Mathématiques discrètes

Sceance 8

Exercice 1

```
cas 1 : 1 marche, reste n-1 cas 2 : 2 marches, reste n-2 pour a_n, le nombre de marches à monter, a_n = a_{n-1} + a_{n-2} F_{n+1} \text{ (et pas } F_n \text{ car pas de répétition de 1)} \text{donc pour n=30, } F_{31}
```

Exercice 2

$$D_n = D_{n-1} + D_{n-2}$$
 ou F_{n+1}

Exercice 3

$$\begin{aligned} \text{Prenons } \alpha &= \lim_{n \to \infty} \frac{F_{n+1}}{F_n} \\ \alpha &= \lim_{n \to \infty} \frac{F_n + F_{n-1}}{F_n} \\ &= 1 + \lim_{n \to \infty} \frac{F_{n-1}}{F_n} \\ &= 1 + \lim_{n \to \infty} \frac{F_n}{F_{n+1}} \\ &= 1 + \frac{1}{\lim_{n \to \infty} \frac{F_{n+1}}{F_n}} \\ &= 1 + \frac{1}{\alpha} \\ &= \frac{1 \pm \sqrt{5}}{2} \\ &= \phi \end{aligned}$$

Exercice 4

$$n = 1, \quad \phi^{1} = 1 \times \phi + 0$$

$$n = 2, \quad \phi^{2} = 1 \times \phi + 1$$

$$n = n + 1, \quad \phi^{n+1} = (F_{n} + F_{n-1})\phi + F_{n}$$

$$= F_{n}(\phi + 1) + \phi F_{n-1}$$

$$\phi^{n} = F_{n}\phi + F_{n-1}$$

Exercice 5

$$\begin{split} n &= 3, \ 2 > \phi \\ n &= n-1, \ \phi^2 F_{n-1} > \phi^{n-1} \\ & (\phi+1)F_{n-1} > F_{n-1}\phi + F_{n-2} \\ & F_{n-1} > F_{n-2} \\ n &= n+1, \ F_n + F_{n-1} > F_{n-1}\phi + F_{n-2} \\ & F_{n-1} + F_{n-2} > F_{n-1}(\phi-1) + F_{n-2} \\ & 2F_{n-1} > F_{n-1}\phi \end{split}$$

Exercice 6

Si vous avez le moindre doute sur les exos suivants, Wolfram Alpha est votre ami.

1.
$$a_n - \frac{1}{2}a_{n-1} = 1$$

$$\text{EHA: } x - \frac{1}{2} = 0, \text{ donc solution: } C\frac{1}{2}^n$$

$$\text{si } \tilde{a}_n = A, \text{ alors } A = \frac{1}{2}A + 1, \text{ soit } A = 2$$

$$\text{donc } a_n = 2 + C\frac{1}{2}^n.$$

Sachant que $a_0 = 1$, 2 + C = 1, C = -1. Donc $a_n = 2 - \frac{1}{2}^n$.

2.
$$a_n - 5a_{n-1} + 6a_{n-2} = 0$$

EHA: $x^2 - 5x + 6 = 0$, donc solution: $A2^n + B3^n$
donc $a_n = A2^n + B3^n$.

Sachant que
$$a_0 = -1$$
, $A + B = -1$.
Sachant que $a_1 = 1$, $2A + 3B = 1$, $A = -4$ et $B = 3$.
Donc $a_n = 3^{n+1} - 2^{n+2}$.

3.
$$a_n - 6a_{n-1} + 9a_{n-2} = 0$$

EHA: $x^2 - 6x + 9 = 0$, donc solution: $(An + B)3^n$
donc $a_n = (An + B)3^n$.

Sachant que
$$a_0 = 1$$
, $B = 1$.
Sachant que $a_1 = 9$, $(A + 1)3 = 9$, $A = 2$.
Donc $a_n = (2n + 1)3^n$.

4.
$$a_n - 4a_{n-1} + 3a_{n-2} = 2^n$$

EHA: $x^2 - 4x + 3 = 0$, donc solution: $A3^n + B1^n$
si $\tilde{a}_n = C2^n$, alors $C2^n = 4C2^{n-1} - 3C2^{n-2} + 2^n$
 $4C2^{n-2} = 8C2^{n-2} - 3C2^{n-2} + 4(2^{n-2})$
 $C = -4$
donc $a_n = A3^n + B - 2^{n+2}$.

Sachant que
$$a_0 = 1$$
, $A + B - 4 = 1$, $A + B = 5$.
Sachant que $a_1 = 11$, $3A + B - 8 = 11$, $A = 7$ et $B = -2$.
Donc $a_n = 7(3^n) - 2^{n+2} - 2$.

Exercice 7

- 1. $a_n = \frac{1}{5} \left[4^{n+1} + (-1)^n \right]$ solution générale: $a_n = A4^n + B(-1)^n$
- 2. $a_n = 5 2^{n+2} + 3^n$ solution générale: $a_n = A1^n + B2^n + C3^n$
- 3. $a_n = \frac{1}{9} [8 6n + (-2)^n]$ solution générale: $a_n = A(-2)^n + (Bn + C)$
- $4. \ a_n = An^2 + B^n + C$
- 5. $a_n = 2^{-n/2}(Ai^n + B(-1)^n + C(-i)^n + D)$ Racine quadruple imaginaire, bon amusement, sans moi, merci bien.

Exercice 8

$$a_{n+2} - 2Cos(\alpha)a_{n+1} + a_n = 0$$

Petit rappel:

$$Cos(\alpha) = \frac{1}{2}(e^{i\alpha} + e^{-i\alpha})$$

EHA:
$$x^2 - (e^{i\alpha} + e^{-i\alpha})x + 1 = 0$$
, donc solution: $Ae^{i\alpha n} + Be^{-i\alpha n}$ donc $a_n = Ae^{i\alpha n} + Be^{-i\alpha n}$.

Sachant que $a_1 = Cos(\alpha)$, $Ae^{i\alpha} + Be^{-i\alpha} = \frac{1}{2}(e^{i\alpha} + e^{-i\alpha})$, $A = B = \frac{1}{2}$. Donc $a_n = Cos(\alpha n)$.

Exercice 9

- 1. $a_n = \frac{1}{6} [7(-2)^n + 2n + 11]$ solution générale: $a_n = \frac{1}{6} [2n + 11] + A(-2)^n$ $\tilde{a}_n = Bn + C$
- 2. $a_n = 3^n + (-9)^n$ solution générale: $a_n = 3^n + A1^n + B(-9)^n$ $\tilde{a}_n = C3^n$
- 3. $a_n = 2^n + \frac{1}{4}(n-1) + (An+B)3^n$ $\tilde{a}_n = C2^n + Dn + E$
- 4. $na_n = (n+3)a_{n-1} + n^2 + n$

EHA:
$$na_n = (n+3)a_{n-1}$$

$$a_n = \frac{1}{n}(n+3)a_{n-1}$$

$$= \left(\prod_{i=1}^n \frac{i+3}{i}\right)C$$

↓ Comme c'est un produit, certains éléments vont s'annuler,

puisqu'on va de $\frac{4 \to (n+3)}{1 \to n}$ on peut retirer tout ce qui est entre 4 et $n \downarrow 0$ $= \frac{(n+1) (n+2) (n+3)}{3 \times 2 \times 1} C$ $a_n = \frac{1}{6} (n+1)(n+2)(n+3) C$

si
$$\tilde{a}_n = An^3 + Bn^2 + Cn$$
, alors $A = -1$, $B = -3$, $C = -2$
donc $a_n = \frac{1}{6}(n+1)(n+2)(n+3)C - (n^3 + 3n^2 + 2n)$.