Algorithm Sketch

Ugur Yildirim 11/22/2018

Initialization Step

- 1) Check that:
 - D is connected
 - g(x) is continuous and differentiable everywhere in D
 - h(x) = ln(g(x)) is concave everywhere in D
- 2) Initialize T_k (vector with k elements):
 - $T_k = \{x_i; i = 1, ..., k\}$, where $x_1 \leq ... \leq x_k$ are the k abscissae in D where we will evaluate h(x)
 - If D unbounded on the left, chose x_1 s.t. $h'(x_1) > 0$
 - If D unbounded on the right, chose x_k s.t. $h'(x_k) < 0$
- 3) Evaluate h(x) and h'(x) on T_k and store these as two length k vectors, say h_x and h_prime_x
- 4) Calculate **z** (vector with k + 1 elements):
 - $z_0 = \text{lower bound of } D \text{ (or } -\infty \text{ if } D \text{ is not bounded below)}$
 - For j = 1, ..., k 1, $z_j = \frac{h(x_{j+1}) h(x_j) x_{j+1} h'(x_{j+1}) + x_j h'(x_j)}{h'(x_j) h'(x_{j+1})}$ (these are the points at which the tangents to h(x) at x_j and x_{j+1} intersect)
 - $z_k = \text{upper bound of } D \text{ (or } +\infty \text{ if } D \text{ is not bounded above)}$
- 5) Find $\mathbf{u}_{\mathbf{k}}$ (this is the piecewise linear upper hull formed by tangents to h(x) at $T_{\mathbf{k}}$):
 - $u_k(x) = h(x_j) + (x x_j)h'(x_j)$, where $x \in [z_{j-1}, z_j]$ and j = 1, ..., k
 - NB: $exp(u_k(x))$ is the rejection envelope on T_k
- 6) Find s_k:
 - $s_k(x) = \frac{exp(u_k(x))}{\int_D exp(u_k(x'))dx'}$
- 7) Find 1_k (this is the piecewise linear lower hull formed by connecting adjacent points on h(x) where T_k is evaluated)
 - $l_k(x) = \frac{(x_{j+1}-x)h(x_j)+(x-x_j)h(x_{j+1})}{x_{j+1}-x_j}$, where $x \in [x_j, x_{j+1}]$ and j=1,...,k-1• For $x < x_1$ or $x > x_k$, define $l_k(x) = -\infty$

 - NB: $exp(l_k(x))$ is the squezzing function on T_k

Sampling Step

- 1) Sample a value x^* from $s_k(x)$
- 2) Sample a value w independently from Unif(0,1)
- 3) Perform the test:
 - If $w \le exp\{l_k(x^*) u_k(x^*)\}$: - Accept x^*
 - Else:

```
– Evaluate h(x^*) and h'(x^*)
- If w \le h(x^*) - u_k(x^*):
    * Accept x^*
- Else:
    * Reject x^*
```

Updating Step

- 1) Follow this recipe:
 - If $h(x^*)$ and $h'(x^*)$ were evaluated in Sampling Step:

 - Include x^* in T_k to form T_{k+1} Relabel the x_i in T_k in ascending order
 - Construct new functions $u_{k+1}(x)$, $s_{k+1}(x)$, and $l_{k+1}(x)$
 - Increment \boldsymbol{k}
 - Return to Sampling Step if \boldsymbol{n} points have not been sampled yet
 - Else:
 - No update necessary, repeat Sampling Step if n points have not been sampled yet