Probabilistic Circuits: Marginal Maximum a Posteriori Queries

Markus Pawellek

January 21, 2022

Outline

Introduction

Background

Marginal Determinism

Tractable Computation

Sufficient Conditions

Conclusions

Marginal maximum a posteriori (MMAP) queries combine marginal (MAR) and maximum a posteriori (MAP) inference

"Which combination of roads is most likely to be jammed on Monday?"

 Marginal maximum a posteriori (MMAP) queries combine marginal (MAR) and maximum a posteriori (MAP) inference

"Which combination of roads is most likely to be jammed on Monday?"

Sufficient conditions for tractable computation needed

Marginal maximum a posteriori (MMAP) queries combine marginal (MAR) and maximum a posteriori (MAP) inference

"Which combination of roads is most likely to be jammed on Monday?"

- Sufficient conditions for tractable computation needed
- Usage of MAR and MAP algorithms

Marginal maximum a posteriori (MMAP) queries combine marginal (MAR) and maximum a posteriori (MAP) inference

"Which combination of roads is most likely to be jammed on Monday?"

- Sufficient conditions for tractable computation needed
- Usage of MAR and MAP algorithms
- ▶ Here, notations varies a little bit: no boldface letters

- Finite set X of random variables
- ightharpoonup Joint distribution p over X

- Finite set X of random variables
- ightharpoonup Joint distribution p over X

$$\operatorname*{arg\ max}_{q \in \operatorname{val}(Q)} \, p \, (Q = q \mid E = e, Z \in \mathfrak{I})$$

for

- Finite set X of random variables
- ightharpoonup Joint distribution p over X

$$\underset{q \in \text{val}(Q)}{\text{arg max}} \ p\left(Q = q \mid E = e, Z \in \mathcal{I}\right)$$

for

- ▶ Partition $\{Q, E, Z\}$ of X
- ▶ Partial state $e \in E$
- ▶ Generalized interval $\mathfrak{I} \subset \operatorname{val}(Z)$

- Finite set X of random variables
- ightharpoonup Joint distribution p over X

$$\underset{q \in \operatorname{val}(Q)}{\operatorname{arg max}} \ p\left(Q = q \mid E = e, Z \in \mathfrak{I}\right) \\ = \underset{q \in \operatorname{val}(Q)}{\operatorname{arg max}} \int_{\mathfrak{I}} p(q, e, z) \, \mathrm{d}Z$$

for

- ▶ Partition $\{Q, E, Z\}$ of X
- ▶ Partial state $e \in E$
- ▶ Generalized interval $\mathfrak{I} \subset \operatorname{val}(Z)$

Background: MAR and MAP

$$\underset{q \in \text{val}(Q)}{\arg \max} \int_{\mathcal{I}} p(q, e, z) \, dZ$$

Background: MAR and MAP

$$\underset{q \in \text{val}(Q)}{\text{arg max}} \int_{\mathfrak{I}} p(q, e, z) \, \mathrm{d}Z$$

▶
$$\mathbf{case} \ Q = \emptyset$$
: MAR Query

$$\int_{\mathbb{T}} p(e,z) \, \mathrm{d}Z$$

Background: MAR and MAP

$$\underset{q \in \text{val}(Q)}{\text{arg max}} \int_{\mathfrak{I}} p(q, e, z) \, \mathrm{d}Z$$

▶ case
$$Q = \emptyset$$
: MAR Query

$$\int_{\mathbb{T}} p(e,z) \,\mathrm{d}Z$$

▶ case
$$Z = \emptyset$$
: MAP Query

$$\underset{q \in \text{val}(Q)}{\text{arg max}} \ p(q, e)$$

Probabilistic Circuit ${\mathfrak C}$ with circuit structure ${\mathfrak G}$

Probabilistic Circuit & with circuit structure &

 ${\mathfrak C}$ is tractable for MAR queries $\iff {\mathfrak G} \text{ is smooth and}$ decomposable

ℰ is tractable for MAP queries
 ⇔ 𝒢 is deterministic and
 consistent

Probabilistic Circuit & with circuit structure 9

 ${\mathfrak C}$ is tractable for MAR queries $\iff {\mathfrak G}$ is smooth and decomposable

 ${\mathfrak G}$ is decomposable $\implies {\mathfrak G}$ is consistent

 $\operatorname{\mathcal{C}}$ is tractable for MAP queries

 \iff § is deterministic and consistent

Probabilistic Circuit & with circuit structure 9

© is tractable for MAR queries

 $\iff \mathfrak{G}$ is smooth and decomposable

C is tractable for MAP queries

⇔ 9 is deterministic and consistent

g is decomposable $\implies g$ is consistent

 $\ensuremath{\mathfrak{C}}$ is tractable for both MAR and MAP queries

 \iff 9 is decomposable, smooth, and deterministic

Simple generalization of determinism

sum unit is Q-marginal deterministic

 $:\Longleftrightarrow$ for all partial states $q\in Q$,

at most one of its inputs is non-zero

Simple generalization of determinism

sum unit is Q-marginal deterministic

 $: \Longleftrightarrow \text{for all partial states } q \in Q,$ at most one of its inputs is non-zero

 ${\mathfrak G}$ is ${\it Q}$ -marginal deterministic

 $: \Longleftrightarrow \text{ for all sum units } n \in \mathfrak{G} \text{ with } \varphi(n) \cap Q \neq \emptyset,$

 $\it n$ is $\it Q$ -marginal deterministic

Marginal Determinism: Example

Marginal Determinism: Example

Tractable Computation

Adjust feed-forward algorithms for MAR and MAP queries

- Adjust feed-forward algorithms for MAR and MAP queries
- At the end, backward pass is needed for modes

- Adjust feed-forward algorithms for MAR and MAP queries
- At the end, backward pass is needed for modes
- Assume, input units provide correct output

- Adjust feed-forward algorithms for MAR and MAP queries
- At the end, backward pass is needed for modes
- Assume, input units provide correct output

$$X_1 \longrightarrow$$

Product units are handled identically in MAR and MAP

Tractable Computation: Sum Units

Tractable Computation: Sum Units

Theorem:

 ${\mathcal G}$ be smooth, decomposable, and ${\mathcal Q}$ -marginal deterministic

 \implies for any parameterization ϑ

the algorithm tractably computes MMAP queries of ${\mathfrak C}$ over Q

Theorem:

 ${\mathfrak G}$ be smooth, decomposable, and ${\it Q}$ -marginal deterministic

- \implies for any parameterization ϑ the algorithm tractably computes MMAP queries of $\mathfrak C$ over Q
- ▶ Proof by induction with root node $n \in \mathcal{G}$

Theorem:

 ${\mathfrak G}$ be smooth, decomposable, and ${\it Q}$ -marginal deterministic

- \implies for any parameterization ϑ the algorithm tractably computes MMAP queries of $\mathfrak C$ over Q
- ▶ Proof by induction with root node $n \in \mathcal{G}$
- Output of input units is correct by assumption

Sufficient Conditions

Theorem:

 ${\mathfrak G}$ be smooth, decomposable, and ${\mathcal Q}$ -marginal deterministic

- \implies for any parameterization ϑ the algorithm tractably computes MMAP queries of ${\mathfrak C}$ over Q
- ▶ Proof by induction with root node $n \in 9$
- Output of input units is correct by assumption

$$Q(e, \mathcal{I}) = \max_{q \in val(Q)} \int_{\mathcal{I}} \mathcal{C}(Z, q, e) \, dZ$$

lacktriangle Apply decomposability and partition Z, Q, and E

ightharpoonup Apply decomposability and partition Z, Q, and E

$$Q(e, \mathcal{I}) = \max_{q_1, \dots, q_k \in \text{val}(Q)} \int_{\mathcal{I}} \prod_{i=1}^k \mathcal{C}_i(Z_i, q_i, e_i) \, dZ$$

 \triangleright Apply decomposability and partition Z, Q, and E

$$Q(e, \mathcal{I}) = \max_{q_1, \dots, q_k \in val(Q)} \int_{\mathcal{I}} \prod_{i=1}^k \mathcal{C}_i(Z_i, q_i, e_i) \, dZ$$
$$= \max_{q_1, \dots, q_k \in val(Q)} \prod_{i=1}^k \int_{\mathcal{I}} \mathcal{C}_i(Z_i, q_i, e_i) \, dZ_i$$

ightharpoonup Apply decomposability and partition Z, Q, and E

$$Q(e, \mathcal{I}) = \max_{q_1, \dots, q_k \in \text{val}(Q)} \int_{\mathcal{I}} \prod_{i=1}^k \mathcal{C}_i(Z_i, q_i, e_i) \, dZ$$

$$= \max_{q_1, \dots, q_k \in \text{val}(Q)} \prod_{i=1}^k \int_{\mathcal{I}} \mathcal{C}_i(Z_i, q_i, e_i) \, dZ_i$$

$$= \prod_{i=1}^k \max_{q_i \in \text{val}(Q)} \int_{\mathcal{I}_i} \mathcal{C}_i(Z_i, q_i, e_i) \, dZ_i$$

ightharpoonup Apply decomposability and partition Z, Q, and E

$$Q(e, \mathcal{I}) = \max_{q_1, \dots, q_k \in \text{val}(Q)} \int_{\mathcal{I}} \prod_{i=1}^k \mathcal{C}_i(Z_i, q_i, e_i) \, dZ$$

$$= \max_{q_1, \dots, q_k \in \text{val}(Q)} \prod_{i=1}^k \int_{\mathcal{I}} \mathcal{C}_i(Z_i, q_i, e_i) \, dZ_i$$

$$= \prod_{i=1}^k \max_{q_i \in \text{val}(Q)} \int_{\mathcal{I}_i} \mathcal{C}_i(Z_i, q_i, e_i) \, dZ_i$$

$$= \prod_{i=1}^k \mathcal{Q}_i(e_i, \mathcal{I}_i)$$

lacktriangle Sum units with $\varphi(n)\cap Q=\emptyset$ reduce to MAR queries

lacktriangle Sum units with $\varphi(n)\cap Q=\emptyset$ reduce to MAR queries

$$Q(e, \mathcal{I}) = \max_{q \in val(Q)} \int_{\mathcal{I}} \sum_{i \in in(n)} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$

Sum units with $\varphi(n) \cap Q = \emptyset$ reduce to MAR queries

$$Q(e, \mathcal{I}) = \max_{q \in \text{val}(Q)} \int_{\mathcal{I}} \sum_{i \in \text{in}(n)} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$
$$= \max_{q \in \text{val}(Q)} \sum_{i \in \text{in}(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$

Sum units with $\varphi(n) \cap Q = \emptyset$ reduce to MAR queries

$$Q(e, \mathcal{I}) = \max_{q \in val(Q)} \int_{\mathcal{I}} \sum_{i \in in(n)} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$
$$= \max_{q \in val(Q)} \sum_{i \in in(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$
$$= \max_{q \in val(Q)} \max_{i \in in(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$

lacktriangle Sum units with $\varphi(n)\cap Q=\emptyset$ reduce to MAR queries

$$Q(e, \mathcal{I}) = \max_{q \in \text{val}(Q)} \int_{\mathcal{I}} \sum_{i \in \text{in}(n)} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$

$$= \max_{q \in \text{val}(Q)} \sum_{i \in \text{in}(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$

$$= \max_{q \in \text{val}(Q)} \max_{i \in \text{in}(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z, q, e) \, dZ$$

$$= \max_{i \in \text{in}(n)} \vartheta_i \max_{q \in \text{val}(Q)} \int_{\mathcal{I}} \mathcal{C}_i(Z, q, e) \, dZ$$

Sum units with $\varphi(n) \cap Q = \emptyset$ reduce to MAR queries

$$\begin{split} \mathcal{Q}(e,\mathcal{I}) &= \max_{q \in \mathrm{val}(Q)} \int_{\mathcal{I}} \sum_{i \in \mathrm{in}(n)} \vartheta_i \mathcal{C}_i(Z,q,e) \, \mathrm{d}Z \\ &= \max_{q \in \mathrm{val}(Q)} \sum_{i \in \mathrm{in}(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z,q,e) \, \mathrm{d}Z \\ &= \max_{q \in \mathrm{val}(Q)} \max_{i \in \mathrm{in}(n)} \int_{\mathcal{I}} \vartheta_i \mathcal{C}_i(Z,q,e) \, \mathrm{d}Z \\ &= \max_{i \in \mathrm{in}(n)} \vartheta_i \max_{q \in \mathrm{val}(Q)} \int_{\mathcal{I}} \mathcal{C}_i(Z,q,e) \, \mathrm{d}Z \\ &= \max_{i \in \mathrm{in}(n)} \vartheta_i \mathcal{Q}_i(e,\mathcal{I}) \end{split}$$

MMAP queries are typically be NP-hard

- ► MMAP queries are typically be NP-hard
- Complexity depends on set of query variables

- MMAP queries are typically be NP-hard
- Complexity depends on set of query variables
- Marginal determinism, smoothness, and decomposability are sufficient but strong conditions for tractable computation

- MMAP queries are typically be NP-hard
- Complexity depends on set of query variables
- Marginal determinism, smoothness, and decomposability are sufficient but strong conditions for tractable computation
- Sum units compute maxima if support contains query variables

Marginal determinism for all sets of query variables

- Marginal determinism for all sets of query variables
 - Sum-maximizer circuits

- Marginal determinism for all sets of query variables
- Sum-maximizer circuits
- Tractable computation of information-theoretic measures

Thank you for Your Attention!

- Marginal determinism for all sets of query variables
- Sum-maximizer circuits
- Tractable computation of information-theoretic measures

References

(1) YooJung Choi, Antonio Vergari, and Guy Van den Broeck. "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models". In: (October 2020). URL: http://starai.cs.ucla.edu/papers/ProbCirc20.pdf (visited on 01/19/2022).