大專院校科系的存活風險分析: 組織生態學的視角

臺大社會三 王聖夫 B07305022

本文探討臺灣大專院校中,科系的關閉現象,利用組織生態學中的「密度依賴理論」 進行解釋。此主張認為一個族群的密度,也就是環境中的組織數目,與組織形態的正當性、 組織間的競爭之間有著密切的關連。在初期正當性不足時,成立率低、死亡率高;當較多同 類型組織成立,正當性確立後,會開始模仿、快速增生的過程,此時成立率高、死亡率低; 但當數量達到環境負載力時,組織間會面臨高度競爭,因此成立率低、死亡率高。所以認為 組織族群會呈現「S型」的發展趨勢,密度與成立間的關係為「倒U型」、與死亡率則為 「正U型」。

本研究,利用教育部的統計資料,合併了1972到2020年,「大專院校日間部的學士班」的資料,並且利用「多層次間斷存活分析」,將科系設定為第一層、科系所屬學校為第二層,以此方法來檢證科系的關閉,是否會符合密度依賴理論的預測,密度與關閉的風險呈現凹向上的二次曲線。研究結果顯示,科系的「學門密度」與關閉的風險,的確符合密度依賴的假設,其一次項係數為負、二次項則為正,可見當一個學門的科系數量到達一定的數量後,就會因為要去高度競爭有限的重要資源(如:招生名額),因此關閉風險提高。除此之外,模型也顯示年齡越大、規模越大、學生延畢率越低的科系,越在競爭中佔有優勢而不容易失敗而關閉;而對於那些在私立學校、技專院校的科系來說,則相比於公立學校、一般大學,有著更高的關閉風險。至於科系、學校是文理科,則對關閉機率沒有統計顯著影響。

本文要特別感謝以下三位老師的幫忙。首先,要對蘇國賢老師表示莫大的感謝,在研究題目發想、文獻、資料處理、結果詮釋等各個階段,都與我來回討論,並且提供了許多實質的幫忙與建議。再來要感謝郭貞蘭老師,在我遇到困難的時候願意與我聊聊,讓我有辦法繼續進行下去。最後是關秉寅老師,雖然本篇沒有用到因果推論相關的方法,到老師課堂所教授的內容,仍然十分重要而且有趣,讓我在知識上收穫良多。

一、前言

進幾十年來,臺灣高等教育經歷了幾波擴張,例如在1996年,教育部為了回應民間教育改革的訴求,開始推動技術學院升格科大、積極廣設大學等政策。到了2020年,臺灣大專校院總校數來到152所、大學四年制的科系數共有3623所(教育部,2021),而且高中的升學率也早已超過90%,高等教育已然成為大眾化教育的一環。但是近幾年來,尤其從2010年代開始,「臺灣大專院校退場」成為熱門的話題,不少的大專院校面臨著招生狀況不佳等經營窘境,而被迫退場或主動停辦的現象,具體來說,經過10年今年的總校數,已經相較於2010年的校數減少了11所,例如:2014年停招的高鳳數位內容學院、2019年的亞太創意技術學院等。

大專院校面臨著關閉的風險,科系的層級上也同樣有類似困境。即便科系所處的大學並沒有面臨立即的退場危機,但科系本身卻可能會被停招或是裁撤。根據教育部高教司的統計,109學年度一般大學停招了59系組、裁撤48系組,共占比百分之3.79(自由時報,2019)。這些變動的類型與原因不同,有可能是依照發展策略而調整、整併,而大部分的科系則是因為面臨到招生不足,甚至曾經有科系才剛創立,下學年度就被迫停招。無論背後原因為何,可想而知的是,不同的科系,隨著科系本身及所處大學的特質不同,即便都處在相同的政策變遷或「少子化」的環境條件之下,不同的科系的關閉風險是不同的,有些科系會優先倒閉,而有些科系則幾乎不受影響。舉例來說,根據新聞的報導,消失科系多在技職體系,尤其以觀光、餐旅、休閒等服務業科系及商管科系居多(天下雜誌,2015),可見科系的學門與所處學校類別,讓不同科系讓有著不同關閉的風險。

因此,本研究希望從組織社會學的理論視角出發,對影響大學科系關閉風險的因素,進行初步地探討,尤其是從「組織生態學」的觀點,將焦點放在組織族群(population)的層次,探討整體環境變化,對於大學科系關閉風險所造成的影響。臺灣高等教育「倒閉潮」的發生,意味著這些科系之內的教職工作權、學生受教權都難以被保障,無論是在學學生被迫轉學,或是教職員減薪、欠薪等爭議,許多的社會問題隨著科系被迫關閉而衍生出,因此,如果能夠對科系關閉的因素有初步了解,未來在創立新的系所時,或教育部在進行核准新設科系時,就能夠多留意而加以防範,避免科系創設幾年就必須關閉的窘境。

二、理論與文獻回顧

組織生態學(Organizational ecology)以生態演化的觀點來探討組織的多樣性,借用了許多生物生態的概念,並且將研究的分析層次,由過去多為個別、靜態組織的視角,提升到「族群(Population)」動態發展的層次。這種組織社會學得取徑,主要在探討當組織有著強大惰性,以及外部環境快速變遷、有著高度不確定時,組織族群的狀態(如:出現、轉型、死亡等)是如何被整體環境給形塑。

首先,組織生態學的基本立場是,組織有著高度惰性(Inertia)。Hannan 及 Freeman(1989)認為,組織在面對快速變化的環境時,是很難對此做出快速的回應,組織本身具有抗拒變化的惰性,因為任何重要組織結構的改變,都有可能危及組織的生存。者種惰性有兩種可能的來源:一來組織需需要內部和外部的穩定認同,這種認同常常內在於組織的特質中(像是組織願景、領導型態、核心技術等),這些核心特質難以被改變,而且如果被改變,就會失去原先內外的支持,舉例來說,當某個科系對應的產業發生變化時,雖然可以透過內部調整課程設計、教學方式來應對招不到學生的困難,但卻不可能大幅改變科系原本的領域,只可能在學校的層次中,把原先科系廢除再建立新的系所;另外,當代社會對組織的要求是要具備問責性(Accountability),這本身就要求組織具有穩定的組織結構,如果無法達成的話,組織就不容易存續,因此組織惰性是環境適應的結果。

既然組織難以運用策略主動去適應(Adaption)環境,那麽組織族群會發生變化,主要是環境的選擇(Selection)機制在作用,現存組織持續的失敗並備新組織所取代,也就是「適者生存,不適者淘汰」的想法。然而,這樣機制並非隨機的,背後與組織的正當性(Legitimation)與組織間的競爭(Competition)密切相關,這又與組織族群的密度緊密關聯。

Hannan 及 Freeman(1989)結合制度理論(Institutional theory)與族群競爭(Population competition)的觀點,而提出密度依賴理論(Density dependence theory),藉此解釋族群的動態發展過程與密度之間的關係。「密度」可視為組織族群的大小,是某個時間點組成一個族群的組織數量。而密度依賴理論主張,能夠用正當性與組織間競爭去預測一個組織族群的成長趨勢,而正當性與競爭的程度,又源於當時族群密度的大小。在群體發展初期階段,組織因為密度低、正當性尚未確立,因此較難被環境所接受,因此創建率低、死亡率高、成長速度緩慢;當等到較多同類型的組織成立並存活下來後,此組

織族群的正當性提升,開始模仿、快速增生的過程,此時成立率提高、死亡率降低;但是當組織數量提升到環境所能接受的乘載力(Carring capacity)時,為了爭奪有限的資源就加劇了組織之間的競爭力量,個別組織在此高密度、高度競爭下,面臨著較高的死亡率,成立率也降低。總結來說,組織族群的整體走勢,在歷經創建期的摸索、確立模式的增生、因競爭而死亡的三個階段,會呈現「S」型,也就是初期增加速度緩慢,直到超過一定數量之後變快速增加,但到接近環境負載力時,增長速率趨緩或甚至下降。而組織成立率與密度之間的關係呈「倒 U 」曲線」,死亡率則為「U」型變化,也就是當組織數目很稀少或很多的時候,組織很容易死亡,中間則相較不容易。

密度依賴的觀點能夠用來解釋不同的組織族群,Hannan 及 Freeman(1989)在書中發現組織密度能夠解釋工會、報業、半導體廠商的成立與死亡速率。後續的許多國內外實證研究,也同樣利用密度來闡釋不同類型的組織族群,像是美國釀酒產業(Carroll & Swarninathan,1989)、電話廠商(Barnett & Amburgey,1989)、台灣竹科廠商(林佳瑩,2008)等等。臺灣大專院校的科系所,如前面所提及的,同樣具有高度組織慣性,並且也面臨著變化快速、高度不確定性的環境條件(如:高等教育政策的變化、少子化等),因此,我們可以從密度依賴的觀點,來檢視大學科系死亡率的變化。

同時,組織的死亡率,並不像成立率只能從環境與密度來探討,除族群整體的死亡率外,個別組織的特性,也會導致族群內不同的組織,有著不同的關閉風險,因此,組織生態學也討論了組織的年齡、規模大小、利基寬度等影響個別組織死亡風險的特性。首先關於組織的年齡,新進者的劣勢(Liability of Newness)表示年輕的新組織有比較高的失敗率,Stinchcombe(1965)主張因為組織需要時間建立內部協作流程,並與外部角色建立連結和信任,因此在與既存組織競爭時是處於劣勢地位,同時,Hannan及Freeman(1989)提出的環境選擇過程也表達了這樣的概念,存活下來的組織代表其可靠性和課責性被接受,但是新建的組織卻未必有因此較容易失敗。關於組織規模,組織生態學則提出小組織的劣勢(Liability of Smallness)(Aldrich & Auster 1986, Freeman et al 1983),認為規模較小的組織有較多劣勢,像是在爭取資源上比較困難,也更容易被政策所決定,而如果從組織慣性的角度來看,Hannan & Freeman(1989)認為規模大的組織有較大的組織慣性,同時,基於當代社會的環境選擇過程基於課責性,會偏好有較高慣性的組織(組織的慣性會降低其死亡率),因此,規模大的組織比較不容易死亡。

以經驗上來說,在這波高等教育的「倒閉潮」之下,不同類型的科系關閉的情況有很大的差異。舉例來說,就科系的特質來說,不同學門關閉的數量不同,如同上面報導所觀察

的,觀光、餐旅、休閒等服務業科系與商管相關科系較多(天下雜誌,2015),此外,科系不同的辦學品質也會影響招生的狀況,進而影響其停招的機率;在學校層級上,公/私學校的處境也差異甚大,從制度的法規層次來看,針對私立大學設有「教育部輔導私立大專校院改善及停辦實施原則」,明定出預警學校、專案輔導學校的準則,以及相應的介入改善或懲處,可見私立學校更容易受到制度的干預,必須更積極得去調整科系,相較之下,公立學校就沒有對停招等相關事宜有明確的法規。

對此,陳建洲(2015)也有同樣的觀察,相比於公立學校因制度的優勢而有較低的死亡風險,所以較少出現私立大專院校那般,關閉某些科系另成立新科系這類激烈的轉型行為。同時,他利用描述性圖表,分析了台灣整體高等教育組織發展的趨勢,結果顯示從數量上來看,基本上密度依賴性所主張的發展路徑相似,呈現了「穩定→增生→穩定」的過程,但他認為這樣現象背後的原因,可能並不能用組織生態學的主張來解釋,因為他發現到:2007年時所開啟的私立大學科系關門、轉型的序曲,其實從學生的出生年去回推,當時的嬰兒出生數還未開始減少,因此大學科系倒閉潮的開端,並不是因為一般大家所認知的「少子化」,背後其實是政策制度的原因:政府調整高中/高職學生比率,這導致較少學術性大學的私立學校在招生上佔劣勢。當然,這樣制度論的看法,是十分重要而且正確,但這篇研究一來並沒有扎實的實證資料,而只有從描述性的趨勢圖來加以解釋,二來是單從這項政策制度,可能很難讓我們繼續來理解2007年後續科系關閉的發展。

因此,本研究希望可以從組織生態學中「密度依賴」的觀點出發,利用量化的資料,來檢視臺灣大專院校科系關閉的現象。基本上,我認為在控制年齡、組織特性、環境因素之下,密度對於大專院校科系的死亡率的效果,呈「U型」的二次曲線(也就是,一次項為負、二次項為正)。在這邊要特別注意的是對「密度」的定義,上面提到,密度依賴理論認為密度與組織族群的正當性與競爭習習相關,因此在定義科系的族群密度時,就必須考慮這兩點。我們可以把所有大專院校的科系視為一個族群,去觀察其死亡率與密度的關係;又或者把同一學校內的科系視為一個族群;又或者同一個學門當作一個組織族群,這端看我們認為科系之間的正當性與競爭源自於哪,而我認為主要發生在「學門」的層次上,因為如果觀察科系關閉的原因,會發現主要是「招生不足」的問題,那我們可以推斷,科系正當性跟競爭主要的資源是高中職「學生」的數量,而經常是同一個學門之間的科系,在競爭固定數量的學生(可以視其為科系所面對到的「環境承載力」),而且也時常看到隨著台灣產業等結構的變遷,某一領域的科系數量快速增長,可見科系的學們會是其正當性的來源。因此,底下在討論科系的組織族群密度時,指的會是「學門」密度。

三、資料來源與研究方法

(一) 資料來源

資料取自於教育部統計處網站的「各級學校基本資料」¹,我合併了1972到2020年, 共48年份的資料。選取的研究樣本為:「大專院校日間部的學士班」,也就是說本研究並未 將夜間部、研究所、在職專班等納入分析中。

因為本研究探討的是科系的關閉,因此如何指認同出同一個科系是重要的事情。有些 科系從資料來看歷經變動,無論是科系名稱轉變(如:從原本的「為俄國語文學系」改名成 「斯拉夫語文學系」),或是科系代碼進行微調,都讓可能其實是相同的科系,在資料中變 成兩個斷裂的科系,導致前面的科系被視為死亡、高估科系的失敗率。因此,為了把有經歷 小幅轉變的科系指認為同一個,我進行了以下的資料處理:首先,因為科系代碼在民國95年 和106年進行架構調整,所以我先利用教育部提供的對照表,把在這兩年進行科系代碼改變 的科系變成相同代碼;接下來,針對每一年消失的科系(在同一間學校內,下一年沒有出現 此代碼),從下一年新建的科系之中,去尋找其可能轉變成的科系,如果名稱沒有相差太 多、學生數接近、教師數量差異不大,那麼我就把兩者接起來、視為相同的科系。

(二)變數操作化

本研究的依變數是科系「死亡」事件的發生與否,我這樣定義科系死亡:如果發現此 科系停止招收大一學生(大一學生數為零),並且在幾年後科系代碼(在那一間學校之內) 消失,那麼我就定義停招的那一年是科系的死亡。科系死亡背後的原因有好幾種,可能是因 為經營不利而被迫停招、裁撤,又或者是學校為了調整策略而主動關閉科系、與其他科系合 併等,但我並未對此把科系的死亡進行分類。如果科系持續存活到2020年,那麼該科系則被 視為設限(censored)。

本文解釋科系死亡最主要的自變項是組織的族群「密度」,上述提到對大專院校科系來說密度是「學門的密度」,也就是那一年科系所屬的該學門的科系總數,我會放入學門密度的「一次項」,以及其「平方項除以1000」,用來評估學門密度與關閉的風險函數,是否會呈現先降後升的關係。資料中共有23個學門,包含:教育、藝術、人文及語言、社會及行為科學、新聞學及圖書資訊、商業及管理、法律學門、生命科學、環境、物理/化學及地球科學、數學及統計、資訊通訊科技、工程及工程業、製造及加工、建築及營建工程、農業

¹ https://depart.moe.edu.tw/ed4500/News.aspx?n=5A930C32CC6C3818&sms=91B3AAE8C6388B96

科學、獸醫學門、醫藥衛生、社會福利、餐旅/民生服務、衛生及職業衛生服務、安全服務 學門、運輸服務學門。因爲學們的架構有經過調整,例如把先前同一個學門拆為兩類,我則 將他們合併為原先的同一個學門。

其他控制變項的操作化如下。科系的年齡,是科系從創立到該年份的時間;科系規模,定義為該科系的學生人數取自然對數;科系是文科或理科,則是利用學門來歸類,教育到法律及社會福利後面的學門(一般認知的一類組)是文科,其他學門(二、三類)則是理科;延畢率,則是利用延畢人數除以前一年最高年級(通常為大四)的學生數,以此變數來作為該科系辦學品質的指標;所屬學校的類型,則分為公立或私立、一般大學或技專院校、偏向文科或理科(看文科還理科的科系佔該學校所有科系超過五成);時期則分為五期,1972~1985、1986~1997、1998~2012、2013~2020,主要是以重大政策作為切點(1986年政府鼓勵專科轉型學院,1998年廣設大學的政策,2013年通過「教育部輔導私立大專校院改善及停辦實施原則」)。

(三) 分析方法

本研究利用多層次間斷存活分析(Multilevel Discrete-time Survival Analysis),來評估科系的死亡風險。此方法主要結合兩種分析策略:第一是存活分析,或稱事件史分析(event history analysis),此方法能針對貫時性(longitudinal)的資料進行分析,並且處理觀察值設限(censored)的問題,也就是因研究觀察期有限,而尚未觀察到事件發生的現象。而此研究中的死亡或事件發生,是「科系關閉」,屬於不重複發生的事件,此外,由於可以把科系關閉視為間斷而非連續的事件,也就是關閉事件不會發生在一年之間的時間點發生,因此,我採取間斷的分析方法,時間單位為「年」。事件史的分析,主要是利用變數(隨時間或不隨時間變化都可以)來評估事件的風險率(hazard rate),指的是針對那些還在風險群(risk set)中的觀察值,也就是還暴露在事件發生風險下的科系,去評估它們在這個時間點上,事件發生與否的機率,因此,風險函數(hazard function)是一個條件機率(在「先前沒有發生事件」的條件之下)。

另一個分析策略是「多層次分析」,用來處理資料有層級(Hierarchical)或集群(Clustered)的情況。由於科系是巢套(nested)在學校,而在同一個學校之內的科系, 其關閉的風險是相似且彼此關聯的,如果直接把學校層級的變數,當作看科系個體的變數, 會違反殘差不相關等迴歸重要預設,因此必須納入多層次的誤差項,所以本研究採取兩階層 模型,第一層是科系,第二層為學校。

將兩種分析結合的即為「多層次間斷存活分析」,可以用來評估科系關閉的風險,如何被科系以及學校層級的參數所解釋。因為本研究把時間視作間斷的,所以利用邏輯式回歸(Logistic Regression)即能夠處理模型,也就是把風險機率經過 logit 轉換後,納入第一層(科系)與第二層(學校)的變數與誤差項,做線性的迴歸評估,甚至也可以將兩層級之間的交互作用項放入模型中。

四、研究結果

(一) 描述性統計

首先,在 67373 筆 (Spell)的資料中,共有 5380 個科系,其中 672 個科系經歷事件發生,也就是這些科系在 2020 年之前關閉,佔 12.49%。而第二層級的學校,則總共有 277 所。圖1 顯示了歷年的科系總數,圖2 則是歷年科系關閉的數量,我們可以看到在 1998年之前科系數量沒有增加太多,之後增長速度大幅提高,直到 2008 年後趨緩;科系關閉的數量則在 2005年後,一年大致有 40 到 50 個科系關閉。

圖1、歷年科系總數

圖2、歷年科系關閉數量

圖3、歷年「各學門」科系總數

如果我們把各學門拆開來觀察(參見圖3),可以見到走勢大致相同,尤其是那些總量高的學門(如:工程及工業、商業及管理、餐旅與民生學門),更符合組織生態學的「S型」的成長趨勢,會經歷初期密度低,某一時間點後開始快速增生,直到達某一數量後變趨緩甚至下降。

表1呈現各個變數的描述性統計。在科系的層次上,延畢率平均為百分之11.65,文理科大致各佔一半,文科(一類科系)佔42.7%,理科(二、三類科系)佔57.3%。關於學校的變數,在227間學校中,有101間學校是公立(約佔36.5%)、176間為私立(約佔63.5%);對學校類型來說,有137間為一般大學(約佔49.5%)、140間屬於技專院校(約佔50.5%),兩者約佔各半;文理科學校(佔超過一半的科系是文或理科)的比例是,有113間是偏向理科(約佔40.8%)、164間偏向文科(約佔59.2%)。

接下來我們可以藉由觀察存活函數,來了解科系關閉的情形。整體而言(參見圖4),科系年齡的在15年以前下降速度相較快速(比較多科系在這些年齡關閉),之後下降速度趨緩,到最長年齡的49年後,大約剩下8成科系存活。如果分成不同群體觀察,就文、理科來看,可以發現到兩者的存活函數很接近,下降速度在各年齡階段幾乎都相同;在不同設立別學校的科系,兩者的表現則差異較大,公立學校的下降速度緩慢,有接近9成的科系可以存活到49年,私立學校則下降快速,最後只有約7.5成能夠存活到最後。

表1、變項描述性統計

	N	平均值	標準差	最小值	最大值
科系規模(log(學生數))	67,369	5.43	0.76	0	7.88
延畢率	67,369	11.65	14.04	0	128.57

_	N	%
時期	67,369	
1972~1985	5,593	8.30
1986~1997	8,052	11.95
1998~2012	31,703	47.06
2013~2020	22,021	32.69
科系類組	5,380	
理科(含生物相關)	3,083	57.30
文科	2,297	42.70
學校設立別	277	
公立	101	36.46
私立	176	63.54
學校類型	277	
一般大學	137	49.46
技專院校	140	50.54
學校佔多數類組	277	
偏向理科	113	40.79
偏向文科	164	59.21

存活函數

圖4、大專院校科系關閉事件的存活函數,分成文理科

圖5、大專院校科系關閉事件的存活函數,分成公私立學校

(二) 多層次間斷存活分析

表2 為影響大專院校科系關閉風險所涉的因素,進行多層次間斷存活分析模型的結果,分為三個模型。

模型一主要放入了控制變數,只加入了層級一(科系)的變數,並且允許科系的截距項,在不同的學校下有所變異,此 Level-2 的誤差項其變異數為 1.594,組內相關係數(Intraclass correlation coefficients,ICC)則為 32.63%。

表2、科系關閉的多層次間斷存活分析

	模型一	模型二	模型三
截距	0.291	0.523	-0.301
	(0.34)	(0.35)	(0.37)
學門密度 t		-0.007***	-0.007***
		(0.00)	(0.00)
學門密度平方/1000 t		0.018***	0.018***
		(0.00)	(0.00)
年龄t	-0.028**	-0.033***	-0.031***
	(0.01)	(0.01)	(0.01)
時期(對照組:1972~1985)			
1986~1997	-0.608	-0.479	-0.595
	(0.34)	(0.34)	(0.33)
1998~2012	0.301	0.455	0.353
	(0.28)	(0.29)	(0.28)
2013~2020	-0.657*	-0.427	-0.565
	(0.31)	(0.32)	(0.32)
科系規模(log(學生人數))t	-1.091***	-1.092***	-1.078***
	(0.04)	(0.04)	(0.04)
延畢率 t	0.026***	0.026***	0.026***
	(0.00)	(0.00)	(0.00)
科系類組(對照組:理科)			
文科	0.060	0.012	-0.204
	(0.09)	(0.10)	(0.15)
學校多數類組(對照組:偏向理科)			
偏向文科			0.185
			(0.17)
科系文科 * 學校偏向文科			0.252
			(0.20)
學校設立別(對照組:公立)			
私立			0.930***
			(0.21)
學校類型(對照組:一般大學)			
技專院校			0.469*
			(0.19)
総田助(共四二)	1.594***	1.531***	1.180***
變異數(截距)	(0.26)	(0.25)	(0.21)
Deviance (-2LL)	5797.928	5727.556	5692.308
N	67369	67369	67369

註:括弧內為標準誤。*: p < .05; **: p < .01; ***: p < .001

模型一作為兩階層隨機截距模型(Random Intercept Model),可以表達成:

L1: Logit(
$$h_{tij}$$
) = β_{0j} + $\sum_{k=1}^{6} \beta_{kj}$ · X_{ktij}
L2: β_{0j} = γ_{00} + u_{0j} · β_{kj} = γ_{k0}

其中, h_{tij} 是指在學校 j 的科系 i ,在它年齡是 t 時的風險條件機率,並且會經過 logit 的轉換。 β_{0j} 代表學校 j 自己的截距項,由所有學校的截距平均 γ_{00} ,加上自己的誤差項 u_{0j} 所組成。 β_{kj} 則是各個共變項 X_{ktij} 的斜率,以此評估此變數對於風險函數的影響效果,同時,模型假設這些變數造成的效果,在所有學校都是相同的,不會因爲學校不同而有所差異。

模型一得到了以下結果:年齡對越高,科系就越不容易關閉,符合前面所提及的「新進者的劣勢」,當多存活過一年之後,死亡的風險機率勝算比變成原先的 exp(-0.028) = 0.972 倍。時期效應不大顯著,對照於第一個時期(1972~1985),只有第四個時期達到 p < 0.5 的顯著水準,關閉風險相較低,其他時期則未達顯著。科系規模則對於關閉風險有顯著的影響,當科系的組織規模越大,就越不容易關閉,符合組織生態學所說的「小組織的劣勢」,當科系規模提高一單位,風險勝算比變成原先的 0.33 倍。該科系的延畢率也會顯著影響其關閉的風險,而且兩者成正向的關係,我們可以如此詮釋,如果一個科系辦學品質較差,使學生在就讀過程遇到較大的困難,那便會反應在該科系有更高的關閉風險上,當延畢的百分比提生 1%,關閉風險的勝算比提升為 1.03 倍。 最後是文理科的性質,可以看到此變數並不顯著,如同在上面存活函數圖形中所觀察到,文科並沒有比理科有更高的關閉風險。

模型二則放入本研究主要討論的自變數:學門密度,與模型一相同,同樣是只放入了層級一變數的隨機截距模型。觀察整體模型的適配度,可以發現 Deviance 降低,從5797.93變為5727.56,代表模型是配度隨著自變數的加入而提升。學校截距的變異數,則從1.594下降至1.531。從模型二的各個係數來看,可以發現到控制變數無論效果或顯著性,基本上沒有變化,除了時期效果的顯著性完全消失外。而「學門密度」的係數,皆達到統計顯著,而且效果為一次項是負(-0.007)、二次項是正(0.018),符合組織生態學中「密度依賴理論」的主張,當族群密度提高時,組織的失敗率會因為正當性的提高而因降低,但是當數量達到環境負載力時,組織間就會因為高度競爭而導致失敗率提高,所以密度與失敗風險機率呈現凹向上的二次曲線關係。

接著,模型三加入了第二層級(學校)的變數,因此是混合效果模型(Interceptsand Slopes-as Outcomes Model)。但不認為科系特質對於事件風險所造成的影響,會因

為不同的學校而有差異。此外,還納入文、理科的變數的兩層間交互作用項,看文、理組的科系,是否會因為在偏向文科的學校或理科的學校下效果會有所差異。此模型可以表達成:

L1: Logit(
$$h_{tij}$$
) = β_{0j} + $\sum_{k=1}^{8} \beta_{kj} \cdot X_{ktij}$

L2: $\beta_{0j} = \gamma_{00} + \sum\limits_{p=1}^3 \beta_{0p} \cdot W_{pj} + u_{0j}$, $\beta_{1j} = \gamma_{10} + \gamma_{11} \cdot$ 偏向文科_j , $\beta_{kj} = \gamma_{k0}$ 與模型一、二最大的差異,是模型三加入了 β_{0p} ,也就是利用學校層級的變數 W_j ,來解釋為何會有組間的截距變異,可以看到,這時已經變成 conditional(在學校層次變數都零的條件下)的誤差項 u_{0j} ,其變異數已大幅降低至 1.18 ,同時整個模型,也因為納入學校特質的變數,所以 Deviance 降至 5692.31 ,模型適配度提高。

從係數來看,自變數「學門密度」的效果與顯著性仍舊不變,依然一次項為正、二次項為負。學校的設立別有顯著的影響,私立學校比起公立,風險比高出約1.03倍。同樣地,學校的類型也會有差異,比起較多學術性的一般大學,在技專院校中的科系,其關閉的風險比高出了約1.6倍。至於與文理科相關的變數,則都未達顯著,可以理解成,文科科系在文科學校、文科科系在理科學校、理科科系在文科學校、理科科系在理科學校,這四組人的關閉風險基本上沒有差異。

五、討論與結論

本研究利用多層次間斷存活分析,來驗證組織生態學的主張,能否解釋台灣大專院校科系的關閉情形,而結果都大致符合假設。主要的變數:「學門密度」,的確是與科系失敗率呈現二次曲線、正「U形」的關係。因此,當某一個學門的科系在一波風潮而快速擴張之後,會達到環境負載力,此時組織間必須去競爭有限的資源(主要是高中的招生數量),此時學門整體就必然會有較高的關閉率。

我們可以把每個學門的一次項與二次項拿出來檢視,用此來了解各學門的「環境承載力」大致是多少科系數量,以及發展的趨勢為何,這有助於未來在新設科系時,幫助我們思考此學門是否已經「擴張過度」,如果繼續在此學門中新建立科系,很可能會有很高的失敗率。然而,由於總共有23個學門,所以不可能在此一一討論,於是我選擇了一個比較有代表性的學門——餐旅、民生服務學門,來進行討論。圖6顯示了餐旅、民生服務學門關閉的風險與密度(科系總數)之間的關係,我們可以觀察此 U 型二次曲線發現到,前期隨著科系數量的增加,每一個在此學門的科系關閉的機率降低,但當數量來到約 160 個之後,關閉風險的機率就到了最低點(0.2),在此數量之後,關閉的風險就開始提升,如果搭配圖3來檢視,餐旅、民生服務學門在 2005 年左右科系數量約是 160 個,大概到 2013 年時密度快

接近 300 多個,這時科系關閉的風險機率已經很高,也因此整體數量不再增長,甚至稍微下降。一些的新聞報導,也印證了相同的發展趨勢,天下雜誌(2018)一篇名為《大學警訊:餐旅觀光現倒閉潮、文創夯度減、資訊並非萬靈丹》的報導就提到:「過去政策強調發展觀光,觀光客年破千萬的消息長期佔據媒體版面,搭上餐飲界名人如阿基師、吳寶春效應,餐旅、觀光科系越來越熱門……技職校院因應趨勢,紛紛大開觀光餐飲科系,風潮甚至蔓延至一般大學……然而近幾年,當時廣設的相關科系迎來倒閉潮。」雖然,觀光產業近十年的來臺旅客皆為正成長,可見這些科系關閉與「學門密度」過高、在招生等重要資源競爭激烈,

圖6、餐旅與民生服務學門的密度與風險函數關係

所以此學門面臨一波倒閉潮。

其他的科系或學校特質的變數,也影響著科系關閉的風險,這些的研究發現,一來可以用來檢證理論的主張,二來也能讓我們更了解台灣高等教育「倒閉潮」這樣的經驗現象。首先是科系層級的特質,雖然族群密度高、組織間競爭激烈,但有些特質的科系(可能是科系本身或是因為所屬學校特性),更容易在競爭中失敗:年齡較小的新創設的科系,就比歷史悠久的科系來得更容易關閉;組織規模小的,也有更高的失敗率;學生延畢率比較高,也會造成此科系有更高的倒閉風險;在私立、技專院校的科系,就相比公立、一般大學的科系,更容易關閉。科系或學校是文、理科則對於關閉風險沒有影響,這可能有以下解釋:首先,一般人的認知中,會覺得因為文科的科系對應的職業薪資普遍較低,所以在未來職涯發展較差的情況下,文科的科系更容易關閉,但前面提及,科系的存活與否,可能與「招生端」更習習相關,只要他能招生狀況良好,基本上不會關閉;二來是只把它二分成文、理

科,可能太多粗略,理科內部可能有些學門關閉情形很少,但可能有些學門就面臨很大的倒 閉潮(例如:生農相關科系),所以未來研究可以對此進行更細緻的討論。

本文有許多研究的限制,是後續可以進一步深入地研究。舉例來說:本研究沒有討論到組織生態學中一個重要的概念:組織的「利基寬度」,也就是通才或專才組織之間的差異,有待後續將這部分理論納入經驗的分析之中;另外,在學校層次的部分,並沒有討論學校層級的關閉,或許可以利用相同的分析方法來討論「學校停辦」的狀況,而且若能夠納入其他的關於學校有趣的變數(如:是頂大或或段學校、學校資金等等),可以使模型的建立更加的完整;除此之外還可以進行的方向,包括去區分科系的關閉類型,究竟是裁撤、轉型抑或是合併,以及對環境的時期效應,建立更周延的變數。

參考文獻

Aldrich, H., & Auster, E. R. (1986). Even dwarfs started small: Liabilities of age and size and their strategic implications. Research in organizational behavior.

Barnett, W. P., & Amburgey, T. L. (1989). Do larger organizations generate stronger competition? Madison: Graduate School of Business, University of Wisconsin-Madison.

Barber, J. S., Murphy, S. A., Axinn, W. G., & Maples, J. (2000). 6. Discrete-Time Multilevel Hazard Analysis. Sociological Methodology, 30(1), 201-235.

Hannan, M. T., & Freeman, J. (1989). Organizational ecology. Harvard university press.

Freeman, J., Carroll, G. R., & Hannan, M. T. (1983). The liability of newness: Age dependence in organizational death rates. American sociological review, 692-710.

Singh, J. V., & Lumsden, C. J. (1990). Theory and research in organizational ecology. Annual review of sociology, 16(1), 161-195.

Stinchcombe, A. (1965). Organization-creating organizations. Society, 2(2), 34-35.

教育部(2021)。《大專校院概況統計 109 學年度》。

陳建州 (2015)。 從制度論與密度依賴性談高等教育組織擴張歷程。臺灣社會學刊,(58), 1-45。