M2 GL: IA-GL

Rendu TP2

Travaux réalisés par :

- Yashveer TEELUCK
 - Nizar TIALATI
 - Thomas SANZ

Année universitaire :

2021 / 2022

Question 4

Nous avons implémenté deux algorithmes afin de résoudre le coloriage de graphe :

- Un algorithme naïf qui va tester toutes les solutions jusqu'à en trouver une qui marche. Cet algorithme effectue de nombreux backtracks non intelligents afin de trouver une solution. Si le graphe n'est pas coloriable, l'algorithme va s'arrêter uniquement après avoir testé toutes les combinaisons possibles.
- 2. L'algorithme D-sature qui est un algorithme récursif. Cet algorithme est l'un des plus efficaces en ce qui concerne le coloriage de graphe et est surtout utilisé pour l'allocation de registres.

En testant les trois algorithmes sur l'instance des régions, le résultat est comme suit

Nombre de sommet : 13.
Nombre de couleurs : 4.
Nombre de contraintes : 24
Temps d'exécution du solver choco : 269ms
Nombre de sommet : 13.
Nombre de couleurs : 4.
Nombre de contraintes : 24
Temps d'exécution de l'algorithme D-Sature : 4ms
Nombre de sommet : 13.
Nombre de couleurs : 4.
Nombre de couleurs : 4.
Nombre de contraintes : 24
Coloration impossible.
Temps d'exécution de l'algorithme naïf : 1ms

On constate que l'algorithme naïf est plus performant dans ce cas (sûrement dû à l'absence de backtracks), suivi par le D-sature et finalement le solveur choco.

Question 5

Les trois algorithmes ont été testés sur l'ensemble des instances du dossier Datasets. Les résultats sont récapitulés dans le tableau qui suit.

DATA	nbSommets	nbCouleurs	nbContraintes	Choco (ms)	D-sature (ms)	Naïf(ms)
g1	30	4	100	273	6	19
g2	2464	100	111742	6645	6718	6085
g3	93	5	593	321	27	>1000
g4	282	6	3247	465	146	>1000
g5	67	67	232	375	18	9
g6	607	7	6337	484	219	288
g7(i)	125	46	7501	>1000	159	>1000
g8	480	4	1795	>1000	>1000	>1000
g9	1085	8	11395	>1000	>1000	>1000
g10	1085	8	11395	>1000	>1000	>1000
g11(i)	1558	11	65390	2673	2200	>10000
g12	138	11	986	344	42	>1000
g13	662	4	4185	471	206	>1000
g14	300	40	21695	38000	282	>50000

En analysant les données de ce tableau, nous pouvons conclure que :

- L'algorithme naïf est plus rapide que le choco quand la valeur de nbContraintes/nbCouleurs est basse. Dès lors que cette valeur augmente, à un seuil donné Choco est plus rapide.
- Le solveur choco est moins rapide que l'algorithme optimal de coloriage de graphe D-sature dans la plupart des cas.