

Definição

- Uma Rede Neuronal Artificial (RNA) é um sistema computacional de base conexionista para a resolução de problemas.
- Uma RNA é concebida com base num modelo simplificado do sistema nervoso central dos seres humanos.
- Uma RNA é definida por uma estrutura interligada de unidades computacionais, designadas neurónios, com capacidade de aprendizagem.

Neurónio

- Unidade computacional de composição da RNA.
- Identificado pela sua posição na rede.
- Caracterizado pelo valor do estado.

Axónio

- Via de comunicação entre os neurónios.
- Pode ligar qualquer neurónio, incluindo o próprio.
- As ligações podem variar ao longo do tempo.
- A informação circula em um só sentido.

Sinapse

- Ponto de ligação entre axónios e neurónios.
- O valor da sinapse determina o peso (importância) do sinal a entrar no neurónio: excitativo, inibidor ou nulo.
- A variação no tempo determina a aprendizagem da RNA.

Ativação

- O valor de ativação é representado por um único valor.
- O valor de ativação varia com o tempo.
- A gama de valores varia com o modelo adotado (normalmente está dependente das entradas e de algum efeito de memória).

Transferência

- O valor de transferência de um neurónio determina o valor que é colocado na saída (transferido através do axónio).
- É calculado como uma função do valor de ativação (eventualmente com algum efeito de memória).

Tarefas de um neurónio

Cálculo do valor de saída (output = O_i), função do valor de ativação:

$$O_i = f_T (A_i)$$

O

A

- Cálculo do valor de ativação (A_i).
- Varia no tempo com o seu próprio valor e o de outras entradas (w_i ; *I*):

$$A_{j} = \mathcal{F}(A_{j-1}; I_{j}; \sum W_{i,j} \times O_{i})$$

Aprendizagem: regras de modificação dos pesos (w_i).

Arquiteturas de RNAs

• Feed forward, de uma só camada:

• Feed forward, multi-camada:

Recorrente

Paradigmas de aprendizagem

Sem supervisão:

(p.ex., quando dois neurónios adjacentes têm variações da ativação no mesmo sentido, então o peso da ligação deve ser progressivamente aumentado.)

Paradigmas de aprendizagem

(p.ex., os ajustes nos pesos das ligações são efetuados por forma a minimizar o erro produzido pelos resultados da RNA.)

■ De reforço: o exemplo contém, apenas, uma indicação sobre a correção do resultado.

Regras de treino (aprendizagem)

- O treino de uma RNA corresponde à aplicação de regras de aprendizagem, por forma a fazer variar os pesos das ligações (sinapses);
- Exemplos de regras de aprendizagem mais comuns são:
 - o Hebbian;
 - o Competitiva;
 - o Estocástica;
 - Baseada na memória;
 - o Gradiente decrescente.

Especificação

- Quantidade de neurónios:
 - o na camada de entrada;
 - o na camada de saída;
 - o nas camadas intermédias;
- Níveis (ou camadas) da RNA;
- Ligações entre neurónios;
- Topologia das ligações;
- Esquema de atribuição e atualização dos pesos;
- Funções:
 - o de transferência;
 - o de ativação;
 - o de aprendizagem;
- Métodos de Treino.

Resolução de problemas com RNA's

■ Problema: XOR

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Redes Neuronais Artificiais

- Função de ativação:
 F_A = ∑ entradas x pesos
- Função de transferência:

- RNA *feed forward*, completamente ligada, com camadas 2-1;
- Assumir o resultado de treino dado por:

$$\mathcal{F}_{A}$$
 = \sum entradas x pesos

- RNA *feed forward*, completamente ligada, com camadas 2-1;
- Assumir o resultado de treino dado por:

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	$\left(\begin{array}{c}1\end{array}\right)$

$$\mathcal{F}_{A} = \sum \text{entradas x pesos}$$

- RNA *feed forward*, completamente ligada, com **camadas 2-2-1**;
- Assumir o resultado de treino dado por:

$$\mathcal{F}_{A} = \sum \text{entradas x pesos}$$

- RNA *feed forward*, completamente ligada, com **camadas 2-2-1**;
- Assumir o resultado de treino dado por:

A	В	XOR
. 0	0	0
0	1	1
1	0	1
1	1	(0)

$$\mathcal{F}_{A} = \sum \text{entradas x pesos}$$

Treino de RNA's

Considere-se uma Rede Neuronal Artificial...

Treino de RNA's

■ ... composta por 2 neurónios à entrada e 1 à saída...

Treino de RNA's

• ... feed forward, completamente ligada.

Treino de RNA's

Os exemplos de treino contêm os resultados pretendidos.

Treino de RNA's

Atribuição aleatória dos pesos às sinapses.

$$f_{A}(P,E) = \sum P \times E$$
$$f_{T}(A) = A$$

Treino de RNA's

■ Cálculo do valor de ativação...

$$f_A(P,E) = \sum P \times E$$

$$f_T(A) = A$$

Treino de RNA's

... para todos os neurónios da camada intermédia.

$$f_{A}(P,E) = \sum P \times E$$
$$f_{T}(A) = A$$

Treino de RNA's

Cálculo do valor de transferência.

$$f_A(P,E) = \sum P \times E$$

$$f_T(A) = A$$

Treino de RNA's

■ Valor de ativação na camada de saída...

$$f_{A}(P,E) = \sum P \times E$$

$$f_{T}(A) = A$$

Treino de RNA's

... e respetivo valor de transferência.

$$f_{A}(P,E) = \sum P \times E$$

$$f_{T}(A) = A$$

Treino de RNA's

■ Cálculo do erro na camada de saída...

 $\varepsilon = OUT_{\mathcal{D}} - OUT_{\mathcal{C}}$

 $\varepsilon = \varepsilon \times P$

Treino de RNA's

• ... e cálculo do valor estimado do erro na camada intermédia.

Treino de RNA's

■ Aplicação de uma regra de atualização dos pesos das sinapses...

Treino de RNA's

... para atualizar os valores das sinapses de todos os neurónios.

Treino de RNA's

■ Segunda iteração da propagação do caso de treino...

$$f_{A}(P,E) = \sum P \times E$$
$$f_{T}(A) = A$$

Treino de RNA's

■ ... e cálculo do erro produzido pela RNA na segunda iteração.

Referências bibliográficas

- Cortez, P., Neves, J., "Redes Neuronais Artificiais", Unidade de Ensino, Departamento de Informática, Universidade do Minho, 2000;
- Haykin, S., "Neural Networks A Comprehensive Foundation", Prentice-Hall, New Jersey, 2nd Edition, 1999.

Intelligent Systems Lab

Contactos

- Universidade do Minho
- Escola de Engenharia
- Departamento de Informática
- http://islab.di.uminho.pt
- DI-3.22

