Densely Connected Graph Convolutional Networks for Graph-to-Sequence Learning

Zhijiang Guo

Joint work with Yan Zhang, Zhiyang Teng, Wei Lu

Graph-to-Sequence

You guys know what I mean

Source: AMR Graph

Target: Text Sequence

Previous Work Sequence Encoder

BiLSTM (Konstas et al., 2017)

Previous Work Graph Encoder

Graph Encoder

GCNs (Kipf and Welling, 2017)?

GCNs have been successfully applied to NLP tasks (Bastings et al., 2017, Zhang et al., 2018)

First convolutional layer captures **first-order proximity** (immediate neighbors) information

First-Order Proximity

Second convolutional layer is able to capture **second-order proximity** information

Best performance of GCNs is achieved with the relatively shallow (**2-layer**) model (Li et al., 2018)

Alternative Solution

LSTM-attention operations are used to aggregate information among layers to capture non-local interactions for larger graphs (Xu et al., 2018)

Alternative Solution

1.11

Better Graph Encoder

Is it possible to build a deep convolutional graph encoder to learn a better graph representation?

Better Graph Encoder

Is it possible to build a deep convolutional graph encoder to learn a better graph representation?

Densely Connected Graph
Convolutional Networks (DCGCNs)

Better Graph Encoder

Is it possible to build a deep convolutional graph encoder to learn a better graph representation?

Model	Max GCN Layers
Jumping Net (Xu et al., 2018)	6
GCN + BiLSTM (Damonte&Cohen, 2019)	2
DCGCNs	36

Dense Connectivity

Each layer takes inputs from all preceding layers (Huang et al., 2017)

Dense Connectivity

Each layer takes inputs from all preceding layers (Huang et al., 2017)

Model Densely Connected GCNs (DCGCN)

Consists of **M** identical Blocks; each has 2 types of components:

- Densely Connected Sub-Block
- Linear Combination Layer

Model Densely Connected GCNs (DCGCN)

Consists of **M** identical Blocks; each has 2 types of components:

- Densely Connected Sub-Block
- Linear Combination Layer

Each block has **2** subblocks. Graph convolutional layers in both sub-blocks are densely connected

Intuitively, sub-blocks with different number of layers capture information at different levels

We need to make sure the number of parameters of the deeper DCGCN models is **manageable** and **comparable** to previous methods

Output dimension of the sub-block: *D* (concatenate output from all *L* layers)

Output dimension of each layer: d = D / L (proportional to #layers)

Input dimension of the sub-block: *D*Sub-block layers: *L*

Model Densely Connected GCNs (DCGCN)

Consists of **M** identical Blocks; each has 2 types of components:

- Densely Connected Sub-Block
- Linear Combination Layer

Linear Combination

The layer assigns different weights to outputs of different layers

Graph-to-Seq Model

Experiments

AMR-to-Text Generation

- AMR 2015 (LDC2015E86)
- AMR 2017 (LDC2017T10)

Syntax-Based Machine Translation

- English-German (WMT16)
- English-Czech (WMT16)

Experiments

AMR-to-Text Generation

- AMR 2015 (LDC2015E86)
- AMR 2017 (LDC2017T10)

Syntax-Based Machine Translation

- English-German (WMT16)
- English-Czech (WMT16)

Data Statistics

Dataset	Train	Dev	Test
AMR 2015	16,833	1,368	1,371
AMR 2017	36,521	1,368	1,371

AMR 2015 Main Results

Model	Туре	BLEU
LSTM (Konstas et al., 2017)	Seq	22.0
GS LSTM (Song et al., 2018)	Graph	23.3
GCNSEQ (Damonte & Cohen, 2019)	Mixed	24.4
DCGCN	Graph	25.7

AMR 2015 With External Training Data

Model	Туре	Ext	BLEU
LSTM (Konstas et al., 2017)	Seq	0.2M	27.4
GS LSTM (Song et al., 2018)	Graph	0.2M	28.2
DCGCN	Graph	0.2M	31.6

AMR 2015 With External Training Data

	,		1
Model	Type	Ext	BLEU
LSTM (Konstas et al., 2017)	Seq	0.2M	27.4
GS LSTM (Song et al., 2018)	Graph	0.2M	28.2
DCGCN	Graph	0.1M	29.0

AMR 2015 With External Training Data

Model	Туре	Ext	BLEU
LSTM (Konstas et al., 2017)	Seq	2M	32.3
LSTM (Konstas et al., 2017)	Seq	20M	33.8
GS LSTM (Song et al., 2018)	Graph	2M	33.6
DCGCN (Single)	Graph	0.3M	33.2
DCGCN (Ensemble)	Graph	0.3M	35.3

AMR 2017 Single Model Performance

Model	Туре	#P	В	C
LSTM (Konstas et al., 2017)	Seq	28M	21.7	49.1
GGNNs (Beck et al., 2018)	Graph	28M	23.3	50.4
GCNSEQ (Damonte & Cohen, 2019)	Mixed	N/A	24.5	N/A
DCGCN	Graph	18M	27.6	57.3

#P: Number of Parameters; B: BLEU; C: CHRF++

AMR 2017 Ensemble Performance

Model	Туре	#P	В	С
LSTM (Konstas et al., 2017)	Seq	142M	26.6	52.5
GGNNs (Beck et al., 2018)	Graph	141M	27.5	50.4
DCGCN	Graph	93M	30.4	59.6

#P: Number of Parameters; B: BLEU; C: CHRF++

Experiments

AMR-to-Text Generation

- AMR 2015 (LDC2015E86)
- AMR 2017 (LDC2017T10)

Syntax-Based Machine Translation

- English-German (WMT16)
- English-Czech (WMT16)

Data Statistics

Dataset	Train	Dev	Test
AMR 2015	16,833	1,368	1,371
AMR 2017	36,521	1,368	1,371
En-Cs	181,112	2,656	2,999
En-De	226,822	2,169	2,999

English-German

Model	Туре	#P	В	С
BoW + GCN (Bastings et al., 2017)	Mixed	N/A	12.2	N/A
CNN + GCN (Bastings et al., 2017)	Mixed	N/A	13.7	N/A
RNN + GCN (Bastings et al., 2017)	Mixed	N/A	16.1	N/A
Seq2Seq (Konstas et al., 2017)	Seq	41.4M	15.5	40.8
GGNNs (Beck et al., 2018)	Graph	41.2M	16.7	42.4
DCGCN	Graph	29.7M	19.0	44.1

#P: Number of Parameters; **B**: BLEU; **C**: CHRF++

English-Czech

Model	Туре	#P	В	С
BoW + GCN (Bastings et al., 2017)	Mixed	N/A	7.5	N/A
CNN + GCN (Bastings et al., 2017)	Mixed	N/A	8.7	N/A
RNN + GCN (Bastings et al., 2017)	Mixed	N/A	9.6	N/A
Seq2Seq (Konstas et al., 2017)	Seq	39.1M	8.9	33.8
GGNNs (Beck et al., 2018)	Graph	38.8M	9.8	33.3
DCGCN	Graph	28.3M	12.1	37.1

#P: Number of Parameters; **B**: BLEU; **C**: CHRF++

Ablation Test

Model	BLEU
DCGCN	25.5
- Dense Connections	23.2
- Linear Combination (LC)	23.7
- Direction Aggregation	24.6
- Global Node (GN)	24.2

Ablation Test

Model	BLEU
DCGCN	25.5
- Dense Connections	23.2
- Linear Combination (LC)	23.7
- Direction Aggregation	24.6
- Global Node (GN)	24.2

Results vs #Parameters

Results vs #Parameters

Conclusion

Contribution

A novel GCN model with deeper layers that allows the encoder to better capture the structural information of the graph

Future Work

Explore how other NLP applications can potentially benefit from the proposed approach

Thank You

Code Available

http://statnlp.org/research/ml

Graph-to-Sequence

AMR-to-Text Generation

Source: AMR graph

Target: natural language sequence

Syntax-Based Machine Translation (En-De)

Source: English sentence + dependency tree

Target: German sentence

Graph-to-Sequence

AMR-to-Text Generation

Source: AMR graph

Target: natural language sequence

Syntax-Based Machine Translation (En-De)

Source: English sentence + dependency tree

Target: German sentence