Piston: Uncooperative Remote Runtime Patching

Chris Salls, Yan Shoshitaishvili, Nick Stephens, Christopher Kruegel, and Giovanni Vigna

Motivation: Software Bugs

Hackers found 47 new vulnerabilities in 23 IoT devices at DEF CON

The results from this year's IoT hacking contest are in and it's not a pretty picture

Motivation: Need Automated Patching

OF HAIOIA

Fixing, upgrading and patching loT devices can be a real nightmare

The recall of almost half a million St. Jude Medical pacemakers highlights the growing importance—and huge risks—of the Internet of Things.

COMPUTERWORLD

Home > Security

NEWS

FTC sets \$25,000 prize for automatic IoT patching

Feds cite use of internet-connected cameras to launch botnet attack as proof that better security is needed

Hotpatching

Needs builtin support.

```
Sun 10/29, 6:19 PM

Hi Aravind ,

Really sorry for your inconveinence, the K2 camera have no new firmware .

And it also can't upgrade the firmware .I have no the K2 camera's initial firmware.

Best regards

Jerry

service@wansview.com
```


Piston

• Critical bugs are often security vulnerabilities that can lead to code execution.

Can we use the bug to patch the device?

Piston: Overview

Piston: Patch Generation

Patch Generation

Patch Generation: Function Matching

Identify functions to be updated.

Filter out superficial differences.

```
push ebp
mov ebp,esp
sub esp, 0x18
mov eax, 0x804a02c
:
0x804a02c "Hello %s"
```

```
push ebp
mov ebp,esp
sub esp, 0x18
mov eax, 0x805a084
:
0x805a084 "Hello %s"
```

Old Function New Function

Piston: Patch Generation

Patch Generation

Patch Generation: Replacement Function Placement

Identify location for the new functions.

Fix-up relative references.

Create Jump-out stubs in the old functions.

Patch Generation: Replacement Function Placement

Jump-out Stub:

```
;Old Function
oldloc:
jmp newloc

...
...
...
ret
```


Piston: Patch Generation

Piston: Repair Planning

Repair Planning

Repair Planning: Exploit Effect Reconstruction

- Trace execution of exploit:
 - Hijacked Function and Caller Function.

- Detect Exploitation Point:
 - Use simple heuristics to detect the instruction where the buffer overflow occurs.

Mark all overflowed data as corrupted or Tainted.

Piston: Repair Planning

Repair Planning: Hijacked Function Analysis

- Does Hijacked Function needs to be restarted?
 - Tainted data influence control or data flow?

Recover local and global state.

Repeatable system calls.

Repair Planning: Hijacked Function Analysis

- Recovering global state:
 - Recover the data read from global state using non-corrupted data.

 Use Under-Constrained symbolic execution (UCSE) to construct the symbolic expressions.

Rollback Routine.

Piston: Repair Planning

Repair Planning

Repair Planning: Caller State Recovery

- Recover Local state of Caller Function:
 - Live callee-saved Registers.

Hijacked function parameters.

Repair Planning: Caller State Recovery

Recover from redundant stack data:

```
mov eax, [ebp + var_14]
mov, edx, [ebp + var_8]
sub eax, edx
mov [ebp + var_3C], eax
call hijacked_func()
```

If var_3C is corrupted it can be recovered as var_14 - var_8

Repair Routine.

Piston: Repair Planning

Piston: Remote Patching

Piston: Remote Patching

- Patching Stub:
 - Launch Exploit: Gain Control.

Repair Routine.

Rollback Routine.

Apply Patch Set.

Evaluation: Dataset

- Cyber Grand Challenge (CGC) binaries:
 - Stack-based buffer overflow: 24 binaries

- NGINX 1.4.0:
 - o CVE-2013-2028

Evaluation: Recovery

- 2 Exploit types:
 - o Shellcode stub: 23 bytes.
 - Successfully recovered for 22/24 (91%) Binaries.

- ROP stub: Handles NX stack: 40 bytes.
 - Successfully recovered for 20/24 (83%) Binaries

Evaluation: End-End

Recover, Patch and Restart.

• 5 CGC binaries.

NGINX 1.4.0

Evaluation: End-End

Binary Name	Function Interrupted	Automated Rollback?	Automated Repair?	Caller stack recovered (bytes)
CROMU_00017	YES	YES	YES	144
CROMU_00020	YES	YES	YES	52
CROMU_00037	NO	N/A	YES	4
CROMU_00038	YES	YES	NO	4
CROMU_00039	YES	YES	YES	303
NGINX	YES	NO NO	YES	28

Limitations

Demonstrated for only stack-buffer overflows.

Recovering from other type of exploits need analyst input.

Data recovery needs redundancy.

Conclusions

Automated Patching Mechanism for Uncooperative Processes.

Automated Rollback and Recovery.

Empirical Evaluation.

BACKUP

Piston: Overview

Piston: Overview

