# Московский Физико-Технический Институт

Лабораторная работа по радиотехническим сигналам и цепям

# Пассивные электрические цепи.

### Автор:

Глеб Уваркин 615 группа



26 сентября 2017 г.

# Задание №1.Интегрирующие и дифференцирующие звенья.

#### 1.

На макетной плате соберём интегрирующую цепь с постоянной времени  $\tau \simeq 0.1$  мс,  $f_0 = \frac{1}{2\pi\tau} \simeq 1600$  Гц,  $R \simeq 100$  Ом,  $C \simeq 100$  мк $\Phi$ .

#### **2**.

Подключим генератор синусоидальных сигналов и осциллограф. Экспериментально оценим верхнюю граничную частоту  $f_0$  по уровню  $\frac{1}{\sqrt{2}} \simeq 0.7 = -3 \mathrm{dB}.$ 



Рис. 1: Интегрирующая цепь.

На частоте 10 Гц двойная амплитуда равна 1.946В.  $1.946 \cdot 0.7 \simeq 1.362$ В. На частоте 1.3 кГц получаем двойное напряжение 1.353В. Значит,  $f_0 \simeq 1.3$ кГц.

Измерим значения коэффициента передачи K(f) на частотах  $f=2^n f_0, n=[-2,4]$ .

$$K(f)_{ ext{skch}} = rac{A_{ ext{bux}}}{A_{ ext{rx}}},$$

где  $A_{\mbox{\tiny BX}}=1\mbox{\footnotesize B-амплитуда}$  входного сигнала.

$$K(f)_{ exttt{Teop}} = rac{1}{\sqrt{1 + \left(rac{f}{f_0}
ight)^2}}$$

| f, Гц                                   | 325  | 650  | 1300 | 2600 | 5200 | 10400 | 20800 |
|-----------------------------------------|------|------|------|------|------|-------|-------|
| $A_{\scriptscriptstyle  m BMX},{ m MB}$ | 1917 | 1732 | 1345 | 866  | 471  | 247   | 125   |
| $K(f)_{\mathfrak{I}_{NKCII}}$           | 0.96 | 0.87 | 0.67 | 0.43 | 0.24 | 0.12  | 0.06  |
| $K(f)_{Teop}$                           | 0.97 | 0.89 | 0.70 | 0.45 | 0.24 | 0.12  | 0.06  |



Рис. 2: Граф Боде для интегрирующей цепи.

Подключим генератор прямоугольных сигналов. По осциллограмме переходной характеристики оценим постоянную времени  $\tau$ , измерив время нарастания фронта импульса от нуля до уровня  $1-1/e\simeq 0.63$ . Получим  $\underline{\tau\simeq 130}$ мкс.  $f_0=\frac{1}{2\pi\tau}\simeq 1.2$ к $\Gamma$ ц $\simeq 1.3$ к $\Gamma$ ц - рассчитанная частота  $f_0$  совпадает с полученной экспериментально, значит равенство  $f_0=\frac{1}{2\pi\tau}$  верно.

#### 4.

Превратим интегрирующую цепь в дифференцирующую. Оценим нижнюю граничную частоту  $f_0$  по уровню  $\simeq 0.7 = -3 \mathrm{dB}$ . На частоте  $3.03~\mathrm{M}\Gamma$ ц двойная амплитуда равна  $1.309\mathrm{B}$ .  $1.309 \cdot 0.7 \simeq 0.92\mathrm{B}$ . На частоте  $1.3\mathrm{k}\Gamma$ ц получаем двойную амплитуда  $0.95 \simeq 0.92$ . Значит,  $f_0 \simeq 1.3\mathrm{k}\Gamma$ ц.



Измерим значения коэффициента передачи K(f) на частотах  $f=2^nf_0, n=[-4,2].$ 

$$K(f)_{ ext{skcp}} = rac{A_{ ext{bmx}}}{A_{ ext{bx}}}, \ K(f)_{ ext{teop}} = rac{1}{\sqrt{1+\left(rac{f}{f_0}
ight)^{-2}}}.$$

Рис. 3: Дифференцирующая цепь.

| f, Гц                                      | 87.5 | 163  | 325  | 650  | 1300 | 2600 | 5200 |
|--------------------------------------------|------|------|------|------|------|------|------|
| $2A_{\scriptscriptstyle \mathrm{BMX}}$ ,мв | 92.5 | 177  | 346  | 621  | 952  | 1178 | 1280 |
| $K(f)_{\mathfrak{I}_{SKCII}}$              | 0.05 | 0.10 | 0.22 | 0.42 | 0.68 | 0.88 | 0.95 |
| $K(f)_{\text{reop}}$                       | 0.07 | 0.12 | 0.24 | 0.45 | 0.71 | 0.89 | 0.97 |



Рис. 4: Граф Боде для дифференцирующей цепи.

По осциллограмме переходной характеристики оценим постоянную времени  $\tau$ , измерив время спада вершины импульса от нуля до уровня  $1/e \simeq 0.37$ . Получим  $\underline{\tau} \simeq 125$ мкс.  $f_0 = \frac{1}{2\pi\tau} \simeq 1.27$ к $\Gamma$ ц  $\simeq 1.3$ к $\Gamma$ ц. Теоретическое значение  $f_0$  совпадает с экспериментальным формула  $f_0 = \frac{1}{2\pi\tau}$  верна.

#### **5**.

В МісгоСар откроем модель **rcint.cir**.Изучим графики частотной и фазовой характеристик интегрирующей цепи. Оценим ее верхнюю частоту. Получим  $f_0 \simeq 10$ кГц. Изучим переходную характеристику. По графику оценим постоянную времени. Получим  $\tau \simeq 15.903$ мкс. Убедимся в том, что при наличии сопротивления  $R_L$  передаточная функция цепи принимает вид:

$$H(p) = \frac{K_0}{1 + p\tau}, \ K_0 = \frac{R_L}{R + R_L}, \ \tau = (R||R_L)C.$$

$$K_0 \simeq 1, \ \tau \simeq 0.1 \mathrm{mc}, \ H(p) = \frac{K_0(1-p\tau)}{1-p^2\tau^2} = \frac{K_0(1-jw\tau)}{1+w^2\tau^2} = \frac{1}{1+\omega^2\cdot 10^{-8}} - j\frac{\omega\cdot 10^{-4}}{1+\omega^2\cdot 10^{-8}}$$

Изобразим график  $|H(p)|(\omega)$ .



#### **6**.

Откроем модель **rcdiff.cir**. Изучим частотную и фазовую характеристики дифференцирующей цепи, оценим ее нижнюю частоту. Получим  $f_0 \simeq 10$ к $\Gamma$ ц. Изучим переходную характеристику. По графику оценим постоянную времени. Получим  $\tau \simeq 15.9$ мкс. Проанализируем влияние резистора  $R_S$ , задав его варьирование  $R_S = [0, 10k|10k]$ . При увеличении  $R_S$  увеличивается время спада вершины импульса, и уменьшается минимальное значение амплитуды.

Убедимся, что при наличии  $R_S \neq 0$  передаточная функция принимает вид

$$H(p) = \frac{K_0 p \tau}{1 + p \tau}, \ K_0 = \frac{R}{R + R_S}, \ \tau = (R + R_S)C$$

$$K_0 \simeq 1, \; \tau \simeq 0.1 \mathrm{mc}, \; H(p) = \frac{K_0 p \tau (1 - p \tau)}{1 - p^2 \tau^2} = \frac{-K_0 p^2 \tau^2}{1 - p^2 \tau^2} + \frac{K_0 p \tau}{1 - p^2 \tau^2} = \frac{\omega^2 \cdot 10^{-8}}{1 + \omega^2 \cdot 10^{-8}} + j \frac{\omega \cdot 10^{-4}}{1 + \omega^2 \cdot 10^{-8}}$$

Изобразим график  $|H(p)|(\omega)$ .



Откроем модель **rcpower.cir**. Изучим графики частотной зависимости потребляемых интегрирующей цепью активной и реактивной мощностей и графики мощностей на ее компонентах.

Проверим выполнение закона сложения мощностей на граничной частоте  $f_0=10$ к. Закон сложения мощностей выполняется, так как активная мощность, потребляемая цепью, равна мощности активного сопротивления  $R:W\simeq 0.5$ мВт, а реактивная - конденсатора  $C:W\simeq -0.5$ мВт. Подключая и отключая резистор  $R_L$  варьированием [1k,1Meg|1Meg]. Изучим его влияние на распределение мощностей в схеме при  $f=f_0$ . При уменьшении  $R_L$  до 1k при  $f_0$  его полная мощность возрастает до 0.2 мВт, мощность на R падает до 0.4 мВт, а реактивная мощность конденсатора становится равной -0.2 мВт.







б) Варьирование  $R_L$ .

# Задание 2.RC-звенья второго порядка.



Рис. 5: Три варианта звеньев второго порядка.

#### 1.

Откроем модель **rc2pole.cir**. По графикам AЧX и ФЧX определим затухание на частоте  $f_0 = \frac{1}{2\pi RC} = 9.948$  кГц, которое составила 9.51 dB и скорость его нарастания в полосах задержания -40.69+9.5=-31.18 dB/декаду. По графикам ФЧX измерим значения фазовых сдвигов ФВЧ, ПФ и ФНЧ на частотах 0,  $f_0$ ,  $\infty$ .

Таблица 1: Значения фазовых сдвигов

|          | ФВЧ | ПФ  | ФНЧ  |
|----------|-----|-----|------|
| 0        | 180 | 90  | 0    |
| $f_0$    | 90  | 0   | -90  |
| $\infty$ | 0   | -90 | -180 |

Двухсторонняя полоса  $\Delta f$  пропускания  $\Pi \Phi = 30$  к $\Gamma$ ц, что в три раза больше  $f_0$ . Это сходится с теорией.

#### 2.

Открыв графики переходных характеристик, оценим время спада  $\tau_-$  первого выброса переходной характеристики ФВЧ до уровня  $e^{-1}$  и время  $\tau_+$  нарастания фронта переходной характеристики ФНЧ до уровня  $1-e^{-1}$ .

$$au_{+} = 47.33 \; \mathrm{Mc}, \; au_{-} = 3.67 \; \mathrm{Mc} \rightarrow \frac{ au_{+}}{ au_{-}} = 12.89$$



## Задание №3. Мостовые схемы.



Рис. 6: Мостовые схемы.

#### 1.

Откроем модель фазовращателя. На частоте f=25 к $\Gamma$ ц реализуется наибольший диапазон перестройки фазы при варьировании R=[1k,15k|2k], границы этого диапазона  $\varphi=[-150,73^\circ;-28.54^\circ].$ 

#### **2**.

Откроем модель двойного Т-моста. Изучим его частотную и фазовую характеристики. Измерим ширину полосы режекции  $\Delta f = 41.75k - 2.37k = 39.38k \simeq 4f_0$ . Изучим поведение характеристик при варьировании R = [3k, 7k|1k] и [4.8, 5.2k|0.1k]. При росте R  $f_0$  падает, при R = 5k наблюдается скачок на ФЧХ.

#### **3**.

Подключим ко входу источник прямоугольного импульса и проанализируем переходную характеристику. Оценим время спада  $\tau_-=3.9$  мкс и нарастание  $\tau_+=59$  мкс, что совпадает с теорией  $\tau_+=\frac{1}{2\pi f_0\mu_\pm}, \mu_\pm=2\pm\sqrt{3}$ . Варьирование R=[3k,7k|2k] приводит к усреднению функции.

#### 4.

Оценим частоты  $f_0$  и добротность  $Q=rac{f_0}{\Delta f}$  нулей передачи при R=[4.9k,5.1k|0.3k]

| R, к $O$ м                | 4.9   | 5     | 5.1  |
|---------------------------|-------|-------|------|
| $f_0$ , к $\Gamma$ ц      | 10.05 | 10    | 9.95 |
| $\Delta f$ , к $\Gamma$ ц | 0.1   | 0.001 | 0.1  |
| Q                         | 100.5 | 1000  | 99.5 |

Подключим источник  $E_1$  двухчастотного сигнала  $\sin 2\pi (f-df)t + \sin 2\pi (f+df)t, \ df=25.$  Измерим  $\tau_q$ :

$$R=4.9k, \quad f=10.05k \Rightarrow au_g=3 \; {
m MC}; \qquad au_{g \; {
m Teop.}}=rac{Q}{\pi f}=3.18 \; {
m MC}$$
  $R=5.1k, \quad =9.95k \Rightarrow au_g=3 \; {
m MC}; \qquad au_{g \; {
m Teop.}}==rac{Q}{\pi \, f}=3.18 \; {
m MC}$ 

# Задание №4.Последовательный резонанс.



Рис. 7: Двухполюсные резонансы.

#### 1.

На макетной плате соберём схему полосового фильтра, выбрав  $L\sim 200\mu,\ C\sim 1000p,\ r\sim 90(f_0\sim 360k,\ \rho\ 450,Q\sim 5).$  Подключив генератор синусоидального сигнала, измерим резонансную частоту  $f_0\simeq 364k$ , коэффициент передачи  $K(f_0)\simeq 1.103$  и ширину  $\Delta f$  пика по уровню  $0.7=-3dB:\Delta f=431-307=124k.$  Оценим добротность как  $Q=f_0/\Delta f=364/124\simeq 2.94.$ 

#### **2**.

Из тех же компонент соберём схемы фильтров верхних (ФВЧ) и нижних (ФНЧ) частот. Измерим отношения  $K(f_0)/K(0)\simeq 5.778/1.769\simeq 3.27$  для ФНЧ и  $K(f_0)/K(\infty)\simeq 5.91/1.618\simeq 3.65$  для ФВЧ.

#### **3**.

Подключив генератор прямоугольных импульсов, изучим переходные характеристики ФВЧ, ПФ, и ФНЧ. Прикинув по осциллограммам период колебаний и время их затухания до уровня 1/e=0.37, дадим оценку резонансной частоты  $f_0$  и добротности Q.

| Вид схемы | T, MKC | $\tau$ , MKC | $f_0$ , к $\Gamma$ ц | Q   |
|-----------|--------|--------------|----------------------|-----|
| ФВЧ       | 2.40   | 2.84         | 366                  | 7.1 |
| ФНЧ       | 3.29   | 2.62         | 392                  | 4.9 |
| ПФ        | 2.81   | 2.83         | 366                  | 6.1 |

$$\xi = \frac{1}{\omega_0 T} = \frac{2\pi}{f_0 T}; \ \sqrt{1 - \xi^2} = \frac{2\pi}{\omega_0 \tau} \Rightarrow 1 - \frac{1}{\omega_0^2 T^2} = \frac{4\pi^2}{\omega_0^2 \tau^2}$$
$$\omega_0 = \sqrt{\frac{4\pi^2}{\tau^2} + \frac{1}{T^2}} \Rightarrow f_0 = \sqrt{\frac{1}{\tau^2} + \frac{1}{4\pi^2 T^2}}$$

#### **4**.

Откроем в MicroCap модель **rlc2pole.cir**, изучим частотные фазовые и переходные характеристики фильтров. Сравним результаты моделирования с экспериментом.



Откроем модель **groupdel.cir** полосового фильтра с  $f_0=100k,~\rho=2k$ . Наблюдая в режиме Transient отклик на двухчастотный сигнал  $\sin 2\pi (f-df)t + \sin 2\pi (f+df)t$ , изучим зависимость групповой задержки  $\tau_g$  от R=10,20,40,100.. Сравним результаты с теорией:

$$\tau_g = -\frac{d\phi}{d\omega} = \frac{\dot{Q}}{\pi f_0}.$$

| R, Om                     | 10   | 20   | 40   | 100  |
|---------------------------|------|------|------|------|
| $\tau_g$ , MC             | 0.65 | 0.30 | 0.15 | 0.06 |
| $\tau_{\text{reop}}$ , MC | 0.64 | 0.32 | 0.16 | 0.06 |
| Q                         | 200  | 100  | 50   | 20   |

**6**.

Откроем модель **lcpower.cir**, изучим графики распределения мощностей в резонансной LRC-цепи. Проверим выполнение закона суммирования мощностей на частоте резонанса и на границах полосы пропускания:

На частоте резонанса $(f_0 = 250k)$ .

 $P_L = 177.143m, \ P_C = -178.571m, \ P_R = 18.571m \Rightarrow \sum P \simeq 17.14m.$ 

На границах полосы пропускания:  $f_1 = 238k, f_2 = 262k$ .

 $f_1$ :  $P_L = 85.06m$ ,  $P_C = -87.83m$ ,  $P_R = 9.36m \Rightarrow \sum P \simeq 6.59m$ 

 $f_2$ :  $P_L = 88.71m$ ,  $P_C = -89.54m$ ,  $P_R = 8.75m \Rightarrow \sum P \simeq 7.92m$ .

Закон суммирования выполняется.

# Задание №5.Параллельный перенос.



Рис. 8: Явление параллельного резонанса.

#### 1.

Откроем в МісгоСар модель **parallel.cir** параллельного контура с  $f_0=100k, \varrho=570.$  По схеме оценим параметры  $\alpha=\frac{\rho}{R_0},\ \beta=\frac{R}{\rho},\ Q=\frac{1}{\alpha+\beta},$  где  $\rho=\sqrt{\frac{L}{C}}=\sqrt{\frac{905\cdot 10^{-6}}{2800\cdot 10^{-12}}}\simeq 569$  Ом. Получаем  $\alpha=\frac{569}{10000}\simeq 0.057,\ \beta=\frac{32}{569}\simeq 0.056,\ Q=\frac{1}{0.057+0.056}\simeq 8.85.$ 

#### **2**.

Измерим сопротивление контура  $R_0$  на резонансной частоте и полосу  $\Delta f$  пропускания по уровню 0.7=-3dB. Получаем  $R_0\simeq 5$  кОм,  $\Delta f\simeq 11.15$  кГц. Оценим его добротность как  $Q=\frac{R_0}{\rho}=\frac{5000}{569}\simeq 8.79$  и  $Q=\frac{f_0}{\Delta f}=\frac{100000}{11150}\simeq 0.89$ 

#### 3.

Изучим влияние на добротность последовательных потерь R, установив варьирование R=[0,32|32].Измерим добротность при R=0:  $Q=\frac{100000}{5775}\simeq 17.3$ .

Изучим влияние параллельных потерь  $R_0$ , установив варьирование  $R_0=[10k,1000k]1000k]$ . Измерим добротность при  $R_0=1000$  кОм:  $Q=\frac{100000}{5658}\simeq 17.7$ . Оценим вклады каждого из резисторов  $R,R_0$  в затухание  $\frac{1}{Q}$ . При увеличении R от 0 Ом до 32 Ом, затухание меняется с 0.057 на 0.116. При увеличении  $R_0$  от 10 кОм до 1000 кОм затухание меняется с 0.114 на 0.056.

#### 4.

Изучим зависимость частоты параллельного резонанса от R=[0,150|50]. Частоту резонанса измерим по пересечению нуля фазовой характеристикой. Проверим формулу  $f=f_0\sqrt{1-\beta^2}$ .

Таблица 2: Подтверждение формулы  $f = f_0 \sqrt{1-\beta^2}$ .

| R, Om         | 0     | 50   | 100  | 150  |
|---------------|-------|------|------|------|
| $f_{ m эксп}$ | 100.0 | 99.6 | 98.4 | 96.5 |
| β             | 0.00  | 0.14 | 0.18 | 0.26 |
| $f_{ m reop}$ | 100.0 | 99.0 | 98.4 | 96.6 |

Исследуем влияние последовательности потерь в области низких частот. Для этого установим частотный диапазон от 1k до 130k и будем варьировать R=[0,20|2]. Получим, что при сопротивлении R=12 Ом фазовый сдвиг на частоте 2k составляет  $\pi/4$ .

# Задание №6.Смешанные резонансы.



Рис. 9: Контур со смешанным резонансом.

#### 1.

Откроем модель **combined.cir** с  $f_0=100k,~\rho=15.9k,~Q\simeq 10,~\alpha=1.$  Изучим графики частотной и фазовой характеристик, а также графики частотных зависимостей вещественной и мнимой частей импеданса.

#### 2.

Измерим частоты  $f_p, f_0$  последовательного и параллельного резонансов по точкам пересечения нуля фазовой характеристикой. Имеем  $f_0 \simeq 100.5k, \ f_p \simeq 140.6k$ . Измерим полюсы  $\Delta f_p, \Delta f_0$ , в которых фазовая характеристика изменяется в диапазоне  $\pm 45$  в окрестностях резонансов. Имеем  $\Delta f_p \simeq 10.7k, \Delta f_0 = 10.4k$ . Рассчитаем добротность  $Q_p = \frac{f_p}{\Delta f_p} = \frac{140.6k}{10.7k} \simeq 13.1, \ Q = \frac{f_0}{\Delta f_0} = \frac{100.5k}{10.4k} \simeq 9.66$ . Проверим, что  $f_p = f_0\sqrt{2}$ :  $140.6k \simeq 141.4k$  и  $Q_p = Q_0\sqrt{2}$ :  $13.1 \simeq 13.7$ .

#### **3**.

Измерим сопротивление контура на частотах последовательного и параллельного резонансов, сравним результаты с теоретическими значениями:  $r,k^2\rho_pQ_p$ .

$$r_{\text{эксп}} = 1.57k \simeq 1.59k = r_{\text{теор}}$$

$$(k^2 \rho_p Q_p)_{\text{эксп}} = 78k \simeq 79k = \left(\frac{\alpha}{1+\alpha}\right)^2 \sqrt{\frac{L}{C}} (1+\alpha) \frac{r}{\rho} = (k^2 \rho_p Q_p)_{\text{теор}}$$

Снимем зависимости сопротивления на частоте параллельного резонанса от R=[500:2000|500] и ёмкости  $C_0=[100p,300p|100p]$ . Сопоставим их с теорией. Осмыслим характер изменения графиков при варьировании R и  $C_0$ .

Таблица 3: Варьирование R.

| R, Om  | 500 | 1000 | 1500 | 2000 |
|--------|-----|------|------|------|
| Z, кОм | 220 | 121  | 82   | 63   |

$$Z \sim \frac{1}{R}$$

<u>MIPT</u>

Таблица 4: Варьирование  $C_0$ .

| $C_0$ , п $\Phi$ | 100  | 200  | 300  |
|------------------|------|------|------|
| Z, кОм           | 68.6 | 26.3 | 14.3 |

$$Z \sim \frac{1}{C_0^2}$$
.

Обнулим последовательности потери r и варьированием  $R_0=[10k,100k|10k]$  подберём сопротивление параллельных потерь так , чтобы достичь того же резонансного сопротивления что и при r=1590. Получим  $R_0=80k$ . Проверим закон пересчёта:  $R_0r=k^2\rho_p^2$ .  $80000\cdot 1590\simeq \left(\frac{1}{2}\right)^2\cdot (15900)^2\cdot 2$  - соотношение выполняется.

#### **5**.

Варьируя  $R_0=[80k,10Meg|10Meg]$  при r=1590, изучим влияние  $R_0$  на поведение частотной и фазовой характеристик на низких частотах - в диапазоне 1k, 180k. При увеличении  $R_0$  частотная характеристика увеличивается, а фазовая уменьшается.