Emerging Markets' Appetite for Sovereign Risk: Exploring Relationship between EM GDP Output, Commodity Prices, and Sovereign Risk

Introduction

Emerging Markets' GDPs, measured for Economic Output, are affected by fluctuations not just within commodity prices, but also by country risk, and sovereign risk factors. Historically, commodities have been key to the rise of Emerging Markets. However, for some Emerging Markets, commodities have also been a catalyst for economic recessions within such economies. Emerging Markets are also subjected to a variety of political, economic, and financial risks, that all affect their economic output and their production of commodities, as well as commodity prices. This impacts EMs' ability to service their own consumers and consumers within industrialized countries.

To explore such relationship, a series of multivariate regression analyses were used. The dependent variable was the GDP of EM countries based on current US dollar prices, while the independent variables were:Commodity Prices, Political Risk, Sovereign Risk, Country Risk, Exports of Commodities by the selected EM countries, Imports of Commodities by the selected EM countries, and Imports of Commodities by the selected Industrialized Economies from 1985-2016. Such exports and imports were chosen as other explanatory variables that affect greatly affect commodity prices, hence their inclusion were important to consider when assessing Political, Country, and Sovereign Risks' ability to affect Commodity Prices and GDP. The list of Emerging Market countries examined were based off the MSCI index, while the list of Industrialized Economies came from the World Population Review. While the original MSCI index contains 26 EM countries, this project only involved 20 EM economies. For one, a few countries in the MSCI were also considered developed economies according to the World Population Review, in which those that were considered Developed Economies were removed from the EM list in this project. In addition, a few of the EM countries in the MSCI list did not contain enough data involving the aforementioned risk variables, hence those EMs were removed from consideration and thus the project only deals with 20 EM countries.

The risk variables explored came from data collected from The International Country Risk Guide(ICRG) because of it's comprehensive historical data of various financial, economic, and political risk data dating back to 1985, thus resulting in all other variables used in this model to have data stemming from 1985. Country Risk, as defined per https://www.investopedia.com/terms/c/countryrisk.asp (https://www.investopedia.com/terms/c/countryrisk.asp), includes the combination of political and economic risk. In order to accurately reflect country risk variable, the methodology used to calculate ICRG's composite rating which includes all three financial, political, and economic risk variables was used to calculate country risk. To sum, the three risk indicators that will be featured in these analyses are: Political Risk, Country Risk, and Sovereign Risk.

Sources

Data for GDP=https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/download.aspx (https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/download.aspx)

Data for Political, Economic, and Sovereign Risk data,ICRG Methodology and definition of variables used=https://www.prsgroup.com/wp-content/uploads/2012/11/icrgmethodology.pdf (https://www.prsgroup.com/wp-content/uploads/2012/11/icrgmethodology.pdf)

Data for Commodity Prices=https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx? ReportId=30728 (https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=30728)

Imports and Exports of Commodities=http://data.imf.org/?sk=2CDDCCB8-0B59-43E9-B6A0-59210D5605D2 (http://data.imf.org/?sk=2CDDCCB8-0B59-43E9-B6A0-59210D5605D2)

List for Industrialized Countries=http://worldpopulationreview.com/countries/developed-countries/ (http://worldpopulationreview.com/countries/developed-countries/)

Context for why imports of commodities by industrialized countries and exports of commodities by emerging markets were selected for this model= http://www.carmenreinhart.com/user_uploads/BKRW_OP_1994.pdf (http://www.carmenreinhart.com/user_uploads/BKRW_OP_1994.pdf),

http://www.carmenreinhart.com/user_uploads/BR_IMFSP_1994.pdf (http://www.carmenreinhart.com/user_uploads/BR_IMFSP_1994.pdf)

List for EM countries used=<u>https://www.investopedia.com/terms/e/emergingmarketsindex.asp</u> (https://www.investopedia.com/terms/e/emergingmarketsindex.asp)

Appendix

GDP= GDP dataset imported

EMCountryList=all EMs that will be used in this model

EMGDP=GDP output of Emerging Markets

CMPrices=dataset imported

CMPrices=list of value needed [Price Index all commodity groups]

CMdata1...CMdata2= separate data frames later to be concated.

CMPriceData=All commodity yearly price data from 1984-2016

FR=Financial Rating from ICRG dataset

SovereignRisk= FR data in ICRG Dataset

ER=Economic Risk from ICRG dataset

PR=Political RIsk from ICRG Dataset

Country Risk=[ER+PR]*0.5

RiskIndicators=Political Risk, Sovereign Risk, and Country Risk

GDPvPrices=Dataframe used to plot GDP vs Price data and correlation

PriceRisk=Dataframe used to plot various price vs risk indicators data

IndustrializedNations=list of industrialized Economies used in this model

IMFCountryList=all of the countries in the EMCountryList

IEComImports=Imports of Commodities by Industrialized Economies

EMComExports = Exports of Commodities by Emerging Markets

EMComImports= Imports of Commodities by Emerging Markets

PriceIMEX=Commodity price data and import and export data

GDPRisk=EM GDP data and Risk Indicator Data

GDPvPrices= GDP Data and Commodity Prices, dataframe used to reflect change in all relevant variables when taking switching China and BRICS in and out of the equation

PriceRiskXIM=dataframe used to reflect change in all relevant variables when taking switching China and BRICS in and out of the equation

INDGDPPriceRisk= variables related to India analysis

ARGGDPPriceRisk= variables related to Argentina analysis

CHINAGDPPriceRisk=variables related to China analysis.

ChinaML1= China Machine Learning data frame looking at how Economic Risk impacts GDP

ChinaML2= China Machine Learning dataframe looking at how Economic Risk impacts Sovereign Risk

IndiaML= India Machine Learning data frame looking at how Country Risk impacts GDP

ArgentinaML= Argentina Machine Learning data frame looking at how Sovereign Risk impacts

EMGDPML= Emerging Markets Machine Learning data frame looking at how Sovereign Risk impacts EM's GDP

EMML= Emerging Markets Machine Learning data frame looking at how Sovereign Risk impacts **Commodity Prices**

Data Import and Cleaning

Data was imported and cleaned in order to create new dataframes. Once the Data Frames were created, simpoe plot graphs were created among the independent and dependent variables examined.

```
In [1]: # Data imported for the following EMs, looked at.
        import pandas as pd
        df1=pd.read excel (r"C:\New folder\WEO data.xlsx")
        import numpy as np
        df1
        EMCountryList=["Argentina",'Brazil','Chile','China','Colombia','Egypt','Hungar
        y','India','Indonesia','Malaysia','Mexico','Pakistan','Peru','Philippines','Po
        land','Qatar','Russia','Saudi Arabia','South Africa','Thailand']
        GDP=df1.loc[df1["Country"].isin(EMCountryList)]
        GDP=GDP.loc[GDP['Units'].str.contains('U.S. dollars')]
        GDP=GDP.loc[GDP['Subject Descriptor'].str.contains('Gross domestic product, cu
        rrent prices')]
        GDP
```

Out[1]:

	WEO Country Code	ISO	WEO Subject Code	Country	Subject Descriptor	Subject Notes	Units	Scale	Country/Series- specific Notes
228	213	ARG	NGDPD	Argentina	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
1038	223	BRA	NGDPD	Brazil	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
1533	228	CHL	NGDPD	Chile	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
1578	924	CHN	NGDPD	China	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
1623	233	COL	NGDPD	Colombia	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
2253	469	EGY	NGDPD	Egypt	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
3333	944	HUN	NGDPD	Hungary	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
3423	534	IND	NGDPD	India	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
3468	536	IDN	NGDPD	Indonesia	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren

	WEO Country Code	ISO	WEO Subject Code	Country	Subject Descriptor	Subject Notes	Units	Scale	Country/Series- specific Notes
4683	548	MYS	NGDPD	Malaysia	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
4998	273	MEX	NGDPD	Mexico	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
5853	564	PAK	NGDPD	Pakistan	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
6078	293	PER	NGDPD	Peru	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
6123	566	PHL	NGDPD	Philippines	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
6168	964	POL	NGDPD	Poland	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
6303	453	QAT	NGDPD	Qatar	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
6393	922	RUS	NGDPD	Russia	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren
6618	456	SAU	NGDPD	Saudi Arabia	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren

	WEO Country Code	ISO	WEO Subject Code	Country	Subject Descriptor	Subject Notes	Units	Scale	Country/Series- specific Notes	
7068	199	ZAF	NGDPD	South Africa	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren	
7743	578	THA	NGDPD	Thailand	Gross domestic product, current prices	Values are based upon GDP in national currency	U.S. dollars	Billions	See notes for: Gross domestic product, curren	
20 row	20 rows × 55 columns									
4									>	

```
In [2]: #GDP data was then merged to create an average among the EMs examined per each
        vear between 1985 to 2016.
        data1={'Year':['1985','1986','1987','1988','1989'],'GDP':[GDP.loc[:,1985].mean
        ().round(2),GDP.loc[:,1986].mean().round(2),GDP.loc[:,1987].mean().round(2),GD
        P.loc[:,1988].mean().round(2),GDP.loc[:,1989].mean().round(2)]}
        EMGDP1=pd.DataFrame(data1)
        EMGDP1
        data2={'Year':['1990','1991','1992','1993','1994','1995'],'GDP':[GDP.loc[:,199
        0].mean().round(2),GDP.loc[:,1991].mean().round(2),GDP.loc[:,1992].mean().roun
        d(2),GDP.loc[:,1993].mean().round(2),GDP.loc[:,1994].mean().round(2),GDP.loc
        [:,1995].mean().round(2)]
        EMGDP2=pd.DataFrame(data2)
        EMGDP2
        data3={'Year':['1996','1997','1998','1999','2000','2001'],'GDP':[GDP.loc[:,199
        6].mean().round(2),GDP.loc[:,1997].mean().round(2),GDP.loc[:,1998].mean().roun
        d(2),GDP.loc[:,1999].mean().round(2),GDP.loc[:,2000].mean().round(2),GDP.loc
        [:,2001].mean().round(2)]
        EMGDP3=pd.DataFrame(data3)
        EMGDP3
        data4={'Year':['2002','2003','2004','2005','2006','2007'],'GDP':[GDP.loc[:,200
        2].mean().round(2),GDP.loc[:,2003].mean().round(2),GDP.loc[:,2004].mean().roun
        d(2),GDP.loc[:,2005].mean().round(2),GDP.loc[:,2006].mean().round(2),GDP.loc
        [:,2007].mean().round(2)]}
        EMGDP4=pd.DataFrame(data4)
        EMGDP4
        data5={'Year':['2008','2009','2010','2011','2012','2013'],'GDP':[GDP.loc[:,200
        8].mean().round(2),GDP.loc[:,2009].mean().round(2),GDP.loc[:,2010].mean().roun
        d(2),GDP.loc[:,2011].mean().round(2),GDP.loc[:,2012].mean().round(2),GDP.loc
        [:,2013].mean().round(2)]}
        EMGDP5=pd.DataFrame(data5)
        EMGDP5
        data6={'Year':['2014','2015','2016'],'GDP':[GDP.loc[:,2014].mean().round(2),GD
        P.loc[:,2015].mean().round(2),GDP.loc[:,2016].mean().round(2)]}
        EMGDP6=pd.DataFrame(data6)
        EMGDP6
        EMGDP=pd.concat([EMGDP1,EMGDP2,EMGDP3,EMGDP4,EMGDP5,EMGDP6])
        EMGDP
```

Out[2]:

	Year	GDP
0	1985	91.49
1	1986	91.53
2	1987	100.36
3	1988	113.91
4	1989	126.86
0	1990	134.15
1	1991	137.78
2	1992	149.26
3	1993	171.26
4	1994	190.53
5	1995	216.39
0	1996	241.07
1	1997	254.93
2	1998	239.29
3	1999	233.89
4	2000	255.18
5	2001	260.65
0	2002	263.93
1	2003	295.30
2	2004	348.16
3	2005	414.25
4	2006	491.49
5	2007	607.78
0	2008	726.82
1	2009	711.14
2	2010	867.39
3	2011	1032.07
4	2012	1100.41
5	2013	1171.20
0	2014	1213.92
1	2015	1161.19
2	2016	1160.00

In [3]: | CMPrices=pd.read_excel (r"C:\New folder\us_annualcommoditypriceindicesaverages _72693818609729.xls") **CMPrices**

Out[3]:

	Free market commodity price indices, annual, 1960 - 2016 (Discontinued)	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed: 6	Unnam
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
2	MEASURE	PRICE INDICES 2000=100	NaN	NaN	NaN	NaN	NaN	N
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
4	PERIOD	1960	1961	1962	1963	1964	1965	19
5	PRODUCT	NaN	NaN	NaN	NaN	NaN	NaN	N
6	Price index - All groups (in terms of current	44.3333	43.3833	43.8167	50.2333	50.6667	49.2417	51.71
7	Price Index - All groups (in terms of constant	182.383	174.192	174.525	200.033	198.733	188.542	193.6
8	Price index - All groups (in terms of SDRs)	58.6167	57.3833	57.9667	66.425	66.9917	65.1	6
9	ALL FOOD	46.7417	47.1167	48.5417	59.325	56.2083	50.1917	52.5€
10	- FOOD AND TROPICAL BEVERAGES	45.0417	44.775	47.275	58.9917	55.1167	47.3917	50.60
11	FOOD	44.15	44.3833	47.275	60.0167	54.775	46.7333	50.16
12	TROPICAL BEVERAGES	52.7417	48.2083	47.275	50.05	58.3	52.9083	54.58
13	- VEGETABLE OILSEEDS AND OILS	61.0583	66.5667	59.1583	62.0583	65.1833	73.6833	68.85
14	AGRICULTURAL RAW MATERIALS	52.9667	46.775	44.25	43.325	43.1667	44.275	43.66
15	MINERALS, ORES AND METALS	34.3667	33.15	32.825	33.0333	41.9167	49.5583	53.96
16	Crude petroleum, average of UK Brent (light),	7.08333	7.08333	7.5	7.5	7.5	7.5	
17	Crude petroleum, UK Brent, light blend API 38°							
18	Crude petroleum, Dubai, medium, Fateh API 32°,							

	Free market commodity price indices, annual, 1960 - 2016 (Discontinued)	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed: 6	Unnam
19	MEMO ITEM	_	_	_	_	_	_	
20	Unit value index of manufactured goods exports	24.3	24.9	25.1	25.1	25.5	26.1	2
21 rd	ows × 58 column	s						
4								•

```
In [4]: # Commodity Prices were then imported and cleaned.
        CMPrices=pd.read excel (r"C:\New folder\us annualcommoditypriceindicesaverages
         72693818609729.xls")
        CMPrices
        CMPrices=CMPrices.loc[[6]]
        CMPrices
        # unnamed are used as references in order to get the right years from 1985-201
        CMPrices=CMPrices[['Unnamed: 35', 'Unnamed: 36', 'Unnamed: 37', 'Unnamed: 38',
                'Unnamed: 39', 'Unnamed: 40', 'Unnamed: 41', 'Unnamed: 42',
                'Unnamed: 43', 'Unnamed: 44', 'Unnamed: 45', 'Unnamed: 46',
                'Unnamed: 47', 'Unnamed: 48', 'Unnamed: 49', 'Unnamed: 50',
                'Unnamed: 51', 'Unnamed: 52', 'Unnamed: 53', 'Unnamed: 54',
                'Unnamed: 55', 'Unnamed: 56', 'Unnamed: 57']]
        CMPrices
        #Data was then merged to create the following dataframe.
        data7={'Year':['1985','1986','1987','1988','1989','1990','1991','1992','1993'
        ], 'Price':[96.2167,96.675,102.208,131.117,132.325,124.025, 117.042,113.858,10
        8.258
        1}
        CMdata1=pd.DataFrame(data7)
        CMdata1
        data8={'Year':['1994','1995','1996','1997','1998','1999','2000','2001','2002',
         '2003'], 'Price':[126.508,137.575,134.35,131.667,114.4,98.4833,99.9917,96.375,
        97.3167,104.858]}
        CMdata2=pd.DataFrame(data8)
        CMdata2
        data9={'Year':['2004','2005','2006','2007','2008','2009','2010','2011','2012',
         '2013'], 'Price': [125.783,140.392,182.825,206.525,256.033,212.742,256.042,302,2
        76.783,258.183]}
        CMdata3=pd.DataFrame(data9)
        CMdata3
        data10={'Year':['2014','2015','2016'],'Price':[242.508,201.575,200.083] }
        CMdata4=pd.DataFrame(data10)
        CMdata4
        CMPriceData=pd.concat([CMdata1,CMdata2,CMdata3,CMdata4])
        CMPriceData
```

Out[4]:

	Year	Price
0	1985	96.2167
1	1986	96.6750
2	1987	102.2080
3	1988	131.1170
4	1989	132.3250
5	1990	124.0250
6	1991	117.0420
7	1992	113.8580
8	1993	108.2580
0	1994	126.5080
1	1995	137.5750
2	1996	134.3500
3	1997	131.6670
4	1998	114.4000
5	1999	98.4833
6	2000	99.9917
7	2001	96.3750
8	2002	97.3167
9	2003	104.8580
0	2004	125.7830
1	2005	140.3920
2	2006	182.8250
3	2007	206.5250
4	2008	256.0330
5	2009	212.7420
6	2010	256.0420
7	2011	302.0000
8	2012	276.7830
9	2013	258.1830
0	2014	242.5080
1	2015	201.5750
2	2016	200.0830

```
In [5]: #Next involves importing and cleaning the various risk indicators into new dat
        aframes later to be merged. All countries have the same index number in each r
        isk dataset.
        #Data Cleaning for Political Risk dataset.
        PR=pd.read_excel (r"C:\New folder\CountryData (2).xlsx")
        PR=PR.loc[PR['Country'].isin(EMCountryList)]
```

Out[5]:

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/1984
3	Argentina	Political Risk Rating	50.0	52.0	51.0	52.0	56.0	52.0	54.0	55.0
15	Brazil	Political Risk Rating	55.0	55.0	55.0	57.0	56.0	57.0	58.0	61.0
21	Chile	Political Risk Rating	49.0	50.0	48.0	47.0	49.0	46.0	45.0	45.0
22	China	Political Risk Rating	NaN							
23	Colombia	Political Risk Rating	62.0	62.0	61.0	61.0	63.0	62.0	68.0	68.0
36	Egypt	Political Risk Rating	50.0	50.0	50.0	48.0	51.0	52.0	51.0	52.0
56	Hungary	Political Risk Rating	NaN	77.0						
58	India	Political Risk Rating	60.0	60.0	58.0	58.0	56.0	49.0	46.0	47.0
59	Indonesia	Political Risk Rating	46.0	46.0	46.0	46.0	47.0	47.0	49.0	49.0
81	Malaysia	Political Risk Rating	77.0	76.0	76.0	76.0	75.0	74.0	73.0	73.0
84	Mexico	Political Risk Rating	66.0	69.0	70.0	70.0	70.0	69.0	68.0	68.0
99	Pakistan	Political Risk Rating	42.0	42.0	41.0	41.0	41.0	39.0	38.0	36.0
103	Peru	Political Risk Rating	45.0	45.0	45.0	41.0	45.0	45.0	44.0	44.0
104	Philippines	Political Risk Rating	38.0	38.0	38.0	38.0	38.0	39.0	40.0	39.0
105	Poland	Political Risk Rating	NaN							
107	Qatar	Political Risk Rating	NaN	51.0						
109	Russia	Political Risk Rating	NaN							

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/1984	
110	Saudi Arabia	Political Risk Rating	52.0	52.0	52.0	54.0	55.0	54.0	54.0	54.0	
119	South Africa	Political Risk Rating	62.0	62.0	63.0	65.0	66.0	66.0	67.0	67.0	
129	Thailand	Political Risk Rating	60.0	60.0	60.0	60.0	60.0	60.0	61.0	61.0	
20 rows × 461 columns											
4										+	

In [6]: FR=pd.read_excel (r"C:\New folder\CountryData.xlsx") FR

Out[6]:

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
0	Albania	Financial Risk Rating	NaN	Na						
1	Algeria	Financial Risk Rating	27.5	27.5	28.0	28.0	27.0	25.0	25.0	25.
2	Angola	Financial Risk Rating	NaN	Na						
3	Argentina	Financial Risk Rating	15.0	14.5	14.0	14.0	13.0	9.0	9.0	9.
4	Armenia	Financial Risk Rating	NaN	Na						
5	Australia	Financial Risk Rating	41.5	41.5	41.0	41.0	41.0	42.0	42.0	42.
6	Austria	Financial Risk Rating	45.0	45.0	44.0	44.0	44.5	44.5	44.0	44.
7	Azerbaijan	Financial Risk Rating	NaN	Na						
8	Bahamas	Financial Risk Rating	NaN	Na						
9	Bahrain	Financial Risk Rating	NaN	Na						
10	Bangladesh	Financial Risk Rating	20.0	20.0	20.0	20.0	19.5	20.0	20.0	20.
11	Belarus	Financial Risk Rating	NaN	Na						
12	Belgium	Financial Risk Rating	42.5	42.5	41.0	41.0	41.5	41.5	41.0	41.
13	Bolivia	Financial Risk Rating	14.5	14.5	14.0	14.0	13.5	7.0	6.0	6.
14	Botswana	Financial Risk Rating	NaN	Na						
15	Brazil	Financial Risk Rating	20.0	20.0	20.0	20.0	20.5	21.5	22.0	23.
16	Brunei	Financial Risk Rating	NaN	Na						

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
17	Bulgaria	Financial Risk Rating	NaN	Na						
18	Burkina Faso	Financial Risk Rating	NaN	Na						
19	Cameroon	Financial Risk Rating	28.0	28.0	28.0	27.5	28.0	28.5	28.5	28.
20	Canada	Financial Risk Rating	44.0	44.0	43.0	43.0	43.0	43.0	42.5	43.
21	Chile	Financial Risk Rating	23.5	22.5	24.0	23.0	24.0	23.0	23.0	24.
22	China	Financial Risk Rating	NaN	Na						
23	Colombia	Financial Risk Rating	30.0	30.0	30.0	30.0	30.5	29.0	29.0	29.
24	Congo	Financial Risk Rating	NaN	Na						
25	Congo, DR	Financial Risk Rating	16.0	16.0	15.0	15.0	15.0	15.5	15.5	15.
26	Costa Rica	Financial Risk Rating	20.0	20.0	20.0	20.0	21.0	21.5	21.0	22.
27	Côte d'Ivoire	Financial Risk Rating	NaN	Na						
28	Croatia	Financial Risk Rating	NaN	Na						
29	Cuba	Financial Risk Rating	NaN	Na						
118	Somalia	Financial Risk Rating	NaN	Na						
119	South Africa	Financial Risk Rating	34.5	34.5	35.5	36.0	35.0	35.5	35.5	35.
120	Spain	Financial Risk Rating	37.0	37.0	37.0	36.5	36.5	37.5	37.5	36.
121	Sri Lanka	Financial Risk Rating	27.5	27.5	26.5	26.0	24.5	24.0	24.0	24.

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
122	Sudan	Financial Risk Rating	18.0	18.0	18.5	18.5	18.0	18.0	18.0	18.
123	Suriname	Financial Risk Rating	NaN	Na						
124	Sweden	Financial Risk Rating	44.0	44.0	43.0	43.0	43.0	42.0	42.0	42.
125	Switzerland	Financial Risk Rating	47.5	47.5	47.5	47.5	47.5	48.0	50.0	50.
126	Syria	Financial Risk Rating	16.5	16.5	15.5	14.5	15.0	14.5	14.5	16.
127	Taiwan	Financial Risk Rating	39.0	39.0	38.0	38.0	38.5	39.0	39.0	39.
128	Tanzania	Financial Risk Rating	22.0	22.0	23.0	23.0	23.0	23.0	23.0	23.
129	Thailand	Financial Risk Rating	31.0	31.0	31.0	31.0	31.0	30.5	30.5	30.
130	Togo	Financial Risk Rating	24.5	24.5	23.5	23.5	23.5	25.5	25.5	25.
131	Trinidad & Tobago	Financial Risk Rating	27.5	27.5	28.5	28.5	29.0	29.0	29.0	29.
132	Tunisia	Financial Risk Rating	22.0	22.0	22.0	22.0	21.5	23.5	23.5	23.
133	Turkey	Financial Risk Rating	25.5	25.5	24.5	25.0	24.5	24.5	24.5	23.
134	UAE	Financial Risk Rating	31.5	31.5	33.0	33.0	31.5	31.0	31.0	30.
135	Uganda	Financial Risk Rating	21.5	21.5	20.0	20.0	20.0	17.0	17.0	17.
136	Ukraine	Financial Risk Rating	NaN	Na						
137	United Kingdom	Financial Risk Rating	46.0	46.0	46.0	46.0	46.0	45.5	45.0	45.
138	United States	Financial Risk Rating	47.5	47.5	47.5	47.0	47.0	47.5	47.5	48.

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
139	Uruguay	Financial Risk Rating	26.5	26.5	26.5	26.5	27.5	28.0	28.0	27.
140	USSR	Financial Risk Rating	NaN	Na						
141	Venezuela	Financial Risk Rating	23.0	22.5	22.5	21.5	23.0	22.0	23.0	24.
142	Vietnam	Financial Risk Rating	NaN	Na						
143	Yemen	Financial Risk Rating	NaN	Na						
144	Zambia	Financial Risk Rating	21.0	21.0	19.5	19.5	19.5	19.5	19.5	19.
145	Zimbabwe	Financial Risk Rating	23.5	23.5	23.5	23.5	23.5	25.0	25.0	25.
146	The following requested columns had no data to	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
147	Copyright The PRS Group, Inc., 1979-2019, East	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na l

148 rows × 431 columns

In [7]: #Data importing and cleaning for Sovereign Risk data. ICRG calls sovereign ri sk Financial Risk. This project refers to FR as Sovereign Risk. FR=pd.read_excel (r"C:\New folder\CountryData.xlsx") FR=FR.loc[FR['Country'].isin(EMCountryList)] FR FR=FR[[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1 999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 ,2015,2016]] FR

Out[7]:

	1985	1986	1987	1988	1989	1990	1991	1992	
3	9.000000	10.750000	14.750000	17.833333	17.750000	21.000000	28.166667	36.000000	37
15	23.666667	23.750000	24.416667	29.000000	28.333333	29.333333	33.416667	37.750000	35
21	24.083333	25.166667	29.583333	36.666667	37.166667	38.666667	41.666667	42.000000	42
22	35.250000	32.916667	30.083333	29.916667	27.000000	24.583333	24.833333	32.166667	40
23	29.000000	29.833333	30.250000	30.416667	28.000000	31.166667	40.000000	41.583333	41
36	20.333333	18.000000	19.916667	20.833333	20.250000	21.666667	28.333333	38.916667	39
56	33.333333	31.916667	29.083333	27.583333	30.000000	30.416667	32.000000	35.916667	39
58	28.000000	29.000000	28.666667	26.833333	26.500000	25.250000	24.666667	32.500000	35
59	25.416667	22.583333	21.000000	19.833333	25.083333	36.916667	44.000000	43.666667	41
81	33.500000	28.666667	26.083333	27.833333	35.500000	42.250000	45.000000	45.000000	45
84	24.500000	20.333333	25.250000	27.583333	29.166667	33.416667	39.166667	42.333333	41
99	22.166667	22.500000	23.000000	22.166667	21.500000	21.083333	20.916667	28.000000	30
103	13.916667	12.500000	11.916667	16.250000	18.000000	20.833333	27.916667	27.333333	29
104	20.833333	20.833333	20.000000	20.666667	25.750000	23.583333	21.916667	29.500000	34
105	21.416667	18.000000	18.000000	21.333333	22.500000	24.750000	28.416667	33.083333	35
107	26.000000	26.000000	26.000000	26.000000	26.916667	30.333333	32.500000	40.166667	42
109	NaN	28.888889	27						
110	27.000000	24.333333	24.416667	26.083333	28.833333	28.833333	30.666667	41.916667	43
119	27.750000	23.083333	27.083333	30.000000	30.166667	30.166667	30.000000	32.166667	36
129	29.000000	29.000000	29.000000	34.250000	40.500000	43.083333	42.000000	42.916667	42

20 rows × 32 columns

file:///C:/Users/ishaa/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/EM Commodity Prices Sovereign... 25/314

```
datafr={'Year':['1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992'
In [8]:
                         , '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '200
                         2', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2
                         012', '2013', '2014', '2015', '2016'],
                                             'Sovereign Risk': [FR.loc[:,1985].mean(),FR.loc[:,1986].mean(),FR.loc
                         [:,1987].mean(),FR.loc[:,1988].mean(),FR.loc[:,1989].mean(),FR.loc[:,1990].mea
                         n(),FR.loc[:,1991].mean(),FR.loc[:,1992].mean(),FR.loc[:,1993].mean(),FR.loc
                         [:,1994].mean(),FR.loc[:,1995].mean(),FR.loc[:,1996].mean(),FR.loc[:,1997].mea
                         n(),FR.loc[:,1998].mean(),FR.loc[:,1999].mean(),FR.loc[:,2000].mean(),FR.loc
                         [:,2001].mean(),FR.loc[:,2002].mean(),FR.loc[:,2003].mean(),FR.loc[:,2004].mea
                         n(),FR.loc[:,2005].mean(),FR.loc[:,2006].mean(),FR.loc[:,2007].mean(),FR.loc[:,2007].mean(),FR.loc[:,2006].mean(),FR.loc[:,2007].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].mean(),FR.loc[:,2006].m
                         [:,2008].mean(),FR.loc[:,2009].mean(),FR.loc[:,2010].mean(),FR.loc[:,2011].mea
                         n(),FR.loc[:,2012].mean(),FR.loc[:,2013].mean(),FR.loc[:,2014].mean(),FR.loc
                         [:,2015].mean(),FR.loc[:,2016].mean()]}
                         SovereignRisk=pd.DataFrame(datafr)
                         SovereignRisk
```

Out[8]:

	Year	Sovereign Risk
0	1985	24.956140
1	1986	23.640351
2	1987	24.131579
3	1988	25.846491
4	1989	27.311404
5	1990	29.333333
6	1991	32.399123
7	1992	36.590278
8	1993	37.912500
9	1994	38.233333
10	1995	38.066667
11	1996	38.729167
12	1997	37.633333
13	1998	34.797917
14	1999	35.470833
15	2000	36.064583
16	2001	36.518750
17	2002	36.704167
18	2003	37.404167
19	2004	38.854167
20	2005	39.608333
21	2006	40.583333
22	2007	40.716667
23	2008	39.827083
24	2009	39.002083
25	2010	41.262500
26	2011	41.337500
27	2012	41.083333
28	2013	41.072917
29	2014	40.608333
30	2015	39.339583
31	2016	39.550000

```
In [9]: ER=pd.read_excel (r"C:\New folder\CountryData (1).xlsx")
        ER
```

Out[9]:

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
0	Albania	Economic Risk Rating	NaN	Na						
1	Algeria	Economic Risk Rating	27.0	26.5	27.5	27.0	27.0	27.0	26.0	26
2	Angola	Economic Risk Rating	NaN	Nε						
3	Argentina	Economic Risk Rating	15.0	14.0	13.5	13.0	12.5	10.5	10.5	10
4	Armenia	Economic Risk Rating	NaN	Nε						
5	Australia	Economic Risk Rating	37.5	37.0	37.5	38.0	38.0	38.0	38.0	38
6	Austria	Economic Risk Rating	41.5	41.5	41.5	41.5	41.5	41.5	41.5	41
7	Azerbaijan	Economic Risk Rating	NaN	Nε						
8	Bahamas	Economic Risk Rating	NaN	Nε						
9	Bahrain	Economic Risk Rating	NaN	Na						
10	Bangladesh	Economic Risk Rating	25.0	25.0	25.0	25.5	25.5	25.5	26.0	25
11	Belarus	Economic Risk Rating	NaN	Nε						
12	Belgium	Economic Risk Rating	36.5	36.5	37.0	36.5	36.5	36.5	37.0	37
13	Bolivia	Economic Risk Rating	13.0	13.0	14.5	14.5	14.5	14.0	13.5	13
14	Botswana	Economic Risk Rating	NaN	Nε						
15	Brazil	Economic Risk Rating	16.0	16.0	18.0	19.0	19.5	19.5	20.0	20
16	Brunei	Economic Risk Rating	NaN	Nε						

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/19
17	Bulgaria	Economic Risk Rating	NaN	Ne						
18	Burkina Faso	Economic Risk Rating	NaN	Nε						
19	Cameroon	Economic Risk Rating	30.0	30.0	31.5	30.0	30.0	30.0	31.5	31
20	Canada	Economic Risk Rating	40.0	39.5	39.5	40.0	39.5	39.5	39.5	39
21	Chile	Economic Risk Rating	23.5	23.0	25.5	25.5	25.0	25.0	22.5	22
22	China	Economic Risk Rating	NaN	Nε						
23	Colombia	Economic Risk Rating	21.5	20.5	23.0	23.5	23.0	23.5	25.5	25
24	Congo	Economic Risk Rating	NaN	Na						
25	Congo, DR	Economic Risk Rating	11.0	11.0	18.0	19.0	18.5	16.5	15.5	15
26	Costa Rica	Economic Risk Rating	20.0	21.0	26.0	26.0	26.0	26.0	25.5	25
27	Côte d'Ivoire	Economic Risk Rating	NaN	Nε						
28	Croatia	Economic Risk Rating	NaN	Ne						
29	Cuba	Economic Risk Rating	NaN	Na						
118	Somalia	Economic Risk Rating	NaN	Ne						
119	South Africa	Economic Risk Rating	35.5	35.0	34.5	34.0	34.0	34.0	33.5	34
120	Spain	Economic Risk Rating	33.5	33.0	33.0	33.0	33.5	33.5	34.0	34
121	Sri Lanka	Economic Risk Rating	25.5	25.5	26.5	26.5	25.5	25.5	25.5	25

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/19
122	Sudan	Economic Risk Rating	22.5	22.5	28.0	28.0	28.0	28.0	28.0	28
123	Suriname	Economic Risk Rating	NaN	Nε						
124	Sweden	Economic Risk Rating	38.5	38.5	38.5	38.5	38.5	38.5	38.5	39
125	Switzerland	Economic Risk Rating	44.5	44.5	44.5	44.5	44.5	44.5	44.5	44
126	Syria	Economic Risk Rating	24.5	25.0	25.0	24.0	24.0	24.0	24.0	24
127	Taiwan	Economic Risk Rating	41.0	40.0	40.5	41.0	41.0	41.0	40.5	40
128	Tanzania	Economic Risk Rating	19.5	19.5	19.5	20.0	20.0	20.0	20.0	20
129	Thailand	Economic Risk Rating	35.5	34.5	35.0	35.0	35.5	35.5	35.0	35
130	Togo	Economic Risk Rating	20.0	20.0	20.0	20.0	27.0	28.5	29.0	29
131	Trinidad & Tobago	Economic Risk Rating	35.0	36.0	35.0	34.0	34.0	34.0	33.0	33
132	Tunisia	Economic Risk Rating	32.0	30.5	31.5	30.5	31.0	30.0	29.5	30
133	Turkey	Economic Risk Rating	28.5	29.5	29.5	29.5	29.5	29.5	29.5	29
134	UAE	Economic Risk Rating	39.5	39.0	39.0	39.0	39.0	40.0	40.0	40
135	Uganda	Economic Risk Rating	12.0	12.0	14.5	14.5	14.5	14.5	14.5	14
136	Ukraine	Economic Risk Rating	NaN	Nε						
137	United Kingdom	Economic Risk Rating	35.0	35.5	35.5	36.0	35.5	35.5	35.5	35
138	United States	Economic Risk Rating	40.0	39.5	40.0	39.5	38.0	38.0	38.0	38

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/19
139	Uruguay	Economic Risk Rating	28.5	28.0	30.0	31.5	30.0	30.0	32.0	32
140	USSR	Economic Risk Rating	NaN	Na						
141	Venezuela	Economic Risk Rating	32.0	32.0	30.0	30.5	30.0	34.5	35.0	34
142	Vietnam	Economic Risk Rating	NaN	Na						
143	Yemen	Economic Risk Rating	NaN	Na						
144	Zambia	Economic Risk Rating	21.5	21.5	17.0	19.5	19.5	19.5	20.0	20
145	Zimbabwe	Economic Risk Rating	23.0	27.0	27.5	27.5	27.5	26.0	26.0	26
146	The following requested columns had no data to	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nε
147	Copyright The PRS Group, Inc., 1979-2019, East	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nε

148 rows × 431 columns

file:///C:/Users/ishaa/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/EM Commodity Prices Sovereign... 32/314

```
In [10]: #Data importing and cleaning for economic risk.
         ER=pd.read_excel (r"C:\New folder\CountryData (1).xlsx")
         ER=ER.loc[ER['Country'].isin(EMCountryList)]
```

Out[10]:

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
3	Argentina	Economic Risk Rating	15.0	14.0	13.5	13.0	12.5	10.5	10.5	10.
15	Brazil	Economic Risk Rating	16.0	16.0	18.0	19.0	19.5	19.5	20.0	20.
21	Chile	Economic Risk Rating	23.5	23.0	25.5	25.5	25.0	25.0	22.5	22.
22	China	Economic Risk Rating	NaN	Nal						
23	Colombia	Economic Risk Rating	21.5	20.5	23.0	23.5	23.0	23.5	25.5	25.
36	Egypt	Economic Risk Rating	29.0	28.5	29.5	29.5	28.0	27.0	26.5	26.
56	Hungary	Economic Risk Rating	NaN	32.						
58	India	Economic Risk Rating	26.5	26.5	27.5	28.5	28.0	27.0	26.0	26.
59	Indonesia	Economic Risk Rating	28.5	28.0	28.5	29.0	30.0	30.0	30.0	30.
81	Malaysia	Economic Risk Rating	38.0	38.5	40.5	38.0	38.0	37.5	37.5	36.
84	Mexico	Economic Risk Rating	24.0	24.5	27.0	29.5	28.0	26.5	26.5	28.
99	Pakistan	Economic Risk Rating	32.5	31.0	31.5	32.5	33.0	31.5	32.5	33.
103	Peru	Economic Risk Rating	21.0	21.5	20.5	21.0	20.5	21.0	21.0	21.
104	Philippines	Economic Risk Rating	24.0	23.5	24.5	24.5	24.5	24.5	24.5	25.
105	Poland	Economic Risk Rating	NaN	Nal						
107	Qatar	Economic Risk Rating	NaN	36.						
109	Russia	Economic Risk Rating	NaN	Nal						

	Country	Variable	01/1984	02/1984	03/1984	04/1984	05/1984	06/1984	07/1984	08/198
110	Saudi Arabia	Economic Risk Rating	37.0	37.5	38.0	38.0	37.5	37.5	37.5	37.
119	South Africa	Economic Risk Rating	35.5	35.0	34.5	34.0	34.0	34.0	33.5	34.
129	Thailand	Economic Risk Rating	35.5	34.5	35.0	35.0	35.5	35.5	35.0	35.

20 rows × 431 columns

In [11]:

ER=ER[[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1 999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 ,2015,2016]]

Out[11]:

	1985	1986	1987	1988	1989	1990	1991	1992	
3	14.576389	16.000000	15.833333	17.791667	14.708333	22.166667	22.375000	26.416667	25
15	19.680556	21.708333	22.083333	20.291667	20.666667	20.875000	23.291667	25.958333	26
21	21.937500	22.208333	27.416667	30.166667	31.041667	29.833333	31.208333	36.125000	38
22	36.583333	34.125000	35.541667	36.708333	33.583333	34.625000	38.291667	41.083333	35
23	27.055556	29.875000	32.250000	31.875000	30.250000	30.458333	33.833333	35.958333	37
36	29.881944	25.208333	19.916667	24.458333	23.708333	24.375000	28.083333	29.791667	35
56	30.325000	29.833333	28.250000	27.000000	25.791667	25.083333	22.708333	30.083333	34
58	30.336806	33.250000	32.125000	29.625000	30.750000	29.833333	27.333333	27.125000	29
59	32.635417	33.416667	31.333333	33.500000	33.875000	35.333333	36.458333	35.083333	37
81	37.420139	37.875000	37.875000	40.333333	39.375000	40.166667	39.000000	38.208333	42
84	28.243056	24.500000	24.291667	25.833333	27.000000	28.583333	29.291667	30.375000	30
99	33.246528	33.041667	33.625000	32.000000	31.541667	31.375000	32.000000	31.875000	31
103	22.947917	25.583333	22.875000	19.500000	20.833333	20.291667	23.666667	25.125000	22
104	26.770833	26.083333	30.833333	30.875000	28.166667	28.708333	28.541667	31.125000	34
105	21.416667	19.875000	19.625000	18.375000	22.625000	26.125000	31.500000	34.375000	36
107	35.141667	32.333333	34.583333	37.333333	36.500000	35.916667	41.666667	41.125000	41
109	NaN	25.777778	32						
110	34.750000	33.041667	37.875000	37.458333	38.916667	38.583333	37.958333	40.500000	39
119	31.826389	32.750000	31.833333	33.083333	33.083333	31.958333	32.750000	34.666667	37
129	34.392361	34.333333	36.416667	35.916667	35.791667	37.541667	36.750000	37.458333	39

20 rows × 32 columns

file:///C:/Users/ishaa/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/EM Commodity Prices Sovereign... 35/314

dataer={'Year':['1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992' In [12]: , '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '200 2', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2 012', '2013', '2014', '2015', '2016'], 'Economic Risk': [ER.loc[:,1985].mean(),ER.loc[:,1986].mean(),ER.loc[:, 1987].mean(),ER.loc[:,1988].mean(),ER.loc[:,1989].mean(),ER.loc[:,1990].mean (),ER.loc[:,1991].mean(),ER.loc[:,1992].mean(),ER.loc[:,1993].mean(),ER.loc[:, 1994].mean(),ER.loc[:,1995].mean(),ER.loc[:,1996].mean(),ER.loc[:,1997].mean (), ER.loc[:,1998].mean(), ER.loc[:,1999].mean(), ER.loc[:,2000].mean(), ER.loc[:, 2001].mean(), ER.loc[:,2002].mean(), ER.loc[:,2003].mean(), ER.loc[:,2004].mean (),ER.loc[:,2005].mean(),ER.loc[:,2006].mean(),ER.loc[:,2007].mean(),ER.loc[:, 2008].mean(),ER.loc[:,2009].mean(),ER.loc[:,2010].mean(),ER.loc[:,2011].mean (),ER.loc[:,2012].mean(),ER.loc[:,2013].mean(),ER.loc[:,2014].mean(),ER.loc[:, 2015].mean(), ER.loc[:,2016].mean()]} EconomicRisk=pd.DataFrame(dataer) EconomicRisk

Out[12]:

	Year	Economic Risk
0	1985	28.903582
1	1986	28.686404
2	1987	29.188596
3	1988	29.585526
4	1989	29.379386
5	1990	30.096491
6	1991	31.405702
7	1992	32.911806
8	1993	34.397917
9	1994	35.670833
10	1995	35.670833
11	1996	36.485417
12	1997	36.202083
13	1998	33.412500
14	1999	32.143250
15	2000	36.362500
16	2001	36.343750
17	2002	35.825000
18	2003	36.920833
19	2004	38.441667
20	2005	38.593750
21	2006	39.152083
22	2007	39.710417
23	2008	38.762500
24	2009	34.235417
25	2010	36.756250
26	2011	37.720833
27	2012	37.506250
28	2013	37.533333
29	2014	37.070833
30	2015	36.420833
31	2016	35.627083

In [13]: PR=PR[[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1 999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 ,2015,2016]]

Out[13]:

	1985	1986	1987	1988	1989	1990	1991	1992	
3	54.666667	56.166667	57.750000	56.416667	58.666667	61.166667	65.000000	67.666667	70
15	63.166667	65.583333	65.083333	67.000000	66.000000	67.333333	65.083333	66.583333	65
21	43.333333	44.083333	49.583333	56.083333	57.666667	64.333333	65.833333	66.583333	69
22	67.833333	64.583333	61.333333	63.416667	59.833333	56.916667	57.916667	67.750000	71
23	60.250000	58.750000	57.833333	50.916667	52.166667	55.750000	59.166667	60.083333	59
36	51.500000	42.000000	43.250000	42.833333	45.750000	49.583333	50.750000	58.083333	63
56	77.833333	74.916667	72.083333	71.250000	72.916667	71.000000	68.916667	71.166667	72
58	47.833333	51.583333	49.083333	46.166667	42.583333	39.083333	34.750000	47.750000	55
59	47.666667	43.000000	41.000000	39.833333	40.916667	48.333333	56.583333	56.916667	60
81	70.166667	65.000000	63.166667	59.166667	58.750000	65.833333	70.583333	68.833333	71
84	65.000000	61.500000	62.333333	66.083333	67.166667	69.750000	71.083333	70.333333	70
99	40.250000	41.833333	40.333333	37.500000	35.916667	30.750000	31.666667	37.333333	42
103	38.250000	38.833333	39.250000	40.166667	40.000000	42.416667	44.083333	39.916667	45
104	41.000000	43.583333	44.750000	41.166667	41.666667	35.916667	38.833333	49.166667	56
105	49.833333	50.833333	53.250000	55.333333	59.000000	62.250000	62.333333	64.750000	72
107	50.583333	50.250000	49.166667	47.583333	48.583333	53.083333	54.916667	63.000000	64
109	NaN	52.111111	51						
110	49.500000	49.250000	50.833333	50.333333	55.416667	55.083333	57.750000	68.833333	70
119	55.583333	50.333333	52.416667	58.000000	59.333333	57.916667	56.833333	65.250000	65
129	57.666667	54.500000	55.000000	59.000000	58.750000	60.416667	56.250000	60.583333	65

20 rows × 32 columns

datapr={'Year':['1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992' In [14]: , '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '200 2', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2 012', '2013', '2014', '2015', '2016'], 'Political Risk': [PR.loc[:,1985].mean(),PR.loc[:,1986].mean(),PR.loc [:,1987].mean(),PR.loc[:,1988].mean(),PR.loc[:,1989].mean(),PR.loc[:,1990].mea n(), PR.loc[:,1991].mean(), PR.loc[:,1992].mean(), PR.loc[:,1993].mean(), PR.loc[:,1994].mean(),PR.loc[:,1995].mean(),PR.loc[:,1996].mean(),PR.loc[:,1997].mea n(),PR.loc[:,1998].mean(),PR.loc[:,1999].mean(),PR.loc[:,2000].mean(),PR.loc[:,2001].mean(),PR.loc[:,2002].mean(),PR.loc[:,2003].mean(),PR.loc[:,2004].mea n(), PR.loc[:,2005].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2006].mean(), PR.loc[:,2007].mean(), PR.loc[:,2006].mean(), PR.loc[:,2006].[:,2008].mean(),PR.loc[:,2009].mean(),PR.loc[:,2010].mean(),PR.loc[:,2011].mea n(),PR.loc[:,2012].mean(),PR.loc[:,2013].mean(),PR.loc[:,2014].mean(),PR.loc [:,2015].mean(),PR.loc[:,2016].mean()]} PoliticalRisk=pd.DataFrame(datapr) PoliticalRisk

Out[14]:

	Year	Political Risk
0	1985	54.311404
1	1986	52.978070
2	1987	53.026316
3	1988	53.065789
4	1989	53.741228
5	1990	55.100877
6	1991	56.228070
7	1992	60.134722
8	1993	63.200000
9	1994	66.479167
10	1995	66.683333
11	1996	67.495833
12	1997	69.587500
13	1998	67.825000
14	1999	64.558333
15	2000	63.683333
16	2001	66.133333
17	2002	65.300000
18	2003	66.183333
19	2004	67.306250
20	2005	67.189583
21	2006	67.225000
22	2007	66.777083
23	2008	66.199583
24	2009	66.125000
25	2010	65.666667
26	2011	64.593750
27	2012	63.718750
28	2013	63.427083
29	2014	63.027083
30	2015	62.668750
31	2016	63.327083

```
In [15]:
         #Merging all risk dataframes into one.
          dataRI={ 'Year':['1985', '1986', '1987', '1988', '1989', '1990', '1991', '199
         2', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2
002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011',
          '2012', '2013', '2014', '2015', '2016'],
              'Political Risk':[PR.loc[:,1985].mean(),PR.loc[:,1986].mean(),PR.loc[:,198
          7].mean(),PR.loc[:,1988].mean(),PR.loc[:,1989].mean(),PR.loc[:,1990].mean(),PR
          .loc[:,1991].mean(),PR.loc[:,1992].mean(),PR.loc[:,1993].mean(),PR.loc[:,1994]
          .mean(),PR.loc[:,1995].mean(),PR.loc[:,1996].mean(),PR.loc[:,1997].mean(),PR.l
          oc[:,1998].mean(),PR.loc[:,1999].mean(),PR.loc[:,2000].mean(),PR.loc[:,2001].m
          ean(),PR.loc[:,2002].mean(),PR.loc[:,2003].mean(),PR.loc[:,2004].mean(),PR.loc
          [:,2005].mean(),PR.loc[:,2006].mean(),PR.loc[:,2007].mean(),PR.loc[:,2008].mea
          n(),PR.loc[:,2009].mean(),PR.loc[:,2010].mean(),PR.loc[:,2011].mean(),PR.loc
          [:,2012].mean(),PR.loc[:,2013].mean(),PR.loc[:,2014].mean(),PR.loc[:,2015].mea
          n(),PR.loc[:,2016].mean()],
              'Economic Risk': [ER.loc[:,1985].mean(),ER.loc[:,1986].mean(),ER.loc[:,198
          7].mean(),ER.loc[:,1988].mean(),ER.loc[:,1989].mean(),ER.loc[:,1990].mean(),ER
          .loc[:,1991].mean(),ER.loc[:,1992].mean(),ER.loc[:,1993].mean(),ER.loc[:,1994]
          .mean(),ER.loc[:,1995].mean(),ER.loc[:,1996].mean(),ER.loc[:,1997].mean(),ER.l
          oc[:,1998].mean(),ER.loc[:,1999].mean(),ER.loc[:,2000].mean(),ER.loc[:,2001].m
          ean(), ER.loc[:,2002].mean(), ER.loc[:,2003].mean(), ER.loc[:,2004].mean(), ER.loc
          [:,2005].mean(),ER.loc[:,2006].mean(),ER.loc[:,2007].mean(),ER.loc[:,2008].mea
          n(),ER.loc[:,2009].mean(),ER.loc[:,2010].mean(),ER.loc[:,2011].mean(),ER.loc
          [:,2012].mean(),ER.loc[:,2013].mean(),ER.loc[:,2014].mean(),ER.loc[:,2015].mea
          n(), ER.loc[:,2016].mean()],
              'Sovereign Risk':[FR.loc[:,1985].mean(),FR.loc[:,1986].mean(),FR.loc[:,198
          7].mean(),FR.loc[:,1988].mean(),FR.loc[:,1989].mean(),FR.loc[:,1990].mean(),FR
          .loc[:,1991].mean(),FR.loc[:,1992].mean(),FR.loc[:,1993].mean(),FR.loc[:,1994]
          .mean(),FR.loc[:,1995].mean(),FR.loc[:,1996].mean(),FR.loc[:,1997].mean(),FR.l
          oc[:,1998].mean(),FR.loc[:,1999].mean(),FR.loc[:,2000].mean(),FR.loc[:,2001].m
          ean(),FR.loc[:,2002].mean(),FR.loc[:,2003].mean(),FR.loc[:,2004].mean(),FR.loc
          [:,2005].mean(),FR.loc[:,2006].mean(),FR.loc[:,2007].mean(),FR.loc[:,2008].mea
          n(),FR.loc[:,2009].mean(),FR.loc[:,2010].mean(),FR.loc[:,2011].mean(),FR.loc
          [:,2012].mean(),FR.loc[:,2013].mean(),FR.loc[:,2014].mean(),FR.loc[:,2015].mea
          n(),FR.loc[:,2016].mean()]}
          RiskIndicators=pd.DataFrame(dataRI)
          RiskIndicators
```

Out[15]:

	Year	Political Risk	Economic Risk	Sovereign Risk
0	1985	54.311404	28.903582	24.956140
1	1986	52.978070	28.686404	23.640351
2	1987	53.026316	29.188596	24.131579
3	1988	53.065789	29.585526	25.846491
4	1989	53.741228	29.379386	27.311404
5	1990	55.100877	30.096491	29.333333
6	1991	56.228070	31.405702	32.399123
7	1992	60.134722	32.911806	36.590278
8	1993	63.200000	34.397917	37.912500
9	1994	66.479167	35.670833	38.233333
10	1995	66.683333	35.670833	38.066667
11	1996	67.495833	36.485417	38.729167
12	1997	69.587500	36.202083	37.633333
13	1998	67.825000	33.412500	34.797917
14	1999	64.558333	32.143250	35.470833
15	2000	63.683333	36.362500	36.064583
16	2001	66.133333	36.343750	36.518750
17	2002	65.300000	35.825000	36.704167
18	2003	66.183333	36.920833	37.404167
19	2004	67.306250	38.441667	38.854167
20	2005	67.189583	38.593750	39.608333
21	2006	67.225000	39.152083	40.583333
22	2007	66.777083	39.710417	40.716667
23	2008	66.199583	38.762500	39.827083
24	2009	66.125000	34.235417	39.002083
25	2010	65.666667	36.756250	41.262500
26	2011	64.593750	37.720833	41.337500
27	2012	63.718750	37.506250	41.083333
28	2013	63.427083	37.533333	41.072917
29	2014	63.027083	37.070833	40.608333
30	2015	62.668750	36.420833	39.339583
31	2016	63.327083	35.627083	39.550000

In [16]: #As mentioned before, Country Risk is calculated by the afformentioned methold ology to calculate the ICRG composite rating. RiskIndicators['Country Risk']=(RiskIndicators['Political Risk']+RiskIndicator s['Economic Risk'])*0.5 RiskIndicators

Out[16]:

	Year	Political Risk	Economic Risk	Sovereign Risk	Country Risk
0	1985	54.311404	28.903582	24.956140	41.607493
1	1986	52.978070	28.686404	23.640351	40.832237
2	1987	53.026316	29.188596	24.131579	41.107456
3	1988	53.065789	29.585526	25.846491	41.325658
4	1989	53.741228	29.379386	27.311404	41.560307
5	1990	55.100877	30.096491	29.333333	42.598684
6	1991	56.228070	31.405702	32.399123	43.816886
7	1992	60.134722	32.911806	36.590278	46.523264
8	1993	63.200000	34.397917	37.912500	48.798958
9	1994	66.479167	35.670833	38.233333	51.075000
10	1995	66.683333	35.670833	38.066667	51.177083
11	1996	67.495833	36.485417	38.729167	51.990625
12	1997	69.587500	36.202083	37.633333	52.894792
13	1998	67.825000	33.412500	34.797917	50.618750
14	1999	64.558333	32.143250	35.470833	48.350792
15	2000	63.683333	36.362500	36.064583	50.022917
16	2001	66.133333	36.343750	36.518750	51.238542
17	2002	65.300000	35.825000	36.704167	50.562500
18	2003	66.183333	36.920833	37.404167	51.552083
19	2004	67.306250	38.441667	38.854167	52.873958
20	2005	67.189583	38.593750	39.608333	52.891667
21	2006	67.225000	39.152083	40.583333	53.188542
22	2007	66.777083	39.710417	40.716667	53.243750
23	2008	66.199583	38.762500	39.827083	52.481042
24	2009	66.125000	34.235417	39.002083	50.180208
25	2010	65.666667	36.756250	41.262500	51.211458
26	2011	64.593750	37.720833	41.337500	51.157292
27	2012	63.718750	37.506250	41.083333	50.612500
28	2013	63.427083	37.533333	41.072917	50.480208
29	2014	63.027083	37.070833	40.608333	50.048958
30	2015	62.668750	36.420833	39.339583	49.544792
31	2016	63.327083	35.627083	39.550000	49.477083

In [17]: #List of Industrialized nations used in this model. IndustrializedNations=['Australia', 'Austria', 'Belgium', 'Canada', 'Cyprus', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Ic eland','Ireland','Israel','Italy','Japan','Luxembourg','Netherlands','New Zeal and','Norway','Portugal','Slovenia','South Korea','Spain','Sweden','Singapore' ,'Switzerland','Turkey','United Kingdom','United States']

EMComExports=pd.read_csv(r"C:\New folder\PCTOT_06-10-2019 21-29-55-29_timeSeri **EMComExports**

Out[18]:

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
0	Greece	174	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	32.768295	32.
1	Greece	174	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	176.011230	176.
2	Greece	174	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	97.688744	97.
3	Greece	174	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	93.098709	93.
4	Greece	174	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	104.930275	104.
5	Grenada	328	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	49.625645	52.
6	Grenada	328	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	183.068268	178.
7	Grenada	328	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	100.650032	100.
8	Grenada	328	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.332726	94.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
9	Grenada	328	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.696869	106.
10	Guatemala	258	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	96.737930	113.
11	Guatemala	258	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	26.792646	26.
12	Guatemala	258	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	182.292160	199.
13	Guatemala	258	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	99.996277	101.
14	Guatemala	258	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	92.180054	92.
15	Guatemala	258	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	108.479294	109.
16	Guyana	336	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	128.371109	185.
17	Guyana	336	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	212.733810	270.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
18	Guyana	336	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.982338	119.
19	Guyana	336	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	74.881348	74.
20	Guyana	336	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	142.869202	159.
21	China, P.R.: Hong Kong	532	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	105.606949	95.
22	China, P.R.: Hong Kong	532	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	58.939880	55.
23	China, P.R.: Hong Kong	532	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	150.703522	153.
24	China, P.R.: Hong Kong	532	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	100.112991	99.
25	China, P.R.: Hong Kong	532	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.433228	93.
26	China, P.R.: Hong Kong	532	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.014587	106.:

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
27	Honduras	268	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	114.992874	116.
28	Honduras	268	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	24.311348	24.
29	Honduras	268	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	192.343292	194.
2154	Vanuatu	846	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	100.022644	104.
2155	Yemen, Republic of	474	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2156	Yemen, Republic of	474	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2157	Yemen, Republic of	474	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2158	South Africa	199	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	65.903465	63.
2159	South Africa	199	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	96.383186	96.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2160	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	31.486126	31.
2161	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2162	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2163	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2164	Uzbekistan	927	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2165	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.496376	94.
2166	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	47.010696	47.
2167	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	36.628090	36.
2168	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2169	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	47.798470	48.
2170	Uzbekistan	927	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2171	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	19.158808	20.
2172	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	99.478600	99.
2173	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	33.591061	33.
2174	Uzbekistan	927	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2175	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2176	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2177	Uzbekistan	927	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2178	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	33.586281	33.
2179	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm	Historical, Rolling Weights, Index	H_RW_IX	Value	25.090509	24.
2180	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	47.428940	52.
2181	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2182	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2183	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	45.167797	45.
2184 r	ows × 65 co	olumns							

```
In [19]:
        #Exports of Commodities data being imported and cleanted to create a new dataf
         EMComExports=pd.read csv(r"C:\New folder\PCTOT 06-10-2019 21-29-55-29 timeSeri
         es.csv")
         Exports=['Commodity Export Price Index, Individual Commodites Weighted by Rati
         o of Exports to GDP']
         # Because the IMF database goes by different names for a couple of EM in the o
         riginal EM list,
         #this list is created to reflects China's and Russia's name in this dataset.
         IMFCountryList=["Argentina",'Brazil','Chile','China, P.R.: Mainland','Colombi
         a','Egypt','Hungary','India','Indonesia','Malaysia','Mexico','Pakistan','Peru'
         ,'Philippines','Poland','Qatar','Russian Federation','Saudi Arabia','South Afr
         ica','Thailand']
         EMComExports
         EMComExports=EMComExports.loc[EMComExports['Indicator Name'].isin(Exports)]
         EMComExports
         EMComExports.drop duplicates(['Country Code'])
         EMComExports=EMComExports.drop_duplicates(['Country Code'])
         EMComExports=EMComExports.loc[EMComExports['Country Name'].isin(IMFCountryList
         )]
         EMComExports
         data13={'Year':['1985','1986','1987','1988','1989','1990','1991','1992','1993'
         ,'1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004',
         '2005','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015',
         '2016'], 'Exports':[EMComExports.loc[:,'1985'].mean(),EMComExports.loc[:,'198
         6'].mean(),EMComExports.loc[:,'1987'].mean(),EMComExports.loc[:,'1988'].mean
         (), EMComExports.loc[:,'1989'].mean(), EMComExports.loc[:,'1990'].mean(), EMComEx
         ports.loc[:,'1991'].mean(),EMComExports.loc[:,'1992'].mean(),EMComExports.loc
         [:,'1993'].mean(),EMComExports.loc[:,'1994'].mean(),EMComExports.loc[:,'1995']
         .mean(),EMComExports.loc[:,'1996'].mean(),EMComExports.loc[:,'1997'].mean(),EM
         ComExports.loc[:,'1998'].mean(),EMComExports.loc[:,'1999'].mean(),EMComExports
         .loc[:,'2000'].mean(),EMComExports.loc[:,'2001'].mean(),EMComExports.loc[:,'20
         02'].mean(),EMComExports.loc[:,'2003'].mean(),EMComExports.loc[:,'2004'].mean
         (), EMComExports.loc[:,'2005'].mean(), EMComExports.loc[:,'2006'].mean(), EMComEx
         ports.loc[:,'2007'].mean(),EMComExports.loc[:,'2008'].mean(),EMComExports.loc
         [:,'2009'].mean(),EMComExports.loc[:,'2010'].mean(),EMComExports.loc[:,'2011']
         .mean(),EMComExports.loc[:,'2012'].mean(),EMComExports.loc[:,'2013'].mean(),EM
         ComExports.loc[:,'2014'].mean(),EMComExports.loc[:,'2015'].mean(),EMComExports
         .loc[:,'2016'].mean()]}
         ExportsEM=pd.DataFrame(data13)
         ExportsEM
```

Out[19]:

	Year	Exports
0	1985	94.052679
1	1986	90.762845
2	1987	91.118964
3	1988	90.369709
4	1989	90.787319
5	1990	91.382398
6	1991	90.197295
7	1992	89.548287
8	1993	89.021850
9	1994	89.203669
10	1995	89.646691
11	1996	90.015375
12	1997	89.981229
13	1998	88.157265
14	1999	88.973939
15	2000	91.409462
16	2001	90.751608
17	2002	90.909507
18	2003	92.017528
19	2004	93.628389
20	2005	95.733289
21	2006	97.471658
22	2007	98.226824
23	2008	100.323182
24	2009	96.560020
25	2010	98.762377
26	2011	100.776637
27	2012	100.000000
28	2013	100.132317
29	2014	99.542036
30	2015	95.251063
31	2016	94.616478

EMComImports=pd.read_csv(r"C:\New folder\PCTOT_06-10-2019 21-29-55-29_timeSeri es.csv") **EMComImports**

Out[20]:

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
0	Greece	174	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	32.768295	32.
1	Greece	174	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	176.011230	176.
2	Greece	174	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	97.688744	97.
3	Greece	174	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	93.098709	93.
4	Greece	174	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	104.930275	104.
5	Grenada	328	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	49.625645	52.
6	Grenada	328	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	183.068268	178.
7	Grenada	328	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	100.650032	100.
8	Grenada	328	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.332726	94.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
9	Grenada	328	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.696869	106.
10	Guatemala	258	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	96.737930	113.
11	Guatemala	258	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	26.792646	26.
12	Guatemala	258	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	182.292160	199.
13	Guatemala	258	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	99.996277	101.
14	Guatemala	258	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	92.180054	92.
15	Guatemala	258	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	108.479294	109.
16	Guyana	336	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	128.371109	185.
17	Guyana	336	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	212.733810	270.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
18	Guyana	336	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.982338	119.
19	Guyana	336	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	74.881348	74.
20	Guyana	336	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	142.869202	159.
21	China, P.R.: Hong Kong	532	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	105.606949	95.
22	China, P.R.: Hong Kong	532	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	58.939880	55.
23	China, P.R.: Hong Kong	532	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	150.703522	153.
24	China, P.R.: Hong Kong	532	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	100.112991	99.
25	China, P.R.: Hong Kong	532	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.433228	93.
26	China, P.R.: Hong Kong	532	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.014587	106.:

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
27	Honduras	268	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	114.992874	116.
28	Honduras	268	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	24.311348	24.
29	Honduras	268	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	192.343292	194.
2154	Vanuatu	846	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	100.022644	104.
2155	Yemen, Republic of	474	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2156	Yemen, Republic of	474	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2157	Yemen, Republic of	474	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2158	South Africa	199	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	65.903465	63.
2159	South Africa	199	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	96.383186	96.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2160	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	31.486126	31.
2161	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2162	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2163	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2164	Uzbekistan	927	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2165	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.496376	94.
2166	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	47.010696	47.
2167	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	36.628090	36.
2168	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2169	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	47.798470	48.
2170	Uzbekistan	927	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2171	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	19.158808	20.
2172	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	99.478600	99.
2173	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	33.591061	33.
2174	Uzbekistan	927	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2175	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2176	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2177	Uzbekistan	927	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2178	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	33.586281	33.
2179	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm	Historical, Rolling Weights, Index	H_RW_IX	Value	25.090509	24.
2180	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	47.428940	52.
2181	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2182	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2183	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	45.167797	45.
2184 r	rows × 65 co	olumns							

In [21]: #Data imported and cleaned for Imports of Commodities by Emerging Markets. EMComImports=pd.read csv(r"C:\New folder\PCTOT 06-10-2019 21-29-55-29 timeSeri es.csv") EMComImports=EMComImports.loc[EMComImports['Country Name'].isin(IMFCountryList EMComImports=EMComImports.drop duplicates(['Country Code']) **EMComImports** data15={"Year":['1985','1986','1987','1988','1989','1990','1991','1992','1993' ,'1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004', '2005','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015', '2016'], 'Imports':[EMComImports.loc[:,'1985'].mean(),EMComImports.loc[:,'198 6'].mean(),EMComImports.loc[:,'1987'].mean(),EMComImports.loc[:,'1988'].mean (),EMComImports.loc[:,'1989'].mean(),EMComImports.loc[:,'1990'].mean(),EMComIm ports.loc[:,'1991'].mean(),EMComImports.loc[:,'1992'].mean(),EMComImports.loc [:,'1993'].mean(),EMComImports.loc[:,'1994'].mean(),EMComImports.loc[:,'1995'] .mean(),EMComImports.loc[:,'1996'].mean(),EMComImports.loc[:,'1997'].mean(),EM ComImports.loc[:,'1998'].mean(),EMComImports.loc[:,'1999'].mean(),EMComImports .loc[:,'2000'].mean(),EMComImports.loc[:,'2001'].mean(),EMComImports.loc[:,'20 02'].mean(),EMComImports.loc[:,'2003'].mean(),EMComImports.loc[:,'2004'].mean (), EMComImports.loc[:,'2005'].mean(), EMComImports.loc[:,'2006'].mean(), EMComIm ports.loc[:,'2007'].mean(),EMComImports.loc[:,'2008'].mean(),EMComImports.loc [:,'2009'].mean(),EMComImports.loc[:,'2010'].mean(),EMComImports.loc[:,'2011'] .mean(),EMComImports.loc[:,'2012'].mean(),EMComImports.loc[:,'2013'].mean(),EM ComImports.loc[:,'2014'].mean(),EMComImports.loc[:,'2015'].mean(),EMComImports .loc[:,'2016'].mean()]} ImportsEM=pd.DataFrame(data15)

In [22]: ImportsEM

Out[22]:

	Year	Imports
0	1985	63.212399
1	1986	50.174236
2	1987	51.169544
3	1988	50.211320
4	1989	51.398915
5	1990	52.149496
6	1991	46.496687
7	1992	45.035070
8	1993	42.923114
9	1994	45.238428
10	1995	47.524445
11	1996	47.573090
12	1997	47.774487
13	1998	41.052222
14	1999	41.741128
15	2000	49.110493
16	2001	46.652244
17	2002	47.373545
18	2003	51.508441
19	2004	59.232385
20	2005	68.468254
21	2006	80.358308
22	2007	85.772858
23	2008	100.881672
24	2009	77.563004
25	2010	94.301768
26	2011	109.652496
27	2012	100.000000
28	2013	101.387097
29	2014	96.839721
30	2015	71.624776
31	2016	70.378378

IEComImports=pd.read_csv(r"C:\New folder\PCTOT_06-10-2019 21-29-55-29_timeSeri es.csv") **IEComImports**

Out[23]:

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
0	Greece	174	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	32.768295	32.
1	Greece	174	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	176.011230	176.
2	Greece	174	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	97.688744	97.
3	Greece	174	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	93.098709	93.
4	Greece	174	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	104.930275	104.
5	Grenada	328	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	49.625645	52.
6	Grenada	328	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	183.068268	178.
7	Grenada	328	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	100.650032	100.
8	Grenada	328	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.332726	94.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
9	Grenada	328	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.696869	106.
10	Guatemala	258	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	96.737930	113.
11	Guatemala	258	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	26.792646	26.
12	Guatemala	258	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	182.292160	199.
13	Guatemala	258	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	99.996277	101.
14	Guatemala	258	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	92.180054	92.
15	Guatemala	258	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	108.479294	109.
16	Guyana	336	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	128.371109	185.
17	Guyana	336	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	212.733810	270.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
18	Guyana	336	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.982338	119.
19	Guyana	336	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	74.881348	74.
20	Guyana	336	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	142.869202	159.
21	China, P.R.: Hong Kong	532	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	105.606949	95.
22	China, P.R.: Hong Kong	532	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	58.939880	55.
23	China, P.R.: Hong Kong	532	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	150.703522	153.
24	China, P.R.: Hong Kong	532	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	100.112991	99.
25	China, P.R.: Hong Kong	532	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.433228	93.
26	China, P.R.: Hong Kong	532	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	106.014587	106.:

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
27	Honduras	268	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	114.992874	116.
28	Honduras	268	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	24.311348	24.
29	Honduras	268	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	192.343292	194.
2154	Vanuatu	846	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	100.022644	104.
2155	Yemen, Republic of	474	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2156	Yemen, Republic of	474	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2157	Yemen, Republic of	474	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2158	South Africa	199	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	65.903465	63.
2159	South Africa	199	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	96.383186	96.

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2160	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	31.486126	31.
2161	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2162	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2163	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2164	Uzbekistan	927	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2165	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	94.496376	94.
2166	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m	Historical, Fixed Weights, Index	H_FW_IX	Value	47.010696	47.
2167	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm	Historical, Fixed Weights, Index	H_FW_IX	Value	36.628090	36.
2168	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2169	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	47.798470	48.
2170	Uzbekistan	927	Commodity Export Price Index, Individual Commo	х	Historical, Fixed Weights, Index	H_FW_IX	Value	NaN	
2171	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	19.158808	20.
2172	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	99.478600	99.
2173	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	33.591061	33.
2174	Uzbekistan	927	Commodity Export Price Index, Individual Commo	х	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2175	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2176	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2177	Uzbekistan	927	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	

	Country Name	Country Code	Indicator Name	Indicator Code	Type Name	Type Code	Attribute	1962	
2178	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	33.586281	33.
2179	Equatorial Guinea	642	Commodity Net Export Price Index, Individual C	xm	Historical, Rolling Weights, Index	H_RW_IX	Value	25.090509	24.
2180	Equatorial Guinea	642	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	47.428940	52.
2181	Uzbekistan	927	Commodity Net Export Price Index, Individual C	xm_gdp	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2182	Uzbekistan	927	Commodity Import Price Index, Individual Commo	m	Historical, Rolling Weights, Index	H_RW_IX	Value	NaN	
2183	Equatorial Guinea	642	Commodity Export Price Index, Individual Commo	x_gdp	Historical, Fixed Weights, Index	H_FW_IX	Value	45.167797	45.
2184 rows × 65 columns									

```
In [24]:
         #Data Importing and cleaning for Imports of Commodities by Industrialized coun
          tries.
         IEComImports=pd.read csv(r"C:\New folder\PCTOT 06-10-2019 21-29-55-29 timeSeri
         es.csv")
         IEComImports
         IndustrializedNations=['Australia', 'Austria', 'Belgium','Canada', 'Cyprus',
          'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Ic
         eland', 'Ireland', 'Israel', 'Italy', 'Japan', 'Luxembourg', 'Netherlands', 'New Zeal
         and', 'Norway', 'Portugal', 'Slovenia', 'South Korea', 'Spain', 'Sweden', 'Singapore'
          ,'Switzerland','Turkey','United Kingdom','United States']
         Imports=['Commodity Import Price Index, Individual Commodites Weighted by Rati
         o of Imports to GDP']
         IEComImports=IEComImports.loc[IEComImports['Indicator Name'].isin(Imports)]
         IEComImports=IEComImports.loc[IEComImports['Country Name'].isin(Industrialized
         Nations)]
         IEComImports=IEComImports.drop duplicates(['Country Code'])
         data14={"Year":['1985','1986','1987','1988','1989','1990','1991','1992','1993'
          ,'1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004',
          '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',
          '2016'], 'Imports':[IEComImports.loc[:,'1985'].mean(),IEComImports.loc[:,'198
         6'].mean(),IEComImports.loc[:,'1987'].mean(),IEComImports.loc[:,'1988'].mean
          (),IEComImports.loc[:,'1989'].mean(),IEComImports.loc[:,'1990'].mean(),IEComIm
         ports.loc[:,'1991'].mean(),IEComImports.loc[:,'1992'].mean(),IEComImports.loc
         [:,'1993'].mean(),IEComImports.loc[:,'1994'].mean(),IEComImports.loc[:,'1995']
          .mean(),IEComImports.loc[:,'1996'].mean(),IEComImports.loc[:,'1997'].mean(),IE
         ComImports.loc[:,'1998'].mean(),IEComImports.loc[:,'1999'].mean(),IEComImports
          .loc[:,'2000'].mean(),IEComImports.loc[:,'2001'].mean(),IEComImports.loc[:,'20
         02'].mean(),IEComImports.loc[:,'2003'].mean(),IEComImports.loc[:,'2004'].mean
          (), IEComImports.loc[:,'2005'].mean(), IEComImports.loc[:,'2006'].mean(), IEComIm
         ports.loc[:,'2007'].mean(),IEComImports.loc[:,'2008'].mean(),IEComImports.loc
         [:,'2009'].mean(),IEComImports.loc[:,'2010'].mean(),IEComImports.loc[:,'2011']
          .mean(),IEComImports.loc[:,'2012'].mean(),IEComImports.loc[:,'2013'].mean(),IE
         ComImports.loc[:,'2014'].mean(),IEComImports.loc[:,'2015'].mean(),IEComImports
          .loc[:,'2016'].mean()]}
         ImportsIE=pd.DataFrame(data14)
```

In [25]: ImportsIE

Out[25]:

	Year	Imports
0	1985	96.557585
1	1986	94.154582
2	1987	94.529721
3	1988	93.760895
4	1989	94.155338
5	1990	94.759359
6	1991	93.871376
7	1992	93.433895
8	1993	93.036918
9	1994	93.048641
10	1995	93.216708
11	1996	93.612508
12	1997	93.581168
13	1998	92.201875
14	1999	92.696455
15	2000	94.531046
16	2001	94.091867
17	2002	94.238607
18	2003	94.881072
19	2004	95.907690
20	2005	97.302934
21	2006	98.363765
22	2007	98.810095
23	2008	100.078963
24	2009	97.786445
25	2010	99.250814
26	2011	100.507312
27	2012	100.000000
28	2013	100.144213
29	2014	99.781789
30	2015	96.908815
31	2016	96.528836

Step by Step

The First step will be to plot bar graphs of individual EM's Country, Political, and simple graphs of the relationship between the various independent and dependent variables. The following step will involve a basic correlation and bilinear regression dates between the variables involved in the data visualization to demonstrate how the strong the risk variables explored in this model are with regards to impacting their correspondent dependent variables. After basic exploration, the next step will be to conduct various multivariate regression analyses. Because China, who has the highest GDP among it's EM peers in this model, and it's other BRICS (Brazil, Russia, India, and South Africa) also pull such similar weight thus affecting the independent variables in question, four versions of the multivariate model is portrayed below; one with all the EMs listed in this model, one without China, one without BRICS, and one only including BRICS.

Data Visualization and Exploring Relationships between **Key Variables**

```
In [26]:
         import numpy as np
         import matplotlib.pyplot as plt
         from pylab import figure
         %matplotlib inline
```

```
In [27]:
         CountrybyCountryData=pd.read excel (r"C:\New folder\EMCompiledData2.xlsx")
         CountrybyCountryData
         CountrybyCountryData.columns.values.tolist()
         CountrybyCountryData.rename(columns={'Unnamed: 0':'Country',
           'Unnamed: 1':'Year',
          'Unnamed: 2':'GDP Per Capita',
          'Unnamed: 3': 'Political Risk',
          'Unnamed: 4':'Sovereign Risk',
          'Unnamed: 5':'Country Risk',
          'Unnamed: 6': 'Exports of Commodities',
          'Unnamed: 7':'Imports of Commodities'},inplace=True)
         CountrybyCountryData
         IndividualCountryData=CountrybyCountryData.drop([0], axis=0)
         IndividualCountryData
```

Out[27]:

	Country	Year	GDP Per Capita	Political Risk	Sovereign Risk	Country Risk	Exports of Commodities	Imports of Commodities
1	Argentina	1985	95.593	54.6667	9	34.62	97.7192	70.9022
2	Argentina	1986	114.949	56.1667	10.75	36.08	96.4283	58.2618
3	Argentina	1987	117.854	57.75	14.75	36.79	96.2956	56.9801
4	Argentina	1988	138.044	56.4167	17.8333	37.1	96.8642	62.768
5	Argentina	1989	88.567	58.6667	17.75	36.69	96.6824	60.9681
6	Argentina	1990	153.205	61.1667	21	41.67	96.4308	58.1513
7	Argentina	1991	205.515	65	28.1667	43.69	95.7648	52.1516
8	Argentina	1992	247.987	67.6667	36	47.04	95.7726	52.235
9	Argentina	1993	256.365	70.6667	37.75	48.25	95.9131	53.4786
10	Argentina	1994	279.15	75.4167	38	53.63	95.9753	54.2166
11	Argentina	1995	280.08	74.25	35.8333	52.96	95.9355	53.8096
12	Argentina	1996	295.12	75.4167	36	55.23	96.4847	58.5926
13	Argentina	1997	317.549	73.8333	34.8333	56.52	96.4014	57.6492
14	Argentina	1998	324.242	75.8333	33.5417	58.27	95.3294	48.6227
15	Argentina	1999	307.673	74.1667	33.4583	55.93	94.9158	45.1163
16	Argentina	2000	308.491	72.5833	28.625	55.54	95.6787	50.592
17	Argentina	2001	291.738	72.7083	28.7917	54.29	95.6733	50.7803
18	Argentina	2002	108.731	59.1667	17.7083	43.08	96.135	54.9877
19	Argentina	2003	138.151	60.7917	23.9167	47.02	96.6614	59.547
20	Argentina	2004	164.922	64.9167	29.4167	52.69	97.1754	64.2188
21	Argentina	2005	199.273	68.9583	32.125	54.02	96.9849	61.9721
22	Argentina	2006	232.892	71	37.5833	55.81	97.3723	65.7523
23	Argentina	2007	287.921	70.6667	37.7083	55.83	98.4133	77.5596
24	Argentina	2008	363.545	67	37.3333	52.92	99.7398	95.5415
25	Argentina	2009	334.633	64.875	34.6667	49.06	98.2045	75.183
26	Argentina	2010	424.728	64	39.125	50.5	98.8567	83.6518
27	Argentina	2011	527.644	66.4583	41.1667	53.29	100.031	100.938
28	Argentina	2012	579.666	65.2083	40.1667	50.92	100	100
29	Argentina	2013	611.471	61.9167	37.8333	48.63	100.068	101.215
30	Argentina	2014	563.614	62.0833	34.0833	46.63	99.6204	94.4242
604	Thailand	1987	52.204	55	29	45.71	96.7759	70.4796
605	Thailand	1988	63.704	59	34.25	47.46	96.7785	70.8071
606	Thailand	1989	74.637	58.75	40.5	47.27	96.3845	67.3122
607	Thailand	1990	88.467	60.4167	43.0833	48.98	96.0499	64.3347

	Country	Year	GDP Per Capita	Political Risk	Sovereign Risk	Country Risk	Exports of Commodities	Imports of Commodities
608	Thailand	1991	101.247	56.25	42	46.5	95.2375	58.4544
609	Thailand	1992	115.576	60.5833	42.9167	49.02	95.3042	58.9111
610	Thailand	1993	128.89	65	42.4167	52.15	94.8948	56.2036
611	Thailand	1994	146.684	67	42	53.79	95.7129	62.164
612	Thailand	1995	169.279	66.5	42.3333	54	96.4371	67.7633
613	Thailand	1996	183.035	72.0833	43.4167	56.79	96.0905	64.8213
614	Thailand	1997	150.18	74.75	39.0417	56.63	95.6006	61.2246
615	Thailand	1998	113.676	68.25	31.9583	48.54	94.7102	55.3037
616	Thailand	1999	126.669	68.6667	37.375	52.47	94.2052	51.6116
617	Thailand	2000	126.392	71.9167	38.4583	55.33	94.7451	54.7678
618	Thailand	2001	120.297	72.0417	38.125	55.06	94.0176	50.1725
619	Thailand	2002	134.301	72.4167	39.9583	55.27	94.3196	51.823
620	Thailand	2003	152.281	71	39.625	55.21	95.0958	56.868
621	Thailand	2004	172.895	69.2917	40.875	55.21	95.8254	61.815
622	Thailand	2005	189.318	65.25	41.7917	52.08	96.8475	69.6072
623	Thailand	2006	221.759	60.2917	41	48.98	98.2383	81.8434
624	Thailand	2007	262.943	56.375	41.5	47.31	98.2442	81.6775
625	Thailand	2008	291.383	58.2833	41.375	47.85	100.017	100.423
626	Thailand	2009	281.71	57.5	41.6667	44.73	98.7127	86.8535
627	Thailand	2010	341.105	55.6667	43.8333	46.25	100.388	104.997
628	Thailand	2011	370.818	57.1667	43.75	48.25	101.395	117.543
629	Thailand	2012	397.558	58.8333	43.0417	48.35	100	100
630	Thailand	2013	420.334	57.2917	42.5	47.35	100.398	105.171
631	Thailand	2014	407.339	54.2083	42.2083	46.02	99.5246	95.3156
632	Thailand	2015	401.266	55	41.875	46.73	97.619	76.7699
633	Thailand	2016	412.437	55.625	42.75	47.6	98.2967	83.3392

633 rows × 8 columns

#to easily graph and conduct analysis, new dataframes have been created year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016]

GDP=[91.49, 91.53, 100.36, 113.91, 126.86, 134.15, 137.78, 149.26, 171.26, 19 0.53, 216.39, 241.07, 254.93, 239.29, 233.89, 255.18, 260.65, 263.93, 295.3, 3 48.16, 414.25, 491.49, 607.78, 726.82, 711.14, 867.39, 1032.07, 1100.41, 1171. 2, 1213.92, 1161.19, 1160.0]

prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858, 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 9 7.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.042 , 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]

GDPvPrices=pd.DataFrame({'GDP':GDP, 'Commodity Prices':prices}, index=year)

In [29]: GDPvPrices

Out[29]:

	GDP	Commodity Prices
1985	91.49	96.2167
1986	91.53	96.6750
1987	100.36	102.2080
1988	113.91	131.1170
1989	126.86	132.3250
1990	134.15	124.0250
1991	137.78	117.0420
1992	149.26	113.8580
1993	171.26	108.2580
1994	190.53	126.5080
1995	216.39	137.5750
1996	241.07	134.3500
1997	254.93	131.6670
1998	239.29	114.4000
1999	233.89	98.4833
2000	255.18	99.9917
2001	260.65	96.3750
2002	263.93	97.3167
2003	295.30	104.8580
2004	348.16	125.7830
2005	414.25	140.3920
2006	491.49	182.8250
2007	607.78	206.5250
2008	726.82	256.0330
2009	711.14	212.7420
2010	867.39	256.0420
2011	1032.07	302.0000
2012	1100.41	276.7830
2013	1171.20	258.1830
2014	1213.92	242.5080
2015	1161.19	201.5750
2016	1160.00	200.0830

```
In [30]:
         fig, axe = plt.subplots()
         GDPvPrices['GDP'].plot.bar(figsize =(10,6))
         axe.set_ylabel('GDP Per Capita', fontsize=20)
         axe.set_title("EM's GDP 1985-2016", loc='center', fontsize=18, fontweight = "b
         old")
```

Out[30]: Text(0.5, 1.0, "EM's GDP 1985-2016")


```
In [31]:
         fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Argentina'].plot.ba
         r(x='Year', y='GDP Per Capita', legend=False, ax=ax1,fontsize=15)
         ax1.set title("Argentina GDP per Capita 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Brazil'].plot.bar(x
         ='Year', y='GDP Per Capita', legend=False, ax=ax2,fontsize=15)
         ax2.set_title("Brazil GDP Per Capita 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'China'].plot.bar(x=
         'Year', y='GDP Per Capita', legend=False, ax=ax3,fontsize=14)
         ax3.set_title("China GDP Per Capita 1985-2016",fontsize=20)
         ax3.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Chile'].plot.bar(x=
         'Year', y='GDP Per Capita', legend=False, ax=ax4,fontsize=14)
         ax4.set_title("Chile GDP Per Capita 1985-2016",fontsize=20)
         ax4.set xlabel("")
         plt.tight_layout()
```



```
In [32]:
         fig, ((ax5, ax6), (ax7, ax8)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Colombia'].plot.bar
         (x='Year', y='GDP Per Capita', legend=False, ax=ax5,fontsize=16)
         ax5.set_title("Colombia GDP Per Capita 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Egypt'].plot.bar(x=
         'Year', y='GDP Per Capita', legend=False, ax=ax6,fontsize=16)
         ax6.set title("Egypt GDP Per Capita 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Hungary'].plot.bar(
         x='Year', y='GDP Per Capita', legend=False, ax=ax7,fontsize=14)
         ax7.set_title("Hungary GDP Per Capita 1985-2016",fontsize=20)
         ax7.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'India'].plot.bar(x=
         'Year', y='GDP Per Capita', legend=False, ax=ax8,fontsize=14)
         ax8.set title("India GDP Per Capita 1985-2016", fontsize=20)
         ax8.set_xlabel("")
         plt.tight_layout()
```



```
In [33]:
         fig, ((ax9, ax10), (ax11, ax12)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Indonesia'].plot.ba
         r(x='Year', y='GDP Per Capita', legend=False, ax=ax9,fontsize=16)
         ax9.set_title("Indonesia GDP Per Capita 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Malaysia'].plot.bar
         (x='Year', y='GDP Per Capita', legend=False, ax=ax10,fontsize=16)
         ax10.set title("Malaysia GDP Per Capita 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Mexico'].plot.bar(x
         ='Year', y='GDP Per Capita', legend=False, ax=ax11,fontsize=14)
         ax11.set_title("Mexico GDP Per Capita 1985-2016",fontsize=20)
         ax11.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Pakistan'].plot.bar
         (x='Year', y='GDP Per Capita', legend=False, ax=ax12,fontsize=14)
         ax12.set title("Pakistan GDP Per Capita 1985-2016", fontsize=20)
         ax12.set_xlabel("")
         plt.tight_layout()
```



```
In [34]:
         fig, ((ax13, ax14), (ax15, ax16)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Peru'].plot.bar(x=
         'Year', y='GDP Per Capita', legend=False, ax=ax13,fontsize=16)
         ax13.set title("Peru GDP Per Capita 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Phillippines'].plot
         .bar(x='Year', y='GDP Per Capita', legend=False, ax=ax14,fontsize=16)
         ax14.set_title("Phillippines GDP Per Capita 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Poland'].plot.bar(x
         ='Year', y='GDP Per Capita', legend=False, ax=ax15,fontsize=14)
         ax15.set title("Poland GDP Per Capita 1985-2016", fontsize=20)
         ax15.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Qatar'].plot.bar(x=
         'Year', y='GDP Per Capita', legend=False, ax=ax16,fontsize=14)
         ax16.set_title("Qatar GDP Per Capita 1985-2016",fontsize=20)
         ax16.set xlabel("")
         plt.tight_layout()
```



```
In [35]:
         fig, ((ax17, ax18), (ax19, ax20)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Russia'].plot.bar(x
         ='Year', y='GDP Per Capita', legend=False, ax=ax17,fontsize=16)
         ax17.set title("Russia GDP Per Capita 1992-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Saudi Arabia'].plot
         .bar(x='Year', y='GDP Per Capita', legend=False, ax=ax18,fontsize=16)
         ax18.set_title("Saudi Arabia GDP Per Capita 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'South Africa'].plot
         .bar(x='Year', y='GDP Per Capita', legend=False, ax=ax19,fontsize=14)
         ax19.set_title("South Africa GDP Per Capita 1985-2016",fontsize=20)
         ax19.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Thailand'].plot.bar
         (x='Year', y='GDP Per Capita', legend=False, ax=ax20,fontsize=14)
         ax20.set_title("Thailand GDP Per Capita 1985-2016",fontsize=20)
         ax20.set xlabel("")
         plt.tight_layout()
```



```
In [36]:
         fig, axe = plt.subplots()
         GDPvPrices[ 'Commodity Prices'].plot.bar(figsize =(10,6))
         axe.set_ylabel('Price', fontsize=20)
         axe.set_title("Commodity Prices(Current US Dollar) 1985-2016", loc='center', f
         ontsize=18, fontweight = "bold" )
```

Out[36]: Text(0.5, 1.0, 'Commodity Prices(Current US Dollar) 1985-2016')


```
In [37]:
         ax=GDPvPrices['GDP'].plot(label='GDP',figsize=(10,6))
         ax.set_ylabel('GDP Per Capita', fontsize=20)
         ax.set xlabel('Year')
         lns1=ax.plot(label='GDP')
         ax.legend(['GDP'])
         ax2=GDPvPrices['Commodity Prices'].plot(secondary_y=True,label='Commodity Pric
         es (Current $US Dollars)', figsize=(10,6))
         ax2.set_ylabel('Price',fontsize=25)
         lns2=ax2.plot(label='Commodity Prices')
         plt.title('EM GDP Output(Current US Dollar) vs Commodity Prices(Current US Dol
         lar) 1985-2016', fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```

EM GDP Output(Current US Dollar) vs Commodity Prices(Current US Dollar) 1985-2016

<Figure size 720x720 with 0 Axes>

year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] SovereignRisk=[25.0, 23.76, 24.28, 26.08, 27.45, 29.4, 32.38, 36.46, 37.83, 3 8.13, 38.0, 38.71, 37.59, 34.79, 35.45, 35.88, 36.36, 36.55, 37.32, 38.69, 39. 36, 40.31, 40.38, 39.49, 38.74, 40.73, 40.79, 40.56, 40.65, 40.08, 38.79, 39.0 4] PoliticalRisk=[54.61, 53.25, 53.35, 53.61, 54.13, 55.37, 56.62, 60.37, 63.31, 66.68, 67.05, 68.0, 70.12, 68.56, 65.19, 64.43, 66.72, 65.84, 66.74, 67.77, 6 7.67, 67.69, 67.25, 66.6, 66.45, 65.86, 64.73, 63.87, 63.51, 63.17, 63.03, 63. 67] CountryRisk=[41.81, 40.98, 41.29, 41.6, 41.82, 42.73, 43.96, 46.59, 48.84, 5 1.15, 51.37, 52.23, 53.15, 51.06, 48.8, 50.46, 51.62, 50.91, 51.85, 53.08, 53.

> PriceRisk=pd.DataFrame({'Commodity Prices':prices,'Sovereign Risk':SovereignRi sk,'Political Risk':PoliticalRisk,'Country Risk':CountryRisk},index=year)

> 08, 53.36, 53.4, 52.61, 50.27, 51.08, 50.96, 50.43, 50.36, 50.04, 49.74, 49.62

```
In [39]:
         fig, axe = plt.subplots()
         PriceRisk[ 'Sovereign Risk'].plot.bar(figsize =(10,6))
         axe.set_ylabel('Sovereign Risk (ICRG)', fontsize=20)
         axe.set_title(" EM's Sovereign Risk (ICRG)' 1985-2016", loc='center', fontsize
         =18, fontweight = "bold" )
```

Out[39]: Text(0.5, 1.0, " EM's Sovereign Risk (ICRG)' 1985-2016")


```
In [40]:
         fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Argentina'].plot.ba
         r(x='Year', y='Sovereign Risk', legend=False, ax=ax1,fontsize=15)
         ax1.set_title("Argentina Sovereign Risk (ICRG) 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Brazil'].plot.bar(x
         ='Year', y='Sovereign Risk', legend=False, ax=ax2,fontsize=15)
         ax2.set_title("Brazil Sovereign Risk (ICRG) 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'China'].plot.bar(x=
         'Year', y='Sovereign Risk', legend=False, ax=ax3,fontsize=14)
         ax3.set title("China Sovereign Risk (ICRG) 1985-2016", fontsize=20)
         ax3.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Chile'].plot.bar(x=
         'Year', y='Sovereign Risk', legend=False, ax=ax4,fontsize=14)
         ax4.set_title("Chile Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax4.set xlabel("")
         plt.tight_layout()
```



```
In [41]:
         fig, ((ax5, ax6), (ax7, ax8)) = plt.subplots(nrows=2, ncols=2,sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Colombia'].plot.bar
         (x='Year', y='Sovereign Risk', legend=False, ax=ax5,fontsize=16)
         ax5.set_title("Colombia Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Egypt'].plot.bar(x=
         'Year', y='Sovereign Risk', legend=False, ax=ax6,fontsize=16)
         ax6.set_title("Egypt Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Hungary'].plot.bar(
         x='Year', y='Sovereign Risk', legend=False, ax=ax7,fontsize=14)
         ax7.set_title("Hungary Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax7.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'India'].plot.bar(x=
         'Year', y='Sovereign Risk', legend=False, ax=ax8,fontsize=14)
         ax8.set_title("India Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax8.set_xlabel("")
         plt.tight_layout()
```



```
In [42]:
         fig, ((ax9, ax10), (ax11, ax12)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Indonesia'].plot.ba
         r(x='Year', y='Sovereign Risk', legend=False, ax=ax9,fontsize=16)
         ax9.set_title("Indonesia Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Malaysia'].plot.bar
         (x='Year', y='Sovereign Risk', legend=False, ax=ax10,fontsize=16)
         ax10.set title("Malaysia Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Mexico'].plot.bar(x
         ='Year', y='Sovereign Risk', legend=False, ax=ax11,fontsize=14)
         ax11.set_title("Mexico Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax11.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Pakistan'].plot.bar
         (x='Year', y='Sovereign Risk', legend=False, ax=ax12,fontsize=14)
         ax12.set title("Pakistan Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax12.set_xlabel("")
         plt.tight_layout()
```



```
In [43]:
         fig, ((ax13, ax14), (ax15, ax16)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Peru'].plot.bar(x=
         'Year', y='Sovereign Risk', legend=False, ax=ax13,fontsize=16)
         ax13.set_title("Peru Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Phillippines'].plot
         .bar(x='Year', y='Sovereign Risk', legend=False, ax=ax14,fontsize=16)
         ax14.set_title("Phillippines Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Poland'].plot.bar(x
         ='Year', y='Sovereign Risk', legend=False, ax=ax15,fontsize=14)
         ax15.set title("Poland Sovereign Risk (ICRG) 1985-2016", fontsize=20)
         ax15.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Qatar'].plot.bar(x=
         'Year', y='Sovereign Risk', legend=False, ax=ax16,fontsize=14)
         ax16.set_title("Qatar Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax16.set_xlabel("")
         plt.tight_layout()
```



```
In [44]:
         fig, ((ax17, ax18), (ax19, ax20)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Russia'].plot.bar(x
         ='Year', y='Sovereign Risk', legend=False, ax=ax17,fontsize=16)
         ax17.set_title("Russia Soveriegn Risk (ICRG) 1992-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Saudi Arabia'].plot
         .bar(x='Year', y='Sovereign Risk', legend=False, ax=ax18,fontsize=16)
         ax18.set_title("Saudi Arabia Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'South Africa'].plot
         .bar(x='Year', y='Sovereign Risk', legend=False, ax=ax19,fontsize=14)
         ax19.set_title("South Africa Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax19.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Thailand'].plot.bar
         (x='Year', y='Sovereign Risk', legend=False, ax=ax20,fontsize=14)
         ax20.set_title("Thailand Sovereign Risk (ICRG) 1985-2016",fontsize=20)
         ax20.set xlabel("")
         plt.tight_layout()
```



```
In [45]:
         ax=PriceRisk['Commodity Prices'].plot(label='Prices',figsize=(10,6))
         ax.set_ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
         ax.set_xlabel('Year')
         ax2=PriceRisk['Sovereign Risk'].plot(secondary_y=True,label='Sovereign Risk')
         ax2.set ylabel('Sovereign Risk (ICRG)',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Effect of Sovereign Risk on Commodity Prices', fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
         plt.savefig('figure3.png')
```


<Figure size 720x720 with 0 Axes>

<Figure size 432x288 with 0 Axes>

```
In [46]:
        fig, axe = plt.subplots()
         PriceRisk[ 'Political Risk'].plot.bar(figsize =(10,6))
         axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
         axe.set_title(" EM's Political Risk (ICRG)' 1985-2016", loc='center', fontsize
         =18, fontweight = "bold" )
```

Out[46]: Text(0.5, 1.0, " EM's Political Risk (ICRG)' 1985-2016")


```
In [47]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Argentina'].plot.ba
         r(x='Year', y='Political Risk', legend=False, ax=ax1,fontsize=15)
         ax1.set_title("Argentina Political Risk (ICRG) 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Brazil'].plot.bar(x
         ='Year', y='Political Risk', legend=False, ax=ax2,fontsize=15)
         ax2.set_title("Brazil Political Risk (ICRG) 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'China'].plot.bar(x=
         'Year', y='Political Risk', legend=False, ax=ax3,fontsize=14)
         ax3.set title("China Political Risk (ICRG) 1985-2016", fontsize=20)
         ax3.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Chile'].plot.bar(x=
         'Year', y='Political Risk', legend=False, ax=ax4,fontsize=14)
         ax4.set_title("Chile Political Risk (ICRG) 1985-2016",fontsize=20)
         ax4.set xlabel("")
         plt.tight_layout()
```



```
In [48]: fig, ((ax5, ax6), (ax7, ax8)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Colombia'].plot.bar
         (x='Year', y='Political Risk', legend=False, ax=ax5,fontsize=16)
         ax5.set_title("Colombia Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Egypt'].plot.bar(x=
         'Year', y='Political Risk', legend=False, ax=ax6,fontsize=16)
         ax6.set_title("Egypt Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Hungary'].plot.bar(
         x='Year', y='Political Risk', legend=False, ax=ax7,fontsize=14)
         ax7.set_title("Hungary Political Risk (ICRG) 1985-2016",fontsize=20)
         ax7.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'India'].plot.bar(x=
         'Year', y='Political Risk', legend=False, ax=ax8,fontsize=14)
         ax8.set title("India Political Risk (ICRG) 1985-2016", fontsize=20)
         ax8.set_xlabel("")
         plt.tight_layout()
```



```
In [49]:
        fig, ((ax9, ax10), (ax11, ax12)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Indonesia'].plot.ba
         r(x='Year', y='Political Risk', legend=False, ax=ax9,fontsize=16)
         ax9.set_title("Indonesia Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Malaysia'].plot.bar
         (x='Year', y='Political Risk', legend=False, ax=ax10,fontsize=16)
         ax10.set title("Malaysia Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Mexico'].plot.bar(x
         ='Year', y='Political Risk', legend=False, ax=ax11,fontsize=14)
         ax11.set_title("Mexico Political Risk (ICRG) 1985-2016",fontsize=20)
         ax11.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Pakistan'].plot.bar
         (x='Year', y='Political Risk', legend=False, ax=ax12, fontsize=14)
         ax12.set title("Pakistan Political Risk (ICRG) 1985-2016",fontsize=20)
         ax12.set_xlabel("")
         plt.tight_layout()
```



```
In [50]:
         fig, ((ax13, ax14), (ax15, ax16)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Peru'].plot.bar(x=
         'Year', y='Political Risk', legend=False, ax=ax13,fontsize=16)
         ax13.set_title("Peru Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Phillippines'].plot
         .bar(x='Year', y='Political Risk', legend=False, ax=ax14,fontsize=16)
         ax14.set_title("Phillippines Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Poland'].plot.bar(x
         ='Year', y='Political Risk', legend=False, ax=ax15,fontsize=14)
         ax15.set title("Poland Political Risk (ICRG) 1985-2016", fontsize=20)
         ax15.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Qatar'].plot.bar(x=
         'Year', y='Political Risk', legend=False, ax=ax16,fontsize=14)
         ax16.set_title("Qatar Political Risk (ICRG) 1985-2016",fontsize=20)
         ax16.set xlabel("")
         plt.tight_layout()
```



```
In [51]:
         fig, ((ax17, ax18), (ax19, ax20)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Russia'].plot.bar(x
         ='Year', y='Political Risk', legend=False, ax=ax17,fontsize=16)
         ax17.set title("Russia Political Risk (ICRG) 1992-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Saudi Arabia'].plot
         .bar(x='Year', y='Political Risk', legend=False, ax=ax18,fontsize=16)
         ax18.set_title("Saudi Arabia Political Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'South Africa'].plot
         .bar(x='Year', y='Political Risk', legend=False, ax=ax19,fontsize=14)
         ax19.set_title("South Africa Political Risk (ICRG) 1985-2016",fontsize=20)
         ax19.set_xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Thailand'].plot.bar
         (x='Year', y='Political Risk', legend=False, ax=ax20,fontsize=14)
         ax20.set_title("Thailand Political Risk (ICRG) 1985-2016",fontsize=20)
         ax20.set xlabel("")
         plt.tight_layout()
```



```
In [52]:
         ax=PriceRisk['Commodity Prices'].plot(label='Prices',figsize=(10,6))
         ax.set_ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
         ax.set_xlabel('Year')
         ax2=PriceRisk['Political Risk'].plot(secondary_y=True,label='Political Risk')
         ax2.set_ylabel('Political Risk (ICRG)',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Effect of Political Risk on Commodity Prices', fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [53]: | fig, axe = plt.subplots()
         PriceRisk[ 'Country Risk'].plot.bar(figsize =(10,6))
         axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
         axe.set_title(" EM's Country Risk (ICRG)' 1985-2016", loc='center', fontsize=1
         8, fontweight = "bold" )
```

Out[53]: Text(0.5, 1.0, " EM's Country Risk (ICRG)' 1985-2016")


```
In [54]:
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Argentina'].plot.ba
         r(x='Year', y='Country Risk', legend=False, ax=ax1,fontsize=15)
         ax1.set_title("Argentina Country Risk (ICRG) 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Brazil'].plot.bar(x
         ='Year', y='Country Risk', legend=False, ax=ax2,fontsize=15)
         ax2.set_title("Brazil Country Risk (ICRG) 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'China'].plot.bar(x=
         'Year', y='Country Risk', legend=False, ax=ax3,fontsize=14)
         ax3.set title("China Country Risk (ICRG) 1985-2016", fontsize=20)
         ax3.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Chile'].plot.bar(x=
         'Year', y='Country Risk', legend=False, ax=ax4,fontsize=14)
         ax4.set_title("Chile Country Risk (ICRG) 1985-2016",fontsize=20)
         ax4.set xlabel("")
         plt.tight_layout()
```



```
In [55]: fig, ((ax5, ax6), (ax7, ax8)) = plt.subplots(nrows=2, ncols=2,sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Colombia'].plot.bar
         (x='Year', y='Country Risk', legend=False, ax=ax5,fontsize=16)
         ax5.set_title("Colombia Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Egypt'].plot.bar(x=
         'Year', y='Country Risk', legend=False, ax=ax6,fontsize=16)
         ax6.set_title("Egypt Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Hungary'].plot.bar(
         x='Year', y='Country Risk', legend=False, ax=ax7,fontsize=14)
         ax7.set_title("Hungary Country Risk (ICRG) 1985-2016", fontsize=20)
         ax7.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'India'].plot.bar(x=
         'Year', y='Country Risk', legend=False, ax=ax8,fontsize=14)
         ax8.set_title("India Country Risk (ICRG) 1985-2016",fontsize=20)
         ax8.set_xlabel("")
         plt.tight_layout()
```



```
In [56]:
        fig, ((ax9, ax10), (ax11, ax12)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Indonesia'].plot.ba
         r(x='Year', y='Country Risk', legend=False, ax=ax9,fontsize=16)
         ax9.set_title("Indonesia Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Malaysia'].plot.bar
         (x='Year', y='Country Risk', legend=False, ax=ax10,fontsize=16)
         ax10.set_title("Malaysia Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Mexico'].plot.bar(x
         ='Year', y='Country Risk', legend=False, ax=ax11,fontsize=14)
         ax11.set_title("Mexico Country Risk (ICRG) 1985-2016",fontsize=20)
         ax11.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Pakistan'].plot.bar
         (x='Year', y='Country Risk', legend=False, ax=ax12,fontsize=14)
         ax12.set_title("Pakistan Country Risk (ICRG) 1985-2016",fontsize=20)
         ax12.set_xlabel("")
         plt.tight_layout()
```



```
In [57]:
         fig, ((ax13, ax14), (ax15, ax16)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Peru'].plot.bar(x=
         'Year', y='Country Risk', legend=False, ax=ax13,fontsize=16)
         ax13.set_title("Peru Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Phillippines'].plot
         .bar(x='Year', y='Country Risk', legend=False, ax=ax14,fontsize=16)
         ax14.set_title("Phillippines Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Poland'].plot.bar(x
         ='Year', y='Country Risk', legend=False, ax=ax15,fontsize=14)
         ax15.set_title("Poland Country Risk (ICRG) 1985-2016",fontsize=20)
         ax15.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Qatar'].plot.bar(x=
         'Year', y='Country Risk', legend=False, ax=ax16,fontsize=14)
         ax16.set_title("Qatar Country Risk (ICRG) 1985-2016",fontsize=20)
         ax16.set xlabel("")
         plt.tight_layout()
```



```
In [58]:
         fig, ((ax17, ax18), (ax19, ax20)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Russia'].plot.bar(x
         ='Year', y='Country Risk', legend=False, ax=ax17,fontsize=16)
         ax17.set_title("Russia Country Risk (ICRG) 1992-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Saudi Arabia'].plot
         .bar(x='Year', y='Political Risk', legend=False, ax=ax18,fontsize=16)
         ax18.set_title("Saudi Arabia Country Risk (ICRG) 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'South Africa'].plot
         .bar(x='Year', y='Political Risk', legend=False, ax=ax19,fontsize=14)
         ax19.set_title("South Africa Country Risk (ICRG) 1985-2016",fontsize=20)
         ax19.set_xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Thailand'].plot.bar
         (x='Year', y='Country Risk', legend=False, ax=ax20,fontsize=14)
         ax20.set_title("Thailand Country Risk (ICRG) 1985-2016",fontsize=20)
         ax20.set xlabel("")
         plt.tight_layout()
```



```
In [59]:
         ax=PriceRisk['Commodity Prices'].plot(label='Prices',figsize=(10,6))
         ax.set_ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
         ax.set_xlabel('Year')
         ax2=PriceRisk['Country Risk'].plot(secondary_y=True,label='Country Risk')
         ax2.set ylabel('Country Risk (ICRG)',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Effect of Country Risk on Commodity Prices',fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [60]:
         ax=GDPvPrices['GDP'].plot(label='GDP',figsize=(10,6))
         ax.set_ylabel('GDP (Current US Dollar) ',fontsize=20)
         ax.set_xlabel('Year',fontsize=25)
         ax2=PriceRisk['Political Risk'].plot(secondary_y=True,label='Political Risk')
         ax2.set_ylabel('Political Risk (ICRG)',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Effect of Political Risk on EM Economic Output',fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [61]:
         ax=GDPvPrices['GDP'].plot(label='GDP',figsize=(10,6))
         ax.set_ylabel('GDP (Current US Dollar)',fontsize=20)
         ax.set_xlabel('Year',fontsize=25)
         ax2=PriceRisk['Country Risk'].plot(secondary_y=True,label='Country Risk')
         ax2.set ylabel('Country Risk',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Effect of Country Risk on EM Economic Output',fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [62]:
         ax=GDPvPrices['GDP'].plot(label='GDP',figsize=(10,6))
         ax.set_ylabel('GDP (Current US Dollar) ',fontsize=20)
         ax.set_xlabel('Year',fontsize=25)
         ax2=PriceRisk['Sovereign Risk'].plot(secondary_y=True,label='Country Risk')
         ax2.set_ylabel('Sovereign Risk (ICRG)',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Effect of Sovereign Risk on EM Economic Output',fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [63]:
         import statsmodels.formula.api as smf
         import statsmodels.api as sm
         GDPvPrices.plot.scatter(x='Commodity Prices', y='GDP', figsize=(10,6))
         GDPvPrices['Commodity Prices'].corr(GDPvPrices['GDP'])
```

Out[63]: 0.8916691310998767


```
In [64]: x=GDPvPrices['Commodity Prices']
         y=GDPvPrices['GDP']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

OLS Regression Results

=======================================			========		=======================================	
= Dep. Variable: 5		GDP	R-squared:	0.79		
Model:		OLS	Adj. R-squar	0.78		
8 Method:	Least	Squares	F-statistic:	116.		
4 Date:	Mon, 04 N	Nov 2019	Prob (F-stat	7.59e-1		
2 Time:	:	14:21:51	Log-Likeliho	ood:	-210.1	
<pre>3 No. Observations:</pre>		32	AIC:		424.	
<pre>3 Df Residuals:</pre>		30	BIC:		427.	
2 Df Model:		1				
Covariance Type:		onrobust				
=======================================	========	=======	========	:=======		
0.975]	coef		t		[0.025	
	404 6002					
const 227.228	-401.6992	85.430	-4.702	0.000	-5/6.1/0 -	
Commodity Prices 6.492	5.4586	0.506	10.789	0.000	4.425	
=======================================	========		========	=======	==========	
Omnibus: 0		9.766	Durbin-Watso	on:	0.30	
Prob(Omnibus): 8		0.008	Jarque-Bera	(JB):	8.40	
Skew:		1.123	Prob(JB):		0.014	
9 Kurtosis: 9.		4.123	Cond. No.		45	
=======================================	========		========	:=======	=======================================	

Warnings:

4

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [65]: PriceRisk.plot.scatter(x='Sovereign Risk',y='Commodity Prices',figsize=(10,6))
         PriceRisk['Sovereign Risk'].corr(PriceRisk['Commodity Prices'])
```

Out[65]: 0.5831224067321231


```
In [66]: x=PriceRisk['Sovereign Risk']
         y=PriceRisk['Commodity Prices']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

OLS Regression Results							
=	=======	=======	=======	=======	========	=====	
Dep. Variable: 0	Commod	ity Prices	R-squared:		0.34		
Model: 8		OLS	Adj. R-squ	ared:	0.31		
Method:	Lea	st Squares	F-statisti	.c:	15.4		
6 Date:	Mon, 0	4 Nov 2019	Prob (F-st	atistic):	0.00046		
1 Time:		14:21:52	Log-Likeli	hood:	-170.8		
6 No. Observations	:	32	AIC:			345.	
7 Df Residuals:		30	BIC:			348.	
7 Df Model:		1					
Covariance Type:		nonrobust					
====							
0.975]	coef	std err	t	P> t	[0.025		
const 7.852	-93.7816	64.454	-1.455	0.156	-225.415	3	
	6.9848	1.777	3.932	0.000	3.356	1	
= Omnibus:		4.028	Durbin-Wat	son:	=======	0.19	
1 Prob(Omnibus):		0.133	Jarque-Ber	a (JB):		2.11	
4 Skew:		0.358	Prob(JB):			0.34	
<pre>8 Kurtosis: 4.</pre>		1.965	Cond. No.			25	
=	=======	=======		=======	=======	=====	
Warnings:							

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [67]: PriceRisk.plot.scatter(x='Political Risk',y='Commodity Prices',figsize=(10,6))
         PriceRisk['Political Risk'].corr(PriceRisk['Commodity Prices'])
```

Out[67]: 0.25313536002492953


```
In [68]: x=PriceRisk['Political Risk']
         y=PriceRisk['Commodity Prices']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

=======================================		_	sion Results				
=							
Dep. Variable: 4	Commod	ity Prices	R-squared:			0.06	
Model:		OLS	Adj. R-squ	ared:	0.03		
3 Method:	Lea	st Squares	F-statisti	c:	2.05		
4 Date:	Mon, 0	4 Nov 2019	Prob (F-st	atistic):	0.16		
2 Time:		14:21:53	Log-Likeli	hood:		-176.4	
5 No. Observations:		32	AIC:			356	
9 Df Residuals:		30	BIC:			359	
8 Df Model:		1					
Covariance Type:		nonrobust					
====							
0.975]	coef	std err	t	P> t	[0.025		
	20 2247	126 676	0.200	0.702	247 255	٠	
const 0.906	-38.224/	136.676	-0.280	0.782	-317.355	24	
Political Risk 7.481	3.0851	2.153	1.433	0.162	-1.311		
======================================		=======		=======	========		
Omnibus: 5		4.280	Durbin-Wat	son:		0.14	
Prob(Omnibus):		0.118	Jarque-Ber	а (ЈВ):		3.92	
1 Skew:		0.810	Prob(JB):			0.14	
1 Kurtosis: 2.		2.437	Cond. No.			79	
======================================	=======	=======	=======	=======	=======	-====	
Warnings:							

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

Out[69]: 0.36031849863290183


```
In [70]: x=PriceRisk['Country Risk']
         y=PriceRisk['Commodity Prices']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

===========		OLS Regres					
=							
Dep. Variable: 0	Comm	odity Prices	R-square	d:		0.13	
Model: 1		OLS	Adj. R-s	quared:		0.10	
Method:	L	east Squares	F-statis	tic:		4.47	
6 Date:	Mon,	04 Nov 2019	Prob (F-	statistic)	:	0.042	
8 Time:		14:21:53	Log-Like	lihood:		-175.2	
9 No. Observation	ns:	32	AIC:			354	
6 Df Residuals:		30	BIC:			357	
5 Df Model:		1					
Covariance Type				=======	========		
===	coef	std err	+	P> +	[0.025	0.9	
75]					-		
 const						148	
419							
Country Risk 952						10	
=======================================	=======				========		
Omnibus: 0		3.435	Durbin-W	atson:		0.14	
Prob(Omnibus): 3		0.180	Jarque-B	era (JB):		3.07	
Skew: 5		0.693	Prob(JB)	:		0.23	
o Kurtosis: 4.		2.381	Cond. No	•		60	
======== =		========	=======	=======	=======	======	
Warnings:							

tly specified.

In [71]: prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] ExportsEM=[94.29, 91.11, 91.47, 90.74, 91.15, 91.72, 90.57, 89.93, 89.42, 89. 6, 90.03, 90.38, 90.35, 88.58, 89.38, 91.73, 91.09, 91.25, 92.31, 93.86, 95.89 , 97.57, 98.3, 100.31, 96.68, 98.81, 100.75, 100.0, 100.13, 99.56, 95.42, 94.8 2] ImportsIE=[96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93. 05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3, 98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53 year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] ImportsEM=[63.21, 50.17, 51.17, 50.21, 51.4, 52.15, 46.5, 45.04, 42.92, 45.24, 47.52, 47.57, 47.77, 41.05, 41.74, 49.11, 46.65, 47.37, 51.51, 59.23, 68.47, 80.36, 85.77, 100.88, 77.56, 94.3, 109.65, 100., 101.39, 96.84, 71.62, 70.38] PriceIMEX=pd.DataFrame({'Commodity Prices':prices,'ExportsEM':ExportsEM,'Impor tsIE':ImportsIE,'ImportsEM':ImportsEM},index=year)

```
In [72]:
        fig, axe = plt.subplots()
         PriceIMEX['ExportsEM' ].plot.bar(figsize =(10,6))
         axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
         axe.set_title(" Exports of Commodities by Emerging Markets 1985-2016", loc='ce
         nter', fontsize=18, fontweight = "bold" )
```

Out[72]: Text(0.5, 1.0, 'Exports of Commodities by Emerging Markets 1985-2016')


```
In [73]:
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, sharex=True,
                                                                                      fi
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Argentina'].plot.ba
         r(x='Year', y='Exports of Commodities', legend=False, ax=ax1,fontsize=15)
         ax1.set_title("Argentina Exports of Commodities 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Brazil'].plot.bar(x
         ='Year', y='Exports of Commodities', legend=False, ax=ax2,fontsize=15)
         ax2.set_title("Brazil Exports of Commodities 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'China'].plot.bar(x=
         'Year', y='Exports of Commodities', legend=False, ax=ax3,fontsize=14)
         ax3.set title("China Exports of Commodities 1985-2016",fontsize=20)
         ax3.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Chile'].plot.bar(x=
         'Year', y='Exports of Commodities', legend=False, ax=ax4,fontsize=14)
         ax4.set_title("Chile Exports of Commodities 1985-2016",fontsize=20)
         ax4.set xlabel("")
         plt.tight_layout()
```



```
In [74]: fig, ((ax5, ax6), (ax7, ax8)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         gsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Colombia'].plot.bar
         (x='Year', y='Exports of Commodities', legend=False, ax=ax5,fontsize=16)
         ax5.set_title("Colombia 'Exports of Commodities 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Egypt'].plot.bar(x=
         'Year', y='Exports of Commodities', legend=False, ax=ax6,fontsize=16)
         ax6.set title("Egypt Exports of Commodities 1985-2016", fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Hungary'].plot.bar(
         x='Year', y='Exports of Commodities', legend=False, ax=ax7,fontsize=14)
         ax7.set_title("Hungary Exports of Commodities) 1985-2016",fontsize=20)
         ax7.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'India'].plot.bar(x=
         'Year', y='Exports of Commodities', legend=False, ax=ax8,fontsize=14)
         ax8.set title("India Exports of Commodities 1985-2016",fontsize=20)
         ax8.set_xlabel("")
         plt.tight_layout()
```



```
In [75]: fig, ((ax9, ax10), (ax11, ax12)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Indonesia'].plot.ba
         r(x='Year', y='Exports of Commodities', legend=False, ax=ax9,fontsize=16)
         ax9.set_title("Indonesia 'Exports of Commodities' 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Malaysia'].plot.bar
         (x='Year', y='Exports of Commodities', legend=False, ax=ax10,fontsize=16)
         ax10.set title("Malaysia 'Exports of Commodities'1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Mexico'].plot.bar(x
         ='Year', y='Exports of Commodities', legend=False, ax=ax11,fontsize=14)
         ax11.set_title("Mexico 'Exports of Commodities' 1985-2016",fontsize=20)
         ax11.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Pakistan'].plot.bar
         (x='Year', y='Exports of Commodities', legend=False, ax=ax12,fontsize=14)
         ax12.set_title("Pakistan 'Exports of Commodities'1985-2016",fontsize=20)
         ax12.set_xlabel("")
         plt.tight_layout()
```



```
In [76]:
         fig, ((ax13, ax14), (ax15, ax16)) = plt.subplots(nrows=2, ncols=2, sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Peru'].plot.bar(x=
         'Year', y='Exports of Commodities', legend=False, ax=ax13,fontsize=16)
         ax13.set title("Peru 'Exports of Commodities' 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Phillippines'].plot
         .bar(x='Year', y='Exports of Commodities', legend=False, ax=ax14,fontsize=16)
         ax14.set_title("Phillippines 'Exports of Commodities' 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Poland'].plot.bar(x
         ='Year', y='Exports of Commodities', legend=False, ax=ax15,fontsize=14)
         ax15.set_title("Poland 'Exports of Commodities' 1985-2016",fontsize=20)
         ax15.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Qatar'].plot.bar(x=
         'Year', y='Exports of Commodities', legend=False, ax=ax16,fontsize=14)
         ax16.set_title("Qatar 'Exports of Commodities' 1985-2016",fontsize=20)
         ax16.set xlabel("")
         plt.tight_layout()
```



```
In [77]:
        fig, ((ax17, ax18), (ax19, ax20)) = plt.subplots(nrows=2, ncols=2,sharex=True,
         figsize=(15,5))
         IndividualCountryData[IndividualCountryData['Country'] == 'Russia'].plot.bar(x
         ='Year', y='Exports of Commodities', legend=False, ax=ax17,fontsize=16)
         ax17.set title("Russia 'Exports of Commodities' 1992-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'Saudi Arabia'].plot
         .bar(x='Year', y='Exports of Commodities', legend=False, ax=ax18,fontsize=16)
         ax18.set_title("Saudi Arabia 'Exports of Commodities' 1985-2016",fontsize=20)
         IndividualCountryData[IndividualCountryData['Country'] == 'South Africa'].plot
         .bar(x='Year', y='Exports of Commodities', legend=False, ax=ax19,fontsize=13)
         ax19.set_title("South Africa 'Exports of Commodities' 1985-2016",fontsize=20)
         ax19.set xlabel("")
         IndividualCountryData[IndividualCountryData['Country'] == 'Thailand'].plot.bar
         (x='Year', y='Exports of Commodities', legend=False, ax=ax20,fontsize=13)
         ax20.set_title("Thailand 'Exports of Commodities' 1985-2016",fontsize=20)
         ax20.set xlabel("")
         plt.tight_layout()
```



```
In [78]:
         ax=PriceIMEX['ExportsEM'].plot(label='ExportsEM',figsize=(10,6))
         ax.set_ylabel('Ratio of Exports to GDP ',fontsize=20)
         ax.set_xlabel('Year',fontsize=25)
         ax2=PriceIMEX['Commodity Prices'].plot(secondary_y=True,label='Commodity Price
         ax2.set_ylabel('Prices',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Exports of Commmodities by EM vs Commodity Prices 1985-2016', fontsi
         ze=20)
         plt.figure(figsize=(10,10))
         plt.show()
```

Exports of Commmodities by EM vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

```
In [79]: PriceIMEX.plot.scatter(x='ExportsEM',y='Commodity Prices', figsize =(10,6))
PriceIMEX['ExportsEM'].corr(PriceIMEX['Commodity Prices'])
```

Out[79]: 0.901852225048027


```
In [80]: x=PriceIMEX['ExportsEM']
         y=PriceIMEX['Commodity Prices']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

OLS Regression Results

=======================================	==========	======	========	=======	=======
= Dep. Variable: 3	Commodity Prices	s R-s	quared:		0.81
Model:	OLS	S Adj	. R-squared:		0.80
Method:	Least Square	s F-s	tatistic:		130.
Date:	Mon, 04 Nov 2019	9 Pro	o (F-statist	ic):	1.85e-1
Time:	14:22:1	1 Log	-Likelihood:		-150.6
No. Observations:	32	2 AIC	:		305.
Df Residuals:	30	9 BIC	:		308.
2 Df Model:	•	1			
71	nonrobus† ==========				
=					
5]	f std err			-	
_					
const -1198.993	8 118.705	-10.101	0.000	-1441.421	-956.56
ExportsEM 14.477	7 1.266	11.433	0.000	11.892	17.06
=======================================	==========	======			=======
= Omnibus:	2.494	4 Dur	bin-Watson:		0.40
2 Prob(Omnibus):	0.28	7 Jar	que-Bera (JB)):	2.20
9 Skew:	-0.61	5 Pro	b(JB):		0.33
1 Kurtosis: 3	2.62	1 Con	d. No.		2.27e+0
=	=========	=====:	=======		=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 2.27e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs)

```
In [81]:
         fig, axe = plt.subplots()
         PriceIMEX['ImportsIE'].plot.bar(figsize =(10,6))
         axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
         axe.set_title(" Imports of Commodities by Industrialized Economies 1985-2016",
         loc='center', fontsize=18, fontweight = "bold" )
```

Out[81]: Text(0.5, 1.0, 'Imports of Commodities by Industrialized Economies 1985-201 6')


```
In [82]:
         ax=PriceIMEX['ImportsIE'].plot(label='ImportsIE',figsize=(10,6))
         ax.set_ylabel('Ratio of Imports to GDP ',fontsize=20)
         ax.set_xlabel('Year',fontsize=25)
         ax2=PriceIMEX['Commodity Prices'].plot(secondary_y=True,label='Commodity Price
         ax2.set_ylabel('Prices',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Imports of Commodities by Industrialized Economies vs Commodity Pri
         ces 1985-2016', fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```

Imports of Commodities by Industrialized Economies vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

```
PriceIMEX.plot.scatter(x='ImportsIE',y='Commodity Prices', figsize =(10,6))
PriceIMEX['ImportsIE'].corr(PriceIMEX['Commodity Prices'])
```

Out[83]: 0.8920714851374041


```
In [84]: x=PriceIMEX['ImportsIE']
         y=PriceIMEX['Commodity Prices']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

OLS Regression Results

=======================================	==========	====	=====	========	=======	=======
= Dep. Variable: 6	Commodity Pri	ices	R-sq	uared:		0.79
Model:		OLS	Adj.	R-squared:		0.78
Method:	Least Squa	ares	F-st	atistic:		116.
Date:	Mon, 04 Nov 2	2019	Prob	(F-statisti	c):	7.20e-1
Time:	14:22	2:13	Log-	Likelihood:		-152.0
No. Observations:		32	AIC:			308.
Df Residuals: 1		30	BIC:			311.
Df Model: Covariance Type:	nonrol	1 oust				
=======================================	==========		=====	========	=======	=======
=	coef std err		t	P> t	[0.025	0.97
5]						
- const -1901.	8706 190.488	_	9.984	0.000	-2290.899	-1512.84
ImportsIE 21.	4907 1.988	1	0.812	0.000	17.431	25.55
	===========	====	=====	========	=======	=======
=						
Omnibus: 5	2.	.859	Durb	in-Watson:		0.45
Prob(Omnibus):	0	.239	Jarq	ue-Bera (JB)	:	2.29
Skew:	-0	.652	Prob	(JB):		0.31
<pre>Kurtosis: 3</pre>	2.	.866	Cond	. No.		3.57e+0
		====	=====			
=	_	-	_	_ _		_

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 3.57e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs)

```
In [85]:
         fig, axe = plt.subplots()
         PriceIMEX['ImportsEM' ].plot.bar(figsize =(10,6))
         axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
         axe.set_title(" Imports of Commodities by Emerging Markets 1985-2016", loc='ce
         nter', fontsize=18, fontweight = "bold" )
```

Out[85]: Text(0.5, 1.0, 'Imports of Commodities by Emerging Markets 1985-2016')


```
In [86]:
         ax=PriceIMEX['ImportsEM'].plot(label='ImportsEM',figsize=(10,6))
         ax.set_ylabel('Ratio of Imports to GDP ',fontsize=20)
         ax.set_xlabel('Year',fontsize=25)
         ax2=PriceIMEX['Commodity Prices'].plot(secondary_y=True,label='Commodity Price
         ax2.set_ylabel('Prices',fontsize=25)
         plt.legend(loc='upper left')
         plt.title('Imports of Commodities by Emerging Markets vs Commodity Prices 1985
         -2016', fontsize=20)
         plt.figure(figsize=(10,10))
         plt.show()
```

Imports of Commodities by Emerging Markets vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

```
PriceIMEX.plot.scatter(x='ImportsEM',y='Commodity Prices', figsize =(10,6))
PriceIMEX['ImportsEM'].corr(PriceIMEX['Commodity Prices'])
```

Out[87]: 0.9485363204031945


```
In [88]: x=PriceIMEX['ImportsEM']
         y=PriceIMEX['Commodity Prices']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

OLS Regression Results

========	=======	.=======	====	=====			
=							
Dep. Variabl	e:	Commodity Pr	ices	R-sa	uared:		0.90
0		,		•			
Model:			0LS	Adi.	R-squared:		0.89
6				3	•		
Method:		Least Squa	ares	F-st	atistic:		269.
2		•					
Date:		Mon, 04 Nov 2	2019	Prob	(F-statistic)):	1.58e-1
6		•			`		
Time:		14:22	2:15	Log-	Likelihood:		-140.7
2				J			
No. Observat	ions:		32	AIC:			285.
4							
Df Residuals	:		30	BIC:			288.
4							
Df Model:			1				
Covariance T	ype:	nonrol	oust				
========		.=======		=====			=======
=							
	coef	std err		t	P> t	[0.025	0.97
5]							
-							
const	-20.1673	11.381	-	1.772	0.087	-43.410	3.07
5							
ImportsEM	2.7866	0.170	1	6.406	0.000	2.440	3.13
4							
========		.=======		=====			=======
=							
Omnibus:		5	. 349	Durb:	in-Watson:		0.45
7							
Prob(Omnibus):	0	.069	Jarqı	ue-Bera (JB):		3.91
2							
Skew:		-0	.820	Prob	(JB):		0.14
1							
Kurtosis:		3	.493	Cond	. No.		21
3.							
=========	======	.=======	====	=====			=======
=							

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

GDP=[89.31, 89.78, 98.62, 112.04, 124.48, 132.34, 136.18, 147.69, 168.29, 18 7.02, 212.6, 236.54, 249.62, 234.79, 229.87, 249.32, 254.73, 258.71, 290.87, 3 43.04, 406.34, 481.11, 594.03, 709.16, 693.03, 840.37, 996.64, 1059.71, 1126.8 5, 1167.42, 1115.26, 1114.06] SovereignRisk=[25.0, 23.76, 24.28, 26.08, 27.45, 29.4, 32.38, 36.46, 37.83, 3 8.13, 38.0, 38.71, 37.59, 34.79, 35.45, 35.88, 36.36, 36.55, 37.32, 38.69, 39. 36, 40.31, 40.38, 39.49, 38.74, 40.73, 40.79, 40.56, 40.65, 40.08, 38.79, 39.0 4] PoliticalRisk=[54.61, 53.25, 53.35, 53.61, 54.13, 55.37, 56.62, 60.37, 63.31, 66.68, 67.05, 68.0, 70.12, 68.56, 65.19, 64.43, 66.72, 65.84, 66.74, 67.77, 6 7.67, 67.69, 67.25, 66.6, 66.45, 65.86, 64.73, 63.87, 63.51, 63.17, 63.03, 63. 67] CountryRisk=[41.81, 40.98, 41.29, 41.6, 41.82, 42.73, 43.96, 46.59, 48.84, 5 1.15, 51.37, 52.23, 53.15, 51.06, 48.8, 50.46, 51.62, 50.91, 51.85, 53.08, 53. 08, 53.36, 53.4, 52.61, 50.27, 51.08, 50.96, 50.43, 50.36, 50.04, 49.74, 49.62 GDPRisk=pd.DataFrame({'GDP':GDP,'Sovereign Risk':SovereignRisk,'Political Ris k':PoliticalRisk,'Country Risk':CountryRisk})

In [90]: GDPRisk.plot.scatter(x='Sovereign Risk',y='GDP', figsize =(10,6)) GDPRisk['Sovereign Risk'].corr(GDPRisk['GDP'])

Out[90]: 0.6342345613672907


```
In [91]: x=PriceRisk['Sovereign Risk']
         y=GDPvPrices['GDP']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

Dep. Variable: GDP R-squared: Model: OLS Adj. R-squared: Method: Least Squares F-statistic:		0.39 0.37 19.8
Model: OLS Adj. R-squared: 7	0	0.37
Model: OLS Adj. R-squared: 7	0	
•	0	19.8
•	0	
Date: Mon, 04 Nov 2019 Prob (F-statistic):		.00011
0 Time: 14:22:16 Log-Likelihood:		-227.3
No. Observations: 32 AIC:		458.
8 Df Residuals: 30 BIC:		461.
7 Df Model: 1		
Covariance Type: nonrobust	========	=====
===== coef std err t P> t	[0.025	
coef std err t P> t 0.975]	[0.025	
 const -1204.7459 376.987 -3.196 0.003	-1974.656	-43
4.836 Sovereign Risk 46.2350 10.391 4.449 0.000 7.457	25.013	6
=======================================	=======	=====
Omnibus: 3.747 Durbin-Watson: 3		0.06
Prob(Omnibus): 0.154 Jarque-Bera (JB):		2.89
Skew: 0.604 Prob(JB):		0.23
Kurtosis: 2.157 Cond. No. 4.		25
=	=======	=====
Warnings: [1] Standard Errors assume that the covariance matrix of th		

tly specified.

```
GDPRisk.plot.scatter(x='Political Risk',y='GDP', figsize =(10,6))
GDPRisk['Political Risk'].corr(GDPRisk['GDP'])
```

Out[92]: 0.3074780820557676


```
In [93]: x=PriceRisk['Political Risk']
         y=GDPvPrices['GDP']
         x=sm.add_constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

=======================================		_	sion Results 				
=							
Dep. Variable: 2		GDP R-squared:				0.09	
Model:		OLS	Adj. R-squ	ared:		0.06	
1 Method:	Lea	st Squares	F-statisti	c:	3.02		
9 Date:	Mon, 0	4 Nov 2019	Prob (F-st	atistic):	0.092		
0 Time:	-	14:22:16	Log-Likeli	·		-233.9	
5		14.22.10	LOG LIKCII	11000.		233.3	
No. Observations	:	32	AIC:			471.	
Df Residuals: 8		30	BIC:			474.	
ob Df Model: Covariance Type:		1 nonrobust					
======================================	=======	=======	=======	=======	=======		
 0. 975]	coef	std err	t	P> t	[0.025		
 const	-974.6014	824.253	-1.182	0 246	-2657.951	76	
8.748	374.0014	024.233	1.102	0.240	2037.331	, (
Political Risk 9.108	22.5955	12.982	1.741	0.092	-3.917	4	
=======================================	=======						
Omnibus: 7		6.520	Durbin-Wat	son:		0.03	
Prob(Omnibus):		0.038	Jarque-Ber	а (ЈВ):		6.32	
6 Skew:		1.073	Prob(JB):			0.042	
3 Kurtosis: 2.		2.627	Cond. No.			79	
=======================================	=======	=======	=======	=======	=======		

```
GDPRisk.plot.scatter(x='Country Risk',y='GDP', figsize =(10,6))
GDPRisk['Country Risk'].corr(GDPRisk['GDP'])
```

Out[94]: 0.4150632125706353


```
In [95]: | x=PriceRisk['Country Risk']
         y=GDPvPrices['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

		OLS Regres				
=======================================		=========	=======	=======	=======	======
Dep. Variable 8	::	GDP	R-square	ed:		0.16
Model: 1		OLS	Adj. R-s	squared:		0.14
Method: 5		Least Squares	F-statis	stic:		6.07
o Date: 7	Mon	, 04 Nov 2019	Prob (F	-statistic)	:	0.019
Time: 4		14:22:17	Log-Like	elihood:		-232.5
No. Observati	ons:	32	AIC:			469.
1 Df Residuals:		30	BIC:			472.
0 Df Model: Covariance Ty	pe:	1 nonrobust				
=======================================	=======	========	=======	=======	========	======
75]	coef	std err	t	P> t	[0.025	0.9
const 854	-1451.1402	776.093	-1.870	0.071	-3036.134	133.
Country Risk 047	38.8537	15.763	2.465	0.020	6.661	71.
	=======	========	=======	=======	=======	======
= Omnibus: 9		5.955	Durbin-W	Watson:		0.03
Prob(Omnibus)	:	0.051	Jarque-E	Bera (JB):		5.69
1 Skew:		1.014	Prob(JB)):		0.058
1		2.601	Cond. No	o.		60

Warnings:

GDP=[89.31, 89.78, 98.62, 112.04, 124.48, 132.34, 136.18, 147.69, 168.29, 18 7.02, 212.6, 236.54, 249.62, 234.79, 229.87, 249.32, 254.73, 258.71, 290.87, 3 43.04, 406.34, 481.11, 594.03, 709.16, 693.03, 840.37, 996.64, 1059.71, 1126.8 5, 1167.42, 1115.26, 1114.06] ExportsEM=[94.29, 91.11, 91.47, 90.74, 91.15, 91.72, 90.57, 89.93, 89.42, 89. 6, 90.03, 90.38, 90.35, 88.58, 89.38, 91.73, 91.09, 91.25, 92.31, 93.86, 95.89 , 97.57, 98.3, 100.31, 96.68, 98.81, 100.75, 100.0, 100.13, 99.56, 95.42, 94.8 21 ImportsIE=[96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93. 05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3, 98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53 ImportsEM=[63.21, 50.17, 51.17, 50.21, 51.4, 52.15, 46.5, 45.04, 42.92, 45.24, 47.52, 47.57, 47.77, 41.05, 41.74, 49.11, 46.65, 47.37, 51.51, 59.23, 68.47, 80.36, 85.77, 100.88, 77.56, 94.3, 109.65, 100., 101.39, 96.84, 71.62, 70.38] GDPXIM=pd.DataFrame({'GDP':GDP, 'ExportsEM':ExportsEM, 'ImportsIE':ImportsIE, 'I mportsEM':ImportsEM})

```
In [97]: GDPXIM.plot.scatter(x='ExportsEM',y='GDP', figsize =(10,6))
         GDPXIM['ExportsEM'].corr(GDPXIM['GDP'])
```

Out[97]: 0.8307601227265224


```
In [98]: x=PriceIMEX['ExportsEM']
         y=GDPvPrices['GDP']
         x=sm.add constant(x)
         est= sm.OLS(y,x).fit()
         print(est.summary())
```

OLS Regression Results							
=======================================		:=====	=====	========	:======	=======	
Dep. Variable: 6	G	iDP F	R-squ	ared:		0.68	
Model:	0	LS A	Adj.	R-squared:		0.67	
6 Method:	Least Squar	es F	F-sta	tistic:		65.5	
7 Date:	Mon, 04 Nov 20)19 F	Prob	(F-statistic)	:	4.87e-0	
9 Time:	14:22:	19 I	l og - l	ikelihood:		-216.9	
5			6 -				
No. Observations:		32 <i>A</i>	AIC:			437.	
Df Residuals: 8		30 E	BIC:			440.	
o Df Model:		1					
Covariance Type:	nonrobu	st					
		:=====	====	========	:======	=======	
=	oef std err		t	P> t	[0.025	0.97	
5]	Jeg et .			. , 5	[0.023	0.57	
const -7168.83	942.365	-7.6	607	0.000 -	9093.398	-5244.26	
ExportsEM 81.40	10.053	8.6	097	0.000	60.871	101.93	
=======================================		=====	====	========		=======	
= Omnibus:	9.0	95 [Durbi	n-Watson:		0.25	
1 Prob(Omnibus):	0.0	11 :	Jarqu	e-Bera (JB):		7.87	
7 Skew:	0.9	146 F	Prob(JB):		0.019	
5							
Kurtosis: 3	4.5	527 (Cond.	No.		2.27e+0	
=======================================		:=====	====	========	=======	=======	
_							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 2.27e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

```
GDPXIM.plot.scatter(x='ImportsIE',y='GDP', figsize =(10,6))
GDPXIM['ImportsIE'].corr(GDPXIM['GDP'])
```

Out[99]: 0.8207145722211843


```
In [100]: x=PriceIMEX['ImportsIE']
          y=GDPvPrices['GDP']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

	OLS Regres				
= Dep. Variable:	GDP	R-squ			0.67
0 Model:	0LS		R-squared:		0.65
9					
Method:	Least Squares	F-sta	istic:		60.8
4 Date:	Mon, 04 Nov 2019	Prob	′F-statisti	c):	1.05e-0
8	, 0 2022		. 5000-50-		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Time:	14:22:20	Log-L:	ikelihood:		-217.7
6 No. Observations:	32	AIC:			439.
5 Df Residuals:	30	BIC:			442.
5 Df Model:	1				
Covariance Type:	nonrobust				
=======================================	==========	======		========	=======
= coe	f std err	t	P> t	Γ0.025	0.97
5]				L	
const -1.111e+0	4 1482.936 -	7.490	0.000	-1.41e+04	-8079.04
ImportsIE 120.694	5 15.473	7.800	0.000	89.094	152.29
=======================================	==========	:=====	-======	========	=======
= Omnibus:	8.306	Durbi	n-Watson:		0.26
5 Prob(Omnibus):	0.016	Jarque	e-Bera (JB)	:	6.94
7					
Skew: 0	0.882	Prob(JB):		0.031
Kurtosis: 3	4.448	Cond.	No.		3.57e+0
=======================================	==========	======		=======	=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 3.57e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

```
GDPXIM.plot.scatter(x='ImportsEM',y='GDP', figsize =(10,6))
GDPXIM['ImportsEM'].corr(GDPXIM['GDP'])
```

Out[101]: 0.85165145111072


```
In [102]: | x=PriceIMEX['ImportsEM']
           y=GDPvPrices['GDP']
           x=sm.add constant(x)
           est= sm.OLS(y,x).fit()
           print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
                         GDP
                             R-squared:
                                                      0.72
Model:
                         OLS
                             Adj. R-squared:
                                                      0.71
                Least Squares
                                                      77.8
Method:
                             F-statistic:
Date:
             Mon, 04 Nov 2019
                             Prob (F-statistic): 7.78e-1
Time:
                     14:22:21
                             Log-Likelihood:
                                                    -215.0
No. Observations:
                             AIC:
                         32
                                                      434.
Df Residuals:
                         30
                             BIC:
                                                      437.
Df Model:
                          1
Covariance Type:
                    nonrobust
_______
                  std err
                            t
                                  P>|t|
                                            [0.025
                                                     0.97
            coef
const -516.1371 116.045 -4.448 0.000 -753.132
                                                   -279.14
         15.2795
ImportsEM
                   1.732
                           8.822
                                    0.000
                                            11.743
                                                     18.81
Omnibus:
                      14.624 Durbin-Watson:
                                                     0.31
Prob(Omnibus):
                       0.001
                             Jarque-Bera (JB):
                                                     16.63
Skew:
                       1.270
                             Prob(JB):
                                                   0.00024
Kurtosis:
                       5.454
                             Cond. No.
                                                      21
Warnings:
```

NOTES:

- -As expected earlier, imports of commodities by industrialized countries and emerging markets, and exports of commodities by emerging markets have a high correlation and r square among commodity
- -Among the risk variables explored Commodity Prices as the dependent variable, we see that Sovereign Risk seems to have more of an impact on Commodity prices than Political and Country Risk.
- -It is also the same scenario with GDP as well as Sovereign Risk is the strongest risk indicator factor with regards to influencing EM GDP output.
- -Previously explained, Exports of Commodities by EM and Imports of Commodities by Industrialized

Various multivariate regression analyses will be conducted below. One model will consist of all of the EMs listed. Given China and their BRICS (Brazil, Russia, India, and South Africa), respectively have the highest GDP among the EM countries listed in this project, separate multivariate regression models were used, one without China, one without BRICS, and one with only BRICs. Doing so helped balance the influence the BRICS had affecting various independent variables in question and helped fathoming the impact Sovereign, Country, and Political risk has had on Commodity Prices and EMs' GDP output.

Multivariate Regression Analysis with China and other **BRICS** Economies

It is worth noting that Sovereign Risk seems to be the biggest risk factor with regards to fluctuations commodity prices and EMs' economic output. Afterall, commodity prices are greatly affected by global liquidity levels and various financial indicators, many of which were calculated in the Sovereign Risk rating presented by the ICRG. Perhaps Sovereign Risk is a bigger risk factor to worry about when taking in fluctuations of EM's GDP output than other political and economic factors?

In [103]: | year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858, 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 9 7.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.042 , 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] SovereignRisk=[24.96, 23.64, 24.13, 25.85, 27.31, 29.33, 32.4, 36.59, 37.91, 38.23, 38.07, 38.73, 37.63, 34.8, 35.47, 36.06, 36.52, 36.7, 37.4, 38.85, 39.6 1, 40.58, 40.72, 39.83, 39.0, 41.26, 41.34, 41.08, 41.07, 40.61, 39.34, 39.55] PoliticalRisk=[54.31, 52.98, 53.03, 53.07, 53.74, 55.1, 56.23, 60.13, 63.2, 6 6.48, 66.68, 67.5, 69.59, 67.82, 64.56, 63.68, 66.13, 65.3, 66.18, 67.31, 67.1 9, 67.22, 66.78, 66.2, 66.12, 65.67, 64.59, 63.72, 63.43, 63.03, 62.67, 63.33] CountryRisk=[41.61, 40.83, 41.11, 41.33, 41.56, 42.6, 43.82, 46.52, 48.8, 51. 08, 51.18, 51.99, 52.89, 50.62, 48.35, 50.02, 51.24, 50.56, 51.55, 52.87, 52.8 9, 53.19, 53.24, 52.48, 50.18, 51.21, 51.16, 50.61, 50.48, 50.05, 49.54, 49.48 ExportsEM=[94.05, 90.76, 91.12, 90.37, 90.79, 91.38, 90.2, 89.55, 89.02, 89.2 , 89.65, 90.02, 89.98, 88.16, 88.97, 91.41, 90.75, 90.91, 92.02, 93.63, 95.73, 97.47, 98.23, 100.32, 96.56, 98.76, 100.78, 100.0, 100.13, 99.54, 95.25, 94.62 ImportsIE=[96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93. 05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3, 98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53 ImportsEM=[63.21, 50.17, 51.17, 50.21, 51.4, 52.15, 46.5, 45.04, 42.92, 45.24, 47.52, 47.57, 47.77, 41.05, 41.74, 49.11, 46.65, 47.37, 51.51, 59.23, 68.47, 8 0.36, 85.77, 100.88, 77.56, 94.3, 109.65, 100.0, 101.39, 96.84, 71.62, 70.38] PriceRiskXIM1=pd.DataFrame({'Commodity Prices':prices,'Sovereign Risk':Soverei gnRisk,'Political Risk':PoliticalRisk,'Country Risk':CountryRisk,'ImportsIE':I mportsIE, 'ExportsEM':ExportsEM, 'ImportsEM':ImportsEM}, index=year)

In [104]:

year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016]

GDP=[91.49, 91.53, 100.36, 113.91, 126.86, 134.15, 137.78, 149.26, 171.26, 19 0.53, 216.39, 241.07, 254.93, 239.29, 233.89, 255.18, 260.65, 263.93, 295.3, 3 48.16, 414.25, 491.49, 607.78, 726.82, 711.14, 867.39, 1032.07, 1100.41, 1171. 2, 1213.92, 1161.19, 1160.0] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04

GDPvPrices1=pd.DataFrame({'GDP':GDP, 'Commodity Prices':prices}, index=year)

2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]

```
In [105]: x=PriceRiskXIM1[['Commodity Prices','Sovereign Risk', 'Political Risk', 'Count
          ry Risk','ImportsIE','ExportsEM','ImportsEM']]
          y=GDPvPrices1['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

==========		_	========	=======	=======	
= Dep. Variable:		GDP	R-squared:		0.85	
0 Model:		OLS	Adj. R-squa	red:		0.80
7 Method:	Leas	t Squares	F-statistic	:		19.4
6 Date:	Mon, 04	Nov 2019	Prob (F-sta	tistic):	1.8	85e-0
8 Time:		14:22:22	Log-Likelih	ood:	-2	205.1
2 No. Observations:		32	AIC:			426.
2 Df Residuals:		24	BIC:			438.
<pre>0 Df Model: Covariance Type:</pre>		7 nonrobust				
, ,	=======	=======	========	=======	=======	
0.975]	coef	std err	t	P> t	[0.025	
const 3.33e+04	2070.1115	1.51e+04	0.137	0.892	-2.91e+04	
	4.4420	3.140	1.415	0.170	-2.039	
Sovereign Risk 93.455	45.3520	23.307	1.946	0.063	-2.751	
Political Risk 102.389	10.0881	44.722	0.226	0.823	-82.213	
Country Risk	-62.3319	69.585	-0.896	0.379	-205.949	
81.285 ImportsIE	-303.4657	374.514	-0.810	0.426	-1076.424	
469.493 ExportsEM 836.655	309.0725	255.624	1.209	0.238	-218.510	
ImportsEM 21.932	-20.9769	20.790	-1.009	0.323	-63.886	
==========	=======	=======	========	=======	=======	
= Omnibus: 5		4.464	Durbin-Wats	on:		0.28
Prob(Omnibus):		0.107	Jarque-Bera (JB):			3.51
6 Skew:		0.811	Prob(JB):			0.17
2 Kurtosis: 5		3.096	Cond. No.		1.2	20e+0
=======================================	=======	=======	========	======	=======	

Warnings:

[2] The condition number is large, 1.2e+05. This might indicate that there ar strong multicollinearity or other numerical problems.

Multivariate Regression Analysis excluding China

```
year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19
In [106]:
          99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,
          2015,2016]
          prices=[ 96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858
          , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375,
          97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04
          2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]
          SovereignRisk=[ 24.38, 23.12, 23.8, 25.62, 27.33, 29.6, 32.82, 36.82, 37.76, 3
          8.19, 38.02, 38.76, 37.52, 34.3, 34.95, 35.62, 36.06, 36.27, 36.99, 38.55, 39.
          27, 40.23, 40.34, 39.4, 38.54, 40.91, 40.99, 40.75, 40.73, 40.25, 38.9, 39.19]
          PoliticalRisk=[ 53.56, 52.33, 52.56, 52.49, 53.4, 55.0, 56.13, 59.73, 62.78, 6
          6.46, 66.6, 67.4, 69.63, 67.91, 64.67, 63.75, 66.34, 65.25, 66.01, 67.16, 67.0
          8, 67.17, 66.65, 66.1, 66.08, 65.73, 64.79, 63.86, 63.54, 63.34, 63.0, 63.77]
          CountryRisk=[ 41.02, 40.36, 40.7, 40.84, 41.27, 42.42, 43.58, 46.11, 48.55, 5
          1.19, 51.17, 51.89, 52.81, 50.52, 48.19, 49.98, 51.29, 50.46, 51.42, 52.79, 5
          2.81, 53.12, 53.13, 52.36, 49.98, 51.15, 51.2, 50.62, 50.48, 50.13, 49.6, 49.5
          51
          ExportsEM=[ 93.75, 90.3, 90.67, 89.89, 90.33, 90.95, 89.71, 89.05, 88.51, 88.7
          , 89.16, 89.55, 89.51, 87.6, 88.46, 91.01, 90.32, 90.49, 91.65, 93.33, 95.54,
          97.36, 98.14, 100.34, 96.4, 98.7, 100.81, 100.0, 100.14, 99.52, 95.02, 94.36]
          ImportsIE=[ 96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93.
          05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3,
          98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53
          ImportsEM=[ 62.71, 49.83, 50.81, 49.85, 51.05, 51.81, 46.26, 44.7,
                  42.7, 45.05, 47.31, 47.59, 40.94, 41.59, 48.94,
                  46.43, 47.13, 51.32, 59.04, 68.48, 80.33, 85.57, 100.65,
                  77.53, 94.3, 109.57, 100., 101.23, 96.79,
                                                                 71.52, 70.22]
          PriceRiskXIM2=pd.DataFrame({'Commodity Prices':prices,'Sovereign Risk':Soverei
          gnRisk,'Political Risk':PoliticalRisk,'Country Risk':CountryRisk,'ImportsIE':I
          mportsIE, 'ExportsEM':ExportsEM,'ImportsEM':ImportsEM},index=year)
```

```
In [107]:
          fig, axe = plt.subplots()
          PriceRiskXIM2['ImportsEM' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title(" Imports of Commodities 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[107]: Text(0.5, 1.0, 'Imports of Commodities 1985-2016')


```
In [108]:
          fig, axe = plt.subplots()
          PriceRiskXIM2['ExportsEM'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set_title(" Exports of Commodities 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[108]: Text(0.5, 1.0, 'Exports of Commodities 1985-2016')


```
In [109]:
          fig, axe = plt.subplots()
          PriceRiskXIM2[ 'Country Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
          axe.set_title(" Country Risk (ICRG)' 1985-2016", loc='center', fontsize=18, fo
          ntweight = "bold" )
```

Out[109]: Text(0.5, 1.0, " Country Risk (ICRG)' 1985-2016")


```
In [110]:
          fig, axe = plt.subplots()
          PriceRiskXIM2[ 'Political Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title(" Political Risk (ICRG)' 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[110]: Text(0.5, 1.0, " Political Risk (ICRG)' 1985-2016")


```
In [111]:
          fig, axe = plt.subplots()
          PriceRiskXIM2[ 'Sovereign Risk'].plot.bar(figsize =(10,6))
          axe.set ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set title(" Sovereign Risk (ICRG)' 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[111]: Text(0.5, 1.0, " Sovereign Risk (ICRG)' 1985-2016")

In [112]: year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] GDP=[79.2, 79.77, 87.58, 97.36, 108.3, 119.46, 122.35, 131.02, 147.48, 170.75, 188.99, 208.11, 217.54, 197.54, 188.45, 204.67, 203.63, 200.06, 222.9, 262.99, 314.53, 371.34, 451.8, 522.74, 479.0, 593.76, 690.49, 707.26, 725.73, 723.36, 631.45, 630.43] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] GDPvPrices2=pd.DataFrame({'GDP':GDP, 'Commodity Prices':prices}, index=year)

```
In [113]:
          fig, axe = plt.subplots()
          GDPvPrices2['GDP'].plot.bar(figsize =(10,6))
          axe.set_ylabel('GDP Per Capita', fontsize=20)
          axe.set_title("GDP 1985-2016", loc='center', fontsize=18, fontweight = "bold"
```

Out[113]: Text(0.5, 1.0, 'GDP 1985-2016')


```
In [114]: x=PriceRiskXIM2[['Commodity Prices','Sovereign Risk', 'Political Risk', 'Count
          ry Risk','ImportsIE','ExportsEM','ImportsEM']]
          y=GDPvPrices2['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

		_	ion Results			
= Dep. Variable:		GDP	R-squared:			0.91
2 Model:		OLS	Adj. R-squa	nad:		0.88
7		OLS	Auj. N-3qua	i eu.		0.00
Method: 2	Leas	t Squares	F-statistic	:		35.7
Date: 1	Mon, 04	Nov 2019	Prob (F-sta	tistic):	3.4	7e-1
Time: 0		14:22:26	Log-Likelih	ood:	-1	.78.8
No. Observations:		32	AIC:			373.
Df Residuals: 3		24	BIC:			385.
Df Model: Covariance Type:	1	7 nonrobust				
======	=======	=======	========	=======	=======	====
0.975]	coef	std err	t	P> t	[0.025	
const 1.51e+04	561.3684	7061.930	0.079	0.937	-1.4e+04	
Commodity Prices 5.371	2.4663	1.407	1.753	0.092	-0.438	
Sovereign Risk 35.639	15.4113	9.801	1.572	0.129	-4.817	
Political Risk 50.770	12.7721	18.411	0.694	0.495	-25.226	
Country Risk	-27.3955	28.303	-0.968	0.343	-85.809	
•	-120.3129	165.813	-0.726	0.475	-462.535	
221.909 ExportsEM	122.2230	108.138	1.130	0.270	-100.964	
345.410 ImportsEM 11.196	-7.9589	9.281	-0.858	0.400	-27.114	
_	========		========	=======	========	====
= Omnibus: 1		2.968	Durbin-Wats	on:		0.30
Prob(Omnibus):		0.227	Jarque-Bera (JB):			2.41
0 Skew:		0.668	Prob(JB):			0.30
0 Kurtosis: 5		2.853	Cond. No.		1.2	.8e+0
=======================================	=======		=======	=======	=======	====

Warnings:

[2] The condition number is large, 1.28e+05. This might indicate that there a re

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

Multivariate Regression Analysis without BRICS countries

```
In [115]:
          year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19
          99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,
          2015,2016]
          prices=[ 96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858
          , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375,
          97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04
          2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]
          SovereignRisk=[ 23.97, 22.69, 23.22, 25.02, 27.13, 29.87, 33.51, 37.89, 38.93,
          39.33, 38.94, 39.72, 37.96, 34.17, 35.6, 35.77, 36.06, 36.34, 36.79, 38.16, 3
          8.78, 39.77, 39.99, 39.18, 38.25, 40.31, 40.67, 40.69, 40.73, 40.26, 39.1, 39.
          021
          PoliticalRisk=[ 53.17, 51.63, 51.97, 51.58, 52.89, 55.04, 56.92, 60.22, 63.63,
          67.33, 67.37, 68.03, 69.97, 68.49, 66.14, 65.02, 67.47, 66.3, 66.45, 67.12, 6
          7.16, 67.37, 66.91, 66.3, 66.2, 65.84, 65.09, 64.11, 63.89, 63.94, 63.61, 64.5
          CountryRisk=[ 40.94, 39.92, 40.42, 40.54, 41.12, 42.67, 44.29, 46.9, 49.36, 5
          1.65, 51.56, 52.27, 53.2, 51.05, 49.35, 50.85, 51.92, 51.0, 51.86, 52.96, 52.9
          3, 53.24, 53.29, 52.58, 50.31, 51.42, 51.6, 50.96, 50.9, 50.76, 50.38, 50.35]
          ExportsEM=[ 92.95, 88.92, 89.4, 88.43, 88.95, 89.69, 88.29, 88.19, 87.59, 87.8
          3, 88.35, 88.72, 88.67, 86.63, 87.53, 90.23, 89.45, 89.68, 90.93, 92.75, 95.13
          , 97.17, 98.03, 100.37, 96.06, 98.55, 100.85, 100.0, 100.15, 99.49, 94.6, 93.8
          7]
          ImportsIE=[ 96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93.
          05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3,
          98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53
          ImportsEM=[ 60.67, 46.23, 47.71, 46.65, 48.01, 48.97, 42.97, 42.22,
                  39.85, 42.51, 45.2, 44.93, 44.93, 37.81, 38.51, 46.17,
                  43.48, 44.45, 48.82, 57.38, 67.16, 80.57, 86.3, 101.76,
                  76.23, 94.1, 110.3, 100., 101.18, 96.57,
                                                                 70.16, 68.8
          PriceRiskXIM3=pd.DataFrame({'Commodity Prices':prices,'Sovereign Risk':Soverei
          gnRisk,'Political Risk':PoliticalRisk,'Country Risk':CountryRisk,'ImportsIE':I
          mportsIE, 'ExportsEM':ExportsEM,'ImportsEM':ImportsEM},index=year)
```

```
In [116]:
          fig, axe = plt.subplots()
          PriceRiskXIM3['ImportsEM' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title(" Imports of Commodities 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[116]: Text(0.5, 1.0, ' Imports of Commodities 1985-2016')


```
In [117]:
         fig, axe = plt.subplots()
          PriceRiskXIM3['ExportsEM'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set_title(" Exports of Commodities 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[117]: Text(0.5, 1.0, 'Exports of Commodities 1985-2016')


```
In [118]:
          fig, axe = plt.subplots()
          PriceRiskXIM3[ 'Country Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
          axe.set_title(" Country Risk (ICRG)' 1985-2016", loc='center', fontsize=18, fo
          ntweight = "bold" )
```

Out[118]: Text(0.5, 1.0, " Country Risk (ICRG)' 1985-2016")


```
In [119]:
          fig, axe = plt.subplots()
          PriceRiskXIM3[ 'Political Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title(" Political Risk (ICRG)' 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[119]: Text(0.5, 1.0, " Political Risk (ICRG)' 1985-2016")


```
In [120]:
          fig, axe = plt.subplots()
          PriceRiskXIM3[ 'Sovereign Risk'].plot.bar(figsize =(10,6))
          axe.set ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set title(" Sovereign Risk (ICRG)' 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[120]: Text(0.5, 1.0, " Sovereign Risk (ICRG)' 1985-2016")

In [121]: year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] GDP=[60.14, 56.82, 61.18, 69.17, 74.06, 83.53, 93.63, 105.84, 117.18, 128.56, 129.78, 142.45, 149.31, 135.43, 144.51, 156.14, 157.67, 152.16, 161.53, 183.01 , 211.72, 244.55, 283.91, 329.84, 297.44, 357.15, 414.72, 436.45, 453.64, 456. 07, 427.51, 420.92] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] GDPvPrices3=pd.DataFrame({'GDP':GDP, 'Commodity Prices':prices}, index=year)

```
In [122]:
          fig, axe = plt.subplots()
          GDPvPrices3['GDP'].plot.bar(figsize =(10,6))
          axe.set_ylabel('GDP Per Capita', fontsize=20)
          axe.set_title("GDP 1985-2016", loc='center', fontsize=18, fontweight = "bold"
```

Out[122]: Text(0.5, 1.0, 'GDP 1985-2016')


```
In [123]: x=PriceRiskXIM3[['Commodity Prices','Sovereign Risk', 'Political Risk', 'Count
          ry Risk','ImportsIE','ExportsEM','ImportsEM']]
          y=GDPvPrices3['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

===========		_	=========	=======	========	:====	
= Dep. Variable:		GDP	R-squared:			0.90	
0 Model:		OLS	Adj. R-squa	red:	0.87		
0							
Method: 1	Leas	t Squares	F-statistic	:		30.7	
Date:	Mon, 04	Nov 2019	Prob (F-stat	tistic):	1.7	'4e-1	
0 Time:		14:22:31	Log-Likelih	ood:	-164.7		
<pre>8 No. Observations: 6</pre>		32	AIC:			345.	
o Df Residuals: 3		24	BIC:			357.	
Df Model: Covariance Type:	ı	7 nonrobust					
=======================================	========	=======	========	=======	=======		
1	coef	std err	t	P> t	[0.025		
0.975] 							
const	780.6359	4195.131	0.186	0.854	-7877.690	9	
-	2.5573	0.837	3.056	0.005	0.830		
4.284 Sovereign Risk	4.5622	5.693	0.801	0.431	-7.188		
16.313 Political Risk	-1.8468	12.340	-0.150	0.882	-27.315		
23.622 Country Risk	-5.4141	19.204	-0.282	0.780	-45.048		
34.220 ImportsIE	-123.1664	91.209	-1.350	0.189	-311.413		
65.081 ExportsEM	128.8083	59.337	2.171	0.040	6.343		
251.273 ImportsEM -2.024	-13.9411	5.774	-2.414	0.024	-25.858		
	=======	=======	========	=======	=======	====	
= Omnibus: 0		1.992	Durbin-Watso	on:		0.44	
Prob(Omnibus): 7		0.369	Jarque-Bera	(JB):		1.62	
Skew:		0.541	Prob(JB):			0.44	
3 Kurtosis: 5		2.782	Cond. No.		1.1	.7e+0	
=======================================	========	=======	========	=======	========		

Warnings:

[2] The condition number is large, 1.17e+05. This might indicate that there a re

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

Multivariate Regression Analysis with only BRICS countries

```
In [124]:
          SovereignRisk=[ 28.67, 27.19, 27.56, 28.94, 28.0, 27.33, 28.23, 32.69, 34.87,
          34.95, 35.43, 35.75, 36.67, 36.69, 35.07, 36.96, 37.89, 37.8, 39.26, 40.92, 4
          2.1, 43.03, 42.9, 41.76, 41.27, 44.12, 43.32, 42.26, 42.09, 41.66, 40.07, 41.1
          3]
          PoliticalRisk=[ 58.6, 58.02, 56.98, 58.65, 56.94, 55.31, 53.65, 59.89, 61.9, 6
          3.93, 64.63, 65.9, 68.43, 65.82, 59.8, 59.68, 62.11, 62.3, 65.39, 67.87, 67.28
          , 66.78, 66.37, 65.88, 65.91, 65.13, 63.09, 62.56, 62.03, 60.3, 59.85, 59.8]
          CountryRisk=[ 44.11, 44.24, 43.69, 44.29, 43.23, 42.32, 42.03, 45.41, 47.11, 4
          9.34, 50.04, 51.15, 51.97, 49.33, 45.37, 47.54, 49.18, 49.26, 50.62, 52.61, 5
          2.78, 53.04, 53.09, 52.18, 49.8, 50.58, 49.84, 49.58, 49.21, 47.91, 47.03, 46.
          ExportsEM=[ 98.17, 97.66, 97.58, 97.64, 97.69, 97.72, 97.35, 93.61, 93.31, 93.
          32, 93.54, 93.9, 93.9, 92.75, 93.29, 94.94, 94.66, 94.59, 95.28, 96.27, 97.54,
          98.38, 98.81, 100.19, 98.07, 99.41, 100.55, 100.0, 100.09, 99.71, 97.2, 96.87
          ImportsIE=[ 96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93.
          05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3,
          98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53
          ImportsEM=[ 72.75, 64.97, 64.13, 63.57, 64.09, 64.06, 59.72, 53.49,
                  52.15, 53.44, 54.49, 55.5, 56.3, 50.78, 51.44, 57.95,
                  56.16, 56.16, 59.57, 64.8, 72.4, 79.73, 84.19, 98.26,
                  81.56, 94.91, 107.72, 100. , 102.02, 97.64,
                                                                 76.02, 75.1
          PriceRiskXIM4=pd.DataFrame({'Commodity Prices':prices,'Sovereign Risk':Soverei
          gnRisk,'Political Risk':PoliticalRisk,'Country Risk':CountryRisk,'ImportsIE':I
          mportsIE, 'ExportsEM':ExportsEM, 'ImportsEM':ImportsEM}, index=year)
```

```
In [125]:
          fig, axe = plt.subplots()
          PriceRiskXIM4['ImportsEM' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title(" Imports of Commodities 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[125]: Text(0.5, 1.0, 'Imports of Commodities 1985-2016')


```
In [126]: | fig, axe = plt.subplots()
          PriceRiskXIM4['ExportsEM'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set_title(" Exports of Commodities 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[126]: Text(0.5, 1.0, 'Exports of Commodities 1985-2016')


```
In [127]: | fig, axe = plt.subplots()
          PriceRiskXIM4[ 'Country Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
          axe.set_title(" Country Risk (ICRG)' 1985-2016", loc='center', fontsize=18, fo
          ntweight = "bold" )
```

Out[127]: Text(0.5, 1.0, " Country Risk (ICRG)' 1985-2016")


```
In [128]:
          fig, axe = plt.subplots()
          PriceRiskXIM4[ 'Political Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title(" Political Risk (ICRG)' 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[128]: Text(0.5, 1.0, " Political Risk (ICRG)' 1985-2016")


```
In [129]:
          fig, axe = plt.subplots()
          PriceRiskXIM4[ 'Sovereign Risk'].plot.bar(figsize =(10,6))
          axe.set ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set title(" Sovereign Risk (ICRG)' 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[129]: Text(0.5, 1.0, " Sovereign Risk (ICRG)' 1985-2016")

In [130]: year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016]

GDP=[209.05, 221.7, 247.27, 281.69, 324.89, 323.98, 303.38, 279.49, 333.48, 3 76.46, 476.23, 536.93, 571.81, 550.87, 502.03, 552.3, 569.57, 599.26, 696.62, 843.59, 1021.82, 1232.32, 1579.39, 1917.75, 1952.22, 2398.11, 2884.13, 3092.28 , 3323.87, 3487.46, 3362.22, 3377.22] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858

, 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]

GDPvPrices4=pd.DataFrame({'GDP':GDP, 'Commodity Prices':prices}, index=year)

```
In [131]:
          fig, axe = plt.subplots()
          GDPvPrices4['GDP'].plot.bar(figsize =(10,6))
          axe.set_ylabel('GDP Per Capita', fontsize=20)
          axe.set_title("GDP 1985-2016", loc='center', fontsize=18, fontweight = "bold"
```

Out[131]: Text(0.5, 1.0, 'GDP 1985-2016')


```
In [132]: x=PriceRiskXIM4[['Commodity Prices','Sovereign Risk', 'Political Risk', 'Count
          ry Risk','ImportsIE','ExportsEM','ImportsEM']]
          y=GDPvPrices4['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

===========		_	=========		========	.====
= Dep. Variable:		GDP	R-squared:			0.90
5 Model:		0LS	Adj. R-squa	red:		0.87
8						
Method: 2	Leas [.]	t Squares	F-statistic	:		32.8
Date:	Mon, 04	Nov 2019	Prob (F-sta	tistic):	8.5	9e-1
1 Time:		14:22:37	Log-Likelih	ood:	-2	232.4
5 No. Observations: 9		32	AIC:			480.
Df Residuals: 6		24	BIC:			492.
o Df Model: Covariance Type:	1	7 nonrobust				
=======================================	=======	=======	=========	=======	========	:====
0.975]	coef	std err	t	P> t	[0.025	
const 4.75e+04	9647.2087	1.84e+04	0.526	0.604	-2.82e+04	
	8.3080	4.964	1.673	0.107	-1.938	
Sovereign Risk	172.0263	48.368	3.557	0.002	72.199	
	-40.6530	82.298	-0.494	0.626	-210.509	
129.202 Country Risk	-163.0242	119.333	-1.366	0.185	-409.316	
83.267 ImportsIE	-25.4742	239.769	-0.106	0.916	-520.332	
469.384 ExportsEM	-43.2015	130.317	-0.332	0.743	-312.163	
225.760 ImportsEM 100.116	13.4044	42.013	0.319	0.752	-73.307	
==========	========	=======	========	======	=======	====
= Omnibus: 3		2.330	Durbin-Wats	on:		0.53
Prob(Omnibus):		0.312	Jarque-Bera	(JB):		1.71
8 Skew:		0.567	Prob(JB):			0.42
4 Kurtosis: 4		2.954	Cond. No.		6.2	27e+0
=======================================	========	=======	========	=======	=======	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

[2] The condition number is large, 6.27e+04. This might indicate that there a re strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

As seen throughout the various regression models, all models portray high R2 values, showing that the variables we put in the model are accurate. In every multivariate regression model, we see a high coefficient Sovereign Risk among its other correspondent independent variables. Given that we have seen this similar trend when conducting simple correlations and bi-linear regressions, perhaps let's delve into one BRIC EM economy and one non EM economy to see the effect sovereign risk really has on GDP output and commodity prices. India, Argentina, and China will each be examined closely to demonstrate how Sovereign, Country, and Economic Risk each greatly affect commodity prices and each respective GDPs.

India vs Argentina

India Analysis

In [133]: | year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] GDP=[237.618, 252.751, 283.75, 299.645, 300.187, 326.608, 274.842, 293.262, 284.194, 333.014, 366.6, 399.791, 423.189, 428.767, 466.841, 476.636, 493.934, 523.768, 618.369, 721.589, 834.218, 949.118, 1238.7, 1224.1, 1365.37, 1708.46, 1823.05, 1827.64, 1856.72, 2039.13, 2103.59, 2289.75] SovereignRisk=[25.42,22.58,21.0,19.83,25.08,36.92,44.0,43.67,41.5,40.33,39.67, 39.58,36.83,22.0,32.96,33.12, 31.33, 33.96, 34.88, 35.54, 37.38, 38.83, 40.12, 40.04, 37.29, 39.04, 39.71, 40.12, 40.75, 39.33, 39.12, 40.71] EconomicRisk=[30.34, 33.25, 32.12, 29.62, 30.75, 29.83, 27.33, 27.12, 29.96, 34.62, 35.79, 36.29, 35. , 33.04, 31.32, 33.58, 33.54, 34.5 , 34.5 , 35.67, 35.5 , 35.54, 35.5 , 32.58, 33.5 , 32.92, 33.38, 33. , 32.54, 33.04, 35.17, 35.5] PoliticalRisk=[47.83, 51.58, 49.08, 46.17, 42.58, 39.08, 34.75, 47.75, 55.5, 63.75, 64.08, 62.92, 65.5, 60.58, 56.75, 54.92, 56.33, 55.92, 58.46, 63.17, 63.71, 63.54, 62.46, 60.83, 63.17, 62.04, 58.33, 57.62, 58.83, 60.46, 61.62, 62.88] CountryRisk=[39.085, 42.415, 40.6, 37.895, 36.665, 34.455, 31.04, 37.435, 49.185, 49.935, 49.605, 50.25, 46.81, 44.035, 44.25, 44.935, 45.21, 46.48 49.42, 49.605, 49.54, 48.98, 46.705, 48.335, 47.48, 45.855, 45.31, 45.68 5, 46.75, 48.395, 49.19 Imports=[65.15, 52.63, 52.03, 48.17, 50.35, 51.41, 46.24, 44.91, 43.18, 44.81, 45.69, 46.85, 49.94, 43.44, 44.42, 51.5, 48.27, 47.4, 51.21, 55.66, 64.68, 71.98, 75.15, 93.23, 71.92] 95.98, 109.79, 100., 103.85, 98.82, 74.29, 79.42, Exports=[98.85, 98.19, 98.24, 98.01, 98.16, 98.29, 98.02, 97.95, 97.83, 97.87, 97.93, 98.02, 98.11, 97.73, 97.88, 98.32, 98.17, 98.16, 98.34, 98.59, 98.98, 99.26, 99.37, 99.86, 99.4, 99.85, 100.19, 100., 100.07, 99.94, 99.18, 99.09] IndGDPPriceRisk=pd.DataFrame({'CountryRisk':CountryRisk,'PoliticalRisk':Politi calRisk, 'EconomicRisk': EconomicRisk, 'SovereignRisk': SovereignRisk, 'GDP': GDP, 'C ommodity Prices':prices,'Imports':Imports,'Exports':Exports},index=year)

In [134]: IndGDPPriceRisk

Out[134]:

	CountryRisk	PoliticalRisk	EconomicRisk	SovereignRisk	GDP	Commodity Prices	Imports
1985	39.085	47.83	30.34	25.42	237.618	96.2167	65.15
1986	42.415	51.58	33.25	22.58	252.751	96.6750	52.63
1987	40.600	49.08	32.12	21.00	283.750	102.2080	52.03
1988	37.895	46.17	29.62	19.83	299.645	131.1170	48.17
1989	36.665	42.58	30.75	25.08	300.187	132.3250	50.35
1990	34.455	39.08	29.83	36.92	326.608	124.0250	51.41
1991	31.040	34.75	27.33	44.00	274.842	117.0420	46.24
1992	37.435	47.75	27.12	43.67	293.262	113.8580	44.91
1993	42.730	55.50	29.96	41.50	284.194	108.2580	43.18
1994	49.185	63.75	34.62	40.33	333.014	126.5080	44.81
1995	49.935	64.08	35.79	39.67	366.600	137.5750	45.69
1996	49.605	62.92	36.29	39.58	399.791	134.3500	46.85
1997	50.250	65.50	35.00	36.83	423.189	131.6670	49.94
1998	46.810	60.58	33.04	22.00	428.767	114.4000	43.44
1999	44.035	56.75	31.32	32.96	466.841	98.4833	44.42
2000	44.250	54.92	33.58	33.12	476.636	99.9917	51.50
2001	44.935	56.33	33.54	31.33	493.934	96.3750	48.27
2002	45.210	55.92	34.50	33.96	523.768	97.3167	47.40
2003	46.480	58.46	34.50	34.88	618.369	104.8580	51.21
2004	49.420	63.17	35.67	35.54	721.589	125.7830	55.66
2005	49.605	63.71	35.50	37.38	834.218	140.3920	64.68
2006	49.540	63.54	35.54	38.83	949.118	182.8250	71.98
2007	48.980	62.46	35.50	40.12	1238.700	206.5250	75.15
2008	46.705	60.83	32.58	40.04	1224.100	256.0330	93.23
2009	48.335	63.17	33.50	37.29	1365.370	212.7420	79.42
2010	47.480	62.04	32.92	39.04	1708.460	256.0420	95.98
2011	45.855	58.33	33.38	39.71	1823.050	302.0000	109.79
2012	45.310	57.62	33.00	40.12	1827.640	276.7830	100.00
2013	45.685	58.83	32.54	40.75	1856.720	258.1830	103.85
2014	46.750	60.46	33.04	39.33	2039.130	242.5080	98.82
2015	48.395	61.62	35.17	39.12	2103.590	201.5750	74.29
2016	49.190	62.88	35.50	40.71	2289.750	200.0830	71.92

```
In [135]:
          fig, axe = plt.subplots()
          IndGDPPriceRisk['CountryRisk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
          axe.set_title("India's Country Risk 1985-2016", loc='center', fontsize=18, fo
          ntweight = "bold" )
```

Out[135]: Text(0.5, 1.0, "India's Country Risk 1985-2016")


```
In [136]:
          fig, axe = plt.subplots()
          IndGDPPriceRisk['PoliticalRisk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title("India's Political Risk 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[136]: Text(0.5, 1.0, "India's Political Risk 1985-2016")


```
In [137]:
          fig, axe = plt.subplots()
          IndGDPPriceRisk['SovereignRisk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set_title("India's Sovereign Risk 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[137]: Text(0.5, 1.0, "India's Sovereign Risk 1985-2016")


```
In [138]:
          fig, axe = plt.subplots()
          IndGDPPriceRisk['GDP'].plot.bar(figsize =(10,6))
          axe.set_ylabel('GDP (US Dollar) ', fontsize=20)
          axe.set_title("India's GDP 1985-2016", loc='center', fontsize=18, fontweight
          = "bold" )
```

Out[138]: Text(0.5, 1.0, "India's GDP 1985-2016")


```
In [139]:
          fig, axe = plt.subplots()
          IndGDPPriceRisk['Exports' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set_title(" Exports of Commodities by India 1985-2016", loc='center', font
          size=18, fontweight = "bold" )
```

Out[139]: Text(0.5, 1.0, 'Exports of Commodities by India 1985-2016')


```
In [140]:
          fig, axe = plt.subplots()
          IndGDPPriceRisk['Imports' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title(" Imports of Commodities by India 1985-2016", loc='center', font
          size=18, fontweight = "bold" )
```

Out[140]: Text(0.5, 1.0, ' Imports of Commodities by India 1985-2016')


```
In [141]:
          ax=IndGDPPriceRisk['Commodity Prices'].plot(label='Prices',figsize=(10,6))
          ax.set ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=IndGDPPriceRisk['SovereignRisk'].plot(secondary_y=True,label='Soveriegn Ri
          sk')
          ax2.set ylabel('Sovereign Risk (ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Effect of India Soveriegn Risk on Commodity Prices',fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [142]:
          ax=IndGDPPriceRisk['GDP'].plot(label='Prices',figsize=(10,6))
          ax.set ylabel('GDP(US Current Dollar)',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=IndGDPPriceRisk['SovereignRisk'].plot(secondary_y=True,label='Sovereign Ri
          sk')
          ax2.set_ylabel('Sovereign Risk (ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title("Effect of India's Soveriegn Risk on GDP", fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
IndGDPPriceRisk.plot.scatter(x='SovereignRisk',y='Commodity Prices',figsize=(1
IndGDPPriceRisk['SovereignRisk'].corr(IndGDPPriceRisk['Commodity Prices'])
```

Out[143]: 0.46613794096425415


```
In [144]: x=IndGDPPriceRisk[['SovereignRisk']]
          y=IndGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

=======================================	======	=======				======	
= Dep. Variable: 7	Commo	dity Prices	R-squared	:	0.21		
Model:		OLS	Adj. R-sq	uared:		0.19	
1 Method:	Le	ast Squares	F-statist	ic:	8.32		
8 Date:	Mon.	04 Nov 2019	Prob (F-s	tatistic):	0.0071		
7	,		•	•			
Time: 9		14:22:43	Log-Likel	ihood:		-173.5	
No. Observations: 2		32	AIC:			351.	
Df Residuals:		30	BIC:			354.	
1 Df Model:		1					
Covariance Type:		nonrobust ======					
====							
0751	coef	std err	t	P> t	[0.025	0.	
975]							
const 4.905	6.2786	53.189	0.118	0.907	-102.348	11	
SovereignRisk	4.2589	1.476	2.886	0.007	1.245		
7.273	=======	=========	:=======	========	:=======	======	
=							
Omnibus: 2		2.613	Durbin-Wa	tson:		0.26	
Prob(Omnibus):		0.271	Jarque-Be	ra (JB):		2.20	
8 Skew:		0.531	Prob(JB):			0.33	
1 Kurtosis:		2.273	Cond. No.			19	
1.		_,_,					
=======================================	======			=======		======	
=							

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
IndGDPPriceRisk.plot.scatter(x='PoliticalRisk',y='Commodity Prices',figsize=(1
IndGDPPriceRisk['PoliticalRisk'].corr(IndGDPPriceRisk['Commodity Prices'])
```

Out[145]: 0.3750372018894608


```
In [146]: x=IndGDPPriceRisk[['PoliticalRisk']]
          y=IndGDPPriceRisk['Commodity Prices']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
                Commodity Prices
                             R-squared:
                                                        0.14
Model:
                          OLS
                              Adj. R-squared:
                                                        0.11
                                                        4.91
Method:
                  Least Squares
                              F-statistic:
Date:
               Mon, 04 Nov 2019
                              Prob (F-statistic):
                                                       0.034
Time:
                      14:22:44
                              Log-Likelihood:
                                                      -175.0
No. Observations:
                              AIC:
                                                        354.
                          32
Df Residuals:
                           30
                              BIC:
                                                        357.
Df Model:
                           1
Covariance Type:
                     nonrobust
______
                     std err
                                t
                                       P>|t|
                                                [0.025
               coef
                                                         0.
975]
           -12.6404 77.284 -0.164 0.871 -170.474
                                                        14
const
5.194
PoliticalRisk
             2.9959
                      1.352
                               2.216
                                       0.034
                                                 0.235
Omnibus:
                        4.178
                              Durbin-Watson:
                                                        0.20
Prob(Omnibus):
                        0.124
                              Jarque-Bera (JB):
                                                        3.83
Skew:
                        0.815
                              Prob(JB):
                                                        0.14
Kurtosis:
                        2.535
                              Cond. No.
                                                        42
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correc
```

tly specified.

```
In [147]:
          IndGDPPriceRisk.plot.scatter(x='CountryRisk',y='Commodity Prices',figsize=(10,
          IndGDPPriceRisk['CountryRisk'].corr(IndGDPPriceRisk['Commodity Prices'])
```

Out[147]: 0.34499524223578715


```
In [148]: x=IndGDPPriceRisk[['CountryRisk']]
          y=IndGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results								
=		========			========			
Dep. Variable	: Com	modity Prices	R-squar	red:		0.11		
Model:		OLS	Adj. R-	Adj. R-squared:				
0 Method:		Least Squares	F-stati	istic:		4.05		
3 Date:	Mon	, 04 Nov 2019	Prob (F	-statistic):	0.053		
1 Time:		14:22:44	Log-Lik	kelihood:		-175.4		
9 No. Observati	ons:	32	AIC:			355.		
<pre>0 Df Residuals:</pre>		30	BIC:			357.		
9 Df Model: Covariance Ty	me:	1 nonrobust						
=========	-				=======			
5]	coef	std err	t	P> t	[0.025	0.97		
 const	-37.7834		-0.388	0.701	-236.591	161.0		
24 CountryRisk 55	4.3463	2.159	2.013	0.053	-0.063	8.7		
========	=======	========	=======		=======	======		
= Omnibus: 0		4.425	Durbin-	-Watson:		0.20		
Prob(Omnibus)	:	0.109	Jarque-	-Bera (JB):		4.07		
Skew: 0		0.845	Prob(JE	3):		0.13		
Kurtosis: 3.		2.556	Cond. N	No.		41		
=======================================	=======		=======		=======	======		
Warnings:								

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
IndGDPPriceRisk.plot.scatter(x='SovereignRisk',y='GDP',figsize=(10,6))
IndGDPPriceRisk['SovereignRisk'].corr(IndGDPPriceRisk['GDP'])
```

Out[149]: 0.4469772245049541


```
In [150]: x=IndGDPPriceRisk[['SovereignRisk']]
          y=IndGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results							
=							
Dep. Variable: 0		GDP	R-square	ed:		0.20	
Model:		OLS	Adj. R-	Adj. R-squared:			
Method:		Least Squares	F-stati	stic:		7.49	
Date:	Mon	, 04 Nov 2019	Prob (F	-statistic)	:	0.010	
Time:		14:22:45	Log-Like	elihood:		-249.4	
6 No. Observatio	ns:	32	AIC:			502.	
9 Df Residuals:		30	BIC:			505.	
8 Df Model: Covariance Typ	e:	1 nonrobust					
=======================================	=======	=========		=======		======	
975]	coef	std err	t	P> t	[0.025	0.	
const 8.244	-684.6764	569.425	-1.202	0.239	-1847.596	47	
	43.2396	15.799	2.737	0.010	10.973	7	
=======================================	=======	========	=======	=======	=======	======	
Omnibus: 7		1.624	Durbin-N	Watson:		0.12	
Prob(Omnibus):		0.444	Jarque-l	Bera (JB):		1.45	
Skew:		0.399	Prob(JB):		0.48	
<pre>2 Kurtosis: 1.</pre>		2.325	Cond. No	ο.		19	
=======================================	=======	=========	=======	=======	=======	======	
Warnings:							
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified							

tly specified.

```
IndGDPPriceRisk.plot.scatter(x='PoliticalRisk',y='GDP',figsize=(10,6))
IndGDPPriceRisk['PoliticalRisk'].corr(IndGDPPriceRisk['GDP'])
```

Out[151]: 0.45701662953741795


```
In [152]: x=IndGDPPriceRisk[['PoliticalRisk']]
          y=IndGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results							
=							
Dep. Variable	:		GDP	R-squar	ed:		0.20
Model: 2			OLS	Adj. R-	squared:		0.18
Method:		Least So	quares	F-stati	stic:		7.92
Date:	Мо	n, 04 Nov	2019	Prob (F	-statistic):		0.0085
5 Time:		14:	22:45	Log-Lik	elihood:		-249.2
7 No. Observation	ons:		32	AIC:			502.
5 Df Residuals:			30	BIC:			505.
5 Df Model:			1				
Covariance Ty			obust				
=======================================							
975]	coe	f std	err	t	P> t	[0.025	0.
const 0.176	-1343.268	3 785.	127	-1.711	0.097	-2946.712	26
PoliticalRisk 6.706	38.654	8 13.	735	2.814	0.009	10.604	6
=======================================	=======	=======		======	========	=======	======
Omnibus:			3.673	Durbin-	Watson:		0.09
Prob(Omnibus)	:		0.159	Jarque-	Bera (JB):		3.19
2 Skew:			0.689	Prob(JB):		0.20
3 Kurtosis: 1.			2.298	Cond. N	0.		42
	=======	======	=====	======		=======	
=							
Warnings:	Ennone see	umo +ba+	+ho 55	vaniance	matriv of th	o onnone is	connoc
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified							

tly specified.

```
IndGDPPriceRisk.plot.scatter(x='CountryRisk',y='GDP',figsize=(10,6))
IndGDPPriceRisk['CountryRisk'].corr(IndGDPPriceRisk['GDP'])
```

Out[153]: 0.4423876671089368


```
In [154]: x=IndGDPPriceRisk[['CountryRisk']]
          y=IndGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results							
=							
- Dep. Variable: 6		GDP	R-squar	red:		0.19	
Model:		OLS	Adj. R-	-squared:		0.16	
9 Method:		Least Squares	F-stati	istic:		7.30	
0 Date:	Mon	, 04 Nov 2019	Prob (F	-statistic):	0.011	
2 Time:		14:22:46	Log-Lik	kelihood:		-249.5	
4 No. Observations:	:	32	AIC:			503.	
1 Df Residuals:		30	BIC:			506.	
0 Df Model:		1					
Covariance Type:		nonrobust		:=======	========	=======	
==							
5]	coef	std err	t	P> t	[0.025	0.97	
const -1799	9.0820	984.819	-1.827	0.078	-3810.350	212.1	
CountryRisk 59	0.0099	21.841	2.702	0.011	14.405	103.6	
===========	======	========			=======	======	
= Omnibus:		3.900	Durbin-	-Watson:		0.08	
6 Prob(Omnibus):		0.142	Jarque-	Bera (JB):		3.35	
0 Skew:		0.704	Prob(JE	3):		0.18	
7 Kurtosis: 3.		2.270	Cond. N	lo.		41	
=======================================		=========		:======	========	======	
Warnings:	ne 25611	ma +ba+ +ba co	wanianco	mathix of	+60 000000	ic connoc	

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [155]:
          ax=IndGDPPriceRisk['Exports'].plot(label='Exports',figsize=(10,6))
          ax.set_ylabel('Ratio of Exports to GDP ',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=IndGDPPriceRisk['Commodity Prices'].plot(secondary_y=True,label='Commodity
          Prices')
          ax2.set_ylabel('Prices',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Exports of Commodities by India vs Commodity Prices 1985-2016', font
          size=20)
          plt.figure(figsize=(10,10))
          plt.show()
```

Exports of Commodities by India vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

```
In [156]:
          IndGDPPriceRisk.plot.scatter(x='CountryRisk',y='Commodity Prices',figsize=(10,
          IndGDPPriceRisk['CountryRisk'].corr(IndGDPPriceRisk['Commodity Prices'])
```

Out[156]: 0.34499524223578715


```
In [157]: x=IndGDPPriceRisk[['Exports']]
          y=IndGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

========	=======	=======	=====	=====		=======	=======
= Dep. Variab 8	le:	Commodity Pr	ices	R-sq	uared:		0.84
Model:			OLS	Adj.	R-squared:		0.84
3 Method:		Least Squ	ares	F-sta	atistic:		167.
6 Date:		Mon, 04 Nov	2019	Prob	(F-statistic):	8.19e-1
4 Time:		14:2	2:47	Log-l	_ikelihood:		-147.3
5 No. Observa	tions:		32	AIC:			298.
7 Df Residual	.s:		30	BIC:			301.
6 Df Model:			1				
Covariance		nonro	bust				
=======	=======		=====	:====:		=======	=======
= 5]	coef	std err		t	P> t	[0.025	0.97
const 5	-7074.9657	558.648	-12	.664	0.000	-8215.877	-5934.05
_	73.2852	5.661	12	.946	0.000	61.724	84.84
========	=======	.=======	=====	=====		=======	=======
= Omnibus:		5	.492	Durb:	in-Watson:		0.54
1							
Prob(Omnibu 9	s):	0	.064	Jarqı	ue-Bera (JB):		3.97
Skew: 7		-0	.814	Prob	(JB):		0.13
Kurtosis:		3	.578	Cond	. No.		1.25e+0
4	======	=======	====-	.====-	=======	======	=======
=							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 1.25e+04. This might indicate that there a

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs)

```
In [158]:
          ax=IndGDPPriceRisk['Imports'].plot(label='Imports',figsize=(10,6))
          ax.set_ylabel('Ratio of Imports to GDP ',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=IndGDPPriceRisk['Commodity Prices'].plot(secondary_y=True,label='Commodity
          Prices')
          ax2.set_ylabel('Prices',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Imports of Commodities by India vs Commodity Prices 1985-2016', font
          size=20)
          plt.figure(figsize=(10,10))
          plt.show()
```

Imports of Commodities by India vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

IndGDPPriceRisk.plot.scatter(x='Imports',y='Commodity Prices',figsize=(10,6)) IndGDPPriceRisk['Imports'].corr(IndGDPPriceRisk['Commodity Prices'])

Out[159]: 0.9471874344014908


```
In [160]: x=IndGDPPriceRisk[['Imports']]
          y=IndGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

=======			-====	=====	========	=======	=======
= Dep. Var: 7	iable:	Commodity Pri	ices	R-sq	uared:		0.89
Model:			OLS	Adj.	R-squared:		0.89
4 Method:		Least Squa	ares	F-st	atistic:		261.
7							2 24 4
Date: 6		Mon, 04 Nov 2	2019	Prob	(F-statistic):	2.31e-1
Time: 2		14:22	2:48	Log-	Likelihood:		-141.1
No. Obser	rvations:		32	AIC:			286.
Df Resid	uals:		30	BIC:			289.
2 Df Model			1				
Covarian	ce Type:	nonrol	oust				
=======			====:	=====	========	=======	=======
= 5]	coef	std err		t	P> t	[0.025	0.97
-							
const 6	-23.6143	3 11.742	- 2	2.011	0.053	-47.595	0.36
-	2.8582	0.177	16	6.178	0.000	2.497	3.21
-		.=======	====	=====	========		
= Omnibus:		11.	417	Durb	in-Watson:		0.55
8				20.0			0.00
Prob(Omn	ibus):	0.	.003	Jarqı	ue-Bera (JB):		10.69
7 Cleans		1	154	Doolo	(3D).		0 0047
Skew:		-1.	. 154	Prob	(ng):		0.0047
Kurtosis	:	4	643	Cond	. No.		21
5.							
=======			-====	=====	========	=======	=======
=							

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
x=IndGDPPriceRisk[['SovereignRisk','PoliticalRisk','CountryRisk','Commodity Pr
In [161]:
          ices','Imports','Exports']]
          y=IndGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

===========		=======	========		=======	====	
= Dep. Variable:		GDP	R-squared:			0.81	
4 Model: 9		OLS	Adj. R-squar	red:	0.76		
Method:	Leas	t Squares	F-statistic:	:		18.2	
2 Date:	Mon, 04	Nov 2019	Prob (F-stat	istic):	5.6	00e-0	
8 Time:		14:22:48	Log-Likeliho	ood:	-226.1		
2 No. Observations:	:	32	AIC:			466.	
2 Df Residuals:		25	BIC:			476.	
5 Df Model: Covariance Type:		6 nonrobust					
=======================================			========		=======	:====	
0.975]	coef	std err	t	P> t	[0.025		
	-2.962e+04	5.47e+04	-0.541	0.593	-1.42e+05		
8.31e+04 SovereignRisk	6.8050	11.096	0.613	0.545	-16.047		
29.657 PoliticalRisk 99.296	-33.8506	64.649	-0.524	0.605	-166.997		
CountryRisk 281.746	72.2978	101.697	0.711	0.484	-137.151		
Commodity Prices 11.993	4.6188	3.580	1.290	0.209	-2.755		
Imports	1.9449	27.080	0.072	0.943	-53.828		
57.718 Exports 468.002	284.2573	574.762	0.495	0.625	-899.488	1	
===========			========		=======	====	
= Omnibus:		20.850	Durbin-Watso	on:		0.44	
9 Prob(Omnibus):		0.000	Jarque-Bera	(JB):	3	31.29	
2 Skew: 7		1.617	Prob(JB):		1.6	50e-0	
/ Kurtosis: 5		6.606	Cond. No.		2.1	l1e+0	
=======================================	========	=======	========	=======	========	====	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 2.11e+05. This might indicate that there a

re strong multicollinearity or other numerical problems.

```
ax=IndGDPPriceRisk['GDP'].plot(label='Prices',figsize=(10,6))
In [162]:
          ax.set ylabel('GDP(US Current Dollar)',fontsize=20)
          ax.set xlabel('Year',fontsize=25)
          ax2=IndGDPPriceRisk['CountryRisk'].plot(secondary_y=True,label='Country Risk')
          ax2.set_ylabel('Country Risk (ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title("Effect of India's Country Risk on GDP", fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

Argentina Analysis

```
In [163]: GDP=[95.593,114.949,117.854,138.044,88.567,153.205,205.515,247.987,256.365,27
          9.15,280.08,295.12,317.549,324.242,307.673,308.491,291.738,108.731,138.151,16
          4.922,199.273,232.892,287.921,363.545,334.633,424.728,527.644,579.666,611.471,
          563.614,642.464,556.774]
          year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19
          99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,
          2015,2016]
          SovereignRisk=[ 9.0, 10.75, 14.75, 17.83, 17.75, 21.0, 28.17, 36.0, 37.75, 38.
          0, 35.83, 36.0, 34.83, 33.54, 33.46, 28.62, 28.79, 17.71, 23.92, 29.42, 32.12,
          37.58, 37.71, 37.33, 34.67, 39.12, 41.17, 40.17, 37.83, 34.08, 38.21, 32.62]
          prices=[ 96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858
          , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375,
          97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04
          2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]
          EconomicRisk=[ 14.58, 16. , 15.83, 17.79, 14.71, 22.17, 22.38, 26.42,
                  25.83, 31.83, 31.67, 35.04, 39.21, 40.71, 37.7, 38.5, 35.88,
                  27. , 33.25, 40.46, 39.08, 40.62, 41. , 38.83, 33.25, 37. ,
                  40.12, 36.62, 35.33, 31.17, 29.92, 28.33]
          PoliticalRisk=[ 54.67, 56.17, 57.75, 56.42, 58.67, 61.17, 65. , 67.67,
                  70.67, 75.42, 74.25, 75.42, 73.83, 75.83, 74.17, 72.58, 72.71,
                  59.17, 60.79, 64.92, 68.96, 71. , 70.67, 67. , 64.88, 64. ,
                  66.46, 65.21, 61.92, 62.08, 64.17, 66.79]
          CountryRisk=[ 34.625, 36.085, 36.79, 37.105, 36.69, 41.67, 43.69, 47.045,
           53.625, 52.96, 55.23, 56.52, 58.27, 55.935, 55.54, 54.295, 43.085, 47.02
           52.69, 54.02, 55.81, 55.835, 52.915, 49.065, 50.5, 53.29, 50.915, 48.62
          46.625, 47.045, 47.56 ]
          Exports=[ 97.72, 96.43, 96.3, 96.86, 96.68, 96.43, 95.76, 95.77,
                   95.91, 95.98, 95.94, 96.48, 96.4, 95.33, 94.92, 95.68,
                   95.67, 96.13, 96.66, 97.18, 96.98, 97.37, 98.41, 99.74,
                   98.2 , 98.86, 100.03, 100. , 100.07, 99.62, 98.05, 98.
          Imports=[ 70.9 , 58.26, 56.98, 62.77, 60.97, 58.15, 52.15, 52.24,
                   53.48, 54.22, 53.81, 58.59, 57.65, 48.62, 45.12, 50.59,
                   50.78, 54.99, 59.55, 64.22, 61.97, 65.75, 77.56, 95.54,
                   75.18, 83.65, 100.94, 100. , 101.21, 94.42, 74.32, 73.94]
          ArgGDPPriceRisk=pd.DataFrame({'EconomicRisk':EconomicRisk,'SovereignRisk':Sove
          reignRisk,'GDP':GDP,'Commodity Prices':prices,'PoliticalRisk':PoliticalRisk,'C
          ountryRisk':CountryRisk,'Imports':Imports,'Exports':Exports},index=year)
```

In [164]: ArgGDPPriceRisk

Out[164]:

	EconomicRisk	SovereignRisk	GDP	Commodity Prices	PoliticalRisk	CountryRisk	Imports	E :
1985	14.58	9.00	95.593	96.2167	54.67	34.625	70.90	
1986	16.00	10.75	114.949	96.6750	56.17	36.085	58.26	
1987	15.83	14.75	117.854	102.2080	57.75	36.790	56.98	
1988	17.79	17.83	138.044	131.1170	56.42	37.105	62.77	
1989	14.71	17.75	88.567	132.3250	58.67	36.690	60.97	
1990	22.17	21.00	153.205	124.0250	61.17	41.670	58.15	
1991	22.38	28.17	205.515	117.0420	65.00	43.690	52.15	
1992	26.42	36.00	247.987	113.8580	67.67	47.045	52.24	
1993	25.83	37.75	256.365	108.2580	70.67	48.250	53.48	
1994	31.83	38.00	279.150	126.5080	75.42	53.625	54.22	
1995	31.67	35.83	280.080	137.5750	74.25	52.960	53.81	
1996	35.04	36.00	295.120	134.3500	75.42	55.230	58.59	
1997	39.21	34.83	317.549	131.6670	73.83	56.520	57.65	
1998	40.71	33.54	324.242	114.4000	75.83	58.270	48.62	
1999	37.70	33.46	307.673	98.4833	74.17	55.935	45.12	
2000	38.50	28.62	308.491	99.9917	72.58	55.540	50.59	
2001	35.88	28.79	291.738	96.3750	72.71	54.295	50.78	
2002	27.00	17.71	108.731	97.3167	59.17	43.085	54.99	
2003	33.25	23.92	138.151	104.8580	60.79	47.020	59.55	
2004	40.46	29.42	164.922	125.7830	64.92	52.690	64.22	
2005	39.08	32.12	199.273	140.3920	68.96	54.020	61.97	
2006	40.62	37.58	232.892	182.8250	71.00	55.810	65.75	
2007	41.00	37.71	287.921	206.5250	70.67	55.835	77.56	
2008	38.83	37.33	363.545	256.0330	67.00	52.915	95.54	
2009	33.25	34.67	334.633	212.7420	64.88	49.065	75.18	
2010	37.00	39.12	424.728	256.0420	64.00	50.500	83.65	
2011	40.12	41.17	527.644	302.0000	66.46	53.290	100.94	
2012	36.62	40.17	579.666	276.7830	65.21	50.915	100.00	
2013	35.33	37.83	611.471	258.1830	61.92	48.625	101.21	
2014	31.17	34.08	563.614	242.5080	62.08	46.625	94.42	
2015	29.92	38.21	642.464	201.5750	64.17	47.045	74.32	
2016	28.33	32.62	556.774	200.0830	66.79	47.560	73.94	
4								•

```
In [165]:
          fig, axe = plt.subplots()
          ArgGDPPriceRisk['CountryRisk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
          axe.set_title("Argentina's Country Risk 1985-2016", loc='center', fontsize=18
          , fontweight = "bold" )
```

Out[165]: Text(0.5, 1.0, "Argentina's Country Risk 1985-2016")


```
In [166]:
          fig, axe = plt.subplots()
          ArgGDPPriceRisk['PoliticalRisk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title("Argentina's Political Risk 1985-2016", loc='center', fontsize=
          18, fontweight = "bold" )
```

Out[166]: Text(0.5, 1.0, "Argentina's Political Risk 1985-2016")


```
In [167]:
          fig, axe = plt.subplots()
          ArgGDPPriceRisk['SovereignRisk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set_title("Argentina's Sovereign Risk 1985-2016", loc='center', fontsize=
          18, fontweight = "bold" )
```

Out[167]: Text(0.5, 1.0, "Argentina's Sovereign Risk 1985-2016")


```
In [168]:
          fig, axe = plt.subplots()
          ArgGDPPriceRisk['GDP'].plot.bar(figsize =(10,6))
          axe.set_ylabel('GDP (US Dollar) ', fontsize=20)
          axe.set_title("Argentina's GDP 1985-2016", loc='center', fontsize=18, fontwei
          ght = "bold" )
```

Out[168]: Text(0.5, 1.0, "Argentina's GDP 1985-2016")


```
In [169]:
          fig, axe = plt.subplots()
          ArgGDPPriceRisk['Exports' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set_title(" Exports of Commodities by Argentina 1985-2016", loc='center',
          fontsize=18, fontweight = "bold" )
```

Out[169]: Text(0.5, 1.0, 'Exports of Commodities by Argentina 1985-2016')


```
In [170]:
          fig, axe = plt.subplots()
          ArgGDPPriceRisk['Imports' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title(" Imports of Commodities by Argentina 1985-2016", loc='center',
          fontsize=18, fontweight = "bold" )
```

Out[170]: Text(0.5, 1.0, 'Imports of Commodities by Argentina 1985-2016')


```
In [171]:
          ax=ArgGDPPriceRisk['Commodity Prices'].plot(label='Prices',figsize=(10,6))
          ax.set ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ArgGDPPriceRisk['SovereignRisk'].plot(secondary_y=True,label='Soveriegn Ri
          sk')
          ax2.set_ylabel('Sovereign Risk(ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Effect of Argentina Soveriegn Risk on Commodity Prices',fontsize=2
          0)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [172]:
          ax=ArgGDPPriceRisk['GDP'].plot(label='Prices',figsize=(10,6))
          ax.set_ylabel('GDP (Current US Dollar)',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ArgGDPPriceRisk['SovereignRisk'].plot(secondary_y=True,label='Sovereign Ri
          sk')
          ax2.set_ylabel('Sovereign Risk(ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title("Effect of Argentina's Soveriegn Risk on GDP", fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
ArgGDPPriceRisk.plot.scatter(x='SovereignRisk',y='Commodity Prices',figsize=(1
ArgGDPPriceRisk['SovereignRisk'].corr(ArgGDPPriceRisk['Commodity Prices'])
```

Out[173]: 0.6072186505589854


```
In [174]: x=ArgGDPPriceRisk[['SovereignRisk']]
          y=ArgGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

=======================================				=======	=======	=====
= Dep. Variable: 9	Commo	dity Prices	R-squared	:		0.36
Model:		OLS	Adj. R-sq	uared:		0.34
<pre>8 Method:</pre>	Le	ast Squares	F-statist	ic:	17.5	
2		-				
Date:	Mon,	04 Nov 2019	Prob (F-s	tatistic):	0.00022	
Time:		14:22:55	Log-Likel	ihood:		-170.1
No. Observations	:	32	AIC:			344.
3 Df Residuals:		30	BIC:			347.
2 Df Model:		1				
Covariance Type:		nonrobust				
	=======	========		========	=======	======
====	coef	std err	t	P> t	[0.025	0.
975]					_	
const	28.2504	32.054	0.881	0.385	-37.212	9
3.713 SovereignRisk	4.2232	1.009	4.186	0.000	2.163	
6.284						
_	=======	========		========	=======	======
Omnibus:		3.653	Durbin-Wa	tson:		0.24
Prob(Omnibus):		0.161	Jarque-Be	ra (JB):		1.70
3 Skew:		0.207	Prob(JB):			0.42
7		1 040	6 1			4.4
<pre>Kurtosis: 3.</pre>		1.949	Cond. No.			11
				=======	=======	======
=						

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
ArgGDPPriceRisk.plot.scatter(x='SovereignRisk',y='GDP',figsize=(10,6))
ArgGDPPriceRisk['SovereignRisk'].corr(ArgGDPPriceRisk['GDP'])
```

Out[175]: 0.7178656439312139


```
In [176]: | x=ArgGDPPriceRisk[['SovereignRisk']]
           y=ArgGDPPriceRisk['GDP']
           x=sm.add_constant(x)
           est= sm.OLS(y,x).fit()
           print(est.summary())
```

OLS Regression Results								
=								
Dep. Variable: 5		GDP	R-squared	:		0.51		
Model:	Model: OLS		Adj. R-sq	uared:	0.49			
9 Method:	Least Squares		F-statist	ic:	31.9			
0		1						
Date:	Mon,	04 Nov 2019	Prob (F-s	tatistic):		3.74e-0		
6 Time:		14:22:56	Log-Likel	ihood:		-196.1		
1			-0					
No. Observations 2	:	32	AIC:			396.		
Df Residuals:		30	BIC:			399.		
2 Df Model:		1						
Covariance Type:		nonrobust						
====	=======	=======	=======	=======	:=======	======		
	coef	std err	t	P> t	[0.025	0.		
975]					-			
const 5.005	-92.3257	72.141	-1.280	0.210	-239.656	5		
SovereignRisk 7.461	12.8242	2.271	5.648	0.000	8.187	1		
===========	=======	========		=======	.=======	======		
= Omnibus:		4.448	Durbin-Wa	tson:		0.13		
<pre>0 Prob(Omnibus):</pre>		0.108	Jarque-Be	ra (JB):		3.86		
2 Skew:		0.847	Prob(JB):			0.14		
5 Kurtosis: 3.		2.831	Cond. No.			11		
=======================================	=======	========		=======		======		
Warnings:								

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [177]:
          ArgGDPPriceRisk.plot.scatter(x='PoliticalRisk',y='Commodity Prices',figsize=(1
          ArgGDPPriceRisk['PoliticalRisk'].corr(ArgGDPPriceRisk['Commodity Prices'])
```

Out[177]: -0.03564897653142644


```
In [178]: x=ArgGDPPriceRisk[['PoliticalRisk']]
          y=ArgGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results							
======================================	Commo	dity Drices	P. caupped.	=======		0.00	
pep. variable:	Commo	dity Prices	K-Squareu:			0.00	
Model: 2		OLS	Adj. R-squ	ared:		-0.03	
Method:	Le	ast Squares	F-statisti	c:		0.0381	
Date:	Mon,	04 Nov 2019	Prob (F-st	atistic):		0.84	
6 Time:		14:22:56	Log-Likeli	hood:		-177.4	
9 No. Observation	ıs:	32	AIC:			359.	
<pre>0 Df Residuals:</pre>		30	BIC:			361.	
9							
Df Model: Covariance Type	: :	1 nonrobust					
=======================================	=======	========	========	=======	=======	======	
975]	coef	std err	t	P> t	[0.025	0.	
 const	180.7956	122.201	1.479	0.149	-68.771	43	
0.362 PoliticalRisk	A 2500	1.836	-0.195	0.846	-4.109		
3.391	-0.5500	1.030	-0.195	0.040	-4.109		
=======================================		=======		=======		======	
Omnibus: 4		4.910	Durbin-Wat	son:		0.13	
Prob(Omnibus):		0.086	Jarque-Ber	а (ЈВ):		4.50	
7 Skew:		0.865	Prob(JB):			0.10	
5 Kurtosis: 8.		2.375	Cond. No.			71	
=======================================		========		=======		======	
Warnings: [1] Standard Er	rors assume	that the co	variance mat	rix of the	errors is	correc	

tly specified.

```
ArgGDPPriceRisk.plot.scatter(x='PoliticalRisk',y='GDP',figsize=(10,6))
ArgGDPPriceRisk['PoliticalRisk'].corr(ArgGDPPriceRisk['GDP'])
```

Out[179]: 0.24885116711382088


```
In [180]: x=ArgGDPPriceRisk[['PoliticalRisk']]
          y=ArgGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results								
=								
Dep. Variable:		GDP	R-square	d:		0.06		
Model:		OLS	Adj. R-s	quared:		0.03		
1 Method:	L	east Squares	F-statis	tic:		1.98		
0 Date:	Mon,	04 Nov 2019	Prob (F-	statistic):		0.17		
0 Time:		14:22:57	Log-Like	lihood:		-206.6		
8 No. Observatio	ns:	32	AIC:			417.		
4 Df Residuals:		30	BIC:			420.		
3 Df Model: Covariance Typ	0.	1 nonrobust						
	e. 							
====	coef	std one	±	D. [+]	[0, 025			
975]	СОЕТ	std err	t	P> L	[0.025	0.		
const 3.710	-127.5473	304.199	-0.419	0.678	-748.805	49		
	6.4327	4.571	1.407	0.170	-2.903	1		
=========	=======	========	=======	=======	=======	======		
= Omnibus:		7.950	Durbin-Wa	atson:		0.09		
<pre>8 Prob(Omnibus):</pre>		0.019	Jarque-Be	era (JB):		7.61		
8 Skew:		1.195	Prob(JB)	:		0.022		
2 Kurtosis:		2.978	Cond. No			71		
8. ========	========	=========	========	========	========	======		
=								
Warnings: [1] Standard F	rrors assum	e that the co	variance m	atrix of the	errors is	correc		
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified								

tly specified.

```
In [181]:
          ArgGDPPriceRisk.plot.scatter(x='CountryRisk',y='Commodity Prices',figsize=(10,
          ArgGDPPriceRisk['CountryRisk'].corr(ArgGDPPriceRisk['Commodity Prices'])
```

Out[181]: 0.24138762175549172


```
In [182]: x=ArgGDPPriceRisk[['CountryRisk']]
          y=ArgGDPPriceRisk['Commodity Prices']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
              Commodity Prices R-squared:
                                                   0.05
Model:
                       OLS
                           Adj. R-squared:
                                                   0.02
Method:
                Least Squares
                                                   1.85
                           F-statistic:
Date:
             Mon, 04 Nov 2019
                           Prob (F-statistic):
                                                   0.18
Time:
                    14:22:58
                            Log-Likelihood:
                                                  -176.5
No. Observations:
                            AIC:
                                                   357.
                        32
Df Residuals:
                        30
                            BIC:
                                                   360.
Df Model:
                         1
Covariance Type:
                   nonrobust
_______
            coef
                  std err
                           t
                                   P>|t| [0.025
                                                   0.97
5]
-----
       48.8865
                  80.129
                           0.610
                                   0.546 -114.758
                                                  212.5
const
31
CountryRisk 2.2191 1.629
                           1.362
                                   0.183
                                          -1.107
                                                    5.5
Omnibus:
                      4.366
                           Durbin-Watson:
                                                   0.13
Prob(Omnibus):
                      0.113
                           Jarque-Bera (JB):
                                                   3.89
Skew:
                      0.785
                            Prob(JB):
                                                   0.14
Kurtosis:
                      2.325
                            Cond. No.
                                                    35
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correc
```

tly specified.

```
In [183]:
          ArgGDPPriceRisk.plot.scatter(x='SovereignRisk',y='Commodity Prices',figsize=(1
          ArgGDPPriceRisk['SovereignRisk'].corr(ArgGDPPriceRisk['Commodity Prices'])
```

Out[183]: 0.6072186505589854


```
In [184]: x=ArgGDPPriceRisk[['SovereignRisk']]
          y=ArgGDPPriceRisk['Commodity Prices']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
               Commodity Prices
                             R-squared:
                                                      0.36
Model:
                         OLS
                             Adj. R-squared:
                                                      0.34
                                                      17.5
Method:
                 Least Squares
                             F-statistic:
2
                             Prob (F-statistic):
Date:
              Mon, 04 Nov 2019
                                                    0.00022
Time:
                     14:22:58
                             Log-Likelihood:
                                                     -170.1
No. Observations:
                             AIC:
                          32
                                                      344.
Df Residuals:
                          30
                             BIC:
                                                      347.
Df Model:
                           1
Covariance Type:
                    nonrobust
______
                    std err
                               t
                                      P>|t|
                                               [0.025
               coef
                                                        0.
975]
            28.2504 32.054
                              0.881 0.385 -37.212
                                                        9
const
3.713
SovereignRisk 4.2232 1.009
                              4.186
                                      0.000
                                                2.163
______
Omnibus:
                        3.653
                             Durbin-Watson:
                                                      0.24
Prob(Omnibus):
                        0.161
                             Jarque-Bera (JB):
                                                      1.70
Skew:
                        0.207
                             Prob(JB):
                                                      0.42
Kurtosis:
                        1.949
                              Cond. No.
                                                       11
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [185]:
          ax=ArgGDPPriceRisk['Exports'].plot(label='Exports',figsize=(10,6))
          ax.set_ylabel('Ratio of Exports to GDP ',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ArgGDPPriceRisk['Commodity Prices'].plot(secondary_y=True,label='Commodity
          Prices')
          ax2.set_ylabel('Prices',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Exports of Commodities by Argentina vs Commodity Prices 1985-2016',
          fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```

Exports of Commodities by Argentina vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

ArgGDPPriceRisk.plot.scatter(x='Exports',y='Commodity Prices',figsize=(10,6)) ArgGDPPriceRisk['Exports'].corr(ArgGDPPriceRisk['Commodity Prices'])

Out[186]: 0.9266463339391715


```
In [187]: x=ArgGDPPriceRisk[['Exports']]
          y=ArgGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

========			=====	=====	========	=======	=======
= Dep. Variab 9	ole:	Commodity Pri	.ces	R-sq	uared:		0.85
Model:			OLS	Adj.	R-squared:		0.85
Method:		Least Squa	ires	F-st	atistic:		182.
Date:		Mon, 04 Nov 2	019	Prob	(F-statistic	:):	2.78e-1
Time:		14:23	:00	Log-	Likelihood:		-146.2
No. Observa	ntions:		32	AIC:			296.
4 Df Residual	.s:		30	BIC:			299.
3 Df Model:			1				
Covariance	· .	nonrob					
=			=====		=======		
5]	coef	f std err		t	P> t	[0.025	0.97
-							
const 2	-3609.1792	2 278.992	-12	.937	0.000	-4178.957	-3039.40
Exports	38.7574	2.871	13	.501	0.000	32.895	44.62
========	:======:				========	:=======	=======
=							
		14.	621	Durb	in-Watson:		0.55
Prob(Omnibu	ıs):	0.	001	Jarq	ue-Bera (JB):		17.36
6							
		-1.	223	Prob	(JB):		0.00016
Kurtosis:		5.	653	Cond	. No.		6.36e+0
3							
=			=	==			
6 Skew: 9	ıs):	0.	001 223	Jarq Prob	(ЈВ):		0.00016
=							

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 6.36e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs)

file:///C:/Users/ishaa/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/EM Commodity Prices Sovereig... 249/314

```
In [188]:
          ax=ArgGDPPriceRisk['Imports'].plot(label='Imports',figsize=(10,6))
          ax.set_ylabel('Ratio of Imports to GDP ',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ArgGDPPriceRisk['Commodity Prices'].plot(secondary_y=True,label='Commodity
          Prices')
          ax2.set_ylabel('Prices',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Imports of Commodities by Argentina vs Commodity Prices 1985-2016',
          fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```

Imports of Commodities by Argentina vs Commodity Prices 1985-2016

<Figure size 720x720 with 0 Axes>

```
ArgGDPPriceRisk.plot.scatter(x='Imports',y='Commodity Prices',figsize=(10,6))
ArgGDPPriceRisk['Imports'].corr(ArgGDPPriceRisk['Commodity Prices'])
```

Out[189]: 0.9342417081047878


```
In [190]: x=ArgGDPPriceRisk[['Imports']]
          y=ArgGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

=====	=========		=======		=====		=======	=======
= Dep. 3	ep. Variable: Commodity Prices				R-squ	0.87		
Model:			C	DLS	Adj.	R-squared:		0.86
Metho 9	od:	L	east Squar	res	F-sta	205.		
Date:	:	Mon,	04 Nov 26	919	Prob	(F-statistic):	5.68e-1
Time	:		14:23:	:02	Log-l	_ikelihood:		-144.5
	Observations:			32	AIC:			293.
	esiduals:			30	BIC:			296.
0 Df Mo				1				
Covai	riance Type: 		nonrobu					
=								
5]						P> t	-	0.97
-								
const	-78 . 9	9375	16.935	-4	.661	0.000	-113.523	-44.35
Impor	rts 3.5	5474	0.247	14	.348	0.000	3.042	4.05
====			=======	====	=====		=======	=======
= Omnik 9	ous:		12.6	583	Durbi	in-Watson:		0.59
Prob	(Omnibus):		0.6	902	Jarqı	ue-Bera (JB):		13.70
2 Skew	:		-1.1	L14	Prob	(JB):		0.0010
6 Kurto 7.	osis:		5.3	306	Cond	. No.		28
/ • ====			=======	:====	=====			=======
=								

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
x=ArgGDPPriceRisk[['SovereignRisk','PoliticalRisk','CountryRisk','Commodity Pr
ices','Imports','Exports']]
y=ArgGDPPriceRisk['GDP']
x=sm.add_constant(x)
est= sm.OLS(y,x).fit()
print(est.summary())
```

=======================================	========		========	=======		:====	
= Dep. Variable:		GDP	R-squared:			0.74	
0 Model:		OLS	Adj. R-squa	red:		0.67	
7 Method:	Leas	t Squares	F-statistic	:		11.8	
3 Date:	Mon, 04	Nov 2019	Prob (F-sta	tistic):	2.8	31e-0	
6 Time:		14:23:02	Log-Likelih	ood:	-186.1		
8 No. Observations:		32	AIC:			386.	
4 Df Residuals: 6		25	BIC:			396.	
Df Model: Covariance Type:		6 nonrobust					
======			======= t			:====	
0.975] 							
const	1.358e+04	1.05e+04	1.294	0.207	-8031.759		
3.52e+04 SovereignRisk 20.126	8.7687	5.515	1.590	0.124	-2.589		
PoliticalRisk 25.489	4.5365	10.173	0.446	0.659	-16.415		
CountryRisk 10.269	-5.1077	7.466	-0.684	0.500	-20.484		
Commodity Prices 3.008	0.5183	1.209	0.429	0.672	-1.972		
Imports 38.364	17.2411	10.256	1.681	0.105	-3.881		
Exports 80.933	-152.5607	113.372	-1.346	0.190	-386.055		
==========	=======	=======	=======	=======	=======	:====	
= Omnibus: 7		13.176	Durbin-Wats	on:		0.42	
Prob(Omnibus): 8		0.001	Jarque-Bera	(JB):	1	3.24	
Skew: 3		1.272	Prob(JB):		0.	0013	
Kurtosis: 5		4.860	Cond. No.		1.4	13e+0	
=======================================	=======	========	========	=======	========	:====	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 1.43e+05. This might indicate that there a

re strong multicollinearity or other numerical problems.

Looking at India, Country Risk is the biggest risk factor affecting GDP and commodity prices. While Sovereign Risk is still a big factor that impacts GDP and commodity prices, the results shows that it is important to consider Country Risk alongside Sovereign Risk when looking at various political, economic, and financial variables affecting commodity prices and economic output.

As for Argentina, it's low Sovereign Risk rating shows how even with strong Political and Economic risk numbers, Sovereign Risk is relatively the biggest risk impacting fluctuations in commodity prices and **EM GDP output.**

It is thus important to consider that just because one risk indicator is significantly stronger than another risk indicator or two does not mean to rely solely on risk factor to accurately make forecasts for GDP and Commodity Prices.

China

```
In [192]: EconomicRisk=[36.58, 34.12, 35.54, 36.71, 33.58, 34.62, 38.29, 41.08, 35.92,
                  30.79, 34.42, 38.71, 40.04, 38.92, 40.33, 39.33, 38.42, 38.58,
                  38.58, 38.58, 39.46, 40.83, 41.71, 41.5, 40.79, 40.33, 39.67,
                  39.79, 39.83, 39.79, 40.75, 41.
          PoliticalRisk=[67.83, 64.58, 61.33, 63.42, 59.83, 56.92, 57.92, 67.75,
                  71.25, 66.83, 68.33, 69.25, 68.83, 66.25, 62.42, 62.42, 62.25,
                  66.29, 69.5, 70.17, 69.25, 68.33, 69.12, 68.08, 67., 64.46,
                  60.92, 61.12, 61.29, 57.04, 56.38, 55]
          year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19
          99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,
          2015,2016]
          GDP=[312.616, 303.34, 330.303, 411.923, 461.066, 398.623, 415.604,
                  495.671, 623.054, 566.471, 736.87, 867.224, 965.338, 1032.57,
                  1097.14, 1214.92, 1344.08, 1477.5, 1671.07, 1966.24, 2308.8,
                  2774.29, 3571.45, 4604.29, 5121.68, 6066.35, 7522.1, 8570.35,
               9635.03, 10534.53, 11226.19, 11221.84]
          prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858,
          108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 9
          7.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.042
          , 302.0, 276.783, 258.183, 242.508, 201.575, 200.083]
          SovereignRisk=[35.25, 32.92, 30.08, 29.92, 27. , 24.58, 24.83, 32.17, 40.75,
                  39. , 39. , 38.08, 39.83, 44.17, 45.29, 44.42, 45.29, 45.
                  45.21, 44.67, 46.08, 47.33, 47.92, 47.92, 47.79, 48. , 47.96,
                  47.5 , 47.5 , 47.46, 47.71, 46.46]
          Exports=[ 99.48, 99.09, 99.14, 99.06, 99.09, 99.16, 98.95, 98.93,
                   98.82, 98.85, 98.91, 98.93, 98.94, 98.69, 98.79, 99.05,
                   98.98, 98.97, 99.08, 99.31, 99.46, 99.67, 99.79, 100.04,
                   99.64, 99.94, 100.17, 100. , 100.07, 99.99, 99.56, 99.58]
          Imports=[ 72.24, 56.34, 57.58, 56.67, 57.65, 58.3 , 50.71, 51.4 ,
                   47.18, 48.74, 51.65, 52.48, 51.2, 43.18, 44.71, 52.43,
                   50.95, 52.07, 55.03, 62.94, 68.32, 80.87, 89.56, 105.21,
                   78.26, 94.35, 111.25, 100. , 104.41, 97.76, 73.63,
          ChinaGDPPriceRisk=pd.DataFrame({'Economic Risk':EconomicRisk,'Political Risk':
          PoliticalRisk, 'Sovereign Risk': SovereignRisk, 'GDP': GDP, 'Commodity Prices': pric
          es, 'Exports': Exports, 'Imports': Imports}, index=year)
          ChinaGDPPriceRisk
```

Out[192]:

	Economic Risk	Political Risk	Sovereign Risk	GDP	Commodity Prices	Exports	Imports
1985	36.58	67.83	35.25	312.616	96.2167	99.48	72.24
1986	34.12	64.58	32.92	303.340	96.6750	99.09	56.34
1987	35.54	61.33	30.08	330.303	102.2080	99.14	57.58
1988	36.71	63.42	29.92	411.923	131.1170	99.06	56.67
1989	33.58	59.83	27.00	461.066	132.3250	99.09	57.65
1990	34.62	56.92	24.58	398.623	124.0250	99.16	58.30
1991	38.29	57.92	24.83	415.604	117.0420	98.95	50.71
1992	41.08	67.75	32.17	495.671	113.8580	98.93	51.40
1993	35.92	71.25	40.75	623.054	108.2580	98.82	47.18
1994	30.79	66.83	39.00	566.471	126.5080	98.85	48.74
1995	34.42	68.33	39.00	736.870	137.5750	98.91	51.65
1996	38.71	69.25	38.08	867.224	134.3500	98.93	52.48
1997	40.04	68.83	39.83	965.338	131.6670	98.94	51.20
1998	38.92	66.25	44.17	1032.570	114.4000	98.69	43.18
1999	40.33	62.42	45.29	1097.140	98.4833	98.79	44.71
2000	39.33	62.42	44.42	1214.920	99.9917	99.05	52.43
2001	38.42	62.25	45.29	1344.080	96.3750	98.98	50.95
2002	38.58	66.29	45.00	1477.500	97.3167	98.97	52.07
2003	38.58	69.50	45.21	1671.070	104.8580	99.08	55.03
2004	38.58	70.17	44.67	1966.240	125.7830	99.31	62.94
2005	39.46	69.25	46.08	2308.800	140.3920	99.46	68.32
2006	40.83	68.33	47.33	2774.290	182.8250	99.67	80.87
2007	41.71	69.12	47.92	3571.450	206.5250	99.79	89.56
2008	41.50	68.08	47.92	4604.290	256.0330	100.04	105.21
2009	40.79	67.00	47.79	5121.680	212.7420	99.64	78.26
2010	40.33	64.46	48.00	6066.350	256.0420	99.94	94.35
2011	39.67	60.92	47.96	7522.100	302.0000	100.17	111.25
2012	39.79	61.12	47.50	8570.350	276.7830	100.00	100.00
2013	39.83	61.29	47.50	9635.030	258.1830	100.07	104.41
2014	39.79	57.04	47.46	10534.530	242.5080	99.99	97.76
2015	40.75	56.38	47.71	11226.190	201.5750	99.56	73.63
2016	41.00	55.00	46.46	11221.840	200.0830	99.58	73.45

```
In [193]:
          fig, axe = plt.subplots()
          ChinaGDPPriceRisk['Exports' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set_title(" Exports of Commodities by China 1985-2016", loc='center', font
          size=18, fontweight = "bold" )
```

Out[193]: Text(0.5, 1.0, ' Exports of Commodities by China 1985-2016')


```
In [194]:
          fig, axe = plt.subplots()
          ChinaGDPPriceRisk['Imports'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title(" Imports of Commodities by China 1985-2016", loc='center', font
          size=18, fontweight = "bold" )
```

Out[194]: Text(0.5, 1.0, ' Imports of Commodities by China 1985-2016')


```
In [195]:
          fig, axe = plt.subplots()
          ChinaGDPPriceRisk['Sovereign Risk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set_title("China's Sovereign Risk 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[195]: Text(0.5, 1.0, "China's Sovereign Risk 1985-2016")


```
In [196]:
          fig, axe = plt.subplots()
          ChinaGDPPriceRisk['Political Risk' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title("China's Political Risk 1985-2016", loc='center', fontsize=18,
          fontweight = "bold" )
```

Out[196]: Text(0.5, 1.0, "China's Political Risk 1985-2016")


```
In [197]:
          fig, axe = plt.subplots()
          ChinaGDPPriceRisk['Economic Risk'].plot.bar(figsize =(10,6))
          axe.set_ylabel('Economic Risk (ICRG)', fontsize=20)
          axe.set_title("China's Economic Risk 1985-2016", loc='center', fontsize=18, f
          ontweight = "bold" )
```

Out[197]: Text(0.5, 1.0, "China's Economic Risk 1985-2016")


```
In [198]:
          fig, axe = plt.subplots()
          ChinaGDPPriceRisk['GDP' ].plot.bar(figsize =(10,6))
          axe.set_ylabel('GDP (US Dollar) ', fontsize=20)
          axe.set_title("China's GDP 1985-2016", loc='center', fontsize=18, fontweight
          = "bold" )
```

Out[198]: Text(0.5, 1.0, "China's GDP 1985-2016")


```
ax=ChinaGDPPriceRisk['Commodity Prices'].plot(label='Prices',figsize=(10,6))
ax.set ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
ax.set xlabel('Year',fontsize=25)
ax2=ChinaGDPPriceRisk['Economic Risk'].plot(secondary_y=True,label='Economic R
ax2.set ylabel('Economic Risk(ICRG)',fontsize=25)
plt.legend(loc='upper left')
plt.title("Effect of China's Economic Risk on Commodity Prices", fontsize=20)
plt.figure(figsize=(10,10))
plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [200]:
          ax=ChinaGDPPriceRisk['GDP'].plot(label='GDP',figsize=(10,6))
          ax.set_ylabel('GDP (Current US Dollar)',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ChinaGDPPriceRisk['Sovereign Risk'].plot(secondary_y=True,label='Sovereign
          ax2.set_ylabel('Sovereign Risk(ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Effect of Chinese Soveriegn Risk on GDP',fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

ChinaGDPPriceRisk.plot.scatter(x='Sovereign Risk',y='Commodity Prices',figsize ChinaGDPPriceRisk['Sovereign Risk'].corr(ChinaGDPPriceRisk['Commodity Prices'

Out[201]: 0.5503472794650955


```
In [202]:
          ax=ChinaGDPPriceRisk['Sovereign Risk'].plot(label='Sovereign Risk',figsize=(10
          ax.set_ylabel('Economic Risk (ICRG)',fontsize=20)
          ax.set xlabel('Year',fontsize=25)
          ax2=ChinaGDPPriceRisk['Economic Risk'].plot(secondary_y=True,label='Economic R
          isk')
          ax2.set_ylabel('Economic Risk(ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Effect of Chinese Economic Risk on Sovereign Risk',fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [203]: x=ChinaGDPPriceRisk[['Sovereign Risk']]
          y=ChinaGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

===========	:=======	========	=======	=======		=====	
= Dep. Variable: 3	Commod	ity Prices	R-squared:		0.30		
Model:		OLS	Adj. R-squ	ared:		0.28	
<pre>0 Method:</pre>	Lea	st Squares	F-statisti	c:	13.0		
3 Date:	Mon, 0	4 Nov 2019	Prob (F-st	atistic):	0.0011		
0 Time:		14:23:11	Log-Likeli	hood:	-171.7		
4 No. Observations:	:	32	AIC:			347.	
5 Df Residuals:		30	BIC:			350.	
4 Df Model:		1					
Covariance Type:		nonrobust					
=======================================	:======	========		=======	=======		
0.975]		std err			-		
const 6.749	-31./945	53.149	-0.598	0.554	-140.338	7	
Sovereign Risk 7.183	4.5875	1.271	3.610	0.001	1.992		
=============	:=======	========		=======	=======	=====	
= Omnibus: 9		1.326	Durbin-Wat	son:		0.24	
Prob(Omnibus):		0.515	Jarque-Ber	а (ЈВ):		1.06	
8 Skew:		0.215	Prob(JB):			0.58	
6 Kurtosis: 5.		2.215	Cond. No.			23	
=======================================		=======		=======	=======		
=							

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
ChinaGDPPriceRisk.plot.scatter(x='Sovereign Risk',y='GDP',figsize=(10,6))
ChinaGDPPriceRisk['Sovereign Risk'].corr(ChinaGDPPriceRisk['GDP'])
```

Out[204]: 0.6122787737750908

In [205]: ChinaGDPPriceRisk.plot.scatter(x='Economic Risk',y='Sovereign Risk',figsize=(1 ChinaGDPPriceRisk['Economic Risk'].corr(ChinaGDPPriceRisk['Sovereign Risk'])

Out[205]: 0.6374593698045233


```
ChinaGDPPriceRisk.plot.scatter(x='Sovereign Risk',y='Economic Risk',figsize=(1
ChinaGDPPriceRisk['Sovereign Risk'].corr(ChinaGDPPriceRisk['Economic Risk'])
```

Out[206]: 0.6374593698045232


```
In [207]: x=ChinaGDPPriceRisk['Economic Risk']
          y=ChinaGDPPriceRisk['Sovereign Risk']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
                 Sovereign Risk R-squared:
                                                        0.40
Model:
                          0LS
                              Adj. R-squared:
                                                        0.38
Method:
                                                        20.5
                 Least Squares
                              F-statistic:
                              Prob (F-statistic):
                                                      8.71e-0
Date:
               Mon, 04 Nov 2019
Time:
                      14:23:13
                              Log-Likelihood:
                                                      -101.3
No. Observations:
                              AIC:
                                                        206.
                           32
Df Residuals:
                           30
                              BIC:
                                                        209.
Df Model:
                           1
Covariance Type:
                     nonrobust
______
                     std err
                                t P>|t|
                                                [0.025
               coef
                                                         0.
975]
           -28.0581 15.310 -1.833 0.077 -59.326
const
3.210
Economic Risk 1.8028 0.398
                               4.532
                                        0.000
                                                 0.990
______
Omnibus:
                        9.307
                              Durbin-Watson:
                                                        0.63
Prob(Omnibus):
                        0.010
                              Jarque-Bera (JB):
                                                        7.86
Skew:
                        -1.087
                              Prob(JB):
                                                       0.019
Kurtosis:
                        4.084
                              Cond. No.
                                                         56
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correc
```

```
In [208]: x=ChinaGDPPriceRisk[['Sovereign Risk']]
          y=ChinaGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results								
= Dep. Variable:		GDP	R-squared:		0.37			
5 Model:		OLS	Adj. R-squa	ared:	0.35			
4 Method:	Lea	st Squares	F-statistic	c:	17.9			
9 Date:	Mon, 0	04 Nov 2019	Prob (F-sta	atistic):	0	.00019		
6 Time:		14:23:13	Log-Likelih	nood:		-299.4		
6 No. Observation	s:	32	AIC:		602.			
9 Df Residuals:		30	BIC:		605.			
9 Df Model: Covariance Type		1 nonrobust						
 0.975]			t			=====		
 const 1.731	-8886.8558	2876.759	-3.089	0.004	-1.48e+04	-301		
Sovereign Risk 2.186					151.263	43		
= Omnibus:	=======	5.214	Durbin-Wats		=======	 0.09		
<pre>3 Prob(Omnibus):</pre>		0.074	Jarque-Bera	a (JB):		4.67		
4 Skew:		0.932	Prob(JB):			0.096		
<pre>6 Kurtosis: 5.</pre>		2.819	Cond. No.			23		
=				=====		=		
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.								

```
In [209]: x=ChinaGDPPriceRisk[['Economic Risk']]
          y=ChinaGDPPriceRisk['GDP']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
                           GDP
                               R-squared:
                                                          0.27
Model:
                           OLS
                               Adj. R-squared:
                                                          0.25
                  Least Squares
Method:
                               F-statistic:
                                                          11.4
Date:
               Mon, 04 Nov 2019
                               Prob (F-statistic):
                                                        0.0020
Time:
                       14:23:13
                               Log-Likelihood:
                                                        -301.8
No. Observations:
                               AIC:
                                                          607.
                           32
Df Residuals:
                            30
                               BIC:
                                                          610.
Df Model:
                            1
Covariance Type:
                      nonrobust
______
                      std err
                                  t
                                         P>|t|
                                                  [0.025
                coef
                                                           0.
975]
          -2.408e+04
                     8053.679 -2.990
                                         0.006 -4.05e+04 -763
const
0.859
Economic Risk 708.4266
                      209.275
                                3.385
                                         0.002
                                                 281.029
                                                          113
5.824
Omnibus:
                         5.219
                               Durbin-Watson:
                                                          0.26
Prob(Omnibus):
                         0.074
                               Jarque-Bera (JB):
                                                          4.71
Skew:
                         0.935
                               Prob(JB):
                                                         0.094
Kurtosis:
                         2.787
                               Cond. No.
                                                           56
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correc
```

```
In [210]: ChinaGDPPriceRisk.plot.scatter(x='Economic Risk',y='GDP',figsize=(10,6))
    ChinaGDPPriceRisk['Economic Risk'].corr(ChinaGDPPriceRisk['GDP'])
```

Out[210]: 0.5257341795568661

Out[211]: -0.2621544049133064


```
In [212]: x=ChinaGDPPriceRisk[['Political Risk']]
          y=ChinaGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

	OLS Regression Results								
= Dep. Variable:			R-squared:			0.06			
9									
Model: 8		0LS	Adj. R-squ	area:	0.03				
Method:	Lea	st Squares	F-statisti	.c:	2.21				
4 Date:	Mon 0	4 Nov 2019	Prob (F-st	atistic).	0.14				
7	11011, 0	4 NOV 2013	·	•		0.14			
Time: 7		14:23:14	Log-Likeli	hood:	-	176.3			
No. Observations	:	32	AIC:		356.				
Df Residuals: 7	Of Residuals: 30					359.			
Df Model: Covariance Type:	Df Model: 1								
==========	=======	=======		=======	=======				
0.975]	coef	std err	t	P> t	[0.025				
const 4.067	387.2608	155.125	2.496	0.018	70.454	70			
Political Risk 1.332	-3.5742	2.402	-1.488	0.147	-8.480				
=	=======				=======				
Omnibus: 4		4.142	Durbin-Wat	son:		0.16			
Prob(Omnibus):		0.126	Jarque-Ber	а (ЈВ):		3.66			
Skew:		0.756	Prob(JB):			0.16			
Kurtosis: 6.		2.319	Cond. No.			91			
=	=======	=======	=======	=======	=======	=====			
Warnings:									

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

ChinaGDPPriceRisk.plot.scatter(x='Political Risk',y='GDP',figsize=(10,6)) ChinaGDPPriceRisk['Political Risk'].corr(ChinaGDPPriceRisk['GDP'])

Out[213]: -0.5063602290920803


```
In [214]: x=ChinaGDPPriceRisk[['Political Risk']]
          y=ChinaGDPPriceRisk['GDP']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
                          GDP
                              R-squared:
                                                        0.25
Model:
                          OLS
                              Adj. R-squared:
                                                        0.23
Method:
                 Least Squares
                                                        10.3
                              F-statistic:
Date:
               Mon, 04 Nov 2019
                              Prob (F-statistic):
                                                      0.0031
Time:
                      14:23:15
                              Log-Likelihood:
                                                       -302.2
No. Observations:
                              AIC:
                                                        608.
                           32
Df Residuals:
                           30
                              BIC:
                                                        611.
Df Model:
                           1
Covariance Type:
                     nonrobust
______
                      std err
                                  t P>|t|
                                                 [0.025
                coef
0.9751
            2.854e+04
                     7923.122 3.602
                                        0.001
                                               1.24e+04
                                                         4.4
const
7e+04
Political Risk -394.6037
                      122.690
                               -3.216
                                        0.003
                                                -645.171
                                                         -14
______
Omnibus:
                        2.759
                              Durbin-Watson:
                                                        0.14
Prob(Omnibus):
                        0.252
                              Jarque-Bera (JB):
                                                        1.34
Skew:
                        0.033
                              Prob(JB):
                                                        0.51
Kurtosis:
                        1.997
                              Cond. No.
                                                         91
Warnings:
```

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
ChinaGDPPriceRisk.plot.scatter(x='Economic Risk',y='Commodity Prices',figsize=
ChinaGDPPriceRisk['Economic Risk'].corr(ChinaGDPPriceRisk['Commodity Prices'])
```

Out[215]: 0.48556160926967085


```
In [216]: x=ChinaGDPPriceRisk[['Economic Risk']]
          y=ChinaGDPPriceRisk['Commodity Prices']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
                Commodity Prices
                              R-squared:
                                                         0.23
Model:
                          OLS
                               Adj. R-squared:
                                                         0.21
                                                         9.25
Method:
                  Least Squares
                               F-statistic:
Date:
               Mon, 04 Nov 2019
                               Prob (F-statistic):
                                                        0.0048
Time:
                      14:23:15
                               Log-Likelihood:
                                                        -173.2
No. Observations:
                               AIC:
                                                         350.
                           32
Df Residuals:
                           30
                               BIC:
                                                         353.
                            1
Df Model:
Covariance Type:
                      nonrobust
______
                      std err
                                 t
                                        P>|t|
                                                 [0.025
               coef
                                                           0.
975]
           -282.4631 144.801 -1.951 0.060 -578.186
                                                           1
const
3.259
Economic Risk
             11,4469
                       3.763
                                3.042
                                        0.005
                                                  3.763
                                                           1
9.131
______
Omnibus:
                         2.347
                               Durbin-Watson:
                                                         0.37
Prob(Omnibus):
                         0.309
                               Jarque-Bera (JB):
                                                         2.13
Skew:
                         0.578
                               Prob(JB):
                                                         0.34
Kurtosis:
                         2.489
                               Cond. No.
                                                          56
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correc
```

ChinaGDPPriceRisk.plot.scatter(x='Sovereign Risk',y='Commodity Prices',figsize ChinaGDPPriceRisk['Sovereign Risk'].corr(ChinaGDPPriceRisk['Commodity Prices'

Out[217]: 0.5503472794650955


```
In [218]: | x=ChinaGDPPriceRisk[['Sovereign Risk']]
           y=ChinaGDPPriceRisk['Commodity Prices']
           x=sm.add constant(x)
           est= sm.OLS(y,x).fit()
           print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
              Commodity Prices
                           R-squared:
                                                    0.30
Model:
                        OLS
                            Adj. R-squared:
                                                    0.28
                                                    13.0
Method:
                Least Squares
                           F-statistic:
Date:
              Mon, 04 Nov 2019
                            Prob (F-statistic):
                                                  0.0011
Time:
                    14:23:16
                            Log-Likelihood:
                                                  -171.7
No. Observations:
                            AIC:
                                                    347.
                        32
Df Residuals:
                        30
                            BIC:
                                                    350.
Df Model:
                         1
Covariance Type:
                   nonrobust
______
                                             [0.025
                    std err
                             t P>|t|
               coef
0.9751
 -31.7945
                     53.149 -0.598
                                     0.554 -140.338
                                                      7
const
6.749
Sovereign Risk
            4.5875 1.271 3.610
                                     0.001
                                              1.992
______
Omnibus:
                      1.326
                           Durbin-Watson:
                                                    0.24
Prob(Omnibus):
                      0.515
                            Jarque-Bera (JB):
                                                    1.06
Skew:
                      0.215
                            Prob(JB):
                                                    0.58
Kurtosis:
                      2.215
                            Cond. No.
                                                    23
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correc
```

```
In [219]:
          ax=ChinaGDPPriceRisk['Imports'].plot(label='Imports',figsize=(10,6))
          ax.set_ylabel('Ratio of Imports to GDP',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ChinaGDPPriceRisk['Commodity Prices'].plot(secondary_y=True,label='Prices'
          ax2.set_ylabel('Commodity Prices',fontsize=25)
          plt.legend(loc='upper left')
          plt.title("Imports of Commodities by China vs Commodity Prices", fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
ChinaGDPPriceRisk.plot.scatter(x='Imports',y='Commodity Prices',figsize=(10,6
ChinaGDPPriceRisk['Imports'].corr(ChinaGDPPriceRisk['Commodity Prices'])
```

Out[220]: 0.9340142337972712


```
In [221]: x=ChinaGDPPriceRisk[['Imports']]
          y=ChinaGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

========	======	:========	====	=====		=======	
= Dep. Variabl 2	Dep. Variable: Commodity Price			R-sq	uared:		0.87
Model:		(OLS	Adj.	R-squared:		0.86
Method:		Least Squa	res	F-st	atistic:		205.
1 Date:		Mon, 04 Nov 20	21 9	Prob	(F-statistic):	5.97e-1
5 Time:		14:23	:17	Log-	Likelihood:		-144.5
7 No. Observat	ions:		32	AIC:			293.
1 Df Residuals	:		30	BIC:			296.
1 Df Model:			1				
Covariance T		nonrob					
=======================================		:=======:	====	=====			
5]	coef	std err		t	P> t	[0.025	0.97
const	-37.3218	3 14.162	- 2	2.635	0.013	-66.245	-8.39
-	2.8919	0.202	14	4.321	0.000	2.479	3.30
========	======	:=======:				=======	
= Omnibus:		10.9	915	Durb	in-Watson:		0.49
8 Prob(Omnibus):	0.0	a 04	Jarq	ue-Bera (JB):		10.43
3 Skew:		-1.0	250	Prob	(JB):		0.0054
3 Kurtosis:			849	Cond			24
5.		4.0	J + J	Cond	. 140.		4 4
=======================================	======	:=======:	====	=====:	========	=======	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
In [222]:
          ax=ChinaGDPPriceRisk['Exports'].plot(label='Exports',figsize=(10,6))
          ax.set_ylabel('Ratio of Exports to GDP',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=ChinaGDPPriceRisk['Commodity Prices'].plot(secondary_y=True,label='Prices'
          ax2.set ylabel('Commodity Prices', fontsize=25)
          plt.legend(loc='upper left')
          plt.title("Exports of Commodities by China vs Commodity Prices", fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
ChinaGDPPriceRisk.plot.scatter(x='Exports',y='Commodity Prices',figsize=(10,6
ChinaGDPPriceRisk['Exports'].corr(ChinaGDPPriceRisk['Commodity Prices'])
```

Out[223]: 0.9094958305221097


```
In [224]: x=ChinaGDPPriceRisk[['Exports']]
          y=ChinaGDPPriceRisk['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

=======================================		====:	====:		=======	=======
= Dep. Variable: 7	Commodity Prices		R-sq	0.82		
Model:	0	LS	Adj.	R-squared:		0.82
1 Method:	Least Squar	es	F-st	atistic:		143.
6 Date:	Mon, 04 Nov 20	19	Proh	(F-statistic	.).	5.78e-1
3	11011, 01 1101 20		1100	(1 364613616	.,.	3.766 1
Time:	14:23:	18	Log-	Likelihood:		-149.4
No. Observations:		32	AIC:			302.
Df Residuals:		30	BIC:			305.
8 Df Model:		1				
	nonrobu	st				
=======================================		====:	====:	========	:=======	=======
coef	f std err		t	P> t	[0.025	0.97
-const -1.256e+04	4 1061.556	-11	.835	0.000	-1.47e+04	-1.04e+0
Exports 128.0816	0 10.689	11	.983	0.000	106.252	149.91
=======================================		====	====:		=======	=======
= Omnibus:	7.2	32	Durb	in-Watson:		0.43
8 Prob(Omnibus):	0.0	27	Jarqı	ue-Bera (JB):		5.57
6 Skew:	-0.8	76	Prob	(JB):		0.061
6	4.0		6 1			2.240
Kurtosis: 4	4.0	53	Cond	. NO.		2.24e+0
=======================================		====	=====		=======	=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 2.24e+04. This might indicate that there a

strong multicollinearity or other numerical problems.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead. return ptp(axis=axis, out=out, **kwargs)

```
In [225]: x=ChinaGDPPriceRisk[['Sovereign Risk','Political Risk','Economic Risk','Commod
          ity Prices', 'Exports', 'Imports']]
          y=ChinaGDPPriceRisk['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

==========		=======	========	=======	=======		
= Dep. Variable: 1	GDP		R-squared:		0.90		
Model: 7	OLS		Adj. R-squa	Adj. R-squared:		0.87	
Method:	Least Squares		F-statistic	F-statistic:		37.9	
0 Date:	Mon, 04 Nov 2019		Prob (F-sta	tistic):	2.26e-1		
1 Time:		14:23:18	Log-Likelih	ood:	-2	269.9	
8 No. Observations:	;	32	AIC:			554.	
0 Df Residuals:		25	BIC:			564.	
2 Df Model: Covariance Type:		6 nonrobust					
===========			========	=======	========		
0.975]	coef	std err	t	P> t	[0.025		
const	-8.676e+05	4.09e+05	-2.121	0.044	-1.71e+06	-	
2.52e+04 Sovereign Risk	177.1411	46.330	3.823	0.001	81.723		
272.559 Political Risk	-306.3607	61.249	-5.002	0.000	-432.506	-	
180.215 Economic Risk	8.9299	114.772	0.078	0.939	-227.447		
245.306 Commodity Prices	36.9303	12.066	3.061	0.005	12.080		
•	8977.5925	4174.254	2.151	0.041	380.555		
1.76e+04 Imports 2.105	-217.6812	106.716	-2.040	0.052	-437.468		
=======================================	:=======	========	========	=======	========	====	
Omnibus:		3.050	Durbin-Wats	on:		0.66	
Prob(Omnibus): 5		0.218	Jarque-Bera	(JB):		1.59	
Skew: 0		0.223	Prob(JB):			0.45	
Kurtosis: 5		2.002	Cond. No.		4.6	96e+0	
=		=======	========	=======	=======		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 4.06e+05. This might indicate that there a

re strong multicollinearity or other numerical problems.

It is also important to note that looking at the overall economic structure and how it has been performing relatively to commodity prices and GDP output is also important to consider. While previous models focused primarily on Sovereign, Political, and Country Risk variables, it is also worth mentioning about it is important to look at how the EM's overall Economy's health is. As seen with the results with China, Economic Risk is certainly a huge influence among commodity prices and economic output. Evenmore, Economic Risk and Sovereign Risk appear to have a strong correlation between each other as this implies the importance to measure an EM's financial health with its economic health outside any political influence before aggregating both political and economic variables when determining which among Sovereign, Political, and Country Risk has the biggest influence among Commodity Prices and EMs GDP output.

Conclusion: Using Machine Learning Classification to predict likelidhood of Sovereign Risk making a High **İmpact on GDP**

```
In [226]: | x=PriceRiskXIM1[['Sovereign Risk', 'Political Risk', 'Country Risk']]
          y=GDPvPrices['GDP']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

=======================================	=======	=======	=======		=======	=====
= Dep. Variable: 7		GDP	R-squared:		0.65	
Model:		OLS	Adj. R-squ	uared:		0.62
Method:	Lea	ast Squares	F-statisti	ic:		17.9
Date:	Mon, (04 Nov 2019	Prob (F-st	catistic):	1	.10e-0
Time: 5		14:23:18	Log-Likeli	hood:		-218.3
No. Observation	s:	32	AIC:			444.
Df Residuals:		28	BIC:			450.
Df Model: Covariance Type						
 0.975]		std err				=====
-						
const 9.280	973.7285	705.695	1.380	0.179	-471.823	241
Sovereign Risk 8.241	93.3693	21.906	4.262	0.000	48.497	13
Political Risk 2.641	-102.2460	43.744	-2.337	0.027	-191.851	-1
Country Risk 5.395	52.0312	69.988	0.743	0.463	-91.332	19
=======================================	=======	=======	=======		=======	=====
Omnibus: 9		0.617	Durbin-Wat	son:		0.33
Prob(Omnibus):		0.734	Jarque-Ber	ra (JB):		0.71
Skew: 1		-0.271	Prob(JB):			0.70
Kurtosis:		2.511	Cond. No.		1	.48e+0
=======================================	=======	=======	========	=======	=======	=====

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 1.48e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

While noting the apparent inverse relationship between Country Risk and Sovereign Risk, one should still keep in mind that regardless, Sovereign Risk is still a variable that is to not be undermined and still taken into account when accurately making forecasts of commodity prices ability to positively impact EM's GDP output.

Before concluding, Machine Learning Classification will be used to see if the models used for all of the Emerging Markets, China, India, and Argentina is telling enough to predict whether their respective risk variable in examination will highly impact GDP. Machine Learning Classification will also be used to examine whether the data presented on Commodity Prices and Sovereign Risk is telling enough to predict whether Sovereign Risk will highly impact Commodity Prices. The various Machine Learning Classification algorithms used include: Logistic Regression, K Nearest Neighbors (KNN), and Random Forest Classifier. For each model, the algorithms will be used initially to obtain a score. Whichever algorithm produces the highest score will be used to predict whether the data is telling enough to predict a high impact. The variable to be predicted, y-hat, in the models involving Emerging Markets, and the individual countries examined is 'Impact_High' and 'GDPImpact_High'. For the model involving commodity prices and sovereign risk, the y-hat is 'Impact_High'.

For each model, analysis was done on Excel before being imported into Jupyter on the y-hat. For GDP and Commodity prices, the dependent variables, every instance per year was averaged to calculate the distance a particular instance was from the mean. From there, using the data from distance from mean a threshold was created among for each model using one of three measures, interquartile range, midrange, and standard deviation, to go through the dependent variable in each model to determine if it was highly or lowly impacted. As for the independent variables, the risk variables from the ICRG, the ICRG database provided a list of Risk Categories for certain ranges of scores, which are Very Low Risk, Low Risk, Moderate Risk, High Risk, and Very High Risk.

Once the data was imported into Jupyter, ICRG Risk Category and Impact Category variables were converted to categorical values using label encoding in order for the data to be used to run the classification algorithms.

Machine Learning Classification

China Machine Learning Classification: Economic Risk's impact on GDP

```
In [227]:
          ChinaML1=pd.read_excel (r"C:\New folder\China Econ Risk Data .xlsx")
          ChinaML1=ChinaML1.drop(0)
          ChinaML1=ChinaML1.rename(columns={'Unnamed: 0':'Year', 'Unnamed: 1':'Category o
          f Risk according to ICRG', 'Unnamed: 2':'Economic Risk', 'Unnamed: 3':'GDP', 'Unn
          amed: 4':'Impact'})
          ChinaML1
```

Out[227]:

	Year	Category of Risk according to ICRG	Economic Risk	GDP	Impact
1	1985	Low Risk	36.58	312.616	High
2	1986	Moderate Risk	34.12	303.34	High
3	1987	Moderate Risk	35.54	330.303	High
4	1988	High Risk	36.71	411.923	High
5	1989	High Risk	33.58	461.066	High
6	1990	High Risk	34.62	398.623	High
7	1991	High Risk	38.29	415.604	High
8	1992	Moderate Risk	41.08	495.671	High
9	1993	Very Low Risk	35.92	623.054	High
10	1994	Low Risk	30.79	566.471	High
11	1995	Low Risk	34.42	736.87	High
12	1996	Low Risk	38.71	867.224	High
13	1997	Low Risk	40.04	965.338	High
14	1998	Very Low Risk	38.92	1032.57	High
15	1999	Very Low Risk	40.33	1097.14	High
16	2000	Very Low Risk	39.33	1214.92	High
17	2001	Very Low Risk	38.42	1344.08	High
18	2002	Very Low Risk	38.58	1477.5	High
19	2003	Very Low Risk	38.58	1671.07	High
20	2004	Very Low Risk	38.58	1966.24	High
21	2005	Very Low Risk	39.46	2308.8	Low
22	2006	Very Low Risk	40.83	2774.29	Low
23	2007	Very Low Risk	41.71	3571.45	Low
24	2008	Very Low Risk	41.5	4604.29	High
25	2009	Very Low Risk	40.79	5121.68	High
26	2010	Very Low Risk	40.33	6066.35	High
27	2011	Very Low Risk	39.67	7522.1	High
28	2012	Very Low Risk	39.79	8570.35	High
29	2013	Very Low Risk	39.83	9635.03	High
30	2014	Very Low Risk	39.79	10534.5	High
31	2015	Very Low Risk	40.75	11226.2	High
32	2016	Very Low Risk	41	11221.8	High

```
In [228]:
          fig, axe = plt.subplots()
          ChinaML1['Category of Risk according to ICRG'].value counts().plot.barh(s)
          axe.set ylabel("Category of Sovereign Risk according to ICRG", fontsize=18)
          axe.set_title("China's Sovereign Risk", loc='center', fontsize=18, fontweight
          = "bold" )
```

```
Traceback (most recent call last)
NameError
<ipython-input-228-42648fc2e2ea> in <module>
      1 fig, axe = plt.subplots()
----> 2 ChinaML1['Category of Risk according to ICRG'].value_counts().plot.ba
rh(s)
     4 axe.set_ylabel("Category of Sovereign Risk according to ICRG", fontsi
ze=18)
```

NameError: name 's' is not defined


```
In [ ]:
        ChinaML1.dtypes
```

```
ChinaML1['Category of Risk according to ICRG']=ChinaML1['Category of Risk acco
In [ ]:
        rding to ICRG'].astype('category')
        ChinaML1.dtypes
```

```
ChinaML1['Category of Risk according to ICRG']=ChinaML1['Category of Risk acco
In [ ]:
        rding to ICRG'].cat.codes
```

```
In [ ]:
        fig, axe = plt.subplots()
        ChinaML1['Impact'].value counts().plot.barh(figsize =(10,6))
        axe.set_ylabel("GDP Impact", fontsize=18)
        axe.set_title("China's GDP Impact", loc='center', fontsize=18, fontweight = "b
        old")
```

```
In [ ]: ChinaML1=pd.get dummies(ChinaML1, columns=['Impact'])
In [ ]:
        ChinaML1
        ChinaML1=ChinaML1.rename(columns={'Category of Risk according to ICRG':'Risk_C
        ategoryICRG'})
         ChinaML1
In [ ]: | ChinaML1.columns
In [ ]: ChinaML1.Impact High.value counts()
In [ ]: from patsy import dmatrices
        y,X = dmatrices('Impact High ~ Risk CategoryICRG',data=ChinaML1)
In [ ]: | y=np.ravel(y)
In [ ]: | from sklearn.linear_model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
In [ ]: | from sklearn.model_selection import cross_val_score
         cross_val_score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: | cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
In [ ]: | from sklearn.neighbors import KNeighborsClassifier as knn
         cross_val_score(knn(),X,y,cv=3,scoring='accuracy').mean()
In [ ]:
        from sklearn.ensemble import RandomForestClassifier as rf
         cross_val_score(rf(n_estimators=100, max_depth=2,max_features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: | for i in range(1,10):
            for j in range(1,3):
                 print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_features
         =j),X,y,cv=3,scoring='accuracy').mean())
In [ ]: | ChinaML1.columns
In [ ]: | from sklearn.linear model import LogisticRegression as reg
        from sklearn.model_selection import train_test_split
In [ ]: | x=ChinaML1.drop(['Impact_High'],axis=1)
        y=ChinaML1['Impact_High']
In [ ]: | x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.2)
```

```
In [ ]: result = reg(solver='liblinear').fit(x_train,y_train).predict(x_test)
In [ ]: pd.Series(result).value counts()
```

This model shows that in the next seven years from 2017 to 2023, Economic Risk will have a 100 % chance of highly impacting GDP.

China Machine Learning Classification: Economic Risk's Impact on Sovereign Risk

```
ChinaML2=pd.read excel (r"C:\New folder\China Econ Sovereign Risk .xlsx")
        ChinaML2=ChinaML2.drop(0)
        ChinaML2=ChinaML2.rename(columns={'Unnamed: 0':'Year','Unnamed: 1':'Category o
        f Economic Risk according to ICRG', 'Unnamed: 2': 'Economic Risk', 'Unnamed: 3':
        'Category of Sovereign Risk according to ICRG', 'Unnamed: 4': 'Sovereign Risk',
         'Unnamed: 5':'Impact'})
        ChinaML2
In [ ]: ChinaML2['Category of Sovereign Risk according to ICRG']=ChinaML2['Category of
        Sovereign Risk according to ICRG'].astype('category')
        ChinaML2['Category of Economic Risk according to ICRG']=ChinaML2['Category of
         Economic Risk according to ICRG'].astype('category')
        ChinaML2.dtypes
In [ ]: | fig, axe = plt.subplots()
        ChinaML2['Category of Economic Risk according to ICRG'].value counts().plot.ba
        rh(figsize = (10,6))
        axe.set ylabel("Category of Economic Risk according to ICRG", fontsize=18)
        axe.set title("China's Economic Risk", loc='center', fontsize=18, fontweight =
        "bold" )
In [ ]: ChinaML2=pd.get dummies(ChinaML2, columns=['Impact'])
In [ ]: ChinaML2['Category of Economic Risk according to ICRG']=ChinaML2['Category of
         Economic Risk according to ICRG'].cat.codes
In [ ]: ChinaML2['Category of Sovereign Risk according to ICRG']=ChinaML2['Category of
        Sovereign Risk according to ICRG'].cat.codes
In [ ]: | ChinaML2
In [ ]: ChinaML2=ChinaML2.rename(columns={'Category of Economic Risk according to ICR
        G':'EconRisk CategoryICRG'})
```

```
In [ ]: | ChinaML2.columns
In [ ]:
        ChinaML2.Impact High.value counts()
In [ ]: from patsy import dmatrices
        y,X = dmatrices('Impact_High ~ EconRisk_CategoryICRG',data=ChinaML2)
In [ ]: | y=np.ravel(y)
In [ ]: from sklearn.linear model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
In [ ]: | from sklearn.model selection import cross val score
         cross_val_score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: | cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
In [ ]: from sklearn.neighbors import KNeighborsClassifier as knn
         cross val score(knn(),X,y,cv=3,scoring='accuracy').mean()
In [ ]: | from sklearn.ensemble import RandomForestClassifier as rf
        cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: | for i in range(1,10):
            for j in range(1,3):
                print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_features
        =j),X,y,cv=3,scoring='accuracy').mean())
In [ ]: | from sklearn.linear model import LogisticRegression as reg
        from sklearn.model selection import train test split
        x=ChinaML2.drop(['Impact High'],axis=1)
In [ ]:
         y=ChinaML2['Impact High']
In [ ]: | x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.2)
In [ ]: result = reg(solver='lbfgs').fit(x train,y train).predict(x test)
In [ ]: pd.Series(result).value_counts()
```

This model shows that in the next seven years, from 2017 to 2023, Economic Risk will have a 100% likelihood of highly impacting Sovereign Risk.

India Machine Learning Classification: Country Risk's Impact on GDP

```
In [ ]: IndiaML=pd.read excel (r"C:\New folder\India Country Risk Data .xlsx")
                     IndiaML=IndiaML.drop(0)
                     IndiaML=IndiaML.drop(1)
                     IndiaML=IndiaML.rename(columns={'Unnamed: 0':'Year','Unnamed: 1':'Category of
                        Risk according to ICRG', 'Unnamed: 2':'Country Risk', 'Unnamed: 3':'GDP', 'Unnamed: 3'
                     ed: 4':'Impact'})
                     IndiaML
In [ ]: IndiaML.dtypes
In [ ]: IndiaML['Category of Risk according to ICRG']=IndiaML['Category of Risk accord
                     ing to ICRG'].astype('category')
                     IndiaML.dtypes
In [ ]: fig, axe = plt.subplots()
                     IndiaML['Impact'].value counts().plot.barh(figsize =(10,6))
                     axe.set_ylabel("GDP Impact", fontsize=18)
                     axe.set_title("India's GDP Impact", loc='center', fontsize=18, fontweight = "b
                     old")
In [ ]: fig, axe = plt.subplots()
                     IndiaML['Category of Risk according to ICRG'].value counts().plot.barh(figsize
                     =(10,6)
                     axe.set ylabel("Category of Country Risk according to ICRG", fontsize=18)
                     axe.set_title("India's Country Risk", loc='center', fontsize=18, fontweight =
                     "bold" )
In [ ]: IndiaML['Category of Risk according to ICRG']=IndiaML['Category of Risk accord
                     ing to ICRG'].cat.codes
In [ ]: IndiaML=IndiaML.rename(columns={'Category of Risk according to ICRG':'CountryR
                     isk CategoryICRG'})
                     IndiaML
                   IndiaML=pd.get dummies(IndiaML, columns=['Impact'])
In [ ]:
In [ ]: IndiaML
In [ ]: IndiaML.Impact High.value counts()
```

```
In [ ]: from patsy import dmatrices
        y,X = dmatrices('Impact High ~ CountryRisk CategoryICRG',data=IndiaML)
In [ ]: | y=np.ravel(y)
In [ ]: from sklearn.linear model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
In [ ]: from sklearn.model selection import cross val score
        cross_val_score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: cross val score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc auc').mean()
In [ ]: from sklearn.neighbors import KNeighborsClassifier as knn
        cross val score(knn(),X,y,cv=3,scoring='accuracy').mean()
In [ ]: from sklearn.ensemble import RandomForestClassifier as rf
        cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: | for i in range(1,10):
            for j in range(1,3):
                print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_features
        =j),X,y,cv=3,scoring='accuracy').mean())
In [ ]: | from sklearn.linear model import LogisticRegression as reg
        from sklearn.model selection import train test split
In [ ]: | x=IndiaML.drop(['Impact High'],axis=1)
        y=IndiaML['Impact High']
In [ ]: x train, x test, y train, y test = train test split(x,y,test size=.2)
In [ ]: result = reg(solver='liblinear').fit(x_train,y_train).predict(x_test)
In [ ]: pd.Series(result).value_counts()
```

This Model shows that in the next seven years from 2017 to 2023 Country Risk will have a 100% chance of highly impacting GDP.

Argentina Machine Learning Classification: Sovereign Risk's impact on GDP

```
In [ ]: ArgentinaML=pd.read excel (r"C:\New folder\Argentina Sov Risk Data.xlsx")
        ArgentinaML=ArgentinaML.drop(0)
        ArgentinaML=ArgentinaML.drop(33)
        ArgentinaML=ArgentinaML.rename(columns={'Unnamed: 0':'Year','Unnamed: 1':'Cate
        gory of Risk according to ICRG', 'Unnamed: 2': 'Sovereign Risk', 'Unnamed: 3': 'GD
        P','Unnamed: 4':'GDPImpact'})
        ArgentinaML
In [ ]: | ArgentinaML['Category of Risk according to ICRG']=ArgentinaML['Category of Ris
        k according to ICRG'].astype('category')
        ArgentinaML.dtypes
In [ ]: fig, axe = plt.subplots()
        ArgentinaML['Category of Risk according to ICRG'].value counts().plot.barh(fig
        size = (10,6)
        axe.set ylabel("Category of Sovereign Risk according to ICRG", fontsize=18)
        axe.set_title("Argentina's Sovereign Risk", loc='center', fontsize=18, fontwei
        ght = "bold" )
In [ ]:
        fig, axe = plt.subplots()
        ArgentinaML['GDPImpact'].value_counts().plot.barh(figsize =(10,6))
        axe.set_ylabel("GDP Impact", fontsize=18)
        axe.set title("Argentina's GDP Impact", loc='center', fontsize=18, fontweight
        = "bold" )
In [ ]: ArgentinaML['Category of Risk according to ICRG']=ArgentinaML['Category of Risk
        k according to ICRG'].cat.codes
In [ ]: ArgentinaML=pd.get dummies(ArgentinaML, columns=['GDPImpact'])
In [ ]: | ArgentinaML=ArgentinaML.rename(columns={'Category of Risk according to ICRG':
         'Risk CategoryICRG'})
        ArgentinaML
In [ ]: ArgentinaML.GDPImpact_High.value_counts()
In [ ]: | ArgentinaML.columns
In [ ]: from patsy import dmatrices
        y,X = dmatrices('GDPImpact High ~ Risk CategoryICRG',data=ArgentinaML)
In [ ]: | y=np.ravel(y)
In [ ]: from sklearn.linear model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
```

```
In [ ]: from sklearn.model selection import cross val score
        cross_val_score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: | cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
In [ ]: | from sklearn.neighbors import KNeighborsClassifier as knn
         cross val score(knn(),X,y,cv=3,scoring='accuracy').mean()
In [ ]: | from sklearn.ensemble import RandomForestClassifier as rf
        cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: for i in range(1,10):
            for j in range(1,3):
                 print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_features
        =j),X,y,cv=3,scoring='accuracy').mean())
In [ ]: | from sklearn.linear_model import LogisticRegression as reg
        from sklearn.model selection import train test split
In [ ]: | x=ArgentinaML.drop(['GDPImpact_High'],axis=1)
         y=ArgentinaML['GDPImpact High']
In [ ]: | x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.2)
In [ ]: result = reg(solver='liblinear').fit(x_train,y_train).predict(x_test)
In [ ]: | pd.Series(result).value counts()
```

This Model shows that in the next seven years from 2017 to 2023, Sovereign Risk will have a 42.7 % chance of highly impacting GDP.

EM GDP Machine Learning Classification: Sovereign Risk Impacting GDP

```
In [ ]:
        EMGDPML=pd.read_excel (r"C:\New folder\EM GDP Data.xlsx")
        EMGDPML=EMGDPML.drop(0)
        EMGDPML=EMGDPML.rename(columns={'Unnamed: 0':'Year','Unnamed: 1':'Category of
         Risk according to ICRG', 'Unnamed: 2':'Sovereign Risk', 'Unnamed: 3':'GDP', 'Unn
        amed: 4':'GDPImpact'})
        EMGDPML
        EMGDPML['Category of Risk according to ICRG']=EMGDPML['Category of Risk accord
        ing to ICRG'].astype('category')
        EMGDPML.dtypes
```

```
In [ ]: | fig, axe = plt.subplots()
        EMGDPML['GDPImpact'].value counts().plot.barh(figsize =(10,6))
        axe.set ylabel("GDP Impact", fontsize=18)
        axe.set_title("EM's GDP Impact", loc='center', fontsize=18, fontweight = "bol
In [ ]: fig, axe = plt.subplots()
        EMGDPML['Category of Risk according to ICRG'].value_counts().plot.barh(figsize
        =(10,6)
        axe.set_ylabel("Category of Sovereign Risk according to ICRG", fontsize=18)
        axe.set title("EM's Sovereign Risk", loc='center', fontsize=18, fontweight =
        "bold" )
In [ ]:
        EMGDPML['Category of Risk according to ICRG']=EMGDPML['Category of Risk accord
        ing to ICRG'].cat.codes
        EMGDPML=pd.get dummies(EMGDPML, columns=['GDPImpact'])
In [ ]:
        EMGDPML=EMGDPML.rename(columns={'Category of Risk according to ICRG':'Risk Cat
In [ ]:
        egoryICRG'})
        EMGDPML
In [ ]:
        EMGDPML.GDPImpact_High.value_counts()
In [ ]: EMGDPML.columns
In [ ]: from patsy import dmatrices
        y,X = dmatrices('GDPImpact High ~ Risk CategoryICRG',data=EMGDPML)
In [ ]: | y=np.ravel(y)
In [ ]:
        from sklearn.linear model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
In [ ]: from sklearn.model selection import cross val score
        cross val score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: | cross val score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc auc').mean()
In [ ]: from sklearn.neighbors import KNeighborsClassifier as knn
        cross_val_score(knn(),X,y,cv=3,scoring='accuracy').mean()
```

```
In [ ]: | from sklearn.ensemble import RandomForestClassifier as rf
        cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: | for i in range(1,10):
            for j in range(1,3):
                print(i,j,cross val score(rf(n estimators=100,max depth=i,max features
         =j),X,y,cv=3,scoring='accuracy').mean())
In [ ]: from sklearn.linear model import LogisticRegression as reg
        from sklearn.model selection import train test split
In [ ]: | x=EMGDPML.drop(['GDPImpact High'],axis=1)
        y=EMGDPML['GDPImpact High']
In [ ]: | x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.2)
In [ ]: result = reg(solver='liblinear').fit(x train,y train).predict(x test)
In [ ]: pd.Series(result).value counts()
```

This Model shows that EM's Sovereign Risk will have a 85% chance to highly impact EM's GDP.

Commodity Price Sovereign Risk Machine Learning Classification: Sovereign Risk Impacting Commodity **Prices**

```
In [ ]: x=PriceRiskXIM1[['Sovereign Risk', 'Political Risk', 'Country Risk', 'ImportsI
        E','ExportsEM','ImportsEM']]
        y=GDPvPrices['Commodity Prices']
        x=sm.add constant(x)
        est= sm.OLS(y,x).fit()
        print(est.summary())
In [ ]: y=GDPvPrices['Commodity Prices']
        x=PriceRiskXIM1['Sovereign Risk']
        x=sm.add constant(x)
        est= sm.OLS(y,x).fit()
        print(est.summary())
In [ ]: PriceRisk.plot.scatter(x='Sovereign Risk',y='Commodity Prices',figsize=(10,6))
        PriceRisk['Sovereign Risk'].corr(PriceRisk['Commodity Prices'])
```

```
In [ ]: EMML=pd.read excel (r"C:\New folder\EM Sovereign Risk CP Data.xlsx")
        EMML=EMML.drop(0)
        EMML=EMML.rename(columns={'Unnamed: 0':'Year','Unnamed: 1':'Category of Risk a
        ccording to ICRG', 'Unnamed: 2':'Sovereign Risk', 'Unnamed: 3':'Commodity Prices
         ','Unnamed: 4':'Impact'})
        EMML
In [ ]: | EMML.dtypes
In [ ]: EMML['Category of Risk according to ICRG']=EMML['Category of Risk according to
        ICRG'].astype('category')
        EMML.dtypes
In [ ]: | fig, axe = plt.subplots()
        EMML['Impact'].value_counts().plot.barh(figsize =(10,6))
        axe.set ylabel("Impact", fontsize=18)
        axe.set_title("Commodity Prices' Impact", loc='center', fontsize=18, fontweigh
        t = "bold")
In [ ]: EMML['Category of Risk according to ICRG']=EMML['Category of Risk according to
        ICRG'].cat.codes
In [ ]: EMML=pd.get_dummies(EMML, columns=['Impact'])
        EMML=EMML.rename(columns={'Category of Risk according to ICRG':'Risk_CategoryI
In [ ]:
        CRG' })
        EMML
In [ ]: EMML.Impact High.value counts()
In [ ]: | from patsy import dmatrices
        y,X = dmatrices('Impact High ~ Risk CategoryICRG',data=EMML)
In [ ]: | y=np.ravel(y)
In [ ]: from sklearn.linear model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
In [ ]: | from sklearn.model_selection import cross_val_score
        cross val score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: | cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
In [ ]: | from sklearn.neighbors import KNeighborsClassifier as knn
        cross_val_score(knn(),X,y,cv=3,scoring='accuracy').mean()
```

```
In [ ]: | from sklearn.ensemble import RandomForestClassifier as rf
        cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: | for i in range(1,10):
            for j in range(1,3):
                 print(i,j,cross val score(rf(n estimators=100,max depth=i,max features
        =j),X,y,cv=3,scoring='accuracy').mean())
In [ ]: | EMML['high_impact_rf'] = rf(n_estimators=100, max depth=2,max features=2).fit(
        X,y).predict(X)
In [ ]: EMML.high impact rf.value counts()
In [ ]: | from sklearn.linear_model import LogisticRegression as reg
        from sklearn.model_selection import train test split
In [ ]: | x=EMML.drop(['Impact High'],axis=1)
         y=EMML['Impact High']
In [ ]: x train, x test, y train, y test = train test split(x,y,test size=.2)
In [ ]: result = reg(solver='liblinear').fit(x_train,y_train).predict(x_test)
In [ ]: | pd.Series(result).value counts()
```

This Model shows that Sovereign Risk among the EMs will have a 100% chance of highly impacting their GDPs from 2017-2023.

Lastly, for the following model below, analysis was done in Excel before being imported into Jupyter once again. Only this time, this model looks at how both Sovereign Risk's Impact on GDP and Commodity Prices' Impact on GDP affected Emerging Markets' Overall GDP. In order to do this, all of the following data was standardized. Then, for Sovereign Risk's Impact on GDP and Commodity Prices' Impact on GDP respectively, each standardized instance was multiplied by its corresponding dependent standardized instance per year to come up with the coefficient per year. From there, the correlation coefficient from all of the years were added up together, and used to find the correlation for each of the independent variables being examined. The respective correlation for its' corresponding independent variable was used as a threshold to determine if each standardized instance had a high impact or low impact on GDP. After doing these steps, Machine Learning Classification was then pursued by following the steps each of the previous models used.

Commodity Prices GDP Sovereign Risk Machine Learning Classification: Sovereign Risk and Commodity Prices impacting GDP using Standardized Data

```
In [ ]: CGDPSML=pd.read excel (r"C:\New folder\SRCPDataStandarized.xlsx")
         CGDPSML
In [ ]: | CGDPSML.columns
In [ ]: | x=CGDPSML[['Commodity Prices ']]
        y=CGDPSML['GDP ']
        x=sm.add_constant(x)
        est= sm.OLS(y,x).fit()
        print(est.summary())
In [ ]: | x=CGDPSML[['Sovereign Risk ']]
        y=CGDPSML['GDP ']
        x=sm.add constant(x)
        est= sm.OLS(y,x).fit()
        print(est.summary())
In [ ]: | x=CGDPSML[['Sovereign Risk ','Commodity Prices ']]
        y=CGDPSML['GDP ']
        x=sm.add constant(x)
        est= sm.OLS(y,x).fit()
        print(est.summary())
In [ ]: EMGDP['GDP'].plot(kind='hist',bins=15,figsize =(10,6))
In [ ]:
        EMGDPML['Sovereign Risk'].plot(kind='hist',bins=15,figsize =(10,6))
In [ ]: | PriceRiskXIM3['Commodity Prices'].plot(kind='hist',bins=15,figsize =(10,6))
In [ ]: | fig, axe = plt.subplots()
        CGDPSML['Sovereign Risk Impact '].value_counts().plot.barh(,figsize =(10,6))
        axe.set ylabel("Impact", fontsize=18)
        axe.set_title("Sovereign Risk Impact", loc='center', fontsize=18, fontweight =
         "bold" )
In [ ]:
        fig, axe = plt.subplots()
        CGDPSML['Commodity Prices Impact '].value counts().plot.barh(figsize =(10,6))
        axe.set_ylabel("Impact", fontsize=18)
        axe.set_title("Commodity Prices' Impact", loc='center', fontsize=18, fontweigh
        t = "bold")
In [ ]: | CGDPSML.dtypes
```

```
In [ ]: CGDPSML['Commodity Prices Impact ']=CGDPSML['Commodity Prices Impact '].asty
        pe('category')
        CGDPSML['Sovereign Risk Impact ']=CGDPSML['Sovereign Risk Impact '].astype(
        'category')
        CGDPSML[ 'High or Low Impact GDP ']=CGDPSML[ 'High or Low Impact GDP '].asty
        pe('category')
        CGDPSML.dtypes
In [ ]: CGDPSML['Commodity Prices Impact ']=CGDPSML['Commodity Prices Impact '].cat.
        codes
        CGDPSML['Sovereign Risk Impact ']=CGDPSML['Sovereign Risk Impact '].cat.code
In [ ]: | CGDPSML=pd.get_dummies(CGDPSML, columns=['High or Low Impact GDP '])
In [ ]: | CGDPSML=CGDPSML.rename(columns={'High or Low Impact GDP _High':'Impact_High',
         'High or Low Impact GDP _Low':'Impact_Low','Sovereign Risk Impact ':'Sovereig
        nRisk_Impact','Commodity Prices Impact ':'CommodityPrices_Impact'})
        CGDPSML
In [ ]: CGDPSML.Impact High.value counts()
In [ ]: | CGDPSML.columns
In [ ]: from patsy import dmatrices
        y,X = dmatrices('Impact High ~SovereignRisk Impact+CommodityPrices Impact',dat
        a=CGDPSML)
In [ ]: y=np.ravel(y)
In [ ]: from sklearn.linear_model import LogisticRegression as logit
        logit(solver='lbfgs').fit(X,y).score(X,y)
In [ ]: from sklearn.model selection import cross val score
        cross val score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
In [ ]: | cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
In [ ]: from sklearn.neighbors import KNeighborsClassifier as knn
        cross val score(knn(),X,y,cv=3,scoring='accuracy').mean()
In [ ]: from sklearn.ensemble import RandomForestClassifier as rf
        cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
        ing='accuracy').mean()
In [ ]: for i in range(1,10):
            for j in range(1,3):
                print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_features
        =j),X,y,cv=3,scoring='accuracy').mean())
```

```
In [ ]: from sklearn.linear model import LogisticRegression as reg
        from sklearn.model selection import train test split
In [ ]: x=CGDPSML.drop(['Impact_High'],axis=1)
        y=CGDPSML['Impact High']
In [ ]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.2)
        result = reg(solver='liblinear').fit(x_train,y_train).predict(x_test)
In [ ]:
        pd.Series(result).value_counts()
```

This Model shows that both sovereign risk and commodity prices will have a 100% chance of highly impacting EM's GDP.

```
In [ ]:
```