CS 170 HW9

Yeung John Li, SID: 23665588, cs170-ia

Discussion:

DNA fragment assembly algorithm

Explanation:

The idea of the algorithm is to use greedy algorithm to reconstruct the whole DNA sequence by picking the most overlapped reads.

- 1. We create a list of nodes, where each node is each read.
- 2. We compare every pairs of reads, O(n) pairs. In each comparison, we recursively calculate the maximum overlap count and the corresponding overlapped section. We create a directed edge for each comparison, the two reads as the nodes, the weight is their overlap count and the first read points to the second read.
- 3. We sort the list of edges by their weight, the overlap count.
- 4. We loop through the sorted list of edges and try to add the nodes & edge to our list representation of connected components without creating a loop. (list of connected components where each connected component is a list of all edges & nodes in traverse order.)
- 5. After the loop, we obtain a list of edges selected. We reconstruct the original sequence from the list of edges.

Asymptotic Runtime Analysis:

- 1. Creating the list of edges takes a runtime involves $O(n^2)$ comparison of read pairs, each comparison checks for k possible overlap and each overlap takes O(k) to verify. Thus, the edges generating process takes a total of $O(n^2k^2)$.
- 2. Traversing this list of edge takes a runtime of $O(n^2)$ since there are only $O(n^2)$ edges. Thus, the total runtime is $O(n^2k^2)$.