Nome:	Cognome:	-
Matricala	Anno di immetricologione	

Compito di Architettura degli elaboratori - A

La soluzione va riportata in bella su questo foglio, se ci sono problemi di spazio, utilizzate il retro, non sono ammessi altri fogli. I punti sono in trentesimi.

1. [1] Si trasformi l'espressione y=(a+b+d')'(abc)' in un espressione di tipo SP indicando le proprietá dell'algebra di commutazione utilizzate.

passo 1	. proprietá
passo 2	. proprietá
passo 3	. proprietá
passo 4	. proprietá

- 2. [1] Si effettuino le seguenti conversioni:
 - (a) $79_{10} \Rightarrow$ ______ base 2
 - (b) $-44_{10} \Rightarrow$ _____ base 2 (in complemento a 2 su 8 bit)
 - (c) 8E (intero con segno in esadecimale su 8 bit) \Rightarrow _____ base 10
 - (d) 111010_2 (naturale) \Rightarrow _____ base 10
- 3. [0.5] Si indichino quali di queste affermazioni sono sempre corrette per una funzione dell'algebra di commutazione non completamente specificata.
 - 🔘 l'espressione di costo minimo SP si ottiene assegnando a 0 tutte le condizioni di indifferenza
 - l'espressione di costo minimo PS si ottiene assegnando a 1 tutte le condizioni di indifferenza
 - O l'espressione di costo minimo SP si ottiene sfruttando eventualmente alcune condizioni di indifferenza per espandere gli implicanti della funzione
 - O l'espressione di costo minimo SP si ottiene utilizzando tutti gli implicanti primi della funzione
- 4. [2.5] Si consideri la funzione f non completamente specificata rappresentata nella seguente mappa di Karnaugh e si determini una espressione SP di costo minimo per f indicando sulla mappa i ragruppamenti rettangolari utilizzati in tale copertura.

∖ cd					c
ab	00	01	11	10	\checkmark^f
00	1	1	0	1	
01	0	1	0	1	
11	ı	ı	1	0	
10	ı	ı	-	0	

Espressione

5. [4] Si tracci il grafo di transizione dello stato di una FSM con un ingresso x e due uscite y_1 e y_0 . La FSM (di Mealy) riceve serialmente su x delle parole di 3 bit ciascuna e produce in uscita su ciascun bit la codifica binaria del numero di 1 ricevuti fino a quel periodo di clock (nella parola corrente).

Esempio di traccia

6. [1.5] Aritmetica binaria

Si utilizzi il sommatore a 4 bit indicato a destra per realizzare una rete che, dati due interi senza segno X e Y rappresentati su 3 bit, calcoli l'espressione X+2*Y+1.

La soluzione puó essere rappresentata nella figura connettendo opportunamente i segnali di X (x_2 , x_1 e x_0), quelli di Y (y_2 , y_1 e y_0) e le costanti 1 e 0 alle porte di ingresso dell'adder.

7. [1.5] Si analizzi la seguente rete determinando l'espressione di ciascun segnale in funzione degli ingressi (si annoti la figura), si valuti poi il valore dell'uscita per le configurazioni di ingresso in tabella.

Nome:	Cognome:		
Nome:		Cognome:	

Compito di Architettura degli elaboratori - B

1. [1] Si descrivano i campi delle istruzioni add e addi dell'ISA MIPS (numero di bit per campo, posizione dei campi nella parola e significato dei campi)

Nota: non é detto che servano tutti i campi.

2. [1.5] Si evidenzino (ripassandoli con una matita colorata) i cammini dei dati che vengono attivati durante l'esecuzione di un istruzione di tipo beq \$t0, \$t1, label nella CPU MIPS a ciclo singolo illustrata di seguito. Si annotino tali cammini con gli argomenti dell'istruzione.

Nome:	Cognome:			
3. [1.5] Modifica a ISA MIPS Si vorrebbe aggiungere un ad addi all'ISA MIPS. Tale ha i campi: opcode (6 bit), rs una costante (const). La co mata a rs che é anche la c rs + const). Con riferiment data-path a destra si indich tale data-path non support Si descriva o si disegni cosa per supportare la nuova ist	e istruzione (addx) s (5 bit) e 21 bit per stante viene som- lestinazione (rs = to alla porzione di ni il motivo per cui na tale modifica bisognerebbe fare cruzione	Read address Instruction [31:0] Instruction memory	Instruction [25:21] Instruction [20:16] Instruction [15:11] Instruction [15:11] Instruction [15:0]	Read register 1 Read data 1 register 2 Write data Registers 16 Sign a 2 extend
4. [1] Si descrivano due poss versione pipelined a 5 stad 5 come ci si aspetterebbe ne dati o branch (si supponga 1)	i, il tempo di esecuz el caso ideale. Quest anche che la memo	ione di un o nonostan ria sia acce	programma no te il programn ssibile in un c	on si riduce di un fattore na non abbia dipendenze iclo di clock).
5. [1] Ritardo dello stadio di l	IF			

memoria e incrementa il PC di 4 secondo lo schema illustrato di fianco. Se $t_{adder}=0.2ns$ é il ritardo dell'adder e $t_{mem}=0.9ns$ quello della memoria, si determini quale é il ritardo (massimo) dello stadio considerato:

.....

6. [3] Si considerino la versione pipelined della CPU MIPS e questo frammento di codice:

Si riporti la loro esecuzione in sequenza (senza tenere conto degli hazard) nella seguente tabella. Si indichino poi in tale tabella le dipendenze fra i dati che darebbero luogo ad hazard.

nota: non é detto che servano tutte le righe nelle tabelle

clock	IF	ID	EX	MEM	WB
1					
2					
3					
4					
5					
6					
7					
8					

Si modifichi l'esecuzione di tale frammento di codice in modo che tali dipendenze siano risolte. Si supponga a questo riguardo di considerare una pipeline priva di bypass fra stadi diversi (in cui é comunque possibile leggere e scrivere dal register file nello stesso ciclo di clock).

clock	IF	ID	EX	MEM	WB
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Nome:	Cognome:
Nome:	Cognome:

7.	[3] Si consideri la seguente memoria di tipo set associativo a 2 vie con $b=1$ illustrata nella prima
	tabella. Si descrivano i campi di un indirizzo dell'architettura MIPS utilizzato per accedere a tale
	memoria.

Risposta:	31	0
nisposta.		

La prima tabella mostra anche il suo stato iniziale prima dell'esecuzione della sequenza di istruzioni.

istruzione hit/miss

lw \$t0, 0xAC(\$zero)

lw \$t1, 0x70(\$zero)

lw \$t2, 0x90(\$zero)

lw \$s0, 0x184(\$zero)

Si annoti ogni istruzione con il suo esito (hit/miss) e si riporti lo stato finale della cache nella seconda tabella.

Stato iniziale

	way-1			way-0		
V	tag	data	V	way-0 tag	data	set
0			0			7
0			1	0x005	M[0xB8]	6
0			0			5
0			1	0x003	M[0x70]	4
0			0			3
0			0			$\overline{}$ 2
0			1	0x005	M[0xA4]	1
0			0			0

Stato finale

	way-1			way-0		
V	way-1 tag	data	V	way-0 tag	data	set
						7
						6
						5
						4
						3
						2
						1
						0