

Transformação de Dados

Ciência de Dados II

Professor: Gabriel Machado Lunardi

gabriel.lunardi@ufsm.br

O processo de KDD

"É um processo de várias etapas, não trivial, **interativo** e **iterativo**, para a identificação de **padrões** válidos, novos e potencialmente úteis a partir de um grande conjunto de dados" (FAYYAD, 1996).

Introdução à Transformação de dados

- √ Várias técnicas de aprendizado de máquina são limitadas à manipulação de valores de determinados tipos,
 - ✓ valores numéricos
 - ✓ ou simbólicos (categóricos).
- ✓ Converter de um tipo para o outro e vice-versa conforme a necessidade.
- ✓ Conversão Numérico-simbólico.

✓ Conversão Simbólico-numérico.

✓ Amostragem

Amostragem

• Algoritmos de AM podem ter:

- Alta complexidade computacional
- Grande demanda de memória
- Consequências:
 - Treinamento lento
 - Dificuldade de processamento

Amostragem

Solução: Utilização de Amostras

Geração de subconjuntos menores de dados

- Agilizam o treinamento
- Simplificam a geração do modelo

• Amostras **não representativas** levam a:

- Modelos com baixa eficiência
- Falha em capturar a distribuição real dos dados

Técnicas de amostragem

Solução: Técnicas de Amostragem Estatística

- Garantem amostras informativas e representativas
- Técnicas comuns:
 - Amostragem Simples
 - Seleção aleatória sem viés (com ou sem reposição)
 - Amostragem Estratificada
 - Divisão em subgrupos (estratos) para preservar proporções

Amostragem – exemplo

ID	Diagnóstico	Textura (1-10) Tamanho (mm)		Idade
1	M	6	25	45
2	В	2	12	32
3	M	8	30	58
4	В	3	15	40
5	В	1	10	28
6	M	7	22	50
7	В	2	11	35
8	M	9	28	60
9	В	4	18	42
10	M	5	20	55

Considere o dataset de exemplo ao lado que versa sobre diagnósticos de câncer.

Amostragem simples

- ✓ Vamos extrair uma amostra simples
- ✓ Observe como tivemos um desbalanceamento

✓ Exemplo de amostra 1

ID	Diagnóstico	Textura (1-10)	Tamanho (mm)	Idade
1	M	6	25	45
3	M	8	30	58
6	M	7	22	50
7	В	2	11	35

Amostragem simples

- ✓ Vamos extrair uma amostra simples
- ✓ Observe como tivemos um balanceamento por sorte

✓ Exemplo de amostra 2

ID	Diagnóstico	Textura (1-10)	ra (1-10) Tamanho (mm)	
1	M	6	25	45
4	В	3	15	40
6	M	7	22	50
7	В	2	11	35

Quando usar

Dados são naturalmente balanceados

Amostragem simples

X Limitações

- Risco de **amostras desbalanceadas** em pequenos conjuntos de dados.
- Pode subrepresentar classes minoritárias
 - ex.: tumores raros.

Amostragem estratificada

✓ Observe como a proporção original das classes é mantida.

- ✓ Exemplo de amostra
 - ✓ Se extraíssemos outra amostra, teríamos o mesmo comportamento

ID	Diagnóstico	Textura (1-10)	Tamanho (mm)	Idade
1	M	6	25	45
6	M	7	22	50
4	В	3	15	40
9	В	4	18	42

Amostragem simples

- Quando usar:
- Dados desbalanceados
 - ex.: 90% benignos vs. 10% malignos.
- Classes minoritárias são importantes
- Validar modelos
 - métricas precisas (ex.: recall para câncer).

X Limitações:

- Requer conhecimento prévio das distribuições das classes.
- Pode ser computacionalmente mais complexo

Exemplo:

- Prever fraudes em transações
 - fraudes são raras, mas críticas.

Comparação das técnicas de amostragem

Critério	Amostragem Simples	Amostragem Estratificada	
Balanceamento Assume equilíbrio		Força proporções	
Complexidade Baixa		Moderada	
Uso Típico Exploratório/Rápido		Modelos críticos	
Risco de Viés	Alto (se desbalanceado)	Baixo	

Conversão numérico-simbólico

Conversão numérico-simbólico

- ✓ Se o atributo numérico foi discreto e binário, a conversão é trivial. Basta associar um nome a cada valor
 - ✓ Exemplo

Atributo original (valores possíveis)	Atributo transformado		
1 ou 0	Sim ou Não		

- ✓ Caso não exista ordem entre os atributos numéricos, basta associar um nome ou uma categoria a cada um.
 - ✓ Exemplo

Atributo original (valores possíveis)	Atributo transformado
2, 4, 1, 7	Casa, apartamento, terreno, trailer

Conversão numérico-simbólico

- ✓ Nos demais casos, métodos de **discretização** permitem transformar atributos quantitativos (numéricos) em qualitativos. Para isso, transformam valores numéricos em intervalos ou categorias.
 - ✓ Dependem do tipo de algoritmo que será utilizado na etapa de mineração.
 - ✓ Discretização paramétrica.
 - ✓ Discretização não-paramétrica.

Normalização

Normalização de dados

- ✓É o processo de uniformizar os valores dos dados.
- ✓É recomendável quando os limites de valores de atributos distintos são muito diferentes. Ela evita que um atributo predomine sobre o outro (a menos que isso seja importante).
- ✓ Normalização por amplitude

Normalização por amplitude

- ✓ Pode acontecer por reescala ou por padronização.
- ✓ Reescala (min-max)
 - ✓ Define uma nova escala de valores, limites mínimo e máximo, para todos os atributos.

$$x_{ij} = \frac{x_{ij} - \min_j}{\max_j - \min_j}$$

- ✓ Padronização
 - ✓ Define um valor central e um valor de espalhamento comuns para todos os atributos.

$$x_{ij} = \frac{x_{ij} - \bar{x}_{\cdot j}}{s_j}$$

Quando usar uma ou outra?

Característica	Min-Max (Reescala)	Z-Score (Padronização)
Intervalo	[0, 1] ou [-1, 1] Sem limites fixos	
Média	Não necessariamente 0	Sempre 0
Desvio Padrão	Varia	Sempre 1
Efeito em Outliers	Sensível	Mais robusto
Uso típico	Redes Neurais, K-NN	Regressão, SVM, PCA

- Min-Max se precisar de dados em uma escala fixa e sem outliers extremos.
- •Z-Score se os dados tiverem outliers ou se o algoritmo assumir normalidade.

- ✓ Atributo categórico com dois valores possíveis
 - ✓ Um dígito binário é suficiente
 - ✓ Exemplo 1: atributo categórico nominal

Tem manchas na pele					
Valores possíveis do atributo original Valores possíveis para o atributo transformado					
Sim ou Não	1 ou 0				

✓ Exemplo 2: atributo categórico ordinal

Risco de colisão					
Valores possíveis do atributo original Valores possíveis para o atributo transformado					
Baixo ou Alto	0 ou 1				

✓ Exemplo 3: conjunto de dados hospital

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	М	79	Grandes	38,0	2	SP	Doente
Maria	18	F	67	Pequenas	39,5	4	MG	Doente
Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
José	18	М	43	Grandes	38,5	8	MG	Doente
Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
Marta	19	F	87	Grandes	39,0	6	AM	Doente
Paulo	34	М	67	Médias	38,4	2	GO	Saudável

✓ Exemplo 3: conjunto de dados hospital

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	М	79	Grandes	38,0	2	SP	Doente
Maria	18	F	67	Pequenas	39,5	4	MG	Doente
Luiz	49	M	92	Grandes	38,0	2	RS	Saudável
José	18	М	43	Grandes	38,5	8	MG	Doente
Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
Marta	19	F	87	Grandes	39,0	6	AM	Doente
Paulo	34	M	67	Médias	38,4	2	GO	Saudável

✓ Exemplo 3: conjunto de dados hospital

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	0	79	Grandes	38,0	2	SP	Doente
Maria	18	1	67	Pequenas	39,5	4	MG	Doente
Luiz	49	0	92	Grandes	38,0	2	RS	Saudável
José	18	0	43	Grandes	38,5	8	MG	Doente
Cláudia	21	1	52	Médias	37,6	1	PE	Saudável
Ana	22	1	72	Pequenas	38,0	3	RJ	Doente
Marta	19	1	87	Grandes	39,0	6	AM	Doente
Paulo	34	0	67	Médias	38,4	2	GO	Saudável

- ✓ Atributo categórico com mais de dois valores possíveis
 - ✓ A conversão dependerá se o atributo é nominal ou ordinal.

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	М	79	Grandes	38,0	2	SP	Doente
Maria	18	F	67	Pequenas	39,5	4	MG	Doente
Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
José	18	М	43	Grandes	38,5	8	MG	Doente
Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
Marta	19	F	87	Grandes	39,0	6	AM	Doente
Paulo	34	М	67	Médias	38,4	2	GO	Saudável

- ✓ Atributo categórico nominal com mais de dois valores possíveis
 - ✓ A inexistência de ordem entre os valores deve ser mantida após a conversão.
 - ✓ Para isso, utilizar a codificação canônica (também conhecido como one-hot-encoding).
 - ✓ Podemos utilizar uma quantidade **C de bits** para representar os valores.
 - ✓ Exemplo isolado: atributo cor.

Cor
Azul
Amarelo
Vermelho
Verde
Azul
Vermelho
Amarelo
Amarelo

Cor	Cor
zul	1000
marelo	0100
ermelho/	0010
'erde	0001
	-

A distância entre um valor e outro é a mesma para qualquer valor, respeitando a inexistência de ordem nos valores transformados em reação aos originais.

Dependendo do quantidade de valores categóricos distintos, essa codificação gerará cadeias de bits muito grandes. Por exemplo: 193 nomes de países.

✓ Atributo categórico nominal com mais de dois valores possíveis

✓ Quando tivermos muitas categorias como os países do exemplo anterior, podemos representa-los por um conjunto de pseudoatributos do tipo binário, inteiro ou real.

Pseudoatributo	Valor	Tipo
Continente	7	Inteiro
PIB	1	Real
População	1	Inteiro
Temp Méd. anual	1	Real
Área	1	Real

✓ A combinação desses 5 pseudoatributos criados representa um país.

- ✓ Atributo categórico ordinal com mais de dois valores possíveis
 - ✓ A relação de ordem deve ser preservada.
 - ✓ Devemos ordenar os valores ordinais e codificar cada um de acordo com sua posição na ordem com um valor inteiro ou um valor real.
 - ✓ Exemplo 1: atributo isolado <u>ranking</u>:

Ranking
Primeiro
Terceiro
Segundo
Primeiro
Segundo
Quarto
Segundo
Quarto

Ranking
Primeiro
Segundo
Terceiro
Quarto

Ranking
0
1
2
3

A distância entre um valor e outro varia de acordo com a posição.
Portanto, isso evidencia a preservação da ordem em relação aos dados originais

- ✓ Atributo categórico ordinal com mais de dois valores possíveis
 - ✓ Exemplo 2: dataset hospital

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	М	79	Grandes	38,0	2	SP	Doente
Maria	18	F	67	Pequenas	39,5	4	MG	Doente
Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
José	18	М	43	Grandes	38,5	8	MG	Doente
Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
Marta	19	F	87	Grandes	39,0	6	AM	Doente
Paulo	34	М	67	Médias	38,4	2	GO	Saudável

- ✓ Atributo categórico ordinal com mais de dois valores possíveis
 - ✓ Exemplo 2: dataset hospital

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	М	79	Grandes	38,0	2	SP	Doente
Maria	18	F	67	Pequenas	39,5	4	MG	Doente
Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
José	18	М	43	Grandes	38,5	8	MG	Doente
Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
Marta	19	F	87	Grandes	39,0	6	AM	Doente
Paulo	34	М	67	Médias	38,4	2	GO	Saudável

- ✓ Atributo categórico ordinal com mais de dois valores possíveis
 - ✓ Exemplo 2: dataset hospital

Nome	Idade	Sexo	Peso	Manchas	Temp.	#Int.	Estado	Diagnóstico
João	28	М	79	3	38,0	2	SP	Doente
Maria	18	F	67	1	39,5	4	MG	Doente
Luiz	49	М	92	3	38,0	2	RS	Saudável
José	18	М	43	3	38,5	8	MG	Doente
Cláudia	21	F	52	2	37,6	1	PE	Saudável
Ana	22	F	72	1	38,0	3	RJ	Doente
Marta	19	F	87	3	39,0	6	AM	Doente
Paulo	34	М	67	2	38,4	2	GO	Saudável

- 1 Pequena
 - 2 Média
- 3 Grande

- ✓ Atributo categórico ordinal com mais de dois valores possíveis
 - ✓ Caso seja preciso converter valores ordinais em valores binários, pode ser utilizado o código termômetro. O aumento dos valores de assemelha ao aumento de temperatura em um termômetro analógico.
 - ✓ Exemplo do atributo ranking.

Ranking
Primeiro
Terceiro
Segundo
Primeiro
Segundo
Quarto
Segundo
Quarto

Primeiro Segundo Terceiro	Ranking
Terceiro	Primeiro
-	Segundo
Quarto	Terceiro
Quarto	Quarto

Ranking
0001
0011
0111
1111

A distância entre um valor e outro varia de acordo com a posição.

Portanto, isso evidencia a preservação da ordem em relação aos dados originais