FORMULAIRE D'EQUATIONS

SYSTEME D'ORDRE 1 STANDARD

$$\frac{K}{1+\tau s}$$

$$t_s(2\%) = 4\tau$$

Systeme d'ordre 2 standard (Note : Dans Ogata, l'angle ϕ est dénoté par β et ω_a est dénoté par ω_{d} .)

$$\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$M_p = 100e^{-\pi/tan\phi} \qquad t_p = \frac{\pi}{\omega_a} \qquad t_s(2\%) = \frac{4}{\zeta\omega_n}$$

$$\zeta = \cos\phi \qquad \omega_a = \omega_n \sqrt{1 - \zeta^2}$$

$$t_r(10 - 90\%) \approx \frac{1 + 1.1\zeta + 1.4\zeta^2}{\omega_n} \qquad t_r(0 - 100\%) \approx \frac{\pi - \cos^{-1}\zeta}{\omega_a}$$

LIEU DES RACINES – REGLES POUR TRACER

- 1. Symétrie
- 2. Nombre de branches = nombre de pôles de la FTBO
- 3. Départ aux pôles de la FTBO et arrivée aux zéros de la FTBO
- 4. Nombre d'asymptotes (n-m) et leur direction $\frac{180^{\circ}}{n-m}(2k+1)$
- 5. Intersection des asymptotes avec axe réel: $\frac{\sum_i p_i \sum_k z_k}{n-m}$ (Note : les termes de la factorisation de la fonction de transfert sont supposés ici être écrits sous la forme $(s p_i)$ et $(s z_k)$.
- 6. Lieu sur axe des réels: règle de la 'peinture' => il doit y avoir un nombre impair de pôles et zéros à droite de tout lieu des racines valide sur l'axe réel
- 7. Points de séparation ou de jonction $\frac{dK}{ds} = 0 => ND' N'D = 0$. Le point de séparation/jonction doit être sur le lieu valide de l'axe des réels (sur la 'peinture').
- 8. Angles de départ des pôles $\theta_d = 180^\circ \sum_i \angle p_i + \sum_k \angle z_k$ angles d'arrivée aux zéros $\theta_a = 180^\circ \sum_k \angle z_k + \sum_i \angle p_i$
- 9. Intersection avec l'axe imaginaire : solution de $1 + KG(j\omega) = 0 => D(j\omega) + KN(j\omega) = 0 => 2$ équations (Re = 0, Im = 0) à 2 inconnues (K, ω).

ERREURS EN REGIME PERMANENT

$oldsymbol{e}(\infty)$	Échelon Au ₀	Rampe Au ₁	Parabole Au ₂
CLASSE 0	A / (1+K _{pos})	∞	8
CLASSE 1	0	A / K _{vel}	8
CLASSE 2	0	0	A / Kacc

$$K_{pos} = \lim_{s \to 0} G(s)$$
 $e_{RP} = \frac{1}{1 + K_{pos}}$ (à un échelon unitaire)
 $K_{vel} = \lim_{s \to 0} s G(s)$ $e_{RP} = \frac{1}{K_{vel}}$ (à une rampe unitaire)
 $K_{acc} = \lim_{s \to 0} s^2 G(s)$ $e_{RP} = \frac{1}{K_{acc}}$ (à une parabole unitaire)

MARGES DE STABILITE

Marge de phase PM: quand la condition d'amplitude $|G(j\omega)| = 1$ (0 dB) est rencontrée à la fréquence ω_g , c'est la phase qu'il faut perdre pour rencontrer la condition de phase $\langle G(j\omega) \rangle_{\omega=\omega_g} = -180$ deg.

Marge de gain GM: quand la condition de phase $\langle G(j\omega) \rangle = -180$ deg est rencontrée à la fréquence ω_p , c'est le gain qu'il faut multiplier pour rencontrer la condition de gain $|G(j\omega)|_{\omega=\omega_n}=1$ (0 dB).

Marge de retard: C'est la marge de phase exprimée en secondes à la fréquence ω_q .

Comportement en basses frequences (donc pour petit ω) selon la classe d'un systeme

$$G(j\omega) \to K_{pos}$$
 (classe 0) pente de 0 dB/décade, 0 deg en phase si phase minimum $G(j\omega) \to \frac{K_{vel}}{\omega}$ (classe 1) pente de -20 dB/décade, -90 deg en phase si phase minimum $G(j\omega) \to \frac{K_{acc}}{\omega^2}$ (classe 2) pente de -40 dB/décade, -180 deg en phase si phase minimum

COMPORTEMENT EN HAUTES FREQUENCES (DONC POUR GRAND ω) SELON LA CLASSE D'UN SYSTEME

$$\lim_{\omega \to \infty} G(j\omega) = \frac{1}{(j\omega)^{n-m}} \quad n = \text{nombre de pôles de la FTBO} \qquad \text{pente de } -(n-m) \text{ dB/décade}$$

$$m = \text{nombre de zéros de la FTBO} \quad \text{phase de } -(n-m)90 \text{ deg si phase min}$$

RETARD PUR DE T SECONDES

$$R(s) = e^{-Ts}$$

$$R(j\omega) = e^{-j\omega T}$$

MATLAB

Approximation par une FT avec la fonction pade sur MATLAB.