Lec-2.pdf Page 1 of 11

Lec-2.pdf Page 2 of 11

Remark: It is important to distinguish between a segmence and its set of values (or the range).

C.g. For the seg. (-1) men, the seg.

set of values attained by the seg.

is \{-1,1\foralle}.

Limit of a segmence

Trifound refr: A segmence is said to converge to a limit L, where Left, "

enverge to a limit L, where Left, "

arbitrarily close" to L.

Created with Doceri

Formal defn:

A degrence (an) 0 is said to converge

to a real number L if for any 6>0

(given) there exists NETN such that

|an-L| < E for all n > N.

|an-L| < E for all n > N.

Notation: L = lim an or an > L

(an) converges to

L.

Remarks:

D |an-L| < E \Rightarrow 1-E < an < LtE

Created with Doceri

Lec-2.pdf Page 3 of 11

(2) N depends on E.

Normally if we choose E smaller, then

N will be bigger.

Theorem (Uniqueness of Limits):

If lim an = L_1 and lim an = L_2, then

L_1 = L_2.

Proof: Let EDO be given.

Since lim an = L_1, J N_1 EN S.t.

Since lim an = L_1, J N_1 EN S.t.

Since lim an = L_1, J N_1 EN S.t.

Ily, J N2 EN S.t. | an - L_2 | < \frac{E}{2}

Y N > N2.

Created with Doceni

2st $N = \max_{x \in N_1, N_2}$. Then $|L_2 - L_1| = |a_N - L_1| - |a_N - L_2|$ $\leq |a_N - L_1| + |a_N - L_2|$ $\leq |a_N - L_1|$ Lec-2.pdf Page 4 of 11

Proof: Let $\varepsilon > 0$.

Proof: Let $\varepsilon > 0$.

By the Archimodean perpents, $\exists N \in \mathbb{N} \text{ s.t. } N > \frac{1}{\varepsilon}$.

So, $n > N \Rightarrow \exists \leq \frac{1}{N} \leq \varepsilon$ $\Rightarrow |\frac{1}{N} - 0| < \varepsilon$ $\Rightarrow |\frac{1}{N} - 0| < \varepsilon$ Then $\frac{1}{N} = 0$.

Created with Docenia

3 The seq. ((-1)) men does not converge.

If: Assume L= lul(-1)).

Take \(\xi = 1\). Then \(\frac{3}{2}\) Ne N s.t. $|\xi_1|^{N} - L| < 1 \tau_1 \tau_2 N \tau_1 \tau_2 N \tau_1 \tau_2 \tau_2 \tau_1 \tau_1 \tau_1 \tau_1 \tau_2 \tau_2 \tau_1 \tau_1 \tau_1 \tau_1 \tau_1 \tau_2 \tau_2 \tau_1 \tau_1 \tau_1 \tau_1 \tau_1 \tau_1 \tau_1 \tau_1 \tau_2 \tau_2 \tau_1 \$

Lec-2.pdf Page 5 of 11

Created with Doceri

Operations on Limits

Theorem: Let (an) & (bn) be two convergent Degreences with him an = L & limber = M.

Then (i) lim (can) = cL for any CER.

- (F) lim (antby) = L+M
- (iii) lam an bn = LM
- (iv) lim (an) = L if M +0

Created with Doceri

Lec-2.pdf Page 6 of 11

(ii) | (an+bm)-(+M) | \(\) | an-L|+|bn-M|.

Zet \(\)

Created with Doceri

Lec-2.pdf Page 7 of 11

 $|a_{n}-L| < \frac{\varepsilon}{2(|m|+1)} \quad \forall n \geqslant N_{2}.$ (Note that we chose |m|+1 instead of |m| in the denomination as |m| may be equal to $3e^{-6}$).

The $n \geqslant N_{2} \Rightarrow |a_{n}-L|/|m| < \frac{\varepsilon}{2(|m|+1)}|m| < \frac{\varepsilon}{2}.$ So, $n \geqslant N = \max_{n \geqslant 1} \{N_{1}, N_{2}\}$ $\Rightarrow |a_{n}-L|m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$ Hence $|a_{n}-L|m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$ Created with Doceni

Lec-2.pdf Page 8 of 11

(iv) To prove: le an = L if M = 0.

It is enough to show that if M = 0,

the limb = M (the use (iii)).

Since he bn = M = 0, by taking E = 1 1 > 0,

I'm en st. | bn - m | M | 2 + m > N,

I'm | bn > M | - | bn - M | - | bn - M |

So, for m > N,

| L | - M | = | bn - M | / m | / m | / m |

Created with Doceri

i. If \$>0, we can choose Na EN stable | bn-M| < \$\frac{|mn}{2} \tau \times \tim

Created with Doceri

Lec-2.pdf Page 9 of 11

Lec-2.pdf Page 10 of 11

Theorem: Let (an) be a segmence such that

an > 0 and an > a. Then Jan > sa.

Pf: (Exercise): a > 0.

Pf: (Exercise): a > 0.

Then Jan > sa.

Cove I: If a = 0, then we have

Cove I: If a = 0, then we have

to show an > 0 > Jan > 0.

to show an > 0 > Jan > 0.

Let & > 0 be given.

Since an > 0, I NEW Sit.

Since an > 0 = Created with Doceri

Case II: a>0. $|\sqrt{an}-\sqrt{a}| = |an-a| \le |an-a|$ $|\sqrt{an}-\sqrt{a}| = |\sqrt{an}+\sqrt{a}| \le |an-a|$ Since $|an-a| \le |an-a| \le |an-a|$ $|an-a| \le |an-a|$ $|an-a| \le |an-a| \le |an-a|$ $|an-a| \le |an-$

Lec-2.pdf Page 11 of 11

