Overview

- Collections: sets, multi-sets, sequences.
- Relations: predicates, binary relations, n-ary relations.
- Functions: injective, surjective, bijective.
- Propositional logic.
- First-order logic.
- Validity.
- Normal forms.

Sets

Set: A collection of distinct elements. No ordering.

Empty set: ∅.

Universal set: *U* wrt some domain.

Basic Operations: membership: $a \in A$. union $A \cup B$,

intersection $A \cap B$, absolute complement A' wrt U,

relative complement A - B.

Sets Continued

Properties: \emptyset identity for \cup , U identity for \cap , union and intersection are *idempotent*, associative and commutative, \cup distributes over \cap and vice-versa.

Subset: $A \subset B$ if every element which belongs to A also belongs to B. $\emptyset \subset A$ for all sets A.

Power set: The set of all subsets of A is P(S). Given $S = \{a, b\}$, $P(S) = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$.

Cartesian Product: Given two sets A and B, the cartesian product $A \times B = \{(a,b) | a \in A, b \in B\}$. For example, if $A = \{a,b\}$ and $B = \{0,1,2\}$, $A \times B = \{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)\}$.

Set Cardinality

- The number of elements |S| in a set S is known as its cardinality.
- If |A| = n, then $|P(A)| = 2^n$.
- What is the cardinality of the set of all natural numbers \mathcal{N} , the cardinality of the set of all real numbers \mathcal{R} ?

Multi-Sets

- Allows repeated elements: aka bag.
- For an element, it makes sense to ask how many occurrences there are of that element.

Sequences

- An ordered collection of elements (may contain repetitions).
- Can be put into 1:1 correspondence with \mathcal{N} .
- Index-set: 0, 1, 2,
- A *tuple* is a sequence of a specified length. A *n*-tuple is denoted as $(s_1, s_2, \dots s_n)$. If n = 2, we have a *pair*.

Relations

A relation R over sets $S_1, S_2, \dots S_n$, is some subset of $S_1 \times S_2 \times \dots \times S_n$

- When n = 1, we have a unary relation, aka predicate.
- When n = 2, we have a binary relation. If $(s_1, s_2) \in R$, we say that $s_1 R s_2$.
- We say that R is true for $(s_1, s_2, \dots s_n)$ iff $(s_1, s_2, \dots s_n) \in R$.

Relation Properties

A binary relation $R \subset (A \times A)$ is:

Reflexive aRa, $\forall a \in A$.

Irreflexive There is no $a \in R$ such that aRa.

Symmetric $aRb \Rightarrow bRa$.

Anti-symmetric $aRb \wedge bRa \Rightarrow a = b$.

Transitive $aRb \wedge bRc \Rightarrow aRc$.

Equivalence Relation Reflexive, symmetric and transitive.

Partial order Reflexive, anti-symmetric and transitive.

Inverse Relation

Given a binary relation R, its inverse relation R^{-1} is defined such that if $(a, b) \in R$ iff $(b, a) \in R^{-1}$.

Functions

Given a set D called the domain and a set R called the range (or codomain), a relation $F \in (D \times R)$ is a function iff $\forall d \in D, (d, r_1) \in F \land (d, r_2) \in F \Rightarrow r_1 = r_2$. We say that $F : D \rightarrow R$; if $(d, r) \in F$, we say that F(d) = r.

- If F is defined for all d ∈ D, then we say that F is total. If F may or may not be defined for all d ∈ D, then we call it partial.
- The definition implies that for any value d in the domain, F
 maps it to at most one element in the range.

Function Properties

Given a function $F: A \rightarrow B$ it is:

surjective If for all $b \in B$ there is a $a \in A$ such that F(a) = b. AKA onto.

injective If F(a) = F(b), then a = b. AKA one-to-one.

bijective Surjective and injective. AKA one-to-one and onto or one-to-one correspondence.

The inverse of a bijective function F is also a function F^{-1} .

Propositional Logic Well-Formed Formulas

Constants: true or false.

Atoms: Variables p, q, etc. standing for either true or false.

Basic Operators: \vee for or, \wedge for and, \neg for not.

Implication: $p \Rightarrow q$ equivalent to $\neg p \lor q$.

Equivalence: $p \Leftrightarrow q$ or $p \equiv q$ or p iff q equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.

Operator precedence: (lowest) \equiv and \Rightarrow , \lor , \land , \neg (highest).

Propositional Operators Truth Table

р	q	$p \lor q$	$p \wedge q$	$\neg p$	$p \Rightarrow q$	$p\equiv q$
false	false	false	false	true	true	true
false	true	true	false	true	true	false
true	false	true	false	false	false	false
true	true	true	true	false	true	true

Tautologies

A WFF is satisfiable if there is some interpretation (assignment to true or false) for its atoms such that the WFF evaluates to true.

A WFF is a tautology if it is true under all interpretations.

Examples: $p \lor \neg p$, $p \equiv p$, $p \Rightarrow (p \lor q)$.

A WFF is a contradiction if it is false under **all** interpretations.

Examples: $p \land \neg p$, $p \equiv \neg p$.

First-Order Logic

Terms: used to denote objects from some non-empty domain. Represented using infinite set of n-ary function symbols f_0^n , f_1^n , ... applied to n objects.

Predicates: used to represent relations. Represented using an infinite set of n-ary predicate symbols p_0^n , p_1^n , . . .

applied to *n* objects.

Operators: Propositional operators.

First-Order Logic Continued

Variables: Standing for terms.

Quantifiers: $\forall x P, \exists x P$ where x is a variable and P is a WFF.

Note that $\forall x \ P$ stands for $P(a_1) \land P(a_2) \ldots \land P(a_n)$

and $\exists x \ P$ stands for $P(a_1) \lor P(a_2) \ldots \lor P(a_n)$ where the domain consists of $a_1, a_2, \ldots a_n$.

Sentence: WFF without free variables.

Valid WFFs

A sentence is satisfiable if there is some domain and interpretation for its term and predicate symbols under which it is true.

A sentence is valid iff it is true under all domains and interpretations.

$$\neg \forall x \, p(x) \equiv \exists x \, \neg p(x)$$

$$\neg \exists x \, p(x) \equiv \forall x \, \neg p(x)$$

Normal Form

- Conjunctive normal form for propositional logic. Example: $(p_1 \vee \neg p_2) \wedge (\neg p_1 \vee p_3) \wedge (p_1 \vee p_2 \vee \neg p_3)$.
- Disjunctive normal form for propositional logic. Example: $(p_1 \land \neg p_2) \lor (\neg p_1 \land p_3) \lor (p_1 \land p_2 \land \neg p_3)$.
- Clausal form for first-order logic. CNF with implicit universal quantification (existential quantifiers replaced by skolem functions). Example: The WFF

has clausal form:

```
 \begin{array}{l} [\neg \mathsf{father}(X1,\,Y1) \lor \mathsf{parent}(X1,\,Y1)] \land \\ [\neg \mathsf{mother}(X2,\,Y2) \lor \mathsf{parent}(X2,\,Y2)] \land \\ [\neg \mathsf{parent}(X3,\,Y3) \lor \mathsf{father}(X3,\,Y3) \lor \mathsf{mother}(X3,\,Y3)] \end{array}
```