

اللوغاريتم النبيري (+حساب التكامل) التمرين 1

لتكن f الدالة المعرفة على $\int_{0,+\infty}^{\infty} \frac{1+\ln x}{1+\ln x}$. و ليكن f الدالة المعرفة على f في معلم متعامد التكن الدالة المعرفة على f الدالة المعرفة على الدالة ممنظم (أنظر الشكل أسفله). (O, \vec{i}, \vec{j})

اً أ- أدرس نهاية f في f على اليمين (1

 $\lim_{x \to +\infty} f(x)$ ب- أحسب (C_f)

 $]0,+\infty[$ نكل $f'(x) = \frac{-1-2\ln x}{x^3}$: نا- بين أن

 $]0,+\infty[$ على $]0,+\infty[$ على $]0,+\infty[$ على $]0,+\infty[$ على $]0,+\infty[$

f ضع جدول تغیرات ج

3) أ- بين أن المنحنى (C_f) يقطع محور الأفاصيل في نقطة وحيدة يتم تحديد إحداثيتيها

 $]0,+\infty[$ على f(x) ب- استنتج اشارة

لكل N^* من مرمز ب I_n لمساحة الحيز المحصور بين لكل مور الأفاصيل و المستقيمين اللذين معادلتاهما (4

1/7 Math.ma - 3/2017

.
$$x=n$$
 و $x=\frac{1}{e}$ و $x=\frac{1}{e}$. $x=n$ و $x=\frac{1}{e}$. بين أن $x=1$ والم أصلية للدالة f على $f:x\mapsto \frac{-2-\ln x}{x}$ بين أن $f:x\mapsto \frac{-2-\ln x}{x}$ د. أدرس نهاية $f:x\mapsto (I_n)$ عند $f:x\mapsto (I_n)$ عند $f:x\mapsto (I_n)$ عند $f:x\mapsto (I_n)$

لتصحيح

اً. (1

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1 + \ln x}{x^{2}}$$

$$= \lim_{x \to 0^{+}} \frac{1}{x^{2}} (1 + \ln x)$$

$$= -\infty$$

$$\begin{cases} \lim_{x \to 0^{+}} 1 + \ln x = -\infty \\ \lim_{x \to 0^{+}} \frac{1}{x^{2}} = +\infty \end{cases}$$

ب

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1 + \ln x}{x^2}$$
$$= \lim_{x \to +\infty} \frac{1}{x^2} + \frac{\ln x}{x^2}$$
$$= 0$$

$$\begin{cases} \lim_{x \to +\infty} \frac{1}{x^2} = 0\\ \lim_{x \to +\infty} \frac{\ln x}{x^2} = 0 \end{cases}$$

(C_f) ج. تحدید مقاربات

- x=0 يقبل مقارب عمودي معادلته $\left(C_{f}\right) \Leftarrow \lim_{x \to 0^{+}} f\left(x\right) = -\infty$ •
- $+\infty$ بجوار y=0 بجوار مقارب افقي معادلته $(C_f) \leftarrow \lim_{x \to +\infty} f(x) = 0$ •

(]
$$0,+\infty[$$
 قابلة للإشتقاق على] $0,+\infty[$ (كخارج دالتين قابلتين للإشتقاق على f أ. الدالة f قابلة للإشتقاق على $x\in]0,+\infty[$ ليكن

$$f'(x) = \frac{\left(\frac{1+\ln x}{x^2}\right)'}{\left(\frac{1+\ln x}{x^2}\right)'}$$

$$= \frac{\frac{(1+\ln x) \times x^2 - (1+\ln x) \times (x^2)'}{(x^2)^2}$$

$$= \frac{\frac{1}{x} \times x^2 - (1+\ln x) \times 2x}{x^4}$$

$$= \frac{x - 2x - 2x \ln x}{x^4}$$

$$= \frac{-x - 2x \ln x}{x^4}$$

$$= \frac{-x \times (1+2\ln x)}{x \times x^3}$$

$$= \frac{-1-2\ln x}{x^3}$$

$$(\forall x \in]0,+\infty[) \quad f'(x) = \frac{-1-2\ln x}{3} \quad : 0$$

$$(\forall x \in]0,+\infty[)$$
 $f'(x) = \frac{-1-2\ln x}{x^3}$: الذن

3/7 Math.ma - 3/2017

$$: -1 - 2\ln x > 0$$
 ب. لنحل في $]0, +\infty$ [المتراجحة $]0, +\infty$ $]0,$

$$S=\left]0,e^{rac{-1}{2}}
ight[$$
 : إذن

 $:]0,+\infty[$ على اشارة f'(x) اندررس اشارة

$$-1-2\ln x$$
 اذن إشارة $f'(x)$ هي إشارة $x^3>0$ الدينا

$$f'(x) \le 0 \Leftrightarrow e^{-\frac{1}{2}} \le x$$
 و منه : $f'(x) > 0 \Leftrightarrow 0 < x < e^{-\frac{1}{2}}$: و منه :

f ج. جدول تغیرات

x		0		$1/\sqrt{e}$		$+\infty$
f'(s)	<i>v</i>)		_	þ	+	
f(x)	;)	_0		$\pi^{e/2}$		~ 0

(
$$f\left(e^{\frac{-1}{2}}\right) = \frac{e}{2}$$
) $e^{\frac{-1}{2}} = \frac{1}{e^{\frac{1}{2}}} = \frac{1}{\sqrt{e}}$)

$$x \in]0,+\infty[$$
 اً. ليكن (3

$$f(x) = 0 \Leftrightarrow 1 + \ln x = 0$$
$$\Leftrightarrow \ln x = -1$$
$$\Leftrightarrow x = e^{-1} = \frac{1}{e}$$

$$A\left(e^{-1};0
ight)$$
 يقطع محور الأفاصيل في نقطة وحيدة $\left(C_{f}
ight)$ إذن

$$:]0,+\infty[$$
 على $f(x)$ بي لندرس إشارة

$$x \in \left]0,+\infty\right[$$
 ليكن

 $1+\ln x$ اذن إشارة $f\left(x\right)$ هي إشارة $x^{2}>0$ دينا

$$x \in \left[0, \frac{1}{e}\right]$$
 اِذَا کَان ۔

$$\ln x < \ln\left(\frac{1}{e}\right)$$
 لدينا $x < \frac{1}{e}$: لدينا

f(x) < 0 ومنه $1 + \ln x < 0$ اذن $1 + \ln x < 0$ اذن

$$x \in \left] \frac{1}{e}, +\infty \right[$$
 اذا کان

$$\ln x > \ln\left(\frac{1}{e}\right)$$
 اذن $x > \frac{1}{e}$: لدينا

$$f\left(x\right)>0$$
 ومنه $1+\ln x>0$ اذن $\ln x>-1$ ومنه

5) أ. لدينا I_2 هي مساحة الحيز المحصور بين C_f) و محور الأفاصيل و المستقيمين اللذين معادلتاهما

$$x = 2$$
 9 $x = \frac{1}{e}$

$$I_2 = \int_{\frac{1}{e}}^{2} |f(x)| dx \quad (U.A)$$
 افن

$$0 \le \int_{\frac{1}{e}}^{2} f\left(x\right) dx \le \int_{\frac{1}{e}}^{2} \frac{e}{2} dx$$
 على المجال $\left[\frac{1}{e}, 2\right]$ لدينا $\left[\frac{1}{e}, 2\right]$ لدينا والمجال المجال

$$0 \le I_2 \le e - \frac{1}{2}$$
 : و منه $0 \le \int_{\frac{1}{e}}^2 f(x) dx \le \frac{e}{2} \left(2 - \frac{1}{e}\right)$ اِذَن

$$]0,+\infty[$$
 ب. لنبين أن $f:x\mapsto \frac{-2-\ln x}{x}$ دالة أصلية للدالة

(
$$]0,+\infty[$$
 على الإشتقاق على $]0,+\infty[$ على الدالة F الدالة F الدالة الإشتقاق الدالة الإشتقاق الدالة الد

 $x \in \left]0,+\infty\right[$ ليكن

$$F'(x) = \frac{(-2 - \ln x) \times x - (-2 - \ln x) \times (x)'}{x^2}$$

$$= \frac{\frac{-1}{x} \times x - (-2 - \ln x) \times 1}{x^2}$$

$$= \frac{-1 + 2 + \ln x}{x^2}$$

$$= \frac{1 + \ln x}{x^2}$$

$$= f(x)$$

$$(\forall x \in]0, +\infty[) \quad F'(x) = f(x) : \dot{\psi}$$

. $]0,+\infty[$ على F دالة أصلية للدالة f على F

ج. لدينا : لكل n من N^* هي مساحة الحيز المحصور بين C_f و محور الأفاصيل و المستقيمين اللذين معادلتاهما x=n و $x=\frac{1}{e}$

$$I_n = \int_{\frac{1}{e}}^{n} |f(x)| dx \quad (U.A)$$
 : إذن

$$0 \le f(x)$$
: الدينا $\left[\frac{1}{e}, n\right]$ الدينا $\left[\frac{1}{e}, n\right]$ الدينا $\left[\frac{1}{e}, n\right]$ الدين $\left[\frac{1}{e}, n\right]$ الدين