Лекція 4

ФОРМУЛА ВКЛЮЧЕНЬ-ВИКЛЮЧЕНЬ У ТЕОРІЇ ЧИСЕЛ

Нехай a_1,\ldots,a_m деякі взаємно прості натуральні числа. Нехай $n\geq 1$ — також натуральне число. Позначимо через N(i) кількість натуральних чисел $k\leq n$, які діляться на a_i (мають властивість ділитися на a_i). Аналогічно, N(i,j), $i\neq j$, — це кількість натуральних чисел $k\leq n$, які діляться на a_i та a_j (мають властивість ділитися на a_i та a_j). Для будь-якого $1\leq k\leq m$ таким же чином можна означити $N(i_1,\ldots,i_k)$ (індекси i_1,\ldots,i_k всі різні) як кількість тих натуральних чисел $k\leq n$, які діляться на a_{i_1},\ldots,a_{i_k} (мають властивість ділитися на a_{i_1},\ldots,a_{i_k}). Позначимо через M кількість тих натуральних чисел $k\leq n$, які діляться принаймні на одне з чисел a_1,\ldots,a_m .

Приклад 1. Нехай m=2. З формули (3.6) випливає, що M=N(1)+N(2)-N(1,2). Неважко зрозуміти, що $N(1)=[n/a_1],\,N(2)=[n/a_2],\,N(1,2)=[n/a_1a_2]$ ([x] — ціла частина дійчного числа x). Якщо L — це кількість тих натуральних чисел $k\leq n$, які не діляться на жодне з чисел a_1 та a_2 , то

(1)
$$L = n - \left[\frac{n}{a_1}\right] - \left[\frac{n}{a_2}\right] + \left[\frac{n}{a_1 a_2}\right].$$

⁰Printed from the file [discretka_L=03.tex] on 25.7.2013

Теорема 1. Нехай $m \geq 3$, а a_1, \ldots, a_m — взаємно прості натуральні числа. Позначимо через L кількість тих натуральних чисел $k \leq n$, які не діляться на жодне з чисел a_1, \ldots, a_m . Тоді

(2)
$$L = n - (S_1 - S_2 + \dots + (-1)^{m-1} S_m),$$

 ∂e

$$S_1 = \sum_{i=1}^m \left[\frac{n}{a_i} \right], \qquad S_m = \left[\frac{n}{a_1 \dots a_m} \right],$$

$$S_k = \sum_{\substack{1 \le i_1, \dots, i_k \le n \\ i_1, \dots, i_k \text{ BCi pishi}}} \left[\frac{n}{a_{i_1} \dots a_{i_k}} \right], \qquad 2 \le k \le m-1.$$

Доведення теореми 1. Нехай $C = \{k : k \leq n\}$. Розглянемо властивості $v_i = \{$ число $k \in C$ ділиться на $a_i\}$. Тоді $N(i) = [n/a_i], \ N(i,j) = [n/a_ia_j]$ і так далі. Тому (2) випливає з формули (3.6). \square

1. Функція Ойлера

Функція Ойлера $\varphi(a)$ натурального аргументу a означається як кількість натуральних чисел $k \leq a$, які є взаємно простими з a. Для невеликих a значення функції Ойлера легко обчислити: $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$.

Зауваження 1. Якщо p просте число, то $\varphi(p) = p - 1$.

Теорема 2. Нехай $a = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ — канонічне представлення числа а через степені простих чисел, причому $\alpha_1 > 0, \dots, \alpha_m > 0$. Тоді

$$\varphi(a) = a\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right).$$

Доведення теореми 2. Спочатку розглянемо випадок m=2, тобто $a=p_1^{\alpha_1}p_2^{\alpha_2}$ для $\alpha_1>0,\,\alpha_2>0$. Формула (1) у цьому випадку має вигляд:

$$\varphi(a) = a - \left[\frac{a}{p_1}\right] - \left[\frac{a}{p_1}\right] + \left[\frac{a}{p_1 p_2}\right] \stackrel{?}{=} a - \frac{a}{p_1} - \frac{a}{p_1} + \frac{a}{p_1 p_2}$$
$$= a \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right).$$

У загальному випадку

$$\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right) \\
= 1 - \sum_{i=1}^m \frac{1}{p_i} + \sum_{\substack{1 \le i, j \le m \\ i \ne j}} \frac{1}{p_i p_j} + \dots + (-1)^m \frac{1}{p_1 \dots p_m}.$$

Домноживши обидві частини на a, отримуємо твердження теореми. \square

2. Мультиплікативнивні функції

Функція f натурального аргументу називається мульти-nлікативною, якщо

- (i) існує a_0 , для якого $f(a_0) \neq 0$;
- (ii) f(ab) = f(a)f(b) для всіх взаємно простих a та b.

Наприклад, функція $f(a) = a^s$ є мультиплікативною для будь-якого s.

Лема 1. f(1) = 1 для будь-якої мультиплікативної функції f.

Доведення леми 1. Якщо a_0 — це число, для якого $f(a_0) \neq 0$, то на підставі мультиплікативності маємо $f(a_0) = f(1) \cdot a_0 = f(1) \cdot f(a_0)$, тобто f(1) = 1. \square

Лема 2. Якщо f_1 та f_2 мультиплікативні функції, то $f = f_1 f_2$ також мультиплікативна.

Теорема 3. Функція Ойлера є мультиплікативною. Іншими словами, $\varphi(ab) = \varphi(a)\varphi(b)$ для всіх взаємно простих а та b.

 \mathcal{A} оведення. Дійсно, $f(1) = f_1(1)f_2(1) = 1$. Крім цього, $f(ab) = f_1(ab)f_2(ab) = f_1(a)f_1(b)f_2(a)f_2(b) = f(a)f(b)$ для взаємно простих чисел a та b. \square

Доведення теореми 3. Умова (i) очевидно виконана. Нехай а та b взаємно прості. Запишемо іхні канонічні розклади:

$$a = p_1^{\alpha_1} \dots p_m^{\alpha_m}, \qquad b = q_1^{\beta_1} \dots q_n^{\beta_n}.$$

Зауважимо, що множини $\{p_1,\ldots,p_m\}$ та $\{q_1,\ldots,q_n\}$ не перетинаються, оскільки a та b взаємно прості. Тому на під-

ставі теореми 2

$$\varphi(ab) = ab \left(1 - \frac{1}{p_1} \right) \dots \left(1 - \frac{1}{p_m} \right) \left(1 - \frac{1}{q_1} \right) \dots \left(1 - \frac{1}{q_n} \right)$$
$$= a \left(1 - \frac{1}{p_1} \right) \dots \left(1 - \frac{1}{p_m} \right) \times b \left(1 - \frac{1}{q_1} \right) \dots \left(1 - \frac{1}{q_n} \right)$$
$$= \varphi(a)\varphi(b).$$

Відзначимо одну з важливих властивостей мультиплікативних функцій, що стосується підрахунку суми

$$\sum_{d|a} f(d),$$

яка поширена на всі дільники числа a (включаючи 1 і саме a). Важливими прикладами таких сум є кількість дільників числа a (випадок f(x)=1 для всіх x) та сума дільників числа a (випадок f(x)=x для всіх x).

Теорема 4. $Hexaŭ\ a=p_1^{\alpha_1}\dots p_m^{\alpha_m}$ — канонічний розклад числа a. $Todi\ для\ будь-якої\ мультиплікативної функції <math>f$

(3)
$$\sum_{d|a} f(d) = \prod_{i=1}^{m} \left\{ 1 + f(p_i) + \dots + f(p_i^{\alpha_i}) \right\}.$$

Сума в лівій частині рівності (3) поширена на всі дільники числа а (включаючи 1 і саме a).

Доведення теореми 4. Кожен дільник d числа a має вигляд $p_1^{\beta_1}\dots p_m^{\beta_m}$ для будь-яких $0\leq \beta_1\leq \alpha_1,\dots,0\leq \beta_m\leq \alpha_m$. На підставі мультиплікативності

$$f\left(p_1^{\beta_1}\dots p_m^{\beta_m}\right) \stackrel{?}{=} f\left(p_1^{\beta_1}\right)\dots f\left(p_m^{\beta_m}\right).$$

ЛЕКЦІЯ 4. ФОРМУЛА ВКЛЮЧЕНЬ-ВИКЛЮЧЕНЬ У ТЕОРІЇ ЧИСЕЛ 43

Тому

$$\sum_{d|a} f(d) = \sum_{\beta_1=0}^{\alpha_1} \cdots \sum_{\beta_m=0}^{\alpha_m} f\left(p_1^{\beta_1} \dots p_m^{\beta_m}\right)$$

$$\stackrel{?}{=} \sum_{\beta_1=0}^{\alpha_1} \cdots \sum_{\beta_m=0}^{\alpha_m} f\left(p_1^{\beta_1}\right) \dots f\left(p_m^{\beta_m}\right)$$

$$\stackrel{?}{=} \prod_{i=1}^m \left\{ f(1) + f(p_i) + \dots + f\left(p_i^{\alpha_i}\right) \right\}.$$

Теорема доведена, оскільки f(1) = 1 згідно до леми 1. \square

Наслідок 1.
$$\sum_{d|a} \varphi(d) = a$$
.

 \mathcal{A} оведення наслідку 1. Нехай $a=p_1^{\alpha_1}\dots p_m^{\alpha_m}$ — канонічний розклад числа a. Тоді згідно з теоремою 4

$$\sum_{d|a} \varphi(d) = \prod_{i=1}^{m} \left\{ \varphi(1) + \varphi(p_i) + \varphi\left(p_i^2\right) + \dots + \varphi\left(p_i^{\alpha_i}\right) \right\}.$$

Оскільки

$$\varphi\left(p_i^k\right) = p_i^k - p_i^{k-1}, \qquad k \ge 1,$$
 то $\varphi(1) + \varphi(p_i) + \varphi\left(p_i^2\right) + \dots + \varphi\left(p_i^{\alpha_i}\right) = p_i^{\alpha_i}$ і тому

$$\sum_{d|a} \varphi(d) = \prod_{i=1}^m p_i^{\alpha_i} = a.$$

3. Функція Мевіуса

Функцією Мебіуса називається функція μ натурального аргументу, яка для аргументу $a=p_1^{\alpha_1}\dots p_m^{\alpha_m}$ з $\alpha_1>0,\dots,\alpha_m>0$, визначається наступним чином: $\mu(1)=1$,

$$\mu(a) = \begin{cases} (-1)^m, & \alpha_1 = \dots = \alpha_m = 1, \\ 0, & \text{в іншому випадку.} \end{cases}$$

Зауважимо, що $\mu(a) = 0$ тоді і тільки тоді, коли a ділиться на квадрат деякого числа.

Лема 3. Функція Мебіуса ϵ мультиплікативною.

Доведення. Нехай $a=p_1^{\alpha_1}\dots p_m^{\alpha_m}$ та $b=q_1^{\beta_1}\dots q_n^{\beta_n}$ взаємно прості, тобто множини $\{p_1,\dots,p_m\}$ та $\{q_1,\dots,q_n\}$ не перетинаються. Тому ab ділиться на квадрат простого числа тоді і тільки тоді, коли або a, або b ділиться на квадрат простого числа. В цьому випадку $\mu(ab)=0$ та $\mu(a)\mu(b)=0$, тобто $\mu(ab)=\mu(a)\mu(b)$. В іншому випадку $\mu(a)=(-1)^m,\ \mu(b)=(-1)^n,\ \text{та}\ \mu(ab)=(-1)^m+n$, тобто $\mu(ab)=\mu(a)\mu(b)$. \square

Теорема 5. *Нехай* $f - \partial e \pi \kappa a$ мультиплікативна функція. *Тоді для* $a > 1, \ a = p_1^{\alpha_1} \dots p_m^{\alpha_m},$

$$\sum_{d|a} \mu(d) f(d) = (1 - f(p_1)) \dots (1 - f(p_m)).$$

Доведення теореми 5. Покладемо $f_1 = \mu f$. Тоді $f_1(p) \stackrel{?}{=} -f(p)$ та $f_1(p^s) \stackrel{?}{=} 0$ для s > 1, якщо p — просте число. З лем 2 та 3 випливає, що f_1 є мультиплікативною функцією. Тепер запишемо (3) для f_1 , це і доводить теорему. \square

ВПРАВИ

Лекція 4. Формула включень-виключень у теорії чисел 45

Вправа 1. Довести, що $\lim_{a\to\infty} \varphi(a) = \infty$.

Вказівка. Нехай $a=p_1^{\alpha_1}\dots p_m^{\alpha_m}$. Якщо $a>N^{N^2}$, то

$$\max\left\{m,\max_{1\leq i\leq m}\alpha_i,\max_{1\leq i\leq m}p_i\right\}>N.$$

Вправа 2. Обчислити $\sum_{d|1024} \varphi(d)$.

Вправа 3. Позначимо через S(a) суму дільників числа a. Довести, що

$$S(a) = \frac{p_1^{\alpha_1+1}-1}{p_1-1} \dots \frac{p_m^{\alpha_m+1}-1}{p_m-1}.$$

<u>Вказівка</u>. Записати (3) для f(a) = a; потім підрахувати суми геометричних прогресій.

Вправа 4. Знайти S(720).

Вправа 5. Позначимо через $\tau(a)$ кількість дільників числа a. Довести, що

$$\tau(a) = (\alpha_1 + 1) \dots (\alpha_m + 1).$$

Вказівка. Записати (3) для f(a) = 1.

Вправа 6. Знайти $\tau(720)$.

Вправа 7. Довести, що $\sum_{d\mid a}\mu(d)=0$ для a>1.

Вказівка. Застосувати теоерему 5 для f(a) = 1.

Вправа 8. Довести, що для a > 1

$$\varphi(a) = a \sum_{d \mid a} \frac{\mu(d)}{d}.$$

<u>Вказівка</u>. Застосувати теорему 5 для $f(a) = \frac{1}{a}$; скористатись теоремою 2.