Úvod do praktické fyziky

NOFY055

Vojtěch Chlan

katedra fyziky nízkých teplot

Tel: 221 912 887

vojtech.chlan@mff.cuni.cz

http://nmr.mff.cuni.cz/chlan

Získání zápočtu:

Úspěšné absolvování dvou testů během semestru.

(úspěch = aspoň 16 bodů, každý test 0-15 bodů)

Úlohy v testech budou podobné (nepovinným) domácím úlohám.

Doporučená literatura:

• J. Englich, "Úvod do praktické fyziky I" (Matfyzpress, Praha 2006).

Úvod do praktické fyziky

NOFY055

Podrobný sylabus je na webu (SIS)

Chyby měření

- klasifikace chyb, zdroje chyb, nejistota měření
- zápis výsledku měření, jednotky
- určování chyby měřícího přístroje

Základní pojmy matematické statistiky

- pravděpodobnost, rozdělení pravděpodobnosti
- střední hodnota, momenty náhodné veličiny
- rozdělení pravděpodobnosti více náhodných veličin, korelace
- centrální limitní věta

Princip maximální pravděpodobnosti

- odhad parametrů rozdělení, střední hodnoty, standardní odchylky
- (ne)vychýlený odhad, přenos chyby, uvážení chyby měřícího přístroje

Zpracování experimentálních dat

- zpracování přímého a nepřímého měření
- metoda nejmenších čtverců, lineární regrese, zpracování grafů

Forma výuky

Přednáška – probrání a vysvětlení teorie

Praktické cvičení – navazující část s počítačem k praktickému procvičení

budeme používat programy:

Excel, — tabulkový procesor; zpracování dat

(LibreOffice, OpenOffice, ...) a tvorba grafů

Python(x,y) – distribuce jazyka Python pro vědecké výpočty

Origin – program pro analýzu dat a tvorbu grafů

Matlab, Mathematica – programovací prostředí pro výpočty a tvorbu grafů

Gnuplot – tvorba grafů

... a mnohé další zdroje (aplikace MFF i CUNI, zdroje CESNETu, MetaCentrum)

zelená = bezplatné

červená = za peníze, ale studenti MFF mají k dispozici celofakultní licenci zdarma

Výsledky měření nebo pozorování jsou vždy zatíženy chybou.

Druhy chyb:

• systematická chyba

- metoda, přístroj (např. chybná kalibrace) ...

- při opakování se projevuje stejným způsobem

• náhodná chyba

- důsledek náhodných fluktuací

- metody matematické statistiky

• hrubá chyba

Nejistota měření

Chyba měření = odchylka naměřené hodnoty od správné hodnoty
Co je to "správná" hodnota?

Po korekci systematických chyb - Nejistota měření

Metody odhadu nejistoty měření:

- statistické (typ A)
 - mají původ v náhodných jevech
- ostatní (typ B)
 - zpracování ostatních složek nejistoty (odhad)

 u_{A}

 u_B

Nejistota měření

Jak sloučit nejistoty u_A a u_B :

 \rightarrow kombinovaná standardní nejistota: $u_C^2 = u_A^2 + u_B^2$

$$u_C^2 = u_A^2 + u_B^2$$

Nejistotu lze vyjádřit:

- v jednotkách (měřené) veličiny **absolutní** standardní nejistota
- v poměru k hodnotě veličiny **relativní** standardní nejistota

$$\eta_{\chi} = \frac{u_{C,\chi}}{\tilde{\mu}_{\chi}} \times 100\%$$

 \rightarrow maximální nejistota: $u_C = u_A + u_B$

- pro <u>plánování</u> experimentu, <u>ne</u> pro <u>zpracování</u> výsledků

Zápis výsledku měření

Odhad skutečné hodnoty měřené veličiny x: $\tilde{\mu}_{x}$

Kombinovaná standardní nejistota: $u_{C,x}$

Zápis výsledku měření:

$$x = (\tilde{\mu}_x \pm u_{C,x}) [x]$$
, (P = ... %) nebo slovní vyjádření $P = 68.27$ % standardní $P = 95.45$ % (rozšířená) $P = 95.45$ % (rozšířená) $P = 99.73$ % (mezní)

interval nejistoty označení pravděpodobnost jednotky

Šířka intervalu nejistoty vs. **pravděpodobnost výskytu** skutečné hodnoty v intervalu nejistoty

Nepřímé měření:
$$y = f(x_1, x_2, ..., x_n)$$
 analogicky: $y = \tilde{\mu}_y(u_{C,y})[y]$

výsledná **fyzikální veličina**, naměřené veličiny kterou chceme určit $x_i = \tilde{\mu}_{x_i}(u_{C,x_i})$

Fyzikální jednotky

Základní jednotky SI

Fyzikální veličina	Jednotka	Značka
Délka	metr	m
Hmotnost	kilogram	kg
Čas	sekunda	S
Termodynamická teplota	kelvin	K
Látkové množství	mol	mol
Elektrický proud	ampér	A
Svítivost	kandela	cd

CGS, MKS, ...

atomové jednotky, ...

Fyzikální jednotky

latinské předpony

Předpona	Značka	Násobek
exa	Е	1018
peta	P	10 ¹⁵
tera	Т	1012
giga	G	109
mega	M	10^{6}
kilo	k	10^{3}
mili	m	10-3
mikro	μ	10-6
nano	n	10-9
piko	p	10-12
femto	f	10-15
atto	a	10 ⁻¹⁸

Zápis výsledku měření

- nejistotu (chybu) uvádíme s přesností na jednu platnou číslici (výjimečně na dvě platné číslice zaokrouhlovací chyba)
- výsledek zaokrouhlíme v řádu poslední platné číslice neurčitosti
- platné číslice = všechny číslice s výjimkou nul *před* první nenulovou číslicí

příklady: $0.000055 \rightarrow 2$ platné číslice

 $0.050050 \rightarrow 5$ platných číslic

 $50.50500500 \rightarrow 10$ platných číslic

zápis výsledku měření

příklady:
$$h = 1.05(1) \text{ m}$$

 $I = 0.10(2) \cdot 10^{-3} \text{ A}$
 $t = 4.05(3) \text{ s}$
 $p = (10.05 \pm 0.12) \text{ GPa}$

Poznámka: Pokud se chyba měření ve výsledku neudává, předpokládá se implicitně, že je menší, než polovina řádu za poslední platnou číslicí výsledku:

$$v = 1.5 \text{ m s}^{-1}$$
 \Rightarrow 1.45 m s⁻¹ < $v < 1.55 \text{ m s}^{-1}$