

- > The t-cutoff approach
- > The p-value approach
- > The confidence interval approach

- → > The t-cutoff approach
 - > The p-value approach
 - > The confidence interval approach

- > The t-cutoff approach
- → > The p-value approach
 - > The confidence interval approach

- > The t-cutoff approach
- > The p-value approach
- → > The confidence interval approach

The confidence interval approach to Hypothesis Testing

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

The confidence interval approach to Hypothesis Testing

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

The confidence interval approach to Hypothesis Testing

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 95% confidence interval for β_2

The confidence interval approach to Hypothesis Testing

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 95% confidence interval for β_2

= [212.6, 1084.6]

The confidence interval approach to Hypothesis Testing

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 95% confidence interval for β_2

= [212.6, 1084.6]

- > Since 500 falls in the confidence interval, hence do not reject the Null hypothesis.
- \rightarrow We cannot reject the H₀ for any value that is in the confidence interval.

The confidence interval approach to Hypothesis Testing

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 95% confidence interval for β_2

= [212.6, 1084.6]

- > Since 500 falls in the confidence interval, hence do not reject the Null hypothesis.
- > We cannot reject the H₀ for any value that is in the confidence interval.

The confidence interval approach to Hypothesis Testing

```
Step 1: Formulate Hypothesis
H_0: \beta_2 = 500
H_A: \beta_2 \neq 500
```

Step 2: Consider the 95% confidence interval for β_2

- > Since 500 falls in the confidence interval, hence do not reject the Null hypothesis.
- > We cannot reject the H₀ for any value that is in the confidence interval.

The confidence interval approach to Hypothesis Testing

Step 1: Formulate Hypothesis

$$H_0$$
: $\beta_2 = 500$

$$H_A$$
: $\beta_2 \neq 500$

Step 2: Consider the 95% confidence interval for β_2

- > Since 500 falls in the confidence interval, hence do not reject the Null hypothesis.
- \rightarrow We cannot reject the H₀ for any value that is in the confidence interval.

Perform the hypothesis test at an alpha level α = 0.01

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 99% confidence interval for β_2

Perform the hypothesis test at an alpha level α = 0.01

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 99% confidence interval for β_2

t

Perform the hypothesis test at an alpha level α = 0.01

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Consider the 99% confidence interval for β_2

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	197798832.8	65932944	40.56262	1.0848E-08	
Residual	20	32509212.11	1625461			
Total	23	230308045				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-25096.83	24859.61131	-1.009542	0.324773	-76953.0734	26759.408
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.588
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256	2622.078
•		_				

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	197798832.8	65932944	40.56262	1.0848E-08	
Residual	20	32509212.11	1625461			
Total	23	230308045				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-25096.83	24859.61131	-1.009542	0.324773	-76953.0734	26759.408
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.5887
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256	2622.0787
				`\		

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA							H.	$\beta_0 = 0$
	df	SS	MS	F	Significance F			$\beta_0 \neq 0$
Regression	3	197798832.8	65932944	40.56262	1.0848E-08		''A-	P ₀ + 0
Residual	20	32509212.11	1625461				H ₀ :	$\beta_1 = 0$
Total	23	230308045					H _A :	$\beta_1 \neq 0$
				,			ш.	a - 0
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	H ₀ :	$\beta_2 = 0$
Intercept	-25096.83	24859.61131	-1.009542	0.324773	-76953.0734	26759.408	п _A :	$\beta_2 \neq 0$
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22	H _o :	$\beta_3 = 0$
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.5887	H _^ :	$\beta_3 \neq 0$
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256	2622.0787	A	13
				~				

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA							His	β_0 =	- 0
	df	SS	MS	F	Significance F		H _∆ :		
Regression	3	197798832.8	65932944	40.56262	1.0848E-08		" "A-	P0 '	
Residual	20	32509212.11	1625461				H_0 :	β_1 =	= 0
Total	23	230308045					H _A :	$oldsymbol{eta}_1$:	≠ O
							·	0 -	
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	п ₀ :	p_2	= U
Intercept	-25096.83	24859.61131	-1.009542	0.324773	Lower 95% -76953.0734	26759.408	H _A :	<i>P</i> ₂ •	Į U
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22	Ha:	$\beta_3 =$	= 0
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.5887	H _^ :		
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256		- A	F 3	

```
Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp

H_0: \beta_0 = 0 H_0: \beta_1 = 0 H_0: \beta_2 = 0 H_0: \beta_3 = 0 H_A: \beta_0 \neq 0 H_A: \beta_1 \neq 0 H_A: \beta_2 \neq 0 H_A: \beta_3 \neq 0
```

Sales =
$$\beta_0$$
 + $\beta_1 Price$ + $\beta_2 AdExp$ + $\beta_3 PromExp$
 $H_0: \beta_0 = 0$ $H_0: \beta_1 = 0$ $H_0: \beta_2 = 0$ $H_0: \beta_3 = 0$
 $H_A: \beta_0 \neq 0$ $H_A: \beta_1 \neq 0$ $H_A: \beta_2 \neq 0$ $H_A: \beta_3 \neq 0$

- > Failure to reject the hypothesis (a high p-value) implies an insignificant impact.
- > Low p-values (less than α) are good.

Sales =
$$\beta_0$$
 + $\beta_1 Price$ + $\beta_2 AdExp$ + $\beta_3 PromExp$
 $H_0: \beta_0 = 0$ $H_0: \beta_1 = 0$ $H_0: \beta_2 = 0$ $H_0: \beta_3 = 0$
 $H_A: \beta_0 \neq 0$ $H_A: \beta_1 \neq 0$ $H_A: \beta_2 \neq 0$ $H_A: \beta_3 \neq 0$

- > Failure to reject the hypothesis (a high p-value) implies an insignificant impact.
- > Low p-values (less than α) are good.

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA							H ₀ :	ß.	_	\cap
	df	SS	MS	F	Significance F		H _∧ :			
Regression	3	197798832.8	65932944	40.56262	1.0848E-08		1 1A-	Po	_	
Residual	20	32509212.11	1625461				H_0 :	β_1	=	0
Total	23	230308045					H _A :	β_1	≠	0
							<u> </u>	0		<u>_</u> `
	Coefficients	Standard Error	t Stat	P-value	Lower 95% -76953.0734	Upper 95%	П ₀ .	P 2	=	0 0
Intercept	-25096.83	24859.61131	-1.009542	0.324773	-76953.0734	26759.408	Π _A :	Ρ ₂	7	
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22	Ha:	β_3	=	0
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.5887	H _{\(\times\)} :	β_3	≠	0
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256	2622.0787	A	, 3		

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA							H ₀ :	ß	_	0
	df	SS	MS	F	Significance F		H _Δ :			
Regression	3	197798832.8	65932944	40.56262	1.0848E-08		IIA.	Po	-	
Residual	20	32509212.11	1625461				H_0 :	β_1	=	0
Total	23	230308045					H _A :			
										<u></u> `
	Coefficients	Standard Error	t Stat	P-value	Lower 95% -76953.0734	Upper 95%	H ₀ :	p_2	=	0
Intercept	-25096.83	24859.61131	-1.009542	0.324773	-76953.0734	26759.408	H _A :	P ₂	7	U
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22	H ₀ :	β_3	=	0
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.5887	H _^ :	Ba	#	0
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256	2622.0787	A-	, 3		

- > Reject the Null hypothesis that $\beta_2 = 0$.
- > Advertising expenditure is an important variable in explaining Sales.

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

ANOVA							H ₀ :	B	_	\cap
	df	SS	MS	F	Significance F		H _∆ :			
Regression	3	197798832.8	65932944	40.56262	1.0848E-08		" A-	Po		
Residual	20	32509212.11	1625461				H_0 :	β_1	=	0
Total	23	230308045					H _A :	β_1	#	0
							/ LI .			<u>_</u> `
	Coefficients	Standard Error	t Stat	P-value	Lower 95% -76953.0734	Upper 95%	П ₀ .	<i>p</i> ₂	=	0
Intercept	-25096.83	24859.61131	-1.009542	0.324773	-76953.0734	26759.408	Π _A :	P ₂	7	Uj
Price (\$)	-5055.27	526.3995537	-9.603484	6.22E-09	-6153.32009	-3957.22	H_0 :	Ba	=	0
Adexp ('000\$)	648.61214	209.0048787	3.103335	0.005602	212.635603	1084.5887	H _^ :			
Promexp ('000\$)	1802.611	392.8485427	4.588565	0.000178	983.143256	2622.0787	A	, 3		
		_								

- > Reject the Null hypothesis that $\beta_2 = 0$.
- > Advertising expenditure is an important variable in explaining Sales.