1.

模型计算机机器字长为8位

指令系统操作码长度为 4 位

机器指令的时序采用不定长机器周期方式(定长机器周期-每个机器周期包括 n 个节拍;不定长机器周期-每个机器周期包括的节拍数可以为 n 个可以为 m 个)

TEC-8 执行一条【微指令】需要 3 个节拍脉冲,因为其计算机时序采用不定长机器周期,故绝大多数【机器指令】采用两个机器周期 W1、W2,少数【机器指令】采用一个机器周期 W1或三个机器周期 W1、W2、W3

按下启动按钮 OD 后(单微指令方式),则产生一组节拍脉冲 T1、T2、T3

2.

独立: 开关产生控制信号(这个和硬连线不同的是它连线是连接的电平开关 K31~K0, 实际过程中还要一步一步调节开关来产生控制信号)

微程序: 微程序控制器产生控制信号(利用机器指令进行编程)

硬布线:通过硬连线控制器产生控制信号(整个课程都没有使用过)

实验台面板:连线的界面,因为看不到数据流动方式所以基本上不看

框图界面: TEC-8 内部各个部件的界面, 常用于观察数据流动

3.算术逻辑单元 ALU

对 A 端口的 8 位数和 B 端口的 8 位数进行加减与或及数据传送 5 种运算产生 8 位数据结果,进位标志 C 和结果为 0 标志 Z

R-P。 NMAs-NMA。 NAS-NAO (此处就是《微蜡》地址) (RAMASAROUU)(RAMASAROUU)(RAMASAROUU)(RAMASAROUU)(RAMASAROUU)(RAMASAROUU)(RAMASAROUU)(RAMASAROUU)

(PBUS上的能数) (ALUA) (ALUB) 建刻 D7-D0 A7-A0 B7-B0

; PDLS L的 IT - PO 3 \ PC 表 1.2 TEC-8 模型计算机指令系统

kt He	DI-27 //	74. 6K	指令格式		
名称	助记符	功能	IR (7-4)	IR (3-2)	IR (1-0)
加法	ADD Rd, Rs	Rd ← Rd + Rs	0001	Rd	Rs
减法	SUB Rd, Rs	Rd ← Rd - Rs	0010	Rd	Rs
逻辑与	AND Rd, Rs	Rd ← Rd and Rs	0011	Rd	Rs
加 1	INC Rd	Rd ← Rd + 1	0100	Rd	XX
取数	LD Rd, [Rs]	Rd ← [Rs]	0101	Rd	Rs
存数	ST Rs, [Rd]	Rs → [Rd]	0110	Rd	Rs
C条件转移	JC addr	C=1,则 PC←@ + offset	0111	offset	
Z条件转移	JZ addr	Z=1,则 PC←@ + offset	1000	offset	
无条件转移	JMP [Rd]	PC ← Rd	1001	Rd	XX
输出	OUT Rs	DBUS ← Rs	1010	XX	Rs
中断返回	IRET	返回断点	1011	XX	XX
关中断	DI	禁止中断	1100	XX	XX
开中断	EI	允许中断	1101	XX	XX
停机	STP	暂停运行	1110	XX	XX

5.信号灯

1、与运算器有关的指示灯

信号名称	信号灯符号	备 注
数据总线指示灯	D7 [∼] D0	
运算器 A 端口指示灯	A7~A0	
运算器 B 端口指示灯	B7 [~] B0	
进位信号指示灯	С	
结果为0信号指示灯	Z	

2、与存储器有关的指示灯

4- F 4-41.	b. 0 les bb. 0	h 11
信号名称	信号灯符号	备 注
程序计数器指示灯	PC7~PC0	
地址指示灯	AR7~AR0	
存储器右端口数据指示灯	INS7~INS0	
指令寄存器指示灯	IR7~IR0	
双端口存储器右端口数据指示灯	INS7~INS0	

3、与微程序控制器有关的信号指示灯

在使用微程序控制器时,控制信号指示灯指示微程序控制器产生的控制信号以及后继微地址 NµA5~NµA0 和判别位 P4~P0, 微地址指示灯指示当前的微地址 µA5~µA0; 微地址指示灯 µA5~µA0、后继微地址 NµA4~NµA0 和判别位指示灯 P4~P0 只在微程序控制器方式下有实际意义,在硬布线控制器和独立方式下没有实际意义。

信号名称	信号灯符号	备 注
微地址指示灯	μΑ5 [~] μΑ0	
后继微地址指示灯	NµA5 [~] NµA0	
判别位指示灯	P4~P0	

6.控制信号/微命令

微程序流程图

图 2.6 TEC-8 模型计算机微程序流程图

6.1 运算器实验

序列号	信号名	功能说明		
1	S3, S2, S1, S0	控制 74LS181 的运算类型		
2	CIN	低位 74LS181 的进位输入		
3	SEL3、SEL2(RD1、RD0)	选择送 ALU 的 A 端口的寄存器		
4	SEL1、SEL0(RS1、RS0)	选择送 ALU 的 B 端口的寄存器		
5	DRW	=1 时,在 T3 上升沿对 RD1、RD0 选中的寄存器进行写操作,将数据总线 DBUS 上的数 D7~D0 写入选定的寄存器		
6	SETCTL	=1 时,实验系统处于实验台状态。 =0 时,实验系统处于运行程序状态		
7	SBUS	=1 时,将运算结果送数据总线 DBUS =0 时,禁止运算结果送数据总线 DBUS		
8	ABUS	=1 时,将运算结果送数据总线 DBUS		
9		=0 时,禁止运算结果送数据总线 DBUS		
10	M	运算模式:M=0 为算术运算; M=1 逻辑运算;		
11	LDZ	=1 时,如果运算结果为 0,在 T3 的上升沿,将 1 写入到 Z 标志寄存器;如果运算结果不为 0,将 0 保存到 Z 标志寄存器。		
12	LDC	=1 时,在 T3 的上升沿将运算得到的进位保存到 C 标志寄存器。		
13	A7~A0	送往 ALU 的 A 端口的数		
14	B7 [~] B0	送往 ALU 的 B 端口的数		
15	D7~D0	数据总线 DBUS 上的 8 位数		
16	С	进位标志		
17	Z	结果为0标志		

上述信号都有对应的指示灯。当指示灯灯亮时,表示对应的信号为 1; 当指示灯不亮时,对应的信号为 0

6.2 存储器实验

名 称	功 能 说 明		
D7~D0	数据总线 DBUS 上的数。		
PCINC	=1 时,在 T3 的上升沿 PC 加 1。		
AR7~AR0	双端口 RAM 左端口存储器地址。		
ARINC	=1 时,在 T3 的上升沿, AR 加 1。		
PC7~PC0	双端口 RAM 右端口存储器地址。		
SBUS	=1 时,数据开关 SD7~SD0 的数送数据总线 DBUS。		
MBUS	=1 时,将双端口 RAM 的左端口数据送到数据总线 DBUS。		
INS7~INS0	从双端口 RAM 右端口读出的指令,本实验中作为数据使用。		
LAR	=1 时,在 T3 的上升沿,将数据总线 DBUS 上的 D7~D0 写入地址寄存器 AR。		
LPC	LPC 当它为 1 时,在 T3 的上升沿,将数据总线 DBUS 上的 D7 D0 写入程序计数器 PC。		
MEMW =1 时,在 T2 为 1 期间将数据总线 DBUS 上的 D7~D0 写入双端口 RAM 写入的储器单元由 AR7~AR0 指定。			
LIR	=1 时,在 T3 的上升沿将从双端口 RAM 的右端口读出的指令 INS7~INS0 写入指令寄存器 IR。读出的存储器单元由 PC7~PC0 指定。		

上述信号都有对应的指示灯。当指示灯灯亮时,表示对应的信号为 1; 当指示灯不亮时,对应的信号为 0

6.3 数据通路实验

M, S3, S2, S1, S0	控制 74LS181 的算术逻辑运算类型。		
CIN	低位 74LS181 的进位输入。		
SEL3 (RD1)	选择送 ALU 的 A 端口的寄存器和被写入的寄存器。		
SEL2 (RD0)			
SEL1 (RS1)			
SEL0 (RS0)	选择送往 ALU 的 B 端口的寄存器。		
DRW	=1 时,在 T3 上升沿对 RD1、RD0 选中的寄存器进行写操作,将数据总线 DBUS 上的数 D7~D0 写入选定的寄存器。		
ABUS	=1 时,将运算结果送数据总线 DBUS,		
ABUS	=0 时,禁止运算结果送数据总线 DBUS。		
SBUS	=1 时,将运算结果送数据总线 DBUS,		
2002	=0 时,禁止运算结果送数据总线 DBUS。		
A7~A0	送往 ALU 的 A 端口的数。		
B7 [∼] B0	送往 ALU 的 B 端口的数。		
D7~D0	数据总线 DBUS 上的 8 位数。		
MBUS	=1 时,将双端口 RAM 的左端口数据送到数据总线 DBUS。		
MEMW	=1 时,在 T2 为 1 期间将数据总线 DBUS 上的 D7~D0 写入双端口 RAM,写入的存储器单元由 AR7~AR0 指定。		
LPC	=1 时,在 T3 的上升沿,将数据总线 DBUS 上的 D7~D0 写入程序计数器 PC。		
PCINC	=1 时,在 T3 的上升沿 PC 加 1。		
LAR	=1 时,在 T3 的上升沿,将数据总线 DBUS 上的 D7~D0 写入地址寄存器 AR。		
ARINC	=1 时,在 T3 的上升沿,AR 加 1。		
SBUS	=1 时,数据开关 SD7~SD0 的数送数据总线 DBUS。		
AR7~AR0	双端口 RAM 左端口存储器地址。		
PC7~PC0	双端口 RAM 右端口存储器地址。		
INS7~INS0	从双端口 RAM 右端口读出的指令,本实验中作为数据使用。		
SETCTL	=1 时,实验系统处于实验台状态。 =0 时,实验系统处于运行程序状态。		

上述信号都有对应的指示灯。当指示灯灯亮时,表示对应的信号为 1; 当指示灯不亮时,对应的信号为 0

6.4 微程序控制实验

L.	
NµA5~NµA0	下址,在微指令顺序执行的情况下,它是下一条微指令的地址
P0	=时,根据后继微地址 NµA5~NµA0 和模式开关 SWC、SWB、SWA 确定下一条微
10	指令的地址。见图 2.6 微程序流程图
P1	=1 时,根据后继微地址 ΝμΑ5~ΝμΑ0 和指令操作码 IR7~IR4 确定下一条微指
11	令的地址。见图 2.6 微程序流程图。
P2	=1 时,根据后继微地址 NµA5~NµA0 和进位 C 确定下一条微指令的地址。见
12	图 2.6 微程序流程图。
P3	=1 时,根据后继微地址 NµA5~NµA0 和结果为 0 标志 Z 确定下一条微指令的
15	地址。见图 2.6 微程序流程图。
P4	=1 时,根据后继微地址 NµA5~NµA0 和中断信号 INT 确定下一条微指令的地
14	址。模型计算机中,中断信号 INT 由时序发生器在接到中断请求信号后产生。
ST0P	=1 时,在 T3 结束后时序发生器停止输出节拍脉冲 T1、T2、T3。
LIAR	=1 时,在 T3 的上升沿,将 PC7~PC0 写入中断地址寄存器 IAR。
INTDI	=1 时,置允许中断标志(在时序发生器中)为0,禁止TEC-8模型计算机响应
TIVIDI	中断请求
INTEN	=1 时,置允许中断标志(在时序发生器中)为1,允许TEC-8模型计算机响应
LINTEIN	中断请求
IABUS	=1 时,将中断地址寄存器中的地址送数据总线 DBUS。
PCADD	=1 时,将当前的 PC 值加上相对转移量,生成新的 PC。

这是本次实验运行的程序(微程序集合,已经将十六进制给出了),但是指导书上的和实际 PPT 上(阿伟给的)有一点不一样,以 PPT 的为准,还有一点不同的就是 R2 和 R3 分别是 18 和 10 并不是 12 和 OF? 为什么 PPT 上还有 12 和 10? 真是服了

地址	指令	机器 16 进制代码
00Н	LD RO, [R3]	0101 0011 【53】
01H	INC R3	0100 1100 【4C】
02H	LD R1, [R3]	0101 0111 【57】
03H	SUB RO, R1	0010 0001 【21】
04H	JZ OBH	1000 0110 [86]
05H	ST R0, [R2]	0110 1000 [68]
06H	INC R3	0100 1100 【4C】
07H	LD RO, [R3]	0101 0011 【53】
08H	ADD RO, R1	0001 0001 【11】
09Н	JC OCH	0100 0010 [72]
OAH	INC R2	0100 1000 【48】
OBH	ST R2, [R2]	0110 1010 [6A]
OCH	AND RO, R1	0011 0001 【31】
ODH	OUT R2	1010 0010 【A2】
0EH	STP	1110 0000 [E0]
0FH	85H	1000 0101 【85】
10H	23Н	0010 0011 【23】
11H	0EFH	1110 1111 [EF]
12H	00H	0000 0000 [00]

CPU组成与机器指令的执行

	8					
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	地址	指令	机器码	地址	指令	机器码
	00H	LD R0, [R3]		OAH	INC R2	
	01H	INC R3		овн	ST R2, [R2]	
	02H	LD R1, [R3]		осн	AND Ro, R1	
	03H	SUB Ro, R1		ODH	OUT R2	
	04H	JZ 0BH		0EH	STP	
	05H	ST R0, [R2]		ofH	00	
	06H	INC R3		10H	85H (0A7H)	
	07H	LD R0, [R3]		11H	23H (83H)	
	08H	ADD Ro, R1		12H	0EFH (24H)	
	09H	JC 0CH				