Rank-revealing QR factorizations

неполный QR (Кирилл Кулев, Батраев Радик)

Содержание

- Постановка задачи RRF (rank-revealing factorization)
- Алгоритмы
 - pivot QR
 - random QR
 - o pivot LU
- Оценки (реализация, скорость, точность)

Постановка задачи

- Обычно требуется факторизация, обеспечивающая приближение к пространству диапазонов матрицы более низкого ранга.
- SVD отличный кандидат
- Однако обновление SVD обходится дорого -добавление строки\столбца в матрицу или удаляется из нее.

Вычисление rank-revealing factorization:

 $A = XDY^T, \quad X \in \mathbb{R}^{m \times p}, \quad D \in \mathbb{R}^{p \times p}, \quad Y \in \mathbb{R}^{n \times p}, \quad p \leq min(m,n), \ D-diagonal$

Rank revealing QR factorization

Дано LU разложение:
$$AP = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ 0 & R22 \end{pmatrix}$$

$$ightarrow$$
 оценки: $\sigma_{\max}(R_{22}) \leq f(k,n)\sigma_{k+1}(A), \quad \sigma_{\min}(R_{11}) \geq f(k,n)^{-1}\sigma_k(A),$

В зависимости стратегии выбора Р имеем разные алгоритмы:

- Детерминированные
- Рандомизированные

В условиях изначальной задачи вычисляем:

$$A = QRP^{T} = QDY^{T},$$

$$D = diag(r_{ii}), Y^{T} = D^{-1}RP^{T}$$

QR with column pivoting

- На каждом шаге вычисляются нормы оставшихся столбцов
- Столбец с максимальной нормой переставляется в начало

A (80x80), rank=60

Algorithm 1 QR with column pivoting (QRCP)

Inputs:

A is $m \times n$ matrix, k is target rank, $1 \le k \le \min(m, n)$ **Outputs:**

Q is $m \times m$ orthogonal matrix

R is $m \times n$ upper trapezoidal matrix

 Π is $n \times n$ permutation matrix such that $A\Pi = QR$

Algorithm:

Initialize
$$\Pi^{(0)} = I_n, \ r_s = ||A(1:m,s)||_2 \ (1 \le s \le n)$$
 for $i=1:k$ do

Find $j = argmax_{i \le s \le n} r_s$

Swap r_i and r_i , A(1:m,i) and A(1:m,j)

Update permutation with last swap $\Pi^{(i)} = \Pi^{(i-1)}\Pi_{i,i}$

Form Householder reflection H_i from A(i:m,i)

Update $A(i:m,i:n) \leftarrow H_i A(i:m,i:n)$

Update $r_s = ||A(i+1:m,s)||_2$ $(i+1 \le s \le n)$

end for

 $Q = H_1 H_2 \cdots H_k$ is the product of all reflections $R = \text{upper trapezoidal part of } A, \Pi = \Pi^{(k)}$

Randomized QR with column pivoting

- Генерируется случайная матрица для понижения размерности
- Вычисляется QRCP для отбора pivot'oв
- Вычисляется обычное QR на исходной матрице

Algorithm 3 SSRQRCP - Single-Sample Randomized QRCP.

Input:

A is $m \times n$.

k the desired approximation rank. $k \ll \min(m, n)$.

Output:

Q is $m \times m$ orthogonal matrix in the form of k reflectors.

R is $k \times n$ truncated upper trapezoidal matrix.

P is $n \times n$ permutation matrix such that $AP \approx Q(:, 1:k)R$.

- 1: function $[Q, R, P] = \operatorname{ssrqrcp}(A, k)$
- 2: Set sample rank l = k + p needed for acceptable sample error.
- 3: Generate random $l \times m$ GIID compression matrix Ω .
- 4: Form the sample $B = \Omega A$.
- Get k column pivots from sample, $[Q_b, R_b, P] = qrcp(B)$.
- 6: Apply permutation $A^{(1)} = A^{(0)}P$.
- 7: Construct k reflectors from new leading columns, $[Q, R_{11}] = qr(A^{(1)}(:, 1:k))$.
- 8: Finish k rows of R in remaining columns, $R_{12} = Q(:,1:k)^T A^{(1)}(:,k+1:n)$.
- 9: end function

Rank revealing with LU factorization

Дано LU разложение:
$$PA = LU = \begin{pmatrix} L_{11} & 0 \\ L_{12} & L22 \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ 0 & U22 \end{pmatrix}$$

$$\mathsf{V}$$
 оценки $\sigma_{\max}(U_{22}) \leq f(k,n)\sigma_{k+1}(A), \quad \sigma_{\min}(L_{11}U_{11}) \geq f(k,n)^{-1}\sigma_k(A), \quad f(k,n) = k(n-k)+1.$

В условиях изначальной задачи вычисляем:

$$X = P^{T}LD, D = diag(u_{ii}), Y^{T} = D^{-1}U$$

pivoting LU with permutation matrix

- На каждом шаге ищем в строке (столбце) максимальный элемент
- Перемещаем его на диагональ

Require:

A: a matrix of size $m \times n$ to decompose, r: desired rank, and $k \ge r$: number of columns to use; Ensure:

Matrices P, Q, L, U such that $||PAQ - LU||_F \le eps$, where P and Q are permutation matrices, Land U are the lower and upper triangular matrices, respectively, and eps is a smaller error bound;

- 1: Create a matrix Ω of size $n \times k$, whose entries are i.i.d. Gaussian random variables with zero mean and one variance;
- 2: Y ← AΩ;
- 3: Apply RRLU decomposition to Y such that $PYQ_y = L_{y_1}U_{y_1}$;
- Truncate L_u, and U_u, by choosing the first r columns and the first r rows, respectively, such that $L_{y_1} \leftarrow L_{y_1}(:, 1:r)$ and $U_{y_1} \leftarrow U_{y_1}(1:r,:);$
- 5: B ← L[†]_{y, PA}, where L[†]_{y₁} denotes the Moore-Penrose inverse of L_{y1};
 6: Apply LU decomposition to B with column pivoting BQ = L_bU_b;
- 7: L ← L_v, L_b;
- 8: U ← Uh:
- Return L, U, P, Q

A (80x80), rank=60

Скорость вычислений

- Рандомизированный алгоритм обеспечивает прирост в скорости перед SVD
- QR pivoting быстрее SVD в теории, однако библиотечный SVD отработал быстрее нашей реализации
- LU существенно проигрывает остальным по скорости

Определение ранга

Все реализованные методы для большинства матриц позволяют определить ранг с хорошей точностью

Ранговая аппроксимация

- QR with column pivoting дает приемлемые результаты, хоть они и хуже чем у SVD
- Randomized QR обладает меньшей точностью, но также способен давать приемлемые результаты

Оценки в худшем случае

- Хоть чаще всего RRQR работают лучше теоретических оценок, однако существуют матрицы, на которых они достигаются
- Пример такой матрицы матрица Кахана

A_k	$ A - A_k _2$	
$\sum_{1}^{k} \sigma_{i} u_{i} v_{i}^{\mathrm{T}}$	$=\sigma_{k+1}(A)$	$\sigma_{\min}(A_k) = \sigma_k(A)$
$Q\begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$	$\leqslant \sqrt{\tau(n,k)}\sigma_{k+1}(A)$	$\sigma_{\min}(R_{11}) \geqslant \frac{1}{\sqrt{\tau(n,k)}} \sigma_k(A)$

$$\tau(n, k) = k(n - k)\mu^2 + 1.$$

Выводы

- Rank-revealing QR алгоритмы часто (но не всегда) дают хороший результат
- Теоретически RRQR алгоритмы быстрее SVD, однако из-за различий в реализации библиотечный SVD работает быстрее
- Рандомизированные алгоритмы способны работать быстрее стандартных RR
 QR алгоритмов, обеспечивая при этом похожий результат

Ссылки и литература:

- https://github.com/batradiik/NLA_project
- What Is a Rank-Revealing Factorization?
- On the existence and computation of rank-revealing LU factorizations
- Rank Revealing Algorithms and its Applications