Best Available Copy

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 95/20014
C09B 62/825, 29/01, 29/033, 29/08, 29/36, 29/10, 29/095, D06P 3/26, 3/82, C08K 5/00	A1	(43) International Publication Date: 27 July 1995 (27.07.95)
(21) International Application Number: PCT/GB9 (22) International Filing Date: 30 December 1994 (3 (30) Priority Data: 9400972.7 19 January 1994 (19.01.94)	0.12.9	CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP,
(71) Applicant (for all designated States except US): Z LIMITED [GB/GB]; 15 Stanhope Gate, London W (GB).		
(72) Inventor; and(75) Inventor/Applicant (for US only): HALL, Nigel [GB/Newton Drive, Greenmount, Bury BL8 4DH (GB).		15
(74) Agents: GILES, David, Eric et al.; Intellectual Property Zeneca Specialties, P.O. Box 42, Hexagon House, E Manchester M9 8ZS (GB).	•	• • •
		y

(54) Title: MONOAZO DYES CONTAINING A FLUOROSULPHONYL GROUP AND USE THEREOF

(57) Abstract

A process for colouring a synthetic textile material or fibre blend thereof which comprises applying to the synthetic textile material a compound or mixture thereof, which is free from water solubilising groups, of the Formula (1) A-N=N-D, wherein: A and D each independently is an optionally substituted heterocyclic or carbocyclic group and at

$$O_2N$$
 (a)

least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline, provided that one of A or D is not 3,5-difluorosulphonylthien-2-yl, optionally substituted 1-phenyl-pyrazol-4-yl-5-one or (a) or that one of A or D does not carry an -NCH₂CH(OH)CH₂Cl, -NCOCH₂Cl or -NCH₂CH₂SO₂F substituent. The presence of one or more -SO₂F groups in a dye molecule generally improves the properties of that dye and confers surprisingly good wet fastness and light fastness properties.

Best Available Cop,

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AΤ	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	
BG	Bulgaria	IE	Ireland	NZ NZ	Norway
BJ	Benin	IT	Italy	PL	New Zealand
BR	Brazil	JP	Japan		Poland
BY	Belarus	KE	Kenya	PT	Portugal
CA	Canada	KG	Kyrgystan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic	RU	Russian Federation
CG	Congo	***	of Korea	SD	Sudan
CH	Switzerland	KR	Republic of Korea	SE	Sweden
CI	Côte d'Ivoire	KZ	Kazakhstan	sr	Slovenia
CM	Carneroon	LI		SK	Slovakia
CN	China	LK	Liechtenstein	SN	Senegal
CS	Czechoslovakia		SII Lanka	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	•	LV	Latvia	. TJ	Tajikistan
DK	Germany	MC	Monaco	TT	Trinidad and Tobago
	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

MONOAZO DYES CONTAINING A FLUOROSULPHONYL GROUP AND USE THEREOF

The present invention relates to a process for colouring synthetic textile materials, to synthetic textiles when coloured, to a process for the mass coloration of plastics, to plastics when coloured, to certain novel azo dyes and to compositions containing azo dyes.

According to the present invention there is provided a process for colouring a synthetic textile material or fibre blend thereof which comprises applying to the synthetic textile material a compound or mixture thereof, which is free from water solubilising groups, of Formula (1):

10

20

25

3.0

35

40

5

A-N=N-D

Formula (1)

wherein:

15 A

A and D each independently is an optionally substituted heterocyclic or carbocyclic group and at least one of A or D carries directly at least one $-SO_2F$ group or

carries a substituent to which at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline, provided that one of A or D is not 3,5-difluorosulphonylthien-2-yl, optionally substituted 1-phenyl-pyrazol-4-yl-5-one or

or that one of A or D does not carry an -NCH2CH(OH)CH2Cl, -NCOCH2Cl or -NCH2CH2SO2F substituent.

Different compounds of Formula (1) may be mixed or the compounds of Formula (1) may be mixed with dyes which do not contain an SO_2F group. The mixtures may be simple physical mixtures or may be mixed crystals formed for example by co-crystallisation. Such mixtures generally show improvement in dyeing properties. Crystalline modifications of compounds of Formula (1) exist and it is intended that the present definition includes such crystalline modifications which may be formed by heat treatment.

The presence of one or more $-SO_2F$ groups in a dye molecule generally improves the properties of that dye and confers surprisingly good wet-fastness and light-fastness properties.

According to a first embodiment of the present invention

WO 95/20014

5

10

15

20

25

30

35

40

there is provided a process for colouring a synthetic textile material or fibre blend thereof which comprises applying to the synthetic textile material a compound or mixture thereof, which is free from water solubilising groups, of Formula (1) wherein A and D each independently is an optionally substituted heterocyclic or carbocyclic group in which at least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached and at least one of A or D carries directly at least one ester group or carries a substituent to which at least one ester group is attached.

Azo dyes containing both an $-SO_2F$ and an ester group have improved performances in wash fastness properties over azo dyes carrying only an $-SO_2F$ group.

The synthetic textile material may be selected from secondary cellulose acetate, cellulose triacetate, polyamide, polyacrylonitrile and aromatic polyester. The synthetic textile material is preferably polyamide or aromatic polyester, more preferably aromatic polyester such as polyhexamethylene adipamide or polyethylene terephthalate and especially polyethlene terephthalate. Fibre blends may comprise mixtures of different synthetic textile materials or mixtures of synthetic and natural textile materials. Preferred fibre blends are those of polyester cellulose such as polyester-cotton. The textile materials or blends thereof may be in the form of filaments, loose fibres, yarn, woven or knitted fibres.

According to a second embodiment of the present invention there is provided a process for colouring a polyester textile material or fibre blend thereof which comprises applying to the polyester textile material a compound or mixture thereof, which is free from water solubilising groups, of Formula (1) in which A and D are as herein before defined except for 4-(4-fluorosulphonylphenylazo)-N,N- dimethylaniline, provided that one of A or D is not 3,5- difluorosulphonylthien-2-yl, optionally substituted 1-phenylpyrazol-4-yl-5-one or 4-nitro-2-fluorosulphonylphenyl or that one of A or D does not carry an -NCH₂CH₂SO₂F substitutent.

The dyes of Formula (1) preferably have low solubility in water, typically less than 1% preferably less than 0.5% and especially less than 0.2% solubility in water. The dyes of Formula (1) are thus free from water solubilising groups such as $-SO_3H$, $-CO_2H$, $-PO_3H$ and quaternary amino.

The compounds of Formula (1), optionally in conjunction with other disperse dyes may be applied to the synthetic textile materials or fibre blends thereof by methods which are conventionally employed in dyeing disperse dyes to such materials and fibre blends.

The process conditions may be selected from the following: i) exhaust dyeing at a pH of from 4 to 6.5, at a temperature of from

WO 95/20014 PCT/GB94/02831

125°C to 140°C for from 10 to 120 minutes and under a pressure of from 1 to 2 bar, a sequestrant may be optionally be added;

ii) continuous dyeing at a pH of from 4 to 6.5, at a temperature of from 190°C to 225°C for from 15 seconds to 5 minutes, a migration inhibitor may optionally be added;

5

10

15

25

30

35

40

- iii) printing direct at a pH of from 4 to 6.5, at a temperature of from 160°C to 185°C for 4 to 15 minutes for high temperature steaming, or at a temperature of from 190°C to 225°C for 15 seconds to 5 minutes for bake fixation with dry heat or at a temperature of from 120°C to 140°C and 1 to 2 bar for 10 to 45 minutes for pressure steaming, wetting agents and thickeners (such as alginates) of from 5 to 100% by weight of the dye may be optionally be added;
- iv) discharge printing (by padding the dye onto the textile material, drying and overprinting) at a pH of from 4 to 6.5, migration inhibitors and thickeners may optionally be added;
- v) carrier dyeing at a pH of from 4 to 6.5, at a temperature of from 95°C to 100°C using a carrier such as methylnaphthalene, diphenylamine or 2-phenylphenol, sequesterants may optionally be added; and
- vi) atmospheric dyeing of acetate, triacetate and nylon at a pH of from 4 to 6.5, at a temperature of 85°C for acetate or at a temperature of 90°C for triacetate and nylon for from 15 to 90 minutes, sequesterants may optionally be added.

In all the above processes the compound of Formula (1) is applied as a dispersion comprising from 0.001% to 4% of the compound in aqueous medium.

The present compounds generally provide coloured textile material which shows good fastness to washing, light and heat.

The heterocyclic group represented by A and D may be selected from thienyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, pyridyl, pyridonyl, 1,2,4- and 1,3,4-thiadiazolyl, furanyl, pyrrolyl, pyridazyl, pyrimidyl, pyrazinyl, benzothiazolyl, benzoisothiazolyl, quinolinyl, isoquinolinyl, indolyl, pyridothiazolyl, pyridoisothiazolyl, 1,2,3-triazolyl and 1,2,4-triazolyl. The carbocyclic group represented by A or D may be phenyl or naphthyl.

For the avoidance of doubt optionally substituted isoquinclinyl represented by A includes structures of the formula:

PCT/GB94/02831

in which m is from 1 to 4 and m is preferably 3.

A and D each independently is preferably thienyl, phenyl, naphthyl, thiazolyl, isothiazolyl, pyridonyl, quinolinyl more preferably thien-2-yl, phenyl, naphth-1-yl, naphth-2-yl, thiazol-2-yl, isothiazol-5-yl, pyrid-4-one-5-yl or quinolinyl. A is especially preferably thien-2-yl or phenyl and D is especially preferably phenyl or naphth-1-yl.

Examples of suitable substituents for A and D are cyano, hydroxy, nitro, fluoro, chloro, bromo, iodo, fluorosulphonyl, trifluoromethyl, alkyl, alkoxy, aryl, aryloxy, fluorosulphonylaryl, fluorosulphonylaryloxy, -COalkyl, -COoalkyl, -COaryl, 10 -COOaryl, -OCOaryl, -NHCOalkyl, -NHCOaryl, -NHSO2alkyl, -NHSO2aryl, -Salkyl, -Saryl, -SO2alkyl, -SO2aryl, -SCN or -NR1R2 in which R^1 and R^2 each independently is -H, alkyl, aryl or cycloalkyl all the alkyl, alkoxy, aryl, aryloxy parts of the above substituents for A, D, \mathbb{R}^1 and \mathbb{R}^2 may optionally be substituted by -OH, -CN, -F, -Cl, -Br, -I, -SO $_2$ F, alkoxy, 15 alkenyl, phenyl, phenyl SO_2F , aryloxy, aryloxy SO_2F , $-N(alkyl)_2$, -OCOalkyl, -OCOalkylCl, -COOalkyl, -COOalkylOH, -COOalkylCN, -COOalkylCOalkyl, -COOalkylphenyl, -OCO phenyl, -COphenylSO $_2$ F, -OCOphenyl NO_2 , -OCOphenylalkyl, -OCOphenylalkoxy, -COOphenyl, -OCO(fluorosulphonylphenyl), -OalkylCN, -COOalkylOalkyl, 20 -COOalkylOphenyl, -OCOalkylOphenyl, -COOalkylOalkylOalkyl, -OCOalkylCOOalkyl, -OalkylCOOalkyl, -OalkylCOOalkylOalkyl,

-cooalkyi-Co-L

-OalkylCOOalkylCOOalkyl, -OalkylOCOalkylOalkyl, -COOalkylOCOalkyl or

in which L is -H or alkyl.

-COOalkylCOOalkyl,

5

25

35

40

In all of the suitable substitutents for A and D each alkyl is preferably C_{1-10} -alkyl, each alkoxy is preferably C_{1-10} -alkoxy, each alkenyl is preferably C_{2-8} -alkenyl each of which may be straight or branched chain, each aryl is preferably phenyl or naphthyl and each heterocyclic group may be any of the groups described above for A and D and each alkyl, alkoxy, alkenyl, aryl, heterocyclic or phenyl group may carry an $-SO_2F$ substituent. R^1 and R^2 together with the -N atom to which they are attached may form a 5- or 6- membered ring such as morpolino or piperidino.

A further suitable substituent for A and D is a group of Formula $R^{19}\text{-N-Y-X-W}$ in which

Y is a direct link or C = O,

X is a direct link, optionally substituted alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl, alkylNHalkyl or $-NR^{20}-Z-$

10

15

20

25

30

35

or -O-Z- in which Z is optionally substituted alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl, alkylNHalkyl or a direct link and R^{20} is -H, optionally substituted alkyl, aryl or alkylaryl,

W is $-CO_2R^{21}$, $-OCOR^{21}$, -OH or -CN in which R^{21} is optionally substituted alkyl, aryl, alkylaryl, alkylOalkyl or alkylOH,

R¹⁹ is -H or optionally substituted alkyl.

Where X, Z, R^{19} , R^{20} or R^{21} is or contains alkyl it is preferably C_{1-8} -alkyl more preferably C_{1-6} -alkyl each of which may be straight or branched chain or cyclic alkyl. Where X or Z is alkenyl it is preferably C_{2-8} -alkenyl which may be straight or branched chain or Where X, Z, R²⁰ or R²¹ is aryl it is preferably phenyl or cyclic alkenyl. naphthyl more preferably phenyl. Where X or Z is heterocyclic it may be selected from any of the heterocyclic groups defined above for A. Where X, Z or R^{21} is alkylOalkyl it is preferably C_{1-6} -alkylO C_{1-6} -alkyl each alkyl may be straight or branched chain and the alkylOalkyl group may be cyclic ether. Where X or Z is alkylNHalkyl it is preferably C_{1-6} alkylNHC1-6-alkyl in which each alkyl may be straight or branched chain and the alkylNHalkyl group may be a cyclic amine. Where R20 or R21 is alkylaryl it is preferably C_{1-6} -alkylaryl more preferably C_{1-6} alkylphenyl and especially benzyl or ethylphenyl. Where R21 is alkylOH it is preferably C1-6-alkylOH.

The optional substituents for any of the groups represented by X, Z, R^{19} , R^{20} or R^{21} may be selected from any of the optional substituents listed for A, D, R^{1} or R^{2} .

Preferred substituents for A and D are cyano, nitro, chloro, bromo, fluorosulphonyl, C_{1-6} -alkyl, C_{1-6} -alkoxy, $-COC_{1-6}$ -alkyl, $-NHCOC_{1-6}$ -alkyl, $-COC_{1-6}$ -alkyl, $-COC_{1-6}$ -alkyl, phenoxy, $4-SO_2$ Fphenoxy, $R^{19}N-Y-X-W$ in which R^{19} , Y, X and W are as herein before defined, and $-NR^1R^2$ in which R^1 and R^2 each independently is -H, C_{1-6} -alkyl, C_{1-6} -alkyl substituted by -OH, -CN, -Cl, phenyl, $-CCOC_{1-6}$ -alkyl, $-COCC_{1-6}$ -alkyl, $-COCC_{1-6}$ -alkyl,

- C_{1-4} -alkyl(4-fluorosulphonylphenyl), -OCO(3-fluorosulphonylphenyl), -OCO(4-fluorosulphonylphenyl), - C_{2-4} -alkenyl, -COOC₁₋₆-alkylOC₁₋₆-alkyl, -COOalkylOCOalkyl and -COOalkylCOOalkyl or where R^1 and R^2 together with the -N atom to which they are attached form a morpholino or piperidino ring.

The compounds of Formula (1) preferably carry a total of from one to three $-SO_2F$ groups, more preferably one or two $-SO_2F$ groups and

especially one -SO₂F groups.

The compounds of Formula (1) more preferably carry one $-SO_2F$ group and one ester group.

A number of compounds of Formula (1) used in the above coloration process are novel and according to a further feature of the present invention there is provided a compound of Formula (2):

$A^1-N=N-D^1$

Formula (2)

in which:

5

35

 ${\tt A^1}$ and ${\tt D^1}$ each independently is an optionally substituted heterocyclic or carbocyclic group

and at least one of A^1 or D^1 carries directly at least one $-SO_2F$ group or carries a substituent to which at least one $-SO_2F$ group is attached

- except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline,
 - 4-(4-fluorosulphonylphenylazo)-N,N-diethylaniline,
 - 4-(4-fluorosulphonylphenylazo)-N-ethyl-N-acetoxyethylaniline,
 - 1-(5-fluorosulphonyl-2-methylphenylazo)-2-hydroxynaphthalene,
 - 4-(4-fluorosulphonylphenylazo)-3-(trifluoromethylcarbonylamino)-N-ethyl-
- N-(2-methoxyethyl)aniline,
 - 4-(4-fluorosulphonylphenylazo)-3-(trifluoromethylcarbonylamino)-N-ethyl-
 - N-(2-cyanoethyl)aniline,
 - 4-(4-fluorosulphonylphenylazo)-2,5-dimethyl-N-ethyl-N-(2-methoxyethyl)aniline,
- 4-(4-fluorosulphonylphenylazo)-2,5-dimethyl-N-ethyl-N-(2-cyanoethyl)aniline,
 - 4-(4-fluorosulphonylphenylazo)-N-ethyl-N-(2-fluorosulphonylethyl) aniline,
 - 4-(4-fluorosulphonylphenylazo)-N,N-di(2-fluorosulphonylethyl)aniline,
- 4-(3-fluorosulphonyl-4-methylphenylazo)-3-(trifluoromethylcarbonyl amino)-N-ethyl-N-(2-methoxyethyl)aniline,
 - 4-(3-fluorosulphonyl-4-methylphenylazo)-2,5-dimethyl-N-ethyl-N-(2-methoxyethyl)aniline,
 - 4-(3-fluorosulphonyl-4-chlorophenylazo)-3-(trifluoromethylcarbonylamino)-N-ethyl-N-(2-methoxyethyl)aniline.
 - 4-(3-fluorosulphonyl-4-chlorophenylazo)-2,5-dimethyl-N-ethyl-N-(2-methoxethyl)aniline,
 - 4-(5-fluorosulphonyl-2-methylphenylazo)-1-aminonaphthalene,
 - 4-(5-fluorosulphonyl-2-methylphenylazo)-2-ethoxyaniline,
- 40 4-(3-fluorosulphonylphenylazo)-2,5-dimethoxyaniline,
- 4-(2-chloro-4-nitrophenylazo)-2-methyl-5-fluorosulphonylaniline, provided that A¹ is not 3,5-difluorosulphonylthien-2-yl, optionally substituted pyrazol-4-yl-5-one or N-allylpyrid-2-one-5-yl and provided that A¹ is not

when D^1 carries an $-NCH_2CH$ (OH) CH_2Cl substituent and provided that one of A^1 or D^1 is not

10

15

20

25

and provided that A^1 is not a fluorosulphonylphenyl group when D^1 is an arylamide of an aromatic 2-hydroxycarboxylic acid.

 A^1 and D^1 each independently may be any of the heterocyclic groups defined for A above. A^1 and D^1 each independently may be any of the carbocyclic groups defined for A and D above.

A¹ and D¹ each independently is preferably thienyl, phenyl, naphthyl, thiazolyl, isothiazolyl or pyridonyl, more preferably thienyl, phenyl, thiazolyl, isothiazolyl or pyridonyl and especially thien-2-yl, phenyl, thiazol-2-yl, isothiazol-5-yl or pyrid-4-one-5-yl.

D' is preferably phenyl.

Preferred compounds of Formulae (1) and (2) are those in which A or A^1 is phenyl and D or D^1 is phenyl; A or A^1 is thien-2-yl and D or D^1 is phenyl; and A or A^1 is phenyl and D or D^1 is naphth-1-yl.

The optional substituents for A^1 and D^1 are any of those defined for A and D above.

A preferred sub-group of compounds of Formula (1) are those of Formula (3):

30

35

Formula (3)

wherein:

5

10

15

20

25

30

35

40

 R^1 and R^2 each independently is -H or optionally substituted C_{1-6} -alkyl or optionally substituted aryl;

 R^3 , R^4 , R^5 and R^6 each independently is -H, -F, -Cl, -Br, -I, -SO₂F or C_{1-6} -alkyl, C_{1-6} -alkoxy, C_{1-4} alkanoylamino, -NHSO₂alkyl or Ophenyl each of which may be optionally substituted;

 R^7 , R^8 and R^9 each independently is -H, C_{1-6} -alkyl, $-NO_2$, $-COOC_{1-6}$ -alkyl, -OCOalkyl,

-Cl, -F, -Br, -I, -COC₁₋₆-alkyl, -CN, formyl, protected formyl or $-SO_2F$ provided that at least one of R^1 to R^9 is - SO_2F or carries a substituent to which at least one $-SO_2F$ group is attached and provided that R^7 and R^9 are not both

-SO₂F.

Where R^7 , R^8 and R^9 is or contains alkyl the alkyl may be optionally subustituted.

Protected formyl groups include for example oxazolidone, imidazoline, thiazolidine, bisulphite, cyanohydrin, hydrazone and oxime.

The compounds of Formula (3) are novel and accordingly are a further aspect of the present invention.

The optional substituents for groups represented by R^1 to R^9 may be selected from any of the substituents described above for A and D. The optional substituents for R^1 to R^9 are preferably -CN, -OH, -OCOC₁₋₆-alkyl, -COOC₁₋₆-alkyl, phenyl, -OCOphenyl, -OCOphenylSO₂F, phenylSO₂F, -OphenylSO₂F, -CO₂phenylSO₂F, -COOC₁₋₆-alkylCOOC₁₋₆-alkyl and -COOC₁₋₆-alkylCOOC₁₋₆-alkyl.

Preferred compounds of Formula (3) are those in which R^1 and R^2 each independently is $-CH_3$, $-C_2H_5$, $-C_2H_4CN$, $-C_2H_4OH$, $-CH(CH_3)CH_2CH_3$, $-C_4H_9$, $-CH_2(4-fluorosulphonylphenyl)$, $-C_2H_4(4-fluorosulphonylphenyl)$, $-C_3H_7(4-fluorosulphonylphenyl)$, R^3 , R^4 , R^5 and R^6 each independently is -H, -Cl, $-CH_3$, $-OCH_3$, $-NHCOCH_3$, $-NHCOC_2H_5$, $-NHSO_2CH_3$ or $-SO_2F$ and R^7 , R^8 and R^9 each independently is -H, $-NO_2$, -CN, $-COCH_3$, $-COOC_2H_5$, $-SO_2F$ or $-CH_3$ provided that both R^7 and R^9 are not $-SO_2F$.

Especially preferred compounds of Formula (3) are those in

which

R¹ and R² each independently is C

 R^1 and R^2 each independently is $-C_2H_4CN$, $-C_2H_5$ or (4-fluorosulphonylphenyl) C_{1-6} -alkyl;

 R^3 is -H, -OCH₃, -CH₃ or -SO₂F;

R4 and R5 each independently is -H, -Cl or -SO₂F;

 R^6 is -H, -NHCOCH₃, -NHCOC₂H₅, -CH₃ or -SO₂F;

 R^7 is $-NO_2$, $-COCH_3$, $-COOC_2H_5$ or $-SO_2F$;

 R^8 is -H, -SO₂F or -Cl;

 R^9 is $-NO_2$, $-SO_2F$ or -CHO.

A further preferred sub-group of compounds of Formula (1) are those of Formula (4):

$$R^{11}$$
 R^{10}
 R^{4}
 R^{3}
 R^{1}
 R^{12}
 R^{13}
 R^{14}
 R^{6}
 R^{5}

10

5

Formula (4)

wherein:

15 R¹ to R⁶ are as hereinbefore defined;

 R^{10} to R^{14} each independently is -H, alkoxy, alkyl, -NO₂, -SO₂F, -F, -Cl, -Br, -I or -CN;

provided that when R^{10} is $SO_2F,\ R^{12}$ is not $-NO_2$ and $R^{11},\ R^{13}$ and R^{14} are not all -H.

Where a group represented by R^{10} to R^{14} is alkyl it is preferably C_{1-10} -alkyl, more preferably C_{1-6} -alkyl. Where a group represented by R^{10} to R^{14} is alkoxy it is preferably C_{1-10} -alkoxy more preferably C_{1-6} -alkoxy.

Compounds of Formula (4) are preferably those in which each independently is $-CH_3$, $-C_2H_5$, $-C_3H_7$, $-C_4H_9$, $-C_5H_{11}$, $-C_6H_{13}$, $-CH(CH_3)CH_2CH_3$, $-CH_2phenyl$, $-C_2H_4phenyl$, $-C_3H_6phenyl$, $-C_2H_4CN$, $-C_2H_4OH$, $-C_2H_4OCH_3$, $-C_2H_4COOCH_3$, $-C_4H_8COCH_3$, $-C_2H_4COCH_3$, $-C_2H_4COCH_3$, $-C_2H_4COCH_3$, $-C_2H_4COCPhenyl$, $-C_2H_4OCPhenyl$, $-C_2H_4OPhenyl$, $-C_2H_4O(fluorosulphonylphenyl)$,

-CH₂CH(CN)(OC₂H₄), C₁₋₆-alkylphenylSO₂F,

.cocc₁₆ alkyl

35

40

-COOC₁₋₆-alkylOCOC₁₋₆-alkyl or -COOC₁₋₆-alkylCOOC₁₋₆-alkyl

 R^3 is -H, -OCH₃ or -Cl;

R⁴ is -H, -CH₃, -NHCOCH₃, -NHCOC₂H₅, -NHCOCH(CH₃)₂, -NHCOC₃H₆Cl, -NHCOC(CH₃)₃, -OCH₃, -OC₄H₉, -F, -CI, -Br, -I or -NHSO₂C₁₋₆-alkyl;

 R^5 is -H, -OCH₃, -OC₂H₅ or -Cl;

 R^6 is -H, -CH₃, -OCH₃, -F, -Cl, Br, -I or -NHSO₂C₁₋₆-alkyl;

 R^{10} is -H, -OCH₃, -NO₂, -Cl, -Br or -CN;

10

20

25

30

35

 R^{12} is $-SO_2F$ or $-NO_2$;

 \mbox{R}^{13} is -H, -OCH3, -SO2F, -Cl, -Br or -NO2; and

R¹⁴ is -H, -OCH₃, -Cl, -Br or -CN, provided that at least one of R³ or R⁵ is -H and that at least one of R⁴ or R⁶ is -H.

More preferably compounds of Formula (4) are those in which

R¹ and R² each independently is $-C_2H_5$, $-C_4H_9$, $-CH(CH_3)CH_2CH_3$, $-C_2H_4OCOCH_3$, $-C_4H_6OCOCH_3$, $-C_$

-COOC₁₋₆-alkylOCOC₁₋₆-alkyl or -COOC₁₋₆-alkylCOOC₁₋₆-alkyl

R4 is -H, -CH3 or -NHCOCH3;

 R^3 , R^5 , R^6 and R^{11} is -H;

 R^{10} and R^{13} each independently is -H, -Cl, -Br or -NO₂;

 R^{12} is $-SO_2F$; and

R14 is -H, -Cl or -Br.

An especially preferred compound of Formula (4) is that in which R^1 is $-C_2H_5$; R^2 is $-C_2H_4OCOphenyl$; R^4 is $-CH_3$; R^{10} and R^{13} are both -Cl; R^{12} is $-SO_2F$; and R^3 , R^5 , R^6 , R^{11} and R^{14} are all -H.

An especially preferred sub-group of compounds of Formula (1) are those of Formula (7):

$$R^{10}$$
 R^4 R^1 R^2 R^{13} R^{14} R^5 R^5

Formula (7)

in which

R¹ and R² each independently is optionally substituted C₁₋₆-alkyl;

R⁴ is alkyl or a group of Formula R¹⁹-N-Y-X-W

in which Y is a direct link or C = O, X is a direct link, alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl, -NR²⁰-Z-, -COOZ or -O-Z in which Z is alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl or a direct link and R²⁰

10

15

20

25

30

35

40

is -H, alkyl, aryl or alkylaryl, W is $-CO_2R^{21}$, $-OCOR^{21}$ or -OH in which R^{21} is alkyl, aryl, alkylaryl, alkylOalkyl or alkylOH, and R^{19} is -H or alkyl; R^5 is -H, C_{1-6} -alkoxy or -Ophenyl;

R¹⁰ is -NO₂ or -Cl; and

 R^{13} and R^{14} each independently is -H or -Cl.

The dyes of Formula (7) are novel and form a further feature of the present invention.

In the dyes of Formula (7)

 R^1 and R^2 each independently is preferably C_{1-6} -alkyl or C_{1-6} -alkyl substituted by phenyl or $-COOC_{1-6}$ -alkyl, and more preferably is ethyl, propyl, butyl, 1-methylpropyl, hexyl, benzyl, ethylphenyl or propylphenyl.

- R4 is preferably a group of Formula R19-N-Y-X-W in which
- R^{19} is preferably -H or C_{1-6} -alkyl more preferably -H; Y is preferably a direct link or C=0 more preferably C=0;
- X is preferably a direct link, C_{1-8} -alkyl, C_{2-8} -alkenyl, any of the carbocyclic or heterocyclic groups defined above for A, C_{1-6} -alkylOC₁₋₆-alkyl, -NR²⁰-Z-, -COOZ or -O-Z- in which R²⁰ is preferably -H, C_{1-6} -alkyl, phenyl or benzyl and
- Z is preferably a direct link or C_{1-6} -alkyl, C_{2-8} -alkenyl, phenyl, benzyl or any of the heterocyclic groups defined above for A;
- X is more preferably a direct link, CH_2 , C_2H_4 , $CH_2C(CH_3)_2$, cyclohexyl, CH = CH, phenyl, $-NR^{20}-Z$, -COOZ or -O-Z- in which
- R^{20} is preferably -H, Z is preferably a direct link, C_{1-6} alkyl or benzyl.
- W is $-CO_2R^{21}$, $-OCOR^{21}$ or -OH in which R^{21} is C_{1-6} -alkyl, phenyl, chlorobenzyl, C_{1-6} -alkoxybenzyl, benzyl, C_{1-6} -alkyl OC_{1-6} -alkyl or C_{1-6} -alkylOH more preferably ethyl, methyl, butyl, or 1,3-dimethylbutyl.

Dyes in which both A and D are phenyl and in which one of A and D carries a $4\text{-}SO_2F$ group are generally more stable and build up better on polyester textile material than do the corresponding $2\text{-}SO_2F$ dyes.

A further preferred sub-group of compounds of Formula (1) are those of Formula (5);

Formula (5)

15 wherein:

20

25

30

35

40

 R^1 to R^4 and R^{10} to R^{14} are as herein before defined; and R^{15} to R^{18} each independently is -H, -F, -Cl, -Br, -I, -SO₂F, -NO₂,

-CN, -NR₁R₂, OH or optionally substituted -C₁₋₆-alkyl or -C₁₋₆-alkoxy.

The optional substituents for any of the groups represented by R^{15} to R^{18} may be selected from any of optional substituents described above for A, D, R^1 and R^2 .

Compositions comprising dispersions of the compounds of Formula (1) in which A is an optionally substituted heterocyclic or carbocyclic group; and D is an optionally substituted carbocyclic group; and at least one of A or D carries directly at least one -SO₂F group or carried a substituent to which at least one -SO₂F group is attached in aqueous media are novel and form a further feature of the present invention. Compositions comprising dispersions of compounds of Formulae (2), (3), (4), (5) and (7) are also novel. The compositions typically comprise form 1% to 30% of a compound of Formulae (1), (2), (3), (4), (5) or (6) in an aqueous medium. The compositions are preferably buffered at pH 2 to 7 more preferably at pH 4 to 6.

These dispersions may further comprise ingredients conventionally used in dyeing applications such as dispersing agents for example lignosulphonates, naphthalene sulphonic acid/formaldehyde condensates or phenol/cresol/sulphanilic acid/formaldehyde condensates, surfactants, wetting agents such as alkyl aryl ethoxylates which may be sulphonated or phosphated, inorganic salts, de-foamers such as mineral oil or nonanol, organic liquids and buffers. Dispersing agents may be present at from 10% to 200% on the weight of the compound of Formulae (1), (2), (3), (4), (5) or (7). Wetting agents may be used at from 0% to 20% on the weight of the compound (1), (2), (3), (4), (5) or (7). The dispersions may be prepared by bead milling the compound of Formula (1),

15

20

25

30

35

40

(2), (3), (4), (5) or (7) with glass beads or sand in an aqueous medium.

According to a further feature of the present invention there is provided a process for the mass coloration of plastics which comprises incorporating into a plastics material a compound or mixture thereof which is free from water solubilising groups, of Formula (1) wherein A and D each independently is an optionally substituted heterocyclic or carbocyclic group and at least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached.

According to a further feature of the present invention there is provided a process for the mass coloration of plastics which comprises incorporating into a plastics material a compound or mixture thereof which is free from water solubilising groups, of Formula (1) wherein A and D each independently is an optionally substituted heterocyclic or carbocyclic group and at least one of A or D carries directly a least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached and at least one of A or D carries directly at least one ester group or carries a substituent to which at least one ester group or carries a substituent to which at least one ester group is attached.

The plastics may be selected from polystyrene, acrylics, styrene/acrylonitrile mixtures, acrylonitrile/butadiene/styrene mixtures, polycarbonate, polyether-sulphone, nylons, rigid PVC (uPVC) and polypropylene.

The compound may be incorporated by blending with granules or powdered plastics material by, for example, dry tumbling or high-speed mixing followed by injection moulding on a screw machine or by conventional compounding/masterbatching techniques. The present dyes generally dissolve or disperse readily in hot plastics melt and provide bright coloration generally with good clarity and good light fastness.

The plastics materials when coloured with the above dyes form a further feature of the present invention.

The compounds of Formula (1) may be obtained by usual methods for the preparation of azo compounds such as by diazotisation of an amine of Formula A-NH₂ or A^1 -NH₂ and coupling onto a component D-X or D^1 -X in which A, A^1 , D and D^1 are as hereinbefore defined and X is a group displaceable by a diazotised amine. Typically the amine, A-NH₂ or A^1 -NH₂ may be diazotised in an acidic medium, such as acetic, propionic or hydrochloric acid using a nitrosating agent such as nitrosylsulphuric acid, sodium nitrite or methylnitrite at a temperature from -10°C to 10°C. Coupling onto the component D-X or D^1 -X may be achieved by adding the diazotised amine to a mixture of D-X or D^1 -X in an alkanol such as methanol at a temperature from 0°C to 10°C. After coupling the compound of Formula (1) may be recovered from the reaction mixture by any convenient means such as by filtration.

10

15

20

25

35

40

45

Fluorosulphonyl groups may be introduced into the compounds of Formula (1) or Formula (2) or into the A, A^1 , D and D^1 components prior to coupling by methods generally available in the literature. For example reaction of the compound of Formula (1) or Formula (2), $A\text{-NH}_2$, $A^1\text{-NH}_2$, the NH₂ being protected as necessary, D-X or $D^1\text{-X}$, in which A, A^1 , D and D^1 are as hereinbefore defined, with chlorosulphonic acid optionally in the presence of dimethylformamide and thionylchloride at a temperature of from 30°C to 140°C gives the chlorosulphonyl derivative. The chlorosulphonyl derivative may be reacted in boiling aqueous media with potassium fluoride to give the fluorosulphonyl derivative.

Alternatively the compound of Formula (1) or Formula (2), A-NH₂, A¹-NH₂, D-X or D¹-X may be sulphonated with sulphuric acid or oleum to give the sulphonic acid derivative which may be converted to the chlorosulphonyl derivative by reaction, either of the free acid or an inorganic salt thereof, with thionylchloride optionally in the presence of a chlorophosphorus compound such as phosphorus oxychloride or phosphorus pentachloride in an organic liquid such as an aromatic hydrocarbon at a temperature of from 20°C to 110°C. Similarly a sulphonate ester may be converted to the corresponding chlorosulphonyl derivative. The chlorosulphonyl derivative may then be converted to the fluorosulphonyl derivative as described above.

The compounds of Formulae (1), (2), (3), (4), (5) and (7) are useful for the coloration of synthetic textile materials particularly polyester textile materials and fibre blends thereof to which they impart colours which have excellent wet and light fastness properties.

The compounds of Formula (1), (2), (3), (4), (5) or (7) are also useful for the mass coloration of plastics as described above and impart bright colours generally with good clarity and light fastness.

The invention is further illustrated by the following

30 Examples.

Example 1
Preparation of 4-(2,5-dichloro-4-fluorosulphonylphenylazo)-3-methyl-N-ethyl-N-(2-benzoyloxyethyl)aniline

i) Preparation of 2,5-dichloro-4-chlorosulphonylaniline
2,5-Dichloroaniline (32.4 parts) was added portionwise to chlorosulphonic acid (93 parts) at 35°C. The mixture was stirred at 120°C for 3hrs and then cooled to 70°C. Dimethyl formamide (1.6 parts) and thionyl chloride (15 parts) were added, maintaining the temperature at 65-70°C and the mixture stirred at 70°C for 24 hours. The reaction mixture was cooled to ambient temperature and poured with caution onto stirred ice (1000 parts) producing a cream precipitate. The product was isolated by filtration, washed acid-free with ice/water and dried under vacuum to yield; 2,5-dichloro-4-chlorosulphonylaniline (44.2 parts).

ii) Preparation of 2,5-dichloro-4-fluorosulphonylaniline

A mixture of 2,5-dichloro-4-chlorosulphonylaniline (44.2

parts), potassium fluoride (38 parts) and water (100 parts) was stirred under reflux for 5 hours. The reaction mixture was cooled to ambient temperature and drowned into water (300 parts). The cream precipitate was isolated by filtration, washed with water and dried under vacuum to yield; 2,5-dichloro-4-fluorosulphonylaniline (37.2 parts).

iii) Preparation of 3-methyl-N-ethyl-N-(2-benzovloxyethyl) aniline

Benzoylchloride (3.3g) was added to a mixture of N-ethyl-N-hydroxyethyl-3-methylaniline (2.1g) in acetone (25cm³) and pyridine (1cm³) and stirred at reflux for 1 hour. The reaction mixture was cooled and used directly in iv) below.

iv) Preparation of 4-(2,5-dichloro-4-fluorosulphonylphenylazo)-3-methyl-N-ethyl-N-(2-benzoyloxyethyl) aniline

Nitrosyl sulphuric acid (3cm³ of 40%) was added to a mixture of 2,5-dichloro-4-fluorosulphonylaniline (2g) in acetic/propionic acid (86:14, 25cm³) at 0°C to 5°C. The mixture was stirred at 0°C to 5°C for 2 hours before adding the reaction mixture from iii) above in methanol (100cm³) at 0°C to 5°C. The precipitated solid was collected by filtration, washed with water, slurried with methanol, collected by filtration and washed with methanol to give 4-(2,5-dichloro-4-fluorosulphonylphenylazo)-3-methyl-N-ethyl-N-(2-benzoyloxyethyl)aniline (2.1g) when applied to polyester materials from aqueous dispersion gives bluish-red shades with excellent wet and light fastness properties.

The following examples of dyes of Formula:

30

5

10

15.

FO₂S
$$N=N$$
 R^4 R^3 R^1 R^2

were prepared by the procedure of Example 1:

	Ex	R ¹	R ²	R ⁴	R ³	R ⁶	λmax /nm
5	2	-C ₂ H _s	-C ₂ H ₄ OH	-NHCOCH ₃	-Н	-н	522
	3	-C ₄ H,	-C ₂ H ₄ OCOCH ₃	-NHCOCH ₃	-н	-н	518
	4	-CH ₂ CH=CH ₂	-CH ₂ CH=CH ₂	-NHCOCH ₃	-н	-н	520
	5	-C₄H _e OCOCH ₃	-C4HeOCOCH3	-NHCOCH₃	-н	-н	535
	6	-C ₂ H ₄ OCOCH ₃	-C₂H₄OCOCH₃	-NHCOCH ₃	-н	-н	504
10	7	-C ₂ H ₄ COOCH ₃	-C ₂ H ₄ COOCH ₃	-NHCOCH ₃	-н	-н	509
	8	-C ₄ H ₉	- C ₂ H ₄ COOCH ₃	-NHCOCH ₃	-н	-н	528
	9	-C ₄ H ₉	-C ₂ H ₄ COOC ₂ H ₄ OCH ₃	-NHCOCH ₃	-Н	-н	530
	10	-C ₂ H ₄ COOCH ₂	- C₄H _€ OCOCH ₃	-NHCOCH₃	-н	-н	526
	11	-C₂H₄OH	- C₂H₄OH	-CH ₃	-н	-н	508
15	12	-C ₂ H ₄ OCOCH ₃	-C₂H₄OCOCH₃	-н	-OCH ₃	-н	518
	13	-C ₂ H ₄ CN	-H	-н	-OCH ₃	-CH ₃	504
	14	-C ₂ H ₄ CN	-н	-CH ₃	-н	-H	464
	15	-C ₂ H ₄ CN	-H	-Н	-Cl	-н	440
	16	-C₂H₄OCOCH₃	-C₂H₄OCOCH₃	-C1	-H	-н	470
20	17	-C₄H ₈ OCOCH ₃	-C₄H _€ OCOCH ₃	-CH ₃	-H	-CH ₃	512
	18	-C ₂ H ₄ CN	-C ₂ H ₄ CN	-CH ₃	-н	-CH ₃	465
	19	-C₂H₄CN	-C ₂ H ₄ COOCH ₃	-н	-H	-н	460
	20	-C ₂ H ₅	-C₄H _e OCOCH₃	-CH ₃	- H	-н	530
	21	-C₄H ₈ OCOCH ₃	- C4HeOCOCH3	-CH ₃	- H	-н	502
25	22	-C ₂ H ₄ OCOCH ₃	-C ₂ H ₄ OCOC ₂ H ₅	- H	-OCH ₃	-NHCOCH ₃	548
•	23	-C ₂ H ₅	-C₂H₄OH	-CH ₃	-H	-н	520
	24	-C ₂ H ₅	-C₄H _e OH	-CH ₃	- H	-н	530

Ex	R ¹	R ²	R ⁴	R ³	R ⁶
25	-C ₂ H ₅	-CH ₂ CH (OH) C ₂ H ₅	-CH ₃	-н	- H
26	-C ₂ H ₅	-C ₂ H ₅	-H	-OCH ₃	-CI
27	- C ₂ H ₅	-CH ₂ C(OH)(OC ₂ H ₅)	-CH ₃	-н	-н
28	-C ₂ H ₅	-CH ₈ C (OH) (CN)	-CH ₃	-н	-H
29	-C ₅ H ₁₁	-C ₂ H ₄ OH	-CH ₃	-н	-н
30	-C ₂ H ₄ OCH ₃	-C ₂ H ₄ OCH ₃	-CH ₃	-н	-н
31	- C ₄ H ₉	- C₂H₄OH	-CH ₃	-H	-н
32	-C ₆ H ₁₃	-C ₂ H ₄ OH	- CH ₃	-н	-н
33	-C ₂ H₄Ophenyl	-C₂H₄OH	-CH ₃	-н	-н
34	-CH ₂ C(CN)(OC ₂ H ₅)	-CH ₂ C (CN) (OC ₂ H ₅)	-CH ₃	-H	-H
35	-C ₂ H ₅	-C ₂ H ₄ OC ₂ H ₄ COOC ₂ H ₄ OCH ₃	-CH ₃	-H	-H
36	-CH ₃	- CH ₃	-Н	-H	-н
37	-C ₂ H ₅	-C ₂ H ₅	-H	-H	-н
38	- C₃H ₇	- C ₃ H ₇	-н	-H	-н
39	-C ₄ H ₉	-C4H9	-H	-H	-H
40	-C ₂ H ₅	-C ₂ H ₅	-NHCOCH ₃	-н	-н
41	-C ₂ H ₅	-C₂H₄OCOphenyl	-CH ₃	-н	-H
42.	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₅	- CH₃	- H	- H
43	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₄ OCH ₃	- CH ₃	-H	- H
44	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₄ OC ₄ H ₉	-CH ₃	-н	-H
45	- C ₂ H ₅	-C ₂ H ₄ COOCH ₂ tetra hydrofuran-2-yl	-CH ₃	-н	-н
46	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₄ Ophenyl	- CH ₃	- H	-н
47	-C ₂ H ₅	-C2H4COOCH2COOC2H5	-CH ₃	-н	-H

5		
10		
15		
20		
25		

Ex	R ¹	R ²	R ⁴	R ³	R ⁶	λma x/n m
48	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₄ OC ₂ H ₄ OCH ₃	-CH ₃	-н	-н	513
49	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₄ OC ₂ H ₄ OC ₂ H ₅	-CH ₃	- H	-н	513
50	-C ₂ H ₅	- C ₂ H ₄ COOC ₂ H ₄ OC ₂ H ₅	-CH ₃	- H	-н	512
51	-C ₂ H ₅	-C ₂ H ₄ COOCH (CH ₃) ₂	-CH ₃	-н	-H	513
52	-C ₂ H ₅	-C ₂ H ₄ COOC ₂ H ₄ OH	-CH ₃	-н	-н	514
53	-C ₂ H ₅	-C ₂ H ₄ COOCH ₂ tetra hydropyran-2-yl	-CH ₃	-H	-Н	512
54	-C₂H₅	-C ₂ H₄COOCH ₂ phenyl	-CH ₃	-H	-н	513
55	-C ₂ H ₅	- C₂H₄COOC₃H₅COOC₂H₅	-CH ₃	-H	-н	514
56	-C ₂ H ₅	-C ₂ H ₄ COOCH (C ₂ H ₅) COOC ₂ H ₅	-CH ₃	-н	-н	514
57	-C ₂ H ₅	-C2H4COOC4H8OH	-CH ₃	-н	-н	514
58	-C ₂ H ₅	-C2H4COOC4HBOCOCH3	-CH ₃	-н	-н	513
59	- C ₂ H ₅	-C ₂ H ₄ COOCH ₂ COOCH ₃	-CH ₃	-н	-н	511
60	-C ₂ H ₄ OH	-C ₂ H ₄ COOCH ₂ tetra hydrofuran-2-yl	-CH ₃	-н	-н	511
61	-C₂H₄OH	-C ₂ H ₄ COOCH ₂ COOC ₂ H ₅	- CH ₃	-н	-н	510
62	-C ₂ H ₅	-C2H4COOCH2CN	-CH ₃	-н	-H	512
63	- C ₂ H ₅	-C2H4COOC2H4CN	-CH ₃	-н	-н	514
64	-C ₂ H ₅	-C₂H₄COOCH₂COCH₃	-CH ₃	-н	-н	513
55	- C ₂ H ₅	-C ₂ H ₄ OCOC (CH ₃) ₃	-CH ₃	-н	-н	511
56	-C ₂ H ₅	-C ₂ H ₄ OCO (CH ₂) ₃ CH ₃	-CH ₃	-н	-H	510
57	- C ₂ H ₅	-C ₂ H ₄ OC0CH (CH ₃) ₂	-CH ₃	-н	-H	510
58	- C ₂ H ₅	-C ₂ H ₄ OCO(CH ₂) ₃ Cl	-CH ₃	-н	-H	507
9	- C ₂ H ₅	-C ₂ H ₄ OC0(4-NO ₂ phenyl)	- CH ₃	-н	-H	503
70	- C ₂ H ₅	-C ₂ H ₄ OCO(4-CH ₃ phenyl)	-CH ₃	-н	-H	511

10

15

20

.25

30

35

40

Ex	R1	R ²	R ⁴	R³	R ⁶	λma x/n m
71	-C ₂ H ₅	-C ₂ H ₄ OCO(3-CH ₃ phenyl)	-CH ₃	-н	-н	511
72	-C ₂ H ₅	-C ₂ H ₄ O(4-OCH ₃ phenyl)	-CH ₃	- H	-H	512
73	-C ₂ H ₅	-C ₂ H ₄ O(2-OCH ₃ phenyl)	- CH ₃	-H	-н	509
74	-C ₂ H ₅	-C ₂ H ₄ OC ₂ H ₄ COOC ₂ H ₅	-CH ₃	-н	-н	521
75	-C ₂ H ₅	-C ₂ H ₄ OC ₂ H ₄ COOCH ₃	-CH ₃	-н	-н	521
76	-C ₂ H ₅	-C ₂ H ₄ OC ₂ H ₄ COOCH ₂ COOC ₂ H ₅	-CH3	-H	-H	521
77	-C ₂ H ₅	-C ₂ H ₄ OCOC ₂ H ₄ COOC ₂ H ₅	-CH ₃	-н	-Н	511
78	-C ₂ H ₅	-C ₂ H ₄ OCOCH ₂ Ophenyl	-CH ₃	-н	- H	515
79	-C ₂ H ₄ OH	-C ₂ H ₄ OCOphenyl	-CH ₃	- H	- H	517 ·
80	-C ₂ H ₄ COOC ₃ H ₇	- C ₂ H ₄ COOC ₃ H ₇	-NHCOCH ₃	- H	-H	498
81	-C ₂ H ₅	- C ₃ H ₆ COOC ₂ H ₅	- CH ₃	-H	-н	523
82	-cyclohexyl	-CH₂phenyl	-H	-H	-н	509
83	-C ₂ H ₅	-CH(CH ₃) ₂	-NHCOCH ₃	-H	-н	539
84	-C ₂ H ₅	-C ₄ H ₉	-NHCOCH3	-н	-н	539
85	-C ₂ H ₅	- C ₂ H ₄ OC ₂ H ₄ COOC ₂ H ₄ OCH ₃	- CH ₃	-н	-H	525
8,6	-C₂H₄OH	-C₂H₄Ophenyl	-CH ₃	-H	-H	520

Example 87

Preparation of 4-(2,6-dibromo-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline

i) Preparation of 2,6-dibromo-4-fluorosulphonylaniline

To a solution of 4-aminobenzenesulphonyl fluoride (10 parts) in acetic acid (100 parts), stirring at 0-5°C, was added gradually a solution of bromine (18 parts) in acetic acid (50 parts); keeping the temperature below 5°C. The temperature was allowed to warm to ambient and the mixture was stirred at this temperature for a further 1hr. The reaction mass was drowned into water (500 parts), the product was isolated by filtration, washed with cold water and dried at 50°C to yield; 2,6-dibromo-4-fluorosulphonylaniline (17.5 parts).

ii) <u>Preparation of 4-(2,6-dibromo-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline</u>

A mixture of 2,6-dibromo-4-fluorosulphonylaniline (2.7 parts) and acetic/propionic acid mixture (15 parts, 86/14 vol/vol) was stirred and heated until a complete solution was formed. The solution was set stirring at 0-5°C, and nitrosyl sulphuric acid soln (5 parts) was added dropwise. The mixture was stirred at this temperature for a further 30min.

The diazo solution was added slowly to a mixture of 3-N,N-diethylaminoacetanilide (1.7 parts), methanol (50 parts) and sulphamic acid (0.5 parts); stirring at 0-5°C. After stirring for 1hr at this temperature, water (50 parts) was added and the mixture was stirred a further 30min at ambient temperature. The product was isolated by filtration, washed with water and methanol and then dried at 50°C to yield; 4-(2,6-dibromo-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline (1.8 parts) λ max=480nm.

When applied to polyester materials from an aqueous dispersion, the dye gives dull orange shades with excellent light fastness and excellent fastness to wet treatments. The following examples of dyes of Formula:

FO₂S

Br

$$R^4$$
 R^3
 R^1
 R^2

were prepared by the procedure of Example 87:

Ex	R ¹	R²	R ⁴	R ³	R ⁶	λmax /nm
88	-C ₂ H ₄ OH	-C ₂ H ₄ OC ₂ H ₅	-н	-н	-н	434
89	-C ₂ H ₄ OCH ₃	-C ₂ H ₄ OCH ₃	-CH ₃	-н	-н	447
90	-C ₂ H ₄ CN	-C ₂ H ₄ CN	-CH ₃	- H	-н	418
91	- C ₂ H ₅	-C ₂ H ₄ CN	-CH ₃	-Н	-н	435
92	-н	-C ₂ H ₄ CN	-н	-н	-н	399
93	- C ₂ H ₅	-C ₂ H ₄ CN	-н	-н	-н	421
94	- C ₂ H ₄ OH	-C ₂ H ₄ CN	-н	-н	-н	420
95	-C ₂ H ₄ CN	-C ₂ H ₄ CN	-н	-н	-н	406
96	- C ₂ H ₅	-C ₂ H ₅	-н	-H	-н	438
97	- C ₂ H ₅	-C ₂ H ₅	-CH ₃	-н	-н	453
98	-C ₂ H ₄ OH	-C ₂ H ₄ OH	- CH ₂	-H	-н	454
99	- C4H9	-C4H9	-H	-н	-н	442
100	- C ₂ H ₅	-CH ₂ phenyl	-н	- H	-н	431
101	- C ₂ H ₅	-C ₂ H ₅	-NHCOCH₃	-н	-H	486
102	-C4H9	-C4H9	-NHCOCH ₃	-H	-H	486
103	-C₄H _e OCOCH₃	-C4H6OCOCH3	-NHCOCH,	-н	-н	479

Example 104

Preparation of 4- (2,6-dicyano-4-fluorosulphonyphenylazo)-3-acetamido-N,N-diethylaniline

A mixture of 4-(2,6-dibromo-4-fluorosulphonylphenyllazo-3-acetamido-N,N-diethylaniline (Example 101) (1.5 parts), cuprous cyanide (0.54 parts) and dimethylformamide (20 parts) was stirred at ambient temperature for 3hr. The reaction mixture was diluted with water (40 parts), stirred for 30min and the product was isolated by filtration to yield; 4-(2,6-dicyano-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline (0.8 parts) \(\lambda\text{max=61lnm}\).

When applied to polyester materials from an aqueous dispersion, the dye gives bright blue shades with excellent light fastness and excellent fastness to wet treatments.

15

20

10

Example 105

Preparation of 4-(2,6-dicyano-4-fluorosulphonylphenylazo)-3-acetamido-N,N-di-n-butyl aniline

The dye in Example 102 (3.0g) was stirred in DMF (30cm³) and CuCN (1.0g) at 90°C for 2 hours. The reaction mix was drowned onto ice and the precipitate collected, washed with water and dried under suction. The filter cake was dissolved in dichloromethane, filtered and the filtrate evaporated to give a blue dye (λ max 611nm).

25

Example 106

<u>Preparation of 4-(2,6-dicyano-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diacetoxybutylamino aniline</u>

The dye in Example 103 (3.0g) was stirred in DMF (30cm³) and CuCN (1.0g) at 90°C for 2 hours. The reaction mix was drowned onto ice and the precipitate collected, washed with water and dried under suction. The filter cake was dissolved in dichloromethane, filtered and the filtrate evaporated to give a blue dye (λ max 608nm).

35

40

45

30

Example 107

Preparation of 4-(2,6-dichloro-4-fluorosulphonylphenylazo)-N,N-di-n-butylaniline

i) Preparation of 2,6-dichloro-4-chlorosulphonylaniline

The procedure of Example 1ii) was repeated except that in place of the 32.4 parts of 2,5-dichloraniline, 32.4 parts of 2,6-dichloroaniline were used, to yield 2,6-dichloro-4-chlorosulphonylaniline (42.6 parts).

ii) Preparation of 2,6-dichloro-4-fluorosulphonylaniline

The procedure of Example 1ii) was repeated except that in place of the 44.2 parts of 2,5-dichloro-4-chlorosulphonylaniline, 42.6 parts of 2,6-dichloro-4-chlorosulphonylaniline were used, to yield 2,6-dichloro-4-fluorosulphonylaniline (36.0 parts).

iii) <u>Preparation of 4-(2,6-dichloro-4-fluorosulphonylphenylazo)-N,N-di-n-butylaniline</u>

A mixture of 2,6-dichloro-4-fluorosulphonylaniline (2.0

10

15

20

25

30

35

40

45

parts) and acetic/propionic acid mixture (15 parts, 86/14 vol/vol) was stirred and heated until a complete solution was formed. The solution was set stirring at 0-5°C and nitrosyl sulphuric acid solution (5 parts) was added slowly. The mixture was stirred at this temperature for a further 30min. The cooled diazo solution was added slowly to a mixture of N,N-di-n-butylaniline (1.7 parts), methanol (40 parts) and sulphamic acid (0.5 parts); stirring at 0-5°C. After stirring for 3hr at this temperature, water (50 parts) was added and the mixture stirred for a further 2hr at ambient. The product was isolated by filtration, washed with water and methanol and dried to yield; 4-(2,6-dichloro-4-fluorosulphonylphenylazo)-N,N-di-n-butylaniline (3.0 parts) \(\lambda\text{max=443nm}\). When applied to polyester materials from an aqueous dispersion, the dye gives dull yellow brown shades with excellent fastness to light and wet treatments.

The following examples of dyes of Formula:

FO₂S
$$\stackrel{\text{CI}}{\longrightarrow}$$
 $\stackrel{\text{R}^4}{\longrightarrow}$ $\stackrel{\text{R}^3}{\longrightarrow}$ $\stackrel{\text{R}^1}{\longrightarrow}$ $\stackrel{\text{R}^2}{\longrightarrow}$

were prepared by the procedure of Example 107:

Example	R ¹	R²	R ⁴	R ³	R ⁶	λmax/nm
108	-C ₂ H ₅	- C ₂ H ₅	- H	-н	-H	439
109	- C ₂ H ₅	- C₂H₅	-CH ₃	-Н	-н	455
110	-C ₂ H ₅	-CH ₂ phenyl	-H	-H	-н	431

Example 111

Preparation of 4-(2-bromo-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline

The procedure of Example 87ii) was repeated except that in place of the 2.7 parts of 2,6-dibromo-4-fluorosulphonylaniline; 2.0 parts of 2-bromo-4-fluorosulphonylaniline were used. The product, 4-(2-bromo-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline (1.6 parts) λ max=524nm, when applied to polyester materials from an aqueous dispersion gives bright mid red shades with excellent fastness to light and wet treatments.

Example 112

Preparation of 4-(2,5-dimethoxy-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline

The procedure of Example 87ii) was repeated except that in place of the 2.7 parts of 2,6-dibromo-4-fluorosulphonylaniline; 1.9 parts of 2,5-dimethoxy-4-fluorosulphonylaniline were used. The product, 4-(2,5-dimethoxy-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline (1.4 parts) λ max=545nm, when applied to polyester materials from an aqueous dispersion gives bluish red shades with excellent fastness to light and wet treatments.

Example 113

10

15

20

25

30

35

40

45

<u>Preparation of 4-(2-nitro-5-chloro-4-fluorosulphonylphenylazo)-3-acetamido-N, N-diethylaniline</u>

The procedure of Example 87ii) was repeated except that in place of the 2.7 parts of 2.6-dibromo-4-fluorosulphonylaniline; 2.0 parts of 2-nitro-5-chloro-4-fluorosulphonylaniline were used. The product, 4-(2-nitro-5-chloro-4-fluorosulphonylphenylazo)-3-acetamido-N,N-diethylaniline (2.6 parts) λ max=550nm, when applied to polyester materials from an aqueous dispersion gives bluish red shades with excellent fastness to light and wet treatments.

Example 114

Preparation of 2-nitro-4-fluorosulphonylaniline N-acetyl sulphanilyl chloride (100g) was dissolved in concentrated sulphuric acid (515 cm³), cooled to 4°C and a mixture of concentrated nitric acid (38.6 cm^3) and concentrated sulphuric acid (42.9 cm^3) added dropwise maintaining the temperature at 4-6°C. After 1 hour the reaction mix was drowned onto ice and the precipitate collected, extracted into dichloromethane and evaporated to a yellow solid (92g). 31g of this yellow solid was refluxed for 3 hours in water (20 cm^3), pdioxane (20 \mbox{cm}^3) and KF (19.4g) then drowned onto ice and the precipitate collected. This precipitate was refluxed in absolute ethanol (35 $\,\mathrm{cm^3}$) and concentrated hydrochloric acid (35 $\,\mathrm{cm^3}$) for 1 hour then drowned onto ice, filtered and suction dried. Recrystallisation from ethanol yielded 8.7g of the required compound. ii) 2-Nitro-4-fluorosulphonyl aniline (0.01 mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01 mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N,N-diethylamino) acetanilide (0.01mol), methanol $(50 \, \mathrm{cm}^3)$ and ice $(50 \, \mathrm{g})$. The resultant precipitate was filtered, washed with water and then methanol and oven dried at 50°C. The dry dye has a λ max of 541nm and gives good fastness to washing, light and heat. . The following examples of dyes of Formula:

$$FO_2S \longrightarrow N=N \longrightarrow R^1$$

$$R^1$$

$$R^2$$

were prepared by the procedure of Example 114:

					
Example	R ⁴	R ¹	R²	R ⁵	λmax (nm)
115	-NHCOCH3	-C ₂ H ₅	-C ₂ H ₅	-н	541
116	-NHCOCH ₃	-C ₂ H ₅	-C ₂ H ₅	-OCH,	590
117	-NHCOCH ₃	-C₂H₄OCOCH₃	-C ₂ H ₄ OCOCH ₃	-OCH ₃	564
118	- CH ₃	-C₄H ₈ OCOCH ₃	-C₄H _B OCOCH ₃	-н	530
119	-NHCOCH ₃	-C ₄ H ₉	-CH (CH ₃) C ₂ H ₅	-н	546
120	- NHCOCH ₃	-C ₄ H ₉	-C ₄ H ₉	-OCH ₃	591
121	-NHCOCH3	-C ₅ H ₁₁	-C ₅ H ₁₁	-OCH ₃	593
122	-NHCOC₂H5	-C ₂ H ₅	-C ₂ H ₅ .	-OCH ₃	592
123	-NHCOC3H7	- C ₂ H ₅	- C ₂ H ₅	-OCH ₃	592
124	-NHCOCH (CH ₃) ₂	-C ₂ H ₅	-C ₂ H ₅	-OCH ₃	591
125	-NHCOC4H,	-C ₂ H ₅	C ₂ H ₅	-OCH,	. 593
126	-OC ₄ H ₉	-C ₄ H ₉	- C ₄ H ₉	-OCH ₃	575
127	-HNCOCH3	-C ₂ H ₇	-C ₂ H ₇	-OCH ₃	594
128	-HNSO2CH3	-C ₃ H ₇	-C ₃ H ₇	-OCH ₃	562
129	-HNCOCH (CH ₃) ₂	-C ₃ H ₇	-C ₃ H ₇	-OCH ₃	591
130	-HNCOCH ₃	-C ₃ H ₇	-CH (CH ₃) ₂	-OCH ₃	590
131	-HNCOCH ₃	-CH (CH ₃) CH ₂ CH ₃	-н	-OCH ₃	565
132	-HNCOCH ₃	-C ₂ H ₅	-C ₃ H ₇ (4-SO ₂ F phenyl)	-OCH ₃	585
133	-HNCOCH ₃	-C ₃ H ₇ (4-SO ₂ F phenyl)	-C ₃ H ₇ (4-SO ₂ F phenyl)	-OCH₃	580
134	-HNCOC (CH ₃) ₃	-C ₂ H ₅	-н	- OCH ₃	566
135	-HNCOCH3	-C ₂ H ₄ COOC ₃ H ₇	-C ₂ H ₄ COOC ₃ H ₇	-н	524
136	-HNCOCH3	-C ₂ H ₅	-C ₄ H ₈ COOC (CH ₃) ₃	-OCH ₃	591
137	-HNCOCH3	-C ₂ H ₅	-C ₂ H ₄ (phenyl)	-OCH ₃	588
138	-HNSO₂phenyl	-C ₂ H ₅ .	-C ₂ H ₅	-OCH ₃	573

Example 139

i) Preparation of 2-nitro-4-fluorosulphonyl-6-chloroaniline.

2-Nitro-4-fluorosulphonylaniline (10g) was dispersed in 30% HCl (63.6g), cooled to 0-5°C and sodium chlorate (2g) dissolved in water (3.6g) added dropwise ensuring maintaining the temperature at 0-5°C. After 30 minutes reaction mixture drowned onto ice and precipitate collected, washed with water and suction dried to yield 8.5g of 2-Nitro-4-fluorosulphonyl-6-chloroaniline.

ii) 2-Nitro-4-fluorosulphonyl-6-chloroaniline (7.86mmol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (7.86 mmol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N,N-diethylamino) acetanilide (7.86 mmol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λmax of 550nm and gives good fastness to washing, light and heat.

The following examples of dyes of Formula:

20

15

10

$$R^4$$
 NO_2
 $N=N$
 R^4
 R^1
 R^2

25

were prepared by the procedure of Example 139:

	Example	R ⁴	R ¹	R ²	R ⁵	λmax (nm)
5	140	-NHCOCH ₃	- C ₂ H ₅	-C ₂ H ₅	-H	550
	141	-NHCOCH ₃	-C ₂ H ₅	- C ₂ H ₅	-OCH ₃	606
	142	-CH ₃	-C₄H _e OCOCH₃	-C4H6OCOCH3	-н	545
	143	-CH ₃	- C ₂ H ₅	-C ₂ H ₄ 0COCH ₃	- H	535
	144	-NHCOCH ₃	- C ₄ H ₉	-C4H9	-OCH ₃	604
10	145	-HNCOCH ₃	-C ₃ H ₇	- C ₃ H ₇	-OCH ₃	610
	146	-HNCOC(CH ₃) ₃	-C₂H₅COOCH₃	-C ₂ H ₅ COOCH ₃	-OCH ₃	545
	147	-HNSO ₂ CH ₃	-C ₂ H ₇	-C ₃ H ₇	-OCH ₃	588
	148	-HNCOCH3	-C ₂ H ₅	-C ₃ H ₇	-CH ₃	565
	149	-HNCOCH3	-CH(CH ₃) ₂	-C ₃ H ₇	-OCH ₃	602
15	150	-HNCOCH (CH ₃) ₂	- C₃H₁	-C ₃ H ₇	-OCH ₃	608
	151	-HNCOCH₃	-C₄H,	-C ₂ H ₅ COOC ₂ H ₄ OCH ₃	-OCH ₃	603
	152	-HNCOCH3	- C ₂ H ₅	-CH ₃	-OCH ₃	601.5
	153	-HNCOC(CH ₃) ₃	-н	-C ₂ H ₅ COOC ₃ H ₇	-OCH ₃	565
	154	-HNCOC(CH ₃) ₃	- C₂H₄COOC₃H ₇	-C ₂ H ₄ COOC ₃ H ₇	-OCH ₃	574
20	155	-HNCOCH3	- C ₂ H ₅	-C ₂ H ₄ (phenyl)	-OCH,	607

Example 156

25

30

35

40

Preparation of 4-(5-chloro-4-fluorosulphonyl-2-nitrophenylazo)-3-acetamido-6-methoxy-N,N-dibutylaniline

i) 2-Nitro-5-chloroacetanilide (10g) was added cautiously to chlorosulphonic acid (40cm³) then heated at 120°C for 2 hours. The reaction mix was cooled to 50°C and drowned onto ice. The precipitate was filtered, washed with a little water and suction dried. This solid was dispersed in water (20 cm³), p-dioxane (20 cm³) and KF (10g). After refluxing for 2 hours the reaction mix was drowned into water, the precipitate filtered and suction dried. This solid was refluxed in water (50 cm³) and 36% HCl (50 cm³) for 1 hour, drowned onto ice and the precipitate collected. Yield 3.5g.

ii) 2-Nitro-4-fluorosulphonyl-5-chloroaniline (7.86 mmol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (7.86 mmol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N,N-dibutylamino)-4-methoxyacetanilide (7.86 mmol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a \lambdamax of 604nm and gives good

15

20

25

30

35

40

45

fastness to washing, light and heat.

Example 157

Preparation of 4-(2-nitro-4-flucrosulphonyl-6-bromophenylazo)-3-acetamido-N,N-diethylaniline

i) 2-Nitro-4-fluorosulphonylaniline (5g) was dissolved in glacial acetic acid (50 cm³) and bromine (4.4g) added. Reaction mix warmed to 75°C for 2 hours then drowned onto ice, filtered, washed with water and suction dried. Yield 6.5g of yellow solid.

ii) 2-Nitro-4-fluorosulphonyl-6-bromoaniline (0.01 mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01 mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N,N-diethylamino) acetanilide (0.01 mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λ max of 550nm and gives good fastness to washing, light and heat.

The following dyes of Formula:

$$FO_2S \xrightarrow{NO_2} R^4 \xrightarrow{R^1} R^2$$

were prepared by the procedure of Example 157:

Example	R ⁴	R ¹	R²	R ⁵	λmax
158	-NHCOCH3	-C2H4OCOCH3	-C₂H₄OCOCH₃	-H	530
159	-NHCOCH ₃	- C4H9	-CH (CH ₃) C ₂ H ₅	-н	556
160	-NHCOCH ₃	- C ₄ H ₉	-C ₄ H ₉	- H	555

Example 162

<u>Preparation of 4-(2-nitro-4-fluorosulphonyl-6-cyanophenylazo)-3-acetamico-N,N-diethylaniline</u>

Dye Example 157 (2.0g) was stirred at 90°C with CuCN (0.42g) and DMF (20cm³) for 3 hours. The reaction mix was drowned onto ice (50g) and the precipitate collected, washed with water and suction dried. The filter cake was slurried in dichloromethane, filtered and the filtrate evaporated to give a solid dye (λ max 603nm) which gives good fastness to heat, washing and light. The following dyes of Formula:

10

15

20

25

30

35

$$FO_2S \xrightarrow{NO_2} R^4 \xrightarrow{R^4} N^2$$

were prepared by the procedure of Example 162:

Example	R ⁴	R1	R ²	λmax (nm)
163	-NHCOCH ₃	-C ₂ H ₄ OCOCH ₃	-C ₂ H ₄ OCOCH ₃	585
164	-NHCOCH ₃	- C ₄ H ₉	-CH (CH ₃) C ₂ H ₅	607
165	-NHCOCH ₃	- C₄H ₉	-C ₄ H ₉	606

Example 166

Preparation of 4-(3-carboethoxy-5-nitrothien-2-ylazo)-3-methyl-N-ethyl N-(3-fluorosulphonylbenzoyloxy)ethyl aniline

 $4-(3-{\rm carboethoxy-5-nitrothienyl-2-ylazo})-3-{\rm methyl-N-ethyl}$ N-hydroxyethyl aniline (5mmol) was disolved in chloroform (20cm³), potassium carbonate (0.7g) and 3-fluorosulphonylbenzoylchloride (1.2g) were added and the mixture refluxed for 2 hours. The reaction mixture was filtered and the filtrate evaporated to leave the solid dye, λ max = 588nm.

The following examples of dyes of Formula:

$$O_2N$$
 S
 $N=N$
 R^7
 R^1
 R^2

were prepared by the procedure of Example 166:

Example	R ¹	R ²	R ⁶	R ⁷	λmax /nm
167	- C ₂ H ₅	-C ₄ H _e OCO(3-SO ₂ Fphenyl)	-CH ₃	-COOC ₂ H ₅	616
168	-C2H4CN	-C ₂ H ₄ OCO(3-SO ₂ Fphenyl)	-н	-NO ₂	575
169	-C ₂ H ₄ CN	-C ₂ H ₄ OCO(3-SO ₂ Fphenyl)	-CH ₃	-NO ₂	594
170	-C ₂ H ₄ CN	-C ₂ H ₄ OCO(3-SO ₂ Fphenyl)	-Н	-COOC ₂ H ₅	575
171	-C₂H₄CN	-C ₂ H ₄ OCO(3-SO ₂ Fphenyl)	-Н	-COCH ₃	563

Example 172

10

15

20

25

30

35

40

Preparation of 4-(3-carboethoxy-5-nitrothien-2-ylazo)-3-methyl-N-ethyl-N-(4-fluorosulphonylphenyl)methyl aniline
2-Amino-3-carboethoxy-5-nitrothiophene (0.01 mol) was

dispersed in a mixture of acetic:propionic acid (86:14, 25cm³), cooled to 0-5°C and nitrosylsulphuric acid (0.01 mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-ethyl-N-(4-fluorosulphonylbenzyl)-3-toluidine (0.01 mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a \lambda max of 580nm and gives good fastness to washing, light and heat.

The N-ethyl-N-(4-fluorosulphonylbenzyl)-3-toluidine was prepared as follows:

N-Ethyl-3-toluidine (0.01mol), potassium carbonate (0.01mol), DMF (50cm 3) and 4-fluorosulphonylbenzyl bromide (0.2mol) were stirred at 100°C for 24 hours. The reaction mix was filtered, drowned onto ice and extracted with dichloromethane to give an impure product (22g). No further purification was required.

The 4-fluorosulphonylbenzylbromide was prepared as follows: Tosyl chloride (50g), bromine (43g) and carbon tetrachloride (500mls) were stirred at reflux while shining a UV lamp (365nm) onto the reaction. Once the solution became colourless the reaction was stopped and the solvent removed by evaporation. The resultant oil was refluxed in water (200mls) and potassium fluoride (47g) for three hours. After three hours the reaction mix was drowned onto ice (500g) and the precipitate collected, washed with water and dried in vacuo. Yield 34g of pale yellow crystals which by GLC is 54% required material, 17% starting material and 12% dibrominated species.

10

15

20

25

30

35

40

45

Example 173

Preparation of 4-(3-carboethoxy-5-nitrothien-2-ylazo)-N-ethyl-N-(4-fluorosulphonylphenyl) methylaniline

2-Amino-3-carboethoxy-5-nitrothiophene (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01 mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-(4-fluorosulphonylbenzyl)-N-ethylaniline (0.01 mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a \lambdamax of 560nm and gives good fastness to washing, light and heat.

The N-ethyl-N-(4-fluorosulphonylbenzyl)aniline was prepared as follows:

N-Ethylaniline (0.01mol), potassium carbonate (0.01mol), DMF (50cm 3) and 4-fluorosulphonylbenzyl bromide (0.2mol) were stirred at 100°C for 24 hours. The reaction mix was filtered, drowned onto ice and extracted with dichloromethane to give an impure product (20g). No further purification was required.

Example 174

Preparation of 4-(3-carboethoxy-5-nitrothien-2-ylazo)-N-ethyl-N-(4-fluorosulphonylphenyl) propylaniline

2-Amino-3-carboethoxy-5-nitrothiophene (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm^3), cooled to 0-5°C and nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-(4-fluorosulphonylphenylpropyl)-N-ethylaniline (0.01mol), methanol (50cm^3) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λ max of 593nm and gives good fastness to washing, light and heat.

The N-ethyl-N-(4-fluorosulphonylphenylpropyl) aniline was prepared as follows:

N-Ethylaniline (0.01mol), potassium carbonate (0.01mol), DMF ($50cm^3$) and 4-fluorosulphonylphenylpropyl bromide (0.2mol) were stirred at 100° C for 24 hours. The reaction mix was filtered, drowned onto ice and extracted with dichloromethane to give an impure product (25g). No further purification was required.

The 4-fluorosulphonylphenylpropylbromide was prepared as follows:

Phenylpropyl bromide (19.9g) was dissolved in chloroform (500mls) and chlorosulphonic acid (116g) added dropwise. Stirred for 12 hours at 40C then drowned onto ice (10kg). The white precipitate was collected, redissolved in dichloromethane, washed with water, dried over magnesium sulphate and evaporated to a pale yellow oil that crystallised on standing. Yield 15g. This solid was dissolved in p-dioxane (50mls) and

KF (10g) and refluxed for three hours. After cooling to ambient the reaction mixture was drowned onto ice (400g), extracted with dichloromethane (3x200mls), dried over magnesium sulphate and evaporated to a brown oil. Yield 9g.

Example 175

5

10

15

20

25

30

35

40

45

<u>Preparation of 4-(3-carboethoxy-5-nitrothien-2-ylazo)-N-(2-cyanoethyl)-N-(4-fluorcsulphonylphenyl) ethylaniline</u>

2-Amino-3-carboethoxy-5-nitrothiophene (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-(2-cyanoethyl)-N-(4-fluorosulphonyl phenylethyl)aniline (0.01mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λmax of 547nm and gives good fastness to washing, light and heat.

The N-(2-cyanoethyl)-N-(4-fluorosulphonylphenylethyl) aniline was prepared as follows:

N-(2-cyanoethyl)aniline (0.01mol), potassium carbonate (0.01mol), DMF (50cm^3) and 4-fluorosulphonylphenylethylbromide (0.mol) were stirred at $100\,^{\circ}\text{C}$ for 24 hours. The reaction mix was filtered, drowned onto ice and extracted with dichloromethane to give an impure product (25g). No further purification was required.

The 4-fluorosulphonylphenylethylbromide was prepared as follows:

Phenylethyl bromide (36.5g) was dissolved in chloroform (500mls) and chlorosulphonic acid (233g) added dropwise. Stirred for 12 hours at ambient then drowned onto ice (10kg). The white precipitate was collected, redissolved in dichloromethane, washed with water, dried over magnesium sulphate and evaporated to a pale yellow oil that crystallised on standing. Yield 40.8g. This solid was dissolved in p-dioxane (200mls) and KF (24.7g) and refluxed for three hours. After cooling to ambient the reaction mixture was drowned onto ice (700g), extracted with dichloromethane (3x200mls), dried over magnesium sulphate and evaporated to a brown oil. Yield 33.7g.

Example 176 Preparation of 4-(3,5-dinitrothien-2-ylazo)-N-ethyl-N-(4-fluorosulphonylphenyl) methyl aniline

2-Amino-3,5-dinitrothiophene (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-ethyl-N-(4-fluorosulphonylbenzyl)aniline (0.01mol), methanol (50cm³) and ice (50g). The resultant precipitate

10

15

20

25

30

35

was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λ max of 605nm and gives good fastness to washing, light and heat.

Example 177

Preparation of 4-(3,5-dinitrothien-2-ylazo)-N-ethyl-N-(4fluorosulphonylphenyl) propyl aniline

2-Amino-3,5-dinitrothiophene (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; $25cm^3$), cooled to 0-5°C and nitrosyl sulphuric acid (0.01 mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-ethyl-N-(4-fluorosulphonylphenylpropyl) aniline (0.01 mol), methanol (50cm 3) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λ max of 617nm and gives good fastness to washing, light and heat.

Example 178

Preparation of 4-(3,5-dinitrothien-2-ylazo-N-(2-cyanoethyl)-N-(4fluorosulphonylphenyl) ethyl aniline

2-Amino-3,5-dinitrothiophene (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; $25cm^3$), cooled to 0-5°C and nitrosyl sulphuric acid (0.01 mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-(2-cyanoethyl), N-(4-fluorosulphonylphenylethyl) aniline (0.01mol), methanol (50 cm^3) and ice (50g). The resultant precipitate was filtered, washed with water and methanol and oven dried at 50°C. The dry dye has a λ max of 580nm and gives good fastness to washing, light and heat.

The following examples of dyes of Formula:

$$O_2N$$
 S
 $N=N$
 R^3
 R^1
 $CH_2)_{\Pi}$
 SO_2F

were prepared using the procedure of Example 172, the 40 . fluorosulphonylphenylalkyl bromides were prepared as described in examples 172, 174 and 175 as appropriate.

10

15

20

25

30

35

40

EG	R ₇	R ₆	R ₃	R ₁	n	λmax/ nm
179	-COOC₂H₅	-H	-H.	- C ₂ H ₅	3	593
180	-COOC ₂ H ₅	-NHCOCH ₃	-н	-C ₂ H ₅	3	605.5
181	- COOC ₂ H ₅	-CH ₃	-H	-CH (CH ₃) CH ₂ CH ₃	3	614
182	-COOC ₂ H ₅	-CH ₃	-OCH ₃	-C ₄ H ₉	3	636
183	-COOC ₂ H ₅	-CH ₃	-OCH ₃	-C ₂ H ₅	3	631
184	- COOC ₂ H ₅	-CH ₃	-OCH ₃	-CH(CH ₃) ₂	1	594
185	-COOC₂H₅	-CH ₃	-OCH ₃	-C ₂ H _S	2	621.5
186	- COOC ₂ H ₅	-CH ₃	-OCH ₃	-н	2	595 ·
187	- COOC ₂ H ₅	-NHCOCH₃	-OCH ₃	-C ₂ H ₅	1	641
188	- COOC ₂ H ₅	-н	-H	- C ₄ H ₉	3	585
189	-NO ₂	-н	-н	-C ₄ H ₉	3	637

Example 190

<u>Preparation of 4-(2,4-dinitrophenylazo)-3-acetamido-6-methoxy-N-secbutyl-N-(4-fluorosulphonylphenyl)methyl aniline</u>

2,4-Dinitroaniline (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N-(4-fluorosulphonylbenzyl)-N-sec butylamino)-4-methoxyacetanilide (0.01mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a \$\lambda\$max of 575nm and gives good fastness to washing, light and heat.

The 3-(N-(4-fluorosulphonylbenzyl)-N-sec-butylamino)-4-methoxyacetanilide was prepared as follows:

3-(N-sec-butyl)amino-4-methoxyacetanilide, potassium carbonate (0.01mol), DMF (50cm³) and 4-fluorosulphonylbenzyl bromide (0.2mol) were stirred at 100°C for 24 hours. The reaction mix was filtered, drowned onto ice and extracted with dichloromethane to give an impure product (22g). No further purification was required.

Example 191

Preparation of 4-(2,4-dinitro-6-bromophenylazo)-3-acetamido-6-methoxy-N-secbutyl-N-(4-fluorosulphonylphenyl)methyl aniline

2,4-Dinitro-6-bromoaniline (0.01mol) was dispersed in a mixture of acetic:propionic acid (86:14; $25cm^3$), cooled to 0-5°C and

10

15

20

25

30

35

40

nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N-(4-fluorosulphonylbenzyl)-N-sec butylamino)-4-methoxyacetanilide (0.01mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The dry dye has a λ max of 594nm and gives good fastness to washing, light and heat.

Example 192

Preparation of 4-(2,4-dinitro-6-cyanophenylazo)-3-acetamido-6-methoxy-N-secbutyl-N-(4-fluorosulphonylphenyl)methyl aniline

The dye from Example 191 (2.2mmol) was dissolved in DMF (30cm³) and CuCN (0.2g) and stirred at 60°C for 1 hour. The reaction mix was drowned onto ice and the precipitate filtered. The dried filter cake was slurried in dichloromethane, filtered and the filtrate evaporated to a solid dye with λ max of 642nm.

Example 193

Preparation of 4-(2,4-dinitro-6-chlorophenylazo)-3-methyl-6-methoxy-N-n-butyl-N-(4-fluorosulphonylphenyl)n-propyl aniline

The method of Example 191 was used except that 2,4-dinitro-6-chloroaniline (0.01 mol) was used in place of the 2,4-dinitro-6-bromoaniline and 3-(N-(4-fluorosulphonylphenyl)propyl-N-n-butyl-6-methoxy)toludine(0.01 mol) was used in place of the 3-(N-(4-fluorosulphonylbenzyl)-N-secbutyl-4-methoxyacetanlide. The dye has a lax of 586.5nm and gives good fastness to washing, light and heat.

Example 194

Preparation of 4-(2,4-dinitrophenylazo)-3-methyl-N-ethyl-N-(4-(3-fluorosulphonylbenzoyloxyl)n-butyl) aniline

2,4-Dinitroaniline (0.01mol) was dispersed in a mixture of acetic: propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the N-ethyl-N-hydroxybutyl-3-toluidine (0.01mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The hydroxy dye (5 mmol) was dissolved in chloroform (20 cm³), potassium carbonate (0.7g) and m-(sulphonylfluoride) benzoyl chloride (1.2g) and refluxed for 2 hours. The reaction mix was filtered and the filtrate evaporated to yield a solid violet dye which gives good fastness to washing, light and heat.

45 Example 195 Preparation

Preparation of 4-(2,4-dinitro-6-bromophenylazo)-3-acetamido-N-n-propyl-N-(3-fluorosulphonylbenzoyloxy)ethyl aniline

2,4-Dinitro-6-bromoaniline (0.01mol) was dispersed in a

10

15

20

25

30

35

40

45

mixture of acetic:propionic acid (86:14; 25cm³), cooled to 0-5°C and nitrosyl sulphuric acid (0.01mol) added portionwise at 0-5°C. The reaction mixture was stirred for 10 minutes at 0-5°C then added dropwise to a mixture of the 3-(N-propyl-N-hydroxyethyl) acetanilide (0.01mol), methanol (50cm³) and ice (50g). The resultant precipitate was filtered washed with water and then methanol and oven dried at 50°C. The hydroxy dye (5mmol) was dissolved in chloroform (20cm³), potassium carbonate (0.7g) and m-(sulphonylfluoride) benzoyl chloride (1.2g) and refluxed for 2 hours. The reaction mix was filtered and the filtrate evaporated to yield a solid dye (λ max 552nm) which gives good fastness to washing, light and heat.

Example 196 Preparation of 4-(2-chloro-5-fluorosulphonylphenylazo)-N-ethyl-N- benzyl aniline

3-Amino-4-chloro benzene sulphonyl fluoride (2 parts) was stirred in acetic/propionic acid 86/14 vol/vol (25 parts) and cooled to 0-5°C. Nitrosyl sulphuric acid solution (3.8 parts) was added dropwise at 0-5°C and stirred under these conditions for 2 hours. The diazo solution was then added to a mixture of N-ethyl-N-benzyl aniline (2.7 parts), methanol (100 parts) and sulphamic acid (1 part) stirring at 0-5°C. After stirring under these conditions for 30 mins, ice/water (100 parts) was added and the mixture stirred for a further 1 hour. The product was isolated by filtration, washed with water and pulled dry. The damp solid was then slurried in methanol (100 parts) and refiltered. Dried at 50°C to yield 4-(2-chloro-5-fluorosulphonyl phenyl azo)-N-ethyl-N-benzyl aniline (2.3 parts).

When applied to polyester materials from an aqueous dispersion, the dye gave yellow shades. λ max 463nm. The following examples of dyes of Formula:

FO₂S
$$R^4$$
 R^4
 R^2

were prepared by the procedure of Example 196:

Example	R ¹ .	R ²	R ⁴	lmax/nm
197	-C ₂ H ₄ CN	-C ₂ H ₄ CN	-н	421
198	-C ₂ H ₄ CN	-C ₂ H ₄ COOCH ₂ CN	-н	429
198	-C ₂ H ₄ CN	-C ₂ H ₄ CN	-CH ₃	429
200	-C ₂ H ₄ CN	-C ₂ H ₄ COOC ₂ H ₅	-NHCOCH,	466
201	-C ₂ H ₄ OCOCH ₃	-C ₂ H ₄ OCOCH ₃	-NHCOCH,	473
202	-C ₂ H ₅	-C ₂ H ₄ CN	-н	442
203	- C ₂ H ₅	-C ₂ H ₄ CN	-CH ₃	466
204	-C ₄ H ₉	-C ₂ H ₄ CN	-н	444
205	-C4H6OCOCH3	-C ₄ H ₈ OCOCH ₃	-CH ₃	477
206	- C ₂ H ₅	-CH₂phenyl	- CH ₃	469

15 <u>Example 207</u>.

5

10

20

25

30

35

40

45

Preparation of 4-(2-chloro-4-fluorosulphonylphenylazo)-N-ethyl-N-benzyl aniline

3-Chloro-4-amino benzene sulphonylfluoride (1 part) was stirred in acetic/propionic acid 86/14 vol/vol (15 parts) and cooled to 0-5°C. Nitrosyl sulphuric acid solution (1.9 parts) was added dropwise then stirred at 0-5°C for 2 hours. The diazo solution was then added to a stirred mixture of N-ethyl-N-benzyl aniline (2.0 parts), methanol (50 parts), sulphamic acid (0.5 parts) and sodium acetate (5 parts) with ice/water (100 parts) at 0-5°C. After stirring under these conditions for 1 hour, the dye was filtered off and washed well with water. The damp solid was slurried in methanol (100 parts) and re-filtered. Dried at 50°C to yield the product 4-(2-chloro-4-fluorosulphonyl phenylazo)-N-ethyl-N-benzyl aniline (1.5 parts). When applied to polyester materials from an aqueous dispersion the dye gave orange shades. Amax 483nm

Example 208

Preparation of 4-(2-chloro-4-fluorosulphonylphenylazo)-3-acetamido-N,N-bis(2-acetoxyethyl) aniline

The procedure of Example 207 was repeated except that in place of 2 parts of N-ethyl-N-benzyl aniline; 2 parts of N,N-bis(2-acetoxyethyl) aminoacetanilide were used to yield the product, 4-(2-chloro-4-fluorosulphonyl phenylazo)-3-acetamido-N,N-bis(2-acetoxyethyl) aniline (1.2 parts). When applied to polyester materials from an aqueous dispersion, the dye gave crange shades. \(\lambda\text{max 494nm.}\)

Example 209

Preparation of 4-(2-methoxy-5-fluorosulphonylphenylazo)-3-methyl-N-ethyl-N-benzyl aniline

3-Amino-4-methoxy benzene sulphonylfluoride (1 part) was stirred in acetic/propionic acid 86/14 vol/vol (15 parts) and cooled to

10

15

20

25

30

35

4 n

0-5°C. Nitrosyl sulphuric acid solution (1.9 parts) was dropwise and stirred at 0-5°C for 2 hours. The diazo solution was then added to a stirred mixture of N-ethyl-N-benzyl-m-toluidine (1.3 parts), methanol (50 parts), sulphamic acid (0.5 parts) and sodium acetate (5 parts) stirring in ice/water at 0-5°C. After stirring for 2 hours under these conditions, the dye was filtered off and washed well with water. The damp solid was slurried in water and re-filtered. The dye was then stirred in methanol at room temperature for 1 hour, filtered, and dried at 50°C to yield the product, 4-(2-methoxy-5-fluorosulphonyl phenylazo)-3-methyl-N-ethyl-N-benzyl aniline (1.5 parts). When applied to polyester materials from an aqueous dispersion, the dye gave yellow shades. λmax 450.

The following examples of dyes of Formula:

$$OCH_3$$
 R^4
 $N=N-N$
 R

were prepared by the procedure of Example 209:

Example	R ¹	R ²	R ⁴	λmax/nm
210	-C₄H ₈ OCOCH₃	-C4H6OCOCH3	- CH ₃	455
211	-C ₂ H ₅	-C ₂ H ₄ CN	-н	449
212	- C ₂ H ₅	-н	-CH₃	429
213	-C ₂ H ₅	-CH ₂ phenyl	-н	444

Example 214 Preparation of 4-(4-chloro-5-fluorosulphonylphenylazo)-N,N-bis (2-cyanoethyl) aniline

- i) 2-Chloro-5-nitro benzene sulphonic acid (484 parts) was charged to a flask then quickly added thionyl chloride (1190 parts) and dimethyl formamide (12 parts). The resultant slurry was heated to 60°C and stirred at 60-65°C for a total of 5 hours. The mixture was cooled to room temperature then poured onto ice/water. The precipitated solid was filtered off and washed with cold water before drying in vac oven to yield the product 2-chloro-5-nitro benzene sulphonylchloride (395 parts).
- ii) 2-Chloro-5-nitro benzene sulphonylchloride (40 parts) was stirred in p-dioxane (48 parts) at room temperature. Potassium fluoride

10

15

20

25

30

35

(10 parts) dissolved in water (35 parts) was added, and the mixture heated to 70°C. Stirred at 70°C for 4 hours then cooled to room temperature and poured onto ice/water. Allowed to stand for 2 days then filtered off the precipitate and dried in air to yield the product 2-chloro-5-nitro benzene sulphonylfluoride (36 parts).

iii) The 2-chloro-5-nitro benzene sulphonylfluoride (2.4 parts) was stirred in glacial acetic acid (25 parts) with iron powder (2 parts). Heated to reflux and stirred at reflux for 2.5 hours, then cooled to room temperature, poured onto ice/water and allowed to stand at room temperature overnight. The resultant precipitate was filtered off and dried in air to yield the product 2-chloro-5-amino benzene sulphonylfluoride (0.8 parts).

iv) 2-Chloro-5-amino benzene sulphonylfluoride (2.1 parts) was stirred in acetic/propionic acid 86/14 vol/vol (25 parts) and cooled to 0-5°C. Nitrosyl sulphuric acid solution (3.8 parts) was added and stirred at 0-5°C for 3 hours. The diazo solution was then added to a mixture of N,N-bis(2-cyanoethyl) aniline (2.1 parts), methanol (75 parts) and sulphamic acid (1 part) stirring in ice/water (75 parts) at 0-5°C. Stirred under these conditions for 1 hour then allowed to stand at room temperature overnight before filtering off the dye. The solid was dried overnight to yield the product 4-(4-chloro-5-fluorosulphonyl phenylazo)-N,N-bis(2-cyanoethyl) aniline (3.6 parts). The dye, when applied to polyester material from an aqueous dispersion, gave yellow shades. Amax 414nm.

The following Examples of dyes of Formula:

$$R^4$$
 $N=N$
 R^2
 R^2

were prepared by the procedure of Example 214:

15

20

25

30 -

35

40

Example	R1 ·	R ²	R ⁴	λmax/nm
215	-C₂H₄OCOCH₃	- C₂H₄OCOCH₃	-NHCOCH ₃	476
216	- C ₂ H ₄ CN	-C ₂ H ₄ COOC ₂ H ₅	-NHCOCH3	466
217	-C ₂ H ₄ CN	-C ₂ H ₄ CN	- CH ₃	421
218	- C ₂ H ₅	-CH ₂ phenyl	-н	459
219	-C ₂ H ₄ CN	-C2H4COOCH2CN	-н	421

Example 220
Preparation of 4-(3-nitro-5-fluorosulphonylthien-2-ylazo)-3-acetamidoN.N-diethylamino) aniline

i) 2-Chlorosulphonyl-5-chlorothiophene (19.8 parts) was added to fuming nitric acid (80 parts), allowing to exotherm to 35°C. Heated to 50°C and stirred under these conditions for 2 hours. Cooled to room temperature then poured onto ice/water with vigorous stirring. The white solid was filtered off and dried to yield the product 2-chlorosulphonyl-4-nitro-5-chlorothiophene (19 parts).

2-Chlorosulphonyl-4-nitro-5-chlorothiophene (20.1 parts) were stirred in p-dioxane (80 parts) at room temperature. Potassium flucride (5.2 parts) in water (20 parts) was added and the mixture heated to 50°C. Stirred under these conditions for 4 hours, then cooled and poured onto ice/water. Ethyl acetate was then added to extract the product and separated. Dried over magnessium sulphate then screened and concentrated to yield the product 2-fluorosulphonyl-4-nitro-5-chloro thiophene (20.4 parts).

The 2-fluorosulphonyl-4-nitro-5-chlorothiophene (20.4 parts), was added to methanol (240 parts) with hexamine (22.5 parts). Heated to reflux and stirred under these conditions for 4 hours. Cooled to room temperature and poured onto 10% sulphuric acid solution (250 parts). The product was extracted out with ethyl acetate, separated and dried over magnessium sulphate, then screened and concentrated to yield the product 2-fluorosulphonyl-4-nitro-2-aminothiophene (16 parts).

2-Fluorosulphonyl-4-nitro-5-aminothiophene (4.2 parts) was added over 30 mins to a stirred solution of acetic/propionic acid 86/14 vol/vol (60 parts) with nitrosyl sulphuric acid solution (10 parts) at 0-5°C. Stirred under these conditions for 4 hours. The diazo solution was then added to a mixture of 3-N,N-diethyl aminoacetanilide (4.2 parts), water (40 parts), methanol (15 parts), and sulphamic acid (1 part) stirring in 50% sulphuric acid solution at 0-5°C. Stirred under these conditions for 45 mins then filtered off the dye and washed well

10

15

20

25

30

35

40

45

with water. Dried in the oven overnight to yield the product 4-(3nitro-5-fluorosulphonylthien-2-ylazo)-3-acetamido-N,N-(diethylamino) aniline (0.6 parts). When applied to polyester materials from an aqueous dispersion, the dye gave blue shades. λ max 615nm.

Example 221

Preparation of 4-(3-nitro-5-fluorosulphonylthien-2-ylazo)-3-methyl-N,Ndiethylaminoaniline

The procedure of Example 220iv) was repeated except that in place of the 3-N,N-diethylaminoacetanilide 0.4 parts of 3-methyl-N,Ndiethylaminoaniline was used to yield 4-(3-nitro-5-fluorosulphonylthien-2-ylazo)-3-methyl-N,N-diethylaminoaniline (0.3 parts). When applied to polyester materials from an aqueous dispersion the dye gave blue shades. λmax 629nm.

General Method for the Preparation of Dye Examples 222 - 238

i) Preparation of 2-nitro-4-fluorosulphonylaniline

N-acetyl sulphanilyl chloride (100g) was dissolved in concentrated sulphuric acid (515 cm³), cooled to 4°C and a mixture of concentrated nitric acid $(38.6\ cm^3)$ and concentrated sulphuric acid (42.9 \mbox{cm}^3) added dropwise maintaining the temperature at 4-6°C. After 1 hour the reaction mix was drowned onto ice and the precipitate collected, extracted into dichloromethane and evaporated to a yellow solid (92g). 31g of this yellow solid was refluxed for 3 hours in water (20 $\mbox{cm}^3)\,,$ p-dioxane (20 $\mbox{cm}^3)$ and KF (19.4g) then drowned onto ice and the precipitate collected. This precipitate was refluxed in absolute ethanol (35 $\,\mathrm{cm}^3$) and concentrated hydrochloric acid (35 $\,\mathrm{cm}^3$) for 1 hour then drowned onto ice, filtered and suction dried. Recrystallisation from ethanol yielded 8.7g of the required compound.

ii) Preparation of 2-nitro-4-fluorosulphonyl-6-chloroaniline

2-Nitro-5-chloracetanilide (10g) was added cautiously to chlorosulphonic acid (40cm 3) then heated at 120°C for 2 hours. The reaction mix was cooled to 50°C and drowned onto ice. The precipitate was filtered, washed with a little water and suction dried. This solid was dispersed in water (20cm 3), p-dioxane (20cm 3) and KF (10g). After refluxing for 2 hours the reaction mix was drowned into water, the precipitate filtered and suction dried. This solid was refluxed in water $(50cm^3)$ and 36% HCl $(50cm^3)$ for 1 hour, drowned onto ice and the precipitate collected. Yield 3.5g. 2-Nitro-4-fluorosulphonylaniline (0.01mol) (for dyes 222-230) or 2nitro-6-chloro-4-fluorosulphonyl-aniline (0.01mol) (for dyes 231-238) was dispersed in a mixture of acetic:propionic acid (86:14) (25ml) and cooled to 0-5°C and nitrosylsulphuric acid (0.01mol) was then added

15

20

25

30

35

portionwise at $0-5^{\circ}$ C. The reaction mixture was stirred for 10 min. at $0-5^{\circ}$ C and then added dropwise to a mixture of the required coupler (0.01mol), methanol (50ml) and ice (50g) maintaining the acidity between pH3 and pH5 by addition of sodium acetate. The resultant precipitate was filtered, washed with water and then methanol 1:1 water and dried in air. The dry dye, when applied to polyester as an aqueous dispersion, gave good fastness to washing, light and heat.

(i) Preparation of Couplers for Dye Examples 222 - 224, 226, 229 and 231 - 235 - Method 1:

Dye Examples 222 - 224, 226, 229 and 231 - 235 were prepared from the appropriate N,N-dialkyl-(3-ethylsuccinamido-6-methoxy)aniline coupling components which were prepared according to the following method. A mixture of 3-(N,N-dialkyl)-4-methoxyaniline (0.01mol), ethylsuccinyl chloride (0.01mol) and pyridine (0.01mol) in dichloromethane (50ml) was stirred and heated under gentle reflux for 4h and then allowed to cool and was then drowned out into water. The resulting product was extracted into dichloromethane, dried (MgSO₄) and evaporated to dryness in vacuo to yield the required coupler as a brown oil.

(ii) Preparation of Couplers for Dye Examples 225, 227, 228, 230 and 236 - 238 - Method 2:

Dye Examples 225, 227, 228, 230 and 236 - 238 were prepared from the appropriate N,N-dialkyl-(3-ethylsuccinamido-6-methoxy)aniline coupling components which were prepared according to the following method. A mixture of 3-(N,N-dialkylamino)-4-methoxyaniline (0.01mol) and succinic anhydride (0.01mol) in anhydrous toluene (50ml) was stirred for 1.5h and then evaporated to dryness in vacuo to give a brown gum. The brown gum (the carboxylic acid intermediate) was esterified by treatment with an appropriate alcohol (0.1mol) and conc. sulphuric acid (1ml) at 100°C for 1h and was then allowed to cool. The mixture was drowned out into water and the product was extracted into ethyl acetate, dried (MgSO₄) and evaporated to dryness in vacuo to yield the required coupler as a brown oil.

Dye Examples 222 - 238 are summarised below:-

25

30

35

40

5
$$10$$

$$FO_{2}S$$

$$R^{14}$$

$$O-R^{22}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{2}$$

$$NO_{3}$$

$$R^{1}$$

$$R^{2}$$

$$OCH_{3}$$

Example	R14	R1	R ²	R ²²	max/nm
					ē
222	-н	-C₃H,	-C ₃ H ₇	-C ₂ H ₅	592
223	-н	- C ₂ H ₅	-C ₂ H ₅	-C ₂ H ₅	590
224	- H	-C₄H,	-C4H9	-C ₂ H ₅	594
225	-н	-C ₂ H ₅	-C ₂ H ₅	-C ₄ H ₉	591
226	-Н	- C ₂ H ₅	-CH ₂ phenyl	-C ₂ H ₅	585
227	-H	-C ₂ H ₅	-C ₂ H ₅	-CH (CH ₃) CH ₂ CH (CH ₃) 2	590
228	-H	C ₂ H ₅	-C ₂ H ₅	-CH ₂ phenyl	591
229	- H	- C ₂ H ₅	-C ₂ H ₄ phenyl	-C ₂ H ₅	588
230	-H	-C ₂ H ₅	-C ₂ H ₅	-CH ₂ (tetrahydrofuran-2-yl)	590
231 .	-C1	-C ₂ H ₇	-C ₃ H ₇	- C ₂ H ₅	609
232	-C1	-C ₂ H ₅	-CH₂phenyl	-C ₂ H ₅	601
233	-Cl	- C₄H,	- C ₄ H ₉	- C ₂ H ₅	610
234	-C1	-C ₂ H ₅	-C ₂ H ₅	-C ₂ H ₅	607
235	-C1	- C ₂ H ₅	-CH(CH ₃)CH ₂ CH ₃	-C₂H₅	606
236	-C1	-C ₂ H ₅	- C ₂ H ₅	-C ₄ H ₉	607
237	-C1	-C ₂ H ₅	- C ₂ H ₅	-CH(CH ₃)CH ₂ CH(CH ₃) ₂	607
238	-Cl	-C ₂ H ₅	- C ₂ H ₅	-CH ₂ phenyl	607

Preparation of Dye Examples 239 - 246

Dye Examples 239 - 246 were prepared using the same general method as was used for the preparation of dye examples 222 - 238. The dyes, when applied to polyester as aqueous dispersions, gave good fastness to washing light and heat.

The couplers for dye Examples 239, 240 and 246 were prepared from 3-(N,N-diethylamino)-4-methoxyaniline according to the method 1 using acetylsalicoyl chloride (0.01mol) in place of ethylsuccinyl chloride.

5

The coupler for dye Example 241 was prepared from 3-(N,N-diethylamino)-4-methoxyaniline according to the method 1 using butylchloroformate (0.01mol) in place of ethylsuccinyl chloride. The coupler for dye Example 242 was prepared from 3-(N,N-diethylamino)-4-methoxyaniline according to the method 1 using ethylmalonyl chloride (0.01mol) in place of ethylsuccinyl chloride.

10

The coupler for dye Example 243 was prepared from 3-(N,N-diethylamino)-4-methoxyaniline according to the method 2 using maleic anhydride (0.01mol) in place of succinic anhydride and ethanol as the esterifying alcohol.

15

The coupler for dye Example 244 was prepared from 3-(N,N-diethylamino)-4-methoxyaniline according to the method 2 using 2,2-dimethylsuccinic anhydride (0.01mol) in place of succinic anhydride and ethanol as the esterifying alcohol.

20

The coupler for dye Example 245 was prepared from 3-(N,N-diethylamino)-4-methoxyaniline according to the method 1 using 4-methoxycarbonylphenylchloroformate (0.01mol) in place of ethylsuccinyl chloride.

Dye Examples 239 - 246 are summarised below :-

25

30

10

15

20

25

30

40

45

Example	R14	R ²³	l _{max} /nm
239	-H	2-OCOCH ₃ phenyl	598
240	-H	2-OHphenyl	590
241	-н	-OC ₄ H ₉	587
242	-н	-CH ₂ COOC ₂ H ₅	591
243	-н	- CH=CHCOOC ₂ H ₅	596
244	-н	-CH ₂ C(CH ₃) ₂ COOC ₂ H ₅	592
245	-н	4-COOCH ₃ phenyl	573
246	-C1	4-OCOCH,phenyl	601

Example 247

Preparation of 5-(2,5-dichloro-4-fluorosulphonylphenylazo)-4,6-<u>diaminopropylthiopyrimidine</u>

The procedure of Example 1 was repeated except that in place of the 1.6 parts of N,N-bis-(2-cyanoethyl)aniline; 1.5 parts of 4,6diamino-2-propylthiopyrimidine were used. The product, 5-(2,5-dichloro-4-fluorosulphonylphenylazo)-4,6-diaminopropylthiopyrimidine (3.4 parts) λ max=420nm, when applied to polyester materials from an aqueous dispersion gives bright yellow shades with excellent fastness to light and wet treatments.

Example 248

Preparation of 4-(2,5-dichloro-4-fluorosulphonylphenylazo)-3-chloro-Nethyl, N-methylphthalimidoaniline

The procedure of Example 1 was repeated except that in place of the 1.6 parts of N,N-bis-(2-cyanoethyl)aniline; 2.6 parts of 3chloro-N-ethyl,N-methylphthalimidoaniline were used. The product, 4-(2,5-dichloro-4-fluorosulphonylphenylazo)-3-chloro-N-ethyl,Nmethylphthalimidoaniline (4.0 parts) λ max=455nm, when applied to polyester materials from an aqueous dispersion gives orange shades with excellent fastness to light and wet treatments.

35 Example 249

Preparation of 4-(2,5-dichloro-4-fluorosulphonylphenylazo)-3methylmorpholinobenzene

The procedure of Example 1 was repeated except that in place of the 1.6 parts of N,N-bis-(2-cyanoethyl)aniline; 1.5 parts of 3methylmorpholinobenzene were used. The product, 4-(2,5-dichloro-4flucrosulphonylphenylazo)-3-methylmorpholinobenzene (1.9 parts) λ max=480nm, when applied to polyester materials from an aqueous dispersion gives dull bluish red shades with excellent fastness to light and wet treatments.

10

15

20 -

25

Example 250

Preparation of 4-(2-nitro-4-fluorosulphonyl-6-chlorophenylazo)-1-(N-ethylamino)naphthalene

The procedure of Example 139 was used expect that 1-(N-ethylamino) naphthalene (7.86 nmol) was used in place of the 3-(N,N-diethylamino) acetanilide. The dye has a λ_{max} of 571 nm.

Example 251

Preparation of 4-(2-nitro-4-fluorosulphonyl-6-chlorophenylazo)-1-(N-ethyl-N-n-propylamino)naphthalene

The procedure of Example 139 was used except that 1-(N-ethyl-N-n-proylamino) naphthalene was used in place of the 3-(N,N-diethylamino) acetanilide. The dye has a λ_{max} of 578nm.

Example 252

Preparation of 4-(4,8-difluorosulphonylnaphth-2-ylazo)N,N-diethylaniline

To a mixture of 2-amino-4,8difluorosulphonylnaphthalene (1.6 parts) and acetic/propionic acid mixture (20 parts, 86/14 vol/vol), stirring at 0.5°C, was added dropwise nitrosyl sulphuric acid soln (1.5 parts). The mixture was stirred at this temperature for a further 15 mins.

The diazo solution was added to a mixture of N,N-diethylaniline (0.9 parts), methanol (50 parts) and sulphamic acid (0.5 parts); stirring at 0.5°C. After stirring for 2 hours at this temperature, the product was isolated by filtration, washed with water and dried at 50°C to yield; 4-(4.8-difluorosulphonylnaphthyl-2-azo)-N,N-diethylaniline (1.6 parts). When applied to polyester materials from an aqueous dispersion, the dye gives red shades with excellent fastness to wet treatments. λ max of 500nm. The following Examples of dyes of Formula:

35

40

30

$$SO_2F$$
 $N=N$
 R^1
 SO_2F
 R^2

were prepared by the procedure of Example 252:

Example	R ¹	R ²	R ⁴	λmax
253	-C₄H,	-C4H9	н	509
254	- C ₂ H ₅	-C ₂ H ₅	- CH ₃	519
255	-C ₂ H ₅	- C ₂ H ₅	-NHCOCH ₃	530
256	-C ₂ H ₄ CN	-C ₂ H ₄ CN	-н	460

10 <u>Example 257</u>

5

15

20

25

30

35

40

45

Preparation of 4-(2-cyan-4-nitrophenylazo)-N-ethyl-N-2-(4-fluorosulphonylphenoxy)ethylaniline

To a mixture of 2-cyano-4-nitroaniline (1.5 parts) and acetic/propionic acid mixture (10 parts, 86/14 vol/vol), stirring at 0.5°C, was added dropwise nitrosyl sulphuric acid soln (2.0 parts). The mixture was stirred at this temperature for a further 30 mins.

The diazo solution was added to a mixture of N-ethyl,N-2-(4-fluorosulphonylphenoxyl)-ethylaniline (3.0 parts), methanol (50 parts) and sulphamic acid (0.5 parts); stirring at 0.5°C. After stirring for 2 hours at this temperature, the product was isolated by filtration, washed with water and dried at 50°C to yield; 4-(2-cyano-4-nitrophenylazo)-N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethylaniline (3.0 parts). When applied to polyester materials from an aqueous dispersion, the dye gives bluish red shades with excellent light fastness and excellent fastness to wet treatments. \(\lambda\text{max}\) of 530nm.

Example 258

Preparation of 4-(3-acetyl-5-nitrothien-2-ylazo)-N-ethyl-N-2-(4-fluorosulphonylphenyoxy) ethylaniline

The procedure of Example 257 was repeated except that in place of the 1.5 parts of 2-cyano-4-nitroaniline; 1.7 parts of 2-amino-3-acetyl-5-notrothiophene were used. The product $4-(3-acetyl-5-notrothienyl-2-azo)-N-ethyl,N-2-(4-fluorosulphonylphenoxy) ethylaniline (2.0 parts) when applied to polyester materials from an aqueous dispersion gives reddish blue shades with excellent fastness to light and wet treatments. <math>\lambda$ max of 590nm.

Example 259

Preparation of 4-(2-chloro-4-nitrophenylazo)-3-methyl-N-ethyl-N-2-(4-fluorosulphonylphenoxy)ethylaniline

To chlorosulphonic acid (17.5 parts) stirring at 0.5° C, was added gradually 3-methyl-4-(2-chloro-4-nitrophenylazo)-N-ethyl,N-2-phenoxyethylaniline (8.0 parts). Thionyl chloride (5.4 parts) was added and the mixture was stirred at 0.5° C for 2 hours. The reaction mixture was drowned into ice/water (500 parts), the product was isolated

10

15

20

25

30

35

40

45

by filtration and washed acid-free with cold water.

The filter cake was set stirring with 1,4-dioxan (40 parts) and a solution of potassium fluoride (1.8 parts) in water (10 parts) was added. The mixture was heated at 60° C for 3 hours, cooled to ambient and the product was isolated by filtration to yield; 3-methyl-4-(2-chloro-4-nitrophenylazo)-N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethylaniline (4.5 parts).

The product when applied to polyester materials from an aqueous dispersion gives mid red shades with excellent fastness to light and wet treatments. λ max of 510nm.

Example 260

<u>Preparation of 4-(6-thiocyanatobenzothiazol-2-ylazo)-N-ethyl-N-2-(4-fluorosulphonylphenoxy)ethylaniline</u>

The procedure of Example 257 was repeated except that in place of the 1.5 parts of 2-cyano-4-nitroaniline; 1.9 parts of 2-amino-6-thiocyanatobenzthiazole were used.

The product, 4-(6-thiocyanatobenzthiazolyl-2-azo)-N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethylaniline (1.4 parts) when applied to polyester materials from an aqueous dispersion gives bluish red shades with excellent fastness to light and wet treatments. λ max of 522nm.

Example 261

Preparation of 4-(2,6-dichloro-4-nitrophenylazo)-N-ethyl-N-2-(4-fluorosulphonylphenoxy)ethylaniline

The procedure of Example 257 was repeated except that in place of the 1.5 parts of 2-cyano-4-nitroaniline; 1.9 parts of 2-amino-6-thiocyanatobenzthiazole were used.

The product, 4-(6-thiocyanatobenzthiazolyl-2-azo)-N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethylaniline (1.4 parts) when applied to polyester materials from an aqueous dispersion gives bluish red shade with excellent fastness to light and wet treatments. λ max of 522nm.

Example 262

<u>Preparation of 4-(6-thiocyanatobenzothiazol-2-ylazo)-3-methyl-N-ethyl-N-2-(4-fluorosulphonylphenoxy)ethylaniline</u>

The procedure of Example 257 was repeated except that in place of the 3.0 parts of N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethylaniline, 3.1 parts of N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethyl-m-toluidine were used.

The product, 3-methyl-4-(6-thiocyanatobenzthiazolyl-2-azo)-N-ethyl,N-2-(4-fluorosulphonylphenoxy)ethylaniline (1.7 parts) when applied to polyester materials from an aqueous dispersion gives violet shades with excellent fastness to light and wet treatments. λ max of 540nm.

Examples 263 and 264

Dyes prepared by the procedure described for Example 139 but using the 1-naphthylamine in place of 3-(N,N-diethylamino) acetanilide are of Formula:

5

$$R^{1}$$
 R^{2}
 R^{2}

10

15

20

25

30

35

40

Example	R ₁	R ₂	_{max} /nm .
263	C ₂ H ₅	н	
264	C ₂ H ₅	C ₃ H ₇	571

Example 265

Preparation of 1-n-butyl-5(2,5-dichloro-4-fluorosulphonylphenylazo)-3-Cyano-6-hydroxy-4-methyl-2-oxo-IH-pyridine

The procedure of Example 1 was repeated except that in place of the 3.0g of 3-methyl-N-ethyl-N-(2-benzoyloxyethyl)aniline, 1.8g of 1-n-butyl-3-cyano-6-hydroxy-4-methyl-2-oxo-IH-pyridine were used. The product 1-n-butyl-5(2,5-dichloro-4-fluorosulphonylphenylazo)-3-cyano-6-hydroxy-4-methyl-2-oxo-IH-pyridine (2.5g) when applied to polyester materials from aqueous dispersion gives greenish yellow shades with excellent wet and light fastness properties. \$\lambda max=435nm.

Example 266

Preparation of 1-phenyl-3-t-butyl-5-amino-4-(2,5-dichloro-4-fluorosulphonylphenylazo) pyrazole

The procedure of Example 1 was repeated except that in place of the 3.0g of 3-methyl-N-ethyl-N-(2-benzoyloxyethyl)aniline, 1.5g of 1-phenyl-3-t-butyl-5-aminopyrazole were used. The product 1-phenyl-3-t-butyl-5-amino-4-(2,5-dichloro-4-fluorosulphonylphenylazo) pyrazole (2.1g) when applied to polyester materials form aqueous dispersion gives greenish yellow shades with excellent wet and light fastness properties. \$\lambda \text{max} = 442nm.

10

15

20

35

60

Examples 267-278

The dyes of the following formulae may be made by the procedure of Example 1 by diazotising the appropriate amine and coupling onto the appropriate coupling component :-

Example 267

NHCOCH₃

$$N = N$$

$$N = N$$

$$C_2H_5$$

$$C_2H_5$$

Example 268

 NO_2 H_3C C_2H_5 N=N SO_2F

Example 269

NHCOCH₃ $O_2N \longrightarrow N = N \longrightarrow N$ $N = N \longrightarrow N$ SO_2F SO_2F

Example 270

10

25

30

35

40

45

60

Example 271

$$C_2H_5S$$
 S
 $N-N$
 $N+COCH_3$
 C_2H_5
 C_2H_5

Example 272

C₂H₅S NHCOCH₃

$$C_2H_6$$
 C_2H_6

Example 273

$$FO_2S$$
 OCH_3 NH OCH_3 NH OCH_3 OC

Example 274

FO₂S
$$\longrightarrow$$
 N=N \longrightarrow CH₃

Example 275

15

30

Example 276

Example 277

FO₂S
$$\longrightarrow$$
 N=N \longrightarrow NHCH(CH₃)₂

Example 278

CLAIMS

1. A process for colouring a synthetic textile material or fibre blend thereof which comprises applying to the synthetic textile material a compound or mixture thereof, which is free from water solubilising groups, of Formula (1):

A-N=N-D

10

15

5

Formula (1)

wherein:

A and D each independently is an optionally substituted heterocyclic or carbocyclic group and

at least one of A or D carries directly at least one $-SO_2F$ group or carries a substituent to which at least one $-SO_2F$ group is attached except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline, provided that one of A or D is not 3,5-difluorosulphonylthien-2-yl, optionally substituted 1-phenyl-pyrazol-4-yl-5-one or

20

25

or that one of A or D does not carry an -NCH2CH(OH)CH2Cl, -NCOCH2Cl or -NCH2CH2SO2F substituent.

30

35

- 2. A process for colouring a synthetic textile material or fibre blend thereof which comprises applying to the synthetic textile material a compound or mixture thereof, which is free from water solubilising groups, of Formula (1) wherein A and D each independently is an optionally substituted heterocyclic or carbocyclic group in which at least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached and at least one of A or D carries directly at least one ester group or carries a substituent to which at least one ester group is attached.
- 40
- 3. A process for colouring a polyester textile material or fibre blend thereof which comprises applying to the polyester textile material a compound or mixture thereof, which is free from water solubilising groups, of Formula (1) in which A and D are as herein before defined except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline, provided that one of A or D is not 3,5-

10

15

20

30

35

40

difluorosulphonylthien-2-yl, optionally substituted 1-phenylpyrazol-4-yl-5-one or 4-nitro-2-fluorosulphonylphenyl or that one of A or D does not carry an $-NCH_2CH_2SO_2F$ substitutent.

- A process according to any one of claims 1 to 3 in which A and D each independently is selected from thienyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, pyridyl, pyridonyl, 1,2,4- and 1,3,4-thiadiazolyl, furanyl, pyrrolyl, pyridazyl, pyrimidyl, pyrazinyl, benzothiazolyl, benzoisothiazolyl, quinolinyl, isoquinolinyl, indolyl, pyridothiazolyl, pyridoisothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, phenyl and naphthyl.
 - A process according to any one of claims 1 to 3 in which A and D each independently is selected from thienyl, phenyl, naphthyl, thiazolyl, isothiazolyl, pyridonyl, quinolinyl.
 - 6. A process according to any one of claims 1 to 3 in which A and D each independently is selected from thien-2-yl, phenyl, naphth-1-yl, naphth-2-yl, thiazol-2-yl, isothiazol-5-yl, pyrid-4-one-5-yl or quinolinyl.
 - 7. A process according to any one of claims 1 to 3 in which A is thien-2-yl or phenyl and D is phenyl or naphth-1-yl.
- 25 8. A process according to any one of claims 1 to 3 in which the compound of Formula (1) is of Formula (3):

$$\begin{array}{c|c}
R^8 & R^7 & R^4 & R^3 \\
R^9 & & & & \\
R^9 & & \\
R^$$

Formula (3)

wherein:

 R^1 and R^2 each independently is -H or optionally substituted $C_{1\text{-}6}\text{-}alkyl$ or optionally substituted aryl;

 R^3 , R^4 , R^5 and R^6 each independently is -H, -F, -Cl, -Br, -I, -SO₂F or C_{1-6} -alkyl, C_{1-6} -alkoxy, C_{1-4} alkanoylamino, -NHSO₂alkyl or

10

15

20

25

30

40

-Ophenyl each of which may be optionally substituted; R^7 , R^8 and R^9 each independently is -H, C_{1-6} -alkyl, -NO₂, -COOC₁₋₆-alkyl, -OCOalkyl, -Cl, -F, -Br, -I, -COC₁₋₆-alkyl, -CN, formyl, protected formyl or -SO₂F provided that at least one of R^1 to R^9 is -SO₂F or carries a substituent to which at least one -SO₂F group is attached and provided that R^7 and R^9 are not both -SO₂F.

9. A process according to any one of claims 1 to 3 in which the compound of Formula (1) is of Formula (4):

$$R^{11}$$
 R^{10}
 R^{4}
 R^{3}
 R^{1}
 R^{12}
 R^{13}
 R^{14}
 R^{6}
 R^{5}

Formula (4)

wherein:

 \mathbb{R}^1 and \mathbb{R}^2 each independently is -H or optionally substituted C_{1-6} -alkyl or optionally substituted aryl;

 R^3 , R^4 , R^5 and R^6 each independently is -H, -F, -Cl, -Br, -I, -SO₂F or C_{1-6} alkyl, C_{1-6} -alkoxy, C_{1-4} -alkanoylamino, -NHSO₂alkyl or -Ophenyl each of which may be optionally substituted; and

R¹⁰ to R¹⁴ each independently is -H, alkoxy, alkyl, -NO₂, -SO₂F, -F, -Cl, -Br, -I or -CN;

provided that when R^{10} is $SO_2F,\ R^{12}$ is not -NO2 and $R^{11},\ R^{13}$ and R^{14} are not all -H.

35 10. A process according to any one of claims 1 to 3 in which the compound of Formula (1) is of Formula (7):

$$R^{10}$$
 R^{4} R^{10} $R^$

15

20

25

5

Formula (7)

in which

 R^1 and R^2 each independently is optionally substituted C_{1-6} -alkyl;

R⁴ is alkyl or a group of Formula R¹⁹-N-Y-X-W in which Y is a direct link or C = O, X is a direct link, alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl, -NR²⁰-Z-, -COOZ or -O-Z in which Z is alkyl, alkenyl, aryl,

heterocyclic, alkylOalkyl or a direct link and

R²⁰ is -H, alkyl, aryl or alkylaryl, W is -CO₂R²¹, -OCOR²¹ or -OH in which R²¹ is alkyl, aryl, alkylaryl, alkylOalkyl or alkylOH, and R¹⁹ is -H or alkyl;

R⁵ is -H, C₁₋₆-alkoxy or -Ophenyl;

R¹⁰ is -NO₂ or -Cl; and

R¹³ and R¹⁴ each independently is -H or -Cl.

11. A process according to any one of claims 1 to 3 in which the compound of Formula (1) is of Formula (5):

30

$$R^{11}$$
 R^{10}
 R^{4}
 R^{3}
 R^{1}
 R^{1}
 R^{12}
 R^{13}
 R^{14}
 R^{18}
 R^{15}
 R^{16}

40

35

Formula (5)

```
wherein
              R<sup>1</sup> and R<sup>2</sup>
                           each independently is -H, optionally substituted C_{1-6}-alkyl;
              RЗ
                           is optionally substituted C_{1-6}-alkyl or C_{1-6}-alkoxy;
              R4
                           is optionally substituted C_{1-6}-alkyl or C_{1-6}-alkoxy;
   5
              R10
                           is optionally substituted C_{1-6}-alkyl, NO_2 or Cl;
              R15 to R18
                           each independently is -H, -C_{1-6}-alkyl, -C_{1-6}-alkoxy, -F,
                           -Cl, -Br, -I, -SO<sub>2</sub>F, -NO<sub>2</sub>, -CN or -NR<sup>1</sup>R<sup>2</sup>;
             R12
                           is -NO<sub>2</sub> or -SO<sub>2</sub>F;
             R11
                           is -H; and
  10
             R^{13} and R^{14}
                           each independently is -H or -Cl.
             12.
                           A compound of Formula (2):
                                         A^1-N=N-D^1
 15
                                        Formula (2)
             in which:
               \mathtt{A}^1 and \mathtt{D}^1 each independently is an optionally substituted heterocyclic
                          or carbocyclic group
             and at least one of A^1 or D^1 carries directly at least one -SO_2F group or
            carries a substituent to which at least one -SO<sub>2</sub>F group is attached
 20
            except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline,
            4-(4-fluorosulphonylphenylazo)-N,N-diethylaniline,
            4-(4-fluorosulphonylphenylazo)-N-ethyl-N-acetoxyethylaniline,
            1-(5-fluorosulphonyl-2-methylphenylazo)-2-hydroxynaphthalene,
            4-(4-fluorosulphonylphenylazo)-3-(trifluoromethylcarbonylamino)-N-ethyl-
 25
            N-(2-methoxyethyl)aniline,
            4-(4-fluorosulphonylphenylazo)-3-(trifluoromethylcarbonylamino)-N-ethyl-
            N-(2-cyanoethyl)aniline,
            4-(4-fluorosulphonylphenylazo)-2,5-dimethyl-N-ethyl-N-(2-
30
            methoxyethyl) aniline,
           4-(4-fluorosulphonylphenylazo)-2,5-dimethyl-N-ethyl-N-(2-
           cyanoethyl) aniline,
           4-(4-fluorosulphonylphenylazo)-N-ethyl-N-(2-fluorosulphonylethyl)
           aniline,
35
           4-(4-fluorosulphonylphenylazo)-N,N-di(2-fluorosulphonylethyl)aniline,
           4-(3-fluorosulphonyl-4-methylphenylazo)-3-(trifluoromethylcarbonyl
           amino)-N-ethyl-N-(2-methoxyethyl)aniline,
           4-(3-fluorosulphonyl-4-methylphenylazo)-2,5-dimethyl-N-ethyl-N-(2-
           methoxyethyl) aniline,
           4-(3-fluorosulphonyl-4-chlorophenylazo)-3-(trifluoromethylcarbonyl
40
           amino)-N-ethyl-N-(2-methoxyethyl)aniline,
           4-(3-fluorosulphonyl-4-chlorophenylazo)-2,5-dimethyl-N-ethyl-N-(2-
           methoxethyl)aniline,
           4-(5-fluorosulphonyl-2-methylphenylazo)-1-aminonaphthalene,
```

4-(5-fluorosulphonyl-2-methylphenylazo)-2-ethoxyaniline,

4-(3-fluorosulphonylphenylazo)-2,5-dimethoxyaniline,

4-(2-chloro-4-nitrophenylazo)-2-methyl-5-fluorosulphonylaniline, provided that A^1 is not 3.5-difluorosulphonylthien-2-yl, optionally substituted pyrazol-4-yl-5-one or N-allylpyrid-2-one-5-yl and provided that A^1 is not

$$- \bigcirc - \text{CONH} - \bigcirc - \text{SO}_2 \text{F} \qquad - \bigcirc - \text{SO}_2 \text{NH} - \bigcirc - \text{SO}_2 \text{F} \quad \text{and} \qquad - \bigcirc - \text{NHCO} - \bigcirc - \text{SO}_2 \text{F}$$

when D^1 carries an $-NCH_2CH(OH)CH_2Cl$ substituent and provided that one of A^1 or D^1 is not

15

10

and provided that A^1 is not a fluorosulphonylphenyl group when D^1 is an arylamide of an aromatic 2-hydroxycarboxylic acid.

13. A compound of Formula (1):

20

25

A-N=N-D

Formula (1)

wherein

A and D each independently is an optionally substituted heterocyclic or carbocyclic group in which at least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached and at least one of A or D carries directly at least one ester group or carries a substituent to which at least one ester group is attached.

30

35

- A compound according to claim 13 in which A and D each independently is selected from thienyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, pyridyl, pyridonyl, 1,2,4- and 1,3,4-thiadiazolyl, furanyl, pyrrolyl, pyridazyl, pyrimidyl, pyrazinyl, benzothiazolyl, benzoisothiazolyl, quinolinyl, isoquinolinyl, indolyl, pyridothiazolyl, pyridoisothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, phenyl and naphthyl.
- 40
- 15. A compound according to claim 13 in which A and D each independently is selected from thienyl, phenyl, naphthyl, thiazolyl,

25

30

35

40

isothiazolyl, pyridonyl, quinolinyl.

- 16. A compound according to claim 13 in which A and D each independently is selected from thien-2-yl, phenyl, naphth-1-yl, naphth-2-yl, thiazol-2-yl, isothiazol-5-yl, pyrid-4-one-5-yl or quinolinyl.
- 17. A compound according to claim 13 in which A is thien-2-yl or phenyl and D is phenyl or naphth-1-yl.
- 10 18. A compound according to claim 13 in which the compound of Formula (1) is of Formula (3):

Formula (3)

wherein:

- R^1 and R^2 each independently is -H or optionally substituted $C_{1-\epsilon}$ -alkyl or optionally substituted aryl;
 - R^3 , R^4 , R^5 and R^6 each independently is -H, -F, -Cl, -Br, -I, -SO₂F or C_{1-6} -alkyl, C_{1-6} -alkoxy, C_{1-4} alkanoylamino, -NHSO₂alkyl or -Ophenyl each of which may be optionally substituted;
 - R⁷, R⁸ and R⁹ each independently is -H,C₁₋₆-alkyl, -NO₂, -COOC₁₋₆-alkyl, -OCOalkyl, -Cl, -F, -Br, -I, -COC₁₋₆-alkyl, -CN, formyl,
 - protected formyl or $-SO_2F$ provided that at least one of R¹ to R⁹ is $-SO_2F$ or carries a substituent to which at least one $-SO_2F$ group is attached and provided that R⁷ and R⁹ are not both $-SO_2F$.
 - 19. A compound according to claim 13 in which the compound of Formula (1) is of Formula (4):

$$R^{11}$$
 R^{10}
 R^{4}
 R^{3}
 R^{1}
 R^{12}
 R^{13}
 R^{14}
 R^{6}
 R^{5}

5

Formula (4)

wherein:

15 R^1 and R^2 each independently is -H or optionally substituted C_{1-6} -alkyl or optionally substituted aryl;

 R^3 , R^4 , R^5 and R^6 each independently is -H, -F, -Cl, -Br, -I, -SO₂F or C_{1-6} alkyl, C_{1-6} -alkoxy, C_{1-4} -alkanoylamino, -NHSO₂alkyl or -Ophenyl each of which may be optionally substituted; and

R¹⁰ to R¹⁴ each independently is -H, alkoxy, alkyl, -NO₂, -SO₂F, -F, -Cl, -Br, -I or -CN;

provided that when R^{10} is SO_2F , R^{12} is not $-NO_2$ and R^{11} , R^{13} and R^{14} are not all -H.

25 20. A compound according to claim 13 in which the compound of Formula (1) is of Formula (7):

30

20

FO₂S
$$\stackrel{R^{10}}{\longrightarrow}$$
 $\stackrel{R^4}{\longrightarrow}$ $\stackrel{R^1}{\longrightarrow}$ $\stackrel{R^2}{\longrightarrow}$ $\stackrel{R^{13}}{\longrightarrow}$ $\stackrel{R^{14}}{\longrightarrow}$ $\stackrel{R^2}{\longrightarrow}$ $\stackrel{R^5}{\longrightarrow}$

35

Formula (7)

40

in which

 R^1 and R^2 each independently is optionally substituted C_{1-6} -alkyl; R^4 is alkyl or a group of Formula R^{19} -N-Y-X-W in which Y is a direct link or C=0, X is a direct link, alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl, $-NR^{20}$ -Z-, -

30

35

40

COOZ or -O-Z in which Z is alkyl, alkenyl, aryl, heterocyclic, alkylOalkyl or a direct link and R^{20} is -H, alkyl, aryl or alkylaryl, W is $-CO_2R^{21},\ -OCOR^{21}$ or -OHin which R^{21} is alkyl, aryl, alkylaryl, alkylOalkyl or alkylOH, and R19 is -H or alkyl;

is -H, C₁₋₆-alkoxy or -Ophenyl;

R10 is -NO₂ or -Cl; and

 $\ensuremath{\mathbb{R}}^{13}$ and $\ensuremath{\mathbb{R}}^{14}$ each independently is -H or -Cl.

10 A compound according to claim 13 in which the compound of 21. Formula (1) is of Formula (5):

Formula (5) 25

wherein

 R^1 and R^2 each independently is -H, optionally substituted $C_{1\text{-}6}\text{-}alkyl;$ R^3

is optionally substituted C_{1-6} -alkyl or C_{1-6} -alkoxy; R4

is optionally substituted C_{1-6} -alkyl or C_{1-6} -alkoxy; R10

is optionally substituted C_{1-6} -alkyl, NO_2 or Cl;

each independently is -H, $-C_{1-6}$ -alkyl, $-C_{1-6}$ -alkoxy, -F, R15 to R18

-Cl, -Br, -I, -SO₂F, -NO₂, -CN or -NR¹R²;

R12 is -NO₂ or -SO₂F;

R11 is -H; and

 R^{13} and R^{14} each independently is -H or -Cl.

22. A dispersion comprising a compound of Formula (1):

A-N=N-D Formula (1)

wherein

A and D each independently is an optionally substituted heterocyclic or

carbocyclic group and at least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached except for 4-(4-fluorosulphonylphenylazo)-N,N-dimethylaniline, provided that one of A or D is not 3,5-difluorosulphonylthien-2-yl, optionally substituted 1-phenyl-pyrazol-4-yl-5-one or

10

or that one of A or D does not carry an $-NCH_2CH(OH)CH_2C1$, $-NCOCH_2C1$ or $-NCH_2CH_2SO_2F$ substituent and water.

15

A process for the mass coloration of plastics which comprises incorporating into a plastics material a compound or mixture thereof which is free from water solubilising groups, of Formula (1) wherein A and D each independently is an optionally substituted heterocyclic or carbocyclic group and at least one of A or D carries directly at least one -SO₂F group or carries a substituent to which at least one -SO₂F group is attached.

25

30

20

24. A process for the mass coloration of plastics which comprises incorporating into a plastics material a compound or mixture thereof which is free from water solubilising groups, of Formula (1) wherein A and D each independently is an optionally substituted heterocyclic or carbocyclic group and at least one of A or D carries directly a least one $-SO_2F$ group or carries a substituent to which at least one $-SO_2F$ group is attached and at least one of A or D carries directly at least one ester group or carries a substituent to which at least one ester group is attached.

INTERNATIONAL SEARCH REPORT

Inten al Application No PCT/GB 94/02831

PCT/GB 94/02831 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C09B62/825 C09B29/01 C09B29/033 C09B29/08 C09B29/36 C09B29/10 C09B29/095 D06P3/26 D06P3/82 C08K5/00 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C09B D06P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X GB, A, 856 348 (WESTMINSTER BANK LTD.) 14 1-7, December 1960 12-17, 22-24 see claims; example 24 X GB,A,819 664 (SANDOZ LTD.) 9 September 1-7, 12-17,22 see claims; example 2 X US,A,3 131 021 (W BAIRD ET AL.) 28 April 1,12 see claims 1-7, examples 2,6 see examples 28-52,54-56 X US,A,2 576 037 (R.P.PARKER ET AL.) 20 1,12,22 November 1951 see the whole document -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 13 April 1995 03.05.95 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Ginoux, C

3

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern val Application No PCT/GB 94/02831

(Continu	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	•	
Category *			Relevant to claim No.
X	FR,A,1 193 706 (CASSELLA FARBWERKE MAINKUR AG.) 4 November 1959 see table, compounds 23-34, abstract		1,12
X	FR,A,807 732 (I.G.FARBENINDUSTRIE AG.) 20 January 1937 see examples 2,4,6,7		1,12
x	FR,A,1 192 485 (CIBA) 27 October 1959 see page 4, example 1 and table, compounds 1,3,4		1,12
X :	FR,A,2 302 327 (EASTMAN KODAK CO) 24 September 1976 sse table 1, compound 11, table 3, colorants 45, 47	*	12
x	US,A,3 929 760 (LANDHOLM RICHARD A ET AL) 30 December 1975 see columns 31-32, compound A		12
x .	GB,A,2 108 993 (KODAK LTD) 25 May 1983		1-7, 12-17,22
	see page 3, lines 4,5,13,20,23,24, page 4, lines 41,42, page 5, lines 10,12,26,27,34 see page 6, line 6 - line 9		
į			
·			
		·	

3

INTERNATIONAL SEARCH REPORT

... formation on patent family members

Intern tal Application No PCT/GB 94/02831

GB-A-856348 GB-A-819664 US-A-3131021 US-A-2576037 CO-11-51 NONE FR-A-1193706 FR-A-1192485 FR-A-1192485 FR-A-2302327 CA-A-1056374 DE-A-2607440 DF-A-2607440 DF-A-2607440 DF-A-2607440 DF-A-2109-76 DF			PCI	/GB 94/02831
GB-A-819664 NONE US-A-3131021 28-04-64 NONE US-A-2576037 20-11-51 NONE FR-A-1193706 04-11-59 NONE FR-A-807732 20-01-37 NONE FR-A-1192485 27-10-59 NONE FR-A-1192485 27-10-59 NONE FR-A-2302327 24-09-76 US-A- 4013635 22-03-77 CA-A- 1056374 12-06-79 DE-A- 2607440 09-09-76 GB-A- 1522222 23-08-78 JP-C- 1342870 14-10-86 JP-A- 51109928 29-09-76 JP-B- 61006098 24-02-86 US-A-3929760 30-12-75 CA-A- 1027940 14-03-78 CH-A- 607103 30-11-78 AU-A- 6549074 14-08-75 BE-A- 796041 27-08-73 DE-A- 2406653 29-08-74			Patent family member(s)	Publication date
US-A-3131021 28-04-64 NONE US-A-2576037 20-11-51 NONE FR-A-1193706 04-11-59 NONE FR-A-807732 20-01-37 NONE FR-A-1192485 27-10-59 NONE FR-A-2302327 24-09-76 US-A- 4013635 22-03-77 CA-A- 1056374 12-06-79 DE-A- 2607440 09-09-76 GB-A- 1522222 23-08-78 JP-C- 1342870 14-10-86 JP-A- 51109928 29-09-76 JP-B- 61006098 24-02-86 US-A-3929760 30-12-75 CA-A- 1027940 14-03-78 CH-A- 607103 30-11-78 AU-A- 6549074 14-08-75 BE-A- 796041 27-08-73 DE-A- 2406653 29-08-74	GB-A-856348		NONE	
US-A-2576037 20-11-51 NONE FR-A-1193706 04-11-59 NONE FR-A-807732 20-01-37 NONE FR-A-1192485 27-10-59 NONE FR-A-2302327 24-09-76 US-A- 4013635 22-03-77 CA-A- 1056374 12-06-79 DE-A- 2607440 09-09-76 GB-A- 1522222 23-08-78 JP-C- 1342870 14-10-86 JP-A- 51109928 29-09-76 JP-B- 61006098 24-02-86 US-A-3929760 30-12-75 CA-A- 1027940 14-03-78 RE-A- 607103 30-11-78 AU-A- 6549074 14-08-75 BE-A- 796041 27-08-73 DE-A- 2406653 29-08-74 DE-A-	GB-A-819664		NONE	
FR-A-1193706 04-11-59 NONE FR-A-807732 20-01-37 NONE FR-A-1192485 27-10-59 NONE FR-A-2302327 24-09-76 US-A- 4013635 22-03-77	US-A-3131021	28-04-64	NONE	~~~~~~~~~~
FR-A-807732 20-01-37 NONE FR-A-1192485 27-10-59 NONE FR-A-2302327 24-09-76 US-A- 4013635 22-03-77	US-A-2576037	20-11-51	NONE	
FR-A-1192485 27-10-59 NONE FR-A-2302327 24-09-76 US-A- 4013635 22-03-77	FR-A-1193706	04-11-59	NONE	
FR-A-2302327 24-09-76 US-A- 4013635 22-03-77 CA-A- 1056374 12-06-79 DE-A- 2607440 09-09-76 GB-A- 1522222 23-08-78 JP-C- 1342870 14-10-86 JP-A- 51109928 29-09-76 JP-B- 61006098 24-02-86 US-A-3929760 30-12-75 CA-A- 1027940 14-03-78 CH-A- 607103 30-11-78 AU-A- 6549074 14-08-75 BE-A- 796041 27-08-73 DE-A- 2406653 29-08-74 DE-A- 2462010 17-07-75 FR-A,B 2217723 06-09-74 GB-A- 1458471 15-12-76 JP-C- 1429126 09-03-88 JP-A- 59131932 28-07-84 JP-B- 62035662 03-08-87 JP-C- 1251284 14-02-85 JP-A- 49126331 03-12-74 JP-B- 59026014 23-06-84 NL-A- 7401930 14-08-74	FR-A-807732	20-01-37	NONE	
CA-A- 1056374 12-06-79 DE-A- 2607440 09-09-76 GB-A- 1522222 23-08-78 JP-C- 1342870 14-10-86 JP-A- 51109928 29-09-76 JP-B- 61006098 24-02-86 US-A-3929760 30-12-75 CA-A- 1027940 14-03-78 CH-A- 607103 30-11-78 AU-A- 6549074 14-08-75 BE-A- 796041 27-08-73 DE-A- 2406653 29-08-74 DE-A- 2462010 17-07-75 FR-A,B 2217723 06-09-74 GB-A- 1458471 15-12-76 JP-C- 1429126 09-03-88 JP-A- 59131932 28-07-84 JP-B- 62035662 03-08-87 JP-C- 1251284 14-02-85 JP-A- 49126331 03-12-74 JP-B- 59026014 23-06-84 NL-A- 7401930 14-08-74	FR-A-1192485	27-10-59	NONE	
CH-A- 607103 30-11-78 AU-A- 6549074 14-08-75 BE-A- 796041 27-08-73 DE-A- 2406653 29-08-74 DE-A- 2462010 17-07-75 FR-A,B 2217723 06-09-74 GB-A- 1458471 15-12-76 JP-C- 1429126 09-03-88 JP-A- 59131932 28-07-84 JP-B- 62035662 03-08-87 JP-C- 1251284 14-02-85 JP-A- 49126331 03-12-74 JP-B- 59026014 23-06-84 NL-A- 7401930 14-08-74	FR-A-2302327	24-09-76	CA-A- 1056374 DE-A- 2607440 GB-A- 1522222 JP-C- 1342870 JP-A- 51109928	12-06-79 0 09-09-76 2 23-08-78 0 14-10-86 3 29-09-76
22 / 22 / 25 / 0	US-A-3929760	30-12-75	CH-A- 607103 AU-A- 6549074 BE-A- 796041 DE-A- 2406653 DE-A- 2462010 FR-A,B 2217723 GB-A- 1458471 JP-C- 1429126 JP-A- 59131932 JP-B- 62035662 JP-C- 1251284 JP-A- 49126331 JP-B- 59026014 NL-A- 7401930	30-11-78 14-08-75 27-08-73 29-08-74 17-07-75 06-09-74 15-12-76 09-03-88 28-07-84 03-08-87 14-02-85 03-12-74 23-06-84 14-08-74
B-A-2108993 25-05-83 US-A- 4435320 06-03-84	B-A-2108993			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ CRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

