Graphs in Manufacturing

mark.quinsland@neo4j.com

May 24, 2018

Neo4j - The Graph Company

Industry's Largest Dedicated Investment in Graphs

- · Creator of the Neo4j Graph Platform
- ~200 employees
- HQ in Silicon Valley, other offices include London, Munich, Paris and Malmö (Sweden)
- \$80M in funding from Fidelity, Sunstone, Conor, Creandum, and Greenbridge Capital
- Over 10M+ downloads
- 270+ enterprise subscription customers with over half with >\$1B in revenue

Adoption

7/10 Top Retail Firms

12/2 Top Financial 5—— Firms

8/10 Top Software Vendors

Ecosystem

720+ Startups in program

Enterprise customers

Partner s

53K+ Meet up members

Events per vear

Customers

COMCAST

Lufthansa

Partners

Why Graph? The Rise of Connections in Data

Data connections are increasing as rapidly as data volumes

Networks of People

E.g., Employees, Customers, Suppliers, Partners, Influencers

Business Processes

E.g., Risk management, Supply chain, Payments

Knowledge Networks

E.g., Enterprise content, Domain specific content, eCommerce content

Harnessing Connections Drives Business Value

Digital Transformation Megatrends

Data Driven Discovery & Innovation

Drug Discovery Intelligence and Crime Detection Product & Process Innovation

Hyper Personalization

Product Recommendations
Personalized Health Care
Media and Advertising

Enhanced Decision Making

Fraud Prevention Network Analysis Law Enforcement

Massive Data Integration

360 view of customer Compliance Optimize Operations

Al & Machine Learning

Price optimization
Product Recommendations
Resource allocation

Graphs Are a Logical Choice for Many Areas

Organization

Figure 5-7. Talent.net graph enriched with MARKED_MITH relationships

Identity & Access

Figure 5-8. Access control graph

Network & IT Ops

Figure 3-5. Example graph for the data center deployment scenario

Relationship Queries Strain Traditional Databases

A single query can touch a *lot of data*

Queries can take non-sequential, arbitrary paths through data

Real-time queries need speed and consistent response times

Queries must *run reliably* with *consistent results*

Neo4j - The #1 Platform for Connected Data

Neo4j is an *enterprise-grade* <u>native</u> graph database that enables you to:

- Store and query data relationships
- Traverse any levels of depth on real-time

Add and connect new data on the fly

Designed, built and tested *natively* for graphs from the start to ensure:

- Performance
 Developer Productivity
- ACID Transactions
 Hardware Efficiency
- Agility

Neo4j - Brings Together and Mobilizes Your Data

Lessons Learned: Ten Year Head Start

Native Connectedness Differentiates Neo4j

Optimized for graph workloads

NoSQL Databases Are NOT All the Same

MongoDB was clearly the wrong NoSQL database for providing recommendations and was a significant factor in a \$250 million drop in market cap.

"...we've heard one former employee ... describe it as a "technical s**t show."

https://techcrunch.com/2017/06/09/pandora-raises-480m-from-siriusxm-sells-ticketfly-to-eventbrite-for-200m

Transformative Customer Experiences

Real-time promotion recommendations

- Record "Cyber Monday" sales
- About 35M daily transactions
- Each transaction is 3-22 hops
- Queries executed in 4ms or less
- Replaced IBM Websphere commerce

Marriott's Real-time Pricing Engine

- 300M pricing operations per day
- 10x transaction throughput on half the hardware compared to Oracle
- Replaced Oracle database

Handling Package Routing in Real-Time

- Large postal service with over 500k
 employees
- Neo4j routes 7M+ packages daily at peak, with peaks of 5,000+ routing operations per second.

Roadmap - Neo4j Graph Platform

Neo4j Roadmap - Introducing Neo4j Bloom

- Graph visualization accessible to the entire enterprise
- Minimal training required to derive insights from connected data using Bloom

Neo4j Bloom Planned 1.0 Features

Graph Perspectives	a business user view of the graph
Graph Visualization	high performance graph layout + rendering
Graph Exploration	navigate through direct graph interaction
Graph Inspection	browseable details of graph entities
Graph Editing	create, duplicate, edit, delete
Graph Search	extensible, idiomatic search phrases

Neo4j Graph Analytics and Algorithms

Graph Algorithms - Insights

- Metrics
- Relevance
- Clustering and Classification
- Dependencies

Graphs in Manufacturing

Neo4j at Volvo

https://www.slideshare.net/neo4j/volvo-cars-build-a-car-with-neo4j

Neo4j Supply Chain Gist

https://neo4j.com/graphgist/supply-chain-management

Neo4j Replaces Oracle at Monsanto

US Army Supply Logistics

- Forecast the need for replacement parts
- Calculate mean time to failure rates.
- Perform multi-dimensional cost comparison and trend analysis
- Inform the Army's budget requirements process
- Answer vital "what-if" questions such as the cost of deploying certain forces and the supporting equipment to a new war zone

https://neo4j.com/case-studies/us-army/

Bill of Materials - A Graph Specialty

MRP, ERP, PLM ... Where is DA BOM?

https://maxdemarzi.com/2017/11/17/bill-of-materials-in-neo4j/

Use Graph Algorithms Extract Structures and Infer Meaning

Use Graph Algorithms

Pathfinding & Search

Finds the optimal path or evaluates route availability and quality

Centrality

Determines the importance of distinct nodes in the network

Community Detection

Evaluates how a group is clustered or partitioned

Algorithms - Pathfinding & Search

- Single-Source Shortest Path
 - Calculates "shortest" path between a node and all other nodes

Algorithms - Centralities

PageRank

Which nodes have the most overall influence

Centrality

Measure of importance

PageRank

- Recursive
- Importance and number of connected nodes

Betweenness Centrality

 Number of shortest paths connecting all pairs in the network

Closeness Centrality

 Inverse of distance to all other nodes in the network

Visualization

The modeling workflow

Cluster Architecture

Raft-based architecture

Consensus commits via "Core" servers

Cluster-aware drivers

No need for external load balancer Stateful, cluster-aware sessions

Causal Consistency

Stronger consistency model than Eventual Consistency

Application Architecture

Client driver libraries use Cypher over Bolt protocol

Using NLP and User-Defined Functions

Using NLP and User-Defined Functions

GraphAware Natural Language Processing


```
1 MATCH (tw:Tweet {lang: "en"})
2 CALL ga.nlp.annotate({text: tw.text, id: id(tw)})
3 YIELD result
4 MERGE (tw)-[:HAS_ANNOTATED_TEXT]->(result)
5 RETURN count(result)
```

https://github.com/graphaware/neo4j-nlp

Neo4j With Python Notebooks

Neo4j vs JanusGraph / DSE Graph / Titan

	Neo4J	Titan & Derivatives
ACID Compliance	Yes	Eventually Consistent
Graph Storage	Native Graph	Cassandra
Suitable for Multi-Hops	Yes	No
Language	Open Cypher	Gremlin

OpenCypher vs Apache Gremlin - Simplicity

	Open Cypher	Apache Gremlin
Language Style	Declarative Pattern Matching	Imperative API Style
Ease of Use	Simple to learn	Extremely Complex
Costs to Develop and Maintain	Low	High
Suitable for Power Users	Yes	Are you kidding?

OpenCypher vs Apache Gremlin - Simplicity

CYPHER

CALL algo.betweenness.stream('User','MANAGE',{direction:'out'})

vs Gremlin

```
gremlin> g.V().as("v").
          repeat(both().simplePath().as("v")).emit().
          filter(project("x", "y", "z").by(select(first, "v")).
                                     by(select(last, "v")).
                                     by(select(all, "v").count(local)).as("triple").
                 coalesce(select("x","y").as("a").
                            select("triples").unfold().as("t").
                            select("x", "y").where(eq("a")).
                            select("t"),
                          store("triples")). 5
                 select("z").as("length").
                 select("triple").select("2").where(eq("length"))). 6
          select(all, "v").unfold().
          groupCount().next() 8
```

http://tinkerpop.apache.org/docs/current/recipes/

Cypher for Apache Spark

