Computational Intelligence Laboratory

Lecture 9

Sparse Coding

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

May 12, 2017

Section 1

Sparse Coding

Sparse Coding

- Signals can be represented in different ways
 - infinite number of possible representations
 - each capturing different characteristics
 - example: Fourier series

Sparse Coding

- ► Natural signals often allow for sparse representation
 - sparsity: many coefficients vanish (≈ 0)
 - due to regularity of signal
 - lacktriangle need to find suitable dictionary $\mathcal{U} = \{\mathbf{u}_1, \dots, \mathbf{u}_L\}$
 - ightharpoonup such that accurate signal representation in span(\mathcal{U})

Sparse Coding in Image Compression

- ► Recall: SVD Compression
 - ▶ an instance of sparse coding (Lecture 3)
 - ▶ dictionary: rank 1 matrices (left/right singular vector)
- ▶ Today: Fourier and wavelet basis
 - fixed orthogonal basis, efficient to compute.

Signal Compression

- lacktriangle Given original signal $\mathbf{x} \in \mathbb{R}^D$ and orthogonal matrix \mathbf{U}
- ► Compute linear transformation = change of basis

$$\boxed{\mathbf{z}} = \boxed{\mathbf{U}^{\top}} \cdot \boxed{\mathbf{x}}$$

Energy preserving

$$\|\mathbf{U}^{\top}\mathbf{x}\|^2 = \|\mathbf{x}\|^2$$

- direct consequence of orthogonality
- preservation of length

Signal Compression

- ▶ Truncate "small" values of $z \Rightarrow$ estimate \hat{z}
 - encoding only $K \ll D$ non-zero values: compression
 - lacktriangle for instance: employ a threshold ϵ

$$\hat{z}_d = \begin{cases} 0 & \text{if } |z_d| < \epsilon \\ z_d & \text{otherwise} \end{cases}$$

Reconstruct signal through inverse transform

$$\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}, \quad \text{as} \quad \mathbf{U} = (\mathbf{U}^{\top})^{-1}$$

- efficient inversion via transposition
- key idea: orthogonality of U

Decomposition and Reconstruction

▶ Given \mathbf{x} , orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_D\}$ (columns of \mathbf{U})

$$\mathbf{x} = \sum_{d=1}^{D} z_d(\mathbf{x}) \cdot \mathbf{u}_d, \quad z_d(\mathbf{x}) := \langle \mathbf{x}, \mathbf{u}_d \rangle$$

▶ Sparsification \equiv only use K-subset σ of basis functions

$$\hat{\mathbf{x}} = \sum_{d \in \sigma} z_d(\mathbf{x}) \cdot \mathbf{u}_d$$

Reconstruction error:

$$\|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \sum_{d \notin \sigma} \|\langle \mathbf{x}, \mathbf{u}_d \rangle \cdot \mathbf{u}_d\|^2 = \sum_{d \notin \sigma} \langle \mathbf{x}, \mathbf{u}_d \rangle^2$$

1-D signal processing

Noisy signal: \mathbf{x}

Fourier spectrum: $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$

Retain 3% of the coefficients: \hat{z}

Denoised signal: $\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}$

Signal Compression: Observations

- ► Signal is compressed by 97%.
- ► High signal frequencies have small amplitudes in spectrum
- Reconstructed signal is smoother than the original one (low-pass filter)

Challenge: Localized signal

Challenge: Poor denoising of localized signal

Haar Wavelets

Note that the wavelet basis is orthogonal

Haar Wavelets – D=4

ightharpoonup For D=4 we get the following orthogonal matrix

$$\mathbf{U} = \frac{1}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} & 0 \\ 1 & 1 & -\sqrt{2} & 0 \\ 1 & -1 & 0 & \sqrt{2} \\ 1 & -1 & 0 & -\sqrt{2} \end{pmatrix}$$

Haar Wavelets – D = 8

ightharpoonup For D=8 we get the following orthogonal matrix

$$\mathbf{U} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 1 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & \sqrt{2} & 0 & -2 & 0 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & -2 & 0 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & 2 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & 2 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & -2 \end{pmatrix}$$

Wavelets

Wavelet denoising of localized signal

Wavelet denoising of smooth signal

Fourier basis vs Wavelet basis

A priori, there does not exist a choice of a transform that is better than all other choices. It depends on the signal type.

Fourier basis

- Global support
- ▶ Good for "sine like" signals
- Poor for localized signal

Wavelet basis

- Local support
- Good for localized signal
- ▶ Poor for non-vanishing signals

Principal Component Analysis

- Given $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_N]$ vectors in \mathbb{R}^D
- Mean: $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$
- Compute centered covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N} (\mathbf{X} - \mathbf{M}) (\mathbf{X} - \mathbf{M})^{\top}, \quad \mathbf{M} := [\mathbf{\bar{x}} \dots \mathbf{\bar{x}}]$$

Compute eigenvector decomposition

$$\mathbf{\Sigma} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$$

- $ightharpoonup \Sigma$: real symmetric matrix, U: orthogonal
- eigenvalues ordered: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$

Principal Component Analysis (cont'd)

- Karhunen-Loeve transform or Hoteling transform
 - by "throw away" the D-K directions with smallest variance (dependent on signal set, not individual signal)
 - equivalently: keep K largest eigenvectors

$$\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}, \quad \hat{z}_d = \begin{cases} z_d & \text{if } d \leq K \\ 0 & \text{otherwise} \end{cases}$$

ightharpoonup suffices to define \mathbf{U}_K as

$$\mathbf{U}_K := [\mathbf{u}_1 \cdots \mathbf{u}_K]$$

and to reconstruct via

$$\hat{\mathbf{x}} = \mathbf{U}_K \, \mathbf{z}_{[1:K]}$$

Communication Cost

- **PCA basis** $lackbox{
 ightharpoonup} \mathbf{U}_K$ is data-dependent, optimal for given $oldsymbol{\Sigma}$
 - ▶ Transmit: eigenvectors $\{\mathbf{u}_d : d \leq K\}$ and $\mathbf{z}_{1:K}$.
- **Fixed basis** ► Sender and receiver agree on basis beforehand, e.g. Haar Wavelets.
 - ► Transmit: non-zero elements of $\hat{\mathbf{z}}$.

2-D Discrete cosine transform

- ▶ in JPEG, DCT is applied to 8x8 blocks of an image.
- further optimizations to improve compression.

2-D Discrete cosine transform

- Attention: think of each 8×8 patch as a D = 64 vector
- ▶ Basis functions are D = 64 vectors that can also be displayed as 8×8 patches
- ► There are 64 basis functions, which can be arranged on a 8 × 8 grid!
- Each red square is a basis function!

Image compression with wavelets

- (a) Discrete image of 256^2 pixels.
- (b) Orthogonal wavelet coefficients at 4 different scales; black points correspond to large coefficients.
- (c) Approximation using the three largest scales.
- (d) Approximation using the K largest coefficients $(K \frac{256^2}{2})$

$$(K = \frac{256^2}{16}).$$

Image denoising with wavelets

- (a) Noisy image.
- (b) Orthogonal wavelet coefficients at 4 different scales; black points correspond to large coefficients.
- (c) Approximation using the three largest scales.
- (d) Approximation using the K largest coefficients

$$(K = \frac{256^2}{16}).$$

Image compression

Original Lena Image (256 x 256 Pixels, 24-Bit RGB)

JPEG Compressed (Compression Ratio 43:1)

JPEG2000 Compressed (Compression Ratio 43:1)

Computational Efficiency

- ▶ Basis transform via matrix multiplication = $\mathcal{O}(D^2)$ cost
- ▶ In practice: exploit fast transforms
 - ▶ Fourier: $\mathcal{O}(D \log D)$
 - ▶ Wavelet: $\mathcal{O}(D)$ or $\mathcal{O}(D \log D)$
- Image compression:
 - break-up images into blocks, transform each block
 - avoids quadratic blow-up
 - ▶ for example JPEG: DCT on 8x8 blocks

Section 2

Overcomplete Dictionaries

Sparse Representations

Summary: Natural signals have approx. sparse representations in suitable orthogonal bases, e.g. wavelets for natural images.

From S. Mallat, A Wavelet Tour of Signal Processing – The Sparse Way, Academic Press, 2009

Recall so far...

- ► Coding via orthogonal transforms
 - lacktriangle given: signal ${f x}$ and orthonormal matrix ${f U}$
 - lacktriangle compute linear transformation (change of basis) ${f z} = {f U}^{ op} {f x}$
 - ▶ truncate "small" values, $z \mapsto \hat{z}$.
 - ightharpoonup compute inverse transform (recall $\mathbf{U}^{-1} = \mathbf{U}^{\top}$) $\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}$.
- ► Measuring Accuracy
 - ightharpoonup reconstruction error $\|\mathbf{x} \hat{\mathbf{x}}\|$
 - ightharpoonup sparsity of the coding vector $\hat{\mathbf{z}}$
- ► Dictionary choice
 - ► Fourier dictionary is good for "sine like" signals.
 - wavelet dictionary is good for localized signals.
 - more general dictionaries: overcomplete dictionaries...

Overcomplete Dictionaries

- Beyond a "change of basis"
 - no single basis is optimally sparse for all signal classes
 - overcompleteness ($\mathbf{U} \in \mathbb{R}^{D \times L}$ such that L > D): more atoms (dictionary elements) than dimensions
 - union of orthogonal bases and general overcomplete dictionaries: coding algorithm chooses best representation.
 - decoding: involved, no closed form reconstruction formula

Morphology of Signals I

Dictionary selection strategy:

- Manually, by signal inspection
- ▶ Try several, choose the one which affords sparsest coding

Morphology of Signals II

From S. Mallat, A Wavelet Tour of Signal Processing – The Sparse Way, Academic Press, 2009

Signal might be a superposition of several characteristics:

- smooth gradients plus oscillating texture
- ▶ hence: single orthonormal basis cannot sparsely code both.

Coding idea: Algorithm picks *atoms* (dictionary elements) from a *union of bases*, each one responsible for one characteristic.

General Overcomplete Dictionaries

▶ Consider data set $\{\mathbf{x}_1, \dots, \mathbf{x}_{10000}\} \in \mathbb{R}^3$:

- ▶ Full coding (K = 3) in spanning basis $\mathbf{U} \in \mathbb{R}^{3 \times 3}$
- $lackbox{ iny} K=2$ coding possible using a four atom dictionary

$$\tilde{\mathbf{U}} = \left[\mathbf{u}_1 \, \mathbf{u}_2 \, \mathbf{u}_3 \, \mathbf{u}_4\right] \in \mathbb{R}^{3 \times 4}$$

aligned with densely populated subspaces.

ightharpoonup L > D atoms are no longer linearly independent.

Example: Directional Gabor Wavelets

- ► Gabor wavelets
 - directional oscillation
 - amplitude modulated by Gaussian window

$$g(n_1, n_2; \mu_1, \mu_2, f, \theta) \propto \exp\left[-(n_1 - \mu_1)^2\right] \exp\left[-(n_2 - \mu_2)^2\right] \times \cos\left(f \cdot (n_1 \cos \theta + n_2 \sin \theta)\right)$$

• discretizing the parameter range of μ_1 , μ_2 , f and θ determines the dictionary size, i.e. the overcompleteness factor $\frac{L}{D}$.

Coherence

Increasing the overcompleteness factor $\frac{L}{D}$:

- Increases (potentially) the sparsity of the coding.
- ▶ Increases the linear dependency between atoms.

Linear dependency measure for dictionaries: coherence

$$m(\mathbf{U}) = \max_{i,j:i\neq j} \left| \mathbf{u}_i^{\top} \mathbf{u}_j \right|.$$

- ▶ $m(\mathbf{B}) = 0$ for an orthogonal basis \mathbf{B} .
- ▶ $m([\mathbf{B}\mathbf{u}]) \ge \frac{1}{\sqrt{D}}$ if atom \mathbf{u} is added to orthogonal \mathbf{B} .

Signal Reconstruction (Invertible Dictionary)

U is orthonormal

ightharpoonup matrix multiplication $\mathbf{x} = \mathbf{U}\mathbf{z}$

U is spanning basis (D linearly independent atoms)

- $\mathbf{x} = (\mathbf{U}^{\top})^{-1} \mathbf{z}$
- \blacktriangleright inverting \mathbf{U}^{\top} can be ill-conditioned

Signal Reconstruction (General Dictionary)

$$\mathbf{U} \in \mathbb{R}^{D \times L}$$
 is overcomplete $(L > D)$:

- ▶ *III-posed* problem: more unknowns than equations.
- lacktriangle add constraint: find sparsest $\mathbf{z} \in \mathbb{R}^L$ such that $\mathbf{x} = \mathbf{U}\mathbf{z}$

Solve mathematical program

$$\mathbf{z}^{\star} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{0}$$

s.t. $\mathbf{x} = \mathbf{U}\mathbf{z}$

 $\|\mathbf{z}\|_0$ counts the number of non-zero elements in \mathbf{z} .

Signal Reconstruction using Convex Optimization

▶ Sparsest solution, under the equality constraint:

$$\mathbf{z}^{\star} \in \underset{\mathbf{z}}{\operatorname{arg\,min}} \ \|\mathbf{z}\|_{0}, \ \text{s.t.} \ \mathbf{x} = \mathbf{U}\mathbf{z}$$

- ▶ NP hard combinatorial problem
- brute-force: exhaustive search over all atom subsets
- ► more efficient approximation: Matching Pursuit (later)
- ▶ Minimum ℓ_1 -norm solution, under the equality constraint:

$$\mathbf{z}^{\star} \in \underset{\mathbf{z}}{\operatorname{arg\,min}} \ \|\mathbf{z}\|_{1}, \ \text{s.t.} \ \mathbf{x} = \mathbf{U}\mathbf{z}$$

► Convex Optimization Problem

Under suitable conditions on \mathbf{U} , the solutions of the two problems are equivalent! \Rightarrow can use standard convex optimization methods.

Noisy Observations I

Additive noise:

$$x = Uz + n$$

Assumes each dimension is independently corrupted by zero-mean Gaussian noise with variance σ^2 .

$$\mathbf{n} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right)$$

Finding the code:

$$\mathbf{z}^{\star} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{0}$$

s.t. $\|\mathbf{x} - \mathbf{U}\mathbf{z}\|_{2}^{2} < D\sigma^{2}$

- maximize sparsity of z, ...
- while the squared residual remains below $D\sigma^2$.

Noisy Observations II

Or alternatively solve:

$$\begin{aligned} \mathbf{z}^{\star} &\in & \arg\min_{\mathbf{z}} \left\| \mathbf{x} - \mathbf{U} \mathbf{z} \right\|_2 \\ \text{s.t.} & \left\| \mathbf{z} \right\|_0 &\leq & K \end{aligned}$$

- minimize residual, ...
- while selecting K or fewer atoms from the dictionary

Approximate sparse coding:

Explain signal accurately with few atoms.

Noisy Observations III

lacktriangle Coding with noise (denote y such that n=Uy)

$$\hat{\mathbf{x}} = \mathbf{U}\mathbf{z} + \mathbf{n} = \mathbf{U}\mathbf{z} + \mathbf{U}\mathbf{y} = \mathbf{U}(\mathbf{z} + \mathbf{y}),$$

- ▶ Noise *cannot be sparsely coded* in any dictionary
 - therefore y has many small coefficients
- ► Large coefficients are still due to signal x.

Noisy Observations IV

Geometry of sparse coding solution \mathbf{z}^* : (Will be useful later to understand the matching pursuit algorithm)

Orthogonal projection of \mathbf{x} onto subspace spanned by selected atoms $\{\mathbf{u}_i \mid z_i^\star \neq 0\}$ minimizes $\|\mathbf{x} - \mathbf{U}\mathbf{z}\|_2$.

