44. Considere, em S_4 , as permutações

$$\alpha = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right) \qquad \mathsf{e} \qquad \beta = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{array} \right).$$

Calcule:

(a) $\beta\alpha$;

(c) α^{-1} ;

(e) $\beta^{-1}\alpha^{-1}$;

(g) $(\beta \alpha)^{-1}$;

(b) $\alpha\beta$;

(d) β^{-1} :

(f) $\alpha^{-1}\beta^{-1}$:

(h) $(\alpha\beta)^{-1}$

45. Exprima como produto de ciclos disjuntos e como produto de transposições as seguintes permutações de S_6 :

(a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 6 & 4 \end{pmatrix}$;

(d) (134);

(e) (256)(345)(64);

(b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$;

(f) (135)(426)(356);

(c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 4 & 2 & 1 \end{pmatrix}$;

(g) (145)(1235)(13);

(h) $[(145)(1235)(13)]^{-1}$.

46. Considere, em S_9 , as permutações

$$\sigma = (1\ 2\ 3\ 4)(5\ 6\ 7\ 8\ 9)$$
 e $\pi = (3\ 2)(1\ 7\ 9).$

- (a) Calcule $\pi\sigma\pi^{-1}$ e exprima-a como produto de ciclos disjuntos.
- (b) Determine $\alpha \in S_9$ tal que $\sigma^{16}\alpha = \pi$.
- (c) i. Qual a ordem do subgrupo $\langle \pi \rangle$ de S_9 ? Porquê?
 - ii. Identifique os elementos de $\langle \pi \rangle$. Justifique.
- (d) Indique, justificando:
 - i. um elemento de S_9 que não seja um ciclo e que tenha ordem 6;
 - ii. um ciclo ímpar de S_9 ;
 - iii. uma permutação de S_9 que não seja um ciclo;
 - iv. uma permutação par de S_9 , diferente da identidade.

47. Considere, em S_6 , as permutações

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 6 & 5 & 2 \end{array} \right) \qquad \mathsf{e} \qquad \beta = \left(2 \ 1 \ 4 \ 6 \right) \left(1 \ 3 \ 4 \ 5 \right).$$

- (a) Determine $o(\alpha)$, $o(\beta)$ e $o(\beta^2)$.
- (b) Determine a ordem de $\langle \beta^{67} \rangle$.
- (c) Justifique que $\langle \alpha, \beta \rangle < \mathcal{A}_6$.
- 48. Considere, em S_9 , as permutações

- (a) Escreva $\sigma \tau^{-1}$ como produto de ciclos disjuntos.
- (b) Determine $o(\sigma)$.
- (c) Indique os elementos de $<\tau^3>$.
- (d) Sem efetuar cálculos com composição de funções, mostre que não existe $\delta \in S_9$ tal que $\delta^2 \tau = \sigma$.