Доклад

Система обнаружения атак Snort

Латыпова Диана. НФИбд-02-21

Содержание

1	Цель работы	5
2	Теоретическая часть	6
	2.1 Введение	6
	2.2 Что такое Snort?	6
	2.3 Apхитектура Snort	7
	2.4 Правила и сигнатуры	8
3	Установка и настройка Snort	10
	3.1 Преимущества и недостатки Snort	10
	3.2 Применение Snort	11
4	Выводы	12
Сп	писок литературы	13

Список иллюстраций

2.1	Принцип р	аботы Snort												8

Список таблиц

1 Цель работы

Изучение системы обнаружения вторжений Snort, её возможностей и принципов функционирования. Рассмотрение архитектуры Snort, принципы работы с правилами и сигнатурами атак, а также выявление преимуществ и недостатков использования данной системы.

2 Теоретическая часть

2.1 Введение

Информационная безопасность становится все более важной в условиях роста киберугроз и сетевых атак. Одним из ключевых инструментов защиты является система обнаружения вторжений (IDS — Intrusion Detection System). Snort — это одна из самых популярных и широко используемых систем IDS, которая применяется для анализа сетевого трафика и обнаружения подозрительных действий.

2.2 Что такое Snort?

Snort — это открытая система обнаружения вторжений, разработанная для анализа сетевого трафика в режиме реального времени. Разработана компанией Sourcefire в 1998 году. Snort использует сигнатуры (правила) для выявления известных угроз, таких как вредоносные программы, попытки взлома, атаки отказа в обслуживании и другие аномалии [1].

Snort может функционировать в трех режимах:

• **Сниффер (Sniffer Mode).** В этом режиме Snort просто перехватывает и отображает сетевой трафик в реальном времени, что полезно для мониторинга и диагностики. Пример команды для запуска сниффера:

sudo snort -v

• **Регистратор пакетов (Packet Logger Mode).** В этом режиме Snort записывает весь трафик на жесткий диск для последующего анализа. Этот режим часто используется для хранения и последующего анализа огромных объемов сетевых данных. Пример команды для запуска в режиме регистрации пакетов:

sudo snort -dev -l /path/to/log

• Система обнаружения вторжений (IDS Mode). Основной режим, в котором Snort анализирует трафик на предмет соответствия заранее заданным правилам и сигнатурам атак. Команда для запуска в режиме IDS:

sudo snort -c /etc/snort/snort.conf -i eth0

2.3 Архитектура Snort

Основной задачей Snort является перехват и анализ каждого пакета данных, проходящего через сеть.

Важные компоненты системы [2]:

Рис. 2.1: Принцип работы Snort

- *Сниффер трафика:* Этот компонент перехватывает сетевые пакеты, которые проходят через сетевой интерфейс
- Декодер пакетов: анализирует структуру пакета (заголовки и данные)
- *Модуль предварительной обработки:* фильтрует и нормализует трафик, что помогает избежать обхода правил атаками
- *Детектор:* сравнивает пакеты с правилами и сигнатурами атак, выполняя обнаружение угроз
- *Модуль регистрации и уведомления:* сохраняет результаты анализа и уведомляет администратора о подозрительных событиях

2.4 Правила и сигнатуры

Snort использует набор правил для обнаружения атак. Эти правила представляют собой заранее определенные сигнатуры угроз. Они описывают, какие пакеты

считаются подозрительными, и задают действия, которые Snort должен выполнить при обнаружении таких пакетов (например, регистрировать инцидент или отправлять уведомление) [3].

Правила Snort могут определять:

- ІР-адреса источника и назначения,
- используемые порты,
- протоколы,
- ключевые строки и шаблоны, содержащиеся в данных пакетов.

Каждое правило состоит из двух частей:

- Заголовок: указывает на характеристики пакета (протокол, адреса, порты).
- Опции: более детальная проверка содержимого пакета, включая поиск определенных строк и шаблонов.

Типы правил в Snort:

- 1. **Правила обнаружения.** Определяют и классифицируют подозрительные пакеты. Например, правила могут обнаруживать попытки внедрения SQL-инъекций или сканирование портов.
- 2. **Правила блокировки.** Используются в конфигурации Snort как системы предотвращения вторжений (IPS). Snort может быть настроен на активную блокировку пакетов при их соответствии определенным правилам.
- 3. **Правила уведомления.** Позволяют уведомлять администратора через разные каналы (например, отправка электронной почты) при срабатывании правила.

3 Установка и настройка Snort

Процесс установки Snort зависит от операционной системы, однако основные этапы включают [4]:

- 1. Установку программного обеспечения Snort.
- 2. Настройку конфигурационного файла snort.conf, где определяются параметры анализа трафика, путь к правилам, интерфейс сети и прочие настройки.
- 3. Загрузку или создание правил для обнаружения конкретных угроз.
- 4. Запуск Snort в одном из режимов в частности, в режиме IDS для обнаружения угроз в реальном времени.

Пример команды для запуска Snort на Linux в режиме IDS:

```
sudo snort -c /etc/snort/snort.conf -i eth0
```

Здесь:

- -с указывает путь к файлу конфигурации,
- -i интерфейс, который будет мониторить Snort (например, eth0).

3.1 Преимущества и недостатки Snort

Преимущества	Недостатки				
ПО с открытым	Высокая нагрузка на				
исходным кодом	ресурсы				
регулярное обновление	Необходимость в				
базы правил для защиты	регулярных обновлениях				
от новых угроз					
Широкие возможности	Чувствительность к				
	обходу правил				
Поддержка множества	Ложные срабатывания				
протоколов					
Интеграция с другими					
системами					

3.2 Применение Snort

Snort широко используется как в коммерческих, так и в некоммерческих организациях. Он служит важным компонентом сетевой защиты для:

- Обнаружения вторжений: анализ сетевого трафика на наличие признаков атак.
- Сбора данных для последующего анализа: запись трафика и создание отчетов для выявления долгосрочных тенденций.
- Создания правил блокировки: при использовании в комбинации с брандмауэрами или другими защитными системами Snort может использоваться для блокировки подозрительных пакетов.

4 Выводы

Snort является мощной и гибкой системой обнаружения вторжений, которая позволяет сетевым администраторам защитить свои системы от разнообразных угроз. Благодаря открытости и активной поддержке сообщества, Snort остается одним из лидеров среди IDS, обеспечивая надежную защиту сетей от современных кибератак.

Список литературы

- 1. Snort [Электронный ресурс]. Википе́дия (англ. Wikipedia), 2024. URL: https://ru.wikipedia.org/wiki/Snort.
- 2. Система обнаружения вторжения Snort [Электронный ресурс]. vc.ru, Салимжанов Р.Д, 2024. URL: https://vc.ru/dev/1330525-sistema-obnaruzheniya-vtorzheniya-snort.
- 3. Обзор Snort для обнаружения вторжений [Электронный ресурс]. vaiti.io, Александр Бархатов), 2024. URL: https://vaiti.io/obzor-snort-dlya-obnaruzhen iya-vtorzhenij/.
- 4. Snort и Suricata простой путь к использованию IDPS: от установки на сервер до грамотной настройки [Электронный ресурс]. Habr), 2023. URL: https://habr.com/ru/companies/selectel/articles/744478/.