Mathematics, exam 2017-12-29

1 Dynamic Optimization

1. [10 points] Consider a system of differential equations

$$\begin{cases} \dot{x} = -2y + x(x^2 + y^2 - 1); \\ \dot{y} = 2x + y(x^2 + y^2 - 1). \end{cases}$$

- (a) [5 points] Check that (0,0) is the only point of rest of this system. Change the variables from the Cartesian to the polar (r,ϕ) . Rewrite the system in the polar coordinates.
- (b) [5 points] Draw two time paths of the system for $r_0 > 1$, where r_0 is the radius of the initial point and for $0 < r_0 < 1$. Justify your sketch. What if $r_0 = 1$?
- 2. [10 points] Solve the calculus of variations problem

$$\int_{1}^{2} \left(\frac{2y^2}{x^2} + (y')^2 \right) dx \to \max / \min$$

with the fixed endpoints y(1) = 0, $y(2) = \frac{7}{2}$.

Hint: for solving Euler's equation try to find solutions in the form of x^a . Check all available second-order conditions.

3. [20 points] Road construction costs minimization.

Let the terrain profile be represented by the function

$$y(t) = \begin{cases} 3 - 3|t|, & \text{if } |t| \le 1\\ 0, & \text{otherwise.} \end{cases}$$

The contractor minimizes the excavation costs given by the formula

$$\int_{-c}^{c} (x(t) - y(t))^2 dt,$$

where x(t) is the road profile we need to find, c > 2 and [-c, c] — road section where the excavation takes place (c is not set). Allowable grade of the road satisfies $|\dot{x}| \leq 1$.

- (a) [5 points] Form Hamiltonian and derive first-order conditions taking into account that multiplier λ satisfies transversality conditions $\lambda(-c) = \lambda(c) = 0$.
- (b) [15 points] Find x(t) on the section [-c, c].

Mathematics, exam 2017-12-29

2 Stochastic Calculus

Standard Wiener process is denoted by W_t .

- 1. [10 points] Let Y be equal to 1 if $W_2 > 0$ and 0 otherwise. Find $\mathbb{E}(Y|W_1)$, \mathbb{V} ar $(Y|W_1)$, $\mathbb{E}(Y|W_1^2)$.
- 2. [10 points] James Bond flips a biased coin until the sequence Head-Tail-Head-Tail appears. The probability of «Head» is equal to p. Using Doog's theorem and an appropriate martingale find the expected number of coin flips.
- 3. [10 points] The process X_t is given by

$$X_t = 2017 + t^2 W_t^2 + \int_0^t u \, dW_t$$

- (a) Find dX_t ;
- (b) Is X_t a martingale?
- (c) Find $\mathbb{E}(X_t)$.
- 4. [10 points] Consider the framework of the Black and Scholes model. You agreed with Warren Buffett that at fixed time T he will pay you the strange sum

$$X_T = \ln S_T \cdot \ln S_{T/2}$$

where S_t is the price of a share.

What is the non-arbitrage price X_0 of this agreement?

5. [20 points] Solve the stochastic differential equation

$$dY_t = (Y_t^3 - Y_t) dt + Y_t^2 dW_t$$

You are free to use or not to use the following guiding steps:

- (a) [5 points] Consider $Z_t = Y_t^n$ and find dZ_t ;
- (b) [3 points] Find a constant n such that the term before dW_t in dZ_t is non-random.
- (c) [2 points] Write down the equation for dZ_t in terms of t and Z_t only: you should get rid of Y_t .
- (d) [8 points] Solve the equation for dZ_t . Hint: It's just the particular case of the equation in your hometask:) Do you remember? Multiply Y_t by some exponent:)
- (e) [2 points] Finally, find Y_t .