N BARYONS(S = 0, I = 1/2)

 $p, N^{+} = uud; n, N^{0} = udd$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

p DECAY MODES	Partial mean life (10 ³⁰ years)	Confidence level	p (MeV/c)
p becar mobes	(10 years)	Confidence level	(IVIE V/C)
	Antilepton + meson		
$N ightarrow e^+ \pi$	> 2000 (n), > 8200	(<i>p</i>) 90%	459
$N ightarrow \ \mu^+ \pi$	> 1000 (n), > 6600	(<i>p</i>) 90%	453
$N ightarrow u \pi$	> 1100 (n), > 390	(<i>p</i>) 90%	459
$ ho ightarrow \ e^+ \eta$	> 4200	90%	309
$ ho ightarrow \ \mu^+ \eta$	> 1300	90%	297
$ extstyle n ightarrow u \eta$	> 158	90%	310
$N ightarrow e^+ ho$	$> 217 (n), > 710 (\mu$	90%	149
$N \rightarrow \mu^+ \rho$	$> 228 \ (n), > 160 \ (\mu$	90%	113
HTTP://PDG.LBL.GOV	Page 1 Crea	ated: 5/30/201	7 17:12

$N \rightarrow \nu \rho$	> 19 (n), > 162 (p)	90%	149
$p \rightarrow e^+ \omega$	> 320	90%	143
$p \rightarrow \mu^+ \omega$	> 780	90%	105
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%	339
$N \rightarrow \mu^+ K$	> 26 (n), > 1600 (p)	90%	329
$N \rightarrow \nu K$	> 86 (n), $>$ 5900 (p)	90%	339
$n ightarrow \ u K_S^0$	> 260	90%	338
$p \to e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	>78 (n), >51 (p)	90%	45
	ntilepton + mesons		
$ ho ightarrow e^+ \pi^+ \pi^-$	> 82	90%	448
$p \rightarrow e^+ \pi^0 \pi^0$	> 147	90%	449
$n \rightarrow e^+\pi^-\pi^0$	> 52	90%	449
$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%	425
$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%	427
$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%	427
$n \rightarrow e^+ K^0 \pi^-$	> 18	90%	319
1	Lepton + meson		
$n \rightarrow e^- \pi^+$	> 65	90%	459
$n \rightarrow \mu^- \pi^+$	> 49	90%	453
$n \rightarrow e^- \rho^+$	> 62	90%	150
$n \rightarrow \mu^- \rho^+$	> 7	90%	115
$n \rightarrow e^- K^+$	> 32	90%	340
$n \rightarrow \mu^- K^+$	> 57	90%	330
	Lepton + mesons		
$p \rightarrow e^- \pi^+ \pi^+$	> 30	90%	448
$n \rightarrow e^- \pi^+ \pi^0$	> 29	90%	449
$\rho \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%	425
$n \rightarrow \mu^- \pi^+ \pi^0$	> 34	90%	427
$p \rightarrow e^- \pi^+ K^+$	> 75	90%	320
$p \rightarrow \mu^- \pi^+ K^+$	> 245	90%	279
Ant	tilepton + photon(s)		
$p \rightarrow e^+ \gamma$	> 670	90%	469
$p \rightarrow \mu^+ \gamma$	> 478	90%	463
$n \rightarrow \nu \gamma$	> 550	90%	470
$p \rightarrow e^+ \gamma \gamma$	> 100	90%	469
$n \rightarrow \nu \gamma \gamma$	> 219	90%	470
. ,		2070	
	pton + single massless	2221	
$p \rightarrow e^+ X$	> 790	90%	_
$p \rightarrow \mu^+ X$	> 410	90%	_

Three (or more) leptons

$ ho ightarrow e^+ e^+ e^-$	> 793	90%	469
$ ho ightarrow e^+ \mu^+ \mu^-$	> 359	90%	457
$p \rightarrow e^+ \nu \nu$	> 170	90%	469
$n ightarrow e^+ e^- u$	> 257	90%	470
$n ightarrow \ \mu^+ \mathrm{e}^- u$	> 83	90%	464
$n \rightarrow \mu^+ \mu^- \nu$	> 79	90%	458
$ ho ightarrow \ \mu^+ e^+ e^-$	> 529	90%	463
$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 675	90%	439
$ ho ightarrow \mu^+ u u$	> 220	90%	463
$ ho ightarrow e^- \mu^+ \mu^+$	> 6	90%	457
$n \rightarrow 3\nu$	$> 5 \times 10^{-4}$	90%	470

Inclusive modes

$N ightarrow e^+$ anything	> 0.6 (n, p)	90%	_
$N ightarrow \ \mu^+$ anything	> 12 (n, p)	90%	_
$N ightarrow \ e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$\rho \rho \rightarrow \pi^+ \pi^+$	> 72.2	90%	_
$pn \rightarrow \pi^+\pi^0$	> 170	90%	_
$nn \rightarrow \pi^+\pi^-$	> 0.7	90%	_
$nn \rightarrow \pi^0 \pi^0$	> 404	90%	_
$pp \rightarrow K^+K^+$	> 170	90%	_
$pp \rightarrow e^+e^+$	> 5.8	90%	_
$ ho ho ightarrow e^+ \mu^+$	> 3.6	90%	_
$ ho ho ightarrow \ \mu^+ \mu^+$	> 1.7	90%	_
$pn \rightarrow e^+ \overline{\nu}$	> 260	90%	_
$ ho n ightarrow \ \mu^+ \overline{ u}$	> 200	90%	_
$pn ightarrow au^+ \overline{ u}_{ au}$	> 29	90%	_
$nn ightarrow u_e \overline{ u}_e$	> 1.4	90%	_
$nn ightarrow onumber u_{\mu} \overline{ u}_{\mu}$	> 1.4	90%	_
$pn \rightarrow \text{invisible}$	$> 2.1 \times 10^{-5}$	90%	_
$pp \rightarrow \text{invisible}$	$> 5 \times 10^{-5}$	90%	_

P DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	$p \pmod{p}$
$\overline{ ho} ightarrow e^- \gamma$	$>7\times10^5$	90%	469
$\overline{p} \rightarrow \mu^- \gamma$	$> 5 \times 10^4$	90%	463
$\overline{p} \rightarrow e^- \pi^0$	$> 4 \times 10^5$	90%	459
$\overline{ ho} ightarrow \ \mu^- \pi^0$	$> 5 \times 10^4$	90%	453
$\overline{ ho} ightarrow \ e^- \eta$	$> 2 \times 10^4$	90%	309

HTTP://PDG.LBL.GOV Page 3 Created: 5/30/2017 17:12

$\overline{p} \rightarrow \mu^- \eta$ > 8 × 10 ³	90%	297
$\overline{p} \rightarrow e^- K_S^0 > 900$	90%	337
$\overline{p} \rightarrow \mu^- K_S^{\bar{0}} > 4 \times 10^3$	90%	326
$\overline{p} \rightarrow e^{-} K_{L}^{0} > 9 \times 10^{3}$	90%	337
$\overline{p} \rightarrow \mu^- K_L^0 > 7 \times 10^3$	90%	326
$\overline{p} \rightarrow e^- \gamma \gamma$ $> 2 \times 10^4$	90%	469
$\overline{p} \rightarrow \mu^- \gamma \gamma$ $> 2 \times 10^4$	90%	463
$\overline{p} \rightarrow e^- \omega$ > 200	90%	143

n

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.0086649159\pm0.0000000005$ u Mass $m = 939.565413 \pm 0.000006$ MeV [a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933321 \pm 0.0000005 \; \text{MeV}$ = 0.00138844919(45) uMean life $\tau = 880.2 \pm 1.0 \text{ s}$ (S = 1.9) $c\tau = 2.6387 \times 10^8 \text{ km}$ Magnetic moment $\mu = -1.9130427 \pm 0.0000005~\mu_{ extbf{ extit{N}}}$ Electric dipole moment $d < 0.30 \times 10^{-25}$ e cm, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm^2 (S = 1.3) Magnetic radius $\sqrt{\left\langle r_M^2 \right\rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n \overline{n}$ -oscillation time > 2.7×10^8 s, CL = 90% (free n) Mean $n \overline{n}$ -oscillation time > 1.3×10^8 s, CL = 90% [g] (bound n) Mean nn'-oscillation time > 414 s, CL = 90% [h]

$pe^-\nu_e$ decay parameters [i]

$$\lambda \equiv g_A / g_V = -1.2723 \pm 0.0023$$
 (S = 2.2)
 $A = -0.1184 \pm 0.0010$ (S = 2.4)
 $B = 0.9807 \pm 0.0030$
 $C = -0.2377 \pm 0.0026$
 $a = -0.103 \pm 0.004$
 $\phi_{AV} = (180.017 \pm 0.026)^{\circ} {}^{[j]}$
 $D = (-1.2 \pm 2.0) \times 10^{-4} {}^{[k]}$
 $R = 0.004 \pm 0.013 {}^{[k]}$

n DECAY MODES	Fraction (Γ_i/Γ) Confidence lev	vel (MeV/c)
$pe^-\overline{\nu}_e$	100 %	1
$pe^-\overline{ u}_e\gamma$	[/] $(9.2\pm0.7)\times10^{-3}$	1
	Charge conservation (Q) violating mode	
$p \nu_e \overline{\nu}_e$	$Q \qquad < 8 \qquad \times 10^{-27} \qquad 68$	% 1

N(1440) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1360 to 1385 (\approx 1370) MeV -2Im(pole position) = 160 to 195 (\approx 180) MeV Breit-Wigner mass = 1410 to 1450 (\approx 1430) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–75 %	391
$N\eta$	<1 %	†
$N\pi\pi$	25–50 %	338
$\Delta(1232)\pi$	20–30 %	135
${\it \Delta}(1232)\pi$, $\it P$ -wave	13–27 %	135
$N\sigma$	11–23 %	_
$p\gamma$, helicity $=1/2$	0.035-0.048 %	407
$n\gamma$, helicity=1/2	0.02-0.04 %	406

N(1520) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1505 to 1515 (\approx 1510) MeV -2Im(pole position) = 105 to 120 (\approx 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 125 (\approx 115) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–65 %	453
$N\eta$	< 1 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
${\it \Delta}(1232)\pi$, $\it S$ -wave	15–23 %	225
$arDelta(1232)\pi$, $ extit{D}\! ext{-}\! ext{wave}$	7–11 %	225

$N\sigma$	< 2 %	_
$oldsymbol{ ho}\gamma$	0.31–0.52 %	467
$ ho\gamma$, helicity $=1/2$	0.01–0.02 %	467
$p\gamma$, helicity=3/2	0.30-0.50 %	467
$n\gamma$	0.30-0.53 %	466
$n\gamma$, helicity $=1/2$	0.04-0.10 %	466
$n\gamma$, helicity=3/2	0.25–0.45 %	466

N(1535) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Re(pole position) = 1490 to 1530 (\approx 1510) MeV -2Im(pole position) = 90 to 250 (\approx 170) MeV Breit-Wigner mass = 1525 to 1545 (\approx 1535) MeV Breit-Wigner full width = 125 to 175 (\approx 150) MeV

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–55 %	468
$N\eta$	32–52 %	186
$N\pi\pi$	3–14 %	426
$arDelta(1232)\pi$, $ extit{D}$ -wave	1–4 %	244
$N\sigma$	2–10 %	_
$\mathcal{N}(1440)\pi$	5–12 %	†
$p\gamma$, helicity $=1/2$	0.15-0.30 %	481
$n\gamma$, helicity $=1/2$	0.01–0.25 %	480

N(1650) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Re(pole position) = 1640 to 1670 (\approx 1655) MeV -2Im(pole position) = 100 to 170 (\approx 135) MeV Breit-Wigner mass = 1645 to 1670 (\approx 1655) MeV Breit-Wigner full width = 110 to 170 (\approx 140) MeV

N(1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	50-70 %	551
$N\eta$	14–22 %	354
ΛK	5–15 %	179
$N\pi\pi$	8–36 %	517
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	6–18 %	349
$N\sigma$	2–18 %	_
$N(1440)\pi$	6–26 %	168

HTTP://PDG.LBL.GOV

Page 6

$p\gamma$, helicity= $1/2$	0.04-0.20 %	562
$n\gamma$, helicity= $1/2$	0.003–0.17 %	561

N(1675) 5/2

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

Re(pole position) = 1655 to 1665 (\approx 1660) MeV -2Im(pole position) = 125 to 150 (\approx 135) MeV Breit-Wigner mass = 1670 to 1680 (\approx 1675) MeV Breit-Wigner full width = 130 to 165 (\approx 150) MeV

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–45 %	564
$N\eta$	< 1 %	376
$N\pi\pi$	25–45 %	532
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	23–37 %	366
$N\sigma$	3–7 %	_
$p\gamma$	0-0.02 %	575
$p\gamma$, helicity $=1/2$	0-0.01 %	575
$p\gamma$, helicity=3/2	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity $=1/2$	0–0.05 %	574
$n\gamma$, helicity=3/2	0–0.10 %	574

$N(1680) 5/2^{+}$

1// coo\ DECA\/ 140DEC

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

(.

Created: 5/30/2017 17:12

Re(pole position) = 1665 to 1680 (\approx 1675) MeV -2Im(pole position) = 110 to 135 (\approx 120) MeV Breit-Wigner mass = 1680 to 1690 (\approx 1685) MeV Breit-Wigner full width = 120 to 140 (\approx 130) MeV

N(1680) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	65–70 %	571
$N\eta$	<1 %	386
$N\pi\pi$	20–40 %	539
$\Delta(1232)\pi$	11–23 %	374
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	4–10 %	374
${\it \Delta}(1232)\pi$, $\it F-wave$	7–13 %	374
$N\sigma$	9–19 %	_

$oldsymbol{ ho}\gamma$	0.21-0.32 %	581
$ ho\gamma$, helicity $=1/2$	0.001-0.011 %	581
$p\gamma$, helicity=3/2	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity $=1/2$	0.004-0.029 %	581
$n\gamma$, helicity=3/2	0.01-0.024 %	581

N(1700) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 100 to 300 MeV Breit-Wigner mass = 1650 to 1750 (\approx 1700) MeV Breit-Wigner full width = 100 to 250 (\approx 150) MeV

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–17 %	581
$N\eta$	seen	402
$N\pi\pi$	60–90 %	550
$\Delta(1232)\pi$	55–85 %	386
${\it \Delta}(1232)\pi$, $\it S$ -wave	50–80 %	386
$arDelta(1232)\pi$, $ extit{\it D}$ -wave	4–14 %	386
$N(1440)\pi$	3–11 %	215
$N(1520)\pi$	<4 %	120
$N\rho$, $S=3/2$, S -wave	seen	†
$N\sigma$	2–14 %	_
$p\gamma$	0.01-0.05 %	591
$p\gamma$, helicity=1/2	0.0-0.024 %	591
$p\gamma$, helicity=3/2	0.002-0.026 %	591
$n\gamma$	0.01-0.13 %	590
$n\gamma$, helicity=1/2	0.0–0.09 %	590
$n\gamma$, helicity=3/2	0.01–0.05 %	590

N(1710) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Created: 5/30/2017 17:12

Re(pole position) = 1670 to 1770 (\approx 1720) MeV -2Im(pole position) = 80 to 380 (\approx 230) MeV Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 50 to 250 (\approx 100) MeV

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛK	5–25 %	269
ΣK	seen	138
$N\pi\pi$	seen	557
${\it \Delta}(1232)\pi$, $\it P$ -wave	seen	394
$N(1535)\pi$	9–21 %	106
$N\rho$, $S=1/2$, P -wave	seen	†
$p\gamma$, helicity $=1/2$	0.002-0.08 %	598
$n\gamma$, helicity=1/2	0.0-0.02%	597

N(1720) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1660 to 1690 (\approx 1675) MeV -2Im(pole position) = 150 to 400 (\approx 250) MeV Breit-Wigner mass = 1700 to 1750 (\approx 1720) MeV Breit-Wigner full width = 150 to 400 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–14 %	594
$N\eta$	1-5 %	422
ΛK	4–5 %	283
$N\pi\pi$	50–90 %	564
${\it \Delta}(1232)\pi$, $\it P$ -wave	47–77 %	402
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	<12 %	402
$N \rho$	70–85 %	74
N ho , $S=1/2$, P -wave	seen	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	<2 %	235
$N(1520)\pi$, $\it S$ -wave	1-5 %	145
$p\gamma$	0.05-0.25 %	604
$p\gamma$, helicity $=1/2$	0.05-0.15 %	604
$p\gamma$, helicity=3/2	0.002–0.16 %	604
$n\gamma$	0.0-0.016 %	603
$n\gamma$, helicity $=1/2$	0.0-0.01 %	603
$n\gamma$, helicity=3/2	0.0-0.015 %	603

N(1875) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1800 to 1950 MeV -2Im(pole position) = 150 to 250 MeV Breit-Wigner mass = 1820 to 1920 (\approx 1875) MeV Breit-Wigner full width = 250 \pm 70 MeV

N(1875) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	2–14 %	695
$N\eta$	<1 %	559
N ω	15–25 %	371
ΛK	seen	454
ΣK	seen	384
$N\pi\pi$		670
$\Delta(1232)\pi$	10–35 %	520
$\mathit{\Delta}(1232)\pi$, $\mathit{S} ext{-}wave$	7–21 %	520
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	2–12 %	520
$N\rho$, $S=3/2$, S -wave	seen	379
$N\sigma$	30–60 %	_
$N(1440)\pi$	2-8 %	373
$N(1520)\pi$	<2 %	301
$p\gamma$	0.001-0.025 %	703
$p\gamma$, helicity $=1/2$	0.001-0.021 %	703
$p\gamma$, helicity=3/2	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity $=1/2$	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

N(1900) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1900 to 1940 (\approx 1920) MeV -2Im(pole position) = 130 to 300 MeV Breit-Wigner mass = 1900 \pm 30 MeV Breit-Wigner full width = 200 \pm 50 MeV

N(1900) DECAY MODES	Fraction (Γ_i	$/\Gamma$) p (MeV/c)
$N\pi$	<10 %	710
$N\eta$	2-14 %	579
$N\omega$	7–13 %	401
ΛK	2-20 %	477
ΣK	3–7 %	410
$N\pi\pi$	40–80 %	686
HTTP://PDG.LBL.GOV	Page 10	Created: 5/30/2017 17:12

Δ (1232) π	30–70 %	539
$\mathit{\Delta}(1232)\pi$, $\mathit{P} ext{-}$ wave	9–25 %	539
$\mathit{\Delta}(1232)\pi$, $\mathit{F} ext{-}$ wave	21–45 %	539
$N\sigma$	1–7 %	_
$N(1520)\pi$	7–23 %	324
$N(1535)\pi$	4–10 %	306
$m{p}\gamma$	0.001-0.025 %	718
$p\gamma$, helicity=1/2	0.001-0.021 %	718
$p\gamma$, helicity=3/2	<0.003 %	718
$n\gamma$	<0.040 %	718
$n\gamma$, helicity $=1/2$	<0.007 %	718
$n\gamma$, helicity=3/2	<0.033 %	718

$N(2190) 7/2^-$

$$I(J^P) = \frac{1}{2}(\frac{7}{2})$$

Re(pole position) = 2050 to 2100 (\approx 2075) MeV -2Im(pole position) = 400 to 520 (\approx 450) MeV Breit-Wigner mass = 2100 to 2200 (\approx 2190) MeV Breit-Wigner full width = 300 to 700 (\approx 500) MeV

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	10-20 %	888
$N\eta$	seen	791
ΛK	0.2-0.8;%	712
$N\pi\pi$	22-80;%	870
$arDelta(1232)\pi$, $ extit{D}$ -wave	19–31 %	740
$N\rho$, $S=3/2$, D -wave	seen	680
$N\sigma$	3–9 %	_
$p\gamma$	0.014-0.077 %	894
$p\gamma$, helicity $=1/2$	0.013-0.062;%	894
$p\gamma$, helicity=3/2	0.001-0.014;%	894
$n\gamma$	<0.04 %	893
$n\gamma$, helicity $=1/2$	<0.01;%	893
$n\gamma$, helicity=3/2	<0.03 %	893

N(2220) 9/2⁺

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Created: 5/30/2017 17:12

Re(pole position) = 2130 to 2200 (\approx 2170) MeV -2Im(pole position) = 400 to 560 (\approx 480) MeV Breit-Wigner mass = 2200 to 2300 (\approx 2250) MeV Breit-Wigner full width = 350 to 500 (\approx 400) MeV

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15–25 %	924

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^-)$$

Re(pole position) = 2150 to 2250 (\approx 2200) MeV -2Im(pole position) = 350 to 550 (\approx 450) MeV Breit-Wigner mass = 2250 to 2320 (\approx 2280) MeV Breit-Wigner full width = 300 to 600 (\approx 500) MeV

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	941

$$N(2600) 11/2^-$$

$$I(J^P) = \frac{1}{2}(\frac{11}{2})$$

Breit-Wigner mass = 2550 to 2750 (\approx 2600) MeV Breit-Wigner full width = 500 to 800 (\approx 650) MeV

N(2600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5-10 %	1126

\triangle BARYONS (S=0, I=3/2)

 $\Delta^{++}=uuu$, $\Delta^{+}=uud$, $\Delta^{0}=udd$, $\Delta^{-}=ddd$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Created: 5/30/2017 17:12

$$\label{eq:Repole position} \begin{split} &\text{Re}(\text{pole position}) = 1209 \text{ to } 1211 \ (\approx 1210) \text{ MeV} \\ &-2\text{Im}(\text{pole position}) = 98 \text{ to } 102 \ (\approx 100) \text{ MeV} \\ &\text{Breit-Wigner mass (mixed charges)} = 1230 \text{ to } 1234 \ (\approx 1232) \\ &\text{MeV} \\ &\text{Breit-Wigner full width (mixed charges)} = 114 \text{ to } 120 \ (\approx 117) \\ &\text{MeV} \end{split}$$

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	99.4 %	229
$N\gamma$	0.55–0.65 %	259
N γ , helicity $=1/2$	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44–0.52 %	259

∆(1600) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1460 to 1560 (\approx 1510) MeV -2Im(pole position) = 200 to 350 (\approx 275) MeV Breit-Wigner mass = 1500 to 1700 (\approx 1600) MeV Breit-Wigner full width = 220 to 420 (\approx 320) MeV

△(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	10-25 %	513
$N\pi\pi$	75–90 %	477
$\Delta(1232)\pi$	73–83 %	303
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	72–82 %	303
$arDelta(1232)\pi$, $ extit{\it F}$ -wave	<2 %	303
$N(1440)\pi$, $\it P$ -wave	seen	98
$N\gamma$	0.001-0.035 %	525
$N\gamma$, helicity=1/2	0.0–0.02 %	525
$N\gamma$, helicity=3/2	0.001-0.015 %	525

∆(1620) 1/2[−]

$$I(J^P) = \frac{3}{2}(\frac{1}{2})$$

Re(pole position) = 1590 to 1610 (\approx 1600) MeV -2Im(pole position) = 120 to 140 (\approx 130) MeV Breit-Wigner mass = 1600 to 1660 (\approx 1630) MeV Breit-Wigner full width = 130 to 150 (\approx 140) MeV

△(1620) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	20–30 %	534
$N\pi\pi$	55–80 %	499
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	52-72 %	328
$N\rho$, $S=1/2$, S -wave	seen	†
$N\rho$, $S=3/2$, D -wave	seen	†
$N(1440)\pi$	3–9 %	138
$N\gamma$, helicity=1/2	0.03-0.10 %	545

⊿(1700) 3/2[−]

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1620 to 1680 (\approx 1650) MeV -2Im(pole position) = 160 to 300 (\approx 230) MeV Breit-Wigner mass = 1670 to 1750 (\approx 1700) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1700) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	10-20 %	581
$N\pi\pi$	10–55 %	550
Δ (1232) π	10–50 %	386
${\it \Delta}(1232)\pi$, $\it S$ -wave	5–35 %	386
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	4–16 %	386
$N\rho$, $S=3/2$, S -wave	seen	†
$N(1520)\pi$, $ extit{ }P ext{-}$ wave	1–5 %	120
$N(1535)\pi$	0.5–1.5 %	90
Δ (1232) η	3–7 %	†
$N\gamma$	0.22-0.60 %	591
$N\gamma$, helicity=1/2	0.12-0.30 %	591
$N\gamma$, helicity=3/2	0.10-0.30 %	591

△(1905) 5/2⁺

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1805 to 1835 (\approx 1820) MeV -2Im(pole position) = 265 to 300 (\approx 280) MeV Breit-Wigner mass = 1855 to 1910 (\approx 1880) MeV Breit-Wigner full width = 270 to 400 (\approx 330) MeV

△(1905) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	9–15 %	698
$N\pi\pi$		673
${\it \Delta}(1232)\pi$, $\it P$ -wave	23–43 %	524
$arDelta(1232)\pi$, $ extit{\it F}$ -wave	seen	524
$N\rho$, $S=3/2$, P -wave	seen	385
$N(1535)\pi$	< 1 %	288
$N(1680)\pi$, $ extit{\it P}$ -wave	5–15 %	133
$\Delta(1232)\eta$	2-6 %	282
N γ	0.012–0.036 %	706
N γ , helicity=1/2	0.002-0.006 %	706
$N\gamma$, helicity=3/2	0.01–0.03 %	706

△(1910) 1/2⁺

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1830 to 1880 (\approx 1855) MeV $-2\text{Im}(\text{pole position}) = 200 \text{ to } 500 \ (\approx 350) \text{ MeV}$ Breit-Wigner mass = 1860 to 1910 (\approx 1890) MeV Breit-Wigner full width = 220 to 340 (\approx 280) MeV

△(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15–30 %	704
ΣK	4–14 %	400
$N\pi\pi$		680
$\Delta(1232)\pi$	34–66 %	531
$N(1440)\pi$	3–9 %	386
Δ (1232) η	5–13 %	296
$N\gamma$, helicity=1/2	0.0-0.02 %	712

△(1920) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 200 to 400 (\approx 300) MeV Breit-Wigner mass = 1900 to 1970 (\approx 1920) MeV Breit-Wigner full width = 180 to 300 (\approx 260) MeV

△(1920) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	723
ΣK	2–6 %	431
$N\pi\pi$		699
$\Delta(1232)\pi$	50–90 %	553
${\it \Delta}(1232)\pi$, $\it P$ -wave	8–28 %	553
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	44–72 %	553
$N(1440)\pi$, $ extit{ }P ext{-}$ wave	<4 %	411
$N(1520)\pi$, $\it S$ -wave	<5 %	341
$N(1535)\pi$	<2 %	324
$Na_0(980)$	seen	41
$\Delta(1232)\eta$	5–17 %	336

⊿(1930) 5/2[−]

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$

Re(pole position) = 1840 to 1960 (\approx 1900) MeV -2Im(pole position) = 175 to 360 (\approx 270) MeV Breit-Wigner mass = 1900 to 2000 (\approx 1950) MeV Breit-Wigner full width = 220 to 500 (\approx 360) MeV

△(1930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	742
$N\gamma$	0.0-0.01 %	749
$N\gamma$, helicity $=1/2$	0.0-0.005 %	749
$N\gamma$, helicity=3/2	0.0-0.004 %	749

⊿(1950) 7/2⁺

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Re(pole position) = 1870 to 1890 (\approx 1880) MeV -2Im(pole position) = 220 to 260 (\approx 240) MeV Breit-Wigner mass = 1915 to 1950 (\approx 1930) MeV Breit-Wigner full width = 235 to 335 (\approx 285) MeV

Δ(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–45 %	729
ΣK	0.3–0.5 %	441
$N\pi\pi$		706
$arDelta(1232)\pi$, $\emph{F} ext{-}$ wave	1-9 %	560
$N(1680)\pi$, $\it P$ -wave	3–9 %	191
$\Delta(1232)\eta$	< 1 %	349

△(2420) 11/2⁺

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

Created: 5/30/2017 17:12

Re(pole position) = 2260 to 2400 (\approx 2330) MeV -2Im(pole position) = 350 to 750 (\approx 550) MeV Breit-Wigner mass = 2300 to 2500 (\approx 2420) MeV Breit-Wigner full width = 300 to 500 (\approx 400) MeV

△(2420) DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)
$N\pi$	5–15 %	1023

1 BARYONS (S = -1, I = 0) $\Lambda^0 = uds$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass
$$m=1115.683\pm0.006$$
 MeV $(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}=(-0.1\pm1.1)\times 10^{-5}$ (S = 1.6) Mean life $\tau=(2.632\pm0.020)\times 10^{-10}$ s (S = 1.6) $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})\ /\ \tau_{\Lambda}=-0.001\pm0.009$ $c\tau=7.89$ cm

Magnetic moment $\mu = -0.613 \pm 0.004~\mu_{ extbf{N}}$ Electric dipole moment $d < 1.5 \times 10^{-16}$ ecm, CL = 95%

Decay parameters

$$\begin{array}{lll} p\pi^{-} & \alpha_{-} = 0.642 \pm 0.013 \\ \overline{p}\pi^{+} & \alpha_{+} = -0.71 \pm 0.08 \\ p\pi^{-} & \phi_{-} = (-6.5 \pm 3.5)^{\circ} \\ \text{"} & \gamma_{-} = 0.76 \, ^{[n]} \\ \text{"} & \Delta_{-} = (8 \pm 4)^{\circ} \, ^{[n]} \\ n\pi^{0} & \alpha_{0} = 0.65 \pm 0.04 \\ pe^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.718 \pm 0.015 \, ^{[i]} \end{array}$$

A DECAY MODES		Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^-$		$(63.9 \pm 0.5)\%$		101
$n\pi^0$		$(35.8 \pm 0.5)\%$		104
$n\gamma$		(1.75 ± 0.15) $ imes$	10^{-3}	162
$p\pi^-\gamma$	[0]	(8.4 ± 1.4) $ imes$	10^{-4}	101
$pe^{-}\overline{\nu}_{e}$		(8.32 ± 0.14) $ imes$	10^{-4}	163
$ ho\mu^-\overline{ u}_\mu$		(1.57 ± 0.35) $ imes$	10^{-4}	131
Lepton (L) and/or Barve	on (B) number violat	ing decay modes	

π^+e^-	L,B	< 6	\times 10 ⁻⁷	90%	549
$\pi^+\mu^-$	L,B	< 6	\times 10 ⁻⁷	90%	544
π^-e^+	L,B	< 4	\times 10 ⁻⁷	90%	549
$\pi^-\mu^+$	L,B	< 6	\times 10 ⁻⁷	90%	544
K^+e^-	L,B	< 2	\times 10 ⁻⁶	90%	449

$\mathcal{K}^+\mu^-$	L,B	< 3	\times 10 ⁻⁶	90%	441
K^-e^+	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^-\mu^+$	L,B	< 3	\times 10 ⁻⁶	90%	441
$K_S^0 \nu$	L,B	< 2	\times 10 ⁻⁵	90%	447
$\overline{p}\pi^+$	В	< 9	$\times 10^{-7}$	90%	101

Λ(1405) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass $m=1405.1^{+1.3}_{-1.0}~{\rm MeV}$ Full width $\Gamma=50.5\pm2.0~{\rm MeV}$ Below $\overline{K}~N$ threshold

Λ(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

Λ(1520) 3/2⁻

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass $m = 1519.5 \pm 1.0 \text{ MeV}^{[p]}$ Full width $\Gamma = 15.6 \pm 1.0 \text{ MeV}^{[p]}$

Λ(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	$(45 \pm 1)\%$	243
$\Sigma \pi$	$(42 \pm 1)\%$	268
$\Lambda\pi\pi$	(10 ± 1) %	259
$\Sigma \pi \pi$	(0.9 ± 0.1) %	169
$\Lambda\gamma$	$(0.85\pm0.15)\%$	350

Λ(1600) 1/2⁺

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass m=1560 to 1700 (≈ 1600) MeV Full width $\Gamma=50$ to 250 (≈ 150) MeV

Λ(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15–30 %	343
$\Sigma \pi$	10–60 %	338

Λ(1670) 1/2⁻

$$I(J^P) = 0(\frac{1}{2})$$

Mass m=1660 to 1680 (≈ 1670) MeV Full width $\Gamma=25$ to 50 (≈ 35) MeV

HTTP://PDG.LBL.GOV

Page 18

A(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\overline{K}$	20–30 %	414
$\Sigma \pi$	25-55 %	394
$\Lambda\eta$	10–25 %	69
$N\overline{K}^*(892)$, $S=3/2$, D -wave	(5±4) %	†

Λ(1690) 3/2⁻

$$I(J^P) = 0(\frac{3}{2}^-)$$

Mass m=1685 to 1695 (≈ 1690) MeV Full width $\Gamma=50$ to 70 (≈ 60) MeV

Λ(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\overline{K}$	20–30 %	433
$\Sigma \pi$	20–40 %	410
$\Lambda\pi\pi$	\sim 25 %	419
$\sum \pi \pi$	\sim 20 %	358

Λ(1800) 1/2[−]

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass m=1720 to $1850~(\approx 1800)~{\rm MeV}$ Full width $\Gamma=200$ to $400~(\approx 300)~{\rm MeV}$

Λ(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25–40 %	528
$\Sigma \pi$	seen	494
$\Sigma(1385)\pi$	seen	349
$\Lambda\eta$	(6±5) %	326
$N\overline{K}^*(892)$	seen	†

Λ(1810) 1/2⁺

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m=1750 to $1850~(\approx 1810)~{\rm MeV}$ Full width $\Gamma=50$ to $250~(\approx 150)~{\rm MeV}$

Λ(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–50 %	537
$\Sigma \pi$	10–40 %	501

HTTP://PDG.LBL.GOV

Page 19

$\Sigma(1385)\pi$	seen	357
<i>N</i> K *(892)	30–60 %	†

Λ(1820) 5/2⁺

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m=1815 to 1825 (≈ 1820) MeV Full width $\Gamma=70$ to 90 (≈ 80) MeV

A(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\overline{K}$	55-65 %	545
$\Sigma \pi$	8–14 %	509
$\Sigma(1385)\pi$	5–10 %	366
$N\overline{K}^*(892)$, $S=3/2$, P -wave	(3.0 ± 1.0) %	†

Λ(1830) 5/2⁻

$$I(J^P)=0(\tfrac{5}{2}^-)$$

Mass m=1810 to 1830 (≈ 1830) MeV Full width $\Gamma=60$ to 110 (≈ 95) MeV

Λ(1830) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	3–10 %	553
$\Sigma\pi$	35–75 %	516
$\Sigma(1385)\pi$	>15 %	374
$\Sigma(1385)\pi$, $ extcolor{D}$ -wave	(52±6) %	374

Λ(1890) 3/2⁺

$$I(J^P) = 0(\frac{3}{2}^+)$$

Created: 5/30/2017 17:12

Mass m=1850 to 1910 (≈ 1890) MeV Full width $\Gamma=60$ to 200 (≈ 100) MeV

Λ(1890) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–35 %	599
$\Sigma \pi$	3–10 %	560
$\Sigma(1385)\pi$ $N\overline{K}^*(892)$	seen	423
$N\overline{K}^*(892)$	seen	236

Λ(2100) 7/2[—]

$$I(J^P) = 0(\frac{7}{2})$$

Mass m=2090 to 2110 (≈ 2100) MeV Full width $\Gamma=100$ to 250 (≈ 200) MeV

A(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
NK	25–35 %	751	
$\Sigma \pi$	\sim 5 %	705	
$\Lambda\eta$	<3 %	617	
$\equiv K$	<3 %	491	
$\Lambda \omega$	<8 %	443	
$N\overline{K}^*(892)$	10–20 %	515	

Λ(2110) 5/2⁺

$$I(J^P)=0(\tfrac{5}{2}^+)$$

Mass m=2090 to 2140 (≈ 2110) MeV Full width $\Gamma=150$ to 250 (≈ 200) MeV

Λ(2110) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5–25 %	757
$\Sigma \pi$	10–40 %	711
$\Lambda \omega$	seen	455
$\Sigma(1385)\pi$	seen	591
$N\overline{K}^{*}(892)$	10–60 %	525

Λ(2350) 9/2⁺

$$I(J^P) = 0(\frac{9}{2}^+)$$

Created: 5/30/2017 17:12

Mass m=2340 to 2370 (≈ 2350) MeV Full width $\Gamma=100$ to 250 (≈ 150) MeV

Λ(2350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	\sim 12 %	915
$\Sigma \pi$	\sim 10 %	867

Σ BARYONS (S=-1, I=1)

 $\Sigma^+ = uus$, $\Sigma^0 = uds$, $\Sigma^- = dds$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass $m=1189.37\pm0.07~{\rm MeV}~~({\rm S}=2.2)$ Mean life $\tau=(0.8018\pm0.0026)\times10^{-10}~{\rm s}$ $c\tau=2.404~{\rm cm}$ $\left(\tau_{\,\Sigma^{+}}\,-\,\tau_{\,\overline{\Sigma}^{-}}\right)\,/\,\tau_{\,\Sigma^{+}}=-0.0006\pm0.0012$ Magnetic moment $\mu=2.458\pm0.010~\mu_{N}~~({\rm S}=2.1)$ $\left(\mu_{\,\Sigma^{+}}\,+\,\mu_{\,\overline{\Sigma}^{-}}\right)\,/\,\mu_{\,\Sigma^{+}}=0.014\pm0.015$ $\Gamma(\,\Sigma^{+}\,\to\,n\ell^{+}\,\nu)/\Gamma(\,\Sigma^{-}\,\to\,n\ell^{-}\,\overline{\nu})\,<\,0.043$

Decay parameters

$$\begin{array}{lll} \rho\pi^0 & \alpha_0 = -0.980^{+0.017}_{-0.015} \\ \text{"} & \phi_0 = (36 \pm 34)^\circ \\ \text{"} & \gamma_0 = 0.16 \, ^{[n]} \\ \text{"} & \Delta_0 = (187 \pm 6)^\circ \, ^{[n]} \\ n\pi^+ & \alpha_+ = 0.068 \pm 0.013 \\ \text{"} & \phi_+ = (167 \pm 20)^\circ \, \text{ (S = 1.1)} \\ \text{"} & \gamma_+ = -0.97 \, ^{[n]} \\ \text{"} & \Delta_+ = (-73^{+133}_{-10})^\circ \, ^{[n]} \\ \rho\gamma & \alpha_\gamma = -0.76 \pm 0.08 \end{array}$$

Σ^+ DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^0$	(51.57±0.30) %	189
$n\pi^+$	$(48.31\pm0.30)~\%$	185
$oldsymbol{p}\gamma$	$(1.23\pm0.05)\times10^{-3}$	225
$n\pi^+\gamma$	[o] (4.5 ± 0.5) $\times 10^{-4}$	185
$\Lambda e^+ \nu_e$	$(2.0 \pm 0.5) \times 10^{-5}$	71

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

$ne^+\nu_e$	SQ	< 5	× 10 ⁻⁶	90%	224
$n\mu^+ u_\mu$	SQ	< 3.0	$\times 10^{-5}$	90%	202
pe ⁺ e ⁻	S1	< 7	$\times 10^{-6}$		225
$\rho \mu^+ \mu^-$	<i>S</i> 1	(9 +9 -8) × 10 ⁻⁸		121

$$\Sigma^0$$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1192.642\pm0.024$$
 MeV $m_{\Sigma^-}-m_{\Sigma^0}=4.807\pm0.035$ MeV (S = 1.1) $m_{\Sigma^0}-m_{\Lambda}=76.959\pm0.023$ MeV Mean life $\tau=(7.4\pm0.7)\times10^{-20}$ s $c\tau=2.22\times10^{-11}$ m

Transition magnetic moment $\left|\mu_{\Sigma\Lambda}\right|=1.61\pm0.08~\mu_{N}$

Σ^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda\gamma}$	100 %		74
$\Lambda \gamma \gamma$	< 3 %	90%	74
$\Lambda e^+ e^-$	[q] 5×10^{-3}		74

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1197.449\pm0.030$$
 MeV (S = 1.2) $m_{\Sigma^-}-m_{\Sigma^+}=8.08\pm0.08$ MeV (S = 1.9) $m_{\Sigma^-}-m_{\Lambda}=81.766\pm0.030$ MeV (S = 1.2) Mean life $\tau=(1.479\pm0.011)\times10^{-10}$ s (S = 1.3) $c\tau=4.434$ cm Magnetic moment $\mu=-1.160\pm0.025$ μ_N (S = 1.7) Σ^- charge radius = 0.78 \pm 0.10 fm

Decay parameters

$$n\pi^ \alpha_- = -0.068 \pm 0.008$$
" $\phi_- = (10 \pm 15)^\circ$
" $\gamma_- = 0.98 \, ^{[n]}$
" $\Delta_- = (249^+_{-120})^\circ \, ^{[n]}$
 $ne^- \overline{\nu}_e$ $g_A/g_V = 0.340 \pm 0.017 \, ^{[i]}$
" $f_2(0)/f_1(0) = 0.97 \pm 0.14$
" $D = 0.11 \pm 0.10$
 $\Lambda e^- \overline{\nu}_e$ $g_{V/g_A} = 0.01 \pm 0.10 \, ^{[i]}$ (S = 1.5)
" $g_{WM/g_A} = 2.4 \pm 1.7 \, ^{[i]}$

Σ^- DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$n\pi^-$	(99.848±0.005) %	193
$n\pi^-\gamma$	[o] (4.6 ± 0.6) $ imes 10^{-4}$	193
$ne^-\overline{ u}_e$	$(1.017\pm0.034)\times10^{-3}$	230

$$n\mu^{-}\overline{\nu}_{\mu}$$
 (4.5 ±0.4)×10⁻⁴ 210
 $\Lambda e^{-}\overline{\nu}_{e}$ (5.73 ±0.27)×10⁻⁵ 79

Σ (1385) 3/2⁺

$$I(J^P)=1(\tfrac{3}{2}^+)$$

 $\begin{array}{lll} \Sigma(1385)^+ {\rm mass} \ m = 1382.80 \pm 0.35 \ {\rm MeV} & ({\rm S}=1.9) \\ \Sigma(1385)^0 \ {\rm mass} \ m = 1383.7 \pm 1.0 \ {\rm MeV} & ({\rm S}=1.4) \\ \Sigma(1385)^- {\rm mass} \ m = 1387.2 \pm 0.5 \ {\rm MeV} & ({\rm S}=2.2) \\ \Sigma(1385)^+ {\rm full} \ {\rm width} \ \Gamma = 36.0 \pm 0.7 \ {\rm MeV} \\ \Sigma(1385)^0 \ {\rm full} \ {\rm width} \ \Gamma = 36 \pm 5 \ {\rm MeV} \\ \Sigma(1385)^- {\rm full} \ {\rm width} \ \Gamma = 39.4 \pm 2.1 \ {\rm MeV} & ({\rm S}=1.7) \\ {\rm Below} \ \overline{K} \ N \ {\rm threshold} \end{array}$

Σ (1385) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi$	(87.0 ± 1.5) %		208
$\Sigma \pi$	(11.7 ± 1.5) %		129
$\Lambda\gamma$	$(1.25^{+0.13}_{-0.12})\%$		241
$\Sigma^+ \gamma \ \Sigma^- \gamma$	($7.0~\pm1.7$) $ imes$ 1	-0^{-3}	180
$\Sigma^- \gamma$	< 2.4 × 1	10^{-4} 90%	173

$\Sigma(1660) 1/2^{+}$

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Mass m=1630 to 1690 (≈ 1660) MeV Full width $\Gamma=40$ to 200 (≈ 100) MeV

Σ(1660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\overline{K}$	10–30 %	405
$\Lambda\pi$	seen	440
$\Sigma \pi$	seen	387

Σ(1670) 3/2⁻

$$I(J^P) = 1(\frac{3}{2})$$

Created: 5/30/2017 17:12

Mass m=1665 to 1685 (≈ 1670) MeV Full width $\Gamma=40$ to 80 (≈ 60) MeV

Σ(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	7–13 %	414
$\Lambda\pi$	5–15 %	448
$\sum \pi$	30–60 %	394

Σ(1750) 1/2⁻

$$I(J^P)=1(\tfrac{1}{2}^-)$$

Mass m=1730 to $1800~(\approx 1750)~\text{MeV}$ Full width $\Gamma=60$ to $160~(\approx 90)~\text{MeV}$

Σ (1750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	10–40 %	486
$\Lambda\pi$	seen	507
$\Sigma \pi$	<8 %	456
$\Sigma \eta$	15–55 %	98
$N\overline{K}^*(892)$, $S=1/2$	(8±4) %	†

$\Sigma(1775) 5/2^{-}$

$$I(J^P)=1(\tfrac{5}{2}^-)$$

Mass m=1770 to 1780 (≈ 1775) MeV Full width $\Gamma=105$ to 135 (≈ 120) MeV

Σ (1775) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	37–43%	508
$\Lambda\pi$	14–20%	525
$\Sigma \pi$	2–5%	475
$\Sigma(1385)\pi$	8–12%	327
$\Lambda(1520)\pi$, $ extit{ P-wave}$	17–23%	201

Σ (1915) 5/2 $^+$

$$I(J^P) = 1(\frac{5}{2}^+)$$

Mass m=1900 to 1935 (≈ 1915) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Σ (1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\overline{K}$	5–15 %	618
$\Lambda\pi$	seen	623

HTTP://PDG.LBL.GOV

Page 25

$\Sigma \pi$	seen	577
$\Sigma(1385)\pi$	<5 %	443

Σ (1940) $3/2^-$

$$I(J^P)=1(\tfrac{3}{2}^-)$$

Mass m=1900 to 1950 (≈ 1940) MeV Full width $\Gamma=150$ to 300 (≈ 220) MeV

MeV/c)
637
640
595
463
355
410
322

Σ(2030) 7/2⁺

$$I(J^P)=1(\tfrac{7}{2}^+)$$

Mass m=2025 to 2040 (≈ 2030) MeV Full width $\Gamma=150$ to 200 (≈ 180) MeV

Σ(2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	17–23 %	702
$\Lambda\pi$	17–23 %	700
$\Sigma \pi$	5–10 %	657
ΞK	<2 %	422
$\Sigma(1385)\pi$	5–15 %	532
$\Lambda(1520)\pi$	10–20 %	430
$\Delta(1232)\overline{K}$	10–20 %	498
$N\overline{K}^*(892)$	<5 %	439

Σ(2250)

$$I(J^P) = 1(??)$$

Created: 5/30/2017 17:12

Mass m=2210 to 2280 (≈ 2250) MeV Full width $\Gamma=60$ to 150 (≈ 100) MeV

Σ (2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	<10 %	851
$\Lambda\pi$	seen	842
$\Sigma \pi$	seen	803

Ξ BARYONS (S=-2, I=1/2) $\Xi^0 = uss$, $\Xi^- = dss$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1314.86\pm0.20~{
m MeV}$$
 $m_{\Xi^-}-m_{\Xi^0}=6.85\pm0.21~{
m MeV}$ Mean life $\tau=(2.90\pm0.09)\times10^{-10}~{
m s}$ $c\tau=8.71~{
m cm}$ Magnetic moment $\mu=-1.250\pm0.014~\mu_N$

Decay parameters

$$\Lambda \pi^0$$
 $\alpha = -0.406 \pm 0.013$
" $\phi = (21 \pm 12)^\circ$
" $\gamma = 0.85 \ ^{[n]}$
" $\Delta = (218^{+12}_{-19})^\circ \ ^{[n]}$
 $\Lambda \gamma$ $\alpha = -0.70 \pm 0.07$
 $\Lambda e^+ e^ \alpha = -0.8 \pm 0.2$
 $\Sigma^0 \gamma$ $\alpha = -0.69 \pm 0.06$
 $\Sigma^+ e^- \overline{\nu}_e$ $g_1(0)/f_1(0) = 1.22 \pm 0.05$
 $\Sigma^+ e^- \overline{\nu}_e$ $f_2(0)/f_1(0) = 2.0 \pm 0.9$

≡ ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^0$	(99.524 ± 0.012)	%	135
$\Lambda\gamma$	(1.17 ± 0.07)	$\times 10^{-3}$	184
$\Lambda e^+ e^-$	(7.6 ± 0.6)	$\times 10^{-6}$	184
$\Sigma^0\gamma$	(3.33 ± 0.10)	$\times 10^{-3}$	117
$\Sigma^+ e^- \overline{ u}_e$	(2.52 ± 0.08)		120
$\Sigma^+ \mu^- \overline{ u}_{\mu}$	(2.33 ± 0.35)	$\times 10^{-6}$	64

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 2$ forbidden (S2) modes

$\Sigma^- e^+ u_e$	SQ	<	9	$\times10^{-4}$	90%	112
$\Sigma^- \mu^+ u_\mu$	SQ	<	9	\times 10 ⁻⁴	90%	49
$p\pi^-$	<i>S2</i>	<	8	$\times 10^{-6}$	90%	299
$pe^{-}\overline{\nu}_{e}$	<i>S2</i>	<	1.3	$\times 10^{-3}$		323
$ ho\mu^-\overline{ u}_{\mu}$	<i>S2</i>	<	1.3	$\times 10^{-3}$		309

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1321.71\pm0.07~{\rm MeV}$$
 $(m_{\Xi^-}-m_{\overline{\Xi}^+})\ /\ m_{\Xi^-}=(-3\pm9)\times 10^{-5}$ Mean life $\tau=(1.639\pm0.015)\times 10^{-10}~{\rm s}$ $c\tau=4.91~{\rm cm}$ $(\tau_{\Xi^-}-\tau_{\overline{\Xi}^+})\ /\ \tau_{\Xi^-}=-0.01\pm0.07$ Magnetic moment $\mu=-0.6507\pm0.0025~\mu_N$ $(\mu_{\Xi^-}+\mu_{\overline{\Xi}^+})\ /\ |\mu_{\Xi^-}|=+0.01\pm0.05$

Decay parameters

$$\begin{array}{lll} \Lambda \pi^{-} & \alpha = -0.458 \pm 0.012 & (\mathsf{S} = 1.8) \\ [\alpha(\Xi^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})] \ / \ [\mathsf{sum}\] = (0 \pm 7) \times 10^{-4} \\ \text{"} & \phi = (-2.1 \pm 0.8)^{\circ} \\ \text{"} & \gamma = 0.89 \ [n] \\ \text{"} & \Delta = (175.9 \pm 1.5)^{\circ} \ [n] \\ \Lambda e^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.25 \pm 0.05 \ [i] \end{array}$$

≡ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^-$	(99.887 ± 0.035)	%	140
$\Sigma^-\gamma$	(1.27 ± 0.23)	$\times 10^{-4}$	118
$\Lambda e^- \overline{\nu}_e$	(5.63 ± 0.31)	$\times 10^{-4}$	190
$\Lambda\mu^-\overline{ u}_\mu$	$(3.5 \begin{array}{c} +3.5 \\ -2.2 \end{array})$) × 10 ⁻⁴	163
$\Sigma^0 e^- \overline{ u}_e$	(8.7 ± 1.7)	$\times 10^{-5}$	123
$\Sigma^0 \mu^- \overline{ u}_\mu$	< 8	$\times 10^{-4}$ 90%	70
$\equiv^0 e^- \overline{\nu}_e$	< 2.3	$\times10^{-3}$ 90%	7

$\Delta S = 2$ forbidden (S2) modes	$\Delta S =$	2	forbidden	(S2)	modes
-------------------------------------	--------------	---	-----------	------	-------

$n\pi^-$	<i>S2</i>	<	1.9	$\times 10^{-5}$	90%	304
$ne^-\overline{ u}_e$	<i>S2</i>	<	3.2	\times 10 ⁻³	90%	327
$n\mu^-\overline{ u}_\mu$	<i>52</i>	<	1.5	%	90%	314
$p\pi^-\pi^-$	<i>S2</i>	<	4	$\times 10^{-4}$	90%	223
$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	<	4	\times 10 ⁻⁴	90%	305
$ ho\pi^-\mu^-\overline{ u}_\mu$	<i>S2</i>	<	4	$\times 10^{-4}$	90%	251
$p\mu^-\mu^-$	L	<	4	$\times 10^{-8}$	90%	272

Ξ(1530) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

$$\Xi(1530)^0$$
 mass $m=1531.80\pm0.32$ MeV (S = 1.3) $\Xi(1530)^-$ mass $m=1535.0\pm0.6$ MeV $\Xi(1530)^0$ full width $\Gamma=9.1\pm0.5$ MeV $\Xi(1530)^-$ full width $\Gamma=9.9^{+1.7}_{-1.9}$ MeV

≡(1530) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Xi\pi$	100 %		158
$\equiv \gamma$	<4 %	90%	202

Ξ(1690)

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1690\pm 10$ MeV $^{[p]}$ Full width $\Gamma < 30$ MeV

Ξ(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	240
$\Sigma \overline{K}$	seen	70
$\equiv \pi$	seen	311
$\Xi^-\pi^+\pi^-$	possibly seen	213

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Mass $m=1823\pm 5$ MeV $^{[p]}$ Full width $\Gamma=24^{+15}_{-10}$ MeV $^{[p]}$

 ≡(1820) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda \overline{K}$	large	402
$\Sigma \overline{K}$	small	324
$\equiv \pi$	small	421
$\Xi(1530)\pi$	small	237

Ξ(1950)

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1950\pm15$ MeV $^{[p]}$ Full width $\Gamma=60\pm20$ MeV $^{[p]}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	522
possibly seen	460
seen	519
	seen possibly seen

Ξ(2030)

$$I(J^P) = \tfrac{1}{2}(\ge \tfrac{5}{2}?)$$

Mass $m=2025\pm 5$ MeV $^{[p]}$ Full width $\Gamma=20^{+15}_{-5}$ MeV $^{[p]}$

E(2030) DECAY MODES Fraction (Γ_i/Γ)		p (MeV/c)	
$\Lambda \overline{K}$	\sim 20 %	585	
$\Sigma \overline{K}$	\sim 80 %	529	
$\equiv \pi$	small	574	
$\Xi(1530)\pi$	small	416	
$\Lambda \overline{K} \pi$	small	499	
$\Sigma \overline{K} \pi$	small	428	

Ω BARYONS (S=-3, I=0)

$$\Omega^-=sss$$

 $oldsymbol{\Omega}^-$

$$I(J^P) = O(\frac{3}{2}^+)$$

 $J^P=\frac{3}{2}^+$ is the quark-model prediction; and J=3/2 is fairly well established.

Mass
$$m=1672.45\pm0.29~{\rm MeV}$$
 $(m_{\Omega^-}-m_{\overline{\Omega}^+})\ /\ m_{\Omega^-}=(-1\pm8)\times 10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times 10^{-10}~{\rm s}$ $c\tau=2.461~{\rm cm}$ $(\tau_{\Omega^-}-\tau_{\overline{\Omega}^+})\ /\ \tau_{\Omega^-}=0.00\pm0.05$ Magnetic moment $\mu=-2.02\pm0.05~\mu_N$

Decay parameters

$$\Lambda K^{-}$$
 $\alpha = 0.0180 \pm 0.0024$
 ΛK^{-} , $\overline{\Lambda} K^{+}$ $(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) = -0.02 \pm 0.13$
 $\Xi^{0} \pi^{-}$ $\alpha = 0.09 \pm 0.14$
 $\Xi^{-} \pi^{0}$ $\alpha = 0.05 \pm 0.21$

Ω^- decay modes	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
ΛK ⁻	(67.8±0.7) %		211
$\equiv^0\pi^-$	(23.6 ± 0.7) %		294
$\equiv -\pi^0$	$(8.6\pm0.4)\%$		289
$\equiv -\pi^+\pi^-$	$(3.7^{+0.7}_{-0.6}) \times 1$	-0^{-4}	189
$\Xi(1530)^{0}\pi^{-}$	< 7 × 1	0^{-5} 90%	17
$\equiv^0 e^- \overline{\nu}_e$	$(5.6\pm 2.8) \times 1$	0^{-3}	319
$\equiv -\gamma$	< 4.6 × 1	0-4 90%	314
$\Delta S = 2$ for	orbidden (<i>S2</i>) mod	es	
$\Lambda \pi^-$ S2	< 2.9 × 1	0-6 90%	449

 $\Omega(2250)^{-1}$

$$I(J^P) = 0(??)$$

Mass $m=2252\pm 9~{
m MeV}$ Full width $\Gamma=55\pm18$ MeV

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Xi^-\pi^+\kappa^-}$	seen	532
$\Xi(1530)^0 K^-$	seen	437

CHARMED BARYONS

$$(C = +1)$$

$$\Lambda_c^+ = udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc,$$

$$\Xi_c^+ = usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

J is not well measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2286.46\pm0.14$$
 MeV Mean life $au=(200\pm6)\times10^{-15}$ s $~(S=1.6)$ $c au=59.9~\mu{\rm m}$

Decay asymmetry parameters

cay asymmetry parameters
$$\begin{array}{ll} \Lambda \pi^+ & \alpha = -0.91 \pm 0.15 \\ \Sigma^+ \pi^0 & \alpha = -0.45 \pm 0.32 \\ \Lambda \ell^+ \nu_\ell & \alpha = -0.86 \pm 0.04 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_c^+ \rightarrow \Lambda \pi^+, \overline{\Lambda}_c^- \rightarrow \overline{\Lambda} \pi^- = -0.07 \pm 0.31 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda_c^+ \rightarrow \Lambda e^+ \nu_e, \overline{\Lambda}_c^- \rightarrow \overline{\Lambda} e^- \overline{\nu}_e = 0.00 \pm 0.04 \\ \end{array}$$

1 DECAY MODES Fraction (Γ_i/Γ)

Scale factor/ Confidence level (MeV/c)

Hadronic modes with a p: S = -1 final states

pK_S^0		($1.58\pm~0.08$) %	S=1.2	873
$ ho K^- \pi^+$		$(6.35\pm\ 0.33)\%$	S=1.4	823
$\rho \overline{K}^* (892)^0$	[<i>r</i>]	($1.98\pm~0.28$) %		685
Δ (1232) $^{++}$ K^{-}		($1.09\pm~0.25$) %		710
$arLambda(1520)\pi^+$	[<i>r</i>]	($2.2~\pm~0.5$) %		627
$pK^-\pi^+$ nonresonant		(3.5 ± 0.4) %		823
$pK_S^0\pi^0$		($1.99\pm~0.13)~\%$	S=1.1	823

HTTP://PDG.LBL.GOV

Page 32

$p\overline{K}^0\eta$		(1.6 ± 0.4) %		568
$pK_S^0\pi^+\pi^-$		($1.66\pm~0.12$) %	S=1.1	754
$pK^{-}\pi^{+}\pi^{0}$		(4.9 ± 0.4) %	S=1.3	759
$p K^*(892)^- \pi^+$	[<i>r</i>]	($1.5~\pm~0.5$) %		580
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$		(4.6 \pm 0.9) %		759
$\Delta(1232)\overline{K}^{*}(892)$		seen		419
$pK^{-}2\pi^{+}\pi^{-}$		$(1.4 \pm 1.0) \times 10^{-3}$		671
$pK^{-}\pi^{+}2\pi^{0}$		(1.0 ± 0.5) %		678

Hadronic modes with a p: S = 0 final states

$ ho\pi^+\pi^-$		$(4.3 \pm 0.4) \times 10^{-3}$	927
$p f_0(980)$	[<i>r</i>]	$(3.5 \pm 2.3) \times 10^{-3}$	614
$ ho 2\pi^+ 2\pi^-$		$(2.3 \pm 1.5) \times 10^{-3}$	852
$ ho K^+ K^-$		$(10 \pm 4) \times 10^{-4}$	616
$oldsymbol{ ho}\phi$	[<i>r</i>]	$(1.08\pm\ 0.14)\times10^{-3}$	590
$ ho {\sf K}^+ {\sf K}^-$ non- ϕ		$(5.3 \pm 1.2) \times 10^{-4}$	616

Hadronic modes with a hyperon: S = -1 final states

Hadronic modes with	a hyperon. $S = 1$ hills.	Jeacco	
$\Lambda\pi^+$	($1.30\pm~0.07)~\%$	S=1.2	864
$\Lambda\pi^+\pi^0$	($7.1~\pm~0.4$) %	S=1.2	844
Λho^+	< 6 %	CL=95%	636
$\Lambda\pi^-2\pi^+$	$(3.7 \pm 0.4)\%$	S=1.9	807
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} ightarrow$	(1.0 ± 0.5) %		688
$\Sigma(1385)^-2\pi^+$, $\Sigma^{*-} ightarrow$	$(7.8 \pm 1.6) \times 10^{-3}$		688
$\Lambda\pi^ \Lambda\pi^+ ho^0$	($1.5~\pm~0.6$) %		524
Σ (1385) $^+ ho^0$, $\Sigma^{*+} ightarrow$ $\Lambda\pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda\pi^-2\pi^+$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda\pi^-\pi^0$ 2 π^+ total	(2.3 ± 0.8) %		757
$\Lambda\pi^+\eta$	[r] (2.3 \pm 0.5) %		691
$\Sigma(1385)^+ \eta$	[r] ($1.08\pm~0.32$) %		570
$\Lambda\pi^+\omega$	[r] (1.5 \pm 0.5) %		517
$arLambda\pi^-\pi^02\pi^+$, no η or ω	$<$ 8 \times 10 ⁻³	CL=90%	757
$\Lambda K^{+} \overline{K}{}^{0}$	$(5.7 \pm 1.1) \times 10^{-3}$	S=2.0	443
$\Xi(1690)^0K^+$, $\Xi^{*0} ightarrow$	$(1.6 \pm 0.5) \times 10^{-3}$		286
$\Sigma^0 \pi^+$	($1.29\pm~0.07)~\%$	S=1.1	825
$\Sigma^{+}\pi^{0}$	($1.24\pm~0.10)~\%$		827
$\Sigma^+ \eta$	$(7.0 \pm 2.3) \times 10^{-3}$		713
$\Sigma^+\pi^+\pi^-$	($4.57\pm~0.29)~\%$	S=1.2	804
$\Sigma^+ ho^0$	< 1.7 %	CL=95%	575
$\Sigma^- 2\pi^+$	($2.1~\pm~0.4$) %		799
$\sum_{i=1}^{0} \pi^{+} \pi^{0}$	(2.3 ± 0.9) %		803
$\Sigma^0\pi^-2\pi^+$	$(1.13\pm\ 0.29)\ \%$		763
$\Sigma^+\pi^+\pi^-\pi^0$	_		767

$oldsymbol{\Sigma}^+\omega$	[r] (1.74 ± 0.21) %		569
$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$	$(3.6 \pm 0.4) \times 10^{-3}$		349
$\Sigma^+\phi$	[r] (4.0 \pm 0.6) \times 10 ⁻³	S=1.1	295
$arxitem (1690)^0 K^+$, $arxitem ^{*0} ightarrow$	$(1.03\pm 0.26) \times 10^{-3}$		286
$\Sigma^+ K^-$			
$\Sigma^+ K^+ K^-$ nonresonant	$< 8 \times 10^{-4}$	CL=90%	349
$\equiv^0 K^+$	$< 8 \times 10^{-4}$ ($5.0 \pm 1.2) \times 10^{-3}$	CL=90%	349 653
$ \Xi^0 K^+ \Xi^- K^+ \pi^+ $	$(5.0 \pm 1.2) \times 10^{-3}$ $(6.2 \pm 0.6) \times 10^{-3}$	CL=90% S=1.1	
$\equiv^0 K^+$	$(5.0 \pm 1.2) \times 10^{-3}$		653

Hadronic modes with a hyperon: S = 0 final states

ΛK^+	(6.1 ± 1	1.2) \times 10 ⁻⁴		781
$\Lambda K^+ \pi^+ \pi^-$	< 5	\times 10 ⁻⁴	CL=90%	637
$\Sigma^0 K^+$	(5.2 \pm 0	0.8) $\times 10^{-4}$		735
Σ^0 K $^+$ π^+ π^-	< 2.6	\times 10 ⁻⁴	CL=90%	574
$\Sigma^+ K^+ \pi^-$	(2.1 ± 0	$0.6) \times 10^{-3}$		670
$\Sigma^+ {\mathcal K}^*(892)^0$	$[r]$ (3.6 \pm 1	1.0) \times 10 ⁻³		469
$\Sigma^- K^+ \pi^+$	< 1.2	\times 10 ⁻³	CL=90%	664

Doubly Cabibbo-suppressed modes

$$pK^{+}\pi^{-}$$
 (1 ±13)×10⁻⁴ 823

Semileptonic modes

Semileptonic modes
$$\Lambda e^{+}\nu_{e} \hspace{1.5cm} (3.6 \pm 0.4)\% \hspace{1.5cm} 871$$

Inclusive modes

e^+ anything		(4.5	± 1.7) (%		_
pe ⁺ anything		(1.8	± 0.9) (%		_
p anything		(50	± 16) '	%		_
p anything (no $arLambda$)		(12	± 19) '	%		_
<i>n</i> anything		(50	± 16) '	%		_
n anything (no $arLambda$)		(29	±17) '	%		_
arLambda anything		(35	± 11) '	%	S=1.4	_
$arSigma^\pm$ anything	[s]	(10	\pm 5) '	%		_
3prongs		(24	± 8) '	%		_

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

pe^+e^-	C1	< 5.5	\times 10 ⁻⁶	CL=90%	951
$p\mu^+\mu^-$	C1	< 4.4	$\times10^{-5}$	CL=90%	937
$pe^+\mu^-$	LF	< 9.9	$\times 10^{-6}$	CL=90%	947
$pe^-\mu^+$	LF	< 1.9	\times 10 ⁻⁵	CL=90%	947

$\overline{p}2e^+$	L,B	< 2.7	$\times10^{-6}$	CL=90%	951
$\overline{p}2\mu^+$	L,B	< 9.4	$\times 10^{-6}$	CL=90%	937
$\overline{p}e^+\mu^+$	L,B	< 1.6	$\times10^{-5}$	CL=90%	947
$\Sigma^-\mu^+\mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812

$\Lambda_c(2595)^+$

$$I(J^P) = 0(\frac{1}{2}^-)$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m = 2592.25 \pm 0.28 \; {\rm MeV}$$
 $m - m_{\Lambda_c^+} = 305.79 \pm 0.24 \; {\rm MeV}$ Full width $\Gamma = 2.6 \pm 0.6 \; {\rm MeV}$

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[t] —	117
$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %	†
$\Sigma_c(2455)^0\pi^+$	24 \pm 7 $\%$	†
$\Lambda_c^+\pi^+\pi^-$ 3-body	18 \pm 10 %	117
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[u] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

$\Lambda_c(2625)^+$

$$I(J^P) = 0(\frac{3}{2}^-)$$

 ${\it J}^{\it P}$ has not been measured; $\frac{3}{2}^{\it -}$ is the quark-model prediction.

Mass
$$m=2628.11\pm0.19$$
 MeV (S $=1.1$) $m-m_{\Lambda_c^+}=341.65\pm0.13$ MeV (S $=1.1$) Full width Γ $<$ 0.97 MeV, CL $=$ 90%

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) ⁺ DECAY MODES	Fraction $(\Gamma_i/\Gamma$) Confidence level	(MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[t] $\approx 67\%$		184
$\Sigma_c(2455)^{++}\pi^-$	<5	90%	102
HTTP://PDG.LBL.GOV	Page 35	Created: 5/30/201	7 17:12

Σ_c (2455) $^0\pi^+$	<	<5	90%	102
$\Lambda_c^+\pi^+\pi^-$ 3-body		large		184
$\Lambda_c^+ \pi^0$	[<i>u</i>]	not seen		293
$\Lambda_c^+ \gamma$		not seen		319

$\Lambda_c(2880)^+$

$$I(J^P) = 0(\frac{5}{2}^+)$$

There is some good evidence that indeed $J^{\mbox{\it P}}=5/2^+$

Mass
$$m = 2881.53 \pm 0.35 \text{ MeV}$$
 $m - m_{\Lambda_c^+} = 595.1 \pm 0.4 \text{ MeV}$ Full width $\Gamma = 5.8 \pm 1.1 \text{ MeV}$

Λ_c (2880) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_c(2455)^{0,++}\pi^\pm \ \Sigma_c(2520)^{0,++}\pi^\pm$	seen	376
$\Sigma_{c}(2520)^{0,++}\pi^{\pm}$	seen	317
pD^0	seen	316

$\Lambda_c(2940)^+$

$$I(J^P) = 0(??)$$

Mass
$$m = 2939.3^{+1.4}_{-1.5} \ \text{MeV}$$

Full width $\Gamma = 17^{+8}_{-6} \ \text{MeV}$

Λ_c (2940) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
p D ⁰	seen	420
Σ_c (2455) $^{0,++}\pi^\pm$	seen	_

$\Sigma_c(2455)$

$$I(J^P) = 1(\frac{1}{2}^+)$$

$$\begin{split} & \Sigma_c(2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ & \Sigma_c(2455)^{+} \quad \text{mass } m = 2452.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^0 \quad \text{mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Lambda_c^{+}} = 167.510 \pm 0.017 \text{ MeV} \\ & m_{\Sigma_c^{+}} - m_{\Lambda_c^{+}} = 166.4 \pm 0.4 \text{ MeV} \\ & m_{\Sigma_c^0} - m_{\Lambda_c^{+}} = 167.290 \pm 0.017 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Sigma_c^0} = 0.220 \pm 0.013 \text{ MeV} \\ & m_{\Sigma_c^{++}} - m_{\Sigma_c^0} = -0.9 \pm 0.4 \text{ MeV} \end{split}$$

$$\Sigma_c(2455)^{++}$$
 full width $\Gamma=1.89^{+0.09}_{-0.18}$ MeV (S = 1.1) $\Sigma_c(2455)^{+}$ full width $\Gamma<4.6$ MeV, CL = 90% $\Sigma_c(2455)^0$ full width $\Gamma=1.83^{+0.11}_{-0.19}$ MeV (S = 1.2)

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

 $\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2518.41^{+0.21}_{-0.19} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2520)^{+} \quad \text{mass } m = 2517.5 \pm 2.3 \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{mass } m = 2518.48 \pm 0.20 \text{ MeV} \quad (\text{S} = 1.1) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 231.95^{+0.17}_{-0.12} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{+}} - m_{\Lambda_c^+} = 231.0 \pm 2.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02^{+0.15}_{-0.14} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^{0}} = 0.01 \pm 0.15 \text{ MeV} \\ & \Sigma_c(2520)^{++} \quad \text{full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV} \\ & \Sigma_c(2520)^{+} \quad \text{full width } \Gamma < 17 \text{ MeV}, \text{ CL} = 90\% \\ & \Sigma_c(2520)^{0} \quad \text{full width } \Gamma = 15.3^{+0.4}_{-0.5} \text{ MeV} \end{split}$$

 $\Lambda_{c}^{+}\pi$ is the only strong decay allowed to a Σ_{c} having this mass.

 $\Sigma_c(2800)$

$$I(J^P) = 1(??)$$

$$\begin{split} & \Sigma_c(2800)^{++} \text{ mass } m = 2801^{+4}_{-6} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ mass } m = 2792^{+14}_{-5} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ mass } m = 2806^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2800)^{++}} - m_{\Lambda_c^+} = 514^{+4}_{-6} \text{ MeV} \\ & m_{\Sigma_c(2800)^+} - m_{\Lambda_c^+} = 505^{+14}_{-5} \text{ MeV} \\ & m_{\Sigma_c(2800)^0} - m_{\Lambda_c^+} = 519^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \end{split}$$

HTTP://PDG.LBL.GOV

Page 37

$$\Sigma_c(2800)^{++}$$
 full width $\Gamma = 75^{+22}_{-17}$ MeV $\Sigma_c(2800)^+$ full width $\Gamma = 62^{+60}_{-40}$ MeV $\Sigma_c(2800)^0$ full width $\Gamma = 72^{+22}_{-15}$ MeV

Σ_c (2800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/	
$\Lambda_c^+ \pi$	seen	443	

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m=2467.87\pm0.30$$
 MeV (S $=1.1$)
Mean life $au=(442\pm26)\times10^{-15}$ s (S $=1.3$)
 $c au=132~\mu{\rm m}$

 \equiv_c^+ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 5/30/2017 17:12

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^- 2\pi^+$.

Cabibbo-favored (S=-2) decays — relative to $\Xi^-2\pi^+$

$p2K_S^0$	0.087 ± 0.021		767
$\Lambda \overline{K}^0 \pi^+$	_		852
$\Sigma(1385)^+\overline{K}{}^0$	[r] 1.0 ± 0.5		746
$\Lambda K^- 2\pi^+$	0.323 ± 0.033		787
$\Lambda \overline{K}^*$ (892) $^0 \pi^+$	[r] < 0.16	90%	608
Σ (1385) $^+$ K $^ \pi^+$	[r] <0.23	90%	678
$\Sigma^+ K^- \pi^+$	$0.94\ \pm0.10$		811
$\Sigma^+\overline{K}^*(892)^0$	[r] 0.81 ± 0.15		658
$\Sigma^0 K^- 2\pi^+$	$0.27\ \pm0.12$		735
$\equiv^0 \pi^+$	$0.55\ \pm0.16$		877
$\equiv -2\pi^+$	DEFINED AS 1		851
$\Xi(1530)^{0}\pi^{+}$	[r] < 0.10	90%	750
$\equiv^0 \pi^+ \pi^0$	2.3 ± 0.7		856
$\equiv^0 \pi^- 2\pi^+$	1.7 ± 0.5		818
$=$ ⁰ e ⁺ ν _e	$2.3 \begin{array}{c} +0.7 \\ -0.8 \end{array}$		884
$\Omega^- K^+ \pi^+$	0.07 ± 0.04		399

Cabibbo-suppressed decays — relative to $\Xi^- 2\pi^+$

$ ho K^- \pi^+$		$0.21\ \pm0.04$		944
$p\overline{K}^*(892)^0$	[<i>r</i>]	$0.116\!\pm\!0.030$		828
$\Sigma^+\pi^+\pi^-$		0.48 ± 0.20		922
$\Sigma^- 2\pi^+$		$0.18\ \pm0.09$		918
$\Sigma^+ K^+ K^-$		$0.15\ \pm0.06$		579
$\Sigma^+\phi$	[r] <	(0.11	90%	549
arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<	(0.05	90%	501
$\Sigma^+ K^-$				

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2470.87^{+0.28}_{-0.31}~{
m MeV}$$
 $m_{\Xi_c^0}-m_{\Xi_c^+}=3.00\pm0.24~{
m MeV}$ Mean life $\tau=(112^{+13}_{-10})\times10^{-15}~{
m s}$ $c au=33.6~\mu{
m m}$

Decay asymmetry parameters

$$\Xi^{-}\pi^{+}$$
 $\alpha = -0.6 \pm 0.4$

No absolute branching fractions have been measured. Several measurements of ratios of fractions may be found in the Listings that follow.

 \equiv_{c}^{0} DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/30/2017 17:12

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-\pi^+$.

Cabibbo-favored (S = -2) decays — relative to $\Xi^-\pi^+$

•	, -	
$ hoK^-K^-\pi^+$	0.34 ± 0.04	676
$\rho K^{-} \overline{K}^{*} (892)^{0}$	0.21 ± 0.05	413
$pK^-K^-\pi^+$ (no \overline{K}^{*0})	0.21 ± 0.04	676
ΛK_S^0	0.210 ± 0.028	906
$\Lambda K^- \pi^+$	1.07 ± 0.14	856
$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen	787
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen	703
$\equiv -\pi^+$	DEFINED AS 1	875
$\Xi^-\pi^+\pi^+\pi^-$	3.3 ± 1.4	816
$\Omega^- K^+$	0.297 ± 0.024	522
$\Xi^- e^+ \nu_e$	3.1 ± 1.1	882
$oldsymbol{arXi}^-\ell^+$ anything	1.0 ± 0.5	_

Cabibbo-suppressed decays — relative to $\Xi^-\pi^+$

Ξ^-K^+	0.028 ± 0.006	790
$\Lambda K^+ K^- (no \; \phi)$	0.029 ± 0.007	648
$oldsymbol{\Lambda}\phi$	0.034 ± 0.007	621

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $^{-}J^{P}$ has not been measured; $^{1}2^{+}$ is the quark-model prediction.

Mass
$$m=2577.4\pm1.2~{\rm MeV}~{\rm (S=2.9)}$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{+}}=109.5\pm1.2~{\rm MeV}~{\rm (S=3.7)}$ $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{\prime0}}=-1.4\pm1.3~{\rm MeV}~{\rm (S=2.5)}$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

$\frac{z'^{+}}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>р</i> (MeV/ <i>c</i>)
$\equiv_c^+ \gamma$	seen	107

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2578.8\pm0.5~{
m MeV}~{
m (S}=1.2)$$
 $m_{\Xi_c'^0}-m_{\Xi_c^0}=108.0\pm0.4~{
m MeV}~{
m (S}=1.2)$

The $\Xi_c^{\prime 0} - \Xi_c^0$ mass difference is too small for any strong decay to occur.

$\frac{E_c^{\prime 0}}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\equiv^0_c \gamma$	seen	106

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^+$ is the quark-model prediction.

$$Ξ_c(2645)^+$$
 mass $m=2645.53\pm0.31$ MeV $Ξ_c(2645)^0$ mass $m=2646.32\pm0.31$ MeV (S = 1.1) $m_{Ξ_c(2645)^+}-m_{Ξ_c^0}=174.66\pm0.09$ MeV $m_{Ξ_c(2645)^0}-m_{Ξ_c^+}=178.44\pm0.11$ MeV (S = 1.1) $m_{Ξ_c(2645)^+}-m_{Ξ_c(2645)^0}=-0.79\pm0.27$ MeV $Ξ_c(2645)^+$ full width $\Gamma=2.14\pm0.19$ MeV (S = 1.1) $Ξ_c(2645)^0$ full width $\Gamma=2.35\pm0.22$ MeV

HTTP://PDG.LBL.GOV

Page 40

 $\Xi_{\mathcal{C}} \pi$ is the only strong decay allowed to a $\Xi_{\mathcal{C}}$ resonance having this mass.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^0\pi^+}$	seen	102
$\Xi_c^+\pi^-$	seen	106

$\Xi_c(2790)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^{\it -}$ is the quark-model prediction.

$$\begin{split} & \Xi_c(2790)^+ \text{ mass} = 2792.0 \pm 0.5 \text{ MeV} \quad \text{(S} = 1.2) \\ & \Xi_c(2790)^0 \text{ mass} = 2792.8 \pm 1.2 \text{ MeV} \quad \text{(S} = 2.9) \\ & m_{\Xi_c(2790)^+} - m_{\Xi_c^0} = 321.1 \pm 0.4 \text{ MeV} \quad \text{(S} = 1.2) \\ & m_{\Xi_c(2790)^0} - m_{\Xi_c^+} = 324.9 \pm 1.2 \text{ MeV} \quad \text{(S} = 3.7) \\ & m_{\Xi_c(2790)^+} - m_{\Xi_c^{\prime 0}} = 213.10 \pm 0.26 \text{ MeV} \quad \text{(S} = 1.2) \\ & m_{\Xi_c(2790)^0} - m_{\Xi_c^{\prime +}} = 215.4 \pm 0.8 \text{ MeV} \quad \text{(S} = 3.7) \\ & m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -0.9 \pm 1.3 \text{ MeV} \quad \text{(S} = 2.5) \\ & \Xi_c(2790)^+ \text{ width} = 8.9 \pm 1.0 \text{ MeV} \\ & \Xi_c(2790)^0 \text{ width} = 10.0 \pm 1.1 \text{ MeV} \end{split}$$

Ξ_c (2790) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$=_{c}\pi$	seen	_
$\equiv_c' \pi$	seen	160

$\Xi_c(2815)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Created: 5/30/2017 17:12

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^{\it -}$ is the quark-model prediction.

$$\Xi_c(2815)^+$$
 mass $m=2816.67\pm0.31$ MeV (S = 1.1) $\Xi_c(2815)^0$ mass $m=2820.22\pm0.32$ MeV $m_{\Xi_c(2815)^+}-m_{\Xi_c^+}=348.80\pm0.10$ MeV $m_{\Xi_c(2815)^0}-m_{\Xi_c^0}=349.35\pm0.11$ MeV $m_{\Xi_c(2815)^+}-m_{\Xi_c(2815)^0}=-3.55\pm0.28$ MeV $\Xi_c(2815)^+$ full width $\Gamma=2.43\pm0.26$ MeV $\Xi_c(2815)^0$ full width $\Gamma=2.54\pm0.25$ MeV

The $\Xi_{\it C}\,\pi\,\pi$ modes are consistent with being entirely via $\Xi_{\it C}(2645)\,\pi$.

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c \pi$	seen	_
$ \Xi_{c} \pi $ $ \Xi_{c}^{+} \pi^{+} \pi^{-} $ $ \Xi_{c}^{0} \pi^{+} \pi^{-} $	seen	196
$\equiv_c^0 \pi^+ \pi^-$	seen	191

$\Xi_c(2970)$ was $\Xi_c(2980)$

$$I(J^P) = \frac{1}{2}(??)$$

$$\begin{split} &\Xi_c(2970)^+ \ m = 2969.4 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ &\Xi_c(2970)^0 \ m = 2967.8 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ &m_{\Xi_c(2970)^+} - m_{\Xi_c^0} = 498.5 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ &m_{\Xi_c(2970)^0} - m_{\Xi_c^+} = 499.9^{+0.8}_{-0.7} \ \text{MeV} \quad (\text{S} = 1.1) \\ &m_{\Xi_c(2970)^+} - m_{\Xi_c(2970)^0} = 1.6 \pm 1.1 \ \text{MeV} \quad (\text{S} = 1.1) \\ &\Xi_c(2970)^+ \ \text{width} \ \Gamma = 20.9^{+2.4}_{-3.5} \ \text{MeV} \quad (\text{S} = 1.2) \\ &\Xi_c(2970)^0 \ \text{width} \ \Gamma = 28.1^{+3.4}_{-4.0} \ \text{MeV} \quad (\text{S} = 1.5) \end{split}$$

Ξ_c (2970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	231
$\Sigma_c(2455)\overline{K}$	seen	133
$\sum_{\substack{C \\ \Lambda_c^+ \overline{K}}} (2455) \overline{K}$	not seen	414
$\Xi_c 2\pi$	seen	385
$\Xi_c(2645)\pi$	seen	277

$\Xi_c(3055)$

$$I(J^P) = ?(??)$$

Created: 5/30/2017 17:12

Mass $m=3055.9\pm0.4$ MeV Full width $\Gamma=7.8\pm1.9$ MeV

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma^{++} K^-$	seen	_
ΛD^+	seen	317

$$\Xi_c(3080)$$

$$I(J^P) = \frac{1}{2}(?^?)$$

$$\Xi_c(3080)^+\ m=3077.2\pm0.4\ {
m MeV}$$
 $\Xi_c(3080)^0\ m=3079.9\pm1.4\ {
m MeV}\ ({
m S}=1.3)$ $\Xi_c(3080)^+\ {
m width}\ \Gamma=3.6\pm1.1\ {
m MeV}\ ({
m S}=1.5)$ $\Xi_c(3080)^0\ {
m width}\ \Gamma=5.6\pm2.2\ {
m MeV}$

Ξ_c (3080) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K}_{\pi}$	seen	415
Σ_c (2455) \overline{K}	seen	342
$\Sigma_c(2455)^{++}K^-$	seen	342
Σ_c (2520) $^{++}$ K $^-$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+\overline{K}$	not seen	536
$\Lambda_{c}^{+} \frac{K}{K} \pi^{+} \pi^{-}$	not seen	144
ΛD^+	seen	362

Ω_c^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV (S $=1.3$)
Mean life $au=(69\pm12)\times10^{-15}$ s $c au=21~\mu{\rm m}$

No absolute branching fractions have been measured.

$arOmega_c^0$ decay modes	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma^+ K^- K^- \pi^+$	seen	689
$\equiv^0 K^- \pi^+$	seen	901
$\Xi^- K^- \pi^+ \pi^+$	seen	830
$\Omega^- e^+ u_e$	seen	829
$\Omega^-\pi^+$	seen	821
$\Omega^-\pi^+\pi^0$	seen	797
$\Omega^-\pi^-\pi^+\pi^+$	seen	753

$\Omega_c(2770)^0$

$$I(J^P) = O(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^+$ is the quark-model prediction.

Mass
$$m=2765.9\pm2.0~{
m MeV}~{
m (S}=1.2)$$
 $m_{\Omega_c(2770)^0}-m_{\Omega_c^0}^{0}=70.7^{+0.8}_{-0.9}~{
m MeV}$

HTTP://PDG.LBL.GOV

Page 43

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

 $\Omega_c(2770)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Omega_c^0 \gamma$

presumably 100%

70

BOTTOM BARYONS

$$(B=-1)$$

 $\Lambda_b^0 = udb$, $\Xi_b^0 = usb$, $\Xi_b^- = dsb$, $\Omega_b^- = ssb$

Λ_b

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $O(\frac{1}{2}^+)$ is the quark model prediction. Mass $m = 5619.58 \pm 0.17$ MeV $m_{A_h^0} - m_{B^0} = 339.2 \pm 1.4 \text{ MeV}$ Mean life $\tau = (1.470 \pm 0.010) \times 10^{-12}$ s $c\tau = 440.7 \ \mu \text{m}$ $A_{CP}(\Lambda_b \to p\pi^-) = 0.06 \pm 0.08$ $A_{CP}(\Lambda_b \to pK^-) = -0.10 \pm 0.09$ $A_{CP}(\Lambda_b \to p \overline{K}^0 \pi^-) = 0.22 \pm 0.13$ $\Delta A_{CP}(J/\psi p \pi^-/K^-) \equiv A_{CP}(J/\psi p \pi^-) - A_{CP}(J/\psi p K^-)$ $= (5.7 \pm 2.7) \times 10^{-2}$ $A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-) = -0.53 \pm 0.25$ $A_{CP}(\Lambda_b \to \Lambda K^+ K^-) = -0.28 \pm 0.12$ lpha decay parameter for $\Lambda_b
ightarrow J/\psi \Lambda = 0.18 \pm 0.13$ $A_{FB}^{\ell}(\mu\mu) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.05 \pm 0.09$ $A_{FB}^{h}(p\pi) \text{ in } \Lambda_b \to \Lambda(p\pi)\mu^+ \mu^- = -0.29 \pm 0.08$ ${\sf f}_L(\mu\mu)$ longitudinal polarization fraction in ${\it \Lambda_b}
ightarrow {\it \Lambda} \mu^+ \mu^- =$ $0.61^{+0.11}_{-0.14}$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

HTTP://PDG.LBL.GOV

Page 44

Λ_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$J/\psi(1S)$ $\Lambda imes B(b o \Lambda_b^0)$	(5.8 \pm 0.8) $ imes$ 1	0-5	1740
$pD^0\pi^-$	($6.5~\pm0.7~) imes 1$		2370
р D ⁰ K [—]	(4.7 \pm 0.8) $ imes$ 1		2269
$pJ/\psi\pi^-$	$(2.6 \ ^{+0.5}_{-0.4}) imes 1$	0-5	1755
$ hoJ/\psiK^-$	$(\begin{array}{cc} 3.2 & ^{\displaystyle +0.6}_{\displaystyle -0.5} \end{array}) \times 1$	0^{-4}	1589
$P_c(4380)^+ K^-, \;\; P_c ightarrow p J/\psi$	[v] (2.7 ± 1.4) \times 1	0-5	_
$P_c(4450)^+K^-,\;\;P_c ightarrow pJ/\psi$	[ν] (1.3 \pm 0.4) \times 1	0-5	_
$ ho J/\psi(1S)\pi^+\pi^-K^-$	($6.6 \begin{array}{c} +1.3 \\ -1.1 \end{array}$) $ imes$ 1	0^{-5}	1410
$p\psi(2S)K^-$	(6.6 $^{+1.2}_{-1.0}$) $ imes$ 1	0-5	1063
$ ho \overline{K}{}^0 \pi^-$	($1.3~\pm0.4$) $ imes 1$	_	2693
pK^0K^-	< 3.5 × 1		2639
$\Lambda_c^+\pi^-$	(4.9 ± 0.4) $ imes 1$		2342
$\Lambda_c^+ K^-$	$(3.59\pm0.30)\times1$	0^{-4} S=1.2	2314
$A_{S}^{+} a_{1}(1260)^{-}$	seen	4	2153
$\Lambda_c^+ D^-$	$(4.6 \pm 0.6) \times 1$	0 ⁻⁴	1886
$\Lambda_c^+ D_s^-$	(1.10±0.10) %	. 2	1833
$\Lambda_{c}^{+}\pi^{+}\pi^{-}\pi^{-}$	$(7.7 \pm 1.1) \times 1$	_	2323
$\Lambda_c(2595)^+\pi^-$, $\Lambda_c(2595)^+ o \Lambda_c^+\pi^+\pi^-$	(3.4 ± 1.5) $ imes 1$		2210
$\Lambda_c(2625)^+\pi^-$, $\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-$	(3.3 ± 1.3) \times 1	0^{-4}	2193
Σ_c (2455) $^0\pi^+\pi^-$, $\Sigma_c^0 o$	(5.7 ± 2.2) \times 1	0 ⁻⁴	2265
$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++} ightarrow \Lambda_c^+\pi^+$	(3.2 ± 1.6) \times 1	0 ⁻⁴	2265
$arLambda_{c}^{+}\ell^{-}\overline{ u}_{\ell}$ anything	[x] (10.4 \pm 2.2)%		_
$\Lambda_c^+ \ell^- \overline{ u}_\ell$	$(\begin{array}{cc} 6.2 & +1.4 \\ -1.3 \end{array}) \%$		2345
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{ u}_\ell$	(5.6 ± 3.1) %		2335
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	(7.9 $^{+4.0}_{-3.5}$) $ imes$ 1	0-3	2212
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	($1.3 \begin{array}{c} +0.6 \\ -0.5 \end{array}$) %		2195
p h ⁻	$[y] < 2.3 \times 1$		2730
$ ho\pi^-$	(4.3 ± 0.8) \times 1	0-6	2730

HTTP://PDG.LBL.GOV

Page 45 Created: 5/30/2017 17:12

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

ρK ⁻	($5.1~\pm 0.9~) \times 10^{-6}$		2709
pD_s^-	$< 4.8 \times 10^{-4}$	CL=90%	2364
$ ho \mu^- \overline{ u}_\mu$	(4.1 ± 1.0) $\times 10^{-4}$		2730
$\Lambda \mu^+ \mu^-$	$(1.08\pm0.28)\times10^{-6}$		2695
$\Lambda\gamma$	$< 1.3 \times 10^{-3}$	CL=90%	2699
$\Lambda^0 \eta$	$(9 ^{+7}_{-5}) \times 10^{-6}$		_
$\Lambda^0 \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90%	_
$\Lambda \pi^+ \pi^-$	(4.7 ± 1.9) $ imes 10^{-6}$		2692
$\Lambda K^+ \pi^-$	$(5.7 \pm 1.3) \times 10^{-6}$		2660
$\Lambda K^+ K^-$	$(1.61\pm0.23)\times10^{-5}$		2605
$\Lambda^0 \phi$	$(2.0 \pm 0.5) \times 10^{-6}$		_

$\Lambda_b(5912)^0$

$$J^P = \frac{1}{2}^-$$

Mass $m=5912.18\pm0.21~{\rm MeV}$ Full width $\Gamma~<~0.66~{\rm MeV},~{\rm CL}=90\%$

Λ_b (5912) 0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	86

$\Lambda_b (5920)^0$

$$J^P = \frac{3}{2}$$

Mass $m=5919.90\pm0.19$ MeV (S = 1.1) Full width Γ < 0.63 MeV, CL = 90%

Λ _b (5920) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	108

$$I(J^P) = 1(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5811.3 \pm 1.9$$
 MeV Mass $m(\Sigma_b^-) = 5815.5 \pm 1.8$ MeV $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -4.2 \pm 1.1$ MeV $\Gamma(\Sigma_b^+) = 9.7^{+4.0}_{-3.0}$ MeV $\Gamma(\Sigma_b^-) = 4.9^{+3.3}_{-2.4}$ MeV

Σ_b decay modes	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi$	dominant	134

$$\Sigma_b^*$$

$$I(J^P) = 1(\frac{3}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5832.1 \pm 1.9 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5835.1 \pm 1.9 \text{ MeV}$
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{*-}} = -3.0^{+1.0}_{-0.9} \text{ MeV}$
 $\Gamma(\Sigma_b^{*+}) = 11.5 \pm 2.8 \text{ MeV}$
 $\Gamma(\Sigma_b^{*-}) = 7.5 \pm 2.3 \text{ MeV}$
 $m_{\Sigma_b^*} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ_b^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

161

$$\Xi_b^0$$
, Ξ_b^-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 I, J, P need confirmation.

$$\begin{array}{l} \textit{m}(\Xi_b^-) = 5794.5 \pm 1.4 \; \text{MeV} \quad (\text{S} = 4.0) \\ \textit{m}(\Xi_b^0) = 5791.9 \pm 0.5 \; \text{MeV} \\ \textit{m}_{\Xi_b^-} - \textit{m}_{\Lambda_b^0} = 177.9 \pm 0.9 \; \text{MeV} \quad (\text{S} = 2.1) \\ \textit{m}_{\Xi_b^0} - \textit{m}_{\Lambda_b^0} = 172.5 \pm 0.4 \; \text{MeV} \\ \textit{m}_{\Xi_b^-} - \textit{m}_{\Xi_b^0} = 5.9 \pm 0.6 \; \text{MeV} \\ \textit{Mean life } \tau_{\Xi_b^-} = (1.571 \pm 0.040) \times 10^{-12} \; \text{s} \\ \textit{Mean life } \tau_{\Xi_b^0} = (1.479 \pm 0.031) \times 10^{-12} \; \text{s} \end{array}$$

≡ _b DECAY MODES	Fraction (I	- _i /Γ)	Scale factor/ Confidence level	•
$\overline{\Xi^-\ell^-\overline{\nu}_\ell X} \times B(\overline{b} \to \overline{\Xi}_b)$	(3.9 ±1	2) × 10	-4 S=1.4	_
$J/\psi \Xi^- imes B(b o \Xi_b^-)$	(1.02^{+0}_{-0})	$(0.26) \times 10^{-2}$	-5	1782
$pD^0K^- \times B(\overline{b} \to \overline{\Xi}_b)$	(1.8 ± 0.0)	0.6) × 10 ⁻¹	-6	2374
$p\overline{K}^0\pi^- \times B(\overline{b} \to \overline{\Xi}_b)/B(\overline{b} \to \overline{\Xi}_b)$	< 1.6	\times 10 ⁻	-6 CL=90%	2783
$(B^0)_{pK^0K^- imesB(\overline{b} o\Xi_b)/B(\overline{b} o$	< 1.1	× 10 ⁻	-6 CL=90%	2730
B^0)				

$\Xi_b'(5935)^-$

$$J^{P} = \frac{1}{2}^{+}$$

Mass $m=5935.02\pm0.05$ MeV $m_{\Xi_b'(5935)^-}-m_{\Xi_b^0}-m_{\pi^-}=3.653\pm0.019$ MeV Full width $\Gamma~<~0.08$ MeV, CL =95%

Ξ_b' (5935) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	$(11.8\pm1.8)~\%$	31
$\Xi_b'(5935)^-)/B(\overline{b} \to \Xi_b^0)$		

$\Xi_b(5945)^0$

$$J^P = \frac{3}{2}^+$$

Mass $m=5949.8\pm1.4~\text{MeV}$ Full width $\Gamma=0.90\pm0.18~\text{MeV}$

Ξ_b (5945) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^-}\pi^+$	seen	73

$\Xi_b^*(5955)^-$

$$J^{P} = \frac{3}{2} +$$

Created: 5/30/2017 17:12

Mass $m=5955.33\pm0.13~{
m MeV}$ $m_{\Xi_b^*(5955)^-}-m_{\Xi_b^0}-m_{\pi^-}=23.96\pm0.13~{
m MeV}$ Full width $\Gamma=1.65\pm0.33~{
m MeV}$

≡ _b *(5955) [−] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(20.7±3.5) %	84
$\Xi_b^*(5955)^-)/B(\overline{b} o \Xi_b^0)$		

$$\Omega_b^-$$

$$I(J^P) = O(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m=6046.1\pm1.7~{
m MeV}$$
 $m_{\Omega_b^-}-m_{\Lambda_b^0}=426.4\pm2.2~{
m MeV}$ $m_{\Omega_b^-}-m_{\Xi_b^-}=247.3\pm3.2~{
m MeV}$ Mean life $\tau=(1.64^{+0.18}_{-0.17})\times10^{-12}~{
m s}$ Mean life $\tau=1.11\pm0.16$

Ω_b^- DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi \Omega^- imes B(b o \Omega_b)$	(2.9^{+1}_{-0})	$(.8) \times 10^{-6}$	5	1806
$pK^-K^- imes B(\overline{b} o \ \Omega_b)$	< 2.5	\times 10 ⁻⁹	90%	2866
$ ho\pi^-\pi^- imes B(\overline{b} o ~\Omega_b)$	< 1.5	\times 10 ⁻⁸	90%	2943
$pK^-\pi^- \times B(\overline{b} \to \Omega_b)$	< 7	\times 10 ⁻⁹	90%	2915

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

b-baryon ADMIXTURE DECAY MODES

$(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	p (MeV/c)
$p\mu^-\overline{ u}$ anything	(5.6 + 2.2) %	_
$ ho \ell \overline{ u}_\ell$ anything	$(5.4\pm\ 1.2)\%$	_
<i>p</i> anything	(67 ± 21)%	_
$arLambda \ell^- \overline{ u}_\ell$ anything	$(3.6\pm\ 0.6)\%$	_
$arLambda\ell^+ u_\ell$ anything	$(3.0\pm~0.8)\%$	_
arLambda anything	$(38 \pm 7)\%$	_
$oldsymbol{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(6.3\pm\ 1.6)\times10^{-3}$	_

EXOTIC BARYONS

$P_c(4380)^+$

Mass $m=4380\pm30$ MeV Full width $\Gamma=205\pm90$ MeV

 $\frac{\text{Mode}}{\text{Mode}} \qquad \qquad \frac{\text{Fraction } (\Gamma_i/\Gamma) \qquad \qquad p \text{ (MeV/c)}}{J/\psi \, p} \qquad \qquad \text{seen} \qquad \qquad 741$

$P_c(4450)^+$

Mass $m = 4449.8 \pm 3.0 \text{ MeV}$ Full width $\Gamma = 39 \pm 20 \text{ MeV}$

Mode	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi p$	seen	820

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [d] The μp and ep values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] The first limit is for $p \to \text{anything or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray <math>\overline{p}$'s is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p} \to e^- \gamma) > 7 \times 10^5$ yr.

- [g] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [h] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).
- [i] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V+g_A\gamma_5)+i(g_{WM}/m_{B_i})\ \sigma_{\lambda\nu}\ q^\nu]B_i$, and ϕ_{AV} is defined by $g_A/g_V=|g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [j] Time-reversal invariance requires this to be 0° or 180° .
- [k] This coefficient is zero if time invariance is not violated.
- [/] This limit is for γ energies between 0.4 and 782 keV.
- [n] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1 - lpha^2} \, \cos\!\phi$$
 , $an\!\Delta = -rac{1}{lpha} \, \sqrt{1 - lpha^2} \, \sin\!\phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [o] See the Listings for the pion momentum range used in this measurement.
- [p] The error given here is only an educated guess. It is larger than the error on the weighted average of the published values.
- [q] A theoretical value using QED.
- [r] This branching fraction includes all the decay modes of the final-state resonance.
- [s] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [t] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [u] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [v] P_c^+ is a pentaquark-charmonium state.
- [x] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [y] Here h^- means π^- or K^- .