# **Characterizing Mass and Heat Transfer over Stagnant Water**

February 25, 2025

**Group TR9** 

Taihar Tsengel, Alexander Tam, Vincent Kwok, and Matthew Lokhonia



#### Mass and Heat Transfer Over Stagnant Liquids is Everywhere



#### Why understand MT and HT in a stagnant body of water?

- Results can be extrapolated to other liquids and gases
  - O<sub>2</sub> stripping in beverages
  - O<sub>2</sub> removal from semiconductor manufacturing
  - Increasing humidity in HVAC systems
- Helps better understand MT and HT theory

#### **Objectives**

- Identify how mass transfer coefficient depends on air velocity
- Characterize the concentration and thermal boundary layers

#### **Methods**



$$K_{m,H2O} = \frac{N_{H2O}}{\Delta c_{H2O}}$$

Equation 1. Flux Relationship<sup>1</sup>

$$K_{m,H2O} = \frac{D_{H2O,air}}{\delta_c}$$

Equation 2. Film Theory Method<sup>1</sup>

$$Sh_L=0.664Re_L^{1/2}Sc^{1/3}$$
 
$$K_{M,H_2O}=\frac{0.664D_{H_2O,air}}{L}Re_L^{1/2}\left(\frac{\nu_{\rm air}}{D_{H_2O,air}}\right)^{1/3}$$
 Equation 3. Reynold's Method using laminar flow²

#### <u>Independent Variable</u>

- Air Velocity  $v_{\infty}$ 

#### **Constants**

- Temperature
- RH% room

#### <u>Measure</u>

- RH% outlet air
- Mass of water + tray

#### **Calculate**

- Water flux
- Boundary layer thicknesses



Find Mass Transfer Coefficient

## **Evaporation Rate of Water Increases with v\_{\infty}**



Suggests that Mass Transfer Coefficient Increases with Air Speed

## Boundary Layer Thickness decreases with $v_{\infty}$



Thermal Boundary Layer much larger than Concentration Boundary Layer

## Boundary Layer Thickness scales with approximately $v^{-0.5}$

Expectation:  $\delta_T$ ,  $\delta_C \propto v^{-0.5}$ 

Thermal Boundary Layer:  $\delta_{\tau} = 4.43 v^{-0.50 \pm 0.07}$ 

Concentration Boundary Layer:  $\delta_{\rm c} = 0.48 {\rm v}^{-0.51 \pm 0.05}$ 

| Wind Speed (m/s)  | δ <sub>T</sub> (m)  | δ <sub>C</sub> (m)  |
|-------------------|---------------------|---------------------|
| $2.74 \pm 0.16$   | $0.0265 \pm 0.0011$ | $0.0030 \pm 0.0003$ |
| $1.81 \pm 0.04$   | $0.0321 \pm 0.0013$ | $0.0034 \pm 0.0004$ |
| 1.29 ± 0.03       | $0.0423 \pm 0.0019$ | 0.0043 ± 0.0006     |
| $0.799 \pm 0.012$ | $0.048 \pm 0.002$   | $0.0053 \pm 0.0007$ |

## Mass Transfer Coefficient increases with $v_{\infty}$



Reynold's method has lowest margin of error due to many velocity samples

## Mass Transfer Coefficient scales with approximately $v^{0.5}$

**Expectation:**  $K_m \propto v^{0.5}$ 

Flux Relationship:  $K_m = 0.60v^{0.45\pm0.05}$ 

Film Theory:  $K_m = 0.57v^{0.48 \pm 0.05}$ 

Reynold's Method:  $K_m = 0.517v^{0.483\pm0.003}$ 

| Wind Speed (m/s)  | Flux Relationship<br>K <sub>m</sub> (m/s) | Film Theory<br>K <sub>m</sub> (m/s) | Reynold's Method<br>K <sub>m</sub> (m/s) |
|-------------------|-------------------------------------------|-------------------------------------|------------------------------------------|
| 2.74 ± 0.16       | $0.0092 \pm 0.0008$                       | $0.0089 \pm 0.0008$                 | 0.0084 ± 0.0002                          |
| $1.81 \pm 0.04$   | $0.0082 \pm 0.0010$                       | $0.0080 \pm 0.0010$                 | 0.00690 ± 0.00007                        |
| 1.29 ± 0.03       | $0.0066 \pm 0.0008$                       | 0.0064 ± 0.0008                     | 0.00586 ± 0.00006                        |
| $0.799 \pm 0.012$ | $0.0054 \pm 0.0007$                       | 0.0052 ± 0.0007                     | 0.00463 ± 0.00004                        |

#### **Conclusions**

- 1) Flux Increases with Air Speed
- 2) Thermal BL larger in size than Concentration BL
- 3) BL thickness scales with  $v^{-0.5}$
- 4) Mass Transfer Coefficient scales according to  $K_m \propto v^{0.5}$

#### **Appendix A: Mass Flux Values**

| Wind Speed (m/s) | Mass Flux (kg H <sub>2</sub> O/m <sup>2</sup> *s) |
|------------------|---------------------------------------------------|
| $2.74 \pm 0.16$  | $0.0001737 \pm 0.0000013$                         |
| $1.81 \pm 0.04$  | $0.0001502 \pm 0.0000000$                         |
| 1.29 ± 0.03      | 0.0001046 ± 0.0000013                             |
| 0.799 ± 0.012    | $0.0000830 \pm 0.0000011$                         |

## **Appendix B: Temperature and Concentrations Gradient Calculations**

$$(dT/dz)_0 = \frac{N_{A0}\Delta H_{va}}{p}$$

$$(dC_A/dz)_0 = \frac{N_{A0}(x_{A0}-1)}{D_{AB}}$$

Where,

 $N_{AO}$  = Flux of water

k = Thermal conductivity of water

 $x_{A0}$  = Interface water mole fraction

# **Appendix C: Temperature and Concentrations Gradient Values**

| Wind Speed (m/s)  | (dT/dz) <sub>0</sub> (K/m) | (dC <sub>A</sub> /dz) <sub>0</sub> (kg/m <sup>4</sup> ) |
|-------------------|----------------------------|---------------------------------------------------------|
| $2.74 \pm 0.16$   | 702 ± 5                    | -6.34 ± 0.05                                            |
| $1.81 \pm 0.04$   | 605 ± 0                    | -5.382 ± 0.006                                          |
| 1.29 ± 0.03       | 420 ± 5                    | -3.70 ± 0.04                                            |
| $0.799 \pm 0.012$ | 333 ± 5                    | -2.92 ± 0.04                                            |

#### **Appendix D: Concentration Calculations**

$$P_{water} = (RH/100)*P_{sat,water}$$

$$C_{\text{bulk}} = \frac{P_{\text{water}}}{R*T_{\text{Air}}}$$

$$C_{\text{interface}} = \frac{P}{R*T_{\text{interfac}}}$$

Where,

RH = Relative Humidity

 $x_{A0}$  = Interface water mole fraction

#### Appendix E: Temperature and Concentration Boundary Layer Thickness Calculations

$$\delta_{\mathsf{T}} = \frac{\Delta \mathsf{T}}{\left(\mathsf{dT}/\mathsf{dz}\right)_{\mathsf{0}}}$$

$$\delta_{\rm C} = \frac{\Delta C_{\rm A}}{(dC_{\rm A}/dz)_0}$$

Where,

$$\Delta T = T_{\text{bulk}} - T_{\text{interface}}$$

$$\Delta C_A = C_{bulk} - C_{interface}$$

# **Appendix F: Temperature and Concentration Boundary Layer Thickness Values**

| Wind Speed (m/s)  | $\delta_{T}$ (m)    | δ <sub>C</sub> (m)  |
|-------------------|---------------------|---------------------|
| $2.74 \pm 0.16$   | $0.0265 \pm 0.0011$ | $0.0030 \pm 0.0003$ |
| $1.81 \pm 0.04$   | $0.0321 \pm 0.0013$ | $0.0034 \pm 0.0004$ |
| 1.29 ± 0.03       | $0.0423 \pm 0.0019$ | 0.0043 ± 0.0006     |
| $0.799 \pm 0.012$ | $0.048 \pm 0.002$   | 0.0053 ± 0.0007     |

#### **Appendix G: Mass Transfer Coefficient Values**

| Wind Speed (m/s)  | Flux Relationship<br>K <sub>m</sub> (m/s) | Film Theory<br>K <sub>m</sub> (m/s) | Reynold's Method<br>K <sub>m</sub> (m/s) |
|-------------------|-------------------------------------------|-------------------------------------|------------------------------------------|
| 2.74 ± 0.16       | 0.0092 ± 0.0008                           | $0.0089 \pm 0.0008$                 | 0.0084 ± 0.0002                          |
| 1.81 ± 0.04       | $0.0082 \pm 0.0010$                       | $0.0080 \pm 0.0010$                 | 0.00690 ± 0.00007                        |
| 1.29 ± 0.03       | $0.0066 \pm 0.0008$                       | $0.0064 \pm 0.0008$                 | 0.00586 ± 0.00006                        |
| $0.799 \pm 0.012$ | $0.0054 \pm 0.0007$                       | $0.0052 \pm 0.0007$                 | 0.00463 ± 0.00004                        |

### **Appendix H: Equation Variable Definitions**

| Variable         | Definition                              | Unit       |
|------------------|-----------------------------------------|------------|
| $K_{m,H2O}$      | Mass Transfer Coefficient               | m/s        |
| $N_{H2O}$        | Mass Flux of Water                      | kg/(s*m^2) |
| $\Delta c_{H2O}$ | Concentration Gradient (Surface - Bulk) | kg/m^3     |
| $D_{H2O,air}$    | Diffusivity of water into air           | m^2/s      |
| $\delta_c$       | Concentration boundary layer thickness  | m          |
| L                | Length of plate                         | m          |
| $ u_{ m air}$    | Kinematic viscosity of air              | m^2/s      |