Math 251, Wed 23-Sep-2020 -- Wed 23-Sep-2020 Discrete Mathematics Fall 2020

Wednesday, September 23rd 2020

PS05 due at 6 pm

Wednesday, September 23rd 2020

Wk 4, We Topic:: Functions

Read:: Rosen 2.3

WW functions due Sat. HW::

PS06 due Mon. HW::

If we set n = Lx] then

· neZ

· n < x < n+)

YXER Yme Z (Lx+m] = Lx] +m)

Here

 $n \leq x < n+1$ \rightarrow $n+m \leq x+m < n+m+1$

2ª [x+m] = n+m

= LxJ + m

f(x) = 3x + 1 valid inputs R

q(x) = 1x

(gcf)(x) = (3x+1) - restrict, from original domein R of f, us to using x values for which

3x+130,

Some special funcitons

ck;

Identity function $(\iota) \xrightarrow{A} \xrightarrow{B}$ requires $A \subseteq B$.

Indicator functions. Given a se $(A) \subseteq \mathbb{R}$, the indicator function on the set A is defined as

$$\chi_A(x) := \begin{cases}
1, & \text{if } x \in A, \\
0, & \text{if } x \notin A.
\end{cases}$$

• evaluating an indicator function

$$A = \{alphabetical \ | awer case letters \} \subseteq U = \{all \ symbols \}$$

$$\chi_{A}(t) = 1 \qquad \chi_{A}(!) = 0$$

$$A \subseteq B$$

• graph of an indicator function

 $\rightarrow \forall x \ (\chi^{B}(x) = 1)$ $\rightarrow \chi_{A}(x)=1$

The floor/ceiling functions.

$$[]: \mathbb{R} \to \mathbb{Z}$$

- how defined
- True or false?

1. $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ ([x+y] = [x] + [y])$ False coentrexen ple $|8| = [8] = [12.6 + 5.5] \neq [12.6] + [5.5]$ 2. $\forall x \in \mathbb{R} \ \forall m \in \mathbb{Z} \ (\lfloor x + m \rfloor = \lfloor x \rfloor + m)$ =12+5=17

3. $\forall x \in \mathbb{R} ([-x] = -[x])$ False: X = 0.5 is a countrecent to the charge -[x] makes statement from 4. $\forall x \in \mathbb{R} ([2x] = [x] + [x + 0.5])$

- 5. []: $\mathbb{R} \to \mathbb{Z}$ is a bijection.

 Surjective? Yes \mathbb{N} Not a bijection

Composing functions

• meaning of $(f \circ g)(x)$ practice

$$f(x) = 2x - 1$$
 ? $g(x) = x^2 + 3x$

$$f(x) = 2x - 1$$
 $(f \circ g)(x) = f(g(x))$
 $g(x) = x^2 + 3x$ $= 2(x^2 + 3x) - 1$

o difference from
$$(g \circ f)(x)$$
 $(g \circ f)(x) = g(f(x)) = (2x-1)^2 + 3(2x-1)$.
 $Cos(x^2+1) = (f \circ g)(x)$ for some peur $f(x) = cos \times g(x) = x^2+1$

 \circ compare domain of $g \circ f$ with domain of f

 \circ recursion: $(f \circ f)(x)$, $(f \circ f \circ f)$

function factorial(int n)

check that input n is positive

input ne Z

= 5.4.3.2.1

• bijections, invertibility, composition with the inverse

$$f(x) = 3x + 1$$
 maps $\mathbb{R} \to \mathbb{R}$ (surjection)

Is bijective:

not bijective:
$$f(x) = \sqrt{x}$$
 as a fn. $\mathbb{R} \to \mathbb{R}$

but it is bijection as far.
$$\mathbb{R} \to [0, \infty)$$

 \circ When $f: A \to B$ is a bijection, the sets A, B are in **one-to-one correspondence**. Say |A| = |B|.

Examples of sets in/not in 1-to-1 correspondence:

1. {alphabet} and {days of the week}

- 2. \mathbb{N} and { positive odd integers }
- 3. \mathbb{N} and \mathbb{Z}

4. \mathbb{N} and \mathbb{Q}

5. \mathbb{N} and $[0,1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$

So \mathbb{N} and [0,1] are infinite sets, but $|\mathbb{N}|\neq |[0,1]|$. Write $|\mathbb{N}|=\aleph_0$, and $|\mathbb{R}|=\mathfrak{c}$.

- ∘ Question: If f, g are bijections, is f ∘ g?
- When $f: A \to B$ is a bijection, $f^{-1}: B \to A$ exists (as a function)