MATH243 Statistical Inference

Exercise 2 (Parameter Estimation I: Unbiasedness, Finding an estimator)

1. Suppose we have a random sample $(X_1, X_2, ..., X_n)$ from a normal distribution $N(\theta, \sigma^2)$. Show that

$$\tilde{\theta}_1 = \frac{1}{n+1} \sum_{i=1}^n X_i$$

is a biased estimator for θ .

2. Consider a random sample $(X_1, ..., X_n)$ taken from a Weibull distribution with parameters $\alpha = \frac{1}{\theta}$, and β , where $\beta > 0$ is known. The p.d.f. is

$$f(x;\theta) = \frac{\beta}{\theta} x^{\beta-1} \exp\left(\frac{-x^{\beta}}{\theta}\right), \quad x \in (0,\infty)$$

(a) Show that the maximum likelihood estimator for θ is given by

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^{\beta}$$

- (b) Show that $\hat{\theta}$ is unbiased and consistent for θ .
- 3. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a geometric distribution for which p is the probability of success.
 - (a) Use the method of moments to find a point estimate for p.
 - (b) Explain intuitively why your estimate makes good sense.
 - (c) Use the following data to give a point estimate of p:

- 4. Let $X_1, X_2, ..., X_n$ be a random sample from a uniform distribution on the interval $(\theta 1, \theta + 1)$.
 - (a) Find the method of moments estimator for θ .
 - (b) Is your estimator in part (a) an unbiased estimator for θ ?
 - (c) Given the following n=5 observations of X, give a point estimate of θ : 6.61, 7.70, 6.98, 8.36, 7.26.
 - (d) The method of moments estimator actually has greater variance than the estimator $[min(X_i) + max(X_i)]/2$. Compute the value of this estimator for the n = 5 observations in (c).
- 5. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2 = \theta), 0 < \theta < \infty$, where μ is known. Show that $Y = (1/n) \sum_{i=1}^{n} (X_i \mu)^2$ is an unbiased estimator of θ .
- 6. During each lecture in a statistic class, let X equal the number of times that Professor Tanis collides with a computer table at the front of the classroom. Assume that the distribution of X is Poisson with mean λ .

1

(a) Given n observations of X, find the method of moments estimate of λ .

(b) Give a point estimate of λ using the following 11 observations of X that were collected by Chris:

 $1 \quad 0 \quad 1 \quad 3 \quad 3 \quad 0 \quad 2 \quad 2 \quad 4 \quad 1 \quad 1$

- (c) Compare the values of \bar{x} and s^2 . Does this information support the assumption that X has a Poisson distribution?
- 7. An urn contains 64 balls of which n_1 are orange and n_2 are blue. A random sample of r = 8 balls is selected from the urn without replacement and X is equal to the number of orange balls in the sample. This experiment was repeated 30 times (the 8 balls being returned to the urn before each repetition) yielding the following data:

Using these data, guess the value of n_1 and give a reason for your guess.

- 8. A random sample $X_1, X_2, ..., X_n$ of size n is taken from $N(\mu, \sigma^2)$, where the variance $\theta = \sigma^2$ is such that $0 < \theta < \infty$ and μ is a known real number. Show that the maximum likelihood estimator for θ is $\hat{\theta} = (1/n)\Sigma(X_i \mu)^2$.
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from distributions with the following probability density functions. In each case find the maximum likelihood estimator $\hat{\theta}$.
 - (a) $f(x;\theta) = (1/\theta^2)xe^{-x/\theta}, \ 0 < x < \infty, \ 0 < \theta < \infty.$
 - (b) $f(x;\theta) = (1/2\theta^3)x^2e^{-x/\theta}, \ 0 < x < \infty, \ 0 < \theta < \infty.$
 - (c) $f(x;\theta) = (1/2)e^{-|x-\theta|}, -\infty < x < \infty, -\infty < \theta < \infty.$
- 10. Let $f(x;\theta) = (1/\theta)x^{(1-\theta)/\theta}, \ 0 < x < 1, \ 0 < \theta < \infty.$
 - (a) Show that the maximum likelihood estimator of θ is $\hat{\theta} = -(1/n) \sum_{i=1}^{n} \ln X_i$.
 - (b) Show that $E(\hat{\theta}) = \theta$ and thus $\hat{\theta}$ is an unbiased estimator of θ .
- 11. Show that the mean \bar{X} of a random sample of size n from a distribution having p.d.f. $f(x;\theta) = (1/\theta)e^{-(x/\theta)}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is an unbiased statistic for θ and has variance θ^2/n .
- 12. Let $X_1, X_2, ..., X_n$ denote a random sample from a normal distribution with mean zero and variance θ , $0 < \theta < \infty$. Show that $\sum_{i=1}^{n} X_i^2/n$ is an unbiased statistic for θ and has variance $2\theta^2/n$.
- 13. Let Y_1 and Y_2 be two stochastically independent unbiased statistics for θ . Say the variance of Y_1 is twice the variance of Y_2 . Find the constants k_1 and k_2 so that $k_1Y_1 + k_2Y_2$ is an unbiased statistic with smallest possible variance for such a linear combination.
- 14. If X is a random variable having the binomial distribution with the parameters n and θ , show that $n \cdot \frac{X}{n} \cdot \left(1 \frac{X}{n}\right)$ is a biased estimator of the variance of X.
- 15. If X_1, X_2 , and X_3 constitute a random sample of size n = 3 from a normal population with the mean μ and the variance σ^2 , find the efficiency of $\frac{X_1 + 2X_2 + X_3}{4}$ relative to $\frac{X_1 + X_2 + X_3}{3}$.
- 16. If $\hat{\theta}_1 = \frac{X}{n}$, $\hat{\theta}_2 = \frac{X+1}{n+2}$, and $\hat{\theta}_3 = \frac{1}{3}$ are estimators of the parameter θ of a binomial population and $\theta = \frac{1}{2}$, for what values of n is
 - (a) the mean square error of $\hat{\theta}_2$ less than the variance of $\hat{\theta}_1$;

- (b) the mean square error of $\hat{\theta}_3$ less than the variance of $\hat{\theta}_1$?
- 17. Given a random sample of size n from a Poisson population, use the method of moments to obtain an estimator for the parameter λ .
- 18. The radius of a circle is measured with an error of measurement which is distributed $N(0, \sigma^2)$, σ^2 unknown. Given n independent measurements of the radius, find an unbiased estimator of the area of the circle.
- 19. Observations $X_1, X_2, \ldots X_n$ are drawn from normal populations with the same mean μ but with different variances $\sigma_1^2, \sigma_2^2, \ldots \sigma_n^2$. Is it possible to estimate all the parameters? If we assume that the σ_i^2 are known, what is the maximum likelihood estimator of μ ?
- 20. One observation, X, is taken from a $N(0, \sigma^2)$ population.
 - (a) Find an unbiased estimator of σ^2 .
 - (b) Find the MLE of σ .
 - (c) Discuss how the method of moments estimator of σ might be found.

Difficult questions:

- 21. Let $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta \in \Omega = \{\theta : 0 < \theta < \infty\}$. Let $X_1, X_2, ..., X_n$ denote a random sample of size n from this distribution.
 - (a) Sketch the p.d.f. of X for (i) $\theta = 1/2$, (ii) $\theta = 1$, and (iii) $\theta = 2$.
 - (b) Show that $\hat{\theta} = -n/\ln \prod_{i=1}^{n} X_i$ is the maximum likelihood estimator of θ .
 - (c) For each of the following three sets of 10 observations, calculate the maximum likelihood estimate:

(i)	0.0256 0.3191	$0.3051 \\ 0.7379$	$0.0278 \\ 0.3671$	$0.8971 \\ 0.9763$	0.0739 0.0102
(ii)	$0.9960 \\ 0.9518$	$0.3125 \\ 0.9924$	$0.4374 \\ 0.7112$	0.7464 0.2228	0.8278 0.8609
(iii)	$0.4698 \\ 0.9917$	$0.3675 \\ 0.1551$	$0.5991 \\ 0.0710$	0.9513 0.2110	0.6049 0.2154

- 22. Let $Y_1 < Y_2 < Y_3$ be the order statistics of a random sample of size 3 from the uniform distribution having p.d.f. $f(x;\theta) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere. Show that $4Y_1, 2Y_2$, and $\frac{4}{3}Y_3$ are all unbiased statistics for θ . Find the variance of each of these unbiased statistics.
- 23. If \bar{X}_1 is the mean of a random sample of size n from a normal population with the mean μ and the variance σ_1^2 , \bar{X}_2 is the mean of a random sample of size n from a normal population with the mean μ and the variance σ_2^2 , and the two samples are independent, show that
 - (a) $\omega \cdot \bar{X}_1 + (1 \omega) \cdot \bar{X}_2$, where $0 \le \omega \le 1$, is an unbiased estimator of μ ;
 - (b) the variance of this estimator is a minimum when

$$\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

(c) Find the efficiency of the estimator of part (a) with $\omega = \frac{1}{2}$ relative to this estimator with

$$\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

24. If \bar{X}_1 and \bar{X}_2 are the means of independent random samples of size n_1 and n_2 from a normal population with the mean μ and the variance σ^2 , show that the variance of the unbiased estimator

$$\omega \cdot \bar{X}_1 + (1 - \omega) \cdot \bar{X}_2$$

is a minimum when $\omega = \frac{n_1}{n_1 + n_2}$. Find the efficiency of the estimator with $\omega = \frac{1}{2}$ relative to the estimator with $\omega = \frac{n_1}{n_1 + n_2}$.

25. Let X and Y be independent exponential random variables, with

$$f(x|\lambda) = \frac{1}{\lambda}e^{-x/\lambda}, x > 0, \quad f(y|\mu) = \frac{1}{\mu}e^{-y/\mu}, y > 0.$$

We observe Z and W with

$$Z = \min(X, Y)$$
 and $W = \begin{cases} 1 & \text{if } Z = X \\ 0 & \text{if } Z = Y \end{cases}$.

Assume that $(Z_i, W_i), i = 1, \ldots, n$, are n iid observations. Find the MLEs of λ and μ .

26. Let X_1, \ldots, X_n be iid with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 \le x \le 1, \quad 0 < \theta < \infty.$$

- (a) Find the MLE of θ , and show that its variance $\to 0$ as $n \to \infty$.
- (b) Find the method of moments estimator of θ .
- 27. For the bivariate normal distribution, show that the MLEs for μ_X , μ_Y , σ_X^2 , σ_Y^2 and ρ are the same as the method of moments estimators.