Analisis Sentimen pada Teks Bahasa Indonesia Menggunakan NN dan LSTM

Kelompok 1

(Ardhini, Imaduddin, Natasya) Binar Academy Data Science Bootcamp

01 Pendahuluan

Latar Belakang

Di era digital saat ini, data memiliki peran yang sangat vital dalam berbagai bidang, termasuk analisis sentimen. Analisis sentimen adalah proses memahami, mengekstraksi, dan mengolah teks untuk mendapatkan informasi sentimen yang terkandung di dalamnya. Salah satu penerapan dari analisis sentimen ini adalah perusahaan dapat lebih mudah memahami opini publik terhadap produk atau layanan mereka. Dataset yang berisi teks-teks dengan label sentimen sangat penting dalam melatih model machine learning untuk tugas ini.

Dalam penelitian ini, kami akan menggunakan model Long Short-Term Memory (LSTM) dan Neural Network (Multilayer Perceptron Classifier, MLPClassifier) untuk analisis sentimen pada dataset yang didapat IndoNLU...

Rumusan Masalah

Bagaimana Mempersiapkan Data?

Bagaimana cara mengolah dan mempersiapkan data teks agar siap digunakan dalam model LSTM dan MLPClassifier untuk analisis sentimen?

Bagaimana Mengukur Performa Model?

Bagaimana mengukur performa model LSTM dan MLPClassifier yang telah dilatih dengan dataset ini?

Model Mana yang Paling Baik?

Model manakah yang memiliki **kinerja lebih baik** dalam analisis sentimen?

Tujuan Penelitian

Pre-processing Data

Mengolah dan
mempersiapkan data
teks agar siap digunakan
model untuk analisis
sentimen serta evaluasi
perbandingan model.

Model Training

Melatih model LSTM dan
MLPClassifier untuk
analisis sentimen dan
mengukur performanya
untuk memastikan akurasi
yang tinggi dalam prediksi
sentimen.

Model Comparison

Menentukan model mana yang memiliki kinerja lebih baik dalam analisis sentimen

Batasan Masalah

- Dataset hanya mencakup teks-teks dalam bahasa Indonesia dengan sentimen yang dianalisis terbatas pada kategori positif, negatif, dan netral.
- Pre-processing data hanya menggunakan cleansing (sesuai dataset), stop word removal, dan feature extraction.
- Model yang digunakan adalah LSTM dan MLPClassifier.
- Performa model diukur menggunakan metrik accuracy, precission, recall, dan F1-score.

02 Metode Penelitian

1

Flow Process

Pre-processing Data

Cleansing, Remove Duplicates, Remove Stopwords, and Split Data

Modelling and Train

MLPClassifier and LSTM

API Predict

Deployment model to FlaskAPI

Feature Extraction

Using Bag of Words & Tokenizing and Padding

Evaluation

Confusion Matrix

0

About Data

Data Sekunder

Didapat dari IndoNLU.

Kolom Text

Berisi text dengan berbagai macam bahasan

11.000 rows

Data berjumlah **11.000** rows dengan 2 kolom

Kolom Label

Label mengandung 3 sentimen sesuai dengan text.

O1 Drop Duplicates

Terdapat **67** data duplicates, maka total data menjadi **10933**.

O3 Data Cleansing

- Lower Case
- Remove non-alphanumeric
- Remove Stopwords
- Remove White Space

02 Stopwords

Terdapat **125** kata stopword dari library Sastrawi, ditambah kata **"nya"**. Total **126** Stopwords.

Stop Words

Word Count

Dengan menggunakan *wordcloud*, kita dapat mengetahui kata apa saja yang **paling banyak digunakan** pada **data**, maupun pada tiap **sentimen**.

Negative Words

Neutral Words

Positive Words

Data Split

Setelah pre-processing data. Data dibagi menjadi 80% untuk *training* dan 20% untuk *testing*. Pembagian dilakukan proses *Feature* sebelum **Extraction** agar data yang akan dilatih antara kedua model memiliki persebaran yang sama.

Feature Extraction

O

Count Vectorizer

Data

The	quick	brown	fox	jumps	over	lazy	dog
2	1	1	1	1	1	1	1

Tokenizer dan Pad Sequences

Pad Sequences

Tokenizing

NN Layer/Algorithm

NN Parameter & Hyperparameter

Solver: Adam

Batch Size: 16

Max Iterations: 20

Random State: 42

Neural Networks Metrics

	Precision	Recall	F1-Score	Support			
0	0.74	0.77	0.75	677			
1	0.81	0.59	0.69	234			
2	0.88	0.90	0.89	1276			
Accuracy			0.83	2187			
Macro Avg	0.81	0.75	0.78	2187			
Weighted Avg	0.83	0.83	0.82	2187			

Neural Networks Loss Graph

LSTM Layer/Algorithm

LSTM Parameter & Hyperparameter

- Optimizer = Adam
- loss = 'categorical_crossentropy
- metrics = ['accuracy']

LSTM Metrics

	Precision	Recall	F1-Score	Support
0	0.77	0.79	0.78	706
1	0.81	0.52	0.63	223
2	0.88	0.92	0.90	1258
Accuracy			0.84	2187
Macro Avg	0.82	0.74	0.77	2187
Weighted Avg	0.84	0.84	0.84	2187

Accuracy and Loss Graph LSTM

Confusion Matrix

Neural Networks

LSTM

Demo API

0

Kesimpulan dan Saran

Berdasarkan penelitian, dapat diambil kesimpulan bahwa:

- Pre-processing data meliputi menghapus data duplikat, cleansing, split data train dan test sebesar 8:2, dan Feature Extraction menggunkan BoW dan Tokenizing & Padding.
- 2. **Akurasi** yang didapat dari model **NN** sebesar **83%**, sedangkan akurasi dari model **LSTM** sebesar **84%** dan terindikasi *good fit*.
- Dari kedua model yang digunakan, model LSTM memiliki akurasi dan juga f1-score dari tiap sentimen lebih baik dibandingkan dengan model MLPClassifier.

Diperlukan pengecekan lebih lanjut untuk mengoptimalkan model dalam mengatasi isu seperti overfitting dan underfitting, serta menangani data yang tidak optimal. Penanganan ini akan memungkinkan hasil prediksi yang lebih akurat, sejalan dengan tujuan awal penelitian untuk menentukan model dengan kinerja terbaik dalam kondisi yang ideal.

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

