Prediction with Expert Advice (Adversarial Full Info)

Yevgeny Seldin

So far

Prediction with Expert Advice (Adversarial full info game)

Performance measures

• Regret:

$$R_{T} = \sum_{t=1}^{T} \ell_{t,A_{t}} - \min_{a} \sum_{t=1}^{T} \ell_{t,a}$$

• Expected regret (oblivious setting):

$$\mathbb{E}[R_T] = \mathbb{E}\left[\sum_{t=1}^T \ell_{t,A_t}\right] - \min_{a} \sum_{t=1}^T \ell_{t,a}$$

Algorithm for adversarial full info: Hedge / Exponential weights

- $\forall a : L_0(a) = 0$
- For t = 1, 2, ...
 - $\forall a: p_t(a) = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}}$
 - $A_t \sim p_t$
 - [Observe $\ell_{t,1}, \dots, \ell_{t,K}$]
 - $\forall a : L_t(a) = L_{t-1}(a) + \ell_{t,a}$

• p_t satisfies:

$$p_{t} = \arg\min_{p} \left(\langle p, L_{t-1} \rangle + \underbrace{\frac{1}{\eta_{t}} \sum_{a} p_{a} \ln p_{a}}_{\text{Regularization}} \right)$$

- In FTL: $p_t = \arg\min_p \langle p, L_{t-1} \rangle$
- Some intuition:
 - In the early versions $p_t(a) \propto p_{t-1}(a)(1-\varepsilon)^{\ell_{t,a}}$
 - $\ell_{t,a} \in \{0,1\}$
 - In Hedge: $p_t(a) \propto p_{t-1}(a)e^{-\eta_t\ell_{t,a}}$

$$p_t(a) = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}}$$

Analysis

• Lemma: For any sequence of non-negative $\ell_{t,a}$ and $p_t(a)$ as in Hedge

- Corollary: $\mathbb{E}[R_T] \le \frac{\ln K}{\eta} + \frac{\eta}{2}T$
- Take $\eta = \sqrt{\frac{2 \ln K}{T}}$, then $\mathbb{E}[R_T] \leq \sqrt{2T \ln K}$

Proof of the lemma

$$p_{t}(a) = \frac{e^{-\eta_{t}L_{t-1}(a)}}{\sum_{a'} e^{-\eta_{t}L_{t-1}(a')}}$$

$$\sum_{t=1}^{T} \sum_{a=1}^{K} p_{t}(a)\ell_{t,a} - \min_{a} L_{T}(a) \le \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{a=1}^{K} p_{t}(a) (\ell_{t,a})^{2}$$

• Define
$$W_t = \sum_a e^{-\eta L_t(a)}$$

$$\frac{W_t}{W_{t-1}} = \frac{\sum_{a} e^{-\eta L_t(a)}}{\sum_{a'} e^{-\eta L_{t-1}(a')}}$$

$$= \sum_{a} e^{-\eta \ell_{t,a}} \frac{e^{-\eta L_{t-1}(a)}}{\sum_{a'} e^{-\eta L_{t-1}(a')}}$$

$$= \sum_{a} e^{-\eta \ell_{t,a}} p_t(a)$$

$$\leq \sum_{a} \left(1 - \eta \ell_{t,a} + \frac{1}{2} \eta^2 (\ell_{t,a})^2 \right) p_t(a)$$

$$= 1 - \eta \sum_{a} \ell_{t,a} p_{t}(a) + \frac{\eta^{2}}{2} \sum_{a} (\ell_{t,a})^{2} p_{t}(a)$$

$$< e^{-\eta \sum_a \ell_{t,a} p_t(a) + \frac{\eta^2}{2} \sum_a (\ell_{t,a})^2 p_t(a)}$$

• For
$$x \le 0$$
:
 $e^x \le 1 + x + \frac{1}{2}x^2$

• For any
$$x$$
:
$$1 + x \le e^x$$

Proof continued

$$W_{t} = \sum_{a} e^{-\eta L_{t}(a)}$$

$$\frac{W_{t}}{W_{t-1}} \le e^{-\eta \sum_{a} \ell_{t,a} p_{t}(a) + \frac{\eta^{2}}{2} \sum_{a} (\ell_{t,a})^{2} p_{t}(a)}$$

$$\frac{W_T}{W_0} = \frac{W_1}{W_0} \frac{W_2}{W_1} \frac{W_3}{W_2} \dots \frac{W_T}{W_{T-1}} \le e^{-\eta \sum_{t=1}^T \sum_a \ell_{t,a} p_t(a) + \frac{\eta^2}{2} \sum_{t=1}^T \sum_a (\ell_{t,a})^2 p_t(a)}$$

$$\frac{W_T}{W_0} = \frac{\sum_a e^{-\eta L_T(a)}}{K} \ge \frac{\max_a e^{-\eta L_T(a)}}{K} = \frac{e^{-\eta \min_a L_T(a)}}{K}$$

Put the two sides together, take a logarithm and normalize by η :

$$\sum_{t=1}^{T} \sum_{a=1}^{K} p_t(a) \ell_{t,a} - \min_{a} L_T(a) \le \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{a=1}^{K} p_t(a) (\ell_{t,a})^2$$

Summary

• Hedge:

•
$$p_t(a) = \frac{e^{-\eta_t L_{t-1}(a)}}{\sum_{a'} e^{-\eta_t L_{t-1}(a')}}$$

- Analysis:
 - Evolution of the potential function $W_t = \sum_a e^{-\eta L_t(a)}$

