Définition 4.1 - jeu sans mémoire

On appelle jeu sans mémoire un jeu dans lequel à tout instant de la partie, il est possible de déterminer si un joueur a gagné ou si un coup est valide, indépendament des précédents coups joués.

Définition 4.2 - jeu à information complète

On appelle jeu à information complète un jeu dans lequel il n'y aucune information cachée que les joueurs ne puissent savoir ou prévoir.

Définition 4.3 - graphe associé à un jeu à deux joueurs

Un jeu à deux joueurs J_1 et J_2 , sans mémoire, à information complète peut être représenté par un graphe orienté biparti :

$$G = (S, A)$$
 où $S = S_1 \sqcup S_2, A \subset (S_1 \times S_2) \cup (S_2 \times S_1)$

Les sommets de S_1 sont appelés les états contrôlés par J_1 et ceux de S_2 les états conrôlés par J_2 .

Définition 4.4 - coup possible pour un joueur

Soit un jeu à deux joueurs J_1 et J_2 , sans mémoire, à information complète, de graphe associé $G = (S_1 \sqcup S_2, A)$. Pour $a \neq b$ dans $\{1; 2\}$, on appelle l'arc $(s_a, s_b) \in A \cap (S_a \times S_b)$ un coup possible pour J_a depuis l'état s_a vers un état s_b contrôlé par J_b .

Définition 4.5 - jeu d'accessiblité

Un jeu à deux joueurs J_1 et J_2 , sans mémoire, à information complète de graphe associé $G = (S_1 \sqcup S_2, A)$ est dit d'accessibilité s'il est possible de définir pour chaque joueur J_a ($a \in \{1; 2\}$), un ensemble $F_a \subset S_a$ d'états gagnants pour J_a .

 F_a est alors appelé condition de gain du joueur J_a .

Définition 4.6 - état final d'un jeu d'accessiblité

Soit G = (S, A) le graphe associé à un jeu d'accessiblité de conditions de gain F_1 et F_2 . Un état $s \in S$ final du jeu est un état depuis lequel il n'existe aucun coup possible, i.e. $\deg_+(s) = 0$.

Définition 4.7 - partie partielle

Soit G = (S, A) le graphe associé à un jeu d'accessiblité. On appelle partie partielle du jeu tout chemin de G partant de l'état inital de G à un état quelconque de G. L'ensemble des parties partielles du jeu est noté S^w

Définition 4.8 - stratégie

Soit G = (S, A) le graphe associé à un jeu d'accessiblité. Une stratégie est une application $\varphi : S^w \to S$ qui à une partie partielle (s_0, \ldots, s_p) associe un sommet la prolongeant : $(s_p, \varphi((s_0, \ldots, s_p))) \in A$. On dit alors qu'un joueur suit une stratégie.

Pour un jeu sans mémoire, <u>l'image</u> d'une stratégie ne dépend que du dernier sommet de la partie partielle : $\varphi((s_0, \ldots, s_p)) = \varphi(s_p)$ moralement.

Définition 4.9 - stratégie gagnante

Soit G = (S, A) le graphe associé à un jeu d'accessiblité. Une stratégie φ est gagnante depuis un état s lorsque depuis s, le joueur qui la suit gagne peu importe le choix de l'adversaire.

Définition 4.10 - suite convergeant vers l'attracteur

Soit G = (S, A) le graphe associé à un jeu d'accessiblité. Pour $a \neq b$ dans $\{1; 2\}$, on définit $(\mathcal{A}_j^a)_{j \in \mathbb{N}}$ l'ensemble des positions permettant au joueur J_a de gagner en au plus j coups. On a bien sûr $\mathcal{A}_0^a = F_a$, puis pour gagner en au plus $j \in \mathbb{N}^*$ coups :

- ou bien J_a peut gagner en au plus j-1 coups,
- ou bien J_a dispose d'un coup le permettant ensuite de gagner en au plus j-1 coups,
- ou bien enfin, J_b se trouvant sur une position non finale, ne dispose que de coups permettant ensuite à J_a de gagner en au plus j-1 coups.

En conclusion:

$$\mathcal{A}_{j}^{a} = \mathcal{A}_{j-1}^{a} \cup \left\{ s \in S_{a}, \exists t \in \mathcal{A}_{j-1}^{a}, (s,t) \in A \right\} \cup \left\{ s \in S_{b}, s \text{ non final et } \forall t \in S, (s,t) \in A \implies t \in \mathcal{A}_{j-1}^{a} \right\}$$

Définition 4.11 - attracteur d'un joueur

Soit G=(S,A) le graphe associé à un jeu d'accessiblité. Pour $a\neq b$ dans $\{1;2\}$, la suite $(\mathcal{A}^a_j)_{j\in\mathbb{N}}$ est croissante pour l'inclusion $(\mathcal{A}^a_0\subset\mathcal{A}^a_1\subset\dots)$ et majorée par S. C'est d'après le théorème de la limite monotone une suite convergente, on note \mathcal{A}^a sa limite, appelée attracteur du joueur J_a :

$$\mathcal{A}^a = \lim_{j \to +\infty} \mathcal{A}^a_j$$

Il s'agit de l'ensemble des positions gagnantes pour le joueur J_a .

Théorème 4.12 - de Zermelo

Dans un jeu à deux joueurs fini (à parties finies), à information complète et sans match nul, pour tout état du jeu, il existe une stratégie gagnante pour l'un des joueurs partant de cet état.