Problem 2

```
In [ ]:
         import pandas as pd
         import matplotlib.pyplot as plt
In [2]: df = pd.read_parquet('train.parquet')
         df.head()
In [3]:
Out[3]:
                                   Patient-Uid
                                                   Date
                                                                     Incident
         0 a0db1e73-1c7c-11ec-ae39-16262ee38c7f 2019-03-09 PRIMARY DIAGNOSIS
         1 a0dc93f2-1c7c-11ec-9cd2-16262ee38c7f 2015-05-16 PRIMARY DIAGNOSIS
         3 a0dc94c6-1c7c-11ec-a3a0-16262ee38c7f 2018-01-30
                                                           SYMPTOM_TYPE_0
                                                               DRUG_TYPE_0
         4 a0dc950b-1c7c-11ec-b6ec-16262ee38c7f 2015-04-22
         8 a0dc9543-1c7c-11ec-bb63-16262ee38c7f 2016-06-18
                                                               DRUG_TYPE_1
```

Target drop off rate analysis

```
In [4]: ## calculate the ideal treatment
            ideal_duration=12
            ideal_duration_months=ideal_duration*30/365
   In [5]: # Filter for "Target Drug" incidents only
            df_target = df[df['Incident'] == 'TARGET DRUG']
   In [7]:
            df_target.shape
            (67218, 3)
   Out[7]:
   In [9]:
            # Assuming 'target_drug' is a DataFrame containing the relevant data
            df_target['Date'] = pd.to_datetime(df_target['Date'])
            # Resample the data by month and count the unique 'Patient-Uid'
            dropoff_count = df_target.resample('M', on='Date')['Patient-Uid'].nunique()
            dropoff_count.head()
            C:\TEMP\ipykernel_13576\330603786.py:2: SettingWithCopyWarning:
            A value is trying to be set on a copy of a slice from a DataFrame.
            Try using .loc[row_indexer,col_indexer] = value instead
            See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
            guide/indexing.html#returning-a-view-versus-a-copy
              df_target['Date'] = pd.to_datetime(df_target['Date'])
            Date
   Out[9]:
            2017-02-28
            2017-03-31
                           2
            2017-04-30
                           1
            2017-05-31
                           5
            2017-06-30
                          11
                         ן: Patient-Uid, dtype: int64
Loading [MathJax]/extensions/Safe.js
```

```
In [10]: dropoff_rate=dropoff_count/ideal_duration_months

In [11]: plt.plot(dropoff_rate)
    plt.title('Dropoff Rate Trend for "Target Drug"')
    plt.xlabel('Month')
    plt.ylabel('Dropoff Rate')
    plt.show()
```



```
In [21]: ##Calculate the number of unique patients for each dropoff incident in the DataFrame 'df
    dropoff_reasons = df.groupby('Incident')['Patient-Uid'].nunique()
    print(dropoff_reasons)
```

Incident	
DRUG_TYPE_0	24627
DRUG_TYPE_1	21716
DRUG_TYPE_10	2647
DRUG_TYPE_11	11917
DRUG_TYPE_12	875
DRUG_TYPE_13	1336
DRUG_TYPE_14	601
DRUG_TYPE_15	1015
DRUG_TYPE_16	347
DRUG_TYPE_17	143
DRUG_TYPE_18	1
DRUG_TYPE_2	23967
DRUG_TYPE_3	11261
DRUG_TYPE_4	2162
DRUG_TYPE_5	12139
DRUG_TYPE_6	23115
DRUG TYPE 7	25492
DRUG TYPE 8	13672
DRUG_TYPE_9	8612
PRIMARY DIAGNOSIS	27033
SYMPTOM_TYPE_0	12612
SYMPTOM_TYPE_0	3980
SYMPTOM_ITPE_I SYMPTOM TYPE 10	2625
SYMPTOM_TYPE_10	1426
SYMPTOM_TYPE_12	1302
SYMPTOM TYPE 13	702
SYMPTOM_TYPE 14	924
SYMPTOM TYPE 15	1240
SYMPTOM_TYPE_16	1663
SYMPTOM TYPE 17	1219
SYMPTOM_TYPE_18	359
SYMPTOM_TYPE_19	171
SYMPTOM_TYPE_2	3500
SYMPTOM_TYPE_20	41
SYMPTOM_TYPE_21	196
SYMPTOM_TYPE_22	173
SYMPTOM_TYPE_23	51
SYMPTOM_TYPE_24	38
SYMPTOM_TYPE_25	10
SYMPTOM_TYPE_26	50
SYMPTOM_TYPE_27	19
SYMPTOM_TYPE_28	6
SYMPTOM_TYPE_29	1736
SYMPTOM_TYPE_3	1077
SYMPTOM_TYPE_4	1630
SYMPTOM_TYPE_5	3238
SYMPTOM_TYPE_6	11473
SYMPTOM_TYPE_7	7712
SYMPTOM_TYPE_8	3574
SYMPTOM_TYPE_9	2753
TARGET DRUG	9374
TEST_TYPE_0	9726
TEST_TYPE_1	15883
TEST_TYPE_2	4736
TEST_TYPE_3 TEST_TYPE_4	2581
TEST_TYPE_4 TEST_TYPE_5	328
	128
Name: Patient-Uid,	urype: Int

In [22]: ###Sort the dropoff reasons in descending order (highest to lowest) based on the number sorted_dropoff_reasons = dropoff_reasons.sort_values(ascending=False)

```
In [24]: ##Create a bar plot to visualize the dropoff on the "Target Drug" with sorted dropoff re
    fig=plt.figure(figsize=(12,4))
    plt.bar(sorted_dropoff_reasons.index, sorted_dropoff_reasons)
    plt.title('Dropoff on "Target Drug"')
    plt.xticks(rotation=90)
    plt.xlabel('Incident')
    plt.ylabel('no of dropoffs')
    plt.show()
```


In []: