Software Design Document for Wind-farm Multiobjective control toolbox

1. Overview

The Wind-farm Multi-objective control toolbox is a Python-based application that finds optimal solutions for Multi-objective control of wind farms as part of the TWAIN project.

2. Functional Overview

The software provides the following core functionalities:

- 1. User interface
 - specify scenarios (User input)
 - GUI
 - Web service
 - CLI
 - API
 - visualize optimization result (decision variables)
 - GUI
 - Web service
 - export optimization result (decision variables)
- 2. Use existing tools/libraries to compute decision variables
 - surrogate models
 - cost functions
 - electricity price
 - ۰..
- 3. Exploit data maintained within TWAIN project (database)

3. Architecture

High-level interaction with TWAIN

Diagram

Layered Design

The system consists of three primary layers:

- Presentation Layer: Handles user interaction (GUI, Web application, file export).
- Application Layer: Processes data, scenario specifications, optimization.
- Database Layer: Manages retrieval of data from TWAIN database(s)

Diagram

4. Detailed Design

Component 1: User interface (Input)

- Purpose: Allows the user to specify scenario parameters
- Inputs:
 - User input
- Outputs:
 - Scenario parameters
 - Wind-farm specific parameters
 - Multi-objective weights
 - **.**..
- Interfaces:
 - GUI, Web service, CLI or API for user input
 - o passes user input to scenario processor
- Key Functions:
 - [Function Name]: [Description of the function.]

Constraints:

Component 2: Optimization engine

- Purpose: Compute optimal values for decision variables
- Inputs:
 - user-defined parameters
 - data from TWAIN database
- Outputs:
 - optimized decision variables
- Interfaces:
 - receives user-defined parameters
 - requests data from TWAIN data base
 - receives data from TWAIN data base
 - o passes optimized parameters to results processor

• Key Functions:

- Surrogate model: surrogate model used to compute WT loads, power, ...
- Cost function 1: evaluate first cost function
- Cost function 2: evaluate second cost function
- o ..
- Optimizer: compute optimization
- o ..
- Constraints:

Component 3: [Component name]

...

5. Data Design

Database Schema

See other TWAIN WPs

Scenario parameters

e.g.

- · Number of wind turbines
- Size/type of wind turbines
- · wind rose
- ..

Optimization parameters

e.g.

- Wind farm layout
- · wind turbine control strategies

6. Error Handling

- Invalid input: ...
- Optimization failure: ...

• ..

7. Future Considerations

8. References

Appendix