EXAMEN DE MECANIQUE DU POINT - 2º SESSION

23 / 03 / 2017 - Durée : 2H

Aucun document n'est autorisé. La calculatrice est permise. Un formulaire se trouve à la fin du sujet.

Exercice 1.

Une boule de flipper en acier, de masse m (repérée par le point M), initialement placée dans son logement cylindrique fixe sur le plateau de flipper, repose contre l'embout d'un ressort de raideur k dont l'autre extrémité O est fixée au fond du logement. Le joueur comprime alors le ressort et à un instant t = 0 pris comme origine, il relâche brusquement le ressort.

Le plateau et le cylindre sont inclinés d'un angle α par rapport à l'horizontale. La longueur à vide du ressort est ℓ_0 , cette longueur vaut ℓ_R lorsque la bille est au repos contre l'embout, et diminue jusqu'à ℓ_C quand le ressort est comprimé .

On néglige complètement le frottement de la boule sur le plateau, de sorte qu'elle ne fait que glisser sans rouler ni frotter. On l'assimilera donc à un point matériel de rayon nul. La masse du ressort est supposée négligeable. L'accélération de la pesanteur est g supposée constante.

A. Etude Statique:

- 1. Faire un bilan des forces auxquelles est soumise la bille au repos, donner leurs expressions et les représenter sur un schéma. On représentera le poids \vec{P} ; la réaction du plan incliné \vec{R} et la force de rappel du ressort \vec{F} .
- 2. Donner l'expression de \vec{P} , \vec{R} et \vec{F} dans la base $(O; \vec{e_x}; \vec{e_y})$
- 3. Quelle relation entre les forces peut-on écrire lorsque le système est au repos ? En déduire l'expression de la longueur au repos ℓ_R en fonction de ℓ_0 ; m; g; k et α .
- 4. Rappeler la définition d'une force conservative.
- 5. Quelles sont les forces conservatives qui « travaillent » (dont le travail est non nul) dans ce problème ?
- 6. Exprimer les énergies potentielles associées à ces forces en fonction de la variable x.
- 7. En écrivant que la dérivée de la fonction énergie potentielle totale est nulle retrouver la position d'équilibre de M c'est-à-dire l'expression de ℓ_R : $\ell_R = \ell_0 \frac{mgsin\alpha}{k}$.

B. Etude énergétique globale :

On comprime le ressort jusqu'à $\ell = \ell_C$

1. Donner les valeurs prises par l'énergie potentielle et par l'énergie mécanique de la bille en fonction de ℓ_C ℓ_0 ; m; g; k; α .

A t=0 on relâche le ressort et on considère que la boule perd le contact avec le ressort lorsque sa tension s'annule, c'est-à-dire lorsque $\ell=\ell_0$.

- 2. Donner la valeur prise par l'énergie mécanique de la bille en $\ell=\ell_0$ en fonction de v_0 ℓ_0 ; m ; g ; α .
- 3. Appliquer le TEM et exprimer la vitesse v_0 lorsque la boule quitte le ressort en fonction de $\ell_C \ell_0$; m; g; k; α .
- 4. Donner une condition sur ℓ_C (notée ℓ_{Cmax}) pour que la bille soit à la limite de quitter réellement le ressort (il doit lui rester juste un peu de vitesse lorsqu'elle passe en $\ell = \ell_0$).
- 5. Dans de l'utilisation normale du flipper (la bille décolle) , exprimer jusqu'à quelle distance x_n la bille va monter sur le flipper (sans frottements) en fonction de v_0 , ℓ_0 ; g; et α . (théorème de l'énergie mécanique)

C. Applications numériques : on donne les différentes valeurs suivantes :

m= 200 g ; k= 40 Nm⁻¹ ;
$$\ell_0 = 12~cm$$
 ; $\alpha = 11.53^\circ$; g=10 ms⁻²

On rappelle que :

$$\begin{split} \ell_R &= \ell_0 - \frac{mgsin\alpha}{k} \\ \ell_{Cmax} &= \ell_0 - \frac{2mgsin\alpha}{k} \\ x_h &= \ell_C + \frac{k(\ell_C - \ell_0)^2}{2mgsin\alpha} \\ v_0 &= \sqrt{\frac{k}{m}(\ell_C - \ell_0)^2 + 2gsin\alpha.(\ell_C - \ell_0)} \end{split}$$

- 1. Calculer les valeurs de ℓ_R ℓ_{Cmax}
- 2. Calculer les valeurs de v_0 et de x_h pour une compression *totale* du ressort de 2 cm; 7cm et 9 cm.

Exercice 2.

Un alpiniste de masse m est suspendu, dans le vide, à une corde de longueur L. Afin d'atteindre une plate-forme voisine, il effectue un mouvement pendulaire. L'angle θ que fait la corde avec la verticale varie au cours du mouvement et atteint la valeur θ_0 au bout de la course lorsque l'alpiniste touche la plateforme. A cet instant, la vitesse de déplacement de l'alpiniste est nulle.

- 1. En utilisant le principe fondamental de la dynamique, exprimer la tension T de la corde en fonction de m, g L, θ et $\dot{\theta}$.
- 2. En posant $V = L\dot{\theta}$, exprimer T en fonction de m, g, L, V et θ .
- 3. Calculer le travail du poids P lorsque θ varie d'un angle θ_1 à l'angle θ_0 . Ce travail sera exprimé en fonction de m,g,L,θ_1 et θ_0 .
- 4. En déduire l'expression de la vitesse V_1 de l'alpiniste, lorsque $|\theta| = \theta_1 \le \theta_0$. Cette relation sera exprimée en fonction de g, L, θ_0 et θ_1 .
- 5. En admettant que pour un angle θ quelconque, la vitesse V de l'alpiniste a pour expression :
- 6. $V = \sqrt{2Lg(\cos\theta \cos\theta_0)}$, exprimer la tension T, de la corde, en fonction de m, g, θ et θ_0 .
- 7. En déduire l'expression de la tension maximale notée T_{Max} .
- 8. Les valeurs numériques sont les suivantes : g = 9.81 m/s² , θ_0 = 30°, et la tension limite que peut supporter la corde est T_{Lim} = 4000 N.
- 9. En prenant un coefficient de sécurité de 3, calculer le poids maximal que peut avoir un alpiniste pour utiliser cette corde en toute sécurité.

Note: barème. Chaque question vaut 1 point. Il y a en tout 23 questions, on peut donc obtenir une note allant jusqu'à 23/20.

FORMULAIRE DE MECANIQUE DU POINT

Forces usuelles Poids $\vec{P}=m\vec{g}$, Frottements fluides (laminaire) $\vec{F}=-k\vec{v}$, Frottements solides (dynamiques) $\|\vec{F}\|=\mu\|\vec{R}\|$ Force électrique $\vec{F}=\frac{-e^2}{4\pi\varepsilon_0r^2}\vec{e_r}$, Force de gravitation $\vec{F}=-\frac{GMm}{r^2}\vec{u_r}=-\frac{GMm}{r^3}\vec{r}$.

Quelques définitions travail $W_{AB}(\vec{F}) = \int_A^B \vec{F}. \, \overrightarrow{d\ell}$, moment d'une force $\overrightarrow{\mathcal{M}_l^O} = \vec{r} \wedge \overrightarrow{F_l}$, moment cinétique $\overrightarrow{L_O} = m \, \vec{r} \wedge \vec{v}$, énergie potentielle $\mathsf{E_P}$ d'une force conservative : $\vec{F} = - \vec{\nabla} E_P \Rightarrow E_P(B) - E_P(A) = -W_{AB}(\vec{F})$

Cinématique et dynamique en coordonnées cartésiennes

$$\vec{r} = x \overrightarrow{u_x} + y \overrightarrow{u_y};$$
 $\vec{v} = \dot{\vec{r}} = \dot{x} \overrightarrow{u_x} + \dot{y} \overrightarrow{u_y};$ $\vec{a} = \ddot{\vec{r}} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y}$

Cinématique et dynamique en coordonnées polaires

$$\vec{r} = r \overrightarrow{u_r}; \qquad \vec{v} = \dot{r} \overrightarrow{u_r} + r \dot{\theta} \overrightarrow{u_\theta}; \qquad \vec{a} = (\ddot{r} - r \dot{\theta}^2) \overrightarrow{u_r} + (2\dot{r} \dot{\theta} + r \ddot{\theta}) \overrightarrow{u_\theta}$$

PFD.
$$m\vec{a} = \sum_{i} \vec{F_{i}} \text{ ou } \frac{d\vec{p}}{dt} = \sum_{i} \vec{F_{i}}$$

TEC.
$$\Delta_{AB}E_C = \sum_i W_{AB}(\vec{F}_i)$$

TEM.
$$\Delta E_m = \sum W(\vec{F}_{non\ conservatives})$$

TMC.
$$\frac{d\overrightarrow{L_O}}{dt} = \sum_i \overrightarrow{\mathcal{M}_i^O}$$

Equations différentielles usuelles

$$\frac{dy}{dt} + ay = b \rightarrow y(t) = Kexp(-at) + \frac{b}{a}$$

$$\frac{d^2y}{dt^2} + \omega_0^2 y = 0 \Rightarrow y(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) = C\cos(\omega_0 t + \varphi)$$

$$\frac{d^2y}{dt^2} + \frac{1}{\tau}\frac{dy}{dt} + \omega_0^2 y = 0$$
 \Rightarrow équation caractéristique de discriminant $\Delta = \frac{1}{\tau^2} - 4\omega_0^2$.

Si
$$\Delta > 0$$
: $y(t) = \exp\left(-\frac{t}{2\tau}\right) \left\{ a \exp\left(\frac{\sqrt{\Delta}}{2}t\right) + b \exp\left(-\frac{\sqrt{\Delta}}{2}t\right) \right\}$

Si
$$\Delta < 0$$
: $y(t) = \exp\left(-\frac{t}{2\tau}\right)\left\{a\cos\left(\frac{\sqrt{-\Delta}}{2}t\right) + b\sin\left(\frac{\sqrt{-\Delta}}{2}t\right)\right\}$