## SYDE 556/750 Simulating Neurobiological Systems Lecture 0: Administrative Remarks

Andreas Stöckel

January 7, 2020



## Organization (I)

#### Instructor

#### Andreas Stöckel

```
Office <u>E7-6342</u> (office hours in E7-6323)
```

Email astoecke@uwaterloo.ca

Website http://compneuro.uwaterloo.ca/people/andreas-stoeckel.html

GitHub https://github.com/astoeckel

#### Course website

- ▶ http://compneuro.uwaterloo.ca/courses/syde-750.html
- ▶ https://github.com/astoeckel/syde556-w20

# Organization (II)

Course times and location

► Tuesday: 11:30-12:50 in E5-4106 (SYDE 556/750)

► **Thursday:** 9:00-10:20 in **E5-6004** (SYDE 556/750)

► **Thursday:** 10:30-11:20 in **E5-6127** (SYDE 750, optional for 556)

### Office hours

- ► Office hours are generally it E7-6323.
- ▶ Potential times: Tue 13:00-14:00, Tue 15:00 16:00, Thu 11:30-12:30, Fri 10:30-11:30
- Alternatively, if that time doesn't work for you, by appointment.

## Textbooks and Readings



#### Main text:

Chris Eliasmith and Charles H. Anderson Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, MIT Press, 2003.



### **Optional:**

Chris Eliasmith

How to Build a Brain,

Oxford University Press,
2013.

# Coursework (SYDE 556 & SYDE 750)

## **Four Assignments** (60% of the mark)

- ▶ 20%, 20%, 10%, 10%, respectively
- Roughly two weeks for each assignment
- Everyone must write their own code, generate their own graphs, and write their own answers.

## **Final Project** (40% of the mark)

- Build a model of some neural system.
- ► For 556 students: extension of something seen in class
- ► For 750 students: research project with more novelty
- ► Have your project approved via email before Reading Week!

## Coursework (SYDE 750 only)

Class Participation in the Seminar (SYDE 750 only; optional for SYDE 556)

- ▶ SYDE 750 students must attend the seminar (Thursday, 10:30-11:20 in E5-6127).
- ► Each student is asked to submit (at least) three questions or interesting observations pertaining this week's reading, lecture notes, or the material referenced in the lecture (this should be about 100 words).
- ► Questions must be submitted via email to the instructor (astoecke@uwaterloo.ca) by midnight (23:59 EST) on the Wednesday before.
- ► This is to ensure a lively discussion in the seminar there are no marks for this part of the course.

# Schedule (I)

| Date   | Reading       | Topic                            | Assignments          |
|--------|---------------|----------------------------------|----------------------|
| WEEK 1 |               |                                  |                      |
| Jan 7  | Chapter 1     | Introduction                     |                      |
| Jan 9  | Chapter 2     | Neurons                          |                      |
| WEEK 2 |               |                                  |                      |
| Jan 14 | Chapter 2     | Population Representation (I)    | #1 posted            |
| Jan 16 | Chapter 2     | Population Representation (II)   |                      |
| WEEK 3 |               |                                  |                      |
| Jan 21 | Chapter 4     | Temporal Representation (I)      |                      |
| Jan 23 | Chapter 4     | Temporal Representation (II)     |                      |
| WEEK 4 |               |                                  |                      |
| Jan 28 | Chapters 5, 6 | Feedforward Transformations (I)  | #1 due*, $#2$ posted |
| Jan 30 | Chapters 5, 6 | Feedforward Transformations (II) |                      |
| WEEK 5 |               |                                  |                      |
| Feb 4  | Chapter 8     | Dynamics (I)                     |                      |
| Feb 6  | Chapter 8     | Dynamics (II)                    |                      |

# Schedule (II)

| Date                       | Reading                      | Торіс                                                | Assignments          |
|----------------------------|------------------------------|------------------------------------------------------|----------------------|
| WEEK 6                     | Cl . 7                       | 10.1.                                                | //O   * //O .        |
| Feb 11<br>Feb 13           | Chapter 7<br><i>provided</i> | Analysis of Representation  Temporal Basis Functions | #2 due*, #3 posted   |
| Feb 14                     | provided                     | temporal basis i unctions                            | Project proposal due |
| WEEK 7                     |                              | — Reading week, no lectures                          | _                    |
| WEEK 8<br>Feb 25<br>Feb 27 | provided<br>provided         | Symbols (I)<br>Symbols (II)                          |                      |
| WEEK 9<br>Mar 3<br>Mar 5   | Chapter 8<br>provided        | Memory<br>Action Selection                           | #3 due*, #4 posted   |
| Mar 10<br>Mar 12           | Chaper 9<br>Chaper 9         | Learning (I)<br>Learning (II)                        |                      |

# Schedule (III)

| Date                     | Reading  | Topic                                    | Assignments   |
|--------------------------|----------|------------------------------------------|---------------|
| WEEK 11<br>Mar 17        | provided | Spatial Semantic Pointers                | #4 due*       |
| Mar 19                   | provided | Biological Details                       | 11            |
| Mar 24<br>Apr 2          | provided | Other modelling frameworks<br>Conclusion |               |
| wеек 13<br>Mar 31, Apr 2 |          | Project presentations                    |               |
| MEEK 15<br>Apr 15        |          |                                          | Projects due* |

<sup>\*</sup> The project and all assignments are due at midnight ( $\approx$  11:59p EST) of that day.

## Homework

- ► Get the textbook, read the first chapter ("Neural Engineering", Chris Eliasmith and Charles Anderson, 2003)
- ▶ Be able to run jupyter lab or (jupyter notebook) with Python 3 Install numpy, scipy, and matplotlib. You may want to use Anaconda, which ships with these packets preinstalled.
- ► Have a look at the **course website** and the **lecture notes**.
- For SYDE 750: write down three questions and submit before Thursday
- ► Start thinking about a **project** . . . already.