

DECLARACION - DISCLAIMER

Los presentadores han utilizado numerosas ilustraciones propias, tomadas de internet y publicaciones de diferentes autores, con el único objetivo de apoyar la presentación. Estos recursos se utilizan sin menoscabo de los derechos de autor (autores) debidamente referenciados y serán utilizados estrictamente para fines académicos y de divulgación del conocimiento, sin que los presentadores reciba retribución económica alguna.

The presenters have used numerous illustrations of her own, taken from the internet and publications by various authors, for the sole purpose of supporting the presentation. These resources are used without prejudice to the copyrights of the authors, duly referenced, and will be used strictly for academic and knowledge dissemination purposes, without the presenters receiving any financial compensation.

¿QUE SON MADURACION Y CARBONIZACION?

Son procesos que generan:

- liberacion de gases y liquidos
- condensación de los solidos residuales

CARBONIZACION

Turba Lignito Hulla Antracita Grafito

BITUMINIZACION

Petróleo

Querógeno

Hidrocarburos

MADURACION

Reorganización

Reorganización molecular a través de una progresiva eliminación de componentes liquido y gaseosos así como un incremento en el contenido de carbono

FACTORES QUE INTERVIENEN EN EL PROCESO

- Temperatura
- Tiempo
- Presión
- Velocidad de calentamiento
- Tipo de querógeno
- Componentes especificos del querógeno
- Catalisis natural

TEMPERATURA

El incremento del Rango (Rank) con la profundidad es causado por el aumento de la temperatura con la profundidad.

Gradiente de carbonización

Gradiente geotermico

TEMPERATURA

El flujo de calor del basamento es la principal fuente de energía que determina la formación de la temperatura.

La transferencia de calor en la corteza es por convención(manifestaciones geotermicas) y por conducción

El comportamiento del flujo de calor en un cuenca es controlado por factores tales como Flujo de calor desde el basamento, radioactividad de los sedimentos y flujo de fluidos.

Flujo de calor

El flujo de calor **q** (calor transmitido por unidad de superficie en unidad de tiempo) depende de la conductividad **K** y de la temperatura **T** de la corteza.

El flujo de calor se expresa en unidad de flujo de calor (HFU) y es medido en microcalorias/cm²sec o miliwatios/m².

1 HFU = 10^{-6} cal cm⁻² sec⁻¹ = 41.8×10^{-3} Wm⁻²

q=K grad T

$$Tx = \frac{dT}{dx'}$$
; $Ty = \frac{dT}{dy'}$; $Tz = \frac{dT}{dz'}$

UNIDADES:

°C/Km

°F/100ft

1,0°F/100 ft =18.23°C/km

Flujo de calor

Composición, edad y espesor de la crosta

Fondo del mar zonas tectonicamente activas regiones geologicamente activas

Interior de continentes estables Areas de escudos pre-Cambricos Sedimentación rapida

ESTIMACION DEL FLUJO DE CALOR

METODOS GEOFISICOS

- Modelo por estimación de la subsidencia tectónica en cuencas de rift el cual provee una variación exponencial del flujo de calor en función del tiempo.
- El flujo de calor actual puede ser estimado a partir de las mediciones en los pozos

El paleo-flujo de calor (el calor que ha fluido a traves de los sedimentos en el pasado) solamente puede calcularse a partir de modelos.

METODOS GEOQUIMICOS

Modelaje geoquímico (Matoil, Themis Pack, Basin Mod etc.)

INDICADORES TERMALES

Un indicador termal se define como un indicador cuyos cambios esten relacionados con eventos de tiempo y temperatura:

ISOMERIZACION Y AROMATIZACION DE BIOMARCADORES REFLECTANCIA DE VITRINITA CONVERSION ESMECTITA A ILITA APATITO FISSION TRACK

CINETICA DE LA REACCION

A UNA TEMPERATURA DETERMINADA LA VELOCIDAD DE REACCION ES PROPORCIONAL A LA CONCENTRACIONES

$$dc/dt = -Kc$$

K=Ae^{-E/RT}

$$dc/c = -Kdt$$

$$Lnc = -Kt + cons.$$

CINETICA DE LA REACCION

$$\ln \frac{k_2}{k_1} = \frac{E}{R} \frac{T_2 - T_1}{T_1 - T_2}$$

E=60 kJ/mole

$$K_2/k_1=2$$

ESTIMACION DE LA TEMPERATURA

ESTIMACION DE LA TEMPERATURA

 $Ln (R_r) = 0.0078 T_{max} - 1.2$

Barker & Pawlewicz (1986)

$$%Ro = 12 exp[-3.3 (H/C)] - (O/C)$$

van Krevelen (1976) and Neavel (1981)

$$TTI = \sum_{n=0}^{\infty} (\Delta T_n)(r^n)$$

n= numero de intervalos de temperatura de 10°C r = 2

$$wt\% C = 1200/[12 + (H/C) + 16 (O/C)]$$

Burnham and Sweeney (1989)

Vitrinite -> residual vitrinite + H2O
Vitrinite -> residual vitrinite + CO2
Vitrinite -> residual vitrinite + CHn
Vitrinite -> residual vitrinite + CH4

$$%Ro = exp(-1.6 + 3.7F)$$

 $dwi/dt = -wi A exp[-Ei/RT(t)]$
 $dwi/dt = Sidwi /dt$
 $F = 1-w/w0 = 1-SiÄi[wi/w0i]$

F = the fraction of reactant converted

w0 = the initial concentration of the total reactant

w0i = the initial concentration for component i

Ai = the stoichiometric or weighted coefficients for the parallel reaction components

wi = the amount of unreacted component (ith component).

t = time

(Sweeney and Burnham 1990)

Conductividad térmica

CONDUCTIVIDADES TERMICAS

CARBON 0,58 [W/(mk)] LUTITAS 1,98 [W/(mk)] ARENA CALCAREA 3,00 [W/(mk)]

VELOCIDAD DE CALENTAMIENTO

El incremento de la velocidad de calentamiento las reacciones químicas son retardas con respecto a la temperatura.

Tiempo necesario para alcanzar el equilibrio

- •10⁶ a10⁷ de soterramiento
- •10⁴ en un sistema geotérmico
- •1 año en un contacto metamórfico con un intrusivo

Baker and Pawlewicz(1986)

PRESION

La presión acelera las reacciones químicas.

Es muy importante en una primera fase de transformación de Turba a Lignito Bituminoso.

CAMBIO DE GRADIENTE

Retarda la reacciones químicas ya que retarda la eliminación de los productos de las reacciones

GENERACION Y DESTRUCCION

Comparación entre %Ro y otros parametros de madurez

Parámetros microscópicos para la madurés y el rango

- Luz Reflejada o incidente
 - Reflectancia de la vitrinita
 - Reflectancia de la exudatinita ('migrabitumen)
 - Reflectancia de microfosiles
 - Fluorescencia de liptinitas
 - Intensidad (I546nm)
 - Máximo del espectro (lmax)
 - Cuociente Q
 - · Alteracion durante la irradiación
- Luz Transmitida
 - Indice de Alteración Termal (IAT)
 - Color y traslucencia de los Conodontos (ICA)

(MOD. STAPLIN, 1969)

LUMINISCENCIA

Fenómenos de emisión de luz como consecuencia de una irradiación

FOSFORESCENCIA

FLUORESCENCIA

FLUORESCENCIA PRIMARIA SECUNDARIA

EFECTO FADING

La presión acelera las reacciones químicas.

Es muy importante en una primera fase de transformación de Turba a Lignito Bituminoso.

Retarda la reacciones químicas ya que retarda la eliminación de los productos de las reacciones

VARIACION DE L Ro CON LA LITOLOGIA

(TIMOFEEV & BUGOLYUBOYA, 1970)

GENERACION Y DESTRUCCION

Parámetros microscópicos para la madurés y el rango

- Luz Reflejada o incidente
 - Reflectancia de la vitrinita
 - Reflectancia de la exudatinita ('migrabitumen)
 - Reflectancia de microfosiles
 - Fluorescencia de liptinitas
 - Intensidad (I546nm)
 - Máximo del espectro (lmax)
 - Cuociente Q
 - Alteracion durante la irradiación
- Luz Transmitida
 - Indice de Alteración Termal (IAT)
 - Color y traslucencia de los Conodontos (ICA)

(MOD. STAPLIN, 1969)

TABLE 7. Heat Flow Statistics for the Continental Age Provinces

Age Province, Ma N		m a		Median	Mean Deviation About Median	
	property	Africa and	Madagascar	-10000000000000000000000000000000000000		
250-800	19	1.15 (48)	0.82 (34)	0.93 (39)	0.64 (27)	
800-1700	6	1.36 (57)	0.11(5)	1.34 (56)	0.10(4)	
>1700	39	1.14 (48)	0.52 (22)	1.10 (46)	0.31 (13)	
		South A	America	a trace was discount		
0-250	19	1.31 (55)	0.22 (9)	1.22 (51)	0.19(8)	
		North .	America	ordered strains		
0-250	164	1.97 (82)	1.07 (45)	1.84 (77)	0.64 (27)	
250-800	44	1.53 (64)	0.79 (33)	1.40 (59)	0.59 (25)	
800-1700	50	1.26 (53)	0.33 (14)	1.20 (50)	0.24(12)	
>1700	216	1.11 (46)	0.38 (16)	1.05 (44)	0.26 (11)	
		Austr	alasia	ž. 8	3.80 10	
0-250	18	1.09 (46)	0.76 (32)	0.91 (38)	0.51 (21)	
250-800	17	1.81 (76)	0.78 (33)	1.50 (63)	0.62 (26)	
800-1700	10	1.76 (74)	0.27(11)	1.79 (75)	0.17 (7)	
>1700	14	1.14 (48)	0.44 (18)	0.97 (41)	0.29 (12)	
		Europe	and Asia		AND COMPANY OF A SECOND	
0-250	197	1.81 (76)	1.24 (52)	1.53 (64)	0.70 (29)	
250-800	420	1.50 (63)	0.44 (18)	1.48 (62)	0.32 (13)	
800-1700	72	1.07 (45)	0.15 (7)	1.10 (46)	0.12(5)	
>1700	106	1.05 (44)	0.31(13)	1.00 (42)	0.21 (9)	
		All Co	ntinents	0.000 APACON #000 P #0	0.5600.0550.45640	
0-250	398	1.82 (76)	1.26 (53)	1.67 (70)	0.76 (32)	
250-800	500	1.50 (63)	0.51(21)	1.46 (61)	0.34 (14)	
800-1700	138	1.20 (50)	0.24(10)	1.17 (49)	0.22 (9)	
>1700	375	1.10 (46)	0.38 (16)	1.05 (44)	0.29 (12)	

N is the number of values, m is the mean in μ cal/cm² s (mW/m²), and σ is the standard deviation in μ cal/cm² s (mW/m²).

TABLE 1. Oceanic Heat Flow Data

	Age, Ma												
	0-4	4-9	9-20	20-35	35-52	52-65	65–80	80–95	95–110	110-125	125-140	140-160	>160
-	161 101	15 00	Y.			Nor	th Pacific				11.70		
V	268	207	214	126	57	23	36	57	35	33	72	19	12
	4.04	2.49	1.90	1.59	1.21	1.35	1.48	1.34	1.16	1.11	1.12	1.23	1.29
,,	3.57	1.74	1.26	0.89	0.76	0.52	0.63	0.35	0.46	0.22	0.42	0.37	0.85
,	3.37	1					th Pacific						
N	87	64	99	47	51	7	13	6	24	10	19		
	3.01	2.49	1.82	1.15	1.10	1.12	0.93	1.27	1.30	1.16	0.96		
	2.03	2.11	1.30	0.74	0.83	0.53	0.66	0.85	0.41	0.26	0.32		
	2.03	(80.0.0)	M SZLONIA			Indi	an Ocean				- E		
N	70	71	67	42	50	122	96	49	35	34	42		
m	2.86	5.23	1.22	1.07	1.49	1.61	1.57	1.28	1.32	1.45	1.16		
	1.85	9.9	1.04	0.67	0.72	0.86	0.86	0.75	0.46	0.90	0.39		all the
		21				Nort	h Atlantic					STEED:	
N	56	78	63	65	62	82	85	65	43	30	45	47	14
	3.31	2.13	1.80	1.56	1.62	1.43	1.23	1.19	1.28	1.31	1.29	1.13	1.11
	2.69	1.68	1.55	1.06	1.04	0.66	0.50	0.31	0.27	0.36	0.30	0.40	0.22
*		1.00.000				Sout	h Atlantic						
N	25	24	37	24	32	31	47	27	56	55			
m	2.61	1.31	1.23	1.45	1.32	1.35	1.26	1.35	1.32	1.36			
σ	2.25	1.27	0.73	1.02	0.53	0.53	0.53	0.35	0.46	0.36			
•	2.25					All	l Oceans					and II.	
N	506	444	470	304	252	265	277	204	193	162	178	66	26
m	3.55 (149)	2.80 (117)	1.69 (71)	1.43 (60)	1.36 (57)	1.49 (62)	1.37 (57)	1.28 (54)	1.28 (54)	1.31 (55)		1.16 (49)	1.19 (50)
σ	3.01 (126)	4.30 (180)	1.24 (52)		0.83 (35)	0.73 (31)	0.68 (28)	0.48 (20)	0.40 (17)	0.51 (21)	0.38 (16)	0.39 (16)	0.59 (25)
(F)						Marg	ginal Basin	5					
N		122	46	402	48	32	118			141			
m		2.14	1.92	1.92	1.54	1.28	1.43			101			
σ		1.46	1.16	0.72	0.66	0.74	0.43			0.71			

N is the number of heat flow stations, m is the mean heat flow in μ cal/cm² s (mW/m²), and σ is the standard deviation in μ cal/cm² s (mW/m²).

