Econometrics (Econ 452) – Fall 2022 – Instructor: Daniele Girardi

SECTION 6 – NONLINEAR REGRESSION FUNCTIONS THE PLAN

- 1. Nonlinear functions of a single independent variable.
- 2. Polynomial regression functions.
- 3. Logarithmic regression functions.
- 4. Interactions between regressors.

OVERVIEW

We considered *linear* regression functions so far (constant slope)...

...but what if your data looks like one of these?

Two main ways of being nonlinear:

- 1. The "effect" of one regressor is nonlinear.
- 2. Interaction: the "effect" of a regressor depends on the value taken by the other.

6.1 NONLINEAR FUNCTIONS OF A SINGLE INDEPENDENT VARIABLE

TEST SCORES & DISTRICT INCOME

FIGURE 8.2 Scatterplot of Test Scores vs. District Income with a Linear OLS Regression Function

There is a positive correlation between test scores and district income (correlation = 0.71), but the linear OLS regression line does not adequately describe the relationship between these variables.

TEST SCORES & DISTRICT INCOME

- Nonlinear function: the slope is not constant.
- Quadratic regression function:

$$TestScore = \beta_0 + \beta_1 Income_i + \beta_2 Income_i^2 + u_i$$

- Technically, just a multiple regression with *Income*_i² as an additional regressor.
- OLS estimate:

$$TestScores_i = 607.4 + 3.85Income - 0.04Income^2$$
(2.9) (0.27) (0.005)

NONLINEAR FUNCTIONS

$$E(Y_i) = f(X_{1i}, X_{2i}, ..., X_{ki})$$

$$V_i = f(X_{1i}, X_{2i}, ..., X_{ki}) + u_i$$

• Effect of a change in X_1 by ΔX_1 units:

$$E(\Delta Y) = f(X_1 + \Delta X_1, X_2, ..., X_k) - f(X_1, X_2, ..., X_k)$$

• If X_1 is continuous and ΔX_1 small, can use the partial derivative:

$$E(\Delta Y) \approx \Delta X_1 \frac{df(X_1, X_2, \dots, X_k)}{dX_1}$$

TEST SCORES & DISTRICT INCOME

TestScore =
$$\beta_0 + \beta_1 Income_i + \beta_2 Income_i^2 + u_i$$

 $\hat{\beta}_0 = 607.4$; $\hat{\beta}_1 = 3.85$; $\hat{\beta}_2 = -0.0423$

Effect of district income going from 10 to 11 (thousand dollars):

$$E(\Delta Y) = (\beta_0 + \beta_1(11) + \beta_2(11)^2) - (\beta_0 + \beta_1(10) + \beta_2(10)^2) =$$

$$= (\beta_1(11 - 10) + \beta_2(11^2 - 10^2)) =$$

$$= (\beta_1 + 21\beta_2) = 3.85 - 0.89 = 2.96$$

TEST SCORES & DISTRICT INCOME

- $TestScore = \beta_0 + \beta_1 Income_i + \beta_2 Income_i^2 + u_i$
- Effect of district income going from 10 to 11 (thousand dollars):

$$\Delta \hat{Y} = (\widehat{\beta_1} + 21\widehat{\beta_2}) = 3.85 - 0.89 = 2.96$$

- $SE(\Delta \hat{Y}) = SE(\beta_1 + 21\beta_2)$
- STATA will compute it for you (if you know how to ask!)
- → SE for predicted effect can be computed through a test of a single restriction involving multiple coefficients.

NONLINEAR FUNCTIONS OF A SINGLE INDEPENDENT VARIABLE

- 1.Polynomial regression model.
- 2.Logarithmic regression model(s).

6.2 POLYNOMIAL REGRESSION FUNCTIONS

POLYNOMIALS

Polynomial regression model of degree r:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_r X_i^r$$

- o $r=2 \rightarrow$ quadratic regression model
- \circ $r = 3 \rightarrow$ cubic regression model
- Estimation & inference: just like a multivariate regression.

POLYNOMIALS

Polynomial regression model of degree r:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_r X_i^r$$

- Testing the null hypothesis of linearity:
 - $\circ \ H_0: \beta_2, \dots, \beta_r = 0$
 - \circ H_1 : at least one of these coefficients is not 0
- How to choose the degree r?
 - Theory; Plot the data; F- & t-tests.

POLYNOMIALS: INCOME & TEST SCORES

Quadratic specification:

$$TestScore = \beta_0 + \beta_1 Income_i + \beta_2 Income_i^2 + u_i$$

Cubic specification:

$$TestScore = \beta_0 + \beta_1 Income_i + \beta_2 Income_i^2 + \beta_3 Income_i^3 + u_i$$

QUADRATIC SPECIFICATION IN STATA

```
reg testscr avginc avginc2, r
                                       Number of obs = 420
Regression with robust standard errors
                                       F(2, 417) = 428.52
                                       Prob > F = 0.0000
                                       R-squared = 0.5562
                                       Root MSE = 12.724
                  Robust
   testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    avginc | 3.850995 .2680941 14.36 0.000 3.32401 4.377979
   avginc2 | -.0423085 .0047803 -8.85 0.000 -.051705 -.0329119
     cons | 607.3017 2.901754 209.29 0.000 601.5978 613.0056
```


CUBIC SPECIFICATION IN STATA

```
gen avginc3 = avginc*avginc2
                       Create the cubic regressor
reg testscr avginc avginc2 avginc3, r
Regression with robust standard errors
                                            Number of obs = 420
                                            F(3, 416) = 270.18
                                            Prob > F = 0.0000
                                            R-squared = 0.5584
                                            Root MSE = 12.707
                     Robust
    testscr | Coef.
                      Std. Err. t P>|t| [95% Conf. Interval]
    avginc | 5.018677 .7073505 7.10 0.000 3.628251 6.409104
    avginc2 | -.0958052
                      .0289537 -3.31 0.001 -.1527191 -.0388913
    avginc3 | .0006855 .0003471 1.98 0.049 3.27e-06 .0013677
     cons | 600.079
                      5.102062 117.61 0.000
                                              590.0499 610.108
```


TESTING THE NULL OF LINEARITY AGAINST A CUBIC ALTERNATIVE

test avginc2 avginc3 Use the test command after running the regression

(1) avginc2 = 0.0
(2) avginc3 = 0.0

F(2, 416) = 37.69
Prob > F = 0.0000

The hypothesis that the population regression is linear is rejected at the 1% significance level against the alternative that it is a polynomial of up to degree 3.

6.3 LOGARITHMIC REGRESSION FUNCTIONS

University of Massachusetts Amherst

LOGARITHMIC REGRESSION FUNCTIONS

- Y or X (or both) transformed in their natural logarithm.
- Three types:
- 1. Linear-log model

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

2. Log-linear model

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

3. Log-log model

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$$

LOGS & PERCENTAGES

 Log changes are approximately equal to percentage changes.

•
$$\ln(x_2) - \ln(x_1) \approx \frac{x_2 - x_1}{x_1}$$

• The approximation gets worse as $x_2 - x_1$ gets larger.

1) LINEAR-LOG MODEL

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

- Constant effect of a % change in X.
- 1% increase in $X \rightarrow \beta_1/100$ change in E(Y).
- $\Delta \hat{Y} = \beta_1 [\ln(X + \Delta X) \ln(X)] \approx \beta_1 \frac{\Delta X}{X}$
- Test score example:

$$TestScore = 557.8 + 36.42 \ln(Income)$$

A 1% increase in income increases test scores by 0.36 points.

2) LOG-LINEAR MODEL

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

- The % change in E(Y) caused by a unit change in X is constant.
- unit change in $X \rightarrow (100 \times \beta_1)\%$ change in E(Y).
- Age-earnings example:

$$ln(\widehat{Earnings}) = 2.876 + 0.0095 Age$$

Earnings increase by 0.95% for each additional year of age

3) LOG-LOG MODEL

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$$

- Constant elasticity of Y with respect to X.
- 1% change in $X \rightarrow \beta_1$ % change in E(Y).
- Test score example:

$$ln(TestScore) = 6.4 + 0.06 ln(Income)$$

o A 1% increase in income increases test scores by 0.06%.

HOW TO CHOOSE A LOG SPECIFICATION?

- Warning: Can't compare R² if the dependent variable is different
 - o In(Y) vs. Y
- Does it make sense to think in terms of % changes?
 - Usually it does for income or wages.
- Does it make results easier to interpret?
 - Percentage changes don't depend on the unit of measure.

6.4 INTERACTIONS BETWEEN REGRESSORS

INTERACTION TERMS

- What if the effect of X_i on Y is different in different circumstances?
- Example with binary regressors:

$$ln(Earnings_i) = \beta_0 + \beta_1 College_i + \beta_2 Female_i + u_i$$

- Effect of College assumed to be the same for men and women.
- Add an interaction term:

```
ln(Earnings_i)
= \beta_0 + \beta_1 College_i + \beta_2 Female_i + \beta_3 College_i \times Female_i + u_i
```


INTERACTION TERMS

 $ln(Earnings_i) = \beta_0 + \beta_1 College_i + \beta_2 Female_i + \beta_3 College_i \times Female_i + u_i$

- $E(Earnings|College = 0, Female = 0) = \beta_0$
- $E(Earnings|College = 1, Female = 0) = \beta_0 + \beta_1$
- $E(Earnings|College = 0, Female = 1) = \beta_0 + \beta_2$
- $E(Earnings|College = 1, Female = 1) = \beta_0 + \beta_1 + \beta_2 + \beta_3$

Effect of college for a man: β_1

Effect of college for a woman: $\beta_1 + \beta_3$

INTERACTION BETWEEN A CONTINUOUS AND A BINARY VARIABLE

Regression with 1 continuous & 1 binary variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + u_i$$

With interaction term:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) + u_i$$

- \circ Slope if D=0: β_1
- \circ Slope if D=1: $\beta_1 + \beta_3$

FIGURE 8.8 Regression Functions Using Binary and Continuous Variables

(a) Different intercepts, same slope

(b) Different intercepts, different slopes

INTERACTION: TWO CONTINOUS VARIABLES

Regression with two continuous variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

With interaction:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

EXAMPLE: CALIFORNIA SCHOOLS DATASET

. reg testscr str el_pct str_el_pct, robust

Linear regression	Number of obs	=	420
	F(3, 416)	=	155.05
	Prob > F	=	0.000
	R-squared	=	0.4264
	Root MSE	=	14.482

testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
str	-1.117018	.5875135	-1.90	0.058	-2.271884	.0378468
el_pct	6729116	.3741231	-1.80	0.073	-1.408319	.0624958
str_el_pct	0011618	.0185357	0.06	0.950	0352736	.0375971
_cons	686.3385	11.75935	58.37	0.000	663.2234	709.4537

The interaction term (str*el_pct) is not significantly different from zero - effect of class sizes does not depend on share of English language learners.

EXAMPLE: AGE AND EARNINGS (CPS DATA)

 reg ln_incwage female age female_age, r Number of obs Linear regression 55,527 F(3, 55523) 1315.58 Prob > F 0.0000 R-squared 0.0726 Root MSE .81175 Robust ln_incwage Coef. Std. Err. P>|t| [95% Conf. Interval] t -4.25 female -.1126975 .0265112 0.000 -.1646596 -.0607355 .017048 .0004219 40.40 0.000 .016221 .017875 age female_age -.0037716 .0006105 -6.180.000 -.0049682 -.0025751 _cons 10.12187 .0181315 558.25 0.000 10.08633 10.1574

The interaction term (female*age) is negative and significantly different from zero - effect of age on earnings does depend on gender.

EXAMPLE: AGE AND EARNINGS (CPS DATA)

The line for men is steeper than for women - women get less of an increase in earnings each year they get older compared to men.

