	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr. Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI(P)	
eYear/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00	0PM
Duration	2 Hours	Applicable to Batches	23CSBTB34	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Drive Fast – Car Rental App	

Context:

Drive Fast sees a direct impact of app downloads on the number of bookings made daily.

App Downloads (x	Daily Bookings
100s)	(y)
2	40
3	55
1	30
2	45
4	65

Objective:

Analyze the effect of app downloads on daily bookings for Drive Fast by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - Independent Variable (x): App Downloads (in 100s)
 - **Dependent Variable (y):** Daily Bookings

2. Calculate the Baseline Value

o Compute the mean of all daily bookings (y values).

3. Calculate SHAP Values

- o For each record, calculate the difference between the **predicted value** and the **baseline**.
- o This difference is the **SHAP value**, attributed to the number of app downloads.

4. Compute Final Prediction

- Use the linear regression model to calculate predicted bookings for each download count.
- Confirm that:

Final Prediction=Baseline+SHAP Value\text{Final Prediction} = \text{Baseline} + \text{SHAP Value} Final Prediction=Baseline+SHAP Value

5. Interpret the Results

- o Explain how the number of downloads influenced each predicted booking value.
- o Compare the predicted value to the actual value for each row.
- o Identify **under prediction** or **over prediction**, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - o Accuracy of the model
 - Trend analysis
 - SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	DriveFast – Car Rental Demand Prediction using Multiple Linear Regression and SHAP Analysis	

Objective:

Assess how fuel price and the presence of a holiday influence daily car rental demand using Multiple Linear Regression and interpret the results using SHAP value analysis.

Given Dataset:

Fuel Price	Holiday (1/0)	Rental
(X ₁)	(X ₂)	s (y)
90	0	100
85	1	130
95	0	90
80	1	140
92	0	95

Tasks:

1. Perform Multiple Linear Regression Analysis

- \circ Use Fuel Price and Holiday (1 = Yes, 0 = No) as independent variables
- Use Rentals as the dependent variable

2. Calculate the Baseline Value

o Compute the mean of all rental values

3. Calculate SHAP Values

- o Compute SHAP value
- Distribute SHAP contributions between Fuel Price and Holiday based on model coefficients

4. Compute Final Prediction for Each Record

- Use the regression equation
- Verify: Prediction = Baseline + SHAP (Fuel Price) + SHAP (Holiday)

5. Interpret the Results

- o For each record, explain how fuel price and holiday contributed to the prediction
- o Compare predicted vs actual rentals
- o Mention if the model overpredicted or underpredicted, and provide possible reasoning

Q. No.		Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.

- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - o Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.