MA 3110: Logic and Proof (Spring 2009) Exam 2 (take-home portion)

NAME: Solutions

Instructions: Prove any *three* of the following theorems. If you turn in more than three proofs, I will only grade the first three that I see. I expect your proofs to be *well-written*, *neat*, *and organized*. You should write in *complete sentences*. Do not turn in rough drafts. What you turn in should be the "polished" version of potentially several drafts.

This portion of Exam 2 is worth 30 points, where each proof is worth 10 points.

The simple rules for this portion of the exam are:

- 1. You may freely use any theorems that we have discussed in class, but you should make it clear where you are using a previous result and which result you are using.
- 2. You are NOT allowed to copy someone else's work.
- 3. You are NOT allowed to let someone else copy your work.
- 4. You are allowed to discuss the problems with each other and critique each other's work.

This half of Exam 2 is due at the beginning of class on Monday, April 6 (no exceptions). You should turn in this cover page and the three proofs that you have decided to submit.

Good luck and have fun!

Theorem 1: For every prime number p and for every natural number n, GCD(p, n) = 1 iff p does not divide n.*

Pf: Let p be a prime number and let $n \in \mathbb{N}$.

(\Rightarrow) Assume G(D(p,n)=1. For sake of a contradiction, assume that p|n. Since p|p and p|n, $G(D(p_n) \ge p$. But p>1, which contradicts G(D(p,n)=1. Thus, $p \nmid n$.

(\Leftarrow) Assume $p \nmid n$. Since p is prime, the only divisors of p are p and $p \mid n$. But since $p \mid n$, the only possibility remaining is that G(D(p,n)=1.

^{*}If a and b are natural numbers, then GCD(a, b) is the greatest common divisor of a and b. That is, GCD(a, b) = d iff d divides a and d divides b and d is greater than or equal to all other divisors common to a and b.

Theorem 2: Let x and y be real numbers. If x is rational and y is irrational, then x + y is irrational.

Pf: Let x and y be real numbers. Assume that x is rational and y is irrational. Since x is rational, $\exists p, g \in \mathbb{Z} \text{ s.t. } x = \frac{p}{g}$, where $g \neq 0$. For sake of a contradiction, assume x ty is rational. Then \exists $f, s \in \mathbb{Z} \text{ s.t. } x \neq y = \frac{c}{s}$, where $s \neq 0$. We see that $\frac{c}{s} = x + y = \frac{p}{g} + y$,

which implies that

$$y = \frac{r}{s} - \frac{\rho}{g} = \frac{rg - \rho s}{sq}.$$

Since pig, r, s & Z, rg-ps and sq are both integers. Furthermore, since stagement s #0 and q #0, sq #0. This implies that y = rg-ps is a rational number, which is a contradiction. Therefore, X+y is irrational.

Theorem 3: Let A, B, C be sets. If $(A \cap C)^c \subseteq B$, then $A \subseteq (A - B^c) \cup C$.

Pf: Let A, B, C be sets. Assume that $(Anc)^c \subseteq B$. We need to show that $A \subseteq (BA-B^c) \cup C$. Let $x \in A$. There are two possibilities:

- (1) Suppose $x \in C$. Then $x \in (A-B^c) \cup C$, which implies that $A \subseteq (A-B^c) \cup C$.
- (2) On the other hand, suppose $\times \not\in C$.

 Then $\times \in C^c$. This implies that $\times \in A^c \cup C^c$. But $A^c \cup C^c = (Anc)^c$,

 and so $\times \in (Anc)^c$. Then $\times \in B$ Since we assumed that $(Anc)^c \in B$.

 So, $\times \not\in B^c$. Since $\times \in A$, but $\times \notin B^c$,

 we have $\times \in A B^c$. Thus, $\times \in (A B^c) \cup C$, which implies that $A \subseteq (A B^c) \cup C$.

[†]Hint: I'm sure there are many ways to do this one, but *probably* at some point in your proof, you should consider 2 cases: (1) $x \in C$; (2) $x \notin C$.

Definition: If $x \in \mathbb{R}$ and $A \subseteq \mathbb{R}$ with $A \neq \emptyset$, then we define the *translation* of A by x to be the set $A + x = \{a + x : a \in A\}.$

Theorem 4: Let A and B be subsets of \mathbb{R} . If $A \neq \emptyset$ and if for all $x \in \mathbb{R}$, $(A + x) \cap B = \emptyset$, then $B = \emptyset$.

Pf: Let A and B be subsets of IR. Assume that $A \neq \emptyset$ and that for all $x \in IR$, $(A+x) \cap B = \emptyset$. For sake of a contradiction, assume $B \neq \emptyset$. Then \exists at least one $\exists \in B$. Since $A \neq 0$, \exists at least one $\exists \in A$. Now, let x = b - a. Then $a + x \in A + x$. But a + x = a + b - a = b. So, be B and be A + x, which implies that $(A+x) \cap B \neq \emptyset$. This is a contradiction. Therefore, $B = \emptyset$.

Theorem 5: Let A, B, C, D be sets. If $A \cup B \subseteq C \cup D$ and $A \cap D = \emptyset$, then $A \subseteq C$.

Pf: Let A,B,C,D be sets. Assume $A \cup B \subseteq C \cup D$ and $A \cap D = \emptyset$. We need to Show that $A \subseteq C$. Let $x \in A$. Since $A \subseteq A \cup B$, $x \in A \cup B$. Since $A \cup B \subseteq C \cup D$, $x \in C \cup D$. This implies that $x \in C$ or $x \in D$. But since $x \in A$ and $A \cap D = \emptyset$, $x \notin D$. This implies that $x \in C$. Therefore, $x \notin D$. This implies that $x \in C$. Therefore,