

Data Communications and Networking Fourth Edition

Forouzan

第 25 章

域名系统 Domain Name System

解决方案

- 主机文件实现映射
- 主机文件存储在主机磁盘中,以一个标准主机文件定期更新;
- 主机文件太大, 也无法更新所有主机。
- 域名系统
- 将信息数据分割为许多小的部分,存储于不同计算机中;
- 灵活,方便。

图 25.1 使用 DNS 服务的例子

25-1 名字空间

为了实现无二义性,分配给机器的名字必须从**名字空间**中仔细的选择。该名字空间完全控制对**名字和IP** 地址的绑定。

- □ 平面名字空间:
- □ 层次名字空间

组织方式

- 平面名字空间: 一个名字分配给一个地址, 名字是一个无结构的字符序列。缺点是必须 集中控制才能避免二义性和重复,不能用于 大规模系统。
- 层次名字空间:每个名字由几部分组成,分 配和控制名字空间的机构可以分散化。

25-2 域名空间

为了获得层次结构的名字空间,设计了域名空间。在这种设计方式中,所有的名字由根在顶部的倒置树结构定义。该树最多有 128 级: 0 级(根节点)-127 级。

- □标号
- □域名
- □域

图 25.2 域名空间

图 25.3 域名与标号

图 25.4 全称域名 FQDN 和部分域名 PQDN

FQDN

challenger.atc.fhda.edu. cs.hmme.com. www.funny.int.

PQDN

challenger.atc.fhda.edu cs.hmme www

FQDN: fully qualified domain name

PQDN: partially qualified domain name

25-3 名字空间的分布

必须将域名空间所包含的信息存储起来。然而只用

一台计算机存储如此大容量的信息,效率非常是低

下和不安全的。讨论名字空间的分布。

- □ 名字服务器的层次结构
- □区域
- □ 根服务器
- □ 主服务器和辅助服务器

图 25.6 名字服务器的层次结构

Note

- 主服务器能够从磁盘文件中装载所有信息,辅助服务器从主服务器中装载信息。
- □ 当辅助服务器从主服务器中下载信息时,这称 为区域的传递。

25-4 因特网中的 DNS

DNS 是一种可以在不同平台上使用的协议。在因特网中,域名空间(树)被划分成三个部分:通用域、国家域和反向域。

- □通用域
- □国家域
- □ 反向域

图 25.8 因特网中的 DNS

图 25.9 通用域

按已经注册主机的一般行为对主机进行定义。

表 25.1 通用域标号

Label	Description
aero	Airlines and aerospace companies
biz	Businesses or firms (similar to "com")
com	Commercial organizations
coop	Cooperative business organizations
edu	Educational institutions
gov	Government institutions
info	Information service providers
int	International organizations
mil	Military groups
museum	Museums and other nonprofit organizations
name	Personal names (individuals)
net	Network support centers
org	Nonprofit organizations
pro	Professional individual organizations

图 25.10 国家域

是使用两个字母的国 家缩写,第二级标号 可以是组织结构。

图 25.11 反向域

是将地址映射为名字,为了确定客户端是否在授权的列表中。

25-5 解析

将名字映射成为地址或者将地址映射成为名字的过

程, 称为名字-地址解析。

- □ 解析程序
- □ 名字到地址的映射
- □ 地址到名字的映射
- □递归解析
- □ 迭代解析
- □高速缓存

图 25.12 递归解析(recursive resolution)

图 25.13 迭代解析

- ◆ 如果客户端没有 收到请求递归应 答,则映射可以 迭代。
- ◆ 客户端向多个服 务器发送请求。

高速缓存

- 使用高速缓存技术来缩短查询的时间;
- 仍然可能出现问题,就是映射过期,解决方法:
 - 授权服务器总是将 TTL 信息添加到映射上;
 - DNS 要求每一台服务器对每一个映射保留一个 TTL 计数器。

25-6 DNS 报文

DNS 有两种类型的报文: 查询和响应。这两种类型的报文具有相同的格式。查询报文由头部和查询记录构成,响应报文由头部、查询记录、响应记录、授权记录和附加记录组成。

Topics discussed in this section:

□首部

图 25.14 查询和响应报文

b. Response

图 25.15 首部格式

Identification	Flags
Number of question records	Number of answer records (all 0s in query message)
Number of authoritative records (all 0s in query message)	Number of additional records (all 0s in query message)

25-7 记录类型

DNS 有两种类型的记录,在**查询**和**响应报文**的询问部分使用了询问记录;在响应报文中的应答、授权、附加信息部分使用了资源记录。

- □询问记录
- □ 资源记录

25-8 注册机构

新的域名是怎么加入到 DNS 中呢?这是通过注册机构(registrar)来完成的,一个熟知的商业实体是 ICANN(因特网名字和编号分配组织)。注册机构首先确认询问的域名是唯一的,然后将它输入到 DNS 数据库中,这是需要收费的。

25-9 动态域名系统 (DDNS)

DNS 主文件必须能动态更新。动态域名系统 Dynamic Domain Name System (DDNS) 就是为了满 足这种需求而设计的。在 DDNS 中, 当名字和地址 之间的绑定确定时,通常由 DHCP 给主 DNS 服务器 发送这种信息,主服务器更新这一区域。通知辅助 服务器的方法可以以主动方式或者以被动方式。

25-10 封装

DNS 可以使用 UDP 或者 TCP 协议。在这两种情况下,服务器使用熟知端口 53。当响应报文的长度小于 512 字节时,就使用 UDP。因为大多数 UDP 分组有 512 字节分组大小的限制。如果响应报文大于512 字节,则必须使用 TCP 连接。

Note

□ DNS可以在熟知端口 53 使用 UDP 或者 TCP 服务。

