Trasformate Note

Nome	Dominio del tempo	Dominio della frequenza	Commento
Impulso Rettangolare	$\Pi(t)$	sinc(f)	
Segnale sinc	sinc(t)	$\Pi(f)$	Ottenuta con dualità
Esponenziale negativo causale	$\frac{1}{T}e^{-\frac{t}{T}}u(t)$	$\frac{1}{1 + j2\pi Tf}$	
	$\frac{1}{1 + j2\pi Tt}$	$\frac{1}{T}e^{+\frac{f}{T}}u(-f)$	Ottenuta con dualità
Esponenziale negativo causale	$\alpha e^{-\alpha t}u(t)$	$\frac{1}{1+j2\pi\frac{1}{\alpha}f} = \frac{\alpha}{\alpha+j2\pi f}$	
	$\frac{1}{1+j2\pi\frac{1}{\alpha}t} = \frac{\alpha}{\alpha+j2\pi t}$	$\alpha e^{+\alpha f}u(-f)$	Ottenuta con dualità
	$\frac{1}{1+jt}$	$2\pi e^{2\pi f}u(-f)$	
	$2\pi e^{2\pi t}u(-t)$	$\frac{1}{1-jf}$	Ottenuta con dualità
Esponenziale negativo causale traslato a destra di T	$\frac{1}{T}e^{-\frac{(t-T)}{T}}u(t-T)$	$\frac{1}{1+j2\pi Tf} \cdot e^{-j2\pi fT}$	
	$\frac{1}{T}e^{-\frac{(t-T)}{T}}u(t)$	$\frac{e}{1 + j2\pi Tf}$	

Nome	Dominio del tempo	Dominio della frequenza	Commento
	$e^{- t } = e^{-t}u(t) + e^{t}u(-t)$	$\frac{1}{1+j2\pi f} + \frac{1}{1-j2\pi f} = \frac{2}{1+(2\pi f)^2}$	
	$\frac{1}{1+j2\pi t} + \frac{1}{1-j2\pi t} = \frac{2}{1+(2\pi t)^2}$	$e^{- -t } = e^t u(-t) + e^{-t} u(t)$	Ottenuta con dualità
Filtro RC	$\frac{1}{RC}e^{-\frac{t}{RC}}u(t)$	$\frac{1}{1 + j2\pi RCf}$	
	$\frac{1}{RC}e^{-\frac{t}{RC}}u(t)$ $\frac{1}{1+j2\pi RCf}$	$\frac{1}{RC}e^{-\frac{t}{RC}}u(t)$	Ottenuta con dualità
Filtro CR			
Impulso Triangolare	$\Lambda(t)$	$sinc^2(f)$	
Segnale sinc alla seconda	$sinc^2(t)$	$\Lambda(f)$	Ottenuta con dualità
Segnale Manchester	$\left \Pi \left(\frac{t - \frac{T}{2}}{T} \right) - \Pi \left(\frac{t + \frac{T}{2}}{T} \right) \right $	$-2jT\frac{\sin^2(\pi Tf)}{(\pi Tf)}$	
Impulso di Dirac	$\delta(t)$	1	
	1	$\delta(f)$	Formula di Poisson: $F^{-1}[1] = \delta(t) = \int_{-\infty}^{+\infty} 1 \cdot e^{+j2\pi ft} dt$
Fasore	$1 \cdot e^{+j2\pi f_0 t}$	$\delta(f-f_0)$	Segni discordi

Nome	Dominio del tempo	Dominio della frequenza	Commento
	$\delta(t-t_0)$	$1 \cdot e^{-j2\pi t_0 f}$	Segni concordi
	$1 \cdot e^{-j2\pi f_0 t}$	$\delta(f+f_0)$	Segni discordi
	$\delta(t+t_0)$	$1 \cdot e^{+j2\pi t_0 f}$	Segni concordi
Coseno	$\cos(2\pi f_0 t) = \frac{1}{2} e^{+j2\pi f_0 t} + \frac{1}{2} e^{-j2\pi f_0 t}$	$\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)$	
	$\left \frac{1}{2} \delta(t - t_0) + \frac{1}{2} \delta(t + t_0) \right $	$\cos(2\pi f_0 f) = \frac{1}{2} e^{-j2\pi f_0 f} + \frac{1}{2} e^{+j2\pi f_0 f}$	
Seno	$\sin(2\pi f_0 t) = \frac{1}{2j} e^{+j2\pi f_0 t} - \frac{1}{2j} e^{-j2\pi f_0 t}$	$\frac{1}{2j}\delta(f-f_0) - \frac{1}{2j}\delta(f+f_0)$	
	$\left \frac{1}{2j} \delta(t - t_0) - \frac{1}{2j} \delta(t + t_0) \right $	$\sin(2\pi f_0 f) = \frac{1}{2j} e^{-j2\pi f_0 f} - \frac{1}{2j} e^{+j2\pi f_0 f}$	
Sinusoide	$\begin{vmatrix} A\cos(2\pi f_0 t + \phi) \\ \\ \frac{A}{2}e^{+j2\pi f_0 t}e^{+j\phi} + \frac{A}{2}e^{-j2\pi f_0 t}e^{-j\phi} \end{vmatrix}$	$\frac{A}{2}e^{+j\phi}\delta(f-f_0) + \frac{A}{2}e^{-j\phi}\delta(f+f_0)$	
	$\begin{vmatrix} A \sin(2\pi f_0 t + \phi) \\ \\ \frac{A}{2j} e^{+j2\pi f_0 t} e^{+j\phi} - \frac{A}{2j} e^{-j2\pi f_0 t} e^{-j\phi} \end{vmatrix}$	$\frac{A}{2j}e^{+j\phi}\delta(f-f_0) - \frac{A}{2j}e^{-j\phi}\delta(f+f_0)$	
Gradino unitario	u(t)	$\frac{1}{2}\delta(f) - \frac{1}{j2\pi f}$	
		1	
Funzione segno	sgn(t)	$\frac{1}{j\pi f}$	
Treno di Delta	$c(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT)$	$C(f) = \sum_{k=-\infty}^{+\infty} \frac{1}{T} \delta(f - \frac{k}{T})$	

Nome	Dominio del tempo	Dominio della frequenza	Commento
Segnali periodici	$\sum_{n=-\infty}^{+\infty} x_0(t-nT)$	$\sum_{k=-\infty}^{+\infty} f_0 X_0(kf_0) \delta(f - kf_0)$	Dove $X_0(kf_0)$ sono i coefficienti di Fourier X_k
			Per poter trasformare un segnale periodico si deve prima trasformare l'impulso base: $x_0(t)$, ottenendo $\cos i X_0(f)$ 1) calcolare $f_0 \cdot X_0(kf_0)$ e infine sostituire alla formula
	$t \cdot x(t)$	$-\frac{1}{j2\pi} \cdot \frac{dX(f)}{df}$	Moltiplico e divido il segnale nel tempo per $-j2\pi$ cosi da potermi ricondurre alla proprietà della derivazione in frequenza
Segnale campionato	$\sum_{n=-\infty}^{+\infty} x(nT_c) \cdot \delta(t - nT_c)$	$X_{\delta}(f) = X(f) * C(f)$ $ $ $\sum_{k=-\infty}^{+\infty} f_c \cdot X(f - kf_c)$	

Risposte impulsive e in frequenza (funzioni di trasferimento)

Nome	Risposta Impulsiva	Funzione di Trasferimento	Commento
Filtro RC (Passa- Basso)	$\frac{1}{RC}e^{-\frac{t}{RC}}u(t)$	$\frac{1}{1 + j2\pi RCf}$	
Filtro CR (Passa- Alto)	$-\frac{1}{RC}e^{-\frac{t}{RC}}u(t) + \delta(t)$	$\frac{j2\pi RCf}{1+j2\pi RCf}$	
Filtro LR	$\frac{R}{L}e^{-t\cdot\frac{R}{L}}u(t)$	$\frac{1}{1 + j2\pi \frac{R}{L}f}$	
Filtro RL	$-\frac{R}{L}e^{-t\cdot\frac{R}{L}}u(t)+\delta(t)$	$\frac{j2\pi\frac{L}{R}f}{1+j2\pi\frac{L}{R}f}$	
Amplificatore Ideale	$A\delta(t)$	A	
Integratore	u(t)		
Integratore a finestra mobile	$\Pi\left(\frac{t-\frac{T}{2}}{T}\right)$	$Tsinc(Tf) \cdot e^{-j\pi fT}$	
Filtro Passa-Basso Ideale	Bsinc(Bt) (B > 0)	$\Pi\left(\frac{f}{B}\right)$	
Filtro Passa-Alto Ideale		$u(-f+f_0) + u(f-f_0)$	
Filtro Passa-Banda Ideale	$\begin{vmatrix} Bsinc(Bt) \cdot e^{-j2\pi f_0 t} + Bsinc(Bt) \cdot e^{+j2\pi f_0 t} \\ \\ Moltiplico \ e \ divido \ per \ 2 \\ \\ 2Bsinc(Bt) \cdot cos(2\pi f_0 t) \end{vmatrix}$	$\Pi\left(\frac{f+f_0}{B}\right) + \Pi\left(\frac{f-f_0}{B}\right)$	
Canale Ideale		1	
Canale Perfetto	$A\delta(t-t_0)$	$A \cdot e^{-j2\pi f t_0}$	
Filtro Equalizzatore	Un filtro che se collegato in cascata ad altri filtri LS genere come risposta in frequenza, quella del canale perfetto	$H_{eq}(f) = \frac{1}{H(f)}$	
Filtro di ricostruzione	$sinc\left(\frac{t}{T_c}\right)$	$\frac{1}{f_c}\Pi\left(\frac{f}{f_c}\right)$	

Nome	Risposta Impulsiva	Funzione di Trasferimento	Commento
Filtro Anti-Aliasing	$\frac{1}{T_c} \cdot sinc\left(\frac{t}{T_c}\right)$	$\Pi\left(rac{f}{f_c} ight)$	
Derivatore		$j2\pi f$	
Integratore		$\frac{1}{j2\pi f}$	
Campionatore Ideale			

Proprietà Trasformata di Fourier

Nome	Dominio del tempo	Dominio della Frequenza	Commento
Teorema della Convoluzione	x(t) * y(t)	$X(f) \cdot Y(f)$	
Dualità	$X(t) \ es: sinc(t)$	$x(-f) es : \Pi(-f)$	
Teorema della Cambiamento di Scala	$x\left(\frac{t}{T}\right)$	T X(Tf)	
	$x(T \cdot t)$	$\left \frac{1}{T} \right X \left(\frac{f}{T} \right)$	
Inversione temporale	x(-t)	X(-f)	Caso particolare del cambiamento di scala
Traslazione temporale	$x(t-t_0)$	$X(f)e^{-j2\pi ft_0}$	Segni concordi
Traslazione in frequenza (Modulazione Complessa)	$x(t)e^{-j2\pi f_0 t}$	$X(f+f_0)$	Segni discordi
Modulazione in ampiezza			
Derivazione	$\frac{dx(t)}{dt}$	$(j2\pi f)\cdot X(f)$	

Nome	Dominio del tempo	Dominio della Frequenza	Commento
Integrazione	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{X(f)}{j2\pi f}$	L'area del segnale deve essere nulla $\mathcal{A}_{\scriptscriptstyle X}=0$
Integrazione per segnali ad area non nulla	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$	
Derivazione nel dominio della frequenza	$(-j2\pi t)\cdot x(t)$	$\frac{dX(f)}{dt}$	Duale del teorema della derivazione
Prodotto nel tempo	$x(t) \cdot y(t)$	X(f) * Y(f)	Duale del teorema della convoluzione
Coniugazione	$x^*(t)$	<i>X</i> *(<i>-f</i>)	
Correlazione	$e_{xy}(t) = x^*(t)_* y(t)$ $ $ $\int_{-\infty}^{+\infty} x^*(\tau) \cdot y(t+\tau) d\tau$	$E_{XY}(f) = X^*(-f) \cdot Y(f)$	Teorema della convoluzione e coniugazione
Auto-correlazione	$e_{x}(t) = x^{*}(t)_{*}x(t)$ $ $ $\int_{-\infty}^{+\infty} x^{*}(\tau) \cdot x(t+\tau)d\tau$		
Auto-correlazione per un segnale di potenza	$p_x = \lim_{T \to -\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x^*(\tau) \cdot x(t+\tau) d\tau$		

Rayleigh

$$E_{x} = \int_{-\infty}^{+\infty} \left| X(f) \right|^{2} df \qquad E_{x}(f) = \left| X(f) \right|^{2}$$

Parseval

$$P_{x} = \sum_{k=-\infty}^{+\infty} \left| X_{k} \right|^{2} \qquad P_{x}(f) = \left| X_{k} \right|^{2}$$

Teorema di Wiener e Kintchine per i segnali di energia

L'auto-correlazione di un segnale di energia calcolata in 0: $e_{\rm x}(0)$ è uguale alla sua densità spettrale di energia $E_{\rm x}$

Teorema di Wiener e Kintchine per i segnali di potenza

L'auto-correlazione di un segnale di potenza calcolata in 0: $p_{\rm x}(0)$ è uguale alla sua densità spettrale di potenza $P_{\rm x}$