Third lesson (16th of October, 2019). Martina Orsini, matr.926267

1) <u>Finish the question on the composite wall (example C) finding the heat transfer</u> rate.

Already calculated resistance:

$$R_{tot} = 6.81 \frac{^{\circ}C}{W}$$

Indoor temperature: $T1 = 20^{\circ}C$

Outoor temperature: $T2 = -10^{\circ}C$

Heat transfer rate:

$$\dot{Q} = \frac{T1 - T2}{R_{tot}} = \frac{20 - (-10)}{6,81} = 4,40 \, W$$

2) A 3 m high and 5 m wide wall consists of long 16 cm 32 cm cross section horizontal bricks (k =0.72 W/m · °C) separated by 3 cm thick plaster layers (k =0.22 W/m · °C).

There are also 2 cm thick plaster layers on each side of the brick and a 3-cm-thick rigid foam (k $0.026 \text{ W/m} \cdot ^{\circ}\text{C}$) on the inner side of the wall. The indoor and the outdoor temperatures are 20°C and -10°C , and the convection heat transfer coefficients on the inner and the outer sides are h1=10 W/m2 · $^{\circ}\text{C}$ and h2 =40 W/m2 · $^{\circ}\text{C}$, respectively.

Assuming one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall.

$$R_{i} = \frac{1}{h_{1} * A} = \frac{1}{10 * 0.25} = 0.4 °C/W$$

$$R_{f} = \frac{L_{f}}{K_{f} * A} = \frac{0.03}{(0.026 * 0.25)} = 4.615 °C/W$$

$$R_{P1} = R_{P2} = \frac{L_{p1}}{K_{p} * A_{p1}} = \frac{0.02}{(0.22 * 0.25)} = 0.363 °C/W$$

$$R_{pc_{1}} = R_{pc_{2}} = \frac{L_{pc_{1}}}{k_{p} \times A_{pc_{1}}} = \frac{0.32}{0.22 * 0.015} = 96.97 °\frac{C}{W}$$

$$R_{b} = \frac{L_{b}}{k_{b} \times A_{b}} = \frac{0.32}{(0.72 * 0.22)} = 2.02 °\frac{C}{W}$$

$$\frac{1}{R_{tot_{parallel}}} = \frac{1}{R_{b}} + \frac{1}{R_{pc_{1}}} + \frac{1}{R_{pc_{2}}} = \frac{1}{2.02} + 2 *\left(\frac{1}{96.97}\right) = 0.51 °C/W$$

$$\rightarrow = \frac{1}{0.516} = 1.938 °\frac{C}{W}$$

$$R_{o} = \frac{1}{h_{2} * A} = \frac{1}{40 * 0.25} = 0.1 °\frac{C}{W}$$

$$R_{total} = R_{i} + R_{o} + 2 * R_{P_{1}} + R_{tot_{parallel}} + R_{foam}$$

$$R_{total} = 0.4 + 0.1 + 2 * 0.363 + 1.938 + 4.615 = 7.76 °\frac{C}{W}$$

$$\dot{Q} = \frac{T1 - T2}{R_{tot}} = \frac{20 - (-10)}{7,76} = 3,86 W$$

3) Determine the overhall unit thermal resistance (R value) of a wood frame composed as reported under:

	SectionA with wood	SectionB with insulation	
1. outside Air	0.03	0.03	5
2. wood bevel lapped siding (13mm * 200mm)	0.14	0.14	Sec.B Sec.B
3. playwood (13mm)	0.11	0.11	
1. urethane rigid foam (90mm)	-	0.98*90/25	
5. wood studs	0.63	-	
6. gypsum wallboard	0.079	0.079	
7. inside surface	0.12	0.12	3

R' withIns = 0.03 + 0.14 + 0.11 + 0.63 + 0.079 + 0.12 = 1.109
$$m^2$$
 . °C/W

R' with
Wood = 0.03 + 0.14 + 0.11 + (0.98*90/25) + 0.079 + 0.12 = 4.007

$$m^2$$
 . °C/W