Tagowanie części mowy Parsowanie składniowe

Agnieszka Ławrynowicz

Wydział Informatyki i Telekomunikacji Politechniki Poznańskiej

27 kwietnia 2020

Tagowanie części mowy

Tagowanie części mowy

Tagowanie części mowy (ang. part-of-speech (POS) tagging)

Obliczeniowe metody oznaczania wyrazów częściami mowy (rzeczownik, czasownik, ...).

Zestaw tagów Penn Treebank

Markus i inni (1993)

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

źródło: "Speech and Language Processing (3rd ed. draft)", Dan Jurafsky and James H. Martin. Draft chapters in progress, August 28, 2017, https://web.stanford.edu/~jurafsky/slp3/

Tagowanie części mowy

- wyrazy często mają więcej niż jeden POS-tag
 - The back door JJ
 - On my back NN
 - Promised to back the bill VB
- problem oznaczenia części mowy dotyczy jej oznaczenia dla danej instancji wyrazu

Tagowanie części mowy

Wejście:	Plays	well	with	others
Niejednoznaczność:	NNS/VBZ	UH/JJ/NN/RB	IN	NNS
Wyjście:	Plays/VBZ	well/RB	with/IN	others/NNS

Tagowanie części mowy: zastosowania

- text-to-speech (jak wymawiać 'lead'?)
- wyrażenia regularne do płytkiej analizy, np. (Det) Adj * N+
- jako wejście albo żeby przyspieszyć pełnowymiarowy parser

Parsowanie

Parsowanie składnikowe

Parsowanie składnikowe (ang. constituent parsing)

Polega na identyfikacji fraz ('składników') w zdaniu oraz ich rekurencyjnej, zagnieżdżonej struktury.

Drzewo wyprowadzenia

Drzewo wyprowadzenia (ang. parse tree)

frazy ('składniki') oznaczone przez: NP (noun phrase), VP (verb phrase) itd.

Składniki

Skąd wiemy co jest składnikiem?

- Rozkład: składnik 'zachowuje się' jak jednostka, która może wystąpić w różnych miejscach
 - Mary talked [to the children] [about drugs]
 - Mary talked [about drugs] [to the children]
 - *Mary talked drugs to the children about
- zastąpienia:
 - I sat [right on the box/right on top of the box/there]

Gramatyki bezkontekstowe

Struktura frazy organizuje wyrazy w (zagnieżdżone) składniki.

- a dog
- the cat
- a large cat
- a barking dog
- a large cat on the table

Gramatyka bezkontekstowa

- N zbiór nieterminalnych symboli (zmiennych)
- Σ zbiór terminalnych symboli (rozłączny z N)
- R zbiór reguł (produkcji), w formie $A \to \beta$, gdzie A jest symbolem nieterminalnym, β jest łańcuchem symboli z nieskończonego zbioru $\Sigma \cup N^*$
- S symbol startu, należący do N

Prosta gramatyka

Grammar Rules	Examples
$S \rightarrow NPVP$	I + want a morning flight
$NP \rightarrow Pronoun$	I
Proper-Noun	Los Angeles
Det Nominal	a + flight
$Nominal \rightarrow Nominal Noun$	morning + flight
Noun	flights
VD . Vl	4-
$VP \rightarrow Verb$	do
Verb NP	want + a flight
Verb NP PP	leave + Boston + in the morning
Verb PP	leaving + on Thursday
$PP \rightarrow Preposition NP$	from + Los Angeles

źródło: "Speech and Language Processing (3rd ed. draft)", Dan Jurafsky and James H. Martin. Draft chapters in progress, August 28, 2017, https://web.stanford.edu/~jurafsky/slp3/

Niejednoznaczności łączenia

Scientists count whales from space

Kluczową decyzją w parsowaniu jest jak łączymy różne składniki

Bank drzew

Bank drzew wyprowadzenia (ang. treebank)

Korpus, w którym każde zdanie ma odpowiadające mu drzewo wyprowadzenia.

Parsowanie zależnościowe

Parsowanie zależnościowe

Parsowanie zależnościowe (ang. dependency parsing)

Polega na wyznaczeniu struktury składniowej zdania (struktury zależnościowej) w postaci skierowanych, binarnych relacji pomiędzy wyrazami w zdaniu.

Pokazuje, które wyrazy *zależą* od (modyfikują lub są argumentami) innych wyrazów.

Struktura zależnościowa

źródło: "Speech and Language Processing (3rd ed. draft)", Dan Jurafsky and James H. Martin. Draft chapters in progress, September, 2018, https://web.stanford.edu/~jurafsky/slp3/

Struktura zależnościowa

- drzewo rozpinające: każdy wierzchołek ma jedną krawędź wchodzącą (z wyjątkiem root)
- wierzchołki odpowiadają tokenom w zdaniu
 - korzeń root nie ma krawędzi wchodzących i ma jedną krawędź wychodzącą
- krawędzie reprezentują relacje:
 - krawędź skierowana od tokenu nadrzędnika do tokenu podrzędnika
 - etykiety krawędzi reprezentują funkcję gramatyczną podrzednika
 - etykiety krawędzi pochodzą z ustalonego zbioru relacji gramatycznych

Czy dla języka polskiego lepsza będzie gramatyka (parsery) zależnościowa czy składnikowa? Dlaczego?

Relacje zależnościowe

Relacje dot. argu- mentów zdanio- wych	Opis
NSUBJ	podmiot nominalny
DOBJ	dopełnienie bezpośrednie
IOBJ	dopełnienie niebezpośrednie
CCOMP	podrzędne frazy zdaniowe dołączane do predykatu; pełnią funkcje analogiczne do dopełnienia i przymiotnika; kontrolują własny pod- miot
XCOMP	podrzędne frazy zdaniowe bez własnego podmiotu; odwołują się do podmiotu głównego predykatu

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and Manning, C. D. (2014). Universal stanford dependencies: A cross-linguistic typology. In LREC, Vol. 14, pp. 4585–92.

więcej w:

Relacje zależnościowe c.d

Relacje dot. mody- fikatorów rzeczowni- ków	Opis
NMOD	frazy nominalne modyfikujące rzeczowniki
AMOD	modyfikator przymiotnikowy, to przymiotnik lub fraza przymiotni-
	kowa modyfikująca znaczenie rzeczownika
NUMMOD	modyfikator liczbowy, czyli liczba lub fraza liczbowa modyfikująca
	rzeczownik pod względem ilości
APPOS	apozycja, która jest elementem nominalnym, definiującym, nazy-
	wającym lub opisującym rzeczownik
DET	relacja pomiędzy elementem determinującym a nadrzędnym ele-
	mentem nominalnym
CASE	relacja przypadku jest używana w przypadku kiedy osobne słowo
	wyznacza przypadek gramatyczny powiązanego słowa
Inne	Opis
CONJ	relacja koordynacji, spójniki
CC	spójnik koordynacji, odpowiada za koordynowanie dwóch fraz
więcej w:	

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and Manning, C. D. (2014). Universal stanford dependencies: A cross-linguistic typology. In LREC, Vol. 14, pp. 4585–92.

Universal Dependencies

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., McDonald, R. T., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., and Zeman, D. (2016). Universal Dependencies v1: A multilingual treebank collection. In LREC-16.

Projekt Universal Dependencies http://universaldependencies.org/zawiera spis relacji zależnościowych

Universal Dependencies

Treebank Statistics: UD_English-GUM: Relations: conj

This relation is universal.

3188 nodes (4%) are attached to their parents as conj.

3188 instances of conj (100%) are left-to-right (parent precedes child). Average distance between parent and child is 6.64930991217064.

The following 71 pairs of pairs of speech are connected with cond; 1001H-1000; 1102; 35% instances, YERR-YERR (868; 27% instances, PEOPR-PROPE (366; 12% instances), NULL-YERR (71; 2% instances), NULL-YERR (72; 2% instances), NULL-YERR (72; 2% instances), NULL-YERR (72; 2% instances), NULL-YERR (73; 2% ins

Universal Dependencies - przykłady

Relacja	Przykłady z nadrzędnikiem i podrzędnikiem
NSUBJ	Po bieganiu coś się wam od życia należy .
DOBJ	We booked her the last flight to Boston.
IOBJ	Żołnierze zamierzali wywieźć uchodźców ciężarówkami.
NMOD	We took the evening flight .
AMOD	Dorota z trudem przepchnęła słowa przez zaciśnięte gardło.
NUMMOD	Urząd nie będzie porównywał obu PIT-ów.
APPOS	Projekt został podpisany przez cesarza Wilhelma II.
DET	- Nie wiem, jak zrodziła się ta inicjatywa.
CONJ	Zmiany wart są coraz częstsze i szybsze.
CC	Zmiany wart są coraz częstsze i szybsze .
CASE	Book the flight through Warsaw.

Składnica

Składnica (zależnościowa) http://zil.ipipan.waw.pl/Składnica

Składnica — a treebank of Polish

All listed resources have been made available under the GPLv3 license.

Treebank search engine

Development version of Składnica

This version is the result of development in the project NEKST and in two stages of CLARIN-PL (CLARIN-PL, CLARIN-PL-2).

. Constituency forests as XML files, version 2018.07.23 (final result of CLARIN-PL-2, using Walenty notation for phrase types; 13035 full trees) Składnica-frazowa-180723.tar.gz

Składnica v % (2011)

The following page presents the results of the research project N N104 224735 Construction of a treebank for Polish using machine parsing, financed by the Ministry of Science and Higher Education in 2008-2011.

Składnica frazowa — constituency treebank

The primary resource presented is the constituency treatment, (Situdinote Razzwey, version 0.3. The treatment is a result of paringing 0.000 Polish sentences with the syntactic paring sizes. For every sentence, the pursary entermines all possible syntactic pares trees predicted by the rule of 1st granting. Within the Develous important, within the Develous many sizes of the property of the prope

- Constituency forests as XML files: Składnica-frazowa-0.5.tar.bz2
- The files contain all trees generated by the parser, the interpretation selected by dendrologists is marked through attributes.
- XML schema for the constituency treebank files: Składnica-frazowa.xsd
 Trees in the Tiger XML format; Składnica-frazowa-0.5-TigerXML.xml.gz
 - The format represents parse trees selected by dendrologists only (one interpretation per sentence).

Składnica zależnościowa — dependency treebank

The dependency treebank (Składnica zależnościowa), version 0.5, is a result of an automatic conversion of manually disambiguated constituency trees into dependency structures.

Składnica zależnościowa

(Wróblewska, 2012, 2014)

- struktury zależnościowe automatycznie przekonwertowane z drzew składnikowych (Woliński i in., 2011)
- krawędziom w drzewach przypisane etykiety bazujące na zbiorze zdefiniowanych reguł
- typy relacji zależnościowych: http://zil.ipipan.waw.pl/FunkcjeZaleznosciowe
- ponad 8 tys drzew

Zalety banków drzew

Tworzenie banku drzew może wydawać się o wiele wolniejsze i mniej pożyteczne niż zbudowanie gramatyki, ale ma to wiele zalet:

- re-używalność: wiele parserów, tagerów części mowy itp. może być zbudowane w oparciu o nie
- szerokie pokrycie, nie tylko kilka intuicji
- informacje o częstości i rozkładzie
- sposób ewaluacji systemów ('złoty standard')

Jak możemy zdecydować, które słowa zależą od których?

Źródła informacji dla parserów zależnościowych

- powinowactwa leksykalne ([dyskusja → zagadnień])
- odległość pomiędzy zależnymi wyrazami
- treść pomiędzy (zależności rzadko rozciągają się poprzez czasowniki i znaki przestankowe)
- walencja nadrzędników (walencja = liczba argumentów, z jakimi zazwyczaj 'łączy się' dany wyraz, przede wszystkim czasownik)

Rodzaje parserów zależnościowych

- oparte na programowaniu dynamicznym
- oparte na algorytmach spełnienia ograniczeń (ang. constraint satisfaction)
- grafowe
- oparte na przejściach

Parsery zależnościowe trenowane z nadzorem

- grafowe: mając na wejściu zdanie, parser definiuje zbiór możliwych drzew zależnościowych jako kandydatów, którzy są następnie oceniani na podstawie wytrenowanego modelu i wybierane jest nawyżej ocenione drzewo
- oparte na przejściach: budują optymalną sekwencję przejść (wybór elementów do dołączenia) na podstawie wytrenowanego modelu uczenia maszynowego

Podstawowy parser zależnościowy oparty na przejściach

źródło: "Speech and Language Processing (3rd ed. draft)", Dan Jurafsky and James H. Martin. Draft chapters in progress. September. 2018. https://web.stanford.edu/~jurafsky/slp3/

Konfiguracja

- Konfiguracja składa się ze:
 - stosu,
 - bufora wejściowego wyrazów lub tokenów,
 - zestawu relacji reprezentujących drzewo zależności.
- Proces analizy składa się z sekwencji przejść w przestrzeni możliwych konfiguracji
- Celem tego procesu jest znalezienie ostatecznej konfiguracji, w której uwzględniono wszystkie wyrazy i zsyntetyzowano odpowiednie drzewo zależności

Parser zależnościowy: podejście standardowe

(Covington 2001)

Operatory (akcje) używane do wyprodukowania nowych konfiguracji, poprzez analiozowanie wyrazów w pojedynczym przejściu wejścia, od lewej do prawej:

- przypisz bieżący wyraz jako nadrzędnik wcześniej widzianego wyrazu,
- przypisz jakiś wcześniej widziany wyraz jako nadrzędnik bieżącego wyrazu,
- lub odrocz zrobienie czegokolwiek z bieżącym wyrazem, dodaj go do sstosu w celu późniejszego przetworzenia.

Parser zależnościowy: podejście standardowe, łuki (arc-standard transition-based parser)

(Nivre 2003)

W celu bardziej precyzyjnych akcji, definiujemy trzy operatory przejścia, operujące na dwóch najwyższych elementach stosu:

- LEFTARC: przypisz relację zależną od nadrzędnika pomiędzy wyrazem na szczycie stosu i wyrazem bezpośrednio pod nim; usuń niżej leżący wyraz ze stosu,
- RIGHTARC: przypisz relację zależną od nadrzędnika pomiędzy drugim wyrazem od szczytu stosu i wyrazem na szczycie stosu; usuń wyraz ze szczytu stosu,
- SHIFT: usuń wyraz z początku bufora wejściowego i odłóż go na stos.

Ogólny, zachłanny algorytm parsera zależnościowego opartego na przejściach

function dependency_parse(wyrazy) returns drzewo zależnościowe

- 1: stan ← {[root], [wyrazy], []} ; początkowa konfiguracja dla stanu, który nie jest finalny
- 2: $t \leftarrow \mathsf{ORACLE}(\mathsf{stan})$; wybór operatora przejścia
- 3: $stan \leftarrow APPLY(t, stan)$; aplikacja operatora, utworzenie nowego stanu
- 4: return stan

Ogólny, zachłanny algorytm parsera zależnościowego opartego na przejściach c.d.

Złożoność tego algorytmu jest liniowa względem długości zdania (pojedyncze przejście od lewej do prawej, każdy wyraz jest najpierw odkładany na stos, a później redukowany).

Przykład

źródło: "Speech and Language Processing (3rd ed. draft)", Dan Jurafsky and James H. Martin. Draft chapters in progress, September, 2018, https://web.stanford.edu/~jurafsky/slp3/

Przykład c.d.

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]	[]	LEFTARC	$(the \leftarrow flight)$
8	[root, book, flight]	[]	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]		Done	

źródło: "Speech and Language Processing (3rd ed. draft)", Dan Jurafsky and James H. Martin. Draft chapters in progress, September, 2018, https://web.stanford.edu/~jurafsky/slp3/

Konstruowanie wyroczni (ORACLE)

- najnowocześniejsze systemy oparte na przejściach wykorzystują nadzorowane metody uczenia maszynowego do uczenia klasyfikatorów, które pełnią rolę wyroczni
- mając dane odpowiednie dane trenujące, metody te uczą się funkcji odwzorowującej konfiguracje na operatory przejścia
- każda akcja jest przewidywana przez klasyfikator:
 - maksymalnie 3 ogólne wybory; maksymalnie $|R| \times 2 + 1$, gdy weźmiemy pod uwagę typy relacji (LEFTARC jako OBJ itd., około 80 klas)
 - cechy (kategoryczne): wyraz na szczycie stosu, POS; pierwszy wyraz w buforze, POS, itd.
- z początku uzywane były 'konwencjonalne' klasyfikatory: regresja logistyczna, SVM,
- brak przeszukiwania (ale można zastosować przeszukiwanie wiązkowe)

Wady podejść opartych na 'konwencjonalnych' klasyfikatorach

- Problem 1: bardzo rzadkie cechy (np. rzędu 15 mln cech)
- Problem 2: niekompletność (wiele konfiguracji nie pojawiło się wcześniej, na etapie trenowania, brak dla nich cech)
- Problem 3: kosztowne obliczenia (więcej niż 95% czasu parsowania jest poświęconych na liczenie cech)

Wady podejść opartych na 'konwencjonalnych' klasyfikatorach

Alternatywne podejście: wyuczenie gęstej i kompaktowej reprezentacji cech (około 1000 cech)

Neuronowy parser zależnościowy

(Chen & Manning 2014)

- rozproszone reprezentacje wektorowe
- ekstrakcja tokenów i następnie tworzenie reprezentacji wektorowych z konfiguracji

Rozproszone reprezentacje wektorowe

- każdy wyraz reprezentowany jako d-wymiarowy gęsty wektor (tj. word embedding)
 - podobne wyrazy będą miały zbliżone wektory
- części mowy (part-of-speech, POS) i etykiety zależnościowe także reprezentowane jako d-wymiarowe wektory
 - mniejsze, dyskretne zbiory także wykazują wiele semantycznych podobieństw, np. NNS (plural noun) jest bliskie NN (singular noun)

Ekstrakcja tokenów i następnie tworzenie reprezentacji wektorowych z konfiguracji

- ekstrakcja tokenów, bazując na pozycjach w stosie / buforze
- konwertowanie ich na embeddingi i ich konkatenacja
- jakakolwiek konfiguracja parsera jest reprezentowana jako wektor z około 1000 wymiarów

Architektura modelu

Dziękuję za uwagę!