

DATA SHEET

(DOC No. HX6538-A-DS)

>> HX6538-A

WE2 AI Processor
Preliminary version 01 July 2023

Himax Technology, Inc. http://www.himax.com.tw

Revision History

July 2023

Version	Date	Description of changes
01	2023/07/06	New setup.

^{>>} HX6538-A

WE2 AI Processor

List of Figures

July 2023

1.	Gen	eral Des	cription	6
2.				
3.	Bloc	k Diagra	ım	9
4.			ent	
		_	28	
	4.2.	WLCSP	65	. 14
5.	Elec	trical Ch	aracteristics	. 20
			e maximum ratings ⁽¹⁾	
			nended operating conditions	
			trical characteristics	
		5.3.1.	I/O Pins	. 22
		5.3.2.	MIPI transmitter	. 22
		5.3.3.	MIPI receiver	. 23
	5.4.	AC elec	trical characteristics	. 24
		5.4.1.	I ² C interface	. 24
		5.4.2.	I ³ C interface	
		5.4.3.	SPI interface	. 25
		5.4.4.	I ² S interface	
		5.4.5.	PDM interface	
		5.4.6.	SD and SDIO host interface	
		5.4.7.	DVP and SDI interface	
		5.4.8.	QSPI Flash interface ⁽¹⁾	
		5.4.9.	SWD debug interface	
		5.4.10.	MIPI transmitter interface	
			MIPI receiver interface	
6.	Pack	kage Out	line Dimension	. 36
	-		28	
			65	
	6.3.	QFN88.		. 38
7	0-4	auton Inf	armatian	20

Important Notice

July 2023

Disclaimer

Himax reserves the right to modify this documentation without prior notice. The information appearing in this publication is believed to be accurate and reliable. However, Himax makes no warranty for any errors which may appear in this document. Contact Himax to obtain the latest version of product specifications before placing your order. No responsibility is assumed by Himax Group for any infringement of patent or other rights of third parties which may result from its use. Products described herein are intended for use in normal commercial applications. Please note that application circuits illustrated in this document are for reference purposed only.

All Rights Reserved

The following are trademarks of Himax Group: Himax, WiseEyeTM, the Himax logo symbol. The use of any trademark, trade name, or service mark found in this document without the owner's express written consent is strictly prohibited.

>> **HX6538-A**WE2 Al Processor

Preliminary Version 01

July 2023

1. General Description

The HX6538-A is an extreme-low power, high performance microcontroller designed for battery powered Endpoint AI applications.

The HX6538-A embedded powerful dual ARM Cortex-M55 processors with Helium vector and floating-point extensions and an ARM Ethos-U55 microNPU core to accelerate convolution operation of neural network model. There are internal 2.5MB ultra-low-leakage SRAMs for system and program usage. With the benefit of Ethos-U55 microNPU and Helium vectored extended Cortex-M55 architecture, the HX6538-A provides maximum computing capability with the lowest power consumption and latency.

Besides traditional interrupt-based trigger wakeup mechanism from power-down or sleep mode, the HX6538-A provides a new multi-layer power management scheme to wakeup image sensor periodically for battery-powered applications. The multi-layer power management is controlled by hardware PMU state machine that support various trigger events for power state transition. The Cortex-M55 and Ethos-U55 cores are placed in 2nd power layer to save power consumption. Normally, Cortex-M55 and Ethos-U55 cores are in power shut-off state until 1st layer detection completed. There are hardware image accelerators in 1st layer to provide pre-processing of imaging tasks and provide a wake-up trigger when event is detected. Besides multi-layer power management, the HX6538-A also provides internal 0.8/0.9V Dynamic Voltage Frequency Scaling (DVFS) scheme to reduce dynamic power consumption. Both design schemes optimize power consumption and maintain required response time and accuracy in Endpoint AI applications.

Security is another key consideration for Internet of Things (IoT) or other embedded applications. In combing with hardware CryptoCell-312 crypto and Physical Unclonable Function (PUF) engines, the HX6538-A provides a complete system-level security solution including secure boot, secure OTA firmware update, and secure meta data output with minimum processing latency. A Physical Unclonable Function (PUF) hardware offers a unique identification (UID) or a hardware root of trust (RoT) for the establishment of a trusted foundation, from which all security operations need. PUF engine also provide high-quality TRNG number for crypto engine and security application usage. The HX6538-A also supports TrustZone security and TF-M software stack for application usage.

The HX6538-A provides rich peripheral interfaces for application need, including image MIPI CSI-2 transmitter and receiver, DVP and SDI interfaces, audio I²S, PDM, interfaces, and peripheral interfaces of UART, I²C, I³C, SPI, GPIO, PWM, SD, SDIO and ADC.

2. Features

- ARM Cortex-M55 processor (Big, high-performance core, version r1p1)
 - Frequency up to 400MHz
 - Half/Single precision Floating Point Unit (FPU)
 - Helium vector processing extension for machine-learning
 - TrustZone security extension
 - 16KB of instruction cache, 16KB of data cache
 - 256KB of ITCM memory, 256KB of DTCM memory
 - Serial Wire Debug (SWD) with 8 breakpoints and 4 watch points
- ARM Cortex-M55 processor (Little, high-efficiency core, version r1p1)
 - Frequency up to 150MHz
 - Half/Single precision Floating Point Unit (FPU)
 - Helium vector processing extension for machine-learning
 - TrustZone security extension
 - 16KB of instruction cache, 16KB of data cache
 - Serial Wire Debug (SWD) with 8 breakpoints and 4 watch points
- ARM Ethos-U55 microNPU (version r2p0)
 - Frequency up to 400MHz
 - 64MACs/cycle
 - Support a variety of CNNs and RNNs network
 - Support weight compression
- Internal system memory
 - Configurable system memory, up to 2432KB
 - 64KB boot ROM
- External Flash
 - Support external 1 to 16MB QSPI Flash, up to 100MHz
 - Support Execute-In-Place (XIP) direct read mode
- Hardware accelerators
 - Motion detection
 - 2x2 sub-sampler and filter
 - 5x5 de-mosaic and filter
 - Image crop, sub-sampling, and binning
 - JPEG codec
 - Hardware-based voice active detector (HWVAD)
- Security
 - PUF based hardware Root-of-Trust (RoT), and unique device ID
 - PUF based True Random Number Generator (TRNG)
 - CryptoCell-312 crypto engine
 - TrustZone security
 - Secure debug with certificated authentication
 - Secure boot, secure OTA, secure meta data output
- Image sensor interfaces
 - 2-lane MIPI CSI-2 RX, up to 1.8Gbps on each lane
 - 2-lane MIPI CSI-2 TX for image pass-through only, up to 1.8Gbps on each lane
 - Up to 1x DVP interface, 1/4/8-bit mode, up to 72MHz
 - Up to 1x SDI interface, 1-bit mode shared with DVP interface, up to 72MHz
- Audio interfaces
 - Up to 8-channel PDM RX
 - Up to 2-channel PDM TX for audio pass-through only
 - Up to 1x I²S master or slave

WE2 Al Processor

DATA SHEET Preliminary V01

- Peripheral interfaces
 - Up to 1x SPI master, up to 50MHz
 - Up to 1x SPI slave, up to 40MHz
 - Up to 2x I²C master, up to 1MHz
 - Up to 2x I²C slave, up to 1MHz
 - Up to 2x I³C slave, support SDR and HDR-DDR, up to 12.5MHz
 - Up to 3x UARTs, 1 UART supports RS232/RS485 and IrDA
 - Up to 3x PWMs
 - Up to 37x GPIOs
- Memory card interface
 - Up to 1x SD and SDIO host, support DS mode, up to 25MHz
- ADC interface
 - Up to 4-channel
- Power management
 - Low power modes active, sleep, power-down and deep-power-down
 - Hardware Power Management Unit (PMU)
 - Ultra-low leakage SRAMs with retention
 - Core 0.8/0.9V, up to 400MHz, Dynamic Voltage Frequency Scaling (DVFS)
 - On-chip high efficiency DC-DC for 0.8/0.9V core voltage generation
- Debug mode
 - Up to 1x Serial Wire Debug interface (SWD) with SRSTN
- Clock, reset and supply management
 - 1.8V supply for analog/mixed-signal blocks and SIF domain GPIOs
 - 1.8V or 3.3V supply for PIF and AON domain GPIOs
 - 24MHz crystal oscillator
 - 32.768KHz crystal oscillator
 - Internal 1/24/48/96MHz factory-trimmed RC oscillator
 - Internal 1/32.768KHz factory-trimmed RC oscillator
- Packages
 - LQFP128: 16.0mm x 16.0mm
 - WLCSP65: 2.3mm x 5.6mm
 - QFN88: 8.0mm x 12.0mm

3. Block Diagram

Figure 3.1 shows the functional modules in the HX6538-A.

Figure 3.1: HX6538-A block diagram

4. Pin Assignment

4.1. LQFP128

Figure 4.1: LQFP128 pin assignment (top view)

DATA SHEET Preliminary V01

Pin Types: **A**=Analog, **I**=Input, **O**=Output, **P**=Power, **G**=Ground, **FS**=Fail-Safe

Reset States: **PH**=Pull High, **PL**=Pull Low

Pin Domains: SIF=1.8V only, PIF=1.8V or 3.3V, AON=1.8V or 3.3V (always-on)

Pin name	Pin no.	Туре	Reset	Domain	Description
QSPI DIO2	1	I/O, FS	0	SIF	QSPI data 2 for Flash.
QSPI DIO1	2	I/O, FS	I, PL	SIF	QSPI data 1 for Flash.
QSPI CS	3	0, FS	0	SIF	QSPI chip select for Flash.
SEN TRIG	4	0, FS	0	SIF	Sensor trigger.
SEN_FAE	5	0, FS	0	SIF	Sensor frame auto exposure.
SEN_CSW0	6	0, FS	0	SIF	Sensor content switch0.
SEN_CSW1	7	O, FS	0	SIF	Sensor content switch1.
SEN_INT	8	I, FS	I; PL	SIF	Sensor interrupt.
SEN_GPIO	9	I/O, FS	0	SIF	Power down and reset control for image sensor.
SEN_I2CM_SDA	10	I/O, FS	ı	SIF	I ² C master data for image sensor.
SEN_I2CM_SCL	11	I/O, FS	<u>'</u>	SIF	I ² C master clock for image sensor.
VDDIO_SIF	12,114	P		1.8V	I/O supply (Image sensor GPIOs, SIF).
BOOT_OPT2	13	ı	I; PL	AON	Boot option selection pin2.
BOOT_OPT1	14	ı	I; PL	AON	Boot option selection pin1.
BOOT_OPT0	15	ı	I; PL	AON	Boot option selection pin0.
TEST_MODE	16	ı	I; PL	AON	Test mode.
RESETN	17	I, FS	I; PH	AON	Reset pin.
PA0	18				·
PA1	19	I/O, FS	I; PL	AON	General-purpose IO, group A.
XTAL_32K_I	20	l		AON	Crystal 32K.768Hz input.
XTAL_32K_O	21	0	0	AON	Crystal 32K.768Hz output.
VDDIO_AON	22	Р	-	1.8/3.3V	I/O supply (AON GPIOs).
PA2 PA3	23 24	I/O, FS	I; PH	AON	General-purpose IO, group A.
ADC_REF	25	Al	-	-	ADC reference voltage input.
ADC_IP0	26	Al	-	-	ADC input Ch0_P.
ADC_IN0	27	Al	-	-	ADC input Ch0_N.
ADC_IP1	28	Al	-	-	ADC input Ch1_P.
ADC_IN1	29	Al	-	-	ADC input Ch1_N.
VDDA_ADC	30	Р	-	1.8/3.3V	Power supply (ADC).
ADC_IP2	31	Al	-	-	ADC input Ch2_P.
ADC_IN2	32	Al	-	-	ADC input Ch2_N.
ADC_IP3	34	Al	-	-	ADC input Ch3_P.
GND	33,65 84,96 115	G	-	Ground	Ground.
ADC IN3	35	Al	-	-	ADC input Ch3_N.
VDD	36,57 66,81 108,123	Р	-	0.8/0.9V	Power supply from DC-DC output.
UART1_RX	37	I, FS	I; PL	PIF	UART1 RX pin.
UART1_TX	38	I/O, FS	I; PL	PIF	UART1 TX pin.
UART1_CTS	39	I, FS	I; PL	PIF	UART1 clear to send.
UART1_RTS	40	I/O, FS	I; PL	PIF	UART1 require to send.
VDDIO_PIF	41,76,83	Р	-	1.8/3.3V	I/O supply (peripheral GPIOs, PIF).
PB0 PB1 PB2 PB3	42 43 72 73	I/O, FS	I; PL	PIF	General-purpose IO, group B.

					DATA SHEET Preliminary V01
Pin name	Pin no.	Туре	Reset	Domain	Description
PB4	74				
PB5	75				
PB6	92				
PB7	93				
PB8	94				
PB9	44				
PB10	44 45				
PB11					
	46	1/0 50	ות זו	חור	DDM input data sharral 0
PDM_DATA2	47	I/O, FS	I; PL	PIF	PDM input data channel 2.
PDM_DATA3	48	I/O, FS	I; PL	PIF	PDM input data channel 3.
VDDA_PLL	49	Р	-	1.8V	Power supply (PLL).
VDDA_OTP	50	Р		1.8V	Power supply (OTP).
	51,61				
N.C.	67,68	_	- 1	-	No connection pin. It should be floating.
	69,82				p it could be nearly.
	85				
VDDA_TX	52	Р	-	1.8V	Power supply (MIPI TX).
TX_DN0	53	AO	-	-	MIPI TX data lane 0 negative output.
TX_DP0	54	AO	-	-	MIPI TX data lane 0 positive output.
TX_CKN	55	AO	=	-	MIPI TX clock negative output.
TX_CKP	56	AO	-	-	MIPI TX clock positive output.
TX_DN1	58	AO	_	_	MIPI TX data lane 1 negative output.
TX_DR1	59	AO	_	_	MIPI TX data lane 1 negative output.
		PO			
DCDC_OUT	60	PU	-	-	DC-DC output (0.8/0.9V).
VX2	62	AIO	-	_	Inductor termination for DC-DC.
	- '				Connect to external inductor output side.
VX1	63	AIO	-	_	Inductor termination for DC-DC.
					Connect to external inductor input side.
VDDA_DCDC	64	Р	-	1.8/3.3V	Power supply (DC-DC).
I2CM_SDA	70	I/O, FS	I; PH	PIF	I ² C master data.
I2CM_SCL	71	I/O, FS	I; PH	PIF	I ² C master clock.
SPIS_DO	77	I/O, FS	I; PL	PIF	SPI slave data output.
SPIS_DI	78	I, FS	I; PL	PIF	SPI slave data input.
SPIS CLK	79	I, FS	I; PL	PIF	SPI slave clock.
SPIS_CS	80	I, FS	I; PL	PIF	SPI slave chip select.
SD CLK	86	I/O, FS	I; PL	PIF	SD/SDIO clock.
SD_CMD	87	I/O, FS	I; PL	PIF	SD/SDIO command.
SD_DAT0	88	I/O, FS	I; PL	PIF	SD/SDIO data 0.
SD_DAT1	89	I/O, FS	I; PL	PIF	SD/SDIO data 1.
SD_DAT2	90	I/O, FS	I; PL	PIF	SD/SDIO data 2.
SD_DAT3	91	I/O, FS	I; PL	PIF	SD/SDIO data 3.
N.C.	95,97	-	-	_	No connection pin. It should be floating.
OEM VOLEED	98,101	0.50		CIT.	,
SEN_XSLEEP	99	O, FS	0	SIF	Sensor XSLEEP.
SEN_PCLK	100	I, FS	I	SIF	Sensor PCLK.
SEN_D0	102	I, FS	- 1	SIF	Sensor data Bit0.
SEN_D1	103	I, FS	<u> </u>	SIF	Sensor data Bit1.
SEN_D2	104	I, FS	I	SIF	Sensor data Bit2.
SEN_D3	105	I, FS	I	SIF	Sensor data Bit3.
SEN D4	106	I, FS	l	SIF	Sensor data Bit4.
SEN_MCLK	107	0, FS	0	SIF	Sensor MCLK.
SEN_MOLK	107	I, FS		SIF	Sensor data Bit5.
			<u> </u>		
SEN_D6	110	I, FS	I	SIF	Sensor data Bit6.
SEN_D7	111	I, FS	<u> </u>	SIF	Sensor data Bit7.
XTAL_24M_O	112	0	0	SIF	Crystal 24MHz output.
XTAL_24M_I	113	I		SIF	Crystal 24MHz input.
RX_DP1	116	Al	-		MIPI RX data lane 1 positive input.
VDDA_RX	117	Р	-	1.8V	Power supply (MIPI RX).

WE2 AI Processor

DATA SHEET Preliminary V01

Pin name	Pin no.	Туре	Reset	Domain	Description
RX_DN1	118	Al	-	-	MIPI RX data lane 1 negative input.
RX_CKP	119	Al	-	1	MIPI RX clock positive input.
RX_CKN	120	Al	-	ı	MIPI RX clock negative input.
RX_DP0	121	Al	-	ı	MIPI RX data lane 0 positive input.
RX_DN0	122	Al	-	ı	MIPI RX data lane 0 negative input.
SEN_FVALID	124	I, FS	I	SIF	Sensor frame valid.
SEN_LVALID	125	I, FS	I	SIF	Sensor line valid.
QSPI_DIO0	126	I/O, FS	0	SIF	QSPI data 0 for Flash.
QSPI_CLK	127	O, FS	0	SIF	QSPI clock for Flash.
QSPI_DIO3	128	I/O, FS	0	SIF	QSPI data 3 for Flash.

Table 4.1: LQFP128 pin assignment

4.2. WLCSP65

	Α	В	С	D	E	F	G	Н	J	K	L	M	N	_
1	QSPI_D IO2	QSPI_D IO0	RX_DP 0	RX_DN 1	RX_DP 1	XTAL_2 4M_O	SEN_D 1	SEN_D 0	SEN_P CLK	SEN_XSL EEP	PB8	PB7	PB6	1
2	SEN_IN T	QSPI_C S	QSPI_C LK	RX_DN 0	RX_CK N	RX_CK P	XTAL_2 4M_I	SEN_M CLK	SEN_D 3	SEN_D 2	VDDIO_ SIF	GND	VDDIO_ PIF	2
3	SEN_I2 CM_SC L	SEN_I2 CM_SD A	SEN_G PIO	QSPI_D IO1	QSPI_D IO3	VDDIO_ SIF	VDDA_ RX	GND	PB11	TX_CK P	GND	PB3	PB5	3
4	PA2	PA3	PA1	PA0	TEST_ MODE	BOOT_ OPT	GND	TX_DN0	TX_CK N	TX_DP1	DCDC_ OUT	GND	PB4	4
5	PB0	PB1	GND	VDDIO_ AON	RESETN	PB9	PB10	VDDA_ TX	TX_DP0	TX_DN1	VX1	VDDA_ DCDC	PB2	5
	Α	В	С	D	E	F	G	Н	J	K	L	M	N	•

	Α	В	С	D	Е	F	G	Н	J	K	L	M	N
1	00000	\bigcirc											
2	\bigcirc												
3	\bigcirc												
4	\bigcirc												
5	\bigcirc												

Bottom View

Figure 4.2: WLCSP65 ball map

WE2 AI Processor

DATA SHEET Preliminary V01

Pin Types: **A**=Analog, **I**=Input, **O**=Output, **P**=Power, **G**=Ground, **FS**=Fail-Safe

Reset States: **PH**=Pull High, **PL**=Pull Low

Pin Domains: SIF=1.8V only, PIF=1.8V or 3.3V, AON=1.8V or 3.3V (always-on)

Pin name	Pin no.	Type	Reset	Domain	Description
RX DP1	E1	Al	-	-	MIPI RX data lane 1 positive input.
RX DN1	D1	Al	-	_	MIPI RX data lane 1 negative input.
RX DP0	C1	Al	-	_	MIPI RX data lane 0 positive input.
RX DN0	D2	Al	-	_	MIPI RX data lane 0 negative input.
RX CKP	F2	Al	-	_	MIPI RX clock positive input.
RX_CKN	E2	Al	-	_	MIPI RX clock negative input.
TX_DP1	K4	AO	_	_	MIPI TX data lane 1 positive output.
TX_DN1	K5	AO	_	_	MIPI TX data lane 1 negative output.
TX DP0	J5	AO	_	_	MIPI TX data lane 0 positive output.
TX_DN0	H4	AO	_	_	MIPI TX data lane 0 negative output.
TX_CKP	K3	AO	_	_	MIPI TX clock positive output.
TX_CKN	J4	AO	_	_	MIPI TX clock positive output.
SEN_MCLK	H2	O, FS	0	SIF	Master clock output for image sensor.
SEN PCLK	J1	I, FS	ī	SIF	Pixel clock input from image sensor.
SEN D0	H1	I, FS	<u>.</u> 	SIF	Sensor data Bit0.
SEN D1	G1	I, FS	<u> </u>	SIF	Sensor data Bit1.
SEN D2	K2	I, FS		SIF	Sensor data Bit1.
SEN D3	J2	I, FS		SIF	Sensor data Bit3.
SEN XSLEEP	K1	0, FS	0	SIF	Sensor XSLEEP.
SEN_INT	A2	I, FS	I; PL	SIF	Sensor interrupt.
					Power down and reset control for image
SEN_GPIO	C3	I/O, FS		SIF	sensor.
SEN_I2CM_SDA	B3	I/O, FS	ı	SIF	I ² C master data for image sensor.
SEN_I2CM_SCL	A3	I/O, FS	<u>'</u> I	SIF	I ² C master clock for image sensor.
PA0	D4			Oli	To master clock for image sensor.
PA1	C4	I/O, FS	I; PL	AON	General-purpose IO, group A.
PA2	A4	1/0 50		4.011	
PA3	B4	I/O, FS	I; PH	AON	General-purpose IO, group A.
PB0	A5				
PB1	B5				
PB2	N5				
PB3	М3				
PB4	N4				
PB5	N3	I/O, FS	I; PL	PIF	General-purpose IO, group B.
PB6	N1	., -, -	-,		
PB7	M1				
PB8	L1				
PB9	F5				
PB10	G5				
PB11	J3				
XTAL_24M_O	F1	0	0	SIF	Crystal 24MHz output.
XTAL_24M_I	G2	ı	<u> </u>	SIF	Crystal 24MHz input.
BOOT_OPT	F4	I	I; PL	AON	Boot option selection pin.
TEST_MODE	E4	I	I; PL	AON	Test mode.
RESETN	E5	I, FS	I; PH	AON	Reset pin.
QSPI_CLK	C2	O, FS	0	SIF	QSPI clock for Flash.
QSPI_CS	B2	O, FS	0	SIF	QSPI chip select for Flash.
QSPI_DIO0	B1	I/O, FS	0	SIF	QSPI data 0 for Flash.
QSPI_DIO1	D3	I/O, FS	I, PL	SIF	QSPI data 1 for Flash.
QSPI_DIO2	A1	I/O, FS	0	SIF	QSPI data 2 for Flash.
QSPI_DIO3	E3	I/O, FS	0	SIF	QSPI data 3 for Flash.
VDDIO_SIF	F3, L2	Р	-	1.8V	I/O supply (Image sensor GPIOs, SIF).

WE2 AI Processor

DATA SHEET Preliminary V01

Pin name	Pin no.	Type	Reset	Domain	Description
VDDIO_PIF	N2	Р	-	1.8/3.3V	I/O supply (Peripheral GPIOs, PIF).
VDDIO_AON	D5	Ρ	-	1.8/3.3V	I/O supply (AON GPIOs).
VDDA_DCDC	M5	Ρ	-	1.8/3.3V	Power supply (DC-DC).
VDDA_TX	H5	Ρ	-	1.8V	Power supply (MIPI TX, OTP and PLL).
VDDA_RX	G3	Ρ	-	1.8V	Power supply (MIPI RX).
VX1	L5	AIO	-	-	Inductor termination for DC-DC. Connect to external inductor input side.
DCDC_OUT	L4	РО	-	-	DC-DC output (0.8/0.9V). Connect to external inductor output side.
GND	C5, G4 H3, L3 M2, M4	G	-	Ground	Ground.

Table 4.2: WLCSP65 pin assignment

4.3. QFN88

Figure 4.3: QFN88 pin assignment (top view)

WE2 AI Processor

DATA SHEET Preliminary V01

Pin Types: **A**=Analog, **I**=Input, **O**=Output, **P**=Power, **G**=Ground, **FS**=Fail-Safe

Reset States: **PH**=Pull High, **PL**=Pull Low

Pin Domains: SIF=1.8V only, PIF=1.8V or 3.3V, AON=1.8V or 3.3V (always-on)

Pin name	Pin no.	Type	Reset	Domain	Description
PA0	1	I/O, FS	I; PL	AON	General-purpose IO, group A.
PA1	2		1, ୮∟		
VDDIO_AON	3	Р	-	1.8/3.3V	I/O supply (AON GPIOs).
PA2	4	I/O, FS	I; PH	AON	General-purpose IO, group A.
PA3	5				
VDDA_ADC	6	Р	-	1.8/3.3V	Power supply (ADC).
ADC_IP3	7	Al	-	-	ADC input Ch3_P.
ADC_IN3	8	Al	-	-	ADC input Ch3_N.
\/DD	9,22	_	-	0.0/0.01/	De la composition della compos
VDD	29,37	Р		0.8/0.9V	Power supply from DC-DC output.
	56,69				
VDDIO_PIF	10,36	Р	-	1.8/3.3V	I/O supply (peripheral GPIOs, PIF).
PB0	38,40				
PB1	11 12				
PB2	31				
PB3	32				
PB4	33				
PB5	35				
PB6	41	I/O, FS	I; PL	PIF	General-purpose IO, group B.
PB7	42				
PB8	43				
PB9	13				
PB10	14				
PB11	15				
VDDA_OTP	16	Р	-	1.8V	Power supply (OTP and PLL).
VDDA_TX	17	Р	-	1.8V	Power supply (MIPI TX).
TX_DN0	18	AO	-	-	MIPI TX data lane 0 negative output.
TX_DP0	19	AO	-	-	MIPI TX data lane 0 positive output.
TX_CKN	20	AO	-	-	MIPI TX clock negative output.
TX_CKP	21	AO	-	-	MIPI TX clock positive output.
TX_DN1	23	AO	-	-	MIPI TX data lane 1 negative output.
TX_DP1	24	AO	-	-	MIPI TX data lane 1 positive output.
DCDC_OUT	25	PO	-	-	DC-DC output (0.8/0.9V).
VX2	26	AIO	-	_	Inductor termination for DC-DC.
VAZ	20	AIO			Connect to external inductor output side.
VX1	27	AIO	-	_	Inductor termination for DC-DC.
					Connect to external inductor input side.
VDDA_DCDC	28	Р	-	1.8/3.3V	Power supply (DC-DC).
0.15	30,34				
GND	39,44	G	-	Ground	Ground.
\/DDIQ_0IE	45,46			4.01/	1/0 1 (1
VDDIO_SIF	47,85	P	-	1.8V	I/O supply (Image sensor GPIOs, SIF).
SEN_XSLEEP	48	O, FS	0	SIF	Sensor XSLEEP.
SEN_PCLK	49	I, FS	<u> </u>	SIF	Sensor PCLK.
SEN_D0	50	I, FS	1	SIF	Sensor data Bit0.
SEN_D1	51	I, FS	I	SIF	Sensor data Bita
SEN_D2	52	I, FS	1	SIF	Sensor data Bit2.
SEN_D3	53	I, FS	1	SIF	Sensor data Bit3.
SEN_D4	54	I, FS	<u> </u>	SIF	Sensor data Bit4.
SEN_MCLK	55	O, FS	0	SIF	Sensor MCLK.
SEN_D5	57	I, FS	1	SIF	Sensor data Bit5.
SEN_D6	58	I, FS	ļ	SIF	Sensor data Bit6.

Pin name	Pin no.	Type	Reset	Domain	Description
SEN_D7	59	I, FS	l	SIF	Sensor data Bit7.
XTAL_24M_O	60	0	0	SIF	Crystal 24MHz output.
XTAL_24M_I	61	I	I	SIF	Crystal 24MHz input.
RX_DP1	62	Al	-	-	MIPI RX data lane 1 positive input.
VDDA_RX	63	Р	-	1.8V	Power supply (MIPI RX).
RX_DN1	64	Al	-	-	MIPI RX data lane 1 negative input.
RX_CKP	65	Al	-	-	MIPI RX clock positive input.
RX_CKN	66	Al	-	-	MIPI RX clock negative input.
RX_DP0	67	Al	-	-	MIPI RX data lane 0 positive input.
RX_DN0	68	Al	-	-	MIPI RX data lane 0 negative input.
SEN_FVALID	70	I, FS	1	SIF	Sensor frame valid.
SEN_LVALID	71	I, FS	1	SIF	Sensor line valid.
QSPI_DIO0	72	I/O, FS	0	SIF	QSPI data 0 for Flash.
QSPI_CLK	73	O, FS	0	SIF	QSPI clock for Flash.
QSPI_DIO3	74	I/O, FS	0	SIF	QSPI data 3 for Flash.
QSPI_DIO2	75	I/O, FS	0	SIF	QSPI data 2 for Flash.
QSPI_DIO1	76	I/O, FS	I, PL	SIF	QSPI data 1 for Flash.
QSPI_CS	77	O, FS	0	SIF	QSPI chip select for Flash.
SEN_TRIG	78	O, FS	0	SIF	Sensor trigger.
SEN_FAE	79	O, FS	0	SIF	Sensor frame auto exposure.
SEN_CSW0	80	O, FS	0	SIF	Sensor content switch0.
SEN_INT	81	I, FS	I; PL	SIF	Sensor interrupt.
SEN_GPIO	82	I/O, FS	i	SIF	Power down and reset control for image
SEN_GFIO	02	1/0, F3	ı	SIF	sensor.
SEN_I2CM_SDA	83	I/O, FS	1	SIF	I ² C master data for image sensor.
SEN_I2CM_SCL	84	I/O, FS	1	SIF	I ² C master clock for image sensor.
BOOT_OPT	86	1	I; PL	AON	Boot option selection pin.
TEST_MODE	87	1	I; PL	AON	Test mode.
RESETN	88	I, FS	I; PH	AON	Reset pin.

Table 4.3: QFN88 pin assignment

5. Electrical Characteristics

5.1. Absolute maximum ratings(1)

Doromotor	Cumbal		Spec.		l lmit
Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	VDDA_ADC VDDA_PLL VDDA_OTP VDDA_TX VDDA_RX VDDIO_SIF	-0.5	-	2.07	>
	VDD	-0.5	-	1.03	V
	VDDIO_PIF VDDIO_AON VDDA_DCDC	-0.5	-	3.63	V
CMOS/TTL input voltage	V _{IN}	-0.5	-	VDDIO	V
CMOS/TTL output voltage	V _{OUT}	-0.5	-	VDDIO	V
Storage temperature	T_{STG}	-40	-	125	°C
ESD Human body model ⁽³⁾	V _{ESD_HBM}	-	-	2000	V
ESD Machine model ⁽⁴⁾	V _{ESD_MM}	-	-	100	V
Latch-up current ⁽⁵⁾	lυ	-	-	100	mA

Note: (1) Device will probably be damaged permanently in case that the stresses are over the absolute maximum ratings listed above.

- (3) HBM condition: T_A =25°C, Standard EIA /JEDEC JESD22-A114.
- (4) MM condition: T_A=25°C, Standard EIA /JEDEC JESD22-A115.
- (5) Latch-up condition: T_A=25°C, Standard JEDEC STANDARD NO.78 March 1997.

5.2. Recommended operating conditions

Parameter	Symbol	Condition		Spec.		Unit
Parameter	Syllibol	Condition	Min.	Тур.	Max.	Onit
VDDA_ADC VDDA_PLL VDDA_OTP VDDA_TX VDDA_RX VDDIO_SIF Supply voltage VDD	VDDA_OTP VDDA_TX VDDA_RX	-	1.7	1.8	1.9	V
	V/DD	M55.Big core at 400MHz U55 core at 400MHz M55.Little core at 150MHz	0.85	0.9	0.95	V
		M55.Big core at 150MHz U55 core at 150MHz M55.Little core at 75MHz	0.75	0.8	0.95	V
	VDDIO_PIF VDDIO_AON	-	1.7	1.8(3)	1.9	V
	VDDIO_AON VDDA_DCDC ⁽²⁾	-	3.1	3.3(3)	3.5	V
Operating temperature	Ta	-	-40	25	85	°C
Junction temperature	TJ	-	-40	-	105	°C

Note:

⁽²⁾ VDDA_DCDC supply voltage must be the same with VDDIO_AON. (3) According to the host controller's I/O voltage.

5.3. DC electrical characteristics

5.3.1. I/O Pins

(3.3V mode I/O parameters for AON/PIF domain GPIOs)

Parameter	Symbol	Candition	Spec.			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
High level input voltage	V _{IH}	-	2.0	-	VDDIO	V
Low level input voltage	V _{IL}	-	GND	-	0.8	V
High level output voltage	Voh	I _{OH} =-2mA	2.4	-	VDDIO	V
Low level output voltage	V_{OL}	I _{OL} =2mA	GND	-	0.4	V

Table 5.1: 3.3V mode I/O DC parameters

(1.8V mode I/O parameters for AON/PIF/SIF domain GPIOs)

Parameter	Symbol	Condition		Spec.		Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Offic
High level input voltage	ViH	-	0.7 x VDDIO	-	VDDIO	V
Low level input voltage	VIL	-	GND	-	0.3 x VDDIO	V
High level output voltage	Voн	I _{OH} =-2mA	0.8 x VDDIO	-	VDDIO	V
Low level output voltage	Vol	I _{OL} =2mA	GND	-	0.2 x VDDIO	V

Table 5.2: 1.8V mode I/O DC parameters

5.3.2. MIPI transmitter

Parameter	Symbol	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Offic
High speed transmit static common mode voltage ⁽¹⁾	Vсмтх	-	150	200	250	mV
V _{CMTX} mismatch when output is differential-1 or differential-0 ⁽²⁾	ΔVcmtx _(1,0)	-	-	-	5	mV
High speed transmit differential voltage ⁽¹⁾	Vod	-	140	200	270	mV
V _{OD} mismatch when output is differential-1 or differential-0 ⁽²⁾	ΔV _{OD}	-	-	-	14	mV
High speed output high voltage ⁽¹⁾	Vоннs	-	-	-	360	mV
Single ended output impedance	Zos	-	40	50	62.5	Ω
Single ended output impedance mismatch	ΔZ_{OS}	-	-	-	10	%

Note: (1) Value when driving into load impedance anywhere in the Z_{ID} range.

Table 5.3: MIPI HS-TX DC parameters

Parameter	Symbol	Condition	Spec.			Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Ullit
Thevenin output high level	Vон	-	1.1	1.2	1.3	V
Thevenin output low level	V_{OL}	-	-50	-	50	mV
Output impedance of low power transmitter ⁽¹⁾	Zolp	-	110	-	-	Ω

Note: (1) Though no maximum value for Z_{OLP} is specified, the LP transmitter output impedance shall ensure the T_{RLP}/T_{FLP} specification is met.

Table 5.4: MIPI LP-TX DC parameters

⁽²⁾ It is recommended the implementer minimize ΔV_{OD} and ΔV_{CMTX(1,0)} in order to minimize radiation and optimize signal integrity.

5.3.3. MIPI receiver

Donomotor	Complete	Condition		Spec.	Spec.	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Common-mode voltage HS receive mode ⁽¹⁾⁽²⁾	V _{CMRX(DC)}	1	70	1	330	mV
Differential input high threshold	V_{IDTH}	-	-	ı	70	mV
Differential input low threshold	VIDTL		-70	-	-	mV
Single-ended input high voltage ⁽¹⁾	VIHHS	-	-	-	460	mV
Single-ended input low voltage ⁽¹⁾	VILHS	-	-40	-	-	mV
Single-ended threshold for HS termination enable	V _{TERM-EN}	-	-	ı	450	mV
Differential input impedance	Z _{ID}	-	80	100	125	Ω

Note: (1) Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.

Table 5.5: MIPI HS-RX DC parameters

Parameter	Cymah al Cy	Condition	Spec.			Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic 1 input voltage	V _{IH}	-	800	-	-	mV
Logic 0 input voltage, not in ULP state	V_{IL}	-	-	-	550	mV
Logic 0 input voltage, ULP state	VIL-ULPS	-	-	-	300	mV
Input hysteresis	V_{HYST}	1	25	-	-	mV

Table 5.6: MIPI LP-RX DC parameters

⁽²⁾ This table value includes a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance, and variations below 450MHz.

5.4. AC electrical characteristics

5.4.1. I²C interface

Parameter	Symbol Condition —		Unit			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Ollit
Clock period	tclk	VDD=0.9/0.8V	-	-	1	MHz
Data input setup time	t su	VDD=0.9/0.8V	50	-	-	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	5	-	-	ns

Table 5.7: I²C AC parameters

Figure 5.1: I²C bus timing

5.4.2. I³C interface

Parameter	Symbol	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Ullit
Clask raniad	tour	VDD=0.9V	-	-	12.5	MHz
Clock period	tclk	VDD=0.8V	-	-	10	MHz
Data input setup time	t _{SU}	VDD=0.9/0.8V	6	-	-	ns
Data input hold time t _{HD}	4	VDD=0.9V	3	-	-	ns
	VDD=0.8V	5	-	-	ns	

Table 5.8: I³C AC parameters

Figure 5.2: I³C bus timing

5.4.3. SPI interface

Parameter	Cumbal Cand	Condition		Spec.	Linit	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clask pariod	tclk	VDD=0.9V	-	-	50	MHz
Clock period		VDD=0.8V	-	-	25	MHz
Data input setup time	t su	VDD=0.9/0.8V	4	-	•	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	0	-	ı	ns
Data output valid time	t _{DV}	VDD=0.9/0.8V	-2 ⁽¹⁾	-	8	ns

Note: (1) A negative time indicates the actual output data edge is earlier than clock appearing at pin.

Table 5.9: SPI master AC parameters

Figure 5.3: SPI master timing

Parameter	Symbol	Condition			Unit	
r al allietei		Condition	Min.	Тур.	Max.	Offic
Clock poriod(1)	t =	VDD=0.9V	ı	-	40	MHz
Clock period ⁽¹⁾	tclk	VDD=0.8V	ı	-	15	MHz
Data input setup time ⁽¹⁾	t su	VDD=0.9/0.8V	0	-	•	ns
Data input hold time ⁽¹⁾	4	VDD=0.9V	10	-	•	ns
Data input hold time	thd	VDD=0.8V	27	-	-	ns
Data cuta ut valid time (1)		VDD=0.9V	10	-	22	ns
Data output valid time ⁽¹⁾	t _D ∨	VDD=0.8V	12	-	24	ns

Note: (1) SPIS_CLK, SPIS_DI, SPIS_DO signals are sampled by internal ssi_clk clock. The maximum clock period is one-tenth of ssi_clk frequency. The timing spec is based on ssi_clk frequency is 400MHz at 0.9V, and 150MHz at 0.8V.

Table 5.10: SPI slave AC parameters

Figure 5.4: SPI slave timing

5.4.4. I²S interface

Parameter	Symbol	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Offic
Clock period	tclk	VDD=0.9/0.8V	-	-	3.125	MHz
Clock HIGH	twн	VDD=0.9/0.8V	160	-	-	ns
Clock LOW	tw∟	VDD=0.9/0.8V	160	-	-	ns
Data input setup time	t su	VDD=0.9/0.8V	30	-	-	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	10	-	-	ns
Data output valid time	t _{DV}	VDD=0.9/0.8V	-	-	30	ns

Table 5.11: I²S master AC parameters

Figure 5.5: I²S master timing

Parameter	Cymbal	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock period	tclk	VDD=0.9/0.8V	-	-	3.125	MHz
Clock HIGH	twн	VDD=0.9/0.8V	160	-	-	ns
Clock LOW	tw∟	VDD=0.9/0.8V	160	-	-	ns
Data input setup time	t su	VDD=0.9/0.8V	30	-	-	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	0	-	-	ns
Data output valid time	t _{DV}	VDD=0.9/0.8V	-	-	30	ns

Table 5.12: I²S slave AC parameters

Figure 5.6: I²S slave timing

5.4.5. PDM interface

Doromotor	Cumbal	Condition		Spec.		l lni4
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock period	tclk	VDD=0.9/0.8V	-	-	3.25	MHz
Data input setup time	t su	VDD=0.9/0.8V	30	-	-	ns
Data input hold time	t HD	VDD=0.9/0.8V	5	-	-	ns

Table 5.13: PDM RX AC parameters

Figure 5.7: PDM RX timing

Parameter	Symbol Condition	Condition		Unit		
Farameter	Syllibol	Condition	Min.	Тур.	Max.	Offic
Clock period	tclk	VDD=0.9/0.8V	-	-	3.25	MHz
Clock path delay	tclk_d	VDD=0.9/0.8V	-	-	15	ns
Data path delay ⁽¹⁾	tdata_d	VDD=0.9/0.8V	-	ı	15	ns

Note: (1) Only PDM_DATA0 input supports PDM pass-through mode.

Table 5.14: PDM pass-through AC parameters

Figure 5.8: PDM pass-through timing

5.4.6. SD and SDIO host interface

Parameter	Symbol	Condition			Unit	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clask paried	4	VDD=0.9V	-	-	25	MHz
Clock period	tclk	VDD=0.8V	-	-	12.5	MHz
Data input actus time		VDD=0.9V	10	-	-	ns
Data input setup time	t su	VDD=0.8V	13	-	-	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	3	-	-	ns
Data autaut valid time		VDD=0.9V	-	-	14	ns
Data output valid time	t _{DV}	VDD=0.8V	-	-	34	ns
Data output hold time	t _{OH}	VDD=0.9/0.8V	2	-	-	ns

Table 5.15: SD and SDIO host AC parameters

Figure 5.9: SD and SDIO host timing

5.4.7. DVP and SDI interface

Parameter	Symbol	Condition		Unit		
Parameter			Min.	Тур.	Max.	Unit
Clock paried	4	VDD=0.9V	-	-	72	MHz
Clock period	t _{CLK}	VDD=0.8V	-	-	40	MHz
Data input actus time	4	VDD=0.9V	5	-	-	ns
Data input setup time	tsu	VDD=0.8V	11	-	-	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	6	-	-	ns

Table 5.16: DVP AC parameters

Figure 5.10: DVP interface timing

Parameter	Symbol	Condition		Spec.		Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Onit
Clock period	tclk	VDD=0.9/0.8V	-	-	72	MHz
Data input setup time	t su	VDD=0.9/0.8V	3	-	-	ns
Data input hold time	t _{HD}	VDD=0.9/0.8V	6	-	-	ns

Table 5.17: SDI AC parameters

Figure 5.11: SDI interface timing

5.4.8. QSPI Flash interface(1)

Parameter	Symbol	Condition	Spec.			Unit
Farameter		Condition	Min.	Тур.	Max.	Ollit
Clock period		VDD=0.9V	-	-	100	MHz
Clock period	tclk	VDD=0.8V	-	-	50	MHz
Data input setup time	t su	VDD=0.9/0.8V	-1 ⁽²⁾	-	-	ns
Data input hold time	4	VDD=0.9V	6	-	-	ns
Data input hold time	t _{HD}	VDD=0.8V	11	-	-	ns
Data output valid time	4	VDD=0.9V	-	-	3	ns
Data output valid time	t _{DV}	VDD=0.8V	-	-	15	ns
Data output hold time	t _{OH}	VDD=0.9/0.8V	-2 ⁽³⁾	-	-	ns

Note: (1) The timing values above are based on default software settings for QSPI sampling registers.

- (2) A negative time indicates the actual capture edge inside the device is later than clock appearing at pin.
- (3) A negative time indicates the actual output data edge is earlier than clock appearing at pin.

Table 5.18: QSPI Flash AC parameters

Figure 5.12: QSPI Flash interface timing

5.4.9. SWD debug interface

Parameter	Symbol	Condition			Unit	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock period	tclk	VDD=0.9/0.8V	-	-	15	MHz
Data input setup time	t su	VDD=0.9/0.8V	30	-	-	ns
Data input hold time	t HD	VDD=0.9/0.8V	15	-	-	ns
Data output valid time	t _{DV}	VDD=0.9/0.8V	-	-	45	ns

Table 5.19: SWD debug AC parameters

Figure 5.13: SWD debug interface timing

5.4.10. MIPI transmitter interface

Parameter	Symbol	Condition	Spec.			Unit
			Min.	Тур.	Max.	Unit
Common-level variations	$\Delta V_{\text{CMTX(HF)}}$	above 450MHz	-	-	15	mV_RMS
Common-level variations	$\Delta V_{\text{CMTX(LF)}}$	50-450MHz	-	-	25	mV_PEAK
		20% to 80%	-	-	0.3(1)(2)	UI
Rise time and fall time	t _R and t _F		-	-	0.35(1)(3)	UI
Rise time and fall time	ir and if		-	ı	0.4(4)	U
			100 ⁽⁵⁾	-	-	ps

Note: (1) UI is equal to 1/(2*fh). See Ch. 8.3 of MIPI D-PHY specification for the definition of fh.

- (2) Applicable when operating at HS bit rates ≤ 1Gbps (UI ≥ 1ns).
- (3) Applicable when operating at HS bit rates > 1Gbps (UI < 1ns).
- (4) Application for all HS Bit rate when supporting > 1.5Gbps.
- (5) Applicable for all HS bit rates. However, to avoid excessive radiation, bit rates ≤ 1Gbps (UI ≥ 1ns), should not use values below 150ps.

Table 5.20: MIPI HS-TX AC parameters

Donomotor	Cumbal	Condition		Spec.		1110:4
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Rise time and fall time(1)	T_{RLP}/T_{FLP}	15% to 85%	-	-	25	ns
Rise time and fall time(1)(2)(3)	T_{REOT}	30% to 85%	-	-	35	ns
Pulse width of the LP exclusive-OR clock ⁽⁴⁾	T _{LP-PULSE-TX}	First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state	40	-	-	ns
		All other pulses	20	-	-	ns
Period of the LP exclusive-OR clock	T _{LP-PER-TX}	-	90	-	-	ns
		CLOAD=0 pF	30	-	500	mV/ns
Slew Rate ⁽¹⁾⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾⁽⁹⁾	21//24	CLOAD=5 pF	30	-	300	mV/ns
Siew Rate (1)(5)(5)(5)(5)	$\delta V/\delta t_{SR}$	C _{LOAD} =20 pF	30	-	250	mV/ns
		C _{LOAD} =70 pF	30	-	150	mV/ns
Load capacitance(1)	CLOAD	20% to 80%	0	-	70	рF

Note: (1) C_{LOAD} includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.

- (2) The rise-time of TREOT starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the differential drive.
- (3) With an additional load capacitance CCM between 0 and 60pF on the termination center tap at RX side of the
- (4) This parameter value can be lower than T_{LPX} due to differences in rise vs. fall signal slopes and trip levels and mismatches between DP and DN LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior.
- (5) Measured as average across any 50mV segment of the output signal transition.
- (6) This value represents a corner point in a piecewise linear curve.
- (7) When the output voltage is in the range specified by VPIN (absmax).
- (8) When the output voltage is between 400mV and 930mV.
- (9) When the output voltage is between 400mV and 700mV.

Table 5.21: MIPI LP-TX AC parameters

WE2 AI Processor

DATA SHEET Preliminary V01

Parameter	Cumbal	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Common-mode interference ⁽¹⁾	$\Delta V_{\text{CMRX(HF)}}$	above 450MHz	-	-	100	mV
Common-mode interference ⁽²⁾⁽³⁾	$\Delta V_{\text{CMRX(LF)}}$	50-450MHz	-50	-	50	mV
Common-mode termination ⁽⁴⁾	CCM	-	-	-	60	pF

Note: (1) ΔV_{CMRX(HF)} is the peak amplitude of a sine wave superimposed on the receiver inputs. (2) Excluding 'static' ground shift of 50mV. (3) Voltage difference compared to the DC average common-mode potential.

(4) For higher bit rates a 14pF capacitor will be needed to meet the common-mode return loss specification.

Table 5.22: MIPI HS-RX AC parameters

WE2 Al Processor

DATA SHEET Preliminary V01

5.4.11. **MIPI** receiver interface

Parameter	Cumbal	Condition	Spec.			I Init
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input pulse rejection(1)(2)(3)	e spike	-	-	-	300	V.ps
Minimum pulse width response ⁽⁴⁾	T _{MIN-RX}	-	20	-	-	ns
Peak Interference amplitude	V _{INT}	-	-	ı	200	mV
Interference frequency	f _{INT}	-	450	-	-	MHz

Note: (1) Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state.

(2) An impulse less than this will not change the receiver state.
(3) In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers.
(4) An input pulse greater than this shall toggle the output.

Table 5.23: MIPI LP-RX AC parameters

6. Package Outline Dimension

6.1. LQFP128

Min	Nom	Max	
_	_	1.60	
0.05	0.10	0.15	
1.35	1.40	1.45	
0.13	0.18	0.23	
15.85	16.00	16.15	
13.90	14.00	14.10	
15.85	16.00	16.15	
13.90	14.00	14.10	
0.40 BSC			
0.45	0.60	0.75	
1.00 REF			
0°	3.5°	7°	
	- 0.05 1.35 0.13 15.85 13.90 15.85 13.90 0.45	0.05 0.10 1.35 1.40 0.13 0.18 15.85 16.00 13.90 14.00 13.90 14.00 0.40 BS 0.45 0.60 1.00 RE	

UNIT: MM

NOTE :

- 1. TO BE DETERMINED AT SEATING PLANE -C- .
- 2. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.
- 4. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- 5. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. REFERENCE DOCUMENT : JEDEC MS-026.

6.2. WLCSP65

	DIMENSION (mm)				
SYM.		(1:11:17			
	MIN.	N□M.	MAX.		
Α	0.505	0.535	0.565		
A1	0.18	0.2	0.22		
A2	0.29	0.31	0.33		
А3	0.025 BSC				
Øb	0.24	0.26	0.28		
D	2.240	2.273	2.306		
D1	1.6 BSC				
E	5.551	5.584	5.617		
E1	4.8 BSC				
e	0.4 BSC				

UNIT: MM

WE2 AI Processor

DATA SHEET Preliminary V01

6.3. QFN88

SYMBOLS MIN. NOM. MAX.

A1 A3 D

0.00 0.02 0.05 0.203 REF. 7.90 8.00 8.10 Exposed pad s	·
7.90 8.00 8.10 Exposed pad s	
Exposed pad s	
11.90 12.00 12.10	126
0.15 0.20 0.25 L/F D2	E2
0.40 BSC MIN. MAX. MI	N. MAX
0.30 0.40 0.50 ① 5.60 6.20 9.	50 10.2
0.20	

1. CONTROLLING DIMENSION : MILLIMETER

WE2 AI Processor

DATA SHEET Preliminary V01

7. Ordering Information

Part no.	Package	Application	Description
HX6538-A04TLDG	LQFP128	AloT, surveillance	WE2 AI processor
HX6538-A01TWA	WLCSP65	AloT, Laptop, wearable	WE2 Al processor
HX6538-A06TDFG	QFN88	AloT, surveillance	WE2 AI processor