FUNDAÇÃO GETULIO VARGAS ESCOLA DE MATEMÁTICA APLICADA

SÁVIO VINÍCIUS COSTA DO AMARAL

ESTRATÉGIA QUANTAMENTAL: SELEÇÃO DE AÇÕES DA BOLSA DE VALORES BRASILEIRA

Rio de Janeiro 2023

SÁVIO VINÍCIUS COSTA DO AMARAL

ESTRATÉGIA QUANTAMENTAL: SELEÇÃO DE AÇÕES DA BOLSA DE VALORES BRASILEIRA

Trabalho de conclusão de curso apresentada para a Escola de Matemática Aplicada (FGV/EMAp) como requisito para o grau de bacharel em Matemática Aplicada.

Orientador: Rafael Martins de Souza

Rio de Janeiro 2023

Ficha catalográfica elaborada pela BMHS/FGV

Sobrenome, Nome

Estratégia Quantamental: Seleção de Ações da Bolsa de Valores Brasileira/ Sávio Vinícius Costa do Amaral. – 2023.

42f.

Trabalho de Conclusão de Curso – Escola de Matemática Aplicada.

Advisor: Rafael Martins de Souza. Includes bibliography.

1. Matemática 2. Aplicada 2. na matemática I. Sobrenome professor, Nome professor II. Escola de Matemática Aplicada III. Estratégia Quantamental

SÁVIO VINÍCIUS COSTA DO AMARAL

ESTRATÉGIA QUANTAMENTAL: SELEÇÃO DE AÇÕES DA BOLSA DE VALORES BRASILEIRA

Trabalho de conclusão de curso apresentada para a Escola de Matemática Aplicada (FGV/EMAp) como requisito para o grau de bacharel em Matemática Aplicada.

E aprovado em / / Pela comissão organizadora

Rafael Martins de Souza Escola de Matemática Aplicada

> Convidado 1 Instituição 1

Convidado 2 Instituição 2

Agradecimentos

Lembre de agradecer a quem te apoiou, como, por exemplo, orientador, família, agência de fomento, professores conselheiros.

Resumo

Segundo a o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto. Deve ser redigido na terceira pessoa do singular e quanto a sua extensão, o resumo deve ter de 150 a 500 palavras.

Palavras-chave: latex. abntex. editoração de texto.

Abstract

É a tradução do resumo para o inglês (Abstract), com a finalidade de facilitar a divulgação do trabalho em nível internacional.

Keywords: latex. abntex. editoração de texto.

Lista de ilustrações

Figura 1 – Neste exemplo, foram considerados oito indicadores para a análise	
$fundamentalista. \hspace{0.1in} \ldots \ldots \ldots \ldots \ldots \ldots 1$.0
Figura 2 – Calculo do z-score	.0
Figura 3 – Cálculo do Score-Fundamentalista	20
Figura 4 — Variação dos indicadores usado no F-score-max)3
Figura 5 — Pontuação de cada empresa no F-score-max)3
Figura 6 – Agregado das pontuações de cada empresa	24
Figura 7 – Cálculo do score-quantitativo	24
Figura 8 – Cálculo do score-quantamental)[
Figura 9 — Retorno da estratégia no setor bancário	26
Figura 10 – Retorno da estratégia no setor bancário com taxas otimizadas $\dots \dots 2$	27
Figura 11 – Retorno da estratégia no setor de saúde	27
Figura 12 – Retorno da estratégia no setor de saúde com taxas otimizadas \dots 2	27
Figura 13 – Retorno da estratégia no setor elétrico	35
Figura 14 – Retorno da estratégia no setor do varejo	35
Figura 15 – Exemplo do Score-Fundamentalista aplicando oito múltiplos a oito	
empresas	35
Figura 16 – Exemplo do Score-Quantitativo para 16 empresas	3 9
Figura 17 – Retorno mensal do setor bancário com peso ponderado	12

Lista de tabelas

Sumário

1	INTRODUÇÃO	10
2	QUANTAMENTAL	11
2.1	Abordagem Fundamentalista	11
2.1.1	Top-Down	12
2.1.2	Bottom-Up	12
2.2	Abordagem Quantitativa	12
2.3	Abordagem Quantamental	13
3	METODOLOGIA	16
3.1	Coleta de Dados	16
3.2	Abordagem de Pesquisa	16
3.2.1	Abordagem Fundamentalista	16
3.2.2	Abordagem Quantitativa	19
3.2.3	Estratégia Quantamental	24
4	ANÁLISE DOS RESULTADOS	26
4.1	Desempenho em setores individuais	26
4.1.1	Setor bancário	26
4.1.2	Setor de saúde:	27
4.1.3	Setor elétrico:	28
4.1.4	Setor de varejo:	28
4.2	Desempenho contra o Ibovespa	28
5	CONCLUSÃO	29
	Referências	30
	APÊNDICES	31
	APÊNDICE A – ANÁLISE DAS FUNÇÕES	32
A.1	zscore2	32
A.2	Analise_Fund	32
A.3	Analise_Quant	35
A.4	Benchmark	39

1 Introdução

Fornecer uma visão global da pesquisa realizada.

2 Quantamental

Nesta seção, exploraremos detalhadamente as abordagens fundamentalista, quantitativa e quantamental. A abordagem quantamental, em particular, combina os princípios dessas duas escolas de pensamento. Cada uma dessas abordagens apresenta características distintas e uma variedade de métodos que os investidores utilizam para avaliar ativos e tomar decisões embasadas.

2.1 Abordagem Fundamentalista

A análise fundamentalista, cuja base foi estabelecida por Benjamin Graham em sua obra "The Intelligent Investor" (GRAHAM, 1973), desempenha um papel crucial no mundo dos investimentos. Essa abordagem se concentra na avaliação dos fundamentos financeiros de ativos, como ações, títulos e outros instrumentos financeiros, e visa proporcionar uma compreensão sólida de seu valor intrínseco.

Pesquisas acadêmicas, como o estudo de Chen e Zhang (CHEN; ZHANG, 2007), têm fornecido uma base teórica sólida, respaldada por evidências empíricas, demonstrando a capacidade das variáveis contábeis em explicar os retornos transversais das ações. De acordo com essas pesquisas, o modelo desenvolvido consegue explicar aproximadamente 20% da variação nos retornos das ações, sendo os fatores relacionados com o fluxo de caixa responsáveis pela maior parte do poder explicativo.

Além disso, Lev e Thiagarajan (LEV; THIAGARAJAN, 1993) salientam que o objetivo central da análise fundamentalista é determinar o valor de uma ação com base em informações abrangentes sobre risco, lucro, crescimento e posicionamento competitivo, entre outros fatores. Suas pesquisas demonstraram uma relação estatisticamente significativa entre uma pontuação fundamental agregada, que avalia a qualidade dos ganhos de uma empresa, e o coeficiente de resposta aos ganhos. Em outras palavras, eles estabeleceram uma conexão direta entre as métricas fundamentais que avaliam a qualidade dos ganhos de uma empresa e a forma como esses ganhos evoluem em períodos subsequentes, reforçando a ideia de que as informações fundamentais são valiosas na previsão do desempenho futuro das empresas.

A análise fundamentalista oferece duas abordagens distintas: top-down e bottomup, cada uma com sua própria ênfase e estratégias de avaliação de ativos (MALTA; DE CAMARGOS, 2016).

2.1.1 Top-Down

Na abordagem top-down, acredita-se que os movimentos de longo prazo da Bolsa ocorram em função das variáveis macroeconômicas. Inicia-se com a avaliação das variáveis macroeconômicas, como PIB, inflação, taxas de juros e estabilidade política, para entender o ambiente de mercado. Posteriormente, são selecionados setores e indústrias com base em macrotendências, seguido pela escolha de ações individuais dentro desses setores. Esta abordagem ajuda na identificação de oportunidades em diferentes mercados e na diversificação do portfólio de acordo com os ciclos econômicos.

2.1.2 Bottom-Up

Na abordagem bottom-up, são as variáveis microeconômicas que causam mais impacto no preço de uma determinada ação. Começa-se com a análise de ações individuais, independentemente do setor. Isso envolve a avaliação das demonstrações financeiras, modelos de negócios, vantagens competitivas e potencial de crescimento das empresas. Posteriormente, compara-se o valor intrínseco das ações com seus preços de mercado, selecionando aquelas que estão subvalorizadas. Essa abordagem é valiosa para identificar oportunidades de investimento sólidas e se concentrar nos fundamentos e na qualidade das empresas.

Em resumo, a análise fundamentalista é uma ferramenta essencial para investidores de longo prazo em busca de oportunidades de valorização. Ela se concentra na avaliação minuciosa de empresas por meio de indicadores financeiros extraídos de seus demonstrativos contábeis, proporcionando uma visão sólida do histórico e do potencial de crescimento das companhias.

2.2 Abordagem Quantitativa

Conforme destacado por (BELL, 2016), a área das finanças quantitativas se dedica à aplicação de princípios matemáticos e estatísticos ao universo financeiro. A análise quantitativa, por sua vez, se refere à utilização de uma variedade de métodos e modelos matemáticos e estatísticos com o objetivo de estudar, monitorar os comportamentos de mercado e identificar oportunidades de investimento. Nesse cenário, os dados desempenham um papel essencial, permitindo a realização de análises retrospectivas e, com algumas limitações, a elaboração de previsões para movimentações futuras.

Uma das principais vantagens dessa abordagem reside em sua escalabilidade, que possibilita a análise de milhares de ativos de uma só vez. Além disso, a análise quantitativa contribui para a eliminação de vieses, muitas vezes inconscientes, e do componente emocional dos investidores ao tomar decisões.

A análise quantitativa frequentemente se apoia em dados derivados dos balanços das empresas para identificar padrões de comportamento e construir modelos que possam explicar ou antecipar as movimentações do mercado.

Uma abordagem quantitativa utiliza modelos estatísticos com múltiplos fatores para identificar fontes e padrões de ineficiência de mercado. Dados históricos são coletados e utilizados para analisar padrões de precificação, a partir dos quais modelos de retorno (conhecidos como "alpha") e risco são desenvolvidos. Em contraste com um portfólio fundamentado em análises qualitativas, um portfólio quantitativo típico inclui um grande número de ativos, enfatizando a diversificação como parte essencial da estratégia. A realocação do portfólio envolve ajustar a composição do mesmo ao longo do tempo, com base nas informações dos modelos que avaliam o "alpha" (um indicador de desempenho excedente) ou o risco. Se o "alpha" de um ativo diminui, o portfólio pode ser reequilibrado para incluir outros ativos com "alpha" mais elevado. Além disso, a abordagem quantitativa é frequentemente adaptável a novos mercados e classes de ativos, permitindo uma entrada ágil em novas oportunidades de investimento (MA, 2020).

Em resumo, a análise quantitativa nas finanças representa uma abordagem baseada em modelos matemáticos e estatísticos que oferece escalabilidade, eliminação de vieses e agilidade na gestão de portfólio, embora o entendimento dos fundamentos subjacentes permaneça essencial para o sucesso.

2.3 Abordagem Quantamental

A análise fundamental e a análise quantitativa representam duas abordagens distintas para avaliar o desempenho das empresas no mercado financeiro. No entanto, essas análises não são mutuamente excludentes. Pelo contrário, a ideia central por trás do investimento quantamental é que essas duas abordagens se complementem. Portanto, o investimento quantamental visa combinar análises quantitativas e fundamentais em todas as etapas do processo de investimento.

Conforme definido por (MA, 2020) o investimento quantamental é uma metodologia que se baseia na combinação de princípios fundamentais e quantitativos em diversos aspectos chave:

- Fonte de Alpha: Isso envolve a exploração das especificidades da empresa e das estatísticas de fatores para identificar oportunidades de desempenho excedente (alpha).
- Informação: Tanto informações históricas quanto prospectivas são consideradas na análise quantamental, fornecendo uma visão abrangente do cenário.

- Valor: O processo de investimento é personalizado, levando em consideração os objetivos e a estratégia de investimento.
- Portfólio: A estrutura do portfólio pode ser diversificada, cobrindo um espectro que varia de concentração a ampla cobertura de ativos.
- Vantagem: A abordagem quantamental busca combinar a profundidade da análise fundamental com a amplitude da análise quantitativa.

As abordagens fundamentais têm um foco mais pronunciado nas informações prospectivas que impactarão os preços dos ativos, enquanto as abordagens quantitativas concentram-se em dados históricos comprovadamente eficazes na previsão. Enquanto os gestores de portfólio fundamentais buscam um entendimento profundo das informações específicas da empresa, os analistas quantitativos adotam uma visão mais ampla, baseada em um grande número de empresas. Essa complementaridade entre as abordagens faz com que a combinação de ambas seja necessária e benéfica.

(MA, 2020) também aponta que existem várias maneiras de praticar o investimento quantamental, mas todas essas abordagens devem seguir alguns princípios-chave:

- Orientação pelos fundamentos: A análise deve ser baseada em princípios sólidos, evitando a mineração indiscriminada de dados. Isso garante uma análise aprofundada e fundamentada.
- As decisões de investimento devem ser baseadas em evidências e dados reais, evitando o viés pessoal e abrangendo uma variedade de informações.
- Processo de investimento sólido: O processo de investimento deve ser transparente e consistente ao longo do tempo.

Assim, uma estratégia de investimento quantamental pode ser desenvolvida seguindo as práticas a seguir:

- Fatores e modelo: Baseados na intuição fundamental, apoiados por dados históricos e refletindo informações prospectivas.
- Experiência: Suportada por testes históricos.
- Construção de portfólio: Incorporando alfa com informações prospectivas específicas da empresa.
- Estratégia: Alcançando desempenho por meio de um processo de investimento bem definido.

Portanto, um portfólio resultante dessas práticas é considerado um portfólio quantamental, que combina tanto profundidade quanto amplitude em sua abordagem.

3 Metodologia

Neste capítulo, descrevemos os métodos e procedimentos usados em nossa pesquisa, incluindo a estratégia de pesquisa e a coleta de dados, bem como as ferramentas e instrumentos empregados, incorporando o estudo de Ankit Ahuja (AHUJA, 2021) em nosso embasamento de pesquisa.

3.1 Coleta de Dados

Todos os dados utilizados foram obtidos através da função key_metrics do pacote fundamentalanalysis, utilizando uma chave paga da API do FinancialModelingPrep. Isso possibilitou o acesso confiável a demonstrações financeiras anuais e trimestrais com um histórico de mais de 30 anos.

3.2 Abordagem de Pesquisa

A metodologia de pesquisa será subdividida em três seções distintas: a primeira seção se concentrará na abordagem fundamentalista, a segunda explorará a abordagem quantitativa, e a terceira seção será dedicada à abordagem quantamental. Cada uma dessas seções será minuciosamente explicada e analisada, a fim de proporcionar uma compreensão aprofundada de cada abordagem.

3.2.1 Abordagem Fundamentalista

A abordagem fundamentalista desempenha um papel crucial ao permitir a comparação e avaliação de uma empresa em relação às suas concorrentes ou dentro do mesmo setor. Isso, por sua vez, auxilia na tomada de decisões de investimento, ajudando a identificar as oportunidades mais promissoras.

Em nossa pesquisa, estudaremos 12 indicadores fundamentalistas/múltiplos que desempenham um papel essencial na avaliação da saúde financeira de uma empresa em comparação com outras do mesmo setor. Esses indicadores são:

• Price to Earnings Ratio (P/E Ratio):

O P/E Ratio avalia o preço da ação em relação aos lucros por ação e é calculado como:

$$P/E$$
 Ratio = $\frac{Preço da Ação}{Lucros por Ação}$

• Price to Book Ratio (P/B Ratio) :

O P/B Ratio compara o preço da ação com o valor contábil por ação e é calculado

como:

$$P/B$$
 Ratio = $\frac{Preço da Ação}{Valor Contábil por Ação}$

• Price to Sales Ratio (P/S Ratio):

O P/S Ratio mede o preço da ação em relação às receitas por ação e é calculado como:

$$P/S$$
 Ratio = $\frac{Preço da Ação}{Receitas por Ação}$

• Enterprise Value to Sales Ratio (EV/Sales) :

O Enterprise Value to Sales Ratio compara o valor da empresa com as receitas e é calculado como:

$$EV/Sales = \frac{Valor da Empresa}{Receita Rotal de Vendas}$$

• Enterprise Value to Free Cash Flow (EV/FCF Ratio) :

O Enterprise Value to Free Cash Flow avalia o valor da empresa em relação ao fluxo de caixa livre e é calculado como:

$$EV/FCF$$
 Ratio $= \frac{Valor da Empresa}{Fluxo de Caixa Livre}$

• Enterprise Value to Cash from Operations (EV/OCF Ratio) :

O Enterprise Value to Cash from Operations relaciona o valor da empresa com o fluxo de caixa gerado pelas operações e é calculado como:

$${\rm EV/OCF~Ratio} = \frac{{\rm Valor~da~Empresa}}{{\rm Fluxo~de~Caixa~Gerado~pelas~Operações}}$$

• Price to Free Cash Flow Ratio (P/FCF Ratio) :

O Price to Free Cash Flow Ratio avalia o preço da ação em relação ao fluxo de caixa livre e é calculado como:

$$P/FCF$$
 Ratio = $\frac{Preço da Ação}{Fluxo de Caixa Livre}$

• Price to Operating Cash Flow Ratio (P/OCF Ratio) :

O Price to Operating Cash Flow Ratio compara o preço da ação com o fluxo de caixa operacional e é calculado como:

$$P/OCF$$
 Ratio =
$$\frac{Preço da Ação}{Fluxo de Caixa Operacional}$$

• Enterprise Value to Earnings Before Interest, Taxes, Depreciation, and Amortization (EV/EBITDA):

O EV/EBITDA compara o valor da empresa com o lucro antes de juros, impostos, depreciação e amortização (EBITDA) e é calculado como:

$${\rm EV/EBITDA} = \frac{{\rm Valor~da~Empresa}}{{\rm EBITDA}}$$

• Debt to Equity Ratio (D/E ratio) :

A Debt to Equity Ratio mede a proporção entre dívida e patrimônio líquido e é calculada como:

$$D/E$$
 ratio = $\frac{D\text{ívida Total}}{Patrimônio Líquido}$

• Debt to Assets Ratio (D/A ratio):

A Debt to Assets Ratio avalia a relação entre dívida e ativos da empresa e é calculada como:

$$D/A \text{ ratio} = \frac{D\text{ívida Total}}{A \text{tivos Totais}}$$

• Net Debt to EBITDA Ratio:

A Net Debt to EBITDA Ratio calcula a dívida líquida em relação ao lucro antes de juros, impostos, depreciação e amortização (EBITDA) e é calculada como:

Net Debt to EBITDA Ratio =
$$\frac{\text{Dívida Líquida}}{\text{EBITDA}}$$

Calculando o Score-Fundamentalista

Para determinar o Score-Fundamentalista de cada empresa, usaremos o inverso dos indicadores financeiros mencionados anteriormente.

Com o inverso desses números a etapa inicial consiste em calcular o Z-score, uma medida que avalia a posição de uma amostra considerando tanto a média quanto a dispersão, medida pelo desvio padrão. A lógica por trás do Z-score é normalizar os índices e remover qualquer viés para cada um dos indicadores financeiros. Após o cálculo do Z-score para cada empresa, aplicaremos o algoritmo de pontuação baseado na metodologia apresentada no S&P Value bse Factor indices Paper. Este algoritmo é descrito da seguinte forma:

- Se \overline{Z} é maior que 0, então o Score-Fundamentalista será $1+\overline{Z}$, em que \overline{Z} é a média dos Z-score
- Se o \overline{Z} é menor que 0, então o Score-Fundamentalista será $1/(1-\overline{Z})$, em que \overline{Z} é a média dos Z-score
- Se o \overline{Z} é igual a 0, então o Score-Fundamentalista será 1, em que \overline{Z} é a média dos Z-score

Para uma melhor compreensão do processo que será realizado, utilizaremos um exemplo isolado. Nesse caso, analisaremos cinco empresas específicas - VALE3, PETR4, ITUB4, BBDC4 e B3SA3. Assim, demonstraremos as etapas envolvidas no cálculo do Score-Fundamentalista para cada empresa.

1. Carregar os dados de todos os indicadores financeiros de cada empresa

	peRatio	priceToSalesRatio	pbRatio	evToSales	debtToEquity	evToFreeCashFlow	debtToAssets	${\bf netDebtToEBITDA}$	Company
2017	11.876818	1.925564	1.46086	2.46023	0.502301	9.598741	0.22674	1.170846	VALE3.SA
2018	9.967969	1.86959	1.554627	2.230028	0.431215	8.96891	0.21507	0.817348	VALE3.SA
2019	-31.155454	1.807796	1.695133	2.127652	0.483365	9.509385	0.21117	0.697325	VALE3.SA
2020	17.691472	2.157831	2.415848	2.323281	0.562556	9.398815	0.218549	0.33183	VALE3.SA
2017	-715.888872	0.733402	0.816344	1.710087	1.369327	11.274541	0.434725	3.229933	PETR4.SA
2018	11.268518	0.954998	1.129781	1.787496	1.179135	10.470627	0.379884	2.092818	PETR4.SA
2019	12.536219	1.277208	1.334099	2.318468	1.188181	104.268417	0.379216	2.203985	PETR4.SA
2020	62.368087	1.325596	1.199063	2.514557	1.272798	5.865006	0.397547	2.07662	PETR4.SA
2017	11.587207	2.621298	2.054057	3.392245	1.69162	71.003964	0.158957	0.718714	ITUB4.SA
2018	14.436585	3.450787	2.628796	4.133215	2.270299	21.702243	0.199985	0.683379	ITUB4.SA
2019	13.327902	3.222941	2.639105	4.320943	2.944378	15.672503	0.246207	3.609811	ITUB4.SA
2020	20.49234	3.260386	2.158823	4.396696	2.094893	7.682777	0.14835	8.411148	ITUB4.SA

Figura 1 – Neste exemplo, foram considerados oito indicadores para a análise fundamentalista.

2. Calcular o z-score do inverso dessas amostras

	peRatio	priceToSalesRatio	pbRatio	evToSales	debtToEquity	evToFreeCashFlow	debtToAssets	netDebtToEBITDA	Company
2017	0.912353	0.206482	0.530490	0.693085	0.204668	0.155420	-0.476011	0.074517	VALE3.SA
2018	1.400779	0.254576	0.348269	0.958425	0.416213	0.229767	-0.340252	0.630650	VALE3.SA
2019	-2.610490	0.311130	0.112953	1.094872	0.254938	0.165368	-0.291538	0.947694	VALE3.SA
2020	0.074066	0.033570	-0.663789	0.844601	0.067217	0.177940	-0.382237	3.325787	VALE3.SA
2017	-1.680507	2.817724	2.915763	1.820619	-0.607867	-0.001945	-1.672966	-0.745229	PETR4.SA
2018	1.050038	1.839071	1.415839	1.660476	-0.531939	0.067260	-1.484588	-0.491962	PETR4.SA
2019	0.778196	1.021947	0.817553	0.850253	-0.536101	-0.805842	-1.481957	-0.528248	PETR4.SA
2020	-1.152490	0.933542	1.190121	0.637550	-0.572167	0.829417	-1.550937	-0.486351	PETR4.SA
2017	0.976102	-0.219883	-0.342006	-0.013134	-0.697553	-0.760181	0.590844	0.883442	ITUB4.SA
2018	0.460113	-0.503536	-0.811779	-0.347333	-0.794678	-0.435039	-0.141298	0.991755	ITUB4.SA
2019	0.634661	-0.440166	-0.818337	-0.413805	-0.859679	-0.254882	-0.673823	-0.794281	ITUB4.SA
2020	-0.159964	-0.451189	-0.446281	-0.439022	-0.770906	0.419449	0.846011	-1.032360	ITUB4.SA

Figura 2 – Calculo do z-score

3. Calcular o algoritmo de pontuação

Dessa forma, atribuímos uma pontuação a cada empresa analisada, sendo que uma pontuação mais elevada significa que a empresa está mais desvalorizada em comparação com suas concorrentes ou pares de mercado.

3.2.2 Abordagem Quantitativa

A abordagem quantitativa desempenha um papel crucial ao possibilitar a comparação e avaliação do desempenho atual de uma empresa em relação aos trimestres anteriores. Isso significa que, ao analisar dados numéricos e métricas financeiras específicas ao longo do tempo, podemos identificar tendências, variações e mudanças significativas no desempenho financeiro da empresa.

Como base para a nossa análise, referenciamos o trabalho realizado por Hong-Yi Chen,

	Score-Fundamentalista	Company
2017	1.287625	VALE3.SA
2018	1.487303	VALE3.SA
2019	0.998119	VALE3.SA
2020	1.434644	VALE3.SA
2017	1.355699	PETR4.SA
2018	1.440524	PETR4.SA
2019	1.014475	PETR4.SA
2020	0.979035	PETR4.SA
2017	1.052204	ITUB4.SA
2018	0.834917	ITUB4.SA
2019	0.688450	ITUB4.SA
2020	0.797269	ITUB4.SA

Figura 3 – Cálculo do Score-Fundamentalista

National Chengchi University, Taiwan e Cheng-Few Lee, Rutgers University, EUA. Eles detalham a aplicação dos métodos F-score e G-score para realizar uma análise intra-empresa, contribuindo significativamente para a estrutura da nossa abordagem.

F-score e G-score

Os indicadores F-score e G-score desempenham um papel fundamental na avaliação da solidez financeira de uma empresa e em sua capacidade de desempenho futuro. Vamos nomear esses indicadores da seguinte forma:

- F-score-max : Este conjunto de indicadores compreende métricas que se espera que aumentem de trimestre para trimestre e inclui:
 - 1. Return on Equity O ROE mede a rentabilidade da empresa em relação ao patrimônio líquido, destacando sua eficácia na geração de lucro a partir de recursos próprios.
 - 2. Return on Tangible Assets Avalia o retorno sobre os ativos tangíveis da empresa, que são os ativos físicos, como edifícios, equipamentos e instalações, medindo a eficiência no uso de ativos físicos para gerar lucro.
 - 3. Research and Development to Revenue Relaciona os gastos com pesquisa e desenvolvimento (P&D) da empresa à sua receita total. Ela indica a proporção da receita que está sendo investida em P&D, o que pode ser um indicativo do compromisso da empresa com a inovação e o desenvolvimento de novos produtos.

- 4. Current Ratio Mede a capacidade da empresa de pagar suas dívidas de curto prazo com seus ativos de curto prazo.
- F-score-min : Este conjunto de indicadores compreende métricas que se espera que diminuam de trimestre para trimestre e inclui:
 - 1. Average Payables Calcula a média das contas a pagar de uma empresa ao longo de um período de tempo específico, e é importante para avaliar a gestão do ciclo de pagamento.
 - 2. Days of Inventory on Hand Representa o número médio de dias que a empresa leva para vender seu estoque. Quanto menor for o número de dias de estoque em mãos, mais eficiente é a gestão de estoque da empresa.
 - 3. Interest Debt per Share Indica a dívida de juros total de uma empresa em relação ao número de ações em circulação. Ela ajuda a avaliar o grau de alavancagem financeira da empresa e sua capacidade de lidar com o pagamento de juros.
- G-score-max : Este conjunto de indicadores se concentra em métricas que se espera que aumentem novamente, com foco em níveis de caixa e lucro líquido da empresa e inclui:
 - 1. Net Income per Share Essa métrica fornece uma visão direta da rentabilidade da empresa em relação a cada ação em circulação. Um lucro líquido saudável por ação indica que a empresa está gerando lucro de forma eficaz, o que é um ponto positivo para os investidores.
 - 2. Free Cash Flow per Share O fluxo de caixa livre é o dinheiro disponível após deduzir as despesas operacionais e os investimentos de capital. O fluxo de caixa livre por ação avalia a capacidade da empresa de gerar caixa disponível para distribuição aos acionistas ou para reinvestir em seu próprio crescimento. É uma métrica fundamental para avaliar a solidez financeira e a flexibilidade da empresa.
 - 3. Shareholders' Equity per Share O patrimônio líquido por ação indica a parcela do patrimônio da empresa que pertence a cada acionista em termos de ações. Isso reflete a saúde financeira da empresa e a parte dos ativos que está disponível para os acionistas.
 - 4. Cash per Share O dinheiro por ação mede a quantidade de dinheiro disponível da empresa dividido pelo número de ações em circulação. Essa métrica é importante porque reflete a liquidez da empresa e sua capacidade de responder a necessidades de curto prazo, como pagar dívidas ou aproveitar oportunidades de investimento.

5. Book Value per Share - O valor contábil por ação é calculado dividindo o valor contábil total da empresa pelo número de ações em circulação. Ele representa o valor dos ativos da empresa após a dedução de suas obrigações. Essa métrica fornece uma visão do valor intrínseco das ações e pode ser usada para avaliar se as ações estão sendo negociadas a um preço justo no mercado

Essas métricas são essenciais para avaliar a força financeira de uma empresa e seu potencial de crescimento a longo prazo.

Calculando o Score-Quantitativo

Para determinar o score quantitativo de cada empresa iremos pontuar as empresas da seguinte forma :

- Se a variação trimestral da pontuação do F-score-max e da pontuação do G-score-max for superior a 0, então +1 será concedido naquele local. E onde for menor que 0, então -1 foi dado como penalidade.
- Se a pontuação do F-score-min foi inferior a 0, então +1 foi dado naquele local. E onde pontuação foi superior a 0, então -1 foi dado como penalidade. Este método é usado porque o escore F-score-min precisa ser reduzido trimestre a trimestre
- Agora que já temos as pontuações de cada empresa com base no seu desempenhos nos trimestres anteriores iremos pegar o z-score desses dados e utilizar o algoritmo de pontuação visto na análise fundamentalista para chegar no score-quantitativo.

Para uma melhor compreensão do processo que será realizado, utilizaremos o mesmo exemplo da análise fundamentalista. Assim, demonstraremos as etapas envolvidas no cálculo do Score- Quantitativo para cada empresa.

- 1. Carregar os dados de todos os indicadores financeiros usados de cada empresa
- 2. Pontuar cada empresa com base no seu desempenhos nos trimestres anteriores seguindo a regra visto anteriormente

	roe	returnOnTangibleAssets	research And D developement To Revenue	currentRatio	Company
2017	0.205978	0.405115	-0.137470	-0.280636	VALE3.SA
2018	0.267976	0.408145	0.018832	0.161268	VALE3.SA
2020	-3.509782	-3.252607	-0.061172	0.358443	VALE3.SA
2019	-1.348859	-1.306381	0.156213	-0.266620	VALE3.SA
2018	-88.922494	-90.523856	0.176093	-0.216872	PETR4.SA
2017	-0.981903	-0.981592	0.002306	0.050861	PETR4.SA
2019	0.061436	0.134371	-0.006968	-0.347629	PETR4.SA
2020	-0.819342	-0.824368	-0.120703	0.082047	PETR4.SA
2018	0.027209	-0.038099	0.000000	0.259651	ITUB4.SA
2019	0.087433	0.031849	0.000000	-0.842419	ITUB4.SA
2017	-0.065897	-0.030122	0.000000	-0.002653	ITUB4.SA
2020	-0.467977	-0.551016	0.000000	0.830213	ITUB4.SA

Figura 4 – Variação dos indicadores usado no F-score-max

	roe	return On Tangible Assets	research And D developement To Revenue	currentRatio	Company
2017	1	1	-1	-1	VALE3.SA
2018	1	1	1	1	VALE3.SA
2020	-1	-1	-1	1	VALE3.SA
2019	-1	-1	1	-1	VALE3.SA
2018	-1	-1	1	-1	PETR4.SA
2017	-1	-1	1	1	PETR4.SA
2019	1	1	-1	-1	PETR4.SA
2020	-1	-1	-1	1	PETR4.SA
2018	1	-1	-1	1	ITUB4.SA
2019	1	1	-1	-1	ITUB4.SA
2017	-1	-1	-1	-1	ITUB4.SA
2020	-1	-1	-1	1	ITUB4.SA

Figura 5 – Pontuação de cada empresa no F-score-max

- 3. Pegar o agregado do F-score-min , F-score-max e G-score-max para cada empresa
- 4. Calcular o z-score desses dados para chegar no score-quantitativo

	F-Score-Max	F-Score-Min	G-Score-Max	Company
2017	0	1	6	VALE3.SA
2018	4	1	0	VALE3.SA
2020	-2	1	-2	VALE3.SA
2019	-2	-3	-4	VALE3.SA
2018	-2	-1	-4	PETR4.SA
2017	0	3	2	PETR4.SA
2019	0	-1	0	PETR4.SA
2020	-2	-1	0	PETR4.SA
2018	0	-3	4	ITUB4.SA
2019	0	-1	2	ITUB4.SA
2017	-4	-1	2	ITUB4.SA
2020	-2	1	4	ITUB4.SA

Figura 6 – Agregado das pontuações de cada empresa

	Score-Quantitativo	Company
2017	2.159316	VALE3.SA
2018	2.064070	VALE3.SA
2020	0.941653	VALE3.SA
2019	0.462835	VALE3.SA
2018	0.579161	PETR4.SA
2017	2.131860	PETR4.SA
2019	1.033225	PETR4.SA
2020	0.790379	PETR4.SA
2018	1.060681	ITUB4.SA
2019	1.263934	ITUB4.SA
2017	0.750217	ITUB4.SA
2020	1.630166	ITUB4.SA

Figura 7 – Cálculo do score-quantitativo

3.2.3 Estratégia Quantamental

A estratégia quantamental representa uma abordagem inovadora que combina as técnicas de análise fundamentalista e quantitativa. Nessa abordagem, os investidores somam os resultados do Score-Fundamentalista e do Score-Quantitativo para criar o que é chamado de Score-Quantamental

É importante ressaltar que, neste estudo restrito, concentramos nossa análise em um conjunto de apenas cinco empresas. Com base nessa seleção, nossa estratégia de formação de

	Company	Score-Quantamental
2017	VALE3.SA	3.328847
2017	PETR4.SA	3.137167
2017	ITUB4.SA	1.740350
2017	BBDC4.SA	1.520235
2017	B3SA3.SA	1.639901
2018	VALE3.SA	3.651726
2018	PETR4.SA	2.022518
2018	ITUB4.SA	1.885672
2018	BBDC4.SA	1.262212
2018	B3SA3.SA	1.925404

Figura 8 – Cálculo do score-quantamental

carteira poderia, por exemplo, envolver a escolha das duas empresas mais bem classificadas. Adicionalmente, temos a flexibilidade de determinar se a composição da carteira será equilibrada em termos de participação de cada empresa ou se será ponderada com base no indicador de desempenho *Score-Quantitativo*.

Isso nos fornece uma pontuação que avalia o desempenho da empresa em relação aos seus pares e também aos trimestres anteriores. As empresas com as pontuações mais elevadas são aquelas que apresentaram um desempenho superior nos últimos trimestres e estão relativamente subvalorizadas em comparação com seus concorrentes. Portanto, podemos selecionar, por exemplo, as seis melhores empresas, de acordo com nossas necessidades, e investir nelas. Temos a garantia de que essas seis principais empresas têm uma base sólida do ponto de vista fundamental, em comparação com seus concorrentes, e demonstraram um desempenho consistente nos últimos trimestres. Esse método pode ser aplicado a todo o setor para identificar as empresas líderes em seus respectivos segmentos.

4 Análise dos Resultados

Neste capítulo, apresentaremos os resultados das análises, divididos em duas partes distintas. Primeiramente, discutiremos os resultados relativos aos setores individuais. Em seguida, replicaremos o estudo conduzido por Ankit Ahuja (AHUJA, 2021), com o propósito de realizar uma análise específica nas ações que compõem o Ibovespa, visando a uma comparação da estratégia com o desempenho do índice.

4.1 Desempenho em setores individuais

Em cada setor individual, apresentarei e discutirei os resultados da análise de uma carteira projetada para alguém que deseja investir somente nesse setor específico. Inicialmente, foram adotados as oitas taxas fundamentalistas mencionadas no estudo de Ankit Ahuja (AHUJA, 2021), que incluem o Price-to-Earnings Ratio, Price-to-Sales Ratio, Price-to-Book Ratio, Enterprise Value to Sales Ratio, Debt to Equity Ratio, EV to Free Cash Flow Ratio, Debt to Assets Ratio e Net Debt to EBITDA Ratio. No entanto, diante de resultados menos satisfatórios em alguns cenários específicos, introduzi um conjunto adicional de seis taxas que, na minha avaliação, poderiam aprimorar a análise fundamentalista. Para aperfeiçoar o processo, criei uma função denominada 'otimizador' com o objetivo de explorar todas as possíveis combinações de taxas, variando a quantidade de 6 a 12 taxas, a fim de identificar a configuração que proporcionou a melhor rentabilidade em cada cenário.

4.1.1 Setor bancário

Uma carteira projetada para o setor bancário teve os seguintes resultados:

Figura 9 – Retorno da estratégia no setor bancário

Ao empregar a função *otimizador* para aprimorar a estratégia, os resultados obtidos foram os seguintes:

Figura 10 – Retorno da estratégia no setor bancário com taxas otimizadas

4.1.2 Setor de saúde:

Uma carteira projetada para o setor de saúde teve os seguintes resultados:

Figura 11 – Retorno da estratégia no setor de saúde

Ao empregar a função *otimizador* para aprimorar a estratégia, os resultados obtidos foram os seguintes:

Figura 12 – Retorno da estratégia no setor de saúde com taxas otimizadas

4.1.3 Setor elétrico:

Uma carteira projetada para o setor elétrico teve os seguintes resultados :

Figura 13 – Retorno da estratégia no setor elétrico

Ao empregar a função *otimizador* para aprimorar a estratégia, os resultados obtidos foram os seguintes:

4.1.4 Setor de varejo:

Uma carteira projetada para o setor de varejo teve os seguintes resultados:

Figura 14 – Retorno da estratégia no setor do varejo

Ao empregar a função *otimizador* para aprimorar a estratégia, os resultados obtidos foram os seguintes:

4.2 Desempenho contra o Ibovespa

Analisamos o desempenho da estratégia comparando com o Ibovespa

5 Conclusão

Parte final do trabalho, apresenta as conclusões correspondentes aos objetivos ou hipóteses.

Referências

AHUJA, Ankit. Quantamental Trading Strategy: Fundamental Analysis and Quantitative Analysis. 2021. Disponível em:

<https://blog.quantinsti.com/quantamental-trading-strategy/>.

BELL, Steve. Quantitative finance for dummies. [S.l.]: John Wiley & Sons, 2016.

CHEN, Peter; ZHANG, Guochang. How do accounting variables explain stock price movements? Theory and evidence. **Journal of Accounting and Economics**, v. 43, n. 2, p. 219–244, 2007. ISSN 0165-4101. DOI:

https://doi.org/10.1016/j.jacceco.2007.01.001. Disponível em: https://doi.org/10.1016/j.jacceco.2007.01.001. Disponível em: https://www.sciencedirect.com/science/article/pii/S0165410107000171.

GRAHAM, Benjamin. **The Intelligent Investor**. Fourth Revised Edition. [S.l.]: Harpercollins Publisher, 1973.

LEV, Baruch; THIAGARAJAN, S. Ramu. Fundamental Information Analysis. **Journal of Accounting Research**, [Accounting Research Center, Booth School of Business, University of Chicago, Wiley], v. 31, n. 2, p. 190–215, 1993. ISSN 00218456, 1475679X. Disponível em: http://www.jstor.org/stable/2491270. Acesso em: 21 out. 2023.

MA, Lingjie. Quantamental Investment. In: QUANTITATIVE Investing: From Theory to Industry. Cham: Springer International Publishing, 2020. P. 405–451. DOI:

 $10.1007/978-3-030-47202-3_9$. Disponível em:

<https://doi.org/10.1007/978-3-030-47202-3_9>.

MALTA, Tanira Lessa; DE CAMARGOS, Marcos Antônio. Variáveis da análise fundamentalista e dinâmica e o retorno acionário de empresas brasileiras entre 2007 e 2014. **REGE - Revista de Gestão**, v. 23, n. 1, p. 52–62, 2016. ISSN 1809-2276. DOI: https://doi.org/10.1016/j.rege.2015.09.001. Disponível em: https://www.sciencedirect.com/science/article/pii/S1809227616300066.

APÊNDICE A - Análise das funções

Agora apresentaremos uma explicação detalhada e uma análise do funcionamento das principais funções que foram desenvolvidas.

A.1 zscore2

Abaixo descreveremos a função zscore2 que é fundamental para o cálculo do score fundamentalista e quantitativo

```
1 # Função que usa o z-score para calcular o score de uma
    empresa
2 def zscore2(data frame, headline='Z-Score'):
      index = data_frame.index
     # Calculando o z-score usando scipy
      z = scipy.stats.zscore(data_frame.astype(float))
      table = pd.DataFrame(z, index=index)
      # Calculando a média dos z-score para o algoritmo de
        pontuação
      mean = table.mean(axis=1)
10
      table2 = pd.DataFrame(mean, index=index)
19
      # Fazendo o algoritmo de pontuação
13
      condition1 = np.where(table2 == 0, 1, table2)
14
      condition2 = np.where(condition1 > 0, 1 + condition1,
15
         1/(1 - condition1))
      final = pd.DataFrame(condition2, index=index)
16
      final.columns = [headline]
17
      return final
18
```

A.2 Analise_Fund

```
# é necessário ampliar a janela de busca para o ano
         anterior, permitindo uma análise mais completa
      year = [int(x) for x in year]
5
      year usado = year.copy()
      year usado.insert(0, year[0] - 1)
      # pegando os dados financeiros usando a função
         key metrics
      Full table = pd.DataFrame()
10
      rank = pd.DataFrame()
11
      for steps in range(len(tickers)):
12
          p = str(tickers[steps])
          data = fa.key_metrics(
14
              ticker=p, api key=key, period = period)
15
16
          # pegando apenas os indicadores escolhidos
17
          table = data.T[ratio]
          table.index = pd.to_datetime(table.index)
19
          table['Company'] = p
20
          Full table = Full_table.append(table)
21
22
      Full_table = Full_table[Full_table.index.year.isin(
         year_usado)].sort_index()
24
      # Identificando as datas em que os ajustes da carteira
25
         serão realizados
      if period != 'annual':
26
          data to retrieve = []
2.7
          for mes in ['-01-01','-04-01','-07-01','-10-01']:
28
               for idx in year:
29
                   data_to_retrieve.append(str(idx) + mes)
30
      else:
          data_to_retrieve = [str(idx) + '-01-01' for idx in
32
             year]
33
      data_to_retrieve = sorted(data_to_retrieve)
34
35
      # Em caso de ter algum indicador sem informação em um
36
         respectivo trimestre analisado
```

```
# pegaremos a última informação desse indicador
37
      new Full table = pd.DataFrame()
38
      for data in data to retrieve:
39
          relevant data = Full table.loc[(Full table.index <=</pre>
40
             data) & (Full table['Company'].isin(tickers))]
          relevant_data = relevant_data.groupby('Company').last
41
             ().reset_index()
42
          relevant data = relevant data[(relevant data != 0).
43
             all(1)]
          relevant_data.index = [data] *len(relevant_data.index)
44
          new Full table = new Full table.append(relevant data)
46
      # Guardando e retirando o nome das empresas para realizar
47
          as operações nos dados
      company = new_Full_table['Company']
48
      company = company.reset index(drop = True)
49
      new_Full_table = new_Full_table.drop('Company',axis=1)
50
      new_Full_table = new_Full_table.dropna()
52
      # Calculando o Score Fundamentalista
53
      table = new_Full_table.copy()
      table = 1/table
      score = zscore2(table)
56
      score = score.reset index(drop = True)
57
      score.columns = ['Score-Fundamentalista']
58
      # Adicionando o nome da empresa
      score.insert(0, 'Company', company)
61
62
      rank = score
63
      rank.index = new_Full_table.index
      rank = rank.loc[data_to_retrieve].sort_index()
65
66
      return rank
```

Dessa forma, podemos calcular o Score-Fundamentalista das empresas, fornecendo como argumentos o ano da análise desejada, os indicadores financeiros a serem utilizados e, opcionalmente, um argumento que indica se a análise é trimestral ou anual. Aqui está um exemplo de como essa função pode ser utilizada:

```
1 tickers_br = ["RPAD3.SA", "BMGB4.SA", "ABCB4.SA", "BBAS3.SA"
                   "BPAC3.SA", "BRSR3.SA", "BPAN4.SA", "BSLI3.SA"]
   year_br = ['2017','2018', '2019', '2020','2021','2022']
   ratio = ['peRatio', 'priceToSalesRatio', 'pbRatio', 'evToSales',
                  'debtToEquity', 'evToFreeCashFlow', 'debtToAssets', 'netDebtToEBITDA']
9 Analise_Fund(tickers_br, ratio, year_br, 'quarter')
          Company Score-Fundamentalista
2017-01-01 ABCB4.SA
                              0.900541
2017-01-01 BBAS3.SA
                              0.911551
2017-01-01 BPAN4.SA
                              1.413166
2017-01-01 BRSR3.SA
                              0.469261
2017-01-01 BSLI3.SA
                              1.319671
2022-10-01 BMGB4.SA
                              1.384957
2022-10-01 BPAC3.SA
                              0.710421
2022-10-01 BPAN4.SA
                              0.931721
2022-10-01 BRSR3.SA
                              1.068379
2022-10-01 BSLI3.SA
                              0.678124
```

Figura 15 – Exemplo do Score-Fundamentalista aplicando oito múltiplos a oito empresas

A.3 Analise_Quant

```
1 def Analise Quant(tickers, f score ratio min, f score ratio max
     ,g_score_ratio_max,year,period = 'annual'):
      percent_fscore_max = pd.DataFrame()
3
      percent_fscore_min = pd.DataFrame()
4
      percent_gscore_max = pd.DataFrame()
      result = pd.DataFrame()
6
      year usado = year.copy()
8
      year_usado.insert(0, str(int(year[0])-1))
9
10
      for steps in range(len(tickers)):
11
          # Pegando os dados usados para o Fscore-Max
12
          p = str(tickers[steps])
          data3 = fa.key metrics(
14
              ticker=p, api_key=key, period=period)
15
          tranpose = data3.T[f_score_ratio_max].fillna(0)
16
          reverse = tranpose.loc[::-1]
17
          change = reverse.pct change()
          change = change.assign(Company=p)
19
          percent fscore max = percent fscore max.append(change
20
```

```
)
2.1
          # Pegando os dados usados para o Fscore-Min
22
          data4 = fa.key metrics(
              ticker=p, api_key=key, period=period)
24
          tranpose1 = data4.T[f_score_ratio_min].fillna(0)
25
          reverse1 = tranpose1.loc[::-1]
26
          change1 = reverse1.pct_change()
          change1 = change1.assign(Company=p)
          percent_fscore_min = percent_fscore_min.append(
29
             change1)
30
          # Pegando os dados usados para o Gscore-Max
31
          data5 = fa.key metrics(
32
              ticker=p, api key=key, period=period)
33
          tranpose2 = data5.T[g_score_ratio_max].fillna(0)
34
          reverse2 = tranpose2.loc[::-1]
35
          change2 = reverse2.pct_change()
36
          change2 = change2.assign(Company=p)
          percent_gscore_max = percent_gscore_max.append(
38
             change2)
      # Condição para quantificar o desempenho do Fscore-Max
40
      condition = np.where(percent_fscore_max.iloc[:, :-1] > 0,
41
          1, -1)
      condition = pd.DataFrame(condition)
42
      condition.index = percent fscore max.index
      condition.columns = percent_fscore_max.columns[:-1]
44
45
      sum score = condition.sum(axis=1)
46
      sum_score = pd.DataFrame(sum_score)
47
      sum_score = pd.concat([sum_score, percent_fscore_max['
         Company']], axis=1)
      sum score.columns = ['F-Score-Max', 'Company']
49
50
      # Condição para quantificar o desempenho do Fscore-Min
51
      condition2 = np.where(percent fscore min.iloc[:, :-1] <</pre>
         0, 1, -1)
      condition2 = pd.DataFrame(condition2)
```

```
condition2.index = percent fscore min.index
54
      condition2.columns = percent_fscore_min.columns[:-1]
56
      sum score2 = condition2.sum(axis=1)
57
      sum score2 = pd.DataFrame(sum score2)
58
      sum_score2 = pd.concat([sum_score2, percent_fscore_min['
59
         Company']], axis=1)
      sum score2.columns = ['F-Score-Min','Company']
60
61
      # Condição para quantificar o desempenho do Gscore-Max
62
      condition3 = np.where(percent_gscore_max.iloc[:, :-1] >
63
         0, 1, -1
      condition3 = pd.DataFrame(condition3)
64
      condition3.index = percent gscore max.index
65
      condition3.columns = percent gscore max.columns[:-1]
66
      sum score3 = condition3.sum(axis=1)
67
      sum score3 = pd.DataFrame(sum score3)
      sum_score3 = pd.concat([sum_score3, percent_gscore_max['
69
         Company']], axis=1)
      sum score3.columns = ['G-Score-Max', 'Company']
70
71
      # Agrupando os resultados
      Final yr wise = pd.concat([sum score['F-Score-Max'],
73
         sum_score2['F-Score-Min'], sum_score3['G-Score-Max'],
         sum score['Company']], axis=1)
      Final yr wise.index = pd.to datetime(Final yr wise.index)
74
      Final_yr_wise = Final_yr_wise.sort_index()
76
      # Identificando as datas em que os ajustes da carteira
77
         serão realizados
      if period != 'annual':
78
          data_to_retrieve = []
          for mes in ['-01-01','-04-01','-07-01','-10-01']:
80
              for idx in year:
81
                   data_to_retrieve.append(str(idx) + mes)
      else:
83
          data to retrieve = [str(idx) + '-01-01'] for idx in
             year]
85
```

```
# Em caso de ter algum indicador sem informação em um
86
         respectivo trimestre analisado
      # pegaremos a última informação desse indicador
87
      data to retrieve = sorted(data to retrieve)
88
      new_Final_yr_wise = pd.DataFrame()
89
      for data in data_to_retrieve:
90
           relevant_data = Final_yr_wise.loc[(Final_yr_wise.
91
              index <= data) & (Final_yr_wise['Company'].isin(</pre>
              tickers))]
           relevant_data = relevant_data.groupby('Company').last
92
              ().reset_index()
           relevant data.index = [data] *len(relevant data.index)
93
           new_Final_yr_wise = new_Final_yr_wise.append(
94
              relevant data)
95
      # Guardando e retirando o nome das empresas para realizar
96
          as operações nos dados
      new_Final_yr_wise = new_Final_yr_wise.loc[
97
         data_to_retrieve]
      company = pd.DataFrame(new_Final_yr_wise['Company'])
98
99
      # Calculando o Score Quantitativo
100
      new_Final_yr_wise = new_Final_yr_wise.drop('Company',axis
101
         =1)
      result = zscore2(new_Final_yr_wise[new_Final_yr_wise.
102
         columns[:-1]], headline='Score-Quantitativo')
      result['Company'] = company
103
104
      return result
105
```

Dessa forma, podemos calcular o Score-Quantitativo das empresas, fornecendo como argumentos o ano da análise desejada, os indicadores financeiros a serem utilizados para a análise dos *f-score* e *g-score* e, opcionalmente, um argumento que indica se a análise é trimestral ou anual. Aqui está um exemplo de como essa função pode ser utilizada:

	Score-Quantitativo	Company
2017-01-01	1.231780	ABEV3.SA
2017-01-01	0.767299	B3SA3.SA
2017-01-01	1.167204	BBAS3.SA
2017-01-01	0.563777	BBDC4.SA
2017-01-01	1.231780	ELET3.SA
2022-01-01	2.237311	PETR3.SA
2022-01-01	2.237311	PETR4.SA
2022-01-01	0.433125	RENT3.SA
2022-01-01	1.231780	VALE3.SA
2022-01-01	0.767299	WEGE3.SA

Figura 16 – Exemplo do Score-Quantitativo para 16 empresas

A.4 Benchmark

Desenvolvemos uma função capaz de calcular o desempenho de um índice criado para representar um setor específico do mercado financeiro, como, por exemplo, o setor de saúde ou o setor elétrico. Essa função nos permite calcular o retorno de um índice setorial de duas maneiras distintas: com base na ponderação pelo volume de negociação dos ativos que o compõem ou de maneira igualitária. Dessa forma, podemos avaliar e comparar a eficácia das estratégias aplicadas em um contexto setorial específico.

```
1 # Criando benchmark para setores individuais
2 def Benchmark(tickers, year, period = 'annual', weights = 'equal'
    ):
3
      inicio = str(int(year[0]) - 1) + '-11-30'
      final = str(int(year[-1])) + '-12-31'
5
6
      # Pegando o histórico do preço e do volume dos ativos
7
      stock = yf.download(tickers=tickers, start=inicio,
                       end=final, interval='1mo')[['Adj Close']]
      volume = yf.download(tickers=tickers, start=inicio,
10
                       end=final, interval='1mo')[['Volume']]
11
```

```
stock.index = pd.to datetime(stock.index)
12
      stock.columns = tickers
      volume.index = pd.to datetime(volume.index)
14
      volume.columns = tickers
15
      returns = stock.pct change()
17
      # datas que serão feitas o ajuste da carteira
      if period != 'annual':
19
          index = []
20
          for idx in year:
21
               for mes in ['-01-01','-04-01','-07-01','-10-01']:
22
                   index.append(str(idx) + mes)
      else:
24
          index = [idx + '-01-01' for idx in year]
25
      index = pd.to datetime(sorted(index))
26
27
      # calculando o retorno com peso ponderado ou não
      df = pd.DataFrame()
29
      print(weights)
30
      for steps in range (0,len(index)):
31
          step = index[steps]
32
          print(step)
          if step != index[-1]:
34
               step1 = index[steps + 1]
35
              returns selection = returns.loc[step:step1]
36
              returns selection = returns selection.drop(step1)
37
          else:
              returns_selection = returns.loc[step:]
39
40
          # pegando o volume dos últimos 3 meses
41
          volume_selection = volume.loc[step - timedelta(days
42
             =3*31):step].fillna(0)
          volume_selection = volume_selection.mean()
43
44
          # escolhendo os ativos que tiveram volume de negociaç
             ão
          array = volume selection[volume selection != 0].index
46
             .tolist()
          volume_selection = volume_selection[array]
47
```

```
selected returns = returns selection[array]
48
49
          # Calculando o retorno do portifólio com peso
50
             ponderado ou igual
          if weights == 'equal':
51
               weight = np.repeat(1/len(array), len(array))
          elif weights == 'weighted':
53
              # cada peso terá valor no máximo de 20%
               weight = [peso / sum(volume_selection) for peso
                  in volume_selection]
               weight = normaliza(weight)
56
          print(array)
58
          print(weight)
59
          series = (selected returns * weight).sum(axis=1)
60
          frame = pd.DataFrame(series)
61
          df = df.append(frame)
62
63
      df.columns = ['Returns']
64
      df.index = pd.to_datetime(df.index).to_period('M').
65
         to_timestamp()
      return df
```

A função normaliza(weight) tem como propósito ajustar os pesos dos ativos da carteira, garantindo que nenhum ativo tenha um peso superior a 20%. Por sua simplicidade, não farei uma descrição detalhada desta função. Aqui está um exemplo de como essa função pode ser utilizada:

Returns

Date	
2017-01-01	0.167829
2017-02-01	0.109294
2017-03-01	-0.025897
2017-04-01	-0.010322
2017-05-01	-0.056020
2022-08-01	0.102689
	0.102689 0.025312
2022-08-01	0.102000
2022-08-01 2022-09-01	0.025312 0.015529

Figura 17 – Retorno mensal do setor bancário com peso ponderado