MARK SCHEME

1.

$$1-x = 6x - 1$$
 M1
 $x = \frac{2}{7}$ A1
 $x < \frac{2}{7}$ A1

2.(a)
$$I = e^{-\int_{t}^{1} dt} = e^{-\ln t} = \frac{1}{t}$$
 M1, A1, A1
$$\frac{d}{dt} \left(\frac{v}{t} \right) = \frac{1}{t} \qquad \frac{v}{t} = \ln t + c \qquad \text{M1 A1} \qquad v = t(\ln t + c) \quad \text{A1}$$

(b)
$$v = 3$$
, $t = 2$, $c = \frac{3}{2} - \ln 2$ M1, A1 $t=4$, $\frac{v}{4} = \ln 4 + \frac{3}{2} - \ln 2 = 8.77$ M1, A1

3.(a)
$$y' = \frac{1}{2}x^2e^x + xe^x$$
 B1 $y'' = \frac{1}{2}x^2e^x + 2xe^x + e^x$ B1
$$y'' - 2y' + y = \frac{1}{2}x^2e^x + 2xe^x + e^x - x^2e^x - 2xe^x + \frac{1}{2}x^2e^x$$
 M1
$$= e^x$$
 A1

(b) Aux. eqn
$$m^2 - 2m + 1 = 0$$
 $m = 1$ M1, A1
C.F. $e^x(A + Bx)$ A1
Gen. soln. $y = e^x(A + Bx) + \frac{1}{2}x^2e^x$ A1ft

$$x = 0, y = 1$$
 $A = 1$ $B1$ $y' = e^{x}(A + Bx) + Be^{x} + xe^{x} + \frac{1}{2}x^{2}e^{x}$ $M1$ $y' = 2, x = 0$ $2 = A + B, B = 1$ $M1, A1$ $y = e^{x}(1 + x + \frac{1}{2}x^{2})$ $A1 \text{ ft}$

4.(a) Circle B1, Diameter 3a B1

Cardiod cusp at O B1 Symmetry and 2a B1

(b)
$$3a\cos\theta = a(1 + \cos\theta), \cos\theta = \frac{1}{2}$$
 M1
$$\theta = \pm \frac{\pi}{3}, r = \frac{3a}{2}$$
 A1, A1

(c)
$$A_1 = \frac{1}{2} \int a^2 (1 + \cos \theta)^2 d\theta$$
 M1
 $= \frac{1}{2} a^2 \int (1 + 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta)) d\theta$ M1, A1
 $= \frac{1}{2} a^2 \left[\frac{3\theta}{2} + 2\sin \theta + \frac{1}{4} \sin 2\theta \right]$ A1, A1
Evaluate A₁ using 0 and $\frac{\pi}{3}$ M1
 $A_1 = \frac{\pi a^2}{4} + \frac{9\sqrt{3}a^2}{16}$ A1

(d) Area required = ${}^{9}/{}_{4}\pi a^{2} - 2A_{1} - 2 \times given$ M1 ${}^{9}/{}_{4}\pi a^{2}$ B1

$$= \frac{9\pi a^2}{4} - \frac{\pi a^2}{2} - \frac{9\sqrt{3}a^2}{8} - \frac{3\pi a^2}{4} + \frac{9\sqrt{3}a^2}{8}$$
 M1
= πa^2 A1

Scheme	Marks
$(x > 0)$ $2x^2 - 5x > 3$ or $2x^2 - 5x = 3$	M1
$(2x+1)(x-3)$, critical values $-\frac{1}{2}$ and 3	A1, A1
x > 3	A1 ft
$x < 0 \qquad 2x^2 - 5x < 3$	M1
Using critical value 0: $-\frac{1}{2} < x < 0$	M1, A1 ft
$2x-5-\frac{3}{x}<0$ or $(2x-5)x^2>3x$	M1
	$(x > 0)$ $2x^2 - 5x > 3$ or $2x^2 - 5x = 3$ $(2x + 1)(x - 3)$, critical values $-\frac{1}{2}$ and 3 x > 3 $x < 0$ $2x^2 - 5x < 3$ Using critical value 0: $-\frac{1}{2} < x < 0$ $2x - 5 - \frac{3}{2} < 0$ or $(2x - 5)x^2 > 3x$

		$\frac{(2x+1)(x-3)}{x} > 0 \text{or} x(2x+1)(x-3) > 0$		M1, A1
		Critical values $-\frac{1}{2}$ and 3, $x > 3$		A1, A1 ft
		Using critical value 0, $-\frac{1}{2} < x < 0$		M1, A1 ft
				(7 marks)
6.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \left(\frac{\sin x}{\cos x}\right) = \cos^2 x$		M1
		Int. factor $e^{\int \tan x dx} = e^{-\ln(\cos x)} = \sec x$		M1, A1
		Integrate: $y \sec x = \int \cos x dx$		M1,A1
		$y \sec x = \sin x + C$		A1
		$(y = \sin x \cos x + C \cos x)$		(6)
	(b)	When $y = 0$, $\cos x (\sin x + C) = 0$, $\cos x = 0$		M1
		2 solutions for this $(x = \pi/2, 3\pi/2)$		A1 (2)
	(c)	$y = 0$ at $x = 0$: $C = 0$: $y = \sin x \cos x$		M1
		$(y = \frac{1}{2}\sin 2x)$	Shape	A1
			Scales	A1 (3)
				(11 marks)
7.	(a)	$2m^2 + 7m + 3 = 0$ $(2m + 1)(m + 3) = 0$		
		$m = -\frac{1}{2}$, -3		
		C.F. is $y = Ae^{-\frac{t}{2}t} + Be^{-3t}$		M1, A1
		$P.I. y = at^2 + bt + c$		B1
		y' = 2at + b , y'' = 2a		
		$2(2a) + 7(2at + b) + 3(at^{2} + bt + c) = 3t^{2} + 11t$		M1

Ī		3a = 3, $a = 1$ $14 + 3b = 11$, $b = -1$		A1	
		4-7+3c=0, $c=1$		M1, A1	
		General solution: $y = Ae^{-\frac{1}{2}t} + Be^{-3t} + (t^2 - t + 1)$		A1 ft	(8)
	(b)	$y' = -\frac{1}{2}Ae^{-\frac{1}{2}t} - 3Be^{-3t} + (2t - 1)$ $t = 0, \ y' = 1: \ 1 = -1 - \frac{1}{2}A - 3B$		M1	
		$t = 0$, $y' = 1$: $1 = -1 - \frac{1}{2}A - 3B$			
		t = 0, y = 1: $1 = 1 + A + B$	one of these	M1, A1	
		Solve: $A + B = 0$, $A + 6B = -4$			
		$A = {}^4/_5, B = - {}^4/_5$		M1	
		$y = (t^2 - t + 1) + \frac{4}{5} (e^{-1/2t} - e^{-3t})$		A1	(5)
	(c)	$A = \frac{7}{5}, B = -\frac{7}{5}$ $y = (t^{2} - t + 1) + \frac{4}{5}(e^{-\frac{1}{2}t} - e^{-3t})$ $t = 1: y = \frac{4}{5}(e^{-\frac{1}{2}} - e^{-3}) + 1 \qquad (= 1.445)$		B1	(1)
				(14 :	marks)

8. (a)
$$y = r \sin \theta = a(3 \sin \theta + \sqrt{5} \sin \theta \cos \theta)$$

$$\frac{dy}{d\theta} = a(3 \cos \theta + \sqrt{5} \cos 2\theta)$$

$$2\sqrt{5} \cos^2 \theta + 3\cos \theta - \sqrt{5} = 0$$

$$\cos \theta = \frac{-3 \pm \sqrt{9 + 40}}{4\sqrt{5}}, \cos \theta = \frac{1}{\sqrt{5}}$$

$$\theta = \pm 1.107...$$

$$r = 4a$$

$$(b) 2r \sin \theta = 20$$

$$8a \sin \theta = 20, a = \frac{20}{8 \sin \theta} = 2.795...$$
M1, A1 (3)

	(c)	$(3+\sqrt{5}\cos\theta)^2 = 9+6\sqrt{5}\cos\theta+5\cos^2\theta$	B1	
		Integrate: $9\theta + 6\sqrt{5}\sin\theta + 5\left(\frac{\sin 2\theta}{4} + \frac{\theta}{2}\right)$	M1, A1	
		Limits used: $\left[\dots\right]_0^{2\pi} = 18\pi + 5\pi$ (or upper limit: $9\pi + \frac{5\pi}{2}$)	A1	
		$\frac{1}{2} \int_{0}^{2\pi} r^{2} d\theta = a^{2} (23\pi) \approx 282 \text{ m}^{2}$	M1, A1	(6)
			(15 r	narks)
9.	(a)(i)	x + (y-2)i = 2 x + (y + i)	M1	
		$\therefore x^2 + (y-2)^2 = 4(x^2 + (y+1)^2)$		
	(ii)	so $3x^2 + 3y^2 + 12y = 0$ any correct from; 3 terms; isw	A1	(2)
		y Sketch circle	B1	
		Centre (0,-2)	B1	
		r = 2 or touches axis	B1	(3)
	(b)	w = 3(z - 7 + 11i)	B1	
		=3z-21+33i	B1	(2)
			(7 mai	rks)
10.	(a)	$y\frac{d^3y}{dx^3} + \frac{dy}{dx}\frac{d^2y}{dx^2}; + 2\left(\frac{dy}{dx}\right)\frac{d^2y}{dx^2}; + \frac{dy}{dx} = 0 \qquad \text{marks can be awarded in (b)}$	M1 A1; B1	;B1
		$\frac{d^3 y}{dx^3} = \frac{-3\frac{dy}{dx}\frac{d^2 y}{dx^2} - \frac{dy}{dx}}{y}$ or sensible correct alternative	B1	(5)
		When $x = 0$ $\frac{d^2 y}{dx^2} = -2$, and $\frac{d^3 y}{dx^3} = 5$	M1A1, A1	ft
		$y = 1 + x - x^2 + \frac{5}{6}x^3$	M1, A1 ft	(5)

			(12 marks)
	approximation is best at values close to $x = 0$	B1	(2)
(c)	Could use for $x = 0.2$ but not for $x = 50$ as	B1	