"You don't have to be a genius to code, you just have to be persistent."

Graphs 1

Agenda:

Introduction to Graph
2. Types of Graphs

creation { 3. How to store data in Graph

{ 4. BFS (Breadth First Search) traveka!

Seanching { 5. Is Path Available from En Graph Source to Destination

Introduction to Graph

information of cities and their connectivity. store Warnt 40

with the help of graph data sinchre we com amplemed the storage of connection.

cities = vertex Links = Edge

No. of Verten ? -> 8

No , of Edga ? -> 9

Collection of vertex and logs one known as Graph.

neighbour of city 1 -> city 2, city 8, & city 4

neighbour of city 8 - City 6, City 4, City 7

nbr(citys) = City2

one know or neighbour. connect vertex Direct

~~~~~~~~~

Types of Graphs

I. Based on type of edges;

2. Based on Edge wt. present or not:

weighted graph

2. Combination of above types are also possible:

clirected weighted grapm

How to store data in Graph

There is too famous implement action available for graph.

- 1 Adjacency moutrix
- (2) Adjacency (16)

1. Adjacency matrix:

verter = 7, Edges = 8

graph.

9~	ירן א	\Box	977	rþy =	· Me	sro d	シャト	utx][utx]; edges[][]		3 0	3	
			J						ろ ア	_ ପ	3	
	O	7	2	3	Ч	S	6	9>	3	3	7	 -
0	0		0		O	0	0		Ч	7	2	
7		0		D	0	0	G	Pnt u= edge[i][o];	5	4	5	
		O)					6	Ч	6	
2	O		O	1	0	0	O	int V= edge[i][1];	7	5	6	レ
3		0		0	4	О	\mathcal{C}	//mate a connection	,	ondi	recte	d
٥	1	O)	+	0		blo u fl 4				
4	೦	O	O	1	<u>ي</u>	1	1	u-v				
S	0	D	0	0		O		V - 1 U				
כ			O	O				- grap[u][v] = 1				
6	0	0	ව	0		1	0					
								graph[v][u] = 1				

	0	7	2	3	Ч	S	6			
0	0	T	0		0	0	0			
Τ	T	0		Q	0	0	G			
2	G		O	1	0	0	O			
3		0		0	1	O	O			
4	O	O	ð	1	ව	1	1			
S	00000									
6	000000000000000000000000000000000000000									
undirected + un weighted										
			8	rah)	h					

No. of vertex \rightarrow Row length or Column length

<u>-</u>1

Weighted + Directed graph:

Vtx = 7, Edge = 8

Int[][] graph = new int[vtx][vtx];

	O	7	2	3	Ч	S	6
0	0	SZ SZ	0	10	O	O	0
Τ	O	0	4	Q	0	0	O
2	G	0	Ð	9	0	0	O
3	O	0	0	0	ळ	O	O
4	O	O	O	0	0	7	20
S	0	D	O	0	0	Ø	प्र
6	0	0	ව	0	0	0	0

int w= edge[i][o];

int w= edge[i][i];

int wt=edge[i][i];

Il Edge only from

u to v with

weight with

graph[u][v]= wt;

	U	S	ωt
0	0	3 -	-10 /
τ	0	7 -	-15 M
2	2	3 -	19 V
3	3	4 -	→3 ~
4	\mathcal{T}	ე -	741
S	4	5 -	77
6	Ч	6 -	→ 20 V
7	5	6	→ \\\\

	O	7	2	3	Ч	S	6
0	0	S	0	10	O	0	0
Τ	0	0	4	Q	0	0	G
2	G	0	Ð	9	0	0	O
3	O	0	0	0	ळ	O	O
4	O	O	O	0	0	7	20
S	0	D	0	0	0	D	15
6	0	0	ව	0	0	0	0

Major disadvandage of Adjacency moun's:

Major disadvantyr is wastage of memory, thatis why most of the time we will ameider Adjacency wist Prostead of Adjacency mentric

2. Adjacency 4875

undirected graph.

0	0	3
\mathcal{T}	0	1
2	<u>0</u>	3
3	3	4
Ч	\mathcal{T}	2
S	4	5
6	Ч	6
ユ	5	6

Vo	V3	٧٧	
VL	V2	VS	V6

Q	7	2	3	4	2	6	
							1
3	0 2	٦ ٦	0 2 4	3 5 6	4 6	Y (8	

Amay List < Amay List < Integer>> graph

Implementation PI: Understomeling

O	T		2	3	4		2		6	
		Ι.								7
2g 1	20		<u></u> ~	024	ન્ય િ	T	4		4 5	

Vtx=7, Edge=8

ا ا	0 _
4	0
<u>ე</u>	7 3
	~

int us edgelijloj; -- 2

int v= edge [i][i]; → 1

graph. get (2). add (1);

graph, get(1)-add(2);

int uz edge [i][o];

int += edge [i][1];

graph-get (u). odd(+);

graph get (V). add (W);

M: 2, V28

Array List < Intgu>> grapn = rrew AL<>();

for (int v=0; v < v+x; v++) {

 grapn.add (new AL<>());

}

Screen Shot of implementation.

```
import java.util.*;
class Main {
    public static void display(ArrayList<ArrayList<Integer>> graph) {
        int n = graph.size(); // number of vertex
        for(int v = 0; v < n; v++) {
            System.out.print("[" + v + "] -> ");
            for(int nbr : graph.get(v)) {
                System.out.print(nbr + " ");
            System.out.println();
       public static void main(String args[]) {
           int vtx = 7;
           int[][] edges = {
               \{0, 3\}, \{0, 1\}, \{2, 3\}, \{3, 4\}, \{1, 2\}, \{4, 5\}, \{4, 6\}, \{5, 6\}
           };
           ArrayList<ArrayList<Integer>> graph = new ArrayList<>();
           for(int v = 0; v < vtx; v++) {
               graph.add(new ArrayList<>());
           }
           // container of graph is ready,
           for(int e = 0; e < edges.length; e++) {</pre>
               int u = edges[e][0];
               int v = edges[e][1];
               graph.get(u).add(v);
               graph.get(v).add(u);
           }
           int src = 5;
           bfs(graph, src);
           // display(graph);
   }
```

How to make welghted graph?

Ntx=7, Edge=8

	u	\$	ωt
0	0	3 -	-104
\mathcal{T}	0	7 -	<u> 15 </u>
2	2	3 -	19/
3	3	4 -	→3 レ
Ч	\mathcal{T}	ე -	- 4 W
S	4	5 -	77 ~
6	Ч	6 -	→ 20 V
7	5	6	→ 15 V

```
'public class fair {

Int nbr;

Int wt;

Poir (int nbr, int wt) {

this nbr: nbr:

tws. wt = wt;

3
```

for lint u=0; V< V+x; V++) &

| graph.add (new AL<>());
}

for(int e=0; e< edgs. leyth; e+t) {

int u= edge[e](o);

int v= edge[e][i];

int wt= edge[e][i];

groph.get (u). add (new Pair (v, cot));
grapm.get (v). add (new Poir (u, wt));

Expected 0/3 :

Example

[0] - 1-1, 2-3

[1] - 0-1, 7-3

! ete,

Topo

display.

BFS (Breadth First Search)

[Traversal of graph]

steps of BFS;

- Remove
- Remove
- work - Phint
- add Unvisited
neighbork.
- mark
- Add.

NOTE: Either starting point is given in problem or we can start traversal from only point.

```
public static void bfs(ArrayList<ArrayList<Integer>> graph, int src) {
   // number of vertex in graph
   int n = graph.size();
   // Make a visited array i.e. boolean array to mark visit of vertex
   boolean[] vis = new boolean[n];
   // Make a que to add vertex and starting of BFS
   Queue<Integer> qu = new ArrayDeque<>();
   // add source in queue and mark it true i.e. visited
   qu.add(src);
   vis[src] = true;
   while(qu.size() > 0) {
       // remove
       int rem = qu.remove();
       // work -> printing of vertex
       System.out.print(rem + " ");
       // add univisted neighbour
        for(int nbr : graph.get(rem)) {
            // if neighbour is univisted, mark it and add it
            if(vis[nbr] == false) {
                vis[nbr] = true;
                qu.add(nbr);
```

Is Path Available from Source to Destination

Given an undirected graph, source node and destination node. Cheek if there is a path Available from source to destination or not.

Src Ex1: Src=3, dst=6 ons: true (6) dstsrc Sre= 3, det; 6 Ex2: ons: Palso, 6) dst Ex 3: T ELC . 0 Sre = 1, dst = 4 on: false. source point, in End Finally Algo hom BAS solution: Start vis[det]: 8tadus of check SLC, 0 Remove Add unvisited 1 hbr

[[fab] ziv