} [\![x]\!] \text{ tidak ada}.$

Contoh 3 $\lim_{x\to 0}\,\sin\frac{1}{x}\;{\rm tidak\;ada}.$

х	$\sin \frac{1}{x}$
2/π	1)
2/(2π)	0
2/(3π)	-1
2/(4π)	0)
2/(5π)	1
2/(6π)	0
2/(7π)	-1
2/(8π)	0)
2/(9π)	1
2/(10π)	0
2/(11π)	-1
2/(12 π)	ر ہ
1	1
0	?

Limit

 $\lim_{x\to c}f(x)=L$ berarti jika x dekat dengan c, maka f(x) dekat dengan L.

Limit kanan .

 $\lim_{x \to c^+} f(x) = L$ berarti jika x dekat dengan c dari kanan, maka f(x) dekat dengan L.

Limit kiri .

 $\lim_{x\to c^-} f(x) = L \text{ berarti jika } x \text{ dekat dengan } c \text{ dari kiri}, \text{ maka} \\ f(x) \text{ dekat dengan } L.$

Catatan

Perhatikan penggunaan c, c^+ dan c^- .

Teorema 4

$$\lim_{x\to c}f(x)=L$$
 jika dan hanya jika $\lim_{x\to c^-}f(x)=L$ dan $\lim_{x\to c^+}f(x)=L.$

Penyelesaian $\lim_{x\to c} f(x)$.

- Dalam Geogebra: Limit[f(x), c]
- Dalam Wolfram Mathematica: Limit[f(x), x -> c]

Penyelesaian $\lim_{x \to c^+} f(x)$.

- Dalam Geogebra: LimitAbove[f(x), c]
- Dalam Wolfram Mathematica:
 Limit[f(x), x -> c, Direction -> "FromAbove"]

Penyelesaian $\lim_{x \to c^-} f(x)$.

- Dalam Geogebra: LimitBelow[f(x), c]
- Dalam Wolfram Mathematica:
 Limit[f(x), x -> c, Direction -> "FromBelow"]

Teorema 1

Misalkan n adalah bilangan bulat positif dan k adalah bilangan konstan, $\lim_{x \to c} f(x)$ dan $\lim_{x \to c} g(x)$ ada.

- $\lim_{x \to c} x = c,$
- $\lim_{x \to c} k.f(x) = k. \lim_{x \to c} f(x),$
- $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x),$
- **6** $\lim_{x \to c} [f(x).g(x)] = \lim_{x \to c} f(x). \lim_{x \to c} g(x),$

(lanjutan)

$$\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to c} f(x)}, \ \text{dengan} \lim_{x\to c} f(x) > 0 \ \text{jika} \ n$$
 adalah bilangan genap.

Teorema di atas juga berlaku untuk limit kiri dan limit kanan.

Contoh 2 Hitunglah $\lim_{x\to 3} 2x^4$.

$$\lim_{x \to 3} 2 x^4 = 2 \lim_{x \to 3} x^4$$
 (butir 3)
= $2 \left(\lim_{x \to 3} 2 x \right)^4$ (butir 8)
= $2.3^4 = 162$.

Teorema 3 (Teorema substitusi)

Jika f adalah fungsi polinomial atau fungsi rasional, maka

$$\lim_{x \to c} f(x) = f(c),$$

asalkan f(c) terdefinisi. Untuk kasus fungsi rasional, nilai penyebut di x=c tidak boleh 0.

Contoh 4 Hitunglah $\lim_{x\to 1} \frac{x^5+3\,x^3-1}{x^2+x+1}$.

Dengan menggunakan Teorema Substitusi, $\lim_{x \to 1} \frac{x^5 + 3x^3 - 1}{x^2 + x + 1} = \frac{1^5 + 3 \cdot 1^3 - 1}{1^2 + 1 + 1} = 1.$

Teorema 5

Jika

- f(x) = g(x) untuk setiap x di suatu interval buka yang memuat bilangan c, kecuali mungkin pada bilangan c itu sendiri, dan

maka

- $\lim_{x \to c} f(x) \text{ ada dan}$

Contoh 6

Hitunglah
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1}$$
.

Misalkan
$$f(x) = \frac{x-1}{\sqrt{x}-1} \operatorname{dan} g(x) = \sqrt{x} + 1.$$

Perhatikan f(x) = g(x) untuk setiap $x \in (0, 2)$, kecuali di x = 1.

Perhatikan pula
$$\lim_{x\to 1} g(x) = \lim_{x\to 1} \sqrt{x} + 1 = 2.$$

Akibatnya
$$\lim_{x \to 1} f(x)$$
 ada dan $\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = 2$.

Cara di atas dapat diringkas menjadi:

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = \lim_{x \to 1} \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1} = \lim_{x \to 1} \sqrt{x}+1 = 2.$$

Teorema 7 (Teorema apit (squeeze theorem))

Misalkan f,g,h adalah fungsi yang memenuhi $f(x) \leq g(x) \leq h(x)$ untuk setiap x di dekat c, kecuali mungkin pada c.

Jika
$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$
, maka $\lim_{x \to c} g(x) = L$.

Contoh 8

Hitunglah
$$\lim_{x\to 0} \frac{\sin(x)}{x}$$
.

Perhatikan

$$1 - \frac{x^2}{6} \le \frac{\sin(x)}{x} \le 1$$

untuk setiap x di dekat 0, tapi tidak di x = 0.

Karena $\lim_{x\to 0}1-\frac{x^2}{6}=\lim_{x\to 0}1=1$, maka berdasarkan Teorema Apit $\lim_{x\to 0}\frac{\sin(x)}{x}=1$.

Latihan Mandiri

Hitunglah

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2}.$$

$$\lim_{x \to -1} \frac{x^2 + x}{x^2 + 1}.$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1}.$$

$$\begin{array}{ccc}
& \lim_{x \to 0^-} \frac{x}{|x|}.
\end{array}$$

$$\lim_{x \to 0} x - [x].$$