b) Jestliže $f'(a) \not\supseteq$, má funkce f v bodě a extrém.

pravdivý nepravdivý protipříklad:
$$f(x) = \sqrt[3]{x}, a = 0$$

c) Platí-li
$$\forall n \in \mathbb{N} \ a_n \ge b_n \ \text{a} \sum_{n=1}^\infty a_n \ \text{diverguje, potom} \ \sum_{n=1}^\infty b_n \ \text{konverguje.}$$

pravdivý nepravdivý protipříklad:
$$a_n = \frac{1}{n}, b_n = \frac{1}{2n}$$

a) Funkce
$$f$$
 je v bodě a spojitá, právě když má v a vlastní limitu.

$$\frac{pravdiv\acute{y}}{x^2-1}$$

neplatí
$$\Leftarrow$$
; protipříklad: $f(x) = \frac{x^2 - 1}{x - 1}$, $a = 1$

b)
$$\exists x \in \mathbb{R} : |\sin x| = 2$$
 právě když $\exists y \in \mathbb{R} : y^2 = -1$

c)
$$\sum_{n=1}^{\infty} (x-1)^n$$
 konverguje pro $x \in \langle 0, 2 \rangle$.

$$2 \in \langle 0, 2 \rangle$$
, $\sum_{n=1}^{\infty} (2-1)^n = \sum_{n=1}^{\infty} 1$ diverguje.

a) Funkce f je v bodě a spojitá, právě když má v a vlastní limitu.

neplatí
$$\Leftarrow$$
; protipříklad: $f(x) = \frac{x^2 - 1}{x - 1}$, $a = 1$

b)
$$\exists x \in \mathbb{R} : |\sin x| = 2$$
 právě když $\exists y \in \mathbb{R} : y^2 = -1$

c)
$$\sum_{n=1}^{\infty} (x-1)^n$$
 konverguje pro $x \in \langle 0, 2 \rangle$.

$$2 \in \langle 0, 2 \rangle$$
, $\sum_{n=1}^{\infty} (2-1)^n = \sum_{n=1}^{\infty} 1$ diverguje.

a) $\exists x_0 \in \langle a, b \rangle$ tak, že $f(x_0) = 0$, potom funkce f nabývá na intervalu $\langle a, b \rangle$ kladných i záporných hodnot.

pravdivý <u>nepravdivý</u>

protipříklad:
$$f(x) = x^2$$
, $\langle a,b \rangle = \langle -1,1 \rangle$

b) Je-li
$$\forall x \in \mathbb{R} : \cos x = 1$$
, potom $\exists y \in \mathbb{R} : \sin y = \frac{\pi}{2}$

c) Platí-li
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$$
, potom $\sum_{n=1}^{\infty} a_n$ diverguje.

pravdivý nepravdivý protipříklad:
$$a_n = \frac{1}{n^2}$$

a)
$$\forall x \in \mathbb{R} : (x^2 < 0 \implies \sin x < 5)$$

pravdivý nepravdivý protipříklad:
$$f(x) = \operatorname{sgn} x$$

c) Řada
$$\sum_{n=1}^{\infty} (x-1)^n$$
 konverguje pro $x = \frac{5}{2}$.

zdůvodnění:
$$\sum_{n=1}^{\infty} \left(\frac{5}{2} - 1\right)^n = \sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$
 je geometrická řada s kvocientem $\frac{3}{2} > 1$

a) $\forall x \in \mathbb{R} : (|-2x| \le -2 \iff \cos 2x \ge 2)$

pravdivý nepravdivý protipříklad:

b) Je-li funkce f na intervalu $\langle a,b \rangle$ spojitá a $f(a) \cdot f(b) < 0$, potom existuje právě jeden bod $c \in (a,b)$ tak,že f(c) = 0.

pravdivý nepravdivý protipříklad:

$$f(x) = \sin x, \langle a, b \rangle = \left\langle -\frac{3}{2}\pi, \frac{3}{2}\pi \right\rangle, \sin(-\pi) = \sin(0) = \sin(\pi) = 0$$

c) Funkce f je prostá $\Leftrightarrow \forall x_1, x_2 \in D_f$ platí $x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$ pravdivý protipříklad:

$$f(x) = x^2$$
 není prostá, ale $\forall x_1, x_2 \in D_f$ platí $x_1 = x_2 \Rightarrow x_1^2 = x_2^2$

- a) Platí-li pro každé reálné číslo $x \cos x \le -11$, potom $\sin 0 = 2$. **pravdivý nepravdivý protipříklad**:
- b) Je-li funkce f periodická, potom je sudá.

pravdivý nepravdivý protipříklad: $f(x) = \sin x$

- c) Je-li $f''(x_0) = 0$, má funkce f v bodě x_0 inflexní bod.
- pravdivý nepravdivý protipříklad: $f(x) = x^4, x_0 = 0$
- a) Platí-li pro každé reálné číslo $x \sin x \ge 11$, potom $\cos 0 = -2$. **pravdivý nepravdivý protipříklad**:
- b) Je-li funkce f periodická, potom je ohraničená.
- pravdivý nepravdivý protipříklad: $f(x) = \operatorname{tg} x$
- c) Je-li $f'(x_0) = 0$, má funkce f v bodě x_0 extrém.
- pravdivý nepravdivý protipříklad: $f(x) = x^3, x_0 = 0$
- a) $(\exists x \in \mathbb{R} : \cos x \le -3) \implies (\exists y \in \mathbb{R} : |y| < -8)$
- <u>pravdivý</u> nepravdivý protipříklad:
- b)) $(\sum_{n=1}^{\infty} a_n \text{ alternující řada, } (a_n)_{n=1}^{\infty} \text{ klesající posloupnost a } \lim_{n \to \infty} a_n = 0) \Rightarrow |s_n s| < |a_{n+1}|.$

pravdivý nepravdivý protipříklad:

- a) $\exists x \in \mathbb{R} : |\sin x| \ge 7 \Leftrightarrow \exists y \in \mathbb{R} : y^2 < -3$
- <u>pravdivý</u>
- b) f je prosté zobrazení, platí-li $\forall x_1, x_2 \in \mathbb{R}: f(x_1) = f(x_2) \Rightarrow x_1 \neq x_2$

nepravdivý protipříklad:
$$f(x) = x^2, x_1 = -1, x_2 = 1$$

c) Funkce f má v bodě x_0 lokální extrém $\Rightarrow f'(x_0) = 0 \lor f'(x_0)$ neexistuje.

<u>pravdivý</u>

a) $\exists x \in \mathbb{R} : |\cos x| > 5 \implies \exists y \in \mathbb{R} : |\sin y| < 5$

- <u>pravdivý</u> nepravdivý protipříklad:
- b) Je-li funkce f(x) na intervalu $\langle a,b \rangle$ rostoucí, potom $\exists x_0 \in \langle a,b \rangle$ pro které platí $f(x_0) > 0$.

pravdivý nepravdivý protipříklad:

$$f(x) = x, \langle a, b \rangle = \langle -1, 0 \rangle$$
 $f(\langle -1, 0 \rangle) = \langle -1, 0 \rangle \Rightarrow f(x) \le 0 \quad \forall x \in \langle -1, 0 \rangle$

c) Má-li funkce f(x) spojitá na $\mathbb R$ v bodě $x_0 \in \mathbb R$ maximum, potom platí $f'(x_0) = 0$.

pravdivý nepravdivý protipříklad:

$$f(x) = -|x|, f_{\text{max}} = f(0) = 0, (-|x|)'_{|x|=0}$$

a)
$$(\exists x \in \mathbb{R} : 2^x = 0) \implies (\exists y \in \mathbb{R} : \sin y = \pi)$$

pravdivý nepravdivý protipříklad:

b) Je-li funkce
$$f$$
 ohraničená na $\langle a,b \rangle$, má $\forall x_0 \in \langle a,b \rangle$ limitu.

pravdivý nepravdivý protipříklad: $f(x) = \operatorname{sgn} x, \langle a, b \rangle = \langle -1, 1 \rangle, x_0 = 0$

c) Má-li
$$\sum_{n=1}^{\infty} a_n x^n$$
 poloměr konvergence $R = a$, potom pro $x = -a$ diverguje.

pravdivý nepravdivý protipříklad:

a)
$$(\exists x \in \mathbb{R} : e^x = 0)$$
 \Rightarrow $(\exists y \in \mathbb{R} : \cos y = \pi)$

pravdivý nepravdivý protipříklad:

b) Je-li funkce
$$f$$
 ohraničená na $\langle a,b \rangle$, je na $\langle a,b \rangle$ monotonní.

pravdivý nepravdivý protipříklad:

c) Má-li
$$\sum_{n=1}^{\infty} a_n x^n$$
 poloměr konvergence $R=a$, potom pro $x=a$ diverguje.

pravdivý nepravdivý protipříklad:

 $f(x) = \sin x, \langle a, b \rangle = \langle 0, 2\pi \rangle$

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}, R = 1, \sum_{n=1}^{\infty} \frac{1}{n^2} konverguje$$

a)
$$(\exists x \in \mathbb{R} : \sin x \ge \frac{\pi}{2}) \implies (\exists y \in \mathbb{R} : |\cos y| < -1)$$

<u>pravdivý</u> nepravdivý protipříklad:

b) Má-li funkce
$$f$$
 v bodě a vlastní limitu, je v a spojitá.

pravdivý <u>nepravdivý</u> protipříklad: $f(x) = \frac{\sin x}{x}$, a = 0

c) Platí-li
$$\lim_{n\to\infty} a_n = 0$$
, potom $\sum_{n=1}^{\infty} a_n$ konverguje.

 $\frac{pravdiv\acute{y}}{nepravdiv\acute{y}}$ protipříklad: $\sum_{n=1}^{\infty} \frac{1}{n}$

b) Platí-li
$$f'(a) = 0$$
, má funkce f v bodě a extrém.

pravdivý nepravdivý protipříklad: $f(x) = x^3$, a = 0

c) Jestliže řada
$$\sum_{n=1}^{\infty} a_n$$
 konverguje, potom $\sum_{n=1}^{\infty} |a_n|$ konverguje. $\frac{pravdiv\acute{y}}{nepravdiv\acute{y}}$ protipříklad: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

b) Je-li funkce
$$f$$
 na $\langle a,b \rangle$ spojitá, je zde diferencovatelná.

pravdivý nepravdivý protipříklad:

$$f(x) = |x|, \langle a, b \rangle = \langle -1, 1 \rangle$$

c) Platí-li
$$\forall n \in \mathbb{N} \ a_n \leq b_n \ \text{a} \sum_{n=1}^{\infty} a_n$$
 konverguje, potom $\sum_{n=1}^{\infty} b_n$ diverguje. $\frac{pravdiv\acute{y}}{n}$ $\frac{nepravdiv\acute{y}}{nepravdiv\acute{y}}$ protipříklad:

$$a_n = \frac{1}{n^2}, b_n = \frac{2}{n^2}$$