Nodal Expansion Method Code for IAEA Benchmark Problem

Jan 8, 2016

Kim Dong Hun
Monte Carlo Laboratory
Seoul National University

Input Format

❖ IAEA Benchmark Problem INPUT

```
Options (
                                                                  CXLibrary (
                                                                      CXTableNum 5
   Dimension 3
                                                                     CXTable 1 (
   MeshSize 10 10 20
                                                                       DiffCoeff
                                                                                 1.5E+00 4.0E-01
   Albedo 0 0.4692 0 0.4692 0.4692 0.4692
                                                                                  1.0E-02 8.0E-02
                                                                       nuSigFis
                                                                                  0.0E+00 1.35E-01
                                                                       SigChi
                                                                                  1.0E-00 0.0E+00
                                                                       SigSca
                                                                                  0.0E-00 2.0E-02
Geometry (
                                                                                  0.0E-00 0.0E-00
          17 17 19
   CXTable 2 (
                                                                       DiffCoeff
                                                                                 1.5E+00 4.0E-01
   SigAbs
                                                                                  1.0E-02 8.5E-02
   0.0E+00 1.35E-01
                                                                       nuSigFis
                                                                       SigChi
                                                                                  1.0E+00 0.0E+00
   NodeType
                                                                       SigSca
                                                                                  0.0E-00 2.0E-02
   5
                                                                                  0.0E-00 0.0E-00
                                                                     CXTable 3 (
                                                                       DiffCoeff
                                                                                 1.5E+00 4.0E-01
                                                                       SigAbs
                                                                                  1.0E-02 1.3E-01
                                                                                  0.0E+00 1.35E-01
                                                                       nuSigFis
                                                                       SigChi
                                                                                  1.0E+00 0.0E+00
                                                                       SigSca
                                                                                  0.0E-00 2.0E-02
  Configuration
                                                                                  0.0E-00 0.0E-00
                                                                     CXTable 4 (
                                                                       DiffCoeff
                                                                                 2.0E+00 3.0E-01
                                                                       SigAbs
                                                                                  0.0E+00 1.0E-02
                                                                       nuSigFis
                                                                                  0.0E+00 0.0E+00
                                                                       SigChi
                                                                                  0.0E+00 0.0E+00
                                                                       SigSca
                                                                                  0.0E-00 4.0E-02
                                                                                  0.0E-00 0.0E-00
                                                                     CXTable 0 (
                                                                       DiffCoeff
                                                                                 2.0E+00 3.0E-01
                                                                       SigAbs
                                                                                  0.0E+00 5.5E-02
                                                                                  0.0E+00 0.0E+00
                                                                       nuSigFis
                                                                       SigChi
                                                                                  0.0E+00 0.0E+00
                                                                       SigSca
                                                                                  0.0E-00 4.0E-02
                                                                                  0.0E-00 0.0E-00
```


Problem

❖ IAEA Benchmark Problem

Argonne Code Center, Benchmark Problem Book, ANL-7416, Suppl. 2, p. 277, Argonne National Laboratory (1977).

Problem

❖ IAEA Benchmark Problem

Two-group Constants

Region	D ₁	D ₂	Σ ₁₊₂	Σα1	Σα2	νΣ _{f2}	Material
1 .	1.5	0.4	0.02	0.01	0.08	0.135	Fuel 1
2	1.5	0.4	0.02	0.01	0.085	0.135	Fuel 2
3	1.5	0.4	0.02	0.01	0.13	0.135	Fuel 2 + Rod
4	2.0	0.3	0.04	0	0.01	0	Reflector
5	2.0	0.3	0.04	Ó	0.055	0	Refl. + Rod

For finite difference diffusion theory codes the following form is considered equivalent

$$\frac{\partial \Phi_g}{\partial n} = -\frac{0.4692}{D_g} \Phi_g$$

Argonne Code Center, Benchmark Problem Book, ANL-7416, Suppl. 2, p. 277, Argonne National Laboratory (1977).

Numerical Results

Condition

Outer iteration: 10⁻⁶ for maximum relative value
 Convergence Criteria

```
• Outer Loop : \max(\frac{\phi^{(t)}-\phi^{(t-1)}}{\phi^{(t-1)}}) < 10^{-6}
```

- Multiplication Factor
 - 17×17×19: 1.02911 (Reference: 1.02913)

```
Iteration: 1421 keff:
                                   1.02911 \text{ Error} = 1.05339e-06
Iteration: 1422 keff:
                                  1.02911 \text{ Error} = 1.04832e-06
Iteration: 1423 keff:
                                   1.02911 \text{ Error} = 1.04328e-06
Iteration: 1424 keff:
                                  1.02911 \text{ Error} = 1.03826e-06
Iteration: 1425 keff:
                                   1.02911 \text{ Error} = 1.03327e-06
Iteration: 1426 keff:
                                   1.02911 \text{ Error} = 1.0283e-06
Iteration: 1427 keff:
                                  1.02911 \text{ Error} = 1.02336e-06
Iteration: 1428 keff:
                                   1.02911 \text{ Error} = 1.01844e-06
Iteration: 1429 keff:
                                   1.02911 \text{ Error} = 1.01354e-06
Iteration: 1430 keff:
                                   1.02911 \; \text{Error} = 1.00866e-06
Iteration: 1431 keff:
                                   1.02911 \text{ Error} = 1.00381e-06
Iteration: 1432 keff:
                                   1.02911 \text{ Error} = 9.98987e-07
.367(sec)
```


Numerical Results

❖ Flux Distribution-In midplane z = 190cm

