

DETERMINING HYDROLOGIC PROPERTIES OF SOIL

by

KARL GEBHARDT

September 1986
USDI Bureau of Land Management

1607 ·

TECHNICAL NOTE 371

DETERMINING HYDROLOGIC PROPERTIES OF SOIL

compiled by Karl Gebhardt, Idaho State Office Reynolds Creek Technology Transfer Project Agricultural Research Service/Bureau of Land Management

September 1986

Available from: Printed Materials Distribution Section

BLM Service Center, Bldg. 50, D-558B

Denver, Colorado 80225

and

National Technical Information Service

Springfield, Virginia 22161

DE BOSEFAL CONTER,

Table of Contents

	Pa.	ge
INTRODUCTION		. 1
HYDROSOIL		. 1
APPLICATION TO THE SCS CURVE NUMBER METHOD Reynolds Creek Hydrologic Soil Group Procedures Coarse materials Compacted soils Frozen soils Surface rock		. 2 . 3 . 4
REYNOLDS CREEK RANGELAND RUNOFF CURVE NUMBER PROCEDURE		. 5
APPLICATION TO HYDROLOGY AND GROUND-WATER MODELS		. 5
OBTAINING SOILS SURVEY INFORMATION		. 6
EXAMPLES		. 7
GLOSSARY		. 8
ILLUSTRATIONS		
1. HYDROSOIL Sample Output 2. Mineral Bulk Density Chart 3. SCS Hydrologic Soil Groups 4. SCS Tables from Handbook 5. Rangeland Curve Numbers	• • • •	10 11 12
APPENDICES		
1. HYDROSOIL Computer Codes		20 28
DEFEDENCES		33

DETERMINING HYDROLOGIC SOIL PROPERTIES

INTRODUCTION

This technical note provides resource specialists with tools for estimating soil properties required by many of the state-of-the-art hydrology, erosion, and sediment yield procedures and computer models. Some of the hydrologic soil properties will also be valuable in using models that require soils information, such as vegetation growth models.

It is the user's responsibility not to misuse the estimated soil properties, and the estimates should not be used where actual field measurements are more appropriate. However, the estimates should provide a reasonable approximation where measured data is not required.

Much of the following material was presented in part at the Reynolds Creek Technology Transfer Symposium. The primary reference for the text is Brakensiek, Rawls and Stephenson, 1984.

HYDROSOIL

A computer program, HYDROSOIL, developed by Rawls and Brakensiek (1985), computes soil water properties commonly used in hydrologic modeling. The computer code for this program is listed in Appendix 1 in both the FORTRAN and BASIC languages. HYDROSOIL produces estimates of eight soil water parameters dealing with water retention and hydraulic conductivity. They include 1/3 bar water content, 15 bar water content, saturated hydraulic conductivity, effective porosity, wetting front capillary pressure, a porosity index, residual water content, and bubbling pressure. The latter six parameters correspond to parameters in the Brooks and Corey water retention function (Brooks and Corey, 1964). HYDROSOIL requires input of porosity, percent sand, and percent clay. A sample output from the program is given in Illustration 1.

APPLICATION TO THE SCS CURVE NUMBER METHOD

The SCS curve number method (SCS, 1972) has been widely used within the BLM and by many other agencies. One of the major problems in the use of the method is selection of the hydrologic soil group (HSG) and runoff curve number. Wood and Blackburn (1984) indicated that the hydrologic soil groupings should be "greatly modified" for use in arid and semiarid rangelands, especially to make more use of surface soil properties such as coarse fragments. Selection of the runoff curve number is one of the most important steps in using the method; however, there are few selection techniques that minimize variabilities among different users. The following sections describe: a method for consistently determining the HSG; methods for coarse, compacted, and frozen soils; and an alternative method for choosing a runoff curve number.

REYNOLDS CREEK HYDROLOGIC SOIL GROUP (HSG) PROCEDURES

The procedure developed by the ARS at Reynolds Creek for determining the HSG is based on knowing the percent sand and clay, and soil porosity.

The first step is to determine the porosity by using a value for moist bulk density. The moist bulk density can be found in many soil surveys or can be obtained through the Soils Information Retrieval System (SIRS) system (see section "Obtaining Soils Survey Information").

If the moist bulk density is not given, the porosity can be determined as follows:

1 - Enter Illustration 2 with the percent sand and clay and read the mineral bulk density.

The percent sand can be calculated from soils survey data/SIRS/SOILS-5 as:

$$Z5 = 100 - \frac{100 \text{ I}}{C} \tag{1}$$

where

I = percent material <75 mm passing sieve $\#2\emptyset\emptyset$ (I).

G = percent material $\langle 75 \text{ mm passing sieve } #10 \rangle$

- 2 Use the equation in Illustration 2 to calculate the Soil Bulk Density (SBD) with an appropriate percent of organic matter (OM).
- 3 Calculate the total porosity as,

Porosity =
$$1 - SBD/2.65$$
. (2)

Enter the HYDROSOIL program shown in Appendix 1 with the percent sand and clay, and porosity to determine the fine earth fabric saturated conductivity, KS. For determining the HSG, only the KS from the output is needed.

With KS known, determine the HSG from Illustration 3. Rangeland soils may require a modification due to conditions, such as stone or coarse fragment content, soil compaction, or frozen soils. These modifications are considered in the next section. The saturated conductivity limits for A, B, C, and D were taken from Musgrave (1955).

Coarse Materials

Rangeland soils, such as those on the Reynolds Creek Watershed, contain significant amounts of coarse fragments. From work by Bouwer and Rice (1983), and unpublished SCS SIRS/SOILS-5 based equations developed by Grossman (1983), a relationship was developed for calculating the soil porosity for the bulk soil containing coarse fragments,

$$K_{c} = (1 - \frac{Z1}{---}) / (\frac{Z1}{---})$$

$$100 \quad p \quad 100$$
(3)

where

 K_c = the bulk soil porosity (with coarse fragments),

p = fine earth fabric, <2 mm, porosity, and

Z1 = percent by weight of the soil material >2 mm and $\langle 250 \text{ mm} \rangle$

where Zl is calculated by equation (4):

$$Z1 = E + (1 - \frac{E}{100}) (100 - G),$$
 (4)

where

E = percent fraction >75 mm (E), G = percent material <75 mm passing sieve #10 (G),

The value of p is the porosity determined from Illustration 2 by the procedure described above or taken from soils data file using SIRS/SOILS-5 based equation (Appendix 2).

Equation (5) was derived from the results of Bouwer and Rice (1983). The saturated conductivity of the soil containing coarse fragments, Kc, can be calculated from the conductivity of the fine earth fraction, KS, and the percent by weight of coarse fragments, Zl. If Zl is not known it is calculated by equation (1).

$$K_{c} = (1 - \frac{Z1}{100}) \text{ KS}$$
 (5)

The value of $K_{\rm C}$ is entered in Illustration 3 and a hydrologic soil group is determined for the bulk soil. The HYDROSOIL computer program can be entered with p to determine bulk soil properties other than the saturated hydraulic conductivity, which is determined by equation (5). Equation (5) is also similar to one derived by Peck and Watson (1979). Additional research on gravels in soils is presented by Dunn and Mehuys (1984).

Compacted Soils

Soil bulk densities can change as a function of land use which induce compaction. As the bulk density increases, the bulk soil porosity will decrease, which may change the HSG. The Reynolds Creek procedure is simply to change the original bulk density by the percent change and compute a new porosity. The HYDROSOIL program in Appendix 1 is entered with a new porosity, and the calculated KS value is used in Illustration 3 to determine the HSG.

Frozen Soils

Frozen soil conditions frequently occur on rangelands. The following procedure was developed by Lee (1983) from his study of a frozen soil. He related the ratio of the frozen soil saturated conductivity (KS)f to the unfrozen soil KS as a function of antecedent soil water content.

The antecedent soil water factor is expressed as a percent of field capacity. One-third bar water contents are also estimated in our computer program. Equations (6a,b) present Lee's relationships,

$$(KS)_f/KS = 1.89 - 0.023 (\% \text{ of FC}), \%FC < 78 \%$$
 (6a)

and

$$= 0.1$$
 , %F >78 %. (6b)

For example, if it is estimated that the antecedent soil water content when the ground is frozen is 50 percent of field capacity, then by equation (5a)

$$(KS)_f/KS = 0.74.$$

Thus, if the original hydrologic soil group is "B", KS = 0.45 cm/hr, then

$$(KS)_{f} = 0.33 \text{ cm/hr}$$

and the HSG determined from Illustration 3 would be reduced to a "C" soil. Equations (6a,b) should be used very cautiously since they are based on laboratory tests of only one soil texture. However, they do indicate the hydrologic importance of frozen soils and give an estimation technique where frozen soil might be encountered.

Surface Rock

A thesis study by Dadkhah (1979) indicated that rock cover on the soil surface, from 0 percent to 20 percent, decreased the SCS curve number by nearly 10 percent. Apparently surface rock cover is a significant factor to consider on rangeland curve number hydrology, but more research is needed to quantify its effect. The same thesis study also investigated the interactions of rock cover, vegetation cover, and soil compaction.

REYNOLDS CREEK RANGELAND RUNOFF CURVE NUMBER PROCEDURE

Standard SCS procedures for determining rangeland CN's are given in Tables 8.1, 8.2, and 9.1 (see Illustration 4) of the SCS Hydrology Handbook (SCS 1972).

The Reynolds Creek procedure uses the KS parameter directly rather than the hydrologic soil group. The ARS developed Illustration 5 by combining SCS Tables 8.1, 8.2, and 9.1 (Illustration 4) and Illustration 3. Based on SCS Table 8.2, the cover classes were defined as shown in Illustration 5 for bare, poor, fair, and good cover. The lines in Illustration 5 were oriented with the four points in SCS Table 9.1 representing the curve numbers for a bare, poor, fair and good HC plotted versus the mid-point KS for each HSG. Illustration 5 would be entered with the estimated KS value and an estimated hydrologic condition (HC), i.e., cover class. For interpolation between classes, the ARS developed the following equation, assuming the average cover percent shown in Illustration 5 for each class.

$$CN = 96.38 - 0.158(C) - 19.84(KS) - 0.397(KS)(C)$$
 (7)

where

CN = Curve Number,

C = total cover in percent, and

KS = saturated conductivity, cm/hr.

The preceding procedure allows a user to use soil texture data to arrive at an estimate of KS. When the percent cover is included in equation (7), the curve number can be estimated with much more consistency between users. This does not mean that the estimated curve number value is better than produced from other methods, only more reproducible.

APPLICATION TO HYDROLOGY AND GROUND-WATER MODELS

More computer models are becoming available to Bureau employees. Several of the computer programs currently available on the Bureau's Honeywell DPS8 require the knowledge of hydrologic soil group and SCS runoff curve numbers (Moore, 1984). Most of the advanced surface water models, such as the Simulator for Water Resources in Rural Basins, (Arnold and Williams, 1985); the CREAMS model, (Knisel, 1980); the Simulation of Production and Utilization on Rangelands—SPUR, (USDA, 1983); and the Erosion Productivity Impact Calculator, (Williams, 1983), require a minimum of hydraulic conductivity and soil water properties. Many of the ground-water analysis models require knowledge of the wilting point, available water capacity, saturated hydraulic conductivity, porosity, effective porosity, bulk density and other properties. The Ekalaka Rangeland Hydrology and Yield Model (Wight, 1983) currently available on the Bureau's Honeywell, also requires some of these types of data. Gebhardt, 1985, presented applications to Bureau problems using some of the models under development.

In the future, the availability of micro computers will make models more available to Bureau personnel. Specialists will be able to analyze more than ever before. Estimates of soil properties can allow the specialist to generally determine such things as erosion, runoff, plant production, sedimentation, groundwater movement, and subsurface contaminant transport. In addition to the HYDROSOIL program, the tables in Appendix 3 contain summarized soil properties by texture class that are based on the work by Rawls et al. 1982, and were taken from Lane and Stone, 1983. General determinations from HYDROSOIL can often reduce or eliminate unnecessary field investigations and data collection. Provided that estimated soil water properties are used within their limitations, the methods presented above can be very useful.

OBTAINING SOILS SURVEY INFORMATION

General and detailed soils data usually come from published soil surveys. Where published surveys are not available, the detailed properties of soils may be obtained by soils series through the Soils Information Retrieval System (SIRS) provided the soil has been mapped and correlated according to the national standards. The SIRS system is an interactive computer service operated in cooperation with the U.S. Army Corps of Engineers and the Soil Conservation Service. The data base is massive and can be accessed through any Bureau terminal equipped with communications and proper account information. Appendix 4 contains information on using the SIRS system.

Given: Reynolds Creek SIRS/SOILS-5 data for Searla soil series (id0929) cool

(1) Find - percent sand

Sand
$$(\%) = Z5 = 100 - 100 I/G$$

I = percent material <75 mm passing #200 sieve = 35 - 50 percent
G = percent material <75 mm passing #10 sieve = 60 - 80 percent.</pre>

Using the midpoint value for I and G

Sand (%) =
$$100 - 100 (42.5/70)$$

= 39 percent.

(2) Find - percent by weight of material \geq 2 mm and \leq 250 mm = Z1

$$Z1 = E + (1 - \frac{E}{---}) (100-G)$$

E = percent fraction >75 mm
G = percent material <75 mm
 passing the #10 sieve.</pre>

From SIRS/SOILS-5

$$E = 5 - 10$$
 percent $G = 60 - 80$ percent

$$Z1 = 7.5 + (1 - \frac{7.5}{---}) (100 - 70)$$

Z1 = 35 percent.

(3) Find - Hydrologic Soil Group

From the SIRS/SOILS-5, the percent clay (M) is 12 - 20 with the mid-value of 16 percent and the percent of sand (Z5) is 39 percent.

The measured moist bulk density (N) is 1.4 - 1.5 with a mid-value of 1.45.

From HYDROSOIL computer program

$$KS = 0.60 \text{ cm/hr}$$
.

Referring to Illustration 3, this soil is Hydrologic Soil Group B.

If we assume a total cover of 30 percent, the calculated curve number from equation (7) is CN = 72.

ANTECEDENT SOIL WATER CONTENT- The degree of wetness of a watershed at the beginning of a storm. In the SCS method, 3 levels of AMC are used:

AMC-I. Lowest runoff potential. The watershed soils are dry enough for satisfactory plowing or cultivation to take place.

AMC-II. The average condition.

AMC-III. Highest runoff potential. The watershed is practically saturated from antecedent rains.

BUBBLING PRESSURE- Used as Pb in the Brooks and Corey equation. It is a characteristic constant of the medium and is a measure of the maximum pore size forming a continuous network of flow channels within the medium. Approximately the minimum capillary pressure on the drainage cycle at which the non-wetting fluid is continuous.

BULK DENSITY- The ratio of soil mass to the bulk soil volume. Can be calculated as moist or dry bulk density. See Illustration 2.

EFFECTIVE POROSITY- The volume of interconnected pore space that water can be freely removed from. Calculated as porosity minus residual water content.

FINE EARTH FRACTION- The fraction of soil material less than 2 mm. diameter.

POROSITY- The volume of pore space expressed as a fraction of bulk volume of the porous medium.

POROSITY INDEX- Pore size distribution index. Can be any positive value, being small for media having a wide range of pore sizes and large for media with a relatively uniform pore size. Used in the Brooks and Corey equations.

RESIDUAL WATER CONTENT- Volume of water remaining in the pore space after water has been freely removed from the interconnected pore space.

SATURATED HYDRAULIC CONDUCTIVITY- The rate of water movement through a porous media at a saturated soil water content.

WATER CONTENT, 1/3 BAR- The water content at 1/3 bar tension, defines the soil's field capacity.

WATER CONTENT, 15 BAR- The water content at the 15 bar moisture tension that represent the wilting point of many plants. Rangeland plants may have wilting points that are better described at higher moisture tensions.

WATER HOLDING CAPACITY- The difference between water held at 1/3 bar (field capacity) and 15 bar (wilting point). Assumed to be the water available to plants.

WETTING FRONT CAPILLARY PRESSURE- The capillary pressure (tension) of the wet phase at the boundary of an air-water interface. Used in Green-Ampt equation.

RUN SOILS

\$ ENTER THE POROSITY: 0.45

\$ ENTER THE % OF SAND: 39

\$ ENTER THE % OF CLAY: 16

POROSITY 0.45000

% SAND % CLAY 39.00 16.00

EFFECTIVE POROSITY = 0.3788

POROSITY INDEX = 0.3460 (BROOKS AND COREY)

WETTING FRONT CAPILLARY PRESSURE = 21.1312 cm (GREEN AND AMPT f)

SATURATED HYDRAULIC CONDUCTIVITY = 0.59637 cm/hr (GREEN AND AMPT KS)

ONE THIRD BAR WATER CONTENT = 0.2331

15 BAR WATER CONTENT

= 0.1135

RESIDUAL WATER CONTENT = 0.0710 (BROOKS AND COREY r)

BUBBLING PRESSURE = 27.4790 cm (BROOKS AND COREY b)

\$ WOULD YOU LIKE TO CALCULATE ANY MORE? (Y/N) N

FORTRAN STOP

Mineral Bulk Density Chart

SCS Hydrologic Soil Groups

SCS hydrologic soil groups for saturated conductivity (KS) classes.

HSG (KS cm/hr)	Description
A (0.76-1.14) ¹	(Low runoff potential). Soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels. These soils have a high rate of water transmission.
B (0.38-0.76)	Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.
C (0.13-0.38)	Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer than impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.
D (0.0-0.13)	(High runoff potential). Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very slow rate of water transmission.

 $[\]underline{1}/$ It is assumed that a KS greater than 1.14 cm/hr is an "A" soil.

SCS Tables from Handbook

Table 8.1.--Classification of native pasture or range

Vegetative condition	Hydrologic condition
Heavily grazed. Has no mulch or has plant cover on less than 1/2 of the area.	Poor
Not heavily grazed. Has plant cover on $1/2$ to $3/4$ of the area.	2 Fair
Lightly grazed. Has plant cover on more th 3/4 of the area.	nan Good

Table 8.2.--Air-dry weight classification of native pasture or range

Cover density (percent)	Plant and litter Less than 0.5		nt (tons per acre): More than 1.5
Less than 50	Poor	Poor +	Fair
50 to 75	Poor +	Fair	Fair +
More than 75	Fair	Fair +	Good

Table 9.1.--Runoff curve numbers for hydrologic soil-cover complexes $\qquad \qquad \text{(Antecedent moisture condition II, and } I_a = 0.2 \text{ S)}$

	Cover					
Land use	Treatment	Hydrologic	Hydro	logic	soil g	roup
	or practice	condition	A	В	С	D
Fallow	Straight row	es de es de	77	86	91	94
Row crops	11	Poor	72	81	88	91
	11	Good	67	78	85	89
	Contoured	Poor	70	79	84	88
	11	Good	65	75	82	86
	"and terraced		66	74	80	82
	18 18 18	Good	62	71	78	81
Small	Straight row	Poor	65	76	84	88
grain		Good	63	75	83	87
	Contoured	Poor	63	74	82	85
	**	Good	61	73	81	84
	"and terraced		61	72	79	82
		Good	59	70	78	81
Close-seeded	Straight row	Poor	66	77	85	89
legumes 1/	11 11	Good	58	72	81	85
or	Contoured	Poor	64	75	83	85
rotation	11	Good	55	69	78	83
meadow	"and terraced		63	73	80	83
	"and terraced	d Good	51	67	76	80
Pasture		Poor	68	79	86	89
or range		Fair	49	69	79	84
		Good	39	61	74	80
	Contoured	Poor	47	67	81	88
	11	Fair	25	59	75	83
	11	Good	6	3 5	70	79
Meadow		Good	30	58	71	78
Woods		Poor	45	66	77	83
		Fair	36	60	73	79
		Good	25	55	70	77
Farmsteads			59	74	82	86
Roads (dirt)	2/		72	82	87	89
	surface) 2/		74	84	90	92

^{1/} Close-drilled or broadcast.
2/ Including right-of-way.

Rangeland Curve Numbers

Rangeland Curve Numbers as a function of saturated conductivity for cover classes.

HYDROSOIL COMPUTER CODES

```
PROGRAM HYDROSOIL
C
        *******************
C
C
C
       *
              PROGRAM TO FIND GREEN-AMPT PARAMETERS
С
       sk:
×
C
                  WRITTEN BY: Terry Wadsworth
*
C
        sk.
                        February 1984
*
С
×
C
                          USDA-ARS
       ******************
C
C
С
  POR = POROSITY PS = PERCENT SAND = % SAND PC = PERCENT CLAY = % CLAY
C
      REAL*4 Ks, Yf, Qe, Qr, Yb, LAM
      CHARACTER*1 ANS
  10 WRITE(6,20)
  20 FORMAT(/,/,5x,'$ ENTER THE POROSITY: ',$)
     ACCEPT*, POR
     IF(POR .LT. 0.0 .OR. POR .GT. 1.0) GO TO 150
  30 WRITE(6,40)
 40 FORMAT(/,5x,'$ ENTER THE % OF SAND: ',$)
     ACCEPT*, SAND
     IF(SAND .LT. 5.0 .OR. SAND .GT. 70.0) GO TO 170
  50 WRITE(6,60)
 60 FORMAT(/,5X,'$ ENTER THE % OF CLAY: ',$)
     ACCEPT*, CLAY
     IF(CLAY .LT. 5.0 .OR. CLAY .GT. 60.0) GO TO 190
     PS=SAND
     PC=CLAY
C
C
     EQUATIONS DESCRIBING GREEN-AMPT PARAMETER CHARTS
С
     Qe=0.01162-0.001473*PS-0.002236*PC+0.98402*POR+0.0000987*PC**2
     1+0.003616*PS*POR-0.010859*PC*POR-0.000096*PC**2*POR-0.002437*
     2POR**2*PS+0.0115395*POR**2*PC
C
     Yf=6.5309-7.32561*POR+0.001583*PC**2+3.809479*POR**2+0.000344*
     1PS*PC-0.049837*PS*POR+0.001608*PS**2*POR**2+0.001602*PC**2*
     2POR**2-0.0000136*PS**2*PC-0.003479*PC**2*POR-0.000799*PS**2*POR
C
     Yf = EXP(Yf)
C
     Ks=19.52348*POR-8.96847-0.028212*PC+0.00018107*PS**2-0.0094125*
     1PC**2-8.395215*POR**2+0.077718*PS*POR-0.00298*PS**2*POR**2-
     20.019492*PC**2*POR**2+0.0000173*PS**2*PC+0.02733*PC**2*POR+
     30.001434*PS**2*POR-0.0000035*PC**2*PS
```

```
С
     Ks = EXP(Ks)
C
     or=-0.0182482+0.00087269*PS+0.00513488*PC+0.02939286*POR
     1-0.00015395*PC**2-0.0010827*PS*POR-0.00018233*(PC**2)*
     2(POR**2)+0.00030703*(PC**2)*POR-0.0023584*(POR**2)*PC
C
     LAM=-0.7842831+0.0177544*PS-1.062498*POR-0.00005304*PS**2
     1-0.00273493*PC**2+1.11134946*POR**2-0.03088295*PS*POR
     2+0.00026587*(PS**2)*(POR**2)-0.00610522*(PC**2)*(POR**2)
     3-0.00000235*(PS**2)*PC+0.00798746*(PC**2)*POR-0.00674491
     4*(POR**2)*PC
C
     LAM = EXP(LAM)
С
     Yb=5.3396738+0.1845038*PC-2.48394546*POR-0.00213853*
     1PC**2-0.04356349*PS*POR-0.61745089*PC*POR+0.00143598
     2*(PS**2)*(POR**2)-0.00855375*(PC**2)*(POR**2)-0.00001282*
     3(PS**2)*PC+0.00895359*(PC**2)*POR-0.00072472*(PS**2)*POR
     4+0.0000054*(PC**2)*PS+0.50028060*(POR**2)*PC
С
     Yb = EXP(Yb)
      BARTHD=.1535-.0018*PS+.0039*PC+.1943*POR
      BAR15 = .0370 - .0004 \times PS + .0044 \times PC + .0482 \times POR
C
С
      OUTPUT SECTION
C
     WRITE(6,70) POR, SAND, CLAY
 70 FORMAT(/,/,,12X,'POROSITY',5X,'% SAND',5X,'% CLAY',/,
     112X, F7.5, 6X, F6.2, 5X, F6.2)
      WRITE(6,80) Qe
  80 FORMAT(/,/,5X,'EFFECTIVE POROSITY = ',F7.4)
      WRITE(6,85) LAM
  85
     FORMAT(/,5x,'POROSITY INDEX
                                     = ', F7.4)
      WRITE(6,90) Yf
  90
     FORMAT(/,5X,'WETTING FRONT CAPILLARY PRESSURE = ',F10.4,' cm')
      WRITE(6,100) Ks
      FORMAT(/,5X, 'SATURATED HYDRAULIC CONDUCTIVITY = ',F10.5,' cm/hr')
 100
      WRITE(6,110) BARTHD
110
      FORMAT(/,5x,'ONE THIRD BAR WATER CONTENT
                                                    = ',F10.4)
      WRITE(6,120) BAR15
120
      FORMAT(/,5x,'15 BAR WATER CONTENT
                                                     = ',F10.4)
      WRITE(6,125) Qr
125
      FORMAT(/,5X, 'RESIDUAL WATER CONTENT
                                                    = ',F10.4)
      WRITE(6,126) Yb
126
      FORMAT(/,5x,'BUBBLING PRESURE
                                                     = ',F10.4,' cm')
      WRITE(6,130)
 130
      FORMAT(/,/,5x,'$ WOULD YOU LIKE TO CALCULATE ANY MORE?(y/n)',$)
      READ(5,140) ANS
 140
      FORMAT(A1)
      IF(ANS .EQ. 'Y' .OR. ANS .EQ. 'y') GO TO 10
      STOP
C
```

HYDROSOIL BASIC VERSION

```
****************
      1 REM
      2 REM
                                                                     HYDROSOTI
                                                PROGRAM TO FIND GREEN-AMPT PARAMETERS
      3 REM
                                          FORTRAN VERSION WRITTEN BY: Terry Wadsworth 2/84*
      4 REM
                                 *
                                               BASIC VERSION WRITTEN BY: KARL GEBHARDT 7/85
      5 REM
                                                                            USDA-ARS
      6 REM
                                 7 REM
      8 REM
      9 REM POR = POROSITY PS = PERCENT SAND = % SAND PC= PERCENT CLAY = % CLAY
    10 INPUT" ENTER THE POROSITY: ", POR
    20 IF(POR < 0.0) GOTO 380
    30 IF(POR > 1.0) GOTO 380
    40 INPUT(" ENTER THE % OF SAND: ", SAND
    50 IF(SAND < 5.0)GOTO 390
    60 IF(SAND > 70.0) GOTO 390
    70 INPUT" ENTER THE % OF CLAY: ", CLAY
    80 IF(CLAY < 5.0 )GOTO 400
    90 IF(CLAY > 60.0) GOTO 400
  100 PS=SAND
  110 PC=CLAY
115
            REM
                               EOUATIONS DESCRIBING GREEN-AMPT PARAMETER CHARTS
            QE=0.01162-0.001473*PS-0.002236*PC+0.98402*POR+0.0000987*PC@2+
120
0.003616*PS*POR-0.010859*PC*POR-0.000096*PC©2*POR-0.002437*
POR@2*PS+0.0115395*POR@2*PC
130
          YF=6.5309-7.32561*POR+0.001583*PC<sup>©</sup>2+3.809479*POR<sup>©</sup>2+0.000344*
PS*PC-0.049837*PS*POR+0.001608*PS<sup>©</sup>2*POR<sup>©</sup>2+0.001602*PC<sup>©</sup>2*
POR©2-0.0000136*PS©2*PC-0.003479*PC©2*POR-0.000799*PS©2*POR
135 YF = EXP(YF)
           KS=19.52348*POR-8.96847-0.028212*PC+0.00018107*PS^{2}2-0.0094125*
140
PC<sup>©</sup>2-8.395215*POR<sup>©</sup>2+0.077718*PS*POR-0.00298*PS<sup>©</sup>2*POR<sup>©</sup>2-
0.019492*PC@2*POR@2+0.0000173*PS@2*PC+0.02733*PC@2*POR+0.001434*
PS<sup>©</sup>2*POR-0,0000035*PC<sup>©</sup>2*PS
150
          KS = EXP(KS)
160
             OR = -0.0182482 + 0.00087269 * PS + 0.00513488 * PC + 0.02939286 * POR - 0.0087269 * POR - 0.0087269
0.00015395*PC\(\tilde{Q}\)2-0.0010827*PS*POR-0.00018233*(PC\(\tilde{Q}\)2)*
(POR<sup>©</sup>2)+0.00030703*(PC<sup>©</sup>2)*POR-0.0023584*(POR<sup>©</sup>2)*PC
170
           LAM=-0.7842831+0.0177544*PS-1.062498*POR-0.00005304*PS@2-
0.00273493*PC<sup>©</sup>2+1.11134946*POR<sup>©</sup>2-0.03088295*PS*POR+
0.00026587*(PS^{\circ}2)*(POR^{\circ}2)-0.00610522*(PC^{\circ}2)*(POR^{\circ}2)-
0.00000235*(PS<sup>©</sup>2)*PC+0.00798746*(PC<sup>©</sup>2)*POR-0.00674491*
 (POR<sup>©</sup>2)*PC
                                                                                        18
```

```
180 \quad LAM = EXP(LAM)
190 YB=5.3396738+0.1845038*PC-2.48394546*POR-0.00213853*
PC<sup>©</sup>2-0.04356349*PS*POR-0.61745089*PC*POR+0.00143598*
(PS^{Q}2)*(POR^{Q}2)-0.00855375*(PC^{Q}2)*(POR^{Q}2)-0.00001282*
(PS\(\text{P}\)2) \(\delta\)PC+0.00895359\(\text{PC}\(\text{Q}\)2)\(\delta\)POR+0.00072472\(\delta\)(PS\(\text{Q}\)2)\(\delta\)POR+
0.0000054*(PC<sup>©</sup>2)*PS+0.50028060*(POR<sup>©</sup>2)*PC
200
     YB = EXP(YB)
      BARTHD=.1535-.0018*PS+.0039*PC+.1943*POR
210
220
      BAR15 = .0370 - .0004 \times PS + .0044 \times PC + .0482 \times POR
225
      REM
             OUTPUT SECTION
230
     PRINT"POROSITY="; POR
240
      PRINT"PERCENT SAND= ";SAND
250 PRINT"PERCENT CLAY= ";CLAY
255
     PRINT
     PRINT"EFFECTIVE POROSITY = ";QE
260
265
270
      PRINT" POROSITY INDEX = ";LAM
275
      PRINT" WETTING FRONT CAPILLARY PRESSURE = ";YF
280
285
      PRINT
290
     PRINT " SATURATED HYDRAULIREM CONDUCTIVITY = ":KS
300
      PRINT" ONE THIRD BAR WATER CONTENT = "; BARTHD
310
315
320
      PRINT" 15 BAR WATER CONTENT
                                                   = "; BAR 15
325
     PRINT
330
     PRINT" RESIDUAL WATER CONTENT
                                                 = '';QR
335
      PRINT
340
    PRINT" BUBBLING PRESURE
                                                   = ";YB
345
     PRINT
350
      INPUT" WOULD YOU LIKE TO CALCULATE ANY MORE? (Y/N)", AN$
360
      IF(AN\$ = "Y") GOTO 10
370
      END
375
      REM
               ERROR CHECKING
380
      PRINT"ERROR IN POROSITY, VALUE >0 AND < 1":GOTO 10
390
      PRINT"ERROR IN PERCENTAGE OF SAND, VALUE MUST BE > 5, < 70":GOTO 40
```

PRINT"ERROR IN PERCENTAGE OF CLAY, VALUE MUST BE > 5, < 60":GOTO 70

400

USE OF SOILS-5 FOR SOIL WATER PROPERTIES

Exerpted from Reynolds Creek Technology Transfer Symposium
D. L. Brakensiek and G. R. Stephenson,
USDA-Agricultural Research Service

The SCS Soils-5 file represents the largest U.S. soils data bank that is now available. In our previous session, we demonstrated use of SIRS to access Soils-5. We noted that the Soils-5 data file may not include important soil water properties. Tables 1 and 2 are expressions that have been derived by R.B. Grossman, National Soils Survey Laboratory, SCS, Lincoln, Nebraska, for calculating these quantities. He cautions that the exactness of these approximations may vary. Further, he cautions that they should only be used if measurements for particular properties are unavailable.

Table 1 contains a letter code for the soil property entries and a set of hypothetical values for those entries of concern. Table 2 lists the calculated quantities, gives the composition base, the units, the calculating relationship, and the value obtained using input values from Table 1.

Table 3 presents a printout for the Searla soil series obtained through the SIRS system. For infiltration and curve number (CN) hydrologic computations, certain additional soil properties are needed which are not available on SOILS 5. Specifically, these are

percent of fragments 250 mm, 2 mm by weight (Z1), and percent sand (Z5).

These can be calculated from the Grossman expressions (Table 2),

$$Z1 = E + [(1 - E) (100 - G)],$$

where

E = percent fraction greater than 3 inches, and

G = percent material less than 3 inches passing sieve #10.

Using the mid-values from Table 3,

$$Z1 = 7.5 + [(1 - \frac{7.5}{100}) (100 - 70)] = 35\%,$$

$$Z5 = 100 - 100 I$$

where

I = percent material less than 3 inches passing sieve #200, and

$$Z5 = 100 - 100 \left(\frac{42.5}{70}\right) = 39\%.$$

Table 1. Symbol Designation and Numerical Values Assigned for Computation of Derivative Quantities from the Property Table of the Soil Survey Interpretation Sheet.

	Letter		
Quantity	Designation	Value	<u>Units</u>
Soil Property Table			1.
Depth	A		
Texture	В		
UNIFIED	C		
AASHO	D		
>3 inches	E	20	Pct
Pass 4	F	70	Pct
Pass 10	G	50	Pct
Pass 40	Н	45	Pct
Pass 200	I	35	Pct
Liquid Limit	J	45	Pct
Plasticity Index	K	25	Pct
Depth	L		
Clay	M	45	Pct
Bulk Density	N	1.40	Mg/m ³ a/
Permeability	0	1	116/ 11 4/
Available Water Capacity	P	0.10	
Reaction	Q		
Salinity	R	4-8, use 6	$ds/m_b/$
Shrink-Swell	S	.0306, use .05	<u> </u>
Erosional K	T	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Erosional T	Ū		
Wind Erosion Group	V		
Organic Matter	W	6	Pct
Corrosion, Steel	X	Ŭ.	200
Corrosion, Concrete	Y		
dorrogion, donerece	*		
Other			
Liquid Limit Versus Clay	Relationship		
T 4:		+2	D 6
Intercept, a		0.8	Pct
Slope, b		0.8	Pct
Air Filled Porosity for <2 mm	n, AFP	5	Pct
Coefficient Linear Extensibil	lity, COLE	.05	
Intermediate Water Content of	<pre>5 < 2 mm, IWC</pre>	25	Pct

Particle Density, Dp, Dp >2, Dp

Dp is for <2 mm, Dp >2 for the >2, and Dp for <250. Calculate Z25, Z26 if W >5 percent for the composition base; otherwise use 2.65 $\rm Mg/m^3$. If taxa indicates high extractable iron or volcanic ejecta of rhyolitic composition, consult Supplement 6.

SALT

Assume that 10-fold entry R. Or, enter with R into figure 14 or USDA Handbook No. 60.

- a/ Megagram per cubic meter. Same numerical value as g/cm.
- \underline{b} / Decisiemen per meter. Same numerical value as millimohs per cm.

Table 2. Derived Quantities from the Soil Property Table of the Soil Survey Interpretation Sheet

	r Z4, 22		r Z4, 46		r Z4, 26						for Z4, 1.64
Illustrative Values	For M, 21; for Z4, 22	20	For M, 43; for Z ₄ , 46	41	For M, 24; for Z ₄ , 26	23	1.95	1.62	1.81	2.26	For M, 1.69; for Z4, 1.64
Calculating Relationship 🕇	$1000 \times Z_{26} + Z_{8}$	0r, Z28 - AFP $\begin{bmatrix} 1 & -Z_2 \\ 100 \end{bmatrix}$	$\frac{100p}{1 - \frac{Z2}{100}} + \frac{29}{100}$	or, Z27 - AFP	100P + Z10	or, $228 - AFP \left[1 - \frac{22}{100} \right]$	$\begin{bmatrix} 1 - \frac{Z2}{100} \end{bmatrix} N + \begin{bmatrix} \frac{Z2}{100} \times D > 2 \end{bmatrix}$	$1/\left[\frac{F-G}{F\times D_{p} > 2} + \frac{G}{F\times N}\right]$	$\begin{bmatrix} c_{0LE} \\ 1 - \frac{z_2}{100} \end{bmatrix}^{3} N$	(COLE + 1) ³ Z15	$N + (Z17 - N) (1 WC - [0.6 \times Z7])$ Z11 -(0.6 × Z7)
Units	Pct		Pct		Pct		Mg/m ³	Mg/m ³	Mg/m ³	Mg/m ³	Mg/m ³
Composition Base	< 250		7 5		< 250		∠ 250	7	7	2 250	7 5
Quantity	Field Capacity Weight		Field Capacity, Volume		Field Capacity, Volume		Bulk Density, Field Capacity	Bulk Density, Field Capacity, Pass No. 4	Bulk Density, Dry, Excluding Cracks	Bulk Density, Dry, Excluding Cracks	Bulk Density, Inter- mediate Moisture,
No.	Z12		Z13		Z14		215	216	217	812	612

No.	Quantity	Composition Base mm	Units	Calculating Relationship 🕇	Illustrative Values
Z20	Bulk Density, Inter- mediate Moisture, Excluding Cracks	< 250	Mg/m ³	Z15 + (Z18 - Z15) IWC 1 - $\frac{Z1}{100}$ - (0.6 × Z8) Z12 - (0.6 × Z8)	2.06
Z21	Bulk Density, Moisture Unspecified, Including Cracks	2 >	Mg/m ³	$N \times \left[\frac{217 \text{ or } 219}{N} \right]^{1/3}$	1.53 for Z17
Z22	Bulk Density, Moisture Unspecified Including Cracks	< 250	Mg/m ³	$215 \times \left[\frac{218 \text{ or } 220}{215} \right]^{1/3}$	2.05 for Z18
223	Bulk Density, Inclusive of Water Weight	>	Mg/m ³	$N + \begin{bmatrix} 29, & 213, & or & 227 \\ 100 & 1 \end{bmatrix}$	For Z9, 1.65; for Z27, 1.86
724	Bulk Density, Inclusive of Unspecified Water Weight	7 250	Mg/m ³	Z15 + Z10, Z14 or Z28 100	For Z10, 2.09; for Z28, 2.21
225	Particle Density	7 5	Mg/m ³	2.65 $\left[1 - \frac{W}{100}\right] + \frac{1.4 W}{100}$	2.58
226	Particle Density	< 250	Mg/33	$2.65 \left[100 - W \left[1 - Z1 \right] \right] + \frac{1.4W}{100} \left(1 - \frac{Z1}{100} \right)$	Appendix
727	Total Porosity, Field Capacity	2 7	Pct	$(1 - \frac{N}{225})$ 100	2, Pa
228	Total Porosity, Field Capacity	7 250	Pct	$(1 - \frac{215}{226})$ 100	ge 6 97
229	Void Ratio, Field Capacity	2 >		$\frac{Z25}{N} - 1$	0.84

Table 2. (continued).

Illustrative Values	0.37	46	1,400
Calculating Relationship∤	$\frac{226}{215} - 1$	Z 3 + 5	Z31 × SALT 2
Units		Pct	m/d
Composition Base	< 250	< 2	< 2
No. Quantity	Void Ratio, Field Capacity	Saturation Percentage	Maximum Solution Sulfate
No.	230	Z31	232

+ Symbols are defined and numerical values given in Table 1.

Calculated from values in Table 1. If more than one means of calculation, the values listed are in order of the alternatives as given in the calculating relationship.

Millimoles of charge per kilogram.

searla (id0929)cool

--*-*-*-*-*-*-*

mlra(s): 25 rev. th.ghl , 12-82 calcic argixerolls, loamy-skeletal, mixed, frigid the searla series consists of very deep well drained soils that formed in colluvium from sedimentary rocks on mountains. elevation is 5500 to 6900 feet, aap is 14 to 16 ihes, most is 42 to 45 f. ffs is 50 to 70 days, vegetation is mountain big sagebrush and bluebunch wheatgrass, typically the surface layer is brown gravelly loam 15 inches thick, the subscribing brown very gravelly clay loam to 32 inches, the substratum is white very gravelly loam and very pale brown very gravelly sandy loam to 60 inches, slopes are 30 to 60 percent.

		•	
moist bulk density (n/cm3)	====		
Clay 7<22mm	12-20		
plast'y index	10-15 10-15 5-10		
liquid limit	25-30 30-40 25-30		
less veno.	35-50 20-35 10-30	Organic matter (pct)	4
percent of material less than 3 in passing sieve no.	45-60 25-40 15-35		
ent of ma 3 in pass	60-80 35-50 25-50		
perc than	65-85 45-60 35-60	*********	101
fract > 3in (pct)	5-10 1	Shrink- swell	10w 10w 10w
a ashto	a-2 a-2 a-1, a-2	salinity manhos/cm	110
Onified	sm-sc,gm-gc gc gm-gc	Soil reaction (ph)	6.6-7.3 6.6-7.3 7.4-8.4
0929)cool Userture	1, 91, 91	available water (in/in)	1 0. 13-0. 16 1 6. 6-7. 3 1 0. 10-0. 13 1 6. 6-7. 3 1 0. 05-0. 07 1 7. 4-8. 4
Searla (id0929)cool depth texture (in.)	0-15 1 gr-1 15-32 : grv- 32-60 : grv-	Permea- bility (in/hr)	0.6-2.0

--*-*-*-*-*-*-*

32

27 23

23

29

SELECTED SOIL PROPERTIES BASED ON TEXTURE

Exerpted from Lane and Stone, 1983.

			ted soil pr		34364 311			1433.	
Soil texture class		ntative com	position		ated hyde		Bare s	oil evaporation pa c(mm/day 1/2)	rameter
<u></u>	Clay	Silt	Sand	Av g	Low	Hi gh	Avg	Low	High
Sand	3	7	90	23.	11.7	43.2	3.3	3.05	3.32
Loamy sand	5	15	80	6.1	3.6	11.7	3.3	3.05	3.32
Sandy loam	10	20	70	2.2	1.7	3.6	3.5	3.10	4.06
Lo am	20	40	40	1.3	.91	1.7	4.5	3.20	4.57
Silt loam	15	65	20	.69	.46	.91	4.5	3.20	4.57
Silt	5	87	3	.51	.30	.61	4.0	3.15	4.40
Sandy clay loam	30	10	60	.30	.25	.46	3.8	3.15	4.32
Clay loam	35	35	30	.20	.19	.25	3.8	3.15	4.32
Silty clay loam	35	55	10	.18	.15	.19	3.8	3.15	4.32
Sandy clay	45	5	50	.13	.11	.15	3.4	3.10	3.56
Silty clay	45	50	5	.10	.09	.11	3.5	3.10	3.31
Clay	65	20	15	.08	.06	.09	3.4	3.10	3.56

Table 2Porosity a	and water ho	lding	capacit	y (water conte class.	ent in	ı ≭ by volum	e) based on so	oil te	xtural
Soil texture class	Tota	l por	osity		1/3 8 lding	lar capacity		·15 Ba Iding	r capacity
	Av g	Low	High	Avg	Low	Hign	Avg	Low	Hi gh
Sand	41	39	43	9	7	15	3	2	6
Loamy sand	43	39	45	12	10	20	6	4	8
Sandy loam	45	39	52	20	14	29	9	5	12
Loam	47	45	52	26	20	36	12	9	19
Silt loam	50	49	55	31	20	36	13	7	20
Silt	51	49	55	28	26	30	9	6	12
Sandy clay loam	42	38	45	27	17	34	17	11	21
Clay loam	47	40	51	34	29	38	20	16	24
Silty clay loam	47	46	51	36	33	40	21	18	24
Sandy clay	42	40	44	31	27	40	21	18	30

48 46

49 44

49

52

Silty clay

Clay

40 35

42 34

46

SOIL INFORMATION RETRIEVAL SYSTEM

Much of the following information can be obtained from the publication:

An Interactive Soils Information System Users Manual CERL TR-N-163
Author: William D Goran
U.S. Army Construction Engineering Research Laboratory
P.O. Box 4005
Champaign, IL 61820

The Soil Information Retrieval System (SIRS) is an interactive, user-friendly computer based system for retrieving soils data. Basically, all data available in published soil surveys are being placed in the SIRS system and are being updated on a regular basis. Figure 1 shows the operation of SIRS.

Tables 1 and 2 (taken from the Reynolds Creek Technology Transfer Symposium) are examples of SIRS output of soils properties for the Demast and Searla soil series. Such soils properties can be used in the Grossman expressions, Appendix 2, to compute many other soils properties relating to engineering and hydrology.

The following items are needed to access the SIRS system.

- 1. A valid account number and password. (For information, contact FTS 343-1369).
- 2. A computer terminal equipped with telecommunications at 300 or 1200 baud.
- 3. Valid soil series name.

Soils Information Retrieval System

Figure 1. Operation of SIRS.

demast (id0331)

mlra(s): 43 , 25 rev. lr,md , 2-62 argic pachic cryoborolls, fine-loamy, mixed

8050 feet, vegetation is forest, map is 18 to inches, mast is 35 to 43 f. ffs is 60 to 80 days, typically surface layer has a 2.5 inch organic layer over very dark grayish-brown loam to 10 inches over very dark grayish-brown gravelly loam to 23 inches, the subsoil is dark brown and brown gravelly light clay loam over bedrock at 58 inches, slopes are 10 demast series consists of well drained soils formed in basalt residuum on foothills and mountains. elevation is 5000 to

to 80 percent.

demast (id0331)

depth texture unified aashto > 3in than 3 in passing sieve no. limit index % < 2mm					_			
texture unified aashto > 3in than 3 in passing sieve no. limit	- E	-	25	52	53	30		
texture unified aashto > 3in than 3 in passing sieve no. limit	la (C2	i	9	=	E	2		i
texture unified aashto > 3in than 3 in passing sieve no. limit	0 %	i	-			N		i
texture unified aashto > 3in than 3 in passing sieve no. limit								I
texture unified aashto > 3in than 3 in passing sieve no. limit	, ×		0	0	0	S		-
texture unified aashto > 3in than 3 in passing sieve no. limit	st	-	5-1	1 - 0	5-1	1		1
texture unified aashto > 3in than 3 in passing sieve no. limit	1 1		0,	,	E J	7		-
texture unified aashto > 3in than 3 in passing sieve no.		İ						i
texture unified aashto > 3in than 3 in passing sieve no.		i						į
texture unified aashto > 3in than 3 in passing sieve no.	# # 4		30	30	30	35		1
texture unified aashto > 3in than 3 in passing sieve no.	D = 1		5-2	5-	5-	0		-
texture unified aashto 3in than 3 in passing sieve (pct) 4 10 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 40	1	-	Ĺij	Ĺij	CU	(°)		
texture unified aashto 3in than 3 in passing sieve (pct) 4 10 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 40		- [•••	-			i
texture unified aashto 3in than 3 in passing sieve (pct) 4 10 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 40		_		Ó	ທ	0		
texture unified aashto 3in than 3 in passing sieve (pct) 4 10 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 40	. 0	00	1	9-(9-6	9-(-
texture unified aashto > 3in t	N C	Ca I	5	40	4	50		
texture unified aashto > 3in t	E >	- i						İ
texture unified aashto > 3in t	B .1	į	95	75	80	80		İ
texture unified aashto > 3in t	± 6.	40	5	1 1	0	5		-
texture unified aashto > 3in t	t e	-	7	S	9	9		-
texture unified aashto > 3in t	E 2	-	õ	_		_		
texture unified aashto > 3in t	90	٦İ	-1	ä	ë	-8		i
texture unified aashto > 3in t	ابر دا	-	90	9	20	97		į
texture unified aashto > 3in t	3	-						1
texture unified aashto > 3in t	T C	-	00	0	õ	2		-
texture unified aashto > 3in	e d	4	5-1	9-(9-(3-6		-
texture unified aashto	-	-	9	7	ĕ	7		į.
texture unified aashto								į
texture unified aashto	4 0	_		0	S	S		-
texture unified aashto	31	וי	1-5	I	1-1	<u> </u>		-
texture unified	44	בן ב	0	0	63	□		
texture unified		- i			_			İ
texture unified	t o	i						İ
texture unified	- G	-	4	4	4	9		1
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.9		<u>1</u>	LD.	u)	9		
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-						
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i			2 C			į.
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pa	į		U	E			j
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	1		N	40			-
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in	-	[u]	S	-uJ			1
texture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	-	-	7,	-	=		
depth texture (in.) texture 0-10 1 0-23 gr-1 23-58 gr-cl, gr-1, cb-1 58 wb		_	_	_	_	_		İ
depth texture (in.) texture 0-10 1 0-10 gr-1 10-23 gr-1 23-58 gr-c1, gr-1, cb-58 ub		į				_		i
depth texture (in.) texture 0-10 1 0-10 gr-1 10-23 gr-1 23-58 gr-c1, gr-1, c						p – q		1
depth textur 0-10 1 0-10 1 0-10 23-58 gr-1 58 wb	9							
depth text (in.) text text 0-10 1 0-10 gr-1 10-23 gr-1 23-58 gr-c1, gr 58 wb	707					-1		
depth to 1 to	×					16		
depth (in.)	נד			md	-	-		
depth (in.) 0-10 1 0-23 g 23-58 g g 58 1 wl		i		L	L	1	q	
depth (in.) 0-10 0-10 10-23 23-58 58 1		İ	~	6	6	6	3	1
depth (in.) 0-10 0-10 10-23 23-58 58								
de de circle de	th.		10	-10	-23	-58		
	de p		0	0	-01	53-	98	
	3 -	3				. 4		i

	 !				
erosion wind organic factors erod, matter k t group (pct)	2-4	2-4			
wind erod. group	9	9			
factors wind organic factors erod, matter k t group (pct)	. 2413	. 2413	. 24!	. 201	
swell	low	low	100	moderate	
	-	-			
soil salinity maction mmhos/cm (ph)		1	1	ı	
soil reaction (ph)	5.6-7.3	5.6-7.3	5, 6-7, 3	5.6-7.3	
available soil water reactio (in/in) (ph)	1 0.11-0.18 1 5.6-7.3	1 0.12-0.14 1 5.6-7,3	1 0.11-0.13 1 5.6-7.3	0.13-0.15 1	
I		_		_	_
st bulk permea- nsity bility /cm3) (in/hr)	0. 6-2. 0	0, 6-2, 0	0. 6-2. 0	0.2-0.6	
	-				
density permeadensity bili (g/cm3) (in/hr		ı	ı	ı	

Output for Searla cool series; Table O and Table I selections from main option menu. Table 2.

--*-*-*-*-*-*-*

seerla (id0929)cool

mira(s): 25 rev. th.ghl , 12-82 calcic argixerolls, loamy-skeletal, mixed, frigid the searla series consists of very deep well drained soils that formed in colluvium from sedimentary rocks on mountains. elevation is 5500 to 6900 feet, amp is 14 to 16 thes, must is 42 to 45 f. ffs is 50 to 70 days, vegetation is mountain

big sagebrush and bluebunch wheatgrass. typically the surface layer is brown gravelly loam 15 inches thick. the subscil is yellowish brown very gravelly clay loam to 32 inches. the substratum is white very gravelly loam and very pale brown very gravelly sandy loam to 60 inches. slopes are 30 to 60 percent.

--*-*-*-*-*-*

searla (id0929)cool

textcra crr e	(in.) texture unified aushto >	a sh to	> 3in (pct)	than 4	percent of material less than 3 in passing sieve no. 4 1 10 1 40 1 200	sing sie	7 200		liquid	<u> </u>	ast'y dex	plast'y clau index : X<2mm	i mosst bulk density (n/cm3)	6 u 1 k 3)
	sm-sc, gm-gc 1 a-4	1 8-4	1 5-10 1	65-85	08-09	45-60	35-50	i -	25-30	-	5-10	12-20	5-10 65-85 60-80 45-60 35-50 25-30 5-10 12-20 1,40-1.50	50
	gc	2-e	1 5-15 1		35-50		20-35	-	30-40	•••	0-15	1 27-35	1 27-35 1 1, 40-1, 50	20
	32-60 grv-1, grv-s1 gm-gc	1 a-1, a-2	1 0-15 1		25-50	15-35	10-30		25-30		5-10	1 10-22	5-10 10-22 1,50-1,60	09

ion i mmhos/cm i swell i factors i erod. i matter	linity shrink- hos/cm swell	linity shrink- hos/cm swell	salinity shrink- mmhos/cm swell 	erosion wind organic	factors erod. matter	k i t i group i (pct) i
ion i mahos/cm i swell ii i i i i i i i i i i i i i i i i i	reaction i mmhos/cm i swell (ph) i i low	reaction mmhos/cm swell (ph)	available soil salinity shrink- water reaction mmhos/cm swell (in/in) (ph)			
ion mahos/cm	reaction mahos/cm (ph)	reaction mmhos/cm (ph)	water reaction mahos/cm (in/in) (ph)	shrink-	8we11	
ion i mahos/cm	soil isalinity reaction immhos/cm (ph) i 6.6-7.3 i	reaction i mmhos/cm (ph) i chos.	bility water reaction mmhos/cm (in/hr) (in/in) (ph)			
110m	soil reaction (ph)	reaction (ph) 6.6-7.3	available soil water reaction (in/in) (ph) (0.13-0.16 6.6-7.3	salinity	1 mmhos/cm	
	rear (pt	reach (p)	available souter react (in/in) (pt ct ct ct ct ct ct ct	11	tion	-
weater (in/in)	u i water i (in/in)	D		permea-	bility	(in/hr) ;

REFERENCES

- Arnold, J. G., J. R. Williams. 1985. Validation of SWRRB--A simulator for water resources in rural basins. In: Proc. Symp. on watershed management, ASCE, Denver, CO. pp. 107-114.
- Bouwer, H. and R. C. Rice. 1984. Hydraulic properties of stony vadose zones. Ground Water (in press).
- Brooks, R. H., A. T. Corey. 1964. Hydraulic Properties of Porous Media. Hydrology Papers, Colorado State University, Ft. Collins, CO. 27 pp.
- Dadkhah, M. 1979. Influence of rock cover, vegetal cover, grass species, and sediment production. Ph.D. Dissertation, Utah State University, Logan, UT. (Unpublished).
- Dunn, A. J., and G. R. Mehuys. 1984. Relationship between gravel content of soils and saturated hydraulic conductivity in laboratory tests. In Erosion and Productivity of Soils Containing Rock Fragments, p.55-63. SSSA Spec. Pub. No. 13.
- Gebhardt, K. A. 1985. Erosion, productivity and rangeland watershed planning In: Proc. Symp. on watershed management, ASCE, Denver, CO. pp. 175-182.
- Grossman, R. B. 1983. Unpublished paper on derived quantities from soil property data on S-5 forms (approximation 5). SCS National Soil Survey Laboratory.
- Knisel, W. G., editor. 1980. CREAMS: a field-scale model for chemicals, runoff, and erosion from agricultural management systems. USDA, Conservation Research Report No. 26, 640 PP.
- Lane, L. J., J. J. Stone. 1983. Water balance calculation, water use efficiency, and above-ground net production. In: Proc. of hydrology and water resources in Arizona and the southwest. AWRA, April 16, Flagstaff, AZ. pp. 27-34.
- Lee, H. W. 1983. Determination of infiltration characteristics of a frozen Palouse silt loam soil under simulated rainfall. Ph.D. Dissertation, University of Idaho, Moscow, ID. (Unpublished).
- Moore, Richard C. 1984. Hydrologic design and analysis programs written in basic for the honeywell series 60(level 66)/6000 computer. USDI Bureau of Land Management, Denver Federal Center, Denver, Colorado.
- Musgrave, G. W. 1955. How much of the rain enters the soil. <u>In</u> "Water," <u>The</u> Yearbook of Agriculture, p. 151-159.
- Peck, A. J., and J. D. Watson. 1979. Hydraulic conductivity and flow in non-uniform soil. Unpublished paper, presented at the Workshop on Soil Physics and Field Heterogeneity, Canberra, Australia, p. 31-36.
- Rawls, W. J., D. L. Brakensiek, and K. E. Saxton. 1982. Estimation of soil water properties. Trans. ASAE special edition, soil and water, 25:1316-1320.

SCS Hydrology Guide. 1972. <u>National Engineering Handbook</u>. Section 4, "Hydrology." Washington D.C.

USDA. 1983. SPUR -- Simulation of Production and Utilization of Rangelands: A rangeland model for management and research. USDA, Misc. Pub. 1431, 120 p.

Wight, J. R., E. L. Neff. 1983. Soil-vegetation-hydrology studies Volume II: A user manual for ERHYM: The Ekalaka rangeland hydrology and yield and model.

Williams, J. R. 1983. The physical components of the EPIC model. Proceedings, International Conference on Soil Erosion and Conservation, Honolulu, HI.

Wood, K. and W. Blackburn. 1984. An evaluation of the hydrologic soil groups is used in the SCS runoff method on rangelands. Water Resource Bull. 20 (3):379-389.

REPORT DO	CUMENTATION 1: REPORT NO. GE Technical Note 371	2.	3. Recipient's Accession No.
. Title end Sub	Determining Hydrologic Properties		5. Report Date
	of Soil		6.
Author(s)	Karl Gebhardt, Project Hydrologist		8. Performing Organization Rept. No.
. Performing O	ganization Name and Address		10. Project/Tesk/Work Unit No.
	Bureau of Land Management		
	Denver Service Center (D-471)		11. Contract(C) or Grent(G) No.
	Bldg. 50, P.O. Box 25047		(C)
	Denver, CO 80225-0047		(G)
2. Sponsoring	Organization Name and Address		13. Type of Report & Period Covered
	Bureau of Land Management		
	Idaho State Office (ID-930)		
	3380 Americana Terrace		14.
	Boise, Idaho 83706		

16. Abstract (Limit: 200 words)

This technical note provides resource specialists with tools for estimating soil properties required by many of the state-of-the-art hydrology, erosion, and sediment yield procedures and computer models. Some of the hydrologic soil properties will also be valuable in using models that require soils information, such as vegetation growth models.

It is the user's responsibility not to misuse the estimated soil properties, and the estimates should not be used where actual field measurements are more appropriate. However, the estimates should provide a reasonable approximation where measured data is not required.

Much of the following material was presented in part at the Reynolds Creek Technology Transfer Symposium. The primary reference for the text is Brakensiek, Rawls and Stephenson, 1984.

17. Document Anelysis e. Descriptors

Soil properties 0813 0807 Soils 0807 0813 Hydrology 0807 0808 Erosion 1407 Sedimentation 1407

b. Identifiers/Open-Ended Terms

Sediment Yield Hydrologic Modeling

c. COSATI Field/Group

18. Availability Statement	19. Security Cless (This Report)	21. No. of Pages
	Unclassified	35
	20. Security Class (This Page)	22. Price
Release unlimited	Unclassified	

irologic soil office Returned (Continued on reverse)

QL 84.2 .L35 no.371 c.3

Determining hydrologic properties of soil

PLM THE S.

RS 1- J. BLD

DENVER LEDERAL CE

P.O BO / TE

DEV ...

