

과정명		모듈명		회차명			
•	◈판다스는 외부파일을 읽어서 데이터 프레임으로 손쉽게 전환합니다.						
• 판다스가 제공하는 파일 형식들							
	파일형식	설명		read	write		
	csv	text형태로 데이터를 에 ,나 구분자를 이용 메모장에서도 작성 기		read_csv	to_csv		
	excel	엑셀 프로그램이 있어	야 한다	read_excel	to_excel		
	json		영식으로 데이터를 저장한다. 웹 · 주고 받기 위해 사용하는 형식	read_json	to_json		
	html	웹페이지 파일 형식이	다	read_html	to_html		
	hd5	딥러닝에서의 모델을	저장할때 사용하는 형식이다	read_hd5	to_hd5		
내 레 이 션						5	

과정명	모듈명	회차명
•	→ 상대경로와 절대경로	
	1. 상대경로상대경로는 현재 어플리케이션이 가동중인 폴더를 기준으로. (도트) : 현재 어플리케이션이 가동중인 폴더(도트 두개) : 자신보다 하나 위의 폴더를 나타냅니다.	경로를 배정합니다.
	현재 파이썬 파일이 있는 폴더가 uni_10 인데 이 폴더 안에 data 폴 ./data/score.csv 형태로 기술하는것을 상대경로라 합니다.	들더가 있을 경우에는
	2. 절대경로는 /(루트)부터 모든 경로를 기술하는것을 말합니다 . 예) c:/pandas_workspace/uni_10/data/score.csv c:는 생략해.	도 됩니다.
	절대경로 보다는 상대경로를 사용하는 것이 더 좋습니다. 절대 경로 모든 경로를 다시 작성해야 하는데 반해서 상대경로는 폴더를 이동하필요가 없습니다 .	
내 레 이 션		8

과정명		모듈명	회차명				
•	◈ csv읽기 예 1						
	#파일명 : exam10_1.py						
	import pandas as pd						
	data = pd.read_csv("./data/scor #상대 경로로 파일을 읽었음 현재 #그 폴더 아래에 score.csv파일이	폴더 아래에 data 폴더가 있어야 하	ਹ				
	print(" 컬럼명 : " , data.column print(" 인덱스 : " , data.index)	s)	컬럼명: Index(['name', 'kor', 'eng', 'mat'], dtype='object') 인덱스: RangeIndex(start=0, stop=5, step=1) name kor eng mat total avg				
	#총점, 평균 구하기 - 새로운 필드 data['total'] = data['kor'] data['avg'] = data['total']	+ data[' eng ']+data[' mat ']	0 홍길동 90 90 90 270 90.0000000 1 임꺽정 80 80 80 240 80.000000 2 장길산 70 70 70 210 70.000000 3 홍경래 90 80 70 240 80.000000 4 이징옥 60 50 50 160 53.333333				
	print(data)						
내 레 이							
션			10				

회차명

모듈명

과정명

과정명		모듈명	회차명	
•	- 데이터 분석용 파일들은 데(터 5개의 데이터를 보여줍니다. 의 데이터를 확인할 수 도 있습니다. 이터 개수가 커서, 모든 내용을 한번에 확인 터의 대략적 성격을 파악할 수 있습니다	민하기엔 어렵습니다.	
	- tail() - 데이터 프레임의 뒤에서부터 5개의 데이터를 보여줍니다 - data.tail(3)			
		크기를 알려줍니다. tuple타입을 전달합니 E에 다음처럼 사용이 가능합니다.	다.	
내 레 이 션			20	

♣	-vean
┃ ^ 앞에서 무터 5개만 미리 보기	-vean
◆ DataFrame API mpg cylinders displacement horsepower weight acceleration model	
0 18.0 8 307.0 130.0 3504 12.0	70
#파일명: exam10_5.py 1 15.0 8 350.0 165.0 3693 11.5	70
2 18.0 8 318.0 150.0 3436 11.0	70
import pandas as pd 3 16.0 8 304.0 150.0 3433 12.0	70
4 17.0 8 302.0 140.0 3449 10.5	70
#header가 3번째 줄에 있음 뒤에서 부터 5개만 미리 보기	
data = pd.read_csv("./data/auto-mpg.csv") mpg cylinders displacement horsepower weight acceleration mode	-
393 27.0 4 140.0 86.0 2790 15.6 394 44.0 4 97.0 52.0 2130 24.6	82 82
print("앞에서 부터 5개만 미리 보기") 395 32.0 4 135.0 84.0 2295 11.6	82
print(data.head()) 396 28.0 4 120.0 79.0 2625 18.6	82
397 31.0 4 119.0 82.0 2720 19.4	82
print("뒤에서 부터 5개만 미리 보기") 앞에서 부터 10개만 미리 보기	
<pre>print(data.tail())</pre> <pre>mpg cylinders displacement horsepower weight acceleration model-</pre>	-year
0 18.0 8 307.0 130.0 3504 12.0	70
print("앞에서 부터 10개만 미리 보기") 1 15.0 8 350.0 165.0 3693 11.5	70
print(data.head(10)) 2 18.0 8 318.0 150.0 3436 11.0	70
print(data.shape) #데이터프레임의 차원 행, 열의 개수 확인 가능 3 16.0 8 304.0 150.0 3433 12.0	70
4 17.0 8 302.0 140.0 3449 10.5	70
row, col = data.shape 5 15.0 8 429.0 198.0 4341 10.0 6 14.0 8 454.0 220.0 4354 9.0	70 70
#tuple타입임, 행과 열에 대한 정보를 모두 가지고 있음 7 14.0 8 434.0 220.0 4334 9.0 9.0	70
print("행의 개수 ", row) 8 14.0 8 455.0 225.0 4425 10.0	70
print("열의 개수 ", col) 9 15.0 8 390.0 190.0 3850 8.5	70
(398, 7)	
행의 개수 398	
열의 개수 7	
내 레	
<u>선</u>	
	21

과정명		모듈명	회차명
•	DataFrame AP info () dataFrame 객체 안에 어떤 필드들을 갖고 있 각 컬럼별로 어떤 데이터 타입인지 확인이 가	从는지 구조를 파악할 수 있습니다. 데이터 갯수는 몇개 능합니다. auto-mpg.csv 파일의 예입니다 .	이고, 인덱스는 무엇이고,
	데이터의 기본 구조 <class 'pandas.core.fr="" (total="" 21.8="" 396="" 398="" 7="" acceleration="" columns="" cylinders="" data="" displacement="" dtypes:="" entrie="" float64(4),="" horsepower="" in="" kb="" memory="" model-year="" mpg="" no="" none<="" rangeindex:="" th="" usage:="" weight=""><th>s, 0 to 397 columns): n-null float64 n-null int64 n-null float64 n-null float64 n-null int64 n-null int64 n-null float64</th><th></th></class>	s, 0 to 397 columns): n-null float64 n-null int64 n-null float64 n-null float64 n-null int64 n-null int64 n-null float64	
내 레이션			22

과정명			모듈	명		회차명			
•	◆ DataFrame API								
	describe : 각 필드별로 카운트, 평균, 표준편차, 최소값, 사분위수(1/4, 2/4, ¾), 최대값을 확인할 수 있습니다 이 함수는 파이썬을 이용하여 데이터를 분석할때, 대략적인 데이터에 대한 파악을 도와주는 함수입니다. 각 필드별로 통계에서 자주 사용하는 통계량들을 보여줍니다.								
	데이터	의 요약정보	확인						
		mpg	cylinders	displacement	horsepower	weight	acceleration	model-year	
	count	398.000000	398.000000	398.000000	396.000000	398.000000	398.000000	398.000000	
	mean	23.514573	5.454774	193.425879	104.189394	2970.424623	15.568090	76.010050	
	std	7.815984	1.701004	104.269838	38.402030	846.841774	2.757689	3.697627	
	min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000	
	25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000	
	50%	23.000000	4.000000	148.500000	92.000000	2803.500000	15.500000	76.000000	
	75%	29.000000	8.000000	262.000000	125.000000	3608.000000	17.175000	79.000000	
	max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000	
내									
레 이									
션									•

과정명		모듈명	회차명
*	DataFrame의 요약 정보 보기 0	4	
	#파일명 : exam10_6.py		
	import pandas as pd		
	#header가 3번째 줄에 있음 data = pd.read_csv("./data/auto	-mpg.csv")	
	print("데이터의 기본 구조") print(data.info())		
	print("데이터의 요약정보 확인") print(data.describe())		
내 레 이			
년 년			24

과정명	모듈명 회차명					
•	조건부여하기					
	 DataFrame 객체는 데이터를 검색할때 특정 조건을 부여하기가 쉽습니다. 별도의 for문을 필요로 하지 않습니다. 					
	- 예) data[조건식] 조건식의 결과가 참인 경우의 데이터만 반환합니다.					
	data[data['필드명'] == "값"] 또는 data [data.필드명 == "값"]					
	조건식은 == 뿐만아니라 관계연산자(==, !=, >, <. >=. <=) 모두 사용이 가능합니다 .					
	- 조건이 두개이상 결합할때는 파이썬이 제공하는 논리연산자인 and(&) 나 or() 연산자를 사용하면 안됩니다.					
	- 파이썬 논리연산자를 사용할 경우에는 다음과 같은 에러가 발생합니다.					
	 ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). 					
내 레 이 션						

회차명

모듈명

- 조건식을 결합해야 할 경우에는 numpy 라이브러리를 사용합니다.

과정명

◈ 조건부여하기

과정명	모듈명 회차명
•	DataFrame이 제공하는 통계 함수 - DataFrame 객체의 각 열은 Series티입입니다.
	- 각 열의 평균이나 중간값, 최대값, 최소값등을 구하려면 numpy 라이브러리를 사용하지 않더라도, Series 타입도 기본적을 제공합니다.
	- max: 해당 필드의 최대값을 반환한다.
	- min : 해당 필드의 최소값 반환한다.
	- std : 표준편차를 반환한다. 표준편차랑 집단의 성격을 알아내기 위해 사용하는 값이다. 표준편차가 크면 집단의 평균이 같더라도, 최대값과 최소값의 차가 커서 값이 넓게 분포되어 있음을 의미한다. - var : 분산, 집단내 값이 흩어짐의 척도, 파이썬은 표준 분산을 사용하지 않고 있다
	- quantile : 사분위수, 집단내의 값들의 ¼ 수 2/4 수 ¾ 수 등을 알아보기 위해 사용한다 quantile(0.25), quantile(0,5), quantile(0.75)
	- median : 집단내에서 중간번째 위치한 값을 알아내고자 할때 사용한다. 집단내의 값들의 편차가 클 경우 평균값만으로는 특정 집단의 특성을 나타내기 어려운 경우가 많다 이럴때 중간값을 사용한다
내 레 이 션	28

과정명	모듈명 회차명	
•	DataFrame이 제공하는 통계 함수 예제 #파일명 : exam10_8.py import pandas as pd	
	data = pd.read_csv("./data/auto-mpg.csv")	
	print(data['model-year'].value_counts()) #value_counts 각 데이터별 고유카운트	
	#평균, 최대, 최소 print("연비평균: ", data['mpg'].mean()) print("연비평균: ", data['mpg'].max()) print("연비최다: ", data['mpg'].min()) print("연비최소: ", data['mpg'].median()) print("연비중간: ", data['mpg'].var()) print("연비문산: ", data['mpg'].std())	
	print("1사분위수:", data['mpg'].quantile(0.25)) print("2사분위수:", data['mpg'].quantile(0.5)) print("3사분위수:", data['mpg'].quantile(0.75))	
내 레 이 션		29

과정명		2듈명		회차명
«	◆ 적용하기 -> 풀이#4)variety 이 Setosa 인 데이터의 통계량을 출력하	하세요		
	temp = data[data['variety']=='Setosa'] print(temp)	—		
	#5) 각각 variety가 Setosa, Virginica Versicolor 의 temp = data[data['variety']=='Setosa']['sepal.le print("Setosa 평균: ", temp.mean()) temp = data[data['variety']=='Versicolor']['sepal print("Versicolor 평균: ", temp.mean()) temp = data[data['variety']=='Virginica']['sepal print("Virginica 평균: ", temp.mean())	ength' al.leng] uth']	
	#6) 꽃의 종류가 Setosa 이면서 sepal.length 길이 temp = data[np.logical_and(data['variety']=='Se print(temp)			
내 레 이 션	(기입하지 않습니다.)			

번호	문제	정답	난이도	해설	관련학습보기
2	제목이 없는 csv파일을 읽었을때 별도의 컬럼 제목을 붙이고자 합니다. 파이르 제대로 읽은 명령문은? (단 파일명은 iris.csv이고 파이썬 파일 과 동일한 디렉토리에 있습니다.) ① data = pd.read_csv("iris.csv") ② data = pd.read_csv("iris.csv", header=None) ③ data = pd.read_csv("./data/iris.csv", header=None) ④ data = pd.read_csv("iris.csv", index_col=1)	2	4	제목줄이 없을때는 heade필드에 None 속성을 부여하면 됩니다. 파이썬 파일과 데이터파일이 동일한 경로일때는 파일명만기술하면 됩니다.	13
3	DataFrame 객체에서 특정 조건을 만족하는 필드만 추출하고자 합니 다. auto-mpg.csv 파일에서 cylinders 필드값이 8인 데이터의 horsepower 필드값만 보고자 합니다. 바르게 작성하세요	해설참조	2	data[data['cylinders']==8]['horsepower'] 또는 data[data.cylinders]==8]['horsepower']	27
4	auto-mpg.csv 파일을 읽어 각 필드들에 대한 정보(데이터타입, 필드명등)를 확인하고자 할때 어떠한 함수를 사용하는가 ① info() ② describe() ③ tail() ④ head()	1	5	필드에 대한 정보는 info함수를 사용합니다 .	24

번호	문제	정답	난이 도	해설	관련학습보기
5	auto-mpg.csv 파일을 읽어 각 필드들에 대한 통계량(평균, 표준편차, 분산, 중앙갑등)을 확인하기 위한 함수는 ? ① info() ② describe() ③ tail() ④ head()	2	5	통계량을 확인하려면 describe함수를 사용합니다	24
6	대이터프레임의 컬럼명을 변경하고자 할때 사용하는 속성은 ? ① info ② shape ③ cols ④ columns	4	5	data.columns= ['필드명1', '필드명2', '필드명3'] 등으로 부여 하면 됩니다.	29
7	데이터프레임 객체의 데이터의 행과 열의 개수를 확인하는 속성은?	shape	4	shape속성을 활용하면 행과 열등 크기를 확인 할 수 있습니다.	

번호	문제	정답	난이 도	해설	관련학습보기
8	auto-mpg.csv 파일을 읽어서 모델의 연도고 70년과 71년 두 종류의 데이터 만보고싶을때 올바른 수식은? ① data[np.logical_and(data['model-year']==70, data['model-year']==71)] ② data[np.logical_or(data['model-year']==70, data['model-year']==71)] ③ data[data['model-year']==70 and data['model-year']==71] ④ data[data['model-year']==70 or data['model-year']==71]	2	1	논리식의 경우에는 and나 or 연산이 아니라 numpy의 logical_or 나 logical_and 연산을 사용해야 한다	28
9	auto-mpg.csv 파일에서 cylinders 가 8개인 데이터의 개수를 알아내고자한다. 올바른 방법은? ① data[data['cylinders']==8].count() ② data[data['cylinders']==8].shape ③ data[data['cylinders']=8].length() ④ data[data['cylinders']=8].length()	2	4	data[data['cylinders']==8].shape data[조건식].shape 속성을 사용하면 열의 개수와 행의 개수 모드를 알 수 있습니다.	29
10	auto-mpg.csv 파일에서 cylinders 가 8개인 horsepower의 평균값을 알 아내는 수식을 올바르게 작성하시오	해설참조	5	data[data['cylinders']==8]['horsepower'].mean()	29