

HIGH PERFORMANCE VIDEO ENCODING USING NVIDIA GPUS

Abhijit Patait

Sr. Manager,

GPU Multimedia SW

AGENDA

- Overview GPU Video Encoding
- NVIDIA Video Encoding Capabilities
 - Kepler vs Maxwell GPU capabilities
 - Roadmap
- Software API
- Performance & Quality

WHY GPU VIDEO ENCODING?

BENEFITS OF ENCODING ON GPU

- Low power
 - Fixed function hardware
 - Reduced memory transfers
- Low latency
- High performance
- Higher density
- Scalability
- Ease of Programming
 - Linux, Windows, C/C++, Application portability

NVIDIA GPU VIDEO ENCODING CAPABILITIES

NVIDIA GPU ENCODING CAPABILITIES

Feature	Benefits
H.264 base, main, high profiles	Wide range of use-cases
High performance (Up to 16x HD)	"Blazing-speed" encoding
YUV 4:2:0 and 4:4:4 support	High quality encoding without chroma subsampling
QP maps	Customizable quality, region of interest encoding
MVC	Full resolution stereo encode
Up to 4096 × 4096 in HW	High resolution encode
API - NV Encode SDK & GRID SDK	Flexible, Win/Linux, DirectX/CUDA
Independent of CUDA	Use CUDA and encode simultaneously

VIDEO ENCODING — KEPLER VS. MAXWELL

Kepler (GK104, GK107, GK106, GK110, GK208)	Maxwell (GM107)
Planar 4:4:4	Standard 4:4:4 and H.264 lossless encoding
~240 fps 2-pass encoding @ 720p	~500 fps 2-pass encoding @ 720p
GRID K340/K520, K1/K2, Quadro, Tesla K10/K20	Current and future Maxwell GPU-boards
GeForce – 2 full-speed encode sessions/GPU	GeForce – 2 full-speed encode sessions/GPU
NV Encode SDK 1.0, 2.0, 3.0 (Now)	NV Encode SDK 4.0+ (May 2014)
GRID SDK 1.x, 2.2, 2.3 (Now)	GRID SDK 3.0+ (June 2014)

NVIDIA VIDEO ENCODING ROADMAP

- Performance improvements
- Quality improvements
 - 4:4:4 & lossless encoding
 - Rate control enhancements
 - Adaptive quantization
 - ROI, ME-only mode
- New video standards

NVENC SOFTWARE APIS

USING NVENC

Direct Encode

NVENC SDK

- No capture
- Transcoding
- Archiving
- Video editing
- CUDA pre-process + encoding
- Granular encoder settings
- D3D, CUDA interop

Capture + Encode

GRID SDK

- Capture + encode
- Optimized for lowlatency apps
- Capture + CUDA preprocess + encoding
- Encoder settings optimized for streaming
- D3D, CUDA interop

DIRECT ENCODE (NVENC SDK)

CAPTURE AND ENCODE (GRID SDK)

NVENC SDK

- Available on NVIDIA developer zone
 - https://developer.nvidia.com/nvidia-video-codec-sdk
 - Current release 3.0
 - Release 4.0 in May 2014 with Maxwell support
- Interface header, documentation, sample application
 - dll/.so included in the driver
- Unified API for Windows and Linux
- Works on x86/x64
- Various API's, presets, rate control modes for
 - Transcoding
 - Video conferencing
 - GTC Session S4654

NVENC SDK (CONTD.)

- Advantages
 - Flexibility
 - Dynamic resolution/bitrate change
 - CABAC vs CAVLC; low-level encoder settings, B-frames, sync vs async, custom QP
 - Linux, Windows, DirectX, CUDA, OGL (via CUDA)
 - Also works on GeForce hardware (2 sessions/GPU)
 - Error concealment
 - Reference picture invalidation
 - Intra-refresh
 - Quality
 - Two-pass modes for higher quality
 - Various presets with quality/performance trade-off
 - 4:4:4 & lossless encoding (Maxwell only)

GRID SDK ENCODE

- Available on NVIDIA developer zone
 - https://developer.nvidia.com/grid-app-game-streaming
 - Current release: 2.2
- Interface header, documentation, sample apps
 - .dll/.so included in the driver
- Windows and Linux
- Works on x86/x64
- Various presets and API's for
 - Remote graphics (Cloud gaming, remote desktop, capture & stream)
- Optimized for low latency

GRID SDK (CONTD.)

- Advantages
 - Simplicity
 - Very simple API; single function call for capture + H.264 encode
 - Low-latency, high performance
 - Optimized API
 - Error concealment
 - Reference picture invalidation
 - Intra-refresh
 - Quality
 - Two-pass modes for higher quality
 - 4:4:4 & lossless encoding (Maxwell only)

PERFORMANCE AND QUALITY

PERFORMANCE - 720P

NVENC Performance at 720p, Low-Latency HP preset

Performance measured on GRID K520 with GRID SDK NVENC performance benchmarking application

PERFORMANCE - 1080P

NVENC Performance at 1080p, Low-Latency HP preset

Performance measured on GRID K520 with GRID SDK NVENC performance benchmarking application

ENCODING QUALITY VS X264 - ASSUMPTIONS

- Infinite GOP IPPP....
- VBV buffer = bitrate/framerate
- x264
 - Zero latency
 - CRF = 24
 - Preset = faster
- NVENC
 - Preset = LOW_LATENCY_HQ
 - RC = 2-pass-quality

NVENC/X264 QUALITY COMPARISON

NVENC/X264 QUALITY COMPARISON

QUALITY COMPARISON - PSNR

PSNR Comparison - x264 vs NVENC

QUALITY COMPARISON - SSIM

SSIM Comparison - x264 vs NVENC

QUESTIONS?