安全智能数据收集探索实践

韩广利 TalkingData 研发总监

Agenda

移动端发展趋势

Android / iOS 发展趋势

数据安全

数据处理流程 国内外数据信息安全规范要求 移动端数据存储传输数据安全实践

总结展望

能收集什么

理论上

- OS层面允许的都可以
 - ✓ 获取权限范围内
- 与一个App 可以覆盖的功能一致

事实上

- 不能为所欲为,仅按需使用
 - ✓ 继承和基于App 的权限和用户授权
- 被动收集,非主动采集

SDK有哪些类别

SDK 功能分类

- 基础能力类: 基础统计、使用统计、推送、语音、视频、认证(短信、人脸)、 聚合支付
- 场景融合类: 广告监测、聊天室、视频直播、社区、广告推广、推荐、防作弊、 姿态识别

持续更新的TalkingData SDK 🦃

TalkingData

20 +种主流平台支持

Unity

Cordova

H5

Cocos

PhoneGap

小程序

Lua

Ionic

快应用 Quick App

FlashAir

Hybrid

Flutter

APICloud

React native

Android vs. iOS

Android和iOS设备数量比例?

Android/iOS系统演进

Android碎片化

数据处理流程

数据处理流程中安全管控

数据服务 数据收集 数据通道 数据分级处理 应用使用 同态加密 S级 A级 B级 C级 IP白名单 自有数据 -样本数据 P 软件ID 硬件ID 设备属性 ---> SDK 获取 **Collector** (分析产品, 用户鉴权 广告监测) 日志 APP数据 **Embedding** 安全审计 حا 发号服务 LBS数据 参考数据 标签数据 Kafka 消息队列 脱敏处理 IP/Cell/ 天聚合库 传感器数据 低精度位置 三方数据 Wifi定位库 全站Https

- 1. 匿名化ID
- 2. 数据加密
- 3. 传输通道加密

- 1. 分地区落盘(符合当地数据策略)
- 2. 专线回传
- 3. 传输加密

- 1. 数据中心数据分级处理
- 2. 业务 & 数据分层隔离
- 3. 使用访问账号分级/审计
- 4. 底层数据分区

TalkingData

*参考数据:APP标准化,机型标准化,网络标准化

国内外数据信息安全的规范

Google Play 开发者规范

- https://play.google.com/about/developer-content-policy
- https://play.google.com/about/privacy-security-deception/
- https://developer.android.google.cn

Apple Store 开发者规范

https://developer.apple.com/app-store/review/guidelines/

各国/地区数据 & 隐私保护的法律规范

· 中国 个人信息安全规范: https://www.tc260.org.cn

• 欧盟 GDPR: https://eugdpr.org

• 美国 COPPA: http://www.coppa.org

SDK 按需定制 - 开发者自主选择 , 功能&权限匹配

https://www.talkingdata.com/spa/sdk/#/config?productLine=AppAnalytics&sdkPlatform=Android

SDK 按需定制 - 开发者自主选择,功能&权限匹配

https://www.talkingdata.com/spa/sdk/#/config?productLine=AppAnalytics&sdkPlatform=Android

您知悉并同意,为提升服务质量、用户体验以及其他实现【请根据实际需要补充】等服务功能之必要目的,我们会在必要范围内收集、存储、加工或处理您的个人信息或您在使用服务中形成的数据信息。

我们有权选择使用第三方合作伙伴提供的数据统计分析服务(例如: TalkingData统计分析SDK等),并由合作方收集、使用、加工和处理 个人信息。

例子:A,B,C三人创立了一家公司。三人把公司的机密信息放在保险柜里。为了实现共同决策,三人想设计一种密码方案,只有三人同时到场才能开启保险柜。于是三人找到了科学家S,并提出需求:

S把密码设定成了 666

先对666进行了 x2 操作,得到了 1332

再对1332进行了 ÷3 操作,得到了444

最后在对444进行了+5操作,最后得到了449

S把明文密码 666 销毁, 把密文 449 给到三人,

并将 +5 操作 \div 操作 $\xrightarrow{*3}$ 操作 $\xrightarrow{*2}$ 操作分别作为密码给C,B,A三人

解密操作:

每次想开启保险柜,三人必须将手中分存的秘钥 +5 操作, ÷3 操作, x2 操作连同密文 [449] 一同交给S

由S先对密文 449 用A的 +5 进行逆操作也就是 -5, 得到 444,

再对444用B的秘钥进行 ÷3 逆操作也就是 x3 , 得到 1332 ,

最后再用C秘钥 x2 对 1332 进行逆操作也就是 ÷2,得到最后的密码 666

其它方案?

一个单位对另一个基本单位(0或1)连续进行两次异或操作之后,得到的结果就是是这个单位本身。也就是说**异或运算的逆运算是它本身**

加密:

- 同样设定明文密码 666
- 将 666 对 2,3,5 (这里2,3,5只是随意制定,理论上可以制定跟秘钥二进制位数相等任意字符)进行异或操作,得到密文E。
- 将 **2,3,5** 作为分存秘钥分发给 **A,B,C** 。并将密文 **E** 公开,将密码 **666** 销毁。

解密:

只需要将密文 E 和秘钥 2,3,5 交给 S。S 对密文 E 进行 2,3,5 的异或操作,便可"抵消"之前的操作,从而得到密码 666

例子:由于公司发展, A,B,C三人公务繁多, 很难同时凑到一起。于是三人再次找到S, 想获取一种方案, 这种方案中三人只要两人同时到场, 便可开启保险柜。S应该怎么办?

方案:y=kx+b

加密:

• S同样把明文密码设定成 666 , 并将其赋值给 b

例子:由于公司发展, A,B,C三人公务繁多, 很难同时凑到一起。于是三人再次找到S, 想获取一种方案, 这种方案中三人只要两人同时到场, 便可开启保险柜。S应该怎么办?

方案:y=kx+b

加密:

- S同样把明文密码设定成 666 , 并将其赋值给 b
- 随机选定了一个 k = 2 , 所以等式就变成了
- y = 2x + 666

例子:由于公司发展, A,B,C三人公务繁多, 很难同时凑到一起。于是三人再次找到S, 想获取一种方案, 这种方案中三人只要两人同时到场, 便可开启保险柜。S应该怎么办?

方案:*y=kx+b*

加密:

- S同样把明文密码设定成 666 , 并将其赋值给 b
- 随机选定了一个 k = 2, 所以等式就变成了
- y = 2x + 666
- S分别使x=1,2,3..... 得到对应的 y =668,670,672......
- 把(x=1,y=668),(x=2,y=670),(x=3,y=672)分别作为秘钥分发给A,B,C三人。

例子:由于公司发展,A,B,C三人公务繁多,很难同时凑到一起。于是三人再次找到S,想获取一种方案,这种方案中三人只要两人同时到场,便可开启保险柜。S应该怎么办?

方案:y=kx+b

加密:

- S同样把明文密码设定成 666 , 并将其赋值给 b
- 随机选定了一个 k = 2 ,所以等式就变成了
- y = 2x + 666
- S分别使x=1,2,3..... 得到对应的 y =668,670,672......
- 把(x=1,y=668),(x=2,y=670),(x=3,y=672)分别作为秘钥分发给A,B,C三人。
- 销毁k,销毁b。

密钥分存:

密钥被分成N个片段,只要我们获得其中的K个片段(子密钥),就可以把原密钥重新还原。但如果获得的片段数量少于 K,就无法知道关于密钥的任何信息

密钥分存的几何示例(N=2)

S:原始秘钥

R:子秘钥1

S⊕R:子秘钥2

⊕代表逻辑算符互斥

移动端数据传输加解密实践

被动收集,非主动采集

- 开发者将SDK集成到APP中,添加SDK启动代码和埋点代码
- APP启动后,调用SDK启动接口,SDK启动
- APP退出或者系统回收后,SDK也相应退出和被回收
- 当触发到APP埋点,SDK接收到埋点数据,数据本地进行加密处理
- SDK数据通过https协议进行数据发送,数据报文加密处理

移动端数据传输加解密实践

算法选择(从性能和安全性综合)

• 对称加密AES

• 非对称加密: ECC\RSA

• 消息摘要: MD5

• 数字签名:DSA

• 轻量级:TEA、RC系列(RC4), Blowfish (不常换密钥)

*速度排名:IDEA < DES < GASTI28 < GOST < AES < RC4 < TEA < Blowfish

名称	数据大小(MB)	时间(S)	平均速度MB/S	评价
DES	256	10.5	22.5	低
3DES	256	12	12	低
AES(256-bit)	256	5	51.2	中
Blowfish	256	3.7	64	高

移动端数据传输加解密实践

• 压测数据量:20W条

• 数据大小:原始70K+,压缩45K+

• 数据总大小:13G+

• 运行模式:4进程

• CPU: 50%

• 内存:25%

加密类型	单条数据 (压缩)	单条数据 (压缩+加密)	解密耗时(分钟)	QPS
无	45 _K +	45 _K +	38	88
RC4	45 _K +	45 _K +	40	83
RSA	45к+	50 _K +	385	9

移动端数据传输加密实践

单钥密码算法性能比较

名称	实现方式	运算速度	安全性	改进措施	应用场合
DES	40-56bit 密钥	一般	 完全依赖密钥 , 易受穷举搜索法攻击 	双重、三重DES , AES	适用于硬件实现
IDEA	128bit密钥 8轮迭代	较慢	军事级,可抗差值分析和相关分析	加长字长为32bit、密钥为256bit , 采用232 模加、232+1模乘	适用于ASIC设计
GOST	256bit密钥 32轮迭代	较快	军事级	加大迭代轮数	S盒可随机秘 密选择,便于软件实现
Blowfish	256-448bit 密钥、16轮迭代	最快	 军事级、可通过改变密钥长度调整安 全性		适合固定密钥场合,不适合 常换密钥和智能卡
RC4	密钥长度可变	快DES I0倍	对差分攻击和线性攻击具有免疫能力, 高度非线性	密钥长度放宽到64bit	算法简单,易于编程实现
RC5	密钥长度和迭代轮数均 可变	速度可根据三个参数的 值进行选择	六轮以上时即可抗线性攻击、通过调 整字长、密钥长度和迭代轮数可以在 安全性和速度上取得折中	引入数据相倚转	适用于不同字长的微处理器
CASTI28	密钥长度可变、16轮 迭代	较快	可抵抗线性和差分攻击	增加密钥长度、形成CAST256	适用于PC机和UNIX工作站

用 数据+科技 的能力为客户创造价值

100 h 7.5 C 45 F 30 F 1000 s+

连接渠道

月活终端设备

服务移动应用

服务开发者

服务企业

