PhD Examination

Regression modelling using priors depending on Fisher information covariance kernels (I-priors)

Haziq Jamil

24 September 2018

Executive summary

Development of a novel methodology—theoretical and computational—for regression, classification and variable selection.

Scope

- What are I-priors?
 - Motivation: The normal regression model [CHAPTER 1]
 - Prerequisite: Functional analysis and RKHS/RKKS theory [CHAPTER 2]
 - Fisher information and the I-prior [CHAPTER 3]

Scope

- What are I-priors?
 - Motivation: The normal regression model [CHAPTER 1]
 - Prerequisite: Functional analysis and RKHS/RKKS theory [CHAPTER 2]
 - Fisher information and the I-prior [CHAPTER 3]
- My PhD work involving I-priors
 - Computational methods for estimation of I-prior models [CHAPTER 4]
 - Extensions to categorical responses [CHAPTER 5]
 - Bayesian variable selection for linear models [CHAPTER 6]

Scope

- What are I-priors?
 - Motivation: The normal regression model [CHAPTER 1]
 - Prerequisite: Functional analysis and RKHS/RKKS theory [CHAPTER 2]
 - Fisher information and the I-prior [CHAPTER 3]
- My PhD work involving I-priors
 - Computational methods for estimation of I-prior models [CHAPTER 4]
 - Extensions to categorical responses [CHAPTER 5]
 - Bayesian variable selection for linear models [CHAPTER 6]
- Supplementary material
 - Estimation concepts
 - EM algorithm and variational inference
 - Hamiltonian Monte Carlo

Chapters 2, 3 and 4 were jointly co-authored with Wicher Bergsma (main supervisor).

Regression modelling using I-priors

The normal regression model

• For $y_i \in \mathbb{R}$, $x_i \in \mathbb{X}$, and i = 1, ..., n,

$$y_i = f(x_i) + \epsilon_i$$
$$(\epsilon_1, ..., \epsilon_n)^{\top} \sim N(0, \Psi^{-1})$$

The normal regression model

• For $y_i \in \mathbb{R}$, $x_i \in \mathbb{X}$, and i = 1, ..., n,

$$y_i = f(x_i) + \epsilon_i$$
$$(\epsilon_1, ..., \epsilon_n)^{\top} \sim N(0, \Psi^{-1})$$

• Assume $f \in F$ a reproducing kernel Hilbert or Krein space (RKHS/RKKS).

The normal regression model

• For $y_i \in R$, $x_i \in X$, and i = 1, ..., n,

$$y_i = f(x_i) + \epsilon_i$$
$$(\epsilon_1, ..., \epsilon_n)^{\top} \sim N(0, \Psi^{-1})$$

- Assume $f \in F$ a reproducing kernel Hilbert or Krein space (RKHS/RKKS).
- The basis for various regression problems:
 - Linear models (canonical RKHS)
 - Multilevel models (canonical + Pearson = ANOVA RKKS)
 - Longitudinal models (fBm/canonical + Pearson = ANOVA RKKS)
 - Smoothing models (fBm RKHS)
 - o etc.

The I-prior

• (Corollary 3.3.1, p. 93) The Fisher information for $f \in F$, an RKHS/RKKS with kernel $h_{\eta}: X \times X \to R$, is

$$I(f(x), f(x')) = \sum_{i,j=1}^{n} \psi_{ij} h_{\eta}(x, x_i) h_{\eta}(x', x_j)$$

The I-prior

• (Corollary 3.3.1, p. 93) The Fisher information for $f \in F$, an RKHS/RKKS with kernel $h_{\eta}: X \times X \to R$, is

$$I(f(x), f(x')) = \sum_{i,j=1}^{n} \psi_{ij} h_{\eta}(x, x_i) h_{\eta}(x', x_j)$$

• Define an I-prior for f to be

$$\mathbf{f} := (f(x_1), ..., f(x_n)) \sim N_n(\mathbf{f}_0, I[f])$$

where \mathbf{f}_0 is some prior mean, and $\mathbf{I}[f]$ is the $n \times n$ Fisher information matrix for \mathbf{f} .

The I-prior

• (Corollary 3.3.1, p. 93) The Fisher information for $f \in F$, an RKHS/RKKS with kernel $h_n: X \times X \to R$, is

$$I(f(x), f(x')) = \sum_{i,j=1}^{n} \psi_{ij} h_{\eta}(x, x_{i}) h_{\eta}(x', x_{j})$$

• Define an I-prior for f to be

$$\mathbf{f} := (f(x_1), ..., f(x_n)) \sim N_n(\mathbf{f}_0, I[f])$$

where \mathbf{f}_0 is some prior mean, and $\mathbf{I}[f]$ is the $n \times n$ Fisher information matrix for \mathbf{f} .

- Objective and intuitive
 - Entropy-maximising prior (Theorem 3.6, p. 98).
 - More information about $f \Rightarrow$ less influence on prior mean choice (usually zero), and vice versa.

- A unifying methodology for regression
 - Choose appropriate RKHS/RKKS depending on problem

- A unifying methodology for regression
 - Choose appropriate RKHS/RKKS depending on problem
- Parsimoniuos specification
 - o Often less number of parameters required to fit compared to the classical way

- A unifying methodology for regression
 - Choose appropriate RKHS/RKKS depending on problem
- Parsimoniuos specification
 - o Often less number of parameters required to fit compared to the classical way
- Prevents overfitting and undersmoothing

- A unifying methodology for regression
 - Choose appropriate RKHS/RKKS depending on problem
- Parsimoniuos specification
 - o Often less number of parameters required to fit compared to the classical way
- Prevents overfitting and undersmoothing
- Better prediction

- A unifying methodology for regression
 - Choose appropriate RKHS/RKKS depending on problem
- Parsimoniuos specification
 - o Often less number of parameters required to fit compared to the classical way
- Prevents overfitting and undersmoothing
- Better prediction
- Straightforward inference
 - Model comparison using marginal likelihood
 - Bayesian post-estimation procedures possible, e.g. credibility intervals and posterior predictive checks

Main contributions

PROBLEM 1: Storage is $O(n^2)$ while estimation is $O(n^3)$ due to matrix inversion in posterior, specifically, assuming $f_0(x) = 0 \, \forall x$,

$$E(f(x) | \mathbf{y}) = \mathbf{h}_{\eta}^{\mathsf{T}}(x) \cdot \mathbf{\Psi}(\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1})^{-1} \cdot \mathbf{y}$$

$$Var(f(x) | \mathbf{y}) = \mathbf{h}_{\eta}^{\mathsf{T}}(x) \cdot (\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1})^{-1} \cdot \mathbf{h}_{\eta}(x)$$

PROBLEM 1: Storage is $O(n^2)$ while estimation is $O(n^3)$ due to matrix inversion in posterior, specifically, assuming $f_0(x) = 0 \, \forall x$,

$$E(f(x) | \mathbf{y}) = \mathbf{h}_{\eta}^{\mathsf{T}}(x) \cdot \mathbf{\Psi}(\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1})^{-1} \cdot \mathbf{y}$$

$$\operatorname{Var}(f(x) | \mathbf{y}) = \mathbf{h}_{\eta}^{\mathsf{T}}(x) \cdot (\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1})^{-1} \cdot \mathbf{h}_{\eta}(x)$$

Chapter 4: An efficient estimation procedure

- Nyström approximation of kernel matrix to reduce storage and time requirements to O(nm) and $O(nm^2)$, $m \ll n$.
- Multiple $O(n^3)$ calls in the EM algorithm, so pre-calculate and store for later use (front-loading).
- Exploit normality and exponential families and use ECM algorithm to avoid maximisation in M-step.
- Implemented in R package
- Practical applications: Multilevel modelling (IGF-I data), longitudinal modelling (cow growth data), and smoothing models (Tecator data).

PROBLEM 2: Violations of modelling assumptions when responses are categorical, i.e. $y_i \in \{1, ..., m\}$.

PROBLEM 2: Violations of modelling assumptions when responses are categorical, i.e. $y_i \in \{1, ..., m\}$.

Chapter 5: Probit link on (latent) regression functions

• (Section 5.1, pp. 149–151) "Squash" the regression functions through a sigmoid function, via

$$P(y_i = j) = g^{-1}(f_1(x_i), ..., f_m(x_i))$$

where g^{-1} is an integral involving a truncation of an m-variate normal density.

• When m = 2 (binary data), the model simplifies to

$$y_i \sim \text{Bern}(\Phi(f(x_i)))$$

- Model is estimated using a variational EM algorithm, because the E-step cannot be found in closed-form.
- Practical applications: Binary and multiclass classification, meta-analysis (smoking cessation data), and spatio-temporal modelling (BTB data).

PROBLEM 3: Model selection via pairwise marginal likelihood comparisons is intractable for large p.

PROBLEM 3: Model selection via pairwise marginal likelihood comparisons is intractable for large p.

Chapter 6: Gibbs-based variable selection for linear models

• Focusing on iid normal linear models only, i.e.

$$y_i \sim N\left(\alpha + \sum_{k=1}^p x_{ik} \gamma_k \beta_k, \psi^{-1}\right) \gamma_k \sim \text{Bern}(\pi_k), k = 1, ..., p$$

with the I-prior $\boldsymbol{\beta} \sim N_p(\mathbf{0}, \kappa \psi^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X})$.

- Estimates of posterior model probabilities, inclusion probabilities, and regression coefficients obtained simultaneously using Gibbs sampling.
- Simulation study and real-data analysis show favourable results for I-prior (vs. sparse prior, g-prior, and Lasso).
- Practical applications: aerobic data, mortality and air pollution data, and ozone data.

End