33. Temps de vol d'un électron (Mines-Ponts PSI 2013)

Soient deux électrodes cylindriques. Les cylindres sont coaxiaux, de rayons respectifs a et b (a < b). La cathode, de rayon a, est reliée à la masse. On impose un potentiel V_0 à l'anode. L'espace entre les deux électrodes est considéré comme vide.

- 1. Établir une équation différentielle vérifiée par le potentiel. La résoudre.
- 2. Des électrons sont émis de la cathode avec une vitesse initiale nulle. Trouver une relation entre r et $\frac{dr}{dt}$. Exprimer le temps de vol d'un électron à l'aide de $f(x) = \int_1^x \frac{du}{(\ln(u))^{1/2}}$.
- 3. Question supplémentaire : Si l'on rajoute un champ magnétique statique aligné avec l'axe des cylindres, le temps de vol est-il modifié ? Qu'est-ce qui change ?

33. Temps de vol d'un électron (Mines-Ponts PSI 2013)

Soient deux électrodes cylindriques. Les cylindres sont coaxiaux, de rayons respectifs a et b (a < b). La cathode, de rayon a, est reliée à la masse. On impose un potentiel V_0 à l'anode. L'espace entre les deux électrodes est considéré comme vide.

- 1. Établir une équation différentielle vérifiée par le potentiel. La résoudre.
- 2. Des électrons sont émis de la cathode avec une vitesse initiale nulle. Trouver une relation entre r et $\frac{dr}{dt}$ Exprimer le temps de vol d'un électron à l'aide de $f(x) = \int_1^x \frac{du}{(\ln(u))^{1/2}}$.
- 3. Question supplémentaire : Si l'on rajoute un champ magnétique statique aligné avec l'axe des cylindres, le temps de vol est-il modifié ? Qu'est-ce qui change ?