KTH Matematik

Olof Heden

Σρ	G/U	bonus

Efternamn	förnamn	ååmmdd	kodnr

Kontrollskrivning 5A, den 15 maj 2014, kl 13.00-14.00 i SF1610 Diskret matematik för CINTE och CMETE.

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd ks n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)–5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna, använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) **Kryssa för** om påståendena **a**)-**f**) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Den kompletta grafen K_6 är planär.		
b)	Varje cykel i en bipartit graf har jämn längd, dvs antalet kanter som passeras när man följer cykeln är jämnt.		
c)	I varje graf med v noder, e kanter och c komponenter gäller att $e \geq v - c$.		
d)	Varje komplett bipartit graf $K_{n,n}$ där $n \geq 2$ har en Hamiltoncykel.		
e)	En sammanhängande graf har minst två uppspännande träd om och endast om grafen har minst en cykel.		
f)	I den kompletta bipartita grafen $K_{n,m}$ med n st X -noder och m st Y -noder finns alltid en komplett matchning där varje X -nod matchas med en Y -nod.		

poäng uppg.1	_

Namn	poäng uppg.2

2a) (1p) En plan ritning av den sammanhängande planära grafen G har 12 områden ("ytterområdet" medräknat). Antalet kanter är 100. Hur många noder har grafen? (Svara bara.)

b) (1p) Grafen G har 101 noder. Motivera varför minst en av noderna har en valens (grad) som är ett jämnt tal. (Svara bara.)

c) (1p) Redogör för Halls bröllopssats.

Namn	poäng uppg.3

3) (3p) Rita en graf med 12 noder, varav 8 har valens (grad) 2 och 4 har valens (grad) 4, som saknar Hamiltoncykel men har en Eulerkrets (dvs har en sluten Eulerväg).

OBS. Ditt svar skall motiveras.

Namn	poäng uppg.4

4) (3p) Den bipartita grafen G har två mängder X och Y av noder. Det finns inga kanter mellan noder i X och inga kanter mellan noder i Y. Varje nod i mängden X har valensen (graden) 5 och varje nod i mängden Y har valensen (graden) 7. Det finns 91 noder i X, (dvs |X| = 91). Bestäm antalet noder i Y. OBS. Ditt svar skall motiveras.

Namn	poäng uppg.5

5) (3p) Finns det någon sammanhängande graf som har 14 noder med valens (grad) 1, 25 noder med valens (grad) 2 och 10 noder med valens 3, men som saknar noder med valens (grad) 0, 4, 5, 6, etc.

OBS. Ditt svar skall motiveras.