Введение в случайные процессы

Madamme Булинская Е.В.

Лекция 1 3

Лекция 1

Третья часть вероятностного цикла — случайные (иначе, вероятностные или стохастические) процессы.

Теория случайных процессов является одной из наиболее быстро развивающихся математических дисциплин, в значительной мере это определяется потребностями практики: физики, химии, биологии, медицины, инженерного дела, страхования, финансовой деятельности и др.

Возникновение понятия случайного процесса связано с именами Колмогорова, Хинчина, Слуцкого, Винера и многих других ученых.

Изучение хаотического движения частиц цветочной пыльцы в жидкости (броуновского движения), исходя из теоретико-вероятностных предпосылок, было проведено Эйнштейном и Смолуновским в 1905 г. и способствовало возникновению процесса, который часто называют также винеровским. Тот же процесс был введен Ботелье в 1900 г. для описания цен.

Появление пуассоновского процесса связано с работами Эрланге по изучению загрузки телефонных сетей, а также с математическими моделями, введенными Лундбергом для описания деятельности страховых компаний.

(Более подробно об истории случайных процессов можно прочитать в дополнении к книге Б.В. Гнеденко "Курс теории вероятностей"изд. 6,1988, М: Наука).

Во всех дальнейших рассмотрениях бедем предволагать, что задано некоторое основное вероятностное пространство (Ω, \mathcal{F}, P) .

- $\Omega = \{\omega\}$ пространство элементарных событий.
- $\mathcal{F}-\sigma$ -алгебра событий (или измеримых множеств), т.е. система подмножеств пространства Ω , замкнутая относительно операций дополнения и счетного объединения.

Пара (Ω, \mathcal{F}) называется *измеримым пространством*. Если пространство Ω — конечно или счетно (т.е. дискретно), \mathcal{F} состоит из всех подмножеств Ω .

P- вероятность, т.е. неотрицательная счетно-аддитивная функция множеств (мера), заданная на \mathcal{F} , и удовлетворяющая условию нормировки $P(\Omega)=1.$

Мера называется $nonno\ddot{u}$, если любое подмножество множества нулевой меры измеримо (и следовательно, имеет меру 0).

3адача. Показать, что любая неполная мера P может быть пополнена.

Рассмотрим произвольное отображение $X\colon\Omega\to\mathfrak{X}.$ С ним связаны две σ -алгебры:

$$\mathfrak{F}_X' = \{B \subset \mathfrak{X} \colon X^{-1}(B) \in \mathfrak{F}\}$$
 и $\mathfrak{F}_X = \{X^{-1}(B) \colon B \in \mathfrak{F}_X'\} \supset \mathfrak{F},$

(то, что это σ -алгебры, вытекает из сохранения теоретико-множественных операций при взятии прообраза).

Пусть задано некоторое измеримое пространство $(\mathfrak{X}, \mathfrak{B})$, т.е. выделена σ -алгебра \mathfrak{B} подмножеств \mathfrak{X} .

<u>Определение</u>. Отображение $X \colon \Omega \to \mathfrak{X}$ называется *случайным* элементом со значениями в измеримом пространстве $(\mathfrak{X}, \mathcal{B})$, если $\mathcal{B} \subset \mathfrak{F}_X$.

Иными словами, отображение X является $\mathcal{F}\setminus\mathcal{B}$ -измеримым, т.е. для любого $B\in\mathcal{B}$ имеем $X^{-1}(B)\in\mathcal{F}$.

<u>Замечание</u>. Если некоторый класс множеств M порождает \mathcal{B} , т.е. $\mathcal{B} = \sigma\{M\}$, то для того, чтобы установить, что X — случайный элемент со значениями в $(\mathfrak{X}, \mathcal{B})$, достаточно проверить, что $M \subset \mathcal{F}_X'$ (тогда и $\sigma\{M\} \subset \mathcal{F}_X'$).

Любое отображение $X\colon \Omega \to \mathfrak{X}$ позволяет задать вероятностную меру $P_X = PX^{-1}$ на σ -алгебре \mathfrak{F}_X' (с помощью соотношения $P_X(B) = P(X^{-1}(B))$ для $B \in \mathfrak{F}_X'$).

Если X — случайный элемент со значениями в $(\mathfrak{X},\mathfrak{B})$, то P_X называется распределением этого случайного элемента.

Заметим, что распределение с.э. — это, вообще говоря, мера, заданная для более широкого класса множеств, чем \mathcal{B} , причем этот класс зависит от вида отображения X.

Частные случаи:

- (1) Если $\mathfrak{X} = \mathbb{R}^1$, $\mathcal{B} = \mathfrak{B}^1$ (борелевская σ -алгебра), то случайный элемент со значениями в ($\mathbb{R}^1, \mathfrak{B}$) это обычная случайная величина.
- (2) Если $\mathfrak{X}=\mathbb{R}^k,\; \mathfrak{B}=\mathfrak{B}^k,\;$ то речь идет о k-мерном случайном векторе.

Задача. Какое свойство пространства \mathbb{R}^k позволяет утверждать, что набор из k случайных величин (x_1,\ldots,x_k) является $\mathcal{F}\setminus \mathfrak{B}^k$ -измеримым отображением Ω в \mathbb{R}^k .

Далее мы увидим, что случайный процесс также является случайным элементом со значениями в специальным образом выбранном измеримом пространстве.

 $\frac{\text{Определение}}{\{X(t), t \in T\}} \text{ называется } \textit{случайных величин } X = \frac{\{X(t), t \in T\}}{\{X(t), t \in T\}}$

Если $T \subset \mathbb{R}^k$, случайная функция называется *случайным полем*. Если $T \subset \mathbb{R}^1$, то $X = \{X(t), t \in T\}$ — это *случайный процесс*.

Лекция 1 5

В том случае, когда $T \subset \mathbb{R}^1$ конечно или счетно, говорят о случайном процессе с $\partial ucкретным$ временем (наиболее часто встречающиеся случаи $T = \mathbb{Z}^1$ или \mathbb{Z}^1_+) или случайной последовательности. Если $T \subset \mathbb{R}^1$ несчетно, то речь идет о процессе с непрерывным временем (обычно, $T = \mathbb{R}^1$ или \mathbb{R}^1_+ или [a,b]).

Вместо X(t) часто пишут X_t , а желая подчеркнуть, что речь идет о случайных величинах, используют обозначения $X(t,\omega)$ или $X_t(\omega)$.

Таким образом, случайный процесс — это отображение $X\colon T imes \Omega \to \mathbb{R}^1$, или действительная функция двух переменных, при каждом фиксированном t измеримая по ω .

При фиксированном t получаем функцию ω (случайную величину), которая называется *значением* процесса в точке t (или его сечением).

Если же зафиксировать ω , то полученную функцию t называют траекторией процесса (или реализацией) или выборочной функцией.

Множество $R^T = \{x(t), t \in T\}$ параметра $t \in T$ называется выборочным пространством.

Следовательно, случайный процесс представляет собой отображение $X\colon \Omega \to R^T$ пространства Ω в выборочное пространство.

Для того, чтобы можно было говорить о случайном элементе, введем в R^T σ -алгебру \mathfrak{B}^T следующим образом.

Определим отображение $\Pi_{t_1,\dots,t_k}\colon R^T\to R^k$ соотношением $\Pi_{t_1,\dots,t_k}(x)=(x(t_1),\dots,x(t_k))$ для $t_i\in T,\ i=\overline{1,k},\ k\geq 1.$

Назовем *открытым* (*n-мерным*) интервалом в R^T множество всех конечных функций x(t), удовлетворяющих конечному числу неравенств $a_i < x(t_i) < b_i$, где a_i , b_i — конечные или бесконечные вещественные числа, $t_i \in T$, $i = \overline{1,n}$, $n \ge 1$.

Иначе, открытый интервал

иначе, открытый интервал
$$I_{t_1,...,t_n}\{(a_i,b_i),\,i=\overline{1,n}\}=\coprod_{t_1,...,t_n}^{b_1}(I^*),\qquad \qquad \boxed{a_n}$$
 где $I^*=(a_1,b_1)\times(a_2,b_2)\times\cdots\times(a_n,b_n)$ называется основанием открытого интервала
$$\{x(t)\colon a_i< x(t_i)< b_i,\,i=\overline{1,n}\}.$$

Аналогичным образом, множество

$$I_{t_1,...,t_n}\{[a_i,b_i], i=\overline{1,n}\} = \{x(t): a_i \le 1\}$$

 $x(t_i) \leq b_i, \ i = \overline{1,n}$ } называется замкнутым

интервалом (здесь величины a_i и b_i конечны), при этом его можно записать в виде $\Pi_{t_1,\dots,t_n}^{-1}(I^*)$, где $I^*=[a_1,b_1]\times\dots\times[a_n,b_n]$.

Просто uhmepsan мы получаем, если возможны любые комбинации знаков < и \le (там, где стоит \le , числа конечны). Открытый интервал является monorareckou окрестностью для каждой из своих точек. В

топологии, индуцированной такими окрестностями, последовательность точек x_n из R^T сходится к x, если $x_n(t) \to x(t)$ для любого $t \in T$.

Конечные суммы непересекающихся интервалов образуют, как нетрудно проверить, алгебру $\mathfrak A$ подмножеств R^T .

Наименьшую σ -алгебру $\mathfrak{B}^T = \sigma\{\mathfrak{A}\}$, порожденную алгеброй \mathfrak{A} , будем называть борелевской.

<u>Задача</u>. Показать, что иначе \mathfrak{B}^T может быть определена как цилиндрическая σ -алгебра, т.е.

$$\mathfrak{B}^T = \sigma\{\Pi_{t_1,\dots,t_k}^{-1}B,\, B\in\mathfrak{B}^k,\, t_i\in T,\, i=\overline{1,k},\, k\geq 1\}.$$

Задача. Проверить, что

$$\mathfrak{B}^T = \bigcup_{\{t_1,t_2,\dots\}\subset T} \mathfrak{B}^{\{t_1,t_2,\dots\}},$$

т.е. борелевские множества описывают поведение функций x(t) не более чем в счетном числе точек.

Задача. Является ли множество непрерывных функций борелевским?

<u>Определение</u>. Случайный процесс — это случайный элемент со значениями в измеримом пространстве (R^T, \mathfrak{B}^T) .

ЛЕММА. Два определения случайного процесса эквивалентны.

Доказательство. 1. Пусть $X=\{X(t), t\in T\}$ — случайный процесс в смысле первого определения. Покажем, что тогда отображение $X\colon \Omega\to R^T$ будет $\mathfrak{F}\setminus\mathfrak{B}^T$ -измеримо, т.е. мы будем иметь случайный элемент со значениями в (R^T,\mathfrak{B}^T) , или же случайный процесс в смысле второго определения.

Действительно, множество

$$X^{-1}(I_{t_1,\ldots,t_n}) = \{(X(t_1),\ldots,X(t_n)) \in I^*\},\$$

где I^* — это основание интервала $I_{t_1,...,t_n}$ (произвольного). Так как $I^* \in \mathfrak{B}^n$, а $(x(t_1),\ldots,x(t_n))$ — случайный вектор, то рассматриваемое множество принадлежит σ -алгебре \mathfrak{F} . Далее, прообраз любых множеств из \mathfrak{A} , а значит, и из $\mathfrak{B}^T = \alpha\{\mathfrak{A}\}$ также принадлежит \mathfrak{F} .

2. Пусть, наоборот, задан случайный элемент X со значениями в (R^T,\mathfrak{B}^T) . Положим $X(t)=\Pi_t X,\, t\in T.$ Тогда

$$\{\omega \colon X(t) \in B\} = \{\omega \colon X \in \Pi_t^{-1}(B) \in \mathfrak{F}\}$$

для $B \in \mathfrak{B}^1$, так как $\Pi_t^{-1}(B)$ — цилиндр (т.е. множество из \mathfrak{B}^T), и его прообраз при отображении X измерим. А, значит, $\{X(t), t \in T\}$ — случайный процесс в смысле первого определения.

Итак, какое бы определение случайного процесса мы ни используем, $(X(t_1),\ldots,X(t_n))$ при фиксированных $t_i\in T, i=\overline{1,n}$, является случайным вектором, а потому индуцирует меру P_{t_1,\ldots,t_n} (или $P_X\Pi_{t_1,\ldots,t_n}^{-1}$) на \mathfrak{B}^n .

Эти меры носят название конечномерных распределений случайного процесса.

Очевидно, что семейство конечномерных распределений $\{P_{t_1,\dots,t_n},\,t_i\in T,\,i=\overline{1,n},\,n\geq 1\}$ обладает свойствами симметрии и согласованности:

(1) Если (i_1,\ldots,i_n) — перестановка $(1,2,\ldots,n)$, то для любых $\mathfrak{B}_i\in\mathfrak{B}^1,\,i=\overline{1,n}$

$$P_{t_{i_1},\dots,t_{i_n}}(B_{i_1}\times\dots\times B_{i_n})=P_{t_1,\dots,t_n}(B_1\times\dots\times B_n).$$

(В самом деле, и правая, и левая части равенства — это вероятность множества $\bigcap_{i=1}^n \{X(t_i) \in B_i\}$, т.к. пересечение множеств не зависит от порядка, в котором эти множества пересекаются).

(2)

$$P_{t_1,\ldots,t_n,t_{n+1}}(B_1\times\cdots\times B_n\times\mathbb{R}^1)=P_{t_1,\ldots,t_n}(B_1\times\cdots\times B_n).$$

(это равенство следует из того, что для любого $A \in \mathcal{F}$ верно $A\Omega = A$. Здесь $A = \{X(t_1) \in B_1, \dots, X(t_n) \in B_n\}$ и $\Omega = \{X(t_{n+1}) \in \mathbb{R}^1\}$).

Условия симметрии и согласованности нетрудно переписать в терминах конечномерных функций распределения, взяв $B_i = (-\infty, x_i]$.

<u>Задача</u>. Проверить, что условие симметрии и согласованности в терминах характеристических функций имеют вид:

1)
$$\varphi_{t_{i_1},\ldots,t_{i_n}}(\lambda_{i_1},\ldots,\lambda_{i_n}) = \varphi_{t_1,\ldots,t_n}(\lambda_1,\ldots,\lambda_n).$$

2)
$$\varphi_{t_1,\ldots,t_n,t_{n+1}}(\lambda_1,\ldots,\lambda_n,0) = \varphi_{t_1,\ldots,t_n}(\lambda_1,\ldots,\lambda_n).$$

<u>ЛЕММА</u>. Семейство конечномерных распределений случайного процесса X однозначно определяет меру любого борелевского множества B $(m.e.\ B\in\mathfrak{B}^T)$ выборочного пространства R^T .

Доказательство. Очевидно, что конечномерные распределения однозначно определяют меру любого интервала в R^T . Используя конечную аддитивность, можно определить меру любого множества A из алгебры $\mathfrak A$. Полученная мера, естественно, совпадает с $P_X(A)$ (где P_X — это распределение случайного элемента $X\colon \Omega \to R^T$), поскольку $\mathfrak A \subset \mathcal F_X'$. Следовательно, мера, построенная по конечномерным распределениям, счетно-аддитивна на $\mathfrak A$. А тогда, по теореме Каратеодори, эту меру можно однозначно продолжить на $\mathfrak B^T = \sigma\{\mathfrak A\}$.

На практике часто бывает известно только семейство конечномерных распределений. Возникает вопрос о существовании случайного процесса с данными распределениями. Ответ дает знаменитая теорема Колмогорова.

 $\underline{\text{ТЕОРЕМА}}$ (Колмогорова). Для того, чтобы существовал случайный процесс с заданным семейством конечномерных распределений, необходимо и достаточно, чтобы это семейство удовлетворяло условиям симметрии и согласованности.

ДОКАЗАТЕЛЬСТВО. $\underline{\text{Неодходимость}}$ условий была проверена выше. Достаточность. Пусть $T\subset\mathbb{R}^1$ и задано семейство

$$\{F_{t_1,...,t_n}(x_1,...,x_n), t_i \in T, i = \overline{1,n}, n \ge 1\}$$

конечномерных функций распределения, удовлетворяющих условиям:

(1) симметрии

$$F_{t_{i_1},\dots,t_{i_n}}(x_{i_1},\dots,x_{i_n}) = F_{t_1,\dots,t_n}(x_1,\dots,x_n),$$

(2) согласованности

$$F_{t_1,\ldots,t_n,t_{n+1}}(x_1,\ldots,x_n,+\infty) = F_{t_1,\ldots,t_n}(x_1,\ldots,x_n).$$

Прежде всего необходимо построить вероятностное пространство.

Положим $\Omega = R^T$ (пространство конечных вещественных функций $\{x(t),\ t\in T\}$), а в качестве $\mathcal F$ возьмем $\mathfrak B^T$.

В силу условий 1) и 2) мы можем однозначно определить меру любого интервала $I=\Pi_{t_1,\ldots,t_n}^{-1}(I^*)$. Так, например, если

$$I^* = (a_1, b_1] \times \cdots \times (a_n, b_n],$$

положим $\Pi(I) = P_{t_1,...,t_n}(I^*)$, где

$$P_{t_1,\dots,t_n}(I^*) = \sum_{k=0}^n (-1)^k \sum_{i_1 < \dots < i_k} F_{t_1,\dots,t_n}(c_1,\dots,c_n),$$

здесь $c_{i_s}=a_{i_s},\ s=\overline{1,k},\$ и $c_j=b_j$ при $j\neq i_1,\ldots,i_k.$

Далее, можно, используя конечную аддитивность, определить меру любого множества из $\mathfrak A$.

Для того, чтобы применить теорему Каратеодори, необходимо установить счетную аддитивность построенной меры Π на $\mathfrak A$.

Предположим, это доказано, т.е. по конечномерным распределениям удалось однозначно задать меру Π любого множества из \mathfrak{B}^T .

Иначе говоря, построено вероятностное пространство $(R^T, \mathfrak{B}^T, \Pi)$, т.е. мера $P = \Pi$. Теперь положим $X(t, \omega) = X(t, x(\cdot)) = x(t)$. Тождественное отображение $X \colon R^T \to R^T \mathfrak{B}^T \setminus \mathfrak{B}^T$ -измеримо, т.е. случайный процесс (в смысле второго определения).

Очевидно, что построенный процесс имеет заданные конечномерные распределения.

Отметим, что траектории данного процесса совпадают с элементарными событиями $\omega = x(\cdot)$.

Такой процесс называется nenocpedcmbehno заданным. (Продолжение доказательства в лекции 2).

Лекция 2

Продолжим доказательство Теоремы Колмогорова.

Осталось проверить счетную аддитивность меры Π на алгебре $\mathfrak A$. Поскольку любое множество из $\mathfrak A$ — это конечная сумма непересекающихся интервалов и Π — конечно-аддитивна, достаточно проверить, что

$$\Pi(I) = \sum_{k=1}^{\infty} \Pi(I_k), \text{ если } I = I_1 + I_2 + \dots$$

(т.е. интервал $I=I_{t_1,\dots,t_{n_0}}$ есть объединение счетного числа непересекающихся интервалов $I_k=I_{t_1,\dots,t_{n_k}},\ n_0\leq n_1\leq\dots,\ n_k\to\infty$ при $k\to\infty;\ I_j\cap I_l,\ j\neq l).$

Так как $I \supset I_1 + \cdots + I_m$, то в силу конечной аддитивности,

$$\Pi(I) \ge \sum_{k=1}^{m} \Pi(I_k),$$

для любого $m \ge 1$.

Переходя в этом неравенстве к пределу при $m \to \infty$, получим

$$\Pi(I) \ge \sum_{k=1}^{\infty} \Pi(I_k).$$

Предположим, что

$$\Pi(I) = \sum_{k=1}^{\infty} \Pi(I_k) + \alpha,$$

для некоторого $\alpha > 0$, и придем к противоречию.

Положим $A_0 = I$, $A_m = I \setminus (I_1 + \dots + I_m)$, $m \ge 1$.

Очевидно, $A_m=\pi_{t_1,\dots,t_m}^{-1}A_m^*$, где A_m^* — конечная сумма n_m -мерных интервалов (или параллелепипедов из \mathbb{R}^{n_m}), являющихся основаниями интервалов, составляющих A_m .

При этом $A_0 \supset A_1 \supset \dots$ и $\Pi(A_m) \geq \alpha$ при всех $m \geq 0$.

В силу свойств конечномерных функций распределения, в том числе непрерывности сверху $F_{t_1,\dots t_{n_m}}$ в любой точке (x_1,\dots,x_{n_m}) , для произвольного $\varepsilon>0$ в каждом из составляющих A_m^* параллелепипедов

можно найти замкнутый ограниченный параллелепипед, такой, что для их суммы B_m^* верно соотношение $P_{t_1,...t_{n_m}}(A_m^* \setminus B_m^*) < \varepsilon/2^{m+1}$. А это означает, что $\Pi(A_m \setminus B_m) < \varepsilon/2^{m+1}$.

Пусть, далее, $C_m=B_0B_1\dots B_m=\pi_{t_1,\dots t_{n_m}}^{'-1}C_m^*$, где C_m^* — конечная сумма n_m -мерных замкнутых ограниченных параллелепипедов.

Так как

$$A_m \setminus C_m = A_m \bar{C}_m = A_m (\bar{B}_0 \cup \dots \cup \bar{B}_m) \subset A_0 B_0 \cup \dots \cup A_m B_m,$$

то

$$\Pi(A_m \setminus C_m) \le \sum_{k=0}^m \Pi(A_k \bar{B}_k) \le \varepsilon.$$

Отсюда $\Pi(C_m) = \Pi(A_m) - \Pi(A_m \setminus C_m) \ge \alpha - \varepsilon > 0$ (при $\varepsilon < \alpha$).

При любом m множества C_m не пусты, следовательно, из каждого C_m можно выбрать точку x_m , т.е. функцию вида

$$x_m(t) = egin{cases} y_{m_s}, & t = t_s, \ s = \overline{1, n_m}, \ 0, &$$
для остальных $t. \end{cases},$

при этом вектор (y_{m1},\ldots,y_{mn_m}) — это точка одного из параллелепипедов, составляющих C_m^* (основание C_m).

Из построения C_m следует, что при фиксированном s последовательности $\{y_{m_s}\}_{m\geq 0}$ — ограничены. С помощью диагональной процедуры можно найти такую последовательность $m_1 < m_2 < \ldots,$ что $y_{m_k s} \to y_s,$ $k \to \infty$, при всех $s = 1, 2, \ldots$

Поскольку $C_0\supset C_1\supset\dots$ и все C_m замкнуты, то

$$x(t) = egin{cases} y_s, & t = t_s, \ s = 1, 2, \dots \\ 0, &$$
для остальных $t. \end{cases}$

(как точка \mathbb{R}^T) принадлежит любому C_m , а, значит, и A_m . А это показывает, что $x \in I$, но $x \notin I_m$, $m \ge 1$, т.е. пришли к противоречию с равенством $I = I_1 + I_2 + \dots$

Таким образом, счетная аддитивность П на алгебре 🎗 доказана, чем и закончено доказательство теоремы Колмогорова.

Задача. Проверить, что аналог теоремы Колмогорова справедлив для случайных функций со значениями в польских пространствах.

Итак, семейство конечномерных распределений, удовлетворяющих условиям симметрии и согласованности, задает случайный процесс. И классификацию процессов можно проводить в соответствии со свойствами их конечномерных распределений.

Познакомимся с некоторыми классами случайных процессов.

(1) Процессы с независимыми значениями.

Говорят, что $X = \{X(t), t \in T\}$ имеет независимые значения, если для любых $t_i \in T, i = \overline{1, n}, n \ge 2$ случайные величины $X(t_1), \ldots, X(t_n)$ (взаимно) независимы.

Нетрудно проверить, что для задания такого процесса достаточно знать лишь одномерные распределения $F_t(x),\ t\in T.$ Действительно, полагая

$$F_{t_1,\dots,t_{n_m}}(x_1,\dots,x_n) = \prod_{j=1}^n F_{t_j}(x_j),$$

получим семейство конечномерных распределений, удовлетворяющих условиям теоремы Колмогорова. Значит, такой процесс действительно существует.

В частности, мы установили существование последовательности независимых случайных величин с заданными функциями распределения, которые использовали при доказательстве ЗБЧ и ЦПТ в курсе теории вероятностей. (Достаточно положить $T = \{1, 2, \dots\}$).

Если взять $F_t(x) = F(x), t \in T$, то получим процесс с независимыми одинаково распределенными значениями.

(2) Процессы с независимыми приращениями.

Процесс $X = \{X(t), t \in T\}$ имеет независимые приращения, если для любых $t_i \in T, i = \overline{1, n}, n \geq 3$ случайные величины $X(t_2) - X(t_1), X(t_3) - X(t_2), \ldots, X(t_n) - X(t_{n-1})$ независимы.

Задача. Что надо знать для того, чтобы построить процесс с независимыми приращениями?

(3) Стационарные процессы.

Существуют стационарные процессы в узком и широком смысле.

(a) Процесс $X = \{X(t), t \in T\}$ называется *стационарным в узком смысле*, если все его конечномерные распределения не меняются при сдвиге, т.е.

$$\forall t_i \in T, \ t_i + h \in T, \ i = \overline{1, n}, \ n \ge 1, \ P_{t_1 + h, \dots, t_n + h} = P_{t_1, \dots, t_n}.$$

Примером стационарного в узком смысле процесса может служить процесс с независимыми одинаково распределенными значениями.

(b) Процесс $X = \{X(t), t \in T\}$ называется стационарным в широком смысле, если при сдвиге не меняются его моменты первого и второго порядка, т.е.

$$\forall t \in T, \ s \in T, \ t+h \in T, \ s+h \in T$$

$$a(t+h)=a(t), \qquad R(s+h,t+h)=R(s,t),$$
 где $a(t)=EX(t), \qquad R(s,t)=EX(s)X(t).$

Задача. Как между собой связаны классы стационарных в узком и широком смысле процессов?

(4) Гауссовские (или нормальные) процессы.

Случайный процесс $X = \{X(t), t \in T\}$ называется гауссовским, если все его конечномерные распределения гауссовские.

Вспомним, что вектор $\xi=(\xi_1,\ldots,\xi_n)$ гауссовский, если его характеристическая функция $\varphi(\lambda)=Ee^{i(\lambda,\xi)}$ (иначе она записывается $\varphi(\lambda_1,\ldots,\lambda_n)=Ee^{i\sum_{j=1}^n\lambda_j\xi_j}$) имеет вид

$$\varphi(\lambda) = Ee^{i(\lambda,a) - 1/2(B\lambda,\lambda)}$$

Более подробно можно записать

$$\varphi(\lambda_1, \dots, \lambda_n) = e^{i \sum_{j=1}^n \lambda_j a_j - 1/2 \sum_{j,l=1}^n \lambda_j \lambda_l b_{jl}},$$

где $a=(a_1,\dots,a_n)$ — вектор математических ожиданий $a_j=E\xi_j,\ j=\overline{1,n}$ и $B=(b_{jl})_{j,l=\overline{1,n}}$ — матрица ковариаций

$$b_{jl} = cov(\xi_j, \xi_l) = E(\xi_j - E\xi_j)(\xi_l - E\xi_l).$$

<u>Задача</u>. Вектор $\xi = (\xi_1, \dots, \xi_n)$ тогда и только тогда гауссовский, если любая линейная комбинация его координат — гауссовская случайная величина.

<u>Задача</u>. Матрица B неотрицательно определена. Если B положительно определена, то распределение вектора ξ имеет плотность

$$p(x_1, \dots, x_n) = (2\pi)^{-\frac{n}{2}} (\det B)^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2} \sum_{k,j=1}^n B_{kj} (x_k - a_k) (x_j - a_j) \right\}$$

где B_{kj} — это элементы матрицы, обратной к B.

<u>Задача</u>. Если матрица B имеет ранг r < n, то с вероятностью 1 вектор ξ принадлежит r-мерному линейному многообразию.

Задача. Если компоненты гауссовского вектора некоррелированы, то они независимы. Это утверждение неверно, если лишь (одномерные) распределения компонент гауссовские.

Теперь сформулируем теорему существования гауссовского процесса.

<u>ТЕОРЕМА</u>. Для любой действительной функции $a(t),\ t\in T,\ u$ действительной функции двух переменных $B(s,t),\ s\in T,\ t\in T,$ удовлетворяющей условиям:

1)
$$B(s,t) = B(t,s)$$

2)
$$\sum_{k,j=1}^{n} B(t_k, t_j) \ge 0$$

для произвольных действительных $\lambda_1, \ldots, \lambda_n$ и $t_k \in T$, $k = \overline{1, n}$, $n \ge 1$, — существует гауссовский процесс $X = \{X(t), t \in T\}$, для которого a(t) = EX(t) и B(s,t) = cov(X(s),X(t)).

Доказательство. Воспользуемся теоремой Колмогорова. А именно, построим семейство конечномерных (гауссовских) распределений и покажем их симметрию и согласованность.

Для произвольных t_1,\dots,t_n определим характеристическую функцию следующим образом

$$\varphi(\lambda_1,\ldots,\lambda_n) = \exp\left\{i\sum_{k=1}^n \lambda_k a(t_k) - \frac{1}{2}\sum_{k,j=1}^n \lambda_k \lambda_j B(t_k,t_j)\right\},$$

Это характеристическая функция гауссовского вектора с математическим ожиданием $(a(t_1),\ldots,a(t_n))$ и матрицей ковариаций $(B(t_k,t_j))_{k,j=\overline{1,n}}$.

Нетрудно видеть, что условия симметрии и согласованности (в терминах характеристических функций) выполнены, а значит, требуемый гауссовский процесс существует.

Итак, гауссовский процесс задается своими первыми и вторыми моментами.

Рассмотрим два примера.

• Пусть a(t)=0, $B(s,t)=\sigma^2\delta(s,t),$ где $\delta(s,t)=1$ если s=t и $\delta(s,t)=0$ при $s\neq t.$

Очевидно, что такая функция B(s,t) удовлетворяет условиям 1) и 2) предыдущей теоремы. Следовательно, существует гауусовский процесс, соответствующий этим функциям $a(\cdot)$ и $B(\cdot)$. Значения процесса в различных точках некоррелированы, а поскольку любой из наборов $(X(t_1),\ldots,X(t_n))$ гауссовский, то указанные случайные величины независимы.

Таким образом, это гауссовский процесс с независимыми (одинаково распределенными) значениями.

• Пусть теперь $T = [0, \infty), \ a(t) = 0, \ B(s, t) = \min(s, t).$ Условие 1 теоремы очевидным образом выполнено.

Проверим условие 2 неотрицательной определенности. Положим

$$\chi_{(-\infty,t]}(u) = \begin{cases} 1, & u \le t, \\ 0, & u > t. \end{cases}$$

тогда можно записать

$$\min(s,t) = \int_{0}^{\infty} \chi_{(-\infty,s]}(u) \chi_{(-\infty,t]}(u) du$$

Следовательно,

$$\sum_{k,j=1}^{n} \lambda_k \lambda_j B(t_k, t_j) = \sum_{k,j=1}^{n} \lambda_k \lambda_j \int_{0}^{\infty} \chi_{(-\infty, t_k]}(u) \chi_{(-\infty, t_j]}(u) du =$$

$$= \int_{0}^{\infty} \left(\sum_{k=1}^{n} \lambda_k \chi_{(-\infty, t_k]}(u) \right)^2 du \ge 0$$

и, значит, существует гауссовский процесс с указанными параметрами.

Задача. Проверить, что конечномерные распределения построенного процесса имеют плотность и найти ее явный вид.

<u>ЛЕММА</u>. Гауссовский процес с параметрами a(t) = 0, $B(s,t) = \min(s,t)$, $s,t \ge 0$, удовлетворяет следующим условиям:

- Это процесс с независимыми приращениями,
- При s < t приращение $X(t) X(s) \mathfrak{p}$ то гауссовская случайная величина с нулевым средним и дисперсией (t s),
- X(0) = 0.

Доказательство. При любых $0 \le t_1 < t_2 < \dots < t_n$ случайный вектор $(X(t_1),\dots,X(t_n))$ — гауссовский. Вектор $(X(t_2)-X(t_1),X(t_3)-X(t_2),\dots,X(t_n)-X(t_{n-1}))$, полученный из предыдущего с помощью линейного преобразования, также гауссовский с параметрами

$$\begin{split} E(X(t_j) - X(t_{j-1})) &= a(t_j) - a(t_{j-1}) = 0, \\ cov(X(t_j) - X(t_{j-1}), X(t_l) - X(t_{l-1})) &= \\ &= E(X(t_j) - X(t_{j-1}))(X(t_l) - X(t_{l-1})) = \\ &= EX(t_j)X(t_l) - EX(t_j)X(t_{l-1}) - \\ &- EX(t_{j-1})X(t_l) + EX(t_{j-1})X(t_{l-1}) = \\ &= \min(t_j, t_l) - \min(t_j, t_{l-1}) - \\ &- \min(t_{j-1}, t_l) + \min(t_{j-1}, t_{l-1}). \end{split}$$

Отсюда следует, что при $l \neq j$ мы имеем

$$cov(X(t_i) - X(t_{i-1}), X(t_l) - X(t_{l-1})) = 0,$$

а при l=j получаем $D(X(t_j)-X(t_{j-1}))=t_j-t_{j-1}.$

Поскольку компоненты гауссовского вектора некоррелированы, они независимы, т.е. условие 1 выполнено.

Справедливость условия 2 вытекает из предыдущих рассуждений. Достаточно взять n=2 и положить $t_1=s,\,t_2=t.$

Что касается условия 3, то из того, что EX(0) = 0, DX(0) = 0, вытекает X(0) = 0 почти наверное.

Задача. (обязательная). Доказать, что процесс, удовлетворяющий условиям 1–3 леммы, является гауссовским с

$$EX(t) = 0$$
 и $cov(X(s), X(t)) = min(s, t), s, t \ge 0.$

Процесс называется однородным по времени, если распределения приращений X(t) - X(s), s < t, зависят лишь от разности t - s.

Рассмотренный процесс является однородным. Поскольку этот процесс предназначен для описания *броуновского движения*, то естественно потребовать выполнение еще одного условия:

• Все траектории процесса непрерывны.

Процесс, удовлетворяющий условиям 1—4, называется также cmandapmным eunepoeckum, поскольку в указанных условиях процесс изучался Винером в 20-е годы XX века.

Теорема Колмогорова, как мы уже видели, позволяет построить процесс, обладающий свойствами 1–3. Однако множество $C^T \subset R^T$ непрерывных функций не является борелевским $(C^T \notin \mathfrak{B}^T)$, поэтому мы не можем не только утверждать, что все траектории процесса непрерывны (или почти все они непрерывны, т.е. $\Pi(C^T)=1$), но и вообще определить вероятность этого множества (так как оно неизмеримо).

Существует несколько путей преодоления этой трудности. Один из них основан на понятии эквивалентности процессов.

Два случайнх процесса

$$X = \{X(t), t \in T\} \text{ if } Y = \{Y(t), t \in T\},$$

определенные на одном и том же вероятностном пространстве (Ω, \mathcal{F}, P) и имеющие одно и то же параметрическое множество T, называются эквивалентными, если P(X(t) = Y(t)) = 1 для любого $t \in T$.

Задача. Эквивалентные процессы имеют одинаковые конечномерные распределения. Обратное, вообще говоря, неверно.

Эквивалентный случайный процесс называется также $modu \phi u \kappa a u u e u$ исходного процесса.

Понятие эквивалентности приводит к различным последствиям для процессов с дискретным и с непрерывным временем.

В то время как для процессов с дискретным временем из эквивалентности следует совпадение почти всех траекторий (т.к. $P\{\cap_{t\in T}(X_t=Y_t)\}=1$, если T счетно), для процессов с непрерывным временем это вовсе не так. А именно, множество совпадающих траекторий может иметь любую меру от 0 до 1 или вообще быть неизмеримым.

Рассмотрим пример.

Пусть $T=[0,1],~\Omega=[0,1],~\mathfrak{F}=\mathfrak{B}^{[0,1]}$ — борелевская σ -алгебра на [0,1], а вероятность P — мера Лебега. Положим $X(t,\omega)=0$ для всех $t\in T,~\omega\in\Omega,$ а $Y(t,\omega)=1$ при $t=\omega$ и $Y(t,\omega)=0$ при $t\neq\omega.$

• Очевидно, что эти процессы эквивалентны, т.к. при фиксированном t они отличаются лишь в одной точке ω , но

$$P(X(t) = Y(t), t \in [0, 1]) = 0,$$

ни одна из траекторий у двух процессов не совпадает.

- У процесса X все траектории непрерывны, а у Y разрывны.
- Далее, $\sup_{t \in [0,1]} X(t) = 0$, a $\sup_{t \in [0,1]} Y(t) = 1$ с вероятностью 1.

<u>Задача</u>. Как видоизменить определение процесса Y, чтобы множество совпадающих траекторий X и Y было неизмеримым?

В отличие от дискретного времени, где $\sup_t X_t$, $\inf_t X_t$, $\overline{\lim}_{t \to t_0} X_t$, $\underline{\lim}_{t \to t_0} X_t$ являются случайными величинами, для непрерывного времени это не так. Многие интересные для практики множества не являются борелевскими. В результате их вероятность либо вовсе не задана, либо не определна однозначно конечномерными распределениями.

Итак, обычно вопрос ставится таким образом: существует ли у данного процесса модификация, обладающая нужными нам свойствами (а не так, обладает ли сам рассматриваемый процесс этими свойствами). Исходя из этих соображений, в следующий раз докажем существование винеровского процесса.

Мы увидим, что требование непрерывности накладывает ограничение на конечномерные распределения.

Если рассматривать второе определение случайного процесса (как измеримое отображение из Ω в R^T), мы приходим к изучению свойств траекторий.

Говорят, что $X=\{X(t),\ t\in T\}$ выборочно непрерывен (дифференцируем или интегрируем) в точке ω , если это верно для соответствующей траектории, т.е. функции $X(\cdot,\omega)$ от t.

Процесс выборочно непрерывен на множестве $A\in \mathcal{F},$ если траектории непрерывны для всех $\omega\in A.$

В том случае, когда P(A)=1, говорят, что normu все траектории процесса непрерывны или процесс выборочно непрерывен с вероятностью 1

Если же исходить из первого определения случайного процесса как кривой в пространстве случайных величин, можно дать 4 определения непрерывности случайного процесса (в соответствии с 4 типами сходимости).

(1) Процесс непрерывен с вероятностью 1 в точке $t_0 \in T$, если

$$P\left(X(t) \xrightarrow[t \to t_0]{} X(t_0)\right) = 1.$$

- (2) Процесс непрерывен по вероятности (или стохастически непрерывен) в точке t_0 , если $P(|X(t)-X(t_0)|\geq \varepsilon)$ при $t\to t_0$ для $\forall \varepsilon>0$. (Иначе, $X(t)\xrightarrow{P}X(t_0)$).
- (3) Процесс непрерывен в среднем квадратичном в точке t_0 , если

$$E(X(t) - X(t_0))^2 \underset{t \to t_0}{\longrightarrow} 0$$

(или l.i. $\mathbf{m}_{t \to t_0} X(t) = X(t_0)$).

(4) Процесс непрерывен слабо (или по распределению) в точке t_0 , если

$$F_t(x) \xrightarrow[t \to t_0]{} F_{t_0}(x)$$

(в точках непрерывности предельного распределения F_{t_0}).

Процесс (в соответствующем смысле) непрерывен (или непрерывен $na\ T$), если указанное свойство непрерывности выполнено в любой точке $t_0 \in T$.

Задача. Как связаны между собой введенные выше 5 свойств непрерывности?

Лекция 3

Напомним, как связаны между собой введенные прошлый раз виды непрерывности случайных процессов:

- (0) почти наверное выборочная непрерывность,
- (1) непрерывность с вероятностью 1 (для всех t),
- (2) стохастическая непрерывность,
- (3) среднеквадратичная непрерывность,
- (4) непрерывность по распределению.

Чтобы нагляднее была разница между двумя понятиями непрерывности: 0. (выборочная п.н.) и 1. (с вероятностью 1), удобно их описать в отрицательной форме.

Если $P(X_t \to X_{t_0}, \ t \to t_0) \neq 1$, то говорят, что $t_0 - \phi$ иксированная точка разрыва. Точка $t_0 = t_0(\omega)$, не являющаяся фиксированной точкой разрыва, называется переменной точкой разрыва.

Таким образом, непрерывность с вероятностью 1 означает отсутствие фиксированных точек разрыва, а почти наверное выборочная непрерывность означает, что за исключением множества траекторий нулевой меры отсутсвуют и переменные точки разрыва.

Теперь приступим к рассмотрению выборочной непрерывности. А именно, докажем необходимые и достаточные условия существования непрерывной модификации. Предположим, что T=[a,b], хотя результат справедлив и для произвольного сепарабельного метрического пространства T.

<u>ТЕОРЕМА</u>. У случайного процесса $X = \{X_t, t \in T\}$ существует эквивалентный ему процесс $Y = \{Y_t, t \in T\}$ с непрерывными траекториями тогда и только тогда, когда

- (1) X стохастически непрерывен на T,
- (2) почти все траектории X равномерно непрерывны на некотором счетном всюду плотном подмножестве S множества T.

Доказательство. <u>Необходимость</u>. Пусть существует процесс $Y = \{Y_t, t \in T\}$ с непрерывными траекториями, эквивалентный $X = \{X_t, t \in T\}$. Так как T = [a, b], то любая непрерывная функция равномерно непрерывна на T. Далее, если $S \subset T$ счетное подмножество, то $P(\cup_{t \in S} \{X_t \neq Y_t\}) = 0$. Иначе говоря, почти все траектории X совпадают на S с траекториями Y, а значит, равномерно непрерывны на S.

Что касается стохастической непрерывности, то это условие, наложенное на двумерные распределения, которые у эквивалентных процессов совпадают.

$$P(|X_t - X_{t_0}| \ge \varepsilon) = P(|Y_t - Y_{t_0}| \ge \varepsilon) \underset{t \to t_0}{\longrightarrow} 0.$$

(Вторая вероятность стремится к нулю, так как из непрерывности траекторий следует стохастическая непрерывность).

Достаточность. Пусть выполнены условия 1 и 2. Пользуясь 2, определим

$$Y_t(\omega) = egin{cases} \lim_{\substack{t_n o t \\ t_n \in S}} X_{t_n}(\omega), & ext{ если предел существует,} \\ 0, & ext{ в остальных случаях.} \end{cases}$$

Так как почти все траектории X равномерно непрерывны на S, получившийся процесс $Y = \{Y_t, \ t \in T\}$ обладает непрерывными траекториями.

Использование свойства 1. (стохастической непрерывности), позволяет установить эквивалентность X и Y. В самом деле, по построению Y_t , для любого $t \in T$ имеем $P(X_{y_n} \to Y_t, t_n \to t, t_n \in S) = 1$. А так как из сходимости с вероятностью 1 следует сходимость по вероятности, то $X_{t_n} \stackrel{P}{\longrightarrow} Y_t, t_n \in S, t_n \to t$. С другой стороны, в силу стохастической непрерывности процесса X имееем $X_{t_n} \stackrel{P}{\longrightarrow} X_t$. Как известно, предел в смысле сходимости по вероятности единственный (с точностью до эквивалентности). Проверим это. Действительно

$$P(|X_t-Y_t|\geq \varepsilon)\leq P\left(|X_t-X_{t_n}|\geq \frac{\varepsilon}{2}\right)+P\left(|Y_t-X_{t_n}|\geq \frac{\varepsilon}{2}\right)\underset{n\to\infty}{\longrightarrow} 0,$$
 а это означает, что $P(X_t\neq Y_t)=0.$

<u>Задача</u>. Будет ли теорема справедлива, если в условии 2. потребовать просто непрерывность (а не равномерную) на счетном всюду плотном множестве S?

Получим теперь <u>достаточное</u> условие существование непрерывной модификации в терминах конечномерных распределений.

<u>Теорема</u> (Колмогорова). Пусть T=[a,b] и существуют $\alpha>0,$ $\gamma>0$ и c>0, что

$$E|x(t+h) - x(t)|^{\alpha} < c|h|^{1+\gamma}$$

при любых $t,t+h\in T$. Тогда существует эквивалентный процесс $Y=\{Y_t,\ t\in T\}$ с непрерывными траекториями.

Доказательство. Надо проверить свойства 1 и 2 предыдущей теоремы. Условие 1. (стохастическая непрерывность) вытекает из неравенства Чебышева. В самом деле,

$$\begin{split} \forall \varepsilon > 0 \quad P(|X(t+h) - X(t)| \geq \varepsilon) \leq \\ \leq \frac{E|X(t+h) - X(t)|^{\alpha}}{\varepsilon^{\alpha}} \leq \frac{c}{\varepsilon^{\alpha}} |h|^{1+\gamma} \underset{h \to 0}{\longrightarrow} 0. \end{split}$$

При проверке свойства 2. без ограничения общности предположим, что [a,b]=[0,1]. В качестве S возьмем множество двоично-рациональных точек, т.е.

$$S = \left\{ \frac{k}{2^n}, \ 0 \le k \le 2^n, \ n \ge 1 \right\}.$$

Далее воспользуемся леммой Бореля-Кантелли. Для этого введем события

$$A_{nk} = \left\{ \omega \colon \left| X\left(\frac{k+1}{2^n}\right) - X\left(\frac{k}{2^n}\right) \right| \ge \frac{1}{n^2} \right\}, \ k = \overline{0, 2^n - 1}, \ n \ge 1.$$

Использование неравенства Чебышева и условий теоремы дает

$$P(A_{nk}) \le c \frac{n^{2\alpha}}{2^{n(1+\gamma)}}.$$

Следовательно,

$$\sum_{n=1}^{\infty} \sum_{k=0}^{2^n-1} P(A_{nk}) \leq \sum_{n=1}^{\infty} \sum_{k=0}^{2^n-1} c \frac{n^{2\alpha}}{2^{n(1+\gamma)}} = c \sum_{n=1}^{\infty} \frac{n^{2\alpha}}{2^{n\gamma}} < \infty$$

Таким образом, с вероятностью 1 происходит лишь конеченое число событий A_{nk} . Иными словами, для почти всех ω существует $n_0=n_0(\omega)$ такое, что при любых $n>n_0$ и $k<2^n$ справедливо неравенство

$$\left|X\left(\frac{k+1}{2^n}\right) - X\left(\frac{k}{2^n}\right)\right| < \frac{1}{n^2}.$$

Рассмотрим далее только такие ω . Для произвольного $\varepsilon>0$ зададим такое n_1 , что

$$2\sum_{n>n_1}\frac{1}{n^2}<\varepsilon$$

и положим $\bar{n}=\bar{n}(\omega)=\max(n_0(\omega),n_1)$. Итак, пусть z_1 и z_2 такие двоично-рациональные точки, что $|z_1-z_2|<1/2^{\bar{n}}$. Любой двоично-рациональный отрезок можно представить в виде суммы "стандартных" двоично-рациональных отрезков виды $(\frac{k}{2^m},\frac{k+1}{2^m})$, причем отрезки

$$r_1=s_0$$
 s_1 s_l $s_{l+1}=r_2$ каждого ранга (т.е. с соответствующим m) встречаются не более 2 раз, причем ранги всех интервалов не ниже \bar{n} . Так как

$$X(r_2) - X(r_1) = (X(r_2) - X(s_l)) + + (X(s_l) - X(s_{l-1})) + \dots + (X(s_1) - X(r_1)),$$

то
$$|X(r_2)-X(r_1)| \leq \sum_{k=0}^l |X(s_{k+1})-X(s_k)| \leq 2\sum_{n>\bar{n}} \frac{1}{n^2} < \varepsilon.$$

Равномерная непрерывность на S почти всех траекторий доказана, а с ней и вся теорема. $\hfill \Box$

<u>Задача</u>. Проверить, что в теореме Колмогорова, вообще говоря, нельзя понизить показатели справа, положив $\gamma=0$.

Однако, для гауссовских процессов условия можно ослабить.

<u>Следствие</u>. Пусть $X = \{X(t), t \in [a,b]\}$ — гауссовский процесс с нулевым средним. Тогда, если существуют такие положительные постоянные с и ε , что

$$D(X(t+h) - X(t)) \le c|h|^{\varepsilon},$$

то у процесса существует непрерывная модификация.

Доказательство. Рассмотрим гауссовскую случайную величину η с параметрами $(0, \sigma^2)$. Тогда получим

$$E|\eta|^{\alpha} = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} |x|^{\alpha} e^{-\frac{x^2}{2\sigma^2}} dx = \frac{\sigma^{\alpha}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |y|^{\alpha} e^{-\frac{y^2}{2}} dy = k_{\alpha}\sigma^{\alpha}$$

(сделав замену переменных $x/\sigma = y$).

Так как X(t+h)-X(t) гауссовская величина с нулевым средним, то

$$E(X(t+h)-X(t))^{\alpha} = k_{\alpha} [D(X(t+h)-X(t))]^{\frac{\alpha}{2}} \le c^{\frac{\alpha}{2}} k_{\alpha} |h|^{\frac{\alpha \varepsilon}{2}}.$$

Очевидно, что можно подобрать α таким образом, чтобы $\frac{\alpha\varepsilon}{2}=1+\gamma$, где $\gamma>0$. Следовательно, будет выполнено условие теоремы Колмогорова.

Задача. Вычислить k_{α} .

Так как для гауссовского процесса с нулевым средним и ковариационной функцией $\min(s,t)$ имеем D(X(t+h)-X(t))=|h|, то (при $t\in[0,1]$) у него существует непрерывная модификация. Значит, существование винеровского процесса на отрезке [0,1] установлено.

Другой способ построения винеровского процесса, в витде суммы ряда, позволит осуществить такую конструкцию на $[0,\infty)$.

Прежде всего нам понадобится одно интересное свойство гауссовской последовательности.

<u>ЛЕММА</u>. Пусть $\{\eta_n\}$ — произвольная последовательность гауссовских случайных величин с $E\eta_n=0,\ D\eta_n=1,\ mor \partial a$

$$P(|\eta_n| = O(\sqrt{\ln n})) = 1.$$

(эта запись означает, что для почти всех ω существует константа $c=c(\omega)$ и номер $n_0=n_0(\omega)$ такие, что

$$|\eta_n(\omega)| \le c(\omega)\sqrt{\ln n}$$

для всех $n \ge n_0(\omega)$. Заметим также, что независимость случайных величин не требуется.)

٦

Доказательство. Для x > 0 имеем

$$P(|\eta_n| > x) = \frac{2}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{u^2}{2}} du = \frac{2}{\sqrt{2\pi}} \int_x^\infty \frac{1}{u} d\left(-e^{-\frac{u^2}{2}}\right) =$$
$$= \frac{2}{\sqrt{2\pi}} \left(\frac{e^{-\frac{x^2}{2}}}{x} - \int_x^\infty \frac{1}{u^2} e^{-\frac{u^2}{2}} du\right) \le \frac{2}{\sqrt{2\pi}} \frac{e^{-\frac{x^2}{2}}}{x}.$$

Отсюда вытекает, что

$$\sum_{n=1}^{\infty} P\left(|\eta_n| > c\sqrt{\ln n}\right) \le \frac{2}{\sqrt{2\pi}} \sum_{n=2}^{\infty} \frac{n^{-\frac{c^2}{2}}}{c\sqrt{\ln n}} < \infty$$

при $c > \sqrt{2}$.

Применяя лемму Бореля-Кантелли, получаем требуемый результат.

Рассмотрим далее функции Хаара.

$$H_0(t) = 1, \ t \in [0,1],$$
 и при $2^n \le k < 2^{n+1}, \ n \ge 0,$

$$H_k(t) = \begin{cases} 2^{\frac{n}{2}}, & \frac{k-2^n}{2^n} \leq t \leq \frac{k-2^n+\frac{1}{2}}{2^n}, \\ -2^{\frac{n}{2}}, & \frac{k-2^n+\frac{1}{2}}{2^n} < t \leq \frac{k-2^n+1}{2^n}, \\ 0, & \text{в остальных случаях.} \end{cases}$$

Функции $H_n(t), n \geq 0,$ образуют полную ортонормированную систему в $L_2[0,1]$, следовательно, любая функция f из этого пространства представима в виде ряда

$$f(t) = \sum_{k=0}^{\infty} (f, H_k) H_k(t),$$

где скалярное произведение $(f,H_k)=\int_0^1 f(t)H_k(t)\,dt.$ Поэтому для любых $f,g\in L_2[0,1]$ можно записать

$$(f,g) = \sum_{k=0}^{\infty} (f, H_k)(g, H_k).$$

Введем также функции Шаудера

$$S_k(t) = \int\limits_0^t H_k(u)\,du = (\chi_{[0,t]},H_k),$$
 где $\chi_{[0,t]}(u) = egin{cases} 1, & u\in[0,t] \ 0, & u>t. \end{cases}$

Нам понадобится также следующая

<u>ЛЕММА</u>. Pя ∂

$$S(t) = \sum_{k=0}^{\infty} a_k S_k(t)$$

cxodumcя равномерно, $ecnu |a_k| = O(k^{\varepsilon}), \varepsilon < 1/2.$

Доказательство. Из определения $H_k(t)$ следует, что функции $S_k(t)$ неотрицательны и при $2^n \leq k < 2^{n+1}$ они не превосходят $\frac{1}{2}2^{-\frac{n}{2}}$. Если k меняется в указанных пределах, то у рассматриваемых фунцкий непересскающиеся носители. Положим $b_n = \max_{2^n \leq k < 2^{n+1}} |a_k|$. Условие $\sum b_n 2^{-\frac{n}{2}} < \infty$ достаточно для абсолютной и равномерной сходимости ряда S(t). В условиях леммы $|a_k| = O(k^{\varepsilon})$ с $\varepsilon < \frac{1}{2}$, поэтому $|b_n| \leq c 2^{n\varepsilon}$, а значит, ряд действительно сходится.

Теперь получены все предварительные результаты для доказательства следующей теоремы.

<u>ТЕОРЕМА</u>. Пусть $\{\xi_n, n \geq 0\}$ — последовательность независимых $\mathcal{N}(0,1)$ случайных величин. Тогда ряд

$$W(t) = \sum_{n=0}^{\infty} \xi_n S_n(t)$$

c вероятностью 1 сходится равномерно при $t \in [0,1]$ и задаваемый им случайный процесс является винеровским.

Предположим, что теорема доказана и получим

Следствие. Существует винеровский процесс $W(t), t \geq 0$.

Доказательство. Возьмем независимые последовательности $\{\eta_k^{(n)}, k \geq 0\}_{n\geq 1}$, состоящие из независимых $\mathcal{N}(0,1)$ случайных величин. По доказанной теореме можно построить (независимые) винеровские процессы $W_{(t)}^{(n)}$

при $t \in [0,1]$. Определим теперь

$$W(t) = \begin{cases} W^{(1)}, & 0 \le t \le 1, \\ W^{(1)}(1) + W^{(2)}(t-1), & 1 \le t \le 2, \\ \dots & \end{cases}$$

Нетрудно проверить, что W(t) — винеровский процесс на $[0, \infty)$, пользуясь тем, что сумма независимых нормальных величин нормальна, а функции от независимых случайных величин также независимы. \square

<u>Определение</u>. Случайный процесс $\{N(t), t \geq 0\}$ называется nyaccohoв cким, если выполнены следующие условия:

- (1) N(0) = 0,
- (2) Это процесс с независимыми приращениями.
- (3) Приращение N(t) N(s) при s < t имеет распределение с параметром $\lambda(t-s)$, т.е.

$$P(N(t) - N(s) = k) = \frac{[\lambda(t-s)]^k}{k!} e^{-\lambda(t-s)}.$$

 $\underline{\text{ЗАДАЧА}}.\ N(t) = \max\{k\colon \sum_{i=1}^k \xi_i \le t\}$ — пуассоновский процесс, если $\{\xi_n\}$ — последовательности независимых показательных случайных величин с параметром $\lambda.$

Лекция 4

Задача. Существует ли у пуассоновского процесса модификация с неубывающими траекториями?

Задача. В каком смысле непрерывен пуассоновский процесс N(t)

Задача. Найти EN(t) и cov(N(s),N(t)).

Задача. Пусть $\tau_n=\inf\{t\colon N(t)=n\}$, доказать, что $\tau_1,\tau_2-\tau_1,\ldots,\overline{\tau_n-\tau_{n-1}},\ldots$ — последовательность независимых показательных случайных величин.

Теперь докажем теорему о конструкции винеровского процесса в виде ряда

$$W(t) = \sum_{n=0}^{\infty} \xi_n S_n(t),$$

где $\{\xi_n,\ n\geq 0\}$ — последовательность независимых $\mathcal{N}(0,1)$ случайных величин, а — функции Шоудера.

Лекция 4 25

Доказательство. Так как по доказанной лемме

$$P(|\xi_n|) = O(\sqrt{\ln n}) = 1,$$

а по другой лемме ряд $\sum a_n S_n(t)$ сходится равномерно, если $|a_n|=O(n^{\varepsilon})$ при $\varepsilon<1/2$, то с вероятностью 1 ряд $\sum \xi_n S_n(t)$ сходится равномерно. Сумма равномерно сходящегося ряда непрерывных функций непрерывна, поэтому требование о непрерывности траекторий выполнено.

Поскольку $S_n(0) = 0$, при всех $n \ge 0$, то W(0) = 0.

Проверим, что обладает независимыми приращениями, а любое приращение $W(t)-W(s),\ s< t$ гауссовское с нулевым средним и дисперсией t-s. Для этого покажем, что

$$Ee^{i\sum_{j=1}^{k}\lambda_{j}(W(t_{j})-W(t_{j-1}))} = e^{-1/2\sum_{j=1}^{k}\lambda_{j}^{2}(t_{j}-t_{j-1})}.$$

здесь $0 = t_0 < t_1 < \dots < t_n$.

Для удобства записи положим $\lambda_{k+1} = 0$. Очевидно, что

$$\begin{split} \sum_{j=1}^k \lambda_j (W(t_j) - W(t_{j-1})) &= \sum_{j=1}^k M(t_j) (\lambda_j - \lambda_{j+1}) = \\ &= \sum_{n=0}^\infty \xi_n \sum_{j=1}^k (\lambda_j - \lambda_{j+1}) S_n(t_j). \end{split}$$

Поскольку ряд сходится с вероятностью 1 (а, значит, и слабо), характеристическая имеет вид:

$$Ee^{i\sum_{j=1}^{k}\lambda_{j}(W(t_{j})-W(t_{j-1}))} = \lim_{N \to \infty} Ee^{i\sum_{n=0}^{N}\xi_{n}\sum_{j=1}^{k}(\lambda_{j}-\lambda_{j+1})S_{n}(t_{j})} =$$

В силу независимости $\mathcal{N}(0,1)$ случайных величин ξ_n последнее выражение перепишется следующим образом

$$= \lim_{N \to \infty} \prod_{n=0}^{N} E e^{i\xi_n \sum_{j=1}^{k} (\lambda_j - \lambda_{j+1}) S_n(t_j)} =$$

$$= \lim_{N \to \infty} \prod_{n=0}^{N} E e^{-\frac{1}{2} \left(\sum_{j=1}^{k} (\lambda_j - \lambda_{j+1}) S_n(t_j)\right)^2} =$$

$$= \lim_{N \to \infty} E e^{-\frac{1}{2} \sum_{n=0}^{N} \left(\sum_{j=1}^{k} (\lambda_j - \lambda_{j+1}) S_n(t_j)\right)^2} =$$

$$= \lim_{N \to \infty} E e^{-\frac{1}{2} \sum_{n=0}^{\infty} \left(\sum_{j=1}^{k} (\lambda_j - \lambda_{j+1}) S_n(t_j)\right)^2}.$$

Подсчитаем сумму ряда, стоящего в показателе.

$$\sum_{n=0}^{\infty} \sum_{j=1}^{k} \sum_{l=1}^{k} (\lambda_j - \lambda_{j+1})(\lambda_l - \lambda_{l+1}) S_n(t_j) S_n(t_l) =$$

$$\sum_{j=1}^{k} \sum_{l=1}^{k} (\lambda_j - \lambda_{j+1}) (\lambda_l - \lambda_{l+1}) \sum_{n=0}^{\infty} S_n(t_j) S_n(t_l) =$$

Вспомним, что $S_n(t) =$, следовательно,

$$\sum_{n=0}^{\infty} S_n(t_j) S_n(t_l) = \sum_{n=0}^{\infty} (\chi_{[0,t_j]}, H_n) (\chi_{[0,t_l]}, H_n) =$$
$$= (\chi_{[0,t_j]}, \chi_{[0,t_l]}) = \min(t_j, t_l).$$

Таким образом, окончательно можно переписать сумму ряда

$$= \sum_{j=1}^{k} \sum_{l=1}^{k} (\lambda_{j} - \lambda_{j+1})(\lambda_{l} - \lambda_{l+1}) \min(t_{j}, t_{l}) =$$

$$= \sum_{j=1}^{k} t_{j}(\lambda_{j} - \lambda_{j+1})^{2} + 2 \sum_{j=1}^{k-1} t_{j}(\lambda_{j} - \lambda_{j+1}) \sum_{l=j+1}^{k} (\lambda_{l} - \lambda_{l+1}) =$$

$$= t_{k} \lambda_{k}^{2} + \sum_{j=1}^{k-1} t_{j}[\lambda_{j}^{2} - 2\lambda_{j}\lambda_{j+1} + \lambda_{j+1}^{2} + 2\lambda_{j}\lambda_{j+1} - 2\lambda_{j+1}^{2}] =$$

$$= t_{k} \lambda_{k}^{2} + \sum_{j=1}^{k-1} t_{j}(\lambda_{j}^{2} - \lambda_{j+1}^{2}) = \sum_{j=1}^{k} \lambda_{j}(t_{j} - t_{j-1}).$$

Тем самым проверены все свойства винеровского процесса.

Если траектории процесса непрерывны, то, как мы видели, поведение процесса определяется лишь тем, что о нем известно для счетного всюду плотного множества.

Простейшим требованием *регулярности*, причем не накладывающим никаких условий на конечномерные распределения процесса, является сепрабельность, введенная Дж. Дубом.

Определение. Процесс $\{X_t,\ t\in T\}$ называется сепарабельным относительно некоторого класса $\mathcal A$ одномерных борелевских множеств, если существует $S=\{t_j\}$ в T и такое множество Λ нулевой меры в Ω $(P(\Lambda)=0)$, что для любого открытого интервала I и любого $A\in\mathcal A$

$$\{\omega \colon X_t(\omega) \in A, \ t \in IS\} \setminus \{\omega \colon X_t(\omega) \in A, \ t \in IT\} \subset \Lambda.$$

Так как первое множество измеримо, являясь пересечением счетного числа измеримых множеств, то и второе множество измеримо (и меры обоих множеств совпадают).

Обычно говорят, что процесс сепарабелен, если \mathcal{A} — это класс замкнутых множеств.

<u>Определение</u>. Процесс называется вполне сепарабеленым, если в качестве множества сепарабельности S можно взять любое счетное всюду плотное подмножество T.

Задача. Докажите, что для сепарабельного процесса

$$\sup_{t \in IT} X_t(\omega) = \sup_{t \in IS} X_t(\omega), \quad \inf_{t \in IT} X_t(\omega) = \inf_{t \in IS} X_t(\omega).$$

<u>Задача</u>. Пусть $\{X_t,\ t\in[0,1]\}$ — сепарабельный процессс, удовлетворяющий условию теоремы Колмогорова о существовании непрерывной модификации. Тогда

$$P\{\omega \colon X(t,\omega) \ t \in [0,1]\} = 1,$$

т.е. сепарабельный процесс непрерывен сам, если у него существует непрерывная модификация.

Установим еще одно свойство траекторий процесса.

<u>Теорема</u>. Пусть $\{X_t,\ t\in T\}$ — случайный процесс, для которого $P(X_s\leq X_t)=1$ при любых $s\leq t,\ s,t\in T,\ T\subset \mathbb{R}^1$. Тогда существует эквивалентный процесс, у которого почти все траектории неубывающие функции.

Доказательство. 1. Сначада покажем, что в каждой точке $t\in T$ предельной для T справа (слева) существует предел по вероятности $p=\lim_{s \mid t} X_s$ (соответственно $p=\lim_{s \mid t} X_s$).

 $\mathbf{B}^{s\downarrow t}$ В самом деле, возьмем

$$t_1 > t_2 > \dots > t_n > \dots, \ t_i \in T, \ i \leq 1, \ t_n \downarrow t$$
 при $n \to \infty$.

Так как последовательность $X_{t_n}(\omega)$ для п.в. ω не возрастает и ограничена снизу $X_t(\omega)$, то она сходится. Обозначим этот предел $X_{t_+}(\omega)$. Из сходимости с вероятностью 1 следует сходимость по вероятности $(X_{t_n} \xrightarrow{P} X_{t_+})$, при этом $X_{t_+} \geq X_{t_n}$ (п.н.).

Далее, для s достаточно близких к t справа и $\varepsilon > 0$

$$P(X_{t_{+}} \le X_{s} < X_{t_{+}} + \varepsilon) \ge P(X_{t_{+}} \le X_{s} < X_{t_{+}} + \varepsilon),$$

где n можно выбрать сколь угодно большим. Следовательно,

$$X_s(\omega) \stackrel{P}{\to} X_{t_+}(\omega)$$
 при $s \downarrow t$.

2. Теперь можно установить, что процесс $\{X_t, t \in T\}$ стохастически непрерывен, кроме, может быть, счетного числа точек $t \in T$, иначе говоря,

$$P(X_{t_{+}} = X_{t_{-}}) = 1$$
 за исключением упомянутых точек.

Действительно, обозначим $\varphi(t)=E$ arctg X_t (математическое ожидание существует, так как arctg ограниченная функция). Неубывающая функция $\varphi(t)$ имет не более счетного числа точек разрыва. В точках непрерывности

$$0 = \varphi(t_+) - \varphi(t_-) = E[\operatorname{arctg} X_{t_+} - \operatorname{arctg} X_{t_-}].$$

Если математическое ожидание неотрицательной случайной величины равно 0, то она равна нулю с вероятностью 1. Так как arctg строго монотонная функция, то $X_{t+}=X_{t-}$ с вероятностью 1, а X_t лежит между ними.

3. Пусть T_0 — счетное всюду плотное множество, включаещее все точки, где X_t не является стохастически непрерывным. В силу счетности T_0 имеем

Положим X_t для $t\in T_0$. Далее, если $t_n\in T\setminus T_0$ и t — предельная справа точка для точек из T_0 , т.е. $t_n\downarrow t,\,t_n\in T_0$, положим

$$\begin{cases} Y_t, & \text{если предел сущетвует} \ 0, & \text{в противном случае} \end{cases}$$

Если точка t является предельной справа, то она предельная слева (она не может быть изолированной точкой T, все такие точки входят в T_0 , иначе это множество не будет всюду плотным). Для таких точек полагаем

$$\begin{cases} Y_t, \ t_n \in T_0, \ t_n \uparrow t, & \text{если предел сущетвует} \\ 0, & \text{в противном случае} \end{cases}$$

Очевидно, что почти все траектории $Y_t = 0$ неубывающие.

4. Наконец, проверим эквивалентность процессов X_t и $Y_t=0,\,t\in T.$

Для $t \in T_0$ они совпадают по построению.

Если же $t\in T\setminus T_0$, то $X_{t_n}\to Y_t$ с вероятностью 1 (а значит, $X_{t_n}\overset{P}\to Y_t$ $n\to\infty$ $t_n\in T_0$). С другой стороны, в силу стохастической непрерывности X_t вне T_0 также $X_{t_n}\overset{P}\to X_t$. Таким образом, $P(X_t=Y_t)=1$ в силу единственности предела по вероятности. Следовательно, процессы всамом деле эквивалентны.

Еще один подход к изучению свойств случайных процессов — рассмотрение его как функции двух переменных.

<u>Определение</u>. Процесс $\{X_t, t \in T\}$ называется *измеримым*, если множество значений параметра T измеримо по Лебегу, и функция $X_t(\omega)$ измерима по паре переменных (t,ω) , т.е.

$$\{(t,\omega)\colon X_t(\omega)\in B\}\in\mathcal{A}\times\mathfrak{F}$$

для любого борелевского множества B, здесь $\mathcal{A}-\sigma$ -алгебра Лебеговских подмножеств T.

Справедлива следующая теорема, дающая условия измеримости.

<u>ТЕОРЕМА</u>. Пусть множество $T \subset \mathbb{R}^1$ измеримо по Лебегу, а процесс $X = \{X_t, t \in T\}$ сепарабелен и существует множество T_1

$$P(\lim_{s \to t} X_s(\omega) = X_t(\omega)) = 1 \ t \in T \setminus T_1$$

(m.e. вне T_1 процесс непрерывен с вероятностью 1). Тогда процесс X измерим.

Доказательство. Введем два случайных процесса $Y^{(n)}$ и $Z^{(n)}$, между которыми будет заключен процесс X. Положим

$$Y_t^{(n)}(\omega) = \sup_{\frac{k}{n} \le s < \frac{(k+1)}{n}} X_s(\omega), \quad Z_t^{(n)}(\omega) = \inf_{\frac{k}{n} \le s < \frac{(k+1)}{n}} X_s(\omega)$$

для $t \in [\frac{k}{n}, \frac{(k+1)}{n}], t \in T.$

Так как X сепарабелен, то $Y_t^{(n)}(\omega)$ и $Z_t^{(n)}(\omega)$ — случайные величины, причем

$$Z_t^{(n)}(\omega) \le X_t(\omega) \le Y_t^{(n)}(\omega).$$

Поскольку $Y_t^{(n)}$ и $Z_t^{(n)}$ (как функции t) кусочно постоянны, то процессы $Y^{(n)}$ и $Z^{(n)}$ измеримы при любом n (по паре переменных). В силу предположения теоремы при любом $t \in T \setminus T_1$ с вероятностью 1 имеем

$$Y_t^{(n)} o X_t$$
 и $Z_t^{(n)} o X_t$ при $n o \infty$.

Значит, процесс X измерим. В самом деле, по теореме Фубини, если почти все (по мере Лебега) сечения некоторого множества имеют нулевую меру P, то это множество имеют нулевую меру $l \times P$ (где t — меру Лебега). Таким образом, $Y_t^{(n)}(\omega)$ (и $Z_t^{(n)}(\omega)$) при почти всех (t,ω) сходятся к общему пределу, который измерим как предел измеримых функций.

Следствие. Винеровский процесс измерим.

Задача. Если у процесса траектории непрерывны справа (или слева), то он измерим.

 $\underline{\text{Задача}}$. Пусть процесс $X_t(\omega)$ измерим, а $\tau(\omega)$ — случайная величина со значениями в T, тогда $X_{\tau(\omega)}(\omega)$ также случайная величина.

Условия предыдущей теоремы можно ослабить. Сформулируем соответствующий результат без доказательства, которое можно прочитать в книге Дуба "Вероятностные процессы".

<u>Теорема</u>. Пусть $\{X_t, t \in T\}$ — случайный процесс с измеримым по Лебегу множеством T. Предположим, что существует (на том же самом вероятностном пространстве $(\Omega, \mathfrak{F}, P)$) сепарабельный относительно класса замкнутых множеств измеримый процесс $\{Y_t, t \in T\}$ эквивалентный исходному. (Величины Y_t могут принимать значения $\pm \infty$).

Измеримость процесса позволяет обосновать существование интегралов от траекторий.

 $\underline{\mathrm{TEOPEMA}}$. Пусть $\{X_t,\ t\in T\}$ — измеримый случайный процесс. Тогда почти все траектории являются измеримыми по Лебегу функциями t

Если при $t \in T$ существует математическое ожидание EX_t , то оно определяет измеримую по Лебегу функцию t. Если $A-\mathfrak{I}$ то измеримое по лебегу множество значений параметра $(A\subset T)$ и $\int_A E|X_t|\,dt<\infty$, то почти все траектории процесса интегрируемы по Лебегу на множестве A.

Доказательство. Эта теорема на самом деле является переформулировкой теоремы Фубини. Поскольку $X_t(\omega)$ — это измеримая функция от (t,ω) , то (по теореме Фубини) для почти всех ω сечение $X_t(\omega)$ определяет измеримую функцию от t, т.е. почти все траектории измеримы по Лебегу, а также, если EX_t существует, то является измеримой функцией от t.

Второе предположение теоремы состоит в том, что конечен повторный интеграл от $|X_t(\omega)|$, взятый сначала по ω , а затем по $t \in A$. Повторный интеграл, взятый в обратном порядке $E\int_A |X_t(\omega)|\,dt$ также конечен. А это означает, что $\int_A |X_t(\omega)|\,dt$ является конечным при почти всех ω , иначе говоря, почти все траектории интегрируемы по Лебегу на множестве A.

Так как величина абсолютно сходящегося повторного интеграла не зависит от порядка интегрирования, то

$$E \int_{A} |X_{t}(\omega)| dt = \int_{A} EX_{t}(\omega) dt.$$

Лекция 5 31

Теперь продолжим рассмотрение отдельных классов случайных процессов. Начнем с *марковских процессов*.

Существует много эквивалентных определений, формализующих наглядное представление о том, что у марковского процесса при фиксированном настоящем прошлое и будущее независимы.

Пусть $\{X_t, t \in T\}$ — случайный процесс, заданный на некотором вероятностном пространстве (Ω, \mathcal{F}, P) . Обозначим

$$\mathfrak{F}_{\leq t} = \sigma(X_s, \ s \leq t),$$
 $\mathfrak{F}_{\geq t} = \sigma(X_s, \ s \geq t)$ и $\mathfrak{F}_{=t} = \sigma(X_s, \ s = t).$

Определение. Процесс X называется марковским, если

$$P(AB|\mathcal{F}_{=t}) = P(A|\mathcal{F}_{=t})P(B|\mathcal{F}_{=t}),$$

для любых $A \in \mathfrak{F}_{\geq t}, B \in \mathfrak{F}_{\leq t}$ и $t \in T$.

<u>Задача</u>. Доказать, что каждое из следующих утверждений эквивалентно определению марковского процесса:

(1) $P(A|\mathfrak{F}_{\leq t}) = P(A|\mathfrak{F}_{=t}), \ \forall A \in \mathfrak{F}_{\geq t}, \ t \in T.$ (2) $P(B|\mathfrak{F}_{>t}) = P(B|\mathfrak{F}_{=t}), \ \forall B \in \mathfrak{F}_{< t}, \ t \in T.$

Лекция 5

Напомним определение условного математического ожидания и его основные свойства.

Пусть $(\Omega, \mathfrak{F}, P)$ — некоторое вероятностное пространство, $\mathfrak{A} - \sigma$ -алгебра $(\mathfrak{A} \subset \mathfrak{F})$ и X — случайная величина с $E|X| < \infty$.

Определение. Условное математическое ожидание $E(X|\mathfrak{A})$ является \mathfrak{A} -измеримой функцией ω , задаваемой с точностью до эквивалентности следующим соотношением:

$$\int_B E(X|\mathfrak{A})\,dP = \int_B X\,dP, \quad \forall B \in \mathfrak{A}.$$

(Существование у.м.о. вытекает из теоремы Радона-Никодима.)

Определение. Сужение $E(X|\mathfrak{A})$ на класс индикаторов χ_A , $A \in \mathfrak{F}$, называется условной вероятностью события A при заданной σ -алгебре \mathfrak{A} и обозначается $P(A|\mathfrak{A})$. Очевидно, что $P(A|\mathfrak{A})$ — это \mathfrak{A} -измеримая функция, удовлетворяющая условию

$$\int_{B} P(A|\mathfrak{A}) dP = P(AB), \text{ для любого } B \in \mathfrak{A}.$$

Свойства условного математического ожидания.

- (1) $E(E(X|\mathfrak{A})) = EX$.
- (2) Если X является \mathfrak{A} -измеримой, то

$$E(X|\mathfrak{A}) = X$$
 п.н.

- (3) Если X=C п.н., то $E(X|\mathfrak{A})=C$ п.н., а если $X\geq Y$ п.н., то $E(X|\mathfrak{A})\geq E(Y|\mathfrak{A})$ п.н.
- (4) Линейность у.м.о.:

$$E(c_1X_1 + c_2X_2|\mathfrak{A}) = c_1E(X_1|\mathfrak{A}) + c_2E(X_2|\mathfrak{A})$$
 п.н.

(5) Если с.в. X измерима относительно \mathfrak{A} , то

$$E(XY|\mathfrak{A}) = XE(Y|\mathfrak{A})$$
 п.н.

(6) Пусть σ -алгебры $\mathfrak{A}_i \subset \mathfrak{F}, i = 1, 2,$ и $\mathfrak{A}_1 \subset \mathfrak{A}_2$, тогда

$$E(E(X|\mathfrak{A}_2)|\mathfrak{A}_1) = E(X|\mathfrak{A}_1) = E(E(X|\mathfrak{A}_1)|\mathfrak{A}_2)$$
 п.н.

Если $z \colon \Omega \to \mathfrak{X}$ некоторое отбражение из Ω в \mathfrak{X} , то по определению

$$E(X|z) = E(X|\mathcal{F}_z),$$

где
$$\mathfrak{F}_z = \{z^{-1}(B), B \in \mathfrak{F}_z'\}, a \mathfrak{F}_z' = \{B \subset \mathfrak{X}, z^{-1}(B) \in \mathfrak{F}\}.$$

(7) Если с.в. X не зависит от σ -алгебры $\mathfrak A$, то

$$E(X|\mathfrak{A}) = EX.$$

(8) Если z — случайная величина, то берется

$$\mathfrak{F}_z = \{z^{-1}(B), B \in \mathfrak{B}^1\} (\mathfrak{B}^1 - \sigma$$
-алгебра),

при этом E(X|z) = g(z), где $g(\cdot)$ — борелевская функция.

- (9) Справедливы также теоремы о монотонной сходимости и аналоги теорем о сходимости Фату-Лебега:
 - а) Если $0 \le X_n \uparrow X$ п.н., то $0 \le E(X_n|\mathfrak{A}) \uparrow E(X|\mathfrak{A})$ п.н. В частности,

$$P\left(\sum_{k=1}^{\infty} A_k | \mathfrak{A}\right) = \sum_{k=1}^{\infty} P(A_k | \mathfrak{A})$$
 п.н.

(напомним, что запись $\sum_k A_k$ означает, что берется объединение $\cup_k A_k$ несовместных событий, т.е. $A_i A_j = \emptyset, \ i \neq j$).

Лекция 5 33

b) Пусть Y и Z интегрируемы (т.е. существуют EY и EZ). Если $Y \leq X_n$ п.н. (или $X_n \leq Z$ п.н.), то

$$E\left(\underbrace{\lim_{n\to\infty}X_n|\mathfrak{A}}\right)\leq \underbrace{\lim_{n\to\infty}E(X_n|\mathfrak{A})}$$
 п.н. (соотв. $\overline{\lim_{n\to\infty}E(X_n|\mathfrak{A})}\leq E\left(\overline{\lim_{n\to\infty}X_n|\mathfrak{A}}\right)$ п.н.)

В частности, если $Y \leq X_n \uparrow X$ п.н. (или $Y \leq X_n \leq Z$ п.н и $X_n \to X$ п.н.), то

$$E(X_n|\mathfrak{A}) \to E(X|\mathfrak{A})$$
 п.н. при $n \to \infty$.

(Далее п.н. будет часто опускаться).

Определение. Условная вероятность $P(\cdot|\mathfrak{A})$ называется pегулярной, если при каждом ω , за исключением множества меры 0, она является вероятностной мерой.

Таким образом, регулярная условная вероятность $P^{\mathfrak{A}}$ со значениями $P(A|\mathfrak{A})(\omega)$ это функция, определенная на $\mathfrak{F} \times \Omega$, обладающая следующими свойствами:

- 1) $P(A|\mathfrak{A})(\omega)$ есть \mathfrak{A} -измеримая по ω функция для каждого фиксированного A и представляет собой вероятность на $\mathcal F$ при каждом фиксированном ω .
 - **2)** Для любых фиксированных $A \in \mathcal{F}$ и $B \in \mathfrak{A}$

$$P(AB) = \int_{B} P(A|\mathfrak{A}) dP.$$

(9) Если $P^{\mathfrak{A}}$ — регулярная условная вероятность, то

$$E(X|\mathfrak{A}) = \int X dP^{\mathfrak{A}}$$
 п.н.

для любой с.в. X с $E|X|<\infty$.

ОПРЕДЕЛЕНИЕ. Потоком называется неубывающее семейство σ -алгебр $\{\mathfrak{F}_t,\ t\geq 0\}$, т.е. $\mathfrak{F}_{t_1}\subset \mathfrak{F}_{t_2}$ при $t_1< t_2,\ \mathfrak{F}_t\subset \mathfrak{F}$ для любого t.

Предположим, что $X_t(\omega)$ при любом t принимают значения в измеримом пространстве $(\mathfrak{X},\mathfrak{B}).$

ОПРЕДЕЛЕНИЕ. Случайный процесс $X = \{X_t, t \geq 0\}$ называется согласованным с потоком σ -алгебр $\{\mathcal{F}_t, t \geq 0\}$ (или адаптированным к потоку), если с.в. X_t является \mathcal{F}_t -измеримой при любом $t \geq 0$.

<u>Определение</u>. Случайный процесс $(X_t, \mathcal{F}_t)_{t\geq 0}$ называется марковским относительно семейства σ -алгебр $\{\mathcal{F}_t, \ t\geq 0\}$, если процесс адаптирован к потоку, и для любого t σ -алгебры \mathcal{F}_t и $\mathcal{F}_{\leq t}$ условно независимы при данной с.в. X_t , т.е.

- (1) $X_t \mathfrak{F}_t$ -измерима при любом $t \geq 0$.
- (2) $P(AB|X_t) = P(A|X_t)P(B|X_t) \ \forall A \in \mathcal{F}_{>t}, B \in \mathcal{F}_t, t \ge 0.$

<u>Задача</u>. Проверить, что случайный процесс X марковский относительно семейства $(\mathcal{F}_t,\ t\geq 0)$ является просто марковским (т.е. относительно семейства $\mathcal{F}_{< t}$).

<u>ЛЕММА</u>. Пусть процесс $\{X_t, t \geq 0\}$ адаптирован к потоку $\{\mathfrak{F}_t, t \geq 0\}$. Тогда следующие условия эквивалентны:

- (1) Случайный процесс $\{X_t, t \geq 0\}$ марковский относительно семейства σ -алгебр $\{\mathfrak{F}_t, t \geq 0\}$.
- (2) Для любого $t \geq 0$ и произвольной $\mathfrak{F}_{\geq t}$ -измеримой ограниченной случайной величины Y выполнено равенство

$$E(Y|\mathcal{F}_t) = E(Y|X_t) \ (n.H.).$$

(3) Для любой измеримой ограниченной функции f(x) ($\sup_x |f(x)| < \infty$) и произвольных $s \geq t$ верно

$$E(f(X_s)|\mathcal{F}_t) = E(f(X_s)|X_t) \ (n.H.).$$

Доказательство. Установим $1 \Longrightarrow 2$. Так как любая ограниченная $\mathcal{F}_{\geq t}$ -измеримая с.в. может быть представлена как предел простых функций, т.е. конечных линейных комбинаций индикаторов, то достаточно проверить требуемое свойство для $Y=\chi_A$, где $A\in\mathcal{F}_{\geq t}$, а затем воспользоваться свойствами у.м.о.

Итак, проверим, что

$$P(A|\mathcal{F}_t) = P(A|X_t), \ A \in \mathcal{F}_{>t}.$$

С одной стороны, в силу марковости (и свойств у.м.о.) имеем цепочку равенств

$$P(AB) = E(P(AB|X_t)) =$$

$$= E(P(A|X_t)P(B|X_t)) = E(P(A|X_t)E(\chi_B|X_t)) =$$

$$= E(E(\chi_B P(A|X_t)|X_t)) = E(\chi_B P(A|X_t)).$$

С другой стороны,

$$P(AB) = E\chi_A\chi_B = E(E(\chi_A\chi_B|\mathcal{F}_t)) =$$

= $E(\chi_B E(\chi_A|\mathcal{F}_t)) = E(\chi_B P(A|\mathcal{F}_t)).$

Лекция 5 35

Таким образом, для любого $B \in \mathfrak{F}_t$

$$\int_{B} P(A|X_t) dP = \int_{B} P(A|\mathcal{F}_t) dP \qquad (= P(AB)),$$

а поскольку $P(A|X_t)$ — это \mathcal{F}_t -измеримая функция, получаем необходимое равенство

$$E(Y|\mathcal{F}_t) = E(Y|X_t)$$
 для $Y = \inf_{\Lambda}, \ A \in \mathcal{F}_{\geq t}.$

Теперь покажем, что 2 \implies 1. Пусть $A \in \mathcal{F}_{\geq t}$ и $B \in \mathcal{F}_t$, тогда

$$P(AB|X_t) = E(\chi_A \chi_B | X_t) = E(E(\chi_A \chi_B | \mathcal{F}_t) | X_t) =$$

$$= E(\chi_B E(\chi_A | \mathcal{F}_t) | X_t) = E(\chi_B E(\chi_A | X_t) | X_t) =$$

$$= E(\chi_A | X_t) E(\chi_B | X_t) = P(A|X_t) P(B|X_t).$$

Так как 3 — это частный случай 2 (при $Y=f(X_1)$), то надо доказать лишь, что $3\implies 2$.

Пусть сначала $Y=f_1(X_{s_1}\dots f_n(X_{s_n}),$ где $t\leq s_1<\dots< s_n$ и $\sup_x|f_i(x)|<\infty,$ $i=\overline{1,n}.$ Установим интересующий нас результат по индукции. При n=1 утверждение справедливо, так как совпадает с 3. Предположим, что для n-1 равенство установлено, ипроверим его для n. Имеем

$$E\left(\prod_{i=1}^{n-1} f_i(X_i)g(X_{s_{n-1}})|X_t\right) = E\left(\prod_{i=1}^{n-1} f_i(X_i)E(f_n(X_{s_n})|\mathcal{F}_{s_{n-1}})|X_t\right) =$$

$$= E\left(E\left(\prod_{i=1}^{n} f_i(X_{s_i})|\mathcal{F}_{s_{n-1}}\right)|X_t\right) =$$

$$= E\left(\prod_{i=1}^{n} f_i(X_{s_i})|X_t\right) = E(Y|X_t).$$

Доказательство закончено, так как любую $\mathcal{F}_{\geq t}$ -измеримую ограниченную с.в. можно приблизить с помощью $\prod_{i=1}^n f_i(X_{s_i})$.

Для любого марковского процесса справедлив следующий результат.

<u>ЛЕММА</u>. Процесс $\{X_t, t \geq 0\}$ марковский тогда и только тогда, когда для любой измеримой ограниченной f(x) и произвольного набора $t_1 \leq t_2 \leq \cdots \leq t_n \leq s$ с вероятностью 1

$$E(f(X_s)|X_{t_1},...,X_{t_n}) = E(f(X_s)|X_{t_n}).$$

Доказательство. Если процесс марковский, то требуемое утверждение вытекает из предыдущей леммы. В самом деле

$$E(f(X_s)|X_{t_1},\ldots,X_{t_n}) = E(E(f(X_s)|\mathcal{F}_{< t_n})|X_{t_1},\ldots,X_{t_n}) =$$

$$= E(E(f(X_s)|X_{t_n})|X_{t_1}, \dots, X_{t_n}) = E(f(X_s)|X_{t_n}).$$

Обратно, пусть указанные у.м.о. совпадают, покажем, что тогда

$$E(f(X_s)|\mathcal{F}_{\leq t}) = E(f(X_s)|X_t)$$
 при $s \geq t$.

Для этого достаточно проверить, что для любого $B \in \mathfrak{F}_{< t}$

$$\int_{B} f(X_s) dP = \int_{B} E(f(X_s)|X_t) dP.$$

В силу условий леммы эти интегралы совпадают для $B \in \sigma(X_{t_1}, \dots, X_{t_n}, X_t)$ при $t_1 \leq \dots \leq t_n \leq t \leq s$. Правая и левая части равенства — это конечные меры (не обязательно вероятностные), совпадающие на цилиндрах, порождающих $\mathcal{F}_{\leq t}$. В силу единственности продолжения меры равенство будет выполнено для любого $B \in \mathcal{F}_{\leq t}$.

Итак, пусть имеется измеримое пространство $(\mathfrak{X}, \mathcal{B})$, в котором все одноточечные множества измеримы, называемое фазовым. И пусть $(X_t, \mathcal{F}_t)_{t \geq 0}$ — марковский процесс относительно потока $\{\mathcal{F}_t, \ t \geq 0\}$ со значениями в фазовом пространстве. Тогда с вероятностью 1 при $t \geq s$ для любого $A \in \mathcal{B}$

$$P(X_t \in A | \mathcal{F}_s) = P(X_t \in A | X_s).$$

В силу свойства 7 у.м.о. существует такая функция P(s, x, t, A), что

$$P(X_t \in A|X_s) = P(s, X_s, t, A).$$

Эта функция играет важную роль в теории марковских процессов. Но для плодотворной теории надо наложить дополнительные требования. Они станут особенно понятными, если вспомнить следующую интерпретацию

$$P(s, x, t, A) = P(X_t \in A | X_s = x).$$

ОПРЕДЕЛЕНИЕ. Функция P(s,x,t,A) называется марковской переходной функцией на $(\mathfrak{X},\mathfrak{B})$, если

- 1° для любых s, x, t (как функция A) $P(s, x, t, \cdot)$ вероятностная мера на \mathcal{B} ,
- $2^\circ\,$ для любых $s,\,x,\,A$ (как функция x) $P(s,\cdot,t,A)$ измерима, $3^\circ\,$

$$P(s,x,s,A)=\delta_x(A), \text{ здесь } \delta_x(A)=\begin{cases} 1, & \text{при } x\in A,\\ 0, & \text{при } x\notin A, \end{cases}$$

 $4^{\circ}\:$ выполнено уравнение Колмогорова-Чепмена, т.е. для любых $0 \leq s \leq u \leq t$

$$P(s,x,t,A) = \int_{\mathfrak{X}} P(s,x,u,dy) P(u,y,t,A).$$

(Существует такой подход, при котором изучается это семейство функций, а точнее, порождаемое ими семейство линейных операторов. При этом не предполагается существование ни вероятностного пространства, ни марковского случайного процесса.)

Действительно, с измеримым пространством $(\mathfrak{X}, \mathcal{B})$ связаны два банаховых пространства.

 \mathbb{B} — совокупность ограниченных \mathfrak{B} -измеримых функций $x \in \mathfrak{X}$, норма определена следующим образом:

$$||f|| = \sup_{x \in \mathfrak{X}} |f(x)|$$

 \mathbb{V} — совокупность обобщенных мер (или зарядов), т.е. числовая счетно-аддитивная функция множеств $A \in \mathcal{B}$, норма ν — это полная вариация на всем пространстве:

$$\|\nu\| = |\nu|(\mathfrak{X}).$$

Оказывается, что между \mathbb{B} и \mathbb{V} существует определенная связь: $\mathbb{V} \subset \mathbb{B}^*$ и $\mathbb{B} \subset \mathbb{V}^*$ (где знак * показывает, что речь идет о сопряженном пространстве).

В самом деле, положим

$$\langle \nu, f \rangle = \int_{\mathfrak{X}} \nu(dx) f(x),$$

где интеграл определяется следующим образом

$$\int_{\mathfrak{X}} \nu(dx) f(x) = \int_{\mathfrak{X}} \nu^+(dx) f(x) - \int_{\mathfrak{X}} \nu^-(dx) f(x),$$

а $\nu = \nu^+ - \nu^-$ — это разложение Жордана.

Тогда каждому элементу $\nu \in \mathbb{V}$ соответствует линейный функционал $\langle \nu, \cdot \rangle$ на \mathbb{B} , а каждому элементу $f \in \mathbb{B}$ соотвествует линейный функционал $\langle \cdot, f \rangle$ на \mathbb{V} .

Задача. Доказать, что норма элемента и норма соответствующего линейного функционала совпадают:

$$\|\nu\| = \sup_{\|f\|=1} |\left\langle \nu, f \right\rangle|, \quad \|f\| = \sup_{\|\nu\|=1} |\left\langle \nu, f \right\rangle|.$$

Линейные операторы в пространстве $\mathbb B$ будем записывать слева от элемента $f\in \mathbb B$, а в пространстве $\mathbb V$ — справа.

Пусть P(s,x,t,A) — марковская переходная функция, удовлетворяющая требованиям $1^{\circ}-4^{\circ}$. Определим на пространстве $\mathbb B$ семейство операторов P^{st} $(s\leq t,\,s,t\in T)$ с помощью соотношения

$$P^{st}f(x) = \int_{\mathfrak{X}} P(s, x, t, dy) f(y).$$

(Существование и ограниченность интервала для $f \in \mathbb{B}$ обеспечивается тем, что $P(s,x,t,\cdot)$ — конечная мера (свойство 1°), а измеримость $P^{st}f(x)$ по x — измеримостью $P(s,\cdot,t,A)$ (свойство 2°)).

Установим свойства операторов P^{st} .

1) В силу их определения операторы линейны.

Остальные свойства операторов вытекают из свойств переходной функции.

2) Операторы P^{st} сжимающие.

В само деле, так как $P(s,x,t,\cdot)$ — вероятностная мера (1°), то

$$|P^{st}f(x)| \le \int P(s, x, t, dy) ||f|| = ||f||,$$

иначе говоря

$$||P^{st}f|| \le ||f||$$
, r.e. $||P^{st}|| \le 1$.

- 3) Операторы сохраняют положительность, т.е. неотрицательные функции переводят в неотрицательные. Действительно, опять-таки в силу 1° , если $f(x) \geq 0$, то $P^{st}f(x) \geq 0$.
 - 4) $P^{st}1 \equiv 1$, это также следствие 1°
 - 5) $P^{ss} = E$ (тождественный оператор).

Это вытекает из 3°, так как

$$P^{ss}f(x) = \int \delta_x(dy)f(y) = f(x).$$

6) $P^{st}=P^{su}P^{ut}$ при $s\leq u\leq t.$ В самом деле, уравнение Колмогорова-Чепмена (4°) дает

$$P^{st}f(x) = \int P(s, x, t, dy)f(y) = \iint P(s, x, u, dz)P(u, z, t, dy)f(y) =$$
$$= \int P(s, x, u, dz) \int P(u, z, t, dy)f(y) = P^{su}(P^{ut}f)(x).$$

(В тех случаях, когда интегрирование ведется по всему пространству \mathfrak{X} , часто будем для простоты писать \int вместо $\int_{\mathfrak{X}}$).

В пространстве $\mathbb V$ введем операторы P^{st} $(s \leq t, s, t \in T)$ с помощью соотношения

$$\nu P^{st}(A) = \int \nu(dx) P(s,x,t,A).$$

(Существование интеграла обеспечивается свойством 2° — измеримостью по x переходной функции, а счетная аддитивность νP^{st} свойством 1° , т.е. счетной аддитивностью $P(s,x,t,\cdot)$).

Свойства 1')-6') операторов P^{st} в пространстве \mathbb{V} аналогичны свойствам 1)-6).

1') Операторы P^{st} линейны в силу определения.

2')Операторы cжимающие, поскольку в силу 1° получаем

$$\|\nu P^{st}\| \le \|\nu\|.$$

- 3') Меры переводятся в меры.
- $4') \ \nu P^{st}(\mathfrak{X}) = \nu(\mathfrak{X}).$ (Эти два свойства справедливы также в силу 1°).
- 5') $P^{ss} = E$ следует из 3° .
- 6') $P^{st} = P^{sk}P^{ut}$ для $s \le u \le t$.

В самом деле, уравнения Колмогорова-Чепмена превращается в соотношение

$$\nu P^{st} = (\nu P^{sk}) P^{ut},$$

т.е. по форме 6') совпадает с 6). Однако порядок применения операторов здесь другой (сначала P^{su} , а потом P^{ut}).

Заметим далее, что операторы P^{st} в пространствах $\mathbb B$ и $\mathbb V$ сопряжены друг другу, поскольку для $f\in\mathbb B,\ \nu\in\mathbb V$

$$\langle \nu, P^{st} f \rangle = \langle \nu P^{st}, f \rangle,$$

так как правая и левая части равны

$$\iint \nu(dx)P(s,x,t,dy)f(y).$$

(Более точно, оператор P^{st} на \mathbb{B} — это сужение оператора в \mathbb{V}^* , сопряженного к оператору P^{st} в \mathbb{V} , и наоборот).

<u>Задача</u>. Получить свойства 1')–6') из 1)–6). Доказать, что $\|P^{st}\|=1$.

Как мы видели, семейства операторов P^{st} связаны лишь с переходной функцией.

Далее мы увидим, каков их вероятностный смысл.

Лекция 6

Пусть задано фазовое пространство ($\mathfrak{X},\mathfrak{B}$), т.е. измеримое пространство, в котором все одноточечные множества измеримы (точки фазового пространства называются состояниями. Далее, пусть P(s,x,t,A) — марковская переходная функция, удовлетворяющая условиям $1^{\circ}-4^{\circ}$, а $(X_t,\mathcal{F}_t)_{t\in T}$ — это марковский процесс относительно семейства σ -алгебр (\mathcal{F}_t).

ОПРЕДЕЛЕНИЕ. Говорят, что $(X_t, \mathfrak{F}_t)_{t \in T}$ — это марковский процесс с $nepexo\partial$ ной функцией P(s,x,t,A), если

$$P(X_t \in A|X_s) = P(s,X_s,t,A)$$
 п.н.

для любых $s \leq t$, $s, t \in T$, и любого $A \in \mathcal{B}$.

(Очевидно, что в силу марковости процесса также $P(X_t \in A|\mathcal{F}_s) = P(s,X_s,t,A)$ п.н.)

Заметим, что для произвольного марковского процесса ниоткуда не следует существование переходной функции со свойствами 1°-4°. Просто мы хотим рассматривать лишь те процессы, для которых соответствующие условные вероятности регулярны.

<u>Задача</u>. Показать, что регулярная условная вероятность существует, если σ -алгебра, относительно которой она берется, порождена конечным числом случайных величин.

 $\underline{3}$ адача. Пусть $\Omega=[0,1], \mathfrak{A}-\sigma$ -алгебра борелевских подмножеств и λ — мера Лебега. Существует такое подмножество D, что $\overline{\lambda}(D)=1$, $\underline{\lambda}(D)=0$, здесь $\overline{\lambda}$ — внешняя, $\underline{\lambda}$ — внутренняя мера. Построим новую σ -алгебру \mathcal{F} , порожденную \mathfrak{A} и D следующим образом: она состоит из множеств вида $DA_1\cup\overline{D}A_2$, где $A_1,A_2\in\mathfrak{A}$. Меру определим с помощью соотношения

$$P(DA_1 \cup \overline{D}A_2) = \frac{1}{2}[\lambda(A_1) + \lambda(A_2)],$$

тогда $P(A)=\lambda(A)$ при $A\in\mathfrak{A}$. Доказать, что не существует регулярной условной вероятности $P(A|\mathfrak{A}),\ A\in\mathfrak{F}.$

Из теоремы Колмогорова вытекает, что знание начального распределения в момент s, вероятностной меры $\nu_s(A)$, и переходной функции P(s,x,t,A) позволяет построить марковский процесс. А именно, справедлив следующий результат (доказательство можно прочитать в книге А.Д.Вентцеля "Курс теории случайных процессов").

<u>Теорема</u>. Пусть $\mathfrak{X} - \sigma$ -компактное метрическое пространство $u \ \mathcal{B} - \sigma$ -алгебра его борелевских подмножеств. И пусть P(s,x,t,A) удовлетворяет 1° - 4° , а $\nu_t(A)$, $t \in T$, $A \in \mathcal{B}$, при фиксированном t вероятностная мера, причем $\nu_t = \nu_s P^{st}$, m.e.

$$\nu_t(A) = \int \nu_s(dx) P(s, x, t, A).$$

Тогда существует марковский процесс, для которого P(s,x,t,A) — переходная функция, а $\nu_t(A)$ — одномерное распределение процесса в момент t, m.e.

$$\nu_t(A) = P(X_t \in A).$$

С переходной функцией связано понятие *марковского семейства*, которое отражает возможность начать случайное движение в любой точке фазового пространства.

Пусть заданы некотрое множество $T\subset\mathbb{R}^1$, фазовое пространство $(\mathfrak{X},\mathfrak{B})$ и функция P(s,x,t,A), удовлетворяющая условиям $1^\circ-3^\circ$. Кроме того, пусть имеется пространство элементарных событий Ω и на $T\times\Omega$ задана произвольная функция $X(t,\omega)=X_t(\omega)$, принимающая значения в \mathfrak{X} . Как и ранее, с функцией $X_t(\omega)$ связаны σ -алгебры $\mathcal{F}_{\leq t}=\sigma(X_s,s\leq t),\,\mathcal{F}_{\geq t}=\sigma(X_s,s\geq t),\,\mathcal{F}_{[s,t]}=\sigma(X_u,u\in[s,t]),\,\mathcal{F}_T=\sigma(X_t,t\in T).$

Предположим далее, что для любых $s\in T$ и $x\in\mathfrak{X}$ на σ -алгебре $\mathfrak{F}_{>s}$ задана вероятностная мера $P_{s,x}$.

Определение. Набор элементов $(X_t(\omega), P_{s,x})$ называется марковским семейством с переходной функцией P(s,x,t,A), если при любых s и x

а) случайный процесс $X_t(\omega)$, $t \in T \cap [s, \infty)$, на вероятностном пространстве $(\Omega, \mathfrak{F}_{>s}, P_{s,x})$ является марковским, т.е.

$$P_{s,x}(BC|X_t) = P_{s,x}(B|X_t)P(C|X_t)$$

для любых $s,x,\,t\geq s,\,B\in\mathfrak{F}_{\geq t},\,C\in\mathfrak{F}_{[s,t]}.$

б) этот марковский процесс обладает заданной переходной функцией, иначе говоря, при любых $s \le u \le t, \ x \in \mathfrak{X}, \ A \in \mathcal{B}$ п.н. по мере $P_{s,x}$

$$P_{s,x}(X_t \in A|\mathcal{F}_{[s,u]}) = P(u, X_u, t, A).$$

в) $P_{s,x}(X_s = x) = 1$ (в момент s процесс выходит из точки x).

Если требование б) записать в интегральной форме, мы получим, что для любого $D \in \mathfrak{F}_{[s,u]}$

$$P_{s,x}(D \cap \{X_t \in A\}) = \int_D P(u, X_u(\omega), t, A) P_{s,x}(d\omega).$$

Возьмем $D=\Omega,\,u=s,\,$ тогда

$$P_{s,x}(X_t \in A) = \int_{\Omega} P(s, X_s(\omega), t, A) P_{s,x}(d\omega).$$

Но поскольку в силу в) $P_{s,x}$ — п.н. имеем $X_s(\omega)=x$, то подинтегральная функция равна P(s,x,t,A), следовательно,

$$(1) P_{s,x}(X_t \in A) = P(s, x, t, A).$$

Для марковских процессов многие формулировки становятся проще. Справедливо следующее

СЛЕДСТВИЕ. (без доказательства). Пусть $X_t(\omega)$ — функция на $T \times \Omega$ со значениями в фазовом пространстве $(\mathfrak{X},\mathfrak{B})$, $P_{s,x}$, при любых s и x, вероянтностная мера по σ -алгебре $\mathfrak{F}_{\geq s}$, а P(s,x,t,A) — функция, удовлетворяющая условиям 1° - 3° . Пара $(X_t,P_{s,x})$ является марковским семейством с переходной функцией P(s,x,t,A) тогда и только тогда,

когда конечномерные распределения X_t относительно $P_{s,x}$ задаются формилой

$$P_{s,x}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n) =$$

$$= \int_{A_1} P(s, x, t_1, dy_1) \int_{A_2} \dots \int_{A_n} P(t_{n-1}, y_{n-1}, t_n, dy_n)$$

при $s \leq t_1 \leq \cdots \leq t_n$. А уравнение Колмогорова-Чепмена (4°) — это необходимое условие согласованности такой системы конечномерных распределений.

Таким образом, можно утверждать, что если $\mathfrak{X}-\sigma$ -компактное метрическое, а $\mathfrak{B}=\mathfrak{A}_{\mathfrak{X}}-\sigma$ -алгебра борелевских множеств, причем P(s,x,t,A) удовлетворяет условиям 1°–4°, то существует марковское семейство $(X_t,P_{s,x})$ с заданной переходной функцией.

Теперь вернемся к операторам P^{st} в пространствах \mathbb{B} и \mathbb{V} . Обозначим через $E_{s,x}$ интеграл по мере $P_{s,x}$. В силу соотношения (??) и определения оператора P^{st} в \mathbb{B} получаем

$$P^{st}f(x) = E_{s,x}f(X_t).$$

Аналогично в V имеет место равенство

$$\nu P^{st}(A) = P_{s,\nu}(X_t \in A),$$

т.е. получается распределение X_t , если в момент s распределение было ν , т.е. $P(X_s \in A) = \nu(A)$.

Предволожим, что задано семейство операторов P^{st} в пространстве \mathbb{B} , удовлетворяющих условиям 1)-6). Можно ли утверждать. что существует марковское семейство. которому соответствует данное семейство операторов? (Точнее, можно ли представить операторы P^{st} в интегральной форме с функцией P(s, x, t, A), удовлетворяющей условиям 1° - 4° .)

Оказывается, что ответ зависит от того, будет ли $\mathbb{B}^*=\mathbb{V}$ или $\mathbb{B}^*\supset\mathbb{V}.$

Для конечных фазовых пространств равенство справедливо, в то время как для счетного \mathfrak{X} , пользуясь теоремой Хана-Банаха, можно построить пример линейного функционала, не представимого в виде интеграла.

С другой стороны, если \mathfrak{X} — компактное метрическое пространство, $\mathfrak{B}=\mathfrak{A}_{\mathfrak{X}},\ \mathrm{a}\ \mathbb{C}$ — пространство непрерывных функций на \mathfrak{X} (а значит, измеримых ограниченных, т.е. $\mathbb{C}\subset\mathbb{B}$), то любой линейный ограниченный функционал на пространстве \mathbb{C} представим в виде интеграла по обобщенной мере

$$\varphi(f) = \langle \nu, f \rangle = \int_{\mathfrak{X}} \nu(dx) f(x),$$

причем функционалам, принимающим неотрицательные значения на неотрицательных функциях, соответствуют обычные меры, и различные меры соответствуют различным функционалам. (Если $\mathfrak X$ это отрезок действительной прямой, то это теорема Рисса.) Таким образом, оказывается, что в этом случае $\mathbb V=\mathbb C^*$. Однако мы рассматриваем операторы P^{st} на пространстве $\mathbb B$, т.е. вообще говоря, функции из $\mathbb C$ переводятся в $\mathbb B$.

Необходимо наложить дополнительное условие, обеспечивающее $P^{st}\mathbb{C}\subset\mathbb{C}$, которое выделяет специальный класс марковских семейств, которые называются ϕ еллеровскими.

 $\underline{\mathrm{O}}$ пределение. Пусть \mathfrak{X} — метрическое пространство, $\mathcal{B}=\mathfrak{A}_{\mathfrak{X}}$, \mathbb{C} — пространство непрерывных ограниченных функций. Семейство $(X_t,P_{s,x})$ называется ϕ еллеровским, если $P^{st}\mathbb{C}\subset\mathbb{C}$ при любых $s\leq t$. Иначе, для любой непрерывной ограниченной функции на \mathfrak{X} функция $P^{st}f(x)$ непрерывна по x (ограниченность выполнена автоматически), т.е. при $x\to x_0$

$$\int_{\mathfrak{X}} P(s,x,t,dy) f(y) \to \int_{\mathfrak{g}} X P(s,x_0,t,dy) f(y)$$

(таким образом, требование феллеровости, касающееся лишь переходных функций, состоит в том, что меры P(s,x,t,A) слабо непрерывны по начальной точке x).

Очевидно, что любому феллеровскому марковскому семейству соответсвует семейство операторов P^{st} на пространстве \mathbb{C} , удовлетворяющее условиям 1)-6). Докажем следующую теорему, показывающую, что верно и обратное утверждение.

 $\frac{\text{ТЕОРЕМА}.}{\mathfrak{A}_{\mathfrak{X}}}. \ \, \textit{Пусть \mathfrak{X}} - \textit{компактное метрическое пространство}, \\ \mathcal{B} = \mathfrak{A}_{\mathfrak{X}} \ \, (\sigma\text{-алгебра борелевских множеств}). \ \, \textit{Пусть, далее, на пространстве} \\ \mathbb{C} \ \, \text{непрерывных функций на $\mathfrak{X}} \ \, \text{задано семейство операторов P^{st}, $s \leq t$,} \\ s,t \in T \subset \mathbb{R}^1, \ \, \text{удовлетворяющих требованиям 1} -6). \ \, \text{Тогда существует} \\ \phi \textit{еллеровское марковское семейство} \ \, (X_t,t \in T,P_{s,x}), \ \, \text{которому соответствует} \\ \sigma \textit{данное семейство операторов}.$

Доказательство. Достаточно установить, что $P^{st}f(x)$ можно представить в виде интеграла

$$P^{st}f(x) = \int_{\mathfrak{X}} P(s, x, t, dy) f(y),$$

где P(s,x,t,A) удовлетворяет условиям 1°-4° (поскольку, как было указано выше, переходной функции соответствует марковское семейство, в силу условия $P^{st}\mathbb{C}\subset\mathbb{C}$ семейство будет феллеровским).

Зафиксируем s,t,x, тогда согласно 1) и 2) $P^{st}f(x)$ — линейный функционал на $\mathbb C$ (с нормой, непревосходящей 1). Значит, он представим в виде интеграла от f по некоторой обобщенной мере, которую обозначим $P(s,x,t,\cdot)$, чтобы подчеркнуть зависимость от зафиксированных параметров.

Теперь надо доказать, что для этой функции P(s,x,t,A) условия 1° — 4° выполнены.

В силу 3) это обычная мера, а в силу 4) — вероятностная, т.е. 1° справедливо.

Условие 5) превращается в равенство $P(s,x,s,A) = \delta_x(A)$, т.е. 3° также установлено.

Осталось проверить измеримость (2°) и уравнение Колмогорова-Чепмена (4°) .

Для любого борелевского множества A имеет место равенство

$$P(s, x, t, A) = \int_{\mathfrak{X}} P(s, x, t, dy) \chi_A(y).$$

Поскольку подинтегральная функция χ_A разрывна, мы не можем утверждать, что интеграл является измеримой функцией x.

Пусть сначала A — замкнутое множество. Положим

$$f(x) = e^{-\rho(x,A)},$$

где $\rho(x,A)$ — расстояние от точки x до множества A. Функция f(x) непрерывна, f(x)=1 для $x\in A$, а для $x\notin A$ заключена строго между 0 и 1. При любом $n\geq 1$ функция $f^n(x)$ также непрерывна, поэтому и

$$(P^{st}f^n)(x) = \int_{\mathfrak{X}} P(s,x,t,dy)f^n(y)$$
 — непрерывная,

а значит, измеримая функция. Очевидно, что $f^n(x) \to \chi_A(x)$ при $n \to \infty$, следовательно, по теореме о мажорируемой сходимости

$$P(s, x, t, A) = \int_{\mathfrak{X}} P(s, x, t, de) \chi_A(y) =$$

$$= \int_{\mathfrak{X}} P(s, x, t, dy) \lim_{n \to \infty} f^n(y) = \lim_{n \to \infty} \int_{\mathfrak{X}} P(s, x, t, dy) f^n(y).$$

Предел измермых функций измерим, т.е. для замкнутых множеств A справедливость 2° доказана.

Измеримость сохраняется при сложении непересекающихся множеств, вычитании из множества его части и при монотонном предельном переходе. Значит, она имеет место и для наименьшей системы множеств, замкнутой относительно указанных операций и содержащей все замкнутые множества. Так как пересечение замкнутых множеств замкнуто, то эта система совпадает с наименьшей σ -алгеброй, содержащей замкнутые

множества, т.е. с борелевской σ -алгеброй. (Доказать эти утверждения в качестве задачи).

Теперь проверим выполнение уравнений Колмогорова-Чепмена. Пусть, как и ранее, $f(x)=e^{-\rho(x,A)}$, где A— замкнутое множество. В силу условия 6) $P^{st}=P^{su}P^{ut}$ имеем

$$\begin{split} \int_{\mathfrak{X}} P(s,x,t,dy) f^n(y) &= \left(P^{st} f^n \right)(x) = \left(P^{su} \left(P^{ut} f^n \right) \right)(x) = \\ &= \int_{\mathfrak{X}} P(s,x,u,dz) \int_{\mathfrak{X}} P(u,z,t,dy) f^n(y). \end{split}$$

Переходя к пределу при $n \to \infty$, получим

$$P(s, x, t, A) = \int_{\mathfrak{X}} P(s, x, u, dz) P(u, z, t, A)$$

для любого замкнутого множества A.

Обе части указанного равенства являются мерами. Поскольку в метрическом пространстве мера любого борелевского множества может быть востановлена по ее значениям на замкнутых множествах, то равенство справедливо и для любых борелевских множеств.

Задача. Показать, что для любого борелевского множества A в метрическом пространстве и любого $\varepsilon > 0$ существуют такие множества F (замкнутое) и G (открытое), что

$$F \subset A \subset G$$
 и $P(G \setminus F) < \varepsilon$.

Новый класс процессов, которые будут рассмотрены, — это $\partial u \phi \phi y$ зионные процессы.

<u>Определение</u>. Марковский процесс X_t со значениями в фазовом пространстве $(\mathbb{R}^1,\mathfrak{A}^1)$ и переходной функцией P(s,x,t,A) называется диффузионным, если

1) для любых $x \in \mathbb{R}^1$ и $\varepsilon > 0$ равномерно по s < t

$$\int_{|x-y|>\varepsilon} P(s,x,t,dy) = o(t-s).$$

2) существуют такие функции $a(s,x),\,b^2(s,x),$ что для любых $x\in\mathbb{R}^1$ и $\varepsilon>0$ равномерно по s< t

$$\int_{|x-y| \le \varepsilon} P(s, x, t, dy)(y-x) = a(s, x)(t-s) + o(t-s),$$

$$\int_{|x-y| \le \varepsilon} P(s, x, t, dy)(y-x)^2 = b^2(s, x)(t-s) + o(t-s).$$

Функция a(s,x) называется коэффициентом сноса, а $b^2(s,x)$ — коэффициентом $\partial u \phi \phi y z u u$. Нетрудно проверить, что a — это урезанное условное математическое ожидание, а b^2 — урезанная условная дисперсия.

Задача. Показать, что достаточно требовать выполнение 1) при любом $\varepsilon > 0$, а 2) лишь при некотором $\varepsilon_0 > 0$, тогда процесс диффузионный.

Оказывается, что при некоторых дополнительных условиях коэффициенты a и b полностью определяют переходную функцию процесса P(s,x,t,A). Чтобы это понять, выведем обратное уравнение Колмогорова.

<u>Теорема.</u> Пусть непрерывная ограниченная функция f(x) такова, что $g(s,x)=P^{st}f(x)$ имеет непрерывные ограниченные производные по x 1-го u 2-го порядка, а функции a(s,x) u $b^2(s,x)$ непрерывны. Тогда существует производная функции g(s,x) по s u при $s\in(0,t),$ $x\in\mathbb{R}^1$ справедливо уравнение s частных производных

$$\begin{split} -\frac{\partial g}{\partial s} &= a(s,x)\frac{\partial g}{\partial x} + \frac{1}{2}b^2(s,x)\frac{\partial^2 g}{\partial x^2} \ u \\ &\lim_{s\uparrow t} g(s,x) = f(x). \end{split}$$