Syllabus

GEO4251: Climate Change & Storms

• Understanding storms and their relationship to our changing climate through the analysis of data

Contact information

- Professor James B. Elsner
- Bellamy Room 314
- Lesson times MW 3:05-4:20 p.m.
- Student times TR 9:15-9:45 a.m., MW 2:15-3 p.m.
- Email jelsner@fsu.edu

Who am I?

- http://myweb.fsu.edu/jelsner/_site/ Web
- https://scholar.google.com/citations?user=uF8tRWQAAAAJ Research
- https://github.com/jelsner/ Code
- https://fediscience.org/@jelsner Social
- https://www.youtube.com/channel/UCmvKrcWTnNGjoy9OTGTz1qQ) Play

Description

- This course is for students who want to learn about the relationships between climate change and Earth's most powerful storms through the analysis and modeling of data
- All course materials are available on GitHub https://github.com/jelsner/CCS-2023

Expected learning outcomes

- On successful completion of this course, you will be able to:
- 1. Appraise the fundamental concepts, principles, theories, and terminology used in discussing the relationships between climate change and storminess
- 2. Apply the principles of data science to make effective graphs, tables and inferences
- 3. Contribute to contemporary scientific debates using empirical evidence

Materials and class meetings

- Computer and access to the internet
- Course slides are available through GitHub
- No textbook is required

Class meetings

- Each class period I will prepare a set of slides using Quarto. Quarto is an open-source scientific publishing system
- Quarto allows me to weave together narrative text and code to produce formatted output. Quarto documents are reproducible
- The slides (_.qmd files) are available on GitHub. The slide files are opened using an application called RStudio
- In-person lessons will be held in this room (Bellamy 208)

Grading

- You are responsible for:
- 1. Reading, watching, and running code in the lesson slides. You can do this during class or outside the classroom. I will not take attendance
- 2. Completing and returning the in-class labs on time
- Grades are determined by how well you do on the labs using the following standard

Standard

- A: Outstanding: few, in any, errors/omissions
- B: Good: only minor errors/omissions
- C: Satisfactory: minor omissions, at least one major error/omission
- D: Poor: several major errors/omissions
- F: Fail: many major errors/omissions

I will use the +/- system

Grades will be posted as they are recorded on FSU Canvas

Academic honor code

- https://fda.fsu.edu/academic-resources/academic-integrity-and-grievances/academic-honor-policy
- Americans With Disabilities Act: Students with disabilities needing academic accommodation should: (1) register with and provide documentation to the Student Disability Resource Center; (2) bring a letter indicating the need for accommodation and what type. This should be done during the first week of classes.

Diversity and inclusiveness

• It is my intent to present notes and data that are respectful of diversity: gender identity, sexuality, disability, age, socioeconomic status, ethnicity, race, nationality, religion, and culture

Schedule

Dates	Lessons	Topics
${1/9-2/1}$	1-6	Getting setup, R, working with data
2/6 - 13	7-9	Making graphs, quantifying trends
2/15-3/1	10-14	Weather/climate data, climate change
3/6-27	15-18	Climate swings, hurricane analytics
3/29 - 4/5	19-21	Hurricane analytics
4/10-26	22-26	Tornado analytics

26 dates: 20 lesson days + 6 lab days

Lab	Date	Lessons covered
1	Wednesday February 1	1-5
2	Monday February 13	7-8
3	Wednesday March 1	10-13
4	Monday March 27	15-17
5	Wednesday April 5	19-20
6	Wednesday April 19	22-24

Hardware and software

- You will need a laptop computer running either Windows, MacOS, or Linux. I use MacOS
- The class notes live on GitHub
- ullet Class notes are on slides made with an open-source scientific publishing system called Quarto
- Coding will be done in R through RStudio

Getting set up

- Go to https://github.com/jelsner/CCS-2023
- Follow instructions in the README.md file
- I will walk you through this on Wednesday

Our warming planet

https://www.youtube.com/embed/haBG2IIbwbA 30 seconds

• First-day attendance sign-in