

Politechnika Wrocławska

Liczby zespolone

dr inż. Czesław Michalik,doc W4,K6

1. Historia liczb zespolonych

Liczby zespolone pojawiły się w XVI w., w związku z badaniami sposobów rozwiązywania równań algebraicznych trzeciego i czwartego stopnia. Okazało się, że rozwiązania równań trzeciego stopnia można uzyskać za pomocą działań algebraicznych na współczynnikach tych równań, jednak tylko wtedy, gdy umie się obliczać $\sqrt{-1}$. Oczywiście, w zakresie liczb, znanych w tamtym okresie, pierwiastek kwadratowy z liczby -1 nie istniał. Niektórzy z matematyków założyli jego istnienie i nazwali go "liczbą urojoną", a dotychczas znane liczby nazwano "liczbami rzeczywistymi". Oznaczając $\sqrt{-1}$ przez "i", przyjęto, że $i^2 = -1$ Tworzono nowe "liczby" a + ib, które nazwano "liczbami zespolonymi" i określono czysto formalnie cztery działania na takich liczbach. Arytmetyka liczb zespolonych nie doprowadziła do żadnych sprzeczności. *E. Euler* (1707-1783) wprowadził liczby zespolone do analizy matematycznej, powodując tym jej istotny postęp.

2. Zapis liczb zespolonych

2.1. Postać kanoniczna liczby zespolonej

Liczbą zespoloną nazywamy parę uporządkowaną liczb rzeczywistych (a, b), najczęściej zapisywaną w postaci sumy

$$\underline{z} = a + jb$$
, $j = \sqrt{-1}$.

Taką postać liczby zespolonej nazywamy postacią kanoniczną (postacią algebraiczną).

Liczbę rzeczywistą a nazywamy częścią rzeczywistą liczby zespolonej z

$$a = \operatorname{Re}\{\underline{z}\},\$$

liczbę rzeczywistą b nazywamy częścią urojoną liczby z

$$b = \operatorname{Im}\{\underline{z}\},$$

tak że

$$\underline{z} = \text{Re}\{\underline{z}\} + j \text{Im}\{\underline{z}\}.$$

Liczba zespolona a + j0 jest zapisywana jako a i jest utożsamiana z liczbą rzeczywistą. Liczba zespolona z = jb będzie nazywana liczbą urojoną.

2.2. Interpretacja geometryczna liczby zespolonej – wskaz

Liczby zespolone można interpretować jako punkty na płaszczyźnie zmiennej zespolonej we współrzędnych prostokątnych $Re\{\underline{z}\}$, $Im\{\underline{z}\}$. Liczba $\underline{z} = a + jb$ jest punktem o współrzędnych (a, b) płaszczyzny Gaussa.

Rys. 1. Interpretacja geometryczna liczby zespolonej.

Punkt ten jest oddalony od początku układu współrzędnych o odcinek o długości

$$\sqrt{a^2+b^2}$$
.

Ta wartość jest nazywana <u>modułem</u> liczby zespolonej lub jej <u>wartością bezwzględną</u>

$$|\underline{z}| = \sqrt{a^2 + b^2}.$$

Odcinek skierowany od początku układu współrzędnych do punktu reprezentującego liczbę zespoloną jest nazywany wskazem tej liczby. Wskaz ma długość równą modułowi liczby zespolonej i jest odchylony od osi liczb rzeczywistych o kąt nazywany argumentem liczby zespolonej

$$\varphi = \arg(\underline{z}).$$

Łatwo zauważyć, że

$$\varphi = \operatorname{arctg}\left(\frac{b}{a}\right)$$

dla liczb zespolonych leżących w pierwszej i czwartej ćwiartce płaszczyzny Gaussa oraz

$$\varphi = \operatorname{arctg}\left(\frac{b}{a}\right) \pm \pi$$

dla liczb leżących w drugiej i trzeciej ćwiartce.

Można zatem zapisać

$$\varphi = \operatorname{arctg}\left(\frac{b}{a}\right) \pm \pi[a < 0],$$

gdzie [a < 0] jest wyrażeniem logicznym, przyjmującym wartości

$$[a < 0] = \begin{cases} 1, & \text{gdy } a < 0, \\ 0, & \text{gdy } a \ge 0, \end{cases}$$

natomiast znak przy $\pi[a<0]$ wybiera się tak aby $-\pi<\varphi\leq\pi$.

Kąt φ spełniający warunek

$$-\pi < \varphi \le \pi$$

nazywa się argumentem głównym liczby zespolonej. Argument liczby 0 nie jest określony.

3. Działania na liczbach zespolonych

<u>Liczbą sprzężoną</u> do danej liczby zespolonej nazywa się liczbę ze zmienionym znakiem części urojonej liczby. Dla liczby

$$z = a + jb$$

liczbą sprzężoną jest liczba

$$z^* = a - jb$$
.

Ponieważ

$$\underline{z}\underline{z}^* = a^2 + b^2,$$

więc

$$|\underline{z}|^2 = \underline{z}\underline{z}^*$$
.

<u>Równość</u> liczb zespolonych wymaga równości części rzeczywistych i części urojonych liczb:

$$\underline{z}_1 = a_1 + \mathbf{j}b_1, \ \underline{z}_2 = a_2 + \mathbf{j}b_2,$$

 $\underline{z}_1 = \underline{z}_2 \Leftrightarrow a_1 = a_2 \wedge b_1 = b_2.$

Dwie liczby zespolone są równe sobie jeżeli mają równe moduły i argumenty:

$$\underline{z}_1 = |\underline{z}_1| e^{j\varphi_1}, \ \underline{z}_2 = |\underline{z}_2| e^{j\varphi_2},$$

$$\underline{z}_1 = \underline{z}_2 \iff |\underline{z}_1| = |\underline{z}_2| \land \varphi_1 = \varphi_2.$$

Liczba zespolona jest równa zero, jeżeli obydwie części tej liczby są równe zero:

$$\underline{z}=a+\mathrm{j}b,$$

$$\underline{z} = 0 \Leftrightarrow a = 0 \land b = 0.$$

Liczba zespolona jest równa zero, jeżeli jej moduł jest równy zero:

$$\underline{z} = |\underline{z}| e^{j\varphi},$$

$$\underline{z} = 0 \Leftrightarrow |\underline{z}| = 0.$$

Sumę algebraiczną dwóch liczb zespolonych można obliczyć sumując ich części rzeczywiste i części urojone:

$$\underline{z}_1 + \underline{z}_2 = (a_1 + jb_1) \pm (a_2 + jb_2) = (a_1 \pm a_2) + j(b_1 \pm b_2).$$

<u>Iloczyn</u> dwóch liczb zespolonych oblicza się jak iloczyn dwóch dwumianów:

$$\underline{z}_1\underline{z}_2 = (a_1 + jb_1)(a_2 + jb_2) = a_1a_2 - b_1b_2 + j(a_1b_2 + a_2b_1).$$

Iloczyn dwóch liczb można obliczyć z wykorzystaniem postaci wykładniczej (Eulera) liczby zespolonej:

$$\underline{z}_1\underline{z}_2 = |\underline{z}_1| e^{j\varphi_1} |\underline{z}_2| e^{j\varphi_2} = |\underline{z}_1| |\underline{z}_2| e^{j(\varphi_1 + \varphi_2)} = |\underline{z}_1| |\underline{z}_2| \cos(\varphi_1 + \varphi_2) + j |\underline{z}_1| |\underline{z}_2| \sin(\varphi_1 + \varphi_2)].$$

<u>Iloraz</u> dwóch liczb zespolonych oblicza się z wykorzystaniem pojęcia liczby sprzężonej:

$$\frac{\underline{z}_1}{\underline{z}_2} = \frac{\underline{z}_1\underline{z}_2}{\underline{z}_2\underline{z}_2} = \frac{(a_1 + \mathrm{jb}_1)(a_2 + \mathrm{jb}_2)}{a_2^2 + b_2^2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} - \mathrm{j}\frac{a_1b_2 - a_2b_1}{a_2^2 + b_2^2}.$$

Wykorzystując postać wykładniczą liczb można zapisać:

$$\frac{\underline{z}_1}{\underline{z}_2} = \frac{|\underline{z}_1| e^{j\varphi_1}}{|\underline{z}_2| e^{j\varphi_2}} = \frac{|\underline{z}_1|}{|\underline{z}_2|} e^{j(\varphi_1 - \varphi_2)} = \frac{|\underline{z}_1|}{|\underline{z}_2|} \cos(\varphi_1 - \varphi_2) + j \frac{|\underline{z}_1|}{|\underline{z}_2|} \sin(\varphi_1 - \varphi_2).$$

LICZBY ZESPOLONE (przykłady)

$$\underline{z}_1 = -1 - \mathbf{j} = \sqrt{2}e^{-\mathbf{j}135^0}; \ \underline{z}_2 = -2 + \mathbf{j}2 = 2\sqrt{2}e^{\mathbf{j}135^0}$$

$$\underline{z}_2 = -1 = e^{\pm j180^0}; \quad \underline{z}_3 = \mathbf{j} = e^{\mathbf{j}90^0}; \quad \underline{z}_4 = -\mathbf{j} = e^{-\mathbf{j}90^0}$$

$$\frac{\underline{z}_1}{\underline{z}_2} = \frac{-1 - \mathbf{j}}{-2 + \mathbf{j}2} = \frac{-1 - \mathbf{j}}{-2 + \mathbf{j}2} \cdot \frac{-2 - \mathbf{j}2}{-2 - \mathbf{j}2} = \frac{\mathbf{j}4}{(-2)^2 + (-2)^2} = \mathbf{j}\frac{1}{2}$$

lepiej

$$\frac{\underline{z}_1}{\underline{z}_2} = \frac{\sqrt{2}e^{-j135^0}}{2\sqrt{2}e^{j135^0}} = \frac{1}{2}e^{-j270} = \frac{1}{2}e^{j90^0} = j\frac{1}{2}$$

LICZBY ZESPOLONE - Matlab

```
>> z1=3-5j;z2=-3-5j;
>> z1m=abs(z1),z1a=angle(z1)*180/pi
z1m =
        5.8310
z1a =
    -59.0362
>> z1re=real(z1),z1im=imag(z1)
z1re =
        3
z1im =
    -5
```


LICZBY ZESPOLONE - Matlab

```
>> zw1=z1*z2,zw2=z1/z2
zw1 =
    -34
zw2 =
    0.4706 + 0.8824i

>> zp=5.8310*exp( -59.0362*j/180*pi)
zp =
    3.0000 - 5.0000i
```

Dobry wykład na youtube

https://www.youtube.com/watch?v=WuaBtDHWrv0