

Общероссийский математический портал

С. С. Марченков, В. А. Простов, Критерий полноты относительно оператора замыкания по перечислению в трех-значной логике, $\mathcal{A}uc\kappa pem$. матем., 2021, том 33, выпуск 2, 86–99

DOI: https://doi.org/10.4213/dm1641

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 46.34.194.181

11 декабря 2022 г., 16:51:10

Дискретная математика

том 33 выпуск 2 * 2021

УДК 519.716

DOI https://doi.org/10.4213/dm1641

Критерий полноты относительно оператора замыкания по перечислению в трехзначной логике

© 2021 г. С.С. Марченков*, В. А. Простов*

На множестве P_k функций k-значной логики рассматривается оператор замыкания по перечислению (П-оператор). Доказано, что при любом $k \geqslant 2$ любой позитивно предполный класс в P_k является также П-предполным. Установлено, что в трехзначной логике других П-предполных классов не существует.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований, проект 19–01–00200.

Ключевые слова: оператор замыкания по перечислению, функции трехзначной логики

Введение. Одним из инструментов классификации функций многозначной логики являются операторы замыкания. Среди операторов замыкания наиболее известен оператор суперпозиции. Несмотря на широкое распространение, в вопросах классификации оператор суперпозиции обладает одним существенным «изъяном»: при любом $k \geqslant 3$ число замкнутых классов в k-значной логике P_k континуально [17]. Это обстоятельство заставляет искать другие, более сильные операторы замыкания, по отношению к которым число замкнутых классов в P_k конечно либо счетно (такие операторы получили название сильных операторов замыкания).

К настоящему времени в ряде работ на основе различных идей определено более десятка сильных операторов замыкания. Все они являются расширениями оператора суперпозиции. Обычно после доказательства того, что вводимый оператор замыкания при любом $k \geqslant 2$ порождает на множестве P_k конечную либо счетную классификацию, проводится исследование получаемой классификации при k=2. Этот этап исследований для сильных операторов замыкания выполняется относительно легко. Однако наиболее интересным, на наш взгляд, представляется изучение действия сильных операторов замыкания на множестве P_3 .

Для первого из известных сильных операторов замыкания — оператора параметрического замыкания — все 25 замкнутых классов булевых функций определены А.В.Кузнецовым [3]. В случае трехзначной логики все 2986 замкнутых классов найдены и подробно описаны А.Ф.Данильченко [1, 2, 18]. В [4] введено понятие

 $^{^*}$ Место работы: МГУ им. М. В. Ломоносова, e-mail: ssmarchen@yandex.ru, vasyapro08@mail.ru

S-классификации функций многозначной логики (оператор S-замыкания). В [13] найдены все 48~S-замкнутых классов трехзначной логики (полное и автономное доказательство этого результата содержится в книге [6]). Один из способов введения сильного оператора замыкания состоит в добавлении к любому замкнутому классу фиксированной функции. На этом пути в [7] описаны все 144~ замкнутых класса трехзначной логики, которые содержат тернарный дискриминатор p. Естественное «позитивное» обобщение оператора параметрического замыкания приводит к оператору позитивного замыкания [5]. Все 192~ позитивно замкнутых класса функций трехзначной логики найдены в [9]. Интересные сильные операторы замыкания предложены в [14,15]; для одного из них в классе $P_3~$ имеется конечное число замкнутых классов, для другого — счетное множество. Отметим дальнейшее обобщение оператора позитивного замыкания — оператор импликативного замыкания, для которого в [12]~ определены все 17~ замкнутых классов из P_3 .

В [10] введен сильный оператор замыкания — оператор замыкания по перечислению (оператор П-замыкания). Этот оператор получается применением к функциям многозначной логики идеи перечисления графика функции с помощью набора (всюду определенных) функций — эта идея широко используется в теории рекурсивных функций. Однако, в отличие от рекурсивных функций, для функций многозначной логики графики функций приходится перечислять, вообще говоря, с помощью нескольких наборов функций. Это свойство оператора П-замыкания — перечисление графика функции «по частям» — существенно отличает оператор П-замыкания от других сильных операторов замыкания. В [10] установлены основные свойства оператора П-замыкания, в частности, доказано, что для любого $k \ge 2$ в P_k существует только конечное число П-клонов, и найдены все П-клоны булевых функций. Однако даже в P_3 все П-предполные классы не известны.

Одним из хорошо изученных сильных операторов замыкания является оператор позитивного замыкания [5,8,9,11]. Поэтому вновь вводимые сильные операторы замыкания часто сравнивают с оператором позитивного замыкания. В [10] показано, что оператор позитивного замыкания сильнее оператора Π -замыкания: всякий позитивно замкнутый класс состоит, вообще говоря, из нескольких Π -замкнутых классов.

В настоящей работе мы сравниваем операторы Π -замыкания и позитивного замыкания на уровне предполных классов. Прежде всего устанавливаем, что при любом $k \geqslant 2$ любой позитивно предполный класс в P_k является также Π -предполным. Для k=3 этот результат усиливаем: множества позитивно предполных и Π -предполных классов в P_3 , содержащих тождественную функцию, совпадают и состоят ровно из 10 классов. Тем самым в трехзначной логике получаем эффективный критерий Π -полноты для систем функций, содержащих тождественную функцию.

Основные понятия. Пусть k — натуральное число, $k \geqslant 2$, $E_k = \{0,1,\ldots,k-1\}$ и P_k — множество всех функций на E_k (множество функций k-значной логики). Если $Q \subseteq P_k$ и $n \geqslant 1$, то через $Q^{(n)}$ обозначим множество всех функций из Q, зависящих от n переменных. Селекторной функцией назовем функцию, значения которой совпадают со значениями некоторой из ее переменных.

Пусть $f(x_1, ..., x_n)$, g(x) — функции из P_k . Будем говорить, что g есть эндоморфизм функции f, если выполняется тождество

$$f(g(x_1), \dots, g(x_n)) = g(f(x_1, \dots, x_n)).$$

Множество всех функций из P_k , имеющих эндоморфизм g, обозначим через F(g).

На множестве P_k предполагаем заданной операцию (оператор) суперпозиции. Посредством [Q] будем обозначать замыкание множества функций $Q \subseteq P_k$ относительно операции суперпозиции. Хорошо известно [9,11], что для любой функции g(x) множество F(g) содержит все селекторные функции и замкнуто относительно операции суперпозиции.

Пусть функции $g_1, \ldots, g_n, g_{n+1}$ принадлежат множеству $P_k^{(m)}$. Назовем набор функций $(g_1, \ldots, g_n, g_{n+1})$ корректным, если для любых двух наборов $(a_1, \ldots, a_m), (b_1, \ldots, b_m)$ из E_k^m справедлива импликация

$$(g_1(a_1,\ldots,a_m)=g_1(b_1,\ldots,b_m)) \& \ldots \& (g_n(a_1,\ldots,a_m)=g_n(b_1,\ldots,b_m))$$

 $\Rightarrow (g_{n+1}(a_1,\ldots,a_m)=g_{n+1}(b_1,\ldots,b_m)).$

Пусть $f(x_1,\ldots,x_n) \in P_k$ и

$$\{(g_{11},\ldots,g_{1n},g_{1,n+1}),\ldots,(g_{s1},\ldots,g_{sn},g_{s,n+1})\}$$
 (1)

— система корректных наборов функций из $P_k^{(m)}$. Будем говорить, что система наборов (1) *перечисляет* (или П-*определяет*) функцию f, если график $f(x_1,\ldots,x_n)=x_{n+1}$ функции f есть объединение всех множеств

$$\{(g_{i1}(y_1,\ldots,y_m),\ldots,g_{in}(y_1,\ldots,y_m),g_{i,n+1}(y_1,\ldots,y_m)): y_1,\ldots,y_m \in E_k\},\$$

где $i=1,2,\ldots,s$. Таким образом, на множестве P_k определена *операция перечисления*.

Из определения следует, что если система наборов (1) П-определяет функцию f, то для любого $i,\ 1\leqslant i\leqslant s$, справедливо тождество

$$f(g_{i1}(y_1,\ldots,y_m),\ldots,g_{in}(y_1,\ldots,y_m))=g_{i,n+1}(y_1,\ldots,y_m)$$

и, кроме того, для любого набора (a_1,\ldots,a_n) из E_k^n существует такое число i, $1\leqslant i\leqslant s,$ и такой набор (b_1,\ldots,b_n) из $E_k^n,$ что

$$(g_{i1}(b_1,\ldots,b_m),\ldots,g_{in}(b_1,\ldots,b_m))=(a_1,\ldots,a_n).$$

Пусть $Q \subseteq P_k$. Назовем П-*замыканием* множества Q (обозначение $\Pi[Q]$) множество всех функций, которые можно получить из функций множества Q с помощью операций суперпозиции и перечисления.

Множество Q называем Π -замкнутым классом, если $\Pi[Q]=Q$. Понятие Π -порождающей системы (для Π -замкнутого класса) вполне аналогично соответствующему понятию для операции суперпозиции. Так же, как для операции суперпозиции, Π -замкнутый класс будем называть Π -клоном, если он содержит все селекторные функции.

Назовем множество функций $Q \subseteq P_k^{(m)}$ накрывающим, если в множестве Q существуют такие функции g_1, \ldots, g_k , что для некоторого набора $(a_1, \ldots, a_m) \in E_k^m$ имеет место равенство

$$\{g_1(a_1,\ldots,a_m), \ldots, g_k(a_1,\ldots,a_m)\} = E_k.$$

В [10] доказано, что если Q — Π -замкнутый класс функций и множество $Q^{(m)}$ является накрывающим, то $Q = \Pi[Q^{(m)}]$. Кроме того, в [10] установлено, что система, состоящая из всех функций-констант, является Π -полной.

Результаты. Известно [9, 11], что всякий позитивно предполный в P_k класс представим в виде F(g), где g(x) — либо идемпотентная функция из P_k , отличная от тождественной, либо перестановка на E_k , которая разлагается в произведение циклов одной и той же простой длины и, возможно, циклов длины 1, число которых в этом случае должно быть не менее двух. Далее мы рассмотрим обе эти возможности и установим, что соответствующий класс F(g) является П-предполным в P_k . Поскольку всякий позитивно замкнутый класс является также П-замкнутым, нам достаточно показать, что для любого позитивно предполного класса Q и любой функции f, не принадлежащей Q, выполняется равенство $\Pi[Q \cup \{f\}] = P_k$.

Сначала рассмотрим случай идемпотентной функции g(x), отличной от тождественной функции. В этом случае существуют такое разбиение $\{D_1,\ldots,D_s\}$ множества E_k на непустые попарно не пересекающиеся подмножества и такие элементы d_1,\ldots,d_s , что s< k и

$$d_1 \in D_1, \ldots, d_s \in D_s, \quad g(D_1) = d_1, \ldots, g(D_s) = d_s.$$

Нетрудно показать, что одноместная функция f принадлежит классу F(g) тогда и только тогда, когда она удовлетворяет следующему условию: для всякого i, $1 \le i \le s$, существует такое j, $1 \le j \le s$, что

$$f(D_i) \subseteq D_j$$
 и $f(d_i) = d_j$.

Отсюда, в частности, следует, что класс F(g) содержит все константы d_1, \ldots, d_s и не содержит ни одной из остальных констант.

Пемма 1. Пусть g(x) — идемпотентная функция, отличная от тождественной, и $f \notin F(g)$. Тогда в классе $[F(g) \cup \{f\}]$ имеется одноместная функция, не принадлежащая классу F(g).

Доказательство. Согласно определению функции f существует такой набор \tilde{a} , что $g(f(\tilde{a})) \neq f(g(\tilde{a}))$. Сначала в функции f проведем отождествление переменных в соответствии с равенством компонент в наборе \tilde{a} . Это приведет к функции, зависящей не более чем от k переменных. Затем в полученной функции заменим произвольную переменную x_i константой d_j , если на соответствующем месте в наборе \tilde{a} стояло значение d_j (все такие константы входят в класс F(g)). В результате получим функцию f_1 , зависящую от m < k переменных, которая также не входит в класс F(g). Иными словами, для некоторого набора (b_1, \ldots, b_m) будем иметь

$$g(f_1(b_1,\ldots,b_m)) \neq f_1(g(b_1),\ldots,g(b_m)).$$

Удобно считать, что (b_1,\ldots,b_m) — поднабор набора \tilde{a} . Если тогда $b_1\in D_{i_1},\ldots,b_m\in D_{i_m}$ (среди индексов i_1,\ldots,i_m возможны повторения), то каждое из множеств D_{i_1},\ldots,D_{i_m} содержит по крайней мере два элемента и $b_1\neq d_{i_1},\ldots,b_m\neq d_{i_m}$. Предполагая, что m>1, определим функции $h_2(x),\ldots,h_m(x)$ следующим образом: $h_j(d_{i_1})=d_{i_j},\ h_j(x)=b_{i_j}$ при $x\in D_{i_1}\setminus\{d_{i_1}\}$ и $h_j(x)=x$ в остальных случаях. Нетрудно убедиться, что функции h_2,\ldots,h_m принадлежат классу F(g). Положим

$$f_2(x) = f_1(x, h_2(x), \dots, h_m(x)).$$

Тогда

$$f_2(d_{j_1}) = f_1(d_{j_1}, d_{j_2}, \dots, d_{j_m}) = f_1(g(b_1), g(b_2), \dots, g(b_m))$$

и (поскольку $b_1 \neq d_1$)

$$f_2(b_1) = f_1(b_1, b_2, \dots, b_m),$$

что устанавливает соотношение $f_2 \notin F(g)$. Лемма доказана.

Теорема 1. Для любого $k \geqslant 2$ и любой идемпотентной функции g(x) из P_k , отличной от тождественной функции, класс F(g) является Π -предполным в P_k .

Доказательство. Пусть $f \notin F(g)$. В силу леммы 1 можно считать, что f — одноместная функция. Сразу выделим два простых случая. Если s=1 (т.е. $D_1=E_k$ и функция g есть константа d_1), то класс F(g) состоит из всех функций, сохраняющих d_1 . Этот класс не только позитивно предполон в P_k , но даже предполон в P_k относительно операции суперпозиции. Отсюда сразу получаем равенство $[F(g) \cup \{f\}] = P_k$.

Предположим, что s>1 и существует такое $i,\ 1\leqslant i\leqslant s$, что $f(d_i)\notin\{d_1,\ldots,d_s\}$. Поскольку константа d_i принадлежит классу F(g), мы получаем константу $f(d_i)$, отличную от d_1,\ldots,d_s . Теперь заметим, что для любых чисел a,b, не входящих в множество $\{d_1,\ldots,d_s\}$, в классе F(g) имеется такая функция $f_{ab}(x)$, что $f_{ab}(a)=b$. Таким образом, приходим к выводу, что замыкание $[F(g)\cup\{f\}]$ содержит все константы, т.е. является П-полной системой.

Итак, в дальнейшем предполагаем, что s>1 и для всякого i элемент $f(d_i)$ входит в множество $\{d_1,\ldots,d_s\}$. Будем также считать, что непринадлежность функции f классу F(g) обеспечивается значениями функции f на множестве D_1 : существуют такие элементы $a,b\in D_1$, что $f(a)\in D_i, f(b)\in D_j$ и $i\neq j$. В целях упрощения записи предположим еще, что $D_1=\{0,1,\ldots,d_1\}$ и $a=d_1$ (тогда, конечно, $f(d_1)=d_i$). Далее рассмотрим две возможности.

1. Существует такое $c \in D_1$, что $f(c) \in D_j \setminus \{d_j\}$. Определим функцию $h_{yz}(x)$:

$$h_{yz}(x) = \left\{ \begin{array}{ll} z, & \text{если } x = y, \\ x & \text{в противном случае.} \end{array} \right.$$

Если y = f(c) и $z \in D_j$, то функция h_{yz} принадлежит классу F(g).

Рассмотрим функцию h(x) с вектором значений $(\underbrace{c \dots c}_{d_1} d_1 \dots d_1)$. Как нетрудно ви-

деть, она принадлежит классу F(g). Полагая $f_1(x) = f(h(x))$, видим, что она имеет

вектор значений $\underbrace{(f(c)\dots f(c)}_{d_1}d_i\dots d_i)$. Теперь для всякого элемента z из D_j положим $v_z(x)=h_{f(c)z}(f_1(x))$. Функция v_z имеет вектор значений $\underbrace{(z\dots z}_{d_1}d_i\dots d_i)$. Поскольку

 $d_i \neq d_j$, для каждого $z \in D_j$ набор функций $(v_z(x), f_1(x))$ является корректным. С помощью всех таких функций Π -определяем функцию w(x), принимающую значение f(c) на множестве D_i . На всех остальных множествах D_l значение w(x) полагаем равным x. Это достигается с помощью наборов функций $(h_l(x), h_l(x))$, где функция $h_l(x)$ из класса F(g) тождественна на множестве D_l и равна d_i на всех остальных множествах.

С помощью функции w получаем константу c: $w(d_i) = c$. Это завершает рассмотрение случая 1.

2. Для любого x из D_1 либо $f(x) = d_i$, либо $f(x) \in D_i$, причем обе возможности реализуются. Переходя, если необходимо, к функции g(f(x)), можно предполагать, что на множестве D_1 функция f принимает только значения d_i, d_i . Пусть значение d_i функция f принимает в точке c.

Так же, как в случае 1, рассматриваем в классе F(g) одноместную функцию $f_1(x)$ с вектором значений $(\underbrace{d_j \dots d_j}_{d_1} d_i \dots d_i)$. Кроме того, определяем в F(g) двуместную

функцию

$$f_2(x_1,x_2) = \left\{ \begin{array}{ll} x_2, & \text{если } x_1 \in D_j, x_2 \in D_j, \\ d_i & \text{иначе.} \end{array} \right.$$

Далее полагаем $f_3(x_1,x_2)=f_2(f_1(x_1),x_2)$, при этом получаем

$$f_3(x_1,x_2) = \left\{ egin{array}{ll} x_2, & \mbox{если } x_1 \in D_1 \setminus \{d_1\}, x_2 \in D_j, \\ d_i & \mbox{иначе.} \end{array}
ight.$$

Теперь для произвольного элемента b из $D_1 \setminus \{d_1\}$ рассмотрим функцию

$$f_4(x_1,x_2) = \left\{ egin{array}{ll} b, & ext{если } x_1 \in D_1 \setminus \{d_1\}, x_2 \in D_j, \\ d_1 & ext{иначе.} \end{array}
ight.$$

Несложно заметить, что она принадлежит классу F(g).

Далее определяем функцию w(x). Как вытекает из определений, набор функций $(f_3(x_1,x_2),f_4(x_1,x_2))$ является корректным, его мы используем для задания функции w(x) на множестве $D_j \cup \{d_i\}$: на множестве D_j она равна b и $w(d_i) = d_1$. Для любого l, отличного от i, j, функцию w(x) можно задать на множестве D_l тождественным образом с помощью пары функций $(h_l(x), h_l(x))$, где функция $h_l(x)$ тождественна на D_l и равна d_l вне этого множества. Для определения функции w(x) на множестве D_i следует воспользоваться корректным набором функций $(h_i(x), d_1)$, где функция $h_i(x)$ тождественна на множестве D_i и равна d_1 вне этого множества. Подстановкой константы d_i в функцию w получаем константу b из множества $D_1 \setminus \{d_1\}$.

Заметим, что функция w П-определена с помощью пар двуместных и одноместных функций. Чтобы выполнить условия применения операции перечисления, следует выбрать в классе F(q) двуместную селекторную функцию и путем подстановки в одноместные функции добавить несущественную переменную. Теорема доказана.

Теорема 2. Для любого $k \geqslant 2$ и любой перестановки g(x) на E_k , которая разлагается в произведение циклов одной и той же простой длины и, возможно, циклов длины 1, число которых в этом случае не менее двух, класс F(g) является Π -предполным в P_k .

Доказательство. Хорошо известно [16], что если перестановка g(x) удовлетворяет условиям теоремы, а ее цикловое разложение не имеет циклов длины 1, то класс F(g) является предполным в P_k даже относительно операции суперпозиции. Поэтому далее предположим, что в цикловом разложении перестановки g имеются одноэлементные циклы, состоящие из элементов d_1, \ldots, d_s , где s > 1. Для упрощения изложения будем считать, что цикловое разложение перестановки g имеет вид

$$(01 \dots p-1)(p \dots 2p-1) \dots (mp \dots (m+1)p-1)((m+1)p) \dots (k-1),$$

где p — простое число, (m+1)p < k и $d_1 = (m+1)p, \dots, d_s = k-1$.

Покажем, что для любых $a,b\leqslant (m+1)p-1$ в класс F(g) входит такая функция $g_{ab}(x)$, что $g_{ab}(a)=b$. В самом деле, если

$$a \in \{ip, \dots, (i+1)p-1\}, b \in \{jp, \dots, (j+1)p-1\},\$$

то

$$g_{ab}(a) = b$$
, $g_{ab}(a+1) = b+1$, ..., $g_{ab}(a+p-1) = b+p-1$,

где сложение в левых частях равенств проводится в цикле $(ip\dots(i+1)p-1)$, а в правых частях — в цикле $(jp\dots(j+1)p-1)$ (например, (i+1)p-1+1=ip). Для значений x, не принадлежащих множеству $\{ip,\dots,(i+1)p-1\}$, полагаем $g_{ab}(x)=x$.

Пусть $f(x_1,...,x_n)$ — произвольная функция, не принадлежащая классу F(g). Покажем, что система функций $F(g) \cup \{f\}$ П-полна в классе P_k . Тем самым будет доказана П-предполнота класса F(g).

Ввиду соотношения $f \notin F(g)$ существует такой набор $(b_1, \dots, b_n) \in E_k^n$, что выполняется неравенство

$$f(g(b_1), \dots, g(b_n)) \neq g(f(b_1, \dots, b_n)).$$
 (2)

Пусть $a\leqslant (m+1)p-1$. Для любого $l,1\leqslant l\leqslant n$, обозначим через g'_{ab_l} функцию g_{ab_l} , если $b_l\leqslant (m+1)p-1$, и функцию-константу b_l , если $b_l\geqslant (m+1)p$. Положим

$$f_a(x) = f(g'_{ab_1}(x), \dots, g'_{ab_n}(x)).$$

Функция f_a получена суперпозицией функций множества $PG(g) \cup \{f\}$ и, кроме того, в силу (2) имеет место неравенство

$$f_a(g(a)) \neq g(f_a(a)) \tag{3}$$

(функции $g'_{ab_1},\ldots,g'_{ab_n}$ принадлежат классу F(g) и потому при любом l выполняется соотношение $g'_{ab_l}(g(a))=g(g'_{ab_l}(a))).$

Таким образом, при любом $a \leq (m+1)p-1$ получена функция f_a , для которой неравенство (3) опровергает ее принадлежность классу F(g) на примере точек a и g(a).

Мы хотим далее определить аналогичные функции, но для большего расстояния между точками «опровержения»: a и g(g(a)), a и g(g(g(a))) и т.д. С этой целью при p>2 зафиксируем значение $q,\ 2\leqslant q< p,$ и рассмотрим, например, для $a\in\{0,1,\ldots,p-1\}$ значения функции f_a в точках

$$a, a+q, a+2q, \ldots, a+lq,$$

где арифметические действия выполняются по модулю p и $lq \equiv 1 \pmod{p}$. Поскольку на множестве $\{0,1,\ldots,p-1\}$ имеем $g(x)=x+1 \pmod{p}$, а функция f_a согласно (3) удовлетворяет неравенству

$$f_a(a+lq) \neq f_a(a)+1$$
,

существует пара «соседних» точек a+iq и a+(i+1)q, в которых будет нарушаться условие принадлежности функции f_a классу F(g):

$$f_a(a + (i+1)q) \neq f_a(a+iq) + q.$$

Таким образом, если мы хотим для данного значения a определить функцию, у которой в точках a и a+q достигается опровержение ее принадлежности классу F(g), то можно, например, взять функцию $f_a(x+iq)$.

Для любых $a \leq (m+1)p-1$ и $q, 1 \leq q < p$, обозначим через $f_{aq}(x)$ функцию, построенную описанным выше способом на основе функции f_a для точек a и $g^q(a)$, где g^q-q -кратная суперпозиция функции g. Положим r=(m+1)p(p-1). Рассмотрим набор из r+1 функций

Заметим, что набор (4) при $x=0,1,\ldots,k-1$ дает k наборов из E_k^{r+1} , которые принадлежат различным орбитам функции g. В самом деле, если $a,b\in\{ip,ip+1,\ldots,(i+1)p-1\}$ и $a\neq b$, то элемент a переводится в элемент b подходящей q-й степенью перестановки g. Вместе с тем по построению соответствующая функция f_{aq} набора (4) обеспечит невхождение в одну и ту же орбиту функции g наборов

$$(a, f_{aq}(a)), (b, f_{aq}(b)).$$

Если элементы a, b входят в различные циклы циклового разложения перестановки g, то равенство $g^q(a) = b$, очевидно, невозможно ни при каком q (используем принадлежность переменной x последовательности (4)).

То же самое получаем в случае, когда один из элементов a,b не превосходит величины (m+1)p-1, а другой больше этой величины, либо когда оба элемента больше (m+1)p-1.

Установленное свойство набора (4) позволяет определить в классе F(g) такую функцию h от r+1 переменных, что при любом x выполняется равенство

$$h(x, f_{01}(x), \dots, f_{(m+1)p-1, p-1}(x)) = 0.$$

Итак, функция, стоящая в левой части этого равенства, тождественно равна 0. С помощью функций g_{0b} получаем остальные константы $1,2,\ldots,(m+1)p-1$ и приходим к Π -полной системе всех констант. Теорема доказана.

Теорема 3. При любом $k \geqslant 2$ любой позитивно предполный класс в P_k является также Π -предполным.

Доказательство. Достаточно заметить [9, 11], что любой позитивно предполный класс в P_k имеет вид F(g), где функция g(x) удовлетворяет условиям теоремы 1 или теоремы 2.

Далее рассматриваем класс P_3 . Произвольную функцию f из $P_3^{(1)}$ будем изображать вектором (f(0)f(1)f(2)). Посредством $V_{002}, V_{010}, V_{011}, V_{022}, V_{112}, V_{212}$ обозначим позитивно замкнутые классы F(g) соответственно для эндоморфизмов (002), (010), (011), (022), (112), (212).

В последующем одноместные линейные функции рассматриваются по модулю 3. Через S_{x+1} обозначим класс F(g), где g(x) = x+1.

Лемма 2. Класс S_{x+1} П-предполон в P_3 и П-порождается каждой из функций x+1, x+2.

Доказательство. П-замкнутость класса S_{x+1} следует из теоремы 1. Кроме того, класс S_{x+1} , как хорошо известно [2], является предполным в P_3 относительно операции суперпозиции. Далее, каждая из функций x+1, x+2 получается из другой с помощью суперпозиции. Если $f(x_1,\ldots,x_n)$ — произвольная функция из S_{x+1} , $(a_1,\ldots,a_n)\in E_3^n$ и $f(a_1,\ldots,a_n)=a$, то набор из n+1 функций

$$(x + a_1, x + a_2, \dots, x + a_n, x + a)$$
 (5)

правильно определяет функцию f на трех наборах

$$(a_1, \ldots, a_n), (a_1 + 1, \ldots, a_n + 1), (a_1 + 2, \ldots, a_n + 2)$$
 (6)

(и только на этих наборах). Поэтому функцию f можно П-определить системой из 3^{n-1} наборов вида (5), отвечающих попарно не пересекающимся тройкам (6). Лемма доказана.

Пемма 3. Если Π -замкнутый класс Q содержит функцию 2x и функцию, не сохраняющую 0, то $Q=P_3$. Аналогичные утверждения справедливы для функций $2x+1,\ 2x+2$ и констант $2,\ 1$.

Доказательство. Поскольку функции 2x, 2x+1, 2x+2 попарно сопряжены, рассмотрим только случай, когда класс Q содержит функцию 2x. По условию в класс Q входит функция, не сохраняющая 0. Отождествлением всех переменных получаем из нее функцию $f_1(x)=(abc)$, где $a,b,c\in E_3$ и $a\neq 0$. Рассмотрим сначала случай, когда a,b,c — различные числа, т.е. f_1 — перестановка на E_3 , отличная от перестановок x,2x. Тогда, как хорошо известно, суперпозициями перестановок $2x,f_1(x)$ можно получить любую из оставшихся перестановок x+1,x+2,2x+1,2x+2. Ввиду леммы 2 будем иметь $S_{x+1}\subset Q$. Поскольку функция 2x+1 не входит в класс S_{x+1} , а класс S_{x+1} П-предполон в P_3 , приходим к выводу, что $Q=P_3$.

Далее предполагаем, что f_1 не является перестановкой. Кроме того, так как в класс Q входит функция 2x, будем считать, что $f_1(0) = 1$. Последовательно рассмотрим возможные случаи для функции f_1 .

Пусть $f_1 = (100)$. Тогда суперпозициями с функцией 2x получаем также функции (011), (022), (200). Определим функцию $f_2(x_1, x_2)$ с помощью корректной системы наборов одноместных функций:

$$((011), (022), (022)), ((022), (011), 022)), ((100), (022), (200)),$$

 $((022), (100), (200)), ((011), (011), (022)), ((022), (022), (022)).$

Проверяем, что функция f_2 принимает значение 0 на наборах (0,0), (0,2), (2,0) и значение 2 на всех остальных наборах. Поэтому функция $f_2((100)(x),(011)(x))$ есть константа 2. Подставляя ее в функции (100) и (011), образуем далее константы 0 и 1. Получаем П-полную систему трех констант.

Предположим, что $f_1 = (101)$. С помощью функции 2x получаем далее функции (110), (202), (220). Подстановка функции (110) в себя дает константу 1, а подстановка константы 1 в функции (101) и (220) — константы 0 и 2. Приходим к П-полной системе трех констант.

Пусть $f_1 = (110)$. Подстановка функции 2x в функцию f_1 дает рассмотренную выше функцию (101).

Предположим, что f_1 есть константа 1. Тогда у нас имеется и константа 2. Теперь определяем функцию $f_3(x_1, x_2)$ с помощью корректной системы наборов одноместных функций:

$$((012), (021), (021)), \quad ((012), (111), (021)), \quad ((012), (222), (222)), \\ ((111), (012), (222)), \quad ((222), (012), (012)).$$

Замечаем, что $f_3(x,x)=(022)$. Применение функции 2x к функции (022) дает функцию (011).

Следующий этап — определение функции $f_4(x_1, x_2)$:

```
((011), (011), (111)), ((011), (111), (111)), ((011), (222), (111)), ((111), (011), (111)), ((222), (011), (111)), ((222), (222), (222)).
```

Имеем $f_4(x,x)=(112)$. С помощью функции 2x образуем функции (121), (212), (221). Теперь определяем функцию $f_5(x_1,x_2)$:

$$((022), (022), (111)), ((012), (121), (111)), ((012), (221), (111)), ((112), (121), (011)), ((121), (012), (111)), ((221), (012), (111)).$$

Очевидно, что $f_5(x,x)=(101)$. Этот случай нами разобран выше.

Пусть $f_1 = (112)$. С помощью функции 2x получаем также функции (121), (212), (221). Определяем функцию $f_6(x_1, x_2)$:

```
((012), (021), (112)), ((012), (121), (112)), ((012), (221), (112)), ((121), (012), (121)), ((221), (012), (121)), ((112), (121), (112)), ((212), (221), (112)).
```

Функция $f_6(x,x)$ есть константа 1. Этот случай рассмотрен нами выше.

Пусть $f_1 = (121)$. Подстановка функции 2x в функцию f_1 дает рассмотренную функцию (112). Если же $f_1 = (122)$, то $f_1(f_1(x)) = 2$. С помощью функции 2x получаем константу 1. Соответствующий случай рассмотрен выше. Лемма доказана.

Посредством T_0, T_1, T_2 обозначим классы вида F(g), где функция g есть соответственно константа 0, 1, 2. В теореме 4 мы рассматриваем только П-предполные классы, содержащие тождественную функцию x. Это связано с двумя обстоятельствами. Во-первых, все позитивно замкнутые классы содержат данную функцию. Поэтому сравнивать оператор П-замыкания с оператором позитивного замыкания в данном случае представляется более естественным на множестве замкнутых классов одного «типа» — содержащих функцию x. А во-вторых, наличие функции x в П-замкнутых классах позволяет сократить перебор в доказательстве теоремы 4 и отсечь некоторые П-предполные классы, которые заведомо не могут быть позитивно замкнутыми (например, классы, которые состоят из функций, принимающих лишь фиксированные два значения).

Теорема 4. Все Π -предполные в P_3 классы, содержащие тождественную функцию x, исчерпываются классами

$$T_0, T_1, T_2, S_{x+1}, V_{002}, V_{010}, V_{011}, V_{022}, V_{112}, V_{212}.$$
 (7)

Доказательство. Список (7) состоит из всех классов, позитивно предполных в P_3 , в частности, ни один из них целиком не содержится в другом.

Теперь для установления справедливости утверждения теоремы возьмем произвольное множество Q функций из P_3 , которое целиком не содержится ни в одном из классов последовательности (7), и покажем, что множество Q П-полно в P_3 . Это будет означать, что классы последовательности (7) образуют относительно оператора П-замыкания критериальную систему.

Поскольку нас интересует П-полнота множества Q, можно без ограничения общности предполагать, что Q — П-замкнутый класс. Из функций класса Q, не входящих в классы T_0, T_1, T_2 , отождествлением переменных получаем функции $f_0(x), f_1(x), f_2(x)$ класса Q, которые соответственно не входят в классы T_0, T_1, T_2 . Отметим, что все три функции $f_0(x), f_1(x), f_2(x)$ отличны от тождественной функции x. Обозначим через f(x) какую-либо из этих функций и рассмотрим для нее имеющиеся возможности.

Прежде всего, в силу леммы 2 можно считать, что $f(x) \notin \{x+1, x+2\}$ (иначе $S_{x+1} \subseteq Q$, а ввиду $Q \not\subseteq S_{x+1}$ класс Q будет совпадать с P_3). Из леммы 3 следует, что функцию f(x) можно считать отличной от функций 2x, 2x+1, 2x+2.

Предположим, что f = (001). Тогда, очевидно, $0 \in Q$. Подстановка функции 0 в функцию $f_0(x)$ дает одну из функций 1 или 2. Если имеется константа 2, то подстановкой ее в функцию f получаем константу 1, т. е. приходим к системе трех констант. Предположим, что имеется константа 1. Тогда с помощью корректной системы наборов одноместных функций определяем функцию $g(x_1, x_2)$:

$$((001), (012), (012)), ((012), (001), (012)), ((012), (012), (000)), ((000), (012), (012)), ((012), (000), (012)).$$

Далее получаем g(1,x) = (102). Теперь следует воспользоваться леммой 3.

В силу принципа сопряженности аналогичные построения и рассуждения справедливы для функций (020), (110), (122), (202), (211).

Как мы убедились выше, класс Q не может содержать только одну константу. Поэтому рассмотрим случай, когда в Q входят ровно две константы. Пусть это будут, например, константы 0 и 1. Поскольку мы рассматриваем только Π -замкнутые классы, содержащие тождественную функцию x, множество $Q^{(1)}$ в этом случае оказывается накрывающим и, следовательно [10],

$$Q = \Pi[Q^{(1)}]. (8)$$

Поэтому из соотношения $\{0,1,x\}\subset V_{010}$ и невхождении Q в класс V_{010} следует, что $Q^{(1)}\neq\{0,1,x\}.$

Если в $Q^{(1)}$ есть функция, не сохраняющая множество $\{0,1\}$, то в $Q^{(1)}$ входит константа 2, что приводит к П-полной системе трех констант. Исключая из рассмотрения такие функции, а также функции, уже рассмотренные выше, приходим к выводу, что в множество $Q^{(1)}$ помимо функций 0,1,x могут входить лишь функции

$$(002), (010), (011), (100), (101), (112).$$
 (9)

Если $Q^{(1)}\subseteq\{0,1,x,(002),(010),(101)\}$ или $Q^{(1)}\subseteq\{0,1,x,(011),(100),(112)\}$, то получаем противоречие с равенством (4) и невхождением Q в классы V_{010},V_{011} . Поэтому далее в качестве множества $Q^{(1)}$ будем рассматривать расширения множества $\{0,1,x\}$ с помощью функций из списка (5), в которые входят как функции множества $\{(002),(010),(101)\}$, так и функции множества $\{(011),(100),(112)\}$. Здесь возможны девять случаев.

- 1. $\{(002),(011)\}\subset Q^{(1)}$. Подстановка функции (002) в функцию (011) дает ранее рассмотренную функцию (001).
- 2. $\{(002),(100)\}\subset Q^{(1)}$. Суперпозиция функции (100) дает функцию (011), далее применяем п. 1.
 - 3. $\{(002),(112)\}\subset Q^{(1)}$. Определяем функцию $g(x_1,x_2)$:

$$((000), (012), (012)), ((012), (000), (012)), ((111), (012), (112)), ((012), (111), (112)), ((112), (112), (111)).$$

Имеем g(x,x) = (011). Подстановка функции (002) в функцию (011) дает уже рассмотренную функцию (001).

4. $\{(010),(011)\}\subset Q^{(1)}$. Сначала определяем функцию $g_1(x_1,x_2)$:

$$((000), (012), (012)), (012), (000), (012)), (012), (012), (012), (012), (011), (012), (111), (012), (011), (012), (011), (012).$$

Имеем $g_1(x,1)=(112)$. Далее определяем функцию $g_2(x_1,x_2)$:

$$((012), (012), (111)), \quad ((111), (012), (012)), \quad ((012), (111), (012)), \\ ((010), (112), (110)), \quad ((112), (010), (110)).$$

Замечаем, что функция $g_2(0,x)$ совпадает с функцией (100). Теперь подстановка функции (010) в функцию (100) дает функцию (101), а подстановка функции (112) в функцию (101) — функцию (001). Эта функция рассмотрена нами выше.

- 5. $\{(010),(100)\}\subset Q^{(1)}$. Подстановка функции (100) в себя дает функцию (011), что возвращает нас к п. 4.
- 6. $\{(010), (112)\} \subset Q^{(1)}$. Подстановка функции (112) в функцию (010) дает функцию (110). Определяем функцию $g(x_1, x_2)$:

$$((012), (012), (010)), ((111), (012), (010), ((012), (111), (010)), ((110), (112), (111)), ((112), (110), (111)).$$

Имеем g(0,x) = (001), что приводит к рассмотренному выше случаю.

7–9). (101) $\in Q^{(1)}$ и $\{011), (100), (112)\} \cap Q^{(1)} \neq \emptyset$. Подстановка функции (101) в себя дает один из случаев 4–6.

Для завершения доказательства теоремы остается рассмотреть случай, когда множество $Q^{(1)}$ не содержит констант. Нетрудно убедиться в том, что в этом случае множество $Q^{(1)}\setminus\{x\}$ может входить только в одно из трех попарно сопряженных множеств

$$\{(010), (011), (100), (101)\}, \{(002), (022), (200), (220)\}, \{(112), (121), (212), (221)\}.$$

Пусть, например, для $Q^{(1)} \setminus \{x\}$ мы имеем включение в первое из множеств. Если в $Q^{(1)}$ входит пара функций (010), (100), то в $Q^{(1)}$ входят также функции (101) и (011). Определим функцию $g_1(x_1, x_2)$:

$$((010), (012), (011)), ((101), (012), (011)), ((012), (012), (011)), ((012), (010), (012)), ((012), (011), (012)).$$

Аналогично определяем функцию $g_2(x_1, x_2)$:

$$((012), (012), (100)), ((100), (012), (100)), ((101), (012), (100)), ((012), (100), (012)), ((012), (101), (012)).$$

Теперь система $(g_1(x_1, x_2), g_2(x_1, x_2))$ определяет функцию 2x+1. Далее обращаемся к лемме 3.

Пусть в множество $Q^{(1)}$ входят функции (011), (101). Тогда множество $Q^{(1)}$ содержит также функции (100) и (010), что приводит к предыдущему случаю.

Остаются следующие возможности для множества $Q^{(1)}\setminus\{x\}$:

$$\{(010)\},\quad \{(011)\},\quad \{(010),(011)\},\quad \{(010),(101)\},\quad \{(011),(100)\}.$$

Первые три множества из этого списка целиком содержатся в классе T_0 , что по условию невозможно. Рассмотрим случай $Q^{(1)}=\{(010),x,(101)\}$. Здесь множество $Q^{(1)}$ является накрывающим и потому имеем $Q=\Pi[Q^{(1)}]$. Однако $Q^{(1)}\subset V_{010}$. Следовательно, $Q\subseteq V_{010}$, что невозможно по предположению.

Аналогично рассматривается случай $Q^{(1)} = \{(011), x, (100)\}$. Теорема доказана.

Г

Список литературы

- 1. Данильченко А. Ф., "О параметрической выразимости функций трехзначной логики", Алгебра и логика, **16**:4 (1977), 397–416; англ. пер.: Danil'chenko A. F., "Parametric expressibility of functions of three-valued logic", **16** (1977), 266–280.
- 2. Данильченко А.Ф., "Параметрически замкнутые классы функций трехзначной логики", И36. $AH\ MCCP$, **2** (1978), 13–20.
- 3. Кузнецов А.В., "О средствах для обнаружения невыводимости и невыразимости", *Логический вывод*, 1979, 5–33.
- 4. Марченков С.С., "Основные отношения S-классификации функций многозначной логики", Дискретная математика, 8:1 (1996), 99–128; англ. пер.: Marchenkov S.S., "Basic relations of the S-classification of functions of the multi-valued logic", Discrete Math. Appl., 6:2 (1996), 149–178.
- 5. Марченков С.С., "О выразимости функций многозначной логики в некоторых логико-функциональных языках", Дискретная математика, 11:4 (1999), 110–126; англ. пер.: Marchenkov S.S., "On expressibility of functions of many-valued logic in some logical-functional languages", Discrete Math. Appl., 9:6 (1999), 563–581.
- 6. Марченков С.С., S-классифация функций трехзначной логики, М.: Физматлит, 2001.
- 7. Марченков С.С., "Дискриминаторные классы трехзначной логики", *Математические* вопросы кибернетики, 2003, № 12, 15–26.
- 8. Марченков С.С., "Критерий позитивной полноты в трехзначной логике", Дискретный анализ и исследование операций, **13**:3 (2006), 27–39.
- 9. Марченков С.С., "Задание позитивно замкнутых классов посредством полугрупп эндоморфизмов", Дискретная математика, **24**:4 (2012), 19–26; англ. пер.: Marchenkov S.S., "Definition of positively closed classes by endomorphism semigroups", *Discrete Math. Appl.*, **22**:5-6 (2012), 511–520.
- 10. Марченков С.С., "Об операторе замыкания по перечислению в многозначной логике", Becmn. Mock. ун-та. Cep. 15. Вычисл. матем. и киберн., 2 (2015), 33–39; англ. пер.: Marchenkov S.S., "On the enumeration closure operator in multivalued logic", Moscow Univ. Comput. Math. and Cybernet., 39:2 (2015), 81–87.
- 11. Марченков С.С., Сильные операторы замыкания, М.: МАКС Пресс, 2017.
- 12. Марченков С.С., "Расширения оператора позитивного замыкания с помощью логических связок", Дискретн. анализ и исслед. onep., 25:4 (2018), 46–58; англ. пер.: Marchenkov S.S., "Extensions of the positive closure operator by means of logical connectives", J. Appl. Industr. Math., 12:4 (2018), 678–683.
- 13. Нгуен Ван Хоа, "О структуре самодвойственных замкнутых классов трехзначной логики P_3 ", Дискрет. матем., 4:4 (1992), 82–95.
- 14. Тарасова О.С.,, "Классы k-значной логики, замкнутые относительно расширенной операции суперпозиции", $Becmh.\ Moc\kappa.\ yh-ma.\ Cep.\ 1.\ Mamem.,\ mex.,\ 2001,\ № 6,\ 54–57.$
- 15. Тарасова О.С., "Классы функций трехзначной логики, замкнутые относительно операций суперпозиции и перестановки", *Becmn. Mock. ун-та. Сер.* 1. *Матем.*, *мех.*, 2004, № 1, 25–29.
- 16. Яблонский С.В., "Функциональные построения в *k*-значной логике", *Сборник статей* по математической логике и ее приложениям к некоторым вопросам кибернетики, Тр. МИАН СССР, **51**, Изд-во АН СССР, М., 1958, 5–142.
- 17. Янов, Ю. И., Мучник, А.А., "О существовании k-значных замкнутых классов, не имеющих базиса", 1959, № 1, 44–46.
- 18. Danil'čenko A. F., "On parametrical expressibility of the functions of k-valued logic", Colloq. Math. Soc. J.Bolyai, 28 (1981), 147–159.