

# Schunk Smart Charging – Dachladesystem für Elektrobusse

2. Fachkonferenz

Elektromobilität im ÖPNV

25.-26. November 2013 I ICC Dresden





# Verbundprojekt - SEB - Schnellladesysteme für Elektrobusse im ÖPNV

**Teilprojekt: EDDA-Bus** (Elektromobilitäts-Demonstration Docking-Anwendung)



Bundesministerium für Bildung und Forschung





2





#### Prototyp Stromabnehmer für Pulsladung & Endstellenladung







# **Technische Daten**

| Maximale Spannung                                 |         | 750VDC                              |
|---------------------------------------------------|---------|-------------------------------------|
| Maximaler Strom im Stillstand                     |         | 500A – Dauerstrom<br>1.000A – 30sec |
| Versorgungsspannung des elektrischen Senkantriebs |         | 24V DC 30%                          |
| Kontaktkraft (einstellbar)                        | Gesamt: | ca. 250N                            |
|                                                   | PE:     | 40N                                 |
|                                                   | CP:     | 40N                                 |
|                                                   | Plus:   | 2x40N                               |
|                                                   | Minus:  | 2x40N                               |
| Hub- / Senkzeit                                   |         | ca. 3s / ca. 4,5s                   |
| Gewicht                                           |         | ~85kg                               |
| Einsatztemperatur                                 |         | -30 C bis +65 C                     |
| Arbeitsbereich                                    |         | 1.060mm                             |



# **Hauptabmessungen Dachstromabnehmer – Prototyp**

| Gesamtlänge                          | Ca. 2.000mm |
|--------------------------------------|-------------|
| Gesamtbreite                         | 1.000mm     |
| Befestigungsabstand in Längsrichtung | 600 1mm     |
| Befestigungsabstand in Querrichtung  | 630 1mm     |
| Länge der Linearführung              | 1.000mm     |
| Maximale Hubhöhe                     | 1.160mm     |

# **Hauptabmessungen Kontakthaube**

| Gesamtlänge  | 1.300mm  |
|--------------|----------|
| Gesamtbreite | 770mm    |
| Gesamthöhe   | 325mm    |
| Gewicht      | Ca. 60kg |







# **Kontaktkopf – Prototyp**

- → 6 Kontakte
  - 2x Positive
  - 2x Negative
  - Jeweils 1x CP + PE
- Einhaltung der Kontaktreihenfolge über hervorstehende Kontakte







#### **Multi-Pole Design**



- Rot = 2x Leistungskontakt (Plus)
- Blau = 2x Leistungskontakt (Minus)
- Grün = Schutzleiter (PE)
- Gelb = Steuerleitung / Control Pilot (CP)
- Control Pilot überprüft die Kontaktierung während des Ladeprozesses
- Verwendung des CP ermöglicht eine Nachladung während des Fahrbetriebs inkl. Fahrgästen
- Technologie entspricht TÜV-Forderung





# Kontakthaube - Prototyp

- 4 Leiterbahnen
  - 1x Plus (Cu)
  - 1x Minus (Cu)
  - 1x CP + PE
- Anordnung der Leiterbahnen unterstützt die Einhaltung der Kontaktsequenz
- Modelliert aus GFK-Handlaminat
- Keine Aktorik zum Ausgleich von Positionsabweichungen notwendig





# Abmessungen

Gewicht: ca. 60kg

¬ Länge: 1.300mm

Breite: ca. 650mm



# **System Haube / Kopf**

- Einhaltung der Kontaktreihenfolge
- Form von Haube und Kopf unterstützt Einhaltung der Kontaktreihenfolge
- Löst sich der CP wird die
   Stromübertragung sofort beendet
  - Isolationsüberwachungsgerät
- Durch die spezielle Anordnung der Kontakte kann es nicht zu einer Lösung der Leistungskontakte während des Ladeprozesses kommen





#### Gegenüberstellung Pulsladung / Endhaltestellenladung

- Endhaltestellenladung
  - Längere Ladezeiten (mehrere Minuten / Stunden)
  - Geringere Leistungsübertragung (bis zu 500A)
  - Energiespeicher wird vollgeladen
- **Pulsladung** 
  - Sehr kurze Ladezeiten (~15s)
  - Hohe Leistungsübertragung (bis zu 1.000A)
  - Energiespeicher wird teilgeladen



- Kleinere Energiespeicher
  - **Geringeres Gewicht**
  - Weniger Aufbau auf Fahrzeugdach
  - Geringere Kosten
  - Keine Einschränkungen in den Fahrplan
  - Mehr Passagiere können befördert werden







# **Ausgleich von Positionsabweichungen:**

| X-Achse – Fahrzeughochachse  | 1.060mm                  |
|------------------------------|--------------------------|
| Y-Achse – Fahrzeugquerachse  | 750mm                    |
| Z-Achse – Fahrzeuglängsachse | 1.000mm                  |
| Kneeling-Prozess             | Seitliches Absenken um 4 |
| Schrägstellung des Busses    | 2                        |









# **Ausgleich von Positionsabweichungen**



- Speziell geformte Bordsteine an der Haltestelle
  - Reifen können nicht "aufklettern"
  - Reifenschonend
- Busfahrer fährt an den Bordsteinen entlang in seine Halteposition
- Schlussfolgerung:
  - ¬ Bus kann fast immer an der gleichen Stelle halten
  - geringe Abweichungen sind möglich





# Simulation Extremposition -200 (Y-Achse) inkl. Kneeling















# Simulation Extremposition: Schrägstellung um 2 in der Halteposition inkl. Kneeling







# Testdurchführungen

- Strombelastungstests der Kontaktbolzen
  - 800A über 20 sec (Intervall: alle 3min)--> max. 50 C
  - 500A Dauerbelastung (2h) --> max. 95 C



Prüfung der Hubbewegungen



- Langzeittests des Senkantriebs
  - 1.000.000 Zyklen

Salznebeltest – Alterung der Komponenten









# Testdurchführungen

- Test der Ausgleichsführung
  - 100.000 Zyklen á 1.500mm trocken
  - 50.000 Zyklen á 1.500mm nass
  - 30.000 Zyklen á 1.500mm stark verschmutzt
  - Gegen Vereisung schützt eine Heizmatte
- Schock- & Vibrationstests werden stattfinden
  - DIN 61373 Orientierung an Bahnnormen
  - Kategorie 1, Klasse A
- Feldtest in Dresden und Helmond beginnen im Frühjahr 2013







# Hauptvorteile der Kontaktsysteme von Schunk

- Jahrelange Erfahrung von Konstruktionen aus der Bahntechnik und Stromübertragung fließen in die Entwicklung des Kontaktsystems ein
- Vollautomatisches System bzw. Ladeprozess
- Kompakte Leichtbauweise ~85kg
- 4-poliges Funktionsprinzip
  - PE
  - Plus / Minus
  - CP
- Ausgleich von diverse Positionsabweichungen, auch Kneeling möglich
- Kostengünstiges Design des Stromabnehmers
  - Wenig Aktorik, nur Antrieb des Stromabnehmers 1.000.000 Zyklen nachgewiesen
  - Wenig Wartungsintensiv
- Wegseitiges Kontaktsystem
  - Keine Aktorik notwendig
- Keine Beeinträchtigung in den Fahrplan





# Schunk Smart Charging From Rail to Road – Von der Schiene auf die Straße







# Ich bedanke mich für Ihre Aufmerksamkeit

Wilfried Weigel
Schunk Bahn und Industrietechnik GmbH

Hauptstraße 97 35435 Wettenberg ¬ Germany Tel +49 641 803-153 Fax +49 641 608-284116 www.schunk-sbi.com