Pregunta 3 Demuestra que todo torneo tiene un camino dirigido Hamiltoniano.

Por inducción: Sobre el número de vértices en el torneo, el caso base es el torneo de 1 vértice, el camino es el mismo vértice.

Supongamos que es cierto que todo torneo de tamaño n tiene un camino Hamiltoniano.

Sea T = (V, E) un torneo donde |V| = n + 1

Considere $v \in V$ y el torneo T_{-v} inducido al eliminar v y las aristas incidentes a v de T, sabemos por hipótesis de inducción que en T_{-v} hay un camino Hamiltoniano.

Sea $H_n=(v_1,v_2,...,v_n)$ tal camino. Si $v\to v_1,\,(v,v_1,v_2,...,v_n)$ es un camino Hamiltoniano en T_{-v} .

En caso contrario $v_1 \to v$, sea v_i el primer elemento en H_n tal que $v \to v_i$, ahi tenemos que $(v_1, ..., v_{i-1}, v, v_i, ..., v_n)$ es un camino Hamiltoniano en G, pues sabemos que $j < i \Rightarrow v_j \to v$. Y si no hay un primer elemento, es decir $\forall u \in H, u \to v$, entonces $(v_1, v_2, ..., v_n, v)$ es un camino Hamiltoniano en $T \blacksquare$.