

FCC Test Report

Report No.: RF160719C17E-2

FCC ID: 2ADYF-K40

Model: K40

Received Date: Jul. 19, 2016

Test Date: Jul. 27 ~ Oct. 06, 2016 (Test Mode A)

Jan. 06, 2017 (Test Mode B)

Issued Date: Feb. 07, 2017

Applicant: KodaCloud, Inc.

Address: 1901 South Bascom Ave, Suite 1300, Campbell, CA USA 95008

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan,

R.O.C.

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03 Page No. 1 / 39 Report Format Version: 6.1.1

Table of Contents

R	Release Control Record4					
1	С	ertificate of Conformity	5			
2	S	ummary of Test Results	6			
	2.1 2.2	Measurement Uncertainty Modification Record				
3		eneral Information				
	3.1	General Description of EUT				
	3.2	Description of Test Modes				
	3.2.1	Test Mode Applicability and Tested Channel Detail				
	3.3	Duty Cycle of Test Signal				
	3.4	Description of Support Units				
	3.4.1	Configuration of System under Test				
	3.5	General Description of Applied Standards				
4	T	est Types and Results	13			
	4.1	Radiated Emission and Bandedge Measurement	13			
		Limits of Radiated Emission and Bandedge Measurement				
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard				
		Test Set Up EUT Operating Conditions				
		Test Results				
	4.2	Conducted Emission Measurement				
		Limits of Conducted Emission Measurement				
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard				
	4.2.5	Test Setup	25			
		EUT Operating Conditions				
		Test Results				
	4.3	6dB Bandwidth Measurement				
		Limits of 6dB Bandwidth Measurement				
		Test Setup				
			30			
		Test Procedure Deviation fromTest Standard				
		EUT Operating Conditions				
		Test Result				
	4.4	Conducted Output Power Measurement				
		Limits of Conducted Output Power Measurement				
		Test Setup				
	4.4.3	Test Instruments	32			
		Test Procedures				
		Deviation from Test Standard				
		EUT Operating Conditions				
		Test Results				
	4.5	Power Spectral Density Measurement.				
		Limits of Power Spectral Density Measurement				
		Test Setup Test Instruments				
		Test Procedure				
		Deviation from Test Standard				
		EUT Operating Condition				
		_F	- •			

	Test Results				
4.6	Conducted Out of Band Emission Measurement	35			
	Limits of Conducted Out of Band Emission Measurement				
4.6.2	Test Setup	35			
4.6.3	Test Instruments	35			
4.6.4	Test Procedure	35			
4.6.5	Deviation from Test Standard	36			
4.6.6	EUT Operating Condition	36			
4.6.7	Test Results	36			
5 F	cictures of Test Arrangements	38			
Append	Appendix – Information on the Testing Laboratories				

Release Control Record

Issue No.	Description	Date Issued
RF160719C17E-2	Original release	Feb. 07, 2017

1 Certificate of Conformity

Product: 802.11 abgn/ac Multi Access AP

Brand: KodaCloud

Model: K40

Sample Status: Engineering sample

Applicant: KodaCloud, Inc.

Test Date: Jul. 20 ~ Aug. 17, 2016 (Test Mode A)

Jan. 06, 2017 (Test Mode B)

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , Date: Feb. 07, 2017

Pettie Chen / Senior Specialist

Approved by: , **Date:** Feb. 07, 2017

Ken Liu / Senior Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	15.207 AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -9.45dB at 0.40000MHz				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -2.6dB at 45.45MHz.				
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.				
15.247(a)(2)	247(a)(2) 6dB bandwidth		Meet the requirement of limit.				
15.247(b)	15.247(b) Conducted power		Meet the requirement of limit.				
15.247(e)	15.247(e) Power Spectral Density		Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	Antenna connector is IPEX not a standard connector.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.44 dB
Dedicted Emissions up to 1 CHz	30MHz ~ 200MHz	3.86 dB
Radiated Emissions up to 1 GHz	200MHz ~1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
Radiated Emissions above 1 GHZ	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	802.11 abgn/ac Multi Access AP
Brand	KodaCloud
Model	K40
Sample Status	Engineering sample
Power Supply Rating	48Vdc or 54Vdc or 55Vdc (POE)
	12Vdc (Adapter)
Modulation Type	GFSK
Transfer Rate	1Mbps
Operating Frequency	2402 ~ 2480MHz
Number of Channel	40
Channel Spacing	2MHz
Output Power	1.972mW
Antenna Type	Refer to note
Antenna Connector	Refer to note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The EUT with follow antennas gain is listed as table below.

Ant. No.	1	2	3 4		BT / Zigbee		
Ant. Type	PIFA						
Frequency (MHz)	2400-2500		5150-5850		2400-2500		
Gain (dBi)	3.67	4.31	5.72 5.99		3.51		
Connector	IPEX						

2. The EUT consumes power from the following Adapter or POE. (Support unit only)

Adapter					
Brand	Powertron Electronics Corp.				
Model	PA1024-120HUB200				
Input Power	100-240Vac, 0.6A, 50-60Hz				
Output Power	12Vdc, 2.0A, 24W Max.				
Power Line	1.5m cable with one core				

POE					
Brand	SENAO				
Model	EPA5006GP				
Input Power	100-240Vac, 0.8A, 50-60Hz				
Output Power	54Vdc, 0.6A				
Power Line	0.5m non-shielded power cable without core				

3. 2.4GHz & 5GHz & BT LE or 2.4GHz & 5GHz & Zigbee technology can transmit at same time. BT LE and Zigbee cannot transmit simultaneously.

4. Power Setting as below.

CH00	Default
CH19	Default
CH39	Default

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICA	ABLE TO	DESCRIPTION	
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
А	√	V	√	√	Power from PoE
В	-	V	√	-	Power form adapter

Where

RE≥1G: Radiated Emission above 1GHz &

Bandedge Measurement

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.

2. "-": Means no effect.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGUURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
А	0 to 39	0, 19, 39	GFSK	1

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGUURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
A, B	0 to 39	0	GFSK	1

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGUURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
A, B	0 to 39	0	GFSK	1

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03

Page No. 9 / 39

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGUURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
Α	0 to 39	0, 19, 39	GFSK	1

Test Condition:

APPLICABLE TO ENVIRONMENTAL CONDITIONS		INPUT POWER	TESTED BY
RE≥1G	19deg. C, 70%RH	54Vdc	Jones Chang
RE<1G	19deg. C, 70%RH 16deg. C, 70%RH	54Vdc 230Vac, 50Hz	Jones Chang Nick Hsu
PLC	20deg. C, 71%RH 25deg. C, 70%RH	54Vdc 230Vac, 50Hz	Jones Chang James Yang
APCM	25deg. C, 60%RH	54Vdc	Antony Lee

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98%. Duty cycle = 0.392/0.627 = 0.625

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03 Page No. 10 / 39

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Notebook	DELL	E5410	1HC2XM1	FCC DoC Approved	-
B.	POE	SENAO	EPA5006GP	N/A	N/A	Provided by manufacturer
C.	Load	N/A	N/A	N/A	N/A	-
D.	Adapter	Powertron Electronics Corp.	PA1024-120HUB200	N/A	N/A	Provided by client

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item A acted as communication partner to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ45 Cable	4	1.8	N	0	Cat5e
2.	RJ45 Cable	1	3	N	0	Cat5e
3.	RJ45 Cable	1	3	N	0	Cat5e
4.	Power Cable	1	1.5	N	1	Provided by client

3.4.1 Configuration of System under Test

Test Mode A

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03

Page No. 11 / 39

Report Format Version: 6.1.1

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

KDB 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Note: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Test Date: Jul. 27 ~ Oct. 06, 2016

1. 00, 2010			
Model No.	Serial No.	Cal. Date	Cal. Due
ESIB7	100187	Apr. 18, 2016	Apr. 17, 2017
FSP40	100039	May 03, 2016	May 02, 2017
VULB9168	9168-171	Jan. 07, 2016	Jan. 06, 2017
9120D	209	Jan. 20, 2016	Jan. 19, 2017
BBHA 9170	BBHA9170241	Jan. 18, 2016	Jan. 17, 2017
8447D	2944A10738	Oct.18, 2015	Oct. 17, 2016
844QB	3008401064	Aug. 22, 2015	Aug. 21, 2016
04490	3000701304	Aug. 22, 2016	Aug. 21, 2017
SUCCELEY 104	Cable-CH3-03 (214378)	Aug. 22, 2015	Aug. 21, 2016
00001 LEX 104	Odbic-0110-03 (214070)	Aug. 22, 2016	Aug. 21, 2017
SUCOFLEX 106	Cable-CH3-03	Aug. 22, 2015	Aug. 21, 2016
30001 LLX 100	(309224+12738)	Aug. 22, 2016	Aug. 21, 2017
ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
MA 4000	013303	NA	NA
AT100	AT93021702	NA	NA
TT100	TT93021702	NA	NA
SC100	SC93021702	NA	NA
ML2495A	0824011	Jul. 09, 2016	Jul. 08, 2017
MA2411B	0738171	Jul. 09, 2016	Jul. 08, 2017
	Model No. ESIB7 FSP40 VULB9168 9120D BBHA 9170 8447D 8449B SUCOFLEX 104 SUCOFLEX 106 ADT_Radiated_ V7.6.15.9.4 MA 4000 AT100 TT100 SC100 ML2495A	Model No. Serial No. ESIB7 100187 FSP40 100039 VULB9168 9168-171 9120D 209 BBHA 9170 BBHA9170241 8447D 2944A10738 8449B 3008A01964 SUCOFLEX 104 Cable-CH3-03 (214378) SUCOFLEX 106 Cable-CH3-03 (309224+12738) ADT_Radiated_V7.6.15.9.4 NA MA 4000 013303 AT100 AT93021702 TT100 TT93021702 SC100 SC93021702 ML2495A 0824011	Model No. Serial No. Cal. Date ESIB7 100187 Apr. 18, 2016 FSP40 100039 May 03, 2016 VULB9168 9168-171 Jan. 07, 2016 9120D 209 Jan. 20, 2016 BBHA 9170 BBHA9170241 Jan. 18, 2016 8447D 2944A10738 Oct. 18, 2015 Aug. 22, 2015 Aug. 22, 2016 SUCOFLEX 104 Cable-CH3-03 (214378) Aug. 22, 2015 AUG. 22, 2016 Aug. 22, 2016 ADT_Radiated_ V7.6.15.9.4 NA NA MA 4000 013303 NA AT100 AT93021702 NA TT100 TT93021702 NA SC100 SC93021702 NA ML2495A 0824011 Jul. 09, 2016

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC 7450F-3.

For Test Date: Jan. 06, 2017

FOI TEST Date. Jan. 00, 201				
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	Apr. 18, 2016	Apr. 17, 2017
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	Nov. 16, 2016	Nov. 15, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	Dec. 28, 2016	Dec. 27, 2017
HORN Antenna SCHWARZBECK	9120D	209	Dec. 27, 2016	Dec. 26, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Dec. 14, 2016	Dec. 13, 2017
Loop Antenna	EM-6879	269	Aug. 11, 2016	Aug. 10, 2017
Preamplifier Agilent	8447D	2944A10738	Aug. 22, 2016	Aug. 21, 2017
Preamplifier Agilent	8449B	3008A01964	Aug. 22, 2016	Aug. 21, 2017
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (214378)	Aug. 22, 2016	Aug. 21, 2017
RF signal cable HUBER+SUHNER	SUCOFLEX 106	Cable-CH3-03 (309224+12738)	Aug. 22, 2016	Aug. 21, 2017
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC 7450F-3.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

Report No.: RF160719C17E-2 Page No. 16 / 39 Report Format Version: 6.1.1

Reference No.: 160719C17, 161017C01, 170206C03

4.1.5 Test Set Up

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz worst-case data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL A	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	55.6 PK	74.0	-18.4	1.10 H	310	24.70	30.90
2	2390.00	43.2 AV	54.0	-10.8	1.10 H	310	12.30	30.90
3	*2402.00	97.2 PK			1.13 H	311	66.20	31.00
4	*2402.00	95.9 AV			1.13 H	311	64.90	31.00
5	4804.00	57.8 PK	77.2	-19.4	2.02 H	341	53.40	4.40
6	4804.00	40.3 AV	75.9	-35.6	2.02 H	341	35.90	4.40
7	#7206.00	56.7 PK	74.0	-17.3	1.99 H	313	44.90	11.80
8	#7206.00	48.5 AV	54.0	-5.5	1.99 H	313	36.70	11.80
		ANTENN	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.2 PK	74.0	-19.8	2.80 V	311	23.30	30.90
2	2390.00	44.1 AV	54.0	-9.9	2.80 V	311	13.20	30.90
3	*2402.00	88.0 PK			2.80 V	311	57.00	31.00
4	*2402.00	84.3 AV			2.80 V	311	53.30	31.00
5	4804.00	46.2 PK	74.0	-27.8	1.84 V	341	41.80	4.40
6	4804.00	35.1 AV	54.0	-18.9	1.84 V	341	30.70	4.40
7	#7206.00	55.2 PK	68.0	-12.8	2.05 V	345	43.40	11.80
8	#7206.00	42.7 AV	64.3	-21.6	2.05 V	345	30.90	11.80

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03 Page No. 19 / 39

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	96.7 PK			1.19 H	306	65.50	31.20
2	*2440.00	95.4 AV			1.19 H	306	64.20	31.20
3	4880.00	48.0 PK	74.0	-26.0	2.00 H	351	43.40	4.60
4	4880.00	38.5 AV	54.0	-15.5	2.00 H	351	33.90	4.60
5	7320.00	55.9 PK	74.0	-18.1	2.19 H	316	43.80	12.10
6	7320.00	47.8 AV	54.0	-6.2	2.19 H	316	35.70	12.10
		ANTENN	A POLARITY	/ & TEST DI	STANCE: VI	ERTICAL AT	3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	89.1 PK			2.79 V	338	57.90	31.20
2	*2440.00	85.3 AV			2.79 V	338	54.10	31.20
3	4880.00	46.3 PK	74.0	-27.7	2.37 V	349	41.70	4.60
4	4880.00	33.6 AV	54.0	-20.4	2.37 V	349	29.00	4.60
5	7320.00	55.1 PK	74.0	-18.9	2.15 V	336	43.00	12.10
6	7320.00	44.2 AV	54.0	-9.8	2.15 V	336	32.10	12.10

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA DOLABITY A TEST BISTANISE LISBIZONTAL AT AM							
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	96.8 PK			1.64 H	320	65.50	31.30
2	*2480.00	92.7 AV			1.64 H	320	61.40	31.30
3	2483.50	65.5 PK	74.0	-8.5	1.55 H	312	34.20	31.30
4	2483.50	44.4 AV	54.0	-9.6	1.55 H	312	13.10	31.30
5	4960.00	47.8 PK	74.0	-26.2	2.05 H	11	43.10	4.70
6	4960.00	36.9 AV	54.0	-17.1	2.05 H	11	32.20	4.70
7	7440.00	56.7 PK	74.0	-17.3	2.24 H	315	44.30	12.40
8	7440.00	46.4 AV	54.0	-7.6	2.24 H	315	34.00	12.40
		ANTENN	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	7 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	89.4 PK			3.21 V	333	58.10	31.30
2	*2480.00	85.3 AV			3.21 V	333	54.00	31.30
3	2483.50	60.4 PK	74.0	-13.6	3.18 V	320	29.10	31.30
4	2483.50	43.6 AV	54.0	-10.4	3.18 V	320	12.30	31.30
5	4960.00	47.3 PK	74.0	-26.7	2.61 V	18	42.60	4.70
6	4960.00	35.0 AV	54.0	-19.0	2.61 V	18	30.30	4.70
7	7440.00	52.4 PK	74.0	-21.6	1.96 V	331	40.00	12.40
8	7440.00	41.6 AV	54.0	-12.4	1.96 V	331	29.20	12.40

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

Below 1GHz worst-case data:

CHANNEL	TX Channel 0	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	30MHz ~ 1GHz	TEST MODE	A

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	57.12	29.4 QP	40.0	-10.6	2.00 H	28	44.0	-14.6
2	169.89	27.1 QP	43.5	-16.4	1.50 H	244	41.1	-14.0
3	210.72	29.5 QP	43.5	-14.0	1.50 H	242	45.8	-16.3
4	348.76	28.2 QP	46.0	-17.8	1.00 H	117	39.5	-11.3
5	475.14	27.7 QP	46.0	-18.3	1.50 H	102	36.1	-8.4
6	776.51	30.3 QP	46.0	-15.7	1.00 H	347	32.3	-2.0
		ANTENN	A POLARITY	/ & TEST DI	STANCE: VI	ERTICAL AT	Г 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	45.45	37.4 QP	40.0	-2.6	1.00 V	14	52.1	-14.7
2	175.72	26.0 QP	43.5	-17.5	1.00 V	103	40.6	-14.6
3	204.89	27.9 QP	43.5	-15.6	1.00 V	47	44.4	-16.5
4	391.54	27.1 QP	46.0	-18.9	1.50 V	356	37.2	-10.1
5	475.14	29.1 QP	46.0	-16.9	1.00 V	299	37.5	-8.4
6	729.84	34.8 QP	46.0	-11.2	1.00 V	179	37.5	-2.7

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

CHANNEL	TX Channel 0	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	30MHz ~ 1GHz	TEST MODE	В

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	57.12	27.9 QP	40.0	-12.1	1.99 H	19	42.5	-14.6
2	84.34	24.9 QP	40.0	-15.1	1.99 H	247	44.3	-19.4
3	160.17	27.3 QP	43.5	-16.2	1.49 H	84	40.9	-13.6
4	282.66	24.4 QP	46.0	-21.6	1.00 H	120	36.8	-12.4
5	364.32	26.1 QP	46.0	-19.9	1.00 H	137	36.9	-10.8
6	422.65	31.6 QP	46.0	-14.4	1.99 H	175	41.1	-9.5
		ANTENN	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL AT	Г 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	51.29	31.3 QP	40.0	-8.7	1.50 V	16	45.7	-14.4
2	158.22	26.5 QP	43.5	-17.0	1.00 V	118	40.1	-13.6
3	282.66	26.0 QP	46.0	-20.0	1.99 V	43	38.4	-12.4
4	407.09	33.8 QP	46.0	-12.2	1.50 V	92	43.7	-9.9
5	552.91	29.0 QP	46.0	-17.0	1.00 V	12	36.0	-7.0
6	747.34	33.6 QP	46.0	-12.4	1.50 V	16	35.9	-2.3

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)				
Frequency (MHZ)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

For Test Date: Jul. 27 ~ Oct. 06, 2016

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Dec. 23, 2015	Dec. 22, 2016
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Jan. 11, 2016	Jan. 10, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 26, 2016	Jul. 25, 2017
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.

For Test Date: Jan. 06, 2017

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCS 30	100288	Aug. 18, 2016	Aug. 17, 2017
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Dec. 22, 2016	Dec. 21, 2017
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Jan. 11, 2016	Jan. 10, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 26, 2016	Jul. 25, 2017
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	A		

	Erog Corr.		Readin	Reading Value		n Level	Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.12	34.99	22.98	45.11	33.10	66.00	56.00	-20.89	-22.90
2	0.16562	10.13	32.61	22.11	42.74	32.24	65.18	55.18	-22.44	-22.94
3	0.40000	10.19	25.67	20.68	35.86	30.87	57.85	47.85	-21.99	-16.98
4	4.29297	10.36	20.52	19.74	30.88	30.10	56.00	46.00	-25.12	-15.90
5	16.66406	10.56	25.38	24.70	35.94	35.26	60.00	50.00	-24.06	-14.74
6	25.75391	10.49	26.53	20.42	37.02	30.91	60.00	50.00	-22.98	-19.09

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	LI Jefector Flinction	Quasi-Peak (QP) / Average (AV)
Test Mode	A		

	Erog Corr.		Readin	Reading Value		n Level	Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.13	34.77	22.28	44.90	32.41	66.00	56.00	-21.10	-23.59
2	0.16562	10.14	32.46	21.20	42.60	31.34	65.18	55.18	-22.58	-23.84
3	0.40000	10.19	28.58	28.21	38.77	38.40	57.85	47.85	-19.08	-9.45
4	4.29297	10.40	20.07	19.45	30.47	29.85	56.00	46.00	-25.53	-16.15
5	17.67188	10.72	25.46	25.41	36.18	36.13	60.00	50.00	-23.82	-13.87
6	26.00000	10.64	27.49	26.79	38.13	37.43	60.00	50.00	-21.87	-12.57

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	Freq. Corr.		Readin	Reading Value		n Level	Limit		Margin	
No	rieq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	9.99	37.82	16.81	47.81	26.80	65.58	55.58	-17.77	-28.78
2	0.20078	10.01	29.86	13.85	39.87	23.86	63.58	53.58	-23.71	-29.72
3	0.25938	10.02	26.20	11.57	36.22	21.59	61.45	51.45	-25.23	-29.86
4	0.94297	10.09	12.14	2.53	22.23	12.62	56.00	46.00	-33.77	-33.38
5	7.23438	10.22	16.94	7.11	27.16	17.33	60.00	50.00	-32.84	-32.67
6	22.87891	10.44	11.09	0.67	21.53	11.11	60.00	50.00	-38.47	-38.89

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	I DETECTOR FUNCTION	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	Freq. Corr.		Readin	Reading Value		n Level	Limit		Margin	
No	rieq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16953	10.00	32.08	13.56	42.08	23.56	64.98	54.98	-22.90	-31.42
2	0.20078	10.00	29.45	13.84	39.45	23.84	63.58	53.58	-24.13	-29.74
3	0.33359	10.07	24.93	18.16	35.00	28.23	59.36	49.36	-24.36	-21.13
4	0.35703	10.08	24.22	16.74	34.30	26.82	58.80	48.80	-24.50	-21.98
5	7.18750	10.33	17.43	7.53	27.76	17.86	60.00	50.00	-32.24	-32.14
6	25.93359	10.54	11.14	0.26	21.68	10.80	60.00	50.00	-38.32	-39.20

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.60857	0.5	Pass
19	2440	0.60959	0.5	Pass
39	2480	0.61077	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	1.910	2.81	30	Pass
19	2440	1.905	2.80	30	Pass
39	2480	1.972	2.95	30	Pass

Report No.: RF160719C17E-2 Page No. 32 / 39 Reference No.: 160719C17, 161017C01, 170206C03

4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW ≥ 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.3.6

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03 Page No. 33 / 39 Report Format Version: 6.1.1

4.5.7 Test Results

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Pass / Fail
0	2402	-12.42	8.00	Pass
19	2440	-12.44	8.00	Pass
39	2480	-12.38	8.00	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard
No deviation.
4.6.6 EUT Operating Condition
Same as Item 4.3.6
4.6.7 Test Results
The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF160719C17E-2 Reference No.: 160719C17, 161017C01, 170206C03 Page No. 39 / 39