Stof	Hvor kommer det fra?	Hvad fortæller det om?
¹⁶ O-, ¹⁷ O- og ¹⁸ O-isotoper i isen	Havet via skyer til sne	Temperaturen i luften
Uopløselige mikropartikler (støv)	Vindblæst støv fra kontinenterne (hovedsagelig fra Asien), mikrometeoritter fra rummet, vulkansk aske og biologisk materiale	Vindaktiviteten, vindretninger, størrelsen af ørken- områder, solsystemets oprindelse, hvilke vulkaner der har været i udbrud, dyre- og planteliv
Salt	Havsalt fra havet	Storme over havet, udbredelse af havis, vind- systemer
Salpetersyre og ammonium	Biologiske processer ved varmere breddegrader, lynudladninger, industri og landbrug	Den biologiske aktivitet, skovbrande og forureningen fra bilkørsel, industri og landbrug
Svovlsyre, saltsyre, flussyre	Biologiske processer, vulkanudbrud, olie- og kulafbrænding	Den biologiske aktivitet, vulkanudbrud og moderne forurening
Calcium- og magnesium- karbonater	Opløst kontinentalt støv	Vindaktivitet, vindretninger og ørkenområder
Drivhusgasserne kuldioxyd og metan	Biologiske processer i havet og på kontinenterne, afbrænding af fossilt brændstof, moderne landbrug	Graden af biologisk aktivitet, vekselvirkningen mellem drivhusgasserne og klimaet
Kunstige gasser	Freon fra køleanlæg og industri	Graden af forurening med gasser, som ødelægger atmosfærens ozonlag
Tungmetaller, f.eks. bly	Blyudvinding og afbrænding, minedrift og industri	Graden af blyforurening, belastningen af det arktiske miljø fra tungmetaller
Kulstof-14, beryllium-10 og klor-36	Naturlige radioaktive stoffer	Kosmisk stråling, Solens stråleintensitet og Jordens magnetfelt; alder
Cæsium-137 og strontium-90	Menneskeskabte radioaktive stoffer	Atombombesprængninger og A-kraftværksulykker
DNA	Biologisk arvemateriale	Tidligere tiders plante- og dyreliv

Ved at undersøge, hvorledes syren fra et givet udbrud fordeler sig i årlagene, kan vi desuden bestemme, om udbruddet er sket langt fra Grønland, f.eks. i Indonesien eller i Middelhavet, tættere på, f.eks. i Alaska, eller helt tæt på, i Island.

Vesuvs udbrud i år 79 efter Kristi fødsel er det ældste udbrud, vi har historiske kilder om. Det var dette udbrud, som begravede de romerske byer Pompeji og Herculanum uden for Napoli. Det forhold, at vi finder spor af udbruddet netop i det rigtige år, bekræfter, at vi tæller rigtigt i vores bestemmelser af årlag.

Tidspunktet for udbruddet, eller rettere eksplosionen af øen Santorini (Thera) i det Ægæiske Hav har stor arkæologisk betydning. Udbruddet skete i den minoiske periode, og både selve eksplosionen og den efterfølgende flodbølge ødelagde mange havnebyer i Middelhavet. Ved at datere arkæologiske fund bl.a. med kulstof 14-metoden mente arkæologerne, at udbruddet skete 1400-1500 år f.Kr. Der har dog været stor usikkerhed om tidspunktet. Iskernerne viser et lag med svovlsyre i år 1643 f.Kr. Imidlertid kan man ikke ud fra svovlsyren alene bestemme, om dette lag virkelig stammer fra Santorini. Svovlsyre er svovlsyre,

så det kunne komme fra en anden vulkan. Men ved at tage prøver ud fra iskernen i netop dette lag har man fundet mikroskopiske askepartikler. Og disse askepartiklers kemiske sammensætning har Santorinis kemiske »fingeraftryk«. Vi er derfor overbevist om, at Santorini i Grækenland eksploderede mellem år 1636 og år 1646 f.Kr. Vi regner nemlig med, at vi højst har talt 10 år forkert i denne dybde af iskernen.

Aldersbestemmelse dybt nede i isen

Efterhånden som lagene synker dybere ned i isen, bliver de tyndere, og samtidig diffunderer 16O- og 18Oisotoperne i isen så forskellene mellem sommer- og vintersne langsomt bliver udvisket. Vi kan derfor ikke tælle årlag med isotoper hele vejen ned. Det viser sig, at mange andre af de målte stoffer også har sæsonmæssige udsving, og de overtager rollen som årlagsindikatorer. Særligt isens indhold af uopløselige mikropartikler viser sig at være en god dateringsparameter. De store forårsstorme bringer nemlig store mængder støv ind over isen, således at vi kan se forhøjede koncentrationer af uopløselige mikropartikler i forårsla-