Αρχιτεκτονική Διάλεξη Εισαγωγική

Λογικές πύλες:

Όνομα Πύλης	NOT	AND	OR	NAND	NOR	XOR	XNOR
Αλγεβρική εξίσωση	$F = \overline{A}$	F = A . B	F = A + B	$F = \overline{A \cdot B}$	$F = \overline{A + B}$	$F = A \oplus B$	$F = \overline{A \oplus B}$
Πύλη	_ <u></u>		\rightarrow		→		
Πίνακας αλήθειας	Input Output A F 0 1 1 0	Inputs Output A B F O O O O O O O O O	Inputs Output A B F	Inputs Output A B F O 0 1 1 O 1 1 1 1 1 1 O Duration Output A B F F F F F F F F F	Inputs Output A B F	Inputs Output	Inputs Output A B F O 0 1 O 1 0 1 0 0 1 1 1

Άλγεβρα Boole:

- $\bullet \quad \mathbf{x'} = \overline{\mathbf{x}}$
- or: + ισοδυναμεί με V
- and: ισοδυναμεί με Λ
- Invert: 'ισοδυναμεί με Not,Οχί, ¬

Ιδιότητες Άλγεβρας Boole:

- $a+b=b+a \leftrightarrow a*b=b*a$ "Αντιμεταθετική "
- $a+1=1 \leftrightarrow a*0=0$
- $a+0=a \leftrightarrow a+1=a$
- $a+(b+c)=(a+b)+c \leftrightarrow a(b*c)=(a*b)c$ "Προσεταιριστική"
- $a*(b+c)=ab+ac \leftrightarrow a+bc=(a+b)(a+c)$ "Επιμεριστική "
- $a+\bar{a}=1$, a+a=a, a*a=a, $a*\bar{a}=0$, $a+\bar{a}=1$

Δυισμός:

Αν αντικαταστήσω το $0 \leftrightarrow 1$ η το $+ \leftrightarrow *$ σε οποιαδήποτε ιδιότητα συνεχίζει να ισχύει

$$0'=1 \leftrightarrow 1'=0$$
 $\overline{x}=x'$ $(ab)'=\overline{ab}$ $(a')'=a$ $a'b=\overline{ab}$

Nόμοι De Morgan:

$$\frac{\overline{a} + \overline{b} = \overline{a} * \overline{b}}{a \overline{b} = \overline{a} + \overline{b}} \frac{\overline{x} 1 * x^2 * x^3 * x^4 * \dots * x \overline{n} = \overline{x} 1 + \overline{x} 2 + \overline{x} 3 + \overline{x} 4 + \overline{x} \overline{n}}{x^1 + x^2 + x^3 + x^4 + \dots + x \overline{n} = \overline{x} 1 * \overline{x} 2 * \overline{x} 3 * \overline{x} 4 * \overline{x} \overline{n}}$$

Θεώρημα απορρόφησης: a+a*b=a $a+\overline{a}b=a+b$

•
$$a + \overline{b} \, \overline{c} = \overline{a} * \overline{b} \overline{c} = \overline{a}$$
bc

•
$$\overline{a + \overline{b} c} = \overline{a} * \overline{b} \overline{c} = \overline{a} + (\overline{b} + \overline{c}) = \overline{a} (b + c) = \overline{a} b + \overline{a} c$$

Τρόποι ελαχιστοποίησης:

1) Άλγεβρα Boole δηλαδή όπως στο παράδειγμα εδω:

2) Ελαχιστοποιηση Karnaugh

- α) Βάσει του πλήθος μεταβλητών επιλέγουμε τον κατάλληλο χάρτη
- b) Εκφράζουμε την F ως άθροισμα ελαχιστόρων . Δηλαδη Σ(1,2,3,..) και τοποθετούμε τις μονάδες στις θέσεις του χάρτη που αντιστοιχουν σε αυτους τους ελαχιστόρους
- c) Δημιουργούμε ομάδες από άσσους οι οποίες
 - i) το πλήθος των ασσων σε κάθε ομάδα είναι δύναμη του 2 (1,2,4,8,16,32)
 - ii) κάθε ομάδα πρέπει να περιέχει ΜΕΓΙΣΤΟ πλήθος άσσων δηλαδή αν εχω την δυνατότητα να πάρω μια τετράδα δεν θα πάρω δυο δυάδες
 - πρέπει όλοι οι ασσοι να βρεθούν σε τουλάχιστον μια ομάδα
 - iv) μπορούμε έναν άσσο να το συμπεριλάβουμε σε περισσότερες από 1 ομάδες
- d) Κάθε ομάδα δημιουργεί εναν ΑΠΛΟΠΟΙΗΜΈΝΟ όρο γινομένου,
 Αν έχουμε π.χ. 2 ομάδες θα έχουμε 2 ορους γινομένου, οι οποιοι θα αθροιστούν. Δηλαδή Ν ομαδες → Ν όρους γινομένου οπου για π.χ:

e) Αθροίζουμε τα γινομενα απο το d

Δεκαδικό, Δυαδικό, Οκταδικό και δεκαεξαδικό

Δεκαδικό	Δυαδικό	Οκταδικό	Δεκαεξαδικό
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Γιά το δεκαεξαδικό ενα παράδειγμα.

Ο αριθμός Α9ΒC:

Αρχικά βρίσκουμε ένα ένα τα γραμματά

A: 1010

9: 1001

B:1011

C:1100 Δηλαδή

A	9	В	С
1010	1001	1011	1100

Δηλαδή Α9ΒC: 1010 1001 1011 1100

A9BC: 10101001101111100

2 byte RAM=1 bit διευθυνσης	2 Kbyte RAM=11 bit διευθυνσης		
4 byte RAM=2 bit διευθυνσης	4 Kbyte RAM=12 bit διευθυνσης		
8 byte RAM=3 bit διευθυνσης	8Kbyte RAM=13bit διευθυνσης		
16 byte RAM=4 bit διευθυνσης	16Kbyte RAM=14bit διευθυνσης		
32 byte RAM=5 bit διευθυνσης	32Kbyte RAM=15bit διευθυνσης		
64 byte RAM=6 bit διευθυνσης	64Kbyte RAM=16bit διευθυνσης		
128byte RAM=7bit διευθυνσης	128Kbyte RAM=17bit διευθυνσης		
256byte RAM=8bit διευθυνσης	256Kbyte RAM=18bit διευθυνσης		
512byte RAM=9bit διευθυνσης	512 Kbyte RAM=19bit διευθυνσης		
1024byte(1kb) RAM=10bit διευθυνσης	1024Kbyte(1Mb) RAM=20bit διευθυνσης		