$$y' + ay = g(t)$$
 with $g(t) \neq 0$

has the general solution

$$y = y_h + y_p$$
 where $y_h = Ce^{-at}$

$$y'_h + ay_h = 0$$
, so we need y_p and its derivative to be related to $g(t)$.

Idea:

Make y_p a linear combination of all the functional forms contained in g(t) and all the functions obtained from differentiating g(t)

Method of Undetermined Coefficients

$$y' + ay = g(t)$$

$$\underline{\text{ex}}$$
: $y' - y = t^3 \implies y_h = Ce^t$
To find y_p :

1. Find the functional forms obtained from differentiating g(t). ex: $g(t) = t^3$

$$g' = 3\underline{t}^{2}$$

$$g'' = 6\underline{t}$$

$$g''' = \underline{6}$$
 (constant)

family of functional forms = $\{t^3, t^2, t, constant\}$

2. Take a linear combintation of all the functional forms you find.

$$y_p = At^3 + Bt^2 + Ct + D$$

Method of Undetermined Coefficients

To find y_p :

- 1. Find the functional forms obtained from differentiating g(t).
- 2. Take a linear combintation of all the functional forms you find.
- 3. Plug the guess back into the ODE, solve for coefficients. ex: $y' y = t^3$

$$y_p = At^3 + Bt^2 + Ct + D$$
 $y'_p = 3At^2 + 2Bt + C$

plug into DE

$$y'_p - y_p = 3At^2 + 2Bt + C - At^3 - Bt^2 - Ct - D = t^3$$

 $-At^3 + (3A - B)t^2 + (2B - C)t + (C - D) = t^3$

Method of Undetermined Coefficients

To find y_p :

- 1. Find the functional forms obtained from differentiating g(t).
- 2. Take a linear combintation of all the functional forms you find.
- 3. Plug the guess back into the ODE, solve for coefficients.

ex:
$$y' - y = t^3$$

 $-At^3 + (3A - B)t^2 + (2B - C)t + (C - D) = t^3$
match coeffs, for each function of t

match coeffs. for each function of t

$$\underline{t^3}: -A = 1 \Longrightarrow A = -1$$

$$\underline{t^2}: 3A - B = 0 \Longrightarrow B = -3$$

$$\underline{t^1}: 2B - C = 0 \Longrightarrow C = -6$$

$$\underline{t^0}: C - D = 0 \Longrightarrow D = -6$$

$$y_p = -t^3 - 3t^2 - 6t - 6$$

Find the general solution to $y' - 5y = e^t$

$$y_h = Ce^{5t}$$
 Family of functional forms: $\{e^t\}$ Guess: $y_p = Ae^t$ Substitute: $Ae^t - 5Ae^t = e^t$ Solve for A:
$$-4Ae^t = e^t \Rightarrow A = -\frac{1}{4}$$

$$y_p = -\frac{1}{4}e^t$$

$$y = Ce^{5t} - \frac{1}{4}e^t$$

Find the general solution to $y' + y = \sin(t)$

$$y_h = Ce^{-t}$$
 Family of functional forms: $\{\sin(t), \cos(t)\}$ Guess: $y_p = A\sin(t) + B\cos(t)$

Sub into DE:

$$A\cos(t) - B\sin(t) + A\sin(t) + B\cos(t) = \sin(t)$$
$$(A - B)\sin(t) + (A + B)\cos(t) = \sin(t)$$

Group by funcs of t:

$$\frac{\sin(t):}{A-B=1} \qquad \frac{\cos(t):}{A+B=0} \Rightarrow A=-B$$

$$-2B=1 \implies B=-\frac{1}{2} \qquad \implies A=\frac{1}{2}$$

$$y_{p}=\frac{1}{2}(\sin(t)-\cos(t)) \qquad y(t)=Ce^{-t}+\frac{1}{2}(\sin(t)-\cos(t))$$

Find the general solution to $y' - 5y = e^{5t}$

$$y_h = Ce^{5t}$$

Family of functional forms: $\{e^{5t}\}$

Guess:
$$y_p = Ae^{5t}$$

Substitute: $A5e^{5t} - 5Ae^{5t} = e^{5t}$

$$0 = e^{5t}$$

We are stuck :(

This is called $\underline{\text{mathematical}}$ $\underline{\text{resonance}}$, one of the functional forms is proportional to y_h .

Guess:
$$y_p = tAe^{5t}$$

Compute Derivative':

$$y_p' = Ae^{5t} + 5tAe^{5t}$$

Substitute:

$$Ae^{5t} + 5tAe^{5t} - 5Ae^t = e^{5t}$$

Solve for A:

$$Ae^{5t} = e^{5t} \Rightarrow A = 1$$
$$y_p = Ae^{5t}$$
$$y = Ce^{5t} + te^{5t}$$

Summary of Lecture 3

Method of Undetermined Coefficients:

$$y' + ay = g(t)$$

General Solution:

$$y = y_h + y_p$$
 where $y_h = Ce^{-at}$

- 1. Find the functional forms obtained from differentiating g(t).
- 2. Take a linear combinatation of all the functional forms you find.
 - If any of the functional forms are e^{-at} swap for te^{at}
- 3. Plug the guess back into the ODE, solve for coefficients.

Note: this will not work if there infinitely many functional forms.

$$ullet$$
 e.g., $g(t) = t^{-1}$ family $= \{t^{-1}, t^{-2}, t^{-3}, ...\}$