Reconciling LFPR and income measures

Madison informal notes

June 29, 2023

Issue: My LFPRs by income for groups defined by their **family** income differed significantly from Shigeru's LFPRs by income groups defined by their **household** income for the \$25,000< group. There are some legitimate reasons for the disparity, which I cover toward the end of this document. However, investigation revealed a group of people in single-family households with family income < \$25,000 and household income \ge \$25,000, which is nonsensical and prompted suspicion. Further investigation exposed a slew of issues around the use of my constructed variable, unlog_ftotval, and the way we include in our imputation model ASEC observations where individuals have zero or negative values for family or household income. I describe the problem and my solution. Then I show recomputed LFPRs by family income using the corrected family income variable. Finally, I break apart the difference between my calculations and Shigeru's.

Define variables used:

- htotval: CPS given household income
- ftotval: CPS given family income. This includes cases where ftotval \(\leq 0 \).
- unlog_ftotval: $e^{ln(ftotval)}$. This is the variable I use for family income. It takes missing values for people with ftotval ≤ 0 , unless an intervention is made.
- h_tot_income_calc: (htotval standard items)¹ + energy assistance + food stamps + COVID economic impact payments. Takes value zero if its component parts are less than zero²

1 ftotval and unlog_ftotval

Problem: unlog_ftotval is the variable we must use for family income after running the log-linear imputation model. The left-hand side variable is ln(ftotval) so only those with ftotval>0 can be taken in and used to predict. The predicted values generated by the model are ln(predicted ftotval) so I must exponentiate those values again to get predicted family income in dollars again. Because the prediction model is log-linear, all predicted values will also be >0. This means our model will systematically over-predict family income because it is incapable of predicting a zero for family income but clearly we do have those cases in the ASEC data. Inability to incorporate those cases likely compromises the accuracy of the imputation.

 $^{^1{\}rm See}$ Shigeru's March memo for thorough definition.

²replace h_main_income = 0 if h_main_income<0

replace h_other_income = 0 if h_other_income<0

gen h_tot_income_calc = h_main_income + h_other_income + h_ben

Table 1: Frequency of people with FTOTVAL≤\$0 in ASEC

	Year		
_	2020	2021	2022
ftotval==0	1,918	2,290	2,161
ftotval<0	30	73	46

The question here is how people with negative or no family income ought to be incorporated. What I was doing was letting the people with ftotval≤0 take missing values for ln_ftotval, ultimately resulting in them having missing values for unlog_ftotval. This meant that when I was computing LFPRs by family income using unlog_ftotval, I was excluding those people. This is a consequential misstep and one of the reasons my LFPR computation was too high for the below-25k group. The following table illustrates how different the estimates are if we rectify the exclusion. The top row is the group for whom I had previously tabulated and the bottom is the corrected group.

Table 2: Comparing LFPR computations

	Year		
	2020	2021	2022
0 <ftotval<25k ftotval<25k</ftotval<25k 	36.4 34.3	34.2 32.1	34.0 32.2

My proposed solution is to replace $\ln(\text{ftotval})$ with zero if $\text{ftotval} \leq 0$. This is in-keeping with Shigeru's practice of replacing all negative income values with zero in constructing h_tot_income_calc. Doing this allows those observations to be part of the information set that the regression uses to predict income values, which also rectifies some of the issues of over-prediction at the lowest end of the income distribution.

All computations for the rest of this paper will be done within the universe of ftotval <25,000.00. When I say family income, I am referring to ftotval. Bear in mind that unlog_ftotval == ftotval for all except those with ftotval <0; in those cases, unlog_ftotval == 1 because I replaced ln(ftotval) with 0 instead of a missing value. Since I am using fixed threshold income categories here *AND* I have made aforementioned replacement, there is no difference in using ftotval or unlog_ftotval to define the family income categories for the ASEC observations. Cases with ftotval <0 end up in the bottom bin either way. What's important is that those cases are now included in the bottom income category (\$0-\$25,000) instead of being excluded from computations. In all computations, I have used the March Supplement frequency weights, marsupwt.

2 Families and Households

Families are different from households. Households may be single-family or multi-family. Everyone with a household income under \$25k also has a family income under \$25k because in the CPS, families are defined as being a level below household. Household income is equivalent to the sum of the family incomes for each family in the household. This allows for the existence of cases where two families each have family incomes below 25k which sum to a household income greater than 25k.

³In years 2020, 2021, and 2022, there are 11, 13, and 17 observations, respectively, where this is not true. This makes for a total of 41 out of 367,781 observations.

Consider four cases in the universe of individuals with family income less than \$25,000:

- 1. In single-family household, family income < \$25,000, household income < \$25,000
- 2. In single-family household, family income < \$25,000, household income $\ge $25,000$
- 3. In multi-family household, family income < \$25,000, household income < \$25,000
- 4. In multi-family household, family income < \$25,000, household income $\ge $25,000$

Household income being the sum of all family incomes for each family in a household means that there are no instances of the second type⁴. Previously, when I was doing the computations in universe unlog_ftotval<\$25,000 and I had left missing values for everybody ftotval≤0, many of these individuals appeared in that group simply because of the high-coded missing value.

Table 3: Frequencies - Family income<\$25,000 Universe

	Year		
Persons	2020	2021	2022
Single-family, hh<25k	12,883	14,559	13,224
Single-family, hh≥25k	1	0	0
Multi-family, hh<25k	1,216	1,484	1,266
Multi-family, $hh \ge 25k$	3,738	4,166	3,628
Total, hh<25k	14,099	16,043	14,491
Overall total	17,838	20,209	18,118

My computations of labor force participation were based on family income only, so my below-25k group contains cases 1, 3, and 4 (Overall total). Shigeru's computations of labor force participation were based on household income so his below-25k group contains people from cases 1 and 3 (Total, hh<25k).

Table 4: LFPRs - Family income < \$25,000 Universe

	Year		
% as of March	2020	2021	2022
Single-family, hh<25k	28.0	26.1	25.6
Single-family, hh≥25k	-	_	_
Multi-family, hh<25k	35.9	34.8	41.1
Multi-family, $hh \ge 25k$	55.1	52.2	52.3
hh<25k	28.7	26.9	27.1
Overall total	34.3	32.1	32.2

Notes: Sample is all participants 16+ from the March Supplements with FTOTVAL<\$25k. Weights used are marsupwt.

Notice that the overall LFPR for that group (Total, hh<25k) is not exactly as Shigeru had calculated in

⁴The singular individual in 2020 in a single family household with family income less than household income puzzles me. Household income is \$239,860 and family income is \$9,600, yet there is only one individual in the household. She is a widow in her 70s, listed as the householder of her house so I don't think it's a group-home situation. She is listed as being NILF - retired but has a listed wage/salary income of \$220,000. My inclination is to ignore this one observation.

March. We will see the reasons for this in the next section. Notice also how much higher the LFPR is for the group that is present in my calculations but not Shigeru's.

3 Computation differences

There are three causes of difference between the above computations and those Shigeru generated in March. First, age range of the sample he used was 15+ while mine is 16+. I had chosen 16+ because that is the typical age range the BLS uses when computing the official labor force participation rate. Second, he drops from the sample population all observations for which the major labor force status variable 'pemlr'==0, indicating that the person's labor force status was missing. Most importantly, Shigeru's household income measure was not simply the one given by CPS (HTOTVAL). Constructing variable h_tot_income_ASEC_calc, he showed exactly which income line items are encompassed in htotval (see memo from March). To that sum, he added in energy assistance, food stamps, and COVID economic impact payments to create variable h_tot_income_calc. He defines the income groups using *this* measure of household income. This measure takes larger values than HTOTVAL, especially in years 2021 and 2022 because that's when the EIPs are being paid out. This means that there will be more people in those years who fall into the case of family income<25k and HH income>25k during when we use these numbers for HH income. This is shown here:

Table 5: Frequencies of people with FTOTVAL<\$25k

	Year		
Persons	2020	2021	2022
$h_{\text{tot_income_calc}} \ge $25k$	4,248	7,638	6,582
$h_tot_income_calc < \$25k$	13,859	12,853	11,790
Total	18,107	20,491	18,372

Notes: Sample is all participants 15+ from the March Supplements with FTOTVAL<\$25k, dropping observations with missing values for 'pemlr'.

When I change my population to be 15+, drop pemlr==0 cases, and use h_tot_income_calc as my household income measure, my LFPRs are the following:

Table 6: Mean LFPR of people with FTOTVAL<\$25k

	Year		
% as of March	2020	2021	2022
$h_{\text{tot_income_calc}} \ge $25k$	53.2	44.2	45.5
h_tot_income_calc <\$25k	27.8	24.4	24.1
Total	33.9	31.7	31.7

Notes: Sample is all participants 15+ from the March Supplements with FTOTVAL<\$25k, dropping observations with missing values for 'pemlr'.

% as of March	2020	2021	2022
Shigeru's March numbers	27.8	24.4	24.1