딥러닝 분반

임효진

토픽 모델링

Topic Modeling: A type of statistical model for discovering the abstract
"topics" that occur in a collection of documents

- LSA
- LDA

LSA (Latent Semantic Analysis)

LDA (Latent Dirichlet Allocation)

주제 topic1 topic2 topic1 topic1 topic2 topic2 topic3 topic2 topic3	주제 topic1 topic2 topic1 topic1 topic2 topic2 topic3 topic2 topic3	단어	문고리	거래	가방	나눔	문고리	드림	비대면	거래	택배
TAIL TOPICE TOPICE TOPICE TOPICE TOPICE TOPICE		주제	topic1	topic2	topic1	topic1	topic2	topic2	topic3	topic2	topic3

2번문서

1번문서

	토픽-단어	문고리	거래	가방	나눔	드림	비대면	택배
	topic1	1.001	0.001	1.001	1.001	0.001	0.001	0.001
	topic2	1.001	2.001	0.001	0.001	1.001	0.001	0.001
	topic3	0.001	0.001	0.001	0.001	0.001	1.001	1.001
_			•	•	•		•	

1번무서	 3번무서

문고리

topic2

드림

topic2

비대면

topic3

나눔

topic1

2번문서

2.01

2.01

0.01

3번문서

0.01

1.01

2.01

거래

topic2

택배

topic3

1번문서

1.01

1.01

0.01

가방

topic1

거래

topic2

문고리

미분류

토픽-문서

topic1

topic2

topic3

단어

주제

3번문서

Word2vec

CBOW (Continuous Bag of Words)

$$x_k = [0, \dots, 0, 1, 0, \dots, 0]$$

$$(x^{c-m}, x^{c-m+1}, \dots, x^{c-1}, x^{c+1}, \dots x^{c+m-1}, x^{c+m}) \in \mathbb{R}^{|V|}$$

$$\mathbf{W} \in \mathbb{R}^{V imes N}, \ \mathbf{W}' \in \mathbb{R}^{N imes V}$$

$$P(x_c|x_{c-m}, \dots x_{c-1}, x_{c+1}, \dots, x_{c+m})$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

$$(v_{c-m} = \mathbf{W} x^{c-m}, \dots, v_{c+m} = \mathbf{W} x^{c+m}) \in \mathbb{R}^n$$

$$egin{aligned} \hat{v} &= rac{v_{c-m} + v_{c-m+1} + \dots + v_{c+m}}{2m} \in \mathbb{R}^n \ z &= \mathbf{U} \hat{v} \in \mathbb{R}^{|V|} \end{aligned}$$

$$\hat{y} = softmax(z) \in \mathbb{R}^{|V|}$$

$$H(\hat{y},y) = -\sum_{j=1}^{|V|} y_j \log(\hat{y_j})$$

$$H(\hat{y},y) = -y_i \log(\hat{y}_i)$$

$$egin{aligned} minimize J &= -\log P(w_c|w_{c-m},\ldots,w_{c+m}) \ &= -\log P(u_c|v) \ &= -\log rac{exp(u_c^\intercal \hat{v})}{\sum_{j=1}^{|V|} exp(u_j^\intercal \hat{v})} \ &= -u_c^{intercal} \hat{v} + \log \sum_{i=1}^{|V|} exp(u_j^\intercal \hat{v}) \end{aligned}$$

- \circ C개의 단어를 Hidden Layer로 보내는 C imes N
- \circ Hidden Layer에서 Output Layer로 가는 N imes V

Skip-gram

Model	Semantic-Syntactic Word Relationship test set		MSR Word Relatedness
Architecture	Semantic Accuracy [%]	Syntactic Accuracy [%]	Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

Negative Sampling

입력과 레이블의 변화

입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	sat	1
cat	on	1
sat	fat	1
sat	cat	1
sat	on	1
sat	the	1

	급극	네이글
중심 단어주변 단어 /	cat	The
The fat cat sat on the mat	cat	fat
The late cate sate of the mate	cat	sat
\	cat	on
/	sat	fat
The fet cet est on the met	sat	cat
The fat cat sat on the mát	sat	on
\	sat	the

이려 게이브

Negative Sampling

입력과 레이블의 변화

입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	sat	1
cat	on	1

OLEHA	01740	JULIE
입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	pizza	0
cat	computer	0
cat	sat	1
cat	on	1

단어 집합에서 랜덤으로 선택된 단어들을 레이블 0의 샘플로 추가.

입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	pizza	0
cat	computer	0
cat	sat	1
cat	on	1
cat	cute	1
cat	mighty	0

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014.

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier.

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Figure 1: The Transformer - model architecture.

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$

where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

Attention Visualizations

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

```
Input = [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]
```

```
Label = IsNext
```

Label = NotNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.