Machine learning - Boosting

L. Rouvière

laurent.rouviere@univ-rennes2.fr

NOVEMBRE 2022

Table des matières

1	Rappels	2
2	Boosting 2.1 Algorithme de gradient boosting 2.2 Choix des paramètres 2.3 Compléments/conclusion 2.4 Xgboost	13 17
3	Bibliographie	2 0
Pı	résentation	
	— <i>Objectifs</i> : comprendre les aspects théoriques et pratiques des algorithmes de gradient boosting.	
	— <i>Pré-requis</i> : théorie des probabilités, modélisation statistique, machine learning, méthodes par arbres. niveau avancé.	R,
	— <u>Enseignant</u> : Laurent Rouvière <u>laurent.rouviere@univ-rennes2.fr</u>	
	— Recherche: statistique non paramétrique, apprentissage statistique	
	— Enseignements : statistique et probabilités (Université, école d'ingénieur et de commerce, formaticontinue).	ion
	— Consulting : energie, finance, marketing, sport.	
Pı	rogramme	
	— Matériel :	
	— slides: https://lrouviere.github.io/page_perso/apprentissage_sup.html	
	— Tutoriel: https://lrouviere.github.io/TUTO_ARBRES/	
	— 3 parties :	
	1. Rappels sur les fondamentaux du machine Learning	
	2. Les algorithmes de Gradient Boosting	
	3. Xgboost: Extreme Gradient Boosting.	

1 Rappels

Machine Learning - Prévision

Le problème

Prédire/expliquer une sortie Y par des entrées $X=(X_1,\ldots,X_d)$

Vocabulaire

- Fonction de prévision : $f: \mathbb{R}^d \to \mathbb{R}$.
- Fonction de perte : $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ telle que

$$\begin{cases} \ell(y, y') = 0 & \text{si } y = y' \\ \ell(y, y') > 0 & \text{si } y \neq y'. \end{cases}$$

- Risque : $\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))].$
- Champion ou fonction de prévision optimale

$$f^{\star} \in \operatorname*{argmin}_{f} \mathcal{R}(f) \Longleftrightarrow \mathcal{R}(f^{\star}) \leq \mathcal{R}(f) \ \forall f$$

Problème

 f^* est toujours inconnu.

— Les données $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Le problème pratique

Trouver un algorithme de prévision $f_n(.) = f_n(., \mathcal{D}_n)$ tel que $\mathcal{R}(f_n) \approx \mathcal{R}(f^*)$.

Exemples

- Algorithme linéaires ou logistique : MCO, ridge, lasso
- Plus proches voisins, SVM
- Arbres, forêts aléatoires, boosting...

Ré-échantillonnage

Conséquence

Crucial de savoir calculer/estimer le risque d'un algorithme de prévision

$$\mathcal{R}(f_n) = \mathbf{E}[\ell(Y, f_n(X))].$$

Cela s'effectue généralement à l'aide de *méthodes de ré-échantillonnage* :

- Validation hold-out (on coupe en deux)
- Validation croisée (on coupe en blocs)
- Bootstrap (tirages avec ou sans remise)

Validation croisée

Algorithme - CV

Entrée : $\{B_1, \ldots, B_K\}$ une partition de $\{1, \ldots, n\}$ en K blocs. Pour $k = 1, \ldots, K$:

- 1. Ajuster l'algorithme de prévision en utilisant l'ensemble des données privé du k^e bloc, c'est-à-dire $\mathcal{B}_k = \{(x_i, y_i) : i \in \{1, \dots, n\} \setminus B_k\}$. On désigne par $f_k(.) = f_k(., \mathcal{B}_k)$ l'algorithme obtenu.
- 2. Calculer la valeur prédite par l'algorithme pour chaque observation du bloc $k: f_k(x_i), i \in B_k$ et en déduire le risque sur le bloc k:

$$\widehat{\mathcal{R}}(f_k) = \frac{1}{|B_k|} \sum_{i \in B_k} \ell(y_i, f_k(x_i)).$$

Retourner : $\frac{1}{K} \sum_{k=1}^{K} \widehat{\mathcal{R}}(f_k)$.

Le sur-apprentissage

— La plupart des modèles statistiques renvoient des estimateurs qui dépendent de paramètres λ à calibrer.

Exemples

- nombres de variables dans un modèle linéaire ou logistique.
- paramètre de pénalités pour les régressions pénalisées.
- profondeur des arbres.
- nombre de plus proches voisins.
- nombre d'itérations en boosting.
- ...

$Remarque\ importante$

Le choix de ces paramètres est le plus souvent *crucial* pour la performance de l'estimateur sélectionné.

— Le paramètre λ à sélectionner représente la complexité du modèle :

$Complexit\'e \Longrightarrow compromis\ biais/variance$

- $-\lambda$ petit \Longrightarrow modèle peu flexible \Longrightarrow mauvaise adéquation sur les données \Longrightarrow biais \nearrow , variance \searrow .
- $-\lambda$ grand \Longrightarrow modèle trop flexible \Longrightarrow sur-ajustement \Longrightarrow biais \searrow , variance \nearrow .

Overfitting

Sur-ajuster signifie que le modèle va (trop) bien ajuster les données d'apprentissage, il aura du mal à s'adapter à de nouveaux individus.

Overfitting en régression

Overfitting en classification supervisée

Application shiny

https://lrouviere.shinyapps.io/overfitting_app/

Les arbres

— A chaque étape, la méthode cherche une *nouvelle division* : une variable et un seuil de coupure.

Représentation de l'arbre

Remarque

Visuel de $\frac{droite}{dro}$ plus pertinent :

- Plus d'information.
- Généralisation à plus de deux dimensions.

Arbres et sur-apprentissage

- La complexité d'un arbre est caractérisé par sa profondeur ou son nombre de coupures :
 - Arbres trop profond ⇒ sur-ajustement, peu de biais mais trop de variance
 - Arbre peu profond ⇒ sous-ajustement, peu de variance mais beaucoup de biais.

Solution: élagage [Breiman et al., 1984]

- 1. Construire un arbre très/trop profond;
- 2. Retirer les branches inutiles ou peu informatives.

Agrégation

— *Idée* : construire un grand nombre d'algorithmes "simples" et les agréger pour obtenir une seule prévision. Par exemple

Questions

- 1. Comment choisir les échantillons $\mathcal{D}_{n,b}$?
- 2. Comment choisir les algorithmes?
- 3. ...

Bagging

- Le bagging désigne un ensemble de méthodes introduit par Léo Breiman [Breiman, 1996].
- Bagging: vient de la contraction de Bootstrap Aggregating.
- *Idée* : plutôt que de constuire un seul estimateur, en construire un grand nombre (sur des échantillons bootstrap) et les agréger.

		1 2	3	4	5 6	7	8	9	10			
$\begin{vmatrix} 3\\2 \end{vmatrix}$	8	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 10 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 3\\10 \end{vmatrix}$	$\begin{vmatrix} 9\\10 \end{vmatrix}$	$\begin{vmatrix} 10 \\ 2 \end{vmatrix}$	9	5	$\frac{1}{6}$	$\left \begin{array}{c}T_1\\T_2\end{array}\right $		
$\frac{1}{2}$	9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{2}{4}$	7	7	$\frac{1}{2}$	3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	$\left \begin{array}{c} T_2 \\ T_3 \end{array}\right $		
$\frac{1}{6}$	1	3	3	9	3	8	10	10	1	T_4		
3	7	10	3	2	8	6	9	10	2	T_5		
	:								:			
7	10	3	4	9	10	10	8	6	1	T_B		

Idée: échantillons bootstrap

- Echantillon *initial*:
- Echantillons bootstrap: tirage de taille n avec remise
- A la fin, on agrège:

$$f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$$

Coupures "aléatoires"

Arbres pour forêt

- Breiman propose de sélectionner la "meilleure" variable dans un ensemble composé uniquement de $\operatorname{\mathtt{mtry}}$ variables choisies aléatoirement parmi les d variables initiales.
- *Objectif*: diminuer la corrélation entre les arbres que l'on agrège.

Algorithme forêts aléatoires

Entrées :

- --B un entier positif;
- mtry un entier entre 1 et d;
- $\min.node.size$ un entier plus petit que n.

Pour b entre 1 et B:

- 1. Faire un tirage aléatoire avec remise de taille n dans $\{1,\ldots,n\}$. On note \mathcal{I}_b l'ensemble des indices sélectionnés et $\mathcal{D}_{n,b}^{\star}=\{(x_i,y_i),i\in\mathcal{I}_b\}$ l'échantillon bootstrap associé.
- 2. Construire un arbre CART à partir de $\mathcal{D}_{n,b}^{\star}$ en découpant chaque nœud de la façon suivante :
 - (a) Choisir \mathtt{mtry} variables au hasard parmi les d variables explicatives;
 - (b) Sélectionner la meilleure coupure $X_j \leq s$ en ne considérant que les \mathtt{mtry} variables sélectionnées ;
 - (c) Ne pas découper un nœud s'il contient moins de min.node.size observations.
- 3. On note $T(., \theta_b, \mathcal{D}_n)$ l'arbre obtenu.

Retourner: $f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T(x, \theta_b, \mathcal{D}_n)$.

Le coin R

- Notamment 2 packages avec à peu près la même syntaxe.
- randomforest : le plus ancien et probablement encore le plus utilisé.
- ranger [Wright and Ziegler, 2017]: plus efficace au niveau temps de calcul (codé en C++).

```
> library(ranger)
> set.seed(12345)
> foret <- ranger(type~.,data=spam)</pre>
> foret
## ranger(type ~ ., data = spam)
## Type:
                                       Classification
## Number of trees:
## Sample size:
                                       4601
## Number of independent variables:
## Mtry:
## Target node size:
## Variable importance mode:
## Splitrule:
                                       gini
## 00B prediction error:
                                       4.59 %
```

Choix des paramètres

- $-B \Longrightarrow$ le plus grand possible. En pratique on pourra s'assurer que le courbe d'erreur en fonction du nombre d'arbres est stabilisée.
- min.node.size petit ⇒ bagging = réduction de variance ⇒ il faut des arbres profonds. Par défaut
 - min.node.size = 5 en régression
 - min.node.size = 1 en classification
- Par défaut $\mathtt{mtry} = d/3$ en régression et \sqrt{d} en classification mais à calibrer (estimation du risque).
- Visualisation d'erreur en fonction de min.node.size et mtry

Commentaires

min.node.size petit et mtry à calibrer.

En pratique

- On peut bien entendu calibrer ces paramètres avec les approches traditionnelles mais...
- les valeurs par défaut sont souvent performantes!
- On pourra quand même faire quelques essais, notamment pour mtry.

Un exemple avec tidymodels

1. Initialisation du workflow :

```
> tune_spec <- rand_forest(mtry = tune(),min_n= tune()) %>%
+ set_engine("ranger") %>%
+ set_mode("classification")
> rf_wf <- workflow() %>% add_model(tune_spec) %>% add_formula(type ~ .)
```

2. Ré-échantillonnage et grille de paramètres :

3. Calcul des erreurs :

```
> rf_res <- rf_wf %>% tune_grid(resamples = blocs,grid = rf_grid)
```

4. Visualisation des résultats (AUC et accuracy) :

```
> rf_res %>% show_best("accuracy") %>% select(-8)
## # A tibble: 5 x 7
## mtry min_n .metric .estimator mean n std_err
## <dbl> <dbl> <chr> <chr> <dbl> <chr> <chr> <dbl> <int> <dbl> <int> <dbl> <int> <dbl> = 1 accuracy binary 0.954 50 0.00159
## 2 6 1 accuracy binary 0.954 50 0.00141
## 3 7 1 accuracy binary 0.954 50 0.00149
## 4 5 1 accuracy binary 0.954 50 0.00153
## 5 8 1 accuracy binary 0.953 50 0.00146
```

Remarque

On retrouve bien min.node.size petit et mtry proche de la valeur par défaut (7).

5. Ajustement de l'algorithme final :

```
> foret_finale <- rf_wf %>%
+ finalize_workflow(list(mtry=7,min_n=1)) %>%
+ fit(data=spam)
```

Conclusion

Beaucoup d'avantages

- Bonnes performances prédictives \implies souvent parmi les algorithmes de tête dans les compétitions [Fernández-Delgado et al., 2014].
- Facile à calibrer.

Assez peu d'inconvénients

Coté boîte noire (mais guère plus que les autres méthodes...)

2 Boosting

- Le terme *Boosting* s'applique à des méthodes générales permettant de produire des décisions précises à partir de *règles faibles* (weaklearner).
- Historiquement, le premier algorithme boosting est adaboost [Freund and Schapire, 1996].
- Beaucoup de travaux ont par la suite été développés pour *comprendre et généraliser* ces algorithmes (voir [Hastie et al., 2009]) :
 - modèle additif
 - descente de gradient ⇒ gradient boosting machine, extreme gradient bossting (Xgboost).

— ...

— Dans cette partie \Longrightarrow descente de gradient.

Retour aux sources...

- *Machine learning* ⇒ objectifs prédictifs ⇒ minimisation de risque.
- *Risque* d'une fonction de prévision $f: \mathbb{R}^d \to \mathbb{R}$:

$$\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))].$$

 $-\mathcal{R}(f)$ inconnu \Longrightarrow version empirique

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i)).$$

$Id\acute{e}e$

Minimiser $\mathcal{R}_n(f)$ sur une classe d'algorithmes \mathcal{F} .

Choix de \mathcal{F}

- Il est bien entendu crucial.
- \mathcal{F} riche/complexité élevée $\Longrightarrow \mathcal{R}_n(f) \searrow \Longrightarrow f(x_i) \approx y_i, i = 1, \ldots, n \Longrightarrow sur-ajustement.$
- et réciproquement pour des classes ${\mathcal F}$ simple/complexité faible.

Combinaisons d'arbres

— [Friedman, 2001, Friedman, 2002] propose de se restreindre à des combinaisons d'arbres :

$$\mathcal{F} = \left\{ \sum_{b=1}^{B} \lambda_b T(x, \theta_b), \lambda_b \in \mathbb{R}, \theta_b \in \Theta \right\}$$

où θ_b désigne les paramètres de l'arbre (impureté, profondeur)...

— Rappel: un arbre peut s'écrire

$$T(x, \theta_b) = \sum_{\ell=1}^{L} \gamma_{b\ell} \mathbf{1}_{x \in \mathcal{N}_{b\ell}}$$

où $\mathcal{N}_{b\ell}$ désigne les feuilles et $\gamma_{b\ell}$ les prévisions dans les feuilles.

- Les paramètres B, θ_b définissent la complexité de \mathcal{F} .
- Il faudra les *calibrer* à un moment mais nous les considérons fixés pour l'instant.

Un premier problème

Chercher $f \in \mathcal{F}$ qui minimise $\mathcal{R}_n(f)$.

- Résolution numérique trop difficile.
- Nécessité de trouver un algorithme qui approche la solution.

2.1 Algorithme de gradient boosting

Descentes de gradient

- Définissent des *suites* qui convergent vers des extrema locaux de fonctions $\mathbb{R}^p \to \mathbb{R}$.
- Le risque $\mathcal{R}_n(f)$ ne dépend que des valeurs de f aux points x_i .
- En notant $\mathbf{f} = (\mathbf{f}(x_1), \dots, \mathbf{f}(x_n)) \in \mathbb{R}^n$, on a

$$\mathcal{R}_n(f) = \widetilde{\mathcal{R}}_n(\mathbf{f}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{f}(x_i))$$

avec $\widetilde{\mathcal{R}}_n: \mathbb{R}^n \to \mathbb{R}$.

Nouveau problème

Minimiser $\widetilde{\mathcal{R}}_n$. \Longrightarrow en gardant en tête que minimiser de $\mathcal{R}_n(f)$ n'est pas équivalent à minimiser $\widetilde{\mathcal{R}}_n(\mathbf{f})$.

- Descente de gradient \Longrightarrow suite $(\mathbf{f}_b)_b$ de vecteurs de \mathbb{R}^n qui convergent vers des extrema (locaux) de $\widetilde{\mathcal{R}}_n$.
- Suite *récursive* :

$$\mathbf{f}_b = \mathbf{f}_{b-1} - \rho_b \nabla \widetilde{\mathcal{R}}_n(\mathbf{f}_{b-1}),$$

où $\nabla \widetilde{\mathcal{R}}_n(\mathbf{f}_{b-1})$ désigne le vecteur gradient de $\widetilde{\mathcal{R}}_n$ évalué en \mathbf{f}_{b-1} . \Longrightarrow vecteur de \mathbb{R}^n donc la i^{e} coordonnée vaut

$$\frac{\partial \widetilde{\mathcal{R}}_n(\mathbf{f})}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}) = \frac{\partial \ell(y_i, \mathbf{f}(x_i))}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}(x_i)).$$

Exemple

Si $\ell(y, f(x)) = 1/2(y - f(x)^2)$ alors

$$-\frac{\partial \ell(y_i, \mathbf{f}(x_i))}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}(x_i)) = y_i - \mathbf{f}_{b-1}(x_i),$$

 $\implies r\acute{e}sidu$ de $\mathbf{f}_{b-1}(x_i)$.

— Si tout se passe bien... la suite $(\mathbf{f}_b)_b$ doit *converger* vers un minimum de $\widetilde{\mathcal{R}}_n$.

Deux problèmes

- 1. Cette suite définit des prévisions uniquement aux points $x_i \Longrightarrow \text{impossible de prédire en tout } x$.
- 2. Les éléments de la suite ne s'écrivent pas comme des combinaisons d'arbres.

Une solution

[Friedman, 2001] propose d'ajuster un arbre sur les valeurs du gradient à chaque étape de la descente.

Algorithme de gradient boosting

- 1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$
- 2. Pour b = 1 à B :
 - (a) Calculer l'opposé du gradient $-\frac{\partial}{\partial f(x_i)}\ell(y_i,f(x_i))$ et l'évaluer aux points $f_{b-1}(x_i)$:

$$u_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i))\Big|_{f(x_i) = f_{b-1}(x_i)}, \quad i = 1, \dots, n.$$

- (b) Ajuster un arbre de régression à J feuilles sur $(x_i, u_i), \ldots, (x_n, u_n)$.
- (c) Calculer les valeurs prédites dans chaque feuille

$$\gamma_{jb} = \underset{\gamma}{\operatorname{argmin}} \sum_{i:x_i \in \mathcal{N}_{jb}}^n \ell(y_i, f_{b-1}(x_i) + \gamma).$$

(d) Mise à jour : $f_b(x) = f_{b-1}(x) + \sum_{i=1}^J \gamma_{jb} \mathbf{1}_{x \in \mathcal{N}_{jb}}$.

Retourner: l'algorithme $f_n(x) = f_B(x)$.

Paramètres

Nous donnons les correspondances entre les paramètres et les options de la fonction gbm :

- $-\ell$ la fonction de perte \Longrightarrow distribution
- -B nombre d'itérations \Longrightarrow n.tree
- J le nombre de feuilles des arbres \Longrightarrow interaction.dept (=J-1)
- λ le paramètre de rétrécissement \Longrightarrow shrinkage.

$Stochastic\ gradient\ boosting$

[Friedman, 2002] montre qu'ajuster les arbres sur des sous-échantillons (tirage sans remise) améliore souvent les performances de l'algorithme. \Longrightarrow bag.fraction : taille des sous-échantillons.

Exemple

— Données sinus

— On entraîne l'algorithme :

— On visualise les prévisions en fonction du nombre d'itérations :

2.2 Choix des paramètres

Fonction de perte

- Pas vraiment un paramètre...
- Elle doit

1. mesurer un *coût* (comme d'habitude). \Longrightarrow elle caractérise la fonction de prévision à estimer $\Longrightarrow f_n$ est en effet un estimateur de

$$f^* \in \operatorname*{argmin}_{f:\mathbb{R}^d \to \mathbb{R}} \mathbf{E}[\ell(Y, f(X))].$$

2. être convexe et dérivable par rapport à son second argument (spécificité gradient).

L_2 -boosting en régression

— Correspond à la perte quadratique

$$\ell(y, f(x)) = \frac{1}{2}(y - f(x))^{2}.$$

— fonction de prévision optimale : $f^*(x) = \mathbf{E}[Y|X=x]$.

Remarque

— Avec cette perte, les u_i sont donnés par

$$u_i = -\frac{\partial \ell(y_i, f(x_i))}{\partial f(x_i)}(f_{b-1}(x_i)) = y_i - f_{b-1}(x_i),$$

— f_b s'obtient donc en corrigeant f_{b-1} avec une régression sur ses résidus.

Version simplifiée du L_2 -boosting

La boucle de l'algorithme de gradient boosting peut se réécrire :

- 1. Calculer les résidus $u_i = y_i f_{b-1}(x_i), i = 1, \dots, n$;
- 2. Ajuster un arbre de régression pour expliquer les résidus u_i par les x_i ;
- 3. Corriger f_{b-1} en lui ajoutant l'arbre construit.

Interprétation

- On "corrige" f_{b-1} en cherchant à expliquer "l'information restante" qui est contenue dans les résidus.
- Meilleur ajustement lorsque $b \nearrow \Longrightarrow$ biais \setminus (mais variance \nearrow).

Logitboost

- Classification binaire avec Y dans $\{-1,1\}$ et $\tilde{Y} = (Y+1)/2$ dans $\{0,1\}$.
- Log-vraisemblance binomiale de la prévision $p(x) \in [0,1]$ par rapport à l'observation \tilde{y} :

$$\mathcal{L}(\tilde{y}, p(x)) = \tilde{y} \log p(x) + (1 - \tilde{y}) \log(1 - p(x)).$$

— Soit $f: \mathbb{R}^d \to \mathbb{R}$ telle que

$$f(x) = \frac{1}{2} \log \frac{p(x)}{1 - p(x)} \iff p(x) = \frac{1}{1 + \exp(-2f(x))}.$$

- \implies re-paramétrisation.
- Chercher p(x) qui maximise $\mathcal{L}(\tilde{y}, p(x))$ revient à chercher f(x) qui minimise son opposé :

$$\begin{split} -\mathcal{L}(y,f(x)) &= -\frac{y+1}{2}\log p(x) - \left(1 - \frac{y+1}{2}\right)\log(1 - p(x)) \\ &= \frac{y+1}{2}\log(1 + \exp(-2f(x))) + \\ &\qquad \left(1 - \frac{y+1}{2}\right)\log(1 + \exp(2f(x))) \\ &= \log(1 + \exp(-2yf(x))). \end{split}$$

Remarque

$$f(x) \mapsto \log(1 + \exp(-2yf(x)))$$
 est convexe et dérivable.

Logitboost

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \log(1 + \exp(-2yf(x))).$$

— Fonction optimale

$$f^{\star}(x) = \frac{1}{2} \log \frac{\mathbf{P}(Y=1|X=x)}{1 - \mathbf{P}(Y=1|X=x)}.$$

— f_n estimant f^* , on estime $\mathbf{P}(Y=1|X=x)$ avec

$$\frac{1}{1 + \exp(-2f_n(x))}.$$

Adaboost

— Remarque : $f(x) \mapsto \exp(-yf(x))$ est aussi convexe et dérivable.

Adaboost

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \exp(-yf(x)).$$

Remarque

- Même nom que l'algorithme initial de [Freund and Schapire, 1996] car quasi-similaire [Hastie et al., 2009].
- Même f^* que logitboost.

Adaboost - version 1

Algorithme [Freund and Schapire, 1996]

Entrées : une règle faible, M nombre d'itérations.

- 1. Initialiser les poids $w_i = 1/n, i = 1, \ldots, n$
- 2. **Pour** m = 1 à M :
 - a) Ajuster la règle faible sur l'échantillon d_n pondéré par les poids w_1, \ldots, w_n , on note $g_m(x)$ l'estimateur issu de cet ajustement
 - b) Calculer le taux d'erreur :

$$e_m = \frac{\sum_{i=1}^n w_i \mathbf{1}_{y_i \neq g_m(x_i)}}{\sum_{i=1}^n w_i}.$$

- c) Calculer: $\alpha_m = \log((1 e_m)/e_m)$
- d) Réajuster les poids : $w_i = w_i \exp(\alpha_m \mathbf{1}_{y_i \neq g_m(x_i)}), \quad i = 1, \dots, n$

Sorties : l'algorithme de prévision $\sum_{m=1}^{M} \alpha_m g_m(x)$.

Récapitulatif

— Les principales fonctions de perte pour la régression et classification sont résumées dans le tableau :

	Y	Perte	Prév. optimale		
L_2 -boosting	\mathbb{R}	$(y - f(x))^2$	$\mathbf{E}[Y X=x]$		
Logitboost	$\{-1,1\}$	$\log(1 + \exp(-2yf(x)))$	$\frac{1}{2}\log\frac{\mathbf{P}(Y=1 X=x)}{1-\mathbf{P}(Y=1 X=x)}$		
Adaboost	$\{-1,1\}$	$\exp(-yf(x))$	$\frac{1}{2}\log\frac{\mathbf{P}(Y=1 X=x)}{1-\mathbf{P}(Y=1 X=x)}$		

- Dans **gbm** on utilise distribution=
 - gaussian pour le L_2 -boosting.
 - bernoulli pour logitboost.
 - adaboost pour adaboost.

Profondeur des arbres

- interaction.depth qui correspond au nombre de coupures \Longrightarrow nombre de feuilles J-1.
- On parle d'interaction car ce paramètre est associé au degrés d'interactions que l'algorithme peut identifier :

$$f^{\star}(x) = \sum_{1 \le j \le d} f_j(x_j) + \sum_{1 \le j,k \le d} f_{j,k}(x_j, x_k) + \sum_{1 \le j,k,\ell \le d} f_{j,k,\ell}(x_j, x_k, x_{\ell}) + \dots$$

- \Longrightarrow interaction.depth=
 - $-1 \Longrightarrow \text{premier terme}$
- $-2 \Longrightarrow$ second terme (interactions d'ordre 2)
- ...
- Boosting : réduction de biais.
- Nécessité d'utiliser des arbres biaisés ⇒ peu de coupures.

Recommandation

Choisir interaction.depth entre 2 et 5.

Nombre d'itérations

- Le *nombre d'arbres* n.trees mesure la complexité de l'algorithme.
- Plus on itère, mieux on ajuste \Longrightarrow si on itère trop, on sur-ajuste.
- Nécessité de *calibrer correctement* ce paramètre.

Comment?

Avec des méthodes classiques d'estimation du risque.

Sélection de n.trees dans gbm

- gbm propose d'estimer le risque associé au paramètre distribution par ré-échantillonnage:
 - bag.fraction pour du Out Of Bag.
 - train.fraction pour de la validation hold out.
 - cv.folds pour de la validation croisée.
- La valeur sélectionnée s'obtient avec **gbm.perf**.

Exemple

 \implies Risque quadratique estimé par hold out avec 75% d'observations dans l'échantillon d'apprentissage.

Rétrécissement

- shrinkage dans gbm.
- Correspond au pas de la descente de gradient : shrinkage ∧ ⇒ minimisation plus rapide.

Conséquence

shrinkage est lié à n.trees :

- shrinkage $\nearrow \Longrightarrow$ n.trees \searrow .
- shrinkage $\searrow \implies$ n.trees \nearrow .

Illustration

Remarque

Le nombre d'itération optimal diminue lorsque shrinkage augmente.

Recommandation

- Pas nécessaire de trop optimiser shrinkage.
- Tester 3 ou 4 valeurs (0.01, 0.1,0.5...) et regarder les *courbes de risque*.
- S'assurer que le *nombre d'itérations optimal* se trouve sur un "plateau" pour des raisons de *stabilité*.

2.3 Compléments/conclusion

Importance des variables

- Similaire aux *forêts aléatoires*.
- Score d'impureté :

$$\mathcal{I}_j^{\text{imp}} = \frac{1}{B} \sum_{b=1}^B \mathcal{I}_j(T_b).$$

Visualisation avec vip.

Comparaison Boosting/Forêts aléatoires

— Deux algorithmes qui agrègent des arbres :

$$f_n(x) = \sum_{b=1}^{B} \alpha_b T_b(x).$$

— Indépendance pour les forêts $\Longrightarrow T_b$ se construit indépendamment de T_{b-1} .

— Récursivité pour le boosting $\Longrightarrow T_b$ se construit à partir de T_{b-1} .

Interprétation statistique

- Boosting : réduction de biais ⇒ arbres peu profonds.
- Random Forest : réduction de variance ⇒ arbres très profonds.
- \implies les arbres sont ajustés de façon différente pour ces deux algorithmes. \implies dans les deux cas, il faut des arbres "mauvais".

2.4 Xgboost

- Pour Extreme Gradient Boosting [Chen and Guestrin, 2016]
- Version plus "sophistiquée" de l'algorithme de gradient boosting.
- *Idée* : ajouter de la régularisation dans le procédé itératif d'entrainement des arbres.

Références

- https://xgboost.readthedocs.io/en/stable/tutorials/model.html
- https://arxiv.org/pdf/1603.02754.pdf

Le problème d'optimisation

— On cherche toujours des *combinaisons d'arbres*

$$f_b(x) = f_{b-1}(x) + h_b(x)$$
 où $h_b(x) = w_{q(x)}$

est un arbre à T feuilles : $w \in \mathbb{R}^T$ et $q : \mathbb{R}^d \to \{1, 2, \dots, T\}$.

— À l'étape b, on cherche l'arbre qui minimise la fonction objectif de la forme

$$obj^{(b)} = \sum_{i=1}^{n} \ell(y_i, f_b(x_i)) + \sum_{j=1}^{b} \Omega(h_j)$$
$$= \sum_{i=1}^{n} \ell(y_i, f_{b-1}(x_i) + h_b(x_i)) + \sum_{j=1}^{b} \Omega(h_j)$$

où $\Omega(h_j)$ est un terme de régularisation qui va pénaliser h_j en fonction de son nombre de feuilles T et des valeurs prédites w.

— Un développement limité à l'ordre 2 donne

$$\ell(y_i, f_{b-1}(x_i) + h_b(x_i)) = \ell(y_i, f_{b-1}(x_i) + h_b(x_i)) + \ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)$$

οù

$$\ell_i^{(1)} = \frac{\partial \ell(y_i, f(x))}{\partial f(x)} (f_{b-1}(x_i)) \text{ et } \ell_i^{(2)} = \frac{\partial^2 \ell(y_i, f(x))}{\partial f(x)^2} (f_{b-1}(x_i)).$$

Conséquence

La fonction objectif peut se ré-écrire

$$obj^{(b)} = \sum_{i=1}^{n} [\ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)] + \Omega(h_b) + constantes.$$

La fonction de régularisation

- Elle doit prendre des *valeurs élevées* pour des arbres profonds et des valeurs ajustées élevées.
- On utilise généralement

$$\Omega(h) = \Omega(T, w) = \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j.$$

— Les paramètres γ et λ contrôlent le *poids* que l'on donne aux paramètres de l'arbre.

L'algorithme

Xgboost

- 1. Initialisation $f_0 = h_0$.
- 2. Pour b = 1, ..., B
 - (a) Ajuster un arbre h_b à T feuilles qui minimise

$$\sum_{i=1}^{n} \left[\ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)\right] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j.$$

(b) Mettre à jour

$$f_b(x) = f_{b-1}(x) + h_b(x).$$

3. Sortie: la suite d'algorithmes $(f_b)_b$.

Choix des paramètres

On donne ici les principaux paramètres (il existe des variantes) et leur équivalent dans la fonction **xgboost** du package **xgboost** :

- Fonction de perte (objective): idem au gradient boosting, par exemple
 - reg:squarederror : erreur quadratique $\ell(y, f(x)) = (y f(x))^2$.
 - reg:logistic: vraisemblance multinomiale
 - binary:logistic : vraisemblance binomiale avec les probabilités en sortie
- Nombre d'itérations (nrounds).
- Learning rate (eta): idem au gradient boosting pour la mise à jour

$$f_b(x) = f_{b-1}(x) + \text{eta}h_b(x).$$

- *Early stopping* (early_stopping_rounds): nombre d'itérations avant de stopper l'algorithme si il ne progresse pas.
- Profondeur des arbres (max_depth)
- $R\'{e}gularisation L_2$ (lambda)

— ...

Conclusion

- Plus général que le gradient boosting mais
- plus difficile à calibrer.
- Se révèle souvent *très efficace* si bien calibré.

Discussion/comparaison des algorithmes

	Linéaire	SVM	Réseau	Arbre	Forêt	Boosting
Performance				▼	A	A
Calibration	▼	▼	▼	A	A	A
Coût calc.	-	▼	▼	A	A	A
Interprétation	A	▼	▼		▼	▼

Commentaires

- Résultats pour données tabulaires.
- Différent pour données structurées (image, texte..) \Longrightarrow performance \nearrow réseaux pré-entrainés \Longrightarrow apprentissage profond/deep learning.

3 Bibliographie

Références

Références

- [Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2):123–140.
- [Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees. Wadsworth & Brooks.
- [Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '16, pages 785–794, New York, NY, USA. ACM.
- [Fernández-Delgado et al., 2014] Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? *Journal of Machine Learning Research*, 15:3133–3181.
- [Freund and Schapire, 1996] Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm. In *Proceedings of the Thirteenth International Conference on Machine Learning*.
- [Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 29:1189–1232.
- [Friedman, 2002] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 28:367–378.
- [Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, second edition.
- [Wright and Ziegler, 2017] Wright, M. and Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in c++ and r. Journal of Statistical Software, 17(1).