

PCT/AU00/00676

REC'D	03 JUL 2000
WIPO	PCT

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Patent Office
Canberra

4

I, ANNA MAIJA EVERETT, ACTING TEAM LEADER EXAMINATION SUPPORT & SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. PQ 7392 for a patent by ALEX BABIJ filed on 09 May 2000.

WITNESS my hand this
Thirtieth day of June 2000

A.M. Everett

ANNA MAIJA EVERETT
ACTING TEAM LEADER
EXAMINATION SUPPORT & SALES

AUSTRALIA

Patents Act 1990

PROVISIONAL SPECIFICATION

Invention Title: 'A screwguide'

The invention is described in the following statement:

A Screw Guide

Field of the invention

The invention relates to guides for assisting engagement of a screw driving tool with a screw fastener during a fastening operation and also to a cartridge for presenting screws sequentially to the guide.

5

Background of the invention

In a fastening operation such as when a person drives a screw into a solid body using a screwdriver or power tool, it is often difficult for the person driving the screw to properly hold the screw whilst it is being driven, particularly during the starting period of the driving operation. This problem is particularly acute when the screw is to be driven into an inaccessible location such as a corner, for example.

10

Ensuring that the screwdriver properly engages the head of the screw can be difficult as it can require a fair degree of dexterity while the user attempts to locate the screw in the desired position for fastening. Holding the blade of the screwdriver in the head of the screw can also present difficulties.

15

Devices to facilitate guiding the screwdriver for engagement to the screw head in a fastening operation are known and one such device is disclosed in US Patent No. 4,139,036 (Regan). The Regan document discloses a guide device for a frictional fastening comprising a housing having an annular cavity extending therethrough for locating a screw inside and two oppositely disposed top and bottom openings located along a central axis of the housing. Mounted inside the housing at a distance above the bottom opening is a horizontal flexible sheet having a cross slit for receiving a screw aligned with the central axis and the openings.

20

A disadvantage of this device is that due to the pre-determined size of the bottom opening in the housing, the guide is limited by the size of the screw that can be passed through the guide.

25

Furthermore, this device does not provide any positive indication when the head engages the bottom of the housing so that the user is unaware that the screw has completely been driven home.

Summary of the invention

According to first aspect of the present invention, there is provided a screw alignment device for assisting engagement of a screw driving tool during a fastening operation with a screw of the

30

type having a shank disposed between a head end and a front end, the screw driving tool being of the type having a shaft with a gripping formation at one end thereof and an engaging formation at the other end thereof for engagement with the screw head, the screw alignment device including:

5 a screw guide having a body of generally annular configuration formed from a resilient material and having an internal cavity of generally frusto-conical configuration tapering convergently towards a forward end of the;

 a tool guide spaced rearwardly from the screw guide and aligned generally with the cone axis; and

10 a connector which connects the screw guide to the tool guide;

 where, in use, a screw is located in the screw guide so as to be aligned generally with the cone axis, the front end of the screw projecting through said forward end and the head of the screw being held by the screw guide, and a tool with its shaft supported by the tool guide can be engaged with the screw head thereby holding the tool and screw aligned; and by driving the
15 screw forwardly, the head of the screw will cause the screw guide to flex outwardly to permit the screw to pass through the screw guide.

Preferably the screw guide body includes having a slit therethrough aligned generally parallel with the cone axis. The slit can be used to pass a screw into the screw guide. The slit can also be used to allow the body to flex outwardly depending upon the material used.

20 The tool guide can comprise a pair of jaws defining a gap therebetween in which the shaft of the screw driving tool is located in use. The jaws can be resiliently movable apart from each other to increase the width of the gap so as to be able to accommodate a range of shaft diameters. The jaws can have located on the guides which form a convergent path. This can assist in moving apart the jaws to allow easy entry of a screw. The tool guide can be adapted to hold the screw alignment device to the tool or, alternatively, can be adapted to allow the tool to rotate relative to the screw alignment device during a screw driving operation.

Advantageously, the tool guide is formed of a resilient material. Such materials can include sheet metal, plastic, moulded plastic.

30 Preferably the connector is an elongate shank having an axis parallel to the cone axis. Hence, a screw loading region is defined between the screw guide and the tool guide, for loading screws into the screw guide.

More preferably, the screw guide and the tool guide are formed on the opposite ends of the elongate shank. This can reduce the tooling required in the manufacture of the alignment device. The tool guide can include formations which assist the tool guide in slidably clamping the tool guide to a tool. Such formations can include U-shaped formations to wrap partially around the
5 tool.

According to a further aspect of the present invention there is provided a cartridge for presenting a plurality of screws in succession to a screw loading region of a screw alignment device as described above, the cartridge comprising:

a hollow housing having a screw feed channel within the interior of the housing and
10 defining an opening being provided through a wall of the housing into the channel;

moving means to move screws located in the feed channel towards the opening; and

connection means for connecting the cartridge to the screw alignment device,

where in use, the plurality of screws are stored in individual succession on the screw feed channel so that each successive screw is moved towards the opening for insertion into the screw
15 loading region of the screw alignment device in a fastening operation.

The moving means can be a biasing means. Advantageously the biasing means is a spring. More advantageously the spring is located at an end of the housing opposite the loading region.

Preferably said one housing end is attached to the guide by a locking cap provided with an annular channel having and an axis aligned with the cone axis of the guide when it is located
20 thereon. More preferably an engaging formation protrudes within the annular channel in a transverse plane to the axis, for engaging the body of the screw guide.

Advantageously the screw carrier means comprises two lengths of oppositely disposed tracks having inner edges that are spaced apart such that the head of a screw can be located on each of the tracks between the space.

25 Preferably a tool passes into said tool guide with said cartridge and or said tool guide being biased to slide along said tool.

Preferably said tool is rotatably supported in a tool housing slidably engaging said cartridge.

The moving means can be one or more inclined planes associated with said tool housing, said inclined plane engaging a screw in said hollow housing so that as said plane moves towards said
30 screw said screw is moved towards said opening.

Preferably a second inclined plane acts on a second screw so that as said second inclined plane moves away from said second screw, said second screw will force the first mentioned screw to enter through said opening and be positioned in said alignment guide.

Preferably one or more of said inclined planes are formed on two prongs with a space between 5 said prongs, allowing a shank of said screws to be located in said space.

Where in the specification the word "comprising" or "comprises" is used, this is to be interpreted to have a non-exclusive meaning.

Brief description of the drawings

Notwithstanding other embodiments which may be encompassed in the scope of the invention 10 as defined broadly above, one embodiment of the invention will be now be described by way of example only with reference to the accompanying drawings in which:

Figure 1 illustrates in side view a screw alignment device for assisting engagement of a tool during a fastening operation with a screw according to the present invention;

Figure 2 illustrates the screw alignment device of Figure 1 in plan view;

15 Figure 3 illustrates in section view the screw alignment device of Figure 1 from the perspective of arrow "A" of Figure 1;

Figure 4 illustrates the screw alignment device of Figure 1 from the perspective of arrow "B" of Figure 1;

20 Figure 5 illustrates the screw alignment device of Figure 1 from the perspective of arrow "C" of Figure 1;

Figure 6 illustrates in cross-section, a cartridge for presenting a set of screws to a screw loading region of the screw alignment device of Figure 1, in accordance with the present invention;

Figure 7 illustrates the cartridge and screw alignment device shown in Figure 6 from the perspective of arrow "D" of Figure 6;

25 Figure 8 illustrates the cartridge of Figure 1 in cross section from the perspective of arrow "E" in Figure 6.

Figure 9 shows another embodiment of the screw alignment device in accordance with the present invention.

Figure 10 shows a screw of the type to be used in the guide illustrated in Figure 9;

Figure 11 shows another embodiment of the invention in which the guide and cartridge are integrated into a single unit;

Figure 12 shows another embodiment similar to that of Figures 6 which has a guide and cartridge integrated into a single unit;

5 Figure 13 is a right elevation of the apparatus of Figure 12;

Figure 14 is a further embodiment of a cartridge and guide having an advancement mechanism to effect movement of screws;

Figure 15 is a front view of the apparatus of Figure 14;

Figures 15A to 15E illustrate the movements of screws relative to the advancement mechanism;

10 Figure 16 illustrates an embodiment similar to that of Figure 1 with additional improvements;

Figure 17 illustrates the embodiment of Figure 16 in use with a spring assistance;

Figure 18 illustrates a variation to the embodiment of Figure 16;

Figure 19 illustrates a schematic of a cartridge and screw alignment guide having a connector to receive a screw river;

15 Figure 20 illustrates a cross section of a screw driver and attachment to connect to the connector of figure 19;

Figure 21 illustrates a screw alignment guide similar to that of figures 1 and 16 or 17;

figure 22 illustrates a screw alignment guide similar to that of figure 16 wherein the body of the guide does not have any slit therethrough;

20 Figure 23 illustrates a cross section through the cartridge housing 116 of figure 13 showing the cross section of the dove tail groove.

Detailed description of the embodiments

Referring to Figure 1 and 2, there is shown generally a screw alignment device in the form of guide 10, for assisting the engagement of a screwdriver with a screw such as the screw shown in 25 Figure 10, during a fastening operation. The screw having a threaded shank 72 disposed between an head end 74 and a front drive end 76, and the screwdriver (not shown), of the type having shaft disposed between a gripping handle and an engaging end which can engage the head end 74, so that the screw can be turned in a clockwise direction in a fastening operation with a solid body.

The guide 10 has a screw guide 12 having a frusto-conical shape body which tapers convergently towards end 17 of the screw guide 12. The screw guide 12 is formed with an internal cavity in the form of cone 14 corresponding to the frusto-conical configuration that convergently tapers towards end 17.

5 The guide 12 also has a slit 16 formed through a side of the body, extending through to the cone 14 along the length of the body, from end 19 to end 17 of the screw guide 12.

A cone axis of the screw guide 12 is illustrated by the dotted line 18.

There is also provided a tool guide 20 aligned generally with the axis 18 and disposed at an opposite end 21 of the tool guide.

10 Connecting the tool guide 20 to the screw guide 12, is a connector 22.

The screw guide 12 is also provided with a cavity 24 (as shown in Figure 5, illustrating the tool guide 20 from the perspective of arrow "C" in Figure 1), which extends through the tool guide so as to locate the shaft of the screwdriver in use.

15 It can be seen from Figure 5, that the cavity 24 is open at 26 for allowing the shaft of the screwdriver to be clipped into the cavity 24, by forcing the shaft of the screwdriver through the opening 26. Alternatively, the engaging end of the screwdriver can be placed through the cavity 24 for location of the tool therein.

In this example of the invention, the tool guide 20 is formed of a resilient material which enables the tool guide to springingly grip the shaft of the screwdriver in a jaw-like manner and 20 allows relative movement of the shaft with the tool guide 20.

Additionally the screw guide is also formed of a resilient material for allowing the screw guide 12 to flex and the slit 16 to open as the head 74 of the screw is driven by the screwdriver towards end 17 in a fastening operation as described below.

25 Suitable resilient material for the screw guide 12 and the tool guide 20 can be a resilient steel such as SAE 1074 flat high carbon spring steel strip having a thickness of 0.25 mm and a yield stress between 1600 to 1980 MPa. Alternatively, the material can be a plastic material of suitable resilience.

30 Additionally it should be noted that the guide 10 also defines between the end 19 of the screw guide 12 and the end 21 of the tool guide 20 a loading region 32 for allowing the screws to be loaded into the cavity cone 14.

Referring to Figure 3, there is shown the screw guide 10 from the perspective of arrow "A" of Figure 1. It can be seen that the cone 14 allows a screw to be located therethrough and that the slit 16 extends through the body of the tool guide 20.

Figure 4 illustrates in perspective view the connector 22 which has a base 26 and a pair of 5 projections 28 extending from each edge of the base 26 to define a channel 30 between each projection 28. The connector can be made of steel material or plastic and is preferably made from the same material as that of the tool guide 20 and screw guide 12. The connector 22 is integrally formed with the screw guide 12 at end 19 and with the tool guide 20 at 21.

In use, a screw of the type shown in Figure 10 (or any other screw) is placed into the cone 14 10 such that the front end 76 is adjacent or projecting through the end 17 of the cone 14 and the head end 74 of the screw is located adjacent the end 19. The threaded shank 72, head 74 and front end 76 are aligned along the axis 18 while the shank of the screwdriver (not shown) is located in the cavity 24 and the engaging end of the screwdriver engages the head 74.

The screw is driven into a solid body by rotating the screwdriver in a clockwise direction so that 15 the front end of the screw moves axially forward in a direction along the axis 18 towards end 17. In this way, the head moves from end 19 to end 17. Due to the resilience of the material of the screw guide 12, the slit 16 expands as the screw head 74 engages the sides of the cone 14.

It will be appreciated that in other embodiments of the invention, the tool guide 20 can completely engage the shaft of the screwdriver and the guide 10 can be rotated about the screw 20 shaft 72 so as to drive the screw into the solid body.

As the head 74 moves closer to the end 17, the side edges of the slit 16 are spread further and further part until the head 74 is completely driven through the cone 14 at which time the slit suddenly retracts due to the resilience of the material, thereby producing an audible "click" sound.

25 It is thought that the audible click is a result of the slit 16 snapping back into its original position once the head has been driven through the end 17. Sound can also be produced as a result of the sides of the cone 14 being scrapped by the head of the screw 74 in a fastening operation.

It is an advantage of the invention that the click sound indicates to the user that the screw has 30 been driven into the solid body. It will be appreciated that the audible click that is produced enables the user to know when to stop rotating the screw into the solid body and thereby prevent

the user from applying an excessive force in rotating the screw and possibly threading or stripping the head of the screw and/or the engaging end of the screwdriver.

Furthermore, the slit 16 which expands also enables different sized screws having different sized heads (particularly large sized screws) to be used on the same guide device, thereby 5 providing enhanced functionality over that of the prior art.

Additionally, there are no internal moving parts within the screw-guide 12, which results in a simpler and easier to operate design than that of the prior art.

Referring now to Figure 6, there is illustrated a cartridge 34 for presenting screws to the screw loading region 32 of the guide 10. The cartridge 34 has an elongate hollow housing 36 open at 10 end 33 and having a biasing means in the form of spring 40 attached at end 35.

Within the housing 36 there is also provided a screw carrier means in the form of two lengths of oppositely disposed tracks 38 which extend throughout the length of the housing 36 to the screw loading region 32. The tracks 38 are attached within the housing by a frame 44 which is attached to a top section of the housing at point 46.

15 A plurality of screws are located within the housing by locating the head of each of the screws between the spacer of the tracks shown generally as 46 in Figure 7. A better view of the tracks can be seen in Figure 7 which shows a view of the cartridge and guide 10 from the perspective of arrow "D". For further reference, Figure 8 shows a view of the cartridge from the perspective of arrow "E".

20 On the end of the spring 40 is located a lug 42 for contacting the screw adjacent to the spring 40 of the set of screws located on the tracks 38. The outer most screw being screw 48 has a threaded shank which is contacted by the lug 42 which pushes the set of screws in a direction shown by arrow "F" due to the bias of the spring 40. This ensures that the outer most screw at the opposite end of the tracks being screw 50 is pushed into the loading region 32, thereby 25 enabling screw 50 to be fastened to a solid body using the guide 10 described above.

A lockable cap 54 is attached to the openable end by pushing a resilient lug 56 over projection 58 located on the external surface of the housing 36. In this way, the guide 10 is locked into the cartridge 34.

In this configuration, the lockable cap 54 has a channel 60 which is aligned with the axis 18 so 30 that the connector 22 can lie thereon. The end 19 of the cone is located within an outer annular channel 62 so that the end 19 sits on the projection 64. In use, the guide 10 is prevented from

moving out of the lockable cap 54 as the end 21 presses against an annular wall portion 66 located in outer annular channel 68, when the guide 10 is moved in an axial direction shown by arrow G.

In use, the set of screws are loaded onto the tracks 38 and the guide 10 is located in the lockable cap 54 as described above. When the screwdriver is removed from the loading region 32 after fastening a screw into a solid object, the spring 40 biases the lug 42 in the direction "F", thereby forcing the next successive screw into the loading region 32, so that it can be used as the next fastening screw.

It will be appreciated that an advantage of the cartridge is that it allows the automatic loading of the screws into the loading region and thereby reduces the loading time required to load the guide 10 in a fastening operation.

Although in this example of the invention, a screw of the type shown in Figure 10 has been described, it will be appreciated that other types and forms of screws can be used in this embodiment of the invention.

Figure 9 illustrates another embodiment of the guide of the presenting invention. For convenience, the parts of the guide have been labelled with like reference numerals as that of the embodiment of the guide 10 shown in Figures 1-5.

The difference in the embodiment of Figure 9 to that of the guide described above, is that the connector 22 is substantially longer and has an enclosed casing 70 which allows for a plurality of screws (of the type shown in Figure 10 and described above) to be loaded into the guide for maintaining each of the screws in succession along the length of the connector 22. It should also be noted that the front engaging end 76 has a drive 76a. The drive can be seen more clearly in the enlargement circle of Figure 10.

The drive 76a is adapted to fit into a corresponding head end 74 of another screw, so that the screws can be each located within the connector 22 and successively enable each corresponding screw to be turned axially forward by a screw driver during a fastening operation. This enables successive fastening of a plurality of screws.

Figure 11 shows another embodiment of the invention similar to that described above however in this instance instead of a lockable cap provided at one end of the housing, the guide and the cartridge are integrally formed into a single unit.

Illustrated in Figures 12 and 13 is another cartridge and alignment guide 100. The alignment guide portion 102 has a frusto-conical portion 104 similar to previous embodiments which permits the passage of the screw head also as in previous embodiments.

5 Into the rear of the guide is inserted a screwdriver tool 106, which has secured to it in the region of washer 108A (by swaging the washer to the screwdriver 106); a housing 110 which has a longitudinal groove 112 (visible in Figure 12) which engages a longitudinal rib 114 on the cartridge housing 116. The groove 112 enables the housing 110 to slide in the direction of arrow 118 against the bias of a spring 120 so that when pressure is taken off the screwdriver 106 the housing 110 will retract to the position as illustrated in Figure 13. The spring 120 abuts the rear
10 portion 122 of cartridge housing 116 and rear portion 124 of housing 110 and between these two portions the spring 120 is compressible.

In the cartridge housing 116 is a track portion 128 which has a longitudinal dovetail groove 127 (visible in figure 23) having a similar same shape as the head of the screw and being of a size to allow screw heads 130 to slide longitudinally along the groove. The use of the dovetail groove
15 ensures that screws 132 will remain in approximately the orientation as illustrated in Figures 13 as they progress through the cartridge housing 116. The base of the cartridge housing 116 includes a compression spring 134 and a shim 136 which pushes against the lower most screw 138 thereby urging all the screws 132 towards the screw alignment guide 102.

20 In operation the embodiment of Figures 12 and 13 functions so that once a screw is in the alignment guide 102 screwdriver 106 can engage the head and then the screw is driven into its final destination. The screwdriver passes through the alignment guide until the screw exists frusto-conical portion 104. Phantom images of 106A, 106B and 106C indicate the positions of the screwdriver 106 as a screw is driven in from right to left. As the screwdriver 106 is inside the opening for the screws, screws not in the alignment guide are unable to enter therein until
25 the screwdriver 106 is fully retracted to the right hand side as illustrated in Figure 13. As the screwdriver 106 progresses from right to left, from phantom images 106C to 106B to 106A, the housing 110 is also moving a similar distance, in view of housing 110 being secured to the screwdriver 106. As soon as the screwdriver tool moves to the right past the dovetail groove, the next screw will be forced by spring 134 into the alignment guide 102.

30 Illustrated in Figures 14 and 15 is another embodiment similar to that of Figures 12 and 13 and like parts have been like numbered. One of the main differences between the embodiment of Figures 14 and 15 and that of Figures 12 and 13 is that the housing 110 is replaced by a

generally larger housing 140 which has an additional component therein. Another difference is that the screws are interlinked on a tape 142 with the screw heads 130 being spaced apart rather than in abutment as illustrated in Figure 13.

The additional component in housing 140 is an advancement mechanism 144 which is better
5 illustrated in Figures 15A, 15B, 15C, 15D and 15E. The mechanism 144 includes two inclined planes and is made from two members 146 and 148 with the member 148 being the mirror image of the member 146. A space 150 is provided between the members 146 and 148 with the members 146 and 148 being held by the housing 140 in this spaced apart relationship. The
10 advancement mechanism 144 has a forward ramp surface 156 on each member 148 and 146 and connected to the lower-most forward-most portion of the main body of members 146 and 144 is a rearward ramp 158.

The operation of the advancement mechanism 144 will now be described with reference to Figure 14 and Figures 15A to 15E. In Figure 14, there is illustrated a screw 152 adjacent to the advancement mechanism 144 and the next screw in line, being screw 154. Thus, in Figure 15A,
15 screw 152 and advancement mechanism 144 are in the positions illustrated in Figure 14. As screw 153 of Figure 14, which is located in the screw alignment guide 102, is being screwed into its final destination by the screwdriver 106, the advancement mechanism 144 moves towards the screw 152. When the screw 153 has been partially screwed into its destination, the base of ramp 156 engages the screw head 130. As the screwdriver 106 further secures the screw
20 153 into its destination, the advancement mechanism 144 continues to move from right to left as in Figure 15B and the screw 152 is forced in the direction of arrow 160 towards the screw alignment guide 102. When the screw 153 has been fully inserted into its destination, the screw 152 will have moved, as illustrated in Figure 15C, to the top of its movement in the direction of arrow 160 so as to be just above the top surface 162 of the member 146 and 148. At this point,
25 and simultaneously therewith, in view of the screws 152 and 154 being connected by tape 142, the next screw 154 will have moved in the same direction as arrow 160 into the position as illustrated in Figure 15C relative to the screw 152 and the advancement mechanism 144.

Once screw 153 has been ejected from the alignment guide 102, the screwdriver 106 relative to the cartridge housing 116 as seen in Figure 14 will be moved from left to right under the
30 influence of the compression spring 120 when the operator takes pressure off the screwdriver and the surface into which the screw had been inserted. In the motion from left to right, the rearward acting ramp 158 moves from right to left as in Figure 15D engaging the head 130 of

screw 154. As the advancement mechanism 144 continues to move in the left to right direction, screw 154 is moved upward relative to the advancement mechanism 144 until the advancement mechanism 144 and screw 154 have adopted the position as illustrated in Figure 15E. It is important to note that the movement of the screw 152 in Figures 15A through to 15C only puts the screw 152 to a location immediately before entry into the screw alignment guide 102. It is the movement of screw 154 from Figure 15C through to Figure 15E and by virtue of the interconnection of screws 152 and 154 by the tape 142 that pushes the screw 152 into the screw alignment guide 102.

The tape 142 is able to transmit compressive forces so as to push the screw 152 by the movement of screw 154 into the screw alignment guide 102.

The cartridge 116 need not be a straight line, as illustrated in Figures 12 and 13. The embodiment of Figures 12 and 13 and Figures 14 and 15 could utilise a spiral wound cartridge or, alternatively, for the embodiment of Figures 14 and 15, only the last portion of the cartridge 116, that is immediately before the screw alignment guide 102 need be rigidly constructed if a belt of screws being housed in a spiral wound fashion in a circular container is also provided, with the belt of screws being rolled out as each screw passes into the screw alignment guide.

It will be seen from Figure 15C that the ramp 158 has its lower-most portion 159 such that the distance 161 from the lower-most point 159 through to the lower-most surface 163 of sides 146 and 148 is wide or deep enough so that the lowest-most point of the screw head 130 is above the lowest-most point 159 of the ramp 158 when the screw 152 has been moved to its further-most position by ramps 156.

Illustrated in Figures 16 and 17 is an embodiment similar to the embodiment of Figure 1. The embodiment of Figures 16 and 17 is manufactured from plastic and like parts have been like numbered with the embodiment of Figures 1 to 5. The differences between the embodiments of Figures 16 and 17 and that of Figures 1 to 5 is that the embodiment of Figures 16 and 17 includes a turned-out flanged inlet portion 200 having a flared entry surface 201 on each side of the opening 16. This facilitates the insertion of a screw 132 into the alignment guide.

The frusto-conical portion 14, in view of its manufacture from plastic, includes two diagonally oppositely located longitudinal slits 202 which have been terminated with a round hole 203 as a stress reliever to help prevent premature fracture. The slits 202 help to control the amount of elasticity and flexibility of the frusto-conical portion 14 as the screw passes through the frusto-conical portion.

The tool guide 20 includes, at its top end, a right-hand side portion and a left hand side portion 210 which have downwardly extending legs 212 so as to wrap over the top of the screwdriver 106. By this means the tool guide will firmly and slidably hold the screwdriver 106 in the tool guide 20. If desired catchment lips 220 can be provided to support the screw head 130 when it is initially inserted inside the alignment guide 190. These attachment lips 220 help to facilitate the entry of a screw through the rear of conical portion 15 as indicated by arrow 131 of Figure 17.

As illustrated in Figure 17, the alignment guide 190 (with lips 220 removed) is illustrated as being able to be used with a spring 222 which will help to move the alignment guide 190 to the end of the screwdriver 106 once a screw 132 has been inserted. In Figure 17, it can be seen that the screw 132 can be slid in direction of arrow 129 in through the flared entry 200 or, if desired and the screw is of a sufficient size, can be inserted directly into the frusto-conical portion 14 in direction of arrow 131.

As an alternative shape to the flared entry 200 of Figures 16 and 17 in Figure 18 is illustrated another flared entry, having a tapered side entry portion 300. It is thought that the flared entry 300 will be easier to injection mould by comparison to the flared entry 200 of Figure 16.

Illustrated in figures 19 and 20 is an embodiment of a screw alignment guide and cartridge 400 which can have the features of the combination guide and cartridge of previous descriptions. The alignment guide and cartridge 400 includes a fitting or formation 402 which projects away from the rear 404 of the cartridge body and has an annular lip 406 around its periphery. The lip 406 forms a connector to connect with a screw driver 408 and fitting 410 such as that illustrated in cross section in figure 20. The screw driver 408 can rotate and slide relative to the fitting 410 but the two components are held together so as to not be able to extricate themselves during screw installation operations. This will allow the screw driver 408 and fitting 410 to be sold separately if desired.

Illustrated in figure 21 is a screw alignment guide 500 similar to that of figures 16 to 18. In this embodiment the overall length of the alignment guide body 250 is reduced by comparison to other embodiments. In this embodiment the only way to place a screw in the alignment guide 500 is via a flared entry 200. This enables the guide to be manufactured smaller and thus more cost effectively than other embodiments. In this embodiment a screw driver 106 is slidingly and rotatably held in the tool guide 20 and is preferably not able to be released therefrom without destroying the screw alignment guide 500. The screw driver can be biased in two directions by a first spring 502 and a second spring 504 which bear against opposite sides of the tool guide

20. Thus as soon as the pressure is taken off the screw driver 106 and screw guide 500, these two components under the influence of the springs 502 and 504 will retract back to the same position each time, enabling the screw alignment guide to be re loaded with a new screw.

Illustrated in figure 22 is an embodiment of a screw alignment guide 590 which is similar to the screw alignment guide 190 of figure 16. The difference between screw alignment guide 590 has a conical portion 14 like other embodiments, but does not have any slits therein. In this embodiment the material chosen for the screw alignment guide body is one having sufficiently high elasticity and high flexural strength to allow a predetermined size screw head to pass through the frusto conical portion 14. This embodiment may not be able to take the range of screw head sizes which the other embodiments are capable of but it should be sufficient for screw heads of a size to pass through the frusto conical portion and still be able to be used repetitively. This embodiment may not have as long a life as other embodiments, but it should still function to within a predetermined design life.

The embodiments described above which are made of plastic materials can be made from polycarbonate plastics such as that known under the brand names.

It will be appreciated that although the above embodiments have described a tool in the form of a screwdriver, other tools for fastening screws are included within the scope of the invention, such as for example a screw bit connected to a power tool.

It will be understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.

Dated this 915th day of May 2000

25 Alex Babij Jnr.

by his attorneys

Freehills Patent Attorneys

Claims

1. A screw alignment device for assisting engagement of a screw driving tool during a fastening operation with a screw of the type having a shank disposed between a head end and a front end, the screw driving tool being of the type having a shaft with a gripping formation at one end thereof and an engaging formation at the other end thereof for engagement with the screw head, the screw alignment device comprising:

5 a screw guide having a body of generally annular configuration formed from a resilient material and having an internal cavity of generally frusto-conical configuration tapering convergently towards a forward end of the body, the body having a slit therethrough aligned generally parallel with the cone axis;

10 a tool guide spaced rearwardly from the screw guide and aligned generally with the cone axis; and

a connector which connects the screw guide to the tool guide;

where, in use, a screw is located in the screw guide so as to be aligned generally with the cone 15 axis, the front end of the screw projecting through said forward end and the head of the screw being held by the screw guide, and a tool with its shaft supported by the tool guide can be engaged with the screw head thereby holding the tool and screw aligned, and by driving the screw forwardly, the head of the screw will cause the screw guide to flex outwardly to permit the screw to pass through the screw guide.

20 2. A cartridge for presenting a plurality of screws in succession to a screw loading region of a screw alignment device according to claim 1, the cartridge comprising:

a hollow housing having a screw feed channel within the interior of the housing and defining an opening being provided through a wall of the housing into the channel;

25 biasing means provided within the housing to bias screws located in the feed channel towards the opening; and

connection means for connecting the cartridge to the screw alignment device,

where in use, the plurality of screws are stored in individual succession on the screw feed channel so that each successive screw is moved towards the opening for insertion into the screw loading region of the screw alignment device in a fastening operation.

3. A guide according to claim 1, wherein the tool guide has a body having a cavity extending therethrough.
4. A guide for assisting engagement of a tool during a fastening operation substantially as hereinbefore described with reference to the Figures 1 to 5 and 9.
5. A cartridge for presenting a set of screws in succession to a loading region of a guide according to claim 1, substantially as hereinbefore described with reference to the accompanying Figures 6 to 8.

Abstract

A guide 10 for assisting engagement of a tool during a fastening operation with a screw of the type having a shank 72 disposed between a head end 74 and a front end 76. The tool being of the type having a shaft with a gripping end and an engaging end for engagement with the screw head 74. The guide 10 further having a screw guide 12 having a body of generally annular configuration formed from resilient material and having an internal cavity 14 of generally truncated frusto-conical configuration tapering convergently towards an end 17. The body of the screw guide 12 also having a slit 16 therethrough aligned generally with the cone axis 18.

The guide 10 is also provided with a tool guide 20 spaced from and aligned generally with the axis 18 of the internal cavity 14 and a connector 22 is provided which connects the screw guide 16 to the tool guide 20.

In use, the shank 72 is mounted in the internal cavity 14 with its front end in a direction facing the end 17 and its head 74 being engaged by the tool in a fastening operation, whereby the head is accommodated by the slit 16 as the screw is driven towards end 17.

Fig. 2

Fig. 1

Fig. 3

Fig. 4

10

Fig. 5

2/10

FIG 12

Page 4

FIG 13

4/10

VIEW WITH INTERNAL PARTS VISIBLE

SCALE 1:1

SCHEDULE	
No.	DESCRIPTION
1	DRIVER AND POWER CHUCK ATTACHMENT LOCATION (SUITABLE FOR POWERSHOT OR SIMILAR)
2	SLIDING DRIVER/RELOADING HOUSING WITH RETRACT SPRINGS
3	SCREW/CARTRIDGE GUIDE HOUSING
4	SCREW HELD IN PLACE BY LUBRICATED STRAP
5	SCREW STRAP RETAINING PLATE
6	
7	
8	
9	
10	
11	
12	
13	
14	

Page #

5/10

144
148
150
146 FIG 15A

FIG 15B

FIG 15C

FIG 15D

FIG 15E

6/10

09/09/2016

8/10

9/10

Fig 22

10/10

127

FIG 23

This Page Blank (uspto)