F1G.	SUBCLASS	
0.G. F	CLASS	
APPROVED	*	DRAFTSMAN

FIG._1C

--

	A-63909-1	
APPROVED (1.G. F1G. BY CLASS SUBCLASS	+	3 / 52 0 NH
APPROVED BY ORAFTSMAH	FIG1K	N11 Fe
	DMTO \O\O\	O O O P O CN FIG1L
	DMTO O Fc	DMTO N N O ODMT ON O CN
	FIG1M	BRANCHING FIG1N
	_{рмто} о о о о о о о о о о о о о о о о о о	0 0 0 0 P 0 CN

FIG._4

$$\begin{array}{c|c}
O & NH_2 \\
\hline
O & NN & N \\
NN & N \\
\hline
O & (Bu_3NH)_2H_2P_2O_7 \\
\hline
H_2O & \\
\hline
\end{array}$$

FIG._5

APPROVED (C.G. FIG. BY CLASS SUBCLASS BRAFTSMAN	HNG HNG	-ω -ω -ω -ω -ω -ω -ω -ω -ω -ω -ω -ω -ω -
APPROVED 8Y BRAFTSMAN		
		± ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		5
	NH ₂	± ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		ğ
	O A A	

9⁻.5/-

9 / 52

FIG._7

0.G. FIG.	CLASS SUBCLASS	
APPROVED	} <u>.</u>	DRAFTSHAH

ANY POSITION ATTACHMENT

FIG._8B

11 / 52

FIG._9

Ph	(tBu)(Ph) ₂ Si $-(OCH_2CH_2)_{\overline{h}}$ Br $I - ONa$ $n = 2, C121$ $n = 3, W68$ $n = 4, W73$ (tBu)(Ph) ₂ Si $-(OCH_2CH_2)_{\overline{h}}$ O $-(OCH_$	H—(OCH ₂ CH ₂) _n O — (O) — I H—= (O) — S—CH ₂ CH ₂ Si(CH ₃) ₃ $n = 2, C122$ $n = 3, W70$ $n = 4, W75$	1 $^{\circ}$
н—(ОСН ₂ СН ₂) п ОН	CBr ₄ / PPh ₃ / CH ₂ Cl ₂	TBAF / THF	Н—(ОСН ₂ СН ₂)ҢО—(

n = 2, H3 n = 3, W71 n = 4, W76

FIG._11A

14/52

FIG._11B

FIG._11C

ດ໌

ດ໌

-

<u>.</u>	SUBCLASS	
0.G. F	CLASS	
APPROVED	<u>ن</u> و	DRAFTSMAN
•		

THIS PROCESS CAN BE REPEATED UNTIL THE DESIRED # OF FERROCENE IS OBTAINED, AND THEN HYDROXY GROUPS ON FERROCENE ARE CAPPED USING THE LEFT PHOSPHORAMIDITE IN ORDER TO INCREASE THE SOLUBILITY OF FERROCENE IN WATER.

-CPG က် Ω

18 / 52

_

THIS COUPLING PROCESS CAN BE REPEATED UNTIL DESIRED # OF THE BRANCHING POINTS

APPROVED O.G. FIG.

FIG._14

FIG._18

FIG._16A

120 111 *-135 -*-135 112 106 - 108 / -107 FIG._16C

25 / 52

APPROVED | 0.G. F.1G.

CLASS

= FIRST HYBRIDIZABLE PORTION OF LABEL PROBE
= RECRUITMENT LINKER

A = NUCLEOSIDE REPLACEMENT

B = ATTACHMENT TO A BASE

C = ATTACHEMENT TO A RIBOSE

D = ATTACHMENT TO A PHOSPHATE

E = METALLOCENE POLYMER, ATTACHED TO A RIBOSE, PHOSPHATE, OR BASE

F = DENDRIMER STRUCTURE, ATTACHED VIA A RIBOSE, PHOSPHATE OR BASE

FIG._17A

FIG._17B

CLASS

H = ATTACHMENT OF METALLOCENE POLYMERS
I = ATTACHMENT VIA DENDRIMER STRUCTURE
J = ATTACHMENT USING STANDARD LINKERS

FIG._17D

28 / 52

FIG._19

FIG._19A

O.G. FIG.

FIG._19A

FIG._19B

D179

5' - A(C15)CCTGGTCTTGACATCCACGGAAGGCGTGGAAATACGTATTCGTGCCTA - 3'

D309 (Dendrimer)

5' - (W38)(Branching)(Branching)CATGGTTAACGTCAATTGCTGCGGTTATTAA - 3'

D295

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)CCCATGGTTAGACTGAATTGCTGCGGTTATTAA - 3'

D297

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)TATGCTCTTGATGGTGCTGTGGAAATCTACTGG - 3'

D298

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)ATGGTGCTGTGGAAATCTACTGG - 3'

D296

5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)TGACTGAATTGCTGCGGTTATTAA - 3'

D112

5' - CTTCCGTGGATGTCAAGACCAGGAU - 4 unit wire (C11) - 3'

D94

5' - ACCATGGACACAGAU - 4 unit wire (C11) - 3'

D109

5' - CTGCGGTTATTAACU - 4 unit wire (C11) - 3'

2Tar

5' – TAG GCA CGA ATA CGT ATT TCC ACG ATA AAT ATA ATT AAT AAC CGC AGC AAT TGA CGT ATA AAG CTA TCC CAG TAG ATT TCC ACA GC – 3'

D349

5' - A(C15)C (C15)GT GTC CAT GGT AGT AGC TTA TCG TGG AAA TAC GTA TTC GTG CCT A - 3'

D382

5' - (Y63)G(Y63) CT(Y63) C(Y63)G (Y63)C(Y63) CCC ATG GTT AGA CTG AAT TGC TGC GGT TAT TAA - 3'

D383

5' – (Y63)G(Y63) CT(Y63) C(Y63)G (Y63)C(Y63) CCC ATG GTT AGA CTG GCT GTG GAA ATC TAC TGG –3'

D468

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) (glen)(glen)(glen) CTT TAC TCC CTT CCT CCC CGC TGA AAG TAC - 3'

29 / 52

APPROVED O.G. FIG.

BY CLASS SUBCLASS

METSMAN

D449

--5² -- CGG AGT TAG CCG GTG CTT CTT CTG CGG G(C131)(C131) (C131)(C131)(N6) G(N6)C T(N6)C (N6)G(N6) C(N6)T - 3'

D417

5'-CTT TAC TCC CTT CCT CCC CGC TGA AAG TAC TTT ACA ACC C-3'

EU1

5' - ATC CTG GTC TTG ACA TCC ACG GAA GAT GTC CCT ACA GTC TCC ATC AGG CAG TTT CCC AGA CA - 3'

MTI

5' - TCT ACA TGC CGT ACA TAC GGA ACG TAC GGA GCA TCC TGG TCT TGA CAT CCA CGG AAG - 3'

D358

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) CCG TAT GTA CGG CAT GTA GA - 3'

D334

5' - GCT ACT ACC ATG GAC ACA GAU - 4 unit wire (C11) - 3'

D335

5' - ACA GAC ATC AGA GTA ATC (N6)GC C(N6)G TC(N6) TGG (N6)T - 3'

LP280

5' - GAT TAC TCT GAT GTC TGT CCA TCT GTG TCC ATG GTA GTA GC - 3'

LN280

5' - GAT TAC TCT GAT GTC TGT CCT AGT ACG AGT CAG TCT CTC CA - 3'

NC112

5' – TCT ACA TGC CGT ACA TAC GGA ACG TAC GGA GCG ATT CGA CTG ACA GTC GTA ACC TCA – 3'

D336

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) GCG ACA ACT GTA CCA TCT GTG TCC ATG GT - 3'

D405

D429

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) (C131)AT CTG TGT CCA TGG TAG TAG C - 3'

FIG._19B

APPROVED O.G. FIG.

DRAFTSMAN

POTENTIAL / V vs Ag / AgCI

APPROVED | 0.G. F1G.

POTENTIAL / V vs Ag / AgCI

APPROVED O.G. FIG.

POTENTIAL / V vs Ag / AgCI

DRAFTSMAH

APPROVED O.G. FIG.

POTENTIAL / V vs Ag / AgCI

POTENTIAL / V

DRAFTSMAH

POTENTIAL / V vs Ag / AgCI

POTENTIAL / V vs Ag / AgCI

CI.ASS SUBCLASS

APPROVED 0.G. FIG.

POTENTIAL / V vs Ag / AgCI

CLASS SUBCLASS

DRAFTSMAN

APPROVED O.G. FIG.

APPROVED 0.G. FIG.

DRAFTSMAH

POTENTIAL / V vs Ag / AgCI

CLASS SUBCLASS

ORAFTSHAN

APPROVED 10.G. FIG.

POTENTIAL / V vs Ag / AgCI

APPROVED O. G. FIG.

POTENTIAL / V

APPROVED 0.6. F.16.

POTENTIAL / V vs Ag / AgCI

CLASS SUBCLASS

DRAFTSMAN

APPROVED [O.G. F.IG.

POTENTIAL / V vs Ag / AgCI

APPROVED O.G. FIG.

8Y CLASS SUBCLASS

POTENTIAL / V vs Ag / AgCI

APROVED O. G. FIG.

BY CLASS SUBCLASS
DRAFTSMAH

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) TTC TGC ACC GTA GCC ATG AAA GAT TGT ACT GAG - 3'

D368

5' - (H2)CC TTC CTT TCC ACA U - 4 UNIT WIRE (C11) - 3'

HIVCOMP

5' - ATG TGG AAA GGA AGG ACA CCA AAT GAA AGA TTG TAC TGA GAG ACA GGC TAA TTT TTT AGG GAA GAT CTG G-3'

HIVLIG

5' - CCA GAT CTT CCC TAA AAA ATT AGC CTG TCT CTC AGT ACA ATC TTT CAT TTG GTG T - 3'

FIG._22A POTENTIAL (mV) SUBCLASS APPRIOVED 10.G. FIG. 120 350 2 20 89 2 70 CLASS | 0.2506 0.8442 0.4778 ip (nA) 1.593 0.05 2.8 0.1 DRAFTSHAH POTENTIAL (mV) 9499 9499 50 150 150 2000 2228 22000 1 8 STDEV ip (nA) 0.29 2.99 0.17 0.71 1.1 0.51 AVERAGE ip (nA) 0.19 0.36 0.63 1.06 3.03 2.99 2.42 7.46 0.3146 0.3441 0.196 0.8547 0.722 ip (nA) 0.7449 2.661 0.9 1.2 7.376 12.49 9.278 0.586 1.756 0.77 2.448 1.426 3 3.7 1.571 4.088 0 0 1.42 0.1 9. 3+ rRNA+ (2) 20-Fc ETMs+reg rRNA+ (2) 40-Fc ETMs+reg system 2+ rRNA EU2+ EU1, 2 reg helpers EU2+EŪ1, 2 reg **RNA EU2+reg** + reg system (2) 40-Fc ETMs+reg helpers+reg helpers+reg helpers+reg (2) 20-Fc ETMs+reg system EU2+reg HYBRID CODE system system system system system ELECTRODE $\overline{\omega}$ $\overline{\alpha}$ $\overline{\Delta}$ $\overline{\Delta}$ 2882 3323 25 26 28 27 917 ~ യ ശ ഹ **ω** 4 ← α 出旧 こちこの တပ္သတ - ω 4 ω 5040 4000 2 4 9 4 MEASURER A B B B A A B B ABBB**BBBA** ABBBABBBAABBM A M

0.G. FIG.	CLASS SUBCLASS	
APPROVED	>- #0	DRAFTSHAN

											_									
	E ₀ (mv)	09		09	09	09			09	20	8	09	09	90		9	20	50 60	20	50
2/π*in	(NA)	4.465		96.0	2.1	1.64			1.147	1.04 0.1958	0.1300	2.38	0.504	2.25		0.71	4.414	0.7741	2.319	3.173
L	E_0 (mV)	170 170	170	170 180	170	180	170	081 081	160	170	30	160 160	160	190	170 160	170	170	170 170	170 170	170 160
	STDEV	1.25		2.03		2.55		2.64		09.0		0.29	0.34	0.0	0.94		#DIV / 0I	1.29	3.22	0.88
2/π [*] i _p (nA)	AVERAGE	1.93		3.39	2.23		5.82		0.73			1.25	0.56		2.54		1.22	4.68	5.12	4.96
2	RAW DATA	1.041 2.811	5.7	1.862 2.613	0.6566	0.8548 5.167	5.799	8.468 3.187	0.1988	1.382	0.0104	1.459 1.042	0.3208	0.7994	3.297 1.492	2.841	1.215	3.768 5.592	2.842 7.4	5.582 4.337
HYBRID	CODE	5-		2+	(b		÷9		<u>-</u>		7+	ď	5	+8		-6	+6	10-	10+
	ELECTRODE	46 47	41	43 44	53	20 20 20	49	25 52	61	62	†	58 59	70	71	65 67	89	92	73 74	78 80	77 79
i	FILE	3 2	1	- 2	5	ဂ ဖ	က	44	7	ω α	0	9	9	11	တတ	10	12	11 12	14 14	13 13
	MEASURER	JZ A	4	JZ A	∢!	λ _Α	Zſ	A JZ	Zſ	4 □	32	ŊΥ	Zſ	A	A JZ	Α	JZ	JZ A	JZ A	A JZ

FIG. 22B

╀

APPROVED O.G. FIG.

					¥ .	T :				
STDEV 2 / π * i _p (nA)	5.8	12.9	18.9	23.5	2.7	5.9	1.6	6.9		
AVERAGE 2 / π ^{* i} p (nA)	14.5	9.09	45.5	74.9	1.6	8.3	3.7	9.0		
E ₀ (mV)	150	200	190	210	200	230	230	240		
	200	220	210	230	250	260	260	280		
	100	110	120	130	120	130	150	160		
	110	120	120	130	-	140	140	90		
2/π ^{* i} p (nA)	22.6	53.52	72.4	105.8	5.665	10.24	4.513	10.31		
	9.622	71.13	30.67	48.66	0.6443	14.57	4.264	17.46		
	14.51	71.66	44.49	70.42	0.0864	7.881	4.553	7.445		
	11.15	45.9	34.43	74.77	0	0.5476	1.314	0.8812		
HYBRID	D548	D549	D550	D551	D548	D549	D550	D551		
	(1x10)**	(2x10)	(2x5)	(4x5)	(1x10)	(2x10)	(2x5)	(4x5)		
SURFACE		"+" Surface 2:2:1	D94 / H6 / M44*, total thiol = 833 uM		"-" Surface 2:2:1 D109 / H6 M44*, · total thiol = 833 uM					
ELECTRODE	1	7	3	5	9	15	11	13		
	17	23	19	21	25	31	27	29		
	8	2	6	4	16	10	14	12		
	24	18	22	20	32	26	30	28		
FILE	1	8	4	7	9	16	12	15		
	17	22	18	19	25	30	26	27		
	8	1	7	4	16	9	15	12		
	22	1	19	18	30	25	27	26		
EXPT	409	409	409	409	409	409	409	409		
	409	409	409	409	409	409	409	409		
	73	73	73	73	73	73	73	73		
	73	73	73	73	73	73	73	73		
MEASURER	A A N	V V V	A A Z Z	VVP	AANN	AANN	AANN	AANN		

FIG. 23F

** Also note: (n x m) means there are m bristles, each with n Fc's.

+

* Note: M44 = M43.

5, 3, H _ Fc-PO ₄ -Fc-PO ₄ -Fc	FIG. 24A
Fc-PO ₄	

STDEV 2/π * i _p (nA)	14.53	4.70					
HYBRID $\left 2/\pi^*i_p\right $ (nA) $\left E_o\left(mV\right)\right $ $\left 2/\pi^*i_p\left(nA\right)\right $ $2/\pi^*i_p$ (nA)	18.04	3.12					
E _o (mV)	170 180 170 160	160 160 180					
2/π * i _p (nA)	4.81 20.63 37.42 9.31	0.1 9.97 0 2.425					
HYBRID	10 uM D405 in 6x SSC w/50% FCS	10 uM D405 in 6x SSC w/50% FCS					
SURFACE	"+" Surface 2:2:1 D94 / H6 / M44*, total thiol = 833 uM	"-" Surface 2:2:1 D109 / H6 / M44*, total thiol = 833 uM					
ELEC- TRODE	1 8 2 4	86 75					
FILE	-4-4	7 10 5 8					
EXPT	52 52 384 384	52 52 384 384					
MEASURER	4 4 Z Z	Y Y Z					

*NOTE: M44 = M43

:IG._24B

FIG._25B

