ArmoredSoftware Semantics 0.0

ArmoredSoftware Crew Information and Telecommunication Technology Center The University of Kansas palexand@ku.edu

November 23, 2014

Contents

1	Introduction	1	
2	SPI Calculus	1	
A	Glossary	1	
List of Figures			
Abstract			
	This document describes evolving Armored Software semantic definitions.		
1	Introduction		
2	SPI Calculus		
9			

A Glossary

- 0 null process
- |M| hash of M
- K^+ public half of asymmetric key K
- $\bullet~K^-$ private half of asymmetric key K
- $\{M\}_K$ encrypt M with symmetric key K
- $\{M\}_{K^+}$ encrypt M with the public key from K
- $\{M\}_{K^-}$ decrypt M with the public key from K
- $\{|M|\}_{K^-}$ sign M with the private key from K
- $\{|M|\}_{K^+}$ check signature on M with the public key from K
- $(\nu x)P$ new variable x defined in scope of P
- $\overline{c}\langle M \rangle$ send M on channel c
- c(M) receive M on channel c
- ullet !P infinite replication of P
- $\bullet P + Q P \text{ or } Q$
- $P \mid Q$ P in parallel with Q
- case $\{M\}_k$ of x in P attempt to decrypt $\{M\}_k$ and bind to x in P if successful. Stuck if unsuccessful
- case $\{M\}_{k^-}$ of x in P attempt to decrypt $\{M\}_{k^+}$ and bind to x in P if successful. Stuck if unsuccessful
- case $\{|M|\}_{k^+}$ of x in P attempt to check signature $\{|M|\}_{k^-}$ and bind to x in P if successful. Stuck if unsuccessful
- case x of y 0: P suc(x): Q case splitting over integers. x is bound in Q.
- let (x,y) = M in y match M to (x,y) binding x and y to pair elements in M
- $A \stackrel{\triangle}{=} B$ define an equivalence
- $A \rightarrow B : M$ on c A sends B message M on channel c

$$A \stackrel{\Delta}{=} (\nu c) \, \overline{c} \langle M \rangle. \mathbf{0} \mid c(M). A$$