A POST-QUANTUM PROBLEM THAT IS EASIER TO UNDERSTAND THAN RSA

Martin R. Albrecht 28 March 2018

OUTLINE

Greatest Common Divisors

RSA

The Approximate GCD problem

Attacks on the Approximate GCD problem

Bonus

GREATEST COMMON DIVISORS

EUCLIDEAN ALGORITHM

Given two integers $a,b < N = 2^{\kappa}$ the Euclidean algorithm computes their greatest common divisor $\gcd(a,b)$.

```
def gcd(a, b):
    if b == 0:
        return a
    else:
        return gcd(b, a % b)
```

The Euclidean algorithm runs in time $\mathcal{O}(\kappa^2)$.

Best known algorithm runs in time $\mathcal{O}(\kappa \log^2 \kappa \log \log \kappa)$.

For comparison, integer multiplication costs $\mathcal{O}(\kappa \log \kappa \log \log \kappa)$ using the Schönhage–Strassen algorithm.

¹Damien Stehlé and Paul Zimmermann. A Binary Recursive Gcd Algorithm. In: Algorithmic Number Theory, 6th International Symposium, ANTS-VI, Burlington, VT, USA, June 13-18, 2004, Proceedings. Ed. by Duncan A. Buell. Vol. 3076. Lecture Notes in Computer Science. Springer, 2004, pp. 411–425. DOI: 10.1007/978-3-540-24847-7_31. URL: http://dx.doi.org/10.1007/978-3-540-24847-7_31.

RSA

PUBLIC KEY ENCRYPTION

KeyGen Bob generates a key pair (sk, pk) and publishes pk.

Enc Alice uses pk to encrypt message m for Bob as c.

Dec Bob uses sk to decrypt c to recover m.

Naive RSA

KeyGen The public key is (N, e) and the private key is d, with

- $N = p \cdot q$ where p and q prime,
- e coprime to $\phi(N) = (p-1)(q-1)$ and
- d such that $e \cdot d \equiv 1 \mod \phi(N)$.

Enc $c \equiv m^e \mod N$

 $Dec \ m \equiv c^d \equiv m^{e \cdot d} \equiv m^1 \bmod N$

Caution

This naive version of RSA only achieves a very weak form of security — OW-CPA — even against classical adversaries: it is hard to recover random messages.

CLASSICAL ATTACKS ON RSA

- · An adversary who can factor large integers can break RSA.
- The best known classical algorithm for factoring is the Number Field Sieve (NFS)
- It has a super-polynomial but sub-exponential (in $\log N$) complexity of

$$\mathcal{O}\left(e^{1.9(\log^{1/3}N)(\log\log^{2/3}N)}\right)$$

operations.

CLASSICAL ATTACKS ON RSA

- · An adversary who can factor large integers can break RSA.
- The best known classical algorithm for factoring is the Number Field Sieve (NFS)
- It has a super-polynomial but sub-exponential (in $\log N$) complexity of

$$\mathcal{O}\left(e^{1.9(\log^{1/3}N)(\log\log^{2/3}N)}\right)$$

operations.

Caution

This does not mean an adversary has to factor to solve RSA.

SHARED FACTORS

What if two users generate moduli $N_0=q_0\cdot p$ and $N_1=q_1\cdot p$, i.e. moduli with shared factors?

- We assume that factoring each of N_0 or N_1 is hard.
- On the other hand, computing $\gcd(N_0,N_1)$ reveals p but costs only $\mathcal{O}\left(\kappa\log^2\kappa\log\log\kappa\right)$ operations when $N_i\approx 2^\kappa$.

QUANTUM ATTACKS ON RSA

An adversary with access to a quantum computer with

$$\mathcal{O}\left(\log^2(N)\log\log(N)\log\log\log(N)\right)$$

gates can factor N using Shor's algorithm.²

²Peter W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: 35th FOCS. IEEE Computer Society Press, Nov. 1994, pp. 124–134.

The Approximate GCD problem is the problem of distinguishing

$$x_i = q_i \cdot p + r_i$$

from uniform $\mathbb{Z} \cap [0, X)$ with $x_i < X$ (q_i , r_i and p are secret).

$$x_i = q_i \cdot p + r_i$$

If λ is our security parameter (think $\lambda=128$), then

name	sizeof	$DGHV10^3$	CheSte15 ⁴
γ	x_i	λ^5	$\lambda \log \lambda$
η	p	λ^2	$\lambda + \log \lambda$
ρ	r_i	λ	λ

³Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully Homomorphic Encryption over the Integers. In: EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS. Springer, Heidelberg. May 2010. pp. 24–43.

⁴Jung Hee Cheon and Damien Stehlé. Fully Homomophic Encryption over the Integers Revisited. In: *EUROCRYPT 2015, Part I.* ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015, pp. 513–536. DOI: 10.1007/978-3-662-46800-5_20.

NAIVE ENCRYPTION

KeyGen The public key is $\{x_i = q_i \cdot p + 2 r_i\}_{0 \le i < t}$ and the private key is p.

Enc For $m \in \{0,1\}$ output $c = m + \sum b_i \cdot x_i$ with $b_i \leftarrow s\{0,1\}$.

Dec $m = (c \mod p) \mod 2$.

Naive encryption

KeyGen The public key is $\{x_i = q_i \cdot p + 2 r_i\}_{0 \le i < t}$ and the private key is p.

Enc For $m \in \{0,1\}$ output $c = m + \sum b_i \cdot x_i$ with $b_i \leftarrow s\{0,1\}$.

Dec $m = (c \mod p) \mod 2$.

Note

This encryption scheme is not IND-CCA secure but it is IND-CPA secure if the AGCD problem is hard.

ATTACKS ON THE APPROXIMATE GCD

PROBLEM

EXHAUSTIVE SEARCH

Given
$$x_0 = q_0 \cdot p + r_0$$
 and $x_1 = q_1 \cdot p + r_1$ we know that

$$p \mid \gcd((x_0 - r_0), (x_1 - r_1))$$

Guess r_0 and r_1 !

Cost

 $2^{2\rho}\;\mathrm{GCDs}$

EXHAUSTIVE SEARCH + MULTIPLICATION

Compute

$$\gcd\left(x'_0, \prod_{i=0}^{2^{\rho}-1} (x_1 - i) \bmod x'_0\right)$$

for all $x_0' = x_0 - j$ with $0 \le j < 2^{\rho - 1}$.

Cost

 2^{ρ} GCDs, $2^{2\rho}$ multiplications

TIME-MEMORY TRADE OFF

Lemma

Assume that we have τ samples $x_0, \ldots, x_{\tau-1}$ of a given prime p, of the hidden form $x_i = q_i \cdot p + r_i$, then p can then be recovered with overwhelming probability in time $\tilde{\mathcal{O}}(2^{\frac{\tau+1}{\tau-1}\rho})$.

⁵Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. In: *EUROCRYPT 2012*. Ed. by David Pointcheval and Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 446–464.

LATTICE ATTACKS

Given $x_0 = q_0 p + r_0$ and $x_1 = q_1 p + r_1$, consider

$$q_0x_1 - q_1x_0 = q_0(q_1p + r_1) - q_1(q_0p + r_0)$$

$$= q_0q_1p + q_0r_1 - q_1q_0p - q_1r_0$$

$$= q_0r_1 - q_1r_0$$

and note that

$$q_0 x_1 - q_1 x_0 \ll x_i$$

LATTICE ATTACKS

Given $x_0 = q_0 p + r_0$ and $x_1 = q_1 p + r_1$, consider

$$q_0x_1 - q_1x_0 = q_0(q_1p + r_1) - q_1(q_0p + r_0)$$

$$= q_0q_1p + q_0r_1 - q_1q_0p - q_1r_0$$

$$= q_0r_1 - q_1r_0$$

and note that

$$q_0 x_1 - q_1 x_0 \ll x_i$$

Non-starter?

We don't know $q_i!$

LATTICE ATTACKS

Consider the matrix

$$\mathbf{B} = \begin{pmatrix} 2^{\rho+1} & x_1 & x_2 & \cdots & x_t \\ & -x_0 & & & \\ & & -x_0 & & \\ & & & \ddots & \\ & & & & -x_0 \end{pmatrix}$$

multiplying on the left by the vector $\mathbf{q}=(q_0,q_1,q_2,\cdots,q_t)$ gives

$$\mathbf{v} = (q_0, q_1, \dots, q_t) \cdot \mathbf{B}$$

$$= (q_0 2^{\rho+1}, q_0 x_1 - q_1 x_0, \dots, q_0 x_t - q_t x_0)$$

$$= (q_0 2^{\rho+1}, q_0 r_1 - q_1 r_0, \dots, q_0 r_t - q_t r_0)$$

which is a vector with small coefficients compared to x_i .

FINDING SHORT VECTORS

The set of all integer-linear combinations of the rows of ${\bf B}$ the lattice spanned by (the rows of) ${\bf B}$.

- **SVP** finding a shortest non-zero vector on general lattices is NP-hard.
- $\begin{array}{c} {\sf Gap\text{-}SVP}_{\gamma} & {\sf Differentiating\ between\ instances\ of\ SVP\ in\ which\ the} \\ & {\sf answer\ is\ at\ most\ 1\ or\ larger\ than\ \gamma\ on\ general\ lattices} \\ & {\sf is\ a\ well\mbox{-}known\ and\ presumed\ quantum\mbox{-}hard\ problem} \\ & {\sf for\ \gamma\ polynomial\ in\ lattice\ dimension.} \end{array}$

Easy SVP

GCD is SVP on \mathbb{Z}^2 . For example, $\mathbf{B} = [21, 14]^T$, $\mathbf{v} = (-1, 1)$, $\mathbf{v} \cdot \mathbf{B} = 7$.

REDUCTION TO PRESUMED HARD LATTICE PROBLEM

We can show that an adversary has to solve Gap-SVP.

$\mathsf{AGCD} \to \mathsf{LWE}$

If there is an algorithm efficiently solving the AGCD problem then there exists an algorithm which solves the **Learning with Errors** (LWE) problem with essentially the same performance.⁶

$\mathsf{LWE} \to \mathsf{Gap}\text{-}\mathsf{SVP}$

If there is an algorithm efficiently solving the LWE problem then there exists a quantum algorithm which solves worst-case Gap-SVP instances.⁷

⁶Jung Hee Cheon and Damien Stehlé. Fully Homomophic Encryption over the Integers Revisited. In: *EUROCRYPT 2015, Part I.* ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015, pp. 513–536. DOI: 10.1007/978-3-662-46800-5_20.

⁷Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In: *37th ACM STOC.* ed. by Harold N. Gabow and Ronald Fagin. ACM Press, May 2005, pp. 84–93.

LEARNING WITH ERRORS (IN NORMAL FORM)

Given (\mathbf{A}, \mathbf{c}) with $\mathbf{c} \in \mathbb{Z}_q^m$, $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, small $\mathbf{s} \in \mathbb{Z}^n$ and small $\mathbf{e} \in \mathbb{Z}^m$ is

$$\left(egin{array}{c} \mathbf{c} \end{array}
ight) = \left(egin{array}{ccc} \leftarrow & n &
ightarrow \\ & \mathbf{A} \end{array}
ight) imes \left(egin{array}{c} \mathbf{s} \end{array}
ight) + \left(egin{array}{c} \mathbf{e} \end{array}
ight)$$

FROM VECTORS TO SCALARS

LWE with modulus q^n and dimension 1 is as hard as LWE with modulus q and dimension 1.

$$q^{d-1} \cdot \langle \mathbf{a}, \mathbf{s} \rangle \approx \left(\sum_{i=0}^{n-1} q^i \cdot a_i \right) \cdot \left(\sum_{i=0}^{d-1} q^{d-i-1} \cdot s_i \right) \bmod q^d = \tilde{a} \cdot \tilde{s} \bmod q^d.$$

Example

$$(a_0 + q \cdot a_1) \cdot (q \cdot s_0 + s_1) = q(a_0 \cdot s_0 + a_1 \cdot s_1) + (a_1 \cdot s_1) + q^2(a_1 \cdot s_0)$$

$$\equiv q(a_0 \cdot s_0 + a_1 \cdot s_1) + (a_1 \cdot s_1) \bmod q^2$$

$$\approx q(a_0 \cdot s_0 + a_1 \cdot s_1) \bmod q^2$$

QUESTIONS?

Bonus

HOMOMORPHIC ENCRYPTION

Given $c_i = q_i \cdot p + m'_i$ with $m'_i = 2 r_i + m_i$.

· We can compute

$$c' = c_0 \cdot c_1 = q_0 q_1 p^2 + q_0 m_1' p + q_1 m_0' p + m_0' \cdot m_1'$$

to get $c' \mod p = m_0' \cdot m_1'$ and $m_0' \cdot m_1' \mod 2 = m_0 \cdot m_1$.

· We can also compute

$$c' = c_0 + c_1 = (q_0 + q_1)p + (m'_0 + m'_1)$$

to get $c' \mod p \mod 2 = m_0 \oplus m_1$.

We can compute with encrypted data.8

⁸https://crypto.stanford.edu/craig/easy-fhe.pdf