三角比、三角函數與其相關函數

沈威宇

December 31, 2024

目錄

第一		三角比(Trigonometric Ratios)、三角函数	(Tr	igon	omet	ric F	unctions)	與〕	其枯	∃關[劉 婁	又 1
	<u> </u>	弧度與角度										1
	(-	一) 弧度(radian)/弳/弳度										1
	(-	二) 角度(degree)										1
	=`	廣義角										1
	三、	極坐標系(Polar Coordinate System)										1
	四、	三角測量										1
	五、	銳角三角比(Trigonometric Ratios).										2
	六、	廣義角三角比/三角函數幾何定義										2
	七、	特殊角三角函數值										5
	八、	三角函數基本關係										6
	九、	奇變偶不變,正負看象限										6
	+、	正、餘弦函數級數形式										7
	+- \	、 三角函數指數形式										7
	+= \	、 三角函數微積分										8
	十三、	、 反三角函數										8
	十四、	、 反三角函數定積分形式										9
	十五、	s atan2 函數										9
	十六、	· 輻角(Argument)										9
	(-	一) 輻角										9
	(-	二) 輻角主值										9
	++、	雙曲函數(Hyperbolic functions).										10
	十八、	、 反雙曲函數對數形式										10

第一節 三角比 (Trigonometric Ratios)、三角函數 (Trigonometric Functions) 與其相關函數

一、 弧度與角度

(一) 弧度(radian)/弳/弳度

指圓周上一段弧長與其對應半徑的比值。物理上無因次。單位同其名或通常省略。

(二) 角度 (degree)

一個完整的圓被平分為 360°。物理上無因次。

$$\frac{15\%}{1^{\circ}} = \frac{\pi}{180} \approx 57.3 \approx \frac{1}{0.0175}$$

二、 廣義角

指將角從 [0, 2π) 的普通角擴展到任意實數。

同界角: $\alpha \setminus \beta$ 為同界角 $\iff \frac{\alpha - \beta}{2\pi} \in \mathbb{Z}$

三、 極坐標系(Polar Coordinate System)

一種二維坐標系,用於表示平面上的點,其位置由一對數值(距離 r 和角度 θ)來確定。與笛卡爾坐標系統(Cartesian Coordinate System)不同。

- 距離 r: 從極點(通常是坐標原點 O)到點 P 的距離 $\circ r \geq 0$ \circ
- 角度 θ :從極軸(通常是水平的正 x 軸)逆時針旋轉到點 P 所在的射線的角度。角度可以用弧度或度數表示。
- 點 P 的極坐標表示為 $[r, \theta]$ 。
- 從極坐標到直角坐標的轉換:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

• 從直角坐標到極坐標的轉換:

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

1

四、 三角測量

• 仰角:仰視目標時,視線與水平線的夾角。

• 俯角:俯視目標時,視線與水平線的夾角。

• 方位角(地理):以正北為 0°,順時針為正。

• 象限角(地理):以東南西北某一方位(通常為正北或正南)為基準,加上向相鄰方位轉向的度數與該相鄰方位,如北 35° 西 代表方位角 325°、南 30° 西代表方位角 210°。

五、 銳角三角比(Trigonometric Ratios)

• 正弦(Sine, sin):正弦值是對應角的對邊與斜邊之比,即:

$$\sin \theta = \frac{ 對邊}{ 斜邊}$$

• 餘弦(Cosine, cos):餘弦值是對應角的鄰邊與斜邊之比,即:

• 正切(Tangent, tan):正切值是對應角的對邊與鄰邊之比,即:

• 餘切 (Cotangent, cot):

$$\cot\theta = \frac{1}{\tan\theta}$$

• 正割 (Secant, sec):

$$\sec\theta = \frac{1}{\cos\theta}$$

• 餘割 (Cosecant, csc):

$$\csc\theta = \frac{1}{\sin\theta}$$

六、 廣義角三角比/三角函數幾何定義

在單位圓中,令角度的測量方式是從正 x 軸開始,逆時針方向為正角,順時針方向為負角,且角度數值可以是任何實數。任意角度的三角函數值可以表示為:

• 正弦(Sine, sin):角 θ 的正弦值是單位圓上 對應點的 y 坐標,即:

$$\sin \theta = v$$

。為奇函數,定義域 \mathbb{R} ,值域 [-1, 1],週期 2π ,振幅 1,線對稱於 $x = \left(n + \frac{1}{2}\right)\pi$, $n \in \mathbb{Z}$,點對稱於 $((n\pi, n \in \mathbb{Z}), 0)$ 。

• 餘弦(Cosine, cos):角 θ 的餘弦值是單位圓 上對應點的 x 坐標,即:

$$\cos \theta = x$$

。為偶函數,定義 域 \mathbb{R} ,值域 [-1,1],週期 2π ,振幅 1,線對稱於 $x=n\pi, n\in\mathbb{Z}$,點對稱於 $\left(\left(\left(n+\frac{1}{2}\right)\pi, n\in\mathbb{Z}\right), 0\right)$, $\cos(x)=\sin\left(x+\frac{\pi}{2}\right)$ 。

• 正切(Tangent, tan):角 θ 的正切值是正弦值與餘弦值的比,即:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$

。為奇函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right\}\right\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi,\,n\in\mathbb{Z}\right)\!,\,0\right)$ 。

• 餘切 (Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

- 。為奇函數,定義域 $\{x\in\mathbb{R}\,|\pi\nmid x\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi,\,n\in\mathbb{Z}\right),\,0\right)$, $\cot(x)=-\tan\left(x+\frac{\pi}{2}\right)$ 。
- 正割 (Secant, sec):

$$\sec\theta = \frac{1}{\cos\theta}$$

- 。為偶函數,定義域 $\left\{x \in \mathbb{R} \left| \pi \nmid \left(x \frac{\pi}{2}\right) \right\} \right\}$,值域 $\left\{y \in \mathbb{R} \mid -1 \leq y \vee y \leq 1 \right\}$,週期 π ,線對稱於 $((n\pi, n \in \mathbb{Z}), 0)$,點對稱於 $x = \left(n + \frac{1}{2}\right)\pi, n \in \mathbb{Z}$ 。
- 餘割 (Cosecant, csc):

$$\csc\theta = \frac{1}{\sin\theta}$$

。為奇函數,定義域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$,值域 $\{y \in \mathbb{R} \mid -1 \leq y \vee y \leq 1\}$,週期 π ,線對稱於 $x = \left(n + \frac{1}{2}\right)\pi, \, n \in \mathbb{Z}$,點對稱於 $((n\pi, \, n \in \mathbb{Z}), \, 0)$, $\csc(x) = \sec\left(x - \frac{\pi}{2}\right)$ 。

三角函數

七、 特殊角三角函數值

Radian	sin	cos	tan
0	0	1	0
$\frac{\pi}{2}$	1	0	±∞
π	0	-1	0
$\frac{3\pi}{2}$	-1	0	±∞
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{2\pi}{3}$	$\begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{array}$	$-\frac{1}{2}$	$-\sqrt{3}$
$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$
$ \frac{3\pi}{2} $ $ \frac{\pi}{4} $ $ \frac{3\pi}{4} $ $ \frac{\pi}{6} $ $ \frac{\pi}{3} $ $ \frac{2\pi}{3} $ $ \frac{5\pi}{6} $ $ \frac{\pi}{12} $ $ \frac{5\pi}{12} $	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2 - \sqrt{3}$ $2 + \sqrt{3}$
$\frac{\pi}{10}$	$ \frac{\frac{1}{2}}{\frac{\sqrt{6} - \sqrt{2}}{4}} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $ $ \frac{\sqrt{5} - 1}{4} $	$ \begin{array}{r} 2 \\ -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{6} + \sqrt{2}}{4} \\ \frac{\sqrt{6} - \sqrt{2}}{4} \\ \frac{\sqrt{10 + 2\sqrt{5}}}{4} \end{array} $	$\frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}}$ $\sqrt{10 - 2\sqrt{5}}$
$\frac{2\pi}{10}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
$\frac{3\pi}{10}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\sqrt{5} + 1$
$\frac{4\pi}{10}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$ \frac{\sqrt{10 - 2\sqrt{5}}}{\sqrt{10 + 2\sqrt{5}}} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{5} - 1} $

八、 三角函數基本關係

- 1. 名稱:左側三者為正;右側三者為餘;上面二者為弦;中間二者為切;下面二者為割。
- 2. 餘角關係:以鉛直軸為對稱軸,位於線對稱位置的三角比為餘角關系,即對於銳角 θ ,左 $(\theta)=$ 右 $(\frac{pi}{2}-\theta)$ 。
- 3. 倒數關係:三條通過中心點的連線為倒數關係,其兩端之三角比互為倒數,相乘為 1。
- 4. 商數關係:六邊形周上,連續三個頂點形成的連線,其兩端之三角比相乘等於中間之三角比。
- 5. 平方關係:圖中有三個倒正三角形,其在上方兩頂點之二者之平方和等於在下方頂點者。

九、 奇變偶不變,正負看象限

今有函數 f,已知其為 $\sin \cdot \cos \cdot \tan \cdot \sec \cdot \csc \cdot \cot 之一,且已知 <math>f(\theta)$ 。欲求 $f(\phi)$,其中 $\phi = \pm \theta \pm n \frac{\pi}{2}$,其中 $n \in \mathbb{Z}$ 。

判斷方法:奇變偶不變,正負看象限。

上句:奇偶指 n 之奇偶,變指倒數,即:若 n 為奇數則令 $g(\theta) = \frac{1}{f(\theta)}$,否則令 $g(\theta) = f(\theta)$,則 $|f(\phi)| = |g(\theta)|$ 。

下句:象限指假設 $[r,\theta]$ 在第一象限時, $[r,\phi]$ 之象限。令該象限中任意角度為 ω 。令 $k=\frac{f(\phi)}{g(\theta)}$ 。則 $k=\frac{f(\omega)}{|f((\omega)|}$,即:

象限	_	=	Ξ	四
sin	+	+	-	-
cos	+	-	-	+
tan	+	-	+	-
CSC	+	+	-	-
sec	+	-	-	+
cot	+	-	+	-

十、 正、餘弦函數級數形式

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

十一、 三角函數指數形式

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\tan x = -i\frac{e^{2ix} - 1}{e^{2ix} + 1}, \quad x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$\cot x = i\frac{e^{2ix} + 1}{e^{2ix} - 1}, \quad x \neq k\pi, k \in \mathbb{Z}$$

$$\sec x = \frac{2e^{ix}}{e^{2ix} + 1}, \quad x \neq \pi + 2k\pi, k \in \mathbb{Z}$$

$$\csc x = i\frac{2e^{ix}}{e^{2ix} - 1}, \quad x \neq 2k\pi, k \in \mathbb{Z}$$

十二、 三角函數微積分

f(x)	f'(x)	$\int f(x) dx$
$\sin x$	cosx	$-\cos x + C$
cos x	$-\sin x$	$\sin x + C$
tan x	$\sec^2 x$	$\ln \sec x + C$
csc x	$-\csc x \cot x$	$\ln \csc x - \cot x + C$
sec x	sec x tan x	$\ln \sec x + \tan x + C$
$\cot x$	$-\csc^2 x$	$\ln \sin x + C$

十三、 反三角函數

名稱	常用符號	定義	定義域	值域
反正弦	$y = \arcsin x$	$x = \sin y$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
反餘弦	$y = \arccos x$	$x = \cos y$	[-1,1]	$[0,\pi]$
反正切	$y = \arctan x$	$x = \tan y$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
反餘切	$y = \operatorname{arccot} x$	$x = \cot y$	R	$(0,\pi)$
反正割	$y = \operatorname{arcsec} x$	$x = \sec y$	$(-\infty, -1] \cup [1, +\infty)$	$[0,\frac{\pi}{2}) \cup (\frac{\pi}{2},\pi]$
反餘割	$y = \operatorname{arccsc} x$	$x = \csc y$	$(-\infty, -1] \cup [1, +\infty)$	$[-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2}]$

十四、 反三角函數定積分形式

$$\arcsin x = \int_0^x \frac{1}{\sqrt{1-z^2}} dz, \qquad |x| \le 1$$

$$\arccos x = \int_x^1 \frac{1}{\sqrt{1-z^2}} dz, \qquad |x| \le 1$$

$$\arctan x = \int_0^x \frac{1}{z^2+1} dz,$$

$$\operatorname{arccot} x = \int_x^\infty \frac{1}{z^2+1} dz,$$

$$\operatorname{arcsec} x = \int_1^x \frac{1}{z\sqrt{z^2-1}} dz, \qquad x \ge 1$$

$$\operatorname{arccsc} x = \int_x^\infty \frac{1}{z\sqrt{z^2-1}} dz, \qquad x \ge 1$$

十五、 atan2 函數

atan2(y, x) 在 x > 0 時返還 $\tan(\theta) = \frac{y}{x}$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 中的解,在 $x < 0 \cdot y \ge 0$ 時返還 $\tan(\theta) = \frac{y}{x}$ 在 $(\frac{\pi}{2}, \pi)$ 中的解,在 $x < 0 \cdot y < 0$ 時返還 $\tan(\theta) = \frac{y}{x}$ 在 $(-\pi, -\frac{\pi}{2})$ 中的解,在 $x = 0 \cdot y \ne 0$ 時返還 $\frac{y}{|y|} \frac{\pi}{2}$,在 x = y = 0 時返還值未定義。

十六、 輻角 (Argument)

此處輻角用 $\arg(z)$ 代表 z 的輻角,用 $\arg(z)$ 代表 z 的輻角主值,一些文獻反之。

(一) 輻角

設有非零複數 $z \in \mathbb{C} \setminus \{0\}$,記作 z = x + yi,其中的 x 和 y 為實數,那麼複數 z 的輻角 $arg(z) = \varphi$ 指的是使下列等式:

$$z = x + yi = \sqrt{x^2 + y^2}(\cos \varphi + i \sin \varphi)$$

成立的任何實數 φ 。

(二) 輻角主值

設有非零複數 $z \in \mathbb{C} \setminus \{0\}$,記作 z = x + yi,其中的 x 和 y 為實數,那麼複數 z 的輻角主值 Arg(z) 指的是:

$$\operatorname{Arg} z = \operatorname{Arg} x + yi = \operatorname{atan2}(y, x)$$

$$\arg(z) = \{ \operatorname{Arg}(z) + 2k\pi \mid k \in \mathbb{Z} \}$$

十七、 雙曲函數(Hyperbolic functions)

各雙曲函數之名稱均以對應之三角函數之名稱前加雙曲(hyperbolic),代號則為對應之三角函數代號後加 h。

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\tanh x = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\coth x = \frac{e^{2x} + 1}{e^{2x} - 1}, \quad x \neq 0$$

$$\operatorname{sech} x = \frac{2e^{x}}{e^{2x} + 1}$$

$$\operatorname{csch} x = \frac{2e^{x}}{e^{2x} - 1}, \quad x \neq 0$$

十八、 反雙曲函數對數形式

$$\begin{aligned} & \operatorname{arcsinh} = \ln \left(x + \sqrt{x^2 + 1} \right) \\ & \operatorname{arccosh} = \ln \left(x + \sqrt{x^2 + 1} \right), \quad x \geq 1 \\ & \operatorname{arctanh} = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right), \quad |x| < 1 \\ & \operatorname{arccoth} = \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right), \quad |x| > 1 \\ & \operatorname{arcsech} = \ln \left(\frac{1}{x} + \frac{\sqrt{1 - x^2}}{x} \right), \quad 0 < x \leq 1 \\ & \operatorname{arccsch} = \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right), \quad x \neq 0 \end{aligned}$$