Power Systems-EE309

Assignment 5

Group Members:

Keshav Kishore : 2018EEB1158 Mahima Kumawat : 2018EEB1162 Preetesh Verma : 2018EEB1171

Question1

E E	(1 osec) 22	Page No. Date:
(D)	Conven: 212 = 0.12+j0.16	a distributed to the
	y12= 1 = (3-4j)==	= 5 \(-53.13°
(2102 -	22 LANT 01 + (2+ 1- 78 201) 20 NEW	en-
	Lead power => part - 100 MW.	
	Qact = -50 MVAR.	- 05 - 15 - 15 - 15 - 15 - 15 - 15 - 15
	Sout = - (100 + 50j) MUR	+.
ec.s	$S_{i}^{act} = -(100 + 50i) = (-100)$	1-0.5j) pu
	Using Newton Raptison method,	Conf one
	12 = 5 V2 V1 cos (126.87° - 62+81) Q2 = -5 V2 V1 sin (126.87° - 52+81)	$1 + 5 v_1 ^2 \cos(-53.13^\circ)$ $1 - 5 v_2 ^2 \sin(-53.13^\circ)$
	$V_1 = 1 \angle 0^{\circ} pu$ $ V_2^{(0)} = 1 \delta_2^{(0)} = 0.0$	
. 3)	$R_{2}^{(6)} = 5(1)(1) \cos(126.87^{\circ}) + 5(1)$	
	$Q_{\chi}^{(0)} = -5(1)(1) \sin((26.87^{\circ}) - 5($	
	SP2 = Pact - P2(0) = -1-0 =	-1 pu
	$\Delta q_{\chi}^{(0)} = Q_{\chi}^{(0)} = Q_{\chi}^{(0)} = -0.5 - 0$	= -0.5 pu

& elements of Jacobian matrix)

$$J_{11} = \frac{\partial P_2}{\partial S_2} = \frac{5}{5} |V_2| |V_1| \sin(126.87^2 - S_2 + S_1)$$

$$J_{R} = \frac{\partial P_{2}}{\partial N_{4}} = \frac{5|V_{1}| \cos(126.87^{\circ} - 52 + 51)}{600} + \frac{10|V_{2}| \cos(-53.13^{\circ})}{100}$$

$$J_{1} = \frac{\partial Q_{2}}{\partial S_{2}} = +0 5|V_{2}|V_{1}| \cos(126.87^{\circ} - S_{2} + S_{1})$$

$$J_{22} = \frac{\partial Q_{\perp}}{\partial N_{2}} = -5 N_{1} \sin(126.87^{\circ} - 5.45_{1}) - 10 |V_{2}| \sin(-53.13)$$

For 1st iteration,

$$J_{11}^{(0)} = 5(1)(1) \sin(126-87^{\circ}) = 3.99.$$

$$J_{R}^{(0)} = 5(1) \cos(126.87^{\circ}) + 10(1) \cos(-53.13^{\circ}) = 3.$$
 $J_{R}^{(0)} = 5(1)(1) \cos(126.87^{\circ}) = -3.$

$$J_{22}^{(0)} = -5(1)$$
 sin $(26.87^{\circ}) - 10(1)$ sin $(-53.13^{\circ}) = +3.99$

For 1st iteration, set of linear eg =)

$$\begin{bmatrix} -1 \\ -0.5 \end{bmatrix} = \begin{bmatrix} 3.99 & 3 \\ -3 & 3.99 \end{bmatrix} \begin{bmatrix} \Delta S_2^{(0)} \\ \Delta | V_2^{(0)} | \end{bmatrix}.$$

Solving this,
$$\Delta S_2^{(0)} = -0.1$$
.
$$\Delta |V_2^{(0)}| = -0.2$$

$$S_{2}^{(1)} = S_{2}^{(0)} + \Delta S_{2}^{(0)}$$

$$|V_{2}^{(1)}| = |V_{2}^{(0)}| + \Delta |V_{2}^{(0)}|$$

Question 2

Final results:

```
Y =
```

```
0.8824 - 3.4994i -0.2941 + 1.1765i -0.5882 + 2.3529i 0.0000 + 0.0000i -0.2941 + 1.1765i 0.8627 - 3.0276i -0.3333 + 1.0000i -0.2353 + 0.9412i -0.5882 + 2.3529i -0.3333 + 1.0000i 1.2157 - 4.4694i -0.2941 + 1.1765i 0.0000 + 0.0000i -0.2353 + 0.9412i -0.2941 + 1.1765i 0.5294 - 2.0576i
```

M =

```
3.6089 1.2127 2.4254 0
1.2127 3.1482 1.0541 0.9701
2.4254 1.0541 4.6318 1.2127
0 0.9701 1.2127 2.1247
```

Ph =

Theoretical Calculations

00			DELTAMAN
00		8.01+50	10.02
	2-3	03 + 10.9	10.03
	2-4	1 250	1004
	3-4	0.2 + 70.8	je er
T. 0.	1-3	0.1 4 90.4	3001
- supertir	or metter d -		-
	Au. Au.	1 = 1 = =	0.29-11.17
		Z12 0-20jo-8	
	Jes : 733 0	1 - 1 - 3	0.33-
		3 23 03-10-3	
	Jan . Jus .	1.1	10-23-10-94
		5-24 0-25 4)	
	24 " Y24	- -	, 0.29- 11.19
		234 0.3+10+	
	Y = 9 = =	1 - 1	1 0-52-102-31
	20	213 0-1-10-4	
	Diagonal:		
	T Y.	+ 912 + 91 " 0.8=	1-3.49;
	3" 4	+ 7-2 - 7-7 . 0	85 -3.021
	722 721	103 px 13	1.58 - 4.46;
	33)3	- Jan Jan Ja	52 - 2.05:
	* 44 y	4 24 24 2 = 0	
			100
	of digonal	elements.	
	-		
	V , Y	, - 1/12 = - 6	29+117
	Y > Y > 2		0.33 + 1
	123 > 132	-2.23.2	10.99
	Y24 2 940	2 -0.23+	1/13
	Y 24 2 Y45	2 -0.51-	
	Y 2 = 13	0.58 Lj.	2-3)
	13	J	
	College College		

We have verified our results by using intuitive method and theoretical calculation for the same is given.

Question 3

Final result:

Jacobian Matrix =

[36.7888 -12.0246 -12.2586 -4.2842 -11.0250 34.6626 -11.4072 -6.3504 -12.8325 -13.0536 39.4619 12.1328 1.9886 -0.2352 -1.5088 15.0581]

Theoretical Calculation:

	APPEND TE	Page No. Date:		
3	No of buses = 4			
	Vmag = (1.04) delta = 0.9946	0.2630		
	Y-bus matrix is given. G7 = Re [Y]. 4XY matrix. B = Imp[Y]. 4XY matrix.	(diagonal elements) (non-diagonal elements)		
	Bij = $\begin{cases} -23.50 \\ 11.76 \end{cases}$; $i = j$ (diagonal elements) Real power injected at ith bus, $P_i = \begin{cases} \frac{\pi}{2} & \text{Yik ViV}_k & \cos(\theta_{ik} + \delta_k - \delta_i) \end{cases}$			
	$P_{i} = \begin{cases} Y_{ik} & \text{viv}_{k} \\ X = 1 \end{cases} $ $V_{ik} & \text{viv}_{k} \end{cases} cos (0 i k + 5 k $			

Ju= 2×3 matrix. L22 L23 L24 L32 L33 L34 Lyz Lyz Lyy Lik = - | Yik ViVK sin (Oik + 8x-Si) ; i+k. Lik = | Vi VK) [Gik sin(8i-SK) - Bik cos (8:-SK) · i + k Li = -Qi - |Vi|2 Bi ; i=K. Las = -Q2 - [V2] 2 822 $=+(13.5403)-(0.9946)^{2}(-73.50)$ = 36.788. 33 = - Q3 - \V3 |2 B33 $= -(-11.1616) - (1)^{2}(-23.50)$ 34.662 249 = - Qy - 1 Vy Byy $= -(-12.2019) - (1.077)^{2}(-23.50)$ = 39.46. Log = | V2 V3 | [C22 Sin (82-83) - B23 COS (85-83) = -12.024 L24 = 1 /2 /41 [G24 sin (82-84) - B24 cos (82-84) = -12.258.L32 = 1 V3 V2 1 [(n32 sin (83-52) - B32 808 (53-52) = = 11,025

	Page No.	-
	J12 = [-4.2842]	
	-6.3504	
	12-132	
	- Later Cart and	
7	522 3 [IXI] = [044]	
	$O_{44} = O_{44} - V_4 ^2 B_{44}$ $= (-12.2019) - (1.077)^2 (-23.50)$	
	= 15.057.	
	10 A	0
7	Jacobian - matrix = J11 J12	
	[J2, J22]	
	Torobine this =	
	Jubean mains	
100 E. T	in Tell man and a contract of	
	2/ 700 12-24 -12250 =4-2842	
	36-788 -12.024 -12.258 -4.2842	
40.3	36-788 -12.024 -12.258 -4.2842 -11.025 34.662 -11.407 -6.3504	
35.3	36.788 -12.024 -12.258 -4.2842 -11.025 34.662 -11.407 -6.3504 -12.832 -13.053 39.46, +12.132	
35.3	36-788 -12.024 -12.258 -4.2842 -11.025 34.662 -11.407 -6.3504	
30.3	36.788 - 12.024 - 12.258 - 4.2842 $-11.025 34.662 - 11.407 - 6.3504$ $-12.832 - 13.053 39.46 + 12.132$ $1988 - 0.2352 - 1.508 15.057$	

> No assumptions are made, only given data is used in all the questions.

Conclusion:

Newton-Raphson method is useful to calculate the voltages of all the buses in the power system after a certain number of iterations to converge the del(P) and del(Q) values to 0 or a very small number. Once knowing the bus voltages, we can have an overall idea of the load power flow in the system.