

Jones Granatyr

Contexto

- Problemas que são resolvidos por algoritmos pré-determinados (sistemas de recomendação, buscas, grafos, ordenações)
- Algoritmo pré-definido para reconhecimento facial? Processamento de linguagem natural?
- Algumas aplicações
 - Descoberta de novos remédios
 - Entendimento de linguagem natural
 - Carros autônomos
 - Reconhecimento facial
 - Cura para doenças
 - Bolsa de valores
 - Encontrar soluções para controle de tráfego
- Muitos dados e problemas complexos

- Imitar o sistema nervoso de humanos no processo de aprendizagem
- Inspirada em redes neurais biológicas
- Parecido com a troca de informações em uma rede biológica
- Com deep learning (aprendizagem profunda) as redes neurais ficaram populares novamente

Neurônio

Section 1

Neurônio

- Neurônios: o cérebro usa para processar informações
- Axônio: transmite o sinal de um neurônio para outro (sinais elétricos, sinapses) – conecta os neurônios
- Substâncias químicas são lançadas das sinapses e entram pelos dendritos, aumentando ou baixando o potencial elétrico do corpo da célula
- O neurônio dispara se a entrada é maior que um número definido (liga ou não liga)

- Fornece um valor de entrada, a rede processa e retorna uma resposta
- O neurônio é ativado somente se a o valor for maior que um limiar

Entrada Neurônios e axônios Saída

Neurônio artificial

1943 - McCulloch e Pitts 1958 - Frank Rosenblatt (perceptron)

$$soma = \sum_{i=1}^{n} xi * wi$$

Neurônio artificial

Entradas

$$soma = \sum_{i=1}^{n} xi * wi$$

$$soma = (1 * 0.8) + (7 * 0.1) + (5 * 0)$$

Step function (função Degrau)

Maior do que zero = 1 Caso contrário = 0

Representação tudo ou nada

Neurônio artificial

Entradas

$$soma = \sum_{i=1}^{n} xi * wi$$

$$soma = (-1 * 0.8) + (7 * 0.1) + (5 * 0)$$

Step function

- Peso positivo sinapse excitadora
- Peso negativo sinapse inibidora
- Pesos são sinapses
- Pesos amplificam ou reduzem o sinal de entrada
- Conhecimento da rede neural são os pesos

Classificação

x1 - comprimento do parafuso

x2 – diâmetro do parafuso

Classe A (0) e Classe B (1)

Operador E

x1	x2	Classe
0	0	0
0	1	0
1	0	0
1	1	1

Erro

- Algoritmo mais simples
 - erro = respostaCorreta respostaCalculada
- Os pesos são atualizados até os erros serem pequenos
 - o peso(n + 1) = peso(n) + (taxaAprendizagem *
 entrada * erro)

Algoritmo

- Enquanto o erro for diferente de zero
 - Para cada registro
 - Calcula a saída com os pesos atuais
 - Compara a saída esperada com a saída calculada, somando o erro
 - Para cada peso da rede
 - Atualiza o peso peso(n + 1) = peso(n) + (taxaAprendizagem * entrada * erro)

Conclusão