

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

Unsigned Multiplication: Conventional Method / Pencil-Paper Method

- 1) The Conventional (Pencil-Paper) method is used to **multiply two unsigned numbers**.
- 2) When we multiply two "N-bit" numbers, the answer is "2 x N" bits.
- 3) Three registers A, Q and M, are used for this process.
- 4) **Q** contains the **Multiplier** and **M** contains the **Multiplicand**.
- 5) **A** (**Accumulator**) is initialized with 0.
- 6) At the end of the operation, the **Result** will be stored in (**A & Q**) combined.
- 7) The process involves **addition** and **shifting**.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

- 1) At each step, **examine** the current **multiplier bit** starting from the **LSB**.
- 2) If the current multiplier bit is "1", then the Partial-Product is the Multiplicand itself.
- 3) If the current **multiplier bit is "0"**, then the **Partial-Product** is the **Zero**.
- 4) At each step, **ADD the Partial-Product to the Accumulator**.
- 5) Now **Right-Shift the Result** produced so far (**A & Q combined**).

Repeat steps 1 to 5 for **all bits** of the multiplier.

The **final answer** will be in **A & Q** combined.

Circuit Diagram for Unsigned Multiplication

Acharya

Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya Mumbai | 2018

Example: $7 \times 6 = 42$

				0	1	1	1	Multiplicand (7)
		x		0	1	1	0	Multiplier (6)
				0	0	0	0	Partial-Product
			0	1	1	1	Χ	22
		0	1	1	1	Χ	Χ	22
+	0	0	0	0	Χ	Χ	Χ	22
	0	1	0	1	0	1	0	Result (42)

Step	C Carry	A Accumulator	Q Multiplier	M Multiplicand	Explanation
•	0	0000	0110 Dh	0111	Initial Value
1	0	0000	0110 Ach	larya	Current Multiplier bit is "0" so ADD "0" to Accumulator and Right-Shift
2	0	0111 0011	0011 1001		Current Multiplier bit is "1" so ADD Multiplicand to Accumulator and Right-Shift
3	0	1010 0101	1001 0100		Current Multiplier bit is "1" so ADD Multiplicand to Accumulator and Right-Shift
4	0	0101 0010 FINAL AN	0100 1010 NSWER :-)		Current Multiplier bit is "0" so ADD "0" to Accumulator and Right-Shift
	For more	detailed explanation re	fer Bharat Sir's Lectur	e Notes or Call Bharat	Sir on 9820408217.

www.BharatAcharyaEducation.com

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

Example: $15 \times 15 = 225$

				1	1	1	1	1 Multiplicand (15)	
		x		1	1	1	1	Multiplier (15)	
				1	1	1	1	Partial-Product	
			1	1	1	1	Χ	>>	
		1	1	1	1	Χ	Х	"	
+	1	1	1	1	Χ	Χ	Χ	>>	
1	1	1	0	0	0	0	1	Result (225)	

Step	C Carry	A Accumulator	Q Multiplier	M Multiplicand	Explanation
эсер	0	0000	1111	1111	Initial Value
1	0	1111 0111	1111 _{ucation} *	rya ****	Current Multiplier bit is "1" so ADD Multiplicand to Accumulator and Right-Shift
2	1 0	0110 1011	1111 0111		Current Multiplier bit is "1" so ADD Multiplicand to Accumulator and Right-Shift
3	1 0	1010 1101	0111 0011		Current Multiplier bit is "1" so ADD Multiplicand to Accumulator and Right-Shift
4	1 0	1100 1110 FINAL AN	0011 0001 NSWER :-)		Current Multiplier bit is "1" so ADD Multiplicand to Accumulator and Right-Shift
1		FINAL AN	NSWER :-) Bharat Sir's Lecture N	otes or Call Bharat Sir	Right-Shift

Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya Mumbai | 2018

SIGNED MULTIPLICATION: BOOTH'S ALGORITHM

- 1) Booth's Algorithm is used to **multiply two SIGNED numbers**.
- 2) When we multiply two "N-bit" numbers, the answer is "2 x N" bits.
- 3) Three registers A, Q and M, are used for this process.
- 4) **Q** contains the **Multiplier** and **M** contains the **Multiplicand**.
- 5) **A** (**Accumulator**) is initialized with 0.
- 6) At the end of the operation, the **Result** will be stored in (A & Q) combined.
- 7) The process involves **addition**, **subtraction** and **shifting**.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

At the beginning, consider an imaginary "0" beyond LSB of Multiplier

- 1) At each step, examine two adjacent Multiplier bits from Right to Left.
- 2) If the transition is from "0 to 1" then Subtract M from A and Right-Shift (A & Q) combined.
- 3) If the transition is from "1 to 0" then ADD M to A and Right-Shift.
- 4) If the transition is from "0 to 0" then simply Right-Shift.
- 5) If the transition is from "1 to 1" then simply Right-Shift.

Repeat steps 1 to 5 for **all bits** of the multiplier.

The **final answer** will be in **A & Q** combined.

Circuit Diagram for Signed Multiplication using Booth's Algorithm

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

FLOWCHART FOR BOOTH'S ALGORITHM

Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya Mumbai | 2018

Example: 7 x 6 = 42

Multiplicand (M): **7 = 0111**. Multiplier (Q): **6 = 0110**. **-7 = 1001** (Two's Complement Form) -6 = **1010** (Two's Complement Form)

Step	A Accumulator	Q Multiplier	Q ₋₁ Imaginary	M Multiplicand
Initial	0000	0110	0	0111
1) (0 ← 0) No Add or Sub Right-Shift	0000	0110 0011 Bhara	0 0	
2) (1 ← 0) Perform (A - M) Right-Shift	1001 1100	Achar 0011n *** 1001	/	
3) (1 ← 1) No Add or Sub Right-Shift	1100 1110	1001 0100	1	
4) (0 ← 1) Perform (A + M) Right-Shift	0101 0010 FINAL AN	0100 1010 ISWER :-)	1 0	

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

Example: $5 \times 7 = 35$

Multiplicand (M): 5 = 0101. -5 = 1011 (Two's Complement Form) Multiplier (Q): 7 = 0111. -7 = 1001 (Two's Complement Form)

Step	A Accumulator	Q Multiplier	Q ₋₁ Imaginary	M Multiplicand
Initial	0000	0111	0	0101
1) (1 ← 0) Perform (A - M) Right-Shift	1011 1101	0111 1011ara	0 1	
2) (1 ← 1) No Add or Sub Right-Shift	1101 1110	Achar 1011 ¹ *** 1101	ya ** 1 1	
3) (1 ← 1) No Add or Sub Right-Shift	1110 1111	1101 0110	1	
4) (0 ← 1) Perform (A + M) Right-Shift	0100 0010 FINAL AN	0110 0011 ISWER :-)	1 0	

Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya Mumbai | 2018

Example: $9 \times 10 = 90$

Multiplicand (M): 9 = 01001. -9 = 10111 (Two's Complement Form) Multiplier (Q): 10 = 01010. -10 = 10110 (Two's Complement Form)

Step	A Accumulator	Q Multiplier	Q ₋₁ Imaginary	M Multiplicand
Initial	00000	01010	0	01001
1) (0 ← 0) No Add or Sub Right-Shift	00000 00000	01010 00101	0	
2) (1 ← 0) Perform (A - M) Right-Shift	10111 11011	00101 ra 10010 ACHAR	1	
3) (0 ← 1) Perform (A + M) Right-Shift	00100 00010	10010 01001	1 0	
4) (1 ← 0) Perform (A - M) Right-Shift	11001 11100	01001 10100	0 1	
5) (0 ← 1) Perform (A + M) Right-Shift	00101 00010 FINAL AN	10100 11010 ISWER :-)	1 0	220400217

Expected Ans: 90 = 00010 11010

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

Example: $-9 \times 10 = -90$

Multiplicand (M): -9 = 10111 9 = 01001. (Two's Complement Form) Multiplier (Q): 10 = 01010. -10 = 10110 (Two's Complement Form)

Step	A Accumulator	Q Multiplier	Q ₋₁ Imaginary	M Multiplicand
Initial	00000	01010	0	10111
1) (0 ← 0) No Add or Sub Right-Shift	00000 00000	01010 00101	0	
2) (1 ← 0) Perform (A - M) Right-Shift	01001 00100	00101ra 10010 ACLIAT	1	
3) (0 ← 1) Perform (A + M) Right-Shift	11011 11101	10010 11001	1 0	
4) (1 ← 0) Perform (A - M) Right-Shift	00110 00011	11001 01100	0	
5) (0 ← 1) Perform (A + M) Right-Shift	11010 11101 FINAL AN	01100 00110 ISWER :-) In case of doubts call	1 0	

Expected Ans: -90 = 11101 00110

Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya Mumbai | 2018

Example: $9 \times -10 = -90$

Multiplicand (M): 9 = 01001 -9 = 10111. (Two's Complement Form) Multiplier (Q): -10 = 10110 10 = 01010. (Two's Complement Form)

Step	A Accumulator	Q Multiplier	Q ₋₁ Imaginary	M Multiplicand
Initial	00000	10110	0	01001
1) (0 ← 0) No Add or Sub Right-Shift	00000 00000	10110 01011	0 0	
2) (1 ← 0) Perform (A - M) Right-Shift	10111 11011	01011 10101 ra Achar	0 t 1	
3) (1 ← 1) No Add or Sub Right-Shift	11011 11101	Education *** 10101 11010	1 1	
4) (0 ← 1) Perform (A + M) Right-Shift	00110 00011	11010 01101	1 0	
5) (1 ← 0) Perform (A - M) Right-Shift		01101 00110 SWER :-) In case of doubts call	0 1	

Expected Ans: -90 = 11101 00110

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

Example: $-9 \times -10 = 90$

Multiplicand (M): -9 = 10111 9 = 01001. (Two's Complement Form) Multiplier (Q): -10 = 10110 10 = 01010. (Two's Complement Form)

Step	A Accumulator	Q Multiplier	Q ₋₁ Imaginary	M Multiplicand
Initial	00000	10110	0	10111
1) (0 ← 0) No Add or Sub Right-Shift	00000 00000	10110 01011	0	
2) (1 ← 0) Perform (A - M) Right-Shift	01001 00100	01011ra 10101 AChar	1	
3) (1 ← 1) No Add or Sub Right-Shift	00100 00010	10101 01010	1 1	
4) (0 ← 1) Perform (A + M) Right-Shift	11001 11100	01010 10101	1 0	
5) (1 ← 0) Perform (A - M) Right-Shift		10101 11010 ISWER :-) In case of doubts call	0 0	

Expected Ans: $90 = 00010 \ 11010$