Satisfiable Tseitin formulas are hard for nondeterministic read-once branching programs

Ludmila Glinskih, Dmitry Itsykson

St.Petersburg Department of V.A.Steklov Institute of Mathematics

Estonian-Latvian Theory Days 2017 Tartu November 24, 2017

Outline

- Branching programs
- ► Tseitin formulas
- Lower bounds

Branching program

- ▶ BP is the way to represent Boolean function
 - directed graph without cycles;
 - two sinks: labeled with 0 and 1, one root;
 - every internal vertex labeled with a variable and has two outgoing edges: labeled with 0 and 1;
 - the value of function equals label of the sink in the end of corresponding path.
- BP size is between circuit and formula sizes
 - $C(f) \leq 3BP(f) \leq O(L^{1+\epsilon}(f)),$
 - C(f) circuit complexity of f, L(f) size of minimal formula, BP size of minimal branching program.

Non-deterministic Branching program

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals 1 iff there exists a path to 1-sink
- ▶ BP corresponds to L/poly
- NBP corresponds to NL/poly
- k-(N)BP if for every path every variable occurs no more than k times
- OBDD is 1-BP with fixed order for variables in every path

Known lower bounds for k-BPs

- ▶ (Borodin, Razborov, Smolensky, 1993) $CLIQUE_ONLY_n(G): \{0,1\}^{\frac{n\cdot(n-1)}{2}} \rightarrow 0.1$
 - ► CLIQUE_ONLY_n(G) = 1 iff graph G on n vertices is exactly $\frac{n}{2}$ -clique
 - ▶ 1-NBP($CLIQUE_ONLY_n$) = $2^{\Omega(n)}$
 - ▶ $2\text{-BP}(CLIQUE_ONLY_n) = poly(n)$
- (Borodin, Razborov, Smolensky, 1993) first strongly exponential lower bound
 - f artificially constructed function
 - ▶ 1-NBP $(f) = 2^{\Omega(n)}$
- ► (Thathachar, 1998) an explicit functions f_k for every k:
 - k-NBP $(f_k) = 2^{\Omega(n^{1/k})}$
 - $(k+1)-\mathsf{BP}(f_k) = O(n)$

Known lower bounds for k-BPs (2)

- ▶ (Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004)
 - \blacktriangleright \oplus parity of the number of triangles in a graph, $\overline{\triangle}$ is 1 iff graph has no triangles
 - ▶ 1-NBP(\oplus) = $2^{\Omega(n)}$
 - ▶ 1-NBP($\overline{\triangle}$) = $2^{\Omega(n)}$
- ▶ (Juhna, 1995)
 - $ightharpoonup f_k$ characteristic function of error-correcting codes
 - \blacktriangleright k-NBP $(f_k) = 2^{\Omega(\sqrt{n})}$

Tseitin formulas

- ▶ Tseitin $TS_{G,c}$ formula defined for a graph
 - every edge is labeled with a variable
 - every vertex has a 0-1 label: $c:V \rightarrow 0,1$
 - $ightharpoonup TS_{G,c}(x) = 1 \iff$

$$\bigwedge_{v \in V} \left(\sum_{e \text{ incident } v} x_e = c(v) \bmod 2 \right)$$

- ► A Tseitin formula is satisfiable iff for every connected component the sum of labels is even
- ► Unsatisfiable Tseitin formulas are classical hard examples for proof systems:
 - Resolution [Tseitin, 1968], [Urquhart, 1987]
 - ▶ Bounded depth Frege [Ben-Sasson, 2002], [Pitassi, Rossman, Servedio, Tan, 2016]
 - ▶ Polynomial Calculus over field with char != 2 [Alekhnovich, Razborov, 2001]
 - ► Tree-like Lovasz-Schrijver [Itsykson, Kojevnikov, 2006]

Tseitin formulas (2)

- (Itsykson, Knop, Romashchenko, Sokolov, 2017) Exponential lower bound for OBDD(join) proof systems for unsatisfiable Tseitin formulas
 - key step: satisfiable Tseitin formulas are hard for OBDDs.
 - $DBDD(TS_{G,c}) = 2^{\Omega(n)}$
- ▶ OBDD is a partial case of 1-BP
 - ► (Bryant, 1991) (Sieling, Wegener, 1995) $f: OBDD(f) = 2^{\Omega(n)}$, 1-BP(f)=poly(n)

The goal: what is the size of 1-BP for satisfiable Tseitin formulas?

Main Theorem

Lower bound for 1-NBP:

1-NBP for satisfiable Tseitin formula for (n, d, α) -expander is $2^{\Omega(n)}$, where

- $ightharpoonup \alpha < \frac{1}{3}$
- ▶ (n, d, α) -expander is a d-regular graph on n vertices with absolute value of the second largest eigenvalue $\leq d \cdot \alpha$

Corollary: The size 1-NBP for satisfiable Tseitin formula for complete graph is $2^{\Omega(n)}$

Upper bound: Tseitin formula for a graph with n vertices and m edges can be represented by OBDD of size $m \cdot 2^{O(n)}$

The comparison with other results

Satisfiable Tseitin formulas $TS_{G,w}$ on (n,d,α) -expander can be represented by:

$$\triangleright$$
 CNF($TS_{G,c}$)= $O(n)$

▶ 1-NBP(
$$\ TS_{G,c}$$
)= $O(n)$

$$\triangleright$$
 2-BP($TS_{G,c}$)= $O(n)$

► 1-NBP($TS_{G,c}$)= $2^{\Omega(n)}$

Best previously known gaps:

$CNF(f)=O(n^3)$	$1-NBP(f)=2^{\Omega(n)}$ (Duris et al, 2004)
$1-NBP(\rceil f)=O(n)$	$1-NBP(f)=2^{\Omega(\sqrt{n})}$ (Juhna, 2009) ex-
	plicit construction
$1-NBP(\rceil f)=O(n)$	$1-NBP(f)=2^{\Omega(n)}$ (Duris et al, 2004)
	probabilistic construction
2-BP(f) = O(n)	1-NBP(f)= $2^{\Omega(\sqrt{n})}$ (Thathachar, 1998)

Plan of the proof

Theorem: 1-NBP for satisfiable Tseitin formula for

 $(\textit{n},\textit{d},\alpha)$ -expander is $2^{\Omega(\textit{n})}$, where $\alpha<\frac{1}{3}$

Note: proof for deterministic case

Plan of the proof:

Choose level / of the 1-BP

- ▶ show that there are at least $2^{C_1 n}$ non-zero paths to level I
- Show that for every node v on the I-th lever only 2^{C2n} non-zero paths go from source to the node v

Get that at least $2^{(C_1-C_2)n}$ different nodes are on the *I*-th level, so is in the 1-BP

Technical lemma

Lemma: Let G(V, E) be a graph with k connected components. If the Tseitin formula $TS_{G,c}$ is satisfiable, then the number of its satisfying assignments equals $2^{|E|-|V|+k}$.

Proof:

- fix a spanning forest T of G: it has |V| k edges
- ▶ choose arbitrary assignment for all variables on edges of $G \setminus T$: |E| |V| + k edges
- ▶ the values of T can be determined unambiguously to satisfy formula

Lower bounds for number of all paths

Lemma: Let k be the maximum number of connected components that can be obtained after deleting of l edges from G, then there are at least $2^{l-(k-1)}$ non-zero paths of length l

- **b** by the technical lemma we have at least $2^{|E|-|V|+1}$ satisfying assignments
- ▶ if we assign / values corresponding to non-zero path we get satisfiable Tseitin formula on G' with:
 - at most k connected components
 - ▶ at most $2^{|E|-|V|-l+k}$ satisfying assignments
- ▶ hence we need at least $\frac{2^{|E|-|V|+1}}{2^{|E|-|V|-l+k}} = 2^{l-(k-1)}$ different non-zero paths to reach level l of 1-BP.

Lemma: In (n, d, α) -expander parameter $k \leq \frac{2l}{d(1-\alpha)} + 1$, if $l \leq \frac{1}{4}n$

Upper bound for the number of paths to the fixed vertex

Lemma: For every node v there are at most 2^{l-t} different non-zero paths of length l to this node, where t is the number of edges in the spanning forest of graph that obtained from G by deleting all edges except l

- ▶ if two paths go to one node, then they have similar set S of tested variables
- assignment, that corresponds to a path, is a satisfying assignment of a Tseitin formula that is defined on a graph on edges from S
- ▶ this Tseitin formula has no more than 2^{l-t} satisfying assignments

Lemma: In (n, d, α) -expander parameter t for level l can be bounded with $\frac{l}{d(\alpha+\beta)}$, where $l \leq \beta n - 1$

Result

- we showed that there are at least $2^{l \cdot (1 \frac{2}{d(1-\alpha)})}$ paths to the level l
- ▶ no more than $2^{l\cdot(1-\frac{1}{d(\alpha+\beta)})}$ paths meet in one node
- ▶ from these we get that there are at least $2^{\frac{1}{d}\cdot(\frac{1}{\alpha+\beta}-\frac{2}{1-\alpha})}$ nodes on level I
- ▶ if $\beta < \frac{1-3\alpha}{2}$ we get $2^{\Omega(n)}$ nodes in 1-BP

Open question

Prove non-trivial lower bound for semantic 1-NBP

- only consistent paths should contain every variable no more than once
- that means that all paths that consist repeated variable should not be reachable by any assignment

No exponential lower bounds for semantic 1-NBP for a boolean function

All known results with exponential lower bounds are for functions with non-boolean domain [Cook, Edmonds, Medabalimi, Pitassi, 2016], [Jukna, 2009]