ITM 517 Algorithm Ja-Hee Kim

Graph

Introduction to Graph

Example of Graph

Graph

- An undirected graph, or graph is a couple G = (V, E)
 consists of
 - *V:* a nonempty set of vertices
 - *E:* a set of **unordered pairs** of distinct elements of V called edges.
 - For each $e \in E$, $e = \{u, v\}$ where $u, v \in V$.
- Example
 - V={a, b, c, d, e, f}
 - E = {{a, a}, {a, b}, {a, c}, {a, d}, {b, d}, {e, e}}

Terminology

- Ends of edge
- Adjacent, Incident
- Loop, link, simple graph
- Degree, pendant, isolated
- path, cycle, circuit
- Connectivity
- Tree
- Identical, isomorphic
- Complete graph
- Subgraph
- Weighted graph
- Directed Graph

Ends of edge

- Condition
 - e is an edge {u, v}
 - u, v: vertices
- Definition
 - Join: e is said to join u and v
 - End: u and v are called the ends of e.

- Example
 - e₁ joins a and a
 - The ends of e₃ are a and d.

adjacent and incident

- Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if {u, v} is an edge in G.
- If e = {u, v}, the edge e is called incident with the vertices u and v. The edge e is also said to connect u and v.

- Ex: adjacent of a
- Edge {a,d} incidents with a and d
- Edge {a,d} connects a and d
- a and d are the end points or ends of edge {a,d}

Loop

- If there is an edge incidenting to itself, this is a loop.
 - *e*=(*u*,*u*) ∈*E*
- An edge with distinct eds is called as a link.
- Question: How many does this graph have a loop?

 A simple graph a graph with no loop and no multiple edges with the same ends.

degree for an undirected graph

- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a loop at a vertex contributes twice to the degree of that vertex
- counting the lines that touch it
- denoted deg(v)
- Question
 - deg(a):
 - deg(b):
 - deg(c):
 - deg(f):

pendant and isolated

pendant:

 A vertex of degree 1 is called pendant. It is adjacent to exactly one other vertex.

isolated:

 A vertex of degree 0 is called isolated, since it is not adjacent to any vertex.

Question

- Which is a pendant?
- Which is isolated? f

Path

- A path of length n from u to v, where n is a positive integer, in an **undirected graph** is a sequence of edges e_1 , e_2 , ..., e_n of the graph such that $e_1 = \{x_0, x_1\}$, $e_2 = \{x_1, x_2\}$, ..., $e_n = \{x_{n-1}, x_n\}$, where $x_0 = u$ and $x_n = v$. The path is a **circuit(cycle)** if it begins and ends at the same vertex, that is, if u = v.
- A path or cycle is **simple** if it does not contain the same vertex more than once.

Connectivity

 An undirected graph is called connected if there is a path between every pair of distinct vertices in the graph.

Tree

- a tree is an undirected graph in which
 - any two vertices are connected by exactly one path
 - or equivalently a connected acyclic undirected graph.
- A forest is an undirected graph in which
 - any two vertices are connected by at most one path
 - equivalently an **acyclic** undirected graph, or equivalently a disjoint union of trees.

Identical vs isomorphism

- Two graphs G and H are identical if V(G) = V(H) and E(G)=E(H)
- If there is a mapping V(G)→V(H) and E(G)→E(H),
 we say the mapping is an isomorphism between G
 and H

complete graph

• The **complete graph** on n vertices, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices.

An empty graph is one with no edge.

subgraph

• A **subgraph** of a graph G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$. Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H.

weighted graph

- A weighted graph is a graph in which a number (the weight) is assigned to each edge.
 - weights might represent for example costs, lengths or capacities, depending on the problem at hand.
 - G = (V, E, W)
 - $W:E \rightarrow Z$, where Z is a real number.

Directed graph

- Directed graph (Digraph) D is an ordered pair (V(D), A(D))
 - *V(D)*: a nonempty set of vertices
 - *A(D)*: a set of **arc**s. Each arc of *A* is an ordered pair of vertices of *D*
- If a is an arc and u and v are vertices of a: (u, v)
 - u: tail of a
 - *v*: **head** of *a*

Underlying graph

- The underlying graph G of a digraph D
 - With each digraph *D* we can associate a graph *G* on the same vertex set;
 - corresponding to each arc of D there is an edge of G with the same ends.
 - D is an **orientation** of G

Adjacency matrix

Adjacency list

Incidence matrix

Implementations

Adjacency matrix

• Let G = (V, E) be a graph with |V| = n. Suppose that the vertices of G are listed in arbitrary order as $v_1, v_2, ..., v_n$. The **adjacency matrix** A (or A_G) of G, with respect to this listing of the vertices, is the $n \times n$ zero-one matrix with 1 as its (i, j)th entry when v_i and v_j are adjacent, and 0 otherwise. In other words, for an adjacency matrix $A = [a_{ij}]$,

•
$$a_{ij} = 1$$
 if $\{v_i, v_j\}$ is an edge of G ,

• $a_{ii} = 0$ otherwise.

Adjacent matrix for a weighted digraph

Adjacent list

- A collection of unordered lists used to represent a finite graph.
- Each list describes the set of neighbors of a vertex in the graph

Incidence matrix

- listing of the vertices and edges is the $n \times m$ zero-one matrix with 1 as its $(i, j)^{th}$ entry when edge is incident with v_i , and 0 otherwise. In other words, for an incidence matrix $M = [m_{ij}]$,
 - $m_{ij} = 1$ if edge e_i is incident with v_i
 - $m_{ii} = 0$ otherwise.

Class diagram

