Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Ex2 - Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Colab Link:

Colab Link

Aim:

To understand linear regression and implement it in predicting the loan amount of individuals

Code & Output:

Import Dependencies

import pandas as pd import numpy as np

Load the Dataset

train = pd.read_csv('train.csv')

Display Sample Rows

train.head()

	Customer ID	Name	Gender	Age	Income (USD)	Income Stability	Profession	Type of Employment		Amount Request (USD)	 Credit Score	No. of Defaults	Has Active Credit Card	Property ID	Property Age	1
0	C-36995	Frederica Shealy	F	56	1933.05	Low	Working	Sales staff	Semi- Urban	72809.58	 809.44	0	NaN	746	1933.05	
1	C-33999	America Calderone	М	32	4952.91	Low	Working	NaN	Semi- Urban	46837.47	 780.40	0	Unpossessed	608	4952.91	
2	C-3770	Rosetta Verne	F	65	988.19	High	Pensioner	NaN	Semi- Urban	45593.04	 833.15	0	Unpossessed	546	988.19	

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

train.info()

Graphical Plots

import matplotlib.pyplot as plt import seaborn as sns

Distribution of Numerical Features
numerical_features = ['Age', 'Income (USD)', 'Loan Amount Request (USD)', 'Current Loan
Expenses (USD)', 'Credit Score', 'No. of Defaults', 'Property Age', 'Property Price', 'Loan
Sanction Amount (USD)']
sns.pairplot(train[numerical_features])
plt.show()

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Correlation Heatmap plt.figure(figsize=(10, 8)) sns.heatmap(train[numerical_features].corr(), annot=True, cmap='coolwarm', fmt=".2f") plt.title('Correlation Heatmap of Numerical Features') plt.show()

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Count of Categorical Features

for feature in categorical_features:

```
plt.figure(figsize=(8, 6))
sns.countplot(data=train, x=feature)
plt.title(f'Count of {feature}')
plt.xticks(rotation=45)
plt.show()
```


Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Relationship between Categorical Features and Loan Sanction Amount for feature in categorical_features:

```
plt.figure(figsize=(10, 6))
sns.boxplot(data=train, x=feature, y='Loan Sanction Amount (USD)')
plt.title(f'{feature} vs. Loan Sanction Amount')
plt.xticks(rotation=45)
plt.show()
```


Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

<u>Pre Processing (Handling missing values, Encoding, Normalization, Standardization)</u>

Print Columns

train.columns

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 5-2-24 Y.V.Ojus 3122 21 5001 125

Print Index

train.index

RangeIndex(start=0, stop=30000, step=1)

Drop Uncessary Columns

train = train.drop(['Customer ID','Name','Gender','Income Stability','Profession','Type of Employment','Location','Expense Type 1','Expense Type 2','Dependents','Has Active Credit Card','Property ID','Property Age','Property Type','Property Location','Co-Applicant'],axis=1)

Print Null Values

train.isna()

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

	Age	Income (USD)	Loan Amount Request (USD)	Current Loan Expenses (USD)	Credit Score	No. of Defaults	Property Price	Loan Sanction Amount (USD)
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	True	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
29995	False	False	False	False	False	False	False	False
29996	False	False	False	False	False	False	False	False
29997	False	True	False	False	True	False	False	False
29998	False	False	False	False	False	False	False	False
29999	False	False	False	False	False	False	False	False

30000 rows × 8 columns

```
arr = np.array(train.columns)
arr
```

Print Column and NULL Count

```
for index in range(len(arr)):
    count = train[train[arr[index]].isna() == True].shape[0]
    if(count != 0):
        print(f"{arr[index]}\t{count}")
```

```
Income (USD) 4576
Current Loan Expenses (USD) 172
Credit Score 1703
Loan Sanction Amount (USD) 340
```


Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Handling NULL Values

Fill With Mean Values

train["Age"].fillna(train["Age"].mean(), inplace=True)
train["Income (USD)"].fillna(train["Income (USD)"].mean(), inplace=True)

train["Loan Amount Request (USD)"].fillna(train["Loan Amount Request (USD)"].mean(),inplace=True)

train["Loan Sanction Amount (USD)"].fillna(train["Loan Sanction Amount (USD)"].mean(),inplace=True)

train["Current Loan Expenses (USD)"].fillna(train["Current Loan Expenses (USD)"].mean(),inplace=True)

train["Credit Score"].fillna(train["Credit Score"].mean(),inplace=True)

Replace Outlier Values

train["Loan Amount Request (USD)"].replace(-999,train["Loan Amount Request (USD)"].mean())

train["Loan Sanction Amount (USD)"].replace(-999,train["Loan Sanction Amount (USD)"].mean())

```
1
          37469.98
2
          36474.43
3
          56040.54
          74008.28
          68992.11
29995
29996
          46616.60
          61057.56
29997
          99766.87
29998
29999
         117217.90
```

54607.18

0

Name: Loan Sanction Amount (USD), Length: 30000, dtype: float64

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 5-2-24 Y.V.Ojus 3122 21 5001 125

Drop Column To Be Predicted

```
y = train["Loan Sanction Amount (USD)"]
У
0
           54607.18
           37469.98
2
           36474.43
3
           56040.54
4
           74008.28
            . . .
29995
           68992.11
         46616.60
29996
29997
          61057.56
29998
           99766.87
29999
          117217.90
Name: Loan Sanction Amount (USD), Length: 30000, dtype: float64
train = train.drop(["Loan Sanction Amount (USD)"],axis=1)
```

<u>Model</u>

train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 7 columns):
    Column
                                 Non-Null Count Dtype
    -----
---
                                 30000 non-null int64
0
    Age
 1
  Income (USD)
                                30000 non-null float64
 2 Loan Amount Request (USD) 30000 non-null float64
3 Current Loan Expenses (USD) 30000 non-null float64
4 Credit Score
                                 30000 non-null float64
5 No. of Defaults
                                30000 non-null int64
                                30000 non-null float64
    Property Price
dtypes: float64(5), int64(2)
memory usage: 1.6 MB
```


Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error, r2_score from sklearn.metrics import median_absolute_error, explained_variance_score

```
# Define features (X) and target variable (y)
X = train[['Age', 'Income (USD)', 'Loan Amount Request (USD)', 'Current Loan Expenses
(USD)', 'Credit Score', 'No. of Defaults', 'Property Price']]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize the linear regression model
model = LinearRegression()
# Train the model
model.fit(X_train, y_train)
# Predict on the test set
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print('Mean Squared Error:', mse)
# Calculate Mean Absolute Error
mae = mean_absolute_error(y_test, y_pred)
print('Mean Absolute Error:', mae)
# Calculate R-squared
r2 = r2_score(y_test, y_pred)
print('R-squared:', r2)
```


Calculate Median Absolute Error

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

medae = median_absolute_error(y_test, y_pred)
print('Median Absolute Error:', medae)

Calculate Explained Variance Score evs = explained_variance_score(y_test, y_pred) print('Explained Variance Score:', evs)

Score the model on the test set score = model.score(X_test, y_test) print('Model Score (R-squared):', score)

> Mean Squared Error: 956230969.0157363 Mean Absolute Error: 21725.966832074235

R-squared: 0.5766373122374836

Median Absolute Error: 15828.744250770707 Explained Variance Score: 0.5766459138874588 Model Score (R-squared): 0.5766373122374836

import matplotlib.pyplot as plt import seaborn as sns

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Residual Plot
residuals = y_test - y_pred
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_pred, y=residuals)
plt.axhline(y=0, color='r', linestyle='--')
plt.title('Residual Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.show()

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Actual vs. Predicted Values Plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x=y_test, y=y_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='r', linestyle='--')
plt.title('Actual vs. Predicted Values')
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.show()

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 3122 21 5001 125 5-2-24

Distribution Plot of Residuals plt.figure(figsize=(8, 6)) sns.histplot(residuals, kde=True) plt.title('Distribution Plot of Residuals') plt.xlabel('Residuals') plt.ylabel('Frequency') plt.show()

Distribution Plot of Residuals

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

import matplotlib.pyplot as plt import numpy as np

Scatter plot of actual vs. predicted loan sanction amount plt.figure(figsize=(10, 6)) plt.scatter(y_test, y_pred, color='blue', alpha=0.5) plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', linestyle='--') plt.xlabel('Actual Loan Sanction Amount (USD)') plt.ylabel('Predicted Loan Sanction Amount (USD)') plt.title('Actual vs. Predicted Loan Sanction Amount') plt.grid(True) plt.show()

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Test

test = pd.read_csv('test.csv')
test.head()

	Customer ID	Name	Gender	Age	Income (USD)	Income Stability	Profession	Type of Employment	Location	Loan Amount Request (USD)	 Dependents	Credit Score	No. of Defaults	Has Active Credit Card	Propert I
0	C-26247	Tandra Olszewski	F	47	3472.69	Low	Commercial associate	Managers	Semi- Urban	137088.98	 2.0	799.14	0	Unpossessed	84
1	C-35067	Jeannette Cha	F	57	1184.84	Low	Working	Sales staff	Rural	104771.59	 2.0	833.31	0	Unpossessed	2
2	C-34590	Keva Godfrey	F	52	1266.27	Low	Working	NaN	Semi- Urban	176684.91	 3.0	627.44	0	Unpossessed	
3	C-16668	Elva Sackett	М	65	1369.72	High	Pensioner	NaN	Rural	97009.18	 2.0	833.20	0	Inactive	73
4	C-12196	Sade Constable	F	60	1939.23	High	Pensioner	NaN	Urban	109980.00	 NaN	NaN	0	NaN	35

test.columns

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

Preprocess the test data, selecting the same features as in the training data test_features = test[['Age', 'Income (USD)', 'Loan Amount Request (USD)', 'Current Loan Expenses (USD)',

'Credit Score', 'No. of Defaults', 'Property Price']]

Replace '?' with NaN
test_features.replace('?', float('nan'), inplace=True)

Convert object columns to numeric
test_features = test_features.apply(pd.to_numeric, errors='coerce')

Fill missing values with mean test_features.fillna(test_features.mean(), inplace=True)

Make predictions on the processed test data test_predictions = model.predict(test_features)

Add the predictions to the test dataframe test['Predicted Loan Sanction Amount (USD)'] = test_predictions.round(2)

test.head()

me	Profession	Type of Employment	Location	Loan Amount Request (USD)	 Credit Score	No. of Defaults	Has Active Credit Card	Property ID	Property Age	Property Type	Property Location	Co- Applicant	Property Price	Predicted Loan Sanction Amount (USD)
_OW	Commercial associate	Managers	Semi- Urban	137088.98	 799.14	0	Unpossessed	843	3472.69	2	Urban	1	236644.5	83448.55
_OW	Working	Sales staff	Rural	104771.59	 833.31	0	Unpossessed	22	1184.84	1	Rural	1	142357.3	71390.69
_ow	Working	NaN	Semi- Urban	176684.91	 627.44	0	Unpossessed	1	1266.27	1	Urban	1	300991.24	76125.08
ligh	Pensioner	NaN	Rural	97009.18	 833.20	0	Inactive	730	1369.72	1	Semi- Urban	0	125612.1	66779.91
ligh	Pensioner	NaN	Urban	109980.00	 NaN	0	NaN	356	1939.23	4	Semi- Urban	1	180908.0	58069.85

Loan Amount Prediction Using Linear Regression And Visualize The Interpretation

Ex. No: 2 Y.V.Ojus 5-2-24 3122 21 5001 125

test['Predicted Loan Sanction Amount (USD)']

```
0 83448.55

1 71390.69

2 76125.08

3 66779.91

4 58069.85

...

19995 77160.65

19996 20640.12

19997 -3030.66

19998 74005.59

19999 77062.47
```

Name: Predicted Loan Sanction Amount (USD), Length: 20000, dtype: float64

