This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada CA 2359180 A1 2000/08/03

(21) 2 359 180

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) A1

(86) Date de dépôt PCT/PCT Filing Date: 2000/01/29

(87) Date publication PCT/PCT Publication Date: 2000/08/03

(85) Entrée phase nationale/National Entry: 2001/07/18

(85) N° demande PCT/PCT Application No.: DE 00/00244

(87) N° publication PCT/PCT Publication No.: WO 00/44895

(30) Priorités/Priorities: 1999/01/30 (199 03 713.2) DE; 1999/11/24 (199 56 568.6) DE

(51) Cl.Int.7/Int.Cl.7 C12N 15/11, A61K 31/713

(71) Demandeurs/Applicants: KREUTZER, ROLAND, DE; LIMMER, STEPHAN, DE

(72) Inventeurs/Inventors: KREUTZER, ROLAND, DE; LIMMER, STEPHAN, DE

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre: METHODE ET MEDICAMENT DESTINES A INHIBER L'EXPRESSION D'UN GENE DONNE

(54) Title: METHOD AND MEDICAMENT FOR INHIBITING THE EXPRESSION OF A GIVEN GENE

(57) Abrégé/Abstract The invention relates to a medicament containing at least one double-stranded oligonibonucleotide (dsRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the dsRNA is at least in part complementary to the target gene.

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentkiassifikation 7:

C12N 15/11, A61K 31/713

(11) Internationale Veröffentlichungsnummer:

WO 00/44895

A1 (43) Internationales

Veröffentlichungsdatum:

3, August 2000 (03.08.00)

(21) Internationales Aktenzeichen:

PCT/DE00/00244

(22) Internationales Anmeldedatum: 29. Januar 2000 (29.01.00)

(30) Prioritätsdaten:

199 03 713.2 199 56 568.6

DE 30. Januar 1999 (30.01.99)

24. November 1999 (24.11.99)

(71)(72) Anmelder und Erfinder: KREUTZER, Roland [DE/DE]; Glotzdorf 26, D-95466 Weidenberg (DE). LIMMER, Stephan [DE/DE]; Leibnizstrasse 14, D-95447 Bayreuth

(74) Anwalt: GASSNER, Wolfgang, Nägelsbachstrasse 49 A. D-91052 Erlangen (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FL, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, ST, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Anderungen eintreffen.

- (54) Title: METHOD AND MEDICAMENT FOR INHIBITING THE EXPRESSION OF A DEFINED GENE
- (54) Bezeichnung: VERFAHREN UND MEDIKAMENT ZUR HEMMUNG DER EXPRESSION EINES VORGEGEBENEN GENS
- (57) Abstract

The invention relates to a medicament containing at least one double-stranded oligoribonucleotide (dsRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the dsRNA is at least in part complementary to the target gene.

(57) Zusammenfassung

Die Erfindung betrifft ein Medikament mit mindestens einem Oligoribonukleotid mit doppelsträniger Struktur (dsRNA) zur Hernmung der Expression eines Zielgens, wobei ein Strang der dsRNA zumindest abschnittsweise komplementär zum Zielgen ist.

(57) Abstract

The invention rolates to a medicament containing at least one double-stranded oligoribonucleotide (daRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the daRNA is at least in part complementary to the target gene.

WO 00/44895

PCT/DE00/00244

Method and medicament for inhibiting the expression of a given gene

The invention relates to methods in accordance with the preambles of claims 1 and 2. It furthermore relates to a medicament and to a use of double-stranded oligoribonucleotides and to a vector encoding them.

Such a method is known from WO 99/32619, which was unpublished at the priority date of the present invention. The known process aims at inhibiting the expression of genes in cells of invertebrates. To this end, the double-stranded oligoribonucleotide must exhibit a sequence which is identical with the target gene and which has a length of at least 50 bases. To achieve efficient inhibition the lidentical sequence must be 300 to 1 000 base pairs in length. Such an oligoribonucleotide is complicated to prepare.

25+25

RNA with an antisense DE 196 31 919 C2 describes 20 specific secondary structures, the antisense RNA being present in the form of a vector encoding it. The antisense RNA takes the form of an RNA molecule which is complementary to regions of the mRNA. Inhibition of 25 the gene expression is caused by binding to these regions. This inhibition can be employed in particular for the diagnosis and/or therapy of diseases, for example tumor diseases or viral infections. - The disadvantage is that the antisense RNA must be introduced into the cell in an amount which is at least 30 as high as the amount of the mRNA. The known antisense methods are not particularly effective.

US 5,712,257 discloses a medicament comprising
mismatched double-stranded RNA (dsRNA) and bioactive
mismatched fragments of dsRNA in the form of a ternary
complex together with a surfactant. The dsRNA used for
this purpose consists of synthetic nucleic acid single
strands without defined base sequence. The single

strands undergo irregular base pairing, also known as "non-Watson-Crick" base pairing, giving rise to mismatched double strands. The known dsRNA is used to inhibit the amplification of retroviruses such as HIV. Amplification of the virus can be inhibited when non-sequence-specific dsRNA is introduced into the cells. This leads to the induction of interferon, which is intended to inhibit viral amplification. The inhibitory effect, or the activity, of this method is poor.

10

15

It is known from Fire, A. et al., NATURE, Vol. 391, pp. 806 that dsRNA whose one strand is complementary in segments to a nematode gene to be inhibited inhibits the expression of this gene highly efficiently. It is believed that the particular activity of the dsRNA used in nematode cells is not due to the antisense principle but possibly on catalytic properties of the dsRNA, or enzymes induced by it. - Nothing is mentioned in this paper on the activity of specific dsRNA with regard to inhibiting the gene expression, in particular in mammalian and human cells.

The object of the present invention is to do away with the disadvantages of the prior art. In particular, it is intended to provide as effective as possible a method, medicament or use for the preparation of a medicament, which method, medicament or use is capable of causing particularly effective inhibition of the expression of a given target gene.

30

25

This object is achieved by the features of claims 1, 2, 37, 38 and 74 and 75. Advantageous embodiments can be seen from claims 3 to 36, 39 to 73 and 76 to 112.

35 In accordance with the method-oriented inventions, it is provided in each case that the region I which is complementary to the target gene exhibits not more than 49 successive nucleotide pairs.

Provided in accordance with the invention are an oligoribonucleotide or a vector encoding therefor. At least segments of the oligoribonucleotide exhibit a defined nucleotide sequence. The defined segment may be limited to the complementary region I. However, it is also possible that all of the double-stranded oligoribonucleotide exhibits a defined nucleotide sequence.

10 Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. The procedure of providing such oligoribonucleotides is less complicated.

particular, dsRNA with а length of over 50 nucleotide pairs induces certain mechanisms, for example the dsRNA-dependent protein kinase or the 2-5A system, in mammalian and human 20 cells. This leads to the disappearance interference effect mediated by the dsRNA which exhibits a defined sequence. As a consequence, protein biosynthesis in the cell is blocked. 25 invention overcomes this disadvantage in particular.

Furthermore, the uptake of dsRNA with short chain lengths into the cell or into the nucleus is facilitated markedly over longer-chain dsRNAs.

30

35

It has proved advantageous for the dsRNA or the vector to be present packaged into micellar structures, preferably in liposomes. The dsRNA or the vector can likewise be enclosed in viral natural capsids or in chemically or enzymatically produced artificial capsids or structures derived therefrom. - The abovementioned features make it possible to introduce the dsRNA or the vector into given target cells.

In a further aspect, the dsRNA has 10 to 1000, preferably 15 to 49, base pairs. Thus, the dsRNA can be longer than the region I, which is complementary to the target gene. The complementary region I can be located at the terminus or inserted into the dsRNA. Such dsRNA or a vector provided for coding the same can be produced synthetically or enzymatically by customary methods.

10 The gene to be inhibited is expediently expressed in eukaryotic cells. The target gene can be selected from the following group: oncogene, cytokin gene, Id protein gene, developmental gene, prion gene. It can also be expressed in pathogenic organisms, preferably in plasmodia. It can be part of a virus or viroid which is preferably pathogenic to humans. - The method proposed makes it possible to produce compositions for the therapy of genetically determined diseases, for example cancer, viral diseases or Alzheimer's disease.

20

25

The virus or viroid can also be a virus or viroid which is pathogenic to animals or plant-pathogenic. In this case, the method according to the invention also permits the provision of compositions for treating animal or plant diseases.

In a further aspect, segments of the dsRNA are designed as double-stranded. A region II which is complementary within the double-stranded structure is formed by two separate RNA single strands or by autocomplementary regions of a topologically closed RNA single strand which is preferably in circular form.

The ends of the dsRNA can be modified to counteract degradation in the cell or dissociation into the single strands. Dissociation takes place in particular when low concentrations or short chain lengths are used. To inhibit dissociation in a particularly effective fashion, the cohesion of the complementary region II,

which is caused by the nucleotide pairs, can be increased by at least one, preferably two, chemical linkage(s). - A dsRNA according invention whose dissociation is reduced exhibits greater stability to enzymatic and chemical degradation in the cell or in the organism.

The complementary region II can be formed by autocomplementary regions of an RNA hairpin loop, in particular when using a vector according to the invention. To afford protection from degradation, it is expedient for the nucleotides to be chemically modified the loop region between the double-stranded structure.

15

25

35

10

The chemical linkage is expediently formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or interactions, or by metal-ion coordination. 20 especially advantageous aspect, it can be formed at at least one, preferably both, end(s) of the complementary region II.

It has furthermore proved to be advantageous for the chemical linkage to be formed by one or more linkage groups, the linkage groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or moly ethylene glycol chains The chemical linkage can also be formed by purine analogs used in place of purines in 30 the complementary regions II. It is also advantageous for the chemical linkage to be formed by azabenzene units introduced into the complementary regions II. Moreover, it can be formed by branched nucleotide used in place of nucleotides the complementary regions II.

It has proved expedient to use at least one of the following groups for generating the chemical linkage: methylene blue; bifunctional groups,

bis(2-chloroethyl)amine: N-acetyl-N'-(p-glyoxylbenzoyl) cystamine; 4-thiouracil; psoralene. The chemical linkage can furthermore be рy thiophosphoryl groups provided at the ends of double-stranded region. The chemical linkage at ends of the double-stranded region is preferably formed by triple-helix bonds.

The chemical linkage can expediently be induced by 10 ultraviolet light.

The nucleotides for the dsRNA can be modified This counteracts the activation, in the cell, of a doublestranded-RNA-dependent protein kinase, Advantageously, at least one 2'-hydroxyl group of the 15 nucleotides of the dsRNA in the complementary region II is replaced by a chemical group, preferably a 2'-amino. or a 2'-methyl group. At least one nucleotide in at least one strand of the complementary region II can also be a locked nucleotide with a sugar ring which is 20 chemically modified, preferably by a 2'-0, methylene bridge. Advantageously, several nucleotides are locked nucleotides.

25 A further especially advantageous embodiment provides that the dsRNA or the vector is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically. The coat protein can be derived from polyomavirus. The coat protein can contain the polyomavirus virus protein 1 (VP1) and/orvirus protein 2 (VP2). The use of such coat proteins is known from, for example, DE 196 18 797 A1. disclosure is herewith incorporated. The abovementioned features considerably facilitate the introduction of the dsRNA or of the vector into the cell.

When a capsid or capsid-type structure is formed from the coat protein, one side preferably faces interior of the capsid or capsid-type structure. The construct formed is particularly stable.

25

35

The dsRNA can be complementary to the primary or processed RNA transcript of the target gene. - The cell can be a vertebrate cell or a human cell.

10 At least two dsRNAs which differ from each other or at least one vector encoding them can be introduced into the cell, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes. This makes it possible simultaneously to inhibit the expression of at least 15 two different target genes. In order to suppress, in the cell, the expression of a double-stranded-RNAdependent protein kinase, PKR, one of the target genes is advantageously the PKR gene. This allows effective suppression of the PKR activity in the cell. 20

The invention furthermore provides a medicament with at least one oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. - Surprisingly, it has emerged that such a dsRNA is suitable as medicament for inhibiting the expression of a given gene in mammalian cells. In 30 comparison with the use of single-stranded oligoribonucleotides, the inhibition is already caused at concentrations which are lower by at least one order of magnitude. The medicament according to the invention is highly effective. Lesser side effects can be expected.

The invention furthermore provides a medicament with at least one vector for coding least oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. - The medicament proposed exhibits the abovementioned advantages. By using a vector, in particular production costs can be reduced.

In a particularly advantageous embodiment, the complementary region I has not more than 49 successive nucleotide pairs. - Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. The procedure of providing such oligoribonucleotides is less complicated.

invention furthermore provides a use of oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. - Surprisingly, such a dsRNA is suitable for preparing a medicament for inhibiting the expression of a given gene. Compared with the use of single-stranded oligoribonucleotides, the inhibition is already caused at concentrations which are lower by one order of magnitude when using dsRNA. The use according to the invention thus makes possible the preparation of particularly effective medicaments.

20

25

30

35

The invention furthermore provides the use of a vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to this target gene. - The use of a vector makes possible a particularly effective gene therapy.

With regard to advantageous embodiments of the medicament and of the use, reference is made to the description of the above features.

5

Use examples of the invention are illustrated in greater detail hereinbelow with reference to the figures, in which:

- 10 Fig. 1 shows the schematic representation of a plasmid for the in vitro transcription with T7- and SP6-polymerase,
- Fig. 2 shows RNA following electrophoresis on an 8% polyacrylamide gel and staining with ethidium bromide.
- Fig. 3 shows a representation of radioactive RNA transcripts following electrophoresis on an 8% polyacrylamide gel with 7 M urea by means of an instant imager, and
 - Figs. 4a e show Texas Red and YFP fluorescence in murine fibroblasts.

25

Use example 1:

The inhibition of transcription was detected by means of sequence homologous dsRNA in an in vitro transcription system with a nuclear extract from human HeLa cells. The DNA template for this experiment was plasmid pCMV1200 which had been linearized by means of BamHI.

Generation of the template plasmids:

The plasmid shown in fig. 1 was constructed for use in the enzymatic synthesis of the dsRNA. To this end, a polymerase chain reaction (PCR) with the "positive control DNA" of the HelaScribe" Nuclear Extract in vitro transcription kit by Promega, Madison, USA, as

10

15

20

25

30

35

DNA template was first carried out. One of the primers used contained the sequence of an EcoRI cleavage site and of the T7 RNA polymerase promoter as shown in sequence listing No. 1. The other primer contained the sequence of a BamHI cleavage site and of the SP6 RNA polymerase promoter as shown in sequence listing No. 2. In addition, the two primers had, at the 3' regions which were identical with or complementary to the DNA template. The PCR was carried out by means of the "Tag PCR Core Kits" by Qiagen, Hilden, Germany, following the manufacturer's instructions. MgCl₂, in each case 200 µM dNTP, in each case 0.5 µM primer, 2.5 U Taq DNA polymerase and approximately 100 ng of "positive control DNA" were employed as template in PCR buffer in a volume of 100 μ l. After initial denaturation of the template DNA by heating for 5 minutes at 94°C, amplification was carried out in 30 cycles of denaturation for in each case 60 seconds at 94°C, annealing for 60 seconds at 5°C below the the calculated melting point οĒ primers polymerization for 1.5-2 minutes at 72°C. After a final polymerization of 5 minutes at 72°C, 5 µl of the reaction were analyzed by agarose-gel electrophoresis. The length of the DNA fragment amplified thus was 400 base pairs, 340 base pairs corresponding to the "positive control DNA". The PCR product was purified, BamHI and, with EcoRI and hydrolyzed repurification, employed in the ligation together with a pUC18 vector which had also been hydrolyzed by EcoRI and BamHI. E. coli XL1-blue was then transformed. The plasmid obtained (pCMV5) carries a DNA fragment whose 5' end is flanked by the T7 promoter and whose 3' end is flanked by the SP6 promoter. By linearizing the plasmid with BamHI, it can be employed in vitro with the T7-RNA polymerase for the run-off transcription of a single-stranded RNA which is 340 nucleotides in length and shown in sequence listing No. 3. plasmid is linearized with EcoRI, it can be employed for the run-off transcription with SP6 RNA polymerase,

giving rise to the complementary strand. In accordance with the method outlined hereinabove, an RNA 23 nucleotides in length was also synthesized. To this end, a DNA shown in sequence listing No. 4 was ligated with the pUC18 vector via the EcoRI and BamHI cleavage sites.

Plasmid pCMV1200 was constructed as DNA template for the in-vitro transcription with HeLa nuclear extract. To this end, a 1 191 bp EcoRI/BamHI fragment of the positive control DNA contained in the HeLaScribe® Nuclear Extract in vitro transcription kit amplified by means of PCR. The amplified fragment encompasses the 828 bp "immediate early" CMV promoter and a 363 bp transcribable DNA fragment. The PCR product was ligated to the vector pGEM-T "T-overhang" ligation. A BamHI cleavage site is located at the 5' end of the fragment. The plasmid was linearized by hydrolysis with BamHI and used as template in the run-off transcription.

10

15

20

30

In-vitro transcription of the complementary single strands:

pCMV5 plasmid DNA was linearized with EcoRI or BamHI. DNA template for an in-vitro used as 25. It was transcription of the complementary RNA single strands with SP6 and T7 RNA polymerase, respectively. The "Riboprobe in vitro Transcription" system by Promega, Madison, USA, was employed for this purpose. Following the manufacturer's instructions, 2 µg of linearized plasmid DNA were incubated in 100 μ l of transcription buffer and 40 U T7 or SP6 RNA polymerase for 5-6 hours at 37°C. The DNA template was subsequently degraded by addition of 2.5 μ l of RNase-free DNase RQ1 and incubation for 30 minutes at 37°C. The transcription reaction was made up to 300 μl with H_2O and purified by phenol extraction. The RNA was precipitated by addition of 150 μ l of 7 M ammonium acatate [sic] and 1 125 μ l of

· 1133

- 12 -

ethanol and stored at -65°C until used for the hybridization.

Generation of the RNA double strands:

and cooled to room temperature.

- For the hybridization, 500 μ l of the single-stranded RNA which had been stored in ethanol and precipitated were spun down. The resulting pellet was dried and taken up in 30 μ l of PIPES buffer, pH 6.4 in the presence of 80% formamide, 400 mM NaCl and 1 mM EDTA. In each case 15 μ l of the complementary single strands were combined and heated for 10 minutes at 85°C. The reactions were subsequently incubated overnight at 50°C
- 15 Only approximately equimolar amounts of the two single strands were employed in the hybridization. This is why the dsRNA preparations contained single-stranded RNA (ssRNA) as contaminant. In order to remove these ssRNA contaminants, the reactions were treated, after 20 hybridization, with the single-strand-specific ribonucleases bovine pancreatic RNase A and Aspergillus oryzae RNase T1. RNase A is an endoribonuclease which specific for pyrimidines. RNase T1 is endoribonuclease which preferentially cleaves at the 3' side of guanosines. dsRNA is no substrate for these ribonucleases. For the RNase treatment, the reactions in 300 μ l of Tris, pH 7.4, 300 mM NaCl and 5 mM EDTA were treated with 1.2 µl of RNaseA at a concentration of 10 mg/ml and 2 µl of RNaseT1 at a concentration of 290 µg/ml. The reactions were incubated for 1.5 hours at 30°C. Thereupon, the RNases were denatured by addition of 5 μ l of proteinase K at a concentration of 20 mg/ml and 10 µl of 20% SDS and incubation for 30 minutes at 37°C. The dsRNA was purified by phenol extraction and precipitated with ethanol. To verify the completeness of the RNase digestion, two control reactions were treated with ssRNA analogously to the hybridization reactions.

The dried pellet was taken up in 15 μ l of TE buffer, pH 6.5, and subjected to native polyacrylamide gel electrophoresis on an 8% gel. The acrylamide gel was subsequently stained in an ethidium bromide solution. and washed in a water bath. Fig. 2 shows the RNA which had been visualized in a UV transilluminator. The sense RNA which had been applied to lane 1 and the antisense RNA which had been applied to lane 2 showed a different migration behavior under the chosen conditions than the dsRNA of the hybridization reaction which had been applied to lane 3. The RNase-treated sense RNA and antisense RNA which had been applied to lanes 4 and 5, respectively, produced no visible band. This shows that the single-stranded RNAs had been degraded completely. The RNase-treated dsRNA of the hybridization reaction which had been applied to lane 6 is resistant to RNase treatment. The band which migrates faster in the native gel in comparison with the dsRNA applied to lane 3 results from dsRNA which is free from ssRNA. In addition to the dominant main band, weaker bands which migrate faster are observed after the RNase treatment.

10

15

20

25

30

35

In-vitro transcription test with human nuclear extract: HeLaScribe Nuclear in the Extract vitro Using transcription kit by Promega, Madison, USA, the transcription efficiency of the abovementioned DNA fragment which is present in plasmid pCMV1200 and homologous to the "positive control DNA" was determined in the presence of the dsRNA (dsRNA-CMV5) with sequence homology. Also, the effect of the dsRNA without sequence homology, which corresponds to the yellow gene fluorescent protein (YPP) (dsRNA-YRP), studied. This dsRNA had been generated analogously to the dsRNA with sequence homology. The sequence of a strand of this dsRNA can be found in sequence listing No. 5. Plasmid pCMV1200 was used as template for the run-off transcription. It carries the "immediate early" cytomegalovirus promoter which is recognized by the eukaryotic RNA polymerase II, and a transcribable DNA

fragment. Transcription was carried out by means of the HeLa nuclear extract, which contains all the proteins which are necessary for transcription. By addition of $[\cdot - ^{12}P]$ rGTP to the transcription reaction, radiolabeled transcript was obtained. The $[\cdot -^{32}P]$ rGTP used had a specific activity of 400 Ci/mmol, 10 mCi/ml. MgCl₂, in each case 400 μM rATP, rCTP, rUTP, 16 μM rGTP, 0.4 μ M [\cdot - 32 P]rGTP and depending on the experiment 1 fmol of linearized plasmid DNA and various amounts of dsRNA in transcription buffer were employed per reaction. Each batch was made up to a volume of $8.5 \mu l$ with H2O. The reactions were mixed carefully. To start the transcription, 4 U HeLa nuclear extract in a volume of 4 µl were added and incubated for 60 minutes at 30°C. The reaction was stopped by addition of 87.5 μ l of quench mix which had been warmed to 30°C. To remove the proteins, the reactions were treated with 100 μ l of phenol/chloroform/isoamyl alcohol (25:24:1 saturated with TE buffer, pH 5.0, and the reactions were mixed vigorously for 1 minute. For phase separation, the reactions were spun for approximately 1 minute at 12 000 rpm and the top phase transferred into a fresh reaction vessel. Each reaction was treated with 250 μ l of ethanol. The reactions were 25 mixed thoroughly and incubated for at least 15 minutes on dry ice/methanol. To precipitate the RNA, reactions were spun for 20 minutes at 12 000 rpm and 40°C. The supernatant was discarded. The pellet was dried in vacuo for 15 minutes and resuspended in 10 µl 30 of H_2O . Each reaction was treated with 10 μ l of denaturing loading buffer. The free GTP was separated from the transcript formed by means of denaturing polyacrylamide gel electrophoresis on an 8% gel with 7 M urea. The RNA transcripts formed upon transcription with HeLa nuclear extract, in denaturing loading 35 buffer, were heated for 10 minutes at 90°C and 10 μ l aliquots were applied immediately to the freshly washed pockets. The electrophoresis was run at 40 mA. of the radioactive amount SSRNA formed

10

15

transcription was analyzed after electrophoresis with the aid of an *Instant Imager*.

Fig. 3 shows the radioactive RNA from a representative test, shown by means of the *Instant Imager*. Samples obtained from the following transcription reactions were applied:

Lane 1: without template DNA, without dsRNA;

10 Lane 1: 50 ng of template DNA, without dsRNA;

Lane 3: 50 ng of template DNA, 0.5 µg of dsRNA YFP;

Lane 4: 50 ng of template DNA, 1.5 µg of dsRNA YFP;

Lane 5: 50 ng of template DNA, 3 µg of dsRNA YFP;

Lane 6: 50 ng of template DNA, 5 μ g of dsRNA YFP;

15 Lane 7: without template DNA, 1.5 dsRNA YFP;

35

Lane 8: 50 ng of template DNA, without dsRNA;

Lane 9: 50 ng of template DNA, 0.5 μg of dsRNA CMV5;

Lane 10: 50 ng of template DNA, 1.5 µg of dsRNA CMV5;

Lane 11: 50 ng of template DNA, 3 μ g of dsRNA CMV5;

20 Lane 12: 50 ng of template DNA, 5 μg of dsRNA CMV5;

It emerged that the amount of transcript was reduced markedly the presence of dsRNA with sequence in homology in comparison with the control reaction without dsRNA and with the reactions with dsRNA YFP without sequence homology. The positive control in lane 2 shows that radioactive transcript was formed upon the in-vitro transcription with HeLa nuclear extract. The reaction is used for comparison with the transcription reactions which had been incubated in the presence of dsRNA. Lanes 3 to 6 show that the addition of nonsequentially-specific dsRNA YFP had no effect on the amount of transcript formed. Lanes 9 to 12 show that the addition of an amount of between 1.5 and 3 μg of sequentially-specific dsRNA CMV5 leads to a reduction in the amount of transcript formed. In order to exclude that the effects observed are based not on the dsRNA but on any contamination which might have been carried along accidentally during the preparation of the dsRNA,

a further control was carried out. Single-stranded RNA was transcribed as described above and subsequently subjected to the RNase treatment. It was demonstrated by means of native polyacrylamide gel electrophoresis that the ssRNA had been degraded completely. This reaction was subjected to phenol extraction and ethanol precipitation and subsequently taken up in PE buffer, as were the hybridization reactions. This gave a sample which contained no RNA but had been treated with the same enzymes and buffers as the dsRNA. Lane 8 shows that the addition of this sample had no effect on transcription. The reduction of the transcript upon addition of sequence-specific dsRNA can therefore be dsRNA itself. The ascribed unequivocally to the reduction of the amount of transcript of a gene in the presence of dsRNA in a human transcription system indicates an inhibition of the expression of the gene in question. This effect can be attributed to a novel mechanism caused by the dsRNA.

20

30

10

Use example 2:

The test system used for these in-vivo experiments was the murine fibroblast cell line NIH3T3, ATCC CRL-1658. The YFP gene was introduced into the nuclei with the aid of microinjection. Expression of YFP was studied under the effect of simultaneously cotransfected dsRNA with sequence homology. This dsRNA YFP shows homology with the 5'-region of the YFP gene over a length of 315 bp. The nucleotide sequence of a strand of the dsRNA YRP is shown in sequence listing under the fluorescence microscope was Evaluation carried out 3 hours after injection with reference to the greenish-yellow fluorescence of the YFP formed.

35 Construction of the template plasmid, and preparation of the dsRNA:

A plasmid was constructed following the same principle as described in use example 1 to act as template for the production of the YFP dsRNA by means of T7 and SP6

in-vitro transcription. Using the primer Eco_T7_YFP as shown in sequence listing No. 6 and Bam_SP6_YFP as shown in sequence listing No. 7, the desired gene fragment was amplified by PCR and used analogously to the above description for preparing the dsRNA. The dsRNA YFP obtained is identical to the dsRNA used in use example 1 as non-sequence-specific control.

A dsRNA linked chemically at the 3' end of the RNA as shown in sequence listing No. 8 to the 5' end of the 10 complementary RNA via a C18 linker group was prepared (L-dsRNA). To this end, synthons modified by disulfide bridges were used. The 3'-terminal synthon is bound to the solid support via the 3' carbon with an aliphatic linker group via a disulfide bridge. In the 5'-terminal 15 synthon of the complementary oligoribonucleotide which is complementary to the 3'-terminal synthon of the one oligoribonucleotide, the 5'-trityl protecting group is bound via a further aliphatic linker and a disulfide bridge. Following synthesis of the two single strands, removal of the protecting groups and hybridization of complementary oligoribonucleotides, the groups which form are brought into spatial vicinity. The single strands are linked to each other oxidation via their aliphatic linkers and a disulfide bridge. This is followed by purification with the aid of HPLC.

Preparation of the cell cultures:

The cells were incubated in DMEM supplemented with 4.5 g/l glucose, 10% fetal bovine serum in culture dishes at 37°C under a 7.5% CO₂ atmosphere and passaged before reaching confluence. The cells were detached with trypsin/EDTA. To prepare for microinjection, the cells were transferred into Petri dishes and incubated further until microcolonies formed.

Microinjection:

For the microinjection, the culture dishes were removed the incubator for approximately 10 minutes. Approximately 50 nuclei were injected singly per. reaction within a marked area using microinjection system from Carl Zeiss, Göttingen, Germany. The cells were subsequently incubated for three more hours. For the microinjection, borosilicate glass capillaries from Hilgenberg GmbH, Malsfeld. Germany, with a diameter of less than 0.5 μm at the tip 10 were prepared. The microinjection was carried out using a micromanipulator from Narishige Scientific Instrument Lab., Tokyo, Japan. The injection time was 0.8 seconds and the pressure was approximately 100 hPa. 15 transfection was carried out using the plasmid pCDNA YFP, which contains an approximately 800 bp BamHI/EcoRI fragment with the YFP gene in vector pcDNA3. The samples injected into the nuclei contained 0.01 $\mu g/\mu l$ of pCDNA-YFP and Texas Red coupled to dextran-70000 in 14 mM NaCl, 3 mM KCl, 10 mM KPO4 [sic], ph 7.5. 20 Approximately 100 pl of RNA with a concentration of 1 μM or, in the case of the L-dsRNA, 375 μM were additionally added.

The cells were studied under a fluorescence microscope with excitation with the light of the excitation wavelength of Texas Red, 568 nm, or of YFP, 488 nm. Individual cells were documented by means of a digital camers. Figures 4a-e show the result for NIH3T3 cells.

In the cells shown in Fig. 4a, sense-YFP-ssRNA has been injected, in Fig. 4b antisense-YFP-ssRNA, in Fig. 4c dsRNA-YFP, in Fig. 4d no RNA and in Fig. 4e L-dsRNA.

The field on the left shows in each case the fluorescence of cells with excitation at 568 nm. The fluorescence of the same cells at an excitation of 488 nm is seen on the right. The Texas Red fluorescence of all the cells shown demonstrates that the injection solution had been applied successfully into the nuclei

CA 02359180 2001-07-18

- 19 -

and that cells with successful hits were still alive after three hours. Dead cells no longer showed Texas Red fluorescence.

- The right fields of each of figures 4a and 4b show that YFP expression was not visibly inhibited when the single-stranded RNA was injected into the nuclei. The right field of Fig. 4c shows cells whose YFP fluorescence was no longer detectable after the injection of dsRNA-YFP. Fig. 4d shows cells into which no RNA had been injected, as control. The cell shown in fig. 4e shows YFP fluorescence which can no longer be detected owing to the injection of the L-dsRNA which shows regions with sequence homology to the YFP gene.
- This result demonstrates that even shorter dsRNAs can be used for specifically inhibiting gene expression in mammals when the double strands are stabilized by chemically linking the single strands.

19a

Literature:

5

(:

- Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. (1999). Photoregulation der Bildung und Dissoziation eines DNA-Duplexes durch cis-trans-Isomerisierung einer Azobenzoleinheit. Angew. Chem. 111, 2547-2549.
- Azhayeva, E., Azhayev, A., Auriola, S., Tengvall, U., Urtti, A. & Lönnberg, H. (1997). Inhibitory properties of double helix forming circular oligonucleotides. Nucl. Acids Res. 25, 4954-4961.
- Castelli, J., Wood, K.A. & Youle, R.J. (1998). The 2-5A system in viral infection and apoptosis. *Biomed. Pharmacother*. 52, 386-390.
- Dolinnaya, N.G., Blumenfeld, M., Merenkova, I., Oretskaya, T.S., Krynetskaya, N.F., Ivanovskaya, M.G., Vasseur, M. & Shabarova, Z.A. (1993). Oligonucleotide circularization by template-directed chemical ligation. Nucl. Acids Res. 21, 5403-5407.
- Expert-Bezancon, A., Milet, M. & Carbon, P. (1983). Precise localization of several covalent RNA-RNA cross-link in Escherichia coli 16S RNA. Eur. J. Biochem. 136, 267-274.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

 Nature 391, 806-811.

196

- Gao, H., Yang, M., Patel, R. & Cook, A.F. (1995). Circulaization of oligonucleotides by disulfide bridge formation.

 Nucl. Acids Res. 23, 2025-2029.
- 5 Gryaznov, S.M. & Letsinger, R.L. (1993). Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. *Nucl. Acids Res.* 21, 1403-1408.
- 10 Kaufman, R.J. (1999). Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: A new role for an old actor. Proc. Natl. Acad. Sci. USA 96, 11693-11695.
- Lipson, S.E. & Hearst, J.E. (1988). Psoralen cross-linking of ribosomal RNA. In Methods in Enzymology Anonymous pp. 330-341.
- Liu, Z.R., Sargueil, B. & Smith, C.W. (1998). Detection of a novel ATP-dependent cross-linked protein at the 5' splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. Mol. Cell. Biol. 18, 6910-6920.
- Micura, R. (1999). Cyclic oligoribonucleotides (RNA) by solidphase synthesis. *Chem. Eur. J.* 5, 2077-2082.
- Skripkin, E., Isel, C., Marquet, R., Ehresmann, B. & Ehresmann, C. (1996). Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA₃^{LyB}. Nucl.

 Acids Res. 24, 509-514.

19C

- Wang, S. & Kool, E.T. (1994). Circular RNA oligonucleotides.
 Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucl. Acids Res. 22, 2326-2333.
- 5 Wang, Z. & Rana, T.M. (1996). RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking.

 Biochem. 35, 6491-6499.
- Watkins, K.P. & Agabian, N. (1991). In vivo UV cross-linking of U snRNAs that paticipate in trypanosome trans-splicing. Genes & Development 5, 1859-1869.
- Wengel, J. (1999). Synthesis of 3'-C- and 4'-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res. 32, 301-310.
- Zwieb, C., Ross, A., Rinke, J., Meinke, M. & Brimacombe, R. (1978). Evidence for RNA-RNA cross-link formation in Escherichia coli ribosomes. Nucl. Acids Res. 5, 2705-2720.

WO 00/44895

PCT/DE00/00244

1

Sequence Listing

- <110> Kreutzer Dr., Roland
 Limmer Dr., Stephan
- <120> Method and medicament for inhibiting the expression of a given gene
- <130> 400968

<140>

<141>

- <150> 199 03 713.2
- <151> 1999-01-30
- <150> 199 56 568.6
- <151> 1999-11-24
- <160> 8
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 45
- <212> DNA
- <213> Artificial Sequence

<220>

<400> 1 ;
gganttetaa tacgacteae tatagggega teagatetet agaag

45

<210> '2

WO 00/44895

PCT/DE00/00244

2

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

c223> Description of the artificial sequence:
 BamHI cleavage site, SP6 RNA Polymerase
 promoter

<400> 2 gggatccatt taggtgacac tatagaatbc ccatgatege gtagtegata

50

<210> 3

<211> 340

<212> RNA

<213> Artificial Sequence

<220>

Color of the artificial sequence:
RNA which corresponds to a sequence from the positive control DNA of the HeLa Nuclear Extract in vitro transcription kit from Promega

<400> 3

 vcagaucucu
 agaagcuuua
 augegguagu
 uuaucacagu
 uaaauugcua
 acgcagucag
 60

 gcaccgugua
 ugaaaucuaa
 caaugegebe
 aucgucaucc
 ucggcaccgu
 caccuggu
 120

 gcuguagga
 uaagcuuggu
 uaugecggua
 cugccaggee
 ucuugegga
 uauugegga
 uauugeguu
 paucaucuu
 240

 uccgacagca
 ucgacagcae
 uauugeggua
 gccgcuuuu
 gccgccgcuuu
 gccgccgcc
 aguccugcuc
 300

 gcuucgcuac
 uuggagccae
 uaucgacuac
 gcgaucaugg
 sccgccuuu
 360

<210> 4

<211> 363

<212> DNA

<213> Artificial Sequence

<220>

PCT/DE00/00244

WO 00/44895

3

COUNTY DESCRIPTION OF the artificial sequence:
DNA which corresponds to a sequence from the positive control DNA of the HeLa Nuclear Extract in vitro transcription kit from Promega

<400> 4
Tragatotor agasgetta argeggragt tratcacage taxattgeta acquagroup 60
genergtgta tynnatetan cameggete arcetente teggeneegt caecetggat 120
getgtaggen taggettggt targeeggta ergeeggge tettgegggn tategreent 180
teegnangen tegecagten tratggegtg ergetnegge taxatgegtt gargenattt 240
etatgegene eegttetegg agenergtee gacegetttg geegeegeee agreetgete 300

gerregerae reggageeze tategactae gegareargg egaceacaee egreetgrgg 360

ate 363

<210> 5

<211> 315

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of the artificial sequence:
 Sequence from the YFP gene

<400> 5

auggugagea agggegagga geuguucaee ggggugguge ecauceuggu egageuggae 60 ggegaeguaa aeggeeacaa guucagegug uceggegagg gegagggega ugeeaccuae 120 ggeaageug eccugaaguu eaucugeace aeeggeaage ugeeeeega ecaeaugaag 240 caggaegaeu ucuucaague egeeaugeee gaaggeuaeg uceaggageg eaeeaugaag 240 uceaggaeg aegge 315

<210>

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of the artificial sequence:

WO 00/44895

PCT/DE00/00244

4

EcoRI cleavage site, T7 RNA Polymerase promoter, complementary region to the YFP gene

<400> 6		
ggasttcta	a tacgacteae tatagggega atggtgagea agggegagga ge 53	2
<210>	7	
<211>	53	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
.<223>	Description of the artificial sequence: BamHI cleavage site, SP6 RNA Polymeras promoter, complementary region to the YFP gene	
<400> 7	t taggtgadad tetagaetad geogrogrod tigaegaega tyy 5.	3
<210>	8	
<211>	21	
<212>	RNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of the artificial sequence:	
	RNA which corresponds to a sequence from t YFP gene	h

vegagengga eggegaegna a

21

CA 02359180 2001-07-18

-20-

International Patent Application No. PCT/DE00/00244 of Dr Roland Kreutzer and Dr Stefan Limmer

New Patent Claims

5

- Method for inhibiting the expression of a given 1. in a cell in vitro, where target gene oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands is introduced into the cell, where one strand of 10 the dsRNA has a region which is complementary to the target gene, characterized in that less than 25 complementary region has successive nucleotide pairs. 15
 - Method according to claim 1, where the dsRNA is enclosed by micellar structures, preferably by liposomes.

20

- 3. Method according to either of the preceding claims, where the dsRNA is enclosed by natural viral capsids or by chemically or enzymatically produced artificial capsids or structures derived therefrom.
 - Method according to one of the preceding claims, where the target gene is expressed in eukaryotic cells.

30

Method according to one of the preceding claims, where the target gene is selected from the following group: oncogene, cytokin gene, Idprotein gene, development gene, prion gene.

35

 Method according to one of the preceding claims, where the target gene is expressed in pathogenic organisms, preferably in plasmodia.

- Method according to one of the preceding claims, where the target gene is part of a virus or viroid.
- 8. Method according to claim 7, where the virus is a virus or viroid which is pathogenic for humans.

5

15

20

- 9. Method according to claim 7, where the virus or 10 viroid is a virus or viroid which is pathogenic for animals or phytopathogenic.
 - 10. Method according to one of the preceding claims, where segments of the dsRNA are in double-stranded form.
 - 11. Method according to one of the preceding claims, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
- 12. Method according to one of the preceding claims, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).
- 13. Method according to one of the preceding claims, where the chemical linkage is formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination.
- 14. Method according to one of the preceding claims,
 35 where the chemical linkage is generated at at
 least one, preferably both, ends of the doublestranded structure.

CA 02359180 2001-07-18

-12 -

- 15. Method according to one of the preceding claims, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.
- 16. Method according to one of the preceding claims, where the chemical linkage is formed by purine analogs used in the double-stranded structure in place of purines.

5

- 17. Method according to one of the preceding claims, where the chemical linkage is formed by azabenzene units introduced into the double-stranded structure.
- 18. Method according to one of the preceding claims, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.
- 19. Method according to one of the preceding claims, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxyl-benzoyl)cystamine; 4-thiouracil; psoralene.
 - 30 20. Method according to one of the preceding claims, where the chemical linkage is formed by thiophosphoryl groups provided at the ends of the double-stranded structure.
 - 35 21. Method according to one of the preceding claims, where the chemical linkage at the ends of the double-stranded structure is formed by triple-helix bonds.

- 22. Method according to one of the preceding claims, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.
- 23. Method according to one of the preceding claims, where at least one nucleotide in at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
- 15 24. Method according to one of the preceding claims, where the dsRNA is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically.

20

5

- 25. Method according to one of the preceding claims, where the coat protein is derived from polyomavirus.
- 25 26. Method according to one of the preceding claims, where the coat protein contains the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).
- 30 27. Method according to one of the preceding claims, where, when a capsid or capsid-type structure is formed from the coat protein, one side faces the interior of the capsid or capsid-type structure.
- 35 28. Method according to one of the preceding claims, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.

29. Method according to one of the preceding claims, where the cell is a vertebrate cell or a human cell.

5 .

- 30. Method according to one of the preceding claims, where at least two dsRNAs which differ from each other are introduced into the cell, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
- 31. Method according to one of the preceding claims, where one of the target genes is the PKR gene.

15

10

- 32. Medicament with at least one oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands for inhibiting the expression of a given target gene, where one
- strand of the dsRNA has a region which is complementary to the target gene, characterized in that
 - the complementary region has less than 25 successive nucleotide pairs.

25

- 33. Medicament according to claim 32, where the dsRNA is enclosed by micellar structures, preferably by liposomes.
- 30 34. Medicament according to either of claims 32 or 33, where the dsRNA is enclosed by natural viral capsids or by chemically or enzymatically produced artificial capsids or structures derived therefrom.

35

35. Medicament according to one of claims 32 to 34, where the target gene can be expressed in eukaryotic cells.

36. Medicament according to one of claims 32 to 35, where the target gene is selected from the following group: oncogene, cytokin gene, Idprotein gene, development gene, prion gene.

5

35

- 37. Medicament according to one of claims 32 to 36, where the target gene can be expressed in pathogenic organisms, preferably in plasmodia.
- 38. Medicament according to one of claims 32 to 37, where the target gene is part of a virus or viroid.
- 15 39. Medicament according to claim 38, where the virus is a virus or viroid which is pathogenic for humans.
- 40. Medicament according to claim 38, where the virus or viroid is a virus or viroid which is pathogenic for animals.
- 41. Medicament according to one of claims 32 to 40, where segments of the dsRNA are in double-stranded form.
- 42. Medicament according to one of claims 32 to 40, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
 - 43. Medicament according to one of claims 32 to 42, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).

44. Medicament according to one of claims 32 to 43, where the chemical linkage is formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination.

5

10

- 45. Medicament according to one of claims 32 to 44, where the chemical linkage is generated at at least one, preferably both, ends of the double-stranded structure.
- 46. Medicament according to one of claims 32 to 45, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.
- 47. Medicament according to one of claims 32 to 46,
 20 where the chemical linkage is formed by purine
 analogs used in the double-stranded structure in
 place of purines.
- 48. Medicament according to one of claims 32 to 47, where the chemical linkage is formed by azabenzene units inserted into the double-stranded structure.
- 49. Medicament according to one of claims 32 to 48, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.
- 50. Medicament according to one of claims 32 to 49, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxylbenzoyl)-cystamine; 4-thiouracil; psoralene.

51. Medicament according to one of claims 32 to 50, where the chemical linkage is formed by thiophosphoryl groups provided at the ends of the double-stranded structure.

5

10

30

- 52. Medicament according to one of claims 32 to 51, where the chemical linkage are [sic] triple-helix bonds provided at the ends of the double-stranded structure.
- 53. Medicament according to one of claims 32 to 52, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.
- 54. Medicament according to one of claims 32 to 53, where at least one nucleotide in at least one 20 strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
- 25 55. Medicament according to one of claims 32 to 54, where the dsRNA is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically.
 - 56. Medicament according to one of claims 32 to 55, where the coat protein is derived from the polyomavirus.
- 35 57. Medicament according to one of claims 32 to 56, where the coat protein contains the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).

58. Medicament according to one of claims 32 to 57, where, when a capsid or capsid-type structure is formed from the coat protein, one side faces the interior of the capsid or capsid-type structure.

5

10

15

25

- 59. Medicament according to one of claims 32 to 58, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.
- 60. Medicament according to one of claims 32 to 59, where the cell is a vertebrate cell or a human cell.
- 61. Medicament according to one of claims 32 to 60, where at least two dsRNAs which differ from each other are contained in the medicament, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
 - 62. Medicament according to claim 61, where one of the target genes is the PKR gene.
- ingredient with at least one . 63. Active oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region 30 which is complementary to the target gene, and where the target gene is part of a phytopathogenic virus or viroid, characterized in that
- 35 the complementary region has less than 25 successive nucleotide pairs.

- 64. Active ingredient according to claim 63, where the target gene can be expressed in eukaryotic cells.
- 65. Active ingredient according to claim 63 or 64,

 where segments of the dsRNA are in double-stranded form.
- 66. Active ingredient according to one of claims 63 to 65, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
- 67. Active ingredient according to one of claims 63 to 66, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).
- 68. Active ingredient according to one of claims 63 to
 20 67, where the chemical linkage is formed by a
 covalent or ionic bond, a hydrogen bond,
 hydrophobic interactions, preferably van-der-Waals
 or stacking interactions, or by metal-ion
 coordination.

25

- 69. Active ingredient according to one of claims 63 to 68, where the chemical linkage is generated at at least one, preferably both, ends of the double-stranded structure.
- 70. Active ingredient according to one of claims 63 to 69, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.

71. Active ingredient according to one of claims 63 to 70, where the chemical linkage is formed by purine analogs used in the double-stranded structure in place of purines.

5 72. Act

72. Active ingredient according to one of claims 63 to 71, where the chemical linkage is formed by azabenzene units inserted into the double-stranded structure.

10

73. Active ingredient according to one of claims 63 to 72, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.

15

20

- 74. Active ingredient according to one of claims 63 to 73, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxyl-benzoyl)cystamine; 4-thiouracil; psoralene.
- 75. Active ingredient according to one of claims 63 to 74, where the chemical linkage is formed by thiophosphoryl groups provided at the ends of the double-stranded structure.
- 76. Active ingredient according to one of claims 63 to 75, where the chemical linkage are triple-helix bonds provided at the ends of the double-stranded structure.
- 77. Active ingredient according to one of claims 63 to 76, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.

- 78. Active ingredient according to one of claims 63 to 77, where at least one nucleotides at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
- 79. Active ingredient according to one of claims 63 to 78, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.
- 80. Active ingredient according to one of claims 63 to 79, where at least two dsRNAs which differ from each other are contained in the active ingredient, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
- 20 81. Use of an oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands or preparing a medicament or active ingredient for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region which is complementary to the target gene,

characterized in that the complementary region has less than 25 successive nucleotide pairs.

30

5

10

- 82. Use according to claim 81, where the dsRNA is enclosed by micellar structures, preferably by liposomes.
- 35 83. Use according to either of claims 81 or 82, where the dsRNA is enclosed by natural viral capsids or by chemically or enzymatically produced artificial capsids or structures derived therefrom.

- 84. Use according to one of claims 81 to 83, where the target gene can be expressed in eukaryotic cells.
- 5 85. Use according to one of claims 81 to 84, where the target gene is selected from the following group: oncogene, cytokin gene, Id-protein gene, development gene, prion gene.
- 10 86. Use according to one of claims 81 to 85, where the target gene can be expressed in pathogenic organisms, preferably in plasmodia.
- 87. Use according to one of claims 81 to 86, where the target gene is part of a virus or viroid.
 - 88. Use according to claim 87, where the virus is a virus or viroid which is pathogenic for humans.
- 20 89. Use according to claim 87, where the virus or viroid is a virus or viroid which is pathogenic for animals or phytopathogenic.
- 90. Use according to one of claims 81 to 89, where segments of the dsRNA are in double-stranded form.
- 91. Use according to one of claims 81 to 90, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
- 92. Use according to one of claims 81 to 91, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).

CA 02359180 2001-07-18

- 33 -

93. Use according to one of claims 81 to 92, where the chemical linkage is formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination.

5

10

15

- 94. Use according to one of claims 81 to 93, where the chemical linkage is generated at at least one, preferably both, ends of the double-stranded structure.
- 95. Use according to one of claims 81 to 94, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.
- 96. Use according to one of claims 81 to 95, where the chemical linkage is formed by purine analogs used in the double-stranded structure in place of purines.
- 97. Use according to one of claims 81 to 96, where the chemical linkage is formed by azabenzene units introduced into the double-stranded structure.
- 98. Use according to one of claims 81 to 97, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.
- 99. Use according to one of claims 81 to 98, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloro-ethyl)amine; N-acetyl-N'-(p-glyoxylbenzoyl)-cystamine; 4-thiouracil; psoralene.

100. Use according to one of claims 81 to 99, where the chemical linkage is formed by thiophosphoryl groups attached to the ends of the double-stranded structure.

5

101. Use according to one of claims 81 to 100, where the chemical linkage at the ends of the doublestranded structure is formed by triple-helix bonds.

10

20

25

102. Use according to one of claims 81 to 101, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a

2'-amino or a 2'-methyl group. 15

> 103. Use according to one of claims 81 to 102, where at least one nucleotide in at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.

104. Use according to one of claims 81 to 103, where the dsRNA is bound to, associated with or surrounded by, at least one viral coat protein originates from a virus, is therefrom or has been prepared synthetically.

105. Use according to one of claims 81 to 104, where the coat protein is derived from polyomavirus. 30

106. Use according to one of claims 81 to 105, where the coat protein contains the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).

35

107. Use according to one of claims 81 to 106, where, when a capsid or capsid-type structure is formed from the coat protein, one side faces the interior of the capsid or capsid-type structure.

- 108. Use according to one of claims 81 to 107, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.
- 109. Use according to one of claims 81 to 108, where the cell is a vertebrate cell or a human cell.
- 110. Use according to one of claims 81 to 109, where at least two dsRNAs which differ from each other are used, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
 - 111. Use according to claim 110, where one of the target genes is the PKR gene.

20

112. Use according to one of claims 81 to 111, where the medicament is injectable into the bloodstream or into the interstitium of the organism to undergo therapy.

25 .

- 113. Use according to one of claims 81 to 112, where the dsRNA is taken up into bacteria or microorganisms.
- 30 114. Use of a vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands for preparing a medicament or active ingredient for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region which is complementary to the target gene, characterized in that

the complementary region has less than 25 successive nucleotide pairs.

115. Use according to claim 114, where the target gene can be expressed in eukaryotic cells.

5

10

25

- 116. Use according to claim 114 or 115, where the target gene is selected from the following group: oncogene, cytokin gene, Id-protein gene, development gene, prion gene.
- 117. Use according to one of claims 114 to 116, where the target gene can be expressed in pathogenic organisms, preferably in plasmodia.
- 118. Use according to one of claims 114 to 117, where the target gene is part of a virus or viroid.
- 119. Use according to claim 118, where the virus is a virus or viroid which is pathogenic for humans.
 - 120. Use according to claim 118, where the virus or viroid is a virus or viroid which is pathogenic for animals or phytopathogenic.
 - 121. Use according to one of claims 114 to 120, where segments of the dsRNA are in double-stranded form.
- 122. Use according to one of claims 114 to 121, where
 30 one strand of the dsRNA is complementary to the
 primary or processed RNA transcript of the target
 gene.
- 123. Use according to one of claims 114 to 122, where the cell is a vertebrate cell or a human cell.
 - 124. Use according to one of claims 114 to 123, where at least two dsRNAs which differ from each other

CA 02359180 2001-07-18

- 37 -

are used, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.

5 125. Use according to claim 125, where one of the target genes is the PKR gene.

Petherstonhaugh & Co. Ottawa, Canada Patent Agents

PCT/DE00/00244

Fig. 1

PCT/DE00/00244

Fig. 2

PCT/DE00/00244

Fig. 3

WC 00/44895

PCT/DE00/00244

PCT/DE00/00244


```
SEQUENZPROTOKOLL
```

<110> Kreutzer Dr., Roland Limmer Dr., Stephan

5

<120> Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens

<130> 400968

10

<140>

<141>

<150> 199 03 713.2

15 <151> 1999-01-30

<150> 199 56 568.6

<151> 1999-11-24

20 <160> 8

<170> PatentIn Ver. 2.1

<210> 1

25 <211> 45

<212> DNA

<213> Künstliche Sequenz

<220>

30 <223> Beschreibung der künstlichen Sequenz:
ECORI-Schnittstelle, T7-RNA-Polymerasepromotor

<400> 1 .

ggaattetaa tacgacteae tatagggega teagatetet agaag

45

35

<210> 2

<211> 50

<212> DNA

40 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: BamHI-Schnittstelle, SP6-RNA-Polymerasepromotor

5 <400> 2

gggatccatt taggtgacac tatagaatac ccatgatcgc gtagtcgata

50

<210> 3

10 <211> 340

<212> RNA

<213> Künstliche Sequenz

<220>

- 15 <223> Beschreibung der künstlichen Sequenz: RNA, die einer Sequenz aus der "positive control DNA" des HeLaScribe Nuclear Extract in vitro Transkriptionskits der Firma Promega entspricht
- 20 <400> 3

 ucagaucucu agaagcuuua augcgguagu uuaucacagu uaaauugcua acgcagucag 60
 gcaccgugua ugaaaucuaa caaugcgcuc aucgucaucc ucggcaccgu cacccuggau 120
 gcuguaggca uaggcuuggu uaugccggua cugccgggcc ucuugcggga uaucguccau 180
 uccgacagca ucgccaguca cuauggcgug cugcuagcgc uauaugcguu gaugcaauuu 240
 25 cuaugcgcac ccguucucgg agcacugucc gaccgcuuug gccgccgcc aguccugcua 300
 gcuucgcuac uuggagccac uaucgacuac gcgaucaugg 340

<210> 4

30 <211> 363

<212> DNA

<213> Künstliche Sequenz

<220>

- 35 <223> Beschreibung der künstlichen Sequenz: DNA, die einer Sequenz aus der "positive control DNA" des HeLaScribe Nuclear Extract in vitro Transkriptionskits der Firma Promega entspricht
- 40 <400> 4 tcagatctct agaagcttta atgeggtagt ttatcacagt taaattgcta acgeagtcag 60

```
gcaccgtgta tgaaatctaa caatgcgctc atcgtcatcc tcggcaccgt caccctggat 120
    getgtaggca taggettggt tatgeeggta etgeegggee tettgeggga tategteeat 180
    tecgacagea tegecagtea etatggegtg etgetagege tatatgegtt gatgeaattt 240
    ctatgcgcac ccgttctcgg agcactgtcc gaccgctttg gccgccgccc agtcctgctc 300
5 gcttcgctac ttggagccac tatcgactac gcgatcatgg cgaccacacc cgtcctgtgg 360
    atc
                                                                      363
    <210> 5
10 <211> 315
    <212> RNA
    <213> Künstliche Sequenz
15 <223> Beschreibung der künstlichen Sequenz: Sequenz aus
          dem YFP-Gen
     <400> 5
     auggugagea agggegagga geuguueaee ggggugguge eeauceuggu egageuggae 60
20 ggcgacguaa acggccacaa guucagcgug uccggcgagg gcgagggcga ugccaccuac 120
    ggcaagcuga cccugaaguu caucugcacc accggcaagc ugcccgugcc cuggcccacc 180
     cucquigacca cocugaccua eggegugeag ugenucagee genaceeega ecacangaag 240
     cagcacgacu ucuucaaguc cgccaugccc gaaggcuacg uccaggagcg caccaucuuc 300
     uucaaggacg acggc
25
     <210> 6
     <211> 52
     <212> DNA
30 <213> Künstliche Sequenz
     <220>
     <223> Beschreibung der künstlichen Sequenz:
           EcoRI-Schnittstelle, T7-RNA-Polymerasepromotor,
35
           komplementärer Bereich zum YFP-Gen
     <400> 6
     ggaattetaa tacgacteae tatagggega atggtgagea agggegagga ge
                                                                       52
```

40

<210> 7

20 <223> Beschreibung der künstlichen Sequenz: RNA, die einer Sequenz aus dem YFP-Gen entspricht

<400> 8

<220>

ucgagcugga cggcgacgua a

25

2

53

INTERNATIONAL SEARCH REPORT

PCT/DE 00/00244

		PCT/DE 00	/00244
PC 7 C12N	DE SUBJECT MATTER 15/11 A61K31/713		
ccording to Internation	al Patent Classification (IPC) or to both restornal class	sification and IPC	
FIELDS SEARCHE			•
frimum documentation PC 7 A61K	neearched (classification system tollowed by chassil	ication symbols)	
locumentation searche	d other than minimum documentation to the extern t	hat such documents are included in the fields e	earched
dectronic data base co	nsuited during the international search (name of dat	3 base and, where practical, assich turns used	n
			•
2			• .
	SIDERED TO BE RELEVANT		
Category * Citation of	document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No.
	92 19732 A (GENSET) November 1992 (1992–11–12)	-	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108,
pages	ract, page 11 lines 18-28 s 12-13, page 15 line 22 bi s 33 and 46, figures 1-6	s page 20 line 1,	1-35, 37-43, 45-72, 74-80, 82-108, 110-112
•		-/	
X Further document	nts are listed in the continuation of box C.	Patent family members are listed	l in armex.
considered to be a "E" easier document bu sling date "L" document which ma which is alted to as altation or other ap "O" document releving other means	the general state of the art which is not if particular relevance if published on or after the international my throw doubts on priority claim(s) or stabilish the publication date of another secial reason (as specified) to an oral disclosure, use, exhibition or diprior to the international filing date but	To later document published after the into or priority date and not in conflict with cited to understand the principle or the invention. X' document of particular relevance; the carnot be considered novel or cannot involve an inventive stap when the de Y' document of particular relevance; the carnot be considered to involve an indocument of particular relevance; the carnot be considered to involve an indocument of particular relevance; the carnot be considered to involve an indocument is combined with one or ments, such combination being obvious the art. Ye' document member of the same patern	is the application but secony underlying the colaimed invention to be considered to occurrent is taken alone claimed invention ventive stop when the one other such docu- us to a person stilled
Date of the ectual comp	letion of the international search	Date of mailing of the international se	arch report
6 June 2	2000 .	20/06/2000	
Ler (+:	ess of the ISA on Patent Office, P.B. 5818 Patendaen 2 280 HV Rijswijk 31-70) 340-2040, Tx. 31 651 epo nl, 31-70) 340-3016	Authorized officer Gore, V	

Form PCT/SA/210 (second sheet) (July 1892)

INTERNATIONAL SEARCH REPORT

PCT/DE 00/00244

		PCT/DE 00/00244
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 05770 A (ROTHBARTH KARSTEN ;JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12 February 1998 (1998-02-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y .	abstract, pages 2-3	1-35, 37-43, 45-72, 74-80, 82-108, 110-112
Х,Р	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW () 1 July 1999 (1999-07-01) abstract, pages 6, 11-12, 15-17	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS,US,AMERICAN CHEMICAL SOCIETY. EASTON, vol. 90, no. 4, 1 June 1990 (1990-06-01), pages 543-584, XP000141412 ISSN: 0009-2665 pages 558, 565-566, 574-575	15-28, 52-65, 88-101
A	MADHUR K. ET AL.: "Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes." MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 62, December 1998 (1998-12), pages 1415-1434, XP000909741 * pages 1422-1423 and 1428 *	1-112

INTERNATIONAL SEARCH REPORT

information on patent family members

Ints. Jonel Application No PCT/DE 00/00244

Patent document cited in search report		Publication date	ı	Patent family member(s)	Publication date
WO 9219732	Α	12-11-1992	FR	2675803 A	30-10-1992
		•	AU	660679 B	06-07-1995
			AU	1759692 A	21-12-1992
			CA	2102229 A	26-10-1992
			EΡ	0581848 A	09-02-1994
			JP	6506834 T	04-08-1994
WO 9805770	A	12-02-1998	DE	19631919 A	12-02-1998
			EP	0918853 A	02-06-1999
WO 9932619	Α	01-07-1999	AU	1938099 A	12-07-1999

INTERNATIONALER RECHERCHENBERICHT

PCT/DE 00/00244

·
griffe)
Betr. Anspruch Nr.
1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
1-35, 37-43, 45-72, 74-80, 82-108, 110-112
rationalen Anmeldedatum len ist und mit der Verständnis des der der ihr zugrundellegenden die beenspruchte Ertindung nicht als neu oder auf werden de beenspruchte Ertindung nuhend betrachtet oder mehreren anderen indung gebracht wird und liegend ist wirtamilie ist
thenbenchia (
 _

INTERNATIONALER RECHERCHENBERICHT

Inte Jonales Aktenzeichen
PCT/DE 00/00244

		/DE 00/00244
(Fortsetz	Gile Bett, Anapruch Nr.	
at egos so	Bezeichrung der Veröffentlichung, soweit erlorderlich unter Angabe der in Betracht kommenden 1	
X	WO 98 05770 A (ROTHBARTH KARSTEN ;JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12. Februar 1998 (1998-02-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108,
Y	* Zusammenfassung, Seiten 2-3 *	1-35, 37-43, 45-72, 74-80, 82-108, 110-112
Х,Р	wo 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW () 1. Juli 1999 (1999-07-01) * Zusammenfassung, Seiten 6,11-12,15-17 *	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS,US,AMERICAN CHEMICAL SOCIETY. EASTON, Bd. 90, Nr. 4, 1. Juni 1990 (1990-06-01), Seiten 543-584, XP000141412 ISSN: 0009-2665 * Seiten 558,565-566,574-575 *	15-28, 52-65, 88-101
A	MADHUR K. ET AL.: "Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes." MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Bd. 62, Dezember 1998 (1998-12), Seiten 1415-1434, XP000909741 Seiten 1422-1423 und 1428	1-112

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seiben Patentfamilie gehören

Formblett PCT/ISA/210 (Anhang Patentiamilio)(AM 1992)

PCT/DE 00/00244

im Recherchenberici ngeführtes Patentdoku		Datum der Veröffentlichung		itglied(er) der Paterufamilie	Datum der Veröffentlichung
WO 9219732	A	12-11-1992	FR AU AU CA EP JP	2675803 A 660679 B 1759692 A 2102229 A 0581848 A 6506834 T	30-10-1992 06-07-1995 21-12-1992 26-10-1992 09-02-1994 04-08-1994
WO 9805770	A	12-02-1998	DE Ep	19631919 A 0918853 A	12-02-1998 02-06-1999
WO 9932619	A	01-07-1999	AU	1938099 A	12-07-1999