Phase Diagrams for Ceramists

BEST AVAILABLE COPY

Ernest M. Levin,
Carl R. Robbins and
Howard F. McMurdie

Compiled at the National Bureau of Standards

Margie K. Reser, Editor

FIFTH PRINTING 1985

© Copyright, 1964, by

The American Ceramic Society

65 Ceramic Drive, Columbus, Ohio 43214

Printed in U.S.A.

ISBN 0-916094-04-9

Fig. 312.—System Al_2O_3 - R_2O_3 ; predicted subsolidus. Structure types: A, A-type rare earth oxide; B, B-type rare earth oxide; C, C-type rare earth oxide; G, garnet; 1:11, beta alumina; P, perovskite; R, unknown, rhombohedral symmetry; α , corundum.

S. J. Schneider, R. S. Roth, and J. L. Waring, J. Research Natl. Bur. Standards, 65A [4] 364 (1961).

Fig. 311.—System Al₂O₃-Y₂O₃.

L. E. Olds and H. E. Otto, private communication, Dec. 27, 1961. Fig. 312 indicates additional 1:1 compound; see also, I. Warshaw and Rustum Roy, J. Am. Ceram. Soc., 42 [9] 435 (1959).

Fig. 313.—System Al₂O₃-SiO₂; redetermined.

J. W. Welch, Nature, 186 [4724] 546 (1960); also Trans. Intern. Ceram. Congr., 7th London, 1960, 1961, pp. 197-206. See also: G. Trömel, K.-H. Obst, K. Konopicky, H. Bauer, and I. Patzak, Ber. deut. keram. Ges., 34 [12] 401 (1957); E. C. Shears and W. A. Archibald, Iron & Steel, 27 [26] 61 (1954); N. L. Bowen and J. W. Greig, J. Am. Ceram. Soc., 7 [4] 242 (1924).

La₂O₃-Ln₂O₃

FIG. 345.—System La₂O₃-Ln₂O₂; predicted subsolidus. A, B, C refer to rare earth oxide structure types; P, perovskite.

S. J. Schneider and R. S. Roth, J. Research Natl. Bur. Standards, 64A [4] 325 (1960).

La₂O₃-ZrO₂

Fig. 346.—System La₂O₃-ZrO₂; pos sible.

R. S. Roth, J. Research Natl. Bus Standards, 56 [1] 23 (1956); RP2645 (a) After F. H. Brown, Jr., and F Duwez, J. Am. Ceram. Soc., 38 [3] 9 (1955); (b) showing La₂Zr₂O₇ meltin congruently with solid solution on bot sides; (c) showing La₂Zr₂O₇ meltin incongruently, with solid solution onl on high La₂O₃ side.

Fig. 349.—System Nd₂O₂-UO₂.

S. M. Lang, F. P. Knudsen, C. L. Fillmore, and R. S. Roth, Natl. Bur. Standards Circ., No. 568, p. 16 (Feb. 20, 1956).

After W. A. Lambertson and M. H. Mueller, U. S. AEC unclassified report ANL-5312 (Sept. 14, 1954).

Fig. 350.—System Nd₂O₂-ZrO₂; possible.

Modification showing Nd₂Zr₂O₇ solid solution phase after R. S. Roth, *J. Res. Natl. Bur. Std.*, 56 [1] 24 (1956); RP 2643. Remainder of diagram after F. H. Brown, Jr. and Pol Duwez, *J. Am. Ceram. Soc.*, 38 [3] 95 (1955).

Fig. 351.—System Sc_2O_3 - R_2O_3 ; predicted subsolidus. Structure types: A, A-type rare earth oxide; B, B-type rare earth oxide; C, C-type rare earth oxide; P, perovskite.

S. J. Schneider, R. S. Roth, and J. L. Waring, J. Research Natl. Bur. Standards, 65A [4] 370 (1961).

BEST AVAILABLE COPY

Fig. 354.—System Y₂O₃-ZrO₂.

H. E. Otto, private communication Dec. 27, 1961. See also, P. S. Duwez, F. H. Brown, Jr., and F. Odell, J. Electrochem. Soc., 98, 360 (1951).

CeO₂-ZrO₂

Fig. 355.—System CeO₂-ZrO₃.

Pol Duwez and Francis Odell, J. Am. Ceram. Soc., 33 [9] 280 (1950).

Fig. 356.—Liquidus curves of systems CeO₂—Al₂O₃, CeO₂—Cr₂O₄, CeO₂—Mn₃O₄.

H. von Wartenberg and K. Eckhardt, Part VIII, Z anorg. u. allgem. Chem., 232, 184 (1937)

Fig. 357.—System GeO₂—SiO₂. Qtz. = quartz; Trid. = tridymite.

E. C. Shafer and Rustum Roy, U. S. Army Signal Corps Contract DA 36-039, SC 63099 (1956).

BEST AVAILABLE COPY

ZrO2-Nb2O5

Fig. 373.—System ZrO₂-Nb₂O₃. ss = solid solution. R. S. Roth and L. W. Coughanour, J. Research, Natl. Bur. Standards, 55 [4] 212 (1955); RP2621.

Fig. 374.—System Ta₂O₅-ZrO₂.

B. W. King, John Schultz, E. A. Durbin, and W. H. Duckworth, U. S. Atomic Energy Comm., BMI-1106, 15

$Nb_2O_5-Ta_2O_5$

Fig. 375.—System Nb₂O₆-Ta₂O₅.

F. Holtzberg and A. Reisman, J. Phys. Chem., 65, 1193 (1961).

G. D. Rieck, Rec. Trav. Chim., 62, 429 (1943)

MgO-La₂O₃-ZrO₂

Fig. 716.—System MgO-LaO_{1.6}-ZrO₂; at approx. 1400°C.
Albrecht Rabenau, Z. anorg. u. allgem. Chem., 288, 224 (1956).

Fig. 718.—System $MgGeO_3$ - $Mg-SiO_3$; partial subsolidus. Clino. = clinoenstatite; Proto. = protoenstatite.

J. F. Sarver and F. A. Hummel, personal communication, Nov., 1961.

MgO-GeO₂-SiO₂

Fig. 717.—System MgO-GeO₂-SiO₂; partial subsolidus. Solid solutions indicated by hatched lines.

J. F. Sarver and F. A. Hummel, personal communication, Nov., 1961.

Frank Dachille and Rustum Roy, Am. J. Sci., 258, 236 (1960).

THIS PAGE BLANK (USPTO)