Master I d'informatique INFO0809 : info. théorique Pascal Mignot

Aide-mémoire (DS du 13 février 2014)

Langages réguliers

- Un **alphabet** Σ est un ensemble **fini** de lettres. Σ^* est l'ensemble de toutes les chaines possibles pouvant être générées par l'alphabet Σ .
- Un langage L sur l'alphabet Σ est un sous-ensemble de Σ^* (i.e. $L \subseteq \Sigma^*$).
- Un automate déterministe fini (ADF) est un 5-uple $(Q, \Sigma, \delta, q_0, F)$, où Q est un ensemble fini d'états(ensemble des états), Σ est un ensemble fini de symboles (alphabet), $\delta: Q \times \Sigma \to Q$ est la fonction de transition, $q_0 \in Q$ est l'état de départ, $F \subset Q$ est l'ensemble des états acceptants.
- Langage accepté par un ADF M est l'ensemble des chaines L acceptées par M.
- Langage régulier est un langage accepté par un ADF M.
- Opérations régulières : les opérations régulières sont l'Union $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$, la Concaténation $A \circ B = \{xy \mid x \in A \text{ et } y \in B\}$, et l'Etoile $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ et } x_i \in A \text{ pour tout } i\}$ où A et B sont deux langages.
- **Théorème** : L'ensemble des langages réguliers est fermé par toute opération régulière.
- L'union de deux ADFs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ et $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ donne un ADF $M = (Q, \Sigma, \delta, q_0, F)$ avec pour états $Q = Q_1 \times Q_2$, comme fonction de transition $\forall (r_1, r_2) \in Q, a \in \Sigma, \delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$ comme état initial $q_0 = (q_1, q_2)$ et comme états finaux $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$.
- **Théorème**: l'ensemble des langages libres de contexte est fermé par les opérateurs d'intersection et de complémentarité (intersection : union avec $F = F_1 \times F_2$, complément : $\bar{F} = Q \setminus F$).
- Un automate non-déterministe fini (ANF) est similaire à un ADF, excepté que sa fonction de transition est définie comme $\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$.
- **Théorème**: un langage est régulier si et seulement si il est reconnu par un ANF.
- Une **expression régulière** R (notée ER) sur un alphabet σ si R est un symbole a ∈ Σ, la chaîne vide ϵ , l'ensemble vide ϵ , une union d'expression régulière, une concaténation d'expression régulière, ou une opération étoile sur une expression régulières.
- **Théorème** : un langage est régulier si et seulement si il est reconnu par un ER.
- Transformation d'un ANF en ER:

AGNF = ANF dont les transtions sont des ERs.

- 1. partir d'un ANF modifié (AGNF) tel que ① l'état de départ a des transitions sortantes vers tous les autres états, ② l'état acceptant est unique.
- 2. pour réduire l'état q_{rip} , réduire tous les cycles q_i , q_j , q_{rip} (voir ci-contre), en transition $R_{ij} = R_1 R_2^* R_4 \cup R_4$ entre q_i et q_j .
- 3. répéter l'étape 2 jusqu'à ce qu'il n'y ait plus que 2 états. L'expression régulière est la transition entre les 2 états restants.

- **Théorème** : si un langage est fini (#L est fini), alors il est régulier.
- − Deux mots u et v sont L-équivalents si $\forall z \in \Sigma^*, uz \in L \Leftrightarrow vz \in L$.
- Théorème (Myhill-Nerode): un langage L est régulier si et seulement si il existe un nombre fini de L-classes distinctes.
- **Lemme de l'étoile**: soit un AFD $M = (Q, \Sigma, \delta, q_0, F)$ tel que $\mathcal{L}(M)$ soit infini. Pour tout mot w dans $\mathcal{L}(M)$ tel que $|w| \ge |Q|$, il existe une décomposition w = xyz telle que $xy^iz \in \mathcal{L}(M)$ pour tout $i \ge 0$, |y| > 0 et |xy| < |Q|.

Grammaire libre de contexte

- Une **grammaire libre de contexte** (GLC) est un triplet (V, Σ, R, S) constitué d'un ensemble de variables V, d'un ensemble de symboles (terminaux) Σ , d'un ensemble de règle de réécriture sous la forme $u \to U$ où U est une combinaison de variables de V ou de symboles de Σ , S est la variable de départ.
- **Dérivations**: on écrit $u \Rightarrow v$ s'il existe une règle de réécriture $r \in R$ qui transforme u en v. on écrit $u \stackrel{*}{\Rightarrow} v$ s'il existe une suite de règles de réécriture $r_1 r_2 \dots r_k \in R^k$ qui transforme u en v.
- Un mot w est généré par une GLC si $S \stackrel{*}{\Rightarrow} w$.
- Un langage libre de contexte (LLC) est l'ensemble des mots de Σ^* générés par une GLC.
- L'union de 2 GLCs $G_1 = (V_1, \Sigma, R_1, S_1)$ et $G_2 = (V_2, \Sigma, R_2, S_2)$ (où V_1 et V_2 sont disjoints) est une GLC $G = (V, \Sigma, R, S)$ telle que $V = V_1 \cup V_2$ et $R = R_1 \cup R_2 \cup S \rightarrow S_1 | S_2$.

- Un grammaire linéaire (V, Σ, R, S) est une grammaire construite à partir d'un ADF (Q, Σ, δ, q₀, F), où l'on associe ① à chaque symbole $q_i ∈ Q$, une variable $v_i ∈ V$ ② à chaque transition $\delta(q_i, a) = q_j$, une règle $V_i ⇒ aV_j ∈ R$ ③ à chaque état final $q_i ∈ F$, une règle $V_i → \epsilon$, ④ $S = V_0$ à l'état de départ q_0 .
- L'ensemble des langages libres de contexte est l'ensemble des langages acceptés par les GLCs.
- Théorème : L'ensemble des langages libres de contexte est fermé par toute opération régulière.
- **Théorème** : Si un langage est régulier, alors il est accepté par une GLC.
- La **dérivation la plus à gauche** d'une chaîne consiste à chaque étape à remplacer la variable la plus à gauche.
- Une chaîne générée par une GLC est **ambigüe** si cette GLC permet de dériver cette chaine de plus d'une façon en n'utilisant que des dérivations les plus à gauche.
- Une grammaire est ambigüe si elle génère au moins une chaine ambigüe. Sinon, elle est non ambigüe.
- Une GLC est sous **forme normale de Chomsky** si chaque règle est sous la forme $A \to BC$ ou $A \to a$ ou $S \to \epsilon$ où ① a est n'importe quelle terminal, ② A, B, C, S sont des variables telles que S est la variable de départ, A est n'importe quelle variable (y compris S) et B, C sont des variables différentes de S.
- **Théorème**: tout LLC peut être généré par une GLC sous FNC en appliquant les étapes suivantes : ① ajouter une nouvelle règle $S_0 \to S$ ② supprimer les règles de la forme $A \to \epsilon$ (partout où A apparaît dans la RHS, ajouter une nouvelle règle sans A) ③ supprimer les règles unitaires $A \to B$ (pour toute règle $B \to U$, ajouter une règle $A \to U$) ④ supprimer les chaines $A \to u_1u_2 \dots u_k$ (remplacer par les règles $A \to u_1A_1$, $A_1 \to u_2A_2$, ... $A_{k-2} \to u_{k-1}u_k$ ⑤ supprimer les règles $A \to u_1u_2$ où u_1 est un terminal (remplacer par $A \to U_1u_2$ et $U_1 \to u_1$). Idem si u_2 est un terminal.
- Un **automate à pile** (AP) est un 6-uple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ où Q un ensemble fini d'états, Σ un alphabet, Γ les symboles de la pile, δ une fonction de transition $Q \times \Sigma' \times \Gamma' \to \mathcal{P}(Q \times \Gamma')$ avec $\Sigma' = \Sigma \cup \{\epsilon\}$ et $\Gamma' = \Gamma \cup \{\epsilon\}$, q_0 est l'état de départ, F est l'ensemble des états acceptants.
- Théorème : un langage est libre de contexte si et seulement si il est généré par un AP.
- Lemme de l'étoile (pour une GLC) : soit un langage L généré par une GLC. Pour tous les mots w de L de longueur au moins p (dépendante du langage L), alors on peut trouver u, v, v, v, v tel que v is v in v
- Théorème : l'ensemble des langages libres de contexte n'est pas fermé par les opérateurs d'intersection et de complémentarité.

Machine de Turing

- Une **machine de Turing** (MT) est un 7-uple $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ où Q est l'ensemble fini des états, Σ est l'alphabet d'entrée, Γ est l'alphabet de la bande, $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ est la fonction de transition, $q_0 \in Q$ est l'état de départ, $q_a \in Q$ est l'état acceptant, $q_r \in Q$ est l'état rejetant.
- L'exécution d'une MT commence avec un mot w écrit sur sa bande et dans l'état q_0 . La MT accepte (resp. rejette) w si elle atteint l'état q_a (resp. q_s), sinon elle ne s'arrête jamais.
- Une MT est dans l'état uq_iv si la bande contient la chaîne uv et le pointeur de lecture placé sur le premier caractères de la chaîne u.
- Un langage L est accepté par une MT M si pour tout $w \in L$, M s'arrête sur un état acceptant.
- Un langage est (récursivement) énumérable s'il existe une MT qui l'accepte.
- Une MT décide un langage L si MT accepte w pour tout w ∈ L et rejette w pour tout w ∉ L.
- **Théorème** : tous les modèles de MT (transition S, multibandes, ...) sont équivalents.
- Complétude de Turing : un formalisme de machine est Turing-complet s'il permet de simuler une MT.
- une MT est dite **non déterministe** (MTND) s'il existe plus d'une transition possible à partir d'un même état et symbole d'entrée.
- L'exécution d'une MTND conduit alors à l'évaluation de toutes les transitions possibles en même temps. La MNTD accepte l'entrée si au moins une branche l'accepte, rejette l'entrée si toutes les branches la rejettent ou boucle à l'infini.
- **Théorème** : toute MTND a un MT équivalente.
- classes de langages : RE = classe des langages énumérables.

coRE = classe des langages dont le complément est énumérable (=co-énumérable). R = classe des langages décidables.

- **Théorème** : si un langage L est décidable, alors \bar{L} est énumérable.
- **Théorème** : $\mathcal{R} = \mathcal{RE} \cap co\mathcal{RE}$ (un langage est décidable si et seulement si il est énumérable et co-énumérable).
- un énumérateur est une MT avec une bande de travail qui envoie sur sa sortie (éventuellement avec répétition)
 l'ensemble des mots reconnus par un langage.
- Thèse de Church-Turing: tout calcul informatique est équivalent à un algorithme s'exécutant sur une MT.
- **Encodage :** on note < O > l'encodage de l'objet O sur la bande d'entrée d'une MT.
- une MT universelle est une MT qui peut simuler une MT M arbitraire sur une entrée arbitraire w.