Sujet 1

I | Opérateur DP (E3A PC)

On considère le montage suivant où les amplificateurs linéaires intégrés sont idéaux et fonctionnent en régime linéaire.

- 1. Exprimez la tension \underline{u}_1 en fonction de la tension \underline{u}_e . Préciser le rôle de l'ensemble formé par l'amplificateur linéaire intégré et les deux résistances identiques R_1 .
- 2. Déterminez la fonction de transfert $\underline{H}_1(j\omega) = \frac{\underline{u}_s}{\underline{u}_1}$ en fonction de R, C et ω . En déduire la fonction de transfert globale $\underline{H}(j\omega) = \frac{\underline{u}_s}{\underline{u}_e}$ du montage.
- 3. Tracez l'allure du diagramme de Bode de ce montage.
- 4. Quel est l'effet de ce montage ? Illustrez en représentant les signaux d'entrée et de sortie pour $u_e(t)=U_0+U_m\cos(\omega t)$ avec $U_0=2\,\mathrm{V},\,U_m=3\,\mathrm{V}$, $R=1\,\mathrm{k}\Omega,\,C=1\,\mu\mathrm{F}$ et $\omega=1,0\times10^3\,\mathrm{rad\cdot s^{-1}}$.

Sujet 2

I Oscillateur à cycle décalé

 V_0 est une tension constante. On posera pour les calculs $\alpha = \frac{R_1}{R_2}$

- 1. Tracer le cycle hystérésis s(e) du montage ci-dessous.
- 2. On boucle ce montage à hystérésis par un intégrateur de transmittance $\frac{E}{S}=-\frac{1}{j\omega\tau},~(\tau>0)$. Proposer un montage très simple à ALI qui réalise cette fonction intégratrice.

 $\underline{\text{Attention}}$: Soyez attentif au choix de notation. Ici, la sortie du filtre est e et l'entrée est s.

- 3. Tracer les formes d'ondes de e(t) et s(t).
- 4. Préciser la période des signaux.
- 5. En pratique, comment peut-on, à partir de e(t), obtenir un signal quasi-sinusoïdal.

Sujet 3

$_{ m I} \mid_{ m Filtrage\ actif} (\star\,\star\,\star)$

On considère le circuit ci-contre, constitué de deux résistors identiques et de deux condensateurs de valeurs différentes notées C_1 et C_2 . On suppose de plus que l'ALI est idéal.

- 1. l'ALI va-t-il fonctionner en régime linéaire ou bien saturé ? Justifiez soigneusement votre réponse
- $2. \ \,$ Etablissez la fonction de transfert du montage ci-dessus et la mettre sous la forme :

$$\underline{H} = -\frac{j\frac{\omega}{\omega_1}}{\left(1 + j\frac{\omega}{\omega_1}\right)\left(1 + j\frac{\omega}{\omega_2}\right)}$$

3. Le gain est tracé ci-dessous ; figurent le gain réel et le gain asymptotique. En déduire les valeurs de RC_1 et de RC_2 .

- 4. Le montage peut-il être utilisé en dérivateur ? En intégrateur ?
- 5. Représentez l'allure de s(t) si e(t) est un signal créneau de pulsation $\omega = 2 \text{ rad.s}^{-1}$ et d'amplitude 2V.
- 6. Tracez l'allure de la réponse de ce système à un échelon de tension lorsque $C_1 = C_2$. On supposera que les condensateurs sont initialements déchargés.