Bicategories

December 24, 2023

00ZK

Contents

- 1. spans in bicategories: add Proposition 7 here: https://arxiv.org/abs/1903.03890
- 2. add fact: internal adjunctions in PseudoFun(C, \mathcal{D}) are precisely the invertible strong transformations as in [JY21, Example 6.2.7]. What are the internal adjunctions?

1 Monomorphisms in Bicategories

1.1 Faithful Mono phomphisms

Let *C* be a bicategory.

Definition 1.1.1.1. A 1-morphism $f: A \rightarrow \emptyset$ a faithful monomorphism in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(C)$, the functor

00ZP

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is faithful.

2. Given a diagram in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have $id_f \circ \alpha = id_f \circ \beta$, then $\alpha = \beta$.

Example 1.1.1.2. Here are some example aithful monomorphisms.

1. Full Monomorphisms in Cats₂.

00ZS

2. Full Monomorphisms in Rel.

00ZT

3. Full Monomorphisms in Span.

00ZU

1.2 Full Monomorphisms

Let *C* be a bicategory.

Definition 1.2.1.1. A 1-morphism $f: A \rightarrow \emptyset B$ is a **full monomorphism in** C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(C)$, the functor

00ZX

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is full.

2. For each $X \in \text{Obj}(C)$ and each 2-morphism

010F

$$\gamma \colon f \circ \phi \Longrightarrow f \circ \psi, \quad X \underbrace{\downarrow f \circ \phi}_{f \circ \psi} B$$

of *C*, there exists a 2-morphism $\alpha : \phi \Longrightarrow \psi$ of *C* such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\gamma = \mathrm{id}_f \circ \alpha$$
.

Example 1.2.1.2. Here are some example trill monomorphisms.

1. Full Monomorphisms in Cats₂.

0100

2. Full Monomorphisms in Rel.

0101

3. Full Monomorphisms in Span.

0102

1.3 Fully Faithful Monomorphisms

Let *C* be a bicategory.

Definition 1.3.1.1. A 1-morphism $f: A \rightarrow B @ B @ B$ a fully faithful monomorphism in C if the following equivalent conditions are satisfied:

1. The 1-morphism f is fully and faithful. 0105

2. For each $X \in \text{Obj}(C)$, the functor 0106

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is fully faithful.

3. The conditions in ?? of ?? and ?? of ?? hold. 0107

Example 1.3.1.2. Here are some example 1025 ully faithful monomorphisms.

1. Fully Faithful Monomorphisms in Cats₂. 0109

2. Fully Faithful Monomorphisms in **Rel**. 010A

3. Fully Faithful Monomorphisms in Span. 010B

1.4 Strict Monomotohisms

Let *C* be a bicategory.

Definition 1.4.1.1. A 1-morphism $f: A \rightarrow \mathbb{D}$ a strict monomorphism in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(C)$, the action on objects 010E

$$f_*: \mathrm{Obj}(\mathrm{Hom}_{\mathcal{C}}(X,A)) \to \mathrm{Obj}(\mathrm{Hom}_{\mathcal{C}}(X,B))$$

of the functor

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is injective.

2. For each diagram in C of the form 010F

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

Example 1.4.1.2. Here are some examples of strict monomorphisms.

1. Strict Monomorphisms in Cats₂. 010H

2. Strict Monomorphisms in **Rel**. 010J

3. Strict Monomorphisms in Span. 010K

2 Epimorphisms in Bicategories

2.1 Faithful Epim@fpHisms

Let *C* be a bicategory.

Definition 2.1.1.1. A 1-morphism $f: A \rightarrow \mathbb{D}$ is a faithful epimorphism in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(B,X) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,X)$$

given by precomposition by f is faithful.

2. Given a diagram in C of the form 010Q

$$A \xrightarrow{f} B \underbrace{\alpha | \downarrow \beta}_{\psi} X,$$

if we have $\alpha \circ id_f = \beta \circ id_f$, then $\alpha = \beta$.

Example 2.1.1.2. Here are some examples of faithful epimorphisms.

1. Full Epimorphisms in Cats₂. 010S

2. Full Epimorphisms in **Rel**. 010T

3. Full Epimorphisms in Span. 010U

2.2 Full Epimorphism's

Let *C* be a bicategory.

Definition 2.2.1.1. A 1-morphism $f: A \rightarrow \mathcal{B} G \forall a$ full epimorphism in C if the following equivalent conditions are satisfied:

1. For each
$$X \in \text{Obj}(C)$$
, the functor

010X

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is full.

2. For each $X \in \text{Obj}(C)$ and each 2-morphism

011F

$$\gamma : \phi \circ f \Longrightarrow \psi \circ f, \quad X \xrightarrow{\phi \circ f} B$$

of C, there exists a 2-morphism $\alpha \colon \phi \Longrightarrow \psi$ of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\gamma = \alpha \circ \mathrm{id}_f$$
.

Example 2.2.1.2. Here are some examples of Tull epimorphisms.

1. Full Epimorphisms in Cats₂. 0110

2. Full Epimorphisms in **Rel**. 0111

3. Full Epimorphisms in Span. 0112

2.3 Fully Faithful Epimorphisms

Let *C* be a bicategory.

Definition 2.3.1.1. A 1-morphism $f: A \rightarrow B$ is a fully faithful epimorphism in C if the following equivalent conditions are satisfied:

1. The 1-morphism f is fully and faithful. 0115

2. For each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is fully faithful.

3. The conditions in ?? of ?? and ?? of ?? hold.

0117

Example 2.3.1.2. Here are some examples of fully faithful epimorphisms.

1. Fully Faithful Epimorphisms in Cats₂.

0119

2. Fully Faithful Epimorphisms in Rel.

011A

3. Fully Faithful Epimorphisms in Span.

011B

2.4 Strict Epimorphisms

Let *C* be a bicategory.

Definition 2.4.1.1. A 1-morphism $f: A \rightarrow \mathbb{B}$ is a **strict epimorphism in** C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(C)$, the action on objects

011E

$$f^* : \mathrm{Obj}(\mathrm{Hom}_{\mathcal{C}}(B, X)) \to \mathrm{Obj}(\mathrm{Hom}_{\mathcal{C}}(A, X))$$

of the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is injective.

2. For each diagram in C of the form

011F

$$A \xrightarrow{f} B \xrightarrow{\phi} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

Example 2.4.1.2. Here are some example district epimorphisms.

1. Strict Epimorphisms in Cats₂.

011H

2. Strict Epimorphisms in Rel.

011J

3. Strict Epimorphisms in Span.

011K

3 bicategories of spans

Proposition 3.0.1.1. Let A and B be objects of \mathbb{C} .

1. As a Pullback. We have an isomorphism by categories

$$\mathsf{Span}_C(A,B) \cong C_{/A} \times_C C_{/B}, \qquad \qquad \bigvee_{\overleftarrow{\Xi}} \qquad \bigvee_{\overleftarrow{\Xi}}$$

$$C_{/A} \xrightarrow{\overleftarrow{\Xi}} C.$$

Proof. ??, As a Pullback: In detail, the pullback $C_{/A} \times_C C_{/B}$ is the category where

- Objects. The objects of $C_{/A} \times_C C_{/B}$ consist of pairs ((S, f), (S', g)) of objects of C consisting of
 - A pair (S, f) in Obj $(C_{/A})$ consisting of an object S of C and a morphism $f: S \rightarrow A$ of C;
 - A pair (S', g) in $Obj(C_{/B})$ consisting of an object S' of C and a morphism $g: S \to B$ of C;

such that

$$\underbrace{\overline{\Xi}(S,f)}_{\overset{\mathrm{def}}{=}\overset{-}{S'}}=\underbrace{\overline{\Xi}(S',g)}_{\overset{\mathrm{def}}{=}\overset{-}{S'}}.$$

Thus the objects of $C_{/A} \times_C C_{/B}$ are the same as spans in C from A to B.

• *Morphisms*. A morphism of $C_{/A} \times_C C_{/B}$ from (S, f, g) to (S', f', g') consists of a pair of morphisms

$$\phi \colon S \to S'$$

$$\psi \colon S \to S'$$

such that the diagrams

such that

$$\underbrace{\overline{\Xi}(\phi)}_{\substack{\text{def} \\ = \phi}} = \underbrace{\overline{\Xi}(\psi)}_{\substack{\text{def} \\ = \psi}}$$

Thus the morphisms of $C_{/A} \times_C C_{/B}$ are also the same as morphisms of spans in C from (S, f, g) to (S, f', g').

• *Identities and Composition*. The identities and composition of $C_{/A} \times_C C_{/B}$ are also the same as those in $\mathsf{Span}_C(A, B)$.

This finishes the proof.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

- 7. Indexed Sets
- 8. Fibred Sets
- Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories
- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

- 17. Bicategories
- 18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes