Balancing Scalability and Uniformity in SAT-Witness Generator

Supratik Chakraborty¹, Kuldeep S Meel², Moshe Y Vardi²

¹Indian Institute of Technology Bombay, India ²Department of Computer Science, Rice University

Simulation-Based Verification

Dominant paradigm in recent years

 Hardware design is simulated with test vectors

 Test vectors represent different verification scenarios

Constrained-Random Simulation

Sources for Constraints

- Designers:
 - 1. 100 < b < 200
 - 2. 300 < a < 451
 - $\overline{3. \ 40 < a < 50 \ and \ 30 < b < 40}$
- Past Experience:
 - 1. 400 < a < 2000
 - 2. 120 < b < 230
- Users:
 - 1. 1000<a < 1100
 - 2. $20\overline{000} < b < a < 22000$

Problem: How can we uniformly sample the values of a and b satisfying the above constraints?

Problem Formulation

Given a SAT formula, can one uniformly sample solutions without enumerating all solutions while scaling to real world problems?

Scalable Uniform Generation of SAT-Witnesses

Prior Work

BDD-based
Guarantees: strong
Performance: weak

SAT-based heuristics
Guarantees:
no/weak

Performance: strong

INDUSTRY

Theoretical Work

Guarantees: strong

Performance: weak

Heuristic Work

Guarantees: weak

Performance: strong

ACADEMI

BGP Algorithm

XORSample'

Our CAV'13 Work

BDD-based

Guarantees: strong

Performance: weak

UniWit

Guarantees: good

Performance: good

SAT-based heuristics

Guarantees:

no/weak

Performance: strong

INDUSTRY

Theoretical Work

Guarantees: strong

Performance: weak

Heuristic Work

Guarantees: weak

Performance: strong

ACADEMI

BGP Algorithm

XORSample'

Our Contribution (DAC'14)

BDD-based

Guarantees: strong

Performance: weak

UniGen

Guarantees: strong

Performance: strong

SAT-based heuristics

Guarantees:

no/weak

Performance: strong

INDUSTRY

Theoretical Work

Guarantees: strong

Performance: weak

Heuristic Work

Guarantees: weak

Performance: strong

ACADEMI

BGP Algorithm

XORSample'

Partitioning into equal "small" cells

Partitioning into equal "small" cells

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

3-Universal Hashing
[Carter-Wegman 1979, Sipser 1983]

Strong Theoretical Guarantees

Near-Uniformity

For every solution y of R_F

 $1/(6.84+\epsilon) \times 1/|R_F| \le Pr [y \text{ is output}] \le (6.84+\epsilon) / |R_F|$

Success Probability

UniGen succeeds with probability at least 0.52

- In practice, succ. probability > 0.9
- Polynomial number of calls to SAT Solver

Results: Uniformity

- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: $4x10^6$; Total Solutions: 16384

2-3 Orders of Magnitude Faster

Benchmarks

Takeaways

- Uniform Generation had diverse applications
- Prior work either did not provide guarantees or did not scale.
- Proposed a new scalable approach based on hashing that provides strong guarantees
- Runs 2-3 orders of magnitude faster than prior state-of-art tools