Tema 5.2 Discos Duros Características

Modo de Transferencia

- Hace referencia a como se transfieren los datos desde el disco duro a la memoria RAM y viceversa.
- Hay varias técnicas:
 - PIO
 - DMA

Modo de Transferencia

- PIO (Entrada/Salida Programada):
 - Es el método de transferencia más antiguo y mas lento.
 - Utiliza el microprocesador como intermediario para el intercambio de datos.
 - Modos de transferencia:
 - PIO Modo 1: 5,2 Mb/s
 - PIO Modo 2: 8,3 Mb/s
 - PIO Modo 3: 11,1 Mb/s
 - PIO Modo 4: 16,6 Mb/s

Modo de Transferencia

- DMA (Direct memory access o Aceso Directo a Memoria):
 - No utiliza el microprocesador como intermediario para el intercambio de datos.
 - Actualmente se usa UltraDMA, mas conocido como UDMA
 - Modos de transferencia:
 - DMA-16 o Ultra-DMA: 16,6 Mb/s
 - DMA-33, Ultra-DMA-Mode-2 o Ultra-Ata/33: 33,3 Mb/s
 - UDMA-66, Ultra-DMA-Mode-4 o Ultra-Ata/66: 66,6 Mb/s
 - UDMA-100, Ultra-DMA-Mode-5 o Ultra-Ata/100: 100 Mb/s
 - UDMA-133, Ultra-DMA-Mode-6 o Ultra-Ata/133: 133 Mb/s

Tiempo medio de acceso

- Tiempo medio que tarda el cabezal en situarse en la pista y el sector en el que se quiere leer o escribir.
- Debe estar comprendido entre los 9 y 12 milisegundos

Tiempo medio de búsqueda

- Tiempo medio que tarda el cabezal en situarse en la pista deseada
- Debe estar comprendido entre los 8 y 12 milisegundos

Velocidad de rotación

- Velocidad de giro del disco
- Se mide en Revoluciones Por Minuto
- A mayor velocidad de rotación, menor latencia media.
- Se encuentra entre 5400 y 7200 rpm
- En discos SCSI puede llegar hasta los 10000 rpm o 15000 rpm

7

Latencia media

- Tiempo medio que tarda el cabezal en situarse en el sector deseado
- Cuando se desplazan el cabezal hasta el cilindro adecuado, la unidad tiene que esperar hasta que el sector deseado pase por debajo de la cabeza
- Cuanto mayor sea la velocidad de rotación menor será la latencia.

Capacidad de Almacenamiento

- Característica principal y normalmente la más importante
- Se mide en GB o TB
- Los fabricantes suelen usar otras medidas para:
 - 1KB = 1000 Bytes
 - 1MB = 1000 KB
 - 1GB = 1000 MB
 - 1TB = 1000 GB
 - Ejemplo: Un disco duro de 2 TB para un fabricante es: 2 x 1000 x 1000 x 1000 x 1000 Bytes = 2.000.000.000.000 Bytes

En informática 2.000.000.000 Bytes son:

 $2.000.000.000.000 / (1024 \times 1024 \times 1024 \times 1024) TB = 1,82 TB$

Nos Faltan 0,18 TB = 184 GB = 188.744 MB

Caché del Disco

- Almacena las lecturas de forma cuando que la controladora solicite datos del disco ya los tenga disponibles en su caché y no haya que esperar que los cabezales cambien de posición
- Actualmente existen discos con caché de entre 8 MB y 64 MB

Interfaz

- Mecanismo de conexión entre el disco duro y la computadora.
- Los portátiles suelen usar ATA/IDE o SATA
- Los servidores SATA o SCSI

Para los discos externos se suele usar USB,

Firewire o eSATA

Factor de Forma

- Es el tamaño físico de los discos duros:
 - Para sobremesa:
 - 3.5 pulgadas
 - 5.25 pulgadas
 - Para portátiles:
 - 1.8 pulgadas
 - 2.5 pulgadas
 - Existen otros tamaños en los que algunos están obsoletos o se usan en servidores o en reproductores mp3:
 - 8, 1, y de 0,85 pulgadas

Otras Características

Ruido:

- Es un factor importante si vamos a trabajar mucho con él o si lo usamos para un HTPC.
- Suele depender del tipo disco
- Los de alta velocidad suelen ser mas ruidosos (como los SCSI)
- Temperatura máxima de funcionamiento
- Tolerancia a golpes y vibraciones
- PRECIO