Buses

1 second, 256 MB

There are **N** bus stations (2 <= N <= 3,000) in the mountain area of Thailand. The height of bus station **i** is $\mathbf{H_i}$. There are \mathbf{M} direct routes between bus stations (1 <= \mathbf{M} <= 30,000). Route **i**, for 1 <= \mathbf{i} <= \mathbf{M} , connects bus station $\mathbf{A_i}$ with bus station $\mathbf{B_i}$. All bus routes are bidirectional, i.e., you can either go from $\mathbf{A_i}$ to $\mathbf{B_i}$ or from $\mathbf{B_i}$ to $\mathbf{A_i}$.

There are many kinds of buses. A bus with power P can travel on a bus route from bus station i to bus station j only if $H_j - H_i \le P$. Therefore, a particular bus might not be able to travel from one station to another through bus routes, if its power is too low. Note that for a bus route from bus status i to bus station j, if $H_j < H_i$, any bus can travel on this route, because it is a downhill route. (See example below)

There are **Q** questions (1 <= **Q** <= 10). For each question, you are given a stating station S_j and a destination station T_j . You are also given the bus power **P**. You would like to know if a bus with power P can travel from station S_j to T_j .

Consider the following example with N = 5 with M = 7. The height of each bus station is shown next to the bus station. (For example, bus station 1's height \mathbf{H}_1 is 20.)

The next table shows Q = 4 questions traveling objectives and bus powers. The table also shows the answers to all questions.

j	S_{j}	T_{j}	$\mathbf{P_{j}}$	Possible?
1	1	5	6	yes
2	1	5	5	no
3	2	1	14	yes
4	2	1	10	no

Input

The first line of input contains three integers **N M** and **Q**. (2 \leq **N** \leq 3,000; 1 \leq **M** \leq 30,000; 1 \leq Q \leq 10)

The next line contains N integers H_1, H_2, \ldots, H_N representing the heights of bus stations, i.e., bus station i's height is H_i . (1 <= H_i <= 10,000)

The next M lines contains route information. Specifically, for $1 \le i \le M$, line 2+i contains two integers A_i and B_i , that represent a route between station A_i and B_i . ($1 \le A_i \le N$; $1 \le B_i \le N$)

The next **Q** lines contain questions. For $1 \le j \le Q$, line 2+M+j contains three integers S_j T_j and P_j ($1 \le S_i \le N$; $1 \le T_i \le N$; $1 \le P_j \le 10,000$).

Output

The output contains \mathbf{Q} lines, each line answers the question for one passenger. On line \mathbf{j} , the output should contain string yes if bus \mathbf{j} with power $\mathbf{P}_{\mathbf{j}}$ can travel from bus station $\mathbf{A}_{\mathbf{i}}$ to bus station $\mathbf{B}_{\mathbf{i}}$ and should contain string no otherwise.

(An example is in the next page.)

Example

Input	Output
5 7 4	yes
20 1 3 7 13	no
1 2	yes
2 4	no
4 1	
3 2	
3 4	
3 5	
4 5	
1 5 6	
1 5 5	
2 1 14	
2 1 10	