

WHAT IS CLAIMED IS:

1	1. A method for making micromechanical structures having at
2	least one lateral gap therebetween, the method comprising:
3	providing a substrate;
4	surface micromachining the substrate to form a first micromechanical
5	structure having a first vertical sidewall and a sacrificial spacer layer on the first
6	vertical sidewall;
7	forming a second micromechanical structure on the substrate, the
8	second micromechanical structure including a second vertical sidewall separated
9	from the first vertical sidewall by the spacer layer; and
10	removing the spacer layer to form a first lateral gap between the first
11	and second micromechanical structures.
1	2. The method as claimed in claim 1 wherein the step of surface
2	micromachining further forms a third vertical sidewall on the first micromechanical
3	structure with the sacrificial spacer layer thereon and wherein the method further
4	comprises forming a third micromechanical structure including a fourth vertical
5	sidewall separated from the third vertical sidewall by the spacer layer and wherein
6	the step of removing further forms a second lateral gap between the first and third
7	micromechanical structures.
1	3. The method as claimed in claim 1 wherein the second
2	micromechanical structure includes an electrode.
1	4. The method as claimed in claim 3 wherein the first
2	micromechanical structure includes a resonator and wherein the first lateral gap is
3	an electrode-to-resonator capacitive gap.
1	5. The method as claimed in claim 1 wherein the step of forming
2	includes the step of plating metal on the substrate and wherein the second
3	micromechanical structure is a plated metal electrode.

micromechanical structure is a plated metal electrode.

4

1	6. The method as claimed in claim 5 further comprising
2	preventing metal from being plated on the first micromechanical structure.
1	
1	7. The method as claimed in claim 1 wherein the first lateral gap
2	is a submicron gap.
1	8. A micromechanical device comprising:
2	a substrate;
3	a first micromechanical structure supported on the substrate and
4	having a first vertical sidewall;
5	a second micromechanical structure supported on the substrate and
6	having a second vertical sidewall; and
7	a first submicron lateral gap between the first and second vertical
8	sidewalls to increase electromechanical coupling of the first and second
9	micromechanical structures.
1	9. The device as claimed in claim 8 wherein the second
2	micromechanical structure comprises an electrode.
1	10. The device as claimed in claim 9 wherein the electrode is a
2	metal electrode.
1	11. The device as claimed in claim 10 wherein the metal electrode
2	is a plated metal electrode.
1	12. The device as claimed in claim 8 wherein the first
2	micromechanical structure is a lateral resonator.
1	13. The device as claimed in claim 8 wherein the first
2	micromechanical structure has a third vertical sidewall and wherein the device
3	further comprises a third micromechanical structure supported on the substrate and

having a fourth vertical sidewall and a second submicron lateral gap between the

- third and fourth vertical sidewalls to increase electromechanical coupling of the first and third micromechanical structures.
- 1 14. The device as claimed in claim 12 wherein the lateral resonator is a polysilicon resonator.
- 1 15. The device as claimed in claim 12 wherein the lateral resonator is a flexural-mode resonator beam.
- 1 16. The device as claimed in claim 8 wherein the substrate is a semiconductor substrate.
- 1 The device as claimed in claim 16 wherein the semiconductor substrate is a silicon substrate.
- 1 18. The device as claimed in claim 8 wherein the first submicron lateral gap is a capacitive gap.
- 1 19. The device as claimed in claim 13 wherein the second and third micromechanical structures are electrodes.
- 1 20. The device as claimed in claim 19 wherein the electrodes are 2 metal electrodes.
- 1 21. The device as claimed in claim 20 wherein the metal electrodes are plated metal electrodes.
- 1 22. The device as claimed in claim 13 wherein the first and 2 second submicron lateral gaps are capacitive gaps.
- The method as claimed in claim 3 wherein the step of forming includes the step of growing the electrode via selective epoxy growth.

- 1 24. The method as claimed in claim 3 wherein the step of forming includes the steps of depositing polysilicon and etching the polysilicon to form the electrode.
- 1 25. The device as claimed in claim 9 wherein the electrode is a polysilicon electrode.
- 1 26. The device as claimed in claim 9 wherein the electrode is an SEG-grown electrode.