BCH Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 14, 2014

BCH Codes

- Discovered by Hocquenghem in 1959 and independently by Bose and Chaudhari in 1960
- Cyclic structure proved by Peterson in 1960
- Decoding algorithms proposed/refined by Peterson, Gorenstein and Zierler, Chien, Forney, Berlekamp, Massey...
- We will discuss a subclass of BCH codes binary primitive BCH codes

Binary Primitive BCH Codes

For positive integers $m \ge 3$ and $t < 2^{m-1}$, there exists an (n, k) BCH code with parameters

- $n = 2^m 1$
- n-k < mt
- $d_{min} > 2t + 1$

Definition

Let α be a primitive element in F_{2^m} . The generator polynomial g(x) of the t-error-correcting BCH code of length $2^m - 1$ is the least degree polynomial in $\mathbb{F}_2[x]$ that has

$$\alpha, \alpha^2, \alpha^3, \dots, \alpha^{2t}$$

as its roots.

Let $\varphi_i(x)$ be the minimal polynomial of α^i . Then g(x) is the LCM of $\varphi_1(x), \varphi_2(x), \dots, \varphi_{2t}(x)$

Degree of Generator Polynomial

$$g(x) = \mathsf{LCM} \{ \varphi_1(x), \varphi_2(x), \varphi_3(x), \dots, \varphi_{2t}(x) \}$$

- If *i* is an even integer, then $i = i'2^a$ where i' is odd
- Since $\alpha^{i}=\left(\alpha^{i'}\right)^{2^{a}}$, α^{i} and $\alpha^{i'}$ have the same minimal polynomial
- Every even power of α has the same minimal polynomial as some previous odd power of α

$$g(x) = \mathsf{LCM}\left\{\varphi_1(x), \varphi_3(x), \varphi_5(x), \dots, \varphi_{2t-1}(x)\right\}$$

BCH Codes of Length 15

• Let α be a primitive element of F_{16} and a root of $x^4 + x + 1$

Power	Polynomial	Tuple			
0	0	(0	0	0	0)
1	1	(1	0	0	0)
α	α	(0	1	0	0)
α^2	α^2	(0 (0	0	1	0)
α^3	$\dfrac{lpha}{lpha^2}$	(0	0	0	1)
α α^2 α^3 α^4 α^5 α^6 α^7 α^8 α^9 α^{10} α^{11}	$1 + \alpha$	(1	1	0	0)
α^{5}	$\alpha + \alpha^2$	(0	1	1	0)
$lpha^{6}$	$\alpha^2 + \alpha^3$	(0	0	1	1)
α^7	$1 + \alpha + \alpha^3$	(1	1	0	1)
α^{8}	$1 + \alpha^2$	(1	0	1	0)
α^{9}	$\alpha + \alpha^3$	(O	1	0	1)
$lpha^{10}$	$1 + \alpha + \alpha^2$	(1	1	1	0)
$lpha^{11}$	$\alpha + \alpha^2 + \alpha^3$	(O	1	1	1)
$lpha^{ extsf{12}}$	$1 + \alpha + \alpha^2 + \alpha^3$	(1	1	1	1)
$lpha^{13}$ $lpha^{14}$	$1 + \alpha^2 + \alpha^3$	(1	0	1	1)
α^{14}	$1 + \alpha^3$	(1	0	0	1)

BCH Codes of Length 15

- Let α be a primitive element of F_{16} and a root of $x^4 + x + 1$
- The minimal polynomials of F_{16} are $\mathbb{F}_2[x]$ factors of $x^{16} + x$

$$x^{16} + x = x(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$$

- A single error correcting BCH code of length 15 has generator polynomial $g(x) = \varphi_1(x) = x^4 + x + 1$
- A double error correcting BCH code of length 15 has generator polynomial

$$g(x) = LCM\{\varphi_1(x), \varphi_3(x)\} = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)$$

- The maximum value of t for a BCH code of length 15 is 7
- What is the generator polynomial for correcting seven errors?

Questions? Takeaways?