Load Balancer

Programmable Networks A.Y. 24/25

Obiettivo

- Il contesto è quello di una rete Datacenter nella quale vengono forniti diversi servizi
- Ogni servizio
 - è esposto all'esterno tramite un indirizzo IP
 - è fisicamente espletato da un pool di macchine fisiche
- Gli utenti inviano continuamente richieste di servizio al Datacenter
 - se l'infrastruttura fisica è sotto stress, il livello di qualità percepito dagli utenti sarà basso
- L'obiettivo del lavoro è realizzare un'applicazione SDN per bilanciare il carico di lavoro sui vari server

Modello di riferimento

- La rete Datacenter è di tipo Openflow capable ed è rappresentata dal grafo **G(N,L)**, in cui
 - N è il set di switch SDN
 - o Lè il set di link
- Si assume che i link della rete abbiano capacità illimitata
- Il servizio $\sigma_i \in \Sigma$ è rappresentato dalla tupla $\langle IP_i, [s_k]_{k=1}, t_i \rangle$, in cui
 - ρ IP, è l'indirizzo IP col quale il servizio σ , viene esposto verso l'esterno
 - \circ [s_k] è il set di macchine fisiche che erogano il servizio σ_i
 - d_i è la domanda di traffico (in bps) relativa al servizio σ_i
 - \circ $\mathbf{t_i}$ è la durata (in secondi) di ciascuna richiesta relativa al servizio $oldsymbol{\sigma_i}$
- Ciascun server s_k ha una capacità di rete b_k
 - o il modello non tiene conto di altre risorse fisiche (CPU, memoria)
- Al tempo t, il numero di richieste del servizio σ_i è rappresentato da r_i(t)
- Al tempo \mathbf{t} , il numero di richieste del servizio σ_i in esecuzione sul server \mathbf{s}_k è rappresentato dal numero $\mathbf{n}_{i,k}(\mathbf{t})$

Modello di riferimento

- Il carico del server s, è calcolabile come il rapporto tra
 - la domanda complessiva che il server sta gestendo
 - la capacità del server stesso

$$ho_k(t) = rac{\sum_{i=1}^\Sigma n_{i,k}(t) d_i}{b_k}$$

 Indicando con ρ_{max}(t) e ρ_{min}(t) l'utilizzazione del server più carico/meno carico rispettivamente, si ha che l'obiettivo è

$$\min_{orall t}
ho_{ ext{max}}(t) -
ho_{ ext{min}}(t)$$

Il vincolo è che ogni domanda deve essere soddisfatta

 il client c1 genera una richiesta per il servizio verde

- il client c1 genera una richiesta per il servizio verde
- tramite un packetIN la richiesta viene inoltrata alla LB App

- il client c1 genera una richiesta per il servizio verde
- tramite un packetIN la richiesta viene inoltrata alla LB App
- 3. l'applicazione decide il server a cui assegnare la richiesta

- il client c1 genera una richiesta per il servizio verde
- tramite un packetIN la richiesta viene inoltrata alla LB App
- l'applicazione decide il server a cui assegnare la richiesta
- 4. il percorso viene configurato

- il client c1 genera una richiesta per il servizio verde
- tramite un packetIN la richiesta viene inoltrata alla LB App
- l'applicazione decide il server a cui assegnare la richiesta
- 4. il percorso viene configurato
- 5. la richiesta viene espletata

