Lyndon-Hochschild-Serre Spectral Sequence -Application

Benjamin Ruppik, s6berupp@uni-bonn.de

Tuesday 16th January, 2018

Exercise. [Wei95, 6.8.5] Let $n \geq 3$ be odd. Calculate the group homology with trivial \mathbb{Z} -coefficients of the dihedral group

$$D_n = \langle s, d \mid s^2, d^n, sd = d^{-1}s \rangle$$

$$\cong C_n \rtimes C_2$$

How-to guide:

We use the (split) short exact sequence¹

$$\{1\} \to C_n \to D_n \to C_2 \to \{1\}$$

The homological Lyndon-Hochschild-Serre Spectral Sequence takes the form

$$E_{p,q}^2 \cong H_p(C_2; H_q(C_n; \mathbb{Z})) \Rightarrow H_*(D_n; \mathbb{Z})$$

The extension is not central (why?), so we really have to be careful to think about the action of C_2 on the homology groups $H_q(C_n; \mathbb{Z})$ later.

Recall: Homology of cyclic groups

The homology of cyclic groups with **trivial** \mathbb{Z} -coefficients is

$$H_q(C_m; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{for } q = 0 \\ \mathbb{Z}/m & \text{for } q = 1, 3, 5, \dots \\ 0 & \text{for } q = 2, 4, 6, \dots \end{cases}$$

Below we will also need the more general statement² for coefficients in a C_m -module A:

$$H_q(C_m; A) \cong \begin{cases} A/(\sigma - 1)A & \text{for } q = 0\\ A^{C_m}/NA & \text{for } q = 1, 3, 5, \dots\\ \{a \in A \mid Na = 0\}/(\sigma - 1)A & \text{for } q = 2, 4, 6, \dots \end{cases}$$

In the following we will denote by C_m the (multiplicatively) written cyclic group $\langle \sigma \mid \sigma^m \rangle$ with m elements. We also use \mathbb{Z}/m if we think of it as a \mathbb{Z} -module, of course switching to additive notation in this case.

²Notation: $N = 1 + \sigma + \sigma^2 + \ldots + \sigma^{m-1}$ is the norm element in $\mathbb{Z}[C_m]$

Calculating the E^2 -page

The lower left corner of the first quadrant³ looks like this:

- Try to write down as many of the E^2 terms as you can figure out!
- Then take a look at the information about the C_2 action on the homology of C_n given after the figure to fill in the rest.⁴

³Example d^2 and d^3 differentials are drawn to remind you of the direction of the maps in a homological spectral sequence (but you will see in a minute that for our case all the differentials are the zero map!). Also remember that d_3 is only well-defined on the E^3 -page, so a priori not on the terms written in the diagram here but only after taking homology once.

 $^{^{4}}$ Remember that n is odd - where do we use this?

Local coefficients – C_2 acts on $H_q(C_n; \mathbb{Z})$

Using explicit calculations in a resolution one can show:

The
$$C_2$$
-action on $H_{2i-1}(C_m; \mathbb{Z})$ is multiplication by $(-1)^i$.

Take this on faith for now!⁵

 \bullet For example, you will realize (why?) that on the vertical q-axis we have the coinvariants

$$E_{0,q}^2 \cong H_q(C_n; \mathbb{Z})_{C_2}$$

Check that these are given by

$$H_q(C_n; \mathbb{Z})_{C_2} \cong \begin{cases} \mathbb{Z} & \text{for } q = 0\\ \mathbb{Z}/n & \text{for } q \equiv 3 \pmod{4} \\ 0 & \text{else} \end{cases}$$

- On the p-axis we have \mathbb{Z} , $\mathbb{Z}/2$ and 0 (topological interpretation?)
- All terms away from the axes are zero.

Almost done

- Now argue that there are no nontrivial differentials: The spectral sequence collapses and $E^2 \cong E^{\infty}$.
- Can you solve the extension problems?

In the end we get the following

Proposition (Homology of the odd dihedral groups). The homology of the dihedral group D_n for $n \geq 3$ odd and trivial \mathbb{Z} -coefficients is given by

$$H_*(D_n; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & for * = 0 \\ \mathbb{Z}/2 & for * \equiv 1 \pmod{4} \\ \mathbb{Z}/2n & for * \equiv 3 \pmod{4} \\ 0 & else \end{cases}$$

References

[Wei95] Charles A Weibel. An introduction to homological algebra. Number 38. Cambridge University Press, 1995.

⁵See [Wei95, Example 6.7.10] for the details