Grafos Hamiltonianos e Grafos Eulerianos

Zenilton Patrocínio

Grafo Hamiltoniano

Um caminho hamiltoniano é um caminho que passa por cada vértice de um grafo exatamente uma vez.

Um ciclo hamiltoniano é um caminho hamiltoniano que retorna ao vértice inicial (isto é, um caminho fechado).

Um grafo é dito hamiltoniano se possuir um ciclo hamiltoniano.

Um **grafo** é dito **semi-hamiltoniano** se possuir um **caminho hamiltoniano**. Logo, um grafo hamiltoniano é também semi-hamiltoniano.

Um grafo simples G com $n \ge 3$ vértices é hamiltoniano, se o grau de cada um de seus vértices $d(v) \ge n/2$, $\forall v \in V(G)$. (Teorema de Dirac)

Um grafo simples G com n (\geq 3) vértices é hamiltoniano, se, para cada par de vértices não adjacentes v e w, a soma de seus graus $d(v) + d(w) \geq n$, $\forall \{v,w\} \in E(G)$. (Teorema de Ore)

Se o fecho hamiltoniano de G for um grafo completo, então G é hamiltoniano. Fecho hamiltoniano de uma grafo é obtido adicionando-se arestas, enquanto for possível, entre vértices não adjacentes cuja soma de graus $\geq n$. (Teorema de Bondy & Chvátal)

Grafo Euleriano

Um caminho euleriano é um caminho que passa por cada aresta de um grafo exatamente uma vez.

Um ciclo euleriano é um caminho euleriano que começa e termina no mesmo vértice (isto é, um caminho fechado).

Um grafo é dito euleriano se possuir um ciclo euleriano.

Um **grafo** é dito **semi-euleriano** se possuir um **caminho euleriano**. Logo, um grafo euleriano é também semi-euleriano.

Grafo Euleriano – Exemplo

Grafo Euleriano – Exemplo

Grafo Euleriano – Exemplo

Grafo Euleriano – Condição Suficiente

Um grafo conexo é euleriano se e somente se todos os seus vértices possuírem grau par. (Teorema de Euler)

Um grafo conexo é não-euleriano se existirem dois os mais vértices de grau ímpar.

Um grafo conexo é semi-euleriano se e somente se existem exatamente dois vértices de grau ímpar.

Método de Fleury – Algoritmo

- 1. <u>se</u> V(G) possuir 3 ou mais vértices de grau ímpar <u>então</u> **PARE**;
- 2. Seja G' = (V', E') tal que $V' \leftarrow V(G)e$ $E' \leftarrow E(G)$; // Inicializar grafo auxiliar
- 3. Selecionar vértice inicial $v \in V'$ (escolher v cujo grau seja ímpar, se houver)
- 4. enquanto $E' \neq \emptyset$ efetuar
 - a. se d(v) > 1 então Selecionar aresta $\{v, w\}$ que não seja ponte em G'
 - b. senão

Selecionar a única aresta {v, w} disponível em G'

c. $v \leftarrow w$; $E' \leftarrow E' - \{v, w\}$; // Caminhar de v para w e eliminar aresta

1/2/3/4/2/5

1/2/3/4/2/5

1/2/3/4/2/5/6/4

1/2/3/4/2/5/6/4/5

1/2/3/4/2/5/6/4/5/7/6/3/1 Ciclo euleriano

5

5/6/4

5/6/4/2/5

5/6/4/2/5

5/6/4/2/5/4

5/6/4/2/5/4

5/6/4/2/5/4/3

5/6/4/2/5/4/3

5/6/4/2/5/4/3/2

5/6/4/2/5/4/3/2/1/3/6 — Caminho euleriano

