Lecture plan for 5th semester, B.E. (ICE), Year 2020 – 21

Subject Code: ICC16

Subject: Process Dynamics & Control

Course	Title of Course	Credits	Course Structure	Pre-Request	t
No.					
ICC16	Process Dynamics & Control	4	3 – 0 – 2		
UNIT - I					
Incentives for chemical process Control,					01
Design aspects of process control system, Hardware for process control system.					02
Modeling the Dynamic and static behavior of Chemical Process.					05
Linearization of non-linear systems.					02
1st CLASS TEST					
UNIT - II					
Dynamic behavior of 1 st order, 2 nd order and Higher- order systems.					03
Introduction to feedback Control, Dynamic Behavior of feedback Controlled processes.					04
Introduction to Proportional (P), Integral (I), Derivative (D) controllers, PI & PID controllers. Detailed					
comparison of PID controller algorithms. Derivative action on process output vs. error. Problems with					
proportional "kick" and reset "wind-up".					
MID SEMESTER EXAMINATION					
UNIT - III					
Stability analysis of feedback systems.					01
Design of Feedback Controllers.					02
Frequency Response Analysis of Linear Processes, Design of feedback Control Systems using					02
Frequency Response Techniques.					
UNIT - IV					
Feedback Control of systems with large dead time or Inverse Response.					02
Cascade Control, Selective Control Systems, Split- range Control.					02
Feed-forward Control, Ratio Control, Inferential Control Systems,				0	02
2 nd CLASS TEST					
1	UNIT - V				
Final Control Element: Signal Conversion (I/P or P/I converters) Actuators, pneumatic control valves,					02
valve petitioners and design of pneumatic control valve.					
Introduction to Programmable Logic Controller (PLC) and its programming.					03
Introduction to Supervisory Control & Data Acquisition (SCADA) Systems, Distributed Control					02
System (DCS) and Modern Industrial Communication protocols.					
TOTAL	TOTAL				

Text Book: G. Stephanopoulos. Chemical Process Control. *An Introduction to Theory and Practice*, Pearson Education, 1984.

References:

- D. R. Coughanowr. *Process Systems Analysis and Control*, New York: McGraw-Hill.
- D. E. Seborg, T. F. Edgar, and D. A. Mellichamp. *Process Dynamics and Control*, 2nd ed., Wiley, 2003.
- ➤ Curtis Johnson. Process Control Instrumentation Technology, 7TH ed., Pearsoned Education.
- ➤ B.Wayne Bequette, Process Control: Modelling Design and simulation, Prentice Hall India, 2002.
- > Instrument Engineers' Handbook, Fourth Edition, Volume Two- Process Control and Optimization by Liptak