Санкт-Петербургский национальный исследовательский институт информационных технологий, механики и оптики

Физический факультет

Группа: Z3144

Студент: Евгений Турчанин

1 Цели работы

Изучение режимов колебаний в простейшей системе двух связанных осцилляторов и сопоставление с элементарной теорией связныхосцилляторов.

2 Задачи

- 1. Измерение частоты синфазной колебательной моды системы.
- 2. Измерение частоты при колебаниях системы в противофазе. Измерение константы связи и коэффициента жёсткости пружины.
- 3. Измерение периода и частоты биений, возникающих при возбуждении двумодового колебательного процесса.

3 Теоретическое введение

Уравнения движения для связных колебаний выглядит как:

$$\begin{cases} \ddot{\varphi}_1 + \omega_0^2 \varphi_1 - \varkappa^2 (\varphi_2 - \varphi_1) = 0, \\ \ddot{\varphi}_2 + \omega_0^2 \varphi_2 - \varkappa^2 (\varphi_1 - \varphi_2) = 0. \end{cases}$$
 (1)

Где $\varphi_{1,2}$ — углы отклонения от вертикали 1-го и 2-го маятника соответственно, ω_0 — собственная частота колебаний без затухания, $\varkappa^2=\frac{kL_1^2}{mL_2^2},\ k$ — коэффициент жёсткости, $L_{1,2}$ — расстояние от крепления до пружины, m — масса груза.

Решением данной системы:

$$\begin{cases} \varphi_1 = \frac{1}{2} (\Phi_{01} \cos(\Omega_{n1} + \varphi_{01})) + \Phi_{02} \cos(\Omega_{n2} + \varphi_{02}), \\ \varphi_2 = \frac{1}{2} (\Phi_{01} \cos(\Omega_{n1} + \varphi_{01})) - \Phi_{02} \cos(\Omega_{n2} + \varphi_{02}). \end{cases}$$
(2)

Где $\Phi_{01,02}$ — амплитуды 1-го и 2-го соответственно, $\varphi_{01,02}$ — начальные фазы 1-го и 2-го соответственно, $\Omega_{n1}=\omega_0,\,\Omega_{n2}=\sqrt{\omega_0^2+2\varkappa^2}$ Так как \varkappa^2/ω_0^2 — это малый параметр, то верно:

$$\Omega_{n2} = \sqrt{\omega_0^2 + 2\varkappa^2} \approx \omega_0 \left(1 + \frac{\varkappa^2}{\omega_0^2} \right) = \sqrt{\frac{g}{L}} + \frac{kL_1^2}{mg^{1/2}L^{3/2}}$$

$$T_6 = \frac{2\pi}{\Omega_{n2} - \Omega_{n1}}$$

Данные 4

5 Результаты

Обрабатывая данные в python, получаем:

- 1. Из графика $\Omega_{n1} = 3.186, 3.172$ Теоретическое $\Omega_{n1} = 3.166$
- 2. Средний Ω_{12} : 3.63 с Коэффициент жесткости k: 1.76 \pm 0.058 H/m Коэффициент k: -0.57 ± 0.058
- 3. Средний Ω_{22} : 3.59 с Коэффициент к: -0.53 ± 0.029 Коэффициент жесткости к: 1.62 ± 0.029
- 4. Доверительный интервал частоты Ω_1 : 0.42 ± 0.084 Средний период 1 биений по графику: 15.12 секунд Доверительный интервал частоты Ω_2 : 0.40 ± 0.150 Средний период 2 биений по графику: 15.80 секунд

6 Вывод

- 1. Коэфициет жесткости k получился ровно в два раза меньше, что может быть вызванно ошибкой в вычисления или неправильной обработкой в python
- 2. Так же для частоты Ω_2 получился большой доверительный интервал, это может быть вызванно, тем что запуск маятника происходил путем простого отпускания рук, а из-за этого могли сильно отличатся начальные данные

3. В остальном, теория сходится с экспериментом