Reconnaissance faciale par Eigenfaces

Bouarah Romain

Langdorph Matthieu Ketels Lucas Nathan Souffan

24 avril 2020

- 1 Introduction
 - Motivation
 - Histoire
- 2 Calcul des eigenfaces
 - Travail dans $\mathbb{R}^{N \times N}$
 - Matrice de covariance
 - Analyse en composantes principales
 - Décomposition en valeurs singulières
- 3 Classification des visages
 - Projection dans l'espace des visages
 - Analyse de la projection
- 4 Application
 - Techniques utilisées aujourd'hui
 - Par les téléphones
- 5 Conclusion
 - Risque de la reconnaissance faciale
 - Références

Représentation matricielle des images

Définition

Une image de taille $N \times N$ est représentée par une matrice $N \times N$. Chaque coefficient représente un niveau de gris d'un pixel.

Travail dans $\mathbb{R}^{N \times N}$

Transformation en un vecteur de $\mathbb{R}^{N \times N}$

On juxtapose simplement les colonnes de la matrice l'une en dessous de l'autre.

$$\begin{pmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,N} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N,1} & p_{N,2} & \cdots & p_{N,N} \end{pmatrix} \rightarrow \begin{pmatrix} p_{1,1} \\ p_{2,1} \\ \vdots \\ p_{N,1} \\ \vdots \\ p_{1,N} \\ \vdots \\ p_{N,N} \end{pmatrix}$$

Observation sur les images des visages

Question

Que dire de la position de nos images de visages dans l'espace $\mathbb{R}^{N \times N}$?

•0000

Observation sur les images des visages

Question

Que dire de la position de nos images de visages dans l'espace $\mathbb{R}^{N\times N}$?

Réponse

Nos images de visages ne sont pas si éloignées les unes des autres.

Définition de la Matrice de Covariance

Définition

La matrice de covariance d'un vecteur de p variables aléatoires

$$\overrightarrow{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$$
 dont chacune possède une variance, est la matrice

carrée dont le terme générique est donné par $a_{i,j} = \text{Cov}(X_i, X_j)$.

Encodons cette dispersion

Définition (Estimation de la Matrice de Covariance)

En partant d'un échantillon de réalisations indépendantes d'un vecteur aléatoire, une estimation de la matrice de covariance est donné par :

$$\mathsf{Var}(\overrightarrow{X}) = \frac{1}{n} \sum_{i=1}^{n} (\overrightarrow{X}_i - \overrightarrow{\mu}) (\overrightarrow{X}_i - \overrightarrow{\mu})^{\mathsf{T}}$$

où $\overrightarrow{\mu} = \frac{1}{n} \sum_{i=1}^{n} \overrightarrow{X}_{i}$ est le vecteur des moyennes empiriques.

Application à notre cas

Soit $I = [I_1, I_2, ..., I_M]$ la matrice de l'ensemble de nos images.

Application à notre cas

Soit $I = [I_1, I_2, ..., I_M]$ la matrice de l'ensemble de nos images.

1 On calcule le visage moyen $\Psi = \frac{1}{M} \sum I_i$.

Introduction

Application à notre cas

Soit $I = [I_1, I_2, ..., I_M]$ la matrice de l'ensemble de nos images.

- **1** On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.
- **2** Chaque visage différe donc de la moyenne par le vecteur $\Phi_i = I_i \Psi$.

Introduction

Application à notre cas

Soit $I = [I_1, I_2, ..., I_M]$ la matrice de l'ensemble de nos images.

- **1** On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.
- **2** Chaque visage différe donc de la moyenne par le vecteur $\Phi_i = I_i \Psi$.
- 3 On calcule la matrice de covariance

$$C = \frac{1}{M} \sum_{i=1}^{M} \Phi_i \Phi_i^T = \frac{1}{M} A A^T$$

où
$$A = [\Phi_1, \Phi_2, \dots, \Phi_M].$$

Observations sur la Matrice de Covariance

La matrice de covariance C est :

Observations sur la Matrice de Covariance

La matrice de covariance C est :

symétrique réelle.

Observations sur la Matrice de Covariance

La matrice de covariance C est :

- symétrique réelle.
- définie semi-positive.

Introduction à l'Analyse en Composantes Principales

Principe

Transformer des variables liées entre elles en nouvelles variables décorrélées les unes des autres.

Introduction à l'Analyse en Composantes Principales

Principe

Transformer des variables liées entre elles en nouvelles variables décorrélées les unes des autres.

Définition (Eigenfaces)

La méthode développéee par Turk et Pentland définit les *eigenfaces* comme les axes principaux de l'ACP.

Illustration Deux Dimensions

Des graphiques

Classification des visages

Conclusion

•

Calcul des eigenfaces

Références