Oblig 1 - MAT2400

Fredrik Meyer

1 Oppgave 1

Vi lar $\alpha > 1$ og $x_1 > \sqrt{\alpha}$. Vi definerer en følge (x_n) ved

$$x_{n+1} = \frac{\alpha + x_n}{1 + x_n} = x_n + \frac{\alpha - x_n^2}{1 + x_n}$$

Lemma 1 (a). $x_n > 1 \,\forall n \in \mathbb{N}$

Bevis. Siden $\alpha > 1$ er $\alpha + x_n > 1 + x_n$, så $1 = \frac{1+x_n}{1+x_n} > \frac{\alpha+x_n}{1+x_n} = x_{n+1}$. Dette er definisjonen på x_n , så konklusjonen følger.

Lemma 2 (b). $x_n > \sqrt{\alpha}$ for odde n, og $x_n < \sqrt{\alpha}$ for like n. Videre er også $x_{2n+1} > x_{2n} \, \forall n$.

Bevis. Først litt algebra:

$$\alpha - x_{n+1}^{2} = \alpha - \frac{(\alpha + x_{n})^{2}}{(1 + x_{n})^{2}}$$

$$= \frac{\alpha(1 + x_{n})^{2} - (\alpha + x_{n})^{2}}{(1 + x_{n})^{2}}$$

$$= \frac{\alpha(1 + 2x_{n} + x_{n}^{2}) - (\alpha^{2} + 2\alpha x_{n} + x_{n}^{2})}{(1 + x_{n})^{2}}$$

$$= \frac{\alpha + 2x_{n}\alpha + \alpha x_{n}^{2} - \alpha^{2} - 2\alpha x_{n} - x_{n}^{2}}{(1 + x_{n})^{2}}$$

$$= \frac{\alpha - \alpha^{2} + x_{n}^{2}(\alpha - 1)}{(1 + x_{n})^{2}}$$

$$= \frac{\alpha(1 - \alpha) - x_{n}^{2}(1 - \alpha)}{(1 - x_{n})^{2}}$$

$$= \frac{(1 - \alpha)(\alpha - x_{n}^{2})}{(1 + x_{n})^{2}}$$

Siden $\alpha > 1$ og $x_1^2 > \alpha$, er $(1 - \alpha)(\alpha - x_1^2) > 0$, så fra regnestykket vårt ovenfor er $\sqrt{\alpha} > x_2$. Nå gir samme argument at $(1 - \alpha)(\alpha - x_2^2) < 0$, så $x_3 > \sqrt{\alpha}$. Anta nå at dette stemmer for n = k. Altså at

$$x_{2k+1} > \sqrt{\alpha}$$

Da er $\alpha-x_{2k+2}=\frac{(1-\alpha)(\alpha-x_{2k+1}^2)}{(1+x_n)^2}>0$, så $x_{2k+2}^2<\alpha$. Resultatet følger ved induksjonsprinsippet.

Vi har nå at $x_{2n+1}=x_n+\frac{\alpha-x_n^2}{1+x_n}>x_n$, siden $\alpha-x_n^2<0$, så $x_{2n+1}>x_{2n}$, som beviser den siste påstanden.

Lemma 3 (c). Videre er $x_1 > x_3 > x_5 > \dots$ og $x_2 < x_4 < x_6 < \dots$

Bevis. Siden $x_n = \frac{\alpha + x_{n-1}}{1 + x_{n-1}}$, er $x_{n-1} = \frac{x_n - \alpha}{1 - x_n}$. Dette er elementær algebra.

$$x_{n+1} - x_{n-1} = \frac{\alpha + x_n}{1 + x_n} - \frac{x_n - \alpha}{1 - x_n}$$

$$= \frac{(\alpha + x_n)(1 - x_n) - (x_n - \alpha)(1 + x_n)}{(1 + x_n)(1 - x_n)}$$

$$= 2\frac{\alpha - x_n^2}{1 - x_n^2}$$

Anta for eksempel at n-1 er partall. Da er også n+1 partall. Dermed er $\alpha - x_n^2 > 0$ fra forrige lemma. Fra utregningen ovenfor følger det at $x_{n+1} > x_{n-1}$ når n er partall. Vises på tilsvarende måte for oddetall.

Lemma 4 (d). $(x_{2n})_{n=1}^{\infty}$ og $(x_{2n+1})_{n=1}^{\infty}$ er konvergente delfølger.

Bevis. Fra lemma b) vet vi at $(x_{2n})_{n=1}^{\infty}$ er oppad begrenset av $\sqrt{\alpha}$. I tillegg er $(x_{2n})_{n=1}^{\infty}$ strengt økende. Fra analysens fundamentalaksiom konvergerer derfor følgen. Akkurat samme argumentasjon for $(x_{2n+1})_{n=1}^{\infty}$.

Teorem 1. $\lim_{n\to\infty} x_n = \sqrt{\alpha}$

Bevis. Siden $(x_{2n})_{n=1}^{\infty}$ og $(x_{2n+1})_{n=1}^{\infty}$ konvergerer, har vi at $x_{n+1}-x_{n-1}\to 0$ når $n\to\infty$. Men $x_{n+1}-x_{n-1}=2\frac{x_n^2-\alpha}{x_n^2-1}$, så vi må ha at $x_n^2-\alpha\to 0$ når $n\to\infty$. Men dette er det samme som at $x_n\to\sqrt{\alpha}$ når $n\to\infty$.

2 Oppgave 2

Lemma 5 (a). La $f: I \to \mathbb{R}$ være kontinuerlig og deriverbar, der $I \subset \mathbb{R}$ er et åpent intervall. Anta $\exists K$ slik at $|f'(x)| < K \, \forall x \in I$. Da er f uniformt kontinuerlig.

Bevis. Vi må vise at gitt enhver $\epsilon > 0$, eksisterer det en $\delta(\epsilon) > 0$ slik at når $|x - y| < \delta(\epsilon)$, så er $|f(x) - f(y)| < \epsilon$. Siden f' er begrenset av K, f er kontinuerlig og deriverbar, har vi fra middelverdiulikheten at $f(b) - f(a) \le (b - a)K \, \forall a, b \in I \ (b > a)$. Setter vi $\delta = \frac{\epsilon}{K}$, så ser vi at $|x - y| < \delta$ medfører at $|f(x) - f(y)| \le K|x - y| < \epsilon$, og vi er ferdige.

Lemma 6 (b). La $g: I \to \mathbb{R}$ være uniformt kontinuerlig og deriverbar. Da er g' begrenset.

Bevis. Anta g' er ubegrenset i t. Da har vi at

$$\frac{g(t_n) - g(t)}{t_n - t} \to \infty$$

når $t_n \to t$. Men dette betyr at for alle $\epsilon > 0$ og alle $n > N(\epsilon)$ er $|g(t_n) - g(t)| > |t_n - t|$ selv om $|t_n - t| < \epsilon$. Dermed kan ikke g være uniformt kontinuerlig, og vi har en selvmotsigelse.

Lemma 7 (c). La $h:[1,\infty)\to\mathbb{R}$ være uniformt kontinuerlig med h(1)=1. Da eksisterer det en K slik at $|h(x)|< Kx\ \forall\ x\in[1,\infty)$.

Bevis. Siden h er uniformt kontinuerlig, eksisterer det en N slik at $|x-y| < \frac{1}{N}$ medførerer at $|h(x) - h(y)| < \epsilon$. La $x \in [1, \infty)$. Da er

$$|h(x)| = |h(x) - h(x - \frac{1}{N}) + h(x - \frac{1}{N}) - h(x - \frac{2}{N}) - \dots + h(1)|$$

$$\leq |h(x) - h(x - \frac{1}{N})| + |h(x - \frac{1}{N}) - h(x - \frac{2}{N})| + \dots + |h(1)|$$

$$< \epsilon N(x - 1) + 1 = \epsilon Nx - \epsilon \cdot 1 + 1$$

$$< \epsilon Nx - \epsilon x + x = (\epsilon N - \epsilon + 1)x$$

Hvor vi i siste steg har brukt at om $x \in [1, \infty)$, så er $x \ge 1$. Velger vi $K = (\epsilon N - \epsilon + 1)$, er vi ferdige.

3 Oppgave 3

Lemma 8 (a). La $f : \mathbb{R} \to \mathbb{R}$. Anta f er diskontinuerlige $i \ x_0 \in \mathbb{R}$. Da eksisterer det en følge x_n slik at $x_n \to x_0$ når $n \to \infty$, men $f(x_n) \nrightarrow f(x_0)$.

Bevis. Dette er enkelt. Siden f er diskontinuerlig i x_0 , eksisterer det en $\epsilon > 0$ slik at uansett hva $\delta > 0$ er, så har vi at $|f(x_0) - f(x)| > \epsilon$, men $|x_0 - x| < \delta$. La nå (x_n) være en følge slik at $x_n \to x_0$. Da eksisterer det en $N(\delta)$ slik at $|x_0 - x_n| < \delta \, \forall \, n > N(\delta)$. Men siden f er diskontinuerlig i x_0 , betyr dette at $|f(x_0) - f(x_n)| > \epsilon \, \forall \, n > N(\delta)$. Dermed har vi at $f(x_n) \nrightarrow f(x_0)$.

Lemma 9 (b). Anta at $f : \mathbb{R} \to \mathbb{R}$ er diskontinuerlig i x_0 . Da eksisterer det en følge (x_n) slik at $x_n \to x_0$ når $n \to \infty$ og $r \in \mathbb{Q}$ slik at enten 1) $f(x_n) > r > f(x_0) \forall n$ eller 2) $f(x_n) < r < f(x_0) \forall n$.

Bevis. La $A = \{x \in \mathbb{R} | f(x) < f(x_0)\}$ og $B = \{x \in \mathbb{R} | f(x) > f(x_0)\}$. Da har vi at $A \cup B \cup \{x_0\} = \mathbb{R}$. Dermed må minst én av A, B være slik at uansett hvilken ϵ vi blir gitt, så kan vi i denne finne x_n slik at $|x_n - x_0| < \epsilon \, \forall n > N(\epsilon)$ (hvis ikke, ville ikke disse mengdene partisjonert \mathbb{R}). Uten tap av generalitet, kan vi anta at denne mengden er A. La (x_n) være en følge i A slik at $x_n \to x_0$ når $n \to \infty$. Siden f er diskontinuerlig i x_0 , eksisterer det en ϵ slik at $|f(x_0) - f(x_n)| > \epsilon$, men $|x_0 - x_n| < \delta$. Dermed har vi at $f(x_0) - f(x_n) > \epsilon$ for alle x_n slik at $|x_n - x_0| < \delta$. Fra lemma 1.26 i boken, eksisterer det mellom to tall x og y alltid et rasjonalt tall slik at x < x < y. La x være et slikt tall mellom $f(x_0)$ og $f(x_0) - \epsilon$.

Teorem 2. La $f : \mathbb{R} \to \mathbb{R}$. Anta at f oppfyller skjæringsegenskapen og at for hvert rasjonalt tall r, så er mengden $\{x|f(x)=r\}$ en lukket delmengde av \mathbb{R} . I så fall er f kontinuerlig.

Bevis. Fra b) vet vi at det eksisterer en følge (x_n) og et rasjonalt tall r slik at (for eksempel) $f(x_n) > r > f(x_0)$ for alle n. Siden f oppfyller skjæringsegenskapen, eksisterer det for hver n t_n slik at $f(t_n) = r$. Så legger vi merke til at $t_n \in \{x|f(x) = r\} \ \forall n$, og at siden $x_n < t_n < x_0$ og $x_n \to x_0$, så må $t_n \to x_0$. Men siden $\{x|f(x) = r\}$ er lukket, må $x_0 \in \{x|f(x) = r\}$. Det betyr at $f(x_0) = r$, som er en selvmotsigelse siden vi antok at $r < f(x_0)$. f må derfor være kontinuerlig.

4 Oppgave 4

La $A \subset \mathbb{R}$ være en begrenset mengde. La $f : \mathbb{R} \to \mathbb{R}$ være kontinuerlig og avtagende, og la $B = \{f(x) : x \in A\}$. Da er B begrenset og sup $B = f(\inf A)$

og inf $B = f(\sup A)$.

Bevis. Dette er en slik påstand som er så selvsagt at den ikke burde bevises. Men la gå. Anta B var ubegrenset. La (x_n) være en følge i A slik at $x_n \to x_0$ når $n \to \infty$. Siden B er ubegrenset kan vi ha valgt (x_n) slik at $|f(x_n) - f(x_m)| > M$ for alle n > m og $M \in \mathbb{N}$. Men da har vi funnet M slik at $|f(x_n) - f(x_m)| > M$, men $|x_n - x_m| < \epsilon$ (bare la n,m være store nok). Men dette motsier at f er kontinuerlig. Dermed må B være begrenset.

La nå = $f(\inf A)$. Siden inf $A \le x \forall x$, så er $f(\inf A) \ge f(x) \forall x \in A$ siden f er synkende. Og siden hvis $\delta \le x \forall x \in A$, er også $\delta \le \inf A$, så følger det at $f(\delta) \ge f(x) \forall x \in A$, så er $f(\delta) \ge f(\inf A)$. Men dette er akkurat hva definisjonen av supremum er, og dermed må sup $B = f(\inf A)$.

Den andre påstanden vises på akkurat samme måte. \Box