Do Practice HW Problems!

Algorithm Analysis

- Be able to look at code and determine if it's O(1), O(log(n)), O(n), etc.
- Given N₁, T₁, O(N) predict T₂ from N₂ (and vice versa)
 - o In other words, given the time it takes to process N_1 items, be able to determine the time it would take to process N_2 items, or determine the number of items that can be processed in a different amount of time.

For each of the Data Structures covered so far (see below), know:

- All relevant Operations
 - O(???) for each
 - Worst case, Best case Average case
 - Theoretical (non-Python) Algorithms for each (including recursive ones), and including drawing pictures of linked-lists, arrays, and trees.
 - Be able to Read/Write/debug Python code for each operation
- Data structures:
 - Binary Search Tree
 - Priority Queue (Binary Heap implementation)
 - Hash Table

Data Structures since midterm 1:

Binary Search Tree, as implemented in Lab 5

- Operations:
 - o add
 - o remove/delete
 - find/get/contains
 - o find min/max
 - o tree height

Priority Queue, as implemented in Lab 7

- Array-based binary heap implementation
- Operations:
 - o enqueue
 - o dequeue
 - o bottom-up heap construction
 - o percolate up
 - o percolate down
 - o heap sort

Hash Table

- Array-based implementation
 - Separate Chaining
 - o Linear Probing
 - Quadratic Probing
 - o Load Factor restrictions for each type of collision resolution strategies
- Operations:
 - o add
 - o find/get/contains
 - o remove

Sorts – Basic implementation

- Sorts:
 - Insertion
 - o Selection
 - o Merge
 - o Heap
 - Tsort Just know the basic algorithm
- Know:
 - o General Algorithm
 - Big-Oh for best, average, worst (time complexity)
 - o Be able to read and understand code

Code Reading/Writing

• Be able to read/write Python code for operations of the covered data structures, especially for the operations implemented in labs/projects.

Labs: 5, 6, 7Projects: 3a, 3b