KOMPLEKSNA ANALIZA

PMM116 (60987) 2012./13.

PREDAVANJA VJEŽBE

Branko Červar | Andrijana Ćurković

Sadržaj

1	PROSTOR KOMPLEKSNIH BROJEVA				
	1.1	POLJ	E KOMPLEKSNIH BROJEVA	1	
	1.2	PROS	TOR KOMPLEKSNIH BROJEVA	8	
	1.3	KONV	/ERGENCIJA NIZA I		
		ZATV	ARAČ SKUPA	11	
	1.4	NEPR	EKIDNOST I LIMES	16	
	1.5	POTE	PUNOST PROSTORA $\mathbb C$	20	
	1.6	KOMI	PAKTNOST I JEDNOLIKA		
		NEPR	EKIDNOST	22	
2	ANALITIČKE FUNKCIJE				
	2.1	OSNC	OVNA SVOJSTVA		
		ANAL	JITIČKIH FUNKCIJA	31	
	2.2 PRIMJERI ANALITIČKIH FUNKCIJA		JERI ANALITIČKIH FUNKCIJA	42	
		2.2.1	Eksponencijalna funkcija	42	
		2.2.2	Logaritamska funkcija	43	
		2.2.3	Opća potencija	44	
		2.2.4	Trigonometrijske i hiperboličke funkcije	45	
		2.2.5	Funkcije definirane preko integrala	46	
	2.3	REDO	OVI POTENCIJA	48	
		2.3.1	Redovi kompleksnih brojeva	48	
		2.3.2	Redovi potencija	50	
	2.4	UNIF	ORMNO KONVERGENTNI REDOVI FUNKCIJA	59	
	2.5 CAUCHY-HADAMARDOVA FORMULA				

3	$\mathbf{C}\mathbf{A}^{T}$	CAUCHYJEVA FORMULA. TAYLOROV I LAURENTOV					
	RAZVOJ 6						
	3.1	KRIVULJNI INTEGRAL U KOMPLEKSNOM PODRUČJU	65				
	3.2	CAUCHYJEV TEOREM I CAUCHYJEVA					
		INTEGRALNA FORMULA	71				
	3.3	RAZVOJ ANALITIČKE FUNKCIJE					
		U TAYLOROV RED	76				
	3.4	LAURENTOV RED	81				
	3.5	MORERIN TEOREM.					
		PRIMITIVNA FUNKCIJA	87				
	3.6	PRINCIP JEDINSTVENOSTI					
		ZA ANALITIČKE FUNKCIJE	91				
1	IZO	LIRANI SINGULARITETI I TEORIJA REZIDUUMA	95				
	4.1	IZOLIRANI SINGULARITETI I NJIHOVA KLASIFIKACIJA	95				
	4.2	KOMPAKTIFIKACIJA PROSTORA $\mathbb C$	105				
	4.3	IZOLIRANI SINGULARITETI					
		U BESKONAČNOSTI	108				
	4.4	REZIDUUM FUNKCIJE	112				
	4.5	IZRAČUN NEKIH REALNIH INTEGRALA	122				

Poglavlje 1

PROSTOR KOMPLEKSNIH BROJEVA

1.1 POLJE KOMPLEKSNIH BROJEVA

Poljem kompleksnih brojeva nazivamo skup $\mathbb{R} \times \mathbb{R}$ zajedno s operacijama zbrajanja i množenja (kao i oduzimanja i dijeljenja), definiranima kako slijedi:

$$(x_1, y_1) + (x_2, y_2) \stackrel{\text{def.}}{=} (x_1 + x_2, y_1 + y_2);$$
 (1)

$$(x_1, y_1) \cdot (x_2, y_2) \stackrel{\text{def.}}{=} (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2);$$
 (2)

$$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2);$$
 (3)

$$(x_1, y_1): (x_2, y_2) = \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}, \frac{-x_1 y_2 + y_1 x_2}{x_2^2 + y_2^2}\right), (x_2, y_2) \neq (0, 0).$$
 (4)

Operacije na desnim stranama definicijskih jednakosti jesu one na \mathbb{R} . Označimo $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. Pokazuje se da vrijedi:

- $(\mathbb{C}, +)$ je aditivna Abelova grupa,
- $(\mathbb{C} \setminus \{(0,0)\},\cdot)$ je multiplikativna Abelova grupa,
- $(\mathbb{C}, +, \cdot)$ je polje.

Elemente polja ($\mathbb{C}, +, \cdot$) nazivamo **kompleksnim brojevima** i obično označujemo slovom z. Pri množenju $(x_1, y_1) \cdot (x_2, y_2) \equiv z_1 \cdot z_2$ u \mathbb{C} najčešće

ispuštamo (kao i u \mathbb{R}) oznaku "·" i pišemo z_1z_2 , a za dijeljenje (x_1,y_1) : $(x_2,y_2)\equiv z_1:z_2$ u \mathbb{C} često rabimo (kao i u \mathbb{R}) razlomačku oznaku $\frac{z_1}{z_2}$ ili z_1/z_2 . Prvu koordinatu x kompleksnog broja z=(x,y) nazivamo **realnim dijelom**, a drugu koordinatu y - **imaginarnim dijelom** kompleksnoga broja z; pišemo: $x=\operatorname{Re} z, y=\operatorname{Im} z$. Poistovjetimo li \mathbb{R} sa

$$\mathbb{R} \times \{0\} = \{(x,0) \mid x \in \mathbb{R}\} \subset \mathbb{C},$$

polje kompleksnih brojeva postaje prirodnim proširenjem polja realnih brojeva (u skupovnom i strukturnom smislu). Naime, lako se provjeri da su tada operacije $+, \cdot, -i \div u \mathbb{C}$ proširenja odgovarajućih operacija u \mathbb{R} te da zbrajanje i množenje nasljeđuju sva dobra svojstva (asocijativnost, komutativnost, distributivnost). Napokon, valja primijetiti da se u \mathbb{C} ne može uvesti uređaj koji bi bio usklađen s operacijama. Budući da ini uređaji i nisu važni, to se nijednoga posebno ne ističe.

U praksi se češće operira kompleksnim brojevima u zapisu drugačijem od navedenoga. Da bismo ga upoznali, promatrajmo jednadžbu $x^2 + 1 = 0$ u skupu R. Očito je da ona nema rješenja. Uvedimo u razmatranje novi objekt (izvan R) kojemu dopuštamo "množenje" sa samim sobom rezultat kojega neka bude broj -1. Nazovimo taj objekt imaginarnom jedinicom i označimo slovom i. Dakle, po definiciji je $i^2 = -1$, odnosno (formalno) $i \equiv \sqrt{-1}$. Nazovimo skup $\mathbb{R}i = \{yi \mid y \in \mathbb{R}\}$ svih formalnih "umnožaka" yi, $y \in \mathbb{R}$, skupom **imaginarnih brojeva**, a njegove elemente yi **imaginarnim brojevima**. Neka je $C \equiv \mathbb{R} + \mathbb{R}i = \{x + yi \mid x, y \in \mathbb{R}\}$ skup svih formalnih "zbrojeva" x + yi, $x \in \mathbb{R}$, $yi \in \mathbb{R}i$. Definirajmo zbrajanje i množenje, te oduzimanje i dijeljenje, u C kao pripadne operacije binomima a+b u \mathbb{R} , vodeći računa o tomu da su ovdje a i b "nezbrojivi" i da je $i^2 = -1$, $i^3 = -i$, $i^4=1, i^5=i, \cdots,$ tj. $i^{4n+k}=i^k$ za svaki $n\in\mathbb{N}$, te $i^k=i,-1,-i,1$ čim je k=1,2,3,4 redom. Dodatno definiramo i $i^0=1$. Sada se $C\equiv \mathbb{R}+\mathbb{R}i$ smije poistovjetiti s $\mathbb{C} = \mathbb{R} \times \mathbb{R}$, $x + yi \equiv z = (x, y)$, jer se operacije \mathbb{C} podudaraju s odgovarajućima na C:

$$z_1 + z_2 \equiv (x_1 + y_1 i) + (x_2 + y_2 i) = (x_1 + x_2) + (y_1 + y_2)i; \tag{1'}$$

$$z_1 \cdot z_2 \equiv (x_1 + y_1 i) \cdot (x_2 + y_2 i) = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + y_1 x_2) i;$$
 (2')

$$z_1 - z_2 \equiv (x_1 + y_1 i) - (x_2 + y_2 i) = (x_1 - x_2) + (y_1 - y_2)i;$$
 (3')

$$\frac{z_1}{z_2} \equiv \frac{x_1 + y_1 i}{x_2 + y_2 i} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{-x_1 y_2 + y_1 x_2}{x_2^2 + y_2^2} i, \ z_2 \equiv x_2 + y_2 i \neq 0 + 0i. \ (4')$$

Zapis kompleksnog broja z=x+yi nazivamo **standardnim zapisom**. Za svaki $z=x+yi\in\mathbb{C}$ definiramo pripadni **konjugurani kompleksni broj**

$$\overline{z} = x + (-y)i \equiv x - yi.$$

Primijetimo da je $\overline{\overline{z}} = z$, pa brojeve z, \overline{z} nazivamo **konjugirano kompleksnim parom**. Funkcija $z \mapsto \overline{z}$ (to je osna simetrija obzirom na realnu os) ima svojstva:

$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}; \quad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}; \quad \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}};$$

$$z\overline{z} = \overline{z}z = x^2 + y^2 \in \mathbb{R}^+ \cup \{0\}.$$

Nenegativni realni broj $\sqrt{x^2 + y^2}$ nazivamo **apsolutnom vrijednošću** (ili **modulom** ili **normom**) kompleksnoga broja z = x + yi i označujemo sa |z|. Uočimo da funkcija $z \mapsto |z|$ sa \mathbb{C} u \mathbb{R} ima sljedeća svojstva:

$$\begin{aligned} \operatorname{Re} z &\leq |z|\,, \ \operatorname{Im} z \leq |z|\,; \\ |z| &= 0 \Leftrightarrow z = 0 + 0i \ (\equiv 0 \in \mathbb{C}); \\ (\forall z \in \mathbb{C}) \quad |z| &> 0; \\ (\forall z_1, z_2 \in \mathbb{C}) \quad |z_1 \cdot z_2| &= |z_1| \cdot |z_2|\,; \\ (\forall z_1, z_2 \in \mathbb{C}, z_2 \neq 0) \quad \left|\frac{z_1}{z_2}\right| &= \frac{|z_1|}{|z_2|}; \\ (\forall z_1, z_2 \in \mathbb{C}) \quad |z_1 + z_2| &\leq |z_1| + |z_2| \ \ (\operatorname{trokutna\ nejednakost}); \\ (\forall z \in \mathbb{C}) \quad |\overline{z}| &= |z|\,; \\ (\forall z \in \mathbb{C}) \quad |z|^2 &= z\overline{z}; \\ ||z_1| - |z_2|| &\leq |z_1 - z_2|\,. \end{aligned}$$

Dokažimo zadnju tvrdnju: vrijedi
$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2| \Rightarrow |z_1| - |z_2| \le |z_1 - z_2|$$
, i analogno $|z_2| = |z_2 - z_1 + z_1| \le |z_2 - z_1| + |z_1| \Rightarrow |z_2| - |z_1| \le |z_2 - z_1| = |z_1 - z_2|$. Slijedi $||z_1| - |z_2|| \le |z_1 - z_2|$.

Realne brojeve smo geometrijski interpretirali pomoću točaka nekog pravca, tj. potpuno uređeno polje \mathbb{R} smo na pogodan način poistovjetili s (brojevnim) pravcem. Budući da je $\mathbb{C} = \mathbb{R} \times \mathbb{R}$, moguće je polje kompleksnih brojeva poistovjetiti s (brojevnom ili Gaussovom) ravninom. Naime,

svakom kompleksnom broju $z=(x,y)\equiv x+yi$ odgovara jedinstvena točka T=(x,y) u (koordinatnoj) ravnini - i obratno. Uočimo da je modul |z| od z euklidska udaljenost točke T, koja u kompleksnoj ravnini odgovara broju z, od ishodišta O=(0,0).

Napokon, primijetimo da operacije + i - u \mathbb{C} dopuštaju u kompleksnoj ravnini jednostavan slikovit prikaz (paralelogramsko pravilo):

Rabeći gornju interpretaciju, lako se pokaže da i za kompleksne brojeve vrijedi trokutna nejadnakost: $(\forall z_1,z_2\in\mathbb{C})\ |z_1+z_2|\leq |z_1|+|z_2|$.

Radi lakšeg operiranja kompleksnim brojevima, korisno je usvojiti još jedan način njihova zapisivanja. Neka je dan $z = x + yi \in \mathbb{C}, z \neq 0$.

Argumentom kompleksnoga broja z nazivamo kutnu mjeru $\varphi \in \mathbb{R}$ kuta između pozitivne ("desne") zrake brojevnoga pravca i zrake \overrightarrow{OT} , O = (0,0) i T = (x,y), i pišemo: $\arg(z) = \varphi$; pritom smatramo da je $\varphi < 0$ čim

ga mjerimo gibajući se kao satna kazaljka, a u suprotnom da je $\varphi > 0$. Po dogovoru stavljamo $\arg(0) = 0$. Primijetimo da je $\varphi = \arg(z) \Leftrightarrow \varphi + k \cdot 2\pi = \arg(z), \ k \in \mathbb{Z}$. Jednostavnosti radi, ovdje ćemo modul $|z| = \sqrt{x^2 + y^2} \in \mathbb{R}^+ \cup \{0\}$ kompleksnog broja z označavati slovom r. Za **glavnu vrijednost argumenta** (koja se u praksi najčešće ističe) uzimamo vrijednost tog kuta unutar intervala $[0, 2\pi\rangle$ i označavamo ga sa $\operatorname{Arg}(z) = \varphi$. On se za točku z = x + yi lako izračuna iz jednadžbe

$$\operatorname{tg}\varphi = \frac{y}{x}, \ x \neq 0,$$

vodeći računa o predznacima koordinata x i y; ako je x=0, tj. $z=yi\neq 0$, onda je $\varphi=\frac{\pi}{2}$ čim je y>0 i $\varphi=\frac{3\pi}{2}$ čim je y<0. Primijetimo da je sada $x=r\cos\varphi$ i $y=r\sin\varphi$, pa dobivamo prikaz

$$z = r(\cos\varphi + i\sin\varphi),$$

sto nazivamo **trigonometrijskim zapisom** kompleksnoga broja z. Budući da su $z_1 = x_1 + y_1 i$ i $z_2 = x_2 + y_2 i$ jednaki točno onda kad je $x_1 = x_2$ i $y_1 = y_2$, to je $z_1 = z_2$ onda i samo onda kad je $r_1 = r_2$ i $\varphi_1 = \varphi_2 + k \cdot 2\pi$, $k \in \mathbb{Z}$. Praktičnost trigonometrijskoga zapisa kompleksnog broja pokazuju formule za množenje i dijeljenje. Naime, za svaki par $z_1, z_2 \in \mathbb{C}$ vrijedi $z_1 \cdot z_2 = r_1(\cos \varphi_1 + i \sin \varphi_1) \cdot r_2(\cos \varphi_2 + i \sin \varphi_2) = (\text{po } (2')) = r_1 r_2(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i(\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)) = (\text{adicijski teorem}) = r_1 r_2(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$ pa se množenje provodi na način

$$z_1 \cdot z_2 = r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right). \tag{5}$$

Slično se pokazuje da se dijeljenje provodi na način

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right). \tag{6}$$

Lako se indukcijom pokazuje da za dane $n \in \mathbb{N}$ i $z_1, \dots, z_n \in \mathbb{C}$ vrijedi

$$\prod_{k=1}^{n} z_k = \prod_{k=1}^{n} r_k \left(\cos \sum_{k=1}^{n} \varphi_k + i \sin \sum_{k=1}^{n} \varphi_k \right)$$

Posebice, za $z_1 = \cdots = z_n \equiv z$ dobivamo $|z^n| = |z|^n$ i tzv. Moivreovu formulu

$$z^{n} = r^{n} (\cos n\varphi + i \sin n\varphi). \tag{7}$$

Nadalje, trigonometrijski zapis kompleksnog broja je posebno pogodan za potenciranje racionalnim eksponentom $q = \frac{m}{n}$. Jasno, temeljni zadatak jest izračunati potenciju $z^{\frac{1}{n}}$, $n \in \mathbb{N}$, koju ćemo i ovdje (kao i u \mathbb{R}) označiti s $\sqrt[n]{z}$ i nazvati n-tim korijenom kompleksnoga broja z. Dakle, $w = \sqrt[n]{z}$ točno onda kad je $w^n = z$. Pokažimo kako se za dani $z = a + bi = \rho(\cos \psi + i \sin \psi)$ određuje njegov n-ti korijen. Treba odrediti kompleksni broj $w = x + yi = r(\cos \varphi + i \sin \varphi)$ takav da je $w^n = z$, tj. $r^n(\cos n\varphi + i \sin n\varphi) = \rho(\cos \psi + i \sin \psi)$. Mora, dakle, biti $r^n = \rho$ (u \mathbb{R}) i $n\varphi = \psi + k \cdot 2\pi$, $k \in \mathbb{Z}$, tj. $r = \sqrt[n]{\rho} \geq 0$ i $\varphi = \frac{\psi + k \cdot 2\pi}{n}$, $k \in \mathbb{Z}$. Periodičnost trigonometrijskih funkcija cos i sin povlači da samo za n uzastopnih vrijednosti od k, primjerice, za $k \in \{0, 1, \dots, n-1\}$, dobivamo različite vrijednosti za w. Dakle, $w = \sqrt[n]{z}$ ima n različitih vrijednosti w_1, \dots, w_n koje određujemo po formuli

$$w_{k+1} = \sqrt[n]{\rho} \left(\cos\frac{\psi + k \cdot 2\pi}{n} + i\sin\frac{\psi + k \cdot 2\pi}{n}\right), \ k = 0, 1, \dots, n-1, \ (8)$$

gdje je $\sqrt[n]{\rho}$ n-ti korijen u $\mathbb{R}^+ \cup \{0\}$.

Prethodno pokazuje da jednadžba $w^n - z = 0$ u \mathbb{C} ima točno n različitih korijena. Nadalje, iz navedene formule se vidi da su ti korijeni vrhovi pravilnoga n-torokuta upisanoga središnjoj kružnici s polumjerom $\sqrt[n]{\rho}$.

Primjer Izračunajmo $\sqrt[6]{-8}$.

Budući da je $z = -8 = 8 \cdot (\cos \pi + i \sin \pi)$ to je

$$\sqrt[6]{-8} = \sqrt[6]{8} \left(\cos \frac{\pi + k \cdot 2\pi}{6} + i \sin \frac{\pi + k \cdot 2\pi}{6} \right).$$

za k = 0, 1, 2, 3, 4, 5. Prema tomu,

$$\begin{split} w_1 &= \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i; & w_2 &= \sqrt{2}i; \\ w_3 &= -\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i; & w_4 - \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i; \\ w_5 &= -\sqrt{2}i; & w_6 &= \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i. \end{split}$$

Na koncu spomenimo i eksponencijalni zapis kompleksnog broja

$$z = re^{i\varphi}$$

koji se iz trigonometriskog zapisa dobiva tako da se iskoristi poznata Eulerova formula $e^{i\varphi}=\cos\varphi+i\sin\varphi$.

ZADACI

1. Odredite realni i imaginarni dio kompleksnih brojeva

$$z = \frac{1}{1-i}, z = \frac{2i}{3-i}, z = \left(1 - i\frac{\sqrt{3}}{2}\right)^2, z = \left(\frac{1-i}{1+i}\right)^3$$

i odredite njihove module

- 2. Neka su $a,b,c\in\mathbb{C}$ takvi da je |a|=|b|=|c|=1 i da je a+b+c=0. Dokažite da su a,b i c vrhovi jednakostraničnog trokuta kojemu je |z|=1 opisana kružnica.
- 3. Neka su $a,b,c,d\in\mathbb{C}$ četiri međusobno različite točke na kružnici |z|=1 i neka za njih vrijedi a+b+c+d=0. Dokažite da točke su a,b,c i d vrhovi pravokutnika.
- 4. Dokažite idantitet $|z_1+z_2|+|z_1-z_2|=2(|z_1|^2+|z_2|^2)$. Koji je geometrijski smisao tog identiteta?
- 5. Ako je $|z_1|=|z_2|=1$ i $z_1z_2\neq -1$ dokažite da je $z=\frac{z_1+z_2}{1+z_1z_2}\in\mathbb{R}.$
- 6. Prikažite u trigonometrijskom zapisu brojeve:

$$z_1 = \sqrt{3} + i$$
, $z_2 = 2i$, $z_3 = -\sqrt{2}$, $z_4 = 3$, $z_5 = 1 + i^{123}$

i nacrtajte ih u kompleksnoj ravnini.

7. Odredite realni i imaginarni dio kompleksnih brojeva:

$$z = (-1 + i\sqrt{3})^5, z = \frac{(1+i)^{16}}{(1-i\sqrt{3})^9}.$$

8. Odredite realni i imaginarni dio kompleksnih brojeva:

$$z = \sqrt[5]{-1}$$
; $z = \sqrt{(1 - i\sqrt{3})^7}$; $z = \sqrt[4]{-8 + 8\sqrt{3}i}$; $z = \sqrt[5]{-\sqrt{3} + i}$.

9. Odredite sve kompleksne brojeve (i nacrtajte ih u kompleksnoj ravnini) za koje vrijedi:

(a)
$$|z| = \sqrt{2}, |z+i| = |z+1|;$$

(b)
$$|z| = |z - 1|$$
, $\arg(z - 1) = 3\pi/4$;

(c)
$$\pi/6 < \arg z < \pi/4$$
, $1 < |z| < 3$.

10. Nacrtajte skupove:

(a)
$$\{z \in \mathbb{C} : \operatorname{Re} z = \operatorname{Im} z\}$$
;

(b)
$$\{z \in \mathbb{C} : |z - 1 + i| = 3\};$$

(c)
$$\{z \in \mathbb{C} : |z - i| + |z + i| = 1\};$$

(d)
$$\{z \in \mathbb{C} : z \cdot \overline{z} + i(z - \overline{z}) = 2\}$$
.

11. Nacrtajte skupove:

(a)
$$\{z \in \mathbb{C} : |\text{Re } z| < 1\};$$

(b)
$$\{z \in \mathbb{C} : \text{Im } z > -1\};$$

(c)
$$\{z \in \mathbb{C} : |z - i + 1| \le 1\}$$
;

(d)
$$\{z \in \mathbb{C} : -\pi/2 < \arg(z+1-i) < 3\pi/4\};$$

(e)
$$\{z \in \mathbb{C} : -\pi/6 < \arg(z) \le \pi/2, |z| > 2\};$$

(f)
$$\{z \in \mathbb{C} : -\pi/6 < \arg(z) \le \pi/6, \ 1 < |z| \le 3\}$$
.

1.2 PROSTOR KOMPLEKSNIH BROJEVA

Pomoću norme definiramo metriku $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}$,

$$d(z_1, z_2) = |z_2 - z_1| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

pa \mathbb{C} s metrikom d nazivamo **prostorom kompleksnih brojeva** i označavamo sa (\mathbb{C}, d) ili samo sa \mathbb{C} . U svakom metričkom prostoru, pa tako i u (\mathbb{C}, d) , možemo uvesti topološku strukturu. Definiramo (otvorenu) **kuglu** sa **središtem** u točki $z_0 \in \mathbb{C}$ **radijusa** $r \in \mathbb{R}$, r > 0, kao skup

$$K(z_0, r) = \{ z \in \mathbb{C} : d(z, z_0) < r \}.$$

Definicija 1.1 Skup $U \subseteq \mathbb{C}$ iz metričkog prostora (\mathbb{C}, d) je **otvoren** ako je unija neke familije kugala prostora (\mathbb{C}, d) .

Osnovni primjer otvorenog skupa je sama kugla.

Teorem 1.2 Skup $U \subseteq \mathbb{C}$ u metričkom prostoru (\mathbb{C}, d) je otvoren ako i samo ako za svaku točku $z \in U$ postoji kugla $K(z, r) \subseteq U$.

Dokaz. \Rightarrow Neka je U otvoren skup i $z_0 \in U$.

Treba naći kuglu sa središtem u z_0 koja je sadržana u U. Po definiciji otvorenog skupa postoji kugla $K(z_1,s)\subseteq U$ koja sadrži točku z_0 . Označimo sa $r=s-d(z_0,z_1)$ i promotrimo kuglu $K(z_0,r)$. Neka je $z\in K(z_0,r)$. To znači da je $d(z,z_0)< r=s-d(z_0,z_1)$ i dalje

$$d(z, z_1) \le d(z_1, z_0) + d(z_0, z) < d(z_1, z_0) + r =$$

$$= d(z_1, z_0) + s - d(z_0, z_1) = s,$$

pa je $z \in K(z_1, s) \subseteq U$, tj. našli smo kuglu sa središtem u točki z_0 koja je sadržana u U.

 \Leftarrow Obrnuto, prema pretpostavci, za svaki $z \in U$ postoji kugla $K(z,r) \subseteq U$, pa je $\bigcup_{z \in U} K(z,r_z) \subseteq U$. S druge strane je $U = \bigcup_{z \in U} \{z\} \subseteq \bigcup_{z \in U} K(z,r_z)$. Dakle, skup $U = \bigcup_{z \in U} K(z,r)$ je unija kugala, pa je otvoren.

Za familiju \mathcal{U} svih otvorenih skupova vrijedi naredni teorem.

Teorem 1.3 Množina U ima ova svojstva:

- (T1) Unija svake familije članova iz U je član iz U;
- (T2) Presjek konačno članova iz U je član iz U;
- (T3) \emptyset , $\mathbb{C} \in \mathcal{U}$.

Familija \mathcal{U} zove se **topološka struktura** ili **topologija**, a uređen par (\mathbb{C},\mathcal{U}) na njemu **topološkim prostorom.** Za ovako uvedenu topologiju \mathcal{U} kažemo da je **inducirana metrikom** d. Kada govorimo da je \mathbb{C} prostor onda smatramo da je to metrički prostor (\mathbb{C},d) , odnosno topološki prostor (\mathbb{C},\mathcal{U}) sa na prethodni način uvedenim otvorenim skupovima.

Definicija 1.4 Kažemo da je skup S **okolina** točke z_0 ako postoji kugla $K(z_0, r) \subseteq S$.

Primjetimo da ukoliko je S otvoren skup da je tada (i samo tada) S okolina svake svoje točke.

Uz pojam otvorenog skupa usko je vezan pojam zatvorenog skupa.

Definicija 1.5 Skup je zatvoren ako je njegov komplement otvoren.

Primjeri zatvorenih skupova su prazan skup i čitav prostor. Nadalje, jednotočkovni skupovi, kao i svi konačni podskupovi iz prostora su zatvoreni skupovi. Zatvorena kugla, tj. skup $\overline{K(z_0,r)}=\{z:d(z,z_0)\leq r\}$ je zatvoren skup.

Na koncu, definiramo još dva pojma: omeđen skup i područje.

Definicija 1.6 Skup S je **omeđen** ako je on sadržan u nekoj kugli, tj. ako postoje z_0 i r takvi da je $S \subseteq K(z_0, r)$.

Očito je skup S omeđen ako i samo ako postoji broj M>0 takav da je $|z|\leq M$ za svaki $z\in S$ (tj. ako postoji kugla sa središtem u ishodištu koja sadrži S). Nije teško pokazati da su unija $S_1\cup S_2$ i presjek $S_1\cap S_2$ omeđenih skupova S_1 i S_2 također omeđeni skupovi.

Definicija 1.7 Neprazan otvoren skup $\Omega \subseteq \mathbb{C}$ zove se **područje** ako za bilo koje dvije točke $a, b \in \Omega$ postoji konačno točaka $a = z_0, z_1, \dots, z_{n-1}, z_n = b$ takvih da sve spojnice (segmenti) $[z_{i-1}, z_i] = \{(1-t)z_{i-1} + tz_i : 0 \le t \le 1\},$ $i = 1, \dots, n$, leže $u \Omega$.

Primjer Neka je $r_1, r_2 \in \mathbb{R}$ i $0 < r_1 < r_2$. Otvoreni prsten $K(z_0; r_1, r_2) = \{z \in \mathbb{C} : r_1 < |z - z_0| < r_2\}$ je omeđen skup i područje.

ZADACI

- 1. Za svaki od sljedećih skupova ispitajte da li je omeđen, otvoren, zatvoren ili područje:
 - (a) $\{z \in \mathbb{C} : \operatorname{Re} z = -\operatorname{Im} z\};$
 - (b) $\{z \in \mathbb{C} : \text{Re } z \le -1\};$
 - (c) $\{z \in \mathbb{C} : -1 \le \operatorname{Re} z < 1\};$
 - (d) $\{z \in \mathbb{C} : \operatorname{Re} z = -\operatorname{Im} z\};$
 - (e) $\{z \in \mathbb{C} : |az^2 + bz + a| = 1, \ a, b, c \in \mathbb{C}\};$
 - (f) $\{z \in \mathbb{C} : |\text{Re}(z^2 1)| < 1\};$
 - (g) $\{z \in \mathbb{C} : |z-1| \le |z+1| \};$
 - (h) $\{z \in \mathbb{C} : 1 < |z i| < 2\};$
 - ${\rm (i)}\ \left\{z\in\mathbb{C}: 1<|z|\leq 2,\ -\pi/2<\arg z<3\pi/4\right\};$
 - (j) $K(S,r) = \{z \in \mathbb{C} : |z z_0| < r \text{ za neki } z_0 \in S\}$ (generalizirana kugla oko skupa $S \subseteq \mathbb{C}$).
- 2. Dokažite (Teorem 1.3):
 - (a) ∅ i ℂ su zatvoreni skupovi;
 - (b) Ako je $\{F_i, i \in I\}$ familija zatvorenih skupova onda je $\bigcap_{i \in I} F_i$ zatvoren skup;
 - (c) Ako su F_i , $i=1,\cdots,n$ zatvoreni skupovi onda je $\bigcup_{i=1}^n F_i$ zatvoren skup.
- 3. Topološki prostor (X, \mathcal{U}) je **Hausdorffov** ako za svaka dva različita elementa $x_1, x_2 \in X$ postoje otvoreni skupovi $U_1, U_2 \in \mathcal{U}$ takvi da je $x_1 \in U_1, x_2 \in U_2$ i $U_1 \cap U_2 = \emptyset$. Dokažite da je \mathbb{C} Hausdorffov prostor.

1.3 KONVERGENCIJA NIZA I ZATVARAČ SKUPA

Niz kompleksnih brojeva $z: \mathbb{N} \to \mathbb{C}$ označavat ćemo sa $(z_n)_{n \in \mathbb{N}}$ ili (z_n) , a njegov podniz $z \circ p: \mathbb{N} \to \mathbb{C}$ $(p: \mathbb{N} \to \mathbb{N} \text{ rastuća funkcija})$ sa $(z_{p(k)})_{k \in \mathbb{N}}$ ili $(z_{p(k)})$

Definicija 1.8 Za niz (z_n) kompleksnih brojeva kažemo da **konvergira** kompleksnom broju z_0 i pišemo $z_0 = \lim_{n \to \infty} z_n$ (ili $\lim z_n = z_0$ ili $z_n \to z_0$), ako za svaki realan broj $\varepsilon > 0$ postoji prirodan broj n_0 takav da vrijedi $|z_n - z_0| < \varepsilon$ čim je $n \in \mathbb{N}$ i $n > n_0$. Tada z_0 nazivamo **limesom niza** (z_n) . Niz koji konvergira nekom broju zove se **konvergentan**, u protivnom je niz **divergentan**.

Ako je $|z_n - z_0| < \varepsilon$ tada kažemo da je **točka** $z_n \varepsilon$ -blizu točki z_0 , tj. tada vrijedi $z_n \in K(z_0, \varepsilon)$.

Simbolički možemo limes niza zapisati na način:

$$z_{0} = \lim_{n \to \infty} z_{n} \stackrel{\text{def.}}{\Leftrightarrow} (\forall \varepsilon \in \mathbb{R}, \varepsilon > 0) (\exists n_{0} \in \mathbb{N}) (\forall n \in \mathbb{N})$$

$$n > n_{0} \Rightarrow |z_{n} - z_{0}| < \varepsilon$$

$$(1)$$

ili u terminima kugala

$$z_{0} = \lim_{n \to \infty} z_{n} \stackrel{\text{def.}}{\Leftrightarrow} \quad (\forall \varepsilon \in \mathbb{R}, \varepsilon > 0)(\exists n_{0} \in \mathbb{N})(\forall n \in \mathbb{N})$$
$$n > n_{0} \Rightarrow z_{n} \in K(z_{0}, \varepsilon)$$
 (2)

Da niz (z_n) konvergira ka točki z_0 znači da se u svakoj kugli sa središtem u z_0 nalaze **gotovo svi** članovi niza, tj. svi izuzev konačno njih.

Konvergenciju niza možemo opisati i u terminima okolina.

Teorem 1.9

$$z_0 = \lim_{n \to \infty} z_n \Leftrightarrow (\forall U \text{ okolina točke } z_0)(\exists n_0 \in \mathbb{N})$$
$$(\forall n \in \mathbb{N}) \quad n > n_0 \Rightarrow z_n \in U.$$
 (3)

Konvergencija niza kompleksnih brojeva može se svesti na konvergenciju nizova realnih brojeva. Neka je

$$z_n = x_n + iy_n, \ z_0 = x_0 + iy_0, \ x_n, y_n, x_0, y_0 \in \mathbb{R}.$$

Teorem 1.10 $\lim z_n = z_0 \Leftrightarrow \lim x_n = x_0$, $\lim y_n = y_0$.

Dokaz. \Rightarrow Iz

$$|x_n - x_0| = |\operatorname{Re}(z_n - z_0)| \le |z_n - z_0| = d(z_n, z_0)$$

 $|y_n - y_0| = |\operatorname{Im}(z_n - z_0)| \le |z_n - z_0| = d(z_n, z_0)$

slijedi da $\lim z_n = z_0$ povlači $\lim x_n = x_0$ i $\lim y_n = y_0$.

 \Leftarrow Ako je $\lim x_n = x_0$ i $\lim y_n = y_0$, onda za svaki $\varepsilon > 0$ postoji $n_0 \in \mathbb{N}$ takav da vrijedi

$$(\forall n \in \mathbb{N}) \quad n > n_0 \Rightarrow |x_n - x_0| < \frac{\varepsilon}{2}, \ |y_n - y_0| < \frac{\varepsilon}{2}.$$

Sada za $n > n_0$ imamo

$$|z_n - z_0| = |(x_n - x_0) + i(y_n - y_0)| \le |x_n - x_0| + |y_n - y_0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

što pokazuje $\lim z_n = z_0$.

Napomena 1.11 Slična tvrdnja vrijedi za kompleskni niz prikazan u trigonometrijskom obliku:

Neka je $z_0 = r_0(\cos \varphi_0 + i \sin \varphi_0) \in \mathbb{C}$, $\varphi_0 \neq 0$ i $(z_n = r_n(\cos \varphi_n + i \sin \varphi_n))$ niz kompleksnih brojeva. Tada vrijedi

$$\lim z_n = z_0 \Leftrightarrow \lim r_n = r_0, \ \lim \varphi_n = \varphi_0. \tag{4}$$

Dovoljnost slijedi iz neprekidnosti trigonometrijskuh funkcija.

Neka $r_n \to r_0, \, \varphi_n \to \varphi_0$. Tada je

$$\lim z_n = \lim \left[r_n(\cos \varphi_n + i \sin \varphi_n) \right] = (\lim r_n) \left(\lim(\cos \varphi_n + i \sin \varphi_n) \right) =$$

$$r_0(\lim \cos \varphi_n + i \lim \sin \varphi_n) = r_0(\cos \lim \varphi_n + i \sin \lim \varphi_n) =$$

$$r_0(\cos \varphi_0 + i \sin \varphi_0) = z_0.$$

Primjetimo da ovdje nismo trebali uvjet $\varphi_0 \neq 0$.

Dokažimo nužnost. Neka $z_n \to z_0$. Budući je $|r_n - r_0| = ||z_n| - |z_0|| \le |z_n - z_0|$, iz pretpostavke $z_n \to z_0$ slijedi $r_n \to r_0$.

Treba još dokazati $\varphi_n \to \varphi_0$. Dokaz provodimo kontradikcijom: pretpostavimo suprotno, tj. da (φ_n) ne konvergira ka φ_0 . Tada postoji $\delta > 0$ takav da je $|\varphi_n - \varphi_0| > \delta$. Promotrimo narednu sliku. Vrijedi

$$\sin \frac{|\varphi_n - \varphi_0|}{2} \le \frac{|z_n - z_0|}{2|z_0|} \Rightarrow |z_n - z_0| \ge 2|z_0| \sin \frac{|\varphi_n - \varphi_0|}{2} \ge 2|z_0| \sin \frac{\delta}{2}.$$

Ovo je u protuslovlju s pretpostavkom $z_n \to z_0$, pa moramo pretpostaviti da niz (φ_n) konvergira ka φ_0 .

Primjetimo da smo ovdje koristili uvjet $\varphi_0 \neq 0$. Bez tog uvjeta tvrdnja nije istinita, naime može se dogoditi da bliske točke blizu pozitivnog dijela realne osi imaju argumente koji se razlikuju skoro za 2π .

Povezanost pojmova zatvorenosti i limesa niza dana je sljedećom tvrdnjom.

Teorem 1.12 Skup $F \subseteq \mathbb{C}$ je zatvoren ako i samo ako za svaki konvergentni niz (z_n) čiji su članovi elementi skupa F, vrijedi da je i $z_0 = \lim z_n$ element skupa F.

Dokaz. \Longrightarrow Neka je $F \subseteq \mathbb{C}$ je zatvoren i neka je (z_n) niz, $z_n \in F$, te neka je $z_0 = \lim z_n$.

Tvrdimo da je $z_0 \in F$.

U suprotnom bi z_0 bio element otvorenog skupa $\Omega = \mathbb{C} \setminus F$, pa bi postojao realan broj $\varepsilon > 0$ takav da je $K(z_0, \varepsilon) \subset \Omega$. Sada je $z_n \notin K(z_0, \varepsilon)$ za svaki $n \in \mathbb{N}$, a to znači da niz (z_n) ne konvergira ka z_0 - protuslovlje.

 $\vdash F$ će biti zatvoren skup dokažemo li da je $\Omega = \mathbb{C} \setminus F$ otvoren skup.

Pretpostavimo suprotno, tj. da postoji točka $z_0 \in \Omega$ takva da niti jedna kugla $K(z_0, \frac{1}{n})$ nije sadržana u Ω , tj. svaka takva kugla siječe i F. Odaberimo točke $z_n \in K(z_0, \frac{1}{n}) \cap F$. Tada je (z_n) niz iz F i vrijedi $d(z_n, z_0) < \frac{1}{n}$, pa $z_n \to z_0$. Dakle, mora biti $z_0 \in F$, što je u protuslovlju s pretpostavkom $z_0 \in \Omega = \mathbb{C} \setminus F$. Dakle, postoji $m \in \mathbb{N}$ takav da je $K(z_0, \frac{1}{m}) \subset \Omega$ i time smo pokazali da je Ω otvoren skup.

Definicija 1.13 Točka $z_0 \in \mathbb{C}$ je gomilište skupa $S \subseteq \mathbb{C}$, ako za svaki r > 0 kugla $K(z_0, r)$ sadrži bar jednu točku skupa S koja je različita od z_0 .

Točka $z_0 \in S$ je **izolirana točka** skupa S, ako nije gomilište skupa S, tj. postoji kugla $K(z_0,r)$ za koju je $K(z_0,r) \cap S = \{z_0\}$. Skup svih gomilišta skupa S naziva se **derivat skupa** S i označava sa S'.

Definicija 1.14 Zatvarač skupa S je skup $Cl S = S \cup S'$.

Zatvarač $\operatorname{Cl} S$ sastoji se od derivata S' i svih izoliranih točaka skupa S. Ako S nema izoliranih točaka onda je $\operatorname{Cl} S = S'$.

Teorem 1.15 Točka z_0 pripada zatvaraču Cl S skupa S, ako i samo ako postoji niz (z_n) , čiji su elementi iz S, takav da je $z_0 = \lim z_n$.

Dokaz. Tvrdnja slijedi iz definicije derivata S' skupa S i činjenice da je svaki $z_0 \in S$ limes stacionarnog niza (z_n) , $z_n = z_0$.

Teorem 1.16 Zatvarač Cl S skupa S je najmanji zatvoren skup koji sadrži S, tj. ako je $\{F_i, i \in I\}$ familija svih zatvorenih skupova koji sadrže skup S onda je Cl $S = \bigcap_{i \in I} F_i$.

Teorem 1.17 Derivat S' je zatvoren skup.

Dokaz. Dokažimo da je komplement Ω skupa S' otvoren skup.

Neka je $z_0 \in \Omega$. Tada $z_0 \notin S'$ pa postoji r > 0 takav da kugla $K(z_0, r)$ ne sadrži niti jednu točku iz S različitu od z_0 . Uzmimo bilo koji $z_1 \in K(z_0, \frac{r}{2})$, $z_1 \neq z_0$. Tada z_1 nije limes niti jednog niza s članovima iz S, pa zaključujemo da $z_1 \notin S'$. Dobili smo $K(z_0, \frac{r}{2}) \cap S' = \emptyset$, tj. $K(z_0, \frac{r}{2}) \subseteq \Omega$. Dakle, Ω je otvoren, tj. S' jest zatvoren skup.

Definicija 1.18 Točka z_0 je **unutarnja točka** skupa S ako je S okolina točke, tj. postoji kugla $K(z_0,r)$ sadržana u S. Skup svih unutarnjih točaka skupa S naziva se **interior** (ili **nutrina**) skupa S i označava sa Int S.

Teorem 1.19 Interior Int S skupa S je najveći otvoreni skup sadržan u S, tj. ako je $\{U_i, i \in I\}$ familija svih otvorenih skupova koji su sadržani u skupu S onda je Int $S = \bigcup_{i \in I} U_i$.

Definicija 1.20 Granica (ili fronta ili rub) skupa S je skup

$$\operatorname{Fr} S = \operatorname{Cl} S \cap \operatorname{Cl}(\mathbb{C} \setminus S).$$

 $Točka z \in Fr S naziva se$ **rubna točka**skupa S.

Lako se dokaže (dokažite, korisna vježba!) da vrijedi: FrS je (kao presjek zatvorenih) zatvoren skup; Fr $S = \operatorname{Fr}(\mathbb{C} \setminus S)$; točka z_0 je rubna točka skupa S ako svaka kugla $K(z_0, r)$ siječe i skup S i skup $\mathbb{C} \setminus \mathbb{S}$.

ZADACI

1. Izračunajte limese:

(a)
$$\lim_{n \to \infty} \sqrt[n]{1+i}$$
; (b) $\lim_{n \to \infty} n \left(\frac{1+i}{2}\right)^n$; (c) $\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+2i} - \sqrt{n+i}\right)$.

(c)
$$\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+2i} - \sqrt{n+i} \right)$$
.

2. Dokažite da su nizovi (z_n) konvergentni i izračunajte im limese:

(a)
$$\left(\frac{z^n}{1+z^{2n}}\right)_{n\in\mathbb{N}}, |z| \neq 1;$$

(b)
$$\left(\frac{1}{n}\left(1 + e^{i\varphi} + \dots + e^{in\varphi}\right)\right)_{n \in \mathbb{N}}$$

3. Koristeći Napomenu 1.11 dokažite:

(a)
$$\lim_{n \to \infty} \left(1 + \frac{i\varphi}{n} \right)^n = \cos \varphi + i \sin \varphi;$$

(b)
$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^x \left(\cos y + i \sin y \right).$$

4. Dokažite da su nizovi (z_n) konvergentni i izračunajte im limese:

(a)
$$z_n = \frac{a^n}{1 + a^{2n}}, |a| \neq 1;$$

(b)
$$z_n = \frac{1}{n} (1 + e^{i\varphi} + \dots + e^{in\varphi}), \ 0 < \varphi < 2\pi;$$

(c)
$$z_n = \frac{1}{\sqrt{n}} (1 - e^{i\varphi} + e^{2\varphi} - \dots + (-1)^n e^{in\varphi}), \ 0 < \varphi < 2\pi;$$

(d)
$$z_n = \frac{1}{n+1} (n+1+nz+(n-1)z^2+\cdots+z^n), |z| \le 1, z \ne 1;$$

(e)
$$z_n = \sum_{k=0}^n \sqrt{\frac{n-k}{n}} z^k, |z| < 1.$$

- 5. Dokažite Teorem 1.9
- 6. Dokažite Teorem 1.17.
- 7. Dokažite tvrdnju: z_0 je gomilište skupa S, ako i samo ako je $z_0 \in \operatorname{Cl}(S \setminus \{z_0\}).$
- 8. Dokažite da gomilišta niza $\left(e^{in}\right)_{n\in\mathbb{N}}$ čine kružnicu $\{z\in\mathbb{C}:|z|=1\}$.

9. Dokažite da gomilišta niza $(z_n)_{n\in\mathbb{N}}$,

$$z_n = \frac{1}{n} \left(1^{i\alpha} + 2^{i\alpha} + \dots + n^{i\alpha} \right),$$

 $\alpha \in \mathbb{R}, \ \alpha \neq 0$ čine kružnicu $\{z \in \mathbb{C} : |z| = (1 + \alpha^2)^{-\frac{1}{2}}\}.$

- 10. Dokažite tvrdnje:
 - (a) $Cl A \supseteq A$;

- (b) Cl(Cl A) = Cl A;
- (c) $Cl(A \cup B) = (Cl A) \cup (Cl B)$;
 - (d) $Cl \emptyset = \emptyset$;
- (e) $A \subseteq B \Rightarrow \operatorname{Cl} A \subseteq \operatorname{Cl} B$;
- (f) A je zatvoren $\Leftrightarrow A = \operatorname{Cl} A$.
- 11. Dokažite Teorem 1.19.
- 12. Dokažite tvrdnje:
 - (a) Int $A \subseteq A$;
- (b) Int(Int A) = A;
- (c) $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$; (d) $\operatorname{Int} C = C$;
- (e) $A \subseteq B \Rightarrow \operatorname{Int} A \subseteq \operatorname{Int} B$;
- (f) A je otvoren $\Leftrightarrow A = \text{Int } A$.

- 13. Dokažite:
 - (a) $z_0 \in \operatorname{Fr} S$ ako i samo ako postoje konvergentni nizovi (a_n) u S i (b_n) u $\mathbb{C} \setminus \mathbb{S}$ takvi da je $\lim a_n = z_0 = \lim b_n$;
 - (b) $\operatorname{Cl} S = S \cup \operatorname{Fr} S$;
 - (c) Ako je U otvoren tada je $\operatorname{Fr} U = (\operatorname{Cl} U) \setminus U$;
 - (d) Ako je F zatvoren tada je $Fr F = F \setminus Int F$.

1.4 NEPREKIDNOST I LIMES

Funkciju $f: X \to \mathbb{C}, X \subseteq \mathbb{C}$, nazivamo kompleksnom funkcijom kompleksne varijable. Budući su domena i kodomena podskupovi (kompleksne) ravnine $\mathbb{R} \times \mathbb{R}$ funkcija kompleksne varijable može se opisati s dvije realne funkcije dviju realnih varijabli. Naime, broju $z = (x, y) = x + iy \in$ $X\subseteq\mathbb{C}$ funkcija f pridružuje broj $f(z)=f(x+iy)\in\mathbb{C}$ pa imamo funkcije

$$(x,y) = x + iy \mapsto f(x+iy) \mapsto \operatorname{Re} f(x+iy),$$

$$(x,y) = x + iy \mapsto f(x+iy) \mapsto \operatorname{Im} f(x+iy).$$

Dakle, sa u(x,y) = Re f(x+iy) i v(x,y) = Im f(x+iy), definirane su realnefunkcije dviju realnih varijabli sa $X \subseteq \mathbb{R} \times \mathbb{R}$ u \mathbb{R} koje u potpunosti određuju kompleksnu fukciju kompleksne varijable

$$f(z) = f(x+iy) = u(x,y) + iv(x,y), \quad (x,y) \in X.$$

Funkcija u naziva se **realni**, a fukcija v **imaginarni dio funkcije** f.

Primjer Funkcija

$$f(z) = \frac{z-1}{z+1}$$

definirana je na $\mathbb{C} \setminus \{1\}$ i njezin realni i imaginarni dio su

$$u(x,y) = \frac{x^2 + y^2 - 1}{(x+1)^2 + y^2}, \quad v(x,y) = \frac{2y}{(x+1)^2 + y^2}.$$

Ponekad je prikladnije z=x+iy prikazati u eksponencijalnom obliku $z=re^{i\varphi}.$ Tada će funkcije $u,\ v$ biti realne funkcije realnih varijabli r i φ :

$$f(z) = f(re^{i\varphi}) = u(r,\varphi) + iv(r,\varphi), \quad (r,\varphi) \in X.$$

Primjer Za funkciju $f(z)=z^n\ (n\in\mathbb{N})$ jedostavnije je uzeti eksponencijalni zapis varijable z. Tada je

$$f(z) = f(re^{i\varphi}) = [re^{i\varphi}]^n = r^n e^{in\varphi} = r^n (\cos n\varphi + i\sin n\varphi)$$

pa je $u(r,\varphi) = r^n \cos n\varphi$ i $v(r,\varphi) = r^n \sin n\varphi$.

Definicija 1.21 Funkcija $f: X \to \mathbb{C}, X \subseteq \mathbb{C},$ je neprekidna u točki $z_0 \in X$ ako za svako $\varepsilon > 0$ postoji $\delta > 0$ takav da za svaki $z \in X$ vrijedi $d(f(z), f(z_0)) < \varepsilon$ čim je $d(z, z_0) < \delta$.

Funkcija je **neprekidna na skupu** $S \subseteq X$ ako je ona neprekidna u svakoj točki $z \in S$.

Simbolički:

$$(f \text{ neprekidna u } z_0 \in X) \stackrel{\text{def.}}{\Leftrightarrow} (\forall \varepsilon > 0)(\exists \delta > 0)(\forall z \in X)$$

$$d(z, z_0) < \delta \Rightarrow d(f(z), f(z_0)) < \varepsilon$$

$$(1)$$

ili, izraženo u terminima kugala

$$(f \text{ neprekidna u } z_0 \in X) \stackrel{\text{def.}}{\Leftrightarrow} (\forall \varepsilon > 0)(\exists \delta > 0)(\forall z \in X)$$
$$z \in K(z_0, \delta) \Rightarrow f(z) \in K(f(z_0), \varepsilon)$$
(2)

Napomena 1.22 $d(z, z_0) < \delta \Rightarrow d(f(z), f(z_o)) < \varepsilon$ daje

$$(x-x_0)^2 + (y-y_0)^2 < \delta^2 \Rightarrow [u(x,y) - u(x_0,y_0)]^2 + [v(x,y) - v(x_0,y_0)]^2 < \varepsilon^2$$

što pokazuje da je funkcija f neprekidna u točki $z_0 = x + iy_0$ ako i samo ako su funkcije u = Re f i v = Im f neprekidne u točki (x_0, y_0) kao realne funkcije dviju realnih varijabli.

Primjer Funkcije $z\mapsto z,\ z\mapsto \overline{z},\ z\mapsto |z|,\ z\mapsto \mathrm{Re}\,z,\ z\mapsto \mathrm{Im}\,z$ su neprekidne.

Lako se dokazuju sljedeće tvrdnje.

Teorem 1.23 Kompleksna funkcija kompleksne varijable $f: X \to \mathbb{C}$ je neprekidna u točki $z_0 \in X$ ako i samo ako za svaki niz (z_n) elemenata iz X koji konvergira ka $z_0 \in X$, niz funkcijskih vrijednosti $(f(z_n))$ konvergira ka $f(z_0)$.

Teorem 1.24 Neka je Ω otvoren skup, $f: \Omega \to \mathbb{C}$ i $z_0 \in \Omega$. Funkcija f je neprekidna u točki z_0 ako i samo ako za svaku okolinu V točke $f(z_0)$ postoji okolina U točke z_0 takva da je $f(U) \subseteq V$.

Definicija 1.25 Neka je $X \subseteq \mathbb{C}$, $z_0 \in X'$ (derivat od X) i f kompleksna funkcija definirana na X osim možda u z_0 . Kažemo da je broj $L \in \mathbb{C}$ limes funkcije u točki z_0 , i pišemo $\lim_{z \in S, z \to z_0} f(z) = L$, ako za svako $\varepsilon > 0$, postoji $\delta > 0$, takav da za svaki $z \in X$ vrijedi $d(f(z), L) < \varepsilon$ čim je $0 < d(z, z_0) < \delta$.

Simbolički:

$$\lim_{z \in S, \ z \to z_0} f(z) = L \stackrel{\text{def.}}{\Leftrightarrow} (\forall \varepsilon > 0) (\exists \delta > 0) (\forall z \in X)$$

$$0 < d(z, z_0) < \delta \Rightarrow d(f(z), L) < \varepsilon$$
(3)

Napomena 1.26 Napomenimo da je u definiciji pretpostavka $z_0 \in X'$ bitna. Naime, tada je $\lim_{z \in S, \ z \to z_0} f(z)$, ukoliko postoji jednoznačno određen. Nadalje, ukoliko je jasno o kojem se skupu X radi, rabit ćemo oznaku $\lim_{z \to z_0} f(z)$ ili $\lim_{z_0} f(z)$.

Pojam limesa funkcije u uskoj je vezi s neprekidnošću. Naime, lako se pokazuje da vrijedi tvrdnja teorema:

Teorem 1.27 Funkcija $f: X \to \mathbb{C}$ je neprekidna u točki $z_0 \in X$ onda i samo onda ako je $\lim_{z \to z_0} f(z) = f(z_0)$.

Napomenimo da su npr. funkcije (o njima kasnije detaljnije)

$$z \mapsto z^{n}, \ z \mapsto z^{\frac{1}{n}}, \ z \mapsto e^{z}, \ z \mapsto \operatorname{Ln} z,$$

$$z \mapsto \sin z \stackrel{\text{def.}}{=} \frac{1}{2i} (e^{iz} - e^{-iz}), \ z \mapsto \cos z \stackrel{\text{def.}}{=} \frac{1}{2} (e^{iz} + e^{-iz}),$$

$$z \mapsto \operatorname{sh} z \stackrel{\text{def.}}{=} \frac{1}{2} (e^{z} - e^{-z}), \ z \mapsto \operatorname{ch} z \stackrel{\text{def.}}{=} \frac{1}{2} (e^{z} + e^{-z}), \dots$$

(pokazat će se da za trigonometrijske i hiperboličke funkcije kompleksne varijable vrijede sve uobičajene formule koje vrijede za realne trigonometrijske i hiperboličke funkcije) neprekidne.

ZADACI

- 1. Odredite realni i imaginarni dio funkcija:
 - (a) $f(z) = z^2$; (b) $f(z) = z + z^3$; (c) $f(z) = \overline{z} + \frac{1}{z} + 1$; (d) $f(z) = \frac{z 1}{z + 1}$.
- 2. Dokažite Teorem 1.23.
- 3. Dokažite Teorem 1.24.
- 4. Dokažite da su funkcije neprekidne na \mathbb{C} :

(a)
$$f(z) = \overline{z}$$
; (b) $f(z) = |z|$; (c) $f(z) = z^2$.

- 5. Dokažite da je kompozicija neprekidnih funkcija opet neprekidna funkcija.
- 6. Neka su f i g neprekidne funkcija na $X\subseteq\mathbb{C}$. Dokažite sa su i funkcije $f+g,\,f\cdot f$ i $\frac{f}{g}$ (za $g(z)\neq 0$) neprekidne na X.
- 7. Dokažite Teorem 1.27.

- 8. Dokažite: funkcija f = u + iv ima limes L u točki $z_0 = x_0 + iy_0$, ako i samo ako funkcija u ima limes $\operatorname{Re} L$, a funkcija v ima limes $\operatorname{Im} L$ u točki (x_0, y_0) .
- 9. Neka su $X\subseteq\mathbb{C},\,z_0\in X'$ (derivat), $f,g:X\to C$ funkcije koje imaju limes u z_0 i $\lambda\in\mathbb{C}$. Dokažite da vrijedi:
 - (a) $\left(\lim_{z\to z_0} \lambda f(z)\right) = \lambda \left(\lim_{z\to z_0} f(z)\right);$
 - $\text{(b) } \lim_{z \to z_0} \bigl(f(z) + g(z) \bigr) = \bigl(\lim_{z \to z_0} f(z) \bigr) + \bigl(\lim_{z \to z_0} g(z) \bigr);$
 - (c) $\lim_{z \to z_0} (f(z) \cdot g(z)) = \left(\lim_{z \to z_0} f(z)\right) \cdot \left(\lim_{z \to z_0} g(z)\right);$
 - (d) $\lim_{z \to z_0} |f(z)| = \left| \lim_{z \to z_0} f(z) \right|$;
 - (e) $\lim_{z \to z_0} \overline{f(z)} = \overline{\lim_{z \to z_0} f(z)}$.
- 10. Da li postoje limesi (i ako postoje izračunajte ih):
 - (a) $\lim_{z \to 1} \frac{1-z}{1-z}$; (b) $\lim_{z \to 1} \frac{z}{1+\overline{z}}$; (c) $\lim_{z \to 1} \frac{1-|z|}{1-z}$.
- 11. Izračunajte limese

(a)
$$\lim_{z \to 1+i} \frac{z^2 - z + 1 - i}{z^2 - 2z + 2}$$
; (b) $\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1}$.

1.5 POTPUNOST PROSTORA $\mathbb C$

U izgradnji polja realnih brojeva posebno mjesto ima aksiom:

• Svaki neprazan odozgo omeđen podskup S od \mathbb{R} ima supremum $\sup S$ $u \mathbb{R}$.

Jedna važna posljedica tog aksioma je Cantorov aksiom:

• Neka je dan silazni niz segmenata $[a_n, b_n] \subseteq \mathbb{R}, n \in \mathbb{N}$ (tj. $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], n \in \mathbb{N}$). Tada je $S = \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$ (presjek je S = [a, b] gdje je $a = \sup\{a_n, n \in \mathbb{N}\}$, $a \ b = \inf\{b_n, n \in \mathbb{N}\}$). Ako je pored toga $\lim(a_n - b_n) = 0$, onda je S jednočlan skup.

Pokažimo da slična tvrdnja vrijedi i u ravnini \mathbb{R}^2 .

Teorem 1.28 Ako je $\square_n = [a_n, b_n] \times [c_n, d_n] \subseteq \mathbb{R}^2$ silazni niz pravokutnika (tj. $\square_{n+1} \subseteq \square_n$, $n \in \mathbb{N}$) onda je $S = \bigcap_{n \in \mathbb{N}} \square_n \neq \emptyset$. Ako je pored toga $\lim \delta(\square_n) = 0$, gdje je $\delta(\square_n) = \sqrt{(b_n - a_n)^2 + (d_n - c_n)^2}$ dijagonala pravokutnika \square_n , onda je S jednočlan skup.

Dokaz. Budući su $[a_n, b_n] \subseteq \mathbb{R}$ i $[c_n, d_n] \subseteq \mathbb{R}, n \in \mathbb{N}$, silazni nizovi segmenata, po Cantorovom aksiomu je $A = [a, b] = \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$ i $B = [c, d] = \bigcap_{n \in \mathbb{N}} [c_n, d_n] \neq \emptyset$. Označimo sa $T = A \times B \neq \emptyset$. Lako se pokaže da je T = S. Uz dodatni uvjet je $A = \{x_0\}$ i $B = \{y_0\}$ pa je $S = \{(x_0, y_0)\}$.

Teorem 1.29 (Bolzano-Weierstrass) Svaki omeđen beskonačan skup $S \subset \mathbb{C}$ ima bar jedno gomilište.

Dokaz. Neka je S omeđen skup. Tada postoji pravokutnik \square (sa stranicama paralelnim koordinatnim osima) koji sadrži S. Podijelimo pravokutnica na četiri sukladna pravokutnika i sa \square_1 označimo onaj koji sadrži beskonačno mnogo članova skupa S (od dobivenih pravokutnika bar jedan ima beskonačno mnogo članova iz S).

Nastavimo postupak: podijelimo pravokutnik \square_1 na četiri sukladna pravokutnika i onaj koji sadrži beskonačno mnogo članova skupa S označimo \square_2, \ldots Na taj način dolazimo do silaznog niza pravokutnika kojemu dijagonale teže k nuli, i po prethodnom teoremu je $\bigcap_{n\in\mathbb{N}}\square_n=\{z_0=(x_0,y_0)\}$. Lako se pokaže da je z_0 gomilište skupa S.

Napomena 1.30 Često se koristi ova varijanta Bolzano-Weierstrassovog teorema: Svaki omeđen niz kompleksnih brojeva ima konvergentni podniz.

Definicija 1.31 Za niz (z_n) u \mathbb{C} kažemo da je Cauchyjev niz (ili fundamentalan niz) ako za svako $\varepsilon > 0$ postoji $n_0 \in \mathbb{N}$ takav da vrijedi $d(z_m, z_n) < \varepsilon$ čim su $m, n \geq n_0$.

Simbolički

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall m, n \in \mathbb{N}) \quad m, n \ge n_0 \Rightarrow d(z_m, z_n) < \varepsilon.$$

Teorem 1.32 Svaki Cauchyjev niz (z_n) u \mathbb{C} je konvergentan.

Dokaz. Pokažimo da je svaki Cauchyjev niz (z_n) je omeđen.

Za $\varepsilon = 1$ postoji takav $n_0 \in \mathbb{N}$ da $n > n_0$ povlači $d(z_n, z_{n_0}) < 1$. Stoga je skup $\{z_n : n \geq n_0\}$ sadržan u kugli $K(z_{n_0}, 1)$ te je omeđen. Van te kugle ostalo je konačno mnogo članova niza pa i oni čine omeđen skup. Kako je unija omeđenih skupova omeđen skup, zaključujemo da je i skup $\{z_n : n \in \mathbb{N}\}$ omeđen.

Neka je (z_n) Cauchyjev niz i jer je on omeđen po Bolzano-Weierstrassovom teoremu (odnosno Napomeni 1.30) on ima konvergentni podniz $(z_{p(k)})$. Neka je $z_0 = \lim_{k \to \infty} z_{p(k)}$.

Tvrdimo da je $\lim z_n = z_0$.

Neka je $\varepsilon > 0$ proizvoljan. Po pretpostavci postoji takav $n_0 \in \mathbb{N}$ da $m, n \ge n_0 \Rightarrow d(x_m, x_n) < \frac{\varepsilon}{2}$. Kako je $z_0 = \lim_{k \to \infty} z_{p(k)}$ postoji takav $k \in \mathbb{N}$ da je $n_k \ge n_0$ i da je $d(z_{p(k)}, z_0) < \frac{\varepsilon}{2}$. Dobivamo: za $n > n_0$ je $d(z_n, z_0) \le d(z_n, z_{p(k)}) + d(z_{p(k)}, z_0) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ i zaista je $\lim z_n = z_0$.

Na sličan način se pojam Cauchyjevog niza uvodi u proizvoljnom metričkom prostoru. Metrički prostor u kojemu je svaki Cauchyjev niz konvergentan naziva se **potpun metrički prostor.** Odatle je i naslov ovog odjeljka, naime pokazali smo da je $\mathbb C$ potpun metrički prostor.

1.6 KOMPAKTNOST I JEDNOLIKA NEPREKIDNOST

Definicija 1.33 Skup $K \subseteq \mathbb{C}$ je **kompaktan**, ako on ima svojstvo da svaki niz u K ima konvergentni podniz kojemu je i limes u K.

Teorem 1.34 Skup $K \subseteq \mathbb{C}$ je kompaktan ako i samo ako je on omeđen i zatvoren.

Dokaz. \implies Neka je K kompaktan.

(1) Zatvorenost skupa K.

Po definiciji kompaktnosti svaki niz (z_n) iz K ima konvergentni podniz $(z_{p(k)})$ kojemu je $\lim_{k\to\infty} z_{p(k)} = z_0$ u K. Krenemo li od bilo kojeg konvergentnog niza iz K kojemu je limes z_0 lako se pokaže da je z_0 limes i svakog

njegovog podniza. Dakle, limes svakog konvergentnog niza iz K je opet element iz K. Sada po Teoremu 1.12 (K je zatvoren onda i samo onda ako je za svaki konvergentni niz (z_n) iz K je i lim $z_n=z_0$ iz K) zaključujemo da je K zatvoren.

(2) Omeđenost skupa K.

Pretpostavimo suprotno. Tada bi za svaki $n \in \mathbb{N}$ postojao $z_n \in K$ takav da je $|z_n| \geq n$. Dolazimo tako do niza (z_n) iz K koji nema konvergentnog podniza (svaki je neomeđen, dakle i ne konvergira) što je u suprotnosti s pretpostavkom da je K kompaktan. Dakle, K je omeđen.

E Neka je K omeđen i zatvoren skup i neka je (z_n) bilo koji niz iz K. Budući je K omeđen, niz (z_n) je omeđen i po Bolzano-Weierstrassovom teoremu (T.1.29 i N.1.30) postoji konvergentan podniz $(z_{p(k)})$ tog niza. Jer je K zatvoren skup mora biti i $\lim_{k\to\infty} z_{p(k)} \in K$. Time smo dokazali da je K kompaktan. ■

Korolar 1.35 Neka je K_i , $i \in \mathbb{N}$, silazni niz (po inkluziji) kompaktnih nepraznih skupova. Tada je $K = \bigcap_{i=1}^{\infty} K_i$ neprazan i kompaktan.

Dokaz. Jasno je da je K zatvoren i omeđen, dakle i kompaktan. Ostaje dokazati da je K neprazan.

Budući su K_i neprazni skupovi možemo odabrati niz $(z_n), z_n \in K_n$. Očito je taj niz iz kompaktnog skupa K_1 pa stoga postoji konvergentni podniz $(z_{p(k)})$. Neka je $z_0 = \lim_{k \to \infty} z_{p(k)}$. Očito su članovi podniza $(z_{p(k)})$ sadržani u kompaktnom, dakle i zatvorenom skupu $K_{p(1)}$, pa je $z_0 \in K_{p(1)}$. To znači da je $z_0 \in K_n$ za sve $n \leq p(1)$. Anlogno, za bilo koji prirodni broj j, niz $(z_{p(k)}, k \geq j)$ ima članove u $K_{p(j)}$ i limes mu je z_0 . Dobili smo da je $z_0 \in K_{p(j)}$, a odatle $z_0 \in K_n$ za $n \leq p(j)$. Budući $p(j) \to \infty$ kada $j \to \infty$ zaključujemo da je $z_0 \in K_n$ za svako $n \in \mathbb{N}$, i K je zaista neprazan.

Definicija 1.36 Skup $M \subseteq \mathbb{C}$ zove se ε -mreža za skupa $S \subseteq \mathbb{C}$, ako

$$(\forall s \in S) (\exists z \in M) \quad d(s, z) < \varepsilon.$$

Ukoliko je S omeđen skup onda se za svaki $\varepsilon > 0$ postoji konačna ε -mreža M. Sljedeći teorem pokazuje da se može izabrati $M \subseteq S$.

Teorem 1.37 Ako je $S \subseteq \mathbb{C}$ omeđen skup i $\varepsilon > 0$, onda postoji konačan skup $M \subseteq S$ koji je ε -mreža za skup S.

Dokaz. Dokaz kontradikcijom. Pretpostavimo suprotno, tj. da postoji $\varepsilon > 0$ takav da S ne sadrži konačnu ε -mrežu za S.

Neka je $z_1 \in S$. Tada $\{z_1\}$ nije ε -mreža za S pa postoji $z_2 \in S$ takav da je $d(z_1, z_2) > \varepsilon$. Skup $\{z_1, z_2\}$ također nije ε - mreža za S pa postoji $z_3 \in S$ takav da je $d(z_3, z_1) > \varepsilon$ i $d(z_3, z_2) > \varepsilon$. Nastavljajući vaj postupak dolazimo do niza (z_n) u S sa svojstvom da je $d(z_i, z_j) \geq \varepsilon$ za $i \neq j$. Budući je S omeđen, po Bolzano-Weierstrassovom teoremu (T.1.29, N.1.30) on ima konvergenzni podniz $(z_{p(n)})$. No, to je nemoguće jer je $d(z_{p(i)}, z_{p(j)}) \geq \varepsilon$ za $i \neq j$. Dakle, S sadrži konačnu ε -mrežu za svaki $\varepsilon > 0$.

Definicija 1.38 Familija $(\Omega_j, j \in J)$ skupova iz \mathbb{C} zove se **pokrivač skupa** $S \subseteq C$, ako je $S \subseteq \bigcup_{j \in J} \Omega_j$. Ukoliko su svi Ω_j otvoreni, tada govorimo o **otvorenom pokrivaču**.

Teorem 1.39 (H. Lebesque) Ako je $(\Omega_j, j \in J)$ otvoreni pokrivač kompaktnog skupa K, onda postoji $\delta > 0$ takav da za svaki $z \in K$ postoji $j \in J$ tako da je $K(z, \delta) \subseteq \Omega_j$.

Dokaz. Dokaz kontradikcijom.

Pretpostavimo da takav δ ne postoji. Dakle, za svaki $\delta > 0$ postoji $z \in K$ takav da $K(z,\delta)$ nije sadržan u niti jednom Ω_j . Posebno, za $\delta = \frac{1}{n}$ $(n \in \mathbb{N})$ postoji $z_n \in K$ takav da kugla $K(z_n, \frac{1}{n})$ nije sadržana u niti jednom Ω_j . Budući je K kompaktan postoji konvergentan podniz $(z_{p(n)})$ i limes z_0 tog podniza leži u K. Iz $z_0 \in K$ i jer je $(\Omega_j, j \in J)$ pokrivač za K, slijedi da je $z_0 \in \Omega_{j_0}$ za neki $j_0 \in J$. No, jer je Ω_{j_0} otvoren, imamo da je $K(z_0, r) \subseteq \Omega_{j_0}$ za neki r > 0. Sada

$$d(z_0, z_{p(n)}) + \frac{1}{p(n)} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow (\exists m \in \mathbb{N}) \quad d(z_0, z_{p(m)}) + \frac{1}{p(m)} < r. \quad (*)$$

Konačno iz $z \in K\left(z_{p(m)}, \frac{1}{p(m)}\right)$ slijedi

$$d(z,z_0) \leq d(z,z_{p(m)}) + d(z_{p(m)},z_0) \overset{(*)}{<} \frac{1}{p(m)} + \left(r - \frac{1}{p(m)}\right) = r$$

što znači da je $z \in K(z_0, r)$. Time smo dokazali

$$K(z_{p(m)}, \frac{1}{p(m)}) \subseteq K(z_0, r) \subseteq \Omega_{j_0}$$

i došli do kontradikcije s izborom točaka z_n . Naime, za svaki $n \in \mathbb{N}$ točka z_n izabrana je tako da kugla $K(z_n, \frac{1}{n})$ nije sadržana u niti jednom Ω_j .
Primjenom prethodnog teorema na pokrivač koji se sastoji od jednog otvorenog skupa imamo:

Korolar 1.40 Ako je kompaktan skup K sadržan u otvorenom skupu $\Omega \subseteq \mathbb{C}$ onda postoji $\delta > 0$ takav da je $K(z, \delta) \subseteq \Omega$ za svaki $z \in K$.

Teorem 1.41 (Borel-Lebesque) Skup K je kompaktan ako i samo ako se svaki njegov otvoren pokrivač može reducirati na konačan podpokrivač.

Dokaz. \implies Neka je K kompaktan i $(\Omega_j, j \in J)$ njegov otvoreni pokrivač. Po Teoremu 1.39, imamo

$$(\exists \delta > 0)(\forall z \in K) (\exists j \in J) \quad K(z, \delta) \subseteq \Omega_j.$$

Za tako odabrani δ skup K sadrži konačnu δ -mrežu (T.1.37). Neka je ta mreža skup $M = \{z_1, \ldots, z_n\} \subset K$. Dakle,

$$K \subseteq \bigcup_{i=1}^{n} K(z_i, \delta).$$

Za svaki k = 1, 2, ..., n odaberimo $j_k \in J$ tako da je $K(z_k, \delta) \subseteq \Omega j_k$. Sada je $(\Omega_{j_k}, k = 1, 2, ..., n)$ traženi konačan podpokrivač.

E Dokažimo da je K zatvoren, tj. da je $U = \mathbb{C} \setminus K$ otvoren. Neka je $z \in U$. Skupovi $\Omega_k = \mathbb{C} \setminus \operatorname{Cl} K(z, \frac{1}{k}), k \in \mathbb{N}$, su otvoreni i čine rastući niz (po inkluziji, $\Omega_k \subseteq \Omega_{k+1}$) skupova. Vrijedi

$$\bigcup\nolimits_{k\in\mathbb{N}}\Omega_k=\mathbb{C}\setminus\bigcap\nolimits_{k\in\mathbb{N}}\operatorname{Cl}K\big(z,\tfrac{1}{k}\big)=\mathbb{C}\setminus\{z\}\supseteq K.$$

Dakle, $(\Omega_k, k \in \mathbb{N})$ je pokrivač od K i, po pretpostavci teorema, on se može reducirati na konačan podpokrivač, tj. postoje $k_1, \ldots, k_n \in \mathbb{N}$ takvi da je

$$K \subseteq \bigcup_{j=1}^n \Omega_{kj}$$
.

Neka je $k = \max\{k_1, \ldots, k_n\}$. To znači da je $\Omega_{k_j} \subseteq \Omega_k$, pa je $K \subseteq \Omega_k$ i odatle je

$$K(z, \frac{1}{k}) \subset \operatorname{Cl} K(z, \frac{1}{k}) = \mathbb{C} \setminus \Omega_k \subseteq \mathbb{C} \setminus K = U.$$

Dakle, oko svake točke $z \in U$ našli smo kuglu koja je sadržana u Ui U jest otvoren skup.

Treba još dokazati da je K omeđen skup.

Familija $(K(0,n), n \in \mathbb{N})$ jest otvoren pokrivač za \mathbb{C} , dakle i za K. Sada se on može reducirati na konačan podpokrivač $K \subseteq \bigcup_{k=1}^m K(0,n_k)$. Kako je konačna unija omeđenih skupova omeđen skup, zaista je K omeđen.

Definicija 1.42 Kažemo da je funkcija $f: S \to \mathbb{C}$ jednoliko (ili uniformno) neprekidna na skupu $K \subseteq S$, ako za svaki $\varepsilon > 0$ postoji $\delta > 0$ tako da vrijedi

$$(\forall z_1, z_2 \in K)$$
 $d(z_1, z_2) < \delta \Rightarrow d(f(z_1), f(z_2)) < \varepsilon$.

Napomenimo da neprekidnost funkcije f na K znači

$$(\forall z \in K)(\forall \varepsilon > 0)(\exists \delta > 0) \quad (\forall z' \in K)$$
$$d(z', z) < \delta \Rightarrow d(f(z'), f(z)) < \varepsilon,$$

a jednolika neprekidnost na K

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall z \in K) \quad (\forall z' \in K)$$
$$d(z, z') < \delta \Rightarrow d(f(z), f(z')) < \varepsilon,$$

što u slučaju neprekidnosti znači da δ ovisi o izboru točke z i broja ε , a u drugom slučaju, u slučaju jednolike neprekidnosti δ ovisi samo o izboru broja ε .

Napomenimo: svako jednoliko neprekidno preslikavanje je i neprekidno preslikavanje.

Teorem 1.43 (Heineov teorem) Neka je $K \subseteq \mathbb{C}$ kompaktan skup i $f: K \to \mathbb{C}$ neprekidna funkcija. Tada je f jednoliko neprekidna na K.

Dokaz. Jer je f neprekidna na K vrijedi

$$(\forall z \in K)(\forall \varepsilon > 0)(\exists \delta = \delta(z) > 0)(\forall z' \in K) \ d(z', z) < \delta \Rightarrow d(f(z'), f(z)) < \frac{\varepsilon}{2}$$

ili drugačije zapisano

$$(\forall z \in K)(\forall \varepsilon > 0)(\exists \delta = \delta(z) > 0) (\forall z' \in K) \ z' \in K(z, \delta(z)) \Rightarrow f(z') \in K(f(z), \frac{\varepsilon}{2})$$
 (1)

Promotrimo otvoreni pokrivač $(K(z, \delta(z), z \in K)$ skupa K. Jer je K kompaktan, po Lebesquevom teoremu (T.1.39) za promatrani otvoreni pokrivač postoji $\delta > 0$ takav da je za svaki $z_0 \in K$ kugla $K(z_0, \delta)$ sadržana u $K(z, \delta(z))$ za neki $z \in K$. Neka su sada $z', z'' \in K$ takvi da je $d(z', z'') < \delta$, tj. $z', z'' \in K \cap K(z, \delta)$. Sada po (1) imamo

$$f(z'), f(z'') \in K(f(z), \frac{\varepsilon}{2}).$$

Slijedi

$$d(f(z'), f(z'')) \le d(f(z'), f(z)) + d(f(z), f(z'')) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Time smo pokazali da vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall z' \in K)(\forall z'' \in K)$$
$$d(z', z'') < \delta \Rightarrow d(f(z'), f(z'')) < \varepsilon$$

i zaista je f jednoliko neprekidna funkcija na K.

Teorem 1.44 Neka je $K \subseteq \mathbb{C}$ kompaktan skup i $f : K \to \mathbb{C}$ jednoliko neprekidna funkcija. Tada je slika f(K) kompaktan skup.

Dokaz. Dokažimo da je f(K) omeđen skup.

Jer je f jednoliko neprekidna ona je i neprekidna. Za $\varepsilon=1$ i $z\in K$ neka je $\delta(z)$ takav da je

$$f(K \cap K(z, \delta(z)) \subseteq K(f(z), 1).$$

Sada je $(K(z, \delta(z)), z \in K)$ otvoreni pokrivač koji se, zbog kompaktnosti skupa K dade reducirati na konačan dio $(K(z_1, \delta(z_1)), \ldots, K(z_n, \delta(z_n))$. Sada je

$$f(K) \subseteq f(K \cap K(z_1, \delta(z_1)) \bigcup \cdots \bigcup f(K \cap K(z_n, \delta(z_n))) \subseteq$$
$$\subseteq K(f(z_1), 1) \bigcup \cdots \bigcup K(f(z_n), 1)$$

i kako je unija na desnoj strani omeđen skup, to je i f(K) omeđen skup. Ostaje još dokazati da je f(K) zatvoren.

Neka je (b_n) konvergentan niz u f(K) i neka je $b_0 = \lim b_n$. Za $n \in \mathbb{N}$ neka je $a_n \in K$ takav da je $f(a_n) = b_n$. Sada je (a_n) niz u K. Zbog kompaktnosti od K taj niz ima konvergentni podniz $(a_{p(n)})$ kojemu je $\lim a_{p(n)} = a_0 \in K$. Jer je f neprekidna u a_0 mora biti $f(a_0) = \lim f(a_{p(n)}) = \lim b_{p(n)} = b_0 \in f(K)$. Dakle, $b_0 \in f(K)$ pa je f(K) zaista zatvoren.

Teorem 1.45 Neka je $K \subseteq \mathbb{C}$ kompaktan skup i $f: K \to \mathbb{C}$ jednoliko neprekidna funkcija. Ako je $f(K) \subseteq \mathbb{R}$, onda postoje točke $a, b \in \mathbb{R}$ takve da je $f(a) \leq f(z) \leq f(b)$ za svaki $z \in K$.

Dokaz. Po prethodnom teoremu je skup $K_1 = f(K) \subseteq \mathbb{R}$ kompaktan, dakle i zatvoren i omeđen. Neka je $M = \sup K_1 \in K_1$ i $m = \inf K_1 \in K_1$. Za $a, b \in K$ za koje je m = f(a) i M = f(b) vrijedi $f(a) \leq f(z) \leq f(b)$, za svaki $z \in K$.

ZADACI

- 1. Ako je $(K_i, i \in I)$ familija kompaktnih skupova, onda je i presjek $\bigcap_{i \in I} K_i$ kompaktan. Dokažite!
- 2. Unija konačno mnogo kompaktnih skupova je kompaktan skup. Dokažite!
- 3. Prikažite C kao uniju prebrojivo mnogo kompaktnih skupova.

4. Neka je $\gamma:[a,b]\to\mathbb{C}$ neprekidna funkcija i neka je

$$\Gamma = \{ \gamma(t) : t \in [a, b] \}$$

njena slika. Dokažite da za otvoren skup $\Omega \subseteq \mathbb{C}$ koji sadrži "krivulju" Γ postoji $\delta > 0$ takav da je $K(z, \delta) \subseteq \Omega$ za svaki $z \in \Gamma$.

5. Udaljenost točke $z_0 \in \mathbb{C}$ do skupa $S \subseteq \mathbb{C}$ definiramo sa

$$d(z_0, S) = \inf\{|z_0 - z| : z \in S\}.$$

Dokažite da je $d(z_0,S)=0$ ako i samo ako je $z_0\in\operatorname{Cl} S$. Dokažite da je funkcija $z\mapsto d(z,S)$ neprekidna na $\mathbb C$ i, štoviše da vrijedi $|d(z_1,S)-d(z_2,S)|\leq |z_1-z_2|$, $z_1,z_2\in\mathbb C$.

6. Udaljenost između skupova $A, B \subseteq \mathbb{C}$ definiramo sa

$$d(A, B) = \inf\{|a - b| : a \in A, b \in B\}.$$

Ako je $K \subset \mathbb{C}$ kompaktan, a $F \subset \mathbb{C}$ zatvoren skup dokažite da $K \cap F = \emptyset$ povlači d(K, F) > 0 i da postoje $z_1 \in K$ i $z_2 \in F$ takvi da je $d(A, B) = |z_1 - z_2|$.

7. Neka je $K\subseteq\mathbb{C}$ kompaktan skup i $\varepsilon>0$. Dokažite da je

$$K_{\varepsilon} = \{ z \in \mathbb{C} : d(z, K) \le \varepsilon \}$$

kompaktan skup i da sadrži K. Nadalje, za $\varepsilon_2 > \varepsilon_1 > 0$ je K_{ε_1} sadržan u nutrini od K_{ε_2} . Napokon, vrijedi

$$K = \bigcap_{\varepsilon > 0} K_{\varepsilon} = \bigcap_{n \in \mathbb{N}} K_{\frac{1}{n}}.$$

8. Dijametar skupa $S \subseteq \mathbb{C}$ definiramo sa

$$\delta(S) = \sup\{|z_1 - z_2| : z_1, z_2 \in S\}.$$

Neka je $\varepsilon>0$ bilo koji. Dokažite da se kompaktan skup $K\subseteq\mathbb{C}$ može prikazati kao unija od konačno mnogo kompaktnih skupova, od kojih je svaki dijametra $\leq \varepsilon$.

Poglavlje 2

ANALITIČKE FUNKCIJE

2.1 OSNOVNA SVOJSTVA ANALITIČKIH FUNKCIJA

U daljnjem stalno pretpostavljamo da je Ω otvoren skup u \mathbb{C} .

Definicija 2.1 Kažemo da je funkcija $f: \Omega \to \mathbb{C}$ diferencijabilna u točki z_0 otvorenog skupa $\Omega \subseteq \mathbb{C}$, ako funkcija

$$\tilde{f}: \Omega \setminus \{z_0\} \to \mathbb{C}, \quad \tilde{f}(z) = \frac{f(z) - f(z_0)}{z - z_0}$$

ima limes u točki z₀. Tada se taj limes označava

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

i naziva derivacija funkcije f u točki z_0 .

Kažemo da je f diferencijabilna na Ω ako je ona diferencijabilna u svakoj točki $z_0 \in \Omega$ (tada kažemo i kratko - diferncijabilna funkcija). U tom je slučaju $z \mapsto f'(z)$ funkcija, i $f': \Omega \to \mathbb{C}$ nazivamo derivacija od f.

Umjesto $f'(z_0)=\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$ možemo koristiti i (standardni) zapis za derivaciju.

$$f'(z_0) = \lim_{\triangle z \to 0} \frac{f(z_0 + \triangle z) - f(z_0)}{\triangle z}.$$

Kao i kod realnih funkcija realne varijable tako se i ovdje iduktivno definira n-ta derivacija $f^{(n)} = (f^{(n-1)})'$.

Primjer Pokažimo da je funkcija $f(z) = z^n$ diferencijabilna na \mathbb{C} i da vrijedi $(z^n)' = nz^{n-1}$ $(n \in \mathbb{N})$.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^n - z^n}{\Delta z} = \lim_{\Delta z \to 0} \frac{\left[z^n + \binom{n}{1}z^{n-1}\Delta z + \binom{n}{2}z^{n-2}(\Delta z)^2 + \dots + (\Delta z)^n\right] - z^n}{\Delta z} = \lim_{\Delta z \to 0} \left[nz^n + \binom{n}{2}z^{n-2}(\Delta z) + \dots + (\Delta z)^{n-1}\right] = nz^{n-1}.$$

Napomena 2.2 Vrijede tvrdnje:

- (a) Ako je $f:\Omega\to\mathbb{C}$ diferencijabilna funkcija, onda je f i neprekidna funkcija;
- (b) Ako su $f, g: \Omega \to \mathbb{C}$ diferencijabilne funkcije, onda su diferencijabilne i funkcije $f \pm g$, $f \cdot g$, $\frac{f}{g}$ (uz uvjet $g(z) \neq 0$) i vrijedi: $(f \pm g)'(z) = f'(z) \pm g'(z);$ $(f \cdot g)'(z) = f'(z) \cdot g(z) + f(z) \cdot g'(z);$ $\left(\frac{f}{g}\right)'(z) = \frac{f'(z) \cdot g(z) f(z) \cdot g'(z)}{[g(z)]^2} \ (g(z) \neq 0).$

Definicija 2.3 Ako je funkcija f' neprekidna na Ω , onda se f zove analitička na Ω (još se kaže da je f holomorfna funkcija ili regularna funkcija).

Primjer Funkcija $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2$ ima neprekidnu derivaciju f'(z) = 2z pa je analitička na \mathbb{C} .

Skup svih analitičkih funkcija na otvorenom skupu $\Omega \subseteq \mathbb{C}$ označavat ćemo sa $A(\Omega)$. Budući je za $f,g \in A(\Omega)$ i $\alpha,\beta \in \mathbb{C}$ i $\alpha f + \beta g \in A(\Omega)$ to je $A(\Omega)$ vektorski prostor nad poljem kompleksnih brojeva. Nadalje, $f,g \in A(\Omega)$ povlači da je $f \cdot g \in A(\Omega)$. Napomenimo da je i $\frac{f}{g}$ je analitička funkcija na otvorenom skupu $\{z \in \Omega : g(z) \neq 0\}$.

Uspoređivanje diferencijabilnosti i analitičnosti funkcije f sa svojstvima realnih funkcija u = Re f i v = Im f nije jednostavno. Ta veza dana je narednim teoremom.

Teorem 2.4 Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup, $z_0 = x_0 + iy_0 \in \Omega$, $f : \Omega \to \mathbb{C}$, u = Re f, v = Im f. Funkcija f je diferencijabilna u točki z_0 onda i samo onda ako su funkcije u i v diferencijabilne u točki (x_0, y_0) i ako vrijedi:

$$\frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y}, \quad \frac{\partial u(x_0, y_0)}{\partial y} = -\frac{\partial v(x_0, y_0)}{\partial x}.$$
 (1)

U tom slučaju je

$$f'(z_0) = \frac{\partial u(x_0, y_0)}{\partial x} + i \frac{\partial v(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y} - i \frac{\partial u(x_0, y_0)}{\partial y}.$$
 (2)

Dokaz. \Longrightarrow Funkcija u je diferencijabilna u točki (x_0,y_0) ako postoje realni brojevi A i B takvi da vrijedi

$$\lim_{(x,y)\to(x_0,y_0)} \frac{|u(x,y)-u(x_0,y_0)-A(x-x_0)-B(y-y_0)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0$$

i tada je

$$A = \frac{\partial u(x_0, y_0)}{\partial x}, \ B = \frac{\partial u(x_0, y_0)}{\partial y}.$$

Ako je f diferencijabilna u točki z_0 stavimo da je $f'(z_0) = C$ i pokažimo da je C = A + iB. Imamo:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - C \right| = \left| \frac{f(z) - f(z_0) - C(z - z_0)}{z - z_0} \right| =$$

$$\left| \frac{u(x, y) + iv(x, y) - u(x_0, y_0) - iv(x_0, y_0) - (A + iB)(x + iy - x_0 - iy_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \right| =$$

$$\left| \frac{u(x, y) - u(x_0, y_0) - A(x - x_0) + B(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} + \frac{iv(x, y) - v(x_0, y_0) - B(x - x_0) - A(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \right| \tag{a}$$

Budući je $\lim_{z \to z_0} \left| \frac{f(z) - f(z_0)}{z - z_0} - C \right| = 0$ iz (a) slijedi

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} \frac{u(x,y)-u(x_0,y_0)-A(x-x_0)+B(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0,$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} \frac{v(x,y)-v(x_0,y_0)-B(x-x_0)-A(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0.$$
(b)

Dakle, funkcije u i v su diferencijabilne u (x_0, y_0) i vrijedi

$$A = \frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y}, \ B = -\frac{\partial u(x_0, y_0)}{\partial y} = \frac{\partial v(x_0, y_0)}{\partial x}$$
(c)

 \rightleftharpoons Neka su u i v diferencijabilne u točki (x_0, y_0) i neka vrijedi (c). Tada vrijedi (b).

Stavimo C = A + iB i $z_0 = x_0 + iy_0$. Tada za z = x + iy vrijedi (a), pa pomoću (b) slijedi $\lim_{z \to z_0} \left| \frac{f(z) - f(z_0)}{z - z_0} - C \right| = 0$, odnosno

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = C.$$

Dakle, funkcija f jest diferencijabilna u točki z_0 i vrijedi (1).

Teorem 2.5 Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup, $f : \Omega \to \mathbb{C}$, $u = \operatorname{Re} f$, $v = \operatorname{Im} f$. Funkcija f je analitička ako i samo su funkcije u i v klase C^1 na Ω i na Ω zadovoljavaju Cauchy-Riemannove uvjete

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$
 (3)

Dokaz. Funkcije u i v su klase C^1 na Ω ako su one diferencijabilne u svakoj točki iz Ω i njihove su parcijalne derivacije po x i y neprekidne funkcije na Ω . Odavde i iz Teorema 2.4 neposredno slijedi tvrdnja teorema.

Primjer Funkcija $f(z) = i\overline{z}$ definirana je na \mathbb{C} . Njezin realni dio je u(x,y) = y, a imaginarni dio v(x,y) = x. Budući je $\frac{\partial u}{\partial y} = 0$ i $\frac{\partial v}{\partial x} = 1$ imamo $\frac{\partial u}{\partial y} \neq -\frac{\partial v}{\partial x}$ pa f nije diferencijabilna u svakoj točki $z \in \mathbb{C}$.

Primjer Funkcija $f(z) = e^{z^2}$ definirana je na \mathbb{C} . Budući je

$$f(z) = e^{(x+iy)^2} = e^{x^2-y^2}(\cos 2xy + i\sin 2xy)$$

to je $u(x,y)=e^{x^2-y^2}\cos 2xy$ i $v(x,y)=e^{x^2-y^2}\sin 2xy$. Funkcije u i v su diferencijabilne u svakoj točki (x,y) i zadovoljavaju Cauchy-Riemannove uvjete:

$$\frac{\partial u}{\partial x} = 2xe^{x^2 - y^2}\cos 2xy - 2ye^{x^2 - y^2}\sin 2xy = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -2ye^{x^2 - y^2}\cos 2xy - 2xe^{x^2 - y^2}\sin 2xy = -\frac{\partial v}{\partial x}.$$

Ove su parcijalne derivacije neprekidne i stoga je f analitička funkcija na čitavoj ravnini \mathbb{C} . Derivaciju f'(z) možemo računati ovako:

$$f'(z) = \frac{\partial u(x_0, y_0)}{\partial x} + i \frac{\partial v(x_0, y_0)}{\partial x} =$$

$$= e^{x^2 - y^2} (2x \cos 2xy - 2y \sin 2xy) + ie^{x^2 - y^2} (2y \cos 2xy + 2x \sin 2xy) =$$

$$= e^{x^2 - y^2} [2(x + iy) \cos 2xy + 2(ix - y) \sin 2xy] =$$

$$= 2(x + iy)e^{x^2 - y^2} (\cos 2xy + i \sin 2xy) =$$

$$= 2(x + iy)e^{(x + iy)^2} = 2ze^{z^2}.$$

Primjer Funkcija $f(z)=z\cdot \overline{z}$ definirana je na čitavom \mathbb{C} . Za nju je $u(x,y)=x^2+y^2$ i v(x,y)=0. Ispitajmo u kojim točkama vrijede Cauchy-Riemannovi uvjeti. Budući je

$$\frac{\partial u}{\partial x} = 2x, \ \frac{\partial v}{\partial y} = 0 \Rightarrow x = 0$$

$$\frac{\partial u}{\partial y} = 2y, \ \frac{\partial v}{\partial x} = 0 \Rightarrow y = 0$$

vidimo da su oni zadovoljeni samo u točki (0,0). Zato je f diferencijabilna samo u točki z=0 i nigdje nije analitička (pošto nije diferencijabilna niti u kojoj okolini točke 0). Izračunajmo njenu derivaciju u točki z=0:

$$f'(0) = f'(z) = \lim_{\Delta z \to 0} \frac{f(0 + \Delta z) - f(0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z \cdot \overline{\Delta z}}{\Delta z} = \lim_{\Delta z \to 0} \overline{\Delta z} = \lim_{\Delta x, \Delta y \to 0} (\Delta x - i\Delta y) = 0$$

Definicija 2.6 Neka $u: \Omega \to \mathbb{R}$ funkcija klase C^2 na otvorenom skupu $\Omega \subseteq \mathbb{R}^2$. Kažemo da je u **harmonijska funkcija** na Ω ako je

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{4}$$

svuda na Ω .

Drugim riječima harmonijska funkcija je rješenje **Laplaceove diferencijalne jednadžbe** $\Delta u = 0$.

Primjer Za funkciju $u(x,y) = -2e^x \cos y$ je

$$\frac{\partial u}{\partial x} = -2e^x \cos y, \quad \frac{\partial u}{\partial y} = 2e^x \sin y,$$

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2e^x \cos y + 2e^x \cos y = 0,$$

pa je u harmonijska funkcija.

Primjer Odredimo harmonijsku funkciju (različitu od konstante) koja se može zapisati u obliku

$$u(x,y) = \varphi\left(\frac{y}{x}\right).$$

Stavimo $z = \frac{y}{x}$. Tada je

$$\frac{\partial u}{\partial x} = \frac{\partial \varphi}{\partial z} \cdot \frac{\partial z}{\partial x} = \varphi'(z) \cdot \frac{-y}{x^2}, \ \frac{\partial^2 u}{\partial x^2} = \varphi''(z) \cdot \frac{y^2}{x^4} + \varphi'(z) \cdot \frac{2y}{x^3},$$

$$\frac{\partial u}{\partial y} = \frac{\partial \varphi}{\partial z} \cdot \frac{\partial z}{\partial y} = \varphi'(z) \cdot \frac{1}{x}, \ \frac{\partial^2 u}{\partial y^2} = \varphi''(z) \cdot \frac{1}{x^4}.$$

Slijedi da je

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \varphi''(z) \cdot \frac{x^2 + y^2}{x^4} + \varphi'(z) \cdot \frac{2y}{x^3} = \frac{1}{x^2} \Big[(1+z^2)\varphi''(z) + 2z\varphi'(z) \Big].$$

Da bi u bila harmonijska mora vrijediti $(1+z^2)\varphi''(z) + 2z\varphi'(z) = 0$, tj.

$$\frac{\varphi''(z)}{\varphi'(z)} = -\frac{2z}{1+z^2}.$$

Integracija daje $\ln \varphi'(z) = -\ln(1+z^2) + \ln C_1$ pa je

$$\varphi'(z) = \frac{C_1}{1+z^2}$$

i odavde je $\varphi(z) = C_1 \arctan z + C_2$. Dakle,

$$u(x,y) = \varphi(\frac{y}{x}) = C_1 \arctan \frac{y}{x} + C_2$$

je harmonijska funkcija (i jedina tog oblika).

Pokazat ćemo kasnije netrivijalnu činjenicu da ako je f analitička funkcija na otvorenom skupu Ω , onda je i f' analitička funkcija na Ω (štoviše da su i derivacije svakog reda analitičke na Ω).

Neka je sada f=u+iv analitička funkcija na $\Omega.$ Tada vrijede Cauchy-Riemannovi uvjeti pa imamo

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) = -\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial^2 u}{\partial y^2}$$

i u je harmonijska funkcija na Ω . Analogno se pokazuje da je i funkcija v harmonijska na Ω . Time smo pokazali da vrijedi teorem.

Teorem 2.7 Ako je $f = u + iv \in A(\Omega)$ onda su u i v harmonijske funkcije $na \Omega$.

Neka je sada u harmonijska funkcija na području Ω . Postavlja se pitanje postoji li funkcija $f \in A(\Omega)$ takva da je Ref = u? Da bismo riješili taj problem, treba riješiti sistem diferencijalnih jednadžbi

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

smatrajući funkciju u zadanom, a funkciju v nepoznatom. Zbog jednostavnosti uzmimo da je Ω otvorena kugla i neka točke $z_0=x_0+iy_0$ i z=x+iy leže u Ω .

Iz $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ integracijom po varijabli y dobivamo

$$v(x,y) = \int_{y_0}^{y} \frac{\partial u(x,s)}{\partial x} ds + \varphi(x),$$

gdje je $\varphi(x)$ "konstanta integracije" koju određujemo iz uvjete da v zadovoljava jednadžbu $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ i da je $\triangle u=0$. Imamo

$$\frac{\partial u(x,y)}{\partial y} = -\frac{\partial v(x,y)}{\partial x} = -\int_{y_0}^{y} \frac{\partial^2 u(x,s)}{\partial x^2} ds - \varphi'(x) \stackrel{\triangle u=0}{=}$$

$$\int_{y_0}^y \frac{\partial^2 u(x,s)}{\partial s^2} ds - \varphi'(x) = \frac{\partial u(x,y)}{\partial y} - \frac{\partial u(x,y_0)}{\partial y} - \varphi'(x).$$

Odavde je

$$\varphi'(x) = -\frac{\partial u(x, y_0)}{\partial y},$$

što daje

$$\varphi(x) = -\int_{x_0}^x \frac{\partial u(t, y_0)}{\partial y} dt + v_0,$$

gdje je v_0 proizvoljna realna konstanta. Funkcije u i

$$v(x,y) = -\int_{x_0}^{x} \frac{\partial u(t,y_0)}{\partial y} dt + \int_{y_0}^{y} \frac{\partial u(x,s)}{\partial x} ds + v_0,$$

zadovoljavaju Cauchy-Riemannove diferencijalne jednadžbe na kugli $K(z_0, r)$ i one su klase C^1 , pa je f = u + iv analitička funkcija na $K(z_0, r)$ kojoj je u realni dio. Time smo dokazali teorem.

Teorem 2.8 Neka je u harmonijska funkcija na području $\Omega \subseteq \mathbb{C}$, $z_0 = x_0 + iy_0 \in \Omega$, $K(z_0, r) \subseteq \Omega$ i $v_0 \in \mathbb{R}$ proizvoljan. Tada postoji jednistvena funkcija v koja je harmonijska na kugli $K(z_0, r)$, $v_0 = v(x_0, y_0)$ i f = u + iv je analitička funkcija na kugli $K(z_0, r)$.

Primjer Odredimo funkciju v, tako da funkcija f=u+iv kojoj je realni dio $u=x^3-3xy^2+y$, bude analitička.

Vrijedi

$$\frac{\partial^2 u}{\partial x^2} = 6x, \ \frac{\partial^2 u}{\partial x^2} = -6x$$

pa je $\triangle u=0$. Dakle, u je harmonijska i zato postoji tražena funkcja v. Odredit ćemo je koristeći Cauchy-Riemannove uvjete:

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 = \frac{\partial v}{\partial y}$$

i odavde je

$$v(x,y) = \int (3x^2 - 3y^2)dy + \varphi(x) = 3x^2y - y^3 + \varphi(x).$$

Nepoznatu funkciju φ određujemo koristeći drugi Cauchy-Riemannov uvjet:

$$\frac{\partial u}{\partial y} = -6xy + 1 = -\frac{\partial v}{\partial x} = -6xy - \varphi'(x).$$

Slijedi $\varphi'(x) = -1$ pa je $\varphi(x) = -x + C$. Dobili smo

$$f(z) = x^3 - 3xy^2 + y + i(3x^2y - y^3 - x + C) =$$

$$(x+iy)^3 - i(x+iy) + C = z^3 - iz + C.$$

Napomenimo da smo krenuli od funkcije u i odredili v. Slično bi se pokazalo da ukoliko je v harmonijska funkcija da se onda može odrediti analitička

funkcija f kojoj je v imaginarni dio. Dakle, ako su u i v harmonijske funkcije koje zadovoljavaju Cauchy-Riemannove uvjete, tada je funkcija f = u + iv analitička. Takve dvije funkcije zovemo **konjugirani par harmonijskih funkcija.**

Ako je zadana jedna od funkcija u ili v (ona mora nužno biti harmonijska), tada pomoću Cauchy-Riemannovih uvjeta možemo odrediti harmonijsku funkciju koja s njom čini konjugirani par. Drugim riječima, možemo odrediti analitičku funkciju f ukoliko poznajemo ili njen realni ili njen imaginarni dio. Pokažite (korisna vježba!) da ukoliko je poznat u da je tada

$$v(x,y) = \int_{x_0}^{x} -\frac{\partial u(t,y)}{\partial y} dt + \int_{y_0}^{y} \frac{\partial u(x_0,s)}{\partial x} ds + C,$$
 (5)

a ako je poznat v da je tada

$$u(x,y) = \int_{x_0}^{x} \frac{\partial v(t,y)}{\partial y} dt + \int_{y_0}^{y} -\frac{\partial v(x_0,s)}{\partial x} ds + C.$$
 (6)

Primjer Neka je

$$u = \ln(x^2 + y^2).$$

Lako se provjeri da je $\Delta u = 0$ i funkcija u može biti realni dio neke analitičke funkcije f = u + iv. Njen imaginarni dio v odredimo preko formule (5) tako da uzmemo $(x_0, y_0) = (0, 1)$:

$$v(x,y) = \int_{x_0}^{x} -\frac{\partial u(t,y)}{\partial y} dt + \int_{y_0}^{y} \frac{\partial u(x_0,s)}{\partial x} ds + C =$$

$$\int_0^x -\frac{2y}{t^2 + y^2} dt + \int_1^y \frac{2 \cdot 0}{0^2 + s^2} ds + C = -2 \arctan \frac{x}{y} + C.$$

Dakle,

$$f(z) = u(x,y) + iv(x,y) = \ln(x^2 + y^2) + i\left(C - 2\arctan\frac{x}{y}\right).$$

Na koncu ovog odjeljka pokažimo analogon za analitičke funkcije poznate tvrdnje: ako je $\varphi: \langle a,b \rangle \to \mathbb{R}$ diferencijabilna funkcija sa svojstvom da je $\varphi'(t) = 0$ za svaki $t \in \langle a,b \rangle$ onda je φ konstantna funkcija.

Teorem 2.9 Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija na području Ω sa svojstvom da je f'(z) = 0 za svako $z \in \Omega$. Tada je f konstanta.

Dokaz. Neka su $a, b \in \Omega$ proizvoljne točke i z_1, \ldots, z_{n-1} takve točke da segmenti $[a, z_1], [z_1, z_2], \cdots, [z_{n-1}, b]$ leže u Ω . Promotrimo funkciju

$$\varphi: [0,1] \to \mathbb{C}, \quad \varphi(t) = f(a + t(z_1 - a)).$$

Ona je neprekidna i vrijedi $\varphi(0) = f(a), \ \varphi(1) = f(z_1)$. Za $t \in (0,1)$ imamo

$$\frac{\varphi(t+h)-\varphi(t)}{h} = \frac{f(a+(t+h)(z_1-a))-f(a+t(z_1-a))}{[a+(t+h)(z_1-a)]-[a+t(z_1-a)]}(z_1-a)$$

pa je φ diferencijabilna u t i vrijedi

$$\varphi'(t) = f'(a + t(z_1 - a)) \cdot (z_1 - a) = 0 \cdot (z_1 - a) = 0.$$

Slijedi da je $(\operatorname{Re} \varphi)'(t) = 0$ i $(\operatorname{Im} \varphi)'(t) = 0$ za $t \in \langle 0, 1 \rangle$. Po Teoremu srednje vrijednosti nalazimo da su to konstantne funkcije, dakle i φ je konstantna funkcija. Posebno je $\varphi(0) = \varphi(1)$, tj. $f(a) = f(z_1)$. Analogno se dobiva $f(z_1) = f(z_2) = \cdots = f(z_{n-1}) = f(b)$ i jer su $a, b \in \Omega$ proizvoljne točke f jest konstantna funkcija.

ZADACI

- 1. Dokažite tvrdnju (a) iz Napomene 2.2.
- 2. Dokažite tvrdnju (b) iz Napomene 2.2.
- 3. Dokažite da je funkcija $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \ f(z) = \frac{1}{z}$ analitička.
- 4. Dokažite da je funkcija $f(z): \mathbb{C} \setminus \{z_0\} \to \mathbb{C}, f(z) = \frac{1}{z z_0}$ analitička i nađite n-tu derivaciju te funkcije.
- 5. Dokažite da iz diferencija
bilnosti funkcije $f:\Omega^{\text{otv.}}\to\mathbb{C}$ u točki $z_0\in\Omega$ slijedi da je
 f neprekidna u točki $z_0.$
- 6. Dokažite:
 - (a) $f, g \in A(\Omega) \Rightarrow f \cdot g \in A(\Omega)$;

(b)
$$f, g \in A(\Omega) \Rightarrow \frac{f}{g} \in A(\Omega_1), \ \Omega_1 = \{z \in \Omega : g(z) \neq 0\}.$$

7. Neka su U i V otvoreni skupovi i $f: U \to \mathbb{C}, g: V \to \mathbb{C}$ analitičke funkcije takve da je $g(V) \subseteq U$. Dokažite da je kompozicija $f \circ g: V \to \mathbb{C}$ analitička funkcija i da je

$$(f \circ q)'(z) = f'(q(z_0)) \cdot q'(z_0), \ z_0 \in V.$$

- 8. Ako analitičke funkcije $f, g: \Omega \to \mathbb{C}$ zadovoljavaju uvjet $f'(z) = g'(z), z \in \Omega$, dokažite da se one razlikuju za konstantu.
- 9. Dokažite: ako je $\Omega \subseteq \mathbb{C}$ područje i $f: \Omega \to \mathbb{C}$ analitička funkcija na Ω takva da je $f(z) \in \mathbb{R}$ za svaki $z \in \Omega$, onda je f konstantna funkcija.

- 10. Dokažite da funkcija $f: \mathbb{C} \to \mathbb{C}, f(z) = i\overline{z}$ nije diferencijabilna
- 11. Dokažite da su funkcije sin i cos na C definirane formulama: $\sin z = \sin x \operatorname{ch} y + i \cos x \operatorname{sh} y, \cos z = \cos x \operatorname{ch} y + i \sin x \operatorname{sh} y.$ Odredite im derivacije.
- 12. Pomoću Cauchy-Riemanovih uvjeta provjerite koje su funkcije analitičke (na nekom području u C) i izračunajte im derivaciju:
 - (a) $f(z) = \frac{1}{z} + \overline{z} + 1;$ (b) $f(z) = \frac{z 1}{z + 1}.$ (c) $f(z) = z^2 \cdot \overline{z};$ (d) $f(z) = z \cdot e^z;$ (e) $f(z) = |z| \cdot \overline{z};$ (f) f(z) = |z|;

 - (g) $f(z) = \overline{z} \cdot \operatorname{Im} z$;
- 13. Odredite sve točke u kojima su diferencijabilne funkcije:

 - (a) f(z) = Re z; (b) f(z) = Im z; (c) $f(z) = |z|^2$; (d) $f(x+iy) = x^2 + iy^2$; (e) $f(x+iy) = 2xy i(x^2 y^2)$.
- 14. Odredite analitičku funkciju f = u + iv ako je poznat realni odnosno imaginarni dio:
 - (a) $u = \frac{x}{x^2 + y^2}$, $f(\pi) = \frac{1}{\pi}$;
 - (b) $u = x^3 + 6x^2y 3xy^2 2y^3$, f(0) = 0;
 - (c) $u = e^x(x\cos y y\sin y), f(0) = 0;$
 - (d) $v = 2(\operatorname{ch} x \sin y xy), f(0) = 0;$
 - (e) $v = 2 \operatorname{ch} x \cos x x^2 + y^2$, f(0) = 0;
 - (f) $v = -2\sin 2x \operatorname{sh} 2y + y$, f(0) = 2.
- 15. Pokažite sa su sljedeće funkcije harmonijske i odredite pripadne konjugirane funkcije:

 - (a) $u(x,y) = x^2 + 2x y^2$; (b) $u(x,y) = 2e^x \cos y$; (c) $u(x,y) = \operatorname{arctg} \frac{y}{x}$; (d) u(x,y) = xy.
- 16. Da li postoji harmonijska funkcija, različita od konstante, sljedećeg oblika:

 - $\begin{array}{ll} \text{(a)}\ u=\varphi(x); & \text{(b)}\ u=\varphi(ax+by); & \text{(c)}\ u=\varphi(xy); \\ \text{(d)}\ u=\varphi(x^2y); & \text{(e)}\ u=\varphi(x^2+y^2); & \text{(f)}\ u=\varphi(x^2+y); \end{array}$
 - (g) $u = \varphi(x^2 y^2)$.
- 17. Pokažite da Cauchy-Riemannovi uvjeti u polarnim koordinatama (r,φ) glase

$$\frac{\partial u}{\partial \varphi} = -r \frac{\partial v}{\partial \varphi}, \ r \frac{\partial u}{\partial r} = \frac{\partial v}{\partial \varphi}$$

i da derivaciju funkcije f u polarnim koordinatama možemo raču-

$$f'(z) = \frac{r}{z} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right) = \frac{1}{z} \left(\frac{\partial v}{\partial \varphi} - i \frac{\partial u}{\partial \varphi} \right).$$

- 18. Odredite $u(r,\varphi)$ i $v(r,\varphi)$ i koristeći prethodni zadatak ispitajte koja je funkcija analitička i ako jest odredite njezinu derivaciju:
 - (a) $f(z) = z^n$; (b) $f(z) = i\overline{z}$; (c) f(z) = z;
 - (d) $f(z) = e^z$; (e) $f(z) = e^{z^2}$.

2.2 PRIMJERI ANALITIČKIH FUNKCIJA

Ovdje ćemo detaljnije opisati nekoliko važnih primjera analitičkih funkcija. Kompleksne brojeve u domeni komkleksne funkcije (leže u Z-ravnini) označavat ćemo sa z = x + iy, a njihove slike sa w = u + iv (leže u W-ravnini).

2.2.1 Eksponencijalna funkcija

Eksponencijalna funkcija

$$f: \mathbb{C} \to \mathbb{C} \setminus \{0\}, \ f(z) = e^z = e^x (\cos y + i \sin y), \tag{1}$$

je analitička na C jer su ispunjeni Cauchy-Riemannovi uvjeti:

$$\frac{\partial u}{\partial x} = \frac{\partial (e^x \cos y)}{\partial x} = e^x \cos y = \frac{\partial (e^x \sin y)}{\partial y} = \frac{\partial v}{\partial y},$$
$$\frac{\partial u}{\partial y} = \frac{\partial (e^x \cos y)}{\partial y} = -e^x \sin y = \frac{\partial (e^x \sin y)}{\partial x} = -\frac{\partial v}{\partial x}.$$

Dakle.

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^x \cos y + i e^x \sin y = e^z.$$
 (2)

Ona je i periodična s **osnovnim periodom** $T_0 = 2\pi i$ jer je

$$f(z + 2\pi i) = e^{z+2\pi i} = e^z e^{2\pi i} = e^z = f(z).$$

Restrikcija eksponencijalne funkcije na otvorenu prugu $T_{\alpha} = \mathbb{R} \times \langle \alpha, \alpha + 2\pi \rangle \subset \mathbb{C}$ je bijekcija sa T_{α} na skup $\mathbb{C}_{\alpha} = \mathbb{C} \setminus L_{\alpha}$, $L_{\alpha} = \{te^{i\alpha} : t \geq 0\}$ (kažemo da se \mathbb{C}_{α} dobiva iz \mathbb{C} tako da se u \mathbb{C} napravi **rez po zraci** L_{α}).

Promotrimo otvorenu prugu $T_0 = \mathbb{R} \times \langle -\pi, \pi \rangle \subset \mathbb{C}$. Dio lijevo od ishodišta preslikava se u otvoreni krug radijusa 1, a desni dio na vanjštinu tog kruga u \mathbb{C}_{π} . Istaknuta negativna u-os u kompleksnoj W-ravnini predstavlja točke gdje se spajaju krajnje točke segmenta $x = x_0$ (između istaknutih paralela).

Dakle, otvorena pruga T_0 preslikava se na W-ravninu s rezom duž negativne realne osi. Dodamo li otvorenoj prugi T_0 donji rub (tj. pravac $y = -\pi$) onda se poluotvorena pruga preslikava na W-ravninu bez ishodišta.

2.2.2 Logaritamska funkcija

Eksponencijalna funkcija $f_0: T_0 \to \mathbb{C}_{\pi}$ (iz kompleksne W-ravnine uklonili smo negativnu realnu os) je bijekcija i njenu inverznu funkciju $\operatorname{Ln}: \mathbb{C}_{\pi} \to T_0$ nazivamo logaritamska funkcija. Ona je zadana sa

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z, \ z \in \mathbb{C}_{\pi}, \tag{3}$$

gdje je Arg z glavna vrijednost argumenta broja z (jedinstveni broj Arg $z=\varphi\in\langle -\pi,\pi]$ takav da je $z=|z|\,e^{i\varphi}$).

Pokažimo da je logaritamska funkcija analitička na \mathbb{C}_{π} i da je

$$(\operatorname{Ln} z)' = \frac{1}{z}.\tag{4}$$

Dokažimo slučaj Rez>0 (ostali slučajevi analogno, treba voditi računa o predznaku za slučajeve Imz>0 i Imz<0). Tada je

$$u(x,y) = \ln |z| = \ln \sqrt{x^2 + y^2}, \ v(x,y) = \arctan \frac{y}{x}$$

i imamo

$$\frac{\partial v}{\partial y} = \frac{\frac{1}{x}}{1 + \left(\frac{y}{x}\right)^2} = \frac{x}{x^2 + y^2} = \frac{\partial u}{\partial x},$$

$$\frac{\partial v}{\partial x} = \frac{-\frac{y}{x^2}}{1+\left(\frac{y}{2}\right)^2} = -\frac{y}{x^2+y^2} = -\frac{\partial u}{\partial y}.$$

Po Teoremu 2.5 je funkcija $z\mapsto \operatorname{Ln} z$ analitička na otvorenoj desnoj poluravnini $\operatorname{Re} z>0.$ Nadalje je

$$(\operatorname{Ln} z)' = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{x}{x^2 + v^2} - \frac{y}{x^2 + v^2} i = \frac{1}{x + iy} = \frac{1}{z}.$$

Ako je $k \in \mathbb{Z}$ bilo koji, onda je funkcija $f_k : \mathbb{C}_{\pi} \to \mathbb{C}$ definirana sa

$$f_k(z) = \operatorname{Ln} z + 2k\pi i$$

analitička na \mathbb{C}_{π} i vrijedi $e^{f_k(z)} = z$, $f'(z) = \frac{1}{z}$ za svaki $z \in \mathbb{C}_{\pi}$. Dakle, analitička funkcija f_k je inverzna funkcija restrikcije eksponencijalne funkcije na otvorenu prugu $\mathbb{R} \times \langle -\pi + 2k\pi, \pi + 2k\pi \rangle$. Funkcije f_k nazivamo granama logaritamske funkcije, a funkciju $f_0 = \text{Ln nazivamo glavnom granom}$ logaritamske funkcije. Ona se odlikuje svojsvom da je Ln x = ln x za x > 0.

2.2.3 Opća potencija

Neka je $c \in \mathbb{C}$ i $k \in \mathbb{Z}$. Funkciju definiranu s

$$z \mapsto e^{c(\operatorname{Ln} z + 2k\pi i)} \tag{5}$$

nazivamo **općom potencijom.** To je kompleksna funkcija definirana na \mathbb{C}_{π} i ona je analitička (kompozicija je analitičkih funkcija). Funkciju

$$z \mapsto z^n$$
 (6)

nazivamo n-tom potencijom. Ona je specijalni slučaj opće potencije ako se uzme $c=n:e^{n(\operatorname{Ln} z+2k\pi i)}=e^{n\operatorname{Ln} z}e^{n2k\pi i}=e^{\operatorname{Ln} z^n}=z^n$. To je analitička funkcija $\left((z^n)'=nz^{n-1}\right)$ i osim toga ona je periodička s osnovnim periodom $T_0=\frac{2\pi}{n}$ (vrijedi $z^n=|z|^n\,e^{in\varphi}=|z|^n\,e^{in\left(\varphi+\frac{2k\pi}{n}\right)}$).

Uzmemo li u općoj potenciji $c = \frac{1}{n}$ dobivamo funkciju n-ti korijen:

$$z \mapsto e^{\frac{1}{n}(\text{Ln }z + 2k\pi i)} = e^{\text{Ln }z^{\frac{1}{n}}} = z^{\frac{1}{n}}.$$
 (7)

Na \mathbb{C}_{π} imamo n različitih analitičkih funkcija

$$z \mapsto e^{\frac{1}{n}(\text{Ln }z + 2k\pi i)} = \sqrt[n]{|z|}e^{i\frac{\text{Arg }z + 2k\pi}{n}}, \ k = 0, 1, \dots, n-1$$
 (8)

Za $k \in \{0, 1, ..., n-1\}$ ta je funkcija inverzna restrikciji potencije $z \mapsto z^n$ na otvoreni kut u \mathbb{C} s vrhom u ishodištu $\{z \in \mathbb{C} : (2k-1)\pi/n < \operatorname{Arg} z < (2k+1)\pi/n\}$.

Opet govorimo o granama:

- glavna grana n-tog korijena $f_0(z) = \sqrt[n]{z} = \sqrt[n]{|z|} e^{i\frac{\operatorname{Arg} z}{n}};$
- k-ta grana $f_k(z) = f_0(z) \cdot e^{i\frac{2k\pi}{n}}, k \in \{0, 1, \dots, n-1\}.$

Primjer Odredimo Ln i^i .

Napomenimo da vrijedi $\operatorname{Ln} a^b \neq b \operatorname{Ln} a$ pa treba biti oprezan! Označimo $e^z = \exp(z)$.

Po definiciji opće potencije $z\mapsto z^a=e^{a\ln z}=\exp(a\ln z)$ imamo da je

$$i^{i} = \exp(i \operatorname{Ln} i) = \exp(i \operatorname{ln} |i| + i(\arg i + 2k\pi)) =$$

 $\exp\{i [\ln 1 + i(\pi/2 + 2k\pi)]\} = \exp\{-(\pi/2 + 2k\pi)\}, k \in \mathbb{Z}.$

Sada je

$$\operatorname{Ln} i^{i} = \operatorname{Ln} \exp \left\{ - (\pi/2 + 2k\pi) \right\} =$$

$$\operatorname{ln} \left| \exp \left\{ - (\pi/2 + 2k\pi) \right\} \right| + i \left(\operatorname{arg} \exp \left\{ - (\pi/2 + 2k\pi) \right\} + 2m\pi \right) =$$

$$- (\pi/2 + 2k\pi) + 2m\pi, \quad k \in \mathbb{Z}, m \in \mathbb{Z}.$$

Primjetimo da je $i \operatorname{Ln} i = i \{ \ln |i| + i (\arg i + 2k\pi) \} = -\pi/2 + 2k\pi$ pa je $\operatorname{Ln} i^i \neq i \operatorname{Ln} i$.

2.2.4 Trigonometrijske i hiperboličke funkcije

Već smo napomenuli da trigonometrijske i hiperboličke funkcije definiramo na način

$$z \mapsto \sin z \stackrel{\text{def.}}{=} \frac{1}{2i} \left(e^{iz} - e^{-iz} \right), \quad z \mapsto \cos z \stackrel{\text{def.}}{=} \frac{1}{2} \left(e^{iz} + e^{-iz} \right),$$

$$z \mapsto \operatorname{tg} z = \frac{\sin z}{\cos z}, \quad z \mapsto \operatorname{ctg} z = \frac{\cos z}{\sin z},$$

$$z \mapsto \operatorname{sh} z \stackrel{\text{def.}}{=} \frac{1}{2} (e^z - e^{-z}), \quad z \mapsto \operatorname{ch} z \stackrel{\text{def.}}{=} \frac{1}{2} (e^z + e^{-z}) \dots$$

Sve su to analitičke funkcije. Nije teško pokazati da vrijedi

$$\sin iz = i \operatorname{sh} z$$
, $\operatorname{sh} iz = i \sin z$,
 $\cos iz = \operatorname{sh} z$, $\operatorname{ch} iz = \cos z$,
 $\operatorname{tg} iz = i \operatorname{th} z$, $\operatorname{tiz} = i \operatorname{tg} z$,
 $\operatorname{ctg} iz = -i \operatorname{cth} z$, $\operatorname{cth} iz = -i \operatorname{ctg} z$.

Primjer Odredimo modul i glavnu vrijednost argumenta funkcije $f(z) = \sin z$ u točki $z_0 = \pi + i \ln(2 + \sqrt{5})$.

$$f(z_0) = \sin z_0 = \sin \left(\pi + i \ln(2 + \sqrt{5})\right) =$$

$$\sin \pi \cos \left[i \ln(2 + \sqrt{5})\right] + \cos \pi \sin \left[i \ln(2 + \sqrt{5})\right] =$$

$$-\sin \left[i \ln(2 + \sqrt{5})\right] = -i \sinh \left[\ln(2 + \sqrt{5})\right] =$$

$$-i \frac{1}{2} \left(e^{\ln(2 + \sqrt{5})} - e^{-\ln(2 + \sqrt{5})}\right) = -\frac{i}{2} \left(2 + \sqrt{5} - \frac{1}{2 + \sqrt{5}}\right) =$$

$$-\frac{i}{2} \cdot \frac{8 + 4\sqrt{5}}{2 + \sqrt{5}} = -2i,$$
pa je $r = 2$ i $\varphi = 3\pi/2$.

2.2.5 Funkcije definirane preko integrala

Na koncu ovog odjeljka navodimo analitičku funkciju definiranu preko integrala. Neka je $a,b\in\mathbb{R},\ a< b,$ i neka je $g:[a,b]\to\mathbb{R}$ neprekidna funkcija. Definiramo funkciju $f:\mathbb{C}\to\mathbb{C}$ sa

$$f(z) = \int_{a}^{b} g(t)e^{itz}dt. \tag{9}$$

Za nju je

$$u(x,y) = \int_a^b g(t)e^{-ty}\cos tx dt, \quad v(x,y) = \int_a^b g(t)e^{-ty}\sin tx dt.$$

Deriviranjem pod znakom integrala (Leibnizovo pravilo) dobivamo

$$\frac{\partial u(x,y)}{\partial x} = \int_{a}^{b} g(t)e^{-ty}(-t\sin tx)dt = \frac{\partial v(x,y)}{\partial y},$$
$$\frac{\partial u(x,y)}{\partial y} = \int_{a}^{b} g(t)(-te^{-ty})\cos txdt = -\frac{\partial v(x,y)}{\partial x}$$

pa je f analitička funkcija na \mathbb{C} .

ZADACI

- 1. Odredite realni i imaginarni dio funkcija:

 - (a) $f(z) = \sin z$; (b) $f(z) = \overline{z}^3 \frac{i}{z}$; (c) f(z) = ch(z i); (d) $f(z) = z^2 2\overline{z} + 5i$; (e) $f(z) = \frac{z+1}{z^2 1}$. (f) $f(z) = e^{1-z}$; (g) $f(z) = \sin z$; (h) $f(z) = \operatorname{tg} z$.

- 2. Izračunajte $f(z_0)$ ako je zadano:

 - (a) $f(z) = \operatorname{ch}^2 z$; $z_0 = i \ln 3$ (b) $f(z) = (z i)^3$, $z_0 = \pi$; (c) $f(z) = \frac{\overline{z}}{z}$, $z_0 = 1 + i$; (d) $f(z) = z^3$, $z_0 = e^{\frac{i\pi}{4}}$.
- 3. Dokažite da je $e^{u+v} = e^u e^v$ $(u, v \in \mathbb{C})$.
- 4. Odredite $\operatorname{Ln} z$ ako je:
 - (a) z = 1; (b) z = -1 i; (c) $z = i^i$.
- 5. Dokažite da vrijede identiteti:
 - (a) $(\sin z)^2 + (\cos z)^2 = 1$:
 - (b) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$, $\sin 2z = 2\sin z\cos z;$
 - (c) $\cos(z_1 + z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2$, $\cos 2z = \cos^2 z \sin^2 z$.
- 6. Izračunajte modul i argument zadanih funkcija u zadanim točkama:
 - (a) $f(z) = \cos z$, $z_0 = \pi/2 + i \ln 2$;
 - (b) $f(z) = \operatorname{ch} z, z_0 = 1 + i\pi/2;$
 - (c) $f(z) = th z, z_0 = \pi i$.
- 7. Izračunajte (prikažite u algebarskom ili trigonometrijskom obliku):

- (a) $\operatorname{Ln}(e);$ (b) $\operatorname{Ln}(-i);$ (c) $\operatorname{Ln}(3-2i);$ (d) $\left(\frac{1+i}{\sqrt{2}}\right)^{2i};$ (e) $1^{i};$ (f) $(-1)^{\sqrt{2}};$ (g) $1^{\frac{1}{i}};$ (h) $(4-3i)^{1+i};$ (i) $\operatorname{tg}\left(\frac{\pi i}{2}\right);$ (j) $i^{\sin i};$ (k) $\sin 2i;$ (l) $\cos(2+i);$

- 8. Riješite jednadžbe:
 - (a) $e^z + i = 0$;
- (b) $e^{ix} = \cos \pi x, x \in \mathbb{R};$
 - (c) $\sin z = 3$;
- (d) $\ln(i-z) = 1$;
- (e) $\ln(z+i) = 0;$ (f) $e^{2z} + 2e^{z} 3 = 0;$
- (g) $4\sin z + 5 = 0$; (h) $\sin z = \pi i$;
- (i) $i + \sin iz = 0$;
- (j) $\sin z + \cos z = 2$.

2.3 REDOVI POTENCIJA

2.3.1 Redovi kompleksnih brojeva

Funkcija $f:\Omega\to\mathbb{C}$ je analitička na otvorenom skupu Ω , ako oma ima derivaciju u svakoj točki skupa Ω i ako je ta derivacija f' neprekidna funkcija na Ω . Naveli smo nekoliko važnih primjera analitičkih funkcija. Međutim, najčešće analitičke funkcije dobivamo preko redova potencija. Podsjetimo se što su to redovi kompleksnih brojeva.

Uređeni par nizova kompleksnih brojeva $((z_n), (s_n))$, gdje je

$$s_n = z_1 + z_2 + \dots + z_n,$$

nazivamo **redom kompleksnih brojeva** i označavamo $\sum_{n=1}^{\infty} z_n$ ili samo $\sum z_n$. Pritom kažemo da je z_n **opći član reda**, a s_n n-ta parcijalna suma. Ako postoji $s = \lim_{n \to \infty} s_n$ tada kažemo da je red $\sum z_n$ konvergentan i taj se s naziva sumom reda. U suprotnom kažemo da je red divergentan. Pokazuje se da vrijedi:

• Red $\sum z_n$, $z_n = x_n + iy_n$, konvergira ako i samo ako konvergiraju redovi $\sum x_n$, $\sum y_n$ i tada je $\sum z_n = \sum x_n + i \sum y_n$.

Navedimo i nekoliko poznatih činjenica (po analogiji s redovima realnih brojeva) koje se jednostavno dokazuju (dokažite ih!):

- Ako red $\sum z_n$ konvergira tada je $\lim |z_n| = 0$ (**nužan uvjet** za konvergenciju reda).
- Ako je $\lim |z_n| \neq 0$ tada je $\sum z_n$ divergentan.
- Red $\sum z_n$ je **apsolutno konvergentan**, ako konvergira red pozitivnih realnih brojeva $\sum |z_n|$. Red koji konvergira ali ne konvergira apsolutno naziva se **uvjetno konvergentnim redom**.
- Svaki apsolutno konvergentan red je konvergentan (obrat ne vrijedi!).
- Poredbeni kriterij. Ako je $\sum a_n$ konvergentan red pozitivnih realnih brojeva i ako vrijedi $|z_n| \leq a_n$, čim je $n \geq n_0$, tada red $\sum z_n$ konvergira apsolutno. Red $\sum a_n$ nazivamo (konvergentnom) majorantom reda $\sum z_n$.

• **D'Alambertov kriterij.** Ako je $\rho = \limsup \left| \frac{z_{n+1}}{z_n} \right| < 1$ tada red $\sum z_n$ konvergira (apsolutno).

Ako pak postoji $\rho = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$, tada red $\sum z_n$ konvergira za $\rho < 1$, divergira za $\rho > 1$, a za $\rho = 1$ ovaj kriterij ne daje odluku.

- Cauchyjev kriterij. Ako je $\rho = \lim_{n \to \infty} \sqrt[n]{|z_n|} < 1$ tada za $\rho < 1$ red $\sum z_n$ konvergira (apsolutno), a za $\rho > 1$ red divergira (za $\rho = 1$ nema odluke).
- Raabeov kriterij. Ako je $\rho = \lim_{n \to \infty} n \left(\left| \frac{z_n}{z_{n+1}} \right| 1 \right) > 1$ tada red $\sum z_n$ konvergira (apsolutno), a za $\rho < 1$ red divergira.

Ilustrirajmo prethodno primjerima.

Primjer Pokažimo da red $\sum \frac{(-1)^n}{n+i}$ ne konvergira apsolutno. Vrijedi $\frac{(-1)^n}{n+i} = (-1)^n \frac{n}{n^2+1} + i \frac{(-1)^n}{n^2+1}$. Red $\sum (-1)^n \frac{n}{n^2+1}$ konvergira

uvjetno, a red $\sum \frac{(-1)^n}{n^2+1}$ konvergira apsolutno. Slijedi da zadani red konvergira uvjetno.

Primjer Za red $\sum \frac{1}{(n+i)^2}$ vrijedi $|z_n| = \frac{1}{|n+i|^2} = \frac{1}{n^2+1}$. Budući je red $\sum \frac{1}{n^2+1}$ konvergentan, zadani red apsolutno konvergira.

Primjer Ispitajmo konvergenciju reda $\sum z_n$, $z_n = \frac{n!}{n^n} z^n$, |z| < e. Po D'Alambertovom kriteriju imamo

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! z^n}{(n+1)^{n+1}} \frac{n^n}{n! z^n} \right| = \lim_{n \to \infty} \frac{n^n}{(n+1)^{n+1}} |z| = \frac{|z|}{e} < 1$$

i polazni red konvergira apsolutno.

Primjer Ispitajmo konvergenciju reda $\sum n^{\alpha}z^{n}, \ \alpha\in\mathbb{R}, \ |z|<1.$ Po Cauchyjevom kriteriju je

$$\lim_{n \to \infty} \sqrt[n]{|z_n|} = \lim_{n \to \infty} \sqrt[n]{|n^{\alpha} z^n|} = |z| \lim_{n \to \infty} (\sqrt[n]{n})^{\alpha} = |z| < 1$$

i red konvergira apsolutno.

Primjer Konvergenciju reda $\sum \frac{n!}{(z+1)(z+2)\cdots(z+n)}$, Rez<1, ispitat ćemo uporabom Raabeovog kriterija. Budući je $\frac{z_n}{z_{n+1}}=\frac{|z+n+1|}{n+1}$ imamo

$$\lim_{n \to \infty} n \left(\left| \frac{z_n}{z_{n+1}} \right| - 1 \right) = \lim_{n \to \infty} \frac{|z+n+1| - (n+1)}{n+1} = \lim_{n \to \infty} \left\{ |x+n+1+iy| - (n+1) \right\} = \lim_{n \to \infty} \left\{ \sqrt{(x+n+1)^2 + y^2} - (n+1) \right\} = \lim_{n \to \infty} \frac{x^2 + 2x(n+1) + y^2}{\sqrt{(x+n+1)^2 + y^2} + n + 1} = x < 1$$

i red konvergira apsolutno.

Primjer Ispitajmo konvergenciju reda $\sum \frac{z^n}{1-z^n}$. Za |z| < 1 vrijedi $\left| \frac{z^n}{1-z^n} \right| \le \frac{|z|^n}{1-|z|^n} \le \frac{|z|^n}{1-|z|}$ i red konvergira. Za $|z| \ge 1$ imamo $\left| \frac{z^n}{1-z^n} \right| \ge \frac{|z|^n}{1-|z|^n} \ge \frac{1}{2}$ i red divergira.

2.3.2 Redovi potencija

Red potencija je oblika

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \tag{1}$$

gdje su koeficijenti $a_n, n \in \mathbb{N}$ i z_0 zadani kompleksni brojevi, a z kompleksna varijabla. Za red (1) kažemo da je **red potencija oko točke** z_0 . Za red

$$\sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1} \tag{2}$$

kažemo da je dobiven iz reda (1) deriviranjem član po član, a za red

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1} \tag{3}$$

da je dobiven iz reda (1) integriranjem član po član.

Red potencija (1) konvergira za $z=z_0$ (suma mu je tada a_0) pa je skup K svih kompleksnih brojeva za koje red potencija konvergira neprazan. Označimo sa

$$r = \sup \left\{ \left| z - z_0 \right| : z \in K \right\} \tag{4}$$

To je realan broj ≥ 0 ili $+\infty$. Broj r zove se **radijus konvergencije** reda potencija (1).

Primjer Za red potencija oko nule $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ D'Alambertov kriterij daje

$$\lim_{n \to \infty} \left| \frac{\frac{z^{n+1}}{(n+1)!}}{\frac{z^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{z}{(n+1)} \right| = 0 < 1$$

za svaki $z\in\mathbb{C}$, pa je taj red konvergentan za svaki $z\in\mathbb{C}$ i u ovom slučaju je $r=+\infty$. Slično se pokazuje da i redovi

$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

imaju radijus konvergencije $r = +\infty$.

Primjer Red $\sum_{n=0}^{\infty} z^n$ naziva se **geometrijskim redom.** On konvergira za |z| < 1 i divergira za |z| > 1, pa je r = 1. Dakle, skup K je otvorena kugla K(0,1) oko ishodišta radijusa 1.

Otvorena kugla

$$K(z_0, r) = \left\{ z \in \mathbb{C} : \left| z - z_0 \right| < r \right\} \tag{5}$$

naziva se krugom konvergencije.

Teorem 2.10

- (i) Ako je r radijus konvergencije reda $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ i ako je r>0, onda taj red apsolutno konvergira ako je $|z-z_0|< r$, a divergira ako je $|z-z_0|> r$.
- (ii) Redovi (1), (2) i (3) imaju isti radijus konvergencije.

Dokaz. Budući supstitucija $w=z-z_0$ red potencija oko z_0 prevodi u red potencija oko nule, teorem je dovoljno dokazati za redove potencija oko nule. (i) Neka je $z \in \mathbb{C}$ i 0 < |z| < r. Budući je $r = \sup\{|z| : z \in K\}$, postoji $z_1 \in \mathbb{C}$ takav da je $|z| < |z_1| < r$ i da je red $\sum_{n=0}^{\infty} a_n z_1^n$ konvergentan $(z_1 \in K)$. No tada je ispunjen nužan uvjet konvergencije $\lim |a_n z_1^n| = 0$ pa postoji realan broj M > 0 takav da je

$$\left| a_n z_1^n \right| \le M, \ n = 0, 1, 2, \cdots.$$
 (6)

Sada je

$$\left|a_{n}z^{n}\right| \le \frac{M}{\left|z_{1}^{n}\right|}\left|z^{n}\right| = M\left|\frac{z}{z_{1}}\right|^{n} = Mq^{n}, \ n = 0, 1, 2, \cdots$$
 (7)

gdje je

$$q = \left| \frac{z}{z_1} \right| < 1. \tag{8}$$

Dakle, majoranta reda $\sum_{n=0}^{\infty} |a_n z^n|$ je konvergentni geometrijski red $\sum_{n=0}^{\infty} Mq^n$ i poredbeni kriterij daje da je i red $\sum_{n=0}^{\infty} |a_n z^n|$ konvergentan. Dobili smo da je red $\sum_{n=0}^{\infty} a_n z^n$ apsolutno konvergentan, dakle i konvergentan.

S druge strane, ako je |z|>ronda očito $z\notin K$ i red $\sum\nolimits_{n=0}^{\infty}a_{n}z^{n}$ divergira.

(ii) Neka su $r=r_1,\ r_2$ i r_3 radijusi konvergencije redova (1), (2) i (3) i uzmimo da je $r\neq 0$. Iz (7) množenjem sa $\frac{n}{|z|}$ dobivamo

$$\left|a_n z^n\right| \frac{n}{|z|} \le Mq^n \frac{n}{|z|} \Rightarrow \left|na_n z^{n-1}\right|^{\frac{1}{n-1}} \le \left(Mq^n \frac{n}{|z|}\right)^{\frac{1}{n-1}} = b_n q^n$$

gdje je $b_n = \left(M\frac{n}{|z|}\right)^{\frac{1}{n-1}}$. Isto tako iz (7) množenjem sa $\frac{|z|}{n+1}$ dobivamo

$$\left|a_n z^n\right| \frac{|z|}{n+1} \le Mq^n \frac{|z|}{n+1} \Rightarrow \left|\frac{a_n}{n+1} z^{n+1}\right|^{\frac{1}{n+1}} \le \left(Mq^n \frac{|z|}{n+1}\right)^{\frac{1}{n+1}} = c_n q^n$$

gdje je $c_n = \left(M \frac{|z|}{(n+1)q}\right)^{\frac{1}{n+1}}$. Dobili smo

$$\left| na_n z^{n-1} \right|^{\frac{1}{n-1}} \le b_n q^n, \quad \left| \frac{a_n}{n+1} z^{n+1} \right|^{\frac{1}{n+1}} \le c_n q^n$$
 (9)

Neka je sada $\varepsilon > 0$ takav da je $(1 + \varepsilon)q < 1$. Budući da $b_n \to 1$ i $c_n \to 1$ kada $n \to \infty$, postoji $n_0 \in \mathbb{N}$ takav da vrijedi

$$n \ge n_0 \Rightarrow b_n < 1 + \varepsilon, \quad c_n < 1 + \varepsilon.$$

Odatle i iz (9) dobivamo

$$n \ge n_0 \Rightarrow \begin{cases} |na_n z^{n-1}| \le \left[(1+\varepsilon)q \right]^{n-1} \\ \left| \frac{a_n}{n+1} z^{n+1} \right| \le \left[(1+\varepsilon)q \right]^{n+1} \end{cases}$$

Budući je $(1+\varepsilon)q < 1$ slijedi da redovi (2) i (3) apsolutno konvergiraju. Ako je $r = +\infty$, onda prema dokazanom redovi (1), (2) i (3) apsolutno konvergiraju za svaki $z \in \mathbb{C}$; dakle, je $r_1 = r_2 = r_3$.

Ako je $0 < r < +\infty$, onda prema dokazanom redovi (1), (2) i (3) apsolutno konvergiraju. Prema tome je $r_1 \le r_2$ i $r_1 \le r_3$. Drugim riječima kod deriviranja odnosno integriranja član po član radijus konvergencije se ne smanjuje. Međutim, red (1) dobiva se iz reda (2) integriranjem član po član, a iz reda (3) deriviranjem član po član. Dakle $r_2 \le r_1$ i $r_3 \le r_1$. Odavde je $r_1 = r_2 = r_3$.

Napokon, neka je r=0. U skladu s prethodnim razmatranjem $r_2>0$, a također i $r_3>0$, povlačilo bi r>0. Dakle, $r_2=r_3=0=r_1$.

Korolar 2.11 (Abel) Ako red potencija $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ konvergira za $z=z_1$ onda red $\sum_{n=0}^{\infty} \left|a_n(z-z_0)^n\right|$ konvergira za svaki $z\in\mathbb{C}$ za koji je $|z-z_0|<|z_1-z_0|$.

Korolar 2.12 Redovi

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}, \quad \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

$$\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}, \quad \sum_{n=2}^{\infty} n (n-1) a_n (z-z_0)^{n-2}, \dots$$

$$\sum_{n=m}^{\infty} n (n-1) \cdots (n-m+1) a_n (z-z_0)^{n-m}$$

imaju jednake radijuse konvergencije.

Neka je r>0 radijus konvergencije reda potencija $\sum_{n=0}^{\infty}a_nz^n$. Vidjeli smo da su tada sa

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \tag{10}$$

$$f_1(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}, \tag{11}$$

$$f_2(z) = \sum_{n=2}^{\infty} n(n-1)a_n z^{n-2}, \tag{12}$$

definirane funkcije sa K(0,r) u \mathbb{C} . Funkcije f, f_1 i f_2 definirane su redovima potencija, Funkcija f_1 dobiva se iz funkcije f tako da se red, kojim je predstavljena funkcija f, derivira član po član. Isto tako se f_2 dobiva iz f_1 . Red

(12) apsolutno konvergira za svaki $z \in K(0,r)$. Drugim riječima konvergira red

$$M_2(z) = 2|a_2| + 6|a_3| \cdot |z| + \dots + n(n-1)|a_n| \cdot |z|^{n-2} + \dots$$
 (13)

za svaki $z \in K(0, r)$.

Za daljnje proučavanje funkcija definiranih redovima potencija, fundamentalnu ulogu ima sljedeća lema kojom se ustvari dokazuje da je funkcija f analitička i da je f_1 njena derivacija.

Lemma 2.13 Neka je r > 0 radijus konvergencije reda (1). Za svaki realni broj r_1 , $0 < r_1 < r$ i svaki par različitih kompleksnih brojeva z i ζ za koje je $|z| \le r_1$ i $|\zeta| \le r_1$ vrijedi nejednakost

$$\left| \frac{f(z) - f(\zeta)}{z - \zeta} - f_1(\zeta) \right| \le \frac{1}{2} M_2(r_1) \cdot \left| z - \zeta \right|. \tag{14}$$

Dokaz. Iz $z^k - \zeta^k = (z - \zeta) \left(z^{k-1} + z^{k-2}\zeta + \cdots + z\zeta^{k-2} + \zeta^{k-1} \right)$ prijelazom na apsolutne vrijednosti i primjenom nejednakosti trokuta dobivamo

$$|z^k - \zeta^k| \le kr_1^{k-1}|z - \zeta|, \quad k = 1, 2...$$

Odatle je

$$\left| \frac{z^{n} - \zeta^{n}}{z - \zeta} - n\zeta^{n-1} \right| = \left| z^{k-1} + z^{k-2}\zeta + \dots + z\zeta^{n-2} + \zeta^{n-1} - n\zeta^{n-1} \right| \le$$

$$\left| \zeta^{n-2} \left(z - \zeta \right) + \zeta^{n-3} \left(z^{2} - \zeta^{2} \right) + \dots + \zeta \left(z^{n-2} - \zeta^{n-2} \right) + \left(z^{n-1} - \zeta^{n-1} \right) \right| \le$$

$$\left| z - \zeta \right| \cdot \left[r_{1}^{n-2} + r_{1}^{n-3} \cdot 2r_{1} + \dots + r_{1} \cdot (n-1)r_{1}^{n-3} + (n-1)r_{1}^{n-2} \right] =$$

$$\left[1 + 2 + \dots + (n-2) + (n-1) \right] r_{1}^{n-2} \cdot \left| z - \zeta \right|,$$

tj.

$$\left| \frac{z^n - \zeta^n}{z - \zeta} - n\zeta^{n-1} \right| \le \frac{n(n-1)}{2} r_1^{n-2} \cdot \left| z - \zeta \right|, \quad n = 2, 3, \dots$$

Prema tome je

$$\left| \frac{f(z) - f(\zeta)}{z - \zeta} - f_1(\zeta) \right| = \left| \sum_{n=0}^{\infty} \frac{a_n z^n - a_n \zeta^n}{z - \zeta} - \sum_{n=1}^{\infty} n a_n \zeta^{n-1} \right| =$$

$$\left| \sum_{n=2}^{\infty} \left[a_n \frac{z^n - \zeta^n}{z - \zeta} - n \zeta^{n-1} \right] \right| \le \sum_{n=2}^{\infty} |a_n| \left| \frac{z^n - \zeta^n}{z - \zeta} - n \zeta^{n-1} \right| \le$$

$$\left| z - \zeta \right| \sum_{n=2}^{\infty} \frac{n(n-1)}{2} \cdot |a_n| \cdot r_1^{n-2} = \frac{1}{2} M_2(r_1) \cdot |z - \zeta|.$$

Teorem 2.14 Red potencija

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \tag{15}$$

s radijusom konvergencije r, definira analitičku funkciju f na krugu $K(z_0, r)$. Nadalje je

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}$$
(16)

 $za \ svaki \ z \in K(z_0, r).$

Dokaz. Pretpostavimo najprije da je $z_0 = 0$. Neka je $\zeta \in K(0, r)$ bilo koji i stavimo

$$r_1 = |\zeta| + \frac{r - |\zeta|}{2} = \frac{r + |\zeta|}{2}.$$

Tada je $0 < |\zeta| < r_1 < r$ pa vrijedi (14), tj.

$$\left| \frac{f(z) - f(\zeta)}{z - \zeta} - f_1(\zeta) \right| \le \frac{1}{2} M_2(r_1) \cdot |z - \zeta|.$$

za svaki $z \in \mathbb{C}$, $|z| \leq r_1$. Odavde je

$$\lim_{z \to \zeta} \left| \frac{f(z) - f(\zeta)}{z - \zeta} - f_1(\zeta) \right| = 0$$

i zaista je

$$f_1(\zeta) = \lim_{z \to \zeta} \frac{f(z) - f(\zeta)}{z - \zeta}.$$

Dakle, funkcija f ima derivaciju u točki ζ i $f'(\zeta) = f_1(\zeta)$. Odavde slijedi da je $f_1 = f'$ na krugu K(0, r).

Na analogan način zaključujemo da i funkcija f_1 ima derivaciju u svakoj točki kruga K(0,r) i da je $f'_1 = f_2$. To pokazuje da je $f' = f_1$ neprekidna funkcija na K(0,r), pa je f analitička na K(0,r).

Neka je sada $z_0 \neq 0$. Za $z_1 \in K(z_0, r)$ stavimo $\zeta = z - z_0$, $\zeta_1 = z_1 - z_0$. Tada je sa

$$F(\zeta) = \sum_{n=0}^{\infty} a_n \zeta^n$$

definirana analitička funkcija na krugu K(0,r) i po prethodnom vrijedi

$$F'(\zeta) = \sum_{n=1}^{\infty} n a_n \zeta^{n-1}.$$

Sada

$$\lim_{z \to z_1} \frac{f(z) - f(z_1)}{z - z_1} = \lim_{\zeta \to \zeta_1} \frac{F(\zeta) - F(\zeta_1)}{\zeta - \zeta_1} = F'(\zeta_1) =$$

$$\sum_{n=1}^{\infty} n a_n \zeta_1^{n-1} = \sum_{n=1}^{\infty} n a_n (z_1 - z_0)^{n-1} = f_1(z_1)$$

pokazuje da f ima derivaciju u točki z_1 i da je $f'(z_1) = f_1(z_1)$. To povlači analitičnost funkcije f na krugu $K(z_0, r)$ i da se derivacija funkcije $f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ dobiva deriviranjem "član po član", tj.

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}.$$

Prethodni teorem pokazuje da funkcija $f:K(z_0,r)\to\mathbb{C}$ ima derivaciju svakog reda

$$f^{(m)}(z) = \sum_{n=m}^{\infty} \frac{n!}{(n-m)!} a_n (z-z_0)^{n-m}.$$
 (17)

Odavde za $z=z_0$ dobivamo

$$a_m = \frac{f^{(m)}(z_0)}{m!}, \quad m = 0, 1, 2, \dots$$
 (18)

što pokazuje da je red (15) zapravo Taylorov red

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \tag{15}$$

 $(f^{(0)}=f,\ 0!=1)$ u okolini $K(z_0,r)$ točke z_0 za funkciju koju red (15) definira na $K(z_0,r)$.

Primjenom prethodnih rezultata pokazuje se da je:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!},$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!},$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}.$$

Sada je

$$(e^z)' = \sum_{n=0}^{\infty} \left(\frac{z^n}{n!}\right)' = \sum_{n=1}^{\infty} n \frac{z^{n-1}}{n!} = \sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z,$$

$$(\sin z)' = \sum_{n=0}^{\infty} (-1)^n \left(\frac{z^{2n+1}}{(2n+1)!}\right)' = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)z^{2n+1-1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = \cos z,$$

i analogno

$$(\cos z)' = \sin z,$$

što su poznate formule za derivacije tih funkcija.

Definiramo li funkcije e^z , $\sin z$ i $\cos z$ preko redova imamo da je

$$e^{iz} = \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots\right) + i\left(z - \frac{z^3}{3!} + \frac{z^5}{5!} \cdots\right) = \cos z + i\sin z$$

(Eulerova formula). Slično je

$$e^{-iz} = \cos z - i \sin z$$

pa imamo

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}), \quad \sin z = \frac{1}{2i} (e^{iz} - e^{-iz}).$$

a tako smo i definirali funkcije sin zi cosz. Kvadriranjem prethodnih relacija dobivamo

$$\cos^2 z + \sin^2 z = 1.$$

Kao što vrijedi osnovni trigomometrijski identitet tako za trigonometrijske funkcije kompleksne varijable vrijede i sve standardne formule koje vrijede za realne trigonometrijske funkcije. Slično se pokazuje da i za hiperboličke funkcije kompleksne varijable vrijede formule koje vrijede za realne hiperboličke funkcije.

Korolar 2.15 (Princip izoliranih točaka) Neka je funkcija f zadana redom

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in K(z_0, r).$$

Ako ne iščezavaju svi koeficijenti reda a_n , $n \in \mathbb{N}$, onda postoji pozitivan realni broj $\varepsilon < r$ takav da je $f(z) \neq 0$ za svaki $z \in K(z_0, \varepsilon)$ osim možda za $z = z_0$.

Dokaz. Neka je m takav da je $a_m \neq 0$ i $a_k = 0$ za $0 \leq k < m$. Tada je

$$f(z) = (z - z_0)^m (a_m + a_{m+1}(z - z_0) + \dots + a_n(z - z_0)^{n-m} + \dots) =$$

= $(z - z_0)^m g(z)$

i funkcija $g(z) = a_m + a_{m+1}(z - z_0) + \cdots + a_n(z - z_0)^{n-m} + \ldots$ je analitička na kugli $K(z_0, r)$ i $g(z_0) = a_m \neq 0$. Budući je g neprekidna funkcija i $g(z_0) \neq 0$, postoji $\varepsilon > 0$, $\varepsilon \le r$, takav da je $g(z) \ne 0$ čim je $z \in K(z_0, \varepsilon)$ (osim možda $za z = z_0$).

Definicija 2.16 Za funkciju $f: \Omega \to \mathbb{C}$ koja na otvorenom skupu $\Omega \subseteq \mathbb{C}$ ima m-tu derivaciju kažemo da u točki $z_0 \in \Omega$ ima nultočku m-tog reda (kratnosti m ili m-struka nultočka)

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0, \quad f^{(m)}(z_0) \neq 0.$$

Korolar 2.17 (Princip jednakosti redova potencija)

Neka redovi $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ i $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ konvergiraju na krugu $K(z_0,r)$. Ako postoji ε $(0 < \varepsilon \le r)$ takav da je $\sum_{k=0}^{\infty} a_n (z-z_0)^k = 0$ $\sum_{k=0}^{\infty} b_k(z-z_0)^k \ za \ svaki \ z \in K(z_0,\varepsilon), \ onda \ je \ a_n=b_n, \ n=0,1,2\dots$

Dokaz. Razlika analitičkih funkcija (to su redovi) definira analitičku funkciju $f(z) = \sum_{k=0}^{\infty} (a_k - b_k)(z - z_0)^k$ na nekom krugu $K(z_0, r')$ koji sadrži krug $K(z_0,r)$. Budući da je tada f(z)=0 za svaki $z\in K(z_0,\varepsilon)$ po Korolaru 2.15 zaključujemo da nijedan od koeficijenata $a_k - b_k$ ne može biti različit od nule. Dakle, $a_k - b_n = 0$, za svako $k = 0, 1, 2, \cdots$.

ZADACI

1. Ispitajte konvergenciju reda

(a)
$$\sum \frac{e^{\frac{i}{n}}}{n}$$
; (b) $\sum \frac{e^{i2n}}{n\sqrt{n}}$; (c) $\sum \frac{e^{\frac{i\pi}{n}}}{\sqrt{n}}$; (e) $\sum \frac{\cos(in)}{2^n}$; (f) $\sum \frac{n\sin(in)}{3^n}$; (g) $\sum \frac{(1+i)^n}{2^{\frac{n}{2}}\cos(in)}$

$$) \sum \frac{e^{i2n}}{n\sqrt{n}}; \qquad (c)$$

$$e) \sum \frac{\cos(in)}{2^n}; \qquad (f)$$

(f)
$$\sum \frac{n\sin(in)}{3^n}$$

(g)
$$\sum \frac{(1+i)^n}{2^{\frac{n}{2}}\cos(in)}$$

2. Dokažite da redovi apsolutno konvergiraju:

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{n^{n+p}} z^n$$
, $|z| < e$

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{n^{n+p}} z^n, |z| < e;$$
(b)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!}{(n!)^2} \frac{z^n}{z^2+1}, |z| < \frac{1}{4}.$$

3. Dokažite da je
$$e^{-1}$$
 radijus konvergencije reda $\sum \frac{n^n}{n!} z^n$.

4. Nađite radijus konvergencije reda
$$\sum_{n=0}^{\infty} \frac{1+n!}{n!} z^n$$

5. Dokažite da je:

(a)
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
; (b) $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$;

(c)
$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

6. Dokažite da je:

(a)
$$\sin z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, z \in \mathbb{C};$$

(b) $\cot z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, z \in \mathbb{C}.$

(b)
$$\operatorname{ch} z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, z \in \mathbb{C}.$$

7. Dokažite formule

(a)
$$\sin iz = i \operatorname{sh} z$$
; $\operatorname{sh} iz = i \sin z$;

(b)
$$\cos iz = \operatorname{ch} z$$
; $\operatorname{ch} iz = \cos z$;

(c)
$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_3;$$

 $\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_3.$

- 8. Oredite radijus konvergencije reda $\sum\nolimits_{n=0}^{\infty}z^{n}$ i dokažite da taj red na krugu konvergencije predstavlja funkciju $f(z) = \frac{1}{1-z}$.
- 9. Oredite radijus konvergencije reda $\sum\nolimits_{n=0}^{\infty}nz^{n}$ i dokažite da taj red na krugu konvergencije predstavlja funkciju $f(z) = \frac{z}{(1-z)^2}$.
- 10. Dokažite da je:

(a)
$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n$$
, $|z| < 1$;

(b)
$$\ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, |z| < 1;$$

(c) $\frac{1}{4-z^2} = \sum_{n=1}^{\infty} \frac{z^{2n}}{4^{n+1}}, |z| < 2.$

(c)
$$\frac{1}{4-z^2} = \sum_{n=1}^{\infty} \frac{z^{2n}}{4^{n+1}}, |z| < 2$$

2.4 UNIFORMNO KONVERGENTNI REDOVI FUNKCIJA

Pokazali smo da je redom potencija definirana analitička funkcija na krugu konvergencije i da se derivacija te funkcije dobiva deriviranjem član po član. Budući su polinomi, a posebno potencije $(z-z_0)^n$ analitičke funkcije prirodno se nameće sljedeći problem. Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup i neka je (u_n) niz analitičkih funkcija definiranih na $\Omega.$ Uzmimo da red

$$u_0(z) + u_1(z) + \dots + u_n(z) + \dots \tag{1}$$

konvergira za svaki $z \in \Omega$ i njegovu sumu označimo sa f(z). Uz koje uvjete je funkcija f analitička na Ω i uz koje uvjete vrijedi

$$f'(z) = u'_0(z) + u'_1(z) + \dots + u'_n(z) + \dots$$
 (2)

za svaki $z \in \Omega$? Pokazat ćemo kasnije da je f analitička funkcija i da je dozvoljeno deriviranje "član po član" ukoliko red (1) uniformno konvrgira na svakom kompaktnom skupu sadržanom u Ω . Ovdje dokazujemo da red potencija $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ uniformno konvergira funkciji f na svakom kompaktnom skupu K sadržanom u krugu konvergencije $K(z_0, r)$.

Definicija 2.18 Neka je $S \subseteq \mathbb{C}$ i $(f_n : S \to \mathbb{C})_{n \in \mathbb{N}}$ niz kompleksnih funkcija. Kažemo da niz (f_n) uniformno konvergira funkciji $f : S \to \mathbb{C}$ ako

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall z \in S)(\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow |f_n(z) - f(z)| < \varepsilon$$

Red $\sum_{k=1}^{\infty} f_k(z)$ uniformno konvergira funkciji f na S ako niz parcijalnih suma $s_n = f_1 + \ldots + f_n$ uniformno konvergira funkciji f na S, tj.

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall z \in S)(\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow \left| \sum_{k=1}^n f_k(z) - f(z) \right| < \varepsilon.$$

Teorem 2.19 Neka je $S \subseteq \mathbb{C}$ i neka niz funkcija $(f_n : S \to \mathbb{C})_{n \in \mathbb{N}}$ uniformno konvergira funkciji $f : S \to \mathbb{C}$. Ako je svaka funkcija f_n neprekidna u točki $z_0 \in S$, onda je i funkcija f neprekidna u točki z_0 .

Dokaz. Po pretpostavci $(f_n) \xrightarrow[\text{uniform}]{} f$ pa vrijedi

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall z \in S)(\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow |f_n(z) - f(z)| < \frac{\varepsilon}{3}$$

Za $\varepsilon > 0$, jer je f_n neprekidna u z_0 , postoji $\delta > 0$ takav da za svaki $z \in S$

$$|z-z_0|<\delta \Rightarrow |f_n(z)-f_n(z_0)|<rac{\varepsilon}{3}.$$

Sada za $z \in S$, $|z - z_0| < \delta$ imamo

$$|f(z) - f(z_0)| = |(f(z) - f_n(z)) + (f_n(z) - f_n(z_0)) + (f_n(z_0) - f(z_0))| \le \underbrace{|f(z) - f_n(z)|}_{<\frac{\varepsilon}{2}} + \underbrace{|f_n(z) - f_n(z_0)|}_{<\frac{\varepsilon}{2}} + \underbrace{|f_n(z_0) - f(z_0)|}_{<\frac{\varepsilon}{2}} < \varepsilon$$

i zaista je f neprekidna u z_0 .

Korolar 2.20 Ako niz funkcija $(f_n : S \to \mathbb{C})_{n \in \mathbb{N}}$ uniformno konvergira na S funkciji $f : S \to \mathbb{C}$ i ako je svaka od funkcija f_n neprekidna na S onda je i funkcija f neprekidna na S.

Korolar 2.21 Ako je svaka od funkcija $f_n: S \to \mathbb{C}, n \in \mathbb{N}$, neprekidna na S i ako red funkcija $\sum_{k=1}^{\infty} f_k(z)$ na S uniformno konvergira funkciji f, onda je funkcija f neprekidna.

Dokaz. Funkcija $s_n = u_1 + u_2 + \cdots + u_n$ je neprekidna na S za svaki n i niz (s_n) uniformno na S konvergira funkciji f. Prema Korolaru 2.20 funkcija f je neprekidna na S.

Teorem 2.22 (Weistrassov kriterij) Ako vrijedi:

$$(\forall z \in S)(\forall n \in \mathbb{N}) \quad |f_n(z)| \le a_n$$

i ako red $\sum a_n$ pozitivnih brojeva konvergira, onda red $\sum f_n$ kompleksnih funkcija na S konvergira uniformno i apsolutno na S.

Dokaz. Budući je $\sum |f_n(z)| \leq \underbrace{\sum a_n}_{\text{konv.}}$ to je $\sum |f_n(z)|$ konvergentan i red

 $\sum f_n(z)$ je konvergentan. Dakle, dobro je definirana funkcija

$$f: S \to \mathbb{C}, \quad f(z) = \sum f_n(z).$$

Jer je $\sum a_n$ konvergentan red pozitivnih brojeva imamo

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow \sum_{k=n+1}^{\infty} a_k < \varepsilon.$$

Sada je za $\forall z \in S$:

$$|s_n(z) - f(z)| = \left| \sum_{k=n+1}^{\infty} f_k(z) \right| \le \sum_{k=n+1}^{\infty} |f_k(z)| \le \sum_{k=n+1}^{\infty} a_k < \varepsilon$$

i imamo

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall z \in S)(\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow |s_n(z) - f(z)| < \varepsilon$$

i zaista niz parcijalnih suma (s_n) konvergira uniformno funkciji f na S.

Teorem 2.23 (Abel) Red potencija $\sum a_n(z-z_0)^n$ uniformno i apsolutno konvergira na svakom kompaktnom skupu K sadržanom u krugu konvergencije $K(z_0,r)$ tog reda.

Dokaz. Funkcija $z\mapsto |z-z_0|$ je neprekidna na kompaktu K pa u nekoj točki $\zeta\in K$ poprima svoj maksimum. Dakle

$$(\forall z \in K) \quad |z - z_0| \le |\zeta - z_0|$$

Budući je $|\zeta - z_0| < r$ to je $\sum |a_n(\zeta - z_0)^n|$ konvergentan red pozitivnih brojeva. Imamo

$$|a_n(z-z_0)^n| \le |a_n| |z-z_0|^n \le |a_n| |\zeta-z_0|^n = |a_n(\zeta-z_0)^n|$$

i Weierstrassov kriterij daje da red ${\sum}a_n(z-z_0)^n$ uniformno i apsolutno konvergira na K. \blacksquare

ZADACI

- 1. Za niz kompleksnih funkcija (f_n) na otvorenom skupu $\Omega \subseteq \mathbb{C}$ kažemo da **konvergira lokalno uniformno na** Ω prema funkciji $f:\Omega \to \mathbb{C}$, ako za svaku točku $z_0 \in \Omega$ postoji r>0 takav da je krug $K(z_0,r)$ sadržan u Ω i da niz (f_n) konvergira funkciji f uniformno na $K(z_0,r)$.
 - Dokažite da je to slučaj ako i samo ako za svaki kompakt K sadržan u Ω niz (f_n) konvergira funkciji f uniformno na K. Uputa. Koristite Teorem 1.41.
- 2. Dokažite da ako niz kompleksnih funkcija (f_n) na otvorenom skupu $\Omega \subseteq \mathbb{C}$ konvergira lokalno uniformno na Ω prema funkciji $f:\Omega \to \mathbb{C}$ i ako je svaka funkcija f_n neprekidna na Ω , tada je i funkcija f neprekidna na Ω .
- 3. Neka su u_n kompleksne, a φ_n realne funkcije na S $(n \in \mathbb{N})$. Neka je

$$|u_n(z)| \le \varphi(z), \quad z \in S, \ n \in \mathbb{N},$$

i naka red $\sum \varphi_n$ konvergira uniformno na S. Dokažite da tada red $\sum u_n$ konvergira uniformno i apsolutno na S.

Uputa. Potupite slično kao u dokazu Teorema 2.22.

4. Neka su u_n kompleksne funkcije na S takve da red apsolutnih vrijednosti $\sum |u_n(z)|$ konvergira uniformno na S. Dokažite da tada red $\sum u_n$ konvergira uniformno i apsolutno na S.

2.5 CAUCHY-HADAMARDOVA FORMULA

Pokazali smo da red potencija $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ definira analitičku funkciju na svom krugu konvergencije $K(z_0,r)$. Pri tome je $r=\sup\left\{\left|z-z_0\right|:z\in K\right\}$ gdje je K skup svih kompleksnih brojeva za koje taj red potencija konvergira. Očito je r u potpunosti određen koeficijentima a_0,a_1,a_2,\ldots i postavlja se pitanje kako odrediti radijus konvergencije r pmoću tih koeficijenata.

Teorem 2.24 (Cauchy-Hadamardova formula) Radijus konvergencije reda $\sum_{n=0}^{\infty} a_n (z-z_0)^n \ jednak \ je \ r = \frac{1}{|\limsup \sqrt[n]{|a_n|}}, \ i \ pritom \ je \ r = 0 \ ako \ je$ $\limsup \sqrt[n]{|a_n|} = +\infty \ te \ r = +\infty \ ako \ je \ \limsup \sqrt[n]{|a_n|} = 0.$

Dokaz. Bez gubitka općenitosti možemo pretpostaviti da je $z_0 = 0$. Označimo sa $\rho = \limsup \sqrt[n]{|a_n|}$.

1. Neka je $\rho = +\infty$.

Neka je $z \in \mathbb{C} \setminus \{0\}$. Budući je $\rho = \limsup \sqrt[n]{|a_n|} = +\infty$ postoji beskonačan podskup $M \subseteq \mathbb{N}$ takav da je

$$\sqrt[n]{|a_n|} > \frac{1}{|z|}, \ n \in M.$$

Slijedi da je $|a_nz^n|>1,\ n\in M,$ i niz (a_nz^n) ne teži nuli pa stoga red $\sum_{n=0}^\infty a_nz^n$ divergira. Dakle, r=0.

2. Neka je $\rho = 0$.

Neka je $z \in \mathbb{C} \setminus \{0\}$. Tada je lim $\sqrt[n]{|a_n|} = 0$. To znači da za $\varepsilon = \frac{1}{2|z|}$

$$(\exists n_0 \in \mathbb{N}) (\forall n \in \mathbb{N}) \quad n \ge n_0 \Rightarrow \left| \sqrt[n]{|a_n|} - 0 \right| = \sqrt[n]{|a_n|} < \frac{1}{2|z|}$$

Sada je $\sqrt[n]{|a_n|}|z| < \frac{1}{2}$, tj.

$$|a_n z^n| < \frac{1}{2^n}, \ n > n_0$$

Budući je red $\sum \frac{1}{2^n}$ konvergentna majoranta reda $\sum |a_n z^n|$, taj red apsolutno konvergira, pa stoga red $\sum a_n z^n$ konvergira. Dakle, $r = +\infty$.

3. Neka je $0 < \rho < +\infty$.

(a) Neka je $z \in \mathbb{C}$, $|z| > \frac{1}{\rho}$, i neka je $\varepsilon > 0$ takav da je $|z| > \frac{1}{\rho - \varepsilon}$. Budući je lim sup $\sqrt[n]{|a_n|}=\rho$ postoji beskonačan podskup $M\subseteq\mathbb{N}$ takav da je

$$\sqrt[n]{|a_n|} > \rho - \varepsilon > \frac{1}{|z|}, \ n \in M.$$

Slijedi da je $|a_n z^n| > 1, n \in M$, pa niz $(a_n z^n)$ ne konvergira k nuli. Dakle, red $\sum a_n z^n$ divergira.

(b) Neka je $z \in \mathbb{C}$, $|z| < \frac{1}{\rho}$, i neka je $\varepsilon > 0$ takav da je $|z| > \frac{1}{\rho + 2\varepsilon}$. Budući je $\rho = \limsup \sqrt[n]{|a_n|}$ najveće gomilište niza $\left(\sqrt[n]{|a_n|}\right)$, postoji $n_0 \in \mathbb{N}$ takav da je

$$\sqrt[n]{|a_n|} < \rho + \varepsilon, \ n > n_0.$$

Sada je

$$|a_n z^n| < \frac{(\rho + \varepsilon)^n}{(\rho + 2\varepsilon)^n} = \left(\frac{\rho + \varepsilon}{\rho + 2\varepsilon}\right)^n = q^n, \ q < 1, \ n \ge n_0.$$

Budući je $\sum q^n$ konvergentan i red $\sum a_n z^n$ konvergira.

Dakle, za $|z| > \frac{1}{\rho}$ red $\sum a_n z^n$ divergira, a za $|z| < \frac{1}{\rho}$ red $\sum a_n z^n$ konvergira, pa je $r = \frac{1}{\rho}$ radijus konvergencije.

ZADACI

- 1. Odredite radijus konvergencije redova
 - (a) $\sum \frac{(2n)!}{(n!)^2} z^n;$ (b) $\sum \frac{n!}{n^n} z^n;$
- - (c) $\sum n!z^n$; (d) $\sum \frac{1}{a^n + b^n}z^n$, 0 < a < b(e) $\sum \frac{n^n}{(2n!)}z^n$ (f) $\sum \frac{1}{n^n}z^n$ (g) $\sum n^nz^n$ (h) $\sum n^{\ln n}z^n$

- 2. Neka su r_1 i r_2 radijusi konvergencije redova potencija $\sum a_n z^n$ i $\sum b_n z^n$.
 - (a) Dokažite da red potencija $\sum (a_n + b_n)z^n$ ima radijus konvergencije $\geq \min\{r_1, r_2\};$
 - (b) Dokažite da red potencija $\sum a_n b_n z^n$ ima radijus konvergen-
 - (c) Ukoliko su svi $b_n \neq 0$ dokažite da red potencija $\sum \frac{a_n}{b_n} z^n$ ima radijus konvergencije $\leq \frac{r_1}{r_2}$

Poglavlje 3

CAUCHYJEVA FORMULA. TAYLOROV I LAURENTOV RAZVOJ

3.1 KRIVULJNI INTEGRAL U KOMPLEKSNOM PODRUČJU

Neka je $\Gamma \subset \mathbb{C}$ Jordanov luk i neka je

$$\Gamma \equiv \left\{ \begin{array}{l} x = x(t) \\ y = y(t), \quad t \in [\alpha, \beta] \end{array} \right.$$

njegova **glatka parametrizacija** (tj. funkcije x=x(t), y=y(t) su klase C^1 na $[\alpha,\beta]$ i $[x'(t)]^2+[y'(t)]^2\neq 0, t\in [\alpha,\beta]$). Uzmemo li orijentaciju od točke $A=(x(\alpha),y(\alpha))$ do točke $B=(x(\beta),y(\beta))$ (orijentacija određena porastom parametra t) dobivamo orijentiran Jordanov luk koji ćemo označavati $\widehat{\Gamma}$ ili sa Γ^+ (odnosno sa $\widehat{\Gamma}$ ili Γ^- ako nadglašavamo suprotne orijentacije). Stavimo li

$$t \mapsto z(t) = x(t) + iy(t), \quad t \in [\alpha, \beta],$$

tada je i to glatka parametrizacija luka Γ (funkcija $t\mapsto z(t)$ je bijekcija sa $[\alpha,\beta]$ na Γ i $z'(t)\neq 0,\,t\in [\alpha,\beta]$) zapisana u "kompleksnom obliku".

Ukoliko je Γ po dijelovima glatka krivulja dobivena nastavljanjem Jordanovih lukova $\Gamma_1, \Gamma_2, \cdots, \Gamma_n$ tako da se krajnja točka luka Γ_n (k =

 $1, \ldots, n-1$) podudara s početnom točkom luka Γ_{k+1} tada kažemo da je krivulja Γ koherentno orijentirana i pišemo $\Gamma^+ = \Gamma_1^+ + \Gamma_2^+ + \cdots + \Gamma_n^+$. Ukoliko se završetak od Γ_n podudara s početkom Γ_1 tada govorimo da je Γ zatvorena krivulja. Ako je Γ zatvorena pozitivno orijentirana (suprotno kretanju kazaljke na satu) krivulja onda je nazivamo konturom.

Neka je na Γ zadana kompleksna funkcija $f:\Gamma\to\mathbb{C}$.

Definirat ćemo integral funkcije f po orijetiranom luku $\Gamma^+ = \stackrel{\frown}{AB}$ analogno definiciji krivuljnog integrala druge vrste: podijelimo luk $\Gamma^+ = \stackrel{\frown}{AB}$ točkama $A = P_0 = z_0, P_1 = z_1, \ldots, P_{n-1} = z_{n-1}, P_n = B = z_n$ i načinimo integralnu sumu

$$S_n = \sum_{k=0}^n f(z_k^*)(z_k - z_{k-1}),$$
gdje je $Q_k = z_k^* \in P_{k-1}^{\circ} P_k$.

Definicija 3.1 Ako pri $\max |z_k - z_{k-1}| \underset{k \to \infty}{\longrightarrow} 0$ (dakle, pri sve finijoj razdiobi luka $\Gamma^+ = \stackrel{\frown}{AB}$) postoji limes gornje sume S_n , koji ne ovisi niti o načinu razdiobe luka Γ niti o izboru točaka $Q_k = z_k^* \in P_{k-1}P_k$, onda taj limes definiramo kao **krivuljni integral funkcije** f po luku Γ orijentiranom od A do B i označavamo ga

$$\int_{\Gamma^+} f(z)dz.$$

Problem egzistencije integrala $\int_{\Gamma^+} f(z)dz$ funkcije f=u+iv svodi se na problem egzistencije krivuljnih integrala druge vrste funkcija u i v. Neka je $z_k-z_{k-1}=(x_k-x_{k-1})+i(y_k-y_{k-1})$ i $f(z_k^*)=f(Q_k)=u(Q_k)+i(Q_k)$ pa imamo

$$S_n = \sum_{k=1}^n f(z_k^*)(z_k - z_{k-1}) =$$

$$= \sum_{k=1}^{n} u(Q_k)(x_k - x_{k-1}) - v(Q_k)(y_k - y_k) + iu(Q_k)(y_k - y_{k-1}) + iv(Q_k)(x_k - x_{k-1}) =$$

$$= \left(\sum_{k=1}^{n} u(Q_k)(x_k - x_{k-1}) - v(Q_k)(y_k - y_k)\right) + i\left(\sum_{k=1}^{n} u(Q_k)(y_k - y_{k-1}) + v(Q_k)(x_k - x_{k-1})\right)$$

a to znači da integralnu sumu S_n možemo interpretirati kao zbroj dvaju integralnih suma koje daju integrale

$$\int_{\Gamma^+} u dx - v dy, \quad \int_{\Gamma^+} u dy + v dx.$$

Ovi integrali postoje ukoliko su u i v neprekidne funkcije. To znači da za egzistenciju integrala $\int_{\Gamma^+} f(z)dz$ nije neophodna analitičnost funkcije f (makar je to najvažniji slučaj). Formula

$$\int_{\Gamma^{+}} f(z)dz = \int_{\Gamma^{+}} udx - vdy + i \int_{\Gamma^{+}} udy + vdx \tag{1}$$

daje jednostavno sljedeća svojstva ovakvog integrala.

Teorem 3.2

(1) Promjenom orijentacije luka mijenja se predznak integrala

$$\int_{\Gamma^+} f(z)dz = -\int_{\Gamma^-} f(z)dz;$$

(2) Integral je aditivan po području definicije: ukoliko je $\Gamma^+ = \Gamma_1^+ + \Gamma_2^+$ po dijelovima glatka koherentno orijentirana krivulja tada je

$$\int_{\Gamma^+} f(z)dz = \int_{\Gamma_1^+} f(z)dz + \int_{\Gamma_2^+} f(z)dz;$$

(3) Integral je linearan $(\lambda, \mu \in \mathbb{C})$

$$\int_{\Gamma^+} \left[\lambda f(z) + \mu g(z)\right] dz = \lambda \int_{\Gamma^+} f(z) dz + \mu \int_{\Gamma^+} g(z) dz.$$

Napomenimo da ukoliko je $z(t) = x(t) + iy(t), t \in [\alpha, \beta]$, parametrizacija luka Γ^+ onda supstitucijom dobivamo

$$\int_{\Gamma^{+}} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt, \tag{2}$$

pa je to još jedna efektivna formula za izračun krivuljnog integrala kompleksne funkcije. Napomenimo i da integral kompleksne funkcije po orijentiranom Jordanovom luku ne ovisi o izboru parametrizacije tog luka. **Teorem 3.3** Neka je Γ glatka krivulja i f neprekidna kompleksna funkcija definirana na Γ . Tada je

$$\left| \int_{\Gamma^+} f(z) dz \right| \le \int_{\Gamma^+} |f(z)| |dz| \tag{3}$$

i pri tome je na desnoj strani krivuljni integral prve vrste funkcije $z \mapsto |f(z)|$ po krivulji Γ u odnosu na duljinu luka ds = |dz| = |z'(t)| dt.

Dokaz. Neka je $z=z(t),\,t\in[\alpha,\beta]$ glatka parametizacija Jordanovog luka. Treba dokazati

$$\left| \int_{\Gamma^+} f(z) dz \right| = \left| \int_{\alpha}^{\beta} f(z(t)) z'(t) dt \right| \le \int_{\alpha}^{\beta} \left| f(z(t)) \right| \left| z'(t) \right| dt.$$

Prikažimo kompleksni broj $\int_{\alpha}^{\beta}f(z(t))z'(t)dt$ u eksponencijalnom obliku

$$\int_{\alpha}^{\beta} f(z(t))z'(t)dt = \left| \int_{\alpha}^{\beta} f(z(t))z'(t)dt \right| e^{i\varphi}$$

Slijedi

$$\left| \int_{\alpha}^{\beta} f(z(t))z'(t)dt \right| = e^{-i\varphi} \int_{\alpha}^{\beta} f(z(t))z'(t)dt =$$

$$\operatorname{Re}\left[e^{-i\varphi} \int_{\alpha}^{\beta} f(z(t))z'(t)dt \right] = \int_{\alpha}^{\beta} \operatorname{Re}\left[e^{-i\varphi} f(z(t))z'(t) \right] dt \leq$$

$$\leq \int_{\alpha}^{\beta} \left| e^{-i\varphi} f(z(t))z'(t) \right| dt = \int_{\alpha}^{\beta} \left| f(z(t)) \right| \cdot |z'(t)| dt.$$

Ukoliko je f neprekidna funkcija na Γ onda postoji realni broj M>0 takav da je $|f(z)| \leq M$ za svaki $z \in \Gamma$. Zaista, budući je Γ kompaktan skup i jer je funkcija $z \mapsto |f(z)|$ neprekidna, takav M postoji.

Korolar 3.4 Neka je Γ glatka krivulja i f neprekidna kompleksna funkcija definirana na Γ . Tada je

$$\left| \int_{\Gamma^+} f(z) dz \right| \le M \cdot s(\Gamma) \tag{4}$$

pri čemu je $s(\Gamma)$ duljina krivulje Γ .

Tvrdnja prethodnog teorema i njegovog korolara vrijedi i ukoliko je $\Gamma^+ = \Gamma_1^+ + \cdots + \Gamma_n^+$ po dijelovima glatka koherentno orijentirana krivulja:

$$\begin{split} &\left| \int_{\Gamma^+} f(z) dz \right| = \left| \sum_{i=1}^n \int_{\Gamma_i^+} f(z) dz \right| \leq \sum_{i=1}^n \left| \int_{\Gamma_i^+} f(z) dz \right| \\ &\leq \sum_{i=1}^n \int_{\Gamma_i^+} |f(z)| \, |dz| = \int_{\Gamma^+} |f(z)| \, |dz| \end{split}$$

Primjer 3.5 Dokažimo da je

$$\int_{\Gamma^{+}} (z - z_0)^n dz = \begin{cases} 2\pi i, & n = -1\\ 0, & n \neq -1 \end{cases}$$
 (5)

gdje je Γ^+ pozitivno orijentirana kružnica radijusa r sa središtem u z_0 .

Pozitivno orijentirana kružnica Γ^+ ima parametrizaciju $z(t)=z_0+re^{it},$ $t\in[0,2\pi].$ Imamo

$$\int_{\Gamma^{+}} (z - z_{0})^{n} dz \stackrel{(2)}{=} \int_{0}^{2\pi} (re^{it})^{n} re^{it} i dt = ir^{n+1} \int_{0}^{2\pi} e^{i(n+1)t} dt =$$

$$= \begin{cases} n = -1 \Rightarrow & ir^{0} \int_{0}^{2\pi} dt = i \cdot 2\pi \\ n \neq -1 \Rightarrow & ir^{n+1} \int_{0}^{2\pi} [\cos(n+1)t + i\sin(n+1)t] dt = 0 \end{cases}$$

Napomenimo da promatrani integral ne ovisi o radijusu r kružnice Γ .

Teorem 3.6 Neka je Γ po dijelovima glatka krivulja, (f_n) niz neprekidnih kompleksnih funkcija na Γ i f funkcija takva da $(f_n) \to f$ uniformno na Γ kada $n \to \infty$. Tada je

$$\int_{\Gamma^{+}} f(z)dz = \lim_{n \to \infty} \int_{\Gamma^{+}} f_n(z)dz. \tag{6}$$

Dokaz. Neka je $\varepsilon > 0$ proizvoljan. Budući da $(f_n) \to f$ uniformno na Γ postoji $n_0 \in \mathbb{N}$ takav da za svaki $n \geq n_0$ vrijedi

$$|f(z) - f_n(z)| \le \varepsilon, \quad z \in \Gamma.$$

Po Korolaru 3.4 slijedi

$$\left| \int_{\Gamma^+} f(z)dz - \int_{\Gamma^+} f_n(z)dz \right| = \left| \int_{\Gamma^+} \left[f(z) - f_n(z) \right] dz \right| \le \varepsilon \cdot s(\Gamma).$$

čim je $n \ge n_0$. Budući je $\varepsilon > 0$ proizvoljan zaista vrijedi (6).

Iz prethodnog teorema slijedi i odgovarajuća tvrdnja za uniformno konvergentne redove funkcija.

Teorem 3.7 Neka je Γ po dijelovima glatka krivulja, (f_n) niz neprekidnih kompleksnih funkcija na Γ i neka red $\sum_{n=1}^{\infty} f_n(z)$ uniformno konvergira na Γ . Tada je

$$\int_{\Gamma^+} \left[\sum_{n=1}^{\infty} f_n(z) \right] dz = \sum_{n=1}^{\infty} \int_{\Gamma^+} f_n(z) dz.$$

Drugim riječima uniformno konvergentan red možemo integrirati član po član.

ZADACI

- 1. Izračunajte integral $\int_{\Gamma^+} z dz$, ako je Γ^+ segment koji spaja točke $z_1=1$ i $z_2=2+i$.
- 2. Izračunajte integral $\int_{\Gamma^+} \overline{z} dz$, ako je Γ^+ krivulja $z(t)=t^2+it$ koja spaja točke $z_1=0$ i $z_2=4+2i$.
- 3. Izračunajte integral $\int_{\Gamma^+} |z| dz$, ako je $\Gamma^+ = \Gamma_1^+ + \Gamma_2^+$, gdje je Γ_1^+ segment koji spaja točke $z_1 = (-1,0)$ i $z_2 = (1,0)$, a Γ_2^+ polukružnica u gornjoj poluravnini koja spaja točke z_2 i z_1 .
- 4. Izračunajte $\int_{\Gamma^+} (z+2) e^{iz} dz$, ako je Γ^+ krivulja $\pi^2 y = x^2$ od točke $z_1 = (0,0)$ do točke $(\pi,1)$.
- 5. Izračunajte $\int_{\Gamma^+} \left[\frac{1}{z-1} + \frac{2}{\left(z-1\right)^2}\right] dz$, ako je Γ^+ pozitivno orijentitana kružnica |z-1|=4.
- 6. Izračunajte $\int_{\Gamma^+} (z^2 + z \cdot \overline{z}) dz$, ako je Γ^+ pozitivno orijentiran luk kružnice $|z| = 1, \ 0 \le \arg z \le \pi$.
- 7. Bez izračunavanja integrala provjerite ocjenu $\left|\int_{\Gamma^+} \frac{1}{z^2} dz\right| \leq 4$, gdje je Γ^+ spojnica točaka $z_1=i$ i $z_2=4+1$.
- 8. Bez izračunavanja integrala provjerite ocjenu $\left| \int_{\Gamma^+} \frac{z+1}{z-1} dz \right| \le 8\pi$, gdje je Γ^+ kružnica |z-1|=2.
- 9. Izračunajte $\int_{\Gamma^+} z \sin z dz$, ako je Γ^+ spojnica koja spaja točke $z_1=0$ i $z_2=1+i$.
- 10. Izračunajte $\int_{\Gamma^+}z\cos zdz,$ ako je Γ^+ spojnica koja spaja točke A=0 i B=i.

3.2 CAUCHYJEV TEOREM I CAUCHYJEVA INTEGRALNA FORMULA

Teorem 3.8 (Cauchyjev teorem) Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup i $f: \Omega \to \mathbb{C}$ analitička funkcija. Tada za svaku konturu $\Gamma^+ \subset \Omega$ koja zajedno sa svojim unutarnjim područjem leži u Ω vrijedi

$$\int_{\Gamma^+} f(z)dz = 0. \tag{1}$$

Dokaz. Sjetimo se Greenove formule

$$\int_{\Gamma^{+}=(\partial D)^{+}} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

gdje su Pi Qfunkcije klase C^1 na otvorenom skupu $\Omega\subseteq\mathbb{R}^2$ koji sadrži skupD.

To je osnovna formula integralnog računa funkcija od dvije realne varijable kojim se dvostruki integral funkcije $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ po zatvorenom ravninskom području D pretvara u krivuljni integral (i obratno) po rubu ∂D koji to područje omeđuje, a orijentirana je suprotno kretanju kazaljke na satu.

Ukoliko je f = u + iv analitička funkcija tada vrijedi

$$\frac{\partial u(x,y)}{\partial x} - \frac{\partial v(x,y)}{\partial y} = 0, \quad \frac{\partial u(x,y)}{\partial y} + \frac{\partial v(x,y)}{\partial x} = 0$$

pa je

$$\int_{\Gamma^{+}} f(z)dz = \int_{\Gamma^{+}} udx - vdy + i \int_{\Gamma^{+}} udy + vdx \doteq$$

$$\iint_{D} \left(-\frac{\partial v(x,y)}{\partial x} - \frac{\partial u(x,y)}{\partial y} \right) dxdy +$$

$$+i \iint_{D} \left(\frac{\partial u(x,y)}{\partial x} - \frac{\partial v(x,y)}{\partial y} \right) dxdy = 0.$$

Primjenom Greenove formule za višestruko povezano područje primjenom prethodnog teorema pokazuje se da vrijedi naredna tvrdnja.

Teorem 3.9 (Cauchyjev teorem za višestruko povezano područje) Neka su $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$ konture sa svojstvima:

- (a) bilo koje dvije konture su disjunktne;
- (b) konture $\Gamma_1, \ldots, \Gamma_n$ leže u unutarnjem području konture Γ_0 ;
- (c) kontura Γ_i leži u vanjskom području konture Γ_j za $i \neq j, i, j \geq 1.$

Neka je D zatvoren skup koji se dobije kao unija krivulje Γ_0 i onog dijela unutarnjeg područja te krivulje koje preostaje kada se iz njega izbace unutarnja područja krivulja $\Gamma_1, \ldots, \Gamma_n$. Ako je $f: \Omega \to \mathbb{C}$ analitička funkcija na otvorenom skupu koji sadrži zatvoren skup D, onda vrijedi

$$\int_{\Gamma_0^+} f(z)dz = \sum_{k=1}^n \int_{\Gamma_k^+} f(z)dz. \tag{2}$$

Primjer Izračunajmo $\int_{\Gamma^+} \frac{1}{z-z_0} dz$, gdje je Γ^+ bilo koja zatvorena kontura koja sadrži točku z_0 .

Po prethodnom teoremu je

$$\int_{\Gamma^+}\frac{1}{z-z_0}dz=\int_{\Gamma_1^+}\frac{1}{z-z_0}dz$$

gdje je Γ_1^+ kružnica radijusa r sa središtem u z_0 koja je sadržana u nutrini konture Γ^+ . No zadnji integral je izračunat u Primjeru 3.5 i iznosi $2\pi i$ pa je

$$\int_{\Gamma^+} \frac{1}{z - z_0} dz = 2\pi i.$$

Teorem 3.10 Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija definirana na otvorenom skupu $\Omega \subseteq \mathbb{C}$. Tada za svaki $z_0 \in \Omega$ vrijedi **Cauchyjeva integralna formula**

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(z)}{z - z_0} dz.$$
 (3)

gdje je $\Gamma^+ \subset \Omega$ proizvoljna kontura oko z_0 .

Dokaz. Neka je $\varepsilon>0$ proizvoljan. Funkcija f je neprekidna u točki z_0 pa postoji $\delta>0$ takav da

$$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \frac{\varepsilon}{2\pi}.$$

Neka je Γ_0^+ pozitivno orijentirana kružnica radijusa $r < \delta$ sa središtem u z_0 sadržana u unutrašnjem području konture Γ^+ .

Budući je funkcija

$$z \mapsto \frac{f(z)}{z - z_0}$$

analitička na $\Omega \setminus \{z_0\}$, po Cauchyjevom teoremu za višestruko povezano područje, imamo

$$\int_{\Gamma^{+}} \frac{f(z)}{z - z_{0}} dz = \int_{\Gamma^{+}_{0}} \frac{f(z)}{z - z_{0}} dz = \int_{\Gamma^{+}_{0}} \frac{f(z) - f(z_{0}) + f(z_{0})}{z - z_{0}} dz = \int_{\Gamma^{+}_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz + \underbrace{\int_{\Gamma^{+}_{0}} \frac{f(z_{0})}{z - z_{0}} dz}_{P.3.5 \text{ possible}}$$

Odatle je

$$\left| \int_{\Gamma^+} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0) \right| = \left| \int_{\Gamma_0^+} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le$$

$$\int_{\Gamma_0^+} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| |dz| \le \int_{\Gamma_0^+} \frac{|f(z) - f(z_0)|}{|z - z_0|} |dz| \le \int_{\Gamma_0^+} \frac{\varepsilon}{2\pi} \cdot \frac{1}{r} |dz| \le \frac{\varepsilon}{2\pi} \cdot \frac{1}{r} \cdot 2\pi r = \varepsilon.$$

Odavde zbog proizvoljnosti $\varepsilon > 0$ slijedi (3).

Napomena 3.11 Napomenimo da

$$\frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(z)}{z - z_0} dz$$

ima smisla za svaku konturu $\Gamma^+ \subset \Omega$ i svaku točku $z_0 \in \Omega$ i pri tome vrijedi

$$\frac{1}{2\pi i} \int_{\Gamma^{+}} \frac{f(z)}{z - z_{0}} dz = \begin{cases} f(z_{0}), & z_{0} \in \Omega \text{ unutar } \Gamma \\ 0, & z_{0} \in \Omega \text{ izvan } \Gamma \end{cases}$$

Primjer Primjenom Cauchyjeve integralne formule izračunajmo integral

$$\int_{\Gamma^+} \frac{1}{z^2 + 25} dz$$

gdje je Γ^+ pozitivno orijentirana kružnica |z - 3i| = 3.

Unutar konture Γ^+ nalazi se točka z=5ipa imamo

$$\int_{\Gamma^{+}} \frac{1}{z^{2} + 25} dz = \int_{\Gamma^{+}} \frac{\frac{1}{z + 5i}}{z - 5i} dz = \frac{1}{2\pi i} \int_{\Gamma^{+}} \frac{\overbrace{\frac{2\pi i}{z + 5i}}}{z - 5i} dz = f(z)|_{z = 5i} = \frac{2\pi i}{5i + 5i} = \frac{\pi}{5}.$$

Primjer Primjenom Cauchyjeve integralne formule izračunajmo integral

$$\int_{\Gamma^{+}} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-21)} dz$$

gdje je Γ^+ pozitivno orijentirana kružnica |z|=3.

$$\int_{\Gamma^{+}} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z - 1)(z + 1)} dz = \sqrt{\frac{1}{(z - 1)(z - 2)}} = \frac{1}{z - 2} - \frac{1}{z - 1} / =$$

$$\frac{1}{2\pi i} \int_{\Gamma^{+}} \frac{2\pi i \left(\sin \pi z^{2} + \cos \pi z^{2}\right)}{z - 2} dz - \frac{1}{2\pi i} \int_{\Gamma^{+}} \frac{2\pi i \left(\sin \pi z^{2} + \cos \pi z^{2}\right)}{z - 1} dz =$$

$$2\pi i \left(\sin \pi z^{2} + \cos \pi z^{2}\right)|_{z = 2} - 2\pi i \left(\sin \pi z^{2} + \cos \pi z^{2}\right)|_{z = 1} =$$

$$2\pi i \left(\sin \pi 4 + \cos \pi 4\right) - 2\pi i \left(\sin \pi + \cos \pi\right) = 2\pi i - (-2\pi i) = 4\pi i$$

Teorem 3.12 (Teorem o srednjoj vrijednosti) Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija, $K_R \subset \Omega$ kružnica polumjera R sa središtem u $z_0 \in \Omega$. Tada vrijedi

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi}) d\varphi$$

Dokaz. Po Cauchyjevoj integralnoj formuli (T.3.10.) imamo

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(z)}{z - z_0} dz = \frac{1}{z - z_0 = Re^{i\varphi}} \frac{1}{2\pi i} \int_0^{2\pi} f(z_0 + Re^{i\varphi}) id\varphi.$$

(naziv teorema dolazi otuda što se vrijednost analitičke funkcije u središtu kruga z_0 izražava kao srednja vrijednost svojih vrijednosti na rubu - kružnici.)

ZADACI

- 1. Izračunajte $\int_{\Gamma^+} \frac{z^3-2z+1}{z^2+1} dz$, ako je Γ^+ pozitivno orijentirana kružnica:
 - (a) |z i| = 1; (b) |z + i| = 1;
 - (c) $|z| = \frac{1}{2}$; (d) |z 7i| = 1.
- 2. Izračunajte $\int_{\Gamma^+} (z-z_0)^n dz$ (*n* cijeli broj), gdje je Γ^+ :
 - (a) gornja polukružnica radijusa R sa središtem u z_0 s početkom u točki $z_0 + R$;
 - (b) kružnica $|z z_0| = R$;
 - (c) rub kvadrata sa središtem u točki z_0 i stranicama paralelnim s koordinatnim osima.
- 3. Izračunajte integral $\int_{|z|=\rho} \frac{1}{z^2+1} dz$ u ovisnosti od ρ ($|z|=\rho$ je pozitivno orijentirana kružnica).
- 4. Izračunajte $\int_{\Gamma^+} \frac{\cos z}{(z-i)^3} dz$, ako je Γ^+ pozitivno orijentirana kružnica |z|=2.
- 5. Izračunajte $\int_{\Gamma^+} \frac{z}{z^4-1} dz$, ako je Γ^+ pozitivno orijentirana kružnica |z-2|=2.
- 6. Izračunajte $\int_{\Gamma^+} \frac{e^z}{z^2-1} dz$, ako je Γ^+ pozitivno orijentirana krivulja koja okružuje točke $z_1=1$ i $z_2=-1$.
- 7. Izračunajte integrale (kružnice su pozitivno orijentirane):

(a)
$$\int_{|z|=5} \frac{1}{z^2+16} dz$$
; (b) $\int_{|z|=1} \frac{e^z \cos \pi z}{z^2+2z} dz$; (c) $\int_{|z|=2} \frac{e^z}{z^2+1} dz$.

3.3 RAZVOJ ANALITIČKE FUNKCIJE U TAYLOROV RED

Teorem 3.13 (Razvoj funkcije u Taylorov red) Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija na otvorenom skupu $\Omega \subseteq \mathbb{C}$.

- 1. Funkcija f ima derivaciju svakog reda na Ω i ta je derivacija također analitička funkcija na Ω .
- 2. Vrijednost n-te derivacije funkcije f u točki $z_0 \in \Omega$ dana je formulom (Cauchyjeva integralna formula za n-tu derivaciju)

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \tag{1}$$

gdje je $\Gamma^+ \subset \Omega$ bilo koja kontura koja zajedno sa svojim unutarnjim područjem D leži u Ω i $z_0 \in D$.

3. Taylorov red

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \tag{2}$$

konvergira apsolutno na svakom krugu $K(z_0,r) \subseteq \Omega$ i u svakoj točki $z \in K(z_0,r)$ ima sumu f(z).

Dokaz. Neka je $z_0 \in \Omega$ i r > 0 takav da je $K(z_0, r) \subseteq \Omega$ i Γ_0^+ pozitivno orijentirana kružnica $|z - z_0| = \rho < r$. Po Teoremu 3.10 za svaku točku $z \in K(z_0, \rho)$ vrijedi Cauchyjeva integralna formula

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\alpha}^{+}} \frac{f(\zeta)}{\zeta - z} d\zeta. \tag{3}$$

Transformirajmo integrand na sljedeći način.

Kako je
$$\left| \frac{z - z_0}{\zeta - z_0} \right| < 1$$
 imamo
$$\frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{f(\zeta)}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n = \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \cdot (z - z_0)^n$$
(4)

i pri tome dobiveni red konvergira apsolutno, a također i uniformno u odnosu na $\zeta \in \Gamma_0$. Iz (3) i (4) imamo

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_0^+} \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n d\zeta \stackrel{\text{T.3.7.}}{=}$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\Gamma_0^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n.$$
(5)

Stavimo li

$$a_n = \frac{1}{2\pi i} \int_{\Gamma_0^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \ n = 0, 1, 2, \dots$$
 (6)

dobivamo

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (7)

za svaki $z \in K(z_0, \rho)$.

Budući je funkcija

$$\zeta \mapsto \frac{f(\zeta)}{(\zeta - z_0)^{n+1}}$$

analitička na $\Omega \setminus \{z_0\}$ po Cauchyjevom teoremu za višestruko povezano područje (Teorem 2.14) koeficijent a_n ne ovisi o izboru kružnice Γ_0^+ , možemo umjesto nje uzeti bilo koju pozitivno orijentiranu konturu Γ^+ u Ω čije unutarnje područje sadrži z_0 i sadržano je u Ω :

$$a_n = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \ n = 0, 1, 2, \dots$$
 (8)

Po Teoremu 2.14 funkcija $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ ima derivaciju svakog reda na $K(z_0,r)$. Budući je $K(z_0,r) \subseteq \Omega$ proizvoljan krug, f ima derivaciju svakog reda na Ω i ta je derivacija i sama analitička na Ω . U istom teoremu (T. 2.14) pokazali smo da je $a_n = \frac{1}{n!} f^{(n)}(z_0)$ pa je

$$f^{(n)}(z_0) = n! a_n = \frac{n!}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta,$$

što se i tvrdilo.

Napokon, (7) jest upravo razvoj (2) funkcije f u Taylorov red.

Teorem 3.14 (Cauchyjeva ocjena za derivacije analitičke fukncije) Neka je $f: K(z_0, r) \to \mathbb{C}$ analitička funkcija na otvorenom krugu $K(z_0, r)$ i Γ^+ pozitivno orijentirana kružnica $|z - z_0| = r$. Ako je

$$M(r) = \sup\{|f(z)| : z \in \Gamma\},\$$

tada vrijedi:

$$\left| f^{(n)}(z_0) \right| \le \frac{n! M(r)}{r^n}. \tag{9}$$

Dokaz. U dokazu koristimo činjenicu da vrijedi (Teorem 3.3.)

$$\left| \int_{\Gamma^+} f(z) dz \right| \leq \int_{\Gamma^+} |f(z)| \cdot |dz|$$

Kako je $f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$, imamo da je

$$\left| f^{(n)}(z_0) \right| = \left| \frac{n!}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right| \stackrel{\rho < r}{\leq} \frac{n!}{2\pi} \int_{K_\rho^+} \frac{|f(\zeta)|}{\left| (\zeta - z_0)^{n+1} \right|} |d\zeta| \le$$

$$\leq \frac{n!}{2\pi} \frac{M(r)}{|\rho^{n+1}|} 2\pi \rho = \frac{n! M(r)}{\rho^n}.$$

Sada u graničnom prijelazu $\rho \underset{-0}{\rightarrow} r$ dobivamo da je $|f^{(n)}(z_0)| \leq \frac{n!M(r)}{r^n}$.

Definicija 3.15 Analitičku funkciju $f: \mathbb{C} \to \mathbb{C}$ (analitička na cijeloj kompleksnoj ravnini) nazivamo **cijelom funkcijom**.

Teorem 3.16 Ako je f cijela funkcija, onda se ona može razviti u red potencija

$$f(z) = \sum_{k=0}^{\infty} c_k z^k$$

s beskonačnim radijuskom konvergencije.

Dokaz. Slijedi iz Teorema 3.13.

Teorem 3.17 (Liouville) Ako je f omeđena cijela funkcija, onda je f konstantna funkcija.

Dokaz. Ako je f omeđena onda postoji $M \in \mathbb{R}$ takav da je $|f(z)| \leq M$ za svaki $z \in \mathbb{C}$. Kako je f analitička na svakom otvorenom krugu K(z,r), po Teoremu 3.14 imamo

$$\left|f'(z)\right| \le \frac{M}{r}.$$

Zbog proizvoljnosti od r slijedi da je f'(z) = 0 za svaki $z \in \mathbb{C}$, pa je f zaista konstantna funkcija po Teoremu 2.9.

Prethodni teorem daje jednostavan dokaz osnovnog teorema algebre:

Teorem 3.18 (Osnovni teorem algebre) Za svaki polinom $p : \mathbb{C} \to \mathbb{C}$ koji nije konstanta postoji kompleksni broj z_0 za koji vrijedi $p(z_0) = 0$ (tj. jednadžba p(z) = 0 ima barem jedan korijen).

Dokaz. Ako polinom $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ nije konstanta, onda iz $p(z) = z^n \left(1 + \frac{a_{n-1}}{z} + \cdots + \frac{a_0}{z^n}\right)$ slijedi $\lim_{|z| \to \infty} |p(z)| = \infty$. Pretpostavimo suprotno da polinom p nema nultočku, tj. da vrijedi $p(z) \neq 0$

Pretpostavimo suprotno da polinom p nema nultočku, tj. da vrijedi $p(z) \neq 0$ za svaki $z \in \mathbb{C}$. Sada je funkcija $f(z) = \frac{1}{p(z)}$ analitička na \mathbb{C} . Kako je $\lim_{|z| \to \infty} |p(z)| = \infty$ to je $\lim_{|z| \to \infty} |f(z)| = 0$. To znači da postoji r > 0 takav da je |f(z)| < 1 za |z| > r (tj. da je |f| < 1 izvan kruga radijusa r). Ali f je neprekidna na $\operatorname{Cl} K(0,r)$, dakle i omeđena, pa stoga postoji $M \geq 0$ takav da je $|f(z)| \leq M$ za svaki $z \in \mathbb{C}$ za koji je $|z| \leq r$. Time je pokazano da je analitička funkcija f omeđena funkcija na \mathbb{C} , dakle f je cijela funkcija. Po Liouvillovom teoremu slijedi da je f konstanta, dakle i f mora biti konstanta, a to je u suprotnosti s našom pretpostavkom.

ZADACI

- 1. Postoji li analitička funkcija f na $\mathbb C$ takva da je |f(z)|<1 i $f'(z)\neq 0$ za svaki $z\in\mathbb C$?
- 2. Neka je f analitička na $\mathbb C$ i neka je

$$M(r) = \max\{|f(z)| : |z| = r\}.$$

Dokažite: ako postoji niz (r_k) , koji teži k0, takav da za neki prirodni broj n vrijedi $\lim_{k\to\infty}\frac{M(r_k)}{r_k^n}=0$, onda je f polinom stupnja $\leq n-1$.

3. Funkciju $f(z)=\frac{1+z}{1-z}$ razvijte u red potencija na krugu |z|<1. Odvojite realne i imaginarne dijelove i pokažite da za r<1 i svaki $\varphi\in\mathbb{R}$ vrijedi

$$\frac{1-r^2}{1+r^2-2r\cos\varphi}=1+2{\sum}_{k=1}^\infty r^k\cos k\varphi,$$

$$\frac{2r}{1+r^2-2r\cos\varphi}=2{\sum}_{k=1}^\infty r^k\sin k\varphi.$$

4. Neka red $f(z) = \sum_{k=0}^{\infty} a_k z^k$ konvergira na krugu K(0,R). Pokažite da za 0 < r < R vrijedi

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(re^{i\varphi}) \right|^2 d\varphi = \sum_{k=0}^{\infty} \left| a_k \right|^2 r^{2k}.$$

5. Neka je f = u + iv analitička funkcija u okolini kruga $|z| \le r$. Pokažite da je za |z| < r:

$$f(z) = -\overline{f(0)} + \frac{1}{\pi i} \int_{|\zeta| = r} \frac{u(\zeta)}{\zeta - z} d\zeta = \overline{f(0)} + \frac{1}{\pi} \int_{|\zeta| = r} \frac{v(\zeta)}{\zeta - z} d\zeta.$$

6. Razvijte u Taylorov red funkciju f(z) u okolini točke $z_0 = 0$ (Maclaurinov red):

(a)
$$f(z) = \frac{1}{4 - z^2}$$
; (b) $f(z) = \frac{z - 2}{z^2 - z - 6}$;

7. Razvijte u Maclaurinov red funkciju f(z);

(a)
$$f(z) = \frac{1}{(1-z)^2}$$
; (b) $f(z) = \frac{1}{(1-z)^2}$;

(c)
$$f(z) = \frac{1}{(1+z^2)^2}$$
.

- 8. Razvijte u Maclaurinov red funkciju f(z):
 - (a) $f(z) = \sin^2 x$; (b) $f(z) = \sin^4 x + \cos^4 x$;
 - (c) $f(z) = e^z \sin z$.
- 9. Razvijte u Taylorov red u okolini točke z_0 :

(a)
$$f(z) = \frac{1}{1+z}$$
, $z_0 = i$; (b) $f(z) = \sin(3z - 1)$, $z_0 = -1$;

(c)
$$f(z) = \text{ch}^2 z$$
, $z_0 = 0$; (d) $f(z) = \cos z$, $z_0 = \frac{\pi}{4}$.

10. Dokažite formule:

(a)
$$\ln \frac{1+z}{1-z} = 2 \sum_{n=0}^{\infty} \frac{z^{2n+1}}{2n+1};$$

(b)
$$\arctan z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{2n+1};$$

(c)
$$\frac{1-z}{z}\ln(1-z) = -1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n+1}}{(4n+2)!} z^{2n+1}$$
.

11. Neka je $f(z) = \sum_{k=0}^{\infty} c_k z^k$ na krugu konvergencije K(0,R) $(0 < R < \infty)$. Za $0 \le r < R$ stavimo

$$M(r) = \max\{|f(z)| : |z| = r\}.$$

(a) Dokažite da za svaki $n \in \mathbb{N}$ i svaki $r \in [0, R)$ vrijedi

$$|c_k| \leq M(r) \cdot r^{-k}$$
;

(b) Ako je za neki $k \in \mathbb{N} \cup 0$ i neki $r \in [0, R)$ vrijedi $|c_k| = M(r) \cdot r^{-k}$, dokažite da je $c_n = 0$ za $n \neq k$, tj.

$$f(z) = c_k z^k, \quad z \in K(0, R).$$

12. Neka je r>0 radijus konvergencije reda $\sum_{n=0}^{\infty}c_nz^n$. Dokažite da je sa $f(z)=\sum_{n=0}^{\infty}\frac{1}{n!}c_nz^n$ zadana cijela funkcija, i da postoji realan broj M>0 takav da za svaki $k=0,1,2,\ldots$ i svaki $z\in\mathbb{C}$ vrijedi

$$f^{(k)}(z) \le \frac{M}{r^k} e^{\frac{|z|}{r}}.$$

3.4 LAURENTOV RED

Ovdje promatramo redove kompleksnih brojeva (ili funkcija) oblika

$$\sum_{n=-\infty}^{\infty} a_n. \tag{1}$$

Za takav red reći ćemo da konvergira ako konvergira svaki od redova

$$\sum_{n=0}^{\infty} a_n, \quad \sum_{n=1}^{\infty} a_{-n}. \tag{2}$$

Ako je b suma prvog, a c suma drugog reda u (2), tada je b+c suma reda (1). Lako se vidi da red (1) konvergira i ima sumu a ako

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall m, n \in \mathbb{N}) \quad m, n \ge n_0 \Rightarrow \left| a - \sum_{k=-n}^m a_k \right| \le \varepsilon.$$

Neka je sada $z_0 \in \mathbb{C}$ i neka su $c_n, n \in \mathbb{N}$, kompleksni brojevi. Za $z \in \mathbb{C}$ promotrimo red

$$\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n. \tag{3}$$

Odredimo njegovo područje konvergencije i funkciju koju taj red definira na području konvergencije. U tu svrhu treba promotriti dva reda

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n, \tag{4}$$

$$\sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n} = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n}.$$
 (5)

Red (4) je red potencija i ako je $R_2 > 0$ njegov radijus konvergencije, područje konvergencije mu je otvoren krug $K(z_0, R_2)$. Analitičku funkciju koju taj red definira na krugu $K(z_0, R_2)$ označimo sa f_1 :

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad z \in K(z_0, R_2).$$

Stavimo li $w = \frac{1}{z - z_0}$ onda red (5) prelazi u red potencija

$$\sum_{n=1}^{\infty} c_{-n} w^n. \tag{6}$$

Neka je R>0 njegov radijus konvergencije. Tada je sa

$$F(w) = \sum_{n=1}^{\infty} c_{-n} w^n, \quad w \in K(0, R)$$

definirana analitička funkcija na krugu K(0,R). To znači da red (5) konvergira na području $\{z \in \mathbb{C} : \left| \frac{1}{z-z_0} \right| < R\}$, odnosno, ako stavimo $R_1 = \frac{1}{R}$, na području

$$\{z \in \mathbb{C} : |z - z_0| > R_1\}.$$
 (7)

Budući da je funkcija $z\mapsto \frac{1}{z-z_0}$ na tom području analitička i područje vrijednosti joj je sadržano u K(0,R), kompozicijom te funkcije s funkcijom F dobivamo analitičku funkciju $z\mapsto F\left(\frac{1}{z-z_0}\right)$ na području (7). Tu ćemo funkciju označiti sa f_2 . Dakle red (5) konvergira na području (7) i definira analitičku funkciju f_2 :

$$f_2(z) = \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}, \quad |z - z_0| > R_1.$$

Na osnovu prethodnog vidimo da je područje konvergencije reda (3) otvoreni kružni vijenac

$$K(z_0; R_1, R_2) = \{ z \in \mathbb{C} : R_1 < |z - z_0| < R_2 \}$$
(8)

i funkcija $f(z) = f_1(z) + f_2(z)$, koju taj red definira, analitička je na tom području. Označimo sa

$$\overline{K}(z_0; R_1, R_2) = \{ z \in \mathbb{C} : R_1 \le |z - z_0| \le R_2 \}$$
(9)

zatvoreni kružni vijenac.

Napomenimo da red (3):

- divergira za svaki $z \in \mathbb{C} \setminus \overline{K}(z_0; R_1, R_2);$
- konvergira apsolutno za svaki $z \in K(z_0; R_1, R_2);$
- $\overline{K}(z_0; R_1, R_2)$ je najmanji zatvoreni skup koji sadrži sve točke $z \in \mathbb{C}$ za koje red (3) konvergira.

Neka su sada r_1 i r_2 takvi da je $R_1 < r_1 < r_2 < R_2$. Tada:

- red (4) konvergira uniformno na $\overline{K}(z_0, r_2)$;
- red (6) uniformno konvergira na $\overline{K}(0,\frac{1}{r_1})$, tj. red (5) uniformno konvergira na skupu $\{z\in\mathbb{C}:|z-z_0|\geq r_1\};$
- red (3) uniformno konvergira na zatvorenom kružnom vijencu $\overline{K}(z_0; r_1, r_2) = \{z \in \mathbb{C} : r_1 \leq |z z_0| \leq r_2\}.$

Red oblika (3) zove se **Laurentov red**. On definira analitičku funkciju na otvorenom kružnom vijencu $K(z_0; R_1, R_2)$.

Sada provodimo obrnuto razmatranje. Promatrat ćemo analitičku funkciju f na nekom otvorenom kružnom vijencu $K(z_0; R_1, R_2) = \{z \in \mathbb{C} : 0 \leq R_1 < |z - z_0| < R_2 \leq +\infty\}$ i pokazati da se tada f može prikazati Laurentovim redom koji konvergira na $K(z_0; R_1, R_2)$.

Teorem 3.19 (o razvoju u Laurentov red) Neka je f analitička funkcija na otvorenom kružnom vijencu $K(z_0; R_1, R_2) = \{z \in \mathbb{C} : 0 \le R_1 < |z - z_0| < R_2 \le +\infty\}$. Tada se funkcija f na jedinstven način dade prikazati redom oblika

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k (z - z_0)^k, \quad R_1 < |z - z_0| < R_2,$$
 (10)

gdje je

$$c_n = \frac{1}{2\pi i} \int_{K_\rho^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad n \in \mathbb{Z},$$
(11)

a K_{ρ}^{+} pozitivno orijentirana kružnica $|z - z_{0}| = \rho$, $R_{1} < \rho < R_{2}$.

Red (10) konvergira apsolutno na $K(z_0; R_1, R_2)$ i uniformno na zatvorenom kružnom vijencu $\overline{K}(z_0; \rho_1, \rho_2)$, gdje je $R_1 < \rho_1 < \rho_2 < R_2$.

Dokaz. Definirajmo $c_n \in \mathbb{C}$ $(n \in \mathbb{Z})$ formulom (11). Napomenimo da po Cauchyjevom teoremu za višestruko povezano područje tako definirani kompleksni brojevi c_n ne ovise o izboru radijusa $\rho \in \langle R_1, R_2 \rangle$ kružnice K_ρ^+ jer je funkcija $\zeta\mapsto \frac{f(\zeta)}{(\zeta-z_0)^{k+1}}$ analitička na $K(z_0;R_1,R_2)$. Neka je sada $z\in K(z_0;R_1,R_2)$ i odaberimo R_1' i R_2' kao na narednoj slici:

 $R_1 < R_1' < |z - z_0| < R_2' < R_2.$

Neka je r>0 takav da je $K(z,r)\subset \overline{K}(z_0;R_1',R_2')$. Označimo sa $K_{R_2'}^+,K_{R_1'}^+$ pozitivno orijentirane kružnice kojima je središte u z_0 i sa K_r^+ pozitivno orijentiranu kružnicu kojoj je središte u z (radijusi tih kružnica su naznačeni u indeksu).

Budući je funkcija $\zeta \mapsto \frac{f(\zeta)}{\zeta - z_0}$ analitička na području $K(z_0; R_1, R_2) \setminus \{z\}$ po Cauchyjevom teoremu za višestruko povezano područje imamo

$$\int_{K_{R_2'}^+} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \int_{K_{R_1'}^+} \frac{f(\zeta)}{\zeta - z_0} d\zeta + \int_{K_r^+} \frac{f(\zeta)}{\zeta - z_0} d\zeta \tag{12}$$

Cauchyjeva formula daje

$$f(z) = \frac{1}{2\pi i} \int_{K^{\pm}} \frac{f(\zeta)}{\zeta - z_0} d\zeta. \tag{13}$$

Iz (12) i (13) imamo

$$f(z) = \frac{1}{2\pi i} \int_{K_{R_2'}^+} \frac{f(\zeta)}{\zeta - z_0} d\zeta - \frac{1}{2\pi i} \int_{K_{R_1'}^+} \frac{f(\zeta)}{\zeta - z_0} d\zeta$$
 (14)

Integrale u (14) izrazit ćemo sada na drugi način.

Za
$$\zeta \in K_{R_2'}$$
 vrijedi $\left| \frac{z - z_0}{\zeta - z_0} \right| \le q < 1$ pa je
$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n$$

i red konvergira uniformno u odnosu $\zeta \in K_{R_2'}.$ Slijedi da je

$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} (z - z_0)^n \frac{f(\zeta)}{(\zeta - z_0)^{n+1}}$$

i red konvergira uniformno u odnosu na $\zeta\in K_{R_2'}$. Po Teoremu 3.7 možemo ga integrirati duž $K_{R_2'}$ član po član. Budući da u (11) za K_ρ^+ možemo uzeti $K_{R_2'}$ nalazimo

$$\frac{1}{2\pi i} \int_{K_{R_2'}^+} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2\pi i} \int_{K_{R_2'}^+} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \sum_{k=0}^{\infty} c_k (z - z_0)^k.$$
(15)

Za točke $\zeta \in K_{R_1'}^+$ vrijedi $\left|\frac{\zeta-z_0}{z-z_0}\right| \leq q < 1$ i analognim zaključivanjem dobivamo

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} =$$

$$-\frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}} = -\frac{1}{z - z_0} \sum_{n=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0}\right)^n = -\sum_{n=1}^{\infty} \frac{(\zeta - z_0)^{n-1}}{(z - z_0)^n},$$

i red uniformno konvergira u odnosu na $\zeta \in K_{R_1'}^+$. Budući da za K_ρ^+ u (11) možemo uzeti $K_{R_1'}^+$, iz

$$-\frac{1}{2\pi i} \cdot \frac{f(\zeta)}{\zeta - z} = \frac{1}{2\pi i} \sum_{n=1}^{\infty} \frac{f(\zeta) (\zeta - z_0)^{n-1}}{(z - z_0)^n}$$

integracijom član po član imamo

$$-\frac{1}{2\pi i} \int_{K_{R_1'}^+} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \sum_{n=1}^{\infty} \int_{K_{R_1'}^+} \frac{f(\zeta) (\zeta - z_0)^{n-1}}{(z - z_0)^n} d\zeta =$$

$$\sum_{n=1}^{\infty} (z - z_0)^{-n} \frac{1}{2\pi i} \int_{K_{R_1'}^+} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} d\zeta = \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n} . (16)$$

Iz (14), (15) i (16) slijedi (10). Budući je z bila proizvoljna točka iz kružnog vijenca $K(z_0; R_1, R_2)$, na osnovu prethodnih općih razmatranja o Laurentovim redovima slijede sve tvrdnje teorema.

ZADACI

- 1. Razvijte u Laurentov red funkciju $f(z)=\frac{1}{(z-1)(z-2)}$ oko točke $z_0=0$ u području Ω :
 - (a) $\Omega = \{z : |z| < 1\};$
 - (b) $\Omega = \{z : 1 < |z| < 2\};$
 - (c) $\Omega = \{z : 2 < |z|\}.$
- 2. Odredite Laurentov razvoj funkcija u navedenom području:

(a)
$$f(z) = \frac{\sin z}{z^2}$$
, $0 < |z| < +\infty$;

(b)
$$f(z) = \frac{e^z}{z}$$
, $0 < |z| < +\infty$;

(c)
$$f(z) = \frac{1}{(z-2)(z-3)}$$
, $2 < |z| < 3$;

(d)
$$f(z) = \frac{1}{(z-2)(z-3)}, 3 < |z| < +\infty;$$

(e)
$$f(z) = \frac{e^z - 1}{z}$$
, $0 < |z| < +\infty$;

(f)
$$f(z) = \frac{z}{(z^2 - 4)(z^2 - 1)}$$
, $1 < |z| < 2$.

3. Odredite Laurentov razvoj funkcija oko zadane točke z_0 u zadanim područjima:

(a)
$$f(z) = \frac{1}{z^2 + 1}$$
, $z_0 = i$,
 $\Omega_1 = \{z : 0 < |z - i| < 2\}$, $\Omega_2 = \{z : 2 < |z|\}$;

(b)
$$f(z) = \frac{1}{z^2(z^2 - 9)}, z_0 = 1, \Omega = \{z : 1 < |z - 1| < 2\}.$$

- 4. Razvijte u Laurentov red funkciju f(z) oko točke $z_0 = 0$:
 - (a) $f(z) = z^2 e^{\frac{1}{z}};$

(b)
$$f(z) = \frac{e^z}{z(z-1)}$$
;

(c)
$$f(z) = \frac{e^{2z} - 1}{z^2}$$
;

(d)
$$f(z) = \frac{\sin z}{1 - z}$$
;

(e)
$$f(z) = z^2 \sin \pi \frac{z+1}{z}$$
;

(f)
$$f(z) = \frac{\sin^2 z}{z^3}$$
;
(g) $f(z) = \frac{1 + \cos z}{z^4}$.

5. Dokažite: ako dva Laurentova reda

$$\sum_{k=-\infty}^{+\infty} a_k (z - z_0)^k, \quad \sum_{k=-\infty}^{+\infty} b_k (z - z_0)^k$$

konvergiraju uniformno na kružnici $|z-z_0|=\rho$ istoj funkciji, onda je $a_k=b_k,\,k\in\mathbb{Z}.$

3.5 MORERIN TEOREM.

PRIMITIVNA FUNKCIJA

Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup i $f:\Omega \to \mathbb{C}$ analitička funkcija. Ako je Γ kontura, koja je zajedno sa svojim unutarnjim područjem sadržana u Ω , onda je po Cauchyjevom teoremu

$$\int_{\Gamma^+} f(z)dz = 0. \tag{1}$$

Posebno, ako je \triangle zatvoren trokut sadržan u Ω onda je

$$\int_{\partial \triangle} f(z)dz = 0 \tag{2}$$

gdje je $\partial \triangle$ rub trokuta \triangle s nekom orijentacijom (pozitivnom ili negativnom).

Ovdje pokazujemo sljedeći obrat Cauchyjevog teorema koji pokazuje da je (2) ne samo nužan nego i dovoljan uvjet za analitičnost neprekidne funkcije $f: \Omega \to \mathbb{C}$.

Teorem 3.20 (Morerin teorem) Neka je $f: \Omega \to \mathbb{C}$ neprekidna funkcija na otvorenom skupu $\Omega \subseteq \mathbb{C}$. Ako za svaki trokut \triangle u Ω vrijedi $\int_{\partial \triangle} f(z)dz = 0$ onda je f analitička funkcija na Ω .

Dokaz. Neka je $K(z_0,r)$ proizvoljan krug sardžan u Ω . Definiramo funkciju $F:K(z_0,r)\to\mathbb{C}$ sa

$$F(z) = \int_{[z_0, z]} f(\zeta) d\zeta, \quad z \in K(z_0, r).$$
(3)

Pokažimo da je F diferencijabilna na $K(z_0,r)$ i da je $F'(z_1)=f(z_1)$ za svaki $z_1\in K(z_0,r)$.

Neka su $z, z_1 \in K(z_0, r)$ i neka je \triangle trokut s vrhovima z_0, z i z_1 .

Zbog pretpostavke (2) je

$$\int_{[z_0,z]} f(\zeta)d\zeta + \int_{[z,z_1]} f(\zeta)d\zeta + \int_{[z_1,z_0]} f(\zeta)d\zeta = \int_{\partial \triangle} f(z)dz = 0.$$

Odavde je prema definiciji (3) funkcije F:

$$F(z) - F(z_1) = \int_{[z_1, z]} f(\zeta) d\zeta, \quad z, z_1 \in K(z_0, r).$$

Budući da je $\int_{[z_1,z]}\! d\zeta = z - z_1$ dobivamo

$$\frac{F(z) - F(z_1)}{z - z_1} - f(z_1) = \frac{1}{z - z_1} \int_{[z_1, z]} [f(\zeta) - f(z_1)] d\zeta, \quad z, z_1 \in K(z_0, r).$$
(4)

za bilo koje dvije točke $z, z_1 \in K(z_0, r), z \neq z_1$. Fiksirajmo sada $z_1 \in K(z_0, r)$ i neka je $\varepsilon > 0$ proizvoljan. Budući da je funkcija f neprekidna u točki z_1 , postoji $\delta > 0$ takav da je $\overline{K}(z_1, \delta) \subset K(z_0, r)$ i da vrijedi

$$|z - z_1| \le \delta \Rightarrow |f(z) - f(z_1)| \le \varepsilon.$$

Tada također vrijedi

$$|z - z_1| \le \delta \Rightarrow |f(\zeta) - f(z_1)| \le \varepsilon, \quad \zeta \in [z_1, z].$$
 (5)

Po Korolaru 3.4, iz (4) i (5) slijedi

$$0 < |z - z_1| \le \delta \Rightarrow \left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| \le \frac{\varepsilon}{|z - z_1|} \cdot s([z_1, z]) = \varepsilon.$$

Prema tome funkcija F je diferencijabilna u točki z_1 i vrijedi $F'(z_1) = f(z_1)$. Kako je točka $z_1 \in K(z_0, r)$ proizvoljno odabrana zaključujemo da je F diferencijabilna funkcija na $K(z_0, r)$ i da joj je derivacija jednaka f.

Međutim, f je neprekidna funkcija pa je F analitička na $K(z_0, r)$. Prema Teoremu 3.13 i derivcija $F' = f \mid K(z_0, r)$ funkcije F analitička je funkcija na $K(z_0, r)$. Budući je Ω unija otvorenih kugala i jer je krug $K(z_0, r)$ proizvoljno odabran, zaključujemo da je f analitička na Ω .

Kroz dokaz Mererinog teorema provlači se pojam primitivne funkcije.

Definicija 3.21 Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup i $f : \Omega \to \mathbb{C}$. Kažemo da je $F : \Omega \to \mathbb{C}$ primitivna funkcija funkcije f, ako je F diferencijabilna funkcija na Ω i ako vrijedi F'(z) = f(z) za svaku točku $z \in \Omega$.

Napomenimo da je za bilo koju konstantu $c \in \mathbb{C}$ i funkcija F + c primitivna funkcija funkcije f. Ukoliko je Ω područje, dodavanjem konstanti iz jedne se primitivne funkcije dobivaju sve primitivne funkcije. Zaista, ako su F i G primitivne funkcije od F, onda je G' - F' = 0 na Ω , pa iz Teorema 2.9 slijedi da je G - F konstanta $c \in \mathbb{C}$ pa je G = F + c.

Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup i $f:\Omega \to \mathbb{C}$ neprekidna funkcija koja ima primitivnu funkciju $F:\Omega \to \mathbb{C}$. Neka je Γ bilo koji Jordanov luk orijentiran od točke α do točke β . Izaberimo glatku parametrizaciju $\zeta:[a,b] \to \mathbb{C}$ luka Γ koja je u skladu s danom orijentacijom $(\zeta(a) = \alpha, \zeta(b) = \beta)$. Tada je

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} F'(z)dz = \int_{a}^{b} F'(\zeta(t))\zeta'(t)dt =$$

$$\int_{a}^{b} \left[\frac{d}{dt} F(\zeta(t)) \right] dt = F(\zeta(a)) - F(\zeta(b)) = F(\beta) - F(\alpha).$$

Neka je sada Γ po dijelovima glatka krivulja u Ω dobivena nastavljanjem Jordanovih lukova $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$ i neka je α_{j-1} početak, a α_j kraj luka Γ_j $(j=1,\ldots,n)$. Tada po prethodnom slijedi

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz + \dots + \int_{\Gamma_n} f(z)dz =$$

$$F(\alpha_1) - F(\alpha_0) + F(\alpha_2) - F(\alpha_1) + \dots + F(\alpha_n) - F(\alpha_{n-1}) = F(\alpha_n) - F(\alpha_0).$$

Na taj način dokazali smo:

Teorem 3.22 Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup i $f : \Omega \to \mathbb{C}$ neprekidna funkcija koja ima primitivnu funkciju $F : \Omega \to \mathbb{C}$. Za svaku po dijelovima glatku krivulju Γ u Ω , koja počinje u točki α i završava u točki β , vrijedi

$$\int_{\Gamma} f(z)dz = F(\beta) - F(\alpha).$$

Posebno, ako je Γ kontura, onda je

$$\int_{\Gamma} f(z)dz = 0.$$

Egzistenciju primitivne daje naredni teorem.

Teorem 3.23 Svaka analitička funkcija na krugu $K(z_0,r)$ ima primitivnu funkciju.

Dokaz. Ako je f analitička, ona se na krugu $K(z_0, r)$ dade prikazati Taylorovim redom

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in K(z_0, r),$$

pri čemu je $a_n = \frac{1}{n!} f^{(n)}(z_0)$. No pokazali smo da je sa

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z - z_0)^{n+1}, \quad z \in K(z_0, r),$$

definirana analitička funkcija na $K(z_0,r)$ i vrijedi F'(z)=f(z) za svaku točku $z\in K(z_0,r)$.

Zadržimo se i dalje na krugu $K(z_0, r)$ i neprekidnoj funkciji $f: K(z_0, r) \to \mathbb{C}$. Ako f ima primitivnu funkciju, onda znamo da vrijedi (1) za svaku konturu Γ u $K(z_0, r)$. Posebno, ako je \triangle zatvoren trokut sadržan u $K(z_0, r)$, onda vrijedi (2). Dakle nužan uvjet za egzistenciju primitivne funkcije od f je da vrijedi (2) za svaki trokut $\triangle \subset K(z_0, r)$.

Pretpostavimo sada da je uvjet (2) ispunjen i da je f neprekidna funkcija. Definiramo funkciju $F: K(z_0, r) \to \mathbb{C}$ formulom (3). U dokazu Morerinog teorema vidjeli smo da je tada F primitivna funkcija funkcije f.

Ova razmatranja pokazuju da vrijedi:

Teorem 3.24 Neka je $f: K(z_0, r) \to \mathbb{C}$ neprekidna funkcija. Sljedeća svojstva funkcije f su međusobno ekvivalentna:

- (a) Funkcija f ima primitivnu funkciju na $K(z_0, r)$;
- (b) Funkcija f je analitička na $K(z_0, r)$;
- (c) Za svaku konturu Γ u $K(z_0, r)$ vrijedi (1);
- (d) Za svaki trokut \triangle u $K(z_0, r)$ vrijedi (2).

Dokaz. Pokazali smo da (a) \Rightarrow (b) vrijedi općenito, a posebno za slučaj kruga i implikacija (b) \Rightarrow (a). Također smo pokazali da vrijedi (b) \Rightarrow (c), a implikacija (c) \Rightarrow (d) je trivijalna jer je $\partial \triangle$ kontura u $K(z_0, r)$. Napokon, neposredno prije iskaza teorema vidjeli smo da (d) \Rightarrow (a).

ZADACI

- 1. Neka je $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ funkcija zadana sa $f(z) = \frac{1}{z}$. Dokažite da f nema primitivnu funkciju na $\mathbb{C} \setminus \{0\}$, ali da ima primitivnu funkciju na svakom otvorenom krugu $K(z_0, r) \subset \mathbb{C} \setminus \{0\}$.
- 2. Dokažite Teorem 3.24 za proizvoljan otvoren konveksan skup Ω umjesto kruga $K(z_0, r)$.
- 3. Dokažite Teorem 3.24 za proizvoljan otvoren zvjezdast skup Ω umjesto kruga $K(z_0,r)$.
- 4. Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup, p pravac u \mathbb{C} i $f:\Omega \to \mathbb{C}$ neprekidna funkcija koja je analitička na skupu $\Omega \setminus p$. Dokažite da je f analitička svuda na Ω .

3.6 PRINCIP JEDINSTVENOSTI ZA ANALITIČKE FUNKCIJE

U ovom odjeljku pokazujemo da ukoliko se analitičke funkcije f i g podudaraju na nekom podskupu S područja Ω koji ima gomilište u Ω , onda se f i g podudaraju svuda na Ω . To je takozvani $princip\ jedinstvenosti$, odnosno $princip\ jednakosti\ za\ analitičke\ funkcije$.

Teorem 3.25 Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija na području Ω i $N(f) = \{z \in \Omega : f(z) = 0\}$. Ako N(f) ima gomilište nultočaka u Ω onda je f = 0.

Dokaz. Neka je $z_0 \in \Omega$ gomilište skupa N(f).

(A) Dokažimo da je $f|_{K(z_0r)} = 0$ na bilo kojoj kugli $K(z_0, r) \subseteq \Omega$.

Budući je f analitička na $K(z_0,r)\subseteq\Omega$ ona se može prikazati Taylorovim redom

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad z \in K(z_0, r).$$
 (1)

Pokažimo da su svi koeficijenti $\frac{f^{(n)}(z_0)}{n!}$ jednaki nuli.

Zaista, ukoliko bi bar jedan od keficijenata bio različit od nule, onda bi po Korolaru 2.15 postojao $\varepsilon > 0$ takav da je $f(z) \neq 0$, $z \in K(z_0, \varepsilon) \setminus \{z_0\}$. No to je u kontradikciji s pretpostavkom da je z_0 gomilište skupa N(f)).

Jer svi koeficijenti iščezavaju zaista je $f(z) = 0, z \in K(z_0, r)$.

Preostaje dokazati da funkcija f iščezava i u onim točkama $w \in \Omega$ koje su izvan kruga $K(z_0, r)$. Tu ćemo činjenicu dokazati najprije za slučaj kada spojnica $[z_0, w]$ leži u Ω .

(B) Neka je $w \in \Omega$ i neka je $[z_0, w] \subset \Omega$. Tvrdimo da je $f|_{[z_0, w]} = 0$ i posebno da je tada w gomilište nultočaka funkcije f.

Budući je $[z_0, w]$ kompaktan skup, postoji $\delta > 0$ takav da je $K(z, \delta) \subseteq \Omega$ za svaku točku $z \in [z_0, w]$ (Korolar 1.40). Pokrivač $\{K(z, \delta) : z \in [z_0, w]\}$ dade se reducirati na konačan dio, tj. postoje točke $z_0, z_1, \ldots z_n = w$ na spojnici $[z_0, w]$ takve da je $\{K(z_i, \delta) : i = 0, 1, \cdots, n\}$ konačan otvoreni pokrivač za $[z_0, w]$ i da je $z_j \in K(z_{j-1}, \delta), \ j = 0, 1, \ldots, n$ (za prirodni broj $n > \frac{|w - z_0|}{\delta}$ stavimo $z_j = z_0 + \frac{j}{n}(w - z_0), \ j = 1, 2, \ldots, n$; tada je $|z_j - z_{j-1}| = \frac{1}{n}|w - z_0| < \delta$). Jer je $f(z_0) = 0$ to je (po (A)) f(z) = 0 na kugli $K(z_0, \delta)$. Kako je $z_1 \in K(z_0, \delta), i$ jer je z_1 gomilište skupa N(f), iz (A) slijedi da f iščezava i na krugu $K(z_1, \delta)$. Korak po korak dobivamo da f izčezava na svakom krugu $K(z_j, \delta)$, dakle i na čitavoj spojnici $[z_0, w]$.

(C) Neka je sad $w \in \Omega$ proizvoljna točka.

Budući je Ω područje, postoje točke $z_1, \ldots, z_k = w \in \Omega$ takve da su spojnice $[z_{i-1}, z_i], i = 1, 2, \ldots, k$ sadržane u Ω . Prema (B) funkcija f se poništava na spojnici $[z_0, z_1]$. Tada je z_1 gomilište skupa N(f) pa iz (A) i (B) zaključujemo da se f poništava na $[z_1, z_2]$. Na taj način primjenom (A) i (B) korak po korak nalazimo da se f poništava na svim spojnicama $[z_{i-1}, z_i], i = 1, 2, \ldots, k$. Kako je $z_k = w$, posebno imamo f(w) = 0. Budući je w proizvoljno odabrana točka, dokazali smo da je f = 0 svuda na Ω .

Korolar 3.26 Ako je $f \neq 0$ analitička funkcija na području Ω i ako f ima beskonačno nultočaka u Ω , onda se te točke mogu gomilati jedino u točkama ruba područja Ω .

Teorem 3.27 (Izoliranost nultočaka) Ako je $f \neq 0$ analitička funkcija na području Ω i z_0 nultočka funkcije f onda

(a) postoji prirodan broj n takav da je

$$f(z_0) = f'(z_0) = \dots = f^{(n-1)}(z_0) = 0, \ f^{(n)}(z_0) \neq 0;$$
 (2)

(b) postoji analitička funkcija $g: \Omega \to \mathbb{C}$ takva da je

$$f(z) = (z - z_0)^n g(z), \quad z \in \Omega; i \ g(z_0) \neq 0;$$
 (3)

(c) postoji $\varepsilon > 0$ takav da je $f(z) \neq 0$ za svaki $z \in K(z_0, \varepsilon), z \neq z_0$.

Dokaz. Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija i z_0 njezina nultočka. Po prethodnom teoremu, $f(z_0) = 0$, $f \neq 0$ i (1) povlači da postoji prirodan broj n takav da vrijedi (2) i da je

$$f(z) = (z - z_0)^n g_0(z), \quad z \in K(z_0, r), \tag{4}$$

gdje

$$g_0(z) = \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n + \frac{f^{(n+1)}(z_0)}{(n+1)!} (z - z_0)^{n+1} + \cdots$$
 (5)

Iz (5) i (2) slijedi da je $g_0(z_0) \neq 0$. Redovi (5) i (1) imaju isti radijus kovergencije, pa je sa (5) definirana analitička funkcija g_0 na krugu $K(z_0, r) \subseteq \mathbb{C}$. Definirajmo sada funkciju $g: \Omega \to \mathbb{C}$ sa

$$g(z) = \begin{cases} \frac{f(z)}{(z - z_0)^n}, & z \in \Omega, z \neq z_0 \\ g_0(z) = \frac{1}{n!} f^{(n)}(z_0), & z = z_0 \end{cases}$$

Očito je g analitička funkcija na skupu $\Omega \setminus \{z_0\}$. Nadalje, iz (1) i (5) izlazi da je $g(z) = g_0(z)$ za svaki $z \in K(z_0, r)$. Prema tome funkcija g je analitička na krugu $K(z_0, r)$, dakle na čitavom području Ω . Ta funkcija očito zadovoljava (3) i $g(z_0) = \frac{1}{n!} f^{(n)}(z_0) \neq 0$.

Budući je g neprekidna funkcija i $g(z_0) \neq 0$ postoji $\varepsilon > 0$ takav da je $g(z) \neq 0$ za svaki $z \in K(z_0, \varepsilon)$. Slijedi da je $f(z) \neq 0$ za svaki $z \in K(z_0, \varepsilon) \setminus \{z_0\}$.
Napomenimo da (2) opravdava našu definiciju nultočke kratnosti n.

Teorem 3.28 (Princip jedinstvenosti ili jednakosti za analitičke funkcije) Neka su f i g analitičke funkcije na području Ω . Ako se funkcije podudaraju na beskonačnom skupu koji u području Ω ima gomilište, tada se f i g podudaraju na Ω .

Dokaz. Analitička funkcija h = f - g ima beskonačno nultočaka u Ω . Taj skup N(h) nultočaka funkcije h ima gomilište u skupu Ω pa je po Teoremu 3.25 h nul funkcija i zaista se funkcije f i g podudaraju na Ω .

ZADACI

1. Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup, $f \in A(\Omega)$ i $z_1, z_2, \ldots, z_n \in \Omega$ nultočke funkcije f. Neka je p_j red nultočke z_j $(j = 1, 2, \ldots n)$. Tad postoji jedinstvena funkcija $g \in A(\Omega)$ takva da je

$$f(z) = (z - z_1)^{p_1} \cdots (z - z_n)^{p_n} g(z), \quad z \in \Omega.$$

- 2. Neka je $\Omega \subseteq \mathbb{C}$ područje, $f \in A(\Omega)$ i $f \neq 0$. Ako je K kompaktan skup sadržan u Ω i N(f) skup svih nultočaka funkcije f, onda je skup $N(f) \cap K$ konačan.
- 3. Neka je $\Omega \subseteq \mathbb{C}$ otvoren skup, $f \in A(\Omega)$ i U skup svih gomilišta skupa N(f) u Ω . Dokažite da su skupovi U i $\Omega \setminus U$ otvoreni.
- 4. Nađite sve nultočke i njihovu kratnost za funkcije:
 - (a) z^2+9 ; (b) $(z^2+9)z^{-4}$; (c) $z\sin z$; (d) $(1-e^z)(z^2-4)^3$;
 - (e) $(1-\cos z)^3$; (f) $z^{-5}(z^2-\pi)\sin z$; (g) $\sin z^3$; (h) $(\sin z)^3$;
 - (i) $z^{-1}(\sin z)^3$; (j) $\cos z^3$; (k) $(1 \cos z^3)^2$; (l) $\cos z^3$;
 - (m) $z^2(e^z-1)$.
- 5. Odredite red nultočke 0 funkcija:
 - (a) $6\sin z^3 + z^9 6z^3$; (b) $e^{\sin z} e^{\operatorname{tg} z}$;
 - (c) $3(\cos z^2)^3 3 + 3z^4 z^8$.

Poglavlje 4

IZOLIRANI SINGULARITETI I TEORIJA REZIDUUMA

4.1 IZOLIRANI SINGULARITETI I NJIHOVA KLASIFIKACIJA

Definicija 4.1 Za kompleksnu funkciju f kompleksne varijable kažemo da ima izoliran singularitet u točki z_0 (ili da joj je točka z_0 izolirani singularitet) ako postoji $\rho > 0$ takav da je funkcija f analitička na skupu $K(z_0, \rho) \setminus \{z_0\}$, a da f nije analitička na čitavom krugu $K(z_0, \rho)$ (to znači da ili f nije definirana u točki z_0 ili je u toj točki definirana ali nije analitička).

Iz definicije slijedi da se na kružnom vijencu (kaže se i punktiranom krugu - krugu kojemu je izbačeno središte)

$$K^*(z_0, \rho) = K(z_0; 0, \rho) = K(z_0, \rho) \setminus \{z_0\} = \{z \in \mathbb{C} : 0 < |z - z_0| < \rho\}$$
 (1)

analitička funkcija f dade prikazati redom

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k (z - z_0)^k, \quad 0 < |z - z_0| < \rho,$$
 (2)

$$c_k = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(\xi)}{(\xi - z_0)^{k+1}} d\xi, \quad k \in \mathbb{Z},$$
 (3)

gdje je Γ^+ bilo koja pozitivno orijentirana kontura u $K(z_0, \rho)$ unutar koje leži točka z_0 . Red (2) nazivamo **Laurentovim razvojem funkcije** f **oko točke** z_0 . Za red

$$\sum_{k=1}^{\infty} c_k (z - z_0)^k = \frac{c_{-1}}{z - z_0} + \frac{c_{-2}}{(z - z_0)^2} + \cdots$$
 (4)

kažemo da je glavni dio Laurentovog razvoja funkcije f oko točke z_0 . Preostali dio reda (2), tj. red potencija

$$\sum_{k=0}^{+\infty} c_k (z-z_0)^k = c_0 + c_1 (z-z_0) + c_2 (z-z_0)^2 \cdots$$
 (5)

zove se regularni dio Laurentovog razvoja funkcije f oko točke z_0 . Preko razvoja (2) imamo klasifikaciju izoliranih singulariteta:

(a) Točka z_0 je **uklonjivi singularitet** ako se glavni dio od f poništava, tj ako je $c_{-k} = 0, k = 1, 2, ...$

Ukoliko je z_0 uklonjiva singularna točka onda se f na $K^*(z_0, \rho)$ dade prikazati sa

$$f_1(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 \cdots$$

i tada je $\lim_{z\to z_0} f(z) = c_0$. To znači da se f može neprekidno proširiti na $K(z_0, \rho)$ stavljajući $f(z_0) = c_0$, što je ujedno i analitičko proširenje od f (jer je f zadan istim redom potencija).

Dakle, nužan uvjet da bi singularitet z_0 bio uklonjiv, jest da funkcija f ima limes u točki z_0 . Pokazat ćemo da je to i dovoljan uvjet i čak da je dovoljan i slabiji uvjet da je funkcija f omeđena na $K^*(z_0, \rho)$ za neki $\rho > 0$.

(b) Točka z_0 je **pol** n-tog reda ako se glavni dio od f sastoji od konačno članova i prvi je $c_{-n} \neq 0$ (u dolasku slijeva).

Ako je z_0 pol n-tog reda funkcije f onda je

$$f(z) = \sum_{k=-n}^{+\infty} c_k (z - z_0)^k, \quad c_{-n} \neq 0.$$

Tada možemo definirati analitičku funkciju g na $K(z_0, \rho)$ sa

$$g(z) = \sum_{k=0}^{+\infty} c_{k-n} (z - z_0)^k$$

i za koju vrijedi $g(z) = (z - z_0)^n f(z)$ za $z \neq z_0$ i $g(z_0) = c_{-n} \neq 0$. Odatle vidimo da funkcija $z \mapsto (z - z_0)^n f(z)$ ima u točki z_0 uklonjiv singularitet, ali da je za k < n točka z_0 neuklonjiv singularitet funkcije $z \mapsto (z - z_0)^k f(z)$. Lako se vidi da je to svojstvo ekvivalentno definiciji pola n-tog reda. Napomenimo da iz

$$\lim_{z \to z_0} (z - z_0)^n f(z) = c_{-n}$$

slijedi $\lim_{z\to z_0}|f(z)|=\infty$ i pokazat ćemo da je to ne samo nužan nego i dovoljan uvjet da funkcija f u z_0 ima pol.

(c) Točka z_0 je bitan singularitet ako se glavni dio od f sastoji od ∞ -mnogo članova.

Ponašanje funkcije u okolini bitnog singulariteta sasvim se razlikuje od ponašanja funkcije u okolini pola. Napomenimo sada samo da ako je z_0 bitan singularitet funkcije f da je tada

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k (z - z_0)^k,$$

te da ne postoji $\lim_{z \to z_0} |f(z)|$ ni konačan ni beskonačan.

Teorem 4.2 Neka je z_0 izolirani singularitet funkcije f. Točka z_0 je uklonjiv singularitet od f ako i samo ako postoji r > 0 takav da je f definirana i omeđena na skupu $K^*(z_0, r)$.

Dokaz. \implies Neka je z_0 uklonjiv singularitet funkcije f. Definiramo li

$$c_0 = f(z_0) = \lim_{z \to z_0} f(z)$$

tada je za neki $\rho > 0$ funkcija

$$\widetilde{f}(z) = \begin{cases} f(z), & \text{ako je } z \neq z_0 \\ c_0, & z = z_0 \end{cases}$$

analitička na $K(z_0, \rho)$. Neka je $0 < r < \rho$. Tada je $\operatorname{Cl} K(z_0, r)$ kompaktan skup na kojemu je funkcija \widetilde{f} neprekidna pa je stoga na njemu i omeđena. Dakle, funkcija \widetilde{f} je omeđena i na $K^*(z_0, r)$.

 \rightleftharpoons Pretpostavimo da je r>0 takav da je $K^*(z_0,r)$ sadržan u području definicije funkcije f i da je na njemu f analitička i omeđena. Definiramo funkciju $h:K(z_0,r)\to\mathbb{C}$ sa

$$h(z) = \begin{cases} (z - z_0)^2 f(z), & z \in K^*(z_0, r) \\ 0, & z = z_0 \end{cases}$$
 (6)

Funkcija h je analitička na $K^*(z_0,r)$ i jer je f omeđena na $K^*(z_0,r)$ imamo

$$0 = \lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0}$$

pa je h diferencijabilna i vrijedi

$$h(z_0) = h'(z_0) = 0. (7)$$

Dokažimo da je h analitička na $K(z_0, r)$ (tj. da je h' neprekidna na $K(z_0, r)$). Budući je h analitička na $K^*(z_0, r)$ ostaje dokazati da je h' neprekidna u z_0 odnosno da je

$$\lim_{z \to z_0} h'(z) = 0.$$

Za $z \neq z_0$ imamo

$$h'(z) = 2(z - z_0)f(z) + (z - z_0)^2 f'(z)$$
(8)

Vrijedi

$$\lim_{z \to z_0} 2(z - z_0) \underbrace{f(z)}_{\text{omed.}} = 0,$$

pa ostaje dokazati da i drugi član u (8) ima limes 0 u točki z_0 :

$$\lim_{z \to z_0} (z - z_0)^2 f'(z) = 0.$$

Dovoljno je opet dokazati da je funkcija $(z-z_0)f'(z)$ omeđena na nekom skupu $K^*(z_0,\rho), 0 < \rho \leq r$.

Doista, ako M > 0 takav da je

$$|f(\zeta)| \le M, \ \zeta \in K^*(z_0, r) \tag{9}$$

dokazat ćemo da vrijedi

$$|(z-z_0)f'(z)| \le 2M, \quad z \in K^*(z_0, \frac{1}{2}r)$$
 (10)

Uzmimo $z \in K^*(z_0, \frac{r}{2})$ bilo koji. Neka je $\delta = \frac{1}{2}|z - z_0|$. Tada je Cl $K(z, \delta) \subset K^*(z_0, r)$ i (po Teoremu 3.13) imamo

$$f'(z) = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \tag{11}$$

gdje je Γ^+ pozitivno orijentirana kružnica sa središtem u z i radijusa δ . Za $\zeta\in\Gamma$ je $|\zeta-z|=\delta$ pa imamo

$$\begin{aligned} \left| (z - z_0) f'(z) \right| &= |z - z_0| \cdot \left| f'(z) \right| = \\ \left| z - z_0 \right| \cdot \left| \frac{1}{2\pi i} \int_{\Gamma^+} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \right| &\le |z - z_0| \cdot \frac{1}{2\pi} \int_{\Gamma^+} \left| \frac{f(\zeta)}{(\zeta - z)^2} \right| d\zeta \le \\ \left| z - z_0 \right| \cdot \frac{1}{2\pi} \cdot \frac{M}{\delta^2} \cdot 2\pi \delta = 2M. \end{aligned}$$

Budući prethodno vrijedi za svaki $z\in K^*(z_0,\frac{1}{2}r)$ imamo da je

$$|(z-z_0)f'(z)| \le 2M$$
 za svaki $z \in K^*(z_0, \frac{1}{2}r)$

i zaista je $(z-z_0)f'(z)$ omeđena. Dobili smo da je

$$\lim_{z \to z_0} h'(z) = \lim_{z \to z_0} \left[2(z - z_0)f(z) + (z - z_0)^2 f'(z) \right] = 0$$

i funkcija h jest analitička na $K(z_0, r)$.

Analitička funkcija h se može na $K(z_0,r)$ prikazati konvergentnim redom potencija

$$h(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad z \in K(z_0, r)$$

i pri tome je

$$c_n = \frac{h^{(n)}(z_0)}{n!}.$$

Budući je $h(z_0) = h'(z_0) = 0$ imamo da je $c_0 = c_1 = 0$ pa je

$$h(z) = c_2(z - z_0)^2 + c_3(z - z_0)^3 + \dots = \sum_{n=2}^{\infty} c_n(z - z_0)^n.$$
 (12)

Neka je sada funkcija $\widetilde{f}(z)$ definirana sa

$$\widetilde{f}(z) = c_2 + c_3(z - z_0) + c_4(z - z_0)^2 + \dots = \sum_{n=0}^{\infty} c_{n+2}(z - z_0)^n, \quad z \in K(z_0, r).$$

To je analitička funkcija na $K(z_0,r)$ i za $z\in K^*(z_0,r)$ vrijedi

$$\widetilde{f}(z) = \frac{h(z)}{(z - z_0)^2} = \frac{(z - z_0)^2 f(z)}{(z - z_0)^2} = f(z).$$

Time smo dokazali da je z_0 uklonjiv singularitet funkcije f.

Ponašanje funkcije u okolini bitnog singulariteta (donekle) opisuje naredni teorem.

Teorem 4.3 (Cassoratti-Weierstrass-Sohocki) Neka je z_0 izolirani singularitet fukcije f. Tada su ekvivalentna svojstva:

- (i) z_0 je bitni singularitet;
- (ii) za svaki r > 0 takav da je f definirana na $K^*(z_0, r)$ skup $f(K^*(z_0, r))$ je gust u \mathbb{C} (tj. $\mathrm{Cl}[f(K^*(z_0, r))] = \mathbb{C}$);
- (iii) Ne postoji limes $\lim_{z\to z_0} |f(z)|$ (ni konačan ni beskonačan).

Dokaz.

 $(i) \Rightarrow (ii)$ Neka je z_0 bitni sigularitet.

Dokaz provodimo kontradikcijom i pretpostavimo da ne vrijedi (ii), tj. da postoji neki $\rho > 0$ takav da je f definirana na $K^*(z_0, \rho)$ i da skup $f(K^*(z_0, r))$ nije gust u \mathbb{C} .

Iz $\operatorname{Cl}[f(K^*(z_0,r))] \subset \mathbb{C}$ slijedi da postoji točka $a \in \mathbb{C} \setminus \operatorname{Cl}[f(K^*(z_0,r))]$ pa stoga postoji kugla K(a,r) koja ne sadrži niti jednu točku skupa $f(K^*(z_0,r))$. To znači da je $f(z) \notin K(a,r), z \in K^*(z_0,\rho)$, tj.

$$z \in K^*(z_0, \rho) \Rightarrow |f(z) - a| \ge r. \tag{13}$$

Neka je sada

$$g: K^*(z_0, \rho) \to \mathbb{C}, \quad g(z) = \frac{1}{f(z) - a}.$$
 (14)

Funkcija g je omeđena

$$|g(z)| = \left| \frac{1}{f(z) - a} \right| \le \frac{1}{r} < +\infty, \ z \in K^*(z_0, \rho)$$

i po Teoremu 4.2 je z_0 uklonjiv singularitet funkcije g. Dakle, možemo uzeti da je g definirana i analitička na cijelom $K(z_0, \rho)$. Mogu se sada dogoditi dvije mogućnosti.

(A) $g(z_0) \neq 0$.

Sada zbog neprekidnosti funkcije g točki u z_0 imamo da postoji $\varepsilon > 0$ ($\varepsilon \le \rho$) takav da je

$$|g(z)| \ge \frac{|g(z_0)|}{2}, \ z \in K(z_0, \varepsilon).$$

Nadalje, za $z \in K^*(z_0, \varepsilon)$ imamo

$$|f(z) - a| = \left| \frac{1}{g(z)} \right| \le \frac{2}{|g(z_0)|},$$

a odatle je

$$|f(z)| \le \frac{2}{|g(z_0)|} + a, \ z \in K^*(z_0, \varepsilon).$$

Time smo dokazali da je f omeđena funkcija na $K^*(z_0, \varepsilon)$ i po prethodnom teoremu je z_0 uklonjiv singularitet funkcije f. Došli smo do kontradikcije s našom pretpostavkom (i).

(B) z_0 je nultočka funkcije g kratnosti $m \in \mathbb{N}$.

To znači da je $g(z_0) = g'(z_0) = \cdots = g^{(m-1)}(z_0) = 0$ i $g^{(m)}(z_0) \neq 0$. Funkcija g se može tada prikazati u obliku

$$g(z) = (z - z_0)^m k(z)$$

gdje je $k:K(z_0,\rho)\to\mathbb{C}$ analitička funkcija i $k(z_0)\neq 0$. Kako je za funkciju $g:K^*(z_0,\rho)\to\mathbb{C},\ g(z)=\frac{1}{f(z)-a}$ točka z_0 jedina nultočka imamo da funkcija k nema nultočaka na skupu $K(z_0,\rho)$. To znači da je funkcija

$$h = \frac{1}{k}$$

analitička na skupu $K(z_0,\rho)$. Za $0<\varepsilon<\rho$ je funkcija h omeđena na $K(z_0,\varepsilon)$. Budući je za $z\in K^*(z_0,\varepsilon)$

$$(z - z_0)^m f(z) = (z - z_0)^m \left(\frac{1}{g(z)} + a\right) = (z - z_0)^m a + h(z)$$

zaključujemo da je funkcija $z \mapsto (z - z_0)^m f(z)$ omeđena na $K^*(z_0, \varepsilon)$ i po prethodnom teoremu slijedi da je z_0 uklonjiv singularitet te funkcije, odnosno z_0 je pol n-tog reda funkcije f. Došli smo do kontradikcije s našom pretpostavkom (i).

 $(ii) \Rightarrow (iii)$ Dokaz kontradikcijom.

Pretpostavimo da ne vrijedi (iii), tj. da postoji $\lim_{z\to z_0}|f(z)|$. Taj limes može biti konačan ili beskonačan.

Ukoliko je konačan, $\lim_{z\to z_0}|f(z)|=L$, tada postoji $\rho>0$ takav da je f analitička na $K^*(z_0,\rho)$ i da je |f(z)|< L+1 za svaki $z\in K^*(z_0,\rho)$. Sada je $f(K^*(z_0,\rho))$ sadržan u K(0,L+1) i stoga nije gust u $\mathbb C$ - kontradikcija s pretpostavkom (ii).

Ukoliko je beskonačan, tj. $\lim_{z\to z_0}|f(z)|=+\infty$, uzmimo M>0 realan broj. Za neki $\rho>0$ je funkcija f analitička na $K^*(z_0,\rho)$ i $|f(z)|\geq M$ za svaki $z\in K^*(z_0,\rho)$. Slijedi da je $f(K^*(z_0,\rho))$ sadržan u skupu $\mathbb{C}\setminus\mathrm{Cl}\,K(0,M)$ pa opet nije gust u \mathbb{C} - kontradikcija s pretpostavkom (ii).

 $(iii) \Rightarrow (i)$ Dokaz kontradikcijom.

Pretpostavimo suprotno, tj. da je točka z_0 ili uklonjiv singularitet ili pol fukcije f.

Ako je z_0 uklonjiv singularitet od f onda postoji $\lim_{z\to z_0} f(z)$, dakle postoji i $\lim_{z\to z_0} |f(z)|$ i to konačan - kontradikcija s pretpostavkom.

Ako je z_0 pol od f tada je $\lim_{z\to z_0}|f(z)|=+\infty,$ a to je u kontradikciji s našom pretpostavkom.

Prethodni teorem daje sljedeću karakterizaciju singulariteta:

- Ako postoji $\lim_{z\to z_0}|f(z)|$ i konačan je, tada je z_0 uklonjiv singularitet;
- Ako je $\lim_{z \to z_0} |f(z)| = +\infty$, z_0 je pol funkcije;
- Ako ne postoji $\lim_{z\to z_0}|f(z)|$ ni konačan ni beskonačan, z_0 je bitni singularitet funkcije f.

Primjer Promotrimo funkciju $f(z) = \frac{\sin z}{z}$. Budući je

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!},$$

imamo da je

$$f(z) = \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots$$

i to je Laurentov razvoj od f u okolini točke $z_0 = 0$. Vrijedi $\lim_{z \to 0} \left| \frac{\sin z}{z} \right| = 1$ i točka $z_0 = 0$ je uklonjivi singularitet funkcije f.

Primjer Promotrimo funkciju $f(z) = \frac{1 - e^z}{z}$.

Budući je $e^z = \sum_{n=1}^{\infty} \frac{z^n}{n!}$ imamo

$$1 - e^z = 1 - \sum_{n=1}^{\infty} \frac{z^n}{n!} = -\frac{z}{1!} - \frac{z^2}{2!} - \frac{z^3}{3!} \cdots$$

pa je

$$f(z) = \frac{1 - e^z}{z} = -1 - \frac{z}{2!} - \frac{z^2}{3!} - \cdots$$

i vrijedi $\lim_{z\to 0} |f(z)| = -1$, dakle opet je $z_0 = 0$ uklonjivi singularitet.

Primjer Promotrimo funkciju $f(z) = \frac{1}{e^{z^2} + 1}$. Problematične su nultočke nazivnika, odnosno nultočke funkcije u nazivniku

Problematične su nultočke nazivnika, odnosno nultočke funkcije u nazivniku $g(z) = e^{z^2} + 1$. Uz supstituciju $w = z^2$ imamo

$$e^w = -1 \Rightarrow w_k = (2k+1)\pi i, \quad k = 0, \pm 1, \pm 2, \dots$$

Sada imamo (za svaki k) dva rješenja

$$z^{2} = (2k+1)\pi \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \Rightarrow z_{k_{l}} = \sqrt{(2k+1)\pi} \left(\cos\frac{\frac{\pi}{2} + 2l\pi}{2} + i\sin\frac{\frac{\pi}{2} + 2l\pi}{2}\right), \quad l = 0, 1.$$

Dobivamo

$$z_{k_1} = \sqrt{(2k+1)\pi} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right), \ k \in \mathbb{Z}$$
$$z_{k_2} = \sqrt{(2k+1)\pi} \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right), \ k \in \mathbb{Z}$$

Sva ova rješenja nalaze se na pravcima $y=\pm x$. Sada gledamo $g'(z)=2ze^{z^2}$ i jer je $g'(z_{k_{1,2}})\neq 0,\ z_{k_1}$ i z_{k_2} su jednostruke nultočke od g. Dakle, svaka od tih nultočaka je pol prvog reda funkcije f.

Primjer Promotrimo funkciju $f(z) = \sin \frac{1}{z}$.

Opet primijenimo definiciju sinusa $\sin z=\sum_{n=0}^{\infty}(-1)^n\frac{z^{2n+1}}{(2n+1)!}$ i zamjenom $z\to\frac{1}{z}$ dobivamo

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{1}{z^{2n+1}},$$

a to znači da je jedina singularna točka ishodište, i to bitno singularna točka.

ZADACI

- 1. Točka z_0 je n-struka nultočka funkcije f ako i samo ako je z_0 poln-tog reda funkcije $z\mapsto \frac{1}{f(z)}.$ Dokažite!
- 2. Izolirani singularitet $z_0 \in \mathbb{C}$ je uklonjiv ili pol, ako i samo ako postoji $n \in \mathbb{N}$ rakav da postoji limes $\lim_{z \to z_0} (z z_0)^n f(z) = A \in \mathbb{C}$. Pri tome je $A \neq 0$, ako i samo ako je z_0 pol od f n-tog reda. Dokažite!
- 3. Nađite nekoliko početnih članova Laurentovog razvoja funkcije $f(z) = \frac{1}{\sin z}.$
- 4. Neka je f analitička funkcija na skupu $K^*(z_0, r)$ i neka je g(z) njezin glavni dio Laurentovog razvoja funkcije f oko točke z_0 . Dokažite da funkcija f g ima uklonjiv singularitet u točki z_0 .
- 5. Neka je f analitička funkcija na skupu $K(z_0, r)$ osim u točlama z_1, \ldots, z_n gdje ima ukolonjive singularitete. Neka je g_k glavni dio Laurentovog razvoja funkcije f oko točke z_k .
 - (a) Dokažite da j funkcija $f-g_1-g_2-\cdots-g_n$ analitička funkcija na $K(z_0,r)$ osim u točkama z_1,\ldots,z_n gdje ima ukolonjive singularitete.
 - (b) Ako je r_{1} najveći od brojeva $\left|z_{j}-z_{0}\right|,\,j=1,\ldots,n,$ onda je

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k, \quad r_1 < |z - z_0| < r;$$

$$g_1(z) + \dots + g_n(z) = \sum_{k=1}^{\infty} c_{-k} (z - z_0)^{-k}, \quad |z - z_0| > r_1;$$

$$\tilde{g}(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k, \quad |z - z_0| < r,$$

gdje je \tilde{g} proširenje gunkcije g do analitičke funkcije na $K(z_0, r)$.

(c) Ako je

$$f(z) = \frac{a_0 + a_1 z + \dots + a_m z^m}{(z - z_1) \cdots (z - z_n)},$$

gdje je n>m i z_k su međusobno različite točke, i ako je $r>\max\{|z_k|:k=1,\ldots,n\}$ onda je $g_k=\frac{c_k}{z-z_k}$ $(k=1,\ldots,n)$, gdje su $c_k\in\mathbb{C}$

- 6. Dokažite da 0 nije izolirani singularitet funkcije $z \mapsto \left(\sin\frac{1}{z}\right)^{-1}$.
- 7. Dokažite da polovi funkcije $z \mapsto \left(1 + \exp z^{-2}\right)^{-1}$ imaju gomilište u nuli.
- 8. Razvijte u Laurentov red funkciju f(z) oko točke $z_0 = 0$ i odredite područje konvergencije dobivenog reda:

(a)
$$f(z) = \sin \frac{1}{z}$$
; (b) $f(z) = \frac{1}{\sin z}$.

9. Odredite glavni dio Laurentovog reda funkcije f(z) u okolini točke $z_0 = 0$ za:

(a)
$$f(z) = \frac{e^z + 1}{e^z - 1}$$
; (b) $f(z) = \frac{z - 1}{\sin^2 z}$.

10. Odredite singularitete i ispitajte njihov karakter:

(a)
$$f(z) = \frac{\sin z}{z}$$
; (b)

(b)
$$f(z) = \frac{z}{\operatorname{tg} z}$$

(a)
$$f(z) = \frac{\sin z}{z}$$
; (b) $f(z) = \frac{z}{\lg z}$;
(c) $f(z) = \frac{1}{e^{z^2} + 1}$; (d) $f(z) = \sin \frac{1}{z}$;
(e) $f(z) = \frac{e^{z} - 1}{z - 1}$.

(e)
$$f(z) = \frac{e^{\frac{1}{z}} - 1}{z - 1}$$

4.2 KOMPAKTIFIKACIJA PROSTORA $\mathbb C$

Ovdje se radi o kompaktifikaciji jednom točkom: proširiti ćemo skup $\mathbb C$ do skupa $\overline{\mathbb{C}} = \mathbb{C} \cup \{pt\}$ dodavanjem novog elementa $pt \notin \mathbb{C}$ koji se zove **besko**načno daleka točka.

Neka je zadan koordinatni sustav (O, x, y, ζ) u prostoru i neka je S sfera $x^2+y^2+\left(\zeta-\frac{1}{2}\right)^2=\frac{1}{4}.$ Neka su točke xy-ravnine identificirane sa kompleksnim brojevima z. Pravac koji prolazi točkom z=x+iy i "sjevernim polom" N = (0, 0, 1) siječe sferu S u točki $\Phi(z)$.

Koordinate točke $\Phi(z)$ su

$$\left(\frac{\operatorname{Re} z}{1+|z|^2}, \frac{\operatorname{Im} z}{1+|z|^2}, \frac{|z|^2}{1+|z|^2}\right).$$

Sa $z \mapsto \Phi(z)$ zadana je bijekcija sa \mathbb{C} na $\mathbb{S} \setminus \{N\}$ koju nazivamo **stereograf**skom projekcijom. Inverzno preslikavanje $\Phi^{-1}: \mathbb{S} \setminus \{N\} \to \mathbb{C}$ dano je sa

$$z = \frac{x + iy}{1 - \zeta}$$

(točki $T=(x,y,\zeta)\in S,\, x^2+y^2+(\zeta-\frac{1}{2})^2=\frac{1}{4}$ pridružujemo točku z). Proširimo funkciju Φ na skup $\overline{\mathbb{C}}$ tako da dodani element pt preslikamo u polN. Time smo dobili bijekciju

$$\widetilde{\Phi}:\overline{\mathbb{C}} \to \mathbb{S}, \quad \widetilde{\Phi}(z) = \left\{ egin{array}{ll} \Phi(z), & z \in \mathbb{C} \\ N, & z = pt \end{array}
ight.$$

i ova bijekcija identificira $\overline{\mathbb{C}}$ sa \mathbb{S} (ovakva sfera se naziva i **Riemannova** sfera ili kompleksna numerička sfera). Uobičajeno je pisati umjesto pt znak ∞ jer ako niz $(\Phi(z_n)) \to N$ onda $|z_n| \to +\infty$ (odatle i dolazi naziv "beskonačno daleka točka" za element $pt \in \overline{\mathbb{C}}$) i dogovor je da je $|\infty| = +\infty$).

Definicija 4.4 Otvoren krug radijusa r sa središtem u točki ∞ je skup

$$K(\infty, r) = \{ z \in \overline{\mathbb{C}}, |z| > r \}.$$

Skup $\Omega \subseteq \overline{\mathbb{C}}$ je otvoren u $\overline{\mathbb{C}}$ ako za svako $z_0 \in \Omega$ postoji krug $K(z_0, r)$ koji je sadržan u Ω . Posebno prazan skup je otvoren u $\overline{\mathbb{C}}$.

Iz definicije otvorenog skupa u $\overline{\mathbb{C}}$ vidi se da je $\Omega \subseteq \mathbb{C}$ otvoren u $\overline{\mathbb{C}}$ ako i samo ako je on otvoren u \mathbb{C} .

Definicija 4.5 Niz (z_k) iz $\overline{\mathbb{C}}$ konvergira ka $z_0 \in \overline{\mathbb{C}}$ ako

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall k \in \mathbb{N}) \quad k \ge n_0 \Rightarrow z_k \in K(z_0, \varepsilon).$$

Napomenimo da:

- ako su $z_k, z_0 \in \mathbb{C}$ tada se radi o običnoj konvergenciji u \mathbb{C} ;
- ako su $z_k \in \mathbb{C}, z_0 = \infty$ tada $(z_k) \to \infty$ znači

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall k \in \mathbb{N}) \quad k \ge n_0 \Rightarrow |z_k| > \varepsilon,$$

pa stoga
$$(z_k) \to \infty \Leftrightarrow |z_k| \to +\infty$$
.

Definicija 4.6 Neka je $f: S \to \overline{\mathbb{C}}$, $S \subseteq \overline{\mathbb{C}}$. Kažemo da funkcija f ima limes $L \in \overline{\mathbb{C}}$ u točki $z_0 \in \overline{\mathbb{C}}$, i pišemo $\lim_{z \to z_0} = L$, ako vrijedi:

(a) Za svaki
$$r > 0$$
 je $K^*(z_0, r) \cap S \neq \emptyset$, gdje je $K^*(z_0, r) = K(z_0, r) \setminus \{z_0\}$;

(b)
$$(\forall \varepsilon > 0)(\exists \delta > 0, \delta < r)$$
 $z \in K^*(z_0, \delta) \cap S \Rightarrow f(z) \in K(L, \varepsilon)$.

Iz definicije slijedi:

- ako su $z_0, L \in \mathbb{C}$, tada $z \in K^*(z_0, \delta) \cap S \Rightarrow f(z) \in K(L, \varepsilon)$ znači $0 < |z z_0| < \delta \Rightarrow |f(z) L| < \varepsilon;$
- ako je $z_0=\infty$ i $L\in\mathbb{C}$, tada $z\in K^*(z_0,\delta)\cap S\Rightarrow f(z)\in K(L,\varepsilon)$ znači $z\in\mathbb{C} \text{ i } |z|>\delta\Rightarrow |f(z)-L|<\varepsilon;$
- ako je $z_0 \in \mathbb{C}$ i $L = \infty$, tada $z \in K^*(z_0, \delta) \cap S \Rightarrow f(z) \in K(L, \varepsilon)$ znači $0 < |z z_0| < \delta \Rightarrow |f(z)| > \varepsilon;$
- ako je $z_0=\infty$ i $L=\infty$, tada $z\in K^*(z_0,\delta)\cap S\Rightarrow f(z)\in K(L,\varepsilon)$ znači $z\in\mathbb{C} \text{ i } |z|>\delta\Rightarrow |f(z)|>\varepsilon.$

Primjer Vrijedi

$$\lim_{z \to \infty} \frac{1}{z} = 0, \quad \lim_{z \to 1} \frac{1}{z - 1} = \infty, \quad \lim_{z \to \infty} P(z) = \infty,$$

za svaki nekonstantni polinom P.

Funkcija $z \to e^z$ nema limes u točki $z_0 = \infty$.

Naime, u prvom redu za $\varepsilon > 1$ i svaki R > 0 krug $K(\infty, R)$ sadrži točku imagiarne osi $z_R = (1+R)i \in K(\infty, R)$. Međutim, $|e^{z_R}| = 1$, pa vidimo da $L = \infty$ nije limes funkcije $z \to e^z$. S druge strane, $e^x \underset{x \to +\infty}{\to} +\infty$, pa nijedan broj $L \in \mathbb{C}$ nije limes funkcije $z \mapsto e^z$. Da funkcija $z \to e^z$ nema limes u točki $z_0 = \infty$ u vezi je s činjenicom da ona ima bitni singularitet u točki $z_0 = \infty$.

ZADACI

- 1. Dokažite da svaki niz (z_k) iz $\overline{\mathbb{C}}$ ima konvergentni podniz u $\overline{\mathbb{C}}$ (kompaktnost $\overline{\mathbb{C}}$).
- 2. Skup $F \subseteq \overline{\mathbb{C}}$ je **zatvoren** u $\overline{\mathbb{C}}$, ako je skup $\overline{\mathbb{C}} \setminus F$ otvoren u $\overline{\mathbb{C}}$. **Zatvarač** skupa $S \subseteq \overline{\mathbb{C}}$ je najmanji zatvoren skup u $\overline{\mathbb{C}}$ koji sadrži skup S.
 - (a) Dokažite da je $\overline{\mathbb{C}}$ zatvarač skupa $\mathbb{C}.$
 - (b) Dokažite da je familija svih orvorenih skupova u $\overline{\mathbb{C}}$ topologija na $\overline{\mathbb{C}}$.
 - (c) Skup $A \subseteq \mathbb{C}$ je zatvoren u $\overline{\mathbb{C}}$ ako i samo ako je zatvoren u \mathbb{C} i omeđen (tj. kompaktan). Ako je skup $F \subseteq \overline{\mathbb{C}}$ zatvoren u $\overline{\mathbb{C}}$ onda je skup $F \setminus \{\infty\} = F \cap \mathbb{C}$ zatvoren u \mathbb{C} .

- 3. Ako je U otvoren skup u $\overline{\mathbb{C}}$ koji sadrži točku ∞ , dokažite da je $\overline{\mathbb{C}} \setminus U$ kompaktan podskup od \mathbb{C} .
- 4. Ako je $(U_i, i \in I)$ familija otvorenih podskupova od $\overline{\mathbb{C}}$ takva da je $\overline{\mathbb{C}} = \bigcup_{i \in I} U_i$, dokažite da postoje $i_1, \ldots, i_n \in I$ takvi da je $\overline{\mathbb{C}} = U_{i_1} \cup \cdots \cup U_{i_n}$.

4.3 IZOLIRANI SINGULARITETI U BESKONAČNOSTI

Definicija 4.7 Za funkciju $f: \mathbb{C} \to \mathbb{C}$ kažemo da ima izolirani singularitet u točki $z_0 = \infty$ ako postoji $\rho > 0$ takav da je skup $K^*(\infty, \rho) = K(\infty, \rho) \setminus \{\infty\}$ sadržan u području definicije od f i da je f analitička na tom skupu.

Ako funkcija f ima izoliran singularitet u točki ∞ tada je Laurentov razvoj te funkcije ($z_0 = 0, R_1 = \rho, R_2 = +\infty$) oblika

$$f(z) = \sum_{n = -\infty}^{\infty} c_k z^k, \quad |z| > \rho, \tag{1}$$

i tada je funkcija

$$g(z) = f\left(\frac{1}{z}\right) = \sum_{n = -\infty}^{\infty} \frac{c_k}{z^k}, \quad |z| < \frac{1}{\rho}$$
 (2)

analitička na $K^*(0, \frac{1}{\rho})$ pa se proučavanje funkcije f u okolini točke ∞ svodi se na proučavanje funkcije g u točki 0.

Imamo:

 $\boxed{\mathbf{A}}$ Ako je $c_n=0$ za svako $n\in\mathbb{N}$ onda je

$$f(z) = c_0 + \frac{c_{-1}}{z} + \frac{c_{-2}}{z^2} + \dots \Rightarrow \lim_{z \to \infty} f(z) = c_0,$$

$$g(z) = c_0 + c_{-1}z + c_{-2}z^2 + \dots \Rightarrow \lim_{z \to \infty} f(z) = c_0,$$

i tada kažemo da f ima **uklonjiv singularitet** u točki ∞ . Stavljajući $f(\infty) = c_0$ kažemo i da je f analitička u točki ∞ .

Ako je $c_0 = 0$ onda je ∞ nultočka funkcije f, a ako je $c_0 = c_{-1} = \cdots = c_{-m+1} = 0$ i $c_{-m} \neq 0$ tada f ima nultočku m-tog reda u točki ∞ .

B Ako postoji $m \in \mathbb{N}$ takav da je $c_{-m} \neq 0$ i $c_{-k} = 0$ za svaki k > m onda kažemo da f ima **pol** m-tog reda u točki ∞ . U tom slučaju je

$$g(z) = \frac{c_m}{z^m} + \dots + \frac{c_1}{z} + c_0 + c_{-1}z + \dots$$

pa g ima polm-tog reda u ishodištu.

 $\overline{\mathbb{C}}$ Ako je $c_k \neq 0$ za beskonačno mnogo prirodnih brojeva k, onda kažemo da f ima **bitni singularitet** u točki ∞ .

U vezi s uvedenim pojmovima proširuje se pojam analitičnosti i na funkcije $f:\Omega\to\mathbb{C},$ gdje je Ω otvoren skup u $\overline{\mathbb{C}}.$

Definicija 4.8 Neka je Ω otvoren skup u $\overline{\mathbb{C}}$ koji sadrži točku ∞ . Funkcija $f:\Omega\to\mathbb{C}$ je analitička na Ω ako je ispunjeno:

- (i) f je analitička na $\Omega \setminus \{\infty\}$;
- (ii) točka ∞ je uklonjivi singularitet funkcije f;
- (iii) $f(\infty) = \lim_{z \to \infty} f(z)$

U tom slučaju je Laurentov razvoj funkcije f oko točke ∞ oblika

$$f(z) = \sum_{n=0}^{\infty} c_n z^{-n} \tag{3}$$

i vrijedi $f(\infty) = c_0$

Uz ovako definiran pojam analitičke funkcije na skupovima u $\overline{\mathbb{C}}$, Liouvilleov teorem može se formulirati na slijedeći način.

Teorem 4.9 Neka je $f: \overline{\mathbb{C}} \to \mathbb{C}$ analitička funkcija. Tada je f konstanta.

Dokaz. Budući je $f(\infty) = \lim_{z \to \infty} f(z)$, to za svaki $\forall \varepsilon > 0$, pa i za $\varepsilon = 1$, postoji realni broj R > 0 takav da vrijedi

$$(\forall z \in \mathbb{C}) \quad |z| > R \Rightarrow |f(z) - f(\infty)| \le 1.$$

Odavde slijedi

$$(\forall z \in \mathbb{C})$$
 $|z| > R \Rightarrow |f(z)| < |f(\infty)| + 1 < +\infty.$

Dakle, funkcija f je omeđena na skupu $\{z\in\mathbb{C}:|z|>R\}$. Budući je komplement tog skupa $\mathbb{C}\setminus\{z\in\mathbb{C}:|z|>R\}=\mathrm{Cl}\,K(0,R)$ kompaktan, funkcija f

je omeđena na tom kompaktu. Dakle, funkcija $f|_{\mathbb{C}}$ je omeđena i analitička i po Liouvilleovom teoremu je $f|_{\mathbb{C}}$ je konstantna funkcija $f(z)=c,\,z\in\mathbb{C}$. Tada je i $f(\infty)=\lim_{z\to\infty}f(z)=c,$ i f je zaista konstantna funkcija.

Definicija 4.10 Neka je $S \subseteq \overline{\mathbb{C}}$, $f: S \to \overline{\mathbb{C}}$ i $z_0 \in S$. Kažemo da je funkcija f neprekidna u točki z_0 ako

$$(\forall \varepsilon > 0)(\exists \delta > 0) \quad z \in K(z_0, \delta) \cap S \Rightarrow f(z) \in K(f(z), \varepsilon)$$

(dakle, tada je $\lim_{z\to z_0} f(z) = f(z_0)$). Funkcija f je **neprekidna na skupu** S ako je ona neprekidna u svakoj točki $z_0 \in S$.

Napomenimo:

- Ukoliko je $S \subseteq \mathbb{C}$ i $f(S) \subseteq \mathbb{C}$ ovaj pojam neprekidnosti podudara se sa standarnim pojmom neprekidnosti kompleksne funkcije;
- Ukoliko je točka $z_0 \in \overline{\mathbb{C}}$ uklonjiv singularitet funkcije f možemo pretpostaviti da je f definirana i analitička na skupu $K^*(z_0, r), r > 0$, i stavimo li da je $f(z_0) = \lim_{z \to z_0} f(z)$ tada očito f postaje neprekidna funkcija na $K(z_0, r)$ u \mathbb{C} ;
- Neka je točka $z_0 \in \overline{\mathbb{C}}$ pol funkcije f. Stavimo $f(z_0) = \infty$. Budući je $\lim_{z \to z_0} f(z) = \infty$, opet vidimo da je proširena funkcija f neprekidna na $K(z_0, r)$ u $\overline{\mathbb{C}}$;
- Neka je točka $z_0 \in \overline{\mathbb{C}}$ bitni singularitet funkcije f. Tada ne postoji $\lim_{z \to z_0} |f(z)|$ (ni konačan ni beskonačan) pa u $\overline{\mathbb{C}}$ ne postoji $\lim_{z \to z_0} f(z)$. Stoga se f ne može proširiti do neprekidne funkcije na $K(z_0, r)$ u $\overline{\mathbb{C}}$.

Neka je sada $f: K(z_0, r) \to \overline{\mathbb{C}}$ neprekidna funkcija koja je analitička na $K^*(z_0, r)$ (posebno je $f(z) \in \mathbb{C}$ za svaki $z \in K^*(z_0, r)$). Tada je z_0 izolirani singularitet funkcije $f|_{K^*(z_0, r)}$. Po prethodnom razmatranju, ako je $f(z_0) \in \mathbb{C}$ onda je funkcija f analitička na čitavom krugu $K(z_0, r)$, a ako je $f(z_0) = \infty$, onda je z_0 pol funkcije f.

Vidimo da se uz ovako prošiteno shvaćanje funkcija kompleksne varijable gubi razlika između pojma pola i pojma uklonjivog singulariteta, ukoliko sve točke proširene kompleksne ravnine smatramo ravnopravnima.

ZADACI

- 1. Cijela funkcija f ima pol u točki ∞ ako i samo ako je f polinom i f nije konstanta. Dokažite!
- 2. Izolirani singularitet ∞ funkcije f je uklonjiv ili pol ako i samo ako postoji $n\in\mathbb{N}$ takav da postoji limes $\lim_{z\to\infty}z^{-n}f(z)=A\in\mathbb{C}$. Točka ∞ je pol n-tog reda ako i samo ako je $A\neq 0$. Dokažite!
- 3. Točka ∞ je n-struka nultočka funkcije f ako i samo ako je ∞ pol n-togreda funkcije $z\mapsto \frac{1}{f(z)}.$ Dokažite!
- 4. Razvijte u Laurentov red funkcije okolini naznačenih točaka i odredite područje konvergencije:

(a)
$$f(z) = \frac{1}{z^2(1-z)}$$
, $z_0 = 0$, $z_0 = \infty$;

(b)
$$f(z) = \frac{z}{z^2 - a^2}$$
 $(a > 1), z_0 = ai;$

(c)
$$f(z) = \frac{1}{(z-3)(z-4i)}$$
, $z_0 = 0$, $z_0 = \infty$.

5. Ispitajte ponašanje u $z_0 = \infty$ funkcija:

(a)
$$f(z) = \frac{\sin z}{z}$$
;
(b) $f(z) = \frac{z}{\operatorname{tg} z}$;

(b)
$$f(z) = \frac{z}{\operatorname{tg} z}$$

(c)
$$f(z) = e^{z}$$
;

(d)
$$f(z) = z(e^{\frac{1}{z}} - 1)$$
.

6. Odredite singulatitete i njihov karakter za funkcije:

(a)
$$f(z) = \frac{1}{z(z^2+1)^2}$$
;

(b)
$$f(z) = z \cdot e^{\frac{1}{z}};$$

(c)
$$f(z) = \frac{1}{z} - \frac{1}{2 + e^{-z}};$$

(d) $f(z) = \frac{1 - \cos z}{z + \pi};$

(d)
$$f(z) = \frac{1 - \cos z}{z + \pi}$$
;

(e)
$$f(z) = \sin \frac{1}{z+\pi};$$

(f)
$$f(z) = \sin e^{\frac{1}{z}}$$
.

7. Odredite singulatitete i njihov karakter za funkcije

(a)
$$f(z) = \frac{e^z}{z^2 + 3}$$
;

(b)
$$f(z) = \frac{\cos z}{z^2}$$
;

(c)
$$f(z) = e^{-z} \cos \frac{1}{z}$$
;

(d)
$$f(z) = e^{\frac{z^2-1}{z}}$$
.

4.4 REZIDUUM FUNKCIJE

Na Cauchyjevom teoremu i Cauchyjevoj formuli osniva se dosta efikasna metoda za izračunavanje nekih integrala. Kod te metode je ključn pojam reziduuma (ili ostatka) analitičke funkcije u izoliranom singularitetu. Prije same definicije i proučavanja tog pojma i te metode, razmotrimo naredni primjer.

Primjer Izračunajmo integral $\int_{\Gamma^+} \frac{12z+11}{z^2+3z+2} dz$ ako je

- (a) $\Gamma = \{ z \in \mathbb{C} : |z| = \frac{1}{2} \};$
- (b) $\Gamma = \{ z \in \mathbb{C} : |z| = \frac{3}{2} \};$
- (c) $\Gamma = \{ z \in \mathbb{C} : |z| = 3 \},$

U prvom redu treba ispitati da li je podintegralna funkcija f analitička u okolini (zatvorenog) kruga $\overline{K}(0,r)$, odnosno odrediti točke iz te okoline u kojima nije analitička. Funkcija f je analitička na $\mathbb C$ osim možda u nultočkama nazivnika. Rješavanjem jednadžbe $z^2+3z+2=0$ nalazimo korijene $z_1=-1$ i $z_2=-2$. Polazni integral možemo sada zapisati u obliku

$$I = \int_{\Gamma^+} \frac{12z + 11}{(z+1)(z+2)} dz.$$

- (a) U ovom slučaju je funkcija f analitička u okolini kruga $\overline{K}(0,\frac{1}{2})$, pa je po Cauchyjevom teoremu I=0.
- (b) U ovom slučaju kružnica Γ obuhvaća pol $z_1=-1$, ali ne obuhvaća pol $z_2=-2$. Stavimo

$$g(z) = \frac{12z+11}{z+2}$$

pa integral I prelazi u

$$I = \int_{\Gamma^+} \frac{g(z)}{z+1} dz.$$

Budući da je funkcija g analitička u ukolini kruga $\overline{K}(0,\frac{3}{2})$, Cauchyjeva formula daje

$$I = \int_{\Gamma^+} \frac{g(z)}{z+1} dz = 2\pi i \cdot g(-1) = 2\pi i \cdot \frac{12 \cdot (-1) + 11}{(-1) + 2} = -2\pi i.$$

(c) Ovdje kružnica Γ obuhvaća oba pola z_1 i z_2 podintegralne funkcije. Neka su γ_1 i γ_2 male kružnice oko z_1 i z_2 kao na narednoj slici.

Po Cauchyjevom teoremu za višestruko povezano područje imamo

$$I = \int_{\gamma_1^+} \frac{12z+11}{(z+1)(z+2)} dz + \int_{\gamma_2^+} \frac{12z+11}{(z+1)(z+2)} dz.$$

Prvi integral jednak je $-2\pi i$ (kao u slučaju (b)) jer je podintegralna funkcija analitička u okolini područja omeđenog kružnicom γ_1 i kružnicom |z|=3/2. Drugi integral možemo zapisati na način

$$I = \int_{\gamma_2^+} \frac{h(z)}{z+2} dz, \quad h(z) = \frac{12z+11}{z+1}.$$

Prema Cauchyjevoj formuli ovaj integral ima vrijednost $2\pi i \cdot h(-2) = 26\pi i$. Odavde dobivamo

$$\int_{\Gamma^{+}} \frac{12z + 11}{z^2 + 3z + 2} dz = 24\pi i$$

U slučajevima (b) i (c) integracija se svela na izračunavanje vrijednosi zgodno odabranih funkcija g i h u singularitetima podintegralne funkcije.

Neka je z_0 izolirana singularna točka funkcije f i izračunajmo integral analitičke funkcije f po kružnici K_r dovoljno malog radijusa r u čijoj je nutrini z_0 jedina singularna točka. Imamo

$$\int_{K_r^+} f(z)dz = \int_{K_r^+} \left[\cdots c_{-2} \frac{1}{(z-z_0)^2} + c_{-1} \frac{1}{z-z_0} + c_0 + c_1(z-z_0) + \cdots \right] dz$$

i jer svaki integral iščezava osim integrala $\int_{K_r^+} \frac{1}{z-z_0} dz = 2\pi i$ vrijedi

$$\int_{K_r^+} f(z)dz = 2\pi i c_{-1}.$$

Kako je c_{-1} za dani f i dani z_0 jednistven kompleksan broj to će on igrati važnu ulogu u primjenama i izračunavanju analitičkih funkcija.

Definicija 4.11 Reziduum funkcije f u izoliranoj singularnoj točki z_0 je koeficijent c_{-1} Laurentovog razvoja od f oko točke z_0 .

Oznaka

Res
$$(f; z_0) = c_{-1} = \frac{1}{2\pi i} \int_{K_x^+} f(z) dz.$$

Odmah je jasno da vrijedi $\operatorname{Res}(f, z_0) = 0$ ako je z_0 uklonjiva singularna točka, a da nema nekog praktičnog postupka za bitno singularne točke.

Primjer Funkcija $f(z) = \frac{\sin z}{z^2}$ je analizička na $\mathbb{C} \setminus \{0\}$, dakle $z_0 = 0$ je izoliran singularitet funkcije f. Laurentov razvoj od f dobivamo razvojem funkcije $z \mapsto \sin z$ u Taylorov red

$$f(z) = \frac{1}{z^2} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right) = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{51} - \dots$$

pa je $Res(f; 0) = c_{-1} = 1$.

U nekim slučajevima rezidum $\operatorname{Res}(f; z_0)$ možemo izračunati i bez eksplicitnog određivanja razvoja u Laurentov red oko točke z_0 . Tako za izračunavanje reziduuma u polu postoje formule i kako se uglavnom srećemo s polovima sljedeći postupak uglavnom zadovoljava naše potrebe.

(A) Ako je z_0 pol prvog reda funkcije f tada je

$$f(z) = c_{-1} \frac{1}{z - z_0} + c_0 + c_1(z - z_0) + c_2(z - z_0)^2 \cdots$$

i dalje

$$f(z)(z-z_0) = c_{-1} + c_0(z-z_0) + c_1(z-z_0)^2 + c_2(z-z_0)^3 \cdots$$

i prelaskom na limes imamo

$$c_{-1} = \lim_{z \to z_0} (z - z_0) f(z). \tag{1}$$

(B) Ako je z_0 pol prvog reda funkcije f koja je kvocijent dviju analitičkih funkcija $f(z) = \frac{g(z)}{h(z)}$ (tu je $g(z_0) \neq 0$, $h(z_0) = 0$, $h'(z_0) \neq 0$) onda imamo

$$c_{-1} = \lim_{z \to z_0} (z - z_0) \frac{g(z)}{h(z)} = \lim_{z \to z_0} \frac{g(z)}{h(z) - h(z_0)}$$

pa je

$$c_{-1} = \frac{g(z_0)}{h'(z_0)} \tag{2}$$

Primjer Funkcija $f(z) = \frac{z}{z^n - 1}$ u točkama z_k gdje se poništava nazivnik

$$z_k = e^{\frac{2k\pi}{n}i}, \ k = 0, 1, \dots, n-1$$

ima polove prvog reda (jer je $(z^n)_{z=z_k}'=nz_k^{n-1}\neq 0)$ pa je

$$\operatorname{Res}(f; z_k) = \frac{g(z)}{h'(z)} \Big|_{z=z_k} = \frac{z}{nz^{n-1}} \Big|_{z=z_k} = \frac{1}{n} \frac{1}{\left(e^{\frac{2k\pi}{n}i}\right)^{n-2}} =$$

$$\frac{1}{n} \underbrace{\left(e^{\frac{2k\pi}{n}in}\right)}_{=1} \left(e^{-\frac{2k\pi^2}{n}i}\right) = \frac{1}{n} e^{\frac{4k\pi}{n}i}, \quad k = 0, 1, \dots, n-1.$$

(C) Neka je z_0 pol n-tog reda funkcije f. Tada je njen prikaz

$$f(z) = \sum_{k=-n}^{+\infty} c_k (z - z_0)^k / c_{(z-z_0)^n}, \quad c_{-n} \neq 0$$

pa je

$$(z-z_0)^n f(z) = c_{-n} + c_{-n+1}(z-z_0) + \dots + c_{-1}(z-z_0)^{n-1} + c_0(z-z_0)^n + \dots$$

Odavde deriviranjem (n-1 puta) dobivamo

$$\frac{d^{n-1}}{dz^{n-1}} [(z-z_0)^n f(z)] = (n-1)!c_{-1} + n!c_0(z-z_0) + \cdots$$

i granični prijelaz $z \to z_0$ daje

$$\operatorname{Res}(f; z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [(z-z_0)^n f(z)].$$
 (3)

Primjer Za funkciju $f(z) = \frac{1}{(1+z^2)^n}$ su $z_{1,2} = \pm i$ polovi n-tog reda. Vrijedi

$$\operatorname{Res}(f;i) = \frac{1}{(n-1)!} \lim_{z \to i} \frac{d^{n-1}}{dz^{n-1}} \left[(z-i)^n \frac{1}{(1+z^2)^n} \right] =$$

$$\frac{1}{(n-1)!} \lim_{z \to i} \frac{d^{n-1}}{dz^{n-1}} \left[(z-i)^n \frac{1}{(z-i)^n (z+i)^n} \right] =$$

$$\frac{1}{(n-1)!} \lim_{z \to i} \frac{d^{n-1}}{dz^n - 1} [(z+i)^{-n}] =$$

$$\frac{1}{(n-1)!} \lim_{z \to i} \frac{d^{n-2}}{dz^{n-2}} [(-n)(z+i)^{-n-1}] =$$

$$\frac{1}{(n-1)!} \lim_{z \to i} \frac{d^{n-3}}{dz^{n-3}} [(-n)((-n-1)(z+i)^{-n-2}] = \cdots =$$

$$\frac{(-1)^{n-1}}{(n-1)!} \lim_{z \to i} \frac{n(n+1) \cdots (2n-1)}{(z+i)^{2n-1}} =$$

$$\frac{(-1)^{n-1}}{(n-1)!} \cdot \frac{n(n+1) \cdots (2n-1)}{(i+i)^{2n-1}} =$$

$$\frac{(-1)^{n-1}}{(n-1)!} \cdot \frac{n(n+1) \cdots (2n-1)}{(i+i)^{2n-1}} \cdot \frac{1 \cdot 2 \cdot \cdots \cdot n-1}{(n-1)!} =$$

$$\frac{(-1)^{n-1}}{[(n-1)!]^2} \cdot \frac{(2n-2)!}{(2i)^{2n-1}} = -\frac{(2n-2)!}{2^{2n-1}[(n-1)!]^2}i.$$

Analogno se dobiva $\operatorname{Res}(f; -i) = \frac{(2n-2)!}{2^{2n-1} \left\lceil (n-1)! \right\rceil^2} i$.

Primjer Odredimo reziduume funkcije $f(z) = \frac{e^z}{(z-2)(z+1)^3}$. Singulariteti su $z_1 = 2$ i $z_2 = -1$. Stavimo $g(z) = \frac{e^z}{(z+1)^3}$ i h(z) = z - 2 pa je

Res
$$(f;2) = \frac{g(z)}{h'(z)}\Big|_{z=2} = \frac{\frac{e^z}{(z+1)^3}}{1}\Big|_{z=2} = \frac{e^2}{27}.$$

Budući je $z_2 = -1$ pol trećeg reda imamo

$$\operatorname{Res}(f; -1) = \frac{1}{2!} \lim_{z \to -1} \frac{d^2}{dz^2} [(z+1)^3 f(z)] = \lim_{z \to -1} \frac{d^2}{dz^2} [\frac{e^z}{z-2}] = \frac{1}{2} \lim_{z \to -1} [e^z \frac{z^2 - 6z + 10}{(z-2)^2}] = -\frac{17}{54 \cdot e}$$

Teorem 4.12 (Teorem o reziduumima) Neka je $f: \Omega \to \mathbb{C}$ analitička funkcija u području Ω osim u izoliranim singularitetima i neka je Γ^+ pozitivno orijentirana kontura u Ω na kojoj ne leži nijedan singularitet od f i čije unutarnje podrčje sadrži izolirane singularitete z_1, z_2, \cdots, z_n fukncije f. Tada vrijedi

$$\int_{\Gamma^{+}} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f; z_{k}). \tag{4}$$

Dokaz. Neka je sve kao na slici:

Oko svake singularne točke z_k navučimo konturu γ_k tako da su sve te konture disjunktne te da se njihove nutrine ne sijeku i da su sve unutar Γ . Po Cauchyjevom teoremu za višestruko povezano područje imamo

$$\int_{\Gamma^+} f(z)dz = \sum_{k=1}^n \int_{\gamma_k^+} f(z)dz =$$

$$2\pi i \sum_{k=1}^n \frac{1}{2\pi i} \int_{\gamma_k^+} f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{Res}(f; z_k)$$

Primjer Izračunajmo integral

$$I = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{dz}{(z^4 - 1)^3 (z - 3)}$$

gdje je Γ^+ pozitivno orijentirana centralna kružnica radijusa 2. Unutar promatrane kružnice nalaze se polovi ± 1 i $\pm i$ i to su polovi trećeg reda. Račun po formuli

Res
$$(f; z_k) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [(z-z_0)^n f(z)]$$

je kompliciran i dug. Da izbjegnemo taj dug račun poslužit ćemo se polom prvog reda z=3. Neka je Γ_0^+ pozitivno orijentirana kružnica radijusa r>3. Sada je

$$\frac{1}{2\pi i} \int_{\Gamma_0^+} \frac{dz}{(z^4 - 1)^3 (z - 3)} = \text{Res}(f; 3) + I.$$

Funkcija fje analitička na |z|>3pa njen razvoj u okolini točke ∞ ima oblik

$$f(z) = \cdots + \frac{c_{-1}}{z} + c_0 + c_1 z + \cdots$$

i odavde inegracijom po Γ_0^+ uniformnog reda ("član po član") dobivamo

$$\frac{1}{2\pi i} \int_{\Gamma_0^+} f(z) dz = c_{-1}.$$

Da bismo dobili koeficijent c_{-1} promotrimo funkciju

$$g(z) = f\left(\frac{1}{z}\right) = \dots + c_{-1}z + c_0 + \frac{c_1}{z} + \dots, \quad |z| < \frac{1}{3}$$

pa nalazimo da je c_{-1} reziduum funkcije

$$\frac{1}{z^2}g(z) = \dots + \frac{c_{-1}}{z} + \frac{c_0}{z^2} + \frac{c_1}{z^3} \cdots,$$

dakle,

$$c_{-1} = \operatorname{Res}\left(\frac{1}{z^2} \cdot f\left(\frac{1}{z}\right); 0\right).$$

U našem konkretnom slučaju je

$$\frac{1}{z^2} \cdot f\left(\frac{1}{z}\right) = \frac{1}{z^2} \frac{1}{\left(\frac{1}{z^4} - 1\right)^3 \left(\frac{1}{z} - 3\right)} = \frac{z^{11}}{(1 - z^4)(1 - 3z)}$$

i ta funkcija ima uklonjiv singularitet u nuli pa joj je reziduum 0: $c_{-1} = 0$. Sada je

$$I = -\operatorname{Res}(f;3) = \frac{\overline{(z^4 - 1)^3}}{(z - 3)'}\Big|_{z=3} = \frac{1}{(3^4 - 1)^3} = -\frac{1}{80^3}.$$

U vezi s metodom iznesenom u prethodnom primjeru uvodimo pojam **rezidu**uma funkcije u točki ∞ .

Uvođenje tog pojma važno je zbog sljedeće činjenice : zbroj svih reziduuma (uključujući i rezidum u točki ∞) funkcije koja u $\overline{\mathbb{C}}$ ima samo izolirane singularitete (tj. ako je f analitička svuda u \mathbb{C} osim u konačno mnogo točaka) jednaka je nuli. Odavde slijedi da integral $\int_{\Gamma} f(z)dz$ možemo računati na dva načina:

- određivanjem reziduuma funkcije f u svim singularitetima unutar konture Γ , ili
- pomoću singulariteta od f koji se nalaze izvan Γ s tim da se uključi i residum funkcije f u ∞ .

Definicija 4.13 Ukoliko je točka ∞ izolirani singularitet funkcije f tada definiramo

$$\operatorname{Res}(f;\infty) = \frac{1}{2\pi i} \int_{K_R^-} f(z) dz = -\frac{1}{2\pi i} \int_{K_R^+} f(z) dz \tag{5}$$

gdje je K_R^- negativno orijentirana kružnica |z|=R, a R>0 je takav da je f analitička na $K(0;\rho,+\infty)=K(\infty,\rho)\setminus\{\infty\}$ za neko $\rho< R$ (umjesto K_R^- možemu uzeti i bilo koju negativno orijentiranu konturu čije unutarnje područje sadrži $\operatorname{Cl} K(0,\rho)$ za takav ρ).

Argumentacijom kao u prethodnom primjeru vidimo da vijedi teorem.

Teorem 4.14 Neka je točka ∞ izolirani singularitet funkcije f. Ako je c_{-1} koeficijent uz $\frac{1}{z}$ u Laurentovom razvoju

$$f(z) = \cdots + \frac{c_{-1}}{z} + c_0 + c_1 z + \cdots$$

funkcije f u okolini točke ∞ onda je

$$\operatorname{Res}(f; \infty) = c_{-1} = -\operatorname{Res}\left(\frac{1}{z^2} \cdot f\left(\frac{1}{z}\right); 0\right) \tag{6}$$

Teorem 4.15 Neka je točka ∞ izolirani singularitet funkcije f i neka je Γ kontura te $\Omega_0 \subseteq \mathbb{C}$ vanjsko područje od Γ . Ako je funkcija f analitička na otvorenom skupu koji sadrži $\Gamma \cup \Omega_0$ osim u konačno mnogo točaka $z_1, \ldots, z_n \in \Omega_0$ onda je

$$\frac{1}{2\pi i} \int_{\Gamma^{-}} f(z)dz = \sum_{k=1}^{n} \operatorname{Res}(f; z_{k}) + \operatorname{Res}(f; \infty). \tag{7}$$

(integracija je po negativno orijentiranoj konturi Γ).

Dokaz. Dokaz se provodi kao u prethodnom primjeru i to tako da se uzme kružnica Γ_0 radijusa r takvog da je $|z_k| < r, k = 1, \ldots, n$.

Po definiciji reziduuma $\mathrm{Res}(f;\infty)$ funkcije f u ∞ i po Cauchyjevom teoremu za višestruko povezano područje imamo

$$-\operatorname{Res}(f;\infty) = \frac{1}{2\pi i} \int_{\Gamma_0^+} f(z) dz = \sum_{k=1}^n \operatorname{Res}(f;z_k) + \frac{1}{2\pi i} \int_{\Gamma_0^+} f(z) dz$$

odakle slijedi formula (7).

Teorem 4.16 Ako je f analitička funkcija na \mathbb{C} osim u konačno mnogo točaka $z_1, \ldots, z_n \in \mathbb{C}$ onda je zbroj svih reziduuma funkcije f jednak nuli

$$\sum_{k=1}^{n} \operatorname{Res}(f; z_k) + \operatorname{Res}(f; \infty) = 0.$$
(8)

Dokaz. Uzmimo opet kružnicu Γ_0 radijusa r takvog da je $|z_k| < r, k = 1, \ldots, n$. Tada je

$$-\operatorname{Res}(f;\infty) = \frac{1}{2\pi i} \int_{\Gamma_0^+} f(z) dz = \sum_{k=1}^n \operatorname{Res}(f; z_k)$$

odakle slijedi (8)

Primjer Izračunajmo

$$I = \frac{1}{2\pi i} \int_{\Gamma^+} \frac{(z-1)^n}{z^n - 1} dz, \ n \in \mathbb{N},$$

gdje Γ^+ pozirivno orijentirana kružnica |z|=r>1.

Podintegralna funkcija $f(z) = \frac{(z-1)^n}{z^z-1}$ je analitička na području |z|>1 pa je

$$I = \frac{1}{2\pi i} \int_{\Gamma^+} f(z) dz = -\operatorname{Res}(f; \infty) = \operatorname{Res}\left(\frac{1}{z^2} f\left(\frac{1}{z}\right); 0\right).$$

Kako je

$$\frac{1}{z^2} f\left(\frac{1}{z}\right) = \frac{1}{z^2} \frac{\left(\frac{1}{z} - 1\right)^n}{\left(\frac{1}{z}\right)^n - 1} = \frac{1}{z^2} \frac{(1-z)^n}{1-z^n} = \frac{1}{z^2} \left(\sum_{j=0}^n (-1)^j \binom{n}{j} z^j\right) \left(\sum_{k=0}^\infty z^{kn}\right) = \frac{1}{z^2} \left(1 - nz + \frac{n(n-1)}{2} z^2 + \cdots\right) \left(1 + z^n + z^{2n} + \cdots\right) = \frac{1}{z^2} - \frac{n}{z} + \cdots$$

imamo $\operatorname{Res}(f; \infty) = n$. Dakle, I = -n.

Korolar 4.17 Ako je f cijela funkcija (nema drugih singularnih točaka osim točke ∞) tada je $\operatorname{Res}(f;\infty) = 0$.

ZADACI

1. Izračunajte reziduume funkcija u njihovim singulatetima:

(a)
$$f(z) = \frac{2}{z^5 - z^2}$$
;

(b)
$$f(z) = \left(\frac{z}{z^2 + 1}\right)^2$$
;

(c)
$$f(z) = \frac{z^2 + z - 1}{z^2(z - 1)};$$

(d)
$$f(z) = \frac{\sin z}{(z-1)^2}$$
;

(e)
$$f(z) = \sin \frac{1}{z}$$
;

(f)
$$f(z) = e^{z + \frac{1}{z}};$$

(g)
$$f(z) = \frac{e^{z^{-2}}}{1+z^4}$$
;

(h)
$$f(z) = \frac{e^{iz}}{(z^2 - 1)(z + 3)}$$

2. Izračunajte reziduum u točki $z_0 = \infty$ za funkcije:

(a)
$$f(z) = \frac{z^2 - z + 1}{z^3 - 2z + 1}$$
;

(b)
$$f(z) = \frac{z^2 - z - 1}{z^2 + z - 1}$$
;

(c)
$$f(z) = z \sin \frac{1}{z+1}$$
;

(d)
$$f(z) = \sin \frac{z}{z+1}$$
.

3. Izračunajte $\int_{\Gamma^+} \frac{dz}{z^4+1}$ ako je Γ^+ pozitivno orijentirana kružnica:

(a)
$$\Gamma = \{ z \in \mathbb{C} : |z| = \frac{1}{2} \};$$

(b)
$$\Gamma = \{z \in \mathbb{C} : |z - 1| = 1\};$$

(c)
$$\Gamma = \{ z \in \mathbb{C} : |z - i| = 1 \};$$

(d)
$$\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}.$$

4. Izračunajte

(a)
$$\int_{\Gamma^+} \frac{zdz}{(z-1)(z-2)^2}$$
, $\Gamma = \{z \in \mathbb{C} : |z-2| = \frac{1}{2}\}$;

(b)
$$\int_{\Gamma^+} \frac{dz}{1+z^4}$$
, $\Gamma = \{z \in \mathbb{C} : |z-1| = 1\}$;

(c)
$$\int_{\Gamma^+} \frac{dz}{(1+z)^2(z^2+1)}$$
, $\Gamma = \{z \in \mathbb{C} : |z+1-i| = 2\}$;

(d)
$$\int_{\Gamma^+} \frac{e^{2z}}{z^3 - 1} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z - 1| = 1 \}$;

(e)
$$\int_{\Gamma^{+}} \frac{t \lg \pi z}{z - 1} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}$;

5. Izračunajte integrale:

(a)
$$\int_{\Gamma^+} z^2 \sin \frac{1}{z} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 1 \}$;

(b)
$$\int_{\mathbb{R}^+} \frac{z}{1+z} e^{\frac{1}{z}} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}$;

(c)
$$\int_{\Gamma^+} \sin \frac{z}{1+z} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}$.

6. Izračunajte integrale:

(a)
$$\int_{\Gamma^+} \frac{z^3}{z^4 - 1} e^{\frac{1}{z}} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}$;

(b)
$$\int_{\Gamma^+} \frac{1}{z^4(z^8 - 16)} dz$$
, $\Gamma = \{z \in \mathbb{C} : |z| = 2\}$;

(c)
$$\int_{\Gamma^+} \frac{z^5}{z^6 - 1} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 2 \}$.

7. Izračunajte integrale

(a)
$$\int_{\Gamma^+} \frac{z^2 + 1}{z^2 - 2z} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 1 \}$;

(b)
$$\int_{\Gamma^{+}} z e^{\frac{1}{z}} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 1 \}$;

(c)
$$\int_{\Gamma^{+}} z^{3} e^{\frac{1}{z^{3}}} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 1 \}$;

(d)
$$\int_{\Gamma^+} \frac{1}{1+4z^2} dz$$
, $\Gamma = \{z \in \mathbb{C} : |z| = 1\}$;

(e)
$$\int_{\Gamma^+} \frac{6z^2 - 4z + 1}{(z - 2)(1 + 4z^2)} dz$$
, $\Gamma = \{ z \in \mathbb{C} : |z| = 1 \}$;

(f)
$$\int_{\Gamma_{+}} \frac{zdz}{3 + e^{z}} dz$$
, $\Gamma = \{z \in \mathbb{C} : |z| = 1\}$.

4.5 IZRAČUN NEKIH REALNIH INTEGRALA

Teorem o residuumima primjenit ćemo u računanju određenih integrala oblika:

(A) $I = \int_0^{2\pi} R(\cos t, \sin t) dt$, gdje je R racionalna funkcija po argumentima $\cos t$, $\sin t$;

(B)
$$I = \int_{-\infty}^{\infty} f(x)dx, f: \mathbb{R} \to \mathbb{R};$$

(C)
$$I = \int_{-\infty}^{\infty} e^{iax} f(x) dx, f : \mathbb{R} \to \mathbb{R}, a > 0.$$

(A) Integral

$$I = \int_0^{2\pi} R(\cos t, \sin t) dt \tag{1}$$

rješavamo tako da uvedemo supstituciju

$$z = e^{it}, \quad dt = \frac{1}{iz}dz. \tag{2}$$

Ovom supstitucijom se $[0,2\pi\rangle$ preslikava u pozitivno orijentiranu centralnu jediničnu kružnicu K^+ (|z|=1) i jer je

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right) = \frac{1}{2} \left(z + \frac{1}{z} \right),$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right) = \frac{1}{2i} \left(z - \frac{1}{z} \right),$$

imamo

$$I = \int_0^{2\pi} R(\cos t, \sin t) dt = \frac{1}{i} \int_{K+} \frac{1}{z} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right) dz = \frac{1}{i} \int_{K+} R_1(z) dz$$
(3)

gdje je $R_1(z)$ racionalna funkcija koje unutar kružnice K ima konačno polova.

Primjer Izračunajmo integral

$$I = \int_0^{2\pi} \frac{dt}{1 + a\cos t}, \quad 0 < a < 1.$$

Naznačenim supstitucijama imamo

$$I = \int_0^{2\pi} \frac{dt}{1 + a\cos t} = \frac{1}{i} \int_{K+} \frac{1}{1 + a\frac{1}{2}(z + \frac{1}{z})} \frac{dz}{z} =$$

$$\frac{2}{i} \int_{K^{+}} \frac{dz}{az^{2} + 2z + a} = \frac{2}{ia} \int_{K^{+}} \frac{dz}{z^{2} + \frac{2}{a}z + 1} = \frac{2}{ia} I_{1}.$$

Budući se nazivnik poništava za $z_{1,2}=-\frac{1}{a}\pm\frac{1}{a}\sqrt{1-a^2}$ podintegralna funkcija u I_1 ima dva pola prvog reda i samo pol

$$z_2 = -\frac{1}{a} + \frac{1}{a}\sqrt{1 - a^2}$$

leži unutar kružnice K. Slijedi da je

$$I_1 = \int_{K^+} \frac{dz}{z^2 + \frac{2}{a}z + 1} = 2\pi i \operatorname{Res}(f; z_2) =$$

$$2\pi i \cdot \frac{1}{2z + \frac{2}{a}} \Big|_{z_2 = -\frac{1}{a} + \frac{1}{a}\sqrt{1 - a^2}} = 2\pi i \cdot \frac{a}{2\sqrt{1 - a^2}} = \frac{\pi ai}{\sqrt{1 - a^2}}.$$

Dakle

$$I = \frac{2}{ia}I_1 = \frac{2}{ia}\frac{\pi ai}{\sqrt{1 - a^2}}.$$

(B) Računanje integrala

$$I = \int_{-\infty}^{\infty} f(x)dx,\tag{4}$$

provest ćemo tako da funkciju $f: \mathbb{R} \to \mathbb{R}$ analitički proširimo na područje Ω koje sadrži gornju poluravninu (Im z>0) osim možda u konačno točaka $z_k, k=1,\ldots,m$ (točke za koje je Im $z_k>0$). Neka je – kontura koja se sastoji od orijentiranog segmenta [-R,R] i orijentirane gornje polukružnice $K_R^+ = \{z \mid |z| = R, \text{Im } z \geq 0\}$ (naredna slika) i koja u svojoj nutrini sadrži sve točke $z_k, k=1,\ldots,m$.

Sada je

$$\int_{-R}^{R} f(x)dx + \int_{K_{P}^{+}} f(z)dz = 2\pi i \sum_{k=1}^{m} \text{Res}(f; z_{k}).$$

Napravimo granični prijelaz $R \to +\infty$. Prvi integral je naš polazni integral i ukoliko bi bilo

$$\lim_{R \to +\infty} \int_{K_R^+} f(z)dz = 0 \tag{5}$$

račun bi bio gotov. To nije uvijek ispunjeno ali vrijedi:

Lemma 4.18 Ukoliko za analitičko proširenje $f: \Omega \to \mathbb{C}$ (opisano maloprije) postoje pozitivni realni brojevi R_0 , M i δ takvi da za sve točke z za koje je $|z| > R_0$ vrijedi

$$|f(z)| < \frac{M}{|z|^{1+\delta}} \tag{6}$$

onda integral $\int_{-\infty}^{\infty} f(x)dx$ konvergira i vrijedi

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f; z_k).$$
 (7)

Dokaz. Računamo

$$\left| \int_{K_R^+} f(z) dz \right| \leq \int_{K_R^+} |f(z)| \, |dz| < \frac{M\pi R}{R^{1+\delta}} = \frac{\pi M}{R^{\delta}} \underset{R \to +\infty}{\longrightarrow} 0.$$

Primjer Izračunajmo integral $I = \int_{-\infty}^{\infty} \frac{dx}{1 + x^4}$.

Promotrimo analitičko proširenje $f(z) = \frac{1}{1+z^4}$. Budući je

$$1 + z^4 = 0 \Rightarrow z^4 = -1 = e^{i\pi} \Rightarrow z_k = e^{i\frac{\pi + 2l\pi}{4}}, \quad l = 0, 1, 2, 4$$

u gornjoj poluravnini leže točke $z_0=e^{i\frac{\pi}{4}}$ i $z_1=e^{i\frac{3\pi}{4}}$ i to su polovi prvog reda analitičkog proširenja f. Nadalje, za točke z za koje je $|z|>R_0=2$, uz M=1 i $\delta=2$ imamo

$$\left| \frac{1}{1+z^4} \right| < \frac{1}{|z|^{1+2}}$$

pa su uvjeti prethodne leme ispunjeni. Računamo

$$\operatorname{Res}(f; z_0) = \frac{1}{(1+z^4)'} \Big|_{z=e^{i\frac{\pi}{4}}} = \frac{1}{4z^3} \Big|_{z=e^{i\frac{\pi}{4}}} = -\left(\frac{1}{8} + \frac{1}{8}i\right)\sqrt{2}$$

$$\operatorname{Res}(f; z_1) = \frac{1}{(1+z^4)'} \Big|_{z=e^{i\frac{3\pi}{4}}} = \frac{1}{4z^3} \Big|_{z=e^{i\frac{3\pi}{4}}} = \left(\frac{1}{8} - \frac{1}{8}i\right)\sqrt{2}$$

i imamo

$$I = \int_{-\infty}^{\infty} \frac{dx}{1+x^4} = 2\pi i \left[\operatorname{Res}(f; z_0) + \operatorname{Res}(f; z_1) \right] =$$

$$2\pi i \left[-\left(\frac{1}{8} + \frac{1}{8}i\right)\sqrt{2} + \left(\frac{1}{8} - \frac{1}{8}i\right)\sqrt{2} \right] = \frac{1}{2}\pi\sqrt{2}.$$

Napomenimo da se prethodna lema može formulirati na način:

•
$$\max_{z \in K_R^+} |f(z)| \le M(R)$$
, $\lim_{R \to +\infty} R \cdot M(R) = 0 \Rightarrow \lim_{R \to +\infty} \int_{K_R^+} f(z) dz = 0$.

Primjer Izračunajmo integral $I=\int_0^\infty \frac{dx}{(x^2+1)^2}$. Funkcija $f(x)=\frac{1}{(x^2+1)^2}$ je parna pa je $I=\frac{1}{2}\int_{-\infty}^\infty \frac{dx}{(x^2+1)^2}$. Analitičko produljenje $f(z)=\frac{1}{(z^2+1)^2}$ je kompleksna funkcija koja je analitička svuda osim u točkama $z_1=i$ i $z_2=-i$. Na centralnoj kružnici K_R je

$$|f(z)| = \frac{1}{|(z^2+1)^2|} = \frac{1}{|(z^2+1)|^2} \le \frac{1}{(|z|^2+1)^2} = \frac{1}{(R^2+1)^2} = M(R)$$

pa je

$$\lim_{R \to +\infty} R \cdot M(R) = \lim_{R \to +\infty} R \cdot \frac{1}{(R^2 + 1)^2} = 0.$$

Dakle, vrijedi $\lim_{R\to +\infty} \int_{K_R^+} \! f(z) dz = 0$ pa je

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)^2} = \pi i \operatorname{Res}(f; z_1) =$$

$$\pi i \cdot \lim_{z \to i} \frac{d}{dz} \left[(z - i)^2 \frac{1}{(z^2 + 1)^2} \right] = i \cdot \lim_{z \to i} \left[\frac{-2}{(z + i)^3} \right] = \frac{\pi}{4}.$$

(C) U slučaju integrala

$$I = \int_{-\infty}^{\infty} e^{iax} f(x) dx \tag{8}$$

treba naći analitičko proširenje $f: G \to \mathbb{C}$ funkcije f na područje Ω koje sadrži gornju poluravninu (Im z > 0) osim možda konačno točaka $z_k, k = 1, \ldots, m$ u gornjoj poluravnini (Im $z_k > 0$) (faktor e^{iax} se lako analitički proširuje - proširenje je cijela funkcija e^{iaz}). Sada postupamo na način da računamo integral funkcije $e^{iaz}f(z)$ po konturi – kao u prethodnom slučaju:

$$\int_{-R}^{+R} e^{iax} f(x) dx + \int_{K_R^+} e^{iaz} f(z) dz = 2\pi i \sum_{k=1}^m \text{Res}(f; z_k).$$

Opet trebamo naći uvjete na analitičko proširenje za koje će vrijediti

$$\lim_{R \to +\infty} \int_{K_B^+} e^{iaz} f(z) dz = 0.$$

Dovoljan uvjet dan je lemom:

Lemma 4.19 (Jordanova lema) Neka je Ω područje koje sadrži gornju poluravninu osim možda u konačno točaka z_k , k = 1, ..., m u gornjoj poluravnini (Im $z_k > 0$). Ako analitička funkcija $f : \Omega \to \mathbb{C}$ uniformno konvergira k nuli obzirom na argument arg z kada $|z| \to \infty$, onda je za a > 0

$$\lim_{R \to +\infty} \int_{K_{\tau}^{+}} e^{iaz} f(z) dz = 0 \tag{9}$$

 $gdje\ je\ K_R^+$ gornja centralna polukružnica radijusa R.

Dokaz. Pretpostavka da f uniformno konvergira k nuli obzirom na argument argz povlači da i funkcija |f| ima to isto svojstvo. To znači: promatramo li gornju polukružnicu K_R onda postoji $\mu_R > 0$ takav da je

$$|f(z)| < \mu_R, \quad z \in K_R$$

tj. μ_R ne ovisi o argumentu argz već samo od R i pri tome $\mu_R\to 0$ za $R\to \infty$. Uvedimo supstituciju $z=Re^{it}$ pa imamo ocjenu

$$\begin{split} &\left|\int_{K_R^+} e^{iaz} f(z) dz\right| \leq \int_{K_R^+} \left|e^{iaz} f(z)\right| ds = \\ &\int_{K_R^+} \left|e^{iaz}\right| \cdot \left|f(z)\right| R dt \leq \mu_R R \int_0^\pi \left|e^{iaz}\right| dt = \\ &\mu_R R \int_0^\pi \left|e^{iaR(\cos t + i\sin t)}\right| dt = \\ &\mu_R R \int_0^\pi e^{-aR\sin t} dt = 2\mu_R R \int_0^\frac{\pi}{2} e^{-aR\sin t} dt. \end{split}$$

Kako je $\sin t \geq \frac{2}{\pi}t$ za $0 \leq t \leq \frac{\pi}{2}$, dobivamo ocjenu

$$\left| \int_{K_R^+} e^{iaz} f(z) dz \right| \le 2\mu_R R \int_0^{\frac{\pi}{2}} e^{-\frac{2aR}{\pi}t} dt,$$

što teži k nuli kad $R \to +\infty$.

Napomenimo da se Jordanova lema može formulirati i na način:

$$\bullet \max_{z \in K_R^+} |f(z)| \le M(R), \ \lim_{R \to +\infty} M(R) = 0 \Rightarrow \lim_{R \to +\infty} \int_{K_R^+} e^{iaz} f(z) dz = 0.$$

Važan primjer funkcija koje zadovoljavaju uvjete Jordanove leme su racionalne funkcije $f(z) = \frac{P_n(z)}{P_m(z)}$, $n \leq m-2$, gdje polinom $P_m(z)$ u nazivniku nema realnih nul točaka.

Teorem 4.20 Ako se funkcija $f: \mathbb{R} \to \mathbb{R}$ može analitički proširiti na područje Ω tako da proširenje f zadovoljava uvjete Jordanove leme, onda integral $\int_{-\infty}^{\infty} e^{iax} f(x) dx$ konvergira za a > 0 i vrijedi

$$\int_{-\infty}^{\infty} e^{iax} f(x) dx = 2\pi i \sum_{k=1}^{m} \text{Res}(F; z_k)$$
(10)

gdje je $F(z) = e^{iaz}f(z)$, a z_k , k = 1, ..., m su singularne točke od F u Im z > 0 (otvorenoj gornjoj poluravnini).

Dokaz. Singularne točke proširenja od f ujedno su i singularne točke od F (eksponencijalna funkcija je analitička u cijeloj ravnini). Kako imamo konačno singularnih točaka to postoji R_0 takav da je $|z_k| < R_0$, $k = 1, \ldots, m$. Za svaki $R > R_0$ imamo

$$\int_{-R}^{R} e^{iax} f(x) dx + \int_{K_{P}^{+}} e^{iaz} f(z) dz = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(F, z_{k})$$

(kontura je uobičajena, iz slučaja (b)). Po Jordanovoj lemi drugi integral teži k nuli za $R \to +\infty$, i tražena formula je dobivena.

Primjer Izračunajmo

$$I = \int_{-\infty}^{\infty} \frac{\cos \alpha x}{x^2 + a^2} dx, \ a > 0.$$

Eulerova formula $e^{i\alpha x} = \cos \alpha x + i \sin \alpha x$ daje

$$I = \operatorname{Re}\left(\int_{-\infty}^{\infty} \frac{e^{i\alpha x}}{x^2 + a^2} dx\right).$$

Proširenje od $f(x) = \frac{1}{x^2 + a^2}$ glasi $f(z) = \frac{1}{z^2 + a^2}$ i jedina singularna točka od f u gornjoj poluravnini je točka $z_1 = ia$ (to je pol prvog reda). Budući

$$\max_{z \in K_R^+} |f(z)| = \max_{z \in K_R^+} \frac{1}{|z^2 + a^2|} \le \frac{1}{R^2 + a^2} \underset{R \to \infty}{\longrightarrow} 0,$$

vrijedi $\lim_{R\to +\infty} \int_{K_R^+} \!\! e^{iaz} f(z) dz = 0.$ Imamo

$$\int_{-\infty}^{\infty} \frac{\cos \alpha x}{x^2 + a^2} dx = 2\pi i \operatorname{Res}(F(z), z_1) =$$

$$2\pi i \cdot \frac{e^{i\alpha z}}{(z^2 + a^2)'}\Big|_{z=ia} = 2\pi i \cdot \frac{e^{i\alpha z}}{2z}\Big|_{z=ia} = \frac{\pi}{a}e^{-a\alpha}$$

pa je

$$I = \operatorname{Re}\left(\frac{\pi}{a}e^{-a\alpha}\right) = \frac{\pi}{a}e^{-a\alpha}.$$

Neka je sada funkcija f ima singularitete z_k , $k=1,\ldots,m$ u gornjoj poluravnini (Im $z_k > 0$) i polove prvog reda $z_l = x_l$, $l = 1 \ldots n$, na realnoj osi (Im $z_l = 0$). Pokažimo da je tada

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f; z_k) + \pi i \sum_{l=1}^{n} \operatorname{Res}(f; x_l).$$
 (11)

Neka se Γ kontura sastoji od gornje plukružnice K_R , dijelova segmenta [-R, R] i plukružnica γ_l kao na narednoj slici

i pretpostavimo da vrijedi (5): $\lim_{R\to+\infty}\int_{K_R^+}f(z)dz=0$. Neka je sada $z_i=x_i\in\mathbb{R}$ pol prvog reda. Da bismo dokazali (11) treba dokazati da je

$$\lim_{r \to 0} \int_{\gamma_r^+} f(z) dz = -\pi i \operatorname{Res}(f; z_i).$$

Budući je z_i pol prvog reda funkciju f možemo zapisati u obliku

$$f(z) = \frac{c_{-1}}{z - z_i} + c_0 + c_1(z - z_i) + \dots = \frac{c_{-1}}{z - z_i} + g(z)$$

gdje je g analitička funkcija u okolini točke z_0 . Zato je

$$\int_{\gamma_r^+} f(z) dz = c_{-1} \int_{\gamma_r^+} \frac{1}{z - z_i} dz + \int_{\gamma_r^+} g(z).$$

Budući da

$$\left| \int_{\gamma_r^+} g(z) dz \right| \le \max_{z \in \gamma_r} |g(z)| \cdot \int_{\gamma_r^+} |dz| = \max_{z \in \gamma_r} |g(z)| \cdot \pi r \to 0$$

i jer je

$$\int_{\gamma^{+}} \frac{1}{z - z_{i}} dz = \int_{0}^{\pi} \frac{rie^{i\varphi}}{rr^{i\varphi}} f\varphi = -i\pi$$

imamo da je

$$\lim_{r \to 0} \int_{\gamma_r^+} f(z) dz = -c_{-1} i\pi = -\pi i \operatorname{Res}(f; z_i).$$

Primjer Izračunajmo integral $\int_0^\infty \frac{\sin ax}{x(x^2+b^2)} dx$, a,b>0.

Za $f(z) = \frac{1}{z(z^2 + b^2)}$ su $z_1 = 0$ i $z_{2,3} = \pm bi$ polovi prvog reda. Vrijedi

$$\left| \frac{1}{z(z^2 + b^2)} \right| \le \frac{1}{R(R^2 - b^2)} \underset{R \to \infty}{\longrightarrow} 0.$$

pa je $\lim_{R\to +\infty} \int_{K_R^+} f(z)dz = 0$. Dakle,

$$\int_{-\infty}^{\infty} f(z)dz = 2\pi i \operatorname{Res}(f; bi) + \pi i \operatorname{Res}(f; 0).$$

Budući je

$$\operatorname{Res}(f;bi) = \lim_{z \to bi} \frac{(z - bi) e^{iaz}}{z (z - bi) (z + bi)} = -\frac{e^{-ab}}{2b^2},$$

Res
$$(f;0) = \lim_{z \to 0i} \frac{ze^{iaz}}{z(z^2 + b^2)} = \frac{1}{b^2},$$

dobivamo

$$\int_0^\infty \frac{\sin ax}{x(x^2 + b^2)} dx = \frac{1}{2} \operatorname{Im} \left(\int_{-\infty}^\infty \frac{e^{iax}}{x(x^2 + b^2)} dx \right) = \frac{1}{2} \operatorname{Im} \left[2\pi i \frac{-e^{-ab}}{2b^2} + \pi i \frac{1}{b^2} \right] = \frac{\pi}{2b^2} (1 - e^{-ab}).$$

ZADACI

Izračunajte intrgrale:

12. $\int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx;$

13. $\int_{0}^{\infty} \frac{1}{x^6 + 1} dx$;

1.
$$\int_{0}^{2\pi} \frac{1}{2 + \sin x} dx;$$
2.
$$\int_{0}^{2\pi} \frac{1}{1 - 2a \cos x + a^{2}} dx, \quad (0 < a < 1);$$
3.
$$\int_{-\pi}^{\pi} \frac{1}{1 - 2a \cos x + a^{2}} dx, \quad (-1 < a < 1);$$
4.
$$\int_{0}^{2\pi} \frac{1}{a + \cos x} dx, \quad (a > 1);$$
5.
$$\int_{0}^{2\pi} \frac{(1 + \cos x)}{1 + \cos^{2} x} dx;$$
6.
$$\int_{0}^{2\pi} \frac{\cos x}{(a + \cos x)^{2}} dx \quad (a > 1);$$
7.
$$\int_{0}^{2\pi} \frac{\cos x}{(4 - \cos x)^{2}} dx;$$
8.
$$\int_{0}^{2\pi} \frac{\cos^{4} x}{1 + \sin^{2} x} dx;$$
9.
$$\int_{0}^{\infty} \frac{1}{(x^{2} + 1)^{2}} dx;$$
10.
$$\int_{-\infty}^{\infty} \frac{x}{(x^{2} + 4x + 13)^{2}} dx;$$
11.
$$\int_{-\infty}^{\infty} \frac{(x^{2} + 1)}{x^{4} + 1} dx;$$

14.
$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + b^2} dx$$
, $(b > 0)$;

$$15. \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} dx;$$

$$16. \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 - 2x + 10} dx;$$

$$17. \int_0^\infty \frac{\cos x}{x^2 + 1} dx;$$

18.
$$\int_{-\infty}^{\infty} \frac{\cos ax}{x^3 + 1} dx$$
, $(a > 0)$;

$$19. \int_{-\infty}^{\infty} \frac{x \sin x}{x^4 + x^2 + 1} dx;$$

$$20. \int_{-\infty}^{\infty} \frac{\sin 3x}{x(x^2+4)} dx.$$