Задача 2.1. Перемножьте блочные матрицы

$$\begin{pmatrix} X & E \\ -E & 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 & -E \\ E & X \end{pmatrix}$

Сделайте из этого вывод о том, какова матрица, обратная к матрице

$$\begin{pmatrix}
1 & 3 & -2 & 1 & 0 \\
-4 & -7 & 2 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0
\end{pmatrix}$$

Напомним, что матрица, обратная к (квадратной) матрице A — это такая матрица A^{-1} , для которой $A \cdot A^{-1} = A^{-1} \cdot A = E$.

Задача 2.2. Матрица A такова, что $A^2 = A$. Докажите, что $(E-A)^2 = E-A$.

Задача 2.3. Разложите на множители выражение

$$6A^TA - 2B^2 - 3BA + 4A^TB$$

Задача 2.4. Пусть v — вектор-столбец (то есть матрица размера $n \times 1$). Докажите, что $\left(vv^T\right)^2 = \lambda vv^T$ для некоторого скаляра (то есть числа) λ . Выразите λ через v.

Очень рекомендую постараться решить эту задачу, не расписывая произведение через отдельные элементы v.

Задача 2.5. Вычислите

(a)
$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}^n$$
, (b) $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^n$

Указание. Возможно, второй пункт будет решаться легче, если каждый раз выносить из очередной степени общий целочисленный множитель. Кроме того, я не ожидаю в пункте (b) ответа в виде единой формулы; нормально, если вы его выпишите в виде "..., если n=3k, ..., если n=3k+1, ..., если n=3k+2" (и это тоже была подсказка, на самом деле).

Задача 2.6. Докажите, что

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}^n = \begin{pmatrix} \cos(n\varphi) & -\sin(n\varphi) \\ \sin(n\varphi) & \cos(n\varphi) \end{pmatrix}$$

 \mathbf{C} лед матрицы. Следом квадратной матрицы A называется число

$$\operatorname{tr}(A) = \sum_{i} a_{ii},$$

то есть сумма диагональных элементов матрицы. У следа есть несколько замечательных свойств, которые вам наверняка доказывали на лекции:

- (1) Линейность: $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$; $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$, где A, B некоторые матрицы, а λ скаляр.
- (2) tr(AB) = tr(BA). То есть под знаком следа можно переставлять два множителя. Из этого легко вывести, что множители под знаком следа можно переставлять по циклу. Например:

$$tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)$$

Но при этом, вообще говоря,

$$tr(ABC) \neq tr(ACB)$$

(понимаете ли вы, почему первое следовало из свойства (2), а последнее нет?)

Задача 2.7. Докажите, что для любой вещественной матрицы X имеет место неравенство $\mathrm{tr}(X^TX)\geqslant 0$, причём $\mathrm{tr}(X^TX)=0$ тогда и только тогда, когда X=0.

 $\mathit{Указаниe}$. Обозначьте матричные элементы X через x_{ij} и посчитайте, чему равен этот самый след.

Задача 2.8. Прочитайте на википедии про алгоритм Штрассена. Сколько операций потребуется, чтобы перемножить две матрицы 5×5 с помощью этого алгоритма? Это больше или меньше, чем нужно для перемножения обычным способом?

Задача 3.1. Квадратная матрица A нильпотентна, то есть $A^n=0$ для некоторого $n\in\mathbb{N}$. Докажите, что у (E-A) есть обратная. Иными словами, докажите, что существует квадратная матрица B того же размера, для которой (E-A)B=B(E-A)=E.

 $\mathit{Указаниe}.$ Матрицу B предлагается выразить в виде многочлена от матрицы A.

Задача 3.2. Докажите, что для любой матрицы 2×2 найдётся многочлен $f(x) = x^2 + ax + b$ (свой для каждой матрицы), для которого f(A) = 0.

Указание. Просто подберите a и b. Более подробно: давайте запишем $A = \binom{x_{11}}{x_{21}} \binom{x_{12}}{x_{22}}$. Найдите (в буквенном виде) A^2 и распишите (тоже в буквенном виде) f(A). Теперь полученную матрицу приравняйте к нулю: получится четыре уравнения (на четыре матричных элемента) с двумя неизвестными: a и b. Осталось её решить.

Задача 3.3. Придумайте хотя бы две матрицы 2×2 , для которых многочлен из задачи 6 не единственный.

Задача 3.4. Матрица такова, что $\operatorname{tr}(AX)=0$ для любой матрицы X, имеющей нулевой след. Докажите, что матрица является скалярной (т.е. имеет вид λA для некоторого λ).

Задача 3.5. Вычислите

$$a) \qquad \begin{pmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & 0 & 1 & \\ & & & & 0 & 1 & \\ & & & & 0 & 1 & \\ & & & & 0 & 1 & \\ & & & & & 0 & 1 & \\ & & & & & 1 & \\ & & & & \ddots & \ddots & \\ & & & & & t & 1 & \\ & & & & & t & 1 & \\ & & & & & t & 1 & \\ & & & & & t & 1 & \\ & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ & & & & & & & t & 1 & \\ &$$

(в обоих пунктах матрицы размера $n \times n$; в пустых ячейках стоят нули)

Задача 3.6. От матриц можно брать не только многочлены, но и более весёлые функции. Например, назовём *экспонентой* матрицы A сумму ряда

$$\exp A := E + \frac{1}{1!}A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots + \frac{1}{k!}A^k + \dots$$

Оставим пока в стороне вопросы о том, в каком смысле эта сумма (предел) существует и почему вообще тут что-то сходится.

Вычислите

$$\exp\begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix}$$

Тут вам могут помочь ряды Тейлора элементарных функций. Если вы никогда не слышали про них, то скорее всего вы уже испугались и бросили решать, не дочитав до этого места, но если не испугались, то можете просто посмотреть их список в Википедии: того, что есть там, точно хватит.