谱序列及其应用(I)

谱序列的构造 (校订版)

熊锐

山东大学 泰山学堂

2021年10月

https://www.cnblogs.com/XiongRuiMath/p/14992978.html

引入

Spectral sequence is the thing which really controls when we guess something should be controlled by one.

一 沃兹基. 硕德

谱序列是一个广泛应用于数学各个领域的有力工具。在同调代数,代数 拓扑,代数几何等领域发挥的作用尤为显著。如今,谱序列的方法已经成 为这些相关领域的研究生所必备的知识。这次报告将致力于展现其理论 及其应用。

本次的内容是谱序列的构造. 我们将会讨论<mark>滤过复形和双复形等</mark>谱序列构造. 我们会呈现正确且自恰的简单证明. 我们在构造之后很快就能看到谱序列的例子.

\sim \S 定义 \S \sim

对于一个复形 (C, d), 定义其同调 $H(C) = \ker d / \operatorname{im} d$. 如下图所示

注意到 C 到 H(C) 或者 H(C) 之间没有"诱导"的箭头.

谱序列 = 复形复复形

谱序列是一系列复形 $(E_r)_{r=r_0}^{\infty}$ 使得 $H(E_*) = E_{*+1}$. — "复形复复形"

注意 谱序列 Er 上的微分是 "给出"的, 而不是 "诱导"的.

通常的谱序列的每一项都是双分次的。我们采取下面的上同调记号。

双分次, 上同调记号

对于谱序列 $E_r = (\bigoplus_{n=p+q} E_r^{pq})_{n \in \mathbb{Z}}$ 其微分 $d: E_r \to E_r$ 具有双次数 (r, -r+1).

谱序列 (图示)

双分次,上同调记号如图所示

E_{2}^{03}	E_{2}^{13}	E_2^{23}	E_2^{33}
E_2^{02}	E_2^{12}	E_2^{22}	$^{^{\!$
E_2^{01}	E_2^{11}	E_2^{21}	$^{\sim}E_{2}^{31}$
E_2^{00}	E_2^{10}	E_2^{20}	$^{\sim}E_{2}^{30}$

E_{3}^{03}	E_3^{13}	E_3^{23}	E_3^{33}
E_3^{02}	E_3^{12}	E_3^{22}	E_3^{32}
E_3^{01}	E_3^{11}	E_3^{21}	$^{^{\!$
E_3^{00}	E_3^{10}	E_3^{20}	[*] E ³⁰ ₃

(上图每一条 \ 对角线的直和是一个复形的一项)

极限和收敛

对于谱序列 (E_r) , 我们说 E_r 有代数极限 如果当 $r\gg 0$, E_r 上的微分是 0. 这时, 我们记其极限是 E_{∞} .

对于谱序列 (E_r) , 一个模 H, 如果 H 存在一个有界的滤链, 使得其伴随分次对象 $\operatorname{gr} H = E_{\infty}$. 那么我们说 E_r 收敛到 H, 通常记为 $E_r \Rightarrow H$.

收敛, 上同调记号

模分次成 $H=(H^n)$ 被 F^pH^n 滤过, 且当 p 越大, F^pH^n 越小. 收敛的意思是说 $E^{pq}_{\infty}=\operatorname{gr}^pH^{p+q}$.

这里<mark>有界</mark>指的是, 滤链中只有有限个子空间不是零空间或全空间. 实际应用中会有其他意义的收敛, 我们暂不讨论.

收敛 (图示)

$\sim \S$ 滤过复形 $\S \sim$

滤过复形的谱序列

谱序列的一个主要来源是滤过复形.

定理

假如复形 (C, d) 上有一个有界滤链 F, 即 $F^* = F^*C$ 构成一个复形. 那么存在一个谱序列 E 使得 $E_0 = \operatorname{gr} C$, 其微分是诱导的微分,

$$E_1 = H(\operatorname{gr} C) \Longrightarrow H(C),$$

且 H(C) 上的滤链是由 $\{\operatorname{im} d + F^* \cap \ker d\}$ 在 H(C) 中的像给出的.

这告诉我们"取分次"和"取同调"的"交换性"。

上同调记号

这里是说 $E_0^{pq} = F^p C^{p+q} / F^{p+1} C^{p+q}$.

关于滤链的一则哲学—子空间

考虑一个空间 (Abel 群, 线性空间, 模等) 上的两条有界滤链

$$0 \leqslant^{A_1 \subseteq \cdots \subseteq A_s} \lesssim X$$
$$0 \leqslant^{B_1 \subseteq \cdots \subseteq B_t} X$$

那么 A_{\bullet} 和 B_{\bullet} 的交和产生的空间可以用 Young 图来表示

事实上, 此时这些空间上, +, ∩ 满足分配律.

11 / 42

熊锐 (泰山学堂) 谱序列及其应用 (I)

关于滤链的一则哲学—商空间

任何一个斜 Young 图 (两个 Young 图的差) 则表示两个子空间的商. 且 在同构意义下,这和两个子空间的选取无关,

例如对于一个格子的情况, 这可以用 Zassenhaus 引理 (即"蝴蝶引理") 证明

关于滤链的一则哲学—函子性

如果有两个空间之间各自带有一条有界滤链,对于同态 $f: X \to Y$,考虑

$$0 \underset{\text{ker } f \subseteq f^{-1}(B_1)}{\overset{\text{}}{\subseteq}} \cdots \underset{\text{}}{\subseteq} A_s} \underset{\text{ker } f \subseteq f^{-1}(B_1)}{\overset{\text{}}{\subseteq}} X$$

$$0 \underset{\text{}}{\overset{\text{}}{\subseteq}} f(A_1) \subseteq \cdots \subseteq f(A_s) \subseteq \operatorname{im} f \underset{\text{}}{\overset{\text{}}{\subseteq}} Y$$

$$B_1 \subseteq \cdots \subseteq B_t$$

那么每一个对应的小格子都通过 f 诱导了同构.

证明思路

根据上面的讨论,我们可以用"函子性"得到一系列 С 的子商的同构。

$$0 \qquad \qquad \bigcup_{C} \cdots \subseteq d(F^{p}C^{n-1}) \subseteq \cdots \subseteq \operatorname{im} d \subseteq \\ \subseteq \ker d \subseteq \cdots \subseteq d^{-1}(F^{p}C^{n+1}) \subseteq \cdots \subseteq C^{p+q} \\ \cdots \subseteq F^{p}C^{n} \subseteq \cdots$$

- 中间 $\operatorname{im} d \subseteq \ker d$ 的一列给出想要的同调群的滤链.
- $\mathsf{A} \overset{F^{+1}C'}{\cap}$ —行对应行给出商复形的滤链.
- 如果 p+q=n, 那么 E_0^{pq} 是一整行, E_1^{pq} 是一行去掉头尾, E_2^{pq} 是 E_{pq}^1 去掉头尾, 以此类推, 最终 E_∞^{pq} 是这行最中间 im $d \subseteq \ker d$ 那列.

2021年10月

开始证明

定义

$$\begin{cases} Z_{r-1}^p = F^{p+1} + d^{-1}(F^{p+r}) \cap F^p & \supseteq F^{p+1} + \ker d \cap F^p \\ B_{r-1}^p = F^{p+1} + d(F^{p+1-r}) \cap F^p & \subseteq F^{p+1} + \operatorname{im} d \cap F^p \end{cases}$$

那么"小格子"

$$\begin{split} \frac{Z_{r-1}^p}{Z_r^p} &= \frac{F^{p+1} + d^{-1}(F^{p+r}) \cap F^p}{F^{p+1} + d^{-1}(F^{p+r+1}) \cap F^p} \\ &\stackrel{(*)}{=} \frac{d(F^{p+1}) + F^{p+r} \cap d(F^p)}{d(F^{p+1}) + F^{p+r+1} \cap d(F^p)} \\ &= \frac{F^{p+r} + d(F^p) \cap F^{p+r+1}}{F^{p+r} + d(F^{p+1}) \cap F^{p+r+1}} = \frac{B_r^{p+r}}{B_{r-1}^{p+r}} \end{split}$$

定义

$$E^p_r = \frac{Z^p_{r-1}}{B^p_{r-1}} = \frac{F^{p+1} + d^{-1}(F^{p+r}) \cap F^p}{F^{p+1} + d(F^{p+1-r}) \cap F^p}$$

$$d = \left[E_r^p = \frac{Z_{r-1}^p}{B_{r-1}^p} \twoheadrightarrow \frac{Z_{r-1}^p}{Z_r^p} \cong \frac{B_r^{p+r}}{B_{r-1}^{p+r}} \hookrightarrow \frac{Z_{r-1}^{p+r}}{B_{r-1}^{p+r}} = E_r^{p+r} \right].$$

那么 $\ker \left[\mathcal{E}_r^p \stackrel{d}{\to} \cdots \right] = \frac{\mathcal{Z}_r^p}{\mathcal{B}_{r-1}^p}$,且 $\operatorname{im} \left[\cdots \stackrel{d}{\to} \mathcal{E}_r^p \right] = \frac{\mathcal{B}_r^p}{\mathcal{B}_{r-1}^p}$,所以上同调群是 $\frac{\mathcal{Z}_r^p}{\mathcal{B}_r^p} = \mathcal{E}_{r+1}^p$. 于是这给出一个谱序列.

关于收敛性

$$E_{\infty}^{p} = \frac{\bigcap Z_{r}^{p}}{\bigcup B_{r}^{p}} = \frac{\bigcap F^{p+1} + d^{-1}(F^{p+r}) \cap F^{p}}{\bigcup F^{p+1} + d(F^{p-r-1}) \cap F^{p}}$$

$$\stackrel{(*)}{=} \frac{F^{p+1} + \bigcap d^{-1}(F^{p+r}) \cap F^{p}}{F^{p+1} + \bigcup d(F^{p-r-1}) \cap F^{p}} = \frac{F^{p+1} + \ker d \cap F^{p}}{F^{p+1} + \operatorname{im} d \cap F^{p}}$$

$$= \frac{\operatorname{im} d + F^{p} \cap \ker d}{\operatorname{im} d + F^{p+1} \cap \ker d}$$

关干 *E*₁.

$$E_1^p = \frac{Z_0^p}{B_0^p} = \frac{F^{p+1} + d^{-1}(F^{p+1}) \cap F^p}{F^{p+1} + d^{-1}(F^p) \cap F^p} = H(F^p/F^{p+1}).$$

谱序列及其应用(I)

证闭.

$\sim \S$ 例子 $\S \sim$

长正合序列

考虑复形的短正合列

$$0 \longrightarrow D \longrightarrow C \longrightarrow Q \longrightarrow 0.$$

我们可以将其视为一个滤链 $C \supseteq D \supseteq 0$. 其谱序列 E_0, E_1, E_2 如图

所以此时 $E_2 = E_{\infty}$ 且收敛到 H(C), 即有短正合列

$$0 \longrightarrow \operatorname{cok}^{i} \longrightarrow H^{i}(C) \longrightarrow \ker^{i} \longrightarrow 0.$$

结合图上得到的

$$0 \longrightarrow \ker^{i} \longrightarrow H^{i}(Q) \longrightarrow H^{i+1}(D) \longrightarrow \operatorname{cok}^{i+1} \longrightarrow 0$$

我们可以串得长正合列

$$\cdots \longrightarrow H^{i}(D) \longrightarrow H^{i}(C) \longrightarrow H^{i}(Q) \longrightarrow H^{i+1}(D) \longrightarrow \cdots \longrightarrow H^{i}(Q) \longrightarrow H^{i}(Q)$$

这正是复形短正合列所诱导的长正合列.

助记:

单纯同调

记 Sing $^{\bullet}(X)$ 为计算拓扑空间 X 的奇异上同调的复形. 对于子集 $U \subseteq X$ 我们有满射 $Sing(X) \rightarrow Sing(U)$, 记其核为 Sing(X, U). 根据定义, 这个复 形是计算相对上同调 H(X, U) 的复形.

今 X 是一个有限维 CW 复形. 记 X_{k} 是 < k 维胞腔的并. 并约定 $X_{-1} = \emptyset$. 那么 $Sing(X, X_*)$ 构成了一个 Sing(X) 上的有界滤链. 我们已 知

$$H^{p+q}(X_p, X_{p-1}) = \begin{cases} \mathbb{Z}^{f_p}, & q = 0, \\ 0, &$$
 否则, $f_p = \#\{p-胞腔\}.$

因此谱序列形如

$$\mathbb{Z}^{f_0} \rightarrow \mathbb{Z}^{f_1} \rightarrow \mathbb{Z}^{f_2} \rightarrow \mathbb{Z}^{f_3}$$

这和计算单纯同调的复形相同.

$\sim \S$ <u>评注</u> $\S \sim$

4 D > 4 B > 4 E > 4 E >

- 在实际使用中会出现其他意义的极限. 例如我们将 E_r 写成初始项的子商 Z_{r-1}/B_{r-1} ,定义经典极限是 $E_{\infty} = \bigcap Z_r/\bigcup B_r$. 那么对于穷遏的 (exhaustive)且下方有界的滤链,即零空间出现在滤链中,且所有空间的并是全空间. 证明直接照搬即可 (习题 1.20).
- 实际上, 滤链只是一个技术性的条件. 因为任何一个复形的同态都 "同伦"于一个单射. 这个构造就是映射锥 (习题 1.22).
- 上述构造只适用于 "用复形计算的同调理论"(例如 K 理论就不是用复形计算的). 其实核心只需要能够产生长正合序列. 实际上正合对 (exact couple) 正是这样构造谱序列的 (笔记里有, 我们大概不会有时间讲了).

映射锥图示

$\sim \S$ 双复形 $\S \sim$

双复形

考虑一个双复形 $C = (C^{pq})_{pq}$. 我们定义其全复形 (在 Koszul 符号约定下)

即在 Cpq 上, 微分给作

$$d = d_{(1,0)} + (-1)^p d_{(0,1)}.$$

双复形的谱序列

定理

对于双复形 C, 如果 $C^{pq}=0$ 对 $|p|\gg 0$, 那么存在一个谱序列 E 使得 $E_0=(C,d_{(0,1)})$, 在 E_1 上的微分诱导自 $\pm d_{(1,0)}$,

$$E_2 = H(H(C, d_{(0,1)}), d_{(1,0)}) \Longrightarrow H(\operatorname{Tot} C).$$

这告诉我们"两个方向分别取同调"和"取全复形的同调"的关系.

证明: 在 $\operatorname{Tot} C$ 上有 "列滤链" $\operatorname{Tot}(C^{pq})_{p\geq *}$. 对应的伴随分次复形恰是 $(C^{pq},d_{(0,1)})_{p=*}$. 剩余论断来自证明过程中的微分都诱导自 d.

双复形的谱序列图示

$$C \rightarrow C \rightarrow C$$

$$C \rightarrow C \rightarrow C$$

$$C \rightarrow C \rightarrow C$$

下图的情况通常会取以转置.

$\sim \S$ 例子 $\S \sim$

蛇形引理

假设有每行都是正合列的交换图

我们可以将其视为一个双复形.

ker f	0	0
0	0	cokh

从这个方向会发现全复形的同调是

 $\ker f$, 0, $\operatorname{cok} h$.

从另一个方向会发现

因此 $K_1 = \ker f$, $C_2 = \cosh h$, M = 0, N = 0, 且 $K_2 \to C_1$ 是同构. 这给出了蛇形引理,

平衡 Tor 和 Ext

令 A, B 是两个 (右, 左) 模, 取投射预解 $P \rightarrow A$ 和 $Q \rightarrow B$. 那么 $P \otimes Q$ 是一个双复形, 那么

$$H_n(\operatorname{Tot}(P\otimes Q))=\operatorname{Tor}_n(A,B).$$

事实上,

类似结果也应用于 Ext.

零伦足矣

对于一个左正合函子 F, 回忆导出函子 R^iF 的定义

对对象 A, 选择内射预解 $A \rightarrow I$, 定义导出函子 $R^i F = H^i(F(I))$. 我们称 $A \in F$ -零伦的如果 $R^i F(A) = 0$ 对 $i \geq 1$.

如果 $A \rightarrow I$ 是一个预解且每个 I^i 都是 F-零伦的, 那么 $R^iF(A) = H^i(F(I))$.

因为我们可以对每个 I^{i} 取预解 $I^{i} \rightarrow J^{i}$, 那么 $A \rightarrow \operatorname{Tot} J$ 是一个内射预解:

J 02	J^{12}	<i>J</i> ²² Å
$\int_{\Lambda}^{\uparrow}$	J^{11}	\int_{1}^{2}
J 00	J^{10}	\int_{0}^{2}

0	0	0
0	0	7 0
A ^	0	0

作用 F (作用函子和取 Tot 交换), 再用谱序列

$$\begin{array}{c|c}
F(J^{02}) & F(J^{12}) & F(J^{22}) \\
\uparrow & \uparrow & \uparrow \\
F(J^{01}) & F(J^{11}) & F(J^{21}) \\
\uparrow & \uparrow & \uparrow \\
F(J^{00}) & F(J^{10}) & F(J^{20})
\end{array}$$

$$R^{2}F^{\binom{p}{2}}R^{2}F^{\binom{p}{2}}R^{2}F^{\binom{p}{2}}$$

$$R^{2}F^{\binom{p}{2}}R^{2}F^{\binom{p}{2}}R^{2}F^{\binom{p}{2}}$$

$$F(P) \to F(P)$$

0	0	0
0	0	0
F(1 ⁰)-	> F(I ¹)−	⊁ (<i>f</i> ²)

这就证明了结论.

Mayer-Vietoris 谱序列

假设拓扑空间 X 有一个有限的开覆盖 U. 记

$$U_{i_0,\ldots,i_p} = U_{i_0} \cap \cdots \cap U_{i_p}, \qquad U^p = \bigsqcup_{i_0<\ldots< i_p} U_{i_0,\ldots,i_p}.$$

定义

$$\operatorname{res}_{i_\ell}: \quad \operatorname{\mathsf{Sing}}(U_{i_0,\ldots,\hat{i_\ell},\ldots,i_p}) \longrightarrow \operatorname{\mathsf{Sing}}(U_{i_0,\ldots,i_p}).$$

考虑下面的双复形

$$\check{C}^{pq} = \mathsf{Sing}^q(U^p) = \prod_{i_0 < \dots < i_p} \mathsf{Sing}^q(U_{i_0, \dots, i_p}), \qquad d_{(1,0)} = \prod_{i_0 < \dots < i_p} \sum_{\ell = 0}^p (-1)^\ell \operatorname{res}_{i_\ell}$$

三个开集的例子

假设 A, B, C 三个开集 (实线 +, 虚线 -)

0 1 2

根据代数拓扑, 上面的复形组成的复形的同调都是 0.

一方面,横向,

~.a+1_	≥C1,9 ⁺¹ _	≥2,a ⁺¹
√G,°q −	>_Ç,,a_	> Co'a
-Co,a-1	Z1,9 ⁻¹	2,a-1

?	?	?
	Λ	1
?	?	?
	1	A
?	?	?

所以全复形的同调是 H(X).

另一方面

于是我们得到了 Mayer-Vietoris 谱序列,

$$E_1^{pq} = H^q(U^p) \Longrightarrow H^{p+q}(X).$$

38 / 42

2021年10月

当所有 U^p 都零伦时, E_1 只剩下 $H^0(U_p) = \mathbb{Z}^{f_p}$, 其中 f_p 是 U_p 的连通分 支数目. 这种计算方法得到的上同调叫Čech 上同调. 通过一些努力, 奇 异同调可以被包括进这一方法

当只有两个开集 A 和 B 时,

$$H^q(U^0) = H^q(A) \oplus H^q(B)$$

$$H^q(U^1) = H^q(A \cap B).$$

此时谱序列给出 Mayer-Vietoris 序列.

\sim \S <u>评注</u> \S \sim

2021年10月 40/42

评注

- 全复形定义中使用的 Koszul 符号能够非常简便地取"转置"和"维数变动"(习题 2.12)
- 追图中很多定理都可以用双复形的谱序列覆盖 (习题 2.14, 习题 2.15). 他们又都是越过 (transgression) (笔记中 2.7) 的例子.
- 关于导出函子的例子实际上启发了 Grothendieck 谱序列, 并且还有导出范畴版本, 我们后面也会讨论, 敬请期待.
- 关于 Čech 上同调我们还会讨论层论版本, 敬请期待.

习题: 1.18, 1.21, 1.22, 2.7, 2.14, 2.15.

下次: 谱序列在拓扑中的应用.

2021年10月

$$\sim \S$$
 感谢 $\S \sim$

