

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General Degree)
Second year – Semester 1 Examination-March/April 2014

MAP 2301- Algebra

Answer six questions.

Time allowed: 3 hours only.

1.

- Define each of the following terms.
 Proposition, Tautology and Contradiction
- b. Let p, q and r be propositions .Determine whether the following compound statements are a tautology, a contradiction or a contingency.

i.
$$p \lor (\neg p \lor q)$$

ii. $(p \Rightarrow q) \land (p \land q)$
iii. $(p \land q) \land (\neg p \lor \neg q)$

- Show that $p \Rightarrow (\neg q \lor r) \equiv (p \land q) \Rightarrow r$
- d. If p is true and q, r are false find the truth value of the compound proposition $[(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)]$

2.

- a) A relation R on $\mathbb{Z}^+ \times \mathbb{Z}^+$ is defined by (a,b)R(c,d). If $a^2 + d^2 = c^2 + b^2$. Show that R is an equivalence relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$.
- b) Let f,g and h be functions $\mathbb{R} \to \mathbb{R}$ defined by f(x)=2x+3, $g(x)=\frac{1}{x^2+4} \text{ and } h(x)=\sqrt{x^2-3} \text{ . Find expressions for each of the followings,}$ i. goh(x) ii. fog(x) iii. fo(goh)(x)

3. Show that the linear Diophantine equation ax + by = c is soluble if and only if $(a,b) \mid c$. Also, show that if $x=x_0$ and $y=y_0$ is a particular solution of ax +by = c, then $x=x_0+\frac{b}{(a,b)}t$, $y=y_0-\frac{a}{(a,b)}t$; where t is integer, is the general solution of ax +by = c? Find the general form of all the positive integers which divided by 5,7,8, leave remainders 3,4,5 respectively.

4.

- i. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- ii. If $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$ for all non-negative integers k.
- iii. Using the Chinese reminder theorem, solve the following system of congruences.

 $3x = 6 \pmod{12}$

 $2x = 5 \pmod{7}$

 $3x = 1 \pmod{5}$

5.

- a. Show that the liner equation $a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = c$ has integer solutions if and only if $(a_1, a_2, a_3, \dots, a_n) \mid c$.
- b. Solve the equation 6x+10y+15z=5

6.

- i. Let $\mathbb Z$ be the set of integers. Define an operation * on $\mathbb Z$ by a*b=a+b-7 where $a,b\in\mathbb Z$
 - (i) Show that $(\mathbb{Z},*)$ is a group.
 - (ii) Is $(\mathbb{Z},*)$ abelian? Justify your answer.
- ii. Consider the group $G = \mathbb{Z}_{12} = \{0,1,2,\dots,11\}$ and $H = \{0,4,8\}$.
 - (i) Find all the left cosets of H in G.
 - (ii) What is [G:H]?

7.

- 1. Let $a, b \in \mathbb{Z}$. Then prove the following;
 - a. If c|a and c|b for any $c \in \mathbb{Z}^+$, then $\left(\frac{a}{c},\frac{b}{c}\right) = \frac{1}{c}(a,b)$
 - b. If (a,b)=1 and (b,c)=1 for any $c \in \mathbb{Z}$, then (ab,c)=1
 - c. If c|ab and (b,c)=1 for any $c \in \mathbb{Z}$, then c|a
- II. Let (a,b)=1 where $a,b\in\mathbb{Z}$. Show that
 - (i) (a + b, a b) = 1 or 2
 - (ii) (a+b, ab) = 1