

CUTE – A low background facility for testing cryogenic detectors

Serge Nagorny

on behalf of the CUTE collaboration

Motivation

- Provide a moderate size (10 kg detector) handy (few days turnover) wellshielded cryogenics (20 mK) infrastructure for rare event physics
 - Test and validation of entire SuperCDMS detector tower (6 detector + electronics)
 - Measurements in a low background environment avoiding cosmogenic activation of detector's material (³H, ³²Si, etc.)
 - Complete SuperCDMS detector characterization to understand its intrinsic background and noise issues
 - Confirmation of screening program and handling procedures
 - Early science run for dark matter search can be performed thanks to lowbackground environment and low-energy threshold of SuperCDMS detectors
- Testing of various type cryogenic detectors

CUTE location at SNOLAB

2 km deep

Strong cosmic ray flux suppression

Cleanroom environment

General view of the CUTE facility

Shielding in the CUTE facility

- Cryostat placed inside the drywell of a water tank
- 1.5 m of water layer at side and
 1.0 m at bottom reduces external neutron and gamma flux
- 11-15 cm of low activity Pb reduces residual gammas
- The gap from the top is closed off by 20 cm of HDPE and 15 cm of Pb inside cryostat
- Internal Cu shields block IR photons, which contribute to detector noise

PE shielding

Installed Fully functional, tested during Pb shield installation, Jan 2019

Lead shielding

Lead shielding

Installed @ Jan 25th, 2019

Inner Pb, 2 cm < 3 Bq/kg

Outer Pb, 9 cm < 30 Bq/kg

Gas purge system

Mu-metal

Cleanroom

- Space for two operators
- Aluminum structure with LEXAN panels
- Resistant to seismic events
- Movable
- Lifting device for cryostat cans
- Low Rn air supply (< 3 Bq/m³)
- Later SuperCDMS Rn-filter system (< 0.1 Bq/m³) will be used
- Crane moves cryostat between cleanroom and drywell

Cleanroom status @ Apr 26st, 2019

 95% installation accomplishment

To be completed:

- Connection to compressed air line
- HEPA filter in air supply line
- Sealing with Al-tape
- Final cleaning

Installation Review, Part 3

(Feb 5th, 2019)

- Calibration system
- Suspension system
- Cryostat installation

All actions are planned to be completed by April 2019

Calibration system concept

Different radioactive sources will be used to calibrate the energy scale and to monitor stability of detectors performance, as well for characterization of particle interaction types

Gamma source: ¹³³Ba (this Installation stage)

Neutrons source: ²⁵²Cf (next step in a while)

Sources will be remotely moved from shielded storage box to the measurement position

Calibration system status @ March 1st, 2019

Active two-stages suspension system

- Our detectors are sensitive to mechanical vibrations
- Pulse tube cooler and turbo pump are strong source of vibrations that may compromize detector performance
 - Both are mounted on separate plate with soft coupling (bellows) to cryostat to minimize vibrations
- The bellows makes system sensitive to pressure fluctuations in SNOLAB
- Active suspension system tracks/controls cryostat position better than 1 mm

Suspension system assembly

Remote control of suspension system

Tracks environmental condition (pressure, water level, noise level)

Records of all system parameters into database

Provides possibility to off-line analysis of behavior

Suspension system assembly

installed at March 1st, 2019

Lowering suspension frame into drywell

Service handles & step

Suspension frame is installed

Calibration system

Cryostat delivery to SNOLAB underground site

Time-schedule

Date (week)	Task	
Feb 4, 2019	Prepare suspension frame for shipping	1
Feb 5 th , 2019	Installation Review Phase 2B	1
Feb 11, 2019	 Assemble, clean, and package of calibration system Ship suspension and calibration to SNOLAB Fix last cryostat deficiencies 	•
Feb 18, 2019	Clean and package cryostatShip suspension system underground	1
Feb 25, 2019	Install calibration and suspension systems	1
Mar 25, 2019	 Ship cryostat to SNOLAB and ship underground with CUTE staff presence 	1
Apr 1, 2019	Cryostat installationPreparation for Operational Readiness Review	
May 2019	Operational Readiness Review	

CUTE tasks before Early Operation

Date	Step
May, 2019	 DAQ mounting, and implement DAQ architecture for underground/surface CUTE lab
May, 2019	Preparation for Operational Readiness Review
June, 2019	 Cleanroom operation test air quality test operational test working procedure improvement
July, 2019	 Test all procedures, its correction based on the results of first run without/with detectors
July, 2019	 Evaluation of required manpower for run preparation&running
end of 2019	Radio-assay of materials used for CUTE facility production
end of 2019	Completion of CUTE background model

Payload for CUTE

Commissioning

	Task	Time Period			
•	Testing of CUTE facility at SNOLAB Without detectors With detectors (G115/TES chip) Revision/fixing problems/commissioning	May 2019 – June 2019			
•	Testing SuperCDMS detectors Si HV Pathfinder HVeV detector First tower (6 iZIP Ge Detector)	July 2019 – May 2020			
	Own R&D activity HVeV detector from enriched ²⁸ Si Scintillating bolometers based on YVO ₄ , ZnSe, archPbMoO ₄ crystals Advanced light detectors	from Sept 2019			
	Early operation 21				