Elementary Discrete Mathematics

These notes are largely a selection of passages that were more or less directly copied from:

- Kenneth Rosen's Elementary Number Theory and its Applications,
- Jerry Shurman's writeups,
- and Paolo Aluffi's Algebra: Notes from the Underground.

Of course, MathSE and Wikipedia were also consulted.

There being no clean digital copy of Rosen's book, I wrote these notes.

Contents

Chapter 1. Integers	5
1.1. Well-Ordering and Induction	5
1.2. Divisibility	8
1.3. Prime Numbers	9
Chapter 2. Coprimality and Factorization	11
2.1. Greatest Common Divisors	11
2.2. The Euclidean Algorithm	12
2.3. The Fundamental Theorem of Arithmetic	12
Chapter 3. Congruences	15
3.1. Basic Properties	15
3.2. Sun's Remainder Theorem	16
3.3. Wilson's Theorem	16
3.4. Binomials Modulo p	16
Chapter 4. Arithmetic Functions	17
4.1. The Möbius Function	17
4.2. The Euler Totient	19
4.3. Euler's Theorem	21
4.4. The Sum of Divisors	21
Chapter 5. Primitive Roots	23
5.1. The Order of an Integer	23
5.2. Existence of Primitive Roots	24
Chapter 6. Quadratic Residues	27
6.1. The Legendre Symbol	28
6.2. Gauss' Lemma	29
6.3. The Law of Quadratic Reciprocity	31

Integers

The word *integer* comes from the Latin for "intact" or "whole."

The integers are a collection of numbers – a collection so special that entire subfields of mathematics are devoted to understanding them.

The integers include the positive integers,

as well as the negative integers,

$$-1, -2, -3, -4, -5, \dots$$

There is also an integer called 0 that is neither positive nor negative, thought of as a neutral element of the collection.

All together, the postive integers, negative integers, and zero form the collection of integers, which we will denote **Z**.

We will also denote the collection of positive integers by \mathbf{Z}^+ .

1.1. Well-Ordering and Induction

A fundamental fact about the integers is:

The Well-Ordering Principle. Every nonempty subset $X \subseteq \mathbb{Z}^+$ has a least element.

It is logically equivalent to the following:

The Principle of Induction. If a subset $X \subseteq \mathbf{Z}^+$ satisfies $1 \in X$ and $(n \in X \implies n+1 \in X)$, then $X = \mathbf{Z}^+$.

6 1. INTEGERS

PROOF. Let X be a subset of \mathbf{Z}^+ satisfying $1 \in X$ and

$$n \in X \implies n+1 \in X$$
.

We proceed by contradiction: suppose $X \neq \mathbf{Z}^+$. Then there is a positive integer not in X, i.e. $\mathbf{Z}^+ \setminus X$ is nonempty. Then $\mathbf{Z}^+ \setminus X$ has a least element n. Note that $n \neq 1$, since $1 \in X$. Thus n > 1, and since n is the least element not in X, n-1 must be in X. But by assumption, $(n-1)+1=n \in X$, contradicting our assumption that $n \notin X$. This proves that the well-ordering principle implies the principle of induction.

Conversely, consider a nonempty subset $Y \subseteq \mathbb{Z}^+$. If Y has just one element, then that element is the least element of Y. Now suppose the well ordering principle is true for all subsets of \mathbb{Z}^+ with n elements, and suppose Y has n + 1 elements. Take $y \in Y$ and let z be the least element of $Y \setminus y$. Then $\min(\{y, z\})$ is the least element of Y. This proves that the principle of induction implies the well-ordering principle. \square

Also relevant is the following variation on the principle of induction:

Strong Induction. If a subset
$$X \subseteq \mathbf{Z}^+$$
 satisfies $1 \in X$ and $1, \dots, n \in X \implies n+1 \in X$, then $X = \mathbf{Z}^+$.

Despite looking like a stricter requirement, strong induction is actually implied by the principle of induction.

PROOF. Let $Y \subseteq \mathbf{Z}^+$ satisfy $1 \in Y$ and

$$1, \ldots, n \in Y \implies n+1 \in Y$$
.

Let $X \subseteq \mathbf{Z}^+$ be the set of all positive integers $\mathfrak n$ such that all positive integers less than or equal to $\mathfrak n$ are in Y. Then $1 \in X$. Furthermore, if $\mathfrak n \in X$, then $\mathfrak n + 1 \in X$. So then by the principle of induction, $X = \mathbf{Z}^+$, which implies $Y = \mathbf{Z}^+$.

A function is said to be *defined recursively* if it is defined at 1 and if there exists a rule for finding f(n) in terms of f(1) through f(n-1). By strong induction, such functions are defined on all of \mathbf{Z}^+ .

The archetypal example of a recursively defined function is the *factorial function*, given by

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

For example, 6! = 720.

Defined in terms of the factorial function are the binomial coefficients,

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

A quick computation shows that

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Also note that $\binom{n}{0} = \binom{n}{n} = 1$.

By these observations, binomial coefficients are always integers.

THEOREM 1.1.1 (Binomial theorem). Let a and b be integers and n a nonnegative integer. Then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

PROOF. By induction. To see that the claim is true for n = 0, note that

$$(a+b)^0 = 1 = \sum_{k=0}^{0} {0 \choose k} a^k b^{0-k}.$$

8 1. INTEGERS

Now assume the claim is true for all integers $n \leq m$. Then

$$\begin{split} &(a+b)^{m+1} = (a+b)^m (a+b) \\ &= \left(\sum_{k=0}^m \binom{m}{k} a^k b^{m-k}\right) (a+b) \qquad \text{by the inductive step} \\ &= \left(\sum_{k=0}^m \binom{m}{k} a^{k+1} b^{m-k}\right) + \left(\sum_{k=0}^m \binom{m}{k} a^k b^{m-k+1}\right) \\ &= \left(\sum_{k=0}^{m-1} \binom{m}{k} a^{k+1} b^{m-k}\right) + a^{m+1} + \left(\sum_{k=1}^m \binom{m}{k} a^k b^{m-k+1}\right) + b^{m+1} \\ &= \left(\sum_{k=1}^m \binom{m}{k-1} a^k b^{m-k+1}\right) + a^{m+1} + \left(\sum_{k=1}^m \binom{m}{k} a^k b^{m-k+1}\right) + b^{m+1} \\ &= a^{m+1} + \left(\sum_{k=1}^m \binom{m+1}{k} a^k b^{m-k+1}\right) + b^{m+1} \\ &= a^{m+1} + \left(\sum_{k=1}^m \binom{m+1}{k} a^k b^{m-k+1}\right) + b^{m+1} \\ &= \sum_{k=0}^{m+1} \binom{m+1}{k} a^k b^{m+1-k}. \end{split}$$

By induction, the claim is true for all nonnegative integers n.

Two consequences of this formula are that

$$2^n = \sum_{k=0}^n \binom{n}{k}$$
 and $0 = \sum_{k=0}^n (-1)^k \binom{n}{k}$.

1.2. Divisibility

The integers are closed under addition, subtraction, and multiplication. However, not every integer quotient forms another integer.

DEFINITION 1.2.1. Let $a, b \in \mathbf{Z}$. We say a *divides* b (or that b *is divisible* by a, or that b *is a multiple of* a, or that a *is a factor of* b) and write $a \mid b$ if there is some $c \in \mathbf{Z}$ such that b = ac.

PROPOSITION 1.2.2. If $x \mid n$ and $x \mid m$, then for any integers a and b,

$$x \mid (an + bm).$$

PROOF. We have cx = n and dx = m for some integers c and d. So

$$an + bm = acx + bdx = (ac + bd)x$$

which implies $x \mid (an + bm)$.

THEOREM 1.2.3 (Division with remainder). If α and b are integers such that b > 0, then there exist unique integers q and r such that

$$a = bq + r$$
 and $0 \le r < b$.

PROOF. Define the *floor* of x (denoted $\lfloor x \rfloor$) to be the largest integer less than or equal to x. Noting that

$$x-1 < |x| \le x$$

we set q = |a/b|, r = a - b|a/b|. Now observe that

$$a/b - 1 < |a/b| \le a/b$$
.

Multiplying through by b yields

$$a - b < b \lfloor a/b \rfloor \le a$$
.

Invert the inequality to obtain

$$-a \leq -b|a/b| < b-a$$

and then add a:

$$0 \le a - b|a/b| < b$$
.

To show q and r are unique, suppose we have q' and r' such that a = bq' + r'. Then 0 = b(q - q') + (r - r'), i.e. b divides r - r'. But since r and r' are both between 0 and b, their difference is between $\pm b$, so b can divide r - r' only if r - r' = 0, so we must have r = r', and q = q' immediately after.

1.3. Prime Numbers

The positive integer 1 has just one positive divisor. Every other positive integer has at least two positive divisors, being divisible by itself and 1.

DEFINITION 1.3.1. A *prime number* is a positive integer with exactly two positive divisors. A positive integer with more than two positive divisors is *composite*.

10 1. INTEGERS

PROPOSITION 1.3.2. Every integer greater than 1 has a prime divisor.

PROOF. By contradiction. Assume there is a positive integer n greater than 1 with no prime divisors. By the well-ordering principle we may take n to be the smallest such number. If an integer is prime, it has a prime divisor (namely, itself). Taking the contrapositive, an integer with no prime divisors must not be prime. Hence, n is not prime, so we may write n = ab with 1 < a < n and 1 < b < n. Because a < n, a must have a prime divisor. But any prime divisor of a must also be a prime divisor of n, contradicting our assumption that n had no prime divisors.

THEOREM 1.3.3. There are infinitely many prime numbers.¹

PROOF. Consider

$$Q_n = n! + 1$$
.

We know Q_n has a prime divisor, which we will call q_n . Observe that $q_n > n$: otherwise, we would have $q_n \le n$, hence $q_n \mid n!$, hence $q_n \mid (Q_n - n!) = 1$, which is impossible. We have thus found a prime larger than n for any n, so there must be infinitely many primes. \square

The gap between primes can be of any length. Indeed, consider

$$(n+1)!+2$$
, $(n+1)!+3$, ..., $(n+1)!+n+1$.

These n consecutive integers are all composite.

¹Consequently, 0 has infinitely many divisors, and is also the unique integer satisfying this condition.

Coprimality and Factorization

2.1. Greatest Common Divisors

DEFINITION 2.1.1. We say an integer d is a *common divisor* of a and b if both $d \mid a$ and $d \mid b$, and that a common divisor is *greatest* if any common divisor c of a and b also divides d. We denote by (a, b) the greatest common divisor of a and b.

THEOREM 2.1.2 (Bezout's identity). If α and b are integers not both 0, then (α,b) is the smallest positive linear combination of α and b, e.g. there are integers m and n such that

$$am + bn = (a, b)$$
.

PROOF. Consider all integer linear combinations of a and b.

Some of these linear combinations are positive, such as $a^2 + b^2$, so the set of all positive linear combinations of a and b is nonempty. By the well-ordering principle this set has a least element, which we will call d. Let m and n be such that d = am + bn.

Use division with remainder to obtain a = dq + r. Note that

$$r = a - dq = a - (am + bn)q = a(1 - mq) - b(nq),$$

i.e. r is a linear combination of a and b. If r were positive then d wouldn't be the smallest positive linear combination of a and b, so r=0, i.e. $d\mid a$. A nearly identical argument shows that $d\mid b$.

Suppose c is a common divisor of a and b. Then there exist integers u and v such that a = uc and b = vc. But then

$$d = am + bn = ucm + vcn = (um + vn)c,$$

i.e. $c \mid d$. So d = (a, b), and the proof is complete.

DEFINITION 2.1.3. We say two integers a and b are *coprime* if (a, b) = 1.

2.2. The Euclidean Algorithm

Here is a way to compute greatest common divisors.

Euclidean Algorithm. Let $r_0 = a$ and $r_1 = b$ be nonnegative integers with $b \neq 0$. Divide repeatedly to obtain $r_j = r_{j+1}q_{j+1} + r_{j+2}, \qquad 0 < r_{j+2} < r_{j+1}$ for $j \in \{0, \dots, n-2\}$. If $r_n = 0$, then $r_{n-1} = (a,b)$.

We begin by showing that whenever a = bq + r, we have (a, b) = (b, r).

PROOF. If both $c \mid a$ and $c \mid b$ then $c \mid a - bq = r$. Also, if both $c \mid b$ and $c \mid r$ then $c \mid bq + r = a$. Since the common divisors of a and b are the same as the common divisors of b and r, we have (a, b) = (b, r).

Now we show the Euclidean algorithm works.

PROOF. In the situation described above, note that

$$(a,b) = (b,r_2) = (r_2,r_3) = \cdots = (r_{n-1},0) = r_{n-1}.$$

We hit 0 eventually because the sequence of remainders cannot contain more than |a| terms.

2.3. The Fundamental Theorem of Arithmetic

THEOREM 2.3.1. Any positive integer can be uniquely factored into primes.

First we prove existence by contradiction.

PROOF. Let $n \in \mathbf{Z}^+$. Suppose n were the least positive integer such that n cannot be factored into primes. Then n cannot itself be prime, so n = ab with 1 < a < n and 1 < b < n. Thus, a and b admit factorizations into primes. Combining these yields a prime factorization of n, which contradicts our assumption that n had no such prime factorization. \square

Before proving uniqueness, we need an auxillary fact.

PROPOSITION 2.3.2 (Euclid's lemma). *If* a, b, c *are positive integers with* (a,b) = 1 *and* $a \mid bc$, *then* $a \mid c$.

PROOF. Since (a, b) = 1, we may write 1 = am + bn. Multiply by c to obtain c = amc + bnc. But $a \mid amc$ and $a \mid bnc$, so $a \mid c$.

Next, we need to show that primes do not decompose as factors.

PROPOSITION 2.3.3. If a_1, \ldots, a_n are integers and p prime,

$$p \mid a_1 \cdots a_n \implies p \mid a_i \text{ for some i.}$$

PROOF. By induction. If n = 1, then $p = a_1$, hence $p \mid a_1$. Now suppose the claim holds for n = m, and consider $p = a_1 \cdots a_{m+1}$. Then by what was just shown, either $p \mid a_1 \cdots a_m$ or $p \mid a_{m+1}$. But if $p \mid a_1 \cdots a_m$ then $p \mid a_i$ for some i by the inductive hypothesis. \square

We are now ready to prove uniqueness of prime factorization.

PROOF. Suppose n is the smallest positive integer with

$$n=p_1\cdots p_s=q_1\cdots q_t$$

where the p_i and q_j are prime. Consider p_1 . It must divide one of the q_i , let's say q_1 without loss of generality. But q_1 is prime, and since $p_1 \neq 1$, we must have $p_1 = q_1$. Divide through by p_1 to obtain

$$n/p_1 = p_2 \cdots p_s = q_2 \dots q_t$$

contradicting our assumption that n was the smallest positive integer with at least two prime factorizations. \Box

Congruences

The language of congruences was developed by Gauss.

3.1. Basic Properties

DEFINITION 3.1.1. Let $a, b \in \mathbf{Z}$ and $m \in \mathbf{Z}^+$. We say a is *congruent to* b *modulo* m and write $a = b \pmod{m}$ if $m \mid (a - b)$.

PROPOSITION 3.1.2. Being congruent modulo m is an equivalence relation: it is reflexive, symmetric, and transitive.

PROOF. Since every number divides 0, we have $\mathfrak{m} \mid (\mathfrak{a} - \mathfrak{a})$, thus $\mathfrak{a} = \mathfrak{a} \pmod{\mathfrak{m}}$. Suppose $\mathfrak{a} = \mathfrak{b} \pmod{\mathfrak{m}}$. Then $\mathfrak{m} \mid (\mathfrak{a} - \mathfrak{b})$, hence $\mathfrak{m} \mid (\mathfrak{b} - \mathfrak{a})$, hence $\mathfrak{b} = \mathfrak{a} \pmod{\mathfrak{m}}$. Finally, suppose $\mathfrak{a} = \mathfrak{b} \pmod{\mathfrak{m}}$ and $\mathfrak{b} = \mathfrak{c} \pmod{\mathfrak{m}}$. Then $\mathfrak{m} \mid (\mathfrak{a} - \mathfrak{b})$ and $\mathfrak{m} \mid (\mathfrak{b} - \mathfrak{c})$, hence

$$m \mid ((a-b) + (b-c)) = (a-c),$$

hence $a = c \pmod{m}$.

One can do arithmetic with congruences.

PROPOSITION 3.1.3. Let $a, b, c, d \in \mathbf{Z}$ and $m \in \mathbf{Z}^+$. If $a = b \pmod{m}$ and $c = d \pmod{m}$, then

- (1) $a + c = b + d \pmod{m}$,
- (2) $a c = b d \pmod{m}$, and
- (3) $ac = bd \pmod{m}$.

PROOF. We have $m \mid (a - b)$ and $m \mid (c - d)$. Observe that

$$m \mid ((a-b) + (c-d)) = ((a+c) - (b+d)),$$

$$m \mid ((a-b) - (c-d)) = ((a-c) - (b-d)),$$

and

$$m \mid (a-b)c + b(c-d) = ac - bc + bc - bd = ac - bd,$$

from which the result follows.

3.2. Sun's Remainder Theorem

THEOREM 3.2.1. Given integers $a_1, ..., a_k$ and pairwise coprime integers $n_1, ..., n_k$, the system of congruences

$$x = a_i \pmod{n_i}$$

has a solution unique modulo $N = \prod_{i=1}^k n_i$.

PROOF. Let $N_i = N/n_i$. By pairwise coprimality of the n_i , we have $(N_i, n_i) = 1$. Hence, we can find inverses y_i such that $N_i y_i = 1 \pmod{n_i}$. Consider

$$x = \alpha_1 N_1 y_1 + \dots + \alpha_k N_k y_k.$$

Since $N_1y_1=1 \pmod{n_1}$, we have $a_1N_1y_1=a_1 \pmod{n_1}$. Since $n_1\mid N_j$ for $j\neq 1$, all the other terms vanish, so $x=a_1 \pmod{n_1}$. Similarly, $x=a_i \pmod{n_i}$ for all $i\in\{1,\ldots,k\}$.

To see that the solution is unique modulo N, suppose x and \tilde{x} are both solutions. Then $x - \tilde{x} = 0 \pmod{n_i}$. Multiplying these congrunces together, we have $x - \tilde{x} = 0 \pmod{N}$.

3.3. Wilson's Theorem

THEOREM 3.3.1. *If* p *is prime, then* $(p-1)! = -1 \pmod{p}$.

PROOF. Note that the only solutions to $x^2=1\pmod{p}$ are 1 and -1, i.e. 1 and p-1 are the only equivalence classes that are their own inverses modulo p. Thus every element from 2 to p-2 has an inverse that isn't itself. Multiplying the (p-3)/2 classes together gives the result.

3.4. Binomials Modulo p

Note that the binomial coefficients are divisible modulo p, for if $N = \frac{p!}{(p-r)!r!}$ then $p \mid p!$ but $p \nmid (p-r)!$ and $p \nmid r!$, thus implying $p \mid N$. Thus,

$$(a+b)^p = a^p + b^p \pmod{p}$$
.

Arithmetic Functions

An arithmetic function is a function from \mathbf{Z}^+ to \mathbf{Z} .

One example of an arithmetic function is (n, k) for fixed k.

PROPOSITION 4.0.1. For coprime m and n,

$$(m, k)(n, k) = (mn, k).$$

PROOF. We will show (mn, k) | (m, k)(n, k) and (m, k)(n, k) | (mn, k). Note that (m, k)(n, k) certainly divides both mn and k, and thus also divides (mn, k). Since we have (m, k) = am + bk and (n, k) = cn + dk by Bezout's identity,

$$(m,k)(n,k) = mn \cdot ac + (b(cm + dk) + amd)k$$

i.e. $(mn, k) \mid (m, k)(n, k)$. This completes the proof.

Several other such functions also exist.

4.1. The Möbius Function

DEFINITION 4.1.1. The Möbius function is

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ (-1)^s & \text{if } n \text{ is squarefree with s prime factors}\\ 0 & \text{otherwise} \end{cases}$$

PROPOSITION 4.1.2. For coprime m and n,

$$\mu(mn) = \mu(m)\mu(n)$$

i.e. μ is multiplicative.

PROOF. By cases. Suppose (without loss of generality) that $\mathfrak{m}=1$. Then $\mathfrak{m}\mathfrak{n}=\mathfrak{n}$, and in particular

$$\mu(mn) = \mu(n) = 1 \cdot \mu(n) = \mu(1)\mu(n) = \mu(m)\mu(n).$$

Now suppose m and n are coprime integers both not equal to 1. If (without loss of generality) m is not squarefree, then mn will also be not squarefree, wherein

$$\mu(mn) = 0 = 0 \cdot \mu(n) = \mu(m)\mu(n).$$

If m and n are both squarefree, then mn will also be squarefree. Since m and n are coprime, m having s divisors and n having t divisors implies mn has s + t divisors.

THEOREM 4.1.3 (Möbius Inversion Formula). If f and g are such that

$$f(n) = \sum_{d \mid n} g(d), \quad n \in \mathbf{Z}^+$$

then equivalently

$$g(n) = \sum_{d|n} \mu(d) f(n/d), \quad n \in \mathbf{Z}^+.$$

PROOF. Define the *convolution* of any two arithmetic functions f, g as

$$(f * g)(n) = \sum_{d \mid n} f(d)g(n/d).$$

Rewriting the sum as

$$(f * g)(n) = \sum_{ab=n} f(a)g(b)$$

makes it clear that convolution is both commutative and associative.

Now we will show that

$$\mu * 1 = \delta$$

where

$$\delta(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}$$

and $\mathbf{1}(n) = 1$ for all n.

If n=1, then $\sum_{d|1} \mu(n) = \mu(1) = 1$. So suppose $n \neq 1$ with k prime factors. All the non-squarefree factors of n vanish in the sum, so

$$\sum_{d|n} \mu(d) = \sum_{\ell=0}^{k} {k \choose \ell} \mu(p_1 \cdots p_\ell) = (1-1)^k = 0.$$

Now we prove the formula. Observe that

$$g = \delta * g = (\mu * 1) * g = \mu * (1 * g) = \mu * f$$

and also

$$f = f * \delta = f * (\mu * 1) = (f * \mu) * 1 = q * 1$$

which is what we wanted to show.

Proposition 4.1.4.

$$\prod_{\mathfrak{p}\mid \mathfrak{n}} (1-\mathfrak{p}^{-1}) = \sum_{d\mid \mathfrak{n}} \frac{\mu(d)}{d}.$$

PROOF. All the non-squarefree factors of $\mathfrak n$ vanish in the sum on the right, and multiplying out the product on the left yields the remaining sum. \Box

4.2. The Euler Totient

DEFINITION 4.2.1. The Euler totient function is

$$\phi(n) = n \prod_{p|n} (1 - p^{-1})$$

where the product is over all primes dividing n.

PROPOSITION 4.2.2. The ϕ function counts the integers coprime to n:

$$\phi(n) = |\{k : (n, k) = 1, 1 < k < n\}|.$$

PROOF. When p | n, the number of positive integers up to n divisible by p is n/p. Thus, each $(1-p^{-1})$ term in the product filters out the integers divisible by p. For example, if $n=\prod_{j=1}^k p_j^{\alpha_j}$, then there are

$$\mathfrak{n}(1-\mathfrak{p}_1^{-1})=\mathfrak{n}-\mathfrak{n}/\mathfrak{p}_1$$

integers between 1 and n not divisible by p_1 . Having a $(1 - p_i^{-1})$ term for each p_i results in the product counting the positive integers up to n coprime to n.

PROPOSITION 4.2.3. For coprime m and n,

$$\phi(mn) = \phi(m)\phi(n),$$

i.e. ϕ is multiplicative.

PROOF. Consider the system of congruences

$$x = a \pmod{m}, \qquad x = b \pmod{n}.$$

Since m and n are coprime, this system has a unique solution modulo mn by Sun's remainder theorem. We claim x is coprime to m if and only if a is coprime to m and b is coprime to n.

(\Longrightarrow): Suppose x is coprime to mn. Then x is coprime to both m and n. Write x = km + a and $x = \ell n + b$. Were a not coprime to m, x would be not coprime to m (since m is not coprime to m), so a must be coprime to m. Similarly, b must be coprime to n.

(\Leftarrow): Now suppose a is coprime to m and b is coprime to n. Again consider x = km + a and x = ln + b. Were x not coprime to m, then a would not be coprime to m, so x must be coprime to m. Similarly, x is coprime to n. Since m and n are coprime, x is coprime to mn.

Since there are $\phi(m)$ numbers coprime to m and $\phi(n)$ numbers coprime to n, and since each pair (a,b) produces a unique number x coprime to mn, it follows that there are $\phi(m)\phi(n)$ numbers between 1 and mn coprime to mn.

Proposition 4.2.4.

$$n = \sum_{d \mid n} \phi(d).$$

PROOF. We want to show $id = 1 * \phi$, so by Möbius inversion it suffices to show $\phi = \mu * id$. From the definition of ϕ and a previous proposition,

$$\phi(n) = n \prod_{p|n} (1 - p^{-1}) = \sum_{d|n} \mu(d) \frac{n}{d} = (\mu * id)(n).$$

This proves the result.

Proposition 4.2.5.

$$\sum_{\ell=1}^{n} \left\lfloor \frac{n}{\ell} \right\rfloor \phi(\ell) = \binom{n}{2}.$$

PROOF. Since

$$n = \sum_{d|n} \phi(d),$$

we have

$$\binom{n}{2} = \sum_{k=1}^{n} k = \sum_{k=1}^{n} \sum_{d \mid k} \varphi(d) = \sum_{k=1}^{n} \sum_{\ell=1}^{n} \varphi(\ell) [\ell \mid k],$$

where

$$[\ell \mid k] = \begin{cases} 1 & \text{if } \ell \mid k \\ 0 & \text{otherwise} \end{cases}$$

noting that for $\ell > k$ we have $[\ell \mid k] = 0$.

Swapping the order of summation,

$$\sum_{k=1}^n \sum_{\ell=1}^n \varphi(\ell)[\ell \mid k] = \sum_{\ell=1}^n \varphi(\ell) \sum_{k=1}^n [\ell \mid k] = \sum_{\ell=1}^n \varphi(\ell) \left\lfloor \frac{n}{\ell} \right\rfloor,$$

which completes the proof.

4.3. Euler's Theorem

THEOREM 4.3.1. If a and n are coprime positive integers, then

$$a^{\phi(n)} = 1 \pmod{n}$$
.

PROOF. For any two integers a and b both coprime to n, their product is also coprime to n. Said another way,

$$\prod_{(\mathfrak{b},\mathfrak{n})=1}\mathfrak{b}=\prod_{(\mathfrak{b},\mathfrak{n})=1}\mathfrak{a}\mathfrak{b}=\mathfrak{a}^{\varphi(\mathfrak{n})}\prod_{(\mathfrak{b},\mathfrak{n})=1}\mathfrak{b}\pmod{\mathfrak{n}},$$

from which the result follows.

We note that the case $\phi(p) = p - 1$ is known as Fermat's Little Theorem.

4.4. The Sum of Divisors

DEFINITION 4.4.1. The sum of divisors function is

$$\sigma_k(n) = \sum_{d|n} d^k$$
.

THEOREM 4.4.2. For coprime m and n,

$$\sigma_k(mn) = \sigma_k(m)\sigma_k(n)$$
.

PROOF. We'll show that if f and g are multiplicative, then so is f * g.

$$(f * g)(mn) = \sum_{a_{m} = m} f(a)g(b)$$

$$= \sum_{a_{m} b_{m} = m} \sum_{a_{n} b_{n} = n} f(a_{m}a_{n})g(b_{m}b_{n})$$

$$= \sum_{a_{m} b_{m} = m} \sum_{a_{n} b_{n} = n} f(a_{m})f(a_{n})g(b_{m})g(b_{n})$$

$$= \left(\sum_{a_{m} b_{m} = m} f(a_{m})g(b_{m})\right) \left(\sum_{a_{n} b_{n} = n} f(a_{n})g(b_{n})\right)$$

$$= (f * g)(m) \cdot (f * g)(n)$$

With this established, note that $\sigma_k = id^k * 1$. This proves the result. \square

Primitive Roots

5.1. The Order of an Integer

By Euler's theorem, the set of positive integers x satsifying

$$a^x = 1 \pmod{n}$$

is nonempty.

DEFINITION 5.1.1. The smallest positive integer x satisfying the above congruence is denoted $\operatorname{ord}_n(a)$ and is called the *order* of a modulo n.

PROPOSITION 5.1.2. If a and n are coprime with n > 0, then the positive integer x is a solution to $a^x = 1 \pmod{n}$ if and only if

$$ord_{n}(a) \mid x$$
.

PROOF. Suppose $\operatorname{ord}_n(a) \mid x$. Then $x = \operatorname{ord}_n(a) \cdot k$ for some k, hence

$$\alpha^x = \alpha^{ord_{\mathfrak{n}}(\alpha) \cdot k} = (\alpha^{ord_{\mathfrak{n}}(\alpha)})^k = 1^k = 1 \pmod{\mathfrak{n}}.$$

Conversely, if $a^x = 1 \pmod{n}$, divide to obtain

$$x = q \cdot ord_n(a) + r,$$
 $0 \le r < ord_n(a).$

Thus $a^x = a^r \pmod{n}$. But we must have r = 0, since $y = \operatorname{ord}_n(a)$ is the smallest positive integer such that $a^y = 1 \pmod{n}$. Hence $\operatorname{ord}_n(a) \mid x$, as desired.

So, in particular, $ord_n(a) \mid \phi(n)$.

PROPOSITION 5.1.3. Let a, b, and n be integers with ord(a) and ord(b) coprime and n>0. Then

$$ord_n(a)ord_n(b) = ord_n(ab).$$

PROOF. Let $ord_n(a) = x$, $ord_n(b) = y$, and $ord_n(ab) = z$. Note that $z \mid xy$, since

$$(ab)^{xy} = a^{xy}b^{xy} = (a^x)^y(b^y)^x = 1 \pmod{n}.$$

Since x and y are coprime,

$$(ab)^z = 1 \implies 1 = ((ab)^z)^x = (a^x)^z b^{xz} = b^{xz} \implies y \mid xz \implies y \mid z$$

where the third implication follows via Euclid's lemma. Similarly, $x \mid z$. By coprimality of x and y again, we have $xy \mid z$. We may thus conclude that xy = z.

5.2. Existence of Primitive Roots

DEFINITION 5.2.1. If r and n are coprime with n > 0 and if

$$ord_n(r) = \phi(n),$$

then r is called a *primitive root* modulo n.

THEOREM 5.2.2. Primitive roots exist modulo a prime.

PROOF. By Fermat's Little Theorem, the equation

$$X^{p-1} - 1 = 0$$

has $\mathfrak{p}-1$ solutions modulo $\mathfrak{p}.$ For any divisor d of $\mathfrak{p}-1$ consider the factorization

$$X^{p-1} - 1 = (X^d - 1)(1 + X^d + \dots + X^{p-1-d}).$$

The polynomial X^d-1 has at most d roots and the other one has at most p-1-d roots and $X^{p-1}-1$ has exactly p-1 roots. Hence, X^d-1 has exactly d roots.

Factor p - 1 into

$$p-1=\prod q^{e_q}$$

For each factor q^e of p-1, $x^{q^e}-1$ has q^e roots and $x^{q^{e^{-1}}}-1$ has $q^{e^{-1}}$ roots; hence, there are $q^e-q^{e-1}=\varphi(q^e)$ elements x_q for which $\operatorname{ord}_p(x_q)=q^e$. By the proposition about $\operatorname{ord}_n(\mathfrak{a})$ respecting multiplication with coprime factors, any product $\prod_q x_q$ has order p-1, and thus is a primitive root.

THEOREM 5.2.3. Primitive roots exist modulo an odd prime power.

PROOF. Let g be a primitive root modulo p. By the binomial theorem,

$$(g+p)^{p-1} = g^{p-1} + (p-1)g^{p-2}p \pmod{p^2},$$

thus $(g+p)^{p-1} \neq g^{p-1} \pmod{p^2}$, and in particular either $g^{p-1} \neq 1 \pmod{p^2}$ or $(g+p)^{p-1} \neq 1 \pmod{p^2}$. Replace g with g+p if necessary to ensure that $g^{p-1} \neq 1 \pmod{p^2}$, i.e.

$$g^{p-1} = 1 + k_1 p$$
, $p \nmid k_1$.

Again by the binomial theorem,

$$g^{\mathfrak{p}(\mathfrak{p}-1)} = (1+k_1\mathfrak{p})^{\mathfrak{p}} = 1+k_2\mathfrak{p}^2, \quad \mathfrak{p} \nmid k_2.$$

So g is now a primitive root modulo p^2 . Let e > 2 be an integer. Again by the binomial theorem,

$$g^{p^{e-2}(p-1)} = 1 + k_{e-1}p^{e-1}, p \nmid k_{e-1}.$$

We have that $\text{ord}_{p^e}(g) \mid \varphi(p^e) = p^{e-1}(p-1)$. Note that $\text{ord}_{p^e}(g)$ can't be of the form $p^\epsilon d$ where $\epsilon \leq e-1$ and d a proper divisor of p-1 because then

$$g^{\mathfrak{p}^{\varepsilon}\,d}=1\pmod{\mathfrak{p}^{\varepsilon}}$$

reduces mod p to $g^d = 1 \pmod{p}$, contradicting the fact that g is a primitive root modulo p. So we must have

$$\operatorname{ord}_{\mathfrak{p}^{\varepsilon}}(\mathfrak{g}) = \mathfrak{p}^{\varepsilon}(\mathfrak{p} - 1)$$

where $\varepsilon \leq e-1$, and the calcluation above shows $\varepsilon = e-1$, completing the proof. \Box

Quadratic Residues

DEFINITION 6.0.1. If m is a positive integer, we say α is a *quadratic* residue of m if $(\alpha, m) = 1$ and

$$x^2 = a \pmod{m}$$

has a solution. If the congruence above has no solution, then a is a *quadratic nonresidue* of m.

PROPOSITION 6.0.2. Let p be an odd prime and a an integer not divisible by p. Then

$$x^2 = a \pmod{p}$$

either has no solutions or exactly two distinct (i.e. incongruent) solutions modulo p.

PROOF. If $x^2 = a \pmod{p}$ has a solution x_0 , then $-x_0$ is also a solution. If $x_0 = -x_0 \pmod{p}$ then $2x_0 = 0 \pmod{p}$, and we may divide through by 2 since p is odd, showing that $p \mid x_0$, contradiction. So there are at least two distinct solutions.

To see that there are exactly two distinct solutions, suppose x_0 and x_1 both solve $x^2 = a \pmod p$. Then $x_0^2 = x_1^2 \pmod p$, hence

$$(x_0 - x_1)(x_0 + x_1) = 0 \pmod{p},$$

implying that $x_0 = \pm x_1$.

PROPOSITION 6.0.3. If p is an odd prime, there are exactly $\frac{p-1}{2}$ residues and $\frac{p-1}{2}$ nonresidues of p among the integers

1, ...,
$$p-1$$
.

PROOF. Since each square from 1^2 to $(p-1)^2$ has exactly two distinct solutions among 1 through p-1, the conclusion follows.

6.1. The Legendre Symbol

DEFINITION 6.1.1. Let p be an odd prime and a an integer. We define

$$\left(\frac{\alpha}{p}\right) = \begin{cases} 1 & \text{if } \alpha \text{ is a quadratic residue of } p \\ -1 & \text{if } \alpha \text{ is a quadratic nonresidue of } p \\ 0 & \text{if } \alpha \mid p \end{cases}$$

PROPOSITION 6.1.2 (Euler's criterion). Let p be an odd prime and α an integer not divisible by p. then

$$\left(\frac{\mathfrak{a}}{\mathfrak{p}}\right) = \mathfrak{a}^{\frac{\mathfrak{p}-1}{2}} \pmod{\mathfrak{p}}.$$

PROOF. First assume that $\left(\frac{\alpha}{p}\right)=1$. Then $x^2=\alpha$ has a solution, say x_0 . By Fermat's Little Theorem,

$$a^{\frac{p-1}{2}} = (x_0^2)^{\frac{p-1}{2}} = x_0^{p-1} = 1 \pmod{p}.$$

Now assume that $\left(\frac{\alpha}{p}\right) = -1$. Then $x^2 = \alpha$ has no solutions, Note that for each i in 1 through p-1 there exists a unique j in 1 through p-1 for which $ij = \alpha$, and since $x^2 = \alpha \pmod{p}$ has no solutions, we know $i \neq j$. So then

$$(p-1)! = a^{\frac{p-1}{2}},$$

and applying Wilson's theorem completes the proof.

Theorem 6.1.3. Let p be an odd prime and a, b integers not divisible by p. Then

- (1) if $a = b \pmod{p}$ then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- $(2) \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$
- (3) $\left(\frac{a^2}{p}\right) = 1$.

PROOF. (1) If $a = b \pmod p$, then $x^2 = a \pmod p$ has solutions if and only if $x^2 = b \pmod p$ has solutions, so $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

(2) By Euler's criterion,

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} = (ab)^{\frac{p-1}{2}} = \left(\frac{ab}{p}\right) \pmod{p},$$

and since the Legendre symbol takes the values ± 1 , we may conclude that $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{ab}{p}\right)$.

П

(3) This follows from the previous part.

PROPOSITION 6.1.4. *If* p *is an odd prime, then*

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p = 1 \pmod{4} \\ -1 & \text{if } p = -1 \pmod{4} \end{cases}$$

PROOF. Apply Euler's criterion. If $p = 1 \pmod{4}$, then

$$(-1)^{\frac{p-1}{2}} = (-1)^{2k} = 1.$$

If $p = -1 \pmod{4}$, then

$$(-1)^{\frac{p-1}{2}} = (-1)^{2k-1} = -1.$$

6.2. Gauss' Lemma

THEOREM 6.2.1. Let p be an odd prime and a an integer coprime to p. If s is the least number of positive residues modulo p of the integers

$$a, 2a, \ldots, \frac{p-1}{2}a$$

that are greater than p/2, then

$$\left(\frac{a}{p}\right) = (-1)^s.$$

PROOF. Let u_1, \ldots, u_s represent the residues of the integers

$$a, 2a, \ldots, \frac{p-1}{2}a$$

greater than p/2, and let $v_1, ..., v_t$ represent the residues of these integers less than p/2. We will show

$${p - u_1, \dots, p - u_s, v_1, \dots, v_t} = {1, \dots, p - 1}.$$

It suffices to show that no two of these numbers are congruent modulo p. Were $u_i = u_j$, then since a does not divide p,

$$ma = na \pmod{p} \implies m = n \pmod{p},$$

contradiction. So $u_i \neq u_j$, and similarly $v_i \neq v_j$. In addition, we cannot have $p - u_i = v_j$, for if so, then

$$ma = p - na \pmod{p} \implies m = -n \pmod{p},$$

which contradicts the fact that m and n are both in 1 through $\frac{p-1}{2}$.

П

Now we multiply things together. We know

$$\begin{split} (p-u_1)\cdots(p-u_s)\nu_1\cdots\nu_t &= (-1)^su_1\cdots u_s\nu_1\cdots\nu_t \\ &= (-1)^s\left(\frac{p-1}{2}\right)! \pmod{p} \end{split}$$

Yet at the same time,

$$u_1 \cdots u_s v_1 \cdots v_t = a^{\frac{p-1}{2}} \left(\frac{p-1}{2} \right)! \pmod{p}$$

By Euler's criterion,

$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} = (-1)^s,$$

which completes the proof.

PROPOSITION 6.2.2. *If* p *is an odd prime, then*

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}.$$

PROOF. First, we compute the number of residues in

$$1 \cdot 2$$
, $2 \cdot 2$, \cdots , $\frac{p-1}{2} \cdot 2$

greater than p/2. This is a direct count since all of the above residues are less than p. When $1 \le j \le \frac{p-1}{2}$, 2j < p/2 when $j \le p/4$, so there are $\lfloor \frac{p}{4} \rfloor$ integers less than p/2, and thus

$$s = \frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor$$

greater than p/2. By Gauss' lemma, it remains to show that

$$\frac{p^2-1}{8} = \frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor \pmod{2}.$$

We first consider $\frac{p^2-1}{8}$. If $p=\pm 1 \pmod 8$, then

$$\frac{p^2 - 1}{8} = \frac{64k^2 \pm 16k}{8} = 0 \pmod{2}.$$

If $p = \pm 3 \pmod{8}$, then

$$\frac{p^2 - 1}{8} = \frac{64k^2 \pm 48k + 8}{8} = 1 \pmod{2}.$$

Now we consider $x = \frac{p-1}{2} - \lfloor \frac{p}{4} \rfloor$.

$$p = 8k + 1 \implies x = 4k - \left\lfloor 2k + \frac{1}{4} \right\rfloor = 0 \pmod{2}$$

$$p = 8k + 3 \implies x = 4k + 1 - \left| 2k + \frac{3}{4} \right| = 1 \pmod{2}$$

$$p = 8k + 5 \implies x = 4k + 2 - \left| 2k + \frac{5}{4} \right| = 1 \pmod{2}$$

$$p = 8k + 7 \implies x = 4k + 3 - \left| 2k + \frac{7}{4} \right| = 0 \pmod{2}$$

Since $\frac{p^2-1}{8} = \frac{p-1}{2} - \lfloor \frac{p}{4} \rfloor \pmod{2}$ in all cases, the proof is complete. \square

6.3. The Law of Quadratic Reciprocity

PROPOSITION 6.3.1. If p is an odd prime and a an integer not divisible by p, then

$$\left(\frac{\mathfrak{a}}{\mathfrak{p}}\right) = (-1)^{\mathsf{T}(\mathfrak{a},\mathfrak{p})}$$

where

$$T(a,p) = \sum_{j=1}^{\frac{p-1}{2}} \left\lfloor \frac{aj}{p} \right\rfloor$$

PROOF. As in the proof of Gauss' lemma, let u_1, \ldots, u_s represent the residues of

$$\alpha$$
, 2α , ..., $\frac{p-1}{2}\alpha$

that are greater than p/2, and v_1, \ldots, v_t the residues of the above numbers that are less than p/2. Dividing,

$$ja = p \left| \frac{aj}{p} \right| + r$$

where $r = u_i$ or $r = v_j$. Adding $\frac{p-1}{2}$ of these together yields

$$\sum_{j=1}^{\frac{p-1}{2}} j\alpha = \sum_{j=1}^{\frac{p-1}{2}} p \left[\frac{\alpha j}{p} \right] + \sum_{i=1}^{s} u_i + \sum_{j=1}^{t} v_j$$

We also showed, though, that $p - u_1, \dots p - u_s, v_1, \dots, v_t$ are all the integers from 1 through $\frac{p-1}{2}$, so

$$\sum_{j=1}^{\frac{p-1}{2}} j = ps - \sum_{i=1}^{s} u_i + \sum_{j=1}^{t} v_j.$$

Subtracting these equations, we find

$$(a-1)\sum_{j=1}^{\frac{p-1}{2}} j = pT(a,p) - ps + 2\sum_{i=1}^{s} u_i$$

and since a and p are odd, this reduces mod 2 to

$$T(a, p) = s \pmod{2},$$

and applying Gauss' lemma completes the proof.

THEOREM 6.3.2 (Quadratic Reciprocity). Let p and q be odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

PROOF. We consider pairs of integers (x,y) where $1 \le x \le \frac{p-1}{2}$ and $1 \le y \le \frac{q-1}{2}$. There are $\frac{p-1}{2}\frac{q-1}{2}$ such pairs. We divide these pairs into two groups based on relative sizes of qx and py.

First we note that for all such pairs (x,y) we have $qx \neq py$, for if qx = py, then $q \mid py$, implying either $q \mid p$ or $q \mid y$. But $q \mid p$ cannot happen since q and p are distinct primes, and $q \mid y$ cannot happen since $1 \leq y \leq \frac{q-1}{2}$.

To count the pairs for which qx > py, note that these are the pairs for which $1 \le x \le \frac{p-1}{2}$ and $1 \le y \le \frac{qx}{p}$, hence their number is T(q,p).

To count the pairs for which qx < py, note that these are the pairs for which $1 \le y \le \frac{q-1}{2}$ and $1 \le x \le \frac{py}{q}$, hence their number is T(p,q).

So

$$T(q,p) + T(p,q) = \frac{p-1}{2} \frac{q-1}{2},$$

hence

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\mathsf{T}(q,p) + \mathsf{T}(p,q)} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}},$$

as desired.