El hecho de que L_{α} , sea lineal no es más que una reformulación de la definición de las operaciones lineales en V^* :

$$L_{\alpha}(cf+g) = (cf+g)(\alpha)$$

$$= (cf)(\alpha) + g(\alpha)$$

$$= cf(\alpha) + g(\alpha)$$

$$= cL_{\alpha}(f) + L_{\alpha}(g).$$

Si V es de dimensión finita y $\alpha not = 0$, entonces L_{α} , en otras palabras, existe un funcional lineal f tal que $f(\alpha)$. La demostración es muy simple y fue dada en la Sección 3.5: Elíjase una base ordenada $\mathcal{B} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ de V tal que $\alpha_1 = \alpha$, y sea f el funcional lineal que asigna a cada vector en V su primera coordenada en la base ordenada \mathcal{B} .

Teorema 17. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Para cada vector α de V se define

$$L_{\alpha}(f) = f(\alpha), f \text{ en } V^*.$$

La aplicación $\alpha \to L_\alpha$ es entonces un isomorfismo de V sobre $V^{**}.$

Corolario. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Si L es un funcional lineal en el espacio dual V^* de V, entonces existe un único rector α de V tal que

$$L(f) = f(\alpha)$$

para todo f de V^* .

Corolario. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Toda base de V^* es dual de alguna base de V.

Teorema 18. Si S es cualquier subconjunto de un espacio vectorial de dimensión finita V, entonces $(S^{\circ})^{\circ}$ es el subespacio generado por S.

Definición. Si V es un espacio vectorial, un hiperespacio en V es un subespacio propio maximal de V.

Teorema 19. Si f es un funcional lineal α nulo sobre el espacio vectorial V, entonces el espacio nulo de f es un hiperespacio en V. Recíprocamente, todo hiperespacio de V es el espacio nulo de un (no único) funcional lineal no nulo sobre V.

Lema. Si f y g son funcionales lineales en el espacio vectorial V, entonces g es un múltiplo escalar de f si y solo si, el espacio nulo de g contiene al espacio nulo de f, esto es, si y solo si, $f(\alpha) = 0$ implica que $g(\alpha) = 0$.

Teorema 20. Sean g, f_1, \ldots, f_n funcionales lineales sobre un espacio vectoriales V con espacios nulos N, N_1, N_2, \ldots, N_r respectivamente. Entonces g es una combinación lineal de los f_1, \ldots, f_n si y solo si N contiene la intersección $N_1 \cap N_1 \cap \cdots \cap N_r$

Transpuesta de una transformación lineal

Supóngase que se tienen dos espacios vectoriales V y W sobre el cuerpo $\mathbb F$ y una transformación lineal T de V en W. Entonces T induce una transformación lineal de W^* en V^* , como sigue. Supóngase que g es un funcional lineal en W y sea

$$f(\alpha) = g(T\alpha) \tag{2}$$

para cada α en V. Entonces (1) define una función f de V en \mathbb{F} , que es la composición de T, función de V en W, con g, función de W en \mathbb{F} . Como ambas, T y g, son lineales, el Teorema 6 dice que f es también lineal; vale decir, f es una función lineal en V.

Así T suministra una correspondencia T^t que asocia a cada funcional lineal g sobre W un funcional lineal $f = T^t g$ sobre V, definido por (1). Obsérvese también que T^t es igualmente una transformación lineal de W^* . En efecto, si g_1 y g_2 están en W^* y c es un escalar

$$[T^t(cg_1 + g_2)](\alpha) = (cg_1 + g_2)(T\alpha)$$
$$= cg_1(T\alpha) + g_2(T\alpha)$$
$$= c(T^t g_1)(\alpha) + (T^t g_2)(\alpha)$$

de modo que $T^t(cg_1 + g_2) = cT^tg_1 + T^tg_2$.

Teorema 21. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} . Para toda transformación lineal T de V en W, existe una única transformación lineal T^t de W^* en V^* tal que

$$T^t g(\alpha) = g(T\alpha)$$

para todo g de W^* y todo α de V.

A T^t se la llama **transpuesta** de T. Esta transformación T^t también se llama a menudo adjunta de T, pero no usaremos esta terminología.

Teorema 22. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} y sea T una transformación lineal de V en W. El espacio nulo de T^t es el anulador de la imagen de T. Si V y W son de dimensión finita, entonces

- $(i) \operatorname{rango}(T^t) = \operatorname{rango}(T)$
- (ii) la imagen de T^t es el anulador del espacio nulo de T.

Teorema 23. Sean V y W espacios vectoriales de dimensión finita sobre el cuerpo \mathbb{F} . Sea \mathcal{B} una base ordenada de V con base dual \mathcal{B}^* , y sea \mathcal{B}' una base ordenada de W con base dual \mathcal{B}'^* . Sea T una transformación lineal de V en W.

Sea A la matriz de T respecto a $\mathcal{B}, \mathcal{B}'$ y sea B la matriz de T^t respecto a $\mathcal{B}'^*, \mathcal{B}^*$ Entonces $B_{ij} = A_{ji}$

Definición. Si A es una matriz $m \times n$ sobre el cuerpo \mathbb{F} , la transpuesta de A es la matriz $n \times m$, A^t , definida por $A^t_{ij} = A_{ji}$.

El Teorema 23 dice, pues, que si T es una transformación lineal de V en W, cuya matriz con respecto a un par de bases es A, entonces la transformación transpuesta T^t está representada, en el par de bases dual, por la matriz transpuesta A^t .

Teorema 24. Sea A cualquier matriz $m \times n$ sobre el cuerpo \mathbb{F} . Entonces el rango de filas de A es igual al rango de columnas de A.

El hecho de que L_{α} , sea lineal no es más que una reformulación de la definición de las operaciones lineales en V^* :

$$L_{\alpha}(cf+g) = (cf+g)(\alpha)$$

$$= (cf)(\alpha) + g(\alpha)$$

$$= cf(\alpha) + g(\alpha)$$

$$= cL_{\alpha}(f) + L_{\alpha}(g).$$

Si V es de dimensión finita y $\alpha not = 0$, entonces L_{α} , en otras palabras, existe un funcional lineal f tal que $f(\alpha)$. La demostración es muy simple y fue dada en la Sección 3.5: Elíjase una base ordenada $\mathcal{B} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ de V tal que $\alpha_1 = \alpha$, y sea f el funcional lineal que asigna a cada vector en V su primera coordenada en la base ordenada \mathcal{B} .

Teorema 17. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Para cada vector α de V se define

$$L_{\alpha}(f) = f(\alpha), f \text{ en } V^*.$$

La aplicación $\alpha \to L_\alpha$ es entonces un isomorfismo de V sobre $V^{**}.$

Corolario. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Si L es un funcional lineal en el espacio dual V^* de V, entonces existe un único rector α de V tal que

$$L(f) = f(\alpha)$$

para todo f de V^* .

Corolario. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} . Toda base de V^* es dual de alguna base de V.

Teorema 18. Si S es cualquier subconjunto de un espacio vectorial de dimensión finita V, entonces $(S^{\circ})^{\circ}$ es el subespacio generado por S.

Definición. Si V es un espacio vectorial, un hiperespacio en V es un subespacio propio maximal de V.

Teorema 19. Si f es un funcional lineal α nulo sobre el espacio vectorial V, entonces el espacio nulo de f es un hiperespacio en V. Recíprocamente, todo hiperespacio de V es el espacio nulo de un (no único) funcional lineal no nulo sobre V.

Lema. Si f y g son funcionales lineales en el espacio vectorial V, entonces g es un múltiplo escalar de f si y solo si, el espacio nulo de g contiene al espacio nulo de f, esto es, si y solo si, $f(\alpha) = 0$ implica que $g(\alpha) = 0$.

Teorema 20. Sean g, f_1, \ldots, f_n funcionales lineales sobre un espacio vectoriales V con espacios nulos N, N_1, N_2, \ldots, N_r respectivamente. Entonces g es una combinación lineal de los f_1, \ldots, f_n si y solo si N contiene la intersección $N_1 \cap N_1 \cap \cdots \cap N_r$

Transpuesta de una transformación lineal

Supóngase que se tienen dos espacios vectoriales V y W sobre el cuerpo $\mathbb F$ y una transformación lineal T de V en W. Entonces T induce una transformación lineal de W^* en V^* , como sigue. Supóngase que g es un funcional lineal en W y sea

$$f(\alpha) = g(T\alpha) \tag{1}$$

para cada α en V. Entonces (1) define una función f de V en \mathbb{F} , que es la composición de T, función de V en W, con g, función de W en \mathbb{F} . Como ambas, T y g, son lineales, el Teorema 6 dice que f es también lineal; vale decir, f es una función lineal en V.

Así T suministra una correspondencia T^t que asocia a cada funcional lineal g sobre W un funcional lineal $f = T^t g$ sobre V, definido por (1). Obsérvese también que T^t es igualmente una transformación lineal de W^* . En efecto, si g_1 y g_2 están en W^* y c es un escalar

$$[T^t(cg_1 + g_2)](\alpha) = (cg_1 + g_2)(T\alpha)$$
$$= cg_1(T\alpha) + g_2(T\alpha)$$
$$= c(T^tg_1)(\alpha) + (T^tg_2)(\alpha)$$

de modo que $T^t(cg_1 + g_2) = cT^tg_1 + T^tg_2$.

Teorema 21. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} . Para toda transformación lineal T de V en W, existe una única transformación lineal T^t de W^* en V^* tal que

$$T^t g(\alpha) = g(T\alpha)$$

para todo g de W^* y todo α de V.

A T^t se la llama **transpuesta** de T. Esta transformación T^t también se llama a menudo adjunta de T, pero no usaremos esta terminología.

Teorema 22. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} y sea T una transformación lineal de V en W. El espacio nulo de T^t es el anulador de la imagen de T. Si V y W son de dimensión finita, entonces

- $(i) \operatorname{rango}(T^t) = \operatorname{rango}(T)$
- (ii) la imagen de T^t es el anulador del espacio nulo de T.

Teorema 23. Sean V y W espacios vectoriales de dimensión finita sobre el cuerpo \mathbb{F} . Sea \mathcal{B} una base ordenada de V con base dual \mathcal{B}^* , y sea \mathcal{B}' una base ordenada de W con base dual \mathcal{B}'^* . Sea T una transformación lineal de V en W.

Sea A la matriz de T respecto a $\mathcal{B}, \mathcal{B}'$ y sea B la matriz de T^t respecto a $\mathcal{B}'^*, \mathcal{B}^*$ Entonces $B_{ij} = A_{ji}$

Definición. Si A es una matriz $m \times n$ sobre el cuerpo \mathbb{F} , la transpuesta de A es la matriz $n \times m$, A^t , definida por $A^t_{ij} = A_{ji}$.

El Teorema 23 dice, pues, que si T es una transformación lineal de V en W, cuya matriz con respecto a un par de bases es A, entonces la transformación transpuesta T^t está representada, en el par de bases dual, por la matriz transpuesta A^t .

Teorema 24. Sea A cualquier matriz $m \times n$ sobre el cuerpo \mathbb{F} . Entonces el rango de filas de A es igual al rango de columnas de A.