Chapitre 11 Synthèse des filtres numériques

Problème à résoudre :

On cherche une transmittance H(z) particulière, ou une réponse impulsionnelle h(n), qui possède des caractéristiques respectant des spécifications énoncées en termes de filtrage.

Spécifications

Type de filtre, bande passante, pouvoir de réjection ou de sélectivité, rapidité de réponse, complexité de réalisation, facilité d'implantation matérielle, etc..

Modélisation

ensen

Données numériques

On définit un modèle de R.I. définit par sa séquence {h_n}

Données fréquentielles

- On définit un modèle de transmittance H(z)
- Recherche d'un transmittance H(z) respectant un gabarit fréquentiel imposé.

Deux classes de méthodes

- Synthèse de filtre sous la forme RII (fraction rationnelle en z)
- Synthèse de filtre RIF sous la forme RIF (polynôme en z⁻¹)

1. Liste des méthodes classiques de synthèse

Synthèse sous la forme RII:

H(z) fraction rationnelle

Passage continu – numérique (Transformations conformes)

- · Transformation retard
- Transformation bilinéaire (Tustin)
- Transformation pôle-zéro

Techniques d'optimisation :

- Méthode de Prony, méthode de Padé : Modélisation de la R.I Optimisation MCL / modèle
- Méthode Yule-Walker, méthode de Steiglitz Modélisation de la réponse fréquentielle Optimisation MCL / modèle

Synthèse sous la forme RIF:

H(z) polynôme en z⁻¹

- Echantillonnage en fréquence
- Série de Fourier avec fénêtrage

Techniques d'optimisation :

- Méthode de Parks Mac Clellan (Remez)
 Utilisation d'un gabarit fréquentiel
 - + Optimisation de type min-max

2. Synthèse sous la forme RII Transformation continu-numérique

Exigences souhaitées :

Exigence 1 : La stabilité doit être conservée

½ plan gauche de **C** inclus à l'intérieur du cercle unité C_T

Exigence 2 : L'allure de la réponse fréquentielle doit être « respectée ».

Méthode par approximation de la dérivée (transformation retard)

Discrétisation de la dérivée continue :

$$\dot{y} = \frac{\Delta y}{T_e} = \frac{y(n) - y(n-1)}{T_e}$$

$$pY(p) \rightarrow \frac{(1-z^{-1})}{T_e}Y(z)$$

$$Y(p) \xrightarrow{p = \frac{1 - z^{-1}}{T_e}} Y(z)$$

2. Transformation continu-numérique (2)

$$p = \frac{1 - z^{-1}}{T_e} \implies z = \frac{1}{1 - pT_e}$$

Analyse fréquentielle :

$$p = j\omega \quad \Rightarrow \quad z = \frac{1}{1 - j\omega T_e} = \frac{1}{2} \left[1 + \frac{1 + j\omega T_e}{1 - j\omega T_e} \right]$$

$$z = \frac{1}{2} \left[1 + e^{j2 \operatorname{arctg}(\omega T_e)} \right]$$

Quand ω parcourt l'axe imaginaire $(-\infty, +\infty)$, z parcourt un cercle C1 de centre 1/2, et de rayon 1/2.

Remarque:

lci les pulsations ω sont des pulsations vraies.

Pour obtenir des pulsations réduites, il suffit de considérer T_e=1.

Constatation:

- Stabilité conservée
- Modification notables de la réponse harmonique

Adapté au filtrage passe-bas basse fréquence

3. Transformation continu-numérique (Tustin)

Transformation bilinéaire ou de Tustin

Approximation de l'intégration :

En continu:

$$S(t) = \int_0^t (x(t)dt \xrightarrow{L} S(p) = \frac{X(p)}{p}$$

Discrétisation de l'intégrale (trapèze) :

$$S_k = S_{k-1} + \frac{T_e}{2}(x_k + x_{k-1}) \xrightarrow{Z} S(z) = \frac{T_e}{2} \left(\frac{1 + z^{-1}}{1 - z^{-1}}\right) X(z)$$

Transformation bilinéaire ou de Tustin :

3. Transformation continu-numérique (Tustin)(2)

Transformation inverse:

$$z = \frac{1 + \frac{T_e}{2}p}{1 - \frac{T_e}{2}p}$$

$$X(z) \xrightarrow{1 - \frac{T_e}{2}p} X(p) \text{ transformée dite en w en automatique}$$

permet de réutiliser les outils de type Bode, marges de gain et de phase, etc..

$$Z = \frac{1 + \frac{T_e}{2}w}{1 - \frac{T_e}{2}w}$$

$$X(z) \longrightarrow X(w)$$

3. Transformation continu-numérique (Tustin) (3)

Etude harmonique:

$$p = j\omega$$
 \rightarrow $z = \begin{bmatrix} 1 + j\frac{\omega T_e}{2} \\ 1 - j\frac{\omega T_e}{2} \end{bmatrix} = e^{j2arctg(\frac{\omega T_e}{2})}$

Plan p $\omega = -\infty$

Plan z

On pose :
$$e^{j\Omega T_e} = e^{j2arctg(\frac{\omega T_e}{2})}$$

ω: pulsation vraie en analogique

 Ω : pulsation vraie en numérique

fan: fréquence vraie en analogique

fnum: fréquence vraie en numérique

$$\Omega = \frac{1}{T_e} 2 \operatorname{arctg}(\frac{\omega I_e}{2})$$

$$\omega = \frac{1}{T_e} 2 \operatorname{tg}(\frac{\Omega T_e}{2})$$

On a :
$$\begin{aligned} \Omega &= \frac{1}{T_e} 2 arctg(\frac{\omega T_e}{2}) \\ \omega &= \frac{1}{T_e} 2 tg(\frac{\Omega T_e}{2}) \end{aligned} \text{ et : } \begin{aligned} f_{num} &= \frac{f_e}{\pi} arctg(\pi \frac{f_{an}}{f_e}) \\ f_{an} &= \frac{f_e}{\pi} tg(\pi \frac{f_{num}}{f_e}) \end{aligned}$$

Quand ω parcourt l'axe imaginaire sur $(-\infty, +\infty)$, z parcourt le cercle C \uparrow de centre 1 et de rayon 1 sur $[-\pi, +\pi]$.

3. Transformation continu-numérique (Tustin) (4)

Remarques:

- Stabilité conservée : le ½ plan gauche se transforme en l'intérieur du cercle complet.
- · Allure générale "conservée",
- Existence d'une distorsion en fréquence,
- Introduction systématique de zéros en z=-1, Assure l'annulation du gain pour $\omega = \pm \pi$.

Te := 1
$$\Omega b \big(\omega \big) := 2 \, \text{arctan} \bigg(\frac{\omega}{2} \bigg)$$

$$\Omega a \big(\omega \big) := \omega$$

$$\begin{array}{c|c}
\Omega a(\omega) & 2 \\
\hline
\Omega b(\omega) & 0 \\
\hline
-2
\end{array}$$

8

 ω

Exemples (1)

$$G(p) \xrightarrow{p = \frac{2}{T_e} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} H(z)$$

Correction des fréquences de coupures :

$$f_{cnum} = \frac{f_e}{\pi} arctg(\pi \frac{f_{can}}{f_e})$$
$$f_{can} = \frac{f_e}{\pi} tg(\pi \frac{f_{cnum}}{f_e})$$

Fréquence de coupure : fc = 100 Hz

$$G(p) = \frac{3.948 \cdot 10^5}{p^2 + 8.886 \cdot 10^2 \cdot p + 3.948 \cdot 10^5}$$

Pôles:

$$p_1 = -444.29 + j \cdot 444.29$$
, $p_2 = -444.29 - j \cdot 444.29$

Transmittance RII sans correction

Fréquence d'échantillonnage : fe = 1KHz

$$H(z) = \frac{0.0640 \cdot (1 + z^{-1})^2}{1 - 1.168 \cdot z^{-1} + 0.424 \cdot z^{-2}}$$

Pôles:

$$z_1 = 0.5841 + j \cdot 0.2879$$
, $z_2 = 0.5841 - j \cdot 0.2879$, $|z_1| = |z_2| = 0.6512$

Zéros:

$$z_3 = -1$$
 (double)

Transmittance RII avec correction à fc

Fréquence d'échantillonnage : fe = 1KHz

$$H(z) = \frac{0.0675 \cdot (1 + z^{-1})^2}{1 - 1.143 \cdot z^{-1} + 0.413 \cdot z^{-2}}$$

Pôles:

$$z_1 = 0.5715 + j \cdot 0.2936$$
, $z_2 = 0.5715 - j \cdot 0.2936$, $|z_1| = |z_2| = 0.6425$

Zéros:

$$z_3 = -1$$
 (double)

Exemples (1)

Synthèse d'un filtre RII passe-bas Butterworth d'ordre 2 par transformation bilinéaire sans correction (échelles linéaires).

$$G(p) \xrightarrow{p = \frac{2}{T_e} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} H(z)$$

Correction des fréquences de coupures :

$$f_{cnum} = \frac{f_e}{\pi} arctg(\pi \frac{f_{can}}{f_e})$$

$$f_{can} = \frac{f_e}{\pi} tg(\pi \frac{f_{cnum}}{f_e})$$

Exemples (1)

Synthèse d'un filtre RII passe-bas par transformation bilinéaire avec correction à fc=100 Hz (échelles logarithmiques).

10°

$$G(p) \xrightarrow{p = \frac{2}{T_e} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} H(z)$$

Correction des fréquences de coupures :

$$f_{cnum} = \frac{f_e}{\pi} arctg(\pi \frac{f_{can}}{f_e})$$

$$f_{can} = \frac{f_e}{\pi} tg(\pi \frac{f_{cnum}}{f_e})$$

Filtre passe-bas analogique

Exemples (2)

$$G(p) \xrightarrow{p = \frac{2}{T_e} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} H(z)$$

Correction des fréquences de coupures :

$$\begin{split} &f_{cnum} = \frac{f_e}{\pi} arctg(\pi \frac{f_{can}}{f_e}) \\ &f_{can} = \frac{f_e}{\pi} tg(\pi \frac{f_{cnum}}{f_e}) \end{split}$$

Passe-bande Butterworth d'ordre 4

Bande passante : BP = 100 HzFréquence centrale : $f_0 = 100 \text{ Hz}$

$$G(p) = \frac{3.948 \cdot 10^5 \cdot p^2}{p^4 + 8.886 \cdot 10^2 \cdot p^3 + 9.87 \cdot 10^5 p^2 + 2.631 \cdot 10^8 \cdot p + 8.767 \cdot 10^{10}}$$

Pôles:

$$p_1 = -311.63 + j \cdot 773.59$$
 $p_2 = -311.63 - j \cdot 773.59$ $p_3 = -132.66 + j \cdot 329.31$ $p_4 = -132.66 - j \cdot 329.31$

Zéros:

 $p_5 = 0$ (double)

Filtre numérique RII sans correction

Fréquence d'échantillonnage : fe = 1KHz

$$H(z) = \frac{0.05707 \cdot (1 - z^{-1})^2 \cdot (1 + z^{-1})^2}{1 - 2.776 \cdot z^{-1} + 3.203 \cdot z^{-2} - 1.824 \cdot z^{-3} + 0.4482 \cdot z^{-4}}$$

Pôles:

$$z_1 = 0.5561 + j \cdot 0.5208$$
 $z_2 = 0.5561 - j \cdot 0.5208$, $|z_1| = |z_2| = 0.7619$
 $z_3 = 0.8319 + j \cdot 0.2829$ $z_4 = 0.8319 - j \cdot 0.2829$, $|z_3| = |z_4| = 0.8787$

Zéros:

 $z_5 = 1$ (double), $z_6 = -1$ (double)

Exemples (2)

Synthèse d'un filtre RII passe-bande Butterworth d'ordre 4 par transformation bilinéaire sans correction (échelles linéaires).

$$G(p) \xrightarrow{p = \frac{2}{T_e} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} H(z)$$

Correction des fréquences de coupures :

$$f_{cnum} = \frac{f_e}{\pi} arctg(\pi \frac{f_{can}}{f_e})$$

$$f_{can} = \frac{f_e}{\pi} tg(\pi \frac{f_{cnum}}{f_e})$$

Exemples (2)

Synthèse d'un filtre RII passe-bande Butterworth d'ordre 4 par transformation bilinéaire avec correction à fc=100 Hz (échelles logarithmiques).

$$G(p) \xrightarrow{p = \frac{2}{T_e} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} H(z)$$

Correction des fréquences de coupures :

$$\begin{split} &f_{cnum} = \frac{f_e}{\pi} arctg(\pi \frac{f_{can}}{f_e}) \\ &f_{can} = \frac{f_e}{\pi} tg(\pi \frac{f_{cnum}}{f_e}) \end{split}$$

Exemples (3)

$$\mathsf{G1}(\mathsf{p}) := \frac{1}{1 + \sqrt{2} \cdot \mathsf{p} + \mathsf{p}^2}$$

G1(p)
$$\xrightarrow{p = \frac{1 - z^{-1}}{T_e}} G1(z)$$

G1(p)
$$\xrightarrow{p = \frac{1-z^{-1}}{T_e}} G1(z) \qquad G1(z) := \frac{z^2}{\left[\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{$$

poles_G1 :=
$$\begin{pmatrix} 0.5 + 0.207i \\ 0.5 - 0.207i \end{pmatrix}$$

G1(p)
$$\xrightarrow{p=\frac{2}{T_e}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)} G2(z)$$

G2(z) :=
$$\frac{(z+1)^2}{\left[(2\cdot\sqrt{2}+5)\cdot z^2 - 6\cdot z - 2\cdot\sqrt{2} + 5\right]}$$

$$z\acute{e}ros_G2 := -1$$
 ($z\acute{e}ro double$)

poles_G2 :=
$$\begin{pmatrix} 0.383 + 0.361i \\ 0.383 - 0.361i \end{pmatrix}$$

Exemples (3)

Exemples (4)

A := iirlow (butter (2), f)

YA := response(x, A, 100)k := 0...99

C := iirlow (butter (6), f)

YC := response(x, C, 100)

4. Méthode de Steiglitz (1)

Soit H_d(e^{jω}) la réponse fréquentielle désirée.

$$H_d(e^{j\omega})$$
 connue en M points ω_i $i=1,2,3,....,M$

Les affixes des e jwi doivent être équirépartis sur le cercle unité.

|M| Q

Soit H(z)un modèle de filtre.

Choix de H(z):

$$H(z) = A \prod_{k=1}^{K} \frac{1 + a_k z^{-1} + b_k z^{-2}}{1 + c_k z^{-1} + d_k z^{-2}}$$

Structure cascade de transmittance du 2ème ordre.

Filtre d'ordre 2K.

Paramètres:

ensem

4. Méthode de Steiglitz (2)

Calcul des paramètres :

Soit Q un critère de type MCL :

On a :
$$\frac{Q(A,\underline{\phi}) = \sum\limits_{i=1}^{M} \left[\left| \left| H(e^{j\omega_i},A,\underline{\phi}) \right| - \left| \left| H_d(e^{j\omega_i}) \right| \right|^2 \right]$$

Calcul du gain A:

On a : $H(z) = A.H_1(z)$

$$\frac{\partial Q(A,\underline{\phi})}{\partial A} = 0 \qquad \Rightarrow \quad \widehat{A} = \frac{\sum\limits_{i=1}^{M} \left| H_1(e^{j\omega_i},\underline{\phi}) \right| \left| H_d(e^{j\omega_i}) \right|}{\sum\limits_{i=1}^{M} \left| H_1(e^{j\omega_i},\underline{\phi}) \right|^2}$$

Calcul du vecteur $\underline{\phi}$:

$$\frac{\partial Q(A,\underline{\phi})}{\partial \phi_n} = 0 \qquad n = 1,2,....,4 \, K$$

Obtention des paramètres a_{n,b_n,c_n,d_n} par optimisation non-linéaire de type Fletcher-Powell (technique de gradient).

Intérêt : Convergence du critère très rapide.

Inconvénient : Possibilité d'obtenir des pôles et zéros à l'extérieur du cercle. Dans ce cas on les remplace par leurs inverses, et on recherche une nouvelle convergence.

4. Méthode de Padé (1)

Approximation de Padé :

Soit h_d(n) la réponse impulsionnelle d'un filtre idéal causal choisi.

On désire approximer ce filtre par une transmittance H(z) causale.

On a :
$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n} = \frac{\sum_{k=0}^{q} b(k)z^{-k}}{1 + \sum_{k=1}^{p} a(k)z^{-k}}$$

Les ordres p et q de H(z) sont choisis.

H(z) possède p+q+1 paramètres indépendants.

On peut donc trouver des valeurs de a(k) et b(k) pour obtenir **l'identité** de h(n) avec $h_d(n)$ pour les p+q+1 premières valeurs.

4. Méthode de Padé (2)

On impose donc:

$$h(n) = h_d(n)$$
 pour $n = 0, 1, 2, ..., p + q$.

Procédure:

On a:
$$H(z) = \frac{B(z)}{A(z)}$$
 d'où : $A(z)H(z) = B(z)$

On a aussi :
$$a(n) * h(n) = h(n) + \sum_{k=1}^{p} a(k)h(n-k) = b(n)$$

4. Méthode de Padé (3)

Calcul des a(k):

On déduit le système linéaire suivant :

$$\begin{bmatrix} h_d(q) & h_d(q-1) & \cdots & h_d(q-p+1) \\ h_d(q+1) & h_d(q) & \cdots & h_d(q-p+2) \\ \vdots & \vdots & \cdots & \vdots \\ h_d(q+p-1) & h_d(q+p-2) & \cdots & h_d(q) \end{bmatrix} \begin{bmatrix} a(1) \\ a(2) \\ \vdots \\ a(p) \end{bmatrix} = - \begin{bmatrix} h_d(q+1) \\ h_d(q+2) \\ \vdots \\ h_d(q+p) \end{bmatrix}$$

Système linéaire de p équations à p inconnues. D'où a(k).

Calcul de b(k):

ensem

Connaissant a(n), on calcule les b(n) d'après :

$$b(n) = h_d(n) + \sum_{k}^{p} a(k)h_d(n-k)$$
 pour $n = 0, 1, \dots, q$

L'approximation de $h_d(n)$ est exacte pour $n \le p + q + 1$. En revanche pour n > p + q, l'approximation de donne plus de bons résultats.

5. Méthode de Prony (1)

Hypothèses:

Soit h_d(n) la réponse impulsionnelle d'un filtre idéal **causal** choisi.

On désire approximer ce filtre par une transmittance H(z) causale.

On a :
$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n} = \frac{\sum_{k=0}^{q} b(k)z^{-k}}{1 + \sum_{k=1}^{p} a(k)z^{-k}}$$
 Les ordres p et q de H(z) sont choisis.

Calcul des a(k) par minimisation d'un critère Q au sens MCL.

$$Q = \sum_{n=0}^{N} |h_d(n) - h(n)|^2$$
 avec N fixé au préalable.

L'approximation de Padé imposait : $h_d(n) + \sum_{k=1}^{p} a(k)h_d(n-k) = 0$ pour $n \ge q+1$

Ici, on cherche à minimiser les écarts pour $n \ge q + 1$

$$e(n) = h_d(n) + \sum_{k=1}^{p} a(k)h_d(n-k) \quad \text{pour} \quad n \ge q+1$$
 D'où :
$$Q = \sum_{n=q+1}^{N} \left| e_n \right|^2$$

D'où :
$$Q = \sum_{n=q+1}^{N} |e_n|^2$$

5. Méthode de Prony (2)

Calcul des a(k):

$$\frac{\partial Q}{\partial a(k)} = 0$$
 $k = 0, 1, \dots, p$

On obtient le système d'équations linéaires suivant :

$$\begin{bmatrix} r_d(1,1) & r_d(1,2) & \cdots & r_d(1,p) \\ r_d(2,1) & r_d(2,2) & \cdots & h_d(2,p) \\ \vdots & \vdots & \cdots & \vdots \\ r_d(p,1) & r_d(p,2) & \cdots & r_d(p,p) \end{bmatrix} \begin{bmatrix} a(1) \\ a(2) \\ \vdots \\ a(p) \end{bmatrix} = - \begin{bmatrix} r_d(1,0) \\ r_d(2,0) \\ \vdots \\ r_d(p,0) \end{bmatrix}$$

avec :
$$r_d(k,l) = \sum_{n=q+l}^{N} h_d(n-k) h_d(n-l)$$
 (relation d'autocorrélation)

Calcul des b(k):

$$b(n) = h_d(n) + \sum_{k}^{p} a(k)h_d(n-k)$$
 pour $n = 0, 1, \dots, q$