MACHINE LEARNING IN HIGH ENERGY PHYSICS PRACTICAL CLASS #4

Alex Rogozhnikov, 2015

RECAP: ROC-CURVE

RECAP: OVERFITTING VS OVERFITTING

RECAP: LOGISTIC REGRESSION AND SVM

RECAP: NEURAL NETWORKS

RECAP: DEEP NEURAL NETWORKS

DECISION TREE

Tree is unstable!

RANDOM FOREST

RANDOM FOREST

- Random forest is ensembling over trees which are built independently.
- Each tree is trained on different features and different parts of training sample.
- Simple averaging is used to compute prediction of forest.
- Usually deep trees are used.

RF: EXAMPLE DATASET

RF: EXAMPLE DATASET

Random Forest doesn't overfit!

- Doesn't overfit
- Impressively simple
- Effectively only one parameter:
 number of features used in each tree
- Recommendation: $N_{\text{used}} = \sqrt{N_{\text{features}}}$
- Extremely randomized (extra-) trees

From 'Testing 179 Classifiers on 121 Datasets'

The classifiers most likely to be the bests are the random forest (RF) versions, the best of which [...] achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets.

GRADIENT BOOSTING

One of the most powerful and flexible methods in ML.
In GB regressors are trained sequentially

LOSS FUNCTIONS

the argument is $y_i \cdot g(x_i)$ the total loss is $Q = \sum_{i=1}^n \mathcal{L}(y_i \cdot g(x_i))$

$$g(x_i) = \sum_m c_m \cdot g_m(x_i)$$

REGRESSION WITH TREES

GRADIENT DESCENT

$$\tilde{x}^m = \tilde{x}^{m-1} - \lambda \nabla f(\tilde{x}^{m-1})$$

GRADIENT BOOSTING IDEA

Let \tilde{y}^m be prediction of composition after m stages.

We minimize loss:
$$Q(\tilde{y}^m, y) = \sum_{i=1}^N \mathcal{L}(\tilde{y}_i^m)$$

Antigradient:
$$\left[-\nabla Q(\tilde{\mathbf{y}}^m,\mathbf{y})\right]_i = -\frac{\partial \mathcal{L}(M_i^m)}{\partial M_i^m} \cdot \mathbf{y}_i$$

Build regressor to reproduce

$$x_i \to \left[-\nabla Q(\tilde{y}^m, y) \right]_i$$

Predictions of base regressors are summed

SUBSAMPLING & SHRINKAGE

GRADIENT BOOSTING

- State-of-art results in many areas
- Can overfit
- GBDT: needs tuning to prevent overfitting
- Tuning: choose shrinkage (=learning rate) last
- Second-order methods of optimization can be applied with trees!

FEATURE IMPORTANCES

There are different approaches

- how many times feature was used
- gain of purity (Gini, Entropy)
- Common recipe (not only for tree-based classifiers):
 Shuffling column, looking at difference in quality.

TRICK WITH EXP LOSS, CLEARING THE TOP

Usually we need the signal region to be clear

TRICK WITH EXP LOSS, CLEARING THE TOP

This can be reflected in loss function

LOSS FUNCTIONS

- Flexible tool
- Different variations: i.e. pairwise loss

$$Q = \sum_{i,j} \mathcal{L}_{ij}(\tilde{y}_i, \tilde{y}_j)$$

