Corina Barbalata

Mechanical and Industrial Engineering iCORE Laboratory

cbarbalata@lsu.edu

Readings for this class

- Basic concepts in probabilities (pages 10 -15) from *Probabilistic Robotics*, Sebastian Thrun
- Bayes Filters (pages 23-31) from *Probabilistic Robotics*, Sebastian Thrun

Probabilistic Robotics

- Robotics is the science of perceiving and manipulating the physical world through computer controlled mechanical devices.
- Probabilistic robotics is a relatively new approach to robotics that pays tribute to the uncertainty in robot perception and action.

Yes, it's all about probabilities...

Problem Statement

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities." [Cox '91]

Problem Statement

• Given:

- Map of the environment.
- Sequence of sensors measurements.

Wanted:

• Estimate of the robot's position.

Problem classes:

- Position tracking (initial pose known)
- Global localization (initial pose unknown)
- Kidnapped robot problem (recovery)

Essentials of Probability Theory (whiteboard)

- Continuous spaces are characterized by random variables that can take on a continuum of values.
- In this course, we make the assumption that all continuous random variables possess probability density functions (PDFs)
- Common density function is *one-dimensional normal* distribution with mean μ and variance σ^2 , given by the following Gaussian function:

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

• The abbreviation of this is $\mathcal{N}(x; \mu, \sigma^2)$ which specifies the random variable, its mean and its variance.

Total Probability Theorem

• Let *B* be a partition of the sample space *S*, B = S and $B_i \cap B_i = \emptyset$, $\forall i \neq j$, $A = \bigcup_{i=1}^n (A \cap B_i)$

$$P(A) = \sum_{k=1}^{n} P(A \mid B_k) P(B_k)$$

(It expresses the total probability of an outcome which can be realized via several distinct events - hence the name)

Total Probability Theorem - Example

• Imagine we toss a die. What is the probability of getting odd number?

$$P(A_{odd}) = \sum_{k=1}^{6} P(A \mid B_k) P(B_k)$$

$$P(A_{odd}) = 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} = \frac{3}{6}$$

Bayes Rule

$$P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)}$$

Example: Imagine we toss a die. What is the probability of getting a 5 knowing we already got an odd number?

$$P(B_5 \mid A_{odd}) = \frac{P(A_{odd} \mid B_5)P(B_5)}{P(A_{odd})} = \frac{1 \cdot \frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

- Aposteriori knowledge: $P(B_5 \mid A_{odd})$
- Prior knowledge: $P(B_5)$
- Measurement: $P(A_{odd})$

Bayes Rule can be also written as:

$$P(B_i \mid A) = \eta P(A \mid B_i) P(B_i), \text{ where } \eta = \frac{1}{P(A)}$$

Then, η can be seen as a normalizer easily computed if $P(A \mid B_i)$ and $P(B_i)$ are known:

$$\eta = \frac{1}{P(A)} \quad \text{and} \quad P(A) = \sum_{i} P(A \mid B_i) P(B_i)$$

$$\Rightarrow \eta = \frac{1}{\sum_{i} P(A \mid B_i) P(B_i)}$$

In the previous example:

$$\eta = \frac{1}{\sum_{i=1}^{6} P(A_{odd}|B_{i})P(B_{i})} = \frac{1}{1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{6}} = 2$$

$$P(B_{5} \mid A_{odd}) = \eta P(A_{odd} \mid B_{5})P(B_{5}) = 2 \cdot (1 \cdot \frac{1}{6}) = \frac{1}{3s}$$

The Bayes Filter for Probabilistic Robotics

The Bayes Filter plays a principle role in probabilistic Robotics.

- It probabilistically estimate a dynamic's system state from noisy observations.
- The state is the robot's location.
- State can be a simple 2D position or a 3D position, pitch, roll, yaw and linear and rotational velocities.
- Sensors provide observations about the state.

The Bayes Filter for Probabilistic Robotics

Notations:

- x_t state of the robot at time t (2D position, or 3D position + orientation, or 3D position+ orientation + velocities,)
- z_t observations (measurements) coming from the sensor
- u_t control/action/command executed by the robot (i.e. moved 2 m forward)
- $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ robot belief at being at state x_t
- $\bar{bel}(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t})$ prior belief, prediction of state x_t
- $p(x_t \mid u_t, x_{t-1})$ state transition probability
- $p(z_t \mid x_t)$ measurement probability

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

- $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ robot belief at being at state x_t
- $b\bar{e}l(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t})$ prior belief, prediction of state x_t
- $p(x_t \mid u_t, x_{t-1})$ state transition probability
- $p(z_t \mid x_t)$ measurement probability

```
\begin{array}{l} \textbf{Algorithm Bayes\_filter}(\stackrel{\bullet}{bel}(x_{t-1}),u_t,z_t];\\ \text{for all }x_t \text{ do} & \frac{\overline{bel}(x_t) = \int p(x_t \mid u_t,x_{t-1}) \ bel(x_{t-1}) \ dx}{bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)}\\ \text{endfor} & \text{return } bel(x_t) \end{array}
```

$$bel(x_{t-1}) = p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1})^{bel(x_{t-1})} \xrightarrow{bel(x)} x$$

$$\begin{aligned} & \textbf{Algorithm Bayes_filter}(bel(x_{t-1}), u_t, z_t) \text{:} \\ & \text{for all } x_t \text{ do} \\ & \underbrace{\frac{bel}{(x_t)} = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx}_{bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)} \\ & endfor \\ & \text{return } bel(x_t) \end{aligned}$$

$$\begin{aligned} \textbf{Algorithm Bayes_filter}(bel(x_{t-1}), u_t, z_t) &: \\ \text{for all } x_t \text{ do} \\ & \underline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx \\ bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t) \\ \text{endfor} \\ & \text{return } bel(x_t) \end{aligned}$$

Algorithm Bayes_filter($bel(x_{t-1}), u_t, z_t$):

Algorithm Bayes_filter(
$$bel(x_{t-1}), u_t, z_t$$
):
for all x_t do
$$\frac{\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx}{bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)}$$
endfor
return $bel(x_t)$

Algorithm Bayes_filter(
$$bel(x_{t-1}), u_t, z_t$$
):
for all x_t do
$$\frac{bel(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx}{bel(x_t) = \eta \ p(z_t \mid x_t) \ bel(x_t)}$$
endfor
return $bel(x_t)$


```
Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t): for all x_t do \frac{\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx}{bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)} endfor return \frac{bel(x_t)}{bel(x_t)}
```


Overview Bayes Filter

- Belief of a robot is the posterior distribution over the state given all past measurements (z) and all past controls (u).
- Bayes Filter is the principal algorithm for calculating the belief in robotics.
- The Bayes Filter makes the markov assumption according to which the state is a complete summary of the past ⇒ belief is sufficient to represent the past history of the robot

The Markov assumption postulates that past and future data are independent if one knows the current state.

Overview Bayes Filter

- The Bayes Filter as shown is not efficient. We will study probabilistic algorithms that use tractable approximations to the Bayes Filter.
- The Non-Parametric Filters:
 - Histogram Filter
 - Particle Filter
- The Gaussian Filter:
 - Kalman Filter
 - Extended Kalman Filter
 - Unescended Kalman Filter
 - Information Filter

Questions?