To work with binary numbers, it is important to know the following **powers of 2**.

 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7

Practice writing each power of 2 using the exercise outlined below.

Directions: Copy a sequence of numbers from below into the column labeled n of a table on the next page. Then write the corresponding power of 2 by finding 2^n .

0 5 3 1 4 2 6 7	$6\; 1\; 5\; 3\; 4\; 0\; 7\; 2$	$6\ 7\ 2\ 1\ 3\ 5\ 0\ 4$
$6\ 1\ 3\ 5\ 2\ 7\ 4\ 0$	$1\ 0\ 7\ 2\ 6\ 5\ 3\ 4$	$1\ 2\ 6\ 5\ 0\ 7\ 3\ 4$
5 3 6 0 2 4 1 7	$0\; 5\; 3\; 1\; 2\; 4\; 7\; 6$	7 1 0 6 5 2 3 4
06145327	$4\ 0\ 1\ 6\ 2\ 3\ 7\ 5$	$0\ 7\ 3\ 1\ 6\ 2\ 5\ 4$
$0\ 5\ 3\ 1\ 4\ 2\ 6\ 7$	$6\ 1\ 5\ 3\ 4\ 0\ 7\ 2$	$6\ 7\ 2\ 1\ 3\ 5\ 0\ 4$

n	2^n		n	2^n	n	2^n		n	2^n
							-		
							-		
							-		
		_					-		
							-		
		_					-		
		_					-		
							-	•	
$\underline{}$	2^n		n	2^n	 n	2^n	-	n	2^n
							-		
							-		
							-		
		_					-		
		_					-		
							-		
							-		
n	2^n		n	2^n	n	2^n		n	2^n
							-		
							-		
							-		
							-		
							-		
		_					-		
							-		

Converting 8 digit binary numbers to decimal

Recall: In Part 1, we added each place value with a 1.

Example: Convert $\mathbf{1}\ \mathbf{0}\ \mathbf{0}\ \mathbf{1}\ \mathbf{1}\ \mathbf{0}\ \mathbf{0}\ \mathbf{1}$ to decimal.

$$128 + 16 + 8 + 1 = 153$$

Example: Convert 0 1 1 1 0 1 0 0 to decimal.

$$64 + 32 + 16 + 4 = 116$$

Quick Practice: Convert the following binary numbers to decimal numbers as shown above. You may use a table with binary place values. $\frac{2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0}{128 \quad 64 \quad 32 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1}$

$$0\ 0\ 1\ 0\ 0\ 1\ 1\ 0$$

$$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1$$

$$1\; 1\; 1\; 1\; 0\; 1\; 0\; 0$$

$$0\ 0\ 0\ 1\ 0\ 0\ 1\ 1$$

$$0\ 1\ 1\ 0\ 1\ 0\ 0$$

$$0\ 1\ 1\ 1\ 1\ 1\ 0\ 1$$

Find more practice exercises at the end of this guide.

Tips and Shortcuts

Notice that all the numbers below have 1 digits in the rightmost place values. There is a pattern for finding the decimal value of these 8 numbers.

$$00000001 = 1$$
 $00011111 = 31$ $00000011 = 3$ $00111111 = 63$ $00111111 = 127$ $00001111 = 15$ $11111111 = 255$

Each of the decimal values is 1 less than the next power of 2.

Tip 1: Learn the sum of the place values from left to right.

Converting from Decimal to Binary

Tip 1:Do the fewest number of computations.

It's tempting to start to add all the place values, but there could be an easier route to take.

Consider the number:

11111110

We may begin adding 7 place values together, but there is a faster way.

Recall that: 111111111 = 255

254 is 1 less than 255.

Change 1 to 0 in the place value 1.

111111110

Directions: To use the technique shown above:

- 1. Find a known binary number that is close to the decimal number being converted.
- 2. Change digits to reach the decimal number.

Example: Convert 123 to binary.

Notice that 123 is close to 127

127 = 01111111

Since 128 - 1 = 127.

127 is 4 more than 123

Change the place value 4 in **01111 1 1**

127 = 01111 0 11

Example Convert 55 to binary.

Notice that 63 is close to 57

63 = 00111111

Since 64 - 1 = 63.

63 is 6 more than 57

Change the place value 4 and 2 in **00111 1 1 1 1 5** $7 = 00111 \ 0 \ 1$

Going Backwards

We can also convert from decimal to binary using our table of binary place values.

Example: Convert 145 to binary.

$$128 > 145$$
 so place a 1 in the 128 place

Add the next place value.

$$128 + 64 = 192$$

$$192 > 145$$
 so place a 0

Add next place value.

$$128 + 32 = 160$$

$$160 > 145$$
 so place a 0

Add the next place value.

$$128 + 16 = 144$$

$$144 < 145$$
 so place a 1

From here, we can notice that we only need to add the place value of 1 to get from 144 to our desired 145.

$$144 + 1 = 145$$

Or we can continue adding the next place value to 144.

Add the next place value.

$$144 + 8 = 152$$

152 > 145 so place a 0

Add the next place value.

$$144 + \boxed{4} = 148$$

148 > 145 so place a 0

Add the next place value.

$$144 + 2 = 151$$

151 > 145 so place a 0

Add the next place value.

$$144 + 1 = 145$$

145 = 145 so place a 1

145 = 10010001

Tip: Learn the sum of the place values from left to right.

Tip: Learn the sum of the place numbers from right to left.

00000001 = 1	1 = 2 - 1
00000011 = 3	3 = 4 - 1
00000111 = 7	7 = 8 - 1
00001111 = 15	15 = 16 - 1
00011111 = 31	31 = 32 - 1
11111100 = 63	63 = 64 - 1
01111111 = 127	127 = 128 - 1
11111111 = 255	255 = 256 - 1

Converting 8 Digit Binary Numbers

$0\ 1\ 0\ 1\ 0\ 0\ 1\ 1 =$	$0\ 1\ 1\ 0\ 0\ 1\ 0\ 1 =$	1 0 1 0 1 1 0 0 =
1 1 0 0 0 1 1 1	1 1 1 0 0 1 1 1	0 0 1 0 1 0 1 1
1 1 1 1 0 1 1 1	0 0 1 1 1 0 1 0	0 1 0 1 0 1 1 1
00000110	0 0 0 0 1 1 0 1	1 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0	1 0 0 1 0 0 0 1	11110000
0 1 0 0 1 1 0 0	0 0 0 1 1 1 1 0	00011011
0 0 0 1 1 1 0 0	0 0 1 0 1 0 1 0	11101010
0 1 0 0 1 1 0 1	1 1 0 0 1 0 1 0	10110100
1 0 1 1 0 0 1 1	0 0 1 0 1 0 1 1	1 1 1 0 0 1 1 1

Converting 8 Digit Binary Numbers

0 1 1 0 0 0 0 1	10010100	0 0 1 0 0 0 0 1
1 1 1 0 0 0 1 1	0 0 1 0 0 1 0 1	00011000
00000101	1 1 0 0 1 1 0 1	0 1 1 0 0 1 0 1
01011111	0 1 1 1 1 0 1 0	00001010
10011010	0 1 0 0 1 0 0 0	00010110
10011001	0 1 1 1 1 0 0 0	0 1 0 1 0 0 0 1
10110000	11101010	0 1 1 1 0 1 1 0
1 1 0 0 0 0 0 0	11101000	00011010
0 0 0 0 1 1 1 0	0 1 0 1 0 1 1 1	10100101

Converting 8 Digit Binary Numbers Practice

0 0 1 1 1 0 0 0	1 1 1 1 1 0 1 1	0 1 1 0 1 0 0 1
10010101	10101100	10110111
1 1 0 1 1 0 0 0	1 0 1 1 1 0 1 0	1 1 0 1 1 0 1 0
10110100	1011111	10111110
10000110	0 0 1 1 0 1 0 0	11101011
0 0 1 1 0 1 1 1	00101101	00000011
10001111	00010111	11011001
0 0 1 1 0 1 1 0	10100100	01000001
1 0 1 0 1 0 1 0	1 0 0 1 1 1 0	0 0 1 1 1 0 1 0

Converting decimal to binary numbers

Converting decimal to binary numbers

Converting decimal to binary numbers

Directions: Convert the following decimal numbers to binary in the manner shown above.

12 94

111 118

88 120

160 240

11 49

80 168

89 120

158 217