Prof Burden TODO: II aunounce in-person class
II instructions for self-assess
Lo clarify for contingent problems

consider NLP with constraints: min C(w) $C: \mathbb{R}^l \to \mathbb{R}$ well? S.t. f(w) = 0 $f: \mathbb{R}^l \to \mathbb{R}^n$

- why is it reasonable to assume $D_X f(x_0, u_0)$ invertible?

- otherwise constaints are redundant?

consider the linear case: $f(x_0, u) = L \cdot [X]$

-> what if constraints are inconsistent?

* this could happen very easily—many algorithms will start by considering only the feasibility problem: $\frac{1}{2}$ find $\frac{1}{2}$ s.t. $\frac{1}{2}$ f(w) = 0

- what about inequality

min, c(w)

 $c: \mathbb{R}^l \to \mathbb{R}$

well easible $f: R \to R$

