1. Netiesinių lygčių sprendimas

Duotos dvi netiesinės lygtys: daugianaris f(x) = 0 ir trancendentinė funkcija g(x) = 0.

Nr.	Daugianaris $f(x)$	Funkcija $g(x)$		
23	23 $1.4x^5 + 0.85x^4 - 8.22x^3 - 4.67x^2 + 6.51x + 0.86 \qquad \cos(2x) e^{-\left(\frac{x}{2}\right)^2}; -6 \le x \le 6$			
Sprendimo metodai: skenavimo, paprastųjų iteracijų, Kvazi-Niutono (kirstinių)				

1.1. Lygties f(x) = 0 (f(x) – daugianaris) sprendimas

• Daugianario šaknų intervalo įverčiai

1 pav. Daugianario šaknų intervalo grubūs įverčiai (1 grafas) ir tikslesni įverčiai (2 grafas)

Grubus lygties $f(x) = 0$ šaknų intervalo įvertis	[-6.8714; 6.8714]
Tikslesnis lygties $f(x) = 0$ šaknų intervalo įvertis	[-6.8714; 3.4231]
	X _ X

Lentelė 1. Šaknų intervalo įverčiai.

• Komentarai

Grubus įvertis gavosi gana tikslus.

Apatinis grubaus įverčio rėžis net gavosi toks pat kaip ir tikslesnio.

Abu įverčiai apima visas šaknis.

• Šaknų atskyrimas skenavimo metodu

Skenavimas atliekamas intervale [-6,8714; 3,4231], skenavimo žingsnis lygus 0,3.

2 pav. Daugianario šaknų atskyrimo intervalai

Intervalo Nr.	Intervalas	
1	[-2.3714000; -2.0714000]	
2	[-1.4714000; -1.1714000]	
3	[-0.2714000; 0.0286000]	
4	[0.6286000; 0.9286000]	
5	[2.1286000; 2.4286000]	

Lentelė 2. Šaknies atskyrimo intervalai.

• Komentarai

Skenavimo žingsnis parinktas 0,3, kad sumažinti šaknies peršokimo tikimybę. Šaknų neperšoko ir rado visas 5 šaknis.

• Šaknų tikslinimas skenavimo, paprastųjų iteracijų ir Kvazi-Niutono(kirstinių) metodais Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	as	Pradinis intervalas	-	Šaknis (x_g)	Tikslumas $(f(x_g))$	Iteracijų skaičius
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	metod	[-2.3714000; -2.0714000]	-	-2.17699252109	0.00000000091	46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[-1.4714000; -1.1714000]	-	-1.31947233755	0.00000000085	41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vimo	[-0.2714000; 0.0286000]	-	-0.12355878785	0.00000000025	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ena	[0.6286000; 0.9286000]	-	0.77255218603	0.00000000035	36
Pradinis artinys $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk	[2.1286000; 2.4286000]	-	2.240328603 <i>37</i>	0.00000000046	47
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	odas	Pradinis artinys		Šaknis (x_g)	Tikslumas ($ f(x_g) $)	Iteracijų skaičius
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	met	-2.2214	-30	-2.17699252106	0.00000000012	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ijij	-1.3214	10	-1.319472337 <i>61</i>	0.00000000016	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	erac	-0.1214	-7.5	-0.12355878784	0.00000000033	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	p. it	0.7786	11.4	0.77255218606	0.00000000001	4
-2.3714000; -2.07140002.17699252107 0.00000000000 7 -1.4714000; -1.17140001.31947233762 0.000000000000 5 -0.2714000; 0.02860000.12355878785 0.000000000000 6 -0.6286000; 0.9286000 - 0.77255218606 0.00000000000 6 -2.1286000; 2.4286000 - 2.24032860336 0.00000000000 6 Pradinis artinys - Šaknis (fzero) Šaknis (roots) Iteracijų skaič	Paj	2.2786	-76.25	2.240328603 <i>36</i>	0.00000000000	5
2.1286000; 2.4286000 - 2.24032860336 0.00000000000 6 Pradinis artinys - Šaknis (fzero) Šaknis (roots) Iteracijų skaič -2.2142.17699252107 -2.17699252107 -	Kirstinių metodas	Pradiniai artiniai	-	Šaknis (x_g)	Tikslumas ($ f(x_g) $)	Iteracijų skaičius
2.1286000; 2.4286000 - 2.24032860336 0.00000000000 6 Pradinis artinys - Šaknis (fzero) Šaknis (roots) Iteracijų skaič -2.2142.17699252107 -2.17699252107 -		-2.3714000; -2.0714000	-	-2.17699252107	0.00000000000	7
2.1286000; 2.4286000 - 2.24032860336 0.00000000000 6 Pradinis artinys - Šaknis (fzero) Šaknis (roots) Iteracijų skaič -2.2142.17699252107 -2.17699252107 -		-1.4714000; -1.1714000	-	-1.31947233762	0.00000000000	5
2.1286000; 2.4286000 - 2.24032860336 0.00000000000 6 Pradinis artinys - Šaknis (fzero) Šaknis (roots) Iteracijų skaič -2.2142.17699252107 -2.17699252107 -		-0.2714000; 0.0286000	-	-0.12355878785	0.00000000019	4
2.1286000; 2.4286000 - 2.24032860336 0.00000000000 6 Pradinis artinys - Šaknis (fzero) Šaknis (roots) Iteracijų skaič -2.2142.17699252107 -2.17699252107 -		0.6286000; 0.9286000	-	0.77255218606	0.00000000000	6
-2 22142 17699252107 -2 17699252107 -		2.1286000; 2.4286000	-	2.240328603 <i>36</i>	0.00000000000	6
-2.22142.17699252107 -2.176992521071.32141.31947233762 -1.31947233762 -	MATLAB funkcijos	Pradinis artinys	-	Šaknis (fzero)	Šaknis (roots)	Iteracijų skaičius
-1.32141.31947233762 -1.31947233762 -		-2.2214	-	-2.17699252107	-2.17699252107	-
		-1.3214	-	-1.31947233762	-1.31947233762	-
-0.12140.12355878788 -0.12355878788 -		-0.1214	-	-0.12355878788	-0.12355878788	-
0.7786 - 0.77255218606 0.77255218606 -	T J	0.7786	-	0.77255218606	0.77255218606	-
2.2786 - 2.24032860336 -		2.2786	-	2.24032860336	2.24032860336	-

Lentelė 3. Rezultatų lentelė

• Komentarai

Metodas	Komentaras
Skenavimo metodas	Tiesmukiškiausias metodas iš visų, kuris puikiai veikia, nereikia labai tikslaus
	intervalo, kad rasti šaknį, tačiau užtrunka gana daug iteracijų, kol randama šaknis, jei
	intervalas sąlyginai didelis ar paklaida nuo 0 yra sąlyginai maža.
Pap. iteracijų metodas	Šaknis randa greičiau, nei skenavimo metodas, nes reikia mažiau iteracijų, tačiau
	reikia parinkti tinkamą α reikšmę kiekvienai šakniai, o parinkus netinkamą α reikšmę
	šaknies neras.
Kirstinių metodas	Šaknis randa greičiau, nei skenavimo metodas, panašiai kaip pap. iteracijų metodas.
	Paprastesnis nei pap. iter. metodas, nes nereikia parinkti α , tačiau šaknies gali nerasti,
	jei parenkami netinkami pradiniai artiniai. Taip pat šaknys randamos geresniu
	tikslumu.

1.2. Lygties g(x) = 0 (g(x) – trancendentinė funkcija) sprendimas

• Šaknų atskyrimas skenavimo metodu

Skenavimas atliekamas intervale [-6; 6], skenavimo žingsnis lygus 0,3.

4 pav. Šaknų atskyrimo intervalai, kai $0 < x \le 6$

3 pav. Šaknų atskyrimo intervalai, kai $-6 \le x \le 0$

Intervalo Nr.	Intervalas
1	[-5.700; -5.400]
2	[-4.200; -3.900]
3	[-2.400; -2.100]
4	[-0.900; -0.600]
5	[0.600; 0.900]
6	[2.100; 2.400]
7	[3.900; 4.200]
8	[5.400; 5.700]

Lentelė 5. Šaknies atskyrimo intervalai.

• Komentarai

Skenavimo žingsnis parinktas 0,3, kad sumažinti šaknies peršokimo tikimybę. Šaknų neperšoko ir rado visas 8 šaknis.

• Šaknų tikslinimas skenavimo, paprastųjų iteracijų ir Kvazi-Niutono(kirstinių) metodais Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

	Pradinis intervalas		Šaknis (x_g)	Tikslumas $(f(x_a))$	Iteracijų skaičius
Skenavimo metodas	[-5.700; -5.400]	-	-5.49778747559	0.00000000035	22
	[-4.200; -3.900]	-	-3.92699079514	0.00000000093	34
net	[-2.400; -2.100]	-	-2.35619449019	0.00000000000	31
no 1	[-0.900; -0.600]	-	-0.78539816290	0.00000000085	38
avir	[0.600; 0.900]	-	0.78539816290	0.00000000085	40
ken	[2.100; 2.400]	-	2.35619449019	0.00000000000	41
∞	[3.900; 4.200]	-	3.92699079514	0.00000000093	26
	[5.400; 5.700]	-	5.49778747559	0.00000000035	23
	Pradinis artinys	α reikšmė	Šaknis (x_g)	Tikslumas $(f(x_g))$	Iteracijų skaičius
as	-5.550	0.001	-5.49778681649	0.00000000034	4
Pap. iteracijų metodas	-4.050	-0.041	-3.92699080313	0.00000000059	5
me	-2.250	0.5	-2.35619449083	0.00000000032	4
cijų	-0.750	-1.75	-0.78539816335	0.00000000008	5
tera	0.750	1.75	0.78539816335	0.00000000008	5
ф. i	2.250	-0.5	2.35619449083	0.00000000032	4
Pa	4.050	0.041	3.92699080313	0.00000000059	5
	5.550	-0.001	5.49778681649	0.00000000034	4
	Pradiniai artiniai		Šaknis (x_g)	Tikslumas ($ f(x_g) $)	Iteracijų skaičius
	-5.700; -5.400	-	-5.49778714340	0.00000000000	6
das	-4.200; -3.900	-	-3.92699081700	0.00000000000	5
Kirstinių metodas	-2.400; -2.100	-	-2.35619449019	0.00000000000	5
	-0.900; -0.600	-	-0.78539816349	0.00000000015	4
	0.600; 0.900	-	0.78539816358	0.00000000031	4
Kir	2.100; 2.400	-	2.35619449019	0.00000000000	5
	3.900; 4.200	-	3.92699081699	0.00000000000	6
	5.400; 5.700	-	5.49778733092	0.00000000020	6
MATLAB funkcijos	Pradinis artinys		Šaknis (fzero)		Iteracijų skaičius
	-5.550	-	-5.49778714378	-	-
	-4.050	-	-3.92699081699	-	-
	-2.250	-	-2.35619449019	-	-
	-0.750	-	-0.78539816340	-	-
	0.750	-	0.78539816340	-	-
[A]	2.250	_	2.35619449019	-	-
	4.050	-	3.92699081699	-	-
	5.550	-	5.49778714378	-	

• Komentarai

Metodas	Komentaras
Skenavimo metodas	Tiesmukiškiausias metodas iš visų, kuris puikiai veikia, nereikia labai tikslaus
	intervalo, kad rasti šaknį, tačiau užtrunka gana daug iteracijų, kol randama šaknis, jei
	intervalas sąlyginai didelis ar paklaida nuo 0 yra sąlyginai maža.
Pap. iteracijų metodas	Šaknis randa greičiau, nei skenavimo metodas, nes reikia mažiau iteracijų, tačiau
	reikia parinkti tinkamą α reikšmę kiekvienai šakniai, o parinkus netinkamą α reikšmę
	šaknies neras.
Kirstinių metodas	Šaknis randa greičiau, nei skenavimo metodas, panašiai kaip pap. iteracijų metodas.
	Paprastesnis nei pap. iter. metodas, nes nereikia parinkti α , tačiau šaknies gali nerasti,
	jei parenkami netinkami pradiniai artiniai. Taip pat šaknys randamos geresniu
	tikslumu.

Lentelė 7. Komentarai

2. Sąlyginio uždavinio sprendimas

2.1. Uždavinio sąlyga

Skysčio tūris V sferos formos talpoje priklauso nuo skysčio lygio (aukščio) h pagal dėsnį:

$$V(h) = \frac{\pi h^2 (3r - h)}{3}$$

Koks yra skysčio aukštis h talpoje, jeigu žinomas r, V?

Varianto N	Nr. r, m	V, m^3
23	2	2

Lentelė 8. Varianto duomenys

2.2. Sprendimas

Sprendžiama lygtis $2 = \frac{\pi h^2(6-h)}{3}$, čia t – kintamasis.

Sudaroma funkcija $f(h) = \pi h^2 (6 - h) - 6$ ir skenavimo metodu ieškoma, kur funkcija kerta X ašį.

• Funkcijos f(h) sudarymas

1.
$$2 = \frac{\pi h^2(6-h)}{3} | *3$$

2.
$$6 = \pi h^2 (6 - h) | -6$$

3.
$$\pi h^2(6-h)-6=0$$

• Skenavimo metodo pasirinkimo argumentavimas

Skenavimo metodą pasirinkau, nes su juo paprasčiausia dirbti, nereikia rinktis papildomų metodo parametrų. Taip, užtruks ilgiau, bet paprasčiau.

• Šaknų atskyrimas skenavimo metodu

Skenavimas atliekamas intervale [-10; 10], skenavimo žingsnis lygus 0,5.

5 pav. Šaknų atskyrimo intervalai

Intervalo Nr.	Intervalas
1	[-1.000; -0.500]
2	[0.500; 1.000]
3	[5.500; 6.000]

Lentelė 9. Šaknies atskyrimo intervalai.

Šaknų tikslinimas skenavimo metodu

Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

odas	Pradinis intervalas	Šaknis (x_g)	Tikslumas ($ f(x_g) $)	Iteracijų skaičius
o metodas	[-1.000; -0.500]	-0.54037991753	0.00000000076	44
Skenavimo	[0.500; 1.000]	0.59439990604	-0.00000000024	45
Sker	[5.500; 6.000]	5.94598001144	0.00000000016	53

Lentelė 10. Rezultatai

Kadangi aukštis gali būti tik teigiamas pirmos šaknies nenaudojame.

6 pav. Sąlyginio uždavinio rezultatai pavaizduoti grafiškai.

3. Išvados

Nagrinėjome 3 netiesinių lygčių šaknų radimo metodus – skenavimo, paprastųjų iteracijų ir Kvazi-Niutono (kirstinių). Rezultatų lentelės parodė, kad visi 3 metodai randa tas pačias šaknis, visi veikia teisingai, tik skiriasi jų greitis (iteracijų kiekis) ir šaknų tikslumas. Iš visų šių 3-jų metodų galima teigti, kad Kvazi-Niutono (kirstinių) metodas yra tiksliausias ir greičiausias (mažiausiai iteracijų).

4. Programų tekstai

4.1. Daugianario šaknų intervalo įverčių nustatymas

```
// Atskyrimas skenavimu
        private void button2_Click_1(object sender, EventArgs e)
            ClearForm(); // išvalomi programos duomenys
            PreparareForm(-7, 7, -5, 5);
            // Nubraižoma f-ja, kuriai ieskome saknies
            Fx = chart1.Series.Add("F(x)");
            Fx.ChartType = SeriesChartType.Line;
            // NUO KOKIO X PIESIA
            double x = -6;
            double atstumas = 12;
            int iter sk = 2000;
            for (int i = 0; i < iter sk; i++)</pre>
            {
                Fx.Points.AddXY(x, F(x)); x = x + atstumas / iter_sk;
            Fx.BorderWidth = 3;
            chart1.Series.Add("Apatinis rėžis");
            chart1.Series[1].MarkerStyle = MarkerStyle.Circle;
            chart1.Series[1].MarkerSize = 8;
            chart1.Series[1].ChartType = SeriesChartType.Point;
            chart1.Series.Add("Viršutinis rėžis");
            chart1.Series[2].MarkerStyle = MarkerStyle.Circle;
            chart1.Series[2].ChartType = SeriesChartType.Point;
            chart1.Series[2].MarkerSize = 8;
            double[] ar = new double[8];
            double[] vr = new double[8];
            double[] artiniai = new double[8];
            double x0 = double.Parse(tb_skenx0.Text);
            double x1 = double.Parse(tb skenx1.Text);
            double step = double.Parse(tb skenstep.Text);
            int saknu_count = 0;
            //richTextBox1.AppendText("
                                                     x0
                                                                      F(x0)
                                                                                    x1
F(x1)\n");
            for (int i = 1; i < 1000; i++)
                if (Math.Sign(F(x0)) != Math.Sign(F(x0 + step)))
                    //x1 = x0 + step;
                    chart1.Series[1].Points.AddXY(x0, 0);
                    chart1.Series[2].Points.AddXY(x0 + step, 0);
                    ar[saknu\_count] = x0;
                    vr[saknu count] = x0 + step;
                    artiniai[saknu count] = (x0 + step + x0) / 2;
                    saknu_count++;
                    richTextBox1.AppendText(String.Format("{0}. Rasta {1}-a šaknis intervale
[\{2,12:f9\}; \{3,12:f9\}]; Artinys = [\{4,12:f9\}] \setminus n, i, saknu count, x0, x0+step, artiniai[saknu count-
1]));
                    x0 += step;
                }
                else
                {
                    x0 += step;
```

```
if (x0 >= x1)
                     richTextBox1.AppendText(String.Format("\{0\}). Pabaiga nes x0(=\{1\}) >= x1(=\{2\}) \setminus n",
i, x0, x1));
                     richTextBox1.AppendText(String.Format("vr = ["));
                     for (int d = 0; d < vr.Length; d++)
                         richTextBox1.AppendText(vr[d].ToString());
                         if(d+1 < vr.Length)</pre>
                              richTextBox1.AppendText(", ");
                     }
                     richTextBox1.AppendText(String.Format("];\n"));
                     richTextBox1.AppendText(String.Format("ar = ["));
                     for (int d = 0; d < ar.Length; d++)</pre>
                         richTextBox1.AppendText(ar[d].ToString());
                         if (d + 1 < vr.Length)
                         {
                             richTextBox1.AppendText(", ");
                         }
                     }
                     richTextBox1.AppendText(String.Format("];\n"));
                     richTextBox1.AppendText(String.Format("artin = ["));
                     for (int d = 0; d < artiniai.Length; d++)</pre>
                         richTextBox1.AppendText(artiniai[d].ToString());
                         if (d + 1 < vr.Length)
                         {
                             richTextBox1.AppendText(", ");
                         }
                     richTextBox1.AppendText(String.Format("];"));
                     break;
                 }
            }
        }
```

Lentelė 11

4.2. Skenavimo metodas

```
// Skenavimas
private void button7_Click(object sender, EventArgs e)
{
    ClearForm(); // išvalomi programos duomenys
    PreparareForm(-7, 7, -5, 5);
    // Nubraižoma f-ja, kuriai ieskome saknies
    Fx = chart1.Series.Add("F(x)");
    Fx.ChartType = SeriesChartType.Line;
    Fx.Color = Color.Black;
    // NUO KOKIO X PIESIA
    double x = -6;
    double atstumas = 12;
    int iter_sk = 2000;
    for (int i = 0; i < iter_sk; i++)
    {
}</pre>
```

```
Fx.Points.AddXY(x, F(x)); x = x + atstumas / iter sk;
                           Fx.BorderWidth = 3;
                           chart1.Series.Add("x0");
                           chart1.Series[1].MarkerStyle = MarkerStyle.Circle;
                           chart1.Series[1].MarkerSize = 8;
                           chart1.Series[1].ChartType = SeriesChartType.Point;
                           chart1.Series[1].ChartType = SeriesChartType.Line;
                           chart1.Series[1].Color = Color.LightGray;
                           chart1.Series.Add("x1");
                           chart1.Series[2].MarkerStyle = MarkerStyle.Circle;
                           chart1.Series[2].ChartType = SeriesChartType.Point;
                           chart1.Series[2].ChartType = SeriesChartType.Line;
                           chart1.Series[2].Color = Color.Gray;
                           chart1.Series[2].MarkerSize = 8;
                           chart1.Series.Add("x mid");
                           chart1.Series[3].MarkerStyle = MarkerStyle.Circle;
                           chart1.Series[3].ChartType = SeriesChartType.Point;
                           chart1.Series[3].ChartType = SeriesChartType.Line;
                           chart1.Series[3].Color = Color.Red;
                           chart1.Series[3].MarkerSize = 8;
                           double x0 = double.Parse(tb_x0.Text.Replace(',', '.'));
                           double x1 = double.Parse(tb x1.Text.Replace(',', '.'));
                           double step = 0.10;
                           double stepReductionCoef = 2;
                           richTextBox1.AppendText("
                                                                                                                x0
                                                                                                                                                    F(x0)
                                                                                                                                                                                   x1
F(x1)\n";
                           for (int i = 1; i < 1000; i++)
                           {
                                    if(Math.Sign(F(x0)) != Math.Sign(F(x0+step)))
                                    {
                                            x1 = x0 + step;
                                             chart1.Series[2].Points.AddXY(x1, 0);
                                             step /= stepReductionCoef;
                                    } else
                                            x0 += step;
                                             chart1.Series[1].Points.AddXY(x0, 0);
                                    richTextBox1.AppendText(String.Format(" {0,6:d} {1,12:f9} {2,12:f9} {3,12:f9}
{4,12:f9}\n", i, x0, F(x0), x1, F(x1)));
                                    if (Math.Abs(F((x0 + x1)/2)) < 1e-9)
                                    {
                                             chart1.Series[2].Points.AddXY(x0, 0);
                                             richTextBox1.AppendText(String.Format("Pabaiga. Rasta saknis (x = \{0:f11\}, f(x) = \{0:f11\}, f
\{1:f11\}) per \{2:d\} iteracijas(-a).n", (x0 + x1) / 2, F((x0 + x1) / 2), i));
                                             richTextBox1.AppendText(\frac{(6:f11)}{1:f11}), (x0 + x1) / 2,
F((x0 + x1) / 2), i));
                                             chart1.Series[3].Points.AddXY((x0 + x1) / 2, F((x0 + x1) / 2));
                                            break;
                                    }
                           }
                  }
```

4.3. Paprastujų iteracijų metodas

```
// Paprastu iteraciju
        private void button8_Click(object sender, EventArgs e)
            ClearForm(); // išvalomi programos duomenys
            PreparareForm(-7, 7, -5, 5);
            // Nubraižoma f-ja, kuriai ieskome saknies
            Fx = chart1.Series.Add("F(x)");
            Fx.Color = Color.Purple;
            Fx.ChartType = SeriesChartType.Line;
            // NUO KOKIO X PIESIA
            double x = -6;
            double atstumas = 12;
            int iter_sk = 2000;
            for (int i = 0; i < iter sk; i++)</pre>
            {
                Fx.Points.AddXY(x, F(x)); x = x + atstumas / iter sk;
            Fx.BorderWidth = 3:
            AddYZeroLine();
            Series sk = chart1.Series.Add("x + (F(x) / alpha)");
            sk.MarkerStyle = MarkerStyle.Circle;
            sk.MarkerSize = 8;
            sk.ChartType = SeriesChartType.Point;
            sk.ChartType = SeriesChartType.Line;
            sk.Color = Color.Cyan;
            Series rez = chart1.Series.Add("x_mid");
            rez.MarkerStyle = MarkerStyle.Circle;
            rez.Color = Color.Red;
            rez.MarkerSize = 8;
            double x0 = double.Parse(tb art.Text);
            double alpha = double.Parse(tb alpha.Text);
            richTextBox1.AppendText(String.Format(" {0,4:s} {1,16:s} {2,16:s}\n", "I", "x", "F(x)"));
            double xTemp = x0;
            for (int i = 1; i < 1000; i++)
                xTemp = xTemp + (F(xTemp) / alpha);
                sk.Points.AddXY(xTemp, F(xTemp));
                richTextBox1.AppendText(String.Format(" {0,4:d} {1,16:f11} {2,16:f11} \n", i, xTemp,
F(xTemp)));
                if (Math.Abs(F(xTemp)) < 1e-9)</pre>
                    rez.Points.AddXY(xTemp, 0);
                    richTextBox1.AppendText(String.Format("Pabaiga. Rasta saknis (x = \{0:f11\}; F(x) = f(x)\}
{1:f11}) per {2:d} iteracijas(-a).\n", xTemp, F(xTemp), i));
                    richTextBox1.AppendText(String.Format("{0:f11}\n{1:f11}\n{2:d}\n", xTemp,
F(xTemp), i));
                    break;
                }
                if (xTemp > 10 || xTemp < -10)</pre>
                    richTextBox1.AppendText("RIP");
```

```
}
```

Lentelė 13

4.4. Kvazi-Niutono (kirstinių) metodas

```
// Kvazi-Niutono
        private void button6_Click(object sender, EventArgs e)
        {
            ClearForm(); // išvalomi programos duomenys
            PreparareForm(-7, 7, -5, 5);
            // Nubraižoma f-ja, kuriai ieskome saknies
            Fx = chart1.Series.Add("F(x)");
            Fx.ChartType = SeriesChartType.Line;
            // NUO KOKIO X PIESIA
            double x = -6;
            double atstumas = 12;
            int iter_sk = 2000;
            for (int i = 0; i < iter_sk; i++)</pre>
                Fx.Points.AddXY(x, F(x)); x = x + atstumas / iter_sk;
            Fx.BorderWidth = 3;
            X1X2 = chart1.Series.Add("X1X2");
            X1X2.MarkerStyle = MarkerStyle.Circle;
            X1X2.MarkerSize = 8;
            X1X2.ChartType = SeriesChartType.Point;
            X1X2.ChartType = SeriesChartType.Line;
            XMid = chart1.Series.Add("XMid");
            XMid.MarkerStyle = MarkerStyle.Circle;
            X1X2.ChartType = SeriesChartType.Point;
            X1X2.ChartType = SeriesChartType.Line;
            XMid.MarkerSize = 8;
            double x0 = double.Parse(tb_knx0.Text);
            double x1 = double.Parse(tb knx1.Text);
            richTextBox1.AppendText(String.Format(" {0,4:s} {1,16:s} {2,16:s} {2,16:s}
{2,16:s}\n", "I", "x1", "F(x1)", "x0", "F(x0)"));
            double xTemp0 = x0;
            double xTemp = x1;
            double xTemp1 = x1;
            for (int i = 1; i < 1000; i++)
            {
                xTemp = xTemp1;
                xTemp1 = xTemp1 - Math.Pow(((F(xTemp1) - F(xTemp0)) / (xTemp1 - xTemp0)), -1) *
F(xTemp1);
                xTemp0 = xTemp;
                chart1.Series[1].Points.AddXY(xTemp1, F(xTemp1));
                richTextBox1.AppendText(String.Format(" {0,4:d}
                                                                    {1,16:f11} {2,16:f11} {2,16:f11}
{2,16:f11}\n", i, xTemp1, F(xTemp1), xTemp0, F(xTemp0)));
                if (Math.Abs(F(xTemp1)) < 1e-9)</pre>
                    chart1.Series[2].Points.AddXY(xTemp1, 0);
                    richTextBox1.AppendText(String.Format("Pabaiga. Rasta saknis (x = \{0:f11\}; f(x) = \{0:f11\}; f(x)\}
{1:f11}) per {2:d} iteracijas(-a).\n", xTemp1, F(xTemp1), i));
```

```
Skaitiniai metodai ir algoritmai (P170B115). Lukas Šivickas (IFF-6/8). Varianto Nr. 23 richTextBox1. AppendText(String.Format("{0:f11}\n{1:f11}\n{2:d}.\n", xTemp1,
F(xTemp1), i));
                            break;
                      }
if (xTemp0 > 10 || xTemp0 < -10)
                            richTextBox1.AppendText("RIP");
                            break;
                       }
                 }
           }
```

Lentelė 14