暑期實習成果報告 - 吳政緯

交大資訊工程學系資工組大四

中央研究院資創中心 黃彥男老師指導

OUTLINE

簡介 〉 loT 〉方法一〉方法二〉 結論 〉

- 1. 簡介:在金屬品質檢測上工廠端的需求為何?解決方法
- 2. IoT 系統介紹: 資料傳輸、影像分析、資料視覺化
- 3. 品質檢測分析方法 (一): 基於分類方法
- 4. 品質檢測分析方法 (二): 基於深度學習方法
- 5. 結論:實作與結果

INTRODUCTION

簡介 loT >方法一>方法二> 結論

- 1. 過去大部分的金屬表面粗糙度量測是利用接觸式儀器量測 Fig. 1, 也是品質檢測的一大重點
- 2. 問題
- 每個人的量測標準不同
- 耗時間,且有可能會失敗
- 探針需要定期更換與檢查
- 3. 過去的研究會著重在利用雷射的非接觸方法偵測表面粗糙度 Fig. 2, 但成本較高, 量測面積小

Fig. 1

Fig. 2

INTRODUCTION

簡介 loT 〉方法一〉方法二〉 結論

- I. 自動化拍攝表面
- 2. 基於深度學習處理

- . Edge Device 代替 PC
- 2. 用可見光源
- 3. 非接觸式檢測

- I. 建立管理者易於觀察之系統
- 2. 使用者能分析目前製造狀況
- 3. 達到智慧物聯網

IOT SYSTEM

簡介 loT 方法一 方法二 結論

簡介 loT 方法一 方法二 結論

ANALYSIS

- 1. 期望能做到給模型一張圖片,並且預測是否大於粗糙度標準1.6 μm
- 2. 方法一: 一開始圖片量並不多 (60張圖片) , 所以先利用傳統的卷積方法搭配分群來分析
- 3. 方法二: 後來圖片量增多 (473張圖片), 改為使用 不同的 CNN 方法分析
- 4. 最後利用 AdaBoost 方法整合上述兩個結果,觀察是否有更準確的結果

Ra 數值

METHOD A

- 1. 傅立葉轉換將照片轉成頻域
- 2. convolution kernel map
- 3. 最佳化 convolution 次數
- 4. 在卷積的過程中計算兩種 cluster 的分散程度
- 5. 困難在於越卷會越小,因此資料點會越來越近

METHOD A

- 1. 計算各群的中心點,在計算標準差
- 2. 利用 other cluster point / cluster point 判斷卷積效果
- 3. 並且嘗試不同的標準差

METHOD A

簡介 〉 loT 〉方法一〉方法二〉 結論

Degree of MF

NG —GO

- 1. 設計 Fuzzy Inference System 來推論 test data
- 2. 越接近0.5代表為正常,越接近1代表異常

							3.5 4 4.5 5 5.5 6 6.5 MF for Input 1
Test data	I	2	3	4	5	6	
Actual measurement	1.407	1.377	1.419	1.459	1.156	2.079	2.184
Input	[5.5679 22.5151]	[5.0510 22.1332]	[5.4298 22.1886]	[5.2426 22.1498]	[5.4599 21.4825]	[4.4253 23.5883]	20 21 22 23 24 25 26 [4.3455] MF for Input 2 [4.3455] 23.7904]
Defuzzification	0.4999	0.4873	0.4942	0.4880	0.4958	0.9076	0.9058
Result	GO	GO	GO	GO	GO	NG	0 0 0.2 0.4 0.6 0.8 1 NG
							MF for Output

簡介 \rightarrow loT \rightarrow 方法 \rightarrow 方法 \rightarrow 結論

METHOD B

- 1. 利用 Tensorflow 建立類神經網路預測表面粗糙度
- 2. 利用 一張 GeForce GTX 1080 Ti 11 G訓練
- 3. 照片樣本數量增加
- 4. 使用 類神經網路 Vgg19、ResNet50 和 6 layers CNN 預測結果
- 5. 嘗試先對圖片轉換成頻域並比較結果
- 6. 利用 global average pooling 減少訓練參數

簡介 〉 loT 〉方法一〉方法二〉 結論

- 1. 照片預處理與轉成頻域
- 2. 將 dataset 切成 train、validation sets
- 3. 利用 training batch 訓練
- 4. 每個 epoch 確認 validation accuracy, 動態調整 learning rate
- 5. 如果近10次内 loss function 不再下降則停止

簡介 〉 loT 〉 方法一 〉 方法	二〉結論〉
---------------------	-------

MODEL	Training Accuracy	Training Loss	Validation Accuracy	Step
ResNet50	0.9663	0.08186	0.9167	26
Vgg19	0.9771	0.09428	0.9132	77
6 CNN	0.9571	0.1159	0.4133	14

1.60

	Name	Smoothed	Value	Step	Time	Relative
٧	alstog_res	0.9167	0.9167	26.00	Wed Aug 21, 09:36:11	9m 20s
1	log_tra_red_new3	0.4133	0.3977	14.00	Thu Aug 22, 13:30:19	1m 53s
	va Slog_vgg_red_100	0.9132	0.9318	78.00	Thu Aug 22, 10:25:21	40m 26s

簡介 〉 loT 〉方法一〉方法二〉 名	結論
----------------------	----

MODEL	Training Accuracy	Training Loss	Validation Accuracy	Step
ResNet50	0.9732	0.07473	0.8750	26
Vgg19	0.9159	0.1785	0.8068	77
6 CNN	0.8869	0.2721	0.7159	14

簡介 λ loT λ 方法一 方法二 結論

- 1. ResNet50 正確率優於其他兩者
- 2. 這幾個CNN 判斷上, 時域優於轉成頻域
- 3. 如果有更多資料,能更加確定 model 準確性
- 4. 之後可以嘗試利用 CNN 先取出幾個重要特徵,然後再搭配分類法

CONCLUSION

簡介 〉 loT 〉方法一〉方法二〉 結論

- 1. 物聯網系統建立
- 2. Edge Device code porting
- 3. 利用單一filter 卷積,並建立品質檢測分類器
- 4. 比較 3 種 CNN 架構在品質影像檢測上效果
- 5. 完成一篇論文

THANKS FOR LISTENING