CS 127/CSCI E-127: Introduction to Cryptography

Prof. Salil Vadhan Fall 2013

Lecture Notes 20:

Fully Homomorphic Encryption

Reading.

- Barak-Brakerski blog post:
 http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
- Gentry-Sahai-Waters paper §1

1 Homomorphic Encryption

- Example: textbook RSA encryption
 - $\left[\mathsf{Enc}_{N,e}(m_1) \cdot \mathsf{Enc}_{N,e}(m_2) \bmod N \right] = \mathsf{Enc}_{N,e}([m_1 \cdot m_2 \bmod N])$
 - Can multiply encrypted messages without decrypting!
 - Previously discussed as a vulnerability in textbook RSA signatures; here we will see this as a useful feature.
- Informally, we want to say that a (public-key) encryption scheme with message space \mathcal{M}_{pk} and ciphertext space \mathcal{C}_{pk} is homomorphic with respect to $f: \mathcal{M}_{pk}^k \to \mathcal{M}_{pk}$ if there is a PPT algorithm $\mathsf{Eval}_{pk}^f: \mathcal{C}_{pk}^k \to \mathcal{C}_{pk}$ such that if c_1, \ldots, c_k are encryptions of messages m_1, \ldots, m_k , then $f(c_1, \ldots, c_k)$ is an encryption of $f(m_1, \ldots, m_k)$.
- Above can be formalized in several ways for probabilistic encryption:
 - Strongly Homomorphic: For every $c_1 \in \operatorname{Enc}_{pk}(m_1), \ldots, c_k \in \operatorname{Enc}_{pk}(m_k)$, $\operatorname{Eval}_{pk}^f(c_1, \ldots, c_k)$ is identically distributed to $\operatorname{Enc}_{pk}(f(m_1, \ldots, m_k))$, where these are random variables taken over the coin tosses of Eval and Enc, respectively.
 - * has "rerandomization" built in
 - Weakly Homomorphic: For every $m_1, \ldots, m_k \in \mathcal{M}_{pk}$, $\mathsf{Dec}_{sk}(\mathsf{Eval}_{pk}^f(\mathsf{Enc}_{pk}(m_1), \ldots, \mathsf{Enc}_{pk}(m_k))) = f(m_1, \ldots, m_k)$ with probability $1 \mathsf{neg}(n)$ over coins of Enc and Eval.
 - * has limited usability. why?
 - * trivial construction:
 - * can rule out trivial construction by requiring ciphertext to be *compact* not grow with homomorphic evaluation.

- Existing constructions of fully homomorphic encryption schemes achieve properties somewhere between the above two definitions.
- Some probabilistic encryption schemes that are strongly homomorphic and are CPA-secure under standard crypto assumptions:
 - El Gamal: homomorphic wrt multiplication in \mathbb{Z}_p^*
 - Goldwasser-Micali (KL1e §11.1, PS10): homomorphic wrt XOR
 - Paillier (KL1e §11.3): homomorphic wrt addition in \mathbb{Z}_N
- Already these single-operation homomorphic properties are very useful in the construction of cryptographic protocols such as electronic voting (see KL2e §14.2) and private information retrieval (PS 10).
- NB: homomorphic encryption schemes *cannot* be chosen-ciphertext secure.

Fully Homomorphic Encryption 2

- What if we had an encryption scheme that is homomorphic with respect to both addition and multiplication?
 - $-\Rightarrow$ also homomorphic wrt boolean AND, OR, and NOT (for messages in $\{0,1\}$):

 - $* \operatorname{Eval}_{pk}^{NOT}(c) =$ $* \operatorname{Eval}_{pk}^{AND}(c_1, c_2) =$
 - \Rightarrow homomorphic wrt to any boolean *circuit* C
 - * A boolean circuit $C: \{0,1\}^k \to \{0,1\}$ computes on boolean inputs by sequence of AND, OR, and NOT gates).
 - * $\mathsf{Eval}^C(c_1,\ldots,c_k)$ can take C as an input and runs in time $\mathsf{poly}(|C|,n)$, where |C| is the number of gates in C and n the security parameter.
 - $-\Rightarrow$ homomorphic wrt any polynomial-time algorithm $A:\{0,1\}^*\rightarrow\{0,1\}$
 - * Given an algorithm $A:\{0,1\}^*\to\{0,1\}$ that runs in time t(k) on inputs of length k, can construct in time poly(t(k),k) a boolean circuit $C:\{0,1\}^k\to\{0,1\}$ that computes the same function as A, restricted to inputs of length k.
 - * $\mathsf{Eval}_{pk}^{A,t(k)}(c_1,\ldots,c_k)$ runs in time $\mathsf{poly}(|A|,k,n,t(k))$, where |A| is the length of the program A.
- An encryption scheme satisfying the above properties is called *fully homomorphic*.
 - Idea first proposed in 1978.
 - First candidate construction 2009 (Gentry).
- Canonical Application: cloud computing with privacy
 - B wants to use a cloud provider A to store and compute on his files m_1, \ldots, m_k
 - Worried about privacy, B uploads only encrypted files $c_1 = \mathsf{Enc}_{pk}(m_1), \ldots, c_k = \mathsf{Enc}_{pk}(m_k)$ and his public key pk.
 - Later when B wants to run a program F on his files, he sends F and the runtime t of F to A.

- A computes $\mathsf{Eval}_{pk}^{F,t}(c_1,\ldots,c_k)$ and sends B the result c.
- B decrypts c to obtain $Dec_{sk}(c) = F(m_1, \ldots, m_k)$.

3 Sketch of GSW Construction

- First attempt:
 - Secret key is a vector $v \in \mathbb{Z}_q^n$.
 - Ciphertexts are $n \times n$ matrices C over \mathbb{Z}_q , where q is a poly(n)-bit prime, such that $Cv = \mu v$ (matrix-vector product modulo q) for some $\mu \in \mathbb{Z}_q$. μ is the message encrypted by C.
 - Eval⁺ $(C_1, C_2) = C_1 + C_2$ (componentwise addition).
 - Eval[×] $(C_1, C_2) = C_1C_2$ (matrix multiplication).
 - Why is this insecure?

• Fix:

- Cv is only approximately equal to v, i.e. ||Cv v|| is small.
- Solving noisy linear systems conjectured to be hard (and in fact can even be proven to be average-case hard based on a worst-case assumption about the hardness of estimating the length of the shortest vector in high-dimensional lattices).
- How to decrypt?
- Problem: homomorphic evaluation increases noise
 - * Can only do a bounded number of homomorphic operations.
 - * Many beautiful ideas go into controlling the noise blow-up and "'bootstrapping" such a scheme to allow an unbounded number of homomorphic evaluations.
- See GSW paper for more details (including proof of security).