

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

РАКУЛЬТЕТ _	<u>ИНФОРМАТИК</u>	А И СИСТЕМЫ УПРА	АВЛЕНИЯ
САФЕДРА	<u>КОМПЬЮТЕРНЬ</u>	ІЕ СИСТЕМЫ И СЕТ	ГИ (ИУ6)
		Отчет	
	o pyoex	кном контроле № 1	
		15 вариант	
		13 вариант	
Дисциплин	на: Электротехника_		
C	ID/(225		D ** 5
Студ	ент гр. ИУ6-33Б	<u>22.10.2023</u> (Подпись, дата)	В. К. Залыгин (И.О. Фамилия)
		(подпись, дага)	(11.0. vaminin)
Преп	одаватель		
1	• •	(Подпись, дата)	(И.О. Фамилия)

Задание

Для схемы и значений параметров своего варианта ДЗ1:

1. Рассчитать токи методом уравнений Кирхгофа

2. Рассчитать баланс активной мощности

Расчеты следует представить подробно со всеми промежуточными выкладками в рукописном виде. После аналитического вывода системы линейных алгебраических уравнений (СЛАУ) с действительными коэффициентами для каждого из методов решение СЛАУ можно выполнить в любом математическом пакете. Обозначения в формулах должны быть отмечены на чертеже схемы и объяснены в тексте.

Параметры к РК1 и ДЗ1

					дс			
	E1	E2	E3	E4	E5	E6	E7	E8
1	200j	200-200j	100cos(ωt+270°)	100sin(ωt+90°)	100cos(ωt- 180 ⁰)	200+200j	-200-200j	200
2	200-200j	100cos(ωt+270°)	100sin(ωt+90°)	100cos(ωt-180 ⁰)	200+200j	-200-100j	200	200j
3	100cos(ωt+270°)	100sin(ωt+90°)	100sin(ωt-180 ⁰)	200+200j	-100-200j	200	200j	200-200j
4	100sin(ωt+90°)	100cos(ωt-180 ⁰)	200+200j	-200-200j	200	200j	200-200j	100cos(ωt+270°)
5	100cos(ωt-180 ⁰)	200+200j	-200-200j	200	200j	200-200j	100cos(ωt+270°)	100sin(ωt+90°)

Пассивные компоненты

Обозна-	Z1*	Z2*	Z3*	Z4*	Z5*	Z6*	Z 7*	Z8*
чения								
групп								
1	100 Ом	100 мГн	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн
2	100 мГн	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом
3	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн
4	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн	10 мкФ
5	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн	10 мкФ	200 Ом

Рисунок 1 - схема

Решение

Рисунок 2 - решение

1	3 bi uncu	u To	nu 6	60-1	2 4		a de	VO II	K6	Kun	noge	4						-					
	170	7 20		V	100	8	une																
	170]														-			4					
	2:																		18				
1	3:																						
1	4:	Iz+	Iy +	I = = 0	>		10								1								
	No II	3ak	ону	Kupzy	ga:					H					7			4					
SI:	$I_1 Z_1$	+ 1/2	2-	i, 3	= E,	+ E	2																
\$ II:	İ, 23	+ iz	₹2 -	İszs	$=E_3$	+ E	2																
	Í Z																						
	жтавии		2.3	110		2	T.	= Ē						- 1									
	11			0	100	0			17	\				0	1				, 0	2.65	-03	23/	
	10	0	1	0	1	1			一	1		1	1 6	0					/		- 0,2		
				3000					12		18 81			10			MY				10		
	0	1	0	1		0			13	3	=			0		= ;	- 1	Z =			-9		
	马	Z	0		0	0	1		Ly	1		70	00 -	- 100	1			1	100		0,2		
	0	72	Z_3	0	-Z5	0		-	Is	1		10	0-	100	1				9,6	78+	90	51	
	10	0	0	Z4	-25	Z			I,			1	0		/				90	7-	90	3/	
	10,69	5+9,2	3/1		p																		
	9,58	+ 0, 25			Ban			3	(7				0	/		4						
		_			Pb	rogu	29 =	1=1	Z; E	: j =	(0,6	5+0	, 23	1)-1	-100	j)+	10,50	8+0,	25%	100	+ (-	0,07	+90.
I =	-907 -965#		4		10-	100j)	=						200				200	0000					
			1		Plux	одиа	, =	٤.	Ť; • ;	1, 1	Z; =	10,0	5-	0,23	ارز	0,65	+ 9,2	3j)	- 1-	soj)) +		
	9,061						1	=7			+	(-0,	58	-0,2	02)	10,3	307	0,2	5/1	- (2	00)+)+	
	1901+	0031									++	100	65	+01	20	110	0,6.	5-0	20	1).	1-25)+ 5j)+	
HBET: İ	015-	0231									+1	0,0	7-	9,0	3	(0,0	7 +0	2,03	ji.	(80	100j)	=	
12=	958 - 9	251										83,											
Iz=	-0,07+	0,02)			84-3	3 ;	2 8	73 ;	16 -	32		-		1000				ОН		-			
75=	906+90	5 %				0																	
16	901-90	9											1										

Вывод

Был выполнен расчет токов в ветвях схемы методом уравнений Киргофа и метода комплексных амплитуд с помощью математического пакета Wolfram Alpha. Решение проверено путём вычисления активной мощности системы.