Ujebanko przez kolanko

maruda

69

ZAD.2.

Jezu nie rozumiem o co chodzi w tych zadaniach.

Wiemy, że $S_m(t^2) = P_{2m}(t)$ oraz

$$\int_{-a}^{a} p(x) P_{2m}(x) P_{2k}(x) dx = 0$$

dla m ≠ k. Czyli jest

$$\begin{split} 0 &= \int\limits_{-a}^{a} p(x) P_{2m}(x) P_{2k}(x) dx = \int\limits_{-a}^{a} p(x) S_m(x^2) S_k(x^2) dx = 2 \int\limits_{0}^{a} p(x) S_m(x^2) S_k(x^2) dx = \\ &= \left[\frac{\sqrt{u} = x}{\frac{1}{2\sqrt{u}} du = dx} \right] = 2 \int\limits_{0}^{a^2} \frac{p(\sqrt{u})}{2\sqrt{u}} S_m(u) S_k(u) du = \int\limits_{0}^{a^2} \frac{p(\sqrt{u})}{\sqrt{u}} S_m(u) S_k(u) du \end{split}$$

czyli jeśli $p'(x) = \frac{p(\sqrt{x})}{\sqrt{x}}$, to wielomiany S_m są ortogonalne na przedziale $[0, a^2]$.

Wiemy, że $P_{2m+1} = xR_m(x^2)$

$$\begin{split} 0 &= \int\limits_{-a}^{a} p(x) P_{2m+1}(x) P_{2k+1}(x) dx = \int\limits_{-a}^{a} p(x) x R_m(x^2) x R_k(x^2) dx = \int\limits_{-a}^{a} p(x) x^2 R_m(x^2) R_k(x^2) dx = \\ &= 2 \int\limits_{0}^{a} p(x) x^2 R_m(x^2) R_k(x^2) dx = \left[\frac{\sqrt{u} = x}{\frac{1}{2\sqrt{u}} du = dx} \right] = 2 \int\limits_{0}^{a^2} \frac{p(\sqrt{u})}{2\sqrt{u}} u R_m(u) R_k(u) du = \\ &= \int\limits_{0}^{a^2} p(\sqrt{u}) \sqrt{u} R_m(u) R_k(u) du \end{split}$$

czyli jeśli $p'(x) = \sqrt{x}p(x)$, to wielomiany R_m sa ortogonalne na przedziale $[0, a^2]$.

ZAD. 3.

Załóżmy teraz, że istnieje wielomian

$$s(x) = x^{n} + a_{n-1}x^{n-1} + ... + a_{1}x + a_{0}$$

taki, że $\|s(x)\|^2 < \|\overline{T}_n\|^2$. Ponieważ, tak jak na liście 7, wielomiany \overline{T}_n są wielomianami ortogonalnymi, to

$$s(x) = \sum_{i=0}^{n} b_i T_i = b_n T_n + \sum_{i=0}^{n-1} b_i T_i,$$

ale ponieważ s jak i T_n mają przy x^n jedynkę, to $b_n = 1$, czyli

$$s(x) = T_n + \sum_{i=0}^{n-1} b_i T_i$$

Mamy więc

$$\begin{split} \|s\|^2 &= \langle s,s\rangle = \langle \sum_{i=0}^n b_i T_i, \sum_{j=0}^n b_j T_j\rangle = \sum_{i=0}^n \sum_{j=0}^n b_i b_j \langle T_i, T_j\rangle = \sum_{i=0}^n b_i^2 \langle T_i, T_i\rangle = \\ &= \langle T_n, T_n\rangle + \sum_{i=0}^{n-1} b_i^2 \langle T_i, T_i\rangle = \|T_n\|^2 + \sum_{i=0}^{n-1} b_i^2 \|T_i\|^2, \end{split}$$

ale ponieważ $s(x) \neq T_n(x)$, to co najmniej jedno b_i musi być różne od zera, a więc mamy, że $\|s\| = \|T_n\| + A$, gdzie A > 0, czyli każdy wielomian z wiodącym x^n ma normę większą niż T_n .