Paper / Subject Code: 31924 / Data Warehousing & Mining

T.E./ SEM V / COMP / C SCHEME / NOV 2022/30.11.2022

(3 Hours)

EXAM *

[Total Marks: 80]

Note: 1. Question no.1 is compulsory.

- 2. Attempt any three out of remaining five.
- 3. Assumptions made should be clearly indicated.
- 4. Figures to the right indicates full marks.
- 5. Assume suitable data whenever necessary.

Q. 1 Solve any four.

(20)

- A Every data structure in the data warehouse contains the time element. Why?
- B In real-world data, tuples with missing values for some attributes are a common occurrence. Describe various methods for handling this problem.
- C What are the various methods for estimating a classifier's accuracy?
- D Explain market basket analysis with an example.
- E Describe K medoids algorithm.
- F Explain CLARANS extension in web mining.
- Q. 2 A Consider the quarterly sales of four companies C1, C2, C3.C4. The dimensions are
 - a) Time
 - b) Shopping category (Men's, Women's, Electronics, Home)
 - c) Company

Create a cube and describe all five OLAP operation.

(10)

B Apply the Naïve Bayes classifier to classify the tuple <Red, SUV, Domestic> For the given dataset below. (10)

Instance no.	Color	Type	Origin	Stolen
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4 Yellow		Sports	Domestic	No
5 Yellow 6 Yellow 7 Yellow		Sports Imported		Yes
		SUV	Imported	No
		SUV	Imported	Yes
8 Yellow		SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	sports	Imported	Yes

11846

Page 1 of 3

Q.3 A Discuss the different types of attributes.

(10)

- B Suppose that the data mining task is to cluster the following points into 3 clusters .A1(2,10), A2(2,5), A3(8,4), B1(5,8), B2(7,5), B3(6,4), C1(1,2), C2(4,9). The distance function is Euclidean distance Suppose we initially assign A1,B1,C1 as the center of each cluster respectively, Use the k means algorithm to show only a) the three cluster centers after the first round of execution b) The final three clusters. (10)
- Q.4 A For a supermarket chain, consider the dimensions namely Product, Store, time, promotion. The schema contains the three facts namely units_sales, dollar sales, and cost dollars.

Design a star schema and calculate the maximum number of base fact table records for the values given below:

Time period: 5 years

Stores: 300 reporting daily sales

Product: 40000 products in each store (about 4000 sell daily in each store Promotion: a sold item may be in only one promotion in a store on a given day.

(10)

B A database has five transactions.

(10)

T100	{M, O, N, K, E, Y}	
T200	{D, O, N, K, E, Y}	
T300	{M, A, K, E}	
T400	$\{M, U, C, K, Y\}$	
T500	$\{C, O, K, I, E\}$	

Let minimum support =3, Find all frequent itemsets using FP-growth algorithm.

- Q.5 A What is web structure mining? Describe page ranking technique with the help of example. (10)
 - B Use agglomerative algorithm using the following data and plot a dendrogram using single link approach. The following figure contains sample data items indicating the distance between the elements. (10)

Item	Е	A	C	В	D
Е	0	1	2	2	3
A	1	0	.2	5	3
С	2	2	0	1	6
В	2	5	1	0	3
D	3	3	6	3	0

Page 2 of 3

Q. 6 A Apply apriori algorithm on the following dataset to find strong association rules. Minimum support threshold (s = 33.33%) and minimum confident threshold (c = 60%) (10)

Transaction ID	Items Hot dogs, Buns, Ketchup		
T1			
T2	Hot dogs, Buns		
T3	Hot dogs, Coke, Chips		
T4	Coke, Chips		
T5	Chips, Ketchup		
T6	Hotdogs ,Coke, Chips		

B Is Web mining different from classical data mining? Justify your answer.

Describe types of web mining. (10)