

Winning Space Race with Data Science

Baihan Jiang May 14, 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix/Reference

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

Methodology

- Data collection methodology: Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling: One-hot encoding was applied to categorical features
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models: How to build, tune, evaluate classification models

Data Collection

- Grequest to the SpaceX API.
- Decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json_normalize().
- Cleaned the data, checked for missing values and replace it while necessary.
- Perform web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
- The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

Data Collection - SpaceX API

- Request to SpaceX API for Data Collection, clean the requested data and process data wrangling and formatting.
- Reference:

https://github.com/charles0624/IB M-Capstone-Project---SpaceX-Falcon-9-first-stage-Landing-Prediction/blob/main/.ipynb

```
SpaceX API
        1.Request to get rocket lunch data through API
In [1]: space url="https://api.spacexdata.com/v4/launches/past"
In [ ]: response = requests.get(spacex url)
        2.Use json normalize method to convert json result to dataframe
In [ ]: static_json_df=res.jason()
In [ ]: data=pd.jason_normalize(static_json_df)
        3. Perform data cleaning and filling in the missing values
In [ ]: rows=data_falcon9['PayLoadMass'].values.tolist()[0]
        df_rows=pd.DataFrame(rows)
        df_rows=df_rows.replace(np.nan, PayLoadMass)
        data_falcon9['PayLoadMass'][0]=df_rows.values
         data_falcon9
```

Data Collection - Scraping

- Applied web scrapping to webscrap Falcon 9 launch records with BeautifulSoup
- Parsed the table and converted it into a pandas dataframe.
- Reference:

https://github.com/charles0624/IB M-Capstone-Project---SpaceX-Falcon-9-first-stage-Landing-Prediction/blob/main/jupyter-labswebscraping.ipynb

TASK 1: Request the Falcon9 Launch Wiki page from its URL First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response. html data = requests.get(static url) html_data.status_code Out[7]: 200 Create a BeautifulSoup object from the HTML response soup = BeautifulSoup(html data.text, 'html.parser') Print the page title to verify if the BeautifulSoup object was created properly soup.title Out[9]: <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title> TASK 2: Extract all column/variable names from the HTML table header Next, we want to collect all relevant column names from the HTML table header Let's try to find all tables on the wiki page first. If you need to refresh your memory about BeautifulSoup, r reference link towards the end of this lab # Use the find_all function in the BeautifulSoup object, with element type `table` # Assign the result to a list called `html tables` html tables = soup.find all('table') Starting from the third table is our target table contains the actual launch records. # Let's print the third table and check its content first launch table = html tables[2] print(first launch table)

Data Wrangling

- Performed exploratory data analysis and determined the training labels.
- Calculated the number of launches at each site, and the number and occurrence of each orbits
- Created landing outcome label from outcome column
- Exported the results to csv.
- Reference:

https://github.com/charles0624/IBM-Capstone-Project---SpaceX-Falcon-9-firststage-Landing-Prediction/blob/main/labsjupyter-spacexdata wrangling jupyterlite.jupyterlite.jupynb

EDA with Data Visualization

 Visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

• Reference:

https://github.com/charles0624/IBM-Capstone-Project---SpaceX-Falcon-9first-stage-Landing-Prediction/blob/main/Data%20Visualiz ation.ipynb

EDA with SQL

- Loaded the SpaceX dataset into a PostgreSQL database
- Applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- Reference: https://github.com/charles0624/IBM-Capstone-Project---SpaceX-Falcon-9-first-stage-Landing-Prediction/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- Assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- alculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Build a Dashboard with Plotly Dash

- Built an interactive dashboard with Plotly dash
- Plotted pie charts showing the total launches by a certain sites
- Plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.
- Reference: https://github.com/charles0624/IBM-Capstone-Project---SpaceX-Falcon-9-first-stage-Landing-Prediction/blob/main/Ploty.py

•

Predictive Analysis (Classification)

- Loaded the data (from numpy and pandas), transformed the data, split our data into training and testing.
- Built different machine learning models and tune different hyperparameters using GridSearchCV.
- Utilized accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- Found the best performing classification model.
- Reference: https://github.com/charles0624/IBM-Capstone-Project---SpaceX-Falcon-9-first-stage-Landing-Prediction/blob/main/ML%20Prediction.ipynb

Results

Exploratory data analysis results:

- Space X uses 4 different launch sites;
- The first launches were done to Space X itself and NASA;
- The average payload of F9 v1.1 booster is 2,928 kg;
- The first success landing outcome happened in 2015 fiver year after the first launch;
- Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
- Almost 100% of mission outcomes were successful;
- Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
- The number of landing outcomes became as better as years passed

Flight Number vs. Launch Site

• The plot offered us the info that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

The greater the payload mass for launch site CCAFS SLC 40 the higher the success rate for the rocket.

Success Rate vs. Orbit Type

• From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

```
df.groupby("Orbit").mean()['Class'].plot(kind='bar')
plt.xlabel("Orbit Type",fontsize=20)
plt.ylabel("Success Rate",fontsize=20)
plt.show()
```


Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. In the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

• With heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

Launch Success Yearly Trend

• From the plot, the success rate since 2013 kept on increasing till 2020.

All Launch Site Names

• Used the key word **DISTINCT** to show only unique launch sites from the SpaceX data.

Display the names of the unique launch sites in the space mission

Out[10]:	launchsite				
	0	KSC LC-39A			
	1	CCAFS LC-40			
	2	CCAFS SLC-40			
	3	VAFB SLC-4E			

Launch Site Names Begin with 'CCA'

	Display 5 records where launch sites begin with the string 'CCA'										
In [11]:	<pre>task_2 = ''' SELECT * FROM SpaceX WHERE LaunchSite LIKE 'CCA%' LIMIT 5 ''' create_pandas_df(task_2, database=conn)</pre>										
Out[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
`	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

""

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

 The average payload mass carried by booster version F9 v1.1 as 2928.4

Display average payload mass carried by booster version F9 v1.1

Out[13]: avg_payloadmass

0 2928.4

First Successful Ground Landing Date

 From the record, Dates of the first successful landing outcome on ground pad was 22nd December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

 Used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

```
Out[15]: boosterversion

0 F9 FT B1022

1 F9 FT B1026

2 F9 FT B1021.2

3 F9 FT B1031.2
```

Total Number of Successful and Failure Mission

 We used wildcard like '%' to filter for WHERE MissionOutcome was a success or a failure.

Outcomes

List the total number of successful and failure mission outcomes

```
In [16]:
          task_7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task 7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create pandas df(task 7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create pandas df(task 7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
                      100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
```

Boosters Carried Maximum Payload

 Determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function. List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

Out[17]:		boosterversion	payloadmasskg
	0	F9 B5 B1048.4	15600
	1	F9 B5 B1048.5	15600
	2	F9 B5 B1049.4	15600
	3	F9 B5 B1049.5	15600
	4	F9 B5 B1049.7	15600
	5	F9 B5 B1051.3	15600
	6	F9 B5 B1051.4	15600
	7	F9 B5 B1051.6	15600
	8	F9 B5 B1056.4	15600
	9	F9 B5 B1058.3	15600
	10	F9 B5 B1060.2	15600
	11	F9 B5 B1060.3	15600

2015 Launch Records

• Used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

```
In [19]:
    task_10 = '''
        SELECT LandingOutcome, COUNT(LandingOutcome)
        FROM SpaceX
        WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
        GROUP BY LandingOutcome
        ORDER BY COUNT(LandingOutcome) DESC
        '''
    create_pandas_df(task_10, database=conn)
```

Out[19]:		landingoutcome	count
	0	No attempt	10
	1	Success (drone ship)	6
	2	Failure (drone ship)	5
	3	Success (ground pad)	5
	4	Controlled (ocean)	3
	5	Uncontrolled (ocean)	2
	6	Precluded (drone ship)	1
	7	Failure (parachute)	1

- Selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 6/4/2010 to 3/20/2017.
- Applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

All launch sites global map markers

Successful launches in East and West Coast of US, There are more launches happened in Eastern than Western

Markers showing launch sites with color labels

Launch Site distance to landmarks

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the Launch site with the highest launch success ratio

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Classification Accuracy

 The decision tree classifier is the model with the highest classification accuracy

Best model is DecisionTree with a score of 0.8732142857142856

Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}

Confusion Matrix

 The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes.
 The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

Conclusions

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch has increasing success from 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

