2017~2018学年北京海淀区清华大学附属中学高一上学期期末生物试卷

选择题(45道题,1~40小题每题1分,41~45小题每题2分,共50分)

9. 活细胞内大多数酶的形成部位在()

1.	下	列属于生物大分子的一组物,	质是()							
	Α.	水、糖类	B. 蛋白质、核酸	C. 纟	F维素、	蔗糖	D. 脂	肪、ラ	无机盐	
2.	碳	元素是构成细胞的最基本元	素,对此最有说服力的解释是(()						
	Α.	碳在细胞的各种化合物中含	量最多	B. 碳	炭在自然	界中含量最为丰富	i			
	C.	在细胞的各种化合物中都含	合有碳	D. 碳	炭链构成	了有机物的基本骨	·架			
3.	SA	RS病毒、蓝藻和酵母菌都具	具有的物质或结构是()							
	Α.	细胞壁	B. 细胞膜	C. 组	11胞质		D. 核	酸		
4.	当	植物由代谢旺盛的生长期转	入休眠期时 , 体内结合水与自由	白水的	比值通常	常会()				
		升高	B. 下降		· 变化	,	D. 产	牛波	th	
							·		, -	
5.	下?	列物质中,作为生命活动的;	承担者、遗传信息的携带者、腓	莫结构	基本支持	架的依次是()				
	A.	糖类、脂质、核酸	B. 蛋白质、核酸、磷脂	C. 蛋	員白质、	糖类、核酸	D. 蛋	白质、	磷脂、	糖类
6.	生	物体内的蛋白质具有多样性	, 其原因不可能是 ()							
	Α.	组成肽键的化学元素不同		B. 组]成蛋白	I质的氨基酸种类和	数量で	同		
	C.	蛋白质的空间结构不同		D. 组	且成蛋白	质的氨基酸排列顺	序不同	3		
7.	变	形虫可吞噬整个细菌,这一	事实说明()							
	Α.	细胞膜具有选择透过性		B. 组	细胞膜没	有选择透过性				
	C.	大分子可以透过细胞膜		D. 组	細胞膜具	有一定的流动性				
8.	能	增大细胞内膜面积,并能够	作为细胞内蛋白质加工运输通道	首的细	胞器是	()				
	Α.	核糖体	B. 线粒体	C. 内	方质网		D. 中	心体		

10.	烫发时, 先用还原剂使头发角	蛋白的二硫键断裂,再用卷发	器将头发固定形状,最后用氧化	心剂使角蛋白在新的位置形成二硫
	键。这一过程改变了角蛋白的	()		
	A. 空间结构	B. 氨基酸种类	C. 氨基酸数目	D. 氨基酸排列顺序
11.	组成染色体和染色质的主要物	质是 ()		
	A. 蛋白质和DNA	B. RDNA和DNA	C. 蛋白质和RNA	D. DNA和脂质
12.	下列物质从复杂到简单的结构	层次关系是()		
	A. 染色体→DNA→脱氧核苷	酸→基因	B. 染色体→DNA→基因→脱	氧核苷酸
	C. 基因→染色体→脱氧核苷酶	⋛→DNA	D. 染色体→脱氧核苷酸→DI	NA→基因
13.	细胞是生命活动的基本单位。	关于细胞结构的叙述,错误的是	是()	
	A. T2噬菌体在细菌细胞核内1	合成DNA	B. 蓝藻(蓝细菌)具有光反	应的膜结构
	C. 酵母菌在内质网合成脂质、	加工膜蛋白	D. 分泌蛋白可从胰腺的腺泡:	细胞分泌到胞外
14.	将成熟的植物细胞置于溶液中	能构成 一 个渗透系统,主要原	因是 ()	
	A. 细胞壁具有全透性			
	B. 水分可以自由出入细胞			
	C. 液泡膜内外溶液之间有浓度	度差		
	D. 原生质层相当于—层半透服	奠,且原生质层两侧具有浓度差		
15 .	田间一次施肥过多,作物会变	得枯萎发黄,俗称"烧苗"。	其主要原因是()	
	A. 细胞从土壤中吸收的养分过	过多	B. 根系不能将水分向上运输	
	C. 细胞不能从土壤中吸水		D. 养料过多,植物体内营养	失调
16.	在不损伤植物细胞内部结构的	情况下,能去除细胞壁的物质,	是()	
	A. 蛋白酶	B. 淀粉酶	C. 盐酸	D. 纤维素酶
	V. TO 114	2. IVENDER	3. <u>m</u> x	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
17.	若对离体的心肌细胞施用某种	毒素 , 可使心肌细胞对Ca ²⁺ 吸	收量明显减少 , 而对醛吸收则	下受影响。这种毒素的作用起 (
)			
	A. 抑制呼吸酶的活性		B. 改变了细胞膜的结构	
	C. 抑制Ca ²⁺ 载体的活动		D. 改变了细胞膜两侧的浓度	

C. 核糖体

D. 高尔基体

A. 叶绿体

B. 线粒体

18. 植物细胞对矿质离子的吸收之所以具有选择性	,与下列哪一项有关()
A. 外界环境中离子的浓度	B. 植物细胞中细胞液的浓度
C. 植物细胞中液泡的大小	D. 细胞膜上载体蛋白的种类与数量
19. 植物细胞发生质壁分离的原因是()	
①外界溶液浓度大于细胞液浓度	
②细胞液浓度大于外界溶液浓度	
③细胞壁的伸缩性大于原生质层的伸缩性	
④原生质层的伸缩性大于细胞壁的伸缩性	
A. ②④ B. ①④	C. 23 D. 34
20. 下列关于酶的说法中,正确的是()	
①生物体内的酶在不断地更新 ②A+B→B+C+	+D可表示酶促分解过程 ③酶只在活细胞内起催化作用④酶可提高反应速度进
而改变反应平衡点 ⑤酶都是蛋白质 ⑥反应前后	三酶的化学性质和数量不变
A. 123 B. 235	C. ①②③④ D. ①②⑥
21. 20世纪80年代初,Cech和Altman分别发现了具	具有催化功能的核酶,打破了酶只是蛋白质的传统观念,而获得了诺贝尔化学
奖。核酶是指某些()	
A. DNA B. RNA	C. 染色体 D. ATP
22. 胃蛋白酶最适pH值为1.8 , 将胃蛋白酶溶液的p	H值由1.8调高至7的过程中,其催化活性可表现为下图的(纵坐标代表催化活
性,横坐标代表pH值)()	
1	~
0 7 0	7 0 7 0 7
A B	C D
А. А В. В	C. C D. D
23. 对于人体细胞内ATP的描述,正确的是()	
A. ATP主要在线粒体中生成	B. ATP与ADP之间不易相互转化
C. 它含有三个高能磷酸键	D. 细胞内贮存有大量ATP,以适应需要
24. 下列过程能使细胞中ADP含量增加的是()	
A. 小肠上皮细胞吸收甘油	B. 线粒体内的[H]与O₂结合

25.	一般情况下,生物体内的主要	能源物质、直接能源物质、储金	备能源物质依次是()				
	A. 糖类、蛋白质、脂肪	B. ATP、糖类、脂肪	C. 糖类、ATP、脂肪	D. 糖类、ATP、蛋白质			
26.	细胞呼吸的实质是()						
	A. 分解有机物 , 贮藏能量	B. 合成有机物 , 贮藏能量	C. 分解有机物 , 释放能量	D. 合成有机物 , 释放能量			
27.	在细胞呼吸过程中有CO ₂ 放出	时,则可判断此过程()					
	A. 是无氧呼吸	B. 是有氧呼吸	C. 不是乳酸发酵	D. 不是酒精发酵			
28.	绿色植物吸入的O2用于在细胞	则呼吸中形成 ()					
	A. CO ₂	B. H ₂ O	C. ATP	D. 丙酮酸			
29.	叶绿体是植物进行光合作用的	十绿体是植物进行光合作用的场所,下列关于叶绿体结构与功能的叙述,正确的是()					
	A. 叶绿体中的色素主要分布在	王类囊体腔内	B. H_2O 在光下分解为[H]和 O_2 的过程发生在基质中				
	C. CO ₂ 的固定过程发生在类量	慶 体薄膜上	D. 光合作用的产物葡萄糖是	生叶绿体基质中合成的			
30.	下列有关光合作用的叙述,正确的是()						
	A. 酶的专一性决定了暗反应见	只能在叶绿体类囊体薄膜上进行	F				
	B. 在暗反应过程中酶和C5的	数量不会因消耗而减少					
	C. 在较强光照下,光合作用引	虽度随着CO2浓度的提高而增强					
	D. 水在光下分解和CO2的固定	定速率基本不受温度影响					
31.	卡尔文用 14 C标记 14 C하다	用于研究光合作用中()					
	A. 光反应的条件		B. 暗反应的条件				
	C. 能量转换的过程		D. 由CO2合成有机物的过程				
32.	在密封的室温内栽种农作物,	下列不能提高作物产量的措施,	是()				
	A. 增加室内CO ₂ 浓度	B. 增大室内昼夜温差	C. 采用绿色玻璃盖顶	D. 增大光照强度			
33.	利用小球藻培养液进行光合作	用实验时,在其中加入抑制暗度	反应的药物后,发现在同样的光	:照条件下释放氧气的速率下降。			
	主要原因是()						

B. [H]等的积累导致光反应速率减慢

D. 细胞分裂时纺缍丝的收缩

C. 洋葱鳞片叶表皮细胞的质壁分离复原

A. 叶绿素吸收光能的效率下降

34. 下图表示在两种实验条件下,测定的不同光照强度对光合作用速率的影响。a为 $0.1\%CO_2$ 、20℃;b为 $0.03\%CO_2$ 、20℃。据以上实验可知对x和y点起限制作用的主要因素分别是()

- A. 光强度和CO2浓度
- B. CO2浓度和光强度
- C. 光强度和温度
- D. 温度和CO2浓度

- 35. 关于多细胞生物体的叙述,不正确的是()
 - A. 细胞表面积与体积的关系以及细胞核的体积都限制了细胞长大
 - B. 多细胞生物体的器官大小主要取决于细胞数量的多少
 - C. 细胞体积越大,细胞相对表面积越大,物质运输的效率越高
 - D. 多细胞生物体的体积的增大既靠细胞的分裂, 又靠细胞的生长
- 36. 下列有关细胞周期的叙述,错误的是()
 - A. 连续分裂的细胞具有细胞周期
 - B. 不同生物的细胞周期长短不同
 - C. 细胞周期按照先后顺序分为分裂期和分裂间期
 - D. 为了研究方便, 可把分裂期分为前、中、后、末四个时期
- **37.** 下图是一组动物细胞有丝分裂图,a~e分别代表细胞周期的不同时期。正确的是(____)

- A. c细胞中染色体数目已经发生加倍
- C. b细胞将出现细胞板,并缢裂成两个子细胞
- B. d细胞中同源染色体联会,形成四分体
- D. 在细胞周期中出现的顺序是 $a \rightarrow c \rightarrow d \rightarrow e \rightarrow b$
- 38. 在一个细胞周期中,最可能发生在同一时期的是()
 - A. 着丝粒的分裂和胞质分裂完成
 - C. 细胞板的出现和纺锤体的出现

- B. 染色体数加倍和染色单体形成
- D. 染色体的形成和核膜的消失

- 39. 与洋葱根尖细胞有丝分裂间期发生变化关系最密切的一组细胞器是()
 - A. 叶绿体和细胞核
- B. 线粒体和核糖体
- C. 线粉体和内质网
- D. 线粒体和高尔基体
- **40.** 在一个细胞周期中,染色体数目倍增、染色单体形成、染色体在细胞核中最早显现、染色体形态和数目最为清晰的时期依次为()
 - ①分裂间期
- ②分裂前期
- ③分裂中期
- ④分裂后期
- ⑤分裂末期

- A. (1)(2)(3)(4)
- B. (4)(1)(2)(3)
- C. 2314
- D. (5)(3)(2)(4)

- 41. 下列关于物质跨膜运输的叙述,正确的是()
 - A. 肌细胞的细胞膜上有协助葡萄糖跨膜运输的载体蛋白
 - B. 激素必须通过主动运输进入细胞内完成对细胞代谢的调节
 - C. 相对分子质量小的物质或离子都可以通过自由扩散进入细胞内
 - D. 协助扩散和自由扩散都不需要消耗能量,也不需要膜上的载体蛋白
- 42. 下图表示有氧呼吸过程,下列有关说法正确的是()

A. 部分原核生物能完成图示全过程

B. ③代表的物质名称是氧气

C. ①②④中能量数值最大的是②

- D. 产生①②的场所是线粒体
- **43.** 如图所示为植物在夏季晴天的一昼夜内CO₂吸收量的变化情况,对此正确的判断是()

- A. 影响bc段光合速率的外界因素只有光照强度
- B. ce段下降是由于气孔关闭造成的

C. ce段与fg段光合速率下降的原因相同

- D. 该植物进行光合作用的时间区段是bg
- 44. 下列选项是四位同学实验操作的方法或结果,其中正确的一项是()
 - A. 稀释约十倍的蛋清液可以与双缩脲试剂产生紫色反应
 - B. 在高倍显微镜下观察紫色洋葱鳞片叶外表皮细胞的有丝分裂
 - C. 西瓜汁中含有丰富的葡萄糖和果糖,可用作还原糖鉴定的材料
 - D. 制作根尖分生区细胞有丝分裂临时装片的顺序是解离、染色、漂洗、制片

45. 下图1、图2分别表示某种生物细胞有丝分裂过程中某一时期的模式图,图3表示有丝分裂中不同时期每条染色体上DNA分子数变化,图4表示有丝分裂中不同时期染色体和DNA的数量关系。下列有关叙述不正确的是()

- A. 图1所示细胞中共有4条染色体,8个DNA分子;图2所示细胞中共有0条姐妹染色单体
- B. 处于图3中B→C段的是图1所示细胞;完成图3中C→D段变化的细胞分裂时期是后期
- C. 有丝分裂过程中不会出现图4中d所示的情况
- D. 图4中a可对应图3中的B→C段;图4中c可对应图3中A→B段

非选择题(7道题,共50分)

46. 某实验小组为了探究细胞膜的通透性,将小鼠肝细胞在体外培养—段时间后,检测培养液中的氨基酸、葡萄糖和尿素含量,发现它们的含量发生了明显的变化(如图)。请回答问题。

- (1) 由图可知,随培养时间的延长,培养液中葡萄糖和氨基酸含量 _____,尿素含量 ____。由于在原培养液中没有尿素,推测其是 ______的产物。
- (2) 培养液中的氨基酸进入细胞后,可用于合成细胞中 _______(写出四种细胞结构)上的蛋白质。被吸收的葡萄糖主要通过 ______(生理过程)为细胞提供能量。
- (3)转氨酶是肝细胞内参与氨基酸分解与合成的一类酶,正常情况下这类酶不会排出细胞外,若在细胞培养液中检测到该类酶,可能的原因是_____。
- (4)由(1)和(3)可初步判断,细胞膜对物质的转运具有_____的特性。
- **47.** 生物膜系统在细胞的生命活动中发挥着极其重要的作用。图1-3表示三种生物膜结构及其所发生的部分生理过程。请回答下列问题:

(1) 图中所示生物膜的主要成分是 _____, 其中图1、图3表示的生理过程分别是 _____

_ ` ____ •

- (3) 叶肉细胞与人体肝脏细胞都具有图 _____(填图序号)中的膜结构。
- (4) 图1-3中生物膜的功能不同,从生物膜的组成成分分析,其主要原因是 _______; 从物质的输入和输出 看,体现生物膜的功能特性是 _____。
- 48. 用高速离心机分离被打碎的小藻球细胞,获得可以进行光合作用的离体叶绿体,进行如下图所示的实验。请分析回答问题:

- (1) 小藻球进行的光合作用包括 ______ 两个阶段。
- (3) 实验B中离体叶绿体内 _____(选填"能"或"不能")产生糖类,原因是黑暗条件下缺乏 _____。
- (4) 鲁宾和卡门利用小藻球作为实验材料,用 18 O分别标记 H_2 O和 CO_2 ,最终证明光合作用释放的 O_2 来自于 H_2 O; 卡尔文用 14 C标记 CO_2 供小藻球进行光合作用,探明了碳在光合作用中的转化途径。以上科学家在试验中采用的 共同方法是 ______。
- **49.** 下图表示苹果果实在不同外界氧浓度下的 CO_2 释放量和 O_2 吸收量的变化曲线,请分析回答问题:

	(1)	当外界氧浓度为5时,果实进行		呼吸。此时,吗	吸作用除放	b出能量和产生CO2外,还
		有				
	(2)	由图可知,无氧呼吸强度与O2浓度之间	目的)	关系是		o
	(3)	坐标中的二氧化碳释放曲线与氧气吸收	(曲线	烫于C点,则C点	表示该植物	о
	(4)	根据植物呼吸作用的特点,说出苹果果	实储	行的最佳条件有 ((至少两条)	•
50.	科学家	家在研究某池塘群落(某一区域所有的生	E物プ	一个群落)不同2	k深的氧气3	变化时,从待测的深度取水,分别放入不透光
	的黑瓶	瓦和透光的无色瓶中,然后将黑瓶和无色	色瓶汀	几入取水时的深度	,测定各水原	昙氧气变化值(注:正号表示较瓶沉入水之前
	增加,	, 负号表示减少) , 结果如下表:				_
				│ 瓶中O₂的变化(ラ	克/平方米)	
			深度	无色瓶	黑瓶	
			$1 \mathrm{m}$	+3	-1	
			2m	+2	-1	
			3m	0	-1	
			$4\mathrm{m}$	-1	-1	
			$5\mathrm{m}$	-3	-3	
	(1)	在1m深的水层中,生物进行的光合作	甲和叩	乎吸作用相比,占4	优势的是_	作用。
	(2)	在2m深的水层中,每平方米生物经光色	合作月	用产生的氧气量为	克,	呼吸作用消耗的氧气量为 克,
		生物体内积累的葡萄糖量为 克	(注	: C . H、O原子量	分别为12、	1、16)。
	(3)	该池塘中,全部由异养生物组成的群落	分布	在。理由:	是。	
51 .	图1表	示显微镜下观察到的洋葱(体细胞染色	体数	为2N)根尖有丝分	分裂的分裂机	目,图2为其有丝分裂细胞周期各阶段的时长
	及一个细胞中DNA分子的数目变化(不考虑细胞质中DNA分子数目)。请分析回答下列问题:					
	(1) 制作根尖有丝分裂装片时,一般剪取根尖2~3mm,以获取根尖 区的细胞。					
	(2) 用盐酸和酒精混合液(1:1)进行解离的目的是使组织细胞相互。					
	(3) 在观察细胞有丝分裂时,往往看到视野中有大量的间期细胞,而分裂期的细胞较少,这说明在细胞周期中间期				9细胞较少,这说明在细胞周期中间期	
	所占时间。					
	(4)	观察染色体形态、数目的最佳时期是图	1中的	的 (填字母	3)期。根据	居细胞周期写出图1中所示细胞在有丝分·
		裂中的顺序:。				
	(5)	细胞周期包括分裂间期(分为 G_1 期、 S	期和	G ₂ 期)和分裂期((M期),a	、b、c、d分别表示上述各阶段的时长
		(如图 2)。 G_1 期、 S 期和 G_2 期为 M 期)	进行的	的物质准备是		。G ₂ 期细胞内染色体数目
		为,染色单体数目为\$\$\rm		。着丝点分裂发生在	图2\$\$中的 _	期(填字母)。
	(6)	若用含放射性同位素的胸苷(DNA复制		,		
		含放射性同位素的胸苷,换用无放射性	的新	ॉ 鲜培养液培养,5	E期检测。排	居图5分析,预计最快约 h后会检
		测到被标记的M期细胞。				

(1)	某同学用三种不同的果胶酶进行三组实验,各组实验除酶的来源不同外,其他条件都相同,通过测定出汁量来
	比较各组。
(2)	现有一种新分离出来的果胶酶,为探究其最适温度,某同学设计了如下实验:
	①取试管12支,分成4组,编号为甲、乙、丙、丁,每组三支试管,编号为1、2、3;
	②每组的1、2、3号试管均加入等量且适量的果泥、果胶酶、缓冲液,充分混匀后再将甲、乙、丙、丁四组试管
	分别置于0℃、10℃、50℃、60℃下保温相同时间;
	③测定各试管中的出汁量并计算
	请指出此实验设计步骤②中的不足之处:和和和。
(3)	某同学取5组试管 A - E 分别加入等量的同种果泥,在 A 、 B 、 C 、 D ,4个实验组的试管中分别加入等量的缓冲液和
	不同量的同种果胶酶,然后,补充蒸馏水使4组试管内液体体积相同;E组中加入蒸馏水使试管中液体体积与实
	验组相同。将5组试管置于适宜温度下保温一定时间后,测定各组的出汁量。通过A~D组实验可比较不同实验组
	出汁量的差异。本实验中,若要检测加入酶的量等于0而其他条件均与实验组相同时的出汁量,E组设
	计(填"能"或"不能")达到目的,其原因是。

52. 生产果汁时,经常用果胶酶处理果泥以提高果汁的出汁率。回答下列相关问题: