Do backpropagation, compute loss, and optimize parameters of the following functions for 5 steps (iterations):

$$W^*3x + 4b$$
; $gt = 12$; $W=-2$, $b=2$, $x=1$;

$$W*5x + 2b$$
; $gt = 10$; $W=4$, $b=-3$, $x=-1$;

$$W^*4x - b$$
; $gt = 15$; $W=5$, $b=-1$, $x=2$;

$$W^*x + 3b$$
; $gt = 20$; $W=6$, $b=1$, $x=2$;

$$W^*7x - 4b$$
; $gt = 29$; $W=15$, $b=10$, $x=-2$;

W * 4x - b; qt = 15; W = 5; b = -1; x = 2;

Prediction: W * 4x - b = 41

Iteration #1:

MeanSquaredError: (prediction - gt) ** 2 = 676

Prediction: 41 Loss: 676

Optimization step:

w1 = w0 - alpha * w0.grad(from backpropagation) = 5 - 0.1 * (40) = 1w1 = 1

Optimization step:

b1 = b0 - alpha * b0.grad(from backpropagation) = -1 - 0.1 * (-10) = 0 b1 = 0

Iteration #2:

MeanSquaredError : (prediction - gt) ** 2 = 4

Prediction: 8 Loss: 49

Optimization step:

w1 = w0 - alpha * w0.grad(from backpropagation) = 1 - 0.1 (-10) = 2

w1 = 2

Optimization step:

b1 = b0 - alpha * b0.grad(from backpropagation) = 0 - 0.1 * (-20) = 2

b1 = 2

Iteration #3:

MeanSquaredError : (prediction - gt) ** 2 = 244

Prediction: 16 Loss: 244

Prediction:

$$w * 7x - 4b => 15 * 7 * (-2) - 4*10 = -250$$

Iteration #1:

MeanSquaredError: (prediction - gt) ** 2 = (-250 - 29) ** 2 = 77,841

Prediction: -250 Loss: 77,841

Optimization step:

w1 = w0 - alpha * w0.grad(from backpropagation)

w1 = 15 -0.1*170 = -2

Optimization step:

b1 = b0 - alpha * b0.grad(from backpropagation)

b1 = 10 - 0.1 * 100 = 0

MeanSquaredError : (prediction - gt) ** 2 = (28 - 29) ** 2 = 1

Prediction: 28 Loss: 1

$$w * 3x + 4b$$
; $gt = 12$; $W = -2$; $b = 2$; $x = 1$;

Prediction:

$$w * 7x - 4b => 2$$

Iteration #1:

MeanSquaredError: (prediction - gt) ** 2 = 100

Prediction: 2 Loss: 100

Optimization step:

w1 = w0 - alpha * w0.grad(from backpropagation) = -2 - 0.1 * (-70) = 5w1 = 5

Optimization step:

b1 = b0 - alpha * b0.grad(from backpropagation) = 2 - 0.1 * 30 = 1b1 = -1

Iteration #2:

MeanSquaredError : (prediction - gt) ** 2 = 1

Prediction: 11 Loss: 1

w * 5x + 2b; gt = 10; W = 4; b = -3; x = -1;

Prediction:

$$w * 5x + 2b = -26$$

Iteration #1:

MeanSquaredError: (prediction - gt) ** 2 = 1296

Prediction: -26 Loss: 1296

Optimization step:

w1 = w0 - alpha * w0.grad(from backpropagation) = 4 - 0.1 * 40 = 0w1 = 0

Optimization step:

b1 = b0 - alpha * b0.grad(from backpropagation) = -3 + 0.1 * 70 = 4 b1 = 4

Iteration #2:

MeanSquaredError: (prediction - gt) ** 2 = 4

Prediction: 8 Loss: 4

w * x + 3b; gt = 10; W = 4; b = -3; x = 2;

Prediction:

$$w * x + 3b = 15$$

Iteration #1:

MeanSquaredError: (prediction - gt) ** 2 = 25

Prediction: 15 Loss: 25

Optimization step:

w1 = w0 - alpha * w0.grad(from backpropagation) = 6 - 0.1 * 10 = 5w1 = 5

Optimization step:

b1 = b0 - alpha * b0.grad(from backpropagation) = 1 - 0.1 * (-20) = 3b1 = 3

Iteration #2:

MeanSquaredError : (prediction - gt) ** 2 = 1

Prediction: 19 Loss: 1