Real Analysis I: Assignment 4

Chris Hayduk

October 3, 2019

Problem 1.

Let $\langle F_n \rangle$ be a sequence of non-empty, closed sets of real numbers with the property that $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$. Furthermore, assume there exists an m such that F_m is bounded.

Since F_m is bounded we know that $\exists c \in \mathbb{R}$ such that $\forall x \in F_m, |x| \leq c$. Now examine F_{m+1} . We know that $F_{m+1} \neq \emptyset$ and $F_{m+1} \subset F_m$. That is, $x \in F_{m+1} \implies x \in F_m$. As a result, every $x \in F_{m+1}$ is bounded by the same c.

This same line of reasoning applies for any $n \geq m$ since we have that $F_m \supset F_{m+1} \supset \cdots$ and $F_n \neq \emptyset \ \forall n$. Thus, we now have a subsequence of the original sequence which consists solely of closed, bounded, nonempty subsets.

We know that $\forall k \geq m, F_k$ is a non-empty, closed, and bounded set. As a result each F_k must contain its infimum, which we can denote by x_k .

We can see that $x_k \leq c$ and $x_k \leq x_{k+1}$. Thus, $\langle x_k \rangle$ is a monotonically increasing, bounded sequence. By the monotone convergence theorem, this sequence converges to a limit point x.

Since the sets are nested, for any k, $x_j \in F_k \ \forall j \geq k$. Furthermore, F_k is closed, so we have $x \in F_k$. This applies for any $k \geq m$, so $x \in \bigcap_{i=m}^{\infty} F_i$.

Now that we have considered the subsequence of non-empty, closed, and bounded sets let us incorporate the finite collection of unbounded sets F_1, \dots, F_{m-1} .

We know that $F_m \subset F_{m-1} \subset \cdots F_1$. Thus, $F_m \subset F_n \ \forall n < m$.

As a result, we clearly have $\bigcap_{i=0}^{m-1} F_i = F_m$.

Now if we combine the two intersections, we have

$$\bigcap_{i=0}^{\infty} F_i = \bigcap_{j=0}^{m-1} F_j \cap \bigcap_{k=m}^{\infty} F_k$$

$$\Longrightarrow (F_1 \cap F_2 \cap \dots \cap F_{m-1}) \cap (F_m \cap F_{m+1} \cap \dots)$$

$$\Longrightarrow F_m \cap (F_m \cap F_{m+1} \cap \dots)$$

$$\Longrightarrow (F_m \cap F_m) \cap F_{m+1} \cap \dots$$

$$\Longrightarrow F_m \cap F_{m+1} \cap \dots = \bigcap_{k=m}^{\infty} F_k$$

Since we know that $x \in \bigcap_{i=m}^{\infty} F_i$, the derivation above implies that $x \in \bigcap_{i=0}^{\infty} F_i \neq \emptyset$ as well. Thus, the intersection of a nested sequence of non-empty, closed sets of real numbers is non-empty if one of the sets is bounded.

Now let $F_n = \{x \in \mathbb{R} : x \geq n\} = [n, \infty)$. Clearly each $F_n \subset \mathbb{R}$ is unbounded and closed.

Furthermore, we have that $F_{n+1} = \{x \in \mathbb{R} : x \ge n+1\} = [n+1,\infty)$. Then we can see that $F_{n+1} \subset F_n$ since $[n+1,\infty) \subset [n,\infty)$.

Now assume $\cap F_n \neq \emptyset$ and let $x \in \cap F_n$. Then $x \in F_n \ \forall n$. Since $F_n \subset \mathbb{R}$, we have that $x \in \mathbb{R}$. Thus, by the Axiom of Archimedes, $\exists k \in \mathbb{N}$ such that k > x.

Hence, by the definition of F_n , we have that $x \notin F_k$. However, this contradicts the assumption that $x \in \cap F_n$ and, by extension, that $\cap F_n \neq \emptyset$.

As a result, if there is not at least one bounded F_n , we have that $\cap F_n = \emptyset$.

Problem 2.

Let $A = \{x \in [a, b] : f(x) \le \gamma\}$. We have that $a \in A$ and A is bounded above by b. As a result, the supremum of A exists. Let $c = \sup A$.

We claim that $f(c) = \gamma$.

We know that f is continuous, so choose some $\epsilon > 0$. Then $\exists \delta > 0$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$.

This yields,

$$f(x) - \epsilon < f(c) < f(x) + \epsilon$$

Since c is the supremum of the set, there exists $c' \in (c - \delta, c]$ such that

$$f(c) + \epsilon < f(c')$$

$$\implies f(c) < f(c') + \epsilon \le \gamma + \epsilon$$

In addition, there exists $c'' \in (c, c + \delta)$ such that

$$f(c'') < f(c) + \epsilon$$

$$\implies f(c) > f(c'') - \epsilon \ge \gamma - \epsilon$$

Combining these two inequalities yields,

$$\gamma - \epsilon \le f(c) \le \gamma + \epsilon$$

Since $\epsilon > 0$ can be arbitrarily small, $f(c) = \gamma$.

Problem 3.

Firstly, let $g(x) = f(x) \ \forall x \in F$.

Since F is closed, we know that \tilde{F} is open. By Proposition 8, \tilde{F} is the union of a countable collection of disjoint open intervals. Define g on \tilde{F} to be linear on these open intervals. Then g is defined on all of \mathbb{R} .

We already know that g is continuous on F, so it suffices to show that g is continuous on \tilde{F} .

Let (x_1, x_2) be one of the open intervals whose union equals \tilde{F} . Since g is linear, we have that $x \in (x_1, x_2) \implies g(x) = ax + b$ for some constants $a, b \in \mathbb{R}$. Assume $a \neq 0$.

Fix $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{|a|}$. Then for $\forall y \in (x_1, x_2)$,

$$|x - y| < \delta \implies |g(x) - g(y)| < \epsilon$$

$$\implies |ax + b - (ay + b)| < \epsilon$$

$$\implies |a(x - y)| < \epsilon$$

$$\implies |x - y| < \frac{\epsilon}{|a|} = \delta$$

Thus, g(x) is continuous on (x_1, x_2) when $a \neq 0$.

Moreover, if a=0, then $g(x)=b \ \forall x\in (x_1,x_2)$. Thus, $|g(x)-g(y)|=0<\epsilon \ \forall x,y\in (x_1,x_2)$ and $\forall \epsilon>0$. Hence, g(x) is continuous on (x_1,x_2) for any choice of $a,b\in\mathbb{R}$.

Since g(x) is continuous for any choice of $a, b \in \mathbb{R}$, we can choose a, b such that $g(x_1) = f(x_1)$ and $g(x_2) = f(x_2)$. (We know that $x_1, x_2 \in F$ by the disjoint property of the open intervals). This yields $a = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ and $b = f(x_1) - x_1 \frac{f(x_1) - f(x_2)}{x_1 - x_2}$

By this construction, g(x) is continuous on $[x_1, x_2]$ and $g(x_1) = f(x_1), g(x_2) = f(x_2)$.

Since (x_1, x_2) is an arbitrary open interval from the collection of countable open intervals whose union equals \tilde{F} , we have that g(x) is continuous on all such intervals with the property

that $g(x_1) = f(x_1), g(x_2) = f(x_2)$ for the endpoints of said intervals.

We know that g(x) is continuous at all interior points of F and \tilde{F} . Thus, we must show that g(x) is continuous at the boundary points of F, which are precisely the boundary points of \tilde{F} . Namely, the endpoints of each open interval.

Choose a boundary point x and an $\epsilon > 0$. Since g(x) is continuous in F and $x \in F$, there exists a $\delta_1 > 0$ such that $|x - y| < \delta \implies |g(x) - g(y)| < \epsilon \ \forall y \in F$. Furthermore, by the construction above of g(x) on \tilde{F} , there exists a $\delta_2 > 0$ such that $|x - y| < \delta_2 \implies |g(x) - g(y)| < \epsilon \ \forall y \in \tilde{F}$. Take $\delta = \min\{\delta_1, \delta_2\}$, and we can clearly see that g(x) is continuous at x. Since x is an arbitrary boundary point of F, g(x) is continuous at all such boundary points (ie. the endpoints of each open interval comprising \tilde{F}).

Hence, we have that g(x) is continuous at all points in F and \tilde{F} . Thus, g is continuous on $F \cup \tilde{F} = \mathbb{R}$.

Problem 4.

Since f is continuous on [a, b] (a closed and bounded subset of \mathbb{R}), we have that f is uniformly continuous.

Let $\epsilon > 0$. Then there exists a $\delta > 0$ such that $|f(x) - f(y)| < \frac{\epsilon}{2}$ for all $x, y \in [a, b]$.

Choose $N \in \mathbb{N}$ such that $\frac{b-a}{N} < \delta$ and let $x_i = a + i \frac{b-a}{N}$. Furthermore, construct φ similarly to how we constructed g in the above problem: let φ be linear on each $[x_i, x_{i+1}]$ with the property that $\varphi(x_i) = f(x_i) \ \forall i$.

Now let $x \in [a, b]$. Then $\exists i$ such that $x \in [x_i, x_{i+1}]$. In addition, assume $f(x_i) \leq f(x_{i+1})$, which implies that $\varphi(x_i) \leq \varphi(x) \leq \varphi(x_{i+1})$ by properties of linear functions. Then,

$$|\varphi(x) - f(x)| \le |\varphi(x) - \varphi(x_i)| + |\varphi(x_i) - f(x)|$$

$$\le |\varphi(x_{i+1}) - \varphi(x_i)| + |f(x_i) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

If $f(x_i) > f(x_{i+1})$, we have that $\varphi(x_i) > \varphi(x) > \varphi(x_{i+1})$, yielding,

$$|\varphi(x) - f(x)| < |\varphi(x) - \varphi(x_{i+1})| + |\varphi(x_{i+1}) - f(x)|$$

$$< |\varphi(x_i) - \varphi(x_{i+1})| + |f(x_{i+1}) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus, the inequality holds regardless of the inequality relationship between endpoints.

Since $x \in [a, b]$ was arbitrary, we have that $\varphi : [a, b] \to \mathbb{R}$ is a polygonal function with the property that $|f(x) - \varphi(x)| < \epsilon \ \forall x \in [a, b]$.