Classifying Real and Fake Disaster Tweets

Final Capstone By Malak Mosly

Problem Statement

- It is critical to respond to disasters (fires, shootings, etc.) in a timely manner.
- ☐ Social media sites such as Twitter are a very effective way to report disasters in real-time.
- The goal of this project is to create a model that can quickly identify a disaster tweet.

Who can benefit from this model?

- News outlets
- ☐ Disaster relief organizations
- ☐ Grassroots networks
- Politicians
- ☐ Law enforcement agencies
- ☐ Fire departments, hospitals, etc.
- ☐ The general public

Dataset (Kaggle Competitions)

- Consisted of 7,613 rows of tweets.
- □ Columns:
 - ☐ ID
 - Keyword
 - Location
 - Text
 - □ Target

Project Steps

- Data wrangling and cleaning
- Exploratory data analysis
- Preprocessing and training
- Modeling

Data wrangling and cleaning

- ☐ Dataset was explored (shape, info, value counts)
- Text cleaning was the main focus of this step:
 - Punctuation removal
 - Emoji removal
 - Html link removal
 - Numbers removed
 - ☐ Square brackets removed
 - □ All text made lowercase
 - Stop word removal

Exploratory data analysis (I)

Distributions of target column

Exploratory data analysis (II)

Length of characters

Exploratory data analysis (III)

Exploratory data analysis (IV)

Preprocessing and training

- Defining X and y:
 - \supset X \rightarrow text column (predictor variable)
 - ightharpoonup Y
 ightharpoonup target column (target variable, binary)
- ☐ Used CountVectorizer() on text column.
- ☐ Trian_test_split used to create training and testing datasets.
- ☐ TF-IDF transformation on text data.

Modeling (I)

- ☐ Three supervised models chosen:
 - Naive Bayes
 - ☐ Support-vector machines (SVM)
 - ☐ Logistic Regression
- ☐ Models were cross-validated and hyperparameter tuning done using GridSearchCV.

Modeling (II)

- ☐ Performance assessment metrics:
 - Classification report
 - Confusion matrix
 - Cross validation scores
 - Balanced accuracy scores
- Best performing model was Naive Bayes, with 80.22% testing accuracy.

Modeling (III)

Summary of performances:

Model	Testing Accuracy
Naive Bayes	80.22%
Logistic Regression	79.78%
SVM	78.95%

Most important features

Future research recommendations

- Expand model to note location and time of disaster
- Expand to all types of social media
- ☐ Model can go beyond fake/real disaster classification