That Taylor series (which stops at n = 5) should agree with $(1 + x)^5$. It does. We could rewrite 1 + x as 2 + (x - 1), and take its fifth power directly. Then 32, 16, 8, 4, 2, I will multiply the usual coefficients 1, 5, 10, 10, 5, 1 to give our Taylor coefficients 32, 80, 80, 40, 10, 1. The series stops as it will stop for any polynomial—because the high derivatives are zero.

EXAMPLE 6 Find the Taylor series for $f(x) = e^x$ around the basepoint x = 1.

Solution At x = 1 the function and all its derivatives equal e. Therefore the Taylor series has that constant factor (note the powers of x = 1, not x):

$$e^{x} = e + e(x - 1) + \frac{e}{2!}(x - 1)^{2} + \frac{e}{3!}(x - 1)^{3} + \cdots$$
 (6)

DEFINING THE FUNCTION BY ITS SERIES

Usually, we define $\sin x$ and $\cos x$ from the sides of a triangle. But we could start instead with the series. Define $\sin x$ by equation (2). The logic goes backward, but it is still correct:

First, prove that the series converges.

Second, prove properties like $(\sin x)' = \cos x$.

Third, connect the definitions by series to the sides of a triangle,

We don't plan to do all this. The usual definition was good enough. But note first: There is no problem with convergence. The series for $\sin x$ and $\cos x$ and e^x all have terms $\pm x^n/n!$. The factorials make the series converge for all x. The general rule for e^x times e^y can be based on the series. Equation (6) is typical: e is multiplied by powers of (x-1). Those powers add to e^{x-1} . So the series proves that $e^x = ee^{x-1}$. That is just one example of the multiplication $(e^x)(e^y) = e^{x+y}$:

$$\left(1+x+\frac{x^2}{2}+\ldots\right)\left(1+y+\frac{y^2}{2}+\ldots\right)=1+x+y+\frac{x^2}{2}+xy+\frac{y^2}{2}+\ldots$$
 (7)

Term by term, multiplication gives the series for e^{x+y} . Term by term, differentiating the series for e^x gives e^x . Term by term, the derivative of $\sin x$ is $\cos x$:

$$\frac{d}{dx}\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$
 (8)

We don't need the famous limit $(\sin x)/x \to 1$, by which geometry gave us the derivative. The identities of trigonometry become identities of infinite series. We could even define π as the first positive x at which $x - \frac{1}{6}x^3 + \cdots$ equals zero. But it is certainly not obvious that this sine series returns to zero—much less that the point of return is near 3.14.

The function that will be defined by infinite series is $e^{i\theta}$. This is the exponential of the imaginary number $i\theta$ (a multiple of $i = \sqrt{-1}$). The result $e^{i\theta}$ is a complex number, and our goal is to identify it. (We will be confirming Section 9.4.) The technique is to treat $i\theta$ like all other numbers, real or complex, and simply put it into the series:

DEFINITION
$$e^{i\theta}$$
 is the sum of $1 + (i\theta) + \frac{1}{2!}(i\theta)^2 + \frac{1}{3!}(i\theta)^3 + \cdots$ (9)

Now use $i^2 = -1$. The even powers are $i^4 = +1$, $i^6 = -1$, $i^8 = +1$, We are just multiplying -1 by -1 to get 1. The odd powers are $i^3 = -i$, $i^5 = +i$, There-