Aprendizado de Máquina

Aula 1

Definição de IA

Chat-GPT: A Inteligência Artificial (IA) é um campo da ciência da computação que se concentra no desenvolvimento de sistemas e máquinas capazes de realizar tarefas que, quando executadas por seres humanos, requerem inteligência. A IA visa criar programas e sistemas que possam aprender, raciocinar, resolver problemas, compreender linguagem natural, reconhecer padrões e tomar decisões de forma autônoma.

IA, Machine Learning e Deep Learning

Introdução à Classificação

Aplicações

- Fraude em compras com cartão de crédito
- Análise de nível de risco de seguro de automóvel
- Prever a evasão de um estudante de um curso
- Identificar câncer de pele em uma imagem
- Reconhecer escrita manual
- Detectar quedas de idosos

Dataset Iris

- Iris é uma flor
- Pode ser classificada como (espécie):
 - o setosa
 - versicolor
 - virginica
- A espécie será a classe
- O dataset possui 150 instâncias, sendo 50 de cada classe

4	A	В	С	D	E
1	sepallength	sepalwidth	petallength	petalwidth	class
2	5.1	3.5	1.4	0.2	Iris-setosa
3	4.9	3	1.4	0.2	Iris-setosa
4	4.7	3.2	1.3	0.2	Iris-setosa
5	4.6	3.1	1.5	0.2	Iris-setosa
6	5	3.6	1.4	0.2	Iris-setosa
7	5.4	3.9	1.7	0.4	Iris-setosa
8	4.6	3.4	1.4	0.3	Iris-setosa
9	5	3.4	1.5	0.2	Iris-setosa
10	4.4	2.9	1.4	0.2	Iris-setosa
11	4.9	3.1	1.5	0.1	Iris-setosa
12	5.4	3.7	1.5	0.2	Iris-setosa
13	4.8	3.4	1.6	0.2	Iris-setosa
14	4.8	3	1.4	0.1	Iris-setosa
15	4.3	3	1.1	0.1	Iris-setosa
16	5.8	4	1.2	0.2	Iris-setosa
17	5.7	4.4	1.5	0.4	Iris-setosa
18	5.4	3.9	1.3	0.4	Iris-setosa
19	5.1	3.5	1.4	0.3	Iris-setosa
20	5.7	3.8	1.7	0.3	Iris-setosa
21	5.1	3.8	1.5	0.3	Iris-setosa
22	5.4	3.4	1.7	0.2	Iris-setosa
23	5.1	3.7	1.5	0.4	Iris-setosa

Iris Dataset - atributos

- Sépala
 - comprimento (length)
 - largura (width)
- Pétala
 - comprimento (length)
 - largura (width)

Iris - Modelo

- Baseado nas 150 instâncias (medidas de sépala e pétala) de cada instância de cada espécie
 - → Posso classificar nova instâncias (flores novas) usando o modelo e as medidas da nova flor

Processo de Classificação

O que é o modelo?

Pode ser:

- Árvore de decisão
- Tabela de probabilidades
- Rede neural
- Entre outros

Ex	Exemplos de Treino				
Dia	Aspecto	Temp.	Humidade	Vento	Jogar Ténis
D1	Sol	Quente	Elevada	Fraco	Não
D2	Sol	Quente	Elevada	Forte	Não
D3	Nuvens	Quente	Elevada	Fraco	Sim
D4	Chuva	Ameno	Elevada	Fraco	Sim
D5	Chuva	Fresco	Normal	Fraco	Sim
D6	Chuva	Fresco	Normal	Forte	Não
D7	Nuvens	Fresco	Normal	Fraco	Sim
D8	Sol	Ameno	Elevada	Fraco	Não
D9	Sol	Fresco	Normal	Fraco	Sim
D10	Chuva	Ameno	Normal	Forte	Sim
D11	Sol	Ameno	Normal	Forte	Sim
D12	Nuvens	Ameno	Elevada	Forte	Sim
D13	Nuvens	Quente	Normal	Fraco	Sim
D14	Chuva	Ameno	Elevada	Forte	Não

Mas, como sei que o modelo funciona?

- O modelo pode errar
- É preciso medir o desempenho do modelo antes de usá-lo

Um modelo com baixo desempenho não é útil

Treinamento e Avaliação de Desempenho

E agora? Vamos usar o modelo com novas flores

Elementos

- Classe: o que se deseja prever
 - espécie da flor, nível de risco de segurado,
 possibilidade de câncer de pele de uma mancha,...
- Dataset ou conjunto de dados: conjunto de ocorrências/instâncias
- Instância: é uma ocorrência
 - o uma flor, um segurado, uma mancha na pele,...
- Atributos: características da instância
 - tamanho da pétala, idade do segurado, tonalidade da mancha,...

4	A	В	С	D	E
1	sepallength	sepalwidth	petallength	petalwidth	class
2	5.1	3.5	1.4	0.2	Iris-setosa
3	4.9	3	1.4	0.2	Iris-setosa
4	4.7	3.2	1.3	0.2	Iris-setosa
5	4.6	3.1	1.5	0.2	Iris-setosa
6	5	3.6	1.4	0.2	Iris-setosa
7	5.4	3.9	1.7	0.4	Iris-setosa
8	4.6	3.4	1.4	0.3	Iris-setosa
9	5	3.4	1.5	0.2	Iris-setosa
10	4.4	2.9	1.4	0.2	Iris-setosa
11	4.9	3.1	1.5	0.1	Iris-setosa
12	5.4	3.7	1.5	0.2	Iris-setosa
13	4.8	3.4	1.6	0.2	Iris-setosa
14	4.8	3	1.4	0.1	Iris-setosa
15	4.3	3	1.1	0.1	Iris-setosa
16	5.8	4	1.2	0.2	Iris-setosa
17	5.7	4.4	1.5	0.4	Iris-setosa
18	5.4	3.9	1.3	0.4	Iris-setosa
19	5.1	3.5	1.4	0.3	Iris-setosa
20	5.7	3.8	1.7	0.3	Iris-setosa
21	5.1	3.8	1.5	0.3	Iris-setosa
22	5.4	3.4	1.7	0.2	Iris-setosa
23	5.1	3.7	1.5	0.4	Iris-setosa

Tipos de Algoritmos

Algoritmos

- Vamos entender como alguns algoritmos funcionam
- Não precisamos saber como implementar esses algoritmos
- Mas é importante conhecer o que eles fazem para chegar em uma classificação

Árvores de Decisão

Naive Bayes

- Analisa os atributos individualmente, calculando a probabilidade para cada classe a partir do valor de cada atributo
- No final calcula a probabilidade total

Play-tennis example: estimating $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	P
rain	mild	high	false	P
rain	cool	normal	false	P
rain	cool	normal	true	N
overcast	cool	normal	true	P
sunny	mild	high	false	N
sunny	cool	normal	false	P
rain	mild	normal	false	Р
sunny	mild	normal	true	P
overcast	mild	high	true	P
overcast	hot	normal	false	Р
rain	mild	high	true	N

30	P(p) = 9/14
	P(n) = 5/14

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
P(cool p) = 3/9	P(cool n) = 1/5
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

Máquinas de Vetor de Suporte (SVM)

Weka

Weka

- Open source
- Fácil de instalar e usar (Interface Gráfica)
- Disponibiliza biblioteca Java
- Requer a JVM (Java)
- Desenvolvido pela Universidade de Waikato (Nova Zelândia)
- Disponível para Windows, Linux e Mac

Arquivos exemplo

- São encontradas na pasta "data" dentro da pasta do weka que fica dentro de Arquivos de Programas no Windows
- Tem e extensão arff (formato próprio do weka)
- Lista de atributos e valores possíveis para cada atributo
- Instâncias (ocorrências) abaixo de @data
- É possível usar csv

Classificação

Abrir o Weka

Abrir o Weka Explorer

Abrir o dataset - Open file...

Dataset aberto no Weka em Preprocess

- Dataset: Iris
- Instâncias: 150
- Atributos: 5 (contando com a classe)
- O Weka considera o último atributo como a classe

Aba Classificar - Classify

- Escolher o algoritmo
 (Choose): Naive Bayes
- Tipos de teste: Percentage Split
- Clicar em Start

Resultado da Classificação

Test Options - Percentage Split

- Separa 66% do dataset para treino e 34% para teste (avaliação de desempenho
- As instâncias são selecionadas aleatoriamente por padrão

Resultados

- Acurácia de 94,11%
- Incorretos 5,89%

Acurácia = Previsões corretas /

TOTAL

$$(15 + 18 + 15) / ((15 + 18 + 15) + 2 + 1)$$

Olhando melhor os resultados por classe

- Analisando os resultados por classe
- 100% de precisão e recall na classe setosa
- Precisão: previsões corretas / previsões para a classe

Ex: versicolor: Prec: 18/20 = 0.9 (90%)

 Recall: previsões corretas / total de ocorrências da classe

Ex: versicolor: Recall 18/19 = 0.947 (94.7%)

Porque o recall é importante?

- Exemplo previsão de câncer de pele com base em imagens
- É mais importante um recall alto, ele indica que estou conseguindo identificar todos ou a maioria das pessoas com câncer
- Tudo bem se a precisão for menor, vamos ter alguns falsos-positivos que serão verificados posteriormente em um exame mais detalhado
- Importante: não deixar de detectar os verdadeiros-positivos

Mas e a precisão?

- Em um sistema de prevenção a fraude em um e-commerce, é importante prever as fraudes com precisão alta
- falsos-positivos serão vendas não realizadas e clientes insatisfeitos
- Por isso, nesse caso, se deseja uma precisão alta

Weka Datasets

https://github.com/Waikato/weka-3.8/tree/master/wekadocs/data