ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА специалиста

ОПТИМИЗАЦИЯ ТРАНСПОРТНОГО ПОТОКА ПРИ ЗАДАННЫХ ПУНКТАХ ОТПРАВЛЕНИЯ И НАЗНАЧЕНИЯ ВСЕХ УЧАСТНИКОВ ДВИЖЕНИЯ

Выполнил студент 610 группы					
Пехтерев Станислав Игоревич					
подпись студента					
Научный руководитель:					
доктор физико-математических наук Васенин Валерий Александрович					
подпись научного руководителя					
кандидат физико-математических наук					
Афонин Сергей Александрович					
подпись научного руководителя					

Москва 2022

Содержание

B	Введение				
1	Пос	становка задачи	5		
	1.1	Общая постановка задачи	5		
	1.2	Постановка задачи в терминах модели движения	6		
2	Mo	дели движения	10		
	2.1	Макроскопические модели	11		
	2.2	Микроскопические модели	14		
3	Равновесие транспортных потоков				
	3.1	Некооперативное и кооперативное равновесие	17		
	3.2	Поиск кооперативного равновесия	19		
4	Рез	ультаты	22		
	4.1	Поиск оптимальной комбинации при одинаковом приоритете участников	22		
	4.2	Поиск оптимальной комбинации с приоритетными участниками	23		
5	5 Заключение				
$\mathbf{\Pi}$	итер	атура	26		

Введение

Данная дипломная работа посвящена одной из задач математического моделировнаия транспортных потоков. А именно нас интересует построение оптимальных путей при заданных пунктах начала и конца всех участников движения на ориентированном графе в предположении, что участники следуют нашим рекомендациям. Участники могут оказывать влияние друг на друга, и что хорошо для одного, может критически отразиться на движении другого. Такая модель взаимодействия хорошо описывается некооперативной игрой, в процессе которой они не могут формировать коалиции и координировать свои действия. Однако наша задача — скооперировать всех участников движения с помощью некоторой качественной оценки всевозможных комбинаций путей. Выбор такой оценки достаточно широк и неоднозначен и зависит от преследуемых целей. Они могут быть заданы приоритетами участников движения. Например, целью может быть обеспечение свободного передвижения служб спасения или кортежа, а может быть уменьшение общего времени движения участников.

Говоря об актуальности задачи, достаточно сказать, что на данный момент существует множество научных журналов¹, в которых регулярно публикуются статьи на транспортную тематику. Также известное немецкое издательство *Springer* публикует труды ученых, представленных на конференции по математическому моделированию транспортных потоков "*Traffic and granular flow*", которая проводится с периодичностью в 2 года.

На сегодняшний день предложено множество математических моделей, позволяющих исследовать движения участников, однако они имеют свои недостатки. Так, например, в учебном пособии А. Е. Гасникова [1] изложены модели, описывающие плотный статический поток машин, передвигающихся из множества точек истока во множество точек сток. Такой подход является корректным, только если в каждый момент времени на участке некоторого пути можно задать постоянную плотность машин — количество машин на единицу длины.

Независимо в работах [2], [3] была впервые предложена макроскопическая (гидродинамическая) модель однополосного транспортного потока, названая впоследствии моделью Лайтхилла—Уизема—Ричардса. Поток участников движения рассматривается как поток одномерной сжимаемой жидкости. В такой модели предполагается, что существует функциональная зависимость между скоростью и плотностью потока, а также выполняется закон сохранения масс. Далее последовал ряд работ [4], [5], [6], в которых предлагаются модели, основанные на тех же принципах.

Параллельно моделям, в которых транспортный поток уподобляется потоку сжимаемой жидкости, появились первые микроскопические модели, в которых явно задается уравнение движения каждого автомобиля. В основе всех этих подходов лежит концепция «о желании придерживаться при движении безопасной дистанции до лидера». Так, в работе [7] предпологается, что для каждого водителя существует «безопасная» скорость движения, зависящая от дистанции до лидера. В работах [8], [9] предложена модель, в которой ускорение участника

 $^{^{1}}$ Перечень научных журналов: Transportation Research: Part B, Physical Review E, Review of modern physics, Transportation Science.

прямо пропорционально скорости сближения с впереди идущей машиной.

Наш подход заключается в задании некоторой модели взаимодействия участников, с помощью которой можно полностью промоделировать движение каждого из них. Основа модели — ограничения на скорости и законы их изменения при взаимодействии участников друг с другом. Такой подход отличается индивидуализуацией участников движения — их количественные характеристики могут быть исследованы по отдельности. Заданная нами модель взаимодействия участников способна описать естественное движение автомобилей, что позволяет исследовать влияние добавления или расширения дорог на количество и длины пробок.

Общая постановка задачи, описанная в первом разделе, основана только на функции затрат, однако во втором разделе будет показана возможность задания некоторой модели движения, описывающей взаимодействие участников. В том же разделе будут разработаны и исследованы некоторые модели движения участников, будет предложена классификация этих моделей. Среди них мы выделим класс, для которого доказана возможность сведения задачи оптимизации к задаче смешанного целочисленного линейного программирования. В третьем разделе, руководствуясь принципами в теории транспортного равновесия, мы попробуем решить задачу построения оптимальных маршрутов путем поиска таких равновесий. В завершение будут рассмотрены практические интерпретации задачи и описаны результаты их исследования.

1 Постановка задачи

Для начала сформулируем задачу оптимизации транспортного потока в общей форме. В разделе 1.2 мы конкретизируем постановку задачи, задав участникам некоторую модель движения.

1.1 Общая постановка задачи

Дорожной сетью назовем тройку G=(V,E,l), где (V,E) — ориентированный граф с длинами ребер $l:E\to\mathbb{R}_{>0}$. Предположим, что имеется n участников с заданными точками отправления $A_i\in V$ и прибытия $B_i\in V$. Пусть множество P_i есть множество всех простых путей из A_i в B_i . Элемент декартового произведения $P=\prod_{i=1}^n P_i$ назовем комбинацией путей. Пусть известно, что при комбинации путей участников $\mathbf{p}=(p_1,\ldots,p_n)\in P$ i-ый участник затрачивает $T_i(\mathbf{p})\in\mathbb{R}_{\geq 0}$ времени на свой путь. Функции T_i назовем функциями временных затрат участника i. Некооперативным прокладыванием пути в дорожной сети G назовем пятерку $F=(n,G,\{A_i\}_{i=1}^n,\{B_i\}_{i=1}^n,\{T_i\}_{i=1}^n)$. Некооперативное прокладывание пути предполагает, что каждый участник стремится сократить собственные временные затраты выбором пути p_i , несмотря на временные затраты других участников [10]. Для того, чтобы скооперировать участников, введем некоторую функцию $\Phi(\mathbf{p})=\phi(T_1(\mathbf{p}),\ldots,T_n(\mathbf{p}))$, определенную на множестве всех возможных комбинаций путей P и отображающую его во множество действительных чисел. С помощью нее участники могут отслеживать, как влияет изменение их пути на общую картину движения. Такую функцию назовем функцией стоимости.

Для заданных некооперативного прокладывания пути F и функции стоимости Φ необходимо найти комбинацию путей \mathbf{p}^* такую, что функция стоимости на ней минимальна, то есть

$$\Phi(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \Phi(\mathbf{p}). \tag{1}$$

Комбинацию путей \mathbf{p}^* будем называть *оптимальной*, а стоимость $\Phi(\mathbf{p}^*)$ — *оптимальной* стоимостью.

Если нет каких-либо ограничений на функцию ϕ , то решение задачи (1) можно найти только перебором, поэтому будем рассматривать функции ϕ специального вида

$$\phi(T_1,\ldots,T_n)=\sum_{i=1}^n\gamma_iT_i,$$

где $\gamma_i \in \mathbb{R}_{\geq 0}$ — приоритет участника i. В данном работе мы рассматриваем случай, когда каждый участник имеет одинаковый приоритет, то есть

$$\phi(T_1, \dots, T_n) = \sum_{i=1}^n T_i. \tag{2}$$

Заметим, что некоторые результаты в данной работе применимы для более широкого класса функций ϕ .

Пока не понятно, каким образом стоит задавать функции $T_i(\mathbf{p})$ и как заложить в них взаимодействие участников. Далее постараемся описать общий принцип взаимодействия участников на основе задания некоторой модели движения и покажем, что такой принцип не ограничивает нас в выборе $T_i(\mathbf{p})$.

1.2 Постановка задачи в терминах модели движения

Будем считать, что временные затраты участника на выбранном пути состоят из временных затрат на каждом ребре этого пути:

$$T_i(\mathbf{p}) = \sum_{e \in p_i} \overline{\tau}_{e,i}(\mathbf{p}),$$

где функции $\overline{\tau}_{e,i}(\mathbf{p})$ — временные затраты i-ого участника на ребре e при комбинации путей $\mathbf{p}.$

Для того, чтобы задать движение участника на пути, введем функции присутствия участника на ребре в момент времени t:

$$\theta_{e,i}(\mathbf{p},t) = \begin{cases} 1, & \text{если i-ый участник движется по ребру e в момент времени t,} \\ 0, & \text{иначе,} \end{cases}$$

где $\sum_{e \in E} \theta_{e,i}(\mathbf{p},t)$ принимает значение 1, пока i -ый участник не посетит свою точку назначения B_i . Пусть достижение конца пути p_i наступает в момент $T_i(\mathbf{p})$, после чего $\sum_{e \in E} \theta_{e,i}(\mathbf{p},t)$ принимает значение 0. Получаем, что

$$T_i(\mathbf{p}) = \sum_{e \in p_i} \int_0^\infty \theta_{e,i}(\mathbf{p}, t) dt, \ \forall \Delta t > 0.$$
 (3)

Будем считать, что движение каждого участника является непрерывным и однонаправленным в дорожной сети G. Другими словами, участник не может резко повляться и исчезать на несмежных ребрах, а также находиться на уже пройденных ребрах. Таким образом, функции $\theta_{e,i}(\mathbf{p},t)$ являются индикаторами некоторых временных отрезков $[t_{e,i}^{in}(\mathbf{p}),t_{e,i}^{out}(\mathbf{p})]$, которые описывают однонаправленное движение:

$$\begin{cases}
t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p}) \in \mathbb{R}_{+}, & i = 1, \dots, n, \ e \in E, \\
t_{e,i}^{in}(\mathbf{p}) \leq t_{e,i}^{out}(\mathbf{p}), & i = 1, \dots, n, \ e \in p_{i}, \\
t_{e,i}^{in}(\mathbf{p}) = t_{e,i}^{out}(\mathbf{p}) = 0, & i = 1, \dots, n, \ e \notin p_{i}, \\
t_{e_{1},i}^{in}(\mathbf{p}) = t_{e_{2},i}^{out}(\mathbf{p}), & i = 1, \dots, n, \ e_{1}, e_{2} \in p_{i}, \ \exists A, B, C \in V : e_{1} = (A, B), e_{2} = (B, C) \\
t_{e,i}^{in}(\mathbf{p}) = 0, & i = 1, \dots, n, \ e = (A_{i}, X), \ X \in V.
\end{cases}$$
(4)

Заметим, что выбор таких отрезков пока неоднозначен. Далее считаем, что для каждого ребра e, участника i и комбинации путей \mathbf{p} каким-то образом выбраны некоторые величины

 $t_{e,i}^{in}(\mathbf{p}),\ t_{e,i}^{out}(\mathbf{p}),\$ удовлетворяющие ограничениям (4). Тогда функция временных затрат (3) i-ого участника примет вид

$$T_i(\mathbf{p}) = \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}). \tag{5}$$

Функция стоимости в этом случае равна

$$\Phi(\mathbf{p}) = \sum_{i=1}^{n} \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}).$$

$$(6)$$

Считаем, что временные затраты участника i на ребре e ограничены некоторыми положительными константами $\overline{\tau}_{e,i}^{min}, \ \overline{\tau}_{e,i}^{max}$:

$$0 < \overline{\tau}_{e,i}^{min} \le t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}) \le \overline{\tau}_{e,i}^{max}, \ e \in p_i, \ i = 1, \dots, n.$$
 (7)

Заметим, что задача оптимизации целевой функции (6) с ограничениями (4), (7) ставится в терминах задачи смешанного целочисленного линейного программирования [11] с булевыми переменными $I_{e,i}$ и вещественными переменными $t_{e,i}^{in}$, $t_{e,i}^{out}$. Для участника i первые отвечают факту проезда по ребру e, вторые — моментам прохождения этого ребра. Однако в данных ограничениях решение уже есть — участник i передвигается по кратчайшему пути в дорожной сети G с весами $\overline{\tau}_{e,i}^{min}$. Тривиальность решения связана с тем, что в данной задаче оптимизации отсутствуют влияния участников друг на друга. Для того, чтобы учесть это влияние, для каждого участника i введем микроскопическую характеристику движения $v_i(\mathbf{p},t)$ — положительную, ограниченную функцию, описывающую скорость участника. Тогда имеет место следующее ограничение

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v_{i}(\mathbf{p},t)dt = l_{e}, e \in p_{i}, i = 1,\dots, n,$$
(8)

или

$$\int_{\substack{iin\\e,j}}^{tout} v_i(\mathbf{p},t)dt = l_e, e \in p_i, i = 1,\dots, n.$$

$$(9)$$

Будем говорить, что уравнения (9) задают движения участников, а функции $v_i(\mathbf{p},t)$ назовем моделью движения. Будем считать, что функции v_i ограничены некоторыми положительными константами. Обозначим верхние и нижне грани этих функци $v_i^{max}>0$ и $v_i^{min}>0$ сответственно. Без ограничения общности считаем, что $\overline{\tau}_{e,i}^{min}$, $\overline{\tau}_{e,i}^{max}$ вычисляются в самом быстром и самом медленном вариантах передвижения по ребру e участником i, а именно

$$\overline{\tau}_{e,i}^{min} = \frac{l_e}{v_i^{max}}, \ \overline{\tau}_{e,i}^{max} = \frac{l_e}{v_i^{min}}.$$
(10)

Заметим, что величины $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p}) \in \mathbb{R}_+$ — произвольные вещественные величины, которые удовлетворяют ограничениям (4), (7), (9), (10).

Утверждение 1.1. Пусть задана дорожная сеть G, модель движения $v_i(\boldsymbol{p},t)$, и для кажедого ребра e, участника i и комбинации путей \boldsymbol{p} задано множество величин $t_{e,i}^{in}(\boldsymbol{p}), t_{e,i}^{out}(\boldsymbol{p}) \in$

 \mathbb{R}_+ , для которых выполняются ограничения (4), (7), (9), (10). Тогда $t_{e,i}^{out}(\mathbf{p})$ и $t_{e,i}^{in}(\mathbf{p})$, $e \in p_i$ есть функции от комбинации путей $\mathbf{p} \in P$.

Доказательство. Зафиксируем некоторую комбинацию путей **р**. Опишем алгоритм поиска значений $t_{e,i}^{out}(\mathbf{p})$ и $t_{e,i}^{in}(\mathbf{p})$ и покажем его корректность.

Algorithm 1 Моделирование движения участников

```
Input: количество участников n, дорожная сеть G, комбинация путей \mathbf{p} сети G Output: t_{e,i}^{out}(\mathbf{p}), t_{e,i}^{in}(\mathbf{p}), e \in p_i, i = 1, \dots, n Data: текущее время t, текущее ребро e_i и часть пройденного ребра x_i участника i
```

```
1: t = 0
 2: for i = 1, ..., n do
            e_i \leftarrow первое ребро пути p_i
            x_i \leftarrow 0
 4:
           t_{e,i}^{in}(\mathbf{p}) \leftarrow 0
 5:
 6: end for
 7: while \exists j: j — не достиг B_j do
            \tau^* \leftarrow \operatorname{argmin}\{\tau \in \mathbb{R} : \tau > t, \int\limits_t^\tau v_i(\mathbf{p}, t) dt = (1 - x_i) l_{e_i}, i - \text{не достиг } B_i\}_{i=1}^n
            for i = 1, \ldots, n and i — не достиг B_i do
 9:
                  x_i \leftarrow x_i + \frac{1}{l_{e_i}} \int_{-\infty}^{\tau^*} v_i(\mathbf{p}, t) dt
10:
                  \mathbf{if} \ x_i = 1 \ \mathbf{and} \ e_i - не последнее ребро пути p_i \ \mathbf{then}
11:
                        x_i \leftarrow 0
12:
                        t_{e:i}^{out}(\mathbf{p}) \leftarrow \tau^*
13:
                        e_i \leftarrow следующее ребро за e_i в пути p_i
14:
                        t_{e_i,i}^{in}(\mathbf{p}) \leftarrow \tau^*
15:
16:
            end for
17:
            t \leftarrow \tau^*
18:
```

Будем называть данный алгоритм моделированием движения.

19: end while

Koppeкmнocmь. Для доказательства коppeктности алгоритма достаточно доказать коppekthoctь шага 8 и достижимость шага 11. Это следует из того, что для каждого участника i функция скорости ограничена снизу некоторой константой v_i^{max} . Алгоритм сойдется, поскольку пути p_i конечны.

Используя это утверждение, можем ввести следующее понятие:

He koone pamu в ным передвижение м в дорожной сети <math>G в модели движения $v_i(\mathbf{p},t)$ назовем такое не koone patu в не прокладывание пути

$$F = \left(n, G, \{A_i\}_{i=1}^n, \{B_i\}_{i=1}^n, \left\{\sum_{e \in p_i} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})\right\}_{i=1}^n\right)$$
, где функции $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p})$ получены

8

путем моделирования движения с моделью движения $v_i(\mathbf{p},t)$. Значит, постановка задачи в терминах модели движения следующая:

Пусть задано некооперативное передвижение в дорожной сети G в модели движения $v_i(\mathbf{p},t)$. Требуется найти комбинацию путей \mathbf{p} такую, что функция

$$\Phi(\mathbf{p}) = \sum_{i=1}^{n} \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})$$
(11)

минимальна.

2 Модели движения

Часто для описания движения функции $v_i(\mathbf{p},t)$ задают на основе некоторых правил движения. Именно в этих правилах заложено взаимодействие участников. Например,

- 1. Тормозим, если впереди идущий слишком близко к нам.
- 2. Ускоряемся, если впереди идущий достаточно далеко от нас.
- 3. Не превышаем некоторую скорость.
- 4. Тормозим перед поворотом.

Значения функции $v_i(\mathbf{p},t)$ могут быть вычислены применением правил движения в момент моделирования (см. алгоритм 1).

Оказывается, что для любого некооперативного прокладывания пути существует, по крайней мере, одна модель движения, описывающая некооперативное прокладывание пути.

Утверждение 2.1. Пусть заданы некоторое некооперативное прокладывание пути F. Тогда можно задать такую модель движения $v_i(p,t)$, что затраченное время на передвижение i-ым участником при комбинации путей p совпадает c его временными затратами при моделировании, то есть выполняется (5).

Доказательство. Рассмотрим модель движения с постоянными скоростями

$$v_i(\mathbf{p}, t) = \overline{v}_i(\mathbf{p}) = \frac{T_i(\mathbf{p})}{\sum\limits_{e \in p_i} l_e}.$$

Промоделировав движение с такими скоростями, получим (5).

Таким образом, введя модель движения мы не ограничиваем себя в выборе функций $T_i(\mathbf{p})$.

Очевидно, что решение задачи перебором не является практичным — оно сводится к перебору всех комбинаций путей $\mathbf{p} \in P$. Так, например, количество таких комбинаций в полном графе составляет

$$|P| = \left(\sum_{k=1}^{|V|-2} k!\right)^n,$$

перебрать которые в условиях реальных данных вычислительно сложно. Однако в случае, когда условие (9) можно описать в терминах задачи удовлетворения ограничений [12], задача оптимизации (11) может быть описана в терминах смешанного целочисленного линейного программирования и, как следствие, может быть решена стандартным решателем ². Оказывается, можно выделить целый класс таких моделей движения, для которых это возможно.

 $^{^2 {}m https://www.gurobi.com}$

2.1 Макроскопические модели

Предположим, что скорость участника зависит от некоторой общей для участников величины. Например, от функции *загруженности ребра*

$$n_e(\mathbf{p}, t) = \sum_{i=1}^n \theta_{e,i}(\mathbf{p}, t),$$

значение которой в момент времени t соответствует количеству участников на ребре e при комбинации путей \mathbf{p} . Предположим, скорость участника зависит только от загруженности ребра, на котором он находится в момент времени t, то есть существует ограниченная функция $v:\{0,1,\ldots,n\}\to\mathbb{R}_{>0}$ такая, что

$$v_i(\mathbf{p},t) = \sum_{e \in E} \theta_{e,i}(\mathbf{p},t) v(n_e(\mathbf{p},t)), \ i = 1,\dots, n$$
(12)

Такую модель движения в дальнейшем будем называть *макроскопической*. Например, естественно рассмотреть модель

$$v(n_e(\mathbf{p},t)) = \frac{v_{max}}{n_e(\mathbf{p},t)}.$$
(13)

В разделе 3 покажем, что при таком взаимодействии участников (13) в статическом некооперативном передвижении³ верно, что для некооперативного равновесия $\hat{\mathbf{p}} \in P$ верна оценка

$$\frac{\Phi(\widehat{\mathbf{p}})}{\Phi(\mathbf{p}^*)} \le \frac{4}{3}.$$

В общем случае такая модель задается последовательностью значений $\{v(k)\}_{k=1}^n$.

Лемма 2.1. Пусть даны вещественные переменные a, b целочисленного программирования, u известно, что существует константа M>0: |a|< M, |b|< M. Тогда можно добавить новую целочисленную переменную $\mathbf{1}(\{a< b\}) \in \{0,1\}$ такую, что

$$\mathbf{1}(\{a < b\}) = \begin{cases} 1, \ a < b, \\ 0, \ a \ge b. \end{cases}$$

Доказательство. Добавим в нашу задачу два неравенства:

$$2M(\mathbf{1}(\{a < b\}) - 1) < b - a \le 2M\mathbf{1}(\{a < b\})$$

Очевидная проверка показывает, что неравенство выполняется для любых a, b.

Утверждение 2.2. Пусть модель движения $v_i(\mathbf{p},t)$ макроскопическая. Тогда задача (11) есть задача смешанного целочисленного линейного программирования.

³Некооперативное передвижение называется статическим, если функция $n_e(\mathbf{p},t)$ не зависит от времени t.

Доказательство. Докажем для случая n=2. Для случаев $n\geq 2$ доказательство аналогичное.

Пусть имеется задача смешанного целочисленного линейного программирования (4) с переменными $t_{e,i}^{in}$, $t_{e,i}^{out}$, $I_{e,i}$, $e \in E$, i = 1, 2. Преобразуем условие (9) к каноническому виду задачи удовлетворения ограничений. Для удобства обозначим обоих участников индексами $i, j \in \{1, 2\}$.

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v_{i}(\mathbf{p},t)dt = \int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t) \sum_{e^{1} \in E} \theta_{e^{1},i}(\mathbf{p},t)v(n_{e^{1}}(\mathbf{p},t))dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt = \int_{n_{e}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt + \int_{n_{e}(\mathbf{p},t)=2} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(1)dt + \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(2)dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(1)dt - \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(1)dt + \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(2)dt =$$

$$v(1) \int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)dt + (v(2)-v(1)) \int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)\theta_{e,j}(\mathbf{p},t)dt =$$

Неизвестный интеграл — время совместного проезда участников на ребре e.

$$v(1)(t_{e,i}^{out} - t_{e,i}^{in}) + (v(2) - v(1))(t_{e,ij}^{out} - t_{e,ij}^{in}) = l_e I_{e,i},$$

В переменных задачи смешанного целочисленного программирования получим:

где новые переменные $t_{e,ij}^{in},\ t_{e,ij}^{out}$ отвечают началу и концу совместного проезда участников. Иначе говоря, $[t_{e,ij}^{in},t_{e,ij}^{out}]=[t_{e,i}^{in},t_{e,i}^{out}]\cap[t_{e,j}^{in},t_{e,j}^{out}]$. Просуммировав по всем ребрам $e\in E$, получим

 $v(1)\overline{\tau}_{e,i}(\mathbf{p}) + (v(2) - v(1)) \int_{-\infty}^{\infty} \theta_{e,i}(\mathbf{p}, t)\theta_{e,j}(\mathbf{p}, t)dt = l_e, \ e \in p_i$

$$v(1) \sum_{e \in E} (t_{e,i}^{out} - t_{e,i}^{in}) = \sum_{e \in E} l_e I_{e,i} - (v(2) - v(1)) \sum_{e \in E} (t_{e,ij}^{out} - t_{e,ij}^{in}).$$

Заметим, что левая часть представляет собой временные затраты участника i с коэффициентом v(1), поэтому задачу оптимизации можно переписать в виде

$$\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i} + \frac{v(1) - v(2)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} (t_{e,ij}^{out} - t_{e,ij}^{in}) \to \min.$$

Для завершения доказательства необходимо показать, что переменные $t_{e,ij}^{in},\,t_{e,ij}^{out}$ описываются линейными ограничениями. Обозначим

$$\Delta t = t_{e,ij}^{out} - t_{e,ij}^{in}$$

$$\Delta t_1 = t_{e,i}^{out} - t_{e,i}^{in}$$

$$\Delta t_2 = t_{e,j}^{out} - t_{e,j}^{in}$$

$$\Delta t_3 = t_{e,i}^{out} - t_{e,j}^{in}$$

$$\Delta t_4 = t_{e,j}^{out} - t_{e,i}^{in}$$

Используя лемму 2.1 при $M = \max_{e \in E, k=i,j} \overline{\tau}_{e,k}^{max}$, добавим в задачу новые переменные $\mathbf{1}(\{\Delta t_k > \Delta t_l\})$, $k \neq l, k, l \in \{1, 2, 3, 4\}$. Рассмотрим величину $T_{max} = |E|M$. В случае $v(1) \geq v(2)$ добавим в нашу задачу следующие неравенства:

$$\Delta t \ge 0,$$

$$\Delta t \ge \Delta t_k - T_{max} \sum_{l \ne k} \mathbf{1}(\{\Delta t_k > \Delta t_l\}), \ k = 1, 2, 3, 4.$$

В случае v(1) < v(2) добавим те же ограничения с другим знаком неравенства. Тогда с учетом оптимизации переменная Δt есть длина отрезка $[t_{e,ij}^{in},\,t_{e,ij}^{out}]$.

Следствие 2.1. Пусть модель движения $v_i({\pmb p},t) = \sum\limits_{e\in E} \theta_{e,i}({\pmb p},t) v(n_e({\pmb p},t))$ макроскопическая и последовательность $v(n)>0, \ \forall n\in {\mathbb Z}_+$ убывает. Предположим, что оптимальное время движения в модели с постоянной скоростью v(1) есть \widetilde{T} . Тогда

$$\widetilde{T} \le T \le \frac{v(1)}{v(n)}\widetilde{T}.$$

Доказательство. Докажем каждое неравенство по отдельности

1. В модели, где все участники едут с постоянными скоростями, движение происходит по кратчайшим путям. Тогда временные затраты есть $\widetilde{T} = \frac{1}{v(1)} \sum_{i=1}^n \sum_{e \in p_i} l_e$, где p_i - кратчайшие пути. На тех же путях задается худший случай макроскопической модели — все едут с минимальной скоростью, то есть $T = \frac{1}{v(n)} \sum_{i=1}^n \sum_{e \in p_i} l_e$. Тогда получим

$$T \le \frac{1}{v(n)} \sum_{i=1}^{n} \sum_{e \in p_i} l_e = \frac{v(1)}{v(n)} \widetilde{T}.$$

2. Производя аналогичные вычисления, что и в доказательстве 2.2, получаем, что функция оптимизации имеет вид

$$\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i} + \sum_{k=2}^{n} \frac{v(1) - v(k)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} \sum_{\substack{s_k \in 2^n \\ |s_k| = k}} \Delta t_{e,s_k} \to \min,$$

где переменные $\Delta t_{e,s_k}$ отвечают времени совместного движения участников s_k (и только их) по ребру e.

Тогда получим

$$T \ge \min\left(\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i}\right) + \min\left(\sum_{k=2}^{n} \frac{v(1) - v(k)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} \sum_{\substack{s_k \in 2^n \\ |s_k| = k}} \Delta t_{e,s_k}\right) \ge \widetilde{T}.$$

Таким образом, мы получили класс моделей движения, для которых задача оптимизации транспортного потока может быть поставлена в терминах смешанного целочисленного линейного программирования. Однако такой класс моделей движения плохо описывает реальное движение автомобилей. Так, например, модель не учитывает расстояние между участниками и их порядок на ребре.

2.2 Микроскопические модели

Микроскопическими называются модели движения, которые не являются макроскопическими, то есть не представимы в виде (12). В таких моделях явно исследуется движение каждого автомобиля. Выбор такой модели позволяет теоретически достичь более точного описания движения автомобилей по сравнению с макроскопической моделью, однако на практике этот подход требует больших вычислительных ресурсов.

В качестве примера рассмотрим движение по бесконечному ребру. Пусть $x_i(t) \in [0, +\infty)$ — координаты участника i. Предположим, что скорости участников ограничены некоторой общей величиной v_{max} . Пусть в момент времени t=0 выполняется $x_1(0) \le x_2(0) \le \cdots \le x_n(0)$.

Модель пропорциональной скорости

Рассмотрим модель, в которой скорость участника пропорциональна расстоянию до впереди идущего участника. Положим $d_i(t) = x_{i+1}(t) - x_i(t)$, $i = 1, \ldots, n-1$. Без ограничения общности считаем, что $d_i(0) < D$, $i = 1, \ldots, n-1$, где D — максимальное расстояние, на котором происходит взаимодействие участников. Иначе рассмотрим подпоследовательности участников, для которых выполняется это условие.

Пусть модель движения есть

$$v_i(t) = \begin{cases} v_{max}, & i = n, \\ v_{max} \frac{d_i(t)}{D}, & i \neq n. \end{cases}$$
 (14)

Для поиска функций $x_i(t)$ достаточно рассмотреть систему дифференциальных уравнений

$$\dot{d}_i(t) = v_{i+1}(t) - v_i(t).$$

Решением такой системы является

$$d_{n-k}(\tau) = \sum_{l=0}^{k-1} \left(\frac{d_{n-k+l}(0) - D}{l!} \tau^l e^{-\tau} \right) + D,$$

где $\tau = \frac{v_{max}}{D}t$. Модель обладает тем свойством, что порядок участников постоянен и участники не покидают зону взаимодействия D.

Данная модель хорошо описывает реальное движение участников, однако ее практическое применение вызывает сложности, поскольку решение уравнения, вычисляемое на шаге 8 моделирования движения (см. алгоритм 1), может быть найдено только приближенно.

Модель снижения скорости

Предположим, что существует некоторая величина c_n , которая отвечает за последовательное снижение скорости участников относительно их порядка:

$$v_{n-k} = v_{max} - c_n k, \ k = 0, \dots, n-1.$$

Величину c_n выберем из соображений, что $v_0 = \frac{v_{max}}{n}$. Тогда $c_n = \frac{v_{max}}{n}$. Если смоделировать данное движение в дорожной сети, то функции скоростей будут кусочно–постоянными. Это связано с тем, что при смене ребра участниками меняются их порядок и величина $n_e(\mathbf{p},t)$. Поэтому модель снижения скорости не лучшим образом описывает реальное движение, однако проста в использовании.

В отличие от макроскопических моделей, микроскопические модели не сводятся к задаче целочисленного программирования. Однако для любой модели движения можно описать алгоритмы оптимизации, которые сходятся к «локальному минимуму». Рассмотрим такие алгоритмы в следующем разделе.

3 Равновесие транспортных потоков

Покажем, что задача (11) в макроскопической модели движения (13) с статическим потоком участников, эквивалентна некоторой задаче оптимизации статического потока.

Для начала дадим определение статического транспортного потока. При исследовании потокообразующего движения в множестве вершин V принятно выделять два подмножества: множество $S \subset V$ — вершины, порождающие поток, или источики; множество $D \subset V$ — вершины, поглощающие поток, или стоки. Множество всех потокообразующих пар представим в виде $W = S \times D$. Каждой паре источник-сток $w = (s,d) \in W$ соответствует некоторый объем пользователей ρ_w . Обозначим через P_w множество путей из источника s в сток d. Для каждого $w \in W$ и для каждого пути $p_w \in P_w$ введем велечину потока x_p , которая должна удовлетворять балансовым ограничениям, то есть принадлежать множеству

$$X_w = \{x_p > 0 : p \in P_w, \sum_{p \in P_w} x_p = \rho_w\}.$$

Множеством допустимых комбинаций потоков назовем $X = \{x_w : x_w \in X_w, w \in W\}$, а элементы этого множества $\mathbf{x} \in X$ комбинациями потоков. Обозначим через $G_p(\mathbf{x})$ удельные затраты участников на проезд по пути p при комбинации потоков \mathbf{x} .

Задача оптимизации статического транспортного потока заключается в поиске такой комбинации потоков \mathbf{x}^* , что суммарные удельные затраты участников — минимальны, то есть

$$\mathbf{x}^* = \underset{\mathbf{x} \in X}{\operatorname{argmin}} \sum_{w \in W} \sum_{p_{vv} \in P} G_p(\mathbf{x}) x_p. \tag{15}$$

Рассмотрим частный случай задачи (15), когда функция затрат по пути p есть суммарные затраты по всем ребрам этого пути:

$$G_p(\mathbf{x}) = \sum_{e \in p} \tau_e(y_e(\mathbf{x})),$$

где τ_e — функция затрат на ребре $e \in E$ и

$$y_e(\mathbf{x}) = \sum_{w \in W} \sum_{\substack{p_w \in P_w \\ e \in p_w}} x_p, \tag{16}$$

есть суммарный объем потока, проходящий через ребро $e \in E$.

Покажем, что такая задача с функцией затрат на ребре $\tau_e(y_e) = a_e y_e$ с некоторым коэффициентом пропорциональности a_e эквивалентна оптимизации статического некооперативного передвижения (1) в макроскопической модели движения (13).

В условиях статичности передвижения, функция $n_e(\mathbf{p},t)$ не зависит от времени, а следовательно из условия (9) получим:

$$\left(t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})\right) \frac{v_{max}}{n_e(\mathbf{p})} = l_e,$$

следовательно временные затраты участником i на ребре e составляют

$$\overline{\tau}_{e,i}(\mathbf{p}) = \frac{l_e}{v_{max}} n_e(\mathbf{p}).$$

Таким образом в обеих задачах затраты на передвижения по ребру пропорциональны количеству (объему) участников, проходящих по нему с коэффициентом $a_e = \frac{l_e}{l_{max}}$.

В работе А. С. Piugou [13] показано, что в статическом транспортном потоке с линейными функциями затрат $\tau_e(y) = a_e y_e$ суммарные удельные затраты в состояние равновесии могут составлять $\frac{4}{3}$ от оптимальных суммарных удельных затрат. Оказывается, это соотношение представляет собой неулучшаемую оценку для таких функций затрат. Поскольку статический транспортный поток с описанными функциями затрат — частный случай передвижения в макроскопической модели (13), то можно выдвинуть гипотезу, что данное соотношение выполняется и для нестатического передвижения.

В этом разделе мы исследуем задачу поиска равновесия транспортных потоков как возможность поиска оптимального транспортного потока.

3.1 Некооперативное и кооперативное равновесие

Hекооперативной игрой в нормальной форме назовем тройку $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$, где $n \in \mathbb{N}$ — количество участников игры, S_i — множество стратегий участника $i \in 1, \ldots, n, H_i$ — функция выигрыша участника i, определенная на множестве ситуаций $S = \prod_{i=1}^n S_i$ и отображающая его во множество действительных чисел. В нашей задаче множеством стретегий S_i есть множество всех маршрутов P_i участника i, а выйгрыш составляет $H_i(\mathbf{p}) = -T_i(\mathbf{p})$.

Равновесием Нэша некооперативной игры в нормальной форме $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$ назовем стратегию $\mathbf{s}^* = (s_1^*, \dots, s_n^*) \in S$ такую, что ни одному игроку i невыгодно изменение своей стратегии с s_i^* на любую другую $s \in S_i$. В наших обозначениях равновесие Нэша принимает вид

$$H_i(\mathbf{s}^*) \ge H_i((s_1^*, \dots, s_{i-1}^*, s, s_{i+1}^*, \dots, s_n^*)), \ \forall s \in S_i, \ i = 1, \dots, n.$$

Заметим, что в общем случае ничего нельзя сказать о существовании и единственности равновесия некооперативной игры.

Введем понятия некооперативного и кооперативного равновесия, которые являются равновесиями Нэша в терминах некооперативного прокладывания пути, где выигрыш заключается в сэкономленном времени передвижения и стоимости соответственно.

Некооперативным равновесием некооперативного прокладывания пути F назовем комбинацию путей $\widehat{\mathbf{p}} \in P$, которая является равновесием Нэша некооперативной игры $\widehat{\Gamma} = (n, \{P_i\}_{i=1}^n, \{-T_i\}_{i=1}^n)$. Множество всех некооперативных равновесий обозначим \widehat{P} .

Кооперативным равновесием некооперативного прокладывания пути F и функции стоимости $\Phi(\mathbf{p})$ назовем комбинацию путей $\widetilde{\mathbf{p}} \in P$, которая является равновесием Нэша некооперативной игры $\widetilde{\Gamma} = (n, \{P_i\}_{i=1}^n, \{-\Phi\}_{i=1}^n)$. Множество всех кооперативных равновесий обозначим \widetilde{P} .

Заметим, что определения некооперативного прокладывания пути и некооперативной игры эквивалентны. Таким образом, любой пример игры, где равновесия Нэша не существует, можно использовать как пример некооперативного передвижения в дорожной сети, где нет кооперативного равновесия. В работе Д. Браеса [14] рассмотрен пример транспортного потока, для которого транспортное равновесие перестает быть оптимальным после добавления дополнительного ребра в граф. Оказывается, что такое поведение наблюдается и в нашей модели движения.

Пусть имеется n=4000 участников движения. Рассмотрим ориентированный граф G (см. рис. 1 (a)).

- (а) Оптимальное некооперативное равновесие: $2\,000$ едут по ACB, остальные по ADB. Затраты каждого $\frac{2000}{100} + 45 = 65$.
- (b) Добавим ребро CD. Неоптимальное некооперативное равновесие: все едут по ACDB. Затраты: 80.

Рис. 1: Парадокс Браеса. Метки на ребрах - время проезда n участников по этому ребру. n=4000 участников двигаются из точки A в точку B.

Положим, что временые затраты по ребрам есть

$$\overline{\tau}_{AC,i}(\mathbf{p}) = \frac{1}{100} \frac{\int\limits_{0}^{\infty} n_{AC}(\mathbf{p}, t) dt}{\int\limits_{n_{AC}(\mathbf{p}, t) > 0} dt},$$

$$\overline{\tau}_{CB,i}(\mathbf{p}) = 45,$$

$$\overline{\tau}_{AD,i}(\mathbf{p}) = 45,$$

$$\overline{\tau}_{DB,i}(\mathbf{p}) = \frac{1}{100} \frac{\int\limits_{0}^{\infty} n_{DB}(\mathbf{p}, t) dt}{\int\limits_{n_{DB}(\mathbf{p}, t) > 0} dt}.$$

Предположим, что все участники движения имеют точку отправления A и прибытия B. Пусть $n_1 \in \mathbb{Z}_+$ участников выбирают путь ACB и $n_2 \in \mathbb{Z}_+$ участников — путь ADB. Тогда, некооперативное равновесие достигается в случае

$$\frac{n_1}{100} + 45 = \frac{n_2}{100} + 45,$$

то есть $n_1 = n_2$ и временные затраты каждого участника составляют 65 единиц времени. Такое распределение участников по путям является оптимальным, поскольку является ре-

шением задачи оптимизации

$$n_1 \left(\frac{n_1}{100} + 45 \right) + n_2 \left(\frac{n_2}{100} + 45 \right) \to \min_{\substack{n_1 \ge 0, n_2 \ge 0 \\ n_1 + n_2 = 4000}}.$$

Теперь добавим в граф ребро CD (см. рис. 1 **(b)**) так, что временные затраты на проезд по нему близки к 0:

$$\overline{\tau}_{CD,i}(\mathbf{p}) \approx 0.$$

В таком случае никому из участников, передвигающихся через вершину C, не выгодно ехать по ребру CB. С другой стороны, самый быстрый способ добраться до вершины D — передвигаться по пути ACD. Таким образом, некооперативное равновесие достигается, когда все участники передвигаются по новому пути ACDB. При этом они затрачивают $\frac{n}{100} + \frac{n}{100} = 80$ единиц времени. Поскольку стоимость комбинации путей увеличилась, данное некооперативное равновесие перестало быть оптимальным.

Заметим, что для кооперативного равновесия верно обратное:

Утверждение 3.1. Множество кооперативных равновесий \widetilde{P} не пусто, причем оптимальная комбинация путей является таким равновесием, то есть $p^* \in \widetilde{P}$.

Доказательство. Поскольку для любого $\mathbf{p} \in P$

$$\Phi(\mathbf{p}^*) \leq \Phi(\mathbf{p}),$$

то неравенство верно и для комбинаций путей

$$\mathbf{p} = (p_1^*, \dots, p_{i-1}^*, p, p_{i+1}^*, \dots, p_n^*), \ p \in P_i, \ i = 1, \dots, n.$$

В некотором смысле кооперативным равновесием можно назвать «локальный минимум» функции Φ .

3.2 Поиск кооперативного равновесия

Рассмотрим ряд алгоритмов, позволяющих получить некоторое кооперативное равновесие.

Общим свойством всех этих алгоритмов является предположение о том, что существует некоторый алгоритм $\alpha(\Phi_i)$, позволяющий решить задачу оптимизации некоторой функции стоимости $\Phi_i(\mathbf{p}) = \phi_i(T_1(\mathbf{p}), \dots, T_n(\mathbf{p}))$ посредством выбора пути p_i :

$$\alpha(\Phi_i): \Phi_i(\mathbf{p}) \to \min_{p_i \in P_i}$$
 (17)

В работе Л. Е. Разумовой [15] представлен один из таких алгоритмов построения оптимального пути p_i за полиномиальное относительно входных данных время при условии, что функция $\Phi_i(\mathbf{p})$ удовлетворяет неравенству

$$\Phi_i(p_1, \dots, p_{i-1}, pe, p_{i+1}, \dots, p_n) \le \Phi_i(p_1, \dots, p_{i-1}, qe, p_{i+1}, \dots, p_n), \tag{18}$$

где $p,\ q$ — два пути к некоторой вершине $B\in V$, ребро e выходит из этой вершины и путь p «дешевле», чем q относительно стоимости Φ_i :

$$\Phi_i(p_1, \dots, p_{i-1}, p, p_{i+1}, \dots, p_n) \le \Phi_i(p_1, \dots, p_{i-1}, q, p_{i+1}, \dots, p_n). \tag{19}$$

В той же работе показано, что в том случае, когда добавление любого участника не влияет на движение других участников, функции $\Phi_i = T_i$ удовлетворяют условиям (18), (19) в моделях, описанных в нашей работе. На практике же, это влияние существует. Погрешность алгоритма $\alpha(\Phi_i)$ в таком случае зависит от экстримальных свойств функции $v_i(\mathbf{p}, \mathbf{t})$.

Предположим, что имеются некоторые функции стоимости $\Phi_i(\mathbf{p})$, удовлетворяющие условиям (18), (19), и процессы оптимизации стоимостей ϕ_i и ϕ по времени T_i одинаковы:

$$\frac{\partial \phi_i}{\partial T_i} \equiv \frac{\partial \phi}{\partial T_i}, \ i = 1, \dots, n. \tag{20}$$

При условиях (18), (19), (20) возможно описать полиномиальный алгоритм $\beta(\{\Phi_i\}_{i=1}^n)$, позволяющий перейти к меньшей стоимости передвижения путем изменения некоторого пути p_i участника i. Для поиска кооперативного рановесия достаточно найти неподвижную точку алгоритма β .

$\overline{\mathbf{Algorithm}}\ \mathbf{2}\ \Pi$ оиск неподвижной точки алгоритма β

Input: Начальная комбинация путей $\mathbf{p}_0 \in P$, алгоритм β , количество итераций iter

Output: кооперативное равновесие $\widetilde{\mathbf{p}} \in \widetilde{P}$

 $\mathbf{Data:}\;\mathbf{p}_{cur}$ - текущая комбинация путей, \mathbf{p}_{new} - новая комбинация путей, i - номер итерации

```
1: \mathbf{p}_{cur} \leftarrow \mathbf{p}_0
```

 $2: i \leftarrow 0$

3: while i < iter do

4: $\mathbf{p}_{new} \leftarrow \beta(\mathbf{p}_{cur})$

5: $i \leftarrow i + 1$

6: if $\mathbf{p}_{new} = \mathbf{p}_{cur}$ then

7: $\mathbf{return} \ \mathbf{p}_{cur}$

8: end if

9: end while

10: return \mathbf{p}_{cur}

Данный алгоритм не дает гарантий, что сходимость произойдет за число итераций, не зависящее от количества комбинаций путей. Однако результатом каждой итерации алгоритма β является новая комбинация путей ${\bf p}$ меньшей стоимости относительно Φ .

Опишем алгоритм, который с некоторыми допущениями на модель движения имеет полиномиальную сложность и находит оптимальную комбинацию путей \mathbf{p} . Также алгоритм не зависит от начальной комбинации путей $\mathbf{p}_0 \in P$. Предположим, имеется набор функций $\{\{\Phi_{i,k}\}_{i=1}^k\}_{k=1}^n$, для каждого k отображающие декартово прозведение $\prod_{i=1}^k P_i$ во множество действительных чисел \mathbb{R} . Считаем, что все функции удовлетворяют условиям (18), (19), (20).

Algorithm 3 Последовательное добавление участников в движение

Input: количество участников n, алгоритм α , алгоритмы $\{\beta_k\}_{k=1}^n$

Output: кооперативное равновесие $\widetilde{\mathbf{p}} \in \widetilde{P}$

Data: $\mathbf{p}_k \in \prod_{i=1}^k P_i$ - кооперативное отношение для первых k участников, \mathbf{p}_{new} - новая комбинация путей, k - номер итерации

- 1: $k \leftarrow 0$
- 2: while $k \le n$ do
- 3: $\mathbf{p}_{k+1} \leftarrow (\mathbf{p}_k, \alpha(\mathbf{p}_k))$
- 4: Запустим алгоритм 2 на комбинации путей \mathbf{p}_{k+1}
- 5: $k \leftarrow k + 1$
- 6: end while

При наложенном на модель движения условии, что добавление оптимального пути участника-эгоиста не меняет свойства оптимальности итоговой комбинации путей, можно сказать, что алгоритм сходится к оптимальной комбинации путей. Для того, чтобы алгоритм сошелся за n применений алгоритма α , достаточно изменить условие оптимальности на условие кооперативного равновесия.

4 Результаты

Рассмотрим ряд примеров, которые исследуют экстремальные значения функции затрат задачи (1), используя подход основанный на поиске «локального минимума». Поскольку данную задачу тяжело промасштабировать на реальные данные, рассмотрим небольшой пример с n=30 участниками на дорожной сети G (см. рис. 2). Даже в таком небольшом примере существует 8^{30} комбинаций путей, перебрать которые не представляется возможным. Для нетривиальности задачи будем считать, что участники стартуют с небольшими задержками $\Delta t=0.2$. Иначе, задача сводится к оптимальному распределению масс машин по путям с учетом их взаимодействия. В качестве алгоритма решения задачи (17) используем обычный перебор путей $p_i \in P_i$. Это решение основано на том, что перебор дает точное решение и требует моделирование всего $|P_i|=4$ путей, вместо |E|=28 для неточного алгоритма, описанного в [15].

Рис. 2: Пример дорожной сети. Деление на ребрах - мера длины, равная L=500. n=30 участников передвигается из точки A (нижней) в точку B (верхнюю).

4.1 Поиск оптимальной комбинации при одинаковом приоритете участников

Рассмотрим задачу поиска оптимальных комбинаций путей с функций затрат

$$\phi(T_1,\ldots,T_n)=\sum_{i=1}^n T_i.$$

Используя эмпирические функции затрат $\overline{\Phi}_i = \Phi$ к задаче (17), исследуем алгоритм 2 на предмет попадания в оптимум. Также для поиска самых невыгодных комбинаций путей можно рассмотреть аналогичную задачу

$$\Phi(\mathbf{p}) \to \max_{\mathbf{p} \in P}. \tag{21}$$

Ожидается, что установив такую цель, участники буду стараться увеличивать общие временные затраты друг друга, используя один и тот же длинный путь.

Поиск экстремальных значений задач (1), (21) позволит определить диапазон возможных значений целевой функции Φ . Сравним такие значения со случайным выбором пути, используя равномерное распределение Бернули с p=0.5.

Таблица 1: Результаты запуска алгоритма 2. В таблие представлены значения функции Φ на полученных комбинациях путей в разных моделях движения с $v_{max} = 60$.

Φ	Задача оптимизации	Модель снижения скорости	Макроскопическая модель
T_i	$\Phi(\mathbf{p}) o \min_{\mathbf{p} \in P}$	1063.07	5260
$\sum_{i=1}^{n} T_i$	$\Phi(\mathbf{p}) \to \min_{\mathbf{p} \in P}$	1060.21	5062.5
T_i	$\Phi(\mathbf{p}) o \max_{\mathbf{p} \in P}$	1576.98	20965.5
$\sum_{i=1}^{n} T_i$	$\Phi(\mathbf{p}) \to \max_{\mathbf{p} \in P}$	1576.98	16367.3
	еделение Бернули ($p = 0.5$)	1185.5	5845.07

В таблице 1 указаны значения целевой функции в полученных экстремальных значениях \mathbf{p} . За макроскопическую модель была взята $v_i(\mathbf{p},t) = \frac{v_{max}}{n_e(\mathbf{p},t)}$. Результаты показали, что для модели снижения скорости разница между оптимальным и случайным выбором комбинации путей может составлять более 12%, а в худшем случае более 48% (см. рис 3). Для макроскопической модели эти значения составляют 15% и 314%

Рис. 3: Пример худшего (слева) и лучшего (справа) случая распределения путей участников в модели снижения скорости.

Такие характеристики позволяют понять как сильно машины могут влиять друг на друга в той или иной модели движения.

4.2 Поиск оптимальной комбинации с приоритетными участниками

Рассмотрим задачу поиска оптимальных комбинаций путей с функций затрат

$$\phi(T_1,\ldots,T_n)=\sum_{i=1}^n h_i T_i,$$

где

$$h_i = \begin{cases} M \gg 0, & i-\text{приоритетный участник,} \\ 1, & \text{иначе,} \end{cases}$$

Данная функция затрат описывает ситуацию, когда некоторым участникам необходимо как можно быстрее добраться до своих точек назначения, не повлияв сильно на остальных.

Предположим, что в нашем примере имеется 3 участника с высоким приоритетом. Ожидается, что алгоритм 2 сойдется к некоторой комбинации путей, в которой 3 участника занимают, например, левую часть графа, а остальные правую. Оказалось, что в данном случае, качество ответа, выдаваемое алгоритмом 2 сильно зависит от начальной комбинации путей. Запустив его из случайной комбинации (p=0.5) оказалось, что алгоритм не смог разделить участников на две группы и застрял на некотором некооперативном равновесии (см. рис 4).

Рис. 4: Оптимальное кооперативное равновесие (слева) с средним временем прибытия T=778.34 и неоптимальное кооперативное равновесие (справа) с средним временем прибытия T=950.37

5 Заключение

В работе была поставлена задача поиска оптимальной комбинации путей в терминах произвольной функции временных затрат. Было предложено описание общего принципа взаимодействия участников, заключающегося в задании некоторой модели движения. Мы показали эквивалетность задания функций временных затрат и модели движения. Для последних была предложена классификация. Среди моделей движения мы выделили класс, для которого доказали возможность сведения задачи поиска оптимальной комбинации путей к задаче смешанного целочисленного линейного программирования. Также задача была описана в терминах теории игр, и ее решение было сведено к поиску некоторого равновесия Нэша. Нами были разработаны алгоритмы нахождения таких равновесий и применены к задачам поиска оптимальной комбинации путей, встречающихся на практике.

Список литературы

- [1] $A. \, И. \, Гасников$ "Введение в математическое моделирование транспортных потоков" Издательство МЦНМО 2013. 427 с.
- [2] M. J. Lighthill, G. B. Whitham, "On kinematic waves: II. Theory of traffic flow on long crowded roads", Proc. R. Soc. London, Ser. A. 1955. V. 229. P. 281–345.
- [3] P. I. Richards, "Shock Waves on the Highway", Oper. Res. 1956. V. 4. P. 42–51.
- [4] В. Н. Луканин, А. П. Буслаев, Ю. В. Трофимов, М. В. Яшина, "Автотранспортные потоки и окружающая среда", М.: ИНФРА-М, Ч. 1, 2. 1998, 2001
- [5] Дж. Уизем, "Линейные и нелинейные волны", М.: Мир, 1977.
- [6] H. J. Payne "Models of freeway traffic and control", Simulation Council Proc. 28, Mathematical Models of Public Systems. Edited by G. A. Bekey. 1971. V. 1. P. 51–61
- [7] G. F. Newell, "Nonlinear effects in the dynamics of car following", Oper. Res. 1961. V. 9. P. 209–229
- [8] D. Helbing "Traffic and related self-driven many particle systems", Reviews of modern physics. 2001. V. 73. № 4. P. 1067–1141.
- [9] D. C. Gazis "Traffic science". N.Y.: Wiley, 1974
- [10] А. Г. Кремлев, "Основные понятия теории игр" Екатеринбург : Изд-во Урал. ун-та, 2016. 144 с
- [11] L. Libralesso "Mixed Integer Programming formulations for the balanced Traveling Salesman Problem with a lexicographic objective". (2020)
- [12] *Ю. А. Олейник, А. А. Зуенко*, "Глобальные ограничения при моделировании и решении задач в рамках парадигмы constraint programming". Труды Кольского научного центра РАН. 2020. №8-11.
- [13] A. C. Piugou "The economics of welfare", London: MacMillan, 1932, 4-th edition. (Русский перевод: Пигу А.С. Экономическая теория благосостояния Т. 1–2, Сер. Экономическая мысль Запада, М.: Прогресс, 1985).
- [14] D. Braess, A. Nagurney, T. Wakolbinger, "On a Paradox of Traffic Planning." Transportation Science. 39. 446-450. 10.1287/trsc.1050.0127 (2005)
- [15] Л. Е. Разумова, "Построение оптимального маршрута при заданной модели движения других участников движения" (2022)