# Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

(МГТУ им. Н.Э. Баумана)



Факультет "Фундаментальные науки" Кафедра "Высшая математика"

# ОТЧЁТ по учебной практике за 1 семестр 2020—2021 гг.

| Руководитель практики, |                                                | Кравченко О.В |
|------------------------|------------------------------------------------|---------------|
| ст. преп. кафедры ФН1  | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | правченко О.Б |
| студент группы ФН1–11  |                                                | Русов А.В.    |
|                        | $(no\partial nuc b)$                           |               |

Москва, 2020 г.

# Содержание

| 1  | Цели и задачи практики                             | 3        |
|----|----------------------------------------------------|----------|
|    | 1.1 Цели                                           | 3        |
|    | 1.2 Задачи                                         | 3        |
|    | 1.3 Индивидуальное задание                         | 3        |
| 2  | Отчёт                                              | 4        |
| 3  | Индивидуальное задание 3.1 Пределы и непрерывность | <b>5</b> |
| Cı | писок литературы                                   | 9        |

# 1 Цели и задачи практики

### 1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

## 1.2 Задачи

- 1. Знакомство с программными средствами, необходимыми в будущей профессиональной деятельности.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

## 1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски L<sup>A</sup>T<sub>F</sub>X.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе IATEX типовые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.

# 2 Отчёт

Актуальность темы продиктована необходимостью владеть системой вёрстки I<sup>A</sup>T<sub>E</sub>Xи средой вёрстки TeXStudio для отображения текста, формул и графиков. Полученные в ходе практики навыки могут быть применены при написании курсовых проектов и дипломной работы, а также в дальнейшей профессиональной деятельности.

Ситема вёрстки IATEX содержит большое количество инструментов (пакетов), упрощающих отображение информации в различных сферах инженерной и научной деятельности.

## 3 Индивидуальное задание

## 3.1 Пределы и непрерывность.

#### Задача № 1.

**Условие.** Дана последовательность 
$$\{a_n\}=\frac{2n-1}{2-3n}$$
 и число  $c=-\frac{2}{3}$ . Доказать, что 
$$\lim_{n\to\infty}a_n=c,$$

а именно, для каждого сколь угодно малого числа  $\varepsilon > 0$  найти наименьшее натуральное число  $N = N(\varepsilon)$  такое, что  $|a_n - c| < \varepsilon$  для всех номеров  $n > N(\varepsilon)$ . Заполнить таблицу

| ε                | 0,1 | 0,01 | 0,001 |
|------------------|-----|------|-------|
| $N(\varepsilon)$ |     |      |       |

**Решение.** Рассмотрим неравенство  $a_n - c < \varepsilon, \forall \varepsilon > 0$ , учитывая выражение для  $a_n$  и значение c из условия варианта, получим

$$\left| \frac{2n-1}{2-3n} + \frac{2}{3} \right| < \varepsilon,$$

$$\left| \frac{1}{3(3n-2)} \right| < \varepsilon.$$

Неравенство запишем в виде двойного неравентсва и приведём выражение под знаком модуля к общему знаменателю, получим

$$-\varepsilon < \frac{1}{3(3n-2)} < \varepsilon.$$

Заметим, что левое неравенство выполнено для любого номера  $n \in \mathbb{N}$  поэтому, будем рассматривать правое неравенство

$$\frac{1}{3(3n-2)} < \varepsilon.$$

Выполнив цепочку преобразований, перепишем неравенство относительно  $n^2$ , и учитывая, что  $n \in \mathbb{N}$ , получим

$$\frac{1}{3(3n-2)} < \varepsilon,$$

$$\frac{1}{3\varepsilon} < 3n-2,$$

$$n > \frac{1}{3} \left(2 + \frac{1}{3\varepsilon}\right),$$

$$N(\varepsilon) = \left[\frac{1}{3} \left(2 + \frac{1}{3\varepsilon}\right)\right].$$

где [ ] — целая часть числа. Заполним таблицу:

| $\varepsilon$    | 0,1 | 0,01 | 0,001 |
|------------------|-----|------|-------|
| $N(\varepsilon)$ | 1   | 11   | 111   |

Проверка:

$$|a_2 - c| = \frac{1}{12} < 0.1,$$
  
 $|a_{12} - c| = \frac{1}{102} < 0.01,$   
 $|a_{112} - c| = \frac{1}{1002} < 0.001.$ 

Условие. Вычислить пределы функций

(a): 
$$\lim_{x \to -1} \frac{x^4 + 2x^3 - x^2 - 4x - 2}{x^3 + 3x^2 + 3x + 1}$$
,

(6): 
$$\lim_{x \to +\infty} \frac{3x^2 - x + 1}{\sqrt[3]{x^6 + x} + \sqrt{1 + x^4}},$$

(B): 
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}},$$

(r): 
$$\lim_{x \to 1} \left( \frac{3x - 1}{x + 1} \right)^{\frac{1}{\sqrt[3]{x - 1}}}$$

(д): 
$$\lim_{x\to 0} \left(\frac{x+2}{x+1}\right)^{\frac{\arcsin x}{2^x-1}},$$

(e): 
$$\lim_{x \to 3\pi} \frac{2^x - 8^{\pi}}{\sin 7x - \sin 3x}$$

Решение.

(a):

$$\lim_{x \to -1} \frac{x^4 + 2x^3 - x^2 - 4x - 2}{x^3 + 3x^2 + 3x + 1} = \lim_{x \to -1} \frac{(x^2 - 2)(x + 1)^2}{(x + 1)^3} = \lim_{x \to -1} \frac{x^2 - 2}{x + 1} = \left[ \frac{-1}{0} \right] = -\infty.$$

$$\lim_{x \to +\infty} \frac{3x^2 - x + 1}{\sqrt[3]{x^6 + x} + \sqrt{1 + x^4}} = \lim_{x \to +\infty} \frac{3 - \frac{1}{x} + \frac{1}{x^2}}{\sqrt[3]{1 + \frac{1}{x^5}} + \sqrt{\frac{1}{x^4} + 1}} = \frac{3}{2}$$

$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} = \lim_{x \to -8} \frac{(\sqrt{1-x}-3)(\sqrt{1-x}+3)(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}{(2+\sqrt[3]{x})(\sqrt{1-x}+3)(4-2\sqrt[3]{x}+\sqrt[3]{x^2})} = \lim_{x \to -8} \frac{(-x-8)(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}{(x+8)(2+\sqrt[3]{x})} = -\lim_{x \to -8} \frac{(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}{(2+\sqrt[3]{x})} = \frac{-12}{6} = -2$$

$$(\Gamma)$$
:

$$\lim_{x \to 1} \left( \frac{3x - 1}{x + 1} \right)^{\frac{1}{\sqrt[3]{x - 1}}} = \left[ 1^{\infty} \right] = e^{\lim_{x \to 1} \left( \frac{3x - 1}{x + 1} - 1 \right) \left( \frac{1}{\sqrt[3]{x - 1}} \right)} = e^{\lim_{x \to 1} \left( \frac{2(\sqrt[3]{x - 1})}{x + 1} \right) \left( \frac{\sqrt[3]{x - 1}}{x - 1} \right)} = e^{3}.$$

(д):

$$\lim_{x \to 0} \left( \frac{x+2}{x+1} \right)^{\frac{\arcsin x}{2^x - 1}} = \left| \begin{array}{c} \arcsin x \sim x \\ 2^x - 1 \sim x \ln 2 \end{array} \right| = \lim_{x \to 0} \left( \frac{x+2}{x+1} \right)^{\frac{x}{x \ln 2}} = \lim_{x \to 0} 2^{\frac{x}{x \ln 2}} = 2^{\frac{1}{\ln 2}}$$

(e):

$$\lim_{x \to 3\pi} \frac{2^x - 8^{\pi}}{\sin 7x - \sin 3x} = \begin{vmatrix} t = x - 3\pi & \sin(7(t + 3\pi)) = -\sin(7t) \\ t \to 0 & \sin(3(t + 3\pi)) = -\sin(3t) \end{vmatrix} = \lim_{t \to 0} \frac{8^{\pi}(2^t - 1)}{\sin 3t - \sin 7t} = \lim_{t \to 0} \frac{8^{\pi}(2^t - 1)}{-2\cos 5t \sin 2t} = \begin{vmatrix} \sin 2t \sim 2t \\ 2^t - 1 \sim t \ln 2 \end{vmatrix} = -\lim_{t \to 0} \frac{8^{\pi}(t \ln 2)}{4t} = -\frac{8^{\pi} \ln 2}{4}$$

#### Задача № 3.

#### Условие.

(a): Показать, что данные функции f(x) и g(x) являются бесконечно малыми или бесконечно большими при указанном стремлении аргумента.

(б): Для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию) вида  $C(x-x_0)^{\alpha}$  при  $x\to x_0$  или  $Cx^{\alpha}$  при  $x\to \infty$ , указать их порядки малости (роста).

**(в):** Сравнить функции f(x) и g(x) при указанном стремлении.

| № варианта | функции $f(x)$ и $g(x)$                                         | стремление |
|------------|-----------------------------------------------------------------|------------|
| 20         | $f(x) = x^3 + \arcsin x, \ g(x) = \sqrt{1 - 3x} - \sqrt{1 + x}$ | $x \to 0$  |

#### Решение.

(a): Покажем, что f(x) и g(x) бесконечно малые функции,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^3 + \arcsin x) = 0.$$
$$\lim_{x \to 0} g(x) = \lim_{x \to 0} (\sqrt{1 - 3x} - \sqrt{1 + x}) = 0.$$

(б): Так как f(x) и g(x) бесконечно малые функции, то эквивалентными им будут функции вида  $Cx^{\alpha}$  при  $x \to 0$ . Найдём эквивалентную для f(x) из условия

$$\lim_{x \to 0} \frac{f(x)}{x^{\alpha}} = C,$$

где C — некоторая константа. Рассмотрим предел

$$\lim_{x \to 0} \frac{f(x)}{x^{\alpha}} = \lim_{x \to 0} \frac{x^3 + \arcsin x}{x^{\alpha}} = \{ \text{при } \alpha = 1 \} = \lim_{x \to 0} x^2 + \lim_{x \to 0} \frac{\arcsin x}{x} = 1.$$

Отсюда C = 1,  $\alpha = 1$  и

$$f(x) \sim x$$
 при  $x \to 0$ .

Аналогично, рассмотрим предел

$$\lim_{x\to 0}\frac{g(x)}{x^{\alpha}}=\lim_{x\to 0}\frac{\sqrt{1-3x}-\sqrt{1+x}}{x^{\alpha}}=\lim_{x\to 0}\frac{-4x}{x^{\alpha}(\sqrt{1-3x}+\sqrt{1+x})}=\left\{\text{при }\alpha=1\right\}=-2.$$

Отсюда C = -2,  $\alpha = 1$  и

$$q(x) \sim -2x$$
 при  $x \to 0$ .

(в): Для сравнения функций f(x) и g(x) рассмотрим предел их отношения при указанном стремлении

$$\lim_{x \to 0} \frac{f(x)}{g(x)}.$$

Применим эквивалентности, определенные в пункте (б), получим

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x}{-2x} = -\frac{1}{2}.$$

Отсюда, f(x) и g(x) - бесконечно малые функции одного порядка малости при  $x \to 0$ .

#### Задача № 4.

#### Условие.

Найти точки разрыва функции

$$y = f(x) \equiv \begin{cases} \operatorname{arcctg}(\frac{1}{x}), & x \leq 1, \\ \frac{1}{(x-2)\ln x}, & x > 1. \end{cases}$$

и определить их характер. Построить фрагменты графика функции в окрестности каждой точки разрыва.

**Решение.** Особыми точками являются точки x=0,1,2. Рассмотрим односторонние пределы в окресности каждой из особых точек

$$\lim_{x \to 0-} \operatorname{arcctg}(\frac{1}{x}) = \pi, \quad \lim_{x \to 1-} \operatorname{arcctg}(\frac{1}{x}) = \frac{\pi}{4}, \qquad \lim_{x \to 2-} \frac{1}{(x-2)\ln x} = -\infty.$$
 
$$\lim_{x \to 0+} \operatorname{arcctg}(\frac{1}{x}) = 0, \quad \lim_{x \to 1+} \frac{1}{(x-2)\ln x} = -\infty, \quad \lim_{x \to 2+} \frac{1}{(x-2)\ln x} = +\infty.$$



Отсюда, точка x=0 — точка неустранимого разрыва 1–го рода, точка x=1 — точка разрыва 2–го рода, точка x=2 — точка разрыва 2–го рода.

# Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе І<sup>д</sup>Т<sub>Е</sub>X, 2003 с.
- [2] Столяров А.В. Сверстай диплом красиво: IРТ<br/>EXза три дня, 2010 с.
- [3] Балдин Е.М. Компьютерная типография I<br/>4TeX, 2008 с.