

Rebeca de la Fuente

Investigadora Postdoctoral (CADIC-CONICET)

ÍNDICE

- 1. Modelización de procesos en ecología
- 2. Modelos deterministas
- 3. Evolución, estabilidad y bifurcaciones
- 4. Modelos estocásticos
- 5. Teoría de campo medio
- 6. Dinámica de fuegos

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Sistemas dinámicos

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Biología de poblaciones: crecimiento población

CONCEPTOS

- Variables (estado sistema)
- Parámetros
- Condiciones iniciales
- Trayectoria
- Atractor
- Base de atracción
- Régimen transitorio
- Punto fijo (estable / inestable)
- Órbita periódica
- Bifurcación

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Flujos: remolinos, vortices, corrientes oceánicas, clima

Osciladores accionados: péndulo, marcapasos

Mecánica clásica: movimiento planetas, púlsar

Biología: peglamiento proteínas

Biología de poblaciones: crecimiento población

Necesitamos ordenadores!

Modelización de procesos en ecología

Dinámica de poblaciones: cómo varía el tamaño y propiedades de una población con el tiempo.

(Tamaño población, densidad, dispersión, distribución)

Cómo podemos modelizar la evolución de una población?

Modelización → derivar las ecuaciones dinámicas

$$t=0 \rightarrow n=1$$

$$t=1 \rightarrow n=2$$

$$t=2 \rightarrow n=4$$

$$t=3 \rightarrow n=8$$

$$t=3$$

Sistemas discretos

- Tiempo evoluciona en pasos discretos
- Mapas
- Modelo: ecuaciones en diferencias

$$x_{n+1} = f(x_n)$$

 $n \rightarrow tiempo$

 $f \rightarrow mapa$

 $x \rightarrow$ estado sistema

 $R \rightarrow parámetros$

Sistemas continuos

- Tiempo evoluciona suavemente
- Flujos
- Modelo: ecuaciones diferenciales

$$\frac{dx}{dt} = F(x(t)) \qquad (\dot{x}, x')$$

 $x \rightarrow variable dependiente$

 $t \rightarrow variable independiente$

Mapa logístico

$$x_{n+1} = Rx_n(1 - x_n)$$

 $L:(0,1)\longrightarrow(0,1)$

 $R \in (0,4)$

Robert May (1936)

Mitchell Feigenbaum (1944)

Mapa logístico

$$x_{n+1} = Rx_n(1 - x_n)$$

 $L:(0,1)\longrightarrow(0,1)$

$$R \in (0,4)$$

 $R = 2, x_0 = 0.2$

$$x_0 = 0.2$$

 $x_1 = R \cdot x_0 \cdot (1 - x_0) = 0.32$
 $x_2 = R \cdot x_1 \cdot (1 - x_1) = 0.4352$
 $x_3 = R \cdot x_2 \cdot (1 - x_2) = 0.49160192$
 $x_4 = R \cdot x_3 \cdot (1 - x_3) = 0.499858945$
 $x_5 = R \cdot x_4 \cdot (1 - x_4) = 0.99999961$

$$x_6 = R \cdot x_5 \cdot (1 - x_5) = 0.5$$

 $x_7 = R \cdot x_5 \cdot (1 - x_5) = 0.5$

$$x_7 = R \cdot x_6 \cdot (1 - x_6) = 0.5$$

 $x_8 = R \cdot x_7 \cdot (1 - x_7) = 0.5$

•

Sistemas discretos

- Tiempo evoluciona en pasos discretos
- Mapas
- Modelo: ecuaciones en diferencias

$$x_{n+1} = f(x_n)$$

 $n \rightarrow tiempo$

 $f \rightarrow mapa$

 $x \rightarrow$ estado sistema

 $R \rightarrow parámetros$

Sistemas continuos

- Tiempo evoluciona suavemente
- Flujos
- Modelo: ecuaciones diferenciales

$$\frac{dx}{dt} = F(x(t)) \qquad (\dot{x}, x')$$

 $x \rightarrow variable dependiente$

 $t \rightarrow variable independiente$

Ecuaciones diferenciales \rightarrow derivada

Ecuaciones diferenciales ordinarias → derivada en cada punto en el espacio de estados

ightarrow dirección en que el estado actual va a evolucionar

$$\frac{dx(t)}{dt} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

Expansion de Taylor
$$x(t + \Delta t) = x(t) + \Delta t(x'(t)) + \frac{1}{2}(\Delta t)^2(x''(t)) + \dots + \frac{1}{n!}(\Delta t)^n x^n(t)$$

Forward Euler

Estimación del error

Función logística

$$\frac{dx(t)}{dt} = Rx(t)(1 - x(t))$$

$$x(t=0) = x_0$$

$$x(t + \Delta t) \approx x(t) + \Delta t(Rx(t)(1 - x(t))) + O((\Delta t)^2)$$

$$\frac{dx(t)}{dt} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$

Forward Euler

Estimación del error

Crecimiento exponencial

Tasa de crecimiento poblacional

b → tasa natalidad

 $d \rightarrow tasa mortalidad$

$$\frac{dn(t)}{dt} = Rn(t)$$

$$n(t) = n_0 e^{Rt}$$

$$n_{t+1} = (1-d)(1+b)n_t = Rn_t$$

$$n(t + \Delta t) = (1 - d\Delta t)(1 + b\Delta t)n(t)$$

$$\frac{dn(t)}{dt} = \lim_{\Delta t \to 0} \frac{n(t + \Delta t) - n(t)}{\Delta t} = \lim_{\Delta t \to 0} (b - d - db\Delta t)n(t) = (b - d)n(t)$$

Crecimiento exponencial

Tasa de crecimiento poblacional

b → tasa natalidad

 $d \rightarrow tasa mortalidad$

$$n(t) = n_0 e^{Rt}$$

Crecimiento logístico

$$\frac{dn(t)}{dt} = Rn(t) \qquad \qquad \frac{dn(t)}{dt} = Rn(t)(\frac{K - n(t)}{K})$$

Crecimiento logístico

$$\frac{dn(t)}{dt} = Rn(t)(\frac{K - n(t)}{K})$$

$$n(0) = n_0$$

$$n(t) = \frac{n_0 e^{Rt}}{1 + (1/K)n_0(e^{Rt} - 1)}$$

$$x(t) = \frac{n(t)}{K}$$
 \longrightarrow $\frac{dx(t)}{dt} = Rx(t)(1 - x(t))$

$$R = 2, x_0 = 0.2$$

$$\frac{dx(t)}{dt} = ax(t) - bx(t)y(t)$$

$$\frac{dy(t)}{dt} = cx(t)y(t) - dy(t)$$

$$\frac{dx(t)}{dt} = ax(t) - bx(t)y(t)$$

$$\frac{dy(t)}{dt} = cx(t)y(t) - dy(t)$$

Espacio de fases

$$\frac{dx(t)}{dt} = ax(t) - bx(t)y(t)$$

$$\frac{dy(t)}{dt} = cx(t)y(t) - dy(t)$$

Modelo conservativo

$$\frac{dy}{dx} = -\frac{y}{x}\frac{cx - d}{by - a}$$

$$\frac{by - a}{y}dy + \frac{cx - d}{x}dx = 0$$

$$V = cx - dln(x) + by - aln(y)$$

Espacio de fases

$$\frac{dx(t)}{dt} = ax(t) - bx(t)y(t)$$

$$\frac{dy(t)}{dt} = cx(t)y(t) - dy(t)$$

Puntos de equilibrio

$$\frac{dx}{dt} = 0 \qquad \frac{dy}{dt} = 0$$

$$(x_0 = 0, y_0 = 0)$$

 $(x_0 = d/c, y_0 = a/b)$

Espacio de fases

Variación del sistema clásico de Lokta-Volterra

$$\frac{dx(t)}{dt} = ax(t) - bx(t)y(t) - ex^2$$

$$\frac{dy(t)}{dt} = cx(t)y(t) - dy(t) - h$$

Conceptos

- Variables (estado sistema)
- Parámetros
- Condiciones iniciales
- Trayectoria
- Atractor
- Base de atracción
- Régimen transitorio
- Punto fijo (estable / inestable)
- Órbita periódica
- Bifurcación

Representación sistema dinámico

- Espacio físico
- Gráfica evolución temporal
- Gráfica de correlación (return map)
- Espacio de estados / fases (phase/state space)
- Diagrama de bifurcación

Preguntas...?

Rebeca de la Fuente

Investigadora Postdoctoral (CADIC-CONICET)

Sistemas estocásticos

Robert Brown (1827)

L. Boltzmann (1896)

A. Einstein (1905)

Movimiento browniano

$$n(x,t+\tau) = \int_{\mathbb{R}^3} n(x-\Delta,t)f(\Delta)d\Delta$$

Número partículas = \int número partículas * p(saltar de $x - \Delta$ to x) en x, tiempo t + τ en $x - \Delta$, tiempo t

Descripción probabilística que describe el movimiento de un conjunto de partículas Brownianas

- ightarrow descripción granular: las trayectorias separadas por un tiempo τ son independientes
- \rightarrow Función de densidad de probabilidad f (Δ), donde Δ =(Δx , Δy , Δz) para una partícula que viaja en el intervalo de tiempo τ
- \rightarrow Considera un sistema formado por un conjunto de partículas Brownianas. Define función de densidad de partículas n(x,t), de manera que n(x,t)dx es el número de partículas en el intervalo (x, x + dx) en el tiempo t.

Variable aleatoria x

 $1 \rightarrow$ "Cara"

 $0 \rightarrow$ "Cruz"

(0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, ...)

Proceso estocástico \rightarrow colección de todas las posibles trayectorias. Familia de variables aleatorias $\hat{x}(t)$ que dependen de t

$$\{\hat{x}(t_1), \hat{x}(t_2), ..., \hat{x}(t_m)\}\$$

Función de densidad

 $f(x_1, ..., x_m; t_1, ..., t_m) dx_1 ... dx_m$

Proceso de Markov

 $f(x_m; t_m \mid x_1,...,x_{m-1}; t_1,...,t_{m-1}) = f(x_m; t_m \mid x_{m-1}; t_{m-1})$

Sistemas determinísticos

→ Ecuaciones diferenciales

$$\frac{dx}{dt} = F(x(t))$$

Sistemas estocásticos

→ Ecuaciones diferenciales estocásticas

$$\frac{dx(t)}{dt} = G(x, t, \eta(t))$$

Langevin equation

$$\frac{dx(t)}{dt} = q(x) + g(x)\eta(t)$$

