TРЯП 2

Ковалев Алексей

1. Для РВ $(ab|b)^*(\varepsilon|a)$ вычислим followpos. Занумеруем буквы в РВ $(a_1b_2|b_3)^*(\varepsilon|a_4)\#_5$.

	followpos
1	2
2	1, 3, 4, 5
3	1, 3, 4, 5
4	5

Потроим теперь ДКА по followpos. Любой ДКА является HKA, то есть построенный автомат также является HKA.

2. Для PB $(abc|(ab|c)^*)^*ba$ вычислим followpos. Занумеруем буквы в PB $(a_1b_2c_3|(a_4b_5|c_6)^*)^*b_7a_8\#_9$.

	followpos
1	2
2	3
3	1, 4, 6, 7
4	5
5	1, 4, 6, 7
6	1, 4, 6, 7
7	8
8	9

1

Потроим теперь ДКА по followpos.

3. Пусть язык из условия – L, а язык, распознаваемый автоматом – L_1 . Покажем включения в обе стороны.

Соблюдается следующий инвариант: переход между состояниями q_0 , q_2 и q_1 , q_3 зависит только от четности числа букв a, а переход между состояними q_0 , q_1 и q_2 , q_3 зависит только от четности числа букв b. Иными словами, переходы между левой и право частями зависит только от a, а переход между верхней и нижней частями зависит только от b. То есть левые состояния соответствуют четному числу букв a, правые — нечетному; верхние состояния соответствуют четному числу букв b, нижние — нечетному.

- 1. Пусть некоторое слово w было принято автоматом, то есть он оказался в конфигурации (q_2, ε) . В силу инварианта это означает, что в слове было четное число букв a и нечетное число букв b. Поэтому $L_1 \subset L$.
- 2. Рассмотрим слово $w \in L$. В слове w четное число букв a, значит $(q_0, w) \vdash^* (q_0, \varepsilon)$ или $(q_0, w) \vdash^* (q_2, \varepsilon)$. С другой стороны в слове w нечетное число букв b, значит $(q_0, w) \vdash^* (q_2, \varepsilon)$ или $(q_0, w) \vdash^* (q_3, \varepsilon)$. Автомат является детерминированным и полным, значит $(q_0, w) \vdash^* (q_2, \varepsilon)$. Тогда слово w принято автоматом и $L \subset L_1$.

Также этот автомат можно получить как прямое произвдение автомата A, распознающего язык из слов с четным числом букв a, и автомата B, распознающего язык из слов с нечетным числом букв b. A сверху, B снизу.

- **4.** Регулярное выражение для этого языка $-ab(a|b|c)^*(b|c)|ab$. Для доказательства покажем, что язык L из условия и язык L_1 , задаваемый PB совпадают. Покажем включения в обе стороны.
 - 1. Ясно, что слова, задаваемые РВ начинаются с ab и заканчиваются на b или c, то есть не на a. Поэтому $L_1 \subset L$.
 - 2. Рассмотрим слово $w \in L$. Оно начинается на ab и заканчивается на b или c. Если |w|=2, то w=ab и задается PB. Если же |w|>2, то w=abub или w=abuc, где $u\in \Sigma^*$. В этом случае w тоже задается PB, так как u задается частью PB $(a|b|c)^*$. Значит $L\subset L_1$.

То есть $ab(a|b|c)^*(b|c)|ab$ – РВ для языка слов над алфавитом $\Sigma = \{a,b,c\}$, начинающихся на ab и заканчивающихся не на a. Занумеруем в нем буквы: $(a_0b_1(a_2|b_3|c_4)^*(b_5|c_6)|a_7b_8)\#_9$.

	followpos
0	1
1	2, 3, 4, 5, 6
2	2, 3, 4, 5, 6
3	2, 3, 4, 5, 6
4	2, 3, 4, 5, 6
5	9
6	9
7	8
8	9

Потроим теперь ДКА по followpos.

