William Stallings Arquitetura e Organização de Computadores 8ª Edição

Capítulo 8
Suporte do sistema
operacional

Objetivos e funções

- Conveniência:
 - -Tornar o computador mais fácil de usar.
- Eficiência:
 - Permitir o melhor uso dos recursos do computador.

Camadas e visões de um sistema de computação

Serviços do sistema operacional

- Criação de programas.
- Execução de programas.
- Acesso aos dispositivos de E/S.
- Acesso controlado aos arquivos.
- Acesso ao sistema.
- Detecção e resposta a erros.
- Contabilidade.

S/O como gerenciador de recursos

Tipos de sistema operacional

- Interativo.
- Em lote (batch).
- Único programa (uniprogramação).
- Multiprogramação (multitarefa).

Primeiros sistemas

- Final da década de 1940 a meados da década de 1950.
- Sem sistema operacional.
- Programas interagem diretamente com o hardware.
- Dois problemas principais:
 - Escalonamento.
 - -Tempo de preparação.

Sistemas em lote simples

- Programa monitor residente.
- Usuários submetem jobs ao operador.
- Operador coloca jobs em lotes.
- Monitor controla sequência de eventos para processar lote.
- Quando um job termina, o controle retorna ao monitor, que lê próximo job.
- Monitor trata do escalonamento.

Layout de memória para um monitor residente

Job Control Language

- Instruções ao monitor.
- Normalmente indicada por \$.
- P.e.:
 - -\$JOB
 - -\$FTN
 - —... Algumas instruções em Fortran.
 - -\$LOAD
 - -\$RUN
 - ... Alguns dados.
 - -\$END

Recursos desejáveis do hardware

- Proteção da memória:
 - —Para proteger o monitor.
- Temporizador:
 - Para impedir que o job monopolize o sistema.
- Instruções privilegiadas:
 - -Executadas apenas pelo monitor.
 - -P.e., E/S.
- Interrupções:
 - -Permitem abdicar e retomar o controle.

Sistemas em lote multiprogramados

- Dispositivos de E/S muito lentos.
- Quando um programa está esperando E/S, outro pode usar a CPU.

Único programa

Multiprogramação com dois programas

Multiprogramação com três programas

Histogramas de utilização

Sistemas de tempo compartilhado ou interativos

- Permitem que os usuários interajam diretamente com o computador.
 - —Ou seja, interativos.
- Multiprogramação permite que uma série de usuários interajam com o computador.

Escalonamento

Chave para multiprogramação.

Tabela 8.4	Tipos de escalonamento

Escalonamento de longo prazo	A decisão de acrescentar ao pool de processos a serem executados
Escalonamento a médio prazo	A decisão de acrescentar ao número de processos que estão parcial ou totalmente na memória principal
Escalonamento de curto prazo	A decisão sobre qual processo disponível será executado pelo processador
Escalonamento de E/S	A decisão sobre qual solicitação de E/S pendente do processo será tratada por um dispositivo de E/S disponível

Escalonamento a longo prazo

- Determina quais programas são submetidos para processamento.
- Ou seja, controla o grau de multiprogramação.
- Uma vez submetido, um job torna-se um processo para o escalonador a curto prazo (ou torna-se um job não carregado na memória para o escalonador a médio prazo).

Escalonamento a médio prazo

- Parte da função de troca de processo (descrita mais adiante...).
- Normalmente baseado na necessidade de gerenciar a multiprogramação.
- Se não há memória virtual, o gerenciamento de memória também é um ponto.

Escalonamento a curto prazo

- Despachante.
- Decisões de nível mais baixo de qual tarefa executar em seguida.
- Ou seja, qual tarefa realmente usa o processador no próximo intervalo de tempo.

Modelo de processo com cinco estados

Bloco de controle de processo

- Identificador.
- Estado.
- Prioridade.
- Contador de programa.
- Ponteiros de memória.
- Dados de contexto.
- Status de E/S.
- Informações contábeis.

Diagrama do bloco de controle de processo

Identificador	١	
Estado		
Prioridade		
Contador de programa		
Ponteiros da memória	l	
Dados de contexto	l	
Informação de	ı	
status de E/S	l	
Informações	ı	
contábeis	l	
	ı	
:	ı	
•	I	
	I	
	J	

Exemplo de escalonamento

Principais elementos do sistema operacional

Escalonamento de processador

Gerenciamento de memória

- Uniprogramação:
 - —Memória dividida em duas.
 - —Uma para sistema operacional (monitor).
 - Uma programa atualmente em execução.
- Multiprogramação:
 - Parte do "usuário" é subdividida e compartilhada entre processos ativos.

Swapping (troca de processos)

- Problema: E/S é tão lenta, em comparação com a CPU, que até mesmo em sistema de multiprogramação a CPU pode estar ociosa na maior parte do tempo.
- Soluções:
 - Aumentar memória principal.
 - Cara.
 - Leva a programas maiores.
 - -Swapping (troca de processos).

O que é swapping?

- Fila a longo prazo dos processos armazenados no disco.
- Processos "trocados" para a memória quando existe espaço disponível.
- Quando um processo termina de executar, ele é movido para fora da memória principal.
- Se nenhum dos processos na memória estiver pronto (ou seja, toda a E/S bloqueada).
 - Retirar um processo bloqueado para a fila intermediária.
 - Entra com um processo pronto ou um novo processo.
 - Mas o swapping é um processo de E/S...

Uso do swapping

Particionamento

- Dividir a memória em seções para alocar processos (incluindo sistema operacional).
- Partições de tamanho fixo:
 - -Podem não ser do mesmo tamanho.
 - Processo é encaixado no menor espaço que o poderá conter.
 - Alguma memória desperdiçada.
 - Leva a partições de tamanho variável.

Particionamento fixo vs variado

Sistema operacional 8 M	Sistema operacional 8 M		
8 M	2 M		
	4 M		
8 M	6 M		
	8 M		
8 M	8 M		
8 M			
8 M	12 M		
8 M	16 M		
8 M	10 M		
(a) Partições de mesmo tamanho (b) Partições de tamanhos diferentes			
	0.0040.0		

Partições de tamanho variável

- Alocam exatamente a memória requisitada a um processo.
- Isso leva a um buraco no final da memória, muito pequeno para ser usado.
 - -Apenas um buraco pequeno menos desperdício.
- Quando todos os processos estão bloqueados, retira um processo e traz outro.
- Novo processo pode ser menor que o processo removido.
- Outro buraco.

- Por fim terá muitos buracos (fragmentação).
- Soluções:
 - Aglutinação juntar buracos adjacentes em um grande buraco.
 - —Compactação de vez em quando, percorre a memória e move todos os buracos para um bloco livre (desfragmentação de disco).

Efeito do particionamento dinâmico

Relocação

- Nenhuma garantia de que o processo será carregado no mesmo local na memória.
- Instruções contêm endereços:
 - Localizações dos dados.
 - Endereços para instruções (desvio).
- Endereço lógico relativo ao início do programa.
- Endereço físico local real na memória (desta vez).
- Conversão automática usando endereço de base.

Paginação

- Memória dividida em pedaços pequenos de mesmo tamanho – frames de página.
- Divide programas (processos) em pedaços pequenos de mesmo tamanho – páginas.
- Aloca o número exigido de frames de página a um processo.
- Sistema operacional mantém lista de frames livres.
- Um processo n\u00e3o exige frames de p\u00e1gina cont\u00eanuos.
- Usa tabela de página para registrar.

Alocação de frames livres

Endereços lógicos e físicos - paginação

Memória virtual

- Paginação por demanda:
 - Não exige todas as páginas de um processo na memória.
 - -Traz páginas conforme a necessidade.
- Falta de página:
 - -Página exigida não está na memória.
 - —Sistema operacional deve entrar com a página requisitada.
 - Pode ter que retirar uma página para criar espaço.
 - Seleciona página para remover com base na história recente.

Thrashing

- Muitos processos em muito pouca memória.
- Sistema operacional gasta todo o seu tempo trocando páginas.
- Pouco ou nenhum trabalho real é feito.
- Luz do disco acesa o tempo todo.
- Soluções:
 - -Bons algoritmos de substituição de página.
 - -Reduzir número de processos em execução.
 - Colocar mais memória.

Bônus

- Não precisamos de um processo inteiro na memória para que ele seja executado.
- Podemos trocar páginas conforme a necessidade.
- Assim, podemos agora executar processos que são maiores que a memória total disponível!
- Memória principal é denominada memória real.
- Usuário/programador vê memória muito maior memória virtual.

Translation Lookaside Buffer

- Cada referencia à memória virtual causa dois acessos à memória física:
 - -Buscar entrada da tabela de página.
 - Buscar dados.
- Usar cache especial para tabela de página.
 - —TLB.

TLB e operação da cache

Segmentação

- Paginação não é (normalmente) visível ao programador.
- Segmentação é visível ao programador.
- Normalmente, diferentes segmentos alocados a programa e dados.
- Pode ser uma série de segmentos de programa e dados.

Vantagens da segmentação

- Simplifica o tratamento de estruturas de dados que crescem.
- Permite que programas sejam alterados e recompilados independentemente, sem nova link-edição e recarregamento.
- Permite compartilhamento entre processos.
- Serve para proteção.
- Alguns SOs combinam segmentação com paginação.

Pentium II

- Hardware para segmentação e paginação.
- Não segmentada, não paginada.
 - —endereço virtual = endereço físico.
 - -Baixa complexidade.
 - —Alto desempenho.
- Não segmentada, paginada.
 - Memória vista como espaço de endereço linear paginado.
 - Proteção e gerenciamento via paginação.
 - -Berkeley UNIX.

- Não paginada, segmentada:
 - Coleção de espaços de endereços lógicos.
 - Proteção em nível de único byte.
 - Tabela de tradução necessária está no chip quando segmento está na memória.
- Paginada, segmentada:
 - Segmentação usada para definir partições de memória lógicas sujeitas ao controle de acesso.
 - Paginação gerencia alocação de memória dentro das partições.
 - —Unix System V.

Paginação no Pentium II

- Segmentação pode ser desabilitada:
 - Nesse caso, usa espaço de endereços linear.
- Dois níveis de pesquisa na tabela de página:
 - Primeiro, diretório de página.
 - 1024 entradas no máximo.
 - Divide memória linear de 4G em 1024 grupos de página de 4MB.
 - Cada tabela de página tem 1024 entradas correspondentes a 4KB páginas.
 - Pode usar diretório de página para todos os processos, um por processo ou mistura.
 - Diretório de página para processo atual sempre na memória.
 - Usa TLB mantendo 32 entradas da tabela de página.
 - Dois tamanhos de página disponíveis: 4k ou 4M.

Leitura recomendada

- Stallings, W. Capítulo 8.
- Stallings, W. [2004]. *Operating Systems*, Pearson.
- Diversos sites sobre sistemas operacionais.