Computación Científica

Giovanni Ramírez García, PhD

Escuela de Ciencias Físicas y Matemáticas Universidad de San Carlos de Guatemala

Guatemala, 22 de enero de 2021

¿Qué es Computación científica?

Modelación matemática

Soluciones numéricas

¿Qué es Computación científica?

Modelación matemática

Soluciones numéricas

Computación científica

Scientific computing is the collection of tools, techniques, and theories required to solve on a computer mathematical models of problems in science and engineering – Golub y Ortega. Scientific Computing, 1993.

EDO EDP Oplimingación exactor aproxi P.e. duagonaligación Tayl

Las computadoras en nuestro día a día

¿Dónde se usan las computadoras?

- Uno de los primeros usos, y de los más grandes [Golub y Ortega, 1993], es para la solución problemas de en ciencia e ingeniería.
- Actualmente se usan para
 - investigación,
 - ▶ negocios, ✓
 - educación,
 - entretenimiento,
 - comunicaciones,
 - etc.

Las computadoras en nuestro día a día

¿Dónde se usan las computadoras?

- Uno de los primeros usos, y de los más grandes [Golub y Ortega, 1993], es para la solución problemas de en ciencia e ingeniería.
- Actualmente se usan para
 - investigación,
 - negocios,
 - educación,
 - entretenimiento,
 - comunicaciones,
 - etc.

Otras aplicaciones

www.menti.com

Código: 59 82 513

5 / 18

Las computadoras para computación científica

- Quedan pocas áreas de la ciencia donde no se usen computadoras para estudiar modelos.
- Principalmente se usan en la solución de modelos matemáticos que representan situaciones físicas.
- La computación científica es ese conjunto de técnicas usadas para obtener esas soluciones de modelos matemáticos.

Las computadoras para computación científica

- Quedan pocas áreas de la ciencia donde no se usen computadoras para estudiar modelos.
- Principalmente se usan en la solución de modelos matemáticos que representan situaciones físicas.
- La computación científica es ese conjunto de técnicas usadas para obtener esas soluciones de modelos matemáticos.

¿En física?

www.menti.com Código: 59 82 513

Figure 1.1.1: Scientific Computing and Related Areas

[Golub y Ortega, 1993]

¿Qué es Computación científica?

Modelación matemática

Soluciones numéricas

Modelos matemáticos

ecuaciones diferenciales parciales

sistemas de ecuaciones diferenciales

sistemas no lineales

modelos estocásticos

Modelos matemáticos

Tipos de modelos

- ecuaciones diferenciales ordinarias
- ecuaciones diferenciales parciales
- sistemas de ecuaciones diferenciales
- sistemas no lineales
- modelos estocásticos

Tipos de soluciones

- aproximación
- reducción de datos
- ▶ integración ←
- etc.

Modelación matemática (I) Modelado

- Formulación de un modelo matemático: establecimiento de los factores a considerar.
- Se deben conocer las condiciones iniciales o de frontera.
- En la construcción del modelo hay un balance entre los factores que podemos considerar y los que podemos resolver

Modelación matemática (II)

 $f(x) = P_n(x) + R_{nn}(x)$

- ► El avance del poder computacional permite el desarrollo o implementación de modelos numéricos más complicados.
- Importante: se busca una única solución para el modelo
- Validación: verificación de que la solución es lo suficientemente precisa para los propósitos para los que fue creado el modelo.

- Se deben considerar los errores: errores numéricos, errores del modelo.
- No siempre es sencillo encontrar las fuentes de error.
- La solución debe satisfacer las restricciones físicas y matemáticas del modelo.

Modelación matemática (III) Método científico

12 / 18

- Cuando la solución es adecuada, se puede comparar con resultados previos o con observaciones experimentales.
- Hay que tener en cuenta que el modelo puede (y debe) ser modificado para mejorar la precisión con la que la solución describe las observaciones experimentales.

Método científico

Figure 1.2.1: The Mathematical Modeling and Solution Process

[Golub y Ortega, 1993]

Dr. Giovanni Ramírez Computación Científica 13 / 18

¿Qué es Computación científica?

Modelación matemática

Soluciones numéricas

¿Qué considerar en una solución numérica? (I)

Algunos modelos tienen soluciones explícitas.

- En otros casos, se debe desarrollar un método numérico para encontrar la solución.
- El solución numérica dependerá de si usamos una computadora pequeña o una grande.
- Errores de redondeo: las computadoras usan números enteros para representar a los números reales.

¿Qué considerar en una solución numérica? (I)

1/3 = 0-3333

byte byte

- Algunos modelos tienen soluciones explícitas.
- ► En otros casos, se debe desarrollar un método numérico para encontrar la solución.
- ► El solución numérica dependerá de si usamos una computadora pequeña o una grande.
- Errores de redondeo: las computadoras usan números enteros para representar a los números reales.

- Estos errores pueden reducirse usando distintas precisiones: precisión sencilla, precisión doble, precisión cuádruple. Esto es costoso en tiempo porque algunas computadoras hacen estas implementaciones por software.
- Errores de discretización: para poder estudiar algunos problemas tenemos que reemplazar las variables contínuas por variables discretas.

()

¿Qué considerar en una solución numérica? (II)

Eficiencia

- Otro factor que afecta la solución que podemos encontrar es la eficiencia.
- Queremos encontrar una solución en el menor tiempo posible.
- Sólo podemos encontrar la solución más rápida usando los recursos computacionales de los que disponemos.

Complejidad

- La complejidad computacional es una medida que podemos relacionar a la cantidad de tiempo que toma resolver un problema.
- Por ejemplo, en teoría de matrices se usa la regla de Cramer para resolver sistemas de ecuaciones lineales e implica hacer n! productos para una matríz de n × n,

Buenos programas

- Fiabilidad: el código no tiene errores, calcula lo que debe calcular
- Robustez: el código tiene aplicaciones y la capacidad de detectar datos erróneos

Buenos programas

- T- TI
- ► Fiabilidad: el código no tiene errores, calcula lo que debe calcular
- Robustez: el código tiene aplicaciones y la capacidad de detectar datos erróneos

- Portabilidad: el código puede ser usado en cualquien sistema sin pérdida de fiabilidad
- Mantenibilidad: el código puede ser interpretado, leído y comprendido para ser modificado en cualquier momento y por cualquier persona.

9 for Lan

¡Muchas gracias!

Contacto: Giovanni Ramírez García, PhD ramirez@ecfm.usac.edu.gt http://ecfm.usac.edu.gt/ramirez