Apellid	o:	1,50	988	Nombre:	1 - 12/2	i sa sara d	DNI:	
Bien	Mal	N/C	NOTA	Durantém	INSCRIPTO EN:			
				Duración: 2:30 hs.	Sede:		Cuatr.:	Año:
					Días:		Horario:	Aula:
			necesario tener, p		_ ,	stas correctas	y más respues	tas correctas que
			io hay una única			· (1 0 1) T		. 1
			ene normal $(1, 2)$ to $P = (3, 3, a)$ s				I conjunto de	todos los $a \in \mathbb{R}$
□ {-1		serpun	$\Box \{-1;5\}$		□ {5}	StopPlat all the	□ {0}	
	\		$\begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix}$. El conjunt	to de tode	os los valo	res de $k \in$	ℝ para los cu	iales el sistema
□ {3;4		ooracio.			□ {0;2}		□ {2;3}	
3 El co	njunto d	e todos	los vectores $\mathbf{v} \in$	\mathbb{R}^3 tales of	$\mathbf{v} \times (1, 0)$	(0,2) = (2,0,0)	1) es	
□ un p			☐ un punto		□ vacío		□ una recta	
4 Si <i>a</i> y ℝ ³ en	b son nutonces	úmeros	reales y el conjui	nto {(−1,	(b,-1);(-1)	, b + 2a, 2a -	1); (0, b, -1)]	es una base de
		-1	$\Box a \neq 0$ y $b \neq 0$	-1	$\Box a = 0 \text{ y } b$	v = -1	$\Box a \neq 0$ y b	$\in \mathbb{R}$
5 Si B	$\in \mathbb{R}^{3 \times 3}$ e	s tal que	$e \det(B) = 5 \text{ y } A$ $\Box 1800$	(-	$\begin{pmatrix} -2\\-1\\1 \end{pmatrix}$, end	tonces det(-	$-2AB^{-2}$) es	
							20	
	$\Pi_1: x - G$ or de $L \in G$		$=4 \text{ y }\Pi_2:2x-z$	$= 1. \operatorname{Si} L$	es una recta	a paralela a l	I_1 y a II_2 , ent	onces un vector
			□ (2,6,4)		□ (1,2,1)		\square $(0,1,2)$	
7 Si <i>A</i>	$= \begin{pmatrix} 1\\2\\1\\-1 \end{pmatrix}$	2 3 5 3 -1 a	$\begin{bmatrix} 3 & 4 \\ 3 & 1 \\ 1 & b \\ 1 & d \end{bmatrix} y B = \begin{pmatrix} 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	1 2 0 1 - 1 -1 - 1 -1	$\begin{pmatrix} 3 & 4 \\ -3 & -7 \\ -c & -d \\ a & b \end{pmatrix} \epsilon$	entonces det	(B) es igual a	
□ 2 det	(A)		$\Box - \det(A)$		$\square \det(A)$		\Box -2 det(A)
			(2,1,-1,1); (4,1); entonces $\dim(\mathbb{S}$			s un subespa	icio de dimen	sión 2 y tal que
\square 2			\Box 4		□ 1		□3	
			(1,1,0);(1,0,0) tonces \mathbb{S}^{\perp} es igu		de \mathbb{R}^3 y \mathbf{v}	$\in \mathbb{R}^3$ cuyas o	coordenadas e	n la base <i>B</i> son
\Box { $\mathbf{x} \in \Box$ \((2,3)		+ 5x ₂ +	$-2x_3=0\}$		$\square \{\mathbf{x} \in \mathbb{R}^3 \\ \square \langle (6,5,2) \rangle$	$ 2x_1 + 3x_2 - 3x_2 $	$+x_3=0$	
10 Si v □ w –		ión de A	$A\mathbf{x} = \mathbf{b} \ \mathbf{y} \ \mathbf{w} \ \mathrm{de} \ A$ $\square \ 2\mathbf{w} - \mathbf{v}$		$\neq 0$, entor $\square \mathbf{v} + \mathbf{w}$	nces una solu	$\Box \mathbf{v} - \mathbf{w}$	2 b es
	-							Continúa

continua ..

11 La multiplicidad	de i como raíz de $P(x) =$	$(x^4-1)(x-i)^3(3ix-i)^3$	+3) es igual a	, i.,
□4	□6	□ 5	□3	
12 Si $z=-\pi i$, entor	nces el módulo y el argum			
$\Box z = \pi \text{ y arg}(z) =$ $\Box z = 1 \text{ y arg}(z) =$		$\Box z = -\pi \text{ y arg}(z)$ $\Box z = -1 \text{ y arg}(z)$		
13 Sean V un espacw linealmente inde□ igual a 4	io vectorial de dimensión ependientes tal que { v ; w } menor o igual que 3	$\subset \operatorname{Im}(f) \cap \operatorname{Nu}(f)$, er	ntonces ia dim(Nu()) +	kisten \mathbf{v} y $\operatorname{Im}(f)$ es
14 Si $f: \mathbb{R}^4 \to \mathbb{R}^4$	es la transformación line	eal dada por $M(f)$	$= \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 1 \end{pmatrix} er$	itonces la
$\dim(\operatorname{Nu}(f \circ f))$ es	igual a			
\Box 4	□3	□ 2	□1	
15 La cantidad de s	soluciones de la ecuación z	$4 = \overline{z}^2$ que satisfacen	$Im(z) \neq 0$ es igual a	
□2	□3	$\Box 4$	□ 6	
$\Box (-7,2,6)$ $17 - Si f: \mathbb{R}^3 \to \mathbb{R}^3 6$	$\begin{bmatrix} -1 & 0 \\ 3 & 1 & 2 \\ 0 & 1 & -3 \end{bmatrix} con B = \{(0, 0, 0, 0)\}$ $\Box (-1, -3, 1)$ The sun proyector tal que Impose to the sun proyector tal que Impose the sun proyector tal que Impose to the sun proyector tal que Impose the sun proyector tal que Impose tal qu	$\Box (2,6,-7)$ $(f) = \langle (1,1,1); (1,1,0) \rangle$	$\frac{\Box (-3,1,-1)}{0) \text{ y Nu}(f) = (\text{Im}(f))^{\perp}}$, entonces
17 Si $f: \mathbb{R}^3 \to \mathbb{R}^3 \in f(3,3,4)$ es igual a	es un proyector tal que Im	(f) = ((1,1,1); (1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1); (1,1,1,1,1); (1,1,1,1,1,1); (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	(0) y $(\mathbf{u}(f)) = (\mathbf{m}(f))$, entorices
□ (3,3,3)	□ (3,3,0)	□ (0,0,0)	□ (3,3,4)	
18 Si $B = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3; \mathbf{v}_4\}$ $M_{BB'}(f) = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$	$\{ \mathbf{w}_{3} \} \ \mathbf{y} \ B' = \{ \mathbf{w}_{1}; \mathbf{w}_{2}; \mathbf{w}_{3} \} \text{ so } $ $\{ \mathbf{w}_{1}; \mathbf{w}_{2}; \mathbf{w}_{3} \} $ $\{ \mathbf{w}_{2}; \mathbf{w}_{3} \} $ $\{ \mathbf{w}_{3}; \mathbf{w}_{3} \} $ $\{ \mathbf{w}_{1}; \mathbf{w}_{2}; \mathbf{w}_{3} \} $	n bases de \mathbb{R}^3 y $f \colon \mathbb{R}^3$ $\mathbf{v}_1 + 2\mathbf{w}_2 + 2\mathbf{w}_3)$ es ig	$\mathbb{R}^3 o \mathbb{R}^3$ es el isomorfismo	dado por
□ (1,1,1)	$\square 2\mathbf{v}_1 + 4\mathbf{v}_2 + 4\mathbf{v}_3$		$\Box -2\mathbf{v}_1 + 2\mathbf{v}_2 + \cdots$	4 v ₃
19 Sea $A = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 & 1 \\ 3 & 0 \\ 3 & -1 \end{pmatrix}$. El conjunto de	todos los autovalore	s de A es	
□ {−3,0,3}	- /	□ {-1,3}	□ {-2,0,3}	
20 Sean $B = \{\mathbf{v} \\ f(\mathbf{v}_1) = k\mathbf{v}_1 + \mathbf{v}_2 \\ \Box k \neq 2 \\ \Box \text{ todos los valores}$	$\{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ una base de \mathbb{F}_2 , $\{f(\mathbf{v}_2) = 2\mathbf{v}_2 \text{ y } f(\mathbf{v}_3) = \mathbf{v}_2\}$ s de $k \in \mathbb{R}$	\mathbb{R}^3 y $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ + $3\mathbf{v}_3$. Entonces f es \square ningún valor o $\square k \neq 0$	diagonalizable para	al tal que
		Firma	a:	

- ① dos puntos di la forma P = (3,3,a) con $a \in \mathbb{R}$ forman una recta. los $P \in \mathbb{R}^3$ que ratisfacen d(P,T) = 2 forman 2 planos. Ja intersección entre una ructa y la unión de dos planos puede ser la recta entera, 2 pentos o nunciono. Entones la reta. es $\{-1,5\}$.
- ② Ax=3x (=) $(A-3Id) \cdot x=0$. el sist time red sotrivial (=) dit(A-3Id)=0. (ya gu es homogeneo) ton k=0: la 3^{-} col. time todos curos =) dit=0. dit(A-3Id)=k. $dit(\frac{1}{2})=k$. (k+2)=) la otra ray is -2. $sol:\{0,-2\}$ C_3
- (102) y(201) mo son ortog. => Rta: vacio.
- (y) al conj is $li = dit \begin{pmatrix} -1 & -1 & 0 \\ -1 & b+2a & b \\ -1 & 2a-1 & -1 \end{pmatrix} \neq 0$. $dit \begin{pmatrix} -1 & -1 & 0 \\ -1 & 2a-1 & -1 \end{pmatrix} = dit \begin{pmatrix} -1 & -1 & 0 \\ 0 & 2a & b \\ 0 & 2a & -1 \end{pmatrix} = dit \begin{pmatrix} -1 & -1 & 0 \\ 0 & 2a & b \\ 0 & 0 & -1-b \end{pmatrix} = C_1 - C_3 - C_1$ $F_3 - F_2 \rightarrow F_3$

= -1. 2a (-1-6) = 2a(1+6) \$0 (=) a \$0 y 6 \$\deq -1\$

C7-C3-C1

(5) det A = det
$$\begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix} = det \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 5 \\ 0 & 2 & 1 \end{pmatrix} = 1. det \begin{pmatrix} 1 & 5 \\ 2 & 1 \end{pmatrix} = -9$$

$$F_{2} - 3F_{1} \rightarrow F_{2}$$

$$det(-2A.B^{-2}) = (-2)^3 \cdot det(A) \cdot (det B)^{-2} = -8.(-9) \cdot (\frac{1}{5})^2 = \frac{72}{25}$$

(6) L/I TI, => V_L INT, JVILLENTE, L/ITZ
Des hay que probar anal de los vectores robreión es ortog
$(2,6,4) \cdot (1-11) = 0$ $(2,6,4) \cdot (20-1) = 0$ (2,6,4)
$ \frac{1}{1} \int_{-1}^{1} dt \left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} \right) = - dt \left(\frac{1}{2} + \frac{3}{4} + \frac{3}{4}$
$= (-1) \cdot \left(- \operatorname{dot} \left(B \right) \right) = \operatorname{dot} B \cdot = \operatorname{dot}(B) = \operatorname{dot}(B).$ $= (-1) \cdot \left(- \operatorname{dot} \left(B \right) \right) = \operatorname{dot}(B) \cdot = \operatorname{dot}(B$
8) dim (StT = dim Stdim T - dim SnT. = 3
9 $(V _{B} = (231) =) V = (6, 5, 1) =) S = < (6, 5, 1) >$ =) $S^{\perp} = \{ \times \in \mathbb{R}^{3} / 6x_{1} + 5x_{2} + x_{3} = 0 \}$ 10) multiplies cada of P or P ver evanto da:
A.(w-v) = A.w - Av = 3b - b = 25 lists w-v rol.
(1) $P(x) = (x^4 - 1)(x - 1)^3(3ix + 3)$ en $(x-i)^3$, i es raiz triple en $(3ix + 3)$ i es raiz simple
m x = 1: i4-1=0. la derivade es 4x3, 4i3+0=) is sin

$$|Z| = |-\pi| = |$$

(14)
$$M(f \circ f) = M(f)^2 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 & 1 \\ 1 & 0 & 1 & -1 \\ 2 & 0 & 2 & 1 \end{pmatrix}$$

(15)
$$Z^4 = \overline{Z}^2$$
 supring $Z \neq 0$ (Im $Z = 0$)
$$\overline{Z} = |Z|^2 = 1 \quad Z^4 = \frac{|Z|^2}{Z} = 1 \quad Z^5 = |Z|^2 \neq 1$$
aphie modulo:
$$|Z^5| = ||Z|^2| = 1 \quad |Z|^5 = |Z|^2 = 1 \quad |Z|^3 = 1 \quad = 1 \quad |Z| = 1$$
aphie arguments: $arg(Z^5) = arg(|Z|^2) + 2 KT$

(19) 0, 3 for and (estain in todos las especiosos)

chiques in -3, -1 y 2 be son:

dut (A - (-3)Id) = dit (A + 3Id) = dit
$$\begin{pmatrix} 2 & 3 & 1 \\ 0 & 6 & 2 \end{pmatrix} = 6 dit \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
;

dut (A - (-1) Id) = dit $\begin{pmatrix} 3 & 3 & 1 \\ 1 & 3 & 1 \end{pmatrix} = 0$ Rta: $\{-2,0,3\}$

(20) $M_{S}(F) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$
 $P(A) = dit (M_{S}(F) - \lambda I) = (k - \lambda) \cdot (2 - \lambda) \cdot (3 - \lambda)$

in $k \neq 2$ y $k \neq 3$: diagonalizable

=> produce $A \neq 2$ is the CR (missing box operiors)

oniver or descarts las operiors: rungin rates de $A \neq 0$

y restains in $A \neq 0$ is diagonalizable. Fara ornles operiors

restartes in $A \neq 0$ is diagonalizable. Fara ornles operiors

restartes in $A \neq 0$ is diagonalizable. Fara ornles operiors

multip di $A \neq 0$ como par di $A \neq 0$

=) mo is diagonalizable.

(por dissarti)