Birthday Paradox Birthday Problem

Birthday paradox

 In a group of 23 randomly chosen people, at least two will share a birthday with probability at least 50%. If there are 30, the probability is around 70%.

 Finding two people with the same birthday is the same thing as finding a collision for this particular hash function. The probability that all 23 people have different birthdays is

$$1 \times (1 - \frac{1}{365})(1 - \frac{2}{365})...(1 - \frac{22}{365}) = 0.493$$

Therefore, the probability of at least two having the same birthday is p(23)=1-0.493=0.507 (see next page p(r) for different number of people r)

More generally, suppose we have N objects, where N is large. There are r people, and each chooses an object. Then

 $P(\text{there is a match}) \approx 1 - e^{-r^2/2N}$

<u>r</u>	P(r)
10	11.7%
20	41.1%
23	50.7%
30	70.6%
50	97.0%
57	99.0%
100	99.99997%
200	99.99999999999999999999
300	$(100 - (6 \times 10^{-80}))\%$
350	$(100 - (3 \times 10^{-129}))\%$
365	$(100 - (1.45 \times 10^{-155}))\%$
366	100%

Derivation of P(r)

and its approximation

0

$P(r) = P_r(at least one birthday match among r people) = 1 - P(r)$

$$P(r) = | \times \frac{364}{365} \times ... \times \frac{365 - r + 1}{365}$$

$$= | \times (1 - \frac{1}{365}) \times (1 - \frac{2}{365}) \times ... \times (1 - \frac{r - 1}{365})$$

12 Approx-mations

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \cdots$$
 $e^{x} \approx 1 + x$
 $e^{x} \approx 1 + x$

$$P(r)^{2} - e^{-\frac{r^{2}}{(2x365)}}$$

3) For r people, N birthdays,

how many r will have Pr(r) = = ?

(50)
$$p(r) = \frac{1}{2} \Rightarrow p(r) = \frac{1}{2} \Rightarrow e^{-\frac{r}{2}} = \frac{1}{2}$$

$$\Rightarrow \frac{Y^2}{2N} = \ln 2 \Rightarrow Y^2 = N \ln 4$$

Application in Hash

How many hashes, we will have a collision?

i.e. we randomly choose

X1, X2, ..., Xr E {0,13*

ヨ some i+j, st. ん(な)=ん(xj)

<40/>

 $\gamma = O(N) = O(\sqrt{2^{160}}) = O(2^{80})$

