Logic and Sets Cheatsheet

1. Sets and Set Operations

Definition: A set is a collection of distinct objects. Key operations include union (\cup) , intersection (\cap) , and complement (').

Key Identity: $A \cup B = A \cup (A' \cap B)$

Example: Let $U = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$.

• Union: $A \cup B = \{1, 2, 3, 4\}$

• Intersection: $A \cap B = \{2, 3\}$

• Complement: $A' = \{4, 5\}$

• Verify: $A' \cap B = \{4, 5\} \cap \{2, 3, 4\} = \{4\}$, so $A \cup (A' \cap B) = \{1, 2, 3\} \cup \{4\} = \{1, 2, 3, 4\} = A \cup B$.

2. Inductive and Deductive Logic

Induction: Generalizing from specific observations.

• Example: Sun rises in the east daily, so it always rises in the east.

Deduction: Specific conclusions from general facts.

• Example: All humans are mortal. Socrates is human. Thus, Socrates is mortal.

3. Proposition

Definition: A statement that is either true or false, but not both.

• Example: "2 + 2 = 4" (true). "The moon is cheese" (false).

4. Aristotelian vs. Non-Aristotelian Logic

Aristotelian: Statements are true or false (binary).

• Example: "It is raining" is true or false.

Non-Aristotelian: Allows other possibilities (e.g., "maybe").

• Example: "The room is warm" may have a truth value of 0.7 in fuzzy logic.

5. Symbolic Logic

Definition: Uses symbols for logical operations.

Symbol	Meaning	Expression	Read As
\sim	Not	$\sim p$	Not p
\wedge	And	$p \wedge q$	p and q
\vee	Or	$p \lor q$	p or q
\rightarrow	Ifthen	$p \to q$	If p , then q
\leftrightarrow	If and only if	$p \leftrightarrow q$	p if and only if q

Example: Let p: "It is sunny," q: "I go hiking."

- $\sim p$: "It is not sunny."
- $p \wedge q$: "It is sunny and I go hiking."
- $p \to q$: "If it is sunny, then I go hiking."
- $p \leftrightarrow q$: "I go hiking if and only if it is sunny."

6. Truth Tables

Definition: Lists all possible truth values for logical expressions.

Example: Truth table for $p \to q$ and $p \leftrightarrow q$.

p	q	$p \to q$	$p \leftrightarrow q$
Т	Т	Τ	Τ
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	${\rm T}$	${ m T}$	\mathbf{F}
\mathbf{F}	F	${ m T}$	${ m T}$

7. Converse, Inverse, Contrapositive

Definition: For $p \to q$:

- Converse: $q \to p$
- Inverse: $\sim p \rightarrow \sim q$
- Contrapositive: $\sim q \rightarrow \sim p$

Example (from Exercise 2.4, Q.1): Given $\sim p \rightarrow q$ ("If it is not raining, I go hiking").

- Converse: $q \to \sim p$ ("If I go hiking, it is not raining").
- Inverse: $p \to \sim q$ ("If it is raining, I do not go hiking").
- Contrapositive: $\sim q \rightarrow p$ ("If I do not go hiking, it is raining").

p	$q^{'}$	$\sim p$	$\sim q$	$\sim p \to q$	$q\to\sim p$	$p\to\sim q$
Т	Τ	F	\mathbf{F}	T	F	\mathbf{F}
${\rm T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}
F	F	${ m T}$	Τ	\mathbf{F}	${ m T}$	${ m T}$

8. Tautology, Absurdity, Contingency

Tautology: Always true. **Absurdity**: Always false. **Contingency**: True or false depending on values. **Examples** (from Exercise 2.4, Q.4):

• $p \land \sim p$: Absurdity (always false).

p	$\sim p$	$p \wedge \sim p$
Т	\mathbf{F}	F
\mathbf{F}	${ m T}$	F

• $p \to (q \to p)$: Tautology (always true).

p	q	$q \to p$	$p \to (q \to p)$
Т	Τ	Τ	${ m T}$
\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$
F	F	${ m T}$	${ m T}$

9. Logical Equivalence

Definition: Two statements are equivalent if their truth values are identical.

Example (from Exercise 2.4, Q.5): Prove $p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$.

p	q	$\sim p$	$\sim q$	$\sim p \wedge \sim q$	$p \vee (\sim p \wedge \sim q)$	$p \vee (\sim p \wedge \sim q) \vee (p \wedge q)$
Т	Τ	F	F	F	${ m T}$	T
${\rm T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	${\rm T}$	${ m T}$	\mathbf{F}	\mathbf{F}	F	${f F}$
\mathbf{F}	F	T	T	${ m T}$	${ m T}$	T

10. De Morgan's Theorem

 $\textbf{Definition:} \ (A \cap B)' = A' \cup B', \ \text{in logical form:} \ \sim (p \wedge q) = \sim p \vee \sim q.$

Example (from Exercise 2.5, Q.1):

p	q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p$	$\sim q$	$\sim p \vee \sim q$
Т	Τ	Τ	F	F	F	F
${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$
F	F	\mathbf{F}	${ m T}$	Τ	\mathbf{T}	${ m T}$

Set Example: $U = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 3\}.$ Then $(A \cap B)' = \{2\}' = \{1, 3, 4\},$ and $A' \cup B' = \{3, 4\} \cup \{1, 4\} = \{1, 3, 4\}.$