

Kunstmatige intelligentie

Bert De Saffel

Master in de Industriële Wetenschappen: Informatica Academiejaar 2018–2019

Gecompileerd op 11 februari 2019

Inhoudsopgave

1	Inle	eiding	2
	1.1	Kunnen machines denken?	2
	1.2	Toepassingen van AI en data mining	3
		Leren	
	1.4	Classificatie	3
	1.5	informatie en beslissingsbomen	3
	1.6	Klasseren zonder leren	3
	1.7	Een toepassing: Watson	3

Hoofdstuk 1

Inleiding

- Twee doelen van kunstmatige intelligentie:
 - o Het laten overnemen, door machines, van taken waarvoor intelligentie vereist is.
 - Studie van natuurlijke intelligentie.
- Twee vormen om kennis in te brengen in een computersysteem:
 - Expliciete kennis.
 - o Kennis kan zelf verworven worden.

1.1 Kunnen machines denken?

- Twee voorbeelden.
 - ELIZA:
 - ♦ Computerprogramma dat zich voordoet als een pyschotherapeut.
 - ♦ Maakt gebruik van simpele vervangingsregels.
 - Probeert de conversatie zo te sturen zodat de echte persoon het meest moet vertellen.
 - Chinese kamer:
 - Denkrichting die aantoont dat een entiteit eerst iets moet begrijpen, vooraleer er van intelligentie sprake is.
 - 1. Iemand die geen Chinees kent wordt in een kamer gebracht.
 - 2. Door een luik krijgt hij briefjes in het Chinees aangereikt, en de bedoeling is dat hij daar schriftelijk een zinnige antwoord op teruggeeft.
 - 3. De persoon krijgt handboeken waarin conversieregels staan.
 - ♦ De proefpersoon volgt mechanisch de regels vanuit het handboek, zodat hij wel intelligent gedrag vertoont, maar de berichten niet begrijpt.
- Denken is elke vorm van complexe informatieverwerking waarvan de onderliggende mechanismen niet volledig gekend zijn.
- Turingtest:
 - Proefpersoon kan contact maken met twee entiteiten: een mens en een machine, maar hij weet niet wie de mens of machine is.
 - o De proefpersoon kan eender welke vragen stellen aan beide entiteiten.
 - Als de proefpersoon er niet in slaagt om na zijn vragenronde de entiteit aan te duiden die een machine is, dan is de machine geslaagd voor de Turingtest.

1.2 Toepassingen van AI en data mining

• Classificatie:

- \circ Stel een verzameling van k klassen.
- o Een bepaalde invoer met gelinkt worden aan één van die klassen.
- <u>Harde classificatie:</u> beperkt aantal duidelijk van elkaar gescheiden klassen. Hier spreekt men ook van patroonherkenning.
- o Zachte classificatie: continue overgang van de klassen.
- Toepassingen:
 - Aanbevelingssystemen.
 - Kwaliteitscontrole.
- Probleemgestuurd: uitgaande van een probleem een oplossing zoeken.
- <u>Datagestuurd</u>: vanuit bestaande informatie problemen zoeken die ermee opgelost kunnen worden.

1.3 Leren

1.4 Classificatie

1.5 informatie en beslissingsbomen

1.6 Klasseren zonder leren

1.7 Een toepassing: Watson