# Object Detection

Aditya, Alex, Akhil, Araav, Justin, Pranit

## **Applications**

01

Self Driving Cars





Surveillance cameras

02

03

Medicine

04

Human aid







Object Detection

Computer Vision Technique

Localization - -

Identifying Location





Classification

Labeling Object



## Input

## Output

Original Picture

Split to RGB

Pixel Values: 0-255





(251, 181, 068, 041, 032, 071, 197, (251, 181, 068, 041, 032, 071, 197, ) 041, (251, 181, 068, 041, 032, 071, 197, ) 41, 164, 196, 014, 132, 213, 187, 043, 041, 64, 174, 011, 200, 254, 254, 232, 164, 55, 253, 202, 014, 012, 128, 242, 255, 255, 53, 165, 253, 212, 089, 005, 064, 196, 253, 65, 105, 255, 255, 251, 196, 030, 009, 165, 05, 170, 127, 162, 251, 254, 197, 009, 105, 70, 250 062, 005, 100, 144, 097, 006, 170, 50 207, 083, 032, 051, 053, 134, 250

Background



Саг





Truck



## Neural Network Basics

## What is a neural network?

- Subset of machine learning.
- Inspired by the human brain.

#### **Neural Network Architecture**



#### **Convolutional Neural Networks**





## **Model Types:** Perceptron

#### Perceptron

- A simple neural network
- Contains input layer, hidden layers, and output layers)
- Low accuracy





← the model's accuracy on test data (blue line) is quite low (around 70%)

the model's accuracy on training data is shown by the orange line

Overfitting: when the orange line continues to increase but the blue line stays constant  $\rightarrow$  means the model is memorizing the training data rather than learning patterns from it

## Model Types: Convolutional Neural Network (CNN)

#### Convolutional Neural Network (CNN)

Performs better on images (especially compared to perceptron)



← This graph shows that the model's accuracy (blue line) is around 80%

## Model Types: Transfer Learning (VGG16)

#### Transfer Learning

- The technique of using models that are already trained, and training it even more
- Performs better than CNN
- Compare this to CNN, in which we made models from scratch
- (VGG16 is one of the transfer learning networks)



← This graph shows that the model's accuracy (blue line) is very high (around 95%)

## **Model Types**

#### YOLO (v3)

- "You Only Look Once"
- Designed for fast object detection
- Uses bounding boxes and class (category)
  probabilities from images in one evaluation
- Combines the two steps of image classification (localization and classification) into one evaluation, making it faster





#### Comparing the Models

|                                     | Perceptron | CNN    | Transfer<br>Learning | YOLO v3 |
|-------------------------------------|------------|--------|----------------------|---------|
| lmage<br>Classification<br>Accuracy | 0.7130     | 0.8623 | 0.9447               | X       |

(YOLO doesn't have an accuracy because since it did not use predetermined models, it did not have a reference to calculate its accuracy with)



## Pros/Cons

- Automation and efficiency
- Advancements in deep learning
- Wide range of applications
- Improved safety



- Reliance on external factors
  - Weather can affect sensors
- Accuracy
- Dependency on training data
- False Positives







#### **Traffic Laws**

#### Accountability

Accountable to humans

Laws are the metric

Not fully accepted in the industry

#### **Naturalistic Driving**

If other people are speeding, can the av speed too?

#### Saving Lives

What if breaking the law is necessary to avoid a collision?

What if a car need to cross over double yellow lines to avoid hitting a biker?

## What would you do?







## THANK YOU

Questions?



