You may use any true fact from class or the book, but say what you are using.

- (1) Find all solutions to the equation $iz^5 = 1 + i$.
- (2) Find all solutions to the equation $e^z = 0$.
- (3) Consider $f(z) = e^z$, which is an entire function $\mathbb{C} \to \mathbb{C}$. Can it be extended continuously to a function on $\hat{\mathbb{C}}$?
- (4) Find the inverse of the function $f(z) = \frac{3z+i}{2z+2}$. Regarding f as a function $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$, what is $f(\infty)$ and why? What is the image of f?
- (5) Use Cauchy's formula to evaluate the following integrals, where S is a closed square with positive orientation and the four vertices $\pm 2 \pm 2i$.
 - (a) $\oint_S \frac{e^{-z}}{z \frac{\pi i}{2}} dz$
 - (b) $\oint_{S} \frac{\int_{0}^{2} \frac{z}{z(z^{2}-8)} dz}{z(z^{2}-8)} dz$ (c) $\oint_{S} \frac{z}{2z+1} dz$
- (6) Let $f(z) = e^z \bar{z}$. Now let L be the contour that travels the straight line from 0 to πi at unit speed.
 - (a) What is f(L)?
 - (b) Give the formula for the 3-term midpoint Riemann sum approximation to $\int_L f$. Give the associated picture.
 - (c) Give the definition of derivative. At what points does f'(z) exist? At what points if f(z) analytic?
 - (d) Suppose γ is some other contour between 0 and πi . What can you say about $\int_{\gamma} f$?
- (7) Let L be a straight line in \mathbb{C} which makes an angle of ϕ with the real axis. Let M be the (unique) line segment that connects L to the origin while making a right angle with L. Let m be the length of M. (So m=0 if and only if L goes through 0.)
 - (a) In general, what is the geometric effect on C of multiplication by a complex number a + bi?
 - (b) What is the geometric effect on \mathbb{C} of multiplication by the complex number $e^{-i\phi}$?
 - (c) What is $e^{-i\phi}L$?
 - (d) Let p be any point on L. Give a geometric argument that m = $|\operatorname{Im}(e^{-i\phi}p)|$. (You can also give a computational argument as a doublecheck, but you must give a geometric argument for full credit.)

(8) This question concerns the following true statement:

$$|z| = 1 \implies \operatorname{Im}\left(\frac{z}{(z+1)^2}\right) = 0.$$

- (a) Prove this by letting z = x + yi and verifying the calculation with respect to those real variables x, y.
- (b) Prove this without real coordinates by first proving that for a complex number w,

$$\operatorname{Im}(w) = 0 \iff w = \bar{w}.$$

(c) It is a beautiful theorem of Euclidean geometry that if you take any arc of a circle, the angle subtended at the origin is two times the angle subtended at any point on the circle.

Prove the statement geometrically with the following steps:

- Show geometrically that if $\arg w_1 = \arg w_2$, then $\operatorname{Im}(w_1/w_2) = 0$.
- Explain why z + 1 can be represented as the vector pointing from -1 to z in the complex plane.
- Show that $\arg z = 2\arg(z+1)$.
- Deduce the statement.

(9) $f(z) = e^z$ is a continuous function, so for any closed and bounded set R, there must be a point in R where f achieves its maximum value.

Let R be the rectangular region $0 \le x \le 1$, $0 \le y \le \pi$. What does the maximum modulus principle say about the location of any point $z_0 \in R$ such that $|f(z)| \le |f(z_0)|$ for all $z \in R$?

Using your knowledge of e^z , find all such points z_0 .

- (10) Show that if f is entire, and f(z) = f(1/z) for all $z \neq 0$, then f is constant. Here are the steps:
 - Explain why there is some real number M such that $|z| \leq 1 \implies |f(z)| \leq M$.
 - Explain why for every complex number $z \neq 0$, either z or 1/z (or both!) is in the closed unit disk $\overline{\mathbb{D}}$.
 - Conclude that $|f(z)| \leq M$ for every $z \in \mathbb{C}$.
 - Finally conclude that f is constant.