1. Цель работы

Исследовать процедуру обучения и функционирования рекуррентной нейронной сети (РНС) Хопфилда в качестве устройства автоассоциативной памяти.

2. Постановка задачи

Закодировать запоминаемые образы в виде биполярных матриц-паттернов размерности $I \times J$ (рекомендуемое число пикселей $IJ \sim 20...40$). Произвести векторизацию матриц. Провести настройку весов РНС Хопфилда согласно правилу ассоциативного обучения (Хебба). Задать функцию активации и реализовать алгоритм функционирования РНС Хопфилда в синхронном или асинхронном режиме. Протестировать РНС на запомненных эталонных образах. Проверит функционирование РНС Хопфилда на искаженных паттернах (изменены порядка 10% пикселей).

3. Практическая часть

Режим работы РНС	Запоминаемые			
Хопфилда	образы			
Асинхронный	0 2 7			

Матри	ца в	есов	:											
0	-1	1	3	3	3	-3	1	-3	1	3	3	1	-1	1
-1	0	1	-1	-1	-1	1	-3	1	1	-1	-1	1	3	1
1	1	0	1	1	1	-1	-1	-1	3	1	1	3	1	3
3	-1	1	0	3	3	-3	1	-3	1	3	3	1	-1	1
3	-1	1	3	0	3	-3	1	-3	1	3	3	1	-1	1
3	-1	1	3	3	0	-3	1	-3	1	3	3	1	-1	1
-3	1	-1	-3	-3	-3	0	-1	3	-1	-3	-3	-1	1	-1
1	-3	-1	1	1	1	-1	0	-1	-1	1	1	-1	-3	-1
-3	1	-1	-3	-3	-3	3	-1	0	-1	-3	-3	-1	1	-1
1	1	3	1	1	1	-1	-1	-1	0	1	1	3	1	3
3	-1	1	3	3	3	-3	1	-3	1	0	3	1	-1	1
3	-1	1	3	3	3	-3	1	-3	1	3	0	1	-1	1
1	1	3	1	1	1	-1	-1	-1	3	1	1	0	1	3
-1	3	1	-1	-1	-1	1	-3	1	1	-1	-1	1	0	1
1	1	3	1	1	1	-1	-1	-1	3	1	1	3	1	0

Рисунок 1. Матрица весов

Рабочие вектора длины 15:

$$\mathbf{X}^{(1)} = (1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1);$$

 $\mathbf{X}^{(2)} = (1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,1);$
 $\mathbf{X}^{(3)} = (1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1);$

Рисунок 2. Подача рабочих векторов на вход

```
Вход нейронной сети:

$$$

$
$
$

Результат работы нейронной сети:

$$$

$
$
```

Рисунок 3. Подача рабочих векторов на вход

Искаженные вектора длины 15:

$$\widetilde{X}^{(1)} = (-1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1); \\ \widetilde{X}^{(2)} = (-1,-1,1,1,1,1,-1,1,-1,1,1,1,1,-1,-1); \\ \widetilde{X}^{(3)} = (1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1);$$

```
Подача искаженных векторов на вход
Вход нейронной сети:
 $$
$
$ $
$ $
$$$
Результат работы нейронной сети:
$$$
$ $
$ $
$ $
Вход нейронной сети:
 $$
 $
$$$
$$
Результат работы нейронной сети:
$$$
 $
$$$
```

Рисунок 4. Подача искаженных векторов на вход

```
Вход нейронной сети:

$$$

Результат работы нейронной сети:

$$$

$
$
$
```

Рисунок 5. Подача искаженных векторов на вход

4. Вывод

Таким образом, была исследована процедура обучения и функционирования рекуррентной нейронной сети (РНС) Хопфилда в качестве устройства автоассоциативной памяти.