CHAPITRE I

Oscillations libres non amorties : Système à un degré de liberté

I.1 Généralités sur les vibrations

KKK 'GHGAGH<'6@C; GDCH'7CA

I.1.1 Mouvement périodique :

Définition: C'est un mouvement qui se répète à intervalles de temps réguliers, cet intervalle est appelé période (**T**) qui s'exprime en seconde (s).

Pour les mouvements rapides, on utilise la fréquence : f exprimée en Hertz (HZ)

I.1.2 Mouvement vibratoire:

Définition: Un mouvement vibratoire est un mouvement périodique se produisant de part est d'autre d'une position d'équilibre. On peut aussi définir un mouvement vibratoire par sa fréquence f. La fréquence indique le nombre d'oscillations complètes (dans le sens aller retour) se produisant par seconde.

On peut établir la relation entre la fréquence et la période :

$$T=\frac{1}{f}$$
 et $f=\frac{1}{T}$

La période T des oscillations est le temps mis par le système pour revenir à une position identique quelque soit le choix de cette position. C'est aussi, le temps mis pour faire une oscillation complète ou un « aller-retour ».

Mathématiquement, le mouvement périodique de période T est défini par:

A tout instant t,
$$x(t+T) = x(t)$$

I.1.3 Mouvement vibratoire libre

Définition : les vibrations libres sont les vibrations qui résultent lorsqu'on écarte un système de sa position d'équilibre ou on lui donne une vitesse initiale, puis on le laisse vibrer librement.

<u>Exemples</u>: Une masse accrochée à un ressort - un pendule simple - le balancier d'une horloge - la rotation d'un moteur tournant à vitesse constante..... etc.

I.1.4 Mouvement vibratoire sinusoïdal

Définition: un mouvement vibratoire est sinusoïdal, si un point vibrant possède une élongation du type:

$$y(t) = A \sin(\omega t + \varphi)$$

- ➤ La grandeur y(t) est appelée l'élongation (ou la position) à l'instant t, l'élongation maximale ou l'amplitude du mouvement, elle varie entre −A et +A.
- ightharpoonup La quantité ω est la pulsation du mouvement et exprimée en $(rad/_S)$.
- \triangleright La quantité ($\omega t + \varphi$) est la phase instantanée, exprimée en (radian, sans dimension),
- \triangleright l'angle φ est la phase initiale, correspond à la phase à l'instant t=0.

I.2 Vibration harmonique

Définition : On appelle vibration harmonique tout système dont le paramètre x(t) qui la caractérise est une fonction sinusoïdale du temps : $x(t) = A \cos(\omega t + \varphi)$

Université Ferhat Abbas-Sétif- Faculté de technologie Tronc commun ST N. AKLOUCHE

 \triangleright La fonction cosinus est une fonction périodique de période 2π . Si T est la période temporelle du mouvement, on aura donc :

$$[\omega(t+T)+\varphi]-[\omega t+\varphi]=2\pi \implies \omega T=2\pi$$

On en déduit l'expression de T en fonction de la pulsation : $T = \frac{2\pi}{\omega}$

ightharpoonup La fréquence f, nombre d'oscillations par seconde correspond à l'inverse de la période T: f = 1/T. Il existe d'autres expressions équivalentes pour la fonction x(t). En effet, la fonction sinus est équivalente à la fonction cosinus décalée de $\pi/2$. On peut donc écrire :

$$x = A\cos(\omega t + \varphi) = A\sin(\omega t + \dot{\varphi})$$
 avec $\dot{\varphi} = \varphi + \frac{\pi}{2}$

Donc:

Les grandeurs caractéristiques d'une vibration harmonique sont :

- L'amplitude A,
- La période T, $\omega = \frac{2\pi}{T} = 2\pi f$; ω : pulsation, f: fréquence.
- La phase φ .

I.2.1 Coordonnées généralisées d'un système physique

Définition : Les coordonnées Généralisées sont l'ensemble de variables réelles **indépendantes** ou **liées** permettant de décrire et configurer tous les éléments du système à tout instant t.

Par exemples:

- un point matériel libre dans l'espace peut être déterminé par 3 coordonnées généralisées (x, y, z);
- un corps solide peut être déterminé par 6 coord. génér. :
 - 03 coordonnées relatives au centre de gravité;
 - 03 coordonnées liées aux angles d'Euler (φ, ψ, θ) .
- Les coordonnées généralisées d'un système de P points matériels et Q corps solides sont défini par : N = 3P + 6Q

On note:

Les coordonnées généralisées : $q_1(t)$, $q_2(t)$, $q_N(t)$.

Les vitesses généralisées : $\dot{q}_1(t), \dot{q}_2(t), \dots \dot{q}_N(t)$.

I.2.2 Degré de liberté

Définition : Le degré de liberté est le nombre de coordonnées généralisées indépendantes, nécessaires pour configurer tous les éléments du système à tout instant : d = N

Où, le nombre de coordonnées généralisées liées, pour configurer tous les éléments du système à tout instant moins (-) le nombre de relations reliant ces coordonnées entre elles : d = N - r

d: Degré de liberté ;

N: Nombre de coordonnées généralisées

r: Nombre de relations reliant ces coordonnées entre elles.

Exemples:

• Un disque de masse m et de rayon r, roule sans glisser sur un plan horizontal. Ici on a deux coordonnées généralisées x et θ donc N = 2. x et θ sont liées avec une relation: $x = r\theta$ donc : r = 1.

Le nombre de degrés de liberté d = N - r = 1.

• Un système mécanique constitué de 02 points matériels M_1 et M_2 reliés d'une tige de longueur l.

$$M_{1}(x_{1}, y_{1}, z_{1}) : 3$$

$$M_{2}(x_{2}, y_{2}, z_{2}) : 3$$

$$\Rightarrow N = 6$$

$$L'équation de liaison : $l = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2} + (z_{1} - z_{2})^{2}} = c^{te}$

$$M_{1}$$

$$M_{2}$$

$$\Rightarrow r = 1 \Rightarrow d = 5$$$$

I.3 Equation différentielle du mouvement

Dans ce cours, on établi l'équation différentielle en utilisant le formalisme de Lagrange. L'intégration de cette dernière permet de donner l'équation du mouvement.

I.3.1 Formalisme de Lagrange

La méthode de Lagrange, mise de l'avant en 1788 dans son célèbre traité la mécanique analytique, a pour but d'établir de manière systématique les 'équations différentielles déterminant le mouvement du système m'mécanique étudiée, en fonction des coordonnées généralisées, à partir simplement de l'expression de l'énergie cinétique et de l'énergie potentielle. En un sens, elle schématise au maximum l'étude des problèmes m'mécaniques en offrant le chemin le plus court et le plus sûr vers les 'équations du mouvement. Lagrange se vantait que son traité ne contenait aucune illustration ou schéma et que la m'méthode qu'il proposait était purement analytique.

Ce formalisme repose sur la fonction de Lagrange (L = T - U). L'ensemble d'équations du mouvement s'écrit :

$$\sum_{i=1}^{n} \left\{ \frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) - \left(\frac{\partial L}{\partial q_{i}} \right) \right\} = 0$$

- L : Fonction de Lagrange ou Lagrangien
- T : L'énergie cinétique du système;
- U : L'énergie potentielle du système ;
- q_i : est la coordonnée généralisée et \dot{q}_i est la vitesse généralisée du système.

Pour un système à un degré de liberté, (N= 1 ou ddl=1) l'équation du mouvement s'écrit :

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial L}{\partial \dot{q}} \right) - \left(\frac{\partial L}{\partial q} \right) = 0$$

Remarques:

• Pour un mouvement unidimensionnel x, l'équation de Lagrange s'écrit :

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial L}{\partial \dot{x}}\right) - \left(\frac{\partial L}{\partial x}\right) = \mathbf{0}$$

• Pour un mouvement rotationnel θ , l'équation de Lagrange s'écrit :

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \left(\frac{\partial L}{\partial \theta} \right) = \mathbf{0}$$

Université Ferhat Abbas-Sétif-

Faculté de technologie

Tronc commun ST

I.3.2 Exemples d'oscillateurs harmoniques

Exemple 1 : Pendule élastique vertical

Un pendule élastique est constitué d'une masse suspendue à un ressort de raideur k et peut donc osciller verticalement avec une élongation x(t). Le système nécessite une seule coordonnée généralisée x(t) qui peut décrire le mouvement de la masse m et de l'extrémité mobile du ressort. Donc le système a un seul degré de liberté d=N=1.

- L'énergie cinétique du système: $T = \frac{1}{2}m\dot{x}^2$
- L'énergie potentielle du système: l'énergie *U* emmagasinée dans le ressort dépend de l'allongement des 2 extrémités du ressort. Elle s'exprime:

$$U = \frac{1}{2}k(x_2 - x_1)^2 = \frac{1}{2}kx^2$$
 avec $x_2 = x$; $x_1 = 0$

$$\left[dU = \overrightarrow{F_r} \cdot \overrightarrow{dx} = -(-kxdx) \Longrightarrow U = \int_0^x kxdx = \frac{1}{2}kx^2 \right]$$

La fonction de Lagrange : $L = T - U \implies L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$

L'équation de Lagrange : $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \left(\frac{\partial L}{\partial x} \right) = 0$

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x} \Longrightarrow \frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial L}{\partial \dot{x}} \right) = m\ddot{x}$$

$$\frac{\partial L}{\partial x} = -kx$$

$$\Rightarrow m\ddot{x} - (-kx) = 0$$
On divisant par m $\Longrightarrow \ddot{x} + \frac{k}{m}x = 0$

Le rapport $\frac{k}{m}$ étant positif et en posant : $\omega_0 = \sqrt{\frac{k}{m}}$ on obtient l'équation différentielle d'une vibration harmonique de la forme : $\ddot{x} + \omega_0^2 x = 0$.

- ✓ La pulsation ω_0 ne dépend que de la masse m et de la raideur k du ressort, est appelée « la pulsation propre » du système.
 - \checkmark La masse oscille donc indéfiniment avec une période propre T_0 donnée par la relation suivante:

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$$

Université Ferhat Abbas-Sétif-

Faculté de technologie

Tronc commun ST

Exemple 2 : Pendule pesant simple

Un pendule simple est constitué d'un solide de petite dimension de masse m suspendu à un point fixe O par un fil inextensible de longueur L. Ecarté de sa position d'équilibre, il oscille dans le champ de pesanteur terrestre g.

Les coordonnées du système :

$$m \begin{cases} x = l \sin \theta \implies \dot{x} = l \dot{\theta} \cos \theta \\ y = l \cos \theta \implies \dot{y} = -l \dot{\theta} \sin \theta \end{cases}$$

L'énergie cinétique du système : $T = \frac{1}{2} m v_m^2$

$$\Rightarrow T = \frac{1}{2}m(\dot{x^2} + \dot{y}^2) = \frac{1}{2}ml^2\dot{\theta}^2(\cos\theta^2 + \sin\theta^2)$$
$$\Rightarrow T = \frac{1}{2}ml^2\dot{\theta}^2$$

L'énergie potentielle du système : U = mgh (h est la hauteur de m par rapport à un plan de référence donnée.)

NB: On a deux possibilités pour calculer la valeur du déplacement h, selon le choit de l'origine des énergies potentielles (U(0)=0), ce choit doit avoir lieu lorsque la masse est dans sa position d'équilibre $\theta = 0$. L'énergie potentielle correspond à l'énergie potentielle de pesanteur.

 1^{er} cas: si on choisi comme origine des énergies potentielles l'axe (0x) on a donc:

 $h = -l.\cos\theta$ (Le signe moins vient du fait que la masse m est inférieur à l'axe choisi).

Dans ce cas:

$$U = -mgl.\cos\theta$$
.

 $\underline{2^{\text{ème}}}$ cas: si on choisit comme origine des énergies potentielles (U(0)=0) l'axe ($\mathbf{0}'x'$).

À l'équilibre, on aura : $h = l - l \cdot \cos \theta$. Dans ce cas :

$$U = mgl(1 - \cos\theta)$$

Calcule du lagrangien : L = T - U

 $\underline{\mathbf{1}^{\text{er}} \text{ cas}}$: On remplaçant T et U dans L on trouve : $L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl.\cos\theta$

L'équation de Lagrange :

Université Ferhat Abbas-Sétif-

Faculté de technologie

Tronc commun ST

On aura donc $m. l.^2 \ddot{\theta} + m. g. l. \theta = 0$, En divisant par $m. l.^2$ on trouve :

$$\ddot{\boldsymbol{\theta}} + \frac{g}{l}\boldsymbol{\theta} = \mathbf{0}$$

C'est l'équation de l'oscillateur harmonique de pulsation propre : $\omega_0 = \sqrt{\frac{g}{l}}$

On trouve enfin:
$$\ddot{\theta} + \omega_0^2 \theta = 0$$
.

$$\underline{2^{\text{ème}} \operatorname{cas}} : L = \frac{1}{2} m l^2 \dot{\theta}^2 + m g l (1 - \cos \theta)$$

$$(1) - (2)$$
: $m.l.^2 \ddot{\theta} + m.g.l. \sin \theta = 0$

On aura donc $m. l.^2 \ddot{\theta} + m. g. l. \theta = 0$, On divisant par $m. l^2$ on trouve :

$$\ddot{\theta} + \frac{g}{l}\theta = 0$$
 Avec $\omega_0 = \sqrt{\frac{g}{l}}$, et on retrouve bien le même résultat.

I.3.3 Solution de l'équation différentielle du mouvement

L'équation différentielle (EDF) du mouvement est de la forme :

$$\ddot{x} + \omega_0^2 x = 0$$

C'est une équation différentielle du second ordre sans second membre dont la solution sous la forme complexe est de la forme : $x(t) = Ae^{\alpha t}$

La dérivée première de la fonction x(t) (la vitesse) : $\dot{x}(t) = A\alpha e^{\alpha t}$

La dérivée seconde de la fonction x(t) (l'accélération) : $\ddot{x}(t) = A\alpha^2 e^{\alpha t}$

On remplace dans l'EDF : $A\alpha^2 e^{\alpha t} + \omega_0^2 A\alpha e^{\alpha t} = 0 \Rightarrow Ae^{\alpha t}(\alpha^2 + \omega_0^2) = 0$

Or
$$Ae^{\alpha t} \neq 0 \Rightarrow \alpha^2 + \omega_0^2 = 0 \ donc \ \alpha = \pm j\omega_0$$

Donc la solution aura la forme: $x(t) = A_1 e^{j\omega_0 t} + A_2 e^{-j\omega_0 t}$

Selon la relation d'**Euler** : $e^{\pm j\omega_0 t} = \cos \omega_0 t \pm j \sin \omega_0 t$

$$\rightarrow x(t) = A_1 \ (\cos \omega_0 t + j \sin \omega_0 t) + A_2 \ (\cos \omega_0 t - j \sin \omega_0 t)$$

$$x(t) = (A_1 + A_2) \cos \omega_0 t + j(A_1 - A_2) \sin \omega_0 t = C \cos \omega_0 t + D \sin \omega_0 t$$

Tel que :
$$C = (A_1 + A_2)$$
 et $D = j(A_1 - A_2)$

Université Ferhat Abbas-Sétif-

Faculté de technologie

Tronc commun ST

Donc $x(t) = C \cos \omega_0 t + D \sin \omega_0 t$ est aussi une solution de l'équation différentielle.

Si on pose : $C = a \cdot \cos \theta$ et $D = a \cdot \sin \theta$, on aura : $x(t) = a \cdot \cos \theta \cos \omega_0 t + a \cdot \sin \theta \sin \omega_0 t$

$$cos(x - y) \equiv cos x cos y + sin x sin y donc : x(t) = a cos(\omega_0 t - \theta) = a cos(\omega_0 t + \varphi), \varphi = \theta + \frac{\pi}{2}$$

donc:
$$x(t) = a\cos(\omega_0 t + \varphi)$$
 Tel que: $a = \sqrt{C^2 + D^2}$ et $\theta = \arctan(\frac{D}{A})$

I.4 La force dans le mouvement harmonique

I.4.1 Exemple du pendule élastique vertical

C'est le cas d'une masse m accrochée à l'extrémité libre d'un ressort et se déplaçant sans frottement suivant une direction Ox vertical (voir figure).

Ressort à vide

(a)

Equilibre avec une masse (b)

(c)

A l'équilibre : il y a deux forces qui agissent sur la masse m ; son poids et la force de rappel du ressort tension due au ressort :

$$\sum \vec{F} = \vec{P} + \vec{T} = \vec{0} \implies mg - k\Delta l = 0$$

- \vec{P} : Poids de la masse m.
- \vec{T} : Force de rappel du ressort.

En mouvement : La deuxième loi de Newton (principe fondamental de la dynamique), nous permet d'écrire :

$$\sum \vec{F} = m\vec{\gamma}$$

Pour un système à une dimension :

$$F = m\frac{d^2x}{dt^2} = m\ddot{x}$$

Après projection on obtient $m\ddot{x} = mg - k(x + \Delta l)$. En utilisant la condition d'équilibre précédente on obtient :

$$m\ddot{x} = -kx \Longrightarrow m\ddot{x} + kx = 0$$

Or:
$$\omega_0^2 = \frac{k}{m} \implies m\ddot{x} + m\omega_0^2 = 0$$

 $\Rightarrow m\ddot{x} = -kx = -m\omega^2_0 x$; C'est la force de rappel due au ressort

avec
$$k = m\omega_0^2 = cte$$

Université Ferhat Abbas-Sétif-

Faculté de technologie

Tronc commun ST

Donc, la force dans les mouvements harmoniques simples est **proportionnelle et opposée** au déplacement et constitue **une force de rappel**.

I.4.2 L'étude d'une vibration harmonique en termes d'énergies

Nous voulons montrer que l'énergie totale (mécanique), E=T+U, est constante et déduire la valeur de cette constante. Pour cela prenons $x = Acos(\omega_0 t + \varphi)$, alors :

$$E = T + U = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = \frac{1}{2}mA^2\omega^2_0 sin^2(\omega_0 t + \varphi) + \frac{1}{2}kA^2 cos^2(\omega_0 t + \varphi)$$

Sachant que $(\sin^2 \varphi + \cos \varphi^2 = 1)$ et en utilisant la relation : $k = m\omega_0^2$

alors,
$$E = \frac{1}{2} mA^2 \omega^2_0 = \frac{1}{2} kA^2 = constante$$

$$U_{max}$$

Nous retrouvons ici le fait que l'énergie mécanique de ce système ne varie pas. L'énergie totale est constante.

On a:
$$T = \frac{1}{2}m\dot{x}^2 = \frac{1}{2}mA^2\omega_0^2 \sin^2(\omega_0 t + \varphi) = \frac{1}{2}mA^2\omega_0^2 [1 - \cos^2(\omega_0 t + \varphi)].$$

$$\Rightarrow T = \frac{1}{2}mA^2\omega_0^2 \left[1 - \frac{x^2}{A^2}\right] = \frac{1}{2}m\omega_0^2 [A^2 - x^2].$$

Si
$$\begin{cases} x = 0 \Rightarrow T = T_{max} = \frac{1}{2}m\omega_0^2 A^2. \\ x = \pm A \Rightarrow T_{min} = 0 \end{cases}$$

D'autre part :
$$U = \frac{1}{2} k x^2 = \frac{1}{2} m \omega_0^2 x^2$$

Si
$$\begin{cases} x = 0 \implies U = U_{min} = 0 \text{ (position d'équilibre)} \\ x = \pm A \implies U = U_{max} = \frac{1}{2} mA^2 \omega_0^2 \end{cases}$$

La figure suivante montre la variation des énergies cinétique, potentielle et totale en fonction de x :

- ✓ L'énergie se transforme d'une énergie cinétique à une énergie potentielle.
- ✓ Quand l'énergie cinétique diminue l'énergie potentielle augmente et vis versa. Cette propriété de est appelée **conservation de l'énergie** totale du système.

Université Ferhat Abbas-Sétif-

I.5 Systèmes équivalents

Définition : C'est un système simple qu'on représente en générale par un ressort équivalent ou une masse équivalente.

I.5.1 Masse équivalente : Cas d'un ressort de masse non négligeable.

m : La masse du ressort.

Au repos:

- *l* : La longueur du ressort.
- dm : masse élémentaire située à une distance y du point de suspension.

En mouvement:

- x(t): Déplacement instantané de l'extrémité mobile du ressort.
- dy: Déplacement de la masse élémentaire = $\frac{y}{l}x(t)$ \Longrightarrow sa vitesse = $\frac{y}{l}\dot{x}(t)$
- O La masse linéique du ressort à une distance $l: \overline{\rho} = \frac{m}{l} \Longrightarrow m = \overline{\rho} l$.
- O La masse de l'élément dy du ressort : $m_s = \overline{\rho} dy = \frac{m}{l} dy$
 - \Rightarrow L'énergie cinétique = Σ toutes les énergies de ses éléments;

$$\Rightarrow T = \int_{-2}^{1} \left(\frac{m}{l} dy \right) \cdot \left(\frac{y}{l} \dot{x}(t)^{2} \right)$$

$$T = \int_0^l \frac{1}{2} \frac{m}{l^3} \dot{x}(t)^2 y^2 dy = \frac{1}{2} \frac{m}{l^3} \dot{x}(t)^2 \cdot \frac{y^3}{3} \bigg|_0^l$$

$$T = \frac{1}{2} \left(\frac{m}{3}\right) \dot{x}(t)^2 \iff \frac{1}{2} m_{eq} \, \dot{x}(t)^2 \implies \mathbf{m}_{eq} = \frac{\mathbf{m}}{3}$$

<u>I.5.2 Ressorts équivalents</u> : On a 3cas :

<u>1^{er} cas : Ressorts en parallèles (en oppositions)</u> :

L'élongation de chaque ressort est égale à x(t) donc : $M.g = (k_1 + k_2)x = keq.x \implies k_{eq} = k_1 + k_2$

2^{éme} cas : Ressorts en séries :

Soit x_1 : l'élongation du ressort k_1 tel que : $M.g = k_1 x_1$

Soit x_2 : l'élongation du ressort k_2 tel que : $M.g = k_2 x_2$

$$\implies x = x_1 + x_2 = M.g(\frac{1}{k_1} + \frac{1}{k_2})$$

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} \Longrightarrow \qquad \qquad \mathbf{k}_{eq} = \frac{\mathbf{k}_1 \, \mathbf{k}_2}{\mathbf{k}_1 + \mathbf{k}_2}$$

3^{éme} cas : Barre liée à 02 ressorts (Distance non négligeable)

$$\mathbf{k}_{eq} = \frac{(a+b)^2}{\frac{a^2}{k_2} + \frac{b^2}{k_1}}$$
 Si **a=b**, on aura: $\mathbf{k}_{eq} = \frac{4k_1 k_2}{k_1 + k_2}$

I.6 Analogie entre le système mécanique "Masse-ressort" et le système électrique "L-C".

Système mécanique	Système électrique
Déplacement : x(t)	Charge électrique q(t)
$Vitesse: \dot{x}(t)$	Courant électrique $i = \frac{dq}{dt}$
Accélération : ÿ	Variation du courant : ÿ
Masse: m	Inductance, bobine, self: L
Ressort k	Inverse de la capacité 1/C
Force de rappel : k x	d.d.p entre les bornes d'in condensateur : $\frac{q}{c}$
Force d'inertie : mẍ	d.d.p entre les bornes de la bobine : L ä
Energie potentielle : $\frac{1}{2}k x^2$	Energie électrique : $\frac{1}{2c}q^2$
Energie cinétique : $\frac{1}{2}m\dot{x}^2$	Energie magnétique : $\frac{1}{2}L\dot{q}^2$

Points clefs

KKK'GHGAGH<'6@C;GDCH'7C

Oscillations libres non amorties

$$\ddot{x} + \omega_0^2 x = 0 \Leftrightarrow \begin{cases} x(t) = A\cos(\omega_0 t + \varphi) \text{ avec} \\ T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}} \end{cases}$$

2. Pendule pesant simple (m

$$\ddot{\theta} + \omega_0^2 \theta = \mathbf{0} \Leftrightarrow \begin{cases} \theta(t) = A \cos(\omega_0 t + \varphi) \text{ avec} \\ \end{bmatrix} T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{l}{g}} \end{cases}$$

- L'équation de Lagrange pour un mouvement unidimensionnel $x : \frac{d}{dt} \left(\frac{\partial L}{\partial x} \right) \left(\frac{\partial L}{\partial x} \right) = 0$;
- L'équation de Lagrange pour un mouvement rotationnel $\theta: \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) \left(\frac{\partial L}{\partial \theta} \right) = 0;$
- L'énergie mécanique se conserve : T + U = Constante;
- Masse équivalente (Cas où la masse m du ressort n'est pas négligeable) : $m_{eq} = \frac{m}{2}$
- Ressorts équivalents :

$$\begin{cases} \textit{Ressorts} \ k_1, k_2, ... k_n \ en \ parallèles: k_{eq} = k_1 + k_2 + \cdots ... + k_n \\ \textit{Ressorts} \ k_1, k_2, ... k_n \ en \ série: \frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \cdots ... + \frac{1}{k_n}. \\ \textit{Barre liée} \ \grave{a} \ \textit{02 ressorts} \ (\textit{Distance non négligeable}): k_{eq} = \frac{(a+b)^2}{\frac{a^2}{k_2} + \frac{b^2}{k_1}}$$

KKK 'GHGA GH<'6 @C; GDCH'7 CA