
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=10; day=29; hr=14; min=2; sec=36; ms=339;]

Reviewer Comments:

<210> 3

<211> 6

<212> PRT

<213> artificial

<220>

<223> distinctive fragment

<400> 3

Ile Ala Arg Ile Ile Gly
1

The above <223> response is an insufficient explanation for "Artificial Sequence": please give more information regarding the source of the "distinctive fragment." Same type of insufficient explanations in Sequences 4-11.

Validated By CRFValidator v 1.0.3

Application No: 10578493 Version No: 3.0

Input Set:

Output Set:

Started: 2008-09-29 16:55:12.825 **Finished:** 2008-09-29 16:55:14.100

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 275 ms

Total Warnings: 32
Total Errors: 0

No. of SeqIDs Defined: 36

Actual SeqID Count: 36

Error code		Error Description	on								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)

Input Set:

Output Set:

Started: 2008-09-29 16:55:12.825

Finished: 2008-09-29 16:55:14.100

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 275 ms

Total Warnings: 32

Total Errors: 0

No. of SeqIDs Defined: 36

Actual SeqID Count: 36

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	Desi	re, Lauren	t									
<120>		2455, AN AL A-SECRETASE	TERNATIVE SI	PLICE VARIAÌ	NT OF THE HI	JMAN						
<130>	6798	37.000002										
<140>	1057	78493										
<141>	2006	5-05-05										
<150>	PCT/	'IB2004/003	897									
<151>		I-11-05	0,0									
	60/517,401											
<151>	2003	3-11-03										
<160>	36											
<170>	Pate	entIn versi	on 3.5									
<210>	1											
<211>	1368	3										
<212>	DNA											
<213>	Homo	sapiens										
<400>	1											
atggccc	caag	ccctgccctg	gctcctgctg	tggatgggcg	cgggagtgct	gcctgcccac	60					
ggcacco	cagc	acggcatccg	gctgcccctg	cgcagcggcc	tggggggcgc	cccctgggg	120					
ctgcggc	ctgc	cccgggagac	cgacgaagag	cccgaggagc	ccggccggag	gggcagcttt	180					
gtggaga	atgg	tggacaacct	gaggggcaag	tcggggcagg	gctactacgt	ggagatgacc	240					
gtgggca	agcc	ccccgcagac	gctcaacatc	ctggtggata	caggcagcag	taactttgca	300					
gtgggto	gctg	cccccaccc	cttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360					
taccggo	gacc	tccggaaggg	tgtgtatgtg	ccctacaccc	agggcaagtg	ggaaggggag	420					
ctgggca	accg	acctggtaag	catcccccat	ggccccaacg	tcactgtgcg	tgccaacatt	480					
gctgcca	atca	ctgaatcaga	caagttcttc	atcaacggct	ccaactggga	aggcatcctg	540					
gggctgc	gaat	atgctgagat	tgccaggatc	attggaggta	tcgaccactc	gctgtacaca	600					
ggcagtc	ctct	ggtatacacc	catccggcgg	gagtggtatt	atgaggtcat	cattgtgcgg	660					
gtggaga	atca	atggacagga	tctgaaaatg	gactgcaagg	agtacaacta	tgacaagagc	720					
attgtgg	gaca	gtggcaccac	caaccttcgt	ttgcccaaga	aagtgtttga	agctgcagtc	780					

aaatccatca aggcagcctc ctccacggag aagttccctg atggtttctg gctaggagag

840

cagctggtgt	gctggcaagc	aggcaccacc	ccttggaaca	ttttcccagt	catctcactc	900
tacctaatgg	gtgaggttac	caaccagtcc	ttccgcatca	ccatccttcc	gcagcaatac	960
ctgcggccag	tggaagatgt	ggccacgtcc	caagacgact	gttacaagtt	tgccatctca	1020
cagtcatcca	cgggcactgt	tatgggagct	gttatcatgg	agggcttcta	cgttgtcttt	1080
gatcgggccc	gaaaacgaat	tggctttgct	gtcagcgctt	gccatgtgca	cgatgagttc	1140
aggacggcag	cggtggaagg	cccttttgtc	accttggaca	tggaagactg	tggctacaac	1200
attccacaga	cagatgagtc	aaccctcatg	accatagcct	atgtcatggc	tgccatctgc	1260
gccctcttca	tgctgccact	ctgcctcatg	gtgtgtcagt	ggcgctgcct	ccgctgcctg	1320
cgccagcagc	atgatgactt	tgctgatgac	atctccctgc	tgaagtga		1368

<210> 2

<211> 455

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr	Val 130	Pro	Tyr	Thr	Gln	Gly 135	Lys	Trp	Glu	Gly	Glu 140	Leu	Gly	Thr	Asp
Leu 145	Val	Ser	Ile	Pro	His 150	Gly	Pro	Asn	Val	Thr 155	Val	Arg	Ala	Asn	Ile 160
Ala	Ala	Ile	Thr	Glu 165	Ser	Asp	Lys	Phe	Phe 170	Ile	Asn	Gly	Ser	Asn 175	Trp
Glu	Gly	Ile	Leu 180	Gly	Leu	Ala	Tyr	Ala 185	Glu	Ile	Ala	Arg	Ile 190	Ile	Gly
Gly	Ile	Asp 195	His	Ser	Leu	Tyr	Thr 200	Gly	Ser	Leu	Trp	Tyr 205	Thr	Pro	Ile
Arg	Arg 210	Glu	Trp	Tyr	Tyr	Glu 215	Val	Ile	Ile	Val	Arg 220	Val	Glu	Ile	Asn
Gly 225	Gln	Asp	Leu	Lys	Met 230	Asp	Суз	Lys	Glu	Tyr 235	Asn	Tyr	Asp	Lys	Ser 240
Ile	Val	Asp	Ser	Gly 245	Thr	Thr	Asn	Leu	Arg 250	Leu	Pro	Lys	Lys	Val 255	Phe
Glu	Ala	Ala	Val 260	Lys	Ser	Ile	Lys	Ala 265	Ala	Ser	Ser	Thr	Glu 270	Lys	Phe
Pro	Asp	Gly 275	Phe	Trp	Leu	Gly	Glu 280	Gln	Leu	Val	Cys	Trp 285	Gln	Ala	Gly
Thr	Thr 290	Pro	Trp	Asn	Ile	Phe 295	Pro	Val	Ile	Ser	Leu 300	Tyr	Leu	Met	Gly
Glu 305	Val	Thr	Asn	Gln	310	Phe	Arg	Ile	Thr	Ile 315	Leu	Pro	Gln	Gln	Tyr 320
Leu	Arg	Pro	Val	Glu 325	Asp	Val	Ala	Thr	330	Gln	Asp	Asp	Cys	Tyr 335	Lys
Phe	Ala	Ile	Ser 340	Gln	Ser	Ser	Thr	Gly 345	Thr	Val	Met	Gly	Ala 350	Val	Ile

Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly 355 360 365 Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala 370 375 380 Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn 390 395 400 Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met 405 410 Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys 420 425 430 Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala 440 435 445 Asp Asp Ile Ser Leu Leu Lys 450 455 <210> 3 <211> 6 <212> PRT <213> artificial <220> <223> distinctive fragment <400> 3 Ile Ala Arg Ile Ile Gly <210> 4 <211> 7 <212> PRT <213> artificial

<210> 4
<211> 7
<212> PRT
<213> artificial
<220>
<223> distinctive fragment
<400> 4

Glu Ile Ala Arg Ile Ile Gly
1 5

```
<211> 8
<212> PRT
<213> artificial
<220>
<223> distinctive fragment
<400> 5
Glu Ile Ala Arg Ile Ile Gly Gly
<210> 6
<211> 8
<212> PRT
<213> artificial
<220>
<223> distinctive fragment
<400> 6
Ala Glu Ile Ala Arg Ile Ile Gly
<210> 7
<211> 9
<212> PRT
<213> artificial
<220>
<223> AEIARIIGG
<400> 7
Ala Glu Ile Ala Arg Ile Ile Gly Gly
<210> 8
<211> 10
<212> PRT
<213> artificial
<220>
<223> distinctive fragment
<400> 8
Ala Glu Ile Ala Arg Ile Ile Gly Gly Ile
<210> 9
```

<211> 9

```
<213> artificial
<220>
<223> distinctive fragment
<400> 9
Tyr Ala Glu Ile Ala Arg Ile Ile Gly
<210> 10
<211> 10
<212> PRT
<213> artificial
<220>
<223> distinctive fragment
<400> 10
Tyr Ala Glu Ile Ala Arg Ile Ile Gly Gly
<210> 11
<211> 11
<212> PRT
<213> artificial
<220>
<223> distinctive fragment
<400> 11
Tyr Ala Glu Ile Ala Arg Ile Ile Gly Gly Ile
    5
                          10
<210> 12
<211> 18
<212> DNA
<213> artificial
<220>
<223> probe
<400> 12
attgccagga tcattgga
                                                                   18
<210> 13
<211> 10
<212> DNA
<213> artificial
```

<212> PRT

```
<220>
<223> primer
<400> 13
                                                                     10
aggcatcctg
<210> 14
<211> 10
<212> DNA
<213> artificial
<220>
<223> primer
<400> 14
                                                                     10
gggctggcct
<210> 15
<211> 10
<212> DNA
<213> artificial
<220>
<223> primer
<400> 15
atgctgagat
                                                                     10
<210> 16
<211> 6
<212> DNA
<213> artificial
<220>
<223> primer
<400> 16
tgccag
                                                                      6
<210> 17
<211> 6
<212> DNA
<213> artificial
<220>
<223> primer
<400> 17
                                                                      6
gatcat
<210> 18
```

<211> 10

```
<212> DNA
<213> artificial
<220>
<223> primer
<400> 18
                                                                     10
tggaggtatc
<210> 19
<211> 10
<212> DNA
<213> artificial
<220>
<223> primer
<400> 19
gaccactcgc
                                                                     10
<210> 20
<211> 10
<212> DNA
<213> artificial
<220>
<223> primer
<400> 20
                                                                     10
tgtacacagg
<210> 21
<211> 10
<212> DNA
<213> artificial
<220>
<223> primer
<400> 21
                                                                     10
cagtctctgg
<210> 22
<211> 6
<212> DNA
<213> artificial
<220>
<223> primer
<400> 22
```

6

caggat

```
<210> 23
<211> 8
<212> DNA
<213> artificial
<220>
<223> primer
<400> 23
                                                                      8
ccaggatc
<210> 24
<211> 10
<212> DNA
<213> artificial
<220>
<223> primer
<400> 24
                                                                     10
gccaggatca
<210> 25
<211> 18
<212> DNA
<213> artificial
<220>
<223> primer
<400> 25
attgccagga tcattgga
                                                                     18
<210> 26
<211> 21
<212> DNA
<213> artificial
<220>
<223> primer
<400> 26
                                                                     21
tgactgggaa caccccataa c
<210> 27
<211> 19
<212> DNA
<213> artificial
<220>
```

<223> primer

```
19
agttgtgcat gggagcgag
<210> 28
<211> 19
<212> DNA
<213> artificial
<220>
<223> primer
<400> 28
cccgcagacg ctcaacatc
                                                                      19
<210> 29
<211> 21
<212> DNA
<213> artificial
<220>
<223> primer
<400> 29
cagcgagtgg tcgatacctc c
                                                                      21
<210> 30
<211> 24
<212> DNA
<213> artificial
<220>
<223> primer
<400> 30
                                                                      24
gcggatccac catggcccaa gccc
<210> 31
<211> 33
<212> DNA
<213> artificial
<220>
<223> primer
<400> 31
                                                                      33
ggggaattca cttcagcagg gagatgtcat cag
<210> 32
<211> 10
<212> PRT
```

<400> 27

<213> artificial

```
<220>
<223> fluorogenic App-based peptide MCA
<400> 32
Ser Glu Val Asn Leu Asp Ala Glu Phe Lys
              5
<210> 33
<211> 9
<212> PRT
<213> artificial
<220>
<223> BACE inhibitor III
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is statine
<400> 33
His Glu Val Asn Xaa Val Ala Glu Phe
<210> 34
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> beta-secretase cleavage site in APP
<400> 34
Glu Val Lys Met Asp Ala Glu
<210> 35
<211> 8
<212> PRT
<213> Homo sapiens
<400> 35
Leu Val Asn Met Ala Glu Gly Asp
<210> 36
<211> 501
<212> PRT
```

<400> 36

Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Cys Ala Gly Phe Pro Leu Asn Gln

210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 225 230 235 240 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 250 Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 260 265 Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 275 280 285 Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 290 295 300 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp 305 310 315 320 Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 325 330 335 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 345 350 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 360 355 365 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 370 375 380 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 390 395 400 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 405 410 415 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 425 420

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro

445

440

435

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala 450 455 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp 465 470 470 480

Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp 485 490 495

Ile Ser Leu Leu Lys 500