Introduction of Pentium

- ▶ The concepts of 80386 microprocessor and 80387 coprocessor together evolved the 80486 microprocessor.
 - Only new idea here is the introduction of 8K cache
 - The cache is used for storing both data and instructions
- Pentium was introduced in 1993
- Pentium processor is an improvement to the architecture found in 80486.

Pentium Improvements

- Improved cache structure
 - Reorganized to form two level (L2) caches that are each 8K bytes in size
 - One for caching data
 - Another for caching instructions
- Wider data bus width
 - Increased from 32 bit to 64 bits
- Faster numeric processor
 - Operates about 5 times faster than the 80486 numeric processor

Pipelining in Pentium

- Pentium has two pipelines
- U pipeline
 - ▶ U-pipeline can execute any Pentium instruction
- V pipeline
 - V-pipeline only executes only simple instructions
- Each pipeline has 5 stages
 - i. Pre-fetch
 - ii. Instruction Decode
 - iii. Address Generation
 - iv. Execute, Cache, and ALU Access
 - v. Write back

Pipelining Stages in Pentium

Pre-fetch:

Instructions are fetched from the Instruction cache and aligned in prefetch buffers for decoding

Instruction Decode:

Instructions are decoded into the Pentium's internal instruction format.

Address Generation:

Address computations take place at this stage

Execute, Cache, and ALU Access:

The integer hardware executes the instruction

Write-back:

The results of the computation are written back to the register file

Super Scalar Machine

- Any Processor capable of parallel instruction execution of multiple instructions is known as **superscalar machine**.
- As, in Pentium, there are two execution lines --- U-line and V-line, so Pentium is a **Super Scalar Processor**
- What are the differences? to understand the concepts in terms of processor execution stages:
 - Parallelelism
 - Simultaneity Simultaneously Parallel
 - Pipelining Parallel and Simultaneous

Pentium Architecture

- It has all the units similar to 80386.
 - Instruction unit
 - Segmentation unit
 - Paging unit
 - Bus unit
 - Execution unit
- The newer one introduced as-
 - Floating Point unit (FPU)

Pentium Architecture

Pin Diagram

Pentium Architecture:

Floating Point Unit (FPU)

- FPU has 8 80-bit general purpose floating point registers, ST(0) through ST(7)
- It has 8-stage pipeline
 - First 5 stages are identical to U and V pipelines
 - 2 additional execution stages
 - First execution stage (XI stage)
 - Second execution stage (X2 stage)
 - In these two stages FPU reads the data from data cache and executes the floating point computation
 - One additional error reporting stage

Pentium Architecture: Pins

- Packaged in 273 pins
 - Data Bus 64 pins
 - Address Bus 29 pins plus 3 pins
 - Control Bus 75 pins
 - Vcc + Ground 99 pins
 - No Connection (NC) 6 pins

Pentium Data Bus

- ▶ 64-bit data bus
- D0 through D63 (Data Bus)
- Bi-Directional
- These signals make up the Pentium's 64-bit bidirectional data bus.

Pentium Address Bus

- 32-bit address bus.
- ▶ A3 through A3 I (Address Lines)
 - Output/Input --- bi-directional
- These 29 address lines, together with the byte enable outputs BE0-BE7, form the Pentium's 32-bit address bus.
- ▶ A memory space of 4 GB is possible, along with 65536 I/O ports.
- The address lines are used as input during an inquire cycle to read an address into the Pentium, for examination by the internal cache.

Pentium Address Bus

- No A0, A1 and A2 address lines are available in Pentium
 - They are internally decoded to produce BE0 to BE7 signals

▶ BE0 through BE7

- Byte (Bank???) Enable lines
- Memory are arranged in total 8 banks

Output

- These, together with A3 through A31, make up the 32-bit address output by the Pentium.
- ▶ Each byte enable is used to control a different 8-bit portion of the processor's 64-bit data bus.
- BE0 enables Bank 0

Pentium Memory System

- Pentium's memory arranged in 8 banks
- ▶ Each bank stores I byte of data with parity bit
 - It helps for error detection and correction in data
- BE0 to BE7 selects the banks
- New feature added to Pentium is its capability to generate and check parity for address bus

Pentium Pro: Salient Features

- The notable difference in the Pentium Pro than the earlier Pentium is that
 - There are provisions for a 36-bit address bus, which allows access to 64G bytes of memory.
- This is meant for future use because no system today contains anywhere near that amount of memory.
- Pentium Pro is available in two versions.
 - One version contains a 256K level 2 cache;
 - ▶ The other contains a 512K level 2 cache
- Pentium Pro microprocessor is packaged in an immense 387-pin PGA (pin grid array).

Pentium II: Salient Features

- Extension to Pro architecture with some differences
 - Internal cache in PII has been moved out of the chip
 - PII is not available as a single chip
 - Rather is available on a small plug-in circuit board, known as Cartridge, along with level 2 (L2) cache chip

- Various versions are available
 - ▶ **Celeron** is a version without L2 cache
 - ▶ **Xeon** is enhanced by having up to 2M L2 cache

Pentium III: Salient Features

- Based on Pro architecture, not on Pentium II
- Like PII, PIII is packaged in a cartridge instead of IC chip
- Additionally a Coppermine is packaged in an IC with 370 pins
- Coppermine is an internal cache with 256K advanced transfer mechanism within the IC running at processor speed
- Why not used 512K Cache?
 - It has been observed that, increasing cache size from 256K to 512K improves the performance by only a few percent

Pentium III: Salient Features

- Various versions of Pentium III are also available like Pentium II
 - Standard Pentium III
 - Celeron Pentium III uses 66MHz bus speed
 - ▶ **Xeon** Pentium III allows larger cache for server applications
 - Still Xeon is popular for server processors

Pentium IV: Salient Features

- Based on Pro architecture, not on P II or P III
- ▶ P IV is packaged in 421 pins IC
- It uses physically smaller transistors
 - Makes it much smaller and faster than P III
- ▶ Released initially in November 2000 with 1.3GHz speed
 - Now available with speed more than 3GHz