CS570 Analysis of Algorithms Spring 2008 Exam II

Name:	
Student ID:	

	Maximum	Received
Problem 1	20	
Problem 2	15	
Problem 3	15	
Problem 4	15	
Problem 5	20	
Problem 6	15	
Total	100	

Note: The exam is closed book closed notes.

1) 20 pts

Mark the following statements as **TRUE**, **FALSE**. No need to provide any justification.

TRUE

If all capacities in a network flow are rational numbers, then the maximum flow will be a rational number, if exist.

TRUE

The Ford-Fulkerson algorithm is based on the greedy approach.

[FALSE]

The main difference between divide and conquer and dynamic programming is that divide and conquer solves problems in a top-down manner whereas dynamic-programming does this bottom-up.

FALSE

The Ford-Fulkerson algorithm has a polynomial time complexity with respect to the input size.

TRUE

Given the Recurrence, $T(n) = T(n/2) + \theta(1)$, the running time would be $O(\log(n))$

FALSE

If all edge capacities of a flow network are increased by k, then the maximum flow will be increased by at least k.

TRUE

A divide and conquer algorithm acting on an input size of n can have a lower bound less than $\Omega(n \log n)$.

TRUE]

One can actually prove the correctness of the Master Theorem.

TRUE

In the Ford Fulkerson algorithm, choice of augmenting paths can affect the number of iterations.

FALSE

In the Ford Fulkerson algorithm, choice of augmenting paths can affect the min cut.

2) 15 pts
Present a divide-and-conquer algorithm that determines the minimum difference between any two elements of a sorted array of real numbers.

Key feature: The min difference can always been achieved between a pair of neighbors in the array, as the array is sorted.

```
int Min_Diff(first, last)
{
        if (last >= first)
            return inf;
        else
            return min(Min_Diff(first, (first + last)/2), Min_Diff((first + last)/2+1, last), abs(number[(first + last)/2+1] - number[(first + last)/2]));
}
```

The complexity is liner to the array size.

3) 15 pts You are given the following directed network with source O and sink T.

a) Find a maximum flow from O to T in the network.

Augmenting paths and flow pushing amount:

OACT 2 OBDT 3 OABDT 1 OACBDT 3

And the maximum flow here is with weight 9:

b) Find a minimum cut. What is its capacity?

Capacity of this min cut is 9.

4) 15 pts Solve the following recurrences

According to the master theorem, $T(n) = \Theta(n \log^2 n)$.

Or we can solve it like this:

$$T(n) = 2T(\frac{n}{2}) + n\log n = 2(2T(\frac{n}{4}) + \frac{n}{2}\log n - \frac{n}{2}\log 2) + n\log n$$

$$= 4T(\frac{n}{4}) + 2n\log n - n\log 2 = \dots = 2^k T(\frac{n}{2^k}) + kn\log n - \frac{k(k-1)}{2}n\log 2$$

$$= \dots = {\binom{k - 1}{2}} nT(1) + \Theta(n\log^2 n) = \Theta(n\log^2 n)$$

b)
$$T(n) = 2T(n/2) + \log n$$

Similar to a), the result is $T(n) = \Theta(n)$.

c)
$$T(n) = 2T(n-1) - T(n-2)$$
 for $n \ge 2$; $T(0) = 3$; $T(1) = 3$

It is very easy to find out that for the initial values T(0)=T(1), we always have T(i)=T(0), i > 0. Thus T(n) = 3.

5) 20 pts

You are given a flow network with integer capacity edges. It consists of a directed graph G = (V, E), a source s and a destination t, both belong to V. You are also given a parameter k. The goal is to delete k edges so as to reduce the maximum flow in G as much as possible. Give a efficient algorithm to find the edges to be deleted. Prove the correctness of your algorithm and show the running time.

We here introduce a straightforward algorithm (assuming $k \le |E|$, otherwise just return failure):

```
Delete_k_edges()
{
    E' = E;
    for i=1 to k
    {
        curr_Max_Flow = inf;
        for j in E'
            if Max_Flow(V, E'-j) < curr_Max_Flow
            {
                  curr_Max_Flow = Max_Flow(V, E'-j);
                  index[i] = j;
            }
        E' = E' - index[i];
    }
}</pre>
```

Then the final E' is a required edge set, and indices of all k deleted edges are stored in the array index[].

Running time is $O(k \mid E \mid T(\max_f low))$, depending on the max_flow algorithm used here, the time complexity varies: if Edmonds_Karp is used here the time would be $O(k \mid V \mid\mid E \mid^3)$; if Dinic or other more advanced algorithm is used here the time complexity can be reduced.

Proof hint:

By induction.

k = 1, the algorithm is correct.

Assume k = i the algorithm is correct. Then we prove for k = i+1, it is also correct. Here, it is better to divide this i+1 into the first step and the folloing i steps, not vice versa.

6) 15 pts

Six men and six women are at a dance. The goal of the matchmaker is to match each woman with a man in a way that maximizes the number of people who are matched with compatible mates. The table below describes the compatibility of the dancers.

	Ann	Cindy	Erin	Liz	Mary	Nancy
Bob	C	C	1	1	ı	1
Dave	ı	1	C	1	ı	1
John	-	C	C	C	-	-
Kevin	-	-	С	-	C	-
Ron	-	-	-	С	-	C
Sam	-	-	-	-	C	-

Note: C indicates compatibility.

a) Determine the maximum number of compatible pairs by reducing the problem to a max flow problem.

All edges are with capacity 1.

Run some maximum flow algorithm like Edmonds-Karp, it would guarantee to return a 0-1 solution within polynomial time, with represents the required match.

b) Find a minimum cut for the network of part (a).

A={S, Dave, Kevin, Sam, Erin, Mary} and A' = V-A constitute a minimum cut, with capacity 5.

c) Give the list of pairs in the maximum pairs set.

Maximum 5 pairs. One solution: Bob-Ann, Dave-Erin, John-Cindy, Ron-Nancy, Sam-Mary.