Apprentissage Automatique Arbres de décisions & méthodes ensemblistes

S. Herbin, A. Chan Hon Tong

stephane.herbin@onera.fr

Introduction

Rappel du dernier cours

- Principes généraux d'apprentissage : données apprentissage/validation/test, optimisation, évaluation
- Deux algorithmes élémentaires de *classification supervisée* : plus proche voisin, classifieur Bayésien

Objectifs de ce cours

- Un nouveau type de classifieur : l'arbre de décision
- ► Un principe de conception : les approches ensemblistes Intuition : « un groupe prend plus souvent de meilleures décisions qu'un individu »

Arbres de décision et méthodes ensemblistes : plan

Arbres de décision

Méthodes ensemblistes Bagging Random Forests

Conclusion

Un modèle intuitif : décomposer une décision globale en une séquence de décisions locales (questions)

→ Ou bien encore comme dans le jeu des 20 questions

Exemple : attendre une table ou partir?

- Un problème de décision binaire.
- Questions possibles : Autre restaurant à proximité? Bar dans le restaurant? Est-on vendredi? Avons-nous faim? Le restaurant est-il plein? Est-il cher? Quel est le type de restaurant? Temps d'attente estimé? Avons-nous une réservation? Pleut-il?

12 exemples d'apprentissage.

							•			_	
Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	T	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	T	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	T	F	Т	Some	\$\$	T	Т	Italian	0-10	Т
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	T	Т	Thai	0-10	Т
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	Т	T	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	T	T	T	Full	\$	F	F	Burger	30-60	Т

Principe

- Classification en posant une séquence de questions fermées (= nombre fini de réponses possibles)
- Questions organisées sous forme d'arbre : la question suivante dépend de la réponse à la question précédente
- La réponse à la dernière question définit la prédiction finale

Figure 1 – Un arbre « expert » pour résoudre le problème du restaurant.

Questions type

- ► Sur la valeur d'un attribut caractéristique
- ► Sur la véracité d'une clause logique
- ► Sur l'appartenance à un intervalle ou un sous-ensemble
- Sur des attributs discrets ou numériques
- **.**..

Grande flexibilité possible mais les questions doivent être simples (à calculer)

Arbres de décision : structure

- Données codée comme ensemble d'attributs (ex : attributs d'un fruit = couleur, taille forme, goût...)
- Noeud de décision associé à un test ou question sur un des attributs
- Branches qui représentent les valeurs possibles de l'attribut testé ou des réponses aux questions
- Noeud terminal ou feuille, liée à la classe (prédiction)

Arbres de décision : principe de prédiction

- ► Les questions découpent (partitionnent) l'espace des attributs à chaque étape
- Le noeud terminal code un élément de la partition
- ► Toutes les données codées par le noeud terminal ont la même prédiction

Figure 2 – Partition sur des données symboliques. Les questions portent sur la valeur d'un attribut discret.

Figure 3 – Partition sur des données numériques. Les questions sont des tests comparant la valeur d'une dimension à un seuil.

Quelles questions se poser pour construire un arbre?

Questions globales:

- ▶ Quelle structure choisir? (profond, équilibré,...)?
- Combien de découpages par noeud? (binaire, plus)
- Quand s'arrêter de découper?

Questions locales:

- Quel attribut choisir, et quel test lui appliquer?
- Si l'arbre est trop grand, comment l'élaguer?
- Si une feuille n'est pas pure, quelle classe attribuer?

Arbres de décision : position du problème d'apprentissage

Soit $X = \{(x_j, y_j)\}_{j \leq N}$ des données décrites chacune par un ensemble d'attributs $x_j = \{A_i^j\}_{1 \leq j \leq M}$, avec A_i^j à valeurs numériques ou symboliques, et y_i la prédiction (vérité terrain).

Recherche du plus petit arbre de décision compatible avec X:

- Principe du rasoir d'Occam : trouver l'hypothèse la plus simple possible compatible avec les données
- Principe Minimum Description Length : trouver l'hypothèse qui produit le plus petit nombre d'opérations

Mais... recherche optimale impossible (problème NP-complet)

Algorithmes spécifiques assurant une erreur sur l'ensemble d'apprentissage minimale, et un arbre cohérent avec *la plupart* des données.

Principe général

Construction top-down récursive d'un *petit* arbre cohérent avec la *plupart* des données.

Trois étapes

- 1. Décider si un noeud est terminal
- 2. Si un noeud n'est pas terminal, choisir un attribut, un test et des branches possible
- 3. Si un noeud est terminal, lui associer une classe

Choisir un attribut et un test

→ Algorithmes récursifs (par exemple ID3, C4.5, CART...)

Fonction Construire-arbre(X)

SI tous les points de X sont de même classe, créer une feuille associée à cette classe

SINON

- choisir la meilleure paire (A_i,test) pour créer un noeud
- ightharpoonup ce test sépare X en 2 parties X_g et X_d
- ightharpoonup Construire-arbre (X_g)
- ightharpoonup Construire-arbre(X_d)

Critères de sélection d'un noeud

- Mesure de l'hétérogénéité (ou de la pureté).
 - ► Entropie : $H = -\sum p(c_k)log_2(p(c_k))$ avec $p(c_k) = N_k/N$ probabilité de la classe c_k dans l'ensemble courant \rightarrow ID3, C4.5, mesure l'information
 - ► Indice de Gini : $I = \sum p(c_k)(1 p(c_k)) = 1 \sum p(c_k)^2$ → CART, mesure les inégalités
 - Indice d'erreur : $I = 1 max(p(c_k))$

Choix attribut et test

- \rightarrow Gain d'homogénéité apporté par un test T pour séparer un noeud V en noeuds V_j .
 - A chaque noeud, choix de T maximisant $Gain(V, T) = I(V) \sum_{i} p(V_i)I(V_i)$
 - ► En pratique, approche empirique pour tout *A_i* tri des valeurs par ordre croissant et tests tirés selon une approche dichotomique (médiane, etc...)

Figure 4 – Arbre et partition obtenu en utilisant un critère de type Gini.

Figure 5 – Un arbre « appris » pour résoudre le problème du restaurant.

Arbres de décision : comportement

Sur-apprentissage

- Un arbre trop précis risque de mal généraliser (cf. k-NN)
- Les arbres peuvent être mal équilibrés
- ➤ On peut utiliser des techniques d'élagage (« pruning ») pour améliorer a posteriori la qualité des arbres

Arbres de décision : comportement

La complexité peut être contrôlée

- en limitant la profondeur
- en minorant le gain en homogénéité
- en ajoutant une pénalisation de complexité dans le coût
- en garantissant une bonne estimation des coûts (par ex. un nombre minimal d'échantillons par noeud)

Arbres de décision : Résumé

Points clés des arbres de décision

- + Interprétabilité
- Apprentissage et classification rapides et efficaces, y compris en grande dimension.
 - Tendance au surapprentissage (mais moyen de contrôle de la complexité)
 - Sensibilité au bruit et aux points aberrants, instabilité

Utilisations

- + Classification ou régression...
- + Capable de traiter des données numériques, mais aussi symboliques

Méthodes ensemblistes

Méthodes ensemblistes

Définition

- Méthodes agrégeant des ensembles de classifieurs;
- Produire une variété de classifieurs : en échantillonnant différemment les données, en modifiant les structures de classifieurs;
- Classe finale = fusion des prédictions.

Principe

- L'union fait la force : tirer parti de plusieurs classifieurs plus ou moins médiocres pour construire un classifieur performant
 - Réduit la variance d'apprentissage et moyenne les erreurs

Méthodes ensemblistes

Deux grandes approches : bagging et boosting

Bagging

Génération de jeux de données multiples

- ▶ Construction de $\tilde{X}_1,...,\tilde{X}_K$ par tirage avec remise sur X.
- \tilde{X}_k similaires, mais pas trop (proba d'un exemple de ne pas être sélectionné $p=(1-1/N)^N$. Quand $N\to\infty$, $p\to0.3679$.)
- Entraı̂ner K fois le même algorithme f_k (arbre, réseau de neurones, SVM..) sur chaque \tilde{X}_k et agréger par vote majoritaire ou moyenne $f(x) = \frac{1}{K} \sum f_k(x)$

Conséquence

- lacktriangle Chaque classifieur commet des erreurs différentes, liées à $ilde{X}_k$
 - → l'agrégat a une plus faible variance d'apprentissage
- ► Méthode pour *régulariser* le processus de prédiction.

Bagging

bootstrap samples

Random Forests

Forêts aléatoires ou Random forests

- Combiner hasard et bagging pour construire un ensemble d'arbres de décision encore plus varié (=forêt)
 - ► La partie calculatoire des arbres de décision est la construction incrémentale de leur structure (meilleure paire attribut & test)
 - Structure = paramètre de contrôle des arbres (profondeur max, critère de pureté des noeuds, nombre d'échantillons par noeud...) + aléatoire sur attributs/données/tests

Random Forests

Random Forests

Forêts aléatoires ou Random forests

Algorithme:

POUR $k = 1 \dots K$:

- ightharpoonup Bagging : tirage de $ilde{X}_k$ de même taille que X
- ightharpoonup Tirage (avec remise) de q attributs A_i parmi les M possibles
- ightharpoonup Construction de l'arbre G_k avec des seuils aléatoires
- ► Construction de f_k la fonction de décision de G_k dont les feuilles sont remplies avec \tilde{X}_k

Agrégation :

- $f(x) = \frac{1}{K} \sum f_k(x)$ (régression)
- ▶ f(x) = Vote majoritaire($f_1(x), ..., f_K(x)$)

Biais et variance

Exemple de la régression

$$y = f(x) + \epsilon$$

Il y a deux sources d'aléatoire :

- Le bruit : ϵ (un même x peut produire différents y)
- L'échantillonnage des données d'apprentissage : D

On définit pour un prédicteur appris $\hat{f}_D(x)$:

Erreur écart quadratique moyen entre prédiction et valeur idéale

Biais erreur de la prédiction moyenne par rapport à la valeur idéale

Variance écart quadratique moyen entre prédiction et prédiction moyenne

Biais et variance

Compromis biais variance

L'erreur pour un x donné peut se décomposer en :

$$\begin{aligned} \operatorname{Err}(\mathsf{x}) &= E_D[(y - \hat{f}_D(\mathsf{x}))^2] \\ &= \underbrace{\epsilon^2}_{\text{bruit}^2} + \underbrace{(E_D[\hat{f}_D(\mathsf{x})] - y)^2}_{\text{biais}^2} + \underbrace{E_D[(E_D[\hat{f}_D(\mathsf{x})] - \hat{f}_D(\mathsf{x}))^2]}_{\text{variance}} \end{aligned}$$

L'origine de l'erreur de généralisation est double, mais les deux termes sont difficiles à contrôler individuellement.

Rem : pour la classification, une telle décomposition est plus difficile à obtenir, mais les comportements sont comparables.

Biais et variance

Figure 6 – Simulation d'une régression pour 50 échantillons et polynomes de degrés 1,5,20.

- Degré 1 : variance faible, mais biais important
- Degré 5 : variance et biais faibles
- Degré 20 : variance importante et biais très faible

Intérêt des approches ensemblistes

On introduit une source d'aléatoire supplémentaire : choix des splits, du sous ensemble de variables, etc.

Lorsque les prédicteurs individuels sont sans biais (c'est le cas avec les arbres), la variance du prédicteur ensembliste est :

$$\operatorname{var}\left(\hat{f}_D(\mathsf{x})\right) = \rho\sigma^2 + \frac{1-\rho}{K}\sigma^2$$

 σ variance d'un prédicteur individuel et ρ corrélation entre deux prédicteurs.

On voit que l'on a intérêt à construire des prédicteurs individuels indépendants ($\rho \approx 0$), et en grand nombre (K grand).

Random Forests: Résumé

Points clés des forêts aléatoires

- + Bonnes performances
- + Arbres plus décorrélés que par simple bagging
- + Grandes dimensions
- + Robustesse
 - Temps d'entraînement (mais aisément parallélisable).

Utilisation

- Choix d'une faible profondeur (2 à 5), autres hyper-paramètres à estimer par validation croisée
- Classification et régression
- Données numériques et symboliques

Principe

- ► $X = \{(x_i, y_i)\}_{i=1}^N$ un ensemble de données où $y_i \in \{-1, 1\}$
- ▶ H un ensemble ou une famille de classifieurs $f \mapsto -1, 1$, pas forcément performants → appelés weak learners

Objectif du boosting :

- Construire un classifieur performant $F(x) = \sum_{k=1}^{K} \alpha_k f_k(x)$ \rightarrow appelé *strong learner*
- Moyenne pondérée des weak learners
- Comment trouver les poids?

AdaBoost

- ► Adaboost = « Adaptive boosting algorithm », algorithme minimisant l'erreur globale de F de manière itérative
- ▶ Principe : à chaque itération k, modifier F^k de manière à donner plus de poids aux données difficiles (mal-classées) qui permettent de corriger les erreurs commises par F^{k-1}

AdaBoost: algorithme

Initialiser les poids liés aux données :

$$d^0 \leftarrow (\frac{1}{K}, \frac{1}{K}, \dots, \frac{1}{K})$$

POUR $t = 1 \dots K$

- ► Entraı̂ner f_k sur les données X pondérées par d^{k-1} $(f_k = \arg\min_f \sum_i d_i^{k-1} [y_i \neq f(x_i)])$
- ▶ Prédire $\hat{y} = y^i \leftarrow f_k(x_i), \forall i$
- ► Calculer l'erreur pondérée $\epsilon^k \leftarrow \sum_i d_i^{k-1} [y_i \neq \hat{y}_i]$
- lacksquare Calculer les paramètres adaptatifs $lpha^k \leftarrow rac{1}{2} \log \left(rac{1 \epsilon^k}{\epsilon^k}
 ight)$
- ► Re-pondérer les données $d^k = d_i^k \leftarrow d_i^{k-1} \exp(-\alpha^k y_i \hat{y}_i)$

Classifieur (pondéré) final : $F(x) = \operatorname{sgn}\left(\sum_{k=1}^{K} \alpha_k f_k(x)\right)$

Figure 7 – Apprentissage séquentiel des classifieurs et des pondérations.

Source: A Tutorial on Boosting (Freund and Schapire)

Figure 8 – Classifieur final.

Gradient Boosting

Gradient Boosting

Variante : version additive pas-à-pas

- ► $X = \{(x_i, y_i)\}_{i=1}^N$ un ensemble de données où $y_i \in \{-1, 1\}$
- ▶ H un ensemble de classifieurs $f \mapsto -1, 1$, pas forcément performants → appelés *weak learners*

Objectif du gradient boosting :

- Construire itérativement un classifieur performant $F_T(x) = \sum_{t=1}^T \alpha_t f_t(x) = F_{T-1}(x) + \alpha_T f_T(x)$ où f_t est l'un des weak learners h.
- ▶ Il s'agit à chaque étape de minimiser le risque empirique : $\mathcal{L}(F_T) = \sum_{n=1}^{N} l(y_n, F_T(x_n))$ où l est un coût (loss)

Gradient Boosting

Coûts

- Adaboost \rightarrow gradient boost avec fonction de coût $I(y, f(x)) = \exp(-y.f(x))$
- Adaboost peut être vu comme la construction itérative d'un classifieur optimal par minimisation du risque empirique à chaque pas.
- Cadre plus général : d'autres pénalités sont possibles :
 - ► LogitBoost : $I(y, f(x)) = \log_2 (1 + \exp[-2y.f(x)])$
 - L₂ Boost : $I(y, f(x)) = (y f(x))^2/2$
 - DoomII: $I(y, f(x)) = 1 \tanh(y.f(x))$
 - ► Savage : $I(y, f(x)) = \frac{1}{(1 + \exp(2y.f(x)))^2}$
- DoomII et Savage sont non-convexes → plus robustes aux données bruitées

Gradient Boosting

Pourquoi Gradient Boosting?

- ► Chaque étape minimise le risque empirique : $\mathcal{L}(F_T) = \sum_{n=1}^{N} I(y_n, F_T(x_n))$ où I est un coût (loss)
- Lors de la variante additive d'adaboost, α_Tf_T(x) peut donc être vu comme le weak learner qui approxime le mieux le pas d'une descente de gradient dans l'espaces des fonctions de classification
- Une version exacte de la descente de gradient donne les Gradient Boosting Models :

$$F_T(x) = F_{T-1}(x) + \alpha_T \sum_{i=1}^{N} \nabla_{F_{T-1}} I(y_i, f_{T-1}(x_i))$$

Boosting : Résumé

Points clés du boosting

- Agrégation adaptative de classifieurs moyens
- + Résultats théoriques sur la convergence et l'optimalité du classifieur final
- + Très efficace (améliore n'importe quel ensemble de classifieurs)
- Assez facile à mettre en oeuvre (moins vrai pour Gradient Boosting)
 - Sensibilité aux données aberrantes,

Utilisations

- Choix du weak learner : ne doit pas être trop bon, sinon surapprentissage
- Choix de la pénalité en fonction du bruit des données
- Variantes pour la classification et la régression

Conclusion

Cours n°2 : Arbres de décision et méthodes ensemblistes

Notions phares du jour

- Arbres de décision (vote, homogénéité)
- Aggrégation de classifieurs
- ► Bagging, Random Forests
- Boosting, GradientBoost

Concepts généraux

- Classification / régression
- Bagging et randomisation (Forêts aléatoires)
- Construction adaptative à partir de weak learners et optimisation dans l'espace des classifieurs (Boosting)