Отчет по лабораторной работе №2

Расчёт сети Fast Ethernet

Галацан Николай, НПИбд-01-22

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	7
4	Выводы	10

Список иллюстраций

2.1	Конфигурации сети	5
2.2	Топология сети	6
3.1	Предельно допустимый диаметр домена коллизий в Fast Ethernet .	7
3.2	Временные задержки компонентов сети Fast Ethernet	8
3.3	Результат: оценка работоспособности сетей по первой и второй модели	9

1 Цель работы

Цель данной работы— изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

2 Задание

Требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

Конфигурации сети приведены на рис. 2.1. Топология сети представлена на рис. 2.2.

Варианты заданий

Таблица 2.4

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Рис. 2.1: Конфигурации сети

Рис. 2.4. Топология сети

Рис. 2.2: Топология сети

3 Выполнение лабораторной работы

Оцениваю работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой моделью. Диаметр домена коллизий вычисляется как сумма длин сегментов (расстояние между двумя наиболее удалёнными друг от друга оконечными устройствами).

Рассматриваются конфигурации, где все сегменты ТХ и присутствует два повторителя класса 2. Исходя из таблицы (рис. 3.1) предельно допустимый диаметр домена коллизий будет равен **205 м**. Следовательно, нужно найти диаметр домена коллизий для каждой конфигурации и сравнить результат с этим числом.

Таблица 2.1 Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соеди- няющий два узла без повторителей	100	412,0	-	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	_	308,8
Два повторителя класса II	205	228,0	_	216,2

Рис. 3.1: Предельно допустимый диаметр домена коллизий в Fast Ethernet

В данной топологии сети необходимо выбрать наибольшее расстояние из первых трех сегментов, сложить с сегментом 4 и прибавить к этому наибольшее расстояние из сегментов 4 и 5.

Вариант 1. 96 + 5 + 97 = 198. 198 < 205 => сеть работоспособна.

Вариант 2. 95 + 90 + 98 = 283. 283 > 205 => сеть неработоспособна.

Вариант 3. 95 + 5 + 100 = 200. 200 < 205 => сеть работоспособна.

Вариант 4. 70 + 4 + 90 = 164. 164 < 205 => сеть работоспособна.

Вариант 5. 95 + 15 + 100 = 210. 210 > 205 => сеть неработоспособна.

Вариант 6 98 + 9 + 100 = 207. 207 > 205 => сеть неработоспособна.

Работоспособными по первой модели являются сети 1, 3, 4 (рис. 3.3).

Оцениваю работоспособность 100-мегабитной сети Fast Ethernet в соответствии со второй моделью. Для этого требуется найти наихудшие пути в домене коллизий, определить сегменты. В нашей конфигурации все сегменты 100BASE-ТХ и используется витая пара категории 5. Время для двойного оборота на сегментах буду рассчитывать, умножая длину сегмента на удельное время двойного оборота, равное 1,112 би/м исходя из таблицы (рис. 3.2)

Таблица 2.2 Временные задержки компонентов сети Fast Ethernet

Компонент	Удельное время двойно- го оборота (би/м)	Максимальное время двойного оборота (би)		
Пара терминалов TX/FX	_	100		
Пара терминалов Т4	-	138		
Пара терминалов Т4 и ТХ/FX	-	127		
Витая пара категории 3	1,14	114 (100 м)		
Витая пара категории 4	1,14	114 (100 м)		
Витая пара категории 5	1,112	111,2 (100 м)		
Экранированная витая пара	1,112	111,2 (100 м)		
Оптоволокно	1,0	412 (412 м)		
Повторитель класса I	-	140		
Повторитель класса II, имеющий порты типа ТХ/FX	-	92		
Повторитель класса II, имеющий порты типа Т4	-	67		

Рис. 3.2: Временные задержки компонентов сети Fast Ethernet

Суммирую для каждого варианта полученные значения для всех сегментов наихудшего пути и прибавляю время двойного оборота двух повторителей клас-

са 2 (92 би/м для каждого) и пары терминалов с интерфейсами ТХ (100 би/м). Для учёта непредвиденных задержек к полученному результату прибавляю ещё 4 битовых интервала и сравниваю результат с числом 512. Если полученный результат не превышает 512 би, то сеть считается работоспособной (рис. 3.3).

Вариант 1. (96 + 5 + 97) * 1,112 + 92 + 92 + 100 + 4 = 508,176 < 512 => сеть работоспособна.

Вариант 2. (95 + 90 + 98) * 1,112 + 92 + 92 + 100 + 4 = 602,696 > 512 => сеть неработоспособна.

Вариант 3. (95 + 5 + 100) * 1,112 + 92 + 92 + 100 + 4 = 510,4 < 512 => сеть работоспособна.

Вариант 4. (70 + 4 + 90) * 1,112 + 92 + 92 + 100 + 4 = 470,368 < 512 => сеть работоспособна.

Вариант 5. (95 + 15 + 100) * 1,112 + 92 + 92 + 100 + 4 = 521,52 > 512 => сеть неработоспособна.

Вариант 6 (98 + 9 + 100) * 1,112 + 92 + 92 + 100 + 4 = 518,184 > 512 => сеть неработоспособна.

То есть, по второй модели рабочими считаются те же варианты сетей, что и по первой модели, а именно сети 1, 3, 4.

		Сегмент 2 Сегм						Работоспособность сети		
Nº	Сегмент 1		Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	I модель	II модель	II модель с задержкой	
1	100BASE-TX, 96 м	100BASE-ТХ, 92 м	100BASE-TX, 80 м	100BASE-TX, 5 м	100BASE-TX, 97 м	100BASE-TX, 97 м	198	504,176	508,176	
2	100BASE-ТХ, 95 м	100BASE-TX, 85 м	100BASE-TX, 85 M	100BASE-TX, 90 м	100BASE-ТХ, 90 м	100BASE-TX, 98 м	283	598,696	602,696	
3	100BASE-ТХ, 60 м	100BASE-TX, 95 м	100BASE-TX, 10 M	100BASE-TX, 5 м	100BASE-TX, 90 м	100BASE-TX, 100 м	200	506,4	510,4	
4	100BASE-ТХ, 70 м	100BASE-TX, 65 м	100BASE-TX, 10 M	100BASE-ТХ, 4 м	100BASE-TX, 90 м	100BASE-TX, 80 м	164	466,368	470,368	
5	100BASE-ТХ, 60 м	100BASE-TX, 95 м	100BASE-TX, 10 M	100BASE-TX, 15 м	100BASE-TX, 90 м	100BASE-TX, 100 м	210	517,52	521,52	
6	100BASE-ТХ, 70 м	100BASE-TX, 98 м	100BASE-TX, 10 м	100BASE-TX, 9 м	100BASE-TX, 70 м	100BASE-TX, 100 м	207	514,184	518,184	

Рис. 3.3: Результат: оценка работоспособности сетей по первой и второй модели

4 Выводы

В результате выполнения лабораторной работы были изучены принципы технологий Ethernet и Fast Ethernet. Также были практически освоены методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.