Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Прикладные информационные технологии» (ПИТ)

Тема выпускной квалификационной работы: Разработка интеллектуального программного обеспечения распознавания типа БПЛА: модуль аудиального распознавания

Студент группы м3-ИФСТ-21

Кузнецов Сергей Константинович

Руководитель:

доцент кафедры ПИТ, к.т.н.

Королёв Михаил Сергеевич

Актуальность

- Отсутствие специального оборудования
- Возможность персонального обучения модели
- Мобильность
- Обработка с минимальной задержкой (1 с)

Цель работы

Целью выпускной квалификационной работы является разработка интеллектуального программного обеспечения распознавания типа БПЛА: модуль аудиального распознавания

Задачи

Для достижения цели необходимо выполнить следующие задачи:

- Рассмотреть и провести сравнительный анализ существующих программных решений;
- Выделить функции и особенности разрабатываемого программного обеспечения;
- Разработать программное обеспечение на основе на основе искусственного интеллекта для аудиальной детекции дронов;
- Выбор средств разработки;
- Разработка программного обеспечения;

Аналоги

Анализ существующих систем

	МСБ - Дрон детектор	Комплекс "D2C"	Акустический детектор "Малик"	Sky Guard
Дальность обнаружения	До 1 км (стандартные дроны), до 3 км для громких источников	До 38 км (артиллерия), 500–1000 м (дроны)	До 1 км (тяжелые дроны), 500–700 м (малые)	До 15 км (обнаружение), 3 км (подавление)
Точность классификации	~90% (нейросеть, обучена на DJI, Autel, FPV)	Высокая (совмещение акустики и тепловизоров)	~85% (сигнатурный анализ + ИИ)	~95% (радиочастотный анализ + радар)
Скорость обработки данных	0.5 сек (edge-обработка)	1–2 сек (зависит от теплового анализа)	1–3 сек	0.3 сек (радар + ИИ)
Тип анализа звука	Нейросеть (анализ спектрограмм)	Гибридный (акустика + тепловая сигнатура)	Сигнатурный метод + ИИ- фильтрация	Не используется (основной упор на радиочастоты и радар)
Обучение и адаптивность	Онлайн-дообучение модели через облако	Статическая база (обновляется вручную)	Офлайн-обновления базы сигнатур	Автоматическое обновление базы радиочастот
Подавление шумов	AI-фильтрация городск	Фильтрация через тепловую калибровку	Фильтры для ветра и низкочастотных помех	Не требуется (работает на радиочастотах)
Масштабируемость	Сеть датчиков через АРІ	Многоканальные станции	Ограниченная (локальное использование)	Масштабируется для защиты периметров

Функциональные возможности

- Определение звуковой сигнатуры дронов в реальном времени;
- Классификация звуковых сигнатур дронов в реальном времени;
- Возможность быстрой замены одной модели на другую;
- Система совместима с большинством типов устройств;
- Система может работать автономно;
- Система может работать с подключением к сети;

Технологии реализации

- Нейросеть Python
- Фронт-энд JavaScript
- Бэк-энд Python c Django

Диаграммы

Демонстрация проекта

Заключение

В рамках выпускной квалификационной работы были выполнены все поставленные задачи.

Достигнута цель - разработан модуль, способный определять тип БПЛА аудиальным методом

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Прикладные информационные технологии» (ПИТ)

Спасибо за внимание!

Тема выпускной квалификационной работы: Разработка интеллектуального программного обеспечения распознавания типа БПЛА: модуль аудиального распознавания

Студент группы м3-ИФСТ-21

Кузнецов Сергей Константинович

Руководитель:

доцент кафедры ПИТ, к.т.н.

Королёв Михаил Сергеевич