Game Theory and Applications (博弈论及其应用)

Chapter 4: Two-Player Zero-Sum Game

南京大学

高尉

Recap on Previous Chapter

- Dominant strategy and dominant strategy Equilibra $u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$ for all $a_{-i} \in A_{-i}$, $a_i' \in A_i$
- How to find mixed strategy Nash equilibrium for strictly dominated strategies

A **strictly** dominated strategy is never used with positive probability in a mixed strategy Nash equilibrium

Rationalization and iteration of strictly dominated strategies

Two-Player Zero-Sum Game

Definition A **two-player zero-sum game** is a strategy game $G = \{\{1,2\}, \{A_1, A_2\}, \{u_1, u_2\}\}$ such that $u_1(a_1, a_2) + u_2(a_1, a_2) = 0$ for $a_1 \in A_1$ and $a_2 \in A_2$

One player wins while the other losses

Rock-Paper-Scissors				Pla	yer 2		
		R	ock	Pa	per	Sc	issors
	Rock	0	0	-1	1	1	-1
Player 1	Paper	1	-1	0	0	-1	1
	Scissors	-1	1	1	-1	0	0

Example

We consider a zero-sum game

L
M
R

U
1 -1 1 -1 8 -8

Player 1 M
5 -5 2 -2 4 -4

D
7 -7 0 0 0 0

It is not necessary to keep track of both payoffs. We keep the first player payoff only by convention.

Player 2

The abbreviation is

		L	IVI	K
	U	1	1	8
Player	1 M	5	2	4
	D	7	0	0

Maxmin (最大化最小原则)

For this game, both player do not do too badly

Player 1 method

Calculate minimization for each strategy, and maximize

Player 1 selects M

$$\mathbf{M} \in \operatorname*{argmax}_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$

Maxmin

For this game, both player do not do too badly Player 2 method:

calculate minimization for each strategy and Maximize $\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2)$

		Player 2			
		L	M	R	
Dlarvar 2 galagta M	U	1	1	8	
Player 2 selects M	Player 1 M	5	2	4	
	D	7	0	0	

Maxmin (最小化最大原则)

Player 2 method:

$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2)$$
 From $u_2(a_1, a_2) = -u(a_1, a_2)$, we have
$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2) = \max_{a_2 \in A_2} \min_{a_1 \in A_1} -u(a_1, a_2)$$
 By $\max(-f(x)) = -\min(f(x))$ and $\max(-f(x)) = -\min(f(x))$
$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2) = -\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2) = -\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

Player 2 method:

$$\underset{a_2 \in A_2}{\operatorname{argmin}} \max_{a_1 \in A_1} u(a_1, a_2)$$

Minmax

For this game, both player do not do too badly Player 2 method:

$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

		Player 2			
		L	M	R	
Dlarvan 2 galagta M	U	1	1	8	
Player 2 selects M	Player 1 M	5	2	4	
	D	7	0	0	

Two-players zero-sum method

For this game, both player do not do too badly

Player 1 method

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$

Player 2 method

$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$	P	layer 2	2
	L	M	R
U	1	1	8
Player 1 M	5	2	4
D	7	0	0

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2) = \min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

Another Example

Another example

Player 2

		L	M	R
	U	2	6	1
Player	1 M	3	1	4
1	D	4	3	6

Player 1 method

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2) = 3$$

Player 2 method

$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) = 4$$

$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) > \max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$

Lemma For two-player zero-sum finite game G, we have $\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) \ge \max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$

Proof. For any function F(x, y), we have

$$F(x,y) \ge \min_{y} F(x,y)$$
 for any y
 $\max_{x} F(x,y) \ge \max_{x} \min_{y} F(x,y)$ for any x
 $\min_{y} \max_{x} F(x,y) \ge \max_{x} \min_{y} F(x,y)$

Two-Players Zero-Sum Nash Equilibrium

Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1, A_2\}, u\}$, let player 1 select

$$a_1^* \in \underset{a_1 \in A_1}{\operatorname{argmax}} \min_{a_2 \in A_2} u(a_1, a_2),$$

and let player 2 select

$$a_2^* \in \underset{a_2 \in A_2}{\operatorname{argmin}} \max_{a_1 \in A_1} u(a_1, a_2).$$

The strategy outcome (a_1^*, a_2^*) is a Nash Equilibrium if and only if

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2) = \min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

Two-Players Zero-Sum Nash Equilibrium

Proof. If (a_1^*, a_2^*) is a NE, then $u_1(a_1^*, a_2^*) \ge u_1(a_1, a_2^*)$ for all $a_1 \in A_1$ $u_2(a_1^*, a_2^*) \ge u_2(a_1^*, a_2)$ for all $a_2 \in A_2$ By using $u_1(\cdot,\cdot) = u(\cdot,\cdot)$, $u_{2(\cdot,\cdot)} = -u(\cdot,\cdot)$, we have (a_1^*, a_2^*) is a NE iff $u(a_1, a_2^*) \le u(a_1^*, a_2^*) \le u(a_1^*, a_2)$ iff $u(a_1, a_2^*) \le u(a_1^*, a_2)$ 必要性: If (a_1^*, a_2^*) is a NE then we have $u(a_1, a_2^*) \le u(a_1^*, a_2) \to \max u(a_1, a_2^*) \le \min u(a_1^*, a_2)$ $a_2^* \in \underset{a_2 \in A_2}{\operatorname{argmin}} \max_{a_1 \in A_1} u(a_1, a_2) \ a_1^* \in \underset{a_1 \in A_1}{\operatorname{argmax}} \min_{a_2 \in A_2} u(a_1, a_2)$ $\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) \le \max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$

Two-Players Zero-Sum Nash Equilibrium

充分性: If
$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) = \max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$
 then $u(a_1, a_2^*) \le u(a_1^*, a_2)$.

$$u(a_1, a_2^*) \le \max_{a_1} u(a_1, a_2^*) = \min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

$$u(a_1^*, a_2) \ge \min_{a_2} u(a_1^*, a_2) = \max_{a_1} \min_{a_2} u(a_1, a_2)$$

$$u(a_1, a_2^*) \le u(a_1^*, a_2)$$

Find Nash Equilibrium

(M, M) is a NE

		Player 2				
		L	M	R		
	U	2	6	1		
Player	1 M	3	1	4		
	D	4	3	6		

(D, L) is not a NE

Mixed strategy

Strategic game

$$N = \{1,2\}$$

 $A_1 = \{a_1, a_2, ..., a_m\}, A_2 = \{b_1, b_2, ... b_n\}$
 $u_1(a_i, b_j) = u(a_i, b_j) = u_{ij}, M = (u_{ij})_{m \times n}$

Mixed strategy

$$p = (p_1, p_2, ..., p_m) \in \Delta_1$$
 is a mixed strategy over A_1 $q = (q_1, q_2, ..., q_n) \in \Delta_2$ is a mixed strategy over A_2 The expected payoff for player 1 on mixed outcome (p, q)

$$U(p,q) = \sum_{i,j} p_i q_j u(a_i, b_j) = \sum_{i,j} p_i q_j u_{ij} = p M q^{\mathsf{T}}$$

MinMax and MaxMin

Player 1's methods:

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U_1(p, q) = \max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\mathsf{T}}$$

Player 2's methods:

$$\min_{q \in \Delta_2} \max_{p \in \Delta_1} U_2(p, q) = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\mathsf{T}}$$

Lemma We have

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U(p, q) \le \min_{q \in \Delta_2} \max_{p \in \Delta_1} U(p, q)$$

Nash Equilibrium

Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1, A_2\}, u\}$, let player 1 select

$$p^* \in \underset{p \in \Delta_1}{\operatorname{argmax}} \min_{q \in \Delta_2} U(p, q)$$
,

and let player 2 select

$$q^* \in \underset{q \in \Delta_2}{\operatorname{argmin}} \max_{p \in \Delta_1} U(p, q)$$
.

The mixed strategy outcome (p^*, q^*) is a MNE if and only if

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U(p, q) = \min_{q \in \Delta_2} \max_{p \in \Delta_1} U(p, q)$$

Proof excise.

The Minmax Theorem Let $X \in \mathcal{R}^n$ and $Y \in \mathcal{R}^m$ be compact convex sets. If $f: X \times Y \to \mathcal{R}$ is a continuous function with

- $f(\cdot, y): X \to \mathcal{R}$ is concave for fixed y;
- $f(x,\cdot): Y \to \mathcal{R}$ is convex for fixed x,

then, we have

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y).$$

John von Neumann's Minimax Theorem (1928)

The Minmax Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1,A_2\}, u\}$, we have $\max_{p \in \Delta_1} \min_{q \in \Delta_2} p Mq^\top = \min_{q \in \Delta_2} \max_{p \in \Delta_1} p Mq^\top.$

Corollary: Two-person finite zero-sum games have at least one mixed-strategy Nash-equilibrium: any pair of optimal strategies is a Nash equilibrium.

How to Solve???

Example

Player 1 mixture strat. (x_1, x_2)

$$U_2(L) = -3x_1 + 2x_2$$

$$U_2(\mathbf{R}) = x_1 - x_2$$

Player 1

U

The optimal solution for Player 2 is $max(-3x_1 + 2x_2, x_1 - x_2)$

Player 2

R

The payoffs for Player 1 is $-\max(-3x_1 + 2x_2, x_1 - x_2) = \min(3x_1 - 2x_2, -x_1 + x_2)$ The solution for Player 1 is $(x_1, x_2) \in \arg\max_{(x_1, x_2)} \min(3x_1 - 2x_2, -x_1 + x_2)$

Example

Player 2

U 3 -3 -1 1
Player 1
D -2 2 1 -1

The solution for Player 1 is

$$(x_1, x_2) \in \arg\max_{(x_1, x_2)} \min(3x_1 - 2x_2, -x_1 + x_2)$$

This is equivalent to

$$\max v$$

$$3x_1 - 2x_2 \ge v$$

$$-x_1 + x_2 \ge v$$

Linear programming

$$x_1 + x_2 = 1, x_1 > 0, x_2 > 0$$

Theorem The optimization problem of $\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top}$ is equivalent to

max v

s.t.

$$pM \ge v\mathbf{1}$$

$$p = (p_1, ..., p_m) \in \Delta_1$$

$$\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$$

Linear programming: can be solved in polynomial time

Theorem The optimization problem of min $\max_{q \in \Delta_2} p \in \Delta_1$ equivalent to

 $\min v$

s.t.

$$Mq^{\top} \leq v\mathbf{1}$$

$$q = (q_1, ..., q_n) \in \Delta_2$$

$$\mathbf{1} = (1, ..., 1)^{\top}$$

Linear programming: can be solved in polynomial time

Example: solve NE

	Player 2					
		r	X	У	Z	
	a	1	-1	2	-2	
Player 1	b	3	-2	4	-2	
	c	-2	-4	-5	7	
	d	-5	2	6	3	

Symmetric Game (2-player zero-sum)

Symmetric strategic game

$$N = \{1,2\}$$

 $A_1 = \{a_1, a_2, ..., a_n\}, A_2 = \{b_1, b_2, ... b_n\}$
 $u_1(a_i, b_j) = u_{ij}, M = (u_{ij})_{n \times n}, \mathbf{M} = -\mathbf{M}^{\top}$

Theorem For a symmetric game, we have

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top} = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\top} = 0$$

Symmetric Game (2-player zero-sum)

Theorem For a symmetric game, we have

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top} = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\top} = 0$$

Proof. For any p, we have $pMp^{T} = 0$ from

$$pMp^{\mathsf{T}} = (pMp^{\mathsf{T}})^{\mathsf{T}} = -pMp^{\mathsf{T}}$$

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top} \le \max_{p \in \Delta_1} pMp^{\top} = 0$$

$$\min_{q \in \Delta_2} \max_{p \in \Delta_1} p M q^{\top} \ge \min_{q \in \Delta_2} p M p^{\top} = 0$$

How to find Nash Equilibria

- 1) Calculate directly
 - − I) find the best response functions
 - II) calculate Nash equilibria

2) Eliminate all dominated strategy

3) For two-player zero-sum player, linear programming

Exercise: solve NE

	Α	В	C
	0	2	-1
Ш	-2	0	3
Ш	1	-3	0

Excise: solve NE

Player 2

	r	X	У	Z
a	1	-2	6	-4
b	2	-7	2	4
c	-3	4	-4	-3
d	-8	3	-2	3

Player 1

Excise: Proof of Nash Equilibrium

Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1, A_2\}, u\}$, let player 1 select

$$p^* \in \underset{p \in \Delta_1}{\operatorname{argmax}} \min_{q \in \Delta_2} U(p, q)$$
,

and let player 2 select

$$q^* \in \underset{q \in \Delta_2}{\operatorname{argmin}} \max_{p \in \Delta_1} U(p, q)$$
.

The mixed strategy outcome (p^*, q^*) is a MNE if and only if

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U(p, q) = \min_{q \in \Delta_2} \max_{p \in \Delta_1} U(p, q)$$

Excise: Proof of Minimax Theorem

The Minmax Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1,A_2\}, u\}$, we have $\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^\top = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^\top.$