Paper Title

Jaouhara Chanchaf UM6P

ABSTRACT

300 word description of the project

PVLDB Reference Format:

Jaouhara Chanchaf and Karima Echihabi. Paper Title, 15(10): XXX-XXX, 2022. doi:XX.XX/XXXXX

1 INTRODUCTION

• Use case 1: Keyword Query

A data scientist wants to analyze the impact of food cost inflation on food consumption. Initially The user decides to start the search with a keyword-query $Q_0 = \{\text{``food''}, \text{``consumption''}\}, k = 10\}$. The search engine returns Table 2 which contains data from year 1990 to 2009 about "Per Capita Consumption of Principal Foods (in pounds)". The user decides to keep Table 2 for the study and continue to search for other relevant tables.

• Use case 2: Join Query Table 2 is a good first result as it contains a complete list of the main food types, however this result lacks information on food prices. For that the use perform a join query on the food column to explore other tables that may have information about food prices for the years 1990 to 2009.

Attempt 1: To speed up search the user submits $Q_1 = (\text{Table 2, Join column}: \text{``Food''}, k = 10)$ with a small k value. The search engine returned 775 tables. However, after skimming through the list of returned tables nothing seemed relevant to the user.

Attempt 2: The user decides to increase k to get more results from the search engine. He/she submits a second query $Q_2 =$ (Table 2, Join column: "Food", k = 20). This time the search engine returned 161 tables, because the number of results is big the user could notice Table ?? ranked at position 55.

Attempt 3: As a last attempt the user gave up on getting any fast meaningful result so he/she decide to increase k significantly in hope that a relevant table will appear in the list of results. He/she submits $Q_3 = (\text{Table 2, Join column : "Food"}, k = 200)$. Finally and after several attempts, the search engine returned Table

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.

doi:XX.XX/XXX.XX

Karima Echihabi UM6P

?? at position 11 which contains information on food prices from the 2007 WIC program.

2 DEFINITIONS AND TERMINOLOGY

Dataset Discovery.

Keyword and Join Queries.

Incremental Query Answering.

3 SYSTEM ARCHITECTURE

4 DEMONSTRATION

ACKNOWLEDGMENTS

We sincerely thank X, Y and Z.

REFERENCES

- [1] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim. The Lernaean Hydra of Data Series Similarity Search: An Experimental Evaluation of the State of the Art. *PVLDB*, 12(2), 2018.
- [2] PhDComics. Graduate Student Work Output. https://phdcomics.com/comics/archive.php?comicid=124, 2022.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. Visit

https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this license. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights licensed to the VLDB Endowment

Company	Plant	Location	Feedstock	Capacity (MW)		
Wheelabrator Technologies Inc.	Wheelabrator Shasta Energy Co. Inc.	Anderson - CA	Logging and Mill Residue/Ag Residue	50		
Greenleaf Power LLC	Desert View	Mecca - CA	Ag Residue/Urban Wood Waste	47		
Covanta	Covanta Delano	Delano - CA	Orchard and Vineyard Prunings/Nut Shells/Stone Fruit Pits	58		
Greenleaf Power LLC	Honey Lake Wendel - CA	Mill and Logging Residue/Forest Thinning/Urban Woodwaste	30			

Table 1: U.S. Biomass Power Plants

Category	Plant	Plant Name	Unit	Status	Start	Retire Date	Prime mover	Prime Mover	Capacity	net
	ID				Date		ID	Description		MWh

Table 2: U.S. Biomass Power Plants