ODD-POWER IDENTITY VIA MULTIPLICATION OF CERTAIN MATRICES

PETRO KOLOSOV

ABSTRACT. In this manuscript, we show an odd-power identity in terms of certain matrix multiplication. More precisely, the matrix of dimension 1×1 such that $a_{1,1} = N^{2M+1}$ is result of multiplication of the three matrices $\mathbf{J}_N \times \mathbf{K}_{N,M} \times \mathbf{T}_M$

$$\left[N^{2M+1}\right] = \mathbf{J}_N \times \mathbf{K}_{N,M} \times \mathbf{T}_M$$

where \mathbf{J}_N is unit row vector of dimension $1 \times N$; $\mathbf{K}_{N,M}$ is a matrix of dimension $N \times M$, and \mathbf{T}_M is a column vector of size $M \times 1$.

Contents

Definitions		1
1.	Main theorem	2
2.	Conclusions	2
References		2

DEFINITIONS

• \mathbf{J}_N – unit row vector of all 1's having the dimension $1 \times N$. For example,

$$\mathbf{J}_5 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Date: October 9, 2024.

2010 Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Keyword1, Keyword2.

Sources: https://github.com/kolosovpetro/github-latex-template

• $\mathbf{K}_{N,M}$ – matrix of dimension $N \times M$ defined by

$$\mathbf{K}_{N,M} = (k^r (N-k)^r)_{0 \le k \le N, \ 0 \le r \le M}$$

For example,

• \mathbf{T}_M – column vector of dimension $M \times 1$ defined by

$$\mathbf{T}_M = (\mathbf{A}_{M,r})_{M=\text{const},\ 0 \le r \le M}$$

where $\mathbf{A}_{M,r}$ is a rational coefficient (literature). For example,

- 1. Main theorem
- 2. Conclusions

Conclusions of your manuscript.

References

Version: Local-0.1.0

SOFTWARE DEVELOPER, DEVOPS ENGINEER

 $Email\ address {\tt : kolosovp940gmail.com}$

URL: https://kolosovpetro.github.io