Les Formules

Hao ZHANG, ESILV

Stage de CSTB, 2019

1 Related formulas to the surface component

1.1 Related formulas to collective dwellings

1.1.1 Related formulas to the surface component M

$$D_{surface_component_m} = \frac{B_{surface_m}}{B_{dwelling_total}}$$

• Where:

$$B_{surface_m} = (1 - D_{share_of_window}) \times \sqrt{D_{surface} \times B_{dwelling_per_floor}} \times 4 \times D_{ceiling_height} \times (B_{floors} + 1)$$
(1)

$$B_{dwelling_total} = B_{dwelling_per_floor} \times (B_{floors} + 1)$$
 (2)

1.1.2 Related formulas to the surface component *W*

$$D_{surface_component_w} = \frac{B_{surface_w}}{B_{dwelling_total}}$$

• Where:

$$\begin{array}{ll} B_{surface_w} & = & D_{share_of_window} \times \sqrt{D_{surface} \times B_{dwelling_per_floor}} \times 4 \times D_{ceiling_height} \\ & \times \left(B_{floors} + 1\right) \end{array} \tag{3}$$

2019 CSTB Page 1 of 26

1.1.3 Related formulas to the surface components R and F

$$D_{surface_component_r} = \frac{B_{surface_r}}{B_{dwelling_total}}$$

$$= \frac{D_{surface} \times B_{dwelling_per_floor}}{B_{dwelling_per_floor} \times (B_{floors} + 1)}$$

$$= \frac{D_{surface}}{B_{floors} + 1}$$

$$D_{surface_component_f} = \frac{B_{surface_f}}{B_{dwelling_total}}$$

$$= \frac{D_{surface} \times B_{dwelling_per_floor}}{B_{dwelling_per_floor} \times (B_{floors} + 1)}$$

$$= \frac{D_{surface}}{B_{floors} + 1}$$

$$= D_{surface_component_r}$$

• Where:

$$B_{surface_r}$$
 = $D_{surface} \times B_{dwelling_per_floor}$ (4)
 $B_{surface_f}$ = $D_{surface} \times B_{dwelling_per_floor}$ = $B_{surface_r}$

1.2 Related formulas to individual dwellings

1.2.1 Related formulas to the surface component M

$$D_{surface_component_m} = rac{B_{surface_m}}{B_{dwelling_total}}$$
 $= B_{surface_m}$

• Where:

2019 CSTB Page 2 of 26

$$\frac{B_{surface_m}}{B_{floors} + 1} \times 4 \times D_{ceiling_height} \times (B_{floors} + 1)$$
 (5)

$$B_{dwelling_total} = 1 (6)$$

1.2.2 Related formulas to the surface component *W*

$$D_{surface_component_w} = rac{B_{surface_w}}{B_{dwelling_total}}$$
 $= B_{surface_w}$

• Where:

$$\frac{B_{surface_w}}{B_{surface_w}} = D_{share_of_window} \times \sqrt{\frac{D_{surface}}{(B_{floors} + 1)}} \times 4 \times D_{ceiling_height} \times (B_{floors} + 1)$$
(7)

1.2.3 Related formulas to the surface components R and F

$$D_{surface_component_r} = B_{surface_r}$$
 $D_{surface_component_f} = B_{surface_f}$
 $= D_{surface_component_r}$

• Where:

$$B_{surface_r} = \frac{D_{surface}}{B_{floors} + 1}$$

$$= \frac{D_{surface}}{B_{floors} + 1}$$

$$= B_{surface_f}$$

$$= B_{surface_f}$$

$$(8)$$

2019 CSTB Page 3 of 26

2 Related formulas to the overall heat transfer coefficient (Ug)

$$D_{ug} = \frac{B_{surface_m} \times D_{um} + B_{surface_w} \times D_{uw} + B_{surface_r} \times D_{ur} + B_{surface_f} \times D_{uf}}{B_{surface_envelope}}$$

$$= \frac{B_{surface_m} \times D_{um} + B_{surface_w} \times D_{uw} + B_{surface_r} \times (D_{ur} + D_{uf})}{B_{surface_envelope}}$$

$$= \frac{B_{weighted_surface_total}}{B_{surface_envelope}}$$

• Where:

$$B_{weighted_surface_total} = B_{weighted_surface_m_w} + B_{weighted_surface_r_f}$$
 (9)

$$B_{weighted_surface_m_w} = B_{surface_m} \times D_{um} + B_{surface_w} \times D_{uw}$$
 (10)

$$B_{weighted_surface_r_f} = B_{surface_r} \times D_{ur} + B_{surface_r} \times D_{uf}$$
 (11)

$$B_{surface_envelope}$$
 = $B_{surface_m} + B_{surface_w} + B_{surface_r} + B_{surface_f}$

3 Related formulas to the useful energy needs (UEN)

3.1 Related formulas to collective dwellings

3.1.1 Related formulas to the UEN per m^2

Original related formulas to the UEN per m^2

$$D_{uen_per_metre2} = \frac{D_{intermittence_adjusted} \times D_{ug} \times B_{surface_envelope} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

$$= D_{intermittence_adjusted} \times D_{ug} \times \frac{B_{surface_envelope} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

• Where:

$$D_{intermittence}$$
 = $\frac{D_{intermittence}}{1 + 0.1 \times \left(D_{ug} \times \frac{B_{surface_envelope}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1\right)}$
 $B_{surface_envelope}$ = $B_{surface_m} + B_{surface_w} + B_{surface_r} + B_{surface_f}$
 $B_{surface_habitable}$ = $B_{surface_r} \times \left(B_{floors} + 1\right)$

2019 CSTB Page 4 of 26

Simplified related formulas to the UEN per m^2

$$D_{uen_per_metre2} = D_{intermittence_adjusted} \times D_{ug} \times \frac{B_{surface_envelope} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

$$= \frac{D_{intermittence}}{1 + 0.1 \times \left(\frac{B_{weighted_surface_total}}{B_{surface_envelope}} \times \frac{B_{surface_nwelope}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1\right)} \times \frac{B_{weighted_surface_total}}{B_{surface_envelope}} \times \frac{B_{surface_nwelope}}{B_{surface_habitable} \times 1000}$$

$$= \frac{D_{intermittence}}{1 + \frac{1}{10} \times \left(\frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1\right)}{\times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{D_{ceiling_height} \times D_{intermittence}}{B_{surface_habitable}}$$

$$= \frac{10 \times B_{surface_habitable} \times D_{ceiling_height} \times D_{intermittence}}{B_{surface_habitable} \times D_{ceiling_height} \times D_{intermittence}}$$

$$\times \frac{B_{weighted_surface_total} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

$$= \frac{B_{weighted_surface_total}}{B_{surface_habitable} \times D_{ceiling_height} + 2.5 \times B_{weighted_surface_total}}{B_{surface_habitable} \times 1000}$$

$$= \frac{B_{weighted_surface_total}}{B_{surface_habitable} \times D_{ceiling_height} + 2.5 \times B_{weighted_surface_total}} \times \frac{D_{ceiling_height} \times D_{ceiling_height}}{B_{surface_habitable} \times D_{ceiling_height}}$$

• Where:

$$B_{surface_habitable} = B_{surface_r} \times (B_{floors} + 1)$$

3.1.2 Related formulas to the UEN per dwelling

$$D_{uen_per_dwelling} = D_{uen_per_metre2} \times D_{surface}$$

$$= \frac{B_{weighted_surface_total}}{9 \times B_{surface_habitable} \times D_{ceiling_height} + 2.5 \times B_{weighted_surface_total}}{200} \times \frac{D_{ceiling_height} \times D_{intermittence} \times D_{degrees_of_reference}}{100} \times D_{surface}$$

$$= D_{uen_per_dwelling_1} \times D_{uen_per_dwelling_2}$$
(12)

• Where:

2019 CSTB Page 5 of 26

$$D_{uen_per_dwelling_1} = \frac{B_{weighted_surface_total}}{B_{enlarged_weighted_surface_total}}$$
(13)

$$B_{enlarged_weighted_surface_total} = 9 \times B_{heightened_surface_habitable} + 2.5 \times B_{weighted_surface_total}$$
 (14)

$$B_{heightened_surface_habitable} = B_{surface_r} \times (B_{floors} + 1) \times D_{ceiling_height}$$
 (15)

$$D_{uen_per_dwelling_2} = D_{ceiling_height} \times D_{intermittence} \times D_{degrees_of_reference} \times D_{surface} \times 0.01$$
(16)

3.2 Related formulas to individual dwellings

3.2.1 Related formulas to the UEN per m^2

Original related formulas to the UEN per m^2

$$D_{uen_per_metre2} = \frac{D_{intermittence_adjusted} \times D_{ug} \times B_{surface_envelope} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

$$= D_{intermittence_adjusted} \times D_{ug} \times \frac{B_{surface_envelope} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

• Where:

$$D_{intermittence} = \frac{D_{intermittence}}{1 + 0.1 \times \left(D_{ug} \times \frac{B_{surface_envelope}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1\right)}$$

$$B_{surface_envelope} = B_{surface_m} + B_{surface_w} + B_{surface_r} + B_{surface_f}$$

$$B_{surface_habitable} = D_{surface}$$

2019 CSTB Page 6 of 26

Simplified related formulas to the UEN per m^2

$$D_{uen_per_metre2} = D_{intermittence_adjusted} \times D_{ug} \times \frac{B_{surface_envelope} \times D_{degrees_of_reference}}{B_{surface_habitable} \times 1000}$$

$$= \frac{D_{intermittence}}{1 + 0.1 \times \left(\frac{B_{weighted_surface_total}}{B_{surface_envelope}} \times \frac{B_{surface_nwelope}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1\right)} \times \frac{B_{weighted_surface_total}}{B_{surface_envelope}} \times \frac{B_{surface_nwelope}}{B_{surface_habitable}} \times \frac{D_{degrees_of_reference}}{B_{surface_habitable}} \times 1000$$

$$= \frac{D_{intermittence}}{1 + \frac{1}{10} \times \left(\frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{2.5}{D_{ceiling_height}} - 1\right)}{\times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times 1000}$$

$$= \frac{10 \times B_{surface_habitable} \times D_{degrees_of_reference}}{B_{surface_habitable}} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{D_{ceiling_height} + 2.5 \times B_{weighted_surface_total}}{B_{surface_habitable}} \times \frac{D_{ceiling_height} \times D_{ceiling_height}}{D_{ceiling_height}} \times \frac{D_{ceiling_height}}{D_{ceiling_height}} \times \frac{D_{ceiling_height}}{D_{ceilin$$

• Where:

$$B_{surface_habitable}$$
 = $D_{surface}$

3.2.2 Related formulas to the UEN per dwelling

$$D_{uen_per_dwelling} = D_{uen_per_metre2} \times D_{surface}$$

$$= \frac{B_{weighted_surface_total}}{9 \times B_{surface_habitable} \times D_{ceiling_height} + 2.5 \times B_{weighted_surface_total}}{200} \times \frac{D_{ceiling_height} \times D_{intermittence} \times D_{degrees_of_reference}}{100} \times D_{surface}$$

$$= D_{uen_per_dwelling_1} \times D_{uen_per_dwelling_2}$$
(17)

• Where:

2019 CSTB Page 7 of 26

$$D_{uen_per_dwelling_1} = \frac{B_{weighted_surface_total}}{B_{enlarged_weighted_surface_total}}$$
(18)

$$B_{enlarged_weighted_surface_total} = 9 \times B_{heightened_surface_habitable} + 2.5 \times B_{weighted_surface_total}$$
 (19)

$$B_{heightened_surface_habitable} = D_{surface} \times D_{ceiling_height}$$
 (20)

$$D_{uen_per_dwelling_2} = D_{ceiling_height} \times D_{intermittence} \times D_{degrees_of_reference} \times D_{surface} \times 0.01$$
(21)

4 Related formulas to the global heating costs (GHC)

4.1 Related formulas to the dwellings with individual heating system

4.1.1 Related formulas for the case *I*

• When:

$$-HS_{initial} = HS_{to_switch}$$

2019 CSTB Page 8 of 26

$$D_{GHC_I} = \frac{D_{investment_cost} \times HS_{inflation_rate_1st}}{HS_{discount_1st}} + \frac{D_{investment_cost} \times HS_{inflation_rate_2nd}}{HS_{discount_2nd}}$$

$$+ \frac{D_{uen_per_dwelling}}{HS_{efficiency}} \times HS_{energy_bill} + HS_{maintenance} + D_{insulation_cost}$$

$$= (HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling})$$

$$\times \frac{HS_{inflation_rate_1st} \times HS_{discount_2nd} + HS_{inflation_rate_2nd} \times HS_{discount_1st}}{HS_{discount_1st} \times HS_{discount_2nd}}$$

$$+ D_{uen_per_dwelling} \times \frac{HS_{energy_bill}}{HS_{efficiency}} + HS_{maintenance} + D_{insulation_cost}$$

$$= HS_{ghc_uen_condition_1} + D_{unvariable_cost_1}$$

$$(22)$$

• Where:

$$D_{investment_cost} = HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling}$$
 (23)

2019 CSTB Page 9 of 26

$$HS_{ghc_uen_condition_1} = HS_{uen_cost_1} \times D_{uen_per_dwelling}$$
 (24)

if $HS_{to_switch} \in \{ER, GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$ \Rightarrow $HS_{initial} \in \{ER, GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$ and $HS_{to_switch} = HS_{initial}$

$$HS_{uen_cost_1} = HS_{b_investment} \times HS_{time_factor_1} + \frac{HS_{energy_bill}}{HS_{efficiency}}$$
(25)

$$HS_{time_factor_1} = \frac{HS_{inflation_rate_1st} \times HS_{discount_2nd} + HS_{inflation_rate_2nd} \times HS_{discount_1st}}{HS_{discount_1st} \times HS_{discount_2nd}}$$
(26)

$$HS_{inflation_rate_1st} = (1 + HS_{inflation_rate})^{18 - HS_{initial_age} + year}, year \in [1, 20]$$
 (27)

$$HS_{inflation_rate_2nd} = (1 + HS_{inflation_rate})^{38 - HS_{initial_age} + year}, year \in [1, 20]$$
 (28)

$$HS_{discount_1st} = (1 + HS_{discount_rate})^{19 - HS_{initial_age}}$$
(29)

$$HS_{discount_2nd} = (1 + HS_{discount_rate})^{39 - HS_{initial_age}}$$
(30)

$$HS_{energy_bill} = \sum_{i=1}^{40} \frac{HS_{energy_price} \times (1 + HS_{annual_variation})^{i+year-2} + HS_{carbon_tax}}{(1 + D_{discount_rate})^{i}}, year \in [1, 20]$$
(31)

$$HS_{carbon_tax} = HS_{emission_factor} \times HS_{carbon_price}$$
 (32)

2019 CSTB Page 10 of 26

$$D_{unvariable_cost_1} = D_{insulation_cost} + HS_{fixed_cost_1}$$

$$if \qquad HS_{to_switch} \in \{ER, GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

$$\Rightarrow HS_{initial} \in \{ER, GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

and
$$HS_{to_switch} = HS_{initial}$$

$$D_{insulation_cost} = D_{insulation_cost_m_w} + D_{insulation_cost_r_f}$$
(34)

$$D_{insulation_cost_m_w} = \frac{B_{surface_m}}{B_{dwelling_total}} \times D_{price_including_tax_m} + \frac{B_{surface_w}}{B_{dwelling_total}} \times D_{price_including_tax_w}$$
(35)

$$D_{insulation_cost_r_f} = \frac{D_{surface}}{B_{floors} + 1} \times D_{price_including_tax_r} + \frac{D_{surface}}{B_{floors} + 1} \times D_{price_including_tax_f}$$
(36)

$$HS_{fixed_cost_1} = HS_{a_investment} \times HS_{time_factor_1} + HS_{maintenance}$$
 (37)

$$HS_{maintenance} = \sum_{i=0}^{39} \frac{HS_{maintenance_cost} \times (1 + HS_{inflation_rate})^{i+year-1}}{(1 + D_{discount_rate})^{i}}, year \in [1, 20] \quad (38)$$

4.1.2 Related formulas for the case *II*

• When:

- $HS_{initial} \neq HS_{to_switch}$
- $HS_{initial} \in \{ER, WB, EHP\}$ and $HS_{to_switch} \in \{ER, WB, EHP\}$
- $HS_{initial}$ ∈ {GB, CGB} and HS_{to_switch} ∈ {GB, CGB}
- $HS_{initial} \in \{OB, COB\}$ and $HS_{to_switch} \in \{OB, COB\}$

2019 CSTB Page 11 of 26

 $+ HS_{same_switch_cost}$

$$= \frac{\left(HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling}\right)}{HS_{discount_20} \times \frac{HS_{discount_20} \times HS_{inflation_rate_0} + HS_{inflation_rate_20}}{HS_{discount_20}} + D_{uen_per_dwelling} \times \frac{HS_{energy_bill}}{HS_{efficiency}} + HS_{maintenance} + D_{insulation_cost} + HS_{same_switch_cost}$$

$$= \frac{HS_{ghc_uen_condition_2} + D_{unvariable_cost_2}}{HS_{ghc_uen_condition_2} + D_{unvariable_cost_2}}$$
(39)

• Where:

2019 CSTB Page 12 of 26

$$HS_{ghc_uen_condition_2} = HS_{uen_cost_2} \times D_{uen_per_dwelling}$$
(40)
$$if \qquad HS_{to_switch} \in \{ER, OB, COB, EHP2, WB, WPB, EHP\}$$

$$\Rightarrow HS_{initial} \in \{ER, GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB\}$$

$$\Rightarrow HS_{initial} \in \{ER, GB, CGB, EHP2, WB, WPB, EHP\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$HS_{uen_cost_2} = HS_{b_investment} \times HS_{time_factor_2} + \frac{HS_{energy_bill}}{HS_{efficiency}}$$
(41)

$$HS_{time_factor_2} = \frac{HS_{discount_20} \times HS_{inflation_rate_0} + HS_{inflation_rate_20}}{HS_{discount_20}}$$
 (42)

$$HS_{discount_20} = (1 + HS_{discount_rate})^{20}$$
 (43)

$$HS_{inflation_rate_0} = (1 + HS_{inflation_rate})^{year-1}, year \in [0, 20]$$
 (44)

$$HS_{inflation_rate_20} = (1 + HS_{inflation_rate})^{19+year}, year \in [0, 20]$$
 (45)

2019 CSTB Page 13 of 26

$$D_{insulation_cost} + HS_{fixed_cost_2}$$
 (46)
$$if \qquad HS_{to_switch} \in \{ER, WB, EHP\}$$

$$\Rightarrow \qquad HS_{initial} \in \{ER, WB, EHP\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB\}$$

$$\Rightarrow \qquad HS_{initial} \in \{GB, CGB\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \in \{OB, COB\}$$

$$\Rightarrow \qquad HS_{initial} \in \{OB, COB\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$HS_{fixed_cost_2} = \qquad HS_{a_investment} \times HS_{time_factor_2} + HS_{maintenance}$$

$$+ HS_{same_switch_cost}$$
 (47)

4.1.3 Related formulas for the case III

• When:

-
$$HS_{initial} \neq HS_{to_switch}$$

-
$$HS_{initial} = WB$$
 and $HS_{to_switch} = WPB$

<u>To Switch</u> Initial	ER	GB	CGB	OB	СОВ	EHP2	WB	WPB	ЕНР
ER	×						×		×
GB		×	×						
CGB		×	×						
OB				×	×				
COB				×	×				
EHP2						×			
WB	×						×	\oplus	×
WPB								×	
EHP	×						×		×

2019 CSTB Page 14 of 26

$$D_{GHC_III} = D_{investment_cost} \times HS_{inflation_rate_0} + \frac{D_{investment_cost} \times HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ \frac{D_{uen_per_dwelling}}{HS_{efficiency}} \times HS_{energy_bill} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{same_switch_cost} + HS_{control_cost}$$

$$= (HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling})$$

$$\times \frac{HS_{discount_20} \times HS_{inflation_rate_0} + HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ D_{uen_per_dwelling} \times \frac{HS_{energy_bill}}{HS_{efficiency}} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{same_switch_cost} + HS_{control_cost}$$

$$= HS_{ghc_uen_condition_2} + D_{unvariable_cost_3}$$

$$(48)$$

• Where:

$$D_{unvariable_cost_3} = D_{insulation_cost} + HS_{fixed_cost_3}$$
(50)
$$if \qquad HS_{to_switch} = WPB$$

$$\Rightarrow \qquad HS_{initial} = WB$$

$$HS_{fixed_cost_3} = HS_{fixed_cost_2} + HS_{control_cost}$$
(51)
$$HS_{control_cost} = HS_{delevery_type_cost} \times D_{surface}$$
(52)

4.1.4 Related formulas for the case IV

- When:
 - $HS_{initial} \neq HS_{to_switch}$
 - $HS_{initial} \in \{GB, CGB\}$ and $HS_{to_switch} \in \{OB, COB, EHP2, WPB\}$
 - $HS_{initial} \in \{OB, COB\}$ and $HS_{to_switch} \in \{EHP2, WPB\}$
 - $HS_{initial} \in \{EHP2, WPB\}$ and $HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2, WPB\}$

2019 CSTB Page 15 of 26

$$D_{GHC_IV} = D_{investment_cost} \times HS_{inflation_rate_0} + \frac{D_{investment_cost} \times HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ \frac{D_{uen_per_dwelling}}{HS_{efficiency}} \times HS_{energy_bill} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{different_switch_cost}$$

$$= (HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling})$$

$$\times \frac{HS_{discount_20} \times HS_{inflation_rate_0} + HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ D_{uen_per_dwelling} \times \frac{HS_{energy_bill}}{HS_{efficiency}} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{different_switch_cost}$$

$$= HS_{ghc_uen_condition_2} + D_{unvariable_cost_4}$$
(53)

(54)

• Where:

2019 CSTB Page 16 of 26

$$D_{insulation_cost} + HS_{fixed_cost_4}$$
 (55)
$$if \qquad HS_{to_switch} \in \{GB, CGB\} \\ \Rightarrow \qquad HS_{initial} \in \{OB, COB, EHP2, WPB\} \}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB, EHP2, WPB\} \}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB, EHP2, WPB\} \}$$

$$if \qquad HS_{to_switch} \in \{EHP2, WPB\} \}$$

$$\Rightarrow \qquad HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WPB\} \}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$HS_{fixed_cost_4} = \qquad HS_{a_investment} \times HS_{time_factor_2} + HS_{maintenance} + HS_{different_switch_cost}$$
 (56)

4.1.5 Related formulas for the case V

• When:

- $HS_{initial} \neq HS_{to_switch}$
- $HS_{initial}$ ∈ {ER, EHP} and HS_{to_switch} ∈ {GB, CGB, OB, COB, EHP2, WPB}
- $HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WPB\}$ and $HS_{to_switch} \in \{ER, WB, EHP\}$
- $HS_{initial} = WB$ and $HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2\}$

To Switch	ER	GB	CGB	OB	СОВ	EHP2	WB	WPB	EHP
Initial									
ER	\times	\oplus	\oplus	\oplus	\oplus	\oplus	×	\oplus	×
GB	\oplus	X	×	×	×	×	\oplus	×	\oplus
CGB	\oplus	×	×	×	×	×	\oplus	×	\oplus
OB	\oplus			×	×	×	\oplus	×	\oplus
COB	\oplus			×	×	×	\oplus	×	\oplus
EHP2	\oplus	X	×	×	×	×	\oplus	×	\oplus
WB	×	\oplus	\oplus	\oplus	\oplus	\oplus	×	×	×
WPB	\oplus	×	×	×	×	×	\oplus	×	\oplus
EHP	×	\oplus	\oplus	\oplus	\oplus	\oplus	×	\oplus	×

2019 CSTB Page 17 of 26

$$D_{GHC_V} = D_{investment_cost} \times HS_{inflation_rate_0} + \frac{D_{investment_cost} \times HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ \frac{D_{uen_per_dwelling}}{HS_{efficiency}} \times HS_{energy_bill} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{different_switch_cost} + HS_{control_cost}$$

$$= (HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling})$$

$$\times \frac{HS_{discount_20} \times HS_{inflation_rate_0} + HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ D_{uen_per_dwelling} \times \frac{HS_{energy_bill}}{HS_{efficiency}} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{different_switch_cost} + HS_{control_cost}$$

$$= HS_{ghc_uen_condition_2} + D_{unvariable_cost_5}$$

$$(57)$$

• Where:

$$D_{invariable_cost_5} = D_{insulation_cost} + HS_{fixed_cost_5}$$

$$if \qquad HS_{to_switch} \in \{ER, WB, EHP\}$$

$$\Rightarrow \qquad HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WPB\}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2\}$$

$$\Rightarrow \qquad HS_{initial} \in \{ER, WB, EHP\}$$

$$if \qquad HS_{to_switch} = WPB$$

$$\Rightarrow \qquad HS_{initial} \in \{ER, EHP\}$$

$$HS_{fixed_cost_5} = HS_{fixed_cost_4} + HS_{control_cost}$$

$$(60)$$

4.1.6 Related formulas for the case *VI*

• When:

-
$$HS_{initial} \neq HS_{to_switch}$$

- $HS_{initial} \in \{OB, COB\}$ and $HS_{to_switch} \in \{GB, CGB\}$

2019 CSTB Page 18 of 26

To Switch	ER	GB	CGB	OB	COB	EHP2	WB	WPB	EHP
Initial									
ER	×	×	×	×	×	×	×	×	×
GB	×	×	×	×	×	×	×	×	X
CGB	×	×	×	×	×	×	×	×	X
OB	×	\oplus	\oplus	×	×	×	×	×	×
COB	×	\oplus	\oplus	×	×	×	×	×	×
EHP2	×	×	×	×	×	×	×	×	×
WB	×	×	×	×	×	×	×	×	×
WPB	×	×	×	×	×	×	×	×	×
EHP	×	×	×	×	×	×	×	×	×

$$D_{GHC_VI} = D_{investment_cost} \times HS_{inflation_rate_0} + \frac{D_{investment_cost} \times HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ \frac{D_{uen_per_dwelling}}{HS_{efficiency}} \times HS_{no_gas_40} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{different_switch_cost}$$

$$= (HS_{a_investment} + HS_{b_investment} \times D_{uen_per_dwelling})$$

$$\times \frac{HS_{discount_20} \times HS_{inflation_rate_0} + HS_{inflation_rate_20}}{HS_{discount_20}}$$

$$+ D_{uen_per_dwelling} \times \frac{HS_{no_gas_40}}{HS_{efficiency}} + HS_{maintenance} + D_{insulation_cost}$$

$$+ HS_{different_switch_cost}$$

$$= HS_{ghc_uen_condition_3} + D_{unvariable_cost_4}$$

$$(61)$$

(62)

• Where:

2019 CSTB Page 19 of 26

$$HS_{ghc_uen_condition_3} = HS_{uen_cost_3} \times D_{uen_per_dwelling}$$

$$if \quad HS_{to_switch} \in \{GB, CGB\}$$

$$\Rightarrow HS_{initial} \in \{OB, COB\}$$

$$HS_{uen_cost_3} = HS_{b_investment} \times HS_{time_factor_2} + \frac{HS_{no_gas_prices}}{HS_{efficiency}}$$

$$HS_{no_gas_prices} = \sum_{i=1}^{40} \frac{HS_{specific_gas_price} \times (1 + HS_{annual_variation})^{i+year-2} + HS_{carbon_tax}}{(1 + D_{discount_rate})^{i}}, year \in [1, 20]$$

$$(65)$$

4.2 Related formulas to the dwellings with collective heating system

4.2.1 Related formulas for the case *I*

• When:

$$-HS_{initial} = HS_{to \ switch}$$

• Where:

2019 CSTB Page 20 of 26

$$HS_{ghc_uen_condition_1} = HS_{uen_cost_1} \times D_{uen_per_dwelling}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

$$\Rightarrow HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

$$and \qquad HS_{to_switch} = HS_{initial}$$

$$D_{unvariable_cost_1} = D_{insulation_cost} + HS_{fixed_cost_1}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

$$\Rightarrow HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WB, WPB, EHP\}$$

$$and \qquad HS_{to_switch} = HS_{initial}$$

$$(67)$$

4.2.2 Related formulas for the case II

- When:
 - $HS_{initial} \neq HS_{to \ switch}$
 - $HS_{initial}$ ∈ {GB, CGB} and HS_{to_switch} ∈ {GB, CGB}
 - $HS_{initial}$ ∈ {OB, COB} and HS_{to_switch} ∈ {OB, COB}

 $HS_{ghc_uen_condition_2} + D_{unvariable_cost_2}$

(69)

• Where:

 D_{GHC_II}

2019 CSTB Page 21 of 26

$$HS_{ghc_uen_condition_2} = HS_{uen_cost_2} \times D_{uen_per_dwelling}$$
 (70)
$$if \qquad HS_{to_switch} \in \{OB, COB, EHP2, WB, WPB, EHP\} \\ \Rightarrow \qquad HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WB, WPB, EHP\} \\ and \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB\} \\ \Rightarrow \qquad HS_{initial} \in \{GB, CGB, EHP2, WB, WPB, EHP\} \\ and \qquad HS_{to_switch} \neq HS_{initial}$$

$$D_{unvariable_cost_2} = D_{insulation_cost} + HS_{fixed_cost_2}$$
 (71)
$$if \qquad HS_{to_switch} \in \{GB, CGB\} \\ \Rightarrow \qquad HS_{initial} \in \{GB, CGB\} \\ and \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \in \{OB, COB\} \\ \Rightarrow \qquad HS_{initial} \in \{OB, COB\} \\ and \qquad HS_{to_switch} \neq HS_{initial}$$

4.2.3 Related formulas for the case III

- When:
 - $HS_{initial} \neq HS_{to_switch}$
 - $HS_{initial} \in \{WB, WPB\}$ and $HS_{to\ switch} \in \{WB, WPB\}$

To Switch	GB	CGB	OB	СОВ	EHP2	WB	WPB	EHP
Initial								
GB	×	×						
CGB	×	×						
OB			×	×				
COB			×	×				
EHP2					×			
WB						×	\oplus	
WPB						\oplus	×	
EHP								×

2019 CSTB Page 22 of 26

$$D_{GHC_III} = HS_{ghc_uen_condition_2} + D_{unvariable_cost_3}$$
 (72) (73)

• Where:

$$D_{unvariable_cost_3} = D_{insulation_cost} + HS_{fixed_cost_3}$$
(74)
$$if \qquad HS_{to_switch} \in \{WB, WPB\}$$

$$\Rightarrow \qquad HS_{initial} \in \{WB, WPB\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

4.2.4 Related formulas for the case IV

• When:

- $HS_{initial} \neq HS_{to \ switch}$
- $HS_{initial} \in \{GB, CGB\}$ and $HS_{to_switch} \in \{OB, COB, EHP2, WPB\}$
- $HS_{initial}$ ∈ {OB, COB} and HS_{to_switch} ∈ {EHP2, WPB}
- $HS_{initial} \in \{EHP2, WPB\}$ and $HS_{to\ switch} \in \{GB, CGB, OB, COB, EHP2, WPB\}$
- $HS_{initial} \in \{WB, EHP\}$ and $HS_{to\ switch} \in \{WB, EHP\}$

To Switch	GB	CGB	OB	СОВ	EHP2	WB	WPB	EHP
Initial								
GB	×	×	\oplus	\oplus	\oplus		\oplus	
CGB	×	×	\oplus	\oplus	\oplus		\oplus	
OB			×	×	\oplus		\oplus	
COB			×	×	\oplus		\oplus	
EHP2	\oplus	\oplus	\oplus	\oplus	×		\oplus	
WB						×	×	\oplus
WPB	\oplus	\oplus	\oplus	\oplus	\oplus	×	×	
EHP						\oplus		×

$$D_{GHC_IV} = HS_{ghc_uen_condition_2} + D_{unvariable_cost_4}$$
 (75)

• Where:

2019 CSTB Page 23 of 26

$$D_{unvariable_cost_4} = D_{insulation_cost} + HS_{fixed_cost_4}$$
 (76)
$$if \qquad HS_{to_switch} \in \{GB, CGB\}$$

$$\Rightarrow \qquad HS_{initial} \in \{OB, COB, EHP2, WPB\}$$

$$if \qquad HS_{to_switch} \in \{GB, CGB, EHP2, WPB\}$$

$$if \qquad HS_{to_switch} \in \{EHP2, WPB\}$$

$$\Rightarrow \qquad HS_{initial} \in \{GB, CGB, OB, COB, EHP2, WPB\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \neq HS_{initial}$$

$$if \qquad HS_{to_switch} \in \{WB, EHP\}$$

$$\Rightarrow \qquad HS_{initial} \in \{WB, EHP\}$$

$$and \qquad HS_{to_switch} \neq HS_{initial}$$

4.2.5 Related formulas for the case V

• When:

- $HS_{initial} \neq HS_{to_switch}$
- $HS_{initial} \in \{GB, CGB, OB, COB, EHP2\}$ and $HS_{to\ switch} \in \{WB, EHP\}$
- $HS_{initial} = WB$ and $HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2\}$
- $HS_{initial} = WPB$ and $HS_{to_switch} = EHP$
- $HS_{initial} = EHP$ and $HS_{to_switch} \in \{GB, CGB, OB, COB, EHP2, WPB\}$

To Switch	GB	CGB	OB	COB	EHP2	WB	WPB	EHP
Initial								
GB	×	×	×	×	×	\oplus	×	\oplus
CGB	×	×	×	×	×	\oplus	×	\oplus
OB			×	×	×	\oplus	×	\oplus
COB			×	×	×	\oplus	×	\oplus
EHP2	×	×	×	×	×	\oplus	×	\oplus
WB	\oplus	\oplus	\oplus	\oplus	\oplus	×	×	×
WPB	×	×	×	×	×	×	×	\oplus
EHP	\oplus	\oplus	\oplus	\oplus	\oplus	×	\oplus	×

$$D_{GHC_V} = HS_{ghc_uen_condition_2} + D_{unvariable_cost_5}$$
 (77)

2019 CSTB Page 24 of 26

• Where:

$$\begin{array}{lll} D_{unvariable_cost_5} & = & D_{insulation_cost} + HS_{fixed_cost_5} & (78) \\ \\ if & HS_{to_switch} \in \{GB,\, CGB,\, OB,\, COB,\, EHP2\} \\ \\ \Rightarrow & HS_{initial} \in \{WB,\, EHP\} \\ \\ if & HS_{to_switch} = WB \\ \\ \Rightarrow & HS_{initial} \in \{GB,\, CGB,\, OB,\, COB,\, EHP2\} \\ \\ if & HS_{to_switch} = WPB \\ \\ \Rightarrow & HS_{initial} = EHP \\ \\ if & HS_{to_switch} = EHP \\ \\ \Rightarrow & HS_{initial} \in \{GB,\, CGB,\, OB,\, COB,\, EHP2,\, WPB\} \\ \end{array}$$

4.2.6 Related formulas for the case VI

• When:

- $HS_{initial} \neq HS_{to_switch}$
- $HS_{initial} \in \{OB,COB\}$ and $HS_{to_switch} \in \{GB,CGB\}$

<u>To Switch</u> Initial	GB	CGB	OB	СОВ	EHP2	WB	WPB	EHP
GB	×	X	×	X	×	×	X	×
CGB	×	×	×	×	×	×	×	×
OB	\oplus	\oplus	×	×	×	×	×	×
COB	\oplus	\oplus	×	×	×	×	×	×
EHP2	×	×	×	×	×	×	×	×
WB	×	×	×	×	×	×	×	×
WPB	×	×	×	×	×	×	×	×
EHP	×	×	×	×	×	×	×	×

$$D_{GHC_VI} = HS_{ghc_uen_condition_3} + D_{unvariable_cost_4}$$
 (79)

• Where:

2019 CSTB Page 25 of 26

$$HS_{ghc_uen_condition_3} = HS_{uen_cost_3} \times D_{uen_per_dwelling}$$
(80)
$$if \qquad HS_{to_switch} \in \{GB, CGB\}$$
$$\Rightarrow HS_{initial} \in \{OB, COB\}$$

2019 CSTB Page 26 of 26