Problem List 1 (Structural properties)

Graph Theory, Winter Semester 2022/23, IM UWR

- 1. Find (by "drawing" pictures representing graphs) all pairwise non-isomorphic graphs of order 4.
- 2. For a graph G, define a relation \approx on V(G) by saying $v \approx w$ if and only if there exists a path in G with endpoints v and w. Show that \approx is an equivalence relation—that is, show that $(\forall u \in G)(u \approx u)$, that $(\forall u, v \in G)(u \approx v \Rightarrow v \approx u)$, and that $(\forall u, v, w \in G)([u \approx v \land v \approx w] \Rightarrow u \approx w)$.
- 3. Given a graph G, define its *complement* \overline{G} as a graph with vertices $V(\overline{G}) = V(G)$, such that given $v, w \in V(G)$ with $v \neq w$, we have $vw \in E(\overline{G})$ if and only if $vw \notin E(G)$.
 - (a) Show that if $G \cong \overline{G}$, then $|G| \equiv 0$ or 1 (mod 4).
 - (b) Show that for any graph G, either G or \overline{G} is connected.
- 4. Show that any graph of order at least 2 has two vertices of the same degree.
- 5. (a) Show that every connected graph G contains a vertex $v \in G$ such that $G \{v\}$ is connected.
 - [Hint: pick v so that some connected component of $G \{v\}$ is as big as possible.]
 - (b) A connected graph with at least one vertex is called a *tree* if it has no cycles. Show that every tree with ≥ 2 vertices has a vertex of degree 1 (such a vertex is called a *leaf*).
 - (c) Deduce that if T is a tree then e(T) = |T| 1.
 - (d) Let G be a graph with |G| = n. We say that a tuple $(d_G(v_1), \ldots, d_G(v_n))$, where $\{v_1, \ldots, v_n\} = V(G)$, is a degree sequence of G. Show that a given tuple (d_1, \ldots, d_n) of integers, where $n \geq 2$, is a degree sequence of a tree if and only if $d_i \geq 1$ for all i and $\sum_{i=1}^n d_i = 2n 2$.
- 6. Let G = (V, E) be a graph. Show that there exists a partition $V = A \sqcup B$ such that all vertices of G[A] and of G[B] have even degree.

 [Hint: consider what happens when we remove a vertex v of odd degree and "invert" adjacency between the neighbours of v.]
- 7. Suppose G is a graph that has no induced cycles of odd length—that is, for any $A \subseteq V(G)$, the graph G[A] is not a cycle of odd length. Show that G is bipartite.
- 8. Let G be a regular bipartite graph with vertex classes W and M. Show that G contains a matching from W to M.

- 9. Let $n \ge m \ge 1$. An $m \times n$ Latin rectangle is an $m \times n$ matrix with entries in [n] such that each $i \in [n]$ appears exactly once in each row and at most once in each column. Show that any $m \times n$ Latin rectangle forms the first m rows of an $n \times n$ Latin rectangle. [Hint: use Hall's Marriage Theorem.]
- 10. Let G be an infinite bipartite graph with (infinite) vertex classes W and M, and suppose that $|N_G(A)| \ge |A|$ for every $A \subseteq W$.
 - (a) Show, by constructing an example, that such a graph G does not need to contain a matching from W to M.
 - (b) Suppose that W is countable and $d_G(w) < \infty$ for all $w \in W$. Show that in this case G does contain a matching from W to M.

 [Hint: apply Hall's Marriage Theorem to finite subgraphs $G_1 \leq G_2 \leq \cdots$ of G.]
- 11. For each $k \ge 2$, give an example of a k-edge-connected graph that is not 2-connected. Is there a k-connected graph that is not 2-edge-connected?
- 12. Let G be a k-connected graph for some $k \geq 2$.
 - (a) Show that for every $x \in G$ and every $U \subseteq V(G) \setminus \{x\}$ with $|U| \ge k$, there exists a collection of $(\{x\}, U)$ -paths $P^{(1)}, \ldots, P^{(k)}$, where $P^{(i)} = xy_{i,1} \cdots y_{i,m_i}$, such that $y_{i,j} \ne y_{i',j'}$ for $(i,j) \ne (i',j')$ and such that $y_{i,j} \in U$ if and only if $j = m_i$. [Hint: add a vertex to G, connect it by edges to every vertex of U, show that the resulting graph is still k-connected, and use Menger's Theorem.]
 - (b) Show that if $|G| \ge 2k$ then G contains a cycle of length $\ge 2k$.
 - (c) Show that every collection of k vertices in G is contained in a cycle.
- 13. Let G be a k-edge-connected graph, and let $F \subseteq E(G)$ with |F| = k. Show that G F has at most two connected components.
- 14. Let G be an r-regular graph for some $r \geq 1$, and let $H = L_G$ be the line graph of G (appearing in the proof of the edge version of Menger's Theorem).
 - (a) Show that H is regular.
 - (b) Show that $L_H \cong G$ if and only if r = 2.