

### **Deep Reinforcement Learning**

**Dynamic Programming** 

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

https://tu-chemnitz.de/informatik/KI/edu/deeprl

### **Dynamic Programming (DP)**



• Dynamic Programming (DP) iterates over two steps:

### 1. Policy evaluation

• For a given policy  $\pi$ , the value of all states  $V^\pi(s)$  or all state action pairs  $Q^\pi(s,a)$  is calculated based on the Bellman equations:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s,a) \, \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V^{\pi}(s') \right]$$

### 2. Policy improvement

- From the current estimated values  $V^{\pi}(s)$  or  $Q^{\pi}(s,a)$ , a new better policy  $\pi$  is derived.
- After enough iterations, the policy converges to the optimal policy (if the states are Markov).
- Two main algorithms: policy iteration and value iteration.

# 1 - Policy iteration

• Bellman equation for the state s and a fixed policy  $\pi$ :

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s,a) \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V^{\pi}(s') 
ight]$$

• Let's note  $\mathcal{P}_{ss'}^{\pi}$  the transition probability between s and s' (dependent on the policy  $\pi$ ) and  $\mathcal{R}_{s}^{\pi}$  the expected reward in s (also dependent):

$$\mathcal{P}^{\pi}_{ss'} = \sum_{a \in \mathcal{A}(s)} \pi(s,a) \sum_{s' \in \mathcal{S}} p(s'|s,a)$$

$$\mathcal{R}^{\pi}_{s} = \sum_{a \in \mathcal{A}(s)} \pi(s,a) \sum_{s' \in \mathcal{S}} p(s'|s,a) \ r(s,a,s')$$

The Bellman equation becomes:

$$V^{\pi}(s) = \mathcal{R}^{\pi}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^{\pi}_{ss'} \, V^{\pi}(s')$$

 As we have a fixed policy during the evaluation (Markov Reward Process), the Bellman equation is simplified.

• Let's now put the Bellman equations in a matrix-vector form.

$$V^\pi(s) = \mathcal{R}^\pi_s + \gamma \, \sum_{s' \in \mathcal{S}} \, \mathcal{P}^\pi_{ss'} \, V^\pi(s')$$

- We first define the **vector of state values**  $\mathbf{V}^{\pi}$ :
- and the **vector of expected reward**  $\mathcal{R}^{\pi}$ :

$$\mathbf{V}^{\pi} = egin{bmatrix} V^{\pi}(s_1) \ V^{\pi}(s_2) \ dots \ V^{\pi}(s_n) \end{bmatrix}$$

$$\mathcal{R}^{\pi} = egin{bmatrix} \mathcal{R}^{\pi}(s_1) \ \mathcal{R}^{\pi}(s_2) \ dots \ \mathcal{R}^{\pi}(s_n) \end{bmatrix}$$

• The **state transition matrix**  $\mathcal{P}^{\pi}$  is defined as:

$$\mathcal{P}^{\pi} = egin{bmatrix} \mathcal{P}^{\pi}_{s_{1}s_{1}} & \mathcal{P}^{\pi}_{s_{1}s_{2}} & \dots & \mathcal{P}^{\pi}_{s_{1}s_{n}} \ \mathcal{P}^{\pi}_{s_{2}s_{1}} & \mathcal{P}^{\pi}_{s_{2}s_{2}} & \dots & \mathcal{P}^{\pi}_{s_{2}s_{n}} \ dots & dots & dots & dots \ \mathcal{P}^{\pi}_{s_{n}s_{1}} & \mathcal{P}^{\pi}_{s_{n}s_{2}} & \dots & \mathcal{P}^{\pi}_{s_{n}s_{n}} \end{bmatrix}$$

You can simply check that:

$$egin{bmatrix} V^\pi(s_1) \ V^\pi(s_2) \ dots \ V^\pi(s_n) \end{bmatrix} = egin{bmatrix} \mathcal{R}^\pi(s_1) \ \mathcal{R}^\pi(s_2) \ dots \ V^\pi(s_n) \end{bmatrix} + \gamma egin{bmatrix} \mathcal{P}^\pi_{s_1s_1} & \mathcal{P}^\pi_{s_1s_2} & \dots & \mathcal{P}^\pi_{s_1s_n} \ \mathcal{P}^\pi_{s_2s_2} & \dots & \mathcal{P}^\pi_{s_2s_n} \ dots & dots & dots \ \mathcal{R}^\pi(s_n) \end{bmatrix} imes egin{bmatrix} V^\pi(s_1) \ V^\pi(s_2) \ dots \ \mathcal{P}^\pi_{s_ns_1} & \mathcal{P}^\pi_{s_ns_2} & \dots & \mathcal{P}^\pi_{s_ns_n} \end{bmatrix} imes egin{bmatrix} V^\pi(s_1) \ V^\pi(s_2) \ dots \ V^\pi(s_n) \end{bmatrix}$$

leads to the same equations as:

$$V^\pi(s) = \mathcal{R}^\pi_s + \gamma \, \sum_{s' \in \mathcal{S}} \, \mathcal{P}^\pi_{ss'} \, V^\pi(s')$$

for all states s.

ullet The Bellman equations for all states s can therefore be written with a matrix-vector notation as:

$$\mathbf{V}^{\pi} = \mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi} \, \mathbf{V}^{\pi}$$

ullet The Bellman equations for all states s is:

$$\mathbf{V}^{\pi} = \mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi} \, \mathbf{V}^{\pi}$$

• If we know  $\mathcal{P}^\pi$  and  $\mathcal{R}^\pi$  (dynamics of the MDP for the policy  $\pi$ ), we can simply obtain the state values:

$$(\mathbb{I} - \gamma\,\mathcal{P}^\pi) imes \mathbf{V}^\pi = \mathcal{R}^\pi$$

where  $\mathbb{I}$  is the identity matrix, what gives:

$$\mathbf{V}^\pi = (\mathbb{I} - \gamma\,\mathcal{P}^\pi)^{-1} imes\mathcal{R}^\pi$$

- Done!
- ullet **But**, if we have n states, the matrix  $\mathcal{P}^\pi$  has  $n^2$  elements.
- Inverting  $\mathbb{I} \gamma \, \mathcal{P}^\pi$  requires at least  $\mathcal{O}(n^{2.37})$  operations.
- ullet Forget it if you have more than a thousand states ( $1000^{2.37}pprox13$  million operations).
- In **dynamic programming**, we will use **iterative methods** to estimate  $\mathbf{V}^{\pi}$ .

### Iterative policy evaluation

• The idea of **iterative policy evaluation** (IPE) is to consider a sequence of consecutive state-value functions which should converge from initially wrong estimates  $V_0(s)$  towards the real state-value function  $V^{\pi}(s)$ .

$$V_0 
ightarrow V_1 
ightarrow V_2 
ightarrow \ldots 
ightarrow V_k 
ightarrow V_{k+1} 
ightarrow \ldots 
ightarrow V^\pi$$



- The value function at step k+1  $V_{k+1}(s)$  is computed using the previous estimates  $V_k(s)$  and the Bellman equation transformed into an **update** rule.
- In vector notation:

$$\mathbf{V}_{k+1} = \mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi} \, \mathbf{V}_{k}$$

Source: David Silver.

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

### Iterative policy evaluation

- ullet Let's start with dummy (e.g. random) initial estimates  $V_0(s)$  for the value of every state s.
- ullet We can obtain new estimates  $V_1(s)$  which are slightly less wrong by applying once the **Bellman operator**:

$$V_1(s) \leftarrow \sum_{a \in \mathcal{A}(s)} \pi(s, a) \, \sum_{s' \in \mathcal{S}} p(s'|s, a) \left[ r(s, a, s') + \gamma \, V_0(s') 
ight] \quad orall s \in \mathcal{S}$$

• Based on these estimates  $V_1(s)$ , we can obtain even better estimates  $V_2(s)$  by applying again the Bellman operator:

$$V_2(s) \leftarrow \sum_{a \in \mathcal{A}(s)} \pi(s, a) \, \sum_{s' \in \mathcal{S}} p(s'|s, a) \left[ r(s, a, s') + \gamma \, V_1(s') 
ight] \quad orall s \in \mathcal{S}$$

Generally, state-value function estimates are improved iteratively through:

$$V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}(s)} \pi(s,a) \, \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V_k(s') 
ight] \quad orall s \in \mathcal{S}$$

•  $V_{\infty}=V^{\pi}$  is a fixed point of this update rule because of the uniqueness of the solution to the Bellman equation.

### **Bellman operator**

• The **Bellman operator**  $\mathcal{T}^{\pi}$  is a mapping between two vector spaces:

$$\mathcal{T}^{\pi}(\mathbf{V}) = \mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi} \, \mathbf{V}$$

- If you apply repeatedly the Bellman operator on any initial vector  ${f V}_0$ , it converges towards the solution of the Bellman equations  ${f V}^\pi$ .
- ullet Mathematically speaking,  $\mathcal{T}^\pi$  is a  $\gamma$ -contraction, i.e. it makes value functions closer by at least  $\gamma$ :

$$||\mathcal{T}^{\pi}(\mathbf{V}) - \mathcal{T}^{\pi}(\mathbf{U})||_{\infty} \leq \gamma \, ||\mathbf{V} - \mathbf{U}||_{\infty}$$

- The **contraction mapping theorem** ensures that  $\mathcal{T}^{\pi}$  converges to an unique fixed point:
  - existence and uniqueness of the solution of the Bellman equations.

### **Backup diagram of IPE**

Iterative Policy Evaluation relies on full backups: it backs up the value of ALL possible successive states
into the new value of a state.

$$V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}(s)} \pi(s,a) \, \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V_k(s') 
ight] \quad orall s \in \mathcal{S}$$

• Backup diagram: which other values do you need to know in order to update one value?



• The backups are **synchronous**: all states are backed up in parallel.

$$\mathbf{V}_{k+1} = \mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi} \, \mathbf{V}_{k}$$

- The termination of iterative policy evaluation has to be controlled by hand, as the convergence of the algorithm is only at the limit.
- It is good practice to look at the variations on the values of the different states, and stop the iteration when this variation falls below a predefined threshold.

# Iterative policy evaluation

- ullet For a fixed policy  $\pi$ , initialize  $V(s)=0 \ orall s\in \mathcal{S}.$
- while not converged:
  - for all states s:

$$egin{array}{l} \circ V_{ ext{target}}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s,a) \, \sum_{s' \in \mathcal{S}} p(s'|s,a) \, [r(s,a,s') + \gamma \, V(s')] \end{array}$$

- $\bullet$   $\delta = 0$
- for all states s:

$$egin{aligned} \circ \ \delta = \max(\delta, |V(s) - V_{ ext{target}}(s)|) \end{aligned}$$

$$\circ \ V(s) = V_{
m target}(s)$$

- if  $\delta < \delta_{
  m threshold}$ :
  - converged = True

### **Dynamic Programming (DP)**



Dynamic Programming (DP) iterates over two steps:

#### 1. Policy evaluation

For a given policy  $\pi$ , the value of all states  $V^{\pi}(s)$  or all states action pairs  $Q^{\pi}(s,a)$  is calculated based on the Bellman equations:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s,a) \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V^{\pi}(s') \right]$$

### 2. Policy improvement

• From the current estimated values  $V^{\pi}(s)$  or  $Q^{\pi}(s,a)$ , a new better policy  $\pi$  is derived.

### **Policy improvement**

- For each state s, we would like to know if we should deterministically choose an action  $a \neq \pi(s)$  or not in order to improve the policy.
- The value of an action a in the state s for the policy  $\pi$  is given by:

$$Q^{\pi}(s,a) = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V^{\pi}(s') 
ight]$$



ullet If the Q-value of an action a is higher than the one currently selected by the **deterministic** policy:

$$Q^\pi(s,a) > Q^\pi(s,\pi(s)) = V^\pi(s)$$

then it is better to select a once in s and thereafter follow  $\pi$ .

- If there is no better action, we keep the previous policy for this state.
- ullet This corresponds to a **greedy** action selection over the Q-values, defining a **deterministic** policy  $\pi(s)$ :

$$\pi(s) \leftarrow \operatorname{argmax}_a Q^\pi(s, a) = \sum_{s' \in \mathcal{S}} p(s'|s, a) \left[ r(s, a, s') + \gamma \, V^\pi(s') 
ight]$$

# **Policy improvement**

• After the policy improvement, the Q-value of each deterministic action  $\pi(s)$  has increased or stayed the same.

$$\operatorname{argmax}_a Q^{\pi}(s, a) = \sum_{s' \in \mathcal{S}} p(s'|s, a) \left[ r(s, a, s') + \gamma \, V^{\pi}(s') 
ight] \geq Q^{\pi}(s, \pi(s))$$

- This defines an **improved** policy  $\pi'$ , where all states and actions have a higher value than previously.
- Greedy action selection over the state value function implements policy improvement:

$$\pi' \leftarrow \operatorname{Greedy}(V^\pi)$$



#### **Greedy policy improvement:**

- for each state  $s \in \mathcal{S}$ :
  - $\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V^{\pi}(s') \right]$

### **Policy iteration**



- Once a policy  $\pi$  has been improved using  $V^\pi$  to yield a better policy  $\pi'$ , we can then compute  $V^{\pi'}$  and improve it again to yield an even better policy  $\pi''$ .
- The algorithm policy iteration successively uses policy evaluation and policy improvement to find the optimal policy.

$$\pi_0 \stackrel{E}{\longrightarrow} V^{\pi_0} \stackrel{I}{\longrightarrow} \pi_1 \stackrel{E}{\longrightarrow} V^{\pi^1} \stackrel{I}{\longrightarrow} ... \stackrel{I}{\longrightarrow} \pi^* \stackrel{E}{\longrightarrow} V^*$$



- The **optimal policy** being deterministic, policy improvement can be greedy over the state values.
- If the policy does not change after policy improvement, the optimal policy has been found.

# **Policy iteration**

- ullet Initialize a deterministic policy  $\pi(s)$  and set  $V(s)=0 \ orall s\in \mathcal{S}.$
- while  $\pi$  is not optimal:
  - while not converged: # Policy evaluation
    - **for** all states *s*:

$$egin{array}{l} \circ V_{\mathrm{target}}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s, a) \, \sum_{s' \in \mathcal{S}} p(s'|s, a) \, [r(s, a, s') + \gamma \, V(s')] \end{array}$$

• **for** all states *s*:

$$\circ \ V(s) = V_{
m target}(s)$$

• for each state  $s \in \mathcal{S}$ : # Policy improvement

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \sigma(s) \leftarrow \operatorname{argmax}_a \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V^{\pi}(s') 
ight] \end{aligned}$$

• if  $\pi$  has not changed: break

### **Small Gridworld example**



|    | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 |    |

r = -1 on all transitions

Source: David Silver. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

- Gridworld is an undiscounted MDP (we can take  $\gamma=1$ ).
- The states are the position in the grid, the actions are up, down, left, right. Transitions to a wall leave in the same state.
- ullet The reward is always -1, except after being in the terminal states in gray (r=0).
- The initial policy is random:

$$\pi(s, \mathrm{up}) = \pi(s, \mathrm{down}) = \pi(s, \mathrm{left}) = \pi(s, \mathrm{right}) = 0.25$$

### **Small Gridworld example**



- k = 0:
  - The initial values  $V_0$  are set to 0 as the initial policy is random.
- k = 1:
  - The random policy is evaluated: all states get the value of the average immediate reward in that state. -1, except the terminal states (0).
  - The greedy policy is already an improvement over the random policy: adjacent states to the terminal states would decide to go there systematically, as the value is 0 instead of -1.
- ullet k=2: The previous estimates propagate: states adjacent to the terminal states get a higher value, as there will be less punishments after these states.

### **Small Gridworld example**



- k = 3:
  - The values continue to propagate.
  - The greedy policy at that step of policy evaluation is already optimal.
- k > 3:
  - The values continue to converge towards the true values.
  - The greedy policy does not change.
     In this simple example, it is already the optimal policy.

- Two things to notice:
  - There is no actually no need to wait until the end of policy evaluation to improve the policy, as the greedy policy might already be optimal.
  - There can be more than one optimal policy: some actions may have the same Q-value: choosing one or other is equally optimal.

# 2 - Value iteration

### Value iteration

- Policy iteration can converge in a surprisingly small number of iterations.
- One drawback of *policy iteration* is that it uses a full policy evaluation, which can be computationally exhaustive as the convergence of  $V_k$  is only at the limit and the number of states can be huge.
- The idea of **value iteration** is to interleave policy evaluation and policy improvement, so that the policy is improved after EACH iteration of policy evaluation, not after complete convergence.
- As policy improvement returns a deterministic greedy policy, updating of the value of a state is then simpler:

$$V_{k+1}(s) = \max_{a} \sum_{s'} p(s'|s,a) [r(s,a,s') + \gamma \, V_k(s')]$$

- Note that this is equivalent to turning the Bellman optimality equation into an update rule.
- ullet Value iteration converges to  $V^*$ , faster than policy iteration, and should be stopped when the values do not change much anymore.

### Value iteration

- ullet Initialize a deterministic policy  $\pi(s)$  and set  $V(s)=0 \ orall s\in \mathcal{S}$  .
- while not converged:
  - for all states s:

$$egin{aligned} & V_{ ext{target}}(s) = \max_{a} \ \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V(s') 
ight] \end{aligned}$$

- $\bullet$   $\delta = 0$
- for all states s:

$$egin{aligned} \circ \ \delta = \max(\delta, |V(s) - V_{ ext{target}}(s)|) \end{aligned}$$

$$\circ \ V(s) = V_{
m target}(s)$$

- if  $\delta < \delta_{
  m threshold}$ :
  - converged = True

### Comparison of Policy- and Value-iteration

### Full policy-evaluation backup

$$V_{k+1}(s) \leftarrow \sum_{a \in \mathcal{A}(s)} \pi(s,a) \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V_k(s') 
ight]$$



### **Full value-iteration backup**

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}(s)} \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V_k(s') 
ight]$$



# Asynchronous dynamic programming

- Synchronous DP requires exhaustive sweeps of the entire state set (synchronous backups).
  - while not converged:
    - **for** all states *s*:

$$egin{aligned} & V_{ ext{target}}(s) = \max_{a} \ \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V(s') 
ight] \end{aligned}$$

• **for** all states *s*:

$$\circ \ V(s) = V_{
m target}(s)$$

- Asynchronous DP updates instead each state independently and asynchronously (in-place):
  - while not converged:
    - $\circ$  Pick a state s randomly (or following a heuristic).
    - Update the value of this state.

$$V(s) = \max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V(s') 
ight]$$

• We must still ensure that all states are visited, but their frequency and order is irrelevant.

### Asynchronous dynamic programming

- Is it possible to select the states to backup intelligently?
- Prioritized sweeping selects in priority the states with the largest remaining Bellman error:

$$\delta = |\max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V(s') 
ight] - V(s) |$$

ullet A large Bellman error means that the current estimate V(s) is very different from the **target** y:

$$y = \max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[ r(s,a,s') + \gamma \, V(s') 
ight]$$

- States with a high Bellman error should be updated in priority.
- ullet If the Bellman error is small, this means that the current estimate V(s) is already close to what it should be, there is no hurry in evaluating this state.
- The main advantage is that the DP algorithm can be applied as the agent is actually experiencing its environment (no need for the dynamics of environment to be fully known).

### **Efficiency of Dynamic Programming**



- Policy-iteration and value-iteration consist of alternations between policy evaluation and policy improvement, although at different frequencies.
- This principle is called **Generalized Policy Iteration** (GPI).
- Finding an optimal policy is polynomial in the number of states and actions:  $\mathcal{O}(n^2\,m)$  (n is the number of states, m the number of actions).
- However, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- In practice, classical DP can only be applied to problems with a few millions of states.

### **Curse of dimensionality**



Source: https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2

- If one variable can be represented by 5 discrete values:
  - 2 variables necessitate 25 states,
  - 3 variables need 125 states, and so on...
- The number of states explodes exponentially with the number of dimensions of the problem.