Household Finance PhD Course

Diversification

Paolo Sodini

2023

Copyright © Paolo Sodini. All rights reserved.

Outline: Diversification

- Variance decomposition
 - Idiosyncratic vs systematic risk
 - Evidence
- Asset Pricing Models
 - Only systematic risk is priced diversification
 - First vs second empirical moments
 - Measurement of expected returns
- Welfare loss
 - The role of risk taking
- Sophistication, diversification and risk taking
 - behavioral vs household finance
 - mistakes

Previous Findings

Blume and Friends (1975, 1978)

- 1971 Tax Records and 1962 Fed Survey
- no information on funds
- households hold directly few stocks on average

Kelly (1995)

- 1983 wave of the SCF
- no information on size of fund investments
- households without funds do not hold more stocks

Goetzmann and Kumar (2008)

- US brokerage house data
- households hold undiversified directly held stock portfolios

Methodology

Compare household portfolios with diversified indexes

Benchmarks (83-04)

- MSCI All Country World Index
 - hedged for currency risk
 - unhedged
- Swedish Stock Index

Calculate underdiversification losses

Statistical Risk Decomposition

- Mean-Variance analysis (Markowitz 1952)
- Sharpe Ratio Loss
 - Measure of efficiency in risky portfolio
- Return Loss
 - Takes into account risk exposure

Risk exposure

Statistical Decomposition (risky portfolio)

Excess Return

$$r_{h,t}^e = \alpha_h + \beta_h r_{B,t}^e + \varepsilon_{h,t}$$

Variance

Total risk

Systematic risk

Idiosyncratic risk

$$\sigma_h \geq \beta_h \sigma_B$$

$$\Rightarrow$$

$$\sigma_h = \beta_h \sigma_R$$

Full Diversification

Plot
$$\sigma_h$$
 on β_h

Volatility and Beta of Risky Porfolios

Risk Exposure

In their risky portfolio, the majority of households have

- more than 19.5% total volatility
- more than 14.4% idiosyncratic risk (wrt hedged world index)
- an idiosyncratic variance share $\sigma_{i,h}^2/\sigma_h^2$ of at least 54.9%

Idiosyncratic risk is a large component of Swedish household risky portfolios. How?

Households with

- low idiosyncratic risk, have portfolio concentrated in mutual funds
- high idiosyncratic risk, have portfolios concentrated in stocks
- average idiosyncratic risk, have diversified portfolio of correlated stocks and mutual funds

Estimation of First and Second Moments

- Financial asset returns are very volatile
- High estimation errors of sample means
 - World index vol of 15% implies that one needs 3000 years of data to reach a 90% confidence interval of +/-50bp
 - With 100 years of data the 90% confidence interval is +/2.5% of 6.5%!
- Need long time series to estimate means reasonably
- Second moments estimated accurately
 - precision increases with frequency
 - 90% confidence interval of 2.5% on vol with only 5 years of monthly returns, less than 50bp with 3 years of daily returns!

Standard Error of Mean

Standard error for sample means, T years:

$$StdErr_{y} = \frac{StdDev_{y}}{\sqrt{T}}$$

• With monthly data $StdErr_m = \frac{StdDev_m}{\sqrt{12\times T}}$, and annualized:

$$StdErr_m^{annual} = 12 \frac{StdDev_m}{\sqrt{12 \times T}} = 12 \frac{\sqrt{12} \, StdDev_m/\sqrt{12}}{\sqrt{12 \times T}} = \frac{StdDev_m^{annual}}{\sqrt{T}}$$

No gain in precision

- Need long time series to estimate means reasonably
- Precision is independent from frequency

Standard Error of Volatility

Standard error for sample volatility

$$StdErr_{y} = \frac{StdDev_{y}}{\sqrt{2(T-1)}}$$

• With monthly data $StdErr_m = \frac{StdDev_m}{\sqrt{2(12\times T-1)}}$, and annualized

$$StdErr_m^{annual} = \sqrt{12} \frac{StdDev_m}{\sqrt{24T-2}} = \sqrt{12} \frac{\sqrt{12} \, StdDev_m/\sqrt{12}}{\sqrt{24T-2}} = \frac{StdDev_m^{annual}}{\sqrt{24T-2}}$$

$$\sqrt{24T-2}$$
 $-\sqrt{2T-2}$ gain in precision

 Higher frequency data implies better precision for volatility estimates

Asset Pricing Models: Merton (1980)

Assume that asset pricing models hold

$$E(r_{h,t}^e) = \beta_h E(r_{B,t}^e)$$

• $\beta_h = Cov(r_{h,t}^e, r_{B,t}^e) / Var(r_{B,t}^e)$ estimated only through second moments

Use long-term estimated premia for each factor

- Best estimate of sample means
- Easy to perform robustness checks

Use different asset pricing models

- CAPM
 - Hedged world index is mean-variance efficient
- Fama-French three-factor model
 - Market, size, and value factors

Relative Sharpe Ratio Loss

Sharpe ratios slopes of capital allocation lines

Household h relative Sharpe ratio loss wrt benchmark S_B

$$RSRL_h = 1 - \frac{S_h}{S_B}, \qquad S_h = \frac{\mu_h}{\sigma_h}$$

Return Loss

- Relative Sharpe ratio loss does not consider the amount of risk a household is taking
- Return the investor is giving up by choosing a suboptimal portfolio compared to a benchmark

Return Losses

- The majority of Swedish households loose less than 30bp (or 33\$) per year with respect to the unhedged world index
- Risky portfolios have return losses three times as large as complete portfolios
- 5% of households sustain substantial losses (>2.5% or 851\$ per year)
- We do not account for mutual fund fees

Scatter Plots of Household Portfolios

Complete Portfolios

Return Loss Decomposition

Decompose the complete portfolio return loss

Systematic exposure of risky portfolio

Contributors to Complete Return Loss

	Return Loss In(RL _{complete,h})			Risky Share In(w _h)			Risky Portfolio Beta In β _h			Diversification Loss In RSRL _h /(1-RSRL _h)		
	Estimate	Std Err	Change	Estimate	Std Err	Change	Estimate	Std Err	Change	Estimate	Std Err	Change
Intercept	-1.093	0.055	1	-2.752	0.053	-	-0.108	0.027	_	-0.127	0.030	_
Disposable Income	0.007	0.002	2.1%	-0.007	0.002	-2.1%	0.009	0.001	2.7%	0.005	0.001	1.5%
Log of Financial Wealth	0.090	0.004	14.1%	0.137	0.004	22.3%	-0.016	0.002	-2.2%	-0.032	0.002	-4.5%
Log of Real-Estate Wealth	0.008	0.001	5.1%	0.005	0.001	3.2%	0.003	0.001	2.1%	0.000	0.001	-0.3%
Age	-0.001	0.001	-1.9%	-0.001	0.001	-1.9%	-0.002	0.000	-3.7%	0.002	0.000	3.8%
High-School Dummy	0.111	0.016	10.5%	0.107	0.016	10.2%	0.057	0.008	5.6%	-0.053	0.009	-5.5%
Post High-School Dummy	0.173	0.013	18.9%	0.124	0.013	13.2%	0.042	0.007	4.3%	0.006	0.007	0.6%
Missing Education	0.112	0.024	11.9%	0.087	0.024	9.1%	-0.037	0.012	-3.7%	0.063	0.013	6.5%
Immigration Dummy	0.043	0.017	4.4%	-0.112	0.017	-10.6%	0.045	0.009	4.6%	0.110	0.009	11.6%
Household Size	-0.143	0.005	-16.9%	-0.086	0.005	-10.5%	-0.010	0.002	-1.3%	-0.047	0.003	-5.9%
Retired Dummy	-0.043	0.022	-4.2%	-0.023	0.021	-2.3%	-0.050	0.011	-4.9%	0.031	0.012	3.1%
Unemployment Dummy	-0.086	0.021	-8.2%	-0.105	0.021	-9.9%	-0.001	0.011	-0.1%	0.020	0.012	2.0%
Entrepreneur Dummy	-0.115	0.029	-10.8%	-0.261	0.028	-22.9%	0.097	0.014	10.2%	0.049	0.016	5.0%
Student Dummy	0.020	0.031	2.0%	0.069	0.030	7.1%	-0.053	0.015	-5.2%	0.004	0.017	0.4%
Private Pension Premia/Incom	0.248	0.074	1.8%	0.352	0.071	2.6%	-0.016	0.037	-0.1%	-0.087	0.040	-0.6%
Log of Total Liabilities	0.012	0.001	7.0%	0.004	0.001	2.3%	0.010	0.001	5.6%	-0.002	0.001	-0.9%
Adjusted R ²	0.034			0.039			0.050			0.030		

Intuition

Who Incurs Return Losses?

- Financially sophisticated households (rich, educated, ...) invest efficiently (more in mutual funds) but take more risk and loose more from underdiversification
- Unsophisticated households (poor, less educated, ...)
 invest inefficiently but limit their losses by taking less
 risk

Interpretation: less sophisticated households are aware of their limitations and take less financial risk

Implication: confidence in financial products might encourage investment in risky assets

Conclusions

- At least 50% of portfolio risk is idiosyncratic for the majority of Swedish households
- Swedish households suffer modest losses from diversification
 - Mutual funds play a vital role in improving diversification
 - Losses in risky portfolios are contained by reduced risk taking
- Financial sophistication improves portfolio efficiency but also increases risk-taking resulting in higher return losses
- Less sophisticated households might be simply aware of their limitations
- Why do households tilt their portfolio away from diversified benchmarks?
 - e.g. entrepreneurs