$PSI^*-simulations$ 13 juin 2025

Planche 1:

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose :

$$P_n(x) = 1 + x + x^2 + x^3 + \dots + x^{2n} = \sum_{k=0}^{2n} x^k$$

- 1) À l'aide de l'ordinateur, tracer les courbes des fonctions P_n pour $-2 \leqslant x \leqslant 2$ et $1 \leqslant n \leqslant 10$. On utilisera la commande plt.axis([-2, 0, 0, 5]) afin de cadrer la fenêtre graphique. Que remarquez-vous sur les lieux où P_n atteint un minimum?
- 2) Pour $x \neq 1$ et $n \in \mathbb{N}^*$, montrer que:

$$P'_n(x) = \frac{u_n(x)}{(x-1)^2}$$

où u_n est une fonction polynomiale à déterminer.

- 3) Pour $n \in \mathbb{N}^*$, donner l'allure du tableau de variations de la fonction P_n . Montrer en particulier que P_n possède un minimum unique sur \mathbb{R} . Dans la suite, on notera a_n le réel où P_n atteint son minimum.
- 4) Créer une fonction informatique A qui prend en argument un entier $n \in \mathbb{N}^*$ et renvoie une valeur approchée de a_n .
- 5) Représenter graphiquement a_n en fonction de n pour $1 \le n \le 500$. Que peut-on conjecturer sur la limite de cette suite ?
- 6) Déterminer un équivalent simple de la quantité $\ln(2n+1-2na_n)$ puis, en exploitant la relation $P'_n(a_n) = 0$, en déduire la limite de la suite $(a_n)_{n \in \mathbb{N}^*}$.
- 7) On pose maintenant $a_n = -1 + h_n$. Déterminer un équivalent de h_n lorsque $n \to +\infty$.
- 8) On pose $w_n = h_n \frac{\ln n}{2n} \frac{\ln 2}{n}$. À l'aide d'une représentation graphique, conjecturer la nature de la série $\sum w_n$.
- 9) Démontrer le résultat conjecturé à la question précédente.

Planche 2:

On définit une suite $(A_n)_{n\geqslant 0}$ de polynômes par les conditions :

$$A_0 = 1, \forall n \in \mathbb{N}, A'_{n+1} = A_n \text{ et } \forall n \in \mathbb{N}, \int_0^1 A_{n+1}(x) dx = 0.$$

- 1) Déterminer A_1, A_2, A_3 .
- 2) Écrire un code qui calcule A_n (utiliser numpy.polynomial).
- 3) Comparer, pour plusieurs valeurs de n, $A_n(0)$ et $A_n(1)$; $A_n(X)$ et $A_n(1-X)$. Émettre des conjectures.
- 4) Tracer sur l'intervalle] -1,1[les courbes des fonctions $x\mapsto \frac{x}{e^x-1}$ et $x\mapsto \sum_{k=0}^{10}A_k(0)x^k$. Émettre des conjectures.
- 5) Démontrer les conjectures émises.

 $PSI^*-simulations$ 13 juin 2025

Planche 3:

On définit la suite de fonctions $(S_N)_{N\in\mathbb{N}}$:

$$\forall N \in \mathbb{N}, \ \forall x \in \mathbb{R} \setminus \mathbb{Z}, \ S_N(x) = \sum_{n=-N}^N \frac{1}{x+n} = \frac{1}{x} + \sum_{n=1}^N \frac{2x}{x^2 - n^2}$$

- 1) Écrire avec Python une fonction S(N,x) renvoyant $S_N(x)$.
- 2) Écrire une fonction prenant trois paramètres N, a et b et traçant le graphe de S_N sur le segment [a, b].
- 3) Montrer que la suite $(S_N)_N$ converge simplement sur $\mathbb{R} \setminus \mathbb{Z}$ vers une fonction que l'on notera S.
- 4) Montrer que la convergence est uniforme sur tout segment de $\mathbb{R} \setminus \mathbb{Z}$.
- 5) Montrer que S est continue sur $\mathbb{R} \setminus \mathbb{Z}$, impaire et 1-périodique.
- 6) Montrer que:

$$\forall x \in \mathbb{R} \setminus \mathbb{Z}, \ S\left(\frac{x}{2}\right) + S\left(\frac{x+1}{2}\right) = 2S(x)$$

- 7) Montrer que la fonction $f: x \mapsto \pi \cot(\pi x) S(x)$ vérifie la même relation.
- 8) Montrer que f se prolonge par continuité sur \mathbb{R} . En déduire S.

Planche 4:

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifie la propriété \mathcal{H}_n si ses coefficients appartiennent tous à $\{-1,1\}$ et si les colonnes de A forment une famille orthogonale.

- 1) À l'aide de l'ordinateur, dénombrer les matrices vérifiant \mathcal{H}_n .

 On pourra construire toutes les matrices à coefficients dans $\{-1,1\}$ en remarquant qu'à chacune de ces matrices on peut associer un unique entier de $[0,2^{n^2-1}]$ écrit en base 2. On pourra aussi utiliser la fonction reshape de la bibliothèque numpy.
- 2) Soit $A \in \mathcal{M}_n(\mathbb{R})$ dont les coefficients appartiennent tous à $\{-1,1\}$. Montrer que A vérifie \mathcal{H}_n si, et seulement si, $\frac{1}{\sqrt{n}}A$ est orthogonale.
- 3) Décrire les transformations du plan associées aux matrices vérifiant \mathcal{H}_2 .
- 4) Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant \mathcal{H}_n . Montrer que A^{\top} vérifie \mathcal{H}_n .
- 5) Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant \mathcal{H}_n . Montrer que la matrice déduite de A en changeant tous les signes sur une ligne ou sur une colonne vérifie \mathcal{H}_n .
- 6) À l'aide de l'ordinateur, dénombrer les matrices vérifiant \mathcal{H}_4 et dont la première ligne et la première colonne ne sont composées que de 1.