

Módulo 3

Hierarquia da Memória: Desempenho

1. Introdução

Pretende-se com esta sessão teórico-prática que os alunos avaliem o impacto da hierarquia da memória no desempenho dos sistemas de computação actuais.

1.1. Conteúdos e Resultados de Aprendizagem relacionados

Conteúdos	8.4 – Avaliação do Desempenho
Resultados de Aprendizagem	R8.2 – Quantificar o impacto da hierarquia da memória no desempenho da máquina

2. Exercícios

1. Considere um programa com as características apresentadas na tabela 1, executado numa máquina com uma frequência do relógio de 1 GHz e com cache infinita (isto é, subentende-se que não há cache misses, ou que todos os dados e código estão sempre na cache). Note que se trata de um modelo teórico e que nestas condições os valores reportados na tabela 1 correspondem aquilo que normalmente designamos por CPI_{CPU}.

Tipo de instrução	Nº Instruções	СРІ
Operações inteiras	6*10 ⁸	1
Acessos à memória	12*10 ⁸	1
Operações FP	2*10 ⁸	3

Tabela 1 - Distribuição das instruções e CPI

- a) Qual o CPI global e o tempo de execução deste programa?
- b) Suponha agora o mesmo programa a executar numa máquina a 1 GHz, sem *cache*. Os acessos à memória central são realizados em blocos de 4 palavras, sendo necessários 60 ns para iniciar a transferências, seguidos de 10 ns por cada palavra. Qual o CPI global e o tempo de execução?
- c) Se à máquina da alínea anterior for acrescentada uma nível de memória *cache*, exibindo uma *miss* rate de acesso às instruções de 8% e de acesso aos dados de 10%, qual o CPI global e o tempo de execução do programa? Qual o ganho relativamente à alínea anterior?
- d) Suponha que a capacidade da *cache* é aumentada para o dobro, resultando numa *miss rate* de 4.8% para as instruções e 7% para os dados. Este aumento de capacidade resulta também num aumento

- do tempo de acesso à *cache*, implicando um aumento de 25% do CPI sem *misses*. Qual o CPI global e o tempo de execução do programa?
- e) Para tirar partido da localidade espacial aumentou-se o número de palavras por linha da *cache* de 4 para 8, reduzindo a *miss rate* de instruções para 3% e de dados para 5%. Qual o CPI global e o tempo de execução do programa?
- f) Para reduzir a *miss penalty* a memória principal foi substituída por outra mais rápida, com uma latência de 50ns e 7.5ns por palavra. Qual o CPI global e o tempo de execução do programa?
- g) O processador desta máquina foi substituído por outro com uma frequência de 2 GHz, mantendose constantes todos os outros parâmetros do sistema. Qual o CPI global e o tempo de execução do programa?
- 2. Considere um programa que, executado numa máquina com uma frequência do relógio de 3 GHz, exibe um CPI_{CPU}=0.8. Este programa executa uma totalidade de 30*10⁹ instruções, das quais 15*10⁹ requerem um acesso à memória para aceder a operandos. A *miss rate* de instruções é de 5% e a de dados de 10%. Sabendo que o tempo de execução deste programa é de 128 segundos, qual o tempo de acesso à memória central (isto é, *miss penalty* expressa em nano segundos).