Reducing Complexity in Data

UNDERSTANDING THE NEED FOR DIMENSIONALITY REDUCTION

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Need for dimensionality reduction in building ML models

Bias-variance trade-off

Overfitting and the curse of dimensionality

Drawbacks of excessively complex models

Choosing dimensionality reduction techniques based on use case

Prerequisites and Course Outline

Prerequisites

Working with Python and Python libraries

Basic understanding of machine learning algorithms

Prerequisites

Understanding Machine Learning by David Chappell

Building Machine Learning Models in Python with scikit-learn by Janani Ravi

Understanding Machine Learning with Python by Jerry Kurata

Course Outline

Need for dimensionality reduction

Statistical techniques for feature selection

Reducing complexity in linear data

Reducing complexity in non-linear data

Clustering and autoencoding

The Curse of Dimensionality

One X Variable

Two X Variables

Dimensionality Explosion

Curse of Dimensionality: As number of **x** variables grows, several problems arise

Curse of Dimensionality

Problems in Visualization

Problems in Training

Problems in **Prediction**

Curse of Dimensionality

Problems in Visualization

Problems in Training

Problems in **Prediction**

Problems in Visualization

Exploratory Data Analysis (EDA) is an essential precursor to model building

Essential for

- Identifying outliers
- Detecting anomalies
- Choosing functional form of relationships

Problems in Visualization

Two dimensional visualizations are powerful aids in EDA

Even three-dimensional data is hard to meaningfully visualize

Higher dimensional data is often imperfectly explored prior to ML

Curse of Dimensionality

Problems in Visualization

Problems in Training

Problems in **Prediction**

Problems in Training

Training is the process of finding best model parameters

Complex models have thousands of parameter values

Training for too little time leads to bad models

Problems in Training

Number of parameters to be found grows rapidly with dimensionality

Extremely time-consuming

For on-cloud training, also extremely expensive

Curse of Dimensionality

Problems in Visualization

Problems in Training

Problems in Prediction

Problems in Prediction

Prediction involves finding training instances similar to test instance

As dimensionality grows, size of search space explodes

Higher the number of X variables, higher the risk of overfitting

Overfitting and the Bias-variance Trade-off

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Cause of Overfitting

Sub-optimal choice in the bias-variance trade-off

An overfitted model has:

- High variance error
- Low bias error

Bias

Low bias

Few assumptions about the underlying data

High bias

More assumptions about the underlying data

Bias

Model too complex

Training data all-important, model parameter counts for little

Model too simple

Model parameter all-important, training data counts for little

Variance

High variance

The model changes significantly when training data changes

Low variance

The model doesn't change much when the training data changes

Variance

Model too complex

Model varies too much with changing training data

Model too simple

Model not very sensitive to training data

Bias-variance Trade-off

Model too complex

High variance error

Model too simple

High bias error

Bias-variance Trade-off

High-bias algorithms: simple parameters

- Regression

High-variance algorithms: complex parameters

- Decision trees
- Dense neural networks

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dimensionality Reduction - Reduce complexity of data

Solutions for Reducing Complexity

Choosing Feature Selection

Use Case

Possible Solution

Many X-variables

Most of which contain little information

Some of which are very meaningful

Meaningful variables are independent of each other

Feature selection

Choosing PCA and Factor Analysis

Use Case

Large number of X-variables

Most of which are meaningful

Highly correlated to each other

Linearly related to each other

For use in regression

Possible Solution

Principal Components Analysis (PCA) or Factor Analysis

Choosing PCA and Factor Analysis

Use Case

Large number of X-variables

Most of which are meaningful

Highly correlated to each other

Linearly related to each other

For use in classification

Possible Solution

Linear Discriminant Analysis (LDA) or Dictionary Learning

Choosing Manifold Learning

Use Case

Y not linearly related to X

Very high dimensionality of X (e.g. pixel counts in image data)

Many constraints on allowable values of X-variables (sparse features)

Three-dimensional plots of Y against pairs of X indicate manifold shape

Possible Solution

Manifold learning

Choosing Autoencoders

Use Case

Extremely complex feature vectors

Images, video, documents

Pre-processing before using in neural networks

Possible Solution

Autoencoders

Drawbacks of Reducing Complexity

Drawbacks of Reducing Complexity

Loss of information

Performance degradation

Computational intensive

Complex pipelines

Transformed features hard to interpret

Demo

Explore the Diabetes dataset for classification

Perform classification with all features to establish a baseline

Demo

Explore the Boston Housing Prices dataset

Implement linear regression with all features i.e. kitchen sink regression

Summary

Need for dimensionality reduction in building ML models

Bias-variance trade-off

Overfitting and the curse of dimensionality

Drawbacks of excessively complex models

Choosing dimensionality reduction techniques based on use case