Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
			dedicadas
08/04/2024	1 . AAA.	a) DDDDDDD	6 horas
09/04/2024	2. Pruebas de implementación CUDA en Windows.	a) SASASASAS.	4 horas
09/04/2024	2. Pruebas de entrenamiento del modelo $Pendulum DQN$.	a) SASASASAS.	4 horas
10/04/2024	3. Reunión de seguimiento con el asesor del proyecto.	 a) Revisión de avance en el código y errores de forma. b) Se acordó realizar entrenamientos con diferentes formatos de indicación del target_angle. 	2 horas

11/04/2024	4. Corrección de potenciales errores en el código $PendulumDQN$ señalados por asesor.	 a) Replanteo de función de recompensa calculate_reward() para evitar salto. b) Adición de lógica para guardado de checkpoints al entrenamiento y corrección del guardado del modelo. 	6 horas
12/04/2024	5. Continuación de corrección de errores potenciales en el código.	a) Replanteo de función select_action(); cambio de acción aleatoria en exploración a adición de ruido a la opción elegida.	4 horas
12/04/2024	6. Estudio de conceptos MDP [1] y DQN [2] .	 a) Revisión de aplicación mediante MDP dada la mensión en una fuente en línea donde se utiliza [3]. b) Estudio de teoría DQN para mejor comprensión de la lógica de la función optimize_model() del código original [4] y su adaptación a Pendulum. 	4 horas
12/04/2024	5. Pruebas de entrenamiento de modelos $CartPole$ y $Pendulum$.	a) Se crearon los cuadernos ctrlCartPoleDQN.ipynb y ctrlPendulumDQN.ipynb para pruebas de carga de modelos. b) Entrenamiento del modelo Pendulum_1000eps.pth. c) Se descubrió un error grave en select_action(), corrección en proceso.	4 horas
		Total de horas de trabajo:	21 horas

Contenidos de actividades

AAA [4].

Referencias

- [1] J. P. A. Moya, "EL5857 Lección 25: Aprendizaje Reforzado (1/4): MDP," 2021, [Vídeo de YouTube]. [Online]. Available: https://www.youtube.com/watch?v=FBaoss_Pb5Q
- [2] —, "EL5857 Lección 27: Aprendizaje Reforzado (3/4): DQN y Q-Learning," 2021, [Vídeo de YouTube]. [Online]. Available: https://www.youtube.com/watch?v=oXnNRSCe5T4
- [3] S. Israilov, L. Fu, J. Sánchez-Rodríguez, F. Fusco, G. Allibert, C. Raufaste, and M. Argentina, "Reinforcement learning approach to control an inverted pendulum: A general framework for educational purposes," *PLoS ONE*, 2023.
- [4] A. Paszke and M. Towers, "Reinforcement learning (dqn) tutorial," PyTorch.