# Deep Learning Perceptron

Tiago Vieira

Institute of Computing Universidade Federal de Alagoas

## Motivation – ML w/ Perceptron



<sup>&</sup>lt;sup>1</sup>https://www.youtube.com/watch?v=-C07ansuc-8

#### Motivation



<sup>2</sup> 

## Binary Classification and Linear Regression Problems

- ▶ In the binary classification problem, each training pair  $(\overline{X}, y)$  contains feature variables  $\overline{X} = (x_1, \dots x_d)$ , and label y drawn from  $\{-1, +1\}$ .
  - Example: Feature variables might be frequencies of words in an email, and the class variable might be an indicator of spam.
  - Given labeled emails, recognize incoming spam.
- ▶ In linear regression, the *dependent* variable *y* is real-valued.
  - Feature variables are frequencies of words in a Web page, and the dependent variable is a prediction of the number of accesses in a fixed period.
- Perceptron is designed for the binary setting.

## The Perceptron: Earliest Historical Architecture



- ▶ The d nodes in the input layer only transmit the d features  $\overline{X} = [x_1 \dots x_d]$  without performing any computation.
- Output node multiplies input with weights  $\overline{W} = [w_1 \dots w_d]$  on incoming edges, aggregates them, and applies sign activation:

$$\hat{y} = \operatorname{sign}\{\overline{W} \cdot \overline{X}\} = \operatorname{sign}\{\sum_{i=1}^d w_j x_j\}$$

## What is the Perceptron Doing?

- ▶ Tries to find a *linear separator*  $\overline{W} \cdot \overline{X} = 0$  between the two classes.
- Ideally, all positive instances (y=1) should be on the side of the separator satisfying  $\overline{W}\cdot \overline{X}>0$ .
- All negative instances (y=-1) should be on the side of the separator satisfying  $\overline{W}\cdot\overline{X}<0$ .

#### Bias Neurons



▶ In many settings (e.g., skewed class distribution) we need an invariant part of the prediction with bias variable b:

$$\hat{y} = \operatorname{sign}\{\overline{W} \cdot \overline{X} + b\} = \operatorname{sign}\{\sum_{j=1}^d w_j x_j + b\} = \operatorname{sign}\{\sum_{j=1}^{d+1} w_j x_j\}$$

▶ On setting  $w_{d+1} = b$  and  $x_{d+1}$  as the input from the bias neuron, it makes little difference to learning procedures  $\Rightarrow$  Often implicit in architectural diagrams

### Training a Perceptron

▶ Go through the input-output pairs  $(\overline{X},y)$  one by one and make updates, if predicted value  $\hat{y}$  is different from observed value  $y \Rightarrow$  Biological readjustment of synaptic weights.

$$\overline{W} \Leftarrow \overline{W} + \alpha \underbrace{(y - \hat{y})} \overline{X}$$
 Error 
$$\overline{W} \Leftarrow \overline{W} + (2\alpha)y\overline{X} \text{ [For misclassified instances } y - \hat{y} = 2y]$$

- Parameter  $\alpha$  is the learning rate  $\Rightarrow$  Turns out to be irrelevant in the special case of the perceptron
- One cycle through the entire training data set is referred to as an epoch ⇒ Multiple epochs required
- How did we derive these updates?

## What Objective Function is the Perceptron Optimizing?

- ► At the time, the perceptron was proposed, the notion of loss function was not popular ⇒ Updates were heuristic
- ightharpoonup Perceptron criterion for ith training instance:

$$L_i = \max\{-y_i(\overline{W} \cdot \overline{X_i}), 0\}$$

- Loss function tells us how far we are from a desired solution  $\Rightarrow$  Perceptron criterion is 0 when  $\overline{W} \cdot \overline{X_i}$  has same sign as  $y_i$ .
- Perceptron updates use *stochastic gradient descent* to optimize the loss function and reach the desired outcome.
  - Updates are equivalent to  $\overline{W} \Leftarrow \overline{W} \alpha \left( \frac{\partial L_i}{\partial w_1} \dots \frac{\partial L_i}{\partial w_d} \right)$

## Where does the Perceptron Fail?



- ► The perceptron fails at similar problems as a linear SVM
  - Classical solution: Feature engineering with Radial Basis Function network  $\Rightarrow$  Similar to kernel SVM and good for noisy data
  - **Deep learning solution:** Multilayer networks with nonlinear activations  $\Rightarrow$  Good for data with a lot of structure

#### Historical Origins

- ▶ The first model of a computational unit was the *perceptron* (1958).
  - Was roughly inspired by the biological model of a neuron.
  - Was implemented using a large piece of hardware.
  - Generated great excitement but failed to live up to inflated expectations.
- Was not any more powerful than a simple linear model that can be implemented in a few lines of code today.

## Perceptron Tutorial

Perceptron tutorial ( $simple\_perceptron.py$ ).

## Tensorflow Playground<sup>3</sup>



<sup>&</sup>lt;sup>3</sup>https://playground.tensorflow.org/

#### The XOR Problem

- ▶ "Perceptrons" by Marvin Minsky and Seymour Papert (1969).
- Perceptrons cannot solve the XOR problem.
- ▶ Significant decline in interest and funding of neural network research.

#### The XOR Problem



#### Rectified Linear Activation



## **Network Diagrams**



$$\begin{aligned} \mathbf{h} &= \max(0, \mathbf{W}^T \mathbf{x} + \mathbf{c}) \\ f(\mathbf{x}; (\mathbf{W}; \mathbf{c}); (\mathbf{w}, b)) &= \mathbf{w}^T \mathbf{h} + b \end{aligned}$$

# Solving XOR



$$\begin{aligned} \mathbf{h} &= \max(0, \mathbf{W}^T \mathbf{x} + \mathbf{c}) \\ f(\mathbf{x}; (\mathbf{W}; \mathbf{c}); (\mathbf{w}, b)) &= \mathbf{w}^T \mathbf{h} + b \end{aligned}$$

$$\begin{split} X &= [\mathbf{x}]_{i=1}^4 = \left[ \begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[ \begin{array}{ccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right] \\ W &= \left[ \begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right] \\ \mathbf{c} &= \left[ \begin{array}{c} 0 \\ -1 \end{array} \right] \\ \mathbf{w} &= \left[ \begin{array}{c} 1 \\ -2 \end{array} \right] \end{split}$$

## Solving XOR



$$\begin{aligned} \mathbf{h} &= \max(0, \mathbf{W}^T \mathbf{x} + \mathbf{c}) \\ f(\mathbf{x}; (\mathbf{W}; \mathbf{c}); (\mathbf{w}, b)) &= \mathbf{w}^T \mathbf{h} + b \end{aligned}$$

$$\begin{split} H &= \max \left( 0, \mathbf{W}^T X + \mathbf{c} \right) \\ H &= \\ \max \left( 0, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right) \\ H &= \max \left( 0, \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right) \\ H &= \max \left( 0, \begin{bmatrix} 0 & 1 & 1 & 2 \\ -1 & 0 & 0 & 1 \end{bmatrix} \right) \\ H &= \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$



$$y$$
 $y$ 
 $w$ 
 $h$ 
 $x_1$ 
 $x_2$ 
 $x$ 

$$Y = \max\left(0, \mathbf{w}^T H + \mathbf{b}\right)$$

$$Y = \max \left( \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$$
$$Y = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{aligned} \mathbf{h} &= \max(0, \mathbf{W}^T \mathbf{x} + \mathbf{c}) \\ f(\mathbf{x}; (\mathbf{W}; \mathbf{c}); (\mathbf{w}, b)) &= \mathbf{w}^T \mathbf{h} + b \end{aligned}$$

Thank you! tvieira@ic.ufal.br