

Mathématiques

Classe: BAC

Chapitre: Primitive

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(S) 10 min

2 pt

- a) Déterminer l'ensemble de définition de f telle que $f(x) = \frac{x^2 + 2x}{(x^2 + x + 1)^2}$.
- **b)** Déterminer a et b pour que f admette une primitive F telle que $F(x) = \frac{ax + b}{x^2 + x + 1}$.

Exercice 2

(\$ 10 min

2 pt

Soit
$$f(x) = \frac{4x-1}{(2x+1)^3}$$
.

- a) Déterminer les réels a et b tels que : pour tout $x \in Df$, $f(x) = \frac{a}{(2x+1)^2} + \frac{b}{(2x+1)^3}$
- **b)** Déterminer toutes les primitives de f sur $\left] -\frac{1}{2}; +\infty \right[$

Exercice 3

(\$ 10 min

3 pt

Soit la fonction
$$f(x) = (x-1)\sqrt{\frac{1}{2x+1}}$$

1°) Déterminer D l'ensemble de définition de f, puis déterminer les réels a et b tels que : pour tout $x \in D$,

$$f(x) = a\sqrt{2x+1} + \frac{b}{\sqrt{2x+1}}$$
.

2°) Déterminer les primitives de f sur $\left[-\frac{1}{2};+\infty\right[$.

Exercice 4

© 20 min

4 pt

Soit
$$f(x) = \frac{1}{\sqrt{x(1-x)}}$$
.

- 1°) Montrer que f admet des primitives sur]0;1[.
- 2°) Soit F la primitive de f sur]0;1[qui s'annule pour $x = \frac{3}{4}$ et g la fonction définie sur $]0;\frac{\pi}{2}[$ par $g(x) = F(\cos^2 x)$.
 - a) Montrer g est dérivable sur $0; \frac{\pi}{2}$ puis calculer g'.
- **b)** Montrer que pour tout x de $\left]0; \frac{\pi}{2}\right[$ on a : $g(x) = -2x + \frac{\pi}{3}$

Exercice 5

(S) 25 min

5 pt

Soit f la fonction définie sur $\left[0,+\infty\right[$ par : $f(x)=\frac{1}{1+x^2}$ et F la primitive de f sur $\left[0,+\infty\right[$ qui s'annule en zéro.

- **1°)** Soit *H* la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $H(x) = F(\tan x)$.
 - a) Montrer que H est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et déterminer H'(x).
 - **b)** En déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right[: H(x) = x]$.
 - c) Calculer alors F(1).
- **2°)** Soit *G* la fonction définie sur $[0, +\infty[$ par : $G(x) = F\left(\frac{1}{1+x}\right) + F\left(\frac{x}{x+2}\right)$.
 - a) Montrer que G est dérivable $\sup [0, +\infty[$, et déterminer G'(x).
 - **b)** En déduire que : $F\left(\frac{1}{2}\right) + F\left(\frac{1}{3}\right) = \frac{\pi}{4}$.

Exercice 6

6 pt

Soit f la fonction définie sur IR par : $f(x) = 1 + \frac{1}{\sqrt{x^2 + 1}}$.

- 1°) a) Dresser le tableau de variation de f.
 - **b)** Tracer la courbe C de f dans un repère orthonormé $\left(\mathcal{O},\vec{i},\vec{j}\right)$.
- **2°)** Soit F la primitive de f sur IR qui s'annule en zéro.
 - a) Montrer que F est impaire.
 - **b)** Montrer que pour tout $x \in [0, +\infty[: x \le F(x) \le 2x]$.
 - c) En déduire la limite de F en $+\infty$
 - d) Dresser le tableau de variation de F.
- **3°)** Soit *G* la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par : $G(x) = F(\cos x)$.
 - **a)** Dresser le tableau de variation de *G*.
 - **b)** Donner l'allure de la courbe de G sur autre repère orthogonal (O, \vec{i}, \vec{j}) . (on prend F(1) = 1, 9.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

