Randon Vanly				٠
. A vaudour varoble ob spare la reals	· a map	Rom H	r zame	
Ex. doce = 21,2,3,4,5,63				•
Ex. flip com 5x	2			
$X(\omega) = \# \text{ heavy}$ $X(\mu THH) = 3'$				•
Announcement.				•
- Intro Survey today - HWI Mxt Tuisday - Quiz 1 Mext Tuesday				
Sample space (set	• • • •		• • •	•
- { (H,H), (H,+), (T,H), (T,T)}			experimt)	٠
· · · · · · · · · · · · · · · · · · ·				

probability distributes / me asane. · - P[A] zo · & ench · A. - [P[sz] = 1 independe eurots. · P[A, B] = [P[A] IT[B] condituel probablit . P[A1B] = P[A, B]/P[B]. RV: map from 12 -> IR - X(w) = # heads in w. -X(w) = payoff for roulette voll E_{X} . Let $\Omega = \{(x,y): x^2,y^2 \leq 1\}$ Suppose we draw a point at roudon foin se . . Examples of RUS: - D(w)= (distant from (0,0) - B(w) = { if D(w) \le to (did I pol ballseque?) of oftener

Distribution foucturs let X bi a RV. H X is discoule, un can conside the probability mass fourth (point) $f_{x}(x) = P[X = x] = P[\{w : X(w) = x\}]$ shorthand for these event Ex. St= {(W,, w2, w3) = w; 6 2.4, 73 }... X = # heads · R[2wess: wi=H]]== 1.2.3. i.e. fair coir

Théorem (informal)

 $F: \mathbb{R} \to [0,1] \quad \text{st}.$

.

.

(ii)
$$\lim_{x \to -\infty} F(x) = 0$$
, $\lim_{x \to -\infty} F(x) = 1$

$$\frac{1}{y-7x}F(y)=F(x^{+})$$

$$f_{x}(x) = \begin{cases} \frac{1}{b} a & x \in [a, b] \end{cases}$$

$$-N(M,\sigma^2) = \frac{1}{\sigma \sqrt{2\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-M)^2\right)$$