Problem sheet: Week 4

4 Topics: Random variables and their distributions

4.1 Prerequisites: Lecture 10

Exercice 4-1: (Suggested for personal/peer tutorial) Poisson approximation to the Binomial: If $X \sim \text{Bin}(n,p)$ and we have $n \to \infty$ and $p \to 0$ such that $\lambda = np$ remains constant, then the p.m.f. of X converges to the p.m.f. of a Poi(λ) random variable. The same result holds, when for $n \to \infty$ and $p \to 0$, we have that np converges to a positive constant λ .

Hint: Use the result that for all $t \in \mathbb{R}$,

$$\lim_{n\to\infty} \left(1-\frac{t}{n}\right)^n = e^{-t}.$$

Solution: Consider the case when $\lambda = np$ is fixed when $n \to \infty$ and $p \to 0$. Let $0 \le k \le n$, then

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$= \frac{1}{k!} n(n-1) \cdots (n-k+1) \frac{n^k}{n^k} p^k (1-p)^{n-k}$$

$$= \frac{\lambda^k}{k!} n(n-1) \cdots (n-k+1) \frac{1}{n^k} \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \frac{n(n-1) \cdots (n-k+1)}{n^k} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

Then, for fixed k:

$$\lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^k} = \lim_{n \to \infty} 1 \cdot (1-1/n)\cdots(1-(k-1)/n) = 1,$$

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda},$$

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^{-k} = 1.$$

Hence

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}, \text{ as } n \to \infty,$$

where the right hand side is indeed the p.m.f. of a Poisson random variable with parameter λ .

Exercice 4-2: A company wishes to make two of a group of six employees, comprising three female and three male employees, redundant, by selecting two employees at random. Let *X* and *Y* be the random variables corresponding to the number of female and male employees made redundant, respectively. Find the probability mass functions of *X* and *Y*.

Solution: For both variables, the range is $\{0, 1, 2\}$, and distribution is given by Hypergeometric formula with N = 6, K = 3 and n = 2. Hence

$$p_X(x) = p_Y(x) = \frac{\binom{3}{x}\binom{3}{2-x}}{\binom{6}{2}} \quad x = 0, 1, 2$$

Week 4 Page 1 of 3

Problem sheet: Week 4

and zero otherwise.

Exercice 4- 3: Five balls numbered 1,2,3,4 and 5 are placed in a bag. Two balls are selected without replacement. Find the probability mass function of the following random variables:

- (a) X = the largest of the two selected numbers,
- (b) Y = the sum of the two selected numbers

Solution:

- (a) Range $\operatorname{Im} X = \{2,3,4,5\}$. Now $p_X(x) = \operatorname{P}(X=x) = \operatorname{card}(E)/\operatorname{card}(\Omega)$, say, and $\operatorname{card}(E)$ = "number of ways of choosing two from five with largest equal to x" = x-1, $\operatorname{card}(\Omega)$ ="number of ways of choosing two from five"= $\binom{5}{2} = 10$. So $p_X(x) = \operatorname{P}(X=x) = (x-1)/10$.
- (b) Range $\mathrm{Im}Y=\{3,4,5,6,7,8,9\}$. As above, define $p_Y(y)=\mathrm{P}(Y=y)=\mathrm{card}(E)/\mathrm{card}(\Omega)$, say, and again $\mathrm{card}(\Omega)$. Enumeration of $\mathrm{card}(E)$ achieved by considering distinguishable partitions of y into the sum of two integers in the range $\{1,2,3,4,5\}$. Hence if y=3,4,8,9, $\mathrm{card}(E)=1$, but if y=5,6,7, $\mathrm{card}(E)=2$, so

$$p_Y(y) = \begin{cases} 1/10 & y = 3, 4, 8, 9 \\ 2/10 & y = 5, 6, 7 \end{cases}$$

Exercice 4- 4: A surgical procedure is successful with probability θ . The surgery is carried out on five patients, with the success or failure of each operation independent of all other operations. Let X be the discrete random variable corresponding to the number of successful operations.

Find the probability mass function of X, and evaluate the probability that

- (a) all five operations are successful, if $\theta = 0.8$,
- (b) exactly four operations are successful, if $\theta = 0.6$,
- (c) fewer than two are successful, if $\theta = 0.3$.

Solution: $X \sim \text{Bin}(n, \theta)$, so (a) $\theta = 0.8$, P(X = 5) = 0.3227(b) $\theta = 0.6$, P(X = 4) = 0.2592(c) $\theta = 0.3$, P(X < 2) = P(X = 0) + P(X = 1) = 0.5282

Exercice 4-5: If X has a Geometric distribution with parameter θ , so that

$$p_X(x) = (1 - \theta)^{x-1}\theta, \quad x = 1, 2, 3, \dots$$

and zero otherwise, show that, for $n, k \ge 1$,

$$P(X = n + k | X > n) = P(X = k).$$

This result is known as the *Lack of Memory* property (for a discrete random variable).

Week 4 Page 2 of 3

Problem sheet: Week 4

Solution: If $X \sim \text{Geo}(\theta)$, then

$$p_X(x) = (1 - \theta)^{x - 1}\theta,$$

and

$$P(X \le x) = 1 - (1 - \theta)^x$$
, for $x \in \{1, 2, 3...\}$.

Thus $P(X > n) = (1 - \theta)^n$, and hence

$$P(X = n + k | X > n) = \frac{P(X = n + k, X > n)}{P(X > n)} = \frac{P(X = n + k)}{P(X > n)} = \frac{(1 - \theta)^{n + k - 1} \theta}{(1 - \theta)^n}$$
$$= (1 - \theta)^{k - 1} \theta = P(X = k).$$

4.2 Prerequisites: Lecture 11

Exercice 4- 6: Suppose $X \sim \mathrm{DUnif}(\{1,\ldots,n\})$. Find the c.d.f. of X.

Solution: We have P(X = x) = 1/n for $x \in \{1, ..., n\}$ and zero otherwise. Hence

$$F_X(x) = P(X \le x) = \begin{cases} 0, & \text{if } x < 0, \\ \frac{|x|}{n}, & \text{if } 0 \le x < n, \\ 1, & \text{if } x \ge n, \end{cases}$$

Week 4 Page 3 of 3