Are "blockchain" ideas useful in E-voting and E-governance?

Prof. Bryan Ford
Decentralized and Distributed Systems Lab
(DEDIS)

Federal Chancellery – September 20, 2017

The DEDIS lab at EPFL: Mission

Design, build, and deploy secure privacy-preserving **Decentralized and Distributed Systems (DEDIS)**

- Distributed: spread widely across the Internet & world
- Decentralized: independent participants, no central authority, no single points of failure or compromise

Overarching theme: building decentralized systems that distribute trust widely with strongest-link security

Blockchain and E-voting: Outline

- What is a Blockchain?
 - Why it's exciting, what it's good for, limitations
- Blockchain ideas we DON'T want in E-voting
- Blockchain ideas we MIGHT want in E-voting
- Conclusion

Decentralized Security Principles

Computer science theory, algorithms, crypto has long known *principles* of decentralized security...

- Threshold cryptography, Byzantine consensus
- Tolerate any one (or several) arbitrary failures or compromises

Decentralized Security Principles

Computer science theory, algorithms, crypto has long known *principles* of decentralized security...

 Threshold cryptography, Byzantine consensus

 Tolerate any one (or several) arbitrary failures or compromises

But never widely deployed, until...

Bitcoin (2008)

First successful decentralized cryptocurrency

Today's Hot Decentralized Technology

(credit: Tony Arcieri)

How to track wealth (or anything)?

Things

Gold, beads, cash...
 Who owns what?

Ledgers

BANKING LEDGER			Accessed Number:	
DATE	DESCRIPTION	DEPORT	WITHORAW	BALANCE
\neg				
-		_		
_				0
_		_		
		_		
_				
-		_		
-				
				8 3
				4 1
11 %				

Distributed Ledgers

Problem: we don't want to trust any designated, centralized authority to maintain the ledger

Solution: "everyone" keeps a copy of the ledger!

- Everyone checks everyone else's changes to it

Alice's copy			
	Alice	5 BTC	
	Bob	2 BTC	
	Charlie	3 BTC	

Charlie's copy		
X	Alice	5 BTC
	Z ob	2 BTC
	Charlie	3 BTC

Applications of Distributed Ledgers

Can represent a distributed electronic record of:

• Who owns how much currency? (Bitcoin)

Who owns a name or a digital work of art?

• What are the terms of a contract? (Ethereum)

When was a document written? (notaries)

But practical limitations currently constrain uses

• Slow, energy-inefficient, can't keep secrets...

Broad Promise & Global Interest

There is a decreasing tendency towards launching new blockchain companies:

2016	169
2015	221
2014	233

new companies launched

There is an increase in investment rounds:

2016	119
2015	99
2014	54
	rounds

Limitations of Today's Blockchains

Public/permissionless (e.g., Bitcoin, Ethereum)

- Slow, weak consistency, low total throughput
- Limited privacy: leaky, can't keep secrets
- User devices must be online, well-connected
- Mining is inefficient, insecure, re-centralizing

Private/permissioned (e.g., HyperLedger, R3, ...)

• Weak security – single points of compromise

Dimensions of Information Security

We usually want *three* orthogonal properties:

- **1.Integrity:** the system computes honestly, remembers and results correctly
- 2.Availability: it's there when you need it, provides answers in reasonable amount of time
- **3.Privacy:** it doesn't leak confidential information to anyone who isn't supposed to have it

In general, blockchains tend to be GOOD at #1, SO-SO at #2, and BAD at #3

The Blockchain Privacy Challenge

Blockchains protect the **integrity** of data by giving everyone a copy for independent checking

- This works against privacy & confidentiality
- Current privacy provisions are leaky
- Solvable with proper use of encryption
 - When combined, important to remember: it's the *encryption*, not the *blockchain*, that protects privacy.

200100010111

Blockchain and E-voting: Outline

- What is a Blockchain?
 - Why it's exciting, what it's good for, limitations
- Blockchain ideas we DON'T want in E-voting
- Blockchain ideas we MIGHT want in E-voting
- Conclusion

Blockchain E-voting: The Bad

Blockchain ideas we **DON'T** want in E-voting:

- Proof-of-Work (or Proof-of-Stake or...)
 - Energy waste, don't want open consensus group
- Nakamoto Consensus
 - Slow, only probabilistically secure over time
- General-purpose Smart Contracts (Ethereum)
 - Huge systemic risks from subtle contract bugs

Proof-of-Work in Public Blockchains

Public blockchains such as Bitcoin, Ethereum use consensus by crypto-lottery

- 1) **Miners** print their own "lottery tickets" by solving crypto-puzzle (**proof-of-work**)
- 2) Winner gets to add one **block** to blockchain; typically gets **reward**: e.g., print new money
- 3) All miners gravitate to **longest chain.** Repeat.

Drawbacks of Nakamoto Consensus

Transaction delay

- Any transaction takes ~10 mins *minimum* in Bitcoin

Weak consistency:

 You're not really certain your transaction is committed until you wait ~1 hour or more

Low throughput:

- Bitcoin: ~7 transactions/second

Proof-of-work mining:

Wastes huge amount of energy

Who Participates in Consensus?

Permissionless blockchains (Bitcoin, Ethereum): "anyone" who invests in solving crypto-puzzles.

- Now practical only with ASICs and cheap power
- Re-centralization undermines trustworthiness

Smart Contracts (e.g., Ethereum)

Insert arbitrary software into a blockchain

- Can programmatically supervise cryptocurrency
 - e.g., automatically settle a financial contract

Extremely powerful (and interesting), but risky

- One software bug → spectacular hacks
 - DAO: \$70M USD of \$150M USD contract stolen in hours (June 2016)

Blockchain and E-voting: Outline

- What is a Blockchain?
 - Why it's exciting, what it's good for, limitations
- Blockchain ideas we DON'T want in E-voting
- Blockchain ideas we MAY want in E-voting
- Conclusion

Blockchain E-voting: The Good

Blockchain ideas we **MIGHT** want in E-voting:

- Tamper-evident publicly-verifiable ledger
- Open protocols, standards, software
- Strong security hardening incentives
- Trust splitting (threshold security)
- Cross-layer implementation diversity
- Sharing costs through common platforms
- "Not-too-smart" contracts enabling innovation

Elements of E-Voting

- Voter registration
- Vote casting and recording
- Results tallying and certification

Potential Uses in Voter Registration

- Enable individual voters to check their own registration easily (e.g., online, any time)
- Enable everyone to sanity-check total counts
 - Do all those registered voters really exist?
 Guard against large-scale registration fraud risks
- Transparency in linking registration to identity, online democracy, other government services

Challenges: voter privacy, small-scale fraud, ...

Potential Uses in Voting

Many E-voting systems put encrypted and shuffled votes on a public "bulletin board"

A blockchain can be a good bulletin board

Final results need to be publicly "certified"

 Put [hash of] final results on public blockchain to ensure everyone sees & agrees on results

Blockchain doesn't help with integrity or privacy of casting, encryption, or shuffling votes: need crypto

Potential Benefits of Openness

Open protocols, specifications, software

Security benefits from scrutiny of "many eyes"

DEFCON 17 Hacking Village

Security through obscurity doesn't work anymore

Hackers' patience, tools, resources too good

Security Hardening Incentives

Bitcoin, Ethereum are "universal bug bounties"

First successful hacker can steal a lot of money

Security Hardening Incentives

We don't need or want to embed a cryptocurrency into an E-voting/governance system...

But robust bug bounty programs can substitute

Trust Splitting (Threshold Security)

Avoid single points of failure, compromise

But risks come at many levels...

- Operators
- Developers
- Software
- Hardware

The Diversity Challenge

Trust-splitting is ineffective without *diversity*

- If all Bitcoin nodes run by the same operator, compromised miner → blockchain-wide breach
- If all Bitcoin nodes run exact same software, one software bug → blockchain-wide breach
- If different software but identical hardware,
 one hardware bug → blockchain-wide breach

Importance of Cross-Layer Diversity

Robust blockchains (e.g., Bitcoin) have:

- Multiple independent operators ("miners")
- Multiple independent software implementations
 - Bitcoin clients in C++, Java, Go, ...
 - Written by different teams of developers
- Multiple independent hardware platforms
 - Run on Intel, AMD, ARM, ...
 - Designed & built by different companies

Secure E-voting systems need this diversity too

Approaches to Achieving Diversity

"N-version" design

- Build 2,3,4 of everything
- Different teams, common specs

Disadvantage

- Expensive!
- Spec bugs
- Groupthink

Leader/verifier design

- Design & primary implementation from one team/company
- Other teams build minimal verifiers
 - Smaller, simpler
 - Cryptographically ensure leader cannot maliciously cheat

Sharing Costs through Platforms

Blockchain systems are becoming *platforms*

- Foundation layers usable by many applications
 - Not specific to cryptocurrencies, trading, E-voting...
- Development, security, and diversity costs of platform shared across multiple industries

E-voting could also benefit from platform sharing

Application 1

Application 2

Application 3

Common Blockchain Platform

"Not-Too-Smart" Contracts

Smart contracts (Ethereum) are a powerful idea Could be useful and safe in voting systems if adopted cautiously with *appropriate restrictions*

- Programmable via carefully-designed domain-specific languages for voting systems
 - Simple: to ensure behavior matches intent
 - Safe: automatically enforce properties like fairness
 - Formal: to allow automated reasoning, verification
- Promising and important, but research needed

Enabling E-Governance Innovation

Example: **Delegative** or **Liquid Democracy**

 Give users a choice to participate directly or via representative on a given topic

Promising but nontrivial: transparency is crucial

 Blockchain-based implementation could help ensure transparency, public acceptance

Blockchain and E-voting: Conclusion

- Blockchains aren't "The Answer", but do hold important ideas for E-voting system designs
 - Ledger concept useful in registration, vote recording
 - Openness, incentives can help harden security
 - Trust-splitting: a critical tool, but requires diversity
- Adoption requires care in both tech and policy