(19) 世界知的所有権機関 国際事務局

1990 B CONTROL OF CO

(43) 国際公開日 2004 年8 月26 日 (26.08.2004)

PCT

(10) 国際公開番号 WO 2004/072003 A1

(51) 国際特許分類⁷: C 15/02, 13/23, 13/263, 11/04, C07F 15/00

C07C 7/10, 5/00,

(21) 国際出願番号:

PCT/JP2004/001589

(22) 国際出願日:

2004年2月13日(13.02.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-38563 2003 年2 月17 日 (17.02.2003) JF 特願2003-157141 2003 年6 月2 日 (02.06.2003) JF

(71) 出願人(米国を除く全ての指定国について): 積水化 学工業株式会社 (SEKISUI CHEMICAL CO., LTD.) [JP/JP]; 〒530-8565 大阪府 大阪市 北区西天満 2 丁目 4番4号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 平池 宏至 (HI-RAIKE,Hiroshi) [JP/JP]; 〒618-8589 大阪府 三島郡島本町百山 2-1 積水化学工業株式会社内 Osaka (JP). 森田 健晴 (MORITA,Takeharu) [JP/JP]; 〒618-8589 大阪府三島郡島本町百山 2-1 積水化学工業株式会社内 Osaka (JP). 小澤 文幸 (OZAWA,Fumiyuki) [JP/JP]; 〒558-8585 大阪府 大阪市 住吉区杉本 3-3-1 3 8 大

阪市立大学内 Osaka (JP). 片山 博之 (KATAYAMA, Hiroyuki) [JP/JP]; 〒558-8585 大阪府 大阪市 住吉区杉本 3-3-138 大阪市立大学内 Osaka (JP).

- (74) 代理人: 河備 健二 (KAWABI,Kenji); 〒170-0013 東京都 豊島区 東池袋三丁目 9 番 7 号 東池袋織本ビル 6 階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

/続葉有/

(54) Title: ZERO-VALENCE TRANSITION METAL COMPLEX AND METHOD OF SYNTHESIZING ORGANOMETALLIC COMPOUND FROM THE SAME AS STARTING MATERIAL

(54) 発明の名称: ゼロ価遷移金属錯体及びこれを出発物質とする有機金属化合物の合成方法

(57) Abstract: A method for effective and inexpensive synthesis of a zero-valence transition metal complex as a starting material for synthesis of a catalyst usable in, for example, production of polyolefins through ring-opening metathesis polymerization of olefins and synthesis of epothilones through ring closing metathesis reaction thereof, and further effective and inexpensive synthesis of an organometallic compound useful as such a catalyst from the zero-valence transition metal complex. In particular, a method of synthesizing zero-valence transition metal complex (C) through reaction between bivalent transition metal complex (A), the bivalent transition metal complex (A) selected from among bivalent ruthenium complexes (A¹) and bivalent osmium complexes (A²), and olefin (B), characterized in that after reaction under reducing conditions, the obtained crude products are subjected to hot extraction with a saturated hydrocarbon as an extraction solvent. Further, there is provided a method of synthesizing an organometallic compound, characterized in that the zero-valence transition metal complex (C) is subjected to a one-step reaction with specified compound (D) and neutral ligand (E).

(57) 要約: オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、出発原料であるゼロ価遷移金属錯体、及びそのゼロ価遷移金属錯体を用いて触媒として有用な有機金属化合物を、効率よくしかも安価に合成する方法であって、二価ルテニウム錯体(A¹)又はは二価オスミウム借体(A²)から選ばれる二価遷移金属錯体(A)とオレフィン(B)とを反応させてゼロ価遷移金属錯体(C)を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法、及びその金属錯体(C)に、特定の化合物(D)と中性配位子(B)とを、一工程で反応させることを特徴とする有機金属化合物の合成方法が提供される。

O 2004/072003 A1

. I DANG BUNDUK 1 BURUK KAN BAKK BAKK BURUK 1941 KO 1945 BURUK BURUK BURUK BURUK BURUK BURUK BURUK BURUK BURUK

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2004/072003 PCT/JP2004/001589

1

明 細 書

ゼロ価遷移金属錯体及びこれを出発物質とする有機金属化合物の合成 方法

技術分野

本発明は、ゼロ価遷移金属錯体及びこれを出発物質とする有機金属化合物の合成方法に関し、さらに詳しくは、オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、ゼロ価遷移金属錯体、及びこれを出発物質とする触媒として有用な有機金属化合物を、効率よくしかも安価に合成する方法に関する。

背景技術

遷移金属化合物を用いた反応は、その金属錯体の触媒作用によって医薬品などの低分子化合物の合成から、高機能性プラスチックなどの高分子合成まで幅広い分野において活用されている。

例えば、四塩化チタンや三塩化チタンとアルキルアルミニウムからなるチーグラーナッタ触媒によるポリエチレンやポリプロピレンの重合、ジルコノセンとメチルアルミノキサンからなるカミンスキー触媒による均質ポリオレフィンの重合、遷移金属カルベン触媒による有機メタセシス反応等がよく知られている。

最近では、遷移金属カルベン触媒、とりわけ、ルテニウムカルベン触

WO 2004/072003 PCT/JP2004/001589

2

媒が注目されている。ルテニウムカルベン触媒は、分子中にRu=C結合(ルテニウム原子と電荷のない2価の炭素原子の結合)を有する化合物であり、特に、 $[(Cl_2Ru=CHPh)(PCy_3)_2]$ で代表されるジクロローフェニルカルベンーゼスー(トリシクロヘキシルホスフィン)ルテニウムが、カリフォルニア インスティチュート オプ テクノロジーのグラップスグループにより開発され、開示されている(例えば、特表平11-510807号公報(特許請求の範囲等)、特開平11-262667号公報(特許請求の範囲等)参照。)。

この化合物は、水分や酸素の存在下でも失活することなく、メタセシス反応基質中の官能基による影響を受けにくく、優れたメタセシス触媒活性を示すことが明らかとなり、医薬品などに利用できる各種モノマーの閉環メタセシス合成に用いられたり、メタセシス重合に供される代表的なモノマーであるジシクロペンタジエンを始めとするノルボルネン系モノマーから、反応射出成形法などにより金型内で開環重合させることによって、機械的強度、耐熱性、寸法安定性等に優れた成形品を製造したりして、幅広い工業分野で用いられており注目を集めている。

ところが、この触媒は、アルキル金属等と反応して系中で活性化されるのではなく、単一の錯体として活性を示すため、触媒をメタセシス反応性モノマーに加えると即座に反応が開始し、触媒の分散性等が律速となる問題があった。これは、ジシクロペンタジエン等の架橋性のモノマーを重合する際には致命的な問題となることがあり、例えば、プロセス上非常に制約を受けたり、得られた重合体の物性のばらつきにつながる問題が生じた。

これに対しては、トリフェニルホスフィン等を系中に加えて重合を遅延させる方法が一般的に知られているが、この場合、系中にリン等の異物が混入するため製品の安全性に問題があった。

上記問題を解決できる触媒として、 $[(C1_2Ru=CHSPh)(PCy_3)_2]$ で代表されるジクロローフェニルチオカルベンービスー(トリシクロヘキシルホスフィン)ルテニウムが提案されている(例えば、特表 2002-506452 号公報(特許請求の範囲等)参照。)。この触媒の上記化学式において、硫黄原子を酸素原子やイミノ基あるいはホスフィンジイル基で置換した化合物も特表 2002-506452 号公報に開示されている。

そこで、本発明者らは、この触媒として用いられるRuCl₂[P(C_6H_{11})₃]₂(=CH-S-)のようなヘテロカルベン錯体の合成法について、研究を進め、従来の合成法であるビニル交換によるヘテロカルベン錯体の合成法の代替法として、比較的に簡単な化学構造である出発物質を用いて、効率よくしかも安価に合成する方法を提案した(特開2003-286295号公報参照。)。

ところが、上記の比較的簡単な化学構造の出発物質であるゼロ価の遷移金属錯体、例えばルテニウム(シメン)(1,5-シクロオクタジエン)錯体を工業的に合成する際に、収率が上がらないという問題点がある。また、その収率を上げるために、抽出工程を何度も繰り返す必要があるが、抽出工程が増え、工程が煩雑になり、コスト的に不利という問題点がある。

本発明の目的は、上記問題点に鑑み、オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、出発原料であるゼロ価遷移金属錯体、及びそのゼロ価遷移金属錯体を用いて触媒として有用な有機金属化合物を、効率よくしかも安価に合成する方法を提供することにある。

発明の開示

本発明者らは、従来の有機金属化合物、例えばゼロ価遷移金属錯体の合成方法のもつ問題点を解決すべく、鋭意研究を重ねた結果、目的生成

物を含む合成反応粗生成固体について、抽出溶媒である飽和炭化水素で熱抽出処理を行うことにより、目的生成物であるゼロ価遷移金属錯体を効率よく、しかも高収率でかつ安価に合成することができることを見出し、本発明を完成するに至った。

すなわち、本発明の第1の発明によれば、二価ルテニウム錯体(A¹)又は二価オスミウム錯体(A²)から選ばれる二価遷移金属錯体(A)とオレフィン(B)とを反応させてゼロ価遷移金属錯体(C)を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

また、本発明の第2の発明によれば、第1の発明において、前記二価 遷移金属錯体 (A) は、アレーンル二価テニウム錯体又はアレーン二価 オスミウム錯体であることを特徴とするゼロ価遷移金属錯体の合成方法 が提供される。

さらに、本発明の第3の発明によれば、第2の発明において、前記アレーンは、炭素数1~20のアルキル置換ベンゼン環であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

本発明の第4の発明によれば、第2の発明において、前記二価ルテニウム錯体 (A¹) は、シメンルテニウムジクロライド錯体であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

また、本発明の第5の発明によれば、第1の発明において、前記オレフィン(B)は、環状ポリエンであることを特徴とするゼロ価遷移金属 錯体の合成方法が提供される。 WO 2004/072003 PCT/JP2004/001589

6

さらに、本発明の第6の発明によれば、第5の発明において、前記環 状ポリエンは、環状ジエンであることを特徴とするゼロ価遷移金属錯体 の合成方法が提供される。

本発明の第7の発明によれば、第1の発明において、前記反応は、アルコール溶媒の存在下で還元剤として金属単体又は金属化合物を用いて行われることを特徴とするゼロ価遷移金属錯体の合成方法が提供される

また、本発明の第8の発明によれば、第7の発明において、前記金属 化合物は、ナトリウム化合物であることを特徴とするゼロ価遷移金属錯 体の合成方法が提供される。

さらに、本発明の第9の発明によれば、第1の発明において、前記熱 抽出処理は、30℃以上で行われることを特徴とするゼロ価遷移金属錯 体の合成方法が提供される。

また、本発明の第10の発明によれば、第1の発明において、前記抽出溶媒は、ヘキサン、ヘプタン又はシクロヘキサンから選ばれる少なくとも一種の飽和炭化水素であることを特徴とするゼロ価遷移金属錯体の合成方法が提供される。

さらに、本発明の第11の発明によれば、第4の発明において、前記 ゼロ価遷移金属錯体は、ルテニウム(シメン)(1,5-シクロオクタ ジエン)であることを特徴とするゼロ価遷移金属錯体の合成方法が提供 される。

一方、本発明の第12の発明によれば、第1~11のいずれかの発明 のゼロ価遷移金属錯体の合成方法で得られたゼロ価遷移金属錯体(C)

7

に、さらに、下記の一般式(1)で示される化合物(D)と中性配位子(E)とを、一工程で反応させることを特徴とする有機金属化合物の合成方法が提供される。

$$R^{1}Y^{1}CR^{2}X^{1}_{2} \tag{1}$$

[式中、R¹は、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は炭素数6~20のアリール基を表し、これらはさらに炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数0~10のアミノ基、ハロゲン原子、ニトロ基、アセチル基、又はアセトキシ基で置換されていてもよく、Y¹は、カルコゲン原子、或いは次の式(2):

で表される窒素含有基又は次の式(3):

で表されるリン含有基を表し、 X^1 は、 Λ ロゲン原子を表す。ただし、 上記式中、 R^2 及び R^3 は、 R^1 と同義であり、 R^1 、 R^2 あるいは R^3 は いずれかが互いに結合していてもよい。]

また、本発明の第13の発明によれば、第12の発明において、R²は、水素原子であることを特徴とする有機金属化合物の合成方法が提供される。

さらに、本発明の第14の発明によれば、第12の発明において、R

¹又はR³は、フェニル基、又は炭素数1~5のアルキル基、カルボキシ
基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基
、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル
基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする有機金属化合物の合成方法が提供される。

本発明の第15の発明によれば、第12の発明において、Y¹は、酸素原子、硫黄原子又はセレン原子であることを特徴とする有機金属化合物の合成方法が提供される。

また、本発明の第16の発明によれば、第12の発明において、中性

配位子(E)は、3級ホスフィン又はイミダゾリウム-2-イリデン化合物であることを特徴とする有機金属化合物の合成方法が提供される。

さらに、本発明の第17の発明によれば、第12の発明において、有機金属化合物は、下記の一般式(4)で表される化合物であることを特徴とする有機金属化合物の合成方法が提供される。

(式中、Mは、 ν テニウム又はオスミウム元素を表し、 R^1 、 R^2 、 Y^1 及び X^1 は、それぞれ前述と同義である。また、 L^1 は、同一又は異なった中性電子供与体を表す。)

本発明の第18の発明によれば、第17の発明において、R²は、水素原子であることを特徴とする有機金属化合物の合成方法が提供される

また、本発明の第19の発明によれば、第17の発明において、 R^1 又は R^3 は、フェニル基、又は炭素数 $1\sim 5$ のアルキル基、カルボキシ 基、炭素数 $1\sim 5$ のアルコキシ基、炭素数 $1\sim 5$ のアルケニルオキシ基、炭素数 $1\sim 6$ のアルキルシリル

基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする有機金属化合物の合成方法が提供される。

さらに、本発明の第20の発明によれば、第17の発明において、Y 1は、酸素原子、硫黄原子又はセレン原子であることを特徴とする有機 金属化合物の合成方法が提供される。

本発明の第21の発明によれば、第17の発明において、有機金属化合物は、ジクロロ [ビストリシクロヘキシルホスフィノ] フェニルチオメチノルテニウムであることを特徴とする有機金属化合物の合成方法が提供される。

また、本発明の第22の発明によれば、第17の発明において、有機 金属化合物は、ビニルヘテロ化合物又はビニル化合物の不純物を含まな いことを特徴とする有機金属化合物の合成方法が提供される。

本発明は、上記した如く、二価ルテニウム錯体(A¹)又は二価オスミウム錯体(A²)から選ばれる二価遷移金属錯体(A)とオレフィン(B)とを反応させてゼロ価遷移金属錯体(C)を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成方法などに係るものであるが、その好ましい態様として、次のものが包含される。

- (1) 第1の発明において、二価オスミウム錯体 (A²) は、シメンオスミウムジクロライド錯体であることを特徴とするゼロ価遷移金属錯体の合成方法。
- (2) 第9又は10の発明において、前記熱抽出処理は、抽出溶媒(抽出剤)がヘキサンであり、且つ30~60℃で行われることを特徴とするゼロ価遷移金属錯体の合成方法。
- (3) 第9又は10の発明において、前記熱抽出処理は、抽出溶媒(抽出剤)がヘプタンであり、且つ30~90℃で行われることを特徴とするゼロ価遷移金属錯体の合成方法。

発明を実施するための最良の形態

以下、本発明のゼロ価遷移金属錯体(C)や、そのゼロ価遷移金属錯体を出発原料として得られる触媒として有用な有機金属化合物の合成方法について、各項目毎に詳細に説明する。

先ず、本発明のゼロ価遷移金属錯体の合成方法は、二価ルテニウム錯体 (A¹) 又は二価オスミウム錯体 (A²) から選ばれる二価遷移金属錯体 (A) とオレフィン (B) とを反応させてゼロ価遷移金属錯体 (C) を合成する方法において、反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和炭化水素で熱抽出処理することを特徴とするものである。

1. 二価遷移金属錯体(A)

本発明のゼロ価遷移金属錯体の合成方法において、用いられる二価遷移金属錯体(A)は、二価ルテニウム錯体(A^1)又は二価オスミウム

錯体 (A²) であって、本発明の目的生成物であるゼロ価遷移金属錯体 (C) の原料の一つであり、ゼロ価遷移金属錯体 (C) 中の中心金属をもたらす役割を果たす。

本発明の合成方法では、二価ルテニウム錯体 (A¹) や二価オスミウム錯体 (A²) という原子価が多価のものから、原子価がゼロ価の錯体を合成することから還元条件下で反応させないと、目的物が収率よく得ることができない。

二価遷移金属錯体(A)、すなわち二価ルテニウム錯体や二価オスミウム錯体の有する配位子に関しては、遷移金属錯体を形成するものであれば、特に限定されないが、生成物の安定性等の面からアレーン配位子を少なくとも一つ以上有することが望ましい。

ここでいうアレーン配位子とは、ベンゼン環に代表される芳香環を持つ化合物がその芳香環状のパイ電子を用いて配位している配位子のことであり、そのアレーン配位子としては、ベンゼン環、置換ベンゼン環、ナフタレン、シクロペンタジエンアニオン等が望ましく、より好ましいのは置換ベンゼン環である。

置換ベンゼン環としては、炭素数 1~20のアルキル置換ベンゼン環 やエステル等の極性基置換ベンゼン環が好ましく、具体的には、トルエ ン、キシレン、クメン、シメン、ヘキサメチルベンゼン、安息香酸エチ ルなどが挙げられる。これらの中でも、シメンが生成物の安定性、コス ト、収率の面から最も好ましい。

二価ルテニウム錯体(A¹)の具体的なものとして、例えば、シメンルテニウムジクロライド錯体、ベンゼンルテニウムジクロライド錯体、

ヘキサメチルベンゼンルテニウムジクロライド錯体、安息香酸エチルル テニウムジクロライド錯体、クメンルテニウムジクロライド錯体、ナフ タレンルテニウムジクロライド錯体などが挙げられ、好ましくはシメン ルテニウムジクロライド錯体、ベンゼンルテニウムジクロライド錯体な どである。

また、二価オスミウム錯体(A²)の具体的なものとして、例えば、シメンオスミウムジクロライド錯体、ベンゼンオスミウムジクロライド錯体、ヘキサメチルベンゼンオスミウムジクロライド錯体、安息香酸エチルオスミウムジクロライド錯体、クメンオスミウムジクロライド錯体、ナフタレンオスミウムジクロライド錯体などが挙げられ、好ましくはシメンオスミウムジクロライド錯体、ベンゼンオスミウムジクロライド錯体などである。

2. オレフィン(B)

本発明の目的生成物であるゼロ価遷移金属錯体(C)は、錯体の安定性、反応性の両面から、アレーン配位子とオレフィン配位子とをあわせて用いられることが望ましい。そのために、本発明の合成方法では、ゼロ価遷移金属錯体(C)の原料の一つとして、オレフィン(B)が用いられる。

オレフィン配位子として用いられるオレフィン(B)は、エチレン等のモノオレフィン、ブタジエン、シクロヘキサジエン等のジエン、シクロオクタトリエン等のトリエンが挙げられる。モノオレフィンの場合は、飽和電子数の関係から二分子配位することが望ましい。

さらに、ゼロ価遷移金属錯体の安定性と反応性の両面から、より望ましくは環状ポリエンが挙げられる。具体的には、1,3ーシクロヘキサジエン、1,4ーシクロヘキサジエン、1,3ーシクロオクタジエン、1,5ーシクロオクタジエン、αーテルピネン、或いはこれら環状オレフィンの置換体等の環状ジエンや、1,3,5ーシクロオクタトリエン、1,3,5ーシクロヘプタトリエン等の環状トリエンなどが挙げられる。これらの中でも、錯体の安定性の面から環状ジエンがより好ましく、中でも1,5ーシクロオクタジエンがコスト、目的生成物(錯体)の安定性、収率の面から最も好ましい。

3. ゼロ価遷移金属錯体 (C) の合成方法

本発明の合成方法では、前述したように、二価ルテニウム錯体(A¹)や二価オスミウム錯体(A²)という原子価が多価のものと、オレフィン(B)とから、原子価がゼロ価の錯体を合成することから、還元条件下で合成反応させないと、目的生成物を収率よく得ることができない

還元条件下の状態を作るに当たっては、金属化合物を還元剤として用い、反応をアルコール溶媒中で行うことが望ましい。還元剤となる金属化合物は、具体的に亜鉛や典型元素を含むものが望ましく、中でもナトリウムを含有する化合物が、取扱やコストの面から望ましい。 さらに、具体的なものとしては、炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられる。

そして、効率的な還元反応を行うために、還元剤としてのナトリウム

含有化合物を、ルテニウム又はオスミウムに対して、1当量以上用いるのが望ましい。反面、過剰の還元剤は、反応終了後の除去やコストの面から好ましくないため、還元剤のナトリウム化合物としては、ルテニウム又はオスミウムに対して、0.5~10当量が望ましく、さらには1~5当量が望ましい。

また、還元条件を与えるアルコールとしては、反応条件において液体であれば特に制限はないが、メタノール、エタノール、イソプロピルアルコール等がコストや取扱等の面から望ましい。

さらに、反応条件としては、アルコール還流下で、例えばエタノールであれば約90℃で加熱された還流条件下で、反応時間が1~20時間であり、反応の効率を上げるために、撹拌を伴うのが望ましい。

本発明では、合成反応終了後の溶液、或いは目的生成物を含む合成反応の粗生成固体から、還元剤や副生物を取り除く必要がある。その際、合成反応の粗生成固体について、熱抽出処理を行うことにより、目的生成物を高収率で得ることができる。

尚、合成反応終了後の溶液から、目的生成物を含む合成反応の粗生成 固体を分離する方法は、通常の固液分離方法、例えば液相のエバポレー ション(又はろ過)による方法にて実施される。また、還元剤や副生物 の一部が沈殿として存在している反応溶液を、そのままエバポレーショ ンして得られた粘土状の個体から目的生成物を熱抽出してもよい。すな わち、合成反応終了後の溶液に対して固体と液体を分離する操作を行わ ずに、すべてを一度固体化したものから、目的生成物を熱抽出してもよ い。 その合成反応の粗生成固体から、目的生成物であるゼロ価遷移金属錯体を熱抽出する条件は、抽出温度としては、30℃以上が望ましく、好ましくは40℃以上である。上限の温度としては、用いる抽出溶媒の沸点や分配係数、物質移動速度に影響され、適宜設定される。通常は、抽出溶媒の沸点より約10℃程度低い温度である。但し、温度が上昇すれば、拡散速度(固体内部への拡散など)が上昇するが、他方、溶剤の沸点、装置上或いは溶質の安定性などから制限がある。また、抽出時間としては、10分~5時間、好ましくは30分~3時間である。抽出温度が30℃未満では、抽出効率が悪く、且つ、抽出時間が大幅に長くなるので工業的でない。抽出処理においては、抽出効率(又は接触効率)を上げるために、撹拌を行ってもよい。

さらに、抽出溶媒(抽出剤)としては、原料に含まれるアニオン性の 化合物が副生物に含まれるため、それらの副生物や不純物を溶かさない で、同時に目的生成物であるゼロ価遷移金属錯体を溶かす、溶解度と選 択性の大きい飽和炭化水素が好ましい。その飽和炭化水素としては、ヘ キサン(沸点:68.7℃)、ヘプタン(沸点:98.4℃)、シクロ ヘキサン(沸点:80℃)等が最も好ましい。

また、これら一連の合成反応又はこれに伴う熱抽出処理は、ゼロ価錯体に対して、酸素などの活性の高い化合物を遮断した不活性ガス雰囲気下で行うのが望ましい。

本発明の合成方法を用いた場合には、目的生成物として、ルテニウム (シメン) (1,5-シクロオクタジエン) 錯体を得る反応が、収率、 錯体の安定性、コストの面から最も好ましい反応といえる。

4. ゼロ価遷移金属錯体 (C)

本発明の合成方法で得られたゼロ価遷移金属錯体(C)は、オレフィンの開環メタセシス重合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒を合成するための、出発原料として用いられ、その触媒(有機金属化合物)中の中心金属をもたらす役割を果たす。

ゼロ価遷移金属錯体(C)の中心金属としては、遷移金属錯体を形成するものであれば、特に限定されないが、VIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIA族、VIIIA族、VIIA的、VIIA族、VIIA族、VIIA族、VIIA的、VIIA族、VIIA的、VI

本発明のゼロ価遷移金属錯体 (C) の合成方法においては、原料の二 価遷移金属錯体 (A) として、ルテニウム又はオスミウムの二価錯体を 用いるものであるが、上記の遷移金属の二価錯体を用いることもできる

ゼロ価遷移金属錯体(C)に用いられる配位子としては、通常、遷移 金属錯体を形成するものであれば、特に限定されない。こうした配位子 の中でも、ゼロ価錯体の遷移金属錯体(C)の場合は、アレーン(芳香 族炭化水素)配位子とオレフィン配位子とをあわせ使用することが、錯 体の安定性、反応性の両面から望ましい。そのために、本発明の合成方 法では、前述したように、原料としての二価遷移金属錯体(A)は、ア レーン二価ルテニウム錯体又はアレーン二価オスミウム錯体が用いられ 、また、原料として、オレフィン配位子となるオレフィン(B)が用いられる。

ゼロ価遷移金属錯体(C)は、二価遷移金属錯体(A)とオレフィン(B)の選択により、適宜合成され、例えば、下記のものが挙げられる。但し、()内の数字は、価数を示し、[]内は化学式を示す。

- 1. $(η^6 ベンゼン)$ $(η^4 1, 3 シクロヘキサジエン) ルテニウ$
- Δ (0) 、 [Ru ($\eta^6 C_6 H_6$) ($\eta^4 1$, $3 C_6 H_8$)]
- 2. $(η^6 ベンゼン)$ $(η^4 1, 5 シクロオクタジエン) ルテニウ$
- Δ (0) 、 [Ru (η^{6} -C₆H₆) (η^{4} -1, 5-C₈H₁₂)]
- 3. $(\eta^6 シメン)$ $(\eta^4 1, 5 シクロオクタジエン) ルテニウム$
- (0) $[Ru \{ \eta^6 CH (CH_3) _2C_6H_4CH_3 \} (\eta^4 1, 5 C_8H_{12})]$
- 4. $(\eta^6 \tau \tau) + \tau) (\eta^4 1, 5 \tau) \tau$
- ウム (0)、 [Ru ($\eta^6 C_{10}H_8$) ($\eta^4 1$, $5 C_8H_{12}$)]
- 5. $(η^6-シメン)$ $(η^4-α-テルピネン)$ ルテニウム (0) 、 [R
- u $(\eta^6 CH (CH_3)_2 C_6 H_4 CH_3)$ $(\eta^4 \alpha Terpinen$
- 6. $(\eta^{6}-\nu \times \nu)$ $\forall x$ $(x \neq \nu \nu)$ $\nu \neq -\nu \wedge (0)$ $(Ru \{\eta^{6}\})$ $(C_{2}H_{4})_{2}$
- (0) $\left[Ru \left\{\eta^{6}-CH \left(CH_{3}\right)_{2}C_{6}H_{4}CH_{3}\right\}\right] \left(\eta^{4}-1, 3-C_{6}H_{8}\right]$

- 8. $(\eta^6 安息香酸エチル)$ $(\eta^4 1, 5 \nu \rho \mu \pi \rho \rho \nu \pi \nu)$ ルテニウム (0) 、 $[Ru \{\eta^6 C_6H_5COOEt\}^{'}(\eta^4 1, 5 C_8H_{12})]$
- 9. $(\eta^{6}-\Lambda$ キサメチルベンゼン) $(\eta^{4}-1, 5-シクロオクタジエン)$ ルテニウム (0) 、 $[Ru \{\eta^{6}-C_{6}Me_{6}\}\ (\eta^{4}-1, 5-C_{8}H_{12})]$
- 10. $(\eta^6 ベンゼン)$ $(\eta^4 1, 3 シクロヘキサジエン) オスミウム (0)、 [Os <math>(\eta^6 C_6H_6)$ $(\eta^4 1, 3 C_6H_8)$]
- 11. $(\eta^6 \vec{v} \cdot \vec{v} \cdot \vec{v})$ $(\eta^4 1, 5 \hat{v} \cdot \rho \cdot \vec{v} \cdot \vec{v})$ $\vec{v} \cdot \vec{v} \cdot \vec{v}$
- ウム (0) 、 $[Os (\eta^6 C_6H_6) (\eta^4 1, 5 C_8H_{12})]$ 12. $(\eta^6 - シメン) (\eta^4 - 1, 5 - シクロオクタジエン) オスミウ$
- \triangle (0) \ [Os { η^6 -CH (CH₃) $_2$ C $_6$ H $_4$ CH $_3$ } (η^4 -1, 5
- 13. $(\eta^6 \tau 7 \beta \nu \nu)$ $(\eta^4 1, 5 \nu \rho \mu \pi \rho \beta \nu \pi \nu)$ オスミウム (0)、 $[Os(\eta^6 C_{10}H_8)(\eta^4 1, 5 C_8H_{12})]$
- 14. $(\eta^6 \nu \lambda \nu)$ $(\eta^4 \alpha \tau \nu \nu \nu \nu \nu \lambda \nu)$ オスミウム(0)、[
- Os $(\eta^6 CH (CH_3)_2 C_6 H_4 CH_3)$ $(\eta^4 \alpha Terpine$
- 15. $(\eta^6 \nu \nu)$ ビス $(x + \nu)$ オスミウム (0)、 $[Os {\eta^6 CH (CH_3)_2 C_6 H_4 CH_3} (C_2 H_4)_2]$
- 16. $(\eta^6 安息香酸エチル)$ $(\eta^4 1, 5 シクロオクタジエン)$ オスミウム (0) 、 $[Os {\eta^6 C_6H_5COOEt}]$ $(\eta^4 1, 5 C_8H_{12})$]

上記のゼロ価遷移金属錯体(C)のうち、錯体の安定性や製造コストの面から好ましいのは、(η^6 -ベンゼン)(η^4 -シクロヘキサジエン)ルテニウム(O)、(η^6 -ベンゼン)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)、(η^6 -シメン)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)、(η^6 -シメン)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)、(η^6 -安息香酸エチル)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)、(η^6 -安息香酸エチル)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)などであり、より好ましいのは(η^6 -ベンゼン)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)、(η^6 -シメン)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)、(η^6 -シメン)(η^4 -1,5-シクロオクタジエン)ルテニウム(O)である。

本発明の合成方法で得られたゼロ価遷移金属錯体(C)は、前述したように、触媒として用いられる有機金属化合物、例えば、 $RuCl_2$ [$P(C_6H_{11})_3$] $_2$ (=CH-S-R)のようなヘテロカルベン錯体の合成法において、出発原料として、好適に用いられる。

5. 化合物(D)

本発明に係るゼロ価遷移金属錯体(C)の実施態様の一つとして、上 記の触媒として用いられる有機金属化合物、例えばヘテロカルベン錯体 の合成法における出発原料が挙げられ、その有機金属化合物の合成方法は、本発明の合成方法で得られたゼロ価遷移金属錯体(C)に、さらに、下記の一般式(1)で示される化合物(D)と中性配位子(E)とを、一工程で反応させることを特徴とするものである。

そして、本発明に用いられる化合物(D)とは、触媒として有用な有機金属化合物の原料の一つであり、有機金属化合物中の金属に直接結合するハロゲン原子等のアニオン性配位子と、有機金属化合物中のカルベン(電荷のない二価の炭素原子)に直接結合するフェニルチオ基、フェニルエーテル基等の電子供与性基とをもたらす役割を果たす。

$$R^{1}Y^{1}CR^{2}X^{1}_{2}$$
 (1)

で表される窒素含有基又は次の式(3):

$$\begin{array}{ccc}
--p & & & \\
\downarrow & & & \\
R^3 & & & & \\
\end{array} \tag{3}$$

で表されるリン含有基を表し、 X^1 は、 Λ ロゲン原子を表す。ただし、 上記式中、 R^2 及び R^3 は、 R^1 と同義であり、 R^1 、 R^2 あるいは R^3 は いずれかが互いに結合していてもよい。

本発明に係る化合物(D)は、上記一般式(1)で該当するものであれば、特に限定されないが、式中のR²が水素原子である化合物が好ましく、さらには、式中のR¹、R³がフェニル基、又は炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基、及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であって、かつY¹が酸素原子、硫黄原子、又はセレン原子である化合物が、反応性、有用性等の面から特に好ましい。

本発明において使用する化合物 (D) の具体例としては、例えば、下 記のものが挙げられる。但し、[] 内は化学式を示す。

- 1. ジクロロメチルフェニルスルフィド、 $[Ph-S-CHCl_2]$
- 2. ジクロロメチルフェニルセレニド、 $[Ph-Se-CHCl_2]$
- 3. ジクロロメチルフェニルホスフィン、 [Ph-PH-CHCl₂]
- 4. ジクロロメチルフェニルアミン、 [Ph-NH-CHCl₂]
- 5. (フェニルジクロロメチル) フェニルスルフィド、[Ph-S-C $(Ph) Cl_2]$
- 6. ジクロロメチルーpートリルスルフィド、[p-tolyl-S-CHC1₂]
- 7. ジクロロメチルーpークロロフェニルスルフィド、 $[p-C1-Ph-S-CHC1_2]$
- 8. ジクロロメチルーpーメトキシフェニルスルフィド、 [p-MeO-Ph-S-CHC1_o]
- 9. ジクロロメチルベンジルスルフィド、 $[Benzy1-S-CHC1_2]$
- 10. ジクロロメチルイソプロピルスルフィド、 [i-Pr-S-CHCl₂]
- 11. N-ジクロロメチルカルバゾール、

12. Nージクロロメチルピロリジノン、

13. N-ジクロロメチルフタルイミド、

14. N-ジクロロメチルピロリジン、

6. 中性配位子(E)

本発明において用いられる中性配位子(E)とは、中性電子供与体のことであり、触媒として有用な有機金属化合物の原料の一つであり、有機金属化合物中の金属に直接配位する中性配位子をもたらす役割を果たす。

中性配位子(E)としては、中性電子供与体であれば何を用いてもよいが、好ましくは三級ホスフィン又はイミダゾリウムー2ーイリデン化合物である。

三級ホスフィンとしては、式:PR[®]R⁷R[®]で表されるホスフィンが 挙げられる。

ここで、 R^6 、 R^7 及び R^8 は、それぞれ独立して $C_1 \sim C_{20}$ のアルキル基、又は $C_6 \sim_{20}$ のアリール基を表し、好ましくはメチル基、エチル基、イソプロピル基、t-ブチル基、シクロヘキシル基、フェニル基、又は置換フェニル基の中から選ばれ、重複して選ぶことも可能である。

また、三級ホスフィンとしてビスホスフィンのような二座配位型のホスフィンを用いることも可能である。

本発明において用いる三級ホスフィンの具体例としては、例えば、以下のものが挙げられる。但し、[]内は化学式を示す。

- 1. トリシクロペンチルホスフィン、 [P (C₅H₉)₃]
- 2. トリシクロヘキシルホスフィン、 [P (C₆H₁₁)₃]
- 3. トリエチルホスフィン、 [P(C₂H₅)₃]
- 4. トリメチルホスフィン、[P(CH₃)₃]
- 5. トリイソプロピルホスフィン、[P {CH (CH₃)₂}₃]
- 6. トリプロピルホスフィン、[P(CH₂CH₂CH₃)₃]
- 7. トリブチルホスフィン、 [P (CH₂CH₂CH₂CH₃)₃]
- 8. トリフェニルホスフィン、[PPh₃]
- 9. エチレンビス (ジフェニルホスフィン)、 $[Ph_2PCH_2CH_2PPh_2]$
- 10. エチレンビス (ジイソプロピルホスフィン)、 [{ (CH_3) $_2CH_3$ PCH $_2CH_3$ P{ $CH(CH_3)$ $_2$]
- 11. エチレンビス (ジシクロペンチルホスフィン)、 $[(C_5H_9)_2]$ PCH₂CH₂P $(C_5H_9)_2$
- 12. エチレンビス (ジシクロヘキシルホスフィン)、 $[(C_6H_{11})_2]$ PCH₂CH₂P $(C_6H_{11})_2$

また、イミダゾリウムー 2 ーイリデン化合物としては、イミダゾリン -2 ーイリデン誘導体、4 , 5 ージヒドロイミダゾリンー 2 ーイリデン 誘導体などが好ましく、具体的には、N , N ージメシチルイミダゾリンー 2 ーイリデン配位子やN , N ージメシチルー 4 , 5 ージヒド

ロイミダゾリンー2ーイリデン配位子が挙げられる。

7. 有機金属化合物とその製法

触媒として有用な本発明に係る有機金属化合物は、ゼロ価の遷移金属 錯体(C)からなる出発物質に、前述の一般式(1)で示される化合物 (D)と中性配位子(E)とを一工程で反応させる製法によって製造される。

そのため、上記有機金属化合物としては、上記の製法で得られるものであれば、特に限定されるものではないが、下記の一般式(4)で表される化合物が好ましい。

ここで、式中、Mは遷移金属元素を表し、 R^1 、 R^2 、 Y^1 及び X^1 は、 それぞれ前述と同義である。また、 L^1 は、それぞれ同一又は異なった 中性電子供与体を表す。

これらの有機金属化合物の中でも、反応性、有用性等の面から、特に 式中のMがルテニウム又はオスミウムで、 R^2 が水素原子で、 R^1 がフェ ニル基、あるいは炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基、及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基で、Y¹が酸素原子、硫黄原子又はセレン原子である有機金属化合物が最適である。

さらに、生成物の安定性、有用性、コストの面から、Mがルテニウム R^2 が水素原子、 X^1 が塩素、 Y^1 が硫黄又はセレン、 R^1 がフェニル基 又は上記の置換フェニル基であるものが特に好ましい。

なお、Υ¹が硫黄、セレン、窒素等のヘテロ元素である場合は、それらの元素によるπ供与性から、得られる有機金属化合物は、熱安定性に優れたものとなり、その結果、高温での反応が可能となるため、高収率で目的物を得ることができるという利点がある。

本発明に係る有機金属化合物の製法の特徴の一つとして、一般式(1)で示される化合物(D)を反応試薬として用いるが、該化合物は、熱や光に対して安定な化合物であるため、様々な合成条件下で反応を行うことが可能である。

本発明に係る有機金属化合物の製法は、通常、溶媒中に上記した三つの原料 (C)、(D)、(E)を加え、必要に応じて攪拌し、反応温度を-78 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 00範囲、より好ましくは-10 $^{\circ}$ $^{\circ}$ $^{\circ}$ 00範囲に調整し、窒素雰囲気で一工程で反応させ、反応終了後、エバポレー

ションにて溶媒を除去し得られた固体を回収、洗浄して錯体を単離することによって行われる。

上記溶媒としては、特に限定されないが、溶解度の点からトルエン、ベンゼン、塩化メチレン、クロロホルム、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、ジエチルエーテル、アセトニトリル等が望ましい。

なお、有機金属化合物の製法では、上記した原料を加えるだけで反応 は進行するため、還元剤を加える必要はない。

また、洗浄する溶媒としては、錯体を分解しない溶媒であれば何でも 良いが、錯体よりも不純物に対して溶解度の高い溶媒が望まれる。具体 的にはヘキサン、ペンタン等の飽和炭化水素やアルコール系溶媒が望ま しいが、錯体の構造によっては溶解してしまい、洗浄効果を上げること で収率の低下を招く可能性がある。そのような場合は洗浄溶媒を冷却す ることが望ましい。

特に中性配位子(E)が飽和炭化水素基を有する場合は、錯体の溶解性が高いため、冷却したヘキサン、ペンタン、メタノール等で洗浄することで収率を損なうことなく純度の高い生成物を得ることが出来る。

洗浄液の温度としては、融点 ~ 0 \mathbb{C} が望ましく、ドライアイスで冷却が可能な ~ 7.8 \mathbb{C} ~ 0 \mathbb{C} が実用上望ましい。

実施例

次に、実施例に基づいて本発明を具体的に説明するが、本発明はこれ らの実施例のみに限定されるものではなく、本発明の技術思想を利用す る実施態様は、全て本発明の範囲に含まれるものである。

[実施例1]

500mlのシュレンクフラスコを窒素置換して、シメンルテニウム ジクロライド錯体を15g(Ru:49mmol)とり、蒸留エタノー ル(乾燥剤Mg)150mlを加えた。1,5-シクロオクタジエンを 50ml(407mmol)シリンジで加えた。そこに、炭酸ナトリウ ム15g(141mmol)を加えエタノール還流下(加熱温度:90 ℃)で反応させた。

12時間撹拌後、エバポレーションすることで揮発成分を取り除き、 茶色の固体を回収した。

その固体に、ヘキサン100m1を加えて、40℃で1時間、加熱及 び攪拌した。溶液を濾過し、更に濾別された残渣をヘキサン20m1で 洗浄濾過した。こうして得られた褐色の溶液をエバポレーションして、 茶褐色の固体を回収した。

NMRにより、目的生成物、すなわちゼロ価の遷移金属錯体であるルテニウム (シメン) (1, 5ーシクロオクタジエン) 錯体 [別名:Ru $(\eta^6-p-シメン)$ $(\eta^4-1, 5-シクロオクタジエン)$] であることを確認した。その収量は15.3 gで、収率は91%であった。

「実施例2]

100mlのシュレンクフラスコを窒素置換して、シメンルテニウム ジクロライド錯体を1.53g(Ru:5mmol)とり、蒸留エタノ 一ル(乾燥剤Mg) 50mlを加えた。1,5-シクロオクタジエンを5ml(40.7mmol)シリンジで加えた。そこに炭酸ナトリウム1.5g(14.1mmol)を加えエタノール還流下で反応させた。

3 時間撹拌後、エバポレーションすることで揮発成分を取り除き、茶 色の固体を回収した。

その固体に、ヘキサン100mlを加えて、40℃で1時間、加熱及び攪拌した。溶液を濾過し、更に濾別された残渣をヘキサン20mlで洗浄濾過した。こうして得られた褐色の溶液をエバポレーションして、茶褐色の固体を回収した。

NMRにより、目的生成物、すなわちゼロ価の遷移金属錯体であるルテニウム(シメン)(1,5-シクロオクタジエン)錯体 [別名:Ru $(\eta^6-p-シメン)$ $(\eta^4-1,5-シクロオクタジエン)$] であることを確認した。その収量は1.52gで、収率は89%であった。その合成結果を表1に示す。

[実施例3]

オレフィン(B)として、1,3-シクロヘキサジエンを用いること 以外は、実施例2と同様に実験を行った。その合成結果を表1に示す。

[実施例4]

オレフィン(B)として、エチレンを用い、反応をエチレンバプリング下で行う以外は、実施例2と同様に実験を行った。その合成結果を表1に示す。

[実施例5]

二価遷移金属錯体(A)として、(η ⁸-ヘキサメチルベンゼン)ルテニウムジクロライド(II)を用いること以外は、実施例2と同様に実験を行った。その結果を表1に示す。

[実施例6]

二価遷移金属錯体(A)として、(η ⁸ーベンゼン)ルテニウムジクロライド(II)を用いること以外は、実施例 2 と同様に実験を行った。その結果を表 1 に示す。

[実施例7]

オレフィン(B)として、1,3-シクロヘキサジエンを用いること 以外は、実施例6と同様に実験を行った。その結果を表1に示す。

[実施例8]

二価遷移金属錯体(A)として、(η 6 - 安息香酸エチル)ルテニウムジクロライド(II)を用いること以外は、実施例 2 と同様に実験を行った。その結果を表 3 4 に示す。

[実施例9]

二価遷移金属錯体 (A) として、(n⁶-p-シメン) オスミウムジ クロライド (II) を用いること以外は、実施例2と同様に実験を行っ

た。結果を表1に示す。

表 1

	二価錯体(A)	オレフィン(B)	ゼロ価遷移 金属錯体(C)	収率 (%)
実施例2	(1)	· (1)	(a)	89
実施例3	(1)	(口)	(b)	. 61
実施例4	(1)	(11)	(c)	66
実施例5	(2)	(1)	(d)	85
実施例6	(3)	(イ)	(e)	66
実施例7	(3)	(口)	(f)	61
実施例8	(4)	(1)	(g)	78
実施例9	(5)	(1)	(h)	88

二価錯体(A)

- (1): $(\eta^6 p シメン)$ ルテニウムジクロライド(II)
- (3): $(n^6 ベンゼン)$ ルテニウムジクロライド(II)
- (4): $(n^6 安息香酸エチル) ルテニウムジクロライド(II)$
- (5): $(\eta^6 p シメン)$ オスミウムジクロライド(II)

オレフィン(B)

- (イ) 1,5ーシクロオクタジエン
- (ロ) 1,3ーシクロヘキサジエン
- (ハ) エチレン

ゼロ価遷移金属錯体(C)

- (a): $(\eta^6 p シメン)(1, 5 シクロオクタジェン) ルテニウム(0)$
- (b): $(\eta^6 p \nu / \nu)(1, 3 \nu / p \nu / \nu) (1, 3 \nu / p \nu / \nu) (1, 3 \nu / p \nu / \nu)$
- (c): $(\eta^6 p b + b) (\vec{r} \wedge x + b + b) (\vec{r} \wedge x + b) (\vec{r} \wedge x + b)$
- (e): $(n^6 \text{ベンゼン})(1, 5 \text{シクロオクタジエン}) ルテニウム(0)$
- (f): $(\eta^6 (\pi^6 (1, 3)))))))))))))))))$
- (g): $(\eta^6 安息香酸エチル)(1,5-シクロオクタジェン)ルテニウム(0)$
- (h): $(\eta^{6}-p-シメン)(1,5-シクロオクタジェン)オスミウム(0)$

[評価結果]

実施例1、2では、収率が約90%程度の高収率であり、満足できる

結果であった。また、各種二価遷移金属錯体 (A) やオレフィン (B) を用いた実施例3~9においても、良好な収率が得られた結果であった

[実施例10、11]

還元剤である炭酸ナトリウムの当量数を変えたこと以外は、実施例 2 と同様に実験を行った。結果を表 2 に示す。

[実施例12]

還元剤として、亜鉛粉末を用いたこと以外は、実施例2と同様に実験 を行った。結果を表2に示す。

[実施例13]

抽出温度を50℃にしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

「実施例14]

抽出溶媒をヘプタンにしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[比較例1]

抽出温度を25℃にしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[比較例2]

抽出溶媒をTHFにしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

[比較例3]

抽出溶媒をベンゼンにしたこと以外は、実施例2と同様に実験を行った。結果を表2に示す。

表 2

	還元剤(当量/Ru)	抽出温度 (℃)	抽出溶媒	収率 (%)
実施例2	炭酸ナトリウム(2.8)	40	ヘキサン	89
実施例10	炭酸ナトリウム(1.0)	40	ヘキサン	65
実施例11	炭酸ナトリウム(5.0)	40	ヘキサン	89
実施例12	亜鉛(5.0)	40	ヘキサン	61
実施例13	炭酸ナトリウム(2.8)	50	ヘキサン	89
実施例14	炭酸ナトリウム(2.8)	40	ヘプタン	88
比較例1	炭酸ナトリウム(2.8)	25	ヘキサン	46
比較例2	炭酸ナトリウム(2.8)	40	THF	分解
比較例3	炭酸ナトリウム(2.8)	40	ベンゼン	不純物あり

[評価結果]

実施例1、2では、収率が約90%程度の高収率であり、満足できる結果であった。特に、実施例2/比較例1の対比では、ゼロ価の遷移金属錯体のヘキサンでの抽出を、室温(25 $^{\circ}$ C)で1時間に対して、40 $^{\circ}$ Cで1時間で行うことにより、収率は46 $^{\circ}$ が89%まで向上した。

また、抽出溶媒として極性の高いTHFを用いた場合(比較例 2)は、錯体の分解が確認され、また、ベンゼンを用いた場合(比較例 3)は、他の成分の抽出が確認されたのに対し、ヘキサンやヘプタンといった飽和炭化水素を用いた場合には、効率よく目的物が抽出されることが確認された。さらに、還元剤として炭酸ナトリウムは、2.8当量で高収率の目的生成物が得られ、5当量に増やしてもあまりその効果が得られないことが確認された。

[実施例15~22]

実施例 $2\sim 9$ の手法によって合成されたゼロ価の遷移金属錯体(C) 0.006 モルに対して、中性配位子(E) 0.012 モルおよび式: $R^1Y^1CHC1_2$ の化合物(D) 0.006 モルを加え、トルエン 20 gとともに 100 m 1 のフラスコ中で窒素気流下、60 $\mathbb C$ で 12 時間反応させた。反応終了後、エバポレーションにて、溶媒を除去し得られた 固体を回収、-40 $\mathbb C$ のメタノールで洗浄して有機金属化合物を単離した。有機金属化合物の合成に用いたゼロ価遷移金属錯体(C)、化合物(D)、中性配位子(E)の概要と、それらの結果を表 3 に示す。

表3

	ゼロ価遷移 金属錯体(C)	中性配位子 (E)	R ¹	Y ¹	収率(1) (%)	収率(2) (%)	生成物
実施例15	(a)	PCy ₃	Ph	s	91	81	式(i)
実施例16	(a)	PiPr ₃	Ph	S	88	78	式(ii)
実施例17	(a)	PCy ₃	tol	s	87	77	式(iii)
実施例18	(a)	PCy ₃	Ph	Se	82	73	式(iv)
実施例19	(b)	PCy₃	Ph	S	68	41	式(i)
実施例20	(e)	PCy ₃	Ph	s	74	49	式(i)
実施例21	(f)	PCy ₃	Ph	S	87	53	式(i)
実施例22	(h)	PCy ₃	Ph	S	65	57	式(v)

ゼロ価遷移金属錯体

(a): $(\eta^6 - p - シメン)(1, 5 - シクロオクタジェン) ルテニウム(0)$

(b): $(\eta^6 - p - \nu) (1, 3 - \nu) (1 + \nu)$ (0)

(e): $(\eta^6 - \text{ベンゼン})(1, 5 - \text{シ} - \text{D} - \text{D} + \text{D} - \text{D} - \text{D} + \text{D} - \text{D} - \text{D} + \text{D} - \text{D} -$

(f): $(\eta^6 - \overset{\cdot}{} \sim \overset{\cdot}{} \sim \overset{\cdot}{} \sim \overset{\cdot}{} \sim (1, 3 - \overset{\cdot}{} \sim 1 - \overset{\cdot}{} \sim 1)$ (7)

(h): $(\eta^6 - p - \nu + \nu)(1, 5 - \nu - p - \nu + \nu)(1, 5 - \nu - p - \nu + \nu) + \lambda = 0$

中性配位子

PCy3: トリシクロヘキシルホスフィン

PiPra: トリイソプロピルホスフィン

 R^1

tol: p-Me-Ph基

収率(1): ゼロ価遷移金属錯体(C)から生成物を得た収率

収率(2): 二価錯体(A)からのトータルの収率

尚、実施例15~22で得られた有機金属化合物の化学式[(i)~(v)]を以下に示す。

$$CI$$
 $P(C_6H_{11})_3$
 $Ru = C$ S \sharp (i) $P(C_6H_{11})_3$

$$\begin{array}{c|c}
P(i-C_3H_7)_3 \\
CI & H \\
Ru=C & S \\
\hline
P(i-C_3H_7)_3
\end{array}$$

$$\begin{array}{c}
\sharp (ii)$$

CI
$$P(C_6H_{11})_3$$

 $Ru = C$ S E (iii)
 $P(C_6H_{11})_3$

$$CI$$
 $P(C_6H_{11})_3$
 $Ru = C$ Se $\sharp (iv)$
 $P(C_6H_{11})_3$

$$CI$$
 $P(C_6H_{11})_3$
 CI $P(C_6H_{11})_3$
 $P(C_6H_{11})_3$
 $P(C_6H_{11})_3$

[評価結果]

表3に示されるように、各ゼロ価遷移金属錯体を用いて、チオカルベン錯体が効率良く合成されることが確認された。特にゼロ価遷移金属錯体として、p-シメン1,5シクロオクタジエンルテニウム錯体を用いたとき、もとの原料であるp-シメンルテニウムジクロライドから81%という高収率でチオカルベン錯体が得られることが確認された。

産業上の利用可能性

本発明のゼロ価遷移金属錯体の合成方法に従うと、二価ルテニウム錯体 (A¹) 又は二価オスミウム錯体 (A²) から選ばれる二価遷移金属錯体 (A) と、オレフィン (B) とから、ゼロ価遷移金属錯体 (C) を非常に高い収率で、しかも安価に得ることができ、工業的なゼロ価遷移金属錯体 (C) の製造方法として好適である。

また、本発明の合成方法で得られたゼロ価遷移金属錯体は、ジシクロペンタジエンの様な分子内に歪みのあるオレフィンの開環メタセシス重

合によるポリオレフィンの製造や、閉環メタセシス反応によるエポチロン類の合成等に利用できる触媒として有用な有機金属化合物、例えばヘテロカルベン錯体の合成法における出発原料として、好適に用いることができる。

さらに、本発明に係る有機金属化合物の合成方法では、従来法では不 純物として同伴する恐れのあるビニルヘテロ化合物、若しくは交換され たビニル化合物が系中に共存する可能性は全くなく、反応溶液から活性 の高い有機金属化合物を簡便に単離することができ、これを重合触媒と して用いノルボルネン系モノマーを重合すると、重合収率が非常に高い 効果がある。

請求の範囲

1. 二価ルテニウム錯体 (A^1) 又は二価オスミウム錯体 (A^2) から選ばれる二価遷移金属錯体 (A) とオレフィン (B) とを反応させてゼロ価遷移金属錯体 (C) を合成する方法において、

反応を還元条件下で行った後、得られた粗生成物を抽出溶媒である飽和 炭化水素で熱抽出処理することを特徴とするゼロ価遷移金属錯体の合成 方法。

- 2. 前記二価遷移金属錯体(A)は、アレーン二価ルテニウム錯体又はアレーン二価オスミウム錯体であることを特徴とする請求項1に記載のゼロ価遷移金属錯体の合成方法。
- 3. 前記アレーンは、炭素数 1 ~ 2 0 のアルキル置換ベンゼン環であることを特徴とする請求項 2 に記載のゼロ価遷移金属錯体の合成方法。
- 4. 前記二価ルテニウム錯体 (A¹) は、シメンルテニウムジクロライド錯体であることを特徴とする請求項2に記載のゼロ価遷移金属錯体の合成方法。
- 5. 前記オレフィン(B)は、環状ポリエンであることを特徴とする 請求項1に記載のゼロ価遷移金属錯体の合成方法。
- 6. 前記環状ポリエンは、環状ジエンであることを特徴とする請求項 5に記載のゼロ価遷移金属錯体の合成方法。
- 7. 前記反応は、アルコール溶媒の存在下で還元剤として金属単体又は金属化合物を用いて行われることを特徴とする請求項1に記載のゼロ

価遷移金属錯体の合成方法。

- 8. 前記金属化合物は、ナトリウム化合物であることを特徴とする請求項7に記載のゼロ価遷移金属錯体の合成方法。
- 9. 前記熱抽出処理は、30℃以上で行われることを特徴とする請求 項1に記載のゼロ価遷移金属錯体の合成方法。
- 10. 前記飽和炭化水素は、ヘキサン、ヘプタン又はシクロヘキサンから選ばれる少なくとも一種であることを特徴とする請求項1に記載のゼロ価遷移金属錯体の合成方法。
- 11. 前記ゼロ価遷移金属錯体は、ルテニウム(シメン)(1,5-シクロオクタジエン)であることを特徴とする請求項4に記載のゼロ価遷移金属錯体の合成方法。
- 12. 請求項1~11のいずれかに記載の合成方法で得られたゼロ価 遷移金属錯体(C)に、さらに、下記の一般式(1)で示される化合物 (D)と中性配位子(E)とを、一工程で反応させることを特徴とする 有機金属化合物の合成方法。

$R^{1}Y^{1}CR^{2}X^{1}_{2} \tag{1}$

[式中、R¹は、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は炭素数6~20のアリール基を表し、これらはさらに炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10の

アリールシリル基、炭素数 $1 \sim 7$ のアシル基、ヒドロキシ基、炭素数 0 ~ 1 0 のアミノ基、ハロゲン原子、ニトロ基、アセチル基、又はアセトキシ基で置換されていてもよく、 Y^1 は、カルコゲン原子、或いは次の式 (2):

$$--N--$$

$$R^{1_3}$$
(2)

で表される窒素含有基又は次の式(3):

$$\begin{array}{ccc}
-P & & & \\
\downarrow & & \\
R^3 & & & \\
\end{array} \tag{3}$$

で表されるリン含有基を表し、 X^1 は、 Λ ロゲン原子を表す。ただし、 上記式中、 R^2 及び R^3 は、 R^1 と同義であり、 R^1 、 R^2 あるいは R^3 は いずれかが互いに結合していてもよい。]

- 13. R²は、水素原子であることを特徴とする請求項12に記載の 有機金属化合物の合成方法。
- 14. R^1 又は R^3 は、フェニル基、又は炭素数 $1\sim5$ のアルキル基、カルボキシ基、炭素数 $1\sim5$ のアルコキシ基、炭素数 $1\sim5$ のアルケニルオキシ基、炭素数 $6\sim1$ 0のアリールオキシ基、炭素数 $1\sim6$ のアルキルシリル基、炭素数 $6\sim1$ 0のアリールシリル基、炭素数 $1\sim7$ のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニ

トロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする請求項12に記載の有機金属化合物の合成方法。

- 15. Y¹は、酸素原子、硫黄原子又はセレン原子であることを特徴とする請求項12に記載の有機金属化合物の合成方法。
- 16. 中性配位子(E)は、3級ホスフィン又はイミダゾリウム-2 -イリデン化合物であることを特徴とする請求項12に記載の有機金属 化合物の合成方法。
- 17. 有機金属化合物は、下記の一般式(4)で表される化合物であることを特徴とする請求項12に記載の有機金属化合物の合成方法。

(式中、Mは、ルテニウム又はオスミウム元素を表し、 R^1 、 R^2 、 Y^1 及び X^1 は、それぞれ前述と同義である。また、 L^1 は、同一又は異なった中性電子供与体を表す。)

18. R²は、水素原子であることを特徴とする請求項17に記載の 有機金属化合物の合成方法。

- 19. R¹又はR³は、フェニル基、又は炭素数1~5のアルキル基、カルボキシ基、炭素数1~5のアルコキシ基、炭素数1~5のアルケニルオキシ基、炭素数6~10のアリールオキシ基、炭素数1~6のアルキルシリル基、炭素数6~10のアリールシリル基、炭素数1~7のアシル基、ヒドロキシ基、炭素数10以下のアミノ基、ハロゲン原子、ニトロ基及びアセチル基からなる群から選ばれる少なくとも1個の置換基によって置換されたフェニル基であることを特徴とする請求項17に記載の有機金属化合物の合成方法。
- 20. Y¹は、酸素原子、硫黄原子又はセレン原子であることを特徴とする請求項17に記載の有機金属化合物の合成方法。
- 21. 有機金属化合物は、ジクロロ [ビストリシクロヘキシルホスフィノ] フェニルチオメチノルテニウムであることを特徴とする請求項17に記載の有機金属化合物の合成方法。
- 22. 有機金属化合物は、ビニルヘテロ化合物又はビニル化合物の不 純物を含まないことを特徴とする請求項17に記載の有機金属化合物の 合成方法。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/001589

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07C7/10, 5/00, 15/02, 13/23, 13/263, 11/04. C07F15/00					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEAR	RCHED				
Minimum documen Int.Cl7	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07C7/10, 5/00, 15/02, 15/24, 13/16-13/277, 11/04, C07F15/00				
	ched other than minimum documentation to the				
Electronic data base CAPLUS (S	consulted during the international search (nam TN), REGISTRY (STN)	e of data base and, where practicable, sear	ch terms used)		
C. DOCUMENTS	CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
17	2114149 A (Imperial Chemi August, 1983 (17.08.83), mily: none)	cal Industries PLC),	1-11		
for com Dal	TICI, Paolo et al., A new the preparation of cyclo- plex., Journal of the Chem ton Transactions: Inorgani 10, (1980), pages 1961 to	1-11			
TEC 15	96/04289 A1 (CALIFORNIA I CHNOLOGY), February, 1996 (15.02.96), P 9-512828 A & JP P 773948 A1 & US	12-22			
▼ Further docur	nents are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 23 March, 2004 (23.03.04)			e application but cited to chying the invention claimed invention cannot be ed to involve an inventive claimed invention cannot be when the document is documents, such skilled in the art amily ch report		
Name and mailing address of the ISA/ Japanese Patent Office Facsimile No. Authorized officer Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/001589

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	WP 97/06185 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY), 20 February, 1997 (20.02.97), 5 JP 11-510807 A	12-22
A	WO 99/00396 A (CIBA SPECIALTY CHEMICALS HOLDING INC.), 07 January, 1999 (07.01.99), & JP 2002-506452 A & EP 993465 A1 & US 6407190 B1	12-22
P,A	JP 2003-286295 A (Sekisui Chemical Co., Ltd.), 10 October, 2003 (10.10.03), (Family: none)	12-22

国際調査報告

A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int. Cl'C07C7/10,5/00,15/02, C07F15/00	13/23, 13/263, 11/04,	,
カー 御木また よ八郎		
B. 調査を行った分野 棚本な行った見い四次以(国際体験公籍(IDC))		
調査を行った最小限資料(国際特許分類(IPC))	15/04 19/16-19/977	11/01
Int. C1 ⁷ C07C7/10, 5/00, 15/02, C07F15/00	15/24, 13/10-13/2//	
最小限資料以外の資料で調査を行った分野に含まれるもの		
国際調査で使用した電子データベース(データベースの名称	調査に使用した用語)	
CAPLUS (STN), REGISTRY (STN)		
○ 間中ナストのひととって十本	:	<u>-</u> <u>-</u>
C. 関連すると認められる文献	···	関連する
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	請求の範囲の番号
		1-11
A GB 2114149 A (Imperial 1983. 08. 17 (ファミリー		111
A DEPETCI Deale at al. A new own	thatia mathod for the	1-11
A PERTICI, Paolo et al., A new syn		1-11
preparation of cyclo-olefin ruth		•
Journal of the Chemical Society,		
Inorganic Chemistry, No. 10 (1980)) p. 1961-p. 1964	
	· ·	
)		
·		
X C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
* 引用文献のカテゴリー	の日の後に公表された文献	
「A」特に関連のある文献ではなく、一般的技術水準を示す		された文献であって
80	出願と矛盾するものではなく、多	
「E」国際出願日前の出願または特許であるが、国際出願日	の理解のために引用するもの	
以後に公表されたもの	「X」特に関連のある文献であって、🖁	当該文献のみで発明
「L」優先権主張に疑義を提起する文献又は他の文献の発行		
日若しくは他の特別な理由を確立するために引用する		
文献(理由を付す)	上の文献との、当業者にとって自	
「〇」口頭による開示、使用、展示等に言及する文献	よって進歩性がないと考えられる	200
「P」国際出願日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完了した日 05.03.2004	国際調査報告の発送日 23.3.2	2004
	diameter de plan (Add PRO is with CO.)	1
国際調査機関の名称及びあて先	特許庁審査官(権限のある職員)	4H 9357
日本国特許庁(ISA/JP)	藤森 知郎	
郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3443

C (続き).	関連すると認められる文献	
引用文献の		関連する 請求の範囲の番号
カテゴリー*	WO 96/04289 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY) 1996. 02. 15 & JP 9-512828 A & JP 11-262667 A & EP 773948 A1 & US 5710298 A	12-22
A	WO 97/06185 A1 (CALIFORNIA INSTITUTE OF TECHNOLOGY) 1997. 02. 20 & JP 11-510807 A & EP 842200 A1 & US 5831108 A	12-22
A .	WO 99/00396 A (CIBA SPECIALTY CHEMICALS HOLDING INC.) 1999. 01. 07 & JP 2002-506452 A & EP 993465 A1 & US 6407190 B1	12-22
PA	JP 2003-286295 A (積水化学工業株式会社) 2003.10.10 (ファミリーなし)	12-22