Storm Data: Population Health and Economic Damages

Lindsay Spencer April 10, 2016

Synopsis

Storms can be costly in a number of different ways. This research focuses on their cost to public health and the cost to the economy. The goal of this research is to find which storm events are the most costly in both areas. We find that tornados, excessive heat, and lightning have the highest impact to population health and floods and hurricanes have the highest economic costs.

Data Processing

The technical information

This research was performed on a CPU running Windows 10 Pro, with Intel(R) Core(TM) i7-4650U CPU @ 1.7GH and 2.3GHz.

Using R Studio Version 0.99.893 and R version 3.2.4 Revised.

The file was last downloaded on April 10, 2016 at 6:30 PM PST.

Load Data

First, we ensure that all the packages we will need are loaded and ready to process our data.

```
## Loading required package: gsubfn
```

```
## Loading required package: proto
```

```
## Loading required package: RSQLite
```

```
## Loading required package: DBI
```

```
library(ggplot2)
library(gridExtra)
```

Next, we download the storm data from the course website.

```
fileUrl <-
    "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
fileName = "stormData.csv"

if (!file.exists(fileName)) {
    download.file(fileUrl, fileName)
}</pre>
```

And we read in the file to the stormActivityData variable.

```
stormActivityData <- read.csv(fileName)</pre>
```

Data Cleaning

Subseting the Relevant Data

Let's take a look at the raw data.

head(stormActivityData)

0/2	J16					Storm Data: I	opulation	n Health ar	na Ecol	nomic	Damages		
	##		STATE		BGN_DATE	BGN_TIME	TIME_	_ZONE	COUN	TY C	COUNTYNAME	STA	TE
	##	1	1	4/18/1950	0:00:00	0130)	CST		97	MOBILE		AL
	##	2	1	4/18/1950	0:00:00	0145	, ,	CST		3	BALDWIN	į	AL
	##	3	1	2/20/1951	0:00:00	1600)	CST		57	FAYETTE		AL
	##	4	1	6/8/1951	0:00:00	0900)	CST		89	MADISON		AL
	##	5	1 3	11/15/1951	0:00:00	1500)	CST		43	CULLMAN		AL
	##	6	1 3	11/15/1951	0:00:00	2000)	CST		77 L	.AUDERDALE		AL
	##		EVTYPE E	GN_RANGE	BGN_AZI	BGN_LOCAT	I END	_DATE	END_	TIME	COUNTY_E	ND	
	##	1	TORNADO	0								0	
	##	2	TORNADO	0								0	
	##	3	TORNADO	0								0	
	##	4	TORNADO	0								0	
	##	5	TORNADO	0								0	
	##	6	TORNADO	0								0	
	##		COUNTYEND	ON END_RAN	GE END_A	ZI END_LC	CATI	LENGTH	WID	TH F	MAG FATA	LITI	ES
	##	1	1	NΑ	0			14.0	1	00 3	8 0		0
	##	2	1	NΑ	0			2.0	1	50 2	2 0		0
	##	3	1	NΑ	0			0.1	1	23 2	2 0		0
	##	4	1	NΑ	0			0.0	1	00 <u>2</u>	2 0		0
	##	5	1	NΑ	0			0.0	1	50 2	2 0		0
	##	6	1	NΑ	0			1.5	1	77 2	2 0		0
	##		INJURIES	PROPDMG P	ROPDMGEX	P CROPDMG	CROPI	DMGEXP	WFO	STA	TEOFFIC Z	ONEN	AMES
	##	1	15	25.0	ı	к е)						
	##		0	2.5	ĺ	K e)						
	##	3	2	25.0	I	к е)						
	##		2	2.5		к е							
	##		2	2.5		к е)						
	##		6	2.5		к е							
	##			LONGITUDE		_	_	REMAR	KS R	EFNU	JM		
	##		3040	8812		051	8806				1		
	##		3042	8755		0	0				2		
	##		3340	8742		0	0				3		
	##		3458	8626		0	0				4		
	##		3412	8642		0	0				5		
	##	6	3450	8748		0	0				6		

From this, we know we are only interested in a subset of the actual data. Specifically, we want the event type (EVTYPE), the number of fatalities (FATALITIES), the number of injuries (INJURIES), the property damage amount (PROPDMG and PROPDMGEXP), and the crop damage amount (CROPDMG and CROPDMGEXP). We will also use the date (BGN_DATE) to remove some of the data for dates that are probably incomplete.

```
relevantData <- c(
    "BGN_DATE",
    "EVTYPE",
    "FATALITIES",
    "INJURIES",
    "PROPDMG",
    "PROPDMGEXP",
    "CROPDMG",
    "CROPDMGEXP"
)</pre>
```

Let's take a look at this subsetted data.

```
head(relevantDataSubset)
```

```
EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP
##
## 1 4/18/1950 0:00:00 TORNADO
                                           0
                                                    15
                                                          25.0
                                                                         K
## 2 4/18/1950 0:00:00 TORNADO
                                           0
                                                     0
                                                           2.5
                                                                         K
     2/20/1951 0:00:00 TORNADO
                                           0
                                                     2
                                                          25.0
## 3
                                                                         Κ
                                                     2
## 4
       6/8/1951 0:00:00 TORNADO
                                           0
                                                           2.5
                                                                         Κ
## 5 11/15/1951 0:00:00 TORNADO
                                           0
                                                     2
                                                           2.5
                                                                         Κ
## 6 11/15/1951 0:00:00 TORNADO
                                                     6
                                                           2.5
                                                                         K
##
     CROPDMG CROPDMGEXP
## 1
           0
## 2
           0
## 3
           0
## 4
           0
## 5
           0
## 6
           0
```

This is good, but we still need to do some transformations to be able to use this data for our analysis.

Caclulating Total Damages

The amount of damages to property and crops are presented as a number and an exponential factor. The documentation indicates that they use "K" for thousands, "M" for millions, and "B" for billions. The function, getMultiplier, was written to translate the EXP variable into a multiplier to calculate the correct amount of damages. It uses k and K, m and M, b and B, and ignores any other symbol that may be in the EXP column.

```
getMultiplier <- function(multiplier) {</pre>
     ifelse(
          multiplier == 'K' || multiplier == 'k',
          mult <- 1000,
          ifelse(
                multiplier == 'M' || multiplier == 'm',
                mult <- 1000000,
                ifelse(
                     multiplier == 'B' ||
                          multiplier == 'b',
                     mult <- 1000000000,
                     mult <- 1
                )
          )
     mult
}
```

This function is now used to correctly record the amount of property damage and the amount of crop damage each event caused.

```
relevantDataSubset$propDamage <- relevantDataSubset$PROPDMG *
    as.integer(lapply(relevantDataSubset$PROPDMGEXP, getMultiplier))
relevantDataSubset$cropDamage <- relevantDataSubset$CROPDMG *
    as.integer(lapply(relevantDataSubset$CROPDMGEXP, getMultiplier))</pre>
```

Using these amounts, we calculate the total damage caused by each event.

```
relevantDataSubset$totalDamage <-
relevantDataSubset$propDamage + relevantDataSubset$cropDamage
```

Here's a look at what our dataset looks like after our calculations.

```
head(relevantDataSubset)
```

##			BGN_DATE	EVTYPE	FATALITIES	INJURIES	PROPDMG	PROPDMGEXP	
##	1	4/18/1950	0:00:00	TORNADO	0	15	25.0	K	
##	2	4/18/1950	0:00:00	TORNADO	0	0	2.5	K	
##	3	2/20/1951	0:00:00	TORNADO	0	2	25.0	K	
##	4	6/8/1951	0:00:00	TORNADO	0	2	2.5	K	
##	5	11/15/1951	0:00:00	TORNADO	0	2	2.5	K	
##	6	11/15/1951	0:00:00	TORNADO	0	6	2.5	K	
##		CROPDMG CR	OPDMGEXP	propDama	ge cropDama	age total	Damage		
##	1	0		250	00	0	25000		
##	2	0		25	00	0	2500		
##	3	0		250	00	0	25000		
##	4	0		25	00	0	2500		
##	5	0		25	00	0	2500		
##	6	0		25	00	0	2500		

Subseting Years that Have More Recorded Events

From the documentation, we know that the earlier years probably do not contain complete information. A look at the histogram of number of events by year shows us that this is probably true. To do this, we'll have to extract the year from the date column.

```
relevantDataSubset$YEAR <-
   year(as.Date(relevantDataSubset$BGN_DATE, '%m/%d/%Y'))
hist(relevantDataSubset$YEAR, xlab = "Year",
   main = "Number of Events per Year", col = "green")</pre>
```

Number of Events per Year

This shows us clearly that the earlier years do not have nearly the number of events recorded as the later years do. We make the assumption that the number of events recorded is at fault and not that the number of events has been increasing, so we will only look at the second half of our data. To do this, we will calculate the 50th percentile and subset the data to only look at events from the more recent years.

```
cutOffYear <- quantile(relevantDataSubset$YEAR, c(.5))
cutOffYear

## 50%
## 2002</pre>
```

We will use this value in the next section to exclude data from the first half of the given timeframe.

Aggregate Totals by Event

Now, we will total the amount of fatalities, injuries, and total damage done by each type of event. We will also use this opportunity to exclude the first 50% of the data and to rename the headers.

```
selectStatement <- paste(
    "SELECT ",
    "EVTYPE AS Event,",
    "SUM(FATALITIES) AS Fatalities,",
    "SUM(INJURIES) AS Injuries,",
    "SUM(TotalDamage) AS Damage",
    "FROM relevantDataSubset ",
    "WHERE YEAR >= '",
    cutOffYear,
    "'",
    "GROUP BY EVTYPE"
)
finalDataSet <- sqldf(selectStatement)</pre>
```

```
## Loading required package: tcltk
```

Here is a sample of the final dataset.

```
head(finalDataSet)
```

```
##
                       Event Fatalities Injuries
## 1
             ABNORMALLY DRY
                                       0
                                                         0
             ABNORMALLY WET
                                       0
                                                         0
## 2
                                                0
## 3 ASTRONOMICAL HIGH TIDE
                                       0
                                                0 9425000
     ASTRONOMICAL LOW TIDE
                                       0
                                                   320000
## 5
                   AVALANCHE
                                     145
                                              103 2722300
## 6
                   BLACK ICE
                                       0
                                                0
                                                         0
```

Results

Question 1

Across the United States, which types of events are most harmful with respect to population health?

To answer this question, we will plot both the top 5 fatal events and top 5 injury-producing events separately.

```
topFatalEvents <-
    head(finalDataSet[order(-finalDataSet$Fatalities), ], 5)
g1 <-
    ggplot(topFatalEvents,
           aes(x = factor(Event, levels = unique(Event)), y = Fatalities)) +
    geom_bar(stat = "identity", fill = "blue") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    labs(x = "Event")
topInjuryEvents <-
    head(finalDataSet[order(-finalDataSet$Injuries), ], 5)
g2 <-
    ggplot(topInjuryEvents,
           aes(x = factor(Event, levels = unique(Event)), y = Injuries)) +
    geom_bar(stat = "identity", fill = "red") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    labs(x = "Event")
grid.arrange(g1, g2, ncol = 2)
```


We can see that tornados cause both the greatest amount of fatalities and injuries, and that excessive heat causes the second most in both categories. Lightning is in the top 5 for both, as well. We can conclude that tornados, excessive heat, and lightning are the most harmful events with respect to public health.

Question 2

Across the United States, which types of events have the greatest economic consequences?

For this question, we'll plot the top 5 events with the greatest total economic damage.

```
economicDamageEvents <-
   head(finalDataSet[order(-finalDataSet$Damage),], 5)

ggplot(economicDamageEvents,
   aes(x = factor(Event, levels = unique(Event)), y = Damage)) +
   geom_bar(stat = "identity", fill = "orange") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
   labs(x = "Event", y = "$ Damage (in Billions)") +
   scale_y_continuous(
   labels = function(n) {
      format(n / 1000000000, scientific = FALSE)
   }
   )
}</pre>
```


From this graph, we see that floods cause the greatest economic damage, with hurricanes and typhoons coming in second.

Conclusion

Our analysis has shown us that tornados, excessive heat, and lightning are the most harmful events with respect to public health; while floods, hurricanes, and typhoons have the highest economic consequences.