函数综合

1.	已知函数 $f(x)$ $(x \in \mathbf{R})$	满足 $f(-x) = 2 - f(x)$,	若函数 $y = \frac{x+1}{x}$ 与 y	y = f(x) 图象的	的交点	为
	$(x_1,y_1),(x_2,y_2),\cdots,(x_m,$	122	~)
	(A) 0	(B) <i>m</i>	(C) 2m	(D) 4m		
2.	设函数 $f(x),g(x)$ 的定	义域都为 \mathbf{R} ,且 $f(x)$ 是	是奇函数, $g(x)$ 是偶函数	数,则下列结记	仑正确	的
	是				()
	(A) $f(x)g(x)$ 是偶函数					
	(B) $ f(x) g(x)$ 是奇函数	文				
	(C) $f(x) g(x) $ 是奇函数	女				
	(D) $ f(x)g(x) $ 是奇函数	Ţ				
3.	已知函数 $f(x)$ 的定义域	为 (-1,0),则函数 f(2;	x + 1) 的定义域为		()
	(A) $(-1,1)$	(B) $\left(-1, -\frac{1}{2}\right)$	(C) $(-1,0)$	$(D) \left(\frac{1}{2}, 1\right)$		
4.	下列函数中, 其定义域	和值域分别与函数 $y = 1$	0lgx 的定义域和值域相	可的是	()
	(A) y = x	$(B) y = \lg x$	$(C) y = 2^x$	$(D) y = \frac{1}{\sqrt{x}}$		
5.	设函数 $f(x)$ 的图象与 y	$y = 2^{x+a}$ 的图象关于直	线 $y = -x$ 对称,且 f	(-2) + f(-4)	= 1,	则
	a =				()
	(A) -1	(B) 1	(C) 2	(D) 4		
6.	设函数 $f(x) = \ln(1+ x)$	$\left(-\frac{1}{1+x^{2}}\right) $,则使得 $f(x)$) > f(2x-1) 成立的 x 的	的取值范围是	()
	$(A)\left(\frac{1}{3},1\right)$		$(B)\left(-\infty,\frac{1}{3}\right)\cup\left(1,+\infty\right)$			
	$(C)\left(-\frac{1}{3},\frac{1}{3}\right)$		(D) $\left(-\infty, \frac{1}{3}\right) \cup \left(\frac{1}{3}, +\infty\right)$			
7.	已知函数 $f(x) = x^3 - 6x$	$\alpha^2 + 9x - abc, \ a < b < c,$,给出如下结论	仑:	
	① $f(0)f(1) > 0$; ② $f(0)$		$0; \Phi f(0)f(3) < 0;$			
	其中正确的结论的序号。		(5) 0.0	(T) 00	()
	(A) ①③	(B) ①④	(C) 23	(D) 24		
8.	已知函数 $f(x) = \ln(\sqrt{1})$	$\overline{+9x^2} - 3x$) + 1, $\mathbb{M} f(1)$	$g(2) + f\left(\lg\frac{1}{2}\right)$ 等于		()
	(A) -1	(B) 0	(C) 1	(D) 2		

9. 若 a > b > 1, 0 < c < 1, 则 (A) $a^{c} < b^{c}$ (B) $ab^c < ba^c$ (C) $a \log_b c < b \log_a c$ (D) $\log_a c < \log_b c$ 10. 已知 $x, y \in \mathbb{R}$, 且 x > y > 0, 则) (A) $\frac{1}{x} - \frac{1}{y} > 0$ (B) $\sin x - \sin y > 0$ $(C)\left(\frac{1}{2}\right)^x - \left(\frac{1}{2}\right)^y < 0$ (D) $\ln x + \ln y > 0$ 11. 如果,函数 f(x) = 的图象为折线 ACB,则不等式 $f(x) \ge \log_2(x+1)$ 的解集是) $2 \mid C$ (A) $\{x | -1 < x \le 0\}$ (B) $\{x | -1 \le x \le 1\}$ (C) $\{x|0 \le x \le 1\}$ (D) $\{x | -1 \le x \le 2\}$ 12. 下来函数中, 定义域为 R 且为增函数的是) (A) $y = e^{-x}$ (C) $y = \ln x$ (B) y = x(D) y = |x|13. 函数 f(x) 的图象向右平移一个单位长度,所得图象与 $y = e^x$ 关于 y 轴对称,则 f(x) =() (A) e^{x+1} (C) e^{-x+1} (B) e^{x-1} (D) e^{-x-1} 14. 已知函数 f(x) 是定义在 \mathbf{R} 上的偶函数,且在区间 $[0,+\infty)$ 上单调递增,若实数 a 满足 $f(\log_2 a)$ + $f(\log_{\frac{1}{2}}a) \leq 2f(1)$,则 a 的取值范围是 () $(B)\left(0,\frac{1}{2}\right]$ (A)[1,2] $(C) \left[\frac{1}{2}, 2 \right]$ (D) (0, 2]

15. 已知 $\log_{18} 9 = a \ (a \neq 2), \ 18^b = 5.$ 求 $\log_{36} 45 =$ _____.

16. 若函数 $f(x) = x \ln(x + \sqrt{a + x^2})$ 为偶函数,则 a =_____.

17. 设函数 $f(x) = \begin{cases} 2^x - a, & x < 1; \\ 4(x - a)(x - 2a), & x \ge 1. \end{cases}$

- ① 若 a = 1 , 则 f(x) 的最小值为 ;
- ② 若 f(x) 恰有 2 个零点,则实数 a 的取值范围是______
- 18. 设函数 $f(x) = \begin{cases} x^3 3x, & x \leq a \\ -2x, & x > a. \end{cases}$
 - ① 若 a = 0,则 f(x) 的最大值为
 - ②若 f(x) 无最大值,则实数 a 的取值范围是______
- 19. 若函数 $f(x) = (1-x^2)(x^2+ax+b)$ 的图象关于直线 x = -2 对称,则 f(x) 的最大值是______.
- 20. 已知函数 $f(x) = \begin{cases} \frac{2}{x}, & x \ge 2 \\ (x-1)^3, & x < 2. \end{cases}$ 若关于 x 的方程 f(x) = k 有两个不同的实根,则数 k 的取
- 21. 已知函数 $f(x) = \frac{x^2}{1+x^2}$,那么 $f(1) + f(2) + f(\frac{1}{2}) + f(3) + f(\frac{1}{3} + f(4) + f(\frac{1}{4}) = ______.$
- 22. 已知函数 f(x) = m(x-2m)(x+m+3), $g(x) = 2^x 2$. 若同时满足条件:
 - ① $\forall x \in \mathbf{R}, \ f(x) < 0 \ \vec{\boxtimes} \ g(x) < 0;$
 - $\ensuremath{\mathfrak{D}} \exists \in (-\infty, -4), \ f(x)g(x) < 0,$

则m的取值范围是 $_{---}$.

- 23. 曲线 C 是平面内与两个定点 $F_{(-1,0)}$ 和 $F_{2}(1,0)$ 的距离的积等于常数 a^{2} 的点的轨迹. 给出下列三个结论:
 - ① 曲线 *C* 过坐标原点;
 - ② 曲线 C 关于坐标原点对称;
 - ③ 若点 P 在曲线 C 上,则 $\triangle F_1 P F_2$ 的面积大于 $\frac{1}{2}a^2$.

其中,所有正确的结论的序号是_____.