Used Car Price Prediction

Life Cycle of a Machine Learning Project

- 1: Understanding the Problem Statement
- 2: Data Collection
- 3: EDA (Exploratory Data Analysis)
- 4: Data Cleaning
- 5: Data Pre-Processing
- 6: Model Training
- 7: Choose Best Model

A) Problem Statement

- 1: The dataset comprises used cars sold on cardekho.com in India as well as important features of these cars.
- 2: If user can predict the price of the car based on input features.
- 3: Prediction results can be used to give new seller the price suggestion based on market condition.

B) Data Collection

- 1: The dataset is collected from scrapping from cardekho website.
- 2: The data consists of 13 columns and 15411 rows.

B.1) Importing data and required packages

Importing Pandas, Numpy, Matplotlib, Seaborn and Warnings Library

```
In [1]:  ### importing libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplot inline

import warnings
warnings.filterwarnings('ignore')
```

C:\Users\Sachin Dev\AppData\Roaming\Python\Python38\site-packages\pandas\core\c omputation\expressions.py:20: UserWarning: Pandas requires version '2.7.3' or n ewer of 'numexpr' (version '2.7.1' currently installed).

from pandas.core.computation.check import NUMEXPR_INSTALLED UsageError: Line magic function `%matplot` not found.

Import csv Data as Pandas DataFrame

Show Top 5 Rows

In [4]:	1 df.head()
---------	-------------

Out[4]:		Unnamed: 0	car_name	brand	model	vehicle_age	km_driven	seller_type	fuel_type	transmi
	0	0	Maruti Alto	Maruti	Alto	9	120000	Individual	Petrol	
	1	1	Hyundai Grand	Hyundai	Grand	5	20000	Individual	Petrol	
	2	2	Hyundai i20	Hyundai	i20	11	60000	Individual	Petrol	
	3	3	Maruti Alto	Maruti	Alto	9	37000	Individual	Petrol	
	4	4	Ford Ecosport	Ford	Ecosport	6	30000	Dealer	Diesel	
	4									•

Delete Columns Unnamed:0 and again show Top 5 Rows

In [7]:	1	<pre>df.drop('Unnamed: 0',axis=1,inplace=True)</pre>									
In [8]:	1	df.head	()								
Out[8]:	car_name		brand	model	vehicle_age	km_driven	seller_type	fuel_type	transmission_type		
	0	Maruti Alto	Maruti	Alto	9	120000	Individual	Petrol	Manual		
	1	Hyundai Grand	Hyundai	Grand	5	20000	Individual	Petrol	Manual		
	2	Hyundai i20	Hyundai	i20	11	60000	Individual	Petrol	Manual		
	3	Maruti Alto	Maruti	Alto	9	37000	Individual	Petrol	Manual		
	4	Ford Ecosport	Ford	Ecosport	6	30000	Dealer	Diesel	Manual		

Show Bottom 5 Rows

```
In [9]: 1 df.tail()
```

_			
7		ı cı	
w	u	l フ	

	car_name	brand	model	vehicle_age	km_driven	seller_type	fuel_type	transmission_1
15406	Hyundai i10	Hyundai	i10	9	10723	Dealer	Petrol	Ma
15407	Maruti Ertiga	Maruti	Ertiga	2	18000	Dealer	Petrol	Ма
15408	Skoda Rapid	Skoda	Rapid	6	67000	Dealer	Diesel	Ма
15409	Mahindra XUV500	Mahindra	XUV500	5	3800000	Dealer	Diesel	Ма
15410	Honda City	Honda	City	2	13000	Dealer	Petrol	Auton
4								•

Shape of the Dataset

```
In [11]:    1    df.shape
Out[11]: (15411, 13)
```

Our data has 15411 rows and 13 different features

Show features/columns of the Dataset

Summary of Data

```
In [14]: 1 ### Display statistics of the DataFrame
2 df.describe()
```

Out[14]:

	vehicle_age	km_driven	mileage	engine	max_power	seats	sellinç
count	15411.000000	1.541100e+04	15411.000000	15411.000000	15411.000000	15411.000000	1.5411
mean	6.036338	5.561648e+04	19.701151	1486.057751	100.588254	5.325482	7.7497
std	3.013291	5.161855e+04	4.171265	521.106696	42.972979	0.807628	8.9412
min	0.000000	1.000000e+02	4.000000	793.000000	38.400000	0.000000	4.0000
25%	4.000000	3.000000e+04	17.000000	1197.000000	74.000000	5.000000	3.8500
50%	6.000000	5.000000e+04	19.670000	1248.000000	88.500000	5.000000	5.5600
75%	8.000000	7.000000e+04	22.700000	1582.000000	117.300000	5.000000	8.2500
max	29.000000	3.800000e+06	33.540000	6592.000000	626.000000	9.000000	3.9500

Check Null Value Counts and DataTypes of the features

|--|--|--|--|--|

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15411 entries, 0 to 15410
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	car_name	15411 non-null	object
1	brand	15411 non-null	object
2	model	15411 non-null	object
3	vehicle_age	15411 non-null	int64
4	km_driven	15411 non-null	int64
5	seller_type	15411 non-null	object
6	fuel_type	15411 non-null	object
7	transmission_type	15411 non-null	object
8	mileage	15411 non-null	float64
9	engine	15411 non-null	int64
10	max_power	15411 non-null	float64
11	seats	15411 non-null	int64
12	selling_price	15411 non-null	int64
dtyp	es: float64(2), int	64(5), object(6)	

memory usage: 1.5+ MB

Check duplicate values

```
In [16]: 1 df.duplicated().sum()
```

Out[16]: 167

```
In [19]:
           1 df.nunique()
Out[19]: car_name
                                 121
         brand
                                  32
         model
                                 120
          vehicle_age
                                  24
          km_driven
                                3688
          seller_type
                                   3
                                   5
          fuel_type
          transmission_type
                                   2
          mileage
                                 411
                                 110
          engine
         max_power
                                 342
                                   8
          seats
                                1086
          selling_price
          dtype: int64
```

Section B Report

- 1: There are 15411 rows and 12 columns in the dataset.
- 2: There are no null values in the dataset.
- 3: Out of 12 features 6 are numeric features (vehicle_age,km_driven,mileage engine,max_power,seats,selling_price) and rest are categorical features
- 4: There are 167 duplicate values in total in the dataset.

```
In [ ]: 1
```

C) Exploring Data

Show Categories in columns

```
In [20]:
             print("Categories in 'seller type' variable: ",end = " ")
              print(df['seller_type'].unique())
           3
             print("\n")
           4
              print("Categories in 'fuel_type' variable: ",end = " ")
           5
              print(df['fuel_type'].unique())
           7
              print("\n")
           8
           9
              print("Categories in 'transmission_type' variable: ",end = " ")
              print(df['transmission_type'].unique())
          10
             print("\n")
          11
          12
          13 print("Categories in 'seats' variable: ",end = " ")
             print(df['seats'].unique())
         Categories in 'seller_type' variable: ['Individual' 'Dealer' 'Trustmark Deale
         r']
         Categories in 'fuel type' variable: ['Petrol' 'Diesel' 'CNG' 'LPG' 'Electric']
```

Categories in 'transmission_type' variable: ['Manual' 'Automatic']

Categories in 'seats' variable: [5 8 7 6 4 2 9 0]

Check Cars with 0 Seats

```
In [21]:
             1 | df[df['seats'] == 0]
Out[21]:
                               brand model vehicle_age km_driven seller_type fuel_type transmission_type
                    car_name
                       Honda
             3217
                               Honda
                                         City
                                                       18
                                                                40000
                                                                         Individual
                                                                                      Petrol
                                                                                                        Manual
                         City
                       Nissan
            12619
                                                        2
                                                                10000
                                                                         Individual
                                                                                      Diesel
                               Nissan
                                        Kicks
                                                                                                        Manual
                        Kicks
```

Define Numerical and Categorical Columns

Feature Information

- 1: car name: Car's Full name, which includes brand and specific model name.
- 2: brand: Brand Name of the particular car.
- 3: model: Exact model name of the car of a particular brand.
- 4: seller type: Which Type of seller is selling the used car
- 5: fuel_type: Fuel used in the used car, which was put up on sale.
- 6: transmission_type: Transmission used in the used car, which was put on sale.
- 7: vehicle age: The count of years since car was bought.
- 8: mileage: It is the number of kilometer the car runs per litre.
- 9: engine: It is the engine capacity in cc(cubic centimeters)
- 10: max_power: Max power it produces in BHP.
- 11: seats: Total number of seats in car.
- 12: selling price: The sale price which was put up on website.

```
In [24]:
          1
            ### proportion of count data on categorical columns
          2
          3
            for col in categorical features:
          4
                print(df[col].value counts(normalize=True)*100)
                print("-----")
          5
        Hyundai i20
                             5.878918
        Maruti Swift Dzire
                             5.775096
        Maruti Swift
                             5.067809
        Maruti Alto
                             5.048342
        Honda City
                             4.912076
                               . . .
        Mercedes-AMG C
                             0.006489
        Tata Altroz
                             0.006489
        Ferrari GTC4Lusso
                             0.006489
                             0.006489
        Hyundai Aura
        Force Gurkha
                             0.006489
        Name: car_name, Length: 121, dtype: float64
         -----
        Maruti
                        32.392447
        Hyundai
                        19.349815
        Honda
                         9.635974
        Mahindra
                         6.560249
        Toyota
                         5.145675
        Ford
                         5.126209
        Volkswagen
                         4.023100
        Renault
                         3.478035
        BMW
                         2.848615
        Tata
                         2.790215
        Mercedes-Benz
                         2.186750
        Skoda
                         2.167283
        Audi
                         1.245863
        Datsun
                         1.103108
        Jaguar
                         0.382843
        Land Rover
                         0.330932
        Jeep
                         0.266044
        Kia
                         0.207644
        Porsche
                         0.136266
        Volvo
                         0.129777
        MG
                         0.123289
        Mini
                         0.110311
        Nissan
                         0.071378
        Lexus
                         0.064889
        Isuzu
                         0.051911
        Bentley
                         0.019467
        Maserati
                         0.012978
        ISUZU
                         0.012978
        Ferrari
                         0.006489
        Mercedes-AMG
                         0.006489
        Rolls-Royce
                         0.006489
                         0.006489
        Force
        Name: brand, dtype: float64
        i20
                      5.878918
        Swift Dzire
                      5.775096
        Swift
                      5.067809
```

D) Univariate Analysis

Taking one avriable at a time and analyzing it. Eg:- PDF,CDF,boxplot etc.

Numerical Features

```
In [27]:
           1 plt.figure(figsize=(15,15))
           2 ###The suptitle() method figure module of matplotlib library is used to Add
             plt.suptitle("Univariate Analysis of Numerical Features",fontsize=20,fontwei
             for i in range(len(numeric features)):
           5
           6
                  plt.subplot(5,3,i+1)
           7
                  sns.kdeplot(x=df[numeric features[i]],shade=True,color='b')
                  plt.xlabel(numeric_features[i])
           8
           9
                  plt.tight layout()
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric_features[i]],shade=True,color='b')
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric_features[i]],shade=True,color='b')
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric features[i]],shade=True,color='b')
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric features[i]],shade=True,color='b')
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric features[i]],shade=True,color='b')
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric features[i]],shade=True,color='b')
         <ipython-input-27-8801f48397e8>:7: FutureWarning:
         `shade` is now deprecated in favor of `fill`; setting `fill=True`.
         This will become an error in seaborn v0.14.0; please update your code.
           sns.kdeplot(x=df[numeric features[i]],shade=True,color='b')
```

Univariate Analysis of Numerical Features

Report

- 1: Km_driven, max_power, selling_price, and engine are right skewed and postively skewed.
- 2: Outliers in km_driven, enginer, selling_price, and max power.

In [30]: 1 df.boxplot(by="seats",column=['selling_price'])

Out[30]: <AxesSubplot: title={'center': 'selling_price'}, xlabel='seats'>

Categorical Features

```
In [34]:
           1
              import warnings
           2
              warnings.filterwarnings('ignore')
           3
           4
              ##categorical features
           5
              plt.figure(figsize=(20,15))
           6
              plt.suptitle("Univariate Analysis of Categorical Features",fontsize=20,fontw
              cat1 = ['brand','seller_type','fuel_type','transmission_type']
           7
           8
           9
              for i in range(len(cat1)):
                  plt.subplot(2,2,i+1)
          10
                  sns.countplot(x=df[cat1[i]])
          11
                  plt.xlabel(cat1[i])
          12
                  plt.xticks(rotation=45)
          13
          14
                  plt.tight_layout()
```

Univariate Analysis of Categorical Features

E) Multivariate Analysis

Multivariate Analysis is the analysis of more than one variable.

Check Multicollinearity of Numerical Features

In [37]: 1 df[numeric_features].corr()

Out[37]:

	vehicle_age	km_driven	mileage	engine	max_power	seats	selling_price
vehicle_age	1.000000	0.333891	-0.257394	0.098965	0.005208	0.030791	-0.241851
km_driven	0.333891	1.000000	-0.105239	0.192885	0.044421	0.192830	-0.080030
mileage	-0.257394	-0.105239	1.000000	-0.632987	-0.533128	-0.440280	-0.305549
engine	0.098965	0.192885	-0.632987	1.000000	0.807368	0.551236	0.585844
max_power	0.005208	0.044421	-0.533128	0.807368	1.000000	0.172257	0.750236
seats	0.030791	0.192830	-0.440280	0.551236	0.172257	1.000000	0.115033
selling_price	-0.241851	-0.080030	-0.305549	0.585844	0.750236	0.115033	1.000000

```
In [38]:
```

plt.figure(figsize = (15,10))
sns.heatmap(df.corr(),cmap='CMRmap',annot=True)
plt.show()

Report

- 1: Selling Price has Negative correlation with vehicle_age, km_driven, and mileage. i.e. If vehicle_age, km_driven, mileage increase then selling_price of the car decreases.
- 2: Selling_price has positive correlation with engine and max_power. It has a very weak postive correlation with seats.

Check Multicollinearity for Categorical Features

The test is applied when you have two categorical variables from a single population. It is used to determine whether there is a significant association between the two variables.

Here we test correlation of Categorical columns with Target column i.e Selling Price

```
In [43]:
              ### apply for 1 categorical feature
            1
            2
              from scipy.stats import chi2 contingency
            3
              dataset_table = pd.crosstab(df['selling_price'],df['brand'])
              dataset table.head()
Out[43]:
                brand Audi BMW Bentley Datsun Ferrari Force Ford Honda Hyundai ISUZU ... Min
           selling_price
                40000
                               0
                                       0
                                              0
                                                      0
                                                            0
                                                                 0
                                                                        0
                                                                                 0
                                                                                       0 ...
                                                                                                C
                         0
                45000
                                       0
                                                                        0
                                                                                                C
                         0
                               0
                                              0
                                                      0
                                                            0
                                                                 0
                                                                                 0
                                                                                       0
                                                                                          ...
                50000
                         0
                               0
                                       0
                                               0
                                                      0
                                                            0
                                                                 0
                                                                        1
                                                                                                C
                55000
                         0
                                       0
                                              0
                                                      0
                                                            0
                                                                 0
                                                                        0
                                                                                 0
                                                                                       0
                                                                                                C
                               O
                60000
                         0
                                       0
                                              0
                                                      0
                                                            0
                                                                 0
                                                                        0
                                                                                 1
                                                                                       0 ...
                                                                                                C
                               0
          5 rows × 32 columns
In [44]:
              chi2_contingency(dataset_table)
Out[44]: (125264.56097651123,
           0.0,
           33635,
           array([[0.01245863, 0.02848615, 0.00019467, ..., 0.05145675, 0.040231 ,
                   0.00129777],
                  [0.01245863, 0.02848615, 0.00019467, ..., 0.05145675, 0.040231 ,
                   0.00129777],
                  [0.0373759, 0.08545844, 0.000584, \ldots, 0.15437026, 0.12069301,
                   0.00389332],
                  [0.01245863, 0.02848615, 0.00019467, ..., 0.05145675, 0.040231 ,
                   0.00129777],
                  [0.01245863, 0.02848615, 0.00019467, ..., 0.05145675, 0.040231 ,
                   0.00129777],
                  [0.01245863, 0.02848615, 0.00019467, ..., 0.05145675, 0.040231 ,
                   0.00129777]]))
```

```
Parameters: observed : array_like

The contingency table. The table contains the observed frequencies (i.e. number of occurrences) in each category. In the two-dimensional case, the table is often described as an "R x C table".

correction : bool, optional

If True, and the degrees of freedom is 1, apply Yates' correction for continuity. The effect of the correction is to adjust each observed value by 0.5 towards the corresponding expected value.

lambda_ : float or str, optional

By default, the statistic computed in this test is Pearson's chi-squared statistic [2].

lambda_ allows a statistic from the Cressie-Read power divergence family [3] to be used instead. See scipy.stats.power_divergence for details.

Returns: chi2 : float

The test statistic.

p : float

The p-value of the test

dof : int

Degrees of freedom

expected : ndarray, same shape as observed

The expected frequencies, based on the marginal sums of the table.
```

```
In [47]: 1 p_value = chi2_contingency(pd.crosstab(df['selling_price'], df['brand']))[1]
2 p_value
```

Out[47]: 0.0

```
In [51]:
           1 #### applying chi-square test for all categorical variables
           2 from scipy.stats import chi2 contingency
           3
             chi2 test = []
              for feature in categorical features:
           4
                  ##if p value<0.05
           5
           6
                  if chi2_contingency(pd.crosstab(df['selling_price'],df[feature]))[1] < 0</pre>
           7
                      chi2_test.append("Reject Null Hypothesis")
           8
                  else:
                      chi2 test.append("Fail to Reject Null Hypothesis")
           9
              result = pd.DataFrame(data=[categorical_features,chi2_test]).T
          10
              result.columns = ['Features','Hypothesis Result']
          11
             result
```

```
Out[51]:

Features Hypothesis Result

car_name Reject Null Hypothesis

height Null Hypothesis

Reject Null Hypothesis

Reject Null Hypothesis

seller_type Reject Null Hypothesis

fuel_type Reject Null Hypothesis

transmission_type Reject Null Hypothesis
```

```
Out[54]: ['vehicle_age', 'km_driven', 'mileage', 'engine', 'max_power', 'selling_price']
```


Report

Lower Vehicle age has more selling price than Vehicle with more age.

Engine CC has positive effect on price.

Kms Driven has negative effect on selling price.

F) Visualization

F.1) Visualize the Target Feature

```
In [65]: 1 plt.subplots(figsize=(14,7))
2 sns.histplot(df.selling_price,bins=200,kde=True)
3 plt.title("Seeling Price Distribution", weight='bold', fontsize=20, pad=20)
4 plt.ylabel("Count",weight='bold',fontsize=12)
5 plt.xlabel("Selling price in millions", weight='bold', fontsize=12)
6 plt.xlim(0,3000000)
7 plt.show()
```

Seeling Price Distribution

Target Variable is Skewed

B.2) Most Selling Cars

```
In [67]:
           1 ### Top 10 most selling cars
           2 df.car name.value counts()[0:10]
Out[67]: Hyundai i20
                                906
         Maruti Swift Dzire
                                890
         Maruti Swift
                                781
         Maruti Alto
                                778
         Honda City
                                757
         Maruti Wagon R
                                717
         Hyundai Grand
                                580
         Toyota Innova
                                545
         Hyundai Verna
                                492
         Hyundai i10
                                410
         Name: car name, dtype: int64
```

Most Selling used car is Hyundai i20

Top 10 Most Sold Car

Check mean price of Hyundai i20 which is most sold

The mean price of Hyundai i20 is 543603.75 Rupees

Report:

As per the Chart these are top 10 most selling cars in used car website.

Of the total cars sold Hyundai i20 shares 5.8% of total ads posted and followed by Maruti Swift Dzire.

Mean Price of Most Sold Car is 5.4 lakhs.

This Feature has impact on the Target Variable.

B.3) Most Selling Brands

In [72]:	1 df.brand	.value_	counts()[0:10]
Out[72]:	Maruti	4992	
	Hyundai	2982	
	Honda	1485	
	Mahindra	1011	
	Toyota	793	
	Ford	790	
	Volkswagen	620	
	Renault	536	
	BMW	439	
	Tata	430	
	Name: brand,	dtype:	int64

Top 10 Most Sold Brand

Check the Mean price of Maruti brand which is most sold

```
In [74]: 1 maruti = df[df['brand'] == 'Maruti']['selling_price'].mean()
2 print(f"The mean price of Maruti is {maruti:.2f} Rs")
```

The mean price of Maruti is 487089.32 Rs

Report

- 1: AS per the chart, Maruti has the most share of Ads in Used Cars website and Maruti is the most sold brand.
- 2: Following Maruti we have Hyundai and Honda
- 3: Mean Price of Maruti Brand Cars is 4.87 Lakhs

B.4) Costliest Brand and Costliest Car

Audi 6800000 BMW 8500000 Bentley 14500000 Datsun 650000 Ferrari 39500000 Force 700000 Ford 3200000 Honda 3200000 Hyundai 2600000 ISUZU 1900000 Isuzu 2300000 Jaguar 6300000 Jeep 5600000 Kia 3525000 Land Rover 9200000 Lexus 8000000 MG 2075000 Mahindra 2950000 Maruti 1225000 6200000 Maserati Mercedes-AMG 5100000 Mercedes-Benz 13000000 Mini 3875000 Nissan 1450000 Porsche 11100000 Renault 1155000 Rolls-Royce 24200000 Skoda 3550000 Tata 1750000 Toyota 3650000 Volkswagen 1250000 Volvo 8195000

Name: selling_price, dtype: int64

Out[77]:

selling_price

brand	
Ferrari	39500000
Rolls-Royce	24200000
Bentley	14500000
Mercedes-Benz	13000000
Porsche	11100000
Land Rover	9200000
BMW	8500000
Volvo	8195000
Lexus	8000000
Audi	6800000

Report:

- 1: Costliest Brand sold is Ferrari at 3.95Cr.
- 2: Second most costliest car Brand is Rolls-Royce at 2.42Cr.
- 3: Brand name has very clear impact on selling price

B.5) Costliest Car

Out[80]:

selling_price

car_name	
Ferrari GTC4Lusso	39500000
Rolls-Royce Ghost	24200000
Bentley Continental	14500000
Mercedes-Benz S-Class	13000000
Porsche Cayenne	11100000
Land Rover Rover	9200000
BMW 7	8500000
BMW Z4	8250000
Volvo XC	8195000
BMW X5	8100000

Report

- 1: Costliest Car sold is Ferrari GTC4 Lusso followed by Rolls Royce Ghost.
- 2: Ferrari selling price is 3.95 Crs.
- 3: Other than Ferrari other car has priced below 1.5cr.

Most Mileage Brand and Car Name

Out[86]: mileage

	•
brand	
Maruti	22.430980
Renault	22.099142
Datsun	21.215647
Lexus	20.846000
Ford	19.922620
Honda	19.908795
Maserati	19.820000
Tata	19.755279
Hyundai	19.588776
Volkswagen	18.689774
Mini	18.287647
Skoda	17.667006
BMW	17.440182
Kia	17.323125
Force	17.000000

```
In [87]: 1 plt.subplots(figsize=(14,7))
2 sns.barplot(x=mileage.index, y=mileage.values, ec = "black", palette="Set2")
3 plt.title("Brand vs Mileage", weight="bold", fontsize=20, pad=20)
4 plt.ylabel("Mileage in Kmpl", weight="bold", fontsize=15)
5 plt.xlabel("Brand Name", weight="bold", fontsize=12)
6 plt.ylim(0,25)
7 plt.xticks(rotation=45)
8 plt.show()
```

Brand vs Mileage

Car with Highest Mileage

Out[88]:

mileage

car_name		
Tata Tiago	24.625103	
Maruti Ciaz	24.289046	
Maruti Vitara	24.231932	
Renault KWID	24.037810	
Maruti Celerio	23.703502	
Maruti Dzire VXI	23.512941	
Maruti Dzire LXI	23.260000	
Maruti Dzire ZXI	23.260000	
Ford Aspire	22.993846	
Maruti Swift	22.719910	

```
In [89]: 1 plt.subplots(figsize=(14,7))
2 sns.barplot(x=mileage_C.index, y=mileage_C.values, ec = "black", palette="Se
3 plt.title("Car Name vs Mileage", weight="bold", fontsize=20, pad=20)
4 plt.ylabel("Mileage in Kmpl", weight="bold", fontsize=15)
5 plt.xlabel("Car Name", weight="bold", fontsize=12)
6 plt.ylim(0,27)
7 plt.xticks(rotation=45)
8 plt.show()
```

Car Name vs Mileage

Kilometer driven vs Selling Price

Kilometer Driven vs Selling Price

Report

Many Cars were sold with kms between 0 to 20k Kilometers

Low Kms driven cars had more selling price compared to cars which had more kms driven.

Fuel Type Vs Selling Price

LPG

182500.0

Report

- 1: Electric cars have highers selling average price.
- 2: Followed by Diesel and Petrol.
- 3: Fuel Type is also important feature for the Target variable.

Most sold Fuel type

Fuel Type Count

Report

Petrol and Diesel dominate the used car market in the website.

The most sold fuel type Vechicle is Petrol.

Followed by diesel and CNG and least sold is Electric

Fuel types available and mileage given

```
In [94]: 1 fuel_mileage = df.groupby('fuel_type')['mileage'].mean().sort_values(ascendi
2 fuel_mileage.to_frame()
```

Out[94]:

mileage

fuel_type	
CNG	25.814651
Diesel	20.060030
Electric	19.160000
Petrol	19.123045
LPG	17.836364

Fuel type vs Mileage

Mileage vs Selling Price


```
In [97]: 1 plt.subplots(figsize=(14,7))
2 sns.histplot(x=df.mileage, ec = "black", color='g', kde=True)
3 plt.title("Mileage Distribution", weight="bold", fontsize=20, pad=20)
4 plt.ylabel("Count", weight="bold", fontsize=15)
5 plt.xlabel("Mileage", weight="bold", fontsize=12)
6 plt.show()
```

Mileage Distribution

Vehicle age vs Selling Price

Report

As the Vehicle age increases the price also get reduced. Vehicle age has Negative impact on selling price

Vehicle age vs Mileage

```
In [99]: 1 vehicle_age = df.groupby('vehicle_age')['mileage'].median().sort_values(asce
    vehicle_age.to_frame().head(5)
```

Out[99]:

mileage

vehicle_age			
29	22.05		
0	21.70		
3	21.21		
4	20.63		
5	20.51		

Vehicle Age vs Mileage

Report

As the Age of vehicle increases the median of mileage drops. Newer Vehicles have more mileage median older vehicle.

Out[101]:

vehicle_age

car_name	
Maruti Alto	29
BMW 3	25
Honda City	22
Maruti Wagon R	21
Mahindra Bolero	18
Mahindra Scorpio	18
Skoda Octavia	18
Honda CR-V	17
Mercedes-Benz E-Class	17
Honda Civic	15

Report

Maruti Alto is the Oldest car available 29 years old in the used car website followed by BMW 3 for 25 years old.

Transmission Type

Transmission type Count

Report

Manual Transmission was found in most of the cars which was sold. Automatic cars have more selling price than manual cars.

```
In [ ]: 1
```

Seller Type

Transmission type vs Price

Out[105]:

selling_price

seller_type	
Dealer	591000.0
Trustmark Dealer	540000.0
Individual	507000.0

Report

Dealers have put more ads on used car website.

Dealers have put 9539 ads with median selling price of 5.91 Lakhs.

Followed by Individual with 5699 ads with median selling price of 5.4 Lakhs.

Dealers have more median selling price than Individual.

Final Report

The datatypes and Column names were right and there was 15411 rows and 13 columns

The selling_price column is the target to predict. i.e Regression Problem.

There are outliers in the km_driven, enginer, selling_price, and max power.

Dealers are the highest sellers of the used cars.

Skewness is found in few of the columns will check it after handling outliers.

Vehicle age has negative impact on the price.

Manual cars are mostly sold and automatic has higher selling average than manual cars.

Petrol is the most preffered choice of fuel in used car website, followed by diesel and LPG.

We just need less data cleaning for this dataset.

