Arbitrage

Exercice 1 : Payoffs et stratégies

Donner et tracer les payoffs à maturité des stratégies suivantes. Interprétez l'utilisation de chaque stratégie :

- 1. Straddle: Achat d'un Call et d'un Put de même Strike K et de même échéance T.
- 2. ???: Vente d'une action et achat de deux Calls de prix d'exercice K. Quel nom lui donneriez vous?
- 3. Strangle: Achat d'un Call et d'un Put de même échéance et de strike différent.
- 4. Strip: Achat d'un Call et de deux Puts de même échéance et de même strike K.
- 5. Strap: Achat de deux Calls et d'un Put de même échéance et de même strike K.
- **6. Bull Spread:** Achat d'un Call de strike K_1 et vente d'un Call de strike $K_2 > K_1$ de même échéance.
- 7. Bear Spread: Achat d'un Put de strike K_1 et vente d'un Put de strike $K_2 > K_1$ de même échéance.
- 8. Butterfly: Achat de deux Calls de strikes $K + \delta K$ et $K \delta K$ et vente de deux Calls de strike K.
- 9. Condor: Achat de deux Calls de strikes K_1 et $K_4 > K_1$, vente de deux Calls de strikes $K_2 = K_1 + \delta K$ et $K_3 = K_4 \delta K$ avec $K_1 < K_2 < K_3 < K_4$.

Exercice 2: Prix de call et de put

On suppose qu'il y a absence d'opportunité d'arbitrage sur le marché (AOA). On note B_0 le prix en 0 de l'actif sans risque rapportant 1 à la date T. On note de même C_0 et P_0 les prix en 0 d'un call et d'un put sur le sous jacent S de maturité T et de strike K.

1. Montrer par un raisonnement d'arbitrage que:

$$(S_0 - K B_0)^+ \le C_0 \le S_0$$

2. En déduire:

$$(K B_0 - S_0)^+ \le P_0 \le K B_0$$

- **3.** Montrer que le prix du call est décroissant par rapport au strike mais croissant par rapport à la maturité.
- 4. Qu'en est-t-il du prix du put?

Exercice 3: Option Américaine

- 1. Montrer qu'une option Américaine est plus chère qu'une option Européenne.
- 2. Soit $t \in [0, T[$ et S_t le prix de l'actif S à cet instant. On suppose que $P(S_T < K) > 0$ et $P(S_T > K) > 0$. Soit B_t le prix de l'actif sans risque rapportant 1 à la date de maturité. Soit C_t^e le prix d'un call Européen acheté en t de prix d'exercice K et de maturité T. Montrer que $C_t^e > max(0, S_t KB_t)$.
- **3.** Montrer qu'à tout instant, il vaut mieux vendre un call américain à son prix de marché que de l'exercer.
- 4. En déduire qu'un call Américain a la même valeur qu'un call Européen.

Exercice 4: Contrat forward sur devise

On étudie sur l'intervalle de temps [0,T] le marché de devises entre l'euro et le dollar américain. Ce marché peut être schématisé de la manière suivante:

- 1. Dans l'économie européenne, il existe un actif sans risque domestique de taux d'intérêt continu r_d . Son prix est normalisé en T et vaut donc $B_t^d = e^{-r_d(T-t)} \in$ pour tout $t \in [0,T]$.
- 2. Dans l'économie américaine, il existe aussi un actif sans risque, de taux d'intérêt continu r_f . Son prix, exprimé en dollars, est normalisé en T et vaut donc $B_t^f = e^{-r_f(T-t)}$ \$ pour tout $t \in [0,T]$.
- 3. Pour obtenir 1 dollar, il faut débourser S_t euros à la date t.
- 4. Enfin, sur le marché il existe des contrats forwards pour toute date $t \in [0, T]$. Un contrat forward contracté à la date t est déterminé par l'échange de flux suivant:
 - Aucun échange de flux à la date d'entrée t dans le contrat.
 - A l'échéance T, on reçoit 1 \$ contre F_t €, montant fixé à la date d'entrée t du contrat
- 1. Soit $t \in [0, T]$. Donner le pay-off à la date T, en euros, en fonction de la valeur du taux de change S_T , des portefeuilles suivants, constitué à la date t
 - (1) A chat de B_t^f dollars. Ce montant est alors placé dans l'actif sans risque de l'économie américaine.
 - Emprunt de $F_t B_t^d$ euros (grâce à l'actif sans risque **domestique**).
 - (2) Contrat forward contracté à l'instant t.

En déduire, par un raisonnement d'arbitrage, le prix F_t en fonction de la valeur du taux de change S_t à l'instant t.

2. Donner le pay-off en euros à la date T du portefeuille constitué à partir d'un contrat de prix forward F_0 et de la vente à découvert à la date t du contrat de prix forward F_t . En déduire par un raisonnement d'arbitrage, la valeur en euro f_t^0 à la date t du contrat forward contracté en 0 en fonction de F_t et F_0 , puis en fonction de S_t et S_0 .

Arbres

Exercice 5: Arbre binomial à une période

On considère un marché à 2 dates avec un actif risqué et un actif sans risque de dynamique:

L'actif risqué a une probabilité 0.75 de monter et 0.25 de descendre.

- 1. Décrire $(\Omega, \mathcal{F}, \mathbb{P})$.
- 2. Donner la définition de la probabilité risque neutre. La calculer.
- 3. Calculer le prix d'un call et d'un put de strike 100.
- 4. Retrouver la relation de parité call put.

Exercice 6 : Option lookback en modèle binomial à deux périodes

On se place dans le cadre d'un modèle binomial à trois dates: $t=0,\,t=1$ et t=2 avec $r=0.05,\,u=1.1$ et d=0.95 et $S_0=100$.

- 1. Représentez l'arbre d'évolution de l'actif risqué.
- **2.** Décrire Ω , \mathcal{F}_0 , \mathcal{F}_1 et \mathcal{F}_2 .
- 3. Déterminez la probabilité risque neutre.
- 4. Quel est le prix d'un call de strike 105 d'échéance T=2 ?
- 5. Déterminez le prix d'une option lookback de payoff final:

$$(S_2^* - 100)^+$$
 avec $S_t^* = Sup_{s \le t} S_s$

Exercice 7: Convergence du modèle Binomial vers le modèle de Black Scholes

Considérons un marché financier, constitué d'un actif sans risque R normalisé en t=0 et d'un actif risqué S, ouvert sur la période de temps [0,T].

Divisons l'intervalle de temps [0,T] en n intervalles $[t_i^n, t_{i+1}^n]$ avec $t_i^n := \frac{iT}{n}$ et plaçons nous dans le cadre d'un modèle binomial à n périodes. Notons r_n le taux d'intéret de l'actif sans risque, la valeur R_t^n de l'actif sans risque aux instants $t = t_i^n$ est alors donnée par:

$$R_{t_i^n}^n = (1+r_n)^i$$

On note X_i^n le rendement de l'actif risqué entre les instants t_{i-1}^n et t_i^n . On a alors sous la probabilité historique \mathbb{P}^n :

$$\mathbb{P}(X_i^n = u_n) = p_n$$
 et $\mathbb{P}(X_i^n = d_n) = 1 - p_n$

On rappelle que le vecteur (X_1^n, \dots, X_n^n) est un vecteur de variables aléatoires indépendantes.

Soit r et σ deux constantes positives, r_n , d_n et u_n ont la forme suivante:

$$r_n = \frac{rT}{n}$$
 $d_n = \left(1 + \frac{rT}{n}\right)e^{-\sigma\sqrt{\frac{T}{n}}}$ $u_n = \left(1 + \frac{rT}{n}\right)e^{\sigma\sqrt{\frac{T}{n}}}$

- 1. Représentez l'arbre d'évolution de l'actif risqué dans le modèle.
- **2.** Montrez que R_T^n converge vers e^{rT} lorsque n tend vers l'infini.
- 3. Le marché vérifie t'il l'hypothèse d'absence d'opportunités d'arbitrage?
- **4.** Exprimez la valeur $S_{t_i}^n$ de l'actif risqué en t_i^n en fonction de S_0 et de (X_1,\ldots,X_i) .
- 5. Donnez la dynamique du processus X^n sous la probabilité risque neutre \mathbb{Q}_n . La probabilité $\mathbb{Q}_n(X_i^n=u_n)$ sera notée q_n dans la suite.
- 6. Vérifiez que l'on a:

$$q_n \xrightarrow[n \to \infty]{1} n \mathbb{E}_{\mathbb{Q}^n}[ln(X_1^n)] \xrightarrow[n \to \infty]{} \left(r - \frac{\sigma^2}{2}\right) T \qquad n \operatorname{Var}_{\mathbb{Q}^n}[ln(X_1^n)] \xrightarrow[n \to \infty]{} \sigma^2 T$$

7. Montrez à l'aide des fonctions caractéristiques la convergence en loi suivante:

$$\sum_{i=1}^{n} ln X_{i}^{n} \xrightarrow[n \to \infty]{loi} \mathcal{N}\left[\left(r - \frac{\sigma^{2}}{2}\right) T, \sigma^{2} T\right].$$

8. En déduire que:

$$S_T^n \xrightarrow[n \to \infty]{loi} S_0 e^{\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T}$$
 avec $W_T \sim \mathcal{N}(0, T)$

La dynamique de la limite est, comme vous le verrez, celle que l'on supposera dans le modèle de Black & Scholes.

- 9. Ecrire sous forme d'espérance le prix d'un put de strike K et de maturité T dans le modèle binomial à n périodes.
- 10. En déduire que le prix du put converge lorsque n tend vers l'infini vers:

$$P_0 := K e^{-rT} \mathcal{N}(-d_2) - S_0 \mathcal{N}(-d_1)$$

Avec $\mathcal N$ la fonction de répartition d'une loi normale $\mathcal N(0,1),\ d_1$ et d_2 donnés par:

$$d_1 := \frac{ln(\frac{S_0}{K}) + (r + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$
 et $d_2 := d_1 - \sigma\sqrt{T}$

11. Conclure en obtenant la formule de Black & Scholes donnant le prix du call:

$$C_0 := S_0 \mathcal{N}(d_1) - K e^{-rT} \mathcal{N}(d_2)$$

Exercice 8 : Duplication d'un produit dérivé en modèle binomial à n périodes Suivre la démonstration distribuée en cours sur ce sujet.

Martingales

Exercice 9 : Tranformée de Martingale

Soit $(S_i)_{i\leq n}$ une \mathbb{F} -martingale et $(H_i)_{i\leq n}$ un processus discret borné \mathcal{F} -adapté. On définit le processus $(M_i)_{i\leq n}$ par:

$$M_i := \sum_{j=1}^{i} H_{j-1} (S_j - S_{j-1})$$

- 1. Montrez que le processus P est également une \mathbb{F} -martingale.
- 2. Dans un modèle binomial à n périodes, si l'actif risqué réactualisé est martingale sous la probabilité risque neutre, qu'en déduire sur les stratégies autofinancantes de porte-feuille simples ?

Exercice 10 : Martingales de carré intégrable

Soit $(M_t)_{0 \le t \le T}$ une \mathcal{F} -martingale de carré intégrable, i.e. telle que pour tout t, $\mathbb{E}[M_t^2] < \infty$

1. Montrez que, pour $s \leq t$, on a:

$$\mathbb{E}[M_t^2 - M_s^2/\mathcal{F}_s] = \mathbb{E}[(M_t - M_s)^2/\mathcal{F}_s]$$

2. En déduire que M_t^2 est une \mathcal{F} -sous martingale. Aurait on pu obtenir ce résultat plus rapidement?

Exercice 11 : Limite \mathcal{L}^2 de variables aléatoires Gaussiennes

Soit X_n une suite de variables aléatoires réelles admettant pour lois respectives les lois normales $\mathcal{N}(m_n, \sigma_n^2)$.

Montrer que si X_n converge dans \mathcal{L}^2 vers X, alors $X \sim \mathcal{N}(m, \sigma^2)$ avec m et σ^2 les limites respectives des suites m_n et σ_n .

Mouvement Brownien

Exercice 12 : Calcul d'espérances Soit B un processus continu et $\mathcal F$ sa filtration naturelle. Soit

$$S_t = S_0 \exp\left[(\mu - \sigma^2/2)t + \sigma B_t\right].$$

Calculer l'espérance et la variance de S_t .

Exercice 13: Martingales

Soit $(B_t)_{t\geq 0}$ est un Mouvement Brownien et \mathcal{F} sa filtration naturelle, montrer que les processus suivants sont des \mathcal{F} -martingales:

- $\bullet \ (B_t)_{t>0}$
- $\bullet \ \left(B_t^2 t\right)_{t>0}$
- $\left(e^{\sigma B_t \frac{\sigma^2 t}{2}}\right)_{t>0}$ appelé Brownien Exponentiel.

Exercice 14: Caractérisation du Mouvement Brownien

Soit B un processus continu et \mathcal{F} sa filtration naturelle. Montrer que B est un mouvement Brownien si et seulement si, pour tout $\lambda \in \mathbb{R}$, le processus complexe M^{λ} défini par:

$$M_t^{\lambda} := e^{i\lambda B_t + \frac{\lambda^2 t}{2}}$$

est une \mathcal{F} -martingale.

Exercice 15: Mouvements Browniens

Soit $(B_t)_{t\geq 0}$ un Mouvement Brownien. Montrez que les processus suivants sont également des Mouvements Browniens:

- $\bullet \ \left(\frac{1}{a}B_{a^2t}\right)_{t\geq 0}$
- $(B_{t+t_0} B_{t_0})_{t>0}$
- Le processus défini par $tB_{1/t}$ pour t>0 et prolongé par 0 en t=0.

Exercice 16 : Limite á l'infini du Brownien L'objectif de cet exercice est de montrer que $\frac{W_t}{t}$ converge presque sûrement vers 0 lorsque t tend vers l'infini.

- 1. Pourquoi la suite $\left(\frac{W_n}{n}\right)_{n\in\mathbb{N}^*}$ converge-t-elle presque sûrement vers 0 lorsque n tend vers l'infini?
- 2. Vérifier que pour $t \in [n, n+1]$,

$$\left| \frac{W_t}{t} \right| \le \left| \frac{W_n}{n} \right| + \frac{\sup_{t \in [n,n+1]} |W_t - W_n|}{n}.$$

3. Pourquoi les variables aléatoires $\left(X_n = \sup_{t \in [n,n+1]} (W_t - W_n)^2\right)_{n \in \mathbb{N}}$ sont-elles identiquement distribuées?

Vérifier que $X_0 \leq (\sup_{t \in [0,1]} W_t)^2 + (\sup_{t \in [0,1]} -W_t)^2$ et en déduire que $\mathbb{E}(X_0) \leq 2$.

4. Montrer que $\mathbb{E}\left(\sum_{n\in\mathbb{N}^*}\frac{X_n}{n^2}\right)<+\infty$. En déduire que la suite $\left(\frac{X_n}{n^2}\right)_{n\in\mathbb{N}^*}$ converge presque sûrement vers 0 et conclure

Exercice 17: Mouvement brownien?

Soit Z une variable aléatoire de loi normale centrée et réduite. Pour tout $t \geq 0$ on pose $X_t = \sqrt{t}Z$. Le processus stochastique $X = \{X_t; t \geq 0\}$ a des trajectoires continues et X_t suit une loi normale $\mathcal{N}(0,t)$. Est-ce un mouvement brownien?

Exercice 18 : Transformée de Laplace

Soit $X \sim \mathcal{N}(\mu, \sigma^2)$. Pour chaque réel $u \in \mathbb{R}$, on pose:

$$\varphi(u) = \mathbb{E}\left[e^{u(X-\mu)}\right].$$

Pour chaque u, calculer $\varphi(u)$, $\varphi'(u)$, $\varphi^{(2)}(u)$ et $\varphi^{(4)}(u)$. En déduire $\mathbb{E}[(X-\mu)^4]=3\sigma^4$.

Exercice 19: Propriété de Markov

Soit B un processus continu et \mathcal{F} sa filtration naturelle. Pour toute fonction mesurable bornée f et t > s, exprimer $\mathbb{E}[f(B_t)|\mathcal{F}_s]$ en fonction de B_s .

Exercice 20: Loi du logarithme itéré

1. Montrez que si X est une Normale centrée réduite, pour tout $\lambda>0$, on a:

$$\mathbb{P}(X \ge \lambda) \le \frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{\lambda^2}{2}}$$

2. En déduire que si W est un Mouvement brownien standard:

$$\overline{\lim}_{n\to\infty} \frac{|W_n|}{\sqrt{2n\log n}} \le 1$$

Pour information, un résultat dû à Paul Levy, nommé "loi du logarithme itéré" indique plus précisément que:

$$\overline{\lim_{t \to \infty}} \frac{|W_t|}{\sqrt{2t \log t}} = 1$$

Exercice 21: Pont Brownien

Soit $(B_t)_{t\in\mathbb{R}^+}$ un M.B.S. On définit un nouveau processus $(Z_t)_{0\leq t\leq 1}$ par :

$$Z_t = B_t - tB_1.$$

- 1. Montrer que $(Z_t)_{0 \le t \le 1}$ est un processus gaussien indépendant de B_1 .
- 2. Calculer la moyenne m_t et la fonction de covariance $K(Z_s, Z_t)$ du processus $(Z_t)_{0 \le t \le 1}$.
- 3. Montrer que $\tilde{Z}_t = Z_{1-t}$ a même loi que Z_t .
- 4. Soit $Y_t = (1-t)B_{\frac{t}{1-t}}$ défini pour $0 \le t < 1$.
 - (a) Montrer que Y_t tend vers 0 presque sûrement lorsque t tend vers 1.
 - (b) Montrer que le processus $(Y_t)_{0 \le t \le 1}$ prolongé par 0 en 1 a la même loi que $(Z_t)_{0 \le t \le 1}$.

Exercice 22: Fourier

Soient $(B_t^1)_{0 \le t \le T}$ et $(B_t^2)_{0 \le t \le T}$ deux mouvements Browniens réels indépendants adaptés à la même filtration $(\mathcal{F}_t)_{0 \le t \le T}$.

Soient $(H^1_t)_{0 \le t \le T}$ et $(H^2_t)_{0 \le t \le T}$ deux processus (CADLAG) adaptés à $\mathcal F$ et vérifiant

$$\forall t \in [0, T], \quad (H_t^1)^2 + (H_t^2)^2 = 1.$$

- 1. Montrer que les intégrales stochastiques $\int_0^t H_s^i dB_s^i$ pour i=1,2 sont bien définies pour tout $t \leq T$.
- 2. On considère le processus $(X_t)_{t \leq T}$ défini par

$$\forall t \in [0, T], \quad X_t = \int_0^t H_s^1 dB_s^1 + \int_0^t H_s^2 dB_s^2.$$

Montrer que $(X_t)_{t \leq T}$ est une martingale pour la filtration \mathcal{F} . Le processus X est-il continu ?

3. On définit, pour tout $u \in \mathbb{R}$, le processus $(M_t^u)_{t < T}$ par

$$\forall t \in [0, T], \quad M_t^u = \exp(iuX_t) + \frac{u^2}{2} \int_0^t \exp(iuX_s) ds.$$

Montrer en utilisant la formule d'Itô (on admettra sa validité sur les fonctions complexes) que (M_t^u) est une martingale pour la filtration \mathcal{F} .

- 4. En déduire la valeur de $\mathbb{E}[M_t^u]$ pour $t \in [0, T]$ puis une équation différentielle ordinaire vérifiée par $f^u: t \longmapsto \mathbb{E}[e^{iuX_t}]$ dont on explicitera une solution.
- 5. Soit $t \in [0,T].$ Quelle est la loi de la variable aléatoire X_t ?
- 6. On note, pour $u \in \mathbb{R}$ et $0 \le s \le t \le T$,

$$\phi^u(t,s) = \mathbb{E}\left[\exp(iu(X_t - X_s)) \mid \mathcal{F}_s\right].$$

Calculer $\phi^u(s,s)$ et montrer que

$$\phi^{u}(t,s) = 1 - \frac{u^{2}}{2} \int_{s}^{t} \phi^{u}(v,s) dv.$$

Déterminer explicitement la fonction ϕ^u . Remarquez que ϕ^u n'est pas aléatoire.

7. Montrer que le processus $(X_t)_{0 \le t \le T}$ est un mouvement Brownien.

Mouvement Brownien et Intégrale d'Ito

Dans tout ce qui suit, B désigne un mouvement brownien et \mathcal{F} sa filtration naturelle.

Exercice 23 : Zéros du mouvement brownien. Soient $0 < t_0 < t_1$. On désigne par α la probabilité que B admette au moins un zéro dans l'intervalle $[t_0, t_1]$:

$$\alpha = \mathbb{P}(\exists t \in]t_0; t_1[, B_t = 0).$$

Le but est de calculer explicitement la valeur de α .

1. Soit $a \in \mathbb{R}^*$ et $X = (a + B_t)_{t \geq 0}$. En utilisant la densité $f_{T_{-a}}$ du premier temps d'atteinte de -a par un mouvement brownien standard

$$f_{T-a}(x) = \frac{|a|}{\sqrt{2\pi x^3}} e^{-a^2/(2x)} \mathbf{1}_{\{x>0\}}$$

calculer $\mathbb{P}(\inf_{0 \le s \le t} X_s \le 0)$.

2. Soit $a \in \mathbb{R}^*$. Montrer que la probabilité pour que B admette au moins un zéro dans $[t_0; t_1]$, sachant que $B_{t_0} = a$, est donnée par:

$$\frac{|a|}{\sqrt{2\pi}} \int_0^{t_1-t_0} \frac{1}{x^{3/2}} e^{-a^2/(2x)} dx.$$

3. En déduire que:

$$\alpha = \frac{2}{\pi} \arctan \sqrt{\frac{t_1}{t_0} - 1}.$$

Exercice 24 : Fonction caractéristique de l'intégrale de Wiener. Soit $\sigma(t)$ une fonction détérministe du temps telle que $\int_0^t \sigma(s)^2 ds < \infty$ pour tout t > 0 et soit $X_t = \int_0^t \sigma(s) dB_s$. En utilisant la formule d'Itô, montrer que la fonction caractéristique de X_t (t fixé) est donnée par

$$\mathbb{E}[e^{iuX_t}] = \exp\{-\frac{u^2}{2} \int_0^t \sigma(s)^2 ds\}, \quad u \in \mathbb{R}.$$

Que peut-on en déduire?

Exercice 25 : Intégrale de Wiener

Soit f telle que $\int_0^1 f^2(t) dt$ est finie. On considère le processus $(X_t)_{t \in [0,1]}$ défini par :

$$X_t = \int_0^t f(u) \ dB_u,$$

où $(B_t)_{t\geq 0}$ est un Mvt Brownien Standard et (\mathcal{F}_t) sa filtration naturelle.

- 1. Montrer qu'une limite dans $\mathcal{L}^2(\Omega)$ d'une suite de variable aléatoires Gaussienne est nécessairement Gaussienne.
- 2. En déduire que le processus $(X_t)_{t\in[0,1]}$ est un processus Gaussien caractérisé par:

$$cov\left(\int_0^t f(s)dB_s, \int_0^u g(s)dB_s\right) = \int_0^{t\wedge u} f(s)g(s)ds$$

- 3. Montrer que X_t est un processus à accroissements indépendants.
- 4. Quelle est la loi de X_1 ?

Exercice 26 : Calcul de $\int_0^T B_s dB_s$

On cherche à calculer $\int_0^T B_s dB_s$ avec $(B_t)_{0 \le t \le T}$ un Mouvement Brownien standard. Pour tout entier n, considérons le processus défini sur [0,T] par:

$$B_s^n := B_{i\frac{T}{n}} \mathbf{1}_{]i\frac{T}{n},(i+1)\frac{T}{n}[}(s)$$

- 1. Montrer que B est la limite dans $\mathcal{L}^2(\Omega, [0, T])$ du processus élémentaire B^n .
- **2.** En déduire que le processus $\int_0^T B_s dB_s$ s'écrit comme limite dans $\mathcal{L}^2(\Omega)$ de:

$$\sum_{i=0}^{n-1} B_{i\frac{T}{n}} \left(B_{(i+1)\frac{T}{n}} - B_{i\frac{T}{n}} \right)$$

3. Quelle est la limite dans $\mathcal{L}^2(\Omega)$ de :

$$\sum_{i=0}^{n-1} \left(B_{(i+1)\frac{T}{n}} - B_{i\frac{T}{n}} \right)^2$$

4. En déduire la valeur de:

$$\int_0^T B_s dB_s$$

Remarquez que le processus obtenu est, comme attendu, une martingale.

Exercice 27 : Théorème de Girsanov simplifié Soit $(B_t)_{0 \le t \le T}$ un mouvement brownien standard de filtration associée $\mathbb{F} = (\mathcal{F}_t)_{0 < t < T}$. Soit $\theta \in \mathbb{R}$. On pose

$$L_t = \exp\left(\theta B_t - \frac{1}{2}\theta^2 t\right).$$

- a) Montrer que L est une (\mathbb{F}, \mathbb{P}) -martingale et que $\mathbb{E}[L_t] = 1$ pour tout $0 \le t \le T$.
- b) Pour $A \in \mathcal{F}_T$, on pose

$$\mathbb{P}^{L_T}(A) := \mathbb{E}_{\mathbb{P}}[L_T \mathbf{1}_A].$$

Pour tout $t \in [0,T]$, montrer que \mathbb{P}^{L_t} est une probabilité.

- c) Montrer que pour tout $A \in \mathcal{F}_t$, $\mathbb{P}^{L_T}(A) = \mathbb{P}^{L_t}(A)$.
- d) Montrer la formule de Bayes suivante:

$$\mathbb{E}_{\mathbb{P}^{L_T}}[Y|\mathcal{F}_t] = \frac{\mathbb{E}_{\mathbb{P}}[L_TY|\mathcal{F}_t]}{L_t}, \quad t \in [0, T],$$

pour toute v.a. $Y \in L^2(\mathbb{P})$.

e) On pose $B_t^* = B_t - \theta t$ pour tout $t \in [0, T]$. Montrer que pour tout $s \leq t$, on a

$$\mathbb{E}_{\mathbb{P}^{L_T}}\left[e^{iu(B_t^*-B_s^*)}|\mathcal{F}_s\right] = \mathbb{E}_{\mathbb{P}^{L_T}}\left[e^{iu(B_t^*-B_s^*)}\right] = e^{-\frac{u^2}{2}(t-s)}.$$

f) En déduire que B^* est un \mathbb{P}^{L_T} -mouvement brownien standard de filtration \mathcal{F} .

Exercice 28 : EDS et brownien géométrique On s'intéresse à la solution X_t de l'EDS:

$$X_t = \int_0^t (\mu X_r + \mu') dr + \int_0^t (\sigma X_r + \sigma') dB_r.$$

On pose $S_t = \exp((\mu - \sigma^2/2)t + \sigma B_t)$.

- 1. Ecrire l'EDS dont S_t^{-1} est solution.
- 2. Démontrer que:

$$d(X_t S_t^{-1}) = S_t^{-1} ((\mu' - \sigma \sigma') dt + \sigma' dB_t).$$

3. En déduire une expression pour X_t .

Exercice 29 : Sous-martingale Soit X_t un processus adapté tel que

$$X_t = \int_0^t \mu(r)dr + \int_0^t \sigma(r)dB_r,$$

où on suppose que $\mu(t) \geq 0$ p.s. pour tout $t \geq 0$ et que $\sigma = (\sigma(t))$ est adapté et tel que $\mathbb{E}[\int_0^t \sigma(s)^2 ds] < \infty$ pour tout t > 0. Montrer que X est une sous-martingale.

Exercice 30 : Mouvement brownien changé de temps.

Considérons le processus

$$X_t = e^{-t} W_{\frac{e^{2t}-1}{2}}, t \ge 0.$$

- 1. Montrer que X est un processus gaussien centré. Calculer sa fonction covariance.
- 2. Justifier que que X_t converge en loi vers une variable gaussienne dont on précisera les paramètres.
- 3. On souhaite montrer que X suit l'équation différentielle stochastique

$$X_t = -\int_0^t X_s ds + B_t, \tag{1}$$

pour un certain mouvement brownien B (construit à partir de W). Nous allons d'abord montrer qu'on peut écrire

$$W_{\frac{e^{2t}-1}{2}} = e^t B_t - \int_0^t e^s B_s ds, \quad \forall t.$$
 (2)

En fait, au lieu de construire B à partir de W (ce qui sera faisable plus tard dans le cours), nous allons construire W à partir de B. Pour cela, posons $Y_t = e^t B_t - \int_0^t e^s B_s ds$, à identifier avec $W_{\frac{e^{2t}-1}{2}}$ pour un certain W.

- (a) Prouver qu'il suffit d'établir que $(Y_t)_{t\geq 0}$ et $(W_{\frac{e^{2t}-1}{2}})_{t\geq 0}$ ont même fonction de covariance.
- (b) Établir l'égalité des fonctions de covariance.
- (c) De (2), déduire (1) (on calculera $X_t + \int_0^t X_s ds$).

Nous verrons dans la suite du cours que le processus X est un processus d'Ornstein-Uhlenbeck, dont le rôle est central dans certains modèles de taux d'intérêt (Vasicek, 1977).

Exercice 31 : Loi du sup du mouvement brownien. Le but de cet exercice est de calculer la loi du couple $(B_t, \sup_{0 \le s \le t} B_s)$.

1. Soit T un temps d'arrêt borné. En utilisant le théorème d'arrêt de Doob, montrer que pour z réel et $0 \le u \le v$

$$\mathbb{E}[e^{iz(B_{v+T}-B_{u+T})}|\mathcal{F}_{u+T}] = e^{-z^2(v-u)/2}.$$

- 2. En déduire que $B_u^T = B_{u+T} B_T$ est un \mathcal{F}_{u+T} -mouvement brownien indépendant de la tribu \mathcal{F}_T .
- 3. Soit $(Y_t)_t$ un processus aléatoire continu indépendant de la tribu \mathcal{F} tel que $\mathbb{E}[\sup_{0 \leq s \leq K} |Y_s|] < +\infty$. Soit S une variable aléatoire bornée par K. Montrer que:

$$\mathbb{E}[Y_S|\mathcal{F}] = \mathbb{E}[Y_t]_{|t=S}.$$

4. On pose $\tau_{\lambda}=\inf\{s\geq 0; B_s>\lambda\}$. Démontrer que si f est une fonction borélienne bornée

$$\mathbb{E}[f(B_t)\mathbf{1}_{\{\tau^{\lambda} \leq t\}}] = \mathbb{E}[\phi(t - \tau^{\lambda})\mathbf{1}_{\{\tau^{\lambda} \leq t\}}],$$

où $\phi(u) = \mathbb{E}[f(B_u + \lambda)]$. En déduire que

$$\mathbb{E}[f(B_t)\mathbf{1}_{\{\tau^{\lambda} \le t\}}] = \mathbb{E}[f(2\lambda - B_t)\mathbf{1}_{\{\tau^{\lambda} \le t\}}].$$

5. Montrer que si $B_t^* = \sup_{0 \le s \le t} B_s$ et si $\lambda > 0$:

$$\mathbb{P}(B_t \le \lambda, B_t^* \ge \lambda) = \mathbb{P}(B_t \ge \lambda, B_t^* \ge \lambda) = \mathbb{P}(B_t \ge \lambda).$$

En déduire que B_t^* suit la même loi que $|B_t|$.

6. Démontrer que pour $\lambda \geq \mu$ et $\lambda \geq 0$:

$$\mathbb{P}(B_t \le \mu, B_t^* \ge \lambda) = \mathbb{P}(B_t \ge 2\lambda - \mu, B_t^* \ge \lambda) = \mathbb{P}(B_t \ge 2\lambda - \mu)$$

et que si $\lambda \leq \mu$ et $\lambda \geq 0$:

$$\mathbb{P}(B_t \le \mu, B_t^* \ge \lambda) = 2\mathbb{P}(B_t \ge \lambda) - \mathbb{P}(B_t \ge \mu).$$

7. Vérifier que la loi du couple (B_t, B_t^*) est donnée par:

$$\mathbf{1}_{\{0 \le y\}} \mathbf{1}_{\{x \le y\}} \frac{2(2y-x)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2y-x)^2}{2t}\right) dx dy.$$

Formule d'Ito

Dans tout ce qui suit, B désigne un mouvement brownien et \mathcal{F} sa filtration naturelle.

Exercice 32 : Covariation quadratique & Formule d'Intégration par partie

La covariation quadratique entre 2 processus X et Y est par définition:

$$\langle X, Y \rangle := \frac{1}{4} (\langle X + Y \rangle - \langle X - Y \rangle)$$

- 1. Montrer que l'application $(X,Y)\mapsto \langle X,Y\rangle$ est bilinéaire.
- 2. Soient X^1 et X^2 deux processus d'Ito de la forme

$$dX_t^i = \varphi_t^i dt + \theta_t^i dW_t$$

Montrer que la covariation quadratique entre X^1 et X^2 est donnée par

$$\langle X^1, X^2 \rangle_t = \int_0^t \theta_s^1 \, \theta_s^2 \, ds$$

3. Soient X et Y deux processus d'Ito, démontrer la formule d'intégration par partie:

$$d(XY)_t = X_s dY_s + Y_s dX_s + d\langle X, Y \rangle_s$$

Exercice 33: Formule d'Itô

Soit $(B_t)_{t\geq 0}$, un M.B.S. Donner l'équation différentielle stochastique vérifiée par les processus suivants:

- $X_t = \exp(ct + \alpha B_t)$
- $X_t = \frac{B_t}{1+t}$
- $(X_t^1, X_t^2) = (\cosh B_t, \sinh B_t)$
- $X_t = e^{\int_0^t Y_s dBs \frac{1}{2} \int_0^t Y_s^2 ds}$
- $Z_t = ln\left(\frac{X_t}{1-X_t}\right)$ avec X_t satisfaisant $dX_t = X_t(1-X_t)dB_t$

Exercice 34 : Mouvement brownien géométrique Soit $X=(X_t)_{t\geq 0}$ l'unique solution de l'EDS

$$X_t = X_0 + \alpha \int_0^t X_r dr + \int_0^t \sigma X_r dB_r,$$

c-à-d X est un mouvement Brownien géométrique (MBG). En outre, soit β une constante. Montrer que Y^{β} aussi est un MBG dont on précisera le drift et le coefficient de diffusion.

Exercice 35 : Comparaison de Processus

On suppose connue la fonction

$$\phi(a,T) := \mathbb{P}(W_t \le at, t \le T)$$

avec W un Mouvement Brownien.

Soient W^1 et W^2 deux mouvements Browniens indépendants et

$$dX_t^1 = X_t^1 (\mu_t^1 dt + \sigma_t^1 dW_t^1),$$

$$dX_t^2 = X_t^2 (\mu_t^2 dt + \sigma_t^2 dW_t^2).$$

Calculer, en fonction de Φ , la quantité

$$\mathbb{P}(X_t^1 \leq X_t^2, t \leq T)$$
.

Exercice 36: Processus d'Ornstein-Ulhenbeck.

Le processus d'Ornstein-Ulhenbeck est l'unique solution de l'équation différentielle stochastique suivante

$$dX_t = -cX_t dt + \sigma dW_t;$$

On suppose que X_0 est une variable aléatoire gaussienne indépendante de W.

- 1. En posant $Y_t = X_t \exp(ct)$, donner la forme explicite du processus (X_t) .
- 2. Donner la loi de X_t . Que vaut $Cov(X_s, X_t)$?
- 3. Trouver la loi de X_0 telle que $\forall t$, la loi de X_t ne dépend pas de t (loi stationnaire).
- 4. Quelle est la loi limite de X_t lorsque $t \to +\infty$?
- 5. Montrer que $Z_t = \exp(a \int_0^t X_s dW s \frac{a^2}{2} \int_0^t X_s^2 ds)$ est une martingale locale.
- 6. Soit $U_t = X_t^2$. Ecrire dU_t .
- 7. En déduire que $\int_0^t X_s dW_s = \frac{1}{2\sigma} (X_t^2 X_0^2 \sigma^2 t) + \frac{c}{\sigma} \int_0^t X_s^2 ds.$

Exercice 37: Etude d'EDS. Soit l'EDS

$$dX_t = bX_t dt + dB_t, \quad X_0 = x.$$

- 1. On pose $Y_t = e^{-t}X_t$. Quelle est l'EDS vérifiée par Y_t ? Exprimer Y_t sous la forme $Y_t = y + \int_0^t f(r) dB_r$ où l'on explicitera la fonction f.
- 2. Calculer $\mathbb{E}(Y_t)$ et $\mathbb{E}(Y_t^2)$.
- 3. Justifier que $\int_0^t Y_s \, ds$ est un processus gaussien. Calculer $\mathbb{E}[\exp(\int_0^t Y_u \, dB_u)]$.
- 4. Exprimer Y_t pour t > s sous la forme $Y_t = Y_s + \int_s^t g(u) dB_u$ où l'on précisera la fonction g. Calculer $\mathbb{E}[Y_t|\mathcal{F}_s]$ et $\text{Var}(Y_t|\mathcal{F}_s)$.
- 5. Calculer $\mathbb{E}[X_t|\mathcal{F}_s]$ et $\operatorname{Var}(X_t|\mathcal{F}_s)$.

Exercice 38: EDP

Soit f une fonction bornée sur \mathbb{R} . On désire résoudre le problème suivant :

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} & \text{pour } t > 0 \\ u(0, x) = f(x) & \end{cases}$$

où u est une fonction de deux variables u(t,x), de classe \mathcal{C}^1 en t et \mathcal{C}^2 en x. Cette équation modélise l'évolution de la chaleur d'un fil au cours du temps avec une condition initiale f à t=0.

Soit $(B_t)_{t>0}$ un M.B.S.

- 1. Soit u une solution du problème précédent et t > 0. Montrer, en utilisant la formule d'Itô que M dÈfini sur [0,t] par $M_s = u(t-s,x+B_s)$ est une martingale locale.
- 2. Montrer que M est une martingale. En déduire que pour tout t > 0, on a:

$$u(t,x) = \mathbb{E}[f(B_t + x)]$$

Black Scholes

Dans tout ce qui suit, B désigne un mouvement brownien et \mathcal{F} sa filtration naturelle.

Exercice 39 : Modèle de Black Scholes. On considére un actif risqué S obéissant à la dynamique suivante

$$dS_t = S_t(\mu \, dt + \sigma \, dB_t)$$

où $\mu, \sigma(>0)$ sont des constantes.

- 1. Ecrire la formule d'Itô pour une fonction du type $f(t, S_t)$. En déduire que S_T suit une loi log-normale dont on précisera la moyenne et la variance.
- 2. Donner la moyenne et la variance de l'actif S_T sous la probabilité risque neutre.
- 3. Le payoff d'un actif contingent de type européen est donné à la date T par la quantité $1/S_T$. Utiliser la probabilité risque neutre pour montrer que le prix à la date t < T de ce produit est donné par

$$\frac{1}{S_t} \exp\left((\sigma^2 - r)(T - t)\right).$$

- 4. Utiliser la formule d'Itô et un argument d'arbitrage pour déterminer l'équation satisfaite par la valeur $V(t, S_t)$ d'une option européenne (ie de payoff de type $P = g(S_T)$).
- 5. On suppose que les actifs distribuent des dividendes selon un taux continu q. r désigne le taux d'intérêt continu de l'actif sans risque. Montrer que la valeur $V(t, S_t)$ d'une option européenne satisfait l'équation

$$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + (r - q)S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} = rV$$

dont on précisera les conditions initiales. Exprimer le prix du call européen dans ce modèle.

Exercice 40 : Formule de Black Scholes

Soit l'équation différentielle stochastique :

$$dS_t = \mu S_t dt + \sigma S_t dB_t, \tag{3}$$

où $(B_t)_{t\geq 0}$ est un M.B.S.

- 1. Soit un réel r. On pose $\widetilde{S}_t = e^{-rt}S_t$.
 - (a) Montrer que \widetilde{S}_t vérifie une nouvelle équation différentielle stochastique.
 - (b) Soit $W_t = B_t + \frac{\mu r}{\sigma}t$. Montrer qu'il existe une probabilité \mathbb{P}^* équivalente à la probabilité de départ \mathbb{P} sous laquelle $(W_t)_{t \geq 0}$ est un M.B.S.
 - (c) Écrire que :

$$d\widetilde{S}_t = \sigma \widetilde{S}_t \ dW_t.$$

En déduire que $(\widetilde{S}_t)_{t\geq 0}$ est une martingale sous \mathbb{P}^* et que :

$$\widetilde{S}_t = \widetilde{S}_0 \, e^{\sigma W_t - \frac{\sigma^2}{2} t}.$$

2. On pose $(x)_+ = \max(x,0)$ et on désigne par \mathbb{E}^* l'espérance sous \mathbb{P}^* . Soit K > 0 et soit $C = \mathbb{E}^* \left(e^{-rT} (S_T - K)_+ \right)$. Montrer que :

$$C = -Ke^{-rT}\Phi(d_2) + S_0\Phi(d_1),$$

où Φ est la fonction de répartition de la loi normale centrée réduite, $d_1 = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$ et $d_2 = d_1 - \sigma\sqrt{T}$.

Exercice 41 : Symétrie Call Put

Soit M une \mathcal{F} - martingale telle que $dM_t = \sigma M_t dW_t$ avec σ donné et $M_0 = 1$.

- 1. Vérifier que M est strictement positive.
- 2. Déterminer la dynamique de Y défini par $Y_t = (M_t)^{-1}$.
- 3. Soit $\mathbb Q$ la probabilité définie par $d\mathbb Q/d\mathbb P=M$. Déterminer la loi de Y sous $\mathbb Q$.
- 4. Etant donné un strike K, montrer que l'on a la relation

$$\mathbb{E}^{\mathbb{P}}\left[(M_T - K)^+ \right] = K \mathbb{E}^{\mathbb{P}}\left[\left(\frac{1}{K} - M_T \right)^+ \right]$$

Exercice 42 : Changement de numéraire

Soient S^1 et S^2 deux processus d'Itô donnés par

$$\begin{cases} dS_t^1 = Y_t^1 dt + Z_t^1 dB_t \\ dS_t^2 = Y_t^2 dt + Z_t^2 dB_t \end{cases}$$

avec B un mouvement Brownien de filtration naturelle \mathcal{F} et Y^1, Y^2, Z^1 et Z^2 des processus \mathcal{F} -adaptés de $L^2(\Omega, [0, T])$.

Soient φ^1 et φ^2 deux processus adaptés bornés. Considérons le processus:

$$X_t = \varphi_t^1 S_t^1 + \varphi_t^2 S_t^2$$

et supposons qu'il satisfait la condition:

$$dX_t = \varphi_t^1 dS_t^1 + \varphi_t^2 dS_t^2$$

Montrer que pour tout processus d'Itô U \mathcal{F} -adapté, on a la relation:

$$d(UX)_t = \varphi_t^1 d(US^1)_t + \varphi_t^2 d(US^2)_t$$

Comment traduire cette propriété en terme de stratégie de portefeuille ?

Exercice 43: Moments de la solution de l'EDS de Black Scholes

Soit B un Mouvement Brownien Standard. On considère l'équation différentielle de Black Scholes:

$$dS_t = S_t(\mu dt + \sigma dW_t)$$
 et $S_0 = x$

1. Montrer que l'unique solution de cette équation est :

$$S_t = x e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t}$$

- **2.** Calculer $\mathbb{E}[S_t]$.
- 3. Pour $\alpha \geq 2$, déterminez l'EDS vérifiée par S_t^{α} .
- **4.** En déduire $\mathbb{E}[S_t^{\alpha}]$ pour $\alpha \geq 2$.

Pricing d'Options

Exercice 44: Option sur moyenne

Soit S le processus donné par $dS_t = S_t(rdt + \sigma dB_t)$, , $S_0 = 1$, avec r, σ deux constantes et B un mouvement Brownien. On souhaite calculer $C = \mathbb{E}\left[(Z_T - S_T)^+\right]$ avec $Z_T := \mathbb{E}\left[\frac{1}{T}\int_0^T \ln(S_t)dt\right]$. Soit \mathbb{Q} la probabilité définie par

$$\left. \frac{d\mathbb{Q}}{d\mathbb{P}} \right|_T = e^{\sigma B_T - \sigma^2 T/2}.$$

1. Montrer que

$$e^{-rT}\mathbb{E}^{\mathbb{P}}\left[\left(Z_T - S_T\right)^+\right] = \mathbb{E}^{\mathbb{Q}}\left[\left(\frac{Z_T}{S_T} - 1\right)^+\right]$$

- 2. Soit $\bar{B}_t := B_t \sigma t$. Ecrire Z_T/S_T sous la forme $e^{\alpha T \int_0^T \beta(t) d\bar{B}_t}$.
- 3. Déterminer K pour que le calcul de C se réduise au calcul de $\mathbb{E}\left[(\tilde{S}_T K)^+\right]$ avec \tilde{S} un mouvement Brownien géométrique dont on précisera la dynamique.

Exercice 45 : Produit forward-start On suppose que la dynamique du prix (en dollars) de l'action américaine FAD, qui ne verse pas de dividendes, est donnée par:

$$dS_t = S_t(\mu(t, S_t) dt + \sigma(t) dB_t),$$

où σ est une fonction déterministe du temps. Soit un call européen de date T_2 écrit sur une action FAD et de type "forward-start", c'est-à-dire que son strike n'est pas connu à sa date de création (t=0) mais sera fixé égal à sa valeur $S(T_1)$ de l'action FAD observée à la date $T_1(< T_2)$. Il sera donc à la monnaie en T_1 et vaudra en T_2 (en dollars) $(S_{T_2} - S_{T_1})_+$.

- 1. Dériver la formule (du type Black-Scholes) donnant le prix du call en T_1 tel que côté à New-York, en utilisant la notation $\tau = T_2 T_1$.
- 2. Calculer le prix du call en t=0 tel que côté à New-York. Pour ce faire, utiliser la propriété d'homogénéité (de degré 1 en prix du support et en prix d'exercice) de la valeur d'une option, c'est-à-dire

$$C(S_{T_1}, S_{T_1}, \tau) = S_{T_1}C(1, 1, \tau).$$

- 3. Donner l'interprétation financière du résultat précédent.
- 4. Supposer que le prix d'exercice fixé en T_1 est égal à kS_{T_1} où k est une constante positive différente de 1 et recalculer le prix du call.

Exercice 46 : Options asiatiques Soit S_t la solution de l'EDS

$$dS_t = S_t(r dt + \sigma dB_t)$$

les paramètres r et σ étant constants.

- 1. Soit K une constante. Montrer que le processus $M_t = \mathbb{E}\left(\left(\frac{1}{T}\int_0^T S_r dr K\right)_+ | \mathcal{F}_t\right)$ est une martingale.
- 2. Montrer que si l'on pose $Q_t = S_t^{-1} \left(K \frac{1}{T} \int_0^t S_r dr\right)$, on a

$$M_t = S_t \mathbb{E}\left(\left(\frac{1}{T} \int_t^T \frac{S_r}{S_t} dr - Q_t\right) + |\mathcal{F}_t\right).$$

- 3. Soit $u(t,x) = \mathbb{E}\left(\left(\frac{1}{T}\int_t^T \frac{S_r}{S_t} dr x\right)_+\right)$. Montrer que $u(t,x) = \mathbb{E}\left(\left(\frac{1}{T}\int_t^T \frac{S_r}{S_t} dr x\right)_+ | \mathcal{F}_t\right)$ et que $M_t = S_t u(t, Q_t)$.
- 4. Ecrire la formule d'Itô pour M et en déduire une équation aux dérivées partielles vérifiée par u.

Exercice 47 : Réduction de variance par échantillonnage préférentiel.

Soit G une gaussienne centrée réduite.

1. Pour $f: \mathbb{R} \to \mathbb{R}$ une fonction bornée, vérifier que

$$\forall \theta \in \mathbb{R}, \ \mathbb{E}\left(f(G+\theta)e^{-\theta G - \frac{\theta^2}{2}}\right) = \mathbb{E}(f(G))$$
 (4)

2. Vérifier que

$$\operatorname{Var}\left(f(G+\theta)e^{-\theta G-\frac{\theta^2}{2}}\right) = v(\theta) - (\mathbb{E}(f(G)))^2 \text{ où } v(\theta) = \mathbb{E}\left(f^2(G)e^{-\theta G+\frac{\theta^2}{2}}\right).$$

- 3. On suppose désormais que $\mathbb{P}(f^2(G) > 0) > 0$.
 - Montrer que pour a>0 suffisamment grand, $\mathbb{P}(f^2(G)>1/a,G>-a)>0$ et en déduire que $\lim_{\theta\to-\infty}v(\theta)=+\infty$. Montrer également que $\lim_{\theta\to+\infty}v(\theta)=+\infty$.

Calculer $v''(\theta)$ par dérivation sous le signe espérance et conclure à l'existence d'un unique $\theta^* \in \mathbb{R}$ qui minimise $\theta \to \mathbb{V}\mathrm{ar}\left(f(G+\theta)e^{-\theta G-\frac{\theta^2}{2}}\right)$.

Soit $(G_i)_{i\geq 1}$ une suite de gaussiennes centrées réduites indépendantes. Proposer un estimateur de $\mathbb{E}(f(G))$ préférable à $\frac{1}{n}\sum_{i=1}^n f(G_i)$.

4. On suppose que la fonction f est C^1 à dérivée bornée. Quelle est la limite de $\frac{1}{\theta}\left(f(G+\theta)e^{-\theta G-\frac{\theta^2}{2}}-f(G)\right)$ lorsque θ tend vers 0? En déduire que $\mathbb{E}(f'(G))=\mathbb{E}(Gf(G))$. Retrouver ce résultat directement.

Exercice 48 : Les options barrière: l'EDP et l'interprétation comme espérance.

On suppose maintenant que les taux d'intérêt sont constants et égaux à r, que l'actif risqué suit une dynamique de type brownien géométrique décrite par $S_t = S_0 \exp((\mu - \frac{1}{2}\sigma^2)t + \sigma W_t)$. Les options considérées ont pour échéance T.

On considère le problème de la valorisation de l'option barrière Down-In-Call (resp. Down-Out-Call) promettant à l'échéance $\mathbf{1}_{\tau_H \leq T}(S_T - K)_+$ (resp. $\mathbf{1}_{\tau_H > T}(S_T - K)_+$), avec $\tau_H = \inf\{t \geq 0 : S_t \leq H\}$. Son prix à l'instant 0 sera noté simplement $\mathrm{DIC}(x,K,H)$ (resp. $\mathrm{DOC}(x,K,H)$).

1. Par un raisonnement d'arbitrage, montrer que les prix des différentes options sont reliés par la relation

$$DIC(x, K, H) + DOC(x, K, H) = Call(0, x, K).$$

- 2. Pour couvrir le DOC, nous cherchons un portefeuille autofinançant dont la valeur s'écrit $V_t = v(t \wedge \tau_H, S_{t \wedge \tau_H})$ pour une certaine fonction régulière v. Déterminer l'EDP satisfaite par v (attention aux conditions aux limites qui prennent en compte la barrière) ainsi que la couverture associée.
- 3. Calculer $\mathbb{E}(e^{-rT\wedge\bar{\tau}_H}v(T\wedge\bar{\tau}_H,\bar{S}_{T\wedge\bar{\tau}_H}))$ et montrer que

$$DOC(x, K, H) = \mathbb{E}\left(e^{-rT}\mathbf{1}_{\bar{\tau}_H > T}(\bar{S}_T - K)_+\right),\tag{5}$$

où
$$\bar{\tau}_H = \inf\{t \ge 0 : \bar{S}_t \le H\}$$
 et $\bar{S}_t = S_0 \exp((r - \frac{1}{2}\sigma^2)t + \sigma W_t)$.

4. En déduire que

$$DIC(x, K, H) = \mathbb{E}\left(e^{-rT}\mathbf{1}_{\bar{\tau}_H \le T}(\bar{S}_T - K)_+\right),\tag{6}$$

Exercice 49 : Les options barrière: des formules explicites pour les prix.

L'objectif de cet exercice est de calculer explicitement $\mathrm{DIC}(x,K,H)$ à partir de l'égalité (6), en exploitant simplement des relations de symétrie. Nous nous restreignons au cas regular (à savoir K>H) (à l'opposé du cas reverse lorsque $K\leq H$).

1. Que vaut $\mathrm{DIC}(x,K,H)$ lorsque $x\leq H$?

On suppose maintenant x > H.

2. Montrer la relation de symétrie Call-Put

$$\operatorname{Call}(t, Ke^{-r(T-t)}, x) = \operatorname{Put}(t, xe^{-r(T-t)}, K)$$

et d'homogénéité ($\lambda \geq 0$)

$$\operatorname{Call}(t, \lambda x, \lambda K) = \lambda \operatorname{Call}(t, x, K), \quad \operatorname{Put}(t, \lambda x, \lambda K) = \lambda \operatorname{Put}(t, x, K).$$

- 3. On suppose dans cette question que r=0.
 - (a) Justifier que $(\bar{S}_t)_{t\geq 0}$ est une martingale et les prix des options pour ce cas-là seront notés Call^M, DIC^M, etc.
 - (b) Montrer que $\mathrm{DIC}^{\mathrm{M}}(x,K,H) = \mathrm{Put}^{\mathrm{M}}(x,\frac{H^2}{K})\frac{K}{H} = \mathrm{Call}^{\mathrm{M}}(H,K\frac{x}{H}).$
 - (c) En déduire une stratégie statique de couverture de l'option DIC dans le cas r=0.
- 4. Introduisons $\gamma = 1 \frac{2r}{\sigma^2}$. Supposons d'abord que $\gamma > 0$.
 - (a) Prouver qu'on a $\bar{S}_t = (M_t)^{1/\gamma}$ pour une certaine martingale log-normale M.
 - (b) Considérons l'option Binary DIC (resp. Binary Call) promettant à l'échéance $\mathbf{1}_{\tau_H \leq T} \mathbf{1}_{S_T \geq K}$ (resp. $\mathbf{1}_{S_T \geq K}$). Son prix vaut BinDIC $(x, H, K) = \mathbb{E}\left(e^{-rT}\mathbf{1}_{\bar{\tau}_H \leq T}\mathbf{1}_{\bar{S}_T \geq K}\right)$ (resp. BinCall $(x, K) = \mathbb{E}\left(e^{-rT}\mathbf{1}_{\bar{S}_T \geq K}\right)$).

En passant par l'intermédiaire de la martingale M, montrer

$$\forall K \geq H \quad \mathrm{BinDIC}(x,H,K) = \left(\frac{x}{H}\right)^{\gamma} \mathrm{BinCall}(H,K\frac{x}{H}).$$

(c) En déduire que le prix de l'option DIC est donné par la formule

$$\mathrm{DIC}(x, H, K) = \left(\frac{x}{H}\right)^{\gamma - 1} \mathrm{Call}(H, K\frac{x}{H}).$$

5. Généraliser la formule précédente à toutes les valeurs de γ .

Modeles de Taux

Exercice 50 : Le modèle de Vasiček pour le taux d'intérêt

On considère un marché financier où il existe une unique probabilité risque neutre \mathbb{Q} qui rende tout actif réactualisé martingale. Sous cette probabilité neutre au risque \mathbb{Q} , le taux d'intérêt spot est décrit par la dynamique suivante

$$dr_t = (a - br_t) dt + \sigma dB_t,$$

$$r_0 = r$$
(7)

où $(B_t)_{t\geq 0}$ est un mouvement brownien standard, et où a, b, σ et r sont des constantes strictement positives.

- 1. Déterminez l'EDS satisfaite par le processus $X_t = e^{bt}r_t$.
- 2. Déterminez la solution X_t , puis déduisez la solution r_t de l'EDS (7)
- 3. Vérifiez que la variable aléatoire r_t suit une loi normale. Calculez sa moyenne et sa variance.
 - On considère, dans ce marché, un zéro-coupon de maturité T. C'est à dire une obligation qui verse à la personne qui la détient 1 unité monétaire à la maturité T.
- 4. Déduisez que le zéro-coupon est un produit dérivé particulier et donnez son pay-off à la date T.
- 5. En utilisant l'évaluation neutre au risque, montrez que le prix à la date t du zérocoupon , noté P(t,T), est égal à

$$P(t,T) = \mathbb{E}^{\mathbb{Q}} \left[exp \left(-\int_{t}^{T} r_{s} ds \right) | \mathcal{F}_{t} \right]$$
 (8)

6. Calculez explicitement P(t,T).

Exercice 51 : Stratégies autofinancées de zéro-coupons.

On considère le modèle de Heath–Jarrow–Morton : pour tout T>0 le taux instantané forward de maturité T est décrit par

$$f(t,T) = f(0,T) + \int_0^t \mu_f(s,T)ds + \int_0^t \sigma_f(s,T)dW_s,$$

où $\sigma_f(\cdot,T)$ est une fonction continue bornée. La fonction $\mu_f(s,T)$ est définie par

$$\mu_f(s,T) = \sigma_f(s,T)\sigma_f^*(s,T), \text{ avec } \sigma_f^*(s,T) := \int_s^T \sigma_f(s,u)du.$$

On admet que le prix au temps $0 \le t \le T$ d'un zéro–coupon de maturité T est donné par

$$B(t,T) = \exp\left(-\int_{t}^{T} f(t,s)ds\right). \tag{9}$$

Soit r_t le taux instantané f(t,t):

$$r_t = f(0,t) + \int_0^t \sigma_f(s,t)\sigma_f^*(s,t)ds + \int_0^t \sigma_f(s,t)dW_s.$$
 (10)

De (9) et (10) on peut déduire (l'admettre...) que, pour tout T, le processus $(B(t,T), t \le T)$ résout l'équation différentielle stochastique

$$\begin{cases} dB(t,T) = r_t B(t,T) dt - \sigma_f^*(t,T) B(t,T) dW_t, \\ B(T,T) = 1. \end{cases}$$
(11)

On se donne deux maturités T^O et T avec $T^O < T$. À chaque date $0 \le t \le T^O$, une stratégie autofinancée consiste à acheter ou vendre une quantité H_t^O de zéro–coupons de maturité T^O et une quantité H_t^O de zéro–coupons de maturité T telles que:

(i) Le portefeuille est autofinancé, c'est-à-dire : si on note

$$V_t := H_t^O B(t, T^O) + H_t B(t, T)$$

la valeur au temps t du portefeuille, alors

$$V_t = V_0 + \int_0^t H_\theta^O dB(\theta, T^O) + \int_0^t H_\theta dB(\theta, T).$$

(ii) Les processus (H_t^O) et (H_t) sont tels que les intégrales stochastiques qui apparaîtront dans les calculs sont bien définies et sont des martingales.

1. L'objectif est de caractériser les stratégies autofinancées. Pour $t \leq T^O$ on définit le prix Forward $B^F(t,T)$ du zéro–coupon de maturité T par

$$B^F(t,T) := \frac{B(t,T)}{B(t,T^O)}.$$

Montrer

$$d\left(\frac{1}{B(t,T^{O})}\right) = -\frac{1}{B(t,T^{O})}(r_{t}dt - \sigma_{f}^{*}(t,T^{O})dW_{t}) + \frac{1}{B(t,T^{O})}\sigma_{f}^{*}(t,T^{O})^{2}dt,$$

puis

$$dB^{F}(t,T) = B^{F}(t,T)\sigma_{f}^{*}(t,T^{O})(\sigma_{f}^{*}(t,T^{O}) - \sigma_{f}^{*}(t,T))dt + B^{F}(t,T)(\sigma_{f}^{*}(t,T^{O}) - \sigma_{f}^{*}(t,T))dW_{t}.$$

2. Soit V_t^F la valeur Forward du portefeuille définie par

$$V_t^F := \frac{V_t}{B(t, T^O)}.$$

En appliquant la formule d'Itô, montrer

$$dV_t^F = H_t dB^F(t, T).$$

Montrer que cette égalité s'obtient aussi (et plus rapidement) par la technique du changement de numéraire.

Exercice 52 : Stratégie de couverture d'options sur zéro-coupon.

On considère une option de maturité T^O et de flux à l'échéance égal à $\Phi(B(T^O,T))$, où Φ est une fonction donnée.

1. À l'aide de (11) montrer que les processus

$$\left(B(t, T^O) \exp\left(-\int_0^t r_\theta d\theta\right), t \le T^O\right)$$

et

$$\left(B(0,T^O)\exp\left(-\frac{1}{2}\int_0^t \sigma_f^*(\theta,T^O)^2 d\theta - \int_0^t \sigma_f^*(\theta,T^O) dW_\theta\right), t \leq T^O\right)$$

sont solutions de la même équation différentielle stochastique.

2. Montrer que le processus défini pour $0 \le t \le T^O$ par

$$L_t := \frac{B(t, T^O)}{\exp(\int_0^t r_\theta d\theta) B(0, T^O)}$$

est une martingale exponentielle.

3. Considérer la probabilité forward risque neutre \mathbb{P}^F sur $(\Omega,\mathcal{F}_{T^O})$ définie par

$$\frac{d\mathbb{P}^F}{d\mathbb{P}} = L_{T^O}.$$

Montrer que, sous \mathbb{P}^F , les processus $(B^F(\cdot,T))$ et (V_t^F) sont des martingales.

4. On suppose qu'il existe une solution régulière π_{σ_f} au problème parabolique

$$\begin{cases} \frac{\partial \pi_{\sigma_f}}{\partial t}(t,x) + \frac{1}{2}x^2(\sigma_f^*(t,T) - \sigma_f^*(t,T^O))^2 \frac{\partial^2 \pi_{\sigma_f}}{\partial x^2}(t,x) = 0, \\ \pi_{\sigma_f}(T^O,x) = \Phi(x). \end{cases}$$

Montrer

$$V_t^F = \pi_{\sigma_f}(t, B^F(t, T)).$$

Indication : on pourra commencer par vérifier

$$V_t^F = \mathbb{E}^F[\phi(B^F(T^O, T))|\mathcal{F}_t]$$
 p.s.

5. Montrer que la stratégie de couverture de l'option est

$$\begin{cases} H_t &= \frac{\partial \pi_{\sigma_f}}{\partial x}(t, B^F(t, T)), \\ H_t^O &= \pi_{\sigma_f}(t, B^F(t, T)) - H_t B^F(t, T). \end{cases}$$