Fuzzy Logic: Introduction

What is Fuzzy logic?

- Fuzzy logic is a <u>mathematical language</u> to <u>express</u> something.
 This means it has grammar, syntax, semantic like a language for communication.
- There are some other mathematical languages also known
 - Relational algebra (operations on sets)
 - Boolean algebra (operations on Boolean variables)
 - Predicate logic (operations on well formed formulae (wff), also called predicate propositions)
- Fuzzy logic deals with Fuzzy set.

Example: Fuzzy logic vs. Crisp logic

Example: Fuzzy logic vs. Crisp logic

Example: Fuzzy logic vs. Crisp logic

World is fuzzy!

Concept of fuzzy system

Concept of fuzzy set

To understand the concept of **fuzzy set** it is better, if we first clear our idea of **crisp set**.

X =The entire population of India.

 $H = All Hindu population = \{ h_1, h_2, h_3, ..., h_L \}$

M = All Muslim population = $\{ m_1, m_2, m_3, ..., m_N \}$

Here. All are the sets of finite numbers of individuals.

Such a set is called crisp set.

Example of fuzzy set

Let us discuss about fuzzy set.

X = All students in class

S = All Good students.

 $S = \{ (s, g) \mid s \in X \}$ and g(s) is a measurement of goodness of the student s.

Example:

 $S = \{ (Rajat, 0.8), (Kabita, 0.7), (Salman, 0.1), (Ankit, 0.9) \} etc.$

Fuzzy set vs. Crisp set

Crisp Set	Fuzzy Set		
1. S = { s s ∈ X }	1. $F = (s, \mu) \mid s \in X$ and		
	μ (s) is the degree of s.		
2. It is a collection of el-	2. It is collection of or-		
ements.	dered pairs.		
3. Inclusion of an el-	3. Inclusion of an el-		
ement $s \in X$ into S is	ement $s \in X$ into F is		
crisp, that is, has strict	fuzzy, that is, if present,		
boundary yes or no .	then with a degree of		
	membership.		

Fuzzy set vs. Crisp set

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a crisp set.

Example:

H = {
$$(h_1, 1), (h_2, 1), ..., (h_L, 1)$$
 }
Person = { $(p_1, 1), (p_2, 0), ..., (p_N, 1)$ }

In case of a crisp set, the elements are with extreme values of degree of membership namely either 1 or 0.

How to decide the degree of memberships of elements in a fuzzy set?

City	Bangalore	Bombay	Hyderabad	Kharagpur	Madras	Delhi
DoM	0.95	0.90	0.80	0.01	0.65	0.75

How the cities of comfort can be judged?

Example: Course evaluation in a crisp way

- **●** EX = Marks ≥ 90
- **2** $A = 80 \le Marks < 90$
- **3** B = $70 \le Marks < 80$
- **4** $C = 60 \le Marks < 70$
- **5** D = $50 \le Marks < 60$
- **1** P = $35 \le Marks < 50$
- F = Marks < 35</p>

Example: Course evaluation in a crisp way

Example: Course evaluation in a fuzzy way

Few examples of fuzzy set

- High Temperature
- Low Pressure
- Color of Apple
- Sweetness of Orange
- Weight of Mango

Note: Degree of membership values lie in the range [0...1].

Some basic terminologies and notations

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and $x \in X$, then a fuzzy set A in X is defined as a set of ordered pairs, that is

 $A = \{(x, \mu_A(x)) | x \in X\}$ where $\mu_A(x)$ is called the membership function for the fuzzy set A.

Note:

 $\mu_A(x)$ map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

Question:

How (and who) decides $\mu_A(x)$ for a Fuzzy set A in X?

Some basic terminologies and notations

Example:

X = All cities in India

A = City of comfort

 $A = \{ (New \ Delhi, \ 0.7), \ (Bangalore, \ 0.9), \ (Chennai, \ 0.8), \ (Hyderabad, \ 0.6), \ (Kolkata, \ 0.3), \ (Kharagpur, \ 0) \}$

Membership function with discrete membership values

The membership values may be of discrete values.

A fuzzy set with discrete values of μ

Membership function with discrete membership values

Either elements or their membership values (or both) also may be of discrete values.

$$A = \{(0,0.1),(1,0.30),(2,0.78),\dots,(10,0.1)\}$$

Note : X = discrete value

How you measure happiness ??

Membership function with continuous membership values

B = "Middle aged"

Fuzzy terminologies: Support

Support: The support of a fuzzy set *A* is the set of all points $x \in X$ such that $\mu_A(x) > 0$

Fuzzy terminologies: Core

Core: The core of a fuzzy set *A* is the set of all points *x* in *X* such that $\mu_A(x) = 1$

Fuzzy terminologies: Normality

Normality: A fuzzy set A is a normal if its core is non-empty. In other words, we can always find a point $x \in X$ such that $\mu_A(x) = 1$.

Fuzzy terminologies: Crossover points

Crossover point: A crossover point of a fuzzy set *A* is a point $x \in X$ at which $\mu_A(x) = 0.5$. That is Crossover $(A) = \{x | \mu_A(x) = 0.5\}$.

Fuzzy terminologies: Fuzzy Singleton

Fuzzy Singleton: A fuzzy set whose support is a single point in X with $\mu_A(x) = 1$ is called a fuzzy singleton. That is $|A| = \{ x \mid \mu_A(x) = 1 \}.$

Fuzzy terminologies: α -cut and strong α -cut

α -cut and strong α -cut :

The α -cut of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{ \mathbf{x} \mid \mu_{A}(\mathbf{x}) \geq \alpha \}$$

Strong α -cut is defined similarly :

$$A_{\alpha}$$
' = $\{x \mid \mu_{A}(x) > \alpha \}$

Note: Support(A) = A_0 ' and Core(A) = A_1 .

Fuzzy terminologies: Convexity

Convexity: A fuzzy set A is convex if and only if for any x_1 and $x_2 \in X$ and any $\lambda \in [0, 1]$

$$\mu_A (\lambda x_1 + (1 - \lambda)x_2) \ge \min(\mu_A(x_1), \mu_A(x_2))$$

Note:

- A is convex if all its α- level sets are convex.
- Convexity $(A_{\alpha}) \Longrightarrow A_{\alpha}$ is composed of a single line segment only.

Fuzzy terminologies: Bandwidth

Bandwidth:

For a normal and convex fuzzy set, the bandwidth (or width) is defined as the distance the two unique crossover points:

Bandwidth(
$$A$$
) = $|x_1 - x_2|$

where
$$\mu_A(x_1) = \mu_A(x_2) = 0.5$$

Fuzzy terminologies: Symmetry

Symmetry:

A fuzzy set A is symmetric if its membership function around a certain point x=c, namely $\mu_A(x+c)=\mu_A(x-c)$ for all $x\in X$.

Fuzzy terminologies: Open and Closed

A fuzzy set A is

Open left

If
$$\lim_{x\to-\infty} \mu_A(x) = 1$$
 and $\lim_{x\to+\infty} \mu_A(x) = 0$

Open right:

If
$$\lim_{x\to -\infty} \mu_A(x) = 0$$
 and $\lim_{x\to +\infty} \mu_A(x) = 1$

Closed

If :
$$\lim_{x\to-\infty} \mu_A(x) = \lim_{x\to+\infty} \mu_A(x) = 0$$

Fuzzy vs. Probability

Fuzzy: When we say about certainty of a thing

Example: A patient come to the doctor and he has to diagnose so that medicine can be prescribed.

Doctor prescribed a medicine with certainty 60% that the patient is suffering from flue. So, the disease will be cured with certainty of 60% and uncertainty 40%. Here, in stead of flue, other diseases with some other certainties may be.

Probability: When we say about the chance of an event to occur

Example: India will win the T20 tournament with a chance 60% means that out of 100 matches, India own 60 matches.

Prediction vs. Forecasting

The Fuzzy vs. Probability is analogical to Prediction vs. Forecasting

Prediction: When you start guessing about things.

Forecasting: When you take the information from the past job and apply it to new job.

The main difference:

Prediction is based on the best guess from experiences.

Forecasting is based on data you have actually recorded and packed from previous job.

