Gambler's fallacy

Notes on Behavioural Economics

Jason Collins

Probability of a head

3rd-to-last	2nd-to-last	Very last	Prob. next will be H (%)
H	Н	Н	30.0
T	H	H	38.0
H	T	H	41.2
H	H	${f T}$	48.7
H	T	${f T}$	62.0
T	H	T	58.8
T	T	\mathbf{H}	51.3
T	T	T	70.0

Gambler's fallacy

HHHHHH

HHTTHH

The law of small numbers

The law of small numbers

$$\widehat{P}(RRRRR|RRRR) = \frac{\text{reds}}{\text{reds} + \text{blacks}}$$

$$= \frac{18 - 4}{(18 - 4) + 18} = 0.438$$

In reality: P(RRRRR|RRRR) = 0.5