

Orákula pre grafy reprezentujúce cestovné poriadky

František Hajnovič

FMFI UK

February 24, 2013

Supervisor: doc. RNDr. Rastislav Královič PhD.

Introduction USP-OR USP-OR-A Other contribution Conclusion References

Introduction

• It is about: **Earliest arrival problem** (EAP) given a timetable

Figure : Connection, elementary connection and earliest arrival

- Motivation: large-scale timetable search engines (cp.sk, imhd.sk...)
- Approach: Oracle-based approach pre-computation
- Goals:
 - Devise methods to tackle EAP
 - Analyse properties of timetables

USP-OR

• "Usually we go through the same sequence of cities"

Figure: Underlying shortest path

- USP-OR pre-compute all underlying shortest paths
- space $\mathcal{O}(\tau \ n^3) \to \mathsf{too} \ \mathsf{much!}$

USP-OR

• "Usually we go through the same sequence of cities"

Figure: Underlying shortest path

Name	avg $\tau_{A,B}$	$\max au_{A,B}$
air01	18.3	126
cpru	10.25	53
cpza	5.87	45
montr	4.09	30
zsr	8.9	85

Table : $\tau_{A,B}$ - number of USPs between A and B

- USP-OR pre-compute all underlying shortest paths
- space $\mathcal{O}(\tau \ n^3) \to \mathsf{too} \ \mathsf{much!}$
- Pre-compute only some USPs?

USP-OR-A

- Access nodes set A of cities in UG
 - Size $|Acc| = \mathcal{O}(\sqrt{n})$
 - Small node neighbourhoods $\forall v \mid neigh_{Acc}(v) \mid = \mathcal{O}(\sqrt{n})$
 - Few local access nodes $(\forall v | Acc_v | = \mathcal{O}(f(n)))$
- Space $\mathcal{O}(\tau n^2)$

Figure : Principle of access nodes

Other contribution

- Neural networks oracle problem too challenging for NN/try different types of network
- Analysis of various real-world timetables
- Useful and easily extendible application for analysis and oracle tests

Name	Description	El. conns.	Cities	Time range	Height (h)	
air01	domestic flights (US)	592767	250	1 month	24374	
cpru	regional bus (SVK)	10011	250	1 day	239	
cpza	regional bus (SVK)	15776	250	1 day	370	
montr	public transport (Montreal)	7118	211	1 day	363	
zsr	country-wide rails (SVK)	931647	233	1 year	59928	

Table: Data - timetable properties

Conclusion

- Other techniques [Del08], [BDSV09], [DPW09]
 - different ideas
 - meant for different scenarios
- Trying out novel approaches to solve EAP in timetables
- Better insight on properties of timetables
- To-do:
 - Find a good access node set
 - Train and test properly neural network oracles

Bibliography I

- [BDSV09] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-dependent contraction hierarchies. In Irene Finocchi and John Hershberger, editors, ALENEX, pages 97–105. SIAM, 2009.
 - [BFM06] Holger Bast, Stefan Funke, and Domagoj Matijevic. Transit— ultrafast shortest-path queries with linear-time preprocessing, 2006.
 - [Del08] Daniel Delling. Time-dependent sharc-routing. In Dan Halperin and Kurt Mehlhorn, editors, ESA, volume 5193 of Lecture Notes in Computer Science, pages 332–343. Springer, 2008. ISBN 978-3-540-87743-1.
- [DPW09] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs for faster timetable information. In Ravindra Ahuja, Rolf Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 182–206. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-05464-8.

Thank you for the attention

