BAB III

DASAR TEORI

III.1. Lingkungan Termal

Lingkungan termal dapat didefinisikan sebagai karakteristik lingkungan yang mempengaruhi perpindahan kalor seseorang[1] atau aspek-aspek lingkungan fisik individu atau populasi yang secara langsung mempengaruhi potensi pertukaran panas antara subjek atau populasi dan lingkungannya[9]. Lingkungan yang dimaksud disini yaitu segala sesuatu yang mengelilingi objek, organisme, ataupun populasi yang diteliti kenyamanannya (kenyamanan termal).

III.2. Parameter Lingkungan Termal

Kualitas lingkungan termal dapat ditentukan berdasarkan beberapa parameter. Beberapa penelitian mengenai kualitas lingkungan termal, secara umum menggunakan empat parameter meteorologis, yakni suhu, kelembapan relatif, kecepatan angin, dan radiasi matahari[9].

Perbedaan antara lingkungan luar (lapangan) dan bangunan (dalam ruang) dapat bergantung relatif kepada seberapa penting perbedaan parameter-parameter lingkungan tersebut, tetapi empat parameter yang sama masih dapat digunakan dalam menetapkan kondisi lingkungan termal. Interior bangunan mencakup variasi yang hampir tak terbatas, mulai dari kantor modern bertingkat tinggi hingga garasi dan hanggar tanpa pemanas. Dalam bangunan tertutup dengan iklim terkendali, kondisi termal sering diwakili dengan suhu ruang, terlepas dari kontribusi parameter lainnya, karena keempat parameter tersebut pada dasarnya konstan pada pengaturan suhu tertentu.

III.3. Kenyamanan Termal

Kenyamanan termal adalah suatu kondisi pikiran yang mengekspresikan kepuasan dengan lingkungan termal, baik secara fisiologis maupun psikologis, dan dinilai dengan evaluasi subyektif oleh penghuni itu sendiri[1]. Kenyamanan termal penting untuk kesehatan dan kebugaran tubuh manusia. Hal tersebut berpengaruh terhadap produktivitas manusia dalam melakukan kegiatan. Kurangnya kenyamanan termal dapat mengakibatkan kondisi stres bagi penghuni bangunan. Apabila kondisi bangungan terlalu panas, maka penghuni akan merasa lelah. Apabila kondisi bangunan terlalu dingin, maka penghuni akan merasa gelisah dan bimbang. Dalam hal sensasi, kenyamanan termal digambarkan sebagai sensasi termal dalam bentuk *too warm* atau *too cold*, yang ditentukan oleh skala tujuh poin sensasi termal berdasarkan ASHRAE sebagai berikut:

-3 = cold

-2 = cool

-1 =slightly cool

0 = neutral

1 =slightly warm

2 = warm

3 = hot

Standar SNI terkait kenyamanan termal ruangan, yaitu menjaga suhu dan kelembapan ruangan pada nilai tertentu. Nilai standar suhu bola kering (drybulb) akan dijaga pada nilai $25\pm1^{\circ}C$, sedangkan nilai kelembapan dinyatakan dalam bentuk re-lative humidity (RH), dijaga pada nilai $60\%\pm10\%$ untuk kenyamanan penghuni[10].

III.4. Sistem Kontrol Otomatis

Sistem kontrol otomatis telah memegang peranan yang sangat penting dalam perkembangan ilmu dan teknologi. Disamping sangat diperlukan pada pesawat ruang angkasa, peluru kendali, sistem kontrol pesawat, dan sebagainya, sistem kontrol juga mejadi bagian penting dan terpadu dari proses-proses dalam pabrik dan industri modern. Sistem kontrol otomatis sangat diperlukan dalam operasi-operasi di industri untuk mengendalikan tekanan, temperatur, laju aliran dan sebagainya.

Sistem adalah kombinasi dari beberapa komponen yang bekerja bersama-sama dan bersinergi untuk mencapai tujuan yang diinginkan. Sistem tidak hanya dibatasi hanya untuk sistem fisik saja. Konsep sistem dapat digunakan pada gejala yang abstrak dan dinamis lainnya seperti sistem ekonomi, biologi, organisasi, dan lain sebagainya. Sistem kontrol adalah interkoneksi dari berbagai komponen kontrol yang membentuk suatu konfigurasi sistem yang akan menghasilkan respon sistem yang diinginkan.

Komponen utama dari sistem kontrol terdiri dari proses dan kontroler. Proses adalah komponen atau grup yang terdiri dari beberapa komponen yang dikendalikan. Kontroler adalah komponen yang mengendalikan proses. Keluaran dari kontroler adalah nilai variabel yang memanipulasi proses.

Sistem kontrol dapat dikategorikan menjadi dua macam, yakni sistem kontrol lup terbuka dan sistem kontrol sistem tertutup. Sistem kontrol lup terbuka adalah sistem kontrol yang keluarannya tidak berpengaruh pada aksi kontrol. Pada sistem ini keluaran tidak dibandingkan dengan *setpoint*. Sehingga untuk setiap *setpoint*, terdapat suatu kondisi operasi yang tetap. Jadi ketelitian sistem tergantung dari kalibrasi sistem. Sistem kontrol lup terbuka ini juga tidak akan bisa bekerja jika ada gangguan internal maupun eksternal pada sistem. Sistem kontrol lup tertutup atau sistem kontrol berumpan balik adalah sistem kontrol yang sinyal keluarannya mempunyai

pengaruh langsung pada aksi kontrol. Sinyal kesalahan penggerak, yang merupakan selisih antara nilai keluaran sistem dan nilai *setpoint* diumpankan ke kontroler untuk memperkecil kesalahan dan membuat agar nilai keluaran sistem mendekati harga yang diinginkan (*setpoint*). Penggunaan umpan balik membuat respon sistem menjadi kurang peka terhadap gangguan internal maupun eksternal sehingga, jika dibandingkan dengan sistem kontrol lup tertutup, sangat mungkin diperoleh sistem kontrol yang lebih teliti meskipun menggunakan komponen-komponen yang relatif kurang teliti.

Sistem kontrol merupakan hal yang dinamis. Sistem akan memberikan respon terhadap input yang diberikan, dimana pada awalnya sistem akan memberikan suatu respon transien yang selanjutnya tercapai kondisi keadaan ajeg yang secara umum akan mengikuti input yang diberikan. Terdapat tiga hal utama tujuan desain dan analisis dari sistem kontrol, yaitu:

- 1. Menghasilkan spesifikasi dari respon transien yang diinginkan.
- 2. Mengurangi kesalahan pada keadaan ajeg.
- 3. Mencapai kestabilan sistem.

III.4.1. Respon Transien

Jika suatu sistem kontrol dikenakan suatu input tertentu, sistem tidak bisa langsung mengikuti input yang diberikan, tetapi sistem terlebih dahulu akan berusaha untuk menyesuaikan karakter naturalnya dengan input yang diberikan. Respon inilah yang dinamakan respon transien dan menjadi hal penting untuk dianalisis dalam desain sistem kontrol. Sebagai contoh adalah respon sistem kontrol posisi elevator. Jika respon transien terlalu lambat maka akan membuat penumpang tidak sabar. Tetapi jika respon transien terlalu cepat maka akan membuat penumpang merasa tidak nyaman. Respon transien juga penting untuk alasan struktur. Respon transien yang

terlalu cepat bisa juga menyebabkan kerusakan fisik pada peralatan yang dikendalikan.

III.4.2. Respon Keadaan Ajeg

Salah satu tujuan dari desain dan analisis dari sistem kontrol difokuskan pada respon keadaan ajeg. Misalnya dalam sistem kontrol posisi elevator, kesalahan pada keadaan ajeg akan menyebabkan posisi elevator tidak tepat pada lantai yang dituju, tetapi bisa pada posisi di atas atau di bawahnya. Dalam keadaan ajeg diharapkan respon sistem sesuai dengan input yang diberikan. Tujuan dari desain dan analisis sistem kontrol diarahkan pada bagaimana memperkecil kesalahan pada keadaan ajeg.

III.4.3. Kestabilan Sistem

Respon dari sistem merupakan hasil penjumlahan dari respon natural sistem dan respon paksaan. Respon natural merupakan respon sistem karena karakter natural dari sistem. Respon paksaan adalah respon sistem terhadap input atau paksaan yang diberikan pada sistem. Sistem kontrol dikatakan stabil jika respon natural:

- 1. hukum-hukum alam,
- 2. relasi-relasi empirik, dan
- 3. sarana berpikir deduktif (matematika) serta
- 4. sarana berpikir induktif (statistika).

III.5. Jaringan Saraf Tiruan

Jaringan Saraf Tiruan (JST) dimodelkan dari proses biologis untuk pemrosesan informasi, termasuk secara khusus sistem saraf dan unit dasarnya, neuron (sel saraf). Sinyal didistribusikan dalam bentuk beda potensial antara bagian dalam dan luar sel. Komponen sel saraf (neuron) ditunjukkan pada Gambar 3.1. Dendrit membawa sinyal dari neuron lain ke dalam badan sel (soma), kemungkinan dengan memperkalikan setiap sinyal yang masuk dengan koefisien pembobotan pengiriman.

Gambar 3.1. Anatomi neuron

Pada badan sel, kapasitansi sel mengintegrasikan sinyal yang terkumpul di axon hillock (bagian khusus dari badan sel neuron yang terhubung dengan akson). Sekalinya sinyal gabungan melebihi ambang batas nilai tertentu, sinyal/impuls ditransmisikan melalui akson. Ketidaklinieran sel menjadikan impuls komposit sebagai fungsi nonlinier dari kombinasi sinyal yang datang. Akson tersebut, melalui sinapsis, terhubung dengan dendrit pada neuron berikutnya. Sinapsis beroperasi melalui pelepasan kimiawi neurotransmitter melintasi celah antar sel, dan dapat berupa excitatory (kecenderungan dalam penembakan neuron berikutnya) atau inhibitory (kecenderungan dalam mencegah penembakan neuron berikutnya). [Neural Network

Control]

Gambar 3.2. Model matematis neuron.

III.5.1. Model Matematis Neuron

Model matematis dari suatu neuron dilukiskan oleh Gambar 3.2, yang mana menunjukkan pembobotan dendrit v_j , nilai ambang batas penembakan v_0 (disebut juga sebagai bias), penjumlahan dari sinyal masuk yang diberi bobot, dan fungsi nonlinear $\sigma(\cdot)$. Sel input adalah sinyal ke-n pada waktu instan $kx_1(k), kx_2(k), kx_3(k), ..., x_n(k)$ dan outputnya adalah nilai skalar y(k), yang dapat dinyatakan sebagai

$$y(k) = \sigma \left(\sum_{j=1}^{n} v_j x_j(k) + v_0 \right)$$
(3.1)

Bobot-bobot positif v_j berhubungan dengan sinapsis *exitatory* dan bobot-bobot negatif dengan sinapsis *inhibitory*. Jaringan ini disebut sebagai *perceptron* oleh Rosenblatt pada tahun 1959 (Haykin 1994).

Fungsi sel nonlinear dikenal sebagai fungsi aktivasi. Fungsi aktivasi dipilih secara khusus untuk aplikasi-aplikasi meskipun beberapa pilihan yg umum diilustra-

sikan pada Gambar 3.3 Intensi pada fungsi aktivasi adalah untuk memodelkan perilaku nonlinier suatu sel dimana tidak terdapat output dibawah nilai tertentu suatu argumen. Fungsi sigmoid adalah sebuah kelas umum dari fungsi yang tidak meningkat secara monoton dengan mengambil nilai-nilai yang dibatasi antaran nilai $-\infty$ dan $+\infty$. Perlu dicatat bahwa ketika nilai ambang batas atau bias v_0 berubah, fungsi

Gambar 3.3. Fungsi-fungsi aktivasi

aktivasi bergeser ke kiri atau ke kanan. Untuk kebanyakan algoritma pelatihan JST (termasuk *backpropagation*), turunan dari $\sigma(\cdot)$ dibutuhkan sehingga fungsi aktivasi yang dipilih haruslah terdiferensiasi.

Ekspresi untuk output neuron y(k) pada waktu instan k (dalam kasus waktu yang kontinyu) dapat dirampingkan dengan menentukan vektor kolom dari bobotbobot JST $\overline{v}(k) \in \mathbb{R}^n$ sebagai

$$\overline{x}(k) = [x_1 \ x_2 \ \cdots \ x_n]^T, \qquad \overline{v}(k) = [v_1 \ v_2 \ \cdots \ v_n]^T$$
 (3.2)

Kemudian, ini memungkinkan untuk ditulis dalam notasi matriks

$$y = \sigma(\overline{v}^T \overline{x}) + v_0 \tag{3.3}$$

Menentukan vektor kolom input augmented $x(k) \in \mathbb{R}^{n+1}$ dan vektor kolom bobot JST $v(k) \in \mathbb{R}^{n+1}$ sebagai

$$x(k) = \begin{bmatrix} 1 & \overline{x}^T \end{bmatrix}^T = \begin{bmatrix} 1 & x_1 x_2 \cdots x_n \end{bmatrix}^T$$

$$v(k) = \begin{bmatrix} v_0 \overline{v}^T \end{bmatrix}^T = \begin{bmatrix} v_0 v_1 v_2 \cdots v_n \end{bmatrix}^T$$
(3.4)

bisa juga ditulis sebagai

$$y = \sigma(v^T x) \tag{3.5}$$

Meskipun vektor input $\overline{x}(k) \in \mathbb{R}^n$ dan vektor bobot $\overline{v}(k) \in \mathbb{R}^n$ masing-masing telah ditambahkan dengan 1 dan v_0 , untuk memasukkan nilai bias, terkadang kita dengan bebas dapat mengatakan bahwa x(k) dan v adalah elemen \mathbb{R}^n .

Vektor penggambaran output neuron y(k) disebut sebagai mekanisme penarikan sel. Mereka mendeskripsikan bagaimana output itu direkonstruksi dari sinyal input dan nilai parameter sel.

Gambar 3.4 menunjukkan sebuah JST yang mengandung L buah sel, semuanya diberi umpan oleh sinyal input yang sama dan memproduksi satu output y(k) per neuron. Kita sebut ini sebagai jaringan layar tunggal. Persamaan recall untuk jaringan ini ditunjukkan sebagai berikut

$$y_l(k) = \sigma\left(\sum_{j=1}^n v_{lj}x_j(k) + v_{l0}\right); \qquad l = 1, 2, ..., L$$
 (3.6)

Akan lebih mudah untuk menulis bobot dan bias masing-masing dalam bentuk matriks dan vektor. Dengan menentukan matriks bobot dan vektor bias sebagai

Gambar 3.4. Jaringan layar tunggal

berikut

$$\overline{V}^{T} \equiv \begin{bmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{L1} & v_{L2} & \cdots & v_{Ln} \end{bmatrix}, \qquad b_{v} = \begin{bmatrix} v_{10} \\ v_{20} \\ \vdots \\ v_{L0} \end{bmatrix}, \tag{3.7}$$

Salah satu cara menulis vektor output $y(t) = [y_0 \ y_1 \ y_2 \ \cdots y_L]^T$ sebagai berikut

$$y = \overline{\sigma}(\overline{V}^T \overline{x} + b_v) \tag{3.8}$$

Vektor fungsi aktivasi yang ditentukan oleh vektor $w \equiv [w_1 \ w_2 \ \cdots w_L]^T$ adalah

$$\overline{\sigma}(w) \equiv [\overline{\sigma}(w)_1 \ \overline{\sigma}(w)_2 \ \cdots \ \overline{\sigma}(w)_L]^T \tag{3.9}$$

Penyempurnaan lebih lanjut dapat dicapai dengan memasukkan vektor bias sebagai kolom pertama dari matriks *augmented* bobot sebagai berikut

$$V^{T} \equiv \begin{bmatrix} v_{10} & v_{11} & \cdots & v_{1n} \\ v_{20} & v_{21} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{L0} & v_{L1} & \cdots & v_{Ln} \end{bmatrix}$$
(3.10)

Kemudian output JST dapat digambarkan dalam bentuk vektor augmented input x(k) sebagai

$$y = \overline{\sigma}(V^T x) \tag{3.11}$$

III.5.2. Jaringan Layar Jamak (MLP)

Jaringan layar jamak ($Multilayer\ Perceptron$) merupakan perluasan dari jaringan layar tunggal (perceptron). Sebuah JST 2 layar memiliki dua lapisan neuron dengan satu layar memiliki L buah neuron yang memberikan umpan kepada lapisan kedua yang memiliki m buah neuron, digambarkan pada Gambar 3.5. Lapisan pertama dikenal sebagai lapisan tersembunyi, dengan L sebagai jumlah neuron pada lapisan tersembunyi tersebut. Lapisan kedua dikenal sebagai lapisan output. Jaringan saraf tiruan yang terdiri dari banyak lapisan disebut sebagai $multilayer\ perceptron$. Daya komputasi untuk lapisan ini perlu ditingkatkan secara signifikan dibandingkan jaringan layar tunggal. Dengan jaringan layar tunggal, dimungkinkan untuk menerapkan operasi digital seperti AND, OR, dan COMPLEMENT. Namun, penelitian mengenai JST telah dihentikan bertahun-tahun yang lalu ketika ditunjukkan bahwa jaringan layar tunggal tidak mampu melakukan operasi EXCLUSIVE OR (X-OR), yang merupakan masalah dasar dalam perancangan sistem logika digital. Kemudian telah ditunjukkan bahwa jaringan 2 layar dapat menerapkan operasi EXCLUSIVE

Gambar 3.5. Jaringan 2 layar

OR (X-OR) dan ini kembali mempercepat penelitian JST di awal 1980-an. Beberapa peneliti (Hush dan Horne 1993) mempresentasikan solusi untuk operasi X-OR dengan menggunakan fungsi aktivasi sigmoid.

Output jaringan 2 layar ditunjukkan oleh persamaan recall berikut

$$y_i = \sigma \left(\sum_{l=1}^L w_{il} \sigma \left(\sum_{j=1}^n v_{lj} x_j + v_{l0} \right) + w_{i0} \right); \qquad i = 1, 2, \dots, m$$
 (3.12)

Menentukan output jaringan tersembunyi z_1 dapat ditulis sebagai berikut

$$z_{l} = \sigma \left(\sum_{j=1}^{n} v_{lj} x_{j} + v_{l0} \right); \qquad l = 1, 2, \dots, L$$

$$y_{i} = \sigma \left(\sum_{l=1}^{L} w_{il} z_{l} + w_{i0} \right); \qquad l = 1, 2, \dots, m$$
(3.13)

Menentukan matriks bobot layar pertama \overline{V} dan V dan matriks bobot layar kedua

sebagai berikut

$$\overline{W}^{T} \equiv \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{L1} & w_{L2} & \cdots & w_{Ln} \end{bmatrix}, \qquad b_{w} = \begin{bmatrix} w_{10} \\ w_{20} \\ \vdots \\ w_{L0} \end{bmatrix}, \tag{3.14}$$

$$W^{T} \equiv \begin{bmatrix} w_{10} & w_{11} & \cdots & w_{1n} \\ w_{20} & w_{21} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{L0} & w_{L1} & \cdots & w_{Ln} \end{bmatrix}$$
(3.15)

Output JST dapat ditulis sebagai berikut

$$y = \overline{\sigma} \left(\overline{W}^T \overline{\sigma} (\overline{V}^T \overline{x} + b_v) + b_w \right), \tag{3.16}$$

atau

$$y = \overline{\sigma} \left(W^T \sigma(V^T x) \right). \tag{3.17}$$

Pada persamaan ini, notasi $\overline{\sigma}$ berarti bahwa vektor ditentukan sesuai dengan persamaan (3.9). Dalam (3.17) perlu menggunakan vektor *augmented*

$$\sigma(w) \equiv \begin{bmatrix} 1 & \overline{\sigma}(w)^T \end{bmatrix}^T = \begin{bmatrix} 1 & \sigma(w_1) \ \sigma(w_2) \ \dots \ \sigma(w_L) \end{bmatrix}^T, \tag{3.18}$$

dimana nilai 1 ditempatkan sebagai entri pertama untuk memungkinkan penggabungan bias w_{i0} sebagai kolom pertama dari W^T . Dalam hal vektor output layar tersembunyi $z \in \mathbb{R}^L$ seseorang dapat menuliskan

$$\overline{z} = \sigma(V^T x), \tag{3.19}$$

$$y = \sigma(W^T z). \tag{3.20}$$

 $\operatorname{dimana}\,z \equiv [1 \quad \overline{z}^T]^T$

III.6. Kendali Jaringan Saraf Tiruan

Untuk mengendalikan lingkungan termal, peneliti pada umumnya menggunakan sistem kendali modern (modern control system). Hal ini didasarkan pada karakteristik lingkungan termal yang memiliki sifat MIMO (multiple input multiple output). Sehingga, sistem kendali klasik tidak tepat digunakan untuk sistem ini.

Tabel 3.1. Perbandingan metode kendali

dali Klasik Modern

Metode Kendali	Klasik	Modern
Domain	Frekuensi, Domain-S	Waktu, Domain-t
Representasi Model	Fungsi Transfer	State-Space
Kontinyuitas	Kontinyu	Kontinyu, Diskrit, Hybrid
Linieritas	Linier	Linier, Nonlinier
Variansi waktu	Time-invariant (TI)	Time-variant (TV)
Dimensi	SISO	MIMO
Determinisme	Deterministik	Deterministik, Stokastik
Optimisasi	Tidak	Ya
Batasan	Tidak	YA
Implementasi	Murah, Mudah	Mahal, Kompleks

Kelemahan utama dari metode klasik adalah, bahwa mereka hanya dapat digunakan untuk mengendalikan sistem single-input single-output (SISO), dengan persyaratan pada model sistem untuk menjadi linear time-invariant (LTI). Metode klasik memberikan hasil yang memuaskan hanya dalam mengendalikan proses sederhana, tetapi hasil yang tidak memuaskan dalam kontrol sistem yang lebih kompleks. [THE-SIS: Model Predictive Control with Applications in Building Thermal Comfort Control]

III.6.1. Neural Network Predictive Control

Neural Network Predictive Control menggunakan model JST (Neural Network) dari sistem nonlinier plant untuk memprediksi kinerja plant di masa depan. Kontroler tersebut kemudian menghitung nilai input kendali yang akan mengoptimisasi kinerja plant atas horison waktu yang ditentukan di masa depan. Langkah awal dalam model predictive control adalah dengan menentukan model JST plant (identifikasi sistem). Kemudian, model plant digunakan oleh kontroler untuk mempredikasi kinerja di masa depan.

Identifikasi Sistem

Tahap awal dalam membangun *model predictive control* adalah dengan melatih suatu JST yang merepresentasikan dinamika sistem dari suatu *plant*. Nilai galat antara keluaran *plant* dan keluaran JST akan digunakan sebagai sinyal pelatihan JST. Proses tersebut digambarkan pada Gambar 3.6.

Gambar 3.6. Identifikasi Plant

NARMA (*Nonlinear Autoregressive-Moving Average*) digunakan sebagai salah satu model standar untuk identifikasi sistem nonlinier, dengan persamaan sebagai

berikut:

$$y(k+d) = h[y(k), y(k-1), \dots, y(k-n+1), u(k), u(k-1), \dots, u(k-m+1)]$$
 (3.21)

dimana u(k) merupakan input sistem, y(k) merupakan output sistem dan d merupakan delay sistem. Untuk fase identifikasi sistem, penulis melakukan pelatihan JST untuk aproksimasi fungsi nonlinier h. Struktur model JST plant ditunjukan oleh Gambar 3.7, dimana blok yang berlabel TDL merupakan tapped delay lines yang berfungsi untuk memberikan nilai sebelumnya dari sinyal input. Persamaan model plant ditunjukkan sebagai berikut:

$$y_m(k+1) = \hat{h}[y_p(k), \dots, y_p(k-n+1), u(k), \dots, u(k-m+1); \mathbf{x}], \quad (3.22)$$

dimana $\hat{h}[., \mathbf{x}]$ merupakan fungsi implementasi JST, dan \mathbf{x} merupakan vektor yang berisi semua bobot dan bias jaringan.

Gambar 3.7. Model JST Plant

Desain Predictive Control menggunakan Optimisasi

Metode *model predictive control* didasarkan pada teknik horison mundur [Soloway, D. and P.J. Haley, 'Neural Generalized Predictive Control,' Proceedings of the 1996 IEEE International Symposium on Intelligent Control, 277-281 (1996).]. Model

JST memprediksi tanggapan *plant* atas horison waktu yang ditentukan. Hasil prediksi digunakan oleh program optimisasi numerik untuk menentukan sinyal kendali dalam meminimalkan kriteria kinerja berikut atas horison yang ditentukan.

$$J = \sum_{j=N_1}^{N_2} (y_r(k+j) - y_m(k+j))^2 + \rho \sum_{j=1}^{N_u} (u'(k+j-1) - u'(k+j-2))^2$$
 (3.23)

dimana N_1 , N_2 dan N_u menentukan horison di mana kesalahan pelacakan dan peningkatan kontrol dievaluasi. Variabel u' merupakan sinyal kendali tentatif, y_r merupakan respons yang diinginkan dan y_m merupakan respon model JST. Nilai ρ menentukan kontribusi yang dimiliki jumlah kuadrat dari kenaikan kontrol pada indeks kinerja.

Gambar 3.8. Diagram Blok NN Predictive Control

Diagram blok diatas mengilustrasikan proses $model\ predictive\ control$. Kontroler terdiri dari model JST plant dan blok optimisasi. Blok optimisasi menentukan nilai u' yang meminimalkan nilai J, dan kemudian nilai u optimal masuk ke dalam plant. Blok optimisasi yang digunakan adalah Algoritma BFGS quasi-Newton, dengan algoritma pencarian $backtracking\ line\ search$.