Three-Dimensional Model of Oculomotor Control in Nengo

George Tzoganakis

University of Waterloo

March 31, 2016

System Description

Experimental data supports the presence of an integrator converting velocity signals of pons and midbrain to position signals in driving the eye.

- Argued by some that integrator cannot generalize to three dimensions due to non-commutativity
 - ► However this leads to non-biologically plausible models
- Kinematic model of eye
 - Soft tissue sheaths or 'pulleys' in orbital tissue affecting dynamics
- Feedback system
 - Loop parameters

Implementation: overview

- For biological plausibility, need to develop a relationship between torque driving the eye and orientation in the head
- Orientation represented by a rotation from the primary position

$$R(t) = \begin{bmatrix} \alpha_{11}(t) & \alpha_{12}(t) & \alpha_{13}(t) \\ \alpha_{21}(t) & \alpha_{22}(t) & \alpha_{23}(t) \\ \alpha_{31}(t) & \alpha_{32}(t) & \alpha_{33}(t) \end{bmatrix}$$

using Euler's theorem $(\Phi \text{ about } \hat{n})$

- Eye and surrounding tissue can be represented by a second-order system (overdamped, $\tau = 0.15s$)
- ▶ Restorative torque given as $T(R) = -K\Phi(R)\hat{n}(R)$

Implementation: feedback structure

- ▶ Three-dimensional extension of course example integrator
- Require a transduction matrix M to go from torque vector (commutative) to orientation (noncommutative)

Figure: System diagram.

Some considerations

- How well does this model match experimental data?
- ▶ Will it apply equally well to saccadic and slow eye movement data?
- Does it obey Listing's law? How well?

References

Raphan et al. (1994).

Modeling Three-Dimensional Velocity-to-Position Transformation in Oculomotor Control *Journal of Neurophysiology*, 71(2):623–38.

Raphan (1998).

Modeling Control of Eye Orientation in Three Dimensions. I. Role of Muscle Pulleys in Determining Saccadic Trajectory *Journal of Neurophysiology*, 79(5):2653–67.