COMP90025 Project 1D: MPI and Diameter of Graph

San Kho Lin (829463) — sanl1@student.unimelb.edu.au

1 Introduction

In this project, I am going to experiment MPI parallel programming on a given serial program that determine the diameter of a given graph.

2 Related Work

As in Project 1B, it is the same problem where a random weighted directed graph is given and the program has to find the shortest path possible. Then after the diameter of the graph is the maximum eccentricity of any vertex in the graph. In the given serial program, it uses All Paris Shortest Path approach and the implementation is Floyd-Warshall algorithm. In Project 1B parallel implementation, I experimented with OpenMP for Floyd-Warshall algorithm. The parallel approach is using Rowwise Decomposition [1]. It is relatively easy to program the row decomposition approach with OpenMP. However, it is quite challenging to implement the similar row division approach in MPI environment.

3 Parallel Design

According to Foster article [1], there are two approaches to parallize the Floyd algorithm as follow:

- One-dimensional row-wise decomposition
- Two-dimensional decomposition of the various matrices

In Foster's parallel design methodology, there are basically four steps (Figure 1).

- Partitioning data operated on computation are decomposed into smaller tasks, also known as **Primitive Tasks**.
- Communication communication to coordinating these primitive tasks are determined, and appropriate communication pattern and algorithms are defined.
- Agglomeration evaluate the performance requirements and implementations costs

- are accessed on first two stages, and if necessary, tasks are collected into larger task group to improve performance or reduce the development costs.
- Mapping individual task is assigned to a processor in such that it attempts to full-fill the satisfactory goals of maximizing processor utilization and minimizing communication costs. Mapping is achieved by statically or dynamically at run-time by load-balancing algorithms.

The smimilar techniques has also further discussed details in Quinn[2] book with many real live problems including Floyd algorithm.

Figure 1: Foster: a design methodology for parallel programs

4 Challenges in MPI

Recall the Floyd-Warshall algorithm, it involves **3-loops**, thus having complexity of $0(N^3)$. During k'th iteration, elements in matrix 'a' can be updated concurrently. It is because the k'th column and the k'th row have not changed during the k'th iteration.

```
for (k=0; k<n; k++)
  for (i=0; i<n; i++)
    for (j=0; j<n, j++)
      a[i][j]=MIN(a[i][j], a[i][k]+a[k][j]);</pre>
```

By using Foster's design approach, I can first partition each a[i, j] as a primitive task. As for

communication, updating a[i,j] during k'th iteration requires values of a[i,k] and a[k,j], but in which they might be in other process memory after partition.

Figure 2: Floyd - communication during k'th iteration

Therefore, it requires to broadcast a[k,j] to all a[0,j], a[1,j], ..., a[n-1,j] as well as broadcast a[i,k] to all of a[i,0], a[i,1], ..., a[i,n-1] elements. For agglomeration and mapping, one MPI process can be responsible for a chunk of the 'a' matrix. Memory storage of 'a' can be evenly divided by number of vertices in respect to processors. I can choose row-wise data division or a block of data division. In this project, I approach using row-wise decomposition and I choose to assign each MPI process with a number of consecutive rows of matrix 'a'.

4.1 Task Parallelism

One key challenge in this approach is the communication requirement of a[k,j] during k'th iteration. Since entries of 'a' are divided into rowwise blocks, the a[k,j] is also in the local memory of the MPI process that owns a[i,j]. However, a[k,j] is in another MPI process's memory.

```
bcast_row = (int *) malloc
  (nodesCount * sizeof(int));
int k;
for (k = 0; k < nodesCount; k++) {
  root = k / (nodesCount / nprocs);
  if (rank == root) {
   offset = k % (nodesCount / nprocs);
   int h;
   for (h = 0; h < nodesCount; h++) {</pre>
```

```
bcast_row[h] =
   local_mat[offset * nodesCount + h];
}

MPI_Bcast(bcast_row, nodesCount,
   MPI_INT, root, MPI_COMM_WORLD);
```

This observes the key difference to parallellizing in Project 1C Mandelbrot Set MPI implementation. In Mandelbrot Set, it requires only data parallelism and once data is partitioned, each primitive task does not require to communicate each other any more.

4.2 Memory Consideration

Compare to OpenMP, the MPI programming requires more careful consideration of the memory data structure and how to it is used by each MPI processes. In sequential program, the distance matrix is back by *stack* memory. However, for sending and receiving between MPI processes, it requires contiguous memory structure such that it can be used in communication.

```
int* matrix = (int *) malloc
  (nodesCount*nodesCount * sizeof(int)
```

Therefore, a *heap* memory is used for underlying storage. Furthermore, I deconstruct 2D into 1D array and send each chuck of row vertices to each MPI processes so that it does not require to broadcast the whole adjacency matrix to every MPI processes. Then each MPI process maintain their own local matrix.

```
int* local_matrix = (int *) malloc
  (mychunk * sizeof(int))
```

Then, I use MPI_Scatter to distribute each chunk of task to processes.

```
MPI_Scatter(matrix, mychunk, MPI_INT,
local_matrix, mychunk, MPI_INT,
0, MPI_COMM_WORLD)
```

And, after the main shortest path computation task has performed by each process, I use MPI_Gather to collect back each process results.

```
MPI_Gather(local_mat, mychunk, MPI_INT,
final_matrix, mychunk, MPI_INT,
0, MPI_COMM_WORLD)
```

5 Conclusions

Run time breakdown table in Figure 3 and Figure 4 summarise the run time on different number of processor on number of node for different problem sizes, e.g. V(4096) is a graph with 4096 vertices. There is one limitation in my MPI implementation which is number of problem size has to be divisible by number of processors due to the row-wise division approach. This can be further improved using some heuristic approaches such as using of Block-wise decomposition or two-dimensional decomposition of the various matrices.

In summary the use of multiple cluster nodes have to consider for the communication cost when programming parallel implementation. As the amount of compute nodes grows, the communication overhead is observed in Figure 3 elapse time analysis. Compare to Mandelbrot Set computation, the All Pair Shortest Path graph search problem have to consider not only data partition but also task parallelism.

6 References

- [1] Ian Foster. Designing and Building Parallel Programs. 1995. URL: http://www.mcs.anl.gov/~itf/dbpp/text/node35.html (visited on 10/14/2016).
- [2] Quinn Michael J. Parallel Programming in C with MPI and OpenMP. International series of monographs on physics. McGraw Hill, 2003. ISBN: 007-282256-2.

7 Appendix

Figure 3: Elapse Time

Figure 4: Run Table

	0		
Problem Size = V(16) 1-Node	2-Nodes	4-Nodes	8-Nodes
Task Second 2 0.1658 4 0.165176 8 0.164488 16 0.163382	Task Second 8 0.240365 16 0.26924	Task Second 8 0.317498 16 0.307707	Task Second 8 0.544755 16 0.331558
Problem Size = V(32) 1-Node	2-Nodes	4-Nodes	8-Nodes
Task Second 2 0.16547 4 0.164613 8 0.164512 16 0.16315	Task Second 8 0.240471 16 0.269982 32 0.285822	Task Second 8 0.337361 16 0.307679 32 0.486862	Task Second 8 0.4078 16 0.351817 32 0.389912
Problem Size = V(64) 1-Node	2-Nodes	4-Nodes	8-Nodes
Task Second 2 0.165809 4 0.165879 8 0.174792 16 0.165548	Task Second 8 0.250658 16 0.267746 32 0.736899	Task Second 8 0.389197 16 0.338082 32 0.659946 64 0.553573	Task Second 8 0.384847 16 0.499558 32 0.770008 64 0.517571

Problem Size = V(128) 1-Node Task Second 2 0.167632 4 0.166724 8 0.166358 16 0.165866	2-Nodes Task Second 8 0.24073 16 0.268549 32 0.737151	4-Nodes Task Second 8 0.337626 16 0.338047 32 0.711636 64 0.835303	8-Nodes Task Second 8 0.474591 16 0.510095 32 0.771399 64 1.110322 128 1.981473
Problem Size = V(256) 1-Node Task Second 2 0.175 4 0.171491 8 0.169811 16 0.168017	2-Nodes Task Second 8 0.251587 16 0.282596 32 0.737676	4-Nodes Task Second 8 0.418542 16 0.349163 32 0.695405 64 0.870887	8-Nodes Task Second 8 0.406569 16 0.60847 32 0.761192 64 1.108386 128 2.039784
Problem Size = V(512) 1-Node Task Second 2 0.230862 4 0.203306 8 0.205352 16 0.180499	2-Nodes Task Second 8 0.259407 16 0.297346 32 1.010841	4-Nodes Task Second 8 0.376087 16 0.374232 32 0.84108 64 1.056008	8-Nodes Task Second 8 0.475802 16 0.571581 32 1.117283 64 1.475391 128 1.863416
Problem Size = V(1024) 1-Node Task Second 2 0.646522 4 0.419225 8 0.304788 16 0.245886	2-Nodes Task Second 8 0.378103 16 0.361261 32 1.04515	4-Nodes Task Second 8 0.621656 16 1.464363 32 0.92203 64 1.288938	8-Nodes Task Second 8 0.655523 16 0.649683 32 1.041977 64 1.574144 128 2.78052
Problem Size = V(2048) 1-Node Task Second 2 3.935024 4 2.081632 8 1.156527 16 0.708292	2-Nodes Task Second 8 1.235428 16 0.802614 32 1.290229	4-Nodes Task Second 8 2.905379 16 1.676032 32 2.121082 64 1.371864	8-Nodes Task Second 8 3.139268 16 2.315067 32 2.365576 64 2.063466 128 3.614111
Problem Size = V(4096) 1-Node Task Second 2 41.8382 4 21.22626 8 10.91949 16 5.742229	2-Nodes Task Second 8 10.94741 16 5.838925 32 3.926428	4-Nodes Task Second 8 24.22412 16 14.1228 32 8.14385 64 5.153336	8-Nodes Task Second 8 26.18674 16 13.88357 32 7.504528 64 5.076737

128 8.749066