ANALYSIS 1

TRIANGLE INEQ. D

for x, y & R:

1. 1x+y1 = 121 + 141

BERNOULLI INEQ. (1+x)"> 1+Nx , x =-1, h > 0

some useful results:

As $3: a, b \in \mathbb{R}$, a < b, $I = (a, b) \lor (a, b) \lor [a, b) \lor [a, b]$ Then sup I = b, inf I = a

> Let $A \subseteq R$, $B \subseteq R$ be 2 non-empty sets bounded from above. $A+B:=\{a+b: a \in A, b \in B\}$. A+B is bounded from above and Sup(A+B) = Sup(A) + Sup(B).

Let A = R. -A:= 1-a: a & A3.

- u upper bound for A ⇔ -u lower bound for -A
- A bounded from above ⇔ A bounded from below
- If A bounded from above, inf (-A) =-sup(A)

 $R \setminus Q$ (1-e. irrational numbers) is dense in R i.e. any interval $(a, b) \in R$, a < b contains at least 1 irrational number.

· As 4: A, B are finite nonempty sets.

- (A) ≤ (B) ⇔ ∃ an injecture function f: A → B
- |A| ≥ |B| ⇔ ∃ a surjective function f: A > B

If A is a countably infinite set and B = A, then B is countable.

N × N is countably infinite.

Let A, B be countably infinite sets, A UB 's countably infinite.

R/Q is uncountable.

Let A., Az. ... be countably infinite. Then Uni Ai is countably infinite.

1A1 = n . | P(A) | = 2"

The set of all Grite subjets of N is countably infinite.

COM PLETENESS

Let $S \neq \emptyset$, $S \subseteq R$. S is bounded if: · S is bounded from below: $\exists u \in R \text{ s.t. } \forall x \in S$, $x \supseteq u$ · S is bounded from above: $\exists u' \in R \text{ s.t. } \forall x \in S$, $x \subseteq u'$

Let $S \subseteq \mathbb{R}$. If $m \in \mathbb{R}$ is an upper bound of S s.t. $m \in m'$ for every upper bound m' of S, then m is the rupremum of S is S = m.

- Supremum \equiv least upper bound

Let $S \subseteq \mathbb{R}$. If $t \in \mathbb{R}$ is a loner bound of S s.t. $t \not\geq t'$ for every lower bound of S, then t is an infimum of S is inf S = t.

- infimum \equiv greatest lower bound.

If S has a maximum S (i.e. $S \in S \land S \ge x \forall x \in S$) then $\sup S = S$. If S has a minimum S (i.e. $S \in S \land S \le x \forall x \in S$) then $\inf S = S$.

Axiom of Completeness: Let $S \neq \emptyset$, $S \subseteq \mathbb{R}$. If S is bounded from above then sup S exists. Similarly, if S is bounded from below, int S exists.

Archimedean Property of R: let x & R be arbitrary. I n & N s.t. n > x. L. Corollary: let x > 0. I n & N s.t. t < x

Density of Q in R: Any interval (a,b), $a,b \in R$, a < b, contains $\geqslant 1$ rational number. Hence we say that Q is dense in R. \Rightarrow Corollary: any interval (a,b), $a,b \in R$, a < b, contains infinitely many rational numbers.

SEQUENCES

Dety of sequences: A sequence is a function whose domain is IN.

Convergence of seq, (A seq, (an) converges to a real number a if, for EER, E>O, JNEN s.t. Vn≥N, Ian-al< €

 $V_{\varepsilon}(a) = \{x \in \mathbb{R} : |x-a| < \varepsilon\}$ is the epsilon-neighbourhood of a. $a-\varepsilon$ a are

Outline for convergence proof: $(xn) \rightarrow x$

- 1. "let & >0 be arbitrary"
- 2. demonstrate a choice for NEN
- 3. Show that N actually works
- 4. "Assume n > N"
- 5. With N well-chosen, it should be possible to devive the inequality $|x_n x| < \epsilon$.

Uniqueness of limits: let (an) be a convergent seq, i.e. it has a limit. The limit is unique, i.e. if Li and Lz are limits of (an) then Li = Lz.

- let (an) be a seq, LER, (bn) be a non-negative null seq. If]KEN s.t. ∀n≥K, lan-Ll < bn, it bollows that (an) converges to L.
- All convergent seg, of real numbers are bounded. L> a seq (xn) is bounded if ∃M>0 s.t. 1xn1< M ∀ n ∈ N.

Algebraic Limit Theorem: a:= lim(an), b:= lim(bn), (an) and (bn) are convergent.

- $1. (a_n + b_n) \longrightarrow a + b$
- 2. $(c \cdot a_n) \longrightarrow c_a$, $\forall c \in \mathbb{R}$ 3. $(a_n b_n) \longrightarrow a b$

- 4. $(a_n \cdot b_n) \longrightarrow a \cdot b$ 5. $(\frac{a_n}{b_n}) \longrightarrow \frac{a}{b}$ provided that $b \neq 0$.

limits and order:

Let (an) be a convergent seq If $\exists K \in \mathbb{N} \ \forall n \geq K : \ an \geq 0$, then $\lim (an) \geq 0$.

- Let (an), (bn) be convergent seq. If ∃K ∈ N & n ≥ K: an ≤ bn then I'm (an) ≤ Im (bn) \mapsto If \forall $n \ge K$, an < bn , we cannot conclude that $\lim_{n \to \infty} (a_n) < \lim_{n \to \infty} (b_n)$. Only that \le .
- Let (b_n) be a seq, , a, c $\in \mathbb{R}$. If $\exists K \in \mathbb{W} \ \forall n \geq K : \ a \leq b_n \leq c$, then $a \leq \lim (b_n) \leq c$.

Squeeze Theorem: let (an), (bn), (cn) be seq, s.t.

- BKGN Ynzk: an = bn & Cn
- (an) and CCn) converges, lim (an) = lim (Cn)

Then (bn) converges and lim(bn) = lim(an) = lim(Cn).

some veetend results:

· Lec 9: lim (1/n) = 0

· Lec 10: ([-1)") diverges

- $\lim_{N\to 1} \left(\frac{N}{N^2+1} \right) = 0$
 - Lec 11: for a>1, (nJa) → 1 VKEN, (n) > 0
- $lec 12: \frac{sin n}{n} \rightarrow 0$
- $\Rightarrow (\frac{a}{nk}) \Rightarrow 0$, as R
- · AS 5: If xn > 0 & n & N and lim (xn) = 0 > lim (Jxn) = 0

$$\left(\frac{n!}{n^n}\right) \to 0$$

for az1,
$$(\frac{1}{4m}) \rightarrow 0$$

also,
$$\left(\frac{n}{a^n}\right) \to 0$$

$$0 < \alpha < 1, \quad (\alpha^n) \to 0$$

$$-1 < \alpha < 0, \quad (\alpha^n) \to 0$$

monotone converges: Let (an) be a segmence.

- If the W: an & aner, (an) is monotone increasing.
- If Yn E N: an 2 anti, (an) is monotone decreasing.

Monotone convergence theorem:

- 1. Let (an) be increasing and bounded from above. Then (an) converges and lim (an) = Sup 2 an : n & N)
- 2. let can be decreasing and bounded from below. Then can converges and lim can) = info an: ne N3

Euler's number: $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1}$

Some usebul results:

 $(^{n}J_{n}) \rightarrow 1$

$$(1 - \frac{1}{h})^n \rightarrow \frac{1}{e}$$

subsequence: let n, , n, ... EN s.t. n, < n, < ..., and let (an) be a sequence. $(a_{n_k}) = (a_{n_k}, a_{n_k}, \dots, a_{n_k})$ is a subsequence of (a_n)

let (Xn) be a convergent sequence, (Xnx) be an arbitrary subseq of (Xn).

Then (x_{n_k}) converges and $\lim (x_{n_k}) = \lim (x_n)$.

- Corollary:

Let (Xn) be a sequence and (Xnk), (Xnj) be convergent subsequences, where $\lim_{n \to \infty} (x_n) \neq \lim_{n \to \infty} (x_n)$. Then, (x_n) diverges.

use but results: . Lec 13: (1-1/n!) N! → e

Bolzano-Weierstrass Theorem: Every bounded seq of R has a convergent subsequences.

Cauchy sequence: A seq (Xn) is Cauchy iff $\forall \epsilon > 0 \exists N \in \mathbb{N} \quad \forall n, m \geq N : |x_n - x_m| < \epsilon$

Every convergent sea is a Cauchy sequence. A seg of R converges Iff It is Cauchy.

Every (auchy seq converges.

Every Cavary seg is bounded.

contractive seq: A seq (Xn) is called contractive if $\exists 0 < c < l s.t. \forall n \in \mathbb{N}$: | Xn+2 - Xn+1 | = C | Xn+1 - Xn |

Every contractive seq converges.

Steps to Gind limit or show convergence / Avergence for recurringly defined (xn):

1. Prove by Induction & In he in some bound

2. (In) is increasing / decreasing / contractive

3. Apply theorems to show convergence, then apply limit laws to find limit.

Divergence:

- (Zn) diverges to +∞, i.e. lim (Xn) = +∞, if YMERJNEN Yn>N: Xn>M.
- (xn) diverges to -∞, i.e. lim (xn) =-∞, if YMER∃NENYN>N: xn < M.
- let (an), (bn) be seq in R, lim(bn) = + 0. If IKEN s.t. \n = K: an = bn, then $\lim (a_n) = +\infty$.

Some useful results:

. As 7: a>1, ("Ja) is Cauchy

(Xn) is a reg in R. If its subseq (Xzn), (Xznfi), (Xzn) converge,

then (sh) converges. . As 8: If (Xn) & R. (Xn) increasing and

unbounded, then $\lim (x_n) = +\infty$

. Lec 15: |im (n) = +∞ Im (-h) = -0 a71, lim (a^) = + 0 11m((1+ th)n2) = + ∞

TOPOLOGY

A subset $U \subseteq R$ is open if $\forall x \in U$, $\exists \epsilon > 0$ s.f. $V_{\epsilon}(x) \subseteq U$. $\forall R$ is open. ϕ is open.

- Every open interval is open.
- Arbitrary unions of open sets are open. i.e. if I is an arbitrary index set, where $\forall i \in I : U \subseteq R$ is open, then $U = \bigcup_{i \in I} U_i$ is also open.
- Finite interjections of open sets are open. i.e. if u, u,, ..., u, is R are open, then (i:) ui is open.

 Infinite interjections of open sets are in general not open.
- · A subset of R is open iff it is a countable union of open sets.

A subset $A \subseteq \mathbb{R}$ is closed if its complement A^c is open. \Rightarrow \mathbb{R} is also closed (since $\mathbb{R}^c = \phi$ is open). Similarly, ϕ is also closed.

- Every closed interval is closed.
- Finite unions of closed sets are closed. i.e. if u., uz,..., un & R are closed, then Ui=1 ui is closed.
- Arbitrary intersections of chosed sets are closed. Let I be an arbitrary index set, ∀i∈I: A: closed. Then PAi is closed.

Let A S R. We say that (xn) is in A if \n & N: xn & A.

- Let A S IR be closed and (xn) is a conv. seq. in A. Then lim(xn) = x & A.

Let $A \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is a boundary point of A if $\forall \in \mathbb{P} : V_{\epsilon}(x) \cap A \neq \emptyset$ AND $V_{\epsilon}(x) \cap A^{c} \neq \emptyset$.

Let $A \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is a boundary point of A is called the boundary of A, ∂A .

- let A ⊆ R.
 - a) A is open iff A does not contain any of its boundary points i.e. $A \cap \partial A = \emptyset \iff \partial A \subseteq A^c = R \setminus A$
 - b) A is closed iff A contains all of its boundary points i.e. JA SA.

A \subseteq R is sequentially compact if \forall sequences (>Cn) in A, (xn) has a convergent subseq. ((x_{n_k}) s.t. $\lim_{n \to \infty} (x_{n_k}) \in A$. \mapsto sequentially compact \iff closed and bounded. some results:

· Lec 16:
$$I = [a, \infty)$$
, $\alpha \in \mathbb{R}$.
 $\Rightarrow \partial I = \partial A$

$$\partial[a,b] = \partial[a,b) = \partial(a,b] = \partial(a,b) = \{a,b\}$$

· As
$$8 : \mathbb{Q} \subseteq \mathbb{R}$$
 is neither open nor closed $\partial \mathbb{Q} = \mathbb{R}$

LIMITS OF FUNCTIONS

let C & R, & > O. Then V* (c) = VE(c) \ {c} is the punctured &-neighbourhood of c.

E-S definition: Let $f:D \subseteq R \to R$. We say that L is the limit of F as $x \to c$ if $\forall \epsilon > 0 \exists \delta > 0 \ \forall x \in D \setminus \{c\} \ r.t. \ |x-c| < \delta \Rightarrow |f(x)-L| < \epsilon$

= ∀\$>0 ∃\$>0 ∀x €D ∩ V{*(c) : f(x) € V2(L)

= ∀ε > O = 36 > O : f(D ∩ V*(c)) ⊆ Vε(L)

Sequential definition: Let $f:D\subseteq R\to R$. We say that L is the limit of f as $\chi\to c$ if $\forall (\chi_n)$ in $D\setminus\{c\}$, (χ_n) converges with $\lim_{n\to\infty}(\chi_n)=c \Rightarrow \lim_{n\to\infty}(f(\chi_n))=L$.

some useful results:

Lec 17: $f: \mathbb{R} \to \mathbb{R}$, $\chi \mapsto 2\chi$ $c \in \mathbb{R}$ $\lim_{\chi \to c} f = 2c$ $\chi \mapsto \chi^{2}$ " $\lim_{\chi \to c} f = c^{2}$ $f: \mathbb{R} \setminus \{0\}$, $\chi \mapsto \frac{1}{\chi}$ $c \in \mathbb{R} \setminus \{0\}$ $\lim_{\chi \to 0} f = \frac{1}{\zeta}$

sequential enterior bor non existence of the limit of a function:

Let f: DCR > R, CER

- a) 2 sequence wrterion: Ib \exists (xn), (vn) in D\{c} s.f. \lim (xn) = \lim (un) = c and both (f(xn)), (f(un)) converge, But \lim (f(xn)) \neq \lim (f(un)), then the limit of the function f as $x \to c$ DNE.
- b) I sequence arterion: If I (xn) in D/(c) xt. lim(xn) = c but (f(xin)) diverges, then lim f as x > c DNE.

Some useful results:

· Lec 18· f· R\ {o} - R, x +> \frac{1}{x}. \frac{1}{x>0} f DNE.

Directlet function: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ \leftrightarrow \text{Im} \text{ f DNE}.

Let $D \subseteq \mathbb{R}$. A point $C \subseteq \mathbb{R}$ is a limit point of D if $\exists (x_n)$ in $D \setminus \{c\}$ s.t. $\lim (x_n) = c$. A point $C \subseteq D$ is an isolated point of D if $\not\exists (x_n)$ in $D \setminus \{c\}$ s.t. $\lim (x_n) = c$.

Let $D \subseteq \mathbb{R}$. $C \in D$ is an isolated point of $D \Leftrightarrow \exists \ \epsilon > 0 : \forall \epsilon \ (c) \cap D \setminus \{c\} = \emptyset$.

- e.g. 1. D = N. All points in D are irolated.
 - 2. $D = \{0,1\}$. Every point in D is a limit point, and so is D. D is a limit point since $\lim(\frac{1}{h}) = 0$ and $(\frac{1}{h})$ is a seq in D.
 - 3. D = [1.2] U 10). O is an isolated point, all points in [1,2] are limit points.

Let f: D → R, C ∈ R s.t. 1im f exists.

- a) If c is a limit point of D, then $\lim_{x\to c} f$ is uniquely determined. i.e. if $\lim_{x\to c} f = L_1$, $\lim_{x\to c} f = L_2$, $L_1 = L_2$.
- b) If c is an isolated point of D, then any a & R is a limit of f at c.

The E-S definition and sequential debus of the limit of a function are equivalent.

Algebraic limit Laws: Let $f, g: D \subseteq R \rightarrow R$, C is a limit point of D. $\lim_{n \to \infty} f$ and $\lim_{n \to \infty} g$ exist. Then:

- a) lim (6 g) = lim 6 + lim 2
- b) lim [f-g) = lim f lim g
- c) $\lim_{x\to c} (f \cdot g) = \lim_{x\to c} f \cdot \lim_{x\to c} g$
- d) VKER: lim (k.f) = k. lim f
- e) If $\forall x \in D$: $g(x) \neq 0$ \wedge $\lim_{x \to c} g \neq 0$, then $\lim_{x \to c} \frac{f}{g} = \lim_{x \to c} f / \lim_{x \to c} g$.

Squeeze Theorem: Let $f, g, h: D \subseteq \mathbb{R} \to \mathbb{R}$ Let c be a limit point of D. Let $\forall x \in D: f(x) \leq g(x) \leq h(x)$, and $\lim_{x \to c} f = \lim_{x \to c} h = L$. Then $\lim_{x \to c} g$ exists and $\lim_{x \to c} g = L$.

use ful results:

· Lec 19: 11m |x| = 0

I'M X SIN (X) = 0.

CONTINUITY

limit defin: Let $f: D \subseteq R \to R$, $C \in D$. f is continuous at c if $\underset{x \to c}{\lim} c$ f = f(c).

E-S deta: Let $f: D \in \mathbb{R} \to \mathbb{R}$, $c \in D$. If is continuous at c if $\forall \varepsilon > 0 \exists \delta > 0 \ \forall \times \varepsilon \in D$: $| \times - c | < \delta \Rightarrow | f(x) - f(c) | < \varepsilon$.

= YE>O BSO YXE V(a) OD: f(x) & VE (f(c))

= V € 70] \$ 70 : F (V₈ (C) N D) = V₈ (F(C)).

sequential defin: Let $f:D \subseteq R \Rightarrow R$, $c \in D$. f is continuous at c if $\forall (x_n)$ in D with $\lim (x_n) = c$, it holds that $\lim (f(x_n)) = f(c)$.

All 3 of these defes are equivalent.

Sequential criterion for discontinuity: Let $f:D\subseteq R\to R$, $c\in D$. If $\exists (xn)$ in D with $\lim (xn)=c$ such that:

a) (fish) diverges, or

b) (G(xn)) converges but lim (f(xn)) # f(c), then f is discontinuous at c.

Algebraic Continuity Theorem: Let f, g: D⊆R → R. c ∈ D. f, g continuous at c. Then:

a) f+g continuous at c

b) f-g continuous at c

c) YKER: k.f cont. at c.

d) b.g cont. at c

e) If $\forall x \in D$, $g(x) \neq 0$, then $\frac{1}{9}$ cont. at c.

Let $f: A \to R$, $g: B \to R$. $f(A) \subseteq B$. Let $C \in A$, d:=f(c). Let f be ant at c and g ant. at d. Then $g. f: A \to R$ is cont at c.

some useful results:

The II: $x \mapsto Jx$ is continuous on R_0^+ $x \mapsto Jx$ is continuous on R^+ $x \mapsto x$ is continuous on R

CONTINUITY + TOPOLOGY

Let f: D = R > R s.t. f is continuous at all c & D. Then, f is cont. on D.

Preservation of compactness: Let $b:D\subseteq \mathbb{R}\to\mathbb{R}$ be continuous. Let $A\subseteq D$ be compact, i.e. it is closed and bounded. Then f(A) is compact.

A ⊆ IR is compact ⇔ A ⊆ R sequentially compact.

→ note that this holds in general for R" but not for other spaces e.g. metric space

Extreme Value Theorem: Let $D \subseteq R$ be compact and let $G:D \to R$ be continuous. Then G has both an absolute max and an absolute min in D.

Localization of roots: let a, b $\in \mathbb{R}$, a < b and let $f: [a, b] \to \mathbb{R}$ continuous s.t. f(a) and f(b) have opposite signs i.e. f(a) > 0 and f(b) < 0 or f(a) < 0 and f(b) > 0. Then $\exists c \in (a, b)$ s.t. f(c) = 0.

Intermediate Value Theorem: Let a, b $\in \mathbb{R}$, a < b and let $f: [a, b] \to \mathbb{R}$ be continuous. Let d $\in \mathbb{R}$, between f(a) and f(b) i.e. f(a) < d < f(b) or f(a) > d > f(b). Then $\exists c \in (a, b)$ with f(c) = d.

Preservation of Intervals: Let $I \subseteq R$ be an interval and let $f: I \to R$ be continuous. Then f(I) is an interval.

Note that while continuous maps preserve intervals, they do not necessarily preserve the type of interval (i.e. its boundedness, openness etc)

UNIFORM CONTINUITY

A function 6. D∈R → R is said to be uniformly continuous on D if. VE>O ∃8>O ∀x, u ∈ D: | x - u| < 8 ⇒ | f(x) - f(u) | < E

useful results:

· Let 22: $x \mapsto x^2$ unif cont. on [-a, a], a > 0. $x \mapsto x^2$ NOT unif. cont. on $[0, \infty)$

 $x \mapsto \overline{x}$ NOT unit cont on (0,1)

 $x \mapsto J\overline{x}$ unit cont. on $[a, \infty)$, a > 0.

· lec 23: 2 +> Jz unit cont. on [0, 00)

Lemma: ∀x, u ∈ R, x = u ≥ D: Jx - Ju ≤ Jx-u

Algebraic Laws for unit cont: Let b, g be unit. cont. Then:

- a) ftg unif cont
- b) 6-g "
- c) YKER: k.f unit ant

Let A ⊆ R be compact. Let b: A → R be cont. Then f is unif cont.

Let ACR be compact. Let b, g: A -> R be unit cont. Then f.g unif cont.

UPSCHITZ CONTINUITY

Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$. f is called <u>lipschitz</u> or <u>lipschitz</u> cont. if K > 0 s.t. $\forall x, u \in D: |f(x) - f(u)| < K \cdot |x - u|$.

e.g. $x \mapsto x^2$ is Lipschitz on [-a, a], a > 0 $x \mapsto \sqrt{x}$ is Lipschitz on $[a, \infty)$, a > 0

Let f: D = R -> IR be lipsantz. Then f is also unif. cont [and thus continuous).

Lipschitz cont => unif cont => cont. But converse does not hold.