- 1. Déterminer les courbes de niveau données par les fonctions suivantes:
 - (a) f(x,y) = 3 x 3y
 - (b) $f(x,y) = x^2 + y^2 4x + 6y + 13$
- 2. Déterminer les surfaces de niveau données par les fonctions suivantes:
 - (a) $f(x, y, z) = x^2 + y^2 + z^2$
 - (b) $f(x, y, z) = x^2 + y^2$
- 3. Donner une représentation paramétrique de la courbe (C), intersection du cylindre $x^2 + y^2 = a^2$, a = cte avec le plan:
 - (a) z = a
 - (b) x + y + z = a
- 4. Trouver l'équation du plan tangent ainsi que l'équation de la droite normale à la surfance (S): $z = x^2 2y^2 6$ au point P(1,0,-5)
- 5. Trouver l'équation de:
 - (a) paraboloïde de sommet o(0,0,0), d'axe oy et passant par les points A(1,1,1) et B(3,7,1)
 - (b) cône de centre I(0,0,1) d'axe 0z et passant par les points A(0,2,3) et B(2,-1,-3)
- 6. Trouver l'équation de la sphère de centre I(2,4,-6) et tangente au plan yoz
- 7. Déterminer la nature, le centre et l'axe des surfaces d'équations suivantes:
 - (a) $x^2 + 2y^2 3z^2 + 4x 4y 6z 9 = 0$
 - (b) $2x^2 3y^2 4z^2 12x 6y 21 = 0$
- 8. Définir et tracer chacune des surfaces suivantes:
 - (a) $2x^2 + 3y^2 8x + 12y + 3z + 23 = 0$
 - (b) $x^2 2y^2 = 4z^2$
 - (c) $y^2 = 4x$
 - (d) $2x^2 y^2 + 2z^2 2y 3 = 0$