FEATURES

- ♦ Avalanche Rugged Technology
- ◆ Rugged Gate Oxide Technology
- ♦ Lower Input Capacitance
- ◆ Improved Gate Charge
- ◆ Extended Safe Operating Area
- ♦ 175°C Operating Temperature
- ♦ Lower Leakage Current: 10μA (Max.) @ V_{DS} = 60V
- Lower $R_{DS(ON)}$: 0.020 Ω (Typ.)

BV _{DSS} =	60 V
$R_{DS(on)} =$	0.024Ω
$I_{D} = 50 I_{D}$	A

Absolute Maximum Ratings

Symbol	Characteristic		Value	Units	
V_{DSS}	Drain-to-Source Voltage		60	V	
	Continuous Drain Current (T _C =25°C)		50		
I _D	Continuous Drain Current (T _C =100°	C)	35.4	_ A	
I _{DM}	Drain Current-Pulsed	(1)	200	Α	
V_{GS}	Gate-to-Source Voltage		±20	V	
E _{AS}	Single Pulsed Avalanche Energy (2)		857	mJ	
I _{AR}	Avalanche Current (1)		50	Α	
E _{AR}	Repetitive Avalanche Energy (1)		12.6	mJ	
dv/dt	Peak Diode Recovery dv/dt (3)		5.5	V/ns	
Б	Total Power Dissipation (T _C =25°C)		126	W	
P_{D}	Linear Derating Factor		0.84	W/°C	
	Operating Junction and		- 55 to +175		
T_J , T_STG	Storage Temperature Range		- 55 10 +175		
_	Maximum Lead Temp. for Soldering	9	300	°C	
T _L	Purposes, 1/8. from case for 5-sec	onds	300		

Thermal Resistance

Symbol	Characteristic	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.19	
$R_{\theta CS}$	Case-to-Sink	0.5		°C/W
R _{eJA}	Junction-to-Ambient		62.5	

$\textbf{Electrical Characteristics} \; (\textbf{T}_{\textbf{C}} = 25 ^{\circ} \textbf{C} \; \textbf{unless otherwise specified})$

Symbol	Characteristic	Min.	Тур.	Max.	Units	Test Condition
BV _{DSS}	Drain-Source Breakdown Voltage	60		-	V	V_{GS} =0 V , I_D =250 μ A
$\Delta BV/\Delta T_J$	Breakdown Voltage Temp. Coeff.		0.063	1	V/°C	I _D =250μA See Fig 7
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} =5V,I _D =250μA
1	Gate-Source Leakage, Forward			100	nA	V _{GS} =20V
I _{GSS}	Gate-Source Leakage, Reverse			-100	IIA	V _{GS} =-20V
	Davis to Course Leaders Course			10		V _{DS} =60V
I _{DSS}	Drain-to-Source Leakage Current			100	μΑ	V _{DS} =48V,T _C =150°C
	Static Drain-Source					\/ 40\/ L 25\
R _{DS(on)}	On-State Resistance			0.024	Ω	$V_{GS} = 10V, I_D = 25A$ (4)
g _{fs}	Forward Transconductance		32.6		Ω	$V_{DS} = 30V, I_{D} = 25A$ (4)
C _{iss}	Input Capacitance		1770	2300		
C _{oss}	Output Capacitance		590	680	рF	$V_{GS}=0V, V_{DS}=25V, f=1MHz$
C _{rss}	Reverse Transfer Capacitance		220	255		See Fig 5
t _{d(on)}	Turn-On Delay Time		20	40		\/ 00\/ L 50A
t _r	Rise Time		16	40		$V_{DD} = 30V, I_{D} = 50A,$
t _{d(off)}	Turn-Off Delay Time		68	140	ns	$R_G=9.1\Omega$
t _f	Fall Time		70	140		See Fig 13 (4) (5)
Q_g	Total Gate Charge		64	83		V _{DS} =48V,V _{GS} =10V,
Q _{gs}	Gate-Source Charge		12.3		nC	I _D =50A
Q_{gd}	Gate-Drain (. Miller.) Charge		23.6			See Fig 6 & Fig 12 (4) (5)

Source-Drain Diode Ratings and Characteristics

Symbol	Characteristic	Min.	Тур.	Max.	Units	Test Condition
I _S	Continuous Source Current			50	_	Integral reverse pn-diode
I _{SM}	Pulsed-Source Current (1)			200	Α	in the MOSFET
V_{SD}	Diode Forward Voltage (4)			1.8	٧	T _J =25°C,I _S =50A,V _{GS} =0V
t _{rr}	Reverse Recovery Time		85		ns	T _J =25°C,I _F =50A
Q _{rr}	Reverse Recovery Charge		0.24		μС	$di_F/dt=100A/\mu s$ (4)

Notes:

- (1) Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature
- (2) L=0.4mH, I_{AS}=50A, V_{DD}=25V, R_G=27\Omega, Starting T_J=25°C
- (3) $I_{SD} \le 50 A$, $di/dt \le 350 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- (4) Pulse Test : Pulse Width = 250μs, Duty Cycle ≤ 2%
- (5) Essentially Independent of Operating Temperature

Fig 9. Max. Safe Operating Area $10^3 \frac{\text{Cecation in This Area}}{\text{is Limited by R}_{DS(cn)}} \frac{100 \, \mu \text{S}}{100 \, \mu \text{S}} = 10^4 \frac{100 \, \mu \text{S}}{100 \, \mu \text{S}} = 10^4 \frac{100 \, \mu \text{S}}{100 \, \mu \text{S}} = 10^4 \frac{100 \, \mu \text{S}}{1000 \, \mu \text{S}} = 10^4 \frac{1000 \, \mu \text{S}}{1000 \, \mu \text{S}} = 10^4 \frac{1000 \, \mu \text{S}}{1000 \, \mu \text{S}} = 10^4 \frac{1000 \, \mu \text{$

Fig 12. Gate Charge Test Circuit & Waveform

Fig 13. Resistive Switching Test Circuit & Waveforms

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM COOIFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

FACT Quiet Series $^{\text{TM}}$ Quiet Series $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3 SuperSOT $^{\text{TM}}$ -6 GTO $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -8 TinyLogic $^{\text{TM}}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.