

NETWORK COMPRESSION

Rohit Kumar Kaliyar (Slide Credit: Hungyi Lee)

Smaller Model

Less parameters

Deploying ML models in resourceconstrained environments

Lower latency, Privacy, etc.

Network Pruning

Network can be pruned

 Networks are typically over-parameterized (there is significant redundant weights or neurons)

Prune them!

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733

(NIPS, 1989)

Network Pruning

- Importance of a weight: absolute values, life long ...
- Importance of a neuron:
 the number of times it wasn't zero on a given data set
- After pruning, the accuracy will drop (hopefully not too much)
- Fine-tuning on training data for recover
- Don't prune too much at once, or the network won't recover.

Network Pruning - Practical Issue

Weight pruning

The network architecture becomes irregular.

Hard to implement, hard to speedup

Network Pruning - Practical Issue

Neuron pruning

The network architecture is regular.

Easy to implement, easy to speedup

Why Pruning?

Lottery Ticket Hypothesis

Why Pruning? **Lottery Ticket Hypothesis**

Random Init weights

Trained weight

Another random Init weights

Knowledge Distillation

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf

Knowledge Distillation

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf

Knowledge Distillation

Temperature for softmax

$$y_i' = \frac{exp(y_i)}{\sum_{j} exp(y_j)} \qquad \qquad y_i' = \frac{exp(y_i/T)}{\sum_{j} exp(y_j/T)}$$

$$T = 100$$

$$y_1 = 100$$
 $y'_1 = 1$
 $y_2 = 10$ $y'_2 \approx 0$
 $y_3 = 1$ $y'_3 \approx 0$

$$y_1/T = 1$$
 $y'_1 = 0.56$
 $y_2/T = 0.1$ $y'_2 = 0.23$
 $y_3/T = 0.01$ $y'_3 = 0.21$

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

weights in a network

0.5	1.3	4.3	-0.1
0.1	-0.2	-1.2	0.3
1.0	3.0	-0.4	0.1
-0.5	-0.1	-3.4	-5.0

Clustering

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

- 3. Represent frequent clusters by less bits, represent rare clusters by more bits
 - e.g. Huffman encoding

Dynamic Computation

Dynamic Computation

• The network adjusts the computation it need.

• Why don't we prepare a set of models?

Dynamic Depth

$$L = e_1 + e_2 + \dots + e_L$$

high battery

Dynamic Width

$$L = e_1 + e_2 + e_3$$

Slimmable Neural Networks https://arxiv.org/abs/1812.08928

Computation based on Sample Difficulty

- SkipNet: Learning Dynamic Routing in Convolutional Networks
- Runtime Neural Pruning
- BlockDrop: Dynamic Inference Paths in Residual Networks