МФТИ, сложность вычислений, осень 2023 Семинар 05. **NP**-полные языки (3)

Определение. Пусть G — граф. Тогда его числом независимости $\alpha(G)$ называют максимальное такое k, что в G есть подмножество из k вершин, попарно **не**соединённых рёбрами между собой.

Определение. Пусть G = (V, E) — граф. Множество $C \subset V$ называется вершинным покрытием в G, если любое ребро из E хотя бы одним из своих концов лежит в C.

- 1. Рассмотрим язык $\{\varphi \mid \varphi$ выполнимая формула в 3КНФ, в которой для каждой переменной два соответствующих ей литерала входят не более двух раз $\}$. Докажите, что он лежит в \mathbf{P} .
- **2.** Докажите **NP**-полноту языка INDSET = $\{(G, k) \mid \alpha(G) \geqslant k\}$. Докажите **NP**-трудность языка $\{G \mid \alpha(G) = \frac{1}{3} \mid V(G) \mid \}$.
- **3.** Докажите **NP**-полноту языка CLIQUE = $\{(G,k) \mid \omega(G) \geqslant k\}$. Докажите **NP**-полноту языка $\{G \mid \omega(G) \geqslant \frac{9}{10} |V(G)|\}$.
- **4.** Докажите **NP**-полноту языка VERTEXCOVER = $\{(G, k) \mid$ в графе G есть вершинное покрытие на (не более чем) k вершинах $\}$.
- **5.** Докажите **NP**-полноту языка $\mathsf{3INDSET} = \{(G, k) \mid \mathsf{в} \text{ графе } G \text{ есть независимое множество размера хотя бы <math>k$, причём степени всех вершин в G не превосходят $3\}$.
- **6.** Докажите **NP**-полноту языка HITTING-SET = $\{(n, S_1, S_2, \dots, S_n, k) \mid \text{ существует } k$ -элементное множество H, имеющее непустые пересечения с каждым из $S_i\}$. Докажите **NP**-полноту языка COVERING-SET = $\{(n, S_1, S_2, \dots, S_n, k) \mid \exists 1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n : S_{i_1} \cup S_{i_2} \cup \dots \cup S_{i_k} = \bigcup_{i=1}^n S_j\}$.
- 7. Докажите **NP**-полноту языка EXACTTWO3SAT = $\{\varphi \mid \varphi \varphi$ ормула в 3-КН Φ , в которой при некотором наборе значений переменных в каждой скобке выполнено ровно 2 литерала $\}$.
- 8. Постройте сводимость DHAMPATH к SAT.
- **9.** Докажите **NP**-полноту языку LPATH = $\{(G, k) \mid$ в неориентированном графе G есть простой путь длины $k\}$.
- **10.** Приведите три языка A,B,C, такие что $A\subset B\subset C,$ и при этом $B\in \mathbf{P},$ но A и $C-\mathbf{NP}$ -полные.
- **11.** Докажите, что если $\mathbf{P} = \mathbf{NP}$, то задача поиска выполняющего набора (или доказательства его отсутствия) у произвольной формулы φ разрешима за $\operatorname{poly}(|\varphi|)$.
- **12.** Язык L называется унарным, если $L \subset \{1\}^*$. Докажите, что если $L \mathbf{NP}$ -трудный унарный язык, то $\mathbf{P} = \mathbf{NP}$.
- **13.** По аналогии с **NP**-полнотой определите **coNP**-полноту. Докажите, что если $A \mathbf{NP}$ -полный, то $\overline{A} \mathbf{coNP}$ -полный. Выведите отсюда **coNP**-полноту языка TAUT = $\{\varphi \mid$ пропозициональная формула φ является тавтологией $\}$.

- 1. Если какая-то переменная содержится только без отрицаний или только с отрицаниями, её значение можно выставить однозначно. Иначе считаем, что каждая переменная входит дважды: один раз с отрицанием, один раз без отрицания. Создадим граф, вершины которого соответствуют оставшимся скобкам, а рёбра соединяют скобки, в которых есть противоположные литералы $(p \text{ и } \neg p)$. Каждое ребро позволяет выполнить любой из своих концов. Тогда выполнимость формулы равносильна существованию такой ориентации всех рёбер построенного графа, что у каждой вершины исходящая степень не равна нулю. В свою очередь, последнее условие равносильно отсутствию древесных компонент связности в графе.
- **2.** Сведите **3SAT** к INDSET. Каждой скобке сопоставьте треугольник, помеченный литералами. Соедините рёбрами противоположные литералы. Заметьте, что это сведение обеспечивает и сведение к случаю $\alpha(G) = \frac{1}{3} |V(G)|$.
- **3.** Сведите INDSET к CLIQUE. Для получения большой клики нужно либо укрупнить имеющуюся (если она недостаточно большая), либо ввести новые изолированные вершины (если исходная клика была слишком большой).
- 4. Сведите INDSET к VERTEXCOVER.
- **5.** Рассмотрим такое сведение **3SAT** к **INDSET**: для каждой переменной p введём гантель p, $\neg p$, для каждой скобки введём треугольник, соединим вершины треугольника с противоположными литералами внутри гантелей. Просим найти независимо множество размера n+m (по одной вершине в гантели и по одной в треугольнике).

Теперь, чтобы уменьшить степени вершин, вместо гантели возьмём длинный цикл, на которой будут чередоваться p и $\neg p$. Первая пара вершин будет соответствовать первой скобке, вторая — второй, и так далее. Тогда все степени будут не больше 3.

- 6. Сведите VERTEXCOVER к обоим языкам.
- 7. Сведите 3SAT к EXACTTWO3SAT: преобразуйте скобку $(a \lor b \lor c)$ в $(a \lor z_1 \lor z_2) \land (b \lor z_3 \lor z_4) \land (c \lor z_5 \lor z_6) \land (z_1 \lor z_3 \lor z_5)$.
- 8. Для i-й вершины и числа j введите переменную, отвечающую за то, что i-я вершина имеет номер j в гамильтоновом пути.
- 9. UHAMPATH можно свести к LPATH.
- **10.** Может помочь взятие языков по типу $\{(a,x) \mid x \in B\}$ для произвольного языка B.
- **11.** Ищем выполняющий набор φ . Фиксируем $x_1 = 0$ или $x_1 = 1$, затем проверяем выполнимость оставшейся формулы за полином. Если хотя бы одна выполнима, можно спуститься только в эту ветку.
- 12. Пусть g сводящая функция от SAT к L. Выполнимость φ равносильна выполнимости $\varphi|_{x_j=0} \lor \varphi|_{x_j=1}$. Если $g(\varphi|_{x_j=0}) = g(\varphi|_{x_j=1})$, то эти подформулы эквиваленты по выполнимости, а потому одну из них можно удалить из дизъюнкции. Таким образом, фиксируя по одной переменной каждый раз, а затем удаляя формулы с дублирующимся значением g, можно свести вопрос о выполнимости φ к вопросу о выполнимости дизъюнкции полиномиального числа формул вида $\varphi|_{x_1=\alpha_1,\ldots,x_n=\alpha_n}$, где все переменные фиксированы.
- **13.** Если f сводит B к A, то она же сводит \overline{B} к \overline{A} . Отсюда следует **coNP**-полнота языка $\overline{\mathsf{SAT}} = \{ \varphi \mid \text{пропозициональная формула } \varphi \text{ невыполнима} \}$. Наконец, $\overline{\mathsf{SAT}}$ можно свести с TAUT.