PCI Planning

June 6, 2023 DRAFT

PROBLEM FORMULATION

Parameter	Range	Description	Status
G	G = 180	the number of squares in grid	constant
N	$N \in \{1, \dots, 2004\}$	the number of sites	constant
c	$\mathcal{S} = \{s_{1,1}, s_{1,2}, s_{1,3}, $	the set of site contains	
S	$\dots, s_{N1}, s_{N2}, s_{N3}$	the set of site sectors	constant
D	D = 5km	the threshold distance for sites around the center of a	constant
		square	
K	K = 504	the number of possible PCI values: $ \{0, 1, \dots, K-1\} $	constant
$\mathbf{L} = [l_k]_{K \times 1}$	$l_1 = 1, \dots, l_K = K$	the vector that contains PCI values in increasing order.	constant
		[0]	
		For example, $\mathbf{L} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, for $K = 3$.	
		$\begin{vmatrix} 1 & \text{or example}, \mathbf{E} = 2 \end{vmatrix}$, for $\mathbf{H} = 0$.	
	1.00	[3]	
$ \mathcal{S}_g $	$g \in [G]$	the set of site sectors within distance D of square center	constant
	$\mathcal{S}_g \subset \mathcal{S}$	g which transmit signal to square center g .	Constant
	$g \in [G]$	g danomic organic to oquate center g.	
D [m]		nowen metalin. The accepted accepted of control of the	annata == t
$\mathbf{P} = [p_{g,n,i}]_{G \times N \times 3}$	$n \in [N]$	power matrix : The received power of sector <i>i</i> of site <i>n</i> ,	constant
	$i \in \{1, 2, 3\}$	i.e. $s_{n,i}$, in square center g . When $p_{g,n,i} = 0$, either site	
		sector $s_{n,i}$ is further than D from square center g , or, site	
		sector $s_{n,i}$ is within distance D of g , but the direction of	
		transition in $s_{n,i}$ is such that g does not receive signal from	
		$s_{n,i}$. For sites (n) where the coverage areas of sectors are	
		non-overlapping, if $p_{g,n,i} \neq 0$, then $p_{g,n,i+1 \text{ mode } 3} = 0$	
		and $p_{g,n,i+2 \text{ mode } 3} = 0$. For sites where the coverage areas	
		of sectors are overlapping, two (or three) of $p_{g,n,i} \neq 0$,	
		$p_{g,n,i+1 \text{ mode } 3} = 0$ and $p_{g,n,i+2 \text{ mode } 3} = 0$ can be non-zero.	
	$k \in [K]$	Zero.	
$\mathbf{M} = [m_{k,i}]_{K \times 3}$		mode matrix : $m_{k,i} = 1$ if k mode $3 = i$.	constant.
	$i \in \{1, 2, 3\}$	seaton meeting this meeting will be used to describe the	
$\mathbf{S} = [s_{i,j}]_{3 \times 3}$	$\begin{bmatrix} \mathbf{S} \\ 1 & 1 & 0 \end{bmatrix} =$	sector matrix: this matrix will be used to describe the	constant.
	$\begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$	condition that sectors of a site should have consecutive	
	$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$	PCI values.	
	$n \in [N]$		
	$i \in \{1, 2, 3\}$		
$\mathbf{X} = [x_{n,i,k}]_{N \times 3 \times K}$		allocation matrix : If $x_{n,i,k} = 1$, then the PCI allocated	determined
[10,0,10]17 \ 0 \ 11	$k \in [K]$	to sector $s_{n,i}$ is k . In other words, PCI value allocated to	by PCI
	$x_{n,i,k} \in \{0,1\}$	sector $s_{n,i}$ is $\mathbf{X}[n,i,:] \times \mathbf{L}$. The matrix $\mathbf{X}\mathbf{L}$ is a $N \times 3$	planning.
	,,,,,,,	matrix whose n, i element is the PCI value of sector $s_{n,i}$,	-
		and its n 'th row contains the three PCI values of site n .	
	$n \in [N]$		
	$i \in \{1, 2, 3\}$		
$\mathbf{Y} = [y_{n,i,h}]_{N \times 3 \times 3}$		mode allocation matrix : If $y_{n,i,h} = 1$, then the mode 3	determined
	$h \in \{0, 1, 2\}$	PCI allocated to sector $s_{n,i}$ is $h \in \{0,1,2\}$.	by PCI
	$y_{n,i,h} \in \{0,1\}$		planning.

Parameter	Range	Description	Status
$\mathbf{U} = [u_{n,i,n',j}]_{N \times 3 \times N \times 3}$	$n, n' \in [N]$ $i, j \in \{1, 2, 3\}$ $u_{n,i,n',j} \in \{0, 1\}$	similarity matrix: $u_{n,i,n',j}=1$ if PCI allocated to sectors $s_{n,i}$ and $s_{n',j}$ are the same.	determined by PCI planning.
$\mathbf{V} = [v_{n,i,n',j}]_{N \times 3 \times N \times 3}$	$n, n' \in [N]$ $i, j \in \{1, 2, 3\}$ $v_{n,i,n',j} \in \{0, 1\}$	mode similarity matrix : $v_{n,i,n',j}=1$ if mode 3 of PCI allocated to sectors $s_{n,i}$ and $s_{n',j}$ are the same.	determined by PCI planning.

A. constants and givens

$$G, N, \mathcal{S}, D, K, \mathbf{L}, \mathcal{S}_a, \mathbf{P}, \mathbf{A}, \mathbf{M}, \mathbf{S}$$

B. objective function

$$\begin{split} \max \sum_{g} & \omega_{1} \sum_{\substack{n,n' \in [N]\\i,j \in \{1,2,3\}}} u_{n,i,n',j} (p_{g,n,i} - p_{g,n',j})^{2} + \\ & \omega_{2} \sum_{\substack{n,n' \in [N]\\i,j \in \{1,2,3\}}} v_{n,i,n',j} (p_{g,n,i} - p_{g,n',j})^{2} \end{split}$$

C. constraints

$$\sum_{k \in [K]} x_{n,i,k} = 1, \quad n \in [N], i \in \{1, 2, 3\}$$
(1)

$$u_{n,i,n',j} = \sum_{k \in [K]} x_{n,i,k} x_{n',j,k}, \quad n, n' \in [N], i, j \in \{1, 2, 3\}$$
(2)

$$y_{n,i,h} = \sum_{k \in [K]} x_{n,i,k} m_{k,h}, \quad n \in [N], h \in \{0, 1, 2\}$$
(3)

$$v_{n,i,n',j} = \sum_{h \in \{0,1,2\}} y_{n,i,h} y_{n',j,h}, \quad n,n' \in [N], i,j \in \{1,2,3\}$$

$$\tag{4}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ \vdots & \\ 0 & 0 & 0 \end{bmatrix} < |\mathbf{XLS}| \le \begin{bmatrix} 2 & 2 & 2 \\ & \vdots & \\ 2 & 2 & 2 \end{bmatrix}$$
 (5)

- constraint (1): Each site sector has exactly one PCI value.
- constraint (2): The elements of similarity matrix are determined from the elements of the allocation matrix. If for two site sectors $s_{n,i}$ and $s_{n',j}$, both $x_{n,i,k}$ and $x_{n',j,k}$ are 1, then $u_{n,i,n',j} = 1$.

- constraint (3): The elements of mode allocation matrix are determined from allocation matrix, with the help of mode matrix. Recall that mode matrix stores the mod 3 value of each PCI value.
- constraint (4): Just like similarity matrix is derived from allocation matrix, mode similarity matrix is derived from mode allocation matrix.
- constraint (5): The matrix **XLS** is a $N \times 3$ matrix whose element n, 1 is the PCI value of sector $s_{n,1}$ minus the PCI value of sector $s_{n,2}$. Similarly, the element n, 2 of this matrix is the PCI value of sector $s_{n,2}$ minus the PCI value of sector $s_{n,3}$. Finally, the element n, 3 of this matrix is the PCI value of sector $s_{n,2}$ minus the PCI value of sector $s_{n,3}$. This is in accordance with columns of sector matrix. This constraint states that PCI values of sectors in a site should be consecutive. In other words, each $s_{n,i}$, $n \in [N]$, $i \in \{1, 2, 3\}$ can be one of -2, -1, 1, 2.

Alternative constraints instead of (5)

There are two alternatives for constraint (5):

• PCI values of sectors in a site are not necessarily consecutive, but should be different:

$$\begin{bmatrix} 0 & 0 & 0 \\ \vdots & \\ 0 & 0 & 0 \end{bmatrix} < |\mathbf{XLS}| \tag{6}$$

• PCI values of sectors in a site are consecutive in a predetermined order. For each site, PCI of sector 2 is PCI of sector 1 plus 1, and PCI of sector 3 is PCI of sector 2 plus 1.

D. unknowns

E. final formulation (binary quadratic programming)

$$\begin{split} \min \sum_{g} & \omega_{1} \sum_{\substack{n,n' \in [N] \\ i,j \in \{1,2,3\}}} \left(\sum_{k \in [K]} x_{n,i,k} x_{n',j,k} \ \frac{\min \left(p_{g,n,i}, p_{g,n',j} \right)}{\max \left(p_{g,n,i}, p_{g,n',j} \right)} \right) + \\ & \omega_{2} \sum_{\substack{n,n' \in [N] \\ i,j \in \{1,2,3\}}} \left(\sum_{h \in \{0,1,2\}} \left(\sum_{k \in [K]} x_{n,i,k} m_{k,h} \right) \left(\sum_{k \in [K]} x_{n',j,k} m_{k,h} \right) \ \frac{\min \left(p_{g,n,i}, p_{g,n',j} \right)}{\max \left(p_{g,n,i}, p_{g,n',j} \right)} \right) \end{split}$$

such that:

$$\sum_{k \in [K]} x_{n,i,k} = 1, \quad n \in [N], i \in \{1,2,3\}$$

$$\begin{bmatrix} -2 & -2 & -2 \\ & \vdots & \\ -2 & -2 & -2 \end{bmatrix} \le \mathbf{XLS} \le \begin{bmatrix} 2 & 2 & 2 \\ & \vdots & \\ 2 & 2 & 2 \end{bmatrix}$$

F. matrix form

In order to better understand the above optimization problem, we use pair indices (n, i) for site n and sector i, and denote that with ni for simplicity. Therefore, the objective function is

$$\min \sum_{g} \omega_{1} \sum_{\substack{ni \\ nj'}} \left(\sum_{k \in [K]} x_{ni,k} x_{n'j,k} \ \frac{\min \left(p_{g,ni}, p_{g,n'j} \right)}{\max \left(p_{g,ni}, p_{g,n'j} \right)} \right) + \\ \omega_{2} \sum_{\substack{ni \\ nj}} \left(\sum_{h \in \{0,1,2\}} \left(\sum_{k \in [K]} x_{ni,k} m_{k,h} \right) \left(\sum_{k \in [K]} x_{n'j,k} m_{k,h} \right) \ \frac{\min \left(p_{g,ni}, p_{g,n'j} \right)}{\max \left(p_{g,ni}, p_{g,n'j} \right)} \right)$$

Let us define the matrix $\mathbf{Q}_g \coloneqq [\frac{\min{(p_{g,ni}, p_{g,n'j})}}{\max{(p_{g,ni}, p_{g,n'j})}}]_{(N\times3)\times(N\times3)}$. With this definition, the objective function becomes

$$\min \sum_{g} \quad \omega_{1} \sum_{\substack{ni \\ nj'}} \left(\sum_{k \in [K]} x_{ni,k} x_{n'j,k} \ q_{ni,n'j} \right) + \\ \omega_{2} \sum_{\substack{ni \\ nj}} \left(\sum_{h \in \{0,1,2\}} \left(\sum_{k \in [K]} x_{ni,k} m_{k,h} \right) \left(\sum_{k \in [K]} x_{n'j,k} m_{k,h} \right) q_{ni,n'j} \right)$$

Now we can express the objective function in matrix form.

$$\min \sum_{g} \quad \omega_1 \text{Tr}(\mathbf{X}^T \mathbf{Q}_g \mathbf{X}) + \omega_2 \text{Tr}(\mathbf{M}^T \mathbf{X}^T \mathbf{Q}_g \mathbf{X} \mathbf{M})$$

The difference between the first and second terms is that in the second term, we used XM instead of X since mode 3 is required. In summary, we have

$$\min \sum_{g} \omega_{1} \operatorname{Tr}(\mathbf{X}^{T} \mathbf{Q}_{g} \mathbf{X}) + \omega_{2} \operatorname{Tr}(\mathbf{M}^{T} \mathbf{X}^{T} \mathbf{Q}_{g} \mathbf{X} \mathbf{M})$$
 (7)

$$\mathbf{X}\mathbf{1}_K = \mathbf{1}_{N \times 3},\tag{9}$$

$$\begin{bmatrix} -2 & -2 & -2 \\ \vdots & & \\ -2 & -2 & -2 \end{bmatrix} \le \mathbf{XLS} \le \begin{bmatrix} 2 & 2 & 2 \\ \vdots & & \\ 2 & 2 & 2 \end{bmatrix}$$
(10)