Basics of Computer Organization

Muhammad Afzaal m.afzaal@nu.edu.pk

Book Chapter

- "Computer Organization and Architecture"
- Author "William Stallings"
- 8th Edition
- Chapter 2
- Chapter 3
 - Section 3.1
 - Section 3.2

Architecture and Organization (1/2)

- Architecture is those attributes visible to the programmer
 - Instruction set, number of bits used for data representations, I/O mechanism, addressing techniques etc.
 - e.g. is there an instruction for subtraction?
- Organization is how features are implemented
 - Control signals, interfaces, memory technology
 - e.g. is there a hardware unit for subtractor or is it done by addition operations?

Architecture and Organization (2/2)

- All Intel x86 family share the same basic architecture
- The IBM System/370 family share the same basic architecture
- It gives backward code compatibility
- Organization differs in different versions

Outline

- Computer Evolution and Performance
- Von Neumann Architecture
- A top level view of computer function
 - Computer Components
- Interconnection Structure
- Bus Interconnection
- Computer Memory System Overview

Computer Evolution

 It is widely accepted to classify computers into generations based on the fundamental hardware technology employed

Generation	Approximate Dates	Technology	Typical Speed (Operations/second)
1	1946 – 1957	Vacuum tube	40,000
2	1958 – 1964	Transistor	200,000
3	1965 – 1971	Small and Medium Scale Integration	1,000,000
4	1972 – 1977	Large Scale Integration	10,000,000
5	1978 – 1991	Very Large Scale Integration	100,000,000
6	1991 –	Ultra Large Scale Integration	1,000,000,000

Computer Evolution

- First Generation of Computers
 - Use of vacuum tubes
- Second Generation of Computers
 - Transistors replaced vacuum tubes
- Third Generation of Computers
 - Integrated Circuits were introduced
- Later Generations
 - Large Scale Integration (LSI)
 - Very Large Scale Integration (VLSI)

First Generation of Computers

- Electronic Numerical Integrator And Computer (ENIAC) was first general purpose computer
- Very expensive
 - Weighted 30 tons
 - Occupied 1500 square feet
 - Contained more than 18000 vacuum tubes
 - Consumed 140 kilowatts when operating
- Used decimal system rather than binary system

Outline

- Computer Evolution and Performance
- von Neumann Architecture
- A top level view of computer function
 - Computer Components

von Neumann Architecture

- ENIAC did not provide the facility to store programs
- Stored-Program Concept proposed by John von Neumann
- Much similar to modern machines
 - ...that's why today's computers are referred to as Von Neumann Machines

IAS Computer (1/2)

- Followed stored-program concept
- It contained
 - Main memory storing programs and data
 - ALU operating on binary data
 - Control Unit interprets instructions from memory and causes them to be executed
 - Input and Output equipment operated by control unit

IAS Computer (2/2)

IAS Details

- 1000 words each of 40 bits
 - Binary Numbers
 - 2x20 bit instructions
- Set of registers (storage in CPU)
 - Memory Buffer Register (MBR)
 - Memory Address Register (MAR)
 - Instruction Register (IR)
 - Instruction Buffer Register (IBR)
 - Program Counter (PC)
 - Accumulator (AC)
 - Multiplier Quotient (MQ)

IAS Expanded Structure

Outline

- Computer Evolution and Performance
- von Neumann Architecture
- A top level view of computer function
 - Computer Components

Computer Components

- According to von Neumann machine architecture, a computer has the following components
 - Central Processing Unit (CPU)
 - Main Memory
 - I/O Components
- A top level view of computer components is shown in next slide

Computer Components

Interrupts

- Mechanism by which other modules may interrupt normal sequence of processing
- If normal execution of current program must be interrupted, the device raises an interrupt signal
- Interrupt-service routine
- Current system information is backed up before calling interrupt handler
- After interrupt completion, the previous system information is restored

Classes of Interrupts

- 4 different classes of interrupts
- Program
 - Generated by program executions
 - Arithmetic overflow, division by zero
- Timer
 - Generated by internal processor timer
 - Used in pre-emptive multi-tasking
- I/O
 - From I/O controller
- Hardware failure
 - Power failure, memory parity error

Interrupt Cycle

- Added to instruction execution cycle
- Processor checks for interrupts
 - Indicated by an interrupt signal
- If no interrupt, fetch next instruction
- If interrupt pending...
 - Suspend execution of current program
 - Save context
 - Set PC to start address of interrupt handler routine
 - Process interrupt
 - Restore context and continue interrupted program

Instruction Execution Cycle with Interrupts

Transfer of Control via Interrupts

Multiple Interrupts

- Multiple interrupts can occur in some situations
- Multiple interrupts can be handled using two approaches
 - Disabling Interrupts
 - Defining properties of interrupts

Disabling Interrupts

- Processor can ignore further interrupts whilst processing one interrupt
- Interrupts remain pending and are checked after first interrupt has been processed
- Interrupts are handled in sequence as they occur hence called Sequential Interrupts

Defining Properties of Interrupts

- Low priority interrupts can be interrupted by higher priority interrupts
- When higher priority interrupt has been processed, processor returns to previous interrupt
- These types of interrupts are called Nested Interrupts

