: 10/063,546

Filed : May 2, 2002

AMENDMENTS TO THE SPECIFICATION

Please amend the title as follows:

SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS

ENCODING THE SAME ANTIBODIES TO A POLYPEPTIDE ENCODED BY A NUCLEIC

ACID OVEREXPRESSED IN NORMAL STOMACH, NORMAL SKIN AND KIDNEY

TUMOR

Please amend paragraph [0012], beginning at page 4, as follows:

In a further aspect, the invention concerns an isolated nucleic acid molecule [0012]comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule that encodes the same mature polypeptide encoded by any of the human protein cDNAs deposited with the ATCC American Type Culture Collection (hereinafter "ATCC™)" as disclosed herein, or (b) the complement of the DNA molecule of (a).

Please amend paragraph [0016], beginning at page 7, as follows:

[0016] In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85%

amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 99% amino acid sequence identity to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC_ATCC[™] as disclosed herein.

Please amend paragraph [0205], page 31, as follows:

[0205] Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov the National Institutes of Health website or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.—

Please amend paragraph [0216], page 35, as follows:

[0216] Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.nebi.nlm.nih.gov the National Institutes of Health website or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.—

10/063,546

Filed

May 2, 2002

Please amend paragraph [00246], beginning at page 57, as follows:

[0246] As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC ATCC[™]. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time.

Please amend paragraph [0274], beginning at page 65, as follows:

Suitable host cells for cloning or expressing the DNA in the vectors herein [0274] include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (\overline{ATCC} ATCCTM 31,446); E. coli X1776 (\overline{ATCC} ATCCTM 31,537); E. coli strain W3110 (ATCC ATCC[™] 27,325) and K5 772 (ATCC ATCC TM 53,635). Other suitable Enterobacteriaceae such as Escherichia, e.g., E. coli, prokaryotic host cells include Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC ATCC TM 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan'; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kan'; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease

disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, *in vitro* methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

Please amend paragraph [0275], beginning at page 66, as follows:

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or [0275]yeast are suitable cloning or expression hosts for PRO-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC ATCC[™] 12,424), K. bulgaricus (ATCC ATCC[™] 16,045), K. wickeramii (ATCC ATCC 24,178), K. waltii (ATCC ATCC 56,500), K. drosophilarum (ATCC ATCC[™] 36,906; Van den Berg et al., <u>Bio/Technology</u>, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).

Please amend paragraph [0276], beginning at page 67, as follows:

[0276] Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC ATCC[™] CRL 1651); human embryonic

kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., <u>J. Gen Virol.</u>, 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, <u>Proc. Natl. Acad. Sci. USA</u>, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, <u>Biol. Reprod.</u>, 23:243-251 (1980)); human lung cells (W138, <u>ATCC ATCC TM CCL 75</u>); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, <u>ATCC ATCC TM CCL 51</u>). The selection of the appropriate host cell is deemed to be within the skill in the art.

Please amend paragraph [0281], beginning at page 68, as follows:

[0281] An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)]. The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].

Please amend paragraph [0315], beginning at page 86, as follows:

[0315] It may be desired to purify PRO from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; for ammonium sulfate precipitation; filtration using, example. gel SephadexSEPHADEXTM G-75 filtration resin; protein A SepharoseSEPHAROSETM columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO produced.

10/063,546

Filed

May 2, 2002

Please amend paragraph [0377], beginning at page 96, as follows:

[0377] Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC ATCC™ accession numbers is the American Type Culture Collection, Manassas, VA.

Please amend paragraph [0386], beginning at page 99, as follows:

[0386] The yeast strain used was HD56-5A (ATCC ATCC -90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL⁺, SUC⁺, GAL⁺. Preferably, yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in *sec*71, *sec*72, *sec*62, with truncated *sec*71 being most preferred. Alternatively, antagonists (including antisense nucleotides and/or ligands) which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61p, SEC72p, SEC62p, SEC63p, TDJ1p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.

Please amend paragraph [0398], beginning at page 102, as follows:

[0398] Using the techniques described in Examples 1 to 3 above, numerous full-length cDNA clones were identified as encoding PRO polypeptides as disclosed herein. These cDNAs were then deposited under the terms of the Budapest Treaty with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209, USA (ATCC ATCC → 10801 Table 7 below.

Please amend paragraph [0399], beginning at page 103, as follows:

[0399] These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC ATCC™ under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC ATCC™, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of

Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638).

Please amend paragraph [0408], beginning at page 112, as follows:

[0408] Anti-PRO antibodies also are useful for the affinity purification of PRO from recombinant cell culture or natural sources. In this process, the antibodies against PRO are immobilized on a suitable support, such as SephadexSEPHADEXTM resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the PRO to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO from the antibody.

Please amend paragraph [0417] on page 108, as follows:

[0417] In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC ATCCTM CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 μg pRK5-PRO DNA is mixed with about 1 μg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 μl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl₂. To this mixture is added, dropwise, 500 μl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO₄, and a precipitate is allowed to form for 10 minutes at 25°C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.

Please amend paragraph [0437], beginning at page 113, as follows:

[0437] Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGoldTM virus DNA (Pharmingen) into *Spodoptera frugiperda* ("Sf9") cells (ATCC ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 - 5 days of incubation at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., <u>Baculovirus expression vectors: A Laboratory Manual</u>, Oxford: Oxford University Press (1994).

: 10/063,546

Filed

May 2, 2002

Please amend paragraph [0435], beginning at page 117, as follows:

[0435] When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 μl) in a 96 well plate. At this time, the positive colonies were either frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 μl) was used as a template for the PCR reaction in a 25 μl volume containing: 0.5 μl Klentaq KLENTAQ (a 5'-exo minus N-terminal deletion of Taq DNA polymerase available from Clontech, Palo Alto, CA); 4.0 μl 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 μl Kentaq KLENTAQ buffer (Clontech); 0.25 μl forward oligo 1; 0.25 μl reverse oligo 2; 12.5 μl distilled water. The sequence of the forward oligonucleotide 1 was:

Please amend paragraph [0441], on page 119, as follows:

[0441] Following the PCR, an aliquot of the reaction (5 µl) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook *et al.*, <u>supra</u>. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 <u>Qiaquiek</u> <u>QIAQUICK</u> PCR clean-up column (Qiagen Inc., Chatsworth, CA).

Please amend paragraph [0444], beginning at page 115, as follows:

[0444] After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of PRO. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC ATCC™, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

Please amend paragraph [0461], on page 125, as follows:

[0461] The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4° C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final

concentration. The refolded protein is chromatographed on a PorosPOROSTM R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples.

Please amend paragraph [0475], beginning on page 129 as follows:

[0475] Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents $\frac{\text{Superfect}^{\text{IM}}}{\text{CQuiagen}}$ $\frac{\text{SUPERFECT}^{\text{IM}}}{\text{CQiagen}}$, $\frac{\text{Dosper}^{\text{IM}}}{\text{Dosper}^{\text{IM}}}$ or $\frac{\text{fugene}^{\text{IM}}}{\text{Fugene}^{\text{IM}}}$ (Boehringer Mannheim). The cells are grown as described in Lucas *et al.*, $\frac{\text{supra}}{\text{supra}}$. Approximately 3×10^{-7} cells are frozen in an ampule for further growth and production as described below.

Please amend paragraph [0489] beginning on page 131 as follows:

[0489] Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold[™] BACULOGOLD[™] virus DNA (Pharmingen) into Spodoptera frugiperda ("Sf9") cells (ATCCATCC[™] CRL 1711) using lipofeetin LIPOFECTIN cationic lipid (commercially available from GIBCO-BRL). After 4 - 5 days of incubation at 58°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994).