

IYKRA

Data Fellowship Program

Integrating Machine Learning Modelby Rizki Fajar Nugroho

(date of delivery)

Trainer Profile

Rizki Fajar Nugroho Data Scientist at SaaS Company LinkedIn - Rizki Fajar Nugroho

Table of Content

Content

Machine Learning Fundamentals

Machine Learning Workflows

Machine Learning Fundamentals

Machine Learning

Method to give computers ability to **learn from data** without explicitly programmed.

Learn From Data

Machine Learning Types

Concept of Supervised Learning

Supervised Learning refers to a class of systems and algorithms that determine a predictive model using data points with known outcomes.

Implementation of Supervised Learning:

- Regression The model finds outputs that are real variables (number which can have decimals.)
- Classification The model finds classes in which to place its inputs.

Concept of Unsupervised Learning

In unsupervised learning, only input data is provided in the dataset. There are no labelled outputs to aim for. But it may be surprising to know that it is still possible to find many interesting and complex patterns hidden within data without any labels. The goal is to capture interesting structure / information

Machine Learning Algorithms

Machine Learning - Model Evaluation Metrics

Regression	Classification	
Mean Absolute Error	Recall	
(MAE)	 Precision 	
 Root Mean Squared 	 F1-Score 	
Error (RMSE)	 Accuracy 	
 R-Squared and 	 Area Under the Curve 	
Adjusted R-Squared	(AUC)	

Machine Learning - Regression Model **Evaluation Metrics**

Mean squared error

$$MSE = \frac{1}{n} \sum_{t=1}^{n} e_t^2$$

Root mean squared error

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$$

Mean absolute error

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |e_t|$$

Mean absolute percentage error MAPE =
$$\frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{e_t}{y_t} \right|$$

Machine Learning - RMSE

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

 y_i : actual outcome for obs. i

 \hat{y}_i : predicted outcome for obs. i

N : Number of observations

Root Mean Squared Error (**RMSE**)

Average distance between actual and regression line

Machine Learning - Classification Model Evaluation Metrics - Accuracy

Ш

Machine Learning - Classification Model Evaluation Metrics - Confusion Matrix

		Actual (True) Values	
		Cancer	No Cancer
Predicted Values	Cancer	45	18
	No Cancer	12	25

Machine Learning Workflows

Machine Learning General Steps

Machine Learning Workflow

Thank you!