特殊图

引入偶图

偶图的判定

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

Lijie Wang

引入偶图

偶图的判

考虑:有一组工人和一批工作任务作为图中的结点,并根据工人对任务是否熟悉来建立边的连接。在这样的图中,工人之间没有边,工作任务之间也不会有边, 所有的边都存在于工人组和任务组之间。这样的图称为偶图。

Definition

若无向图 G=<V,E> 的结点集 V 能够划分为两个子集 V_1,V_2 ,满足 $V_1\cap V_2=\varnothing$,且 $V_1\cup V_2=V$,使得 G 中任意一条边的两个端点,一个属于 V_1 ,另一个属于 V_2 ,则称 G 为偶图(bipartite graph) 或二分图或二部图。 V_1 和 V_2 称为互补结点子集,偶图通常记为 $G=<V_1,E,V_2>$ 。

引入偶图

偶图的判定

禺图的匹配

引入偶图

完全偶图

Lijie Wang

引入偶图

偶图的判

惠图的顶额

Definition

在偶图 $G=<V_1,E,V_2>$ 中,若 V_1 中的每个结点与 V_2 中的每个结点都有且仅有一条边相关联,则称偶图 G 为完全偶图或完全二分图,记为 $K_{i,j}$,其中, $i=|V_1|$, $j=|V_2|$ 。

完全偶图

Lijie Wang

引入偶图

偶图的判

禺图的匹配

Definition

在偶图 $G = \langle V_1, E, V_2 \rangle$ 中,若 V_1 中的每个结点与 V_2 中的每个结点都有且仅有一条 边相关联,则称偶图 G 为完全偶图或完全二分图,记为 $K_{i,i}$,其中, $i = |V_1|$, $j = |V_2|$ 。

Example

Lijie Wang

引入偶图

偶图的判定

思图的顶面

Theorem

无向图 G=<V,E> 为偶图的充分必要条件是所有回路的长度均为偶数。

Lijie Wang

引入偶图

偶图的判定

禹 图 的 匹 6

Theorem

无向图 $G = \langle V, E \rangle$ 为偶图的充分必要条件是所有回路的长度均为偶数。

Proof.

Lijie Wang

コノハ内区

偶图的判定

遇图的匹爾

Theorem

无向图 $G = \langle V, E \rangle$ 为偶图的充分必要条件是所有回路的长度均为偶数。

Proof.

• 必要性: 令 $C = v_0v_1v_2\cdots v_kv_0$ 是偶图 $G = \langle V_1, E, V_2 \rangle$ 的任意一条回路,其长度为 k+1。不妨设 $v_0 \in V_1$,由偶图的定义知, $v_1 \in V_2$, $v_2 \in V_1$,依次类推。又因 $v_0 \in V_1$,所以 $v_k \in V_2$,因而 k 为奇数,故 C 的长度为偶数。

无向图 $G = \langle V, E \rangle$ 为偶图的充分必要条件是所有回路的长度均为偶数。

Proof.

Lijie Wang

偶图的判定

- 必要性:令 $C = v_0v_1v_2\cdots v_kv_0$ 是偶图 $G = \langle V_1, E, V_2 \rangle$ 的任意一条回路,其长度为 k+1。不妨设 $v_0 \in V_1$,由偶图的定义知, $v_1 \in V_2$, $v_2 \in V_1$,依次类推。又因 $v_0 \in V_1$,所以 $v_k \in V_2$,因而 k 为 奇数,故 C 的长度为偶数。
- 充分性:设 G 中每条回路的长度均为偶数,若 G 是连通图(否则可对 G 的每个连通分支继续如下论证),任选 $v_0 \in V$,定义 V 的两个子集如下: $V_1 = \{v_i | d(v_0, v_i)$ 为偶数 $\}$, $V_2 = V V_1$ 。 现证明 V_1 中任两结点间无边存在。假若存在一条边 $(v_i, v_j) \in E$,其中 $v_i, v_j \in V_1$,则由 v_0 到 v_i 间的短程线(长度为偶数)以及边 (v_i, v_j) ,再加上 v_j 到 v_0 间的短程线(长度为偶数)所组成的回路的长度为奇数,与假设矛盾。

同理可证 V_2 中任两结点间无边存在。

故 G 中每条边 (v_i,v_j) , 必有 $v_i \in V_1$, $v_j \in V_2$ 或 $v_i \in V_2$, $v_j \in V_1$, 因此 G 是偶图。

引入偶图

偶图的判定

B (E) Ab mr X

• 根据偶图的充分必要条件,我们可将平凡图和零图看成特殊的偶图。

Lijie Wang

引入偶图

偶图的判定

禺图的匹配

☞ 注意

- 根据偶图的充分必要条件,我们可将平凡图和零图看成特殊的偶图。
- 我们常使用它的逆否命题来判断一个图不是偶图:无向图 *G* 不是偶图的充分必要条件是 *G* 中存在长度为奇数的回路。

Lijie Wang

引入偶图

偶图的判定

19127月7月1日

☞ 注意

- 根据偶图的充分必要条件,我们可将平凡图和零图看成特殊的偶图。
- 我们常使用它的逆否命题来判断一个图不是偶图:无向图 G 不是偶图的充分必要条件是 G 中存在长度为奇数的回路。

Lijie Wang

引入偶图

偶图的判定

海尾(11)15540

☞ 注意

- 根据偶图的充分必要条件,我们可将平凡图和零图看成特殊的偶图。
- 我们常使用它的逆否命题来判断一个图不是偶图:无向图 G 不是偶图的充分必要条件是 G 中存在长度为奇数的回路。

存在奇数长度回路,所以不是偶图

匹配的引入

-9-----

禺图的判定

偶图的匹配

Example

假设有 4 个工人 a_1 , a_2 , a_3 , a_4 , 4 项工作任务 b_1 , b_2 , b_3 , b_4 , 并且工人 a_1 熟悉任务 b_1 , b_2 , b_3 ; a_2 熟悉任务 b_2 , b_3 ; a_3 熟悉任务 b_4 ; a_4 熟悉任务 b_3 , b_4 ; 建立偶图如下。那么 ,该如何给每个工人分配任务 ,并且保证每个人做的都是自己熟悉的任务呢?

右图就是一种分配方案,称作原图的一个匹配。

偶图的匹配

Lijie Wang

引入偶图

偶图的判定

偶图的匹配

Definition

在偶图 $G=< V_1, E, V_2>$ 中, $V_1=\{v_1,v_2,\cdots,v_q\}$,若存在 E 的子集 $E'=\{(v_1,v_1'),(v_2,v_2'),\cdots,(v_q,v_q')\}$,其中 v_1',v_2',\cdots,v_q' 是 V_2 中的 q 个不同的结点,则称 G 的子图 $G'=< V_1,E',V_2>$ 为从 V_1 到 V_2 的一个完全匹配,简称匹配。

匹配实际上就是在偶图 $G=\langle V_1,E,V_2\rangle$ 中,寻找 V_1 到 V_2 的单射。显然,这样的单射有时并不存在。

偶图的判定

Theorem (霍尔定理)

偶图 $G=<V_1,E,V_2>$ 中存在从 V_1 到 V_2 的匹配的充分必要条件是 V_1 中任意 k 个结点至少与 V_2 中的 k 个结点相邻 , $k=1,2,\cdots,|V_1|$ 。这个条件通常称为相异性条件(diversity condition)。

偶图的匹配

Theorem (霍尔定理)

偶图 $G=<V_1,E,V_2>$ 中存在从 V_1 到 V_2 的匹配的充分必要条件是 V_1 中任意 k 个结点至少与 V_2 中的 k 个结点相邻 , $k = 1, 2, \dots, |V_1|$ 。这个条件通常称为相异性条件(diversity condition)。

Theorem (t 条件)

设 $G = \langle V_1, E, V_2 \rangle$ 是一个偶图。如果满足:

Lijie Wang

引入偶

偶图的灰配

Theorem (霍尔定理)

偶图 $G=<V_1,E,V_2>$ 中存在从 V_1 到 V_2 的匹配的充分必要条件是 V_1 中任意 k 个结点至少与 V_2 中的 k 个结点相邻 , $k=1,2,\cdots,|V_1|$ 。这个条件通常称为相异性条件(diversity condition)。

Theorem (t 条件)

设 $G = \langle V_1, E, V_2 \rangle$ 是一个偶图。如果满足:

● V₁ 中每个结点至少关联 t 条边;

Lijie Wang

引入偶图

偶图的匹配

Theorem (霍尔定理)

偶图 $G=<V_1,E,V_2>$ 中存在从 V_1 到 V_2 的匹配的充分必要条件是 V_1 中任意 k 个结点至少与 V_2 中的 k 个结点相邻 , $k=1,2,\cdots,|V_1|$ 。这个条件通常称为相异性条件(diversity condition)。

Theorem (t 条件)

设 $G = \langle V_1, E, V_2 \rangle$ 是一个偶图。如果满足:

- V₁ 中每个结点至少关联 t 条边;
- ❷ V₂ 中每个结点至多关联 t 条边;

Lijie Wang

引入偶图

偶图的匹配

Theorem (霍尔定理)

偶图 $G=<V_1,E,V_2>$ 中存在从 V_1 到 V_2 的匹配的充分必要条件是 V_1 中任意 k 个结点至少与 V_2 中的 k 个结点相邻 , $k=1,2,\cdots,|V_1|$ 。这个条件通常称为相异性条件(diversity condition)。

Theorem (t 条件)

设 $G = \langle V_1, E, V_2 \rangle$ 是一个偶图。如果满足:

- ① V_1 中每个结点至少关联 t 条边 ; $(V_1$ 中结点的最小度数)
- ❷ V₂ 中每个结点至多关联 t 条边;

Lijie Wang

黑图的细

偶图的匹配

Theorem (霍尔定理)

偶图 $G=<V_1,E,V_2>$ 中存在从 V_1 到 V_2 的匹配的充分必要条件是 V_1 中任意 k 个结点至少与 V_2 中的 k 个结点相邻 , $k=1,2,\cdots,|V_1|$ 。这个条件通常称为相异性条件(diversity condition)。

Theorem (t 条件)

设 $G = \langle V_1, E, V_2 \rangle$ 是一个偶图。如果满足:

- V₁ 中每个结点至少关联 t 条边; (V₁ 中结点的最小度数)
- ② V_2 中每个结点至多关联 t 条边 ; $(V_2$ 中结点的最大度数)

Lijie Wang

引入偶图

偶图的判定 偶图的匹配

Example

现有三个课外小组:物理组,化学组和生物组,有五个学生 s_1, s_2, s_3, s_4, s_5 。

Lijie Wang

引入偶图

偶图的判定 **偶图的**匹配

Example

现有三个课外小组:物理组,化学组和生物组,有五个学生 s_1, s_2, s_3, s_4, s_5 。

● s₁, s₂ 为物理组成员,s₁, s₃, s₄ 为化学组成员,s₃, s₄, s₅ 为生物组成员。

Lijie Wang

引入偶图

禹图的判定

偶图的匹配

Example

现有三个课外小组:物理组,化学组和生物组,有五个学生 s_1, s_2, s_3, s_4, s_5 。

- ① s_1, s_2 为物理组成员, s_1, s_3, s_4 为化学组成员, s_3, s_4, s_5 为生物组成员。
- ② s_1 为物理组成员, s_2 , s_3 , s_4 为化学组成员, s_2 , s_3 , s_4 , s_5 为生物组成员。

Lijie Wang

引入偶

傷图的匹配

Example

现有三个课外小组:物理组, 化学组和生物组, 有五个学生 s_1, s_2, s_3, s_4, s_5 。

- ① s_1, s_2 为物理组成员, s_1, s_3, s_4 为化学组成员, s_3, s_4, s_5 为生物组成员。
- ② s_1 为物理组成员, s_2 , s_3 , s_4 为化学组成员, s_2 , s_3 , s_4 , s_5 为生物组成员。
- ③ s₁ 即为物理组成员,又为化学组成员,s₂,s₃,s₄,s₅ 为生物组成员。

Lijie Wang

引入偶

偶图的匹配

Example

现有三个课外小组:物理组,化学组和生物组,有五个学生 s_1, s_2, s_3, s_4, s_5 。

- ① s_1, s_2 为物理组成员, s_1, s_3, s_4 为化学组成员, s_3, s_4, s_5 为生物组成员。
- ② s_1 为物理组成员, s_2 , s_3 , s_4 为化学组成员, s_2 , s_3 , s_4 , s_5 为生物组成员。
- ③ s₁ 即为物理组成员, 又为化学组成员, s₂, s₃, s₄, s₅ 为生物组成员。

在以上三种情况的每一种情况下,在 s_1, s_2, s_3, s_4, s_5 中选三位组长,不兼职,问能否办到?

Solution

用 c_1, c_2, c_3 分别表示物理组、化学组和生物组。令 $V_1 = \{c_1, c_2, c_3\}$, $V_2 = \{s_1, s_2, s_3, s_4, s_5\}$, 以 V_1 , V_2 为互补结点子集,以 $E = \{(c_i, s_j) | c_i \in V_1, s_j \in V_2, c_i$ 中有成员 $s_j\}$ 为边集,构造偶图,然后在这些偶图中寻找匹配。

引入偶图

偶图的匹配

引入偶图

偶图的匹配

S₁ S₂ S₃ S₄ S₅

满足 t 条件 , 存在匹配

Lijie Wang

偶图的匹配

Lijie Wang

偶图的匹配

满足 t 条件 , 存在匹配

满足相异性条件,存在匹配

Lijie Wang

偶图的匹配

S3 **S**4 **S**5

满足相异性条

件,存在匹配

0

S5

 c_2 c_3

 s_1

Lijie Wang

51人偶图

偶图的匹配

S₁ S₂ S₃ S₄ S₅

满足 t 条件 , 存在匹配

满足相异性条件,存在匹配

不满足相异性条件,不存在匹配

Lijie Wang

引入偶图

偶图的判员

偶图的匹配

THE END, THANKS!