X Try again once you are ready.

Required to pass: 75% or higher

You can retake this quiz up to 4 times every 8 hours.

Back to Week 4

Retake

0/1 points

1. Suppose we flip a coin five times to estimate θ , the probability of obtaining heads. We use a Bernoulli likelihood for the data and a non-informative (and improper) Beta(0,0) prior for θ . We observe the following sequence: (H, H, H, T, H).

Because we observed at least one H and at least one T, the posterior is proper. What is the posterior distribution for θ ?

5

Beta(4,1)

Beta(2,5)

This should not be selected

This is the posterior distribution if we assume a Uniform(0,1) or a Beta(1,1) prior on the probability of tails.

	Beta(5	2
)	Belaio	
. /	(-	, —

Beta(1.5, 4.5)

Beta(1,4)

V

1/1 points

2. Continuing the previous question, what is the posterior mean for θ ? Round your answer to one decimal place.

.8

Correct Response

This is the same as the MLE, \bar{y} .

Consider again the thermometer calibration problem from Lesson 10.

1/1 points

Assume a normal likelihood with unknown mean θ and known variance $\sigma^2=0.25$. Now use the noninformative (and improper) flat prior for θ across all real numbers. This is equivalent to a conjugate normal prior with variance equal to ∞ .

- You collect the following n=5 measurements: (94.6, 95.4, 96.2, 94.9, 95.9). What is the posterior distribution for θ ?
 - $N(96.0, 0.05^2)$
 - N(95.4, 0.05)

Correct

This is $N(\bar{y}, \frac{\sigma^2}{n})$.

- $N(96.0, 0.25^2)$
- N(95.4, 0.25)

4. Which of the following graphs shows the Jeffreys prior for a Bernoulli/binomial success probability p?

 \bigcirc

This should not be selected

This is the Beta(1,4).

2/5 points (40%)

Lesson 11

Quiz, 5 questions

5. Scientist A studies the probability of a certain outcome of an experiment and calls it θ . To be non-informative, he assumes a Uniform(0,1) prior for θ .

0/1 points

Scientist B studies the same outcome of the same experiment using the same data, but wishes to model the odds $\phi = \frac{\theta}{1-\theta}$. Scientiest B places a uniform distribution on ϕ . If she reports her inferences in terms of the probability θ , will they be equivalent to the inferences made by Scientist A?

Yes, they both used uniform priors.

This should not be selected

The uniform prior on θ implies the following prior PDF for ϕ : $f(\phi)=\frac{1}{(1+\phi)^2}I_{\{\phi\geq 0\}}$, which clearly is not the uniform prior used by Scientist B.

Yes, they used the Jeffreys prior.

		No, they are using different parameterizations.	
		No, they did not use the Jeffreys prior.	
r)	S I		