K-Means Clustering-

- K-Means clustering is an unsupervised iterative clustering technique.
- It partitions the given data set into k predefined distinct clusters.
- A cluster is defined as a collection of data points exhibiting certain similarities.

It partitions the data set such that-

- Each data point belongs to a cluster with the nearest mean.
- Data points belonging to one cluster have high degree of similarity.
- Data points belonging to different clusters have high degree of dissimilarity.

K-Means Clustering Algorithm-

K-Means Clustering Algorithm involves the following steps-

Step-01:

• Choose the number of clusters K.

Step-02:

• Randomly select any K data points as cluster centers.

 Select cluster centers in such a way that they are as farther as possible from each other.

Step-03:

- Calculate the distance between each data point and each cluster center.
- The distance may be calculated either by using given distance function or by using euclidean distance formula.

Step-04:

- Assign each data point to some cluster.
- A data point is assigned to that cluster whose center is nearest to that data point.

Step-05:

- Re-compute the center of newly formed clusters.
- The center of a cluster is computed by taking mean of all the data points contained in that cluster.

Step-06:

Keep repeating the procedure from Step-03 to Step-05 until any of the following stopping criteria is met-

- Center of newly formed clusters do not change
- Data points remain present in the same cluster
- Maximum number of iterations are reached.

Advantages-

K-Means Clustering Algorithm offers the following advantages-

Point-01:

It is relatively efficient with time complexity O(nkt) where-

- n = number of instances
- k = number of clusters
- t = number of iterations

Point-02:

- It often terminates at local optimum.
- Techniques such as Simulated Annealing or **Genetic Algorithms** may be used to find the global optimum.

Disadvantages-

K-Means Clustering Algorithm has the following disadvantages-

- It requires to specify the number of clusters (k) in advance.
- It can not handle noisy data and outliers.
- It is not suitable to identify clusters with non-convex shapes.

What is k-Means clustering?

k-Means algorithms

- Partitioning Clustering
- K-means divides the data into non-overlapping subsets (clusters) without any clusterinternal structure
- Examples within a cluster are very similar
- Examples across different clusters are very different

IBM Developer

Determine the similarity or dissimilarity

IBM Developer

1-dimensional similarity/distance

IBM Developer

2-dimensional similarity/distance

IBM Developer

Multi-dimentional similarity/distance

IBM Developer

How does k-Means clustering work?

k-Means clustering – initialize k

K-Means clustering – calculate the distance

k-Means clustering – assign to centroid

3) Assign each point to the closest centroid

IBM Developer

k-Means clustering – assign to centroid

3) Assign each point to the closest centroid

IBM Developer

k-Means clustering – assign to centroid

3) Assign each point to the closest centroid

k-Means clustering – compute new centroids

4) Compute the new centroids for each cluster.

k-Means clustering – compute new centroids

4) Compute the new centroids for each cluster.

k-Means clustering – repeat

5) Repeat until there are no more changes.

k-Means clustering – repeat

5) Repeat until there are no more changes.

IBM Developer

k-Means clustering – repeat

5) Repeat until there are no more changes.

k-Means clustering – repeat

5) Repeat until there are no more changes.

IBM Developer

k-Means clustering – repeat

5) Repeat until there are no more changes.

k-Means clustering – repeat

5) Repeat until there are no more changes.

k-Means clustering algorithm

- 1. Randomly placing k centroids, one for each cluster.
- 2. Calculate the distance of each point from each centroid.
- 3. Assign each data point (object) to its closest centroid, creating a cluster.
- 4. Recalculate the position of the *k* centroids.
- 5. Repeat the steps 2-4, until the centroids no longer move.

IBM Developer

k-Means accuracy

- External approach
 - Compare the clusters with the ground truth, if it is available.
- Internal approach
 - Average the distance between data points within a cluster.

IBM Developer

Choosing k

IBM Developer

SKILLS NETWORK

k-Means recap

- Med and Large sized databases (Relatively efficient)
- Produces sphere-like clusters
- Needs number of clusters (k)

IBM Developer