Note del corso di Geometria 1

Gabriel Antonio Videtta

24 marzo 2023

Autospazi generalizzati e decomposizione di Fitting per la forma canonica di Jordan

Nota. Nel corso del documento, per f si intenderà un generico endomorfismo di $\operatorname{End}(V)$, e per V verrà inteso uno spazio vettoriale di dimensione finita n su un campo $\mathbb K$ algebricamente chiuso, qualora non specificato diversamente.

Sia $f \in \text{End}(V)$. Si osservino allora le seguenti catene ascendenti:

$$\{\underline{0}\} \subsetneq \operatorname{Ker} f \subsetneq \operatorname{Ker} f^2 \subsetneq \cdots \subsetneq \operatorname{Ker} f^{k-1} \subsetneq \operatorname{Ker} f^k = \operatorname{Ker} f^{k+1} = \cdots, \quad (1)$$

$$\{\underline{0}\} \subsetneq \operatorname{Im} f \subsetneq \operatorname{Im} f^2 \subsetneq \cdots \subsetneq \operatorname{Im} f^{k-1} \subsetneq \operatorname{Im} f^k = \operatorname{Im} f^{k+1} = \cdots,$$
 (2)

Sia la (1) che la (2) devono stabilizzarsi allo stesso $k \in \mathbb{N}$, per la cosiddetta decomposizione di Fitting. Sempre per tale decomposizione vale in particolare che:

$$V = \operatorname{Ker} f^k \oplus \operatorname{Im} f^k.$$

Osservazione. Si possono fare alcune osservazioni riguardo la decomposizione di Fitting.

- ▶ Sia Ker f^k che Im f^k sono f-invarianti: $\underline{v} \in \text{Ker } f^k \implies f^k(f(\underline{v})) = f(f^k(\underline{v})) = \underline{0} \implies f(\underline{v}) \in \text{Ker } f^k \in \underline{v} \in \text{Im } f^k \implies \underline{v} = f^k(\underline{w}), f(\underline{v}) = f(f^k(\underline{w})) = f^k(f(\underline{w})) \in \text{Im } f^k.$
- ▶ $f|_{\operatorname{Ker} f^k}$ è nilpotente: $(f|_{\operatorname{Ker} f^k})^k = f^k|_{\operatorname{Ker} f^k} = 0$.
- ▶ $f|_{\operatorname{Im} f^k}$ è invertibile: Ker $f|_{\operatorname{Im} f^k} = \operatorname{Ker} f \cap \operatorname{Im} f^k \subseteq \operatorname{Ker} f^k \cap \operatorname{Im} f^k = \{\underline{0}\}$, e quindi $f|_{\operatorname{Im} f^k}$ è iniettiva; quindi $f|_{\operatorname{Im} f^k}$ è anche invertibile, essendo un endomorfismo.
- ▶ Poiché $f|_{\operatorname{Ker} f^k}$ è nilpotente, $p_{f|_{\operatorname{Ker} f^k}}(\lambda) = \lambda^d$, dove $d = \dim \operatorname{Ker} f^k$.

Inoltre $\varphi_{f|_{\operatorname{Ker} f^k}}(\lambda) = \lambda^k$: se infatti $\varphi_{f|_{\operatorname{Ker} f^k}}(\lambda) = \lambda^t$ con t < k, varrebbe sicuramente che $f|_{\operatorname{Ker} f^k}{}^{k-1} = f^{k-1}|_{\operatorname{Ker} f^k} = 0$, ossia che Ker $f^k \subseteq \operatorname{Ker} f^{k-1}$, violando la minimalità di k, ℓ .

Dal momento che vale la decomposizione di Fitting e che $\varphi_{f|_{\operatorname{Ker}f^k}}$ e $\varphi_{f|_{\operatorname{Im}f^k}}$ sono coprimi tra loro (il primo è diviso solo da t, mentre il secondo non è diviso da t), $\varphi_f = \operatorname{mcm}(\varphi_{f|_{\operatorname{Ker}f^k}}, \varphi_{f|_{\operatorname{Im}f^k}}) = \varphi_{f|_{\operatorname{Ker}f^k}} \varphi_{f|_{\operatorname{Im}f^k}}$. Si conclude quindi che $k = \mu'_a(0)$ rispetto a φ_f , ossia la molteplicità algebrica di 0 in tale polinomio. Analogamente si osserva che $t = \mu_a(0)$ rispetto a p_f , ossia la molteplicità algebrica dell'autovalore 0 in f, e quindi che $\mu_a(0) \geq k$, \blacktriangleright Considerando l'endomorfismo $g = f - \lambda \operatorname{Id}$, si osservano facilmente alcune analogie tra le proprietà determinanti di g e di f: $p_g(t) = \det(f - \lambda \operatorname{Id} - t \operatorname{Id}) = \det(f - (\lambda + t)\operatorname{Id}) = p_f(\lambda + t) \implies \mu_{a,g}(0) = \mu_{a,f}(\lambda)$. Si possono dunque riscrive i precedenti risultati in termini delle molteplicità di un generico

Reiterando la decomposizione di Fitting (o applicando il teorema di decomposizione primaria), si ottiene infine la seguente decomposizione di V:

autovalore di f considerando la molteplicità di 0 in g.

$$V = \operatorname{Ker}(f - \lambda_1 \operatorname{Id})^{\mu_a(\lambda_1)} \oplus \cdots \oplus \operatorname{Ker}(f - \lambda_m \operatorname{Id})^{\mu_a(\lambda_m)},$$

dove m è il numero di autovalori di V. Si può riscrivere questa identità ponendo $n_i := \mu'_{\sigma}(\lambda_i)$ in φ_f :

$$V = \operatorname{Ker}(f - \lambda_1 \operatorname{Id})^{n_1} \oplus \cdots \oplus \operatorname{Ker}(f - \lambda_m \operatorname{Id})^{n_m}.$$

Definizione. Si definisce autospazio generalizzato relativo all'autovalore λ_i di f, lo spazio:

$$\widetilde{V_{\lambda_i}} = \operatorname{Ker}(f - \lambda_i \operatorname{Id})^{\mu_{a,f}(\lambda_i)} = \operatorname{Ker}(f - \lambda_m \operatorname{Id})^{n_m}.$$

Osservazione. Riguardo alla decomposizione primaria di V e agli autospazio generalizzati di f si possono fare alcune osservazioni aggiuntive.

- ▶ Si può riscrive la decomposizione primaria di V in termini degli autospazi generalizzati di f come $V = \bigoplus_{i=1}^m \widetilde{V_{\lambda_i}}$.
- ▶ Vale in particolare che $\widetilde{V_{\lambda_i}} = \{\underline{v} \in V \mid \exists k \in \mathbb{N} \mid (f \lambda_i \mathrm{Id})^k(\underline{v}) = \underline{0}\} = \bigcup_{k=0}^{\infty} \mathrm{Ker}(f \lambda_i \mathrm{Id})^k$, tenendo in conto la decomposizione di Fitting e la minimalità di n_i .
- ▶ Considerando la traslazione vista nell'ultima osservazione, si deduce che

 $\operatorname{Ker}(f - \lambda_i \operatorname{Id})^{n_i}$ ammette come unico autovalore λ_i (separazione degli autovalori).

- ▶ Poiché f è diagonalizzabile se e solo se $V = \bigoplus_{i=1}^m \operatorname{Ker}(f \lambda_i \operatorname{Id})$, si può dedurre un altro criterio per la diagonalizzabilità, ossia f diagonalizzabile $\longleftarrow n_i = 1 \ \forall i \leq m$.
- Del precedente criterio vale anche il viceversa: se f è diagonalizzabile e $\lambda_1, \ldots, \lambda_k$ sono i suoi autovalori, V ammette una base di autovettori; dati allora gli indici i_p che associano ogni vettore $\underline{v_p}$ all'indice del suo rispettivo autovalore, allora sia $\underline{v_1}^{(\lambda_{i_1})}, \ldots, \underline{v_n}^{(\lambda_{i_n})}$ una base di V. Poiché $q(t) = \prod_{i=1}^k (t \lambda_i)$ è tale che q(f) si annulla in ogni vettore della base e ogni suo fattore lineare è composto da un autovalore di f ed è distinto, deve valere che $\varphi_f = q$.

Esercizio 1. Si calcoli il polinomio minimo di $A = \begin{pmatrix} 0 & -2 & 0 & -2 & 1 \\ 1 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 2 & 0 & 2 & 0 \end{pmatrix}$.

Soluzione. Innanzitutto, si calcola il polinomio caratteristico di A, ossia $p_A(t)=(1-t)^3(1+t)^2$, da cui si ricava che gli autovalori di A sono 1 e -1, con $\mu_a(1)=3$ e $\mu_a(-1)=2$. Si può dunque decomporre V come:

$$V = \operatorname{Ker}(A - I)^3 \oplus \operatorname{Ker}(A + I)^2$$
,

e φ_A sarà della forma $\varphi_A(t) = (t-1)^{n_1}(t+1)^{n_2}$ con $n_1 \leq 3$ e $n_2 \leq 2$.

- (i) $\operatorname{rg}(A-I)=3 \implies \dim \operatorname{Ker}(A-I)=2 < 3=\mu_a(-1)$. Si controlli adesso il rango di $(A-I)^2$: $\operatorname{rg}(A-I)^2=2 \implies \dim \operatorname{Ker}(A-I)^2=3=\mu_a(1)$, da cui $n_1=2$.
- (ii) $\operatorname{rg}(A+I)=3 \implies \dim \operatorname{Ker}(A+I)=2$. Allora, poiché $\dim \operatorname{Ker}(A+I)=2=\mu_a(-1)$, si conclude che $n_2=1$.

Quindi $\varphi_A(t) = (t-1)^2(t+1)$.

Esercizio 2. Sia $A \in M(n,\mathbb{C})$ invertibile. Dimostrare allora che se A^3 è diagonalizzabile, anche A lo è.

Soluzione. Se A^3 è diagonalizzabile, per la precedente osservazione, $\varphi_{A^3}(t) = \prod_{i=1}^m (t - \lambda_i)$, dove m è il numero di autovalori distinti di A^3 .

Allora, detto $p(t) = \prod_{i=1}^{m} (t^3 - \lambda_i)$, vale che p(A) = 0, ossia che $\varphi_A \mid p$. Dal momento che A è invertibile, anche A^3 lo è, e quindi $\lambda_i \neq 0 \ \forall i \leq m$. Poiché p è allora fattorizzato in soli termini lineari distinti, anche φ_A deve esserlo, e quindi A deve essere diagonalizzabile.

Nello studio della forma canonica di Jordan è rilevante costruire una base a bandiera tale per cui la matrice associata in tale base sia una matrice a blocchi diagonale formata da blocchi di Jordan. Si consideri allora $g = f - \lambda Id$, e sia k la molteplicità algebrica di λ nel polinomio minimo di f (i.e. il k minimo già visto precedentemente nella decomposizione di Fitting di q).

Si possono allora definire dei sottospazi U_i secondo le seguenti decomposizioni:

$$\operatorname{Ker} g^{k} = \operatorname{Ker} g^{k-1} \oplus U_{1},$$

$$\operatorname{Ker} g^{k-1} = \operatorname{Ker} g^{k-2} \oplus g(U_{1}) \oplus U_{2},$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\operatorname{Ker} g = \underbrace{\operatorname{Ker} g^{0}}_{=\{0\}} \oplus g^{k-1}(U_{1}) \oplus \cdots \oplus U_{k}.$$

Si noti che g mantiene la dimensione di U_i ad ogni passo fino a k-i composizioni di g (infatti $\operatorname{Ker} g^{k-i} \cap U_i \subseteq \operatorname{Ker} g^{k-1} \cap U_i = \{\underline{0}\}$, per costruzione dei sottospazi supplementari U_i). In particolare, dim $U_i = m_i$ rappresenta il numero di blocchi di Jordan relativi a λ di taglia k-i+1, e quindi valgono le seguenti identità:

$$\dim \operatorname{Ker} g^k = \dim \operatorname{Ker} g^{k-1} + m_1 = \mu_a(\lambda),$$

$$\dim \operatorname{Ker} g^{k-1} = \dim \operatorname{Ker} g^{k-2} + m_1 + m_2,$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\dim \operatorname{Ker} g = m_1 + m_2 + \dots + m_k = \mu_g(\lambda).$$