Práctica 1

- **1.** Probar que si $x < y + \varepsilon$ para todo $\varepsilon > 0$, entonces $x \le y$. Deducir que si $|x y| < \varepsilon$ para todo $\varepsilon > 0$, entonces x = y.
- **2.** (a) Sean $x, y \in \mathbb{R}$ tales que y x > 1. Probar que existe $k \in \mathbb{Z}$ tal que x < k < y.
 - (b) Sean $x, y \in \mathbb{R}$ tales que x < y. Probar que existe $q \in \mathbb{Q}$ tal que x < q < y.
 - (c) Sean $s, r \in \mathbb{Q}$ tales que s < r. Probar que existe un irracional entre s y q.
 - (d) Sean $x, y \in \mathbb{R}$ tales que x < y. Probar que existe un irracional entre $x \in y$.
- 3. Sea $A \subseteq \mathbb{R}$ no vacío. Probar:

$$s = \sup A \Longleftrightarrow \begin{cases} a \leq s \text{ para todo } a \in A, \\ \text{para todo } \varepsilon > 0 \text{ existe } a \in A \text{ tal que } s - \varepsilon < a \leq s. \end{cases}$$

$$i = \inf A \Longleftrightarrow \begin{cases} i \leq a \text{ para todo } a \in A, \\ \text{para todo } \varepsilon > 0 \text{ existe } a \in A \text{ tal que } i \leq a < i + \varepsilon. \end{cases}$$

- **4.** Hallar, si existen, supremo, ínfimo, máximo y mínimo de los siguientes subconjuntos de \mathbb{R} , y probar que lo son:
 - (a) (a, b]

(c) $B \cup \{0\}$

- (b) $B = \{ \frac{1}{2^n} : n \in \mathbb{N} \}$
- (d) $\{x^2 x 1 : x \in \mathbb{R}\}$
- **5.** Sean $A \subseteq B \subseteq \mathbb{R}$, con $A \neq \emptyset$. Probar:
 - (a) Si B está acotado superiormente, A también y sup $A \leq \sup B$.
 - (b) Si B está acotado inferiormente, A también e inf $B \leq \inf A$.
 - (c) Si A no está acotado, B tampoco.
- **6.** Dados un conjunto de números reales A y $c \in \mathbb{R}$, denotamos

$$cA = \{ca : a \in A\}$$
.

Más aún, -A será el conjunto (-1)A. Probar:

- (a) Si A está acotado superiormente, entonces -A está acotado inferiormente e $\inf(-A) = -\sup A$.
- (b) Si c > 0 y A está acotado superiormente, entonces cA está acotado superiormente y $\sup(cA) = c\sup(A)$.

- 7. Probar, usando la definición de límite:
 - (a) $\lim_{n \to \infty} \frac{3-2n}{n+1} = -2$.
 - (b) $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0.$
 - (c) $\lim_{n \to \infty} \frac{2^n 3}{2^n + 4} = 1$.
- **8.** Sean $(x_n)_{n\in\mathbb{N}}$ y $(a_n)_{n\in\mathbb{N}}$ sucesiones de números reales. Probar que si $|x_n-\ell|\leq a_n$ para todo $n\in\mathbb{N}$ y $a_n\underset{n\to\infty}{\longrightarrow}0$ entonces $x_n\underset{n\to\infty}{\longrightarrow}\ell$.
- **9.** Si $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ son sucesiones de números reales tales que $(x_n)_{n\in\mathbb{N}}$ converge a 0 e $(y_n)_{n\in\mathbb{N}}$ está acotada, probar que $(x_ny_n)_{n\in\mathbb{N}}$ converge a 0.
- **10.** Sean $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ y $(z_n)_{n\in\mathbb{N}}$ successones de números reales tales que $x_n \leq y_n \leq z_n$ para todo n. Si $x_n \xrightarrow[n \to \infty]{} \ell$ y $z_n \xrightarrow[n \to \infty]{} \ell$ probar que $y_n \xrightarrow[n \to \infty]{} \ell$.
- 11. Sea $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ creciente. Probar que:
 - (a) Si $(x_n)_{n\in\mathbb{N}}$ es acotada superiormente, entonces tiene límite y

$$\lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}\}.$$

- (b) Si $(x_n)_{n\in\mathbb{N}}$ es no acotada superiormente, entonces $x_n \xrightarrow[n\to\infty]{} +\infty$.
- **12.** Sea $A \subseteq \mathbb{R}$ acotado superiormente y no vacío. Probar que si A no tiene máximo entonces existe $(a_n)_{n\in\mathbb{N}}\subseteq A$ estrictamente creciente tal que $a_n\underset{n\to\infty}{\longrightarrow}\sup(A)$.
- **13.** Sean $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ y $\ell\in \mathbb{R}$. Probar que $\lim_{n\to\infty}x_n=\ell$ si y sólo si toda subsucesión de $(x_n)_{n\in\mathbb{N}}$ converge a ℓ .
- **14.** Sean $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ y $\ell\in\mathbb{R}$.

Probar que si toda subsucesión $(x_{n_k})_{k\in\mathbb{N}}$ tiene una subsucesión $(x_{n_{k_j}})_{j\in\mathbb{N}}$ que converge a ℓ , entonces la sucesión $(x_n)_{n\in\mathbb{N}}$ converge a ℓ .

- **15.** Sea $(x_n)_{n\geq 1}\subseteq \mathbb{R}$. Probar:
 - (a) Si $\lim_{k\to\infty} x_{2k} = \lim_{k\to\infty} x_{2k+1}$ entonces $(x_n)_{n\in\mathbb{N}}$ es convergente.
 - (b) Si $(x_{2k})_{k\in\mathbb{N}}$, $(x_{2k-1})_{k\in\mathbb{N}}$ y $(x_{3k})_{k\in\mathbb{N}}$ son convergentes entonces $(x_n)_{n\in\mathbb{N}}$ es convergente.