WAEC PHYSICS **2017 QUESTIONS**

Compiled by

FOONDAMATE

QUESTION 1	2
QUESTION 2	2
QUESTION 3	2
QUESTION 4	2
QUESTION 5	2
QUESTION 6	2
QUESTION 7	3
QUESTION 8	3
QUESTION 9	3
QUESTION 10	4
QUESTION 11	5
QUESTION 12	6

QUESTION 1

A particle is dropped from a vertical height h and falls freely for a time t. With the aid of a sketch, explain how h varies with t_2

QUESTION 2

A particle projected horizontally at $15\,m\,s^{-1}$ from a height of 20 m. calculate the horizontal distance covered by the particle just before hitting the ground.

QUESTION 3

List three phenomena which can be explained by the molecular theory of matter.

QUESTION 4

A spiral spring has a length of 14 cm when a force of 4 N is hung on it. A force of 6 N extends the spring by 4 cm. Calculate the unstretched length of the spring.

QUESTION 5

- a. State two factors on which surface tension depends
- b. How can mosquito larvae be made to sink in stagnant water?

QUESTION 6

List three advantages of fluorescent tubes over filament bulbs.

QUESTION 7

List three advantages of p-n junction diode over diode valve

QUESTION 8

- a. State two deductions that can be made from a displacement-time graph
- b. If the distance between two equal masses is doubled and their individual masses are also doubled, what would happen to the force between them? Support your answer quantitatively
- c. State two factors that affect the maximum height attained by a bullet fired from a gun.
- d. State two practical examples of mechanical resonance.
- e. A body is released from rest at the top of a plane inclined at 30° to the horizontal and 4.0 m high. If the coefficient of friction between the body and the plane is 0.3, calculate the time the body takes to reach the bottom of the plane.

QUESTION 9

- a. Define stable equilibrium as applied to a rigid body
- b. Sketch a block and tackle system of pulleys with a velocity ratio of 3
- c. At the beginning of a race, a tyre of volume $8.0 \times 10^{-4} m^3$ at $20^{\circ} C$ has a gas pressure of $4.5 \times 10^5 Pa$. Calculate the temperature of the gas in the tyre at the end of the race if the pressure has risen to $4.6 \times 10^5 Pa$.

d.

i.

	Ice Point 273K	Steam Point 373K
Resistance/Ω	5.67	7.75

Pressure/Pa 7	7.13 x 104	9.74 x 104
---------------	------------	------------

The table above shows readings of the resistance and pressure of a platinum resistance thermometer and a constant volume gas thermometer respectively when immersed in the same liquid bath. Use these data to determine the temperature of the bath on the (α) resistance thermometer;

(β) gas thermometer;

When the resistance and pressure are 7.43 Ω and $9.33 \times 10^4 P_0$ respectively.

ii. By what percentage is the temperature measured on the platinum resistance thermometer in error?

QUESTION 10

- a. What is a wave front?
- b.
- i. State two practical uses of glass prism
- ii. List two factors that determine the deviation of a ray of light travelling from air into a triangular prism.
- iii. Sketch a graph to illustrate the variation of the angle of deviation, d, with that of incidence, i, for a ray of light travelling from air into a triangular glass prism. Indicate on the graph the point at which the angle of incidence i is equal to the angle of emergence e.

C.

- i. Draw and label a diagram of an astronomical telescope in normal adjustment.
- ii. The angular magnification of an astronomical telescope in normal adjustment is
 5. If the focal length of the objective is 100 cm, calculate the
 - (α) focal length of the eyepiece;
 - (β) length of the telescope.

QUESTION 11

a.

- i. What is dielectric?
- ii. A parallel plate capacitor consists of two plates each of area $9.6 \times 10^{-3} m^2$, separated by dielectric of thickness $2.25 \times 10^{-4} m$ and dielectric constant 900. Calculate the capacitance of the capacitor. [ϵo = permittivity of free space $\delta 8.85 \times 10^{-12} Fm^{-1}$].

b.

i. Which of the following devices has a higher resistance: an ammeter or a voltmeter? Give a reason for your answer.

ii.

The resistance of the voltmeter in the circuit diagram illustrated above is 800 Ω . Calculate the voltmeter reading.

C.

A battery of negligible internal resistance is connected to a set of resistors as illustrated in the circuit diagram above, Determine the equivalent resistance of the circuit.

QUESTION 12

- (a) (i) What is nuclear fission?
 - (ii) State the function of each of the following materials in a nuclear fission reactor:
 - (α) graphite;
 - (β) boron rod;
 - (y) liquid sodium

(b) The table below gives some of the energy levels of a hydrogen atom.

N	1	2	3	4	5	00	-
E _n /E _V	-13.60	-3.39	-1.51	-0.85	-0.54	0.00	

- Draw the energy level diagram for the atom.
- (ii) Determine the wavelength of the photon emitted when the atom goes from the energy state n = 3 to the ground state.

 $[h = 6.6 \times 10^{-34}]$ Js. $c = 3.0 \times 10^8 \text{ ms}^{-1}$, $e = 1.6 \times 10^{-19} \text{C}$

(c) A piece of ancient bone from an excavation site showed ¹⁴₆C activity of 9.5 disintegrations per minute per 1.0 x 10⁻³ kg. if a bone specimen from a living creature shows ¹⁴₆C activity of 12.0 disintegrations per minute per 1.0 x 10⁻³ kg, determine the age of the ancient bone. [Half-life of ¹⁴₆C = 5572 years]

+234 802 744 2852

For instant help with homework & studying