WHAT IS CLAIMED IS:

1	1. A processor operable from an M-bit instruction set or an N-bit
2	instruction set, where M and N are integers, and M is less than N, comprising:
3	a memory unit for storing at least first and second instruction
4	streams respectively comprising N-bit instructions and M-bit instructions
5	an execution unit operable to receive execution signals to execute
6	the N-bit instructions;
7	a decode unit coupled to the memory unit and to the execution unit
8	to receive and decode the first and second instruction streams from the memory
9	unit to produce therefrom the execution signals, the decode unit including a
10	translation unit for receiving each of the M-bit instructions to translate each of a
11	first group of the M-bit instructions to a corresponding one of the N-bit
12	instructions, and to translate each of a second group of the M-bit instructions to
13	two or more N-bit instructions for decoding by the decode unit.
1	2. The processor of claim 1, wherein each of the M-bit and N-bit
2	instructions are stored in the memory unit at locations identified by memory
3	addresses having at least one bit position set to a first state to identify a memory
4	address of an M-bit instruction and a second state to identify a memory address
5	of an N-bit instruction.
1	3. The processor of claim 2, the N-bit instruction stream including
2	at least one N-bit branch instruction, the decode unit operating to execute the N-
3	bit branch instruction to switch from executing N-bit instructions to executing M-
4	bit instructions.
1	4. The processor of claim 1, where N is equal to 2M.
1	5. The processor of claim 1, wherein M is 16 and N is 32.
1	6. The processor of claim 2, wherein the one bit position is the
2	least significant bit of the memory address.
1	7. A processor unit, including
1 2	a memory for storing a plurality of instructions, including M-bit
3	instructions and N-bit instructions where M and N are integers and M is less than
ر	manuchona and m-bit manuchona where in and mare integers and in is less than

4	N, each instruction being stored at a memory location identified by a memory
5	address, each memory address having a bit position set to a first state for M-bit
6	instructions and to a second state for N-bit instructions;
7	an instruction flow control unit for retrieving the instructions from the
8	memory for controlling execution of the retrieved instructions, the instruction flow
9	control unit including a translation unit operable to receive ones of the M-bit
10	instruction for translation to a sequence of two or more N-bit instructions.
1	8. A microprocessor, comprising:
2	a memory element containing a plurality of M-bit instructions and N-
3	bit instructions where M and N are integers and M is less than N;
4	an instruction fetch unit coupled to the memory element for
5	retrieving selected ones of the M-bit instructions or N-bit instructions therefrom,
6	the instruction fetch unit including,
7	a translator unit for translating each of the M-bit
8	instructions fetched from the memory element into a sequence of
9	one or more N-bit instructions; and
10	a decode unit coupled to the memory element and to
11	the translator unit for receiving each of N-bit instructions fetch from
12	the memory element and each of N-bit instructions from the
13	translator unit for decoding such N-bit instructions.
1	9. The microprocessor of claim 8, including at least one target
2	register for holding a target address, the plurality of N-bit instructions including a
3	prepare target instruction that, when executed by the microprocessor, loads the
4	target address in the target register.
1	10. The microprocessor of claim 9, wherein the plurality of N-bit
2	instructions includes a BLINK branch instruction operating to use the target
3	address in the target register to branch to cause an M-bit target instruction or an
4	N-bit target instruction to be fetched from the memory element for translation or
5	decode, respectively.

11. The microprocessor of claim 10, wherein the BLINK branch instruction is an unconditional branch instruction.

1	12. The microprocessor of claim 9, wherein the target address
2	includes a bit position set to a first state to identify an M-bit target instruction.
1	13. The microprocessor of claim 12, wherein the bit position is set
2	to a second state to identify an N-bit target instruction.
1	14. A microcomputer formed on single chip, including
2	memory storing M-bit instructions and N-bit instructions where M
3	and N are integers, and N is greater than M;
4	a translator coupled to the memory to receive M-bit instructions for
5	translation of each received M-bit instruction to a sequence of one or more
6	N-bit instructions; and
7	a decoder coupled to the memory and to the decoder for receiving
8	and decoding the N-bit instructions.
1	15. The microcomputer of claim 14, wherein M is 16 and N is 32.
1	16. The microcomputer of claim 14, where the N-bit instructions
2	include an N-bit branch instruction that contains data indicative of a branch
3	address of a target instruction, the branch address having a bit position set to a
4	first state when the target instruction is an M-bit instruction.
1	17. A method of executing M -bit instructions and N-bit instructions
2	by a microcomputer formed on a single chip, M and N being integers, and
3	M is less than N, the method including the steps of:
4	storing the M-bit and N-bit instructions in a memory;
5	operating in a first mode to sequentially decode ones of the N-bit
6	instructions;
7	operating in a second mode to sequentially translate ones of the M-
8	bit instructions to a sequence of one or more N-bit instructions, and then
9	decoding the N-bit instructions.

18. The method of claim 17, wherein the N-bit instructions include an N-bit branch instruction, and the step of operating in the first mode includes decoding the N-bit branch instruction to branch to an M-bit instruction having a memory address with a least significant bit set to a first state to switch from the first state to the second state of operation.

19. In a microcomputer structured to execute N-bit instructions, including an N-bit branch instruction, and M-bit instructions, including an M-bit branch instruction, where M and N are integers, and N is greater than M, a method of executing the M-bit instructions that includes the steps of:

emulating each of the M-bit branch instructions with a sequence of one or more N-bit instructions;

emulating the M-bit branch instruction with a prepare to branch instruction that provides a branch address and thereafter the N-bit branch instruction that uses the branch address.

- 20. The method of claim 19, including the step of providing at least one target address register, and the step of emulating the M-bit branch instruction includes the prepare to branch instruction loading the target address register with the target address.
- 21. The method of claim 20, the step of emulating the M-bit branch instruction including the step of the N-bit branch instruction reading the target address for the target address.
- 22. The microcomputer of claim 14, including a plurality of general purpose registers each for storing data in response to one or more of the N-bit instructions.
- 23. The microcomputer of claim 22, wherein the plurality of general purpose registers each includes 2N bit positions.
- 24. The microcomputer of claim 22, wherein predetermined ones of the one or more N-bit instructions load data in low-order bit positions of selected ones of the plurality of general purpose registers.

25. The microcomputer of claim 22, wherein first ones of the one or more N-bit instructions load data in low-order bit positions of selected one of the plurality of general purpose registers, and second ones of the one or more N-bit instructions load data in high-order bit positions of the plurality of general purpose registers.

1

2

3

4

5

1 26. The microcomputer of claim 22, wherein predetermined ones of 2 the one or more N-bit instructions load data in low-order bit positions of selected 3 ones of the plurality of general purpose registers with extension of the most 4 significant bit of the data replicated in high-order bit positions of the selected ones 5 of the plurality of general purpose registers.