Taller Introducción a la Teoría de Conjuntos Propiedades de Ordinales

Muestre las siguientes propiedades de los ordinales:

1. Considere la colección C de todos los ordinales, muestre que < es un orden total en C.

Solución. Para demostrar que la colección C de ordinales es un orden total debemos mostrar que dados α y β ordinales pertenecientes a C siempre se tiene que $\alpha \in \beta$ ó $\alpha = \beta$ ó $\beta \in \alpha$. Sean α, β ordinales, $\alpha \cap \beta$ también es ordinal (esto fue demostrado en clase). Es evidente que $\alpha \cap \beta \subseteq \alpha$

Sean α, β ordinales, $\alpha \cap \beta$ también es ordinal (esto fue demostrado en clase). Es evidente que $\alpha \cap \beta \subseteq \alpha$ y $\alpha \cap \beta \subseteq \beta$. Si $\alpha \cap \beta = \alpha$ quiere decir que $\alpha \subseteq \beta$, luego $\alpha \subset \beta$ ó $\alpha = \beta$ y por lo tanto $\alpha \in \beta$ ó $\alpha = \beta$. De manera análoga si se tiene que $\alpha \cap \beta = \beta$ se concluye que $\beta \in \alpha$ ó $\alpha = \beta$. Ahora solo falta considerar que ocurre si $\alpha \cap \beta \subset \alpha$ y $\alpha \cap \beta \subset \beta$ luego $\alpha \cap \beta \in \alpha$ y $\alpha \cap \beta \in \beta$ y por tanto $\alpha \cap \beta \in \alpha \cap \beta$ lo que es una contradicción para ordinales y por lo tanto no se puede tener este caso.

De esta forma queda demostrado que las únicas posibilidades son que $\alpha \in \beta$ ó $\alpha = \beta$ ó $\beta \in \alpha$.

2. Para todo ordinal α , $\alpha = \{\beta : \beta < \alpha\}$.

Solución. Para demostrar esto debemos mostrar que todo ordinal es un conjunto de ordinales.

Tomemos $\beta \in \alpha$ ($\beta < \alpha$) primero probaremos que β es transitivo. Sea $\gamma \in \beta$ queremos mostrar que $\gamma \subseteq \beta$. Primero note que como α es ordinal tenemos que $\beta \subseteq \alpha$ por lo tanto $\gamma \in \alpha$ y $\gamma \subseteq \alpha$, ahora tomando un $\zeta \in \gamma$ se tiene que $\zeta \in \alpha$, luego α al ser ordinal esta bien ordenado por \in y además β, γ, ζ son elementos de α , luego como se tiene que $\zeta \in \gamma$ y $\gamma \in \beta$ implicando que $\zeta \in \beta$, de esta forma demostrando que $\gamma \subseteq \beta$ y por lo tanto β es transitivo.

Ahora recordemos que $\beta \subseteq \alpha$, luego la relación \in_{β} es una restricción de la relación \in_{α} por lo tanto como esta es un buen orden entonces \in_{β} también es un buen orden probando de esta forma que β es un ordinal y por lo tanto se demuestra la propiedad.

3. Si \tilde{C} es una colección no vacía de ordinales, entonces $\bigcap \tilde{C}$ es un ordinal.

Solución. Primero mostraremos la transitividad. Considere $x \in \bigcap \tilde{C}$ por definición como $\tilde{C} \neq \emptyset$ se tiene que $x \in \alpha$ para todo ordinal $\alpha \in \tilde{C}$, luego $x \subseteq \alpha$ para todo ordinal $\alpha \in \tilde{C}$ y por lo tanto $x \subseteq \tilde{C}$.

Ahora para mostrar que $\bigcap \tilde{C}$ esta bien ordenado por \in , tomemos $x,y \in \bigcap \tilde{C}$ luego x,y pertenecen a todo ordinal en \tilde{C} particularmente pertenecen a $\beta \in \tilde{C}$. Como $x,y \in \beta$ y este es ordinal se tiene que $x \in y$ ó x = y ó $y \in x$, luego como x,y son arbitrarios esto se sostiene para cualquier $x,y \in \bigcap \tilde{C}$ y por tanto esta linealmente ordenado.

Para el buen orden considere $A \neq \emptyset$ y $A \subseteq \bigcap \tilde{C}$, es sencillo notar que $A \subseteq \alpha$ para todo $\alpha \in \tilde{C}$ como α es un ordinal y $A \subseteq \alpha$, A tiene elemento mínimo, Como A es un subconjunto no vacío arbitrario se cumple que para todo $A \subseteq \bigcap \tilde{C}$, A posee mínimo de esta forma demostrando el buen orden y por tanto concluyendo finalmente que $\bigcap \tilde{C}$ es un ordinal.

4. Si X es un conjunto no vacío de ordinales, entonces $\bigcup X$ es un ordinal y $\bigcup X = \sup X$.

Solución. Primero probemos que $\bigcup X$ es transitivo. Sea $x \in \bigcup X$ luego $x \in \alpha$ para algún $\alpha \in X$, como α es ordinal se tiene que $x \subseteq \alpha$ y como $\alpha \subseteq \bigcup X$, entonces $x \subseteq \bigcup X$.

Ahora para mostrar que esta linealmente ordenado considere $x,y\in\bigcup X$ luego existen $\alpha,\beta\in X$ tales que $x\in\alpha$ y $y\in\beta$, luego sabemos que siempre se tiene que $\alpha\in\beta$ ó $\alpha=\beta$ ó $\beta\in\alpha$ luego sin perdida de generalidad asumamos que tenemos $\alpha\in\beta$, como β es ordinal $\alpha\subseteq\beta$ y por tanto se tiene que $x,y\in\beta$ luego como β esta linealmente ordenado entonces se tiene que $x\in y$ ó x=y ó $y\in x$ y como eran arbitrarios se cumple para todos los $x,y\in\bigcup X$.

Para el buen orden tomemos $A \subseteq \bigcup X$ no vacío, note que existe un $\alpha \in X$ tal que $A \cap \alpha \neq \emptyset$, note que como α es bien ordenado $A \cap \alpha$ tiene elemento mínimo, llamémoslo a, ahora suponga que a no es mínimo de A, considere $b = \min A$ eso quiere decir que $b \in a$ y como $a \in \alpha$, $a \subseteq \alpha$ por lo tanto $b \in \alpha$ y $b \in A \cap \alpha$, pero esto contradice el hecho de que a es el mínimo de $A \cap \alpha$ por lo tanto $a = \min A$, concluyendo de esta forma que $\bigcup X$ es ordinal.

Por ultimo llamemos $\alpha := \bigcup X$ y consideremos un $\zeta \in X$ arbitrario, luego note que $\zeta \subseteq \alpha$ entonces se tiene que $\zeta \subset \alpha$ o $\zeta = \alpha$, si $\zeta \subset \alpha$ entonces $\zeta \in \alpha$ mostrando que α es cota superior. Ahora considere un ordinal θ tal que para todo $\zeta \in X$ se tiene que $\zeta \in \theta$, luego $\zeta \subset \theta$ y por lo tanto $\alpha \subset \theta$ entonces $\alpha \in \theta$ mostrando que α es la menor cota superior y por lo tanto $\bigcup X = \alpha = \sup X$.

O^O

5. Para todo α ordinal, $\alpha \cup \{\alpha\}$ es un ordinal y $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$.

Solución. Primero para ver que es transitivo tomemos $x \in \alpha \cup \{\alpha\}$ luego $x \in \alpha$ o $x \in \{\alpha\}$, si $x \in \alpha$ como α es ordinal $x \subseteq \alpha$ y $x \subseteq \alpha \cup \{\alpha\}$, en caso de que $x \in \{\alpha\}$, $x = \alpha$ y es evidente que $x \subseteq \alpha$ y por tanto $x \subseteq \alpha \cup \{\alpha\}$.

Para el orden lineal tomemos $x, y \in \alpha \cup \{\alpha\}$ luego $x, y \in \alpha$ o $x, y \in \{\alpha\}$, en el caso de que $x, y \in \alpha$ ya se tiene el orden lineal debido a que α es ordinal, en caso de que se tuviera que $x, y \in \{\alpha\}$ solo se puede tener que $x = y = \alpha$ igualmente pueden seguir siendo comparados, por ultimo sin perdida de generalidad si tenemos que $x \in \alpha$ y $y \in \{\alpha\}$ tenemos que $y = \alpha$ y por tanto $x \in y$ y por tanto se cumple que es orden lineal.

Ahora para el buen orden considere $A \subseteq \alpha \cup \{\alpha\}$ no vacío, note que podemos considerar dos casos, cuando $A \subseteq \alpha$ o $A \subseteq \{\alpha\}$, si $A \subseteq \alpha$ se tiene que A tiene mínimo ya que α es ordinal, si $A \subseteq \{\alpha\}$ note que $A = \emptyset$ o $A = \alpha$ en ambos casos tiene elemento mínimo por tanto esta bien ordenado.

Hemos concluido que efectivamente $\alpha \cup \{\alpha\}$ es un ordinal ahora para ver que es el $\inf\{\beta : \beta > \alpha\}$ note que $\alpha \in \alpha \cup \{\alpha\}$ entonces $\alpha \cup \{\alpha\} \in \inf\{\beta : \beta > \alpha\}$, note ahora que para todo $k \in \inf\{\beta : \beta > \alpha\}$ se tiene que $\alpha \cup \{\alpha\} \le k$ y de esta forma concluimos que $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$.

6. Muestre que C no es conjunto.

Solución. Suponga que C es conjunto, considere $\alpha \in \beta \in C$ como $\beta \in C$ quiere decir que es ordinal luego α también es ordinal y por tanto $\alpha \in C$ por lo tanto es transitivo y por un teorema todo conjunto de ordinales esta bien ordenado bajo \in por lo tanto C es un ordinal, pero como C es el conjunto de todos los ordinales se debe de tener que $C \in C$ lo cual no se tiene para ordinales, contradicción. Así se concluye que C no es conjunto.

7. Muestre que la relación $(A, <_A)$ es isomorfo a $(B, <_B)$ es de equivalencia en conjuntos ordenados.

Solución. Para mostrar que es una relación de equivalencia hay que ver si se tiene que la relación es i.Reflexiva, ii.Simétrica y iii.Transitiva:

i. Note que existe el isomorfismo entre $(A, <_A)$ y si mismo por medio de $f: A \longrightarrow A$ siendo f la identidad, particularmente llamado automorfismo.

- ii. Si $(A, <_A)$ es isomorfo a $(B, <_B)$ quiere decir que el morfismo de orden $f : A \longrightarrow B$ es biyectiva y que f^{-1} es un morfismo de orden, luego como f es biyectiva, $f^{-1} : B \longrightarrow A$ es biyectiva y por lo tanto $(B, <_B)$ es isomorfo a $(A, <_A)$.
- iii. Si Si $(A, <_A)$ es isomorfo a $(B, <_B)$ y si $(B, <_B)$ es isomorfo a $(C, <_C)$ quiere decir que los morfismos de orden $f: A \longrightarrow B$ y $g: B \longrightarrow C$ son biyectivas luego note que $g \circ f: A \longrightarrow C$ es biyectiva y es morfismo de orden por lo tanto Si $(A, <_A)$ es isomorfo a $(C, <_C)$.

De esta forma como probamos las 3 propiedades concluimos que el isomorfismo en conjuntos ordenados es una relación de equivalencia.

8. Muestre que α es un ordinal limite si y solo si $\beta < \alpha$ implica que $\beta \cup \{\beta\} < \alpha$.

Solución. (\Rightarrow) Como α es ordinal limite, por definición esto es que $\alpha = \sup\{\beta : \beta < \alpha\}$, sabemos que $\beta < \alpha$ por lo que consideraremos que ocurre con $\beta \cup \{\beta\}$. Note que $\beta \cup \{\beta\} \leq \alpha$, en caso de que $\beta \cup \{\beta\} = \alpha$ seria una contradicción ya que α es ordinal limite y por tanto no puede ser sucesor de nadie, de esta forma se debe de tener que $\beta \cup \{\beta\} < \alpha$.

(\Leftarrow) Suponga que α no es ordinal limite, eso quiere decir que $\alpha = \zeta \cup \{\zeta\}$ con ζ un ordinal, notemos que $\zeta < \alpha$ por lo que por hipótesis $\zeta \cup \{\zeta\} < \alpha = \zeta \cup \{\zeta\}$ una contradicción por lo tanto α debe de ser ordinal limite.

9. Muestre que si $(A, <_A)$ es bien ordenado entonces no existen sucesiones estrictamente decrecientes infinitas.

Solución. Supongamos que dicha sucesión si existe, entonces sea $S: N \longrightarrow A$ tal que $S(i) = a_i$ generando la sucesión $\langle a_0, a_1, a_2, \ldots \rangle$ con $a_0 > a_1 > a_2 > \ldots$

Primero consideremos $\min \langle a_0, a_1, a_2, \dots \rangle$, como esta es una sucesión decreciente infinita es fácil darse cuenta que esta no tendrá mínimo pero note que $\langle a_0, a_1, a_2, \dots \rangle \subseteq A$ entonces se tendría que $(A, <_A)$ no esta bien ordenado, una contradicción por lo que tal sucesión no puede existir.

10. Muestre que para todo ordinal α existe un ordinal limite β tal que $\beta > \alpha$.

Solución. Procederemos por inducción transfinita sobre α .

Note que para $\alpha = 0$ se tiene que $0 < \omega$ y ω es ordinal limite por tanto verificamos que el caso base es valido.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \alpha$, ahora consideremos que pasa cuando α es sucesor de un ordinal, es decir $\alpha = \zeta + 1 > \zeta$. Notemos que como $\zeta < \alpha$ se tiene que existe un ordinal limite β tal que $\zeta < \beta$, luego por la propiedad demostrada en el punto 8. se tiene que $\zeta + 1 < \beta$.

Por ultimo consideremos el caso donde α es un ordinal limite, es decir $\alpha = \sup\{\gamma : \gamma < \alpha\}$, note que para todo γ se tiene que existe un ordinal limite β tal que $\gamma < \beta$, luego se tiene que efectivamente $\sup\{\gamma : \gamma < \alpha\} = \alpha < \beta$ por que de lo contrario $\beta \in \alpha$ y por lo tanto se tendría que $\beta \in \beta$ una contradicción.

- 11. Muestre que para todo α, β, γ ordinales, en la aritmética ordinal se tiene que:
 - a) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
 - b) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$
 - c) $(\alpha^{\beta})^{\gamma} = \alpha^{(\beta \cdot \gamma)}$

Solución. Las tres siguientes propiedades serán demostradas usando inducción transfinita sobre γ .

a)
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Caso base $\gamma = 0$

Tenemos por definición de suma y de producto de ordinales que:

$$\alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + 0 = \alpha \cdot \beta + \alpha \cdot 0$$

Verificando de esta forma el caso base.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \gamma$, ahora consideremos que pasa cuando γ es sucesor de un ordinal, es decir $\gamma = \zeta + 1 > \zeta$.

$$\alpha \cdot (\beta + (\zeta + 1)) = \alpha \cdot ((\beta + \zeta) + 1) = \alpha \cdot (\beta + \zeta) + \alpha = \alpha \cdot \beta + \alpha \cdot \zeta + \alpha = \alpha \cdot \beta + \alpha \cdot (\zeta + 1)$$

Por ultimo consideremos el caso donde γ es un ordinal limite y por tanto se tiene que:

$$\alpha \cdot (\beta + \gamma) = \sup\{\theta < \gamma : \alpha \cdot (\beta + \theta)\} = \sup\{\theta < \gamma : \alpha \cdot \beta + \alpha \cdot \theta\} = \alpha \cdot \beta + \alpha \cdot \gamma$$

O O

 $O^{\circ}O$

 $Q_{..}Q$

De esta forma se prueba que la propiedad se cumple para todo ordinal.

b) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$

Caso base $\gamma = 0$

Por las definiciones en aritmética ordinal tenemos que:

$$\alpha^{\beta+0} = \alpha^{\beta} = \alpha^{\beta} \cdot 1 = \alpha^{\beta} \cdot \alpha^{0}$$

Verificando de esta forma el caso base.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \gamma$, ahora consideremos que pasa cuando γ es sucesor de un ordinal, es decir $\gamma = \zeta + 1 > \zeta$.

$$\alpha^{\beta+(\zeta+1)} = \alpha^{(\beta+\zeta)+1} = \alpha^{\beta+\zeta} \cdot \alpha = \alpha^{\beta} \cdot \alpha^{\zeta} \cdot \alpha = \alpha^{\beta} \cdot \alpha^{\zeta+1}$$

Por ultimo consideremos el caso donde γ es un ordinal limite y por tanto se tiene que:

$$\alpha^{\beta+\gamma} = \sup\{\theta < \gamma: \alpha^{\beta+\theta}\} = \sup\{\theta < \gamma: \alpha^{\beta} \cdot \alpha^{\theta}\} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

De esta forma se prueba que la propiedad se cumple para todo ordinal.

c) $(\alpha^{\beta})^{\gamma} = \alpha^{(\beta \cdot \gamma)}$

Caso base $\gamma = 0$

Por las definiciones en aritmética ordinal tenemos que:

$$(\alpha^{\beta})^0 = 1 = \alpha^0 = \alpha^{\beta \cdot 0}$$

Verificando de esta forma el caso base.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \gamma$, ahora consideremos que pasa cuando γ es sucesor de un ordinal, es decir $\gamma = \zeta + 1 > \zeta$.

$$(\alpha^\beta)^{\zeta+1} = (\alpha^\beta)^\zeta \cdot \alpha^\beta = \alpha^{\beta \cdot \zeta} \cdot \alpha^\beta = \alpha^{\beta \cdot \zeta + \beta} = \alpha^{\beta \cdot (\zeta+1)}$$

Por ultimo consideremos el caso donde γ es un ordinal limite y por tanto se tiene que:

$$(\alpha^{\beta})^{\gamma} = \sup\{\theta < \gamma : (\alpha^{\beta})^{\theta}\} = \sup\{\theta < \gamma : \alpha^{\beta \cdot \theta}\} = \alpha^{\beta \cdot \gamma}$$

De esta forma se prueba que la propiedad se cumple para todo ordinal.

12. Muestre que si $\alpha < \beta$, ordinales, entonces $\alpha + \gamma \leq \beta + \gamma$, $\alpha \cdot \gamma \leq \beta \cdot \gamma$ y $\alpha^{\gamma} \leq \beta^{\gamma}$.

Solución. Al igual que en el ejercicio anterior se puede proceder por medio de inducción transfinita sobre gamma.

i. $\alpha + \gamma \leq \beta + \gamma$

Caso base $\gamma = 0$

$$\alpha + 0 = \alpha < \beta = \beta + 0 \Rightarrow \alpha + 0 \le \beta + 0$$

Verificando de esta forma el caso base.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \gamma$, ahora consideremos que pasa cuando γ es sucesor de un ordinal, es decir $\gamma = \zeta + 1 > \zeta$.

$$\alpha + (\zeta + 1) = (\alpha + \zeta) + 1 < (\beta + \zeta) + 1 = \beta + (\zeta + 1)$$

Por ultimo consideremos el caso donde γ es ordinal limite, por definición:

$$\alpha + \gamma = \sup\{\theta < \gamma : \alpha + \theta\}$$

Ahora supongamos que $\beta + \gamma < \alpha + \gamma$, esto implica que no es cota superior de $\sup\{\theta < \gamma : \alpha + \theta\}$ y por tanto existe $\zeta < \gamma$ tal que $\beta + \gamma < \alpha + \zeta$, luego tenemos que:

$$\beta + \zeta \le \sup\{\delta < \gamma : \beta + \delta\} = \beta + \gamma < \alpha + \zeta \Rightarrow \beta + \zeta < \alpha + \zeta$$

Note que esto ultimo contradice la hipótesis de inducción por lo tanto se debe de tener que la propiedad también se cumple en este caso y por tanto para todo ordinal.

ii. $\alpha \cdot \gamma \leq \beta \cdot \gamma$

Caso base $\gamma = 0$

$$\alpha \cdot 0 = 0 = \beta \cdot 0 \Rightarrow \alpha \cdot 0 \le \beta \cdot 0$$

Verificando de esta forma el caso base.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \gamma$, ahora consideremos que pasa cuando γ es sucesor de un ordinal, es decir $\gamma = \zeta + 1 > \zeta$.

$$\alpha \cdot (\zeta + 1) = \alpha \cdot \zeta + \alpha \le \beta \cdot \zeta + \alpha < \beta \cdot \zeta + \beta = \beta \cdot (\zeta + 1) \Rightarrow \alpha \cdot (\zeta + 1) \le \beta \cdot (\zeta + 1)$$

Por ultimo consideremos el caso donde γ es ordinal limite, por definición:

$$\alpha \cdot \gamma = \sup\{\theta < \gamma : \alpha \cdot \theta\}$$

Ahora supongamos que $\beta \cdot \gamma < \alpha \cdot \gamma$, esto implica que no es cota superior de $\sup\{\theta < \gamma : \alpha \cdot \theta\}$ y por tanto existe $\zeta < \gamma$ tal que $\beta \cdot \gamma < \alpha \cdot \zeta$, luego tenemos que:

$$\beta \cdot \zeta \leq \sup\{\delta < \gamma : \beta \cdot \delta\} = \beta \cdot \gamma < \alpha \cdot \zeta \Rightarrow \beta \cdot \zeta < \alpha \cdot \zeta$$

Note que esto ultimo contradice la hipótesis de inducción por lo tanto se debe de tener que la propiedad también se cumple en este caso y por tanto para todo ordinal.

iii. $\alpha^{\gamma} \leq \beta^{\gamma}$

Caso base $\gamma = 0$

$$\alpha^0 = 1 = \beta^0 \Rightarrow \alpha^0 < \beta^0$$

Verificando de esta forma el caso base.

Supongamos que la propiedad se cumple para todo ordinal $\theta < \gamma$, ahora consideremos que pasa cuando γ es sucesor de un ordinal, es decir $\gamma = \zeta + 1 > \zeta$.

$$\alpha^{\zeta+1} = \alpha^{\zeta} \cdot \alpha \leq \beta^{\zeta} \cdot \alpha < \beta^{\zeta} \cdot \beta = \beta^{\zeta+1} \Rightarrow \alpha^{\zeta+1} \leq \beta^{\zeta+1}$$

Por ultimo consideremos el caso donde γ es ordinal limite, por definición:

$$\alpha^{\gamma} = \sup\{\theta < \gamma : \alpha^{\theta}\}\$$

Ahora supongamos que $\beta^{\gamma} < \alpha^{\gamma}$, esto implica que no es cota superior de $\sup\{\theta < \gamma : \alpha^{\theta}\}$ y por tanto existe $\zeta < \gamma$ tal que $\beta^{\gamma} < \alpha^{\zeta}$, luego tenemos que:

$$\beta^{\zeta} \leq \sup\{\delta < \gamma : \beta^{\delta}\} = \beta^{\gamma} < \alpha^{\zeta} \Rightarrow \beta^{\zeta} < \alpha^{\zeta}$$

Note que esto ultimo contradice la hipótesis de inducción por lo tanto se debe de tener que la propiedad también se cumple en este caso y por tanto para todo ordinal.

ס^ס

13. Muestre que si $\alpha > 0$, dado γ ordinal, existe β único y un ρ único tal que $\rho < \alpha$ y $\gamma = \alpha \cdot \beta + \rho$.

Solución. Comenzaremos esta demostración primero mostrando la existencia de β , ρ .

Consideremos el caso donde $\gamma < \alpha$, luego $\beta = 0$ y $\rho = \gamma$, note que se tiene la condición de que $\rho = \gamma < \alpha$ y luego también se tiene que $\alpha \cdot 0 + \gamma = \gamma$, mostrando la existencia.

Ahora consideremos que ocurre cuando $\alpha \leq \gamma$, definamos $\beta = \bigcup \{\theta : \alpha \cdot \theta \leq \gamma\}$, notemos que $\{\theta : \alpha \cdot \theta \leq \gamma\}$ existe y no es vacío ya que $0 \in \{\theta : \alpha \cdot \theta \leq \gamma\}$, note que por el ejercicio 4. podemos asegurar que β es ordinal y además $\beta = \sup\{\theta : \alpha \cdot \theta \leq \gamma\}$, Ahora como $\beta \neq \emptyset$ se tiene que tener que $\beta = \zeta + 1$ o β es ordinal limite.

Suponga que $\beta = \zeta + 1$ luego se tiene que $\zeta < \beta$ y $\alpha \cdot \zeta \leq \gamma$, además $\zeta < \theta$ para algún $\alpha \cdot \theta \leq \gamma$, note que $\theta < \beta$ ya que si fuera así $\zeta < \theta < \zeta + 1$ una contradicción por tanto $\beta \leq \theta$ y por tanto $\alpha \cdot \beta \leq \gamma$.

Ahora si β es ordinal limite, note que para todo $\zeta \in \beta$ tal que $\alpha \cdot \zeta \leq \gamma$ se tiene que $\alpha \cdot \beta = \bigcup_{\zeta \in \beta} (\alpha \cdot \zeta) \leq \bigcup_{\zeta \in \beta} \gamma = 0$

 γ , de esta forma obtenemos en ambos casos que $\alpha \cdot \beta \leq \gamma$. Ahora supongamos que $\alpha \cdot (\beta+1) = \alpha \cdot \beta + \alpha \leq \gamma$, eso quiere decir que β no es cota superior, una contradicción. Por lo tanto se debe tener que $\alpha \cdot \beta + \rho = \gamma$ para algún $\rho < \alpha$. Para concluir con la prueba mostraremos la unicidad de β , ρ . Suponga que tenemos que $\gamma = \alpha \cdot \beta_1 + \rho_1$ para algún $\rho_1 < \alpha$ y que $\gamma = \alpha \cdot \beta_2 + \rho_2$ para algún $\rho_2 < \alpha$, sabemos que para β arbitrario tenemos que $\alpha \cdot \beta \leq \gamma < \alpha \cdot (\beta+1)$, luego entonces tenemos que $\alpha \cdot \beta_1 < \alpha \cdot (\beta_2+1)$ y $\alpha \cdot \beta_2 < \alpha \cdot (\beta_1+1)$ y por tanto se tiene que $\beta_1 < \beta_2 + 1$ y $\beta_2 < \beta_1 + 1$ luego esto es equivalente a tener que $\beta_1 \leq \beta_2$ y $\beta_2 \leq \beta_1$ por tanto $\beta_1 = \beta_2$ mostrando de esa forma que β , ρ deben de ser únicos ya que si β es único ρ también lo es.

 $O^{"}O$