解析入門

Kazeto Fukasawa

平成 30 年 12 月 10 日

目 次

第1章	実数	2
1.1	実数の定義	2
	1.1.1 体	2
	1.1.2 全順序集合	3
1.2	連続性の公理	3
	1.2.1 デデキントの公理と有界性公理の同値性	4

1.1 実数の定義

1.1.1 体

定義 1. (体)

集合 \mathbb{K} の任意の二つの元 $a,b\in\mathbb{K}$ に対して,和 a+b と積 ab の二つの演算が定義され,以下の性質を満たす時, \mathbb{K} は体 (Field) であると呼ぶ.

- (F1) a+b=b+a. (和の交換律)
- (F2) 任意の $a, b, c \in \mathbb{K}$ について, (a+b)+c=a+(b+c).(和の結合律)
- (F3) ある $0 \in \mathbb{K}$ が存在して、任意の $a \in \mathbb{K}$ について、a+0=a.(和の単位元の存在)
- (F4) 任意の $a \in \mathbb{K}$ について、ある $-a \in \mathbb{K}$ が存在して、a + (-a) = 0 となる.(和の逆元の存在)
- (F5) ab = ba.(積の交換律)
- (F6) 任意の $a, b, c \in \mathbb{K}$ について, (ab)c = a(bc).(積の結合律)
- (F7) ある $1 \in \mathbb{K}$ が存在して,任意の $a \in \mathbb{K}$ について a1 = a.(積の単位元の存在)
- (F8) 0 でない任意の $a \in \mathbb{K}$ について,ある $a^{-1} \in \mathbb{K}$ が存在して, $aa^{-1} = 1$.(積 の逆元の存在)
- (F9) 任意の $a, b, c \in \mathbb{K}$ について,a(b+c) = ab + ac.(和と積の分配律)
- (F10) 1 ≠ 0.(0 以外の元の存在)
- 定理 1. (和の単位元の一意性) (F3) の和の単位元 0 は一意的である.

証明. ある $0' \in \mathbb{K}$ が存在して、任意の $a \in \mathbb{K}$ について、a+0'=a を満たし、かつ $0 \neq 0'$ となると仮定する.このとき、 $0 \in \mathbb{K}$ より 0' の性質から 0+0'=0 が成り立つ.一方で、 $0' \in \mathbb{K}$ より同様に 0 の性質から、0'+0=0' である.また、F1 より 0+0'=0'+0 であるため、0=0+0'=0'+0=0' となり、

0 = 0' で矛盾である. 従って, $\exists 0' \in \mathbb{K} \forall a \in \mathbb{K} (a + 0' = a) \land 0 \neq 0'$ を否定した $\neg (\exists 0' \in \mathbb{K} \forall a \in \mathbb{K} (a + 0' = a)) \lor 0 = 0'$ が成り立つ. (F3) より和の単位元は常に存在するため,0 = 0' が常に成り立つ.

定理 2. $\forall a \in \mathbb{K}(0a=0)$.

証明. (F3) で a=0 とすると 0+0=0 であるため,0a=(0+0)a となる.ここで,(F9) の分配律を用いると,0a=(0+0)a=0a+0a である.0a=0a+0a は,(F3) より 0a が 0a 和の単位元となっていることを意味する.定理 1 より,和の単位元は一意的であるため,0a=0 が成り立つ.

1.1.2 全順序集合

1.2 連続性の公理

定義 2. (デデキントの切断)

 \mathbb{R} を全順序集合である体とする. このとき、 \mathbb{R} の部分集合の組 (A,B) について以下が成り立つとき、(A,B) をデデキントの切断と呼ぶ.

- 1. $A \neq \emptyset \land B \neq \emptyset$.
- 2. $A \cap B = \emptyset$.
- 3. $A \cup B = \mathbb{R}$.
- 4. $\forall a \in A \forall b \in B (a < b)$.

公理 1. (デデキントの公理)

デデキントの切断に対して、Aの最大元とBの最小元の存在に関して、以下の4ケースが考えられる。

- 1. A の最大元が存在する $\land B$ の最小元が存在しない.
- 2. A の最大元が存在しない $\land B$ の最小元が存在する.
- 3. A の最大元が存在する $\land B$ の最小元が存在する.
- 4. A の最大元が存在しない $\land B$ の最小元が存在しない.

このとき, 1,2 のみに限る.

3. は \mathbb{R} が全順序集合である体であることから常に成り立たない。この公理は、4 があり得ないことを仮定する。

定理 3. (ℝの稠密性)

ℝを全順序集合である体とする.このとき, ℝは稠密である.

証明. 任意の $a,b \in \mathbb{R}(a < b)$ について, $c = \frac{a+b}{2}$ ととる. \mathbb{R} が体であることより, $c \in \mathbb{R}$ であり,全順序集合であることからこの c にも順序関係が定義される.このときの順序は, $a < b \iff a+a < a+b \iff a = \frac{a+a}{2} < \frac{a+b}{2} = c$ より a < c. 同様に, $a < b \iff a+b < b+b \iff c = \frac{a+b}{2} < \frac{b+b}{2} = b$ より c < b である.したがって任意の $a,b \in \mathbb{R}(a < b)$ について a < c < b となる c が存在するため,c は稠密である.c

定理 4. 公理1デデキントの切断の

3. A の最大元が存在する $\land B$ の最小元が存在する.

は,常に成り立たない.

証明. 3. が成り立つと仮定し、A の最大元を a, B の最小元を b とすると、a=b はありえない。 $a\in A \land a\in B$ となり切断の定義 2. $A\cap B=\emptyset$. に反するからである。 $a\neq b$ のとき切断の定義 4. より a< b である。 $\mathbb R$ の稠密性より a< c< b となる $c\in \mathbb R$ が存在する。 この c は a< c より $c\notin A$ であり c< b より $c\notin B$ である。 これは切断の定義 3. $A\cup B=\mathbb R$. に矛盾する。

公理 2. (有界性公理) $\mathbb R$ を全順序集合である体とする. $\mathbb R$ の任意の部分集合 $A \subset \mathbb R(A \neq \emptyset)$ について,A が上に有界(下に有界)ならば,上限 $s = \sup A \in \mathbb R$ (下限 $s = \inf A$) が存在する.

1.2.1 デデキントの公理と有界性公理の同値性

ここで, デデキントの公理と有界性公理が同値であることを示す.

デデキントの公理 ⇒ 有界性公理

有界性公理の,上に有界な空でない任意の部分集合 $A \subset \mathbb{R}$ について,

$$U = \{ u \in \mathbb{R} | \forall a \in A (a \le u) \},$$

$$L = U^C = \{ l \in \mathbb{R} | \exists a \in A (a > l) \}.$$
(1.1)

と定義する. U は A の上界であり, L はその補集合である.

- 1.(L,U) が切断である.
- 2. L の最大元または U の最小元が $s = \sup A$ となる.
- 3. L の最大元は存在しない.
- 4. U の最小元が $s = \sup A$ となる.

という順に示す.

まずデデキントの切断であることを確認する.

1. $L \neq \emptyset \land U \neq \emptyset$.

A は有界であるため,ある $b \in \mathbb{R}$ が存在し, $\forall a \in A (a \leq b)$ となる.このとき, $b \in U$ であるため $U \neq \emptyset$ である.また, $A \neq \emptyset$ の仮定より,ある $a \in A$ がとれる. $a-1 \in \mathbb{R}$ を考えると, $a-1 < a \in A$ であり,これは $a-1 \in L$ を意味する.従って $L \neq \emptyset$ となる.

2. $L\cap U=\emptyset$. L は U の補集合として定義しているため, $L\cap U=\emptyset$ である. 実際に, $L\cap U\neq\emptyset$ とすると, $c\in L\cap U$ がとれて, $c\in U$ より $\forall a\in A(a\leq c)$ である.一方で, $c\in L$ より $\exists a\in A(a>c)$ となり任意の a について $a\leq c$ に矛盾する.従って $L\cap U=\emptyset$ が示された.

3. $L \cup U = \mathbb{R}$. $L = U^C$ であったため, $U^C \cup U = \mathbb{R}$ を示す.まず, $U, U^C \subset \mathbb{R}$ より $U \cup U^C \subset \mathbb{R}$ が成り立つ.実際に,任意の $u \in U \cup U^C$ について, $u \in U$ であるとき $U \subset \mathbb{R}$ より $u \in \mathbb{R}$ であり, $u \in U^C$ のときも同様に $U^C \subset \mathbb{R}$ より $u \in \mathbb{R}$ であるため, $U \cup U^C \subset \mathbb{R}$ が成り立つ.一方で,任意に $a \in \mathbb{R}$ をとると, $a \in U$ または $a \notin U$ のいずれかが成り立つ.従って任意の $a \in \mathbb{R}$ について,

 $a \in \mathbb{R} \Rightarrow a \in \{a | a \in U \lor a \notin U\} = \{a | a \in U\} \cup \{a | a \notin U\} = U \cup U^C$ より、 $\mathbb{R} \subset U^C \cup U$. 以上より $U^C \cup U = \mathbb{R}$ が示された。

4. $\forall a \in L \forall b \in U(a < b)$. 任意に $a \in L$ をとると,a < c となる $c \in A$ が存在する.また,U の定義より任意の $c' \in A$ に対して,任意の $b \in U$ は $c' \leq b$ が成り立つ.任意の c' について成り立つため,c についても成り立ち, $a < c \leq b$ となる.以上より, $\forall a \in L \forall b \in U(a < b)$ が示された.

1.2.3.4 より,(L,U) は切断である.デデキントの公理より,L の最大元または U の最小元が存在する.

L の最大元は存在しない L の最大元が存在すると仮定し、それを s とおく、このとき $s\in L$ より $s< a\in A$ となる a が存在する、 $\mathbb R$ の稠密性より、s< b< a となる $b\in \mathbb R$ が存在し、s が L の最大元であることから、 $b\in U$ が成り立つ、しかし、b< a が任意の $a\in A$ について $a\leq u$ が成り立つという U の定義に反する、従って L の最大元は存在しない、

Uの最小元はAの上限Lの最小元が存在しないため,デデキントの公理よりUの最小元が存在する。UはAの上界の集合として定義されていたため,その最小元はAの上限である。従ってAの上限が存在する。 \square

有界性公理 ⇒ デデキントの公理

まず、任意の切断 (L,U) の L は上に有界である。もしも L が上に有界でないとすると、任意の $a\in\mathbb{R}$ について a< l となる $l\in L$ が存在し、 $U=\emptyset$ となるが、これは切断の定義 2. に反する.

この L に対して有界性公理より上限が存在する. $s=\sup L$ とおくと, $s\in L$ と $s\in U$ の場合が考えられる. $s\in L$ であるとき, s は L の最大元であり, $s\in U$ であるとき, s は U の最小元であることを示す.

 $s \in L$ のとき,s は L の上界の要素であることから, $\forall l \in L (l \leq s)$ が成り立ち,仮定より $s \in L$ であるため,s は L の最大元である.

 $s \in U$ のとき、 $\forall u \in U (s \le u)$ を示せば良い。任意の $\epsilon > 0$ について、 $s - \epsilon$ は s が L の上限であることから、L に属する。つまり、 $\forall x \in \mathbb{R} (x < s \Rightarrow x \in L)$ が成り立ち、対偶をとると $\forall x \in \mathbb{R} (x \in U \Rightarrow x \ge s)$ となる。従って s は U の最小元である。 \square

定理 5. \mathbb{R} 上の, 上に有界な単調増加数列 $\{a_n\}$ は収束する.

証明. $\{a_n\}$ が上に有界な単調増加数列であるとき,それを集合とみなした $A=\{a_n|n\in\mathbb{N}\}$ は,上に有界な \mathbb{R} の部分集合である.そのため,有界性公理より上限 $s=\sup(A)$ が存在する.

 $\epsilon>0$ を任意にとると、s が上限であることより、 $s-\epsilon$ は A の上界ではない。 $s-\epsilon$ が A の上界ではないとき、 $s-\epsilon< a_{n_0} \leq s$ となるような $a_{n_0} \in A$ が存在する.

このとき, $\{a_n\}$ が単調増加数列であることを用いると,任意の $n_0 \le n$ となる n について,

$$s - \epsilon < a_{n_0} \le a_n$$

が成り立つ. また, s は上限であり任意の $a_n \in A$ について $a_n \leq s$ を満たすため,

$$s - \epsilon < a_{n_0} \le a_n \le s$$

が成り立つ. $\epsilon > 0$ より右辺に ϵ を足すと等号ではなくなり.

$$s - \epsilon < a_n < s + \epsilon \iff |a_n - s| < \epsilon$$

となる.

 $\epsilon>0$ について $a_{n_0}\in A$ が存在するとき, $\{a_n\}$ は $\mathbb{N}\to A$ の全射とみなせるため, a_{n_0} に対応する $n_0\in \mathbb{N}$ は存在する.

最終的に、任意の $\epsilon>0$ について $n_0\in\mathbb{N}$ が存在し、 $n_0\leq n\Rightarrow |a_n-s|<\epsilon$ を満たす。これは、 $\{a_n\}$ が s に収束することを意味する.

定理 6. (アルキメデスの定理) 任意の二つの $a,b \in \mathbb{R}$ について, na > b となる $n \in \mathbb{N}$ が存在する.

証明. この定理は、b が数列 $(na)_{n\in\mathbb{N}}$ の上界ではないことを主張している。b が数列 $(na)_{n\in\mathbb{N}}$ の上界であると仮定すると、 $(na)_{n\in\mathbb{N}}$ は単調増加数列であるため、定理 5 よりある値 $\alpha\in\mathbb{R}$ に収束する。このとき、収束の定義より、 $\forall \epsilon>0 \exists n_0\in\mathbb{N} (n\geq n_0\Rightarrow |na-\alpha|<\epsilon)$ が成り立つため、 $n\geq n_0$ のとき、

$$\alpha - \epsilon < na,$$

$$na < \alpha + \epsilon,$$
(1.2)

の両方が成り立つ. ここで $\epsilon=a$ とすると, $n_a\in\mathbb{N}$ が存在して, $n\geq n_a$ のとき,

$$\alpha - a < na,$$

$$na < \alpha + a.$$
(1.3)

1つ目の不等式の両辺に 2a を足すと, $\alpha+a<(n+2)a$ となり, $n_a< n+2$ であるため,n+2 は二つ目の不等式を満たし, $(n+2)a<\alpha+a$ となり,これは矛盾である.したがって b は数列 $(na)_{n\in\mathbb{N}}$ の上界ではない.