Assessing Rudin's Proof of the Existence of a Continuous Nowhere Differentiable Function:

Theorem 7.18 in Principles of Mathematical Analysis

Sava Spasojevic savaspasojevic@g.ucla.edu

May 27th, 2020

Abstract

Geometric Brownian motion is an example of a function that is continuous, but nowhere differentiable. I asked my friends if they could come up with such a function off the top of their head or if such a function is even intuitively clear. Needless to say, all were stumped and could not come up with such a function, although they barely put in the effort anyway. The reason that I chose to investigate Rudin's proof is because it uses basic principles from Fourier analysis, such as periodicity and boundedness, as well as a function that is intuitively clear. The idea is that function will oscillate rapidly enough to produce a problem with the difference quotient, but will be convergent, and in turn continuous, for all values in the domain, by way a monotonically decreasing sequence.

The Proof

We restate the theorem and retype the proof here for convenience, pointing out certain insights along the way.

Theorem 1. There exists a real continuous function on the real line which is nowhere differentiable.

Proof. Define

$$\varphi(x) = |x| \text{ for } -1 \le x \le 1$$

which looks like this

and extend the definition of $\varphi(x)$ to all real x by requiring that $\varphi(x+2)=\varphi(x)$. See Figure 1.

Then for all s and t,

$$|\varphi(s) - \varphi(t)| \le |s - t|$$

In particular, φ is continuous on \mathbb{R} . Define

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x)$$

Figure 2 shows this function for the sum with 500 iterations.

Figure 2: Continuous Nowhere Differentiable Function

Consider the following convergence theorem:

Theorem 2. Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose

$$|f_n(x)| \le M_n, \ x \in E, \ n = 1, 2, 3, \dots$$

Then $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

By taking $M_n = \left(\frac{3}{4}\right)^n$ and noting that $0 \le \varphi \le 1$, the series converges uniformly on $E = \mathbb{R}$ by Theorem 2. The following theorem asserts that f is continuous on \mathbb{R} .

Theorem 3. If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E.

Now fix $x \in \mathbb{R}$ and $m \in \mathbb{Z}^+$. Put

$$\delta_m = \pm \frac{1}{2} \cdot 4^{-m}$$

where the sign is chosen so that no integer lies between $4^m x$ and $4^m (x + \delta_m)$. This can be done since $4^m |\delta_m| = \frac{1}{2}$. Define

$$\gamma_n = \frac{\varphi(4^n(x + \delta_m)) - \varphi(4^n x)}{\delta_m}$$

There are two cases:

- (I) n > m. In this case $4^n \delta_m \in 2\mathbb{Z}$, so that $\gamma_n = 0$.
- (II) $0 \le n \le m$. Continuity of φ implies that $|\gamma_n| \le 4^n$, with equality when n = m. Since $|\gamma_m| = 4^m$, we conclude that

$$\left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| = \left| \sum_{n=0}^m \left(\frac{3}{4} \right)^n \gamma_n \right|$$

$$\geq 3^m - \sum_{n=0}^{m-1} 3^n$$

$$= \frac{1}{2} (3^m + 1)$$

As $m \to \infty$, $\delta_m \to 0$. It follows that f is not differentiable at x.

Analysis

So, what happened? The conclusion of the proof is that the difference quotient approaches ∞ and $-\infty$ as δ_m approached zero.

At each point the slope is essentially vertical but diametrically opposed on an abitrarily small interval, which violates the differentiability condition. Note that the function in Figure 2 exhibits the same pathological behavior as a geometric Brownian motion.

Now, we'll take a look at how the inequality in case (II) was obtained. Proceed as follows,

$$\left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| = \left| \sum_{n=0}^m \left(\frac{3}{4} \right)^n \gamma_n \right|$$

$$\leq \sum_{n=0}^m \left(\frac{3}{4} \right)^n |\gamma_n|$$

$$= 3^m + \sum_{n=0}^{m-1} \left(\frac{3}{4} \right)^n |\gamma_n|$$

which implies that

$$3^{m} - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} \gamma_{n} \le \left| \sum_{n=0}^{m} \left(\frac{3}{4}\right)^{n} \gamma_{n} \right| \le 3^{m} + \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} \gamma_{n}$$

Since $|\gamma_n| \leq 4^n$ we have, from the leftmost inequality,

$$3^{m} - \sum_{n=0}^{m-1} 3^{n} \le 3^{m} - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^{n} \gamma_{n} \le \left| \sum_{n=0}^{m} \left(\frac{3}{4}\right)^{n} \gamma_{n} \right|$$

So that now that concluding portion of the proof has been justified.