8.1 1) La fonction  $\tan(x) = \frac{\sin(x)}{\cos(x)}$  n'est pas définie si  $\cos(x) = 0$ , c'est-à-dire si  $x = \frac{\pi}{2} + k \pi$  avec  $k \in \mathbb{Z}$ . C'est pourquoi  $D_{\tan} = \mathbb{R} - \{\frac{\pi}{2} + k \pi : k \in \mathbb{Z}\}$ .

2) 
$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin(x)}{\cos(x)} = -\frac{\sin(x)}{\cos(x)} = -\tan(x)$$

La fonction tangente est ainsi impaire.

3) 
$$\tan(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin(x)}{-\cos(x)} = \frac{\sin(x)}{\cos(x)} = \tan(x)$$

4) Vu la périodicité de la fonction tangente, il suffit de calculer  $\lim_{x \to \frac{\pi}{2}} \tan(x)$ .

$$\lim_{x \to \frac{\pi}{2}} \tan(x) = \lim_{x \to \frac{\pi}{2}} \frac{\sin(x)}{\cos(x)} = \frac{1}{0} = \infty$$

On en tire que la fonction tangente a pour asymptotes verticales :  $x=\frac{\pi}{2}+k\,\pi$  où  $k\in\mathbb{Z}.$ 

