Examples of Proofs

Some Preliminary Ideas

1. What do odd and even mean?

n odd means that n = 2k+1, and n even n = 2k for some integer k.

Find k for 15, 18.

2. x > y and z > t implies that x+z > y+t.

Based on properties of real numbers.

3. Another idea: Positives multiplied by positives give positives

That is, a > 0 and b > 0 implies that ab > 0

4. Still one more idea:

x > y > 0 and z > t > 0 means that xz > yt. You can change the > signs between x and y to >= signs and it's still true.

Direct Proof

Theorem A: If a and b are two positive numbers, and a > b, then $a^2 > b^2$.

(Wow! I get to show the use of a lemma! © Remember that a lemma is a statement that is used to prove a theorem.)

Lemma: If x is positive and y is positive, the x + y is positive. (This is really just a restatement of Property 2 in the preliminary ideas.)

Proof: Since x is positive, this means x > 0. Since y is positive, then y > 0. Then, by Property 2, x + y > 0 + 0, or x + y > 0. This means that x + y is positive.

Proof of Theorem A: If If a > b, then by subtracting b from both sides, we get a - b > 0. By the lemma, a + b > 0. Then, by Property 3 form the preliminary ideas, (a+b)(a-b) > 0. Multiplying out the left side gives $a^2 - b^2 > 0$. Adding b^2 to both sides gives $a^2 > b^2$.

Theorem B. If n is an odd integer then n² is also odd.

Proof: Since n is odd, n = 2k + 1 for some integer k. Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$.

$$= 2(2k^2 + 2k) + 1.$$

Since k is an integer, so is 2k, and so is k^2 , and so is $2k^2$, and so then is $2k^2 + 2k$. This is because a sum of integers is an integer and a product of integers is an integer. I should have probably listed those in the properties. Then, $n^2 = 2(m) + 1$ where m is an integer. This means n^2 is odd. (In the previous line, $m = 2k^2 + 2k$.)

Indirect Proof

Theorem C. If n^2 is an even integer then n is also even.

Proof: I try a direct proof. If n^2 is even, then $n^2 = 2k$ for some k. This doesn't help, because I need to get to n. This means taking a square root. This is a serious problem. I am trying to work only inside the integers because I need to show that n = 2m for some integer m. But then

$$n = \sqrt{n^2} = \sqrt{2k} = ?$$

and here I reach a dead end, because the square root of 2 is not an integer and I don't see a way to proceed. So, I have to try another method of proof. Let me try indirect proof. Starting over:

Proof (Indirect) Suppose n^2 is an even integer and also n is not even. (This is what you assume for an indirect proof.) So, if n is not even, and it's an integer, it must be odd. So then, n = 2k + 1 for some integer k. Then then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. So then if k is an integer then 2k is an integer, ..., $2k^2 + 2k$ is an integer. So then n^2 is odd. But we started by assuming that n^2 is an even integer. No number can be both odd and even. (For fun, you could try to prove this. Suppose j is an integer that is both even and odd. Then j = 2k for some integer k since it's even and also j = 2i + 1 for some integer i since it's odd. Then 2k = 2i + 1, or, subtracting 2i from both sides, we get 2k - 2i = 1. That's a contradiction; it can't be true. Why? So there is no such number.)

Theorem D. The square root of 2 is irrational; that is, it can't be written as a fraction of two integers.

Proof: Again, I start with a direct proof. The problem here is that I don't know anything about irrational numbers, except that the irrational numbers are all real numbers that are not rational. That doesn't help at all. So I need another method of proof. I turn to indirect proof. Starting over:

Proof: (Indirect) Suppose the square root of 2 is rational. The rational numbers are the fractions. So, then

$$\sqrt{2} = \frac{m}{n}$$

for two integers m and n. I will assume the fraction is fully reduced. If not, I will divide out the common factor so it is reduced. Now, square both sides. You get

$$2 = \frac{m^2}{n^2}$$

Multiplying both sides by n^2 gives $2n^2 = m^2$. Since 2 divides into $2n^2$ and $2n^2 = m^2$, 2 must divide into m^2 . But $m^2 = m^*m$, and since 2 doesn't factor, 2 must divide into m itself. Then actually, 4 divides into m^2 . Now, since 2 divides into m, let me write m as 2p. Then $2n^2 = m^2$ is the same as

 $2n^2 = (2p)^2 = 4p^2$. This is $2n^2 = 4p^2$. Cancel the common 2 to get $n^2 = 2p^2$. Then by the reasoning I just went through, 2 divides into n. Now, I have that m = 2p, and n = 2*something, and m and n have 2 in common. I started off by assuming there was nothing in common, because I had totally reduced the fraction. This is a contradiction, and I was wrong in assuming that the square root of 2 was rational.

Proof Using the Contrapositive

Theorem E. If n² is an even integer then n is also even.

Proof: As above, I find this too hard to prove directly so I try something else. This time I will try to prove the contrapositive. The contrapositive is: If n is not an even integer, then n^2 is not an even integer. Let me start over:

Proof (Contrapositive): If n is not an even integer, then n² is not an even integer. (Usually in a proof using the contrapositive, people don't explicitly say what the contrapositive is, because they assume everybody knows that.)

Suppose n is not even. Then it's odd, and so, n = 2k + 1 for some integer k. Then

 $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, which says that n^2 is odd, or n^2 is not even.

Theorem F. If a product of two positive real numbers is greater than 100, then at least one of the numbers is greater than 10.

Proof: Once again, I try to prove this directly. So, assume x and y are two real numbers and

xy > 100. Now what can I say about x and y themselves? Not really anything. So, let me try the contrapositive. It is: If x and y are two positive real numbers and NOT (at least one of the numbers is greater than 10) then NOT (their product is greater than 100). Starting over:

Proof: (Contrapositive) I need to show: If x and y are two positive real numbers and NOT (at least one of the numbers is greater than 10) then NOT (their product is greater than 100). Cleaning this up gives: If x and y are two real numbers and x is not greater than 10 and also y is not greater than 10, then their product is not greater than 100. Then, since x is positive, x > 0. Also, x <= 10. So I can write

10 >= x > 0 and similarly for y 10 >= y > 0. By Property 4, 10*10 >= xy, which says that the product is not greater than 100.

Proof Using Cases

This is also called Proof by Exhaustion. Exhaustion here means that you try (or "exhaust") all possible cases.

Theorem H. Prove that if n is any integer not divisible by 3, then n² leaves a remainder of 1 when it is divided by 3.

Proof (By cases) Look at all possible remainders when dividing by 3. The only possible remainders are 0, 1, and 2. In C++, we write this as n % 3 = 0 or n % 3 = 1 or n % 3 = 2. Also, note that " n^2 leaves a remainder of 1 when it is divided by 3" Is a very long and roundabout way of saying " $n^2 \% 3 = 1$ " This was background material. Back to the proof.

n is not divisible by 3. This means that n % 3 =0 is impossible. So, n % 3 = 1 or n % 3 = 2. These are the two cases.

Case 1: n % 3 = 1. This means that if you divide n by 3 you get a remainder of 1. Then n = 3k + 1 for some integer k. (You can also get this formula because n has a remainder of 1. Subtract that remainder, giving n-1. Now this must be divisible by 3. So n - 1 = 3k for some integer k.) So,

n = 3k + 1. Square both sides to get: $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. So $n^2 \% 3 = 1$.

Case 2: n % 3 = 2. Then n = 3k + 2 for some integer k. Square both sides to get

$$n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1$$
. So $n^2 \% 3 = 1$.

In class, I was asked how I came up with these proofs. I will tell you some of my ideas.

In Theorem A, I started out with the end of the problem. That was $a^2 > b^2$. I wasn't sure what to do, but I noticed that if I subtracted b^2 from both sides I would get --- > 0. (That's three dashes on the left. I use it to stand for some expression.) Preliminary ideas 3 and 4 both involve things being greater than 0, so I tried to use them. This means I have to play with expressions until I find something that matches them closely.

In Theorem B, I didn't do anything special. I wrote down what I was assuming and checked what n² was. I was just lucky it worked out. It often does! Many direct proofs occur in this way.

Theorem C uses the same idea as Theorem B. After I changed to an indirect proof, I just kept saying this means that, and that means something else, and something else means... until I arrived at the conclusion. Again, it just happened that I reached the conclusion. But also again, this happens often.

In Theorem D, after I decided to do an indirect proof, I started by squaring both sides. Tat's for exactly the same reason I changed from a direct proof to an indirect proof. I can't work with square roots and still guarantee tat I am working only with integers. Not only might I be working with non-integers, I might be working with irrational numbers. This hurts even more, since I only know about the irrationals as being the complement of the rationals (the leftover parts in the reals). I need to find something better.

Theorem E is essentially the same as Theorem B.

Theorem F looks like Property 4, so I tried that.

Theorem H involved something not being divisible by 3. I wasn't sure what that meant, so I investigated division by 3. I then realized there were only three possible remainders. After ruling out one of the possibilities, I just tried each of the others. Again, like in Theorem B, I just wrote things down one after another and the answer popped out.

I hope these ideas help.