$\varepsilon ext{-NFAs}$ and Regular Expressions

COMPSCI 3331

Outline

- \triangleright ε -NFAs
- ightharpoonup Transforming ε -NFAs to (standard) NFAs.
- Regular expressions: definitions

ε -NFAs: Motivation

- We want to extend NFAs to allow transitions without "consuming any input".
- ▶ Called ε -NFAs.
- \triangleright New transitions are ε -transitions.
- Why have ε -transitions?
 - can make the definition of a machine easier to understand.
 - \triangleright ε -NFAs will be a crucial "intermediate step"

ε -NFA: Example

- ► Temperatures: "Maybe we see a '-' sign"
- ► Format: '+'/'-' sign (maybe), then number, then "°C".

ε -NFAs

An ε -NFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states,
- \triangleright Σ is a finite alphabet,
- ▶ $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$ is the transition function.
- ▶ $q_0 \in Q$ is the start state.
- $ightharpoonup F \subseteq Q$ is the set of final states.

ε -NFAs

The only difference between NFAs and ε -NFAs is δ :

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$$
.

▶ $\delta(q,\varepsilon)$ defines the set of states that the ε -NFA can go to on empty input ε .

We want to be able to translate an ε -NFA into an NFA without ε -transitions.

Removing ε -transitions

- An ε -path from q_1 to q_2 is a sequence of ε -transitions from q_1 to q_2 .
- ▶ How do we replace ε -paths?

Removing ε -transitions

```
Algorithm A: remove \varepsilon-transitions from M = (Q, \Sigma, \delta, q_0, F)
   for all q \in Q do all start points
       for all p \in Q do all endpoints
           if there is an \varepsilon-path from p to q then
                for all a \in \Sigma and all r \in \delta(q, a) do \leftarrow real transition.
                    add the state r to the set \delta(p,a)
                end for
           end if
       end for
   end for
```


Problem with Algorithm A: Final states

Before removing ε -transitions, update final states:

```
F'=\emptyset < new final state.
for all q_f \in F do
    for all p \in Q do
        if there is an \varepsilon-path from p to q_f then
            add the state p to F'
        end if
    end for
end for
                   p
                                  3
```

Removing ε -transitions (1 of 2)

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a ε -NFA. Let $cl_{\varepsilon}:Q\to 2^Q$ be defined by

$$cl_{\varepsilon}(q) = \{r \in Q : \exists n \geq 0, q_0, q_1, \dots, q_n \in Q \text{ such that}$$

 $q_0 = q, q_n = r, \text{ and } q_{i+1} \in \delta(q_i, \varepsilon) \ \forall 0 \leq i \leq n-1\}.$

Let $M' = (Q, \Sigma, \delta', q_0, F')$ be an NFA without ε -transitions defined by

$$\delta'(q,a) = \delta(q,a) \cup \bigcup_{q' \in \mathit{cl}_{\mathcal{E}}(q)} \delta(q',a)$$

and

$$F' = F \cup \{q : \mathit{cl}_{\varepsilon}(q) \cap F \neq \emptyset\}.$$

Removing ε -transitions (2 of 2)

Theorem. Let $M = (Q, \Sigma, \delta, q_0, F)$ be an ε -NFA and $M' = (Q, \Sigma, \delta', q_0, F')$ be the NFA without ε -transitions defined using cl_{ε} . Then L(M) = L(M'). From last slide ...

$$\delta'(q,a) = \delta(q,a) \cup \bigcup_{q' \in cl_{\varepsilon}(q)} \delta(q',a)$$

and

$$F' = F \cup \{q : cl_{\varepsilon}(q) \cap F \neq \emptyset\}.$$

Regular Expressions

- Regular expressions are a textual representation of languages.
- Regular expressions define exactly the regular languages, i.e., they are equivalent to DFAs and NFAs.

Regular Expressions: Definition

Let Σ be an alphabet. Regular languages are defined recursively.

- ▶ \emptyset is a regular expression, ε is a regular expression and a is a regular expression for all $a \in \Sigma$.
- ightharpoonup if r_1, r_2 are regular expressions, then so are
 - (a) $r_1 r_2$ (i.e., the concatenation of r_1 and r_2);
 - (b) $r_1 + r_2$; when
 - (C) 1. knelee star.

Language defined by a Regular Expression

Each regular expression r defines a language, denoted by L(r).

- ▶ $L(\emptyset) = \emptyset$, $L(\varepsilon) = \varepsilon$; and $L(a) = \{a\}$ for all $a \in \Sigma$.
- ightharpoonup if r_1, r_2 are regular expressions, then
 - (a) $L(r_1r_2) = L(r_1)L(r_2)$; Concadination of languages.
 - (b) $L(r_1 + r_2) = L(r_1) \cup L(r_2);$
 - (c) $L(r_1^*) = (\underline{L(r_1)})^*$.

language accepted by r,

$$L^* = \{\varepsilon\} + L + L^2 + L^3 + L^4 + \cdots$$
 So $\varepsilon \in L^*$ for all languages L .

- $\emptyset^* = \{ \varepsilon \}.$
- $a^* = \varepsilon + a + a^2 + a^3 + \dots = \{a^i : i \geq 0\}.$
- $(a^*b^*)^* = (a+b)^*$
- \triangleright a regular expression identity: for all $r_1, r_2,$

$$(r_1^*r_2^*)^* = (r_1 + r_2)^*$$

Applications of Regular Expressions

- Regular expressions will be familiar to you because of their applications:
 - regular expressions are built into software, especially under Linux: grep, vi (COMPSCI 2211)
 - Built into many languages like python.
 - Used in lexical analysis in compiler design.
- ► However, regexp in most applications has some additional power: [^a], bracketing ((\1)), etc.

Next Time: regular language representations

- transform a regular expression into an automaton: regular expression $\to \varepsilon$ -NFA.
- transform a DFA into a regular expression.
- Therefore, regular expressions define exactly the regular languages.