Pmat - wspólna praca domowa z dnia 12.11.2023

Gracjan Barski, album: 448189

November 26, 2023

W poniższych rozwiązaniach moc zbioru oznaczam modułami, to znaczy moc zbioru A to |A|, oraz zaliczam 0 do liczb naturalnych.

Zadanie 129:

Niech A będzie zbiorem skończonym i niech $f \colon A \xrightarrow[\text{na}]{1-1} A$. Udowodnić, że dla pewnego $n \in \mathbb{N}_1$ zachodzi $f^n = \mathrm{Id}_A$.

Dowód:

Jeśli $f = Id_A$, to teza zachodzi dla n = 1.

Odnotujmy fakt, że f jest bijekcją (iniekcją i surjekcją jednocześnie).

Teraz załóżmy $f \neq \operatorname{Id}_A$. Warto również podkreślić fakt, że złożenie dwóch bijekcji też jest bijekcją (1) (fakt z wykładu, więc bez dowodu).

Pokażę, że dla dowolnego f które jest bijekcją i nie jest funkcją identyczności zachodzi $f \neq f \circ f$. Czyli z definicji równości funkcji musi istnieć element $a_0 \in A$, taki że:

$$f(a_0) \neq f \circ f(a_0)$$

Pokażmy że faktycznie taki istnieje:

Wezmę takie $a_0 \in A$, że $f(a_0) \neq a_0$. Musi istnieć przynajmniej jeden taki element, bo $f \neq \mathrm{Id}_A$. Oznaczę, $a_1 = f(a_0)$ (nadal pamiętając, że $a_0 \neq a_1$). Dalej mamy:

$$f(a_0) = a_1$$
$$f \circ f(a_0) = f(a_1)$$

Wygodne dla nas by było gdyby $a_1 \neq f(a_1)$. W istocie tak jest, bo f jest bijekcją. Ściślej mówiąc: $f: A \xrightarrow[na]{1-1} A$ jest takim odwzorowaniem, że każdy element z przeciwdziedziny jest zwracany przez funkcję unikalnie, tylko dla jednego argumentu. Mamy $f(a_0) = a_1$, to znaczy, że a_1 jest już zwracane przez f dla a_0 . Więc nie może zachodzić $f(a_1) = a_1$, bo to by oznaczało że $f(a_0) = f(a_1)$, a z tym że $a_0 \neq a_1$ to by przeczyło temu że f jest iniekcją. Więc istotnie

$$f(a_0) \neq f \circ f(a_0)$$

Z tego mamy, że $f \neq f \circ f$.

Łącząc ten wniosek z (1) otrzymujemy ciąg nierówności:

$$f \neq f \circ f \neq f \circ f \circ f \neq \dots$$

Wiec każda z funkcji f, f^2, f^3, \dots jest różna.

Ilość funkcji w zbiorze A^A wynosi $|A|^{|A|}$, więc jeśli A jest zbiorem skończonym, to takich funkcji też jest skończenie wiele. W zbiorze A^A jest również funkcja Id_A , więc z zasady szufladkowej Dirichleta, musi istnieć takie $n \in \mathbb{N}_1$, w przedziale $1 \le n \le |A|^{|A|}$, że $f^n = \mathrm{Id}_A$.

Zadanie 199:

a) $X = \{A \mid A \subseteq \mathbb{R} \land A \text{ ma element najmniejszy i największy}\}$

Rozważmy zbiory:

$$X_{k,l} = \{A \in \mathcal{P}(\mathbb{R}) \mid \min A = k \land \max A = l\}$$

Gdzie $k, l \in \mathbb{R}$. Łatwo zauważyć, że

$$X = \bigcup_{k,l \in R} X_{k,l}$$

Dla $\langle i,j\rangle \neq \langle n,m\rangle$ zbiory $X_{i,j},X_{n,m}$ są rozłączne więc kardynalność X będzie równa sumie kardynalności $X_{k,l}$ dla dowolnych $k,l\in\mathbb{R}$.

Weźmy dowolne $k, l \in \mathbb{R}$ takie że:

- 1) k > l: Wtedy $X_{k,l}$ jest zbiorem pustym, więc nie dodaje nic do X.
- 2) k = l: Wtedy $X_{k,l}$ jest singletonem zawierającym k. Takich przypadków mamy \mathfrak{c} , bo tyle jest liczb rzeczywistych.
- 3) k < l: Wtedy $X_{k,l}$ ma 2° elementów (dlaczego?). Jeśli weźmiemy dowolny podzbiór Y przedziału otwartego $Y \subseteq (k,l)$ i dołączymy do niego k,l, to otrzymany zbiór $Y \cup \{k,l\}$, który ma element najmniejszy (k) i największy (l). Wiadomo, że każdy przedział otwarty liczb rzeczywistych jest równoliczny z \mathbb{R} (z wykładu), więc $(k,l) \sim \mathbb{R}$, a z tego mamy $\mathcal{P}((k,l)) \sim \mathcal{P}(\mathbb{R})$ (własność z wykładu). Więc takich podzbiorów z elementem najmniejszym k i największym l jest 2°.

Teraz wystarczy określić ile jest par takich liczb $k, l \in R$ że k < l. Oznaczmy zbiór takich par jako Y. Wiadomo że takich par liczb jest więcej niż liczb rzeczywistych, ale mniej niż wszystkich dowolnych par liczb rzeczywistych. Z tego:

$$|\mathbb{R}| < |Y| < |R| \cdot |R| = |R|$$

Z twierdzenia Cantora-Bernsteina, mamy że $|Y| = \mathfrak{c}$. Z tego wnioskujemy, że kardynalność X jest równa:

$$|X| = \mathfrak{c} + \mathfrak{c} \cdot 2^{\mathfrak{c}} = \mathfrak{c} + 2^{\aleph_0} \cdot 2^{\mathfrak{c}} = \mathfrak{c} + 2^{\aleph_0 + \mathfrak{c}} = \mathfrak{c} + 2^{\mathfrak{c}} = 2^{\mathfrak{c}}$$

Gdzie te równości wynikają z operacji na liczbach kardynalnych z wykładu.

b) $Y = \{A \mid A \subseteq \mathbb{Z} \land A \text{ ma element najmniejszy i największy}\}$

W tym przypadku będzie to oznaczało, że jeśli $A \in Y$, to A jest zbiorem skończonym. Jeśli $A \in \mathcal{P}(\mathbb{Z})$ jest nieskończony, to nie będzie miał elementu najmniejszego lub największego.

Podzielę zbiór Y na podzbiory Y_n $(n \ge 1)$ gdzie Y_n jest zdefiniowane w ten sposób:

$$Y_n = \{ A \in \mathcal{P}(\mathbb{Z}) \mid |A| = n \}$$

Przy czym mamy:

$$Y = \bigcup_{n>1} Y_n \tag{1}$$

Ponieważ dla dowolnych $i, j \ge 1$ takich że $i \ne j$, zbiory Y_i i Y_j są rozłączne (zawierają zbiory o różnych wielkościach, więc muszą być). Pokażę indukcją, że $\forall_{n \ge 1} |Y_n| = |\mathbb{Z}|$.

Baza: Dla n=1 sprawa jest jasna, bo Y_1 składa się wyłącznie z podzbiorów \mathbb{Z} które są singletonami, więc $|Y_1|=|\mathbb{Z}|$.

Hipoteza indukcyjna: $|Y_n| = |\mathbb{Z}|$.

Najpierw pokażę, że $|Y_n| \le |Y_{n+1}|$:

Istnieje funkcja $f: Y_n \to Y_{n+1}$. Zadana wzorem $f(A) = A \cup \{\max(A) + 1\}$. Funkcja ta istotnie jest iniekcją (dla różnych zbiorów A_1, A_2 , wartości f(A), f(A) będą różne). Więc wnioskujemy że $|Y_n| \le |Y_{n+1}|$.

Teraz pokazać $|Y_{n+1}| \leq |Y_n|$: Weźmy taką funkcję $g: Y_n \times \mathbb{Z} \to Y_{n+1}$. Określoną wzorem $g(A, m) = A \cup \{m\}$. Ta funkcja jest surjekcją (aby otrzymać dowolny element B z Y_{n+1} wystarczy wziąć jako pierwszy argument zbiór A który zawiera wszystkie elementy zbioru B oprócz jednego m', a za drugi argument dać właśnie m'). Więc wnioskujemy, że

$$|Y_{n+1}| \le |Y_n \times \mathbb{Z}| = |Y_n| \cdot |\mathbb{Z}| = |\mathbb{Z}| \cdot |\mathbb{Z}| = |\mathbb{Z}| = |Y_n|$$

Otrzymaliśmy dwie pożądane nierówności, więc istotnie $|Y_{n+1}| = |Y_n|$, a to kończy indukcję.

Wiemy więc że każdy z $\forall_{n>1} Y_n = |\mathbb{Z}|$.

Wracając do (1) mamy że:

$$|Y| = |\bigcup_{n \ge 1} Y_n| = \sum_{n=1}^{\infty} |Y_n| = \aleph_0 \cdot \aleph_0 = \aleph_0$$

Równości te wynikają z faktu że zbiory Y_n są parami rozłączne oraz że każdy ze zbiorów Y_n ma kardynalność \aleph_0 (bo $|\mathbb{Z}| = \aleph_0$).

c) $Z = \{A \mid A \subseteq \mathbb{Q} \land A \text{ ma element najmniejszy i największy}\}$

Lemat:

Pomiędzy dwoma różnymi liczbami wymiernymi jest nieskończenie wiele liczb wymiernych.

Dowód: Pomiędzy 0 i 1 jest nieskończenie wiele liczb wymiernych: działa każda liczba postaci $\frac{1}{n} \in \mathbb{Q}$ gdzie $n \in \mathbb{N}$. Dla dowolnej pary liczb $p, q \in \mathbb{Q}$ istnieje bijekcja $[0,1] \to [p,q]$. Ta bijekcja jest postaci $\lambda x. \ p + (q-p)x$, więc te przedziały są równoliczne.

Teraz właściwe rozwiązanie (analogiczne do (a)):

Rozważmy zbiory:

$$X_{k,l} = \{ A \in \mathcal{P}(\mathbb{Q}) \mid \min A = k \land \max A = l \}$$

Gdzie $k, l \in \mathbb{Q}$. Łatwo zauważyć, że

$$X = \bigcup_{k,l \in R} X_{k,l}$$

Dla $\langle i,j\rangle \neq \langle n,m\rangle$ zbiory $X_{i,j},X_{n,m}$ są rozłączne więc kardynalność X będzie równa sumie kardynalności $X_{k,l}$ dla dowolnych $k,l\in\mathbb{Q}$.

Weźmy dowolne $k, l \in \mathbb{Q}$ takie że:

- 1) k > l: Wtedy $X_{k,l}$ jest zbiorem pustym, więc nie dodaje nic do X.
- 2) k = l: Wtedy $X_{k,l}$ jest singletonem zawierającym k. Takich przypadków mamy \aleph_0 , bo tyle jest liczb wymiernych.
- 3) k < l: Wtedy $X_{k,l}$ ma 2^{\aleph_0} elementów (dlaczego?). Jeśli weźmiemy dowolny podzbiór Y przedziału otwartego $Y \subseteq (k,l)$ i dołączymy do niego k,l, to otrzymany zbiór $Y \cup \{k,l\}$, który ma element najmniejszy (k) i największy (l). Wiadomo, że każdy przedział otwarty liczb wymiernych jest równoliczny z \mathbb{Q} (z lematu), więc $(k,l) \sim \mathbb{Q}$, a z tego mamy $\mathcal{P}((k,l)) \sim \mathcal{P}(\mathbb{Q})$ (własność z wykładu). Więc takich podzbiorów z elementem najmniejszym k i największym k jest k0.

Teraz wystarczy określić ile jest par takich liczb $k, l \in \mathbb{Q}$ że k < l. Oznaczmy zbiór takich par jako Y. Wiadomo że takich par liczb jest więcej niż liczb wymiernych, ale mniej niż wszystkich dowolnych par liczb wymiernych. Z tego:

$$|\mathbb{Q}| \le |Y| \le |\mathbb{Q}| \cdot |\mathbb{Q}| = |\mathbb{Q}|$$

Z twierdzenia Cantora-Bernsteina, mamy że $|Y| = \aleph_0$. Z tego wnioskujemy, że kardynalność X jest równa:

$$|X| = \aleph_0 + \aleph_0 \cdot 2^{\aleph_0} = \aleph_0 + \aleph_0 \cdot \mathfrak{c} = \aleph_0 + \mathfrak{c} = \mathfrak{c}$$

Gdzie te równości wynikają z operacji na liczbach kardynalnych z wykładu.

Zadanie 129:

Ile jest funkcji $\mathbb{N} \to \mathbb{N}$?

a) nierosnących?

Lemat:

Zbiór liczb pierwszych \mathbb{P} jest nieskończony.

Dowód: Załóżmy przeciwnie: \mathbb{P} skończony i posiada n elementów.

Rozważmy liczbę $k \notin \mathbb{P}$:

$$k = p_1 \cdot p_2 \cdot p_3 \cdot \ldots \cdot p_n + 1$$

Ta liczba nie jest podzielna przez żadną z liczb p_i (ponieważ $p_i \nmid 1$), więc z definicji pierwszości jest pierwsza, więc $k \in \mathbb{P}$, sprzeczność. Więc \mathbb{P} jest nieskończony.

Teraz przejdźmy do właściwego dowodu. Oznaczę szukany zbiór funkcji jako X:

$$X = \{ f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ jest nierosnąca} \}$$

Pokażę, że $|X| = \aleph_0$.

Rozważmy taką funkcję $i_1: \mathbb{N} \to X$ zadaną wzorem $i_1(n) = f$, gdzie f jest funkcją stałą, która dla każdego argumentu przyjmuje wartość n (to znaczy $\forall_{m \in \mathbb{N}} f(m) = n$) Taka funkcja f jest nierosnąca więc należy do |X|. Jasnym jest, że taka funkcja jest iniekcją. Więc wnioskujemy: $|\mathbb{N}| \leq |X|$.

Teraz rozważmy inną funkcję $i_2: X \to \mathbb{N}$. Chcielibyśmy znaleźć takie i_2 które by było iniekcją. jednak nie jest to specjalnie trudne. Przede wszystkim weźmy taki ciąg $\{p_i\}_{i\geq 1}$, taki że p_i to i-ta liczba pierwsza $(p_1=2, p_2=3, p_3=5, \ldots)$. Można zdefiniować taki ciąg ponieważ zbiór liczb pierwszych jest nieskończony na podstawie lematu.

Zdefiniujmy funkcję pomocniczą $h: X \to \mathbb{N}$ która dla argumentu $f \in X$ przyporządkuje argument $n_0 \in \mathbb{N}$ taki że dla wszystkich wartości większych niż n_0 , funkcja f jest stała. Taka liczba n_0 będzie istniała dla każdej funkcji $f \in X$, ponieważ wartości funkcji f są ograniczone od dołu i są nierosnące, więc mamy dwie możliwości:

- 1) Wartości funkcji f osiągną 0, wtedy wszystkie kolejne muszą być równe 0, więc faktycznie n_0 istnieje.
- 2) Wartości funkcji osiągną w pewnym momencie pewną wartość i dla każdego następnego argumentu będą równe tej wartości, wtedy n_0 również istnieje.

Teraz zdefiniujmy i_2 :

$$i_2(f) = \prod_{n=1}^{h(f)} p_i^{f(i)}$$

Czy ta funkcja jest iniekcją?

Rozważmy dwie różne funkcje $f_1, f_2 \in X$. Z definicji to oznacza że $\exists_{n' \in \mathbb{N}} f_1(n') \neq f_2(n')$. Weźmy ten argument. Rozważmy $a_1 = i_2(f_1), a_2 = i_2(f_2)$. Wiadomo że rozkład liczb na czynniki pierwsze jest jednoznaczny i unikalny dla każdej liczby naturalnej. W rozkładzie obu tych liczb a_1, a_2 , będziemy mieć n'-tą liczbę pierwszą odpowiednio w potędze $f_1(n')$ i $f_2(n')$, ale te wykładniki się różnią, więc rozkład liczb a_1, a_2 na czynniki pierwsze też się różni, więc są one innymi liczbami. A stąd $i_2(f_1) \neq i_2(f_2)$. A to dowodzi że i_2 jest iniekcją (Użycie funkcji pomocniczej h powoduje że wartości i_2 będą zawsze wartościami skończonymi więc można je porównywać). Więc wnioskujemy $|X| \leq |\mathbb{N}|$.

Teraz mamy:

$$|\mathbb{N}| \le |X| \le |\mathbb{N}|$$

Wiec z twierdzenia Cantora-Bernsteina $X \sim \mathbb{N}$. Wiec $|X| = \aleph_0$.

b) niemalejących?

Tak jak wyżej, oznaczę szukany zbiór jako X:

$$X = \{ f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ jest niemalejąca} \}$$

Pokażę że $|X| = \mathfrak{c}$.

Rozważmy taką funkcję $i_1: X \to \mathbb{N}^{\mathbb{N}}$ zadaną wzorem $i_1(f) = f$. Jasnym jest, że taka funkcja jest iniekcją. Więc wnioskujemy: $|X| \leq |\mathbb{N}^{\mathbb{N}}|$.

Teraz rozważmy funkcję $i_2: X \to \mathbb{N}^{\mathbb{N}}$. Teraz chcę znaleźć taką formułę na i_2 , żeby i_2 była surjekcją. Rozważmy takie przekształcenie $i_2(f) = g$, gdzie to g jest wyrażone wzorem: g(n) = f(n+1) - f(n). Jasnym jest, że wartości funkcji g będą naturalne, ponieważ $f \in X$, czyli jest rosnące. Więc taka funkcja jest dobrze zdefiniowana. Czy jest surjekcją?

Weźmy dowolną funkcję $g \in \mathbb{N}^{\mathbb{N}}$. aby otrzymać ją z odwzorowania funkcji i_2 , wystarczy wziąć jako argument funkcję, której n+1-ta i n-ta wartość różnią się o g(n), ale wartości funkcji g to liczby naturalne, więc to sprawia że taka funkcja f jest rosnąca, więc należy do X. Z tego wnioskujemy że i_2 jest faktycznie surjekcją (bo g dowolne). Więc wnioskujemy $|X| \geq |\mathbb{N}^{\mathbb{N}}|$.

Teraz mamy:

$$|\mathbb{N}^{\mathbb{N}}| \le |X| \le |\mathbb{N}^{\mathbb{N}}|$$

Więc z twierdzenia Cantora-Bernsteina $X \sim \mathbb{N}^{\mathbb{N}}$. Z wykładu wiadomo że $|\mathbb{N}^{\mathbb{N}}| = \mathfrak{c}$. Więc $|X| = \mathfrak{c}$.