Structured reporting system

Paweł Paczuski p.paczuski@stud.elka.pw.edu.pl

06.04.2018

Outline

Introduction

Problems of modern medicine

Standards

Typical workflow of a radiologist

Design and implementation of Structured reporting system

Radiological report as a tree

Technological stack

User interface

Validation

Plans for the future

Areas of interest of modern medicine

- increasing variety of diagnostic techniques and procedures
- unsatisfiable demand for medical services
- bureaucracy
- huge volumes of data to process and store. Healthcare Informatics

Healthcare Informatics vs Computer Science

Computer Science	Healthcare Informatics
general field	information engineering applied
	to the health care
data structures, algorithms	flow of information
ways of persistently storing	ways of presenting data at
_ data	proper time to proper person

Healthcare standards

- medical nomenclature SNOMED CT, LOINC
- exchange protocols and formats HL7, DICOM

Figure: Drug product example in SNOMED CT

Typical workflow of a radiologist

Figure: Typically, a radiologist analyzes medical images and creates report's text simultaneously

Areas of optimization

- radiologists are very BAD at typing on keyboard
- speech recognition has problems with capturing medical language

Reporting ontology

Figure: Types of entities and relations between them

Radiological report as a tree

Textual representation

John Smith

date: 02.04.2005

CT Brain

Extra-axial spaces: prominent frontally. **Ventricular system:** normal size; normal configuration. **Cerebral parenchyma:** appears unremarkable.

CT Neck

Nasopharynx: normal. Thyroid: normal.

Technological stack

- backend
 - C#
 - ASP.NET
 - MS SQL
- frontend (hybrid approach)
 - AngularJS, ES5

Report editor interface

Organ list

Properties

Connotations

def. RECIST 1.1

- response evaluation criteria in solid tumours
- calculates changes in sizes of solid tumors
- results based on several factors: change, nodes, selection of measurements

Parsing values for RECIST 1.1

Configuring RECIST 1.1

Calculate RECIST 1.1 Sum of previous measurements: 7 Sum of current measurements: 4 Difference (absolute): -3 Difference (relatively): -42.857% Status: Complete response

Generated report

Workfllow

Template editor

Validation

Places where the software was used:

- Several independent teleradiologists
- Small clinic in Wieliszew
- Large network of clinics

Conclusions:

- Tens of thousands reports generated
- Reports generated 3 times faster

Plans for the future

- develop independent commercial version of the software based on some ideas from this system
- support for more general ontologies
- conform to standards, integrations with existing RIS systems