Ch34 – Geometric Optics Light rays moving in straight lines

Ch35-36 – Wave Optics
Ch35 – Interference

Double-slit
Thin-film
Ch36 – Diffraction

Interference (refresher)

← ← Constructive

Waves in phase $\varphi = 0, 2\pi, ...$

Destructive →→

Waves out of phase $\varphi = \pi, 3\pi \dots$

Coherent sources

Coherent wave sources = same *frequency* and <u>constant</u> *phase difference*

Constructive

Waves in phase

$$\varphi = 0, 2\pi, ... = 2m\pi$$

$$\frac{\varphi}{2\pi} = \frac{\Delta x}{\lambda}$$

$\Delta x = m\lambda$

Destructive

Waves out of phase

$$\varphi = \pi$$
, $3\pi \dots = (2m+1)\pi$

$$\Delta x = (2m+1)\frac{\lambda}{2}$$

Light Waves

1678 Christiaan Huygens - wave theory of light:

geometrical construction predicting the position of a WF from the present position

1704 Newton – corpuscular hypothesis for light 1873 Maxwell treatise

Reminder:

Wave front – same $\vec{E}(t)$ – are planar far from source

Huygens Principle:

All points on a propagating wave front serve as sources of secondary spherical wavelets. After time Δt the new position of the wave front is at a surface tangent to 2^{nd} -ary wavelets

Example: Distance between wave fronts $d = c \Delta t = \text{radius of wavelets}$ new WF "ed" \parallel old WF "ab"

$$\Delta t \to T = \frac{1}{f}$$
 \to $d = c T = \frac{c}{f} = \lambda$

Can be used to derive reflection and refraction laws (page 1103)

Diffraction

Diffraction = flaring/spreading of the wave beyond the barrier

Most noticeable when size of opening $a \sim \lambda$ Limits use of geometric optics (straight rays) to scales $\gg \lambda$ Consequence of Huygens principle Same effect for barriers (instead of openings) Same for any type of wave: water, etc.

Double-Slit Interference

1801 Thomas Young

proved light = wave
 through light interference

2. measured $\bar{\lambda} = 570nm$ sunlight (compare to 555 nm \rightarrow 2.7%)

Use Huygens' principle on each slit – followed by diffraction

Dynamic view at https://en.wikipedia.org/wiki/Double-slit_experiment

Interference pattern
Bright & dark bands/fringes
Max = middle of bright
Min = middle of dark

Double-Slit Interference

 $d = 10^{-5}m$ $\lambda = 550 nm$ L = 2 m

Assume $L \gg d, y$ Use SAA $\theta(rad) \approx sin\theta \approx tan\theta$

Path $\neq \Delta x = d \sin \theta = d \frac{y}{L}$

where θ locates fringes where $m = 0, \pm 1, \pm 2, ...$ labels fringes

Max

Min

 $\Delta x = d \sin \theta = m \lambda$

 $\Delta x = d \sin\theta = (2m+1)\frac{\lambda}{2}$

 $y_{min} = (2m+1) \frac{\lambda L}{2 d}$

Double-Slit Interference

$$E_P = 2E \cos \frac{\varphi}{2}$$

resulting amplitude

$$I = S_{ave} = \frac{E_P^2}{2\mu_0 c} = \frac{4E^2 \cos^2 \frac{\varphi}{2}}{2\mu_0 c}$$

$$I_0 = \frac{2E^2}{\mu_0 c} = 4 I_1 = 4 I_2$$

maximum intensity for $\varphi=0$

$$I = I_0 \cos^2 \beta$$

where
$$\beta = \pi \frac{d}{\lambda} sin\theta = \pi \frac{d}{\lambda} \frac{y}{L}$$

Thin-Film Interference

TF = optically clear material with thickness \sim few λ . e.g. soap bubbles, thin oil on water

"hard"
$$n_1 < n_2$$

$$\Delta \varphi = \pi \ or \ \frac{\lambda}{2}$$

Thin-Film Interference

Condition	1 Phase shift $(\frac{\lambda}{2})$	o or 2 phase shifts (λ)
$2L = (2m+1)\frac{\lambda}{2n}$	Constructive	Destructive
$2L = m\frac{\lambda}{n}$	Destructive	Constructive
Example:	Thin film in air	Lens coating

$$m = 0, 1, 2, ...$$