高等代数II

第5次讨论班

2023年4月4日

本次讲义注重课本知识的理解与应用.

问题 1. 叙述线性空间上线性变换不变子空间的定义, 并证明下列命题

- 1. 设 V 是数域 \mathbb{F} 上的线性空间, σ 是 V 的线性变换, 若 W_1 , W_2 是 σ 的不变子空间, 证明: $W_1 + W_2$, $W_1 \cap W_2$ 也是 σ 的不变子空间.
- 2. 设 V 是数域 \mathbb{F} 上的线性空间, σ , τ 是 V 的线性变换, $a \in \mathbb{F}$, 若 W 是 σ , τ 的不变子空间, 证明: W 也是 $a\sigma$, $\sigma\tau$, $\sigma+\tau$ 的不变子空间.

问题 2. 假设 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_s$, 其中 V_i 均为 σ 的不变子空间, 且在 V_i 的基底 $\boldsymbol{u}_{i1}, \ldots, \boldsymbol{in_i}$ 下, 有 $\sigma|_{V_i}$ 对应于 \boldsymbol{A}_i , $i = 1, 2, \ldots, s$. 那么, 在 V 的基底

$$u_{11},\ldots,u_{1n_1},u_{21},\ldots,u_{2n_2},u_{s1},\ldots,u_{s1},\ldots,u_{sn_s}$$

下, 有 σ 对应于

$$egin{pmatrix} m{A}_1 & & m{0} \ & \ddots & \ m{0} & & m{A}_s \end{pmatrix}$$
 其中 $m{A}_i$ 是 n_i 阶矩阵.

问题 3. 证明: W 是线性变换 σ 的一维不变子空间当且仅当 W 是由 σ 的一个特征向量张成的子空间.

问题 4. 证明空间为不变子空间

- 1. 设 V 是数域 \mathbb{F} 上的线性空间, σ 是 V 上的线性变换, W 是 σ 的不变子空间, $f(x) \in \mathbb{F}[x]$, 证明: W 是 $f(\sigma)$ 的不变子空间.
- 2. 设 V 是数域 \mathbb{F} 上的线性空间, σ 是 V 上的线性变换, f(x), $g(x) \in \mathbb{F}[x]$, 证明: $\ker f(\sigma)$ 与 $f(\sigma)(V)$ 都是 $g(\sigma)$ 的不变子空间.

问题 5. 设 V 是数域 \mathbb{F} 上的线性空间, σ , τ 都是 V 的线性变换, 若 $\sigma\tau = \tau\sigma$, 证明: σ 的属于特征值 λ_0 的特征子空间是 τ 的不变子空间. (此结论涉及对角化问题, 详情见补充讲义)

问题 6. 叙述循环子空间分解的内容与思路.

问题 7. 证明: Jordan 型矩阵 J 中以 λ 为对角元的 k 阶 Jordan 块的个数为

$$\operatorname{rank} \left(\boldsymbol{J} - \lambda \boldsymbol{I}\right)^{k-1} + \operatorname{rank} \left(\boldsymbol{J} - \lambda \boldsymbol{I}\right)^{k+1} - 2\operatorname{rank} \left(\boldsymbol{J} - \lambda \boldsymbol{I}\right)^{k}$$

问题 8. 设 V 是复数域 \mathbb{C} 上的有限维线性空间, σ 是 V 的线性变换, W 是 σ 的非零不变子空间. 证明: W 不能分解成两个非零不变子空间的直和当且仅当 W 为 σ 的不变子空间.