Linear independence

Sarang S. Sane

Linear dependence (recall)

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly dependent if there exists scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1v_1+a_2v_2+\ldots+a_nv_n=0$$

Linear dependence (recall)

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly dependent if there exists scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1v_1+a_2v_2+\ldots+a_nv_n=0$$

Equivalently: v_1, v_2, \ldots, v_n are linearly dependent if the 0 vector can be expressed as a linear combination of v_1, v_2, \ldots, v_n with non-zero coefficients (i.e. at least one coefficient is non-zero).

Definition of linear independence

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly independent if v_1, v_2, \ldots, v_n are not linearly dependent.

Definition of linear independence

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly independent if v_1, v_2, \ldots, v_n are not linearly dependent.

Equivalently: A set of vectors v_1, v_2, \dots, v_n from a vector space V is said to be linearly independent, if the equation

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$$

can only be satisfied when $a_i = 0$ for all i = 1, 2, ..., n.

Definition of linear independence

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly independent if v_1, v_2, \ldots, v_n are not linearly dependent.

Equivalently: A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly independent, if the equation

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$$

can only be satisfied when $a_i = 0$ for all i = 1, 2, ..., n.

Equivalently: A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly independent if the only linear combination of v_1, v_2, \ldots, v_n which equals 0 is the linear combination with all coefficients 0.

Consider the two vectors (-1,3) and (2,0) in \mathbb{R}^2 .

Consider the two vectors (-1,3) and (2,0) in \mathbb{R}^2 .

Consider the following equation :

$$a(-1,3) + b(2,0) = (0,0)$$

Consider the two vectors (-1,3) and (2,0) in \mathbb{R}^2 .

Consider the following equation:

$$a(-1,3) + b(2,0) = (0,0)$$

Hence we have the following system of linear equations:

$$-a + 2b = 0$$
 and $3a = 0$.

Consider the two vectors (-1,3) and (2,0) in \mathbb{R}^2 .

Consider the following equation:

$$a(-1,3) + b(2,0) = (0,0)$$

Hence we have the following system of linear equations:

$$-a + 2b = 0$$
 and $3a = 0$.

Hence a=0, b=0 is the unique solution of the system of linear equations, which implies that the vectors (-1,3) and (2,0) are linearly independent.

Let v_1, v_2, \dots, v_n be a set of vectors containing the 0 vector.

Let v_1, v_2, \ldots, v_n be a set of vectors containing the 0 vector.

Suppose $v_i = 0$. Then we can choose $a_i = 1$ and $a_j = 0$ for $j \neq i$.

Let v_1, v_2, \ldots, v_n be a set of vectors containing the 0 vector.

Suppose $v_i = 0$. Then we can choose $a_i = 1$ and $a_j = 0$ for $j \neq i$.

Then the linear combination $a_1v_1 + a_2v_2 + ... + a_nv_n$ is 0 but not all coefficients are 0.

Let v_1, v_2, \ldots, v_n be a set of vectors containing the 0 vector.

Suppose $v_i = 0$. Then we can choose $a_i = 1$ and $a_j = 0$ for $j \neq i$.

Then the linear combination $a_1v_1 + a_2v_2 + ... + a_nv_n$ is 0 but not all coefficients are 0.

Hence, a set of vectors v_1, v_2, \dots, v_n containing the 0 vector is always a linearly dependent set.

Let v_1 and v_2 be two non-zero vectors.

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Then $a_1v_1 + a_2v_2 = 0$ for some coefficients a_1 and a_2 .

at least one of a, or az is not zoro

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Then $a_1v_1 + a_2v_2 = 0$ for some coefficients a_1 and a_2 .

Note that since the vectors are non-zero, both a_1 and a_2 must be non-zero.

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Then $a_1v_1 + a_2v_2 = 0$ for some coefficients a_1 and a_2 .

Note that since the vectors are non-zero, both a_1 and a_2 must be non-zero.

Dividing by a_1 and putting $c = -a_2/a_1$, we get that $v_1 = cv_2$.

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Then $a_1v_1 + a_2v_2 = 0$ for some coefficients a_1 and a_2 .

Note that since the vectors are non-zero, both a_1 and a_2 must be non-zero.

Dividing by a_1 and putting $c = -a_2/a_1$, we get that $v_1 = cv_2$.

Hence v_1 and v_2 are multiples of each other.

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Then $a_1v_1 + a_2v_2 = 0$ for some coefficients a_1 and a_2 .

Note that since the vectors are non-zero, both a_1 and a_2 must be non-zero.

Dividing by a_1 and putting $c = -a_2/a_1$, we get that $v_1 = cv_2$.

Hence v_1 and v_2 are multiples of each other.

We can reverse the implications above and conclude that if v_1 and v_2 are multiples of each other then they are linearly dependent.

Let v_1 and v_2 be two non-zero vectors.

Suppose that v_1 and v_2 are linearly dependent.

Then
$$a_1v_1 + a_2v_2 = 0$$
 for some coefficients a_1 and a_2 .

Note that since the vectors are non-zero, both a_1 and a_2 must be

Note that since the vectors are non-zero, both a_1 and a_2 must be non-zero.

Dividing by a_1 and putting $c = -a_2/a_1$, we get that $v_1 = cv_2$.

Hence v_1 and v_2 are multiples of each other.

We can reverse the implications above and conclude that if v_1 and v_2 are multiples of each other then they are linearly dependent.

Conclusion: Two non-zero vectors are linearly independent precisely when they are not multiples of each other.

Suppose v_1, v_2 and v_3 are linearly dependent.

Suppose v_1, v_2 and v_3 are linearly dependent.

Then $a_1v_1 + a_2v_2 + a_3v_3 = 0$ for some coefficients a_1, a_2, a_3 where at least one of the coefficients is non-zero.

Suppose v_1, v_2 and v_3 are linearly dependent.

Then $a_1v_1 + a_2v_2 + a_3v_3 = 0$ for some coefficients a_1, a_2, a_3 where at least one of the coefficients is non-zero.

If
$$a_1 \neq 0$$
, then we can write $v_1 = b_2v_2 + b_2v_3$ where $b_2 = -a_2/a_1$ and $b_3 = -a_3/a_1$.

Suppose v_1, v_2 and v_3 are linearly dependent.

Then $a_1v_1 + a_2v_2 + a_3v_3 = 0$ for some coefficients a_1, a_2, a_3 where at least one of the coefficients is non-zero.

If $a_1 \neq 0$, then we can write $v_1 = b_2 v_2 + b_2 v_3$ where $b_2 = -a_2/a_1$ and $b_3 = -a_3/a_1$. Hence, v_1 is a linear combination of the other two vectors.

Suppose v_1, v_2 and v_3 are linearly dependent.

Then $a_1v_1 + a_2v_2 + a_3v_3 = 0$ for some coefficients a_1, a_2, a_3 where at least one of the coefficients is non-zero.

If $a_1 \neq 0$, then we can write $v_1 = b_2 v_2 + b_2 v_3$ where $b_2 = -a_2/a_1$ and $b_3 = -a_3/a_1$. Hence, v_1 is a linear combination of the other two vectors.

Similarly if $a_2 \neq 0$, v_2 is a linear combination of the other two vectors and if $a_3 \neq 0$, v_3 is a linear combination of the other two vectors.

Suppose v_1, v_2 and v_3 are linearly dependent.

Then $a_1v_1 + a_2v_2 + a_3v_3 = 0$ for some coefficients a_1, a_2, a_3 where at least one of the coefficients is non-zero.

If $a_1 \neq 0$, then we can write $v_1 = b_2 v_2 + b_2 v_3$ where $b_2 = -a_2/a_1$ and $b_3 = -a_3/a_1$. Hence, v_1 is a linear combination of the other two vectors.

Similarly if $a_2 \neq 0$, v_2 is a linear combination of the other two vectors and if $a_3 \neq 0$, v_3 is a linear combination of the other two vectors.

Since the implications are reversible, we obtain that v_1, v_2 and v_3 are linearly dependent exactly when one of the vectors is a linear combination of the others.

Suppose v_1, v_2 and v_3 are linearly dependent.

Then $a_1v_1 + a_2v_2 + a_3v_3 = 0$ for some coefficients a_1, a_2, a_3 where at least one of the coefficients is non-zero.

If $a_1 \neq 0$, then we can write $v_1 = b_2 v_2 + b_2 v_3$ where $b_2 = -a_2/a_1$ and $b_3 = -a_3/a_1$. Hence, v_1 is a linear combination of the other two vectors.

Similarly if $a_2 \neq 0$, v_2 is a linear combination of the other two vectors and if $a_3 \neq 0$, v_3 is a linear combination of the other two vectors.

Since the implications are reversible, we obtain that v_1, v_2 and v_3 are linearly dependent exactly when one of the vectors is a linear combination of the others.

Conclusion: If three vectors are linearly independent then none of these vectors is a linear combination of the other two.

Let us consider three vectors (1,1,2), (1,2,0) and (0,2,1) in \mathbb{R}^3 and also consider the following equation:

$$a(1,1,2) + b(1,2,0) + c(0,2,1) = (0,0,0)$$

Let us consider three vectors (1,1,2), (1,2,0) and (0,2,1) in \mathbb{R}^3 and also consider the following equation:

$$a(1,1,2) + b(1,2,0) + c(0,2,1) = (0,0,0)$$

Hence we have the following system of linear equations:

$$a + b = 0$$
 $a + 2b + 2c = 0$ $2a + c = 0$.

Let us consider three vectors (1,1,2), (1,2,0) and (0,2,1) in \mathbb{R}^3 and also consider the following equation:

$$a(1,1,2) + b(1,2,0) + c(0,2,1) = (0,0,0)$$

Hence we have the following system of linear equations:

$$a + b = 0$$
 $a + 2b + 2c = 0$ $2a + c = 0$.

Substituting b=-a and c=-2a in the middle equation yields that a=0, b=0, c=0 is the unique solution of this system. Hence the vectors (1,1,2), (1,2,0) and (0,2,1) are linearly independent.

How do we check if $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ are linearly independent?

How do we check if $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ are linearly independent?

In terms of coordinates, let $v_j = (v_{1j}, v_{2j}, \dots, v_{mj})$; $j = 1, 2, \dots, n$.

How do we check if $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ are linearly independent?

In terms of coordinates, let $v_j = (v_{1j}, v_{2j}, \dots, v_{mj})$; $j = 1, 2, \dots, n$.

Let us write the linear combination of these vectors with *arbitrary* coefficients a_1, a_2, \ldots, a_n and equate it to 0:

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0.$$

How do we check if $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ are linearly independent?

In terms of coordinates, let $v_j = (v_{1j}, v_{2j}, \dots, v_{mj})$; $j = 1, 2, \dots, n$.

Let us write the linear combination of these vectors with *arbitrary* coefficients a_1, a_2, \ldots, a_n and equate it to 0:

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0.$$

Considering each coordinate, we have the following identities:

$$v_{11}a_1 + v_{12}a_2 + \dots + v_{1n}a_n = 0$$

$$v_{21}a_1 + v_{22}a_2 + \dots + v_{2n}a_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$v_{m1}a_1 + v_{m2}a_2 + \dots + v_{mn}a_n = 0$$

For linear independence, we have to check if the only choice of a_i 's satisfying the above identities is $a_i = 0$.

For linear independence, we have to check if the only choice of a_i 's satisfying the above identities is $a_i = 0$.

Equivalently, in terms of the homogeneous system of linear equations, we have to check that its only solution is the 0 solution.

For linear independence, we have to check if the only choice of a_i 's satisfying the above identities is $a_i = 0$.

Equivalently, in terms of the homogeneous system of linear equations, we have to check that its only solution is the 0 solution.

Conclusion: To check $v_1, v_2, \ldots, v_n \in \mathbb{R}^m$ are linearly independent, we have to check that the homogeneous system of linear equations Vx = 0 has only the trivial solution, where the j^{th} column of V is v_j .

Consider the two vectors (5,2) and (1,3) in \mathbb{R}^2 .

Consider the two vectors (5,2) and (1,3) in \mathbb{R}^2 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(5,2) + x_2(1,3) = (0,0)$.

Consider the two vectors (5,2) and (1,3) in \mathbb{R}^2 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(5,2) + x_2(1,3) = (0,0)$.

Hence we have the system of linear equations:

$$5x_1+x_2=0$$

$$2x_1+3x_2=0$$

Consider the two vectors (5,2) and (1,3) in \mathbb{R}^2 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(5,2) + x_2(1,3) = (0,0)$.

Hence we have the system of linear equations:

$$5x_1 + x_2 = 0$$
$$2x_1 + 3x_2 = 0$$

Since the corresponding matrix $\begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$ is invertible, the system of linear equations has a unique solution $x_1 = x_2 = 0$.

Consider the two vectors (5,2) and (1,3) in \mathbb{R}^2 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(5,2) + x_2(1,3) = (0,0)$.

Hence we have the system of linear equations:

$$5x_1 + x_2 = 0$$
$$2x_1 + 3x_2 = 0$$

Since the corresponding matrix $\begin{bmatrix} 5 & 1 \\ 2 & 3 \end{bmatrix}$ is invertible, the system of linear equations has a unique solution $x_1 = x_2 = 0$.

Hence the vectors (5,2) and (1,3) are linearly independent.

Consider the two vectors (1,2,0) and (3,3,5) in \mathbb{R}^3 .

Consider the two vectors (1,2,0) and (3,3,5) in \mathbb{R}^3 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(1,2,0) + x_2(3,3,5) = (0,0,0)$.

Consider the two vectors (1,2,0) and (3,3,5) in \mathbb{R}^3 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(1,2,0) + x_2(3,3,5) = (0,0,0)$.

Hence we have the system of linear equations:

$$x_1 + 3x_2 = 0$$
$$2x_1 + 3x_2 = 0$$

$$0x_1+5x_2=0$$

Consider the two vectors (1,2,0) and (3,3,5) in \mathbb{R}^3 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(1,2,0) + x_2(3,3,5) = (0,0,0)$.

Hence we have the system of linear equations:

$$x_1 + 3x_2 = 0$$

 $2x_1 + 3x_2 = 0$
 $0x_1 + 5x_2 = 0$

It is easy to check that the system of linear equations has a unique solution $x_1 = x_2 = 0$ (or we can use Gaussian elimination and check that the only solution is the trivial one).

Consider the two vectors (1,2,0) and (3,3,5) in \mathbb{R}^3 . Write the linear combination of these two vectors with *unknown* coefficients x_1 and x_2 and equate it to $0: x_1(1,2,0) + x_2(3,3,5) = (0,0,0)$.

Hence we have the system of linear equations:

$$x_1 + 3x_2 = 0$$

 $2x_1 + 3x_2 = 0$
 $0x_1 + 5x_2 = 0$

It is easy to check that the system of linear equations has a unique solution $x_1 = x_2 = 0$ (or we can use Gaussian elimination and check that the only solution is the trivial one).

Hence the vectors (1,2,0) and (3,3,5) are linearly independent.

Consider the three vectors (1,2), (1,3) and (3,4) in \mathbb{R}^2 .

Consider the three vectors (1,2), (1,3) and (3,4) in \mathbb{R}^2 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to $0: x_1(1,2) + x_2(1,3) + x_3(3,4) = (0,0)$.

Consider the three vectors (1,2), (1,3) and (3,4) in \mathbb{R}^2 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to $0: x_1(1,2) + x_2(1,3) + x_3(3,4) = (0,0)$.

Hence we have the system of linear equations:

$$1x_1 + 1x_2 + 3x_3 = 0$$
$$2x_1 + 3x_2 + 4x_3 = 0$$

Consider the three vectors (1,2), (1,3) and (3,4) in \mathbb{R}^2 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to $0: x_1(1,2) + x_2(1,3) + x_3(3,4) = (0,0)$.

Hence we have the system of linear equations:

$$1x_1 + 1x_2 + 3x_3 = 0$$
$$2x_1 + 3x_2 + 4x_3 = 0$$

The augmented matrix for this system is $\begin{bmatrix} 1 & 1 & 3 & 0 \\ 2 & 3 & 4 & 0 \end{bmatrix}$.

Consider the three vectors (1,2), (1,3) and (3,4) in \mathbb{R}^2 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to $0: x_1(1,2) + x_2(1,3) + x_3(3,4) = (0,0)$.

Hence we have the system of linear equations:

$$1x_1 + 1x_2 + 3x_3 = 0$$
$$2x_1 + 3x_2 + 4x_3 = 0$$

The augmented matrix for this system is $\begin{bmatrix} 1 & 1 & 3 & 0 \\ 2 & 3 & 4 & 0 \end{bmatrix}$.

Gaussian elimination yields infinitely many solutions for this system of the form $x_1 = -5c, x_2 = 2c, x_3 = c$ where $c \in \mathbb{R}$.

Consider the three vectors (1,2), (1,3) and (3,4) in \mathbb{R}^2 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to $0: x_1(1,2) + x_2(1,3) + x_3(3,4) = (0,0)$.

Hence we have the system of linear equations:

$$1x_1 + 1x_2 + 3x_3 = 0$$
$$2x_1 + 3x_2 + 4x_3 = 0$$

The augmented matrix for this system is $\begin{bmatrix} 1 & 1 & 3 & 0 \\ 2 & 3 & 4 & 0 \end{bmatrix}$.

Gaussian elimination yields infinitely many solutions for this system of the form $x_1 = -5c, x_2 = 2c, x_3 = c$ where $c \in \mathbb{R}$. Hence the vectors (1,2), (1,3) and (3,4) are linearly dependent.

Consider the three vectors (1,2,0), (0,2,4) and (3,0,0) in \mathbb{R}^3 .

Consider the three vectors (1,2,0), (0,2,4) and (3,0,0) in \mathbb{R}^3 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to 0:

$$x_1(1,2,0) + x_2(0,2,4) + x_3(3,0,0) = (0,0,0).$$

Consider the three vectors (1,2,0), (0,2,4) and (3,0,0) in \mathbb{R}^3 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to 0:

$$x_1(1,2,0) + x_2(0,2,4) + x_3(3,0,0) = (0,0,0).$$

Hence we have the system of linear equations:

$$x_1 + 0x_2 + 3x_3 = 0$$
$$2x_1 + 2x_2 + 0x_3 = 0$$
$$0x_1 + 4x_2 + 0x_3 = 0$$

Consider the three vectors (1,2,0), (0,2,4) and (3,0,0) in \mathbb{R}^3 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to 0:

$$x_1(1,2,0) + x_2(0,2,4) + x_3(3,0,0) = (0,0,0).$$

Hence we have the system of linear equations:

$$x_1 + 0x_2 + 3x_3 = 0$$

 $2x_1 + 2x_2 + 0x_3 = 0$
 $0x_1 + 4x_2 + 0x_3 = 0$

Since the matrix $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 0 \\ 0 & 4 & 0 \end{bmatrix}$ is invertible, the system of linear equations has a unique solution $x_0 = x_0 = x_0$

tions has a unique solution $x_1 = x_2 = x_3 = 0$.

Consider the three vectors (1,2,0), (0,2,4) and (3,0,0) in \mathbb{R}^3 . Equate the linear combination of these three vectors with *unknown* coefficients x_1, x_2 and x_3 to 0:

$$x_1(1,2,0) + x_2(0,2,4) + x_3(3,0,0) = (0,0,0).$$

Hence we have the system of linear equations:

$$x_1 + 0x_2 + 3x_3 = 0$$

 $2x_1 + 2x_2 + 0x_3 = 0$
 $0x_1 + 4x_2 + 0x_3 = 0$

Since the matrix $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 0 \\ 0 & 4 & 0 \end{bmatrix}$ is invertible, the system of linear equa-

tions has a unique solution $x_1 = x_2 = x_3 = 0$. Hence the vectors (1,2,0), (0,2,4) and (3,0,0) are linearly independent.

Suppose we have *n* vectors in \mathbb{R}^2 where $n \geq 3$.

Suppose we have n vectors in \mathbb{R}^2 where $n \geq 3$. To check linear indepence, we have to check whether the corresponding homogeneous linear system Vx = 0 has the unique solution x = 0.

Suppose we have n vectors in \mathbb{R}^2 where $n \geq 3$. To check linear indepence, we have to check whether the corresponding homogeneous linear system Vx = 0 has the unique solution x = 0.

Since $n \ge 3 > 2$, this is a homogeneous system with more unknowns (n) than equations (2).

Suppose we have n vectors in \mathbb{R}^2 where $n \geq 3$. To check linear indepence, we have to check whether the corresponding homogeneous linear system Vx = 0 has the unique solution x = 0.

Since $n \ge 3 > 2$, this is a homogeneous system with more unknowns (n) than equations (2).

We have seen in the previous week that Gaussian elimination will yield infinitely many solutions.

Suppose we have n vectors in \mathbb{R}^2 where $n \geq 3$. To check linear indepence, we have to check whether the corresponding homogeneous linear system Vx = 0 has the unique solution x = 0.

Since $n \ge 3 > 2$, this is a homogeneous system with more unknowns (n) than equations (2).

We have seen in the previous week that Gaussian elimination will yield infinitely many solutions.

Hence, any set of n vectors in \mathbb{R}^2 with $n \geq 3$ are linearly dependent.

The same argument as for \mathbb{R}^2 in the previous slide yields :

The same argument as for \mathbb{R}^2 in the previous slide yields :

Hence, any set of r vectors in \mathbb{R}^n with r > n are linearly dependent.

Example in \mathbb{R}^3

Consider the four vectors (1,2,0), (0,2,4), (3,0,0) and (1,2,3) in \mathbb{R}^3 .

Example in \mathbb{R}^3

Consider the four vectors (1,2,0), (0,2,4), (3,0,0) and (1,2,3) in \mathbb{R}^3 . To check linear independence, we write the corresponding system of linear equations :

$$x_1 + 0x_2 + 3x_3 + x_4 = 0$$
$$2x_1 + 2x_2 + 0x_3 + 2x_4 = 0$$
$$0x_1 + 4x_2 + 0x_3 + 3x_4 = 0$$

Example in \mathbb{R}^3

Consider the four vectors (1,2,0), (0,2,4), (3,0,0) and (1,2,3) in \mathbb{R}^3 . To check linear independence, we write the corresponding system of linear equations :

$$x_1 + 0x_2 + 3x_3 + x_4 = 0$$
$$2x_1 + 2x_2 + 0x_3 + 2x_4 = 0$$
$$0x_1 + 4x_2 + 0x_3 + 3x_4 = 0$$

To solve this system, we consider the augmented matrix $\begin{bmatrix} 1 & 0 & 3 & 1 & | & 0 \\ 2 & 2 & 0 & 2 & | & 0 \\ 0 & 4 & 0 & 3 & | & 0 \end{bmatrix}$ and apply Gaussian elimination.

Row reduction results in the augmented matrix
$$\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$$

Row reduction results in the augmented matrix $\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$

Thus we obtain solutions : $x_1 = -\frac{c}{4}, x_2 = -\frac{3c}{4}, x_3 = -\frac{c}{4}, x_4 = c$ where $c \in \mathbb{R}$.

Row reduction results in the augmented matrix $\begin{vmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{vmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$$

Thus we obtain solutions : $x_1 = -\frac{c}{4}, x_2 = -\frac{3c}{4}, x_3 = -\frac{c}{4}, x_4 = c$ where $c \in \mathbb{R}$.

So we can write

$$-\frac{c}{4}(1,2,0) - \frac{3c}{4}(0,2,4) - \frac{c}{4}(3,0,0) + c(1,2,3) = 0$$
 for $c \in \mathbb{R}$.

Row reduction results in the augmented matrix $\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$$

Thus we obtain solutions : $x_1 = -\frac{c}{4}, x_2 = -\frac{3c}{4}, x_3 = -\frac{c}{4}, x_4 = c$ where $c \in \mathbb{R}$.

So we can write

$$-\frac{c}{4}(1,2,0) - \frac{3c}{4}(0,2,4) - \frac{c}{4}(3,0,0) + c(1,2,3) = 0$$
 for $c \in \mathbb{R}$.

In particular with c=4

$$-1(1,2,0) - 3(0,2,4) - 1(3,0,0) + 4(1,2,3) = 0$$

Row reduction results in the augmented matrix $\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 \\ 0 & 1 & 0 & 3/4 & 0 \\ 0 & 0 & 1 & 1/4 & 0 \end{bmatrix}$$

Thus we obtain solutions : $x_1 = -\frac{c}{4}, x_2 = -\frac{3c}{4}, x_3 = -\frac{c}{4}, x_4 = c$ where $c \in \mathbb{R}$.

So we can write

$$-\frac{c}{4}(1,2,0) - \frac{3c}{4}(0,2,4) - \frac{c}{4}(3,0,0) + c(1,2,3) = 0$$
 for $c \in \mathbb{R}$.

In particular with c=4

$$-1(1,2,0) - 3(0,2,4) - 1(3,0,0) + 4(1,2,3) = 0$$

Hence the vectors (1,2,0), (0,2,4), (3,0,0) and (1,2,3) are linearly dependent.

To check whether a set of n vectors in \mathbb{R}^n are linearly independent, we have to find the solutions of the homogeneous system Vx=0 where V is an $n\times n$ matrix obtained by arranging the vectors in columns.

To check whether a set of n vectors in \mathbb{R}^n are linearly independent, we have to find the solutions of the homogeneous system Vx=0 where V is an $n\times n$ matrix obtained by arranging the vectors in columns.

Since V is a square matrix, it has unique solution x=0 if and only if \not is invertible if and only if $det(\cancel{A}) \neq 0$.

To check whether a set of n vectors in \mathbb{R}^n are linearly independent, we have to find the solutions of the homogeneous system Vx=0 where V is an $n\times n$ matrix obtained by arranging the vectors in columns.

Since V is a square matrix, it has unique solution x=0 if and only if x is invertible if and only if $det(x) \neq 0$.

▶ If A is invertible then there exists A^{-1} such that $AA^{-1} = \mathbf{1} = A^{-1}A$. Hence $det(A).det(A^{-1}) = 1$ which implies $det(A) \neq 0$.

To check whether a set of n vectors in \mathbb{R}^n are linearly independent, we have to find the solutions of the homogeneous system Vx=0 where V is an $n\times n$ matrix obtained by arranging the vectors in columns.

Since V is a square matrix, it has unique solution x=0 if and only if A is invertible if and only if $det(A) \neq 0$.

- V
- ▶ If A is invertible then there exists A^{-1} such that $AA^{-1} = 1 = A^{-1}A$. Hence $det(A).det(A^{-1}) = 1$ which implies $det(A) \neq 0$.
- Now if $det(A) \neq 0$ then $A^{-1} = \frac{1}{det(A)} adj(A)$ exists.

Example

Let us consider the vectors (1,4,2),(0,4,3) and (1,1,0) in \mathbb{R}^3 .

Example

Let us consider the vectors (1,4,2), (0,4,3) and (1,1,0) in \mathbb{R}^3 .

We obtain the matrix

$$V = \begin{bmatrix} 1 & 0 & 1 \\ 4 & 4 & 1 \\ 2 & 3 & 0 \end{bmatrix}.$$

Example

Let us consider the vectors (1,4,2), (0,4,3) and (1,1,0) in \mathbb{R}^3 .

We obtain the matrix

$$V = \begin{bmatrix} 1 & 0 & 1 \\ 4 & 4 & 1 \\ 2 & 3 & 0 \end{bmatrix}.$$

Since $det(\cancel{A}) = 1 \neq 0$, the matrix \cancel{A} is invertible and hence **the** vectors (1,4,2),(0,4,3) and (1,1,0) are linearly independent.

Thank you