UM 204 HOMEWORK ASSIGNMENT 3

Posted on January 19, 2024 (NOT FOR SUBMISSION)

- These problems are for self-study. Try these **on your own** before seeking hints.
- Some of these problems will be (partially) discussed at the next tutorial.
- A 15-min. quiz based on this assignment will be conducted at the end of the tutorial section.

Problem 1. Let \mathbb{R} denote the unique ordered field with the least upper bound property. Let b > 0 and $x \in \mathbb{R}$. Complete the following steps to establish the existence of a unique real number b^x . You may assume all the well-known properties of the function $n \mapsto b^n$ for $n \in \mathbb{Z}$.

- (A) Case 1. x = 1/n, where $n \in \mathbb{Z} \setminus \{0\}$.
 - (a) Assume b > 1 and n > 0. Prove that $B = \{t \in \mathbb{R} : t > 0, t^n < b\}$ is nonempty and bounded above in \mathbb{R} .
 - (b) Prove that $(\sup B)^n = b$, and if there is a t > 0 such that $t^n = b$, then $t = \sup B$.

Define
$$b^{1/n} = \begin{cases} \sup B, & \text{if } b > 1, n > 0, \\ \frac{1}{(1/b)^{1/n}}, & \text{if } 0 < b \le 1, n > 0, \\ (1/b)^{1/-n}, & \text{if } b > 0, n < 0. \end{cases}$$

- (B) Case 2. $x = r \in \mathbb{Q} \setminus \{0\}$.
 - (a) Prove that if r=m/n=p/q, for $m,n,p,q\in\mathbb{Z}$ and n,q>0, then $(b^m)^{\frac{1}{n}}=(b^p)^{\frac{1}{q}}$. Define $b^r=(b^m)^{1/n}$.
 - (b) Prove that $b^{r+s} = b^r b^s$ if $r, s \in \mathbb{Q}$.
- (C) Case 3. $x \in \mathbb{R}$.
 - (a) Assume b > 1. Prove that $B(x) = \{b^t : t \in \mathbb{Q} \text{ and } t \leq x\}$ is nonempty and bounded above in \mathbb{R} .
 - (b) Prove that $\sup B(r) = b^r$ if $r \in \mathbb{Q}$.

Define
$$b^x = \begin{cases} \sup B, & \text{if } b > 1, \\ (1/b)^{-x}, & \text{if } 0 < b \le 1. \end{cases}$$

(c) Prove that $b^{x+y} = b^x b^y$ for all $x, y \in \mathbb{R}$.

Problem 2. Given $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and p > 0, define

$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}.$$

(a) Show that if p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_{j=1}^{n} |x_j y_j| \le ||x||_p ||y||_q, \quad \forall x, y \in \mathbb{R}^n.$$

You may directly use Young's inequality: if $a, b \ge 0$, then $ab \le \frac{a^p}{p} + \frac{b^q}{a}$.

Hint. Consider $a = \frac{|x_j|}{\|x\|_p}$ and $b = \frac{|y_j|}{\|y\|_q}$.

- (b) Let $d_p(x,y) = ||x-y||_p$, $x,y \in \mathbb{R}^n$. Show that (\mathbb{R}^n, d_p) is a metric space if $p \ge 1$. Hint. Write $\sum_{j=1}^n |x_j + y_j|^p \le \sum_{j=1}^n |x_j| |x_j + y_j|^{p-1} + |y_j| |x_j + y_j|^{p-1}$, and use (a).
- (c) Show that d_p is not a metric on \mathbb{R}^n if $p \in (0,1)$.

Problem 3. For $x, y \in \mathbb{R}$, let

$$d(x,y) = \frac{|x - y|}{1 + |x - y|}.$$

- (a) Show that d is a metric on \mathbb{R} .
- (b) Show that the d-topology on \mathbb{R} is the same as the topology induced by the standard metric on \mathbb{R} . Recall that the topology induced by a metric refers to the collection of all open sets in that metric.

Problem 4. Let p be a prime number. Recall the absolute value A_p on \mathbb{Q} defined in Assignment 02. It follows from Problem 5 in Assignment 2 that

$$d_p(x,y) = A_p(x-y), \quad x, y \in \mathbb{Q},$$

is a metric on \mathbb{Q} . Is \mathbb{Z} , the set of integers, a closed subset of (\mathbb{Q}, d_p) ?

Problem 5. Let (X, d) be a metric. For each of the claims below, determine whether it is either true (for all metric spaces) or false (in some metric space), and provide a justification for your answer.

- (a) Let $E \subset X$. The set of limit points of E is a closed subset of X.
- (b) Let $a \in X$ and r > 0. Then. $\overline{B(a;r)} = \{x \in X : d(x,a) \le r\}$.
- (c) Every closed and bounded subset $E \subset X$ is compact.
- (d) For any subset $E \subset X$, $E^{\circ} = (\overline{E})^{\circ}$.