Machine learning in Imaging Final project Optimization of the optics lens in Classification of Colorectal Cancer Histology

Po-Kang Liu 04/24/2020

Outline

- Introduction
 - Problem identification, Data source
- Methods
 - > Physical layer, CNN model, Train test split
- Results
 - Confusion matrix, Accuracy curves, Segmentation
- Conclusion

Introduction

- ► Histopathology: Microscopic examination of diseased tissue
- Computer-Aided Diagnosis (CAD) based on histopathological imaging
 - Classification, detection and counting, segmentation, grading and prognosis prediction ...

► Challenges:

> Medical samples: Transparent optical characteristics, contain hard-toextracted features, when acquiring images with a normal microscope.

Introduction

Objectives:

Design a deep learning framework and jointly optimize physical layer parameters of microscope to improve detection of cancer tissue in histology microscopy.

Selected physical layer: Optics masks → feasible, practicable to fabricate and customize

Data Source: Colorectal Cancer Histology

- ▶ 150 x 150 x 3 RGB colorectal histology (total 5000 images)
- ▶ 8 categories
 - > (a) tumor epithelium
 - > (b) simple stroma
 - (c) complex stroma (stroma that contains single tumor cells and/or single immune cells)
 - (d) immune cell conglomerates
 - (e) debris and mucus
 - > (f) mucosal glands
 - > (g) adipose tissue
 - > (h) background
- ▶ 10 larger images (5000x 5000)

Overall Architecture

Physical Layers: Optic Mask

A RGB color filter (absorption) mask

A phase mask without weight constraint

An absorption
 mask constraint
 weight
 magnitude
 range from

0 - 1

A phase mask with constraint weight magnitude =
 1

CNN

- ► Alexnet
 - > 5 convolutional layers
 - + 3 fully connected layers

- ► VGG16
 - 16 layers with consistent shape

- Drop out 40% in dense layer
- 10 epoch
- 32 batch size

Train Test Split

5000 Small mages (5000,150,150,3)

Training Data: 75%

Validation data: 25%

10 Large image (10,5000,5000,3)

Testing data: 10 large image segmentation task

Results: Validation Results

Results: Performance Comparison

	Training		Validation	
Physical \ CNN	Alexnet	VGG16	Alexnet	VGG16
RGB filter	62.74%	14.72%	66.08%	13.52%
Real value absorption mask	61.73%	14.76%	63.27%	13.44%
Unconstraint phase mask	69.78%	16.21%	69.12%	12.14%
Constraint phase mask	64.53%	12.88%	56.64%	11.08%

Results: Accuracy v.s Epoch

RGB filter

Real value absorption mask

Unconstraint phase mask

Constraint phase mask

Results: Confusion Matrix

Prediction

- (0) tumor epithelium
- (1) simple stroma
- (2) complex stroma
- (3) immune cell conglomerates
- (4) debris and mucus
- (5) mucosal glands
- (6) adipose tissue
- (7) background.

Confusion between

- (6) adipose tissue
- (7) background

Final Testing (Segmentation) Results

Results: Large Image Segmentation

- 7 background
- 6 adipose tissue
- **5 mucosal glands**
- 4 debris and mucus
- 3 immune cell conglomerates
- 2 complex stroma
- **1** simple stroma
- **1** 0 tumor epithelium

► Completed segmentation results: 1 - 5

- 3 immune cell conglomerates
- 2 complex stroma
- 1 simple stroma
- 0 tumor epithelium

- 7 background
 - 6 adipose tissue
- 🌃 5 mucosal glands
- 4 debris and mucus

► Completed segmentation results: 6 - 10

- 3 immune cell conglomerates
- 2 complex stroma
- 1 simple stroma
- 1/
- 0 tumor epithelium

- 7 background
 - 6 adipose tissue
 - 🔋 5 mucosal glands
- 4 debris and mucus

Conclusion and Future Work

- Unconstraint phase mask: Best result, but hard to implement
- ► RGB filter: cost-effective
- ► Future works:
 - Prevent false negative instance
 - > Fine-tune CNN hyper-parameters, Transfer learning

Thank you for listening

Reference

- ▶ [1] M. Shapcott, K. J. Hewitt, and N. Rajpoot, "Deep learning with sampling in colon cancer histology," Frontiers in Bioengineering and Biotechnology, vol. 7, p. 52, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fbioe.2019.00052
- ► [2] J. Malik, S. Kiranyaz, and S. Kunhoth, "Colorectal cancer diagnosis from histology images: Acomparative study." [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1903/1903.11210.pdf4
- [3] A. Janowczyk1 and A. Madabhushi1, "Deep learning for digital pathology imageanalysis: A comprehensive tutorial with selected use cases." [Online]. Available: https://www-ncbi-nlm-nih-gov.proxy.lib.duke.edu/pmc/articles/PMC4977982/
- ► [4] R. Horstmeyer, "Convolutional neural networks that teach microscopes how to image." [Online]. Available: https://arxiv.org/pdf/1709.07223.pdf
- [5] A. Muthumbi and A. Chaware, "Learned sensing: jointly optimized microscope hardware foraccurate image classification." [Online]. Available: https://www.osapublishing.org/boe/abstract.cfm?uri=boe-10-12-6351
- [6] M. R. Kellman, E. Bostan, N. Repina, and L. Waller, "Physics-based learneddesign: Optimized coded-illumination for quantitative phase imaging." [Online].

 Available:https://arxiv.org/pdf/1808.03571.pdf
- ▶ [7] "Double helix optics." [Online]. Available: http://www.doublehelixoptics.com/solutions

Reference

- ▶ [8] J. N. Kather and C.-A. Weis, "Multi-class texture analysis in colorectal cancer histology." [Online]. Available: https://www.nature.com/articles/srep27988
- [9] A.Krizhevsky, "Imagenetclassificationwithdeepconvolutionalneuralnetworks." [Online]. Available: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- ► [10] A.Fourcadea and R.H.Khonsarib, "Deep learning in medical image analysis: A thirdeye for doctors." [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468785519301582
- [11] A. Pedraza and J. Gallego, "Glomerulus classification with convolutional neural networks." [Online]. Available: https://www.researchgate.net/publication/318168077_Glomerulus_Classification_with_Convolutional_Neural_Networks
- ► [12] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale imagerecognition." [Online]. Available: https://arxiv.org/abs/1409.15565
- ► [13] M. H. Hesamian and X. H. . P. K. Wenjing Jia, "Deep learning techniquesfor medical image segmentation: Achievements and challenges." [Online].

 Available:https://link.springer.com/article/10.1007/s10278-019-00227-x6

Appendix

Appendix

