

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA DA COMPUTAÇÃO E TELECOMUNICAÇÕES

SENSOR DE FLEXÃO DE BAIXO CUSTO

WEDERSON MEDEIROS SILVA

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA DA COMPUTAÇÃO E TELECOMUNICAÇÕES

WEDERSON MEDEIROS SILVA

SENSOR DE FLEXÃO DE BAIXO CUSTO

Trabalho de Conclusão de Curso apresentado para obtenção do grau de Bacharel em Engenharia da Computação, do Instituto de Tecnologia, da Faculdade de Engenharia da Computação e Telecomunicações. Sob orientação de Prof. Dr. Roberto Menezes Rodrigues.

Dados Internacionais de Catalogação na Publicação (CID)	
Dados Internacionais de Catalogação na Publicação (CIP) Biblioteca Prof. Dr. Clodoaldo Beckmann/ Universidade Federal do Pará, Beléi	m-Pará

SILVA, Wederson Medeiros.

Sensor de Flexão de Baixo Custo / Wederson Medeiros Silva; orientador Prof. Dr. Roberto Menezes Rodrigues — 2018.

Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) – Universidade Federal do Pará, Instituto de Tecnologia, Curso de Engenharia da Computação, Belém, 2018.

1. Área 2. Outra área I. Título.

SENSOR DE FLEXÃO DE BAIXO CUSTO

Este trabalho foi julgado adequad	do em $17/06/2018$ para a obtenção do Grau de Bacharel
em Engenharia da Computação,	aprovado em sua forma final pela banca examinadora
que atribui o conceito	
	Prof. Dr. Roberto Menezes Rodrigues
	FACULDADE DE ENGENHARIA ELÉTRICA
	Prof. Dr. Marco José de Sousa INSTITUTO DE TECNOLOGIA
	INSTITUTO DE TECNOLOGIA
	Prof. Dr. Adaldery Castro
	INSTITUTO DE TECNOLOGIA
	Prof. Dr. Francisco Carlos Bentes Frey Müller
	DIRETOR DA FACULDADE DE ENGENHARIA DA
	COMPUTAÇÃO E TELECOMUNICAÇÕES

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis conque nulla arcu et pede. Ut suscipit enim vel sapien. Donec conque. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Agradecimentos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

"Nam quis enim. Quisque ornare dui a tortor. Fusce consequat lacus pellentesque metus. Duis euismod. Duis non quam. Maecenas vitae dolor in ipsum auctor vehicula. Vivamus nec nibh eget wisi varius pulvinar. Cras a lacus. Etiam et massa. Donec in nisl sit amet dui imperdiet vestibulum. Duis porttitor nibh id eros."

Resumo

SILVA, Wederson Medeiros. **Sensor de Flexão de Baixo Custo**. Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) — Universidade Federal do Pará, Belém, 2018.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Palavras-chave: Sensor, Flex, Flexão, Baixo Custo, Sistema Embarcado.

Abstract

SILVA, Wederson Medeiros. **Sensor de Flexão de Baixo Custo**. Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) — Universidade Federal do Pará, Belém, 2018.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: Sensor, Flex, Bend, Low Cost, Embedded System.

Sumário

1	Intr	rodução	9
2	Ref	erencial Teórico	10
	2.1	Sensor Flex	10
	2.2	Potenciômetro	10
	2.3	Movimentação dos dedos	11
	2.4	Arduino	12
	2.5	Módulo RF 433 Mhz	12
3	Tra	balho Propriamente Dito	13
	3.1	Teoria da coisa	13
	3.2	Medidas e Posicionamento	13
	3.3	Placa de Circuito Impresso	13
	3.4	Movimento mecânico	13
4	Aná	álises e Resultados	14
	4.1	Configurações	14
	4.2	Testes	14
	4.3	Resultados	14
5	Cor	nclusão	15
	5.1	Conclusões	15
	5.2	Trabalhos Futuros	15
6	Rev	visão Bibliográfica	16
A	Alg	um apêndice	17
В	Out	tro apêndice	18
${f R}_{f \epsilon}$	eferê	ncias Bibliográficas	19

Introdução

Contextualização; Estado da arte (se tiver); Motivação; O que vai fazer; Metodologia; O que terá no resto do documento;

Referencial Teórico

2.1 Sensor Flex

Sensores de flexão, mais conhecidos como sensores flex, são resistores analógicos que trabalham como divisores de tensão analógicos. Dentro desses sensores existem elementos resistivos de carbono junto a um fino substrato flexível. Mais carbono significa menos resistência. Quando o substrato é torcido o sensor produz uma resistência relativa ao raio da torção. [1]

Figura 2.1: Sensor Flex

2.2 Potenciômetro

O potenciômetro é um componente eletrônico que permite, através do giro do seu eixo, a variação da resistência entre seus terminais. Eles são constituídos por um elemento de resistência, que pode ser de carbono ou fio de nicromo, sobre o qual corre uma lingüeta, denominada cursor. Dentre as características do potenciômetro estão o valor máximo de

sua resistência, seu número de voltas, seu grau máximo de giro (aproximado) e se ele é do tipo linear ou logarítmico [2].

Figura 2.2: Funcionamento do potenciômetro linear

Segundo a lei de Ohm (V=R.I), dada uma corrente constante, ao variar a resistência teremos uma variação da tensão. Sendo assim, ao girar o eixo do potenciômetro, dependendo do sentido do giro, perceberemos um aumento ou diminuição da tensão naquele ponto. Partindo de um ponto extremo com resistência mínima até o outro ponto extremo no qual a resistência deverá ser a máxima característica do componente.

2.3 Movimentação dos dedos

Na mão, os tendões funcionam como cordas que conectam os músculos do antebraço aos ossos da mão. Nos dedos, os tendões passam por dentro de uma série de polias, que formam uma espécie de túnel. Isso permite manter os tendões próximos aos ossos da mão, aumentando a força nos dedos e diminuindo o gasto de energia. Ao movimentar o dedo, o músculo se contrai para que o tendão deslize por entre as polias. [3]

Figura 2.3: Movimento do dedo através do tendão

2.4 Arduino

O Arduino é uma plataforma eletrônica de código aberto (open-source) que é baseada em hardware e software fáceis de usar. As placas Arduino são capazes de ler entradas como o acionamento de um sensor, o pressionamento de um botão, ou uma mensagem do Twitter. E pode transformar essas entradas em saídas como a ativação de um motor, o acendimento de um LED ou até a publicação de algo online. O comportamento dessa placa pode ser programado usando sua interface de desenvolvimento (IDE), que por sua vez, envia as instruções necessárias para o microcontrolador instalado na placa.[4]

Figura 2.4: Placa Arduino modelo Nano [5]

2.5 Módulo RF 433 Mhz

O módulo de rádio frequência 433 Mhz é composto por um par que contém um transmissor e um receptor, ele opera com modulação AM e é uma alternativa para projetos de baixo custo que queiram usar comunicação sem fio entre microcontroladores Arduino ou outros. O par de módulos pode alcançar até 200 metros sem obstáculos, usando antenas e dependendo da tensão aplicada. [6]

Trabalho Propriamente Dito

3.1 Teoria da coisa

Como foi demonstrado na figura 2.3, através dos tendões, passando por polias, têm-se a movimentação dos dedos na mão. Baseado nessa biomecânica de movimento, foi desenvolvido um sistema mecânico semelhante, com o intuito de criar um sensor de flexão de dedos, atrelado a um transmissor de dados.

Nesse sistema, fios foram presos às extremidades de cada dedo da luva, passando por polias que servem de guias. Na extremidade oposta, os fios são conectados à pequenos potenciômetros que variam de acordo com o sentido do movimento de cada fio. Ou seja, para os cinco dedos de cada mão, são utilizados cinco fios e cinco potenciômetros.

A variação de cada potenciômetro é captada por um microcontrolador que processa esse sinal antes de despachá-lo para o transmissor. O módulo transmissor envia por rádio frequência, mensagens em formato de números inteiros que representam a posição atual de cada dedo.

O módulo receptor de rádio frequência, capta as mensagens e as envia ao microcontrolador conectado. Este por sua vez, processa a mensagem e transmite aos respectivos componentes e atuadores daquela aplicação.

Para este trabalho, um pequeno carrinho, foi o sistema escolhido para ser controlado pela luva. Para isso, um protocolo de transmissão foi desenvolvido para traduzir os movimentos dos dedos da luva em direções para o carrinho.

3.2 Medidas e Posicionamento

3.3 Placa de Circuito Impresso

3.4 Movimento mecânico

Análises e Resultados

- 4.1 Configurações
- 4.2 Testes
- 4.3 Resultados

Conclusão

- 5.1 Conclusões
- 5.2 Trabalhos Futuros

Revisão Bibliográfica

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

[7]

Apêndice A

Algum apêndice

Apêndice B

Outro apêndice

Referências Bibliográficas

- [1] S. K. M, "Indian sign languages using flex sensor glove," IJETT, vol. 4, pp. 2478–2480, 2013. [Online]. Available: http://www.ijettjournal.org/volume-4/issue-6/IJETT-V4I6P149.pdf
- [2] N. C. Braga, *Curso de Eletrônica: Eletrônica Básica*, 1st ed. São Paulo Brasil: Editora Newton C. Braga, 2012, vol. 1.
- [3] R. K. de Oliveira. Dedo em Gatilho Dr. Ricardo Kaempf Cirurgia de Mão e Microcirurgia. Acessado em: 07/08/2018. [Online]. Available: http://www.ricardokaempf.com.br/services/dedo-em-gatilho/
- [4] C. C. A.-S. License. Arduino Introduction. Acessado em: 12/08/2018. [Online]. Available: https://www.arduino.cc/en/Guide/Introduction
- [5] —. Arduino Nano. Acessado em: 18/11/2018. [Online]. Available: https://store.arduino.cc/usa/arduino-nano
- [6] I. Digital. Módulo RF Transmissor + Receptor 433mhz Instituto Digital. Acessado em: 12/08/2018. [Online]. Available: http://www.institutodigital.com.br/pd-f7460-modulo-rf-transmissor-receptor-433mhz.html?ct=76b8b&p=4&s=1
- [7] A. Online. (ANO, MÊS) Título online. [Online]. Available: https://www.exemplo.com/algumacoisa