Guião 1

Funções reais de variável real

LINGUAGEM DA MATEMÁTICA

REVISÕES SOBRE FUNÇÕES REAIS DE VARIÁVEL REAL

FUNÇÕES TRIGONOMÉTRICAS INVERSAS

TEOREMAS SOBRE FUNÇÕES CONTÍNUAS E DERIVÁVEIS

Paula Oliveira

2021/22

DEPARTAMENTO DE MATEMÁTICA - UNIVERSIDADE DE AVEIRO

		2.10.2	Assíntotas	28	
	2.11	Funçõ	es deriváveis	29	
		2.11.1	Derivada de uma função num ponto	30	
		2.11.2	Reta tangente	31	
		2.11.3	Noção de diferencial	31	
		2.11.4	Derivadas laterais	33	
		2.11.5	Continuidade e derivabilidade	33	
		2.11.6	Função derivada	33	
		2.11.7	Limites laterais da função derivada	34	
		2.11.8	Regras de derivação	34	
		2.11.9	Derivadas de ordem superior	35	
		2.11.10	0 Derivada da função composta	35	
		2.11.1	1 Derivada da função inversa	36	
	2.12	Soluçõ	ões dos exercícios do capítulo	36	
3 As funções trigonométricas				39	
3					
	3.1	_	es trigonométricas diretas	39	
	2.0	3.1.1	As funções secante, cossecante e cotangente	40 42	
	3.2	_	es trigonométricas inversas		
		3.2.1	Função arco seno	42	
		3.2.2	Função arco coseno	43	
		3.2.3	Função arco tangente	45	
	9.9	3.2.4	Função arco cotangente	46 47	
	3.3				
	3.4	Soluções dos exercícios do capítulo			
4	Teoremas sobre funções contínuas e funções deriváveis 50				
	4.1	Teorer	mas sobre funções contínuas	50	
		4.1.1	Teorema de Bolzano	50	
		4.1.2	Teorema de Weierstrass	51	
	4.2	2 Teoremas sobre funções deriváveis			
		4.2.1	O Teorema de Rolle	54	
		4.2.2	O Teorema de Lagrange	55	
		4.2.3	Máximos e mínimos locais	58	
		4.2.4	Convexidade, concavidade e pontos de inflexão	59	
	4.3	Teorer	ma e regra de Cauchy	62	
	1.1 Soluções dos exercícios do capítulo		ses dos evercícios do capítulo	68	

Capítulo 4

Teoremas sobre funções contínuas e funções deriváveis

Neste capítulo serão estudados alguns teoremas sobre funções contínuas e funções deriváveis e a sua aplicação ao estudo completo de funções.

4.1 Teoremas sobre funções contínuas

Os teoremas seguintes foram estudados no ensino secundário e são aqui revisitados.

4.1.1 Teorema de Bolzano

Teorema 4.1. (Teorema de Bolzano ou dos valores intermédios) Se f é uma função contínua num intervalo [a,b], a < b, e f(a) < Y < f(b) ou f(b) < Y < f(a) então existe $X \in]a,b[$ tal que f(X) = Y.

Figura 4.1: Interpretação geométrica do Teorema de Bolzano.

Este teorema estabelece que uma função contínua em [a, b] assume todos os valores intermédios entre f(a) e f(b) (uma ou mais vezes).

Corolário 1. Se f é contínua em [a,b] e $f(a) \cdot f(b) < 0$ então existe $x_0 \in]a,b[$ tal que $f(x_0) = 0$.

Exemplo 4.1. A equação sen x + 2x - 1 = 0 tem pelo menos uma solução em \mathbb{R} .

Consideremos a função contínua em \mathbb{R} , definida por $f(x) = \operatorname{sen} x + 2x - 1$. Calculando f(0) e $f\left(\frac{\pi}{2}\right)$ obtemos:

f(0) = -1 e $f\left(\frac{\pi}{2}\right) = \pi$, portanto $f(0) \cdot f\left(\frac{\pi}{2}\right) = -\pi < 0$

e o Teorema de Bolzano (ou o seu corolário) permite-nos afirmar que a função se anula neste intervalo. Veremos à frente que esta função tem um único zero em \mathbb{R} .

Corolário 2. Seja I um intervalo qualquer de \mathbb{R} e $f: I \to \mathbb{R}$ uma função contínua. Então f(I) é um intervalo.

Demonstração. Sejam $y_1, y_2 \in f(I)$ arbitrários e suponha-se, sem perda de generalidade, que $y_1 < y_2$. Então

$$\forall y \in \mathbb{R} \quad y_1 < y < y_2 \Rightarrow y \in f(I)$$

ou seja, $[y_1, y_2] \subseteq f(I)$, o que prova ser f(I) um intervalo.

4.1.1.1 Método da Bissecção

Uma das aplicações do corolário do teorema de Bolzano é a localização de raízes de equações não lineares.

Exemplo 4.2. Seja $f(x) = 4x^3 - 6x^2 + 3x - 2$. Pretende-se encontrar \overline{x} entre 1 e 2 tal que $f(\overline{x}) = 0$. Como,

$$\left. \begin{array}{l} f(1)f(2) < 0 \\ \\ f \ \mbox{\'e contínua em } [1,2] \end{array} \right\} \Rightarrow \exists \ \overline{x} \in]1,2[:f(\bar{x}) = 0$$

Consideremos agora o ponto médio de [1, 2], $x_1 = 1.5$. Como $|x_1 - \overline{x}| < 0.5$, x_1 é uma aproximação de \overline{x} com erro inferior a 0.5. Aplicando novamente o teorema,

$$\left.\begin{array}{l} f(1)f(x_1)<0\\\\ f\text{ \'e contínua em }[1,x_1] \end{array}\right\}\Rightarrow\exists\;\overline{x}\in]1,x_1[:f(\bar{x})=0$$

Uma raiz da equação está em]1,1.5[. Repetindo o processo anterior, seja $x_2 = 1.25$ (ponto médio de [1,1.5]), temos

 $|x_2 - \overline{x}| < 0.25$ e portanto x_2 é uma aproximação da raiz da equação com erro inferior a 0.25.

Como,

$$\left. \begin{array}{c} f(1)f(x_2) < 0 \\ \\ f \ \text{\'e contínua em} \ \ [1,x_2] \end{array} \right\} \Rightarrow \exists \ \overline{x} \in]1, x_2[: f(\bar{x}) = 0$$

podemos aplicar sucessivamente o resultado até obter uma aproximação de \overline{x} com a precisão desejada.

4.1.2 Teorema de Weierstrass

Este teorema garante a existência de máximo e mínimo de uma função contínua num intervalo fechado. Comecemos por recordar estas noções.

Seja $f: D_f \to \mathbb{R}$ com contradomínio CD_f . Um ponto $c \in D_f$ é

- ponto de máximo (mínimo) global se f(c) é o máximo (mínimo) de CD_f ;
- ponto de $m\'{a}ximo$ $(m\'{i}nimo)$ local se existe uma vizinhança $\mathcal{V}(c)$ tal que c é ponto de m\'{a}ximo $(m\'{i}nimo)$ global da restrição da função f ao conjunto $D \cap \mathcal{V}(c)$.

Um ponto c de máximo ou de mínimo local (global) diz-se ponto de extremo local (global) de f. Ao valor f(c) chama-se extremo local (global) de f.

Para encontrar os extremos globais é preciso estudar os extremo locais e compará-los.

Um ponto de extremo c da função f diz-se extremo estrito quando $f(x) \neq f(c)$ para todo o x diferente de c numa vizinhança de c.

Pode recordar estes conceitos assistindo aos vídeos da Khan Academy extremos e exemplo.

Exercício 4.1 Encontre extremos e pontos de extremo locais e globais da função definida em [-4, 6] pelo gráfico representado na figura 4.2, indicando os extremos estritos:

Figura 4.2: Gráfico da função.

Teorema 4.2. (Teorema de Weierstrass) Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$. Se D_f é um conjunto limitado e fechado e f é contínua em D_f , então f atinge em D_f o seu máximo e o seu mínimo, isto é, existem $x_m, x_M \in D_f$ tais que, $f(x_m) \leq f(x) \leq f(x_M)$, para todo o $x \in D_f$. Consequentemente, o contradomínio da função é $f(D_f) = [f(x_m), f(x_M)]$.

Figura 4.3: Interpretação geométrica do Teorema de Weierstrass.

Demonstração. Comecemos por provar que f é limitada. Suponha-se, pelo contrário, que f é contínua, mas não limitada em [a,b]. Então, para todo o $n \in \mathbb{N}$, existe $x_n \in [a,b]$ tal que se tem $|f(x_n)| > n$. A sucessão $(x_n)_{n \geq 1}$ é limitada, já que $a \leq x_n \leq b, \ \forall n \in \mathbb{N}$, e, portanto, admite uma subsucessão $(x_{n_\tau})_{\tau \geq 1}$, convergente¹. Seja $\lim_{\tau \to \infty} x_{n_\tau} = \overline{x} \in [a,b]$.

Tem-se então, por um lado, que

$$\lim_{\tau \to \infty} |f(x_{n_{\tau}})| = +\infty$$

¹Toda a sucessão limitada admite uma subsucessão convergente.

enquanto que

$$\lim_{\tau \to \infty} |f(x_{n_{\tau}})| = |f(\overline{x})| < +\infty$$

já que, da continuidade de f decorre (como facilmente se verifica) a continuidade de |f|. A contradição resultou de se ter suposto que a função f era não limitada.

Seja $M = \sup f(x)$ e suponha-se que

$$f(x) < M$$
, $\forall x \in [a, b]$.

Então a função $g:[a,b]\to\mathbb{R}$ definida por

$$g(x) = \frac{1}{M - f(x)} , \ a \le x \le b$$

é contínua e, portanto, de acordo com o o que vimos no início da demonstração para a função f, é limitada.

Seja $c = \sup g(x)$. É claro que se tem c > 0 e

$$g(x) \le c$$
, $\forall x \in [a, b]$

donde resulta que

$$f(x) \le M - \frac{1}{c}, \ \forall x \in [a, b]$$

o que é contrário à definição de M.

Consequentemente,

$$\exists x_1 \in [a, b] : f(x_1) = M$$

e, portanto, $M = \max f(x)$.

Demonstração análoga se pode fazer para o caso do mínimo.

• A função $f:]-1,1[\to\mathbb{R}$ dada por $f(x)=\frac{1}{1-x^2}$ não é limitada. Isto contradiz o teorema

• A função $g: [0, +\infty[\to \mathbb{R} \text{ dada por } g(x) = \frac{1}{1+x^2}$ é contínua e limitada. Assume o valor máximo em x=0, mas não existe $x\in [0, +\infty[$ tal que g(x) seja mínimo. Porquê?

Exercício 4.2 Considere a função
$$f$$
 definida por

$$f(x) = \begin{cases} \frac{1}{2} + \arctan x & \text{se } x \ge 0\\ e^{\frac{1}{x}} & \text{se } x < 0. \end{cases}$$

- 1. Estude f quanto à continuidade.
- 2. Determine, caso existam, as assímptotas ao gráfico de f.
- 3. Determine os pontos de intersecção do gráfico de f com a reta de equação $y = \frac{1}{2}$.

Exercício 4.3 Considere a função g dada por

$$g(x) = \frac{3\pi}{5} - \arccos\left(\frac{x-1}{2}\right).$$

Utilize o teorema de Bolzano para justificar que g admite uma raiz no intervalo]0,2[.

Exercício 4.4 Considere a função f, real de variável real, tal que $f(x) = \frac{1}{x-1}$

- 1. f é contínua em]1,2]? f é limitada em]1,2]?
- 2. Existe contradição com o teorema de Weierstrass?

$$f(x) = \begin{cases} \frac{1}{2} + \arctan x & \text{se } x \ge 0\\ e^{\frac{1}{x}} & \text{se } x < 0. \end{cases}$$

- 1. Estude f quanto à continuidade. E continue pue u > 0 e u < 0 ...
- 2. Determine, caso existam, as assímptotas ao gráfico de $f.\,$
- 3. Determine os pontos de intersecção do gráfico de f com a reta de equação $y=\frac{1}{2}$.

Exercício 4.3 Considere a função g dada por

$$g(x) = \frac{3\pi}{5} - \arccos\left(\frac{x-1}{2}\right).$$

Utilize o teorema de Bolzano para justificar que g admite uma raiz no intervalo]0,2[.

1.
$$\lim_{u \to 0} |(u) = |(0)|^{2}$$

2. $\lim_{u \to -\infty} |(u) = \lim_{u \to -\infty} |(u) = \frac{1}{2} + \operatorname{orcton} 0 = \frac{1}{2} = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to -\infty} |(u) = \lim_{u \to 0} |(u) = \frac{1}{2} + \operatorname{orcton} 0 = \frac{1}{2} = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to -\infty} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

2. $\lim_{u \to 0} |(u) = \lim_{u \to 0} |(u)|$

3. $\lim_{u \to 0} |(u)|$

3. $\lim_{u \to 0} |(u)|$

4. $\lim_{u \to 0} |(u)|$

4. $\lim_{u \to 0} |(u)|$

5. $\lim_{u \to 0} |(u)|$

6. $\lim_{u \to 0} |(u)|$

6. $\lim_{u \to 0} |(u)|$

8. $\lim_{u \to 0} |(u)|$

8. $\lim_{u \to 0} |(u)|$

9. $\lim_{u \to 0} |(u)|$

10. $\lim_{u \to 0} |(u)|$

11. $\lim_{u \to 0} |(u)|$

12. $\lim_{u \to 0} |(u)|$

13. $\lim_{u \to 0$

$$|(u) = \frac{1}{2} = \left(\frac{1}{2} + \operatorname{oncton} u = \frac{1}{2} \wedge u \geq 0 \right) \vee$$

$$\left(e^{\frac{1}{4}u} = \frac{1}{2} \wedge u \geq 0 \right) \vee \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left(e^{\frac{1}{4}u} = e^{\frac{1}{4}u} \wedge u \geq 0 \right) \wedge \left$$

4.2 Teoremas sobre funções deriváveis

Vamos estudar alguns teoremas sobre funções deriváveis em intervalos de \mathbb{R} que nos permitem fazer o estudo completo de funções, incluindo monotonia, extremos e sentidos das concavidades dos seus gráficos.

4.2.1 O Teorema de Rolle

Teorema 4.3. (Teorema de Rolle) Seja f uma função contínua em [a,b] e derivável em]a,b[. Se f(a) = f(b) então existe $c \in]a,b[$ tal que f'(c) = 0.

Figura 4.4: Teorema de Rolle.

Podemos afirmar que nas condições do Teorema de Rolle a função tem um ponto no interior do intervalo [a,b] onde a tangente é uma reta horizontal.

Demonstração. Nas condições do Teorema de Rolle, f tem máximo e mínimo em [a,b] (pelo Teorema de Weierstrass).

Se a função for constante em [a, b], isto é, f(x) = k onde k = f(a) = f(b), $\forall x \in [a, b]$ e o máximo é igual ao mínimo e igual a k. Então, em qualquer ponto do intervalo]a, b[a derivada é nula, pelo que o teorema é verdadeiro neste caso.

Suponhamos agora que f não é constante. Como f é contínua, então, pelo Teorema de Weierstrass, admite no intervalo [a, b] um máximo M e um mínimo m e $m \neq M$ já que a função não é constante.

Então a função admite no interior do intervalo [a, b] um máximo, um mínimo ou até os dois.

Admita-se que f admite o valor máximo M no ponto c tal que a < c < b.

Então para valores de x < c vem x - c < 0 e também $f(x) - f(c) \le 0$ e portanto

$$\frac{f(x) - f(c)}{x - c} \ge 0.$$

Como f é derivável no intervalo, vem

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = f'(c) \ge 0.$$

Para valores de x à direita de c, x-c>0 e $f(x)-f(c)\leq 0$ e portanto

$$\frac{f(x) - f(c)}{x - c} \le 0,$$

e também,

$$\lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} = f'(c) \le 0.$$

Mas então conclui-se que

$$f'(c) \ge 0 e f'(c) \le 0$$

o que só é possível se f'(c) = 0, provando-se assim o teorema.

A prova seria análoga se considerássemos o mínimo m atingido num ponto do interior do intervalo. \square

Exercício resolvido 4.1. 1. Seja f contínua em [a,b] e derivável em]a,b[com $f'(x) \neq 0, \forall x \in [a,b[$. f é injetiva em [a,b]? E monótona?

- 2. Se f é estritamente monótona e derivável em [a, b[, então $f'(x) \neq 0, \forall x \in]a, b[$?
- 3. Prove que entre duas raízes (dois zeros) consecutivas duma função, derivável em \mathbb{R} , existe uma raiz da sua derivada. Prove ainda que entre raízes consecutivas da derivada existe quando muito uma raiz da função.

Resolução do exercício 4.1. 1. Provemos que f é injetiva. Suponhamos, por redução ao absurdo, que f não era injetiva, isto é, que existiam x_1 e x_2 distintos $(x_1 < x_2)$ mas $f(x_1) = f(x_2)$. Se aplicarmos o Teorema de Rolle ao intervalo $[x_1, x_2]$, como f é contínua neste intervalo, derivável em $]x_1, x_2[$ e $f(x_1) = f(x_2)$, existiria um $c \in]x_1, x_2[\subseteq]a, b[$ tal que f'(c) = 0, contrariando a hipótese de que $f'(x) \neq 0$, $\forall x \in]a, b[$.

Logo f é injetiva em [a, b].

Provemos agora que a função é estritamente monótona em [a, b]. Suponhamos que não, isto é, ou existem x_1 e x_2 em [a, b] distintos tais que $f(x_1) = f(x_2)$ e neste caso a função não seria injetiva, ou existem $x_1 < x_2 < x_3$ em [a, b] tais que $f(x_1) < f(x_2)$ e $f(x_2) > f(x_3)$ ou $f(x_1) > f(x_2)$ e $f(x_3) > f(x_2)$.

Consideremos o primeiro caso, isto é, $x_1 < x_2 < x_3$ com $f(x_1) < f(x_2)$ e $f(x_3) < f(x_2)$. Podem suceder duas situações: $f(x_1) > f(x_3)$ ou $f(x_1) < f(x_3)$. Se $f(x_1) > f(x_3)$, pelo Teorema de Bolzano (4.1), existirá um $c \in]x_2, x_3[$ tal que $f(c) = f(x_1)$ e a função não seria injetiva.

Se $f(x_1) < f(x_3)$, pelo Teorema de Bolzano (4.1), existirá um $d \in]x_1, x_2[$ tal que $f(d) = f(x_3)$ e a função não seria injetiva.

A prova seria análoga para o caso em que $f(x_1) > f(x_2)$ e $f(x_3) > f(x_2)$. Portanto podemos afirmar que a função tem que ser estritamente monótona em [a, b].

- 2. Não. Seja f a função definida em [-1,1] por $f(x)=x^3$. Esta função é estritamente crescente e no entanto a derivada anula-se em x=0.
- 3. Sejam $r_1 < r_2$ dois zeros consecutivos de f, isto é, $f(r_1) = f(r_2) = 0$. f é contínua em $[r_1, r_2]$, derivável em $]r_1, r_2[$ e $f(r_1) = f(r_2)$. Aplicando o Teorema de Rolle podemos afirmar que existe um zero da derivada em $]r_1, r_2[$.

Sejam agora $s_1 < s_2$ duas raízes consecutivas da derivada de f. Suponhamos que existiam dois zeros distintos de f, $r_1 < r_2$, entre s_1 e s_2 , isto é, $s_1 \le r_1 < r_2 \le s_2$. Pelo que foi dito no parágrafo anterior, existiria um zero da derivada, s_3 , entre r_1 e r_2 , contrariando o facto de que s_1 e s_2 são zeros consecutivos de f', ou seja, teríamos $s_1 \le r_1 < s_3 < r_2 \le s_2$.

4.2.2 O Teorema de Lagrange

O seguinte teorema é também conhecido por Teorema dos Acréscimos Finitos.

Teorema 4.4. (Teorema de Lagrange) Seja f uma função contínua em [a,b] e derivável em]a,b[. Então existe um ponto $c \in]a,b[$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Figura 4.5: Interpretação geométrica do Teorema de Lagrange.

Demonstração. Seja

$$g \quad [a,b] \quad \longrightarrow \qquad \mathbb{R}$$

$$x \quad \mapsto \quad f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Então g também é contínua em [a,b] e derivável em]a,b[. Além disso, g(a)=g(b)=0. Logo, pelo Teorema de Rolle, existe algum $c \in]a,b[$ tal que g'(c)=0. Mas

$$g'(c) = 0 \Longleftrightarrow f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \Longleftrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Pelo teorema existe um ponto $c \in]a, b[$ em que a reta r tangente ao gráfico da função f é paralela à reta secante em a e b (a reta s, na figura).

Facilmente se constata que estando c estritamente compreendido entre a e b, então pode expressar-se de forma única como

$$c = a + \theta(b - a), \ 0 < \theta < 1$$

e, portanto, a fórmula dos acréscimos finitos pode tomar o seguinte aspecto

$$f(b) = f(a) + (b-a)f'(a+\theta(b-a)), \ 0 < \theta < 1$$

ou ainda, fazendo b = a + h,

$$f(a+h) = f(a) + hf'(a+\theta h), \ 0 < \theta < 1.$$

Exercício 4.5 Seja $f:[3,2+e] \to \mathbb{R}$ dada por $f(x)=x+\ln(x-2)$. Verifique que f satisfaz a hipótese do Teorema de Lagrange e encontre a equação da reta tangente ao gráfico e paralela à secante nos extremos do domínio.

4.2.2.1 Monotonia e Teorema de Lagrange

Da definição de derivada resulta que, sendo $f: D \to \mathbb{R}$ uma função derivável em $a, b \subseteq D$,

se f é crescente em sentido lato em [a,b] então $f'(x) \ge 0$, $\forall x \in]a,b[$; se f é decrescente em sentido lato em [a,b] então $f'(x) \le 0$, $\forall x \in]a,b[$; (em particular) se f(x) é constante em [a,b] então f'(x) = 0, $\forall x \in]a,b[$.

Contudo, o Teorema de Lagrange permite inferir acerca das recíprocas destas proposições. São consequências imediatas do Teorema de Lagrange as seguintes proposições:

Corolário 3. Sendo f uma função definida e derivável num intervalo aberto $I \subseteq \mathbb{R}$ (com mais de um ponto) tal que f'(x) = 0, $\forall x \in I$, então f é uma função constante em I.

Demonstração. Sejam x_1 e x_2 pontos arbitrários em I, com $x_1 < x_2$. Sendo f derivável em I, pode aplicar-se o Teorema de Lagrange ao intervalo $[x_1, x_2]$ e portanto existe $c \in]x_1, x_2[$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Como f'(x) = 0, $\forall x \in I$, resulta que f'(c) = 0 e consequentemente,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0, \text{ ou seja, } f(x_2) = f(x_1).$$

Como x_1 e x_2 são pontos arbitrários de I podemos concluir que f é constante.

Corolário 4. Se f e g são funções deriváveis em D e f'(x) = g'(x), $\forall x \in D$, então em cada intervalo $I \subseteq D$ existe $C \in \mathbb{R}$ tal que f(x) = g(x) + C, $\forall x \in I$.

Corolário 5. Se f é uma função derivável em I e para todo o x pertencente a um intervalo aberto $I \subseteq \mathbb{R}$ (com mais de um ponto) se tiver f'(x) > 0, então f é estritamente crescente em I e, se for f'(x) < 0, $\forall x \in I$, então f é estritamente decrescente em I.

Demonstração. Sejam x_1 e x_2 pontos arbitrários em I, com $x_1 < x_2$. Sendo f derivável em I, pode aplicar-se o Teorema de Lagrange ao intervalo $[x_1, x_2]$ e portanto existe $c \in]x_1, x_2[$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Se f'(x) > 0, $\forall x \in I$, resulta que f'(c) > 0 e consequentemente,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$$
, ou seja, $f(x_2) > f(x_1)$ (já que $x_2 > x_1$).

Como x_1 e x_2 são pontos arbitrários de I podemos concluir que f é estritamente crescente.

Se f'(x) < 0, $\forall x \in I$, resulta que f'(c) < 0 e consequentemente,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0, \text{ ou seja}, f(x_2) < f(x_1) \text{ (já que } x_2 > x_1).$$

Como x_1 e x_2 são pontos arbitrários de I podemos concluir que f é estritamente decrescente.

Note-se que nestes dois corolários I designa sempre um intervalo, pois de contrário não fica garantida a veracidade das afirmações feitas: por exemplo, a função

$$f(x) = \frac{|x|}{x}, \ x \in \mathbb{R} \setminus \{0\}$$

tem derivada nula em todos os pontos do seu domínio (que não é um intervalo) e, no entanto, não é constante nesse domínio.

Pode ainda deduzir-se do Teorema de Lagrange o seguinte corolário:

Corolário 6. Dadas duas funções $f, g : [a, b] \to \mathbb{R}$ deriváveis, então

$$f(a) < g(a) \land f'(x) < g'(x) \Rightarrow f(x) < g(x), \forall x \in [a, b[$$
.

Demonstração. Seja $x \in [a, b[$ qualquer e $\varphi : [a, b[\to \mathbb{R} \text{ a função definida por } \varphi(x) = f(x) - g(x).$ Pela fórmula dos acréscimos finitos, para cada $x \in]a, b[$, existe pelo menos um $c \in]a, x[$ tal que

$$\varphi(x) - \varphi(a) = (x - a)\varphi'(c).$$

Como $\varphi'(c) = f'(c) - g'(c) \le 0$ qualquer que seja $c \in [a, b]$, então obtém-se

$$\varphi(x) - \varphi(a) \le 0, \ \forall x \in]a, b[$$

donde resulta

$$f(x) - g(x) \le f(a) - g(a) \le 0$$

ou seja,

$$f(x) \le g(x), \ \forall x \in [a, b[$$

como se pretendia provar.

Exercício 4.6

- 1. Mostre que arcsen $x + \arccos x = \frac{\pi}{2}, \forall x \in [-1, 1]$
- 2. Estude o domínio e o gráfico de $f(x) = \arctan x + \arctan \frac{1}{x}$. (Ajuda: calcule f'!)

Exemplo 4.3. Mostremos que $f(x) = x + k \operatorname{sen} x$ é invertível se e só se $|k| \leq 1$.

A derivada de $f \in f'(x) = 1 + k \cos x$ e $f'(x) = 0 \Leftrightarrow k \cos x = -1$.

- Se |k| < 1 então $|k \cos x| = |k| |\cos x| \le |k| < 1$ e assim $f'(x) > 0, \forall x \in \mathbb{R}$.
- Se $k = \pm 1$ então $f'(x) \ge 0$ e $f'(x) = 0 \Leftrightarrow \cos x = \pm 1$ é satisfeita em pontos isolados
- Se |k| > 1 então f' muda de sinal: f'(0) = 1 + k e $f'(\pi) = 1 k$ têm sinais opostos.

Conclui-se que f é estritamente crescente, logo invertível, se e só se $|k| \leq 1$.

4.2.3 Máximos e mínimos locais

O elemento $a \in \text{Int}(D_f)$ é ponto crítico de f se f'(a) = 0 ou se $a \notin D_{f'}$, ou seja, se a derivada se anula nesse ponto ou se não existe derivada nesse ponto.

Exemplo 4.4. Seja $f:]-2, 2[\to \mathbb{R}, \text{ tal que } f(x) = |1-x^2|.$ Os pontos críticos são $\{-1, 0, 1\}.$

Esta função não tem derivada em c=-1 nem em c=1 e a derivada anula-se em c=0.

Teorema 4.5. (Teorema de Fermat) Seja f uma função definida e derivávell num intervalo aberto]a,b[, a < b. Se f tiver um extremo local num ponto $c \in]a,b[$, então f'(c) = 0.

Demonstração. (a) Suponha-se que f tem um máximo local em $c \in]a,b[$. Então, existe $\varepsilon>0$ tal que

$$\forall x \in \,]a,b[\quad x \in \,]c-\varepsilon,c+\varepsilon[\, \Rightarrow \, f(x) \leq f(c)$$

e, portanto, qualquer que seja $x \in [a, b]$,

e

se
$$c - \varepsilon < x < c$$
, então $\frac{f(x) - f(c)}{x - c} \ge 0$
se $c < x < c + \varepsilon$, então $\frac{f(x) - f(c)}{x - c} \le 0$

donde resulta, por passagem ao limite quando $x \to c$ à esquerda e à direita, que

$$f'_e(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \ge 0$$
 e $f'_d(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0$.

Como f é derivável em c, então ter-se-á $f'_e(c) = f'(c) = f'_d(c)$, o que implica que seja f'(c) = 0.

(b) Analogamente se demonstra o caso em que f tem um mínimo local no ponto $c \in [a, b[$.