Tutorial 8

 $Hong\ Xiang\ Yue$

25/04/2019

Part A

Question 1a

We have

$$R^2 = 1 - \frac{SSR}{SST}$$

and

$$\bar{R}^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)}$$

.

Prove that

$$\bar{R}^2 = 1 - (1 - R^2)(\frac{n-1}{n-k-1})$$

Question 1c

Problems with R^2

- Adding more variables will never decrease R^2 , regardless of how rubbish they are
- ➤ You can have a model which is 99% junk but still appear to have a good fit
- This is problematic when you want to choose the most important variables for your model
- The model with the most variables will always have the highest R^2

Advantages of \bar{R}^2

- A penalty is added for each variable included in the model
- $ightharpoonup ar{R}^2$ will only increase if the new variables adds more explanatory power than the penalty

Question 2

The estimated equation should be

$$\textit{price} = -21.7703 + 0.0021 \times \textit{lotsize} + 0.1228 \times \textit{sqrft} + 13.852 \textit{bdrms} \\ \text{(0.0132)} \times \text{(0.0101)}$$

$$n = 88, R^2 = 0.672, \bar{R}^2 = 0.661, \hat{\sigma} = 59.833$$

Question 2a

The predicted price (in thousands of dollars) is $\neg 21.7703 + 0.0021 \times 10000 + 0.1228 \times 2300 + 13.8525 \times 4 = 337.08$

- Note, this is the same as estimating the conditional mean of a house with these characteristics
- The only difference between E[price|lotsize = 10000, sqrft = 2300, bdrms = 4] and $y_i|lotsize = 10000, sqrft = 2300, bdrms = 4$ is the error term u_i
- ➤ Since this cannot be predicted, our point estimate will be the same for both
- Things change when we have an interval estimate

The linear regression model

$$y = \beta_0 + \beta_1 x + u$$

- Two components:
- ▶ Deterministic component $E(y|x) = \beta_0 + \beta_1 x$, aka conditional mean
- ▶ Random errors: u where $u \sim N(0, \sigma^2)$ (intrinsic variability)
- ▶ Running a regression gives us \hat{y} which estimates E(y|x)
- \triangleright \hat{y} also estimates y

Confidence interval for the conditional mean

- ► We need some sort of measure of how dispersed our regression lines will be around the true conditional mean
- ► This is different from $\hat{\sigma}^2$ which we use to estimate σ^2 , the variance of the errors
- ▶ What we want is the variance of the estimation error or $Var(\hat{y})$
- ▶ I.e. how much will \hat{y} move around if we took different samples
- Also called the variance of the sampling error

Question 2b

To calculate the confidence interval for E[price|lotsize=10000, sqrft=2300, bdrms=4] we need to run a regression of $price_i$ on $(lotsize_i-10000), (sqrft_i-2300)$ and $(bdrms_i-4)$.

- ► The point estimate for the conditional mean will be given by the intercept of the regression
- We can also use the standard error on the intercept to get our confidence interval

Question 2b

CI for
$$E[price|lotsize = 10000, sqrft = 2300, bdrms = 4]$$

= $[337.08 \pm t_{60}(0.975) \times 7.374466] = [321.96, 351.46]$

- ► We are 95% confident that the conditional mean for a house with these characteristics would lie in this interval
- ► Would we be 95% sure that the price of a house with these characteristics would lie in this interval? NO
- ► This only accounts for *estimation* uncertainty and not uncertainty due to the error term *u*_i

Question 2cv

Now we calculate a prediction interval for a house with these characteristics.

- The point estimate will be the same, but the standard error of the prediction will have two components: estimation uncertainty and 'intrinsic' uncertainty
- ▶ There is estimation uncertainty because we don't know what β is, only what $\hat{\beta}$ is
- There is intrinsic uncertainty, because even if we did know the true values of the β s, each observation has a random component u
- ► The standard error of prediction $var(\hat{e}_i) = \hat{\sigma}^2 + [se(\hat{y}_i)]^2$
- Most of the time estimation uncertainty is small, so we can ignore $se(\hat{y}_i)$

Part B

Question 1a

We have a data set on the characteristics of individuals in the labour force and estimated a model of the form

$$ln(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2 + \beta_3 female + \beta_4 married + \beta_5 urban + u$$

where female, married and urban are dummy variables.

Question 1 Output

Dependent Variable: LOG(WAGE)

Method: Least Squares

Sample: 1 526

Included observations: 526

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C EDUC EXPER EXPER*2 FEMALE MARRIED URBAN	0.3354 0.0762 0.0360 -0.0006 -0.3319 0.0812 0.1773	0.1012 0.0070 0.0052 0.0001 0.0361 0.0415 0.0409	3.3136 10.8122 6.9935 -5.7341 -9.2063 1.9546 4.3410	0.0010 0.0000 0.0000 0.0000 0.0000 0.0512 0.0000
R-squared	0.4232	Mean dependent var		1.6233

Figure 1:

► Most of these variables are statistically significant at the 5% level because their p-values are close to zero

Question 1b

How do we interpret the estimated coefficients of the model?

$$ln(y) = \beta_0 + \beta_1 x + u$$

- ► For a one unit change in x $\%\Delta y \approx \beta_1 \times 100$, approximation only valid if $|\beta_1| < 0.1$
- ▶ The exact expression is $\%\Delta y = (e^{\beta_1} 1) \times 100\%$

Question 2

Open up the victouristquarterly.wf1 file in EViews and estimate a model of the form:

$$ln(VIC) = \beta_0 + \beta_1 T + \beta_2 Q 1 + \beta_3 Q 2 + \beta_4 Q 3 + u$$

- T is the deterministic time trend
- Q1, Q2 and Q3 are dummy variables for each quarter of the year

Why do we not include a dummy variable for Q4? What would happen if we did?

https://flux.qa/LDPPHD

Question 2b

If we dropped the dummy variable Q1 and included a dummy variable for Q4, how would that affect:

- the coefficient estimates?
- $ightharpoonup R^2$ of the model?
- ► SSR?

Question 2c

Plot (by hand) the predictions of ln(VIC) across time for each of the quarters.

▶ These lines should all be parallel but with different intercepts

Now, generate a new series by taking the natural logarithm of the variable VIC and create a seasonal plot

- ► Go to view and select graph
- ▶ In the graph options click on Seasonal Graph and press Enter

Question 2d

Use a t-test to test the hypothesis that the true intercepts for Q2 and Q3 are equal vs the alternative they are not with $\alpha=0.05$.

- What model should we estimate to test this hypothesis?
- https://flux.qa/LDPPHD

Question 2e

At the 5% significance level, test whether or not there exists a structural break in the intercepts for each quarter and the time trend due to the 2008 global financial crisis.

- ► To create the dummy variable, go to generate series and type "@after("2008Q3")"
- Run a regression with the gfc dummy variable now included and 4 extra variables GFC * T, GFC * Q1, GFC * Q2 and GFC * Q3
- What is the null hypothesis that we are testing?