

congatec Application Note

Affected Products	All products		
Subject	M.2™ Pinout Descriptions and Reference Designs		
Confidential/Public	Public		
Author	SDA		

Revision History

Revision	Date (yyyy-mm-dd)	Author	Changes
1.0	2020-01-28	SDA	First release

Preface

This application note provides the pinout description, reference design and design notes for each of the three M.2[™] sockets commonly implemented on embedded systems (Socket 1 – Key E, Socket 2 – Key B, and Socket 3 – Key M).

Disclaimer

The information contained within this Application Note, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this Application Note or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the Application Note. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this Application Note or any other information contained herein or the use thereof.

Intended Audience

This Application Note is intended for technically qualified personnel. It is not intended for general audiences.

Electrostatic Sensitive Device

All congatec AG products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congatec AG product except at an electrostatic-free workstation. Additionally, do not ship or store congatec AG products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the congatec AG Limited Warranty.

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Symbols

The following are symbols used in this application note.

Notes call attention to important information that should be observed.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Warning

Warnings indicate that personal injury can occur if the information is not observed.

Copyright Notice

Copyright © 2020, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.

1 Introduction

This application note provides the pinout description, reference design, and design notes for three M.2™ sockets and respective interfaces commonly used on embedded systems:

- Socket 1 Key E (Section 2 of this application note)
- Socket 2 Key B (Section 3 of this application note)
- Socket 3 Key M (Section 4 of this application note)

Additional information is provided for sockets with configuration pins.

For information about less commonly used sockets and respective interfaces (e.g. SDIO, I2S, UART), refer to the PCI Express M.2 Specification available for purchase from PCI-SIG (https://pcisig.com).

The content of this application note is based on the PCI Express M.2 Specification Revision 3.0, Version 1.2.

2 Socket 1 – Key E

2.1 Pinout Description

74	3.3V	GND	75
72	3.3V	RESERVED/REFCLKn1	73
70	UIM_POWER_SRC/GPIO_1/PEWAKE1#	RESERVED/REFCLKp1	71
68	UIM_POWER_SNK/CLKREQ1#	GND	69
66	UIM_SWP/PERST1#	RESERVED/PERn1	67
64	RESERVED	RESERVED/PERp1	65
62	ALERT# (I)(0/1.8 V)	GND	63
60	I2C_CLK (O)(0/1.8 V)	RESERVED/PETn1	61
58	I2C_DATA (I/O)(0/1.8 V)	RESERVED/PETp1	59
56	W_DISABLE1# (O)(0/3.3V)	GND	57
54	W_DISABLE2# (O)(0/3.3V)	PEWAKE0# (I/O)(0/3.3V)	55
52	PERSTO# (O)(0/3.3V)	CLKREQ0# (I/O)(0/3.3V)	53
50	SUSCLK(32kHz) (O)(0/3.3V)	GND	51
48	COEX_TXD (O)(0/1.8V)	REFCLKn0	49
46	COEX_RXD (I)(0/1.8V)	REFCLKp0	47
44	COEX3 (I/O)(0/1.8V)	GND	45
42	VENDOR DEFINED	PERn0	43
40	VENDOR DEFINED	PERp0	41
38	VENDOR DEFINED	GND	39
36	UART RTS (O)(0/1.8V)	PETn0	37
34	UART CTS (I)(0/1.8V)	PETp0	35
32	UART TXD (O)(0/1.8V)	GND	33
	Key E	Key E	
	Key E Key E	Key E Key E	
	Key E	Key E	
	Key E	SDIO RESET#/TX_BLANKING (O)(0/1.8V)	23
22	UART RXD (I)(0/1.8V)	SDIO WAKE# (I)(0/1.8V)	21
20	UART WAKE# (I)(0/3.3V)	SDIO DATA3(I/O)(0/1.8V)	19
18	GND	SDIO DATA2(I/O)(0/1.8V)	17
16	LED_2# (I)(OD)	SDIO DATA1(I/O)(0/1.8V)	15
14	PCM_OUT/I2S SD_OUT (O)(0/1.8V)	SDIO DATAO(I/O)(0/1.8V)	13
12	PCM_IN/12S SD_IN (I)(0/1.8V)	SDIO CMD(I/O)(0/1.8V)	11
10	PCM_SYNC/12S WS (I/O)(0/1.8V)	SDIO CLK/SYSCLK (O)(0/1.8V)	9
8	PCM_CLK/I2S SCK (I/O)(0/1.8V)	GND	7
6	LED_1# (I)(OD)	USB_D-	5
4	3.3V	USB_D+	3
2	3.3V	GND	1

2.2 Reference Design

Figure 1: Socket 1 - Key E Reference Design

2.3 Design Notes

The reference design above (Figure 1) shows an M.2 Socket 1 – Key E used for connectivity applications. M.2 WiFi/Bluetooth expansion cards are usually connected via PCle and USB. Other buses (e.g. SDIO and I2S) may not be supported by the COM.

The AC coupling capacitors are placed on the COM for the PCIE_TX+/- signals and for the PCIE_RX+/- signals on the M.2 expansion card. Therefore, it is not required to place AC coupling capacitors on the carrier board.

The M.2 clock request signal (CLKREQ#) enables the PCle reference clock and should be connected to the output enable pin of the PCle clock buffer. As the CLKREQ# signal is an active low, open drain output of the M.2 expansion card, a pull-up resistor is required on the carrier board.

3 Socket 2 – Key B

3.1 Pinout Description

74	3.3 V/VBAT	CONFIG_2	75
72	3.3 V/VBAT	GND	73
70	3.3 V/VBAT	GND	71
68	SUSCLK(32kHz) (O)(0/3.3V)	CONFIG_1	69
66	SIM DETECT (O)	RESET# (O)(0/1.8V)	67
64	COEX_RXD (I)(0/1.8V)	ANTCTL3 (I)(0/1.8V)	65
62	COEX_TXD (O)(0/1.8V)	ANTCTL2 (I)(0/1.8V)	63
60	COEX3 (I/O)(0/1.8V)	ANTCTL1 (I)(0/1.8V)	61
58	NC	ANTCTL0 (I)(0/1.8V)	59
56	NC	GND	57
54	PEWAKE# (I/O)(0/3.3V)	REFCLKp	55
52	CLKREQ# (I/O)(0/3.3V)	REFCLKn	53
50	PERST# (O)(0/3.3V)	GND	51
48	GPIO_4 (I/O)(0/1.8V)	PETp0/SATA-A+	49
46	GPIO_3 (I/O)(0/1.8V)	PETn0/SATA-A-	47
44	GPIO_2 (I/O)/ALERT# (I)/(0/1.8V)	GND	45
42	GPIO_1 (I/O)/SMB_DATA (I/O)/(0/1.8V)	PERpO/SATA-B-	43
40	GPIO_0 (I/O)/SMB_CLK (I/O)/(0/1.8V)	PERnO/SATA-B+	41
38	DEVSLP (O)	GND	39
36	UIM-PWR (I)	PETp1/USB3.1-Tx+/SSIC-TxP	37
34	UIM-DATA (I/O)	PETn1/USB3.1-Tx-/SSIC-TxN	35
32	UIM-CLK (I)	GND	33
30	UIM-RESET (I)	PERp1/USB3.1-Rx+/SSIC-RxP	31
28	GPIO_8 (I/O) (0/1.8V)	PERn1/USB3.1-Rx-/SSIC-RxN	29
26	GPIO_10 (I/O) (0/1.8V)	GND	27
24	GPIO_7 (I/O) (0/1.8V)	DPR (O) (0/1.8V)	25
22	GPIO_6 (I/O)(0/1.8V)	GPIO_11 (I/O) (0/1.8V)	23
20	GPIO_5 (I/O)(0/1.8V)	CONFIG_0	21
	Key B	Key B	
	Key B	Key B	
	Key B	Key B	
	Key B Key B	Key B GND	11
10	GPIO_9/DAS/DSS (I/O)/LED_1# (I)(0/3.3V)	USB_D-	9
8	W_DISABLE1# (O)(0/3.3V)	USB_D+	7
6	FULL_CARD_POWER_OFF# (O)(0/1.8V or 3.3V)	GND	5
4	33 V	GND	3
2	33 V	CONFIG_3	1

3.1.1 Host Interface Configuration

The four CONFIG_X pins select the intended host interface. The system shall read all four configuration pins to identify the selected pinout configuration. The system shall pull-up these configuration pins to an appropriate power rail so the configuration pins can be read even if the M.2 expansion card is not powered.

The table below shows how the CONFIG_X pins are connected on the M.2 expansion card to select the required host interface:

CONFIG_0	CONFIG_1	CONFIG_2	CONFIG_3	Host Interface
(Pin 21)	(Pin 69)	(Pin 75)	(Pin 1)	
0	0	0	0	SSD - SATA
0	1	0	0	SSD - PCle
0	0	1	0	WWAN – PCIe (Port Configuration 0*)
0	1	1	0	WWAN – PCIe (Port Configuration 1*)
0	0	0	1	WWAN – PCle, USB3.1 Gen1 (Port Configuration 0*)
0	1	0	1	WWAN – PCle, USB3.1 Gen1 (Port Configuration 1*)
0	0	1	1	WWAN – PCle, USB3.1 Gen1 (Port Configuration 2*)
0	1	1	1	WWAN – PCIe, USB3.1 Gen1 (Port Configuration 3*)
1	0	0	0	WWAN – SSIC (Port Configuration 0*)
1	1	0	0	WWAN – SSIC (Port Configuration 1*)
1	0	1	0	WWAN – SSIC (Port Configuration 2*)
1	1	1	0	WWAN – SSIC (Port Configuration 3*)
1	0	0	1	WWAN – PCIe (Port Configuration 2*)
1	1	0	1	WWAN – PCIe (Port Configuration 3*)
1	0	1	1	WWAN – PCIe, USB3.1 Gen1 (vendor defined)
1	1	1	1	No Add-in Card Present

^{*} Refer to the PCI Express M.2 Specification for different port configurations.

3.2 Reference Design

Figure 2: Socket 2 - Key B Reference Design

3.3 Design Notes

The reference design above (Figure 2) shows an M.2 Socket 2 – Key B used to connect PCle or SATA based storage devices.

CONFIG_1 pin enables the appropriate host interface:

- CONFIG_1 low enables SATA
- CONFIG_1 high enables PCIe

The second PCIe lane enables support for PCIe x2 devices like Intel Optane memory. For PCIe x2 support, the PCIe lanes must be configured to a PCIe x2 link.

As the CONFIG_1 signal is not connected on the M.2 expansion card when PCIe is enabled, a pull-up resistor is required on the carrier board.

If the M.2 socket is used for a SATA based storage device, pin 43 must be connected to the negative signal of the differential pair used for SATA Rx.

If the M.2 socket is used for a PCIe based storage device, pin 43 must be connected to the positive signal of the differential pair used for PCIe Rx.

4 Socket 3 – Key M

4.1 Pinout Description

74	3.3 V	GND	75
72	33 V	GND	
			73
70	33 V	GND	71
68	SUSCLK (O)(0/3.3V)	PEDET	69
	Key M	NC	67
	Key M	Key M	
	Key M	Key M	
	Key M Key M	Key M Key M	
58	NC	GND	57
	NC		
56		REFCLKp	55
54	PEWAKE# (I/O)(0/3.3V) or NC	REFCLKn	53
52	CLKREQ# (I/O)(0/3.3V) or NC	GND	51
50	PERST# (O)(0/3.3V) or NC	PETp0/SATA-A+	49
48	NC	PETnO/SATA-A-	47
46	NC	GND	45
44	ALERT# (I) (0/1.8V)	PERPO/SATA-B-	43
42	SMB_DATA (I/O) (0/1.8V)	PERnO/SATA-B+	41
40	SMB_CLK (I/O)(0/1.8V)	GND	39
38	DEVSLP (O)	PETp1	37
36	NC	PETn1	35
34	NC	GND	33
32	NC	PERp1	31
30	NC	PERn1	29
28	NC	GND	27
26	NC	PETp2	25
24	NC	PETn2	23
22	NC	GND	21
20	NC	PERp2	19
18	33 V	PERn2	17
16	33 V	GND	15
14	33 V	PETp3	13
12	33 V	PETn3	11
10	DAS/DSS (I/O)/LED_1# (I)(0/3.3V)	GND	9
8	NC	PERp3	7
6	NC	PERn3	5
4	33 V	GND	3
2	3.3 V	GND	1
		1	

4.2 Reference Design

Figure 3: Socket 3 - Key M Reference Design

4.3 Design Notes

The reference design above (Figure 3) shows an M.2 Socket 3 – Key M used to connect PCIe or SATA based storage devices.

The PEDET signal enables the appropriate host interface. The M.2 expansion card connects the PEDET signal accordingly:

- PEDET low enables SATA (M.2 expansion card connects PEDET signal to GND)
- PEDET high enables PCIe (PEDET signal not connected on M.2 expansion card)

For maximum bandwidth, combine the four PCIe lanes to a x4 link.

As the PEDET signal is not connected on the M.2 expansion card when PCIe is enabled, a pull-up resistor is required on the carrier board.

If the M.2 socket is used for a SATA based storage device, pin 43 must be connected to the negative signal of the differential pair used for SATA Rx.

If the M.2 socket is used for a PCIe based storage device, pin 43 must be connected to the positive signal of the differential pair used for PCIe Rx.