Seminar05

Aplicatii ale ecuatiilor diferentiale (continuare)

Seminar05

Aplicatii ale ecuatiilor diferentiale (continuare)

1.

2.

Rezolvare

Exercițiu 01 & 02

1.

Ecuația diferențială pentru familia curbelor definite de ecuația exponențială $y=e^{x+c}$ este $y^\prime-y=0$.

Rezolvare: Prin diferențierea ecuației în raport cu x obținem $y^\prime=e^{x+c}$.

Putem elimina cu uşurinţă parametrul c din sistemul de ecuaţii:

$$\begin{cases} y' = e^{x+c} \\ y = e^{x+c} \end{cases}$$

de unde rezultă $y^\prime=y$, $y^\prime-y=0$, care este o ecuație diferențială cu variabile separabile.

2.

Ecuația diferențială pentru familia de parabole definite de ecuația $y=x^2-cx$ este $y^\prime x+y=3x^2$.

Rezolvare: Diferențiem ecuația implicită și obținem $y^\prime=2x-c$.

Scriem această ecuație împreună cu ecuația algebrică originală și eliminăm parametrul c.

$$\begin{cases} y' = 2x - c \\ y = x^2 - cx \end{cases}$$

Observăm că c=y'-2x din prima ecuație și înlocuim în a doua ecuație $y=x^2-(y'-2x)x\iff y=x^2-y'x+2x^2.$

Am obținut o ecuație diferențială implicită corespunzătoare familiei de curbe place $y'x+y=3x^2$ care este o ecuație afină.

Rezolvare

Exercițiu 01 & 02

$$\frac{\partial y}{\partial x} = y$$

$$\frac{\partial y}{\partial x} = dx$$

$$\frac{\partial y}{$$