

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ  | «Информатика и системы управления»                        |
|------------|-----------------------------------------------------------|
| КАФЕДРА    | «Программное обеспечение ЭВМ и информационные технологии» |
| ДИСЦИПЛИНА | «Анализ алгоритмов»                                       |

### Лабораторная работа № 1

Тема Расстояние Левенштейна

Студент Воякин А. Я.

Группа ИУ7-54Б

Преподаватели Волкова Л. Л., Строганов Ю. В.

# Оглавление

| В  | веден | ние                                                   | 3  |
|----|-------|-------------------------------------------------------|----|
| 1  | Ана   | алитическая часть                                     | 4  |
|    | 1.1   | Описание алгоритмов                                   | 4  |
|    | 1.2   | Вывод                                                 | 5  |
| 2  | Кон   | іструкторская часть                                   | 6  |
|    | 2.1   | Техническое задание                                   | 6  |
|    | 2.2   | Разработка алгоритмов                                 | 6  |
| 3  | Tex   | нологическая часть                                    | 11 |
|    | 3.1   | Выбор ЯП                                              | 11 |
|    | 3.2   | Реализация алгоритма                                  | 11 |
| 4  | Исс   | ледовательская часть                                  | 14 |
|    | 4.1   | Сравнительный анализ на основе замеров времени работы |    |
|    |       | алгоритмов                                            | 14 |
|    | 4.2   | Сравнительный анализ алгоритмов на основе замеров за- |    |
|    |       | трачиваемой памяти                                    | 16 |
|    | 4.3   | Тестовые данные                                       | 18 |
| За | клю   | чение                                                 | 19 |

## Введение

**Расстояние Левенштейна** - согласно [4] - минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую.

Расстояние Левенштейна применяется в теории информации и компьютерной лингвистике для:

- исправления ошибок в слове;
- сравнения текстовых файлов (утилита diff);
- в биоинформатике для сравнения генов, хромосом и белков.

Целью данной лабораторной работы является изучение метода динамического программирования на примере алгоритмов Левенштейна и Дамерау-Левенштейна.

Задачами лабораторной работы являются:

- изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками;
- реализация рекурсивной и динамической вариации указанных алгоритмов;
- тестирование реализованных алгоритмов;
- проведение сравнительного анализа алгоритмов по затрачиваемым ресурсам (времени и памяти).

# 1 Аналитическая часть

## 1.1 Описание алгоритмов

Задача по нахождению расстояния Левенштейна заключается в поиске минимального количества операций вставки/удаления/замены для превращения одной строки в другую.

При нахождении расстояния Дамерау — Левенштейна добавляется операция транспозиции (перестановки соседних символов). Полное определение рассмотрено в [1].

#### Действия обозначаются так:

- D (англ. delete) удалить;
- I (англ. insert) вставить;
- R (replace) заменить;
- M(match) совпадение.

Пусть  $S_1$  и  $S_2$  — две строки (длиной М и N соответственно) над некоторым алфавитом, тогда расстояние Левенштейна можно подсчитать по рекуррентной формуле (1.1), см [3]:

$$D(i,j) = \begin{cases} 0, & i = 0, j = 0\\ i, & j = 0, i > 0\\ j, & i = 0, j > 0\\ min(\\ D(i,j-1)+1, & j > 0, i > 0\\ D(i-1,j)+1, & j > 0, i > 0\\ D(i-1,j-1)+m(S_1[i], S_2[j])\\ ), \end{cases}$$

$$(1.1)$$

где m(a,b) равна нулю, если a=b и единице в противном случае;  $min\{a,b,c\}$  возвращает наименьший из аргументов.

Расстояние Дамерау-Левенштейна вычисляется по рекуррентной формуле (1.2), см [2]:

$$D(i,j) = \begin{cases} 0, & i = 0, j = 0 \\ i, & i > 0, j = 0 \\ j, & i = 0, j > 0 \end{cases}$$

$$min \begin{cases} D(i,j-1)+1, & \text{, если } i,j > 0 \\ D(i-1,j)+1, & \text{и } S_1[i] = S_2[j-1] \\ D(i-2,j-2)+m(S_1[i],S_2[i]), & \text{и } S_1[i-1] = S_2[j] \end{cases}$$

$$min \begin{cases} D(i,j-1)+1, & \text{и } S_1[i] = S_2[j] \\ D(i-1,j)+1, & \text{и } S_1[i-1] = S_2[j] \end{cases}$$

$$min \begin{cases} D(i,j-1)+1, & \text{, иначе} \\ D(i-1,j)+1, & \text{, иначе} \end{cases}$$

Недостатком использования рекуррентных формул для измерения редакционного расстояния являются повторные вчисления. Решением данного недостатка является использование матричного алгоритма. Для хранения используется матрица размером  $(len(S1) + 1 \times len(S2) + 1)$ .

### 1.2 Вывод

В данном разделе были рассмотрены алгоритмы нахождения расстояния Левенштейна и Дамерау-Левенштейна, который является модификаций первого, учитывающего возможность перестановки соседних символов.

# 2 Конструкторская часть

### 2.1 Техническое задание

#### Ввод:

- на вход подаются две строки;
- строки могут быть пустыми, содержать пробелы, а также любые печатные символы UTF-8;
- uppercase и lowercase буквы считаются разными.

#### Вывод:

- программа выводит посчитанные каждым из алгоритмов расстояния;
- для динамических реализаций алгоритмов выводятся заполненные матрицы;
- в режиме замера ресурсов программа выводит средние время и память, затраченные каждым алгоритмом.

## 2.2 Разработка алгоритмов

В данной части будут рассмотрены схемы алгоритмов Схемы рекурсивного алгоритма нахождения расстояния Левенштейна, матричного алгоритма нахождения расстояния Левенштейна, рекурсивного алгоритма нахождения расстояния Дамерау-Левенштейна и матричного алгоритма нахождения расстояния Дамерау-Левенштейна показаны на рисунках 2.1, 2.2, 2.3 и 2.4, соответственно.



Рис. 2.1: Схема рекурсивного алгоритма нахождения расстояния Левенштейна



Рис. 2.2: Схема матричного алгоритма нахождения расстояния Левенштейна



Рис. 2.3: Схема рекурсивного алгоритма нахождения расстояния Дамерау-Левенштейна



Рис. 2.4: Схема матричного алгоритма нахождения расстояния Дамерау-Левенштейна

## 3 Технологическая часть

## 3.1 Выбор ЯП

Для реализации программы был выбран Python из-за наличия опыта разработки на данном языке программирования. Среда разработки - PyCharm.

### 3.2 Реализация алгоритма

Листинг 3.1: Функция нахождения расстояния Левенштейна рекурсивно

```
return mt[-1][-1]
```

Листинг 3.2: Функция нахождения расстояния Левенштейна матрично

Листинг 3.3: Функция нахождения расстояния Дамерау-Левенштейна рекурсивно

```
def ldm(s_1, s_2, return_matrix=False):
      if not s_1 or not s_2:
2
           return max(len(s_1), len(s_2))
      ls 1 = len(s_1) + 1
      1s 2 = len(s 2) + 1
      mt = [[i + j \text{ for } j \text{ in } range(ls 2)] \text{ for } i \text{ in } range(ls 1)
      for i in range(1, ls_1):
           for j in range(1, ls 2):
               mt[i][j] = min(mt[i-1][j] + 1, mt[i][j-1] +
                    1, mt[i-1][j-1] + int(s_1[i-1] != s_2
                  [j - 1])
               if i > 1 and j > 1 and s_1[i - 1] = s_2[j - 2]
10
                   and s_1[i - 2] = s_2[j - 1]:
                   mt[i][j] = min(mt[i][j], mt[i-2][j-2] +
11
      if return matrix:
12
           return mt
      return mt[-1][-1]
```

Листинг 3.4: Функция нахождения расстояния Дамерау-Левенштейна матрично

```
def mt_print(mt):
    if type(mt) == list:
        for row in mt:
```

```
print(' '.join(map(str, row)))

else:
    print("Matrix not used.")
```

Листинг 3.5: Функция вывода матрицы на экран

```
print("| len |
                    LevRec
                                  LevMat
                                               LevDamRec
     LevDamMat
  for i in range (1, 8):
      s_1 = ''.join(sample(ascii_letters, i))
      s 2 = ''.join(sample(ascii letters, i))
      Ir time arr = []
      lm time arr = []
      ldr_time_arr = []
7
      Idm time arr = []
      for in range (1000):
          Ir time arr.append(cpu time(alg.lr, s 1, s 2))
10
          lm_time_arr.append(cpu_time(alg.lm, s_1, s_2))
11
          ldr time arr.append(cpu time(alg.ldr, s 1, s 2))
12
          ldm time arr.append(cpu time(alg.ldm, s 1, s 2))
13
      print("%5d" % i, "%12d" % int(sum(lr_time_arr) / len(
14
         Ir time_arr)),
               "%12d" % int(sum(Im time arr) / len(Im time arr
15
               "%15d" % int(sum(ldr time arr) / len(
16
                  ldr_time_arr)),
               "%15d" % int(sum(ldm_time_arr) / len(
17
                  ldm time arr)))
```

Листинг 3.6: Измерение процессорного времени выполнения алгоритмов

```
def cpu_time(func, s_1, s_2):
    start = process_time_ns()
    func(s_1, s_2)
    end = process_time_ns()
    return end - start
```

Листинг 3.7: Функция замера процессорного времени

# 4 Исследовательская часть

# 4.1 Сравнительный анализ на основе замеров времени работы алгоритмов

Был проведен замер времени работы каждого из алгоритмов. Для замера времени генерировались две различные строки необходимой длины. Результаты представленные в таблице 4.1 получены усреднением значений каждого алгорима, выполненного 1000 раз при одинаковых входных данных.

Таблица 4.1: Время работы алгоритмов в нано секундах.

| len | LevRec   | LevMat | LevDamRec | LevDamMat |
|-----|----------|--------|-----------|-----------|
| 1   | 3222     | 5316   | 3477      | 5292      |
| 2   | 12329    | 9482   | 13058     | 9867      |
| 3   | 51963    | 13505  | 55535     | 14453     |
| 4   | 285784   | 22975  | 305489    | 25249     |
| 5   | 1503606  | 33575  | 1601602   | 37265     |
| 6   | 8650819  | 51708  | 9243470   | 58086     |
| 7   | 56342756 | 83139  | 59932134  | 93704     |

Полученная зависимость времени работы алгоритмов от длины строк показана на рисунках 4.1, 4.2.



Рис. 4.1: Зависимость времени работы рекурсивных реализаций алгоритмов от длины строк



Рис. 4.2: Зависимость времени работы матричных реализаций алгоритмов от длины строк

На основе проведённых измерений можно сделать вывод, что рекурсивные алгоритмы эффективней для коротких строк. Однако при увеле-

чении длины, динамические алгоритмы выступают более эффективными, что обусловлено большим количеством повторных рассчетов в рекурсивных реализациях, в то время как в динамических реализациях ячейка матрицы расчитывается единожды. Также установлено, что алгоритм Дамерау Левенштейна в среднем работает несколько дольше алгоритма Левенштейна, что объясняется наличием дополнительных проверок, однако алгоритмы сравнимы по временной эффективности.

# 4.2 Сравнительный анализ алгоритмов на основе замеров затрачиваемой памяти

Был проведен замер памяти, затрачиваемой алгоритмами. Результат замера показан в таблице 4.2.

Таблица 4.2: Затрачиваемая алгоритмами память в байтах

| len | LevRec  | LevMat | LevDamRec | LevDamMat |
|-----|---------|--------|-----------|-----------|
| 1   | 504     | 244    | 532       | 244       |
| 2   | 2410    | 246    | 2578      | 246       |
| 3   | 11950   | 248    | 12818     | 248       |
| 4   | 61210   | 282    | 65690     | 282       |
| 5   | 321372  | 284    | 344920    | 284       |
| 6   | 1717362 | 286    | 1843194   | 286       |
| 7   | 9295242 | 288    | 9976174   | 288       |

Полученная зависимость памяти, затрачиваемой алгоритмами, от длины строк показана на рисунках 4.3, 4.4.



Рис. 4.3: Зависимость затрачиваемой памяти рекурсивными реализациями алгоритмов от длины строк



Рис. 4.4: Зависимость затрачиваемой памяти матричными реализациями алгоритмов от длины строк

На основе проведённых измерений можно сделать вывод, что рекурсивные алгоритмы сравнимы по количеству затрачиваемой памяти с ди-

намическими при малых длинах входных строк. Однако при росте длины строк количество памяти, затрачиваемой рекурсивными алгоритмами резко возрастает из-за локальных переменных, создаваемых при каждом вызове алгоритма, в то время как память динамических алгоритмов изменяется слабо - только из-за увеличения хранимой матрицы.

## 4.3 Тестовые данные

Проведем тестирование программы. В столбцах "Ожидаемый результат"и "Полученный результат"4 числа соответсвуют рекурсивному алгоритму нахождения расстояния Левенштейна, матричному алгоритму нахождения расстояния Левенштейна, рекурсивному алгоритму расстояния Дамерау-Левенштейна, матричному алгоритму нахождения расстояние Дамерау-Левенштейна.

Таблица 4.3: Таблица тестовых данных

| $N_{\overline{0}}$ | Строка № 1 | Строка № 1 | Ожидаемый рез. | Полученный рез. |
|--------------------|------------|------------|----------------|-----------------|
| 1                  |            |            | 0 0 0 0        | 0 0 0 0         |
| 2                  | help       | me         | 3 3 3 3        | 3 3 3 3         |
| 3                  | Im         | tired      | 5 5 5 5        | 5 5 5 5         |
| 4                  | pen        | pne        | 2 2 1 1        | 2 2 1 1         |
| 5                  |            | empty      | 5 5 5 5        | 5 5 5 5         |
| 6                  | 123        |            | 3 3 3 3        | 3 3 3 3         |
| 7                  | R          | русский    | 7777           | 7777            |
| 8                  | еен        | ене        | 2 2 1 1        | 2 2 1 1         |

## Заключение

Были изучены методы динамического и рекурсивного программирования на примере алгоритмов Левенштейна и Дамерау-Левенштейна. Получены практические навыки реализации указанных алгоритмов в матричной и динамической реализации.

Экспериментально было подтверждено различие во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма определения расстояния между строками при помощи разработаного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирующихся длинах строк.

В результате исследований можно прийти к вводу, что матричная реализация данных алгоритмов заметно выигрывает по времени при росте длины строк, следовательно более применима в реальных проектах.

# Список использованных источни-ков

- 1. Задача о расстоянии Дамерау-Левенштейна [Электронный ресурс]. Режим доступа: https://neerc.ifmo.ru/wiki/index.php?title=Задача-о-расстоянии-Дамерау-Левенштейна. Дата доступа: 27.10.2020.
- 2. Вычисление редакционного расстояния [Электронный ресурс]. Режим доступа: https://habr.com/ru/post/117063/. Дата доступа: 27.10.2020.
- 3. Вычисление расстояния Левенштейна [Электронный ресурс]. Режим доступа: https://foxford.ru/wiki/informatika/vychislenie-rasstoyaniya-levenshteyna. Дата доступа: 27.10.2020.
- 4. Расстояние Левенштейна [Электронный ресурс]. Режим доступа: https://vc.ru/newtechaudit/129654-rasstoyanie-levenshteyna-dlyapoiska-opechatok-v-dannyh-klienta. Дата доступа: 27.10.2020.