P1/

a) If $\alpha \in \mathbb{R}$, then $f \in \mathbb{R}[x]$ s.t. $f(\alpha) = 0$, so if $f = \sum_{i=0}^{m} a_i x^i$ then $f = \sum_{i=0}^{m} (-1)^i a_i x^i \in \mathbb{R}[x]$ ratisfies $f(-\alpha) = 0$ and if $\alpha \neq 0$, comiden $P = A_i^m \sum_{i=0}^{m} a_i x^{m-i}$ then $P(A_i) = f(\alpha) = 0$. So if $\alpha = A_i x^m = 1$ does $-\alpha$ and α^{-1} (if $\alpha \neq 0$).

b) Consider (Q[α], +, \cdot), we want to show that α can be written in terms of a finite number of monomials $\alpha c^2 = 1$, αc , etc., for an larger than certain value.

Since $\alpha \in \mathbb{Q}$, we know $\exists p \text{ s.t. } p(\alpha) = 0$, investigable, of minimal degree (i.e. the minimal phymomial of α), then denote $l = \deg p$ and us we can take $x \not = 0$, for any $m \ge l$ and use the division theorem to obtain

 $x^{m} = p(x) \cdot q(x) + \Gamma(x) \quad (*)$

Where $\deg r(x) < \ell$.

Evaluate (*) at $x=\alpha$, then $\alpha^m = p(\alpha) \cdot q(\alpha) + r(\alpha) = r(\alpha) = \sum_{s=0}^{n} b_s \cdot \alpha^s$ where $r < \ell$, for any $m > \ell$. Therefore, any element of $\Re[\alpha]$ can be written as an element in $\operatorname{Span}_{\Re}(1,\alpha,...,\alpha^\ell)$ [Note: the sub-index \Re , is to emphasize that we take the yan $w / \operatorname{coeffs}$. in \Re and, in principle, in artain situations, one may be able to take $\operatorname{Span}_{\Re}(1,\alpha,...,\alpha^\ell)$ with $\ell' < \ell$, but the previous result is enough for us, since we only wonted to show that $\Re[\alpha]$ was a finite dim'l vector space over \Re .

O So, here we consider V, a vector space over \Re , i.e. Free if we have a basis $\{v_2,...,v_m\}$ for V, any element $u \in V$ can be written as $v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} u_s v_{\ell} = \sum_{s=0}^{m} v_{$

then we know that $\beta \in C$ defines an operator in d(V), i.e. β acts on V as: $\beta \cdot u = \beta \cdot \left(\sum_{i=1}^{m} u_i \cdot v_i \right) = \sum_{i=1}^{m} \beta(u_i \cdot v_i) = \sum_{i=1}^{m} u_i \beta(v_i)$ linearity linearity again = $\sum_{j=1}^{m} \mathcal{U}_{ij} \mathcal{V}_{ij} \mathcal{V}_{ij} \mathcal{V}_{ij} \mathcal{V}_{ij} \in \mathbb{Q}$, i.e. M is the matrix of B. in the basis { 2,.., 2m }. , so $\beta \cdot \mathcal{V}_{i} = M_{ij} \mathcal{V}_{j} \implies \beta \cdot \begin{pmatrix} v_{1} \\ \vdots \\ v_{m} \end{pmatrix} = \mathbf{M} \cdot \begin{pmatrix} v_{4} \\ \vdots \\ v_{m} \end{pmatrix}$ where $M \in \mathcal{M}_{m,m}(Q)$ is $\beta \cdot \overrightarrow{y} - M \cdot \overrightarrow{y} = 0 \Rightarrow \det(\beta \cdot 1 - M) = 0$ (B.1-M).v, v+0 since $M \in \mathcal{M}_{m,m}(\mathbb{Q})$, then $\det(\beta \cdot 1 - M) \in \mathbb{Q}[\beta]$, hence $\beta \in \mathbb{Q}$. d) take $\alpha = e^{2\pi i/3}$, α is algebraic, indeed $p(x) = x^2 + x + 1 \in \mathbb{R}[x]$ ratisfies Clearly a baris for $Q[\alpha]$ is $\{1,\alpha\}$, since $\alpha^3 = 1$, $\alpha^4 = \alpha^2$, then, $\alpha^2 = -\alpha - 1$, etc., $\alpha^2 = -\alpha -$ Take this basis and write (1), then, may or acts by multiplication and, $p(\lambda)=det(\lambda\cdot 1-M)=det(\lambda^{-1})=\lambda(\lambda+1)+1=\lambda^2+\lambda+1$ clearly $p(\alpha) = 0$, as expected

- e) $V[\alpha,\beta] = Spon_{Q}\{\alpha^{i}\beta^{j}\}_{i=0,...,l_{2}}$, by the result of part b), J can $j=0,...,l_{2}$ clearly take le, le finite, since de al u/ 1>1, com be weitters in terms of 1,4,42,..., or 12 and some for B. So V[0,B] is sponned by a finite set of monomials origin. So ox (origin) = ox i+1 B) E V[0,18] for any is i=1,..,l1 and j=1,.., lz and some holds for B, hence (a+B) V[a,B] ⊆ V[a,B] and «BV[a,B] ⊆ V[a,B] as well.
- f) by e) and c) we should that, if $\alpha \in \overline{\mathbb{Q}}$ and $\beta \in \overline{\mathbb{Q}}$, then $\alpha \beta \in \overline{\mathbb{Q}}$ and \$ \$\alpha + \beta \in \beta \tag{ because \$\alpha \beta \alpha \alpha \tag{ leave a fin. dim'l vector spice over \$\mathbb{R}_{\alpha}\$, in this case $V[v_1\beta]$, invariant). Also, from fact a), we have that if $\alpha \in \mathbb{R}$ so does $-\alpha$ (additive inverse) and $\frac{1}{\alpha}$, if $\alpha \neq 0$ (multiplicative inverse)

- a) Reflection: Amy vector to, orthogonal to u notisfies uv = 0 and so T(v) = & So all the planes orthogonal to u are invariant newspaces ($\mathbb{R}^2 \subset \mathbb{R}^3$)
- b) Rotation: Was sketched in the lecture. I two proper invariant subspaces, R2, plane orthogonal to the rotation axis and the rotation axis itself (RCR3)
- 9) Homothety: Any subspec of R3 is invariant (just think of the subspices as Span{v} or Span {v2, v2} for any v, v1, v2)
- P3/a $v=P^{t}u$, $v^{t}=u^{t}P^{s}$ $||u||^{2}=u^{t}u$ and $||v||^{2}=v^{t}v=u^{t}PP^{t}u$ = ut u (since P = P - 1) hense |12e11 = 11211
 - b) $H = P^{\dagger}DP$ where $D = diag(\alpha_1,...,\alpha_m)$, then define v = Pu, so

 $u^{t}Hu = v^{t}Dv = \sum_{i=1}^{m} v_{i}^{2}\alpha_{i}$

 $\sum_{i=1}^{m} v_{i}^{2} \alpha_{i} \leq \beta \sum_{i=1}^{m} v_{i}^{2} = \beta v_{i}^{t} v_{i} = \beta ||v||^{2}$ Since $v_i^2 \geq 0 \ \forall i \ \text{and} \ v_i \in \mathbb{R} \ \forall i, \text{ then}$

allull2 < ut Hu Similarly for the mullest sigenvalue

$$\frac{P41}{a}$$

$$\det (AB - \lambda \cdot 1) = \det (A(B - \lambda \cdot A^{-1})) = \det ((B - \lambda \cdot A^{-1})A) = \det (BA - \lambda \cdot 1)$$

$$b) A - P^{-1}DP \qquad D^{-1} \setminus A \cdot P = \lambda \cdot A$$

b) $A = P^{-1}DP = P^{-1}\lambda \cdot 1 \cdot P = \lambda \cdot 1$

c)
$$A = P^{-1}DP \Rightarrow A^{\kappa} = P^{-1}D^{\kappa}P = 0 \Rightarrow D^{\kappa} = \begin{pmatrix} \lambda_1^{\kappa} \\ \lambda_2^{\kappa} \end{pmatrix} = 0$$
, $\kappa > 0$

M all λ_1 's are zero hence $A = 0$

 $A = P^{-1}DP \Rightarrow A^{\dagger} = P^{\dagger}D^{\dagger}P^{-\dagger}$ and $D^{\dagger} = D$

P5) Use
$$A = P^{-1}DP$$

$$B = P^{-1} \cdot P + P^{-2} \left(\sum_{i=1}^{K} D^{k} \right) P = P^{-1} \operatorname{diag} \left(\sum_{i=0}^{K} \lambda_{i}^{i}, \dots, \sum_{i=0}^{K} \lambda_{m}^{i} \right) \cdot P$$

$$\operatorname{diag} \left(\sum_{i=1}^{K} \lambda_{i}^{i}, \dots, \sum_{i=1}^{K} \lambda_{m}^{i} \right)$$

$$= P^{-1} \operatorname{bliag}\left(\frac{\lambda_1^{k+1}-1}{\lambda_1-1}\right) \cdot P$$

Note $\frac{\lambda_k^{k+1}-1}{\lambda_k^{k-1}}$ is well defeat, since $\lambda_k \notin \{\pm 1\}$, then, is easy to check that

$$B^{-1} = P^{-1} \operatorname{diag}\left(\frac{\lambda_1 - 1}{\lambda_1^{k+1} - 1}\right) \stackrel{\sum_{m=1}^{k}}{\longrightarrow} P$$

So, B is invertible where $\frac{\lambda_e-1}{\lambda_e^{\kappa+1}-1}$ is well defined for the same reason.

(we showed it by finding its inverse explicitly)