A New Perspective on "How Graph Neural Networks Go Beyond Weisfeiler-Lehman?"

Asiri Wijesinghe and Qing Wang

School of Computing, The Australian National University, Canberra ACT 0200, Australia {asiri.wijesinghe, qing.wang}@anu.edu.au

Introduction

• How to design expressive yet simple GNNs that can go beyond the WL test with a theoretically provable guarantee?

A New Hierarchy of Local Isomorphism

Neighborhood Subgraph Overlap Subgraphs

Neighborhood

Subtree

Subtree

Subgraph Isomorphism

Overlap

Isomorphism

Isomorphism

Theorem

If $S_i \simeq_{subgraph} S_j$, then $S_i \simeq_{overlap} S_j$, but not vice versa.

If $S_i \simeq_{overlap} S_j$, then $S_i \simeq_{subtree} S_j$, but not vice versa.

Structural Coefficients

- For each vertex v and its neighbors u, we define $structural\ coefficients$ $A_{vu} = \omega(S_v, S_{vu})$ satisfying three desirable properties:
 - (a) Local closeness
- (b) Local denseness
- (c) Isomorphic invariant

• An instance:

$$A_{vu} = \frac{|E_{vu}|}{|V_{vu}| \cdot |V_{vu} - 1|} |V_{vu}|^{\lambda}, \ \lambda > 0$$

GraphSNN - A GNN Model Beyond 1-WL

• A single layer:

$$h_v^{(t)} = \text{MLP}\Big(\gamma^{(t)} \Big(\sum_{u \in \mathcal{N}(v)} \tilde{A}_{vu} + 1 \Big) h_v^{(t-1)} + \sum_{u \in \mathcal{N}(v)} \Big(\tilde{A}_{vu} + 1 \Big) h_u^{(t-1)} \Big)$$

• Multiple layers (same as GIN):

$$h_G = \text{Concat}(\text{Readout}(\{\{h_v^{(t)}|v \in V\}\})|t = 1, \dots, k)$$

A Generalised Message Passing GNN

- Aggregate "messages" from neighbors $\mathcal{N}(v)$ $h^{(t)} = \text{Aggregate} \left\{ \left\{ h_u^{(t)} \middle| u \in \mathcal{N}(v) \right\} \right\}$ $\rightarrow m_a^{(t)} = \text{Aggregate}^N \left(\left\{ (\tilde{A}_{vu}, h_u^{(t)}) | u \in \mathcal{N}(v) \right\} \right)$ $\hookrightarrow m_v^{(t)} = \text{Aggregate}^I \left(\left\{ \tilde{A}_{vu} | u \in \mathcal{N}(v) \right\} \right) h_v^{(t)}$
- Combine with its own "message" $h_{\nu}^{(t)}$ $h_v^{(t+1)} = \text{Combine}(h_v^{(t)}, h^{(t)})$ $\hookrightarrow h_v^{(t+1)} = ext{Combine} \left(m_v^{(t)}, m_a^{(t)} \right)$

Numerical Experiments

• Classification on Open Graph Benchmark (OGB) datasets, including four molecular graph datasets and one protein-protein association network.

Method	ogbg-molhiv	ogbg-moltox21	ogbg-moltoxcast	ogbg-ppa	ogbg-molpcba
GIN	75.58 ± 1.40	74.91 ± 0.51	63.41 ± 0.74	68.92 ± 1.00	22.66 ± 0.28
GIN+VN	75.20 ± 1.30	76.21 ± 0.82	66.18 ± 0.68	70.37 ± 1.07	27.03 ± 0.23
GSN	77.99 ± 1.00	_	_	-	_
PNA	79.05 ± 1.30	_	_	_	28.38 ± 0.35
ID-GNN	78.30 ± 2.00	_	_	_	_
Deep LRP	77.19 ± 1.40	_	_	_	_
GraphSNN	78.51 ± 1.70	75.45 ± 1.10	65.40 ± 0.71	70.66 ± 1.65	24.96 ± 1.50
GraphSNN+VI	N 79.72 ± 1.83	$76.78 {\pm} 1.27$	$67.68 {\pm} 0.92$	$72.02{\pm}1.48$	$28.50{\pm}1.68$

Table: Classification accuracy on large graph classification.

• Classification w.r.t Graph SNN_M models by replacing GCN, GAT, GIN, and GraphSAGE aggregation schemes by our aggregation scheme.

Method	Cora	Citeseer	Pubmed	NELL	ogbn-arxiv
GCN	81.5 ± 0.4	70.3 ± 0.5	79.0 ± 0.5	66.0 ± 1.7	71.74 ± 0.29
$GraphSNN_{GCN}$	83.1 ± 1.8	$\textbf{72.3}\pm\textbf{1.5}$	$\textbf{79.8}\pm\textbf{1.2}$	$\textbf{68.3}\pm\textbf{1.6}$	$\textbf{72.20}\pm\textbf{0.90}$
GAT	83.0 ± 0.6	72.6 ± 0.6	78.5 ± 0.3	-	_
$GraphSNN_{GAT}$	83.8 ± 1.2	73.5 ± 1.6	$\textbf{79.6}\pm\textbf{1.4}$	-	-
GIN	77.6 ± 1.1	66.1 ± 1.5	77.0 ± 1.2	61.5 ± 2.3	_
$GraphSNN_{GIN}$	$\textbf{79.2}\pm\textbf{1.7}$	68.3 ± 1.5	78.8 ± 1.3	$\textbf{63.8}\pm\textbf{2.7}$	-
GraphSAGE	79.2 ± 3.7	71.6 ± 1.9	77.4 ± 2.2	63.7 ± 5.2	71.49 ± 0.27
$GraphSNN_{GraphSAGE}$	80.5 ± 2.5	72.7 ± 3.2	79.0 ± 3.5	66.3 ± 5.6	71.80 ± 0.70

Table: Classification accuracy on semi-supervised node classification.

• Oversmoothing analysis of GCN and Graph SNN_{GCN} on the datasets Cora, Citeseer and Pubmed.

