• • Съдържание

- Общи понятия
- Модел на качеството на софтуера
- о Типичен йерархичен модел
- Определяне стойностите на оценъчните елементи
- о Процедура за оценяване
- Предимства и недостатъци на йерархичния модел

• • Общи понятия

 Software Engineering е дисциплина, която предоставя методи и средства за разработване на качествен софтуер с ограничен бюджет, поставени срокове и с постоянно изменящи се изисквания.

IEEE

• Какво е качество???

• • Общи понятия

"Качеството е съвкупност от средства и характеристики на даден продукт или услуга, носители на способността му да отговори на явно или неявно указани нужди."

ISO 8402-1986

- Модел на Боем 1973г. 1978 (доусъвършенстван).
- Моделът има йерархичен характер с две нива полезност и възможност за лесно съпровождане
- Полезността се определя от следните характеристики:
 - Надеждност
 - Ефективност
 - Използваемост
- Възможността за лесно съпровождане се определя от характеристиките:
 - Тестируемост
 - Разбираемост
 - Модифицируемост
- Портабилноста

- Надеждността се определя от свойствата:
 - Пълнота
 - Точност
 - Непротиворечивост
- Разбираемостта също се определя от свойството
 - Непротиворечивост

- Всяко свойство за конкретния програмен продукт да се оцени с някаква обективна мярка. Тази мярка се нарича метрика.
 - Важно е да се определи важността на метриката.
 - Важно е да се автоматизира процеса на оценяване на свойствата и характеристиките.

- Недостатъци на модела на Боем:
 - Не съвсем ясна структурираност
 - Недостатъчна пълнота на множеството от характеристики
 - Съсредоточаване почти изцяло върху качеството на кода, а не върху целия продукт
 - Сравнително тясна експериментална база (програми на Фортран)

Типичен йерархичен модел

- Качеството се разглежда като йерархична структура. То се намира на ниво 0
- На следващо ниво 1 се намират факторите, които са потребителско ориентирано свойство, представящо даден аспект на качеството на софтуера от гледна точка на потребителя
- На ниво 2 се намират критериите те са софтуерно ориентирани свойства, представящи характеристики на програмния продукт.
- На 3 ниво се намират метриките те са софтуерно ориентирани детайли на даден критерии. Те се определят от оценъчните елементи.
- Последно ниво 4 е на оценъчните елементи те са елементарни характеристики на най-ниско ниво, които подлежат на количествена оценка.

• • Фактори

- В зависимост от модела те могат да бъдат от 6 до 16. В нашия случай са 6:
 - Гъвкавост
 - Коректност
 - Надеждност
 - Съпровождаемост
 - Удобство на използване
 - Ефективност

• • • Критерии

- Всеки фактор се определя от няколко критерия. Например фактора съпровождаемост (възможност за отстраняване на грешки и поддръжката му в актуално състояние) се определя от критериите:
 - Структурираност
 - Простота
 - Нагледност

• • Метрики

- Те се определят от оценъчните елементи. Нека разгледаме като пример метриките за критерия нагледност:
 - Коментари към логиката на програмата
 - Оформяне на текста на програмата
 - Възприета система за идентификация

• • Оценъчни елементи

- Те са елементарна характеристика на най-ниско ниво, която подлежи на количествено оценяване. Нека разгледаме метриката коментари към логиката на програмата за критерия нагледност. Тя се определя от следните оценъчни елементи:
 - Коментари към машиннонезависимите елементи на програмата;
 - Коментари към машиннозависимите елементи на програмата;
 - Коментари към входно-изходните точки.

Йерархична структура на модела за качеството

• • Определяне стойностите на оценъчните елементи

- Методите за определяне стойностите на оценъчните елементи могат да се класифицират по два признака:
 - По начина на получаване на информацията за програмния продукт
 - По източника на получаване на информацията

Определяне стойностите на оценъчните елементи

- По начина на получаване на информацията за продукта са:
 - Измерителен състои се в използването на програмни инструменти за определяне обема на програмата, на времето на изпълнението на цялата програма или определени класове, на времето на реакция на програмата на определени входове и др.
 - Регистрационен основава се на информация получена по време на изпитания или експлоатация на програмата
 - Органолептичен основан е на използването на информация получена от човека в резултат на анализа на възприятията му.
 - Изчислителен използва теоретични и емпирични зависимости, статистически данни и др.

определяне стойностите на оценъчните елементи

- По източника на получаване на информацията методите са:
 - Традиционен стойностите се определят от специализирани организации за изпитания и изчисления.
 - Експертен стойностите се определят от група експерти компетентни в решаването на определен вид задача.
 - Социологически стойностите се получават чрез разработването на специални анкети въпросници.

- 1. Всяка характеристика може да приема стойност между [0,1].
- 1.1 Стойностите на всички оценъчни елементи се определят от експерти по един от споменатите вече методи.
- 1.2 Дават се указания на експертите ако се отнася за получаване на стойност по измерителен, регистрационен или изчислителен метод се посочва точният начин за получаване на стойността. В останалите случаи се дават по-общи указания. Ако вземем за пример коментарите към входно-изходните точки:
- 0, ако изцяло липсват;
- 0.33, ако ги има, но са твърде кратки и неясни
- 0.67, ако ги има и са задоволителни
- 1, ако са отлични

- 2. На всяка характеристика от всяко ниво съответства тегло в интервала[0,1]. Сумата от теглата на характеристиките, определящи характеристика от по-високо ниво е 1. Нека разгледаме теглата на ниво оценъчни елементи за метриката коментари към логиката на програмата:
- 0.4 за коментари към машиннонезависимите елементи на програмата;
- 0.3 за коментари към машиннозависимите елементи на програмата;
- 0.3 за коментари към входно-изходните точки.
- 2.1 Всички теглови стойности се определят от експерти и се отнасят за точно определен тип софтуерни продукти.

- 3. При започване на оценката на качеството на софтуера ще разполагаме с :
 - Процедура за оценяване
 - Указания за намиране на стойностите на оценъчните елементи
 - Теглата към всички характеристики на всички нива за дадения тип софтуер
- 4. Експертите определят стойностите на оценъчните елементи.

5. Нека получените стойности на оценъчните елементи определящи метрика M са e_1, e_2, \ldots, e_n , а съответните им предварително зададени тегла са w_1, w_2, \ldots, w_n . => $M = e_1^* w_1 + e_2^* w_2 + \ldots + e_n^* w_n$

Същата схема на пресмятане се прилага и за по-горните нива.

6. След като са известни всички стойности на метриките М за всеки критерии С прилагаме формулата:

$$C = M_1^* W_1 + M_2^* W_2 + + M_n^* W_n$$

където М_і са метриките, определящи критерия С.

7. Аналогично след като всички стойности на критериите С са известни, за да получим стойността на всеки фактор F прилагаме формулата:

$$F = C_1^* W_1 + C_2^* W_2 + + C_n^* W_n$$

където С_і са критериите, определящи фактора F.

8. Накрая, когато всички стойности на фактори F са известни, за да получим стойността на качеството Q, прилагаме формулата:

$$Q = F_1^* W_1 + F_2^* W_2 + + F_n^* W_n$$
,

където F_i са факторите, определящи качеството Q.

Q остава в интервала [0,1].

Предимства и недостатъци на йерархичния модел

- Предимства
 - Простота
 - Конструктивност
 - Автоматизация
 - Крайният резултат е едно число в интервал
- Недостатъци
 - Субективност
 - Трудоемкост
 - Всеки тип програмен продукт изисква свое собствено множество от тегла