+111/1/56+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	reprin
	30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « 🗶 » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +111/1/xx+···+111/2/xx+.
	Q.2 Le langage $\{ \Delta^n \Delta^n \mid \forall n \in \mathbb{N} \}$ est
2/2	🗌 non reconnaissable par automate 🛛 rationnel 🔲 fini 🔲 vide
	Q.3 Le langage $\{0^n 1^n \mid n < 42^{51} - 1\}$ est
1/2	🖂 rationnel 🔲 vide 🍘 non reconnaissable par automate fini 🔲 infini
	Q.4 Quels langages ne vérifient pas le lemme de pompage?
)/2	 □ Tous les langages reconnus par DFA □ Certains langages reconnus par DFA □ Tous les langages non reconnus par DFA □ Tous les langages non reconnus par DFA
	Q.5 Un automate fini qui a des transitions spontanées
1/2	\square n'accepte pas ε $@$ accepte ε \square n'est pas déterministe \square est déterministe
	Q.6 Si un automate de n états accepte a^n , alors il accepte
1/2	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$ $\square a^n a^m$ avec $m \in \mathbb{N}^*$ $\square (a^n)^m$ avec $m \in \mathbb{N}^*$ $\square a^{n+1}$
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
1/2	\square L_1, L_2 sont rationnels \square L_2 est rationnel \square L_1 est rationnel \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
2/2	\square Il n'existe pas. \square 4^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square 2^n
	Q.9 Déterminiser cet automate : $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

0/2

 \square $Det(T(Det(T(\mathcal{A}))))$

 \square $Det(T(Det(T(Det(\mathcal{A})))))$

Fin de l'épreuve.