Capstone Project

Introduction \ Problem

It's hard to track down some food for takeout during the times of COVID restrictions. Some restaurants have closed down completely, some have outdoor dining, some are exclusively takeout. Which neighborhoods are surviving the lockdown the best? Which neighborhoods are going to need new restaurants to open once restrictions are gone, and will probably have better deals on leases?

Target Audience

I've been interested in this information myself. I try to support the local places in my neighborhood so that the restaurants can survive this period of restrictions, and more employees can keep their jobs. There are many consumers in Seattle that feel and act in the same way in their own neighborhoods. Restaurateurs may look to capitalize on "restaurant deserts" once consumers can go back to full indoor dining.

Datasets

I will be using a number of datasets for this project. I will use venue data from foursquare using their API. I will use a downloaded csv dataset from the city of Seattle that contains data from restaurants self reporting their opening hours, and the types of service that they offer. I will use data scraped from wikipedia to get a list of Seattle neighborhoods so that I can do some comparison neighborhoods.

https://developer.foursquare.com/docs/api-reference/venues/search/#request

https://data-seattlecitygis.opendata.arcgis.com/datasets/restaurants-operating-during-covid19/data?showData=true

https://en.wikipedia.org/wiki/List of neighborhoods in Seattle

Methodology

My methodology was to get the datasets, do some data cleaning, do some exploratory analysis including visualizations, and then analyze the neighborhoods for additional findings on their services provided during COVID.

Results

Initial neighborhood data from wikipedia scrape.

```
req = requests.get("https://en.wikipedia.org/wiki/List_of_neighborhoods_in_Seattle")
soup = BeautifulSoup(req.content, 'lxml')
table = soup.find_all('table')[0]
df1 = pd.read_html(str(table))
hoods = pd.DataFrame(df1[0])
hoods.head()
```

	Unnamed: 0	Neighborhood name	Within larger district	Annexed[41]	Locator map	Street map	Image	Notes
0	1	North Seattle	Seattle	Various	NaN	NaN	NaN	North of the Lake Washington Ship Canal[42]
1	2	Broadview	North Seattle[42]	1954[43]	NaN	NaN	NaN	[44]
2	3	Bitter Lake	North Seattle[42]	1954[43]	NaN	NaN	NaN	[45]
3	4	North Beach / Blue Ridge	North Seattle[42]	1940,[43] 1954[43]	NaN	NaN	NaN	[46]
4	5	Crown Hill	North Seattle[42]	1907,[47] 1952,[43] 1954[43]	NaN	NaN	NaN	[48]

I cleaned the data, added coordinates, and produced a folium map of Seattle neighborhoods.

Using the foursquare API, I produced a venue dataframe.

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Bitter Lake	47.71868	-122.3503	Rain Cafe	47.724808	-122.343854	Café
3	Crown Hill	47.69520	-122.3741	Dick's Drive-In	47.696500	-122.371748	Burger Joint
4	Crown Hill	47.69520	-122.3741	Wild Mountain Cafe	47.690779	-122.374559	American Restaurant
5	Crown Hill	47.69520	-122.3741	Crown Hill Broiler	47.687647	-122.377145	Restaurant
7	Northgate	47.71310	-122.3193	Boud's Pinehurst Pub	47.715641	-122.312633	Bar

Next was the city of Seattle restaurant COVID data. I downloaded the entire dataset. The set includes all of King county so there was some more cleaning to do.

Discussion

The city of Seattle set is compiled from restaurants self reporting, or answering the city's surveys. It's not going to be complete for obvious reasons, but the exercise, for me, was about merging the multiple datasets. Using foursquare data was a requirement for the project.

Here is the merged data for a larger dataset that includes more than burgers. It will be reduced to the info present in the city of Seattle dataset with an inner join.

print(merged_df.shape)
merged_df.head()

(187, 13)

business_website	phone	business_name	Venue Category	Venue Longitude	Venue Latitude	Venue	Neighborhood Longitude	Neighborhood Latitude	Neighborhood	
https://www.thewildmountaincafe.com/	(206) 297-9453	Wild Mountain Cafe	American Restaurant	-122.374559	47.690779	Wild Mountain Cafe	-122.37410	47.69520	Crown Hill	0
https://locations.papajohns.com /united-states/	(206) 985-0000	Papa John's Pizza	Pizza Place	-122.375077	47.694423	Papa John's Pizza	-122.37410	47.69520	Crown Hill	1
https://locations.papajohns.com /united-states/	(206) 985-0000	Papa John's Pizza	Pizza Place	-122.386628	47.554182	Papa John's Pizza	-122.39175	47.55217	Seaview[155] / Mee-Kwa- Mooks	2
https://locations.papajohns.com /united-states/	(206) 985-0000	Papa John's Pizza	Pizza Place	-122.386628	47.554182	Papa John's Pizza	-122.38160	47.55341	Fairmount Park	3
https://flyingbike.coop/	(206) 428-7709	Flying Bike Cooperative Brewery	Brewery	-122.355175	47.692123	Flying Bike Cooperative Brewery	-122.35529	47.69082	Greenwood	4
>										<

With the merged dataset, I summarized the reported open venues by neighborhood.

Conclusions

Using the self-reported data from the city, you can see that a number of neighborhoods have very few, or no restaurant service at all. The chart from the merged data set doesn't show all of the neighborhoods that were not found in the city data. An outer join on that merge would retain the original rows for the neighborhood dataframe.