Задания типового расчёта по определенным интегралам Задача 1. Вычислить площадь фигуры, которая расположена на плоскости *Оху*. Для каждого варианта заданы линии, ограничивающие фигуру.

Bap.	Уравнения линий, ограничивающих фигуру	
1	$y = 2\sqrt{x} - 1, \ y = x - 1.$	
2	$y = 2 \ln x$, $y = \ln(x+2)$, $x = 4$.	
2	$y = \operatorname{arctg} x$ и прямая, проходящая через начало координат и через точку с	
3	абсциссой $x = 1$ на заданной линии.	
4	$x = 4$, $y = \ln x$ и касательная к этой линии в точке её пересечения с осью OX	
5	$y = e^{-x}, y = e^{-2x} - 2, x = 0$	
6	$y=\arcsin x$, касательная к этой линии в начале координат и прямая $x=1$	
7	$y = \sqrt{x+4}, \ y = 2 - \sqrt{x}, \ y = 0$	
8	$y = \operatorname{arctg} x$, $y = \operatorname{arctg} (2x - 4)$, $y = 0$	
9	$y = -4$, $y = \ln x$ и касательная к этой линии в точке пересечения ее с осью OX	
10	$y = \ln(-x), \ y = \ln(x+4), \ y = \ln 6$	
11	$y^2 = x/4, y^2 = x-3$	
12	$y = \ln(x+1), \ y = 2\ln(x-1), \ y = 0$	
13	$y = 1 - \sqrt{x}, \ y = 1 - x/3$	
14	$y = e^x - 1$, $y = e^{2x} - 3$, $x = 0$	
15	$y = 3 - x^2, y = 2x$	
16	$y = \arcsin x$ и прямая, проходящая через концы этой линии	
17	$y^2 = x + 2$, $y^2 = 4(3 - x)$	
18	$x = 0, y = e^x - e$ и касательная к этой линии в точке пересечения её с осью OX	
19	$y = e^x - 1$, $y = 2e^{-x}$, $x = \ln 4$	
20	$y = \arcsin x, \ y = -\arcsin(x-2), \ y = -\pi/2$	
21	$y = e^x - 1$, $y = e^x / 4$, $y = 1/4$	
22	$y = 2 \ln x, \ y = -\ln x, \ x = e$	
23	$(y-3)^2 = 4x, y = x$	
24	$y^2 = -4x, \ y^2 = 3 - x$	
25	$y = \pi / 4$, $y = \arctan x$ и касательная к этой линии в начале координат	
26	$y = \ln(x+2), \ y = 2\ln x, \ y = 0$	
27	$y = 4\sqrt{1-x^2}, \ y = 1/\sqrt{1-x^2}$	
28	$y = 2/(x+2)^2$, $y = 1/2 - 5x$	
29	$y = xe^{2x}, \ y = x \cdot e^{-2}$	
30	$y = \arcsin x, \ y = \operatorname{arctg} 2x$	

Задача 2. Фигура, расположенная в плоскости *Оху*, вращается около координатной оси. Вычислить объём полученного тела вращения.

Для каждого варианта заданы линии, ограничивающие фигуру, и ось вращения.

Номер	Уравнения линий, ограничивающих фигуру	Ось вра-
вар-та 1	$y = \arcsin x, \ y = (\pi/2)\sqrt[3]{x}$	- Шения - ОҮ
2	$y = \sqrt{x}, \ y = \sqrt{2x - 4}, \ y = 0$	OY
3	$y = \sqrt{x+4}, \ y = 2 - \sqrt{x}, \ y = 0$	OX
4	$y = \sqrt[3]{x}, y = 0, x = 8$	OY
5	$y = 2 - \sqrt{x}, y = (x/2)^2 - 4, x = 0$	OY
6	$y = x^3, y = x^{1/3}$	OY
7	$y = \ln(x+1), \ x = 5, \ y = 0$	OY
8	$x = \sqrt{6-y}$, при $y \ge 2$, $x = 4-\sqrt{2y}$, при $y \le 2$, $x = 0$, $y = 0$	OY
9	$y = (x-2)^2, y = 4-x^2$	OX
10	$y = 2 - x^2 / 2$, $y = 4 - 5x^2 / 2$	OX
11	$y = e^x - 1, y = 2, x = 0$	OX .
12	$(y-2)^2 = 4 - x, x = 0$	OX
13	$y = \operatorname{arctg} x, \ x = 1, \ y = 0$	OY
14	$y = \sqrt{2x}, \ y = \sqrt{8 - 2x}, \ y = 0$	OY
15	$y = \ln x, \ y = 2 - \ln x, \ y = 0$	OY
16	$y = 4x^2 - 4$, $y = x^2 - 1$	OX
17	$y = 2\sin x$ и ветвь тангенсоиды $y = tg x$, проходящая через начало	OX
10	координат;	
18	$y = 2\sqrt{x}, \ y = 6 - \sqrt{x}, \ x = 0$	OY
19	$y = 5 - \sqrt{x}, \ y = 2\sqrt{x} - 1, \ x = 0$	OY
20	$x = 4$, $y = \ln x$ и касательная к этой кривой в точке пересечения её с осью OX	OY
21	$y = \sqrt{x+1}, \ y = \sqrt[3]{x+1}$	OY
22	$y = (x/2)^2, y = x-1, x = 0$	OY
23	$y = 0$, $y = 1 + \sin x$ (между двумя соседними точками касания этой линии с осью OX)	OX
24	$y = e^x$, $y = 4e^{-x}$, $y = 4$	OX
25	$x = \sqrt{y}, x = \sqrt{4 - y}, y = 0$	OX
26	$y = \sqrt{x}, \ y = 2 - \sqrt{x - 4}, \ y = 0$	OY
27	$y = \ln(x-1), \ x = 3, \ y = 0$	OY
28	$x = 2, y = \arcsin(x/2)$ и касательная к этой кривой в начале координат	OY
29	$x = 0, \ y = 4 - 2\sqrt{x}$ и касательная к этой линии в точке её пересечения с осью	OY
30	OX $y = 2\sqrt{x}, \ y = 6 - \sqrt{x}, \ y = 0$	OX

Задача 3. Вычислить площадь фигуры.

Для каждого варианта задана соответствующая фигура.

- 1. Внутри окружности $\rho = \sqrt{6} \cos \varphi$ и одновременно вне лемнискаты $\rho^2 = 9 \cos 2\varphi$.
- **2.** Внутри кардиоиды $\rho = 1 + \cos \varphi$ и одновременно внутри окружности $\rho = 1$.
- 3. Внутри кардиоиды $\rho = 1 + \cos \varphi$ и одновременно вне кардиоиды $\rho = 3(1 \cos \varphi)$.
- **4.** Внутри окружности $\rho = \sqrt{6} \cos \phi$ и одновременно внутри лемнискаты $\rho^2 = 9 \cos 2\phi$.
- 5. Внутри кардиоиды $\rho = 1 + \cos \phi$ и одновременно внутри окружности $\rho = \sqrt{3} \sin \phi$.
- **6.** Внутри окружности $\rho = 1$ и одновременно внутри кардиоиды $\rho = 2(1 \cos \phi)$.
- 7. Внутри кардиоиды $\rho = 1 + \cos \phi$ и одновременно вне окружности $\rho = -\cos \phi$.
- 8. Внутри кардиоиды $\rho = 1 + \cos \phi$ и одновременно внутри окружности $\rho = 3 \cos \phi$.
- **9.** Внутри окружности $\rho = \sqrt{3} \sin \varphi$ и одновременно внутри кардиоиды $\rho = 1 \cos \varphi$.
- **10.** Внутри кардиоиды $\rho = 1 \cos \phi$ и одновременно вне окружности $\rho = \sqrt{3} \sin \phi$.
- **11.** Внутри кардиоиды $\rho = 1 \cos \phi$ и одновременно внутри окружности $\rho = \cos \phi$.
- **12.** Между двумя лемнискатами $\rho^2 = 4\cos 2\phi$ и $\rho^2 = \cos 2\phi$.
- **13.** Внутри лемнискаты $\rho^2 = \cos 2\phi$ и одновременно внутри окружности $\rho = \sqrt{2} \sin \phi$.
- **14.** Внутри кардиоиды $\rho = 1 + \cos \varphi$ и одновременно слева от прямой $\rho = 3/(4\cos \varphi)$.
- **15.** Внутри кардиоиды $\rho = 1 + \cos \varphi$ и одновременно вне кардиоиды $\rho = 1 \cos \varphi$.
- **16.** Внутри окружности $\rho = 3$ и одновременно вне кардиоиды $\rho = 2(1 + \cos \phi)$.
- **17.** Внутри лемнискаты $\rho^2 = 2\cos 2\varphi$ и одновременно вне окружности $\rho = 1$.
- **18.** Внутри окружности $\rho = \sqrt{3} \sin \varphi$ и одновременно вне кардиоиды $\rho = 1 \cos \varphi$.
- **19.** Внутри правой ветви лемнискаты $\rho^2 = 9\cos 2\phi$ и одновременно вне окружности $\rho = \sqrt{6}\cos\phi$.
- **20.** Внутри четырёхлепестковой розы $\rho = \sqrt{2} \left| \sin 2\phi \right|$ и одновременно внутри окружности $\rho = 1$.
- **21.** Внутри окружности $\rho = \cos \varphi$ и одновременно вне кардиоиды $\rho = 1 \cos \varphi$.
- 22. Внутри окружности $\rho = \sin \phi$ и одновременно вне трёхлепестковой розы $\rho = \sin 3\phi$.
- **23.** Внутри окружности $\rho = 1$ и одновременно внутри кардиоиды $\rho = 2(1 + \cos \phi)$.
- **24.** Внутри кардиоиды $\rho = 1 + \cos \varphi$ и одновременно вне кардиоиды $\rho = 1 + \sin \varphi$.
- **25.** Внутри кардиоиды $\rho = 1 + \cos \varphi$ и одновременно справа от прямой $\rho = 3/(4\cos \varphi)$.
- **26.** Внутри окружности $\rho = \sin \phi$ и одновременно вне четырёхлепестковой розы $\rho = \left| \sin 2\phi \right|$.
- **27.** Внутри окружности $\rho = 2(\sin \phi \cdot \cos \phi)$ и одновременно вне окружности $\rho = \sqrt{6}$.
- **28.** Внутри кардиоиды $\rho = 1 + \cos \phi$ и одновременно вне окружности $\rho = (1/\sqrt{3}) \sin \phi$.
- **29.** Внутри окружности $\rho = 3/2$ и одновременно вне кардиоиды $\rho = 3(1 \cos \phi)$.
- **30.** Внутри кардиоиды $\rho = 3(1 + \cos \phi)$ и одновременно внутри кардиоиды $\rho = 1 \cos \phi$.

Задача 4. Вычислить длину дуги кривой.

Bap.	Уравнение кривой,	ограничения на переменные
1	$x^2 + y^2 = 17,$	внутри ветвей гиперболы $xy = 4$
2	$y = \operatorname{ch}(2x)/2,$	$y \le (1/2) \operatorname{ch} 6$
3	$y = \sqrt{e^{2x} + 1}/2,$	$(1/2) \ln 3 \le x \le (1/2) \ln 24$
4	$y = \frac{1}{2} \ln \frac{e^x - e^{-x}}{e^x + e^{-x}},$	$(1/4) \ln 2 \le x \le (1/4) \ln 5$
5	$\begin{cases} x = a\cos^3 t, \\ y = a\sin^3 t, \end{cases} a > 0$	
6	$y^2 = 2(x-1)^3/3,$	внутри параболы $y^2 = x/3$
7	$y = 1/\cos 2x,$	$0 \le x \le \pi/8$
8	$y = x^2/8 - \ln x ,$	1≤ <i>x</i> ≤2
9	$\rho = a/\cos^3(\varphi/3), a > 0,$	$0 \le \varphi \le \pi$
10	$y^2 = 4x^3,$	внутри окружности $x^2 + y^2 = 3x/2$
11	$\rho = 3(1 + \sin \varphi)$	
12	$\rho = a \sin^4(\varphi/4), a > 0,$	$\varphi \in [0; 2\pi]$
13	$x^2 + 2x - y = 0,$	$y \le 0$
14	$y = 2\ln[\sin(x/2)],$	$2\pi/3 \le x \le 4\pi/3$
15	$\rho = a\cos^3(\varphi/3), a > 0,$	$\varphi \in [0; 3\pi/2]$
16	$\begin{cases} x = t - \sin t, \\ y = 1 + \cos t, \end{cases}$	$0 \le t \le \pi$
17	$y = \sqrt{2}\ln(2 - x^2),$	$-1 \le x \le 1$
18	$y = (3 - x)\sqrt{x}/3,$	$y \ge 0$
19	$y = 6/\sin(x/3),$	$\pi/2 \le x \le 2\pi$
20	$\rho = 1 - \cos \varphi ,$	внутри окружности $\rho = \cos \phi$
21	$y = \frac{6}{\cos(x/3)},$	<i>y</i> ≤12
22	$\rho = 2(1 + \cos \varphi),$	вне окружности $\rho = 1$
23	$5x^3 = y^2,$	внутри окружности $x^2 + y^2 = 6$
24	$y = 4\ln[\sin(x/4)],$	$\pi \le x \le 3\pi$
25	$y = (x - 12)\sqrt{x}/6,$	$y \le 0$
26	$x^2 + y^2 = 10,$	внутри ветвей гиперболы $xy = 3$
27	$\begin{cases} x = t^2, \\ y = t - t^3/3, \end{cases}$	между точками пересечения с осью OX
28	$y = \arccos\sqrt{x} - \sqrt{x - x^2} ,$	$0 \le x \le 1$
29	$y = 1/\sin 2x \;,$	$\pi/6 \le x \le \pi/3$
30	$\begin{cases} x = a (3\cos t - \cos 3t), \\ y = a (3\sin t - \sin 3t), \end{cases} a > 0$	где $0 \le t \le \pi/2$
	· · · · · · · · · · · · · · · · · · ·	

Задача 5. Вычислить площадь поверхности, полученной при вращении заданных линий вокруг заданной оси

Bap.	Уравнения кривых,	Ось вращения	
1	$y = \sqrt{e^x + 1} ,$	$0 \le x \le 3$	OX
2	$y = (1/3)\sqrt{x^3} - \sqrt{x}$	$y \le 0$	OX
3	$y^2 = 4 + x ,$	<i>x</i> ≤ 2	OX
4	$x^2 + (y-2)^2 = 8,$	$y \ge 0$	OX
5	$y = x^3/3,$	$-2 \le x \le 2$	OX
6	$y = (1/2) \operatorname{ch}(2x),$	$y \le (1/2) \operatorname{ch} 6$	OX
7	$y = e^{-x/2},$ $x^2 + (y-4)^2 = 1$	$x \ge 0$	OX
8	$x^2 + (y - 4)^2 = 1$		OX
9	$y^2 = 2px, p > 0,$	$x \le p/2$	OX
10	$\begin{cases} x = a\cos^3 t, & a > 0 \\ y = a\sin^3 t, & a > 0 \end{cases}$		OX
11		ой кривой в точке её пересечения с	OX
12	$y = 2\sqrt{x}$, касательная к этой и ось OX	і кривой в точке с абсциссой $x_0 = 1$	OX
13	$y = x^3, y = 4x,$	$x \ge 0$	OX
14	$y = \cos x$,	$-\pi/2 \le x \le \pi/2$	OX
15	$9x^2 + y^2 = 9$		OX
16		этой кривой в точке её пересечения осью <i>OY</i>	OX
17	$\begin{cases} x = \sqrt{3 \cdot t^2}, \\ y = t - t^3, \end{cases}$ между то	очками пересечения с осью <i>ОХ</i>	OX
18	$x^2 + (y+3)^2 = 4$		OX
19	$\begin{cases} x = t^3/3, \\ y = 4 - t^2/2, \end{cases}$	$x \ge 0, y \ge 0$	OX
20	$4x^2 + y^2 = 4$		OX
21	$\rho^2 = 9\cos 2\varphi$		полярная ось
22	$y = (1/2)\sqrt{e^{-2x} + 1}$,	$0 \le x \le \ln 4$	OX
23	$x^2 + (y-1)^2 = 4,$	$y \ge 0$	OX
24	$y = \sqrt{2x}, \qquad y = \sqrt{8 - 2x}$	y = 0	OX
25	$\rho = a (1 - \cos \varphi), a > 0$		полярная ось
26	$y = \sqrt{x/2} \cdot (6-x)/3,$	y = 0	OX
27	$x^2 + 4y^2 = 4$		OX
28	$y^2 = 4(x+4),$	$x \le 0$	OX
29	$y = \sin(x/2)$, $y = e^{x/4} + 4 \cdot e^{-x/4}$,	$0 \le x \le 2\pi$	OX
30	$y = e^{x/4} + 4 \cdot e^{-x/4}$,	<i>y</i> ≤ 5	OX

Задача 6. Исследовать несобственные интегралы (а, б, в) на сходимость

Bap.	а	б	В
	$\int_{1}^{+\infty} \frac{\cos e^{-x}}{x^2} dx$	$\int_{0}^{1} \frac{e^{\sin x}}{\sqrt{1-x^2}} dx$	$\int_{1}^{+\infty} \frac{e^{\frac{1}{x}} - 1}{\sqrt{x^2 - 1}} dx$
2	$\int_{1}^{+\infty} x \cdot \operatorname{tg} \frac{\pi}{4x^2} dx$	$\int_{0}^{1} \frac{x^{2}}{\sqrt[3]{(1-x^{2})^{5}}} dx$	$\int_{1}^{+\infty} \frac{\sin 3x + 2}{\sqrt[3]{x^3 - 1}} dx$
3	$\int_{1}^{+\infty} \frac{dx}{e^{x} \sqrt{x}}$	$\int_{0}^{1} \frac{dx}{1 - e^{\sqrt{x}}}$	$\int_{0}^{+\infty} \frac{e^{\sin x} \sin 2x}{x^3} dx$
4	$\int_{1}^{+\infty} \frac{dx}{x^2 + \sqrt{x - 1}}$	$\int_{0}^{1} \frac{e^{\sin\sqrt[3]{x^2}} - 1}{x} dx$	$\int_{0}^{+\infty} \frac{\sin(x+\sqrt{x})}{x^3} dx$
	$\int_{0}^{+\infty} \frac{x \operatorname{arctg} x dx}{\sqrt{1+x^3}}$	$\int_{0}^{1} \frac{\sin\sqrt{x}}{e^{x} - e^{-x}} dx$	$\int_{-3}^{+\infty} \frac{\sin x}{27 + x^3} dx$
6	$\int_{2}^{+\infty} \frac{dx}{(x^3+1)\ln x}$	$\int_{0}^{\frac{\pi}{2}} \frac{1 - \cos\sqrt{x}}{x^{3/2}} dx$	$\int_{2}^{+\infty} \frac{x + \ln x}{e^{\sqrt{x^2 - 4}} - 1} dx$
7	$\int_{1}^{+\infty} \frac{1 + \lg \frac{1}{x}}{1 + \sqrt{x}} dx$	$\int_{0}^{\frac{\pi}{4}} \frac{dx}{tg^{3}x}$	$\int_{0}^{+\infty} \frac{\sin x + 2x^2 + 1}{(x^3 + 1)\sqrt{x}} dx$
8	$\int_{1}^{+\infty} \frac{\ln(\frac{1}{x}+1)\sqrt{x}}{0,01x+1} dx$	$\int_{0}^{\frac{\pi}{4}} \frac{dx}{\left(\sin\sqrt{x}\right)\sqrt{\sin x}}$	$\int_{0}^{+\infty} \frac{1 - \cos(x^2 + x)}{x^{5/2}} dx$
9	$\int_{1}^{+\infty} \frac{\sin 3x}{x^2 + 2x + 3} dx$	$\int_{1}^{2} \frac{x^4 + 2x + 1}{\sqrt[5]{(x^3 - 1)^2}} dx$	$\int_{1}^{+\infty} \frac{\operatorname{tg} \frac{1}{x}}{\sqrt{x-1}} dx$
10	$\int_{3}^{+\infty} \frac{\cos x}{\sqrt[3]{x^4 + x + \sin x}} dx$	$\int_{0}^{\frac{\pi}{4}} \frac{(2-\cos x)dx}{x^3}$	$\int_{\ln 3}^{+\infty} \frac{x}{e^{2x} - 9} dx$
11	$\int_{1}^{+\infty} \frac{x(x+\sin x)}{(x+1)^3} dx$	$\int_{0}^{1} \frac{dx}{x^3 \ln^3(x+1)}$	$\int_{-1}^{+\infty} \frac{e^{\arctan x}}{x^3 + 1} dx$
12	$\int_{1}^{+\infty} \frac{x - \sin x}{x^3(x+1)} dx$	$\int_{3}^{9} \frac{x \cos x dx}{(x-3)^2}$	$\int_{0}^{+\infty} \frac{1 - \cos(x^{5/4})}{(x + x^2)^3} dx$
13	$\int_{1}^{+\infty} \frac{\sin\frac{1}{x}}{\sqrt{x^3 + 1}} dx$	$\int_{0}^{1} \frac{\ln(1+x)dx}{x\sqrt{x}}$	$\int_{0}^{+\infty} \frac{x^{2}(x+\sin x)}{(2x-\sin x)^{7/2}} dx$
14	$\int_{1}^{+\infty} \frac{x}{\sqrt{x^4 + 1}} dx$	$\int_{0}^{1} \frac{\sqrt{x}}{\sqrt{1+\sin x} - 1} dx$	$\int_{0}^{+\infty} \frac{\sqrt{x}}{e^x + x^2 - 1} dx$
15	$\int_{1}^{+\infty} \frac{\ln x dx}{\sqrt{x^3 + 3}}$	$\int_{2/3}^{1} \frac{\operatorname{tg} \frac{1}{x} dx}{\sqrt{1 - x^2}}$	$\int_{1}^{+\infty} \frac{\arctan \sqrt{x-1}}{\arctan x(e^{x-1}-1)} dx$

Bap	a	б	В
16	$\int_{1}^{+\infty} \ln \frac{x^2 + 5}{x^2 + 4} dx$	$\int_{1}^{3} \frac{\ln^2 x dx}{\left(3 - x\right)^3}$	$\int_{0}^{+\infty} \frac{e - e^{\cos x}}{x^{5/2}} dx$
17	$\int_{4}^{+\infty} \frac{4 + \cos x}{x(x^2 + 1)} dx$	$\int_{0}^{2} \frac{\ln(1+x)dx}{e^{\sin x^{2}} - 1}$	$\int_{0}^{+\infty} \frac{\sqrt{1+x^3} - 1}{x^{7/2}} dx$
18	$\int_{1}^{+\infty} \frac{dx}{\sqrt[10]{x} \operatorname{arctg}^{10}\sqrt{x}}$	$\int_{0}^{1/2} \frac{\operatorname{tg}(x + \frac{\pi}{4}) dx}{\sqrt{x - x^{2}}}$	$\int_{1}^{+\infty} \frac{dx}{(1-\cos\frac{1}{\sqrt{x}})\sqrt{\ln x}}$
19	$\int_{2}^{+\infty} \frac{dx}{\sqrt[3]{x^7 + \ln x}}$	$\int_{1}^{3} \frac{3x+4}{x^3 \cdot \sqrt[3]{\ln x}} dx$	$\int_{1}^{+\infty} \frac{\sqrt{x^{15} - x^{14}} dx}{x^8 - 1}$
20	$\int_{1}^{+\infty} \left(1 - \cos\frac{1}{\sqrt[4]{x}}\right) dx$	$\int_{0}^{1} \frac{dx}{\sqrt[4]{1-x^4}}$	$\int_{2}^{+\infty} \frac{dx}{x^3(x^2 - x - 2)}$
21	$\int_{1}^{+\infty} \sqrt[3]{\frac{x+3}{x^2+5}} \sin\frac{1}{\sqrt[3]{x}} dx$	$\int_{0}^{1} \frac{dx}{(x^2+1)^{3/2} \sin x}$	$\int_{-\sqrt[3]{2}}^{+\infty} \frac{(1-\cos x)dx}{x^3+2}$
	$\int_{1}^{+\infty} \frac{x \sin x}{\sqrt[4]{x^{10} + 10}} dx$	$\int_{1}^{2} \frac{e^x dx}{\sqrt[3]{4 - x^2}}$	$\int_{1}^{+\infty} \frac{x \cos^2 x dx}{\sqrt{x^6 - 1}}$
23	$\int_{2}^{+\infty} \frac{x^2 + 5}{3x^4 - \sqrt{x^2 + \ln x}} dx$	$\int_{2}^{3} \frac{dx}{\sqrt[3]{27 - x^3}}$	$\int_{1}^{+\infty} \frac{x \sin \frac{1}{x^{1/3}} dx}{\sqrt[3]{x^3 - 1}}$
24	$\int_{2}^{+\infty} \frac{\ln(1+\frac{1}{\sqrt{x}})}{1+x} dx$	$\int_{1}^{2} \frac{\arcsin\frac{x}{2}dx}{e^{x^2-1}-1}$	$\int_{2}^{+\infty} \frac{dx}{x(e^{\frac{\sqrt{x-2}}{x}} - 1)}$
25	$\int_{1}^{+\infty} \frac{x \sin x}{4 + x^3} dx$	$\int_{1}^{2} \frac{\arcsin\frac{1}{x}dx}{x-1}$	$\int_{-2}^{+\infty} \frac{\arctan^3 x dx}{x^3 + 8}$
26	$\int_{2}^{+\infty} \frac{x^2 \sin^2 \frac{1}{\sqrt{x}}}{2\sqrt{x^3} + 1} dx$	$\int_{0}^{\frac{\pi}{2}} \sqrt{\operatorname{ctg} x} dx$	$\int_{e}^{+\infty} \frac{dx}{(x^3 \ln x + \sqrt[3]{\ln^2 x})(\ln x - 1)}$
27	$\int_{1}^{+\infty} \operatorname{tg} \frac{1}{3 \cdot \sqrt[4]{x} + 2} dx$	$\int_{0}^{\frac{\pi}{2}} \frac{(2-\cos x)dx}{\sqrt{x}}$	$\int_{0}^{+\infty} \frac{1}{x^{3/2}} \arcsin \frac{x}{(x^2+3)^{5/2}} dx$
28	$\int_{2}^{+\infty} \frac{\sqrt[4]{x}}{\sqrt{x^3 + 2x + \ln x}} dx$	$\int_{0}^{1} \frac{\operatorname{tg}\sqrt[3]{x} \cdot dx}{\sin \sqrt{x}}$	$\int_{0}^{+\infty} \frac{1}{\sqrt{x}} \arctan \frac{1}{(x+1)\sqrt[5]{x^2+1}} dx$
29	$\int_{1}^{+\infty} \frac{\operatorname{tg} \frac{1}{\sqrt{x}}}{\sqrt[3]{x} + 1 + \sin x} dx$	$\int_{0}^{\frac{\pi}{2}} \frac{1-\cos^3 x}{x^{3/2}} dx$	$\int_{0}^{+\infty} \frac{1 - \cos x}{x^3(x+2)} dx$
30	$\int_{1}^{+\infty} \frac{\cos(xe^x)}{\sqrt{x^3} + \sqrt{x}} dx$	$\int_{0}^{1} \frac{dx}{\sqrt{\sin x} \cos x}$	$\int_{0}^{+\infty} \frac{\sin(2^{x^2} - 1)}{x^{9/4}} dx$