

빅데이터 분석 결과 시각화

교통통계시각화

학습내용

- GIS를 활용한 시각화
- 공휴일 이용차량 시각화
- 차종별 교통량 시각화

학습목표

- GIS의 정의와 활용방안을 파악하고, GIS 데이터를 활용하여 시각화할 수 있다.
- 공휴일 이용차량 시각화에 대해 설명할 수 있다.
- 차종별 교통량을 시각화할 수 있다.

1. GIS 정의 및 교통통계

◆ GIS 개념 정의

- 지리 정보 체계(地理情報體系, Geographic Information System, GIS)
 - 지리공간적으로 참조 가능한 모든 형태의 정보를 효과적으로 수집, 저장, 갱신, 조정, 분석, 표현할 수 있도록 설계된 컴퓨터의 하드웨어와 소프트웨어 및 지리적 자료, 인적자원의 통합체

◆ GIS의 활용

- 도봉구 GIS 지도
 - 도봉구청, 주차 및 안전안심 정책개발을 위한 GIS 정책지도 연구
 - 등록차량, 유형별 주차시설, 용도지역, 주정차단속 등 행정 GIS 데이터를 이용한 건물단위 주차문제 파악 및 관리권역별 공유주차 가능성 진단
 - 학생-학부모-교사가 직접 참여하여 어린이 통학안전지도 데이터 구축 및 안전안심 정책적 시사점 도출

DATE: 02/01/2015

CATEGORIES : 공공 · 정책 CLIENT : 서울특별시 도봉구청

- 1. GIS 정의 및 교통통계
 - ◆ GIS의 활용
 - GIS 활용 사이트
 - ① 국가통계포털 수집
 - 교통-정보통신 통계부터 다양한 주제의 통계 데이터를 수집할 수 있는 사이트

- ② 범죄예방 도시 디자인 안전 데이터 수집
 - http://www.cpted.kr
 - 범죄예방디자인 연구 정보센터
 - 지리정보의 활용이 급속도로 증가하면서 지리정보를 수집, 구축하고 분석 처리하여 범죄지도를 제작하여 범죄예방, 환경범죄학 등의 영역에 도움이 됨

- 1. GIS 정의 및 교통통계
 - ◆ GIS의 활용
 - GIS 활용 사이트
 - ② 범죄예방 도시 디자인 안전 데이터 수집
 - http://www.cpted.kr
 - 범죄예방디자인 연구 정보센터
 - 지리정보의 활용이 급속도로 증가하면서 지리정보를 수집, 구축하고 분석 처리하여 범죄지도를 제작하여 범죄예방, 환경범죄학 등의 영역에 도움이 됨

• CPTED GUIDE-LINE 범죄예방디자인 가이드라인

1. GIS 정의 및 교통통계

◆ 정부기관에서 GIS의 시작

- 1960년대 중반, 캐나다의 Canadian Geographic Information System은 토지, 자연자원, 야생동물의 서식지를 위한 데이터 정리를 위한 작업을 시작함
- 데이터 구조, 중첩 / 면적계산, 그래픽화, 레이어의 도입, 공간적인 데이터와 수치 / 문자에 의한 데이터의 구분, 폴리곤의 쿼리 등이 이루어짐

♦ GIS의 구성 요소

Computer system	지형 공간 자료의 자료 획득, 처리, 분석, 모형화 표시를 지원하기 위해 설계된 하드웨어와 소프트웨어					
GIS software	다양한 보고서들은 ESRI사와 Intergraph Corporation사의 제품을 사용하기를 권장함					
People	컴퓨터와 소프트를 다룰 수 있는 인재					
Data	데이터는 분석을 위한 기초적인 자료					
Infrastructure	## 분석을 마친 GIS 데이터를 사용할 수 있는 전반적인 사회환경구조가 갖추어져 있어야 함					

1. GIS 정의 및 교통통계

- ♦ GIS의 구성 요소
 - Geospatial Data
 - 지리적인 정보를 가지고 있어서, GIS를 다른 Information System(정보시스템)과 구별 짓는 역할을 하는 중요한 Data임예) 어느 "도로"건 위치, 혹은 각 도로의 속성을 가짐

공간자료(Spatial Data)	속성자료(Attribute Data)			
• 위치에 해당하는 정보,	• 도로의 속성에 대한 정보, 즉 도로의			
즉 도로의 모양이나 좌표에 대한	이름, 길이, 속도 제한, 혹은 방향			
정보	등의 정보			

1. GIS 정의 및 교통통계

- ◆ GIS 활용분야
 - 도로만을 입력한 데이터
 - 땅의 소유권에 따라 그린 디지털지도
 - 강이나 냇물이 어디로 흐르는지를 표시한 데이터
 - 건물의 모양을 따라 혹은 위치를 표시한 데이터
 - 하수시스템
 - 교통시스템 등
 - → 인프라 전반적인 데이터의 구축이 우선되어야 가장 정확하고 필요에 맞는 분석을 할수 있음
 - Geojson
 - 웹 애플리케이션을 만들기 위한 지리 정보를 인코딩하기 위한 json 기반의 표준

```
(#type": "Feature",

"geometry": {

"type": "Point",

"coordinates": [125.6, 10.1]

},

"properties": {

"name": "Dinagat Islands"

}

}
```

1. GIS 정의 및 교통통계

- ◆ GIS 활용분야
 - Geometry 프로퍼티
 - 각 주의 외곽선 좌표를 나타내는 Coordinates와 외형의 타입을 지정하는 타입 프로퍼티를 가짐

Coordinates	• 원소가 경도 / 위도(Longitude / Latitude) 배열들의 집합				
Geojson	 경도 / 위도(Longitude / Latitude)로 표시함 경도를 먼저 표시함 				

2. 지도 데이터 실습

- ◆ 지도 데이터 실습 순서
 - ① 범죄율 지도 데이터 준비하기
 - ② 지도 만들기 HTML5 소스작성하기
 - ③ JavaScript 라이브러리 로딩 후 지도 그리기
 - ④ CSV 외부데이터 불러오기
 - ⑤ 마우스 오버 시 도시 이름과 범죄율 나타내기
 - ⑥ 지도에 도시 이름 나타내기
 - ⑦ 결과물 확인하기

1. Multi-Series Line Chart.

- ◆ Multi-Series Line Chart의 정의
 - Multi-Series Line Chart: 두 개 이상의 라인을 통하여 비교할 수 있는 그래프
- ◆ D3.tsv 읽고 분석하는 데이터

D3.tsv("data.tsv", type, function(error, data) { if (error) throw error;

date	판교	대왕판교	서울						
1/1	78,524	3,124	84,189						
2/19	87,761	4,098	112,927		date	판교	대왕판교	서울	
3/1	80,531	3,274	98,382		1/1/2015	78524	3124	84189	
5/5	86,340	3,451	106,004		2/19/2015	87761	4098	112927	
5/25	81,455	3,240	118,246		3/1/2015 5/5/2015	80531 86340	3274 3451	98382 106004	
6/6	90,370	3,576	103,194		5/25/2015	81455	3240	118246	
8/15	92,315	3,685	115,161		6/6/2015	90370	3576	103194	
9/27	100,411	6,379	116,800		7	8/15/2015 9/27/2015	92315 100411	3685 6379	115161
10/3	104,191	4,356	113,177			10/3/2015	100411	4356	116800 113177
10/9	112,910	5,515	111,733			10/9/2015	112910	5515	111733
12/25	88,068	3,550	93,508		12/25/2015	88068	3550	93508	
data.tsv			<u>0</u>	넥셀 데	이터 수정				

◆ D3.time.format - 날짜 분석

```
var parseTime = D3.timeParse("%Y%m%d"); ←2/19/2015

var x = D3.scaleTime().range([0, width]),
 y = D3.scaleLinear().range([height, 0]),
 z = D3.scaleOrdinal(D3.schemeCategory10);

x축과 y축, z에 대한 범위 설정

색상 매핑 또는 컬럼의 수평 위치 결정
```

1. Multi-Series Line Chart.

- **♦** Time Scales
 - scaleTime() 함수를 이용하여 domain에 들어있는 날짜의 범위를 0~960 사이의 값으로 계산하여 보여줌

```
var x = D3.scaleTime()
.domain([new Date(2000, 0, 1), new Date(2000, 0, 2)])
.range([0, 960]);

x(new Date(2000, 0, 1, 5)); // 200
x(new Date(2000, 0, 1, 16)); // 640
x.invert(200); // Sat Jan 01 2000 05:00:00 GMT-0800 (PST)
x.invert(640); // Sat Jan 01 2000 16:00:00 GMT-0800 (PST)
```

● 3시간 간격으로 10개의 시간 데이터를 뽑아줌

```
var x = D3.scaleTime();
x.ticks(10);

// [Sat Jan 01 2000 00:00:00 GMT-0800 (PST), // Sat Jan 01 2000
03:00:00 GMT-0800 (PST), // Sat Jan 01 2000 06:00:00 GMT-0800
(PST), // Sat Jan 01 2000 09:00:00 GMT-0800 (PST), // Sat Jan 01 2000
12:00:00 GMT-0800 (PST), // Sat Jan 01 2000 15:00:00 GMT-0800
(PST), // Sat Jan 01 2000 18:00:00 GMT-0800 (PST), // Sat Jan 01 2000
21:00:00 GMT-0800 (PST), // Sun Jan 02 2000 00:00:00 GMT-0800
(PST)]
```

- 1. Multi-Series Line Chart.
 - ◆ D3.scaleOrdinal 함수

var color = D3.scaleOrdinal (D3.schemeCategory10);

- D3.schemeCategory10
 - RGB 16 진수 문자열로 10개 범주 색상의 배열

- D3.schemeCategory20
 - RGB 16 진수 문자열로 20개 범주 색상의 배열

- D3.schemeCategory20b
 - RGB 16 진수 문자열로 20개 범주 색상의 배열

- D3.schemeCategory20c
 - RGB 16 진수 문자열로 표현 20개 범주 색상의 배열

1. Multi-Series Line Chart.

- ◆ D3.scaleLinear 함수
 - y축의 값은 대부분 수치 데이터로 선형적인 데이터가 제공됨
 - Linear한 Scale을 사용함
 - scaleLinear를 사용하며 x축은 대부분 시간 / 날짜와 구성된 데이터
 - time.format과 관련된 함수가 사용됨
 - 크기와 관련된 Scale

```
var x = D3.scaleLinear()
.domain([10, 130])
.range([0, 960]);
x(20); // 80
x(50); // 320
```

● 컬러와 관련된 Scale

```
var color = D3.scaleLinear()
.domain([10, 100])
.range(["brown", "steelblue"]);
color(20); // "#9a3439"
color(50); // "#7b5167"
```

1. Multi-Series Line Chart.

◆ D3.Line() 함수

```
var data = [
{date: new Date(2007, 3, 24), value: 93.24},
{date: new Date(2007, 3, 25), value: 95.35},
{date: new Date(2007, 3, 26), value: 98.84},
{date: new Date(2007, 3, 27), value: 99.92},
{date: new Date(2007, 3, 30), value: 99.80},
{date: new Date(2007, 4, 1), value: 99.47}, ··· ];
var line = D3.line()

.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.value); });
```

2. 공휴일 이용차량 시각화 실습

- ◆ 공휴일 이용차량 시각화 실습 순서
 - ① 데이터 준비하기
 - ② 엑셀파일 tsv 파일로 저장하기
 - ③ CSS 설정하기
 - ④ 시간을 설정하는 축의 값 표현하기
 - ⑤ scale 함수 활용하기
 - ⑥ 공휴일 이용차량 그래프 결과 확인하기

• 차종별 교통량 시각화

1. 차종별 교통 데이터 만들기

- ① 고속도로 공공데이터 포털
 - data.ex.co.kr에서 한국도로공사에서 제공하는 포털 관련된 교통 데이터 수집

② 데이터셋 - 교통데이터 수집

● "교통"을 클릭하여 데이터셋 목록을 열람함

• 차종별 교통량 시각화

1. 차종별 교통 데이터 만들기

③ 데이터셋 목록 - 교통량 통계

조사개요	조사범위
 정부에서 시행하고 있는 전국도로망 교통량조사의 일환 한국도로공사가 관리하고 있는 고속도로 교통량을 구간별 · 방향별 · 시간대별 · 차종별로 조사 · 분석함 	• 도로의 속성에 대한 정보, 즉 도로의 이름, 길이, 속도 제한, 혹은 방향 등의 정보
• 도로의 계획과 건설, 유지관리 및 도로행정과 각종 연구에 필요한 기초자료로 활용함	

④ 차종별 데이터 수집

● 주요구간연도별 차종별 교통량 데이터를 클릭하여 다운로드 받음

• 차종별 교통량 시각화

- 1. 차종별 교통 데이터 만들기
 - ⑤ 주요구간 연도별, 차종별 데이터 수정

2. 차종별 교통량 시각화 실습

- ◆ 차종별 교통량 시각화 실습 순서
 - ① 데이터 준비하기
 - ② CSS 설정하기
 - ③ 시간을 설정하는 축의 값 표현하기
 - ④ tsv 외부데이터 불러오기
 - ⑤ 결과화면 확인하기

1. GIS를 활용한 시각화

■ GIS 개념

■ 지리공간적으로 참조 가능한 모든 형태의 정보를 효과적으로 수집, 저장, 갱신, 조정, 분석, 표현할 수 있도록 설계된 컴퓨터의 하드웨어와 소프트웨어 및 지리적 자료, 인적자원의 통합체

■ GIS 활용 사이트

- 국가통계포털 수집
- 범죄예방 도시 디자인 안전 데이터 수집

■ 정부기관에서 GIS의 시작

- 1960년대 중반, 캐나다의 Canadian Geographic Information System은 토지, 자연자원, 야생동물의 서식지를 위한 데이터 정리를 위한 작업을 시작함
- 데이터 구조, 중첩 / 면적계산, 그래픽화, 레이어의 도입, 공간적인 데이터와 수치 / 문자에 의한 데이터의 구분, 폴리곤의 쿼리 등이 이루어짐

■ GIS의 구성 요소

- Computer system
- GIS software : 다양한 보고서들은 ESRI사와 Intergraph Corporation사의 제품 사용 권장
- People : 컴퓨터와 소프트를 다룰 수 있는 인재
- Data : 데이터는 분석을 위한 기초적인 자료
- Infrastructure : 분석을 마친 GIS 데이터를 사용할 수 있는 전반적인 사회환경구조가 갖추어져 있어야 함

1. GIS를 활용한 시각화

Geospatial Data

- 지리적인 정보를 가지고 있어서, GIS를 다른 Information System(정보 시스템)과 구별 짓는 역할을 하는 중요한 데이터임
- 공간자료(Spatial Data)와 속성자료(Attribute Data)로 구분함

■ GIS 활용분야

- 도로만을 입력한 데이터 / 땅의 소유권에 따라 그린 디지털지도 / 강이나 냇물이 어디로 흐르는지를 표시한 데이터 / 건물의 모양을 따라 혹은 위치를 표시한 데이터 / 하수시스템 / 교통시스템 등
- 인프라 전반적인 데이터의 구축이 우선되어야 가장 정확하고 필요에 맞는 분석을 할수 있음

Geojson

■ 웹 애플리케이션을 만들기 위한 지리 정보를 인코딩하기 위한 ison 기반의 표준

■ Geometry 프로퍼티

■ 각 주의 외곽선 좌표를 나타내는 Coordinates와 외형의 타입을 지정하는 Type 프로퍼티를 가짐

2. 공휴일 이용차량 시각화

- Multi-Series Line Chart의 정의
 - 두 개 이상의 라인을 통하여 비교할 수 있는 그래프
- D3.tsv 읽고 분석하는 데이터
- D3.time.format 날짜 분석
- Time Scales
 - scaleTime() 함수를 이용하여 domain에 들어있는 날짜의 범위를 0~960 사이의 값으로 계산하여 보여줌
- D3.scaleOrdinal 함수
 - D3.schemeCategory10: RGB 16 진수 문자열로 10개 범주 색상의 배열
 - D3.schemeCategory20: RGB 16 진수 문자열로 20개 범주 색상의 배열
 - D3.schemeCategory20b: RGB 16 진수 문자열로 20개 범주 색상의 배열
 - D3.schemeCategory20c: RGB 16 진수 문자열로 표현 20개 범주 색상의 배열
- D3.scaleLinear 함수
 - y축의 값은 대부분 수치 데이터로 선형적인 데이터가 제공되니 Linear한 Scale을 사용함
 - scaleLinear를 사용하며 x축은 대부분 시간 / 날짜와 구성된 데이터이니 time.format과 관련된 함수가 사용됨
- D3.Line() 함수

3. 차종별 교통량 시각화

- 고속도로 공공데이터 포털
 - data.ex.co.kr에서 한국도로공사에서 제공하는 포털 관련된 교통 데이터 수집
- 데이터셋 교통데이터 수집
 - "교통"을 클릭하여 데이터셋 목록을 열람함
- 데이터셋 목록 교통량 통계
 - 조사개요
 - 정부에서 시행하고 있는 전국도로망 교통량조사의 일환
 - 한국도로공사가 관리하고 있는 고속도로 교통량을 구간별·방향별·시간대별· 차종별로 조사·분석함
 - 도로의 계획과 건설, 유지관리 및 도로행정과 각종 연구에 필요한 기초자료로 활용함
 - 조사범위
 - 한국도로공사가 관리하고 있는 고속도로 31개 노선 468개 구간
 - 상시 199개, 수시 269개
- 차종별 데이터 수집
 - 주요구간연도별 차종별 교통량 데이터를 클릭하여 다운로드 받음
- 주요구간 연도별, 차종별 데이터 수정