# Machine Elements Report

June 20, 2020

# **Contents**

| 1 | Slip | p coefficient and Slip curve of Belt drive  |   |  |  |
|---|------|---------------------------------------------|---|--|--|
|   | 1.1  | Nomenclature                                | 4 |  |  |
|   | 1.2  | Purpose                                     | 5 |  |  |
|   | 1.3  | Safety Procedures                           | 5 |  |  |
|   | 1.4  | Conduct Experiment                          | 5 |  |  |
|   |      | 1.4.1 Find parameters of the experiment kit | 5 |  |  |
|   |      | 1.4.2 Find $F_0$                            | 5 |  |  |
|   |      | 1.4.3 Measurements                          | 6 |  |  |
|   |      | 1.4.4 Draw the slip curve graph             | 6 |  |  |
|   | 1.5  | Conclusions                                 | 7 |  |  |
|   | 1.6  | Review questions                            | 7 |  |  |
| 2 | Tens | sion on Bolts                               | 8 |  |  |
|   | 2.1  | Nomenclature                                | 8 |  |  |
|   | 2.2  | Purpose                                     | 8 |  |  |
|   | 2.3  | Safety Procedures                           | 9 |  |  |
|   | 2.4  | Conduct Experiment                          | 9 |  |  |
|   | 2.5  | Data graphs                                 | 9 |  |  |

# **List of Tables**

| 1.1 | Observed data                                      | 6 |
|-----|----------------------------------------------------|---|
| 2.1 | Tension force at failure of common and steel bolts | 9 |

# **List of Figures**

| 1.1 | Slip curve of belt drive                | 6  |
|-----|-----------------------------------------|----|
| 2.1 | Tension force at failure of common bolt | 10 |
| 2.2 | Tension force at failure of steel bolt  | 10 |

# **Chapter 1**

# Slip coefficient and Slip curve of Belt drive

## 1.1 Nomenclature

| $F_{ms}$   | friction force, N                         | n                | rotational speed, rpm           |
|------------|-------------------------------------------|------------------|---------------------------------|
| $F_0$      | initial tension, $N$                      | d                | diameter, mm                    |
| $F_t$      | tangential force, N                       | f                | coefficient of friction         |
| Q          | load, $kg \cdot F$                        | a                | center distance, mm             |
| g          | gravitational acceleration at sea         | α                | wrap angle, °                   |
|            | level, $m/s^2$                            | β                | slack angle due to load $Q$ , ° |
| $h_i$      | distance between outer sides of the       | ξ                | slip coefficient                |
|            | belt before applying load $Q$ , $mm$      | $\phi$           | drag coefficient                |
| $h_f$      | distance between outer sides of the       | $\overline{\xi}$ | average slip coefficient $kW$   |
|            | belt after applying load $Q$ , $mm$       | 1                | subscript for driving pulley    |
| $\Delta h$ | difference between $h_i$ and $h_f$ , $mm$ | 2                | subscript for driven pulley     |

## 1.2 Purpose

- 1. Investigate slip in belt drives
- 2. Find relative slip coefficient and conduct experiment to find  $\xi$
- 3. Find  $F_0$
- 4. Draw slip curve with respect to Q

#### 1.3 Safety Procedures

Students must follow safety rules in the lab.

#### 1.4 Conduct Experiment

#### 1.4.1 Find parameters of the experiment kit

- $d_1 = 67.8 \text{ (mm)}, d_2 = 165 \text{ (mm)}, a = 315 \text{ (mm)}$
- Belt type: flat belt
- $\alpha_1 = 180 57 \frac{d_2 d_1}{a} \approx 162.3^\circ$
- $\alpha_2 = 180 + 57 \frac{d_2 d_1}{a} \approx 197.6^{\circ}$

#### **1.4.2** Find $F_0$

- $h_i = 124 \text{ (mm)}, h_f = 94 \text{ (mm)}, Q = 4.1 \text{ (kg} \cdot \text{F)}$
- $\Delta_h = |h_f f_i| = 30 \text{ (mm)}, \beta = \arctan \frac{2\Delta_h}{a} \approx 10.78^\circ$
- $F_0 = \frac{Qg}{2\sin\beta} \approx 107.48 \,(\mathrm{N})$

#### 1.4.3 Measurements

Using the formulas  $\xi=1-\frac{d_2n_2}{d_1n_1}$  and  $\phi=\frac{F_t}{2F_0}$ , we obtain the following table: Averaging the values of  $\xi$  yields  $\overline{\xi}\approx 0.0198$ 

| No. | $F_0(N)$ | $n_1$ (rpm) | $n_2$ (rpm) | ξ     | $F_t(N)$ | φ     |
|-----|----------|-------------|-------------|-------|----------|-------|
| 1   | 107.48   | 283.62      | 114.04      | 0.018 | 3.1      | 0.014 |
| 2   | 107.48   | 330.47      | 133.35      | 0.018 | 8.8      | 0.041 |
| 3   | 107.48   | 273.83      | 110.27      | 0.02  | 14.4     | 0.067 |
| 4   | 107.48   | 307.52      | 123.71      | 0.021 | 20.2     | 0.094 |
| 5   | 107.48   | 354.42      | 142.43      | 0.022 | 22.1     | 0.103 |

Table 1.1: Observed data

#### 1.4.4 Draw the slip curve graph

From the data above, we can approximate the best fitted line through the data points (assuming linearity since  $\phi$  does not reach critical value)



Figure 1.1: Slip curve of belt drive

#### 1.5 Conclusions

#### In summary:

- Slip coefficient from experiment is in allowable range  $(0.01 \div 0.02)$ .
- The slip curve is in agreement with theory (error is smaller than 5%). Since  $\phi$  does not exceed critical value (the motor is frequency-controlled), we can safely assume linearity for the curve.
- Possible errors:
  - manually measure dimensions in the kit.
  - rounding.
  - incorrect reading of rotational speeds.
- The slip coefficient and slip curve is considerably accurate due to reliable instrument

## 1.6 Review questions

1. There are

# Chapter 2

# **Tension on Bolts**

#### 2.1 Nomenclature

- d nominal diameter of M8 bolt, mm
- $F_c$  tension force of hydraulic cylinder
- $F_{cb}$  tension force at failure of common bolt,

N

- $F_{sb}$  tension force at failure of steel bolt, N
- $[F_{cb}]$  tension force at failure of common bolt,

N

- $[F_{sb}]$  tension force at failure of steel bolt, N
- $[\sigma_{cb}]$  tension at failure of common bolt, MPa
- $[\sigma_{sb}]$  tension at failure of steel bolt, MPa

#### 2.2 Purpose

Provide basic knowledge on conducting experiment regarding ultimate strength of materials

# 2.3 Safety Procedures

Close the machine door before every operation.

## 2.4 Conduct Experiment

| No.     | Experiment with $d = 8 \text{ (mm)}$ |          |  |  |
|---------|--------------------------------------|----------|--|--|
| INO.    | $F_{sb}$                             | $F_{cb}$ |  |  |
| 1       | 33898                                | 37377    |  |  |
| 2       | 33574                                | 37053    |  |  |
| 3       | 34211                                | 36426    |  |  |
| 4       | 33727                                | 37053    |  |  |
| 5       | 34211                                | 36426    |  |  |
| Average | 33323.4                              | 36867    |  |  |

Table 2.1: Tension force at failure of common and steel bolts

## 2.5 Data graphs



Figure 2.1: Tension force at failure of common bolt



Figure 2.2: Tension force at failure of steel bolt