## Printed Pages: 3



**ECS403** 

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 110407

Roll No.

## B. Tech.

(SEM. IV) THEORY EXAMINATION, 2014-15

## THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours [Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

- 1 Attempt any four parts of the following. 5x4=20
  - (a) Let  $L_1$  be some language over  $\Sigma$  and  $L_2 = \Phi$ . Then prove that
    - (i)  $L_1.L_2 \neq L_1$  (ii)  $L_1+L_2 \neq \Phi$
  - (b) For regular expression prove that,  $(a+b)^* \neq a^*+b^*$
  - (c) Construct a DFA accepting all strings over alphabet set  $\Sigma = \{0,1\}$  that are ended with 00.
  - (d) Describe the language to the given regular expression (1+01)\*(0+01)\*
  - (e) Define the language of a NFA with  $\epsilon$ -moves.
  - (f) Describe the language accepted by the following finite automaton.

| State           | Input Symbol |   |
|-----------------|--------------|---|
|                 | a            | b |
| $\rightarrow$ P | Q            | R |
| *Q              | R            | P |
| R               | R            | R |

- 2 Attempt any two parts of the following. 10x2=20
  - (a) What is a regular expression? Construct a DFA for the regular expression (00+001)\*1.
  - (b) Prove that the given set of language is not regular.

$$L = \{0^n \ 1 \ 0^n \ | n \ge 1\}$$

- (c) Describe the closure properties of regular languages. Prove that regular languages are closed under complementation.
- 3 Attempt any two parts of the following. 10x2=20
  - (a) Construct the context free language (CFL) for the language  $\{a^n b^n | n \ge 0\}$ .
  - (b) Prove that the given language L is derived from a context free grammer.

$$L = \{a^i \ b^j \ c^j \mid i, j \ge 1\}$$

- (c) (i) Show that the CFG with productions  $S \to a \mid S \mid a \mid b \mid S \mid S \mid S \mid b \mid S \mid b \mid S$  is ambiguous.
  - (ii) Prove that every regular language is a CFL.
- 4 Attempt any two parts of the following. 10x2=20
  - (a) Define a push down automation (PDA). Describe the language of a PDA.
  - (b) Construct the PDA for the language  $L=wcw^R | w$  in  $\{a,b\}$ , where R stands for reverse string.
  - (c) Let G be a CFG and its language is L(G). How do you decide that L (G) is finite?

- 5 Attempt any two parts of the following. 10x2=20
  - (a) Define a Turing machine. Construct a Turing machine for the language

$$L=\{w \ c \ w \mid \{a,b\}^*\}$$

- (b) Construct a Turing machine for the integer function that computes addition of two integers, i.e., if x and y are two integers then f(x,y) = x + y.
- (c) Define the recursive language. Do you agree that every recursive language is recursive enumerable? Justify your answer.