Traffic Classification Using Visual Motifs: An Empirical Evaluation

Wilson Lian¹ Fabian Monrose¹ John McHugh^{1,2}

¹University of North Carolina at Chapel Hill

²RedJack, LLC

VizSec 2010

Overview

- Background
- Visual Motifs
- Traffic Classification
- Empirical Evaluation

Motivation

Motivation

Goals

Assumptions

- Reliable transport via TCP
- Stream Cipher
 - No access to payload
 - Payload length preservation
- Encryption at or above Transport Layer

Bigram Heatmaps

C. Wright, F. Monrose, and G.M. Masson. Using visual motifs to classify encrypted traffic. 2006

(48, -48) (-48, 40) (40, 891) (891, -40) (-40, -270) (-270, -1500) (-1500, 40) (40, -1500) (-1500, 40)

(-48, 40) (-1500, 40) (-1500, 40)	(40, 891)
(-40, -270) (-270, -1500)	(48, -48) (891, -40) (40, -1500)

3/9 = 33.3%	1/9 = 11.1%
2/9 = 22.2%	3/9 = 33.3%

Bigram Heatmaps

Modeling Protocol Behavior

3/9 = 33.3%	1/9 = 11.1% 2
2/9 = 22.2%	3/9 = 33%
3	4

Modeling Protocol Behavior

Classifying Samples

- Create training models for desired protocols
- Build testing model for network trace to be classified
- \odot Find training model with lowest L_1 distance

$$L_1(\mathcal{A},\mathcal{B}) = \sum_{i=1}^n \left| \frac{\mathcal{A}_{\phi_i}}{\mathcal{A}_{\tau}} - \frac{\mathcal{B}_{\phi_i}}{\mathcal{B}_{\tau}} \right|$$

Traffic Classification Using Visual Motifs: An Empirical Evaluation
Traffic Classification

Classification Confidence Threshold

- Goal: Eliminate close calls
- Require 1st place candidate to lead 2nd place by certain amount to make decision
- Based on standard deviation of L₁ distances

Evaluation

- Parameter Selection
 - Bin size
 - Confidence threshold
 - Training set size
- Precision

$$\frac{\textit{true positives}}{\textit{true positives} + \textit{false positives}}$$

Recall

$$\frac{\textit{true positives}}{\textit{true positives} + \textit{false negatives}}$$

Evaluation

- Trial :=
 - Randomly sample some percentage of available data for each port and train classifier
 - 2 Randomly sample some number ($\lambda = 45,000$) of the remaining data points for each port and create testing samples
 - Classify testing samples
- 50 Trials

dartmouth Dataset

- Weekdays: January 19, 2004 February 6, 2004
- Top 10 ports by number of sessions observed
 - 25 (SMTP), 80 (HTTP), 88 (Kerberos), 110 (POP3), 135 (DCE), 139 (NetBIOS), 443 (HTTPS), 445 (MDS), 902 (VMware), 1214 (Kazaa)
- No payload data
- Used for parameter selection

Total Packets	1.3 Billion
Traffic Volume	707 GB
Observed Ports	64,214
Sessions	5.2 Million

darpa Data

- 1999 DARPA Intrusion Detection Evaluation
- Weeks 1, 3, 4, 5
- Ports 21 (FTP), 23 (Telnet), 25 (SMTP), 79 (finger), 80 (HTTP), 110 (POP3)
- Additional cross-validation using parameter values determined from dartmouth.

Total Packets	60 Million
Traffic Volume	12 GB
Observed Ports	10,274
Sessions	1.6 Million

dartmouth Results

50 Trials

15% Training Set Size

45,000 Data

Points Testing Set Size

k = 0.75 Confidence

Threshold

dartmouth Results

Traffic Classification Using Visual Motifs: An Empirical Evaluation Empirical Evaluation

dartmouth Results

- Server Message Block (SMB) protocol
 - Used for Windows resource sharing
 - Windows NT: via NetBIOS (NBT) on TCP 139
 - Windows 2000: directly on TCP 445
- Clients with NetBIOS enabled try connections on TCP 139 and TCP 445

darpa Results

50 Trials

15% Training Set Size

45,000 Data Points Testing Set Size

k = 0.75Confidence Threshold

50 Trials

15% Training Set Size (dartmouth)

45,000 Data Points Testing Set Size (darpa)

k = 0.25Confidence Threshold

Mailbomb attack?

Limitations

- Must be trained on network to be tested
- Reliance on session de-multiplexing
- TCP only
- Deliberate attempts to disguise traffic (Folga et al., Wright et al. 2009)

Future Work

- On-line classification
- Protocol subcategorization (e.g., SSH interactive vs. SCP file transfer)

Conclusion

- Modeling protocol behavior using only packet size, direction, and order
- Resistant to encryption
- High precision and recall
- Quick and reliable traffic inspection
- Useful for anomaly and misuse detection

Traffic Classification Using Visual Motifs: An Empirical Evaluation

Questions?

Thanks for listening. Q & A

wwlian@gmail.com