Appl. No. **TO BE ASSIGNED** Amdt. dated January 10, 2005 Preliminary Amendment

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 (Currently amended). A flame retardant thermoplastic resin composition comprising:

- (A) 45 to 95 parts by weight of a polycarbonate resin;
- (B) 1 to 50 parts by weight of a rubber modified vinyl-grafted copolymer prepared by graft-polymerizing (b₁) 5 to 95 % by weight of a monomer mixture consisting of comprising 50 to 95 % by weight of at least one selected from the group consisting of styrene, α-methylstyrene, halogen- or alkyl-substituted styrene, C₁₋₈ methacrylic acid alkyl ester, C₁₋₈ acrylic acid alkyl ester, or a mixture thereof and 5 to 50 % by weight of acrylonitrile, methacylonitrile, C₁₋₈ methacrylic acid alkyl ester, C₁₋₈ acrylic acid alkyl ester, maleic acid anhydride, and or C₁₋₄ alkyl- or phenyl N-substituted maleimide onto (b₂) 5 to 95 % by weight of a rubber polymer selected from the group consisting of butadiene rubber, acryl rubber, ethylene-propylene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, isoprene rubber, copolymer of ethylene-propylene-diene (EPDM), polyorganosiloxane-polyalkyl (meta)acrylate rubber complex and a mixture thereof;
- (C) 0 to 50 parts by weight of a vinyl copolymer prepared from (c_1) 40 to 95 % by weight of at least one selected from the group consisting of styrene, α -methyl styrene, halogen or alkyl substituted styrene, $C_{1.8}$ methacrylic acid alkyl ester, and or $C_{1.8}$ acrylic acid alkyl ester and (c_2) 5 to 60 % by weight of at least one selected from the group consisting of acrylonitrile, methacrylonitrile, $C_{1.8}$ methacrylic acid alkyl ester, $C_{1.8}$ acrylic acid alkyl ester, maleic acid anhydride, and or $C_{1.4}$ alkyl or phenyl N-substituted maleimide;

(D) $1 \sim 30$ parts by weight of a mixture of organic phosphorous compounds consisting of comprising $(d_1) \ 1 \sim 50 \%$ by weight of a cyclic oligomeric phosphazene compound represented by the following Formula (II) and $(d_2) \ 99 \sim 50 \%$ by weight of an oligomeric phosphoric acid ester compound represented by the following Formula (IV), per 100 parts by weight of the sum of (A), (B) and (C): and

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
P = N \\
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
N & N \\
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
N & N \\
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
N & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_1 \\
\hline
R_1 & R_1
\end{array}$$

wherein R_1 is alkyl, aryl, alkyl substituted aryl, aralkyl, alkoxy, aryloxy, amino, or hydroxyl or alkoxy substituted with alkyl, aryl, amino, or hydroxy group or aryloxy substituted with alkyl, aryl, amino, or hydroxy group; k and m are an integer from 0 to 10; R_2 is C_{6-30} dioxyaryl or alkyl substituted C_{6-30} dioxyaryl derivative; and l is a degree of polymerization and the average value of l is from 0.3 to 3. The alkoxy or the aryloxy can be substituted for alkyl, aryl, amino, or hydroxy group.

wherein R_3 , R_4 , R_5 and R_6 are independently a C_{6-20} aryl group or an alkyl-substituted C_{6-20} aryl group, respectively, and n is an integer from 1 to 5 representing the number of

Appl. No. **TO BE ASSIGNED** Amdt. dated January 10, 2005

Preliminary Amendment

repeating units $\frac{1}{6}$ of 1 to 5 and the average value of n in the oligomeric phosphoric acid ester is 1 to 3.

(E) 0.05 to 5.0 parts by weight of a fluorinated polyolefin resin with average particle size of 0.05 to 1,000 μ m and density of 1.2 to 2.3 g/cm³, per 100 parts by weight of (A)+(B)+(C).

Claim 2 (Currently amended). The flame retardant thermoplastic resin composition as defined in claim 1, wherein said cyclic oligomeric phosphazene compound has a linear structure or a structure with a branched chain at the main chain.

Claim 3 (Original). The flame retardant thermoplastic resin composition as defined in claim 1, wherein R_1 is phenoxy and R_2 is a derivative from catechol, resorcinol, hydroquinone, or the bisphenylenediol represented by the following Formula (III):

$$HO \longrightarrow (Y)_z \longrightarrow OH$$
 (III)

wherein Y is alkylene of C_{1-5} , alkylidene of C_{1-5} , cycloalkylidene of C_{5-6} , S or SO_2 , and z is 0 or 1.

Claim 4 (Currently amended). The flame retardant thermoplastic resin composition as defined in claim 1, wherein said R_3 , R_4 , R_5 and R_6 are a respectively a phenyl, a phenyl, a naphthyl a group a, or substituted phenyl in which alkyl is methyl, ethyl, isopropyl, and t-butyl.

Appl. No. **TO BE ASSIGNED** Amdt. dated January 10, 2005

Preliminary Amendment

Claim 5 (New). The flame retardant thermoplastic resin composition as defined in claim 1, wherein said cyclic oligomeric phosphazene compound has a structure with a branched chain at the main chain.

Claim 6 (New). The flame retardant thermoplastic resin composition as defined in claim 1, wherein said R_3 , R_4 , R_5 and R_6 are a respectively alkyl-substituted phenyl in which alkyl is methyl, ethyl, isopropyl, or t-butyl.

Claim 7 (New). The flame retardant thermoplastic resin composition as defined in claim 1, wherein said fluorinated polyolefin resin has an average particle size of 0.05 to $1,000 \mu m$ and a density of 1.2 to 2.3 g/cm^3 .