Generative capabilities of Gans

By Vivian Sedov

Final Year : Viva

The agenda

Project Overview
Aims and objective
Examples and information about the project
The theory
Pros and Cons
Ending

Project Overview

What is this project

- Core study on generative abilities of Gans on Facial Data (Anime).
- Principle to overcome fundamental problem with datasets and understanding how to avoid DS that lack of labels.
- A Comparision between different gans and their varients.
- Non-convergence
- Mode collapse
- Diminished gradient

Aims / Core Goals

Aims:

- Produced faces must be those of female and male
- Each face must have unique traits that are sufficiently distinct from the initital training batch
- The quality of the generated faces must be high
- Using Active Label Synthesis to create valid labels
- A comparision between different models and data

Objectives

Objectives:

- Compare between different Datasets | Initally (Cats Dogs) (Celeb Faces)
- Optimisation of current model and implementation of how different networks compare towards each other.
- Using the initial data gathered from the cats and dogs and celeb faces dataset to be the foundation for the animated face generator.
- Foundation for me to understand certain tools and libraries
 - Torch
 - Wand.ai
- Expand project scope for an understanding of label systhsis
- How pre data process on data is more important than the model it self.

The Theory
What are Gans (Generative Adverserial Network), Main Idea?

- 2 Networks, Generator, and Discriminator
- Two Player Adverserial Game
- Learns from the training set, Normal distribution, to generate new images, passed through 2 networks through backpropogation.

Discriminator: Learns to become better are identifying real from generated images.

Generator: Learns to generate better images to fool the discriminator

High Level View of a GAN

- For each mistake on a fake image, the discriminator gets punished and the generator gets a reward.
- The discriminator also gets punished or rewarded based on how well it sorts the real images.
- This is why they are called adversarial: the loss of the discriminator is the gain of the generator.
- Over time, the competition makes everyone better.

The Loss Function

- Real Samples are parsed to the D(x) in order to train the discriminator.
- Discriminator uses Binary cross entropy to determine whether a value is 0 or 1.
- Generator Does not need to know about the real data. Only the Back popogated data
- Initial Latent Variable can allow for better training.
- Using a scaler of a factor of 2 for the LR can provide fruitful results.

Algorithm Used:

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of teps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

 The Ascending Gradient is created to increase its understanding on the real and fake images.

• Vanishing Gradient problems can occour here when we deal with the discriminator: It also occurs when we train the generator

Diminished gradient

Instead of gradient descent with

$$\nabla_{\mathbf{W}_G} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right) \right)$$

Do gradient ascent with

$$\nabla \mathbf{w}_{G} \frac{1}{n} \sum_{i=1}^{n} \log \left(D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right)$$

So this occours when Discriminator is too strong and our gradient for the generator just vanishes as nothing gets parsed backwards.

Improvement Factors

- 1. Using Adam optimiser [provides better results with a magnitude of 2 with respect to generator and discriminator over SGD.
- 2. Being able to track errors early: noticing vanishing gradient, tracking the D loss etc.
- 3. Using DCGan and different variations of networks [Convolutional networks provide better results with strides over].
- 4. Core issue of avoiding sparse gradients is to use Leaky ReLu.
 - a. Leaky ReLu : G and D + for down sampling we use average pooling, and conv 2d with strides.
- 5. Batch normalistion: Different mini batches for real and fake: improves standard deviation for the D.

Mode collapse and Convergence issues

Examples Poor Data

Examples Decent Data

Notice something interesting?

Here when I preprocessed the data, we have decent convergence, for a very simple Model.

This can be further processed using active label synthesis to hyper-tune an output by separating black hair, blonde hair, etc.

TimeLine

Start the pre proc for Animated
Face data set

Create Generative Model Train Models and repeat for different Gans Varients

Create a NN for Active Label Synthesis

Look at other GAN Varients

Create a report on findings

Thankyou

Any Questions?