A typical algorithm:

Make some decision(s)

- Make some decision(s)
- ② Problem is broken into k subproblems (n_1, \ldots, n_k)

- Make some decision(s)
- **2** Problem is broken into k subproblems (n_1, \ldots, n_k)
- Solve k subproblems recursively

- Make some decision(s)
- **2** Problem is broken into k subproblems (n_1, \ldots, n_k)
- Solve k subproblems recursively
- Combine decision(s) from (1) with solutions from (3), to output solution

GREEDY:

Make greedy choice g

- Make greedy choice g
- Problem is reduced into one subproblem

- Make greedy choice g
- Problem is reduced into one subproblem
- **3** Solve subproblem recursively \Rightarrow *SOL*_{sub}

- Make greedy choice g
- Problem is reduced into one subproblem
- **3** Solve subproblem recursively \Rightarrow *SOL*_{sub}
- Ombine choice from (1) with solution from (3), to output solution SOL

GREEDY:

- Make greedy choice g
- 2 Problem is reduced into one subproblem
- **3** Solve subproblem recursively \Rightarrow *SOL*_{sub}
- Combine choice from (1) with solution from (3), to output solution SOL

Correctness:

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

•
$$n = 1$$
: From (1), $SOL = g = OPT$.

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

• n = k: Up to size k, GREEDY computes OPT.

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

• n = k + 1: Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

n = k + 1: Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.
If we "contract" g in OPT in (1), and remain feasible,

$$OPT = g \cup OPT',$$
 (1)

we get an optimal solution OPT' of the subproblem in GREEDY, i.e.,

$$OPT' = SOL_{sub} \tag{2}$$

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Proof: By induction on the input size:

n = k + 1: Because of inductive step, SOL_{sub} is optimal solution of the subproblem in GREEDY.
If we "contract" g in OPT in (1), and remain feasible,

$$OPT = g \cup OPT', \tag{1}$$

we get an optimal solution $\ensuremath{\mathit{OPT'}}$ of the subproblem in $\ensuremath{\mathrm{GREEDY}},$ i.e.,

$$OPT' = SOL_{sub} \tag{2}$$

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

Observations:

• Usually (2) is trivial, GREEDY is designed to satisfy it.

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- Usually (2) is trivial, GREEDY is designed to satisfy it.
- Here are two approaches to prove (1):

Theorem

If we have that

- greedy choice is part of an OPT solution
- **2** $SOL = g \cup SOL_{sub}$ is a **feasible** solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- Usually (2) is trivial, GREEDY is designed to satisfy it.
- Here are two approaches to prove (1):
 - Show that GREEDY is always ahead (i.e., partial solution built with greedy choices is better than any other partial solution, up to the end).

Theorem

If we have that

- greedy choice is part of an OPT solution
- 2 $SOL = g \cup SOL_{sub}$ is a feasible solution

then SOL is an optimal solution (i.e., greedy alg is correct).

- Usually (2) is trivial, GREEDY is designed to satisfy it.
- Here are two approaches to prove (1):
 - Show that GREEDY is always ahead (i.e., partial solution built with greedy choices is better than any other partial solution, up to the end).
 - 2 Show that from any OPT solution (where greedy choice g may not be the first one), we can derive another optimal solution OPT' where g is its first choice, performing a series of exchanges.