Seed motifs

Melina Klostermann

 $24~\mathrm{June},~2023$

1

Contents

1 Libraries and settings

2	What was done?	
3	Files 2	
4	XSTREME de novo motif discovery 2	
5	Seed position and distribution 4	
6	Save table 18	
1	Libraries and settings	
#		
1: 1: 1: 1:	brary(tidyverse) brary(GenomicRanges) brary(colorspace) brary(gghalves) brary(BSgenome.Mmusculus.UCSC.mm10) brary(Biostrings)	
#		
<pre>out <- "/Users/melinaklostermann/Documents/projects/AgoCLIP_miR181/R_github/miR181_paper/Figure2/Seed_m source("/Users/melinaklostermann/Documents/projects/R_general_functions/theme_paper.R") source("/Users/melinaklostermann/Documents/projects/AgoCLIP_miR181/mirko_files/mirECLIP/DifferentialBin</pre>		
fa fa fa fa fa fa	farben arbeneg <- "#B4B4B4" arbe1 <- "#0073C2FF" # WT farbe arbe2 <- "#EFC000FF" # mir181 enriched arbe3 <- "#CD534CFF" #miR181KO farbe arbe4 <- "#7AA6DCFF" arbe5 <- "#868686FF" arbe6 <- "#003C67FF"	

```
farbe7 <- "#8F7700FF"
farbe8 <- "#3B3B3BFF"
farbe9 <- "#A73030FF"
farbe10 <- "#4A6990FF"
farbe11 <- "#FF6F00FF"
farbe12 <- "#C71000FF"
farbe13 <- "#008EA0FF"
farbe14 <- "#8A4198FF"
farbe15 <- "#5A9599FF"
farbe16 <- "#FF6348FF"</pre>
```

2 What was done?

- I count different versions of the miR181 seed in the 200nt before and after mir181 binding sites.
- I use the seed 6mer, 7mers with one adjecent nt, and a 8mer with two adjecent nts.

3 Files

```
# -----
# MREs
# -----
mir181_bs <- readRDS("/Users/melinaklostermann/Documents/projects/AgoCLIP_miR181/R_github/miR181_paper/:
mir_crosslinks <- readRDS("/Users/melinaklostermann/Documents/projects/AgoCLIP_miR181/xx_down_stream_R/:
load("/Users/melinaklostermann/Documents/projects/AgoCLIP_miR181/xx_down_stream_R/02_BS_definition_WT_r
mir181_enriched_set <- mir181_bs %>%
    as.data.frame(.) %>%
    subset(set %in% c("ago_bs_mir181_chi&mir181_enriched", "mir181_enriched"))
```

4 XSTREME de novo motif discovery

```
# get seqeunce 200nt around binding sites
mir181_bs_200_both_sides <- makeGRangesFromDataFrame(mir181_enriched_set, keep.extra.columns = T) + 20
names(mir181_bs_200_both_sides) <- 1:NROW(mir181_bs_200_both_sides)
mir181_bs_200_both_sides_seq<- getSeq(mir181_bs_200_both_sides, x = BSgenome.Mmusculus.UCSC.mm10) %>%
RNAStringSet()

# write fasta file for XSTREME
writeXStringSet(mir181_bs_200_both_sides_seq, filepath = paste0(out, "mirBS_200_both_sides.fasta"))
```

XSTREME is executed on the fasta file from above via the MEME SUITE webpage (https://memesuite.org/meme/tools/xstreme) with the following parameters:

- E-value ≤ 0.05
- Width 5-10
- background: model control sequences
- STREME limit: Number of motifes = 20
- MEME options: Default E-value, Zero or one occurence per sequence

• SEA: Output the matching sequences in a TSV file

```
# plot logo
motif <- read.table("/Users/melinaklostermann/Documents/projects/AgoCLIP_miR181/R_github/miR181_paper/F
colnames(motif) <- c("A", "C", "G", "U")</pre>
motif <- t(motif)</pre>
logo <- ggseqlogo::ggseqlogo(motif)</pre>
logo
   2.0
   1.5
1.0
   0.5
   0.0
               1
                       2
                                 3
                                          4
                                                   5
                                                            6
                                                                     7
                                                                               8
                                                                                        9
ggsave(logo, filename = paste0(out, "xstreme_logo.pdf"), height = 6, width = 8, units = "cm")
#################
# the mir181 seed and interesting seed variations
################
seed_8mer <- "UGAAUGUU"</pre>
seed_7mer_m8 <- "UGAAUGU"</pre>
seed_7mer_a1 <- "GAAUGUU"</pre>
seed_6mer <- "GAAUGU"</pre>
seed_6mer_wobble <- "GAUUGU"</pre>
seed_8mer_wobble <- "UGAUUGUU"</pre>
seed_7mer_m8_wobble <- "UGAUUGU"</pre>
seed_7mer_a1_wobble <- "GAUUGUU"</pre>
# make a list of all seeds
seed_list <- list(seed_8mer, seed_7mer_m8, seed_7mer_a1,seed_6mer, seed_6mer_wobble, seed_8mer_wobble,</pre>
```

5 Seed position and distribution

5.1 200nt after the binding site

```
#######################
# get seed in 200er window
############################
mir181_bs_200down <- makeGRangesFromDataFrame(mir181_bs, keep.extra.columns = T) %>% resize(., width = 1
mir181_bs_200down_seq <- getSeq(mir181_bs_200down, x = BSgenome.Mmusculus.UCSC.mm10) %>%
  RNAStringSet()
# count occurences of all seed variations
Seeds_200down <- lapply(seed_list, function(x) {</pre>
  vmatchPattern(pattern = x, mir181_bs_200down_seq) %>%
  lapply(., function(x) as.data.frame(x))})
# add the binding site id to the seeds and make a df per seed type
BS_ID_list <- as.list(mir181_bs$mir181BS_ID)</pre>
Seeds_200down <- map(Seeds_200down,
                     ~map2(.x, BS_ID_list, ~mutate(.x, mir181BS_ID = .y) ) %>%
               map_dfr(~.x))
# add the seed type names and make one df of all
Seeds_200down <- map2(Seeds_200down, seed_names_list, ~mutate(.x, seed = .y) ) %>% map_dfr(~.x)
# extract wobble positions
Seeds_1_per_BS <- Seeds_200down %>%
 mutate(wobble = grepl("wobble", seed),
         seed = case_when(wobble ~ substr(seed, 1, nchar(seed)-7), T ~ seed))
# order seeds by importance
Seeds_1_per_BS$seed <- factor(Seeds_1_per_BS$seed, levels = seed_importance_order )</pre>
# select 1 seed per BS --> closest seed with highest importance
Seeds_1_per_BS <- Seeds_1_per_BS %>%
   group_by(mir181BS_ID) %>%
  arrange(start, seed ) %>%
  dplyr::slice(1) %>%
  ungroup(.)
##############################
# combine the closest seed, and all found seeds to the Binding site data.frame
```

```
#########################
# add all as list column
colnames(Seeds_200down) <- c("Seeds_200down.start",</pre>
                              "Seeds_200down.end",
                              "Seeds_200down.width",
                              "mir181BS_ID",
                              "Seeds_200down.type")
mir181_bs <- left_join(mir181_bs, Seeds_200down, by = "mir181BS_ID") %>%
  tidyr::nest(all_seeds_200down = c("Seeds_200down.start",
                              "Seeds_200down.end",
                              "Seeds_200down.width",
                              "Seeds_200down.type"))
# add closest mir
colnames(Seeds_1_per_BS) <- c("first_seed_200down.start",</pre>
                              "first_seed_200down.end",
                              "first_seed_200down.width",
                              "mir181BS ID",
                              "first_seed_200down.type",
                              "first_seed_200down.wobble")
mir181_bs <- left_join(mir181_bs, Seeds_1_per_BS, by = "mir181BS_ID")
mir181_bs <- mir181_bs %>%
  rowwise() %>%
  mutate(seed_repetitions.200down = sum(all_seeds_200down$Seeds_200down.type == "seed_6mer"),
        seed_repetitions.200down.wobble = sum(all_seeds_200down$Seeds_200down.type == "seed_6mer_wobble")
##################
# plots
###################
# plot seed variations
p <- ggplot(mir181_bs %>% subset(set %in% c("ago_bs_mir181_chi&mir181_enriched", "mir181_enriched")) %>
  geom_bar(color = "black")+
  theme_paper()+
  scale_fill_manual(values = c(farbe4, darken(farbe4)))+
  theme(legend.position = "None") +
  scale_x_discrete(labels=c(seed_8mer = "U*GAA/UUGU*U",
                            seed_7mer_m8 = "U*GAA/UUGU",
                            seed_7mer_a1 = "GAA/UUGU*U",
                            seed_6mer = "GAA/UUGU"),
                   guide = guide_axis(angle = 25))
  ggtitle("mir181 seed variations in 200nt after the binding site",
          subtitle = "in case of mutiple seeds the seed nearest to the bindingsite in used")
```

mir181 seed variations in 200nt after the binding site in case of mutiple seeds the seed nearest to the bindingsite in used

first_seed_200down.type

in case of mutiple seeds all are used

in case of mutiple seeds all are used

mir181 wobble seed positions

in case of mutiple seeds all are used

mir181 wobble seed positions in case of mutiple seeds all are used


```
nrow(mir181_bs)
```

```
## [1] 10989
```

```
ggsave(p, filename = paste0(out, "seed_versions_Figure2E.pdf"), width = 6, height = 6, units = "cm" )
ggsave(p4, filename = paste0(out, "seed_position_after_BS.pdf"), width = 6, height = 6, units = "cm" )
ggsave(p6, filename = paste0(out, "wobbleseed_position_after_BS.pdf"), width = 6, height = 4, units = "
ggsave(p7, filename = paste0(out, "wobbleseed_position_after_BS_achse_angepasst.pdf"), width = 6, height
```

5.2 200nt before the binding site

```
Seeds_200up <- map(Seeds_200up,</pre>
                      ~map2(.x, BS_ID_list, ~mutate(.x, mir181BS_ID = .y) ) %>%
               map_dfr(~.x))
# add the seed type names and make one df of all
Seeds_200up <- map2(Seeds_200up, seed_names_list, ~mutate(.x, seed = .y) ) %>% map_dfr(~.x)
# extract wobble positions
Seeds_1_per_BS <- Seeds_200up %>%
  mutate(wobble = grepl("wobble", seed),
         seed = case when(wobble ~ substr(seed, 1, nchar(seed)-7), T ~ seed))
# order seeds by importance
Seeds_1_per_BS$seed <- factor(Seeds_1_per_BS$seed, levels = seed_importance_order )</pre>
# select 1 seed per BS --> closest seed with highest importance
Seeds_1_per_BS <- Seeds_1_per_BS %>%
   group_by(mir181BS_ID) %>%
  arrange(start, seed ) %>%
  dplyr::slice(1) %>%
  ungroup(.)
############################
# combine the closest seed, and all found seeds to the Binding site data frame
########################
# add all as list column
colnames(Seeds_200up) <- c("Seeds_200up.start",</pre>
                              "Seeds_200up.end",
                              "Seeds_200up.width",
                              "mir181BS_ID",
                              "Seeds_200up.type")
mir181_bs <- left_join(mir181_bs, Seeds_200up, by = "mir181BS_ID") %>%
  tidyr::nest(all_seeds_200up = c("Seeds_200up.start",
                              "Seeds_200up.end",
                              "Seeds 200up.width",
                              "Seeds 200up.type"))
# add closest mir
colnames(Seeds_1_per_BS) <- c("first_seed_200up.start",</pre>
                              "first_seed_200up.end",
                              "first_seed_200up.width",
                              "mir181BS_ID",
                              "first_seed_200up.type",
                              "first_seed_200up.wobble")
mir181_bs <- left_join(mir181_bs, Seeds_1_per_BS, by = "mir181BS_ID")
```

```
mir181_bs <- mir181_bs %>%
  rowwise() %>%
  mutate(seed_repetitions.200down = sum(all_seeds_200down$Seeds_200down.type == "seed_6mer"),
        seed_repetitions.200down.wobble = sum(all_seeds_200down$Seeds_200down.type == "seed_6mer_wobble")
##################
# plots
##################
# plot seed variations
p <- ggplot(mir181_bs %>% subset(set %in% c("ago_bs_mir181_chi&mir181_enriched", "mir181_enriched")), a
  geom_bar(color = "black")+
  theme_paper()+
  scale_fill_manual(values = c(farbe4, darken(farbe4)))+
  theme(legend.position = "None") +
  scale_x_discrete(labels=c(seed_8mer = "U*GAA/UUGU*U",
                            seed_7mer_m8 = "U*GAA/UUGU",
                            seed_7mer_a1 = "GAA/UUGU*U",
                            seed_6mer = "GAA/UUGU"),
                   guide = guide_axis(angle = 25))
p +
  ggtitle("mir181 seed variations in 200nt before the binding site",
          subtitle = "in case of mutiple seeds the seed nearest to the bindingsite in used")
```

mir181 seed variations in 200nt before the binding site in case of mutiple seeds the seed nearest to the bindingsite in used

plot seed distributions
p2 <- ggplot(mir181_bs %>% subset(set %in% c("ago_bs_mir181_chi&mir181_enriched", "mir181_enriched")),

mir181 seed positions before binding sites

mir181 seed positions before binding sites

mir181 seed positions before binding sites

in case of mutiple seeds all are used

 $\#ggsave(p, filename = pasteO(out, "seed_versions_Figure2E.pdf"), width = 6, height = 6, units = "cm")$

5.2.1 percent binding sites with a seed downstream

nrow(mir181_bs %>% subset(set %in% c("ago_bs_mir181_chi&mir181_enriched", "mir181_enriched")) %>% subset
[1] 0.1778142

6 Save table

```
saveRDS(mir181_bs, file = paste0(out, "mir181_bs_with_seeds.rds"))
```