Automatic Discovery and Quantification of Information Leaks

Aravind Machiry

University of California machiry@cs.ucsb.edu

December 2, 2015

Overview

- Motivation
- 2 Idea Overview
- Approach Details
 - DisQUANT
 - Computing Quantitative Information flow metrics

Existing Works

- Assume equivalence relation is given.
- Only provide the number of secret/high bits leaked.

In this paper

Given a program:

- Automated way to find equivalence classes (DISCO) and their sizes (QUANT).
- Answer various questions:
 - Number of leaked bits.
 - Successful guess probability.

Notations

They model a Program P as a transition system (S, T, I, F):

- S: a set of program states.
- T: a finite set of transitions, each transition $\tau \in T$ is associated with a binary transition relation $\rho_{\tau} \subseteq SxS$.
- *I*: a set of initial states, $I \subseteq S$ and $I = I_{hi} \times I_{lo}$.
- F: a set of final states, $F \subseteq S$ and $F = F_{hi} \times F_{lo}$.
- σ : A program computation. Which is a sequence of program states $s_1, s_2, ..., s_n$, where $s_1 \in I$ and $s_n \in F$. All consecutive pairs of states should be a valid transition.
- π : A program path. Which is a non-empty sequence of program transitions i.e $\pi \in T^+$. $\pi = \tau_1, \tau_2, ..., \tau_n$, Such that for each $1 \le i < n$, if $(s_1, s_2) \in \rho_{\tau_i}$, $(s_1^1, s_2^1) \in \rho_{\tau_{i+1}}$ then $s_2 = s_1^1$.

Finding Equivalence Classes (DISCO)

Equivalence Relation of High inputs is modelled as integer constraint on them. i.e $R:I_{hi}\times I_{hi} \to \{true, false\}$

Example

Consider High inputs: $H = h_1$, h_2 .

An example relation as constraint would be:

$$R(H, \bar{H}) = (h_1 \leq \bar{h_2} \wedge h_1 > h_2) \vee (\bar{h_1} \leq \bar{h_2} \wedge h_1 \geq h_2).$$

If we want to find equivalence class of High inputs:(1,2), then replace $\bar{h}_1 = 1$, $\bar{h}_2 = 2$ in the above constraint resulting in :

$$(h_1 \leq 2 \wedge h_1 > h_2) \vee (h_1 \geq h_2).$$

All possible values of h_1 , h_2 , which satisfy the second constraint belong to the same equivalence class.

DISCO: Leakp

Notations:

- R: Equivalence relation over I_{hi} , i.e $R \subseteq I_{hi} \times I_{hi}$
 - $All_{hi} = I_{hi} \times I_{hi}$: Constant output program. All inputs belong to same equivalent class. **Non-inference**
 - $=_{hi} \equiv \{(s_{hi}, s_{hi}) \mid s_{hi} \in I_{hi}\}$: Each input belong to its own class. **Leaks** everything.
- E or Experiments: Set of Low inputs ($E \in I_{lo}$, can be controlled by the attacker) used to compute various metrics. This models the threat model, one wants to use to compute various information flow metrics.

Leak_p

There is an information leak in Program P w.r.t R, if there is a pair of program paths π and η that start from initial states with R-equivalent high components and equal low components in E, and lead to final states with different low components: $\exists s,t \in I \exists s',t' \in F: (s,s') \in \rho_{\pi} \land (t,t') \in \rho_{\eta} \land s_{lo} = t_{lo} \land (s_{hi},t_{hi}) \in R \land s_{lo} \in E \land s'_{lo} \neq t'_{lo}$

DISCO: Confine, and Refine,

$Confine_p(R, E)$

This relation indicates if R correctly over-approximates the maximal information that is leaked when Program P is run on the experiments E. In short there are no leaks: $\forall \pi, \eta \in T^+ : \neg Leak_p(R, E, \pi, \eta)$. The largest equivalence relation R with $Confine_p(R, E)$ is the most precise charecterization of the leaked information, denoted by \approx_E . $\approx_E \equiv \bigcup \{R \mid Confine_p(R, E)\}$.

$Refine_E(\pi, \eta)$

This represents refinement of Relation R w.r.t paths π and η . In short, creates new equivalence classes such that there is no leak w.r.t π and η . Refine_E $(\pi, \eta) \equiv \{(s_{hi}, t_{hi}) \mid \forall s, t \in I \forall s', t' \in F : (s, s') \in \rho_{\pi} \land (t, t') \in \rho_{\eta} \land s_{lo} = t_{lo} \land s_{lo} \in E \rightarrow s'_{lo} = t'_{lo} \}$.

Finding Equivalence Classes (DISCO): Overview

Algorithm 1 Overview of Disco

- 1: P = Program to Test
- 2: $R = I_{hi}xI_{hi}$
- 3: while exists $\pi, \eta \in T^+$: Leak $_P(R, E, \pi, \eta)$ do
- 4: $R = R \cap Refine_E(\pi, \eta)$
- 5: end while
- 6: $R = R \cup =_{I_{hi}} //$ Adding identity relation for deterministic programs.

Implementation Details (DISCO) 1

For a given program P, a modified version \bar{P} is created where every variable x is replaced with \bar{x} . Then $Leak_p$ is implemented as:

Leak_p if $(I = \overline{I} \land I \in E \land (h, \overline{h}) \in R)$

$$(I = I \land I \in E \land (h, h) \in R)$$

 $P(h, I)$
 $\bar{P}(\bar{h}, \bar{I})$
if $I \neq \bar{I}$

error

Here, reachability of **error** indicates possibility of leak. Model checker *ARMC* is used, when **error** is reached this results in counter-example as paths π in P and η in \bar{P} along with a formula in **linear arithmetic** that characterizes all initial states i.e pairs of $((h, l), (\bar{h}, \bar{l}))$ i.e \bar{R} .

Implementation Details (DISCO) 2

Let $\bar{R_E}$ be projected high inputs from \bar{R} . In short, $\bar{R_E}$ characterizes all pairs of high inputs from which the error state can be reached with an experiment from E. Then

$$\bar{R_E} \equiv \{(h, \bar{h}) \mid \exists I \in E : ((h, I), (\bar{h}, I)) \in \bar{R}\}.$$

$Refine_{E}(\pi, \eta)$

Given $\bar{R_E}$, Refine_E can be defined as:

 $Refine_E(\pi, \eta) \equiv I_{hi} \times I_{hi} \setminus \bar{R_E} \text{ or } I_{hi} \times I_{hi} \wedge \neg (\bar{R_E}).$

To Note

- h, I, \bar{h}, \bar{I} and $\bar{R_E}$ are linear arithmetic constraints.
- E is defined also as a constraint. Ex: $E=i_{lo}^1>0 \wedge i_{lo}^2<2^{31} \wedge i_{lo}^2\geq 0.$

Example

Consider the example below:

They unroll the loop with every h[i] replaced by h_i .

Equivalence Class Constraint (after DISCO with n = 3)

 $R \equiv (h_1 < h_3 \land h_2 < h_3 \land \bar{h_1} < \bar{h_3} \land \bar{h_2} < \bar{h_3}) \lor (\bar{h_1} < \bar{h_3} \land \bar{h_3} \le \bar{h_2} \land h_1 < h_2 \land h_3 \le h_2) \lor \dots$ Refer paper for complete formula. The first conjunction represents equivalence class of inputs where element h_3 is the greatest.

Finding Equivalence Classes Sizes (QUANT): Overview

Algorithm 2 Overview of QUANT

- 1: i = 1
- 2: $Q = I_{hi} \leftarrow \text{All Inputs satisfy this constraint}$
- 3: **while** $Q \neq \emptyset \leftarrow$ Is Q satisfiable **do**
- 4: $s_i = \text{select in } Q \leftarrow \text{Find an input that satisfies } Q$
- 5: $n_i = Count([s_i]_R)$
- 6: $Q = Q \wedge \neg([s_i]_R)$
- 7: i = i + 1
- 8: end while
- 9: **return** $\{n_1, n_2, ..., n_{i-1}\}$

Implementation Details (QUANT)

 $Q \neq \emptyset$

Satisfiability check of Q.

select in Q

Assignment of high inputs which satisfy Q.

$Count([s_i]_R)$

Count number of solutions that satisfy R when its inputs are replaced by s_i . They use LATTE (Lattice Point Enumeration Tool).

Example

Consider the case where $(\bar{h}_1, \bar{h}_2, \bar{h}_3) = (1, 2, 3)$, Replacing corresponding values in R, gives us:

 $R = (h_1 < h_3 \land h_2 < h_3 \land 1 < 3 \land 2 < 3) \lor \textit{false} \lor \textit{false} ... = (h_1 < h_3 \land h_2 < h_3)$ which is the constraint for all high inputs which belong to the same class as (1,2,3).

Limiting to 32-bit numbers i.e $0 \le h_1, h_2, h_3 \le 2^{32} - 1$ size of the equivalence class or number of solutions to the above constraint are 26409387495531407161709035520

Information flow metrics 1

Consider $p: I_{hi} \rightarrow R$, probability distribution of high inputs.

Guessing Entropy (average number of guesses) : G or G(U)

Let all high inputs be arranged in their decreasing order of distribution. $p(I_{hi}^i) \ge p(I_{hi}^j)$ whenever $i \le j$. $G = \sum_{1 \le i \le |I_{hi}|} i.p(I_{hi}^i)$

Guessing Entropy when equivalence classes are known: G_R or $G(U|\nu_R)$

Let $\nu_R: I_{hi} \to [I_{hi}]_R$ be the map of secret inputs to its equivalence classes computed when run on experiments E. Given ν_R , p could be modified depending on the size of equivalence classes. Lets say: p_{ν_R} .

$$G_R = \sum_{1 \le i \le |I_{bi}|} i.p_{\nu_R}$$

Information flow metrics 2

Minimal Guessing Entropy (\hat{G}_R or $\hat{G}(U| u_R)$

Minimal guessing effort for the weakest secrets i.e high inputs with large equivalence classes.

$$\hat{G}_R = min(G_R|\nu_R = [s_{hi}]_R|s_{hi} \in I_{hi}).$$

Shannon entropy can be computed in exactly the same way as explained by Lucas in his first presentation

Example

Simple Password checker:

```
if (l==h)
  out = 1;
else
  out = 0;
```

Relation computed by DISCO would be:

$$R = (\bar{h} = I \land I - h \le -1) \lor (\bar{h} = I \land I - h \ge 1) \lor (h = I \land \bar{h} - I \le -1) \lor (h = I \land I - \bar{h} \le -1).$$

To compute password entropy after one guess, Lets consider

E = (I == 0), then the constraint R_2 computed by DISCO would be: $R_2 = (\bar{h} = 0 \land 0 - h \le -1) \lor (\bar{h} = 0 \land 0 - h > 1) \lor (h = 0 \land \bar{h} - 0 \le -1)$

$$(h = 0) \land (0) \land (1) \land$$

Example (cont)