Winter 18 – AMS206B Homework 5

Due: Friday Feb. 23nd

1. Let (X_1, X_2, X_3) have trinomial distribution with density

$$f(x_1, x_2, x_3 | \theta_1, \theta_2) \propto \theta_1^{x_1} \theta_2^{x_2} (1 - \theta_1 - \theta_2)^{x_3}.$$

Derive Jeffreys prior for (θ_1, θ_2) .

- 2. (Robert Problem 3.9) Let $x \mid \theta \sim \text{Bin}(n, \theta)$ and $\theta \sim \text{Be}(\alpha, \beta)$. Determine whether there exits values of α , β such that $\pi(\theta \mid x)$ is the uniform prior on [0, 1], even for a single value of x.
- 3. (Robert Problem 3.10) Let $x \mid \theta \sim \text{Pa}(\alpha, \theta)$, a Pareto distribution, and $\theta \sim \text{Be}(\mu, \nu)$. Show that if $\alpha < 1$ and x > 1, a particular choice of μ and ν gives $\pi(\theta \mid x)$ as the uniform prior on [0,1].
- 4. (Robert Problem 3.31) Consider $x \mid \theta \sim N(\theta, \theta)$ with $\theta > 0$.
 - (a) Determine the Jeffreys prior $\pi^{J}(\theta)$.
 - (b) Say whether the distribution of x belongs to an exponential family and derive the conjugate priors on θ .
 - (c) Use Proposition 3.3.14 to relate the hyperparameters of the conjugate priors with the mean of θ .
- 5. (Berger Problem 3-12) Determine the Jefferys noninformative prior for the unknown parameter in each of the following distributions:
 - (a) $Poi(\theta)$
 - (c) $NB(m, \theta)$ (m is given)
- 6. (Berger Problem 3-22) Suppose X, the failure time of an electronic component, has density (on $(0,\infty)$) $f(x\mid\theta)=\theta^{-1}\exp\{-x/\theta\}$. The unknown θ has an IG(1,0.01) prior distribution. Calculate the (marginal) probability that the component fails before time 200.