Techniques d'apprentissage

IFT 603 / IFT 712

Combinaison de modèles

Par Pierre-Marc Jodoin Hugo Larochelle

Pourquoi utiliser un seul modèle?

- Pourquoi utiliser un seul modèle?
 > un système combinant une multitude de modèles différents ne serait-il pas meilleur?
- En pratique, la réponse est presque toujours oui!
 - ➤ le résultat de la combinaison de plusieurs modèles est appelée ensemble ou comité

Pourquoi utiliser un seul modèle?

- La façon la plus simple d'obtenir M modèles est d'utiliser Malgorithmes d'apprentissage différents :
 - $\begin{array}{l} \textbf{> POUR i} = 1 \text{ à m} \\ & \circ \text{ Entraîner un modèle} \textit{y}_{W,I} \left(\overrightarrow{x} \right) \text{à l'aide du i-ième algo d'entraînement} \end{array}$
- Retourner le modèle ensemble (ou comité)
- > Pour la régression

$$o \quad y_{COM}(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}(\vec{x})$$

> Pour la classification

o vote majoritaire

Pourquoi utiliser un seul modèle?

- Les M algorithmes pour raient être le même algorithme avec avec M sélections d'hyperparamètres différents.
 - o Entraı̂ner un modèle $y_{W,i}(\vec{x})$ à l'aide du i-ième algo d'entraı̂nement
- Retourner le modèle ensemble (ou comité)

$$\circ y_{COM}(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}(\vec{x})$$

- > Pour la classification
 o vote majoritaire

Pourquoi utiliser un seul modèle?

- Même avec un seul algorithme et les mêmes hyperparamètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - > Bagging : approprié pour combiner des modèles avec une forte capacité
 - > Boosting : approprié pour combiner des modèles avec une faible capacité

Pourquoi utiliser un seul modèle?

- Même avec un seul algorithme et les mêmes hyperparamètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - > Bagging : approprié pour combiner des modèles avec une forte capacité
 - > Boosting : approprié pour combiner des modèles avec une faible capacité

Boostrap: réduction de la variance

• Régression polynomiale de degré 25

Ensemble des 100 modèles vs. vrai modèle

7

Boostrap: réduction de la variance

• Régression polynomiale de degré 25

Boostrap

 \grave{A} part pour des données synthétiques, on ne peut pas générer des données sur demande.

Solution: **Boostraping**.

$$D_{bootstrap} = \{~~\}$$

Pour N itérations

- Choisir aléatoirement un entier parmi $\{1,...,N\}$

-
$$D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$$

retourner $D_{bootstrap}$

9

Boostrap

À part pour des données synthétiques, on ne peut pas générer des données sur demande.

Solution: **Boostraping**.

$$D_{bootstrap} = \{~~\}$$

échantillonne N exemples avec remplacement

$$D_{bootstrap} - \{$$

Pour N itérations

- Choisir aléatoirement un entier parmi $\{1,...,N\}$ $D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n,t_n)\}$

retourner $D_{bootstrap}$

Bagging (Boostrap AGGregatING)

- 1. Générer m ensembles d'entraı̂nement avec ${\it Boostrap} \{D_1, D_2, ..., D_m\}$
- 2. Entraı̂ner m modèles $y_{w,i}(\vec{x})$ (un pour chaque ensemble)
- 3. Combiner les m modèles

Régression:
$$y_{com}(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}(\vec{x})$$

Classification:
$$y_{cone}(\vec{x}) = sign\left(\sum_{j=1}^{n} y_{jl'j}(\vec{x})\right)$$
 (2 classes) $y_{cone}(\vec{x}) = \arg\max\left(\sum_{j=1}^{n} y_{jl'j}(\vec{x})\right)$ (K classes)

Illustration: classification 2Classes

1- échantillonnage avec replacement (Boostrap)

Note: un échantillon \vec{x}_i peut apparaître plusieurs fois dans un même ensemble d'entraînement D_i

Bagging	
Analyse théorique de l'erreur : au tableau	
16	
	-
17	
	<u> </u>
Pourquoi utiliser une seul modèle?	
Même avec un seul algorithme sans hyper-paramètres, on peut	
améliorer sa performance à l'aide d'un ensemble. > Bagging: approprié pour combiner des modèles avec une forte capacité	
> Boosting: approprié pour combiner des modèles avec une faible capacité	
18	Л

AdaBoost

La méthode du boosting a pour objectif de **combiner plusieurs modèles faibles** (week learners) afin d'obtenir un classifieur avec une plus grande capacité.

Trois (3) différences majeures avec le Bagging.

1. Implémente une combinaison pondérée de modèles. Ex. 2 classes

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$$

- 2. Pas de bootstrap: chaque donnée \vec{x}_n est utilisée pour entraîner les modèles
- 3. Les données mal classées par un modèle $y_{w_J}(\vec{x})$ auront plus de poids lors de l'entraînement du prochain modèle $y_{w_J + i}(\vec{x})$

R. Schapire and Y. Freund A decision theoretic generalization of on-line learning and an application to Boosting Journal of Computer and System Sciences, 1997, 55: 119-139.

AdaBoost

(illustration 2 classes)

Le modèle combiné implémente une combination pondérée des 3 classifieurs faibles

$$y_{com}(\vec{x}) = sign(\alpha_1 y_{w,1}(\vec{x}) + \alpha_2 y_{w,2}(\vec{x}) + \alpha_3 y_{w,3}(\vec{x}))$$

NOTE: plus un classifieur a une exactitude élevée, plus son α_l sera élevé. 21

AdaBoost

Idée fondamentale: chaque donnée \vec{x}_i a un **poids** β_i

Lorsque les données ont toutes un **poids égale**, alors le **modèle faible** devient un classifieur linéaire comme un **perceptron** ou une regression logistique.

Poids égaux Vs poids non égaux

22

AdaBoost

Les modèles de type *stumps* sont des classifieurs perpendiculaires à un axe La combinaison de modèles *stumps* mène à des frontières de décision "crénelées"

Au lieu de

2 advantages: très rapide et permet d'identifier les caractéristiques utiles:

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$$

Les caractéristiques utiles sont celles pour lesquelles α_i est élevé

Adaboost

1- initialiser le poids des N données d'apprentissage: $\beta_i = \frac{1}{N}$ $\forall i$

POUR i=1 à m

2- Entraı̂ner le modèle $y_{w_J}(\vec{x})$ avec les données D et les poids $\{\beta_i,...,\beta_n\}$ 3- Calculer l'erreur d'entraı̂nement: ε_i

 $\varepsilon_i = \frac{\sum\limits_{k_i \in \Psi} \beta_k}{\sum\limits_{k} \beta_i} \qquad \text{où Ψ l'ensemble des données mal classées}$

4- calculer $\alpha_i = \ln\left(\frac{1-\varepsilon_i}{\varepsilon_i}\right)$

5- mise à jour du poids des données mal classées par $\mathcal{Y}_{W,i}(\vec{x})$ $\beta_n = \beta_n \exp\{\alpha_i\}$

6- Normaliser les poids afin qu'ils somment à 1

 $\beta_k = \frac{\beta_k}{\sum \beta_j}$

Le classifieur combiné: $y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$

24

Arbres de décision Le plus gros problème des arbres de decision est qu'ils ont tendance à sur-apprendre
Example avec 2 données aberrantes:
Grosse question: soit le noeud d'un arbre dont l'erreur d'entraînement n'est pas nulle devons-nous le subdiviser ou non?
33

Arbres de décision La décision de subdiviser ou non un noeud depend d'une notion d' "impureté" d'un noeud Si l'impureté d'un nœud est élevée \rightarrow alors on subdivise Si l'impureté d'un nœud est faiblee \rightarrow alors on ne subdivise pas Deux mesures d'impureté fréquemment utilisées 1. L'entropie $i(node) = -\sum_{j=1,2} P(c_j) \log_2(P(c_j))$ où $P(c_j)$ est la proportion de données dans la classe c_j 2. L'indice de Gini $i(node) = 1 - \sum_{j=1,2} P^2(c_j)$

Métriques d'évaluation

