Primal

max $7 = 3x_1 + 4x_2$ $x_1 + x_2 \le 12$ $2x_1 + 3x_2 \le 21$ $x_1 \le 8$ $x_1 \le 6$ $x_2 \le 6$

31, N2 70

Dual

min $w = 12 J_1 + 21 J_2 + 8 J_3 + 674$ 8.t. $J_1 + 2 J_2 + J_3$ J_3 $J_1 + 3 J_2$ J_4 J_4 J_4 J_5 J_7 J_7 J_1, J_2, J_3, J_4 J_7 J_7

Simplin: Poimal

introduce slack variables 13, My, x5, 76 respectively. 0,0,0, and (9) ā 95 ay o peration a_1 23 ratio 12/1 = 12 0 مع O 0 X 3 12 Ø 11/3=7 3 24/21 0 0 O ١ 0 X 5 8/0 Q 8 Ű O ١ 25 0 0 6/1 = 6 الآ 0 ٥ 0 \circ Q 0 R1=R1-R4 41=6 \bigcirc G χ_{3} 8/L=1.5 Rz=Rz-3Ry \bigcirc ×4/3 2 0 ay 8/1=8 Roy = Roy Û ථ 25 8 9 0 6/0 - --Ry=Ry 1/2 0 0 R/=R1-R2 1/2 94/1/2=9 1/2 9/2 6 13 W 13/2/5/2 37 1/2 Rg = R3-Re 9, 3/2 χ_{l} 3 -1/2 13/21 95/25 Ò 6/1= 0 -125 3/2 R1 = R1-18 Ó \odot P{=Rzt3g ×3/1/3 O O ೦ 0 71/8 0 0 RM=R435 ۹ χ 13/3 0 71 - 8, 71= 5/3 and Z = 92

For the dual problem, the obtimal solution corresponds to zj-sj of the eclumns of the vectors az, ay, az, and a that are the vectors corresponding to the slack variables are

 $\frac{y_1 = 0}{y_2} = \frac{y_3}{3}, \quad \frac{y_3 = \frac{1}{3}}{3} \text{ and } y_4 = 0$ $\mathcal{W} = \left(\frac{92}{3}\right)$

Simplex-Dual

Dual. Standard form.

max $W' = -12 y_1 - 21 y_2 - 8 y_3 - 6 y_4 + 0 y_5 + 0 y_6$ $8 \cdot 4 \cdot y_1 + 2 y_2 + y_3 - y_5 = 3^{1}$ $y_1 + 3 y_2 + y_4 - y_6 = 4$ $y_1, y_2, y_3, y_4, y_5, y_6 > 0$

, _, _,	_
Cj -12 -21 -8 -6 0 0 0 m	in ratio Oberoation
CB 1 1 2 1 0 -1 0 3/2	=1.5
-6 ay yy 4 1 3 0 1 0 -1 19/3	3= 1.33
2j-Cj -21-131 0 0 8 6 1 2j-Cj -21-12/3	R =R1-2.R1
-8/as/73/3/3/	21 - R2/e
-21 Q2 /2 4/3 1/3 1 0 1/3 0 -1/3	12-73
2j-(j 7/3) 00 18/3 8 5/3	9 N = 1 7 N = 0

all 2j-(57,0) (without is 2j = 6, 3z = 3z, 3z = 3z, 3y = 0 optimal solution is 2j = 2z so 2z = 3z =

Jmin Z= 7,-72 W s.t. 2x1+22/2 ... 1 21, 72 7, C. solve the dual and show the nature of the solution to the primal. Solution Dual: max w = 24,+82 s.t. 27,-72 =1 81-32 <-1 y, 727,0 y, slack in W yu, ys surphus, and antifrial -7, +72 / 1

Hence from Jual table we see that the solution is unbounded

This implies, primal has no feasible salution.