/.
$$Var(Y) = E(Y - E(Y))^{2}$$
 $= E(Y^{2} - 2E(Y)Y + (E(Y))^{2})$
 $= E(Y^{2}) - 2E(Y) + (E(Y))^{2}$
 $= E(Y^{2}) - 2E(Y) + (E(Y))^{2}$
 $= E(Y^{2}) - E(Y)^{2}$

Note $E(Y)$ is a constant, so $E(E(Y)) = E(Y)$.

2. $E(X) = \int_{0}^{1} \int_{0}^{1} \times (xty) dx dy$
 $= \int_{0}^{1} \frac{1}{x^{2}} + \frac{y}{x^{2}} \int_{0}^{1} dy$
 $= \int_{0}^{1} \frac{1}{x^{2}} + \frac{y}{x^{2}} \int_{0}^{1} dy$
 $= \int_{0}^{1} \int_{0}^{1} \times (xty) dx dy = \int_{0}^{1} \int_{0}^{1} x^{2} (xty) dx dy = \int_{0}^{1} \int_{0}^{1} x^{2} (xty) dx dy = \int_{0}^{1} \int_{0}^{1} \frac{x^{4}}{x^{4}} \int_{0}^{1} dy - \frac{x^{4}}{14x}$
 $= \int_{0}^{1} \int_{0}^{1} + \int_{0}^{1} y dy - \frac{x^{4}}{14x}$
 $= \int_{0}^{1} \int_{0}^{1} + \int_{0}^{1} y dy - \frac{x^{4}}{14x} = \int_{0}^{1} \int_{0}^{1} xy (xty) dx dy$
 $= \int_{0}^{1} \int_{0}^{1} xy (xty) dx dy$
 $= \int_{0}^{1} \int_{0}^{1} xy (xty) dx dy$
 $= \int_{0}^{1} \int_{0}^{1} y + \int_{0}^{1} y^{2} dy$