## MAREB | Multivariate Analysis | Instructor: Josep Rialp

Students: Shayan Abbasi, Ivan Gutiérrez

## 1) FIRST QUESTION:

First things first, it seems that the dataset has some missing values. We can remove or impute the missing values, however, by doing so, the results have not changed. It seems that factor analysis package deals with the missing values internally. All that said, we can run the following commands to be sure.

#### . mdesc

| Variable | Missing | Total | Percent Missing |
|----------|---------|-------|-----------------|
| p01      | 0       | 53    | 0.00            |
| p02      | 1       | 53    | 1.89            |
| p03      | 9       | 53    | 16.98           |
| p04      | 6       | 53    | 11.32           |
| p05      | 1       | 53    | 1.89            |
| p06      | 1       | 53    | 1.89            |
| p07_1    | 0       | 53    | 0.00            |
| p07_2    | 0       | 53    | 0.00            |
| p07_3    | 0       | 53    | 0.00            |
| p07_4    | 0       | 53    | 0.00            |
| p07_5    | 0       | 53    | 0.00            |
| p07_6    | 0       | 53    | 0.00            |
| p07_7    | 0       | 53    | 0.00            |
| p07_8    | 1       | 53    | 1.89            |
| p07_9    | 1       | 53    | 1.89            |
| p07_10   | 2       | 53    | 3.77            |
| p07_11   | 1       | 53    | 1.89            |
| p07_12   | 1       | 53    | 1.89            |
| p07_13   | 0       | 53    | 0.00            |
| p08      | 13      | 53    | 24.53           |
| p09      | 2       | 53    | 3.77            |

Missing value is a common problem in exploratory factor analysis; therefore, following Truxillo (2005), Graham (2009), and Weaver and Maxwell (2014) proposed approach, we can remove the missing rows or try to impute them with the following commands:

|        | p07_1             | p07_2             | p07_3             | p07_4             | p07_5             | p07_6             | p07_7                         |
|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------|
| p07_1  | 1.0000            |                   |                   |                   |                   |                   |                               |
| p07_2  | 0.6884*<br>0.0000 | 1.0000            |                   |                   |                   |                   |                               |
| p07_3  | 0.4850*<br>0.0002 | 0.5292*<br>0.0000 | 1.0000            |                   |                   |                   |                               |
| p07_4  | 0.4303*<br>0.0013 | 0.5173*<br>0.0001 | 0.6194*<br>0.0000 | 1.0000            |                   |                   |                               |
| p07_5  | 0.3966*<br>0.0033 | 0.5383*<br>0.0000 | 0.5554*<br>0.0000 | 0.6555*<br>0.0000 | 1.0000            |                   |                               |
| p07_6  | 0.5107*<br>0.0001 | 0.6424*<br>0.0000 | 0.6377*<br>0.0000 | 0.7112*<br>0.0000 | 0.7205*<br>0.0000 | 1.0000            |                               |
| p07_7  | 0.2826*<br>0.0403 | 0.4131*<br>0.0021 | 0.5381*<br>0.0000 | 0.5283*<br>0.0000 | 0.6175*<br>0.0000 | 0.5607*<br>0.0000 | 1.0000                        |
| p07_8  | 0.1957<br>0.1644  | 0.2724<br>0.0507  | 0.0779<br>0.5832  | 0.0758<br>0.5932  | 0.0788<br>0.5789  | 0.1577<br>0.2642  | 0.2131<br>0.1293              |
| p07_9  | 0.2457<br>0.0791  | 0.4459*<br>0.0009 | 0.1122<br>0.4284  | 0.3216*<br>0.0201 | 0.3873*<br>0.0046 | 0.3064*<br>0.0272 | 0.4794*<br>0.0003             |
| p07_10 | 0.5721*<br>0.0000 | 0.5380*<br>0.0000 | 0.4942*<br>0.0002 | 0.4923*<br>0.0002 | 0.5849*<br>0.0000 | 0.5457*<br>0.0000 | 0.7201 <sup>*</sup><br>0.0000 |
| p07_11 | 0.2856*<br>0.0401 | 0.3610*<br>0.0086 | 0.1048<br>0.4595  | 0.3341*<br>0.0155 | 0.2184<br>0.1198  | 0.1681<br>0.2337  | 0.4127 <sup>*</sup><br>0.0024 |
| p07_12 | 0.3778*<br>0.0058 | 0.3680*<br>0.0073 | 0.1216<br>0.3905  | 0.4622*<br>0.0006 | 0.4229*<br>0.0018 | 0.3287*<br>0.0173 | 0.3516*<br>0.0106             |
| p07_13 | 0.3163*<br>0.0210 | 0.4195*<br>0.0018 | 0.2383<br>0.0857  | 0.5315*<br>0.0000 | 0.6671*<br>0.0000 | 0.4567*<br>0.0006 | 0.2829 <sup>*</sup><br>0.0401 |
|        | p07_8             | p07_9             | p07_10            | p07_11            | p07_12            | p07_13            |                               |
| p07_8  | 1.0000            |                   |                   |                   |                   |                   |                               |
| p07_9  | 0.6012*<br>0.0000 | 1.0000            |                   |                   |                   |                   |                               |
| p07_10 | 0.3706*<br>0.0081 | 0.5329*<br>0.0001 | 1.0000            |                   |                   |                   |                               |
| p07_11 | 0.3181*<br>0.0229 |                   | 0.5918*<br>0.0000 | 1.0000            |                   |                   |                               |
| p07_12 |                   | 0.5384*<br>0.0000 | 0.4082*<br>0.0029 | 0.3880*<br>0.0049 | 1.0000            |                   |                               |
| p07_13 | -0.0594<br>0.6758 | 0.2707<br>0.0523  | 0.2253<br>0.1120  | 0.1401<br>0.3219  | 0.4900*<br>0.0002 | 1.0000            |                               |

First, we can do a pairwise correlation which can show possible opportunity to reduce the dimension with factor extraction. We observe high and significant correlations between some of the variables confirming that. If we were going to use these variables in a regression model we could have multicollinearity, but that's not the problem for now. Here the main objective is to extract factors that reduce our dimension and help with the summarized interpretability.

Now, we want to check the feasibility of factor analysis using Kaiser Meyer Olkin test/Bartlett test. KMO test the hypothesis of whether the variables are correlated enough (and partially uncorrelated enough) for the factor analysis. The KMO statistic shows a good enough factor analysis (0.7<KMO<0.9). The higher the correlation and lower the partial correlation (correlation between two variables without the effect of other variables), the higher the KMO.

. factortest p07\_1-p07\_13

Determinant of the correlation matrix
Det = 0.000

Bartlett test of sphericity

Chi-square = 376.193
Degrees of freedom = 78
p-value = 0.000
H0: variables are not intercorrelated

Kaiser-Meyer-Olkin Measure of Sampling Adequacy
KMO = 0.834

Bartlett test, on the other hand, checks a certain redundancy between the variables that can be shown by factors. The rejected null hypothesis elaborates that the variables are not orthogonal (or correlated). In appendix I add an illustration of partial correlation, we can also see orthogonal intuition by looking at z vector.

KMO measures can also be calculated for each variable:

. estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

| Variable | kmo    |
|----------|--------|
| p07_1    | 0.8401 |
| p07_2    | 0.8599 |
| p07_3    | 0.8548 |
| p07_4    | 0.8658 |
| p07_5    | 0.8503 |
| p07_6    | 0.8897 |
| p07_7    | 0.8659 |
| p07_8    | 0.6756 |
| p07_9    | 0.7738 |
| p07_10   | 0.8404 |
| p07_11   | 0.7780 |
| p07_12   | 0.8438 |
| p07_13   | 0.7338 |
| Overall  | 0.8336 |
|          |        |

. factor p07\_1-p07\_13, pcf
(obs=49)

Factor analysis/correlation

Factor13

Method: principal-component factors Rotation: (unrotated)

Number of obs = Retained factors = Number of params =

0.0107

1.0000

49

36

| Factor   | Eigenvalue | Difference | Proportion | Cumulative |
|----------|------------|------------|------------|------------|
| Factor1  | 6.12682    | 4.25263    | 0.4713     | 0.4713     |
| Factor2  | 1.87419    | 0.73700    | 0.1442     | 0.6155     |
| Factor3  | 1.13719    | 0.28734    | 0.0875     | 0.7029     |
| Factor4  | 0.84985    | 0.10217    | 0.0654     | 0.7683     |
| Factor5  | 0.74768    | 0.25237    | 0.0575     | 0.8258     |
| Factor6  | 0.49530    | 0.00612    | 0.0381     | 0.8639     |
| Factor7  | 0.48918    | 0.17822    | 0.0376     | 0.9016     |
| Factor8  | 0.31096    | 0.05535    | 0.0239     | 0.9255     |
| Factor9  | 0.25561    | 0.04023    | 0.0197     | 0.9451     |
| Factor10 | 0.21538    | 0.02450    | 0.0166     | 0.9617     |
| Factor11 | 0.19088    | 0.02286    | 0.0147     | 0.9764     |
| Factor12 | 0.16802    | 0.02908    | 0.0129     | 0.9893     |

LR test: independent vs. saturated: chi2(78) = 384.98 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

0.13894

| Variable | Factor1 | Factor2 | Factor3 | Uniqueness |
|----------|---------|---------|---------|------------|
| p07_1    | 0.7330  | -0.0783 | 0.0031  | 0.4566     |
| p07_2    | 0.7899  | -0.0893 | -0.0809 | 0.3615     |
| p07_3    | 0.7133  | -0.3361 | -0.4129 | 0.2077     |
| p07_4    | 0.7891  | -0.2604 | 0.0501  | 0.3071     |
| p07_5    | 0.8009  | -0.3078 | 0.0966  | 0.2545     |
| p07_6    | 0.7986  | -0.3126 | -0.1190 | 0.2503     |
| p07_7    | 0.7362  | 0.0856  | -0.3173 | 0.3500     |
| p07_8    | 0.3341  | 0.7352  | -0.0040 | 0.3478     |
| p07_9    | 0.6071  | 0.6183  | 0.1876  | 0.2139     |
| p07_10   | 0.7932  | 0.2652  | -0.2638 | 0.2309     |
| p07_11   | 0.4988  | 0.5612  | -0.0481 | 0.4339     |
| p07_12   | 0.5896  | 0.1747  | 0.5876  | 0.2766     |
| p07_13   | 0.5541  | -0.3755 | 0.6174  | 0.1708     |
|          |         |         |         |            |

In the next step we calculate the factor's eigenvalues, which explain the total variability explained by each factor. Since we have 13 standard normalized variables, we have to explain variance of 13. So, if we divide the eigenvalue by the sum of eigenvalues, we get a proportion of variability explanation. The factors with eigenvalues more than 1 are usually be chosen, since they explain more than the variable itself. A geometric illustration of eigen values are given in appendix 2.

My interpretation of eigenvalue in geometric perspective is that eigenvalue is compatible with the mathematical interpretation of eigenvalue, which says that, if we transform a vector of the eigenvector line by the correlation matrix (or covariance matrix), the vector will change size (and not direction) by the eigenvalue amount.

The factor loadings above are the weights and correlations of variables with factors. High loading means that the variable is more related to the factor's dimension. Negative load, on the contrary, shows an inverse impact on the factor. Moreover, the uniqueness shows how unique the variance is and not shared with other variables. Here, as an example, variable p07\_1 shows 45.66% unique variance. High uniqueness shows lower importance of variable to the factor model and low uniqueness (or high communality) shows the relevance of the variable to factor model.

We can also show the Unique variance illustrated as: (From <u>UCLA institute of digital research and education</u>)



We can also show the corresponding eigenvalues of the factors by a plot:



#### . rotate, varimax horst blanks(.7)

Factor analysis/correlation Number of obs = 49
Method: principal-component factors Retained factors = 3
Rotation: orthogonal varimax (Kaiser on) Number of params = 36

| Factor  | Variance | Difference | Proportion | Cumulative |
|---------|----------|------------|------------|------------|
| Factor1 | 4.47492  | 1.83237    | 0.3442     | 0.3442     |
| Factor2 | 2.64254  | 0.62181    | 0.2033     | 0.5475     |
| Factor3 | 2.02074  | •          | 0.1554     | 0.7029     |

LR test: independent vs. saturated: chi2(78) = 384.98 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

| Variable         | Factor1 | Factor2 | Factor3 | Uniqueness |
|------------------|---------|---------|---------|------------|
| p07_1            |         |         |         | 0.4566     |
| p07_2            | 0.7067  |         |         | 0.3615     |
| p07_3            | 0.8901  |         |         | 0.2077     |
| p07 4            | 0.7085  |         |         | 0.3071     |
| p07 5            | 0.7139  |         |         | 0.2545     |
| p07 6            | 0.8138  |         |         | 0.2503     |
| p07 7            | 0.7085  |         |         | 0.3500     |
| p07 8            |         | 0.8073  |         | 0.3478     |
| p07 9            |         | 0.8210  |         | 0.2139     |
| p07 10           |         |         |         | 0.2309     |
|                  |         | 0.7191  |         | 0.4339     |
| . –              |         |         | 0.7270  | 0.2766     |
| p07_13           |         |         | 0.8551  | 0.1708     |
| p07_11<br>p07_12 |         | 0.7191  |         | 0.2766     |

(blanks represent abs(loading)<.7)</pre>

Factor rotation matrix

|                               | Factor1 | Factor2                    | Factor3 |
|-------------------------------|---------|----------------------------|---------|
| Factor1<br>Factor2<br>Factor3 | -0.3692 | 0.4251<br>0.9050<br>0.0180 | -0.2116 |

predict behaviour performance management\_behaviour (option regression assumed; regression scoring)

Scoring coefficients (method = regression; based on varimax rotated factors)

| Variable | Factor1  | Factor2  | Factor3  |
|----------|----------|----------|----------|
| p07_1    | 0.11050  | 0.01311  | 0.06067  |
| p07_2    | 0.15443  | 0.01042  | 0.00026  |
| p07_3    | 0.32830  | -0.11934 | -0.23561 |
| p07_4    | 0.13461  | -0.07018 | 0.12158  |
| p07_5    | 0.12654  | -0.09151 | 0.16396  |
| p07_6    | 0.21507  | -0.09738 | -0.00359 |
| p07_7    | 0.20928  | 0.08738  | -0.20721 |
| p07_8    | -0.09927 | 0.37812  | -0.06361 |
| p07_9    | -0.11846 | 0.34363  | 0.11728  |
| p07_10   | 0.15959  | 0.17890  | -0.18198 |
| p07_11   | -0.02535 | 0.30482  | -0.06720 |
| p07_12   | -0.19642 | 0.13457  | 0.47773  |
| p07_13   | -0.10486 | -0.13308 | 0.56066  |
|          |          |          |          |

When we want to make not intercorrelated components, we rotate the factor loads. Notice that now we just have 3 factors with a clearer view on results. The 3 factors explain 70.29% of the total variance observed.

Moreover, we can see each factor representing the underlying information on which variables. For example, Factor 2 is mostly defined by p07\_8, p07\_9 and p07\_11.

Finally, we see the correlation matrix between the factors.

At the end, we can create

the factors with the "predict" command. The table in the left side shows the coefficients of the regressions used to estimate them.

Interesting thing is, we can also mix the factors after each step. For example, imagine that if behaviour to management\_behaviour has a meaning. Then we could have a new variable.

### 2) SECOND QUESTION:

## a. Univariate Analysis

An ANOVA or a t-test can test the hypothesis of whether the average values of a factor (dimensions) are different between the family/non-family firms:

. oneway behaviour p04

| Analysis of Variance |            |    |            |      |          |  |  |
|----------------------|------------|----|------------|------|----------|--|--|
| Source               | SS         | df | MS         | F    | Prob > F |  |  |
| Between groups       | .654602457 | 1  | .654602457 | 0.69 | 0.4125   |  |  |
| Within groups        | 39.155718  | 41 | .955017511 |      |          |  |  |
| Total                | 39.8103204 | 42 | .947864772 |      |          |  |  |

Bartlett's test for equal variances: chi2(1) = 0.4262 Prob>chi2 = 0.514

. pwmean behaviour, over(p04) mcompare(tukey) effects

Pairwise comparisons of means with equal variances

over : p04

note: option tukey ignored since there is only one comparison

| behaviour        | Contrast | Std. Err. | Unad<br>t | justed<br>P> t | 3       | usted<br>Interval] |
|------------------|----------|-----------|-----------|----------------|---------|--------------------|
| p04<br>Yes vs No | 2468323  | .2981391  | -0.83     | 0.413          | 8489364 | .3552718           |

Although the Bartlett test of equal variances is not rejected, we failed to reject the null hypothesis that the averages of the two categories are equal. Thus, we cannot make a conclusion with a 95% confidence interval. Pairwise mean comparison and the t-test shows the same thing.

. oneway performance p04

|                | Analysis   | of Va | riance     |      |          |
|----------------|------------|-------|------------|------|----------|
| Source         | SS         | df    | MS         | F    | Prob > F |
| Between groups | 3.78116441 | 1     | 3.78116441 | 3.99 | 0.0524   |
| Within groups  | 38.8445863 | 41    | .947428934 |      |          |
| Total          | 42.6257507 | 42    | 1.01489883 |      |          |

Bartlett's test for equal variances: chi2(1) = 0.8785 Prob>chi2 = 0.349

. pwmean performance, over(p04) mcompare(tukey) effects

Pairwise comparisons of means with equal variances

over : p04

note: option tukey ignored since there is only one comparison

| performance      | Contrast | Std. Err. | Unad<br>t | justed<br>P> t | -       | justed<br>Interval] |
|------------------|----------|-----------|-----------|----------------|---------|---------------------|
| p04<br>Yes vs No | .593234  | .2969522  | 2.00      | 0.052          | 0064732 | 1.192941            |

Although the Bartlett test of equal variances is not rejected, we failed to reject the null hypothesis that the averages of the two categories are equal. Thus, we cannot make a conclusion with a 95% confidence interval. Pairwise mean comparison and the t-test shows the same thing. However, with 90% confidence interval we can show that the average performance is different between the two categories.

. oneway management\_behaviour p04

|                                                                         | Analysis         | of Vai | riance         |          |          |
|-------------------------------------------------------------------------|------------------|--------|----------------|----------|----------|
| Source                                                                  | SS               | df     | MS             | F        | Prob > F |
| Between groups                                                          | .049832779       | 1      | .049832779     | 0.05     | 0.8201   |
| Within groups                                                           | 39.0012347       | 41     | .951249628     |          |          |
| Total                                                                   | 39.0510675       | 42     | .929787322     |          |          |
| Bartlett's test for equal variances: chi2(1) = 1.4879 Prob>chi2 = 0.223 |                  |        |                |          |          |
| . pwmean management_behaviour, over(p04) mcompare(tukey) effects        |                  |        |                |          |          |
| Pairwise comparis                                                       | ons of means wit | h equa | al variances   |          |          |
| over : p0                                                               | 4                |        |                |          |          |
| note: ontion tuke                                                       | v ignored since  | there  | is only one co | mnarison |          |

| over             | : p04         |             |            |               |         |                    |
|------------------|---------------|-------------|------------|---------------|---------|--------------------|
| note: option     | tukey ignored | since there | is only    | one comp      | parison |                    |
| management~r     | Contrast      | Std. Err.   | Unadj<br>t | usted<br>P> t | -       | usted<br>Interval] |
| p04<br>Yes vs No | .0681037      | .2975504    | 0.23       | 0.820         | 5328114 | .6690189           |

Although the Bartlett test of equal variances is not rejected, we failed to reject the null hypothesis that the averages of the two categories are equal. Thus, we cannot make a conclusion with a 95% confidence interval. Pairwise mean comparison and the t-test shows the same thing.

# **Extra Work: (not part of the assignment anymore)**

With discriminate analysis we can derive a linear function that classifies the data (LDA is a supervised method), and in the process, the ANOVA is carried on too (which answers the second question). The idea in discriminant analysis is that maybe the different means in multivariate environment can be

First, we check the qualitative dependent variables imbalance:

. tabulate p04

| Family firm | Freq.    | Percent        | Cum.            |
|-------------|----------|----------------|-----------------|
| No<br>Yes   | 21<br>26 | 44.68<br>55.32 | 44.68<br>100.00 |
| Total       | 47       | 100.00         |                 |

Then, we carry on the linear discriminant analysis and derive the confusion matrix:

- . \* discriminant analysis
- . \* priors set to default
- . xi: discrim lda behaviour performance management\_behaviour, group(p04) priors(0.5, 0.5)

Linear discriminant analysis
Resubstitution classification summary



|          | Classif | ied    |        |
|----------|---------|--------|--------|
| True p04 | No      | Yes    | Total  |
| No       | 13      | 8      | 21     |
|          | 61.90   | 38.10  | 100.00 |
| Yes      | 7       | 15     | 22     |
|          | 31.82   | 68.18  | 100.00 |
| Total    | 20      | 23     | 43     |
|          | 46.51   | 53.49  | 100.00 |
| Priors   | 0.5000  | 0.5000 |        |

. estat grsummarize

The mean of each factor for each class is shown.

Estimation sample discrim lda Summarized by **p04** 

|                          | p04     |                     |          |
|--------------------------|---------|---------------------|----------|
| Mean                     | No      | Yes                 | Total    |
| behaviour<br>performance | .228161 | 0186713<br>.2846485 | .1018747 |
| management~r             | 1304817 | 062378              | 095638   |
| N                        | 21      | 22                  | 43       |

. estat correlations

The underlying factors are surely not correlated.

Pooled within-group correlation matrix

|              | behavi~r | perfor~e | manage~r |
|--------------|----------|----------|----------|
| behaviour    | 1.00000  |          |          |
| performance  | 0.05198  | 1.00000  |          |
| management~r | 0.03831  | -0.04778 | 1.00000  |

The same results as we

Univariate ANOVA summaries

expected.

| Variable                                | Model MS  | Resid MS                            | Total MS                           | R-sq   | Adj.<br>R-sq | F     | Pr > F                     |
|-----------------------------------------|-----------|-------------------------------------|------------------------------------|--------|--------------|-------|----------------------------|
| behaviour<br>performance<br>managemen~r | 3.7811644 | 39.155718<br>38.844586<br>39.001235 | 38.239025<br>38.009743<br>38.07382 | 0.0887 | 0.0665       | 3.991 | 0.4125<br>0.0524<br>0.8201 |
| Number of obs                           | s = 43    | Model                               | df = 1                             | Resid  | dual df =    | 41    |                            |

On the other hand, the coefficients of the linear function that classifies the data to family/non-family is the following:

. estat loadings, all

Canonical discriminant function coefficients

|              | function1 |
|--------------|-----------|
| behaviour    | .4346515  |
| performance  | 9491559   |
| management~r | 1669674   |
| _cons        | 065061    |

Standardized canonical discriminant function coefficients

|              | function1 |
|--------------|-----------|
| behaviour    | .4247632  |
| performance  | 92387     |
| management~r | 1628467   |

Total-sample standardized canonical discriminant function coefficients

|                          | function1           |
|--------------------------|---------------------|
| behaviour<br>performance | .4231695<br>9562004 |
| management~r             | 1609991             |

. estat structure

Canonical structure

|              | function1 |
|--------------|-----------|
| behaviour    | .3704971  |
| performance  | 8940074   |
| management~r | 1024264   |

#### . estat classfunctions

#### Classification functions

|                                                   | p04<br>No                                 | Yes                                       |
|---------------------------------------------------|-------------------------------------------|-------------------------------------------|
| behaviour<br>performance<br>management~r<br>_cons | .2631539<br>3472873<br>1638324<br>0942932 | 0331605<br>.2997795<br>0500059<br>0445351 |
| Priors                                            | .5                                        | .5                                        |

There is more intuition to Linear discriminant analysis, but for now, mentioning that ANOVA is carried on in the process of LDA is enough.

# Appendix:

1. An illustration of partial correlation without the effect of variable z (vector z). Vector z is also orthogonal to the plane that contains the vectors showing the partial correlation. Therefore, rejecting orthogonal relationship with Bartlett test is another way to show correlation.



2. In factor analysis, the correlation matrix yields eigenvectors that are immune to change in angle by the transformation. The eigen value of the data now represents the variation of the projections of the data on the eigenvectors. An illustration is given in the following:

