Introduction to Database System – Assignment 1

Student Name: Pei-chi, Huang

Student ID: 108020017

Department: Interdisciplinary Program of Science

Problem 1

ER Model -

Relational Model -

```
CREATE TABLE Professor (
     pid INTEGER, -- professor id
pname VARCHAR(20), -- professor name
rank INTEGER,
     PRIMARY KEY (pid)
CREATE TABLE Student (
     sid INTEGER,
pid INTEGER,
                         INTEGER, -- student id
INTEGER, -- id of professor who supervise the student
VARCHAR(20), -- student name
     sname
     degree_program VARCHAR(50),
     PRIMARY KEY (sid),
     FOREIGN KEY (pid) REFERENCES Professor(pid)
CREATE TABLE Project (
     pnum INTEGER,
sponsor VARCHAR(26
budget INTEGER,
start_date Date,
end_date Date,
                         INTEGER, -- project number
VARCHAR(20), -- sponsor name
                         VARCHAR(20), -- id of professor who manage the project
     PRIMARY KEY (pnum),
     FOREIGN KEY (pid) REFERENCES Professor(pid)
CREATE TABLE Participation (
     sid INTEGER, -- student id

pnum INTEGER, -- project num

start_date Date, -- when the student starts working
end_date Date, -- when the student stops working
payment INTEGER, -- how much the student is paid
     PRIMARY KEY (sid, pnum),
     FOREIGN KEY (sid) REFERENCES Student(sid),
     FOREIGN KEY (pnum) REFERENCES Project(pnum)
```

Problem 2 – Decomposition

Table 1 (Primary Key: forum_name)

forum name	popularity
Gossiping	100
Joke	23

Table 2 (Primary Key: {forum_name, post_id})

forum name	post id	title	article	reply
Gossiping	131	Girlfriend	How can I get	["Haha", "I
			girlfriend?	don't know"]
Gossiping	252	Friends	I don't have a friend	["Haha", "I can
				be", "QQ"]
Joke	46	Knock	Knock! Knock!	["Then?",
				"What's the
				point ?"]
Joke	151	Santa Claus	Hold! Hold!	["XDD"]

It suffices to prove that for every functional dependency X -> Y, X is a super key or Y is prime attribute.

For the functional dependency "forum_name -> popularity" in table 1, forum_name uniquely identifies a tuple, so forum_name is a super key and can be selected to be the primary key of table 1.

For the functional dependency "{forum_name, post_id} -> {title, article, reply}" in table 2, {forum_name, post_id} uniquely identifies a tuple, so {forum_name, post_id} is a super key and can be selected to be the primary key of table 2.

Hence, table 1 and table 2 follow the 3rd normal form.