

UNITED INTERNATIONAL UNIVERSITY

Department of Computer Science and Engineering (CSE) Course Syllabus

1	Course Title	Introduction to Computer Systems		
2	Course Code	CSE 1110		
3	Trimester and Year	Fall 2024		
4	Pre-requisites	N/A		
5	Credit Hours	1.0		
6	Section	В		
7	Class Hours	Tuesday 8:30 AM – 11:00 AM		
8	Class Room	327		
9	Instructor's Name	Md. Fahim Bin Amin		
10	Email	fahimbinamin@gmail.com		
11	Office	Room # 935 (A)		
12	Counselling Hours	Given on LMS		
13	Text Book	Programming in ANSI C		
14	Reference	Lecture documents		
15	Course Contents (approved by UGC)			
16	Course Outcomes (COs)	CO Description		
		CO1 Identify the components of a computer and demonstrate its internal mechanisms.		
		CO2 Derive the solution steps and flowchart of any programs.		
		CO3 Analysis the code to find errors and trace outputs manually. CO4 Use a programming language to write error-free programs.		
17	Teaching Methods	CO4 Use a programming language to write error-free programs. Lecture, laboratory exercise and reports.		
1/	reaching Methods	Lecture, raporatory exercise and reports.		

18	CO with			
	Assessment	CO	Assessment Method	(%)
	Methods	-	Attendance	10
		-	Class Performance	20
		-	Assignment	15
		CO1, CO2	Midterm	25
		CO3,CO4	Final	30

19 Mapping of COs and Program outcomes

CO	Statement	Bloom's Domain
CO1	Identify the components of a computer and demonstrate its C	
	internal mechanisms.	
CO2	Derive the solution steps and flowchart of any programs.	С
CO3	Analysis the code to find errors and trace outputs manually.	С
CO4	Use a programming language to write error-free programs.	С

20 Lab Outline

Class	Lecture/Activities	Evaluation Methods	COs
1	Internal mechanism of computer Parts of a computer and their basic functionalities, how computer works, memory vs. storage, Applications of different softwares	- Group discussion	CO1
2	Algorithm and Flowcharts Ability of thinking a problem as INPUT-PROCSS-OUTPUT, basics of algorithm and flowchart	- Group discussion	CO2
3	Algorithm and Flowcharts Write algorithms and flowcharts for various real-life problems.	- Group discussion	CO2
4	Introduction to C Codeblocks, basic syntax, datatypes, variables, built-in functions	- Class Test	CO3, CO4
5	Problem Solving Arithmetic operator, formatted I/O, solve reallife problems	- Group discussion	CO3, CO4
6	MID-TERM EXAM		
7	Problem Solving Logical and Relational operator, conditional statement, solve real-life problems	Group discussionExercise problem	CO3, CO ²
8	Problem Solving If, ifelse, elseif, solve real-life problems	- Class Test	CO3, CO4
9	Problem Solving Nested ifelse, solve real-life problems	Group discussionExercise problem	CO3, CO4
10	Problem Solving Switch statement, solve real-life problems	Group discussionExercise problem	CO3, CO ²
11	Problem Solving Nested switch statement, solve real-life problems	- Class Test	CO3, CO ²
12	REVICE		

Assessment Types	Marks
Attendance	10%
Class Performance	20%
Assignment	15%
Mid Term	25%
Final Exam	30%

Appendix 2: Grading Policy

Letter Grade	Marks %	Grade Point	Letter Grade	Marks%	Grade Point
A (Plain)	90-100	4.00	C+ (Plus)	70-73	2.33
A- (Minus)	86-89	3.67	C (Plain)	66-69	2.00
B+ (Plus)	82-85	3.33	C- (Minus)	62-65	1.67
B (Plain)	78-81	3.00	D+ (Plus)	58-61	1.33
B- (Minus)	74-77	2.67	D (Plain)	55-57	1.00
			F (Fail)	<55	0.00

Appendix-3: Program outcomes

	Program Outcomes		
1	Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and Computer Science and Engineering to the solution of complex engineering problems.		
2	Problem analysis: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.		
3	Design/development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.		
4	Investigation: Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions		
5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.		
6	The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems.		
7	Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.		
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.		
9	Individual work and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.		
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
11	Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's 13 own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.