РЕШЕНИЕ ВАРИАНТ 27111 для 11-го класса

1. Некоторое количество одноатомного идеального газа совершает два различных процесса a и δ (см. рис.). Сравните теплоемкости газа в этих процессах в точке \boldsymbol{D} .

Решение.

$$\begin{split} Q &= \Delta U + \Delta A. \\ C &= \frac{Q}{\Delta T} = \frac{\Delta U}{\Delta T} + \frac{\Delta A}{\Delta T} \\ C &= \frac{\Delta U}{\Delta T} + p \frac{\Delta V}{\Delta T} = \frac{3}{2} \upsilon R + p \frac{\Delta V}{\Delta T} \\ \left(\frac{\Delta V}{\Delta T}\right)_a &> \left(\frac{\Delta V}{\Delta T}\right)_{\delta} \end{split}.$$

Ombem: $C_a > C_{\delta}$

2. Два тела, массы которых равны m_1 и $m_2 = 2m_1$, начинают двигаться в поле силы тяжести. В начальный момент времени их скорости взаимно перпендикулярны и равны, соответственно, v_1 =3 м/с и v_2 =4 м/с. Через некоторый промежуток времени скорость первого тела стала равна нулю. Найдите скорость второго тела через тот же промежуток времени. Сила сопротивления движению отсутствует.

Решение.

За время остановки первой частицы она получила импульс силы, равный $-\vec{p}_1$, а вторая $-2\vec{p}_1$. Отсюда новый импульс второй частицы $\vec{p}_2^{'}=\vec{p}_2-2\vec{p}_1$, а модуль её скорости

$$v_2' = \frac{1}{2m_1} \sqrt{\left(2m_1v_2\right)^2 + \left(2m_1v_1\right)^2} = \frac{1}{2} \sqrt{\left(2v_2\right)^2 + \left(2v_1\right)^2} = 5\,\text{m/c}.$$

Ответ: 5 м/с.

3. Анод и катод вакуумного диода представляют собой плоскопараллельные пластины, которые подключены к источнику постоянного напряжения через реостат. При изменении сопротивления реостата напряжение на диоде связано с силой тока в цепи выражением $U=C\sqrt[3]{I^2}$. Как изменится сила давления электронов о поверхность анода, если напряжение между пластинами увеличить в 3 раза? Начальной скоростью электронов пренебречь.

Решение.

Взаимодействие электронов с поверхностью анода можно рассмотреть как абсолютно неупругий удар. Сила \vec{F} , с которой электроны действуют на анод, и сила \vec{N} , с которой анод действует на электроны, подчиняются третьему закону Ньютона:

$$\vec{F} = -\vec{N} \ . \tag{1}$$

С другой стороны, сила \vec{N} меняет импульс электронов:

$$\vec{N} = \frac{\Delta m\vec{v}}{\Delta t} = \frac{0 - m\vec{v}}{\Delta t} = -\frac{m\vec{v}}{\Delta t}, \quad N = \frac{mv}{\Delta t}, \quad (2)$$

Олимпиада школьников «Надежда энергетики». Заключительный этап.

где m – масса электронов, столкнувшихся с анодом за время Δt .

Эту массу можно определить из выражения

$$m = m_0 \cdot n \cdot v \cdot \Delta t \cdot S , \qquad (3)$$

где m_0 - масса электрона, n - концентрация электронов, S - площадь анода. Концентрация электронов связана с силой тока: I = nevS (4), где e - заряд электрона.

Тогда
$$I = C^{-\frac{3}{2}}U^{\frac{3}{2}} = nevS$$
 (4)

Скорость электронов перед ударом о поверхность анода определяется из закона сохранения

энергии:
$$\frac{m_0 v^2}{2} = eU, \qquad (5)$$

откуда
$$v = \sqrt{\frac{2eU}{m_0}} \ . \tag{6}$$

Из уравнений (4) и (6) получаем
$$C^{-3/2}U^{3/2} = neS\sqrt{\frac{2eU}{m_0}}$$
, откуда $n = \frac{C^{-3/2}U}{eS}\sqrt{\frac{m_0}{2e}}$ (7)

Тогда масса электронов из уравнения (3)
$$m = m_0 \frac{C^{-3/2}U}{e} \sqrt{\frac{m_0}{2e}} \Delta t$$
 (8)

Сила со стороны анода из уравнения (2):
$$N = \frac{mv}{\Delta t} = \sqrt{2}C^{-3/2}U^2\sqrt{\frac{m_0}{e}} \sim U^2$$
 (9)

При увеличении напряжения между пластинами в 3 раза сила давления электронов о поверхность анода увеличится в 9 раз.

Ответ: 9.

4. В одном сосуде находится сухой воздух. В другом таком же сосуде находится влажный воздух с относительной влажностью $\phi=50\%$. На сколько процентов отличаются плотности сухого и влажного воздуха в сосудах, если их температуры и давления одинаковы? Молярная масса воздуха $M_{\rm B}=29$ г/моль, молярная масса водяного пара $M_{\rm \Pi}=18$ г/моль. Давление насыщенных паров при данной температуре определяется формулой $p_{\rm Hac}=0,2p$, где p-давление влажного воздуха. Постройте качественно график зависимости плотности воздуха от его относительной влажности $\rho(\phi)$.

Решение.

 $p_{\scriptscriptstyle \rm B}$ — парциальное давление воздуха, $p_{\scriptscriptstyle \rm II}$ — ф $p_{\scriptscriptstyle \rm H}$ — парциальное давление пара, плотность сухого воздуха $\rho_{\scriptscriptstyle O} = \frac{M_{\scriptscriptstyle \rm B}p}{p_{\scriptscriptstyle \it T}}$.

$$\begin{cases} p_{\scriptscriptstyle \mathrm{B}}V = (p-p_{\scriptscriptstyle \Pi})V = \frac{m_{\scriptscriptstyle \mathrm{B}}}{M_{\scriptscriptstyle \mathrm{B}}}RT \rightarrow m_{\scriptscriptstyle \mathrm{B}} = \frac{M_{\scriptscriptstyle \mathrm{B}}(p-p_{\scriptscriptstyle \Pi})V}{RT} \\ p_{\scriptscriptstyle \Pi}V = \frac{m_{\scriptscriptstyle \Pi}}{M_{\scriptscriptstyle \Pi}}RT \rightarrow m_{\scriptscriptstyle \Pi} = \frac{M_{\scriptscriptstyle \Pi}p_{\scriptscriptstyle \Pi}V}{RT} \end{cases}$$

Плотность влажного воздуха:

$$\rho_{\varphi} = \frac{m_{\rm B} + m_{\rm H}}{V} = \frac{M_{\rm B} p}{RT} - \frac{(M_{\rm B} - M_{\rm H})\varphi p_{\rm H}}{RT}$$

$$\frac{\rho_{\varphi}}{\rho_0} = 1 - \left(1 - \frac{M_{\rm H}}{M_{\rm B}}\right) \varphi \frac{p_{\rm H}}{p} = 1 - \left(1 - \frac{18}{29}\right) \cdot 0.5 \cdot 0.2 = 1 - 0.0379 \approx 1 - 0.04$$

Ответ: плотность влажного воздуха меньше на 4 %

5. Маленький шарик радиусом R=1 см изготовлен из меди (плотность $\rho=8,96$ г/см³) и покрыт тонким слоем материала, полностью поглощающего электромагнитное излучение. Он вращается вокруг Солнца по почти круговой орбите радиусом $r=15\cdot10^7$ км со скоростью $v=30\,$ км/с. Поглощая электромагнитные волны, шарик полностью переизлучает их в пространство так, что не нагревается. Определите тангенциальное ускорение торможения шарика. Считайте, что интенсивность излучения Солнца («солнечная постоянная») на орбите шарика составляет $J=1,36\,$ кВт/м². Влиянием других тел, любым излучением (кроме электромагнитного), магнитным полем Солнца и т. д. пренебречь. Температура во всех точках шарика одинакова и не меняется со временем. Скорость света $c=3\cdot10^8\,$ м/с.

Решение:

В физике известен эффект аберрации изменение направления распространения света (излучения) при переходе из одной системы отсчёта к другой. В частности, при астрономических наблюдениях аберрация света приводит изменению положения звёзд на небесной сфере вследствие изменения направления скорости движения Земли. Аберрация света связана с правилом сложения скоростей.

(замечание для проверяющих: достаточно простой для понимания аберрации пример: предположим, человек с зонтом находится под дождём, капли которого падают вертикально вниз. Если человек побежит с некоторой скоростью, то капли начнут падать под наклоном, ему навстречу. Чтобы не промокнуть, человек должен наклонить зонт в направлении движения).

Аналогично, при движении шарика по орбите вокруг звезды, направление распространения света от звезды в системе отсчета, связанной с шариком, отличается от направления на истинное положение звезды в центр орбиты (см. рис.). Из формул правила релятивистского

сложения скоростей следует, что угол аберрации α находится из соотношения $tg\alpha = \frac{v}{c}$.

Поскольку $v \ll c$, то $\sin \alpha \approx \operatorname{tg} \alpha = \frac{v}{c}$.

Энергия, получаемая шариком от всех фотонов, падающих за 1 с на поверхность, обращённую к Солнцу, равна $W = ES = E\pi R^2$.

С другой стороны, энергия фотона связана с импульсом одного фотона: $\varepsilon = p \cdot c$, т.е. $p = \frac{\varepsilon}{c}$.

Модуль силы давления света можно связать со скоростью изменения импульса всех падающих фотонов с помощью второго закона Ньютона: $\left|\vec{F}_{\scriptscriptstyle o}\right| = \Sigma \left(\frac{\mathrm{d}\left|\vec{p}\right|}{\mathrm{d}t}\right)$.

Олимпиада школьников «Надежда энергетики». Заключительный этап.

Суммарный импульс всех падающих за 1 с фотонов: $p_{_{\Sigma}} = \frac{W}{c}$. Этот импульс целиком передается шарику при поглощении фотонов. С учетом введенных обозначений $p_{_{\Sigma}} = \Sigma \left(\frac{\mathrm{d} \left| \vec{p} \right|}{\mathrm{d}t} \right)$. Тогда окончательно получаем, что $\left| \vec{F}_{_{\partial}} \right| = \frac{W}{c} = \frac{E\pi R^2}{c}$.

Модуль тангенциального ускорения замедления движения шарика определится тангенциальной проекцией силы $\vec{F}_{\scriptscriptstyle o}$, т.е.

$$a_{\tau} = \frac{F_{\delta \tau}}{m} = \frac{1}{m} F_{\delta} \sin \alpha = \frac{1}{m} F_{\delta} \frac{v}{c} = \frac{1}{m} \frac{E \pi R^2}{c} \frac{v}{c} = \frac{E \pi R^2 v}{mc^2}$$

Macca шарика $m = \frac{4}{3} \rho \pi R^3$.

Окончательно

$$a_{\tau} = \frac{3E\pi ER^2 v}{4\rho\pi R^3 c^2} = \frac{3Ev}{4\rho Rc^2}.$$

$$a_{\tau} = \frac{3Ev}{4\rho Rc^2} = \frac{3 \cdot 1,36 \cdot 10^3 \cdot 30 \cdot 10^3}{4 \cdot 8,96 \cdot 10^3 \cdot 0,01 \cdot 9 \cdot 10^{16}} = 3,8 \cdot 10^{-12} \quad \text{m/c}^2$$