Componente Curricular: EEL7319 - Circuitos RF

Responsável: Fernando Rangel 2024.2

Adaptação de Impedâncias

Objetivos: Consolidar a habilidade de síntese de circuitos utilizando como meio o projeto de redes de adaptação de impedâncias. Espera-se que o aluno desenvolva a atitude de verificar a robustez de projetos através de simulações com modelos realistas e de análise estatística.

PRELAB

- 1. Na figura abaixo vê-se uma fonte de corrente senoidal I_S (amplitude de 100 mA e frequência 2,4 GHz) em paralelo com a admitância Y_S (resistor de 125 Ω e indutor de 10 nH) e com a admitância Y_L . A fonte de corrente I_S e a admitância Y_S representam o equivalente de Norton de um amplificador e Y_L representa sua carga. No problema em questão, o amplificador deve transferir para a carga a máxima potência **possível** com eficiência de 80 %. Considerando este cenário:
 - Encontre a expressão da potência dissipada na carga (P_L) ;
 - Encontre a expressão da eficiência $\eta=P_L/P_S$, na qual P_S é a potência entregue pela fonte I_S ao circuito;
 - Encontre um valor para Y_L que satisfaça a especificação do problema.

Atividades de Laboratório:

2. Projete uma rede de adaptação (topologia L) que transforme uma resistência de 50 Ω na carga encontrada na questão anterior. Obs.: Use a metodologia proposta nas aulas e **mostre todos os passos do projeto**.

- 3. Simule o item 2 no Quesstudio.
 - Em uma tabela, mostre a admitância transformada (parte real e parte imaginária) e o coeficiente de reflexão (use a função ztor(x,Z) do QucsTudio) para a frequência nominal de projeto .
 - Em um gráfico plote curvas para cada uma das grandezas em função da frequência (neste caso a simulação terá que ser refeita, considerando agora uma faixa de frequências e não apenas um ponto).
 - Analise os resultados criticamente.
- 4. Inclua a rede de adptação no problema inicial, simule e mostre que o resultado atende às especificações de projeto.

- 5. Inclua tolerância de 5% nos componentes da rede de adpatação usando a função tol(x,v,d) e faça simulação de **Monte Carlo** (100 rodadas). Salve em um arquivo os pontos referentes à potência na carga e à eficiência de transferência de potência. Utilizando a linguagem de programação sua preferência (ou pergunte ao chatGPT), implemente um script para encontrar parâmetros estatísticos (média, desvio padrão, variância, etc.) e para plotar histogramas dos resultados obtidos. Analise os resultados criticamente.
- 6. Faça uma análise crítica do trabalho completo.
- 7. Descreva o que você aprendeu com este trabalho, deixando claro os pontos fortes e também aqueles que requerem aperfeiçoamento, além de refletir sobre qual estratégia você adotará para a necessidade de aperfeiçoamento detectada.

Bibliografia

- 1. Steer, Michael. Microwave and RF Design: Networks. Volume 3. (Third Edition), NC State University, 2019. doi: https://doi.org/10.514
- 2. Ulaby, Fawwaz T., Maharbiz, Michel M., and Furse, Cynthia, "Circuit analysis and design." Michigan Publishing, [Ann Arbor, Michigan], 2018. Disponível em http://cad.eecs.umich.edu/
- 3. https://en.wikipedia.org/wiki/Admittance
- 4. https://en.wikipedia.org/wiki/Electrical impedance
- 5. https://en.wikipedia.org/wiki/Phasor
- 6. Material disponibilizado na plataforma moodle.