The Chord DHT

- *m*-bit *key* unique for every peer and piece of content.
- Define: succ(k) for any key k is peer that exists with smallest $id \ge k$.
- Content with key *k* hosted by *succ*(*k*).

• m = 4

lookup(k)

- We may want to lookup(k) at any peer.
- Query is routed to *succ(k)*. How?

The Chord Approach

- Maintain a "finger table" (routing table) at Peer p, $FT_{p}[]$.
- *m* entries
- $FT_p[i] = succ(p + 2^{i-1})$, for all $i \in [1,m]$

Claims

- We go around the circle at most once
 - Termination guaranteed
- Expected number of "hops" is $O(\log n)$, where n = # peers.
 - Each hop covers half the arc-length.
 - O Hand-wave: peers are equidistant under randomness assumption.

Each hop covers > half the arc-length...

Claim:

Suppose we do lookup(k) @ peer p. Assume that r is the peer immediately before succ(k). Suppose that the next hop at p is q. Then: q - p > (r - p)/2.

Proof

Suppose $q = FT_p[j]$.

Then, $q \ge p + 2^{j-1}$. And, r .

Artwork credit

• ... (to be completed)