Kỳ THI HỌC SINH GIỎI PTTH NĂM HỌC 2000 - 2001

Môn thi : Toán

Thời gian làm bài: 180 phút

<u>ĐỀ CHO BẢNG A VÀ BẢNG B</u>

Bài 1:

Cho phương trình: $\sin^4 x + (1 - \sin x)^4 = m$

- 1. Giải phương trình với $m = \frac{1}{8}$
- 2. Với những giá trị nào của *m* thì phương trình đã cho có nghiệm

Bài 2:

1. Cho a,b,c là ba cạnh của một tam giác, còn x,y,z là ba số thoả mãn:

$$ax + by + cz = 0$$

Chứng minh rằng: $xy + yz + zx \le 0$

2. Cho $x \ge 0$. Chứng minh rằng: $\log_2(1+2^x) > \log_3(3^x + (\sqrt{2})^x)$

Bài 3:

Cho $a_1; a_2; ...; a_n$ (n > 3) là các số thực thoả mãn:

$$\sum_{i=1}^{n} a_i \ge n; \quad \sum_{i=1}^{n} a_i^2 \ge n^2$$

Chứng minh rằng: $max\{a_1;a_2;...;a_n\} \ge 2$. Với $n \le 3$ thì kết luận còn đúng không?

Bài 4:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AA' = 2AB = 8a, E là trung điểm của cạnh AB và M là một điểm trên cạnh DD' sao cho $DM = a \left(1 + \frac{AD}{AC} \right)$. F là một điểm di đông trên canh AA'.

- a. Tìm điểm F trên canh AA' sao cho CF + FM có giá tri nhỏ nhất
- b. Với F thoả mãn điều kiên ở câu a, hãy tính góc tao bởi hai mặt phẳng (D, E, F)và mặt phẳng (D, B', C')
- c. Với giả thiết F thoả mãn điều kiên câu a và các đường thắng AC' và FDvuông góc với nhau, Tính thể tích của hình hộp ABCD.A'B'C'D'

Bài 5: (Học sinh bảng B không phải làm bài này)

Tìm các số nguyên dương a,b,c,k thoả mãn:

$$\begin{cases} c > b > a \ge 1 \\ ab + bc + ca + a + b + c = kabc \end{cases}$$
 (1)

$$ab+bc+ca+a+b+c=kabc (2)$$

Kỳ THI HỌC SINH GIỚI PTTH NĂM HỌC 2001 - 2002

Môn thi : Toán

Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG A VÀ BẢNG B

<u>Bài 1:</u>

Cho bất phương trình:

$$2\cos 3x + (m-1)\cos 2x + 10\cos x + m - 1 > 0 \tag{1}$$

- 1. Giải bất phương trình khi m = -5
- 2. Tìm m để bất phương trình (1) thoả mãn với mọi $x \in \left[0; \frac{\pi}{3}\right]$

Bài 2:

Giải phương trình:

$$\log_x(\cos x - \sin x) + \log_{\frac{1}{x}}(\cos x + \cos 2x) = 0$$

Bài 3:

Giải phương trình sau với $x \in (0,2)$:

$$4^{\frac{1}{x}-2x+1} - 4^{x^2-2x+1} = \frac{1}{4} \left(x^2 - \frac{1}{x} \right)$$

<u>Bài 4:</u>

Biết đa thức $f(x) = x^{2001} + a_1 x^{2000} + + a_{2000} x + a_{2001}$ có 2001 nghiệm thực phân biệt và $a_{1996} = 1996$; $a_{1998} = 1998$. Chứng minh rằng: $a_{1997} > 1997$

Bài 5:

- 1. Cho tứ diện OABC có góc tam diện đỉnh O vuông, đường cao OH = h, OA = a, OB = b, OC = c. Chứng minh rằng: $acotA + bcotB + ccotC \ge 3h$
- 2. Có thể chia một đa giác lồi đã cho thành một số tứ giác không lồi được không? Hãy chứng minh điều khẳng định của mình.

Chú ý: Học sinh thi bảng B không phải làm bài 5.2

Kỳ THI HỌC SINH GIỎI PTTH NĂM HỌC 2002 - 2003

Môn thi : Toán Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG A

Bài 1 (4 điểm):

Cho hệ phương trình: $\log_x(3x + ay) = \log_y(3y + ax) = 2$

- 1. Giải hệ khi a = 2
- 2. Tìm tất cả các giá trị của a để hệ có ba nghiệm phân biệt

<u>Bài 2 (4 điểm):</u>

Cho hàm số $y = \frac{x+1}{x^2 + a}$

- 1. Với a = 1 chứng minh rằng luôn tìm được 2 điểm và chỉ có hai điểm trên đường cong sao cho tiếp tuyến tại đó song song với đường thẳng có phương trình: 2x 2y + 1 = 0.
- 2. Tìm giá trị lớn nhất của a để tập giá trị của hàm số đa cho chứa đoạn [0; 1]

<u>Bài 3: (4 điểm):</u>

1. Giải phương trình:

$$2\cos(x-45^{\circ}) - \cos(x-45^{\circ})\sin 2x - 3\sin 2x + 4 = 0$$

2. Cho tam giác ABC . O là một điểm trong tam giác sao cho:

$$\widehat{OCA} = \widehat{OAB} = \widehat{OBC} = \alpha$$

Chứng minh rằng: $\cot \alpha = \cot A + \cot B + \cot C$

<u>Bài 4 (2 điểm):</u>

Với $x \neq k\pi$ là góc cho trước. Tìm giới hạn:

$$\lim_{n \to +\infty} (\frac{1}{2} tan \frac{x}{2} + \frac{1}{2^2} tan \frac{x}{2^2} + \dots + \frac{1}{2^n} tan \frac{x}{2^n})$$

<u>Bài 5 (6 điểm):</u>

Cho tứ diện ABCD có CD vuông góc với (ABC), CD = CB, tam giác ABC vuông tại A. Mặt phẳng quan C vuông góc với DB cắt DB, DA lần lượt tại M, I. Gọi T là giao điểm của hai tiếp tuyến tại A và C của đường tròn đường kính BC trong mặt phẳng (ABC).

- 1. Chứng minh bốn điểm C,T,M,I đồng phẳng
- 2. Chứng minh IT là tiếp tuyến của mặt cầu đường kính CD và mặt cầu đường kính CB
- 3. Gọi N là trung điểm của AB, K là điểm trên CD sao cho $CK = \frac{1}{3}CD$. Chứng minh rằng khoảng cách giữa hai đường thẳng BK và CN bằng khoảng cách giữa hai đường thẳng AM và CN

Kỳ THI HỌC SINH GIỚI PTTH NĂM HỌC 2003 - 2004

Môn thi : Toán Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG B

Bài 1 (6 điểm):

- 1. Cho đường cong (C) có phương trình: $y = 1 + \sin x$ với $x \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$. Tìm giá trị nhỏ nhất của hoành độ giao điểm của tiếp tuyến với (C) và trục hoành
- 2. Cho hàm số: $y = (m+1)\left(\frac{x^2}{1+x^2}\right)^2 3m\left(\frac{x^2}{1+x^2}\right) + 4m$, với m là tham số. Xác định m để hàm số chỉ có một cực trị duy nhất

Bài 2 (5 điểm):

Giải các phương trình:

- 1. $\sqrt{\sin x} + \sin x + \sin^2 x + \cos x = 1$
- 2. $\log_7 x = \log_3(\sqrt{x} + 2)$

Bài 3 (5 điểm):

- 1. Xác định số nghiệm $x \in \left[0; \frac{\pi}{2}\right]$ của phương trình: $2^{\sin x} + 2^{\cos x} = \pi$
- 2. Không dùng máy tính, hãy so sánh $\log_{2003} 2003$ và $\log_{2004} 2004$

Bài 4 (4 điểm):

Cho gốc tam diện Oxyz

- 1. A là một điểm trên Oz sao cho OA = 25a (a > 0). Khoảng cách từ A đến Ox và Oy tương ứng là 7a và 2a. Tính khoảng cách từ A đến mp(Oxy), biết góc $xOy = 60^{0}$.
- 2. Cho $\widehat{xOy} = \widehat{yOz} = \widehat{zOx} = 60^{\circ}$. Điểm A (khác O) cố định trên Oz với OA = d không đổi. M, N là hai điểm chuyển động trên Ox và Oy sao cho $\frac{1}{OM} + \frac{1}{ON} = \frac{1}{d}$ Chứng minh đường thẳng MN luôn đi qua một điểm cố định

Kỳ THI HỌC SINH GIỚI PTTH NĂM HỌC 2003 - 2004

Môn thi : Toán Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG A

<u>Bài 1 (6 điểm):</u>

- 1. Cho đường cong (C) có phương trình: $y=1+\sin x$ với $x \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$. Tìm giá trị nhỏ nhất của hoành độ giao điểm của tiếp tuyến với (C) và trục hoành
- 2. Cho hàm số: $y = (m+1) \left(\frac{x^2}{1+x^2}\right)^2 3m \left(\frac{x^2}{1+x^2}\right) + 4m$, với m là tham số. Xác định m để hàm số chỉ có một cực trị duy nhất

<u>Bài 2 (3 điểm):</u>

Tìm tất cả các giá trị của a để hệ phương trình sau có đúng hai nghiệm:

$$\begin{cases} |x^2 - 7x + 6| + x^2 + 5x + 6 - 12|x| = 0 \\ x^2 - 2(a - 2)x + a(a - 4) = 0 \end{cases}$$

Bài 3 (5 điểm):

- 1. Xác định số nghiệm $x \in \left[0, \frac{\pi}{2}\right]$ của phương trình: $2^{\sin x} + 2^{\cos x} = \pi$
- 2. Cho 1 < a+1 < b+1 < c. Chứng minh : $\log_c(c+a) < \log_{c-b} c$

Bài 4 (4 điểm):

Cho góc tam diện Oxyz

- 1. A là một điểm trên Oz sao cho OA = 25a (a > 0). Khoảng cách từ A đến Ox và Oy tương ứng là 7a và 2a. Tính khoảng cách từ A đến mp(Oxy), biết góc $xOy = 60^{0}$.
- 2. Cho $\widehat{xOy} = \widehat{yOz} = \widehat{zOx} = 60^{\circ}$. Điểm A (khác O) cố định trên Oz với OA = d không đổi. M, N là hai điểm chuyển động trên Ox và Oy sao cho $\frac{1}{OM} + \frac{1}{ON} = \frac{1}{d}$ Chứng minh đường thẳng MN luôn đi qua một điểm cố định

Kỳ THI HỌC SINH GIỚI PTTH NĂM HỌC 2004 - 2005

Môn thi : Toán Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG A

Bài 1 (5 điểm)

 $\overline{\text{Cho hàm số}} \quad \text{v} = x^4 - 6x^2 + 5$

- 1. Khảo sát sư biển thiên và vẽ đồ thi (C) của hàm số
- 2. Cho điểm M thuộc (C) có hoành độ là a. Tìm tất cả các giá trị của a để tiếp tuyến của (C) tại M cắt (C) ở hai điểm phân biệt khác M.

Bài 2 (5 điểm):

- 1. Tính đạo hàm cấp n của hàm số: $y = \frac{2x-1}{x^2-x-2} + \sin^2 x$
- 2. Tính tích phân: $\int_{0}^{1} |x^2 2x + m| dx$

<u>Bài 3 (4 điểm):</u>
1. Xác định m để phương trình sau có bốn nghiệm phân biệt:

$$x^2 - 2x = 2|x - m| - 1$$

2. Xác định m để phương trình sau có ba nghiệm phân biệt

$$4^{-|x-m|} \log_{\sqrt{2}} (x^2 - 2x + 3) + 2^{-x^2 + 2x} \log_{\frac{1}{2}} (2|x-m| + 2) = 0$$

Bài 4 (4 điếm):

Cho đường tròn (C): $x^2 + y^2 - 10x - 2y + 25 = 0$

và đường tròn
$$(C_1)$$
: $x^2 + y^2 - 4x + 4y + 4 = 0$

Hãy viết phương trình các đường thẳng tiếp xúc với cả hai đường tròn trên.

Bài 5 (2 điểm):

Goi α , β , γ là ba góc tạo bởi đường thẳng d theo thứ tự với ba đường thẳng chứa ba cạnh BC, CA, AB của tam giác đều ABC. Chứng minh rằng:

$$16(\sin^2\alpha.\sin^2\beta.\sin^2\gamma + \cos^2\alpha.\cos^2\beta.\cos^2\gamma) = 1$$

Kỳ THI HỌC SINH GIỚI PTTH NĂM HỌC 2004 - 2005

Môn thi : Toán

Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG B

<u>Bài 1 (5 điểm)</u>

 $\frac{\text{Cho hàm số } y = x^4 - 6x^2 + 5}{\text{Cho hàm số } y = x^4 - 6x^2 + 5}$

- 1. Khảo sát sự biển thiên và vẽ đồ thị (C) của hàm số
- 2. Cho điểm M thuộc (C) có hoành độ là a. Tìm tất cả các giá trị của a để tiếp tuyến của (C) tại M cắt (C) ở hai điểm phân biệt khác M.

<u>Bài 2 (5 điểm):</u>

- 1. Tính đạo hàm cấp n của hàm số: $y = \frac{2x-1}{x^2-x-2} + \sin^2 x$
- 2. Tìm họ nguyên hàm của hàm số: $f(x) = \frac{x}{x^3 3x + 2}$

<u>Bài 3 (4 điểm):</u>

1. Xác định *m* để phương trình sau có bốn nghiệm phân biệt:

$$x^2 - 2x = 2|x - m| - 1$$

2. Xác định m để phương trình sau có ba nghiệm phân biệt

$$4^{-|x-m|} \log_{\sqrt{2}}(x^2 - 2x + 3) + 2^{-x^2 + 2x} \log_{\frac{1}{2}}(2|x-m| + 2) = 0$$

Bài 4 (4 điểm):

Cho đường tròn (C): $x^2 + y^2 - 10x - 2y + 25 = 0$

và đường tròn
$$(C_1)$$
: $x^2 + y^2 - 4x + 4y + 4 = 0$

Hãy viết phương trình các đường thẳng tiếp xúc với cả hai đường tròn trên.

<u>Bài 5 (2 điểm):</u>

Goi α , β , γ là ba góc tạo bởi đường thẳng d theo thứ tự với ba đường thẳng chứa ba cạnh BC, CA, AB của tam giác đều ABC. Chứng minh rằng:

$$16(\sin^2\alpha.\sin^2\beta.\sin^2\gamma + \cos^2\alpha.\cos^2\beta.\cos^2\gamma) = 1$$

Kỳ THI HỌC SINH GIỚI PTTH NĂM HỌC 2005 - 2006

Môn thi : Toán

Thời gian làm bài: 180 phút

ĐỀ CHO BẢNG B

<u>Bài 1 (2 điểm):</u>

Khảo sát sự biến thiên và vẽ đồ thị hàm số: $y = \frac{x^2 + 2x + 2}{x + 1}$

<u>Bài 2 (2 điểm):</u>

Tìm tất cả các giá trị của m để hàm số $y = \frac{x^2 + 2mx + 2}{x + 1}$ có cực đại, cực tiểu và khoảng cách từ hai điểm cực trị đó của đồ thị hàm số đến đường thẳng x + y + 2 = 0 bằng nhau.

<u>Bài 3 (2 điểm):</u>

Giải hệ phương trình:
$$\begin{cases} \log_2 x + \log_4 y + \log_4 z = 2 \\ \log_3 y + \log_9 z + \log_9 x = 2 \\ \log_4 z + \log_{16} x + \log_{16} y = 2 \end{cases}$$

<u>Bài 4 (2 điểm):</u>

Tìm m để phương trình sau có nghiệm: $\sqrt{2x^2 + 3mx - 1} = x - 2m$

<u>Bài 5 (2 điểm):</u>

Chứng minh rằng nếu trong tam giác ABC thoả mãn hệ thức:

$$tanA + tanB = 2cot \frac{C}{2}$$
 thì tam giác đó cân

<u>Bài 6 (2 điểm):</u>

Cho Elíp (E): $\frac{x^2}{9} + \frac{y^2}{4} = 1$ và điểm I(1;1). Hãy lập phương trình đường thẳng Δ đi qua I và cắt (E) tại hai điểm A,B sao cho I là trung điểm của AB.

<u>Bài 7 (2 điểm):</u>

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Điểm M nằm trên cạnh AA'. Tìm vị trí của điểm M để tam giác BMD' có diện tích bé nhất. Tính diện tích bé nhất đó.

<u>Bài 8 (2 điểm):</u>

Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d: x-1=0 và tiếp xúc với hai đường thẳng a,b có phương trình lần lượt là: x-y+1=0 và x-y-1=0

<u>Bài 9 (2 điểm):</u>

Tính tích phân:
$$I = \int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos x}$$

Bài 10 (2 điểm):

Cho x > 0, chứng minh rằng: $sinx \le x$

Kỳ THI HỌC SINH GIỚI THPT NĂM HỌC 2006 - 2007

Môn thi : Toán Thời gian làm bài: 180 phút

Ngày thi: 28.03.2007

<u>Câu 1 (7 điểm):</u>

- 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số: $y = \frac{x^2 + x + 1}{x + 1}$ (1)
- 2. Tìm k để đường thẳng: (2-k)x-y+1=0 cắt đồ thị hàm số (1) tại hai điểm phân biệt A, B sao cho cá tiếp tuyến với dồ thị hàm số (1) tại A và B song song với nhau
- 3. Chứng minh rằng phương trình: $x^2 + x + 1 = (x+1)\sqrt{9-x^2}$ có đúng hai nghiệm

Câu 2 (5 điểm):

1. Áp dụng khai triển nhị thức Niuton của $(x^2 + x)^{100}$, chứng minh rằng:

$$100C_{100}^{0} \left(\frac{1}{2}\right)^{99} - 101C_{100}^{1} \left(\frac{1}{2}\right)^{100} + \dots - 199C_{100}^{99} \left(\frac{1}{2}\right)^{198} + 200C_{100}^{100} \left(\frac{1}{2}\right)^{199} = 0$$

2. Cho tích phân $I_n = \int \frac{sin2nx}{a-2cos2x} dx$, $n \in N$. Tìm a sao cho I_{2006} , I_{2007} , I_{2008} theo thứ tự ấy lập thành một cấp số cộng.

<u>Câu 3 (7 điểm):</u>

- 1. Trong mặt phẳng với hệ toạ độ Oxy cho đường tròn : $(C): x^2 + y^2 4x + 6y 3 = 0$ có tâm I và đường thẳng $\Delta: x + by 2 = 0$. Chứng minh rằng (C) và Δ luôn cắt nhau tại hao điểm phân biệt P,Q với mọi b. Tìm b để tam giác PIQ có diện tích lớn nhất.
- 2. Trong không gian với hệ toạ độ Oxyz cho các điểm A(2;0;0), B(0;8;0), C(0;0;3) và N là điểm thoả mãn: $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Một mặt phẳng (P) thay đổi cắt các đoạn OA, OB, OC, OD lần lượt tại các điểm A_1 , B_1 , C_1 , N_1 . Hãy xác định toạ độ điểm N_1 sao cho: $\frac{OA}{OA} + \frac{OB}{OB} + \frac{OC}{OC} = 2007$.

Câu 4 (1 điểm):

Tìm tập hợp các điểm M trong không gian có tổng bình phương các khoảng cách đến các mặt của một tứ diện đều ABCD cho trước bằng một số dương k không đổi.

Kỳ THI HỌC SINH GIỚI THPT NĂM HỌC 2007 - 2008

Môn thi : Toán

Thời gian làm bài: 180 phút

Ngày thi: 28.03.2008

Bài 1 (5 điểm):

Cho hàm số $y = \frac{x-1}{x+1}$ (C)

- 1. Khảo sát sư biến thiên và vẽ đồ thi (C) của hàm số
- 2. Xác định điểm M thuộc đồ thị (C) của hàm số sao cho tổng các khoảng cách từ M đến các trục toạ độ là số nhỏ nhất

<u>Bài 2 (4 điểm):</u>

- 1. Cho hàm số $y = x + \sqrt{1 x^2} m$ Xác định m=? để y≤0 trên tập xác định của nó
- 2. Trong mặt phẳng Oxycho hypebol (H) có phương trình $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Biết tâm sai e=2; Hình chữ nhật cơ sở của nó cắt Ox; Oy tại A;C và B;D. Đường tròn nội tiếp hình thoi ABCD có bán kính bằng $\sqrt{2}$ Tìm phương trình (H)

<u>Bài 3 (4 điểm)</u>

- 1. GiảI phương trình $4\cos^2 x 4\cos 2x\cos^2 x 6\sin x\cos x + 1 = 0$
- 2. Cho $a \ge 0$. Giải và biện luận bất phương trình sau theo a:

$$a^{3}x^{4} + 6a^{2}x^{2} - x + 9a + 3 \ge 0$$

3. Giải hệ phương trình sau:

$$\begin{cases} x + y^3 = 2xy^2 \\ x^3 + y^9 = 2xy^4 \end{cases}$$

<u>Bài 4 (6 điểm)</u>

Trong không gian với hệ toạ độ Oxyz cho hình lập phương ABCD. A_1 B_1 C_1 D_1 Biết $A_1(0;0;0)$; $B_1(a;0;0)$; $D_1(0;a;0)$; $A_1(0;0;a)$. Gọi M; N lần lượt trung điểm các canh AB; B_1C_1 .

- 1. Viết phương trình mặt phẳng (P) đi qua M và song song với hai đường thẳng AN; BD₁
- 2. Tính thể tích tứ diện ANBD₁
- 3. Tính góc và khoảng cách giữa các đường thẳng AN và BD_1

<u>Bài 5 (1 điểm)</u>

Cho
$$a_n + b_n \sqrt{2} = (2 + \sqrt{2})^n$$
 n=1,2,3.... Tim $\lim_{n \to \infty} \frac{a_n}{b_n}$