Short Notes On Similarity/Dissimilarity Measures

Ng Yen Kaow

Distance/Dissimilarity & Similarity

- □ Let d_{ij} denote the **distance**/**dissimilarity** between two objects x_i and x_j
 - The objects are, for example, strings, sequences, structures, words, documents, pixels, or vectors (of features)
- \square Similarly s_{ij} denotes the **similarity** between x_i and x_j
- Some objects are better compared with a similarity measure, some objects better with a dissimilarity measure

Desirable properties

- Conditions for a distance measure to be metric
 - $d_{ij} \geq 0$ (non-negativity)
 - $d_{ij} = 0$ if and only if i = j (identity of indiscernible pairs)
 - $d_{ij} = d_{ji}$ (symmetry)
 - $d_{ij} \leq d_{ik} + d_{kj}$ (triangular inequality)
- These ideas run through many dissimilarity (or similarity) measures defined

Examples of dissimilarity measures

- Strings/Sequences
 - Hamming distance
 - Edit distance
- Structure
 - Root Mean Square Deviation (RMSD)

All these are metric

- □ (Feature) vectors
 - Euclidean distance
 - Metric/non-metric distance
 - Similarity measures more commonly used for vectors
- Probability distributions
 - Mutual information
 - Cross entropy
 - Kullback-Leibler divergence

Non-metric
In fact, not even
symmetric
(except MI)

Examples of similarity measures

- Named objects (words/documents)
 - Bag-of-words (https://en.wikipedia.org/wiki/Jaccard_index)
 - Semantic (https://en.wikipedia.org/wiki/Semantic_similarity)
 - Vector (https://en.wikipedia.org/wiki/Word_embedding)

□ (Feature) vectors

- Correlations (Pearson etc.)
- Covariance
 - Principal Component Analysis
- Gaussian $e^{-\|x_i-x_j\|^2/2\sigma^2}$
 - Mapping to infinite dimensional space (Kernel function)
 - Probability distribution (co-occurrence probability)
 - Heat function (transition probability)

Special mention: Gaussian function

The Gaussian function is

$$K(x_i, x_j) = e^{-\|x_i - x_j\|^2 / 2\sigma^2}$$

- Used prominently in
 - Kernel methods
 - Image segmentation (Wu and Leary 1993, Normalized Cut 1997)
 - Dimensionality reduction (Eigenmap 2003, Diffusion maps 2005, t-SNE 2007, UMAP 2018)
- □ Pros:
 - Linear combination of $(x_i^T x_j)^k$ terms for all powers of k
 - Fast decay to zero
 - Symmetric, non-negative, identity
- \Box Con: Sensitive to σ

How to convert $d_{ij} \Leftrightarrow s_{ij}$

Converting $d_{ij} \Leftrightarrow s_{ij}$

- \square Difficult to obtain s_{ij} from d_{ij} and vice versa
 - Most conversions will be dissatisfactory e.g. resulting in non-metric distance
- □ Ad hoc conversion between dissimilarity $D = (d_{ij})$ and similarity $S = (s_{ij})$
 - Inverse conversion
 - $d_{ij} = \operatorname{const} * (1 + s_{ij})^{-1}$
 - $s_{ij} = \operatorname{const} * (1 + d_{ij})^{-1}$
 - Linear conversion
 - \Box $d_{ij} = \text{const} s_{ij}$
 - $\Box s_{ij} = \text{const} d_{ij}$

Set const to 1 or decide its value by requiring a condition (e.g. maximum value)

Euclidean distance $d_{ij} \Leftrightarrow s_{ij}$

 \Box Let $D = (d_{ij})$ be given by the Pythagorean

$$d_{ij}^2 = (x_i - x_j)(x_i - x_j)^{\mathsf{T}}$$

where x_i and x_i are row vectors

- \Box For $S = (s_{ij})$
 - Cosine similarity

$$s_{ij} = \frac{x_i x_j^\mathsf{T}}{\|x_i\| \|x_j\|}$$

Linear kernel similarity

$$s_{ij} = x_i x_i^{\mathsf{T}}$$

- □ Con: $s_{ij} \le s_{uv}$ does not imply $d_{ij} \ge d_{uv}$
- \square Pro: Can be converted to d_{ik} easily (next slide)

Euclidean distance $d_{ij} \Leftrightarrow s_{ij}$

- □ If s_{ij} is the linear kernel similarity, that is, $s_{ij} = x_i x_j^{\mathsf{T}}$
 - $d_{ij}^2 = (s_{ii} + s_{jj}) 2s_{ij}$
 - $S = -\frac{1}{2}CDC$

where

$$C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$$
, the centering matrix

1 is a column vector of all ones (hence $\mathbf{11}^{\mathsf{T}}$ is a matrix with all ones of the same dimension as D)

 No similar relation exists for the cosine distance (use ad hoc)

Gaussian similarity $s_{ij} \Leftrightarrow d_{ij}$

- □ For Gaussian similarity $S = (s_{ij})$ and dissimilarity $D = (d_{ij})$
 - $S_{ij} = e^{-\frac{d_{ij}^2}{2\sigma^2}}$
 - Intuitively $d_{ij} = -\alpha \log(s_{ij})$
 - Alternatively, define an induced distance $d'_{ij} = s_{ii} + s_{jj} 2s_{ij}$, then
 - $d'_{ij} = 2(1-s_{ij})$
 - $d'_{ii} = 0$
 - $d'_{ij} = d'_{ji}$

But still no triangular inequality guarantee