

Model Optimization and Tuning Phase Report

Date	05 May 2024
Team ID	Team - 737850
Project Title	FetalAl: Using Machine Learning To Predict And Monitor Fetal Health
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre>#Building the decision tree model DT_model = DecisionTreeClassifier() DT_model.fit(x_train, y_train) predictions = DT_model.predict(x_test) print(accuracy_score(y_test, predictions))</pre>	<pre>print("For the amounts of training data is: ",size) #printing the train accuracy and test accuracy print("Accuracy of DecisionTreeClassifier: ",DT_model.score(x_test,y_test)) For the amounts of training data is: 3475 Accuracy of DecisionTreeClassifier: 0.9543624161073826</pre>
Random Forest	<pre>#Building the random forest model RF_model = RandomForestClassifier() RF_model.fit(x_train, y_train) predictions=RF_model.predict(x_test) print(accuracy_score(y_test, predictions)) print(classification_report(y_test, predictions) confusion_matrix(y_test, predictions)</pre>	<pre>print("For the amount of training data is: ", len(x_train)) #print("Ing the train accuracy and test accuracy print("Accuracy of RandomForestClassifier: ", RF_model.score(x_test, y_test)) For the amount of training data is: 3475 Accuracy of RandomForestClassifier: 0.9885369127516779</pre>

KNN	<pre>#Building the KNN model KNN_model = KNeighborsClassifier(n_neighbors=5) KNN_model.fit(x_train, y_train) predictions = KNN_model.predict(x_test) print(accuracy_score(y_test, predictions))</pre>	print("For the amounts of training data is: ",size) #printing the train accuracy and test accuracy print("Accuracy of KNeighborsClassifier: ",KNN_model.score(x_test,y_test)) For the amounts of training data is: 3475 Accuracy of KNeighborsClassifier: 0.9550335570469799
Logistic Regressi -on	<pre>#Building the Logistic Regression model LR_model = LogisticRegression() LR_model.fit(x_train, y_train) predictions = LR_model.predict(x_test) print(accuracy_score(y_test, predictions)) print(classification_report(y_test, predictions) confusion_matrix(y_test, predictions)</pre>	<pre>print("For the amounts of training data is: ",size) #printing the train accuracy and test accuracy print("Accuracy of LogisticRegression: ",LR_model.score(x_test,y_test)) For the amounts of training data is: 3475 Accuracy of LogisticRegression: 0.8657718120805369</pre>

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric					
	<pre>print(classification_report(y_test, predictions))</pre>					
	р	recision	recall	f1-score	support	
	1.0	0.95		0.94	494	
l	10,007,100	0.92 0.98		0.94	486 510	
	accuracy			0.95	1490	
Decision Tree	macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95	1490 1490	
	<pre>confusion_matrix(y_test, predictions)</pre>					
	array([[460, 24, 10], [15, 465, 6], [4, 11, 495]])					

	nrint(classif	ication non	ont/v too	t prodic	tions))
	<pre>print(classification_report(y_test, predictions))</pre>				
		precision	recall	f1-scor	e <mark>support</mark>
	1.0	0.98	0.97		
	2.0	0.97 0.98	0.97 0.99		
Random Forest	accuracy macro avg	0.98	0.98	0.9	
	weighted avg	0.98	0.98		8 1490
	confusion_matr	ix(y_test,	prediction	ıs)	
	array([[480,	10, 4], 75, 1],			
		2, 506]])			
	<pre>print(classificati</pre>	on report(y te	st, predict	ions))	
	prec	ision recal	l f1-score	support	
	1.0	0.94 0.8		494	
	2.0 3.0	0.78 0.8 0.89 0.8		486 510	
KNN	accuracy		0.87	1490	
	macro avg weighted avg	0.87 0.8 0.87 0.8			
	Will Gallinii Iwa				
	confusion_m	atrix(y_t	est, pr	ealction	15)
	array([[433	. 51. 1	01.		
		, 422, 4			
		, 69, 43			
	print(classific	ation_report(y_test, pr	edictions))	(
	p	recision r	ecall f1-	score sup	port
	1.0	0.94	0.88	0.91	494
	2.0	0.78	0.87	0.82	486
	3.0	0.89	0.85	0.87	510
	accuracy	0.67	0.07		1490
Logistic Regression	macro avg weighted avg	0.87 0.87	0.87 0.87		1490 1490
Logistic regression	confusion_matr				
	com aston_matr	(yccs.c,	p. carctio		
	array([[433,	51 101			
	[20, 4	22, 44],			
	[6,	69, 435]])			

Final Model Selection Justification (2 Marks):

Final Model	Reasoning					
Logistic Regression	Random Forest model is selected for fetal AI due to its ability to handle high-dimensional data, deal with non-linear relationships, and mitigate overfitting, thus providing robust and accurate predictions for fetal health assessments.					