РК 2 Линейная алгебра

Оглавление

Введение	2
Теория	3
1 Метрика и окрестности в R ⁿ . Открытые, замкнутые, ограниченные и связные множества. Область и ее граница. Определения и примеры.+?+	3
2 Скалярная ФНП как отображение R ⁿ -> R . Область определения, график функции двух переменных, линии и поверхности уровня. Определения и примеры.+++	5
3 Предел ФНП и его свойства. Бесконечно малые и бесконечно большие ФНП. Определения и примеры.+++	7
4 Непрерывность ФНП в точке и на множестве. Точки, линии и поверхности разрыва. Определения и примеры.+++	9
5 Полное и частное приращение ФНП. Частные производные ФНП и их геометрическая интерпретация для n = 2+++	10
6 Частные производные ФНП высших порядков. Матрица Гессе. Теорема о независимости смешанных частных производных от порядка дифференцирования.+++	12
7 Дифференцируемость ФНП. Необходимые и достаточные условия дифференцируемости. Полный дифференциал ФНП и его геометрический смысл для n = 2+++	13
8 Необходимые и достаточные условия, при которых дифференциальная форма P (x; y)dx+Q(x; y)dy является полным дифференциалом	
9 Дифференцируемость сложной функции. Частная и полная производные.+++	15
10 Инвариантность формы полного дифференциала первого порядка. Дифференциалы высши порядков.+++	
11 Неявные ФНП. Теорема о существовании и дифференцируемости неявной ФНП.+++	18
12.Производная ФНП по направлению и градиент ФНП (определения, свойства и формула вычисления).+++	20
13 Касательная плоскость и нормаль к поверхности, их уравнения.+++	21
14 Формулы Тейлора и Маклорена для ФНП.+++	22
15 Экстремум ФНП. Необходимые условия экстремума. Достаточные условия экстремума.+++	23
16 Условный экстремум ФНП. Уравнения связи. Функция Лагранжа. Необходимые условия существования условного экстремума. Достаточные условия существования условного экстремума.+++	24
19 Векторная функция нескольких переменных (ВФНП), координатные функции. Предел ВФНП Теорема о связи предела ВФНП и пределов ее координатных. Непрерывность ВФНП в точке и множестве.+++	на
20 Частные и полные приращения, частные производные ВФНП. Теорема о связи частных производных ВФНП и ее координатных функций.+++	28
21 Дифференцируемость ВФНП, частный и полный дифференциалы. Матрица Якоби, якобиан.+++	30
Теория с доказательством	32
Практика	32

Введение

Здесь разобрана теория к РК 1 по интегралам и дифференциальным уравнениям. Основной источник информации - http://fn.bmstu.ru/educational-work-fs-12/70-lections/240-lin-al-fmp, конспекты лекций, интернет.

Теория

1 Метрика и окрестности в R^n . Открытые, замкнутые, ограниченные и связные множества. Область и ее граница. Определения и примеры.+?+

Метрика в Rⁿ?

Окрестности в Rⁿ

Определение 8.1. Множество $\mathrm{U}(a,\varepsilon)$ тех точек из \mathbb{R}^n , расстояние от которых до точки $a\in\mathbb{R}^n$ меньше $\varepsilon,\,\varepsilon>0$, т.е. множество

$$U(a,\varepsilon) = \{ x \in \mathbb{R}^n : \rho(x,a) < \varepsilon \},\,$$

называют ε -окрестностью точки a, а множество

$$\mathring{\mathbf{U}}(a,\varepsilon) = \mathbf{U}(a,\varepsilon) \setminus \{a\} = \{x \in \mathbb{R}^n : 0 < \rho(x,a) < \varepsilon\}$$

 $nроколотой \varepsilon$ -окрестностью точки a.

Открытые множества

Определение 8.2. Точку a множества $A \subset \mathbb{R}^n$ называют внутренней точкой этого множества, если существует ε -окрестность $\mathrm{U}(a,\varepsilon)$ точки a, целиком содержащаяся в A: $\mathrm{U}(a,\varepsilon) \subset A$. Множество всех внутренних точек A называют внутренностью множества A и обозначают $\mathrm{Int}\,A$. Если каждая точка множества A является его внутренней точкой, то само множество A называют открытым множеством.

Замкнутые множества

Определение 8.6. Множество, которое содержит все свои граничные точки (свою границу), называют **замкнутым множеством**. Замкнутое ограниченное множество в \mathbb{R}^n называют компактным множеством, или компактом.

Ограниченные множества

Определение 8.5. Множество $A \subset \mathbb{R}^n$ называют *ограниченным множеством*, если существует такое положительное число r, что r-окрестность точки 0 = (0, ..., 0) содержит множество A.

Связные множества и область

Определение 8.7. Множество $A \subseteq \mathbb{R}^n$, любые две точки которого можно соединить непрерывной кривой, целиком лежащей в этом множестве, называют *линейно связным*. Открытое линейно связное множество называют *областью*.

Следующие множества являются областями:

- любая ε -окрестность $U(a, \varepsilon)$ точки $a \in \mathbb{R}^n$;
- проколотая ε -окрестность $\mathbf{\ddot{U}}(a,\varepsilon)$ точки $a\in\mathbb{R}^n$;

— (открытое) кольцо в \mathbb{R}^2 с центром в точке (a_1, a_2) и радиусами r и R, которое можно описать неравенствами

$$r^2 < (x_1 - a_1)^2 + (x_2 - a_2)^2 < R^2, \quad (x_1, x_2) \in \mathbb{R}^2;$$

- множество

$$\{(x_1, x_2) \in \mathbb{R}^2: r < |x_1 - a_1| + |x_2 - a_2| < R\},\$$

где $(a_1, a_2) \in \mathbb{R}^2, 0 < r < R.$

2 Скалярная ФНП как отображение $R^n \to R$. Область определения, график функции двух переменных, линии и поверхности уровня. Определения и примеры. +++

Функция нескольких переменных (ФНП)

Отображение, которое упорядоченному набору из n чисел ставит в соответствие число, т.е. отображение вида $f \colon A \to \mathbb{R}$, где $A \subset \mathbb{R}^n$, n > 1, называют функцией нескольких переменных.

Область определения

Множество D(f) = A точек из \mathbb{R}^n , в которых определена функция $f: A \subset \mathbb{R}^n \to \mathbb{R}$, называют областью определения (существования) функции f, а множество $R(f) = \{y \in \mathbb{R}: y = f(x), x \in D(f)\}$ — областью значений (изменения) функции f. Подчеркнем, что термины «область определения» и «область значений» никак не связаны с термином «область». Область определения функции и область ее значений могут и не быть областями в смысле определения 8.7.

График

Определение 8.8. *Графиком функции* нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ называют подмножество $\Gamma(f)$ в \mathbb{R}^{n+1} , которое задается следующим образом:

$$\Gamma(f) = \{(x, y) \in \mathbb{R}^{n+1} : x \in D(f), y = f(x)\}.$$

Здесь $x=(x_1,\,x_2,\,\ldots,x_n)$, а $(x,\,y)$ — сокращенное обозначение арифметического вектора $(x_1,\,x_2,\,\ldots,x_n,\,y)$.

Поверхность уровня и линия уровня

Пусть задана функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$. Множество $\{x \in \mathbb{R}^n: f(x) = c\}$, где $c \in \mathbb{R}$ фиксированное, называют **поверхностью уровия**, соответствующей значению c.

Отдавая дань традиции, мы будем называть множество $f^{-1}(c)$ линией уровня при n=2 и поверхностью уровня во всех остальных случаях.

График функции двух переменных

Связь между графиком функции нескольких переменных и ее поверхностями уровня наиболее наглядно просматривается в случае функции двух переменных z=f(x,y): линия уровня f(x,y)=c совпадает с проекцией на координатную плоскость хOу сечения графика этой функции, т.е. поверхности z=f(x,y), плоскостью z=c. Именно на этом основан метод сечений, применяемый при исследовании вида поверхности в пространстве по ее уравнению.

Пример

Пример 8.9. Опишем все линии уровня функции двух переменных $f(x,y) = x^2 + y^2$. Уравне-

Рис. 8.7

ние линии уровня $x^2+y^2=c$ при c<0 задает пустое множество, поскольку это равенство, рассматриваемое как уравнение относительно переменных x и y, не имеет решений. Геометрически это означает, что при c<0 плоскость z=c не пересекается с графиком функции f. В случае c=0 имеем равенство $x^2+y^2=0$, которому удовлетворяют координаты единственной точки (0,0). Следовательно, при c=0 линия уровня, являющаяся пересечением плоскости z=0 с параболоидом вращения $z=x^2+y^2$, содержит единственную точку (0,0). Если c>0, то линия уровня описывается уравнением $x^2+y^2=c=r^2$ и представляет собой окружность радиуса r с центром в начале координат. Эта окружность есть проекция на координатную плоскость хOу пересечения плоскости $z=r^2$ с параболоидом вращения $z=x^2+y^2$ (рис. 8.7). #

3 Предел ФНП и его свойства. Бесконечно малые и бесконечно большие ФНП. Определения и примеры.+++

Предел ФНП

Определение 8.9. Пусть заданы функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$, множество $A \subset D(f)$, включенное в область определения D(f) функции f, и предельная точка a множества A. Точку $b \in \mathbb{R}$ называют **пределом функции f в точке a по множеству A**, если для любой ε -окрестности $\mathrm{U}(b,\varepsilon)$ точки b существует такая проколотая δ -окрестность $\mathring{\mathrm{U}}(a,\delta)$ точки a, что $f(x) \in \mathrm{U}(b,\varepsilon)$ при $x \in \mathring{\mathrm{U}}(a,\delta) \cap A$, т.е.

$$\forall U(b,\varepsilon) \subset \mathbb{R}^m \ \exists \stackrel{\circ}{\mathrm{U}}(a,\delta) \subset \mathbb{R}^n \ \forall x \in \stackrel{\circ}{\mathrm{U}}(a,\delta) \cap A : \ f(x) \in \mathrm{U}(b,\varepsilon). \tag{8.2}$$

В этом случае записывают $b = \lim_{x_{\overrightarrow{A}} \to a} f(x)$, или $f(x) \to b$ при $x_{\overrightarrow{A}} \to a$ (запись $x_{\overrightarrow{A}} \to a$ читают так: «x стремится к a по множеству $A \gg$).

Свойства предела ФНП

Сформулируем основные свойства предела функции нескольких переменных.

- 1°. Если функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет предел в точке $a \in \mathbb{R}^n$ по множеству A, то этот предел единственный.
- 2° . Если функция $f \colon \mathbb{R}^n \to \mathbb{R}$ имеет (конечный) предел в точке a по множеству A, то она ограничена при $x \xrightarrow{} a a$.
 - 3°. Если у функций $f,\,g\colon A\subset\mathbb{R}^n\to\mathbb{R}$ существуют пределы

$$\lim_{x_{\overrightarrow{A}} \to a} f(x) = b, \qquad \lim_{x_{\overrightarrow{A}} \to a} g(x) = d,$$

то существуют и пределы

$$\lim_{x \to a} (f(x) + g(x)) = b + d, \qquad \lim_{x \to a} (\lambda f(x)) = \lambda b, \quad \lambda \in \mathbb{R}.$$

4°. Если у функций $f,\,g\colon A\subset\mathbb{R}^n\to\mathbb{R}$ существуют пределы

$$\lim_{x_{\overrightarrow{A}} \to a} f(x) = b, \qquad \lim_{x_{\overrightarrow{A}} \to a} g(x) = d,$$

то существуют и пределы

$$\lim_{x_{\overrightarrow{A}} \to a} (f(x) g(x)) = bd, \quad \lim_{x_{\overrightarrow{A}} \to a} \frac{f(x)}{g(x)} = \frac{b}{d} \quad (d \neq 0).$$

5°. Если функция $f: A \subset \mathbb{R}^n \to \mathbb{R}$ имеет предел при $x_{\overrightarrow{A}}a$, равный b, и b>0 (b<0), то существует такая проколотая окрестность $\mathring{\mathrm{U}}(a,\delta)$ точки a, что в точках множества $A \cap \mathring{\mathrm{U}}(a,\delta)$ функция f положительна (отрицательна).

 6° . Если у функций $f, g: A \subset \mathbb{R}^n \to \mathbb{R}$ существуют пределы

$$\lim_{x_{\overrightarrow{A}} \to a} f(x) = b, \qquad \lim_{x_{\overrightarrow{A}} \to a} g(x) = d, \tag{8.4}$$

причем b < d, то существует такая проколотая окрестность $\mathring{\mathrm{U}}(a,\delta)$ точки a, что при $x \in A \cap \mathring{\mathrm{U}}(a,\delta)$ выполнено неравенство f(x) < g(x).

- 7°. Если у функций $f, g: A \subset \mathbb{R}^n \to \mathbb{R}$ существуют пределы (8.4), причем существует такая проколотая окрестность $\mathring{\mathrm{U}}(a,\delta)$ точки a, что при $x \in A \cap \mathring{\mathrm{U}}(a,\delta)$ выполнено неравенство $f(x) \leqslant g(x)$, то $b \leqslant d$.
- 8°. Если функции $f, g, h: A \subset \mathbb{R}^n \to \mathbb{R}$ в некоторой проколотой окрестности точки a удовлетворяют неравенствам $f(x) \leqslant h(x) \leqslant g(x), x \in A$, и существуют пределы

$$\lim_{x_{\overrightarrow{A}} \cdot a} f(x) = \lim_{x_{\overrightarrow{A}} \cdot a} g(x) = b,$$

то существует и предел $\lim_{x \to a} h(x) = b$.

9°. Произведение функции, бесконечно малой при $x_{\overrightarrow{A}}a$, на функцию, ограниченную при $x_{\overrightarrow{A}}a$, есть функция, бесконечно малая при $x_{\overrightarrow{A}}a$.

Бесконечно большой и малый предел

Определение 8.10. Пусть задана функция нескольких переменных $f\colon A\subset \mathbb{R}^n\to \mathbb{R}$ и a предельная точка множества A. Если для любого числа M>0 существует такое число $\delta>0$, что при $x\in A\cap \mathring{\mathrm{U}}(a,\delta)$ выполняется неравенство f(x)>M (f(x)<-M или |f(x)|>M), то говорят, что функция f(x) стремится к $+\infty$ (соответственно $-\infty$ или ∞) при $x_{\overline{A}}a$, и пишут

$$\lim_{x_{\overrightarrow{A}} \to a} f(x) = +\infty \quad \big(\lim_{x_{\overrightarrow{A}} \to a} f(x) = -\infty \quad \text{или} \quad \lim_{x_{\overrightarrow{A}} \to a} f(x) = \infty \, \big).$$

Во всех трех случаях функцию f(x) называют **бесконечно большой** при $x \rightarrow a$.

4 Непрерывность ФНП в точке и на множестве. Точки, линии и поверхности разрыва. Определения и примеры.+++

Непрерывная в точке

Определение 8.11. Функцию нескольких переменных $f: A \subset \mathbb{R}^n \to \mathbb{R}$ называют *непрерывной в точке* $a \in A$, предельной для множества A, если существует предел функции f при $x_{\overrightarrow{A}}a$, равный значению функции в этой точке, т.е. если

$$\lim_{x_{\overrightarrow{A}} = a} f(x) = f(a). \tag{8.5}$$

На множестве

Функцию $f: \Lambda \subset \mathbb{R}^n \to \mathbb{R}$, непрерывную во всех точках множества Λ , называют **непрерывной на** этом **множестве**.

Точки линии и поверхности разрыва

Точки, в которых функция нескольких переменных $f\colon A\subset\mathbb{R}^n\to\mathbb{R}$ определена, но не является непрерывной, называют точками разрыва этой функции. Напомним, что точки, в которых функция исследуется на непрерывность, относятся к области определения этой функции. Точка разрыва функции $f\colon A\subset\mathbb{R}^n\to\mathbb{R}$ должна быть точкой множества A, являющейся для A предельной, так как в изолированных точках множества A функция f непрерывна всегда (см. 8.4). К точкам разрыва функции f часто относят и точки, которые являются предельными точками A, но самому множеству не принадлежат.

Точки разрыва могут образовывать подмножества в \mathbb{R}^n , которые в зависимости от их вида называют *линиями* или *поверхностями разрыва функции*.

5 Полное и частное приращение ФНП. Частные производные ФНП и их геометрическая интерпретация для n = 2+++

Частное приращение

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ определена в δ -окрестности $\mathrm{U}(a,\delta)$ точки $a \in \mathbb{R}^n$. Обозначим через Δx_i такое приращение независимого переменного x_i в точке a, при котором точка $a = (a_1, \ldots, a_{i-1}, a_i + \Delta x_i, a_{i+1}, \ldots, a_n)$ принадлежит $\mathrm{U}(a,\delta)$. Для этого достаточно, чтобы выполнялось неравенство $|\Delta x_i| < \delta$. Тогда определена разность значений функции f, соответствующая приращению Δx_i :

$$\Delta_i f(a, \Delta x_i) = f(a_1, \dots, a_{i-1}, a_i + \Delta x_i, a_{i+1}, \dots, a_n) - f(a_1, \dots, a_n).$$

Эту разность называют **частным приращением функции нескольких переменных** f в точке a по независимому переменному x_i . Частное приращение обозначают также через $\Delta_i f(a)$ или $\Delta_{x_i} f(a)$.

Полное приращение

Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ определена в некоторой окрестности $mov x u x \in \mathbb{R}^n$ и $\Delta x = (\Delta x_1 \dots \Delta x_n)^{\mathrm{T}}$ — такой вектор приращений независимых переменных, что точка $x + \Delta x$ тоже принадлежит этой окрестности. В этом случае определено nonhoe приращение функции f

$$\Delta f(x) = f(x + \Delta x) - f(x),$$

соответствующее приращению Δx переменных в точке x. Напомним, что

$$|\Delta x| = \sqrt{(\Delta x_1)^2 + \ldots + (\Delta x_n)^2}.$$

Частные производные

Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ определена в некоторой окрестности точки $a_1 \in \mathbb{R}$ определена функция одного переменного $\varphi_1(x_1) = f(x_1, a_2, \ldots, a_n)$, которая получается из функции f(x) при фиксированных значениях всех аргументов, кроме первого. Производную $\varphi'(a_1)$ функции $\varphi(x_1)$ в точке $a_1 \in \mathbb{R}$ называют частной производной функции нескольких переменных f в точке a по переменному x_1 . Аналогично можно определить частные производные функции f и по другим переменным.

Частную производную функции f в точке a по переменному x_i обозначают следующим образом:

$$\frac{\partial f(a)}{\partial x_i}$$
 или $f'_{x_i}(a)$.

Вычисление частных производных функции нескольких переменных сводится к дифференцированию функции одного действительного переменного, когда все переменные функции, кроме одного, «замораживаются».

Геометрическая интерпретация

Пусть функция двух переменных f(x,y) определена в некоторой окрестности точки $a=(a_1,\,a_2)\in\mathbb{R}^2$. Графиком этой функции в пространстве является поверхность, которая в прямоугольной системе координат Охух описывается уравнением z=f(x,y). Обозначим линию пересечения этой поверхности с плоскостью $y=a_2$ через γ . Выберем на этой кривой точки $P(a_1,\,a_2,\,f(a_1,a_2))$ и $Q(a_1+\Delta x,\,a_2,\,f(a_1+\Delta x,a_2))$, а затем через эти точки проведем прямую L.

Пусть при стремлении точки Q по кривой γ к точке P прямая займет некоторое предельное положение. Соответствующую этому положению прямую называют касательной к кривой γ в точке P (рис. 9.1).

Рис. 9.1

Докажем, что касательная к кривой γ в точке P существует, если функция f имеет в точке (a_1, a_2) частную производную по переменному x, причем угол α между касательной и положительным направлением оси Oх определяется формулой

$$\operatorname{tg} \alpha = f_x'(a_1, a_2).$$

6 Частные производные ФНП высших порядков. Матрица Гессе. Теорема о независимости смешанных частных производных от порядка дифференцирования.+++

Частные производные от ФНП высших порядков

Предположим, что функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ во всех точках в некоторой окрестности $\mathrm{U}(a,\delta)$ точки а имеет частную производную $f'_{x_i}(x)$. Эта частная производная сама является функцией нескольких переменных, определенной в окрестности $\mathrm{U}(a,\delta)$, и может оказаться, что она имеет частную производную в точке a, например по переменному x_j . Частную производную

$$(f'_{x_i})'_{x_j}(a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f(x)}{\partial x_i} \right) \Big|_{x=a}$$

функции $f'_{x_i}(x)$ называют **частной производной второго порядка** функции f(x) в точке a по переменным x_i и x_j и обозначают

$$rac{\partial^2 f(a)}{\partial x_i \partial x_i}$$
 или $f''_{x_i x_j}(a).$

Матрица Гессе

Если для функции $f(x_1, x_2, ..., x_n)$ в точке x существуют все частные производные второго порядка, то из них можно составить квадратную матрицу порядка n

$$f''(x) = \begin{pmatrix} \frac{\partial^2 f_1(x)}{\partial x_1^2} & \frac{\partial^2 f_1(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f_1(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f_2(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f_2(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f_2(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f_m(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f_m(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f_m(x)}{\partial x_n^2} \end{pmatrix},$$

которую называют матрицей Гессе.

Теорема

7 Дифференцируемость ФНП. Необходимые и достаточные условия дифференцируемости. Полный дифференциал ФНП и его геометрический смысл для n = 2+++

Дифференцируемость ФНП

Определение 9.1. Функцию $f: \mathbb{R}^n \to \mathbb{R}$, определенную в некоторой окрестности точки x, называют $\partial u \phi \phi e penuupye moŭ$ в move x, если ее полное приращение в окрестности этой точки можно представить в виде

$$\Delta f(x) = a_1 \Delta x_1 + a_2 \Delta x_2 + \ldots + a_n \Delta x_n + \alpha(\Delta x) |\Delta x|, \tag{9.2}$$

где коэффициенты a_1, a_2, \ldots, a_n не зависят от приращений Δx , а функция $\alpha(\Delta x)$ является бескопечно малой при $\Delta x \to 0$.

Функцию f называют $\partial u \phi \phi e penuupye moй в области <math>X \subset \mathbb{R}^n$, если она дифференцируема в каждой точке этой области.

Необходимое условие

Теорема 9.1 (необходимое условие дифференцируемости). Если функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке x, то у этой функции в точке x существуют все (конечные) частные производные $f'_{x_i}(x)$, $i = \overline{1, n}$, причем коэффициенты a_i в представлении (9.2) равны значениям соответствующих частных производных в точке x:

$$a_i = f'_{x_i}(x), \quad i = \overline{1, n}.$$

Достаточное условие

Теорема 9.3 (∂ остаточное условие ∂ ифференцируемости). Если функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ в некоторой окрестности точки a определена и имеет частные производные по всем переменным, причем все производные непрерывны в самой точке a, то функция f дифференцируема в точке a.

Полный дифференциал

Определение 10.1. Линейную относительно Δx часть полного приращения функции f(x), дифференцируемой в точке x, т.е. выражение

$$f'_{x_1}(x)\Delta x_1 + f'_{x_2}(x)\Delta x_2 + \ldots + f'_{x_n}(x)\Delta x_n$$
 (10.1)

называют (*полным*) $\partial u \phi \phi e p e h u u a л o м \phi y h k u u u f и обозначают через <math>df(x)$.

Геометрический смысл

Понятие касательной плоскости позволяет дать геометрическую интерпретацию $\partial u \phi \phi$ еренциалу функции нескольких переменных. Пусть функция z = f(x,y) двух переменных дифференцируема в точке (a, b). Тогда ее дифференциал dz в этой точке равен

$$dz = f'_x(a,b) \, dx + f'_y(a,b) \, dy. \tag{12.7}$$

8 Необходимые и достаточные условия, при которых дифференциальная форма Р (x; y)dx+Q(x; y)dy является полным дифференциалом.---

Дифференцируемость сложной функции

На функции нескольких переменных можно распространить *правило дифференцирования сложной функции*, установленное для функций одного действительного переменного.

Пусть на некотором множестве $A \subset \mathbb{R}^m$ определены функции $g_i \colon A \subset \mathbb{R}^m \to \mathbb{R}, i = \overline{1, n}$, причем $(g_1(x), g_2(x), \ldots, g_n(x)) \in B \subset \mathbb{R}^n$ при $x \in A$. Пусть на множестве B задана функция $f \colon B \subset \mathbb{R}^n \to \mathbb{R}$. Тогда на A определена сложная функция $F(x) = f(g_1(x), g_2(x), \ldots, g_n(x))$.

Сложную функцию F(x) часто задают в виде $z = f(u_1, u_2, \ldots, u_n)$, $u_i = g_i(x_1, x_2, \ldots, x_m)$, $i = \overline{1, n}$, вводя дополнительный набор переменных u_1, u_2, \ldots, u_n . Эти переменные называют **промежуточными переменными**, подчеркивая роль, которую они играют при задании сложной функции.

Частные и полные производные

$$\frac{\partial z}{\partial x_j} = \sum_{s=1}^n \frac{\partial z}{\partial u_s} \frac{\partial u_s}{\partial x_j} = \frac{\partial z}{\partial u_1} \frac{\partial u_1}{\partial x_j} + \frac{\partial z}{\partial u_2} \frac{\partial u_2}{\partial x_j} + \dots + \frac{\partial z}{\partial u_n} \frac{\partial u_n}{\partial x_j}, \quad j = \overline{1, m}.$$
 (10.9)

В равенствах (10.9) следует обратить внимание на то, как в них входят промежуточные и остальные переменные. Запись частных производных сложной функции в виде (10.9) называют правилом дифференцирования сложной функции или, иногда, цепным правилом.

Рассмотрим некоторые частные случаи дифференцирования сложных функций при различных значениях n и m. Будем предполагать, не оговаривая этого специально, что условия теоремы 10.1 (или следствия 10.1) для этих функций выполнены в соответствующих точках.

При n=1 у функции f всего лишь один аргумент и частная производная будет фактически обыкновенной производной. Это должно быть отражено в обозначениях производных:

$$\frac{\partial z}{\partial x_j} = \frac{df}{du} \frac{\partial u}{\partial x_j}.$$
 (10.10)

где частные и обыкновенная производные вычисляются в соответствующих точках.

При m=1 функции g_i имеют один аргумент, а правило дифференцирования сложной функции записывается в виде (10.4) или, если использовать промежуточные переменные, в виде

$$\frac{dz}{dt} = \frac{\partial f}{\partial u_1} \frac{du_1}{dt} + \frac{\partial f}{\partial u_2} \frac{du_2}{dt} + \dots + \frac{\partial f}{\partial u_n} \frac{du_n}{dt}.$$
 (10.11)

Производную сложной функции $z = f(g_1(t), g_2(t), \dots, g_n(t))$ (т.е. действительной функции действительного переменного, получаемой через несколько промежуточных переменных), вычисляемую в соответствии с формулой (10.11), называют **полной производной функции** $f(g_1(t), g_2(t), \dots, g_n(t))$.

10 Инвариантность формы полного дифференциала первого порядка. Дифференциалы высших порядков.+++

Инвариантность

Дифференциал функции нескольких переменных, как и функции одного действительного переменного, имеет свойство, которое называют *инвариантностью формы записи дифференциала*. Фактически это свойство есть простая и удобная форма представления правила дифференцирования сложной функции.

Пусть функции g_i : $\mathbb{R}^m \to \mathbb{R}$, $i = \overline{1, n}$, дифференцируемы в точке $a \in \mathbb{R}^m$, а функция f: $\mathbb{R}^m \to \mathbb{R}$ дифференцируема в точке $b = (b_1, b_2, \ldots, b_n)$, где $b_i = g_i(a)$, $i = \overline{1, n}$. Согласно следствию 10.1, сложная функция $F(x) = f(g_1(x), g_2(x), \ldots, g_n(x))$ дифференцируема в точке a, а ее дифференциал в точке a в соответствии с определением дифференциала и правилом дифференцирования сложной функции имеет вид

$$dF(a) = \sum_{j=1}^{m} \frac{\partial F(a)}{\partial x_j} dx_j = \sum_{j=1}^{m} \sum_{i=1}^{n} \frac{\partial f(b)}{\partial u_i} \frac{dg_i(a)}{dx_j} dx_j = \sum_{i=1}^{n} \frac{\partial f(b)}{\partial u_i} \sum_{j=1}^{m} \frac{dg_i(a)}{dx_j} dx_j = \sum_{i=1}^{n} \frac{\partial f(b)}{\partial u_i} du_i.$$

где

$$du_i = \sum_{j=1}^m \frac{dg_i(a)}{dx_j} dx_j \quad -$$

дифференциал функции g_i в точка a. Таким образом,

$$dF(a) = \sum_{i=1}^{n} \frac{\partial f(b)}{\partial u_i} du_i.$$

Мы видим, что дифференциал dz сложной функции $z = f(g_1(x), g_2(x), \dots, g_n(x))$ выражается через дифференциалы du_1, du_2, \dots, du_n промежуточных переменных так же, как и в случае, когда эти переменные являются независимыми. Другими словами, если z = f(u), то $dz = \sum_{i=1}^{n} \frac{\partial f(u)}{\partial u_i} du_i$ и эта формула не зависит от того, каковы переменные du_1, du_2, \dots, du_n , промежуточные или независимые. Это свойство дифференциала и называют инвариантностью его формы записи.

Дифференциалы высших порядков

Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в окрестности точки x. Тогда ее дифференциал

$$df(x) = \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} dx_i$$

как функция от переменных $x=(x_1,\ x_2,\ \dots,\ x_n)$ может оказаться дифференцируемой функцией в точке x. В этом случае выражение

$$d(df(x)) = \sum_{j=1}^{n} \frac{\partial df(x)}{\partial x_j} dx_j = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^2 f(x)}{\partial x_j \partial x_i} dx_i dx_j,$$
 (10.12)

представляющее собой дифференциал от дифференциала функции f(x), называют $\partial u \phi \phi e p e n u u a n o mo p o n o p s d k a функции <math>f(x)$ в точке x и обозначают $d^2 f(x)$. В этой связи дифференциал df(x) называют $\partial u \phi \phi e p e n u u a n o n o p s d k a функции <math>f$.

Итак, если $f \in C^2(U)$, где U — некоторая окрестность точки $x \in \mathbb{R}^n$, то в этой окрестности существуют непрерывные частные производные первого и второго порядка, а значит, в U существуют как дифференциал первого порядка d^f , так и дифференциал второго порядка d^2f .

Дифференциал второго порядка, зависящий от набора независимых переменных x и вектора их приращений dx (дифференциалов независимых переменных), может оказаться дифференцируемой функцией по совокупности переменных x. Повторяя последовательно процесс вычисления дифференциалов, приходим к $\partial u \phi \phi e penuuany$ функции k-го $nop s \partial k a$, который является дифференциалом первого порядка от дифференциала (k-1)-го порядка функции f:

$$d^k f(x) = d(d^{k-1} f(x)).$$

Достаточным условием существования дифференциала k-го порядка в области X является k-й nopядок гладкости функции в этой области, т.е. условие $f \in C^k(X)$.

Неявные ФНП

Рассмотрим систему уравнений

где функции $f_1(x), \ldots, f_m(x)$ определены в некоторой области $X \subset \mathbb{R}^{n+m}$. Предположим, что эта система разрешима относительно части переменных, например x_{n+1}, \ldots, x_{n+m} . Разрешимость системы в данном случае следует понимать в широком смысле как существование для любых значений x_1, \ldots, x_n единственного решения системы относительно переменных x_{n+1}, \ldots, x_{n+m} . Тогда определена функция нескольких переменных y = h(x), которая точке $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ ставит в соответствие точку $y = (x_{n+1}, \ldots, x_{n+m}) \in \mathbb{R}^m$ так, что в совокупности переменные x_1, \ldots, x_{n+m} составляют решение рассматриваемой системы. В этом случае о функции h(x) говорят как о неявной функции, или неявно заданной функции. Отметим, что термин «неявная функция» относится не к виду или структуре функции, а лишь к способу ее задания.

Теорема о существовании и дифференцируемости (возможно только 1-ая теорема)

Теорема 11.1 (*теорема о неявной функции*). Пусть уравнение $f(x,y) = 0, x, y \in \mathbb{R}$, удовлетворяет следующим трем условиям:

- 1) координаты точки (a, b) удовлетворяют уравнению, т.е. f(a, b) = 0;
- 2) функция f(x,y) определена в некоторой окрестности U точки (a,b) и непрерывно дифференцируема в U, т.е. $f \in C^1(U)$;
- 3) частная производная функции f(x,y) в точке (a,b) по переменному y отлична от нуля, т.е. $f'_y(a,b) \neq 0$.

Тогда на плоскости существует прямоугольник P, определяемый неравенствами $|x-a| < \delta_x$, $|y-b| < \delta_y$, имеющий центр симметрии в точке (a,b), такой, что в P уравнение f(x,y) = 0 разрешимо относительно переменного y и тем самым задает функцию $y = \varphi(x)$, $x \in T = (a - \delta_x, a + \delta_x)$. При этом функция $y = \varphi(x)$ непрерывно дифференцируема на T, а ее производная может быть вычислена по формуле

$$\varphi'(x) = -\frac{f_x'(x,y)}{f_y'(x,y)}\Big|_{y=\varphi(x)}.$$
 # (11.2)

Теорема 11.2. Пусть в *окрестности V точки* $(a, b), a \in \mathbb{R}^n, b \in \mathbb{R}$, задана функция f(x, y) от n+1 переменных $(x \in \mathbb{R}^n, y \in \mathbb{R})$, удовлетворяющая условиям:

- a) f(a,b) = 0;
- б) функция f(x,y) непрерывно дифференцируема в V;
- B) $f'_{u}(a,b) \neq 0$.

Тогда точка (a, b) имеет окрестность вида

$$\{(x, y) \in \mathbb{R}^{n+1}: |x - a| < \delta_x, |y - b| < \delta_y\},\$$

в которой уравнение f(x,y)=0 разрешимо относительно y, т.е. в окрестности $U(a,\delta_x)=\{x\in\mathbb{R}^n\colon |x-a|<\delta_x\}$ определена функция нескольких переменных $\varphi(x)$, удовлетворяющая

тождеству $f(x,\varphi(x))\equiv 0$. При этом функция $\varphi(x)$ непрерывно дифференцируема в $U(a,\delta_x)$, а ее частные производные в $U(a,\delta_x)$ могут быть вычислены по формулам

$$\varphi'_{x_k}(x_k) = -\frac{f'_{x_k}(x,y)}{f'_y(x,y)}\Big|_{y=\varphi(x)}, \quad k = \overline{1, n}. \quad \#$$
 (11.3)

12.Производная ФНП по направлению и градиент ФНП (определения, свойства и формула вычисления).+++

Производная по направлению

Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ определена в некоторой окрестности точки $a \in \mathbb{R}^n$ и задан вектор $n \neq 0$. Обозначим через n° единичный вектор, имеющий то же направление, что и вектор n:

$$oldsymbol{n}^\circ = rac{oldsymbol{n}}{|oldsymbol{n}|} = (
u_1, \; \ldots, \;
u_n).$$

Определение 11.1. Производной функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $a \in \mathbb{R}^n$ по направлению вектора n называют число

$$\frac{\partial f(a)}{\partial n} = \lim_{s \to +0} \frac{f(a+sn^\circ) - f(a)}{s},\tag{11.4}$$

если этот предел существует.

Из этого определения и содержащегося в нем соотношения (11.4) легко сделать вывод о том, что производная по направлению вектора представляет собой скорость изменения значений функции f в точке a в направлении вектора n.

Градиент

Определение 11.2. Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ в точке x имеет все частные производные первого порядка. Вектор

grad
$$f(x) = (f'_{x_1}(x), \ldots, f'_{x_n}(x)),$$

составленный из частных производных первого порядка функции f(x) в точке x, называют градиентом функции f в точке x.

Понятие градиента позволяет упростить запись формулы (11.5) для вычисления производной по направлению вектора n дифференцируемой в точке x функции. Используя стандартное скалярное умножение в \mathbb{R}^n , формулу (11.5) можно записать в виде

$$\frac{\partial f(x)}{\partial \mathbf{n}} = (\operatorname{grad} f(x), \, \mathbf{n}^{\circ}). \tag{11.6}$$

13 Касательная плоскость и нормаль к поверхности, их уравнения. +++

Рассмотрим некоторую поверхность * S в пространстве. Пусть точка M принадлежит поверхности S и существует такая плоскость π , проходящая через точку M, которая содержит κa -

Рис. 12.1

сательные, построенные в точке M ко всем кривым, лежащим на поверхности S и проходящим через точку M. Плоскость π называют касательной плоскостью к поверхности S в точке M (рис. 12.1). Прямую L, проходящую через точку M и перпендикулярную плоскости π , называют нормалью κ поверхности S в точке M.

Уравнения касательной плоскости и нормали к поверхности S в точке M на этой поверхности найдем в предположении, что в пространстве задана прямоугольная система координат Oхух

и выполнены следующие четыре условия.

- 1°. Поверхность S задана уравнением F(x, y, z) = 0.
- 2° . Известны координаты a, b, c точки $M \in S$.
- 3° . Функция F(x,y,z) дифференцируема в точке M.
- 4°. Градиент функции F(x,y,z) в точке M отличен от нуля, т.е. $\operatorname{grad} F(a,b,c) \neq 0$.

Уравнения

Зная координаты a, b, c точки M, через которую проходит плоскость π , и координаты нормального вектора grad F(a,b,c) этой плоскости, можем записать общее уравнение плоскости π :

$$F_x'(a,b,c)(x-a) + F_y'(a,b,c)(y-b) + F_z'(a,b,c)(z-c) = 0.$$
(12.3)

Нормаль в точке M поверхности S определяется той же точкой M и тем же вектором grad F(a,b,c), который является *паправляющим вектором* этой *прямой*. По этим данным можно записать уравнения нормали к поверхности S в точке M как *канонические уравнения прямой*:

$$\frac{x-a}{F_x'(a,b,c)} = \frac{y-b}{F_y'(a,b,c)} = \frac{z-c}{F_z'(a,b,c)}.$$
 (12.4)

14 Формулы Тейлора и Маклорена для ФНП.+++

Теорема 10.2 (*теорема Тейлора*). Пусть функция нескольких переменных f определена в некоторой *окрестности* U *точки* $a \in \mathbb{R}^n$, причем $f \in C^{m+1}(U)$. Если отрезок, соединяющий точки $a = (a_1, \ldots, a_n)$ и $a + \Delta x = (a_1 + \Delta x_1, \ldots, a_n + \Delta x_n)$, содержится в U, то для функции f(x) имеет место формула Тейлора

$$f(a + \Delta x) = \sum_{k=0}^{m} \frac{d^k f(a)}{k!} + \frac{d^{m+1} f(a + \vartheta \Delta x)}{(m+1)!},$$
(10.15)

где $\vartheta \in (0, 1)$ — некоторое число, а $d^0 f(a) = f(a)$ по определению.

Как и в случае функций одного переменного, при a=0 формулу Тейлора (10.15) часто называют формулой Маклорена. Число m, определяющее количество слагаемых в формуле

Тейлора, называют *порядком формулы Тейлора*. Последнее слагаемое в формуле Тейлора (10.15) называют *остаточным членом в форме Лагранжа*. Остаточный член можно также записать в виде

$$o(|\Delta x|^m) \tag{10.17}$$

(читается: «о малое от $|\Delta x|^m$ »), и тогда его называют остаточным членом в форме $\mathbf{\Pi}eano$. Таким образом, формула Тейлора с остаточным членом в форме Пеано имеет вид

$$f(x + \Delta x) = \sum_{k=0}^{m} \frac{d^k f(x)}{k!} + o(|\Delta x|^m).$$
 (10.18)

15 Экстремум ФНП. Необходимые условия экстремума. Достаточные условия экстремума.+++

Экстремум

Определение 13.1. Говорят, что функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$, определенная в некоторой окрестности точки $a \in \mathbb{R}^n$, имеет в этой точке локальный максимум (минимум), если существует такая проколотая окрестность $U(a,\varepsilon)$ точки a, что для любой точки $x \in U(a,\varepsilon)$ выполнено неравенство $f(x) \leqslant f(a)$, ($f(x) \geqslant f(a)$). Понятия локального минимума и локального максимума функции объединяют под общим названием экстремум функции.

Если неравенства в определении 13.1 являются строгими, то говорят о *строгом экстре-муме функции*.

Необходимые условия

Теорема 13.1 (необходимое условие экстремума функции). Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ имеет в точке $a \in \mathbb{R}^n$ экстремум. Если функция f(x) ($x = (x_1, \ldots, x_n)$) имеет в точке а частную производную первого порядка по переменному x_i , $1 \le i \le n$, то эта частная производная равна нулю: $f'_{x_i}(a) = 0$.

Достаточные условия

Теорема 13.2 (достаточное условие экстремума функции). Пусть функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}$ определена в окрестности U(a) точки a, дважды непрерывно дифференцируема в U(a) и df(a) = 0. Тогда:

- 1) если квадратичная форма $d^2f(a)$ в точке a положительно определенная, то в этой точке функция f(x) имеет строгий локальный минимум;
- 2) если квадратичная форма $d^2f(a)$ в точке a отрицательно определенная, то в этой точке функция f(x) имеет *строгий локальный максимум*;
- 3) если квадратичная форма $d^2f(a)$ в точке a знакопеременная, то в этой точке функция f(x) не имеет экстремума.

16 Условный экстремум ФНП. Уравнения связи. Функция Лагранжа. Необходимые условия существования условного экстремума. Достаточные условия существования условного экстремума.+++

Условный экстремум

Определение 14.1. Говорят, что функция f(x), определенная в окрестности точки $a \in \mathbb{R}^n$, достигает в этой точке *условного локального максимума* (*минимума*) при условиях $\varphi_1(x) = 0, \ \varphi_2(x) = 0, \ \dots, \ \varphi_m(x) = 0, \ \text{где } \varphi_i(x), \ i = \overline{1, m}, \ \text{— некоторые функции нескольких}$

переменных, определенные в окрестности точки a, если существует такая проколотая окрестность $\mathring{\mathrm{U}}(a,\delta)$ точки a, что для всех точек $x\in \mathring{\mathrm{U}}(a,\delta)$, удовлетворяющих условиям $\varphi_i(x)=0$, $i=\overline{1,\,m}$, верно неравенство

$$f(x) \leqslant f(a) \quad (f(x) \geqslant f(a)). \tag{14.2}$$

Понятия условного локального максимума и минимума объединяют под общим названием условный экстремум функции. Если в определении 14.1 неравенства строгие, то говорят о строгом условном экстремуме функции.

Уравнения связи

Уравнения связи – уравнения, задающие ограничения аргумента функции.

Функция Лагранжа

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$$

Необходимое условие существования условного экстремума

Теорема 14.1 (необходимое условие условного экстремума). Пусть функции двух переменных f(x,y) и $\varphi(x,y)$ определены и непрерывно дифференцируемы в окрестности точки P(a;b). Если функция f(x,y) имеет в точке P условный экстремум при условии $\varphi(x,y)=0$, причем grad $\varphi(a,b)\neq 0$, то существует такое число λ , которое вместе с координатами a и b точки P удовлетворяет системе уравнений

$$\begin{cases} f'_x(x,y) + \lambda \varphi'_x(x,y) = 0, \\ f'_y(x,y) + \lambda \varphi'_y(x,y) = 0, \\ \varphi(x,y) = 0. \end{cases}$$
 (14.5)

Достаточное условие

Достаточные условия условного экстремума в задаче (14.3), (14.4) можно сформулировать с помощью функции Лагранжа. Пусть в задаче на условный экстремум функции $f: \mathbb{R}^n \to \mathbb{R}$ при условиях $\varphi_i(x) = 0$, $i = \overline{1,m}$, заданных функциями $\varphi_i: \mathbb{R}^n \to \mathbb{R}$, в точке $a \in \mathbb{R}^n$ выполнено необходимое условие условного экстремума. В этом случае в точке a определен вектор λ_a множителей Лагранжа. Зафиксируем в функции Лагранжа $L(x,\lambda)$ значения множителей Лагранжа, представив ее как функцию только переменных $x: L(x) = L(x,\lambda_a)$. Чтобы выяснить, является ли точка a точкой условного экстремума рассматриваемой функции, нужно проанализировать дифференциал второго порядка $d^2L(a)$ функции L(x) в точке a, являющийся квадратичной формой от приращений переменных. Рассмотрим этот дифференциал как квадратичную форму $d^2L(a)_H$ на линейном подпространстве H в \mathbb{R}^n , заданном системой линейных уравнений $d\varphi_i(a) = 0$, $i = \overline{1,n}$.

Теорема 14.3. Пусть функции $f: \mathbb{R}^n \to \mathbb{R}, \ \varphi_i: \mathbb{R}^n \to \mathbb{R}, \ i = \overline{1, m}, \ \partial \epsilon a \varkappa \partial \mathfrak{b}$ непрерывно дифференцируемы в окрестности точки $a \in \mathbb{R}^n, \ \varphi(a) = 0, \ \mathrm{Rg}\Big(\frac{\partial \varphi_i(a)}{\partial x_j}\Big) = m$ и координаты точки a вместе с координатами некоторого вектора λ_a удовлетворяют системе уравнений (14.10). Тогда:

- 1) если квадратичная форма $d^2L(a)_H$ положительно определенная, то функция f(x) имеет в точке а строгий условный локальный минимум при условии $\varphi(x) = 0$;
- 2) если квадратичная форма $d^2L(a)_H$ отрицательно определенная, то функция f(x) имеет в точке а строгий условный локальный максимум при условии $\varphi(x) = 0$;
- 3) если квадратичная форма $d^2L(a)_H$ знакопеременная, то функция f(x) в точке a не имеет условного экстремума. #

Теорема 14.3 утверждает, что для проверки точек, подозрительных на условный экстремум, необходимо проанализировать квадратичную форму $d^2L(a)$, т.е. дифференциал второго порядка функции Лагранжа, при значениях дифференциалов dx_j , $j=\overline{1,n}$, которые удовлетворяют системе линейных уравнений

$$d\varphi_i = \sum_{i=1}^m \frac{\partial \varphi_i(a)}{\partial x_j} dx_j = 0, \quad i = \overline{1, m}.$$
 (14.11)

19 Векторная функция нескольких переменных (ВФНП), координатные функции. Предел ВФНП. Теорема о связи предела ВФНП и пределов ее координатных. Непрерывность ВФНП в точке и на множестве.+++

ВФНП

В общем случае мы называем функцией многих переменных (функцией нескольких переменных) отображение вида $f \colon A \to \mathbb{R}^m$, где $A \subset \mathbb{R}^n$, n > 1. Если m = 1, т.е. значением отображения является действительное число (скалярная величина), отображение называют скалярной функцией нескольких переменных. Если же m > 1, то указанное отображение называют векторной функцией нескольких переменных (или векторной функцией векторного аргумента).

Координатные функции

Функции нескольких переменных fi,i=1, m, называют координатными функциями векторной функции f.

Предел ВФНП

На векторные функции нескольких переменных естественным образом распространяется понятие предела, введенное для скалярных функций нескольких переменных. Пусть заданы векторная функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}^m$, множество $A \subset D(f)$ и предель-

ная точка a множества A. Точку $b \in \mathbb{R}^m$ называют npedenom функции f e moure a no mhoжеству A, если для любой ε -окрестности $\mathrm{U}(b,\varepsilon)$ точки b существует такая проколотая δ -окрестность $\overset{\circ}{\mathrm{U}}(a,\delta)$ точки a, что $f(x) \in \mathrm{U}(b,\varepsilon)$ при $x \in \overset{\circ}{\mathrm{U}}(a,\delta) \cap A$, B этом случае, как и в скалярном, записывают $b = \lim_{x \to a} f(x)$, или $f(x) \to b$ при $x \to a$.

Если $A = \mathbb{R}^n$, то говорят просто о **пределе функции в точке** a и обозначают его, опуская упоминание множества A: $b = \lim_{x \to a} f(x)$. Отметим, что если множество A включает некоторую проколотую окрестность точки a (в частности, если точка a внутренняя для A), то можно считать, что $A = \mathbb{R}^n$, поскольку такая замена не изменяет ситуацию.

Теорема о связи

Теорема 15.1. Векторная функция нескольких переменных $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ имеет предел при $x_{\overrightarrow{A}}a$, равный b тогда и только тогда, когда существуют пределы ее координатных функций $f_i(x)$ при $x_{\overrightarrow{A}}a$, равные $b_i, i = \overline{1, m}$, где

$$f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}, \qquad b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

Непрерывность

На векторные функции нескольких переменных естественным образом переносится понятие непрерывности скалярной функции (см. определение 8.11). Говорят, что векторная функция нескольких переменных $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ непрерывна в точке $a \in A$, если для любой окрестности $\mathrm{U}(f(a),\varepsilon)$ точки $f(a) \in \mathbb{R}^m$ существует такая окрестность $\mathrm{U}(a,\delta)$ точки a, что для любой точки $x \in \mathrm{U}(a,\delta) \cap A$ верно включение $f(x) \in \mathrm{U}(f(a),\varepsilon)$ (или, короче, $f(\mathrm{U}(a,\delta) \cap A) \subset \mathrm{U}(f(a),\varepsilon)$).

Каждая точка $a \in A$ является либо *предельной точкой множества* A, либо его *изолированной точкой*. В первом случае условие непрерывности функции f в этой точке означает существование предела

$$\lim_{x_{\overline{A}} \to a} f(x) = f(a). \tag{15.2}$$

В изолированной точке множества Λ , согласно определению, функция $f \colon \Lambda \to \mathbb{R}^m$ всегда непрерывна.

Функцию $f: \Lambda \subset \mathbb{R}^n \to \mathbb{R}^m$, непрерывную во всех точках множества Λ , называют **непрерывной на** этом **множестве**.

20 Частные и полные приращения, частные производные ВФНП. Теорема о связи частных производных ВФНП и ее координатных функций.+++

Частное приращение

Пусть векторная функция нескольких переменных $f \colon \mathbb{R}^n \to \mathbb{R}^m$ определена в δ -окрестности $\mathrm{U}(a,\delta)$ точки $a \in \mathbb{R}^n$. Обозначим через Δx_i такое приращение независимого переменного x_i в точке a, при котором точка $a=(a_1,\ldots,a_{i-1},a_i+\Delta x_i,a_{i+1},\ldots,a_n)$ принадлежит $\mathrm{U}(a,\delta)$. Для этого достаточно, чтобы выполнялось неравенство $|\Delta x_i| < \delta$. Тогда определена разность значений функции f, соответствующая приращению Δx_i :

$$\Delta_i f(a, \Delta x_i) = f(a_1, \dots, a_{i-1}, a_i + \Delta x_i, a_{i+1}, \dots, a_n) - f(a_1, \dots, a_n).$$

Эту разность называют *частным приращением функции нескольких переменных* f в точке a по независимому переменному x_i . Частное приращение обозначают также через $\Delta_i f(a)$ или $\Delta_{x_i} f(a)$.

Полное приращение

Пусть векторная функция нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}^m$ определена в некоторой окрестности точки $x \in \mathbb{R}^n$ и $\Delta x = (\Delta x_1 \dots \Delta x_n)^{\mathrm{T}}$ — такой вектор приращений независимых переменных, что точка $x + \Delta x$ тоже принадлежит этой окрестности. В этом случае определено полное приращение функции f

$$\Delta f(x) = f(x + \Delta x) - f(x),$$

соответствующее приращению Δx переменных в точке x. Полное приращение функции $f(x) = (f_1(x) \dots f_m(x))^{\mathrm{T}}$ в точке x можно выразить через полные приращения координатных функций $f_1(x), f_2(x), \dots, f_m(x)$:

$$\Delta f(x) = f(x + \Delta x) - f(x) = \begin{pmatrix} f_1(x + \Delta x) \\ \vdots \\ f_m(x + \Delta x) \end{pmatrix} - \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix} = \begin{pmatrix} f_1(x + \Delta x) - f_1(x) \\ \vdots \\ f_m(x + \Delta x) - f_m(x) \end{pmatrix} = \begin{pmatrix} \Delta f_1(x) \\ \vdots \\ \Delta f_m(x) \end{pmatrix}.$$

Кроме того, напомним, что $|\Delta x| = \sqrt{(\Delta x_1)^2 + \ldots + (\Delta x_n)^2}$.

Частная производная

Определение 16.1. Если для функции нескольких переменных $f: \mathbb{R}^n \to \mathbb{R}^m$, определенной в окрестности точки a, существует предел

$$\lim_{\Delta x_i \to 0} \frac{\Delta_i f(a)}{\Delta x_i} \tag{16.1}$$

отношения частного приращения функции по переменному x_i к приращению Δx_i этого же переменного при $\Delta x_i \to 0$, то этот предел называют **частной производной векторной** функции нескольких переменных f в точке a по переменному x_i и обозначают f'_{x_i} .

Теорема о связи

Теорема 16.1. Для того чтобы в*екторная функция* $f: U(a, \delta) \subset \mathbb{R}^n \to \mathbb{R}^m$ имела частную производную в точке a по переменному x_i , необходимо и достаточно, чтобы все ее k00 производную в точке k2 по тому же переменному k3.

21 Дифференцируемость ВФНП, частный и полный дифференциалы. Матрица Якоби, якобиан.+++

Дифференцируемость ВФНП

Определение 16.2. Функцию $f: \mathbb{R}^n \to \mathbb{R}^m$, определенную в некоторой окрестности точки x, называют $\partial u \phi \phi$ еренцируемой в точки ϕ ссли ее полное приращение в окрестности этой точки можно представить в виде

$$\Delta f(x) = A\Delta x + \alpha(\Delta x)|\Delta x|,\tag{16.5}$$

где A — матрица типа $m \times n$, элементы которой не зависят от Δx , а функция $\alpha(\Delta x)$ является бесконечно малой при $\Delta x \to 0$.

Функцию f называют $\partial u \phi \phi e p e n u u p y e moй в области <math>X \subset \mathbb{R}^n$, если она дифференцируема в каждой точке этой области.

При m=1 функция f скалярная, и в равенстве (16.5) матрица A является строкой длины n, т.е. $A=(a_1\ a_2\ \dots\ a_n)$, а функция $\alpha(\Delta x)$ — это бесконечно малая при $\Delta x\to 0$ скалярная функция. Поэтому в данном случае равенство (16.5) сводится к равенству (9.2).

Следующая теорема сводит исследование дифференцируемости *векторной функции* к скалярному случаю.

Теорема 16.2. Векторная функция $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в точке x тогда и только тогда, когда в этой точке дифференцируемы все ее *координатные функции*.

Частный дифференциал

Представив матрицу Якоби f'(x) как набор столбцов: $f'(x) = (f'_{x_1} \ f'_{x_2} \ \dots f'_{x_n})$, равенство (16.14) можно записать следующим образом:

$$df(x) = f'_{x_1}(x) dx_1 + f'_{x_2}(x) dx_2 + \ldots + f'_{x_n}(x) dx_n.$$

Слагаемые $f'_{x_i} dx_i$ в правой части равенства называют **частными дифференциалами функции** f(x) в точке x. Каждое слагаемое $f'_{x_i} dx_i$ представляет собой линейную часть **частного** приращения $\Delta_i f(x)$ **функции** f(x) в данной точке.

(пояснение)

Дифференциалы независимых переменных $x_i, i = \overline{1, n}$, как и в случае скалярных функций, по определению равны приращениям этих переменных: $dx_i = \Delta x_i$. С учетом этого дифференциал функции f можно записать в виде

$$df(x) = f'(x) dx, \quad dx = (dx_1 \ dx_2 \ \dots \ dx_n)^{\mathrm{T}}.$$
 (16.14)

Полный дифференциал

Пусть векторная функция нескольких переменных $f \colon \mathbb{R}^n \to \mathbb{R}^m$ определена в окрестности точки $x = (x_1, \ldots, x_n)$ и дифференцируема в этой точке. Тогда, согласно следствию 16.1, полное приращение этой функции в точке x в зависимости от приращения $\Delta x = (\Delta x_1 \ldots \Delta x_n)^{\mathrm{T}}$ независимых переменных можно представить в виде

$$\Delta f(x) = f'(x)\Delta x + \alpha(\Delta x)|\Delta x|,$$

где f'(x) — матрица Якоби функции f(x), а функция $\alpha(\Delta x)$ является бесконечно малой функцией при $\Delta x \to 0$. Как и в случае скалярных функций, можно ввести следующее понятие.

Определение 16.3. Линейную относительно Δx часть $f'(x)\Delta x$ полного приращения функции f(x), дифференцируемой в точке x, называют (полным) дифференциалом функции f и обозначают через df(x).

Матрица Якоби

Если функция $f\colon \mathbb{R}^n\to\mathbb{R}^m$ в точке $a\in\mathbb{R}^n$ имеет частные производные по всем независимым переменным $x_1,\,x_2,\,\ldots,\,x_n,\,$ то из этих производных (а точнее, из частных производных координатных функций $f_1(x),\,f_2(x),\,\ldots,\,f_m(x)$ векторной функции f(x)) можно составить матрицу $\left(\frac{\partial f_i(a)}{\partial x_j}\right)$ типа $m\times n$, где i соответствует номеру строки матрицы, а j— номеру столбца. Эту матрицу называют **матрицей Якоби** функции f в точке a и обозначают

$$f'(x) = \frac{\partial f(a)}{\partial x} = \begin{pmatrix} \frac{\partial f_1(a)}{\partial x_1} & \frac{\partial f_1(a)}{\partial x_2} & \cdots & \frac{\partial f_1(a)}{\partial x_n} \\ \frac{\partial f_2(a)}{\partial x_1} & \frac{\partial f_2(a)}{\partial x_2} & \cdots & \frac{\partial f_2(a)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix}.$$
(16.2)

Часто используют запись матрицы Якоби в виде блочной матрицы-строки

$$f'(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} & \frac{\partial f(x)}{\partial x_2} & \dots & \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$
 (16.3)

или блочной матрицы-столбца

$$f'(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x} \\ \vdots \\ \frac{\partial f_m(x)}{\partial x} \end{pmatrix}.$$
 (16.4)

В последнем случае каждый блок представляет собой матрицу Якоби соответствующей координатной функции.

Якобиан

Поставим вопрос: при каких условиях система F(x,y)=0 разрешима относительно переменных $y=(y_1,\ y_2,\ \dots,\ y_m)$ в окрестности данной точки $(a,\ b)\in\mathbb{R}^{n+m}$? Через $F'_x(x,y)=\frac{\partial F(x,y)}{\partial x}$ и $F'_y(x,y)=\frac{\partial F(x,y)}{\partial y}$ будем обозначать соответственно матрицы Якоби функции F по части переменных x и по части переменных y, т.е.

$$F'_{x}(x,y) = \begin{pmatrix} \frac{\partial f_{1}(x,y)}{\partial x_{1}} & \frac{\partial f_{1}(x,y)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(x,y)}{\partial x_{n}} \\ \frac{\partial f_{2}(x,y)}{\partial x_{1}} & \frac{\partial f_{2}(x,y)}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(x,y)}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}(x,y)}{\partial x_{1}} & \frac{\partial f_{m}(x,y)}{\partial x_{2}} & \cdots & \frac{\partial f_{m}(x,y)}{\partial x_{n}} \end{pmatrix}$$

и

$$F'_{y}(x,y) = \begin{pmatrix} \frac{\partial f_{1}(x,y)}{\partial y_{1}} & \frac{\partial f_{1}(x,y)}{\partial y_{2}} & \cdots & \frac{\partial f_{1}(x,y)}{\partial y_{m}} \\ \frac{\partial f_{2}(x,y)}{\partial y_{1}} & \frac{\partial f_{2}(x,y)}{\partial y_{2}} & \cdots & \frac{\partial f_{2}(x,y)}{\partial y_{m}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}(x,y)}{\partial y_{1}} & \frac{\partial f_{m}(x,y)}{\partial y_{2}} & \cdots & \frac{\partial f_{m}(x,y)}{\partial y_{m}} \end{pmatrix}.$$

Отметим, что матрица $F'_y(x,y)$ является квадратной порядка m, а матрица Якоби F'(x,y) по всей совокупности переменных может быть записана как блочная матрица $\left(F'_x(x,y) \ F'_y(x,y)\right)$. Отметим также, что определитель квадратной матрицы Якоби (по части переменных или по всем переменным — неважно) называют **якобианом**.

Теория с доказательством

Такого нет)

Практика

Следите за обновлениями