NOI 2025 模拟赛

by GTYZ

第二试

题目名称	半城烟沙	神明的迷思	可持久化动态仙人
			掌的数颜色问题
题目类型	传统型	传统型	传统型
目录	grid	god	color
可执行文件名	grid	god	color
输入文件名	grid.in	god.in	color.in
输出文件名	grid.out	god.out	color.out
每个测试点时限	3.0 秒	1.0 秒	6.0 秒
内存限制	512 MiB	512 MiB	2048 MiB
测试点数目	5	8	5
测试点是否等分	否	否	否

提交源程序文件名

对于 C++ 语言	grid.cpp	god.cpp	color.cpp
-----------	----------	---------	-----------

编译选项

对于 C++ 语言	-O2 -std=c++14 -static
-----------	------------------------

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 统一评测时采用的机器为世界中的随机一台电脑。原则上保证实际时空限制至少为 std 的 1.5 倍。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

半城烟沙 (grid)

【题目背景】

不是,死水还阴啊?

【题目描述】

现在有一个 $n \times n$ 的网格。每个格子为黑色或白色。

初始有 m 个格子为黑色, 其他格子为白色。

你可以进行若干次操作,对于每次操作,你可以选择一个有不少于 2 个相邻格子(四连通)为黑色的白色格子,将其染成黑色。

求最多有多少个格子为黑色。

【输入格式】

从文件 qrid.in 中读入数据。

第一行两个正整数 n, m 。

接下来 m 行,每行两个正整数 x,y ,表示一个黑格子。**注意给出的黑格子可能会有重复** 。

【输出格式】

输出到文件 grid.out 中。

输出一个正整数,表示答案。

【样例1输入】

```
1 10 10
2 9 4
3 1 6
4 5 2
5 8 2
6 7 10
7 9 4
8 3 6
9 8 3
10 5 8
11 8 5
```

【样例1输出】

1 14

【样例 2 输入】

```
1 10 10
2 3 7
3 10 8
4 1 6
5 5 6
6 3 3
7 5 8
8 6 8
9 1 8
10 5 4
11 10 2
```

【样例 2 输出】

1 38

【样例3输入】

```
10 10
1
2 2 8
3 9 3
  9 6
  1 5
5
6
  10 10
  7 8
7
  8 7
8
  4 10
  6 2
10
  2 7
11
```

【样例3输出】

1 16

【样例 4】

见选手目录下的 *grid/grid4.in* 与 *grid/grid4.ans*。

【样例 5】

见选手目录下的 *grid/grid5.in* 与 *grid/grid5.ans*。

【样例 6】

见选手目录下的 *grid/grid6.in* 与 *grid/grid6.ans*。

【样例 7】

见选手目录下的 *grid/grid7.in* 与 *grid/grid7.ans*。

【样例 8】

见选手目录下的 *grid/grid8.in* 与 *grid/grid8.ans*。

【数据范围】

本题开启捆绑测试。

对于 100% 的数据, $1 \le n, m \le 10^6$, $1 \le x, y \le n$ 。

子任务编号	$n \leq$	$m \leq$	分数
1	50	10^{6}	5
2	2×10^3	10^{6}	10
3	10^{6}	2×10^3	10
4	10^{5}	10^{5}	20
5	10^{6}	10^{6}	55

神明的迷思(god)

【题目背景】

我们一次又一次地试图接纳它们,无论这要付出何等的代价,我们必须理解!!!

为了避免自我的崩溃,它们绝不容忍那些不可理解,不可触及的存在...

【题目描述】

有一个机器人被放置在数轴上。

该机器人可执行两种移动指令: L 和 R。

- 当执行 L 指令时,机器人将沿数轴负方向移动一个单位长度。特别地,数轴的位置 1 左侧有一座峭壁,如果机器人在坐标 1 处执行 L 指令,则其由于被阻挡而无法完成移动,而停留在原地。
- 当执行 R 指令时,机器人将沿数轴正方向移动一个单位长度。特别地,数轴的位置 m 右侧有一座悬崖,如果机器人在坐标 m 处执行 R 指令,则其将从悬崖上坠落,并被损坏。

这个机器人的指令芯片中有一个长度为 n 的指令序列 T。机器人将依次执行 T 中的所有指令。每当执行完毕所有指令,则回到 T 的开头,从第一条指令开始重新执行,直至机器人由于坠落而损坏。

你知道了这个指令序列的某些位置,但是其他位置你不知道。现在请你对于每个 k $(1 \le k \le m)$ 都求出,能使机器人初始放置在 k 位置,在充分长的时间之后都没有损坏,且符合你了解的信息的指令序列 T 的数量。

由于答案可能过大,将答案对 109+7 取模。

【输入格式】

从文件 qod.in 中读入数据。

第一行两个整数 n, m,分别代表指令序列长度与悬崖位置。

第二行一个长度为 n,且字符集为 LR? 的字符串 T',表示你知道的信息。

具体地,对于一个位置 i $(1 \le i \le n)$,如果 T'_i 为 ?,代表你不知道 T_i 的值,否则代表你知道 $T_i = T'_i$ 。

【输出格式】

输出到文件 god.out 中。

输出一行以一个空格间隔的 m 个整数,其中第 k $(1 \le k \le m)$ 个整数表示机器人 初始在位置 k 的答案。

【样例1输入】

1 5 3

2 ?????

【样例1输出】

1 16 15 10

【样例 2 输入】

1 14 4

2 RRLRLLRRLLLRRL

【样例 2 输出】

1100

【样例3输入】

1 17 5

2 L???LRR???R??R?L?

【样例3输出】

1 312 312 299 269 176

【样例 4 输入】

1 40 10

【样例4输出】

725863511 835944217 867506398 510951986 995423468 464175110 304123183 252250990 509049127 725428460

【样例 5】

见选手目录下的 god/god5.in 与 god/god5.ans。

【数据范围】

本题使用捆绑测试与子任务依赖。

对于 100% 的数据, $1 \le n, m \le 500$ 。

子任务编号	$n \leq$	$m \leq$	特殊性质	分数	子任务依赖
1	20	500	无	10	无
2	500	500	A	10	无
3	50	50	В	10	无
4	50	50	无	15	3
5	100	100	В	10	3
6	100	100	无	15	4,5
7	500	500	В	15	5
8	500	500	无	15	1, 2, 6, 7

特殊性质 A: T' 中不存在 ?。

特殊性质 B: T' 中全是?。

可持久化动态仙人掌的数颜色问题(color)

【题目背景】

还在蒸!!!

【题目描述】

给出一棵 n 个点的树。其中第 i 条边连接节点 u_i, v_i , 边权为 w_i 。

每个节点都有一种颜色。其中第i个点的颜色为 c_i 。

定义一个连通块的权值为里面所有点的颜色种数。

共有 q 次询问。每次询问给出 l,r ,查询保留边权在 [l,r] 中的边后,所有连通块的权值和。

【输入格式】

从文件 color.in 中读入数据。

第一行共二个数 n,q 。

第二行共 n 个数表示 c 。

接下来 n-1 行, 每行三个数 u_i, v_i, w_i 。

接下来 q 行, 每行两个数 l_i, r_i 。

【输出格式】

输出到文件 color.out 中。

对于每个询问,输出一行一个数表示答案。

【样例1输入】

```
1 10 10
2 1 8 2 9 9 1 3 5 3 1
3 2 1 9
4 3 2 4
5 4 2 7
6 5 4 6
7 6 5 9
8 7 2 3
9 8 1 2
10 9 4 3
11 10 2 5
```

```
      12
      1
      3

      13
      2
      2

      14
      6
      8

      15
      5
      10

      16
      1
      8

      17
      5
      7

      18
      5
      6

      19
      3
      10

      20
      4
      5

      21
      8
      9
```

【样例1输出】

```
      1
      10

      2
      10

      3
      9

      4
      7

      5
      8

      6
      9

      7
      9

      8
      6

      9
      10

      10
      10
```

【样例 2 输入】

```
10 10
1
  9 5 8 6 8 9 4 9 10 10
2
  2 1 3
3
  3 1 5
4
  4 1 4
5
  5 4 1
6
7 6 2 3
  7 5 5
8
  8 2 7
  9 7 4
10
11 10 1 9
```

```
      12
      6
      7

      13
      8
      9

      14
      1
      10

      15
      3
      10

      16
      4
      9

      17
      6
      7

      18
      2
      9

      19
      8
      10

      20
      6
      9

      21
      7
      10
```

【样例 2 输出】

```
      1
      10

      2
      10

      3
      6

      4
      8

      5
      10

      6
      10

      7
      8

      8
      10

      9
      10

      10
      10
```

【样例3输入】

```
10 10
1
  1 10 5 7 3 3 4 8 8 8
2
  2 1 2
3
  3 2 9
4
  4 1 4
5
  5 3 5
6
7 6 2 4
  7 2 8
8
  8 7 9
10 9 7 9
11 10 9 5
```

```
      12
      2
      7

      13
      1
      3

      14
      5
      7

      15
      5
      8

      16
      7

      17
      3
      4

      18
      4
      5

      19
      4
      9

      20
      6
      10

      21
      1
      6
```

【样例3输出】

```
9
 1
   10
 2
   9
 3
   9
 4
   10
 5
   10
 6
   9
 7
   7
   9
 9
10
```

【样例 4】

见选手目录下的 color/color4.in 与 color/color4.ans。

【样例 5】

见选手目录下的 color/color5.in 与 color/color5.ans。

【样例 6】

见选手目录下的 color/color6.in 与 color/color6.ans。

【样例 7】

见选手目录下的 color/color7.in 与 color/color7.ans。

【样例 8】

见选手目录下的 color/color8.in 与 color/color8.ans。

【数据范围】

本题开启捆绑测试。

对于 100% 的数据, $1 \le n, q \le 10^6, 1 \le l_i, r_i, c_i, w_i \le n, l_i \le r_i$ 。

子任务编号	n, q	特殊性质	分数
1	$\leq 3 \times 10^3$	无	5
2	$\leq 10^{5}$	无	20
3	$\leq 5 \times 10^5$	无	25
4	$\leq 10^{6}$	保证给出的树是一条链	10
5	$\leq 10^{6}$	无	40

本题输入量较大,注意输入优化。