ML4/M Bayesian Regression – Olympic example

Simon Rogers

17th February 2016

Aims

To implement Bayesian inference over the parameters of the linear model for the Olympic data and plot the predicted mean and variance for different polynomial orders.

Tasks

- Download the 100m data (again)
- For some polynomial order k (I suggest you start with the linear model, but write your code such that it's straightforward to change this to quadratic, cubic, etc), define the mean and covariance of a Gaussian prior over \mathbf{w} . I.e. create a mean vector (same size as \mathbf{w}) that is all zeros and a covariance matrix that has zeros everywhere except on the diagonal, (np.zeros((k,1)) and 100.0*np.identity(k+1) will help here, if \mathbf{k} is the polyonial order) where the values are 100. Have a think about what kind of models are likely from the prior. If you're feeling adventurous, sample some \mathbf{w} values from this prior (see below) and plot the models.
- Create the X object (column of 1s, column of x, etc)
- Compute the mean and covariance of the posterior over **w** (expressions below). If you're feeling adventurous, you could derive this in the same manner we derived it for the one-dimensional case in the lecture. If you're doing this, I suggest you write the likelihood as an N-dimensional Gaussian with mean $\mathbf{X}\mathbf{w}$ and covariance $\sigma^2\mathbf{I}$.
- Define a test set over the range of Olympic years of interest. You will use this for plotting. Make the **X** for the test data. Compute the mean (expression below) and the variance (ditto) of the predictive Gaussian at the test points. The errorbar function is a good way of doing this. Does it look right?

Some useful things

Sampling from a multivariate Gaussian

If you want to visualise samples from the prior or posterior, numpy gives you a function to sample from multivariate Gaussians. It is numpy.random.multivariate_normal(mean,covariance). Note that the mean should be a one-dimensional object. You might find yours is 2-dimensional. If that's the case, use the .flatten() method to get rid of the extra dimension when you call the random function.

Posterior mean and covariance

If the prior mean is zero and the prior covariance is denoted as Σ_0 then the posterior covariance is given by:

$$\mathbf{\Sigma} = \left(\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X} + \Sigma_0^{-1}\right)^{-1}$$

and the mean by

$$\mu = \frac{1}{\sigma^2} \mathbf{\Sigma} \mathbf{X}^T \mathbf{t}$$

Set σ^2 to 0.05.

Making predictions

The predictive mean is given by $\mathbf{X}_{test}\boldsymbol{\mu}$ and the predictive variance for a single test point by $\sigma^2 + \mathbf{x}_*^T \mathbf{\Sigma} \mathbf{x}_*$

Plotting errorbars

If you have the predictive mean for all of your test points in a vector pred_mean and the variances in pred_var then the following will plot you errorbars (assming pylab or matplotlib are imported as plt:

plt.errorbar(testx,pred_mean,pred_var)

If you do this for a 2nd order polyomial and a fine grid of test points between -10 and 50 (assuming you have re-scaled the x values by subtracting 1896 and dividing by 4) you should get something that looks like the figure below. Play around with the prior covariance values and σ^2 to see what happens.

Figure 1: