

Lab Report

CSE-1113 (Electrical Circuit Lab)

Submitted By:	Submitted To:

MD. Marsadul Islam Abdullah Al Shiam

Roll: 09 Lecturer

Dept. of CSE Dept. of CSE

1st Year Sheikh Hasina University

1st Semester Netrokona

Department Of Computer Science & Engineering

Sheikh Hasina University

Netrokona-2400, Bangladesh

Experiment No.1:

<u>Name of the Exp.</u>: Verification of Kirchhoff's Current and Kirchhoff's Voltage law (KCL and KVL).

<u>Objective</u>: To verify Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL) theoretically and experimentally for the given circuits.

Theory:

- KVL states that in any closed path / mesh, the algebraic sum of all the voltages is zero.
- KCL states that the algebraic sum of the currents meeting at a node is equal to zero.

Fig-1: Circuit diagram for Kirchhoff's voltage and Kirchhoff's current law.

Apparatus:

- 1. DC power supply
- 2. Resistors
- 3. Digital Multi-meter
- 4. Bread Board
- 5. Connecting wires

Procedure:

a. <u>KVL</u>:

- 1. Check the values of the resistor using multi-meter (ohm section of multi-meter). Record the values in Table -1.
- 2. Give the connection as per the circuit diagram shown in Fig.1.
- 3. Set a particular value in DC power supply.
- 4. Measure the voltage drops in the circuit and record their values in Table -2.
- 5. Sum up the voltmeter readings i.e., voltage drops that should be equal to applied voltage.
- 6. Repeat the same for different voltages.
- 7. Verify KVL for each set of data.

b. KCL :

- 1. Check the values of the resistor using multi-meter (ohm section of multi-meter). Record the values in Table -1.
- 2. Give the connection as per the circuit diagram shown in Fig.2.
- 3. Set a particular value in DC power supply.
- 4. Measure circuit current and branch currents and record their values in Tabel-3.
- 5. Sum up the ammeter readings (I1, I2 ...) that should be equal to the total currents.
- 6. Repeat the same for different voltages.
- 7. Verify KCL for each set of data.

For Theoretical & Measured Value (TV & MV):

Here ,
$$V = 30V$$
 , $R_1 = R_2 = R_3 = R_4 = 9\Omega$

Applying KCL at node - 2

$$I_1=I_2+I_3$$

$$I_1 - I_2 - I_3 = 0 \dots (1)$$

Applying KVL in Loop - 1

$$9I_1 + 9I_2 - 30 = 0$$

$$I_1 + I_2 = 30/9$$

$$I_1 + I_2 = 3.333....(2)$$

Applying KVL in Loop - 2

$$9I_3 + 9I_3 - 9I_2 = 0$$

$$9(2I_3 - I_2) = 0$$

$$2I_3 - I_2 = 0....(3)$$

Solving equations (1, 2 & 3) We get,

$$I = I_1 = 1.9998 A$$

$$I_2 = 1.33335 A$$

$$I_3 = 0.666675 A$$

Therefore,

$$V_1 = 9I_1 = 17.9998 \ V$$

$$V_2 = 9I_3 = 6.00075 \text{ V}$$

$$V_3 = 9I_3 = 6.00075 \ V$$

$$V_4 = 9I_2 = 12.0015 \ V$$

Observations:

<u>Tabel-1</u>: Resistor values

Resistor	R_1	R ₂	R ₃	R ₄
Ohm meter reading	9Ω	9Ω	9Ω	9Ω

<u>Table-2</u>: Experimental & Theoretical Data for KVL

TV = Theoretical Value, MV = Measured Value

SL.N	V(V	$V_1(V)$		V ₂ (V)		$V_3(V)$		$V_4(V)$		$V=V_1+V_4$		$V_2 + V_3 + V_4$	
0.)											=0	
		TV	M V	TV	M V	TV	M V	TV	M V	TV	M V	TV	MV
	30	17.999 8	18	6.0007	6	6.0007	6	12.001 5	12	30.001	30	0	0

<u>Table-3</u>: Experimental & Theoretical Data for KCL

TV = Theoretical Value, MV = Measured Value

SL.N o.	V(V)	I(A)		I ₁ (A)		I ₂ (A)		I ₃ (A)		$I_1 = I_2 + I_3(A)$	
0.	•)										
		TV	M	TV	M	TV	MV	TV	MV	TV	MV
			V		V						
	30	1.99	2	1.99	2	1.33	1.33	0.6666	0.666	2.0000	2.0
		98		98		35	3	75	67	25	0

Model Calculation:

$$I = I_1 = 1.9998A$$
, $I_2 = 1.3335A$, $I_3 = 0.666675A$

And,

$$V_1 = 17.9998V \;, \qquad V_2 = 6.00075V \;, \qquad V_3 = 6.00075V \;, \\ V_4 = 12.0015V \;$$

Therefore,

$$I_2 + I_3 = I_1$$

$$(1.3335 + 0.666675) A = 2.000025A = I_1 = I$$

And,

$$V_1 + V_4 = (17.9998 + 12.0015) V = 30.0013V = V$$

$$V_2 + V_3 + V_4 = (6.00075 + 6.00075 - 12.0015) = 0 \text{ V}$$

Result:

Precautions:

- 1. Check for proper connections before switching ON the power supply.
- 2. Take care of the reading the apparatus.
- 3. The terminal of the resistance should be properly connected.