Go- no-go decisions based on gradually

Clara Kuper ^{1,2}, Martin Rolfs ¹

¹Humboldt-Universität zu Berlin, ²Berlin School of Mind and Brain

revealed visual information

The best fitting linear models were:

response choice ~ sample 1+ sample 2 + sample 3 + trial condition + (1|subject)

	Estimate	Z-stat	P-val
Intercept	-0.589	-1.952	0.05
sample 1	1.234	28.261	< 0.01
sample 2	1.067	24.900	< 0.01
sample 3	0.461	11.154	< 0.01
trialCondition	1.006	11.408	< 0.01

response time ~ sample 1 + sample 3 + sample 6 + (1|subject)

	Estimate	DF	T-stat	P-val
Intercept	0.56	3.00	17.23	< 0.01
sample 1	-0.034	4743.14	-23.53	< 0.01
sample 3	0.007	4743.05	5.57	< 0.01
sample 6	0.003	4743.01	2.69	< 0.01

Response update patterns of human observers relative to the response onset ...

... and relative to the go signal suggest that earlier samples can update the response choice, while later samples can't. These patterns
most closely
match the
predictions from
Go & Adapt
model.