Busan science high school

2023 Ocean ICT Festival **2023 BOIF**

Youtube 영상 QR

회귀분석을 이용 대한민국 각 도시별 연도별 어획량 예측 프로그램

해파리 사냥꾼: 2415 천승원 2416 최윤건

탐구 동기&목적

최근 수산업에 있어 인력 증가,기술 발달 등 수산업 발전이 이루어졌다. 때문에 과거와 비교해 현재의 수산업 발달 정도를 알아보기 위해 연도별 지역별 어획량 데이터를 분석하고, 추가로 미래의 어획량을 예측하는 프로그램을 만들어보았다.

★ 예측 방식으로 추세선을 선택한 이유 : 현재 수산 업 기술이 발달하고 있는 중이므로 미래에는 지금과 같이 어획량이 점차 증가할 것이라 예측, 그러나 무 한히 증가하지는 않으므로 보다 가까운 미래에서만 유효한 결과를 얻을 수 있음

▮ 동해안 오징어 어획량 변화 자료/도환동해본부 8610t 6232t 4146t 4022t 2018 2022 (상반기)

구현(회귀분석)

A										K	
111											T
어업별	품종별	행정구역별	판매형태별	1970	1971	1972	1973	1974	1975	1976	
어업별	품종별	행정구역별	판매형태별	생산량:계	생산량:계	생산량:계	생산량:계	생산량:계	생산량:계	생산량:계	생신
계	7	국내계	7	845841	914426	1119434	1325849	1607841	1569386	1682636	1
4	7	서울특별시	계	-	-	-	2	2	-	-	-
계	7	부산광역시	7	125767	152956	184606	204986	227642	221154	272322	
계	7	대구광역시	7	-	-	-	-	=	-	=	-
계	계	인천광역시	7	-	-	-	-	-	-	-	-
7	계	광주광역시	7	-	-	-	-:	-	-	-	-2
7	7	대전광역시	7	-		-	-	-		-	
계	7	울산광역시	계	-		-		-		-	-7
7	A	세종특별자	7	-	-	2	-	=	-	2	-8
4	7	경기도	7	82608	86267	89522	102343	117034	123591	113181	
계	계	강원도	계	101038	74271	92641	105690	116749	101663	130833	
4	7	충청북도	7	2	12	27	22	31	45	301	
계	7	충청남도	7	32793	36097	38858	45397	61854	89565	99118	
계	7	전라북도	7	36086	39450	45778	52967	53857	65275	69988	
계	계	전라남도	7	170226	190921	202974	272516	414136	350036	389217	
계	7	경상북도	7	72316	69303	88194	93747	93209	89749	141556	
7	7	경상남도	계	198547	235781	342955	409818	478611	483807	419537	1
4	7	제주도	7	26458	29369	33880	38364	44719	44501	46584	

국가통계포털(KOSIS)에서 어업 별, 지역별 어획량 데이터 각 지역별로 데이터 분리해서 실수 형으로 전환, 리스트에 저장

```
print('원하는 지역을 입력하세요.mn지역 : 전국, 부산광역시, 경기도, 강원도, 충청북도, 충청남도, 전라북도, 전라남도, 경상북도, 경상남도, 제주
지역 = str(input('지역 : '))
fish = []
if 지역 -- '전국':
   fish.append(fishlist)
elif 지역 == '부산광역시
   fish.append(busanfishlist)
elif 지역 == '경기도'
   fish.append(gyeonggidofishlist)
   fish.append(gangwonfishlist)
elif 지연 == '충천분도'
   fish.append(chungcheongbukdofishlist)
elif 지역 == '충청남도':
   fish.append(chungcheongnamdofishlist)
elif 지역 == '전라북도
   fish.append(jeollabukdofishlist)
elif 지역 == '
   fish.append(jeollanamdofishlist)
elif 지역 == '경상북도':
   fish.append(gyeongsangbukdofishlist)
elif 지역 == '경상남도':
fish.append(gyeongsangnamdofishlist)
elif 지역 — '제주도':
   fish.append(jejudofishlist)
   print('지역 입력이 잘못되었습니다. 올바른 철자로 입력했는지 확인해주세요.')
#입력한 지역의 물고기 데이터 사용
```

원하는 지역 입력시 그에 따른 지역 어획량 데이터 불러와서 fish 리스트에 저장, 사용

```
x = []
for i in range(len(yearlist)):
      x.append(yearlist[i]-1970.0) #1970-2022년을 0-52로 표현, 이렇게 해야 회귀분석 될
x_year = np.array(x).reshape(-1,1) #행렬 만들 때 1월로 설정하면 행 계수는 자동설정 되는 거
y_fish = np.array(fish).reshape(-1,1)
yearfish = LinearRegression().fit(x_year,y_fish)
a=yearfish.coef_[0]
b=yearfish.intercept_
x_year2 = np.array(yearlist)
plt.grid()
pit.scatter(x_year2, y_fish)
pit.plot([1970, 2023], [b, 53*a*b], c='r')
pit.show()
년도 = float(input('년도:'))
estimatedfish = (년도-1970.0)*a*b
print('예상 생산량 : %.2f론 %estimatedfish)
```

년도를 x축, 어획량을 y축으로 설정해 회귀분석 진행, 그래프 춬력 그래프를 통해 미래의 어획량 계산

기대효과

을 것이다.

1.미래 어획량을 예측 함으로써 수산업 발전에 기여할 수 있을 것이라고 보인다.

2. 지역별 어획량과 그 지역의 환경을 분석함으로써 그 지역의 생태계에 맞는 방법을 택하여 생

태계를 효과적으로 보존할 수 있

년도:2080 예상 생산량 : 4178.16