Capítulo 5 Planificación

Secciones Stallings:

9.1, 9.2 (hasta pág. 421), 9.3

Ejemplos de algoritmos paso a paso

SPN (1º el proceso más corto)

- Se selecciona el proceso con menor tiempo esperado de ejecución.
- Un proceso corto salta a la cabeza de la cola, sobrepasando a trabajos largos.
 - Función de selección: mínimo tiempo total de servicio
 - Modo de decisión: No expulsivo (no preferente)

Proceso	Llegada	Servicio
A	0	3
В	2	6
C	4	4
D	6	5
E	8	2

SPN

- Problema: realizar las estimaciones:
 - Trabajos por lotes o repetitivos:
 - estimación del programador o estadísticas en función de tiempos de ejecución pasados
 - => miramos suma de ráfagas en la tabla
 - Si procesos interactivos
 - en lugar de tiempo de trabajo, tiempo de cada ráfaga (se supone que siguen una distribución uniforme)
 - => calculamos en función de ráfagas pasadas

$$(\text{media o con alfa}) \quad S_{n+1} = \quad \begin{array}{c} \alpha \ t_n \ + \ (1\text{-}\ \alpha) \ S_n \\ 0<\alpha<1 \end{array}$$

Modo de decisión: no expulsivo

SPN

• Normalmente se utiliza promedio exponencial:

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$0 < \alpha < 1$$

- •S₁: valor pronosticado (no calculado). Puede eliminarse en sucesivos cálculos o sustituirse por T₁
- Si α tiende a 1 se reflejan rápidamente los cambios, pero si son efectos aislados desestabilizan la media más tiempo.
- Conviene dar más peso a los valores más recientes

SPN (1º el proceso más corto)

- Se selecciona el proceso con menor tiempo esperado de ejecución.
- Un proceso corto salta a la cabeza de la cola, sobrepasando a trabajos largos.
 - Función de selección: mínimo tiempo total de servicio
 - Modo de decisión: No expulsivo (no preferente)

Proceso	Llegada	Servicio
A	0	3
В	2	6
C	4	4
D	6	5
E	8	2

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma = 5
В	2	6	-	_	Suma = 6
С	4	4	4	4	Suma = 8
D	6	5	5	1	Suma = 6
Е	8	2	2	2	Suma = 4

A	
В	
C	
D	
Е	

■ En ejecución

Listo

Sin cargar

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma = 5
В	2	6	-	_	Suma = 6
C	4	4	4	4	Suma = 8
D	6	5	5	1	Suma = 6
Е	8	2	2	2	Suma = 4

En ejecución

(proceso por lotes)

Listo

Sin cargar

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $\mathbf{D} = 6$
Е	8	2	2	2	Suma $\mathbf{E} = 4$

(proceso por lotes)

■ En ejecución
☑ Listo ■ Terminado

En espera de E-S Sin Cargar

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $\mathbf{D} = 6$
Е	8	2	2	2	Suma $E = 4$

(proceso por lotes)

En ejecución
Listo
Terminado

En espera de E-S Sin Cargar

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	_	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $\mathbf{D} = 6$
Е	8	2	2	2	Suma $\mathbf{E} = 4$

(proceso por lotes)

En ejecución

Listo

T

Terminado

En espera de E-S

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma C = 8
D	6	5	5	1	Suma $\mathbf{D} = 6$
Е	8	2	2	2	Suma $E = 4$

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $D = 6$
Е	8	2	2	2	Suma $E = 4$

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $D = 6$
Е	8	2	2	2	Suma $E = 4$

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $D = 6$
Е	8	2	2	2	Suma $E = 4$

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $D = 6$
Е	8	2	2	2	Suma $E = 4$

Proceso	llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $D = 6$
Е	8	2	2	2	Suma $E = 4$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Suma $A = 5$
В	2	6	-	-	Suma $B = 6$
С	4	4	4	4	Suma $C = 8$
D	6	5	5	1	Suma $D = 6$
E	8	2	2	2	Suma $E = 4$

- 1. Uso de CPU: 32 3 => 29/32
- 2. Rendimiento: 5/32
- **3. Tiempo de retorno (medio)**: (13 + 7 + 28 + 20 + 7) / 5 = 75 / 5 = 15
- 4. Tiempo de espera/respuesta (medio): (6 + 1 + 16 + 9 + 1) / 5 = 33 / 5 = 6.6

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

20

		10	10	20	- 2	20	.0	1.5
A								
В								
C								
D								
Е								

35

40

45

(proceso interactivo)

Varias formas para estimar tiempo inicial de proceso nuevo:

15

- No sabemos nada sobre las ráfagas: S1 = 0 (los procesos nuevos son preferentes)
- Tomando S1 = T1 (problema: hay que saber el T1)

10

- Tomando S1 = CTE (ej: media de las ráfagas de procesos interactivos anteriores en el sistema)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
Α	0	3	2	2	Est. $A = 3$
В	2	6	-	_	$\mathbf{Est.} \; \mathbf{B} = 0$
С	4	4	4	4	$\mathbf{Est.} \ \mathbf{C} = 0$
D	6	5	5	1	Est. $D = 0$
Е	8	2	2	2	Est. $E = 0$

(proceso interactivo)

$$\mathbf{S1} = \mathbf{0}$$

$$\alpha = 1 \rightarrow \mathbf{Sn} + 1 = \mathbf{Sn}$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Est. $A = 3$
В	2	6	_	_	Est. $B = 6$
С	4	4	4	4	Est. $C = 4$
D	6	5	5	1	$\int Est. D = 0$
Е	8	2	2	2	Est. $E = 0$

(proceso interactivo)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Est. $A = 3$
В	2	6	-	_	Est. $B = 6$
С	4	4	4	4	Est. $C = 4$
D	6	5	5	1	Est. $D = 5$
Е	8	2	2	2	Est. $E = 0$

(proceso interactivo)

I	Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
	A	0	3	2	2	Est. $A = 3$
	В	2	6	-	-	Est. B = 6
	С	4	4	4	4	Est. $C = 4$
	D	6	5	5	1	Est. $D = 5$
	E	8	2	2	2	Est. $E = 2$

(proceso interactivo)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Est. $A = 3$
В	2	6	_	_	Est. $B = 6$
С	4	4	4	4	Est. $C = 4$
D	6	5	5	1	Est. $D = 5$
Е	8	2	2	2	Est. $\mathbf{E} = 2$

(proceso interactivo)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Est. $A = 3$
В	2	6	-	-	Est. $B = 6$
С	4	4	4	4	Est. $\mathbf{C} = 4$
D	6	5	5	1	Est. $\mathbf{D} = 5$
E	8	2	2	2	Est. $E = 2$

(proceso interactivo)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Est. $A = 3$
В	2	6	_	_	Est. B = 6
С	4	4	4	4	Est. $C = 4$
D	6	5	5	1	Est. $D = 5$
Е	8	2	2	2	Est. E = 2

(proceso interactivo)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Est.ini $A = 0$
В	2	6	-	-	Est.ini $B = 0$
С	4	4	4	4	Est.ini $C = 0$
D	6	5	5	1	Est.ini $D = 0$
Е	8	2	2	2	Est.ini $E = 0$

(proceso interactivo)

S1 = 0

1. Uso de CPU: 29 => 29/29

2. Rendimiento: 5/29

3. Tiempo de retorno (medio): (22 + 7 + 24 + 24 + 12) / 5 = 89 / 5 = 17.8

4. Tiempo de espera/respuesta (medio): (15+1+12+12+10) / 5 = 50 / 5 = 10.0

- Mejora rendimiento global:
 t. de retorno y t. de espera/respuesta
- Posibilidad de inanición para los procesos largos
- No conveniente para tiempo compartido o procesamiento de transacciones (por la ausencia de apropiación)
- Se reduce la previsibilidad de los procesos largos (puede variar mucho de una vez a otra)

- Versión preferente de SPN: elige el proceso que le queda menos tiempo esperado de ejecución
- Cada vez que llega un proceso nuevo a la cola de listos se ejecuta el planificador.
 - Función de selección: mínimo tiempo restante de ejecución (t. total – t. consumido)
 - Modo de decisión: Preferente en llegada a listos

	75.00								5								. .		0			•		
Proceso	Llegada	Servicio		0 	ı	1	ı	1	<i>J</i> 		ı	1	1	10	1	ı	ı	ı	15	5 	1		ı	ı
Ā	0	3		<u> </u>			<u> </u>											_						
В	2	6	A					Т						Г]				
C	4	4	В									ר		L						l				
D	6	5	C									J												
E	8	2	D											٦						<u> </u>				
	Proceso A B C D E	Proceso Llegada A 0 B 2 C 4 D 6 E 8		Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 C E 8 2 D	Proceso Llegada Servicio A	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B C D 6 5 E 8 2	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 4 B D 6 5 D E 8 2 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 E 8 2	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B C D 6 5 E 8 2 D D 6 5 D D 6 6 5 D D 6 7 D D 7 5 D D D 7 5 D D D 7 5 D	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 B D 6 5 E 8 2	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 A D 6 5 E 8 2	Proceso Llegada Servicio A 0 3 B 2 6 A C 4 4 4 B D 6 5 E 8 2	A 0 3 B 2 6 A C 4 4 B C D 6 5 D C D 6 5 D D 6 5

- Problema: ¿Cómo saber el tiempo esperado?
- Estimar igual que en SPN

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	ı	_
C	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Trestante= 3
Trestante= 6
Sin Cargar
Sin Cargar
Sin Cargar

■ En ejecución

(proceso por lotes)

Listo

□ Sin cargar

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	ı	_
C	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Trestante= 2
Trestante= 5
Trestante= 8
Sin Cargar
Sin Cargar

(proceso por lotes)

En ejecución

Listo

C

Terminado

En espera de E-S

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	ı	_
C	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Trestante= 2
Trestante= 4
Trestante= 8
Sin Cargar
Sin Cargar

(proceso por lotes)

En ejecución

Listo

En espera de E-S

Terminado

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	-
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Trestante= 1

Trestante= 4

Trestante=8

Trestante= 6

Sin Cargar

(proceso por lotes)

En ejecución

Listo

_.

Terminado

En espera de E-S

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	ı	_
C	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Terminó

Trestante= 4

Trestante= 8

Trestante= 6
Sin Cargar

(proceso por lotes)

En ejecución

Listo

Terminado

En espera de E-S

	ráfaga CPU	E/S	Ráfaga CPU	llegada	Proceso
Terminó	2	2	3	0	A
Trestante= 3	_	-	6	2	В
Trestante= 8	4	4	4	4	C
Trestante= 6	1	5	5	6	D
Trestante= 4	2	2	2	8	Е

(proceso por lotes)

En ejecución

Listo

En espera de E-S

Terminado

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU	
A	0	3	2	2	Terminó
В	2	6	-	_	Trestante=
С	4	4	4	4	Trestante=
D	6	5	5	1	Trestante=
Е	8	2	2	2	Trestante=

(proceso por lotes)

■ En ejecución☑ Listo□ En espera de E-S□ Sin Cargar

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU	
A	0	3	2	2	Terminó
В	2	6	-	_	Terminó
С	4	4	4	4	Trestante= 8
D	6	5	5	1	Trestante= 6
Е	8	2	2	2	Trestante= 4

(proceso por lotes)

■ En ejecución☑ Listo■ Terminado

En espera de E-S Sin Cargar

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Terminó
Terminó
Trestante= 8
Trestante= 6
Trestante= 2

(proceso por lotes)

En ejecución

Listo

En espera de E-S

Terminado

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU	
A	0	3	2	2	Terminó
В	2	6	_	_	Terminó
С	4	4	4	4	Trestante= 8
D	6	5	5	1	Trestante= 4
Е	8	2	2	2	Trestante= 2

(proceso por lotes)

En ejecución

Listo

En espera de E-S

Te

Terminado

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Terminó Terminó Trestante= 8 Trestante= 4 Terminó

(proceso por lotes)

En ejecución

Listo

Terminado

En espera de E-S

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Terminó
Terminó
Trestante= 8
Trestante= 1
Terminó

(proceso por lotes)

■ En ejecución☑ Listo□ En espera de E-S□ Sin Cargar

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

(proceso por lotes)

En ejecución
Listo
Terminado

En espera de E-S Sin Cargar

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

(proceso por lotes)

1. Uso de CPU: $32 - 3 = \frac{29}{32}$

2. Rendimiento: 5/32

3. Tiempo de retorno (medio): (7 + 9 + 28 + 20 + 9) / 5 = 73 / 5 = 14.6

4. Tiempo de espera (medio): (0 + 3 + 16 + 9 + 3) / 5 =**31 / 5 = 6.2**

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU
A	0	3	2	2
В	2	6	-	-
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

Procesos interactivos:

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

 S_1 debe ser estimado por ejemplo, podemos tomar como estimación para la primera ráfaga la media "histórica" de ráfagas de procesos interactivos en el sistema. Supongamos $S_1=3$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU
A	0	3	2	2
В	2	6	-	-
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

 $S_1=3, r=1$ $S_1=3, r=3$ Sin Cargar Sin Cargar Sin Cargar

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

 $S_1 = 3, S_2 = ?$ $S_1 = 3, r = 3$ $S_1 = 3, r = 3$

Sin Cargar
Sin Cargar

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Ter

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	_	$S_1=3,$
В	2	6	-	_	$S_1=3,$
С	4	4	4	4	$S_1=3,$
D	6	5	5	1	Sin Carg
Е	8	2	2	2	Sin Carg

$$S_1 = 3$$
, $S_2 = ?$

$$S_1 = 3, r = 2$$

$$S_1 = 3, r = 3$$

gar

gar

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	$S_2 = 3, r = 3$
В	2	6	-	_	$S_1 = 3, r = 1$
С	4	4	4	4	$S_1 = 3, r = 3$
D	6	5	5	1	Sin Cargar
Е	8	2	2	2	Sin Cargar

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	$S_2 = 3, r = 3$
В	2	6	-	_	$S_1 = 3, r = 0$
C	4	4	4	4	$S_1 = 3, r = 3$
D	6	5	5	1	$S_1 = 3, r = 3$
E	8	2	2	2	Sin Cargar

(proceso interactivo $S_1 = 3$)

u=7?

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2		$S_2 = 3, r =$
В	2	6	-	_	$S_1 = 3, r =$
C	4	4	4	4	$S_1 = 3, r =$
D	6	5	5	1	$S_1 = 3, r =$
Е	8	2	2	2	$S_1 = 3, r =$

(proceso interactivo $S_1 = 3$)

- En ejecución
- Listo

- Terminado
- En espera de E-S
- Sin Cargar

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

3

3

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	$S_2 = 3, r = 3$
В	2	6	-	_	Terminado
C	4	4	4	4	$S_1 = 3, r = 3$
D	6	5	5	1	$S_1 = 3, r = 3$
Е	8	2	2	2	$S_1 = 3, r = 3$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	$S_2 = 3, r = 3$
В	2	6	-	-	Terminado
C	4	4	4		$S_1 = 3, S_2 = ?$
D	6	5	5	1	$S_1 = 3, r = 3$
Е	8	2	2	2	$S_1 = 3, r = 3$

(proceso interactivo $S_1 = 3$)

- En ejecución
- Listo
 - En espera de E-S
- Terminado
 - Sin Cargar

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Terminado
В	2	6	-	-	Terminado
С	4	4	4	4	$S_1 = 3, S_2 = ?$
D	6	5	5	1	$S_1 = 3, r = 3$
E	8	2	2	2	$S_1 = 3, r = 3$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$\begin{vmatrix} S_{n+1} = \alpha t_n + (1 - \alpha) S_n \\ \alpha = 0.8 \end{vmatrix}$$

	Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
1	A	0	3	2	2	Terminado
	В	2	6	ı	-	Terminado
	C	4	4	4	4	$S_2 = 3.8, r = 3.8$
	D	6	5	5	1	$S_1 = 3, r = 1$
	E	8	2	2	2	$S_1=3, r=3$

(proceso interactivo $S_1 = 3$)

- En ejecución
- Listo
 - En espera de E-S
- Terminado
 - Sin Cargar

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

$$\alpha = 0.8$$

D

SRT (Menor Tiempo Restante)

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Terminado
В	2	6	ı	_	Terminado
C	4	4	4		$S_2 = 3.8, r = 3.8$
D	6	5	5	1	$S_1 = 3, S_2 = ?$
E	8	2	2	2	$S_1=3, r=3$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Terminado
В	2	6	-	_	Terminado
С	4	4	4	4	$S_2 = 3.8, r = 3$
D	6	5	5		$S_1 = 3, S_2 = ?$
E	8	2	2	2	$S_1 = 3, S_2 = ?$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

Sin Cargar

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

r = 3.8

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Terminado
В	2	6	-	_	Terminado
C	4	4	4	4	$S_2 = 3.8, r = 1.8$
D	6	5	5		$S_1 = 3, S_2 = ?$
E	8	2	2	2	$S_2 = 2.2, r = 2.2$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Terminado
В	2	6	-	_	Terminado
C	4	4	4	• •	$S_2 = 3.8, r = 0.8$
D	6	5	5	1	$S_2 = 4.6, \mathbf{r} = 4.6$
E	8	2	2	2	$S_2 = 2.2, r = 2.2$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU	
A	0	3	2	2	Terminado
В	2	6	-	_	Terminado
C	4	4	4	4	Terminado
D	6	5	5	_	$S_2 = 4.6, \mathbf{r} = 4.6$
E	8	2	2	2	$S_2 = 2.2, r = 2.2$

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

(proceso interactivo $S_1 = 3$)

En ejecución

Listo

Terminado

En espera de E-S

$$S_{n+1} = \alpha t_n + (1 - \alpha) S_n$$

$$\alpha = 0.8$$

Proceso	Llegada	Ráfaga CPU	E/S	Ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

(proceso interactivo $S_1 = 3$)

1. Uso de CPU: 29 => 29/29

2. Rendimiento: 5/29

3. Tiempo de retorno (medio): (15 + 7 + 22 + 22 + 20) / 5 = 86 / 5 = 17.2

4. Tiempo de espera (medio): (8 + 1 + 10 + 12 + 14) / 5 = 45 / 5 = 9.0

- Favorece a los procesos cortos
- Ventaja: no genera interrupciones adicionales (vs. Round Robin)
- Desventaja: debe contabilizar los tiempos de servicio transcurridos => sobrecarga

HRRN (1° el de mayor tasa de respuesta)

- Elige el proceso con la tasa de respuesta (tiempo "instantáneo" de retorno normalizado) más alta.
 - Función de selección: máxima tasa de respuesta
 - Modo de decisión: NO preferente

HRRN (Mayor tasa de respuesta)

- Procesos cortos => denominador pequeño
 => tasa de respuesta alta
- Envejecimiento sin servicio
 - => nominador grande
 - => tasa de respuesta alta
 - => procesos largos compiten con los cortos

Proceso	Llegada	Servicio	
A	0	3	
В	2	6	
C	4	4	
D	6	5	
E	8	2	

t. esperando + t.esperado

t. esperado

20

15

HRRN (Mayor tasa de respuesta)

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

En ejecución

Listo

Terminado

En espera de E-S

HRRN (Mayor tasa de respuesta)

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

- 1. Uso de CPU: $29 0 = \frac{29}{29}$
- 2. Rendimiento: 5/29
- 3. Tiempo de retorno (medio): (11 + 7 + 24 + 23 + 16) / 5 = 81 / 5 = 16.2
- **4.** Tiempo de espera/respuesta (medio): (4 + 1 + 12 + 12 + 10) / 5 = 39 / 5 = 7.8

Planificación con realimentación

Realimentación multinivel

- No se dispone de información del tiempo de ejecución del proceso (SPN, SRT, HRRN).
- Para dar preferencia a trabajos cortos, se penaliza a los que han estado ejecutándose más tiempo.
 - Función de selección: FIFO con reducción de prioridad tras cada ejecución (RR en la última cola)
 - Modo de decisión: preferente (cada q)

Process	Arrival Time	Service Time
A	0	3
В	2	6
C	4	4
D	6	5
E	8	2

Realimentación multinivel

Process	Arrival Time	Service Time
A	0	3
В	2	6
C	4	4
D	6	5
E	8	2

Realimentación multinivel (q=1)

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

En ejecución
Listo
En espera de E-S

Terminado Sin Cargar q = 1

colas prioridad= 5

Realimentación multinivel (q=1)

Proceso	llegada	Ráfaga CPU	E/S	ráfaga CPU
A	0	3	2	2
В	2	6	-	_
С	4	4	4	4
D	6	5	5	1
Е	8	2	2	2

q = 1

colas prioridad= 5

- 1. Uso de CPU: 29 => 29/29
- 2. Rendimiento: 5/29
- 3. Tiempo de retorno (medio): (22 + 22 + 24 + 23 + 12) / 5 = 103 / 5 = 20.6
- **4. Tiempo de espera (medio)**: (15 + 16 + 12 + 12 + 6) / 5 = 61 / 5 = 12.2

Realimentación multinivel

- Procesos cortos: terminan rápido, sin descender demasiado en la jerarquía de colas.
- Procesos largos: llevados gradualmente hacia abajo. Problema: pueden sufrir inanición en colas de prioridad baja si llegan muchos procesos cortos continuamente
- Soluciones:
 - Cuanta menor es la prioridad se pueden asignar más cuantos de tiempo de ejecución
 - Tras cierto tiempo de espera en cola, se le cambia a una cola de prioridad mayor.