DM

TUTORIAL - 6

81 Let
$$f(m) = m+2$$
, $g(m) = m-2$ and $h(m) = 3n$. Fox mer where $R = \text{set } q$ xeal numbers, find $(g \circ f)$, $(f \circ g)$, $(f \circ h \circ g)$

82 Test whether the following function is one to one, onto ox both: $f : z \to z$ $f(n) = m^2 + n + 1$

ANS 1 Given: $f(m) = n + 2$ $g(m) = n - 2$ $h(m) = 3m$

To find: (i) $g \circ f$ (ii) $f \circ h \circ g$

(iii) $f \circ h \circ g$

(ii) $f \circ g(m) = g[f(m)] = g[n+2]$
 $f \circ g \circ f = n$

(ii) $f \circ g(m) = F[g(m)] = F[n-2]$
 $f \circ g = m-2+2=n$
 $f \circ g = m$

(iii) $f \circ h \circ g(m) = F[h[g(m)] \circ f(m) \circ g(m) = f[h[g(m)]) \circ g(m) \circ g(m) = f[h[g(m)]) \circ g(m) \circ g(m) \circ g(m) = g(m) \circ g(m) \circ$

: fohog = 3n-4

ANS 2	Function $f: Z \rightarrow Z$, defined by $f(n) = n^2 + n + 1$
*	one to one (injectivity)
	let n, y be any two elements in the domain (z)
	such that $f(n) = f(y)$
	(n+y)(n-y) + (n-y) = 0
	(n-y)(n+y+1)=0
	$\therefore m = y \text{ox} m = -y - 1$
	The second equality gives $m = -y - 1 \Rightarrow m \neq y$
	The second equality gives $m = -y - 1 \Rightarrow m \neq y$ Hence f is not injective (one to one)
*	ONTO (swjectivity):
	Let $y = f(n) = n^2 + n + 1$. We cannot solve the equation for
	n, i.e. we can't enpress n'in terms of y.
	Let $y = f(n) = n^2 + n + 1$. We cannot solve the equation for n , i.e. we can't enpress n in terms 0 y . So trying for $y = 0 \Rightarrow n^2 + n + 1 = 0$
	$9 = -1 \pm \sqrt{1-4} = -1 \pm \sqrt{3}i \longrightarrow IMAGINARY$
	Fox $y=6$: $M^2+M+1=6 \Rightarrow M^2+M-5=0$ $M = -1 \pm \sqrt{1+20} = -1 \pm \sqrt{21} \longrightarrow M \notin \mathbb{Z}$
	$\therefore n = -1 \pm \sqrt{1+20} = -1 \pm \sqrt{21} \longrightarrow n \notin \mathbb{Z}$
	2 2
	A function is surjective if for every element in domain,
	there is some element in range where
	f(element in domain) = element in stange.
	Here, f(z) \neq z for all elements.
	Hence f is NOT swijective (ONTO)
	: f is neither one to one nox onto.

FOR EDUCATIONAL USE

Sundaram