

PRIMEIRA AVALIAÇÃO TURMA B - 08/03/2022

Nome: Matrícula:

Questão 1. Os dados a seguir foram obtidos de um corpo de prova de ferro fundido nodular com 20,00 mm de diâmetro e comprimento inicial de 40,00 mm. Após a fratura, o comprimento total era de 47,42 mm, com diâmetro de 18,35 mm. Trace a curva tensão-deformação e calcule:

Carga (N)	Δl (mm)	
0	0,00000	a) o módulo de elasticidade;
111205	0,0185	b) a ductilidade;
222410	0,0370	c) a tensão de escoamento;
333617	0,0555	d) o limite de resistência à tração;
400340	0,2000	e) a tensão de ruptura;
467063	0,6000	f) a rigidez;
533787	1,5600	g) a tensão verdadeira na fratura.
528717	4,0000	
556028	7,5200	

Questão 2. Quais são os índices das seis direções da família de direções <1 1 0>, existentes no plano (1 1 $\overline{1}$) de uma célula cúbica.

Questão 3. Baseado na teoria das discordâncias, descreva o mecanismo de endurecimento de uma liga por redução do tamanho de grão.

Questão 4. Um componente mecânico é submetido a esforços repedidos de tração e compressão ao longo de seu eixo. Este componente tem o formato de uma haste com 6,4 mm de diâmetro, fabricado com uma liga de alumínio 2014-T6. A carga de tração ou compressão máxima solicitada é de ±5340N. Com base no gráfico da curva S x N da figura ao lado:

- (a) Indique a vida à fadiga do componente;
- (b) Como aumentar a vida em fadiga da haste do item anterior mantendo-se as condições de projeto? Justifique sua resposta;
- (c) Qual o diâmtro mínimo para uma haste cilíndrica de aço 1045 para que a mesma não rompa por fadiga? Admita que a carga máxima que irá atuar sobre ela seja de 35000N;
- (d) O limite de resistência à fadiga para o bronze;

Questão 5. Qual dos materiais relacionados na figura a seguir (gráfico tensão x deformação) é mais apropriado para:

- a) Uma ferramenta de corte (justifique)
- b) Um tanque de combustível (justifique)
- c) Um martelo (justifique)
- d) Uma mola (justifique)

Questão 6. Determine os índices de Miller dos planos e direções mostrados nas células unitárias cúbicas a seguir:

Questão 7. A célula unitária para o urânio possui possui simetria ortorrômbica, com os parâmetros de rede a, b e c iguais a 0,286, 0,587, 0,495 nm, respectivamente. Se a massa específica, o peso atômico e o raio atômico do urânio valem 19,05 g/cm³, 238,03 g/mol e 0,1385 nm, respectivamente, calcule o fator de empacotamento. Dado: NA = 6,02 x 10^{23} átomos/mol.

Questão 8. Considerando o projeto de uma tubeira de foguete (difusor traseiro) e de um eixo virabrequim automotivo:

- (a) Quais os principais mecanismos de falha para cada um dos componentes? Cite e explique.
- (b) Quais as medidas que o engenheiro pode tomar para retardar ou evitar tais mecanismos para cada um dos componentes? Explique.

Boa prova! Prof. Emmanuel Lima.