Реккурентные нейронные сети (RNN)

- Рекуррентные сети это семейство моделей для обработки последовательных данных.
- Используют концепцию совместного использования параметров, а также свёрточные сети.
- Могут обрабатывать ввод различной длины.

Приложения реккурентных нейронных сетей

- Прогнозирование временных рядов
- Управление технологическими процессами
- Классификация текстов или их фрагментов
- Анализ тональности документа / предложений / слов
- Машинный перевод
- Распознавание речи
- Синтез речи
- Синтез ответов на вопросы, разговорный интеллект
- Генерация подписей к изображениям
- Генерация рукописного текста
- Интерпретация генома и другие задачи биоинформатике

Машинный перевод

RNN

 x_t — входной вектор в момент t

 h_t — вектор скрытого состояния в момент t

 y_t — выходной вектор (в некоторых приложениях $y_t \equiv h_t$)

Разворачивание (unfolding) рекуррентной сети

$$h_{t} = \sigma_{h}(Ux_{t} + Wh_{t-1})$$

$$y_{t} = \sigma_{y}(Vh_{t})$$

$$y_{t} = \sigma_{y}(Vh_{t})$$

$$y_{t-1} \quad y_{t} \quad y_{t} \quad y_{t+1}$$

$$y_{t} \quad y_{t} \quad y_{t+1} \quad y_{t} \quad y_{t+1}$$

$$y_{t} \quad y_{t} \quad y_{t} \quad y_{t+1} \quad y_{t} \quad y_{t+1}$$

$$y_{t} \quad y_{t} \quad y_{t} \quad y_{t+1} \quad y_{t} \quad y_{t+1}$$

$$y_{t} \quad y_{t} \quad y_{t+1} \quad y_{t} \quad y_{t+1} \quad y_{t} \quad y_{t+1}$$

Обучение рекуррентной сети:

$$\sum_{t=0}^{T} \mathcal{L}_{t}(U, V, W) \to \min_{U, V, W}$$

 $\mathscr{L}_t(U,V,W) = \mathscr{L}\big(y_t(U,V,W)\big)$ — потеря от предсказания y_t

Обучение RNN

Используется градиентный спуск + Bakpropagation Through Time (BPTT)

- Ошибка сети есть сумма ее ошибок для всех t
- Общий градиент по переменной есть сумма ее градиентов для всех t

$$\frac{\partial L_{y}}{\partial W} = \frac{\partial L_{y}}{\partial y_{t}} \frac{\partial y_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W}$$

Найдем производную функции потерь $L_{_{\scriptscriptstyle \mathrm{V}}}$

Т.к. h_t зависит от $W, h_{t-1}, ..., h_0$, то это производная сложной функции нескольких переменных:

$$\frac{\partial L_{y}}{\partial W} = \frac{\partial L_{y}}{\partial y_{t}} \frac{\partial y_{t}}{\partial h_{t}} \left(\frac{\partial h_{t}}{\partial W} + \frac{\partial h_{t}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} + \frac{\partial h_{t}}{\partial h_{t-2}} \frac{\partial h_{t-2}}{\partial W} + \dots + \frac{\partial h_{t}}{\partial h_{0}} \frac{\partial h_{0}}{\partial W} \right)$$

Производную $\frac{\partial h_t}{\partial h_{\iota}}$ можно представить в виде:

$$\frac{\partial h_{t}}{\partial h_{k}} = \frac{\partial h_{t}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{\partial h_{t-2}}{\partial h_{t-3}} \cdot \dots \cdot \frac{\partial h_{k+1}}{\partial h_{k}} = \prod_{j=k+1}^{t} \frac{\partial h_{j}}{\partial h_{j-1}}$$

Тогда

$$\frac{\partial L_{y}}{\partial W} = \frac{\partial L_{y}}{\partial y_{t}} \frac{\partial y_{t}}{\partial h_{t}} \sum_{k=0}^{t} \left(\prod_{j=k+1}^{t} \frac{\partial h_{j}}{\partial h_{j-1}} \right) \frac{\partial h_{k}}{\partial W}$$

Проблема обучения RNN

Long short-term memory (LSTM)

Мотивация LSTM: сеть должна долго помнить контекст, какой именно — сеть должна выучить сама. Вводится C_t — вектор состояния сети в момент t.

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Фильтр забывания (forget gate) с параметрами W_f , b_f решает, какие координаты вектора состояния C_{t-1} надо запомнить.

 \odot — операция покомпонентного перемножения векторов, $[h_{t-1},x_t]$ — конкатенация векторов, σ — сигмоидная функция.

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Фильтр входных данных (input gate) с параметрами W_i , b_i решает, какие координаты вектора состояния надо обновить.

Mодель нового состояния с параметрами W_C , b_C формирует вектор \tilde{C}_t значений-кандидатов нового состояния.

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Новое состояние C_t формируется как смесь старого состояния C_{t-1} с фильтром f_t и вектора значений-кандидатов \tilde{C}_t с фильтром i_t .

Настраиваемых параметров нет.

 Φ ильтр выходных данных (output gate) с параметрами W_o , b_o решает, какие координаты вектора состояния C_t надо выдать.

Выходной сигнал h_t формируется из вектора состояния C_t с помощью нелинейного преобразования th и фильтра o_t .

Модификация LSTM

$$f_{t} = \sigma(W_{f} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [C_{t-1}, h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Все фильтры «подглядывают» вектор состояния C_{t-1} или C_t .

Увеличивается число параметров модели.

Замочную скважину можно использовать не для всех фильтров.

Gated Recurrent Unit

Используется только состояние h_t , вектор C_t не вводится. Фильтр обновления (update gate) вместо входного и забывающего. Фильтр перезагрузки (reset gate) решает, какую часть памяти нужно перенести дальше с прошлого шага.

Simple Recurrent Unit

С предыдущего шага передаётся только вектор C_{t-1} . Два фильтра: забывания (forget gate) и перезагрузки (reset gate). Сквозные связи (skip connections): x_t передаётся на все слои.

Облегчённая рекуррентность: $V_f \odot C_{t-1}$ вместо $W_f C_{t-1}$, позволяет вычислять координаты векторов параллельно.