Le champ électrostatique

Distribution de charges électriques

Propriétés de la charge

La charge est quantifiée (Q = ke) grandeur extensive, conservative, et scalaire.

2. Distributions de charges

Général	Volumique	Surfacique	Linéique
$Q = \int d^x q$	$Q = \iiint_V \rho(P) \ d^3 \tau_P$	$Q = \iint_{S} \sigma(P) \ d^{2}S_{P}$	$Q = \int_{L} \lambda(P) \ dl_{P}$

Une charge est considérée comme ponctuelle si la distance de la distribution est négligeable par rapport à la distance avec l'observateur.

Le champ électrostatique II.

Distribution discrète de charges

$$\overline{f_{1,\dots,N\to t}} = q_t \sum_{i=1}^{N} \overline{E_i}(M) = q_t \vec{E}(M) \qquad \overline{E_i}(M) = \frac{q_i}{4\pi\varepsilon_0} \frac{\overline{P_iM}}{P_iM^3}$$

2. Distribution continue de charges

Différentielle	Volumique	Surfacique	Linéique
$d^x \vec{E}(M) = \frac{d^x q}{4\pi\varepsilon_0}$	$\vec{E}(M) = \iiint_{V} d^{3}\vec{E}(M)$ $\forall M$	$\vec{E}(M) = \iint_{S} d^{2}\vec{E}(M)$ $\forall M \notin S$	$\vec{E}(M) = \int_{L} d\vec{E}(M)$ $\forall M \notin L$

3. Théorème de Gauss

 V_{dist} dist. volumique S_{Gauss} surface qcque englobant V_{Gauss} $P \in V_{dist}$ $M \in S_{Gauss}$ Soient

$$\phi = \iint_{S_{Gauss}} \vec{E}(M) \cdot d^2 S_M = \iiint_{V_{Gauss}} \frac{\rho(P)}{\varepsilon_0} d^3 \tau_P = \frac{Q_{Gauss}}{\varepsilon_0}$$

$$\text{div}_P \vec{E}(P) = \frac{\rho(P)}{\varepsilon_0}$$

$$\operatorname{div}_{P} \vec{E}(P) = \frac{\rho(P)}{\varepsilon_{0}}$$

v1

III. Invariances

Distribution identique $\forall z \Rightarrow E(x, y, z)$ identique $\forall z$. Translation: Distribution identique $\forall \varphi \Rightarrow E(\rho, \varphi, z)$ identique $\forall \varphi$. **Rotation:**

IV. Symétries

 $\vec{E} \in (\text{plan de symétrie})$ • Symétrie plan : $\vec{E} \in (axe de symétrie)$ Symétrie axiale : • Antisymétrie plane : $\vec{E} \perp$ (plan de symétrie)

Discontinuité de la composante normale du champ à la traversée d'une surface chargée

$$\lim_{\substack{M_1 \to M \\ M_2 \to M}} \left[\vec{E}(M_2) - \vec{E}(M_1) \right] = \frac{\sigma(M)}{\varepsilon_0} \; \overrightarrow{n_{1 \to 2}}$$