Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и информатики

Курсовая работа по дисциплине Численные методы

«Сравнение решения интегралов изученными методами»

Выполнил студент гр.5030102/20001

Дрекалов Н.С.

Преподаватель

Козлов К.Н.

Санкт-Петербург 2023

Оглавление

Формулировка задачи	3
Вычисление интеграла формулой 3/8	3
Вычисление интеграла методом Гаусса	
Численный анализ методов	6
Вывод	7

Формулировка задачи

Необходимо сравнить количество обращений к подынтегральной функции у метода 3/8 и метода Гаусса (без фиксированных узлов).

Вычисление интеграла формулой 3/8

Условия применимости:

1. Функция f(x) должна в худшем случае иметь лишь конечное число разрывов.

Алгоритм метода:

Необходимо вычислить $I = \sum_{x_k} a_k * f(x_k)$ такое, что $(I - I_0) < \epsilon$

- 1. Необходимо выбрать число отрезков разбиений. Начнём с N = 1 и посчитаем для него $I_{2n}=\frac{3h}{8}\big(f(a)+3f(a+h)+3f(a+2h)+f(a+3h)\big)$, где $h=\frac{b-a}{3}$
- 2. Приравниваем $I_{2n} = I_n$
- 3. Увеличиваем число отрезков разбиение в 2 раза. Тогда $h=h_{\text{новое}}=\frac{h_{\text{старое}}}{2}$.
- 4. Для каждого из отрезков разбиений $[a_i;b_i]$ вычисляем интеграл по формуле $I_k = \int_{a_i}^{b_i} f(x) dx \approx \frac{3h}{8} \big(f(a_i) + 3f(a_i + h) + 3f(a_i + 2h) + f(a_i + 3h) \big)$
- 5. Приравниваем $I_{2n} = \sum_k I_k$
- 6. Проверяем выполнение правила Рунге: $\frac{|I_{2n}-I_n|}{2^m-1} \le \epsilon$, где m=4. Если выполняется, то I_{2n} значение интеграла $\int_a^b f(x) dx$ с точностью ϵ , иначе повторяем действия, начиная с п.2

Вычисление интеграла методом Гаусса

Условия применимости:

1. Функция f(x) должна в худшем случае иметь лишь конечное число разрывов.

Алгоритм метода:

Интеграл представляется как сумма п слагаемых

 $I = \frac{b-a}{2} \sum_i A_i * f\left(\frac{a+b}{2} - \frac{b-a}{2} * t_i\right)$, коэффициенты A_i, t_i вычисляются заранее из нелинейной системы для n=2,3,4,5. Нужная точность достигается с помощью адаптивного разбиения и сравнения на каждом подотрезке разности значений для n,n+1 и необходимой точности.

Предварительный анализ задачи

Анализ функций на непрерывность:

• $f(x) = (x^4 - 2.9x^3 + 6.5x^2 - 7x - 5.4) * \cos(2x)$ непрерывна на всем множестве вещественных чисел => она интегрируема.

Контрольные тесты

Построим графики зависимостей

• Количества вызовов подынтегральной функции от заданной точности.

Численный анализ методов

Интеграл вычислялся на отрезке $[-5;\ 5]$ для диапазона точностей $[10^{-12};10^0]$

Зависимость количества вызовов подынтегральной функции от точност

Рисунок 1. График зависимости количества вызовов подыинтегральной функции от заданной точности

Из графика видно, что для достижения заданной точности при достаточно малых точностях ($< 10^{-7}$) метод Гаусса намного меньше раз обращается к значениям функции, чем метод 3/8.

Вывод

В курсовой работе было произведено сравнение методов 3/8 и Гаусса на количество вызовов подынтегральной функции. Получилось, что последний намного меньше раз совершает обращения к функции, что делает его более предпочтительным при вычислении интегралов от сложный подынтегральных функций, вычисление значений которых может занимать значительное время.