

Departamento de Matemática y Física

Curso: Matemática III Código: 0826301

Método de Eliminación Gauss-Jordan

Arelis Díaz

Celular: 04269129844 Email: jdiaz@unet.edu.ve

Ejemplo 1: Utilizar el método de eliminación de Gauss- Jordan para resolver el -2x + y + 6z = 18 sistema 5x + 8z = -16 3x + 2y - 10z = -3

 Planteamos la matriz aumentada del sistema y por medio de operaciones elementales sobre renglones buscamos la forma escalonada reducida por renglones.

$$\begin{pmatrix}
-2 & 1 & 6 & 18 \\
5 & 0 & 8 & -16 \\
3 & 2 & -10 & -3
\end{pmatrix}$$

$$R_{3} \rightarrow -\frac{5}{166}R_{2}\begin{pmatrix} 1 & 0 & 8/5 \\ 0 & 1 & 46/5 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} -16/5 \\ 58/5 \\ 1/2 \end{bmatrix} R_{1} \rightarrow -8/5R_{3} + R_{1} \begin{pmatrix} 1 & 0 & 0 & | -4 \\ 0 & 1 & 0 & | 7 \\ 0 & 0 & 1 & | 1/2 \end{pmatrix}$$

El rango de la matriz coeficientes, el rango de la matriz aumentada y el número de incógnitas es igual a 3, por lo que el sistema es compatible determinado. El sistema de la última matriz es

$$x = -4$$
$$y = 7$$
$$z = 1/2$$

La solución del sistema es (-4,7,1/2)

Ejemplo 3: Utilizar el método de eliminación de Gauss-Jordan para

resolver el sistema

$$2x_1 + 4x_2 + 6x_3 = 18$$

$$4x_1 + 5x_2 + 6x_3 = 24$$

$$2x_1 + 7x_2 + 12x_3 = 30$$

La matriz aumentada del sistema

$$\begin{pmatrix}
2 & 4 & 6 & | & 18 \\
4 & 5 & 6 & | & 24 \\
2 & 7 & 12 & | & 30
\end{pmatrix}$$

Buscamos la forma escalonada reducida por renglones

De la última matriz, vemos que los rangos de la matriz de coeficientes y aumentada es igual a 2:

$$\rho(A) = \rho(A_a) = 2$$

Pero el sistema tiene tres incógnitas, entonces el sistema es compatible indeterminado.

• De la forma escalonada reducida por renglones obtenida tenemos que el sistema es equivalente a $x_1 - x_3 = 1$

$$x_2 + 2x_3 = 4$$

• Se tiene dos ecuaciones para tres incógnitas, si despejamos x_1 y x_2 en términos de x_3 obtenemos que

$$x_1 = 1 + x_3 \\ x_2 = 4 - 2x_3$$

• Vemos que hay infinitas soluciones, por cada valor de
$$x_3$$
 hay una solución. Por ejemplo:
$$x_3=0\Rightarrow x_1=1+0=1\\ x_2=4-2(0)=4\\ x_1=1+1=2\\ x_3=1\Rightarrow x_2=4-2(1)=2\Rightarrow (2,2,1)\ es\ una\ solución$$

En general, podemos decir que el conjunto de soluciones del sistema es

$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 1 + x_3 \land x_2 = 4 - 2x_3\}$$

Ejemplo 3: Resolver el sistema $2x_1 - 6x_2 + 7x_3 = 15$ $x_1 - 2x_2 + 5x_3 = 10$

$$2x_2 + 3x_3 = 4$$
$$2x_1 - 6x_2 + 7x_3 = 15$$
$$x_1 - 2x_2 + 5x_3 = 10$$

La matriz aumentada del sistema es

$$\begin{pmatrix}
0 & 2 & 3 & | & 4 \\
2 & -6 & 7 & | & 15 \\
1 & -2 & 5 & | & 10
\end{pmatrix}$$

Buscamos la forma escalonada reducida por renglones de la matriz aumentada:

De la última matriz, tenemos que los

$$\rho(A) = 2$$
 y $\rho(A_a) = 3$

<u>Ejemplo 4:</u> Una florista ofrece tres tamaños de arreglos florales que contienen rosas, margaritas y crisantemos. Cada arreglo pequeño contiene una rosa, tres margaritas y tres crisantemos. Cada arreglo mediano contiene dos rosas, cuatro margaritas y seis crisantemos. Cada arreglo grande contiene cuatro rosas, ocho margaritas y seis crisantemos. Un día, la florista nota que usó un total de 24 rosas, 50 margaritas y 48 crisantemos para surtir pedidos de estos tres tipos de arreglos. ¿Cuántos arreglos de cada tipo elaboró?

• De la información del enunciado tenemos

Tipo de Arreglos	Pequeño	Mediano	Grande
Rosas	1	2	4
Margaritas	3	4	8
Crisantemos	3	6	6

- Si denotamos por x la cantidad de arreglos pequeños, y la cantidad de arreglos medianos y z la cantidad de arreglos grandes, entonces :
 - ✓ Por la cantidad de rosas usadas se tiene que : x + 2y + 4z = 24
 - ✓ Por la cantidad de margaritas usadas se tiene que : 3x + 4y + 8z = 50
 - ✓ Por la cantidad de crisantemos usados se tiene que 3x + 6y + 6z = 48

• Lo anterior nos permite plantear el siguiente sistema de ecuaciones:

$$x + 2y + 4z = 24$$

 $3x + 4y + 8z = 50$
 $3x + 6y + 6z = 48$

• Resolvemos el sistema usando el método de eliminación de Gauss-Jordan:

$$\begin{pmatrix} 1 & 2 & 4 & 24 \\ 3 & 4 & 8 & 50 \\ 3 & 6 & 6 & 48 \end{pmatrix} \xrightarrow{R_2} -3R_1 + R_2 \begin{pmatrix} 1 & 2 & 4 & 24 \\ R_3 \rightarrow -3R_1 + R_3 & 0 & -2 & -4 & -22 \\ 0 & 0 & -6 & -24 \end{pmatrix}$$

$$R_2 \to -1/2R_2 \begin{pmatrix} 1 & 2 & 4 & 24 \\ 0 & 1 & 2 & 11 \\ 0 & 0 & -6 & -24 \end{pmatrix} R_1 \to -2R_2 + R_1 \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 11 \\ 0 & 0 & -6 & -24 \end{pmatrix}$$
 determinado y la solución es (2,3,4). Es decir la florista elaboró:

De la última matriz podemos concluir que el sistema es compatible determinado y la solución es (2,3,4). Es decir la florista elaboró:

2 arreglos pequeños

3 arreglos medianos

4 arreglos grandes.

Ejemplo 4: Un departamento de pesca y caza del estado proporciona tres tipos de comida a un lago que alberga a tres especies de peces. Cada pez de la especie 1, consume cada semana un promedio de 1 unidad del alimento A, 1 unidad del alimento B y 2 unidades del alimento C. Cada vez de la especie 2 consume cada semana un promedio de 3 unidades del alimento A, 4 del B y 5 del C. Para un pez de especie de la especie 3, el promedio semanal de consumo es de 2 unidades del alimento A, 1 unidad del alimento B y 5 unidades del C. Cada semana se proporcionan al lago 25.000 unidades del alimento A, 20.000 unidades del alimento B y 55.000 del C. Si suponemos que los peces se comen todo el alimento, ¿Cuántos peces de cada especie pueden coexistir en el lago?

Solución Sean x_1 , x_2 y x_3 el número de peces de cada especie que hay en el ambiente del lago. Si utilizamos la información del problema, se observa que x_1 peces de la especie 1 consumen x_1 unidades del alimento A, x_2 peces de la especie 2 consumen $3x_2$ unidades del alimento A y x_3 peces de la especie 3 consumen $2x_3$ unidades del alimento A. Entonces,

Suministro total del alimento A

$$x_1 + 3x_2 + 2x_3 = 25\,000$$

 $x_1 + 4x_2 + x_3 = 20\,000$

Suministro total del alimento C

$$2x_1 + 5x_2 + 5x_3 = 55\,000$$

Suministro total del alimento B

La matriz aumentada del sistema es

$$\begin{pmatrix}
1 & 3 & 2 & | & \mathbf{25000} \\
1 & 4 & 1 & | & 20000 \\
2 & 5 & 5 & | & 55000
\end{pmatrix}$$

Utilizando reducción de Gauss-Jordan

Por consiguiente, si x_3 se elige arbitrariamente, se tiene un número infinito de soluciones dada por $(40\ 000-5x_3, x_3-5\ 000, x_3)$. Por supuesto, se debe tener $x_1 \ge 0$, $x_2 \ge 0$ y $x_3 \ge 0$. Como $x_2 = x_3 - 5\ 000 \ge 0$, se tiene $x_3 \ge 5\ 000$. Esto significa que $0 \le x_1 \le 40\ 000 - 5(5\ 000) = 15\ 000$. Por último, como $40\ 000 - 5x_3 \ge 0$, se tiene que $x_3 \le 8\ 000$. Esto significa que las poblaciones que pueden convivir en el lago con todo el alimento consumido son

$$x_1 = 40\,000 - 5x_3$$

 $x_2 = x_3 - 5\,000$
 $5\,000 \le x_3 \le 8\,000$

De la ultima matriz vemos que los rangos de las matrices de coeficiente y aumentada del sistema son iguales a 2, como el sistema tiene tres incógnitas entonces el sistema es compatible indeterminado. A

Ejercicios Propuestos:

Problemas 1.2

Tomado del libro Algebra Lineal de Grossman, Stanley. Capitulo I

En los problemas del 1 al 6 utilice el método de eliminación de Gauss-Jordan para encontrar, si existen, todas las soluciones de los sistemas dados.

1.
$$9x_1 + 9x_2 - 7x_3 = 6$$

 $-7x_1$
 $9x_2 - 7x_3 = 2$
 $-7x_3 = -10$
 $9x_2 - 7x_3 = 2$
 $-x_3 = -2$
 $9x_1 + 6x_2 + 8x_3 = 45$
 $-3x_1 + 6x_2 + 8x_3 = 1$
 $-3x_1 + 6x_2 + 8x_3 = 1$

4.
$$x_1 + x_2 - x_3 = 0$$

 $4x_1 - x_2 + 5x_3 = 0$
 $6x_1 + x_2 + 3x_3 = 0$
 $5x_1 - 2x_2 + x_3 + x_4 = 2$
 $3x_1 + 2x_3 - 2x_4 = -8$
 $4x_2 - x_3 - x_4 = 1$
 $5x_1 + 3x_3 - x_4 = 0$
6. $x_1 + x_2 = 4$
 $2x_1 - 3x_2 = 7$
 $3x_1 - 2x_2 = 11$

Tomados del Libro: Algebra Lineal de Poole, David. Capitulo 2, ejercicios 2.4

- 4. (a) En su bolsillo usted tiene algunas monedas de cinco, diez y 25 centavos. En total tiene 20 monedas y exactamente el doble de monedas de diez centavos que de cinco. El valor total de las monedas es \$3.00. Encuentre el número de monedas de cada tipo.
 - (b) Encuentre todas las posibles combinaciones de 20 monedas (de cinco, diez y 25 centavos) que sumarían exactamente \$3.00.
- 5. Un cafetalero vende tres mezclas de café. Una bolsa de la mezcla de la casa contiene 300 gramos de grano colombiano y 200 gramos de grano rostizado francés. Una bolsa de la mezcla especial contiene 200 gramos de grano colombiano, 200 gramos de grano keniano y 100 gramos de grano rostizado francés. Una bolsa de mezcla gourmet contiene 100 gramos de grano colombiano, 200 gramos de grano keniano y 200 gramos de grano rostizado francés. El comerciante tiene a la mano 30 kilogramos de grano colombiano, 15 kilogramos de grano keniano y 25 kilogramos de grano rostizado francés. Si quiere usar todos los granos, ¿cuántas bolsas de cada tipo de mezcla puede elaborar?