의학통계학 기말고사(2018/12/21 10:00-11:40)

모든 계산 과정을 기술하시오. 확률과 백분위수의 계산은 주어진 표에서 가장 가까운 수를 선택하여 구하시오.

[문제 1 번 (15점)] 확률변수 X는 평균이 μ 이고 표준편차가 $\sigma=2$ 인 정규분포를 따른다고 하자. X_1,X_2,\ldots,X_n 은 정규분포 $N(\mu,2^2)$ 에서 독립적으로 추출하는 확률 표본이다. 다음과 같은 가설을 검정하려고 한다.

$$H_0: \mu = 0$$
 vs. $H_1: \mu = 1$

위의 가설을 검정하기 위한 검정통계량 Z는 다음과 같이 주어진다.

$$Z = \frac{\bar{X}}{2/\sqrt{n}}$$

여기서 $\bar{X} = \sum_{i=1}^{n} X_i/n$ 이다.

- 1. 유의수준 $\alpha = 0.1$ 에서 기각역(rejection region)을 구하시오
- 2. 표본의 수가 9 인 경우 (n = 9) 위에서 구한 기각역을 사용하는 가설검정의 검정력(power)은 얼마 인가?
- 3. 가설검정의 검정력을 85% 로 하는 ($\beta = 0.15$) 최소한의 표본의 크기 n 를 구하시오.

[문제 2번 (10점)] 두 개의 약품의 치료효과를 비교하려고 한다. 확률변수 X와 Y는 각 약품에 의한 치료의 성공회수이며 각각 독립적으로 다음과 같은 이항분포를 따른다.

$$X \sim Bin(n, p_1)$$
 $Y \sim B(n, p_2)$

다음과 같은 가설을 검정하려고 한다.

$$H_0: p_1 = p_2$$
 vs $H_1: p_1 \neq p_2$

유의수준은 5%, 검정력은 70 % 로 정한 경우 $p_1=0.5,\,p_2=0.2$ 일 때 필요한 연구대상자 수 n을 결정하시오.

[문제 3번 (20점)] 다음과 같이 두 독립집단의 생존 시간을 얻었다.

- 1. 그룹 1에 대하여 생존함수를 카플란-마이어 누정한계추정법으로 구하고 생존함수의 그림을 그리시오.
- 2. 그룹 1과 그룹 2의 생존함수가 같은지 유의수준 5%로 CMH-로그 순위 검정을 실시하시오.

[문제 4 번 (25점)] 확률변수 T를 생존시간이라고 하고 누적위험함수는 아래와 같다.

$$H(t) = \int_0^t h(t)dt = (\theta t)^{\lambda}, \quad \theta > 0, \lambda > 0$$

- 1. 확률변수 T의 위험함수 h(t)를 유도하시오.
- 2. 확률변수 T의 생존함수 S(t)를 유도하시오.
- 3. 확률변수 T의 확률밀도함수 f(t) 를 유도하시오.
- 4. 생존시간 T와 중도절단시간 C가 서로 독립이라고 가정하며 관측한 생존시간 X_i 는 다음과 같이 정의하다.

$$X_i = \min(T_i, C_i)$$
 $i = 1, 2, ..., n$

또한 중도절단 표시변수 δ_i 는 다음과 같이 정의한다.

$$\delta_i = \begin{cases} 1 & T_i < C_i \\ 0 & T_i > C_i \end{cases}$$

표본 X_1, X_2, \ldots, X_n 이 주어졌을 때 모수 θ 와 λ 의 최대가능도 추정량을 구하는 방정식을 유도하시오. (Hint: $t^x = \exp[x \log(t)]$)

5. 위 4번에서 구한 가능도 방정식으로 부터 $\lambda = 2$ 인 경우 θ 의 최대가능도 추정량을 유도하시오.

[문제 5 번 (15점)] 다음과 같은 2 × 2 분할표에서 두 반응 비율을 비교한다고 가정하자.

처리/반응여부	반응	반응 안함	합계
1	а	b	n_1
2	С	d	n_2
합계	m_1	m_2	n

위의 2 × 2 분할표에서 두 독립 집단에 대한 비율 검정을 위한 검정통계량 z가 아래와 같이 주어진다.

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$$

$$\hat{p}_1 = \frac{a}{n_1}$$
 $\hat{p}_2 = \frac{c}{n_2}$ $\hat{p} = \frac{m_1}{n}$

다음이 성립함을 보이시오.

$$z^2 = \frac{n(ad - bc)^2}{n_1 n_2 m_1 m_2}$$

- [문제 6 번 (15점)] 다음은 65명의 환자들에 대한 중도 절단이 있는 생존시간을 4개의 독립변수 (X_1,X_2,X_3,X_4) 에 대하여 Cox의 비례위험모형으로 적합한 추정 결과이다.
 - 1. 추정된 회귀 계수를 이용하여 위험함수 h(t)의 추정식을 제시하시오.
 - 2. 유의수준 5%에서 유의한 독립변수의 값과 그 의미를 설명하시오.
 - 3. 기저생존함수(baseline hazard function) $h_0(t)=0.2$ 로 주어졌다고 하자. 독립변수의 값이 아래와 같이 주어진 경우 생존함수 S(t)의 값을 구하시오.

$$X_1 = 0.1, X_2 = 1, X_3 = 0, X_4 = 0$$

Analysis of Maximum Likelihood Estimates

Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	
X1	1	1.82940	0.62180	8.6561	0.0033	
Х2	1	-0.11402	0.06661	2.9298	0.0870	
ХЗ	1	-0.30172	0.45693	0.4360	0.5091	
X4	1	-0.02056	0.01654	1.5446	0.2139	

 χ^2 분포 백분위수

DF	60.0%	66.7%	75.0%	80.0%	87.5%	90.0%	95.0%	97.5%	99.0%	99.5%	99.9%
1	0.708	0.936	1.323	1.642	2.354	2.706	3.841	5.024	6.635	7.879	10.828
2	1.833	2.197	2.773	3.219	4.159	4.605	5.991	7.378	9.210	10.597	13.816
3	2.946	3.405	4.108	4.642	5.739	6.251	7.815	9.348	11.345	12.838	16.266
4	4.045	4.579	5.385	5.989	7.214	7.779	9.488	11.143	13.277	14.860	18.467
5	5.132	5.730	6.626	7.289	8.625	9.236	11.070	12.833	15.086	16.750	20.515

정규분포 누적 확률 $P(Z \le x)$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5430	0.5470	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.2	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000