# **Topic 1: Learning**

### **Learning: A Formal Introduction**

- ▶ **Domain Set:** An arbitrary set X which we may wish to label.
- ▶ Label Set: Set of possible labels  $\mathcal{Y} = f^*(\mathcal{X})$ , where  $f^* : \mathcal{X} \to \mathcal{Y}$  is the true labeling function.
- ▶ Training Data: A finite sequence of pairs in  $\mathcal{X} \times \mathcal{Y}$ , denoted as  $\boldsymbol{z}_{1:N} = (z_1, \cdots, z_N) = \Big((x_1, y_1), \cdots, (x_N, y_N)\Big)^1$
- ▶ **Learner's Output:** A prediction rule  $f: \mathcal{X} \to \mathcal{Y}$  (also called a predictor, hypothesis, classifier) that predicts the labels of a new domain point from a predictor class  $\mathcal{F}$ . Technically, f is implemented using an algorithm  $\mathcal{A}(z_{1:N})$ .
- ▶ **Data Generation Model:** A probability distribution  $P_{X,Y}$  derived from a family of probability distributions  $\mathcal{P}$ , from which the training data  $z_{1:N}$  is generated.
- ▶ **Measure of Success:** Loss function  $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$  (also called risk, generalized error, true error) that quantifies how bad the prediction rule is, when compared to the true labeling function  $f^*$

Goal: Choose the best predictor, i.e.

$$\hat{f} = \underset{f \in \mathcal{F}}{\text{minimize}} \ \mathbb{E}_{P_{X,Y}} \left[ \ell(f(X), Y) \right]$$



<sup>&</sup>lt;sup>1</sup>Sometimes, training data does not come with labels. In such a case, training data is  $x_{1:N}=(x_1,\cdots,x_N)$ .

# **Example: Bias Estimation in Coin Tossing**

- ▶ Goal: Given a (biased) coin with unknown probability  $\theta$  of turning heads, determine  $\theta$  as accurately as possible.
- ▶ Given  $\theta$ , N and  $\hat{\theta}_N(\cdot)$ , we can partition  $\{0,1\}^N$ , the set of all N coin tosses, as

$$\text{Good Data:} \quad G_{N,\epsilon} \quad \triangleq \quad \left\{ \boldsymbol{x}_{1:N} \in \left\{0,1\right\}^N \, \middle| \ \left\| \hat{\theta}_N(\boldsymbol{x}_{1:N}) - \boldsymbol{\theta} \right\| \leq \epsilon \right. \right\}$$

$$\text{Bad Data:} \quad B_{N,\epsilon} \quad \triangleq \quad \left\{ \boldsymbol{x}_{1:N} \in \{0,1\}^N \, \Big| \, \, \left\| \hat{\theta}_N(\boldsymbol{x}_{1:N}) - \boldsymbol{\theta} \right\| > \epsilon \right\}$$

#### Claim 1

For any true value  $\theta$  of the coin bias, given any  $\epsilon,\delta>0$ , it suffices to collect  $N\geq \frac{1}{2\epsilon^2}\log\left(\frac{2}{\delta}\right)$  samples to guarantee

$$\mathbb{P}_{\theta}\left(G_{N,\epsilon}\right) = \mathbb{P}_{\theta}\left(\left\|\hat{\theta}_{N}(\boldsymbol{x}_{1:N}) - \theta\right\| \leq \epsilon\right) > 1 - \delta.$$

**Example: Bias Estimation in Coin Tossing (cont...)** 

**Proof of Claim 1:** 

# Main Essence of Learning

Our main wish is to learn something about a phenomenon of interest, via observing random samples of a quantity that is relevant to the phenomenon.

Two basic questions to ask:

- ▶ Statistical Learning: How many samples are needed to achieve a given accuracy  $(\epsilon)$  with a given confidence  $(\delta)$ ?
- ► Computational Learning: How efficient is the learning algorithm?

Typical learning frameworks:

- ► Estimation (e.g. coin tossing)
- ► Prediction (e.g. classification)
- Clustering
- ► Representation (Feature) Learning
- ► Density Estimation...

All the frameworks can be broadly generalized into two learning problems:

- ► Concept Learning (Binary Outcomes)
- ► Function Learning (Generalized Outcomes)

# **Generalization 1: Concept Learning**

- ► Concept class: A class 𝒞 of subsets of 𝒳
- ▶ Unknown target concept:  $C^* \in \mathscr{C}$  picked by Nature
- ▶ Binary Label:  $Y_i = \mathbb{1}_{\{X_i \in C^*\}}$
- ightharpoonup The N feature-label pairs form the training set

$$Z_1 = (X_1, Y_1) = (X_1, \mathbb{1}_{\{X_1 \in C^*\}}), \dots, Z_N = (X_N, Y_N) = (X_N, \mathbb{1}_{\{X_n \in C^*\}}).$$

The objective is to approximate target concept  $C^*$  as accurately as possible.

Examples: Classification

### **Problem 1: Concept Learning**

- A concept learning problem is a triple (X, P, C), where X is the feature space, P is a family of probability distributions on X, and C is a concept class.
- ▶ A learning algorithm for  $(\mathcal{X}, \mathcal{P}, \mathscr{C})$  is a sequence  $\mathcal{A} = \{A_n\}_{n=1}^{\infty}$  of mappings  $A_N : (\mathcal{X} \times \{0,1\})^N \to \mathscr{C}$ .

Given a training set  $Z_{1:N}=(Z_1,\cdots,Z_N)\in\mathcal{Z}^N$  and a learning algorithm  $\mathcal{A}$ , the approximation to  $C^*$  is

$$\hat{C}_N = A_N(\mathbf{Z}_{1:N}) = A_N(Z_1, \dots, Z_N) = A_N\left(\left(X_1, \mathbb{1}_{\{X_1 \in C^*\}}\right), \dots, \left(X_N, \mathbb{1}_{\{X_N \in C^*\}}\right)\right).$$

# **Generalization 1: Concept Learning (cont...)**

Two types of errors: (i)  $X \in C^* \cap \hat{C}_N^c$ , (ii)  $X \in (C^*)^c \cap \hat{C}_N$ .

Combining the two, misclassification happens when X lies in the symmetric difference

$$C^*\Delta \hat{C}_N = \left(C^* \cap \hat{C}_N^c\right) \cup \left((C^*)^c \cap \hat{C}_N\right).$$

Performance measure of  $\mathcal{A}$ :  $L(C^*,\hat{C}_N) = \mathbb{P}(C^*\Delta\hat{C}_N) = \mathbb{P}(X\in C^*\Delta\hat{C}_N).$ 

Good Algorithm  $\Rightarrow L(C^*, \hat{C}_N) \to \infty$  as  $N \to \infty$ .

- ▶ Let  $X \sim P$ , and  $(X, \mathbb{1}_{X_M \in C}) \sim P_C$  for any  $C \in \mathscr{C}$ .
- ▶ Since  $\hat{C}_N$  is a random element in  $\mathscr{C}$ , the above convergence can only be achieved in a stochastic sense.
- ► Define "worst case" size of set of "bad" samples as

$$\phi_{\mathcal{A}}(N, \epsilon, P) = \sup_{C \in \mathscr{C}} P_C^N \left( L(C, A_N(\mathbf{Z}_{1:N})) > \epsilon \right)$$

▶ Since we do not know *P*, consider the worst case distribution as shown below:

$$\Phi_{\mathcal{A}}(N, \epsilon, \mathcal{P}) = \sup_{P \in \mathcal{P}} \phi_{\mathcal{A}}(N, \epsilon, P).$$

### Generalization 1: Concept Learning (cont...)

#### **Definition 1: PAC for Concept Learning**

A learning algorithm  $\mathcal{A}=\{A_N\}$  is probably approximately correct  $^a$  (or PAC) to accuracy  $\epsilon$  if

$$\lim_{N\to\infty} \Phi_{\mathcal{A}}(N,\epsilon,\mathcal{P}) = 0.$$

- We say that A is PAC, if it is PAC to accuracy  $\epsilon$  for every  $\epsilon > 0$ .
- ▶ The concept class  $\mathscr C$  is called PAC-learnable to accuracy  $\epsilon$  w.r.t. P, if there exists an algorithm that is PAC to accuracy  $\epsilon$ .
- ► Finally, we say that ℰ is PAC-learnable, if there exists an algorithm that is PAC.

Equivalently, a learning algorithm  $\mathcal{A}=\{A_N\}$  is PAC, if for any  $\epsilon>0$  and  $\delta>0$ , there exists some  $N^*(\epsilon,\delta)\in\mathbb{N}$  such that, for all  $N\geq N^*(\epsilon,\delta)$ ,  $C\in\mathscr{C}$  and  $P\in\mathscr{P}$ , we have

$$P_C^N\bigg(L\Big(C, A_N(\mathbf{Z}_{1:N})\Big) > \epsilon\bigg) \le \delta.$$

**Note:**  $N^*(\epsilon, \delta)$  is called the *sample complexity* of the learning algorithm  $\mathcal{A}$ .

<sup>&</sup>lt;sup>a</sup>D. Angluin, Queries and concept learning, Machine Learning, 2:319–342, 1988.

### **Example: Axis-Parallel Rectangles**

- ▶ Let  $\mathcal{X} = [0,1]^2$  and  $\mathscr{P}$  denote the set of all probability distributions on  $\mathcal{X}$
- ▶ Let ℰ denote the collection of all axis-parallel rectangles in ℋ, i.e.,
  C is in ℰ if it takes the form

$$C = [a_1, b_1] \times [a_2, b_2] = \{(x_1, x_2) \in [0, 1]^2 \mid a_1 \le x_1 \le b_1, \ a_2 \le x_2 \le b_2 \},$$

for some  $0 \le a_1 \le b_1 \le 1$  and  $0 \le a_2 \le b_2 \le 1$ .

#### Learning Algorithm:

Consider an intuitive algorithm  $\mathcal{A}=\{A_N\}_{N=1}^\infty$  where, for each N, we have

$$\hat{C}_N = A_N(\boldsymbol{Z}_{1:N})$$

= smallest rectangle  $C \in \mathscr{C}$  that contains all positive samples in  $\mathbf{Z}_{1:N}$ .



#### **Connections to Computer Vision:**

This problem is tangentially similar to estimating bounding boxes in images. The number of samples in  $\mathcal X$  is similar to the resolution of an image.

# **Example: Axis-Parallel Rectangles (cont...)**

#### Theorem 1

The above tightest rectangle algorithm  $\mathcal A$  is PAC, and therefore, the class  $\mathscr C$  is PAC-learnable, since

$$\Phi_{\mathcal{A}}(N, \epsilon, \mathcal{P}) \le 4\left(1 - \frac{\epsilon}{4}\right)^{N}.$$







#### Proof of Theorem 1:

**Example: Axis-Parallel Rectangles (cont...)** 

# **Generalization 2: Function Learning**

- ▶ Function class: A class  $\mathcal{F}$  defined on  $\mathcal{X}$
- ▶ *Target function:*  $f^* \in \mathcal{F}$  picked by nature
- ► Real-valued output:  $Y_i = f^*(X_i)$
- ► The *N* input-output pairs

$$Z_1 = (X_1, Y_1) = (X_1, f^*(X_1)), \dots, Z_N = (X_N, Y_N) = (X_N, f^*(X_n)).$$

The objective is to approximate target function  $f^*$  as accurately as possible.

Examples: Estimation

### **Problem 2: Function Learning**

- ▶ A function learning problem is a triple  $(\mathcal{X}, \mathcal{P}, \mathcal{F})$ , where  $\mathcal{X}$  is the feature space,  $\mathcal{P}$  is a family of probability distributions on  $\mathcal{X}$ , and  $\mathcal{F}$  is a class of functions  $f: \mathcal{X} \to [0,1]$ .
- ▶ A learning algorithm for  $(\mathcal{X}, \mathcal{P}, \mathcal{F})$  is a sequence  $\mathcal{A} = \{A_n\}_{n=1}^{\infty}$  of mappings  $A_N : (\mathcal{X} \times \{0,1\})^N \to \mathcal{F}$ .

Given a training set  $Z_{1:N}=(Z_1,\cdots,Z_N)\in\mathcal{Z}^N$  and a learning algorithm  $\mathcal{A}$ , the approximation of  $f^*$  is

$$\hat{f}_N = A_N(\mathbf{Z}_{1:N}) = A_N\left(\left(X_1, \mathbb{1}_{\{X_1 \in C^*\}}\right), \cdots, \left(X_N, \mathbb{1}_{\{X_N \in C^*\}}\right)\right).$$

# Generalization 2: Function Learning (cont...)

Performance of 
$$\mathcal{A}$$
:  $L_P(\hat{f}_N, f^*) = \mathbb{E}_P\left[\left|\hat{f}_N - f^*\right|^2\right] = \int_{\mathcal{X}} |\hat{f}_N(x) - f^*(x)|^2 P(dx)$ 

**Remark:** Concept learning is a special case of function learning.

► Define "worst case" size of set of "bad" samples as

$$\phi_{\mathcal{A}}(N, \epsilon, P) = \sup_{f \in \mathcal{F}} P_f^N \left( L\left(A_N(\mathbf{Z}_{1:N}), f\right) > \epsilon \right)$$

▶ Since we do not know *P*, consider the worst case distribution as shown below:

$$\Phi_{\mathcal{A}}(N, \epsilon, \mathcal{P}) = \sup_{P \in \mathcal{P}} \gamma_{\mathcal{A}}(N, \epsilon, P).$$

#### **Definition 2: PAC for Function Learning**

A learning algorithm  $\mathcal{A}=\{A_N\}$  is probably approximately correct (or PAC) to accuracy  $\epsilon$  if

$$\lim_{N \to \infty} \Phi_{\mathcal{A}}(N, \epsilon, \mathcal{P}) = 0.$$

- ▶ The function class  $\mathcal{F}$  is called PAC-learnable to accuracy  $\epsilon$  w.r.t. P, if there exists an algorithm that is PAC to accuracy  $\epsilon$ .
- ightharpoonup Finally,  $\mathcal{F}$  is called PAC-learnable, if there exists an algorithm that is PAC.

### **Limitations of Model-Based Approaches**

- ▶ We assume  $C^* \in \mathscr{C}$  (or equivalently,  $f^* \in \mathcal{F}$ )  $\Rightarrow$  Fit data regarding a well-studied phenomenon to some *a priori* known hypothesis class
- ▶ Labels  $y = \mathbf{1}_{x \in C^*}$  (or equivalently,  $y = f^*(x)$ ) are assumed to be **noiseless**.

Such limitations will lead us naturally towards a new framework called *model-agnostic learning* (also called model-free learning).

The main goal is to find the best possible hypothesis (concept/function) within a chosen hypothesis class  $\mathcal{F}$ .

### **Problem 3: Model-Agnostic Learning**

A model-agnostic learning problem is a tuple  $(\mathcal{X}, \mathcal{Y}, \mathcal{P}, \mathcal{F})$ , where

- ► Sets:  $\mathcal{X}$  (input feature space),  $\mathcal{Y}$  (label space) and  $\mathcal{U}^a$  (hypothesis space)
- ▶ A class  $\mathcal{P}$  of probability distributions on  $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ .
- ▶ A class  $\mathcal{F}$  of functions  $f: \mathcal{X} \to \mathcal{U}$ .

A learning algorithm for  $(\mathcal{X},\mathcal{Y},\mathcal{U},\mathcal{P},\mathcal{F},\ell)$  is a sequence of mappings  $\mathcal{A}=\{A_N\}_{N=1}^\infty$ , where  $A_N:\mathcal{Z}^N \to \mathcal{F}$ .

 $<sup>{}^{</sup>a}\mathcal{U} \neq \mathcal{Y}$ , since the true-hypothesis labels are corrupted by noise.

# PAC Learnability for Model-Agnostic Learning

▶ Given a learning algorithm  $\mathcal{A} = \{A_N\}_{N=1}^{\infty}$  with  $A_N : \mathcal{Z}^N \to \mathcal{F}$ , if  $\hat{f}_N = A_N(\mathbf{Z}_{1:N})$ , then the performance can be measured as

$$L_P(\hat{f}_N) = \mathbb{E}_P\left[\ell(Y, \hat{f}_N(X))\right] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, \hat{f}_(X)) P(dx, dy)$$

- ▶ **Minimum risk:**  $L_P^*(\mathcal{F}) = \inf_{f \in \mathcal{F}} L_P(f)$  for an induced function class  $\mathcal{F}$ . i.e., given any algorithm  $\mathcal{A}$ , we have  $0 \le L_P^*(\mathcal{F}) \le L_P(\hat{f}_N) \le 1$ .
- Given any  $\epsilon > 0$ , let the worst case probability of getting a bad sample be

$$\Phi_{\mathcal{A}}(N,\epsilon) = \sup_{P \in \mathcal{P}} P^N \left( L_P(\hat{f}_N) > L_P^*(\mathcal{F}) + \epsilon \right)$$

### **Definition 3: PAC for Model-Agnostic Learning**

A learning algorithm  $\mathcal{A}=\{A_N\}$  for a problem  $(\mathcal{X},\mathcal{Y},\mathcal{U},\mathcal{P},\mathcal{F},\ell)$  is PAC to accuracy  $\epsilon$  if

$$\lim_{N \to \infty} \Phi_{\mathcal{A}}(N, \epsilon) = 0.$$

- ▶ An algorithm that is PAC to accuracy  $\epsilon$  for every  $\epsilon > 0$  is said to be PAC.
- ▶ Finally, a learning problem  $(\mathcal{X}, \mathcal{Y}, \mathcal{U}, \mathcal{P}, \mathcal{F}, \ell)$  is model-agnostically learnable if there exists an algorithm for it, which is PAC.

### **Empirical Risk Minimization**

#### But, we do not always know the input distribution $P \in \mathcal{P}$ .

- $ightharpoonup L_P(f)$  is unknown. Can we replace this with some surrogate?
- $\blacktriangleright \ \, \text{ERM Algorithm: } \hat{f}_N = \mathop{\arg\min}_{f \in \mathcal{F}} \ \, L_N(f) \triangleq \frac{1}{N} \sum_{i=1}^N \ell \big( Y_i, f(X_i) \big)$

### Theorem 2: Fundamental Theorem of Learning

Consider an agnostic learning problem  $(\mathcal{X}, \mathcal{P}, \mathcal{F})$  and let  $\delta > 0$ . For any  $P \in \mathcal{P}$ , the ERM algorithm satisfies

$$L_P(\hat{f}_N) \le L_P^*(\mathcal{F}) + 8\sqrt{\frac{V(\mathcal{F})\log(n+1)}{n}} + \sqrt{\frac{2\log(1/\delta)}{n}}$$

with probability at least  $1 - \delta$ .

Moreover, there is a universal constant C so that for any distribution P on  $\mathcal Z$  and  $\delta \in (0,1)$ , the ERM algorithm satisfies

$$L_P(\hat{f}_N) \le L_N(\hat{f}_N) + C\sqrt{\frac{V(\mathcal{F})}{n}} + \sqrt{\frac{2\log(1/\delta)}{n}}$$

with probability at least  $1 - \delta$ .

# Vapnik-Chervonenkis Dimension

#### **Definition 4: Shattering**

Let  $\mathscr C$  be a class of (measurable) subsets of some space  $\mathcal Z$ . We say that a finite set  $S=\{z_1,,\cdots,z_N\}\subset \mathcal Z$  is shattered by  $\mathscr C$ , if for every subset  $S'\subseteq S$ , there exists some  $C\in \mathscr C$  such that  $S'=S\cap C$ .

i.e.  $S=\{z_1,\cdots,z_N\}\subset\mathcal{Z}$  is shattered by  $\mathscr C$  if, for any binary N-tuple  $b=(b_1,\cdots,b_N)\in\{0,1\}^N$ , there exists some  $C\in\mathscr C$  such that

$$(\mathbb{1}_{\{z_1 \in C\}}, \cdots, \mathbb{1}_{\{z_N \in C\}}) = b.$$

 $N^{th} \text{ Shatter Coefficient of } \mathscr{C} \colon \qquad \mathbb{S}_N(\mathscr{C}) = \sup_{S \subset \mathcal{Z} \colon |S| = n} \big\{ S \cap C \ \big| \ C \in \mathscr{C} \big\}.$ 

#### **Definition 5: VC Dimension**

The Vapnik-Chervonenkis dimension (or the VC dimension) of  $\mathscr C$  is

$$V(\mathscr{C}) = \sup \{ |S|, \text{ such that } S \text{ is shattered by } \mathscr{C} \}.$$

If  $V(\mathscr{C}) < \infty$ , we say that  $\mathscr{C}$  is a VC class (of sets).

In other words.

$$V(\mathscr{C}) = \sup \{ n \in \mathcal{N} \mid \mathbb{S}_n(\mathscr{C}) = 2^n \}.$$

### Vapnik-Chervonenkis Dimension (cont...)

#### Definition 6: VC Dimension of $\mathcal{F}$

Let  $\mathcal F$  be a class of functions  $f:\mathcal Z\to\{0,1\}$ . We say that a finite set  $S=\{z_1,\cdots,z_n\}\subset\mathcal Z$  is shattered by  $\mathcal F$  if it is shattered by the class  $\mathcal C_{\mathcal F}=\{C_f:f\in\mathcal F\}$ , where  $C_f=\{z\in Z\mid f(z)=1\}$ .

#### **Example 1: Semi-Infinite Intervals**

Let  $\mathcal{Z} = \mathbb{R}$  and  $\mathscr{C}$  is a class of all intervals of the form  $(\infty, t)$ . Then,  $V(\mathscr{C}) = 1$ .

#### **Example 2: Closed Intervals**

Let  $\mathcal{Z} = \mathbb{R}$  and  $\mathscr{C}$  is a class of all intervals of the form (s,t). Then,  $V(\mathscr{C}) = 2$ .

#### **Example 3: Closed Half-Spaces**

Let  $\mathcal{Z}=\mathbb{R}^2$  and  $\mathscr{C}$  is a class of all closed half-spaces, i.e. the sets of the form  $\{z=(z_1,z_2)\in\mathbb{R}^2\mid w_1z_1+w_2z_2\geq b\}$  for all choices of  $w_1,w_2,b$  such that  $(w_1,w_2)\neq (0,0)$ . Then,  $V(\mathscr{C})=3$ .

#### **Example 4: Axis-Parallel Rectangles**

Let  $\mathcal{Z}=\mathbb{R}^2$  and  $\mathscr{C}$  is a class of all axis-parallel rectangles, i.e. the sets of the form  $C=[a_1,b_1]\times[a_2,b_2]$  for all  $a_1,a_2,b_1,b_2\in\mathbb{R}$ . Then,  $V(\mathscr{C})=4$ .

### No-Free-Lunch Theorem

$$\mathbb{P}\left[L_P(\hat{f}_N) \le L_N(\hat{f}_N) + C\sqrt{\frac{V(\mathcal{F})}{n}} + \sqrt{\frac{2\log(1/\delta)}{n}}\right] \ge 1 - \delta.$$

The converse of Theorem 2 is also true, i.e. there is no universal learner.

#### Theorem 3: No-Free-Lunch Theorem

Let  $\mathcal{A}=\{A_N\}_{N\in\mathbb{N}}$  be any binary classification algorithm with 0-1 binary loss on a domain  $\mathcal{X}$ . Let the training set be of size  $m\leq \frac{|\mathcal{X}|}{2}$ . Then, there always exists a distribution P over  $\mathcal{X}\times\{0,1\}$  such that

- 1. there exists a function  $f: \mathcal{X} \to \{0,1\}$  such that  $L_P(f) = 0$ ,
- 2. with probability at least 1/7 over some training set  $S \sim P^m$ , we have  $L_P(A_m(S)) \ge 1/8$ .

**Interpretation:** Design ML algorithm that performs well on a specific task on a practical data distribution space.

# Perceptron<sup>2</sup>: A Linear Threshold Unit (LTU)

$$y = \sigma(\boldsymbol{w}^T \boldsymbol{x}) = \sigma\left(\sum_{i=0}^d w_i x_i\right) \in \{-1, +1\},$$

where  $x_0 = 1$  (bias neuron),  $w_0$  is the threshold, and  $\sigma$  is the *activation* function.

**Multi-Output Perceptron:**  $y = \sigma(Wx) \in \{-1, +1\}^K$ , for K binary classes.

In nature, NN layers take diverse structural forms for various functionalities



Source: Marie T. Banich, Rebecca J. Compton, "Cognitive Neuroscience," Cambridge University Press, April 2018.

<sup>&</sup>lt;sup>2</sup>Frank Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain," *Psychological Review*, vol. 65, no. 6, pp: 386, 1958.

### **Feedforward Neural Networks (NNs)**

#### **Definition 7: Feedforward Neural Network**

A feedforward neural network is a directed acyclic graph  $\mathcal{G}=(V,E)$ , and a weight function  $w:E\to\mathbb{R}$ . Each node is a single neuron (LTU) which is modeled by an activation function  $\sigma:\mathbb{R}\to\mathbb{R}$ .

Let the set of nodes be decomposed into a union of disjoint nodes, i.e.

$$V = \bigcup_{\ell=0}^{L} V_{\ell},$$

such that each edge  $e \in E$  connects some node in  $V_{\ell-1}$  to  $V_{\ell}$  for some  $\ell=1,\cdots,L$ .

Let  $f_{\ell}(x)$  denote the output of  $V_{\ell}$ , when the NN is fed with some input x. Then,

$$oldsymbol{f}_{\ell}(oldsymbol{x}) = \sigma_{ell} \Big( W_{\ell} \cdot oldsymbol{f}_{\ell-1}(oldsymbol{x}) \Big)$$

In other words,

$$\mathcal{F} = \left\{ oldsymbol{x} 
ightarrow \sigma_L \Big( W_L \cdot \sigma_{L-1} ig( \cdots \sigma_1 (W_1 oldsymbol{x}) \cdots ig) \Big) \ igg| \ ||W_\ell|| \leq B ext{ for all } \ell = 1, \cdots, L 
ight\}$$

# **Multilayer Feedforward NNs and Universal Approximation**

### **Definition 8: Universal Approximator**

A class of functions  $\mathcal F$  is a universal approximator over a compact set S, if for every continuous function g and target accuracy  $\epsilon>0$ , there exists  $f\in\mathcal F$  with

$$\sup_{x \in S} |f(x) - g(x)| \le \epsilon.$$

Let  $\mathcal{F}_{\sigma,d}$  denote the set of all multilayer feedforward NNs  $\mathcal{F}$ , that is restricted to a d-dimensional input and uses  $\sigma(\cdot)$  as an activation function in all layers.

#### Theorem 4: Hornik, Stinchcombe and White, 1989

Suppose  $\sigma:\mathbb{R} \to \mathbb{R}$  denote a continuous sigmoidal function such that

$$\lim_{z \to -\infty} \sigma(z) = 0$$
, and  $\lim_{z \to \infty} \sigma(z) = 1$ .

Then, for any  $d \in \mathbb{R}$ ,  $\mathcal{F}_{\sigma,d}$  is universal.