99 级《数学分析(上)》期中考试试卷 1999 年 11 月 29 日

一、(14分)

求极限:

(1)
$$\lim_{n \to \infty} \left(\frac{n+x}{n-1} \right)^n$$

(2)
$$\lim_{x \to \pi} \frac{\sin mx}{\sin nx}$$

二、(8分)

用定义证明 $f(x) = \frac{x}{x^2 - 1}$ 在 x = 2 处连续。

三、(8分)

计算
$$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(x - \frac{\pi}{3}\right)}{1 - 2\cos x}$$
。

四、(14分)

证明收敛数列 $\{x_n\}$ 至少达到它的上确界和下确界中的一个。

五、(14分)

设 $x_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n+1} \frac{1}{n}$,利用"单调有界必有极限"证明数列 $\{x_n\}$ 收敛。

六、(14分)

叙述并证明 $\lim_{x\to x_0} f(x)$ 存在(且有限)的 Cauchy 收敛原理。

七、(14分)

设函数 f(x) 在开区间 (a,b) 内连续, $a < x_1 < x_2 < b$, t_1 , t_2 是任意两个正实数,证明:在 (a,b) 内至少存在一点 ξ ,满足

$$t_1 f(x_1) + t_2(x_2) = (t_1 + t_2) f(\xi)$$
.

八、(14分)

设连续函数 f(x) 在有限开区间 (a,b) 上单调有界,证明 f(x) 在 (a,b) 上一致连续。