基础定义

集合: 具有某种特性性质的具体的或抽象的对象的全体.

元素: 集合中的每一个对象.

函数: 设 X 为非空集, 若 f 将 X 中元素 x 对应到实数 (复数), 则 f 为 X 上的实 (复) 函数.

特征函数: 设X为非空集,A为X的子集,称

$$\chi_A = \begin{cases} 1, & x \in A, \\ 0, & x \notin A, \end{cases}$$

为集 A 的特征函数.

上极限与下极限: $\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$ $\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$. 单调集列: 设 $\{A_n\}$ 为集列, 若 $\forall n \in \mathbb{N}$, $A_n \subset A_{n+1}(A_{n+1} \subset A_n)$, 则称 $\{A_n\}$ 为单增集列 (单

单调集列: 设 $\{A_n\}$ 为集列, 若 $\forall n \in \mathbb{N}$, $A_n \subset A_{n+1}(A_{n+1} \subset A_n)$, 则称 $\{A_n\}$ 为单增集列 (单减集列), 统称为单调集列.

映射 (映照): 设 A, B 为非空集, 存在一个规则 φ 使得 $\forall x \in A$, 按照规则 φ 都有一个确定的元素 $y \in B$ 与 x 对应, 记为 $\varphi : x \mapsto y$, 称 φ 是 A 到 B 的映射. y 为 x 在 φ 下的像, 记 $y = \varphi(x)$, $\varphi^{-1}(y) = \{x \in A : \varphi(x) = y\}$. 定义域为 $A = \mathcal{D}_{\varphi}$, 值域 $\varphi(A) = \mathcal{R}_{\varphi}$.

映射的延拓: φ , ψ 为 \mathcal{D}_{φ} , \mathcal{D}_{ϕ} 到 B 的映射, 若 $\mathcal{D}_{\varphi} \subset \mathcal{D}_{\psi}$ 且 $\forall x \in \mathcal{D}_{\varphi}$ 有 $\psi(x) = \varphi(x)$, 则 ψ 为 φ 在 \mathcal{D}_{ψ} 上的延拓, 记 $\varphi \subset \psi$, 称 φ 为 ψ 在 \mathcal{D}_{φ} 上的限制, 记为 $\varphi = \psi|_{\mathcal{D}_{\varphi}}$.

复合映射: $\varphi_1: A \to B$, $\varphi_2: B \to C$, 作 $\varphi: A \to C$, 使得 $\forall x \in A$, 有 $\varphi(x) = \varphi_2(\varphi_1(x))$, 称 φ 为 φ_1, φ_2 的复合映射, 记为 $\varphi_2 \circ \varphi_1$.

单射 (可逆映射): $\varphi: A \to B, \forall y \in \mathcal{R}_{\omega}$, 存在唯一的 $x \in A$ 使得 $\varphi(x) = y$, 称 φ 为单射.

双射 (一一对应): φ 为集合 A 到集合 B 上的单射, 即 $\mathcal{R}(\varphi) = B$, 则称 φ 为双射.

逆映射: 令 φ : $A = \mathcal{D}_{\varphi} \to \mathcal{R}_{\varphi} \subset B$, 若 φ : $x \mapsto y, x \in A, y \in B$, 则令 ψ : $y \mapsto x$, 称 ψ 为 φ 的 逆映射, 记 ψ 为 φ^{-1} .

恒等映射: 设 A 为集合, 称 A 到 A 的映射 $\varphi : x \mapsto x$ 为 A 上的恒等映射.

对等: 设 A, B 为两个集, 若存在 A 到 B 的双射 φ , 则称集 A 与集 B 对等 (相似), 记 $A \sim B$.

势: 设 A 为非空集, 所有与 A 对等的集合所构成的类, 称为 A 的势或者基数, 记为 \overline{A} , |A|, Card(A).

有限集: 设 A 为非空集, 若存在 $n \in \mathbb{N}$, 使得 $A \sim \{1, 2, \dots, n\}$, 则称 A 是有限集.

无限集: 设 A 为非空集, 若 A 不是有限集, 则称 A 为无限集.

可数集: 设 A 为非空集, 若 $A \sim \mathbb{N}$, 则称 A 为可数集.

至多可数集: 设 A 为非空集, 若 A 为有限集或可数集, 则称 A 为至多可数集.

不可数集: 设 A 为非空集, 若 A 不是至多可数集, 则称 A 为不可数集.

可数集: 设 A 为非空集,

关系: 设 X,Y 为两个集合, 若 R 为 $X \times Y$ 的一个子集, 即 $R \subset X \times Y$, 则称 R 为 X 到 Y 的一个关系. 特别的, X 到其自身上的关系称为 X 上的关系.

相关的: 设 R 为 X 到 Y 的一个关系, 若 $(x,y) \in R$, 则称 x 与 y 是 R-相关的, 记做 xRy.

剖分: 设 X 为一个集, $\{X_i, i \in I\}$ 是 X 的一族子集, 若满足 (1) $X_i \cap X_j = \emptyset$, $(i \neq j)$; (2) $\bigcap X_i = X$, 则称 $\{X_i, i \in I\}$ 为 X 的一个剖分.

构成区间: 设 G 为直线上的开集, 若开区间 $(a,b) \subset G$, 且端点 a,b 不属于 G, 则称 (a,b) 为 G 的一个构成区间.

开集,极限点,孤立点,导集,闭集,闭包

自密集: $A \subset A'$.

完全集: A' = A.

稠密集: $A, B \subset \mathbb{R}$, 若 $\forall b \in B$, $\exists \varepsilon > 0$, 使得 $(b - \varepsilon, b + \varepsilon) \cap A \neq \emptyset$, 则 A 在 B 中稠密, 当 $B = \mathbb{R}$ 时, A 为稠密集.

疏朗集: $S \subset \mathbb{R}$, 若 S 在任意的开区间中都不稠密, 则 S 为疏朗集 (也称无处稠密集).

集类 (类), 基本空间: $E \in 2^X$, 则 $E \to X$ 上的集类, $X \to E$ 的基本空间.

环: $R \to X$ 上的非空集类, 若 $\forall E_1, E_2 \in R$ 有 $E_1 \cup E_2 \in R$, $E_1 - E_2 \in R$, 则 $E_2 \in R$, 则 $E_3 \to R$ 上的环, 若 $E_3 \to R$, 则称 $E_3 \to R$ 力 $E_4 \to R$ 力 $E_5 \to R$ 力 $E_6 \to R$ 力 $E_7 \to R$ 力 $E_8 \to R$ $E_8 \to R$ 力 $E_8 \to R$ $E_8 \to R$

 σ **环**: 设 S 为 X 上的集类, 任意一列 $E_i \in S$ 均有 $\bigcup_{i=1}^{\infty} E_i \in S$, $E_1 - E_2 \in S$, 则称 S 为 X 上的 σ 环, 若 $X \in S$, 则 S 为 X 上的 σ 域.

单调类: M 为 X 上的集类, 若对 M 中任意单调集列 $\{E_n\}$ 有 $\lim_{n\to\infty} E_n \in M$, 则 M 为单调类.

集函数: 设 $\mathbb{R}_* = \mathbb{R} \cup \{\infty, -\infty\}$, 若 $\mu : E \to \mathbb{R}_*$, 其中 E 为集类, 则 μ 为集函数.

环 R 上的测度: R 为 X 上的环, μ 为 R 上的集函数, 若 μ 满足:

(1) $\mu(\varphi) = 0$; (2) $\forall E \in R, \mu(E) \ge 0$;

(3) 任何一列两两不交的集列 $E_i \in R$, 且 $\bigcup_{i=1}^{\infty} E_i \in R$, 则 $\mu\left(\bigcup_{i=1}^{\infty}\right) = \sum_{i=1}^{\infty} \mu(E_i)$.

 μ **零集**: 设 $\mu: R \to \mathbb{R}$ 为集函数, 若 $E \in R$ 使得 $\mu(E) = 0$, 则称 $E \to \mu$ 零集.

完备测度: μ 零集的子集都属于 R, 则 μ 为 R 上的完备测度.

外侧度: R 为 X 上的环, μ 为 R 上的测度, 令 μ^* : $H(R) \to \mathbb{R}$, 定义为

$$\mu^*(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(E_k) : \{E_k\} \subset R, E \subset \bigcup_{k=1}^{\infty} E_k \right\}$$

其中 $H(R) = \{E \subset X : 存在R$ 中的集列覆盖 $E\}$, 称 μ^* 为 μ 诱导的外侧度.

Caratheodory 条件: μ^* 为 R 上测度 μ 所诱导的外侧度, $E \in H(R)$, 若 E 满足 $\forall F \in H(R)$ 有

$$\mu^*(F) = \mu^*(E \cap F) + \mu^*(F - E),$$

则称 E 为 μ^* 可测集, 全体 μ^* 可测集构成的集类记为 R^* .

有限测度: R 为 X 上的环, μ 为 R 上的测度

 $(1) \forall E \in R, \mu(E) < \infty$, 称 μ 为有限测度.

- (2) $\forall E \in R$, 存在 $\{E_i\} \subset R$, 使得 $E \subset \bigcup_{i=1}^{\infty} E_i$ 且 $\forall i \in \mathbb{N}$, $\mu(E_i) < \infty$, 则称 μ 为 σ 有限测度.
- (3) 代数上的有限测度称为全有限测度,代数上的 σ 有限测度称为全 σ 有限测度.

Lebesgue 测度: \mathbb{R}^n 上半开半闭有限长方体全体所成的半环 P, 设 $m: P \to \mathbb{R}$, 为

$$m\left(\prod_{i=1}^{m}(a_{i},b_{i}]\right)=\prod_{i=1}^{n}(b_{i}-a_{i}),$$

 \tilde{m} 为环 $R_0 = R(P)$ 上的测度,记 \tilde{m} 为 m,称 σ 环 R_0^* 上的测度 m^* 为 Lebesgue 测度. R_0^* 为 Lebesgue 可测集,称 $\mathcal{L} = R_0^*$ 为 Lebesgue 可测集类.

Borel 类: $\mathcal{B} = R_{\sigma}(R_0)$.

等测包: $E \subset \mathbb{R}$, 存在 $H \in \mathcal{L}$, 且 $E \subset H$, 且 $m^*(E) = m^*(H)$, 则称 H 为 E 的等测包.

可测空间: 设 R 为 X 上的 σ 环, 且 $X = \bigcup_{E \in R} E$, 则称 (X,R) 为可测空间, R 中元素称为 (X,R) 中的可测集.

Lebesgue 可测空间: $(\mathbb{R}^n, \mathcal{L})$ 为 Lebesgue 可测空间, \mathcal{L} 中元素为 Lebesgue 可测集.

Borel 可测空间: $(\mathbb{R}^n, \mathcal{B})$ 为 Borel 可测空间, \mathcal{B} 中元素为 Borel 可测集.

可测函数: 设 (X,R) 为可测空间, $E \subset X$, $f:E \to \mathbb{R}$, 若 $\forall t \in \mathbb{R}$, 由 $\{x \in E: f(x) \ge t\} \in R$, 则称 f 为 E 上关于 (X,R) 的可测函数.

简单函数: 设 (X,R) 为可测空间, $E \in R$, 若 $f: E \to \mathbb{R}$ 可表示为 $f(x) = \sum_{i=1}^k \alpha_i \chi_{E_i}(x)$, 其中 $\varphi_1, \cdots, \varphi_k \in \mathbb{R}, E_1, \cdots, E_k \in R$ 两两不交, 且 $\bigcup_{i=1}^k E_i \subset E$, 则称 f 为 E 上的简单函数.

测度空间: 设 (X,R) 为可测空间, μ 为 R 上的测度, 则 (X,R,μ) 为测度空间. 当 μ 为 R 上的有限测度, 全有限测度, σ 有限测度, 全 σ 有限测度时, 称 (X,R,μ) 分别为有限测度空间, 全有限测度空间, σ 有限测度空间, 全 σ 有限测度空间 (在后面加上空间就行了).

Lebesgue 测度空间: 称 $(\mathbb{R}, \mathcal{L}, m)$ 为 Lebesgue 测度空间.

几乎处处: 设 (X, R, μ) 为测度空间, $E \subset X$, P 为一个关于 E 的命题, 若 $\exists E_0 \subset X$ 使得 $\mu(E_0) = 0$, 且 $\forall x \in E - E_0$, 命题 P 成立, 则称命题 P 在 E 撒花姑娘几乎处处成立, 记 P(x) a.e. in E.

几乎处有限,相等,收敛: $f,g,f_k: E \to \mathbb{R}_*$, $\exists E_0 \subset X$ 使得 $\mu(E_0) = 0$ 且 $|f(x)| < \infty$,f(x) = g(x), $\lim_{k \to \infty} f_k(x) = f(x)$ $(x \in E - E_0)$.

几乎可测: $f: E \to \mathbb{R}_*$, 存在 $h: E \to \mathbb{R}_*$ 及 $E_0 \subset X$ 使得 $\mu(E_0) = 0$, 且 f(x) = h(x), $(x \in E - E_0)$.

依测度收敛: 设 (X, R, μ) 为测度空间, $E \subset X$, $\{f_n\}$ 为 E 上的可测函数, $f : E \to \mathbb{R}$ 为 E 上的有限函数, 若 $\forall \varepsilon > 0$, 有 $\lim_{n \to \infty} \mu(E(|f_k - f| > \varepsilon)) = 0$, 则称 $\{f_k\}$ 为 E 上依测度 μ 收敛于 f.

依测度基本列: 设 (X, R, μ) 为测度空间, $E \subset X$, $\{f_k\}$ 为 E 上可测函数列, 若 $\forall \varepsilon, \delta > 0$, $\exists K \in \mathbb{N}$, 使得

$$\mu(E(|f_k - f_j| > \varepsilon)) < \delta \quad (k, j > K)$$

则称 $\{f_k\}$ 为依测度基本列.

近一致收敛: 设 (X, R, μ) 为测度空间, $E \in R$, f, f_1, f_2, \cdots 为 E 上广义实值函数, 若 $\forall \delta > 0$, $\exists E_\delta \subset E$ 使得 $\mu(E - E_\delta) < \delta$ 且在 E_δ 上, $\{f_k\}$ 一致收敛于 f, 则 $\{f_k\}$ 在 E 上近一致收敛于 f.

非负简单函数积分: 设 (X, R, μ) 为测度空间, $E \in R$, 设 f 为 X 上的非负简单函数, $f = \sum_{i=1}^{p} c_i \chi_{A_i}$, 其中 $c_1, \dots, c_p \ge 0$, $A_1, \dots, A_p \in R$ 两两不交, 称

$$\int_E f \, \mathrm{d}\mu := \sum_{i=1}^p c_i \mu(E \cap A_i)$$

为 f 在 E 上的积分.

非负可测函数的积分: 设 (X, R, μ) 为测度空间, $E \in R, f$ 为 E 上的非负广义实值可测函数, 记 $H_f = \{h : h \ni X \bot$ 的非负简单函数且 $f|_E \leqslant f\}$, 称

$$\int_E f\,\mathrm{d}\mu := \sum \left\{ \int_E h\,\mathrm{d}\mu : h\in H_f
ight\}$$

为 f 在 E 上的积分, 若 $\int_{E} f d\mu < \infty$, 则称 f 为 E 上的可积函数. **正部, 负部**: 设 $(X, R, \mu$ 为测度空间, $E \in R, f$ 为 E 上广义实值可测函数, 记

$$f^+ = \max(f,0), \qquad f^- = \min(f,0),$$

称 f^+ 为 f 的正部, f^- 为 f 的负部.

一般可测函数的积分: 设 $(X,R,\mu$ 为测度空间, $E\in R,f$ 为 E 上的广义实值可测函数, 若非负可测函数 f^+,f^- 的积分 $\int_E f^+\,\mathrm{d}\mu$ 和 $\int_E f^-\,\mathrm{d}\mu$ 中至少一个是有限值, 则称

$$\int_E f \, \mathrm{d}\mu = \int_E f^+ \, \mathrm{d}\mu - \int_E f^- \, \mathrm{d}\mu$$

为 f 在 E 上的积分,若 f^+ 和 f^- 都为 E 上的可积函数,则 f 为 E 上的可积函数,称 f 在 E 上可积.