אוניברסיטת חיפה החוג למדעי המחשב ד"ר יעל זפקוביץ-מלאכי

מבחן סוף סמסטר ב' תשנ"ד (מועד א) מבחן חשבון דיפרנציאלי ואינטגרלי 2.

הוראות לנבחן

לכחינה זו שני חלקים.

את התשובות לשני החלקים יש לסמן בטופס הבחינה.

- א) יש לענות על כל השאלות.
- ב) אין להשתמש בכל חומר עזר, ניתן להשתמש במחשבונים.(יש איסור בשימוש במחשבונים עם אופציה גרפית)
 - ג) משך הבחינה $\frac{1}{4}$ שעות. אין יציאה כמהלך הכחינה.
 - ד) בדוק שהטופס בידך מכיל 5 עמודים.
 - ה) יש לבדוק כי ענית על כל השאלות בגוף השאלון -מחברת הבחינה משמשת כטיוטא לטבלה ולא תיבדק כלל.

חלק ראשון- לפניך תשע טענות. סמן בטבלה האם הטענה נכונה או שאינה נכונה. אין צורך לתקן את הטענות השגויות. (5 נקודות לכל טענה)

- . מתכנס א $\sum_{n=1}^\infty (a_n)^2$ הכרח מתכנס אזי מתכנס ה $\sum_{n=1}^\infty a_n$ טור אם וור. .1
- .2 אם $\sum_{n=1}^\infty \frac{(a_n)^2}{1+a_n}$ אזי מתכנס אזי $\sum_{n=1}^\infty a_n$ בהכרח מתכנס.
- $\sum_{n=1}^{\infty} \frac{(a_n)^2}{b_1 + b_2 + \ldots + b_n}$ אם מור חיובי מתבדר אזי $\sum_{n=1}^{\infty} b_n$ טור מתכנס בהחלט ו $\sum_{n=1}^{\infty} a_n$ טור מתכנס.
 - 4. שני המשפטים שלפניך אינם נכונים
 - . מוכנס מתכנס הזכח בהכרח בהכרח אוי $\sum_{n=1}^{\infty} \left(\frac{\left|a_{n}\right|}{n} + 1 \right)$ אם אור מתכנס אוי מתכנס אוי אם אור מתכנס אוי אם אור מתכנס
 - $\lim_{n\to\infty} n^2 a_n = \frac{1}{2}$ טור חיובי ונתון כי כי $\sum_{n=1}^{\infty} a_n$ ב) אם
 - . בהכרח מתכנס. $\sum_{n=1}^\infty a_n$ אזי הטור
- $B=f_y(x_0,y_0)$ ו $A=f_x(x_0,y_0)$ היימות נגזרות הלקיות z=f(x,y) ו z=f(x,y) אם לפונקציה בנקודה z=f(x,y) אזי z=f(x,y) אזי z=f(x,y) אזי בנקודה זו.
 - 6. שתי הקבוצות הבאות הן קבוצות קשירות. $A = \{(x,y) \mid 2 \le x \le 4, \quad 1 \le y \le 5 \} \quad B = \{(x,y) \mid 1 \le x^2 + y^2 \le 9 \}$
- $\lim_{x \to \infty} \frac{1}{m} = \lim_{(x,y) \to (0,0)} \frac{x^8 y^4 + m y^2}{x^4 + y^2}$ קיים לכל ערוך של $\lim_{(x,y) \to (0,0)} \frac{1}{m}$

- בורת אוררת אל $M_0(x_0,y_0)$ בנקודה בz=f(x,y) פונקציה גוררת אל בהכרח אים ביפרנציאביליות של פונקציה ב $A=f_x(x_0,y_0)$ ו $A=f_x(x_0,y_0)$
- עוררת בהכרה את גוררת אור ביפרנציאביליות אור ביפרנציאביליות ביפרנציאביליות אור ביפרנציאביליות אור ביפרנא ב

חלק שני-לפניך תשע טענות. אם הטענה אינה נכונה תקן אותה כך שתהייה נכונה ורשום את תשובתך במקום המתאים בטבלה. (6 נקודות לכל טענה)

- תונה הפונקציה המכוונת אזי הערך אזי הערך אזי אזי המסוונת המקסימלית הפונקציה אזי הפונקציה ל $f(x,y)=x-3y+\sqrt{3xy}$ הפונקציה של הפונקציה בנקודה ל-16 (3,4) שווה ל-16
 - $f(x,y)=x^2-y^2$ נסמן ב M את הערך המקסימלי שהפונקציה M את הערך. נסמן ב $\frac{1}{2}x^2+y^2\leq 1$ מקבלת עבור נקודות (x,y) המקימות את האילוץ אזי הערך M מתקבל בדיוק בנקודה אחת.
- , אינטגרל $x=y^2,y=0,y=1$ שווה ל-12 באשר באינטגרל האינטגרל אינטגרל באשר חסום חסום באשר באשר באינטגרל וציר אינטגרל באשר 12 באשר האינטגרל .1.
 - יש: אזי לפונקציה אזי אזי לפונקציה אזי אזי לפונקציה אזי לפונקציה אזי נתונה בתונה אזי אזי אזי אזי לפונקציה אזי נתונה בק' קריטיות שאחת מינימום מקומי ואחת מקסימום מקומי אוכף. 3
 - פונקציה f(u) כי וידוע בי $u=x^2-2y^2$ כאשר כי ב(x,y)=f(u) תהי הוא מזירה. אזי הערך של a עבורו מתקיים a עבורו הוא מזירה. אזי הערך של אזי עבורו מתקיים a
 - : בעלת נגזרות הלקיות רציפות המקיימת z=f(x,y) תהי

$$f_{_y}(6,9)=5 \qquad f_{_x}(6,9)=1$$

$$y=s^2+\ln t\,,\quad x=s(2^t) \qquad \text{ ווהוו}$$

$$6\ln 2+5: \text{ אזי הערך של הביטוי } \frac{\partial z}{\partial t}+\frac{\partial z}{\partial s}$$
 בנקודה (s,t) = (3,1) אזי הערך של הביטוי

 $\int_{0}^{5} (\int_{0}^{5} f(x,y)dy)dx + \int_{1}^{5} (\int_{0}^{5-x} f(x,y)dy)dx$ אחרי החלפת סדר אינטגרציה באינטגרל 16

$$\int\limits_{0}^{2}(\int\limits_{s-y^{2}}^{y}f(x,y)dx)dy\qquad : מתקבל האינטגרל:$$

אזי הביטוי w=f(x-y,y-z) . גדיר (גדיר בעלת נגזרות חלקיות הביטוי a=1 אזי $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}=a\frac{\partial w}{\partial z}$

. מספר ממשי.
$$A = \sum_{n=1}^{\infty} \ln(\frac{2an^2 + 3}{n^2 + 2a})$$
 מספר ממשי. 18

. $a \geq 0$ ממשי מספר אזי טור אז מתכנס לגבול סופי עבור אזי מתכנס לגבול ה

תשובות לחלק הראשון והשני

הטענה אינה נכונה	הטענה נכונה	טענה מספר
1177 117 11 14 1175 117		1
		2
	V	3
		4
		5
	1/	6
	V	7
		8
	V	9

הטענה אינה נכונה ויש לתקנה באופן הבא	הטענה נכונה	טענה מספר
הערך של הנגזרת המכוונת המקסימלית של הפונקציה בנקודה (3,4) שווה ל		10
י ונקודות. M מתקבל בדיוק ב 2		11
הערך של האינטגרל שווה ל		12
לפונקציה יש		13
a =	V	14
	X	15
$\frac{\partial z}{\partial t} + \frac{\partial z}{\partial s} = .(g. \ln g + 3)$ $\sum_{x} \int_{y} f(x, y) dx dy$		10
$a = \dots $		1
		1