# Teradyne

BECAUSE TESTING MATTERS









**MIPI D-PHY Interface Test** 





- MIPI D-PHY Overview
- Test Solutions with Standard Digital
  - D-PHY Rx
  - D-PHY Tx
- Improved Testing Capability
  - FPGA Solution on DIB
  - Protocol Aware (PA)
  - Hardware Source-Synchronous





## **MIPI D-PHY IP Core**

### **Overview**

MIPI D-PHY is a High-speed low power serial transceiver interface supporting interconnections of a wide range of low-power high-speed mobile applications such as digital Camera Serial Interface (CSI), graphic Display Serial Interface (DSI), UniPro™ and other MIPI devices using the PHY Protocol Interface (PPI).

- Flexible
- Low cost
- High Speed
- Low power consumption
- Serial interface







## **MIPI UniPro**

#### Introduction to the MIPI UniPro Standard



MIPI UniPro defines a layered protocol on a highspeed serial interface for interconnecting devices and components within mobile systems such as cellular telephones, handheld computers, digital cameras, and multimedia devices.

UniPro (Unified Protocol) is a standard developed by the MIPI Alliance (Mobile Industry Processor Interface, www.mipi.org).

#### **Use Cases**









## MIPI D-PHY Full Block Diagram



Universal Lane Mode Architecture





# MIPI D-PHY Block Diagram for TX and RX

**Because Testing Matters** 





## **MIPI D-PHY Characteristics**

#### Data lanes

#### High-Speed Mode

Level: 400mVpp, differential for 100 ohm termination Speed: 80Mb/s -1Gb/s Synchronous transfer

#### Low-Power Mode

Level: 1.2V CMOS level driver, single-ended Speed: < 10Mbps Lane 0 only has LP signal Asynchronous transfer

#### •Bi-directionality (HSx 1/4)

### Lane scalability

•N data lanes + 1 Clock Lane

#### Interconnect

- PCBs, flexfoils, cables, connectors
- Low pin and wire count

#### Power

- Low operational power (mW-range)
- Very low stand-by power (uW-range)

#### Robustness

- Low EMI
- •Ease of integration
- Noisy environment
   Tolerance ~10mVdiff ~100mVcom













## **MIPI D-PHY Interface Overview**

1. Serial High-speed: Fully-terminated differential signaling

First generation: Source-Synchronous with/without encoding

2. Low-Power: unterminated 1.2V CMOS-like signaling

HF filtering and 1.2V CMOS-like signaling HF filtering and hysteresis for noise immunity

3. Contention detection for Bi-directionality

Optional reverse data transfers are Master synchronous







# MIPI D-PHY Timing and level Specification

**Because Testing Matters** 





# Signal Directions & Protocol Implementations

|                                    | MODE   |        |        |        |  |  |  |  |
|------------------------------------|--------|--------|--------|--------|--|--|--|--|
| <b>Device</b> (Baseband Processor) | HS Drv | HS Rcv | LP Drv | LP Rcv |  |  |  |  |
|                                    | HS Rcv | HS Drv | LP Rcv | LP Drv |  |  |  |  |
| Tester                             | Diff   | Diff   | SE     | SE     |  |  |  |  |
|                                    | Term   | Term   | HiZ    | HiZ    |  |  |  |  |
|                                    |        |        |        |        |  |  |  |  |
| D-PHY Rx                           | -      | Y      | Y      | Y      |  |  |  |  |
| CSI-2                              | -      | Y      | Y/N    | Y/N    |  |  |  |  |
|                                    |        |        |        |        |  |  |  |  |
| D-PHY Tx                           | Y      | -      | Y      | Y      |  |  |  |  |
| DSI                                | Y      | -      | Y      | Y      |  |  |  |  |

#### Note:

- LP signaling only used on Lane0
- CSI, DSI do not support reverse traffic in the HS/4 rate







- MIPI D-PHY Overview
- Test Solutions with Standard Digital
  - D-PHY Rx
  - D-PHY Tx
- Improved Testing Capability UP1100
  - Protocol Aware (PA)
  - Hardware Source-Synchronous





## **D-PHY Rx (CSI) Requirements**

#### **Device modes:**

- Receive HS mode differentially
- Receive LP mode single-ended (unterminated)
- Drive LP mode single-ended

### **Tester Requirements:**

- Drive 3(/4) levels per-line
- Drive Differential & Single-Ended
- 2 compare levels per-line
- Unterminated compare

|                 | Test Conditions                           | UltraFLEX<br>Options       | Test Solution        |                          |                                     |                   |  |  |
|-----------------|-------------------------------------------|----------------------------|----------------------|--------------------------|-------------------------------------|-------------------|--|--|
|                 | D-PHY Modes<br>(per-Burst)                |                            | DIB<br>Components    | # chans per<br>DIFF Pair | # of unique<br>levels<br>(per-line) | LP<br>Termination |  |  |
|                 | •Device receives HS                       | UP800<br>HSD1000<br>UP1100 | None                 | 2                        | 3 drive                             | -                 |  |  |
| CSI-2  D-PHY Rx | Device receives HS     Device receives LP | UP800<br>HSD1000<br>UP1100 | None                 | 2                        | 3 drive<br>2 compare                | 50Ω to 1.2V       |  |  |
|                 | •Device receives LP •Device drives LP     | UP800<br>HSD1000<br>UP1100 | 3 resistors per line | 4                        | 4 drive<br>2 compare                | HiZ               |  |  |

\*\*Requires that the LP/HS mode switching is deterministic in both order & time





## D-PHY Rx Option #1: 3-Level Drive, Terminated LP

- 2 digital channels per diff pair
- 3 unique levels from tester drive
- Tester receive of LP only in terminated mode
  - 50ohm term to  $Vt = LP_Vih = 1.2V$
  - Device must handle driving LP into 50ohms to 1.2V



|          | MODE      |           |           |           |  |  |  |
|----------|-----------|-----------|-----------|-----------|--|--|--|
| Device   | HS<br>Drv | HS<br>Rcv | LP<br>Drv | LP<br>Rcv |  |  |  |
| Tester   | HS<br>Rcv | HS<br>Drv | LP<br>Rcv | LP<br>Drv |  |  |  |
|          |           |           |           |           |  |  |  |
| D-PHY Rx | -         | Y         | Y         | Y         |  |  |  |
| CSI-2    | -         | Y         | Y/N       | Y/N       |  |  |  |

| Param      | Programmed    | Use       |
|------------|---------------|-----------|
| Vil        | 0V            | HS/LP Vlo |
| Vih        | 100mV-300mV   | HS Vhi    |
| Vt         | 1.2V          | LP Vhi    |
| PE<br>Mode | LargeSwing-VT | -         |







## D-PHY Rx Option #2: 3-Level Drive, Unterminated LP

**Because Testing Matters** 







## **D-PHY Tx (DSI) Requirements**

#### **Device modes:**

- Drives HS differential
- Drives LP single-ended
- Receive LP single-ended (unterminated)

#### Tester Requirements (within a single burst):

- · Compare differential & single-ended
- Terminated & Unterminated compare
- 4 compare levels (per-line)
- 3 bits of unique compare data (per-pair)
- Drive 2 levels per-line

|                 | Test Conditions                                         | UltraFLEX<br>Options       | Test Solution        |                          |                       |                   |  |  |
|-----------------|---------------------------------------------------------|----------------------------|----------------------|--------------------------|-----------------------|-------------------|--|--|
|                 | D-PHY Modes<br>(per-Burst)                              |                            | DIB<br>Components    | # chans per<br>DIFF Pair | # of unique<br>levels | LP<br>Termination |  |  |
| DSI             | •Device drives HS                                       | UP800<br>HSD1000<br>UP1100 | None                 | 2                        | 2 compare per burst   | -                 |  |  |
| <i>D-РНҮ Тх</i> | •Device drives HS •Device drives LP •Device receives LP | UP800<br>HSD1000<br>UP1100 | 3 resistors per line | 4                        | 4 compare<br>2 drive  | HiZ               |  |  |

\*\*Requires that the LP/HS mode switching is deterministic in both order & time





### **D-PHY Tx**

LP-0 Drv

P-0 Cap

Cmp\_Hi \_Cmp\_Lo HS- Cap

### HS modified Vt/Vcomp, LP HiZ



- Use 2 Time Sets; one for LP compare and one for HS compare
  - 1. (HS) that allows Drv-Term on all chans
    - PE stays in previous state;  $50\Omega$  to either at Vil or Vih
  - 2. (LP) does NOT allow Dry-Term on all chans
- LP receive with all channels HiZ will affect



|                                                                  | DUT<br>D-PHY TX   | 8Ω<br>8Ω<br>HS, LP<br>LP | СНЗ | LP-1 Drv  Drv Hi  Drv Lo  Drv Hi  Cmp Lo  Drv Hi  Drv Lem  Drv Lem  Cmp Lo  LP-1 Cap  Vil  Vih  Vih  Vih  HS+ Cap |
|------------------------------------------------------------------|-------------------|--------------------------|-----|-------------------------------------------------------------------------------------------------------------------|
| HS receive is doubly ter                                         | minated to some   | e level                  |     | Cmp_Hi_diff Cmp_Lo_diff                                                                                           |
| <ul> <li>Use DIFF comparato</li> </ul>                           | or                |                          |     | HS Cap-diff                                                                                                       |
| <ul> <li>Resistor network onl<br/>supports LP traffic</li> </ul> | ly required on La | ane0 which               | CH1 | Dry_Hi Dry_Lo Dry_lem                                                                                             |

Active load not shown

100Ω

CH2

HS Drv 50 Ohm on LP Capture - Hiz

|          |           | MODE      |           |           |  |  |  |  |
|----------|-----------|-----------|-----------|-----------|--|--|--|--|
| Device   | HS<br>Drv | HS<br>Rcv | LP<br>Drv | LP<br>Rcv |  |  |  |  |
| Tester   | HS<br>Rcv | HS<br>Drv | LP<br>Rcv | LP<br>Drv |  |  |  |  |
|          |           |           |           |           |  |  |  |  |
| D-PHY Tx | Y         | -         | Y         | Y         |  |  |  |  |
| DSI      | Y         | -         | Y         | Y         |  |  |  |  |

|               | Param   | Programmed     | Use    |
|---------------|---------|----------------|--------|
|               | Vil     |                | HS Vt  |
| Ω             | Vih     |                | HS Vt  |
| nan 0         | Vt      | -              | -      |
| Chan 0,1 (HS) | Vol     |                | HS Vol |
| S)            | Voh     |                | HS Voh |
|               | PE Mode | LargeSwing-HiZ | -      |
|               |         |                |        |
|               | Vil     | 0V             | LP Vil |
| C             | Vih     | 1.2V           | LP Vih |
| Chan 2,3 (LP) | Vt      | -              | -      |
| 1,3 (L        | Vol     | 550mV          | LP Vol |
| P)            | Voh     | 880mV          | LP Voh |
|               | PE Mode | LargeSwing-HiZ | -      |







- MIPI D-PHY Overview
- Test Solutions with Standard Digital
  - D-PHY Rx
  - D-PHY Tx
- Improved Testing Capability UP1100
  - Protocol Aware (PA)
  - Hardware Source-Synchronous





## **State Transitions & Non-Determinism**



Separate Transmissions

#### KEY:

EoT - End of Transmission

In "mission-mode"

HS packets are separated by LP commands HS packet lengths vary



### LgP Structure

#### **Standard Digital (no PA)**

- \*Mode switches between HS/LP modes must be deterministic in:
  - Order
  - Time
- \*Packet lengths must be deterministic





## Handling Non-Determinism With UP1100PA



- PA in UP1100 could automatically handle the timing non-determinism
  - The <u>order</u> of packets and HS/LP transitions must still be deterministic
  - Less DFT required
  - More coverage testing near mission-mode





# Source-Sync Timing Measurement of Device HS Tx With UP1100PA

## UP1100 has hardware source-sync capability behind the digital pins

- 4 of Each 16 pin block have source sync capability
- Each Source Sync Input can be SE or Differential
- Each Source Sync Input has local adjust capability for fast edge searches
- Data Channels use internal Strobe or Source Sync Strobe
- Src Sync Clock to Data pin Accuracy +/100ps





- \*\* Real-time AC parametric measurements:
  - →1 burst for accurate timing measurement compared to many burst iterations for software-based solutions
- \*\* Supports both PA and standard logic testing





### **Conclusions**

- D-PHY mode switching within a burst creates unique test challenges
  - UltraFLEX digital solutions solve these challenges with flexible timing and pin electronics
- UP1100 Option adds unique capability to improve test coverage
  - More "mission-mode" testing allowed by
     PA handling non-determinism
  - Hardware Source-Synchronous feature allows real-time AC parametric timing measurements





## **Appendix A**

## • LP signal timing parameters-1

| Parameter                                        | Description                                                                                                                     | Min                                          | Тур | Max                 | Unit | Notes |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----|---------------------|------|-------|
| T <sub>CLK-MISS</sub>                            | Detection time that the clock has stopped toggling                                                                              |                                              |     | 60                  | ns   | 1     |
| T <sub>CLK-POST</sub>                            | Time that the transmitter shall continue sending HS clock<br>after the last associated Data Lane has transitioned to LP<br>mode | 60 ns + 52*UI                                |     |                     | ns   |       |
| T <sub>CLK-PRE</sub>                             | Time that the HS clock shall be driven prior to any associated<br>Data Lane beginning the transition from LP to HS mode         | 8                                            |     |                     | UI   |       |
| T <sub>CLK</sub> -prepare                        | Time to drive LP-00 to prepare for HS clock transmission                                                                        | 38                                           |     | 95                  | ns   |       |
| T <sub>CLK-TERM-EN</sub>                         | Time to enable Clock Lane receiver line termination measured from when Dn crosses $V_{\rm I\!L,MAX}$                            | Time for Dn to<br>reach V <sub>TERM-EN</sub> |     | 38                  | ns   |       |
| T <sub>CLK-TRAIL</sub>                           | Time to drive HS differential state after last payload clock bit of a HS transmission burst                                     | 60                                           |     |                     | ns   |       |
| T <sub>CLK-PREPARE</sub> + T <sub>CLK-ZERO</sub> | T <sub>CLK-PREPARE</sub> + time for lead HS-0 drive period before starting Clock                                                | 300                                          |     |                     | ns   |       |
| T <sub>D-TERM-EN</sub>                           | Time to enable Data Lane receiver line termination measured from when Dn crosses $V_{I\!I,MAX}$ .                               | Time for Dn to<br>reach V <sub>TERM-EN</sub> |     | 35 ns + 4*UI        |      |       |
| T <sub>EOT</sub>                                 | Time from start of T <sub>HS-TRAIL</sub> or T <sub>CLK-TRAIL</sub> period to start of LP-11 state                               |                                              |     | 105 ns +<br>n*12*UI |      | 3     |
| T <sub>HS-EXIT</sub>                             | Time to drive LP-11 after HS burst                                                                                              | 100                                          |     |                     | ns   |       |





## **Appendix B**

## • LP signal timing parameters-2

| Parameter Parameter                            | <b>D</b> escription                                                                                | Min                              | Тур                | Max                | Unit | Notes |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------|--------------------|--------------------|------|-------|
| T <sub>HS-PREPARE</sub>                        | Time to drive LP-00 to prepare for HS transmission                                                 | 40 ns + 4*UI                     |                    | 85 ns + 6*UI       | ns   |       |
| T <sub>HS-PREPARE</sub> + T <sub>HS-ZERO</sub> | T <sub>HS-PREPARE</sub> + Time to drive HS-0 before the Sync sequence                              | 145 ns + 10*UI                   |                    |                    | ns   |       |
| T <sub>HS-SKIP</sub>                           | Time-out at RX to ignore transition period of EoT                                                  | 40                               |                    | 55 ns + 4*UI       | ns   |       |
| T <sub>HS-TRAIL</sub>                          | Time to drive flipped differential state after last payload data<br>bit of a HS transmission burst | max( n*8*UI, 60 ns<br>+ n*4*UI ) |                    |                    | ns   | 2, 3  |
| T <sub>INIT</sub>                              | Initialization period (PHY might calibrate)                                                        | 100                              |                    |                    | μs   |       |
| $T_{LPX}$                                      | Length of any Low-Power state period                                                               | 50                               |                    |                    | ns   | 4     |
| Ratio T <sub>LPX</sub>                         | Ratio of T <sub>LPX(MASTER)</sub> /T <sub>LPX(SLAVE)</sub> between Master and Slave side           | 2/3                              |                    | 3/2                |      |       |
| T <sub>TA-GET</sub>                            | Time to drive LP-00 by new TX                                                                      | :                                | 5*T <sub>LPX</sub> |                    | ns   |       |
| T <sub>TA-GO</sub>                             | Time to drive LP-00 after Turnaround Request                                                       | 4*T <sub>LPX</sub>               |                    | ns                 |      |       |
| T <sub>TA-SURE</sub>                           | Time-out before new TX side starts driving                                                         | $T_{LPX}$                        |                    | 2*T <sub>LPX</sub> | ns   |       |
| T <sub>WAKEUP</sub>                            | Recovery time from Ultra-Low Power State                                                           | 1                                |                    |                    | ms   |       |





## **Appendix C**

## D-PHY Signal Level







## **Appendix D**

## • HS Transmitter DC Specifications

| Parameter                | Description                                                                       | Min | Nom | Max  | Units | Notes |
|--------------------------|-----------------------------------------------------------------------------------|-----|-----|------|-------|-------|
| V <sub>CMTX</sub>        | HS transmit static common-<br>mode voltage                                        | 150 | 200 | 250  | mV    | 1     |
| $ \Delta V_{CMTX(1,0)} $ | V <sub>CMTX</sub> mismatch when output<br>is Differential-1 or Differential-<br>0 |     |     | 5    | mV    | 2     |
| V <sub>OD</sub>          | HS transmit differential voltage                                                  | 140 | 200 | 270  | mV    | 1     |
| $ \Delta V_{OD} $        | V <sub>OD</sub> mismatch when output is<br>Differential-1 or Differential-0       |     |     | 10   | mV    | 2     |
| V <sub>OHHS</sub>        | HS output high voltage                                                            |     |     | 360  | mV    | 1     |
| Zos                      | Single ended output impedance                                                     | 40  | 50  | 62.5 | Ω     |       |
| $\Delta Z_{OS}$          | Single ended output impedance mismatch                                            |     |     | 10   | %     |       |





## **Appendix E**

## • HS Transmitter AC Specifications

| Parameter                    | Description                                 | Min | Nom | Max | Units       | Notes |
|------------------------------|---------------------------------------------|-----|-----|-----|-------------|-------|
| $\Delta V_{\text{CMTX(HF)}}$ | Common-level variations above 450MHz        |     |     | 15  | $mV_{RMS}$  |       |
| $\Delta V_{\text{CMTX(LF)}}$ | Common-level variation<br>between 50-450MHz |     |     | 25  | $mV_{PEAK}$ |       |
| $t_R$ and $t_F$              | 20%-80% rise time and fall time             |     |     | 0.3 | UI          | 1     |
|                              |                                             | 150 |     |     | ps          |       |





## Appendix F

## • LP Transmitter DC Specifications

| Parameter        | Description                        | Min | Nom | Max | Units | Notes |
|------------------|------------------------------------|-----|-----|-----|-------|-------|
| V <sub>OH</sub>  | Thevenin output high level         | 1.1 | 1.2 | 1.3 | v     |       |
| V <sub>OL</sub>  | Thevenin output low level          | -50 |     | 50  | mV    |       |
| Z <sub>OLP</sub> | Output impedance of LP transmitter | 110 |     |     | Ω     | 1, 2  |





## Appendix G

## • LP Transmitter AC Specifications

| Parameter                          | Descr                                             | iption                                                                                               | Min | Nom | Max | Units | Notes         |
|------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|---------------|
| T <sub>RLP</sub> /T <sub>FLP</sub> | 15%-85% rise time and fall time                   |                                                                                                      |     |     | 25  | ns    | 1             |
| T <sub>REOT</sub>                  | 30%-85% rise ti                                   | me and fall time                                                                                     |     |     | 35  | ns    | 1, 5, 6       |
| T <sub>LP-PULSE-TX</sub>           | Pulse width of<br>the LP<br>exclusive-OR<br>clock | First LP<br>exclusive-OR<br>clock pulse<br>after Stop state<br>or last pulse<br>before Stop<br>state | 40  |     |     | ns    | 4             |
|                                    |                                                   | All other<br>pulses                                                                                  | 20  |     |     | ns    | 4             |
| T <sub>LP-PER-TX</sub>             | Period of the LP exclusive-OR clock               |                                                                                                      | 90  |     |     | ns    |               |
| δV/δt <sub>SR</sub>                | Slew rate @ C <sub>LOAD</sub> = 0pF               |                                                                                                      | 30  |     | 500 | mV/ns | 1, 2,<br>3, 7 |
|                                    | Slew rate @ C <sub>LOAD</sub> = 5pF               |                                                                                                      | 30  |     | 200 | mV/ns | 1, 2,<br>3, 7 |
|                                    | Slew rate @ C <sub>LOAD</sub> = 20pF              |                                                                                                      | 30  |     | 150 | mV/ns | 1, 2,<br>3, 7 |
|                                    | Slew rate @ C <sub>LOAD</sub> = 70pF              |                                                                                                      | 30  |     | 100 | mV/ns | 1, 2,<br>3, 7 |
| C <sub>LOAD</sub>                  | Load capacitanc                                   | e                                                                                                    | 0   |     | 70  | pF    | 1             |





## **Appendix H**

## • HS Receiver DC Specifications

| Parameter             | Description                                      | Min | Nom | Max | Units | Note |
|-----------------------|--------------------------------------------------|-----|-----|-----|-------|------|
| V <sub>CMRX(DC)</sub> | Common-mode voltage HS receive mode              | 70  |     | 330 | mV    | 1,2  |
| V <sub>IDTH</sub>     | Differential input high threshold                |     |     | 70  | mV    |      |
| V <sub>IDTL</sub>     | Differential input low threshold                 | -70 |     |     | mV    |      |
| VIHHS                 | Single-ended input high voltage                  |     |     | 460 | mV    | 1    |
| V <sub>ILHS</sub>     | Single-ended input low voltage                   | -40 |     |     | mV    | 1    |
| V <sub>TERM-EN</sub>  | Single-ended threshold for HS termination enable |     |     | 450 | mV    |      |
| $Z_{\mathbb{D}}$      | Differential input impedance                     | 80  | 100 | 125 | Ω     |      |





## **Appendix I**

## HS Receiver AC Specifications

| Parameter             | Description                                | Min | Nom | Max | Units | Notes  |
|-----------------------|--------------------------------------------|-----|-----|-----|-------|--------|
|                       |                                            |     |     |     |       | 110100 |
| $\Delta V_{CMRX(HF)}$ | Common-mode interference<br>beyond 450 MHz |     |     | 100 | mV    | 2      |
| $\Delta V_{CMRX(LF)}$ | Common-mode interference<br>50MHz – 450MHz | -50 |     | 50  | mV    | 1, 4   |
| C <sub>CM</sub>       | Common-mode termination                    |     |     | 60  | pF    | 3      |





## Appendix J

## • LP Receiver DC and AC Specifications

| Parameter            | Description                                | Min | Nom | Max | Units | Notes |
|----------------------|--------------------------------------------|-----|-----|-----|-------|-------|
| $V_{IH}$             | Logic 1 input voltage                      | 880 |     |     | mV    |       |
| $V_{\mathbb{L}}$     | Logic 0 input voltage, not in<br>ULP State |     |     | 550 | mV    |       |
| V <sub>IL-ULPS</sub> | Logic 0 input voltage, ULP<br>State        |     |     | 300 | mV    |       |
| V <sub>HYST</sub>    | Input hysteresis                           | 25  |     |     | mV    |       |

| Parameter           | Description                  | Min | Nom | Max | Units | Notes   |
|---------------------|------------------------------|-----|-----|-----|-------|---------|
| e <sub>SPIKE</sub>  | Input pulse rejection        |     |     | 300 | V∙ps  | 1, 2, 3 |
| T <sub>MIN-RX</sub> | Minimum pulse width response | 20  |     |     | ns    | 4       |
| V <sub>INT</sub>    | Peak interference amplitude  |     |     | 200 | mV    |         |
| $f_{\mathrm{INT}}$  | Interference frequency       | 450 |     |     | MHz   |         |





## **Appendix K**

## • LP Transmitter AC Specifications

| Parameter                          | Descr                                             | iption                                                                                               | Min | Nom | Max | Units | Notes         |
|------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|---------------|
| T <sub>RLP</sub> /T <sub>FLP</sub> | 15%-85% rise time and fall time                   |                                                                                                      |     |     | 25  | ns    | 1             |
| T <sub>REOT</sub>                  | 30%-85% rise ti                                   | me and fall time                                                                                     |     |     | 35  | ns    | 1, 5, 6       |
| T <sub>LP-PULSE-TX</sub>           | Pulse width of<br>the LP<br>exclusive-OR<br>clock | First LP<br>exclusive-OR<br>clock pulse<br>after Stop state<br>or last pulse<br>before Stop<br>state | 40  |     |     | ns    | 4             |
|                                    |                                                   | All other<br>pulses                                                                                  | 20  |     |     | ns    | 4             |
| T <sub>LP-PER-TX</sub>             | Period of the LP exclusive-OR clock               |                                                                                                      | 90  |     |     | ns    |               |
| δV/δt <sub>SR</sub>                | Slew rate @ C <sub>LOAD</sub> = 0pF               |                                                                                                      | 30  |     | 500 | mV/ns | 1, 2,<br>3, 7 |
|                                    | Slew rate @ C <sub>LOAD</sub> = 5pF               |                                                                                                      | 30  |     | 200 | mV/ns | 1, 2,<br>3, 7 |
|                                    | Slew rate @ C <sub>LOAD</sub> = 20pF              |                                                                                                      | 30  |     | 150 | mV/ns | 1, 2,<br>3, 7 |
|                                    | Slew rate @ C <sub>LOAD</sub> = 70pF              |                                                                                                      | 30  |     | 100 | mV/ns | 1, 2,<br>3, 7 |
| C <sub>LOAD</sub>                  | Load capacitanc                                   | e                                                                                                    | 0   |     | 70  | pF    | 1             |





### MIPI D-PHY Interface Source and Capture Voltage Appendix L Levels



max Differential input high threshold  $V_{IDTH} = 70 \text{mV}$ min Differential input low threshold  $V_{IDTL} = -70 \text{mV}$ 

