Sequence (an) bounded and nEN and LUB monotonic & in creasing then an > LUB decreasing an > GLB Cauchy sequences: (an) new Y €>0 ∃NE/N: N, N2>N => |an-an2 (€ Cauchy sequences are bounded Convergent sequences are Cauchy Aim: All Cauchy sequences converge Peak points Lemma: every sequence has a monontonic subsequence Theorem Every bounded sequence (an) net has a subsequence (amk) KEZ which converges to a limit L. Proof First proof: (an) ne 7 has a monstanic sequence $(a_{m_k})_{k\in\mathbb{Z}}$ which is bounded as $(a_n)_{n\in\mathbb{Z}}$ is. So it converges.

Second Proof by bisection $a_m = a_0$ and $[x_0, y_0] = [-B, B]$ where an <B (sequence bounded) Inductively all an Choose $[x_1, y_1]$ -B $0 \leftarrow \infty \underset{many}{\longleftrightarrow} B$ to be either [-B,0] ar [0,B] so it contains an for infinitely many 1. Suppose [xk-1, yk-1] with ane [xk-1, yk-1] for infinitely many n & choose [xk,yk] to be either [x_{k-1}, ½(x_{k-1}, y_{k-1})] or [½(x_{k-1}, y_{k-1}), y_{k-1}]
so it contains infinitely many tems
st the sequence. Choose a whintely many

Subsequence

The subsequence

The subsequence of the sequence of the s am, am, am, am, am, am, am, elx, yx]

Back to Cauchy Sequence

(an) n ∈ N Cauchy > bounded

> has a convergent subsequence

am_k > L as k → ∞

