Gated RNNs

Geena Kim

How hard is it to train an RNN?

- Slow to train (TBPTT helps)
- RNN can suffer exploding/vanishing gradient
- First or early memory or info get lost through the time step

Remedies

- ReLU activation function
- Truncated BPTT
- Clip gradient
- Use learning rate scheduling
- Add residual connection
- Change architectures- LSTM, GRU

Long-term dependencies

Skip connections

$$|W|_{N} \rightarrow |W|_{N/2}$$

Leaky units

$$h_{t} = \underbrace{f(WX_{t} + Uh_{t-1})}_{\text{he}}$$

$$h_{t} = \chi h_{t-1} + (l-\chi), f(WX_{t} + Uh_{t-1})$$

$$\sim \sim$$

Long Short-Term Memory cell

Long Short-Term Memory

Sepp Hochreiter and Jürgen Schmidhuber

Posted Online March 13, 2006 https://doi.org/10.1162/neco.1997.9.8.1735

© 1997 Massachusetts Institute of Technology

Neural Computation

Volume 9 | Issue 8 | November 15, 1997 p.1735-1780

What is LSTM cell?

A Vania RNN cell

An LSTM cell

Inside the LSTM cell

Inside the LSTM cell

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU)

