CprE 381 – Computer Organization and Assembly-Level Programming

Lab-02 Report

Student Name	Ben Pierre	
Section / Lab Time	10	

Submit a typeset pdf version of this on Canvas by the due date (i.e., the start of your next lab section). Refer to the highlighted language in the Lab-02 instructions for the context of the following questions.

- a. [Prelab] At the end of Chapter 3, answer questions 4b), 5a), and 6.
- b. [Part 1 (c)] Waveform.

4 -	Msgs										
<u>→</u> /tb/input	32'h96341234	00000000					00001234		96341234		
_ /tb/output_a	32'h69CBEDCB	FFFFFFF					FFFFEDCE		69CBEDCB		
≖ – ∕ • /tb/output_b	32'h69CBEDCB	FFFFFFF					FFFFEDCE		69CBEDCB		
'											

c. [Part 2 (a)] Draw the truth table, Boolean equation, and Boolean circuit equivalent (using only two-input gates) that implements a 2:1 mux.

d. [Part 2 (e)] Waveform.

П		32'h00000009	00000009				
		32'h00000012	00000012				
ľ	/tb/selector	1					
Ш	≖– ◆ /tb/outputa	32'h00000012	00000009	00000012			
Н	🛨 🔷 /tb/outputb	32'h00000012	00000009	00000012			

e. [Part 3 (a)] Draw the truth table, Boolean equation, and Boolean circuit equivalent (using only two-input gates) that implements a full adder.

Α	В	Cin	Sum	C out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

f. [Part 3 (e)] Waveform.

<u>→</u> /fulladdertb/inputa	32'h00000000	00000006	FFFFFFF	00000000		
	32'h00000000	00000017	00000000			
/fulladdertb/carry	0					
+- /fulladdertb/outputA	32'h00000000	0000001D	00000000	00000001	00000000	
💠 /fulladdertb/carry	0					
 — /fulladdertb/outputB	32'h00000000	0000001D	00000000	00000001	00000000	
/fulladdertb/carry	0					
						

g. [Part 4 (a)] Draw a schematic (don't use a schematic capture tool) showing how an N-bit adder/subtractor with control can be implemented using only the three main components

designed in problems 1), 2), and 3) (the N-bit inverter, N-bit 2:1 mux, and N-bit adder). How is the 'nAdd Sub' bit used?

That bit is used to control both the multiplexer and as the carry bit to the adder

h. [Part 4 (c)] Provide multiple waveform screenshots in your write-up to confirm that this component is working correctly. What test-cases did you include and why? Here I did basic adding and subtracting to make sure that the core functions of my block

Here I subtracted 8 from 6 to ensure that I do get a negative

i. [Feedback] You must complete this section for your lab to be graded. Write down the first response you think of; I expect it to take roughly 5 minutes (do not take more than 10 minutes).

i. How many hours did you spend on this lab?

Task	During lab time	Outside of lab time
Reading lab	0	0
Pencil/paper	.5	.5
design		
VHDL design	1	2
Assembly coding	.5	2
Simulation	0	1
Debugging	0	.5
Report writing	0	0
Other:	0	0
Total	2	5

- ii. If you could change one thing about the lab experience, what would it be? Why?
 - i. I get why we made everything from scratch however everyone I talked to got to around the 2:1 MUX in their lab time, so the two times the document mentioned talking to a TA for details we were unable to due to being outside of a lab section / we would have had to allocate even more time to finding a TA and talking to them
- iii. What was the most interesting part of the lab?
 - i. I actually enjoyed seeing just how much easier dataflow is verse structural coding.