CS 231

Lecture 2: Edge detection

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

• Edges are caused by a variety of factors

Images as functions...

• Edges look like steep cliffs

Characterizing edges

• An edge is a place of *rapid change* in the image intensity function

Source: L. Lazebnik

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Image gradient

Source: L. Lazebnik

Effects of noise

Noisy input image

Where is the edge?

Source: S. Seitz

Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f*h)$

Source: S. Seitz

Associative property of convolution

- Differentiation is convolution, and convolution is associative:
- This saves us one opera $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$

Source: S. Seitz

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

The Sobel operator

Common approximation of derivative of Gaussian

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient magnitude

Sobel operator: example

Source: Wikipedia

Example

• original image (Lena)

Finding edges

gradient magnitude

Finding edges

thresholding