计量经济学实例分析

目录

1	多元回归分析	2
	1.1 儿童死亡率与人均 GDP	2
	1.2 儿童死亡率与妇女识字率	4
	1.3 儿童死亡率与人均 GNP 和妇女识字率	5
	1.4 标准化三变量回归分析	6
2	多重共线性	7
3	对数回归	9
4	虚拟变量分段线性回归	10
5	多项式拟合	11
	5.1 一阶多项式拟合	12
	5.2 二阶多项式拟合	12
	5.3 三阶多项式拟合	13
	5.4 四阶多项式拟合	14
6	时间序列	14
源	码	16

1 多元回归分析

我们以儿童死亡率数据进行多元回归分析。我们取前五行进行展示。

Г	СМ	FLR	PGNP	TFR
0	128	37	1870	6.66
1	204	22	130	6.15
2	202	16	310	7.00
3	197	65	570	6.25
4	96	76	2050	3.81

图 1 数据集前五行

其中,数据解释:

CM: 每千人中不足五岁便死亡的人数。

PGNP:人均 GDP。 FLR: 妇女识字率。

接下来,进行数据描述,对数据集有一个基本的认识。

	СМ	FLR	PGNP	TFR
count	64.000000	64.000000	64.000000	64.000000
mean	141.500000	51.187500	1401.250000	5.549687
std	75.978067	26.007859	2725.695775	1.508993
min	12.000000	9.000000	120.000000	1.690000
25%	82.000000	29.000000	300.000000	4.607500
50%	138.500000	48.000000	620.000000	6.040000
75%	192.500000	77.250000	1317.500000	6.615000
max	312.000000	95.000000	19830.000000	8.490000

图 2 数据描述

1.1 儿童死亡率与人均 GDP

我们首先进行单变量的线性回归。观察儿童死亡率与人均 GDP 的关系。首先将该二维数据画图表示。

图 3 二维图表示

可以观察到,该数据有两个异常值。不过总体呈现出有规律的趋势。接下来,我们进行最小二乘回归分析。得到结果:

				C	LS F	egre	ss	ion Re	esults		
Dep. Variable	:==== ::					CM		R-sqı	======== uared:		0.166
Model:						0LS		Adj.	R-squared:		0.153
Method:			Le	ast	Squ	ares		F-sta	atistic:		12.36
Date:		١	Wed,	28	Mar	2018		Prob	(F-statistic):		0.000826
Time:					21:4	8:05		Log-I	Likelihood:		-361.64
No. Observati	ions:					64		AIC:			727.3
Df Residuals:						62		BIC:			731.6
Df Model:											
Covariance Ty	/pe:				onro	bust					
========											
		coef	S	td	err				P> t	[0.025	0.975]
Intercept	157.	4244		9.	846		15	. 989	0.000	137.743	177.105
PGNP	-θ.	0114		Θ.	003		-3	. 516	0.001	-0.018	-0.005
Omnibus:	====	====	=====	===	3	.321	==:	Durb:	======== in-Watson:	:=====	1.931
Prob(Omnibus)):				e	.190		Jarqu	ue-Bera (JB):		2.545
Skew:					e	.345		Prob	(JB):		0.280
Kurtosis:					2	.309		Cond	. No.		3.43e+03
=========	====	====	====	===	====	====	==:	=====	========		========

图 4 最小二乘回归结果

可以看到,回归方程为:

CM=157.4244 -0.0114*PGNP

PGNP 的系数为-0.0114,与预期一致,对 CM 有负影响,人均 GNP 每提高 1 单位, CM 将减少 0.0114 单位。

t=-3.516,p=0.001,均显著,表明 PGNP 对 CM 有影响,应该包含在模型当中。 R2 为 0.166,说明儿童死亡率的变异中,有 16.6%可由 PGNP 来解释,这个 R2 并不高,说明模型拟合效果一般。

雅克-贝拉检验表明: JB 统计量 2.545, 在正态性假定下, 得到这样一个统计量的概率为 28%。不拒绝残差项是正态分布的假设。

F-statistic:12.36, Prob (F-statistic):0.000826, 拒绝人均 GNP 对儿童死亡率没有影响的假设。

接下来, 我们将回归方程展现在图上。

图 5 回归方程

从上图可以看出异常值对模型的影响非常大,因此使用普通最小二乘法建模时, 先要清洗一下异常值。接下来进行去掉两个异常值之后的回归。 去掉异常点后,图形如下:

图 6 去掉异常点后的数据点

同样,进行回归分析。

Dep. Variab	10:				CM	P-cal	ared:		θ.43
Model:	te:				OLS		R-squared:		0.43
Method:			1000	+ Ca.				46.6	
			Least Squares Wed, 28 Mar 2018				tistic: (F-statistic)		
Date:		W	ed, 28				4.91e-0		
Time:			21:48:06			Log-L	-337.9		
No. Observa					62	AIC:			680.
Df Residual					60	BIC:			684.
Df Model:									
Covariance	Type:			nonro	bust				
							P> t	[0.025	0.975
Intercept	191.						0.000		211.31
							0.000		
Omnibus:					====== 9.136		.n-Watson:		1.90
Prob(Omnibu	s):				9.934	Jarqu	e-Bera (JB):		0.18
Skew:					9.103	Prob(JB):		0.91
Kurtosis:				- :	2.832	Cond.	No.		1.98e+0

图 7 去掉异常点后的回归分析

常数项系数: 157.4244 增加到 191.1177。PGNP:-0.0114 增加到 -0.0484。r 方由 0.166 增加到 0.437。说明普通最小二乘法对异常值异常敏感。

1.2 儿童死亡率与妇女识字率

首先作出其二维图观察其关系。

图 8 数据关系

可以发现两个变量之间关系显著,接下来进行回归分析。

				OLS F	degress	ion Re	sults		
Dep. Variab	===== le:				CM	R-squ	======= ared:		0.679
Model:				OLS			R-squared:		0.673
Method: Lea		Leas	t Squ	ares	F-sta	tistic:		126.8	
Date: Wed, 2		Wed, 28	Mar	2018	Prob	(F-statistic		1.99e-16	
Time:				21:4	8:06	Log-L	ikelihood:		-320.60
No. Observa	tions:				62	AIC:			645.2
Df Residual					60	BIC:			649.5
Df Model:									
Covariance '	Type:			nonro	bust				
		coef	std	err			P> t	[0.025	0.975]
Intercept	264.	θ537	12	. θ51	21	.911	0.000	239.948	288.159
FLR		3662	Θ	.210	-11	.258	0.000	-2.787	-1.946
				=====					
Omnibus:							n-Watson:		2.259
Prob(Omnibu	s):				.711		e-Bera (JB):		0.610
Skew:					.234				0.737
Kurtosis:				2	.866	Cond.	NO.		126.

图 9 回归分析

由回归分析结果也可以看出, 儿童死亡率与妇女识字率相关性很强。

1.3 儿童死亡率与人均 GNP 和妇女识字率

接下来进行三变量回归,其回归结果如下:

Dep. Variab	le:		СМ	R-squa	red:		θ.72
Model:			DLS	Adj. F	R-squared:		0.71
Method:		Least Squar	res	F-stat	istic:		77.8
Date:	W	ed, 28 Mar 20	918	Prob (F-statistic):	2.80e-1
Time:		21:48:	: 06	Log-Li	kelihood:		-315.7
No. Observa	tions:		62	AIC:			637.
Of Residual	S:		59	BIC:			643.
Of Model:							
Covariance	Туре:	nonrobu	ust				
	coef	std err		t	P> t	[0.025	0.975
Intercept	260.1982	11.304	23	3.019	0.000	237.580	282.81
PGNP	-0.0196	0.006	-3	3.162	0.002	-0.032	-0.00
FLR	-1.9116	0.243	-7	.865	0.000	-2.398	-1.42
nnibus:			50		-Watson:		2.20
rob(Omnibus			35		-Bera (JB):		θ.79
kew:		θ.2	69	Prob(J	B):		0.67

图 10 回归分析

回归方程: CM=260-0.0196PGNP-1.9116FLR

PGNP 的偏回归系数为-0.0196,与预期一致,对 CM 有负影响,在保持其它因素不变时,PGNP 每提高1单位,CM 将减少0.0196个单位。

与-0.0484 相比, PGNP 对 CM 的影响减小了, 说明我们的双变量回归模型有设定误差。

t=-3.162, p=0.002, 均显著,表明 PGNP 对 CM 有影响,应该包含在模型当中。如果虚拟假设正确,得到一个小于 3.162 的 t 值得概率为 0.002。

FLR 的偏回归系数为-1.916,与预期一致,对 CM 有负影响,妇女识字率越高,儿童死亡率越低。保持其它因素不变,FLR 每提高 1 单位,CM 将减少 1.916 单位。t=-7.865 ,p=0.000,均显著,表明 PGNP 对 CM 有影响,应该包含在模型当中。调整 R2 为 0.716,说明儿童死亡率的变异中,有 71.6%可由模型来解释,这个

R2 很高,说明模型拟合效果很好。

雅克-贝拉检验表明: JB 统计量 0.673, 在正态性假定下,得到这样一个统计量的概率为 79.2%。不拒绝残差项是正态分布的假设。

显著性检验。F-statistic:73.83,在零假设下,得到这样一个值得概率,Prob (F-statistic):5.12e-17,认为妇女识字率和人均 GNP 对儿童死亡率有显著影响。 残差项的分布图:

1.4 标准化三变量回归分析

刚刚的回归分析我们并没有对数据集进行标准化,这可能导致了一些误差。所以接下里,我们对数据集的每一列进行标准化。之后在进行回归分析

Dep. Variable:			СМ	R-squa	rod.		θ.725
Model:			OLS				0.725
					-squared:		
Method:		Least Squ					77.88
Date:	We	ed, 28 Mar			F-statistic)		2.8θe-17
Time:		21:4	8:06		kelihood:		-47.922
No. Observation	S:		62	AIC:			101.8
Df Residuals:			59	BIC:			108.2
Df Model:							
Covariance Type		nonro	bust				
	coef	std err			P> t	[0.025	0.975]
Intercept -8.3	27e-17	0.068	-1.2	22e-15	1.000	-0.137	0.137
PGNP -	0.2676	0.085		-3.162	0.002	-0.437	-0.098
FLR -	θ.6656	0.085		-7.865	0.000	-0.835	-0.496
Omnibus:		1	.250	Durbin	-Watson:		2.209
Prob(Omnibus):		θ	.535	Jarque	-Bera (JB):		θ.792
Skew:		0	.269	Prob(J	B):		0.673
Kurtosis:		3	.129	Cond.	No.		1.97

图 11 回归分析

保持其它变量不变, PGNP 每提高一个标准差, 导致 CM 平均下降 0.2676 个标准差。

保持其它变量不变, FLR 提高一个标准差, 导致 CM 平均下降 0.6656 个标准差相对而言, 妇女识字率比人均 GNP 对儿童死亡率的影响更大。

标准化回归,可以看出哪个变量的影响更大,PGNP和FLR同时提高1单位,每1000名儿童中不足5岁便死亡的儿童数约降低2.24人。

2 多重共线性

在本节,我们探讨多重共线性的例子。数据集展示如下:

图 12 数据集展示

其中:

Y消费支出

X2 收入

X3 财富

接着,我们进行数据集的简单统计分析:

	Υ	X2	Х3
count	10.000000	10.000000	10.000000
mean	111.000000	170.000000	1740.000000
std	31.428932	60.553007	617.731153
min	65.000000	80.000000	810.000000
25%	91.250000	125.000000	1311.000000
50%	112.500000	170.000000	1754.500000
75%	135.000000	215.000000	2163.750000
max	155.000000	260.000000	2686.000000

图 13 数据集分析

首先我们直接进行回归分析:

		OLS Regre	ssion Results			
Dep. Variabl	e:		R-squared:			0.964
Model:		0LS	Adj. R-squ	ared:		0.953
Method:		Least Squares	F-statisti	C :		92.40
Date:	Tu	e, 03 Apr 2018	Prob (F-st	atistic):		9.29e-06
Time:		16:22:53	Log-Likeli	hood:		-31.587
No. Observat	ions:	10	AIC:			69.17
Df Residuals			BIC:			70.08
Df Model:						
Covariance T	ype:	nonrobust				
	coef	std err	t P	> t	[0.025	0.975]
Intercept	24.7747	6.752	3.669 6	.008	8.808	40.742
X2	0.9415	θ.823	1.144 6	.290	-1.004	2.887
Х3	-0.0424	0.081	-0.526 G	.615	-0.233	θ.148
Omnibus:		0.869	Durbin-Wat	son:		2.891
Prob(Omnibus		0.648	Jarque-Ber	a (JB):		0.716
Skew:		-0.511	Prob(JB):			0.699
Kurtosis:		2.179	Cond. No.			5.79e+03

图 14 回归分析

 $\hat{Y}_i = 24.7747 + 0.9415X_{2i} - 0.0424X_{3i}$

财富回归系数为负值,越有钱消费越低,与预期不一致。

se= (6.752) (0.823) (0.081) t= (3.669) (1.144) (-0.526)

p=(0.008)(0.290)(0.615)回归系数均不显著 ,说明变量无影响。调整 $R^2=0.953$ 调整 $R^2=0.953$ 和 $R^2=$

所有这些看起来怪异的现象,是由于收入与财富的高度相关。接下来分别对 X2 和 X3 进行单变量回归分析。并且对 X2 与 X3 之间进行回归分析。

		01.0 B		B-				
		OLS Regi	ress	ion Re	sults 			
Dep. Variable	e:			R-squared:			0.962	
Model:		01		Adj.	R-squared:		0.957	
Method:		Least Square	es	F-sta	tistic:		202.9	
Date: I		ie, 03 Apr 201	18	Prob	(F-statistic)		5.75e-07	
Time:		19:21:5	5θ	Log-L	Log-Likelihood:			
No. Observat:	ions:		LΘ				67.56	
Df Residuals				BIC:			68.17	
Df Model:								
Covariance T	уре:	nonrobus	st					
	coef	std err			P> t	[0.025	0.975]	
Intercept	24.4545	6.414	3	.813	0.005	9.664	39.245	
X2	0.5091	0.036	14	.243	0.000	0.427	0.592	
Omnibus:		1.00	50	Durbi	n-Watson:		2.680	
Prob(Omnibus		0.58	39		e-Bera (JB):		0.777	
Skew:		-0.39	98	Prob(0.678	
Kurtosis:		1.89	91	Cond.	No.		561.	

图 15 Y与 X2 回归分析

		OLS Re	gres	sion Res	ults		
Dep. Variable				R-squa	red:		0.957
Model:			DLS	Adj. R	-squared:		0.951
Method:		Least Squa	res	F-stat	istic:		176.7
Date:	Tu	e, 03 Apr 2	918	Prob (F-statistic)		9.80e-07
Time:		19:22	: 04	Log-Li	kelihood:		-32.444
No. Observati	ons:			AIC:			68.89
Df Residuals:				BIC:			69.49
Df Model:							
Covariance Ty	pe:	nonrob	ıst				
	coef	std err			P> t	[0.025	0.975]
Intercept	24.4110	6.874		3.551	0.007	8.559	40.263
Х3	0.0498	0.004		3.292	0.000	0.041	0.058
Omnibus:		1.	504	Durbin	-Watson:		2.417
Prob(Omnibus)		θ.	471	Jarque	-Bera (JB):		θ.767
Skew:			176	Prob(J	B):		0.681
Kurtosis:		1.0	589	Cond.	No.		5.75e+03

图 16 Y与 X3 回归分析

		OLS Regre	ssion Re	esults		
			======	:succs		
Dep. Variable:			R-squ	ared:		0.998
Model:		0LS	Adj.	R-squared:		0.998
Method:	Leas	st Squares	F-sta	tistic:		3849.
Date:	Tue, θ3	Apr 2018	Prob	(F-statistic)		5.06e-12
Time:			Log-L	ikelihood:		-23.807
No. Observations:						51.61
Df Residuals:						52.22
Df Model:						
Covariance Type:		nonrobust				
(coef sto	i err		P> t	[0.025	0.975]
Intercept -0.3	3863 2	2.898	-0.133	0.897	-7.069	6.296
ХЗ 0.0	979 (0.002	52.040	0.000	0.094	0.102

Omnibus: Prob(Omnibus):	0.003 0.999	Durbin-Watson: Jarque-Bera (JB):	2.069 0.201
Skew:	-0.028	Prob(JB):	0.201
Kurtosis:	2.307	Cond. No.	5.75e+03

图 17 X2 与 X3 回归分析

R^2 非常高,表明两者高度相关

3 对数回归

接下来,我们对美国消费函数进行对数回归。数据展示如下:

	Year	C	Yd	w	L
0	1947	976.4	1035.2	5166.815	-10.350940
1	1948	998.1	1090.0	5280.757	-4.719804
2	1949	1025.3	1095.6	5607.351	1.044063
3	1950	1090.9	1192.7	5759.515	0.407346
4	1951	1107.1	1227.0	6086.056	-5.283152

图 18 数据集展示

数据描述: C 真实消费支出 Yd 真实个人可支配收入 W 真实财富 真实利率 I 建立模型

 $lnC_i = \beta_1 + \beta_2 lnY d_i + \beta_3 lnW_i + u_i$

根据模型进行回归分析。

		OLS R	egression	Results		
====== Dep. Variabl		np.lo	g(C) R-:	squared:		1.000
Model:			OLS Ad	j. R-squared		1.000
Method:		Least Squ	ares F-	statistic:		3.783e+0
Date:	N	lon, 02 Apr		ob (F-statis	tic):	7.12e-8
Time:		20:0	1:35 Lo	g-Likelihood		164.59
No. Observat			54 AI			-321.2
Df Residuals			50 BI			-313.2
Df Model:						
Covariance T	vpe:	nonrol	bust			
	coef	std err			[0.025	0.975
 Intercept	-0.4677	0.043	-10.93	3 0.000	-0.554	-0.382
np.log(Yd)	0.8049	0.017	45.99	0.000	0.770	0.840
np.log(W)	0.2013	0.018		1 0.000	0.166	0.23
	-0.0027	0.001	-3.529	0.001	-0.004	-0.00
Omnibus:			.995 Du:	rbin-Watson:		1.289
Prob(Omnibus				rque-Bera (J	B):	1.800
Skew:				ob(JB):		0.40
Kurtosis:			.811 Coi	nd. No.		

图 19 回归分析

区间估计等于回归值加减两个标准误。所有的统计系数都是高度显著的,因为他们的 P 值都极小。

收入弹性约等于 0.80,即在其他变量保持不变的情况下,如果收入增加 1%,则消费支出平均约增加 0.8%。

财富弹性约等于 0.20, 在保持其它变量不变的情况下, 如果财富增加 1%, 平均消费将增加约 0.2%。

如果利率上调1个百分点(注意它的1单位是1个百分点),保持其它条件不变,消费支出将下降约0.26%(半弹性)

所有回归元的符号都与先验预期一致,即收入与财富对消费有正影响,而利率对消费有负影响。

在该例子中不需要担心多重共线性的影响。因为所有的系数都具有正确的符号,每个系数又是个别统计显著的, F 值也统计显著,表明所有变量共同对消费有影响,调整 R^2 =1 非常高,表明模型拟合非常好。

4 虚拟变量分段线性回归

在本节,我们所要处理是数据是:

图 20 数据集

Y表示总成本,X表示总产出,研究 X的变化对 Y的影响。我们被告知,总成本在产出为 5500 个单位时,可能会改变斜率。由于只有两个变量,我们进行数据图像展示。

图 21 数据集展示

接下来,我们建立一系列虚拟变量来解决分段函数的问题。新的数据集为:

Г	Υ	Х	ХК	D	Х2	D2
0	256	1000	5500	0	-4500	0
1	414	2000	5500	0	-3500	0
2	634	3000	5500	0	-2500	0
3	778	4000	5500	0	-1500	0
4	1003	5000	5500	0	-500	0
5	1839	6000	5500	1	500	500
6	2081	7000	5500	1	1500	1500
7	2423	8000	5500	1	2500	2500
8	2734	9000	5500	1	3500	3500
9	2914	10000	5500	1	4500	4500

图 22 数据集展示

之后,我们进行回归分析:

		ULS K	egres	sion Res	ucts		
Dep. Variat	ole:			R-squa			0.974
Model:			0LS		R-squared:		0.966
Method:		Least Squ	ares	F-stat	istic:		129.6
Date:		Tue, 26 Sep	2017	Prob (F-statisti	c):	2.95e-θ6
Time:		17:5	8:21	Log-Li	kelihood:		-64.588
No. Observa	itions:		10	AIC:			135.2
Df Residual				BIC:			136.1
Df Model:			2				
Covariance	Туре:	nonro	bust				
	coef	f std err			P> t	[0.025	0.975]
Intercept	-145.7167	7 176.734		0.824	0.437	-563.627	272.193
х .	0.2791	0.046		6.067	0.001	0.170	0.388
D2	0.094	0.083		1.145	0.290	-0.101	0.296
Omnibus:			. 417	Durbir	ı-Watson:		1.504
Prob(Omnibu	ıs):		.812	Jarque	-Bera (JB)		0.476
Skew:			.082	Prob(J	IB):		θ.791
Kurtosis:			.951	Cond.	No.		1.96e+04

图 22 回归分析

得到回归方程为:

```
\hat{Y}_i = -145.72 + 0.2791X_i + 0.0945(X_i - X_i^*)D_i
t = (-0.824) \quad (6.067) \quad (1.145)
R^2 = 0.9737 \qquad X^* = 5500
```


图 23 回归方程

5 多项式拟合

在本节,我们对高通股价收盘价进行多项式拟合。其数据集如下:

	Date	time	Close
0	1995-01-03	1	23.47
1	1995-01-09	2	20.54
2	1995-01-16	3	22.74
3	1995-01-23	4	27.88
4	1995-01-30	5	27.39

图 24 数据集

图像如下:

图 25 数据集图形

5.1 一阶多项式拟合

首先利用一阶多项式拟合得到:

			DLS Re	=====				
Dep. Variable:			Clo	ose	R-sq	ared:		0.38
Model:				OLS	Adj.	R-squared:		0.38
Method:		Least	: Squa:	res	F-sta	tistic:		
Date:		hu, 11	Jan 2	918	Prob	(F-statistic		4.94e-2
Time:			10:30		Log-I	ikelihood:		-1411.
No. Observation	S:			260	AIC:			2827
Df Residuals:				258	BIC:			2834
Df Model:								
Covariance Type			ionrobi	ust				
	coef	std	err			P> t	[0.025	0.975
Intercept -	4.6941	6.	.881		.682	0.496	-18.244	8.85
time	9.5805	θ.	.046	12	.701	0.000	0.491	0.67
Omnibus:			191.	388	Durb:	in-Watson:		0.04
Prob(Omnibus):				999		ıe-Bera (JB):		2042.23
Skew:				939	Prob			0.0
Kurtosis:			15.	408	Cond.	No.		302

图 26 回归分析

图像如下

5.2 二阶多项式拟合

接下来,用二阶多项式拟合得到:

Dep. Variable:		Close	R-squared:		0.622	
Model:			Adj. R-square	d:	0.6	
Method:	Least		F-statistic:		211	
Date:	Thu, 11 .	Jan 2018	Prob (F-stati	stic):	5.45e-	
Time:	11:00:37		Log-Likelihoo	d:	-1348	
No. Observations:		260			270	
Df Residuals:			BIC:		271	
Df Model:						
Covariance Type:		onrobust				
	coef			P> t	[0.025	0.975]
Intercept	72.6825	8.147	8.921	0.000	56.639	88.726
time	-1.1915	0.144	-8.266	0.000	-1.475	-0.908
np.power(time, 2)	0.0068	0.001	12.694	0.000	0.006	0.008
 Omnibus·		1/0 250	 Durbin-Watson		e	:== 177
Prob(Omnibus):			Jarque-Bera (
Skew-		2.177			3.00e-2	
Kurtosis.			Cond. No.		9.18e+	

图 28 回归分析

图像如下

图 29 回归方程

5.3 三阶多项式拟合

之后,用三阶多项式拟合得到:

Dep. Variable:		Close	R-squared:		0.8	15
Model:		OLS	Adj. R-square	d:	0.8	13
Method:	Least	Squares	F-statistic:		375	.2
Date:	Thu, 11	Jan 2018	Prob (F-stati	stic):	2.22e-	.93
Time:		11:03:13	Log-Likelihoo	d:	-1255	.3
No. Observations:		260	AIC:		251	
Df Residuals:		256	BIC:		253	3.
Df Model:						
Covariance Type:	n	onrobust				
	coef	std err		P> t	[0.025	0.975
Intercept	-10.8543	7.670	-1.415	0.158	-25.959	4.250
time	2.6128	0.254	10.286	0.000	2.113	3.113
np.power(time, 2)	-0.0296	0.002	-13.094	0.000	-0.034	-0.025
np.power(time, 3)	9.29e-05	5.69e-06	16.326	0.000	8.17e-05	0.000
 Omnibus:		117.694	 Durbin-Watson			
Prob(Omnibus):		0.000	Jarque-Bera (JB):	652.9	96
Skew:		1.754	Prob(JB):		1.60e-1	42
Kurtosis-		0 026	Cond. No.		2.72e+	A7

图 30 回归分析

图像如下

5.4 四阶多项式拟合

最后,用四阶多项式拟合得到:

	0	_S Regress	ion Results			
Dep. Variable:		Close	R-squared:			891
Model:		OLS	Adj. R-square	d:		890
Method:	Least	Squares	F-statistic:		52	
Date:	Thu, 11 .	Jan 2018	Prob (F-stati	stic):	1.39e-	121
Time:		11:04:20	Log-Likelihoo	d:	-118	5.9
No. Observations:		260	AIC:		23	
Df Residuals:			BIC:		24	00.
Df Model:						
Covariance Type:	ne	onrobust				
	coef	std err			[0.025	0.975
Intercept	49.7829	7.420	6.709	0.000	35.171	64.39
time	-1.9548	0.392	-4.983	0.000		-1.18
np.power(time, 2)					0.037	
np.power(time, 3)	-0.0004	3.51e-05	-10.661	0.000	-0.000	-0.06
np.power(time, 4)	8.94e-07	6.66e-08			7.63e-07	
Omnibus:		80.297	Durbin-Watson			246
Prob(Omnibus):		0.000	Jarque-Bera (JB):	383.	605
Skew:		1.160	Prob(JB):		5.03e	-84
Kurtosis:		8.479	Cond. No.		7.87e	+09

图 32 回归分析

图像如下

6 时间序列

在本节,我们利用时间序列分析方法对美国 GDP 进行分析。 美国每季度的 GDP 数据如下:

图 34 数据集图形

取对数之后:

图 35 数据集图形

其自相关,偏自相关图如下:

图 36 自相关检验

发现不符合要求,于是我们对源数据进行一阶差分后进行检验:

图 37 自相关检验

之后,我们即使用 SARIMA 模型进行拟合。其统计结果如下:

Dep. Varial	ble-		v No.	Observations:		243	
Model:		ARIMAX(θ, 1,				785.034	
Date:		hu, 11 Jan 2				-1562.069	
Time:			:27 BIC			-1548.097	
Sample:			θ HQIC 243			-1556.441	
Covariance	Type:		opg				
=======	coef	std err	z	P> z	[0.025	0.975]	
intercept	-1.475e-05	1.54e-05	-0.959	0.338	-4.49e-05	1.54e-05	
ma.L1	-0.7094	0.470	-1.508	θ.131	-1.631	θ.212	
ma.L2	-0.2917	θ.133	-2.200	0.028	-0.552	-0.032	
sigma2	8.823e-05	4.27e-θ5	2.068	0.039	4.61e-06	0.000	
 Ljung-Box ((Q):		58.59	Jarque-Bera	(JB):	3	 6.74
Prob(Q):			0.03	Prob(JB):			0.00
Heterosked	asticity (H)		0.20	Skew:			0.04
Prob(H) (to	wo-sided):		0.00	Kurtosis:			4.91

图 38 结果

检验其残差:

源码

本文的代码可以在我的 Github 上获取:

https://github.com/stxupengyu/Econometrics-Example