L15: Groups acting on themselves

Groups acting on themselve

Recall we had three "interesting" action G C G lett/right-regular adjoint

Thu [Cayley's that Any finite group is isom to a subgroup of S_n (for n = |G|).

Pf Let G & G be the left-tegrillar action. It correspond to a group-hom. $S: G \to S_G \cong S_h$ But S is injudice: $S(g) = id_G \hookrightarrow S(g)(G) = h$ th

But S is injective: $S(g) = id_a \leftarrow S(g)(a) = h$ Th $S^h \stackrel{q=c}{=} g = c$.

Lemma X a finite ed. Then $5_X = S_n$ for n = |X|.

Ef Chease a bijection 4: 11,2,..., 11-x. Then 4:5x -5n define the required isomorphism.

Adjoint action Sad Recall a C a by gih = ghg-1

Deficial G be a stemp. The center of G is $E(G) = \{g \in G \mid gx = xg \ \forall x \in G\} = Fix_G(G)$ · Let $x \in G$ we call $C_G(x) = \{g \in G \mid gx_g^{-1} = x\} = Slab_G(x)$ the centralize of x in G.

· Two elements gr, gr & G are conjugate it Gisgs = G.jgz · The orbits of Sast are collect conjugacy classes.

Lemma Z(G) 4 G & Z(G) is abelian Pf Exercise

Thun (Class equation) $|G| = |\mathcal{I}(G)| + \mathcal{E}|_{G(G_i)}|$ where g_1, \dots, g_ℓ is a set of representative of conjugacy
classes and contained in the center.

Thus IT G has order p" for not and p prime, then Z(G) + {e4.

If Suppose $F(G) = \{e\}$. But then $|G| = 1 + \sum_{i=1}^{g} \left| \frac{G}{G(g_i)} \right|$ p divides |G| $Since \left| \frac{G}{G(g_i)} \right| = \frac{|G|}{|G(g_i)|} = \frac{p^n}{|G(g_i)|} \text{ and } |G(g_i)| \neq G$

We get that $p \mid |G_{G(i)}| \quad \forall i'$ But then p also divides $1 = |G| - \sum_{i=1}^{d} |G_{G(i)}| \quad \forall \quad \Box$

Cor II |G| = p2 then G is abolian.

Pf By above $\mathcal{I}(G) \neq \{ \in \}$ hence $|\mathcal{I}(G)| \in \{ p_i p^2 \}$.

If (F(G) = p2 we are done (F(G)=G).

Otherwise we obtain that G/E/G) is eyelic. (= 7/p7)

Let $g \in G$ be any element st. (e) \neq (y) $\in G/T(G)$ i.e. a general of G

Claim Any XEG can be written as $x = y^2 z$ for some it I

and ZE F(G)

If We have $[x] = [y]^{\frac{1}{2}} = [y]^{\frac{1}{2}}$ for rane i, but then $y^{-1}x \in \mathcal{E}(G)$ is. $\exists z \in \mathcal{E}(G)$ of $y^{-1}x = \mathcal{I}$.

Clark G is abelian

y'z, y'z, = y'y' z, z, = y'') z, z, = y'z, y'z, U

Runk With more werk we can show G = Zyz

G = Zp x Zp

Aside: If G, H are stoups we can dulm GxH into a stoup

Via (g1, h1). (g2, h2) := (g1g2, h1h2)