Simulation of Simpson's Paradox With Palmer Penguin Data

Andy Grogan-Kaylor

17 Sep 2020 13:59:29

Background

Simpson's paradox occurs when a bivariate association is reversed in a multivariate model. This example using the Palmer Penguins Data was inspired by a tweet by Andrew Heiss.

Figure 1: Palmer Penguins Illustration from @allison horst

Figure 2: Culmen Depth from @allison_horst

Setup

- . clear all
- . cd "/Users/agrogan/Desktop/newstuff/simpsonsparadox"/Users/agrogan/Desktop/newstuff/simpsonsparadox
- . use "penguins.dta"

Bivariate

- . twoway (scatter culmen_depth_mm body_mass_g) (lfit culmen_depth_mm body_mass_g), scheme
- > (michigan)

. graph export mygraph1.png, width(500) replace (file mygraph1.png written in PNG format)

Figure 3: Scatterplot and Linear Fit

. regress cul	nen_depth_mm b	ody_mass_g					
Source	SS	df	MS	Numb	Number of obs		342
				- F(1,	340)	=	97.41
Model	296.15994	1	296.1599	4 Prob	> F	=	0.0000
Residual	1033.67459	340	3.0402193	9 R-sc	R-squared		0.2227
				- Adj	R-squared	=	0.2204
Total	1329.83453	341	3.8998080	1 Root	Root MSE		1.7436
culmen_dep_m	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
body_mass_g _cons	0011621 22.03395	.0001177	-9.87 43.75	0.000	001393 21.0433		0009305 23.02455

Multivariate

- . twoway (scatter culmen_depth_mm body_mass_g) (lfit culmen_depth_mm body_mass_g), by(spe > cies) scheme(michigan)
- . graph export mygraph2.png, width(500) replace (file mygraph2.png written in PNG format)
- . regress culmen_depth_mm body_mass_g species

•	-		-			
Source	SS	df	MS	MS Number of obs		342
				F(2, 339) =	225.41
Model	759.047284	2	379.523642	Prob > F	=	0.0000
Residual	570.787248	339	1.6837382	R-square	d =	0.5708
				- Adj R-sq	uared =	0.5683
Total	1329.83453	341	3.89980801	Root MSE	=	1.2976
culmen_dep_m	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
body_mass_g	.0004877	.0001326	3.68	0.000 .	0002269	.0007485
species	-1.974985	.1191142	-16.58	0.000 -2	.209281	-1.740689
_cons	18.89014	.4200224	44.97	0.000 1	8.06396	19.71631

Figure 4: Scatterplot and Linear Fit