

Ch.5 Synchronous Sequential Logic - part A

Sequential circuits

Sequential circuits : the ouput → inputs, state(or the curren contents of some memory)에 영향을 받는 회로 ⇒ 같은 input이더라도 메모리의 상태에 따라 출력이 달라질 수 있음 (같은 입력 → 다른 등력)

↔ Combinational circuits : output이 input에만 영향을 받음 (같은 입력 → 같은 결력)

• example : 자물쇠, 엘리베이터, 신호등

memory

- ⇒ data fix1 (changex) 1. hold a value
- 2. read the value that was saved.
- 3. change the value that's saved.
- a 1-bit memory
 - the basic idea of storage → loop
 - 1. hold a value → 0 or 1
 - 2. read the bit that was saved
 - 3. change the value
 - Set the bit to 1
 - Reset(clear) the bit to 0

1

Ly functional programs

[change: "read" of muerter & nor gates try

SR latch

- S, R 두 가지의 input을 받아 Q와 Q' 두 개의 ouput을 control
- → current output과 next output 시점이 차이 남.
- → Q next = (R + Q'current)' Q'next = (S + Q current)'
- → outputs inputes feedback

5	R	Q
0	0	No change
0	1	0 (reset)
1	0	1 (set)

truth table

Inputs		Current		Next	
5	R	Q	Q'	Q	Q'
0	0	0	1	0	1
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0
 state table 			→ क्ष		men

- ① ② ③memory : set, reset, no change 모두 구현 가능
- \mathbf{Q} : the data stord in latch \rightarrow state of the latch

한지4의 상태강도 input-1231 → N5∈HCH > 323 \$40 \ 592 한 경우가 CH부분

1. SR = 00 → no change

- Q next = (0+ Q'current)' = Q current
- Q'next = (0 + Q current)' = Q' current
- → Onext = Ocurrent
- → hold 구현 (no change)

(sequential circuits이라는 점을 알 수 있음.

같은 input이어도 현재 상태에 따라 다른 output)

2. SR = 10 → Set

- Q'next = (1 + Q current)' = 0
- Q next = (0+0)' = 1
- \rightarrow Qnext = 1 Q'next = 0
- → set 구현
 - two gate delay 통과해야 정확한 값이 출력 됨

- Qnext가 한 번 1이 되면 output은 바뀌지 않고 계속 1임
- \Rightarrow stable state
- latch delay example

- (6) Q=0, Q' = 1 이라고 가정
- ⑤ S=1 → Q'은 one gate delay 후에 1에서 0으로 바뀜
- 🥱 R=0, Q'가 바뀌고 난 후, 즉 two gate delay 후 Q가 1이 됨,
- ④ 이후 S, R이 바뀔 때까지 stable ⇒ 육시锡
- 3. SR = 01 → teset
 - Q next = (1+ Q'current)' = 0 (Qcurrent에 상관 x)
 - Q'next = (0 + 0)' = 1
 - \rightarrow Qnext = 0, Q'next = 1
 - → reset(clear) 구현
 - two gate delay 통과해야 정확한 값이 출력 됨

4. SR = 11

- Qnext , Q'next 모두 0이 됨 → complement 성립 x ⇒ 다시 이 각자들어만
 O와 O'가 O과 1을 infinite loop forever

 Qnext + Q'next 모두 0이 됨 → complement 성립 x
- Q와 Q'가 0과 1을 infinite loop forever.

⇒ SR=11 input 설정은 worst case!

S'R' latch

	5'	R'	Q
(جے	1	1	No change
17	1	0	0 (reset)
14	0	1	1 (set)
الحا	0	0	Avoid!

Qnext = (9'Qcurrent) | Qnext = (R'Qcurrent) |

• NOR → NAND gate + input → invert input인 SR latch

⇒ SR latch의 한대기능 수행

SR latch with a control input

INPULL		Cu	itent	next		
5'	RI	Q	Q'	Ø	Q١	
- 1	-	-0	-0	0 –	0 –	
t	0	0	l	0	1	
1	0	ſ	0	0	1	
0	ı	0	J	1	ь	
0	١	ι	0	l	0	

С	5	R	5'	R'	Q
0	×	×	1	1	No change
1	0	0	1	1	No change
1	0	1	1	0	0 (reset)
1	1	0	0	1	1 (set)
1	1	1	0	0	Avoid!

control input C acts like an enable → ০০/ছ০লের ১,৫০০ ব্লতা ছিলকাৰ

D latch

С	D	Q
0	×	No change
1	0	0
1	1	1

- C=0 → S,R에 상관 없이 state Q는 no change
- · C=1 → input D = state Q > siriol no change > ト 되り の D 2とれる えぞれ
- ⇒ set, reset input이 따로 없음
- ⇒ SR latch와 다르게 bad input이 없음. 모두 vaild

State diagram

sequential circuits 표현을 위해 state diagram 사용

→ arrow : (input) / (output)

node: (state)

Using latches in real life

- ALU : 산원 온 기 면 산 2 등 지
 - 。 G = X+1 operation 적용 가능
 - o 증가된 value가 latch에 들어 음 , 영안을 경단하고 남을 때는 latch를 dcsable
 - ∘ (Bu) disable the latches에서 ALU가 output을 만들 동안 충분히 기다리지 못 함.
 - ALU operation은 dealy 발생 가능(adder gate) , Catty도 delay 에 어야
 - 연산이 얼마나 오래 걸리는지, latch가 얼마나 enable할 지 알아야 함.