# Module

4

Signal Representation and Baseband Processing

# Lesson 20 Matched Filter

# After reading this lesson, you will learn about

- > Principle of matched filter (MF);
- > Properties of a matched filter;
- > SNR maximization and minimization of average symbol error probability;
- > Schwartz's Inequality;

Certain structural modification and simplifications of the correlation receiver are possible by observing that,

- (a) All orthonormal basis functions  $\varphi_j s$  are defined between  $0 \le t \le T_b$  and they are zero outside this range.
- (b) Analog multiplication, which is not always very simple and accurate to implement, of the received signal r(t) with time limited basis functions may be replaced by some filtering operation.

Let,  $h_i(t)$  represent the impulse response of a linear filter to which r(t) is applied.

Then, the filter output  $y_i(t)$  may be expressed as:

$$y_j(t) = \int_{-\infty}^{\infty} r(\tau) h_j(t-\tau) d\tau$$
 4.20.1

Now, let,  $h_i(t) = \varphi_i(T - t)$ , a time reversed and time-shifted version of  $\varphi_i(t)$ .

Now, 
$$y_j(t) = \int_{-\infty}^{\infty} r(\tau) \cdot \varphi_j [T - (t - \tau)] d\tau$$
  

$$= \int_{-\infty}^{\infty} r(\tau) \cdot \varphi_j (T + \tau - t) d\tau$$
4.20.2

If we sample this output at t = T,

$$y_j(T) = \int_{-\infty}^{\infty} (\tau) \cdot \varphi_j(\tau) d\tau$$
 4.20.3

Let us recall that  $\varphi_j(t)$  is zero outside the interval  $0 \le t \le T$ . Using this, the above equation may be expressed as,

$$y_j(T) = \int_0^T r(\tau)\varphi_j(\tau)d\tau$$

From our discursion on correlation receiver, we recognize that,

$$r_j = \int_0^T r(\tau)\varphi_j(\tau)d\tau = y_j(\tau)$$
4.20.4

The important expression of (Eq.4.20.4) tells us that the j – th correlation output can equivalently be obtained by using a filter with  $h_j(t) = \varphi_j(T - t)$  and sampling its output at t = T.

The filter is said to be matched to the orthonormal basis function  $\varphi_j(t)$  and the alternation receiver structure is known as a matched filter receiver. The detector part of the matched filter receiver is shown in [**Fig.4.20.1**].



**Fig. 4.20.1:** The block diagram of a matched filter bank that is equivalent to a Correlation Detector

A physically realizable matched filter is to be causal and  $h_j(t) = 0$  for t < 0. Note that if  $\varphi_j(t)$  is zero outside  $0 \le t \le T$ ,  $h_j(t) = \varphi_j(T - t)$  is a causal impulse response.

# Properties of a Matched Filter

We note that a filter which is matched to a known signal  $\varphi(t)$ ,  $0 \le t \le T$ , is characterized by an impulse response h(t) which is a time reversed and delayed version of  $\varphi(t)$  i.e.

$$h(t) = \varphi(T - t) \tag{4.20.5}$$

In the frequency domain, the matched filter is characterized (without mach explanation at this point), by a transfer function, which is, except for a delay factor, the complex conjugate of the F.T. of  $\varphi(t)$ , i.e.

$$H(f) = \Phi^*(f) \exp(-j2\pi fT)$$
 4.20.6

**Property (1):** The spectrum of the output signal of a matched filter with the matched signal as input is, except for a time delay factor, proportional to the energy spectral density of the input signal.

Let,  $\Phi_0(f)$  denote the F.T. of the filter of output  $\varphi_0(t)$ . Then,

$$\Phi_0(f) = H(f)\Phi(f)$$

$$= \Phi^*(f)\Phi(f)\exp^{(-j2\pi fT)}$$

$$= \left|\Phi(f)\right|^2 \exp^{(-j2\pi fT)}$$
Energy spectral density of  $g(t)$ 

$$= (20.7)$$

**Property** (2): The output signal of a matched filter is proportional to a shifted version of the autocorrelation function of the in the input signal to which the filter is matched.

This property follows from Property (1). As the auto-correlation function and the energy spectral density form F.T. pair, by taking IFT of (Eq.4.20.7), we may write,

$$\varphi_0(t) = R_{\alpha}(t - T) \tag{4.20.8}$$

Where  $R_{\alpha}(\tau)$  is the act of  $\varphi(t)$  for 'lag  $\tau$ '. Note that at t = T,

$$R_{\varphi}(0) = \varphi_0(t) = \text{Energy of } \varphi(t).$$
 4.20.9

**Property** (3): The output SNR of a matched filter depends only on the ratio of the signal energy to the psd of the white noise at the filter input.

Let us consider a filter matched to the input signal  $\varphi(t)$ .

From property (2), we see that the maximum value of  $\varphi_0(t)$  at t=T is  $\varphi_0(t-T)=E$  .

Now, it may be shown that the average noise power at the output of the matched

filter is given by, 
$$E[n^2(t)] = \frac{N_0}{2} \int_{-\infty}^{\infty} |\varphi(f)|^2 df = \frac{N_0}{2} E$$
 4.20.10

The maximum signal power =  $|\varphi_0(T)|^2 = E^2$ .

Hence, 
$$(SNR)_{\text{max}} = \frac{E^2}{\frac{N_0}{2}E} = \frac{2E}{N_0}$$
 4.20.11

Note that SNR in the above expression is a dimensionless quantity.

This is a very significant result as we see that the  $SNR_{max}$  depends on E and N<sub>0</sub> but not on the shape of  $\varphi(t)$ . This means a freedom to the designer to select specific pulse shape to

optimize other design requirement (the most usual requirement being the spectrum or, equivalently, the transmission bandwidth) while ensuring same SNR.

**Property (4):** The matched-filtering operation may be separated into two matching condition: namely, spectral phase matching that produces the desired output peak at t = T and spectral amplitude matching that gives the peak value its optimum SNR.

$$\Phi(f) = |\Phi(f)| \exp[j\theta(f)]$$
 4.20.12

The filter is said to be matched to the signal  $\varphi(t)$  in spectral phase if the transfer function of the filter follows:

$$H(f) = |H(f)| \exp[-j\theta(f) - j2\pi fT]$$
 4.20.13

Here |H(f)| is real non-negative and 'T' is a positive constant.

The output of such a filter is,

$$\varphi_0'(t) = \int_{-\infty}^{\infty} H(f) \cdot \Phi(f), \exp(j2\pi f t) df$$
$$= \int_{-\infty}^{\infty} |H(f)| |\Phi(f)| \cdot \exp[j2\pi f (t - T) df]$$

Note that,  $|H(t)||\varphi(t)|$  is real and non-negative. Spectral phase matching ensures that all spectral components of  $\varphi_0(t)$  add constructively at t = T and thus cause maximum value of the output:

$$\varphi_0'(T) = \int_{-\infty}^{\infty} |\Phi(f)| |H(f)| df \ge \varphi_0'(t)$$
4.20.14

For spectral amplitude matching, we choose the amplitude response |H(f)| of the filter to shape the output for best SNR at t = T by using  $|H(f)| = |\Phi(f)|$ . The standard matched filter achieves both these features.

# Maximization of output Signal –to-Noise Raito:

Let, h(t) be the impulse response of a linear filter and  $x(t) = \varphi(t) + \omega(t)$ ,  $0 \le t \le T$ : is the input to the filter where  $\varphi(t)$  is a known signal and  $\omega(t)$  is an additive white noise sample function with zero mean and psd of  $(N_0/2)$  Watt/Hz. Let,  $\varphi(t)$  be one of the orthonormal basis functions. As the filter is linear, its output can be expressed as,  $y(t) = \varphi_0(t) + n(t)$ , where  $\varphi_0(t)$  is the output due to the signal component  $\varphi(t)$  and  $\varphi(t)$  is the output due to the noise component  $\varphi(t)$ . [Fig. 4.20.2].



Fig. 4.20.2: A matched filter is fed with a noisy basis function to which it is matched

We can now re-frame the requirement of minimum probability of error (or maximum likelihood detection) as: The filter should make power of  $\varphi_0(t)$  considerably greater (in fact, as large as possible) compared to the power of n(t) at t = T. That is, the filter should maximize the output signal-to-noise power ratio [(SNR)<sub>0</sub>]

$$\triangleq \frac{\left|\varphi_0(T)\right|^2}{E[n^2(t)]} \left| \max \right|$$

The following discussion shows that the SNR is indeed maximized when h(t) is matched to the known input signal  $\varphi(t)$ .

Let,  $\Phi(f)$ : F.T. of known signal  $\varphi(t)$ 

H(f): Transfer function of the linear filter.

$$\therefore \Phi_0(f) = H(f)\Phi(f)$$

and 
$$\Phi_0(t) = \int_{-\infty}^{\infty} H(f)\Phi(f)\exp(j2\pi ft)df$$
 4.20.15

The filter output is sampled at t = T. Now,

$$\left| \varphi_0(T) \right|^2 = \left| \int_{-\infty}^{\infty} H(f) \Phi(f) \exp(j2\pi f T) df \right|^2$$
 4.20.16

Let,  $S_N(f)$ : Power spectral density of noise at the output of the linear filter. So,

$$S_N(f) = \frac{N_0}{2} \cdot |H(f)|^2$$
 4.20.17

Now, the average noise power at the output of the filter

$$= E[n^{2}(t)] = \int_{-\infty}^{\infty} S_{N}(f) df$$

$$= \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df$$
 4.20.18

Form Eq. 4.20.16 and 4.20.18, we can write an expression of the output SNR as:

$$(SNR)_{0} = \frac{\left|\varphi^{2}(T)\right|^{2}}{E[n^{2}(t)]} = \frac{\left|\int_{-\infty}^{\infty} H(f).\varphi(f)\exp(j2\pi fT)df\right|^{2}}{\frac{N_{0}}{2}\int_{-\infty}^{\infty} \left|H(f)\right|^{2}df}$$
4.20.19

Our aim now is to find a suitable form of H(f) such that  $(SNR)_0$  is maximized. We use Schwarz's inequality for the purpose.

# Schwarz's Inequality

Let  $\overline{x}(t)$  and  $\overline{y}(t)$  denote any pair of complex-valued signals with finite energy, i.e.  $\int_{-\infty}^{\infty} \left| \overline{x}(t) \right|^2 dt < \infty \quad \& \int_{-\infty}^{\infty} \left| \overline{y}(t) \right|^2 dt < \infty \text{ Schwarz's Inequality states that,}$ 

$$\left| \int_{-\infty}^{\infty} \overline{x}(t) \overline{y}(t) dt \right|^{2} \leq \int_{-\infty}^{\infty} \left| \overline{x}(t) \right|^{2} dt. \int_{-\infty}^{\infty} \left| \overline{y}(t) \right|^{2} dt.$$

$$4.20.20$$

The equality holds if and only if  $\overline{y}(t) = k.\overline{x}^*(t)$ , where 'k' is a scalar constant. This implies,  $\overline{y}(t)\overline{x}(t) = k.\overline{x}(t)\overline{x}^*(t) \rightarrow$  a real quantity.

Now, applying Schwarz's inequality on the numerator of (Eq.4.20.19), we may write,

$$\left| \int_{-\infty}^{\infty} \mathbf{H}(f) \Phi(f) \exp(j2\pi f T) df \right|^{2} \le \int_{-\infty}^{\infty} \left| \mathbf{H}(f) \right|^{2} df \int_{-\infty}^{\infty} \left| \Phi(f) \right|^{2} df$$

$$4.20.21$$

Using inequality (4.20.21), equation (4.20.19) may be expressed as,

$$(SNR)_0 \le \frac{2}{N_0} \int_{-\infty}^{\infty} |\varphi(f)|^2 df$$
 4.20.22

Now, from Schwarz's inequality, the SNR is maximum i.e. the equality holds, when  $H_{opt}(f) = \Phi^*(f) \cdot \exp(-j2\pi fT)$ . [Assuming k = 1, a scalar)

We see, 
$$h_{opt}(t) = \int_{-\infty}^{\infty} \Phi^*(f) \exp[-j2\pi(T-t)] df$$
 4.20.23

Now,  $\varphi(t)$  is a real valued signal and hence,

$$\Phi^*(f) = \Phi(-f)$$
 4.20.24

Using Eq. 4.20.24 we see,

$$h_{opt}(t) = \int_{-\infty}^{\infty} \Phi(-f) \exp[-j2\pi)(T-t)] df = \varphi(T-t)$$
  
$$\therefore h_{opt}(t) = \Phi(T-t)$$

This relation is the same as we obtained previously for a matched filter receiver. So, we can infer that, SNR maximization is an operation, which is equivalent to minimization of average symbol error  $(P_e)$  for an AWGN Channel.

**Example #4.20.1:** Let us consider a sinusoid, defined below as the basis function:

$$\varphi(t) = \begin{cases} \sqrt{\frac{2}{T}} \cos w_c t, & 0 \le t \le T \\ 0, & elsewhere. \end{cases}$$

$$h_{opt.}(t) = \varphi(T - t) = \varphi(t). \quad h(t) = \varphi(T - t) = \varphi(t)$$

$$\varphi_0(t) = \begin{cases} \frac{t}{T} \cos w_c t. & 0 \le t \le T \\ 2 - \frac{t}{T} \cos w_c t. & T \le t \le 2T \\ 0 & else. \end{cases}$$

#### **Problems**

- Q4.20.1) Under what conditions matched filter may be considered equivalent to an optimum correlation receiver?
- Q4.20.2) Is a matched filter equivalent to an optimum correlation receiver if sampling is not possible at the right instants of time?
- Q4.20.3) Explain the significance of the fact that a matched filter ensures maximum output signal-to-noise ratio.