Metody Obliczeniowe w Nauce i Technice Optymalizacja metodą simulated annealing

Marian Bubak, Katarzyna Rycerz

Department of Computer Science AGH University of Science and Technology Krakow, Poland kzajac@agh.edu.pl dice.cyfronet.pl

Contributors

Marcin Przewięźlikowski Miłosz Błaszkiewicz Łukasz Janeczko

Outline

- Wprowadzenie
- Optymalizacja kombinatoryczna
- 3 Annealing & quenching
- Fizyka statystyczna i optymalizacja analogie
- 5 Algorytm Simulated Annealing
- 6 Pierwsze zastosowania Simulated Annealing
- Odmiany Simulated Annealing
- 8 Literatura
- Wyżarzacz kwantowy

Wprowadzenie

Annealing

- wyżarzanie, odprężanie (powolne chłodzenie)
- przykład zastosowania metody fizyki statystycznej w optymalizacji [1]

Simulated annealing

- rodzina heurystycznych technik optymalizacyjnych opartych na analogii z fizyką statystyczną układów losowych
- opis pochodzenia metody (ang.): https://pdfs.semanticscholar.org/beb2/ 1ee4a3721484b5d2c7ad04e6babd8d67af1d.pdf

Optymalizacja kombinatoryczna

- ullet rozwiązania o złożoności $\sim e^N$
- wiele stopni swobody
- dyskretne (wykluczone poszukiwanie w kierunku)
- funkcja celu łączy przeciwstawne cele cząstkowe

Przykład: problem Max-Cut

Funkcja kosztu:

$$g(x_1, x_2) = x_1 + x_2 - 2x_1x_2, x_1, x_2 \in \{0, 1\}$$

 $g(00) = 0$ $g(11) = 0$
 $g(01) = 1$ $g(10) = 1$

source: https://grove-docs.readthedocs.io/en/latest/qaoa.html

Przykład - problemy BILP i QUBO

Funkcja kosztu i warunki (zmienne binarne)

$$f(x) = c^T x \text{ and } Ax = b \ x_i \in \{0, 1\}$$

QUBO - quadratic and uncontraint cost function $f(x) = x^T Qx$

$$f(x) = x^{T} Cx + P \underbrace{(Ax - b)^{T} (Ax - b)}_{\text{instead of solving } Ax = b}$$
we minimize inner product of $Ax - b$

Typowa funkcja celu

- skalar: wszystkie cele sprowadza do jednego
- ullet wiele lokalnych minimów rzędu e^N
- w praktyce potrzebne dobre rozwiązanie nie musi być to minimum globalne

Typowa funkcja celu

Przykład procedury generacji nowych konfiguracji

TSP [4]

Heurystyka: *iterative improvement* - akceptowalne zmiany zmniejszające funkcję celu

- odwrócenie kolejności obiegu 5-ciu górnych
- wstawienie 5-ciu górnych między 2 dolne
- → pewne ugrzęźnięcie w lokalnym minimum

Annealing & quenching

Czyli powolne i szybkie schładzanie

Annealing

Stopniowe, powolne zmniejszanie temperatury

- topnienie (ciecz)
- w każdej temperaturze trwa długo, do uzyskania równowagi termicznej
- ⇒ uporządkowanie w kryształ struktura regularna, symetryczna o minimalnej energii

Annealing & quenching

Quenching

Szybkie zmniejszanie temperatury

- \Rightarrow uzyskanie stanu metastabilnego
 - polikryształ
 - kryształ z defektami

Odpowiednik iterative improvement

Wniosek: zamiast zawsze odrzucać konfigurację zwiększającą funkcję celu, niekiedy należy ją akceptować z odpowiednim prawdopodobieństwem (uphill)

Fizyka statystyczna i optymalizacja - analogie

Fizyka statystyczna

uśrednione wartości dla zespołów o dużej ilości molekuł

Mechanika statystyczna	Optymalizacja
wiele oddziałujących molekuł	wiele parametrów
układ, zbiór położeń molekuł	konfiguracja
schłodzenie do stabilnego stanu	znalezienie konfiguracji
niskoenergetycznego	prawie optymalnej
temperatura	parametr sterujący
	przebiegiem optymalizacji
hamiltonian (operator energii)	
	funkcja celu
w hamiltonianie człony	współzawodniczące człony
wynikające z róznych oddziaływań	w funkcji celu

Przykład: problem Max-Cut

Funkcja kosztu:

$$g(x_1, x_2) = x_1 + x_2 - 2x_1x_2, x_1, x_2 \in \{0, 1\}$$

 $g(00) = 0$ $g(11) = 0$
 $g(01) = 1$ $g(10) = 1$

source: https://grove-docs.readthedocs.io/en/latest/qaoa.html

Hamiltonian dla MaxCut

Mamy efektywną symulację dla modelu Isinga:

http://www.bdhammel.com/ising-model/

https://stanford.edu/~jeffjar/statmech/intro4.html Funkcja kosztu naszego problemu:

$$g(x_1, x_2) = x_1 + x_2 - 2x_1x_2, x_1, x_2 \in \{0, 1\}$$

W modelu Isinga

- x=0 spin do góry (z=1)
- x=1 spin w dół (z=-1)

Funkcja energii zależna od konfiguracji_spinów

$$x \to \frac{1}{2}(1-z)$$

 $g(z_1, z_2) = \frac{1}{2}(1-z_1z_2) \ z_1, z_2 \in \{-1, 1\}$

Model Isinga

$$H_{\mathsf{maxcut}} = rac{1}{2} - rac{1}{2} \sum_{\langle ij
angle} z_i z_j$$
 $H_{\mathsf{lsing}} = -\sum_i h_i z_i - \sum_{\langle ij
angle} J_{i,j} z_i z_j$ $H_{\mathsf{maxcut}} = rac{1}{2} - rac{1}{2} H_{\mathsf{lsing}}$ dla $h = 0$. $J = -1$

Typowa funkcja celu

Niezbędne:

- C_i reprezentacja konfiguracji układu
- $g(C_i)$ funkcja celu
- procedura generacji kolejnych konfiguracji

Algorytm Simulated Annealing

```
ustal \{T_1, T_2, \ldots, T_l, \ldots, T_n\}
l := 1;
wygeneruj konfigurację C_i
                                                C_i \rightarrow C_{i+1} (zgod-
                                                                 schema-
                                                tem Metropolisa)
                                                oblicz g(C_{i+1}), \quad \Delta g_i
                        until równowaga dla T = T_l (min. lok.)
                        l := l + 1;
until l < n
```

$$\{T_I\}$$
 - temperature schedule: $T_I > T_{I+1}$ np. $T_{I+1} = 0.9 \cdot T_I$

Fundamentalny fakt z mechaniki statystycznej

Załóżmy, że układ znajduje się w równowadze termicznej (w temperaturze \mathcal{T})

Prawdopodobieństwo, że układ znajduje się w mikrostanie stanie α jest proporcjonalne do **czynnika Boltzmanna**

$$e^{\frac{-E_{\alpha}}{k_{B}T}}$$

gdzie: E_{α} - energia stanu

Schemat Metropolisa

Podstawa metody Monte Carlo symulacji molekularnej

Nicolas Metropolis, Arianna W. Rosenbluth, Marshal M. Rosenbluth, Augusta H. Teller, Edward Teller

J. Chem. Phys. 21 (1953) 1087

Sprawdzanie, czy układ jest w równowadze

Sposób A

utrzymywać
$$T_I$$
 przez $egin{cases} 100 \cdot extit{N} ext{ prób} \ 10 \cdot extit{N} ext{ prób udanych}(\Delta g < 0) \end{cases}$

Sposób B

- n ustalona liczba prób (\sim epoka)
 - lacksquare wykonać n prób $(C_i o C_{i+1})$
 - 2 zachować $g(C_n)$
 - **3** porównać $g_i(C_n)$ dla kilku ostatnich zestawów po n próbach brak istotnej zmiany $g(C_n) \rightarrow \text{nowe } T$.

Wartość początkowa T

- wystarczająco wysoka by zapewnić akceptację niemal wszyskich przejść
- wartość początkowa parametru T zależy od postawionego problemu
- np. przyjąć jakiś wstępną wartość prawdopodobieństwa $P\approx 1$ i dla losowej próby wyliczyć średnią różnicę pomiędzy $\Delta g=g(C_i)-g(C_i)$
- wybrać $T_0 = -\frac{\Delta g}{\ln(P)}$

Charakterystyka schematu Metropolisa

- T / łatwiej akceptowalne kroki z g(C_i) / (E)
 ⇒ możliwość opuszczenia stanu metastabilnego (lokalnego minimum).
- zmiany $g(C_i) \setminus sq$ akceptowane zawsze

Po wielu krokach system → stan równowagi termodynamicznej z parametrami oscylującymi wokół wartości średnich zgodnie z rozkładem Boltzmanna

Pierwsze zastosowania Simulated Annealing

Kirkpatrick

TSP - 3000 random cities (dokładne rozwiązanie ≤ 318) miasta w klastrach:

- duże T optymalna droga między klastrami
- małe T optymalna droga wewnątrz klastrów
- \Rightarrow "divide and conquer" behaviour \rightarrow podział zagadnienia na różne skale

Kirkpatrick, Gelatt

Optymalizacja rozłożenia mikroukładów elektronicznych na 1 lub więcej chipach, łączenie chipów.

Pierwsze zastosowania Simulated Annealing

- Vecchi, Kirkpatrick
 Optimal wiring (między VLSI)
 - min length
 - min bends
 - no crowding
- Kenneth Wilson, Dean Jacobs, Jan Prins Cornell University

Algorytm Metropolisa do optymalizacji kodu komputerowego (≈ iteracyjne przestawianie komend)

Dalsze zastosowania Simulated Annealing

Biologia i chemia molekularna Przykłady:

- Optymalizacja struktury cząsteczki białka zbudowanej metodami modelowania molekularnego
- Uściślanie struktur rozwiązanych metodą dyfrakcji rentgenowskiej
- Przejście "od więzów do struktury" przy wyznaczaniu struktury przestrzennej białka metoda NMR
- Proces selekcji potencjalnych leków przez dokowanie

Na podstawie https://bioinfo.mol.uj.edu.pl/courses/ AppliedModelling/LectureSchedule?action= AttachFile&do=get&target=w3.pdf

Odmiany Simulated Annealing

- COSA Cooperative Simulated Annealing
- ASA Adaptive Simulated Annealing
 Strona prof. Lester Ingbera poświęcona ASA:
 http://alumnus.caltech.edu/~ingber/
- PARSA Parallel Simulated Annealing
- EBSA Ensemble Based Simulated Annealing

Literatura I

- Scott Kirkpatrick, Daniel Gelatt, Mario Venchi IBM T.J. Watson Research Center Science 220 (1983) 671-670
- S. KirkpatrickJ. Stat. Phys. 34 (1984) 975 (No 5/6)
- M.R. Garey, D.S. Johnson Computers and Intractability: A Guide to the Theory of NP Completeness, Freeman, San Francisco, 1979
- S. Lin, B.W. Kernighan Oper. Res. 21 (1973) 498

Literatura II

Nicolas Metropolis, Arianna W. Rosenbluth, Marshal M. Rosenbluth, Augusta H. Teller, Edward Teller J. Chem. Phys. 21 (1953) 1087

Wyżarzacz kwantowy D-Wave

- metaheurystyka do znajdowania globalnego minimum
- tunelowanie kwantowe (wyjście z minimum lokalnego)

Figure: Zmiany energii podczas kwantowego wyżarzania source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

Notacja Diraca, iloczyn tensorowy

$$\begin{aligned} |0\rangle &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ |00\rangle &= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} |01\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} |10\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} |11\rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ |01\rangle &= |0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 \\ 1 \cdot 1 \\ 0 \cdot 0 \\ 0 \cdot 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$

Kwantowy Hamiltonian dla MaxCut

Funkcja kosztu:

$$g(x_{1},x_{2}) = x_{1} + x_{2} - 2x_{1}x_{2}, x_{1}, x_{2} \in \{0,1\}$$

$$x \to \frac{1}{2}(1-z)$$

$$g(z_{1},z_{2}) = \frac{1}{2}(1-z_{1}z_{2}) z_{1}, z_{2} \in \{-1,1\}$$

$$\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_{z} |0\rangle = |0\rangle, \lambda = 1$$

$$\sigma_{z} |1\rangle = -|1\rangle, \lambda = -1$$
aby zbudować Hamiltonian: $z \to \sigma_{z}$

$$H_{i,j} = \frac{1}{2}(I - \sigma_{z}{}^{i} \otimes \sigma_{z}{}^{j}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{vmatrix} 00 \\ |01 \rangle \\ |11 \rangle \end{vmatrix}$$

Wartości włąsne

- ullet 0 dla |00
 angle i |11
 angle ; g(00)=0 g(11)=0
- 1 dla $|01\rangle$ i $|10\rangle$; g(01) = 1 g(10) = 1

Quantum Annealing

- startuje w stanie o najniższej energii początkowego H
- powoli zmienia początkowy H w H dla naszego problemu
- zmiana dokonuje sie poprzez wprowadzenie tzw couplers (J) oraz biases (h)
- w idealnej sytuacji system pozostaje w stanie o minimalnej energii przez cały ten proces
- działanie kończy się, gdy system znajduje się w stanie o minimalnej energii dla naszego problemu
- wynik zwracany jest jako klasyczna wartość

Initial Hamiltonian

$$\underbrace{-\frac{A(s)}{2}\left(\sum_{i}\sigma_{x}^{(i)}\right)}_{i} + \underbrace{\frac{B(s)}{2}\left(\sum_{i}h_{i}\sigma_{z}^{(i)} + \sum_{i>j}J_{i,j}\sigma_{z}^{(i)}\sigma_{z}^{(j)}\right)}_{i>j}$$

Final Hamiltonian

Co należy zrobić?

- sformułuj problem jako QUBO
- dopasuj QUBO do architektury komputera
- otrzymaj rezultaty
- dokonaj odwrotnego dopasowania wyników do początkowego QUBO

QUBO i Hamiltonian

QUBO - quadratic and uncontraint cost function $f(x) = x^T Qx$

$$f(x) = x^{T} Cx + P \underbrace{(Ax - b)^{T} (Ax - b)}_{\text{instead of solving } Ax = b}$$
we minimize inner product of $Ax - b$

$$x_i \to \frac{1-\sigma_z^i}{2}$$
 $\sigma_z^i = I \otimes I \cdots \otimes \sigma_z^i \cdots \otimes I$

Hamiltonian

$$H = \sum_i c_i \frac{I - \sigma_z^i}{2} + P \sum_j (\sum_i a_{j,i} (I - \frac{\sigma_z^i}{2}) - b_i I)^2$$

Obydwie formy mogą być wejsciem do wyżarzacza kwantowego

Minor Embedding

- Architektura kwantowego wyżarzacza nie jest grafem pełnym
- konieczna jest transformacja grafu naszego problemu do tej architektury
- zwykle konieczne jest reprezentowanie jednej zmiennej problemu przez wiele qbitów (łańcuchy)

Embedowanie pełnego grafu

- przykład jak osadzić graf K_9 w grafie Chimera 2×2
- trzy qbity na jedną zmienną (poza 8)
- ta metoda działa dla grafów do 9 wierzchołków

