

INSTITUTO TECNOLÓGICO DE CANCÚN

PROFESOR: ISMAEL JIMÉNEZ SÁNCHEZ.

ALUMNO: GONGORA JIMENEZ FRANCISCO DAVID.

MATERIA: FUNDAMENTOS DE TELECOMUNICACIONES.

TAREA:

REALIZAR LOS EJERCICIOS DE CÁLCULO DE REDES.

HORARIO: 5PM-6PM.

FECHA DE ENTREGA:

19 DE ENERO DEL 2021

CÁLCULO DE REDES

Ejercicios

Ejercicio 1_Dirección lp: 10.0.0.0/8

IP	00001010	00000000	00000000	00000000	10.0.0.0
Mask	11111111	00000000	00000000	00000000	255.0.0.0
ID	00001010	00000000	00000000	00000000	10.0.0.0/8
Wcard	00000000	11111111	11111111	11111111	0.255.255.255
Bcast	00001010	11111111	11111111	11111111	10.255.255.255
1ralp	00001010	00000000	00000000	0000001	10.0.0.1
Last Ip	00001010	11111111	11111111	11111111	10.255.255.254

Cantidad total de lps

Formula = (2^32-n)

Procedimiento

1_ (2^32-8)

 $2_{-}(2^{24}) = 16,777,216$

Cantidad de Ips Disponibles:

Formula= (2^32-n)-2

Procedimiento

1_ (2^32-8)-2

2_ (2^24)-2 = 16,777214

Ejercicio 2_Dirección lp: 172.16.0.0/12

IP	10101100	00010000	00000000	00000000	172.16.0.0
Mask	11111111	11110000	00000000	00000000	255.240.0.0
ID	10101100	00010000	00000000	00000000	172.16.0.0/12
Wcard	00000000	00001111	11111111	11111111	0.15.255.255
Bcast	10101100	00011111	11111111	11111111	172.31.255.255
1ralp	10101100	00010000	00000000	0000001	172.16.0.1
Last Ip	10101100	0001111	11111111	11111110	172.31.255.254

Cantidad total de lps

Formula = (2^32-n)

Procedimiento

1_ (2^32-12)

 $2_{(2^2)} = 1,048,576$

Cantidad de Ips Disponibles:

Formula= (2^32-n)-2

Procedimiento

1_ (2^32-12)-2

 $2_{(2^20)-2} = 1,048,574$

Ejercicio 3_Dirección lp: 192.168.0.0/16

IP	11000000	10101000	00000000	00000000	192.168.0.0
Mask	11111111	11111111	00000000	00000000	255.255.0.0
ID	11000000	10101000	00000000	00000000	192.168.0.0/16
Wcard	00000000	00000000	11111111	11111111	0.0.255.255
Bcast	11000000	10101000	11111111	11111111	192.168.255.255
1ralp	11000000	10101000	00000000	0000001	192.168.0.1
Last Ip	11000000	10101000	11111111	11111110	192.168.255.254

Cantidad total de lps

Formula = (2^32-n)

Procedimiento

1_ (2^32-16)

 $2_{(2^16)} = 65,536$

Cantidad de Ips Disponibles:

Formula= (2^32-n)-2

Procedimiento

1_ (2^32-16)-2

 $2_{(2^16)-2} = 65,534$