Mixed Hybrid Finite Element Eddington Acceleration of Discrete Ordinates Source Iteration

ANS Student Conference
Mathematics and Computation

Samuel S. Olivier

April 10, 2017

Department of Nuclear Engineering, Texas A&M University

Overview

- 1. Motivation
- 2. Source Iteration Background
- 3. Eddington Acceleration
- 4. Results
- 5. Conclusions

Motivation

Motivation

Radiation Hydrodynamics

- Describes the effects of thermal radiation on fluid momentum and energy
- Required in high energy density laboratory experiments (NIF, Z Machine) and astrophysics

Mixed Hybrid Finite Element Method (MHFEM) hydrodynamics

Problems

- MHFEM and first-order form of transport are incompatible ⇒ can't use linear acceleration scheme
- Radiation transport is expensive

Goal

Develop a transport algorithm that

- 1. Accelerates Discrete Ordinates Source Iteration
- Bridges Linear Discontinuous Galerkin (LDG) transport and MHFEM multiphysics

Motivation

Radiation Hydrodynamics

- Describes the effects of thermal radiation on fluid momentum and energy
- Required in high energy density laboratory experiments (NIF, Z Machine) and astrophysics

Mixed Hybrid Finite Element Method (MHFEM) hydrodynamics

Problems

- MHFEM and first-order form of transport are incompatible ⇒ can't use linear acceleration scheme
- Radiation transport is expensive

Goal

Develop a transport algorithm that

- 1. Accelerates Discrete Ordinates Source Iteration
- Bridges Linear Discontinuous Galerkin (LDG) transport and MHFEM multiphysics

Source Iteration Background

Boltzmann Equation

Steady-state, mono-energetic, istropically-scattering, fixed-source Linear Boltzmann Equation in 1D slab geometry:

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \Sigma_t(x)\psi(x,\mu) = \frac{\Sigma_s(x)}{2} \int_{-1}^1 \psi(x,\mu')d\mu' + \frac{Q(x)}{2}$$

 $\mu=\cos\theta$ the cosine of the angle of flight θ relative to the x-axis $\Sigma_t(x),\,\Sigma_s(x)$ total and scattering macroscopic cross sections Q(x) the isotropic fixed-source

 $\psi(x,\mu)$ the angular flux

Boltzmann Equation

Steady-state, mono-energetic, istropically-scattering, fixed-source Linear Boltzmann Equation in 1D slab geometry:

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \Sigma_t(x)\psi(x,\mu) = \frac{\Sigma_s(x)}{2} \int_{-1}^1 \psi(x,\mu')d\mu' + \frac{Q(x)}{2}$$

 $\mu=\cos\theta$ the cosine of the angle of flight θ relative to the x-axis $\Sigma_t(x),~\Sigma_s(x)$ total and scattering macroscopic cross sections Q(x) the isotropic fixed-source $\psi(x,\mu)$ the angular flux

Integro-differential equation

Discrete Ordinates (S_N) Angular Discretization

Compute angular flux on N discrete angles

$$\psi(x,\mu) \xrightarrow{S_N} \begin{cases} \psi_1(x), & \mu = \mu_1 \\ \psi_2(x), & \mu = \mu_2 \\ \vdots \\ \psi_N, & \mu = \mu_N \end{cases}$$

Discrete Ordinates (S_N) Angular Discretization

Compute angular flux on N discrete angles

$$\psi(x,\mu) \xrightarrow{\mathsf{S}_N} \begin{cases} \psi_1(x), & \mu = \mu_1 \\ \psi_2(x), & \mu = \mu_2 \\ \vdots \\ \psi_N, & \mu = \mu_N \end{cases}$$

 $\mu_1, \, \mu_2, \, \ldots, \, \mu_N$ defined by N-point Gauss Quadrature Rule

Discrete Ordinates (S_N) Angular Discretization

Compute angular flux on N discrete angles

$$\psi(x,\mu) \xrightarrow{\mathsf{S}_N} \begin{cases} \psi_1(x), & \mu = \mu_1 \\ \psi_2(x), & \mu = \mu_2 \\ \vdots & & \\ \psi_N, & \mu = \mu_N \end{cases}$$

 $\mu_1,\,\mu_2,\,\dots,\,\mu_N$ defined by N-point Gauss Quadrature Rule Integrate order 2N-1 polynomials exactly with

$$\phi(x) = \int_{-1}^{1} \psi(x, \mu) d\mu \xrightarrow{S_N} \sum_{n=1}^{N} w_n \psi_n(x)$$

4

S_N Equations

S_N Equations

$$\mu_n \frac{\mathrm{d}\psi_n}{\mathrm{d}x}(x) + \Sigma_t(x)\psi_n(x) = \frac{\Sigma_s(x)}{2}\phi(x) + \frac{Q(x)}{2}, \ 1 \le n \le N$$
$$\phi(x) = \sum_{n=1}^N w_n \psi_n(x)$$

N coupled, ordinary differential equations

All coupling in scattering term

Source Iteration

Decouple by lagging scattering term

$$\mu_n \frac{\mathrm{d}\psi_n^{\ell+1}}{\mathrm{d}x}(x) + \Sigma_t(x)\psi_n^{\ell+1}(x) = \frac{\Sigma_s(x)}{2}\phi^{\ell}(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

N independent, first-order, ordinary differential equations

Solve each equation with well-known sweeping process

Source Iteration

- 1. Given previous estimate for $\phi^\ell(x),$ solve for $\psi_n^{\ell+1}$
- 2. Compute $\phi^{\ell+1}(x) = \sum_{n=1}^{N} w_n \psi_n^{\ell+1}(x)$
- 3. Update scattering term with $\phi^{\ell+1}(x)$ and repeat until:

$$\frac{\|\phi^{\ell+1}(x)-\phi^{\ell}(x)\|}{\|\phi^{\ell+1}(x)\|}<\epsilon$$

6

Convergence rate is linked to the number of collisions in a particle's lifetime

Convergence rate is linked to the number of collisions in a particle's lifetime

If
$$\phi^0(x) = 0$$

$$\mu_n \frac{d\psi_n^1}{dx}(x) + \Sigma_t(x)\psi_n^1(x) = \frac{\Sigma_s(x)}{2}\phi^0(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

Convergence rate is linked to the number of collisions in a particle's lifetime

If
$$\phi^0(x) = 0$$

$$\mu_n \frac{d\psi_n^1}{dx}(x) + \Sigma_t(x)\psi_n^1(x) = \frac{\Sigma_s(x)}{2}\phi^0(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

 $\phi^1(x)$ is the uncollided flux

Convergence rate is linked to the number of collisions in a particle's lifetime

If
$$\phi^0(x) = 0$$

$$\mu_n \frac{d\psi_n^1}{dx}(x) + \Sigma_t(x)\psi_n^1(x) = \frac{\Sigma_s(x)}{2} \phi^0(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

 $\phi^1(x)$ is the uncollided flux

 $\phi^2(x)$ is uncollided and once collided flux

Convergence rate is linked to the number of collisions in a particle's lifetime

If
$$\phi^0(x) = 0$$

$$\mu_n \frac{d\psi_n^1}{dx}(x) + \Sigma_t(x)\psi_n^1(x) = \frac{\Sigma_s(x)}{2} \phi^0(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

 $\phi^1(x)$ is the uncollided flux

 $\phi^2(x)$ is uncollided and once collided flux

 $\phi^\ell(x)$ is the scalar flux of particles that have undergone at most $\ell-1$ collisions

Convergence rate is linked to the number of collisions in a particle's lifetime

If
$$\phi^0(x) = 0$$

$$\mu_n \frac{d\psi_n^1}{dx}(x) + \Sigma_t(x)\psi_n^1(x) = \frac{\Sigma_s(x)}{2} \phi^0(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

 $\phi^1(x)$ is the uncollided flux

 $\phi^2(x)$ is uncollided and once collided flux

.

 $\phi^\ell(x)$ is the scalar flux of particles that have undergone at most $\ell-1$ collisions

Slow to converge in optically thick systems with minimal losses to absorption and leakage

Radiation Hydrodynamics problems often contain highly diffusive regions

 S_N is too expensive in these regions

Need an acceleration scheme that rapidly increases the rate of convergence of source iteration

Eddington Acceleration

Take moments of Boltzmann equation until have enough equations for the number of unknowns

Take moments of Boltzmann equation until have enough equations for the number of unknowns

Zeroth Moment: integrate over all angles

$$\int_{-1}^{1} \mu \frac{\mathrm{d}\psi}{\mathrm{d}x}(x,\mu) \,\mathrm{d}\mu + \int_{-1}^{1} \Sigma_{t}(x)\psi(x,\mu) \,\mathrm{d}\mu = \int_{-1}^{1} \frac{\Sigma_{s}(x)}{2}\phi(x) \,\mathrm{d}\mu + \int_{-1}^{1} \frac{Q(x)}{2} \,\mathrm{d}\mu$$

9

Take moments of Boltzmann equation until have enough equations for the number of unknowns

Zeroth Moment: integrate over all angles

$$\int_{-1}^{1} \mu \frac{\mathrm{d} \psi}{\mathrm{d} x}(x, \mu) \, \mathrm{d} \mu \ + \int_{-1}^{1} \Sigma_{t}(x) \psi(x, \mu) \, \mathrm{d} \mu = \int_{-1}^{1} \frac{\Sigma_{s}(x)}{2} \phi(x) \, \mathrm{d} \mu \ + \int_{-1}^{1} \frac{Q(x)}{2} \, \mathrm{d} \mu$$

Use
$$J(x) = \int_{-1}^{1} \mu \psi(x, \mu) \, d\mu$$
, $\phi(x) = \int_{-1}^{1} \psi(x, \mu) \, d\mu$

Take moments of Boltzmann equation until have enough equations for the number of unknowns

Zeroth Moment: integrate over all angles

$$\int_{-1}^{1} \mu \frac{\mathrm{d}\psi}{\mathrm{d}x}(x,\mu) \,\mathrm{d}\mu + \int_{-1}^{1} \Sigma_{t}(x)\psi(x,\mu) \,\mathrm{d}\mu = \int_{-1}^{1} \frac{\Sigma_{s}(x)}{2} \phi(x) \,\mathrm{d}\mu + \int_{-1}^{1} \frac{Q(x)}{2} \,\mathrm{d}\mu$$

Use
$$J(x) = \int_{-1}^{1} \mu \psi(x, \mu) \, d\mu$$
, $\phi(x) = \int_{-1}^{1} \psi(x, \mu) \, d\mu$

Zeroth Angular Moment

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x)$$

Take moments of Boltzmann equation until have enough equations for the number of unknowns

Zeroth Moment: integrate over all angles

$$\int_{-1}^{1} \mu \frac{\mathrm{d}\psi}{\mathrm{d}x}(x,\mu) \,\mathrm{d}\mu \ + \int_{-1}^{1} \Sigma_{t}(x)\psi(x,\mu) \,\mathrm{d}\mu = \int_{-1}^{1} \frac{\Sigma_{s}(x)}{2}\phi(x) \,\mathrm{d}\mu \ + \int_{-1}^{1} \frac{Q(x)}{2} \,\mathrm{d}\mu$$

Use
$$J(x) = \int_{-1}^{1} \mu \psi(x, \mu) \, d\mu$$
, $\phi(x) = \int_{-1}^{1} \psi(x, \mu) \, d\mu$

Zeroth Angular Moment

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x)$$

1 equation, 2 unknowns

$$\int_{-1}^1 \mu^2 \frac{\mathrm{d} \psi}{\mathrm{d} x}(x,\mu) \, \mathrm{d} \mu + \int_{-1}^1 \mu \Sigma_t(x) \psi(x,\mu) \, \mathrm{d} \mu \ = \int_{-1}^1 \mu \frac{\Sigma_s(x)}{2} \phi(x) \, \mathrm{d} \mu + \int_{-1}^1 \mu \frac{Q(x)}{2} \, \mathrm{d} \mu$$

$$\int_{-1}^{1} \mu^{2} \frac{\mathrm{d}\psi}{\mathrm{d}x}(x,\mu) \,\mathrm{d}\mu + \underbrace{\int_{-1}^{1} \mu \Sigma_{t}(x)\psi(x,\mu) \,\mathrm{d}\mu}_{\Sigma_{t}(x)J(x)} = \int_{-1}^{1} \mu \frac{\Sigma_{s}(x)}{2} \phi(x) \,\mathrm{d}\mu + \int_{-1}^{1} \mu \frac{Q(x)}{2} \,\mathrm{d}\mu$$

$$\int_{-1}^{1} \mu^2 \frac{\mathrm{d} \psi}{\mathrm{d} x}(x,\mu) \, \mathrm{d} \mu + \underbrace{\int_{-1}^{1} \mu \Sigma_t(x) \psi(x,\mu) \, \mathrm{d} \mu}_{\Sigma_t(x)J(x)} = \underbrace{\int_{-1}^{1} \mu \frac{\Sigma_s(x)}{2} \phi(x) \, \mathrm{d} \mu + \int_{-1}^{1} \mu \frac{Q(x)}{2} \, \mathrm{d} \mu}_{\text{Isotropic} \Rightarrow 0}$$

$$\int_{-1}^{1} \mu^2 \frac{\mathrm{d} \psi}{\mathrm{d} x}(x,\mu) \, \mathrm{d} \mu + \underbrace{\int_{-1}^{1} \mu \Sigma_t(x) \psi(x,\mu) \, \mathrm{d} \mu}_{\Sigma_t(x)J(x)} = \underbrace{\int_{-1}^{1} \mu \frac{\Sigma_s(x)}{2} \phi(x) \, \mathrm{d} \mu + \int_{-1}^{1} \mu \frac{Q(x)}{2} \, \mathrm{d} \mu}_{\text{Isotropic} \Rightarrow 0}$$

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{-1}^{1} \mu^2 \psi(x,\mu) \,\mathrm{d}\mu$$

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x} \underbrace{\int_{-1}^{1} \mu^{2} \psi(x,\mu) \, \mathrm{d}\mu}_{\text{Second Moment of } \psi(x,\mu)}$$

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\underbrace{\int_{-1}^{1}\mu^{2}\psi(x,\mu)\,\mathrm{d}\mu}_{\text{Second Moment of }\psi(x,\mu)}$$

Each moment adds an equation and an unknown

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\underbrace{\int_{-1}^{1}\mu^{2}\psi(x,\mu)\,\mathrm{d}\mu}_{\text{Second Moment of }\psi(x,\mu)}$$

Each moment adds an equation and an unknown

Multiply and divide by $\int_{-1}^{1} \psi(x,\mu) d\mu$

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{-1}^{1} \psi(x,\mu) \,\mathrm{d}\mu \, \frac{\int_{-1}^{1} \mu^{2} \psi(x,\mu) \,\mathrm{d}\mu}{\int_{-1}^{1} \psi(x,\mu) \,\mathrm{d}\mu}$$

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\underbrace{\int_{-1}^{1}\mu^{2}\psi(x,\mu)\,\mathrm{d}\mu}_{\text{Second Moment of }\psi(x,\mu)}$$

Each moment adds an equation and an unknown

Multiply and divide by $\int_{-1}^{1} \psi(x,\mu) d\mu$

$$\frac{\mathrm{d}}{\mathrm{d}x}\underbrace{\int_{-1}^1 \psi(x,\mu)\,\mathrm{d}\mu}_{\phi(x)}\underbrace{\frac{\int_{-1}^1 \mu^2 \psi(x,\mu)\,\mathrm{d}\mu}{\int_{-1}^1 \psi(x,\mu)\,\mathrm{d}\mu}}_{\langle \mu^2 \rangle(x)}$$

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\underbrace{\int_{-1}^{1}\mu^{2}\psi(x,\mu)\,\mathrm{d}\mu}_{\text{Second Moment of }\psi(x,\mu)}$$

Each moment adds an equation and an unknown

Multiply and divide by $\int_{-1}^{1} \psi(x,\mu) d\mu$

$$\frac{\mathrm{d}}{\mathrm{d}x} \underbrace{\int_{-1}^{1} \psi(x,\mu) \,\mathrm{d}\mu}_{\phi(x)} \underbrace{\int_{-1}^{1} \mu^{2} \psi(x,\mu) \,\mathrm{d}\mu}_{\langle \mu^{2} \rangle(x)}$$

Eddington Factor

$$\langle \mu^2 \rangle(x) = \frac{\int_{-1}^1 \mu^2 \psi(x, \mu) \,\mathrm{d}\mu}{\int_{-1}^1 \psi(x, \mu) \,\mathrm{d}\mu}$$

Eddington Factor

Rearrange derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}\underbrace{\int_{-1}^{1}\mu^{2}\psi(x,\mu)\,\mathrm{d}\mu}_{\text{Second Moment of }\psi(x,\mu)}$$

Each moment adds an equation and an unknown

Multiply and divide by $\int_{-1}^{1} \psi(x,\mu) d\mu$

$$\frac{\mathrm{d}}{\mathrm{d}x} \underbrace{\int_{-1}^{1} \psi(x,\mu) \,\mathrm{d}\mu}_{\phi(x)} \underbrace{\int_{-1}^{1} \mu^{2} \psi(x,\mu) \,\mathrm{d}\mu}_{\langle \mu^{2} \rangle(x)}$$

Eddington Factor

$$\langle \mu^2 \rangle(x) = \frac{\int_{-1}^1 \mu^2 \psi(x, \mu) \, \mathrm{d}\mu}{\int_{-1}^1 \psi(x, \mu) \, \mathrm{d}\mu}$$

Angular flux weighted average of μ^2

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x)+\Sigma_a(x)\phi(x)=Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x)+\Sigma_t(x)J(x)=0 \tag{First Moment}$$

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x) + \Sigma_t(x)J(x) = 0 \tag{First Moment}$$

3 unknowns
$$(\phi(x), J(x), \langle \mu^2 \rangle(x))$$
, 2 equations

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x)+\Sigma_t(x)J(x)=0 \tag{First Moment}$$

3 unknowns $(\phi(x), J(x), \langle \mu^2 \rangle(x))$, 2 equations

Closure: $\langle \mu^2 \rangle(x)$ found through Boltzmann Equation

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x)$$

(Zeroth Moment)

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x) + \Sigma_t(x)J(x) = 0$$

(First Moment)

3 unknowns $(\phi(x),\ J(x),\ \langle \mu^2 \rangle(x))$, 2 equations

Closure: $\langle \mu^2 \rangle(x)$ found through Boltzmann Equation

Moment Equations = angular flux informed diffusion

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x)+\Sigma_t(x)J(x)=0 \tag{First Moment}$$

3 unknowns $(\phi(x), J(x), \langle \mu^2 \rangle(x))$, 2 equations

Closure: $\langle \mu^2 \rangle(x)$ found through Boltzmann Equation

Moment Equations = angular flux informed diffusion

Transport information passed through $\langle \mu^2 \rangle(x)$ and boundary conditions

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x)+\Sigma_t(x)J(x)=0 \tag{First Moment}$$

3 unknowns $(\phi(x), J(x), \langle \mu^2 \rangle(x))$, 2 equations

Closure: $\langle \mu^2 \rangle(x)$ found through Boltzmann Equation

Moment Equations = angular flux informed diffusion

Transport information passed through $\langle \mu^2 \rangle(x)$ and boundary conditions

Analytically pointless: if Boltzmann can be solved, don't need Moment Equations

Moment Equations

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x) \tag{Zeroth Moment}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x) + \Sigma_t(x)J(x) = 0 \tag{First Moment}$$

3 unknowns $(\phi(x), J(x), \langle \mu^2 \rangle(x))$, 2 equations

Closure: $\langle \mu^2 \rangle(x)$ found through Boltzmann Equation

Moment Equations = angular flux informed diffusion

Transport information passed through $\langle \mu^2 \rangle(x)$ and boundary conditions

Analytically pointless: if Boltzmann can be solved, don't need Moment Equations

Numerically: use S_N to compute estimate of $\langle \mu^2 \rangle(x)$, Moment Equations to find $\phi(x)$

Eddington Acceleration

Eddington Acceleration

- 1. Given the previous estimate for the scalar flux, $\phi^{\ell}(x)$, solve for $\psi_n^{\ell+1/2}(x)$
- 2. Compute $\langle \mu^2 \rangle^{\ell+1/2}(x)$
- 3. Solve the Moment Equations for $\phi^{\ell+1}(x)$ using $\langle \mu^2 \rangle^{\ell+1/2}(x)$
- 4. Update the scalar flux estimate with $\phi^{\ell+1}(x)$ and repeat the iteration process until the scalar flux converges

Eddington Acceleration

Eddington Acceleration

- 1. Given the previous estimate for the scalar flux, $\phi^\ell(x)$, solve for $\psi_n^{\ell+1/2}(x)$
- 2. Compute $\langle \mu^2 \rangle^{\ell+1/2}(x)$
- 3. Solve the Moment Equations for $\phi^{\ell+1}(x)$ using $\langle \mu^2 \rangle^{\ell+1/2}(x)$
- 4. Update the scalar flux estimate with $\phi^{\ell+1}(x)$ and repeat the iteration process until the scalar flux converges

Acceleration occurs because

- 1. Angular shape of the angular flux converges quickly \Rightarrow Eddington factor quickly converges
- Moment Equations model all scattering at once ⇒ dependence on source iterations to introduce scattering information is reduced

Produces 2 solutions (S_N and Moment)

Produces 2 solutions (S_N and Moment)

Relaxes consistent differencing requirements important in linear acceleration

Produces 2 solutions (S_N and Moment)

Relaxes consistent differencing requirements important in linear acceleration

Transport can be LDG and Moment can be MHFEM

Produces 2 solutions (S_N and Moment)

Relaxes consistent differencing requirements important in linear acceleration

Transport can be LDG and Moment can be MHFEM

Moment Equations are conservative and relatively inexpensive to solve

Produces 2 solutions (S_N and Moment)

Relaxes consistent differencing requirements important in linear acceleration

Transport can be LDG and Moment can be MHFEM

Moment Equations are conservative and relatively inexpensive to solve

Downside: Which solution is correct?

Produces 2 solutions (S_N and Moment)

Relaxes consistent differencing requirements important in linear acceleration

Transport can be LDG and Moment can be MHFEM

Moment Equations are conservative and relatively inexpensive to solve

Downside: Which solution is correct?

Difference between S_N and Moment solutions can be used as a measure of mesh convergence

Results

Test Problem

S₈ in 1D slab geometry

Lumped Linear Discontinuous Galerkin transport

Mixed Hybrid Finite Element Method Moment

Scale cross sections, source

$$\Sigma_t \to \Sigma_t/\epsilon$$

$$\Sigma_a \to \epsilon \Sigma_a$$

$$Q \to \epsilon Q$$

System becomes diffusive as $\epsilon \to 0$

Scale cross sections, source

$$\Sigma_t \to \Sigma_t/\epsilon$$

$$\Sigma_a \to \epsilon \Sigma_a$$

$$Q \to \epsilon Q$$

System becomes diffusive as $\epsilon \to 0$

Scale cross sections, source

$$\Sigma_t \to \Sigma_t/\epsilon$$

$$\Sigma_a \to \epsilon \Sigma_a$$

$$Q \to \epsilon Q$$

System becomes diffusive as $\epsilon \to 0$

Survives diffusion limit

Scale cross sections, source

$$\Sigma_t \to \Sigma_t/\epsilon$$

$$\Sigma_a \to \epsilon \Sigma_a$$

$$Q \to \epsilon Q$$

System becomes diffusive as $\epsilon \to 0$

Survives diffusion limit

Performs similarly to consistently differenced, linear acceleration (S2SA)

Convergence Rate Comparison

Convergence Rate Comparison

Convergence Rate Comparison

Fast rate of convergence of $\langle \mu^2 \rangle(x)$ is transfered to $\phi(x)$

Set Q(x) to force solution to

$$\phi(x) = \sin\left(\frac{\pi x}{x_b}\right)$$

Compare numerical results to MMS solution as cell width is decreased

Set Q(x) to force solution to

$$\phi(x) = \sin\left(\frac{\pi x}{x_b}\right)$$

Compare numerical results to MMS solution as cell width is decreased

Set Q(x) to force solution to

$$\phi(x) = \sin\left(\frac{\pi x}{x_b}\right)$$

Compare numerical results to MMS solution as cell width is decreased

Data reconstruction: recover linear representation from MHFEM $\phi(x)$

Set Q(x) to force solution to

$$\phi(x) = \sin\left(\frac{\pi x}{x_b}\right)$$

Compare numerical results to MMS solution as cell width is decreased

Data reconstruction: recover linear representation from MHFEM $\phi(x)$

All second order as expected

Set Q(x) to force solution to

$$\phi(x) = \sin\left(\frac{\pi x}{x_b}\right)$$

Compare numerical results to MMS solution as cell width is decreased

Data reconstruction: recover linear representation from MHFEM $\phi(x)$

All second order as expected

Eddington Acceleration did not effect the order of accuracy of lumped LDG

Set Q(x) to force solution to

$$\phi(x) = \sin\left(\frac{\pi x}{x_b}\right)$$

Compare numerical results to MMS solution as cell width is decreased

Data reconstruction: recover linear representation from MHFEM $\phi(x)$

All second order as expected

Eddington Acceleration did not effect the order of accuracy of lumped LDG

All slope recovery methods have similar accuracy

Compare

$$\frac{\left\|\phi_{\mathsf{S}_{N}}(x) - \phi_{\mathsf{Moment}}(x)\right\|}{\left\|\phi_{\mathsf{Moment}}(x)\right\|}$$

 $\text{ as } h \to 0$

Compare

$$\frac{\|\phi_{\mathsf{S}_N}(x) - \phi_{\mathsf{Moment}}(x)\|}{\|\phi_{\mathsf{Moment}}(x)\|}$$

as $h \to 0$

Compare

$$\frac{\left\|\phi_{\mathsf{S}_{N}}(x) - \phi_{\mathsf{Moment}}(x)\right\|}{\left\|\phi_{\mathsf{Moment}}(x)\right\|}$$

as $h \to 0$

 S_N and Moment solutions converge as mesh is refined

Compare

$$\frac{\left\|\phi_{\mathsf{S}_{N}}(x) - \phi_{\mathsf{Moment}}(x)\right\|}{\left\|\phi_{\mathsf{Moment}}(x)\right\|}$$

as $h \to 0$

 S_N and Moment solutions converge as mesh is refined Slope recovery effects solution convergence but not accuracy

Data Reconstruction Diffusion Limit

Data Reconstruction Diffusion Limit

All data reconstruction methods survived diffusion limit

Data Reconstruction Diffusion Limit

All data reconstruction methods survived diffusion limit

Eddington Acceleration is externely robust

Conclusions

Summary

Conclusions

- Scheme successfully accelerated source iteration in 1D slab geometry
- Eddington Acceleration is uniquely suited for radiation hydrodynamics
 - Transport and acceleration steps can be differenced with different methods
 - Reduces expense of source iteration
 - Provides inexpensive, conservative solution
- Showed MHFEM/LLDG pairing is robust

Summary

Conclusions

- Scheme successfully accelerated source iteration in 1D slab geometry
- Eddington Acceleration is uniquely suited for radiation hydrodynamics
 - Transport and acceleration steps can be differenced with different methods
 - Reduces expense of source iteration
 - Provides inexpensive, conservative solution
- Showed MHFEM/LLDG pairing is robust

Future Work

- Add temperature for radiative transfer
- Higher dimensions
- Develop an efficient rad hydro algorithm that makes use of the inexpensive Moment solution in multiphysics iterations

References

- M. L. ADAMS and E. W. LARSEN, Fast Iterative Methods for Discrete-Ordinates Particle Transport Calculations, vol. 40, Progress in Nuclear Technology, 2002.
- [2] R. E. ALCOUFFE, Diffusion Synthetic Acceleration Methods for the Diamond-Differenced Discrete-Ordinates Equations, 1977.
- [3] S. BOLDING AND J. HANSEL, Second-Order Discretization in Space and Time for Radiation-Hydrodynamics, Journal of Computational Physics, 2017.
- [4] F. BREZZI AND M. FORTIN, Mixed and Hybdrid Finite Element Methods, Springer, 1991.
- [5] J. I. CASTOR, Radiation Hydrodynamics, Lawrence Livermore National Laboratory, 2003.
- [6] C. NEWMAN, D. KNOLL, AND R. PARK, Nonlinear Acceleration of Transport Criticality Problems, Los Alamos National Laboratory, 2011.
- [7] S. N. SHORE, An Introduction to Astrophysicial Hydrodynamics, Academic Press, Inc., 1992.
- [8] J. S. WARSA, T. A. WAREING, AND J. E. MOREL, Fully Consistent Diffusion Synthetic Acceleration of Linear Discontinuous Transport Discretizations on Three-Dimensional Unstructured Meshes.

Data Reconstruction Methods

MHFEM $\phi(x)$ is piecewise constant with discontinuous cell edges $(\phi_{i-1/2},\,\phi_i,\,\phi_{i+1/2})$

LLDG is linear discontinuous $(\phi_{i,L}, \phi_{i,R})$

Need a way to recover slope information when S_N scattering term is updated with MHFEM $\phi(x)$

No Slopes:

$$\phi_{i,L/R} = \phi_{i\mp1/2}^*$$

Slopes from Edges:

$$\phi_{i,L/R} = \phi_i^* \mp \frac{1}{2} \left(\phi_{i+1/2}^* - \phi_{i-1/2}^* \right)$$

vanLeer on Centers:

$$\phi_{i,L/R} = \phi_i^* \mp \frac{1}{4} \xi_{\mathrm{VanLeer}} \left[\left(\phi_{i+1}^* - \phi_i^* \right) + \left(\phi_i^* - \phi_{i-1}^* \right) \right]$$

S₈ v. Diffusion

Small system \Rightarrow diffusion not expected to be accurate

S₈ v. Drift Diffusion

Use $\langle \mu^2 \rangle(x)$ from S_8 in Moment Equations

S₈ v. Drift Diffusion

Use $\langle \mu^2 \rangle(x)$ from S₈ in Moment Equations

Moment Equations and S_N match!

S₈ v. Drift Diffusion

Use $\langle \mu^2 \rangle(x)$ from S₈ in Moment Equations

Moment Equations and S_N match!

Requires knowledge of angular flux