TRUE/FALSE. JUSTIFY AND/OR CORRECT.

- (1) If (a, b) is a solution of the Pell's equation, then $a + b\sqrt{D}$ is a unit in $\mathbb{Z}[\sqrt{D}]$.
- (2) If $a+b\sqrt{D}$ is a unit in $\mathbb{Z}[\sqrt{D}]$, then (a,b) is a solution of the Pell's equation.
- (3) The norm function on $\mathbb{Z}[\sqrt{D}]$ satisfies the property $N(\alpha + \beta) = N(\alpha) + N(\beta)$.
- (4) For any integer D, the equation $x^2 Dy^2 = 1$ has infinitely many solutions.
- (5) If D is a squarefree integer and m is any integer, then the equation $x^2 Dy^2 = m$ has a solution.
- (6) If D is a squarefree integer and m is any integer, then the equation $x^2 Dy^2 = m$ has either infinitely many solutions or no solutions.
- (7) The solutions to any Pell's equation forms a group.
- (8) A real number has a finite continued fraction expansion if and only if it is rational.
- (9) Every irrational number α can be approximated by infinitely many real numbers $\frac{p}{q}$ with $|\alpha \frac{p}{q}| < \frac{1}{q^2}$.
- (10) Every irrational number α can be approximated by infinitely many real $\frac{p}{q}$ with $|\alpha \frac{p}{q}| < \frac{1}{q^3}$.
- (11) The solution set in \mathbb{R}^2 to any polynomial $y^2 = x^3 + ax + b$ forms a group.
- (12) There exists an elliptic curve with exactly 9 rational points (not including ∞) that has a rational inflection point.

COMPUTATIONS

(1) Find the inverse of [56] in \mathbb{Z}_{89} .

(2) Compute $\left(\frac{-15}{42}\right)$.

(3) Compute $\left(\frac{37}{113}\right)$.

(4) Find the continued fraction expansion of $\frac{1}{\sqrt{3}}$. [0,1], [2,1], [2,1], [2,1]

- (5) Given that $\sqrt{2} = [1; 2, 2, 2, 2, \dots]$ and without using the decimal expansion of $\sqrt{2}$, determine which rational number with denominator less than 30 most closely approximates $\sqrt{2}$.
- (6) Find the first three convergents for the continued fraction of $\sqrt[3]{2}$. $\frac{1}{2}$, $\frac{4}{3}$, $\frac{3}{4}$, $\frac{3}{3}$, $\frac{4}{4}$, $\frac{3}{3}$,
- (7) Find the first three positive integer solutions of the equation $x^2 = 7y^2 + 1$.
- (8) Give an expression for all solutions of the Pell's equation $x^2 12x^2 = 1$.

 ($\pm \chi_{k_1} \pm \chi_{k_2}$)

 (8) Where $\chi_{k_1} \pm \chi_{k_2} = (7 + 2\sqrt{2})^k$
- (9) Find the positive integer smallest solution of the equation $x^2 45y^2 = 1$. (161,24)
- (10) For the points P=(2,2), Q=(0,2) in the real elliptic curve \overline{E} given by $y^2 = x^3 - 4x + 4$, compute $P \star Q$ and $P \star P$. $P \Rightarrow Q = (-272)$
- (11) Compute the order of the point P = ([3], [0]) in the elliptic curve \overline{E}_5 given by $y^2 = x^3 + x$ over \mathbb{Z}_5 .
- (12) Compute the order of the point P = ([3], [1]) in the elliptic curve \overline{E}_5 given by $y^2 = x^3 + x + [1]$ over \mathbb{Z}_5 .