Bioinformatics CS300

Crash course:

Transcription and Translation Running Python in Docker or Online

Fall 2019
Oliver BONHAM-CARTER

Transcription

copy a set of ngredients/instruc tions from a cookbook to create a recipe

Dark Charalate Cake

Mix to-gether in a band

4-10g squared g Bakers Chs.

2 cup butter

to-gether

to-gether

2 cups cake flaur

2 cups sugar

1'2 tap. sala

tip. salt

mip the water mixture well and
add dry ingredients in 3 partions

Translation

use the recipe to create a dish

The Central Dogma of Molecular Biology

Proteins provide structure and carry out many essential activities in a cell.

Animation: Central Dogma of Biology

https://dnalc.cshl.edu/view/16933-3D-Animation-of-DNA-to-RNA-to-Protein.html

Transcription

- Transcribe specific regions of DNA genes
 - Human genome ~25,000 genes (just 1.5% of genome)
- RNA is the direct product of transcribing a gene (DNA)
 - DNA -> RNA
 - same language (nucleotides)

ALLEGHENY COLLEGE

RNA vs DNA

- RNA uracil replaces thymine (no Ts in RNA)
- RNA single stranded (one backbone, no basepairs)
- (RNA slightly different sugar)

Genes exists on both strands of DNA...

- Transcription occurs on the strand containing the gene whose product is needed.
- The strand containing the gene is the antisense strand.
- The RNA transcript is the complement of the antisense strand.

Antisense and Sense Strands of DNA – relative to the gene being transcribed

Genes have beginnings and ends - promoters and terminators

Transcription is initiated at a promoter sequence and ends at a terminator sequence. The transcript is synthesized in a 5'-to-3' direction.

Both DNA strands serve as templates for transcription.

Transcription

- Transcribe specific regions of DNA genes
 - Human genome ~25,000 genes (just 1.5% of genome)
- RNA is the direct product of transcribing a gene (DNA)
 - DNA -> RNA
 - same language (nucleotides)

Transcription Video

https://www.dnalc.org/resources/3d/12-transcription-basic.html

Sense and Antisense DNA

- Antisense is the non-coding DNA strand of a gene
- A cell uses antisense DNA strand as a template for producing messenger RNA (mRNA) that directs the synthesis of a protein.

Exon and Introns

Add 2 eggs to the flour and stir

Non-coding regions

- In most eukaryotic genes, coding regions (exons) are interrupted by noncoding regions (introns). Introns do not contain the message and are removed from the RNA after transcription but prior to translation.
 - During the process of RNA splicing, introns are removed and exons joined to form a contiguous coding sequence.

Splicing Exon Material

- Exons: a segment of a DNA or RNA molecule containing information coding for a protein or peptide sequence.
- Eukaryotic pre-mRNA contains exons and introns*
 - *some pre-mRNAs contain only one exon

Small Nucleophilic СНз COOH Serine (Ser, S) Glycine (Gly, G) Alanine (Ala, A) Threonine (Thr, T) Cysteine (Cys, C) MW: 87.08, pKa ~ 16 MW: 101.11, pKa ~ 16 MW: 71.09 MW: 57.05 MW: 103.15, pK a = 8.35 Hydrophobic COOH H₂N COOH. COOH COOH H₂N H₂N Valine (Val, V) Leucine (Leu, L) Isoleucine (Ile, I) Methionine (Met, M) Proline (Pro, P) MW: 97.12 MW: 99.14 MW: 113.16 MW: 113.16 MW: 131.19 Aromatic Acidic COOH. COOH COOH COOH COOH. H₂N H₂N Phenylalanine (Phe, F) Tyrosine (Tyr, Y) Tryptophan (Trp, W) Aspartic Acid (Asp, D) Glutamic Acid (Glu, E) MW: 147.18 MW: 163.18 MW: 129.12, pK a = 4.07 MW: 186.21 MW: 115.09, pK a = 3.9 NH3+ Amide Basic NH₂ H₂N COOH H₂N COOH COOH COOH H₂N COOH Arginine (Arg, R) Asparagine (Asn, N) Glutamine (Gln, Q) Histidine (His, H) Lysine (Lys, K)

MW: 137.14, pK_a = 6.04

MW: 114.11

MW: 128.14

MW: 128.17, pK a = 10.79

MW: 156.19, pK a = 12.48

ALLEGHENY COLLEGE

- Triplet code
 - Combinations of three nucleotides code for one amino acid
 - Three nucleotides = codon
- Redundancy
 - Sometimes >1 codon codes for same amino acid
 - 20 amino acids, 64 possible codons

Start and Stop codons

- First codon of many transcripts is "AUG", which codes for methionine
- Codons UAA, UAG, and UGA indicate the end of the transcript

S	tar	nd	ar	d ç	ge	ne	tic	CO	de	

1st		Zna base									
base	т		С		A		G		base		
	TTT	(Pho/E) Phonylalanina	TCT		TAT	(Tyr/Y) Tyrosine	TGT	(Cup/C) Cuptoing	Т		
т	TTC	(Phe/F) Phenylalanine	TCC	(Car(C) Carina	TAC		TGC	(Cys/C) Cysteine	С		
	TTA		TCA	(Ser/S) Serine	TAA ^[B]	Stop (Ochre)	TGA ^[B]	Stop (Opal)	Α		
	TTG		TCG		TAG ^[B]	Stop (Amber)	TGG	(Trp/W) Tryptophan	G		
С	CTT	(Leu/L) Leucine	ССТ	(Pro/P) Proline	CAT	(His/H) Histidine	CGT		Т		
	CTC	(Leu/L) Leucine	CCC		CAC		CGC	(Arg/R) Arginine	С		
	CTA		CCA		CAA	(Gln/Q) Glutamine	CGA		Α		
	CTG		CCG		CAG		CGG		G		
	ATT		ACT	(Thr/T) Threonine	AAT	(Asn/N) Asparagine	AGT	(Ser/S) Serine	Т		
A	ATC	(Ile/I) Isoleucine	ACC		AAC		AGC		С		
	ATA		ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	Α		
	ATG ^[A]	(Met/M) Methionine	ACG		AAG		AGG		G		
	GTT		GCT	(Ala/A) Alanine	GAT	(Asp/D) Aspartic acid	GGT	(Gly/G) Glycine	Т		
G	GTC	(Val/V) Valine	GCC		GAC		GGC		С		
	GTA	(vai/v) vaii/le	GCA		GAA	(Glu/E) Glutamic acid	GGA		Α		
	GTG		GCG		GAG		GGG		G		

Another Triplet Table

Translation

 The information from DNA is rewritten in a new language: RNA

Translation Videos

- mRNA Translation (2 mins)
 - https://www.youtube.com/watch?v=8dsTvBaUMvw
- Protein Synthesis and the Lean, Mean Ribosome Machines (7 mins)
 - https://www.youtube.com/watch?v=h5mJbP23Buo
- DNA transcription and translation (includes gene expression, 7 mins)
 - https://www.youtube.com/watch?v=2BwWavExcFI

Genes vs Gene Expression

ALLEGHENY COLLEGE

All genes are present in the genome genes only expressed when needed

Of the many recipes in the cookbook...

... Only transcribe and translate 4th of July recipes in **July**

... Only transcribe and translate the Thanksgiving turkey recipe in **November**

- Prepare to run some commands for Docker ...
- Or, wait for a few slides and run Python3 shell in your browser online

- Note: If you are not using ToolBox, Docker should already be working in the background
- Navigate to where you have stored your docker_getMeToThePython directory.

Mac and Windows ToolBox: find and run the "Docker QuickStart Terminal"

Note: See file, quickStartCommands.md, for these commands

Note: The Docker ToolBox commands to initiate server

Windows Quickstart Command:

"C:\Program Files\Git\bin\bash.exe" --login -i "C:\Program Files\
Docker Toolbox\start.sh"

MacOS Quickstart Command:

bash --login '/Applications/Docker/Docker Quickstart Terminal.app/ Contents/Resources/Scripts/start.sh'

If your server was properly initialized then, you should see this cute whale.

- Two ways to run Python3 in DockerQS or bash shell
- See file, commands.md, for these notes
 - docker run -t python3
 - Or, build the container and run Python3 there
 - docker build -t py_play .
 - Mount a drive and then use bash to run Python3
 - docker run -it --mount type=bind, source=\$PWD, target=/home/py_play py_play

- Or, try Python3 programming using an interactive shell from repl.it
- Link: https://repl.it/languages/python3


```
#Calculating values
3 / 4
2 * 6
3.1415 - 2.718
x = 1
y = 2
print(x+y)
result = x + y
print("The result is :", result)
```



```
# Integers, counting numbers
   num\_int = 1
# Floats, decimals
   num_float = 3.1415
# Strings
   s_str = " Hello World"
# Combining variables in print statements
   x_int = 1
   print(" The integer variable is :", x_int)
   num_float = 3.14
   print(" The float variable is :", num_float)
   s_str =("Hello World'')
   print(" The integer is equal to", s_str)
```



```
3 + 4 # Addition
3 - 4 # Subtraction
3 * 4 # Multiplication
3 / 4 # Division of 3 by 4
# Modulus; Returns the remainder from the
division 3 * *4
3%4
# Powers; raise three to the power of four
= 3*3*3*3
= 3^4
= pow(3,4)
```



```
# Remember each char of a string has own
position
s str = "ABC"
s_str[0] = 'A'
s_str[1] = 'B'
s_str[2] = 'C'
s_str[200] = ??
# Another way to iterate
# through a string using its length
for i_int in range(len(s_str)):
  print(s_str[i_int])
```