AUD401

Dynamic Audio for Digital Media Lecture 4 ~ Sound Synthesis

Dr Christos Michalakos c.michalakos@abertay.ac.uk

So far:

- 1. Counters
- 2. Digital Audio
- 3. Loading Samples
- 4. Playing them Back

Today

Additive Synthesis FM Synthesis

But first

Sound Synthesis Fundamentals

Pitch / Noise

Some definitions

Fundamental

The lowest frequency of a periodic waveform

Overtones

All sinusoidal peaks above that

Partials

All of the above

Pitched: Harmonic / Inharmonic Sound

Harmonic

- Clear Sinusoidal peaks
- Integer multiples

Inharmonic

- Clear Sinusoidal peaks
- NOT integer multiples

Harmonic

Inharmonic

Fourier Series

Any periodic waveform can be represented as a sum of simple sine waves

Mathematician Joseph Fourier 1768-1830

How can we express our basic waveforms by adding sinusoids?

- Storage of waveform data in an array (i.e. memory)
- Stored as amplitude vs time: i.e. indexed by time
- Lookup data at a particular frequency (sample the wavetable)
- Use interpolation to produce values not directly represented in the table

- Useful for static waveforms as often takes less computation to lookup a table value, than directly calculate values from waveform functions
- Can crossfade between several wavetable oscillators to create varying timbres

- In pd, create an array to hold your wavetable in
- You will need to decide on a length. If you are using **tabosc4**~, the length of the array should be a power of two plus 3 extra points to allow for the 4-point interpolation. *e.g.* 131, 259, 515, 1027
- You can draw the waveform directly into the table

Array messages:

sinesum creates the weighted sum of sine waves and puts the results into the array. It takes the form:

```
sinesum length a(0) a(1) a(2) ... a(x)
```

Where **length** is the length of the array, and **a(0)** the amplitude of the fundamental, **a(1)** the amplitude of the first harmonic, *etc.* **NB** unlike cosinesum there is **no** offset argument!

With sinesum:

- Notice that it resizes your array to fit the length specified. It automatically add the guard points required for interpolation!
- Watch that the total magnitude does not go above 1.0 or you will get distortion. You can send a normalize message to the table to get the waveform within the proper bound

Other messages:

- const set array to constant value
- normalize normalize array to certain value

tabosc4~

- Leftmost inlet: frequency
- Right inlet: reset phase (cf osc~)
- Use set messages to switch between tables (<u>do</u> <u>not</u> use sinesum or cosinesum messages to array while running to change timbre!)

Again:

Any periodic waveform can be represented as a sum of simple sine waves

...so let's start adding sine waves

Sine Wave

Fundamental only

No additional harmonics

Sawtooth Wave Wave

All partials

Partial amplitude = 1/p#

Square Wave

Odd-numbered partials only

Partial amplitude = 1/p#

Triangle Wave

- Odd-numbered partials only
 Partial amplitude = 1/p#²
- Amplitude of every other harmonic multiplied by -1

Additive Synthesis!

Additive Synthesis

- The basic force behind the use of additive synthesis is a desire to create complex musical sounds by adding (mixing) together multiple, simpler, sound components.
- The component sounds are not usually perceived, but instead contribute to the quality (timbre) of the synthesised resulting sound.

Additive Synthesis

- The theoretical framework for additive synthesis based on Fourier analysis.
- To put Fourier's theorem in basic terms: periodic (acoustic) waveforms can be expressed as a sum of harmonically related sine waves, each with a particular phase and amplitude. This sum may, however, be infinite!

Additive Synthesis

• Although sine waves are often used as the building blocks for additive synthesis, different waveforms may also be used to create more complex results.

Frequency Modulation Synthesis (FM)

FM Synthesis

 The 'carrier' frequency is being frequency modulated.

Terms:

Carrier — waveform being modulated.

Modulation Frequency—rate of modulation.

Modulation Index—how much the signal is modulated by.

FM Synthesis

- Discovered by John Chowning in the early 70's and patented to Yamaha (used in, for example, the Yamaha DX7).
- In its simplest form, it comprises a sine wave carrier whose frequency is varied (modulated) by another waveform (e.g. another sine wave).
- When the modulation frequency is sub-audio (below c. 20Hz, the change in pitch is perceptible.

FM Synthesis

If **fm / fc** is a positive integer, then the spectrum of the resulting waveform will be **harmonic**.

• If **fm / fc** is a positive non-integer, then the spectrum will be **inharmonic**. This can be useful for synthesizing things such as bells, gongs and even drums.

Tutorial