Discussion 02

Spring 2019 – CS 188
Section 2B

Logical clocks

- Lamport clock
 - If a \rightarrow b, then C(a) < C(b)
 - If a causally leads to b, then C(a) < C(b)
- Vector clock
 - C(a) < C(b) if and only if $a \rightarrow b$

The Lamport Clock Rules

- 1. Each process P_i has their own local clock C_i
- 2. Before executing an event, $C_i \leftarrow C_i + 1$
- 3. Send the local clock value in the message m
- 4. On process P_i receiving message m:

set C_i and time of receive event to 1 + max{C_i, C(m)}

Example 1: RSM with Lamport Clocks

The Vector Clock Rules

• Initially, all vectors start at [0, 0,..., 0]

- Two rules for updating a vector
 - 1. For each local event on process i, increment local entry c_i in vector by 1
 - 2. If process j receives message with vector $[d_1, d_2, ..., d_n]$:
 - Set each local entry c_k = max{c_k, d_k}
 - Increment local entry c_i in vector by 1

Example 2: Vector Clocks

• All vectors start at [0, 0, 0]

Applying local update rule

Applying message rule

Example 3: RSM with Vector Clocks

Recovering from crash failures

- Solution?
 - Checkpointing
 - Problem? Domino effect
 - Solution? Coordinated Checkpointing
 - Chandy-Lamport Snapshot

Chandy-Lamport Snapshot Rules

- If it is the first marker message received by P_i:
 - Record all local state (take checkpoint)
 - Record state of channel from P_i to P_i as empty
 - Send marker messages on all outgoing channels
- If duplicate marker message received by P_i:
 - Stop recording channel from P_i to P_i
 - Record state of channel as all messages received since marker
- Snapshot complete when every process has received marker on every incoming channel

Example 4: Chandy-Lamport example

