Extensions of Hilbert Modules over Tensor Algebras

Andrew Koichi Greene

Department of Mathematics University of Iowa

Spring 2012

Outline of topics

- Setup
- 2 Modules
- 3 Extensions
- 4 Derivations
- Results
- 6 Future Work
- References

C*-correspondences

- A a unital C* algebra
- X a C*-correspondence. Recall that this means X is a certain kind of bimodule over A. Specifically,
 - X is a right Hilbert C^* -module over A.
 - Its left A-action is given by a C^* -homomorphism $\phi: A \to \mathcal{L}(X)$.

Tensor Powers

 $X^{\otimes 2} = X \otimes_A X$ is a C^* -correspondence satisfying

- $a \cdot (x \otimes y) := \phi(a)x \otimes y$.
- $(x \otimes y) \cdot b := x \otimes yb$.
- $xa \otimes y := x \otimes \phi(a)y$.
- $\langle x_1 \otimes x_2, y_1 \otimes y_2 \rangle := \langle x_2, \phi(\langle x_1, y_1 \rangle) y_2 \rangle$.

Similarly, define $X^{\otimes 3}, X^{\otimes 4}, \dots$

Constructing the Tensor Algebra

Form the Fock space:

$$\mathscr{F}(X) := A \oplus X \oplus X^{\otimes 2} \oplus X^{\otimes 3} \oplus \cdots$$

Define $\phi_{\infty}: A \to \mathscr{L}(\mathscr{F}(X))$ by

where $\phi_n(a)(x_1 \otimes x_2 \otimes \cdots \otimes x_n) = (\phi(a)x_1) \otimes x_2 \otimes \cdots \otimes x_n$.

Constructing the Tensor Algebra

Fock space $= \mathscr{F}(X) := A \oplus X \oplus X^{\otimes 2} \oplus X^{\otimes 3} \oplus \cdots$ For each $x \in X$, we define the creation operator $T_x \in \mathscr{L}(\mathscr{F}(X))$ by

where
$$T_x^{(k)}: X^{\otimes k} \to X^{\otimes (k+1)}$$
 is $T_x^{(k)}(x_1 \otimes \cdots \otimes x_k) = x \otimes x_1 \otimes \cdots \otimes x_k$.

Constructing the Tensor Algebra

Definition

The *tensor algebra* of X, denoted $\mathcal{T}_+(X)$, is the norm closed subalgebra of $\mathcal{L}(\mathcal{F}(X))$ generated by $\phi_{\infty}(A)$ and $\{T_x|x\in X\}$.

Examples

- **1** $A = X = \mathbb{C}, \mathscr{T}_+(X) = A(\mathbb{D})$ classical disc algebra
- ② $A = \mathbb{C}, X = \mathbb{C}^d, \mathscr{T}_+(X) = \mathscr{A}_d$ Popescu's noncommutative disc algebra
- **3** Let α be an automorphism of a unital C^* -algebra A. Let $X = {}_{\alpha}A$ by defining
 - $\mathbf{0} \ \ x \cdot a := xa.$

 - $(x,y) := x^*y.$
 - $\phi: A \to \mathcal{L}(A)$ equals α since $\mathcal{L}(A) = M(A) = A$.
 - $\mathscr{F}(X) = \ell^2(\mathbb{Z}^+; A)$
 - $\mathscr{T}_+(X)$ is generated by $\phi_\infty(A)$ and $S=T_1$, a shift.
 - $\mathscr{T}_+(X) = A \times_{\alpha} \mathbb{Z}^+$ is the analytic crossed product of A by \mathbb{Z}^+ determined by α .

Modules

Definition

- **1** A Hilbert space H is a (c.b.) Hilbert module over an operator algebra B if the action of B on H is given by a completely bounded homomorphism $\pi: B \to B(H)$.
- $\ensuremath{\mathbf{\mathcal{G}}}$ $\ensuremath{\varphi}$: $H \to H'$ is a *Hilbert module map* if it is a *B*-module map between Hilbert modules that is bounded as a Hilbert space operator.

Note: We will assume $A\subset B$ is a C^* -algebra, although B need not be self-adjoint. Furthermore, the representation $(\pi|_A):A\to B(H)$ is a C^* -representation.

Extensions

Definition

An extension ξ is a short exact sequence

$$\xi: 0 \longrightarrow H \xrightarrow{\varphi} J \xrightarrow{\psi} K \longrightarrow 0$$

where H, J, and K are Hilbert modules over an operator algebra B and φ and ψ are Hilbert-module maps.

Note: In particular, the range of φ equals the kernel of ψ . So φ is bounded below and ψ is bounded below on its initial space.

Equivalence of Extensions

Two extensions ξ and ξ' are equivalent if and only if there exist a Hilbert-module map $\theta: J \to J'$ making the following diagram commute:

$$\xi: 0 \longrightarrow H \xrightarrow{\varphi} J \xrightarrow{\psi} K \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \theta \qquad \parallel$$

$$\xi': 0 \longrightarrow H' \xrightarrow{\varphi'} J' \xrightarrow{\psi'} K' \longrightarrow 0$$

The collection (in fact group) of equivalence classes of extensions is denoted $\operatorname{Ext}^1(K, H)$.

Hilbert Space Decomposition

$$\xi: 0 \longrightarrow H \xrightarrow{\varphi} J \xrightarrow{\psi} K \longrightarrow 0$$

As Hilbert spaces, $J \cong H \oplus K$ (but not neccesarily as B-modules.)

Cocycles

$$\xi: 0 \longrightarrow H \xrightarrow{\varphi} H \oplus K \xrightarrow{\psi} K \longrightarrow 0$$

Let $\pi: B \to B(H)$ and $\rho: B \to B(K)$ be the representations of B on H and K, respectively.

Derivations

The *B*-module action on $H \oplus K$, is given by

$$\begin{pmatrix} \pi(\cdot) & \delta(\cdot) \\ 0 & \rho(\cdot) \end{pmatrix} : B \to B(H \oplus K)$$

where $\delta: B \to B(K, H)$ is a completely bounded A-derivation

- $\delta(a) = 0$ for all $a \in A$.

Note: δ is, technically, a $\phi_{\infty}(A)$ -derivation).

Equivalence of Extensions

If the derivations δ and δ' correspond, respectively, to extensions ξ and ξ' , then $\xi \approx \xi'$ if and only if $\delta - \delta'$ is an *inner* derivation: there exists $L \in \mathcal{B}(K,H)$ such that

$$(\delta - \delta')(f) = \pi(f)L - L\rho(f)\forall f \in B.$$

An inner derivation is A-linear iff $\pi(a)L = L\rho(a) \quad \forall a \in A$.

Cocycles

Alternatively, we can describe extensions in terms of cocycles:

Definition

A *cocycle* is a bilinear map $\sigma: B \times K \rightarrow H$ satisfying

$$\sigma(fg, k) = \pi(f)\sigma(g, k) + \sigma(f, \rho(g)k).$$

which is completely bounded when H and K are given their column Hilbert space structure.

Derivations and cocycles are related via the equation

$$\sigma(f,k) = \delta(f)k.$$

Extension Equivalence

 $\xi \approx \xi'$ if and only if

$$\sigma(f,k) - \sigma'(f,k) = \pi(f)Lk - L\rho(f)k.$$

Product Rule

Proposition

Suppose H and K are Hilbert modules over B with representations $\pi: \mathcal{T}_+({}_{\alpha}A) \to B(H)$ and $\rho: \mathcal{T}_+({}_{\alpha}A) \to B(K)$, respectively. If $\sigma: \mathcal{T}_+({}_{\alpha}A) \times K \to H$ is a cocycle, then

$$\sigma(S^{n+1}, k) = \sum_{j=0}^{n} \pi(S^{n-j})\sigma(S, \rho(S^{j})k)$$

for every $n \ge 0, S \in B, k \in K$.

Induced Representation

- Let $\psi: A \to B(E)$ be a representation and let $\{e_m\}_{m \geq 0}$ be an orthonormal basis for E.
- From now on, we only consider $B = \mathscr{T}_+({}_{\alpha}A)$ and $H = \ell^2(\mathbb{Z}^+; A) \otimes_{\psi} E$.
- $\{\delta_n \otimes e_m\}_{n,m \geq 0}$ is an orthonormal basis for $\ell^2(\mathbb{Z}^+; A) \otimes_{\psi} E$., where $\delta_n(k) = \delta_{nk} 1_A$.
- $\pi: \mathscr{T}_+({}_{\alpha}A) \to B(\ell^2(\mathbb{Z}^+;A) \otimes_{\psi} E)$ is given by $\pi|_A = \phi_{\infty} \otimes id_E$ and $\pi(T_1) = U_+ \otimes id_E$.

Cocycles Defined by Vectors

Definition

We say a sequence of vectors in K, $\{\mathbf{k_m}\}$ define a cocycle σ if $\sigma(S, k) = \sum_{m} \langle k, k_m \rangle \delta_0 \otimes e_m$.

Motivation

Theorem (Carlson & Clark, 1995)

Let K be a Hilbert $A(\mathbb{D})$ -module. Then a vector $k_0 \in K$ defines a cocycle $\sigma: A(\mathbb{D}) \times K \to H^2$ if and only if

$$\sum_{n=0}^{\infty} |\langle \rho(S^n)k, k_0 \rangle|^2 < \infty$$

for all $k \in K$.

Note: H^2 is the classical Hardy space and $\sigma(S, k) = \langle k, k_0 \rangle \in H^2$.

Boundedness Criterion

Theorem (Greene, 2011)

Let K be a Hilbert $\mathcal{T}_+({}_{\alpha}A)$ -module. Then a sequence in $K, \{k_m\}_{m=0}^{\infty}$ defines a cocycle $\sigma: \mathcal{T}_+({}_{\alpha}A) \times K \to \ell^2(\mathbb{Z}^+;A) \otimes_{\psi} E$ if and only if

0

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\langle \rho(S^n)k, k_m \rangle|^2 < \infty \quad \forall k \in K$$

2

$$\pi(\alpha(a))k_m = \sum_{m'} \langle \psi(a)e_m, e_{m'} \rangle k_{m'}$$

Corollary

Corollary

If $N = \dim(E) < \infty$ and $\operatorname{sp}(\rho(S)) \subset \mathbb{D}$, then any $\{k_m\}_{1 \leq m \leq N}$ satisfying (2) defines a cocycle σ .

Proof.

Define the functions $h_m(z) = \langle \sum_n (z\rho(S))^n k, k_m \rangle$. By hypothesis $h_m(z) = \langle (id_K - z\rho(S))^{-1}k, k_m \rangle$ for $|z| < \|\rho(S)\|^{-1}$ and $h_m(z)$ are analytic across the unit circle.

Proof Continued

Continuation of proof.

$$\sum_{m=1}^{N} \sum_{n=0}^{\infty} |\langle z \rho(S^n) k, k_m \rangle|^2 = \| \sum_{n,m} \langle z \rho(S)^n k, k_m \rangle \delta_n \otimes e_m \|$$

$$\leq \sum_{m} \| \langle (id_K - z \rho(S))^{-1} k, k_m \rangle \|$$

$$\leq \sum_{m=1}^{N} \| h_m(z) \|$$

$$\leq \infty.$$

Corollary

Corollary

If $\rho(S) = id_K$, then $\{k_m\}$ defines a cocycle σ only if $k_m = 0$ for every m. It follows that $\operatorname{Ext}(K, \ell^2(\mathbb{Z}^+; A) \otimes_{\psi} E) = 0$.

Proof.

$$\sum_{n,m} |\langle \rho(S^n)k, k_m \rangle|^2 = \sum_{n,m} |\langle k, k_m \rangle|^2 < \infty \iff k_m = 0 \forall m.$$

Theorem (Greene, 2011)

Every cocycle σ is equivalent to a cocycle defined by some $\{k_m\}$.

Proof.

- 1 Let σ be a cocycle.
- 2 By the Riesz Representation theorem, there exist $K_{n,m} \in K$ with

$$\sigma(S,k) = \sum_{n,m} \langle k, K_{n,m} \rangle \delta_n \otimes e_m.$$

Proof.

3 By the product formula,

$$\sigma(S^{N+1}, k) = \sum_{j=0}^{N} \pi(S^{N-j}) \sigma(S, \rho(S^{j})k)$$

$$= \sum_{j=0}^{N} \pi(S^{N-j}) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \langle \rho(S^{j})k, K_{n,m} \rangle \delta_{n} \otimes e_{m}$$

$$= \sum_{j=0}^{N} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \langle k, \rho(S)^{*j} K_{n,m} \rangle \delta_{N+n-j} \otimes e_{m}$$

$$= \sum_{n=0}^{\infty} \sum_{j=0}^{N} \sum_{m=0}^{\infty} \langle k, \rho(S)^{*j} K_{n,m} \rangle \delta_{N+n-j} \otimes e_{m}$$

ERSITY

Proof.

4 The coefficient of the $\delta_{\nu} \otimes e_m$ term of $\sigma(S^{N+1}, k)$ is

$$\begin{cases} \sum_{j=0}^{N} \langle k, \rho(S)^{*j} K_{\nu+j-N,m} \rangle & \text{for } \nu \geq N \\ \sum_{j=0}^{\nu} \langle k, \rho(S)^{*N-\nu+j} K_{j,m} \rangle & \text{for } \nu < N. \end{cases}$$

- 5 Therefore, $\left\{\left\langle k, \sum_{j=1}^{N} \rho(S)^{*j} K_{j+p,m}\right\rangle\right\}_{N=1}^{\infty}$ is a bounded sequence in N.
- 6 Letting Lim be a Banach limit on ℓ^{∞} , we define $k_{p,m} \in K$ by

$$\langle k, k_{p,m} \rangle = \operatorname{Lim}_{N \to \infty} \left\langle k, \sum_{j=0}^{N} \rho(S)^{*j} K_{j+p,m} \right\rangle.$$

Proof.

- 7 Define σ_0 by $\sigma_0(S, k) = \sum_m \langle k, k_{0,m} \rangle \delta_0 \otimes e_m$. Note: σ_0 is A-linear iff $\pi(\alpha(a))k_{0,m} = \sum_p \langle \psi(a)e_m, e_p \rangle k_{0,p}$.
- 8 Define $L: K \to \ell^2(\mathbb{Z}^+; A) \otimes_{\psi} E$ by $Lk = \sum_{i,m} \langle k, k_{i+1,m} \rangle \delta_i \otimes e_m$.
- 9 $\sigma(S, k) \sigma_0(S, k) = (\pi(S)L L\rho(S))k$.

Ongoing and Future Work

- Characterize the coboundaries.
- ② Calculuate $\operatorname{Ext}^1(K, \ell^2(\mathbb{Z}^+; A) \otimes_{\psi} E)$.
- **3** Study the more general setting with $\alpha \in End(A)$.
- **9** Generalize to $\mathcal{T}_+(X)$.
- 5 Study projectivity and injectivity in terms of Ext.

References

J. F. Carlson and D. N. Clark

Cohmology and Extensions of Hilbert Modules,

J. Funct. Anal. 128 (1995), 278-306.

S. Ling and P.S Muhly

An Automorphic Form of Ando's Theorem, Integral Equations Operator Theory 12 (1989), 424-434.

P. S. Muhly and B. Solel

Tensor Algebras over C^* -Correspondences: Representations, Dilations, and C^* -Envelopes,

J. Funct. Anal. 158 (1998), 389-457.

The End

