第五章:

5.2.1

Word Address	Binary Address	Tag	Index	Hit/Miss
3	0000 0011	0	3	M
180	1011 0100	11	4	М
43	0010 1011	2	11	М
2	0000 0010	0	2	М
191	1011 1111	11	15	М
88	0101 1000	5	8	М
190	1011 1110	11	14	М
14	0000 1110	0	14	М
181	1011 0101	11	5	М
44	0010 1100	2	12	М
186	1011 1010	11	10	М
253	1111 1101	15	13	М

5.2.2

Word Address	Binary Address	Tag	Index	Hit/Miss
3	0000 0011	0	1	M
180	1011 0100	11	2	М
43	0010 1011	2	5	М
2	0000 0010	0	1	Н
191	1011 1111	11	7	М
88	0101 1000	5	4	М
190	1011 1110	11	7	Н
14	0000 1110	0	7	М
181	1011 0101	11	2	Н
44	0010 1100	2	6	М
186	1011 1010	11	5	М
253	1111 1101	15	6	М

Cache地址: 12位块号, 3位块内地址;

主存地址: 17位TAG, 12位块号 (index), 3位块内地址.

5.2.4 First we must compute the number of cache blocks in the initial cache configuration. For this, we divide 32 KiB by 4 (for the number of bytes per word) and again by 2 (for the number of words per block). This gives us 4096 blocks and a resulting index field width of 12 bits. We also have a word offset size of 1 bit and a byte offset size of 2 bits. This gives us a tag field size of 32 - 15 = 17 bits. These tag bits, along with one valid bit per block, will require $18 \times 4096 = 73728$ bits or 9216 bytes. The total cache size is thus 9216 + 32768 = 41984 bytes.

The total cache size can be generalized to

```
totalsize = datasize + (validbitsize + tagsize) \times blocks

totalsize = 41984

datasize = blocks \times blocksize \times wordsize

wordsize = 4

tagsize = 32 - \log 2(blocks) - \log 2(blocksize) - \log 2(wordsize)

validbitsize = 1
```

5.3.1 8

5.3.2 32

5.3.3 CACHE总容量: 2¹⁰+32* (22+1) /8, 数据容量: 2¹⁰比值为1.090.

5.3.4 - 5.3.6

主存												
字节	0	4	16	132	232	160	1024	30	140	3100	180	2180
地址												
主存												
字地	0	1	4	33	58	40	256	7	35	775	45	545
址												
主存	0	0	0	4	7	5	32	0	4	96	-	68
块号	U	U	U	4	,	5	32	0	4	96	5	08
TAG	0	0	0	0	0	0	1	0	0	2	0	1
Cache	0	0	0		7	5	0	0	4	0	5	4
块号	J	J	J	4	<u> </u>	5	U	U	4	U	<u> </u>	4
命	М	н	н	М	М	М	М	М	н	М	н	М
中?	IVI	П		IVI	IVI	IVI	IVI	IVI	П	IVI		IVI
替							curan	curan		curan		cwar
换?							swap	swap		swap		swap

共4次替换; 4次命中, 命中率=33.33%

最后Cache的0、4、5、7四块包含有效数据: <索引5位,标记12位,

数据32字节>

<00000,00000000011,主存字节地址3072-3103内容>

<00100,00000000010,主存字节地址2048-2079内容>

<00101,000000000000,主存字节地址180-211内容>

<00111,000000000000,主存字节地址224-255内容>

3100: 11 0000011100

2180: 10 0010000100

5.4.4 CPI=2,是平均CPI,综合考虑了cache命中和失效情况。

题意: 访存的数据带宽应满足最终的CPI=2的要求。

讨论cache失效情况:

指令cache失效率0.003,失效时每条指令1次访存取指;

数据cache失效率0.02,失效时每条指令0.25次访存取数,以及0.1次 访存写数。

对于通写、写分配,在读命中时不访存,其他情况需要访存。

以单条指令为例,在2个周期内:

- (1) 读指令失效时,行填充,数据量: 64*0.003*1=0.192B, 对应带宽: 0.096B/ cycle.
- (2) 读数据失效时,行填充,数据量: 64*0.02*0.25=0.32B, 对应带宽: 0.16B/ cycle.
 - (3) 写数据失效时,

A: 写内存,数据量: 4 (写4B到内存)*0.1*0.02=0.008B,

对应带宽: 0.004B/ cycle.

B: 行填充 (写分配), 数据量: 64*0.02*0.1=0.128B,

对应带宽: 0.064B/ cycle.

(4) 写数据命中时,写数据到内存(通写),数据量:

4*0.1*0.98=0.392 B,对应带宽: 0.196B/cycle.

因此,总的访存读数据带宽: 0.096+0.16+0.064=0.32 B/ cycle

总的访存写数据带宽: 0.004+0.196=0.2 B/ cycle

5.4.5 对于回写、写分配,读、写命中时不访存,其他情况需访存。

以单条指令为例,在2个周期内:

(1) 读指令失效时, 行填充, 数据量: 64*0.003*1=0.192B,

对应带宽: 0.096B/ cycle.

(2) 读数据失效时, 访存对应的:

A: 替换块写回内存,数据量: 64*0.02*0.25*0.3 (替换率0.3) =0.096 B,对应带宽: 0.048B/cycle。

B: 行填充,数据量: 64*0.02*0.25=0.32B,

对应带宽: 0.16B/ cycle.

(3) 写数据失效时, 30%块替换回内存, 然后行填充(写分配):

A: 替换块写回内存, 数据量:

64*0.02*0.1*0.3 (替换率0.3) =0.0384 B,

对应带宽: 0.0192B/ cycle.

B: 行填充 (写分配), 数据量:

64*0.02*0.1=0.128B,对应带宽: 0.064B/cycle.

因此,总的访存读数据带宽: 0.096+0.16+0.064=0.32 B/ cycle

总的访存写数据带宽: 0.048+0.0192=0.0672 B/ cycle

5.9.3 (12-8) 海明码SEC,接收到0x375,格式(按照书上P285-286 顺序):

H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 **D7 D8** 1 0 1 1 1 0 0 1 1 0 1 P1组所有位(H1、3、5、7、9、11): 0、1、0、1、0、0→0 P2组所有位 (H2、3、6、7、10、11): 0、1、1、1、1、0→0 P3组所有位 (H4、5、6、7、12): 1、0、1、1、1→0

P4组所有位 (H8、9、10、11、12): 1、0、1、0、1→1
即指错字为: 1000→第8位错,将H8取反改为0,正确的海明码应该
为: 0x365,其中有效信息为D1 D2 D3 D4 D5 D6 D7 D8=10110101
5.11.1

此处,TLB全相联,以逻辑页号为TAG。

			TLB				
Address	Virtual Page	TLB H/M	Valid	Tag	Physical Page		
4669	1	TLB miss PT hit PF	1	11	12		
			1	7	4		
			1	3	6		
			1 (last access 0)	<u>3</u>	[13]		
		TLB miss PT hit	1 (last access 1)	0	5		
2227	0		1	7	4		
2227	0		1	3	6		
			1 (last access 0)	1	13		
		TLB hit	1 (last access 1)	0	5		
12010			1	7	4		
13916	3		1 (last access 2)	3	6		
			1 (last access 0)	1	13		
34587	8	TLB miss PT nib	1 (last access 1)	0	5		
			1 (last access 3)	(8)	14		
			1 (last access 2)	3	6		
			1 (last access 0)	1	13		
,	11_	TLB miss PT hit	1 (last access 1)	0	5		
40070			1 (last access 3)	8	14		
48870			1 (last access 2)	3	6		
			1 (last access 4)	(11)	12		
	3	TLB hit	1 (last access 1)	0	5		
10000			1 (last access 3)	8	14		
12608			1 (last access 5)	3	6		
			1 (last access 4)	11	12		
49225		TLB miss PT miss	1 (last access 6)	[12]	115		
			1 (last access 3)	8	14		
	12		1 (last access 5)	3	6		
			1 (last access 4)	11	12		

5.13.1

0次命中