

Algebra Komputerowa

Rozkład Bezkwadratowy Wielomianu [1, 2]

Filip Zieliński

2025

Spis Treści

1. Elementy bezkwadratowe

2. Rozkład bezkwadratowy wielomianu

3. Algorytm Tobeya - Horowitza

Elementy bezkwadratowe

- Przez całą prezentacje zakładamy, że K jest ciałem charakterystyki zero, bądź ciałem skończonym.
- Uwaga! Przedstawione twierdzenia nie muszą zachodzić dla ciał nieskończonych o skończonej charakterystyce.
- Mówiąc o pierścieniu, musimy mówić o pierścieniu z jednoznacznością rozkładu.
- Zazwyczaj myślimy o pierścieniu wielomianów jednej zmiennej K[x].

Bezkwadratowość Elementy bezkwadratowe

Definicja

Niech R będzie pierścieniem oraz $a \in R$ elementem tego pierścienia. a nazywamy bezkwadratowym, jeżeli nie jest podzielny przez kwadrat żadnego elementu nieodwracalnego.

Wielomiany Bezkwadratowe Elementy bezkwadratowe

Obserwacja

Niech $f \in K[x]$ będzie wielomianem o rozkładzie

$$f = \varepsilon \cdot p_1^{\alpha_1} \cdots p_k^{\alpha_m}$$

gdzie ε jest elementem odwracalnym, a p_1, \ldots, p_m są różnymi wielomianami unormowanymi nierozkładalnymi.

Następujące warunki są równoważne

- 1. f jest bezkwadratowy,
- **2.** $\alpha_1 = \ldots = \alpha_m = 1$,
- 3. rozważając f w swoim ciele rozkładu, f posiada jedynie pierwiastki jednokrotne.

Pierwiastki wielokrotne wielomianu Elementy bezkwadratowe

Lemat

Niech $f \in K[x]$ będzie wielomianem, a z pierwiastkiem f o krotności k. Jeżeli k > 1 to f'(z) = 0.

Pierwiastki wielokrotne wielomianu Elementy bezkwadratowe

Lemat

Niech $f \in K[x]$ będzie wielomianem, a z pierwiastkiem f o krotności k. Jeżeli k > 1 to f'(z) = 0.

Twierdzenie

Niech $f \in K[x]$ będzie wielomianem jednej zmiennej o współczynnikach z ciała K. Zachodzi

f jest bezkwadratowy $\Leftrightarrow NWD(f, f') = 1$

Rozkład bezkwadratowy wielomianu

Niech $f \in K[x]$ będzie wielomianem o rozkładzie

$$f = \varepsilon \cdot p_1^{\alpha_1} \cdots p_k^{\alpha_m}$$
.

Oznaczmy $k = \max\{\alpha_1, \dots \alpha_{m}\}$. Pogrupujmy czynniki względem ich krotności, tzn

$$g_i = \prod_{j \leqslant m, \ \alpha_j = i} p_j \quad i \leqslant k$$

Definicja

Rozkładem bezkwadratowym wielomianu f nazywamy zapisanie go w postaci

$$f = \varepsilon \cdot g_1^1 \cdot g_2^2 \cdots g_k^k$$

Radykał Wielomianu Rozkład bezkwadratowy wielomianu

Definicja

Niech $f \in K[x]$ będzie wielomianem o rozkładzie postaci

$$f = \varepsilon \cdot p_1^{\alpha_1} \cdots p_k^{\alpha_m}$$
.

Radykałem wielomianu f nazywamy wielomian

$$rad(f) = p_1 \cdots p_m$$
.

Radykał Wielomianu

HIH KOŁO NAUKOWE

Rozkład bezkwadratowy wielomianu

Definicja

Niech $f \in K[x]$ będzie wielomianem o rozkładzie postaci

$$f = \varepsilon \cdot p_1^{\alpha_1} \cdots p_k^{\alpha_m}$$
.

Radykałem wielomianu f nazywamy wielomian

$$rad(f) = p_1 \cdots p_m$$
.

Twierdzenie

Niech f będzie wielomianem o współczynnikach z ciała charakterystyki zero. Zachodzi

$$\operatorname{rad}(f) = g_1 \cdots g_k = \frac{f}{\operatorname{NWD}(f, f')}$$

Algorytm rozkładu bezkwadratoego Algorytm Tobeya - Horowitza

Założenia: *K* – ciało charakterystyki zero.

Wejście: $f \in K[x]$

Wyjście: g_1, \ldots, g_k takie, że $f = \varepsilon \prod_{i=1}^k g_i^k$

Kroki:

- 1. Przypisz $a_0 := f$, $a_1 := \text{NWD}(a_0, a'_0)$, $b_1 = \frac{a_0}{a_1}$, i := 1.
- **2.** Dopóki $b_i \neq 1$, wykonuj:
 - Wylicz $a_{i+1} = \text{NWD}(a_i, a'_i)$.
 - Wylicz $b_{i+1} = \frac{a_i}{a_{i+1}}$.
 - Wylicz $g_i = \frac{b_i}{b_{i+1}}$.
- **3.** Zwróć $g_1, ..., g_k$.

Zaawansowane algorytmy Algorytm Tobeya - Horowitza

Algorytm Tobeya - Horowitza jest **najstarszym** znanym algorytmem rozkładania bezkwadratowego wielomianu. Został wymyślony w latach 1967/1969.

Zaawansowane algorytmy Algorytm Tobeya - Horowitza

Algorytm Tobeya - Horowitza jest **najstarszym** znanym algorytmem rozkładania bezkwadratowego wielomianu. Został wymyślony w latach 1967/1969.

 Drobna modyfikacja tego algorytmu, sprawia, że działa on na wielomianach nad ciałami skończonymi.

Zaawansowane algorytmy Algorytm Tobeya - Horowitza

Algorytm Tobeya - Horowitza jest **najstarszym** znanym algorytmem rozkładania bezkwadratowego wielomianu. Został wymyślony w latach 1967/1969.

- Drobna modyfikacja tego algorytmu, sprawia, że działa on na wielomianach nad ciałami skończonymi.
- Istnieje szereg szybszych algorytmów
 - 1. algorytm Mussera (1971),
 - 2. algorytm Yuna (1976),
 - 3. algorytm Gerharda (2001),
 - 4. algorytm Guersenzvaiga-Szechtmana (2012/2017).

Algorytm Tobeya - Horowitza

Prezentacja jest mocno oparta o wykład autorstwa *Przemysława Koprowskiego*, który można obejrzeć pod tym linkiem

- [1] Joachim Von Zur Gathen and Jurgen Gerhard. *Modern Computer Algebra*. Cambridge University Press, 1999.
- [2] Przemysław Koprowski. Lectures on Computational Mathematics, 2022.

Pytania, wątpliwości, uwagi?