

Housekeeping

- Last set of homework problems are released today!
- Office hours changed this week:
 - Today: 2-3pm only
 - Wednesday 4-5pm
 - Friday: cancelled, moved to next week before midterm

Recap

- Learned how to interpret slope and intercept of fitted model
 - b_0 is expected value of response when x = 0
 - b_1 is expected change in y for a one unit increase in x
- When explanatory x is categorical, we have a slightly more nuanced interpretation
- Coefficient of determination \mathbb{R}^2 assesses strength of linear model fit

Variability of coefficient estimates

- Remember, a linear regression is fit using a sample of data
- Different samples from the same population will yield different point estimates of (b_0,b_1)
 - I will generate 30 data points under the following model: $y = 1 + 0.5x + \epsilon$
 - \circ How? Randomly generate some x and ϵ values and then plug into model to get corresponding y
 - Fit SLR to these (x, y) data, and obtain estimates (b_0, b_1)
 - Repeat this 50 times

Variability of coefficient estimates

Fitted/estimated lines From 50 simulations

Sampling distribution

Pink = line using true intercept and slope

What are we interested in?

Remember: we fit SLR to understand how x is (linearly) related to y:

$$y = \beta_0 + \beta_1 x + \epsilon$$

- What would a value of $\beta_1 = 0$ mean?
 - If $\beta_1 = 0$, then the effect of x disappears and there is in fact no linear relationship between x and y
- We don't know β_1 , so let's look at estimate b_1 :
 - Is an estimate of $b_1=0$ a convincing evidence of no relationship? What if $b_1=0.1$?
 - ullet It depends! We saw that b_1 varies by sample! So let's perform inference for eta_1

Inference for SLR

Using mathematical model, not simulation!

Running example: evals data

Data on 463 courses at UT Austin were obtained to answer the question: "What factors explain differences in instructor teaching evaluation scores?"

- One hypothesis was that more attractive instructors receive better teaching evaluations
- We will look at the variables:
 - score: course instructor's average teaching score, where average is calculated from all students in that course. Scores ranged from 1-5, with 1 being lowest.
 - bty_avg: course instructor's average "beauty" score, where average is calculated from six student evaluations of "beauty". Scores ranged from 1-10, with 1 being lowest.

Teaching evaluations data

Relationship between teaching and beauty scores

Does this line really have a non-zero slope?

Hypothesis test for slope

- We have the following hypotheses:
 - $H_0: \beta_1 = 0$: the true linear model has slope zero
 - $H_A: \beta_1 \neq 0$: the true linear model has a non-zero slope. An instructor's average beauty score is predictive of their average teaching evaluation score.
- To assess, we do what we usually do:
 - Check if methods are appropriate
 - If so: obtain an estimate, identify/estimate standard error of the estimate, find an appropriate test statistic, and calculate p-value
- The output from lm() actually does all of this for us, but we will see how the test statistic and p-value are calculated!

Teaching evaluations: model assessment

We fit the model in R, and obtain the following plots.

Are all conditions of LINE met?

Looking at lm() output

```
1 library(broom)
2 eval_mod <- lm(score ~ bty_avg, data = evals)
3 eval_mod |>
4 tidy()
```

term	estimate	std.error	statistic	p.value
(Intercept)	3.880338	0.0761430	50.961213	0.00e+00
bty_avg	0.066637	0.0162912	4.090382	5.08e-05

Assuming the linear model is appropriate, interpret the coefficients!

- Intercept: an instructor with an average beauty score of 0 would be expected to have an average evaluation score of 3.88
- Slope: for every one point increase in average beauty score an instructor receives, their evaluation score is expected to incrase by 0.067 points

Looking at lm() output

term	estimate	std.error	statistic	p.value
(Intercept)	3.880338	0.0761430	50.961213	0.00e+00
bty_avg	0.066637	0.0162912	4.090382	5.08e-05

• estimate: the observed point estimate (b_0 or b_1)

- statistic: the value of the test statistic
- std error: the estimated standard error of the estimate
- p. value: p-value associated with the two-sided alternative $H_A: \beta_1 \neq 0$
- Let's confirm the test statistic calculation:

$$t = \frac{\text{observed - null}}{\text{SE}_0} = \frac{b_{1,obs} - \beta_{1,0}}{\widehat{\text{SE}}_0} = \frac{0.066637 - 0}{0.0162912} = 4.0903823 \sim t_{df}$$

where df = n - 2

p-value and conclusion

term	estimate	std.error	statistic	p.value
(Intercept)	3.880338	0.0761430	50.961213	0.00e+00
bty_avg	0.066637	0.0162912	4.090382	5.08e-05

Let's confirm the p-value calculation:

p-value =
$$Pr(T \ge 4.09) + Pr(T \le -4.09)$$

where $T \sim t_{461}$

- So our p-value is: $2 * (1 pt(4.09, 461)) = 5.0827307^{-5}$
- Assuming the LINE conditions are met: since our p-value 5.0827307 $^{-5}$ is extremely small, we would reject H_0 at any reasonable significant level. Thus, the data provide convincing evidence that there is a linear relationship between instructor's beauty score and evaluation score.

Different H_A

term	estimate	std.error	statistic	p.value
(Intercept)	3.880338	0.0761430	50.961213	0.00e+00
 bty_avg	0.066637	0.0162912	4.090382	5.08e-05

What would your p-value be if your alternative was $H_A: \beta_1 > 0$? What would your conclusion be?

What would your p-value be if your alternative was $H_A: \beta_1 < 0$? What would your conclusion be?

- $Pr(T \ge 4.09) = (1-pt(4.09, 461) \cdot Pr(T \le 4.09) = pt(4.09, 461) =$ $= 2.5413653^{-5}$
- The data provide convincing evidence that there is a *positive* relationship between instructor's beauty score and evaluation score.
- 0.9999745
- The data do not provide convincing evidence that there is a *negative* relationship between instructor's beauty score and evaluation score.

Confidence intervals

term	estimate	std.error	statistic	p.value
(Intercept)	3.880338	0.0761430	50.961213	0.00e+00
bty_avg	0.066637	0.0162912	4.090382	5.08e-05

We can also construct confidence intervals using the output from lm()! Remember:

$$CI = point est. \pm critical value \times SE$$

- Critical value also comes from t_{n-2} distribution
- Suppose we want a 95% confidence intervals for β_1 :
 - What code would you use to obtain critical value?
 - \blacksquare qt(0.975, 461) = 1.97
- So our 95% CI for β_1 is: $0.067 \pm 1.97 \times 0.016 = (0.035, 0.099)$

Remarks

- Note: for β_1 , the null hypothesis is **always** of the form $H_0:\beta_1=0$
- LINE conditions must be met for underlying mathematical and probability theory to hold here! If not met, simulation-based methods would be a better choice
- Here, the Independence conditions did not seem to be met
 - Take STAT 412 or other course to learn how to incorporate dependencies between observations!
- So what can we say?
 - The results suggested by our inference should be viewed as preliminary, and not conclusive
 - Further investigation is certainly warranted!
 - Checking LINE can be very subjective, but that's how real-world analysis will be!