Geometría I: Tema 4 Espacio dual de un espacio vectorial

Juan de Dios Pérez

${\bf \acute{I}ndice}$

1.	Introducción.	2
2.	Bases duales.	2
3.	Teorema de Reflexividad.	5
4.	Anulador de un subespacio.	6
5 .	Aplicación lineal traspuesta.	7

1. Introducción.

Como sabemos que un cuerpo conmutativo K es un espacio vectorial sobre sí mismo, si V es un espacio vectorial sobre K podemos considerar aplicaciones lineales $f:V\longrightarrow K$, a cada una de las cuales la llamaremos una forma lineal sobre V.

Al conjunto de todas las formas lineales $\{f: V \longrightarrow K/f \text{ es lineal}\}\$ lo notaremos V^* y lo llamaremos el espacio vectorial dual de V. Es un espacio vectorial, pues por lo que hemos visto $V^* = \operatorname{Hom}_K(V, K)$ y, además, si $\dim_K(V) = n$, entonces $\dim_K(V^*) = n$.

Si $f: V \longrightarrow K$ es una forma lineal, podemos suponer en K la base $\{1\}$. Entonces dada \mathcal{B} base de V, podemos considerar $\mathcal{M}(f; \{1\} \leftarrow \mathcal{B})$ que notaremos, simplemente, $\mathcal{M}(f; \mathcal{B})$.

2. Bases duales.

Sean $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ una base de V y $\mathcal{B}^* = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$ una base de V^* . Diremos que \mathcal{B}^* es la base dual de \mathcal{B} si $\forall i \in \{1, \dots, n\}$ se verifica que $\varphi_i(v_i) = 1$, pero $\forall j \in \{1, \dots, n\}, j \neq i$, se tiene $\varphi_i(v_j) = 0$.

Proposición 1 (1ª propiedad de las bases duales).

Si \mathcal{B}^* es la base dual de \mathcal{B} , entonces $\forall \varphi \in V^*$, los elementos de su matriz asociada en la base \mathcal{B} coinciden con sus coordenadas en la base \mathcal{B}^* .

Demostración. Para verlo, llamemos $A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} = \mathcal{M}(f; \mathcal{B})$. Entonces $a_i = \varphi(v_i) \ \forall i \in \{1, \dots, n\}$. Por otra parte, si $\varphi = (b_1, b_2, \dots, b_n)_{\mathcal{B}^*}$, tendremos que $\varphi = b_1 \varphi_1 + b_2 \varphi_2 + \dots + b_n \varphi_n$ y así,

$$\varphi(v_i) = a_i = (b_1\varphi_1 + b_2\varphi_2 + \dots + b_n\varphi_n)(v_i) = b_1\varphi_1(v_i) + \dots + b_i\varphi_i(v_i) + \dots + b_n\varphi_n(v_i) = b_i\varphi_i(v_i) = b_i \cdot 1 = b_i,$$

como queríamos.

La pregunta que nos hacemos ahora es que si dada una base \mathcal{B} de V, podemos calcular su base dual \mathcal{B}^* . Sabemos que si $\mathcal{B} = \{v_1, \dots, v_n\}$, una forma lineal está completamente determinada conociendo sus imágenes de los vectores de \mathcal{B} . Así, $\forall i \in \{1, \dots, n\}, \exists_1 \varphi_i \in V^*$ que verifica $\varphi_i(v_i) = 1$ y $\varphi_i(v_j) = 0$, $\forall j \in \{1, \dots, n\}, i \neq j$.

Tenemos así definidas n formas lineales sobre V, $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$. Queremos ver que, efectivamente, forman una base de V^* . Como sabemos que $\dim_K(V^*) = n$, bastará ver que tales formas lineales son linealmente independientes. Supongamos entonces que $\exists a_1, \dots, a_n \in K$ tales que $a_1\varphi_1 + a_2\varphi_2 + \dots + a_n\varphi_n = \varphi_0$ (esta es la forma lineal nula (neutro de V^* para la suma) dada por $\varphi_0(v) = 0$, $\forall v \in V$). Entonces, $\forall i \in \{1, \dots, n\}, \varphi_0(v_i) = 0 = (a_1\varphi_1 + \dots + a_i\varphi_i + \dots + a_n\varphi_n)(v_i) = a_1\varphi_1(v_i) + \dots + a_i\varphi_i(v_i) + \dots + a_n\varphi_n(v_i) = a_i \cdot 1 = a_i$, y hemos demostrado el siguiente resultado:

Proposición 2.

Para cada base \mathcal{B} de un espacio vectorial V existe una base \mathcal{B}^* de V^* que es dual de \mathcal{B} .

Ejemplo 1.

Consideremos en \mathbb{R}^3 la base $\mathcal{B} = \{(1, -1, 1), (1, 2, -1), (-1, 1, 0)\}$ y calculemos su base dual.

Consideremos $\mathcal{B}_U = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ la base usual de \mathbb{R}^3 y veamos como es su dual $\mathcal{B}_U^* = \{\varphi_1, \varphi_2, \varphi_3\}$. Como $\varphi_i(e_j) = \delta_{ij} \ \forall i, j \in \{1,2,3\}$, dando un vector arbitrario $(x_1, x_2, x_3) \in \mathbb{R}^3$ se tiene

$$\varphi_1(x_1, x_2, x_3) = \varphi_1(x_1e_1 + x_2e_2 + x_3e_3) = x_1,$$

$$\varphi_2(x_1, x_2, x_3) = \varphi_2(x_1e_1 + x_2e_2 + x_3e_3) = x_2,$$

$$\varphi_3(x_1, x_2, x_3) = \varphi_3(x_1e_1 + x_2e_2 + x_3e_3) = x_3.$$

Llamemos ahora $\mathcal{B}^* = \{\psi_1, \psi_2, \psi_3\}; \ \psi_1 = a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3, \ y \ \text{como} \ \mathcal{B}^* \ \text{ha de ser la base dual de } \mathcal{B},$ tendremos que

$$\psi_1(1,-1,1) = 1 = (a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3)(1,-1,1) = a_1 - a_2 + a_3$$

$$\psi_1(1,2,-1) = 0 = (a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3)(1,2,-1) = a_1 + 2a_2 - a_3$$

$$\psi_1(-1,1,0) = 0 = (a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3)(-1,1,0) = -a_1 + a_2$$

De manera que cuando conozcamos a_1 , a_2 y a_3 tendremos determinada ψ_1 , así que, en definitiva, hemos de resolver el siguiente sistema de Cramer:

$$\begin{cases} a_1 & -a_2 & +a_3 & = 1 \\ a_1 & +2a_2 & -a_3 & = 0 \\ -a_1 & +a_2 & = 0 \end{cases}$$

Como
$$\begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 0 \\ -1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} = 3$$
, tendremos:

$$a_1 = \frac{\begin{vmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 0 & 1 & 0 \end{vmatrix}}{3} = \frac{1}{3}, \quad a_2 = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & 0 & 0 \end{vmatrix}}{3} = \frac{-\begin{vmatrix} 1 & -1 \\ -1 & 0 \end{vmatrix}}{3} = \frac{1}{3}, \quad a_3 = \frac{\begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ -1 & 1 & 0 \end{vmatrix}}{3} = 1.$$

Así, $\psi_1 = \frac{1}{3}\varphi_1 + \frac{1}{3}\varphi_2 + \varphi_3$ lo que nos dice que $\forall (x_1, x_2, x_3) \in \mathbb{R}^3$ se tiene $\psi_1(x_1, x_2, x_3) = \frac{1}{3}x_1 + \frac{1}{3}x_2 + x_3$. Si suponemos ahora que $\psi_2 = b_1\varphi_1 + b_2\varphi_2 + b_3\varphi_3$, tendremos, repitiendo el proceso, que

$$\psi_2(v_1) = 0 = (b_1\varphi_1 + b_2\varphi_2 + b_3\varphi_3)(1, -1, 1) = b_1 - b_2 + b_3$$

$$\psi_2(v_2) = 1 = (b_1\varphi_1 + b_2\varphi_2 + b_3\varphi_3)(1, 2, -1) = b_1 + 2b_2 - b_3$$

$$\psi_2(v_3) = 0 = (b_1\varphi_1 + b_2\varphi_2 + b_3\varphi_3)(-1, 1, 0) = -b_1 + b_2$$

Su solución es ahora:

$$b_1 = \frac{\begin{vmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 0 \end{vmatrix}}{3} = \frac{-\begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix}}{3} = \frac{1}{3}, \quad b_2 = \frac{\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \end{vmatrix}}{3} = \frac{1}{3}, \quad b_3 = \frac{\begin{vmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{vmatrix}}{3} = \frac{-\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}}{3} = 0$$

Luego $\psi_2 = \frac{1}{3}\varphi_1 + \frac{1}{3}\varphi_2$, lo que nos dice que $\forall (x_1, x_2, x_3) \in \mathbb{R}^3$, $\psi_2(x_1, x_2, x_3) = \frac{1}{3}x_1 + \frac{1}{3}x_2$. Y si $\psi_3 = c_1\varphi_1 + c_2\varphi_2 + c_3\varphi_3$, análogamente nos queda el sistema

$$\begin{cases} c_1 & -c_2 & +c_3 & = 0 \\ c_1 & +2c_2 & -c_3 & = 0 \\ -c_1 & +c_2 & = 1 \end{cases}$$

cuya solución viene dada por:

$$c_{1} = \frac{\begin{vmatrix} 0 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 0 \end{vmatrix}}{3} = \frac{\begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix}}{3} = -\frac{1}{3}, \quad c_{2} = \frac{\begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{vmatrix}}{3} = -\frac{\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}}{3} = \frac{2}{3}, \quad c_{3} = \frac{\begin{vmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 1 \end{vmatrix}}{3} = 1.$$

Ahora $\psi_3 = -\frac{1}{3}\varphi_1 + \frac{2}{3}\varphi_2 + \varphi_3$, con lo que $\psi_3(x_1, x_2, x_3) = -\frac{1}{3}x_1 + \frac{2}{3}x_2 + x_3$.

Lo importante aquí, es que hemos fijado las bases \mathcal{B}_U de \mathbb{R}^3 y \mathcal{B}_U^* de $(\mathbb{R}^3)^*$ de manera que hemos expresado en \mathcal{B}_U los vectores de \mathcal{B} y en \mathcal{B}_U^* las formas lineales de \mathcal{B}^* . Lo que hemos hecho, en realidad es imponer que

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Así, concluimos que las coordenadas en \mathcal{B}_U^* de las formas de \mathcal{B}^* vienen dadas por las filas de A^{-1} , siendo A la matriz cuyas columnas son las coordenadas de los vectores de \mathcal{B} en \mathcal{B}_U .

Este procedimiento es general, y nos sirve también para resolver el problema inverso: dada una base de V^* calcular la base de V de la que es dual, como veremos en el siguiente ejemplo:

Ejemplo 2.

Sean ψ_1, ψ_2, ψ_3 formas lineales sobre \mathbb{R}^3 dadas por:

$$\psi_1(x_1, x_2, x_3) = x_1 + 2x_2 + 2x_3$$

$$\psi_2(x_1, x_2, x_3) = x_1 - x_2$$

$$\psi_3(x_1, x_2, x_3) = x_1$$

Veamos que $\{\psi_1, \psi_2, \psi_3\} = \overline{\mathcal{B}}$ nos da una base de \mathbb{R}^3 . Si de nuevo consideramos \mathcal{B}_U y \mathcal{B}_U^* , las coordenadas en

$$\mathcal{B}_{U}^{*} \text{ de } \psi_{1} \text{ son } (1, 2, 2), \text{ las de } \psi_{2} \text{ son } (1, -1, 0) \text{ y las de } \psi_{3} \text{ son } (1, 0, 0). \text{ Como} \begin{vmatrix} 1 & 2 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0,$$

son linealmente independientes y forman una base de $(\mathbb{R}^3)^*$. Si queremos calcular la base \mathcal{B} de \mathbb{R}^3 tal que $\overline{\mathcal{B}} = \mathcal{B}^*$, $\mathcal{B} = \{(x_1, x_2, x_3), (y_1, y_2, y_3), (z_1, z_2, z_3)\}$ ha de verificar que

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = I_3.$$

Luego los vectores de $\mathcal B$ son las columnas de $\begin{pmatrix} 1 & 2 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{-1}$. Así,

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 2 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \\ \frac{1}{2} & 1 & \frac{-3}{2} \end{pmatrix}.$$

Así, $\mathcal{B} = \left\{ \left(0,0,\frac{1}{2}\right), \left(0,-1,1\right), \left(1,1,\frac{-3}{2}\right) \right\}.$

Proposición 3 (2ª propiedad de las bases duales).

Si $\mathcal{B}^* = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$ es la base dual de \mathcal{B} , entonces si para $x \in V$, $x = (x_1, x_2, \dots, x_n)_{\mathcal{B}}$, tenemos que $x_i = \varphi_i(x)$, $\forall i \in \{1, \dots, n\}$, ya que si $x = x_1v_1 + x_2v_2 + \dots + x_nv_n$, $\varphi_i(x) = x_1\varphi_i(v_1) + \dots + x_i\varphi_i(v_i) + \dots + x_n\varphi_i(v_n) = x_i \cdot 1 = x_i$.

3. Teorema de Reflexividad.

Supongamos que V es un espacio vectorial sobre el cuerpo K con $\dim_K(V) = n$. Sabemos entonces que $\dim_K(V^*) = n$ y, análogamente, si consideramos el espacio bidual de V, $(V^*)^*$, también tendrá dimensión n. Por tanto, V y $(V^*)^*$ serán isomorfos. Como hemos visto, en general, un isomorfismo entre V y $(V^*)^*$ dependerá de bases que escojamos en V y en su bidual. El Teorema de Reflexividad, sin embargo, nos va a dar un isomorfismo intrínseco entre ambos espacios, que no dependerá de bases de los espacios.

Teorema 1 (Teorema de Reflexividad).

La aplicación $\Phi: V \longrightarrow (V^*)^*$, dada por $\Phi(v) = \Phi_v: V^* \longrightarrow K$ tal que $\forall \varphi \in V^*$, $\Phi_v(\varphi) = \varphi(v)$ es un isomorfismo de espacios vectoriales.

Demostración. En primer lugar, hemos de ver que Φ está bien definida; es decir, que $\forall v \in V$, $\Phi_v : V^* \longrightarrow K$ es lineal. Para ello, sean $a, b \in K$ y $\varphi_1, \varphi_2 \in V^*$. $\Phi_v(a\varphi_1 + b\varphi_2) = (a\varphi_1 + b\varphi_2)(v) = a\varphi_1(v) + b\varphi_2(v) = a\Phi_v(\varphi_1) + b\Phi_v(\varphi_2)$ y, por tanto, $\Phi: V \longrightarrow (V^*)^*$ es una aplicación bien definida.

A continuación, veamos que Φ es lineal, es decir, que $\forall c, d \in K$, $\forall v_1, v_2 \in V$ se tiene $\Phi(cv_1 + dv_2) = c\Phi(v_1) + d\Phi(v_2)$ o, análogamente, que $\Phi_{cv_1+dv_2} = c\Phi_{v_1} + d\Phi_{v_2}$. Tomemos $\varphi \in V^*$; entonces $\Phi_{cv_1+dv_2}(\varphi) = \varphi(cv_1 + dv_2) = c\varphi(v_1) + d\varphi(v_2) = c\Phi_{v_1}(\varphi) + d\Phi_{v_2}(\varphi) = (c\Phi_{v_1} + d\Phi_{v_2})(\varphi)$, lo que nos proporciona la igualdad deseada.

Finalmente, hemos de ver que Φ es un isomorfismo. Como sabemos que ambos espacios vectoriales tienen la misma dimensión, bastará con ver que Φ es un monomorfismo: sea entonces $v \in \text{Ker}(\Phi)$. Esto significa que $\Phi_v : V^* \longrightarrow K$ es la aplicación lineal cero. Entonces $\forall \varphi \in V^*, \Phi_v(\varphi) = \varphi(v) = 0$. Veamos que si $v \in V$ verifica que $\forall \varphi \in V^*, \varphi(v) = 0$, necesariamente v = 0: si no fuera asi, $v \neq 0$ y podemos añadir vectores para que $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ nos dé una base de V. Sea entonces $\{\varphi_1, \varphi_2, \dots, \varphi_n\} = \mathcal{B}^*$ su base dual. Claramente $\varphi_1(v) = 1 \neq 0$, en contra de nuestra hipótesis. Así que si $\Phi_v = 0$ entonces v = 0 y Φ es, efectivamente, un isomorfismo.

El Teorema de Reflexividad nos permite identificar V y $(V^*)^*$ como espacios vectoriales haciendo que $v \equiv \Phi_v$. A partir de ahora, consideraremos V y $(V^*)^*$ como el mismo espacio vectorial.

4. Anulador de un subespacio.

Definición 1.

Sea V(K) un espacio vectorial y S un subconjunto de V. Definimos el <u>anulador</u> de S como el conjunto $an(S) = \{ \varphi \in V^* / \phi(v) = 0 \ \forall \ v \in S \}.$

Tenemos las siguientes propiedades para el anulador:

1. $\operatorname{an}(S)$ es un subespacio vectorial de V^* .

2. $\operatorname{an}(S) = \operatorname{an}(\mathcal{L}(S))$.

Demostración. 1. Para demostrar esta propiedad, sean $\varphi_1, \varphi_2 \in \operatorname{an}(S)$ y sean $a, b \in K$. Consideremos $a\varphi_1 + b\varphi_2$ y veamos que pertenece a an(S). Si tomamos $v \in S$, $(a\varphi_1 + b\varphi_2)(v) = a\varphi_1(v) + b\varphi_2(v) = a \cdot 0 + b \cdot 0 = 0$, pues $\varphi_1(v) = \varphi_2(v) = 0$, ya que $\varphi_1, \varphi_2 \in \operatorname{an}(S)$.

2. Para demostrar esta propiedad, como $S \subseteq \mathcal{L}(S)$, si φ anula a todos los vectores de $\mathcal{L}(S)$, en particular tiene que anular a todos los de S, luego an $(\mathcal{L}(S)) \subseteq \operatorname{an}(S)$. En el otro sentido, sea $\varphi \in \operatorname{an}(S)$. Cada vector de $\mathcal{L}(S)$ será de la forma $a_1v_1 + \cdots + a_kv_k$ con $v_1, \ldots, v_k \in S$. Entonces $\varphi(a_1v_1 + \cdots + a_kv_k) = a_1\varphi(v_1) + \cdots + a_k\varphi(v_k) = a_1\cdot 0 + \cdots + a_k\cdot 0 = 0$. Por tanto, an $(S) \subseteq \operatorname{an}(\mathcal{L}(S))$ y tendremos la igualdad.

Si U es un subespacio vectorial de V, la 2^{a} propiedad nos permite calcular el an(U) calculando simplemente el anulador de una base de U.

Ejemplo 3.

Consideremos en \mathbb{R}^4 el subespacio vectorial $U = \{(x_1, x_2, x_3, x_3) \in \mathbb{R}^4 / x_1 + x_3 = 0, x_2 + 2x_4 = 0\}$. Todos los vectores de \mathbb{R}^4 los referiremos a \mathbb{B}^4_U y todas las formas lineales de $(\mathbb{R}^4)^*$ a la base $(\mathcal{B}^4_U)^* = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$. (Recordemos que $\forall i \in \{1, 2, 3, 4\}, \varphi_i(x_1, x_2, x_3, x_4) = x_i$).

Calculemos, en primer lugar, una base de U. Unas ecuaciones paramétricas de U serían

$$\begin{cases} x_1 = \lambda \\ x_3 = -\lambda \\ x_4 = +\mu \\ x_2 = -2\mu \end{cases}$$

Así,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

Lo que nos da que $\{(1,0,-1,0),(0,-2,0,1)\}$ es una base de U. Una forma arbitraria $\psi \in V^*$ será $\psi = a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3 + a_4\varphi_4$. Para que $\psi \in \operatorname{an}(U) = \operatorname{an}(\mathcal{L}(\{(1,0,-1,0),(0,-2,0,1)\}))$ tendremos que $\psi(1,0,-1,0) = \psi(0,-2,0,1) = 0$.

Entonces $(a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3 + a_4\varphi_4)(1, 0, -1, 0) = a_1 - a_3 = 0$ y $(a_1\varphi_1 + a_2\varphi_2 + a_3\varphi_3 + a_4\varphi_4)(0, -2, 0, 1) = -2a_2 + a_4 = 0$. Luego unas ecuaciones implícitas de an(U) respecto de $(\mathcal{B}_U^4)^*$ son

$$\begin{cases} a_1 - a_3 = 0 \\ -2a_2 + a_4 = 0 \end{cases}$$

Una base de an(*U*) vendrá dada por las formas $\psi_1 = \varphi_1 + \varphi_3$, $\psi_2 = \varphi_2 + 2\varphi_4$. Esto es, an(*U*) = $\mathcal{L}(\{\varphi_1 + \varphi_3, \varphi_2 + 2\varphi_4\})$. Donde $(\varphi_1 + \varphi_3)(x_1, x_2, x_3, x_4) = x_1 + x_3$ y $(\varphi_2 + 2\varphi_4)(x_1, x_2, x_3, x_4) = x_2 + 2x_4$.

En general, si suponemos que $\dim_K(V) = n$ y U es un subespacio vectorial de V con dimensión r, siendo $\{u_1, u_2, \ldots, u_r\}$ una base de V, procediendo como en el ejemplo, obtendremos r ecuaciones implícitas para $\mathrm{an}(U)$. Esto nos dice que

$$\dim_K(\operatorname{an}(U)) = \dim_K(V) - \dim_K(U).$$

5. Aplicación lineal traspuesta.

Sean V(K) y V'(K) dos espacios vectoriales y $f: V \longrightarrow V'$ una aplicación lineal. Sean \mathcal{B} una base de V y \mathcal{B}' una base de V' de modo que $\mathcal{M}(f; \mathcal{B}' \leftarrow \mathcal{B}) = A$. Consideremos los espacios duales V^* , con base \mathcal{B}^* y $(V')^*$ con base $(\mathcal{B}')^*$. Veamos cómo podemos definir una aplicación lineal de $(V')^*$ en V^* . Para ello, si $\varphi' \in (V')^*$, aparece el siguiente diagrama:

$$V \xrightarrow{f} V' \xrightarrow{\varphi'} K$$

de manera que $\varphi' \circ f$ es una aplicación lineal de V en K, es decir, $\forall \varphi' \in (V')^*, \varphi' \circ f \in V^*$. Definimos entonces $f^t : (V')^* \longrightarrow V^*$ mediante $f^t(\varphi') = \varphi' \circ f, \forall \varphi' \in (V')^*$.

Tenemos entonces las siguientes propiedades:

- 1. f^t es una aplicación lineal.
- 2. $\mathcal{M}(f^t; \mathcal{B}^* \leftarrow (\mathcal{B}')^*) = A^t$.

Demostración. 1. Vamos a demostrar la primera propiedad: sean $\varphi'_1, \varphi'_2 \in (V')^*$, $a, b \in K$. Entonces $f^t(a\varphi'_1 + b\varphi'_2) = (a\varphi'_1 + b\varphi'_2) \circ f = a(\varphi'_1 \circ f) + b(\varphi'_2 \circ f) = af^t(\varphi'_1) + bf^t(\varphi'_2)$, ya que $\forall v \in V$, $((a\varphi'_1 + b\varphi'_2) \circ f)(v) = (a\varphi'_1 + b\varphi'_2)(f(v)) = a\varphi'_1(f(v)) + b\varphi'_2(f(v)) = a(\varphi'_1(f(v))) + b(\varphi'_2(f(v))) = a(\varphi'_1 \circ f)(v) + b(\varphi'_2 \circ f)(v)$.

2. Para demostrar 2, supongamos que $(\mathcal{B}')^* = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$. Sea $\varphi_i, i \in \{1, \dots, n\}, \mathcal{M}(\varphi_i; \mathcal{B}') = (\varphi_i(v_1') \dots \varphi_i(v_n'))$, suponiendo que $\mathcal{B}' = \{v_1', \dots, v_n'\}$. Luego

$$\mathcal{M}(\varphi_i; \mathcal{B}') = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix}.$$

Entonces

$$\mathcal{M}(\varphi_i \circ f; \mathcal{B}) = \mathcal{M}(\varphi_i; \mathcal{B}') \mathcal{M}(f; \mathcal{B}' \leftarrow \mathcal{B}) = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{i1} & a_{i2} & \dots & a_{im} \end{pmatrix}.$$

Esta será la *i*-ésima columna de $\mathcal{M}(f^t; \mathcal{B}^* \leftarrow (\mathcal{B}')^*)$ con lo cual, esta matriz es A^t .

La aplicación f^t se llama la aplicación lineal traspuesta de f.