

## 데이터 편향이 예측에 미치는 영향

> 티이타닉호 생존자 예측 자세히 들여다 보기

숙실대학교 베어드교양대학 서유화 교수 yhsuh@ssu.ac.kr 목차

- ▶ 지도학습(SVM)을 이용한 머신러닝 과정 복습
- ▶ 데이터 편향에 따른 머신러닝 예측 결과 비교
- ▶ 데이터 왜곡에 따른 예측 결과 비교

Soongsil University

## 학습 목표

- ▶ 사이킛런을 이용한 머신러닝의 지도학습(SVM) 모델을 만들 수 있다.
- ▶ 데이터 편향으로 발생활 수 있는 문제점들을 설명할 수 있다.
- ▶ 데이터 왜곡으로 발생할 수 있는 문제점들을 설명할 수 있다.
- ▶ 데이터 윤리가 필요한 이유를 설명할 수 있다.
- ▶ 인공지능을 사용하는 우리의 시각과 자세에 대해 고찰한다.

## 지난시간 배운 내용

| 주 | 주제                               | 온라인                                                                                                               | 오프라인                                                                                            |
|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1 |                                  | 1. 강의 및 교과목 소개(공통, 핵심만)<br>2. 인공지능의 과거와 현재<br>3. 인공지능의 미래와 다양한 시선<br>4. 인공지능 개발환경 구축과 사용법(Anaconda/Colab)         | 1. 강의 및 교과목 소개(분반별, 자세히)<br>2. 다양한 인공지능 기술 경험하기 (자연어처리, 시각, 음성,)<br>3. 인공지능 챗봇만들기(IBM 왓슨 어시스턴트) |
| 2 | 공공데이터를<br>이용한 사회문제<br>발견과 해결책 모색 | 1. 빅데이터의 정의와 가치<br>2. 공공데이터 수집하기<br>3. 공공데이터로부터 새로운 인사이트 발견하기<br>- 행정구역별 인구 데이터와 공공의료기관 현황 데이터 분석                 | 1. 서울시 CCTV설치 현황 분석하기<br>2. 서울시 범죄발생 현황 분석하기                                                    |
| 3 |                                  | 1. 인공지능의 정의와 분류<br>2. 인공지능 학습방법 이해하기<br>3. 인공지능 알고리즘 소개                                                           | 1. 머신러닝을 이용한 이미지 식별(구글 티쳐블 머신)<br>2. 머신러닝을 이용한 보스톤 집값 예측                                        |
| 4 | 인공지능과 데이터<br>윤리                  | 1. 데이터의 불완전성과 결함에 따른 예측 오류와 차별<br>2. 데이터 편항성이 예측에 미치는 영향 (구글티처블머신)<br>3. 지도학습(SVM)을 이용한 타이타닉호 생존자 예측              | 1. 타이타닉호 생존자 예측<br>- 데이터 편향성이 예측에 미치는 영향<br>- 데이터 왜곡에 따른 예측 결과 비교                               |
| 5 | 인공지능과<br>알고리즘 윤리                 | 1. 알고리즘 기반 의사결정 시스템의 한계<br>2. 윤리가 적용된 인공지능 알고리즘                                                                   | 1. 알고리즘에 따른 예측 결과 비교<br>- 보스톤 집값 예측<br>- 폐암환자 생존 여부 예측                                          |
| 6 | 인공지능에 대한<br>다양한 이슈와<br>우리의 자세 고찰 | 1. 인공지능의 윤리적/법적 쟁점 (자율주행자동차, AI로봇, 트랜스 휴먼 등)<br>2. 인공지능시대 사회, 경제적 불평등 문제<br>3. 인공지능과 프라이버시<br>4. 인공지능의 윤리적 대응과 규제 | 1. 자율주향 자동차의 행동학습 시나리오 경험하기<br>2. 비윤리적 데이터 생성과 수집(웹 크롤링을 이용한 데이터 수집)                            |
| 7 |                                  | 기말고시                                                                                                              | ł                                                                                               |

Soongsil University

4

Soongsil University

# 지도학습(SVM)을 이용한 머신러닝 과정(온라인) \*

사용 패키지와 모듈 임포트 from sklearn.model\_selection import train\_test\_split from sklearn import sym #SVW 모델 4 from sklearn import metrics #정확도 비교 데이터 가져야기 1 data df = pd.read csv('./titanic.csv') data df.head() 데이터셋 나누기: 학습용과 테스트용 train, test = train test split(data df, test size= 0.2) print("train data", train, shape) train test split(데이터, 분할비율) 3 print("test data".test.shape) 학습에 사용할 변수 선택하기 1 data\_df.info() In [7]: 1 data df.corr() 학습용 데이터셋 : 학습데이터와 레이 1 train data df = train[['pclass', 'sex', 'age', 'parch', 'fare']] 2 train data df 불(정답) 나누기 1 train label df = train[['survived']] Soongsil University 2 train label df

## 지도학습(SVM)을 이용한 머신러닝 과정(온라인) \*

- - test\_label\_df
- 7. 모델 학습하기(SVM)
  - ▶ svm.SVC(비용값, 감마값) : svm학습모델생성
  - ▶ fit(학습데이터, 학습데이터정답(레이블))

- ]: 1 clf = svm.SVC(C = 1, gamma = 0.1) 2 clf.fit(train\_data, train\_label)
- 8. 테스트 데이터로 예측하기(SVM)
  - ▶ predict(테스트데이터)

In [16]: 1 pred\_svm = clf.predict(test\_data) 2 pred svm #svm이 예측한 생존 여부 값

- 9. 모델 예측 정확도 확인
  - ▶ metrics.accuracy\_score(테스트데이터정답, 예측 값)
- 1 ac\_score = metrics.accuracy\_score(test\_label, pred\_svm)
  2 print('accuracy : ', ac\_score)
  - Soongsil University

### 타이타닉생존자 예측 자세히 들여다 보기

- ▶ 오프라인 심습파일
  - ▶ 4주 5강 데이터편향이 예측에 미치는 영향 타이타닉호 생존자 예측하기.ipvnb
- ▶ 지도학습을 이용한 타이타닉호 생존자 예측하기 (온라인)에서 추가된 코드
  - 1. 사용 패키지와 모듈 임포트
  - ▶ import seaborn as sns
    - ▶ Matplotlib을 기반으로 다양한 색상 테마와 통계용 차트 등의 기능을 추가한 시각화 패키지 (https://seaborn.pvdata.org/)
  - 2. 데이터 가져오기
  - ▶ age 데이터를 범주한하기 위해서 10으로 나눈 몫에서 10을 곱해줌
  - ▶ 생존자(1)와 사망자(O) 막대 그래프로 그리기
  - ▶ 열이름.value\_counts() : 해당열에 대해 존재하는 그룹별로 개수를 세줌
  - ▶ 열이름.value\_counts().plot(kind='bar'): 그룹별로 센 개수를 막대 그래프로 표현
  - 3. 데이터셋 나누기 (동일)

### 타이타닉생존자 예측 자세히 들여다 보기

- ▶ 지도학습을 이용한 타이타닉호 생존자 예측하기(온라인)에서 추가된 코드
  - 4. 학습에 사용할 변수(특징, Feature) 선택하기
    - ▶ 학습데이터에서 각 피쳐(Feature)가 생존자 예측 분류에 미치는 영향을 상세히 탐색
    - ▶ 온라인 소스코드에서는 상관계수만을 참조하여 피처를 선택했음
    - ▶ 열이름.value counts(): 해당열에 대해 존재하는 그룹별로 개수를 세줌
    - ▶ **열이름.**value counts().plot(kind='bar'): value counts()의 결과를 막대 그래프로 표현
    - ▶ sns.contplot(x='열이름', hue='카테고리이름', data=데이터가 저장된 변수명)
      - : x의 데이터 개수를 hue에 설정된 카테고리 별로 나눠 그 개수의 그래프를 생성
    - ▶ 데이터가 저장된 변수명.groupby (['열이름1', '열이름2'])
    - : 데이터의 열이름1을 기준으로 먼저 그룹핑을 하고 그 안에서 열이름2를 기준으로 다시 그룹핑
    - ▶ 데이터가 저장된 변수명.mean()
    - : 각 행열별로 데이터의 평균값을 구함



Soongsil University

9

11

- ▶ 전체 학습데이터(836명)에서 사망자는 6○%(499명), 생존자는 4○%(337명)
- ▶ 그룹별(좌석등급별) 분포
  - ▶ 1등급 좌석 생존자가 가장 많고 3등급 클래스 사망자가 가장 많음





### ▶ 그룹별(성별, 나이별) 분포

- ▶ 여성의 생존율이 월등히 높음
- ▶ 20,30 대 탑승갱이 가장 많고 가장 많이 사망





### 학습데이터 탐색 결과

▶ 그룹별(좌석등급, 성별) 분포

- ▶ 1등급 탑승객은 평균연령이 가장 높음
- ▶ 1등급 좌석 여성이 가장 생존율이 높고, 2.3등급 클래스 남성이 가장 생존율이 낮음

parch

fare survived

▶ 모든 등급 좌석에서 여성의 생존율이 남성보다 매우 높음

|        |     | -0-       |          |          |            |          |
|--------|-----|-----------|----------|----------|------------|----------|
| pclass | sex |           |          |          |            |          |
| 1      | 0   | 33.063063 | 0.531532 | 0.513514 | 107.873913 | 0.954955 |
|        | 1   | 37.692308 | 0.401709 | 0.264957 | 72.561397  | 0.350427 |
| 2      | 0   | 24.047619 | 0.511905 | 0.595238 | 23.503324  | 0.869048 |
|        | 1   | 27.317073 | 0.365854 | 0.227642 | 20.068631  | 0.154472 |
| 3      | 0   | 18.852459 | 0.688525 | 0.852459 | 14.925170  | 0.442623 |
|        | 1   | 21.397849 | 0.494624 | 0.308244 | 12.265201  | 0.157706 |

Soongsil University

## 학습데이터 탐색 결과

- ▶ 그룹별(좌석등급별, 나이별)분포
  - ▶ 영,유아 어린이 생존율이 모든 등급에서 높음
  - ▶ 20,30대의 생존율이 높으나 탑승객의 수도 가장 많음
  - ▶ 1등급 8O대 생존율이 가장 높고, 2,3등급에서는 7O대 생존율이 가장 낮음

|        |      | SCA      | amah     | parcii   | lare       | Surviveu |
|--------|------|----------|----------|----------|------------|----------|
| pclass | age  |          |          |          |            |          |
| 1      | 0.0  | 0.500000 | 0.500000 | 2.000000 | 116.704150 | 0.500000 |
|        | 10.0 | 0.277778 | 0.777778 | 0.722222 | 114.755789 | 0.777778 |
|        | 20.0 | 0.461538 | 0.538462 | 0.487179 | 94.440813  | 0.743590 |
|        | 30.0 | 0.433962 | 0.301887 | 0.207547 | 100.533726 | 0.716981 |
|        | 40.0 | 0.666667 | 0.425926 | 0.222222 | 69.234804  | 0.574074 |
|        | 50.0 | 0.512821 | 0.538462 | 0.333333 | 83.738992  | 0.615385 |
|        | 60.0 | 0.600000 | 0.450000 | 0.800000 | 99.517085  | 0.400000 |
|        | 70.0 | 0.500000 | 0.500000 | 0.000000 | 64.177100  | 0.500000 |
|        | 80.0 | 1.000000 | 0.000000 | 0.000000 | 30.000000  | 1.000000 |

| 2 | 0.0  | 0.571429 | 0.928571 | 1.357143 | 28.439886 | 1.000000 |
|---|------|----------|----------|----------|-----------|----------|
|   | 10.0 | 0.500000 | 0.250000 | 0.375000 | 23.711283 | 0.500000 |
|   | 20.0 | 0.565217 | 0.536232 | 0.260870 | 21.872342 | 0.420290 |
|   | 30.0 | 0.615385 | 0.288462 | 0.269231 | 17.886058 | 0.423077 |
|   | 40.0 | 0.592593 | 0.407407 | 0.518519 | 24.777778 | 0.407407 |
|   | 50.0 | 0.733333 | 0.200000 | 0.200000 | 16.191667 | 0.200000 |
|   | 60.0 | 0.800000 | 0.600000 | 0.200000 | 22.770000 | 0.200000 |
|   | 70.0 | 1.000000 | 0.000000 | 0.000000 | 10.500000 | 0.000000 |

|  | 3 | 0.0  | 0.531915 | 2.063830 | 1.319149 | 22.085368 | 0.40425  |
|--|---|------|----------|----------|----------|-----------|----------|
|  |   | 10.0 | 0.666667 | 0.753623 | 0.434783 | 14.142090 | 0.21739  |
|  |   | 20.0 | 0.753165 | 0.202532 | 0.126582 | 9.884597  | 0.23417  |
|  |   | 30.0 | 0.698795 | 0.337349 | 0.445783 | 12.594227 | 0.253012 |
|  |   | 40.0 | 0.657143 | 0.371429 | 1.171429 | 15.307263 | 0.14285  |
|  |   | 50.0 | 1.000000 | 0.000000 | 0.000000 | 7.618067  | 0.000000 |
|  |   | 60.0 | 0.750000 | 0.000000 | 0.000000 | 11.956250 | 0.250000 |
|  |   | 70.0 | 1.000000 | 0.000000 | 0.000000 | 7.762500  | 0.00000  |

Soongsil University

12

결론 : 학습데이터 피처 탐색결과 생존율에 가장 많은 영향을 주는 피쳐는 pclass와 sex이다. (age는 상관계수가 낮은편이고 pclass와 sex보다는 영향력이 명확하지 않아 제외)

pclass와 sex 변수만을 선택해서 학습 모델을 만들어 보자.

- ▶ 지도학습을 이용한 타이타닉호 생존자 예측하기(온라인)과 동일
  - 5. 학습용데이터셋 학습데이터와 정답(레이블) 나누기
  - 6. 테스트용데이터셋 테스트데이터와 정답(레이블) 나누기
  - 7. SVM모델 학습
  - 8. 테스트데이터로 예측하기

Soongsil University

▶ 지도학습을 이용한 타이타닉호 생존자 예측하기(온라인)에서 추가된 코드

- 9. 테스트 데이터의 예측 결과 그래프로 나타내보기 (4번에서 추가된 코드 이용)
  - ▶ 좌석등급(pclass)에서 등급별 생존지 수 그래프로 확인
  - ▶ 성별(sex)에 따른 생존자 수 그래프로 확인
  - ▶ 연령별 생잔지 수 그래프로 확인
  - ▶ 좌석등금, 성별에 따른 생존율 확인

Soongsil University

### 예측결과

- ▶ 3등급 좌석 클래스의 사망기능성이 매우 높다
- ▶ 여성은 생존가능성은 남성보다 월등히 높고, 남성의 사망가능성은 여성보다 월등이 높다
  - ▶ 테스트 데이터 예측 결과 : 여성 모두 생존, 남성 모두 사망
- ▶ 20.30대 탑승객의 사망가능성이 가장 높다.
- ▶ 모든 좌석 등급에서 남성의 사망기능성은 매우 높다.
  - ▶ 테스트 데이터 예측 결과 : 여성 모두 생존, 남성 모두 사망

### 생각할 문제

- ▶ 학습데이터의 탐색 결과와 비교해 테스트 데이터의 예측 결과는 어떠한 나?
- ▶ 만약 침몰하는 배에서 탑승객의 수보다 적은 한정된 수의 구명조미만을 가지 고 있다고 가정하자.
  - ▶ 생존가능성을 높이기 위해 위와 유사한 방식의(정답과 동일하게 예측한 정확도를 기반으로 선별하여 피쳐들을 적용) 머신러닝 모델을 적용하여 예측된 결과에 따라 구명조끼를 먼저 분배한다면 어떠할까?
  - ▶ 유시한 사례) 재범예측, 신용예측, 채용심사

Soongsil University

Soongsil University

생각할 문제

17

#### ▶ 간과한 요소

- ▶ 타이타닉호에서 높은 등급클래스의 좌석에서 높은 생존율을 보인 것은 귀족이나 고소득의 탑승자가 먼저 구명보트에 태워졌을 가능성이 높다.
- ▶ 여성이 높은 생존율을 보인 것은 당시 시대 통념상 젊은 남성들의 희생으로 어린이와 여성 이 먼저 구명보트에 태워졌을 가능성이 높다.
- ▶ 이러한 방식의 인공지능의 학습모델을 사용하는 경우 데이터 내 존재하는 차별(여성 과 어린이, 귀쪽, 고소특자가 먼저 구명보트에 태워짐)에 의해 남성차별적이거나 빈 부차별적인 결과를 예측할 것이다.
- ▶ 향후 그러한 불행에서 누구를 먼저 구조할지를 결정하는 경우 차별은 더 강화될 것이다.

Soongsil University

골**론** 

▶ 차별을 포함하고 있는 데이터를 학습한 인공지능의 예측결과를 의사결정에 사용하는 경우 유사한 결과를 예측함으로써 기존의 차별을 더 강화시킬 수 있다.



18