计量经济学-作业4-邹检验&双对数

P107 美国鸡肉需求函数是否存在结构变化

根据表6-2的数据,检验美国鸡肉需求函数是否存在结构变化? 表中Y是鸡肉消费量,PC是鸡肉价格,PB是牛肉价格,YD是人均可支配收入。

探究过程

Step 1: 导入数据

首先,我们将数据导入excel

数据导入excel

然后,将excel数据导入eviews中,可以看到我们一个导入了29个样本数据

导入数据到eviews

Step 2: 寻找断点

接下来,对数据分布进行查看,我们使用"散点图"来查看鸡肉消费量的分布趋势

- 。 左图为鸡肉消费占人均消费比例 PC/YD 与鸡肉消费量 Y 散点图
 - 本图通过命令 "SCAT (PC/YD) Y" 进行绘制
 - 可以看到图中明显分割为两段趋势
- 右图不同年份鸡肉和牛肉消费量占比
 - 本图通过命令 "plot (pc/yd) (pb/yd)" 进行绘制
 - 可以看到在1993年牛肉消费超过鸡肉并在此后一直保持超越
 - 且在1993年鸡肉消费量严重下滑

本页剩余部分无法展示完整截图,请见下一页

鸡肉消费占人均消费比例与鸡肉消费量散点图

不同年份鸡肉和牛肉消费量占比

因此,我们从分布图可以暂时得出结论——在1993年可能存在一个断点。

Step 3:给出假设和约束方程

那么我们即把回归方程

$$Y_t = \alpha_0 + \alpha_1 P C_t + \alpha_2 P B_t + \alpha_3 Y D_t + \epsilon_t$$
 $N = 29$

拆分为两个不同的阶段

1974-1992: $Y_t = \beta_0 + \beta_1 P C_t + \beta_2 P B_t + \beta_3 Y D_t + \epsilon_{1t}$ N = 19

1993-2002: $Y_t = \lambda_0 + \lambda_1 P C_t + \lambda_2 P B_t + \lambda_3 Y D_t + \epsilon_{2t}$ N = 10

也即是有——

约束方程:

$$Y_t = \alpha_0 + \alpha_1 P C_t + \alpha_2 P B_t + \alpha_3 Y D_t + \epsilon_t \qquad N = 29$$

无约束方程:

1974-1992: $Y_t = \beta_0 + \beta_1 P C_t + \beta_2 P B_t + \beta_3 Y D_t + \epsilon_{1t}$ N = 19

1993-2002: $Y_t = \lambda_0 + \lambda_1 P C_t + \lambda_2 P B_t + \lambda_3 Y D_t + \epsilon_{2t}$ N = 10

如果美国鸡肉需求函数不存在结构变化,那么

$$\begin{cases} \alpha_0 = \beta_0 = \lambda_0 \\ \alpha_1 = \beta_1 = \lambda_1 \\ \alpha_2 = \beta_2 = \lambda_2 \\ \alpha_3 = \beta_3 = \lambda_3 \end{cases}$$

一定同时成立

即做出假设

 $H_0: \alpha_0 = \beta_0 = \lambda_0 \stackrel{\square}{=} \alpha_1 = \beta_1 = \lambda_1 \stackrel{\square}{=} \alpha_2 = \beta_2 = \lambda_2 \stackrel{\square}{=} \alpha_3 = \beta_3 = \lambda_3$

 $H_A:$ 上述条件不成立

考虑使用F检验

$$F = rac{(RSS_R - RSS_{UR}/J)}{RSS_{UR}/(n-k)}$$

J 是受约束的个数

值得说明的是,这里的 RSS_{UR} 是两个无约束方程的无约束残差平方的和

Step 4: 进行拟合和检验

在Eviews中输入"LSYCPCPBYD"进行拟合回归

随后, 为拟合过程打上断点

可以得到以下结果——

结果解释

- F-statistic 是用于判断线性回归模型整体拟合程度的统计量。在这里,F-statistic的值为 5.825072。
- Prob. F(4,21) 是检验F-statistic的显著性水平,即基于给定自由度下的概率。在这里,Prob. F(4,21)的值为0.0026。

可以看到,我们的p值很小,远远低于显著性水平5%,所以可以认为1993年是一个显著的断点。因此 拒绝原假设 H_0

得出结论

- 美国鸡肉需求函数存在结构性变化
- 变化的断点在1993年

P133 习题7

本页剩余部分无法展示完整题目截图,请见下一页

7 V. N. Murti 和 V. K. Sastri \odot 调查了印度不同行业的生产特点,包括棉花和糖。他们选择了 Cobb-Douglas 生产函数,也就是一种双对数函数形式,用以表示产出 (Q)、劳动 (L) 和资本 (K) 之间的关系:

$$\ln Q_i = \beta_0 + \beta_1 \ln L_i + \beta_2 \ln K_i + \varepsilon_i$$

并得到如下的估计结果 (括号内的数值为标准差):

行业	$\hat{oldsymbol{eta}}_0$	$\hat{oldsymbol{eta}}_1$	$\hat{oldsymbol{eta}}_2$	\mathbb{R}^2	
棉花	0.97	0.92	0.12	0. 98	
糖	2.70	0.59	0.33	0.80	
		(0.14)	(0.17)		

- a. 对于每个行业而言,产出对劳动和资本的弹性分别是多少?
- b. $(\hat{\beta}_1 + \hat{\beta}_2)$ 有什么经济学意义?
- c. Murti 和 Sastri 认为斜率是正的。在 5%的显著水平下,进行假设检验。(提示:这比看上去难多了!)

回答

- a. 弹性是衡量经济变量之间关系(一般是需求和供给之间的变化关系)的度量标准,由于方程的 两个变量(劳动和资本)对数的**,弹性系数本身就是系数**
 - 对于棉花产业:
 - 产出对劳动的弹性为0.92
 - 产出对资本的弹性为0.12
 - 对于糖产业:
 - 产出对劳动的弹性为0.59
 - 产出对资本的弹性为0.33
- b. $\hat{\beta}_1 + \hat{\beta}_2$ 是衡量产量的增加与各种生产要素增加的比例,即用于**估计规模收益的增加、减少或**者不变。

当总和等于1时,表示增加所有生产要素的数量会导致产出按相同的比例增加。换句话说,如果生产要素的数量翻倍,产出也会翻倍;如果生产要素的数量增加一倍,产出也会增加一倍。

- 在本例中,棉花的规模报酬在增加(因为 $\hat{eta}_{1C} + \hat{eta}_{2C} = 1.04 > 1$)
- 而糖的规模报酬却在减少(因为 $\hat{eta}_{1S} + \hat{eta}_{2S} = 0.92 < 1$)。
- c. 根据相关文献,样本数据中糖的数据为26个。

本页剩余部分无法展示文献完整截图,请见下一页

	1951								
Industry	No. of firms	Con- stant term	Exponent of labour α'_1	Exponent of capital α_2'	Multiple correlation coefficient	Ratio of salaries & wages to value of net output	Ratio of capital to value of net output		
Cotton	125	0.97	0.92 (0.03)	0.12 (0.04)	0.98	0.63	1.95		
Jute	43	1.67	0.84 (0.12)	0.14 (0.17)	0.91	0.60	2.14		
Sugar	26	2.70	0.59 (0.14)	0.33 (0.17)	0.80	0.30	2.67		
Coal	26	0.31	0.71 (0.06)	0.44 (0.08)	0.99	0.57	1.57		

- i. 对于待检验的参数 β_1 、 β_2 我们做出如下假设: $H_0: \beta \leq 0$ $H_A: \beta > 0$,在显著性水平 5%且自由度为 n-k-1=26-2-1=23 的条件下, $t_c=1.714$
- ii. $\hat{eta_1}=0.59$,那么 $t_1=\dfrac{0.59-0}{0.14}=4.214$,可知 |4.214|>1.714 即 $|t_1|>t_c$,且其预期符号和对立假设相同(均为正数,因为劳动增加一般来讲产出也会增加),因此对于 eta_1 可以拒绝 H_0
- iii. $\hat{eta}_2=0.33$,那么 $t_2=\frac{0.33-0}{0.17}=1.941$,可知 |1.941|>1.714 即 $|t_2|>t_c$,且其预期符号和对立假设相同(均为正数,因为资本增加一般来讲产出也会增加),因此对于 eta_2 可以拒绝 H_0