Tools to Be Used

Github – Tutorial

Pytorch

Qiskit

https://jqub.ece.gmu.edu/categories/QFV/

Tutorial on QuantumFlow+VACSEN: A Visualization System for Quantum Neural Networks on Noisy Quantum Devices

Shaolun Ruan, Yong Wang, Betis Baheri, Qiang Guan, Zhepeng Wang, Weiwen Jiang SMU | GUANS Lab @ KSU | JQub @ Mason 09/23/2022

Agenda

- Session 1: Opening (10:00 10:15)
- Session 2: VACSEN: A Visualization Tool for Noise in Quantum Computing (10:15 - 11:30)
- Session 3: QuantumFlow Co-Design Framework (13:00 14:00)
- Session 4: Quantum Neural Network Compression (14:00 14:30)

Tutorial on QuantumFlow+VACSEN: A Visualization System for Quantum Neural Networks on Noisy Quantum Devices

Session 1: Opening

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

Our Goals on Quantum Learning

Q: What's a <u>practical</u> way to approaching to quantum advantage?

A: Algorithm-Compiler-Device Co-Design

For Quantum Computer Users

Q: How to make users be aware of the status of quantum devices?

A: Visualization

For Everyone

Q: How to enable everyone can use quantum machine learning?

A: Quantum learning demonization!

What is Classical Al Democratization & What is the Challenge?

"It's here to collaborate, to augment, to enhance human lives and productivity and make everybody's life better. And related to that, is to **democratize A.I.** in a way that everybody gets benefit. Not just a few, or a selected group." **Fei-Fei Li, 2017**

Medical Al Scenario

AR/VR in Surgery

Medical Diagnosis

Al Can Perform Medical Tasks

COVID CT Segmentation

Real-Time MRI Segmentation

Let Doctors Design Neural Networks?

Progress of Classical AI Democratization

Google's Initial Contributions

(Neural Architecture Search)

Given: Dataset

Objective: • Automated search for NN (w/o human)

Maximize accuracy on the given dataset

Output: A neural network architecture

[ref] Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." *ICLR 2017*

Our Contributions

(Network-Accelerator Co-Design)

Given: (1) Dataset; (2) Target hardware, e.g., FPGA.

Objective: • Automated search for NN and HW design

- Maximize accuracy on the given dataset
- Maximize hardware efficiency

Output: A pair of neural network and hardware design

[ref] Jiang, Weiwen, et al. "Accuracy vs. efficiency: Achieving both through fpgaimplementation aware neural architecture search." *DAC 2019*. (BEST PAPER NOMINATION)

[ref] Jiang, Weiwen, et al. "Hardware/software co-exploration of neural architectures", TCAD 2020 (BEST PAPER AWARD)

Co-Design Stack of Neural "Architectures"

- What is the best Neural Network Architecture for FPGAs
- Model optimization (pruning and quantization)?

NAS **Network exploration** (Google) Co-Design **Deep Comp** Network compression (Stanford) Framework (e.g., Our **DNNBuilder** Programming library (UIUC) FNAS) **DNN on FPGA** Hardware accelerator (UCLA)

- Mapping and scheduling?
 - What is the best FPGA Architecture for neural networks

Library

Bottlenecks in Classical Computing

Medical AI Scenario: (Input size exponentially grows from Radiology to Pathology Imaging)

Radiology Imaging

Radiology Modality Avg. Size (MB)

CT Scan 153.4

MRI 98.6

X-ray angiography 157.5

Ultrasound 69.2

Breast imaging 38.8

Pathology Imaging

Biopsy Type	Compressed Size(MB)/Study	Original Size (<u>GB</u>)
Dermatopathology	1,392 (20x compression)	27
Head and neck	1,965 (20x compression)	38
Hematopathology	40,300 (40x compression)	1574
Neuropathology	1,872 (20x compression)	37
Thoracic pathology	3,240 (20x compression)	63

[ref] Lauro, Gonzalo Romero, et al. "Digital pathology consultations—a new era in digital imaging, challenges and practical applications." Journal of digital imaging 26.4 (2013).

Impossible in Classical But Possible in Quantum Computing

The maximum qubits that supercomputers can simulate for arbitrary circuits is less than 47 qubits.

- (1) Summit w/ 2.8 PB memory for 47 qubits;
- (2) Sierra w/ 1.38 PB memory for 46 qubits;
- (3) Sunway TaihuLight w/ 1.31 PB memory for 46 qubits; (4) Theta w/ 0.8 PB memory for 45 qubits.

[ref] Wu, Xin-Chuan, et al. "Full-state quantum circuit simulation by using data compression." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2019.

Co-Design of Neural Networks and Quantum Circuit

Session 2: VACSEN: A Visualization Tool for Noise in Quantum Computing

the premier forum for advances in visualization and visual analytics

October 16, 2022

VACSEN introduces a novel visualization technique to achieve noise-aware quantum computing, detailed comparison on the filtered compiled circuit view, and user-friendly interaction to achieve better fidelity.

Session 3: QuantumFlow Co-Design Framework

https://www.nature.com/articles/s41467-020-20729-5 https://github.com/JQub/QuantumFlow_Tutorial

- Correctly implement binary neuron on quantum computers.
- Reduce complexity from O(n) in classical computers to O(polylog(n)) in quantum computers.
- On MNIST, achieve same accuracy with a cost reduction of 10.85 × over classical computers.

Session 4: Quantum Neural Network Compression

Pruning and Quantization in Classical ML

Pruning and Quantization in Quantum ML

October 30, 2022

Reduction on the compiled circuit length for more than 2X with <1% accuracy loss.

IMPACT CITESCORE 3.7

Electronics (ISSN 2079-9292) is an international, peer-reviewed, open access journal on the science of electronics and its applications.

Editor-in-Chief Prof. Dr. Flavio Canavero Politecnico di Torino, Italy

First decision to author **16.6** days Median Submission to Publication **35** days

Semi-Monthly Released

No Copyright Constraints

Electronics 2022 Best Paper Award Electronics 2022 Young Investigator Award

More information can be found at https://www.mdpi.com/journal/electronics/awards

- Email: <u>electronics@mdpi.com</u>
- www.mdpi.com/journal/electronics

Twitter: @ElectronicsMDPI

Topics

- → Microelectronics
- Optoelectronics
- ☐ Power Electronics
- Bioelectronics
- Microwave and Wireless Communications
- ☐ Computer Science & Engineering
- ☐ Networks
- ☐ Systems & Control Engineering
- ☐ Circuit and Signal Processing
- ☐ Semiconductor Devices
- ☐ Artificial Intelligence
- ☐ Electrical and Autonomous Vehicles
- ☐ Quantum Electronics
- → Artificial Intelligence Circuits and Systems (AICAS)
- ☐ Industrial Electronics
- ☐ Flexible Electronics
- ☐ Electronic Multimedia
- ☐ Electronic Materials

IMPACT FACTOR 2.690

CITESCORE 3.7

Special Issue:

Quantum Machine Learning: Theory, Methods and Applications

Guest Editors:

Dr. Weiwen Jiang

George Mason University, Fairfax, VA 22030, USA

Dr. Ying Mao

Fordham University, New York, NY 10458, USA

Dr. Samuel Yen-Chi Chen

Computational Science Initiative, Brookhaven National Laboratory, New York, NY 11973-5000, USA

Deadline for manuscript submissions: 20 November 2022

Topics are welcome to contribute:

- Quantum machine learning
- Quantum neural network
- Quantum supervised learning
- Quantum unsupervised learning
- · Quantum reinforcement learning
- Quantum learning theory
- Variational quantum circuits
- Noisy intermediate-scale quantum devices (NISQ)

https://www.mdpi.com/journal/electronics/special_issue s/quantum_machine_learning

