MATH 322 Assignment 1

Oliver Tonnesen V00885732

January 24, 2019

1

1.a

We present such a list:

$$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,6\},\{2,3,6\},\{2,3,5\},\{2,3,4\},\\\{1,3,4\},\{1,3,5\},\{1,4,5\},\{1,4,6\},\{1,5,6\},\{2,5,6\},\{2,4,6\},\{2,4,5\},\\\{3,4,5\},\{3,4,6\},\{3,5,6\},\{4,5,6\}$$

1.b

We present a graph representing the adjacencies:

This graph clearly has no Hamiltonian path, and so no such list exists.

1.c

Let $A_1, A_2, ..., A_t$ be k-subsets of [n]. We'll use \sim to represent adjacency for the remainder of the proof.

Suppose $A_1 \sim A_2$ and $A_2 \sim A_3$ and $A_1 \neq A_3$. Then either A_3 differs from A_2 in the same spot as A_1 , but going in the opposite direction (for example, $A_1 = \{3,5\}$, $A_2 = \{3,6\}$, $A_3 = \{3,7\}$), or A_3 differs from A_2 in a different spot than A_1 (for example, $A_1 = \{3,5\}$, $A_2 = \{3,6\}$, $A_3 = \{2,6\}$). In any case, $A_1 \not\sim A_3$ if $A_3 \sim A_2$ and $A_2 \sim A_1$. So no neighbor of a neighbor of A_1 can be a

neighbor of A_1 . This is true of any $A \subseteq [n]$, |A| = k. So we consider the graph representing this system. It is clearly 2-colourable given its properties, and so there exists a bipartition of the k-subsets of [n].

$\mathbf{2}$

Let us choose a representative for each of the n groups, and count how many options we have at the time:

 A_1 : We choose either of the two elements, and call it x_1 .

 A_2 : Suppose that $A_1 \subset A_2$. Then we cannot choose x_1 , so we choose either of the remaining two elements, and call it x_2 . Notice that if $A_1 \not\subset A_2$, then we have more than two choices.

 A_2 : Suppose that $A_2 \subset A_3$. Then we cannot choose x_1 or x_2 , so we choose either of the remaining two elements, and call it x_3 . Notice that if $A_2 \not\subset A_3$, then we have more than two choices.

:

 A_n : Suppose that $A_{n-1} \subset A_n$. Then we cannot choose any of $x_1, x_2, \ldots, x_{n-1}$, so we choose either of the remaining two elements, and call it x_n .

Notice that at each of the n steps, we had at least two options for which element to choose. Then, by the law of product, there were at least 2^n ways we could have chosen our SDR.

3

3.a

Claim: There is an SDR which includes a_1, a_2, \ldots, a_t (but not necessarily as representatives for A_1, A_2, \ldots, A_t).

Proof: [Induction on t]

Base: t = 1: Given that A_1 has an SDR, this is trivially true.

Induction Hypothesis: Suppose there exists some k such that we can construct an SDR for A_1, A_2, \ldots, A_n containing a_1, a_2, \ldots, a_l for all $l \leq k$.

Induction Step: We attempt to construct an SDR for A_1, A_2, \ldots, A_n containing $a_1, a_2, \ldots, a_{k+1}$ given some $a_{k+1} \in A_{k+1}$:

By the induction hypothesis, we know that there exists an SDR for A_1, A_2, \ldots, A_n containing a_1, a_2, \ldots, a_k . Given this, we can construct an SDR for $A_1, A_2, \ldots, A_{k+1}$ containing a_{k+1} as follows:

Case 1: a_{k+1} is already the representative for A_{k+1} : Done. Case 2: a_{k+1} is not the representative for A_{k+1} : Replace the current representative for A_{k+1} with a_{k+1} . If the resulting tuple is an SDR, then we're done. If not, then a_{k+1} was already used elsewhere to represent a set, and so the original SDR already satisfied the property that it contained all of $a_1, a_2, \ldots, a_{k+1}$.

Thus we have constructed the desired SDR, and by induction, the claim holds.

3.b

$$\begin{array}{l} A_1 = \{1,2\}, \; A_2 = \{2,3\}, \; A_3 = \{3\} \\ a_1 = 1, \; a_2 = 3, \; t = 2 \end{array}$$

4

4.a

Whenever $u \in \bigcup_{i=1}^n A_i$ or $v \in \bigcup_{i=1}^n A_i$. Consider any SDR of the family that does <u>not</u> contain u or v. Find a set A_l such that $u \in A_l$ or $v \in A_l$. Replace A_l 's representative with u or v. The SDR remains valid.

4.b

An SDR containing both u and v exists whenever there exist at least two subsets A_i and A_j such that $u \in A_i, v \in A_j, i \neq j$, for some $1 \leq i, j \leq n$. Such an SDR can oly certainly exist when u and v are actually elements of one of A_1, A_2, \ldots, A_n and when they are not found only in the same set.

5

1	2	3	4	5	6	7	1	2	3	4	5	6	
2	3	4	5	6	7	1	3	4	5	6	7	1	
3	4	5	6	7	1	2	5	6	7	1	2	3	
4	5	6	7	1	2	3	7	1	2	3	4	5	
5	6	7	1	2	3	4	2	3	4	5	6	7	
6	7	1	2	3	4	5	4	5	6	7	1	2	
7	1	2	3	4	5	6	6	7	1	2	3	4	
1 4 7 3 6 2 5	2 5 1 4 7 3 6	3 6 2 5 1 4 7	4 7 3 6 2 5 1	5 1 4 7 3 6 2	6 2 5 1 4 7 3	7 3 6 2 5 1 4	1 5 2 6 3 7 4	2 6 3 7 4 1 5	3 7 4 1 5 2 6	4 1 5 2 6 3 7	5 2 6 3 7 4 1	6 3 7 4 1 5	

1	2	3	4	5	6	7		1	2	3	4	5	6
	7	1	2	3	4	5		7	1	2	3	4	5
5 6 7	6 7	7		1	2	3		6	7	1	2	3	4
3 4	4		5	6	7	1		5	6	7	1	2	3
1 2 3	2 3	3		4	5	6		4	5	6	7	1	2
6 7 1	7 1	1		2	3	4		3	4	5	6	7	1
4 5 6 7	$5 \ 6 \ 7$	6 7	7		1	2		2	3	4	5	6	7