(NASA-CR-171025) PDSS/IMC QUALIFICATION TEST USER'S MANUAL (Intermetrics, Inc.) 102 p HC A06/MF A01 CSCL 09B N84-25334

Unclas G3/61 13284

INTERMETRICS

IR-AL-020 PDSS/IMC QUALIFICATION TEST

USER'S MANUAL

MARCH 1, 1984

National Aeronautics and Space Administration Prepared For:

George C. Marshall Space Flight Center

Huntsville, Alabama 35812

Prepared By:

Intermetrics, Inc. 3322 S. Memorial Parkway Huntsville, Alabama 35801 (205) 883-6860

PREFACE

This document contains user information for the operation of the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) Qualification Test (QT) Software.

This document was prepared for the Information and Electronic Systems Laboratory of the Marshall Space Flight Center under NASA contract NAS8-33825.

NASA interfaces included:

Mr. Paul Hamby (EB32)

Mr. Jim Lewis (EB32)

Mr. Bob Panciera (EB32)

Mr. Ken Williamson (EB42)

Questions concerning this document should be directed to the Intermetrics, Inc. Huntsville office.

Intermetrics, Inc. 3322 South Memorial Parkway Century Office Center Huntsville, Alabama 35801 (205) 883-6860

J/./R'. Boun

Approved

Director

Southeast Division

TABLE OF CONTENTS

		Page
1.0	Introduction	1
2.0	PDSS/IMC QT Setup	3
3.0	PDSS/IMC QT Commands	7
	3.1 QT Test Commands	10
	3.1.1 XIIT - Execute IMCE Instruction Test 3.1.2 XIMT - Execute IMCE Memory Test 3.1.3 RDRI - Read RAUI 3.1.4 RDIS - Read Discrete Inputs 3.1.5 RALG - Read Analog 3.1.6 RGYR - Read GYROS 3.1.7 RDRS - Read RAUS 3.1.8 ISON - Issue DEI/DIO Discrete	14 14 15 15 16 18 20 21
	Outputs ON 3.1.9 ISOF - Issue DIO Discrete Outputs OFF 3.1.10 ISOT - Issue DIO Discrete Outputs 3.1.11 IDWP - Issue WUPPE Data 3.1.12 IDUI - Issue UIT Data 3.1.13 IDRS - Issue ASTI Data 3.1.14 PGMT - Preset GMT 3.1.15 RGMT - Read GMT 3.1.16 XPIT - Execute PCC Instruction Test 3.1.17 XPMT - Execute PCC Memory Test 3.1.18 XHRM - Execute HRM Output 3.1.19 SSPR - Set Pulse Synchronous Read 3.1.20 XINT - Execute IMCE Initialize	22 22 23 25 26 27 27 28 28 29 29
	3.2 QT System Commands	31
	3.2.1 COMM Command 3.2.2 CTRL Command 3.2.3 DISP Command 3.2.4 LOG Command 3.2.5 MOD Command 3.2.6 PMEM Command 3.2.7 PIO Command 3.2.7 PIO Command 3.2.8 SRST Command 3.2.8 STAR Command 3.2.9 STAR Command 3.2.10 STOP Command 3.2.11 VIEW Command 3.2.12 P Command	32 36 38 39 39 40 41 41 42 42 43

TABLE OF CONTENTS (CONTINUED)

4.0	PDSS/IMC QT Displays	45
5.0	PDSS/IMC QT SEID Monitor	51
6.0	PDSS/IMC QT Data	53
7.0	PDSS/IMC QT Data Interfaces	55
8.0	QT Messages	61
9.0	QT Status/Error Codes	63
10.0	PDSS/IMC QT Generation	73
11.0	QT Log Buffer Format	75
Append	ix A	79

LIST OF FIGURES

		Page
A-1	PDSS/IMC GSE Layout	80
A-2	PDSS/IMC CAMAC Crate	81
A-3	PDSS/IMC GSE Diagram	82
A-4	PDSS/IMC Task Flow	83
A-5	SEID Display	84
A-6	QT Display 1 Background	85
A-7	QT Display 1 Example	86
A-8	QT Display 2 Background	87
A-9	QT Display 2 Background	88
A-10	QT Display 3 Background	89
A-11	QT Display 4 Background	90
A-12	QT Display 4 Example	91
A-13	QT Display 5 Background	92
A-14	QT Display 5 Example	93
A-15	PDSS Master Display	94

LIST OF TABLES

		Page
3-1	QT Test Commands	8
3-2	QT System Commands	9
3-3	QT Test Parameters and Data	11
3-4	QT Command Messages	12
3-5	QT Response Message	13
3-6	QT System Commands Syntax	31
3-7	Time Variables	35
3-8	Tolerance Table	35
4-1	Display Pages	45
7-1	PDSS CAMAC Analog Outputs	56
7-2	SEID Flexible Inputs	57
7-3	SEID Discrete Outputs	59
9-1	VERRD Description	59
9-2	VERRI Description	65
9-3	Verification Index	66
9-4	GYROF/GYROE/GYROA Definition	72
1-1	LOG Format	76

ACRONYMS

A/D	Analog/Digital
AO	Analog Outputs
CAMAC	Computer Automated Measurement and Control
DEP	Dedicated Experiment Processor
DSD	Data Systems Design
FI	Flexible Inputs
GSE	Ground Support Equipment
IMC	Image Motion Compensation
IMCE	Image Motion Compensation Electronics
1/0	Input/Output .
LSB	Least Signigicant Bit
MSB	Most Significant Bit
PDSS	Payload Development Support System
P/S .	Pulses/Second
QT	Qualification Test
SEID	Spacelab Experiment Interface Device
VDU	Visual Display Unit

1.0 INTRODUCTION

The PDSS/IMC Qualification Test software is designed and operates in accordance with the "PDSS/IMC Requirements and Functional Specifications", IR-AL-010, 1 June 1983. The PDSS/IMC Qualification Test design specifications are contained in document IR-AL-021, "PDSS/IMC Qualification Test Software Detailed Design Specifications".

The PDSS/IMC Qualification Test (QT) software is designed for checkout of the IMCE on a board level. The QT tests have been defined to permit controlled testing of the IMCE interfaces. The standard PDSS functions are available for PDSS/IMC. A CAMAC crate and special purpose boards have been developed (or procured) to support the IMCE QT. Figure A-1 depicts the PDSS/IMC GSE layout while Figure A-2 shows the PDSS/IMC CAMAC Crate card locations. Figure A-3 shows the PDSS/IMC GSE Functional Diagram and also identifies the cabling required for the IMC application.

The IMC QT software has been developed as user tasks running under PDSS. Figure A-4 depicts the tasks, task interfaces, and data flow for QT software.

This manual defines the user interfaces used for QT set up, run time commands, run time displays, and shutdown. The reader should be familiar with RT-11 and PDSS.

2.0 PDSS/IMC QT STARTUP

The following start up procedures should be followed.

SET UP

- 1. Turn on IMCE CAMAC Crate
- 2. Turn on Conrac VDU
- 3. Turn on VT-100
- 4. Turn on DSD-880
- 5. Turn on PDSS CAMAC Crate
- 6. Turn on SEID
- 7. Turn on Quantex Line Printer

The LSI 11/23 will boot RT-11 from the DSD winchester disk. Standard RT-11 Operating System commands can be used to set the data and time.

- DATE dd-mmm-yy
- TIME hh:mm:ss

QT START

The following command is used to load and execute the IMC Qualification Test software.

ORQT

When loaded, the PDSS Master Display page (Figure A-15) will be shown on the V $\dot{\tau}$ -100. The PDSS software first establishes communication with the SEID. If the SEID initialization power up message is not present, the PDSS Master Display will request the operator to reset the SEID. This request is made on the PDSS Master Display page by displaying a

"RESET SEID" message rather than the "SELECT OPTION" message and by ringing the VT-100 bell. When the operator depresses (only once) the SEID reset button, the PDSS Master Display page returns to the "SELECT OPTION" message.

PDSS has now been loaded and is operational.

EXECUTION

To initiate the IMC Qualification Test application, the following steps are to be entered on the PDSS Master Display page.

Step .	Command	Action
1	4	Selects PDSS Execute
2	/GML-RES 3	Sets GML Analog Measurement Resolution to 120MV
3	MLOAD QT.MON'	Causes ,QT SEID Monitor File to be loaded in LSI 11/23
4	XSEND	Sends SEID Monitor to SEID
5	MON	Starts SEID Monitor
6	TVS	Switches VDU to User Pages
7	INIT	Activates User Tasks "QT: WELCOME TO PDSS/IMC - STRIKE "=STAR" TO PROCEED" Message will be written to system console

8	=START	Causes PDSS/IMC to perform initialization "QT: QT INIT COMPLETE STRIKE "=STAR" TO PROCEED" Message will be written to system console
9	=START	Causes PDSS/IMC QT to begin operation
10	=RALG .	Execute RALG test to gather IMCE AI's

TERMINATION

To terminate a PDSS/IMC QT session, the following steps should be performed.

STEP 1	COMMAND =STOP	ACTION Stops Log, closes files and prepares QT for termination
2	MOFF	Stops SEID GML
3	QUIT	Stops PDSS
4	CTRL-C	Terminates PDSS Task
5	CTRL-F CTRL-C CTRL-C UNL-F	Unloads Foreground Task

3.0 PDSS/IMC QT COMMANDS

PDSS/IMC QT commands are broken into two categories: QT Test commands and QT system commands. Tables 3-1 and 3-2 list the QT commands for each category.

The general syntax for PDSS/IMC QT commands is as follows.

=cccc</k> <p1,p2,...pn>

All PDSS/IMC QT commands must have an equal "=" character as the first character. The "=" character is used by the PDSS keyboard monitor for detecting those commands to be handled by user tasks. Failure to have an "=" as the first character results in a PDSS message, "PDSS-68: INVALID COMMAND".

The 'cccc' field is specified in Tables 3-1 and 3-2. Embedded blanks are not allowed in the 'cccc'.

The < > brackets denote optional data for commands.

Keys (/k) are optional and may be included with commands.

Parameters are entered as p1,p2,...,pn. Unless otherwise specified, the data is entered in hexadecimal. Leading zeroes are not required. Spaces are allowed between parameters but not within the data itself. Either commas or spaces may be used as separators. The number of parameters is a function of the command.

PRECEDING PAGE BLANK NOT FILMED

TABLE 3-1: QT TEST COMMANDS

COMMAND	ACTION
=XIIT	Execute IMCE DEP Instruction Self-Test
=XIMT	Execute IMCE DEP Memory Test
=RDRI	Execute Read RAUI Data Test
=RDIS	Execute Read Discrete Input Test
=RALG	Execute Read Analog Input Test
=RGYR	Execute Read Gyro Input Test
=RDRS	Execute RAUS Data Test
= I SON	Execute Discrete Output ON Test
=ISOF	Execute Discrete Output OFF Test
=ISOT	Execute Discrete Output Test
= I DWP	Execute Read WUPPE Data Test
=IDUI	Execute Read UIT Data Test
=IDRS	Execute Issue RAUS Data Test
=PGMT	Execute Preset GMT
=RGMT	Execute Read GMT
= X P I T	Execute PCC Instruction Test
= X P M T	Execute PCC Memory Test
=XHRM	Execute HRM Set
=XTPT	Execute Throughput Test
=SSPR	Execute Set Pulse Synchronous Read
= X I NT	Execute IMCE Initialize

TABLE 3-2: QT SYSTEM COMMANDS

COMMAND	ACTION
=CTRL	System Control
=VIEW =LOG	Display QT Data or SEID Data Activate/Deactivate Log
=STOP =DISP	Stop QT Display Page
= PMEM	Print Display Pages
=SRST =PIO	System Reset Issue CAMAC I/O
=STAR	System Start
= P = C O M M	Single Step Insert Comment for Log
=MOD .	Modify QT Data

3.1 QT TEST COMMANDS

The 21 QT test commands identified in Table 3-1 initiate a specific Qualification Test.

The logical sequence for all QT tests is as follows.

- 1. PDSS/IMC performs test set up.
- 2. PDSS/IMC sends messages to IMCE.
- 3. IMCE sends message acknowledge.
- 4. PDSS/IMC waits while IMCE performs test.
- 5. IMCE sends response message.
- PDSS/IMC sends acknowledge.
- 7. IMCE sends second response message (if required).
- 8. PDSS/IMC sends acknowledge.
- 9. PDSS/IMC verifies test data.

The general syntax of the QT test commands is as follows.

=cccc</N> <p1,p2,...pn>

The number of parameters for each command is specified in Table 3-3 along with the QT data name. Each of the commands is described below. The /N key removes a task from the task sequence (see Section 3.2.1).

The user should reference the IR-AL-010 or IR-AL-021 documents for details of the individual QT tests. Tables 3-4 and 3-5 define the QT command and response messages and data content.

For each of the QT commands, the following information is provided: the command message (C:), the response message (R:), the command parameter data (P:), the varying data function, and any pertinent notes.

TABLE 3-3: QT TEST PARAMETERS AND DATA

COMMAND	# INPUT PARMS	DATA
XIIX	0	
XIMT	0	
RDRI	29	DRDRI
RDIS	32	DRDIS
RALG	32	DRALG
RGYR	24	DRGYR
RDRS	33	DRDRS
ISON	3	DISON
ISOF	2	DISOF
ISOT	28	DISOT
IDWP	3	DIDWP
IDUI	5	DIDUI
IDRS	28	DIDRS
PGMT	4	DGMT
RGMT	. 0	
XPIT	. 0	
XPMT	0	
XHRM	1	DXHRM
SPSR	1	DSPSR
XINT	0	
XTPT .	0	100

TABLE 3-4: QT COMMAND MESSAGES

COMMAND	COMMAND MESSAGE	#DATA WORDS
XIIT .	F000 1303 0002 0001	0
XIMT	F000 1303 0002 0002	0
RDRI	F000 1303 001E 0003 dddd dddd	28
RDIS	F000 1303 0002 0004	0
RALG	F000 1303 0002 0005	0
RGYR	F000 1303 0002 0006	0
RDRS	F000 1303 0002 0007	0
ISON	F000 1303 0005 0008 xxxx xxxx yyyy	3
ISOF	F000 1303 0004 0009 xxxx xxxx	2
ISOT	F000 1303 001E 000A aaaa aabb	28
IDWP	F000 1303 0005 000B aaaa bbbb cccc	3
IDUI	F000 1303 0007 000C aaaa bbbb cccc dddd	eeee 5
IDRS	F000 1303 001E 000D dddd dddd	28
PGMT	F000 1303 0005 000E aaaa bbbb bbbb	3 .
RGMT	F000 1303 0002 000F	0
XPIT	F000 1303 0002 0010	0
XPMT	F000 1303 0002 0011	0
XHRM	F000 1303 0003 0012 aaaa	1
SSPR	F000 1303 0003 0013 aaaa	1
XINT	F000 1303 0002 0014	. 0
XTPT	F000 1303 0003 0015 dddd	1

TABLE 3-5: QT RESPONSE MESSAGE

										#DATA
COMMAND	COMMA	AND ME	SSAGE							WORDS
XIIT	1291	0007		nnmm		nnmm				5
XIMT					0000		4444	2222		6
RDRI							uuuu	eeee	CCCC	29
KDKI					xxxx					3
RDIS		0003				^^^^				2
RALG						4444				32
KALG					dddd					32
RGYR					aaaa		hhhh			12
KUIK	1201	0002	2222		dddd					12
RDRS	1201	0015			aaaa		eeee	1111	1111	32
KUKS										32
TCON					dddd	aaaa				•
ISON	1281			aaaa						2
ISOF		0004								2
ISOT										- 28
IDWP					ffff					4
IDUI							1111	JJJJ	kkkk 11	
IDRS		001F								32
					pppp					
PGMT	1281	0005	SSSS	aaaa	pppp	pppp				3
RGMT	1281	0005	ssss	aaaa	bbbb	pppp				3
XPIT	1281	0002	SSSS							0
XPMT	1281	0002	SSSS							0
XHRM	1281	0003	SSSS	aaaa						1
SSPR	1281	0.003	ssss	aaaa						1
XINT	1281	0002	ssss							0
XTPT	1281	0003	ssss	dddd						1

3.1.1 XIIT - Execute IMCE Instruction Test

The IMCE is commanded to perform an Instrution Test.

C: F000 1303 0002 0001

R: 1281 0007 ssss nnmm nnmm

ssss = IMCE Status

--- 0 = Test Successful

---1 = Test Fail

nnmm = nn - Test Number, mm - Failure Code

01mm = Integer Arithmetic

Olmm = Logical Operator

03mm = Control Operation

04mm = Compare Operation

05mm = Floating Point Arithmetic

3.1.2 XIMT - Execute IMCE Memory Test

The IMCE is commanded to perform a Memory Test.

C: F000 1303 0002 0002

R: 1281 0008 ssss 0003 0000 aaaa dddd eeee cccc

ssss = IMCE Status

--- 0 = Test Successful

---1 = Test Fail

aaaa = Address of Error

dddd = Data Read

eeee = Data Expected

cccc = EPROM Checksum

3.1.3 RDRI - READ RAUI

The IMCE is commanded to read the RAUI interface.

C: F000 1303 001E 0003 dddd dddd

R: 1281 001F ssss xxxx xxxx 1281 0005 ssss xxxx xxxx xxxx

dddd = Data Pattern Written to RAUI 0020 FAF5 1111 2222 3333 4444 5555 6666 7777 8888 9999 AAAA BBBB CCCC DDDD EEEE FFFF 0000 0123 4567 89AB CDEF FEDC BA98 7654 3210 0011 2233 4455 3210 0011 2233 4455

ssss = IMCE Status

xxxx = Data Pattern Read by IMCE

F000 1303 001E 0003 0020 2233

Varying Data:

The one's complement of the data pattern dddd is output on alternating executions.

3.1.4 RDIS - Read Discrete Inputs

The IMCE is commanded to read the DIO Discrete Inputs.

C: F000 1303 0002 0004

R: 1281 0004 ssss aaaa aaaa

ssss = IMCE Status

aaaa = IMCE DIO Discrete Inputs (32 to 17)

(16 to 1)

P: The PDSS sets the SEID/RAU Discrete Outputs per the command data table (xxyy).

xx = Channel Number (0 to 31)yy = 01/0N, 00/0FF

0000 0101 0200 0301 0400 0501 0600 0701 0800 0901 0A00 0B01 0C0D 0D01 0E00 0F01 1000 1101 1200 1301 1400 1501 1600 1701 1800 1901 1A00 1B01 AC00 AD01 1E00 1F01

Varying Data:

The ON/OFF state is changed on alternate executions.

3.1.5 RALG - Read Analog

The IMCE is commanded to read its A/D AI's.

C: F000 1303 0002 0005

R: 1281 001F ssss dddd dddd 1281 0005 ssss dddd dddd dddd

P: The PDSS sets the CAMAC 32 A0's per the command data table. (12 bit, 2's complement, right justified, range = -10.0v to +10.0v).

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 0000
 0000

Varying Data:

One volt is added to all 32 channels for each execution. $(1 \text{ volt} = "00CC} = 204 \text{ COUNTS})$

Note:

The conversion for the IMCE Analog Inputs is as follows.

Voltage =
$$\frac{RAW}{64}$$
 . $\frac{20V}{1024}$

The conversion for the PDSS CAMAC Analog Outputs is as follows.

Voltage =
$$\frac{RAW}{4096}$$
 . $\frac{20V}{4096}$

Analog Input channels 8, 9, and 10 read the three thermister switches. The switch settings are as follows.

Position	Volts	Counts	Raw	
UP	3.06V	668	2900	
DOWN	1.12V	568	2380	

Analog Input channels 11, 12, 13, 14, 15, and 16 are differential analogs. Their expected values are computed below.

Expected = 2.4205 * Analog Output (Channel 11)

Expected = -2.4205 * Analog Output (Channel 12, ... 16)

If an Analog Output value exceeds 4.13 volts or is less than -4.13 volts, the differentials are saturated.

3.1.6 RGYR - Read Gryos

The IMCE is commanded to read the gyro pulses.

C: F000 1303 0002 0006

ssss = IMCE Status

aaaa = 32 Bit Gyro Counter

bbbb = 32 Bit Gyro Counter

cccc = 32 Bit Gyro Counter

dddd = 32 Bit Gyro Counter

eeee = 32 Bit Gyro Counter

ffff = 32 Bit Gyro Counter

P: The PDSS loads the PDSS Gyro pulses per the following command data.

R	<u>c</u>	Rate (P/S)	Count	Channel
0400	0800	10,240.	2,048.	XA
0400	1000	10,240.	4,096.	ZA
0400	1800	10,240.	6,144.	YB
0400	2000	10,240.	8,192.	YC
0400	2800	10,240.	10,240.	ХВ
0400	3000	10,240.	12,288.	ZC
0400	0800	10,240.	2,048.	ΧA
0400	1000	10,240.	4,096.	ZA
0400	1800	10,240.	6,144.	YB
0400	2000	10,240.	8,192.	YC
0400	2800	10,240.	10,240.	ХВ
0400	3000	10,240.	12,288.	ZC

Note: The gyro rate conversion is as follows.

Rate = V *
$$\frac{40,960}{4,096}$$
 = V * 10. pulses/second

Max Rate = . "OCOO = 30,720 pulses/second

Min Rate = "0001 = 10 pulses/second

Varying Data:

The rate is stepped from 0001, 0002, 0004, 0008, 0010, ..., 0100, 0200, 0400 (i.e., 10 P/S to 10,240 P/S). The sign is switched from + to - or - to + on alternate executions. The count value is set to 16. * rate.

Rate			Count		
0001	10	P/S	0010	16	
0400	10,240	P/S	4000	16,384	

Note:

To perform the GYRO test without PDSS issuing pulse commands, the user enters =GYRO/.

3.1.7 RDRS - Read RAUS

The IMCE is commanded to read the RAUS (ASTI) interface.

C: F000 1202 0002 0007

R: 1281 001F ssss dddd dddd 1281 0005 ssss dddd dddd dddd

> ssss = IMCE Status dddd = RAUS data - 32 words

P: The PDSS loads the RAUS buffer per the command data.

0020

0001 FFFE 0003 FFFC 0005 FFFA 0007 FFF8 0009 FFF6 000B FFF4 000D FFF2 000F FFF0 1111 2222 3333 4444 5555 6666 7777 8888 9999 AAAA BBBB CCCC DDDD EEEE FFFF 0000

Varying Data:

The one's compliment of the data pattern dddd is output on alternate executions.

3.1.8 ISON - Issue DEI/DIO Discrete Outputs ON

The IMCE is commanded to turn on selected DIO Discrete Outputs and to set the DEI discretes.

C: F000 1303 0005 0008 xxxx xxxx yyyy

R: 1281 0004 ssss aaaa aaaa

xxxx = DIO Discrete Outputs (32 to 17)
(16 to 1)

Default FFFF FFFF 002A

yyyy = DEI Discrete Outputs (16 to 1)

ssss = IMCE Status

dddd = IMCE DIO Discrete Inputs (32 to 17)
(16 to 1)

Varying Data:

The DIO DO's pattern xxxx xxxx is incremented by 0000 0001 each execution.

The DEI DO's are set per the following sequence (2A, 29, 26, 25, 1A, 19, 16, 15) which is equivalent to logical (LLL, LLH, LHL, LHH, HLL, HLH, HHH) for the mode commands. (H = $\frac{1}{2}$ High, L = $\frac{1}{2}$ Low.)

3.1.9 ISOF - Issue DIO Discrete Outputs OFF

The IMCE is commanded to turn off selected DIO Discrete Outputs.

C: F000 1303 0004 0009 xxxx xxxx

R: 1281 0004 ssss aaaa aaaa

xxxx = DIO Discrete Outputs (32 to 17)
(16 to 1)

Default FFFF FFF

ssss = IMCE Status

aaaa = IMCE DIO Discrete Inputs (32 to 17)
(16 to 1)

Varying Data:

The DIO DO's pattern xxxx xxxx is incremented by 0000 0001 each execution.

3.1.10 ISOT - Issue DIO Discrete Outputs

The IMCE is commanded to issue a sequence of DIO Discrete Output commands.

C: F000 1303 001E 000A aabb aabb

R: 1281 001E ssss aabb aabb aabb

aabb = Discrete Output command

aa = Channel Number (0. to 31.)

bb = 00(OFF), 01(ON)

aa = Time Delay (FO)

bb = Delay Time (* 100 milliseconds)

aa = End of Sequence (FF)

bb = FF

Default

0000 0101 0200 0301 0400 0501 0600 0701

0800 0901 0A00 0B01 0C00 0D01 0E00 0F01

1000 1101 1200 1301 1400 1501 1600 1701

1800 1901 1A00 1B01 1C00 1D01 1E00 1F01

ssss = IMCE Status

Varying Data:

The Discrete Output values are alternated between $\mathsf{ON}(\mathsf{O1})$ and $\mathsf{OFF}(\mathsf{OO})$ for each execution.

3.1.11 IDWP - Issue WUPPE Data

The IMCE is commanded to issue data to the WUPPE interface.

C: F000 1303 0005 000B aaaa bbbb cccc

D: 1281 0006 ssss dddd eeee ffff gggg

aaaa = Number of Writes to WUPPE Interface

bbbb = Initial Data Pattern to be Written to WUPPE Interface

cccc = Increment Data Pattern for Data Written
to WUPPE Interface

Default 0032 0000 0101

ssss = IMCE Status

dddd = Number of Writes Performed
eeee = Initial Data Pattern Written
ffff = Increment Data Pattern Used
gggg = Last Data Pattern Written

Varying Data:

The number of writes (aaaa) is incremented by two for each execution. The value is limited to a range 16 to 255.

The initial data pattern (bbbb) is incremented by the value 0101 for each execution.

The increment data pattern (cccc) is incremented by the value 0101 for each test.

3.1.12 IDUI - ISSUE UIT DATA

The IMCE is commanded to issue data to the UIT interface.

- C: F000 1303 0007 000C aaaa bbbb cccc dddd eeee
- D: 1281 0009 ssss ffff gggg hhhh iiii jjjj kkkk llll
 - aaaa = Number of writes to UIT Interface
 - bbbb = Initial Data Pattern for UIT Interface Word 1
 - cccc = Increment Data Pattern for UIT Interface Word 1
 - dddd = Initial Data Pattern for UIT Interface Word 2
 - eeee = Increment Data Pattern for UIT Interface Word 2

Default 0032 0000 0101 0000 0101

- ssss = IMCE Status
- ffff = Number of Writes Performed
- gggg = Initial Word 1 Data Pattern Written
- hhhh = Increment Word 1 Data Pattern Used
- iiii = Last Word 1 Data Pattern Written
- jjjj = Initial Word 2 Data Pattern Written
- kkkk = Increment Word 2 Data Pattern Used
- 1111 = Last Word 2 Data Pattern Written

Varying Data:

The number of writes (aaaa) is incremented by 2 for each execution. The value is limited to a range 16 to 255.

The initial data patterns (bbbb and dddd) are incremented by the value 0101 for each execution.

The increment data patterns (cccc and eeee) are incremented by the value 0101 for each execution.

3.1.13 IDRS - ISSUE ASTI DATA

The IMCE is commanded to issue data to its ASTI interface.

C: F000 1303 001E 000D dddd dddd

R: 1281 001F ssss bbbb bbbb 1281 0005 ssss bbbb bbbb bbbb

dddd = 28 words ASTI data patterns

Default
0020 0001 FFFE 0003 FFFC 0005
FFFA 0007 FFF8 0009 FFF6 0008
FFF4 000D FFF2 000F FFF0 1111
2222 3333 4444 5555 6666 7777
8888 9999 AAAA BBBB

ssss = IMCE Status

bbbb = 32 Words Data Loaded in ASTI

F000 1303 001E 000D dddd dddd

Varying Data:

On alternate tests, the one's complement of the previous ASTI data pattern (dddd) is sent to the DEP. The first word in the pattern (0020) remains fixed at 0020.

3.1.14 PGMT - PRESET GMT

The IMCE is commanded to set the TMI GMT clock.

C: F000 1303 0005 000E aaaa bbbb bbbb

R: 1281 0005 ssss aaaa bbbb bbbb

aaaa = GMT Day (1 to 365)

bbbb = Elapsed milliseconds in day (0 to 86,400,000)

Default

0001 0000 0000 (Day 1)

ssss = IMCE Status

Note:

The PGMT command format is = PGMT day, hour, min, sec.

Example: = PGMT 2,4,3,7

Sets GMT to day 2, hour 4, minute 3, and second 7

3.1.15 RGMT - READ GMT

The IMCE is commanded to read the TMI GMT clock.

C: F0000 1303 0002 000F

R: 1281 0005 ssss aaaa bbbb bbbb

aaaa = Day

bbbb = Milliseconds in day

3.1.16 XPIT - EXECUTE PCC INSTRUCTION TEST

The IMCE is commanded to initiate the PCC Instruction Test.

C: F000 1303 0002 0010

R: 1281 0002 ssss

ssss = IMCE Status

3.1.17 XPMT - EXECUTE PCC MEMORY TEST

The IMCE is commanded to initiate the PCC Memory Test.

C: F000 1303 0002 0011

R: 1281 0002 ssss

3.1.18 XHRM - EXECUTE HRM OUTPUT

The IMCE is commanded to set HRM output.

C: F000 1303 0003 0012 aaaa

R: 1281 0003 ssss aaaa

ssss = IMCE Status

aaaa = HRM Output State

0000 = OFF (Default)

0001 = 0N

3.1.19 SSPR - SET PULSE SYNCHRONOUS READ

The IMCE is commanded to activate or inhibit the pulse synchronous read.

C: F000 1303 0003 0013 aaaa

R: 1281 0003 ssss aaaa

aaaa = Pulse Synchronous Read State

0000 = Inhibit (Default)

0001 = Activate

3.1.20 XINT - EXECUTE IMCE INITIALIZE

The IMCE is commanded to execute its initialization.

C: F000 1303 0002 0014

R: 1281 0002 ssss

3.2 QT System Commands

The QT System commands identified in Table 3-2 provide operator control of system functions. Table 3-6 identifies the QT System commands and their syntax. Each of the commands is described.

QT System commands are performed by the QT keyboard monitor upon receipt from the PDSS keyboard monitor.

TABLE 3-6: QT SYSTEM COMMANDS SYNTAX

=COMM commstr	Commstr = character string of length 16
=CTRL	<pre>k = [V;M;S;P;T;U;W] l < i < 5 t = t ime in milliseconds</pre>
=DISP pid	1 <u><</u> pid <u><</u> 5
= L O G	
=MOD adr,hexd,,hexd	<pre>adr = octal address hexd=hexadecimal data</pre>
=PMEM <pid<,pid,>></pid<,pid,>	0 <u><</u> pid <u><</u> 6
=PIO <r,n,a,f></r,n,a,f>	n=CAMAC n a=CAMAC a f=CAMAC f wd=hexadecimal data
=SRST	
=STOP	
=VIEW <adr></adr>	adr = octal address
= P	

3.2.1 COMM Command

Syntax: = COMM commstr

commstr = character string of length 16

The COMM command allows the operator to enter a 16 character comment line in the log buffer. On each log cycle, the entire log buffer including the comment field is written to disk.

The COMM command can be used for reference points, reminders, or test headers.

3.2.2 CTRL Command

Syntax: =CTRL</k...>

= [V;M;S;P;T;U;W]

The CTRL command provides system level control to the operator.

14

The "/V" key toggles the verify control switch between verify/no-verify. If the verify control switch is verify, the verify logic is activated by the QT tests. If no-verify, the verify logic is bypassed. The operator can determine the current state of the verify control switch on QT display 1.

/M

The "/M" key toggles the mode control switch between single and automatic. When the single mode is active, the QT tests are performed once. When the automatic mode is active, the QT tests are repeated continuously for each command.

To exit the automatic mode, the "=CTRL/M" command must be entered again. The operator can determine the current state of the mode on QT Display 1.

15

The "/S" key enters and exits (toggles) the sequence definition mode. When the sequence definition mode is entered, the operator defines the tests to be performed by entering "=cccc" (Section 3.1) commands. If a test is requested, a ">" character is displayed on QT Display 1. A test can be removed by a "=cccc/N" command.

The QT tests are not performed until the "=CTRL/S" command is entered to exit the sequence definition mode.

The sequence of tests is performed once unless the repeat mode (/M) has been requested.

The following example shows how the sequence definition mode is entered: tests XIIT, RALG, and IDRS requested; test RGYR requested then removed; and the sequence initiated.

Example:

=CTRL/S	Enter sequence mode
=XIIT	Request test XIIT
=IDRS	Request test IDRS
=RGYR	Request test RGYR
=RGYR/N	Remove test RGYR
=RALG	Request test RALG .
=CTRL/S	Exit sequence definition mode and
	start test sequence

The tests are executed in the order displayed on the QT display, not in the order requested.

If a sequence is in progress (the single pass has not completed or the repeat mode is active), tests can be entered or removed by entering "=cccc" or = cccc/N" commands.

/P

The "/P" key causes the sequence of tests to be performed in a single step mode. The "=P" command is the single step activator.

/T

The syntax of the "/T" key is /T i,t.

The "/T" key causes time parameter i to be updated to time value t (milliseconds). PDSS/IMC QT software provides the user with six setable time variables as listed in Table 3-7.

TABLE 3-7: TIME VARIABLES

Variable	Default	Function
T1	0.5 secs	IMCE Watchdog Resolution
T2	2.0 secs	Spare
Т3	1.0 secs	Display Task Update Rate
T4	1.0 secs	CAMAC I/O Rate
T5	1.0 secs	Gyro complete Wait Bias
T6	1.0 secs	LOG Time Rate

<u>/U</u>

The "/U" command is used to modify the tolerance table.

TABLE 3-8: TOLERANCE TABLE

Symbol	Default	Description
TIMTOL	250	Time Tolerance (milliseconds)
AOTOL	31	AO Tolerance (counts)
FITOL	184	FI ON/OFF (counts)
GYTOL	10	GYRO Tolerance (counts)
SWTOL	6	Thermal Switch Tolerance (counts)
ADTOL	8	FI Differential Tolerance (counts)

The following example sets tolerance table values.

=CTRL/U 251, 32, 185, 11, 7, 9

/W

The "/W" command toggles the stop-on-error software control flag. When the stop-on-error software control flag is on, the PDSS/IMC executive enters a wait state if an error is detected while a test is performed.

The user can resume normal test execution with the "=P" command. The capability to stop when an error is detected is valuable to the operator when trying to isolate errors.

When the stop-on-error software flag is set, the item "WHOA" is displayed on display page 1.

3.2.3 DISP Command

Syntax: =DISP</I> pid

</F>

</U>

The DISP command is used to request the active display of a QT display page, to re-initialize a QT display page, to freeze a QT display page or, to unfreeze a display page.

Unless frozen, all display pages are updated on a round robin basis at the display rate.

As discussed in section 4.0, there are five QT display pages supported.

pid	Display Page	Figure
1	PDSS/IMC Status	A-6, A-7
2	PDSS/IMC QT CAMAC	A-8, A-9
3	PDSS/IMC Commands	A-10
4	VIEW Page	A-11, A-12
5	PDSS/IMC QT Messages	A-13, A-14

The pid parameter designates the QT display page (i.e., $1 \le pid \le 5$). A value for pid outside this range is treated as an invalid parameter and the command is not processed.

Example:

=DISP pid

Requests an active display of the page 'pid'

The requested page ('pid') is mapped to the active page of the VDU.

Example:

=DISP/I pid

Re-initializes the background data from disk for the page 'pid'

The foreground or variable data for page 'pid' will be lost.

Example:

=DISP/F pid

Freezes display page 'pid'

The Display function will not update the page data until an unfreeze is invoked.

Example:

=DISP/U pid

Unfreezes display page 'pid'

The designated page will be updated by the display function.

3.2.4 LOG Command

Syntax: = LOG

The =LOG command toggles the PDSS/IMC log control switch between active/inactive. When active the PDSS/IMC log function logs the IMC Data Buffers to disk file (IMC.LOG) at the interval specified. When inactive, the PDSS log function is not performed.

The operator can determine the current setting of the \log control switch on QT Display 1.

3.2.5 MOD Command

Syntax: =MOD adr,hexd,...,hexd

adr = octal address

hexd = hexadecimal data

The MOD command is used to change QT data (see section 6.0). The hexadecimal data is moved into the QT data buffer beginning at the address (adr) specified. If the address range is actively being displayed on the VIEW page, the display data will be updated.

After all data has been deposited in memory, the next deposit address is displayed on the system console.

3.2.6 PMEM Command

Syntax: PMEM <pid<,pid,...>>
pid = page id; 0<pid<6

The PMEM command prints the QT display pages on the PDSS line printer. This command provides a hard copy mechanism for saving the display pages during testing. All display pages are printed if no specific pages are requested.

Below are the pages that are available:

3.2.7 PIO Command

The PIO command provides the operator with a means to perform manual CAMAC I/O. (Note: Manual SEID I/O operations are provided by standard PDSS commands). The PIO command allows the operator to perform a read "<R...>", a write "<W...>", a CAMAC Dataway initialize "<I>" or a CAMAC Dataway clear "<J>".

The CAMAC n,a,f codes are not verified by the command. The I/O operation is performed immediately.

The write data "wd" is in hexadecimal.

QT Display page 2 has a display line NAF where the n,a,f read data and write data are displayed. To view this line, the operator must request display page 2 (=DISP 2).

3.2.8 SRST Command

Syntax: =SRST

The SRST Command causes the QT executive task to re-initialize. The QT active data is reset to zero, the SEID is re-initialized, and the CAMAC subsystems are initialized.

The "QT: INIT COMPLETE" message will be displayed when the initialization has been completed.

3.2.9 STAR Command

Syntax: =STAR

The STAR command is required to initiate the IMC QT application software. The control logic for QT is as follows.

WRITE "IMC: PDSS/IMC" TO SYSTEM CONSOLE

WAIT FOR "=STAR" COMMAND

PERFORM INITIALIZATION

WAIT FOR "=STAR" COMMAND

BEGIN QT

The two waits for "=STAR" commands are provided to allow the operator to enter any desired manual commands or to verify cabling before starting the test.

3.2.10 STOP Command

Syntax: =STOP

The STOP command closes the Log file, stops the logging function, and clears the CAMAC CSR, INT and CCR registers. The STOP command should be used just prior to terminating a QT session.

3.2.11 VIEW Command

Syntax: =VIEW <adr> adr = octal address

The view command causes the PDSS/IMC QT Data or the SEID Data Buffers to be displayed to the VDU. Figure A-11 shows the format of the VIEW display page. Section 6.0 defines the QT Data Buffer assignments. The data is displayed as 4 hex characters (16 bits).

The /S control key causes the SEID Data Buffer to be displayed rather than the QT Data Buffers. Section 6.0 also defines the SEID Data Buffer.

The default display (\approx VIEW) is the QT DRDRI data table address.

The VIEW display page is displayed to the VDU when the =VIEW command is entered. The data on the display is refreshed at the normal display refresh rate.

3.2.12 P Command

Syntax: =P

The '=P' command is used as the single step activator when the single step mode is active.

4.0 PDSS/IMC QT DISPLAYS

PDSS/IMC QT supports five user display pages and the SEID master display page. The user display pages are defined in the following table.

TABLE 4-1: DISPLAY PAGES

ID	TITLE	CONTENTS	FIGURE
1	QT.001	PDSS/IMC STATUS	A-6, A-7
2	QT.002	PDSS/IMC QT CAMAC	A-8, A-9
3	QT.003	PDSS/IMC COMMANDS	A-10
4	QT.004	PDSS/IMC QT VIEW	A-11, A-12
5	QT.005	PDSS/IMC QT SERIAL	A-13, A-14

The SEID master display page is shown in Figure A-5. The PDSS "TVS" command switches between the user pages and the SEID page. The "=DISP" command switches the user pages.

The contents of the five display pages are defined in the following section.

PRECEDING PAGE BLANK NOT FILMED

QT.001 (See Figure A-6 and A-7)

<1> QT State and MODE LINE

SEQD LOG REP VER DATA

TPT NLOG NVER

WHOA

The SEQD indicates that the program is in the sequence definition mode.

The TPT indicates that the program is in the Throughput Test mode.

The WHOA indicates that the program stop-on-error software flag is on.

The LOG/NLOG indicates whether the program is logging or not logging data.

The REP indicates that tests or sequences of tests are to be executed repeatedly.

The VER/NVER indicates whether the QT data is being verified or not.

The DATA indicates whether the automatic data modification of QT data is being performed.

<2> QT Control Data

XXXX XXXX (16 data items)

- (1) CYCLE Cycle Count
- (2) NDERRS Number errors encountered
- (3) VERRD Verification errors (Table 9-1)
- (4) VERRI Interface errors (Table 9-2)
- (5) ZCSR CAMAC CSR
- (6) LOGBLK Current Log block
- (7) GYROF Gyro Output (Table 9-4)
- (8) GYROE Gyro Output Expected
- (9) GYROA Gyro Output Actual
- (10) SWAIT Special Wait Between Steps
- (11) DSPSR SPSR.Data
- (12) DXHRM HRM Data
- (13) ZSC Last IMCE Status
- (14) DGMT GMT Day
- (15) GMT Milliseconds in Day
- (16) GMT Milliseconds in Day

<3> Number of Times Test Executed

When a test has been requested (single or sequence), the ">" character is located to the left of the command. When the test is being performed, the command is displayed in reverse video.

- <4> Number of runs the test failed
- <5> Cycle where last failure detected for this command

<6> Verification error (Table 9-3)

QT.002 (See Figures A-8 and A-9)

- <7> AST serial output data number of words output plus 32 output data words
- <8> AST serial input data number of words received plus 32 input data words
- <9> CAMAC Analog Output values displayed in hexadecimal 12 bit Analog Outputs.
- <10> Commanded GYRO counts
- <11> RIUI Data
 # serial data words received plus last data received
- <12> NAF Command
 N,A,F write/read data
- QT.003 (See Figure A-10)

No real time data

- QT.004 (See Figures A-11 and A-12)
- <13> Octal Address of Data
- <14> Hexadecimal data 14 data words per line
- QT.005 (See Figure A-13 and A-14)
- <15> Serial Command (SEID to DEP)
 32 Data Words
- <16> Serial Response #1 (DEP to SEID)

 Number of words received plus 32 data words
- <17> Serial Response #2 (DEP to SEID)

 Number of words received plus 32 data words
- <18> RIU Data (2 channels)
 Number of words received (2 channels)
 First word = First word received
 Fifteen word wrap around data buffer
- <19> RIU Data (2 channels)
 Number of words received (2 channels)
 First word = first word received
 Fifteen word wrap around data buffer

5.0 PDSS/IMC QT SEID MONITOR

The SEID monitor loop for the PDSS/IMC QT is contained in file "QT.MON". The monitor loop is defined as follows:

CYCLE	COMMANDS		CYCLE	COMMANDS	
1	/TIME	0		/PSAMPLE	42
2	/PSAMPLE	0		/PSAMPLE	44
	/PSAMPLE	2		/PSAMPLE	46
	/PSAMPLE	4		/PSAMPLE	48
	/PSAMPLE	6		/PSAMPLE	50
	/PSAMPLE	8		/PSAMPLE	52
	/PSAMPLE	10		/PSAMPLE	54
	/PSAMPLE	14		/PSAMPLE	56
	/PSAMPLE	16		/PSAMPLE	58
	/PSAMPLE	18		/PSAMPLE	60
	/PSAMPLE	20		/PSAMPLE	62
	/PSAMPLE	22	25	/TIME	
	/PSAMPLE	24		/READ	0
	/PSAMPLE	26	50	/TIME	
	/PSAMPLE	28		/READ	0
	/PSAMPLE	30	75	/TIME	
3	/PSAMPLE	32		/READ	0
	/PSAMPLE	34			
	/PSAMPLE	36.			
	/PSAMPLE	38			
	/PSAMPLE	40			

PRECEDING PAGE BLANK NOT FILMED

6.0 PDSS/IMC QT DATA

The QT test data is listed below. This data can be displayed on the VDU via the "=VIEW" command and can be modified by the "=MOD" command or by data parameters on the QT test commands.

DATA NAME	INDEX	DATA							
DRDRI	0	0020							
		FAF5	1111	2222	3333	4444	5555	6666	7777
		8888	9999	AAAA	BBBB	cccc	DDDD	EEEE	FFFF
		0000	0123	4567	89AB	CDEF	FEDC	BA98	7654
		3210	0011	2233	4455	3210	0011	2233	4455
DRDIS	33	0000	0101	0200	0301	0400	0501	0600	0701
		0800	0901	0A00	0801	0000	0001	0E00	0F01
		1000	1101	1200	1301	1400	1501	1600	1701
		1800	1901	1A00	1801	1000	1001	1E00	1F01
DRALG	65	0000	0000	0000	0000	0000	0000	0000	0000
		0000	0000	0000	0000	0000	0000	0000	0000
		0000	0000	0000	0000	0000	0000	0000	0000
		0000	0000	0000	0000	0000	0000	0000	0000
DRGYR	97	0400	0800	0400	1000	0400	1800	0400	2000
		0400	2800	1400	3000	0400	0800	0400	1000
		0400	1800	0400	2000	0400	2800	0400	3000
DRDRS	121	0020							
		0001	FFFE	0003	FFFC	0005	FFFA	0007	FFF8
		0009	FFF6	000B	FFF4	0000	FFF2	000F	FFF0
		1111	2222	3333	4444	5555	6666	7777	8888
		9999	AAAA	BBBB	cccc	DDDD	EEEE	FFFF	0000

DISON	154	FFFF	FFFF	002A					
DISOF	157	FFFF	FFFF	0000					
DISOT	160	0400	2800	0400 1400 0400	3000	0400	0800	0400	2000 100 3000
DIDWP	192	0032	0000	0101					
DIDUI .	195	0032	0000	0101	0000	0101			
DIDRS	200		FFF6	0003 000B 3333 BBBB	FFF4 4444	000D	FFF2	000F 7777	

The SEID GML Data Buffer layout is listed below.

NAME	INDEX	DATA				
GMT	0	5 WORDS				
MET	5	4 WORDS				
PCMO	9	Number and Status + 32 WORDS				
FI		128 BYTES				
DO		64 BYTES				
SAI		32 BYTES				
SDI		8 WORDS				
SSI		32 WORDS				

7.0 PDSS/IMC DATA INTERFACES

The following tables define the PDSS/IMC interfaces.

- Table 7-1 specifies the PDSS CAMAC Analog Output assignments.
- Table 7-2 specifies the PDSS/SEID Flexible Input assignments.
- Table 7-3 specifies the PDSS/SEID Discrete Output assignments.

TABLE 7-1: PDSS CAMAC ANALOG OUTPUTS

CAMAC-NAF	CAMAC-AO	IMCE A/D	INTERFAC	E
N9A0	00	AI 17	ASTROS	CCD TEMP
N9A1	01	AI 18	ASTROS	HEAT SINK TEMP
N9A2	02	AI 19	ASTROS	OPTICS TEMP
N9A3	03	AI 20	ASTROS	EA TEMP
N9A4	04	AI 21	ASTROS	CCD COOL PWR
N9A5	05	AI 22	ASTROS	HEAT #1 PWR
N9A6	06	AI 23	ASTROS	HEAT #2 PWR
N9A7	07-	AI 24	ASTROS	HEAT #3 PWR
N10A0	08	AI 25	+5 V	
N10A1	09	AI 26	+8V	
N10A2	10	AI 27	+18V	
N10A3	11	AI 28	-18V	
N10A4	12	AI 29	ASTROS	SA ELEC. TEMP
N10A5	13	AI 30	ASTROS	BASEPLACE TEMP
N10A6	14	AI 31	UIT	XERR
N10A7	15	AI 32	UIT	YERR
N11A0	16	AI 1	POWER	+5 V
N11A1	17	AI 2	POWER	+15V
N11A2	18	AI 3	POWER	-15V
N11A3	19	AI 4	POWER	TEMP
N11A4	20	AI 5	DRIRU	T/MA
N11A5	21	AI 6	DRIRU	T/MB
N11A6	22	AI 7	DRIRU	T/MC
N11A7	23	AI 8		
N12A0	24	AI 9		
N12A1	25	AI 10		
N12A2	26	AI 11	DRIRU	ANRXA
N12A3	27	AI 12	DRIRU	ANRXB
N12A4	28	AI 13	DRIRU	ANRYB
N12A5	29	AI 14	DRIRU	ANRYC
N12A6	30	AI 15	DRIRU	ANRZA
N12A7	31	AI 16	DRIRU	ANRZC

TABLE 7-2: SEID FLEXIBLE INPUTS

SEID-FI	IMCE			INTERFACE
00	DIO	DO	1	T/E COOL PWR ON/OFF
01	DEI	DO		DRIRU RRH1A
02	DIO	DO	2	SPARE
03	DEI	DO		DRIRU RRH2A
04	DIO	DO	3	MASTER RESET
05	DEI	DO		DRIRU RRL1A
06				
07	DEI	DO		DRIRU RRLZA
08				
09	DEI	0.0		DRIRU RRH1B
10				
11	DEI	DO		DRIRU RRH2B
12				
13	DEI	DO		DRIRU RRL1B
14				
15	DEI	DO		DRIRU RRL2B
16	חרז	0.0		DDIDH DDHIG
17	DEI	D0		DRIRU RRH1C
18	DEI	DO		DRIRU RRH2C
20	טבו	DO		DRING KRHZC
21	DEI	DO		DRIRU RRL1C
22	0			DATAO AREIG
23	DEI	DO		DRIRU RRL2C
24				
25				
26				
27				
28				
29				
30				

TABLE 7-2: SEID FLEXIBLE INPUTS (CONTINUED)

SEID-FI	IMCE		INTERFACE
31			
32			
33	PWR	AO	+5 V
34			
35	PWR	AO	+6V
36			
37	PWR	A0	+15V
38	DUD		154
39 40	PWR	Α0	-15V
41	PWR	AO	+24V
42			
43	PWR	AO	-24V
44			
45	PWR	AO	PWR TEMP
46			
47	PWR	AO	PWR STATUS
48			
49	PWR	AO	-6V
50			
.51			
52			
53			
54			
55			
5 6 5 7			
58			
59			
60			
61			
62			
63			

TABLE 7-3: SEID DISCRETE OUTPUTS

SEID-DO	IMCE		INTE	RFACE		
00	DIO	DI	ASTR	OS MAST	ER CLOCK	STATUS
01						
02						
03						
04						
05						
06						
07						
08						
09						
10						
11						
12						
13						
14						
15						
16	DIO	DI	101	DRIRU	RSTX1A	
17	DIO	DI	103	DRIRU	RSTX1B	
. 18	DIO	DI	105	DRIRU	RSTY1B	
19	DIO	DI	107	DRIRU	RSTY1C	
20	DIO	DI	109	DRIRU	RSTZ1A	
21	DIO	DI	111	DRIRU	RSTZ1C	
22						
23						
24				•		
25						
26						
27						
28						
29						
30						
31						

TABLE 7-3: SEID DISCRETE OUTPUTS (CONTINUED)

SEID-DO	IMCE	INTERFACE	
32	EA	HEATER ON	
33	EA	HEATER OF	F
. 34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48		DRIRU II	X POWER ON
49		DRIRU II	X POWER OFF
50		DRIRU II	Y POWER ON
51		DRIRU II	Y POWER OFF
52		DRIRU II	Z POWER ON
53		DRIRU II	Z POWER OFF
54		DRIRU II	HEATER POWER ON
55		DRIRU II	HEATER POWER OFF
56		IMCE	POWER ON
57		IMCE	POWER OFF
58		IMCE	HEATER ON
59		IMCE	HEATER OFF
60		AST .	POWER ON
61		AST	POWER OFF
62		EA	HEATER ON
63		EA	HEATER OFF

8.0 QT MESSAGES

The following messages are displayed to the PDSS system console. An explanation of each message is given.

MSG# MESSAGE

- 1 QT: INVALID PARAMETERS

 The QT command syntax is incorrect, a parameter value is invalid, or the number of parameters is incorrect.
- 2 QT: INVALID COMMAND The QT command is invalid and is not processed.
- QT: ERROR MAPPING EXTENDED MEM
 The RT-11 system calls to establish Extended Memory
 Mapping indicates an error. This is an RT-11 or
 hardware error. PDSS/IMC will not run without Extended
 Memory Mapping.
- 4 QT: LOOPUP ERROR
 A system LOOKUP error for a data file was in error.
- 5 QT: READ ERROR Disk read error occurred.
- 6 QT: NO ACK (1)
 No acknowledge received from IMCE for first command.
- 8 QT: NO RESPONSE (1)
 First response message from IMCE not received within time limit.
- 9 QT: NO RESPONSE (2)
 Second response message from IMCE not received within time limit.

- QT: WELCOME TO PDSS/IMC -- STRIKE "=STAR" TO PROCEED Initialize Attention Message.
- 11 QT: QT INIT COMPLETE -- STRIKE "=STAR" TO PROCEED IMC initialization has been completed.

12

13

- 14 QT: CANNOT OPEN IMC.LOG

 The IMC log file (IMC.LOG) could not be opened.
- The IMC log file (IMC.LOG) is full and has been closed.
- 16 QT: GYRO COMPLETE FAIL
 The GYRO complete LAMS have not been received within the time limit.
- 17 QT: PMEM LP ERROR

 An error was encountered in writing to the Line Printer.

 Verify that the printer is on.
- 18 QT: INVALID DEP ACK
 The acknowledge serial message did not have a "1200" as the first word.
- 19 QT: INVALID DEP RESPONSE 1
 The first response message from the DEP did not have a
 "1281" as the first word.
- QT: INVALID DEP RESPONSE 2
 The second response message from the DEP did not have a
 "1281" as the first word.

9.0 QT STATUS/ERROR CODES

The PDSS/IMC QT software provides a variety of error indicators.

Section 8.0 lists the messages that are sent to the PDSS system console.

The QT.001 display page (Figure A-6) displays several status/error words.

TABLE 9-1: VERRD DESCRIPTION

BIT	MEANING	SOURCE
0	DEP STATUS BIT "O" ON	TCMD
1	IMCE INSTRUCTION TEST FAIL	RVXIIT
2	IMCE MEMORY TEST FAIL	RVXIMT
3		RVRDIS
4	GYRO RATE ERROR	RVRGYR
5	RIU COUNTER/PATTERN FAILURE (WUPPE)	RVIDWP
6	RIU COUNTER/PATTERN FAILURE (UIT)	RVIDUI
7	GMT COMPARE FAIL	RVRGMT
8	RAUI-SI COMPARE FAIL	RVIDRS
9	DATA COMPARE ERROR	DV32
10	SPSR STATE FAIL	RVSPSR
11		
12		
13		
14		
15		

0 = LSB, 15 = MSB

TABLE 9-2: VERRI DESCRIPTION

BIT MEANING RIUI #1 DATA FAIL (FIRST) RIUI #1 DATA FAIL (LAST) 1 2 RIUI #2 DATA FAIL (FIRST) 3 RIUI #2 DATA FAIL (LAST) 4 RIUI #3 DATA FAIL (FIRST) 5 RIUI #4 DATA FAIL (LAST) RIUI #4 DATA FAIL (FIRST) 6 RIUI #4 DATA FAIL (LAST) 7 8 WATCH DOG TIME OUT ACK OF COMMAND 9 WATCH DOG TIME OUT ON RESPONSE #1 10 WATCH DOG TIME OUT ON RESPONSE #2 INVALID RESPONSE #1 ('1281') HEADER . 11 12 INVALID RESPONSE #2 ('1281') HEADER 13 14 15 INVALID ACKNOWLEDGE ('1200')

0 = LSB, 15 = MSB

TABLE 9-3: VERIFICATION INDEX

INDEX	PDSS/DATA	IMCE/DATA
01 C(15)	A0-00 CA0	AI-17 IMCAI
02 C(14)	A0-01	AI-18
03 C(13)	A0-02	AI-19
04 C(12)	A0-03	AI-20
05 C(11)	A0-04	AI-21
06 C(10)	A0-05	AI-22
07 C(09)	A0-06	AI-23
08 C(08)	A0-07	AI-24
09 C(07)	A0-08	AI-25
OA C(06)	A0-09	AI-26
OB C(05)	A0-10	AI-27
OC C(04)	A0-11	AI-28
OD C(03)	A0-12	AI-29
OE C(02)	A0-13	AI-30
OF C(01)	A0-14	AI-31
10 C(00)	A0-15	AI-32
11 D(15)	A0-16	AI-01
12 D(14)	AO-17	AI-02
13 D(13)	A0-18	AI-03
14 D(12)	A0-19	AI-04
15 D(11)	A0-20	AI-05
16 D(10)	A0-21	AI-06
17 D(09)	A0-22	AI-07
18 D(08)	A0-23	80-IA
19 D(07)	A0-24	AI-09
1A D(06)	A0-25	AI-10
1B D(05)	A0-26	AI-11

TABLE 9-3: VERIFICATION INDEX (CONTINUED)

INDEX	PDSS/DATA	IMCE/DATA
1C D(04)	A0-27	AI-12
1D D(03)	A0-28	AI-13
1E D(02)	A0-29	AI-14
1F D(01)	A0-30	AI-15
20 D(00)	A0-31	AI-16
21 E(15)	FI-00 FI	D0-01 ID0
22 E(14)	FI-01	
23 E(13)	FI-02	D0-02
24 E(12)	FI-03	D0-33
25 E(11)	FI-04	
26 E(10)	FI-05	
27 E(09)	FI-06	
28 E(08)	FI-07	DO-33
29 E(07)	FI-08	
2A E(06)	FI-09	
2B E (05)	FI-10	
2C E(04)	FI-11	DO-35
2D E(03)	FI-12	
2E E(02)	FI-13	
2F E(01)	FI-14	
30 E(00)	FI-15	D0-35
31 F(15)	FI-16	
32 F(14)	FI-17	
33 F(13)	FI-18	
34 F(12)	FI-19	D0-37
35 F(11)	FI-20	
36 F(10)	FI-21	

TABLE 9-3: VERIFICATION INDEX (CONTINUED)

INDEX	PDSS/DATA	IMCE/DATA
37 F(09)	FI-22	
38 F(08)	FI-23	DO-37
39 F(07)	FI-24	00-37
3A F(06)	FI-25	
3B F(05)	FI-26	
3C F(04)	FI-27	
3D F(03)	FI-28	
3E F(02)	FI-29	
3F F(01)	FI-30	
40 F(00)	FI-31	
41 G(15)	FI-32	
42 G(14)	FI-33	
43 G(13)	FI-34	
44 G(12)	FI-35	
45 G(11)	FI-36	
46 G(10)	FI-37	
47 G(09)	FI-38	
48 G(08)	FI-39	
49 G(07)	FI-40	
4A G(06)	FI-41	
4B G(05)	FI-42	
4C G(04)	FI-43	
4D G(03)	FI-44	
4E G(02)	FI-45	
4F G(01)	FI-46	
50 G(00)	FI-47	
51 H(15)	FI-48	
31 11(13)	11-40	

TABLE 9-3: VERIFICATION INDEX (CONTINUED)

INDEX	PDSS/DATA	IMCE/DATA
52 H(14)	FI-49	
53 H(13)	FI-50	
54 H(12)	FI-51	
55 H(11)	FI-52	
56 H(10)	FI-53	
57 H(09)	FI-54	
58 H(08)	FI-55	
59 H(07)	FI-56	
5A H(06)	FI-57	
5B H(05)	FI-58	
5C H(04)	FI-59	
5D H(03)	FI-60	
5E H(02)	FI-61	
5F H(01)	FI-62	
60 H(00)	FI-63	
61 I(15)	DO-00 SDOS	DI-1 IDI
62 I(14)	D0-01	DI-2
63 I(13)	D0-02	DI-3
64 I(12)	D0-03	DI-4
65 I(11)	D0-04	DI-5
66 I(10)	D0-05	DI-6
67 I(09)	D0-06	DI-7
68 I(08)	DO-07	DI-8
69 I(07)	D0-08	DI-9
6A I(06)	D0-09	DI-10
6B I(05)	D0-10	DI-11
6C I(04)	DO-11	DI-12
6D I(03)	D0-12	DI-13

TABLE 9-3: VERIFICATION INDEX (CONTINUED)

INDEX	PDSS/DATA	IMCE/DATA
6E I(02)	00.13	
	DO-13	DI-14
6F I(01)	DO-14	DI-15
70 I(00)	DO-15	DI-16
71 J(15)	D0-16	DI-17
72 J(14)	DO-17	DI-18
73 J(13)	DO-18	DI-19
74 J(12)	DO-19	DI-20
75 J(11)	D0-20	
76 J(10)	D0-21	
77 J(09)	D0-22	
78 J(08)	DO-23	
79 J(07)	D0-24	
7A J(06)	DO-25	
7B J(05)	D0-26	
7C J(04)	DO-27	
7D J(03)	D0-28	
7E J(02)	DO-29	
7F J(01)	D0-30	
80 J(00)	DO-31	
81 K(15)	D0-32	DI-32
82 K(14)	D0-33	pw
83 K(13)	DO-34	pw
84 K(12)	D0-35	
85 K(11)	D0-36	
86 K(10)	D0-37	
87 K(09)	D0-38	
88 K(08)	DO-39	

TABLE 9-3: VERIFICATION INDEX (CONTINUED)

INDEX	PDSS/DATA	IMCE/DATA
89 K(07)	D0-40	
8A K(06)	DO-41	
88 K(05)	D0-42	
8C K(04)	D0-43	
8D K(03)	DO-44	
8E K(02)	DO-45	
8F K(01)	D0-46	
90 K(00)	DO-47	
91 L(15)	D0-48	
92 L(14)	D0-49	pw
93 L(13)	D0-50	pw
94 L(12)	D0-51	pw
95 L(11)	D0-52	pw
96 L(10)	D0-53	pw
97 L(09)	DO-54	pw
98 L(08)	D0-55	pw
99 L(07)	DO-56	pw
9A L(06)	DO-57	pw
9B L(05)	D0-58	pw
9C L(04)	D0-59	pw
9D L(03)	D0-60	pw
9E L(02)	D0-61	pw
9F L(01)	D0-62	pw
A0 L(00)	D0-63	pw

TABLE 9-4: GYROF/GYROE/GYROA DEFINITION

BIT	INTERRUPT (LAM)	
0		
1		
2	GYRO Channel #1 Second O	utput
3	GYRO Channel #2 Second O	utput
4	GYRO Channel #3 Second 0	utput
5	GYRO Channel #4 Second O	utput
6	GYRO Channel #5 Second O	utput
7	GYRO Channel #6 Second 0	utput
8		
9		
10	GYRO Channel #1 First Ou	tput
11	GYRO Channel #2 First Ou	tput
12	GYRO Channel #3 First Ou	tput
13	GYRO Channel #4 First Ou	tput
14	GYRO Channel #5 First Ou	tput
15	GYRO Channel #6 First Ou	tput

10.0 PDSS/IMC QT GENERATION

The PDSS/IMC files are as follows.

FILE	CONTENTS
IMCQT.MAC	QT Source Code
IMCQT.OBJ	QT Object Code
QT.MON	QT SEID Monitor File
QT.001	QT Display Page 1 Background
QT.002	QT Display Page 2 Background
QT.003	QT Display Page 3 Background
QT.004	QT Display Page 4 Background
QT.005	QT Display Page 5 Background
IMC.LOG	IMCLOG

Following is the RT-11 command to recompile the QT software.

MACRO IMCQT

Following is the RT-11 command to link the QT software.

eLQT

The contents of the LQT.COM file is as follows.

R LINK

PDSSQT, PDSS=PDSS, READKB, USRKB, LOG, INTHEX/C VRAMC, SEID2, USRDP, USRSQ, USRQT, IMCQT//CONTRL-C

Following is the RT-11 command to run the QT software.

@RQT

The contents of the RQT.COM file is as follows.

FRUN PDSSFG.SAV RUN PDSSQT

11.0 QT LOG BUFFER FORMAT

The QT LOG buffer format is defined in Table 11-1.

The QT LOG buffer size is 852 words or four blocks (1 block = 256 words).

The QT LOG writes data to file IMC.LOG.

The RT-11 utility "RDUMP" may be used to dump the log file.

Example:

R RDUMP

TT: = IMC.LOG

Displays the log on the system terminal terminal

OF POOR QUALITY
QUALITY QUALITY

DC.	CT DEPENE	RW.D.GBL.REL.CVP		COMMON BLOCK DEFINITIONS
MT:	.BLKW	5	0;	GMT
1ēT:	.BLKw	5	5;	MET
CMD:		33.*4	10;	PCM
1:	.BLK5		142;	FI
00:	.BLK3		206;	DO
QT LCCAL	DATA		;	
	. EVEN		;	
ABEGIN:	. WORD	ASEGIN+2	238;	A(ZAP) BEGIN
CLLO3:	. BLKW	3.	239;	LOG COMMENT LINE
MCGMT:	. BLKW	ć	247;	IMC GMT
TID:	.BLKW	1	253;	ACTIVE TEST
CYCLE:	.BLKW	1	254;	
	. BLKW	1	255;	
VERRD:	.SLKW	1	256;	DATA VERIFY
VERRI:	. BLKW	1	257;	/ VERIFY ERRORS
CSK:	.BLK W	1	258;	COPY OF CSR
- DUBLK:	. ELKW	1	259;	LOG BLOCK NO.
SYROF:	.BLKW	1	260;	GYRO COMPLETE FLAG
SYROE:	.BLKW	1	261;	
YROA:	. BLKW	1	262;	
SWAIT:	. aLKW	1	263;	SPECIAL WAIT
SPSR:	.BLKW	1	264;	SPSR ACTIVE FLAG
XHRM:	.BLKW	1	265;	XHRM ACTIVE FLAG
sc:	.BLKW	1	266;	STATUS CODE
DoMT:	.BLKW	3	267;	GMT PRESET
ASEA:	. & LKB	1	270;	SEG IND

SNGSEQ:	.BLK3	1	; SINGLE=Ø/SEQUENCE<>Ø
XLOG:	.BLK2	1	27/; LCG<>Ø / NOLOG=Ø
.10DE: .	.SLKB	1	; SST=SINGLE STEP=Ø /
			; PSE=PROGRAM<>0
STEP:	.BLK3	1	272; CMD=COMMAND=1
			; ACK=ACKNCWLEDGE=2
			; RSP=RESPOND=3
			; ACK=ACKNOWLDEGE=4
			; END=END=5
ASTOP:	.BLKB	1	; SYSTEM STOP INDICATOR
AVERF:	.BLK3	1	273; SYSTEM VERIFY INDICATOR
XRESET:	.BLKB	1	; SYSTEM RESET INDICATOR
DISPGO:	.BLK5	1	274; DISP COMMAND SPEC. GO
HODF:	.BLKB	1	; MCD ACTIVE FLAG
NOGYRO:	.BLKB	1	275; NO GYRO OUTPUT ON COMMAND
TPT:	.BLKS	1	; THROUGHPUT TEST
DCHNG:	.BLKB	1	276; DATA CHANGE FLAG
DOGMT:	.BLKB	1	; WRITE GMT ACTIVATIOR
: ACHW	.3LKS	1	277; STOP ON ERROR
	. BLKB	1	
FSTACK:	.BLKW	16.	278; FAILURE STACK
			; COUNT(WORD)
			; VMAP ENTRY (BYTE)
PAGEX:	. BLKW	1	294; DISP PAGE IX FOR UPDATE
CMDMSG:	. 3LKW	32.	295 ; COMMAND MESSAGE
RM3G1:	.SLKW	33.	327 ; RESPONSE MESSAGE 1
RMSG2:	. BLKW	33.	360 ; RESPONSE MESSAGE 2
RAUISO:	.3LKW	33.	393 ; RAUI SO
RAUISI:	. 3LKW	33.	426; RAUI SI
CAO:	WAJE.	32.	459; CAMAC .10
IMCAI:	.BLKW	32.	471; IMC AI'S
IDO:	· BLKE	48.	523; DO SETTING .
			; 32 010 00
			; 16 DEI DC
spos:	.BLKB	64.	547; SEID DO
IDI:	.BLK3	32.	579; IMCE DIO DI'S
GYROCX:	. BLKW	12.	595;

ORIGINAL PAGE 19 OF POOR QUALITY

TABLE 11-1: LOG FORMAT (CONTINUED)

	GYROC1:		.3LKW	2	607;	YRO COUNTERS	
	GYROC2:		.BLKW	2 2 2 2 2 2 2	609;		
	GYRUC3:		. SLKW	2	611;		00
	GYROC4:		.BLKW	2	613 ;		T 20
	GYROC5:		. BLKW	2	615;		PO ^等
•	GYROC6:		SLKW	2	615;		ORIGINAL OF POOR
	RIUIC1:		.SLKW "	1	619; R	IUI COUNTERS	PAGE 18
	RIUIC2:		.BLKW	1	620;		ER
	RIUIC3:		. BLKW	1	621;		7 5
	RIUIC4:		.BLKW	1	622;		7 (3)
	RIUIP1:		.BLKW	1	623; R	IUI POINTERS	
	RIUIP2:		. BLKW	1	624;		
	RIUIP3:		. BLKW	1	625;		
	RIUIP4:		.BLKW	1	626;		
	RIUIX1:		. BLKW	1	627; R	IUI LAST DATA	
	RIUIX2:		.BLKW	1	618;		
	RIUIX3:		. 9LKh	1	619;		
	RIUIX4:		.ELKW	1	630;		
	RIUID1:		.BLKW	NRIUI	631; R	IUI DATA	
	RIUID2:		.BLKW	NRIUI	641;		
	RIUID3:		.BLKW	NRIUI	6101		
	RIUID4:		.BLKW	IUIRN	677 ;		
	SEIDDO:	*	BLKW	4	695; 5	EID DO'S	
	221:		.BLKW	1	699 ;!!		
	112:		. SLKW	1	700 ;!!		
	223:		.BLKW	1 .	201 ;!!		
	224:		. BLKW	1	702 :!!		
	775:		. BLKW	12.	703 :!!		
	2215:		. BLKW	16.	715 ;		
	INSUFF:		. 9LKW	92.	731 ; K	EYBOARD INPUT BUI	FFER
	ISONVO:		. BLKW	1	821; 1	SCN VARIABLE DATA	
	AEND:		. WORD	AEND		(ZAP) END	

APPENDIX A

FIGURE A-1: PDSS/IMC GSE LAYOUT

FIGURE A-2: PDSS/IMC CAMAC CRATE

FIGURE A-3: PDSS/IMC GSE DIAGRAM

FIGURE A-4

FLX FLX FLX FLX FLX FLX	01 02 03 04 05 06	FLX OF FLX 1	9 FL) 0 FL) 1 FL) 2 FL) 3 FL) 4 FL)	(16 (17 (18 (19 (20 (21 (22	FLX FLX FLX FLX FLX FLX	25 26 27 28 29 30	FLX FLX FLX FLX FLX FLX	33 34 35 36 37 38	FLX FLX FLX FLX FLX FLX	41 42 43 44 45 46	FLX 48 FLX 50 FLX 51 FLX 52 FLX 53	P FL P FL FL FL FL FL FL FL FL	X 56 X 57 X 58 X 59 X 60 X 61 X 62
FLX		FLX 1	5 FL)	(23	FLX	31	FLX	39	FLX		FLX 55		X 63
	CHANNE									LEN	PAR	тот	
PCM	CHANNE	L 2								LEN	PAR	тот	
PCM	CHANNE	LЗ								LEN	PAR	тот	
PDSS	S TO DE	(P				Gt	1T:				MET:		
LNK	USR	CMD	ADU	טממ	CDU	MDIT	TM	E GN	1C	IPS	REI	DSO	DMG

FIGURE A-5

IDRS ----

PGMT ----

RGMT ----

XFMT ----

XHRM ----

ORIGINAL POOR QUALITY PAGE

5 × 6 - x - - x - - x - - x - - x - - x - - x - - x - - x - - x - - x -

	0104 0	0000 0200	0000 F	500 00	0000	3F3F	003F	0000	0001	0000	8000	0001	0000	0000
	TEST	#RUNS	#FAILS	FAIL	4B	-CI	DE	F	G		IJ	K	L	-M
	XIII	0	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	XIMT	0	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	RDRI	0	0	0000	0000000	000000	000000	000000	000000	000000	000000	000000	000000	00000
	RDIS	0	0	0000	0000000	000000	000000	000000	000000	000000	000000	000000	000000	00000
	RALG	7	. 0	0000	0000000	000000	000000	000000	000000	000000	000000	000000	000000	00000
	RGYR	18	1	0089	0000000	000000	010000	000000	00000	000000	000000	000000	000000	00000
	RDRS	6	6	014D	200000	000000	000000	000000	000000	000000	000000	000000	000000	00000
	ISON	4	0	0000	0000000	000000	00000	000000	00000	000000	000000	000000	000000	00000
	ISOF	4	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	ISOT	1	0	0000	0000000	000000	00000	000000	00000	000000	000000	000000	000000	00000
	IDWP	0	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	IDUI	0	. 0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	IDRS	0	. 0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	PGMT	1	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	ROMT	0	0.	0000	0000000	000000	000000	000000	000000	000000	000000	000000	000000	00000
	XPIT	0	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	XF MT	0	0	0000	0000000	000000	000000	000000	000000	000000	000000	000000	000000	00000
	XHRM	0	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
	SSPR	1	0	0000	0000000	000000	000000	000000	00000	000000	000000	000000	000000	00000
1	XINT	0	0	0000	0000000	000000	00000	00000	00000	00000	000000	000000	00000	00000

FIGURE A-8

99	20
OF POOR	うると
QUALIT	

QT.C	002				PDSS/	/IMC (OT CAN	MAC				GMT=	=		
KAST	'ROS>	80:	0000												
0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
4		SI:	0000												
0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
<a00< td=""><td>- AO</td><td></td><td>41</td><td>A2</td><td></td><td>A3</td><td>A</td><td>4</td><td>A5</td><td>-</td><td>46</td><td>A7</td><td></td><td></td><td></td></a00<>	- AO		41	A2		A3	A	4	A5	-	46	A7			
N9	0000	0	0000	000	00	0000	00	000	0000) (0000	000	00		
N10	0000) (0000	000	00	0000	00	000	0000) (0000	000	00		
N1 1	0000	0	0000	000	00	0000	O	000	0000) (0000	000	00		
N12	0000) (0000	000	00	0000	00	000	0000) (0000	000	00		
<gyf< td=""><td>(08)</td><td>(</td><td>COUNTS</td><td>3</td><td></td><td></td><td></td><td><r:< td=""><td>IUIS></td><td></td><td></td><td></td><td></td><td></td><td></td></r:<></td></gyf<>	(08)	(COUNTS	3				<r:< td=""><td>IUIS></td><td></td><td></td><td></td><td></td><td></td><td></td></r:<>	IUIS>						
N6	X		00000	000	0000	00000		000	000 000	00 00	00 00	00 00	DUNTS		
. N7	Y	(000000	000	0000	00000		000	00 000	00 000	00 000	00 DA	ATA		
NB	Z		000000	000	0000	00000									

NAF

FIGURE A-9

08
ORIGINAL
PAGE
C

XIIT	EXECUTE IMCE INSTRUCTION TEST	RDRI	READ RAUI DATA
XIMT	EXECUTE IMCE MEMORY TEST	RDIS	READ DISCRETES
XPMT	EXECUTE PCC MEMORY TEST	RALG	READ ANALOGS
XPIT	EXECUTE PCC INSTRUCTION TEST	RGYR	READ GYROS
XHRM	EXECUTE HRM OUTPUT FLIP/FLOP	RDRS	READ RAUS DATA
XINT	EXECUTE IMCE INITIALIZE	ISON	ISSUE DISCRETE ON
XTPT	EXECUTE THROUGHPUT TEST	ISOF	ISSUE DISCRETE OFF
SSPR	SET PULSE SYNCHRONOUS READ	ISOT	ISSUE DISCRETE OUT
RGMT	READ GMT	IDWP	ISSUE WUPPE DATA
PGMT	SET GMT	IDUI	ISSUE UIT DATA
		IDRS	ISSUE RAUS DATA
CTRL	SYSTEM CONTROL	P	SINGLE STEP
VIEW	VIEW MEMORY	STOP	STOP
MOD	MODIFY MEMORY	SRST	SYSTEM RESET
PMEM	PRINT MEMORY	STAR	START
LOG	LOG ON/OFF	COMM	COMMENT LOG
DISP	DISPLAY SELECT	PIO	PERFORM IO

FIGURE A-10

(13)	(14)													
MANAAA:	0000	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD.	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD							DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD									DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD			VIE	1 DISF	LAY F	AGE			DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD									DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD					•				DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD									DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD							DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD.	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD
AAAAAA:	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD	DDDD

FIGURE A-11

47770:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50024:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50060:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50114:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50150:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50204:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50240:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50274:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50330:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50364:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50420:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50454:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50510:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50544:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50600:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50634:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50670:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
50724:	51D6	0000	0000	0000	0000	0000	0000	0000	0000	2020	2020	2020	2020	2020
50760:	2020	0000	000E	0000	0000	0000	F500	0000	0000	0000	0000	0000	0000	0000
51014:	0000	0001	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
51050:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
51104:	0002	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
51140:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
51174:	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000

(RIUI)	 						
(1X)	 						
1	 						
(RIUI)	 						
(D)	 						

ORIGINAL PAGE IS

9	CR
POOR	ORIGINAL
QUALITY	PAGE
F	

QT. 005				PDSS,	IMC 0	T MES	SSAGES	3			GMT=	=			
<cmd-1></cmd-1>															i
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
<rsp-1></rsp-1>	0000														
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
<rsp-2></rsp-2>	0000														
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
			,												
<riui></riui>	0000	0000													
0000 0000															
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
<riui></riui>	0000	0000													
		0000													
0000 0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	

FIGURE A-14

PDSS MASTER

OPTION

1	PDSS	PREPARE
2	PDSS	EXECUTE
3	PDSS	POST-PROCESSING
4	MENU	ON/OFF

SELECT OPTION:

FIGURE A-15

END DATE JUL. 25, 1984