MULTIMEDIA		UNIVERSITY
------------	--	------------

STUDENT ID NO						
Seat No.:						
Venue:						_

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

TGD2151 - COMPUTER GRAPHICS FUNDAMENTALS

(All sections / Groups)

13 MARCH 2018 2.30 p.m. – 4.30 p.m. (2 Hours)

Question No.	Marks
1	
2	
3	
4	
Total	

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 9 pages with 4 Questions only.
- 2. Answer **ALL FOUR** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers CLEARLY in this Question paper.

QUESTION 1

Given two colors, $C_1 = (0.2, 0.1, 0.4)$ and $C_2 = (0.9, 0.7, 0.8)$, find the col		$C_3=(r,g,$
	b) in between the two colors by using linear interpolation method if $r = 0.5$.	[3 marks]
b)	The coordinate system of a model will be transformed multiple times a	s it passes
	through the OpenGL pipeline. List down in correct order for the FIVE (5) systems involved and briefly describe each of its functionality.	
		[5 marks]
Ĺ		
L		Continued

c) Polygon is an ordered list of vertices. For filling polygons with particular colors, one needs to determine the pixels falling on the border of the polygon and those falling inside the polygon.

Flood Fill and Boundary Fill are two popular area filling algorithms. Compare them in terms of number of colors applied and the condition for setting the pixels.

[2 marks]

Flood Fill Algorithm	Boundary Fill Algorithm

QUESTION 2

a) Given a straight line with pixel coordinate (4, 6) and (8, 9), derive the eq	uation below
using Digital Differential Analyzer (DDA) line algorithm.	

[3 marks]

$y_{k+1} = y_k + m$		
	•	

iven two affine transformations in 3D, T ₁ is a translation, and T ₂ is a reflection above XY plane. Is the multiplicative result of T ₁ T ₂ same as T ₂ T ₁ ? Provenathematically for the general case. [3 mark]	oordinates if the first pixel coordinate is (4, 6)?	[2 marks
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
e XY plane. Is the multiplicative result of TiT2 same as T211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]		
ne XY plane. Is the multiplicative result of TiT2 same as 1211? Prove nathematically for the general case. [3 mark]	iven two affine transformations in 3D. To is a translation, a	nd T2 is a reflection abo
athematically for the general case. [3 mark	he XY plane. Is the multiplicative result of T_1T_2 so	ame as T ₂ T ₁ ? Prove
	nathematically for the general case.	
Continu		
Continue		
Continue		
Continue		
Continu		
Continu		
Continue		
Continu	•	
Continu		

13 MARCH 2018
13 WH II(O11 2010

Is shearing an affine transformation? Explain your answer.	[2 mark

QUESTION 3

KWNG

a) Define Euler's formula and proof whether the object below is a polyhedral by using the formula.

[1 mark]
Continued

5/9

b) Complete the blanks in the Face list and Normal list based on the indices and lengths given in the object below.

[4 marks]

Face List				
P_b	Pc	P_d		
3		1		
	5			
4		3		
	7			
	6			
	6			
	· 			

	Normal List	
N _x	N _y	Nz
0		
		0
		-1
		0
0		
0		

c) Given a camera located at point (1,1,1), looking at point (0,1,1) and with an up-vector of (0,0,-1), compute the u-v-n reference frame coordinate.

[3 marks]

ł		
i		
		÷
ĺ		
]		
1		
		~

d) Explain how Z-Buffer algorithm works.	[2 marks]
QUESTION 4	
	kotoh of the viewing
 a) A perspective projection creates a 3D viewing frustum. Draw a sl frustum created by the OpenGL commands below and label it bases 	sed on the specific
parameter values given.	
float viewAngle = 60.0;	
<pre>float aspectRatio = 2.0; float near = 1.0;</pre>	
float $far = 20.0;$	
<pre>qlMatrixMode(GL PROJECTION);</pre>	
<pre>glhatInflode(di_InflodeInflode), glLoadIdentity();</pre>	
gluPerspective(viewAngle, aspectRatio, n	ear, far);
	[2 marks]
	<u>-</u>

- b) Determine which surfaces below are visible to a viewer at position (0, 5, 5), looking at point P (0, 0, 1) on an object.
 - i) Face B with normal vector N2 = (1, -4, 3)
 - ii) Face D with normal vector N4 = (-1, 1, 2)

[2 marks]

c) A light bulb and a mirror are located to the following location and orientation.

Assuming that the light bulb is a point light source at (4, 3, 0) and the lighting is attenuated by a factor of 2/d. The light intensity at point P is $I_p = 1$.

- i) What is the intensity of the light source at point Q?
- Let the ambient intensity be $I_a = 0.1$, with basic illumination lighting model, find the total diffuse reflection at point Q.

	 	_	 		
F*					
i e					
li .					
1					
1					
1					
1					
1					
1					
1					
t .					
L					
1					
1					
F .					
1					
1					
1					
1					
1					
I					
II .					
I					
II .					
I					
1					
I					
1					
I					
1					
)			 	 	

GD2151	COMPUTER GRAPHICS FUNDAMENTALS	13 MARCH 201
Describe the stre	ngth and weakness of Gouraud shading method a	s compared to Pho
shading method.		
		[1 mar