<u>U18ISI6204 – Machine Learning Techniques</u> <u>LAB- EXPERIMENT 2</u>

NAME: Aaron Mathew **ROLL_NO:** 20BIS001

OBJECTIVE OF THE EXERCISE/EXPERIMENT

To perform Linear regression in single and multiple variables on the given dataset, using scikit library

STEP-1: Start the program.

STEP-2: import all the necessary libraries

- i) Numpy array manipulation
- ii) Pandas dataframe manipulation
- iii) Matplotlib and seaborn for data visualization
- iv) Sklearn.model selection train test data split
- v) Sklearn.metrics mean square error and r2 score.
- vi) Sklearn,linear model for linear regression

STEP-3: Loading the dataset using read csv method in pandas module.

STEP-4: Analyze the dataset using info method, which gives its data types and number of non- null values in each columns.

STEP-5: Perform basic statistic operation using describe() method.

STEP-6: Use heatmaps, correlation matrix, regression plots and pairplots in seaborn to find the relationship between features.

STEP-7: Implement Simple Linear regression(singleLR) with only one variable

(X3 distance to the nearest MRT station) and calculate the MSE and R2 score for the singleLR model.

STEP-8: Implement Multiple Linear regression(multiLR) with selected variable (refined cols) which are pick out by analyzing the relationship between features and calculate the MSE and R2 score for the multiLR model.

STEP-9: Stop the program.

PRICE PREDICTION DATASET

SYNTAX:

import pandas as pd data=pd.read_csv("C:/Users/MADL22/Downloads/archive/data.csv") Data

CORRELATION:

SYNTAX:

cor=data['price'].corr(data['sqft_lot'])
Cor

```
In [15]: cor=data['price'].corr(data['sqft_lot'])
In [16]: cor
Out[16]: 0.05045129503234886
In [ ]:
```

REGRESSION: SYNTAX:

```
import matplotlib.pyplot as plt
from scipy import stats
x=data['sqft_living']
y=data['price']
slope, intercept, r, p, std_err = stats.linregress(x, y)
plt.xlim(500,1000)
plt.ylim(90000,250000)
plt.scatter(x,y)
```


SLOPE EQUATION:

SYNTAX:

```
def myfunc(x):
  return slope * x + intercept

mymodel = list(map(myfunc, x))
```

plt.ylim(90000,250000) plt.scatter(x, y) plt.plot(x, mymodel) plt.show()

plt.xlim(500,1000)

GRAPH 2:

SYNTAX:

```
x=data['sqft_lot']
y=data['price']
slope, intercept, r, p, std_err = stats.linregress(x, y)
plt.xlim(5000,10000)
plt.ylim(90000,250000)
plt.scatter(x,y)
```

```
In [74]: |x=data['sqft_lot']
          y=data['price']
slope, intercept, r, p, std_err = stats.linregress(x, y)
plt.xlim(5000,10000)
          plt.ylim(90000,250000)
          plt.scatter(x,y)
Out[74]: <matplotlib.collections.PathCollection at 0x1667bee1340>
           240000
            220000
           200000
            180000
            160000
            140000
            120000
            100000
                  5000
                                6000
                                               7000
                                                             8000
                                                                            9000
                                                                                         10000
```

```
SLOPE:
```

```
def myfunc(x):
    return slope * x + intercept

mymodel = list(map(myfunc, x))
plt.xlim(300000,100000)
plt.ylim(100000,2500000)
plt.scatter(x, y)
plt.plot(x, mymodel)
```

```
plt.show()
```

