Nom: Prénom:		Groupe :
ECOLE POLYTEC	HNIQUE UNIVERSITAIRE DE NIC	E SOPHIA-ANTIPOLIS
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2012/2013	Note / 20
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°3	7 20

Durée: 1h30

Mardi 18 Décembre 2012

- Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable.

N'OUBLIEZ PAS LES UNITES

Questions de cours sur les impédances (2 pts)

$0.25 \mathrm{pt}$	Expression de l'impédance d'une résistance :
$0,25 \mathrm{pt}$	Expression de l'impédance d'une bobine :
0,25pt	Expression de l'impédance d'un condensateur :
0,25pt	Définition de la fonction de transfert d'un circuit :
$0,\!25\mathrm{pt}$	Expression du gain :
0,25pt	Expression du gain en décibel :
0,25pt	Comment est définie la pulsation de coupure $\omega_{\mathbb{C}}$?
0,25pt	Que représente l'argument de la fonction de transfert ?

EXERCICE I : Signaux (2 pts)

A. Valeurs crête, crête-crête et moyenne:

Soit le signal représenté ci-dessous :

Déterminez graphiquement les valeurs numériques pour :

B. <u>Sinusoïdal</u>:

Soit le signal représenté cicontre.

Déduire du graphe les valeurs numériques suivantes :

Amplitude:	
T_0 :	0,25pt
ω_0 :	0,25pt
T_{S} :	0,25pt
$\Phi: \dots$	0,25pt
Expression de u(t) avec les valeurs numériques:	
	0,25pt

BROUILLON:

Ci-dessous, on a les formes d'onde du courant et de la tension pour un élément inconnu.

II.1. Constante de temps de l'exponentielle :

0,25pt

Réponse:

b) Déduire de a), la constante de temps de l'exponentielle représentée ci-dessus :

a) A partir de quand peut-on estimer que l'exponentielle est nulle?

0,25pt

II.2. Quel élément admet une tension à ses bornes et un courant le traversant de la forme de celles représentées ci-dessus ? Justifiez brièvement. Donnez sa valeur numérique.

Réponse: 1pt

EXERCICE III: Bobines et condensateurs (3 pts)

A. On considère que le régime permanent est atteint. Déterminez (en justifiant brièvement) les tensions aux bornes des résistances et des condensateurs dans le circuit ci-contre :

1pt

1pt

Réponse :

 $\boldsymbol{B.}$ Déterminez la capacité équivalente, $C_{AB},$ du circuit cicontre :

 $\begin{array}{c|c} 1\mu F \\ 1\mu F \\ \hline \\ 1pF \\ \hline \\ 0.5\mu F \end{array}$

Réponse :

Faites les approximations nécessaires.

BROUILLON	
	į
1	

EXERCICE IV : Etude du régime transitoire (11 pts)

Soit le circuit ci-contre. A t=0, l'interrupteur est R fermé. Les conditions initiales sont : $i_L(0) = 0$ $u_{\rm C}(0) = 0$ On donne : E = 24 V ; $R = r = 60 \Omega$. On ne connait ni L, ni C. IV.1. Détermination de l'expression du courant traversant la bobine. IV.1.a. Déterminez l'expression du courant $i_L(t)$ traversant la bobine. On rappelle que $i_L(0) = 0$ Réponse : si vous ne montrez pas votre raisonnement, vous aurez la moitié des points 2pt

	IV.1.b. Sachant que le courant dans la bobine atteint 0,38A en t=3ms, déterminez la valeur de l'inductance L de la bobine.
1pt	Réponse :
-100	•
	IV.2. Détermination de l'expression du courant dans la branche contenant le condensateur.
	IV.2.a. Déterminez l'expression de la tension $u_C(t)$ aux bornes du condensateur. On rappelle que $u_C(0) = 0$
2pt	Réponse : si vous ne montrez pas votre raisonnement, vous aurez la moitié des points ; si vous l'avez bien détaillé au IV.1.a. alors vous pouvez vous contenter de mettre les principaux points du raisonnement sans trop détailler.

léponse :	
BROUILLON	
	1
V.3. En fonction des réponses précédentes, donnez l'expression du courant i(t) délivrénérateur. Mettez les valeurs numériques. La seule inconnue restant est C.	ré par le

	IV.4. Quelle relation doit satisfaire C pour que ce courant, i(t), soit constant? Justifiez brièvement et calculez la valeur numérique de C.
1pt	Réponse :
	IV.5. Quelle est la valeur numérique (constante) du courant délivré par le générateur ?
0,5pt	Réponse :
	IV.6. Représentation graphique.
2,5pt	Réponse :
	Expression de il(t):
	Représentez i _L (t) à l'aide de 3 points judicieusement choisis :
	1 ^{er} point :
	2 nd point :
	3 ^{ième} point :
	Expression de ic(t):
	Représentez i _C (t) à l'aide de 3 points judicieusement choisis :
	1 ^{er} point :
	$2^{ m nd}$ point :
	3 ^{ième} point :
	Expression de i(t):
	Représentez i(t).

