Atividade Avaliativa

13. As seguintes semicelas são usadas para montar uma pilha:

Considerando os potenciais de semicela:

$$Zn^{2+}$$
 (aq) + 2 e⁻ \rightarrow Zn (s) $E^{\circ} = -0.76 \text{ V}$
Ag⁺ (aq) + e⁻ \rightarrow Ag (s) $E^{\circ} = +0.80 \text{ V}$

responda às questões a seguir, que se referem ao funcionamento da pilha.

- a) Qual dos eletrodos é o ânodo? Qual é o cátodo?
- b) Qual dos eletrodos é o polo negativo? E o positivo?
- c) Que espécie química é oxidada? E qual é reduzida?
- d) Equacione a semirreação anódica.
- e) Equacione a semirreação catódica.
- f) Equacione a reação global da pilha.
- g) Qual o sentido de movimentação dos elétrons no
- h) Qual o sentido de movimentação dos íons na ponte salina?
- i) Calcule o valor de ΔE° para essa pilha.
- 14 Considere os seguintes dados:

$$E^{\circ}(A\ell^{3+}/A\ell^{0}) = -1,68 \text{ V}$$

 $E^{\circ}(Cu^{2+}/Cu^{0}) = +0,34 \text{ V}$

Três estudantes elaboraram as representações a seguir para a pilha que pode ser formada por essas duas semicelas. Dessas representações, determine a correta e justifique sua escolha.

Aluno 1:
$$A\ell$$
 (s) | $A\ell^{3+}$ (aq) || Cu^{2+} (aq) | Cu (s) Aluno 2: Cu (s) | Cu^{2+} (aq) || $A\ell^{3+}$ (aq) | $A\ell$ (s) Aluno 3: $A\ell$ (s) | Cu^{2+} (aq) || $A\ell^{3+}$ (aq) | Cu (s)

Aluno 2: Cu (s)
$$| Cu^{2+} (aq) | A\ell^{3+} (aq) | A\ell (s)$$

Aluno 3: A
$$\ell$$
 (s) | Cu²⁺ (aq) || A ℓ ³⁺ (aq) | Cu (s)

- 15. Equacione a reação global da pilha da questão an-
- 16. Um estudante mergulhou um fio de cobre em uma solução de nitrato de prata 1,0 mol/L e observou a formação de um depósito metálico sobre o fio, conforme mostra a foto a seguir.

- a) Interprete o acontecimento observado, deixando claro o processo químico que ocorreu.
- b) Esse processo é uma reação de oxirredução? Por quê?
- Se a resposta anterior for afirmativa, então responda:
- Quais os agentes oxidante e redutor no processo?
- d) Se essa reação química fosse empregada em uma pilha, qual seria o valor de ΔE° para ela? (Consulte a tabela 1.)

33. (UFRJ) Os quatro frascos apresentados a seguir contêm soluções salinas de mesma concentração molar, a 25 °C. Em cada frasco, encontra-se uma placa metálica mergulhada na solução. Determine o frasco em que ocorre reação química

41. (Uenf-RJ) Para evitar a corrosão das plataformas marítimas situadas na Bacia de Campos, emprega-se marítimas situadas na Bacia de Campos, emprega-se a proteção catódica, método que requier a utilização de um metal de sacrifício em contato com o metal da plataforma que se deseja proteger. Esse conjunto for-ma um sistema eletroquímico denominado pilha. Observe o quadro abaixo:

Semirreações	Potenciais-padrão de redução (1 mol/L, 25 °C	
Zn^{2+} (aq) + 2 e ⁻ \rightleftharpoons Zn (s)	-0,76 V	
Mg^{2+} (aq) + 2 e ⁻ \rightleftharpoons Mg (s)	-2.37 V	
Fe^{2+} (aq) + 2 $e^- \rightleftharpoons Fe$ (s)	-0,44 V	
Cu^{2+} (aq) + 2 $e^- \rightleftharpoons Cu$ (s)	+0,34 V	

- a) Cite dois metais que seriam mais eficientes na proteção do ferro da estrutura da plataforma e justifique sua resposta.
- b) Calcule a diferença de potenciais-padrão de uma pilha constituída por cobre e ferro
- 42. (Ulbra-RS) Um corpo metálico, quando exposto ao ar e à umidade, pode sofrer um processo de corrosão (oxidação), deixando-o impróprio para a função a que se destinava. Uma das formas de se minimizar esse processo é a "proteção catódica": prende-se um "metal de sacrifício" no corpo que se deseja proteger da oxidação.

Qual das substâncias da tabela abaixo seria usada na proteção catódica de uma tubulação de ferro

Semirreações					Potencial-padrão
F ₂	+	2 e-	≠	2 F	+2,87 V
Ag ⁺	+	e ⁻	\rightleftharpoons	Ag	+0,80 V
Ni ²⁺	+	2 e-	⇄	Ni	-0,25 V
Br ₂	+	2 e-	⇄	2 Br	+1,08 V
Mg ²⁺	+	2 e-	⇄	Mg	-2,37 V
a) Ag	d) Cu			-,-,-	
b) Ni ²⁺		e) Mg			
c) F ₂					

A reação que se processa em uma pilha é:

$$Cd^{2+}(aq) + Zn(s) \longrightarrow Cd(s) + Zn^{2+}(aq)$$

Determine a tensão elétrica dessa pilha.

Dados:
$$E^{\circ}(Cd^{2+} \mid Cd) = -0.40 \text{ V};$$

$$E^{\circ}(Zn^{2+}|Zn) = -0.76 \text{ V}.$$

3.) Quando uma barra de cobre é mergulhada em uma solução aquosa de nitrato de prata, ocorre a seguinte reação espontânea de oxirredução:

$$Cu(s) + 2 Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2 Ag(s)$$

- a) Represente uma célula eletroquímica que opere a partir dessa transformação. Em sua representação, indique:
 - · o cátodo e sua polaridade;
 - · o ânodo e sua polaridade;
 - · a direção do fluxo de elétrons.
- b) Qual a tensão elétrica medida, caso a ponte salina seja retirada?
- c) Escreva o diagrama para essa célula.
- 4. Uma pilha foi construída conectando uma barra de cobre, mergulhada em uma solução 1,0 mol · L-1 de Cu2+, a uma barra de cádmio, mergulhada em solução 1,0 mol \cdot L⁻¹ de Cd²⁺.

Dados:
$$E^{\circ}(Cu^{2+} \mid Cu) = 0.34 \text{ V};$$

 $E^{\circ}(Cd^{2+} \mid Cd) = -0.40 \text{ V}$

- a) Que espécies devem sofrer redução ou oxidação, respectivamente?
- b) Qual eletrodo é o cátodo e qual é o ânodo?
- c) Determine a diferença de potencial (ddp) dessa
- d) Escreva o diagrama que representa essa célula eletroquímica.
- 5. Observe a representação da célula galvânica abaixo e responda as questões a seguir.

- a) Qual espécie se oxida? Qual se reduz?
- b) Escreva as semirreações que se processam no cátodo e no ânodo.
- c) Determine a diferença de potencial da pilha nas condições padrão.

Dados :
$$E^{\circ}(Fe^{2+} | Fe) = -0.44 \text{ V};$$

 $E^{\circ}(Ag^{+} | Ag) = 0.80 \text{ V}.$

6. Consulte a tabela de potenciais padrão de redução e indique se as reações de oxirredução a seguir são espontâneas no sentido em que estão indicadas.

- a) $Cl_2(g) + 2 I^-(aq) \longrightarrow 2 Cl^-(aq) + I_2(s)$
- b) Ni(s) + Cd²⁺(aq) \longrightarrow Ni²⁺(aq) + Cd(s)
- c) $2 \text{ Al(s)} + 3 \text{ Sn}^{4+}(\text{aq}) \longrightarrow 2 \text{ Al}^{3+}(\text{aq}) + 3 \text{ Sn}^{2+}(\text{aq})$
- d) 2 $Cl^-(aq) + Br_2(l) \longrightarrow 2 Br^-(aq) + Cl_2(aq)$

- 7-Na pilha de limão; o parafuso é galvanizado com zinco, e a chapa é de cobre.
- a) Identifique a região do cátodo e do ânodo na pilha de limão.
- b) Utilize a tabela de potencial de redução para identificar as duas semireações que acontecem na pilha.
- Indique outro meio (em substituição ao limão) para obtenção de resultado semelhante.

Tabela de potencial padrão de redução							
Semirreação	E° (V						
Li+(aq) + e-	-3,05						
K+(aq) + e− ➤ K(s)	-2.93						
Ba ²⁺ (aq) + 2e ⁻ → Ba(s)	-2,90						
Sr ²⁺ (aq) + 2e ⁻ > Sr(s)	-2,89						
Ca ²⁺ (aq) + 2e ⁻ Ca(s)	-2,87						
Na+(aq) + e- ➤ Na(s)	-2,71						
Mg ²⁺ (aq) + 2e ⁻ → Mg(s)	-2,37						
$A\ell^{3+}(aq) + 3e^{-} \Longrightarrow A\ell(s)$	-1,66						
Mn ²⁺ (aq) + 2e ⁻ → Mn(s)	-1,18						
2 H ₂ O(ℓ) + 2 e ⁻ → H ₂ (g) + 2 OH ⁻ (aq)	-0,83						
$Zn^{2+}(aq) + 2e^{-} Zn(s)$	-0,76						
$Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)$	-0,74						
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44						
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0,40						
$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0,31						
Co ²⁺ (aq) + 2e ⁻ Co(s)	-0,28						
Ni ²⁺ (aq) + 2e ⁻ → Ni(s)	-0,25						
Sn ²⁺ (aq) + 2 e ⁻ ➤ Sn(s)	-0.14						
Pb ²⁺ (aq) + 2 e ⁻ Pb(s)	-0.13						
2 H+(aq) + 2 e- H ₂ (q)	0,00						
Sn ⁴⁺ (aq) + 2 e ⁻ Sn ²⁺ (aq)	+0,13						
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0,15						
Cu ²⁺ (aq) + 2 e ⁻ Cu(s)	+0,34						
$O_2(g) + 2 H_2O + 4 e^- 4 OH^-(ag)$	+0,40						
I ₂ (s) + 2 e ⁻ ≥ 2 I ⁻ (aq)	+0.53						
$MnO_4^-(aq) + 2 H_2O + 3 e^- \longrightarrow MnO_2(s) + 4 OH^-(aq)$	+0,59						
$O_2(g) + 2 H^+(aq) + 2 e^- + H_2O_2(aq)$	+0,68						
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0,77						
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80						
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \implies NO(g) + 2 H_2O$	+0,96						
$Br_2(\ell) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1,07						
$O_2(g) + 4 H^+(aq) + 4 e^- \ge 2 H_2O$	+1,23						
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O$	+1,23						
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^ \nearrow$ $2 Cr^{3+}(aq) + 7 H_2O$	+1,33						
$Cl_2(g) + 2e^- {\rightleftharpoons} 2Cl^-(ag)$	+1,36						
$Au^{3+}(aq) + 3e^{-} \implies Au(s)$	+1,50						
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$ $Mn^{2+}(aq) + 4 H_2O$	+1,51						
$PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^-$ $PbSO_4(s) + 2H_2O$	+1,70						
H₂O₂(aq) + 2 H⁺(aq) + 2 e⁻ ₹ 2 H₂O	+1,77						
$O_3(g) + 2 H^+(aq) + 2 e^ O_2(g) + H_2O$	+2,07						
F ₂ (g) + 2 e ⁻ ← 2 F ⁻ (ag)	+2,87						