

TECHNISCHE UNIVERSITÄT MÜNCHEN

Secure Coding Phase 2

Team 3: Patrick Sattler, Aurel Roci, Stefan Kohler

Contents

1	Time Tracking Table							
2	Vul	nerabil	ities Overview	2				
	2.1	Secod	e21	2				
		2.1.1	Static Session ID	2				
		2.1.2	Stored XSS in Registration	2				
		2.1.3	Missing Lock Out Mechanism	2				
	2.2	Team3	3 Online Banking	3				
	2.3		rability Overview	3				
3	Det	ailed R	eport	4				
	3.1	Config	guration and Deploy Management Testing	5				
		3.1.1	Test File Extensions Handling for Sensitive Information (OTG-					
			CONFIG-003)	5				
		3.1.2	Test HTTP Methods (OTG-CONFIG-006)	7				
		3.1.3	Test HTTP Strict Transport Security (OTG-CONFIG-007)	8				
		3.1.4	Test RIA cross domain policy (OTG-CONFIG-008)	9				
	3.2	Identi	ty Management Testing	10				
		3.2.1	Test Role Definitions(OTG-IDENT-001)	10				
		3.2.2	Test User Registration Process(OTG-IDENT-002)	11				
		3.2.3	Test Account Provisioning Process(OTG-IDENT-003)	12				
		3.2.4	Testing for Account Enumeration and Guessable User Account(OTG-					
			IDENT-004)	13				
		3.2.5	Testing for Weak or unenforced username policy(OTG-IDENT-005)	14				
	3.3	Authe	entication Testing	15				
		3.3.1	Testing for Credentials Transported over an Encrypted Channel (OTG-	-				
			AUTHN-001)	15				
		3.3.2	Testing for default credentials(OTG-AUTHN-002)	16				
		3.3.3	Testing for Weak lock out mechanism(OTG-AUTHN-003)	17				
		3.3.4	Testing for bypassing authentication schema(OTG-AUTHN-004)	18				
		3.3.5	Test remember password functionality(OTG-AUTHN-005)	19				
		3.3.6	Testing for Browser cache weakness(OTG-AUTHN-006)	20				

Contents

	3.3.7	Testing for Weak password policy(OTG-AUTHN-007)	21
	3.3.8	Testing for Weak security question/answer(OTG-AUTHN-008) .	22
	3.3.9	Testing for weak password change or reset functionalities (OTG-	
		AUTHN-009)	23
	3.3.10	Testing for Weaker authentication in alternative channel(OTG-	
		AUTHN-010)	24
3.4	Autho	rization Testing	25
	3.4.1	Testing Directory traversal/file include(OTG-AUTHZ-001)	25
	3.4.2	Testing for bypassing authorization schema(OTG-AUTHZ-002).	26
	3.4.3	Testing for Privilege Escalation(OTG-AUTHZ-003)	27
	3.4.4	Testing for Insecure Direct Object References(OTG-AUTHZ-004)	28
3.5	Session	n Management Testing	29
	3.5.1	Testing for Bypassing Session Management Schema(OTG-SESS-001)	29
	3.5.2	Testing for Cookies attributes(OTG-SESS-002)	30
	3.5.3	Testing for Session Fixation(OTG-SESS-003)	31
	3.5.4	Testing for Exposed Session Variables(OTG-SESS-004)	32
	3.5.5	Testing for Cross Site Request Forgery(OTG-SESS-005)	33
	3.5.6	Testing for logout functionality(OTG-SESS-006)	34
	3.5.7	Test Session Timeout(OTG-SESS-007)	35
	3.5.8	Testing for Session puzzling(OTG-SESS-008)	36
3.6	Data V	Validation Testing	37
	3.6.1	Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)	37
	3.6.2	Testing for Stored Cross Site Scripting(OTG-INPVAL-002)	39
	3.6.3	Testing for HTTP Verb Tampering(OTG-INPVAL-003)	41
	3.6.4	Testing for HTTP Parameter pollution(OTG-INPVAL-004)	43
	3.6.5	Testing for SQL Injection (OTG-INPVAL-005)	44
	3.6.6	Testing for XML Injection(OTG-INPVAL-008)	45
	3.6.7	Testing for SSI Injection(OTG-INPVAL-009)	46
	3.6.8	Testing for XPath Injection(OTG-INPVAL-010)	47
	3.6.9	IMAP/SMTP Injection(OTG-INPVAL-011)	48
	3.6.10	Testing for Code Injection, Testing for Local File Inclusion, Testing	
		for Remote File Inclusion(OTG-INPVAL-012)	49
	3.6.11	Testing for Command Injection(OTG-INPVAL-013)	50
		Testing for Buffer overflow, Testing for Heap overflow, Testing for	
		Stack overflow, Testing for Format string (OTG-INPVAL-014)	51
	3.6.13	Testing for incubated vulnerabilities(OTG-INPVAL-015)	52
		Testing for HTTP Splitting/Smuggling(OTG-INPVAL-016)	53
3.7		Handling	53
3.8		ography	53
	J I		

Contents

3.9	Busine	ess Logic Testing	54
	3.9.1	Test Business Logic Data Validation(OTG-BUSLOGIC-001)	54
	3.9.2	Test Ability to Forge Requests(OTG-BUSLOGIC-002)	55
	3.9.3	Test Integrity Checks(OTG-BUSLOGIC-003)	56
	3.9.4	Test for Process Timing(OTG-BUSLOGIC-004)	57
	3.9.5	Test Number of Times a Function Can be Used Limits(OTG-	
		BUSLOGIC-005)	58
	3.9.6	Testing for the Circumvention of Work Flows(OTG-BUSLOGIC-006)	59
	3.9.7	Test Defenses Against Application Mis-use(OTG-BUSLOGIC-007)	60
	3.9.8	Test Upload of Unexpected File Types(OTG-BUSLOGIC-008)	61
	3.9.9	Test Upload of Malicious Files(OTG-BUSLOGIC-009)	62
3.10	Client	Side Testing	62
Glossar	y		63
Acrony	ms		64

1 Time Tracking Table

2 Vulnerabilities Overview

Based on our testing, we identified the following vulnerabilities for the Secode21 Bank and the OnlineBanking Bank:

2.1 Secode21

2.1.1 Static Session ID

Likelihood: *high*Implication: *high*

•Risk: *high*

•Reference: OWASP OTG-SESS-003 (see section ??)

The session id is saved in form of the (static) user id in a cookie. This cookie can be used on any machine to take over the account of a user. The lifetime of this cookie is only limited by the cookie lifetime field.

2.1.2 Stored XSS in Registration

Likelihood: *medium*Implication: *high*

•Risk: *high*

•Reference: OWASP OTG-INPVAL-002 (see section ??)

Using stored cross-site-scripting attacks, one can inject JavaScript code, that is run, when the Administrator/Employee logs in. Arbitrary code can be loaded from a third party page.

2.1.3 Missing Lock Out Mechanism

Likelihood: *high*Implication: *medium*

•Risk: medium

•Reference: OWASP OTG-AUTHN-003 (see section ??)

The application has no lock out mechanism, which allows brute force attacks on known usernames and testing for a valid password

2.2 Team3 Online Banking

2.3 Vulnerability Overview

3 Detailed Report

The following pages describe for each test how both applications Secode21 and Online Banking Bank performed. The test is divided in different sections following the OWASP Testing Guide v4.

3.1 Configuration and Deploy Management Testing

3.1.1 Test File Extensions Handling for Sensitive Information (OTG-CONFIG-003)

Secode21	Impact: 5
	Risk:5
	Secode21
Observation	File extensions are handled correctly but while testing we found
	a folder called SQL with sql files and pdf files describing the
	database structure and the sql commands used by the web appli-
Discovery	Thanks to the tool <i>dotdotpwn</i> , that tries automatically different
Discovery	URLs, we found the SQL folder. We passed the following param-
	eters:
Likelihood	The likelihood is quite high that someone tries a tool to find
	these kind of vulnerabilities. There is no need for special knowl-
	edge because the tools work quite automatically without much
	configuration.
Implication	These vulnerabilities could help attackers to perform sql injection
	attacks because you know the database structure and the sql
	commands used in the implementation of the web application.
Recommendations	Block the access to sql files and to those folders that describe the
	web applications architecture.
Comparison	Our web application handles file extensions correctly, but it is
	possible to access the compiled c program that handles the batch
	files. This is a problem because you can reverse engineer the code
	and use the vulnerabilities found. This scenario is possible but is
	very complex.

Likelihood: 8

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.1.2 T	est HTTP	Methods ((OTG-CONFIG-006)
---------	----------	-----------	------------------

3.1.3 Test HTTP Strict Transport Security (OTG-CONFIG-007)

Secode21 Likelihood: 8
Impact: 5
Risk:5

	Secode21				
Observation	The HTTP Strict Transport Security protocol is never used.				
Discovery	We used Charles Web Proxy to check the HTTP response headers				
	and the Strict-Transport-Security header was not found.				
Likelihood	N/A				
Implication	N/A				
Recommendations	It would be better so transport some data via https and use the				
	HSTS protocol.				
Comparison	The same results apply for our web application.				

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	N
Availability Impact	N

3.1.4 Test RIA cross domain policy (OTG-CONFIG-008)

Secode21 Likelihood: 8
Impact: 5
Risk:5

	Tuok.5				
	Secode21				
Observation	There are no RIA applications on the system and therefore is no crossdomain.xml file provided.				
Discovery	Using <i>wget</i> we tried to find a <i>crossdomain.xml</i> or <i>clientaccesspolicy.xml</i> file and couldn't find it.				
Likelihood	N/A				
Implication	N/A				
Recommendations	N/A				
Comparison	The same results applies for our web application.				

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

3.2 Identity Management Testing

3.2.1 Test Role Definitions(OTG-IDENT-001)

3.2.2	Test	User	Registra	ition	Process(C	OTG	-IDEN	NT-002)

3.2.3	Test Acco	ount Prov	visioning	Process(O	TG.	-IDENT-00)3)
-------	-----------	-----------	-----------	-----------	-----	-----------	-----

3.2.4 Testing for Account Enumeration and Guessable User Account(OTG-IDENT-004)

3.2.5	Testing for Weak or unenforced userna	me policy(OTG-IDENT-005)

3.3 Authentication Testing

3.3.1 Testing for Credentials Transported over an Encrypted Channel(OTG-AUTHN-001)

3.3.2	Testing	for	default	credential	s(OT	G-AU	J THN-00 2	2)
-------	---------	-----	---------	------------	------	------	-------------------	----

3.3.3	Testing :	for	Weak	locl	k out	mec	hanisn	n(O	ΓG-A	AUTH	N-003)
-------	------------------	-----	------	------	-------	-----	--------	-----	------	------	--------

3.3.4 Testing for bypassing authentication schema(OTG-AUTHN-004)

2	Deta	•1 1	ח	
۲.	1 10t/	าาเอก	K on	αvt

3.3.5	Test remember	password	functionalit	y(O	TG-A	UTHN-005)
-------	---------------	----------	--------------	-----	------	-------------------

3.3.6	Testing 1	for	Browser	cache	weal	kness((\mathbf{O})	ΓG-A	4U	THN	I-006)
-------	-----------	-----	---------	-------	------	--------	----------------	------	----	-----	--------------	---

3.3.7	Testing for	Weak 1	password	policy(OTG-	AUTHN-007)

3.3.8 Testing for Weak security question/answer(OTG-AUTHN-008)	

3.3.9 Testing for weak password change or reset functionalities (OTG-AUTHN-009)

3.3.10 Testing for Weaker authentication in alternative channel (OTG-AUTHN-010)

3.4 Authorization Testing

3.4.1 Testing Directory traversal/file include(OTG-AUTHZ-001)

3.4.2 Testing for bypassing authorization schema(OTG-AUTHZ-002)	

3.4.3	Testing	for	Privilege	Escalation(OT	G-A	UTHZ-	-003)
-------	---------	-----	-----------	-------------	----	-----	-------	-------

3.4.4 Testing for Insecure Direct Object References(OTG-AUTHZ-004)

3.5 Session Management Testing

3.5.1 Testing for Bypassing Session Management Schema(OTG-SESS-001)

	3.5.2	Testing	for	Cookies	attributes	(\mathbf{O})	ΓG-	SESS	-002
--	-------	----------------	-----	----------------	------------	----------------	-----	------	------

3.5.3 Testing for Session Fixation(OTG-SESS-003)

Team 21

Observation	N/A
Discovery	N/A
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.1: OWASP OTG-SESS-003 results for team 21

Team 3

Observation	N/A
Discovery	N/A
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.2: OWASP OTG-SESS-003 results for team 3

Metric	Value
Access Vector	
Attack Complexity	
Privileges Required	
User Interaction	
Scope	
Confidentiality Impact	
Integrity Impact	
Availability Impact	

J Deinieu Report	3	Detailed	Report
------------------	---	----------	--------

3.5.4 T	esting f	for Ex	posed	Session	Variables(OTG-	SESS-004)
---------	----------	--------	-------	---------	------------	------	-------------------

~	Detail		D
•	1 101/11	on	k onovi

3.5.5	Testing	for	Cross	Site	Reau	est Foi	rgerv	(OT	'G-9	SESS-	005

3.5.6 Testing for logout functionality(OTG-SESS-006	3.5.6	Testing fo	r logout	functional	lity(OTG-	-SESS-006
---	-------	------------	----------	------------	-----------	-----------

3.5.7	Test Se	ssion	Timeout	OT	G-S	ESS-	007

~	Detail		D
•	1 101/11	on	k onovi

3.5.8	Testing	for Session	puzzling(OTG-SESS-008)	

3.6 Data Validation Testing

3.6.1 Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)

Team 21

Observation	We observed no reflected cross site scripting vulnerability.
Discovery	It seems that all parameters are stored in the database before
	inserting the values in the HTML.
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.3: OWASP OTG-INPVAL-001 results for team 21

Team 3

Observation	N/A
Discovery	N/A
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.4: OWASP OTG-INPVAL-001 results for team 3

Metric	Value
Access Vector	
Attack Complexity	
Privileges Required	
User Interaction	
Scope	
Confidentiality Impact	
Integrity Impact	
Availability Impact	

3.6.2 Testing for Stored Cross Site Scripting(OTG-INPVAL-002)

Team 21

Observation	We observed several possibilities to execute a stored XSS attack. But not all of them could be exploited as the length of the corresponding database fields was often very restricted. We manually tried to inject JavaScript code in every input field. Therefore we used the following code, which just alerts a message.
Discovery	We inserted Javascript code in the name field on the register page. When we logged in as an employee the script was executed. There were cases when the script caused for new registered users after the script was entered to not appear.
Likelihood	This vulnerability can be easily detected, but require some JavaScript knowledge to exploit it. Therefore we estimated the likelihood to be medium.
Implication	The implications are severe as we proofed that it is possible to steal the session. As we injected the code on the admin landing-page, which implies that we were able to act as an admin and register an abitrary account.
Recommendations	Implement a input sanitation on all input fields on the backend side! Try to use whitelisting for the different datatypes and do not rely on the frontend input validation.

Table 3.5: OWASP OTG-INPVAL-002 results for team 21

Team 3

Observation	N/A
Discovery	N/A
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.6: OWASP OTG-INPVAL-002 results for team 3

Metric	Value
Access Vector	
Attack Complexity	
Privileges Required	
User Interaction	
Scope	
Confidentiality Impact	
Integrity Impact	
Availability Impact	

3.6.3 Testing for HTTP Verb Tampering(OTG-INPVAL-003)

Team 21

Observation	We did not observe any notable behavior.
Discovery	We used the Zed Attack Proxy (ZAP) to change the HTTP requests
	method to the ones listed below. The requests that were allowed
	responded with the index page or an empty body. The rejected
	requests responded with an error message in the body.
	Methods that were allowed
	• HEAD
	• OPTIONS
	• GET
	• POST
	• PUT
	Methods that were rejected
	• TRACE
	• CONNECT
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.7: OWASP OTG-INPVAL-003 results for team 21

Team 3

Observation	N/A
Discovery	N/A
Likelihood	N/A
Implication	N/A
Recommendations	N/A

Table 3.8: OWASP OTG-INPVAL-003 results for team 3

Metric	Value
Access Vector	
Attack Complexity	
Privileges Required	
User Interaction	
Scope	
Confidentiality Impact	
Integrity Impact	
Availability Impact	

~	Detail		D
•	1 101/11	on	k onovi

3.6.4 Tes	ting for HTTI	P Parameter pol	llution(OTG-INP	VAL-004)
-----------	---------------	-----------------	-----------------	------------------

3.6.5	Testing	for SQI	Injection	(OTG-INF	'VAL-005)

3.6.6	Testing	for	XML	In	jection	(O	TG	-INP	VAL	008)

3.6.7 Testing for SSI Injection(OTG-INPVA)	L-009)
--	--------

3.6.10 Testing for Code Injection, Testing for Local File Inclusion, Testing for Remote File Inclusion(OTG-INPVAL-012)

3.6.11	Testing f	or Command	Injection	(OTG	-INPVAL-013	3)
--------	-----------	------------	-----------	------	-------------	----

3.6.12 Testing for Buffer overflow, Testing for Heap overflow, Testing for Stack overflow, Testing for Format string (OTG-INPVAL-014)

3.6.13	Testing	for	incub	ated	vulnerabi	lities(C)TC	G-INP	VAL-	015)
--------	---------	-----	-------	------	-----------	----------	-----	-------	------	------

3.6.14 Testing for HTTP Splitting/Smuggling(OTG-INPVAL-016)

3.7 Error Handling

Team21

Team21 does not provide a lot of error messages for incorrect inputs (e.g. incorrect TAN length, wrong TAN, TAN used).

Based on the client side input validation, there are also no messages for manipulated input via proxy or by removing the validation patterns, which can lead to problems. Examples would be a malformated email which results in a not working account or a longer input then expected, which cuts off the end of the input. There are some cases when the page returns the path of the file where the error occurred.

Team3

3.8 Cryptography

3.9 Business Logic Testing

3.9.1 Test Business Logic Data Validation(OTG-BUSLOGIC-001)

3.9.2 Test Abilit	y to Forge	Requests(OTC	G-BUSLOGIC-002)
-------------------	------------	--------------	-----------------

3.9.3 Test Integrity Checks(OTG-BUSLOGIC	-003)
--	-------

3.9.4	Test fo	r Process	Timing(OTG-BUSL	OGIC-004)
-------	---------	-----------	-----------------	-----------

3.9.5 Test Number of Times a Function Can be Used Limits(OTG-BUSLOGIC-005)

3.9.6 Testing for the Circumvention of Work Flows(OTG-BUSLOGIC	-006)

3.9.7	Test Defenses Against Application Mis-use(OTG-BUSLOGIC-007)	

~	Detai	:1 _ 1	TD	1
•	1 10101	100	κov	nnrt

3.9.8	Test U	pload	of Unex	spected F	ile Type	s(OTG-	BUSLO	OGIC-008)

3.9.9 Test Upload of Malicious Files(OTG-BUSLOGIC-009)

3.10 Client Side Testing

Glossary

computer is a machine that....

Acronyms

TUM Technische Universität München.