SELF-CHECK FOR MID-TERM

SELF-CHECK FOR MID-TERM	
1. Write the definitions of (be sure you can write down ALL of them independently):	
(1)	vector spaces;
(2)	subspaces;
(3)	sum of vector spaces;
(4)	direct sum of vector spaces;
(5)	span lists;
(6)	linearly independent lists;
(7)	a basis of a vector space;
(8)	the dimension of a finite dimensional vector space;
(9)	linear maps;
(10)	$\mathcal{L}(V, W)$, with the operations defined on this vector space;
(11)	the null space of a linear map;
(12)	the range of a linear map;
(13)	injectivity of a linear map (as well as an quivalent condition);
(14)	surjectivity of a linear map;
(15)	matrix (with respect to bases);
(16)	invertible linear maps;
(17)	an isomorphism of vector spaces;
(18)	isomorphic vector spaces;
(19)	the matrix of a vector (with respect to a basis);
(20)	operators;
(21)	products of vector spaces, with the operations defined on this vector space;
(22)	affine subsets;
(23)	quotient spaces, with the operations defined on this vector space;
(24)	quotient maps;
(25)	linear functionals;
(26)	dual spaces;
(27)	a dual basis (with respect to a basis);

(28) dual maps;

(29) annihilators;

(30) the rank of a matrix;

- (31) the degree of a polynomial;
- (32) $\mathcal{P}_m(\mathbb{F})$;
- (33) invariant subspaces;
- (34) eigenvalues and eigenvectors;
- (35) restriction operators and quotient operators;
- (36) p(T) with some $p \in \mathcal{P}(\mathbb{F})$;
- (37) the matrix of an operator (with respect to a basis);
- (38) upper-triangular matrices (as well as some equivalent conditions);
- (39) eigenspaces;
- (40) diagonalizability of an operator (as well as some equivalent conditions).

2. Think about how to find:

- (1) $\mathcal{M}(T,(v_1,\ldots,v_m),(w_1,\ldots,w_n));$
- (2) $\mathcal{M}(v)$, with respect to a basis v_1, \ldots, v_m ;
- (3) $\mathcal{M}(Tv)$, with respect to a basis w_1, \ldots, w_n ;
- (4) eigenvalues, and the corresponding eigenvectors and eigenspaces;
- (5) given a vector space V and its subspace U, how to find U such that $U \oplus W = V$;
- (6) an isomorphism of two vector spaces (may not be finite-dimentional).

3. Think about how to prove:

- (1) a set with some operations to be a vector space;
- (2) subspace of a vector space;
- (3) a sum is a direct sum (may be more than two summands);
- (4) a list is a span list;
- (5) a list is a linearly independent list;
- (6) a list is a basis;
- (7) a map is a linear map;
- (8) injectivity and surjectivity of a linear map;
- (9) a map to be an isomorphism;
- (10) a list in the dual space to be a dual basis (with respect to a given basis);
- (11) a subspace to be invariant;
- (12) an operator to be diagonalizable.
- 4. How to use dimesions in your proof if you are dealing with a finite-dimensional case? Note: when dealing with an infinite-dimensional case, you CANNOT use dimensions any more! Be sure what properties need "finite-dimensional" as a precondition!

5. GOOD LUCK!