This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

- 1. An electrochemical cell comprising: a casing; an anode having as active material a material which has a melting point greater than about 150 degrees C. and which is selected from groups IA and IIA of the Periodic Table; a cathode having as active material a material which is selected from the group of materials consisting of metal oxides, metal oxide bronzes, and carbon monofluoride; and an electrolyte comprising a lithium salt and an organic solvent, said solvent characterized by having a boiling point greater than about 100 degrees C. and a dielectric constant greater than about 5.
- 2. A cell according to claim 1 wherein said anode active material is lithium.
- 3. A cell according to claim 1 wherein said cathode active material is silver vanadium oxide.
- 4. A cell according to claim 1 wherein said anode active material is lithium and wherein said cathode active material is silver vanadium oxide.
- 5. A cell according to claim 4 wherein said solvent is a mixture of propylene carbonate and diglyme and wherein said salt is lithium trifluoromethane sulfonate.
- 6. A cell according to claim 4 wherein said solvent is a mixture of propylene carbonate and diglyme.
- 7. A cell according to claim 6 further comprising a separator means between said anode and said cathode, said separator means composed of a material which is porous for passage of said electrolyte therethrough and which is characterized by being wettable to said electrolyte and by having a melting point which is greater than about 130 degrees C.

- 8. A cell according to claim 7 wherein said separator material is composed of a laminate of a polypropylene membrane and a polypropylene mesh.
- 9. A cell according to claim 7 wherein said salt is lithium trifluoromethane sulfonate.
- 10. A cell according to claim 1 wherein said solvent is a mixture of propylene carbonate and diglyme and wherein said salt is lithium trifluoromethane sulfonate.
- 11. A cell according to claim 1 further comprising a separator means between said anode and said cathode, said separator means composed of a material which is porous for passage of said electrolyte therethrough and which is characterized by being wettable to said electrolyte and by having a melting point which is greater than about 130 degrees C.
- 12. A cell according to claim 1 comprising means for maintaining the cell dimensionally and chemically stable during repeated exposures each of about one hour to a temperature of about 130 to 135 degrees C.
- 13. A cell according to claim 1 wherein said casing is hermetically sealed and is composed of corrosion-resistant material.
- 14. A cell according to claim 1 wherein said cathode active material is carbon monoflouride, said cathode includes a current collector composed of a material selected from the group consisting of a superferrite material and carbon coated titanium, said salt is selected from the group consisting of lithium tetrafluoroborate and lithium trifluoromethane sulfonate, and said solvent is gammabutyrolactone.

- 15. An autoclavable electrochemical cell comprising a casing; an anode having as active material a material which has a melting point greater than about 150 degrees C. and which is selected from groups IA and IIA of the Periodic Table; a cathode having as active material a material which is selected from the group of materials consisting of metal oxides, metal oxide bronzes, and carbon monoflouride; and an electrolyte comprising a lithium salt and an organic solvent, said solvent characterized by having a boiling point greater than about 100 degrees C. and a dielectric constant greater than about 5, the cell further characterized by being dimensionally and chemically stable during repeated exposures each of about one hour to a temperature of about 130 to 135 degrees C.
- 16. A cell according to claim 15 wherein said anode active material is lithium and wherein said cathode active material is silver vanadium oxide.
- 17. A cell according to claim 15 further comprising a separator means between said anode and said cathode, said separator means composed of a material which is porous for passage of said electrolyte therethrough and which is characterized by being wettable to said electrolyte and by having a melting point which is greater than about 130 degrees C.
- 18. An electrochemical cell comprising: a casing; a lithium anode; a silver vanadium oxide cathode; and an electrolyte comprising lithium trifluoromethane sulfonate and an organic solvent, said solvent being a mixture of propylene carbonate and diglyme.
- 19. A cell according to claim 18 further comprising a separator means between said anode and said cathode, said separator means composed of a material which is porous for

passage of said electrolyte therethrough and which is characterized by being wettable to said electrolyte and by having a melting point which is greater than about 130 degrees C.

20. A cell according to claim 18 comprising means for maintaining the cell dimensionally and chemically stable during repeated exposures each of about one hour to a temperature of about 130 to 135 degrees C.