# Logic and Set Theory

January 29, 2018

| C0       | ONTENTS                     | 2  |
|----------|-----------------------------|----|
| Contents |                             |    |
| 0        | Miscellaneous               | 3  |
| 1        | Propositional logic         | 4  |
| 2        | Syntactic implication       | 6  |
| 3        | Well-Orderings and Ordinals | 10 |

3

## 0 Miscellaneous

Some introductory speech

## 1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated,  $P = \{p_1, p_2, ...\}$ .

**Definition.** The *language* or *set of propositions* L = L(P) is defined inductively by:

- (1)  $p \in L \ \forall p \in P$ ;
- (2)  $\perp \in L$ , where  $\perp$  is read as 'false';
- (3) If  $p, q \in L$ , then  $(p \implies q) \in L$ . For example,  $(p_1 \implies L)$ ,  $((p_1 \implies p_2) \implies (p_1 \implies p_3))$ .

Note that at this point, each proposition is only a finite string of symbols from the alphabet  $(,), \Longrightarrow, \bot, p_1, p_2, ...$  and do not really mean anything (until we define so).

By inductively define, we mean more precisely that we set  $L_1 = P \cup \{\bot\}$ , and  $L_{n+1} = L_n \cup \{(p \implies q) : p, q \in L_n\}$ , and then put  $L = L_1 \cup L_2 \cup ...$ 

Each proposition is built up *uniquely* from 1) and 2) using 3). For example,  $((p_1 \Longrightarrow p_2) \Longrightarrow (p_1 \Longrightarrow p_3))$  came from  $(p_1 \Longrightarrow p_2)$  and  $(p_1 \Longrightarrow p_3)$ . We often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

- $\neg p \pmod{p}$ , as an abbreviation for  $p \Longrightarrow \bot$ ;
- $p \lor q \ (p \text{ or } q)$ , as an abbreviation for  $(\neg p) \implies q$ ;
- $p \wedge q$  (p and q), as an abbreviation for  $\neg(p \implies (\neg q))$ .

These definitions 'make sense' in the way that we expect them to.

**Definition.** A valuation is a function  $v: L \to \{0, 1\}$  s.t. (1)  $v(\bot) = 0$ ; (2)

$$v(p \implies q) = \left\{ \begin{array}{ll} 0 & v(p) = 1, v(q) = 0 \\ 1 & else \end{array} \right. \forall p,q \in L$$

**Remark.** On  $\{0,1\}$ , we could define a constant  $\bot$  by  $\bot = 0$ , and an operation  $\Longrightarrow$  by  $a \Longrightarrow b = 0$  if a = 1, b = 0 and 1 otherwise. Then a valuation is a function  $L \to \{0,1\}$  that preserves the structure ( $\bot$  and  $\Longrightarrow$ ), i.e. a homomorphism.

**Proposition.** (1) If v, v' are valuations with  $v(p) = v'(p) \ \forall p \in P$ , then v = v' (on L).

(2) For any  $w: P \to \{0,1\}$ , there exists a valuation v with  $v(p) = w(p) \ \forall p \in P$ . In short, a valuation is defined by its value on p, and any values will do.

*Proof.* (1) We have  $v(p) = v'(p) \ \forall p \in L_1$ . However, if v(p) = v'(p) and v(q) = v'(q) then  $v(p \Longrightarrow q) = v'(p \Longrightarrow q)$ , so v = v' on  $L_2$ . Continue inductively we have v = v' on  $L_n \forall n$ .

(2) Set  $v(p) = w(p) \ \forall p \in P \ \text{and} \ v(\bot) = 0$ : this defines v on  $L_1$ . Having defined v on  $L_n$ , use the rules for valuation to inductively define v on  $L_{n+1}$  so we can extend v to L.

5

**Definition.** We say p is a tautology, written  $\vDash p$ , if  $v(p) = 1 \ \forall$  valuations v. Some examples:

(1)  $p \implies (q \implies p)$ : a true statement is implies by anything. We can verify this by:

So we see that this is indeed a tautology;

(2)  $(\neg \neg p) \implies p$ , i.e.  $((p \implies \bot) \implies p$ , called the "law of excluded middle";

(3)  $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)]$ . Indeed, if not then we have some v with  $v(p \Longrightarrow (q \Longrightarrow r)) = 1$ ,  $v(\Longrightarrow (p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)) = 0$ . So  $v(p \Longrightarrow q) = 1$ ,  $v(p \Longrightarrow r) = 0$ . This happens when v(p) = 1, v(r) = 0, so also v(q) = 1. But then  $v(q \Longrightarrow r) = 0$ , so  $v(p \Longrightarrow (q \Longrightarrow r)) = 0$ .

**Definition.** For  $S \subset L$ ,  $t \in L$ , say S entails or semantically implies t, written  $S \models t$  if  $v(s) = 1 \forall s \in S \implies v(t) = 1$ , for each valuation v. ("Whenever all of S is true, t is true as well.")

For example,  $\{p \Longrightarrow q, q \Longrightarrow r\} \vDash (p \Longrightarrow r)$ . To prove this, suppose not: so we have v with  $v(p \Longrightarrow q) = v(q \Longrightarrow r) = 1$  but  $v(p \Longrightarrow r) = 0$ . So v(p) = 1, v(r) = 0, so v(q) = 0, but then  $v(p \Longrightarrow q) = 0$ .

If v(t) = 1 we say t is true in v or that v is a model of t.

For  $S \subset L$ , v is a model of S if  $v(s) = 1 \ \forall s \in S$ . So  $S \vDash t$  says that every model of S is a model of t. For example, in fact  $\vDash t$  is the same as  $\phi \vDash t$ .

## 2 Syntactic implication

For a notion of 'proof', we will need axioms and deduction rules. As axioms, we'll take:

1.  $p \Longrightarrow (q \Longrightarrow p) \, \forall p, q \in L;$ 2.  $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)] \, \forall p, q, r \in L;$ 3.  $(\neg \neg p) \Longrightarrow p \, \forall p \in L.$ 

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as all of these are infinite sets of axioms.

As deduction rules, we'll take just modus ponens: from p, and  $p \implies q$ , we can deduce q.

For  $S \subset L$ ,  $t \in L$ , a proof of t from S cosists of a finite sequence  $t_1, ..., t_n$  of propositions, with  $t_n = t$ , s.t.  $\forall i$  the proposition  $t_i$  is an axiom, or a member of S, or there exists j, k < i with  $t_j = (t_k \implies t_i)$ .

We say S is the *hypotheses* or *premises* and t is the *conclusion*.

If there exists a proof of t from S, we say S proves or syntactically implies t, written  $S \vdash t$ .

If  $\phi \vdash t$ , we say t is a theorem, written  $\vdash t$ .

**Example.**  $\{p \implies q, q \implies r\} \vdash p \implies r$ . we deduce by the following:

- $(1) [p \implies (q \implies r)] \implies [(p \implies q) \implies (p \implies r)]; (axiom 2)$
- (2)  $q \implies r$ ; (hypothesis)
- $(3) \ (q \implies r) \implies (p \implies (q \implies r)); \ (\text{axiom 1})$
- $(4) p \implies (q \implies r); (mp \text{ on } 2,3)$
- (5)  $(p \implies q) \implies (p \implies r)$  (mp on 1,4);
- (6)  $p \implies q$ ; (hypothesis)
- (7)  $p \implies r$ . (mp on 5,6)

**Example.** Let's now try to prove  $\vdash p \implies p$ . Axiom 1 and 3 probably don't help so look at axiom 2; if we make  $(p \implies q)$  and  $p \implies (q \implies r)$  something that's a theorem, and make  $p \implies r$  to be  $p \implies p$  then we are done. So we need to take  $p = p, q = (p \implies p), r = p$ . Now:

- $(1) [p \Longrightarrow ((p \Longrightarrow p) \Longrightarrow p)] \Longrightarrow [(p \Longrightarrow (p \Longrightarrow p)) \Longrightarrow (p \Longrightarrow p)];$ (axiom 2)
- $(2) p \implies ((p \implies p) \implies p); (axiom 1)$
- $(3) (p \implies (p \implies p)) \implies (p \implies p); (mp \text{ on } 1,2)$
- $(4) p \implies (p \implies p); (axiom 1)$
- (5)  $p \implies p$ . (mp on 3,4)

Proofs are made easier by:

**Proposition.** (2, deduction theorem) Let  $S \subset L$ ,  $p, q \in L$ . Then  $S \vdash (p \implies q)$  if and only if  $(S \cup \{p\}) \vdash q$ .

*Proof.* Forward: given a proof of  $p \implies q$  from S, add the lines p (hypothesis), q (mp) to optaion a proof of q from  $S \cup \{p\}$ .

Backward: if we have proof  $t_1, ..., t_n = q$  of q from  $S \cup \{p\}$ . We'll show that  $S \vdash (p \implies t_i) \forall i$ , so  $p \implies t_n = q$ .

If  $t_i$  is an axiom, then we have  $\vdash t_i \implies (p \implies t_i)$ , so  $\vdash p \implies t_i$ ;

If  $t_i \in S$ , write down  $t_i, t_i \implies (p \implies t_i), p \implies t_i$  we get a proof of  $p \implies t_i$  from S;

If  $t_i = p$ : we know  $\vdash (p \implies p)$ , so done;

If  $t_i$  obtained by mp: in that case we have some earlier lines  $t_j$  and  $t_j \implies t_i$ . By induction, we may assume  $S \vdash (p \implies t_j)$  and  $S \vdash (p \implies (t_j \implies t_i))$ . Now we can write down  $[p \implies (t_j \implies t_i)] \implies [(p \implies t_j) \implies (t_i)]$  by axiom  $2, p \implies (t_j \implies t_i), p \implies t_j) \implies (p \implies t_i)$  (mp),  $p \implies t_j$ ,  $p \implies t_i$  (mp) to obtain  $S \vdash (p \implies t_i)$ .

These are all of the cases. So  $S \vdash (p \implies q)$ .

This is why we chose axiom 2 as we did – to make this proof work.

**Example.** To show  $\{p \implies q, q \implies r\} \vdash (p \implies r)$ , it's enough to show that  $\{p \implies q, q \implies r, p\} \vdash r$ , which is trivial by mp.

Now, how are  $\vdash$  and  $\vDash$  related? We are going to prove the *completeness theorem*:  $S \vdash t \iff S \vDash t$ .

This ensures that our proofs are sound, in the sense that everything it can prove is not absurd  $(S \vdash t \text{ then } S \vDash t)$ , and are adequate, i.e. our axioms are powerful enough to define every semantic consequence of S, which is not obvious  $(S \vDash t \text{ then } S \vdash t)$ .

#### Proposition. (3)

Let  $S \subset L$ ,  $t \in L$ . Then  $S \vdash t \implies S \vDash t$ .

*Proof.* Given a valuation v with  $v(s) = 1 \ \forall s \in S$ , we want v(t) = 1.

We have  $v(p) = 1 \ \forall p$  axiom as our axioms are all tautologies (proven earier);  $v(p) = 1 \ \forall p \in S$  by definition of v; also if v(p) = 1 and  $v(p \Longrightarrow q) = 1$ , then also v(q) = 1 (by definition of  $\Longrightarrow$ ). So v(p) = 1 for each line p of our proof of t from S.

We say  $S \subset L$  consistent if  $S \not\vdash \bot$ . One special case of adequacy is:  $S \vDash \bot \Longrightarrow S \vdash \bot$ , i.e. if S has no model then S inconsistent, i.e. if S is consistent then S has a model. This implies adequacy: given  $S \vDash t$ , we have  $S \cup \{\neg t\} \vDash \bot$ , so by our special case we have  $S \cup \{\neg t\} \vdash \bot$ , i.e.  $S \vdash ((\neg t) \Longrightarrow t)$  by deduction theorem, so  $S \vdash \neg \neg t$ . But  $S \vdash ((\neg \neg t) \Longrightarrow t)$  by axiom  $S \vdash S \vdash T$ , i.e.  $S \vdash T$ .

#### Theorem. (4)

Let  $S \subset L$  be consistent, then S has a model.

The idea is that we would like to define valuation v by  $v(p) = 1 \iff p \in S$ , or more sensibly,  $v(p) = 1 \iff S \vdash p$ .

But maybe  $S \not\vdash p_3, S \not\vdash \neg p_3$ , but a valuation maps half of L to 1, so we want to 'grow' S to contain one of p or  $\neg p$  for each  $p \in L$ , while keeping consistency.

*Proof.* Claim: for any consistent  $S \subset L$ ,  $p \in L$ ,  $S \cup \{p\}$  or  $S \cup \{\neg p\}$  consistent. *Proof of claim.* If not, then  $S \cup \{p\} \vdash \bot$  and  $S \cup \{\neg p\} \vdash \bot$ , then  $S \vdash (p \Longrightarrow \bot)$  (deduction theorem), i.e.  $S \vdash \not p$ , so  $S \vdash \bot$  contradiction.

Now L is countable as each  $L_n$  is countable, so we can list L as  $t_1, t_2, \ldots$  Put  $S_0 = S$ ; set  $S_1 = s_0 \cup \{t_1\}$  or  $s_0 \cup (\neg t_1\}$  so that  $S_1$  is consistent. Then set  $S_2 = S_1 \cup \{t_2\}$  or  $S_1 \cup \{\neg t_2\}$  so that  $S_2$  is consistent, and continue likewise. Set  $\bar{S} = S_0 \cup S_1 \cup S_2 \cup \ldots$  Then  $\bar{S} \supset S$ , and  $\bar{S}$  is consistent (as each  $S_n$  is, and each proof is finite).  $\forall p \in L$ , we have either  $p \in S$  or  $(\neg p) \in S$ . Also,  $\bar{S}$  is deductively closed, meaning that is  $\bar{S} \vdash p$  then  $p \in \bar{S}$ : if  $p \notin \bar{S}$  then  $(\neg p) \in \bar{S}$ , so  $\bar{S} \vdash p$ ,  $\bar{S} \vdash (p)$  so  $\bar{S} \vdash \bot$  contradiction.

Define  $v: L \to \{0,1\}$  by  $p \to 1$  if  $p \in \bar{S}$ , 0 otherwise. Then v is a valuation:  $v(\bot) = 0$  as  $\bot \notin \bar{S}$ ; for  $v(p \Longrightarrow q)$ :

If v(p) = 1, v(q) = 0: We have  $p \in \bar{S}$ ,  $q \notin \bar{S}$ , and want  $v(p \implies q) = 0$ , i.e.  $(p \implies q \notin \bar{S}$ . But if  $9p \implies q) \in \bar{S}$  then  $\bar{S} \vdash q$  contradiction;

If v(q) = 1: have  $q \in \bar{S}$ , and want  $v(p \implies q) = 1$ , i.e.  $(p \implies q) \int \bar{S}$ . But  $\vdash q \implies (p \implies q)$  so  $\bar{S} \vdash (p \implies q)$ ;

If v(p) = 0: have  $p \notin \bar{S}$ , i.e.  $(\neg p) \in \bar{S}$  and want  $(p \implies q) \in \bar{S}$ . So we need  $(p \implies \bot) \vdash (p \implies q)$ , i.e.  $p \implies \bot, p \vdash q$  (deduction theorem). Thus it's enough to show that  $\bot \vdash q$ . But  $(\neg \neg q) \implies q$ , and  $\vdash (\bot \implies (\neg \neg q))$  (axiom 3 and 1 – to see the second one, write  $\neg$  explicitly using  $\implies$  and  $\bot$ ), so  $\vdash (\bot \implies q)$ , i.e.  $\bot \vdash q$ .

**Remark.** Sometimes this is called 'completeness theorem'. The proof used P being countable to get L countable; in fact, result still holds if P is uncountable (see chapter 3).

By remark before theorem 4, we have

**Corollary.** (5, adequacy) Let  $S \subset L$ ,  $t \in L$ . Then if  $S \models t$  then  $S \vdash t$ .

And hence,

**Theorem.** (6, completeness theorem) Let  $S \subset L$ ,  $t \in L$ . Then  $S \vdash t \iff S \models t$ .

Some consequences:

**Corollary.** (7, compactness theorem) Let  $S \subset L$ ,  $t \in L$  with  $S \models t$ . Then  $\exists$  finite  $S' \subset S$  with  $S' \models t$ . This is trivial if we replace  $\models$  by  $\vdash$  (as proofs are finite).

Special case for  $t = \perp$ : If S has no model then some finite  $S' \subset S$  has no model. Equivalently,

**Corollary.** (7', compactness theorem, equivalent form) Let  $S \subset L$ . If every finite subset of S has a model then S has a model. This isi equivalent to corollary 7 because  $S \vDash t \iff S \cup \{\neg t\}$  has no model and  $S' \vDash t \iff S' \cup (\neg t)$  has no model.

### Corollary. (8, decidability theorem)

There is an algorithm to determine (in finite time) whether or not, for a given finite  $S \subset L$  and  $t \in L$ , we have  $S \vdash t$ .

This is highly non-obviuos; however it's trivial to decide if  $S \vDash t$  just by drawing a truth table, and  $\vDash \iff \vdash$ .

## 3 Well-Orderings and Ordinals

**Definition.** A total order or linear order on a set X is a relation < on X, such that

- (1) Irreflexive: Not  $x < x \ \forall x \in X$ ;
- (2) Transitive:  $x < y, y < z \implies x < z \ \forall x, y, z \in X$ ;
- (3) Trichotomous: x < y or x = y or  $y < x \ \forall x, y \in X$ .

Note: two of (iii) cannot hold: if x < y, y < x then x < x by transitivity.

Write  $x \le y$  if x < y or x = y, and y > x if x < y.

We can also define total order in terms of  $\leq$ :

- (1) Reflexive:  $x \le x \ \forall x \in X$ ;
- (2) Transitive:  $x \le y, y \le z \implies x \in z \ \forall x, y, z \in X$ ;
- (3) Antisymmetric:  $x \le y, y \le x \implies x = y \ \forall x, y \in X$ ;
- (4) 'Tri'chotomous (although it's only two):  $x \leq y$  or  $y \leq x \ \forall x, y \in X$ .

**Example.**  $\mathbb{N}, \mathbb{Q}, \mathbb{R}$  with the usual orders are all total orders.

 $\mathbb{N}^+$  the relation 'divides' is not a total order: for example we don't have any of 2|3,3|2 or 2=3.

 $\mathcal{P}(S)$  for some S (with  $|S| \geq 2$  to be rigorous), with  $x \leq y$  if  $x \subseteq y$  is not a total order for the same reason.

A total order is a well-ordering if every (non-empty) subset has a least element, i.e.  $\forall S \subset X, S \neq \phi \implies \exists x \in S, x \leq y \forall y \in S$ .

**Example.** 1.  $\mathbb{N}$  with the usual < is a well ordering.

 $2.\mathbb{Z}, \mathbb{Q}, \mathbb{R}$  with the usual < are not well orderings.

 $3.\mathbb{Q}^+ \cup \{0\}$  with the usual < is not a well ordering (e.g.  $(0,\infty) \subset \mathbb{Q}^+ \cup \{0\}$ ).

4.The set  $\{1-\frac{1}{n}:n=2,3,...\}$  as a subset of  $\mathbb R$  with the usual ordering is a well ordering. 5.The set  $\{1-\frac{1}{n}:n=2,3,...\}\cup\{1\}$  as a subset of  $\mathbb R$  with the usual ordering is a well ordering. 6.The set  $\{1-\frac{1}{n}:n=2,3,...\}\cup\{2-\frac{1}{n}:n=2,3,...\}$  (same assumption) is a well ordering.

**Remark.** X is well-ordered iff there is no  $x_1 > x_2 > x_3 > ...$  in X.

Clearly if there is such a sequence then  $S = \{x_1, x_2, ...\}$  has no least element. Conversely, if  $S \subset X$  has no least element, then for each element  $x \in S$  there exists a  $x' \in S$  with x' < x, so we can just pick x, x', ... inductively.

**Definition.** We say total orders X, Y are *isomorphic* if there exists a bijection  $f: X \to Y$  that is order-preserving, i.e.  $x < y \iff f(x) < f(y)$ .

For example, 1 and 4 above are isomorphic; 5 and 6 are isomorphic; 4 and 5 are not isomorphic (one has a greatest element, and the other doesn't).

Here comes the first reason why well orderings are useful:

**Proposition.** (1, Proof by induction)

Let X be well-ordered, and let  $S \subset X$  be s.t. if  $y \in S \ \forall y < x \ \text{then} \ x \in S$  (each  $x \in X$ ). Then S = X.

Equivalently, if p(x) is a property s.t.  $\forall x$ : if  $p(y)\forall y < x$  then p(x), then  $p(x)\forall x$ . (I think we must assert S to be non-empty here, but the lecturer didn't agree with me; need to check later.)

*Proof.* If  $S \neq X$  then let x be the least element of  $X \setminus S$ . Then  $x \notin S$ . But  $y \in S \ \forall y < x$ , contradiction.

A typical use:

**Proposition.** Let X,Y be isomorphic well-orderings. Then there is a *unique* isomorphism from X to Y.

*Proof.* Let f,g be isomorphisms. We'll show  $f(x) = g(x) \ \forall x$  by induction. Thus we may assume  $f(y) = g(y) \ \forall y < x$ , and want f(x) = g(x). Let a be the least element of  $Y \setminus \{f(y) : y < x\}$ . Then we must have f(x) = a: if f(x) > a, then some x' > x has f(x') = a by surjectivity, contradiction. The same shows g(x) =least element of  $Y \setminus \{g(y) : y < x\}$ , but this is the same as a. So f(x) = g(x).

**Remark.** This is false for total orders in general. One example is, consider from  $\mathbb{Z}to\mathbb{Z}$ , we could either take identity, or  $x \to x - 5$ ; or from  $\mathbb{R}$  to  $\mathbb{R}$  we could take identity or  $x \to x - 5$  or  $x \to x^3$ ...

**Definition.** In a total order X, an *initial segment* I is a subset of X such that  $x \in I, y < x \implies y \in I$ .

**Example.** For any  $x \in X$ , set  $I(x) = \{y \in X : y < x\}$ . Then this is an initial segment.

Obviously, not every initial segment is of this form: for example, in  $\mathbb{R}$  we can take  $\{x: x \leq 3\}$ ; or in  $\mathbb{Q}$ , take  $\{x: x^2 < 2\} \cup \{x < 0\}$  (this cannot be written as above form as  $\sqrt{2} \notin \mathbb{Q}$ .

Note: in a well-ordering, every proper initial segment is of the above form: let x be the least elemnt of  $X \setminus I$ . Then  $y < x \implies y \in I$ . Conversely, if  $y \in I$ , then we must have y < x: otherwise  $x \in I$ , contradiction.