Machine Learning and Data Analytics ME 5013- Fall 2019

Lectures 09 and 10

- Logistic Regression
- K Nearest Neighbors

The University of Texas at San Antonio™

Adel Alaeddini, PhD
Associate Professor of Mechanical Engineering
Advanced Data Engineering Lab
adel.alaeddini@utsa.edu

Qualitative target/response variables take values in an unordered set *C* Binary classification

```
Email \in {Spam , Not Spam}
Online Transactions \in { Fraudulent, Non-fradulent}
Tumor \in { Malignant , Benign}
y \in \{0,1\} 0: "Negative Class" (e.g., benign tumor)
1: "Positive Class" (e.g., malignant tumor)
```

Multiclass classification

```
eye color \in {brown, blue, green} y \in \{1, ..., k\}
```

- Often we are more interested in estimating the *probabilities* that x belongs to each category in C, i.e. p(y = k | x).
- Example: it is more valuable to have an estimate of the probability that an insurance claim is fraudulent, than a classification fraudulent or not

Threshold classifier output $h_{\beta}(\mathbf{x})$ at 0.5:

If
$$h_{\beta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\beta}(x) < 0.5$$
, predict "y = 0"

Binary Classification: y = 0 or 1

linear regression

- Can be affected more by outliers
- Not appropriate for multi-class classification
- Might produce probabilities less than zero or bigger than one

$$h_{\beta}(x)$$
 can be > 1 or < 0

Logistic Regression:

produce probabilities between zero and one.

$$0 \leq h_{\beta}(x) \leq 1$$

Linear regression

regression
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$h_{\beta}(x) = x\beta$$

$$x = [x_0 = 1 \quad x_1]$$

Logistic regression

$$function (g): \begin{cases} h_{\beta}(x) = g(x\beta) \\ g(z) = \frac{1}{1+e^{-z}} \end{cases}$$

$$\int h_{\beta}(x) = \frac{1}{1+e^{-x\beta}}$$
For simple binary problem: $\frac{1}{1+e^{-\beta_0-\beta_1x_1}}$

$$h_{\beta}(x) = \frac{1}{1 + e^{-x\beta}}$$

For multiple binary problem: $\frac{1}{1+\rho^{-\beta_0-\beta_1x_1-\cdots-\beta_px_p}}$

Link function (g):

Sigmoid function Logistic function

- An alternative format of $h_{\beta}(x)$ is $h_{\beta}(x) = \frac{e^{x\beta}}{1 + e^{x\beta}}$
- $h_{\beta}(x)$ is indeed the probability of y belong to positive, i.e. class $P(x) = p(y = 1 | x, \beta)$
- $e \approx 2.71$ is the Euler's number
- no matter what values x and β take, p(x) will have values between 0 and 1
- By a bit rearrangement we get $\log\left(\frac{h_{\beta}(x)}{1-h_{\beta}(x)}\right) = \log\left(\frac{p(x)}{1-p(x)}\right) = x\beta$, which is called the log odds or logit transformation of $h_{\beta}(x)$ or p(x)

Interpretation of Hypothesis Output

 $h_{\beta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\beta}(x)$ =0.7

Tell patient that 70% chance of tumor being malignant

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0|x; \beta) + P(y = 1|x; \beta) = 1$$

 $P(y = 0|x; \beta) = 1 - P(y = 1|x; \beta)$

The **decision boundary** is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.

Logistic regression

$$h_{\beta}(\mathbf{x}) = g(\mathbf{x}\beta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\beta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\beta}(x) < 0.5$

$$h_{\beta}(\mathbf{x}) = g(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$
 Predict " $y = 1$ " if $-3 + x_1 + x_2 \ge 0$

$$h_{\beta}(\mathbf{x}) = g(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2)$$
Predict " $y = 1$ " if $-1 + x_1^2 + x_2^2 \ge 0$

Training set:
$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1 p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{n p} \end{bmatrix}$$
 $y \in \{0, 1\}$

$$y \in \{0, 1\}$$

n examples
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$

$$h_{\beta}(x) = \frac{1}{1 + e^{-x\beta}}$$

$$h_{\beta}(x) = \frac{1}{1 + e^{-x\beta}}$$

How to choose parameters β ?

Linear regression:

Hypothesis:
$$h_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\min_{\beta_0,\beta_1} J(\beta_0,\beta_1) = \frac{1}{2n} \sum_{i=1}^n (y_n - \beta_0 - \beta_1 x_i)^2$$

Cost
$$(h_{\beta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\beta}(x^{(i)}) - y^{(i)})^2$$

$$\operatorname{Cost}(h_{\beta}(x), y) = \begin{cases} -\log(h_{\beta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\beta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1$$
, $h_{\beta}(x) = 1$
But as $h_{\beta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\beta}(x) = 0$, (predict $P(y = 1|x; \beta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$\operatorname{Cost}(h_{\beta}(x), y) = \begin{cases} -\log(h_{\beta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\beta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression cost function

$$J(\beta) = \frac{1}{n} \sum_{i=1}^{n} \text{Cost}(h_{\beta}(x^{(i)}), y^{(i)})$$
$$\text{Cost}(h_{\beta}(x), y) = \begin{cases} -\log(h_{\beta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\beta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

$$J(\beta) = \frac{1}{n} \sum_{i=1}^{n} \text{Cost}(h_{\beta}(x^{(i)}), y^{(i)})$$

= $-\frac{1}{n} [\sum_{i=1}^{n} y^{(i)} \log h_{\beta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\beta}(x^{(i)}))]$

To fit parameters β :

$$\min_{\beta} J(\beta)$$

To make a prediction given new x:

Output
$$h_{\beta}(x) = \frac{1}{1 + e^{-x\beta}}$$

- Equivalent to maximum likelihood to estimate the parameters
- The likelihood (below function) gives the probability of the observed zeros and ones in the data.

$$\ell(\beta_0, \beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i)).$$

$$J(\beta) = -\frac{1}{n} \left[\sum_{i=1}^{n} y^{(i)} \log h_{\beta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\beta}(x^{(i)})) \right]$$

Want $\min_{\beta} J(\beta)$:

Repeat {

$$\beta_j := \beta_j - \alpha \frac{\partial}{\partial \beta_j} J(\beta_0, \beta_1) \text{ (for } j = 0 \text{ and } j = 1)$$

}

(simultaneously update all parameters)

Closed form formula of the gradients

$$\beta \coloneqq \beta + \alpha \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - h_{\beta} \left(x^{(i)} \right) \right) x^{(i)}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \end{bmatrix}$$

$$h_{\beta}(x) = \frac{1}{1 + e^{-x\beta}}$$

$$x = [x_0 = 1 \quad x_1 \quad \dots]$$

The formula can be used for arbitrary number of explanatory factors

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

Lets do it again, using student as the predictor.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\widehat{\Pr}(\text{default=Yes}|\text{student=Yes}) = \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431,$$

$$\widehat{e}^{-3.5041 + 0.4049 \times 0}$$

$$\widehat{\Pr}(\texttt{default=Yes} | \texttt{student=No}) = \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292.$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Why is coefficient for **student** negative, while it was positive before?

- Students tend to have higher balances than non-students, so their marginal default rate is higher than for non-students.
- But for each level of balance, students default less than non-students.
- Multiple logistic regression can tease this out.

Given θ , we have code that can compute

-
$$J(\theta)$$
 - $\frac{\partial}{\partial \theta_{j}}J(\theta)$ (for $j=0,1,\ldots,n$)

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

More complex

- Logistic regression with more than two classes
 - Email foldering/tagging: Work, Friends, Family, Hobby
 - Medical diagrams: Not ill, Cold, Flu
 - Weather: Sunny, Cloudy, Rain, Snow

One-vs-all (one-vs-rest):

Class 1: \triangle

Class 2:

Class 3: X

$$h_{\theta}^{(i)}(x) = P(y = i|x;\theta)$$
 $(i = 1, 2, 3)$

$$(i = 1, 2, 3)$$

One-vs-all

Train a logistic regression classifier $h_{\beta}^{(k)}(x)$ for each class k to predict the probability that y=k.

On a new input x, to make a prediction, pick the class k that maximizes $\max_k h_{\beta}^{(k)}(x)$

$$\begin{split} p(y=k|x) &= h_{\beta}^{(k)}(x) = \frac{e^{x\beta^{(l)}}}{\sum_{l=1}^{K} e^{x\beta^{(l)}}} \quad , \quad l=1,\dots k \\ &= \frac{e^{\beta_0^{(l)} + \beta_1^{(l)} x_1 + \dots + \beta_p^{(l)} x_p}}{\sum_{l=1}^{K} e^{\beta_0^{(l)} + \beta_1^{(l)} x_1 + \dots + \beta_p^{(l)} x_p}} \quad , \quad l=1,\dots k \end{split}$$

Alternative formula

$$p(y = k|x) = \frac{e^{x\beta^{(l)}}}{1 + \sum_{l=1}^{K-1} e^{x\beta^{(l)}}}, l = 1, ... k - 1$$

- There is a linear function for each class.
- Multiclass logistic regression is also referred to as multinomial regression.

Hypothesis

$$h_{\beta}(x) = \frac{1}{1 + e^{-x\beta}} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \end{bmatrix}$$
Cost function
$$x = \begin{bmatrix} x_0 = 1 & x_1 & \dots \end{bmatrix}$$

$$J(\beta) = -\frac{1}{n} \left[\sum_{i=1}^{n} y^{(i)} \log h_{\beta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\beta}(x^{(i)})) \right]$$

Gradient descent

Repeat
$$\{ \beta \coloneqq \beta + \alpha \, \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - h_{\beta} \left(x^{(i)} \right) \right) x^{(i)} \}$$
 (simultaneously update all parameters)

Multinomial logistic regression

Train a logistic regression classifier $h_{\mathcal{R}}^{(k)}(x)$ for each class kto predict the probability that y = k.

Regression

- An object (a new instance) value is estimated by the (weighted) average of its neighbor value.
- The weight and neighbors are identified based on a distance function

Classification

- An object (a new instance) is classified by a majority votes for its neighbor classes. (common class amongst its K nearest neighbors)
- The neighbors are identified based on a distance function

- Refinement to KNN is to weight the contribution of each k neighbor according to the distance to the query point x_a
- Greater weight to closer neighbors

Weight function

$$w_{i} = \begin{cases} \frac{1}{d(x_{q}, x_{i})^{2}} & if \quad x_{q} \neq x_{i} \\ 1 & else \end{cases}$$

For continuous target functions

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

For discrete target functions

$$\hat{f}(x_q) \leftarrow \underset{v \in V}{\operatorname{arg\,max}} \sum_{i=1}^k w_i \delta(v, f(x_i))$$