Abstract ID: 121
Presenter ID: D22.4

IDENTIFICATION OF A LIPOLYTIC Trichoderma sp. AND CHARACTERIZATION OF ITS EXTRACELLULAR LIPASE

RESCON 2021 – ORAL PRESENTATIONS

Department of Molecular Biology & Biotechnology Faculty of Science University of Peradeniya

N.K. Athukorala, Prof. P. Samaraweera

CONTENTS

01

INTRODUCTION

What are lipases?
Significance of fungal lipases
Objectives

02

METHODOLOGY

Establishment of pure cultures
Screening lipolytic activity
Identification of the fungus
Optimization of growth medium
Characterization of lipase
activity

03

RESULTS & DISCUSSION

Pure cultures and lipolytic activity
Identification of the fungus
Optimized growth conditions
Optimized lipase activity

04

CONCLUSIONS

01

INTRODUCTION

What are lipases?

- Lipases are a significant group of biocatalysts, hydrolyzing carboxylic ester bonds to release carboxylic acids and alcohols (Daiha et al., 2015)
- Lipases catalyze other industrially demanding reactions such as
 - ✓ Esterification
 - ✓ Transesterification
 - ✓ Acidolysis (Mehta et al., 2017)
- Most of the lipases get activated by a water-lipid interface

Figure 1: Diagrammatic representation of the overall mechanism of lipase catalysis

Significance of fungal lipases in industries

- ✓ Low cost of production
- ✓ Availability
- ✓ Ease in genetic manipulation (Mehta *et al.*, 2017)
- ✓ Ability to tolerate polar solvents
- ✓ Thermostability
- ✓ Stability at acidic pH (Liu et al., 2015)

RESEARCH OBJECTIVES

✓ To identify the lipolytic fungus up to species-level

 To optimize the growth medium for an enhanced lipase production

To characterize lipase activity to determine optimized conditions

O2METHODOLOGY

Identification of lipolytic activity

Tween 20 plate assay

Medium components:

Tween 20, peptone, NaCl, CaCl₂, agar, and distilled water pH: 5.8

Phenol red plate assay

Medium components:

Phenol red indicator, olive oil, CaCl₂, agar, and distilled water pH: 7.8

para-Nitrophenyl Palmitate (pNPP) assay (Gupta et al., 2002)

Solution 1 pNPP Isopropanol Triton-X 100

Solution 2Gum Arabic
Tris-HCl buffer (pH 8.0)

03

RESULTS & DISCUSSION

Pure cultures and lipolytic activity

Figure 2: Trichoderma colony on PDA

Tween 20 plate assay

Figure 3: White precipitate in Tween 20 plate assay

Phenol red plate assay

Figure 4: Yellow coloration in Phenol red plate assay

Identification of the fungus

Microscopic identification

- Spores: spherical (S)
- Mycelium: bidirectionally branching (M)

Figure 5: Microscopic image of the fungus stained with lactophenol in cotton blue

Molecular identification

- The amplified DNA fragment resulted in a band of 600 bp in 2 % agarose
- The obtained sequence showed: 100 % query cover

100 % identity

0.0 E value

with *Trichoderma longibrachiatum* sequence available in online database

Figure 6: The phylogenetic relationship of the unknown sequence to the selected sequences from the Gen Bank Database.

Optimization of growth medium

Figure 7: Affect of different carbon sources on lipase secretion from the lipolytic fungus

Figure 8: Affect of different nitrogen sources on lipase secretion from the lipolytic fungus

Figure 9: Affect of pH of the growth medium on lipase secretion from the lipolytic fungus

Optimization of lipase activity

Highest lipase activity at pH 6.0

Figure 10: Influenze of pH on lipase activity

Highest lipase activity at 40 °C

Figure 11: Influenze of temperature on lipase activity

Lipase activity was highest with Ca2+ as the cation

Figure 12: Influenze of different cations on lipase activity

Lipase activity was highest with NO₃- as the anion

Figure 13: Influenze of different anions on lipase activity

04

CONCLUSIONS

- ✓ Supported by the microscopic and molecular identification; the lipolytic fungus is *Trichoderma* longibrachiatum
- ✓ The crude lipase secretion from the lipolytic *Trichoderma* species could be increased by media optimization

Maximum lipase secretion achieved with olive oil as the carbon source, ammonium sulfate as the nitrogen source at a pH of 7.0.

✓ The crude lipase activity could be enhanced under optimized conditions

The crude enzyme activity highest at a pH of 6.0 and 40 °C. The enzyme activity could be enhanced with Ca^{2+} and NO_3^{-} .

Future research

- Further studies are required to test the enzyme's activity at high temperatures and the enzyme's thermostability
- Characterizing the enzyme activity with frequently used industrially important chemicals can expose more industrially favorable enzyme properties.

REFERENCES

- 1 Daiba K Angeli D. de Oliveiro C. D. & Almeide D. V. Are lineage still importe
- Daiha, K., Angeli, R., de Oliveira, S. D., & Almeida, R. V. Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. *PloS one*, 2015, 10(6): e0131624. DOI: https://doi.org/10.1371/journal.
- 2. Mehta, A., Bodh, U. and Gupta, R. Fungal lipases: a review. *Journal of Biotech* Research, 2017, 8(1): 58-77.
- 3. Liu, G., Hu, S., Li, L. and Hou, Y. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from *Aspergillus niger* AN0512. *Lipids*, 2015, **50**(11): 1155-1163. DOI 10.1007/s11745-015-4052-6.
- 4. Gupta, N., Rathi, P. and Gupta, R. Simplified para-nitrophenyl palmitate assay for lipases and esterases. *Analytical Biochemistry*, 2002, **311**(1): 98-99. DOI: 10.1016/s0003-2697(02)00379-2.

THANK YOU

Any questions?

nadeeshaa@sci.pdn.ac.lk +94 77 805 1105