SESSION 02: LINEAR ALGEBRA (II)

Dr Gang Li

Deakin University, Geelong, Australia 2018-11-06

matr	rix ractorization (II): QK	3
Or	thogonality	. 4
\Pr	ojection	. 8
	east Squares	
So	lution of $Qx = b$	12
Gr	am-Schmidt Orthogonalization	13
QF	R Factorization	14
	rix Factorization (III): EVD for Square Matrix	16
De	eterminant	17
Eig	genvectors and Eigenvalues	20
Eig	genvectors Decomposition	22
Sy	mmetric Eigenvectors Decomposition	26
Sp	ectral Theorem	27
Po	sitive Definite Symmetric Matrix	33
Po	sitive Semi-Definite Symmetric Matrix	35

Table of Content

Matrix Factorization (II): QR

Orthogonality

Projection

Least Squares

Solution of Qx = b

Gram-Schmidt Orthogonalization

QR Factorization

Matrix Factorization (III): EVD for Square Matrix

Determinant

Eigenvectors and Eigenvalues

Eigenvectors Decomposition

Symmetric Eigenvectors Decomposition

Spectral Theorem

Positive Definite Symmetric Matrix

Positive Semi-Definite Symmetric Matrix

(None)-45903a7 (2018-11-06) -2/37

Matrix Factorization (II): QR

3 / 37

Orthogonality

- Vectors x and y are orthogonal, if and only if their *inner product* $x \cdot y = x^T y = 0$;
 Subspace S is orthogonal to subspace T, if and only if every vector in S is orthogonal.
 - \blacksquare Subspace S is orthogonal to subspace T, if and only if every vector in S is orthogonal to every vector in T.
 - If S contains all vectors orthogonal to T, then S is orthogonal complement of V, denoted by V^{\perp} .
- Let q_j , j = 1,...,n be orthogonal, i.e., $q_i^T q_j = 0$ when $i \neq j$. Then they are linearly independent. (please prove)
- For a matrix A, its row space $\mathcal{R}(A^T)$ is orthogonal to its nullspace $\mathcal{N}(A)$, because Ax = 0, namely
 - A nullspace $\mathcal{N}(A)$ contains all vectors perpendicular to (\bot) row space $\mathcal{R}(A^T)$.
- Similarly, the *left nullspace* $\mathcal{N}(A^T)$ contains all vectors perpendicular to (\bot) column space $\mathcal{R}(A)$.

(None)-45903a7 (2018-11-06) -4/37

Orthogonality in Subspaces

The nullspace is the <u>orthogonal complement</u> of the row space in \mathcal{R}^n . The left nullspace is the <u>orthogonal complement</u> of the column space in \mathcal{R}^m .

- The row space and the column space share the same dimension r (the rank)
- The nullspace component goes to zero: $Ax_n = 0$
- The row space component goes to the column space: $Ax_r = Ax$
- For a general vector $x = x_r + x_n$, it has a *row space* component x_r and a *nullspace* component x_n . $Ax = Ax_n + Ax_r = Ax$

(None)-45903a7 (2018-11-06) -5/37

Orthogonality

Let the set of orthogonal vectors q_j , j = 1, ..., m in \mathbb{R}^m be normalized, ||q|| = 1. Then they are orthonomal, and constitute an orthonomal basis in \mathbb{R}^m

- A matrix $Q = [q_1, q_2, ..., q_m] \in \mathbb{R}^{m \times m}$ with orthonormal columns is called an orthogonal matrix, which has a rank m.
- Properties:
 - The inverse of an orthogonal matrix Q is $Q^{-1} = Q^T$
 - The Euclidean distance of a vector is invariant under an orthogonal transformation Q: $||Qx||^2 = (Qx)^T (Qx) = x^T x = ||x||^2.$
 - The product of two orthogonal matrices Q and P is orthogonal: $X^TX = (PQ)^TPQ = Q^TP^TPQ = Q^TQ = I$

(None)-45903a7 (2018-11-06) - 6/37

Orthogonality

Exercises:

- $\blacksquare \quad \text{Let } A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}$
 - Find a basis for the *nullspace* $\mathcal{N}(A)$ and verify that it is orthogonal to the row space.
 - Give x = (3,3,3), split into a *row space* component x_r , and a *nullspace* component x_n .

(None)-45903a7 (2018-11-06) -7/37

Projection

Given a point b, find a point p on a subspace S of \mathbb{R}^n that is closest to b, this point p is the projection of b onto the subspace S.

The line from b to the closest point $p = \omega a$ is perpendicular to the vector a:

$$(b - \omega a) \perp a$$
, or $a^{T}(b - \omega a) = 0$ so $\omega = \frac{a^{T}b}{a^{T}a}$

Here ω is a scale, so the projection can be written with a slight twist:

$$p = \omega a = a \omega = a \frac{a^T b}{a^T a} = \frac{a a^T}{a^T a} b = Pb$$

where $P = \frac{aa^T}{a^Ta}$ is the projection matrix.

- lacktriangle P is the matrix that multiplies b and produces p on a.
- *P* is *symmetric*, with rank r = 1

(None)-45903a7 (2018-11-06) -8/37

Least Squares Approximations

For Ax = b, when b is not on the column space $\mathcal{C}(A)$ of A, we can project b to the column space. Let $p = A\bar{x}$ be the projection of b on to the *column space*. The *error vector* $b - A\bar{x}$ must be perpendicular to the column space $\mathscr{C}(A)$.

 \blacksquare The *error vector* must be perpendicular to every column of A:

$$\begin{array}{ll} a_1^T(b-A\bar{x}) &= 0 \\ a_2^T(b-A\bar{x}) &= 0 \\ \vdots \\ a_n^T(b-A\bar{x}) &= 0 \end{array} \qquad \text{or} \qquad \begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \end{bmatrix} \begin{bmatrix} b-A\bar{x} \end{bmatrix} = 0 \qquad \text{or} \qquad A^T(b-A\bar{x}) = 0$$

Thus we have the least squares form:

$$A^T A \bar{x} = A^T b$$

(None)-45903a7 (2018-11-06) -9/37

Least Squares Approximations

For the least squares form: $A^T A \bar{x} = A^T b$, if $A^T A$ is invertible, we have the least squares approximation $\bar{x} = (A^T A)^{-1} A^T b$. The projection of b to the column space of A is therefore $p = A\bar{x} = A(A^TA)^{-1}A^Tb = Pb$, where $P = A(A^TA)^{-1}A^T$ is the projection matrix.

- \blacksquare A^TA has the same *nullspace* as A.
 - If Ax = 0 then $A^TAx = 0$, namely vectors x in the *nullspace* of A are also in the *nullspace* of A^TA ;
 - Suppose $A^TAx = 0$ and take the inner product with x:

$$x^{T}A^{T}Ax = 0$$
, or $||Ax||^{2} = 0$ or $Ax = 0$

Thus x is in the *nullspace* of A.

- If A has linearly independent columns, then A^TA is square, symmetric and invertible.
 - Suppose $A^TAx = 0$ and take the inner product with x:

$$x^{T}A^{T}Ax = 0$$
, or $||Ax||^{2} = 0$ or $Ax = 0$

As A has linearly independent columns, x = 0. So $A^T A$ is invertible.

- The projection matrix $P = A(A^TA)^{-1}A^T$ has two basic properties:
 - It equals its square: $P^2 = P$
 - It equals its transpose: $P^T = P$
 - Any symmetric matrix with $P^2 = P$ represents a projection:
 - Like any other matrix, *P* takes every vector *b* into its column space: *Pb* is a weighted combination of the columns.
 - On the other hand, the error vector b Pb is *orthogonal* to the space: $(b Pb)^T Pc = b^T (I P)^T Pc = b^T (P P^2)c = 0$

(None)-45903a7 (2018-11-06) - 10 / 37

Least Squares Approximations

Exercises:

$$\blacksquare \quad \text{Let } Ax = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- Solve Ax = b by L.S.A.
- Find $p = A\bar{x}$, and verify that the error b p is perpendicular to the columns of A.
- - lacktriangle Find the projection of *b* onto the column space of *A*.
 - Split *b* into p + q, with *p* in the column space and *q* perpendicular to that space.
 - lacktriangle Which of the four subspaces contains q?

(None)-45903a7 (2018-11-06) -11/37

Solution of Qx = b

For Qx = b, with Q be a matrix with orthonormal columns. Two cases exist:

- \blacksquare *Q* is a rectangular matrix with orthonormal columns;
- For the *orthogonal matrix* Q, we have $Q^{-1} = Q^T$, hence $x = Q^T b$.
 - If we have an orthogonal basis q_1, \dots, q_n , for a given vector b, it can be combined by $b = x_1q_1 + \dots + x_nq_n$, namely b = Qx. We have $x = Q^T b$
 - Any permutation matrix P is an orthogonal matrix. It is unit, and 1 appears in different place in each column.
- For the *m* by *n* rectangular matrix *Q* with *orthogonal* columns, we still have $Q^TQ = I$ (*left inverse*). LSA gives us $\bar{x} = (Q^T Q)^{-1} Q^T b = Q^T b$
 - The projection matrix is then $P = Q(QQ^T)^{-1}Q^T = QQ^T$, which is a m by m matrix.

(None)-45903a7 (2018-11-06) - 12 / 37

Gram-Schmidt Orthogonalization

The G.S.O. process starts with independent vectors a_1, \dots, a_n and ends with orthonormal vectors q_1, \dots, q_n . At step j it subtracts from a_j its components in the directions that are already settled: $a'_j = a_j - (q_1^T a_j)q_1 - \dots - (q_{j-1}^T a_j)q_{j-1}$. Then q_j is the unit vector $a_j'/\|a_j'\|$.

Exercise:

Apply the G.S.O. process to

$$a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \qquad c = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

and write the result in the form A = QR, where Q is the same size m by n matrix as A, and R is a square matrix n by n.

(None)-45903a7 (2018-11-06) -13/37

QR Factorization

In the G.S.O. process, both the A and the Q are m by n, when the vectors are in the m-dimensional space, there is an *upper triangular* matrix R that connects them:

$$\begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} q_1^T a & q_1^T b & q_1^T c \\ & q_2^T b & q_2^T c \\ & & q_3^T c \end{bmatrix}$$

- Every m by n matrix A with linearly independent columns can be factored into A = QR, where Q is with orthonormal columns, R is upper triangular and invertible.
- Ax = b then becomes QRx = b, as $A^TA = R^TQ^TQR = R^TR$, the L.S.A. formula is then $R^TR\bar{x} = R^TQ^Tb$, or $R\bar{x} = Q^Tb$, where *R* is upper triangular.

(None)-45903a7 (2018-11-06) - 14 / 37

QR Factorization

Exercises:

■ Find an orthonormal set q_1 , q_2 and q_3 for which q_1 and q_2 span the column space of

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$$

- Which fundamental subspace contains q_3 ?
- What is the L.S.A. solution of Ax = b if $b = [1, 2, 7]^T$?

(None)-45903a7 (2018-11-06) - 15 / 37

Matrix Factorization (III): EVD for Square Matrix

16 / 37

Determinant

Determinant is a value associated with a square matrix. A geometric interpretation can be given to the value of the determinant of a square matrix with real entries: the absolute value of the determinant gives the scale factor by which area or volume (or a higher dimensional analogue) is multiplied under the associated linear transformation, while its sign indicates whether the transformation preserves orientation.

(None)-45903a7 (2018-11-06) -17/37

Determinant

Rule 1 det(I) = 1 the unit box with a volume 1

Rule 2 Exchanging rows reverses the sign of det(A).

Rule 3

Rule
$$3a$$
: $\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ Rule $3b$: $\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$

Derived Rules

- Matrix with equal rows, the determinate is 0: $\begin{vmatrix} a & b \\ a & b \end{vmatrix} = 0$ Subtract $l \times row_j$ from row_k , the determinant doesn't change: $\begin{vmatrix} a & b \\ c-la & d-lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + l \begin{vmatrix} a & b \\ -a & -b \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$

The determinate for a Matrix with a row of 0 is 0.

- The determinate for a Matrix with a row of 0 is 0.

 The determinant for an upper triangular matrix: $\begin{vmatrix} d_1 & * & * & \cdots \\ 0 & d_2 & * & \cdots \\ 0 & 0 & \cdots & \cdots \\ 0 & 0 & \cdots & d_n \end{vmatrix} = d_1 \times d_2 \times \cdots d_n$
- The determinant of a singular matrix is 0; if the determinate is not 0, then the matrix is invertible.
- $det(AB) = det(A)det(B), det(A^{-1}) = \frac{1}{det(A)}$
- $det(A^T) = det(A)$

(None)-45903a7 (2018-11-06) -18/37

Determinant

Exercises:

■ Use the row operations to verify

$$det \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

Find the determinants by *Gaussian Elimination*:

$$\begin{vmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{vmatrix} \quad \text{and} \quad \begin{vmatrix} 1 & t & t^2 & t^3 \\ t & 1 & t & t^2 \\ t^2 & t & 1 & t \\ t^3 & t^2 & t & 1 \end{vmatrix}$$

(None)-45903a7 (2018-11-06) - 19 / 37

Eigenvectors and Eigenvalues

When we hit a vector x with a matrix A, but the matrix acts by stretching the vector x, not changing its direction, namely $Ax = \lambda x$, then x is an eigenvector of A, the stretching factor λ is the eigenvalue.

■ When you *hit* a vector $x \in \mathbb{R}^m$ with a matrix $A \in \mathbb{R}^{m \times m}$, you get another vector Ax.

■ Example:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \qquad x = \begin{bmatrix} -2 \\ 3 \end{bmatrix} \qquad y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

If x and y are hit by matrix A,

Eigenvectors and Eigenvalues

In order to find the *eigenvalues* and *eigenvectors*, we can find the solutions to equation $Ax = \lambda x$:

The vector x is in the nullspace of $A - \lambda I$

- - The number λ is chosen so that $A \lambda I$ has a nullspace
- The number λ is an eigenvalue of A if and only if

$$det(A - \lambda I) = 0$$

■ The sum of the n eigenvalues equals the trace of A, namely the sum of the n diagonal entries:

$$\sum_{i=1}^{n} \lambda_i = \lambda_1 + \lambda_2 + \dots + \lambda_n = \alpha_{11} + \dots + \alpha_{nn}$$

The *product* of the *n* eigenvalues equals the determinant of A:

$$\prod_{i=1}^{n} \lambda_i = \lambda_1 \times \cdots \times \lambda_n = \det(A)$$

(None)-45903a7 (2018-11-06) -21/37

EVD: Eigenvectors Decomposition

Suppose matrix A is a n by n matrix with n linearly independent eigenvectors. Then if those vectors are chosen to be the columns of a matrix S, it follows that $S^{-1}AS$ is a diagonal matrix Λ , with the eigenvalues of A along its diagonal:

Jefn

$$AS = S\Lambda$$
 or $S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$ or $A = S\Lambda S^{-1}$

■ Proof: put the eigenvectors x_i in the columns of S, and compute the product AS one column at a time:

$$AS = A \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ x_1 & x_2 & \cdots & x_n \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ x_1 & x_2 & \cdots & x_n \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

(None)-45903a7 (2018-11-06) -22/37

Application of Eigenvectors Decomposition

rob

Fibonacci sequence $F_{k+2} = F_{k+1} + F_k$:

 $0, 1, 1, 2, 3, 5, 8, 13, \cdots$

How could we find the 1000th Fibonacci number?

- If $u_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$, then $u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k$. Then, what is $u_{1000} = A^{1000} u_0$?
- If *A* can be diagonalized, $A = S\Lambda S^{-1}$, then

$$u_k = A^k u_0 = (S \Lambda S^{-1})(S \Lambda S^{-1}) \cdots (S \Lambda S^{-1}) u_0 = S \Lambda^k S^{-1} u_0$$

■ Let $c = S^{-1}u_0$, as the columns of S are the eigenvectors of A, the solutions becomes

$$u_{k} = S \Lambda^{k} c = \begin{bmatrix} \uparrow & & \uparrow \\ x_{1} & \cdots & x_{n} \\ \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} \lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}^{k} \end{bmatrix} \begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix} = c_{1} \lambda_{1}^{k} x_{1} + \cdots + c_{n} \lambda_{n}^{k} x_{n}$$

(None)-45903a7 (2018-11-06) $\,-\,23\,/\,37$

Application of Eigenvectors Decomposition Fibonacci sequence $F_{k+2} = F_{k+1} + F_k$:

How could we find the 1000th Fibonacci number?

- For $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, the determinant is $\lambda^2 \lambda 1$, and two eigenvalues are $\lambda_1 = \frac{1+\sqrt{5}}{2}$ and $\lambda_2 = \frac{1-\sqrt{5}}{2}$, corresponding to eigenvectors: $x_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}$ and $x_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$
- As $F_0 = 0$ and $F_1 = 1$,

$$c = S^{-1}u_0 = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\lambda_1 - \lambda_2} \\ -\frac{1}{\lambda_1 - \lambda_2} \end{bmatrix}$$

Hence we have $u_k = c_1 \lambda_1^k x_1 + c_2 \lambda_2^k x_2$.

 F_k is the second component of u_k , $F_k = c_1 \lambda_1^k + c_2 \lambda_2^k$. As λ_2 is less than 1, so F_k is dominated by the first term $\frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^{1000}$.

(None)-45903a7 (2018-11-06) -24/37

Application of Eigenvectors Decomposition

Exercises:

Define the matrix for the following transformation, and find their eigenvalues and eigenvectors.

Suppose we shift the matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$ by subtracting 7I: $B = \begin{bmatrix} -6 & -1 \\ 2 & -3 \end{bmatrix}$. What are the eigenvalues of eigenvectors of B, and how are they related to those of A?

(None)-45903a7 (2018-11-06) -25/37

SED: Symmetric Eigenvectors Decomposition

For any symmetric n by n matrix A, it can be diagonalized by an orthogonal matrix Q, whose columns are chosen to be the eigenvectors of A:

Jofn

$$A = Q \Lambda Q^T$$
 with $Q^T A Q = \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$

■ For a symmetric matrix A with $A = A^T$, its eigenvalues are *real* values.

proof $Ax = \lambda x \Rightarrow \bar{A}\bar{x} = \bar{\lambda}\bar{x} \Rightarrow \bar{x}^TA^T = \bar{x}^T\bar{\lambda} \Rightarrow \bar{x}^TAx = \bar{x}^TA^Tx = \bar{x}^T\bar{\lambda}x$ also we have $\bar{x}^TAx = \bar{x}^T\lambda x = \lambda \bar{x}^Tx$, so we have $\lambda = \bar{\lambda}$

- For a symmetric matrix A with $A = A^T$, its eigenvectors from different eigenvalues are orthogonal to each other.
- Strictly speaking, this SED has been proven only when the eigenvalues of *A* are distinct. Nevertheless it is true that *even* with repeated eigenvalues, a symmetric matrix still has a complete set of orthonormal eigenvectors.

(None)-45903a7 (2018-11-06) -26/37

Spectral Theorem

Every real symmetric A can be diagonalized by an orthogonal matrix Q, whose columns contain a complete set of *orthonormal* eigenvectors. If we multiply columns by rows, the matrix A becomes a combination of one-dimensional projections, which are the special matrix xx^T of rank one:

Jefn

$$A = Q \Lambda Q^{T} = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ x_{1} & x_{2} & \cdots & x_{n} \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} \begin{bmatrix} \leftarrow & x_{1}^{T} & \rightarrow \\ \leftarrow & x_{2}^{T} & \rightarrow \\ \leftarrow & x_{n}^{T} & \rightarrow \end{bmatrix} = \lambda_{1} x_{1} x_{1}^{T} + \cdots \lambda_{n} x_{n} x_{n}^{T}$$

- As the projection matrix $P = \frac{aa^T}{a^Ta}$ projects a vector b to a vector a, $x_ix_i^T$ represents the projections onto the vector x_i . Hence $matrix\ hit\ Ab$ can be represented by $Ab = \lambda_1 x_1 x_1^T b + \cdots + \lambda_n x_n x_n^T b$, where $x_i x_i^T b$ is the projection of b on x_i .
- A symmetric matrix can be completely represented by:

eigenvectors determine the direction on which the matrix transformation doesn't change; **eigenvalues** control the weight of contribution along its corresponding eigenvectors.

(None)-45903a7 (2018-11-06) - 27 / 37

Applications of Spectral Theorem

Given a vector $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, what is the vector after hitting it by a matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$

- It can be calculated directly as $Ab = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$. However, we will try the spectral theorem.
- For the matrix A, the eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = -2$, the eigenvectors are $x_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $x_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$. The spectral theorem tells us that

$$Ab = \lambda_1 x_1 x_1^T b + \lambda_2 x_2 x_2^T b = 4 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{1} \end{bmatrix} - 2 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{1} \end{bmatrix} = \begin{bmatrix} \frac{4}{4} \end{bmatrix}$$

- This is also understandable, as b is along the direction of x_1 , hence Ab will not change its direction.
- b is perpendicular to x_2 , hence, the component in the 2nd part is 0.
- For a vector $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ The spectral theorem tells us that

$$Ab = \lambda_1 x_1 x_1^T b + \lambda_2 x_2 x_2^T b = 4 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix} - 2 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{7}{5} \end{bmatrix}$$

(None)-45903a7 (2018-11-06) - 28 / 37

Applications of Spectral Theorem

Every quadratic function in the n variables x_1, x_2, \dots, x_n can be expressed in the form $f(x) = x \cdot Hx = \sum_{i=1}^n \sum_{j=1}^n H_{ij}x_ix_j$, which involves n^2 terms, and the variables are typically coupled.

- when *H* is a diagonal matrix, the function can be simplified: $f(x) = \sum_{i=1}^{n} H_{ii} x_i^2$
- \blacksquare when *H* is a general matrix, the function can also be simplified by selecting a correct coordination system.
- Any vector $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix}$ is implicitly in the standard basis $e^{(1)} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e^{(2)} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$ etc.
- Any orthonormal set $u^{(1)}, \dots, u^{(n)}$ forms an alternate basis, every vector x can then expressed as $x = \sum_{i=1}^{n} \alpha_i u^{(i)}$, with coefficients α_i as

$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} u^{(1)} \cdot x \\ \vdots \\ u^{(n)} \cdot x \end{bmatrix} = U^T x$$

The key point is that $\{\alpha_1, \dots, \alpha_n\}$ can be thought of as new variables representing the vector x. Specifically, $\{x_1, \dots, x_n\}$ represent x in the standard basis $\{e^{(1)}, \dots, e(n)\}$, while $\{\alpha_1, \dots, \alpha_n\}$ represent x in the alternate basis $\{u^{(1)}, \dots, u^{(n)}\}$.

(None)-45903a7 (2018-11-06) - 29 / 37

Applications of Spectral Theorem

Every *quadratic* function in the *n* variables x_1, x_2, \dots, x_n can be expressed in the form $f(x) = x \cdot Hx = \sum_{i=1}^n \sum_{j=1}^n H_{ij} x_i x_j$, which involves n^2 terms, and the variables are typically coupled.

- when *H* is a diagonal matrix, the function can be simplified: $f(x) = \sum_{i=1}^{n} H_{ii} x_i^2$
- \blacksquare when H is a general matrix, the function can also be simplified by selecting a correct coordination system.
- If $A \in \mathbb{R}^{m \times n}$, then $y \cdot Ax = y^T Ax = (A^T y)^T x = (A^T y) \cdot x$ for all $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.
- Assuming $H \in \mathbb{R}^{n \times n}$ is symmetric, it has a spectral decomposition $H = UDU^T$. Therefore, $x \cdot Hx = x \cdot UDU^Tx = (U^Tx) \cdot D(U^Tx) = \sum_{i=1}^n \lambda_i \alpha_i^2$, where I have applied the change of variables $\alpha = U^Tx$.
- Hence, the *quadratic* $f(x) = x \cdot Hx$ is a simple decoupled quadratic when expressed in terms of the alternate basis $\{u^{(1)}, \dots, u^{(n)}\}$.
- Since every symmetric matrix has a spectral decomposition, this means that every quadratic function $f(x) = x \cdot Hx$ can be expressed as a simple decoupled quadratic, provided the correct coordinate system is chosen.

(None)-45903a7 (2018-11-06) - 30 / 37

Applications of Spectral Theorem

Every *quadratic* function in the *n* variables x_1, x_2, \dots, x_n can be expressed in the form $f(x) = x \cdot Hx = \sum_{i=1}^n \sum_{j=1}^n H_{ij}x_ix_j$, which involves n^2 terms, and the variables are typically coupled.

- when *H* is a diagonal matrix, the function can be simplified: $f(x) = \sum_{i=1}^{n} H_{ii} x_i^2$
- \blacksquare when H is a general matrix, the function can also be simplified by selecting a correct coordination system.
- A quadratic function $f(x) = x_1^2 + 6x_1x_2 + x_2^2 = x \cdot Hx$, where $H = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ can be diagonalized $H = UDU^T$, with $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$
- The new coordinator system is defined by $u^{(1)} = \left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]$ and $u^{(2)} = \left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]$. The function curves up in the direction of $u^{(1)}$ and down in the direction of $u^{(2)}$.

(None)-45903a7 (2018-11-06) - 31 / 37

Applications of Spectral Theorem

Exercises:

- Find the eigenvalues and eigenvectors and the diagonalizing matrix S for $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$
- If A has eigenvalues of 0 and 1, corresponding to the eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$, how can you tell in advance that A is symmetric? What are its trace and determinant? What is *A*?
- Write the following matrix in the form $\lambda_1 x_1 x_1^T + \lambda_2 x_2 x_2^T$ of the spectral theorem: $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$, and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

(None)-45903a7 (2018-11-06) - 32 / 37

Positive Definite Symmetric Matrix

For a real symmetric matrix *A* to be positive definite, it needs satisfy any of the following:

- $x^T A x > 0$ for all non-zero vectors xAll the eigenvalues of A satisfy $\lambda_i > 0$

 - All the upper left submatrices A_k have positive determinants
 - All the pivots (without row exchanges) satisfy $d_i > 0$
- In Gaussian elimination of a symmetric matrix A, the upper triangular U is the transpose of the lower triangular L. Then A = LDU becomes $A = LDL^T$.

$$x^{T}Ax = (x^{T}L)(D)(L^{T}x) = d_{1}(L^{T}x)_{1}^{2} + d_{2}(L^{T}x)_{2}^{2} + \dots + d_{n}(L^{T}x)_{n}^{2}$$

■ For example:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & \\ & \frac{3}{2} & \\ & & \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix} = LDL^{T}$$

$$x^{T}Ax = 2(x_{1} - \frac{1}{2}x_{2})^{2} + \frac{3}{2}(x_{2} - \frac{2}{3}x_{3})^{2} + \frac{4}{3}(x_{3})^{2}$$

(None)-45903a7 (2018-11-06) -33/37

Positive Definite Symmetric Matrix

For a real symmetric matrix *A* to be positive definite, it needs satisfy any of the following:

- $\mathbf{z} = x^T A x > 0$ for all non-zero vectors x
- All the eigenvalues of A satisfy $\lambda_i > 0$
 - \blacksquare All the upper left submatrices A_k have positive determinants
 - All the pivots (without row exchanges) satisfy $d_i > 0$
 - There is a matrix R with independent columns such that $A = R^T R$.
- Assume a rectangular matrix R and a least square problem Rx = b. The least square choice \bar{x} is the solution of $R^T R \bar{x} = R^T b$. Provided that the columns of R are linearly independent, the matrix $R^T R$ is positive definite symmetric: $x^T R^T R x = ||Rx||^2$, which can not be negative or zero.
- When *A* is positive definite, we have two choices:
 - From SED: $A = Q \Lambda Q^T = (Q \sqrt{\Lambda})(\sqrt{\Lambda} Q^T) = R^T R$.
 - From Gaussian Elimination: $A = LDL^T = (L\sqrt{D})(\sqrt{D}L^T) = R^TR$.

(None)-45903a7 (2018-11-06) -34/37

Positive Semi-Definite Symmetric Matrix

For a real symmetric matrix A to be positive semidefinite, it needs satisfy any of the following:

- $x^T A x \ge 0$ for all non-zero vectors x
- All the eigenvalues of *A* satisfy $\lambda_i \ge 0$
- \blacksquare All the upper left submatrices A_k have non-negative determinants
- No pivots are negative
- There is a matrix R, possibly with with dependent columns, such that $A = R^T R$.
- Example: $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ is semidefinite because:

 - The eigenvalues are $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = 3$.
 - The submatrices determinants are 2, 3 and 0 respectively.

(None)-45903a7 (2018-11-06) -35/37

Questions?			
	(None)-45903a7 (2018-11-06) — 36 / 37		

Contact Information

Associate Professor **Gang Li** School of Information Technology Deakin University, Australia

GANGLI@TULIP.ORG.AU

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING

(None)-45903a7 (2018-11-06) -37/37