US3

Dopplersonographie

 $\begin{array}{ccc} & Ann\text{-Sophie Schubert} & Lars \ Funke \\ & ann\text{-sophie.schubert@udo.edu} & lars.funke@udo.edu \end{array}$

Durchführung: 17.05.2016 Abgabe: 24.05.2016

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	4					
2							
	2.1 Schall						
	2.2 Piezoelektrischer Effekt	4					
	2.3 Doppler-Effekt	4					
3	Aufbau und Durchführung	5					
4	Auswertung	6					
	4.1 Strömungsgeschwindigkeit						
	4.2 Strömungsprofil	7					
	4.3 Messdaten	10					
5	Diskussion	12					
Lit	teratur	12					

1 Ziel

Ziel des folgenden Experiments ist, mithilfe der Dopplersonographie die Strömung einer für diese Anwendung blutähnlichen Flüssigkeit (Suspension aus Wasser, Glycerin und Glaskügelchen) näher zu untersuchen.

2 Theorie

2.1 Schall

Schall, also allgemein die Ausbreitung von Druckwellen innerhalb von Medien, kann anhand seiner Frequenz in zwei Bereiche unterteilt werden:

1. <16 Hz: Infraschall

2. $20 \, \text{kHz} - 1 \, \text{GHz}$: Ultraschall

Der für Menschen hörbare Schall befindet sich im Bereich von $16\,\mathrm{Hz}-20\,\mathrm{kHz}$. In diesem Experiment wird Ultraschall benutzt, um die Flüssigkeitsströmung zu untersuchen.

2.2 Piezoelektrischer Effekt

Es stellt sich die Frage, wie Ultraschall erzeugt werden kann. Eine Möglichkeit ist die Nutzung des reziproken piezoelektrischen Effekts. Im Allgemeinen wird unter dem piezoelektrischen Effekt verstanden, dass durch Verformung eines Kristalls eine Spannung auftritt. Der reziproke piezoelektrische Effekt bezeichnet den Vorgang, dass es durch eine Spannung (Kristall im elektrischen Wechselfeld) zu Verformungen kommt.

In der konkreten Anwendung befindet sich ein Kristall mit einer polaren Achse in Feldrichtung in einem elektrischen Wechselfeld. Der Kristall beginnt zu schwingen und sendet dabei Ultraschallwellen aus. Wird ein piezoelektrischer Kristall als Schallempfänger verwendet, wird dieser von auftreffenden Schallwellen zum Schwingen angeregt, die auftretende Spannung kann gemessen werden.

2.3 Doppler-Effekt

Bewegen sich Schallquelle und der Empfänger relativ zueinandern, tritt eine Frequenzänderung auf. Dies wird als Doppler-Effekt bezeichnet. Zunächst wird der Fall mit ruhendem Empfänger und sich bewegender Quelle betrachtet. Wenn sich die Quelle in Richtung des Empfängers bewegt, wird die Frequenz f_0 zu $f_{\rm kl}$ erhöht und es gilt folgender Zusammenhang:

$$f_{\rm kl} = \frac{f_0}{1 - \frac{v}{c}} \tag{1}$$

Dabei ist v die Geschwindigkeit der Quelle und c die Schallgeschwindigkeit. Bewegt sich der Sender vom Empfänger weg, fällt die Frequenz auf f_{gr} .

$$f_{\rm gr} = \frac{f_0}{1 + \frac{v}{c}} \tag{2}$$

Im Folgenden bewegt sich der Empfänger und der Sender befindet sich in Ruhe. Wenn sich der Empfänger der Quelle nähert, verschiebt sich f_0 zu einer größeren Frequenz f_h

$$f_{\rm h} = f_0 \left(1 + \frac{v}{c} \right) \tag{3}$$

mit v als Geschwindigkeit des Empfängers und c als Schallgeschwindigkeit. Die Frequenz sinkt auf eine kleinere Frequenz f_n , wenn die Entfernung zwischen Sender und Empfänger durch die Bewegung des Empfängers steigt.

$$f_{\rm n} = f_0 \left(1 - \frac{v}{c} \right) \tag{4}$$

Mit Hilfe des beschriebenen Doppler-Effekts kann die Geschwindigkeit von Blutströmungen bestimmt werden. Beim Auftreffen auf sich bewegende Blutkörper wird die Frequenz f_0 der Ultraschallwelle wie folgt verschoben:

$$\Delta f = f_0 \frac{v}{c} (\cos \alpha + \cos \beta) \tag{5}$$

mit α als Winkel zwischen der Wellennormalen und der einlaufenden Welle und β als Winkel zwischen der Wellennormalen und der auslaufenden Welle. Da beim Impuls-Echo-Verfahren $\alpha = \beta$ (siehe Abbildung 1) gilt, folgt:

$$\Delta f = 2 f_0 \frac{v}{c} \cos \alpha \tag{6}$$

Abbildung 1: Messung der Geschwindigkeit von Blutströmungen mittels Impuls-Echo-Verfahren[1].

3 Aufbau und Durchführung

Der Aufbau setzt sich aus einem Ultraschall Doppler-Generator sowie Ultraschallsonden mit einer Frequenz von 2MHz zusammen. Um die Messdaten aufzunehmen, wird ein Computer verwendet. Desweiteren besteht der Aufbau aus Strömungsrohren mit drei verschiedenen Innen- und Außendurchmessern (7mm, 10mm, 16mm) und zum Rohrdurchmesser passenden Doppler-Prismen. Ein Doppler-Prisma, welches in Abbildung 2

dargestellt ist, besitzt drei verschiedene Einfallswinkel ($\theta = 15^{\circ}, 30^{\circ}, 45^{\circ}$). Der Dopplerwinkel α lässt sich mit folgendem Zusammenhang berechnen:

$$\alpha = 90^{\circ} - \arcsin\left(\sin\theta \cdot \frac{c_{\rm L}}{c_{\rm P}}\right) \tag{7}$$

mit $c_{\rm L}$ als Schallgeschwindigkeit Doppler-Flüssigkeit und $c_{\rm P}$ als Schallgeschwindigkeit des Materials des Prismas. Die Prismen bestehen aus Acryl. Die verwendete Flüssigkeit besteht aus Wasser, Glycerin und Glaskugeln. Mit Hilfe einer Zentrifugalpumpe kann die Strömungsgeschwindigkeit zwischen 0 und $10 {\rm L} \, {\rm min}^{-1}$ variiert werden.

Abbildung 2: Doppler-Prisma[1].

Zunächst wird der Dopplerwinkel für fünf Strömungsgeschwindigkeiten gemessen. Dafür wird bei einer eingestellten Strömungsgeschwindigkeitbei jedem Winkel des Prismas die Frequenzverschiebung Δf gemessen. Dies wird für vier weitere Geschwindigkeiten wiederholt. Die gleiche Messung wird erneut mit den beiden anderen Prismen durchgeführt.

Um das Strömungsprofil der Doppler-Flüssigkeit am 10mm Rohr unter $\alpha=15^\circ$ zu untersuchen, wird die Messtiefe variiert. Dafür wird am Ultraschallgenerator das SAMPLE VOLUME aud SMALL gestellt. Bei der Einheit der Messtiefe handelt es sich hier um s. Diese wird im Bereich von 4 bis 19,5 s stetig um 0,5s erhöht und der entsprechende Wert für die Frequenzverschiebung Δf sowie für die Streuintensität I aufgenommen. Dies wird für eine Pumpleistung von 45% sowie 75% durchgeführt.

In Acryl gilt 4s = 10mm. Für die Dopplerflüssigkeit gilt 4s = 6mm.

4 Auswertung

4.1 Strömungsgeschwindigkeit

Gemäß (6) lässt sich für die Strömungsgeschwindigkeit des Mediums die Formel

$$v = \frac{\Delta f c_{\rm L}}{2f_0 \cos \alpha} \tag{8}$$

aufstellen. Dabei ist α der Dopplerwinkel, welcher aus dem Prismenwinkel über die Beziehung

$$\alpha = \frac{\pi}{2} - \arcsin\left(\sin\theta \cdot \frac{c_{\rm L}}{c_{\rm P}}\right) \tag{9}$$

ermittelt wird.

Die berechneten und gemittelten Geschwindigkeiten zu den verschiedenen Rohrduchmessern und Dopplerwinkeln finden sich in Tabelle 1. Weiterhin wird gefordert, $\Delta f/\cos\alpha$ über v aufzutragen, da jedoch zuvor v über einen proportionalen Zusammenhang aus Δf ermittelt wurde, ergeben sich lediglich Punkte auf einer Ursprungsgeraden. Die Diagramme finden sich in Abb. 3, 4 und 5.

Tabelle 1: Ergebnisse.

$\dot{V}/\mathrm{L}\mathrm{min}^{-1}$	$v_{30^{\circ}}/{ m ms^{-1}}$	$v_{15^{\circ}}/{ m ms^{-1}}$	$v_{60^{\circ}}/{ m ms^{-1}}$	\bar{v}/ms^{-1}			
	030°/ III S	0 _{15°} / III S	0 _{60°} / III S	0/1118			
		$d = 16 \mathrm{mm}$					
3	0,0986	$0,\!128$	0,0811	$0{,}102 \pm 0{,}02$			
4	$0,\!149$	$0,\!190$	$0,\!133$	$0,\!157\pm0,\!02$			
6	$0,\!297$	0,318	$0,\!267$	$0,294 \pm 0,02$			
8	$0,\!379$	$0,\!446$	$0,\!380$	$0,402 \pm 0,03$			
10	$0,\!486$	$0,\!542$	$0,\!486$	$0,\!505\pm0,\!03$			
$d=10\mathrm{mm}$							
3	$0,\!197$	$0,\!256$	0,200	$0,\!217\pm0,\!03$			
4	0,346	$0,\!415$	0,380	$0{,}380\pm0{,}03$			
6	$0,\!659$	0,702	0,771	$0,\!710\pm0,\!05$			
8	0,923	0,764	$0,\!837$	0.842 ± 0.07			
10	$0,\!873$	0,923	1,03	0.941 ± 0.06			
$d=7\mathrm{mm}$							
3	$0,\!379$	0,446	0,390	$0,405 \pm 0,03$			
4	0,849	0,733	0,685	$0,756 \pm 0,07$			
6	1,48	1,54	1,43	$1,48 \pm 0,05$			
8	$2,\!23$	2,13	2,06	$2,14 \pm 0,07$			
10	$2,\!57$	$2,\!53$	2,38	$2,49 \pm 0,08$			

4.2 Strömungsprofil

Im zweiten Versuchsteil wurde das Strömungsprofil im $10\,\mathrm{mm}$ -Rohr durch Variation der Messtiefe ermittelt. In den Abbildungen 6 und 7 sind Strömungsgeschwindigkeit bzw. Streuintensität über die Tiefe aufgetragen, jeweils für $70\,\%$ und $45\,\%$ Pumpleistung.

Abbildung 3: Plot von $\Delta f/\cos \alpha$ über v bei $d=16\,\mathrm{mm}.$

Abbildung 4: Plot von $\Delta f/\cos \alpha$ über v bei $d=10\,\mathrm{mm}.$

Abbildung 5: Plot von $\Delta f/\cos\alpha$ über v bei $d=7\,\mathrm{mm}.$

Abbildung 6: Plot der Strömungsgeschwindigkeit in Abhängigkeit von der Messtiefe.

Abbildung 7: Plot der Streuintensität in Abhängigkeit von der Messtiefe.

4.3 Messdaten

Tabelle 2: Messdaten zum ersten Aufgabenteil.

$\dot{V}/\%$	$\Delta f_{30^{\circ}}/\mathrm{Hz}$	$\varDelta f_{15^{\circ}}/\mathrm{Hz}$	$\Delta f_{60^{\circ}}/\mathrm{Hz}$					
$d = 16 \mathrm{mm}$								
30	-73	49	104					
40	-110	73	171					
60	-220	122	342					
80	-281	171	488					
100	-360	208	623					
	$d=10\mathrm{mm}$							
30	-146	98	256					
40	-256	159	488					
60	-488	269	989					
80	-684	293	1074					
100	-647	354	1318					
$d=7\mathrm{mm}$								
30	281	-171	-500					
40	629	-281	-879					
60	1099	-592	-1831					
80	1654	-818	-2649					
100	1904	-970	-3052					

Tabelle 3: Messdaten zum zweiten Versuchsteil.

$d/\mu s$	$\Delta f_1/\mathrm{Hz}$	I_1	$\Delta f_2/{\rm Hz}$	I_2	$d/\mu s$	$\Delta f_1/{ m Hz}$	I_1	$\Delta f_2/\mathrm{Hz}$	I_2
4,0	-366	300	-195	315	12,0	-330	423	-195	119
4,5	-391	368	-208	167	12,5	-287	793	-159	207
5,0	-397	372	-208	190	13,0	-317	1142	-159	404
5,5	-403	523	-195	263	13,5	-378	1680	-171	713
6,0	-403	375	-208	223	14,0	-452	1772	-208	867
6,5	-391	540	-208	364	14,5	-525	2098	-232	955
7,0	-415	401	-220	241	15,0	-562	2477	-256	1086
7,5	-446	476	-232	253	15,5	-586	2435	-256	1095
8,0	-452	446	-220	218	16,0	-537	3092	-244	1227
8,5	-464	336	-232	181	16,5	-439	3196	-220	1505
9,0	-433	334	-220	147	17,0	-354	3644	-183	1449
9,5	-427	291	-208	154	17,5	-330	4029	-171	1430
10,0	-415	331	-195	130	18,0	-391	6624	-183	1570
10,5	-403	406	-201	125	18,5	-403	12666	-195	3166
11,0	-421	405	-208	130	19,0	-415	11532	-195	3390
11,5	-403	337	-208	118	19,5	-391	7684	-195	2250

5 Diskussion

Die Strömungsgeschwindigkeit kann im ersten Versuchsteil mit geringer Messabweichung (Im Mittel 8,1%) zwischen den verschiendenen Dopplerwinkeln ermittelt werden. Die Durchflussgeschwindigkeit ist wie erwartet bei kleineren Rohrdurchmessern (Gesetz von Bernoulli) und höherem Volumenstrom höher. Mögliche Fehlerquellen sind etwa Fertigungstoleranzen beim Ultraschallkopf oder die nur als allgemeiner Literaturwert bekannte Schallgeschwindigkeit von Acryl. Andererseits wird der Schlauch, durch den die Flüssigkeit nicht berücksichtigt, obwohl er potentiell auch eine andere Schallgeschwindigkeit besitzt. Im Strömungsprofil kann zwischen 33 mm und 42 mm, also innerhalb des Rohres, ein annähernd laminarer Geschwindigkeitsverlauf gefunden werden. Außerhalb dieses Bereichs ist die Geschwindigkeit konstant, obwohl eigentlich gar keine Bewegung zu erwarten wäre. Dies hat vermutlich messtechnische Gründe. In diesem Bereich ist bei der Intensitätsverteilung ein linear steigender Verlauf zu beobachten.

Literatur

- [1] TU Dortmund. Versuchsanleitung zu Versuch US3: Doppler-Sonographie.
- [2] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.
- [3] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [4] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.