Instructions for this exam:

- You have 1 hour to write solutions to the three problems below. Each problem is worth 10 points.
- You must write in complete sentences and justify all of your work.
- You are NOT allowed to use outside resources, such as notes, the textbook, the internet, or people.
- Before you begin, copy the following statement and sign your name:

"All solutions will be my own and I will not consult outside resources. I understand that doing otherwise would be unfair to my classmates and a violation of the U's honor code."

- -Your Signature
- At the end of 1 hour, stop writing and begin scanning your solutions and uploading them to Gradescope, as you would do with a homework assignment.
 - Create a PDF scan of your work and save it to your computer.
 - Go to https://www.gradescope.com/courses/79451, click "Exam 3" to upload your PDF.
- If technical difficulties arise, private-message me in the chat, or send an email to moss@math.utah.edu.

Exam 1, Math 3210 September 18, 2020

- 1. (10pts) Use induction to prove that $\sum_{k=1}^{n} (-1)^k k^2 = \frac{(-1)^n n(n+1)}{2}.$
- 2. (10pts) Prove the statements in parts (a) and (b)
 - (a) (5pts) Suppose F is a field and x and y are elements of F. Prove that $(-1) \cdot x = -x$.
 - (b) (5pts) Suppose F is an ordered field and x, y are elements of F. Prove that x > 0 and y > 0 implies xy > 0.

Your proofs may only use the axioms of a field (or an ordered field) and the following fact: if x is an element of a field, then $x \cdot 0 = 0$.

- 3. (10pts) In the following problem you may use basic properties of +, \cdot , and < on \mathbb{Q} .
 - (a) (5pts) Let x and y be rational numbers. Prove that y < x implies $y^3 < x^3$.
 - (b) (5pts) Prove that the set $L = \{x \in \mathbb{Q} : x^3 < 5\}$ satisfies properties (1) and (3) of the definition of a Dedekind cut.

Challenge (0pts) Show that L satisfies property (2) of the definition of a Dedekind cut.

Important axioms and definitions

1

- N1. There is an element 1 in \mathbb{N} .
- N2. For each $n \in \mathbb{N}$, there is a successor element $s(n) \in \mathbb{N}$.
- N3. 1 is not the successor of any element of \mathbb{N} .
- N4. If two elements of \mathbb{N} have the same successor, they are equal.
- N5. If a subset A of N contains 1 and is closed under succession, then $A = \mathbb{N}$.
- A1. x + y = y + x for all x and y.
- A2. x + (y + z) = (x + y) + z for all x, y, z.

- A3. There is an element 0 such that 0 + x = x for all x.
- A4. For each x there is an element, denoted -x, such that x + (-x) = 0.
- M1. xy = yx for all x, y.
- M2. x(yz) = (xy)z for all x, y, z.
- M3. There is an element 1 such that $1 \neq 0$ and $1 \cdot x = x$ for all x.
- M4. For each nonzero element x there is an element, denoted x^{-1} , such that $x^{-1} \cdot x = 1$.
- D. $x \cdot (y+z) = x \cdot y + x \cdot z$ for all x, y, and z.
- O1. Either $x \leq y$ or $y \leq x$.
- O2. If $x \leq y$ and $y \leq x$, then x = y.
- O3. If $x \leq y$ and $y \leq z$, then $x \leq z$.
- O4. If $x \le y$ then $x + z \le y + z$.
- O5. If $x \le y$ and $0 \le z$, then $xz \le yz$.
- C. Every nonempty subset that is bounded above has a least upper bound.