OPTIMIZACIÓN

Primer Cuatrimestre 2025

Ejercicios para pensar

Método de punto interior

Ejercicio 1 Considerar el problema

minimizar
$$x_1 + 3x_2$$

sujeto a $2x_1 + x_2 = 4$
 $x_1 \ge 0$
 $x_2 \ge 0$

- (a) Formule la función barrera $\Phi(x,\mu)$, calcule su gradiente $\nabla \Phi(x,\mu)$, y plantee el sistema de ecuaciones $\nabla \Phi(x,\mu) = 0$ para encontrar $x^*(\mu)$.
- (b) Identifique los vectores y matrices c, A, b del problema.
- (c) Escriba las condiciones de Karush-Kuhn-Tucker (KKT) perturbadas para este problema, incorporando el parámetro de barrera $\mu > 0$. Las condiciones deben incluir:
 - Dual Factibilidad $(A^T y + s = c)$
 - Primal Factibilidad (Ax = b)
 - Holgura Complementaria Perturbada ($XSe = \mu e$, donde $X = \text{diag}(x_i)$ y $S = \text{diag}(s_i)$)
 - No Negatividad $(x \ge 0, s \ge 0, \text{ aunque estas no se incluyen en el sistema de ecuaciones no lineales que se resuelve directamente).$
- (d) Defina el vector de funciones F(x,y,s) cuyas raíces buscamos con el método de Newton.
- (e) Calcule la matriz Jacobiana $J(x, y, s) = \nabla F(x, y, s)$.
- (f) Escriba explícitamente el sistema lineal de Newton para encontrar la dirección de búsqueda $(\Delta x, \Delta y, \Delta s)$ en un punto dado (x, y, s):

$$J(x, y, s) \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = -F(x, y, s)$$

(g) Implementar el método. Tomar por ejemplo como punto inicial factible: $x_0 = (1, 2), y = 0, s = (1, 1).$

Ejercicio 2 En la siguiente notebook se puede ver una comparación entre el método simplex y el método de punto interior. Incrementar el tamaño del problema y observar los tiempos de ejecución e iteraciones de cada método.