DC Motor with Joystick Controller Using Arduino Uno

Humza Ansari and Shadman Kazi

Introduction

- The objective of this project is to build a DC motor that can be controlled by a joystick.
- We will be using Arduino Uno board to dictate the direction the DC motor will be rotating in either clockwise or counterclockwise direction.
- We will be uploading C++ code from the Arduino IDE to the Uno board so it can send signals triggered by the joystick to the DC motor

Types of Motors

Types of DC Motors

Application of DC Motor

DC motors are suitable for many applications such as Cars, Elevators, Air compressors, Vacuums and others.

They are

- adjustable speed and where constant or low-speed torque are required
- work well in dynamic braking and reversing applications
- quick acceleration, stopping and reversing along with their linear-speed torque curve

Why DC Motor is the most suitable motor?

DC motors are often selected instead of AC motors for many reasons

- low-cost option
- Installations plus repairing a DC motor with a new one easier
- Easy to vary Motor Speed.
- Full torque at speed zero.
- Higher Power density compared AC motor
- are smaller and compact size

Parts List

Elegoo Uno R3 Super Starter kit

- Arduino Uno R3 board
- L293D Motor Driver IC
- DC Motor
- Joystick Module
- Breadboard with DC power supply
- Jumper Wires
- Fan
- Power Supply Module

Motor Driver Datasheet for L293 IC

L293D L293DD

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
- INTERNAL CLAMP DIODES

DESCRIPTION

The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors

To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included.

This device is suitable for use in switching applications at frequencies up to 5 kHz.

BLOCK DIAGRAM

July 2003

SO(12+4-4) Powerdip (12+2+2)
ORDERING NUMBERS:
L293DD L293D

The L293D is assembled in a 16 lead plastic packaage which has 4 center pins connected together and used for heatsinking

The L293DD is assembled in a 20 lead surface mount which has 8 center pins connected together and used for heatsinking.

L293D - L293DD

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage	36	V	
V _{SS} Logic Supply Voltage V _I Input Voltage V _{en} Enable Voltage I _o Peak Output Current (100 µs non repetitive) P _{bot} Total Power Dissipation at T _{prs} = 90 °C		36	V	
		7		
		7	V	
		1.2	Α	
		4	W	
T _{sto} , T _i Storage and Junction Temperature		- 40 to 150	°C	

PIN CONNECTIONS (Top view)

THERMAL DATA

Symbol	Decription		DIP	SO	Unit
Rth j-pins	Thermal Resistance Junction-pins	max.	-	14	°CM
R _{th j-amb}	Thermal Resistance junction-ambient	max.	80	50 (*)	°CM
R _{th j-case}	Thermal Resistance Junction-case	max.	14	-	

(*) With 6sq. cm on board heatsink.

ELECTRICAL CHARACTERISTICS (for each channel, $V_S = 24 \text{ V}$, $V_{SS} = 5 \text{ V}$, $T_{amib} = 25 ^{\circ}\text{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 10)	1	Vss		36	V
Vss	Logic Supply Voltage (pin 20)		4.5		36	٧
Is	Total Quiescent Supply Current	V _i = L; I _O = 0; V _{en} = H		2	6	mA
	(pin 10)	V _i = H; I _O = 0; V _{en} = H		16	24	mA
		V _{en} = L			4	mA
Iss	Total Quiescent Logic Supply	V _i = L; I _O = 0; V _{en} = H		44	60	mA
	Current (pin 20)	V _i = H ; I ₀ = 0 ; V _{en} = H		16	22	mA
		V _{en} = L		16	24	mA
VIL	Input Low Voltage (pin 2, 9, 12, 19)		-0.3		1.5	٧
VIH	Input High Voltage (pin 2, 9,	V _{SS} ≤ 7 V	2.3		Vss	V
	12, 19)	Vss > 7 V	2.3		7	V
IIL	Low Voltage Input Current (pin V _{IL} = 1.5 V 2. 9. 12. 19)			- 10	μА	
I _{IH}	High Voltage Input Current (pin 2, 9, 12, 19)	$2.3 \text{ V} \le \text{V}_{\text{IH}} \le \text{V}_{\text{SS}} = 0.6 \text{ V}$		30	100	μА
V _{en L}	Enable Low Voltage (pin 1, 11)		-0.3		1.5	V
V _{en H}	Enable High Voltage (pin 1, 11)	V _{SS} ≤ 7 V	2.3		Vss	V
		V _{SS} > 7 V	2.3		7	٧
l _{en L}	Low Voltage Enable Current (pin 1, 11)	V _{en L} = 1.5 V		- 30	- 100	μА
l _{en H}	High Voltage Enable Current (pin 1, 11)	$2.3 \text{ V} \le \text{V}_{\text{en H}} \le \text{V}_{\text{SS}} - 0.6 \text{ V}$			± 10	μА
V _{CE(sat)H}	Source Output Saturation Voltage (pins 3, 8, 13, 18)	I _O = - 0.6 A		1.4	1.8	V
V _{CE(sat)L}	Sink Output Saturation Voltage (pins 3, 8, 13, 18)	I _O = + 0.6 A		1.2	1.8	٧
VF	Clamp Diode Forward Voltage	Io = 600nA		1.3		V
tr	Rise Time (*)	0.1 to 0.9 V _O		250		ns
te	Fall Time (*)	0.9 to 0.1 Vo		250		ns
ton	Turn-on Delay (*)	0.5 V _i to 0.5 V _o		750		ns
torr	Turn-off Delay (*)	0.5 V _i to 0.5 V _O		200		ns

*) See fig. 1.

Motor Driver Datasheet for L293 IC (Cont.)

TRUTH TABLE (one channel)

Input	Enable (*)	Output
Н	Н	Н
L	Н	L
H	L	Z
L	L	Z

Z = High output impedance (*) Relative to the considered channel

Figure 1: Switching Times

Figure 2: Junction to ambient thermal resistance vs. area on board heatsink (SO12+4+4 package)

Truth Table

Pin 1	Pin 2	Pin 7	Function	
High	High	Low	Turn Anti-clockwise (Reverse	
High	Low	High	Turn clockwise (Forward)	
High	High	High	Stop	
High	Low	Low	Stop	
Low	Х	Х	Stop	

High ~+5V, Low ~0V, X=Either high or low (don't care)

L293D Motor Driver Pin Diagram

Pin Functions

PIN		TVDE	DESCRIPTION	
NAME	NO.	TYPE	DESCRIPTION	
1,2EN	1	1	Enable driver channels 1 and 2 (active high input)	
<1:4>A	2, 7, 10, 15	1	Driver inputs, noninverting	
<1:4>Y	3, 6, 11, 14	0	Driver outputs	
3,4EN	9	1	Enable driver channels 3 and 4 (active high input)	
GROUND	4, 5, 12, 13		Device ground and heat sink pin. Connect to printed-circuit-board ground plane with mu solid vias	
V _{CC1}	16	-	5-V supply for internal logic translation	
V _{CC2}	8	-	Power VCC for drivers 4.5 V to 36 V	

1,2EN: To activate the channel 1 and 2 we supply +5v to this pin.

3,4EN: To activate the channel 3 and 4 we supply +5v to this pin.

Vccl: Input voltage to derive the internal circuit (darligton array) = 4.5 to 36 v

Vcc2: Supply/Output to appear at output = 4.5 to 36 v

1A: Channel-1 Input Pin

2A: Channel-2 Input Pin

3A: Channel-3 Input Pin

4A: Channel-4 Input Pin

1Y: Channel-1 Output Pin

2Y: Channel-2 Output Pin

3Y: Channel-3 Output Pin

4Y: Channel-4 Output Pin

L293D IC Specifications

- Supply Voltage Range 4.5V to 36V
- 600-mA Output current capability per driver
- Separate Input-logic supply
- It can drive small DC-geared motors, bipolar stepper motor.
- Pulsed Current 1.2-A Per Driver
- Thermal Shutdown
- Internal ESD Protection
- High-Noise-Immunity Inputs

```
oid loop() {
                                                        long v:
                                                        y = analogRead(Y pin);
 This example use the Y-axle of joystick to control
                                                        Serial.print("val=");
the DC Motor
                                                        Serial.println(y);
                                                       if(y == 0){
                                                        analogWrite(ENABLE,255);
const int Y pin = 1; // analog pin connected to Y
                                                        digitalWrite(DIRA,LOW); //one way
output
                                                        digitalWrite(DIRB,HIGH);
#define ENABLE 5
                                                       if(y>0&&y<100){}
#define DIRA 3
                                                         analogWrite(ENABLE,200);
#define DIRB 4
                                                        digitalWrite(DIRA,LOW); //one way
                                                        digitalWrite(DIRB,HIGH);
int i;
                                                       if(y>100\&&y<250){
                                                         analogWrite(ENABLE,180);
void setup() {
                                                        digitalWrite(DIRA,LOW); //one way
 //---set pin direction
                                                         digitalWrite(DIRB,HIGH);
 pinMode(ENABLE,OUTPUT);,
 pinMode(DIRA,OUTPUT);
                                                       if(y>250\&&y<400){
 pinMode(DIRB,OUTPUT);
                                                        analogWrite(ENABLE,128);
 Serial.begin(9600);
                                                        digitalWrite(DIRA,LOW); //one way
                                                         digitalWrite(DIRB,HIGH);
```

Code

```
if(y>400\&&y<500)
                         analogWrite(ENABLE,80);
                         digitalWrite(DIRA,LOW); //one way
                         digitalWrite(DIRB,HIGH);
                        if(y>500&&y<600){
More code
                         analogWrite(ENABLE,0);
                         digitalWrite(DIRA,LOW); //one way
                          digitalWrite(DIRB,HIGH);
                        if(y == 1023)
                         analogWrite(ENABLE,255);
                          digitalWrite(DIRA,HIGH); //revers
                         digitalWrite(DIRB,LOW);
```

```
if(y>800&&y<923){
  analogWrite(ENABLE,180);
  digitalWrite(DIRA,HIGH); //revers
  digitalWrite(DIRB,LOW);
 if(y>700\&&y<800){
  analogWrite(ENABLE,128);
  digitalWrite(DIRA,HIGH); //revers
  digitalWrite(DIRB,LOW);
 if(y>600&&y<700)
  analogWrite(ENABLE,80);
  digitalWrite(DIRA,HIGH); //revers
  digitalWrite(DIRB,LOW);
```

Schematic

Setup

Demonstration

Future Improvements

- We can try to connect the joystick to the DC motor wirelessly using Bluetooth.
- DC Motor wires should be longer for more versatile placing.
- We can use this project to make a smart RC car using Arduino.

References

- 1) https://www.processingmagazine.com/pumps-motors-drives/article/15586862/the-dc-motor-advantage?fbclid=IwAR3O2Ff-hBRCYhsMZAJhRhdG0T1L2TJ9U45oWqHw3BgNztW1H9mM_GjrKhA
- 2) https://create.arduino.cc/projecthub/binsun148/fun-projects-with-elegoo-uno-r3-super-start-kit-joystick-9b09e6?fbclid=IwAR06Kl_DIG5LFHyxxxDGftiElkEJeSLdWmDjEygE-a4sXvMhOI1bdwwvSD3w
- 3) https://www.arduino.cc/documents/datasheets/H-bridge_motor_driver.PDF
- 4) <a href="https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2FClassification-and-Types-of-DC-Motor_6662%2F%2Fwww.brainkart.com%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Farticle%2Fart
- 6) https://www.ti.com/lit/ds/symlink/l293.pdf
- 8) https://osoyoo.com/2017/10/10/arduino-lesson-l293d-with-dc-motor/
- 9) https://e2e.ti.com/blogs_/b/analogwire/posts/what-you-need-to-know-about-internal-esd-protection-on-integrated-circuits