知能プログラミング演習 I

第7回: 畳み込みニューラルネットワークⅡ

梅津 佑太

2号館 404A: umezu.yuta@nitech.ac.jp

課題のダウンロード

前回作ったディレクトリに移動して今日の課題のダウンロードと解凍

```
step1: cd ./DLL
```

step2: wget http://www-als.ics.nitech.ac.jp/~umezu/Lec7.zip

step3: unzip Lec7.zip

✓ まだ DLL のフォルダを作ってない人は、step1 の前に mkdir -p DLL でフォルダを作成する

講義ノート更新しました.

今日の講義内容

1. 畳み込みニューラルネットワークの逆伝播

前回の復習

畳み込みニューラルネットワークの構成要素:

• 畳み込み層: 入力 $\mathbb{R}^{d \times d \times K} \ni Z \mapsto Z' \in \mathbb{R}^{d' \times d' \times M}$:

$$u_{ijm} = \langle W_m, Z_{ij} \rangle + b_m \mapsto z'_{ijm} = f(u_{ijm})$$

• プーリング層: 入力 $\mathbb{R}^{d \times d \times K} \ni Z \mapsto Z' \in \mathbb{R}^{d' \times d' \times K}$:

$$u_{ijk}=\langle W_{ijk},Z_k
angle\mapsto z'_{ijk}=u_{ijk}$$
 $\checkmark~W_{ijk}\in\mathbb{R}^{d\times d}$ の作り方は後述

• 全結合層: 入力 $\mathbb{R}^{d \times d \times K} \ni Z \mapsto Z' \in \mathbb{R}^{d'}$:

$$u_i = \langle W_i, Z \rangle + b_i \mapsto z_i' = f(u_i)$$

ただし, 〈・,・〉 はテンソルの内積

$$\langle A, B \rangle = \sum_{ijk} a_{ijk} b_{ijk}, \quad A, B \in \mathbb{R}^{d \times d \times K}$$

 $\langle A, B \rangle = \sum_{ij} a_{ij} b_{ij} = \operatorname{tr}(A^{\top}B), \quad A, B \in \mathbb{R}^{d \times d}$

逆伝播

• c.f., これまでの逆伝播: 適当なサイズの行列 W_{r+1} (r+1 層目のパラメータ) と δ_{r+1} を用いて,

$$\delta_{r} = W_{r+1}^{\top} \delta_{r+1} \odot \nabla f(\mathbf{u}_{r})$$

$$\Rightarrow \delta_{r,j} = \tilde{\mathbf{w}}_{r+1,j}^{\top} \delta_{r+1} \nabla f(\mathbf{u}_{r,j}) = \langle \tilde{\mathbf{w}}_{r+1,j}, \delta_{r+1} \rangle \nabla f(\mathbf{u}_{r,j})$$

とかけた 1 . つまり, δ_r は "r+1 層目のパラメータ $\mathbf{w}_{r+1,j}$ と誤差 δ_{r+1} に r 層目の勾配 $\rangle \nabla f(u_{r,j})$ の積を適当な順番に並べたもの"

• 畳み込みニューラルネットワークの場合も適当なサイズのパラメータ $W_{r+1,ijk}$ や δ_{r+1} , $\nabla f(u_{r,ijk})$ を用いて

$$\delta_{r,ijk} = \langle W_{r+1,ijk}, \delta_{r+1} \rangle \nabla f(u_{r,ijk})$$

と書くことができる.

 $^{^{1}}$ $\tilde{w}_{r+1,j}$ は W_{r+1} の第 j 列ベクトル

逆伝播: 全結合層Ⅰ

全結合層: $Z_r \in \mathbb{R}^{d \times d \times K} \mapsto Z_{r+1} = f(U_r) \in \mathbb{R}^{d'}$

• パラメータ $W_r = (W_{r,1}, \dots, W_{r,d'}) \in \mathbb{R}^{d \times d \times K \times d'}$ および $\boldsymbol{b}_r = (b_{r,1}, \dots, b_{r,d'})^\top \in \mathbb{R}^{d'}$ を用いて、

$$u_{r,i} = \sum_{k=1}^{K} \sum_{i,j=1}^{d'} w_{r,ijk} z_{r,ijk} + b_{r,i} = \langle W_{r,i}, Z_r \rangle + b_{r,i}$$

• これまで通り, Z_{r+1} が出力層なら, 適当な誤差関数 E と活性化関数 f に対して

$$\boldsymbol{\delta}_r = \frac{\partial E}{\partial \boldsymbol{u}_r} = f(\boldsymbol{u}_r) - \boldsymbol{y}$$

となる. ただし, y は観測データの出力 (e.g., 多クラス分類なら 1-of-K 表記のベクトル)

逆伝播: 全結合層Ⅱ

• Z_{r+1} が出力層でない場合, 適当な大きさの行列 W_{r+1} に対して,

$$u_{r+1,i} = \mathbf{w}_{r+1,i}^{\top} Z_{r+1} + b_{r+1,i} = \mathbf{w}_{r+1,i}^{\top} f(U_r) + b_{r+1,i}$$

なので,

$$\delta_{r,i} = \frac{\partial E}{\partial u_{r,i}} = \sum_{j} \frac{\partial E}{\partial u_{r+1,j}} \frac{\partial u_{r+1,j}}{\partial u_{r,i}} = \sum_{j} \delta_{r+1,j} \frac{\partial \mathbf{w}_{r+1,j}^{\top} f(U_r)}{\partial u_{r,i}}$$
$$= \sum_{j} \delta_{r+1,j} w_{r+1,jj} \nabla f(u_{r,i}) = \tilde{\mathbf{w}}_{r+1,j}^{\top} \delta_{r+1} \nabla f(u_{r,i})$$
$$\Rightarrow \delta_r = W_{r+1}^{\top} \delta_{r+1} \odot \nabla f(\mathbf{u}_r)$$

逆伝播: プーリング層 |

プーリング層: $Z_r \in \mathbb{R}^{d \times d \times K} \mapsto Z_{r+1} \in \mathbb{R}^{d' \times d' \times K}$. フィルタサイズ s, ストライド数 β に対して, $d' = (d-s)/\beta + 1$

• $P_{ij} = \{(\beta(i-1) + p, \beta(j-1) + q, k) \mid p, q = 1, ..., s\}$ として, $W_{r,ij} = (w_{r,ij,pqk})_{ij} \in \mathbb{R}^{d \times d}$ を

$$(\max \mathcal{I}-\mathsf{リング})$$
 $w_{r,ij,pqk}=\left\{egin{array}{ll} 1 & (p,q)=rg \max_{(s,t)\in P_{ij}} \mathsf{Z}_{r,stk} \ 0 & \mathcal{F}$ の他 $\left(\operatorname{average} \mathcal{I}-\mathsf{リング}
ight) & w_{r,ij,pqk}=1/s^2 \end{array}
ight.$

とすれば, $i, j = 1, \ldots, d', k = 1, \ldots, K$ に対して

$$Z_{r+1,ijk} = u_{r,ijk} = \langle W_{r,ij}, Z_{r,k} \rangle$$

このとき、プーリングの写像 g は恒等写像と解釈する.

$$abla g(u_{r,ijk}) = \frac{\partial g(u_{r,pqr})}{\partial u_{r,pqr}} \Big|_{u=u_{r,ijk}} = \begin{cases} 1 & i=p, j=q, k=r \\ 0 & その他 \end{cases}$$

7

逆伝播: プーリング層Ⅱ

適当なサイズの W_{r+1} , b_{r+1} に対して,

$$u_{r+1,ijm} = \langle W_{r+1,m}, Z_{r+1,ij} \rangle + b_{r+1,m} = \langle W_{r+1,m}, U_{r,ij} \rangle + b_{r+1,m}$$

とする 2 . $U_{r,ijk}=(u_{r,\beta'(i-1)+p,\beta'(j-1)+q,k})_{p,q}$ に対して, $U_{r,ij}=(U_{r,ijk})_k$ を 3 次元配列とすれば, 誤差 $\delta_{r,ijk}$ は

$$\begin{split} \delta_{r,ijk} &= \frac{\partial E}{\partial u_{r,ijk}} = \sum_{s,t,l} \frac{\partial E}{\partial u_{r+1,stl}} \frac{\partial u_{r+1,stl}}{\partial u_{r,ijk}} \\ &= \sum_{s,t,l} \delta_{r+1,stl} \frac{\partial \langle W_{r+1,l}, U_{r,st} \rangle}{\partial u_{r,ijk}} = \sum_{s,t,l} \delta_{r+1,stl} w_{r+1,i-\beta'(s-1),j-\beta'(t-1),k,l} \end{split}$$

²r+2 層目が全結合層ならば, $u_{r+1,m}=\langle W_{r+1,m},U_r\rangle+b_{r+1,m}$ となる.

逆伝播: プーリング層 Ⅲ

$$\delta_{r,ijk} = \sum_{s,t,l} \delta_{r+1,stl} w_{r+1,i-\beta'(s-1),j-\beta'(t-1),k,l}$$

は、 $\delta_{r+1} = (\delta_{r+1,stl})_{s,t,l}, W_{r+1,ijk} = (w_{r+1,i-\beta'(s-1),j-\beta'(t-1),k,l})_{s,t,l}$ とすれば、

$$\delta_{r,ijk} = \langle \boldsymbol{\delta}_{r+1}, W_{r+1,ijk} \rangle$$

とかける. したがって, $\delta=(\delta_{r,ijk})_{i,j,k}$ とすれば, これがプーリング層の誤差となる.

逆伝播: 畳み込み層 |

畳み込み層: パディング数 α で畳み込んだ後の入力を $Z_r \in \mathbb{R}^{d \times d \times K}$ として 3 , $Z_r \mapsto Z_{r+1} \in \mathbb{R}^{d' \times d' \times M}$. ただし, フィルタサイズ H, ストライド数 β に対して, $d' = (d-H)/\beta + 1$.

• パラメータ $W_r = (W_{r,1}, \dots, W_{r,d'}) \in \mathbb{R}^{d \times d \times K \times M}$ および $\boldsymbol{b}_r = (b_{r,1}, \dots, b_{r,M})^\top \in \mathbb{R}^M$ を用いて,

$$u_{r,ijm} = \sum_{k=1}^{K} \sum_{p,q=1}^{d'} w_{r,pqkm} z_{r,\beta(i-1)+p,\beta(j-1)+q,k} + b_{r,m}$$
$$= \langle W_{r,m}, Z_{r,ij} \rangle + b_{r,m}$$

ただし,
$$Z_{r,ijk}=(z_{r,ij,\beta(i-1)+p,\beta(j-1)+q,k})_{p,q}$$
 に対して, $Z_{r,ij}=(Z_{r,ij1},\ldots,Z_{r,ijK})\in\mathbb{R}^{H\times H\times K}$

 $^{^3}X \in \mathbb{R}^{p \times p}$ をパディング数 α で畳み込むと $d = p + 2\alpha$ となる.

誤差の更新

$$u_{r,ijm} = \langle W_{r,m}, Z_{r,ij} \rangle + b_{r,m}$$

が、プーリング層の順伝播と一致することに注意すれば、適当な $\delta_{r+1}=(\delta_{r+1,stl})_{s,t,l}, W_{r+1,ijk}=(w_{r+1,i-\beta'(s-1),j-\beta'(t-1),k,l})_{s,t,l}$ を用いて、

$$\delta_{r,ijk} = \langle \boldsymbol{\delta}_{r+1}, W_{r+1,ijk} \rangle$$

とかける. したがって, $\delta=(\delta_{r,ijk})_{i,j,k}$ とすれば, これが畳み込み層の誤差となる.

パラメータの更新ルール

 δ_r が計算できると、パラメータの更新ルールを求めることができる: つまり、合成関数の微分を用いて、

$$\begin{split} \frac{\partial E}{\partial w_{r,pqkm}} &= \sum_{s,t=1}^{H} \frac{\partial E}{\partial u_{r,stm}} \frac{\partial u_{r,stm}}{\partial w_{r,pqkm}} = \sum_{s,t=1}^{H} \delta_{r,stm} z_{r,\beta(s-1)+p,\beta(t-1)+q,k} \\ \frac{\partial E}{\partial b_{r,m}} &= \sum_{s,t=1}^{H} \frac{\partial E}{\partial u_{r,stm}} \frac{\partial u_{r,stm}}{\partial b_{r,m}} = \sum_{s,t=1}^{H} \delta_{r,stm} \end{split}$$

より,

$$\frac{\partial E}{\partial W_{r,m}} = \sum_{s,t=1}^{H} \delta_{r,stm} Z_{r,st}$$
 および, $\frac{\partial E}{\partial \boldsymbol{b}_{r}} = \sum_{s,t=1}^{H} \delta_{r,st}$

となる. これを用いて、確率的勾配降下法や Adam のアルゴリズムを実装すれば良い.