02 范畴当中的箭头

LATEX Definitions are here.

沿用上一节提到的自由变量。我们规定:

• $c_1 \stackrel{c}{\rightarrow} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

(i) Note

上述断言仅对于**局部小范畴**成立 , 其他范畴里 $\mathbf{c}_1 \overset{\mathsf{c}}{\to} \mathbf{c}_2$ 未必构成集 。

范畴 C 中特定的箭头可以进行复合运算:

$$\begin{array}{ccc} \bullet & \overset{\mathsf{C}}{\circ} : (\mathsf{c}_1 \overset{\mathsf{C}}{\to} \mathsf{c}_2) \overset{\mathsf{Set}}{\times} (\mathsf{c}_2 \overset{\mathsf{C}}{\to} \mathsf{c}_3) \overset{\mathsf{Set}}{\longrightarrow} (\mathsf{c}_1 \overset{\mathsf{C}}{\to} \mathsf{c}_3) \\ & & (& & i_1 & . & & i_2 &) \longmapsto (i_1 \overset{\mathsf{C}}{\circ} i_2) \end{array}$$

如果我们还知道箭头 f_1 , i , f_2 分别属于 $c_1' \overset{c}{\to} c_1$, $c_1 \overset{c}{\to} c_2$, $c_2 \overset{c}{\to} c_2'$ 那么便可知

• $(f_1 \circ i) \circ f_2 = f_1 \circ (i \circ f_2)$, 即箭头复合运算具有**结合律**。

另外固定住一侧实参便可获得新的函数:

•
$$(f_1 \overset{\mathsf{C}}{\circ} _) : (\mathsf{c}_1 \overset{\mathsf{C}}{\to} _) \xrightarrow{\mathsf{C} \overset{\mathsf{C}}{\to} \mathsf{Set}} (\mathsf{c}_1' \overset{\mathsf{C}}{\to} _)$$

称作**前复合**。下图有助于形象理解:

• $(_ \circ f_2) : (_ \xrightarrow{\mathsf{C}} \mathsf{c}_2) \xrightarrow{\mathsf{C} \xrightarrow{\mathsf{C}} \mathsf{Set}} (_ \xrightarrow{\mathsf{C}} \mathsf{c}_2')$ $i \longmapsto (i \circ f_1)$

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1 \circ _)^{\stackrel{\mathsf{C}}{\circ} \operatorname{Set}} \circ (_ \circ f_2) = (_ \circ f_2)^{\stackrel{\mathsf{C}}{\circ} \operatorname{Set}} \circ (f_1 \circ _)$ 复合运算具有**结合律**,即后面提到的**自然性**;
- $(-\circ i)^{\stackrel{\mathsf{C}}{\longrightarrow}\mathsf{Set}}(-\circ f_2) = (-\circ (i\circ f_2))$ 前复合与复合运算的关系
- $(\boldsymbol{i} \overset{\mathsf{C}}{\circ} _) \overset{\mathsf{C}^{\mathsf{Cat}}}{\circ} \overset{\mathsf{Set}}{\circ} (\boldsymbol{f_1} \overset{\mathsf{C}}{\circ} _) = ((\boldsymbol{f_1} \overset{\mathsf{C}}{\circ} \boldsymbol{i}) \overset{\mathsf{C}}{\circ} _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

 $oldsymbol{c_1i} = c_1 \overset{\mathsf{c}}{\circ} i$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

•
$$c_1 id : c_1 \xrightarrow{c} c_1$$

如此我们便可以得出下述重要等式:

•
$$_{:c_1}$$
id $\overset{\mathsf{C}}{\circ}$ $\boldsymbol{i} = \boldsymbol{i}$

$$= \boldsymbol{i} \overset{\mathsf{C}}{\circ} _{:c_2}$$
id

此外还可以得知

- $(:c_1 id \overset{C}{\circ}_) : (c_1 \overset{C}{\rightarrow}_) \overset{c \overset{C}{\rightarrow} Set}{\longrightarrow} (c_1 \overset{C}{\rightarrow}_)$ 为恒等自然变换,可以记成是 $:(c_1 \overset{C}{\rightarrow}_) id$; $(_\overset{C}{\circ}:c_2 id) : (_\overset{C}{\rightarrow} c_2) \overset{c \overset{C}{\rightarrow} Set}{\longrightarrow} (_\overset{C}{\rightarrow} c_2)$
- 为恒等自然变换 , 可以记成是 $\frac{c}{(c-c)}c_{(c)}$ id 。

单满态以及同构

接下来给出单/满态和同构的定义。

• i为**单态**当且仅当对任意 c_1' 若有 f_1, f_1' : $c_1' \stackrel{c}{\rightarrow} c_1$ 满足 $f_1 \stackrel{c}{\circ} i = f_1' \stackrel{c}{\circ} i$ 则有 $f_1 = f'_1$ 。详情见下图:

• **i** 为满态当且仅当对任意 c₂' 若有 $f_2, f_2': c_2 \stackrel{\mathsf{c}}{\to} c_2'$ 满足 $i \stackrel{\mathsf{c}}{\circ} f_2 = i \stackrel{\mathsf{c}}{\circ} f_2'$ 则有 $f_2 = f_2'$ 。详情见下图:

i 为**同构**当且仅当存在 i' : $\mathsf{c}_2 \stackrel{\mathsf{c}}{ o} \mathsf{c}_1$ 使得 $i \circ i' = {}_{:c_1} id 且 i' \circ i = {}_{:c_{\xi}} id .$ 此时 c_1, c_2 间的关系可记作 $c_1 \cong c_2$ 。

若还知道 $i = i_1$ 且 i_2 : $c_2 \stackrel{c}{\rightarrow} c_3$ 则有

- 若 i₁, i₂ 为单态 则 $i_1 \stackrel{c}{\circ} i_2$ 为单态 ;
- 若 i₁, i₂ 为满态 则 **i**₁ ^c **i**₂ 为满态 ;
- 若 i₁ c i₂ 为同构 且 i_1 , i_2 中有一个为同构 则 i_1 , i_2 两者皆构成同构。

不仅如此我们还可以得出下述结论:

- c₁ 为单态 , 由 :c1!的唯一性可知;
- :0! = :1 j 为同构, 因为 $0 \stackrel{c}{\rightarrow} 0 = \{_{:0} \mathrm{id} \}$ 并且 $1\stackrel{\mathsf{C}}{ o} 1 = \{:_1\mathrm{id}\}$

同构与自然性

下图即为自然性对应的形象解释 。 后面会将自然性进行进一步推广 。

现提供自然变换 🚾 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $\mathbf{f}: (\mathbf{c}' \xrightarrow{\mathsf{C}} \mathbf{c})$ 都有 $(\mathbf{f} \xrightarrow{\mathsf{C}} \mathbf{c}_2) \overset{\mathsf{Set}}{\circ} \mathbf{c}' = \mathbf{c} \overset{\mathsf{Set}}{\circ} (\mathbf{f} \xrightarrow{\mathsf{C}} \mathbf{c}_2')$:

那么我们便会有下述结论:

• $c_2 \overset{c}{\cong} c_2'$ 当且仅当对任意 C 中的对象 cc[™] 都是同构 。此时称 🚾 为**自然同构** 。

现提供自然变换 📶 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $\mathbf{f}: \mathbf{c} \to \mathbf{c}'$ 都有 $(\mathbf{c}_1 \overset{\mathsf{C}}{\to} \mathbf{f}) \overset{\mathsf{Set}}{\circ} \mathbf{c}' = \mathbf{c} \overset{\mathsf{Set}}{\circ} (\mathbf{c}_1' \overset{\mathsf{C}}{\to} \mathbf{f}):$

那么我们便会有下述结论:

c₁ ≅ c₁ 当且仅当对任意 C 中的对象 c
 c[™] 都是同构 。此时称 m 为自然同构 。

上一页的第一条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_2 :

为了方便就用 etc 表示 $c_2id(c^{\bullet\bullet})$ 。由上图 知 $f(c'^{\bullet\bullet}) = (f \circ etc)$ 右图底部和右侧箭头,故 $c'^{\bullet\bullet} = c' \to etc$ 注意到箭头 $f : c' \to c$; 而 $c'^{\bullet\bullet} = c' \to etc = c'(-\circ etc)$ 始终是同构故 $etc : c_2 \to c_2'$ 也是同构。

高亮部分省去了部分推理过程, 具体在**米田嵌入**处会详细介绍。

上一页的第二条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_1 :

为了方便就用 etc 表示 $_{:c_1}id(c^{\bullet\bullet})$ 。由上图 知 $f(c'^{\bullet\bullet}) = (\text{etc} \circ f)$ 右图底部和右侧箭头,故 $c'^{\bullet\bullet} = \text{etc} \circ c'$ 注意到箭头 $f: c \circ c'$; 而 $c'^{\bullet\bullet} = \text{etc} \circ c' = c'^{(\text{etc} \circ _)}$ 始终是同构 故 $c'^{\bullet\bullet} = c \circ c' \circ c'$ 也是同构 。

高亮部分省去了部分推理过程, 具体在**米田嵌入**处会详细介绍。