

Using AI to Predict Server Hard Drive Failure

Project by Samy Djemaï

L0G6309E

Teacher: Heng Li

What's the Problem?

- A datacenter contains servers which contain hard drives, used to store application data
- For 98% of companies, one hour of downtime costs over \$150,000

Source: ITIC 2017-2018 Global Server Hardware, Server OS Reliability Survey

- Server operators rely on arbitrary rules or wait for failure to replace drives
- What if we could predict hard drive failures?

A S.M.A.R.T.er Solution

Modern hard drives provide S.M.A.R.T. stats

Self-monitoring

Train and test predictive models

So Many Questions...

- What are the most important features to consider?
- 2 How accurate can classifiers get?
- ³ Can models be ported to other drives?

Backblaze's Dataset

Backup company provides S.M.A.R.T. and failure stats for its hard drives, from Q1 2019 to Q3 2021

Daily snapshots of >175,000 disks' stats, 131 columns of data

date	serial_number	model	capacity_bytes	failure	smart_1_normalized	smart_1_raw	
2021-04- 01	ZHZ65F2W	ST1200NM0008	12,000,138,625,024	0	82	159,565,280	
2021-04- 01	ZLW0EGC7	ST12000NM001G	12,000,138,625,024	0	74	22,618,672	
2021-04- 01	ZA1FLE1P	ST8000NM0055	8,001,563,222,016	0	82	167,665,584	
• • •							

The Stuff We Used

12-core Intel Core i7-9750H, 2.60GHz 16 GB RAM Pop_OS! 21.04 Anaconda 4.10.3

Python 3.8.12

NumPy, Pandas, Ruptures,
Scikit-learn, Multiprocessing

Visual Studio Code Jupyter Notebook

Which Models Should We Study?

Q1 2020 Dataset

	count	unique	fail_count	failure_rate	missing_stats
ST8000DM004	209	2	1	0.4785%	4
TOSHIBA MQ01ABF050	39,102	413	39	0.0997%	9
• • •	• • •	• • •	• • •	• • •	• • •
ST4000DM000	1,744,529	19,142	68	0.0039%	5
ST12000NM0008	750,681	10,876	29	0.0039%	6
ST12000NM0007	3,368,588	36,997	126	0.0037%	6

ST4000DM000 It Is!

- One of the most used drives
- High failure rate
- Reports nearly all
 S.M.A.R.T. stats

No Stats For You!

df.isnull().sum().sort_values(ascending=False).head(72)

smart_255_raw	132,339
smart_250_normalized	132,339
smart_15_raw	132,339
smart_15_normalized	132,339
• • •	• • •
smart_183_raw	112,270
smart_8_raw	94,583
smart_8_normalized	94,583

The Quest for Relevancy

RQ1: Which S.M.A.R.T. stats must be considered?

- Dataset: Q1 2019 to Q4 2020
- 615 failed ST4000DM000 drives
- Up to 60 days of data before failure

Change Is Now

ruptures: change point detection in Python, Truong et al., 2018

Seek Error Rate (SMART_7_RAW), Off-line Uncorrectable (SMART_198_RAW)

The Results (Number 4 Will Shock You)

Analysis ran on 615 failed drives, from Q1 2019 to Q4 2020 (last 60 days)

Name	Description	Frequency	
smart_242_raw	Total LBAs Read	43.74%	
smart_9_normalized	Power-On Hours Count (Norm.)	42.44%	
smart_241_raw	Total LBAs Written	42.28%	
smart_7_raw	Seek Error Rate	33.66%	
smart_7_normalized	Seek Error Rate (Norm.)	25.69%	
smart_193_raw	Load/Unload Cycles	21.46%	
smart_187_{raw,normalized}	Reported Uncorrectable Errors	15.12%	
smart_197_raw	Current Pending Sectors	15.12%	
smart_198_raw	Off-line Uncorrectable	15.12%	
and 19 more	including Reallocated Sectors	>1.00%	

Be Accur8 M8

RQ2: How accurate can models get?

- Training set: Q1 2019 to Q4 2020
- Testing set: Q1 & Q2 2021
- Dataset processing: backtracking
 failure = 1 up to 15 days before actual failure
- Low failed drive count: sampling
 1/3 failed drives, 2/3 healthy drives

The Accuracy of this... Classifier

RQ2: How accurate can models get?

	Accuracy	Recall	F1-Score
Random Forest	0.8138	0.4309	0.5942
Decision Tree	0.7807	0.4170	0.5461
Logistic Regression	0.6836	0.0000	0.0000
SVM	0.6848	0.0562	0.1014
K-Neighbors (k = 20)	0.6436	0.2225	0.2832
K-Neighbors (k = 2)	0.6513	0.1114	0.1682

Dwayne "The ROC" Johnson

Takeaways

Thank you for listening :)

Discussions

- Possible to predict disk failures using common classifiers
- Many factors are at play
- Slight clustering of failed disks, as shown by K-Neighbors
- Low recall andF1-Score overall

Limitations

- Analysis limited by chosen S.M.A.R.T. attributes
- Single drive model
- No real time-series approach

Next steps

- Answer RQ3: how do these classifiers fare on other drives?
- Try more classifiers/models
- Try other drives
- Expand dataset to Q3 2021