$11a_{334} (K11a_{334})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{24} - u^{23} + \dots + 2u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{24} - u^{23} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} + 2u \\ -u^{9} + 5u^{7} - 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} - 2u \\ u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{1} - 4u^{5} + 4u^{3} - 2u \\ u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{18} - 11u^{16} + 48u^{14} - 107u^{12} + 133u^{10} - 95u^{8} + 34u^{6} - 2u^{4} - 3u^{2} + 1 \\ u^{18} - 10u^{16} + 37u^{14} - 60u^{12} + 35u^{10} + 8u^{8} - 16u^{6} + 2u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{18} - 11u^{16} + 48u^{14} - 107u^{12} + 133u^{10} - 95u^{8} + 34u^{6} - 2u^{4} - 3u^{2} + 1 \\ u^{20} - 12u^{18} + \dots - 5u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{18} - 11u^{16} + 48u^{14} - 107u^{12} + 133u^{10} - 95u^{8} + 34u^{6} - 2u^{4} - 3u^{2} + 1 \\ u^{20} - 12u^{18} + \dots - 5u^{4} - 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{20} + 52u^{18} - 276u^{16} + 4u^{15} + 768u^{14} - 40u^{13} - 1200u^{12} + 152u^{11} + 1048u^{10} - 272u^9 - 456u^8 + 232u^7 + 16u^6 - 84u^5 + 64u^4 - 16u^2 + 4u - 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$u^{24} + u^{23} + \dots + 2u + 1$
c_3, c_6	$u^{24} - 5u^{23} + \dots + 8u + 1$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{24} - u^{23} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7 c_8	$y^{24} - 27y^{23} + \dots - 12y + 1$
c_3, c_6	$y^{24} + 9y^{23} + \dots - 52y + 1$
$c_4, c_5, c_9 \\ c_{10}, c_{11}$	$y^{24} - 31y^{23} + \dots - 12y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.950752 + 0.350160I	-8.25724 + 7.03301I	-18.3094 - 5.9376I
u = -0.950752 - 0.350160I	-8.25724 - 7.03301I	-18.3094 + 5.9376I
u = 0.889313 + 0.320048I	-1.05294 - 4.61822I	-15.0731 + 7.6448I
u = 0.889313 - 0.320048I	-1.05294 + 4.61822I	-15.0731 - 7.6448I
u = 0.931166	-4.16199	-21.6480
u = -1.08787	-11.9871	-21.6380
u = -0.791765 + 0.276135I	-0.346278 + 1.021000I	-12.74843 - 0.89701I
u = -0.791765 - 0.276135I	-0.346278 - 1.021000I	-12.74843 + 0.89701I
u = 0.603718 + 0.367833I	-6.35060 + 0.70363I	-16.4740 + 1.9101I
u = 0.603718 - 0.367833I	-6.35060 - 0.70363I	-16.4740 - 1.9101I
u = 0.139902 + 0.569572I	-4.91541 - 3.91207I	-12.94617 + 4.09440I
u = 0.139902 - 0.569572I	-4.91541 + 3.91207I	-12.94617 - 4.09440I
u = -0.055351 + 0.524042I	1.82022 + 1.73926I	-8.19189 - 4.76160I
u = -0.055351 - 0.524042I	1.82022 - 1.73926I	-8.19189 + 4.76160I
u = -1.63181	-13.8397	-18.0490
u = 1.66882 + 0.06009I	-9.03688 - 2.20767I	-14.13375 - 0.08900I
u = 1.66882 - 0.06009I	-9.03688 + 2.20767I	-14.13375 + 0.08900I
u = -1.68602 + 0.08006I	-10.10980 + 6.14857I	-16.6878 - 5.7012I
u = -1.68602 - 0.08006I	-10.10980 - 6.14857I	-16.6878 + 5.7012I
u = -1.68905	-13.4393	-20.4550
u = 1.70217 + 0.09194I	-17.5954 - 8.7809I	-19.5765 + 4.4157I
u = 1.70217 - 0.09194I	-17.5954 + 8.7809I	-19.5765 - 4.4157I
u = -0.291508	-0.498247	-19.9340
u = 1.72899	17.4406	-21.9940

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$u^{24} + u^{23} + \dots + 2u + 1$
c_3, c_6	$u^{24} - 5u^{23} + \dots + 8u + 1$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{24} - u^{23} + \dots + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7 c_8	$y^{24} - 27y^{23} + \dots - 12y + 1$
c_3, c_6	$y^{24} + 9y^{23} + \dots - 52y + 1$
$c_4, c_5, c_9 \\ c_{10}, c_{11}$	$y^{24} - 31y^{23} + \dots - 12y + 1$