

Tarea 2 Hidrología

Profesor: Ricardo González

Alumno: Bernardo Caprile Pedro Valenzuela Felipe Vicencio Lukas Wolff

Índice

1.	. Introducción				
2.	Resu	ltados	2		
	2.1.	Pregunta 1	2		
		2.1.1. Marco Teórico	2		
		2.1.2. Resultados	3		

1. Introducción

HACER INTRO

2. Resultados

2.1. Pregunta 1

2.1.1. Marco Teórico

La presión de saturación del vapor de agua se determina mediante la ecuación de Clausius-Clapeyron:

$$e_s(T) = 611 \cdot e^{\left(\frac{17,27 \cdot T}{T + 237,3}\right)}$$
 (1)

La humedad relativa se determina mediante la siguiente ecuación:

$$RH = \frac{e}{e_s} \cdot 100 \tag{2}$$

La radiación neta y emitida se determinan mediante las siguientes ecuaciones:

$$Re = \varepsilon \sigma T^4 \tag{3}$$

$$R_n = R_i \cdot (1 - \alpha) - R_e \tag{4}$$

Donde:

- R_n es la radiación neta.
- R_i es la radiación incidente.
- \bullet α es el albedo.
- R_e es la radiación emitida.

Para obtener la evaporación con el método aerodinámico se usan las siguientes ecuaciones:

$$E_a = B(e_{as} - e_a) \tag{5}$$

$$B = \frac{0.622k^2\rho_a u_2}{P\rho_w[\ln(Z_2/Z_o)]^2}$$
 (6)

Donde:

- E_a es la evaporación.
- *B* es el coeficiente de evaporación.
- e_{as} es la presión de saturación del vapor de agua.
- e_a es la presión de vapor de agua.
- *k* es la constante de von Karman.
- ρ_a es la densidad del aire.
- u_2 es la velocidad del viento a 2 metros de altura.

- *P* es la presión atmosférica.
- ρ_w es la densidad del agua.
- Z_2 es la altura a la que se mide la velocidad del viento.
- Z_o es la altura de rugosidad.

Por otro lado, para obtener la evaporación con el método de balance de energía se usó lo siguiente:

$$E_r = \frac{R_n}{l_v \rho_w} \tag{7}$$

Donde:

- E_r es la evaporación.
- l_v es el calor latente de vaporización.
- ρ_w es la densidad del agua.

2.1.2. Resultados

A continuación, se presentan los datos iniciales del problema.

Cuadro 1: Datos iniciales del problema.

Variable	Valor	Unidad
Tagua	10	°C
T_{aire}	20	°C
RH	65	%
R_i	455,67	$\frac{W}{m^2}$
α	0.05	-
V_{viento}	2,5	$\frac{m}{s}$
P_{atm}	101	kPa
Z_2	2.0	m
Z_o	0.0003	m
l_{v}	$2,45 \times 10^{6}$	$\frac{J}{kg}$
ϵ	0,97	-
σ	$5,67 \times 10^{-8}$	$\frac{W}{m^2K^4}$
$ ho_{aire}$	1,201	$\frac{\frac{m^2K^4}{m^2K^4}}{\frac{kg}{m^3}}$

Fuente: elaboración propia.

Aplicando las ecuaciones y procedimientos expuestos en el marco teórico, se llegaron a los siguientes resultados.

Cuadro 2: Resultados de ambos métodos de cálculo.

Variable	Aerodinámico	Balance Energético	
R_e 353,		$3,52\frac{W}{m^2}$	
R_{neta}	$79,35\frac{m^2}{m^2}$		
e_s	2,34 <i>kPa</i>	-	
e_a	1,52 <i>kPa</i>	-	
В	$4,017 \times 10^{-8}$	-	
E_{v}	2,84mm/dia	2,80mm/dia	
Error	1,51%		

Fuente: elaboración propia.