Econometrics and Statistical Models Group Project

CRETIN Lucie - PARIS Emma - SZEPEK Maria Sofie - VINCENOT Amandine

CONTENT

- Aim of the project and data source
- Data cleaned and recoded
- Descriptive statistics for each variable
- Graph for each quantitative variable
- Graphs for each qualitative variable
- Methodology used: from classical regression (linear) to GAM
- Results and comparison of prediction accuracy
- Conclusion

Aim of the project and data source

- The aim of this project is to predict the cost of insurance using regression by leveraging personal health data.
- Our data source is composed of 1,338 rows and 7 variables: age, sex, bmi, children, smoker, region (as explaining variables) and charges (to be explained variable).
- ► The dataset is hosted on Kaggle:

https://www.kaggle.com/mirichoi0218/insurance

Step 1: Verify data structure

This is a data frame with 1,338 rows and 7 columns:

- ▶ The are 3 character strings (categorical) variables: sex, smoker, region
- ► There are 4 numerical variables : age, bmi, children, charges
- We consider the variable charges as dependent variable thus continuous

> str(insurance)

Step 2: Recode qualitative variables by factorization

Step 3: Check for missing values

```
> # Check for missing values
> summary(insurance)
                                  bmi
                                                children
                                                             smoker
                                                                              region
                                                                                           charges
      age
                    sex
Min. :18.00
               female:662
                                             Min.
                                                    :0.000
                             Min. :15.96
                                                             no :1064
                                                                        northeast: 324
                                                                                        Min. : 1122
1st Qu.:27.00
                male :676
                             1st Qu.:26.30
                                             1st Qu.:0.000
                                                             yes: 274
                                                                        northwest:325
                                                                                        1st Qu.: 4740
Median :39.00
                             Median :30.40
                                             Median :1.000
                                                                        southeast: 364
                                                                                        Median: 9382
                                                                        southwest:325
                                                                                               :13270
Mean
      :39.21
                             Mean
                                   :30.66
                                             Mean
                                                   :1.095
                                                                                        Mean
 3rd Qu.:51.00
                             3rd Qu.:34.69
                                             3rd Qu.:2.000
                                                                                        3rd Qu.:16640
       :64.00
                                    :53.13
                                             Max.
                                                    :5.000
                                                                                               :63770
Max.
                             Max.
                                                                                        Max.
> sum(is.na(insurance))
[1] 0
```

There is no missing values.

Step 3: Check if the variable charges is normally distributed

```
> # Check if the variable charges is normally distributed with histogram
> hist(charges, main = "Charges")
> boxplot(charges, main = "Charges")
> insurance$logcharges = log(insurance$charges)
> hist(logcharges, main = "Logcharges")
> boxplot(logcharges, main = "Logcharges")
> par(mfrow=c(1,1))
```


Step 4: Remove outliers for quantitative variables

Descriptive statistics for each variable

> summary(insurance_clean)

age	sex	bmi	children	smoker	region	charges	logcharges
Min. :18.0	female:659	Min. :15.96	Min. :0.000	no :1058	northeast:323	Min. : 1122	Min. : 7.023
1st Qu.:27.0	male :670	1st Qu.:26.22	1st Qu.:0.000	yes: 271	northwest:325	1st Qu.: 4738	1st Qu.: 8.463
Median :39.0		Median :30.30	Median :1.000		southeast:357	Median : 9361	Median : 9.144
Mean :39.2		Mean :30.54	Mean :1.096		southwest:324	Mean :13212	Mean : 9.097
3rd Qu.:51.0		3rd Qu.:34.48	3rd Qu.:2.000			3rd Qu.:16587	3rd Qu.: 9.716
Max. :64.0		Max. :46.75	Max. :5.000			Max. :62593	Max. :11.044

Graph for each quantitative variable

Graphs for each qualitative variable

SIMPLE LINEAR MODEL REGRESSION

SIMPLE LINEAR REGRESSION

Matrice de nuages de points

By looking at the scatter-plot, we can see that the variable age seems to have a real impact on logcharges. Let's try to do a simple linear regression with these two variables

SIMPLE LINEAR MODEL REGRESSION WITH AGE

SIMPLE LINEAR REGRESSION WITH AGE

```
# Model estimation
slm.fit = lm(logcharges~age)
summary(slm.fit)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.518647 0.052401 143.48 <2e-16 ***
age 0.035941 0.001264 28.43 <2e-16 ***
```


All the p-value are less than 5%, so all the coefficient are significant.

Multiple R-squared: 0.4031, Adjusted R-squared: 0.4026. This model explains 40,3% of the logcharges variations.

Since pvalue<5%, we can conclude that the coefficient beta_I is significantly different from 0 and we can interpret its value.

beta_I = 7,52 > 0 so an increase by I unit of age impacts logcharges by an increase of 7,52.

SIMPLE LINEAR MODEL REGRESSION WITH AGE

SIMPLE LINEAR REGRESSION WITH AGE

With the qqplot, we can see that the residuals are not normally distributed.

#Shapiro-Wilks test :
#H0 : the distribution is normal.
#H1 : the distribution is not normal.
shapiro.test(residuals(lm.fit1))

data: residuals(slm.fit)
W = 0.83248, p-value < 2.2e-16</pre>

p-value < 2.2e-16 <<< 5% so we reject H0. The distribution cannot be considered as normal.

By checking at the homoscedacity, we also can see that our model can't be validate.

First estimation of the model

Multiple linear regression:

```
# Model estimation
fit1 = lm(logcharges~. -charges, data=insurance_clean)
summary(fit1)
```

We try to fit a first model with all the explanatory variables and we remove the charges variable because we use the logcharges variable.

Coefficients:

Estimate Std. Error t value Pr(>|t|) Multiple R-squared: 0.7679 (Intercept) 7.0305581 0.0723960 97.112 < 2e-16 *** 0.0345816 0.0008721 39.655 < 2e-16 *** -0.0754164 0.0244012 -3.091 0.002038 ** sexmale Adjusted R-squared: 0.7666 bmi 0.0133748 0.0020960 6.381 2.42e-10 *** 0.1018568 0.0100995 10.085 < 2e-16 *** children So the model is quite good. 1.5543228 0.0302795 51.333 < 2e-16 *** smokerves regionnorthwest -0.0637876 0.0349057 -1.827 0.067860 .

By looking at the pvalue (Pr(>|t|)), not all are the predictors are significant, we need to remove them. The non-significant predictor is regionnorthwest. It means that we have to remove region. We will remove it after the VIF analysis.

regionsouthwest -0.1289522 0.0350271 -3.681 0.000241 ***

First estimation of the model

VIF analysis:

```
# Variance inflation factor (VIF)
# ----
library("car")
vif(fit1)
```

The larger the VIF is, the more correlated the variables are. VIF provides the link between the variable we are considering and all the others.

> vif(fit1)

```
GVIF Df GVIF^(1/(2*Df))
                  1.023271
                                     1.011569
age
                  1.009437 1
                                     1.004707
sex
bmi
                  4.407344 1
                                     2.099368
children.
                  1.046300 5
                                     1.004536
smoker
                                     1.009813
region
                  1.124267
                               1.019714
bmi_classification 4.328643 3
                                     1.276611
```

In our case, all VIF are really close to 1, so there is no problem of collinearity.

We can continue with all predictors and apply the stepwise selection.

First estimation of the model

Variables stepwise selection:

```
#We remove first the least significant variable, which is region. fit2 = update(fit1,~. -region) summary(fit2)
```

We remove first the least significant variable, which is region.

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0121103 0.0701685 99.932 < 2e-16 ***

age 0.0347158 0.0008781 39.536 < 2e-16 ***

sexmale -0.0750088 0.0245899 -3.050 0.00233 **

bmi 0.0109087 0.0020225 5.394 8.16e-08 ***

children 0.1017275 0.0101688 10.004 < 2e-16 ***

smokeryes 1.5502366 0.0304293 50.946 < 2e-16 ***
```

We can see that all the pvalue are less than 5%, so all the predictors are now significant.

Multiple R-squared: 0.7638 and Adjusted R-squared: 0.7629, which means that the model is still quite good but not really improved.

Correction of the model

With the plot of age and logcharges, we can see that it seems to be 2 types of populations depending on the age.

We choose to split our dataset into 2 sample : one with logcharges below 9,5 and one with logcharges
above 9,5. Since most of the points are below 9,5, we will use this sample to fit our model.
insurance_clean = insurance_clean[!(insurance_clean\$logcharges >= 9.5),]
str(insurance_clean)
We have removed 413 values.

Model fitting with the new sample.

```
# New estimation of the model with the new sample.
#----
new_model = lm(insurance_clean$logcharges~. -charges, data=insurance_clean)
summary(new_model)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
             6.9175170 0.0392275 176.344 < 2e-16 ***
             0.0443681 0.0004963 89.390 < 2e-16 ***
age
sexmale
             bmi
             0.0012589 0.0011458 1.099 0.272185
children
             1.5779839 0.1971661 8.003 3.70e-15 ***
smokeryes
regionnorthwest -0.0647082 0.0186375 -3.472 0.000541 ***
regionsoutheast -0.1543105 0.0193217
                               -7.986 4.21e-15 ***
regionsouthwest -0.1392752   0.0185442   -7.510   1.41e-13 ***
```

Since the pvalue of bmi is larger than 5%, we should remove it because it means that the coefficient is not significant.

Multiple R-squared: 0.9097, Adjusted R-squared: 0.9089 \rightarrow this model is very good and fit with the data.

Model fitting with the new sample.

```
# Removing BMI
new_model1 = lm(insurance_clean$logcharges~. -charges -bmi, data=insurance_clean)
summary(new_model1)
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               (Intercept)
               0.0444308 0.0004931 90.105 < 2e-16 ***
age
sexmale
              -0.1065010 0.0129848 -8.202 8.07e-16 ***
children
               0.1251799 0.0053794 23.270 < 2e-16 ***
                                                         All the coefficents are now significant.
               1.5645469 0.1968089 7.950 5.55e-15 ***
smokeryes
regionnorthwest -0.0644262 0.0186379 -3.457 0.000572 ***
```

Multiple R-squared: 0.9096, Adjusted R-squared: 0.9089 → this model is very good and fit with the data.

Residual analysis for model validation

Residuals are not normally distributed.

```
#Shapiro-Wilks test :
#H0 : the distribution is normal.
#H1 : the distribution is not normal.
shapiro.test(residuals(new_model))
# p-value < 2.2e-16 <<< 5% so we reject H0.
# The distribition cannot be considered as normal.
data: residuals(new_model1)
W = 0.57005, p-value < 2.2e-16</pre>
```


We cannot validate our model.

Model fitting with the new sample.

smokeryes

All the coefficents are now significant.

Multiple R-squared: 0.9096, Adjusted R-squared: 0.9089 → this model is very good and fit with the data.

1.5645469 0.1968089 7.950 5.55e-15 ***

regionnorthwest -0.0644262 0.0186379 -3.457 0.000572 *** regionsoutheast -0.1488084 0.0186636 -7.973 4.65e-15 *** regionsouthwest -0.1374847 0.0184746 -7.442 2.31e-13 ***

Including interaction effects

Targetedly observe potential interaction effects

Keep significant interaction terms:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                6.9036075 0.0313752 220.034 < 2e-16
                0.0453517 0.0007544 60.115 < 2e-16
sexmale
children1
                0.4057704 0.0477060
                                     8.506 < 2e-16
children2
               0.7198202 0.0605879 11.881 < 2e-16
               0.8450552 0.0762286 11.086 < 2e-16
children3
children4
children5
               1.1887332 0.1633513 7.277 7.45e-13
smokerves
               1.4260097 0.1843915
regionnorthwest -0.0675724 0.0173350 -3.898 0.000104
regionsoutheast -0.1490319 0.0173925 -8.569 < 2e-16
regionsouthwest -0.1412352   0.0171019   -8.258   5.27e-16 ***
age:sexmale
                0.0047948 0.0009138
age:children1 -0.0058804 0.0011863 -4.957 8.56e-07 ***
age:children2
             -0.0109767 0.0015133 -7.253 8.80e-13 ***
age:children3
age:children4
age:children5
             -0.0165203 0.0044794 -3.688 0.000240 ***
```

All the coefficents are now significant.

Multiple R-squared: 0.9239, Adjusted R-squared: 0.9224

→ the inclusion of significant interaction terms improved
the model fit.

Including interaction effects

Investigate predictive power of the model fit4 using train and test set (train set = 80 %-sample):

Based on LOOCV-approach:

0.215615655 0.009465943 0.923876650

```
> cv.err$delta[1] # to print the cross-validation statistics
[1] 0.4717478
> |
```

Considering age as highly explaining variable (based on preprocessing)

```
# polynomial transformation age^2 using I(X^2)
fit5 <-lm(logcharges ~ age + I(age^2) + children + sex + smoker
             + region, data = insurance_sample)
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                     Polynomial term significant.
(Intercept)
              6.560e+00 6.180e-02 106.139 < 2e-16 ***
                                                     Multiple R-squared: 0.9158, Adjusted R-
              6.797e-02 3.598e-03 18.889 < 2e-16 ***
age
I(age^2)
             -3.088e-04 4.656e-05 -6.632 5.69e-11 ***
                                                     squared: 0.9147
children1
              1.484e-01 1.660e-02 8.937 < 2e-16 ***
children2
              2.548e-01 1.911e-02 13.337 < 2e-16
children3
              3.242e-01 2.256e-02 14.373 < 2e-16 ***
children4
              4.075e-01 4.875e-02 8.358 2.40e-16
                                                     Improved fit compared to sam model
children5
              5.575e-01 4.889e-02 11.403 < 2e-16 ***
                                                     without polynomial
sexmale
             -1.018e-01 1.259e-02 -8.088 1.96e-15 ***
smokeryes
            1.624e+00 1.914e-01
                                  8.481 < 2e-16 ***
                                                     term "fit_sample_without_poly": (Multiple
regionnorthwest -7.093e-02 1.808e-02 -3.923 9.42e-05 ***
regionsoutheast -1.552e-01 1.814e-02 -8.551 < 2e-16 ***
                                                     R-squared: 0.9117, Adjusted R-
regionsouthwest -1.390e-01 1.791e-02 -7.761 2.28e-14 ***
                                                     squared: 0.9106)
```

Anova test: is the additional polynomial term significant?

- p-value (fit5) < 0.05 -> the additional polynomial term is significant.
- The best model seems to be Model2 (fit5) since pvalue for the inclusion of I(age^3) indicates non-significance

Investigate predictive power of the model fit5

Using LOOCV-approach:

```
> cv.err$delta[1] # to print the cross-validation statistics
[1] 0.4717478
> |
```

Including relevant interaction effects

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                6.485e+00 6.155e-02 105.363 < 2e-16
age
I(age^2)
               -3.374e-04 4.319e-05 -7.812 1.57e-14
children1
               3.861e-01 4.625e-02 8.348 2.62e-16
children2
               6.826e-01 5.885e-02 11.601 < 2e-16
children3
              7.927e-01 7.410e-02 10.698 < 2e-16
children4
               1.040e+00 1.677e-01 6.200 8.59e-10
children5
              1.237e+00 1.583e-01 7.816 1.52e-14
sexmale
               -2.919e-01 3.531e-02 -8.266 4.98e-16
              1.524e+00 1.789e-01 8.515 < 2e-16
smokerves
regionnorthwest -7.028e-02 1.678e-02 -4.187 3.11e-05
regionsoutheast -1.496e-01 1.684e-02 -8.887 < 2e-16
regionsouthwest -1.402e-01 1.656e-02 -8.466 < 2e-16
age:sexmale
             4.828e-03 8.847e-04 5.457 6.27e-08
age:children1 -6.377e-03 1.150e-03 -5.545 3.88e-08
age:children2 -1.122e-02 1.465e-03 -7.656 4.98e-14
age:children3
              -1.225e-02 1.835e-03 -6.674 4.38e-11
age:children4 -1.615e-02 4.037e-03 -4.000 6.87e-05
age:children5
              -1.919e-02 4.350e-03 -4.411 1.15e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.175 on 894 degrees of freedom Multiple R-squared: 0.9287, Adjusted R-squared: 0.9273 F-statistic: 647.3 on 18 and 894 DF, p-value: < 2.2e-16

- Multiple R-squared: 0.9287, Adjusted R-squared: 0.9273
- \rightarrow so far best model fit

Investigate predictive power of the model fit5

```
\label{eq:fit6}  \begin{tabular}{ll} fit6 <-lm(logcharges $\sim$ age + I(age^2) + children + sex + smoker + region \\ & + age*sex + age*children \\ & , data = insurance\_sample) \\ summary(fit6) \\ \end{tabular}
```

Using LOOCV-approach:

```
> cv.err$delta[1] # to print the cross-validation statistics
[1] 0.4717478
> |
```

GAMs extension to multiple linear regression

```
# GAM using quartiles for the knots
gam1 = lm(logcharges \sim ns(age, knots = c(26, 39, 51)) + ns(bmi, knots = c(25, 30.10, 33.82))
              +ns(children, knots=c(1, 1.084, 2))+
             +region+smoker+sex, data=insurance_clean)
summary(qam1)
par(mfrow=c(2,3))
plot.Gam(gam1, se=TRUE, col="red")
ns(age, knots = c(26, 39, 51))
                                                      0.2
                                                      0.0
                                                            1 2 3 4 5
        20 30 40 50
                                     30
                southwest
 partial for region
                                                      0.02
                          partial for smok
                                                   partial for sex
                                                      -0.02
                                    smoker
            region
                                                               sex
```

```
(Intercept)
                                       7.73146
ns(age, knots = c(26, 39, 51))1
                                       0.76768
                                       1.24587
ns(age, knots = c(26, 39, 51))2
ns(age, knots = c(26, 39, 51))3
                                       2.11484
ns(age, knots = c(26, 39, 51))4
                                       1.39093
                                                   0.06066
ns(bmi, knots = c(25, 30.1, 33.82))1
                                       0.22805
                                                   0.09340
                                                             2.442 0.014762 *
ns(bmi, knots = c(25, 30.1, 33.82))2
                                       0.21138
                                                   0.08789
                                                             2.405 0.016327 *
ns(bmi, knots = c(25, 30.1, 33.82))3
                                       0.20853
                                                   0.22819
                                                             0.914 0.360983
ns(bmi, knots = c(25, 30.1, 33.82))4
                                      -0.06441
                                                   0.17277
                                                            -0.373 0.709363
ns(children, knots = c(1, 1.084, 2))1 0.36285
                                                   0.08996
                                                             4.033 5.85e-05 ***
ns(children, knots = c(1, 1.084, 2))2 0.14856
                                                  0.07291
                                                             2.037 0.041828
ns(children, knots = c(1, 1.084, 2))3 0.30557
                                                   0.10665
                                                             2.865 0.004241 **
ns(children, knots = c(1, 1.084, 2))4 0.55634
                                                             4.798 1.81e-06 ***
                                                   0.11595
                                                  0.03492
regionnorthwest
                                       -0.07366
                                                            -2.109 0.035118 *
regionsoutheast
                                      -0.17132
                                                   0.03586
regionsouthwest
                                      -0.16631
                                                   0.03542
smokeryes
                                       1.33257
                                                   0.04036
                                      -0.08623
sexmale
                                                   0.02466
                                                            -3.498 0.000487 ***
```

Pvalue of BMI is larger than 5%, so we will remove it.

Multiple R-squared: 0.7179, Adjusted R-

squared: 0.7138

► GAMs extension to multiple linear regression

All the coefficients are now significant.


```
Coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                       7.90385
ns(age, knots = c(26, 39, 51))1
                                       0.77365
ns(age, knots = c(26, 39, 51))2
                                       1.25267
ns(age, knots = c(26, 39, 51))3
                                       2.12272
ns(age, knots = c(26, 39, 51))4
                                       1.40720
ns(children, knots = c(1, 1.084, 2))1 0.34292
ns(children, knots = c(1, 1.084, 2))2 0.16142
                                                  0.07326
ns(children, knots = c(1, 1.084, 2))3 0.32238
                                                  0.10711
ns(children, knots = c(1, 1.084, 2))4 0.53840
                                                  0.11655
                                                            4.620 4.26e-06 ***
regionnorthwest
                                      -0.06474
                                      -0.15249
regionsoutheast
                                      -0.15356
regionsouthwest
smokeryes
                                       1.30045
                                      -0.08439
                                                           -3.405 0.000684 ***
sexmale
```

As it is already fitting well, we can try to remove knots for the variable age.

Multiple R-squared: 0.7134, Adjusted R-squared: 0.7103

► GAMs extension to multiple linear regression

All the coefficients are still significant.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                       0.0374993
ns(children, knots = c(1, 1.084, 2))1
                                      0.3549413
                                                  0.0890989
ns(children, knots = c(1, 1.084, 2))2
                                       0.1809915
                                                  0.0732106
                                                              2.472 0.013568
ns(children, knots = c(1, 1.084, 2))3
                                      0.3636599
                                                 0.1061425
                                                              3.426 0.000633 ***
ns(children, knots = c(1, 1.084, 2))4
                                      0.5416857
                                                 0.1163218
                                                              4.657 3.57e-06 ***
regionnorthwest
                                      -0.0636720
                                                 0.0351319
                                                             -1.812 0.070182
regionsoutheast
                                      -0.1543725
                                                 0.0350833
                                                             -4.400 1.18e-05 ***
regionsouthwest
                                      -0.1512407
                                                 0.0355870
                                                             -4.250 2.31e-05
smokeryes
                                       1.2972765
                                                 0.0390968
                                                             33.181 < 2e-16
                                      -0.0850718 0.0248588
                                                            -3.422 0.000642 ***
sexmale.
```

Multiple R-squared: 0.7109, Adjusted R-

squared: 0.7085

GAM with smoothing splines: parameter determination using restricted marginal likelihood (REML)

```
gam7 <- gam(logcharges ~ s(age) + s(age, by=smoker) + s(bmi, by=smoker)
                 + smoker +children , data=insurance_clean, method="REML")
gam.check(gam7)
coef(gam7)
summary(gam7)
Family: gaussian
Link function: identity
Formula:
logcharges \sim s(age) + s(age, by = smoker) + s(bmi, by = smoker) +
   smoker + children
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.66318 0.01756 493.423 < 2e-16 ***
smokeryes 1.52469
                    0.02631 57.943 < 2e-16 ***
children1 0.12807
                    0.02798 4.577 5.16e-06 ***
children2 0.25830
                    0.03110 8.304 2.48e-16 ***
children3 0.23156
                    0.03549
                            6.525 9.70e-11 ***
children4 0.47531 0.07907
                            6.011 2.38e-09 ***
children5 0.42011 0.09298 4.518 6.79e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                edf Ref.df
                             F p-value
              1.001 1.002 52.279 < 2e-16 ***
s(age):smokerno 3.082 4.027 5.419 0.000222 ***
s(bmi):smokerno 1.768 2.237 0.635 0.545213
s(bmi):smokeryes 4.773 5.869 32.830 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Rank: 51/52
R-sq.(adj) = 0.824 Deviance explained = 82.7%
-REML = 647.5 Scale est. = 0.14759 n = 1329
```

R-sq.(adj) = 0.824

Deviance explained = 82.7%

► CONCLUSION with the GAMs extension :

We can see that the R-squared of our GAMs models are not better than the multiple linear regression model we had at the beginning. The best GAM model is the first one with a R-squared equal to 71,8%.