Practical: Monte Carlo and Markov chain theory

Instructors: Kari Auranen, Elizabeth Halloran and Vladimir Minin July 14 – July 16, 2021

Ehrenfest model of diffusion

Imagine a two dimensional rectangular box with a divider in the middle. The box contains N balls (gas molecules) distributed somehow between the two halves. The divider has a small gap, through which balls can go through one at a time. We assume that at each time step we select a ball uniformly at random and force it to go through the gap to the opposite side of the divider. Letting X_n denote the total number of balls in the left half of the box, our Markov process is described by the following transition probabilities.

$$p_{ij} = \begin{cases} \frac{i}{N}. & \text{for } j = i - 1, \\ 1 - \frac{i}{N}, & \text{for } j = i + 1, \\ 0, & \text{otherwise.} \end{cases}$$

If we want to derive a stationary distribution of the system, we can solve the global balance equations $\pi^T \mathbf{P} = \pi^T$. Alternatively, we may "guess" that at equilibrium $X_n \sim \text{bin}(\frac{1}{2}, N)$ and verify this candidate stationary distribution via detailed balance. Notice we do not know whether the Ehrenfest chain is reversible, but we'll go ahead with the detailed balance check anyway. First, notice that entries of our candidate vector are

$$\pi_i = \binom{N}{i} \left(\frac{1}{2}\right)^i \left(1 - \frac{1}{2}\right)^{N-i} = \binom{N}{i} \frac{1}{2^N}.$$

Since X_n can only increase or decrease by one at each time step, we need to check detailed balance only for i and j = i + 1.

$$\pi_{i} p_{i,i+1} = \frac{1}{2^{N}} \binom{N}{i} \frac{N-i}{N} = \frac{1}{2^{N}} \frac{N!}{i!(N-i)!} \frac{N-i}{N} = \frac{1}{2^{N}} \frac{N!}{(i+1)!(N-i-1)!} \frac{i+1}{N}$$
$$= \binom{N}{i+1} \frac{1}{2^{N}} \frac{i+1}{N} = \pi_{i+1} p_{i+1,i},$$

confirming our guess.

Now, consider the Ehrenfest model with N=100 gas molecules. From our derivations we know that the stationary distribution of the chain is $\operatorname{Bin}(\frac{1}{2},N)$. The chain is irreducible and positive recurrent (do you understand why?). The mean and variance of the binomial stationary distribution be computed analytically as $N \times \frac{1}{2}$ and $N \times \frac{1}{2} \times \frac{1}{2}$ respectively.

Your task

Use simulations and ergodic theorem to approximate the stationary variance and compare your estimate with the analytical result. Don't panic! You will not have to write everything from scratch. Download 'ehrenfest_diff_reduced.R' file from the course web page. Follow comments in this R script to fill gaps in the code.