Projekt z Szeregów Czasowych

Jan Moskal

2025-01-18

Wstęp

Dane, które będziemy analizować, pochodzą ze strony Głównego Urzędu Statystycznego (https://bdl.st at.gov.pl/bdl/dane/podgrup/temat) znajdują się w grupie "Przeciętne ceny detaliczne towarów i usług konsumpcyjnych", podgrupie "Ceny detaliczne wybranych towarów i usług konsumpcyjnych (dane miesięczne)" i dotyczą cen węgla kamiennego za toną. Dane o przeciętnych cenach obejmują notowania co miesiąc dla całej Polski. Projekt ma na celu analizę tego szeregu czasowego, aby zrozumieć zmiany cen węgla kamiennego w Polsce w latach 2006-2019 i stworzyć prognozy na przyszłość.

Wczytywanie danych

```
dane <- read_excel("wegiel_kamienny_szereg.xlsx", range = "TABLICA!C4:FN6")

dane <- as.vector(dane[2, ])
dane <- as.numeric(unlist(dane))</pre>
```

Zamienimay wektor w macierz, aby ustawić dobrą kolejność danych (narazie mamy dane wypisane, w ten sposób, że jeden miesiąc dla czternastu lat i dopiero następny miesiąc, a chcemy żeby było chronologicznie)

```
macierz <- matrix(dane, ncol = 14, byrow = TRUE)</pre>
```

Przekształcenie macierzy w wektor czytany kolumnowo (od góry do dołu). W ten sposób otrzymujemy dane w odpowiedniej kolejności.

```
dane <- as.vector(macierz)
t <- 1:length(dane)</pre>
```

Wstępna analiza szeregu

Wykres liniowy dla naszych danych w czasie t.

```
plot(y=dane,x=t,col=4, main ="Cena kukurydzy", type ="1", xlab = "Numer tygodnia" )
```

Cena kukurydzy

Jak widzimy z wykresu, cena dość szybko wzrosła do cen powyżej 700 zł. Widzimy również, że ogólny trend jest rosnący.

Robimy wykresy typu boxplot oraz histogram, żeby zobaczyć rozkład danych.

Histogram cen wegla kamienneg

Wykres ramka-wasy


```
par(mfrow = c(1, 1))
```

Możemy zauważyć, że rozkład jest lewostronnie asymetryczny, bierzę się to z tego co już zauważyliśmy z wykresu liniowego czyli, że ceny od 700 zł za tonę zaczęły się już po 2 latach od pierwszej obserwacji z szeregu a pozostałe 12 lat oscylowało co do wartości od 700 do 900 zł za tonę. Z wykresu pudełkowego możemu zauważyć nawet dokładniej, że kwartyl pierwszy wynosi około 700 a kwartyl trzeci około 810 co w przełożeniu na nasz problem oznacza, że połowa obserwacji, czyli z 7 lat znajduje się na tym małym przedziałe.

Podstawowe statystyki

```
summary(dane)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 477.1 702.2 788.7 744.1 814.5 897.3
```

Szukamy najlepszego wielomianu opisującego nasz szereg

```
Akaike <- c()
for(i in 1:30){
   Akaike <- cbind(Akaike, dopasowanie_wielomianu(dane,i))
}
i=1:30
plot(i, Akaike,type="p", pch=19, main ="Kryterium AIC dla wielomianu stopnia i", xlab = "Stopień wielom</pre>
```

Kryterium AIC dla wielomianu stopnia i

Z kryterium osuwiska wybieramy wielomian stopnia 5.

Metoda wykładniczych wag ruchomej średniej

```
plot(dane, main = "Ceny wegla kamiennego", lwd = 2, type = "l", xlab = "Czas", ylab = "zł")
wykładnicza(dane, 0.9, "red")
wykładnicza(dane, 0.7, "blue")
wykładnicza(dane, 0.5, "green")
wykładnicza(dane, 0.3, "purple")
```

Ceny wegla kamiennego

W celu elminacji losowych fluktuacji w szergeu czasowym użyliśmy metody wykładniczych wag ruchomej średniej. Widać, że wraz ze wzrostem współczynnika wag funkcja przybliżająca mniej naśladuje zaburzenia zewnętrzne w modelu i na odwrót.

Analiza trendów fazowych

ggseasonplot(w, polar = FALSE, main = "Wykres sezonowości dla lat 2006-2019", xlab = NULL) +
 theme(legend.position = "none")

Wykres sezonowosci dla lat 2006-2019

Z wykresu sezonowości widzimy powtarzający się trend wzrostu cen węgla kamiennego w okresie od sierpnia do listopada. W okresie od stycznia do maja zauważalny jest nieznaczny trend spadkowy cen.