Segundo Relatório de Medidas Eletromagneticas

Gabriel Soares Henrique da Silva

15 de fevereiro de 2023

Sumário

Conclusoes

T	Intr	roduça	0		
	1.1	Analis	se preliminar	•	
2	Res	ultado	s esperados		
	2.1	Resist	or		
	2.2	Capac	eitor		
3	Med	dicoes	no Laboratorio		
	3.1	Tabela	as de medicoes		
		3.1.1	Resistores		
		3.1.2	Capacitores		

1 Introdução

Neste relatório, vamos medir os valores de resistencia Ω e capacitancia F de resistores e capacitores, e calcularemos alguns de seus parametros estatisticos.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/5thsemester/labcircuitos

1.1 Analise preliminar

Utilizaremos um multimetro para medir as propriedades de alguns componentes.

Faremos 20 medicoes em cada componente, e calcularemos a media, desvio padrao, tendencia, e correcao de cada um deles.

Apos isto discutiremos os nossos achados.

2 Resultados esperados

2.1 Resistor

Esperamos resultados consistentes entre as medidas, porem, tambem esperamos que a resistencia seja diferente da resistencia de fabrica.

Isto ocorrera por desgaste dos componentes devido a seu uso de laboratorio, e tambem pela qualidade dos componentes.

Muito provavelmente estamos fora dos padroes de confiabilidades de fabrica. Mas precisariamos ver o datasheet dos resistores em específico para confirmar isto.

2.2 Capacitor

Tudo que falamos a cima se aplica aos capacitores, mas com dois diferenciais.

O primeiro en que estes sao mais sensiveis ao uso, logo esperaremos discrepancias maiores entre os valores de fabrica e os de fato.

E tambem que durante as medidas, os carregaremos e os descarregaremos, que implicara tambem em um erro sistematico adicional.

3 Medicoes no Laboratorio

Utilizando um multimetro, mediremos resistencias de resistores, e capacitancias de capacitores.

Para reduzir erros sistematicos, os encaixaremos todos componentes em um protoboard.

E antes de fazer as medidas dos capacitores, vamos criar um circuito com um capacitor e um resistor em serie para descarregalos. Apos alguns segundos com este circuito formado, desconectaremos o circuito e faremos a medicao de fato.

3.1 Tabelas de medicoes

3.1.1 Resistores

Mediremos tres resistores, com valores de fabrica respectivamente de: $R_1 = 10k\Omega$, $R_2 = 22k\Omega$, $R_3 = 15k\Omega$.

$R_1 \ 10k\Omega$	$R_2 \ 22k\Omega$	$R_3 15k\Omega$
$10037~\Omega$	21932Ω	14848Ω
10037Ω	21932Ω	14849Ω
10038Ω	21932Ω	14850Ω
10038Ω	21932Ω	14849Ω
10038Ω	21932Ω	14850Ω
10037Ω	21933Ω	14849Ω
10037Ω	21933Ω	14849Ω
10037Ω	21931 Ω	14850Ω
10037Ω	$21931~\Omega$	14850Ω
10037Ω	21930Ω	14848Ω
10036Ω	$21932~\Omega$	14849Ω
10037Ω	21932Ω	14849Ω
10037Ω	21932Ω	14849Ω
10037Ω	21932Ω	14849Ω
10038Ω	21934 Ω	14849Ω
10036Ω	$21934~\Omega$	14850Ω
10036Ω	21934 Ω	14849Ω
10037Ω	$21933~\Omega$	14849Ω
10036Ω	21934 Ω	14849Ω
10036Ω	$21932~\varOmega$	14848Ω

	$R_1 \ 10k\Omega$	$R_2 \ 22k\Omega$	$R_3 \ 15k\Omega$
Media	10037	21932	14849
Desvio Padrao	0.68633	1.0954	0.64072
Tendencia	36.950	-67.600	-150.90
Correcao	-36.950	67.600	150.90

3.1.2 Capacitores

Mediremos tres capacitores, com valores de fabrica respectivamente de: $C_1 = 100nF$, $C_2 = 47nF$, $R_3 = 10nF$.

•		
$C_1 = 100nF$	$C_2 = 47nF$	$R_3 = 10nF$
$46.31 \ nF$	$55.92 \ nF$	$12.74 \ nF$
$46.45 \ nF$	$55.70 \ nF$	$12.72 \ nF$
46.34~nF	55.66~nF	$12.77 \ nF$
46.34~nF	$55.87 \ nF$	$12.76 \ nF$
$46.25 \ nF$	$56.09 \ nF$	$12.78 \ nF$
$46.36 \ nF$	55.85 nF	$12.77 \ nF$
46.21~nF	$55.90 \ nF$	$12.74 \ nF$
46.32~nF	$55.76 \ nF$	$12.80 \ nF$
$46.30 \ nF$	55.94 nF	$12.83 \ nF$
46.54~nF	55.72~nF	$12.84 \ nF$
46.54~nF	$55.69 \ nF$	$12.79 \ nF$
47.01~nF	$55.78 \ nF$	12.81~nF
$46.70 \ nF$	$55.75 \ nF$	$12.78 \ nF$
46.82~nF	55.85 nF	$12.80 \ nF$
$46.75 \ nF$	55.82~nF	12.81~nF
46.64~nF	$55.43 \ nF$	$12.79 \ nF$
46.71~nF	$55.40 \ nF$	$12.76 \ nF$
$46.76 \ nF$	$55.39 \ nF$	$12.73 \ nF$
$46.85 \ nF$	55.64~nF	$12.69 \ nF$
$46.81 \ nF$	$55.68 \ nF$	$12.68 \ nF$

	$C_1 100 nF$	C_247nF	C_310nF
Media	46.55	55.74	12.77
Desvio Padrao	0.2401	0.1819	0.0430
Tendencia	-53.45	8.742	2.770
Correcao	53.45	-8.742	-2.770

4 Conclusoes

Obtivemos desvios padroes baixos para nossos componentes. Porem espeficiamente no caso dos capacitores as tendencias foram bastante elevadas.

O que indica que uma calibracao seja necessaria.