

DL_MESO Data layout

Sergi Siso
Application Performance Engineer
IPCC@Hartree, STFC Daresbury Laboratory
United Kingdom

DL_MESO_LBE

- Lattice Boltzmann code to model fluids at mesoscale.
- Hybrid MPI/OpenMP running natively on Phi.
- Using Intel compiler 16.0.042 (beta).
- This project optimize the fGetEquilibriumF hotspot.

Thursday, 09 July 2015 DL_MESO data layout

Array of Structures

Data Structure Layout:

- Data Structure Properties:
 - Not aligned
 - Vectorization with non-unit stride loads
 - Vectorization with remainder loops
- Additional characteristics:
 - Double precision
 - Length = connection lattices

Structure of Arrays

Data Structure Layout:

lvmx	lvm1x	lvm2x	lvm3x		lvm19x
lvmy	lvm1y	lvm2y	lvm3y	***	lvm19y
lvmz	lvm1z	lvm2z	lvm3z	***	lvm19z

Data Structure Properties:

- Aligned
- Vectorization with unit stride loads
- Vectorization with remainder loops

fGetEquilibrium optimizations (single threaded) vs AoS

4

Padding

5

Data Structure Layout

lvmx	lvm1x	lvm2x	lvm3x	 lvm19x	lvm_pad
lvmy	lvm1y	lvm2y	lvm3y	 lvm19y	lvm_pad
lvmz	lvm1z	lvm2z	lvm3z	 lvm19z	lvm_pad

Data Structure Properties:

- Aligned
- Vectorization with unit stride loads
- Vectorization without peel/remainder loops

fGetEquilibrium optimizations (single threaded) vs AoS

Insights

- AoS -> SoA is a key data layout transformation to achieve good vectorization.
 - Data alignment
 - Unit-stride loads
- Bigger gains in KnC
- Manual padding required to avoid remainder loops in Xeon, Intel compiler auto-padded properly the remainder loop in KnC.