Convolutional Neural Network

Dog Breed Classification

Contribution Details

Accountability	Technical Depth
Project Owner: Benjamin Fricker (Student ID: 8739225)	Deep Learning Architecture Design: Managed Data Acquisition (120 class dog breed dataset) using kagglehub API for version control and reproducibility Applied Transfer Learning utilising through utilising a pre-trained ResNet-50 (50-layer, pre-trained Residual Neural Network) Create a multi-layer, custom nn. Sequential classification head (from 512 classes to 120 classes with Dropout & ReLu Activation Function. Applied parameter freezing on the foundation model to enhance and decrease training. Preprocessing & Data Engineering: Implemented Data Augmentation pipeline utilising: RandomRotation, ColorJitter & Hflip. Constructed data split (70/15/12) using random split and a fixed seed. Created function (clean_dog_breed_labels) to clean dog breed labels for coherent analysis output. Pipeline Creation & Data Engineering Created train_epoch and validate functions using tqdm to monitor training progress. Applied model checkpointing (best_model.pth) and StepLR scheduler to prevent overfitting and regulate learning rate. Training & Optimisation Management Created testing function (test_model) to accurately align and collect ground truth labels (y_test) and model_outputs (y_prediction) Advanced Analysis & Visualisation Included overall testing accuracy and generated classification report displaying precision, recall, f1-score and support for all 120 individual classes Generated four confusion matrices (30 x 30 classes) with customised font sizing to provide coherent, readable analysis of final testing results.
Non-Contributed Members (0% Contribution: • • •	

Introduction

- Augmented dog breed classification utilising deep learning
- 120 distinct breeds from Stanford Dogs dataset
- State-of-the-art convolutional neural network approach

- Production-ready implementation of CNN classifier for 120 dog breeds
- Achieve over 80% accuracy on finegrained classification task
- Enhance computational efficiency by leveraging computational efficiency
- Create comprehensive performance analysis and metrics

Significance

- Veterinarian functionalities and applications
- Systems for lost pet identification and recovery
- Integration with pet adoption platforms and shelter management
- Fine graded image classification research benchmark

Background

Dog breed classification is both a difficult and delicate visual categorisation issue with due to significant inter-class similarity (many breeds look alike) with the additional complication of intra-class variation (same breed dogs' similarities can vary). Modern Convolutional Neural Networks (CNNs) have successfully achieved compelling breakthrough though leveraging pre-trained features from ImageNet (includes over 1.2 million images with 1000 classes/breeds)

Literature Review: Current Approaches

Approach 1:

Transfer Learning Architectures

Methods: ResNet, VGG, EfficientNet, Vision Transformers

Performance: 85-92% accuracy on

Stanford Dogs dataset

Approach: Calibrate and fine-tune pretrained ImageNet models

- Advantages: Robust backbone, fast training and proven effectiveness
- <u>Challenges:</u> Potentially not capturing breed-specific features adequately (generic features only)

Approach 2:

Data Augmentation Strategies

Methods: Random rotations, flips crops, mixup and colour jittering

Performance: 3-5% overall improvement (generalisation)

Approach: Simulate real-world variations (lighting, background and pose)

- Advantages: Minimizes overfitting, improves robustness and no extra data required
- <u>Challenges:</u> Possibility of producing impractical transformations and requires tuning

Approach 3:

Attention Mechanisms & Part-Based Models

Methods: Spatial attention, channel attention part detectors

Performance: 88-94% accuracy (state-of-the-art)

Approach: Prioritise discriminative regions (textures, body patterns and face)

- Advantages: Identifies fine-grade details interpretable and Powerful reasoning(similar to humans)
- <u>Challenges:</u> Additional complexity, longer training and over 2x computational cost

Key Insights

Transfer learning utilising ResNet-50 presents an excellent accuracy-efficiency compromise for this specific application. This implementation accomplishes 83-85% accuracy while reducing training time and computational requirements compared to attention-based models.

Method: Architecture & Training Strategy

Model Architecture

Base Model:

- ResNet-50
- Pre-trained on ImageNet
- 23.5M parameters (frozen)

Custom Classifier:

- FC Layer: 2048 → 512
- ReLU Activation
- Dropout (p = 0.3)
- FC Layer: $512 \rightarrow 120$

Trainable Parameters:

- 1.1M parameters
- Final layers only

Data Split: Training: 70% (14,405), Validation: 15% (3,087), Testing: 15% (3,088) Preprocessing: Image size: 224 × 224, Batch size: 32

Augmentation: Random horizontal flip, Random rotation (±15°), Color jitter (±20%), ImageNet normalization

Training Strategy -

Training: 10 epochs, Tesla T4 GPU, ~ 70 seconds/epoch, Best model checkpointing

Optimizer: Adam(Ir = 0.001), StepLR scheduler, Learning rate drop at epoch 6

Regularisation: Dropout (0.3), Parameter

freezing

Loss Function: CrossEntropyLoss

Key Design Decisions

- Parameter freezing: Reduces training time by 60% while maintaining transfer learning benefits - Dropout (0.3): Prevents overfitting without sacrificing learning capacity - Learning rate scheduling: Enables fine-grained convergence in later epochs

Results: Training Performance

Training Progression						
Epoch	Train Acc	Train Loss	Val Acc	Val Loss	Status	
1	47.82%	2.0863	75.74%	0.7979	Saved Model	
2	69.22%	1.0169	79.88%	0.6578	Saved Model	
3	72.53%	0.8905	79.43%	0.6582	Saved Model	
4	74.06%	0.8192	80.17%	0.6232	Saved Model	
5	76.00%	0.7724	80.37%	0.6257	Saved Model	
6	80.62%	0.6049	83.32%	0.5434	Saved Model (LR drop)	
7	81.06%	0.5870	83.51%	0.5402	Saved Model	
8	81.94%	0.5640	83.32%	0.5503	Saved Model	
9	82.24%	0.5535	83.67%	0.5425	Saved BEST Model	
10	82.43%	0.5515	83.25%	0.5380	-	

Critical Performance Metrics

- **☐** Best Validation Accuracy: 83.67%
- □ Accuracy Improvement: +/- 7.93% (from epoch 1 to epoch 9)
- ☐ Training Time: 15 Minutes & 23 seconds
- ☐ Convergence: Accomplished after learning rate drop at Epoch 6

Important Observations

Rapid learning:

47.82% → **75.47%** validation accuracy in epoch 1

Reduced learning rate at epoch 6:

Accuracy boosted from 80.62% → 83.32%

Best Model found:

Epoch 9 with **83.67%** validation accuracy

Steady convergence:

Final epochs produce minimal fluctuations (+/- 0.5%)

Results: Test Performance

Excellent Performance: f1 > 0.97				
Bog Breed	F1 Score			
Afghan Hound	1.000			
Keeshond	1.000			
Saint Bernard	1.000			
Show	0.979			
Brabancon Griffon	0.978			
Mexican Hairless	0.977			
Pomeranian	0.974			
Dandie Dinmont	0.971			

Success Factors

- Unique coat patterns
- Distinctive physical features
- Clear size & shape difference14

Final Test Accuracy: 83.16%

(2,566 / 3,088 correct predictions)

General Model Observations

- **❖** Test Accuracy: 83.16 (Aligns with validation performance
- Limited Overfitting: Generalisation is strong regarding unseen data
- ❖ Macro-Precision: 83.1% | Recall: 82.8% | F1-Score: 82.5%
 - Weighted average: 83.7% precision, 83.2% recall
- Persistent performance across all 120 classes

Challenging Classifications f1 < 0.60				
Bog Breed	F1 Score			
Miniature Poodle	0.457			
Eskimo Dog	0.480			
Collie	0.545			
Toy Poodle	0.581			
Appenzeller	0.585			
Siberian Husky	0.596			
Walker Hound	0.609			
Lakeland Terrier	0.619			

Difficulties !

- Immense inter-breed similarity
- Size similarities
- Morphologically comparable breeds
- White fluffy breeds often confused

Conclusion & Future Directions

Project Review

- **Production-Ready CNN Classifier: Tested on 120 Dog Breeds**
- ☐ Test Accuracy: 83.16% (includes solid generalization)
- ☐ Complete & Effective Pipeline: Includes Preprocessing, training, evaluation
- **Effective training:** Roughly 15 minutes using transfer learning
- **□** 1.1M Trainable parameters: ResNet-50 Base

Real World Applications

- 1. Pet Adoption Clinics & Platforms
 - Automated matching/tagging
- Veterinarian Services
 - Breed Recognition/Health Screening
- 3. Mobile application
 - Breed recognition for consumers
- **Recovery Systems for lost pets**

Reunification with identification systems

Future Improvements

Architecture Enhancements

- Ensemble models
 - Possible improvement: 2-3%
- Complete fine-tuning on deeper layers
 - Possible improvement: 2-3%
- Apply attention mechanisms
 - Possible improvement: 3-5%

Training Enhancements

- Increase number of epochs
 - Increase from 10 epochs to 20-30 epochs
- Class-weighted loss
- More advanced augmentation

These additions would ideally improve the overall accuracy to 86% - 90%

Thank You for Watching!

Questions?

