Problem 7

7.1

The reason the loss should be about -ln(0.1) is because of the probability function. There are 10 classes in this dataset and therefore a random sampling should contain about all 10 classes with the probability of a specific class showing up to be 1/10. Therefore, when calculating the loss function, the inside of the log_e will be 1/10.

7.9

It seems like the OVA has a higher accuracy at 0.361 compared to our Softmax regression's 0.274. Softmax regression should be able to attain greater than 0.35 but it seems like the parameters we used did not show that. Our conclusion is that OVA is better at classifying for the CIFAR-10 dataset in this case but in general they should behave around the same amount.

Columns for Confusion Matrix:

['plane','car','bird','cat','deer','dog','frog','horse','ship','truck']

Confusion Matrix for Softmax

$\lceil 588 \rceil$	8	2	3	7	31	88	6	201	66	
186	87	0	5	8	44	294	12	161	203	
307	11	19	3	30	84	403	24	62	57	
211	8	6	22	11	177	381	29	53	102	
155	7	12	6	45	105	520	28	53	69	
212	2	10	11	17	271	310	32	80	55	
155	4	2	3	9	72	638	23	19	75	
198	8	1	6	34	107	265	89	81	211	
265	17	0	1	3	69	64	3	461	117	
190	25	1	2	8	19	138	9	191	417	
_									_	

Confusion Matrix for OVA

465	59	22	24	19	35	26	60	200	90
67	463	18	34	23	31	44	51	96	173
123	64	194	77	96	89	151	88	70	48
67	86	78	161	48	193	171	51	62	83
65	38	102	64	234	90	194	129	36	48
47	63	81	127	81	272	114	89	71	55
31	53	67	102	86	78	457	51	29	46
53	62	51	46	69	85	66	406	47	115
149	78	8	25	9	34	22	19	541	115
59	208	14	22	23	29	60	56	109	420

By looking at the confusion matrices, one can get a good idea of what classifications worked and which did not. Looking at the diagonal row shows the categories that were obtained correctly by each classification algorithm. It appears that Softmax is very good at classifying some types of images while being very poor for others while OVA seems pretty decent regardless of the image. There are still ups and downs but much less drastic as softmax. For example, planes are classified well (588) in Softmax but birds, cats and deer all perform much worse(19, 22, and 45). OVA is much better in these categories(194,161,234), but classify planes more poorly(465)