cisTopic cis-Regulatory topic modelling of single-cell epigenomes

Deciphering gene regulatory programs

Studying <u>accessible chromatin</u> can reveal <u>gene regulatory programs</u>

Measuring accessible chromatin

Table 1. Current approaches used to map distal enhancers genome-wide

Approach	Activity ¹	Specificity ² Non	
DNase I-seq	Open		
NA-seq	Open	Non	
FAIRE	Open	Non	
P300 (ChIP-seq)	Open	Enh. = Prom.	
H3K4me1 (ChIP-seq)	Open	Enh. > Prom.	
H3K4me2 (ChIP-seq)	Open	Enh. = Prom.	
H3K27ac (ChIP-seq)	Active	Enh. > Prom.	
H3K4me3 (ChIP-seq)	Active	Prom. > Enh.	
Pol II (ChIP-seq)	Active	Prom. > Enh.	
BRG1 (ChIP-Seq)	Active	Enh. = Prom.	

Measuring accessible chromatin

ATAC-seq

Analysis pipeline

The challenges in single cell epigenomics

Sparsity

Scalability

Up to 100,000 cells and more than 500,000 regions

Analysis pipeline: Cell filtering

Aggregation of reads around TSS

Number of reads

Percentage reads in peaks

Current approaches Cells Cell clustering Motifs / k-mers Region-based Cells E.g. **SCRAT** (Ji et al., 2017), **chromVAR** (Schep et al., 2017) & **BROCKMAN** (de Boer & Regev, 2018) Cell clustering Pseudo-bulk

Cell-based

Regions

E.g. LSI (Cusanovich et al., 2015), scABC (Zamanighomi et al., 2018) & Cicero (Pliner et al., 2018)

Regions

Binary accessibility

matrix

The link between topic models and single cell epigenomics

We present SCENIC, a computational method for simultaneous gene regulatory network reconstruction and cell-state identification from single-cell RNA-seq data (http://scenic.aertslab.org). On a compendium of single-cell data from tumors and brain, we demonstrate that cis-regulatory analysis can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.

Word-document coocurrence matrix

Latent Dirichlet Allocation (LDA)

Can we learn unsupervisedly cis-regulatory topics from single cell epigenomics data?

Parameter estimation with a Collapsed Gibbs sampler!

How much a region likes a topic

$$P(z_i|z_{-i},r) \propto \frac{n_{\bar{t},-i}^{(r)} + \beta}{n_{\bar{t},-i} + R\beta} \frac{n_{-i,t}^{(\bar{c})} + \alpha}{n_{-i}^{(\bar{c})} + T\alpha}$$

How much a cell likes a topic

A Collapsed Gibbs sampler

A Collapsed Gibbs sampler is the best option for parameter estimation in terms of <u>accuracy</u>, <u>speed</u> and <u>memory efficiency</u>.

Model selection

We select the model based on the log-likehood

Log-likehood must be stabilized before sampling (*burn-in*)

Topic-cell distributions can be used for identifying <u>cell</u> <u>states</u>

Region-topic distributions can be used to identify gene regulatory programs

Application on data sets

Dataset		# cells	Feature
H3K27Ac melanoma (Verfaille et al.)	Human	700	✓ Cell and region clustering validation
ATAC-seq hematopoietic system (Buenrostro et al.)	Human	650	Con and region clastering variation
scATAC-seq hematopoietic system (Buenrostro et al.)	Human	2,755	 ✓ Identification of cell types and master GRNs ✓ Batch effect correction & technical bias robustness
scnmC-seq frontal cortex	Human	2,784	✓ Extension to other types of epigenomic data
Human Brain (Lake et al.)	Human	34,520	✓ De novo discovery of subpopulations
Mouse Brain (Preissl et al.)	Mouse	3,034	 ✓ Topic-based cross-species comparison ✓ Validation of topics with external data
scATAC-seq SOX10 KD in melanoma	Human	598	✓ Analysis of dynamic processes
Mouse Cell Atlas (Cusanovich et al.)	Mouse	80,254	✓ Scalability to larger datasets

Validation on simulated data

cell lines

melanoma

cell lines

Mesenchymal-like

MM074
 MM087
 MM118

SKMEL5

MM029
 MM047

MM099

Melanoma cultures H₃K₂₇Ac data: Verfaillie, Kalender Atak, Imrichova et al., Nat Comms 2015

Validation simulated data

H₃K₂7Ac data: Verfaillie, Kalender Atak, Imrichova et al., Nat Comms 2015

cisTopic also reveals biologically meaningful cell-type specific programs

Validation on simulated data

cisTopic reconstructs dynamic trajectories in the hematopoietic system

Single cell ATAC-seq in FAC-sorted hematopoietic populations

cisTopic reconstructs dynamic trajectories in the hematopoietic system

cisTopic is robust to batch effect and technical bias

cisTopic reveals dynamic GRNs in the

hematopoietic system

Single cell ATAC-seq in FAC-sorted hematopoeitic populations

Hematopoietic system scATAC data: Buenrrostro et al., Cell 2018

cisTopic reveals dynamic GRNs in the hematopoietic system

cisTopic reveals layer-specific GRNs

Lake et al., Science 2016

cisTopic maps a dynamic regulatory landscape during EMT-like transition in melanoma

598 cells; 78262 regulatory regions

Liesbeth

cisTopic maps a dynamic regulatory landscape during EMT-like transition in melanoma

Finding SOXE cofactors

To take home...

 scATAC-seq can reveal regulatory programs in heterogeneous tissues and dynamic processes

 cisTopic: Probabilistic modelling of cisregulatory programs from single cell epigenomics data

Currently used in...

SCIENTIFIC REPORTS

Chromatin accessibility identifies diversity in mesenchymal stem cells from different tissue origins

Yen-Ting Ho¹, Takashi Shimbo¹, Edward Wijaya (b^{1,2}, Yuya Ouchi^{1,2}, Eiichi Takaki^{1,2}, Ryoma Yamamoto^{1,2}, Yasushi Kikuchi¹, Yasufumi Kaneda³ & Katsuto Tamai¹

Capturing cell type-specific chromatin structural patterns by applying topic modeling to single-cell Hi-C data

Hyeon-Jin Kim¹, Galip Gürkan Yardımcı¹, Giancarlo Bonora¹, Vijay Ramani^{1,2}, Jie Liu¹, Ruolan Qiu¹, Choli Lee¹, Jennifer Hesson^{3,5}, Carol B. Ware^{3,5}, Jay Shendure¹, Zhijun Duan*^{4,5}, and William Stafford Noble*^{1,6}

EVENT

DSCB and C3BI Departments Seminar by Professor Stein Aerts, Department of Human Genetics, Laboratory of Computational Biology, KU Leuven

Location

Building: Metchntkoff (#67) Room: Salle lines Bordet

Address: 25 Rue du Dr Roux, Paris, France.

Friday, February 15th

11:00 am - Jules Bordet meeting room, Metchnikoff building "Deciphering gene expression programs at single-cell resolution"

SUMMARY: Single-cell technologies are revolutionising biology and provide new opportunities to trace genomic regulatory programs underlying cell fate.

In this talk I will present several computational strategies for the analysis of single-cell RNA-seq and single-cell ATAC-seq data that exploit the genomic regulatory code, to guide the identification of transcription factors and cell states. I will illustrate these methods on several model systems, including the Drosophila brain. Finally I will discuss how singlecell analyses can contribute to cross-species comparisons of regulatory programs.

Feb 2019

Hands-on

Exercise: cisTopic on simulated epigenomes

- Simulated single-cells from bulk H3K27Ac melanoma profiles
- 3 proliferative/melanocyte-like lines (MM001, MM011 and MM034) and 2 invasive lines (MM029 and MM047)
- Proliferative:: SOX10, MITF, TFAP2 // Invasive: AP-1
- 20 cells per simulated per profile
- 100 cells and ~112,000 accessible regions

Our plan

1. Open rendered vignette and go all together over the code/outputs (Github)

Tutorial

You can find the rendered vignette here.

2. In the remaining time, explore tutorials (Course scripts and files in: /projet/sbr/sincell2019/GRNs)

Load data

```
'``{r}
cisTopicObject <- readRDS('/projet/sbr/sincell2019/GRNs/exampleOutput_cisTopic/cisTopicObject_melanoma.Rds')
```

Initializing cisTopicObject (not run)

From BAM file

```
pathToBams < 'data/bamfiles/'
bamFiles <- paste(pathToBams, list.files(pathToBams), sep='')
regions <- 'data/regions.bed'
cisTopicObject <- createcisTopicObjectFromBAM(bamFiles, regions, project.name='scH3K27Ac_melanoma')

# If you want to rename cells
cell.names <- cisTopicObject@cell.names
new.cell.names <- sapply(strsplit(cell.names, split = ".", fixed=TRUE), "[", 3)

cisTopicObject <- renameCells(cisTopicObject, new.cell.names)

**TopicObject <- renameCells(cisTopicObject, new.cell.names)
```

From count matrix

```
'``{r, eval=FALSE}

data(counts_mel)

cisTopicObject <- createcisTopicObject(counts_mel, project.name='scH3KZ7Ac_melanoma')

rm(counts_mel)

...
```

Add cell data

```
'``{r, eval=FALSE}
data(cellData_mel)
cisTopicObject <- addCellMetadata(cisTopicObject, cell.data - cellData_mel)
rm(cellData_mel)
...
```

Build models (not run)

```
```{r, eval=FALSE}
cisTopicObject <- runModels(cisTopicObject, topic=c(2, 5:15, 20, 25), seed=987, nCores=13, burnin = 120, iterations = 150, addModels=FALSE)
```

- **Number of topics** ('topic'): The number of topics are usually slightly bigger than the potential cell states in the data set. In the case of single cell epigenomics data the number of topics is low compared to other implementations (e.g. text classification). The running time will be affected by the number of topics.
- The Dirichlet hyperparameters **alpha** (`topic proportions`) and **beta** (`topic multinomials`): Alpha affects to the topic-cell contributions; a low alpha forces to pick for each cell a few topics with significant contribution, while a high alpha allows cells to have similar, smooth topic proportions. Beta affects to the region combinations; the lower the beta, the fewer regions a topic will have; the higher the beta, the less distinct these topics will be (i.e. there will be more overlap between the topics). By default, we select alpha as 50/number of topics and beta as 0.1 (as Griffiths & Steyvers, 2004).
- **Number of iterations and burnin**: For recording the assignments, it is necessary that the likelihood of the model is already stabilised. cisTopic counts with the function `logLikelihoodByIter` to check whether this parameters should be changed. The number of iterations affect the speed of the algorithm. Note that the burnin will be substracted from the number of iterations.

#### Build models (not run)

```
'``{r, eval=FALSE}
cisTopicObject <- runModels(cisTopicObject, topic=c(2, 5:15, 20, 25), seed=987, nCores=13, burnin = 120, iterations = 150, addModels=FALSE)
```

- The speed of this step is affected by:
  - 1. Size of the data set (number of regions and cells)
  - Number of models
  - 3. Number of topics (>50 becomes slow)
  - 4. Number of CPUs
  - 5. Number of iterations
- With these settings it takes 3,5 minutes

#### Model selection

```
'``{r, fig.show='hold', fig.align='center'}
cisTopicObject <- selectModel(cisTopicObject)
```



#### Check number of iterations and burn-in

```
'``{r, fig.show='hold', fig.align='center'}
logLikelihoodByIter(cisTopicObject, select=c(2,5,10,15,20,25))
'``
```



### Dimensionality reduction on cell-assignments

```
'``{r, eval=FALSE}
cisTopicObject <- runUmap(cisTopicObject, target='cell' (method='Z-score')
```

Assignments normalized based on Z-score or Probability



See runtSNE, runDM and runPCA

## Plotting function

```
'``{r, fig.show='hold', fig.align='center'}

par(mfrow=c(1,3))

plotFeatures(cisTopicObject, method='Umap', target='cell', topic_contr=NULL, colorBy=c('cellLine', 'LineType','pct_ReadsInPeaks'), cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=20)

par(mfrow=c(2,5))

plotFeatures(cisTopicObject, method='Umap', target='cell' (topic_contr='Probability), colorBy=NULL, cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE)
```

Assignments normalized based on Z-score or Probability

### Dimensionality reduction on cell-assignments



# Dimensionality reduction on cell-assignments



## Heatmap based on cell-assignments

```
'``{r, fig.show='hold', fig.align='center'}
cellTopicHeatmap(cisTopicObject, method='Probability', colorBy=c('LineType', 'cellLine'))
```



# Enrichment of epigenomic signatures on cells

```
"``{r, eval=FALSE}

pred.matrix <- predictiveDistribution(cisTopicObject)
```

Probability of a region in a cell

$$P(r_i|c_j) = \sum_{k=1}^K P(r_i|T_k)P(T_k|c_j)$$

```
Obtain signatures
path_to_signatures <- 'data/ChIP-seq_signatures/'
ChIP_Seq_signatures <- paste(path_to_signatures), sep='')
labels <- c('MITF', 'SOX10', 'TFAPZA')
cisTopicObject <- getSignaturesRegions(cisTopicObject, ChIP_Seq_signatures, labels=labels, minOverlap = 0.4)

Compute cell rankings
library(AUCell)
aucellRankings <- AUCell_buildRankings(pred.matrix, plot=FALSE, verbose=FALSE)

Check signature enrichment in cells
cisTopicObject <- signatureCellEnrichment(cisTopicObject, aucellRankings, selected.signatures='all', aucMaxRank = 0.1*nrow(aucellRankings), plot=FALSE)
```

Signatures (e,g, ChIP-seq regions) are mapped to the regions in the data set based on their overlap (i.e. a region is mapped to another region if the overlap is at least of 40% by default). Enrichment of these region signatures in each cell is performed with AUCell, using the mapped region sets as 'gene sets' and the cell-rankings based on the region probability per cell.

## Enrichment of epigenomic signatures on cells



MITF, SOX10 and TFAP2A ChIPseq signatures are enriched in melanocyte-like melanoma cell lines.

#### Calculation of topic scores for regions

#### **Export to bigwig**

```
'``{r, eval = FALSE}
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

getBigwigFiles(cisTopicObject, path='output/cisTopics_asBW', seqlengths=seqlengths(txdb))
...
```

## **Binarize topics**

```
'``{r, fig.show='hold', fig.align='center'}
par(mfrow=c(2,5))
cisTopicObject <- binarizecisTopics(cisTopicObject, thrP=0.975, plot=TRUE)
'``
```

Take top regions or fit to a gamma distribution







#### **Binarize topics**

```
'``{r, fig.show='hold', fig.align='center'}
par(mfrow=c(2,5))
cisTopicObject <- binarizecisTopicS(cisTopicObject, thrP=0.975, plot=TRUE)
...
```



#### Get bed files

```
"'`{r, eval=FALSE}
getBedFiles(cisTopicObject, path='output/cisTopics_asBed')
```

# Region clustering (based on region-topic scores) and visualization (not run)

```
'``{r, eval=FALSE}
cisTopicObject <- runtSNE(cisTopicObject, target='region', perplexity=200, check_duplicates=FALSE)
...
```

Assignments normalized based on NormTop, Z-score or Probability

NOTE: We only use high confidence regions (at least present in one binarized topic)

# Region clustering (based on region-topic scores) and visualization

```
""{r, fig.show='hold', fig.align='center'}
par(mfrow=c(1,2))
plotFeatures(cisTopicObject, method='tSNE', target='region', topic_contr=NULL, colorBy=c('nCounts', 'nCells'), cex.legend = 0.8, factor.max=.75, dim=2,
legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=10)

par(mfrow=c(2,5))
plotFeatures(cisTopicObject, method='tSNE', target='region', topic_contr='Probability', colorBy=NULL, cex.legend = 0.8, factor.max=.75, dim=2,
legend=TRUE)
```



# Region clustering (based on region-topic scores) and visualization



## Enrichment of signatures within topics

```
*** {r, eval=FALSE}

Obtain signatures (if it has not been run before)
path_to_signatures <- 'data/ChIP-seq_signatures/'
ChIP_Seq_signatures <- paste(path_to_signatures, list.files(path_to_signatures), sep='')
labels <- c('MITF', 'SOX10', 'TFAPZA')
cisTopicObject <- getSignaturesRegions(cisTopicObject, ChIP_Seq_signatures, labels=labels, minOverlap = 0.4)

***\frac{r, fig.show='hold', fig.align='center'}{signaturesHeatmap(cisTopicObject)}

***\frac{r, fig.show='hold', fig.align='center'}{signaturesHeatmap(cisTopicObject)}
```

AUCell is also used for estimating the enrichment of signatures within topics, using as 'gene sets' the mapped signatures regions and the regions-rankings per topic as rankings.

### Enrichment of signatures within topics



Topic 1 is a melanocyte-like topic and is enriched in SOX10 binding sites.

## Showing overlapping regions in tSNE

```
colVars <- list()
colors <- c(adjustcolor('grey', alpha.f=0.05), 'black')
names(colors) <- c('FALSE', 'TRUE')
colVars[['MITF']] <- colors
colVars[['SOX10']] <- colors
colVars[['TFAP2A']] <- colors
colVars[['TFAP2A']] <- colors
par(mfrow=c(1,3))
plotFeatures(cisTopicObject, method='tSNE', target='region', topic_contr=NULL, colorBy=c('MITF', 'SOX10', 'TFAP2A'), cex.legend = 0.8, factor.max=.75,
dim=2, legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=20, colVars = colVars)</pre>
```



#### **Annotation**

```
'``{r, eval=FALSE}
library(org.Hs.eg.db)
cisTopicObject <- annotateRegions(cisTopicObject, txdb=TxDb.Hsapiens.UCSC.hg19.knownGene, annoDb='org.Hs.eg.db')
```

Annotates region to closest gene and classifies the type of region (i.e. promoter, distal, ...), These labels can be used as a signature (whose enrichment can be estimated in the topics).

```
'``{r, fig.show='hold', fig.align='center'}
par(mfrow-c(1,1))
signaturesHeatmap(cisTopicObject, selected.signatures = 'annotation')
plotFeatures(cisTopicObject, method='tSNE', target='region', topic_contr=NULL, colorBy=c('annotation'), cex.legend = 0.8, factor.max=.75, dim=2,
legend=TRUE, intervals=20, colVars = colVars)
...
```



Topic 2 (and other general topics) are enriched in promoters



#### Using rGREAT for GO annotation

```
'``{r, eval=FALSE}
cisTopicObject <- GREAT(cisTopicObject, genome='hg19', fold_enrichment=2, geneHits=1, sign=0.05, request_interval=10)
...
```

GO topic annotation (based on binarized topics, not run)

```
'``{r, fig.show='hold', fig.align='center'}
ontologyOotPlot(cisTopicObject, top=5, topics=c(1,10), var.y='name', order.by='Binom_Adjp_BH')
```



### Motif enrichment with RcisTarget (not run)

Convert region to ctx regions (overlap 40%)

```
"``{r, eval=FALSE, message=FALSE}
cisTopicObject <- binarizedcisTopicSToCtx(cisTopicObject, genome='hg19')

"``{r, eval=FALSE}
cisTopicObject <- scoredRegionsToCtx(cisTopicObject, genome='hg19')</pre>
```

#### Run RcisTarget per topic

```
*``{r, eval = FALSE}

date()

pathToFeather <- "feather/hg19-regions-9species.all_regions.mc8nr.feather"

cisTopicObject <- topicsRcisTarget(cisTopicObject, genome="hg19", pathToFeather, reduced_database=FALSE, nesThreshold=3, rocthr=0.005, maxRank=20000, nCores=5)

date()

date()
```

## Motif enrichment with RcisTarget

```
'``{r, fig.show='hold', fig.align='center'}
Topic10_motif_enr <- cisTopic0bject@binarized.RcisTarget[[10]]
DT::datatable(Topic10_motif_enr[,-c("enrichedRegions", "TF_lowConf"), with-FALSE], escape = FALSE, filter="top", options=list(pageLength=5))
...
```





#### Formation of topic-specific cistromes

Get cistromes (i.e. regions enriched for motifs linked to a specific TF)

```
'''{r, eval = FALSE}
cisTopicObject <- getCistromes(cisTopicObject, annotation = 'Both', nCores=5)
```

Enrichment of cistromes within cells (as previously explained for signatures in cells)

```
**``{r, eval=FALSE}

Compute AUC rankings based on the predictive distribution

pred.matrix <- predictiveDistribution(cisTopicObject)

library(AUCell)
aucellRankings <- AUCell_buildRankings(pred.matrix, plot=FALSE, verbose=FALSE)

**``{r, eval=FALSE}
cisTopicObject <- getCistromeEnrichment(cisTopicObject, topic=4, TFname='JUN', aucellRankings = aucellRankings, aucMaxRank = 0.05*nrow(aucellRankings),

plot=FALSE)
cisTopicObject <- getCistromeEnrichment(cisTopicObject, topic=5, TFname='JUN', aucellRankings = aucellRankings, aucMaxRank = 0.05*nrow(aucellRankings),

plot=FALSE)

**``
```

#### Visualization of topic-specific cistromes

```
"``{r, fig.show='hold', fig.align='center'}
par(mfrow=c(1,2))
plotFeatures(cisTopicObject, method='Umap', target='cell', topic_contr=NULL, colorBy=c('Topic4_JUN (519p)','Topic5_JUN (214p)'), cex.legend = 0.8,
factor.max=.75, dim=2, legend=TRUE, intervals=20)
"``
```



There are cell-line specific (mesenchymal-like) AP-1 regions

#### Conclusions

- Melanoma cell-lines and classes can be identified based on their epigenomic profile
- cisTopic finds general, line type-specific and cell line-specific topics
- General topics are enriched for promoters, showing ubiquitous accessibility across the lines and a higher GC content
- Line type-specific topics reveal SOX10, MITF and TFAP as master regulators of the melanocyte-like state and AP-1 as master regulator of the mesenchymal-like state
- TF can have different targets depending on the cell type (likely dependent on cofactors)





GENOMICS CORELEUVEN











