

QUESTION 2:



Find nonlinear i-v characteristic of circuit

reverse biased. So until  $V < V_{fb} + V_{za}$  there won't be current. And after that point zener diodes will act like voltage regulator.

If 4<0, first zener diade is reverse biased and second zener diade is forward biased. So until 4>-1 there won't be current. After that point zener diades will act like voltage regulator.

iv characteristic of Zener diodes;



105.

1-v characteristic of resistor

-Verb-V22
-Verb-V22
-Verb-V22
-Verb-V22
R

## QUESTION 3:



KVL at MESH 3: 
$$I3R5 - Vk2 + (I3 - I2)R2 + (I3 - I1).R3 - Vk3 = 0$$
 (2)

From Eq 2: 
$$I_2R_b + I_2R_4 - I_1R_4 + I_2R_2 - I_3R_2 + V_{K2} = 0$$
  
So  $-R_4I_1 - (R_b + R_4 + R_2) \cdot I_2 + R_2 \cdot I_3 = V_{K2}$ 

From Eq 3: 
$$I_3R_5 - V_{K_2} + I_3R_2 - I_2R_2 + I_3R_3 - I_1R_3 - V_{K_3} = 0$$
  
So  $-I_1R_3 - I_2R_2 + (R_3 + R_5 + R_2)I_3 = V_{K_3} + V_{K_2}$ 

$$\begin{bmatrix} R_{1} + R_{3} + R_{4} & -R_{4} & -R_{3} \\ R_{4} & -(R_{6} + R_{4} + R_{2}) & R_{2} \\ -R_{3} & -R_{2} & R_{3} + R_{5} + R_{2} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{1} \\ \mathbf{I}_{2} \\ \mathbf{I}_{3} \end{bmatrix} = \begin{bmatrix} V_{K_{1}} - V_{K_{3}} \\ V_{K_{2}} \\ V_{K_{3}} + V_{K_{2}} \end{bmatrix}$$

| I,=-             | V41-NE3                                                                       | -R4                           | -R3                   |
|------------------|-------------------------------------------------------------------------------|-------------------------------|-----------------------|
|                  | V162                                                                          | -(R6+R4+R2)                   | R2                    |
|                  | V163+NE2                                                                      | -R2 R                         | 3+85+82               |
|                  | R1+R3+R4<br>R4<br>-R3                                                         | -R4 -R -(R6+R4+R2) R -R2 R3+R |                       |
| I <sub>2</sub> = | R <sub>1</sub> +R <sub>3</sub> +R <sub>4</sub> R <sub>4</sub> -R <sub>3</sub> | VK1-VK3<br>VK2<br>VK3+VK2     | -43<br>R2<br>R2+R3+R5 |
| Compres Office   | R1+R3+R4<br>R4<br>-R3                                                         | - R4<br>- (R6+R4+R2)<br>- R2  | R3+R5+R2              |
| I3=-             | R1+R3+R4                                                                      | - R4                          | VK1-VK3               |
|                  | R4                                                                            | - (R6+R4+R2)                  | VK2                   |
|                  | -R3                                                                           | - R2                          | VK3+VK2               |
|                  | Ru+R3+Ru                                                                      | -R4                           | -R3                   |
|                  | Ru                                                                            | -(R6+R4+R2)                   | R2                    |
|                  | -R3                                                                           | -R2                           | R3+R5+R2              |

Since we know II. Iz and
Is volves we can determine
total power of the independent
Sources.