Table 1: Summary of models for system-wide traffic demand variables. Modeled variable Model Probability Density Function (PDF) Parameters

	with rate λ(t)	$\lambda = \prod_{t_1}^{t_2} \lambda(t) dt$, $Pr(N = n) = \frac{e^{-\lambda} \lambda^n}{n!}$, $n = 0, 1,$	1132 (max), 294 (median)
AP of first association/session	Lognormal	$p(x) = \frac{\sqrt{1}}{2\pi x \sigma} \exp -\frac{(\ln x - \mu)^2}{2\sigma^2}$	$\mu = 4.0855$, $\sigma = 1.4408$
Flow interarrival/session	Lognormal	Same as above	$\mu = -1.3674$, $\sigma = 2.785$

Time-varying Poisson | N : # of sessions between t_1 and t_2

BiPareto $p(x) = k^{\beta} (1+c)^{\beta-\alpha} x^{-(\alpha+1)} (x+kc)^{\alpha-\beta-1}$ Flow number/session $\alpha = 0.06, \beta = 1.72,$ c = 284.79, k = 1

BiPareto
$$p(x) = k^{\beta} (1+c)^{\beta-\alpha} x^{-(\alpha+1)} (x+kc)^{\alpha-\beta-1}$$

$$(\beta x + \alpha kc), x \ge k$$

BiPareto

Session arrival

Flow size

 $\alpha = 0.00$, $\beta = 0.91$.

Hourly rate: 44 (min),

Same as above

c = 5.20, k = 179