

SECTION 1: SOLUTION OVERVIEW

What We're Building

AI-Powered DPR Automation Platform (Hackathon POC)

- ② 3 specialized Al agents SPV, Technical, Financial

System Architecture

♦ Agent Specialization

Agent	Responsibility	DPR Sections
�� SPV Agent	Promoter & SPV structure, governance	3-4 (Promoter, SPV Structure)
	Machinery selection, capacity planning, timeline	8–9 (Technology, Implementation Plan)
♦ Financial Agent	10-year projections, NPV/IRR/DSCR, funding structure	10, 14, 19-20 (Cost, Projections, Viability)
Supervisor Agent	Orchestrates flow, maintains shared state, ensures output consistency	-

♦ Technology Stack

Component	Technology
Frontend	Next.js (React)
Multi-Agent System	LangGraph
Al Model	Gemini 1.5 Pro
Knowledge Base	Pinecone Vector DB
Financial Engine	Python (NumPy, Pandas)
Document Generation	python-docx
Cloud Infra	Google Cloud Platform

♦ Core Technical Innovation — Hybrid AI + Rules

- ♦ Ensures MSE-CDP compliance
- Prevents AI hallucination in financial outputs
- Enables deterministic, auditable results

SECTION 2: TECHNICAL ARCHITECTURE

2.1 Multi-Agent Workflow

- \diamondsuit Key flow: Parallel agent execution \rightarrow validation layer \rightarrow document generation
- POC scope: 3 agents, single sector (Printing)

② 2.2 Agent Interaction & Shared State

Agent	Inputs	Processing	Outputs
�� SPV	Cluster info, promoter details	Validates organizational structure, shareholding	spv_data (Sections 3-4)
	Capacity target, cluster size	Machinery lookup, capacity calculation, implementation plan	technical_data (Sections 8-9)
♦ Financial	Cost, SPV + Technical outputs	10-year model, NPV/IRR/ DSCR, funding structure	financial_data (Sections 10, 14)
♦ Supervisor	Global state	Orchestrates, merges, validates completeness	Final assembly trigger

♦ Shared State Object (LangGraph)

```
"user_inputs": {...},
"spv_data": {...},
"technical_data": {...},
"financial_data": {...},
"compliance_status": {...},
"generated_sections": {...}
```

② 2.3 Sector Knowledge Module (Printing) (POC scope)

Pre-loaded Domain Knowledge

• 150+ machinery models (offset, digital) |

• Capacity benchmarks (60-75%) |

• Cost norms (₹5-40 Cr cluster) |

• 50+ approved DPR references |

• MSE-CDP compliance specs

Enables zero research overhead for POC.

5 2.4 Technology Justification

Component	Tech Used	Reason
Multi-Agent Framework	LangGraph	Built-in state mgmt & orchestration
LLM Engine	Gemini 1.5 Pro	High context window, cost- effective
Vector DB	Pinecone	Low latency, managed infra
Financial Engine	Python (NumPy/ Pandas)	Deterministic finance calcs
Document Generation	python-docx	Rich DPR format support
Frontend	Next.js	Fast UI, developer friendly
Cloud Infra	GCP	Native Gemini integration

 $^{\ \, \}diamondsuit \,\, \mathsf{AII} \,\, \mathsf{components} \,\, \mathsf{are} \,\, \mathsf{production}\text{-}\mathsf{grade}$

◆ 2.5 End-to-End Data Flow

- Linear & deterministic
- No experimental components
- ♦ Full cycle in minutes for demo

SECTION 3: FEASIBILITY PROOF

♦ 3.1 POC Scope & Deliverables

Demo Goal - Oct 31 (Hackathon Presentation):

• ③ 3 specialized AI agents (SPV, Technical, Financial)

- 1 sector: Printing Clusters

- ♦ Compliance scoring (target ≥ 85%)

Out of Scope (Post-hackathon):

- Additional agents (Market, Compliance, QA)
- Multi-sector, multi-language support
- Mobile app interfaces

3.2 Technology Readiness

Component	Technology	Status	Setup Time
Multi-Agent Framework	LangGraph	Production	< 1 day
LLM Engine	Gemini 1.5 Pro		< 1 hour
Vector DB	Pinecone	♦ Production	< 1 day
Financial Engine	Python (NumPy/ Pandas)	♦ Mature	< 1 hour
Document Generation	python-docx		< 1 hour
Frontend Framework	Next.js	Production	< 1 day
Cloud Hosting	GCP Cloud Run	Production	< 1 day

 $^{\ \, \}diamondsuit \ \, \text{All components are production-ready}$

 $[\]diamondsuit$ No R&D or experimental stack

♦ 3.3 Development Timeline — 4-Week Sprint

Week	Focus	Key Deliverables
1 (Oct 6-12)		GCP & API setup • Basic 3 agents • LangGraph orchestration
2 (Oct 13-19)	♦ Intelligence	Load printing domain KB • Financial validation engine • Compliance rules
3 (Oct 20-26)	♦ Integration & Test	UI (Next.js) • python-docx assembly • End-to-end DPR generation
4 (Oct 27-31)	⋄ Demo Prep	UI polish • Backup demo • Final rehearsal & dry run

[♦] POC scope is realistic with 2-3 buffer days each sprint.

♦ 3.4 Team Structure

- 6–8 hours/day per member
- ~500 developer-hours total

♦ 3.5 Key Risks & Mitigation

Risk	Probability	Impact	Mitigation	Contingency
Agent integration delays	Medium	High	Use LangGraph examples + early tests	Sequential fallback
Gemini API quota/rate limits	Low	Medium	Early quota request + caching	Gemini Flash fallback
Financial logic bugs	Medium	Critical	Unit tests + sample DPR validation	Manual spreadsheet check
Demo day issues	Low	Critical	Backup recording on Oct 29	Pre-recorded demo

Risks identified early with clear fallbacks.

♦ 3.6 Feasibility Indicators

- ✓ No custom infra → managed GCP & Pinecone
- ✓ No research phase → production-ready components
- ✓ Standardized DPR format → MSE-CDP templates
- ✓ Modular agent design → parallel work
- ✓ Experienced team → domain + tech covered

3.7 Success Criteria

Criterion	Target	Measurement
Functionality	3 agents working end-to- end	Complete DPR generated
Compliance	≥ 85% rule validation score	MSE-CDP rule engine output
Financial Accuracy	Zero errors	Cross-check with manual calc
Speed	< 10 min generation time	Stopwatch during dry run
Demo Readiness	Smooth 15 min run	Dry run on Oct 30

Final rehearsal and validation planned before demo day.

SECTION 4: EXPECTED OUTCOMES

♦ 4.1 Comparative Metrics — Current vs Platform

Metric	Current (Manual)	With Platform (Al + Rules)	Impact
PreparationTime	6 months	48 hours	♦ 98 % faster
	₹ 2 L (consultant fees)	₹ 10 K	♦ 95 % cheaper
	30 %	75 %+	
	Urban only	Pan-India (online)	Inclusive reach

Metric	Current (Manual)	With Platform (AI + Rules)	Impact
ComplianceAccuracy	Manual, error- prone	Automated rule validation	♦ > 85 % compliance
DPRGenerationSpeed	Weeks	Minutes	Instant execution

- Clear, measurable outcomes
- ♦ Easy to scan in under 10 seconds

4.2 Stakeholder Benefits

Stakeholder	Key Benefits
	90 % cost reduction • Faster fund access • Self-service DPR generation
	Higher scheme utilization • Faster processing • Clean compliance data
FinancialInstitutions	Better-quality DPRs • Less due diligence time • Standardized financial models
	More clusters • Capacity boost • Local job creation • Supply chain strength

♦♦ 4.3 Government Mission Alignment

- **Make in India** strengthens MSME manufacturing clusters
- **Atmanirbhar Bharat** reduces dependency on consultants
- $\$ **Digital India** Al-enabled MSME transformation
- **Startup India** encourages MSME entrepreneurship

- $\$ **Skill India** boosts skilled employment in CFCs
- ♦ Strong policy alignment = higher adoption potential.

\$ 4.4 Measurement Framework (Post-POC)

Category	Metric	Target
	Compliance score	≥ 85 %
♦ User Validation	Pilot clusters generating DPR	10 +
	Govt-approved DPRs within 3 months	≥ 1
♦ Turnaround Time	DPR completion	< 48 hours
♦ User Satisfaction	Rating	≥ 8 / 10

Simple, measurable outcomes that can be tracked after the hackathon.