Analyse anancée

Locally convex spaces

Question 1/47

Structure of complex-valued linear functionals on a TVS X

Réponse 1/47

A linear functional $\varphi: X \to \mathbb{C}$ is of the form $\psi(\cdot) - \mathrm{i}\psi(\mathrm{i}\cdot)$ for $\psi: X \to \mathbb{R}$ a linear functional Conversely, any function of this form defines a linear functional $X \to \mathbb{C}$

Question 2/47

Banach-Alaoglu theorem

Réponse 2/47

Let E be a normed vector space, then $\mathcal{B}_{E^*}(0,1)$ is a weak-* compact

Question 3/47

Properties of weak-converging sequences

Réponse 3/47

$$u_n \rightharpoonup u$$
 iff for all $\varphi \in E^*$, $\varphi(u_n) \rightarrow \varphi(u)$
If $u_n \rightharpoonup u$ then $||u|| \leqslant \liminf_{n \in \mathbb{N}} (||u_n||)$
If $u_n \rightharpoonup u$ and $\varphi_n \rightarrow \varphi$ then $\varphi(u_n) \rightarrow \varphi(u)$
If E is uniformly convex, $u_n \rightharpoonup u$ and

 $||u_n|| \to ||u||$ then $u_n \to u$

Question 4/47

Properties of a non-trivial linear functional $\varphi: X \to \mathbb{K}$

Réponse 4/47

 φ is open

Question 5/47

Hyperplane

Réponse 5/47

Kernel of a non-trivial linear map
It has dimension 1 (the converse holds)

Question 6/47

Properties of A + U with $A \subseteq X$ and $U \subseteq X$ open

Réponse 6/47

A+U is open

Question 7/47

Properties of $(X, \sigma(X, M))$ for X a TVS over \mathbb{K} and $M \subseteq \mathcal{L}(X, \mathbb{K})$ that separates points

Réponse 7/47

It is an LCTVS

Its topological dual is MA neighbourhood basis of the origin is given by $V_{\varphi,\varepsilon} = \{u \in X, |\varphi(u)| < \varepsilon\}$

Question 8/47

Properties finite-dimensional subspace Y of a TVS X

Réponse 8/47

Y is closed

Question 9/47

Linear functional

Réponse 9/47

Linear map $X \to \mathbb{K}$ with X a K-vector space

Question 10/47

Bounded set

Réponse 10/47

A is bounded if for all neighbourhood V of 0, there exists $t_0 > 0$ such that, for all $t \ge t_0$, $A \subseteq tV$ A is bounded if for all neighbourhood V of 0,

there exists t > 0 such that $A \subseteq tV$

Question 11/47

Weak-* topology

Réponse 11/47

Weak topology associated to J(E) where $J(u)(\varphi) = \varphi(u)$

Question 12/47

Properties of \overline{A} and \mathring{A} when A is convex

Réponse 12/47

$$\overline{A}$$
 and \mathring{A} are convex
If $\mathring{A} \neq \emptyset$ then $\mathring{A} = \overline{A}$

Question 13/47

Separation of compac and closed sets in a TVS

Réponse 13/47

If X is a TVS, K is a compact subset of X and F a closed subset of X then there exists a neighbourhood V of 0 such that $(K+V)\cap (F+V)=\varnothing$

Question 14/47

Metrizability of $\sigma(E,E^*)$ for E an infinite-dimensional normed vector space

Réponse 14/47

$$\sigma(E, E^*)$$
 is not metrizable

Question 15/47

Reflexive normed vector space

Réponse 15/47

E is reflexive iff $E^{**} = J(E)$

Question 16/47

Properties of the weak-* topology on $\mathcal{B}_{E^*}(0,1)$ if E is separable

Réponse 16/47

Consequently, $\overline{\mathcal{B}_{E^*}}(0,1) \subseteq E$ is compact iff it is sequentially compact

Question 17/47

Properties of a linear map $T: X \to Y$ with X a finite-dimensional TVS

Réponse 17/47

T is continuous

Question 18/47

Analytic Hahn-Banach theorem for functionals in \mathbb{R}

Réponse 18/47

If $p: X \to \mathbb{R}$ is a positively homogeneous and sub-additive, if Y is a subspace of X and $\varphi: Y \to \mathbb{R}$ is a functional such that $\varphi \leqslant p$ on Y then φ can be extended to a linear functional on X still dominated by p

Question 19/47

Properties of X^* when X is an LCTVS

Réponse 19/47

 X^* separates points

Question 20/47

Topologies on a finite-dimensional TVS

Réponse 20/47

A finite TVS has a unique topology, associated to the final topology of $\Phi: \mathbb{K}^d \to X$,

$$(a_i) \to \sum_{i=1}^{n} a_i w_i$$

Question 21/47

Fréchet space

Réponse 21/47

Topological vector space with a compatible metric, that is invariant by translation and with which the space is complete

Question 22/47

Kakutani theorem

Réponse 22/47

Let E be a normed vector space, then E is reflexive iff the unit ball $\overline{\mathcal{B}_E}(0,1)$ is weakly compact

Question 23/47

Continuity of maps between E and F Banach spaces with topologies \mathcal{T}_E and \mathcal{T}_F induced by the norm and \mathcal{T}_E^* and \mathcal{T}_F^* the weak topology

Réponse 23/47

$$T:(E, \mathcal{T}_E) \to (F, \mathcal{T}_F)$$
 is continuous iff $T:(E, \mathcal{T}_E) \to (F, \mathcal{T}_F^*)$ is continuous iff $T:(E, \mathcal{T}_E^*) \to (F, \mathcal{T}_F^*)$ is continuous $T:(E, \mathcal{T}_E^*) \to (F, \mathcal{T}_F)$ is continuous iff one of the conditions above is true and T has finite rank

Question 24/47

Weak topology

Réponse 24/47

$$\sigma(X, X^*)$$
 topology

Question 25/47

Properties of K + F with $K \subseteq X$ compact and $F \subseteq X$ closed

Réponse 25/47

K + F is closed

Question 26/47

 $A \subseteq X$ is balanced

Réponse 26/47

$$\forall |\lambda| \leqslant 1, \lambda A \subseteq A$$

Question 27/47

Necessary condition for X to be a Fréchet space

Réponse 27/47

If X is endowed with a family of separating semi-norms for which the space is complete then X is a Fréchet space

Question 28/47

Bounded map

Réponse 28/47

A map is bounded if it maps bounded sets to bounded sets

Question 29/47

Existence of symmetric neighbourhoods

Réponse 29/47

If W is a neighbourhood of 0 then there exists a neighbourhood V of 0 such as V = -V and $V + V \subseteq W$

Question 30/47

Topological properties of hyperplanes

Réponse 30/47

Hyperplanes are dense or closed Dense iff the associated linear map is continuous

Question 31/47

Weak topology on X

Réponse 31/47

 $\sigma(X, X^*)$ the initial topology on X associated to its topological dual

Question 32/47

Properties of a surjective linear map $T: X \to Y$

Réponse 32/47

T is open

If moreover ker(T) is closed the T is continuous

Question 33/47

 $A \subseteq X$ is absorbing

Réponse 33/47

$$\forall u \in X, \exists t > 0, tu \in A$$

Question 34/47

Continuity properties of $f:(X,\mathcal{T})\to\mathbb{R}$ continuous and convex when X is endowed with the weak topology

Réponse 34/47

f is lower semi-continuous : $\{f \leqslant a\}$ is closed

Question 35/47

Analytic Hahn-Banach theorems for functionals in $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$

Réponse 35/47

If $p: X \to \mathbb{R}$ is a semi-norm, if Y is a subspace of X and $\varphi: Y \to \mathbb{K}$ is a functional such that $|\varphi| \leq p$ on Y then φ can be extended to a linear functional on X with its modulus still dominated by p

Question 36/47

Basic properties/example of bounded sets

Réponse 36/47

A subset of a normed space is bounded iff it is contained in B(0,R) for R>0 $\{u_n, n \in \mathbb{N}\}\$ for (u_n) convergent is bounded A finite union/sum of bounded sets is bounded A compact set is bounded A subset A of a Fréchet space of semi-norms (p_n) is bounded iff there exists (M_n) such that for all $u \in A$, $p_n(a) \leq M_n$

Question 37/47

Corollary of Hahn-Banach theorem in $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$ on the existence of specific functionals on a TVS X

Réponse 37/47

If Y is a closed subspace and $v \notin Y$ then there exists a functional $\varphi \in X^*$ such that $\varphi \equiv 0$ on $Y, \varphi(v) = d(v, Y) > 0 \text{ and } ||\varphi||_{X^*} = 1$

If $u \in X$, there exists $\varphi \in X^*$ such that $\|\varphi\|_{X^*} = 1$ and $\varphi(u) = \|u\|_X$

 $J: u \mapsto \operatorname{ev}_u$ is a isometry on its image

Question 38/47

Link between \overline{A} , \overline{B} and $\overline{A+B}$

Réponse 38/47

$$\overline{A} + \overline{B} \subseteq \overline{A + B}$$

Question 39/47

Properties of $p_A: X \longrightarrow \mathbb{R}_+$ $u \longmapsto \inf(\{t > 0, u \in tA\})$ for $A \subseteq X$ absorbing

Réponse 39/47

 p_A is well defined and positively homogeneous, $p_A(0) = 0$ and p_A is sub-additive If A is convex, $\{p_A(x)<1\}\subseteq A\subseteq \{p_A(x)\leqslant 1\}$ and if A is open then $A = \{p_A(x) < 1\}$ If A is convex and balanced, p_A is a semi-norm If X is a normed space and A is a neighbourhood of the origin then there exists $K \geqslant 0$ such that $p_A(u) \leqslant K \|u\|_X$

Question 40/47

 $A \subseteq X$ is convex

Réponse 40/47

$$tA + (1-t)A \subseteq A \text{ for all } t \in [0,1]$$

Question 41/47

Link between closed and weakly closed sets

Réponse 41/47

If A is weakly closed then it is closed
If A is closed and convex then A is weakly
closed

Question 42/47

Šmulian theorem

Réponse 42/47

If E is a normed vector space and $K \subseteq E$, then if K is weakly compact then K is weakly sequentially compact In perticular, if E is reflexive and (u_n) is a

bounded sequence then (u_n) has an a weakly convergent subsequence

Question 43/47

CNS for
$$\exists \lambda_1, \dots, \lambda_n, \varphi = \lambda_1 \varphi_1 + \dots + \lambda_n \varphi_n$$

Réponse 43/47

$$\ker(\varphi) \subseteq \bigcap_{i=1} \ker(\varphi)_i$$

Question 44/47

Geometric Hahn-Banach theorems

Réponse 44/47

If X is a TVS and $A, B \subseteq X$ are convex disjoint, if A is open, there exists a continuous functional φ on X and $\gamma \in \mathbb{R}$ such that $\operatorname{Re}(\varphi(u)) < \gamma \leqslant \operatorname{Re}(\varphi(v))$ for all $u \in A, v \in B$ If X is an LCTVS, A is closed and Bcompact then there exists $\gamma_1 < \gamma_2 \in \mathbb{R}$ such that $\operatorname{Re}(\varphi(u)) < \gamma_1 < \gamma_2 < \operatorname{Re}(\varphi(v))$ for all $u \in A, v \in B$

Question 45/47

Link between bounded and continuous linear maps

Réponse 45/47

A continuous linear map is bounde A bounded linear map of a normed vector space is bounded In a space with a compatible metric invariant by translation, a bounded linear map is continuous iff it is sequentially continuous at 0

Question 46/47

Link between bounded and weakly bounded in an LCTVS

Réponse 46/47

 $A \subseteq X$ is bounded iff it is weakly bounded

Question 47/47

A normed vector space E is uniformly convex

Réponse 47/47

For all
$$\varepsilon > 0$$
, there exists $\delta > 0$ such that if $||u|| = 1$, $||v|| = 1$ and $||u - v|| > \varepsilon$ then $\left\| \frac{u + v}{2} \right\| < 1 - \delta$