Measure of the Higgs mass for different impulsion pT(H):

Study of the precision with high luminosity

Manon BOURGADE 26 June 2018

We want to predict the precision on the Higgs mass and the significance as function of pT(H) up to 2038 (end of HL-LHC).

Cross section precision

μ Scan

Standard Model Higgs boson decaying into γγ, based on 2016 analysis to measure Higgs mass.

Injected signal : μ=1

$$\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$$

Luminosity	1	10	100
Expected precision (1σ)	17%	8,5%	7%

Slope: -0,18

Doesn't follow the scaling : $\,\sigma \propto \frac{1}{\sqrt{N}}$

Mass precision

Mass scan (no systematics errors, only statistics)

Follows the scaling:

$$\sigma \propto rac{1}{\sqrt{N}}$$

Mass scan (systematics and statistics errors)

Doesn't follow the scaling:

$$\sigma \propto rac{1}{\sqrt{N}}$$

Significance for pT(H)

Significance study for different pT(H)

We want to find an expected significance for different impulsion pT, and for each category.

Signal contribution:
Integration for each interval
of pT(H) and multiply by
luminosity

For the Background contribution, 3 categories for mass resolution: We integrate roughly the background component for each category, and then sum the 3 values.

Bin 1 (0 < pT(H) < 15 GeV)

80000

7,95

160000

11,3

1600000

35,6

Background

Significance

19200

3,90

Bin 2 (15 < pT(H) < 30 GeV)

Bin 3 (30 < pT(H) < 45 GeV)

Bin 4 (45 < pT(H) < 85 GeV)

Bin 5 (85 < pT(H) < 125 GeV)

Bin 6 (125 < pT(H) < 200 GeV)

Luminosity (fb^{-1})	36	150	300	3000
Signal	162	675	1350	13500
Background	1108	5000	10000	100000
Significance	4,87	10,0	14,0	44,4

Bin 7 (200 < pT(H) < 350 GeV)

Bin 8 (pT(H) > 350 GeV)

Conclusion

Considering different pT(H), we have a high precision up to pT(H) = 350 GeV