Combinational Circuit Design

Design the following circuits with Verilog using assign statements

1)

- The design has 7 inputs and 2 outputs
- Use assign statements to design the following

2)

- The design has 5 inputs and 2 outputs
 - Inputs
 - i. $D \rightarrow width = 3$
 - ii. A, B, C, Sel -> width = 1
 - Outputs
 - i. Out, out_bar -> width = 1
- Use Behavioral coding style to implement the following

1

- 3) Implement 4-bit adder using addition operator and assign statement
 - The design takes 2 inputs (A, B) and the summation is assigned to output (C) ignoring the carry
- 4) Implement 2-to-4 Decoder using conditional operator (A logic decoder has n input lines and 2^n output lines. Each output line corresponds to a unique combination of the input values.)
 - The design has input A (2 bits) and output D (4 bits)
 - you can use the following format for the conditional operator.
 - assign <output_signal> = <condition1> ? <value1> :<condition2> ? <value2> : <default_value>);

A_1	A_0	D_3	D_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

- 5) Implement an even parity generator module using assign statement. In case you don't know what a parity bit is, please check this <u>link</u>. The design input is a bus where a reduction operator will be used to generate the even parity bit.
 - The design has 1 input **A** (8 bits) and 1 output **out_with_parity** (9 bit) where the parity bit calculated will be inserted in the least significant bit of the output bus and the remaining bits will be the input A (Hint: use concatentation).

6)

In this design, you will **connect your 4-bit ALU (done in the lab) to a 7-segment display** so that the result of the ALU operation is shown as a **hex digit (0–F)**.

Your design will:

- Use your ALU module from the previous lab with parameter N = 4.
 - You should instantiate it inside your design
- Takes two 4-bit inputs A and B.

- Takes a opcode to decide which ALU operation to perform.
- Takes an **enable** input to control whether the display is active.
- Uses a **7-segment display** (with 7 output wires: a to g) to show the ALU result.

What the ALU Does

- The ALU takes A, B, and opcode, and computes a 4-bit result.
- This result will be passed to a **7-segment decoder**.
- The decoder converts the 4-bit result into 7 control signals (a–g) to light up the display.

What the Display Shows

- The 7-segment display shows the **hex value** of the ALU result.
 - o If the result is 4'b1010 (10 in decimal), it should show A.
 - o If the result is 4'b0001 (1 in decimal), it should show 1.
 - o And so on, up to F.

Inputs and Outputs

Signal	Туре	Description
Α	input [3:0]	First ALU operand
В	input [3:0]	Second ALU operand
opcode	input	Selects the ALU operation
enable	input	Enables the display
a–g	output	Controls for the 7-segment LEDs

Decoder Truth Table

	Input	Output						
Digit	enable	a	b	С	d	e	f	g
0	1	1	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0
2	1	1	1	0	1	1	0	1
3	1	1	1	1	1	0	0	1
4	1	0	1	1	0	0	1	1

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES

MOBILE NO.: 01009279775

5	1	1	0	1	1	0	1	1	
6	1	1	0	1	1	1	1	1	
7	1	1	1	1	0	0	0	0	
8	1	1	1	1	1	1	1	1	
9	1	1	1	1	1	0	1	1	
Α	1	1	1	1	0	1	1	1	
b	1	0	0	1	1	1	1	1	
С	1	1	0	0	1	1	1	0	
d	1	0	1	1	1	1	0	1	
Ε	1	1	0	0	_	1	1	1	
F	1	1	0	0	_	1	1	1	
X	0	0	0	0	0	0	0	0	

7-segment decoder

Deliverables:

Deliverables: The assignment should be submitted as a PDF file with this format <your_name>_Assignment1 for example Kareem_Waseem_Assignment1

Note that your document should be organized as 6 sections corresponding to each design above, and in each section, I am expecting the Verilog code for the design, and waveform snippets forcing different input values to verify the functionality of the design.