

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

BJ JUL RECEIVED 22 MAR 2004 **WIPO** PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterla-

The attached documents gen stimmen mit der Fassung der auf dem nächsten Blatt bezeichneten described on the following page, as originally filed. europäischen Patentanmeldung überein.

are exact copies of the ursprünglich eingereichten European patent application

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet nº

03001232.2

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets

R C van Dijk

BEST AVAILABLE COPY

Office européen des brevets

Anmeldung Nr:

Application no.:

03001232.2

Demande no:

Anmeldetag:

Date of filing:

20.01.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hofgartenstrasse 2 80539 München ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

L-amino acid oxidase with cytotoxic activity from Aplysia punctata

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C12N9/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

Patentanwälte European Patent Attorneys · European Trademark Attorneys EPO - Munich 55 20. Jan. 2003

DIPL-ING. H. WEICKMANN (bis 31.1.01)
DIPL-ING. F. A. WEICKMANN
DIPL-CHEM. B. HUBER
DR.ING. H. LISKA
DIPL-PHYS. DR. J. PRECHTEL
DIPL-CHEM. DR. B. BÖHM
DIPL-CHEM. DR. W. WEISS
DIPL-PHYS. DR. J. TIESMEYER
DIPL-PHYS. DR. M. HERZOG
DIPL-PHYS. B. RUTTENSPERGER
DIPL-PHYS. B. RUTTENSPERGER
DIPL-PHYS. B. W. DEY
DIPL-GIEM. DR. M. DEY
DIPL-FORSTW. DR. J. LACHNIT

Unser Zeichen: 29644P EP/WWpuld

Anmelder: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hofgartenstraße 8

80539 München

L-amino acid oxidase with cytotoxic activity from Aplysia punctata

Postfach 860 820. 81635 München. Deutschland Tol JORGI ARRES O. Edw JORGI ARRES CO.

L-amino acid oxidase with cytotoxic activity from Aplysia punctata

Description

ວ

The present invention relates to a cytotoxic polypeptide which is an L-amino acid oxidase isolated from the ink of the sea hare Aplysia punctata.

The sea hare Aplysia produces a pink-coloured ink, which has cytotoxic activity towards several eukaryotic cell lines. WO97/16457 discloses a partial sequence from an Aplysia protein, which allegedly has anti-tumor activity. Cyplasin L (558 aa, NCBI accession number 11967690) and cyplasin S (421 aa, 11967688; Petzelt and Werner, 2001, Cell Biology International, 25(2):A23) both include parts of sequences disclosed in WO 15 97/16457. Cyplasin S exhibits 95% sequence identity to cyplasin L. Cyplasin L is produced in the nidamental gland but neither in the ink gland (including the mantle region) nor in the opaline gland of Aplysia punctata. Thus, it is concluded that cyplasin is not a component of Aplysia ink and is not responsible for the cytotoxic activity of the Aplysia ink. A detailed 20 description of Aplysia anatomy and a dissection guide can be found in the internet in Richard Fox. invertebrate anatomy (1994,http://www.science.lander.edu/rsfox/).

The overall aim in tumor therapy is the selective eradication of transformed cells without harming healthy cells. Several glycoproteins isolated from sea hares (Aplysia species) have attracted attention because of their anti-tumor activity, e.g. aplysianin A from Aplysia kurodai, or cyplasins. The underlying mechanism for such activity has however not been elucidated so far. Recombinant intracellular cyplasins seem to be non-toxic, whereas the extracellular cyplasin is cytotoxic (Petzelt et al., Neoplasia, 4:49-59, 2002).

WO 02/31144 discloses a further cytotoxic factor isolated from the ink of Aplysia punctata. Fragments of the amino acid sequence of the factor are disclosed. No data were presented demonstrating that this factor has any oxidase function or has any properties related to an oxidase.

5

~ ·

At least two main phenotypes of cell death are described: apoptosis, a genetically fixed physiological form of cell death, is accompanied by shrinkage, membrane blebbing, nuclear fragmentation, and final disintegration into so-called apoptotic bodies. In contrast, necrosis is a pathological process characterized by membrane disruption and cell swelling. Cell death induced by reactive oxygen and nitrogen species (ROS/NOS) might lead to apoptosis and necrosis but also to other forms of cell death, which cannot be clearly assigned to one of these main forms of cell death.

15

20

25

30

10

The cytotoxic factors derived from the sea hares so far have several disadvantages which might hamper its application. The biological function and the nature of the cytotoxic activity, which are prerequisites for the development of a lead compound, are not known so far. Aplysianin A contains a dinucleotide binding fold and the so-called "GG motif" which are found in many flavoproteins. The GG motif has also been described in cyplasins (Petzelt et al., supra). Based on this knowledge, the factors can be applied in its entirety only, because the domains relevant for proper function and cellular receptors are unknown. The administration of an entire non-self protein to an animal or a human might cause severe immunologic complications.

The dinucleotide binding fold and the GG motif are found e.g. within the N-terminal domain of FAD containing enzymes (e.g. reductases, dehydrogenases, hydroxylases, peroxidases, and oxidases). FAD containing enzymes can be classified into five groups GR1, GR2, FR, PCMH, and PO according to the sequences of their FAD binding domains

and additional conserved sequence motifs (Dym and Eisenberg, Protein Science, 10:1712-1728, 2001). The consensus sequence of GR1 and GR2 is GxGxxG. The GG motif RhGGRhxxT/S is commonly found in oxidases, e.g. L-amino acid oxidases, monoamino oxidases, polyamine oxidases, and putrescine oxidases, wherein x describes any amino acid, and h describes a hydrophobic amino acid.

10

15

20

25

30

L-amino acid oxidases catalyse the formation of H2O2, ammonia, and an alpha keto acid from an amino acid in the presence of oxygen and H2O (Geyer et al, 2001, Eur. J. Biochem. 268, 4044-4053). An L-lysine alpha oxidase (EC 1.4.3.14) for instance can be obtained from the fungus Trichoderma spec. (Kusakabe et al., J. Biol. Chem. 10:976-981, 1980) which shows antimetastatic effects (Umanskii et al., Biull Eksp Biol Med. 109:458-9, 1990, Khaduev et al., Biull Eksp Biol Med. 112:419-22, 1991). The Trichoderma L-lysine oxidase is a dimer with a molecular weight of 112-119 kDa. A further L-lysine oxidase obtained from the fish Chub mackerel is a dimer and has a molecular weight of 135 kDa (Jung et al., J. immunol. 165:1491-1497, 2000) and induces apoptosis. Apoxin is an L-leucin oxidase from the rattlesnake (Crotalus atrox) venom which induces apoptosis in tumor cells and vascular endothelial cells in vitro (Torii et al., J. Biol. Chem. 272:9539-9542, 1997). A cytotoxic L-lysine alpha oxidase is described in the art which penetrates into Jurkat cells and there activates oxidative deamination of L-lysine and correspondingly the peroxide formation. Conjugates of the enzyme with monoclonal antibodies against the CD5 receptor cannot penetrate into the cells and are assumed to produce toxic H2O2 outside the cells. The conjugates have a reduced cytotoxic effect, although the effect of conjugation upon enzymatic activity is negligible (Zhukova et al., Vopr Med Khim 2001, 47:588-592). Another L-lysine oxidase obtained from the snail Achatina fulica and producing H₂O₂ is found to have an antimicrobial effect. This oxidase might be useful as an agent against pathogenic bacteria (Ehare et al., 2002, FEBS Letters, 531:509-512).

Most known alpha amino acid oxidases which produce H_2O_2 possess a broad substrate specificity. The L-lysine alpha oxidase from Trichoderma viride (EC 1.4.3.14, Kusakabe et al., supra) is specific for lysine, but also oxidizes L-ornithine, L-phenylalanine, L-tyrosine, L-arginine, and L-histidine to a lesser extent. The L-lysine oxidase of Chub mackerel (EMBL, AJ400781; Jung et al., supra) is specific for lysine and in addition transforms arginine, histidin, leucine, methionine, phenylalanine, and ornithine (specifity 40 fold reduced). Even if these enzymes could be cytotoxic due to their ability to produce H_2O_2 , a therapeutic use is hampered because substrates of these enzymes are available in the body fluid in amounts sufficient to release H_2O_2 everywhere in the body. Under these conditions, possible negative side effects of H_2O_2 are difficult to eliminate.

15

10

5

Thus, the problem underlying the present invention is the provision of a means for selective generation of H_2O_2 in target tissues, e.g. in tumor tissues with less toxic side effects upon normal cells. The solution is a cytotoxic polypeptide which can be isolated from the ink of the sea hare *Aplysia punctata* and which is a specific L-lysine and/or L-arginine oxidase producing H_2O_2 or a fragment or derivative of said polypeptide. The activity of the enzyme can be modulated be administration of substrate. The enzyme provides a lead structure, and it can be used for target identification.

25

30

20

A first aspect of the present invention is a purified polypeptide which exhibits cytotoxic activity on tumor cells and which comprises the amino acid sequence shown in SEQ ID NO:2, 4, or 6, or a cytotoxic fragment thereof. These sequences are derived from a cytotoxic 60 kDa protein purified from crude ink of Aplysia punctate via anion exchange chromatography and gel filtration (see examples 1 and 4). Thus, the polypeptide or the fragment is termed APIT (Aplysia punctata ink toxin).

The purity of the fractions can be determined by SDS-PAGE and silver staining.

The cytotoxic activity of APIT or the diluted crude ink can be measured by the reduction of the metabolic activity of eukaryotic cells. A person skilled in the art knows suitable methods and cell lines. For example, the metabolic activity of Jurkat T cells can be measured by the addition of WST-1, which is a tetrazolium salt converted by cellular enzymes of viable cells, e.g. by the mitochondrial dehydrogenase, to a dark red formazan. Therefore, the amount of formazan correlates with cell vitality. Formazan can be determined photometrically at 450 nm. Further, dead eukaryotic cells killed by APIT or the diluted crude ink can be counted by adding propidium iodide (PI) at 1 μ g/ml in PBS and subsequent flow cytometer analysis. PI is a DNA binding dye which is taken up by dead cells with permeable membranes.

10

15

20

25

30

The cytotoxic activity of APIT is reduced by at least 70% after 10 min incubation at 60°C. At 70°C, the activity is almost absent, whereas 0°C to 50°C have no effect upon the activity. APIT shows a loss of activity with decrease of pH, with complete inactivation after 10 min pre-incubation at pH 3. After 30 min treatment with 6 M urea, the activity of APIT is almost unaffected. At 8M urea, the activity is reduced by about 50% (example 3).

Tumor cells treated with APIT displays a morphology which is neither typical for apoptosis nor for necrosis but rather is typical for oxidative damage induced cell death. Shrunken nuclei and lack of cell swelling are apoptotic, and early membrane permeabilization is a necrotic characteristic (example 2). The phenotype induced by APIT could be reproduced in Jurkat cells by treatment of the cells with concentrations of $H_2O_2 > 200$ μ M, indicating that H_2O_2 is the active compound in APIT cytotoxic effect. H_2O_2 concentrations < 100 μ M induced apoptosis in Jurkat cells.

By depriving possible substrates which can be converted into H_2O_2 from the culture medium of the tumor cells, it can be demonstrated that no further toxic effect of APIT upon tumor cells is present. Deprivation of L-lysine and L-arginine from the medium prevents cell death completely. In a detailed analysis of the enzymatic activity of APIT, media containing single amino acids (20 L-amino acids, D-lysine) confirmed that L-lysine and/or L-arginine is converted into H_2O_2 and the respective alpha keto acid to the same extent, whereas no conversion could be measured with any other of the remaining 18 L-amino acids and D-lysine (example 7). The production of H_2O_2 is independent of the presence of cells, however, the presence of cells reduces the amount of free H_2O_2 , which might be due to detoxification of the medium by the cells. Catalase (a H_2O_2 hydrolyzing enzyme) prevents tumor cell death induced by purified APIT and by crude ink as well, confirming the conclusion that H_2O_2 is responsible for the ink mediated killing of tumor cells (example 6).

5

10

15

20

25

30

In summary, the data demonstrate that the polypeptide of SEQ ID NO:2, 4, or 6 (APIT) is an oxidase which is capable to produce H_2O_2 . Particularly, the polypeptide is an alpha amino acid oxidase. More particularly, the polypeptide specifically converts L-lysine and/or L-arginine in the presence of O_2 and H_2O into an alpha keto acid, ammonia, and H_2O_2 . Thus, the polypeptide is preferably an L-lysine and/or L-arginine oxidase.

A characteristic feature of the active fractions containing APIT purified from crude ink were two absorption maxima at 390 nm and 470 nm, a hallmark of flavoproteins. A flavine nucleoside, particularly FAD is required as a co-factor for the anti-tumor and oxidase activity of APIT as removal of FAD inactivated APIT (example 5).

Analysis of the sequences SEQ ID NO:2, 4, and 6 revealed that APIT comprises a sequence similar to known dinucleotide binding folds which

are characteristic for flavoproteins (Fig. 4c). The GG-motif (consensus sequence RhGGRhxT/S) is found adjacent to the dinucleotide binding fold.

A further aspect of the present invention is a polypeptide comprising a fragment of the polypeptides of the sequences of SEQ ID NO:2, 4, or 6 which can be used as a lead structure for drug development. APIT can be digested by a protease without loss of activity. Digestion leaves the substrate specifity unaltered. Thus, the fragment exhibiting cytotoxic activity is an L-lysine and/or L-arginine oxidase. Preferably, proteinase K is used which is a relative unspecific protease resulting in small fragments. Other proteases which can be selected among specific or unspecific proteases known by a person skilled in the art can be used instead of proteinase K. The cytotoxic proteinase resistant domain of APIT is of particular importance for the development of a non-immunogenic, fully active small compound.

Further preferred fragments comprise partial amino acid sequences of APIT which are obtained by peptide mass fingerprinting, ESI/MS, and Edman degradation:

20 DG(I/V)CRNRRQ

10

15

DSGLDIAVFEYSDR, VFEYSDR

LFXYQLPNTPDVNLEI (X = T in SEQ ID NO:2, 4 and 6)

VISELGLTPK

GDVPYDLSPEEK

VILAXPVYALN (X = M in SEQ ID NO:2, 4 and 6)

ATQAYAAVRPIPASK

VFMTFDQP

SDALFFQMYD (FFQ is FSQ in SEQ ID NO:2, 4 and 6)

SEASGDYILIASYADGLK

NQGEDIPGSDPQYNQVTEPLK (PQY is PGY in SEQ ID NO:2, 4 and 6)

While not wishing to be bound by theory, the FAD group which is tightly bound to the amino acid chain, e.g. by a covalent bond, might cover possible protease cleavage sites. Thus, protease treatment results in a fragment comprising the active centre of the enzyme, including the prosthetic group FAD. This conclusion is confirmed by the finding that native APIT cannot be cleaved by trypsin, but trypsin can digest denaturated APIT.

5

10

15

20

Thus, an especially preferred fragment of APIT which is an oxidase exhibiting cytotoxic activity is a sequence comprising the dinucleotide binding fold and the GG motif corresponding to amino acid residues No. 39 to 77 in SEQ ID NO:2. This sequence is identical to the sequence of amino acid residues No. 38 to 76 in SEQ ID NO:4 and No. 21 to 59 in SEQ ID NO:6. More preferably, the fragment has an L-lysine and/or an L-arginine oxidase activity.

Further, the fragment can comprise a stretch of additional amino acid residues which may be selected from SEQ ID NO:2 or 4 from the sequences adjacent to the residues No. 39 to 77 in SEQ ID NO:2 or No. 38 to 76 in SEQ ID NO:4. Preferably, 1-20 additional amino acid can be present at the N-terminus and/or the C-terminus. More preferably, 1-10 additional amino acid can be present at the N-terminus and/or the C-terminus. Most preferably, 1-5 additional amino acid can be present.

A further aspect are polypeptides which are homologous to the polypeptides of SEQ ID NO:2, 4, or 6, or to fragments thereof, which have an identity of at least 70%, preferably at least 80%, more preferably at least 90%, or most preferably at least 95%. SEQ ID NO: 2, 4, or 6 describe natural variations of APIT by replacements of single amino acids not affecting its function. In further 11 clones, four mutations were found within the sequence comprising the dinucleotide binding fold and the GG motif (Pos. 39 to 77 in SEQ ID NO:2, see example 4). Taking into account

that a fragment obtained by proteolytic digestion is still active as a L-lysine and/or L-arginine oxidase, it can be expected that further modifications of the sequence, e.g. by amino acid substitutions, deletions and/or insertions will not substantially affect the function of APIT. A modified sequence exhibits an identity of preferably at least 70%, more preferably at least 80% and most preferably at least 90% to a reference sequence, e.g. SEQ ID NO:2. Preferably, the sequence of Pos. 39 to 77 in SEQ ID NO:2 has a higher degree of identity to the reference sequence than the total amino acid sequence, e.g. preferably at least 33 of 39 amino acid residues (at least about 85%), more preferably 35 of 39 residues (at least about 90%), and most preferably 37 of 39 residues (at least about 95%).

10

15

20

25

30

A still further aspect is a polypeptide of the present invention as described above which is a recombinant polypeptide. The recombinant polypeptide is characterized as being manufactured in a heterologous, i.e. non-Aplysia host cell, e.g. in a bacterial cell such as E. coli or Bacillus, in a yeast cell such as saccharomyces cerevisiae, in an insect cell or in a mammalian cell. The recombinant polypeptide has preferably an oxidase, or, more preferably, an L-lysine and/or an L-arginine oxidase activity. Expression of the polypeptide can be done by standard expression systems known by a person skilled in the art. For proper enzymatic function, the prosthetic group FAD may have to be introduced into the polypeptide.

The protein of the invention or a fragment thereof may be in the form of a fusion protein, i.e. fused to heterologous peptide or polypeptide sequences. Preferably fusion proteins are genetic fusions, wherein the nucleic acid sequence encoding a protein or a protein fragment as described above is fused to a nucleic acid sequence encoding a heterologous peptide or polypeptide sequence. The heterologous peptide or polypeptide sequence may be selected from signal sequences, which provide desired processing and/or transport in a host cell. The signal sequence is preferably located at the N- and/or C-terminus of the APIT sequence. Further examples of

heterologous sequences are domains which assist expression in host cells and/or purification from cellular extracts or culture media. Still further examples of heterologous sequences are targeting sequences which may direct the APIT polypeptide to a desired target site, e.g. in an organism. Suitable targeting sequences may be e.g. single chain antibodies, which may be directed against tumor specific antigens or proteinaceous ligand sequences, which may be directed against tumor specific receptors.

5

10

15

20

25

30

A further aspect of the present invention is a nucleic acid coding for the polypeptide as described above. The total mRNA of the mantle gland, the nidamental gland, the digestive gland, and the opaline gland can be prepared by standard methods. The mRNA can be reverse transcribed using the tagged oligo dT oligonucleotide (Oligo 1, Fig. 4b). The tag is a random sequence not expected to be present within Aplysia mRNA to be reverse transcribed. PCR can be performed using the degenerated primer (Oligo 2) derived from the APIT peptide VFEYSDR and the specific primer (Oligo 3) directed against the tag sequence of the oligo dT primer Oligo 1. The amplified sequence can be cloned into a standard vector and can be sequenced by standard techniques. By this strategy, the 3' terminal sequence of the APIT gene can be obtained. The 5' terminal sequence can be obtained by the RACE strategy. The mRNA from selected tissues (see above) is reverse transcribed using an oligonucleotide derived from the known 3' terminal sequence (e.g. Oligo 4, or Oligo 6) and can be treated with a terminal transferase in the presence of CTP, resulting in a 3'-poly-C-sequence (at the minus strand). PCR can be performed using a tagged primer against the poly-C-sequence (Oligo 5) and a specific primer, e.g. Oligo 4, or Oligo 6. The amplified product can be cloned and sequenced by standard techniques. Finally, for obtaining full-length cDNA clones, specific primers, e.g. Oligo 8 and Oligo 9 can be used. By this strategy, three different clones were obtained and sequenced. The nucleotide sequences are described in SEQ. ID. No.1, 3, and 5 which are

identical to 97% (1560 of 1608) of the nucleotides. 42 of 48 mutations are silent mutations which have no effect upon the amino acid sequence.

By this strategy, further clones of APIT can be obtained which might have a differing sequence. Since more than ten sequences of APIT are known, specific or degenerated primers may be selected from these sequences, and new clones can be obtained by a single PCR of reverse transcribed mRNA.

Thus, the nucleic acid encoding a polypeptide as specified above preferably comprises

- (a) a nucleotide sequence as shown in SEQ ID NO:1, 3, or 5, or at least the polypeptide coding portion thereof, or the complement thereof, or
- 15 (b) a nucleotide sequence corresponding to the sequence of (a) within the scope of degeneracy of the genetic code, or the complement thereof, or
 - (c) a nucleotide sequence hybridizing under stringent condition with the sequence of (a) and/or (b), or
- 20 (d) a nucleotide sequence which is homologous to the sequences of (a) and/or (b).

25

30

The nucleic acid may be a single stranded or double stranded nucleic acid (DNA or RNA). The nucleic acid is obtainable from natural sources e.g. from *Aplysia* by extraction of RNA, construction of cDNA libraries and screening of the library using degenerated oligonucleotides which were deduced from the peptide sequences described above. The nucleic acid is further obtainable by RT-PCR using RNA extracted from *Aplysia* and oligo-dT-primers or degenerated primers. On the other hand, the nucleic acid is obtainable by chemical synthesis.

Hybridization under stringent conditions preferably means that after washing for 1 h with 1 x SSC and 0.1% SDS at 55°C, preferably at 62°C and more preferably at 68°C, particularly after washing for 1 h with 0.2 x SSC and 0.1% SDS at 55°C, preferably at 62°C and more preferably at 68°C, a hybridization signal is detected.

The degree of identitiy of the nucleic acid is at least 70%, preferably at least 80%, more preferably at least 90%, and most preferably at least 95% to a reference sequence, e.g. SEQ ID NO: 1, 3 or 5.

10

15

20

30

5

Further, the nucleic acid encoding a cytotoxic polypeptide can comprise a partial sequence of the nucleotide sequence as disclosed in SEQ ID NO:1, 3, or 5. Preferably, the partial sequence is selected from nucleotide No. 115 to 231 in SEQ ID NO:1, or nucleotide No. 112 to 228 in SEQ ID NO:3, or nucleic acid residue No. 61 to 177 in SEQ ID NO:5, or the partial sequence codes for at least one of the eleven fragments of APIT obtained by peptide mass fingerprinting, ESI/MS, and Edman degradation. Further, the partial sequence can comprise a stretch of additional nucleotides selected from the sequences adjacent to the sequence selected from SEQ ID NO:1, 3, or 5. Preferably, 1-60 additional nucleotides can be present at the 5' and/or the 3'-terminus. More preferably, 1-30 additional nucleotides can be present at the 5' and/or the 3'-terminus. Most preferably, 1-10 additional nucleotides can be present at the 5' and/or the 3'-terminus.

Furthermore, the nucleic acid may encode a fusion polypeptide as described above.

In a preferred embodiment of the invention the nucleic acid is operatively linked to an expression control sequence, e.g. a sequence which is capable of directing expression in a suitable host cell, e.g. a prokaryotic or eukaryotic host cell. The expression control sequence usually comprises a promoter and optionally operator or enhancer sequences which enable a

transcription of the nucleic acid operatively linked thereto. Furthermore, the expression control sequence may contain a translation signal, e.g. a ribosome binding sequence.

The nucleic acid of the present invention may be a recombinant vector which contains in addition usual vector sequences such as an origin of replication, a selection marker gene and/or a cloning site. Examples of suitable vectors such as plasmids, phages or viral vectors are known to the skilled person and are described e.g. in Sambrook et al., Molecular Cloning,

A Laboratory Manual (2nd ed. 1998), Cold Spring Harbor, Laboratory Press.

A further aspect of the present invention is a recombinant cell transformed or transfected with a nucleic acid as described above. The recombinant cell may be a prokaryotic cell, e.g. a gram-negative prokaryotic cell such as E. coli or an eukaryotic cell, e.g. an insect cell or a vertebrate cell such as a mammalian cell. Techniques for transforming or transfecting host cells with nucleic acids are known to the skilled person and e.g. described in Sambrook et al., supra.

20

25

30

15

Still a further subject matter of the present invention is an antibody directed against the polypeptide as described above. The antibody may inhibit the cytotoxic activity of the polypeptide. The antibody may be a polyclonal or monoclonal antibody or a recombinant antibody, e.g. a chimeric antibody, a humanized antibody or a single chain antibody. Furthermore, the antibody may be an antibody fragment containing the antigen-binding site of the antibody, e.g. a Fab fragment. The antibody may be obtained by immunizing suitable experimental animals with an *Aplysia* polypeptide as described above or a partial fragment thereof or a peptide antigen optionally coupled to a suitable macromolecular carrier according to known protocols, e.g. by techniques which are described in Borrebaeck, Carl A.K. (Ed.), Antibody engineering (1992), or Clark, M.

(Ed.), Protein engineering of antibody molecules for prophylactic and therapeutic applications in man (1993). By techniques for producing hybridoma cell lines according to Köhler and Milstein monoclonal antibodies may be obtained.

Methods for introducing a prosthetic group into a polypeptide are known in the art. Preferably, the FAD is introduced by a method comprising surface display of the polypeptide on a prokaryotic host, comprising the steps:

- of providing a prokaryotic host cell transformed with a nucleic acid fusion operatively linked with an expression control sequence, said nucleic acid fusion comprising sequences necessary for displaying the protein on the outer membrane, and
 - (b) culturing the host cell under condition wherein the nucleic acid fusion is expressed and the expression product comprising the recombinant polypeptide is displayed on the surface of the host cell, and
 - (c) contacting the recombinant polypeptide with FAD under conditions wherein FAD combines with the recombinant polypeptide and a functional recombinant polypeptide containing the prosthetic group is formed.

The nucleic acid fusion may be formed using a nucleic acid sequence as described above and further sequences necessary for surface display. Details describing the prokaryotic host cells, the sequences necessary for surface display of the polypeptide, culture conditions, and the conditions under which the recombinant polypeptide is contacted with FAD are described in WO 02/070645, which is included by reference herein.

A further aspect of the present invention relates to diagnostic or therapeutic applications in humans or animals. The polypeptide, and/or a nucleic acid, and/or a recombinant cell, and/or an effector, e.g. an inhibitor

5

20

25

15

or activator of the polypeptide as described above can be used in such applications. The polypeptide as described above is able to selectively kill tumor cells. For example, T and B leukemia cell lines, a chronic myeloid leukemia cell line (K562), cells from an orphan and aggressive osteosarcoma (Ewings tumor: RDES, A673), a small cell lung cancer cell line (GLC4, GLC4/ADR), cervix cancer (Chang), and acute monocytic leukemia (THP-1) show an $IC_{50} \le 10$ ng/ml APIT.

Resistance to apoptosis as well as multi drug resistance (MDR) represent severe problems in cancer therapy. It is therefore of particular interest that the polypeptide of the present invention kills apoptosis resistant cell lines as well as MDR cancer cell lines to the same extent as their non resistant counter parts. Over-expression of apoptosis inhibitors of the Bcl-2 family in cancer cell lines does not protect from APIT mediated cell death, confirming that APIT induces cell death in an apoptosis independent way. The MDR cell line GLC4/ADR possess almost the same sensitivity to APIT (IC₅₀ 10 ng/ml) as the parental cancer line GLC4 does (IC₅₀ 9 ng/ml).

10

15

20

25

30

Thus, the diagnostic or therapeutic application preferably relates to a method for diagnosis or treatment of hyperproliferative diseases, e.g. cancer. More preferably, the method is a method for diagnosis or treatment of lung cancer, breast cancer, prostate cancer, colon cancer, cervix cancer, uterus cancer, larynx cancer, stomach cancer, liver cancer, Ewings sarkoma, acute lymphòid leukemia, acute and chronic myeloid leukemia, apoptosis resistent leukemia, and/or MDR lung cancer. Moreover other tumor types can also be treated with the polypeptide, like pancreas cancer, gastric cancer, kidney cancer, gliomas, melanomas, chronic lymphoid leukemia, and/or lymphoma. Since all cancer cell lines tested (in total 24) were effectively killed by APIT, the polypeptide can be used for the treatment of solid tumors and leukemias in general including apoptosis resistant and multi drug resistant cancer forms.

A further aspect of the present invention is a pharmaceutical composition comprising the polypeptide of the present invention as described above, in a pharmaceutically effective amount and optionally together with suitable diluents and carriers or kit containing the composition together with other active ingredients, e.g. modulators of the polypeptide or other cytostatic or cytotoxic agents. The composition can be administered locally or systemically by any suitable means, e.g. orally, nasally or by injection (i.v., i.p., s.c., or i.m.) to a subject in need thereof. The components of a kit, which consists of at least two different compositions may be administered together or separately, e.g. at different times and/or by different routes.

5

10

15

20

25

30

From many studies it is known that tumor cells have an increased rate of metabolism compared to normal cells. A result of this high metabolic rate is a high concentration of reactive oxigen species (ROS, comprising H_2O_2) which originate from oxidative phosphorylation reactions by the electron transport chain of the mitochondria. As a consequence ROS detoxification reactions are increased in tumor cells, and interference with detoxification has a selective toxic effect on the tumor cells but not on normal cells. Likewise, increasing the concentration of H_2O_2 by administering the polypeptide of the invention in a predetermined amount may overcome the detoxification reactions and kill the tumor cells. The level of extra H_2O_2 produced by exogenous APIT does not affect normal cells because of their higher tolerance for additional H_2O_2 . An administration of the polypeptide in a varying amount, e.g. a gradually changing, e.g. increasing amount leads to the production of a defined amount of H_2O_2 could thus be used for a selective killing of cancer cells.

The pharmaceutical composition or kit as described above can comprise a further component which is a substance capable of modulating the cytotoxic acitivity of the polypeptide, in a pharmaceutically effective amount and optionally together with suitable diluents, and carriers. In FCS (100%) at 37°C and 5% CO₂ which reflect *in vivo* conditions, or in a

medium containing 10% FCS (typical in vitro conditions) devoid of L-lysine and L-arginine, the activity of APIT (20 ng/ml) can be dose-dependently increased by the addition of L-lysine in a final concentration of 2 - 50 μ g/ml. Thus, the high specifity of APIT for L-lysine (and L-arginine) allows 5 for modulating the enzymatic activity of APIT and thus its cytotoxic activity by providing an additional substrate in vivo or in vitro. The substance capable of modulating the cytotoxic activity of the polypeptide can be L-lysine, L-arginine, a derivative or metabolic precursor of L-lysine, or L-arginine, or a mixture thereof. A derivative is a compound which is an APIT substrate. A metabolic precursor is a compound, which can be metabolized to a compound, which is an APIT substrate. Further, the modulator may be selected from flavine nucleosides, particularly FAD, since the presence of a flavine nucleoside prosthetic group leads to a great increase in APIT activity.

15

20

25

30

10

The pharmaceutical composition may comprise the polypeptide and at least one modulating substance as a mixture. Preferably, the modulating substances are provided in a kit consisting of separate preparations. More preferable, the polypeptide is provided for administration before the modulating substances.

During the passage through body fluids before reaching the tumor tissue, the cytotoxic activity of the polypeptide would be undesired, due to the toxic properties of H2O2. Thus, the composition may further comprise an inhibitor of the polypeptide. The inhibitor could have a short half-life time in the body fluid. A preferred inhibitor of the polypeptide is an antibody against the polypeptide (see above).

Further the polypeptide can be coupled with a substance and/or a particle which targets the polypeptide to the tumor tissue.

Further components of the pharmaceutical composition can be a nucleic acid coding for the polypeptide as described above, and/or a recombinant vector or cell containing the nucleic acid.

A further aspect of the present invention is a substance modified by interaction with APIT (termed target substance of APIT). A direct interaction is a contact of APIT with this substance. In an indirect interaction, the effect upon the substance includes at least one mediator substance, e.g a substance formed by APIT, or a receptor interacting with APIT and the components of the related transduction cascade.

As described above, a mediator of APIT acting on cellular polypeptides is H_2O_2 . Thus, preferred target substances of APIT comprise cellular polypeptides, which can be modified by H_2O_2 . A major modification identified in 2-DE SDS gel patterns of cells treated with APIT was a shift of peroxiredoxin I (Prx I, Swiss-Prot No. Q06830, Genbank identifier No. 548453), which was also detected in cells treated with H_2O_2 . Prx I belongs to a class of peroxidases which are involved in the detoxification of ROS. Although the nature of the modification of Prx is not known, PrxI can be used as a marker for APIT anti-tumor activity.

15

2Ò

25

30

WO 02/31144 discloses proteins modified by H₂O₂ which are targets of APIT: thioredoxin peroxidase 2 (Swiss Prot No. Q06830, Genbank identifier 548453), 60S ribosomal protein P0 (12654583), Hsp-60 (N-term) (14603309), stathmin (5031851), Rho GDI 2 (P52566, 1707893), 60S ribosomal protein P0(4506667), RNA binding regulatory subunit (014805,12720028), hnRNP C1/C2 (4758544), hnRNP C1/C2 (4758544), proteasome subunit beta type 1 (P20618, 130853), pre-mRNA cleavage factor Im (5901926), proteasome subunit alpha type 7 (014818, 12643540), U2 small nuclear ribonucleo-protein A´ (P09661, 134094), GAP SH3 binding protein (5031703), DNA replication licensing factor MCM4 (P33991, 1705520), thioredoxin peroxidase 1 (P32119, 2507169),

40S ribosomal protein S21 (P35265, 464710), 40S ribosomal protein S12 (P25398, 133742), phosphoglycerate mutase 1 (P18669, 130348), HCC-1 protein (13940310), HnRNP A2/B1 (4504447/14043072), IMP dehydrogenase 2 (P12268, 124419), hnRNP A/B (14724990).

Further targets of APIT identified by 2 DE gel electrophoresis, in-gel tryptic digestion, peptide mass fingerprinting by MALDI-MS, and identification of the proteins are summarized in Table 3.

Still a further target of APIT is a nucleic acid. The target nucleic acid can be a DNA or an RNA, which is a mRNA. The transcription of the mRNA is up- or downregulated in the presence of APIT and/or H₂O₂. Preferably, the transcription is changed by a factor of at least 2, and more preferably, by a factor of at least 4.

15

20

30

10

By a microarray of specific 60mer oligonucleotides representing about 8500 human genes, about 70 mRNAs were identified which are targets of APIT. The information about the mRNAs are summarized in Table 4. Each mRNA is referenced by a "unigene cluster" which represents a number of nucleotide sequences belonging to the same gene or to closely related genes. Details of the nomenclature and the nucleotide sequences of the unigene clusters are public available under http://www.ncbi.nlm.nih.gov/ (Homepage of the National Center for Biotechnology Information).

For most of the unigene clusters of Table 4, the gene and/or the protein is 25 known. It is a general principle that modulation of the transcription of a messenger RNA influences the amount of protein expressed. Thus, the proteins coded by the sequences of the unigene clusters of Table 4 are also targets of APIT, because APIT may influence their expression. The sequences of the proteins and of the nucleic acids coding for these proteins are referenced by the genbank identifier, accession number and/or

version number (see Table 4). The sequences are public available under http://www.ncbi.nlm.nih.gov/.

The target substance of the present invention (see Table 3 and 4), which is identified by one of the methods as described above, may be used for the development of new pharmaceutical agents, e.g. by known high-throughput screening procedures which may be cellular screening procedures or molecular based screening procedures. These pharmaceutical agents may act upon cellular receptors and/or components of the signal transduction pathways activated or inhibited by APIT.

5

10

15

20

25

30

Degenerative diseases like Alzheimer's and Parkinson's disease are characterised by excessive ROS production of the affected tissue. Drugs which either activate H₂O₂ detoxification or inhibit H₂O₂ production may be used for therapy of degenerative diseases like Alzheimer's or Parkinson's disease. Fast growing tumor cells produce more ROS and thus require an efficient H_2O_2 detoxification system. Drugs which either activate H_2O_2 production or which interfere with H2O2 detoxification may be used for therapy of proliferative diseases like tumors. Since e.g. thioredoxin peroxidases 1 and 2 have been shown to be overexpressed in cells at risk for diseases related to ROS toxicity including degenerative diseases like Alzheimer's and Parkinson's disease, and have been shown to be overexpressed in tumor cells (Butterfield et al., 1999, Antioxidants & Redox Signalling, 1, 385-402), the targets of Table 3 and 4 might be important targets for the development of drugs for treatment of degenerative diseases like Alzheimer's and Parkinson's disease and of proliferative diseases like tumors.

NK-cells have been shown to protect against malignant cells in chronic myelogenous leukemia (CML), but their number and inducibility is reduced during the progression of the disease. This reduction and dysfunction is due to the production of $\rm H_2O_2$ by CML-cells (Mellqvist, Blood 2000, 96,

1961-1968). NK-cells encountering H_2O_2 are inhibited in their lytic activity, are made resistant to IL-2 activation and undergo apoptosis/necrosis. Any therapy providing CML-patients with ROS-hyposensitive NK-cells therefore would be of great benefit. The targets described above could be used to modulate the H_2O_2 sensitivity of NK-cells or to inhibit the H_2O_2 production of malignant cells, e.g. CML-cells.

Arteriosclerosis with its progression to heart disease, stroke and peripheral vascular disease continues to be the leading cause of death in all western civilisations. Enhanced ROS-production (via endothelial NADPH-oxidase) is required and sufficient to generate the pathologic phenotype (Meyer, FEBS Letters 2000, 472, 1-4). Therefore, targets mediating the effect of H_2O_2 are useful to develop new drugs for treatment of arteriosclerosis and the associated diseases like heart disease, stroke and other vascular diseases. These targets are suitable to detoxify H_2O_2 and/or to block the H_2O_2 induced signalling pathways.

Target compounds, e.g. peptides, polypeptides or low-molecular weight organic compounds, which are capable of modulating the effect of H_2O_2 may be identified in a screening system comprising the use of the APIT polypeptide as described above. Particularly, a modulation of the APIT activity, i.e. L-amino oxidase activity, may be determined.

Thus the present invention further relates to a pharmaceutical composition comprising as an active agent at least one of the target substances as described above.

The invention is explained in more detail by the following figures, tables and examples.

10

15

20

25

Figure 1

5

10

A, Anion exchange chromatography. Filtrated and concentrated ink was loaded onto a Source Q15 column. Proteins were eluted by a linear gradient from 0 to 800 mM NaCl, fractions were collected every minute (2 ml/min). Absorption was measured at 280 nm. Horizontal bar indicates active fractions.

B, Gelfiltration. Active fractions from the Source Q15 were pooled and concentrated and applied to a Superose 12 HR 10/30 column. Proteins were eluted with 100 mM potassium phosphate buffer (pH 7.2). Fractions were collected every minute (0.5 ml/min). Horizontal bar indicates active fractions.

15 Figure 2

A, Phenotype of APIT-induced cell death. Jurkat cells were cultured for 7 hours in the presence (APIT) or absence (medium) of APIT (30 ng/ml) and phase contrast images were recorded.

20

B, Lack of apoptotic DNA fragmentation in ink-treated cells. Jurkat cells were incubated in medium (control) or treated with cycloheximide (chx; 10 μ g/ml) or ink (ink, 1/500 diluted) for 2, 4 and 6 h. Isolated DNA was visualized on a 1,6% agarose gel by ethidium bromide staining.

25

30

C, APIT mediated loss of metabolic activity. APIT (10 ng/ml) and the tetrazolium-salt WST-1 were added simultaneously to Jurkat cells and turnover of WST-1 was measured photometrically. White circles: medium control; black circles: APIT-treated samples; mean absorbance of 8 replicates \pm SD.

D, Cell death induced by ink. Jurkat cells were treated with ink (1/500 diluted) and propidium iodide (PI) uptake was measured as indicator for dead cells.

5 Figure 3

A, Heat sensitivity of ink. Dialysed ink was incubated for 10 min at the indicated temperatures and enzymatic activity was measured as H_2O_2 -production (mean of triplicates \pm SD). Blank: medium control.

10

B, pH-sensitivity of APIT. APIT (60 ng) was incubated for 10 min at 25 °C in 0,1 M potassium phosphate at indicated pH values. Enzymatic activity was measured as H_2O_2 -production (mean of triplicates \pm SD).

15 C, Sensitivity to increasing amounts of urea: Dialyzed ink (black bars, 1/500 diluted) and as positive control 0,625 mM α-keto isocaproic acid (open bars) were treated with indicated concentrations of urea for 30 min at 25°C. Enzymatic activity (15 min, 25°C) was measured as α-keto acid formation via MBTH.

20

30

Figure 4

- A, N-terminal and internal peptide sequences of the APIT protein.
- B, List of oligonucleotides used for cloning of the APIT gene.
 - C, Nucleotide sequence of the APIT cDNA and the derived amino acid sequence. The dinucleotide binding fold (VAVVGAGPGGANSAYMLRDSG LDIAVFE) and the GG-motif (RVGGRLFT) are indicated by boxes. Consensus amino acid residues are indicated by bold letters. The N-terminal sequence of mature APIT (dashed line) and of internal peptides (solid line) derived by Edman degradation and mass finger prints are

indicated. Sequence variations of the three clones are indicated by small boxes.

D, Variation of the N-terminus of APIT in 11 further clones.

5

10

Figure 5

- A, Anion exchange chromatography of purified APIT. Proteins were eluted by a linear gradient from 0 to 800 mM NaCl and fractions were collected every minute. Absorption was measured at 280 nm (AU: Absorption unit).
- B, Fractions 24, 27 and 29 were separated by SDS-PAGE and tested for metabolic activity by WST-1 assay. High activity (+; ++) correlated with the presence of a prominent 60 kDa band (fractions 24 and 29). Activity is given as the dilution leading to > 85% reduction of the metabolic activity of Jurkat cells (+/- = 1:900; + = 1:2700; ++ = 1:8100).
- C, Absorption spectra of fractions 24 (black line), 27 (dashed line) and 29 (dotted line).

20

25

30

15

Figure 6

- A, APIT induced $\rm H_2O_2$ production in medium in the absence of cells. APIT (260 ng/ml) was incubated in medium in the presence (open bar) or absence (black bar) of Jurkat cells (5x10⁵/ml). After 1 h of incubation at 37°C supernatants were alkylated with N-ethylmaleimide and $\rm H_2O_2$ was measured (mean values of 3 independent experiments +/- SD).
- B, Catalase inhibits ink induced cell death. Jurkat T-cells were incubated for 8 h with ink in the presence (black bars) or absence (white bars) of catalase. Cytotoxicity was measured as Pl uptake (mean of triplicates ± SD).

C, Catalase protects from APIT induced loss of metabolic activity. Metabolic activity of Jurkat cells was measured after incubation with APIT (20 ng/ml) or anti-CD95 for 3h in the presence (black bars) or absence (white bars) of catalase. (mean of 5 replicates \pm SD).

5

10

15

30

D, Phenotype of APIT induced cell death is mediated by hydrogen peroxide. Jurkat cells were cultured for 7 hours in the presence (APIT) or absence (medium) of APIT (60 ng/ml) or H_2O_2 (500 μ M) and were analyzed by phase contrast microscopy. Catalase was added in combination with APIT to neutralize H_2O_2 (APIT+CAT).

Figure 7

- A, Enzymatic activity of APIT in the presence of different medium supplements. APIT (200 ng/ml) was incubated for 60 min at RT with RPMI \pm 10% FCS or KRG supplemented with different medium ingredients and \pm 10 production was measured. (EAA = essential amino acids, NEAA = non essential amino acids, concentrations see Table 1).
- B, Substrate specificity of APIT and ink. The enzymatic reaction of dialysed ink (open bars) with different L-amino acids in potassium phosphate buffer was measured as H₂O₂-production. 50 μM H₂O₂ and amino acid free medium (control) were used as control. Aliquots of dialyzed ink were digested with trypsin (hatched bars) or proteinase K (black bars) at 37°C for 2h prior to testing the substrate specificity. Arg = L-arginine, 1mM; Lys = L-lysine, 1mM; EAA = essential amino acids, 1mM; NEAA = non essential amino acids, 1mM.
 - C, APIT induced cell death depends on the presence of L-lysine or L-arginine. Jurkat cells were incubated with APIT (20 ng/ml) for 6 h in the presence (white bars) or absence of L-lysine and L-arginine (black bars). Cytotoxicity was measured as PI uptake (mean of triplicates ± SD).

D, APIT induced loss of metabolic activity depends on the presence of L-lysine or L-arginine. Jurkat cells were incubated with APIT (20 ng/ml) or anti-CD95 (150 ng/ml) in the presence (open bars) or absence (black bars) of L-lysine or L-arginine and metabolic activity was measured (mean of 5 replicates \pm SD).

E, APIT transforms L-lysine into an α -keto acid. APIT was incubated with L-lysine and the formation of α -keto acid was measured photometrically by its reaction with MBTH.

10

- F, Michaelis-Menten kinetic of APIT activity with L-lysine. K_m value for L-lysine was determined as H_2O_2 production.
- G, Proposed reaction mechanism of L-amino acid oxidases according to Macheroux et al. (2001 Eur. J. Biochem. 268:1679-1686). Encircled are compounds which we demonstrated to participate in the reaction catalyzed by APIT.

Table 1

20 Composition and concentrations of mixtures of essential and non-essential amino acids as well as single amino acids used in Fig. 7A.

Table 2

APIT kills different kinds of tumor cells. Different tumor cell lines (50,000 cells in 100 μ l) were incubated for 14 h in the presence of increasing amounts of APIT. Metabolic activity of the cells was measured via turnover of WST. The IC₅₀ values reflect the APIT concentration at which the metabolic activity is decreased to 50%. (* stands for IC₅₀ \geq 20 ng/ml at the given cell concentration of 50,000/100 μ l.)

Table 3

List of proteins which were changed in their expression or modified after treatment with APIT (upregulation (+), downregulation (-), or modification (m) in column "effect"). The proteins are referenced by the genbank identifier and/or accession number and/or version number.

5

10

Table 4

List of genes (referenced by unigene cluster number) and gene products (proteins) which were modulated in their expression more than 2 fold after incubation with APIT for two hours. The proteins are referenced by the genbank identifier and/or accession number. Transcription rates are indicated as increase $(+, 2 \text{ to } \le 4 \text{ times}; ++, 4 \text{ to 6 times})$ or decrease $(-, 2 \text{ to } \le 4 \text{ times}; --, 4 \text{ to 6 times})$.

Example 1: Purification of APIT

15

20

25

30

Aplysia punctata were gained from the Station Biologique Roscoff, Bretagne, France. Crude ink was prepared by gentle squeezing the sea hares in sterile seawater. Insoluble particles were removed by ultracentrifugation (82,000g, 30 min, 4°C) and supernatants were stored at -70°C.

APIT was purified from crude ink via anion exchange chromatography and gelfiltration. The thawed ink was filtered through Whatman filter No. 4 under slight vacuum and subsequently through a 5 μ m and 0.45 μ m syringe filter. The filtrate was concentrated by using Ultrafree-15 Units (Millipore, exclusion weight 30 kDa) followed by three washing steps with 20 mM Tris HCl (pH 8.2). After centrifugation at 10.000 g for 5 min the supernatant of the concentrate (20 ~ 60 fold) was applied to a Source Q15 column ((10mm, length 40 mm) equilibrated with 20 mM Tris HCl, pH 8.2. Proteins were eluted by a linear gradient from 0 to 800 mM NaCl over 50 ml at a flow rate of 2 ml/min (Fig. 1A). The purity of the fractions was determined by SDS-PAGE and subsequent rapid silver staining. APIT

appears as a band at 60 kDa. Cytolytic activity was measured as APIT-induced reduction of the metabolic activity of Jurkat cells via turnover of WST (see example 2). Enzymatic activity was determined as described in example 3. Fractions which show high purity and cytotoxic respectively enzymatic activity (Fig. 1A; fraction 42 to 48) were pooled, concentrated and loaded onto a Superose 12 HR 10/30 column (Pharmacia). Proteins were eluted with 100 mM potassium phosphate buffer (pH 7.2) at a flow rate of 0.5 ml/min The first peak represents the active APIT (Fig. 2B; fraction 11 to 14).

10

15

20

25

30

5

Example 2: Phenotype of APIT-induced cell death

The purple fluid of Aplysia punctata contains a cytolytic activity which induces rapid and extensive death of Jurkat T cells in culture. APIT induces cell death of tumor cells which resembles neither apoptosis nor necrosis. In order to classify the APIT-induced cell death we looked for common features of apoptosis and necrosis.

Jurkat T cells were harvested in the log phase, centrifuged and adjusted to a density of 5 x 10^5 /ml with fresh medium (RPMI supplemented with 10% FCS, 100 U/ml penicillin and 100 μ g/ml streptomycin). Cells were cultured with APIT, cycloheximide as a positive control or medium at 37°C, 5% CO₂ and 100% humidity for the indicated times. Fragmented DNA of apoptotic cells was analyzed according to Herrmann et al. (1994, Nucleic Acid Research 22: 5506-5507). Cell vitality was determined as metabolic activity via the turnover of WST-1 (ROCHE, Mannheim) to red formazan by the mitochondrial dehydrogenase of viable cells. Absorbance of the cell suspension was measured photometrically at 450 nm (690 nm reference). Toxicity was measured by quantifying propidium iodide uptake (1 μ g/ml in PBS) by Flow Cytometry.

Morphologically, tumor cells treated with ink or APIT did not exhibit typical morphological apoptotic or necrotic signs of cell death (Fig. 2A), and neither blebbing nor swollen cells were detected when cells were treated with a lethal dose of ink. Cells did not form clusters anymore, cytoplasm became translucent and nuclei prominent (Fig. 2A). The intracellular movements of plasma and organelles stopped, detachment and formation of vacuoles were observed when adherent cells were incubated with APIT (data not shown). Consistent with the absence of apoptosis, fragmented DNA or nuclei were not detected in ink-treated tumor cells (Fig. 2 B); moreover, caspases were not activated (data not shown). Metabolic activity of tumor cells was blocked as early as 30 min after exposure to ink or APIT (Fig. 2C). Ink-treated tumor cells rapidly took up propidium iodide (PI) indicating plasma membrane permeabilization and cell death (Fig. 2D).

15 Example 3: Stability of APIT

10

APIT was further characterized by its sensitivity to heat, low pH and high concentrations of urea.

For determination of its heat sensitivity native ink was dialyzed against PBS at 4°C for several days to separate chromopeptides. Dialysed ink was incubated for 10 min at the indicated temperatures, and activity was measured immediately as enzymatic production of H₂O₂. This assay is based on the finding that APIT transforms L-lysine to H₂O₂ and α-keto acid.

The production of H₂O₂ was determined via the turnover of ABTS (2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) to a green formazan in the presence of H₂O₂ by horseradish peroxidase. Heat-treated ink was incubated with L-lysine (1 mM) in 100 μl 100 mM potassium phosphate buffer, pH 7.2 for 10 min at 25°C. The reaction was stopped by adding 1 μl of 10 M phosphoric acid. To 25 μl of this solution 1 mM ABTS and 1 Unit horseradish peroxidase was added in 225 μl 100 mM potassium

phosphate buffer, pH 5.0. Absorption was measured photometrically at 405 nm (reference 690 nm).

Purified APIT was challenged to different pH-values by adding a mixture of monobasic and dibasic potassium phosphate and phoshphoric acid rendering the desired pH. After a 10 min incubation pH of samples was adjusted to pH 7.2 by adding appropriate amounts of dibasic phosphate. Afterwards enzymatic activity was measured as H_2O_2 -production as described above.

10

15

5

The activity of APIT after treatment with urea was measured via the production of α -keto acid, which was quantified photometrically by its reaction with the hydrazone MBTH (3-methyl-2-benzothiazolone hydrazone hydrochloride) as described by Soda (1968). Dialyzed ink was incubated with urea at indicated concentrations for 30 min. Subsequently the remaining enzymatic activity was measured without removing urea for 15 min at 25 °C. As control, defined amounts of α -keto isocaproic acid (Sigma; K-0629) were treated equally.

APIT was characterized by its heat sensitivity and was found to exhibit a high and constant activity after pre-incubation for 10 min at 0°C to 50°C. Activity was clearly reduced at 60°C and absent at temperatures of 70°C or higher (Fig. 3A). APIT also shows a loss of activity with decreasing pH, with complete inactivation after a 10 min pre-incubation at pH 3 or lower (Fig. 3B). An outstanding feature of APIT is its resistance to urea (Fig. 3C). After 30 min treatment with 6 M urea, the activity of APIT was almost unaffected. At 8 M urea, the activity was reduced by about 50%.

Example 4: Sequencing and cloning of APIT

30

In order to clone the cDNA of APIT N-terminal and internal peptide sequences were identified by PMF (peptide mass fingerprint), ESI/MS and

Edman degradation (Fig. 4A). A suitable internal peptide sequence was used to design a degenerated primer for PCR (Fig. 4A, underlined sequence) with reverse transcribed mRNA, prepared from Aplysia punctata tissues. Subsequent 5'-RACE yielded the full length cDNA which was cloned and analyzed.

5

10

15

20

25

30

Amino acid sequencing by peptide mass fingerprint (PMF), ESI/MS and Edman degradation. Purified APIT was separated by SDS PAGE and 2 DE gel electrophoresis (Thiede et al., 2001, J. Biol. Chem. 276: 26044-26050). The N-terminus of APIT was identified from a single band/spot of a PVDF blot by Edmann degradation. For the identification of internal peptide sequences a single band/spot was punched from the gel, digested with trypsin and dissolved in aqueous trifluoroacetic acid (Thiede et al., 2001, J. Biol. Chem. 276:26044-26050). Tryptic peptides were separated using a Smart-HPLC system with a column of 2.1 mm inner diameter and 10 cm length (µRPC C2/C18 SC 2.1/10, Smart System, Pharmacia Biotech, Freiburg, Germany) and an acetonitrile gradient in 0.1% (v/v) trifluoroacetic acid at a flow rate of 100 μ l/min at room temperature. The peptide fractions were dried, dissolved in 6 μ l 0.3% (v/v) aqueous trifluoroacetic acid/acetonitrile (2:1) and analyzed by MALDI-MS. The mass spectra were recorded by using a time-of-flight delayed extraction MALDI mass spectrometer (Voyager-Elite, Perseptive Biosystems, Framingham, MA, USA) as previously described (Thiede et al., 2001, J. Biol. Chem. 276:26044-26050). Briefly, fifty mg/ml 2,5-dihydroxybenzoic acid in 0.3% (v/v) aqueous trifluoroacetic acid/acetonitrile (2:1) was used as matrix and 0.3 μ l of the sample and 0.3 μ l of the matrix were mixed and applied to a gold-plated sample holder and introduced into the mass spectrometer after drying. The spectra were obtained in the reflectron mode by summing 50-150 laser shots. For N-terminal sequencing peptide fractions containing single masses were loaded onto a Biobrene-coated glass fiber filter, transferred to a PVDF membrane and excised. Sequencing was performed using a Procise sequencer (Applied Biosystems, Weiterstadt, Germany).

5

10

15

20

25

30

Cloning of the APIT gene. In order to dissect mantle gland, nidamental gland, digestive gland and opaline gland some animals were relaxized by injection of 5 - 10 ml sterile MgCl₂ solution (380 mM). Isolated tissues were frozen immediately in liquid nitrogen. Total RNA was prepared from these tissues using the "peq gold TRIfast" reagent (Peqlab). mRNA was reverse transcribed using the tagged oligo dT oligonucleotide 5'-tcc taa cgt agg tot aga cot gtt goa $t_{(18)}$ -3' (Fig. 4B, oligo 1) and the Superscript II polymerase (LIFE) at 42°C. In order to amplify a fragment of the APIT gene the degenerated primer 5'-tc gtg ttc gar tac tci gay cg-3' derived from the APIT peptide VFEYSDR (Fig. 4B, oligo 2) and the specific primer 5'- ctg tag gtc tag acc tgt tgc a-3' (Fig. 4B, oligo 3) directed against the tag sequence of the oligo dT-primer was used. PCR was performed with the "expand long template" system (ROCHE, Mannheim) at 68°C and the product was cloned into the pCMV-vector (Stratgene) and sequenced. The 5' terminal cDNA of APIT was cloned using the 5' RACE System (LIFE) according to the manufacturers instructions. Primers 5'-ccg tgt aga tct cac tgc cat a-3' (Fig. 4B, oligo 4) or 5'-ccg ttg agt tgt aga cct-3 (Fig. 4B, oligo 6) were combined with the primers 5'-ggc cac gcg tcg act agt acg ggi igg gii ggg iig-3' (Fig. 4B, oligo 5) or 5'-aatt ggc cac gcg tcg act agt ac-3' (Fig. 4B, oligo 7) to yield a product which was cloned into the pCDNA3-vector (Invitrogen) and sequenced. Finally, full length APIT cDNA was obtained by amplifying the APIT using the specific primers 5' - aa ttc tcg tct gct gtg ctt ctc ct (Fig. 4B, oligo 8) and 5' - gac tta gag gaa gta gtc gtt ga (Fig. 4B, oligo 9) and cloned into the pGEX-4T3 Vector (Amersham). DNA from 3 clones of transfected E.coli was prepared and sequenced.

The identity of the isolated gene was confirmed by comparing the computed translational product (Fig. 4C) with the amino acid sequences of the tryptic peptides (Fig. 4A) and the peptide mass fingerprint. It consisted of 1608 bp coding for a protein of 535 amino acids (Fig. 4C) with the predicted mass of 60,167 dalton and a pl of 4.59. The N-terminal 18 amino acids of APIT comprised a putative secretion signal sequence which

was absent from the mature protein, most likely due to posttranslational modification during secretion. Furthermore, APIT exhibited homology to FAD-binding oxidoreductases with a conserved dinucleotide binding fold around amino acids 39 to 66 followed by a so-called GG-motif typical for certain oxidases like LAAO, MAO (Fig. 4C) (Dailey et al., 1998, J.Biol. Chem. 273:13658-13662; Vallon et al., 2000, Proteins 38:95-114; Macheroux et al., 2001 Eur. J. Biochem. 268:1679-1686). The highest degree of homology existed to the Cyplasin from *A. punctata*, the Aplysianin from *A. kurodai* and the mucus-toxin of the giant African snail *Achatina fulica*.

Comparing the 3 derived DNA-sequences we often found differences in the third position of coding triplets which nevertheless only seldom produced changes in the amino acid sequence of APIT (Fig. 4C).

15

20

10

5

By the method described above, further 11 clones were isolated from Aplysia punctata which have a homology to the sequences described in Fig. 4 of at least 95%. Several mutations of the amino acid sequence were found in the domain comprising the dinucleotide binding fold and the GG motif, which probably have no effect upon the function (Fig. 4D). In Pos. 22 of SEQ ID NO:2, C is replaced by S in two clones. In Pos. 52, A is replaced by T in one clone. In Pos. 60, L is replaced by Q in 7 clones. In Pos. 69, D is replaced by H in one clone. In Pos. 77, T is replaced by S in one clone.

25

Example 5: FAD association

The toxic and enzymatic activity of APIT is due to the presence of an attached FAD.

30

In order to purify the tumor lytic activity, ink from A. punctata was subjected to different purification protocols and afterwards each fraction

was tested for its toxic activity (see example 1). Activity always correlated with the presence of a protein of approximately 60 kDa (Fig. 5 A and B). Moreover, APIT was found to contain carbohydrate residues using the DIG Glycan/Protein double labeling method (Roche; data not shown). Furthermore, all spectra of the highly active fractions exhibited a double peak at 390/470 nm (Fig. 5C) which is characteristic for protein bound flavines (Massey et al., 2000, Biochem Soc. Trans. 28:283-96). Heating of APIT for 10 min to 60°C, which is accompanied by a substantial loss of activity also results in loss of detectable FAD-absorption, as is the case with lowering the pH to inactivating values around pH 3. Heating and pH-challenge of APIT was performed as described in example 3 (data not shown).

Consistently, APIT contained the conserved dinucleotide binding fold involved in pyrophosphate binding (Wierenga et al., 1986, J. Mol. Biol., 15 187:101-107) which is found in many flavoproteins (Fig. 4B; example 4). Moreover, in APIT like in many oxidases a so-called GG-motif is found adjacent to the dinucleotide binding fold (Dailey et al., 1998, J. Biol. Chem. 273:13658-13662, Vallon et al., 2000, Proteins, 38:95-114). Based on the structure of the dinucleotide binding fold and conserved 20 sequence motifs, FAD containing proteins are ordered into 4 families (Dym et al., 2001, Protein Sci. 10:1712-28). According to this classification and based on homology APIT belongs to the Glutathione reductase 2 family (GR2) (Dym et al., 2001, Protein Sci. 10:1712-28). The data show that FAD is a necessary prosthetic group for toxic and enzymatic activity of APIT.

Example 6: Cell-death is mediated via H₂O₂

5

10

25

Proteome analysis revealed that thioredoxin peroxidase II is involved in the 30 APIT mediated tumor cell death. Thioredoxinperoxidase II is involved in detoxification of reactive oxygen species (ROS) by reducing hydrogen

peroxides as well as other peroxides. We therefore tested whether H_2O_2 is produced during APIT incubation and found that H_2O_2 is the mediator of APIT-induced cell death. Scavenging this toxic compound by catalase results in survival of APIT treated cells.

5

15

20

25

30

 $\rm H_2O_2$ production was measured after incubation of APIT in medium alone and in cell suspension as described in example 3. Toxicity was measured by quantifying propidium iodide uptake (1 μ g/ml in PBS) by Flow Cytometry. Cell vitality was determined as metabolic activity via the turnover of WST-1 (ROCHE, Mannheim) to red formazan by the mitochondrial dehydrogenase of viable cells. Absorbance of the cell suspension was measured photometrically at 450 nm (690 nm reference).

As shown in Fig. 6A, APIT induced the production of H₂O₂ in the presence (167 μ M) as well as in absence of cells (280 μ M). This strongly argues for an enzymatic activity of APIT which transforms medium ingredients under the production of hydrogen peroxide. In the presence of cells the measured H₂O₂ amount is somewhat lower which might be explained by cellular consumption and degradation of H_2O_2 . In the absence of APIT H_2O_2 was not detectable. To investigate whether the APIT-induced cell death is mediated by H₂O₂, cells were treated with APIT in the presence of the H₂O₂ degrading enzyme catalase and then stained with PI. Catalase completely abolished the ink-induced increase of PI stained cells (Fig. 6B). Degradation of H₂O₂ by catalase also inhibited the rapid break-down of metabolic activity induced by APIT (Fig. 6C) but, as expected, was ineffective in blocking CD95 (Fas/Apo-1)-induced cell death in the same assay (Fig. 6C). In the presence of catalase APIT no longer induced morphological changes of tumor cells as judged by microscopic investigation (Fig. 6D). The highly efficient inhibition by catalase in particular suggested that no other substance than H2O2 elicits the toxic effect observed in APIT-treated samples. Consistently, H_2O_2 induced the phenotype typical for APIT-treated cells (Fig. 6D). Furthermore, proteome analyses revealed changes in H_2O_2

treated cells which were characteristic of APIT-treated cells. These data together clearly demonstrated that the cytotoxic activity depended on the H₂O₂ producing enzymatic activity of APIT.

Example 7: APIT is a L-lysine/L-arginine a-oxidase. Enzymatic activity is a 5 prerequisite for toxicity

10

15

20

30

APIT produced H₂O₂ in RPMI medium in the abence of cells. In order to idenitify the substrates in cell culture medium which are converted to $\rm H_2O_2$ by APIT, we prepared different media with defined amino acid composition by supplementing HEPES buffered modified Krebs Ringer medium (KRG: 25 mM HEPES pH 7.4, 125 mM NaCl, 5 mM KCl, 1.2 mM KH₂PO₄, 5 mM NaHCO₃, 6 mM glucose, 1.2 mM MgSO₄, 1 mM CaCl₂) with 10% FCS, 2 mM glutamine, essential and non-essential amino acids (Invitrogen), or single essential amino acids in concentrations equivalent to RPMI medium (Invitrogen). Media were adjusted to pH 7.4 and filter sterilized. After incubation of these media with purified APIT the enzymatic activity was measured as H₂O₂ production via turnover of ABTS (2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) to a green formazan in the presence of H_2O_2 and horseradish peroxidase (Fig. 7A and Table 1).

In a next step we checked whether the substrate specificity could be impaired by digest of APIT. For proteolytic digest aliquots of dialysed ink were treated for 2 h with proteinase K (0,05 mg/ml final) in PBS at 37°C. Reaction was stopped by adding aprotinin (1 μ g/ml final) or PEFA ([4-(2-25 aminoethyl)-benzolsulfonyl fluoride-hydrochloride]-hydrochloride; 0,25 mg/ml final), and digest was checked on a 15% SDS-PAGE. After incubation of digested ink with different amino acid compositions in potassium phosphate buffer the enzymatic activity was measured as H₂O₂ production (Fig. 7B).

In order to test whether withdrawal of L-lysine and L-arginine results in rescue of APIT-treated cells we incubated Jurkat cells in medium lacking L-lysine and L-arginine. Control cells were cultured in a medium containing L-lysine(HCl (40 mg/l) and L-arginine(HCl (240 mg/l). Toxicity was measured by quantifying propidium iodide uptake (1 μ g/ml in PBS) by Flow Cytometry (Fig. 7C).

5

10

15

20

30

Cell vitality was determined as metabolic activity via the turnover of WST-1 (ROCHE, Mannheim) to red formazan by the mitochondrial dehydrogenase of viable cells. Absorbance of the cell suspension was measured photometrically at 450 nm (690 nm reference). As control tumor cells were killed by anti-CD95 treatment (Fig. 7D).

a-Keto acids were quantified photometrically by their reaction with the hydrazone MBTH (3-methyl-2-benzothiazolone hydrazone hydrochloride) as described (Soda et al., 1968, Anal. Biochem. 25:228-235) (Fig. 7E).

The K_m value for L-lysine was determined as H_2O_2 production and calculated according to Michaelis Menten with the GraphPad Prism 3.0 software (GraphPad Software, San Diego California USA) using non linear regression (Fig. 7F).

Surprisingly, from all amino acids tested only L-lysine and L-arginine served as substrates for APIT to produce hydrogen peroxide (Fig. 7A). Moreover, the restricted substrate specificity was even maintained when APIT was digested with protease K suggesting that the protease resistant fragment of APIT contains both, the active domain and the domain which determines the substrate specificity (Fig. 7B). These data were confirmed by functional analyses which showed that APIT was unable to induce cell death (Fig. 7C) or reduce metabolic activity (Fig. 7D) in tumor cells incubated in medium lacking L-lysine and L-arginine, indicating that the enzymatic activity of APIT is the prerequisite for its toxicity. L-lysine and L-arginine deprivation

had no influence on the metabolic activity of tumor cells under the experimental conditions (Fig. 7D). Activation of CD95(Fas/Apo-1) efficiently impaired cell vitality irrespective of the presence of L-lysine or L-arginine (Fig. 7D), demonstrating that cell death can be induced under L-lysine and L-arginine limited conditions.

As shown in the reaction scheme in figure 7G, α -keto derivatives are produced by amino acid oxidases and these could indeed be demonstrated when L-lysine was used as substrate for APIT (Fig. 7E). These results suggested that APIT catalyses the formation of H_2O_2 by the reaction outlined in figure 7G. Kinetic studies analyzed according to Michaelis-Menten revealed a K_m of 0.182 mM for L-lysine (Fig. 7F).

By adding L-lysine (2-50 μ g/ml) to tumor cells which are cultured with APIT (20 ng/ml) in medium depleted of L-lysine and L-arginine or in pure FCS, the metabolic activity of the tumor cells can be reduced down to 16% respectively 50% of the control cells without additional L-lysine. This shows that the tumorolytic effect of APIT can be manipulated by changing the amount of available substrate which is of significance for *in vivo* studies and/or for application of APIT in pharmaceutical compositions and/or methods for treatment of cancer.

Example 8: Sensitivity of different tumor cell lines to APIT induced cell death.

Tumor cells were harvested in the log phase. Triplicates of each 50,000 cells were cultured in a flat bottomed 96-well-plate in 100 μ l medium with increasing concentrations of APIT. After 14 hours the metabolic activity of the cells was determined by addition of 10 μ l WST-1 per well (ROCHE, Mannheim). The yellow tetrazolium salt is cleaved to red formazan by cellular enzymes of viable cells. The metabolic activity correlates with cell

25

30

5

10

15

vitality and was quantified by measuring the absorbance of the dye solution with a spectrophotometer at 450 nm (reference 650 nm).

APIT is able to kill different tumor cells. T and B cell leukemia cell lines (Jurkat neo, CEM neo, SKW neo), a chronic myelogenous leukemia cell line (K562), and cells from an orphan and aggressive osteosarcoma (Ewings tumor: RDES, A673) showed the highest sensitivity to the APIT induced cell death (IC₅₀ \leq 5.6 ng/ml), followed by cells derived from small cell lunger cancer (GLC4, GLC4/ADR), cervix cancer (Chang) and acute monocytic leukemia (THP-1) (IC₅₀ \leq 10 ng/ml). Most of the adherent growing cells of solid tumors (breast cancer: MCF-7, SK-BR-3; prostate cancer: PC3, DU-145; colon cancer: HT-29; cervix cancer: HeLa; uterus cancer: Hec-1-B; larynx cancer HEp-2; stomach cancer: AGS; liver cancer: Hep G2) and the monocyte leukemia cell line MonoMac 6 are less sensitive at the indicated cell concentration (IC₅₀ \leq 20 ng/ml), but become more sensitive when lower cell concentrations were used (IC₅₀ 5 - 10 ng/ml).

10

15

20

25

30

Resistance to apoptosis as well as multi drug resistance (MDR) represent severe problems in cancer therapy. It is therefore of particular interest that APIT kills apoptosis resistant cell lines as well as MDR cancer cell lines equally efficient as their non resistant counter parts (Tab. 2): Over-expression of apoptosis inhibitors of the Bcl-2 family in acute lymphoblastic leukemia cell lines (CEM Bcl-X_L, Jurkat Bcl-2) as well as in B cell leukemia (SKW Bcl-2) (Tab. 2; 4th row) does not protect from APIT mediated cell death and results in IC₅₀ values of \leq 6 ng/ml, similar to the non-transfected parental cell lines, confirming that APIT induce cell death in an apoptosis independent way. The MDR cell line GLC4/ADR (Tab. 2, 5th row) was generated by selection with doxorubicin (Zijlstra et al.,1987; Cancer Res. 47:1780-1784). Its multifactorial MDR is caused by over-expression of MRP-1 and a decreased activity of the DNA topoisomerase II. GLC4/ADR cells possess almost the same sensitivity to APIT (IC₅₀ 10 ng/ml) as the parental line GLC4 does (IC₅₀ 9 ng/ml).

Example 9: Proteome analysis: change in protein expression pattern in Jurkat T cells after treatment with APIT

Treatment with APIT. Jurkat T cells (5 x 10^5 /ml) were incubated with APIT (20 ng/ml) for 8 h at 37°C in 5.0% CO2 in the presence of 1 μ g/ml cycloheximide. Controls were performed without APIT.

5

10

15

20

25

Total cell lysate. The Jurkat T cells were solubilized in 5 volumes of a buffer containing 9 M urea, 25 mM Tris/HCl, pH 7.1, 50 mM KCl, 3 mM EDTA, 70 mM DTT, 2.9 mM benzamidine, 2.1 μ M leupeptin, 0.1 μ M pepstatin, 1 mM PMSF, and 2% carrier ampholytes (Servalyte pH 2-4, Serva, Heidelberg, Germany). After 30 minutes of gentle stirring at room temperature, the samples were centrifuged at 100000 g (Ultracentrifuge Optima TLX, Beckman, München, Germany) for 30 minutes with a TLA120.2 rotor, which were kept at room temperature before centrifugation. The clear supernatant was frozen at -70°C.

Proteomics. The methods of preparing 2-DE gels, staining with Coomassie Blue G-250, staining with silver nitrate, in-gel tryptic digestion, peptide mass fingerprinting by MALDI-MS, and identification of the proteins are described in Jungblut et al., Molecular Microbiology, 2000, 36, 710-725.

Identification was performed using the peptide mass fingerprinting analysis software MS-Fit (http://prospector.ucsf.edu/ucsfhtml3.2/msfit.htm) or ProFound (http://canada.proteometrics.com/prowl-cgi/ProFound.exe?FORM = 1). Searches were performed in the databases NCBInr and SwissProt. The proteins are referenced by the genbank identifier, accession number and/or version number.

Results. APIT induces either upregulation, downregulation, or modification of the proteins. Modification in the context of this example is a change in the apparent mass and/or the apparent pl value of the protein. By

comparison of 2-DE patterns of APIT-treated whole cell lysates with the corresponding patterns of untreated cells, the proteins as described in Table 3 were identified to be affected by APIT.

5 Example 10: Transcriptome analysis

20

25

30

The influence of APIT on the gene exression of tumor cells was investigated by Microarray technology.

In situ Oligonucleotide Arrays. A custom oligonucleotide glass array of specific 60mer oligonucleotides representing the mRNA of about 8500 human genes was designed based on human Unigene clusters (Unigene build No. 148) including positive and negative control oligonucleotides (Homo sapiens house keeping genes and Arabadopsis thaliana genes respectively). The probe design included a base composition filter and a homology search to minimise cross-hybridisation.

RNA isolation, labelling and hybridisation to arrays. Jurkat neo cells (1x107 in 20 ml) were cultured for 2 hours in medium (RPMI + 10 % FCS) in the presence or absence of APIT (10 ng/ml) at 37°C, 5% CO₂. Cells were harvested and the pellet was dissolved in 2 ml Trizol (Life Technologies). Total RNA was extracted after addition of chloroform and subsequent centrifugation and precipitated with isopropanol. After washing the pellet with 75% ethanol it was briefly air-dryed. Quality control of the RNA included exclusion of genomic DNA by PCR and "Lab on a chip technology" (Bioanalyser). RNA (5 μ g) from each pool was amplified using a reverse transcriptase/T7 polymerase. 1.5 μ g of test cRNAs labelled either with Cy3 or Cy5 were hybridised for 16 hours at 65°C to arrays. Each sample was also labelled and hybridised with the reverse fluorophore to obviate possible dye bias. Slides were scanned using a Microarray scanner. Background signal was determined using negative control spots and

subtracted, data were normalised relative to non-regulated genes. Data from duplicate hybridizations were combined.

Results. Table 4 summarizes the genes with increased or decreased transcription rate of treated cells compared with untreated cells, indicating these genes and/or its gene products (proteins) to be targets of APIT and/or H₂O₂.

 					······································		
-34 7 945 1	*** * - '** ***	······································	****				
			i				
··· .				·			
						•	

EPO-Munich 55 20. Jan. 2003

Claims

- A polypeptide comprising the amino acid sequence shown in SEQ ID
 NO:2, 4, or 6.
 - 2. A polypeptide claimed in Claim 1 which is an oxidase which is capable to produce H_2O_2 .
- 3. A polypeptide as claimed in any one of the Claims 1 to 2 which is an alpha amino acid oxidase.
 - 4. A polypeptide as claimed in Claim 3 which is a L-lysine and/or L arginine oxidase.
 - 5. A polypeptide comprising a fragment of the polypeptide as claimed in any one of the Claims 1 to 4.
- 6. A polypeptide as claimed in Claim 5 which is obtained by protease digestion of the polypeptide as claimed in any of the Claims 1 to 4.

- A polypeptide as claimed in Claim 6 which is obtained by proteinase K digestion.
- 25 8. A polypeptide as claimed in Claim 5 comprising the sequence selected from amino acid residue No. 39 to 77 in SEQ ID NO:2.
- 9. A polypeptide as claimed in Claim 8 comprising 1 to 20 additional amino acid residues at the N-terminus and/or the C-terminus selected from the sequences of SEQ ID NO:2 or SEQ ID NO:4 adjacent to the sequence selected in claim 8.

10. A polypeptide as claimed in Claim 8 comprising 1 to 10 additional amino acid residues at the N-terminus and/or the C-terminus selected from the sequences of SEQ ID NO:2 adjacent to the sequence selected in claim 8.

5

11. A polypeptide as claimed in Claim 8 comprising 1 to 5 additional amino acid residues at the N-terminus and/or the C-terminus selected from the sequences of SEQ ID NO:2 adjacent to the sequence selected in claim 8.

- 12. A polypeptide as claimed in any one of the Claims 2 to 11, wherein the H₂O₂ producing activity can be regulated by the addition or removal of an L-amino acid.
- 13. A polypeptide as claimed in Claim 12 which is regulated by L-lysine, L-arginine, a derivative or precursor of L-lysine, a derivative or a precursor of L-arginine, or a mixture thereof.
- 14. A polypeptide which has an identity to the polypeptides of any of the claims 1 to 13 of at least 70%.
 - 15. A polypeptide as claimed in any one of the claims 1 to 14 which is a recombinant polypeptide.
- 16. The polypeptide as claimed in claim 15, which is a fusion polypeptide.
 - 17. A nucleic acid encoding a polypeptide of any of the Claims 1 to 16.

18. The nucleic acid of Claim 17 comprising

5

10

- (a) a nucleotide sequence as shown in SEQ ID NO:1, 3, or 5, or at least the polypeptide coding portion thereof, or the complement thereof, or
- (b) a nucleotide sequence corresponding to the sequence of (a) within the scope of degeneracy of the genetic code, or the complement thereof, or
- (c) a nucleotide sequence hybridizing under stringent condition with the sequence of (a) and/or (b), or
- (d) a nucleotide sequence which has a homology of at least 70% to the sequences of (a) and/or (b).
 - 19. The nucleic acid of claim 17 or 18 operatively linked to an expression control sequence.
 - 20. The nucleic acid of any one of claims 17 to 19 which is a recombinant vector.
- 21. A recombinant cell comprising the nucleic acid of any one of the Claims 17 to 20.
 - 22. An antibody directed against a polypeptide of any one of the Claims 1 to 16.
- 25 23. A pharmaceutical composition or a kit of pharmaceutical compositions comprising the polypeptide as claimed in any of the Claims 1 to 16, in a pharmaceutically effective amount and optionally together with suitable diluents, carriers and/or adjuvants.
- 30 24. The pharmaceutical composition or kit of Claim 23 comprising at least one further component which is a substance capable of modulating the cytotoxic activity of the polypeptide.

- 25. The pharmaceutical composition or kit of Claim 24, wherein the polypeptide and the modulating substances are provided as separate preparations.
- 5 26. The pharmaceutical composition or kit of Claim 25, wherein the polypeptide is provided for administration before the modulating substances.
- 27. The pharmaceutical composition or kit of any one of the Claims 24 to 26, wherein the modulating substance selected from (i) L-lysine, L-arginine, a derivative or precursor of L-lysine, a derivative or precursor of L-arginine, or a mixture thereof, and/or (ii) a flavine nucleoside.
- 15 28. The pharmaceutical composition or kit of any one of the Claims 24 to 27, further comprising a nucleic acid, and/or a recombinant cell, and/or an APIT inhibitor.
- 29. The pharmaceutical composition or kit of Claim 28, wherein the inhibitor is an antibody against the polypeptide.
 - 30. A polypeptide, and/or a nucleic acid, and/or a recombinant cell, and/or an inhibitor as claimed in any one of the Claims 1 to 22, for use in a diagnostic or therapeutic method in humans or animals.
 - 31. A polypeptide, and/or a nucleic acid, and/or a recombinant cell, and/or an inhibitor as claimed in Claim 30 for diagnosis or treatment of cancer.
- 30 32. A polypeptide, and/or a nucleic acid, and/or a recombinant cell, and/or an inhibitor as claimed in Claim 30 or 31 for diagnosis or treatment of lung cancer, breast cancer, prostate cancer, colon

cancer, cervix cancer, uterus cancer, larynx cancer, stomach cancer, liver cancer, Ewings sarkoma, acute lymphoid leukemia, chronic myeloid leukemia, apoptosis resistent leukemia, MDR lung cancer, pancreas cancer, gastric cancer, kidney cancer, gliomas, melanomas, chronic lymphoid leukemia, and/or lymphoma.

- 33. A target substance for a polypeptide of any one of Claim 1-16 as described in Table 3 and/or Table 4.
- 10 34. The target substance of Claim 33 which is a protein.
 - 35. The target substance of Claim 33 which is nucleic acid.
- 36. Use of a target substance of any one of the claims 33 to 35 for the identification of new pharmaceutical agents.
 - 37. Pharmaceutical composition comprising as an active agent at least one of the target substances of any one of claims 33 to 35.

- 48 -

EPO-Munich 55 20 Jan. 2003

Abstract

The present invention relates to a cytotoxic polypeptide which is an L-amino acid oxidase isolated from the ink of the sea hare Aplysia punctata.

10 ld 20.01.03

4 urea (M)

6

8

2

4A

N-terminal sequence:

Internal peptide sequences

	Sequence
1	DSGLDIAVFEYSDR
2	LFXYQLPNTPDVNLEI
3	VISELGLTPK
4	XGDVPYDLSPEEK
5	VILAXPVYALN
6	ATQAYAAVRPIPASK
7	VFMTFDQP
8	SDALFFQMYD
9	SEASGDYILIAŞYADGLK
10	NQGEDIPGSDPQYNQVTEP(L)(K)
V	ot determinable

X = not determinable

underlined: primer sequence for RT-PCR

4B

1	Oligo-dT DBuTag1	tcc taa cgt agg tct aga cct gtt gca ttt ttt ttt ttt ttt
2	V-Fey 3 DTS 5'	tc gtg ttc gar tac tci gay cg
3	DBuTag1 DTS 3'	ctg tag gtc tag acc tgt tgc a
4-	ATF Race 3' 660	-ccg tgt aga tct cac tgc cat a
5	Abriged Anchor Primer	ggc cac gcg tcg act agt acg ggi igg gii ggg iig
6	ATF Race 3' 436	ccg ttg agt tgt aga cct
7	AUAP-EcoRI	aatt ggc cac gcg tcg act agt ac
8	ATF 5' Sign Eco RI GEX/ET	aa ttc tcg tct gct gtg ctt ctc ct
9	ATF 3' Xhol	gac tta gag gaa gta gtc gtt ga

4C

- G P G A N S A Y M L R D S G L D I A V F E GGGCCTGGGGGAGCTAACTCCGCCTACATGCTGAGGGACTCCGGCCTGGACATCGCTGTGTTCGAGGGGCCTGGGGGAGCTAACTCCGCCTACATGCTGAGGGACTCCGGCCTGGACATCGCTGTGTTCGAGGGGCCTGGGGGAGCTAACTCCGCCTACATGCTGAGGGACTCCGGCCTGGACATCGCTGTTTCGAGGGGCCTGGGGGGACTCCGGCCTGGACATCGCTGTTTCGAG
- E I G G M R F I E G A M H R L W R <u>V I S E L</u> GAGATTGGCGGCATGAGGGTTCATCGAAGGCCCCATGCACAGGCTCTGGAGGGTCATTTCAGAACTC GAGATTGGCGGCATGAGGGTTCATCGAGGGCGCCCATGCACAGGCTCTGGAGGGTCATTTCAGAACTC GAGATTGGCGCGCATGAGGGTTCATCGAGGGCGCCCATGCACAGGCTCTGGAGGGTCATTTCAGAACTC
- G Q S L T K K Q V K S <u>G D V P Y D L S P E E</u>
 GGACAGAGCCTGACCAAGAAACAGGTCAAGAGTGGGGACGTACCCTATGACCTCAGCCCGGAGGAG
 GGACAGAGCCTGACCAAGAAACAGGTCAAGAGTGGGGACGTACCCTATGACCTCAGCCCGGAGGAG
 GGACAGAGCCTGACCAAGAAACAGGTCAAGAGTGGGGACGTACCCTATGACCTCAGCCCGGAGGAG
- EG P L K R E V A L K L T V P D G R F L Y D L GAGCCGCTCAAACGTGAGGTTGCGCTTAAACTAACCGTGCCGGACGGCAGATTCCTCTATGACCTC GAACCGCTCAAACGTGAGGTTGCGCTTAAACTAACCGTGCCGGACGGCAGATTCCTCTATGACCTC GGACCGCTCAAACGTGAGGTTGCGCTTAAACTAACCGTGCCGGACGGCAGATTCCTCTATGACCTC
- S F D E A M D L V A S P E G K E F T R D T H
 TCGTTTGACGAAGCCATGGATCTGGTTGCCTCCCCTGAGGGCAAAGAGTTCACCCGAGACACGCAC
 TCGTTTGACGAAGCCATGGATCTGGTTGCCTCCCCTGAGGGCAAAGAGTTCACCCGAGACACGCAC
 TCGTTTGACGAAGCCATGGAGCTTGCCTCCCCTGAGGGCAAAGAGTTCACCCGAGACACGCAC

4C (continued)

- V F T G E V T L DG A S A V S L F D D H L G E GTCTTCACAGGAGAGGTCACCCTGGACGCGTCGGCTGTCTCCCTCTTCGACGACCACCTGGGAGAGGTCTTCACCGGAGAGGGTCACCCTGGGCGCGCGTCGGCTGTCTCCCTCTTCGACGACCACCTGGGAGAGGTGTTCACCGGAGAGAGGTCACCCTGGACGACGACCACCTGGGAGAG
- Q AT F L D A A D S N E F Y P N S H L K A L R CAGGCTTTTCTGGACGCCGCAGACTCCAACGAGTTCTATCCCAACAGCCACCTGAAGGCCCTGAGA CAGGCTTTTCTGGACGCCGCAGACTCCAACGAGTTCTATCCCAACAGCCACCTGAAGGCCCTGAGA CAGACTTTTCTGGACGCCGCAGACTCCAACGAGTTCTATCCCAACAGCCACCTGAAGGCCCTGAGA
- R K T N G Q Y V L Y F E P T T S K D G Q T T CGTAAGACCAACGGTCAGTATGTTCTTTACTTTGAGCCCACCACCTCCAAGGATGGACAAACCACA CGTAAGACCAACGGTCAGTATGTTCTTTACTTTGAGCCCACCACCTCCAAGGATGGACAAACCACA CGTAAGACCAACGGTCAGTATGTTCTTTACTTTGAGCCCACCACCTCCAAGGATGGACAAACCACA
- I N Y L E P L Q V V C A Q R <u>V I L A M P V Y ATCAACTATCTGGAACCCCTGCAGGTTGTGTGTGCACAAAGAGTCATCCTGGCCATGCCGGTATAC ATCAACTATCTGGAACCCCTGCAGGTTGTGTGTGCACAGAGAGTCATTCTGGCCATGCCGGTCTAC ATCAACTATCTGGAACCCCTGCAGGTTGTGTGTGCACAGAGAGTCATCCTGGCCATGCCGGTCTAC</u>
- R P I P A S K V F M TS F D O P W W L E N E R CGCCCGATTCCTGCAAGTAAGGTGTTCATGTCCTTTGATCAGCCCTGGTGGTTGGAGAACGAGAGGCCCCGATTCCTGCAAGTAAGGTGTTCATGACCTTTGATCAGCCCTGGTGGTTGGAGAACGAGAGGCCCCGATTCCTGCAAGTAAAGTTCATGACCTTTGATCAGCCCTGGTGGTTGGAGAACGAGAGGCCCCCGATTCCTGCAAGTAAAGTTCATGACCTTTGATCAGCCCTGGTGGTTGGAGAACGAGAGG
- K S W V T K S D A L F S O M Y D W Q K S E A AAATCCTGGGTCACCAAGTCGGACGCGCTTTTCAGCCAAATGTACGACTGGCAGAAGTCTGAGGCG AAATCCTGGGTCACCAAGTCGGACGCGCTTTTCAG $\overline{\Box}$ CAAATGTACGACTGGCAGAAGTCTGAGGCG AAATCCTGGGTCACCAAGTCGGACGCGCTTTTCAGCCAAATGTACGACTGGCAGAAGTCTGAGGCG
- S G D Y I L I A S Y A D G L K A O Y L R E L TCCGGAGACTACATCCTGATCGCCAGCTACGCCGACGGCCTCAAAGCCCAGTACCTGCGGGAGACTGCCGGAGACTACATCCTGATCGCCAGCTACGCCGACGGCCTCAAAGCCCAGTACCTGCGGGAGACTGCCGGAGACTACATCCTGATCGCCAGCTACGCCGACGCCTCAAAGCCCAGTACCTGCGGGAGACTG

4C (continued)

D T I L D H L T E A Y G V E R D S I PR E P V GACACCATTCTTGACCACCTCACTGAGGCTTATGGCGTGGAGCGAGACTCGATCCCGGAACCCGTGGACACCATTCTTGACCACCTCACTGAGGCGTATGGCGTGGAGCGAGACTCGATCCGGGAACCCGTGGACACCATTCTTGACCACCTCACTGAGGCTTATGGCGTGGAACCGAGACTCGATCCCGGAACCCGTG

G A D Y S W G L I S S W I E G A L E T S E N GGAGCCGACTACTCCTGCTCCTGGATAGAGGGCGCTCTGGAGACCTCGGAAAAC GGAGCCGATTACTCCTGGGGACTTATCTCCTCCTGGATAGAGGGCGCTCTGGAGACCTCAGAAAAC GGAGCCGATTACTCCTGGGGACCTTCTCCTGGATAGAGGGCGCTCTGGAGACCTCGGAAAAC

V I N D Y F L GTCATCAACGACTACTTCCTCTAAGTCAACGACTACTTCCTCTAAGTCATCAACGACTACTTCCTCTAA

4D

VS
MSSAVLLLACALVISVHADGICRNRRQCNREVCGSTYDVAVVGA

10 20 30 40

T Q H S

GPGGANSAYMLRDSGLDIAVFEYSDRVGGRLFTYQLPNTPDVNL

50 60 70 80

1h

Table 1

EAA (essential amino	acids)	NEAA (non-essential acids)	aino
L-arginine HCI	126.4 mg/l	L-alanine	8.9 mg/l
L-cystine	24.02 mg/l	L-asparagine	13.2 mg/l
L-histidine ⁻ HCl ⁻ H2O	41.92 mg/l	L-aspartic-acid	13.3 mg/l
L-isoleucine	52.46 mg/l	L-glutamic acid	14.7 mg/l
L-leucine	52.46 mg/l	glycine	7.5 mg/l
L-lysine HCl	73.06 mg/l	L-prolin	11.5 mg/l
L-methionine	14.92 mg/l	L-serine	10.5 mg/l
L-phenylalanine	33.02 mg/l		
L-threonine	47.64 mg/l		
L-tryptophane	10.2 mg/l		
L-tyrosine	36.22 mg/l		
L-valine	46.86 mg/l		

Single amino acid	S
histidine HCl H2O	20 mg/l
isoleucine	50 mg/l
leucine	50 mg/l
methionine	15 mg/l
phenylalanine	15 mg/l
threonine	20 mg/l
tyrosine	20 mg/l
arginine HCi	240 mg/l
lysine	40 mg/l
D-lysine	40 mg/l
cystine	50 mg/l
tryptophane	5 mg/l
valine	20 mg/l
glutamine	300 mg/l

Table 2. APIT kills different tumor cell lines

inioneis Ioi	Kind of tumor	tumor cell line	IC50 (na/ml)
1. solid tumors	lung cancer	GLC4	6
	Dreast cancer	MCF-7, SK-BR-3	*
	prostate cancer	PC3, DU145	*
	colon cancer	HT-29	20
	cervix cancer	HeLa. Chang	*
•	uterus carcinoma	Hec-1-B	*
	larynx cancer	HED-2	*
	stomach cancer	AGS	*
	liver cancer	Hen G2	*
2. leukemia	T cell leukemia (ALL)	Jurkat neo	3.2
	T cell leukemia (ALL)	CEM neo	
	B cell leukemia	SKW neo	? °
	Monocyte leukemia (AML)	Mono Mac 6	? *
	Monocyte leukemia (AML)	THP-1	5
3. "orphan" tumors	Ewings sarcoma	RDES	4 5
		A673	j re
4. apoptosiis	(CML)	K562	1.05
resistant tumors	T cell leukemia (ALL)	Jurkat Bel.2	4.23
	T cell leukemia (ALL)	CEM Bci-X,	7.7
	B cell leukemia	SKW Bci-2	
5. MDR tumors	Lung cancer	GLC4-ADR	4

10
. <u></u>
sis
~
_
a
ang
an
a
41
\simeq
-
ome
Ö
Te e
포
O
ğ
Ω_
က
(,)
Ø
<u> </u>
able
<u></u>

Description	gi	NCBI	NCBI version	swissprot	effect
Aldolase A (E.C.4.1.2.13)	229674	1ALD	1ALD	P04075	
26S proteasome regulatory chain 12	2134660	S65491	S65491	-	,
3-Hydroxyacyl-CoA dehydrogenase	2078327	AAB54008	AAB54008.1	Q16836	•
C-1-tetrahydrofolate synthase, cytoplasmic (C1-THF synthase)	115206	P11586	P11586	P11586	•
Chain A, Structure Of Human Glutamate Dehydrogenase-Apo Form	20151189	1L1F_A	1L1F_A	1	٤
or Glutamate dehydrogenase 1	4885281	NP_005262	NP_005262.1	P00367	
Cleavage and polyadenylation specific factor 5, 25 kD subunit	5901926	NP_008937	NP_008937.1		+
Cofilin 1	5031635	NP_005498	NP_005498.1	P23528	•
Coronin, actin binding protein, 1A	5902134	NP_009005	NP_009005.1	P31146	+
Dihydrolipoamide dehydrogenase precursor; E3 component of pyruvate	4557525	NP_000099	NP_000099.1	P09622	•
dehydrogenase					
dJ553F4.4 (Novel protein similar to Drosophila CG8055 protein)	12314022	CAC14088	CAC14088.1		+
DNA replication licensing factor MCM4	1705520	٠	•	P33991	+
Elongation factor1-delta (EF-1-delta)	20141357	P29692	P29692	P29692	1
Enolase 1, alpha; phosphopyruvate hydratase	4503571	NP_001419	NP_001419.1	Q05524	+
Glyceraldehyde-3-phosphate deliydrogenase	31645	CAA25833	CAA25833.1	P04406*	+
or uracil DNAglycosylase	35053	CAA37794	CAA37794.1	P04406*	
Heat shock 60kD protein 1 (chaperonin)	14603309	AAH10112	AAH10112.1	Q96FZ6	•
Heat shock 60kDa protein 1 (chaperonin)	4504521	NP_002147	NP_002147.1	P10809	
Heat shock 70kD protein 9B (mortalin-2)	4758570	NP_004125 .	NP_004125.1	Q8N1C8	•
Heterogeneous nuclear ribonucleoprotein C, isoform b	4758544	NP_004491	NP_004491.1	P07910	E
Hspc117	6841456	AAF29081	AAF29081.1	Q9P037	٤
Inosine-5'-monophosphate dehydrogenase 2 (IMP dehydrogenase 2)	124419	P12268	P12268	P12268	+
Isocitrate dehydrogenase 3 (NAD+) alpha	5031777	NP_005521	NP_005521.1	P50213	•
KH-type splicing regulatory protein (FUSE binding protein 2)	4504865	NP_003676 .	NP_003676.1	•	•
Nuclear matrix protein NMP200 related to splicing factor PRP19	7657381	NP_055317	NP_055317.1	Q9UMS4	
Nucleobindin 2	4826870	NP_005004	NP_005004.1	P80303	1
54 kDa nuclear RNA- and DNA-binding protein (p54(nrb)) (p54nrb)	13124797	Q15233	Q15233	Q15233	+
Peroxiredoxin 1 (Thioredoxin peroxidase 2)	548453	೦೦6830	G06830	Q06830	E
Peroxiredoxin 1; Proliferation-associated gene A; proliferation-associated gene A	4505591	NP_002565.1	NP_002565.1	Q06830	E

ation	
lable 3. Continu	Description

Peroxiredoxin 2 (Thipredoxin	<u>6</u>	NCBI	NCB! Vores		
Porting (Tilloledoxill peroxidase 1)	2507160	022440	HOISION HON	SWISSprot	effect
reloxiredoxin 3; antioxidant protein 1; thioredoxin-dependent peroxide	500007	132119	P32119	P32119	ŀ
reductase precursor	5802874	NP_006784	NP 006784.1	P30048	1
2-phosphopyruvate-hydratase alinha-englase: co-boot-			l		
Professome subjust other.	693933	CAA59331	CAAECOSAA		
Professional applies type /	12643540	044040	Crw33331.1	P06733	+
Proteasonile sugurit beta type 1 (Proteasome component C5) (Macronain	130052	0104010	014818	014818	+
Subunit (5)	20000	F20618	P20618	P20618	+
rease-activating protein SH3-domain-binding protein; GAP binding	5031703	NID 005745.4			
Replication protein A2 32kha		INF_003/43.1	NP_005745.1	Q13283	٤
Rho GDP-dissociation in the State of the GDP-dissociation in the State of the GDP-dissociation in the State of the State o	4506585	NP 000027	1 20000		
Pikes 321 dissociation innibitor 2 (Rho GDI 2) (Rho-GDI beta) (Ly-GDI)	1707803	002337	NP_002937.1	P15927	•
Niposornal protein P0; 60S acidic ribosomal protein P0	450567	r 32300	P52566	P52566	
or similar BLOCK 23	4300007	NP_000993	NP_000993.1	P05388	
Ribosomal profein, large, P0	20536934	XP_165448 :	XP 165448.1	ORNHIAK	
RNA-binding protein regulatory subunit	12654583	AAH01127	AAH01127 1	CANTINION	
RNA-binding profess regulators	6005749	NP 009103	AID 000400 '	r-03388	•
Semenation of the second subunit		VD 004707	INP 009193.1	014805	+
ocinical demenogelin		Ar_001/0/	XP 001707.2	014805	+
Similar to villin 2 (ezrin)		NP_002998	NP 002998 1	D04270	T
Splicing factor proline/olutamine rich (patrouriminial)	15530243	AAH13903	AAH13903 1	24504	
(associated)	4826998	NP 005057	ALL DOCOLL	F15311	•
Stathmin 1: metablastin: prosplin:		7000	1.750500_AN	P23246	
Jelikemia-associated and Jelikemia-associated	5031851	NP ODEREA			
19 cmall mass or a prosphoprotein p18			NF_005554.1		
V. Siliali Iluciear ribonucleoprotein A' (U2 snRNP-A')	134004				
VIIIETIII			P09661	P09661	1+
Vollage-dependent anion-selective channel protein 2 (VDAC, 2) /hvvacov		3371	NP 003371.1	PORRZO	Ī
(ADMO-Z) (IIVDACZ)	1172554 P	P45880	P45880	045000	.]
				- XXX	

(0
.==
S
ysi
===
10
ang
Œ
=
=
Ô
Ť
iptome
Ē
Ö
Ś
ä
一页
Ľ
Transcr
٠.
4
Table
7
**
20

Inicono olimina		2000			
Olligene cluster Description	Description	GENE	gı	pinnubi/swisspi enect	епест
Hs.3833	3'-phosphoadenosine 5'-phosphosulfate synthase 1	PAPSS1	4885537	NP_005434.1	ı
Hs.166563	replication factor C (activator 1) 1, 145kDa	RFC1	15011931	15011931 ref:NP_002904.2	'
Hs.78991	DNA segment, numerous copies, expressed probes (GS1 gene)	DXF68S1E	6912346	ref:NP_036212.1	'
Hs.326035	early growth response 1	EGR1	119242	sp:P18146	‡
Hs.108885	collagen, type VI, alpha 1	COLÉA1	15011913	15011913 ref:NP_001839.1	‡
Hs.78944	regulator of G-protein signalling 2, 24kDa	RGSŻ	2135146	2135146 pir:153020	++
Hs.110571	growth arrest and DNA-damage-inducible, beta	GADD45B	9945332	9945332 ref:NP_056490.1	+
Hs.78465	v-jun sarcoma virus 17 oncogene homolog (avian)	NOC	135298	sp:P05412	+
Hs.82646	DnaJ (Hsp40) homolog, subfmaily B, member 1	DNAJB1	1706473	sp:P25685	+
Hs.169840		TTK	346403	pir:A42861	+
Hs.211601	mitogen-activated protein kinase kinase kinase 12	MAP3K12	18202489	18202489 sp:Q12852	+
Hs.345728	suppressor of cytokine signaling 3	SSI-3	4507235	ref:NP_003946.1	+
	zinc finger protein 216	ZNF216	5174755	5174755 ref:NP_005998.1	+
Hs.73037	cannabinoid receptor 2 (macrophage)	CNR2	450068	prf:1920360A	+
Hs.167578	EST,FLJ25357 hypothetical protein FLJ25357		740170	2004399A	+
	hypothetical protein MGC3232	MGC3232	3024681	3024681 sp:000268	+
0	spinocerebellar ataxia 1 (olivopontocerebellar ataxia 1, autosomal dominant, ataxin 1)	SCA1	1082237	1082237 pir:S46268	+
	pumilio homolog 2 (Drosophila)	PUM2	14277945 pdb:11B3	pdb:11B3	+
	EST, Highly similar to SES2_HUMAN Sestrin 2 [H.sapiens]	•	13633882	13633882 sp:P58004	+
	TGFB inducible early growth response	TIEG	11387050	11387050 sp:Q13118	+
	von Hippel-Lindau binding protein 1	VBP1	4507873	4507873 ref:NP_003363.1	+
32	tumor protein p53-binding protein	TP53BPL	5032191	5032191 ref:NP_005793.1	+
	adrenergic, beta-3-, receptor	ADRB3	1070630	1070630: pir:QRHUBE	+
	dual specificity phosphatase 5	DUSP5	12707566	12707566 ref:NP_004410.2	+
	heat shock 105kD	HSP105B	5729879	5729879; ref:NP_006635.1	+
Hs.77558	high mobility group nucleosomal binding domain 3	HMGN3	2495254 sp:Q15651	sp:Q15651	+
	activating transcription factor 3	ATF3	1 2/888	pir:C34223	+
5	ited protein	CAP	399184 s	sp:Q01518	+
6		MAP-1	11545896 r	11545896 ref:NP_071434.1	+
	rotein	CISH	13124022 s	13124022 sp:Q9NSE2	+
Hs.101383	ESTs, Weakly similar to A43932 mucin 2 precursor, intestinal - human (fragments)		2135765 pir:A43932	ir:A43932	+
			-		

=
0
=
<u> </u>
- ==
=
-=
ᆂ
=
Q
ပ
4
1
8
Ō
=
,ro

Unigene cluster Description	Description				
Hs.276770	nen (CAMBATH 4 224)	GENE	iĝ	pir/NCBI/swissnr effect	n offert
Hs.8084	Involute in a state of the stat	CDW52	4502761	1	
Hs 78829	Hybrationical protein addonary.	DJ465N24 2 1	1 1009267	Ta	
2000	uniquititi specific protease 10	110010	142000	3 E .INF U04/13.	+
TS.003	Charot-Leyden crystal protein	021.0	1136028	11350280 pir:147164	+
Hs.277401	bromodomain adjacent to zinc finger domain 24	CLC	1942631	pdb:1LCL	+
Hs.300863		BAZ2A	7304921	ref:NP 038477.1	+
Hs.4552	ubiquilin 2	H-L(3)MBT	1414172	14141728 ref:NP 056293.2	+
3	GrpE-like protein cochaperone	UBQLN2	1675320	16753207 ref:NP 038472.2	+
	hypothetical protein E11C11 12 ro	HMGE	1820295	18202951 sp:Q9HAV7	+
	adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)				+
3	ClpX caseinolytic protease X homolog (E. coli)	ADARB1	2829669	sp:P78563	+
	HLA-B associated transcript 2	CLPX	1491695(14916956 sp:O76031	+
	ting factor 1	BAT2	18375626	18375626 ref:NP 542417.1	+
		OSTF1	11134086	11134088 sp:Q92882	1+
	arfaptin 1	KIAA0877			Ţ.
Hs.276238	derately similar to kinge e	HSU52521	1703203	sp:P53367	J
Hs.211569	G protein-coupled recentor kings a suppressor or ras [Mus musculus]				- 1
Hs.25524		GPRKS	2125115	A 40077	
	ceptor type 23	DTDNISS	2133143	pir:A482//	+
	Hike receptor, subfamily A (with TM domain) member 2	r i r ivzs		pir:T14756	+
/7:	Z Januard, member Z	LILKAZ		ref:NP_006857.1	+
	7	830	9	pir:T08737	T+
Hs.90800 E		PTAFR	107346	pir:A40191	T+
Hs.81648	metalloproteinase 3; membrane-type-3 matrix metalloproteinase [Homo sapiens]		13027802	13027802 ref:NP_005932.2	+
	to splicing factor, arginine/serine-rich 4	FLJ11021	2833266	sp:015696	Ţ.
Hs.238407 E		BTF	$\overline{}$	ref NP OSSSS 1	Ţ.
8	protein FLJ20489 [Homo sapiens] [H.sapiens]		_	ref:NP 060312 1	• [•
3	dina frame 10	KIAA0391	3024899	sp:015091	+
	ible camma			p:Q9NZB2	T+
7		45G	5729836 In	ref:NP 006696.1	T+
HS.77274 pla	plasminogen activator, urokinase			ref:NP 055742.1	+
		PLAU	224665 p	prf:1110198A	+

_
⊏
0
.=
ਯ
7
.=
₩
\equiv
Ÿ
O
_
4
4
e 4.

Unigene cluster Description		GENE	gi	pir/NCBI/swisspt effect	effect
Hs.93516	ESTs				+
Hs.376709	Homo sapiens cDNA FLJ33768 fis, clone BRHIP200021				+
Hs.110299	mitogen-activated protein kinase kinase 7	MAP2K7	4826946	4826946 ref:NP_005034.1	+
Hs.31396	ESTs, Weakly similar to S28807 collagen alpha 1(X) chain precursor [M.musculus]				+
Hs.129715	gonadotropin-releasing hormone 2	GNRH2	3913735	3913735 sp:O43555	+
Hs.169370	FYN oncogene related to SRC, FGR, YES	FYN	125370	125370 sp:P06241	+
Hs.82007	methionyl aminopeptidase 1	METAP1	1703270	1703270 sp:P53582	+
Hs.239018	RAB11B, member RAS oncogene family	RAB11B	1082426	1082426 pir:JC2487	+
Hs.126852	solute carrier family 6 (neurotransmitter transporter, GABA), member 13	SLC6A13	7705539	7705539 ref:NP_057699.1	+

SEQUENCE LISTING

SEQUENCE LISTING	02.12.0
<110> Max-Planck-Gesellschaft zur Förderung der Wissenschaften	•
<120> Protein with cytotoxic activity from Aplysia punctata	e.V.
<130> (Filename)	FPO 1
<140> (Current Application Number) <141> 2002-12-01	EPO - Munich 55
<160> 6	20, _{Jan. 2003}
<170> PatentIn version 3.1	
<210> 1 <211> 1608 <212> DNA <213> Aplysia punctata	•
<220> <221> CDS <222> (1)(1608) <223>	
<pre><400> 1 atg tcg tct gct gtg ctt ctc ctg gct tgt gcg ttg gtc atc tct gtc Met Ser Ser Ala Val Leu Leu Ala Cys Ala Leu Val Ile Ser Val</pre>	48 ·
cac gcc gac ggt atc tgc aga aac aga cgt caa tgt aac aga gag gtg His Ala Asp Gly Ile Cys Arg Asn Arg Arg Gln Cys Asn Arg Glu Val 20 25 30	96
tgc ggt tct acc tac gat gtg gcc gtc gtg ggg gcg ggg cct ggg gga Cys Gly Ser Thr Tyr Asp Val Ala Val Val Gly Ala Gly Pro Gly Gly 35 40 45	144
gct aac tcc gcc tac atg ctg agg gac tcc ggc ctg gac atc gct gtg Ala Asn Ser Ala Tyr Met Leu Arg Asp Ser Gly Leu Asp Ile Ala Val 50 55 60	192
ttc gag tac tcg gac cga gtg ggc ggc cgg ctg ttc acc tac cag ctg Phe Glu Tyr Ser Asp Arg Val Gly Gly Arg Leu Phe Thr Tyr Gln Leu 75 80	240
Pro Asn Thr Pro Asp Val Asn Leu Glu Ile Gly Gly Met Arg Phe Ile . 85 90 95	288
gaa ggc gcc atg cac agg ctc tgg agg gtc att tca gaa ctc ggc cta Glu Gly Ala Met His Arg Leu Trp Arg Val Ile Ser Glu Leu Gly Leu 100 105	336
acc ccc aag gtg ttc aag gaa ggt ttc ggc aag gag ggc aga caa aga Thr Pro Lys Val Phe Lys Glu Gly Phe Gly Lys Glu Gly Arg Gln Arg 115 120 125	384
ttt 'tac ctg cgg gga cag agc ctg acc aag aaa cag gtc aag agt ggg Phe Tyr Leu Arg Gly Gln Ser Leu Thr Lys Lys Gln Val Lys Ser Gly 130 135 140	432
gac gta ccc tat gac ctc agc ccg gag gag aaa gaa aac cag gga aat Asp Val Pro Tyr Asp Leu Ser Pro Glu Glu Lys Glu Asn Gln Gly Asn 150 150 160	480
Leu Val Glu Tyr Tyr Leu Glu Lys Leu Thr Gly Leu Gln Leu Asn Gly 165	528
gag ccg ctc aaa cgt gag gtt gcg ctt aaa cta acc gtg ccg gac ggc	576

Apl	ysia	II-	02-N	ov-1	2.ST	25.t	xt									
Glu	Pro	Leu	Lys 180	Arg		Val	Ala	Leu 185	Lys	Leu	Thr	Val	Pro 190	_	Gly	
aga Arg	ttc Phe	ctc Leu 195	tat Tyr	gac Asp	ctc Leu	tcg Ser	ttt Phe 200	gac Asp	gaa Glu	gcc Ala	atg Met	gat Asp 205	ctg Leu	gtt Val	gcc Ala	624
ser	210	GIU	GIY	гÀз	GLU	215	Thr	Arg	Asp	Thr	His 220	Val	Phe	Thr	gga Gly	672
 gag Glu 225	gtc Val	acc Thr	ctg Leu	gac Asp	gcg Ala 230	tcg Ser	gct Ala	gtc Val	tcc Ser	ctc Leu 235	ttc Phe	gac Asp	gac Asp	cac His	ctg Leu 240 ·	720
gga Gly	gag Glu	gac Asp	tac Tyr	tat Tyr 245	ggc	agt Ser	gag Glu	atc Ile	tac Tyr 250	acc Thr	cta Leu	aag Lys	gaa Glu	gga Gly 255	ctg Leu	768
tct Ser	tcc Ser	gtc Val	cca Pro 260	caa Gln	el ^a aaa	ctc Leu	cta Leu	cag Gln 265	gct Ala	ttt Phe	ctg Leu	gac Asp	gcc Ala 270	gca Ala	gac Asp	816
tcc Ser	aac Asn	gag Glu 275	ttc Phe	tat Tyr	ccc Pro	aac Asn	agc Ser 280	cac His	ctg Leu	aag Lys	gcc Ala	ctg Leu 285	aga Arg	cgt Arg	aag Lys	. 864
acc Thr	aac Asn 290	ggt Gly	cag Gln	tat Tyr	gtt Val	ctt Leu 295	tac Tyr	ttt Phe	gag Glu	ccc Pro	acc Thr 300	acc Thr	tcc Ser	aag Lys	gat Asp	912
gga Gly 305	caa Gln	acc Thr	aca Thr	atc Ile	aac Asn 310	tat Tyr	ctg Leu	gaa Glu	ccc Pro	ctg Leu 315	cag Gln	gtt Val	gtg Val	tgt Cys	gca Ala 320	960
caa Gln	aga Arg	gtc Val	atc Ile	ctg Leu 325	gcc Ala	atg Met	ccg Pro	gta Val	tac Tyr 330	gct Ala	ctg Leu	aac Asn	caa Gln	cta Leu 335	gac Asp	1008
tgg Trp	aat Asn	cag Gln	ctc Leu 340	aga Arg	aat Asn	gac Asp	cga Arg	gcc Ala 345	acc Thr	caa Gln	gcg Ala	tac Tyr	gct Ala 350	gcc Ala	gtt Val	1056
cgc Arg	ccg Pro	att Ile 355	.cct Pro	gca Ala	agt Ser	aag Lys	gtg Val 360	ttc Phe	atg Met	tcc Ser	ttt Phe	gat Asp 365	cag Gln	ccc Pro	tgg Trp	1104
tgg Trp	ttg Leu 370	gag Glu	aac Asn	gag Glu	agg Arg	aaa Lys 375	tcc Ser	tgg Trp	gtc Val	acc Thr	aag Lys 380	tcg Ser	gac Asp	gcg Ala	ctt Leu	1152
ttc Phe 385	agc Ser	caa Gln	atg Met	tac Tyr	gac Asp 390	tgg Trp	cag Gln	aag Lys	tct Ser	gag Glu 395	gcg Ala	tcc Ser	gga Gly	gac Asp	tac Tyr 400	1200
atc Ile	ctg Leu	atc Ile	gcc Ala	agc Ser 405	tac Tyr	gcc Ala	gac Asp	ggc Gly	ctc Leu 410	aaa Lys	gcc Ala	cag Gln	tac Tyr	ctg Leu 415	cgg Arg	1248
gag Glu	ctg Leu	гЛз	aat Asn 420	cag Gln	gga Gly	gag Glu	gac Asp	atc Ile 425	cca Pro	ggc Gly	tct Ser	gac Asp	cca Pro 430	ggc Gly	tac Tyr	1296
aac Asn	GIU	gtt Val 435	acc Thr	gaa Glu	ccc Pro	ctc Leu	aag Lys 440	gac Asp	acc Thr	att Ile	ctt Leu	gac Asp 445	cac His	ctc Leu	act Thr	1344
	450	TYE	GIĀ	vaı	GIU	Arg 455	Asp	Ser	Ile	Pro	Glu 460	Pro	Val	Thr	Āla	1392
gct Ala	tcc Ser	cag Gln	ttc Phe	tgg Trp	aca Thr	gac Asp	tac Tyr	ccg Pro	ttt Phe	gly ggc	tgt Cys	gga Gly	tgg Trp	atc Ile	acc Thr	1440

480

tgg agg gcc ggc ttc cat ttc gat gac gtc atc agc acc atg cgt cgc
Trp Arg Ala Gly Phe His Phe Asp Asp Val Ile Ser Thr Met Arg Arg
485
490
495

475

ccg tca ctg aaa gat gag gta tac gtg gtg gga gcc gac tac tcc tgg
Pro Ser Leu Lys Asp Glu Val Tyr Val Val Gly Ala Asp Tyr Ser Trp
505
500
500
500

gga ctt atc tcc tcc tgg ata gag ggc gct ctg gag acc tcg gaa aac 1584
Gly Leu Ile Ser Ser Trp Ile Glu Gly Ala Leu Glu Thr Ser Glu Asn
515 520 525

gtc atc aac gac tac ttc ctc taa
Val Ile Asn Asp Tyr Phe Leu
530 535

<210> 2

<211> 535

<212> PRT

<213> Aplysia punctata

<400> 2

Met Ser Ser Ala Val Leu Leu Leu Ala Cys Ala Leu Val Ile Ser Val 1 5 10 15

His Ala Asp Gly Ile Cys Arg Asn Arg Arg Gln Cys Asn Arg Glu Val

Cys Gly Ser Thr Tyr Asp Val Ala Val Val Gly Ala Gly Pro Gly Gly 35 40 45

Ala Asn Ser Ala Tyr Met Leu Arg Asp Ser Gly Leu Asp Ile Ala Val 50 55 60

Phe Glu Tyr Ser Asp Arg Val Gly Gly Arg Leu Phe Thr Tyr Gln Leu 65 70 75 80

Pro Asn Thr Pro Asp Val Asn Leu Glu Ile Gly Gly Met Arg Phe Ile 85 90 95

Glu Gly Ala Met His Arg Leu Trp Arg Val Ile Ser Glu Leu Gly Leu 100 105 110

Thr Pro Lys Val Phe Lys Glu Gly Phe Gly Lys Glu Gly Arg Gln Arg

Phe Tyr Leu Arg Gly Gln Ser Leu Thr Lys Lys Gln Val Lys Ser Gly 130 135 140

Asp Val Pro Tyr Asp Leu Ser Pro Glu Glu Lys Glu Asn Gln Gly Asn 150 155 160

Leu Val Glu Tyr Tyr Leu Glu Lys Leu Thr Gly Leu Gln Leu Asn Gly 165 170 175

Glu Pro Leu Lys Arg Glu Val Ala Leu Lys Leu Thr Val Pro Asp Gly 180 185 190

Arg Phe Leu Tyr Asp Leu Ser Phe Asp Glu Ala Met Asp Leu Val Ala 195 200 205

Ser Pro Glu Gly Lys Glu Phe Thr Arg Asp Thr His Val Phe Thr Gly 210 215 220

Glu-Val-Thr Leu-Asp Ala Ser Ala Val Ser Leu-Phe Asp Asp His Leu-225 230 235 240

Gly Glu Asp Tyr Tyr Gly Ser Glu Ile Tyr Thr Leu Lys Glu Gly Leu 245 250 255

Ser Ser Val Pro Gln Gly Leu Leu Gln Ala Phe Leu Asp Ala Ala Asp 260 265 270

Ser Asn Glu Phe Tyr Pro Asn Ser His Leu Lys Ala Leu Arg Arg Lys 275 280 285

Thr Asn Gly Gln Tyr Val Leu Tyr Phe Glu Pro Thr Thr Ser Lys Asp 290 295 300

Gly Gln Thr Thr Ile Asn Tyr Leu Glu Pro Leu Gln Val Val Cys Ala 305 310 315 320

Gln Arg Val Ile Leu Ala Met Pro Val Tyr Ala Leu Asn Gln Leu Asp 325 330 335

Trp Asn Gln Leu Arg Asn Asp Arg Ala Thr Gln Ala Tyr Ala Ala Val 340 345 350

Arg Pro Ile Pro Ala Ser Lys Val Phe Met Ser Phe Asp Gln Pro Trp 355 360 365

Trp Leu Glu Asn Glu Arg Lys Ser Trp Val Thr Lys Ser Asp Ala Leu 370 375 380

Phe Ser Gln Met Tyr Asp Trp Gln Lys Ser Glu Ala Ser Gly Asp Tyr 385 390 395 400

Ile Leu Ile Ala Ser Tyr Ala Asp Gly Leu Lys Ala Gln Tyr Leu Arg 405 410 415

Glu Leu Lys Asn Gln Gly Glu Asp Ile Pro Gly Ser Asp Pro Gly Tyr 420 425 430

Asn Gln Val Thr Glu Pro Leu Lys Asp Thr Ile Leu Asp His Leu Thr 435 440 445

Glu Ala Tyr Gly Val Glu Arg Asp Ser Ile Pro Glu Pro Val Thr Ala 450 455 460

Ala Ser Gln Phe Trp The Asp Tyr Pro Phe Gly Cys Gly Trp Ile Thr 465 470 475 480

Trp Arg Ala Gly Phe His Phe Asp Asp Val Ile Ser Thr Met Arg Arg
485
490
495

Pro Ser Leu Lys Asp Glu Val Tyr Val Val Gly Ala Asp Tyr Ser Trp 500 505

Gly Leu Ile Ser Ser Trp Ile Glu Gly Ala Leu Glu Thr Ser Glu Asn 515 520 525

Val Ile Asn Asp Tyr Phe Leu 530 535

<210> 3

<211> 1605

<212> DNA

<213> Aplysia punctata

<220>

<221> CDS

<222> (1)..(1605)

<223>

<220>

<221> sig_peptide

<222> (1)..(51)

<223> signal peptide not complete

<400> 3

tcg Ser 1	tct Ser	gct Ala	gtg Val	ctt Leu 5	ctc Leu	ctg Leu	gct Ala	tgt Cys	gcg Ala 10	ttg Leu	gtc Val	atc Ile	tct Ser	gtc Val 15	cac His		48
-----------------	------------	------------	------------	-----------------	------------	------------	------------	------------	------------------	------------	------------	------------	------------	------------------	------------	--	----

gcc gac ggt gtc tgc aga aac aga cgt caa tgt aac aga gag gtg tgc 96 Ala Asp Gly Val Cys Arg Asn Arg Gln Cys Asn Arg Glu Val Cys 20 25 30

ggt tct acc tac gat gtg gcc gtc gtg ggg gcg ggg cct ggg gga gct Gly Ser Thr Tyr Asp Val Ala Val Val Gly Ala Gly Pro Gly Gly Ala 45

aac tcc gcc tac atg ctg agg gac tcc ggc ctg gac atc gct gtg ttc
Asn Ser Ala Tyr Met Leu Arg Asp Ser Gly Leu Asp Ile Ala Val Phe
50
55

gag tac tca gac cga gtg ggc ggc cgg ctg ttc acc tac cag ctg ccc 240 Glu Tyr Ser Asp Arg Val Gly Gly Arg Leu Phe Thr Tyr Gln Leu Pro 75 80

aac aca ccc gac gtt aat ctc gag att ggc ggc atg agg ttc atc gag

Apl	ysia	II-	02-N	ov-1	2.ST	25.t	xt									
			Asp	85		Leu			90					95	Glu	
·	ALG	Mec	100	Arg	Leu	Trp	Arg	105	Ile	Ser	Glu	Leu	Gly 110	Leu	acc Thr	336
	270	115		bys	GIU	GIY	.120	GIY	гÀЗ	GIU	GTÅ	125	Gln	Arg	Phe	384
tac Tyr	ctg Leu 130	cgg Arg	gga	cag Gln	agc Ser	ctg Leu 135	acc Thr	aag Lys	aaa Lys	cag Gln	gtc Val 140	Lys	agt Ser	gj aaa	gac Asp	432
gta Val 145		tat Tyr	gac Asp	ctc Leu	agc Ser 150	ccg Pro	gag Glu	gag Glu	aaa Lys	gaa Glu 155	aac Asn	cag Gln	gga Gly	aat Asn	ctg Leu 160	480
gtc Val	gaa Glu	tac Tyr	tac Tyr	ctg Leu 165	gag Glu	aaa Lys	ctg Leu	aca Thr	ggt Gly 170	cta Leu	caa Gln	ctc Leu	aat Asn	ggt Gly 175	gaa Glu	528
ccg Pro	ctc Leu	aaa Lys	cgt Arg 180	gag Glu	gtt Val	gcg Ala	ctt Leu	aaa Lys 185	cta Leu	acc Thr	gtg Val	ccg Pro	gac Asp 190	ggc	aga Arg	576
ttc Phe	ctc Leu	tat Tyr 195	gac Asp	ctc Leu	tcg Ser	ttt Phe	gac Asp 200	gaa Glu	gcc Ala	atg Met	gat Asp	ctg Leu 205	gtt Val	gcc Ala	tcc Ser	624
PIO	210	GLY	aaa Lys	GIU	Pue	215	Arg	Asp	Thr	His	Val 220	Phe	Thr	Gly	Glu	672
225	1111	neu	ggc	Ата	230	Ala	vaı	ser	Leu	Phe 235	Asp	Asp	His	Leu	Gly 240	720
GLU	Asp	TÄL	tac Tyr	245	ser	GIU	IIe	Tyr	Thr 250	Leu	Lys	Glu	Gly	Leu 255	Ser	768
261	val	PLO	caa Gln 260	GIA	Leu	Leu	GIN	A1a 265	Phe	Leu	Asp	Ala	Ala 270	Asp	Ser	816
Vott	GIU	275	tat Tyr	PIO	ASI	ser	280	Leu	Lys	Ala	Leu	Arg 285	Arg	Lys	Thr	864
aac Asn	ggt Gly 290	cag Gln	tat Tyr	gtt Val	ctt Leu	tac Tyr 295	ttt Phe	gag Glu	ccc Pro	acc Thr	acc Thr 300	tcc Ser	aag Lys	gat Asp	gga Gly	912
305	THE	THE	atc Ile	Asn	310	Leu	GLu	Pro	Leu	Gln 315	Val	Val	Суз	Ala	Gln 320	960
aga Arg	gtc Val	att Ile	ctg Leu	gcc Ala 325	atg Met	ccg Pro	gtc Val	tac Tyr	gct Ala 330	ctc Leu	aac Asn	cag Gln	ttg Leu	gat Asp 335	tgg Trp	1008
aat Asn	cag Gln	ctc Leu	aga Arg 340	aat Asn	gac Asp	cga Arg	gcc Ala	acc Thr 345	caa Gln	gcg Ala	tac Tyr	gct Ala	gcc Ala 350	gtg Val	cgc Arg	1056
ccg Pro	att Ile	cct Pro 355	gca Ala	agt Ser	aag Lys	gtg Val	ttc Phe 360	atg Met	acc Thr	ttt Phe	gat Asp	cag Gln 365	ccc Pro	tgg Trp	tgg Trp	1104
ttg Leu	gag Glu	aac Asn	gag Glu	agg Arg	aaa Lys	tcc Ser	tgg Trp	gtc Val	acc Thr	aag Lys	tcg Ser	gac Asp	gcg Ala	ctt Leu	ttc Phe	1152

3/ 0	3	7	0
-------------	---	---	---

	375	
	3/3	

380

													300	,			_		
	_					39	0	ig aa .n Ly			3	95		91)	y AS	P 17	yr	Ile	1200
					403	•		c gg p Gl		41	.0	'		* Y T	. ne	u Ai	ā	gag Glu	1248
			7	20				c ato	42	5	,	-	TO _D	FIO	43.	ta Y Ty	c r	Asn	1296
			, ,					gac Asp 440)			· .	.sp	445	ren	Th	x (3lu	1344
							455	tcg Ser		_	,	4	60	val	IIII	Ala	a A	lla	1392
						470		ccg		-	47	5	-,	TTD	тте	Inr	Т	$\mathbf{r}\mathbf{p}$	1440
				•	185			gac Asp		490			-L 1	TEL .	Arg	Arg	P	cg ro	1488
			50	U				gtg Val	505	-	•		· P	, A.T.	SEL	tgg Trp	G]	LΥ	1536
								ggc Gly 520	gct Ala	ctg Leu	gag Glu	ac Th	- 0	ca g er (gaa Elu	aac Asn	gt Va	c il	1584
atc Ile	aac Asn 530	gac	ta Ty	c t r P	tc d	etc Leu	taa							_					1605

<210> 4

<211> 534

<212> PRT

<213> Aplysia punctata

<400> 4

Ser Ser Ala Val Leu Leu Leu Ala Cys Ala Leu Val Ile Ser Val His 10 15

Ala Asp Gly Val Cys Arg Asn Arg Gln Cys Asn Arg Glu Val Cys 25 30

Gly Ser Thr Tyr Asp Val Ala Val Val Gly Ala Gly Pro Gly Gly Ala 35 40 45

Asn Ser Ala Tyr Met Leu Arg Asp Ser Gly Leu Asp Ile Ala Val Phe
50 60

Glu Tyr Ser Asp Arg Val Gly Gly Arg Leu Phe Thr Tyr Gln Leu Pro
75 80

Asn Thr Pro Asp Val Asn Leu Glu Ile Gly Gly Met Arg Phe Ile Glu 85 90 95

Gly Ala Met His Arg Leu Trp Arg Val Ile Ser Glu Leu Gly Leu Thr 100 105 110

Pro Lys Val Phe Lys Glu Gly Phe Gly Lys Glu Gly Arg Gln Arg Phe
115 120 125

Tyr Leu Arg Gly Gln Ser Leu Thr Lys Lys Gln Val Lys Ser Gly Asp

Val Pro Tyr Asp Leu Ser Pro Glu Glu Lys Glu Asn Gln Gly Asn Leu 145 150 155 160

Val Glu Tyr Tyr Leu Glu Lys Leu Thr Gly Leu Gln Leu Asn Gly Glu
165 170 175

Pro Leu Lys Arg Glu Val Ala Leu Lys Leu Thr Val Pro Asp Gly Arg 180 185 190

Phe Leu Tyr Asp Leu Ser Phe Asp Glu Ala Met Asp Leu Val Ala Ser 195 200 205

Pro Glu Gly Lys Glu Phe Thr Arg Asp Thr His Val Phe Thr Gly Glu 210 215 220

Val Thr Leu Gly Ala Ser Ala Val Ser Leu Phe Asp Asp His Leu Gly 225 230 235 240

Glu Asp Tyr Tyr Gly Ser Glu Ile Tyr Thr Leu Lys Glu Gly Leu Ser 245 250 255

Ser Val Pro Gln Gly Leu Leu Gln Ala Phe Leu Asp Ala Ala Asp Ser 260 265 270

Asn Glu Phe Tyr Pro Asn Ser His Leu Lys Ala Leu Arg Arg Lys Thr 275 280 285

Asn Gly Gln Tyr Val Leu Tyr Phe Glu Pro Thr Thr Ser Lys Asp Gly 290 295 300

Gln Thr Thr Ile Asn Tyr Leu Glu Pro Leu Gln Val Val Cys Ala Gln 305 310 315 320

Arg Val Ile Leu Ala Met Pro Val Tyr Ala Leu Asn Gln Leu Asp Trp 325 330 335

Asn Gln Leu Arg Asn Asp Arg Ala Thr Gln Ala Tyr Ala Ala Val Arg 340 345 350

Pro Ile Pro Ala Ser Lys Val Phe Met Thr Phe Asp Gln Pro Trp Trp 355 360 365

Leu Glu Asn Glu Arg

Ser Trp Val Thr Lys Ser Asp Ala Leu Phe

Ser Gln Met Tyr Asp Trp Gln Lys Ser Glu Ala Ser Gly Asp Tyr Ile 385 390 395 400

Leu Ile Ala Ser Tyr Ala Asp Gly Leu Lys Ala Gln Tyr Leu Arg Glu 405 410 415

Leu Lys Asn Gln Gly Glu Asp Ile Pro Gly Ser Asp Pro Gly Tyr Asn 420 425 430

Gln Val Thr Glu Pro Leu Lys Asp Thr Ile Leu Asp His Leu Thr Glu 435 440 445

Ala Tyr Gly Val Glu Arg Asp Ser Ile Arg Glu Pro Val Thr Ala Ala
450
455

Ser Gln Phe Trp Thr Asp Tyr Pro Phe Gly Cys Gly Trp Ile Thr Trp
470 475 480

Arg Ala Gly Phe His Phe Asp Asp Val Ile Ser Thr Met Arg Arg Pro 485 490 495

Ser Leu Lys Asp Glu Val Tyr Val Val Gly Ala Asp Tyr Ser Trp Gly
500 505 510

Leu Ile Ser Ser Trp Ile Glu Gly Ala Leu Glu Thr Ser Glu Asn Val

Ile Asn Asp Tyr Phe Leu 530

<210> 5

<211> 1554

<212> DNA

<213> Aplysia punctata

<220>

<221> CDS

. .

<222> (1)..(1554)

<223>

48

tct acc tac gat gtg gct gtc gtg ggg gcg ggg cct ggg gga gct aac Ser Thr Tyr Asp Val Ala Val Val Gly Ala Gly Pro Gly Gly Ala Asn 20 25 30

96

						\											
tcc Ser	gcc Ala	tac Tyr 35	atg Met	ctg Leu	a ₅₅ Arg	gac Asp	tcc Ser 40	ggc	ctg Leu	gac Asp	atc Ile	gct Ala 45	gtg Val	ttc Phe	gag Glu	14	4
			cga Arg													19	2
aca Thr 65	ccc Pro	gac Asp	gtt Val	aat Asn	ctc Leu 70	gag Glu	att. Ile	ggc Gly	ggc	atg Met 75	agg Arg	ttc Phe	atc Ile	gag Glu	ggc 6ly 80	24	0
 gcc Ala-	atg Met	cac His	agg .Arg	ctc Leu 85	tgg _Trp_	agg _Arg_	gtc Val	att Ile	tca Ser 90	gaa Glu	ctc Leu	ggc	cta Leu	acc Thr 95	ccc Pro	28	8
aag Lys	gtg Val	ttc Phe	aag Lys 100	gaa Glu	ggt Gly	ttc Phe	gga Gly	aag Lys 105	gag Glu	ggc Gly	aga Arg	cag Gln	aga Arg 110	ttt Phe	tac Tyr	33	6
ctg Leu	cgg Arg	gga Gly 115	cag Gln	agc Ser	ctg Leu	acc Thr	aag Lys 120	aaa Lys	cag Gln	gtc Val	aag Lys	agt Ser 125	gly aaa	gac Asp	gta Val	38	4
ccc Pro	tat Tyr 130	gac Asp	ctc Leu	agc Ser	ccg Pro	gag Glu 135	gag Glu	aaa Lys	gaa Glu	aac Asn	cag Gln 140	gga Gly	aat Asn	ctg Leu	gtc Val	43	2
			ctg Leu													48	0
ctc Leu	aaa Lys	cgt Arg	gag Glu	gtt Val 165	gcg Ala	ctt Leu	aaa Lys	cta Leu	acc Thr 170	gtg Val	ccg Pro	gac Asp	ggc	aga Arg 175	ttc Phe	52	8
ctc Leu	tat Tyr	gac Asp	ctc Leu 180	tcg Ser	ttt Phe	gac Asp	gaa Glu	gcc Ala 185	atg Met	gac Asp	ctg Leu	gtt Val	gcc Ala 190	tcc Ser	cct Pro	57	6
gag Glu	ggc	aaa Lys 195	gag Glu	ttc Phe	acc Thr	cga Arg	gac Asp 200	acg Thr	cac His	gtg Val	ttc Phe	acc Thr 205	gga Gly	gaa Glu	gtc Val	62	2.4
acc Thr	ctg Leu 210	gac Asp	gcg Ala	tcg Ser	gct Ala	gtc Val 215	tcc Ser	ctc Leu	ttc Phe	gac Asp	gac Asp 220	cac His	ctg Leu	gga Gly	gag Glu	67	72
gac Asp 225	tac Tyr	tat Tyr	ggc Gly	agt Ser	gag Glu 230	atc Ile	tac Tyr	acc Thr	cta Leu	aag Lys 235	gaa Glu	gga Gly	ctg Leu	tct Ser	tcc Ser 240	72	20
gtc Val	cca Pro	caa Gln	gly aaa	ctc Leu 245	cta Leu	cag Gln	act Thr	ttt Phe	ctg Leu 250	gac Asp	gcc Ala	gca Ala	gac Asp	tcc Ser 255	aac Asn	76	8
gag Glu	ttc Phe	tat Tyr	ecc Pro 260	aac Asn	agc Ser	cac His	ctg Leu	aag Lys 265	gcc Ala	ctg Leu	aga Arg	cgt Arg	aag Lys 270	acc Thr	aac Asn	81	1.6
ggt Gly	cag Gln	tat Tyr 275	gtt Val	ctt Leu	tac Tyr	ttt Phe	gag Glu 280	ecc Pro	acc Thr	acc Thr	tcc Ser	aag Lys 285	gat Asp	gga Gly	caa Gln	86	54
acc Thr	aca Thr 290	atc Ile	aac Asn	tat Tyr	ctg Leu	gaa Glu 295	ccc Pro	ctg Leu	cag Gln	gtt Val	gtg Val 300	tgt Cys	gca Ala	cag Gln	aga Arg	' 9:	L2
gtc Val 305	atc Ile	ctg Leu	gcc Ala	atg Met	ccg Pro 310	gtc Val	tac Tyr	gct Ala	ctc Leu	aac Asn 315	caa Gln	ctg Leu	gac Asp	tgg Trp	aat Asn 320	96	50

cag ctc aga aat gac gcc acc caa gcg tac gct gcc gtg ccc gln Leu Arg Asn Asp Ala Thr Gln Ala Tyr Ala Ala Val Arg Pro 325	
att cct gca agt aaa gtg ttc atg acc ttt gat cag ccc tgg tgg ttc Ile Pro Ala Ser Lys Val Phe Met Thr Phe Asp Gln Pro Trp Trp Let 340 345 350	1
gag aac gag agg aaa tcc tgg gtc acc aag tcg gac gcg ctt ttc agc Glu Asn Glu Arg Lys Ser Trp Val Thr Lys Ser Asp Ala Leu Phe Ser 355 360 365	•
caa atg tac gac tgg cag aag tct gag gcg tcc gga gac tac atc ctg Gln Met Tyr Asp Trp Gln Lys Ser Glu Ala Ser Gly Asp Tyr Ile Leu 370 375 380	. 1152
atc gcc agc tac gcc gac ggc ctc aaa gcc cag tac ctg cgg gag ctg Ile Ala Ser Tyr Ala Asp Gly Leu Lys Ala Gln Tyr Leu Arg Glu Leu 390 395 400	1200
aag aat cag gga gag gac atc cca ggc tct gac cca ggc tac aac cag Lys Asn Gln Gly Glu Asp Ile Pro Gly Ser Asp Pro Gly Tyr Asn Gln 405 410 415	1248
gtc acc gaa ccc ctc aag gac acc att ctt gac cac ctc act gag gct Val Thr Glu Pro Leu Lys Asp Thr Ile Leu Asp His Leu Thr Glu Ala 420 425 430	1296
tat ggc gtg gaa cga gac tcg atc ccg gaa ccc gtg acc gcc gct tcc Tyr Gly Val Glu Arg Asp Ser Ile Pro Glu Pro Val Thr Ala Ala Ser 435 440 445	1344
cag ttc tgg acc gac tac ccg ttc ggc tgt gga tgg atc acc tgg agg Gln Phe Trp Thr Asp Tyr Pro Phe Gly Cys Gly Trp Ile Thr Trp Arg 450 455 460	1392
gca ggc ttc cat ttt gat gac gtc atc agc acc atg cgt cgc ccg tca Ala Gly Phe His Phe Asp Asp Val Ile Ser Thr Met Arg Arg Pro Ser 470 475	1440
ctg aaa gat gag gtc tac gtg gtg gga gcc gat tac tcc tgg gga ctt Leu Lys Asp Glu Val Tyr Val Val Gly Ala Asp Tyr Ser Trp Gly Leu 485 490	1488
atc tcc tcc tgg ata gag ggc gct ctg gag acc tcg gaa aac gtc atc Ile Ser Ser Trp Ile Glu Gly Ala Leu Glu Thr Ser Glu Asn Val Ile 500, 505	1536
aac gac tac ttc ctc taa Asn Asp Tyr Phe Leu 515	1554 [:]

<210> 6

<211> 517

<212> PRT

<213> Aplysia punctata

<400> 6

Asp Gly Ile Cys Arg Asn Arg Gln Cys Asn Arg Glu Val Cys Gly 1 10 15

Ser Thr Tyr Asp Val Ala Val Val Gly Ala Gly Pro Gly Gly Ala Asn 20 25 30

Ser Ala Tyr Met Leu A Sp Ser Gly Leu Asp Ile Ala Val P 45

Tyr Ser Asp Arg Val Gly Gly Arg Leu Phe Thr Tyr Gln Leu Pro Asn 50 55 60

Thr Pro Asp Val Asn Leu Glu Ile Gly Gly Met Arg Phe Ile Glu Gly 65 70 . 75 80

Ala Met His Arg Leu Trp Arg Val Ile Ser Glu Leu Gly Leu Thr Pro 85 90 95

Lys Val Phe Lys Glu Gly Phe Gly Lys Glu Gly Arg Gln Arg Phe Tyr 100 105 110

Leu Arg Gly Gln Ser Leu Thr Lys Lys Gln Val Lys Ser Gly Asp Val 115 120 125

Pro Tyr Asp Leu Ser Pro Glu Glu Lys Glu Asn Gln Gly Asn Leu Val 130 135 140

Glu Tyr Tyr Leu Glu Lys Leu Thr Gly Leu Lys Leu Asn Gly Gly Pro 145 150 155

Leu Lys Arg Glu Val Ala Leu Lys Leu Thr Val Pro Asp Gly Arg Phe 165 170 175

Leu Tyr Asp Leu Ser Phe Asp Glu Ala Met Asp Leu Val Ala Ser Pro 180 185 190

Glu Gly Lys Glu Phe Thr Arg Asp Thr His Val Phe Thr Gly Glu Val 195 200 205

Thr Leu Asp Ala Ser Ala Val Ser Leu Phe Asp Asp His Leu Gly Glu 210 215 220

Asp Tyr Tyr Gly Ser Glu Ile Tyr Thr Leu Lys Glu Gly Leu Ser Ser 225 230 235 240

Val Pro Gln Gly Leu Leu Gln Thr Phe Leu Asp Ala Ala Asp Ser Asn 245 250 255

Glu Phe Tyr Pro Asn Ser His Leu Lys Ala Leu Arg Arg Lys Thr Asn 260 265 270

Gly Gln Tyr Val Leu Tyr Phe Glu Pro Thr Thr Ser Lys Asp Gly Gln 275 280 285

Thr Thr Ile Asn Tyr Leu Glu Pro Leu Gln Val Val Cys Ala Gln Arg 290 295 300

Val Ile Leu Ala Met Pro Val Tyr Ala Leu Asn Gln Leu Asp Trp Asn 305 310 315 320

Gln Leu Arg Asn Asp Arg Ala Thr Gln Ala Tyr Ala Ala Val Arg Pro

Ile Pro Ala Ser Lys Val Phe Met Thr Phe Asp Gln Pro Trp Trp Leu 340 345 345

Glu Asn Glu Arg Lys Ser Trp Val Thr Lys Ser Asp Ala Leu Phe Ser 355 360 365

Gln Met Tyr Asp Trp Gln Lys Ser Glu Ala Ser Gly Asp Tyr Ile Leu 370 375 380

Ile Ala Ser Tyr Ala Asp Gly Leu Lys Ala Gln Tyr Leu Arg Glu Leu 390 395 400

Lys Asn Gln Gly Glu Asp Ile Pro Gly Ser Asp Pro Gly Tyr Asn Gln
405 410 415

Val Thr Glu Pro Leu Lys Asp Thr Ile Leu Asp His Leu Thr Glu Ala 420 425 430

Tyr Gly Val Glu Arg Asp Ser Ile Pro Glu Pro Val Thr Ala Ala Ser 435 440 445

Gln Phe Trp Thr Asp Tyr Pro Phe Gly Cys Gly Trp Ile Thr Trp Arg
450 455 460

Ala Gly Phe His Phe Asp Asp Val Ile Ser Thr Met Arg Arg Pro Ser 470 475 480

Leu Lys Asp Glu Val Tyr Val Val Gly Ala Asp Tyr Ser Trp Gly Leu 485 490 495

Ile Ser Ser Trp Ile Glu Gly Ala Leu Glu Thr Ser Glu Asn Val Ile
500 505 510

Asn Asp Tyr Phe Leu 515

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.