Probabilidade Bayesiana

Flávio Luiz Seixas¹

Instituto de Computação fseixas@ic.uff.br, http://www.ic.uff.br/ fseixas

1 Paradigmas Frequentista e Bayesiano

O paradigma frequentista admite a probabilidade num contexto restrito a fenômenos que podem ser medidos por frequências relativas. O paradigma Bayesiano entende-se que a probabilidade é uma medida racional e condicional de incerteza. Uma medida do grau de plausibilidade de proposições quaisquer, as quais não precisam necessariamente estar associadas a fenômenos medidos por frequência relativa. Por exemplo, no paradigma Bayesiano admite-se falar da probabilidade de extinção de uma espécie, o que não seria admissível sob o paradigma frequentista.

A inferência estatística é o processo formal utilizado para fazer afirmações genéricas com base em informações parciais. Essas afirmações sáo probabilísticas pois se caracterizam por incluir componentes de incerteza.

Na perspectiva bayesiana, a inferência estatística sobre qualquer quantidade de interesse é descrita como a modificação que se processa nas incertezas à luz de novas evidências.

A conceituação frequentista admite falar em probabilidades somente no contexto de frequências relativas. Em contraste, na conceituação bayesiana, probabilidades quantificam as plausibilidades de proposições ou eventos. Ao atribuir plausibilidades diferenciadas a proposições, a formalização bayesiana de probabilidade estende a lógica dedutiva, restrita a classificar proposições em verdadeiras (probabilidade igual a 1) ou falsas (probabilidade igual a zero), para um conjunto de possibilidades entre estes dois extremos.

O rápido crescimento do uso do paradigma bayesiano em ciências aplicadas ao longo das últimas décadas foi facilitado pelo surgimento de vários programas para efetuar as computações estatísticas. Entre esses, destaca-se o R (programa de livre distribuições e de código aberto).

2 As Regras de Probabilidade

A probabilidade será um número real e função de dois argumentos: o evento incerto E e a premissa H. Utilizaremos o símbolo Pr(E|H) lido como probabilidade de E dado que H é fato, ou a probabilidade de E condicionada ao fato H.

A Lei da convexidade

A probabilidade de um evento qualquer E, condicionado a H é um número real no intervalo [0,1]

$$0 < Pr(E|H) < 1 \tag{1}$$

A Lei da adição

Se E_1 e E_2 são eventos exclusivos sob H, então a probabilidade da união lógica de $E_1 + E_2$ é igual a soma aritmética das suas probabilidades individuais condicionadas a H.

$$Pr(E_1 + E_2|H) = Pr(E_1|H) + Pr(E_2|H)$$
 (2)

A Lei do produto

Se E_1 e E_2 são eventos quaisquer então a probabilidade do produto lógico E_1E_2 condicionado a H é o produto da probabilidade de E_1 condicionado a H multiplicado pela probabilidade de E_2 condicionado a E_1H

$$Pr(E_1E_2|H) = Pr(E_1|H) \bullet Pr(E_2|E_1H) \tag{3}$$

Nos casos em que estamos tratando de eventos independentes, a lei do produto pode ser reescrita como:

$$Pr(E_1 E_2 | H) = Pr(E_1 | H) \bullet Pr(E_2 | H) \tag{4}$$

3 O Teorema de Bayes

Mutas propriedades do cálculo de probabilidades podem ser deduzidas a partir das três leis básicas indicadas na seção anterior. Depois teoremas adicionais merecem especial destaque, o Teorema da Probabilidade Total e o Teorema de Bayes.

Teorema da Probabilidade Total

Seja E_1 ; j = 1, ..., m um conjunto de m eventos exclusivos e exaustivos sob H, e seja A outro evento qualquer. Então Pr(A|H) pode ser reescrito estendendo a conversa para a inclusão dos E_j .

$$Pr(A|H) = \sum_{j=1}^{m} Pr(A|E_jH) \bullet Pr(E_j|H)$$
 (5)

Teorema de Bayes

Sejam E e F dois eventos quaisquer e Pr(E|H) > 0, então:

$$Pr(F|EH) = \frac{Pr(E|FH) \bullet Pr(F|H)}{Pr(E|H)}$$
 (6)

3.1 Exemplo

Um estudo de uma mamografia no diagnóstico de câncer é apresentado na Tabela 1. Os dados foram obtidos experimentalmente sobre a efetividade do exame na detecção de um tumor de mama maligno ou benigno. Por exemplo, se um tumor é maligno Ca, a probabilidade de que o exame resulte positivo é Pr(Pos|Ca) = 0,792, ou seja, 79,2%. De forma similar temos Pr(Neg|Ca') = 0,904 como a probabilidade de que o exame resulte negativo se o tumor não é maligno (Ca'). Os percentuais para faltos positivos e falsos negativos são 9,6% e 20,8%, respectivamente.

Table 1. Resultados dos testes de câncer de mamas

Resultado	Realidade	
do teste	Ca (Tumor maligno)	Ca' (Tumor benigno)
Pos (Positivo)	0,792	0,096
Neg (Negativo)	0,208	0,904

Com essa tabela, fez-se a seguinte pergunta: "Suponha que uma paciente pertença a uma população (mesmo grupo etário, hábito alimentar, etc.) na qual a incidência geral de câncer de mama é de 1%. Detectado um nódulo no seio desta paciente, pede-se uma mamografia para avaliar a possibilidade de que se trate de um tumor maligno; o resultado é positivo. De posse deste conjunto de informações, qual é, em sua opinião, a probabilidade de tratar-se de um tumor maligno?"

Pelo Teorema de Bayes:

$$Pr(Ca|Pos) = \frac{Pr(Pos|Ca) \bullet Pr(Ca)}{Pr(Pos)}$$

$$= \frac{Pr(Pos|Ca) \bullet Pr(Ca)}{P(Pos|Ca) \bullet P(Ca) + Pr(Pos|Ca') \bullet Pr(P(Ca')}$$

$$= \frac{0,792 \bullet 0,01}{0,792 \bullet 0,01 + 0,096 \bullet 0,99} = 0,077$$
(7)