Prvi međuispit (grupa B) - 24. ožujka 2011.

- 1. Totalna snaga vremenski kontinuiranog signala $x(t) = 4 + 2\sin(t)$ je:
 - **a**) 4
- **b**) 6
- **c)** 16
- **d)** 18
- **e**) 20
- **2.** Energija vremenski diskretnog signala $x(n) = \left(\frac{1}{4}\right)^{2n} \mu(n)$ je:

- **b**) $\frac{16}{15}$ **c**) $\frac{256}{255}$ **d**) $\frac{255}{256}$ **e**) $+\infty$
- **3.** Totalna snaga vremenski diskretnog signala $x(n) = 2 + 4\sin(\frac{\pi}{3}n)$ je:
 - **a**) 2
- **b**) 4
- **c**) 6
- **d**) 12
- **e**) 20
- 4. Koji od zadanih signala NIJE periodičan?
 - a) $\sin(2\pi t)$
- **b)** $\cos(2\pi t) + \sin(5\pi t)$
- **c)** $\cos(3t) + \cos(5t)$
- **d)** $\cos(3\pi t) + \sin(3t)$
- e) $\operatorname{tg}(\frac{\pi}{2}t)$
- 5. Samo jedna od navednih tvrdnji NE VRIJEDI za Diracovu distribuciju $\delta(t)$. Koja?
 - a) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $f(t) \delta(t-t_0) = f(t_0)$.
 - b) Generalizirana derivacija Heavisideove step funkcije je Diracova distribucija, odnosno $\mu'(t) = \delta(t)$.
 - c) Diracova distribucija je parna distribucija.

 - d) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $\int_{-\infty}^{+\infty} f(t) \, \delta(t) \, dt = f(0)$. e) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $\int_{-\infty}^{+\infty} f(t) \, \delta'(t) \, dt = -f'(0)$.
- **6.** Generalizirana derivacija signala $f(t) = \mu(5-t) + \mu(t) + (3-t)^2(\mu(t-3) \mu(t-5))$ je:
 - a) $-3\delta(t-5) + \delta(t) + 2(t-3)(\mu(t-3) \mu(t-5))$ b) $-5\delta(t-5) + \delta(t) + 2(t-3)(\mu(t-3) \mu(t-5))$ c) $2(t-3)(\mu(t-3) \mu(t-5))$ d) $2(t-3)(\mu(t-3) \mu(t-5)) 4$ e) $-\delta(t-5) + \delta(t) + 2(t-3)(\mu(t-3) \mu(t-5)) 4$

- 7. Signal $f(t):[0,3]\to\mathbb{R}$ prikazujemo kao linearnu kombinaciju tri osnovna signala $b_1(t):[0,3]\to\mathbb{R},\ b_2(t):[0,3]\to\mathbb{R}$ i $b_3(t):[0,3]\to\mathbb{R}$. Kako glasi linearni rastav signala f(t) po osnovnim signalima?
- a) (3,1,3) b) (2,-2,3) c) (1,2,-3) d) (-1,2,1) e) (-2,1,2)

- Promatramo signal $x(t) = \cos(200\pi t) + \sin(400\pi t) + \cos(600\pi t)$. Kojim periodom očitanja T_S moramo očitati taj signal da ne dođe do preklapanja spektra?

- a) $T_S > 200$ b) $T_S > 600$ c) $T_S < 1/200$ d) $T_S < 1/600$ e) Ne postoji takav period $T_S!$
- 9. Zadan je signal $x(t) = 2\cos(2t + \frac{\pi}{3}) + 3\sin(3t)$. Amplitudni i fazni spektar za k = -2 i k = 3 su:

- a) $A_{-2} = 1, \ \phi_{-2} = -\frac{\pi}{3}, \ A_3 = \frac{3}{2}, \ \phi_3 = -\frac{\pi}{2}$ b) $A_{-2} = 2, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = 3, \ \phi_3 = -\frac{\pi}{2}$ c) $A_{-2} = 1, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = \frac{3}{2}, \ \phi_3 = \frac{\pi}{2}$ d) $A_{-2} = 1, \ \phi_{-2} = -\frac{\pi}{3}, \ A_3 = \frac{3}{2}, \ \phi_3 = \frac{\pi}{2}$ e) $A_{-2} = 2, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = 3, \ \phi_3 = 0$
- 10. Za vremenski kontinuirani i periodčan signal x(t) perioda 4 zadan slikom izračunaj NULTI i DRUGI član rastava u Fourierov red.
 - a) $(X_0, X_2) = (1, -\frac{2}{\pi^2})$ b) $(X_0, X_2) = (0, \frac{1}{2\pi})$ c) $(X_0, X_2) = (1, \frac{2j}{\pi^2})$ d) $(X_0, X_2) = (0, \frac{j}{2\pi})$

e) $(X_0, X_2) = (0, \frac{j}{2})$

11.	Snaga signala iz pret	hodnog zadatka je:
		-

a) 0 b)
$$\frac{1}{9}$$
 c) $\frac{1}{6}$ d) $\frac{2}{3}$ e) 1

b)
$$\frac{1}{9}$$

c)
$$\frac{1}{6}$$

d)
$$\frac{2}{3}$$

12. Izračunaj vremenski kontinuiranu Fourierovu transformaciju (CTFT) signala $f(t) = e^{-3t} \mu(t) + e^{2t} \mu(-t)$

a)
$$F(j\omega) = \frac{1}{3+j\omega}$$

b)
$$F(j\omega) = \frac{-5}{6 + \omega^2 + j\omega}$$

c)
$$F(j\omega) = \frac{5}{6 + \omega^2 - j\omega}$$

a)
$$F(j\omega) = \frac{1}{3+j\omega}$$
 b) $F(j\omega) = \frac{-5}{6+\omega^2+j\omega}$ **c)** $F(j\omega) = \frac{5}{6+\omega^2-j\omega}$ **d)** $F(j\omega) = \frac{5}{6+\omega^2+j\omega}$

e)
$$F(j\omega) = \frac{5}{\sqrt{(6+\omega)^2 + \omega^2}}$$

13. Zadan je spektar $X(j\omega) = 2(\mu(\omega + 4\pi) - \mu(\omega - 4\pi))$. Signal čiji je to spektar je:

a)
$$x(t) = 2 \delta(t) + \frac{2}{\pi j t} \cos(4\pi t)$$
 b) $x(t) = \frac{2}{\pi t} \sin(4\pi t)$ c) $x(t) = \frac{4}{t} \sin(4\pi t)$ d) $x(t) = -\frac{2}{\pi t} \sin(4\pi t)$ e) $x(t) = \frac{2}{\pi t} \cos(4\pi t)$

b)
$$x(t) = \frac{2}{3}\sin(4\pi t)$$

c)
$$x(t) = \frac{4}{t} \sin(4\pi t)$$

d)
$$x(t) = -\frac{2}{4}\sin(4\pi t)$$

e)
$$x(t) = \frac{2}{\pi t} \cos(4\pi t)$$

14. Energija signala iz prethodnog zadatka je:

- **a**) 8
- **b**) 16
- c) 16π
- **d**) 32π e) $+\infty$

15. Zadan je vremenski diskretan periodičan signal $x(n) = \sin(\frac{\pi}{57}n)$. Temeljni period signala N i temeljni period spektra K

a)
$$(N, K) = (57, 57)$$

b)
$$(N, K) = (57, 114)$$

c)
$$(N, K) = (114, 114)$$

b)
$$(N, K) = (57, 114)$$
 c) $(N, K) = (114, 114)$ **d)** $(N, K) = (114, 228)$

e)
$$(N, K) = (228, 114)$$

Jedan periodičnog signala perioda N=6 je $x(n)=\begin{cases} -2\sqrt{3}n, & n\in\{-2,-1,0,1,2\}\\ 6, & n=3 \end{cases}$. Prva dva člana spektra su: a) $X_0 = 0$, $X_1 = 6$ b) $X_0 = 1$, $X_1 = -1 + j$ c) $X_0 = 1$, $X_1 = -1 - j$ d) $X_0 = 1$, $X_1 = -1 - 3j$ e) $X_0 = 1$, $X_1 = -1 + 3j$

a)
$$X_0 = 0, X_1 = 6$$

b)
$$X_0 = 1, X_1 = -1 + 1$$

c)
$$X_0 = 1$$
, $X_1 = -1 - \frac{1}{2}$

d)
$$X_0 = 1, X_1 = -1 - 3j$$

e)
$$X_0 = 1, X_1 = -1 + 3$$

17. Zadan je vremenski diskretan periodički signal $x(n) = \cos(\frac{\pi}{9}n) - \sin(\frac{2\pi}{3}n)$. Dvanaesti član spektra je:

a)
$$X_{12} = e^{j\pi/2}$$

b)
$$X_{12} = e^{-j\pi/2}$$

c)
$$X_{12} = 0$$

a)
$$X_{12} = e^{j\pi/2}$$
 b) $X_{12} = e^{-j\pi/2}$ c) $X_{12} = 0$ d) $X_{12} = \frac{1}{2}e^{-j\pi/2}$ e) $X_{12} = \frac{1}{2}e^{j\pi/2}$

e)
$$X_{12} = \frac{1}{2}e^{j\pi/2}$$

18. Jedan period spektra vremenski diskretne Fourierove transformacije (DTFT) je $X(e^{j\Omega}) = \begin{cases} e^{-|\Omega|}, & \Omega \in [-a,a] \\ 0, & \Omega \in \langle -\pi, -a \rangle \cup \langle a,\pi] \end{cases}$. Signal čiji je to spektar jest:

a)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - \cos(an) \right) \right)$$

b)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\cos(an) - \sin(an) \right) \right)$$

a)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - \cos(an) \right) \right)$$
 b) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\cos(an) - \sin(an) \right) \right)$ c) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - \cos(an) \right) \right)$ d) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - n\cos(an) \right) \right)$

d)
$$x(n) = \frac{1}{1} \frac{1}{1 + 2} \left(1 + e^{-a} (\sin(an) - n \cos(an)) \right)^{n}$$

e)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2}$$

19. Promatramo vremenski diskretan signal čiji jedini uzorci različiti od nule su $\{1,4,\underline{5},4,1\}$ (podcrtani član je uzorak za korak n=0). Vremenski diskretna Fourierova transformacija zadanog signala je:

a)
$$X(e^{j\Omega}) = \frac{5}{2\pi} + \frac{4}{\pi}\cos(\Omega) + \frac{1}{\pi}\cos(2\Omega)$$
 b) $X(e^{j\Omega}) = 5 + 4\cos(\Omega) + \cos(2\Omega)$ c) $X(e^{j\Omega}) = \frac{5}{2\pi} + \frac{4j}{\pi}\cos(\Omega) + \frac{j}{\pi}\cos(2\Omega)$ d) $X(e^{j\Omega}) = 5 + 8\cos(\Omega) + 2\cos(2\Omega)$ e) $X(e^{j\Omega}) = 5 + 8j\sin(\Omega) + 2j\sin(2\Omega)$

b)
$$X(e^{j\Omega}) = 5 + 4\cos(\Omega) + \cos(2\Omega)$$

c)
$$X(e^{j\Omega}) = \frac{5}{5} + \frac{4j}{5}\cos(\Omega) + \frac{5}{5}\cos(2\Omega)$$

d)
$$X(e^{j\Omega}) = 5 + 8\cos(\Omega) + 2\cos(2\Omega)$$

e)
$$X(e^{j\Omega}) = 5 + 8i\sin(\Omega) + 2i\sin(2\Omega)$$

20. Zadan je vremenski diskretni signal $x(n) = 3^n \mu(-n)$. Vremenski diskretna Fourierova transformacija (DTFT) zadanog signala je: a) $X(e^{j\Omega}) = \frac{1}{1 - 3e^{j\Omega}}$ b) $X(e^{j\Omega}) = \frac{3}{1 - e^{-j\Omega}}$ c) $X(e^{j\Omega}) = \frac{3}{3 + e^{-j\Omega}}$ d) $X(e^{j\Omega}) = \frac{3}{3 - e^{j\Omega}}$

a)
$$X(e^{j\Omega}) = \frac{1}{1 - 3e^{j\Omega}}$$

$$\mathbf{b)} \ X(e^{j\Omega}) = \frac{3}{1 - e^{-j\Omega}}$$

$$\mathbf{c)} \ X(e^{j\Omega}) = \frac{3}{3 + e^{-j\Omega}}$$

$$\mathbf{d)} \ X(e^{j\Omega}) \ = \ \frac{3}{3 - e^{j\Omega}}$$

e)
$$X(e^{j\Omega}) = \frac{1}{1 - 3e^{-j\Omega}}$$