LR elemzések (LALR(1) elemzés)

Fordítóprogramok előadás (A,C,T)

Emlékeztető

- LR(0) elemzés

 - $\label{eq:continuous} \begin{array}{ll} \bullet & \text{léptetés: } [S \to (S.)S] \\ \bullet & \text{redukálás: } \{[S \to (S)S.]\} \\ \bullet & \text{konfliktus: } \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} \end{array}$

nok előadás (A,C,T) LR elemzések (LALR(1) elem:

gramok előadás (A,C,T) LR elemzések (LALR(1) elei

Emlékeztető

- LR(0) elemzés

 - $\begin{tabular}{ll} \bullet & \mbox{léptetés: } [S \to (S.)S] \\ \bullet & \mbox{redukálás: } \{[S \to (S)S.]\} \\ \bullet & \mbox{konfliktus: } \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} \\ \end{tabular}$
- SLR(1) elemzés

Az
$$\{[S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S]\}$$
 állapotban:

- léptetés: (hatására
- redukálás:) vagy # hatására, mert ezek elemei $FOLLOW_1(S)$ -nek

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

Emlékeztető

- LR(0) elemzés

 - $\begin{array}{l} \bullet \text{ léptetés: } [S \to (S.)S] \\ \bullet \text{ redukálás: } \{[S \to (S)S.]\} \\ \bullet \text{ konfliktus: } \{[S \to (.S)S], [S \to .], [S \to .(S)S]\} \end{array}$
- SLR(1) elemzés

Az $\{[S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S]\}$ állapotban:

- léptetés: (hatására
- redukálás:) vagy # hatására, mert ezek elemei $FOLLOW_1(S)$ -nek
- LR(1) elemzés

Az $\{[S \to (.S)S, \#], [S \to .,)], [S \to .(S)S,)]\}$ állapotban:

- léptetés: (hatására
- redukálás:) hatására

SLR(1) és LR(1) állapotok száma

 $\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .], [$ $\mathcal{I}_{1} = read(\mathcal{I}_{0}, S) = \{[S' \rightarrow S.]\}$ $\mathcal{I}_{2} = read(\mathcal{I}_{0}, ()) = \{[S \rightarrow (.S)S], [S \rightarrow .], [S \rightarrow .(S)S]\}$

SLR(1) (LR(0)) kanonikus halmazok

programok előadás (A,C,T) LR elemzések (LALR(1) elen

SLR(1) és LR(1) állapotok száma

SLR(1) (LR(0)) kanonikus halmazok

```
\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S]) = \{[S' \rightarrow .S], [S \rightarrow .], [S \rightarrow .(S)S]\}
 \begin{split} &\mathcal{I}_0 = closure(|S' \to .S|) = \{|S' \to .S|, |S \to .], |S \to .|S \\ &\mathcal{I}_1 = read(\mathcal{I}_0, S) = \{|S' \to S.]\} \\ &\mathcal{I}_2 = read(\mathcal{I}_0, () = \{|S \to (.S)S|, |S \to .], |S \to .(S)S|\} \\ &\mathcal{I}_3 = read(\mathcal{I}_2, S) = \{|S \to (S)S|\}, |S \to .], |S \to .(S)S|\} \\ &read(\mathcal{I}_2, () = \{|S \to (.S)S|, |S \to .], |S \to .(S)S|\} = \mathcal{I}_2 \\ &\mathcal{I}_4 = read(\mathcal{I}_3, )) = \{|S \to (S).S|, |S \to .], |S \to .(S)S|\} \\ &\mathcal{I}_5 = read(\mathcal{I}_4, S) = \{|S \to (S).S|, |S \to .], |S \to .(S)S|\} \end{aligned}
```

$\mathcal{I}_{3} = read(\mathcal{I}_{2}, S) = \{[S \to (S.)S]\}$ $read(\mathcal{I}_{2}, ()) = \{[S \to (S.)S], [S \to .], [S \to .(S)S]\} = \mathcal{I}_{2}$ $\mathcal{I}_{4} = read(\mathcal{I}_{3},)) = \{[S \to (S.)S], [S \to .], [S \to .(S)S]\}$ $\mathcal{I}_{5} = read(\mathcal{I}_{4}, S) = \{[S \to (S)S.]\}$

```
LR(1) kanonikus halmazok
 \begin{array}{l} \mathcal{I}_0 = \textit{closure}([S' \to .S, \#]) = \{[S' \to .S, \#], [S \to ., \#], [S \to .(S)S, \#]\} \\ \mathcal{I}_1 = \textit{read}(\mathcal{I}_0, S) = \{[S' \to S., \#]\} \\ \mathcal{I}_2 = \textit{read}(\mathcal{I}_0, () = \{[S \to (.S)S, \#], [S \to ., )], [S \to .(S)S, )]\} \end{array} 
  \begin{split} \overline{I_3} &= read(\mathcal{I}_2, S) = \{[S \to (S.)S, \#]\} \\ \mathcal{I}_4 &= read(\mathcal{I}_2, () = \{[S \to (.S)S, )], [S \to ., )], [S \to .(S)S, )]\} \end{split}
```

Az előreolvasási szimbólumok miatt nő az állapotok száma!

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

SLR(1) és LR(1) állapotok száma

```
\mathcal{I}_0 = \textit{closure}([S' \rightarrow .S, \#]) = \{[S' \rightarrow .S, \#], [S \rightarrow ., \#], [S \rightarrow .(S)S, \#]\}
  \mathcal{I}_1 = read(\mathcal{I}_0, S) = \{[S' \rightarrow S., \#]\}
  \mathcal{I}_2 = read(\mathcal{I}_0, () = \{[S \to (.S)S, \#], [S \to ., )], [S \to .(S)S, )]\}
  \mathcal{I}_3 = read(\mathcal{I}_2, S) = \{[S \rightarrow (S.)S, \#]\}
 \begin{array}{ll} \mathcal{L}_{3} = \{(S, S) - \{(S, S), H\}\} \\ \mathcal{L}_{4} = read(\mathcal{I}_{2}, () = \{[S \rightarrow (.S)S, )], [S \rightarrow ., )], [S \rightarrow .(S)S, )]\} \\ \mathcal{L}_{5} = read(\mathcal{I}_{3}, )) = \{[S \rightarrow (S).S, \#], [S \rightarrow ., \#], [S \rightarrow .(S)S, \#]\} \\ \mathcal{L}_{6} = read(\mathcal{I}_{4}, S) = \{[S \rightarrow (S).S, )], [S \rightarrow ., ]\}, [S \rightarrow .(S)S, )]\} \\ read(\mathcal{I}_{4}, () = \{[S \rightarrow (.S)S, ], [S \rightarrow ., ]\}, [S \rightarrow .(S)S, )]\} = \mathcal{I}_{4} \\ \mathcal{L}_{5} = \{(S \rightarrow (.S)S, M, [S \rightarrow ., ]), [S \rightarrow .(S)S, ], [S \rightarrow .(S)S, M, [S \rightarrow ., ])\} \\ \end{array} 
  \begin{aligned} & \mathit{Tead}(\mathcal{I}_{5}, \{) = \{[S \to (.S)S_{.}, ]], [S \to .(S)S_{.}, ]] \} = \mathcal{I}_{4} \\ & \mathcal{I}_{7} = \mathit{read}(\mathcal{I}_{5}, \{) = \{[S \to (.S)S_{.}, \#]\} \\ & \mathit{read}(\mathcal{I}_{5}, \{) = \{[S \to (.S)S_{.}, \#], [S \to ., ]\}, [S \to .(S)S_{.}, ]\} = \mathcal{I}_{2} \\ & \mathcal{I}_{8} = \mathit{read}(\mathcal{I}_{6}, \}) = \{[S \to (.S)S_{.}, ]\}, [S \to ., ]\}, [S \to .(S)S_{.}, ]\} \\ & \mathcal{I}_{9} = \mathit{read}(\mathcal{I}_{8}, S) = \{[S \to (.S)S_{.}, ]\}, [S \to ., ]\}, [S \to .(S)S_{.}, ]\} = \mathcal{I}_{4} \\ \end{aligned}
```

- *SLR*(1) (és *LR*(0)): 6 állapot; *LR*(1): 10 állapot
- Valódi programnyelveknél:

SLR(1): néhány száz; LR(1): néhány ezer

nok előadás (A,C,T) LR elemzések (LALR(1) eler

Egyesíthető LR(1) kanonikus halmazok

Egyes kanonikus halmaz párok csak az előreolvasási szimbólumokban különböznek.

```
 \begin{split} \mathcal{I}_0 &= \textit{closure}([S' \to .S, \#]) = \{[S' \to .S, \#], [S \to ., \#], [S \to .(S)S, \#]\} \\ \mathcal{I}_1 &= \textit{read}(\mathcal{I}_0, S) = \{[S' \to S., \#]\} \\ \mathcal{I}_2 &= \textit{read}(\mathcal{I}_0, () = \{[S \to (.S)S, \#], [S \to ., )], [S \to .(S)S, )]\} \end{split} 
 \begin{aligned} &\mathcal{I}_{2} = read(\mathcal{I}_{2}, \zeta) = \{[S \to (S)S, \#], [S \to ., J], [S \to .(S)S, J]\} \\ &\mathcal{I}_{3} = read(\mathcal{I}_{2}, \zeta) = \{[S \to (S)S, J], [S \to ., J], [S \to .(S)S, J]\} \\ &\mathcal{I}_{5} = read(\mathcal{I}_{3}, \zeta) = \{[S \to (S)S, J], [S \to ., \#], [S \to .(S)S, \#]\} \\ &\mathcal{I}_{6} = read(\mathcal{I}_{4}, S) = \{[S \to (S)S, J], [S \to ., \#], [S \to .(S)S, \#]\} \end{aligned} 
 \mathcal{I}_7 = read(\mathcal{I}_5, S) = \{
 T_8 = read(T_6, 1) = \{[S \to (S).S, 1], [S \to ., 1]\}

T_9 = read(T_8, S) = \{[S \to (S).S, 1]\}
```

Ezeket a halmazokat egyesíthetőnek nevezzük.

programok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

LALR(1) kanonikus halmazok

Az egyesíthető kanonikus halmazokat vonjuk össze!

```
\mathcal{K}_0 = \mathcal{I}_0 = \{[S' \to .S, \#], [S \to ., \#], [S \to .(S)S, \#]\}
\mathcal{K}_1 = \mathcal{I}_1 = \{[S' \rightarrow S., \#]\}
\mathcal{K}_{1} = \mathcal{I}_{1} - \{(S, \pi_{1})\} 
\mathcal{K}_{2} = \mathcal{I}_{2} \cup \mathcal{I}_{4} = \{[S \to (.S)S, \#], [S \to ., )], [S \to .(S)S, )], [S \to (.S)S, )]\}
\mathcal{K}_{3} = \mathcal{I}_{3} \cup \mathcal{I}_{6} = \{[S \to (S.)S, \#], [S \to (S.)S, )]\}
 \begin{array}{l} \mathcal{K}_{4} = \mathcal{I}_{5} \cup \mathcal{I}_{8} = \!\! \{ \! [S \rightarrow (S).S,\#], [S \rightarrow .,\#], [S \rightarrow .(S)S,\#], \\ [S \rightarrow (S).S,]], [S \rightarrow .,]], [S \rightarrow .(S)S,] \! \} \\ \mathcal{K}_{5} = \mathcal{I}_{7} \cup \mathcal{I}_{9} = \!\! \{ \! [S \rightarrow (S)S.,\#], [S \rightarrow (S)S.,] \! \} \\ \end{array}
```

Az egyesített kanonikus halmazokat LALR(1) kanonikus halmazoknak nevezzük

nok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

LALR(1) elemzés

- Az LALR(1) elemzőnek ugyanannyi állapota van, mint az SLR(1) (és LR(0)) emelzőknek.
- Mivel megjelennek benne az előreolvasási szimbólumok, több nyelvtan lesz elemezhető vele, mint SLR(1) módszerrel.
- De nem minden LR(1) grammatika esetén használható!
- Név: LookAhead LR (Előreolvasó LR)

gramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

Lehetséges problémák az egyesítések miatt

- Előfordulhat-e léptetés-léptetés konfliktus (azaz, hogy két különböző állapotba kellene lépni ugyanazon szimbólum hatására)?
 - ullet Ha \mathcal{I}_m és \mathcal{I}_n halmazok egyesíthetőek, akkor $read(\mathcal{I}_m,X)$ és $read(\mathcal{I}_n, X)$ is egyesíthető.
 - Léptetés-léptetés konfliktus nem fordulhat elő!

Lehetséges problémák az egyesítések miatt

- Előfordulhat-e léptetés-léptetés konfliktus (azaz, hogy két különböző állapotba kellene lépni ugyanazon szimbólum hatására)?
 - ullet Ha \mathcal{I}_m és \mathcal{I}_n halmazok egyesíthetőek, akkor $read(\mathcal{I}_m,X)$ és $read(\mathcal{I}_n, X)$ is egyesíthető.
 - Léptetés-léptetés konfliktus nem fordulhat elő!
- Előfordulhat-e léptetés-redukálás konfliktus?
 - ullet Tegyük fel, hogy [A
 ightarrow lpha.aeta,b] és $[B
 ightarrow \gamma.,a]$ elemei egy egyesített halmaznak.
 - Nézzük meg azt az LR(1) kanonikus halmazt, amelyikből $[B
 ightarrow \gamma., a]$ -t kaptuk. Ebben benne kell lennie egy $A
 ightarrow \alpha.a \beta$ magú elemnek is, csak esetleg más előreolvasási szimbólummal.
 - Viszont ha $[A \rightarrow \alpha.a\beta, b']$ és $[B \rightarrow \gamma., a]$ elemei egy LR(1)kanonikus halmaznak, akkor már itt léptetés-redukálás konfliktus van, azaz nem LR(1)-es a grammatika!
 - Léptetés-redukálás konfliktus sem fordulhat elő!

nok előadás (A,C,T) LR elemzések (LALR(1) elemzés

Lehetséges problémák az egyesítések miatt

• Redukálás-redukálás konfliktus: előfordulhat!

Példa LR(1), de nem LALR(1) grammatikára

$$S' \rightarrow S$$

 $S \rightarrow aAd \mid bBd \mid aBe \mid bAe$
 $A \rightarrow c$

$$B \rightarrow c$$

- ac járható prefixre érvényes elemek: $\{[A \rightarrow c., d], [B \rightarrow c., e]\}$
- bc járható prefixre érvényes elemek: $\{[A \rightarrow c., e], [B \rightarrow c., d]\}$

ogramok előadás (A,C,T) LR elemzések (LALR(1) ele

Lehetséges problémák az egyesítések miatt

• Redukálás-redukálás konfliktus: előfordulhat!

Példa LR(1), de nem LALR(1) grammatikára

$$S' \rightarrow S$$

$$S \rightarrow aAd \mid bBd \mid aBe \mid bAe$$

$$A \rightarrow c$$

$$B \rightarrow c$$

- ac járható prefixre érvényes elemek: $\{[A \rightarrow c., d], [B \rightarrow c., e]\}$
- bc járható prefixre érvényes elemek: $\{[A \rightarrow c., e], [B \rightarrow c., d]\}$
- az egyesítés után:

$$\{[A \rightarrow c.,d], [B \rightarrow c.,e], [A \rightarrow c.,e], [B \rightarrow c.,d]\}$$

• redukálás-redukálás konfliktus!

rdítóprogramok előadás (A,C,T) LR elemzések (LALR(1) ele

LALR(1) elemzés, LALR(1) grammatika

• az LALR(1) elemző táblázat kitöltése megegyezik az LR(1) táblázat kitöltésével

LALR(1) elemzés, LALR(1) grammatika

- az LALR(1) elemző táblázat kitöltése megegyezik az LR(1) táblázat kitöltésével
- az elemzés menete is azonos

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

gramok előadás (A,C,T) LR elemzések (LALR(1) ele

LALR(1) elemzés, LALR(1) grammatika

- ullet az LALR(1) elemző táblázat kitöltése megegyezik az LR(1)táblázat kitöltésével
- az elemzés menete is azonos

Definíció: LALR(1) grammatika

Egy grammatika LALR(1) grammatika, ha az LALR(1) elemző táblázata konfliktusmentesen kitölthető.

A programnyelvek többsége leírható LALR(1) nyelvtannal.

LALR(1) elemző táblázat

$$\begin{split} &\mathcal{K}_0 = \{[S' \to .S, \#], [S \to ., \#], [S \to .(S)S, \#]\} \\ &\mathcal{K}_1 = \{[S' \to S., \#]\} \\ &\mathcal{K}_2 = \{[S \to (.S)S, \#], [S \to .,)], [S \to .(S)S,)], [S \to (.S)S,)]\} \\ &\mathcal{K}_3 = \{[S \to (S.)S, \#], [S \to (S.)S,)]\} \\ &\mathcal{K}_4 = \{[S \to (S).S, \#], [S \to ., \#], [S \to .(S)S, \#], \\ &[S \to (S).S,]), [S \to ., \#], [S \to .(S)S,)]\} \\ &\mathcal{K}_5 = \{[S \to (S)S, \#], [S \to (S)S,)]\} \end{split}$$

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $S ightarrow \epsilon$	5
5		redukálás, $S o (S)S$	redukálás, $S o (S)S$	

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemz

SLR(1) vs. LALR(1)

SLR(1)	()		#	S
0	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $\mathcal{S} ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $\mathcal{S} ightarrow \epsilon$	3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $\mathcal{S} ightarrow \epsilon$	5
5		redukálás, $S o (S)S$	redukálás, $S o (S)S$	

LALR(1)	()	#	S
0	léptetés, 2		redukálás, $\mathcal{S} ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $\mathcal{S} ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $\mathcal{S} ightarrow \epsilon$	redukálás, $\mathcal{S} ightarrow \epsilon$	5
5		redukálás, $S o (S)S$	redukálás, $S o (S)S$	

LALR(1) elemző hatékonyabb generálása

• nagyon időigényes létrehozni az összes LR(1) kanonikus halmazt és megkeresni közöttük az összevonhatóakat

LALR(1) elemző hatékonyabb generálása

- nagyon időigényes létrehozni az összes LR(1) kanonikus halmazt és megkeresni közöttük az összevonhatóakat
- egyszerűbb módszer:
 - az LR(0) kanonikus halmazokból indulunk (de azoknak is csak a *lényeges* elemeit fogjuk tárolni)
 - az előreolvasási szimbólumokat utólag határozzuk meg

A kanonikus halmazok törzse

Definíció: LR(0) kanonikus halmazok törzse

Egy LR(0) kanonikus halmaz törzse azokat az elmeket tartalmazza, amelyek *nem a lezárás* művelet hatására kerültek bele a halmazba. Az \mathcal{I}_0 halmaz esetén ez a [S' o .S] elemet, a többi halmaz esetén pedig azokat az elemeket jelenti, amelyekben a pont nem a szabály jobboldalának elején áll.

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) ele

A kanonikus halmazok törzse

Definíció: LR(0) kanonikus halmazok törzse

Egy LR(0) kanonikus halmaz törzse azokat az elmeket tartalmazza, amelyek *nem a lezárás* művelet hatására kerültek bele a halmazba. Az \mathcal{I}_0 halmaz esetén ez a [S' o .S] elemet, a többi halmaz esetén pedig azokat az elemeket jelenti, amelyekben a pont nem a szabály jobboldalának elején áll.

Példa: helyes zárójelezés

$$\mathcal{I}_{0} = \{ [S' \to .S], [S \to .], [S \to .(S)S] \}$$

$$\mathcal{I}_{1} = \{ [S' \to S.] \}$$

$$\mathcal{I}_{2} = \{ [S \to (.S)S], [S \to .], [S \to .(S)S] \}$$

$$\mathcal{I}_{3} = \{ [S \to (S.)S] \}$$

$$\mathcal{I}_{4} = \{ [S \to (S).S], [S \to .], [S \to .(S)S] \}$$

$$\mathcal{I}_{5} = \{ [S \to (S)S.] \}$$

A kanonikus halmazok törzse

- Jelölések:
 - ullet \mathcal{I}_i^* : az \mathcal{I}_j kanonikus halmaz törzse
 - $read^*(\mathcal{I}_i^*, X)$: a $read(\mathcal{I}_j, X)$ törzse

Példa: helyes zárójelezés

$$\begin{split} \mathcal{I}_{0}^{*} &= \{[S' \rightarrow .S]\} \\ \mathcal{I}_{1}^{*} &= \{[S' \rightarrow S.]\} \\ \mathcal{I}_{2}^{*} &= \{[S \rightarrow (.S)S]\} \\ \mathcal{I}_{3}^{*} &= \{[S \rightarrow (S.)S]\} \\ \mathcal{I}_{4}^{*} &= \{[S \rightarrow (S).S]\} \\ \mathcal{I}_{5}^{*} &= \{[S \rightarrow (S).S.]\} \\ \end{split}$$

A törzsek generálása

- $\bullet \ \mathcal{I}_0^* = \{[S' \to .S]\}$
- ha $[A \to \alpha.X\beta] \in \mathit{closure}(\mathcal{I}_j^*)$, akkor $[A \to \alpha X.\beta] \in \mathit{read}^*(\mathcal{I}_j^*,X)$

A törzsek generálása

- $\bullet \ \mathcal{I}_0^* = \{[S' \rightarrow .S]\}$
- ha $[A \to \alpha.X\beta] \in \mathit{closure}(\mathcal{I}_j^*)$, akkor $[A \to \alpha X.\beta] \in \mathit{read}^*(\mathcal{I}_j^*,X)$

 $\mathsf{Mivel}\; [S \to (.S)S] \in \mathcal{I}_2^* \; \mathsf{\acute{e}s}\; [S \to .(S)S] \in \mathit{closure}([S \to (.S)S]),$ ezért $[S \rightarrow (.S)S] \in read(\mathcal{I}_2^*, ().$

Példa

$$\mathcal{I}_0^* = \{[S' \to .S]\}$$

Példa

$$\begin{split} \mathcal{I}_0^* &= \{[S' \rightarrow .S]\} \\ \mathcal{I}_1^* &= \textit{read}^*\big(\mathcal{I}_0^*, S\big) = \{[S' \rightarrow S.]\} \end{split}$$

Példa

$$\begin{split} &\mathcal{I}^*_0 = \{[S' \rightarrow .S]\} \\ &\mathcal{I}^*_1 = \textit{read}^*(\mathcal{I}^*_0, S) = \{[S' \rightarrow S.]\} \\ &\mathcal{I}^*_2 = \textit{read}^*(\mathcal{I}^*_0, () = \{[S \rightarrow (.S)S]\} \end{split}$$

$$\mathcal{I}_2^* = read^*(\mathcal{I}_0^*, () = \{[S \rightarrow (.S)S]\}$$

Példa

$$\begin{split} \mathcal{I}_{0}^{*} &= \{[S' \rightarrow .S]\} \\ \mathcal{I}_{1}^{*} &= \mathit{read}^{*}(\mathcal{I}_{0}^{*}, S) = \{[S' \rightarrow S.]\} \\ \mathcal{I}_{2}^{*} &= \mathit{read}^{*}(\mathcal{I}_{0}^{*}, () = \{[S \rightarrow (.S)S]\} \\ \mathcal{I}_{3}^{*} &= \mathit{read}^{*}(\mathcal{I}_{2}^{*}, S) = \{[S \rightarrow (S.)S]\} \end{split}$$

$$\mathcal{I}_{2}^{*} = read^{*}(\mathcal{I}_{2}^{*}, S) = \{[S \rightarrow (S.)S]\}\$$

$$\begin{split} &\mathcal{I}_{0}^{*} = \{[S' \to .S]\} \\ &\mathcal{I}_{1}^{*} = read^{*}(\mathcal{I}_{0}^{*}, S) = \{[S' \to S.]\} \\ &\mathcal{I}_{2}^{*} = read^{*}(\mathcal{I}_{0}^{*}, () = \{[S \to (.S)S]\} \\ &\mathcal{I}_{3}^{*} = read^{*}(\mathcal{I}_{2}^{*}, S) = \{[S \to (S.)S]\} \\ &read^{*}(\mathcal{I}_{2}^{*}, () = \{[S \to (.S)S]\} = \mathcal{I}_{2}^{*} \end{split}$$

Példa

$$\begin{split} &\mathcal{I}_{0}^{*} = \{[S' \to .S]\} \\ &\mathcal{I}_{1}^{*} = read^{*}(\mathcal{I}_{0}^{*}, S) = \{[S' \to S.]\} \\ &\mathcal{I}_{2}^{*} = read^{*}(\mathcal{I}_{0}^{*}, () = \{[S \to (.S)S]\} \\ &\mathcal{I}_{3}^{*} = read^{*}(\mathcal{I}_{2}^{*}, S) = \{[S \to (S.)S]\} \\ &read^{*}(\mathcal{I}_{2}^{*}, () = \{[S \to (.S)S]\} = \mathcal{I}_{2}^{*} \\ &\mathcal{I}_{4}^{*} = read^{*}(\mathcal{I}_{3}^{*},)) = \{[S \to (S).S]\} \end{split}$$

Példa

$$\begin{split} \mathcal{I}_0^* &= \{[S' \to .S]\} \\ \mathcal{I}_1^* &= read^*(\mathcal{I}_0^*, S) = \{[S' \to S.]\} \\ \mathcal{I}_2^* &= read^*(\mathcal{I}_0^*, ()) = \{[S \to (.S)S]\} \\ \mathcal{I}_3^* &= read^*(\mathcal{I}_2^*, S) = \{[S \to (S.)S]\} \\ read^*(\mathcal{I}_2^*, ()) = \{[S \to (.S)S]\} = \mathcal{I}_2^* \\ \mathcal{I}_4^* &= read^*(\mathcal{I}_3^*,)) = \{[S \to (S).S]\} \\ \mathcal{I}_5^* &= read^*(\mathcal{I}_4^*, S) = \{[S \to (S).S]\} \end{split}$$

Példa

$$\begin{split} &\mathcal{I}_{0}^{*} = \{[S' \to .S]\} \\ &\mathcal{I}_{1}^{*} = read^{*}(\mathcal{I}_{0}^{*}, S) = \{[S' \to S.]\} \\ &\mathcal{I}_{2}^{*} = read^{*}(\mathcal{I}_{0}^{*}, ()) = \{[S \to (.S)S]\} \\ &\mathcal{I}_{3}^{*} = read^{*}(\mathcal{I}_{2}^{*}, S) = \{[S \to (S.)S]\} \\ &read^{*}(\mathcal{I}_{2}^{*}, () = \{[S \to (.S)S]\} = \mathcal{I}_{2}^{*} \\ &\mathcal{I}_{4}^{*} = read^{*}(\mathcal{I}_{3}^{*},)) = \{[S \to (S).S]\} \\ &\mathcal{I}_{5}^{*} = read^{*}(\mathcal{I}_{4}^{*}, S) = \{[S \to (S)S.]\} \\ &read^{*}(\mathcal{I}_{4}^{*}, () = \{[S \to (.S)S]\} = \mathcal{I}_{2}^{*} \end{split}$$

Örökölt és generált előreolvasási szimbólumok

- Mivel $[S' \rightarrow .S, \#] \in \mathcal{I}_0$, ezért $[S' \rightarrow S., \#] \in read(\mathcal{I}_0, S)$.
 - ullet Ilyenkor a # szimbólum öröklődik az [S'
 ightarrow .S, #] elemről az $[S' \rightarrow S., \#]$ elemre.

Örökölt és generált előreolvasási szimbólumok

- Mivel $[S' \to .S, \#] \in \mathcal{I}_0$, ezért $[S' \to S., \#] \in read(\mathcal{I}_0, S)$.
 - ullet Ilyenkor a # szimbólum öröklődik az [S' o .S, #] elemről az $[S' \rightarrow S., \#]$ elemre.
- Mivel $[S o (.S)S, \#] \in \mathcal{I}_2$, ezért $[S o .(S)S,)] \in \mathcal{I}_2$, és így $[S \rightarrow (.S)S,)] \in read(\mathcal{I}_2,().$
 - ullet Ilyenkor a) szimbólum spontán generálható a [S
 ightarrow (.S)S,)]elemhez.

Előreolvasási szimbólumok meghatározása

- Legyen @ egy olyan szimbólum, ami nem szerepel a grammatikában!
- Ha $[A \to \alpha.\beta] \in \mathcal{I}_j^*$, akkor határozzuk meg $closure([A \to \alpha.\beta, @])$ elemeit!

Előreolvasási szimbólumok meghatározása

- Legyen @ egy olyan szimbólum, ami nem szerepel a grammatikában!
- Ha $[A \to \alpha.\beta] \in \mathcal{I}_j^*$, akkor határozzuk meg $\mathit{closure}([A \to \alpha.\beta, @])$ elemeit!
 - Ha $[B o \gamma.X\delta, a] \in closure([A o \alpha.\beta, @])$ és $a \neq @$, akkor a $read^*(T^*_{f}, X)$ halmaz $[B o \gamma X.\delta]$ eleméhez az a spontán generálható.

20

rdítóprogramok előadás (A,C,T)

R elemzések (LALR(1) elemzés)

20

Fordítóprogramok előadás (A,C,T)

R elemzések (LALR(1) elemzés)

Előreolvasási szimbólumok meghatározása

- Legyen @ egy olyan szimbólum, ami nem szerepel a grammatikában!
- Ha $[A \to \alpha.\beta] \in \mathcal{I}_j^*$, akkor határozzuk meg $\mathit{closure}([A \to \alpha.\beta, @])$ elemeit!
 - Ha $[B o \gamma.X\delta, a] \in closure([A o \alpha.\beta, @])$ és $a \neq @$, akkor a $read^*(\mathcal{I}_j^*, X)$ halmaz $[B o \gamma X.\delta]$ eleméhez az a spontán generálható.
 - Ha $[B o \gamma.X\delta, @] \in closure([A o lpha.eta, @])$, akkor az előreolvasási szimbólumok *öröklődnek* az \mathcal{I}_j^* halmaz [A o lpha.eta] elemétől a $read^*(\mathcal{I}_j^*,X)$ halmaz $[B o \gamma X.\delta]$ eleméhez.

Példa

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$		
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		
\mathcal{I}_4^*	$[S \rightarrow (S).S]$		
T*	$[S \rightarrow (S)S]$		

20

ordítóprogramok előadás (A,C,T)

R elemzések (LALR(1) elemzés)

Fordítóprogramok előadás (A,C,

R elemzések (LALR(1) elemzés)

Példa

$$\begin{aligned} &\textit{closure}([S' \rightarrow .S, @]) = \\ &= \{[S' \rightarrow .S, @], [S \rightarrow ., @], [S \rightarrow .(S)S, @]\} \end{aligned}$$

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		
\mathcal{I}_{4}^{*}	$[S \rightarrow (S).S]$		
\mathcal{I}_5^*	$[S \rightarrow (S)S.]$		

Példa

$$\begin{aligned} \textit{closure}([S \rightarrow (.S)S, @]) &= \\ &= \{[S \rightarrow (.S)S, @], [S \rightarrow .,)], [S \rightarrow .(S)S,)]\} \end{aligned}$$

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	$\mathcal{I}_0^* ext{-beli }[S' o.S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		\mathcal{I}_2^* -beli $[S \to (.S)S]$
\mathcal{I}_4^*	$[S \rightarrow (S).S]$		
\mathcal{I}_5^*	$[S \rightarrow (S)S.]$		

22

$$closure([S \rightarrow (S.)S], @) =$$

$$= \{[S \rightarrow (S.)S, @]\}$$

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		\mathcal{I}_2^* -beli $[S \to (.S)S]$
\mathcal{I}_{4}^{*}	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S \to (S.)S]$
\mathcal{I}_5^*	$[S \rightarrow (S)S.]$		

Példa

$$\begin{aligned} &\textit{closure}([S \rightarrow (S).S], @) = \\ &= \{[S \rightarrow (S).S, @], [S \rightarrow ., @], [S \rightarrow .(S)S, @]\} \end{aligned}$$

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	$\mathcal{I}_0^* ext{-beli }[S' o.S] \ \mathcal{I}_4^* ext{-beli }[S o(S).S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		\mathcal{I}_2^* -beli $[S \to (.S)S]$
\mathcal{I}_4^*	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S o (S.)S]$
\mathcal{I}_5^*	$[S \rightarrow (S)S.]$		\mathcal{I}_4^* -beli $[S o (S).S]$

Az előreolvasási szimbólumok meghatározása

• 1. menet:

- az [S'
 ightarrow .S] elemhez felvesszük a # előreolvasási szimbólumot
- minden elemhez felvesszük a spontán generálódó szimbólumait

• további menetek:

• az öröklési szabályok szerint továbbterjesztjük a szimbólumokat

Példa

Törzs	Elem	1. menet
\mathcal{I}_0^*	$[S' \rightarrow .S]$	#
\mathcal{I}_1^*	$[S' \rightarrow S.]$	
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$	
<i>I</i> ₄ *	$[S \rightarrow (S).S]$	
\mathcal{I}_{E}^*	$[S \rightarrow (S)S.]$	

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_{1}^{*}	$[S' \rightarrow S.]$		$\mathcal{I}_0^* ext{-beli }[S' o .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	\mathcal{I}_0^* -beli $[S' o .S], \mathcal{I}_4^*$ -beli $[S o (S).S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		$\mathcal{I}_2^* ext{-beli} [S o (.S)S]$
\mathcal{I}_{4}^{*}	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S \to (S.)S]$
\mathcal{I}_{5}^{*}	$[S \rightarrow (S)S.]$		\mathcal{I}_{4}^{*} -beli $[S o (S).S]$

Példa

Törzs	Elem	1. menet	2. menet
\mathcal{I}_0^*	$[S' \rightarrow .S]$	#	#
\mathcal{I}_{1}^{*}	$[S' \rightarrow S.]$		#
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)), #
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$)
\mathcal{I}_{4}^{*}	$[S \rightarrow (S).S]$		
\mathcal{I}_{5}^{*}	$[S \rightarrow (S)S.]$		

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	$\mathcal{I}_0^* ext{-beli }[S' o .S],\mathcal{I}_4^* ext{-beli }[S o (S).S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		$\mathcal{I}_2^* ext{-beli }[S o (.S)S]$
<i>I</i> ₄ *	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S \to (S.)S]$
\mathcal{I}_5^*	$[S \rightarrow (S)S.]$		\mathcal{I}_4^* -beli $[S o (S).S]$

Példa

Törzs	Elem	1. menet	2. menet	3. menet
\mathcal{I}_0^*	$[S' \rightarrow .S]$	#	#	#
\mathcal{I}_1^*	$[S' \rightarrow S.]$		#	#
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)), #), #
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$)), #
<i>I</i> ₄ *	$[S \rightarrow (S).S]$)
<i>I</i> *	$[S \rightarrow (S)S.]$			

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_{1}^{*}	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	$\mathcal{I}_0^* ext{-beli }[S' o .S],\mathcal{I}_4^* ext{-beli }[S o (S).S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		$\mathcal{I}_2^* ext{-beli}\left[S o (.S)S ight]$
<i>I</i> *	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S \to (S.)S]$
<i>I</i> ₅ *	$[S \rightarrow (S)S.]$		$\mathcal{I}_{4}^{*} ext{-beli}\left[S o(S).S ight]$

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

Törzs	Elem	1. menet	2. menet	3. menet	4. menet
\mathcal{I}_0^*	$[S' \rightarrow .S]$	#	#	#	#
\mathcal{I}_1^*	$[S' \rightarrow S.]$		#	#	#
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)), #), #), #
<i>I</i> ₃ *	$[S \rightarrow (S.)S]$)), #), #
<i>I</i> ₄ *	$[S \rightarrow (S).S]$)), #
<i>I</i> ₅ *	$[S \rightarrow (S)S.]$)

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_{1}^{*}	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	$\mathcal{I}_0^* ext{-beli }[S' o .S],\mathcal{I}_4^* ext{-beli }[S o (S).S]$
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$		$\mathcal{I}_2^* ext{-beli} [S o (.S)S]$
<i>I</i> ₄ *	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S \to (S.)S]$
<i>I</i> ₅ *	$[S \rightarrow (S)S.]$		$\mathcal{I}_{4}^* ext{-beli }[S o(S).S]$

Példa

Törzs	Elem	1. menet	2. menet	3. menet	4. menet	5. menet
<i>I</i> *	$[S' \rightarrow .S]$	#	#	#	#	#
I*	$[S' \rightarrow S.]$		#	#	#	#
<i>I</i> ₂ *	$[S \rightarrow (.S)S]$)), #), #), #), #
I*	$[S \rightarrow (S.)S]$)), #), #), #
I*	$[S \rightarrow (S).S]$)), #), #
<i>I</i> *	$[S \rightarrow (S)S.]$)), #

Törzs	Elem	Spontán generálható	Honnan örököl?
\mathcal{I}_0^*	$[S' \rightarrow .S]$		
\mathcal{I}_1^*	$[S' \rightarrow S.]$		\mathcal{I}_0^* -beli $[S' \to .S]$
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$)	$\mathcal{I}_0^* ext{-beli }[S' o .S],\mathcal{I}_4^* ext{-beli }[S o (S).S]$
<i>I</i> ₃ *	$[S \rightarrow (S.)S]$		$\mathcal{I}_2^* ext{-beli} \left[S o (.S)S ight]$
<i>I</i> ₄ *	$[S \rightarrow (S).S]$		\mathcal{I}_3^* -beli $[S o (S.)S]$
<i>I</i> *	$[S \rightarrow (S)S.]$		\mathcal{I}_{4}^{*} -beli $[S o (S).S]$

Példa

Törzs	Elem	Előreolvasási szimbólumok
\mathcal{I}_0^*	$[S' \rightarrow .S]$	#
\mathcal{I}_1^*	$[S' \rightarrow S.]$	#
\mathcal{I}_2^*	$[S \rightarrow (.S)S]$), #
\mathcal{I}_3^*	$[S \rightarrow (S.)S]$), #
\mathcal{I}_{4}^{*}	$[S \rightarrow (S).S]$), #
\mathcal{I}_5^*	$[S \rightarrow (S)S.]$), #

$$\begin{split} \mathcal{K}_0^* &= \{ [S' \rightarrow .S, \#] \} \\ \mathcal{K}_1^* &= \{ [S' \rightarrow S., \#] \} \end{split}$$

 $\mathcal{K}_{2}^{*} = \{[S \to (.S)S,)], [S \to (.S)S, \#]\}$

 $\mathcal{K}_{3}^{*} = \{[S \to (S.)S,)], [S \to (S.)S, \#]\}\$ $\mathcal{K}_{4}^{*} = \{[S \to (S.)S,)], [S \to (S.)S, \#]\}$

 $\mathcal{K}_5^* = \{[S \rightarrow (S)S.,)][S \rightarrow (S)S.,\#]\}$

Így az egyesített kanonikus halmazok törzsét kaptuk meg!

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

LR(1) kanonikus halmazok törzse

Definíció: LR(1) kanonikus halmazok törzse

Egy (egyesített) LR(1) kanonikus halmaz törzse azokat az elmeket tartalmazza, amelyek *nem a lezárás* művelet hatására kerültek bele

Az \mathcal{I}_0 halmaz esetén ez a [S' o .S, #] elemet, a többi halmaz esetén pedig azokat az elemeket jelenti, amelyekben a pont nem a szabály jobboldalának elején áll.

ok előadás (A,C,T) LR elemzések (LALR(1) elen

LR(1) kanonikus halmazok törzse

Definíció: LR(1) kanonikus halmazok törzse

Egy (egyesített) LR(1) kanonikus halmaz törzse azokat az elmeket tartalmazza, amelyek nem a lezárás művelet hatására kerültek bele a halmazba.

Az \mathcal{I}_0 halmaz esetén ez a $[S' \to .S, \#]$ elemet, a többi halmaz esetén pedig azokat az elemeket jelenti, amelyekben a pont nem a szabály jobboldalának elején áll.

• Cél: az egyesített kanonikus halmazok törzsei segítségével kitölteni az LALR(1) elemző táblázatot

Az elemző táblázat kitöltése

ullet A
ightarrow lpha redukció felismerése:

Az elemző táblázat kitöltése

- ullet A
 ightarrow lpha redukció felismerése:
 - $\bullet \ \ \mbox{ha} \ \alpha \neq \epsilon \mbox{, akkor} \ [\mbox{$A \to \alpha$., a}] \mbox{ eleme a törzsnek}$ ⇒ az a szimbólumhoz kell írni a redukciót

Az elemző táblázat kitöltése

- $A \rightarrow \alpha$ redukció felismerése:
 - ha $\alpha \neq \epsilon$, akkor $[A \rightarrow \alpha., a]$ eleme a törzsnek \Rightarrow az a szimbólumhoz kell írni a redukciót
 - ullet ha $lpha=\epsilon$, akkor az olyan *a* szimbólumokhoz tartozik a redukció, amelyekre
 - $\label{eq:bounds} \begin{array}{ll} \bullet & [B \to \beta. \, C \gamma, b] \text{ eleme az adott törzsnek,} \\ \bullet & C \Rightarrow^* A \delta, \text{ \'es} \\ \bullet & a \in \mathit{FIRST}_1(\delta \gamma b). \end{array}$

Az elemző táblázat kitöltése

• $A \rightarrow \alpha$ redukció felismerése:

- \bullet ha $\alpha \neq \epsilon$, akkor $[{\it A} \rightarrow \alpha., {\it a}]$ eleme a törzsnek ⇒ az a szimbólumhoz kell írni a redukciót
- ullet ha $lpha=\epsilon$, akkor az olyan *a* szimbólumokhoz tartozik a redukció, amelyekre
 - $\begin{tabular}{l} \bullet & [B \to \beta.C\gamma,b] \ {\rm eleme} \ {\rm az} \ {\rm adott} \ {\rm t\"{o}rzsnek}, \\ \bullet & C \Rightarrow^* A\delta, \ {\rm \'es} \\ \end{tabular}$

 - $a \in FIRST_1(\delta \gamma b)$.
- az a szimbólumhoz a j állapotban léptetést kell előírni, ha
 - $read(\mathcal{K}_{j}^{*},a)=\mathcal{K}_{k}^{*}$

Pé	lda

	()	#	5
0				
1				
2				
2				
4				
5				

Fordítóprogramok előadás (A,C,T) LR elemzések (LALR(1) elemzés)

nok előadás (A,C,T) LR elemzések (LALR(1) elem:

Példa

	()	#	S
0	léptetés, 2			
1				
2				
3				
4				
5				

$$read(\mathcal{K}_0^*,()=\mathcal{K}_2^*$$

Példa

	()	#	S
0	léptetés, 2		redukálás, $\mathcal{S} ightarrow \epsilon$	
1				
2				
3				
4				
5				

$$[S' \rightarrow .S, \#] = \mathcal{K}_2^* \text{ és } S \Rightarrow^* S \text{ és } \# \in \mathit{FIRST}_1(\#)$$

	()	#	S
0	léptetés, 2		redukálás, $\mathcal{S} ightarrow \epsilon$	1
1				
2				
3				
4				
5				

$$read(\mathcal{K}_0^*,S)=\mathcal{K}_1^*$$

Példa

	()	#	ς
	1 ()	TΓ	
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2				
3				
4				
5				

$$[\textit{S}' \rightarrow \textit{S}.,\#] \in \mathcal{K}_1^*$$

8

rdítóprogramok előadás (A,C,T)

R elemzések (LALR(1) elemzés)

Fordítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés)

Példa

	()	#	S
0	léptetés, 2		redukálás, $\mathcal{S} ightarrow \epsilon$	1
1			OK	
2	léptetés, 2			
3				
4				
5				

$$\mathit{read}(\mathcal{K}_2^*,()=\mathcal{K}_2^*$$

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		
3				
4				
5				

$$[S
ightarrow (.S)S,)]\in \mathcal{K}_2^*$$
 és $S\Rightarrow^*S$ és $)\in \mathit{FIRST}_1(\)S)$ $)$

40

Fordítóprogramok előadás (A,C,T

R elemzések (LALR(1) elemzés

41

Fordítóprogramok előadás (A,C,T

LR elemzések (LALR(1) elemzés

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3				
4				
_ E				

$$read(\mathcal{K}_2^*,S)=\mathcal{K}_3^*$$

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4				
5				

$$\textit{read}(\mathcal{K}_3^*,)) = \mathcal{K}_4^*$$

42

Fordítóprogramok előadás (A,C,T

LR elemzések (LALR(1) elemzés)

3

rdítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés)

	()	#	S
0	léptetés, 2		redukálás, $\mathcal{S} ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2			
5				

$$read(\mathcal{K}_4^*,()=\mathcal{K}_2^*$$

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$		
5				

$$[S
ightarrow(S).S,)]\in \mathcal{K}_4^*$$
 és $S\Rightarrow^*S$ és $)\in \textit{FIRST}_1(\)\)$

44

ordítóprogramok előadás (A,C,T

.R elemzések (LALR(1) elemzés)

AE.

Fordítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés)

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $S ightarrow \epsilon$	
5				

$$[S
ightarrow (S).S,\#] \in \mathcal{K}_4^*$$
 és $S \Rightarrow^* S$ és $) \in \mathit{FIRST}_1(\ \#\)$

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $S ightarrow \epsilon$	5
5				

$$read(\mathcal{K}_4^*,S)=\mathcal{K}_5^*$$

46

ordítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés'

47

Fordítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $S ightarrow \epsilon$	5
5		redukálás. $S \rightarrow (S)S$		

$$[S \rightarrow (S)S.,)] \in \mathcal{K}_5^*$$

Példa

	()	#	S
0	léptetés, 2		redukálás, $S ightarrow \epsilon$	1
1			OK	
2	léptetés, 2	redukálás, $S ightarrow \epsilon$		3
3		léptetés, 4		
4	léptetés, 2	redukálás, $S ightarrow \epsilon$	redukálás, $S ightarrow \epsilon$	5
5		redukálás, $S \rightarrow (S)S$	redukálás, $S \rightarrow (S)S$	

$$[S \to (S)S.,\#] \in \mathcal{K}_5^*$$

48

Fordítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés

Ford

gramok előadás (A,C,T) LR elemzések (LALR(1) elemzés

Hibakezelés

- Hibajelzés: a táblázatok üres cellái hibarutinokra hivatkoznak
 - a hibaüzeneteket az adott nyelvtan és nyelv alapján kell kitalálni
 - nem automatizálható

Hibakezelés

- Hibajelzés: a táblázatok üres cellái hibarutinokra hivatkoznak
 - a hibaüzeneteket az adott nyelvtan és nyelv alapján kell kitalálni
 - nem automatizálható
- *Hibaelfedés*: az elemző szinkronizálja a vermet az inputtal és folytatja az elemzést

ordítóprogramok előadás (A,C,T)

R elemzések (LALR(1) elemzés)

F0

Fordítóprogramok előadás (A,C,T)

LR elemzések (LALR(1) elemzés)

Hibaelfedés megvalósítása

- 1 Vezessünk be egy speciális terminális szimbólumot: error
- A "fontos" szabályokhoz (pl. kifejezés, utasítás, blokk) adjunk hozzá egy hibaalternatívát:

 $\begin{aligned} \textit{Statement} & \rightarrow \textit{Assignment} \ ; | \cdots | \textit{ error} \ ; \\ \textit{Block} & \rightarrow \textit{begin StatementList end} \ | \textit{ begin error end} \end{aligned}$

Az így kiegészített grammatikához készítsük el az elemzőt!

Az elemző hibaelfedő tevékenysége

- 4 Hiba detektálása esetén meghívja a megfelelő hibarutint.
- A verem tetejéről addig töröl, amíg olyan állapotba nem kerül, ahol lehet az error szimbólummal lépni.
- 3 A verembe lépteti az *error* szimbólumot.
- Az bemeneten addig ugorja át a soron következő terminálisokat, amíg a hibaalternatíva építését folytatni nem tudja.

51

ordítóprogramok előadás (A,C,T)

R elemzések (LALR(1) elemzés)

52

Fordítóprogramok előadás (A,C,

LR elemzèsek (LALR(1) elemzès