and

$$b = 2A^{1} + 2A^{2} - \theta A^{4} + \theta A^{4}$$

= $2A^{1} + 2A^{2} - \theta (A^{1} + A^{3}) + \theta A^{4}$
= $(2 - \theta)A^{1} + 2A^{2} - \theta A^{3} + \theta A^{4}$.

In the first case, the point $(2, 2 - \theta, 0, \theta)$ is a feasible solution iff $0 \le \theta \le 2$ and the value of the objective function is $2 - \theta$, and in the second case, the point $(2 - \theta, 2, -\theta, \theta)$ is a feasible solution iff $\theta = 0$ and the value of the objective function is 2. This time there is no way to improve the objective function and we have reached an optimal solution $u_2 = (2, 2, 0, 0)$ with the maximum of the objective function equal to 2.

Let us now consider an example of an unbounded linear program.

Example 46.3. Let (P) be the following linear program in standard form.

maximize
$$x_1$$

subject to
$$x_1 - x_2 + x_3 = 1$$
$$-x_1 + x_2 + x_4 = 2$$
$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0.$$

The matrix A and the vector b are given by

$$A = \begin{pmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

The vector $u_0 = (0, 0, 1, 2)$ corresponding to the basis $K = \{3, 4\}$ is a basic feasible solution, and the corresponding value of the objective function is 0. The vectors A^1 and A^2 are expressed in terms of the basis (A^3, A^4) by

$$A^{1} = A^{3} - A^{4}$$
$$A^{2} = -A^{3} + A^{4}.$$

Starting with $u_0 = (0, 0, 1, 2)$, we get

$$b = A^{3} + 2A^{4} - \theta A^{1} + \theta A^{1}$$

= $A^{3} + 2A^{4} - \theta (A^{3} - A^{4}) + \theta A^{1}$
= $\theta A^{1} + (1 - \theta)A^{3} + (2 + \theta)A^{4}$,

and

$$b = A^{3} + 2A^{4} - \theta A^{2} + \theta A^{2}$$

= $A^{3} + 2A^{4} - \theta(-A^{3} + A^{4}) + \theta A^{2}$
= $\theta A^{2} + (1 + \theta)A^{3} + (2 - \theta)A^{4}$.