Математические основы теории вероятностей, часть 2

Палагашвили Аби

17 февраля 2019 г.

1 Конечные произведения измеримых пространств

 $(X,S,\mu)(Y,T,\nu)$ - пространства с мерами Рассмотрим вопрос о построении пространства $(X\times Y,S\times T,\mu\times \nu)$

Определение 1.1. Пусть $A \subset X, B \subset Y$. Прямоугольником $A \times B$ называется совокупность пар $(x,y), x \in A, y \in B$

Пемма 1.1. Класс всех измеримых $(A \in S, B \in T)$ прямоугольников образует полуалгебру

Доказательство.
$$(A_1 \times B_1) \subset (A_2 \times B_2) \Rightarrow (A_2 \times B_2) \setminus (A_1 \times B_1) = \bigcup_{i=1}^k (C_i \times D_i) = A_2(B_2 \setminus B_1) \bigcup B_1(A_2 \setminus A_1)$$

Определение 1.2. Произведение σ - алгебр $S \times T$ - σ - алгебра, порожденная классом измеримых прямоугольников.

Определение 1.3. Пусть $E \subset X \times Y$. Тогда **х-сечением** Множества E называется множество $E_x = y \in Y : (x,y) \in E$

Определение 1.4. Пусть f-измеримая функция со значениями в $\overline{\mathbb{R}}$. Тогда x-сечением функции f называется $f_x(y):Y\to \overline{\mathbb{R}}$ такая, что $f_x(y)=f(x,y)$

Теорема 1.1. Если $E \in S \times T$, то $E_x \in T$ и $E_y \in S$ $\forall x \in X, y \in Y$

 $oxed{eta}$ оказательство.