```
1 {
2    'nombre': 'Barrera Peña Víctor Miguel',
3    'tipo': 'Tarea',
4    'no': '41',
5    'grupo': '6',
6    'materia': '1645 Diseño Digital Moderno',
7    'semestre': '2022-1',
8    'enunciado': 'Densidad de los transistores en la historia de los micros',
9    'fecha': '15-10-2021'
10 }
```

Densidad de los transistores en la historia de los micros

CPU

Processor	Transistor count	Date of introduction	Designer	Process	Area
Intel 4004	2,300	1971	Intel	10,000 nm	12 mm²
Intel 8008	3,500	1972	Intel	10,000 nm	14 mm²
MOS Technology 6502	3,510[3]	1975	MOS Technology	8,000 nm	21 mm²
Motorola 6800	4,100	1974	Motorola	6,000 nm	16 mm²
Intel 8080	4,500	1974	Intel	6,000 nm	20 mm²
RCA 1802	5,000	1974	RCA	5,000 nm	27 mm ²
TMS 1000	8,000	1974[4]	Texas Instruments	8,000 nm	11 mm²
Intel 8085	6,500	1976	Intel	3,000 nm	20 mm ²
Zilog Z80	8,500	1976	Zilog	4,000 nm	18 mm²
Motorola 6809	9,000	1978	Motorola	5,000 nm	21 mm ²
Intel 8086	29,000	1978	Intel	3,000 nm	33 mm²
Intel 8088	29,000	1979	Intel	3,000 nm	33 mm ²
WDC 65C02	11,500[5]	1981	WDC	3,000 nm	6 mm²
Intel 80186	55,000	1982	Intel	3,000 nm	60 mm ²
Motorola 68000	68,000[citation needed]	1979	Motorola	3,500 nm	44 mm²
Intel 80286	134,000	1982	Intel	1,500 nm	49 mm²
WDC 65C816	22,000[6]	1983	WDC	3000 nm[7]	9 mm²
Motorola 68020	190,000[8]	1984	Motorola	2,000 nm	85 mm ²
Intel 80386	275,000	1985	Intel	1,500 nm	104 mm
ARM 1	25,000[8]	1985	Acorn	3,000 nm	50 mm ²
Novix NC4016	16,000[9]	1985[10]	Harris Corporation	3,000 nm[11]	
ARM 2	30,000[8]	1986	Acorn	2,000 nm	30 mm²
Motorola 68030	273,000	1987	Motorola	800 nm	102 mm
TI Explorer's 32-bit Lisp machine chip	553,000[12]	1987	Texas Instruments	2,000 nm[13]	
DEC WRL MultiTitan	180,000[14]	1988	DEC WRL	1,500 nm	61 mm²
Intel i960	250,000[15]	1988	Intel	600 nm	

Processor	Transistor count	Date of introduction	Designer	Process	Area
Intel 80486	1,180,235	1989	Intel	1000 nm	173 mm²
ARM 3	310,000	1989	Acorn	1,500 nm	87 mm²
68040	1,200,000	1990	Motorola	650 nm	152 mm²
R4000	1,350,000	1991	MIPS	1,000 nm	213 mm ²
ARM 6	35,000	1991	ARM	800 nm	
Pentium	3,100,000	1993	Intel	800 nm	294 mm ²
ARM700	578,977[16]	1994	ARM	700 nm	68.51 mm²
68060	2,500,000	1994	Motorola	600 nm	218 mm ²
SA-110	2,500,000[8]	1995	Acorn/DEC/Apple	350 nm	50 mm²
ARM 9TDMI	111,000[8]	1999	Acorn	350 nm	4.8 mm ²
Pentium Pro	5,500,000[17]	1995	Intel	500 nm	307 mm
AMD K5	4,300,000	1996	AMD	500 nm	251 mm
Pentium II Klamath	7,500,000	1997	Intel	350 nm	195 mm
Pentium II Deschutes	7,500,000	1998	Intel	250 nm	113 mm
AMD K6	8,800,000	1997	AMD	350 nm	162 mm
Pentium III Katmai	9,500,000	1999	Intel	250 nm	128 mm ²
Pentium III Coppermine	21,000,000	2000	Intel	180 nm	80 mm²
Pentium II Mobile Dixon	27,400,000	1999	Intel	180 nm	180 mm
Pentium III Tualatin	45,000,000	2001	Intel	130 nm	81 mm²
AMD K6-III	21,300,000	1999	AMD	250 nm	118 mm
AMD K7	22,000,000	1999	AMD	250 nm	184 mm
Pentium 4 Willamette	42,000,000	2000	Intel	180 nm	217 mm
Pentium 4 Northwood	55,000,000	2002	Intel	130 nm	145 mm
Pentium 4 Prescott	112,000,000	2004	Intel	90 nm	110 mm
Pentium 4 Prescott- 2M	169,000,000	2005	Intel	90 nm	143 mm ²
Pentium 4 Cedar Mill	184,000,000	2006	Intel	65 nm	90 mm²
Pentium D Smithfield	228,000,000	2005	Intel	90 nm	206 mm

Processor	Transistor count	Date of introduction	Designer	Process	Area
Pentium D Presler	362,000,000	2006	Intel	65 nm	162 mm²
Atom	47,000,000	2008	Intel	45 nm	24 mm²
Barton	54,300,000	2003	AMD	130 nm	101 mm²
AMD K8	105,900,000	2003	AMD	130 nm	193 mm²
Itanium 2 McKinley	220,000,000	2002	Intel	180 nm	421 mm²
Cell	241,000,000	2006	Sony/IBM/Toshiba	90 nm	221 mm²
Core 2 Duo Conroe	291,000,000	2006	Intel	65 nm	143 mm²
Core 2 Duo Allendale	169,000,000	2007	Intel	65 nm	111 mm²
Itanium 2 Madison 6M	410,000,000	2003	Intel	130 nm	374 mm²
Atom "Medfield"	432,000,000[18]	2012	Intel	32 nm	64 mm²
AMD K10 quad-core 2M L3	463,000,000[19]	2007	AMD	65 nm	283 mm²
ARM Cortex-A9	26,000,000[20]	2007	ARM	45 nm	31 mm ²
Core 2 Duo Wolfdale 3M	230,000,000	2008	Intel	45 nm	83 mm²
Itanium 2 with 9 MB cache	592,000,000	2004	Intel	130 nm	432 mm²
Core 2 Duo Wolfdale	411,000,000	2007	Intel	45 nm	107 mm²
Core i7 (Quad)	731,000,000	2008	Intel	45 nm	263 mm²
AMD K10 quad-core 6M L3	758,000,000[19]	2008	AMD	45 nm	258 mm²
POWER6	789,000,000	2007	IBM	65 nm	341 mm²
Six-core Opteron 2400	904,000,000	2009	AMD	45 nm	346 mm²
16-core SPARC T3	1,000,000,000[21]	2010	Sun/Oracle	40 nm	377 mm²
Apple A7 (dual-core ARM64 "mobile SoC")	1,000,000,000	2013	Apple	28 nm	102 mm²
Quad-core + GPU Core i7	1,160,000,000	2011	Intel	32 nm	216 mm²
Six-core Core i7 (Gulftown)	1,170,000,000	2010	Intel	32 nm	240 mm²
8-core POWER7 32M L3	1,200,000,000	2010	IBM	45 nm	567 mm²

Processor	Transistor count	Date of introduction	Designer	Process	Area
8-core AMD Bulldozer	1,200,000,000[22]	2012	AMD	32 nm	315 mm²
Quad-core + GPU AMD Trinity	1,303,000,000	2012	AMD	32 nm	246 mm²
Quad-core z196[23]	1,400,000,000	2010	IBM	45 nm	512 mm²
Quad-core + GPU Core i7 Ivy Bridge	1,400,000,000	2012	Intel	22 nm	160 mm²
Quad-core + GPU Core i7 Haswell	1,400,000,000[24]	2014	Intel	22 nm	177 mm²
Dual-core Itanium 2	1,700,000,000[25]	2006	Intel	90 nm	596 mm²
Quad-core + GPU GT2 Core i7 Skylake K	1,750,000,000	2015	Intel	14 nm	122 mm²
Six-core Core i7 lvy Bridge E	1,860,000,000	2013	Intel	22 nm	256 mm²
Dual-core + GPU Iris Core i7 Broadwell-U	1,900,000,000[26]	2015	Intel	14 nm	133 mm²
Six-core Xeon 7400	1,900,000,000	2008	Intel	45 nm	503 mm²
Quad-core Itanium Tukwila	2,000,000,000[27]	2010	Intel	65 nm	699 mm²
Apple A8 (dual-core ARM64 "mobile SoC")	2,000,000,000	2014	Apple	20 nm	89 mm²
Apple A9 (dual-core ARM64 "mobile SoC")	> 2,000,000,000	2015	Apple	14 nm (Samsung) / 16 nm (TSMC)	96 mm² (Samsung) / 104.5 mm² (TSMC)
Apple A9X (dual-core ARM64 "mobile SoC")	> 3,000,000,000	2015	Apple	16 nm	143.9 mm²
8-core POWER7+ 80 MB L3 cache	2,100,000,000	2012	IBM	32 nm	567 mm²
Six-core Core i7/8- core Xeon E5 (Sandy Bridge-E/EP)	2,270,000,000[28]	2011	Intel	32 nm	434 mm²
8-core Xeon Nehalem-EX	2,300,000,000[29]	2010	Intel	45 nm	684 mm²
8-core Core i7 Haswell-E	2,600,000,000[30]	2014	Intel	22 nm	355 mm²
10-core Xeon Westmere-EX	2,600,000,000	2011	Intel	32 nm	512 mm ²

Processor	Transistor count	Date of introduction	Designer	Process	Area
Six-core zEC12	2,750,000,000	2012	IBM	32 nm	597 mm²
Apple A8X (tri-core ARM64 "mobile SoC")	3,000,000,000[31]	2014	Apple	20 nm	128 mm²
Qualcomm Snapdragon 835 (octa-core ARM64 "mobile SoC")	3,000,000,000[32][33]	2016	Qualcomm	10 nm	72.3 mm²
Qualcomm Snapdragon 845 (octa-core ARM64 "mobile SoC")	5,300,000,000[34][35]	2017	Qualcomm	10 nm	94 mm²
Qualcomm Snapdragon 710 (octa-core ARM64 "mobile SoC")		2018	Qualcomm	10 nm	
Qualcomm Snapdragon 675 (octa-core ARM64 "mobile SoC")		2018	Qualcomm	11 nm	
Qualcomm Snapdragon 850 (octa-core ARM64 "mobile SoC")	5,300,000,000[36][37]	2017	Qualcomm	10 nm	94 mm²
Qualcomm Snapdragon 855 (octa-core ARM64 "mobile SoC")		2018	Qualcomm	7 nm	73.27 mm²
Samsung Exynos 9820 (octa-core ARM64 "mobile SoC")		2019	Samsung	8 nm	127 mm²
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC")	8,500,000,000[38][39]	2018	Qualcomm	7 nm	112 mm²
8-core Itanium Poulson	3,100,000,000	2012	Intel	32 nm	544 mm²
10-core Core i7 Broadwell-E	3,200,000,000[40]	2016	Intel	14 nm	246 mm ² [41]
Apple A10 Fusion (quad-core ARM64 "mobile SoC")	3,300,000,000	2016	Apple	16 nm	125 mm²

Processor	Transistor count	Date of introduction	Designer	Process	Area
IBM z13	3,990,000,000	2015	IBM	22 nm	678 mm²
12-core POWER8	4,200,000,000	2013	IBM	22 nm	650 mm²
Apple A11 Bionic (hexa-core ARM64 "mobile SoC")	4,300,000,000	2017	Apple	10 nm	89.23 mm²
15-core Xeon Ivy Bridge-EX	4,310,000,000[42]	2014	Intel	22 nm	541 mm²
Zeppelin SoC Ryzen	4,800,000,000[43]	2017	AMD	14 nm	192 mm²
Ryzen 5 1600 Ryzen	4,800,000,000[44]	2017	AMD	14 nm	213 mm²
Ryzen 5 1600 X Ryzen	4,800,000,000[45]	2017	AMD	14 nm	213 mm²
61-core Xeon Phi	5,000,000,000[46]	2012	Intel	22 nm	720 mm²
Xbox One main SoC	5,000,000,000	2013	Microsoft/AMD	28 nm	363 mm²
18-core Xeon Haswell-E5	5,560,000,000[47]	2014	Intel	22 nm	661 mm²
IBM z14	6,100,000,000	2017	IBM	14 nm	696 mm²
Apple A12 Bionic (hexa-core ARM64 "mobile SoC")	6,900,000,000[48][49]	2018	Apple	7 nm	83.27 mm2
HiSilicon Kirin 960 (octa-core ARM64 "mobile SoC")	4,000,000,000[50]	2016	Huawei	16 nm	110.00 mm2
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC")	6,900,000,000[51]	2018	Huawei	7 nm	74.13 mm2
HiSilicon Kirin 970 (octa-core ARM64 "mobile SoC")	5,500,000,000[52]	2017	Huawei	10 nm	96.72 mm2
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC")	5,500,000,000[53]	2018	Huawei	12 nm	
Xbox One X (Project Scorpio) main SoC	7,000,000,000[54]	2017	Microsoft/AMD	16 nm	360 mm ² [54]
IBM z13 Storage Controller	7,100,000,000	2015	IBM	22 nm	678 mm²
28-core Xeon Platinum 8180	8,000,000,000[55]	2017	Intel	14 nm	

Processor	Transistor count	Date of introduction	Designer	Process	Area
22-core Xeon Broadwell-E5	7,200,000,000[56]	2016	Intel	14 nm	456 mm²
POWER9	8,000,000,000	2017	IBM	14 nm	695 mm²
72-core Xeon Phi	8,000,000,000	2016	Intel	14 nm	683 mm²
IBM z14 Storage Controller	9,700,000,000	2017	IBM	14 nm	696 mm²
32-core SPARC M7	10,000,000,000[57]	2015	Oracle	20 nm	
Apple A12X Bionic (octa-core ARM64 "mobile SoC")	10,000,000,000[58]	2018	Apple	7 nm	122 mm2
Apple A10X Fusion (hexa-core ARM64 "mobile SoC")	4,300,000,000[59]	2017	Apple	10 nm	96.40 mm2
Centriq 2400	18,000,000,000[60]	2017	Qualcomm	10 nm	398 mm2
32-core AMD Epyc	19,200,000,000	2017	AMD	14 nm	768 mm2
GC2 IPU	23,600,000,000	2018	Graphcore	16 nm	825 mm2
Tegra Xavier SoC	9,000,000,000[61]	2018	Nvidia	12 nm	350 mm ²

GPu

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
NV3	3,500,000	1997	NVIDIA	350 nm	90 mm²
Rage 128	8,000,000	1999	AMD	250 nm	70 mm²
NV5	15,000,000	1999	Nvidia	250 nm	
NV10	23,000,000	1999	Nvidia	220 nm	111 mm²
NV11	20,000,000	2000	Nvidia	180 nm	65 mm²
NV15	25,000,000	2000	Nvidia	180 nm	81 mm²
R100	30,000,000	2000	AMD	180 nm	97 mm²
NV20	57,000,000	2001	Nvidia	150 nm	128 mm²
R200	60,000,000	2001	AMD	150 nm	68 mm²
NV25	63,000,000	2002	Nvidia	150 nm	142 mm²
R300	107,000,000	2002	AMD	150 nm	218 mm²
R360	117,000,000	2003	AMD	150 nm	218 mm²
NV38	135,000,000	2003	Nvidia	130 nm	207 mm²
R480	160,000,000	2004	AMD	130 nm	297 mm²
G86 Tesla	210,000,000	2007	Nvidia	80 nm	127 mm²
G98 Tesla	210,000,000	2008	Nvidia	65 nm	86 mm²
NV40	222,000,000	2004	Nvidia	130 nm	305 mm²

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
RV710	242,000,000	2008	AMD	55 nm	73 mm²
GT218 Tesla	260,000,000	2009	Nvidia	40 nm	57 mm²
G84 Tesla	289,000,000	2007	Nvidia	80 nm	169 mm²
Cedar RV810	292,000,000	2010	AMD	40 nm	59 mm²
GF119 Fermi	292,000,000	2011	Nvidia	40 nm	79 mm²
G70	303,000,000	2005	Nvidia	110 nm	333 mm²
G96 Tesla	314,000,000	2008	Nvidia	55 nm	121 mm²
R520	321,000,000	2005	AMD	90 nm	288 mm²
Caicos RV910	370,000,000	2011	AMD	40 nm	67 mm²
R580	384,000,000	2006	AMD	90 nm	352 mm²
GT216 Tesla	486,000,000	2009	Nvidia	40 nm	100 mm²
G94 Tesla	505,000,000	2008	Nvidia	65 nm	240 mm²
RV730	514,000,000	2008	AMD	55 nm	146 mm²
GF108 Fermi	585,000,000	2011	Nvidia	40 nm	116 mm²
Redwood RV830	627,000,000	2010	AMD	40 nm	104 mm²
RV670	666,000,000	2008	AMD	55 nm	192 mm²
G80	681,000,000	2006	Nvidia	90 nm	480 mm²

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
R600	700,000,000	2007	AMD	80 nm	420 mm²
Turks RV930	716,000,000	2011	AMD	40 nm	118 mm²
GT215 Tesla	727,000,000	2009	Nvidia	40 nm	144 mm²
G92	754,000,000	2007	Nvidia	65 nm	324 mm²
RV740	826,000,000	2009	AMD	40 nm	137 mm²
RV770	956,000,000	2008	AMD	55 nm	256 mm²
RV790	959,000,000[63]	2008	AMD	55 nm	282 mm²
Juniper RV840	1,040,000,000	2009	AMD	40 nm	166 mm²
Oland	1,040,000,000	2013	AMD	28 nm	90 mm²
GF106 Fermi	1,170,000,000	2010	Nvidia	40 nm	238 mm²
GK107 Kepler	1,270,000,000	2012	Nvidia	28 nm	118 mm²
GT200b Tesla	1,400,000,000	2008	Nvidia	55 nm	470 mm²
GT200 Tesla	1,400,000,000[64]	2008	Nvidia	65 nm	576 mm²
Cape Verde	1,500,000,000	2012	AMD	28 nm	123 mm²
Barts RV940	1,700,000,000	2010	AMD	40 nm	255 mm²
GP108 Pascal	1,850,000,000	2017	Nvidia	14 nm	74 mm²
GM107 Maxwell	1,870,000,000	2014	Nvidia	28 nm	148 mm²

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
GF104 Fermi	1,950,000,000	2011	Nvidia	40 nm	332 mm²
Bonaire	2,080,000,000	2013	AMD	28 nm	160 mm²
Cypress RV870	2,154,000,000[65]	2009	AMD	40 nm	334 mm²
Polaris 12 "Lexa"	2,200,000,000	2017	AMD	14 nm	101 mm²
GK106 Kepler	2,540,000,000	2012	Nvidia	28 nm	221 mm²
Cayman RV970	2,640,000,000	2010	AMD	40 nm	389 mm²
Pitcairn	2,800,000,000	2012	AMD	28 nm	212 mm²
GM206 Maxwell	2,940,000,000	2014	Nvidia	28 nm	228 mm²
Polaris 11 "Baffin"	3,000,000,000	2016	AMD	14 nm	123 mm²
GF100 Fermi	3,200,000,000[66]	2010 Mar	Nvidia	40 nm	526 mm²
GF110 Fermi	3,000,000,000[66]	2010 Nov	Nvidia	40 nm	520 mm²
GP107 Pascal	3,300,000,000	2017	Nvidia	14 nm	132 mm²
GK104 Kepler	3,540,000,000[67]	2012	Nvidia	28 nm	294 mm²
Tahiti	4,312,711,873[68]	2011	AMD	28 nm	365 mm²
GP106 Pascal	4,400,000,000	2016	Nvidia	16 nm	200 mm²
Tonga	5,000,000,000	2014	AMD	28 nm	366 mm²
GM204 Maxwell	5,200,000,000	2014	Nvidia	28 nm	398 mm²

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
Polaris 10 "Ellesmere"	5,700,000,000[69]	2016	AMD	14 nm	232 mm²
Hawaii	6,300,000,000	2013	AMD	28 nm	438 mm²
GK110 Kepler	7,080,000,000[70]	2012[71]	Nvidia	28 nm	561 mm²
GP104 Pascal	7,200,000,000	2016	Nvidia	16 nm	314 mm²
GP102 Pascal	11,800,000,000	2017	Nvidia	16 nm	471 mm²
GM200 Maxwell	8,000,000,000	2015	Nvidia	28 nm	601 mm²
Fiji	8,900,000,000	2015	AMD	28 nm	596 mm²
Vega 10	12,500,000,000[72]	2017	AMD	14 nm	484 mm²
Vega 20	13,280,000,000	2018	AMD	7 nm	331 mm²
GP100 Pascal	15,300,000,000[73]	2016	Nvidia	16 nm	610 mm²
TU102 Turing	18,600,000,000	2018	Nvidia	12 nm	754 mm²
GV100 Volta	21,100,000,000[74]	2017	Nvidia	12 nm	815 mm²

Referencias

Alonso, R. (2021, 30 julio). *La Ley de Moore, explicada para que la entiendas*. HardZone. Recuperado 21 de diciembre de 2021, de https://hardzone.es/reportajes/que-es/ley-de-moore/

Wikipedia contributors. (2019, 30 mayo). *Transistor count*. Wikipedia. https://en.wikipedia.org/w/index.php?title=Transistor_count&oldid=899438445