

USB 3.0 Basics

Dipl.-Ing. Stefan Schulze <stefan.schulze@emsys.de>
Dipl.-Ing. Mark Hämmerling <mark.haemmerling@emsys.de>
Enrico Schmidtke <enrico.schmidtke@emsys.de>

USB 3.0 Key Features

- Performance of 5GBit/s
 - Scalability to achieve higher data rates in future
- Same USB Device Model as for USB 2.0
- Backward compatibility
- Designed for Power Efficiency
- Definition of logical streams
- Optimized usage of bandwidth by using ERDY/NRDY

Bus Architecture

- New bus architecture is built on top of legacy USB
 - Operates concurrently with USB 2.0
- USB 3.0 uses dual-simplex signaling
 - Asynchronous notifications can be sent by device
- Packet routing

USB 3.0 Cables

- Cables contain all wires to support USB 2.0
 - VDD, GND, D+, D-
- In addition, USB 3.0 cables have 2 additional twisted pairs for RX/TX
 - SSTX+, SSTX-, SSRX+, SSRX-

USB 3.0 Connectors

- Standard-B: Stationary peripherals
- Standard A: Same as USB 2.0 Standard-A, but with added pins for SS signals
- Micro-Connectors: for hand held devices

Layered Communication Architecture

- USB 3.0 Specification defines 3 layers:
 - Physical Layer (Chip-to-Chip)
 - Link Layer (Port-to-Port)
 - Protocol Layer (End-to-End)

Layered Communication Architecture

Physical Layer

Data Flow in Transmitter

Data Flow in Receiver

Physical Layer Tasks

- Packet transmission across differential pairs
 - Scrambling/Unscrambling to reduce EMI problems
 - 8/10b Encoding/Decoding: Bytes are converted from/to 10-bit Symbols (D-Symbols and K-Symbols)
 - Serialization and De-Serialization
- Low Frequency Periodic Signaling during electrical idle state
- Clock and data recovery at receiver

Link Layer

- Link Training and Status State Machine (LTSSM)
- Packet Framing
- Link command definition and usage
- Link power management
- Responsible for error handling, CRC protection, Recovery

LTSSM

Packet Framing

- Link layer is responsible for the framing of all packet types (as defined at Protocol Layer)
 - Link Management Packets (LMP)
 - Transaction Packets (TP)
 - Data Packets (DP)
 - Isochronous Timestamp Packets (ITP)

Header Packet Framing

Used for LMP, TP, DP (Header) and ITP

Data Packet Payload Framing

Used for DP (Payload) only

Link Commands

- Used for four use-cases:
 - Ensure successful transfer of packets
 - Link flow control
 - Link power management
 - Special link commands to signal presence in U0
- Fixed length of 8 symbols

Link Command Structure

Link Command Summary

Class (LCW[10:9])	Type (LCW[8:7)]	Sub-Type (LCW[3:0])	Description
00b	00b: LGOOD_n	0000b0111b: LGOOD_0 LGOOD_7	Indicates successful header packet reception. (ensure HP data integrity)
	01b: LCRD_x	0000b0011b: LCRD_A LCRD_D	Signal availability of Rx Header buffers. (HP flow control)
	10b: LRTY		Header packet re-sent.
	11b: LBAD		Indicates failed header packet reception.
01b	00b: LGO_Ux	0001b0011b: LGO_U1 LGO_U3	Link Power Management
25	01b: LAU		, A
	10b: LXU	Mag.	
, , , , , , , , , , , , , , , , , , ,	11b: LPMA	udelin old	
10b	00b: LUP		Indicate Port presence in U0
202	11b: LDN		Elizabeth Control
11b			Reserved

Link Power Management

- USB 3.0 defines a much more complex and efficent power management concept
- 4 power states U0..U3 instead of having 2 power states for USB 2.0 (Active and Suspend)
 - U0: Fully powered
 - U1: low-power mode with fast recovery time (several us)
 - U2: low-power mode with slow recovery time (up to some ms)
 - U3: low-power mode with greatest power saving but slowest recovery time

Link Power Management

- Transition to U1/U2 is managed by hardware
- Software can only "allow" the transition to U1/U2
 - Dedicated USB Requests to enable/disable transition to U1/U2
- Transition to U2 is under software control
- USB 3.0 devices working in non-SS mode must support the legacy LPM protocol

Protocol Layer

- Manages end-to-end data flow between device and host
- Defines packet types and formats (LMP, TP, DP, ITP)
- Describes flow-control and expected responses
- Supports same 4 transfer types as defined for USB 2.0
 - Adds stream support for bulk transfer type
- Error handling, CRC protection, Recovery

Link Management Packet

- Only transferred between a pair of links
- Managing the link
 - No addressing information, not routable
 - Port Capability exchange and port configuration
 - Power management optimization
 - Vendor specific device testing

Link Management Packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SubType Specific			Type=LMP	DWORD 0
SubType Specific				DWORD 1
SubType Specific				
Link Control Word	CF	RC-16		DWORD 3

SubType	Type of LMP
0000b	Reserved
0001b	SetLinkFunction
0010b	U2 Inactivity Timeout
0011b	Vendor Device Test
0100b	Port Capability
0101b	Port Configuration
0110b	Port Configuration Response
0111b-1111b	Reserved

Transaction Packet

- Used to control the data flow and manage the end-to-end connection
- Contains routing information
- Contains "Addressing Triple"
 - Device Address
 - Endpoint Number
 - Direction Field

Transaction Packet

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Device Address		R	Route String		Type=TP	DWORD 0
Reserved	SeqNum	NumP	HE Rsvd	Ept Num D rty Rs	svd SubType	DWORD 1
Reserved PP Reserved		·	Stream ID/Reserved		DWORD 2	
Link Control Word				CRC-16		DWORD 3

SubType	Type of TP
0000b	Reserved
0001b	ACK
0010b	NRDY
0011b	ERDY
0100b	STATUS
0101b	STALL
0110b	DEV_NOTIFICATION
0111b	PING
1000b	PING_RESPONSE
1001b-1111b	Reserved

Data Packet

- Used to transfer data between Host and Device
- Consists of Data Packet Header (DPH) and Data Packet Payload (DPP)
- It's permitted to send Data Packets with a zero length
- Contains Routing information and "Addressing Triple"

Data Packet

Isochronous Timestamp Packet

- Multicast packet, no routing information
- Provide host timing information to devices for synchronization
- No response to ITPs

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Isochronous Timestamp
 Type=ITP
 DWORD 0

 Reserved
 DWORD 1

 Reserved
 DWORD 2

 Link Control Word
 CRC-16
 DWORD 3

Packet Routing

- One of major differences compared to USB
 2.0
- Allows links to stay longer in low power state
- USB device address is obsolete, but retained

Packet Routing

19:16	15:12	11:8	7:4	3:0
Target Port				
Depth 4	Depth 3	Depth 2	Depth 1	Depth 0

Route String

- The hubs depth parameter is set by the host via a dedicated USB request
- Hubs ignore route string until they are in configured state
- If route string is zero, the packet is routed to the hub itself. Otherwise to a downstream port

Packet Routing Example

Transfer Types

Transfer-Type	Maximum Packet Size(Bytes)	Error Correction	Guaranteed Bandwidth	Burst	Usage
Control	LS: 8 FS: 8, 16, 32, 64 HS: 64 SS: 512	Yes	LS: 10% FS: 10% HS: 10% SS: -	1	Enumeration/Configuration (Requests, Descriptor-Data)
Interrupt	LS: 1 8 FS: 1 64 HS: 1 3073 A SS: 1 1024 B	Yes	LS: 90% FS: 90% HS: 90% SS: 80%	3	Usually used for small amount of data. (Mouse, Keyboard, Status-Information,)
Isochronous	FS: 1 1023 HS: 1 3072 ^A SS: 0 1024 ^B	No	FS: 90% HS: 90% SS: 80%	1 16 ^c	Real-Time data (Audio, Video,)
Bulk	FS: 8, 16, 32, 64 HS: 512 SS: 1024	Yes	S. Files	1 16	Large amount of data. (Mass storage, printer, scanner)

Simple OUT/IN Data Flow

OUT (Data transfer Host → Device)

• IN (Data transfer Device \rightarrow Host)

Flow Control

- Synchronization between TPs and DPs done via Sequence Number (SeqNum)
- ACK TP for IN transfers can have 2 semantics
 - ACK the transfer as indicated by SeqNum
 - Act as "Token" to initiate a new transfer as indicated by NumP
- ACK TP with "rty" set indicates that the packet must be retried
- NRDY and ERDY TPs are used to avoid polling
- STALL TP is used to indicate USB Stall condition

OUT Data Flow Control

IN Data Flow Control

Burst Transfers

- USB 3.0 allows the transfer of multiple data packets without waiting for an ACK
- Supported device burst size reported in Endpoint Descriptor
- All packets within a burst except the last packet must have the Maximum Packet Size
- NumP value of TP indicates the number of packets within a burst packets
- Each packet must still be ACK'd, NumP decremented with every ACK'd packet
- Device can end burst earlier by setting the "EOB" flag in the Data Packet Header

Sample Burst IN Data Flow

Stream Protocol

- USB 3.0 defines a new Stream Protocol for bulk transfers
- Multiplexing/De-multiplexing streams via one Endpoint
- Stream is identified via Stream ID (SID) in DP headers and in TPs for ACK, NRDY and ERDY
 - 0x0000 is the reserved SID a standard bulk pipe
 - 16 bit value 0x0001..0xFFFD
 - OxFFFE indicates "Prime" SID
 - OxFFFF indicates "NoStream" SID

USB Device Framework

- Additional USB Requests
- Minor changes at descriptors

Device Descriptor

- USB 3.0 devices must report bcdUSB 0x300 in their device descriptor in SS mode, and 0x210 in non-SS mode
- bMaxPacketSize0 field must be set to 0x09 to indicate 512 byte packet size

Binary Object Store (BOS) Descriptor

- Framework to add device-level capabilities
- Number of "Device Capabilities" reported in Descriptor
- Additional DeviceCapabilies are added to this descriptor

BOS Device Capabilities

Capability Code	Value	Description
Wireless USB	0x01	Defines the set of Wireless USB- specific capabilities
USB 2.0 Extension	0x02	USB 2.0 Extension Descriptor
SuperSpeed_USB	0x03	SS specific Capabilities
CONTAINER_ID	0x04	Unique ID to identify the instance across all operating modes
Reserved	0x00, 0x050xFF	

USB 2.0 Extension

- Indicates extensions on top of USB 2.0
 Standard
- Actually only the LPM feature can be reported using this descriptors
- Mandatory for USB 3.0 devices

SuperSpeed Device Capability

- Explains device capabilities for SuperSpeed devices
 - Latency Tolerance Message Capability (Power Management feature)
 - Supported Speeds
 - Lowest Speed at which all functionality is available to the user
 - U1/U2 Device Exit Latency (Power Management feature)

SuperSpeed Endpoint Companion Descriptor

- Each Endpoint Descriptor is followed by a SS Endpoint Companion Descriptor
- Contains additional endpoint characteristics for SS endpoints
 - MaxBurst
 - MaxStreams
 - Mult value for isochronous endpoints
 - wBytesPerInterval