Calculus III (Math 241)

W1 a) Find an equational representation $a_1x_1 + a_2x_2 + a_3x_3 = b$ of the plane with parametric representation

$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + c_1 \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} + c_2 \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}, \quad c_1, c_2 \in \mathbb{R}.$$

What is the geometric meaning of the vector $\mathbf{a} = (a_1, a_2, a_3)$?

- b) Find a parametric representation of the plane $x_1 + x_2 + x_3 = 1$.
- c) Explain how to make the equational representation of planes in \mathbb{R}^3 canonical (i.e., every plane should have a unique associated linear equation of the given form).
- **W2** a) Compute a parametric representation for the intersection of the two planes in \mathbb{R}^3 with equations $x_1 + x_2 2x_3 = 4$ and $-2x_1 x_2 + 5x_3 = 0$, thereby showing that this intersection is a line.
 - b) Represent the line in \mathbb{R}^3 through the two points (1,2,1) and (3,0,-1) as solution set of a system of 2 linear equations.
- **W3** A plane *H* in \mathbb{R}^3 with equation $a_1x_1 + a_2x_2 + a_3x_3 = 0$ partitions the whole space into 3 sets:

$$H^{+} = \{ \mathbf{x} \in \mathbb{R}^{3}; a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} > 0 \},$$

$$H = \{ \mathbf{x} \in \mathbb{R}^{3}; a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} = 0 \},$$

$$H^{-} = \{ \mathbf{x} \in \mathbb{R}^{3}; a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} < 0 \},$$

and similarly for lines in \mathbb{R}^2 . Can you distinguish the "halfspaces" H^+ and H^- geometrically by a property satisfied by $\mathbf{a} = (a_1, a_2, a_3)$ and the points in H^+ , H^- ?

- **W4** DAVID HILBERT's *Hotel Infinitude* contains infinitely many rooms numbered by 1, 2, 3, The hotel is fully booked during the Midautumn Festival and
 - a) a new guest arrives;
 - b) a new guest arrives and insists on being accommodated in Room no. 88;
 - c) countably many new guests arrive;
 - d) countably many new tourist groups, each consisting of countably many tourists, arrive;
 - e) a continuum of new guests arrives.

Explain what you as the hotel manager can do in each case.