PROJECT NAME: DETECTING PARKINSONS DISEASE USING MACHINE LEARINING DOMAIN NAME: APPLIED DATA SCIENCE

LITERATURE SURVEY

TOPIC	AUTHOR	PUBLISH ED YEAR	MERIT	DEMERIT
Parkinson's Disease Diagnosis Using Machine Learning and Voice	Timothy J. Wroge , Yasin Ozkanca " , Cenk Demiroglu , Dong Si , David C. Atkins and Reza Hosseini Ghomi	2018	 ✓ translate audio data into diagnostic tool provide diagnoses that are cheaper and more accurate ✓ deep neural networks are being to accurately diagnose individuals with the disease 	✓ Non- invasive voice biomarkers is automated machine learning architecture for detecting and prediction
THE PARKINSON'S DISEASE DETECTION USING MACHINE LEARNING TECHNIQUES	Dr. C k gomathy, mr. B. Dheeraj kumar reddy, ms. B. Varsha, ms. B. Varshini	2021	✓ It shows 73.8%of efficiency in finding out the symptoms by deflections in the voice. ✓ 60% is used for training and 40% is used for testing	✓ Algorithms used can be more efficient to detect
Machine Learning for the Diagnosis of Parkinson's Disease: A Review of Literature	Jie Mei 1 *, Christian Desrosiers 2 and Johannes Frasnelli 1,	2021	 ✓ Many methods and objectives are being useful in adaptation of machine learning language. ✓ Databases that can be used to enlarge and enrich smaller datasets 	 ✓ large-scale, multi-eccentric studies assessment of PD were being excluded. ✓ Directly outcome is difficult to compare with the different models

PARKINSON'S DISEASE DETECTION USING MACHINE LEARNING	Shikha Singh, Nikita Shingade, Priti Sarote, Deepti Yelale and Nihar Ranjan	2022	 ✓ therapies like levodopa/carbidopa are being more useful in early stage treatment. ✓ It is used to speed up to detect the disease and it is cost effective ✓ accuracy of the disease can be detected by some algorithms such as bagging, boosting and so on. By utilizing additional models and by comparing the results it is more efficient In detecting diseases.
Parkinson's Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Technique	Majid Aljalal , Saeed A. Aldosari, Khalil AlSharabi , Akram M. Abdurraqeeb and Fahd A. Alturki	2022	✓ Several features are being extracted from spatially filtered signals. ✓ Features that are being extracted from alpha and beta gives result accuracy. ✓ Channel selection, Classification robustness, Source of data can be improved
Parkinson's Disease Detection Analysis through Machine Learning Approaches	Muhtasim Shafi Kader, Dr.Fizar Ahmed, Annesha Acharjee	2022	✓ nine ML classifiers are being more helpful in detecting the disease ✓ predictable data set is insufficient for finding accurate results