Finite-time Analysis of Frequentist Strategies for Multi-armed Bandits

Subhojyoti Mukherjee CS15S300

Guide: Dr. Balaraman Ravindran

Co-Guide: Dr. Nandan Sudarsanam Collaborator: Dr. K.P. Naveen

IIT Madras

January 7, 2018

Overview

SMAB Setting (Part 1)	TBP Setting (Part 2)	
Problem Definition	Problem Definition	
Contributions	Contributions	
Theory	Theory	
Experiments	Experiments	

Stochastic Multi-Armed Bandit Problem (SMAB) (Chapter 2)

• A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.

Stochastic Multi-Armed Bandit Problem (SMAB) (Chapter 2)

- A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.
- The rewards for each of the arms are i.i.d random variables drawn from distribution specific to the arm which are fixed throughout the time horizon denoted by T.

Stochastic Multi-Armed Bandit Problem (SMAB) (Chapter 2)

- A finite set of actions or arms belonging to set \mathbb{A} such that $|\mathbb{A}| = K$.
- The rewards for each of the arms are i.i.d random variables drawn from distribution specific to the arm which are fixed throughout the time horizon denoted by T.
- The learner does not know the mean r_i , $\forall i \in \mathbb{A}$ of the distribution or the variance σ_i^2 .

• **Primary aim:** Minimize the cumulative regret by identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.

- **Primary aim:** Minimize the cumulative regret by identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.
- **Condition:** This has to be achieved within a finite *T* timesteps.

- **Primary aim:** Minimize the cumulative regret by identifying the arm whose expected mean is r^* such that $r^* > r_i, \forall i \in \mathbb{A}$.
- **Condition:** This has to be achieved within a finite *T* timesteps.
- The expected regret of an algorithm after T timesteps is give by,

$$\mathbb{E}[R_T] = \sum_{i=1}^K \mathbb{E}[z_i(T)] \Delta_i,$$

where $\Delta_i = r^* - r_i$ is the gap.

 We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- Theoretically it achieves an order-optimal regret bound, the first for an arm elimination algorithm in SMAB setting.

- We propose the Efficient-UCB-Variance (EUCBV) algorithm for the SMAB setting.
- EUCBV takes into account the empirical variances of the arms along with mean estimates to quickly find the optimal arm.
- It is the first variance-based arm elimination algorithm for the considered SMAB setting.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- Theoretically it achieves an order-optimal regret bound, the first for an arm elimination algorithm in SMAB setting.
- Empirically, it outperforms all the state-of-the-art algorithms for the considered environments.

EUCBV Algorithm for SMAB (Chapter 3)

Expected Regret of EUCBV (Chapter 3)

Corollary (*Gap-Independent Bound*)

The regret of EUCBV is upper bounded by the following gap-independent expression:

$$\mathbb{E}[R_T] \leq \frac{C_3 K^5}{T^{\frac{1}{4}}} + 80\sqrt{KT}.$$

Algorithm	GD Bound		GI Bound	Var
EUCBV	0	$\left(rac{K\sigma_{max}^2\log(rac{T\Delta^2}{K})}{\Delta} ight)$	$O\left(\sqrt{KT}\right)$	Yes
UCBV	0 ($\left(\frac{K\sigma_{\max}^2\log T}{\Delta}\right)$	$O\left(\sqrt{KT\log T}\right)$	Yes
MOSS	0 ($\left(\frac{K^2\log(T\Delta^2/K)}{\Delta}\right)$	$O\left(\sqrt{KT}\right)$	No
OCUCB	0 ($\left(\frac{K\log(T/H_i)}{\Delta}\right)$	$O\left(\sqrt{KT}\right)$	No

Experiments in SMAB (Chapter 3)

- **Setting:** The Thresholding Bandit Problem (TBP) is a special case of SMAB setting.
- Primary aim: Identify all the arms whose mean of the reward distribution (r_i) is above a particular threshold τ given as input.

- **Setting:** The Thresholding Bandit Problem (TBP) is a special case of SMAB setting.
- **Primary aim:** Identify all the arms whose mean of the reward distribution (r_i) is above a particular threshold τ given as input.
- Condition: This has to be achieved within T timesteps of exploration and this is termed as a fixed-budget problem.

• We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$

- We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- S_{τ}^{c} denote the complement of S_{τ} , i.e., $S_{\tau}^{c} = \{i \in A : r_{i} < \tau\}$.

- We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- S_{τ}^{c} denote the complement of S_{τ} , i.e., $S_{\tau}^{c} = \{i \in \mathcal{A} : r_{i} < \tau\}$.
- Let \hat{S}_{τ} denote the recommendation of a learning algorithm after T time units of exploration, while \hat{S}_{τ}^{c} denotes its complement.

- We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- S_{τ}^{c} denote the complement of S_{τ} , i.e., $S_{\tau}^{c} = \{i \in A : r_{i} < \tau\}$.
- Let \hat{S}_{τ} denote the recommendation of a learning algorithm after T time units of exploration, while \hat{S}_{τ}^{c} denotes its complement.
- The goal of the learning agent is to minimize the expected loss:

$$\mathbb{E}[\mathcal{L}(T)] = \mathbb{P}\big(\underbrace{\{\mathcal{S}_{\tau} \cap \hat{\mathcal{S}}_{\tau}^{\textit{c}} \neq \emptyset\}}_{\text{Rejected good arms}} \ \cup \underbrace{\{\hat{\mathcal{S}}_{\tau} \cap \mathcal{S}_{\tau}^{\textit{c}} \neq \emptyset\}}_{\text{Accepted bad arms}}\big)$$

 We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- We also define a new problem complexity which uses empirical variance estimates along with arm's mean for giving the theoretical bound.

- We propose the Augmented UCB (AugUCB) algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- We also define a new problem complexity which uses empirical variance estimates along with arm's mean for giving the theoretical bound.
- Empirically, in the considered environments AugUCB outperforms all the algorithms that rely on on estomation of mean to conduct exploration.

AugUCB Algorithm for TBP (Chapter 5)

• We define $\Delta_i = |r_i - \tau|$ as in Locatelli et al. (2016).

- We define $\Delta_i = |r_i \tau|$ as in Locatelli et al. (2016).
- We define $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$ as in Audibert and Bubeck (2010).

- We define $\Delta_i = |r_i \tau|$ as in Locatelli et al. (2016).
- We define $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$ as in Audibert and Bubeck (2010).
- We define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates variances as:

$$H_{\sigma,1} = \sum_{i=1}^K \frac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

- We define $\Delta_i = |r_i \tau|$ as in Locatelli et al. (2016).
- We define $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$ as in Audibert and Bubeck (2010).
- We define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates variances as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

• Finally, analogous to H_2 , we introduce $H_{\sigma,2}$, such that $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{(i)}^2}$, where $\tilde{\Delta}_i^2 = \frac{\Delta_i^2}{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}$, $(\tilde{\Delta}_{(i)})$ is an increasing ordering of $(\tilde{\Delta}_i)$.

- We define $\Delta_i = |r_i \tau|$ as in Locatelli et al. (2016).
- We define $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$ as in Audibert and Bubeck (2010).
- We define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates variances as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

- Finally, analogous to H_2 , we introduce $H_{\sigma,2}$, such that $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{(i)}^2}$, where $\tilde{\Delta}_i^2 = \frac{\Delta_i^2}{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}$, $(\tilde{\Delta}_{(i)})$ is an increasing ordering of $(\tilde{\Delta}_i)$.
- From Audibert and Bubeck (2010), we can show that

$$H_{\sigma,2} \leq H_{\sigma,1} \leq \log(2K)H_{\sigma,2}$$
.

Expected Loss of AugUCB (Chapter 5)

Theorem

For $K \ge 4$ and $\rho = 1/3$, the expected loss of the AugUCB algorithm is given by,

$$\mathbb{E}[\mathcal{L}(T)] \leq 2KT \exp\bigg(-\frac{T}{4096\log(K\log K)H_{\sigma,2}}\bigg).$$

Table: AugUCB vs. State of the art

Algorithm	Upper Bound on Expected Loss		Oracle
AugUCB	exp ($\left(-\frac{T}{4096\log(K\log K)H_{\sigma,2}} + \log(2KT)\right)$	No
UCBEV	exp ($\left(-\frac{1}{512}\frac{T-2K}{H_{\sigma,1}} + \log{(6KT)}\right)$	Yes
APT	exp ($\left(-\frac{T}{64H_1} + 2\log((\log(T) + 1)K)\right)$	No
UCBE	exp ($\left(-\frac{T-K}{18H_1}-2\log(\log(T)K)\right)$	Yes

Experiments in TBP (Chapter 5)

(d) Expt-2: Two Group Setting (Advance)

Conclusion (Chapter 6)

 We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to give an order-optimal theoretical guarantees.

Conclusion (Chapter 6)

- We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to give an order-optimal theoretical guarantees.
- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than mean estimation based algorithms.

Conclusion (Chapter 6)

- We proposed the EUCBV algorithm for the SMAB setting which uses variance and mean estimation along with arm elimination to give an order-optimal theoretical guarantees.
- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than mean estimation based algorithms.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.
- A more detailed analysis of the non-uniform arm selection and parameter selection is also required for both AugUCB and EUCBV.

Papers based on Thesis

- Subhojyoti Mukherjee, K.P. Naveen, Nandan Sudarsanam, and Balaraman Ravindran, "Thresholding Bandit with Augmented UCB", Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,2515-2521.
- Subhojyoti Mukherjee, K.P. Naveen, Nandan Sudarsanam, and Balaraman Ravindran, "Efficient UCBV: An Almost Optimal Algorithm using Variance Estimates", To appear in Proceedings of the Thirty-Second Association for the Advancement of Artificial Intelligence, AAAI 2018, New Orleans, Louisiana, USA, February 2-7.

Thank You