Numerical Algorithms for HPC

Linear Algebra introduction

1

Overview

- This lecture will cover:
 - why matrices and linear algebra are so important

2

- basic terminology
- Gauss-Jordan elimination
- LU factorisation
- error estimation and iterative improvement

epcc

Linear algebra

- In mathematics linear algebra is the study of linear transformations and vector spaces...
- ...in practice linear algebra is the study of matrices and vectors
- Many physical problems can be formulated in terms of matrices and vectors

3

3

Health Warning

- Don't let the terminology scare you
 - concepts quite straightforward, algorithms easily understandable
 - implementing the methods is often surprisingly easy
 - but numerous variations (often for special cases or improved numerical stability) lead to an explosion in terminology

Basic matrices and vectors

Matrix

Vector

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$v = \left(\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right)$$

A matrix multiplied by a vector gives another vector

$$Av = w = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{pmatrix}$$

Linear Systems as Matrix Equations

- Many problems expressible as linear equations
 - two apples and three pears cost 40 pence
 - three apples and five pears cost 65 pence
 - how much does one apple or one pear cost?
- Express this as

$$2a + 3p = 40$$

$$3a + 5p = 65$$

...or in matrix form

$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} 40 \\ 65 \end{bmatrix}$$

Matrix x vector = vector

Standard Notation

For a system of N equations and N unknowns

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1N}x_N = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2N}x_N = b_2$

.

$$a_{N1}x_1 + a_{N2}x_2 + \ldots + a_{NN}x_N = b_N$$

- coefficients form a matrix A with elements a_{ii}
- unknowns form a vector x with elements x_i
- solution forms a vector b with elements b_i
- All linear equations have the form A x = b

7

7

Matrix inverse

- A x = b implies $A^{-1}A x = x = A^{-1}b$
- Simple formulae exist for inverting a matrix when N=2

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

$$\begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 40 \\ 65 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$$

- Rarely need (or want) to store the explicit inverse
 - usually only require the solution to a particular set of equations
- Algebraic inversion impractical for large N
 - use numerical algorithms such as Gaussian Elimination

Simultaneous Equations

Equations are:

$$2a + 3p = 40$$
 (i)

$$3a + 5p = 65$$
 (ii)

$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} 40 \\ 65 \end{bmatrix}$$

- computing 2 x (ii) 3 x (i) gives p = 130 120 = 10
- substitute in (i) gives $a = 1/2 \times (40 3 \times 10) = 5$
- Imagine we actually had

$$4.00000 \text{ a} + 6.00001 \text{ p} = 80.00010$$
 (ii)

(ii) - 2 x (i) gives
$$(6.00001 - 6.00000)$$
 p = $(80.00010 - 80.00000)$

(i)

- cancellations on both sides may give inaccurate numerical results
- value of p comes from multiplying a huge number by a tiny one
- How can we tell this will happen in advance?

9

9

Matrix Condition Number

- Characterise a matrix by its condition number
 - gives a measure of the range of the floating point numbers that will be required to solve the system of equations
- A well-conditioned matrix
 - has a small condition number
 - and is numerically easy to solve
- An ill-conditioned matrix
 - has a large condition number
 - and is numerically difficult to solve
- A singular matrix
 - has an infinite condition number
 - is impossible to solve numerically or analytically

Calculating the Condition Number

· Easy to compute condition no. for small problems

```
2a + 3 p = 40
3a + 5 p = 65
```

- Has a condition number of 46 (ratio of largest/smallest eigenvalue)

```
2.00000 a + 3.00000 p = 40.00000
4.00000 a + 6.00001 p = 80.00010
```

- Has a condition number of 8 million!
- Very hard to compute for real problems
 - but methods exist for obtaining good estimates

11

11

Relevance of Condition Number

- Gives a measure of the range of the scales of numbers in the problem
 - e.g. if condition number = 46, largest number required in calculation will be roughly 46 times larger than smallest
 - if condition number = 10^7 , this may be a problem for single precision where we can only resolve one part in 10^8
- May require higher precision to solve ill-conditioned problems

12

- in addition to a robust algorithm

Simultaneous Equations revisited

One way to solve our equations

Note where the
$$1.5 = 3/2$$
 comes from

- (2a + 3p = 40)(i)
- 3a + 5p = 65(ii)
- would be to replace (ii) with (ii) 1.5 x (i) giving
 - 2a + 3p = 40 (i)
 - 0a + 0.5p = 5 (ii updated)
- Not as nice this time due to non-integer values but can think of this as a new matrix and vector equivalent to initial problem

$$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} 40 \\ 65 \end{bmatrix} \text{ becomes } \begin{bmatrix} 2 & 3 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} a \\ p \end{bmatrix} = \begin{bmatrix} 40 \\ 5 \end{bmatrix}$$

Note the 0 here Easy to calculate $p = \frac{5}{0.5} = 10$

13

Gauss-Jordan Elimination

- The technique you may have learned at school
 - subtract rows of A from other rows to eliminate off-diagonals
 - must perform same operations to RHS (i.e. b)

eliminate
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} a_{ij} \rightarrow a_{ij} - \frac{a_{i1}}{a_{11}} a_{1j} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{bmatrix}$$

- Pivoting
 - using row p as the pivot row (p=1 above) implies division by a_{nn}
 - very important to do row exchange to maximise a_{pp}
 - · Within a process rows won't usually move in memory just note permutations
 - More complicated in parallel as rows or columns may be distributed!
 - this is partial pivoting (full pivoting includes column exchange)

Observations

- · Gauss-Jordan is a simple direct method
 - we know the operation count at the outset, complexity $O(N^3)$
 - iterative methods are optimised for a particular b see later
- · Possible to reduce A to purely diagonal form
 - solving a diagonal system is trivial

$$\begin{bmatrix} a'_{11} & 0 & 0 & 0 \\ 0 & a'_{22} & 0 & 0 \\ 0 & 0 & a'_{33} & 0 \\ 0 & 0 & 0 & a'_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \end{bmatrix} \rightarrow \begin{bmatrix} a'_{11}x_1 = b'_1 \\ a'_{22}x_2 = b'_2 \\ a'_{33}x_3 = b'_3 \\ a'_{44}x_4 = b'_4 \end{bmatrix}$$

- better to reduce to upper triangular - Gaussian Elimination

15

15

Gaussian Elimination

· Operate on active sub-matrix of decreasing size

$$\begin{bmatrix} a'_{11} & a'_{12} & a'_{13} & a'_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{bmatrix} \rightarrow \begin{bmatrix} a'_{11} & a'_{12} & a'_{13} & a'_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a'_{33} & a'_{34} \\ 0 & 0 & a'_{43} & a'_{44} \end{bmatrix} \rightarrow \dots$$

- Solve resulting system with back-substitution
 - can compute x_4 first, then x_3 , then x_2 , etc...

$$\begin{bmatrix} a'_{11} & a'_{12} & a'_{13} & a'_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & 0 & a'_{33} & a'_{34} \\ 0 & 0 & 0 & a'_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ a'_{4} \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \end{bmatrix} \begin{bmatrix} a'_{11}x_1 + a'_{12}x_2 + a'_{13}x_3 + a'_{14}x_4 = b'_1 \\ a'_{22}x_2 + a'_{23}x_3 + a'_{24}x_4 = b'_2 \\ a'_{33}x_3 + a'_{34}x_4 = b'_3 \\ a'_{44}x_4 = b'_4 \end{bmatrix}$$

16

LU factorisation

- · Gaussian Elimination is a practical method
 - must do partial pivoting and keep track of row permutations
 - restriction: must start a new computation for every different b
- Upper-triangular system Ux = b easy to solve
 - likewise for lower-triangular Lx = b using forward-substitution
- Imagine we could decompose A = LU
 - -Ax = (LU)x = L(Ux) = b
 - first solve Ly = b then Ux = y
 - each triangular solve has complexity $O(N^2)$
- But how do we compute the L and U factors?

17

17

Computing L and U

- Clearly only have N² unknowns
 - assume L is unit lower triangular and U is upper triangular

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ l_{21} & 1 & \cdot & \cdot \\ l_{31} & l_{32} & 1 & \cdot \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ \cdot & u_{22} & u_{23} & u_{24} \\ \cdot & \cdot & u_{33} & u_{34} \\ \cdot & \cdot & \cdot & u_{44} \end{bmatrix}$$

- writing out in full

Implementation

Can pack LU factors into a single matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \rightarrow \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ l_{21} & u_{22} & u_{23} & u_{24} \\ l_{31} & l_{32} & u_{33} & u_{34} \\ l_{41} & l_{42} & l_{43} & u_{44} \end{bmatrix}$$

- RHS computed in columns
 - once l_{ij} or u_{ij} is calculated, a_{ij} is not needed any more
 - can therefore do LU decomposition in-place
 - elements of A over-written by L and U
 - complexity is $O(N^3)$

19

19

Crout's Algorithm

- Replaces A by its LU decomposition
 - implements pivoting, i.e. decomposes row permutation of A
 - computation of l_{ij} requires division by u_{ij}
 - can promote a sub-diagonal element to a diagonal element as appropriate
 - essential for stability with large N
- Loop over columns j
 - compute u_{ij} for i = 1, 2, ..., j
 - compute l_{ij} for i = j + 1, j + 2, ..., N
 - pivot as appropriate before proceeding to next column
- For details see book: Numerical Recipes section 2.3
- Can parallelise various versions of LU algorithms but will look at more general parallel matrix libraries shortly

Procedure

- To solve A x = b
 - decompose A into L and U factors, e.g. via Crout's algorithm
 - replaces *A* in-place, so now LUx = b.
 - $\operatorname{set} x = b$
 - do in-place solution of Lx := x (forward substitution)
 - do in-place solution of Ux := x (backward substitution)
- Advantages
 - pivoting makes the procedure stable
 - only compute LU factors once for any number of vectors b
 - subsequent solutions are $O(N^2)$ after initial $O(N^3)$ factorisation
 - to compute inverse, solve for a set of N unit vectors b
 - determinant of A can be computed from the product of u_{ii}

21

21

Quantifying the Error

- We hope to have solved A x = b there will inevitably be errors due to limited precision
 - can quantify this by computing the residual vector r = b A x
 - typically quote the root-mean-square residue

$$residue = \frac{||r||_2}{||b||_2}, \quad ||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{N} x_i^2}$$

- length defined by L_2 norm ("two-norm") other norms exist
- Residue may not be the best measure
 - really want difference δx from the perfect solution x
 - residual gives the error in the RHS b
 - but of course we don't know the perfect solution!

Error in the Solution

- Let \hat{x} be perfect solution (which we don't know!)
 - i.e. $A\hat{x} = b$, so the residual $\hat{r} = b A \hat{x} = 0$
- Our numerical solution is x
 - we have a finite residual r = b Ax
 - i.e. Ax = b r
- If we write $x = \hat{x} + \delta x$

$$Ax = A(\hat{x} + \delta x) = A \hat{x} + A\delta x = b + A\delta x$$

but: $Ax = b - r$ i.e. $b - r = b + A\delta x$
so: $A \delta x = -r$

- Can solve for error δx in numerical solution x
 - without knowing the perfect solution!

23

23

Iterative Improvement

- Exact solution $\hat{x} = x \delta x$
 - but we know that $A \delta x = -r$
 - can easily solve for δx as we already have the LU factors of A
- Procedure
 - compute LU factors of A and solve Ax = b
 - calculate residual vector r = b Ax and compute residue
 - solve $A\delta x = -r$ and improve the solution $x \to x \delta x$
 - re-compute the residue and see how much it has reduced
 - repeat as appropriate
- Must compute elements r_i in double precision
 - but only need to store using single precision
 - Result can often then be found to full single precision

Summary

- Dense matrices arise from linear equations
 - standard notation is Ax = b
- · Matrices characterised by their condition number
 - equations difficult to solve numerically have large condition number
 - · an ill-conditioned matrix
 - may lead to large errors in our solution
 - · so always compute the residue!
- Have covered direct solution methods for Ax = b
 - all are basically variants of Gaussian Elimination
 - rather than storing A^{-1} , compute the LU factors of A
 - can then solve further equations Ax = c, Ax = d, ... at little extra cost
 - the larger the condition number, the harder the problem
 - pivoting is essential in practice for numerical stability

25

25

LU Factorisation Exercise

- Solve a dense system of equations
 - you are given a template code in C, Fortran or Java
- The codes should compile and run as they stand

```
$ gfortran -o lufact lufact.f90
$ ./lufact
$ gcc -o lufact lufact.c
$ ./lufact
$ javac lufact.java
$ java lufact
```

- Supplied code doesn't do anything useful
 - generates a random matrix A and a right-hand-side b
 - but ${f you}$ must supply ${\it LU}$ decomposition and forward/backward substitution code to solve for ${\it x}$
 - as supplied, codes simply set ${\it L}$ and ${\it U}$ to zero and ${\it x}={\it b}$

26

Exercise notes

- For simplicity
 - do not implement partial pivoting
 - the system is constructed to have a solution $x_i = 1$
 - unlike real problems, easy to check if you have the right answer!
- Debugging small problems (N <= 6)
 - code writes out L, U, L multiplied by U, x and Ax
 - if your LU decomposition is correct
 - L will be unit lower triangular, U will be upper triangular
 - L times U will be equal to the original matrix A
 - if your forward/backward substitution is correct
 - x will contain numbers all very close to 1.0 (the solution)
 - Ax will be close to b (since we are trying to solve Ax = b)
 - · you MUST quantify this by computing the residual

27

27

Aims

- · You should try to
 - get the right answer!
 - quantify the error by computing the residual
 - · for this test case we can also compare to the error in the solution

28

- see how the residual (a measure of the error) varies with N
- investigate iterative improvement
- look at the effect of using double precision

Asides (not examinable!)

- Uniqueness and existence of LU decomposition
 - LU decomp always exists if we allow pivoting
 - To see if LU decomp exists need to look at determinants of the submatrices resulting when we remove everything to the left and above each diagonal
 - If LU decomp exists and we force all diagonal entries of L (or U) to be all 1 then LU decomp is unique
- If A is Symmetric Positive Definite
 - can decompose $A = U^T U$
 - Crout's algorithm is simpler as $l_{ij}=u_{ji}$
 - called a Cholesky decomposition
 - · ability to do Cholesky actually proves that A is SPD

29

29

Aside: LU factorisation is Gaussian Elimination!

 Gaussian elimination transforms a square matrix into an upper triangular matrix

$$A \rightarrow U$$

- We can think of the Gaussian Elimination process as an operation being performed on the matrix A
- In turn can construct a matrix which performs this operation: $\tilde{L}A = U$
- This matrix, \tilde{L} , happens to be lower triangular, rearranging gives

$$\tilde{L} A = U$$

$$A = \tilde{L}^{-1}U$$

• The inverse of a lower triangular matrix is also lower triangular: $L = \tilde{L}^{-1}$

Eigenvalues

- The following slides are all for information only
 - you are not expected to understand the maths and none of this is examinable

31

31

Eigenvalues

- Can compute the eigenvalues of A
 - a small eigenvalue indicates a numerical problem
 - an $N \times N$ matrix has, in general, N eigenvalues $\lambda_1, \lambda_2, ..., \lambda_N$.
 - conventionally order them so that $|\lambda_1| < |\lambda_2| < ... < |\lambda_{N-1}| < |\lambda_N|$
 - eigenvalues for first problem on slide 9 are 0.15 and 6.85
 - eigenvalues for second problem are 0.000001 and 8.000009
- A matrix is, for most purposes, "equivalent" to the diagonal matrix formed by the eigenvalues

$$\begin{bmatrix} a_{11} \ a_{12} \ a_{13} \ a_{14} \\ a_{21} \ a_{22} \ a_{23} \ a_{24} \\ a_{31} \ a_{32} \ a_{33} \ a_{34} \\ a_{41} \ a_{42} \ a_{43} \ a_{44} \end{bmatrix} \approx \begin{bmatrix} \lambda_1 \ 0 \ 0 \ 0 \\ 0 \ \lambda_2 \ 0 \ 0 \\ 0 \ 0 \ \lambda_3 \ 0 \\ 0 \ 0 \ 0 \ \lambda_4 \end{bmatrix}$$

32

Characterising Matrices

- Individual entries in matrix have little meaning
 - values can be changed by re-scaling equations
 - structure can be changed by re-labelling variables
- Important global characteristics
 - determinant
 - condition number
- · Can both be expressed in terms of eigenvalues
 - unfortunately, computing the eigenvalues is much harder than solving linear equations!
 - we will see that we can compute the determinant in other ways

33

33

Matrix Properties

- Determinant
 - the product of the eigenvalues λ_i
 - a zero eigenvalue implies a zero determinant
 - comes from a singular matrix, ie a set of equations that are impossible to solve (or no unique solution)
- Condition number
 - given by ratio of maximum to minimum eigenvalue: λ_N/λ_1
 - poorly conditioned matrices have a large condition number
 - · and a small determinant
 - correspond to equations that are numerically difficult to solve

34

Characterising a Matrix

- This is an Applied course so
 - for most practical purposes a matrix can be thought of as being a diagonal matrix made up of the eigenvalues
 - a theorem true for diagonal matrices is probably true in general!
- When does $A^M = A \times A \times A \times \cdots \times A$ converge to zero?
 - when all the eigenvalues have absolute value < 1

$$\begin{bmatrix} \lambda_1 & \cdot & \cdot & \cdot \\ \cdot & \lambda_2 & \cdot & \cdot \\ \cdot & \cdot & \lambda_3 & \cdot \\ \cdot & \cdot & \cdot & \lambda_4 \end{bmatrix}^M = \begin{bmatrix} \lambda_1^M & \cdot & \cdot & \cdot \\ \cdot & \lambda_2^M & \cdot & \cdot \\ \cdot & \cdot & \lambda_3^M & \cdot \\ \cdot & \cdot & \cdot & \lambda_4^M \end{bmatrix}$$

epcc

35

35

Matrices in Computational Science

- · Often have very nice properties, eg
 - Symmetric: $a_{ij} = a_{ji}$ which guarantees real eigenvalues
 - Positive Definite: all eigenvalues are greater than zero
 - for an SPD matrix $x^T A x$ is positive for all vectors x

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdot & \cdot & \cdot \\ \cdot & \lambda_2 & \cdot & \cdot \\ \cdot & \cdot & \lambda_3 & \cdot \\ \cdot & \cdot & \cdot & \lambda_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots$$

- Physical significance of eigenvalues / vectors
 - engineering: frequency of vibration / direction of movement
 - quantum mechanics: energy of electron / distribution in space

epcc

Special Matrices

- If A is singular or very ill-conditioned
 - can do a Singular Value Decomposition
 - SVD is, in some sense, the "best" of all possible inverses
 - beyond the scope of this course

37

