Самостійна робота з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

25 листопада 2023 р.

Завдання

Умова. Довести, що множина A є борельовою та знайти її міру Лебега $\lambda_2(A)$ для

$$A = ([-4, 8] \times (2, 4)) \setminus (\mathbb{Q} \times \mathbb{R})$$

Розв'язок.

 $\Pi i \partial n y \mu \kappa m$ 1. Доведемо, що $A \in \mathcal{B}(\mathbb{R}^2)$. Помітимо, що

$$\mathbb{Q} \times \mathbb{R} = \bigcup_{q \in \mathbb{O}} \{q\} \times \mathbb{R}$$

Помітимо, що $\{q\} \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^2)$, тому і нескінченне об'єднання буде борельовою множиною. Отже, ми маємо, що $\mathbb{Q} \times \mathbb{R} \in \mathcal{B}(\mathbb{R}^2)$.

Далі розберемося з множиною $[-4,8] \times (2,4)$. Запишемо цей добуток наступним чином:

$$[-4,8] \times (2,4) = \bigcup_{n \in \mathbb{N}} (\{-4\} \cup (-4,8]) \times \left(2,4 - \frac{1}{n}\right]$$
$$= \bigcup_{n \in \mathbb{N}} \left(\{-4\} \times \left(2,4 - \frac{1}{n}\right]\right) \cup \left((-4,8] \times \left(2,4 - \frac{1}{n}\right]\right)$$

Проаналізуємо тепер цей вираз. $\{-4\} \times (2, 4 - \frac{1}{n}] \in \mathcal{B}(\mathbb{R}^2)$, а отже і нескінченне об'єднання також буде належати $\mathcal{B}(\mathbb{R}^2)$.

Для правого виразу $(4,8] \times (2,4-\frac{1}{n}]$ помічаємо, що він належить \mathcal{P}_2 , а отже належить і $\mathcal{B}(\mathbb{R}^2)$.

Отже, маємо об'єднання двох множин $\mathcal{B}(\mathbb{R}^2)$, що теж є борельовою множиною. Таким чином, $[-4,8]\times(2,4)\in\mathcal{B}(\mathbb{R}^2)$.

Отже, A є різницею двох борельових множин, а оскільки σ -алгебра є замкненою відносно \setminus , то і $A \in \mathcal{B}(\mathbb{R}^2)$.

 $\Pi i \partial n y \mu \kappa m$ 2. Знайдемо $\lambda_2(A)$. Помітимо, що з іншого боку

$$A = ([-4,8) \setminus \mathbb{Q}) \times (2,4) = \bigcup_{n \in \mathbb{N}} ([-4,8] \setminus \mathbb{Q}) \times \left(2,4 - \frac{1}{n}\right]$$

Отже, якщо позначити $A_n := ([-4,8] \setminus \mathbb{Q}) \times (2,4-\frac{1}{n}]$, то

$$\lambda_2(A) = \lambda_2(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \lambda_2(A_n) = \lim_{n \to \infty} \left((8+4) \cdot \left(2 - \frac{1}{n} \right) \right)$$
$$= 12 \lim_{n \to \infty} \left(2 - \frac{1}{n} \right) = 24$$

Відповідь. $\lambda_2(A) = 24$.