Example 3.3 (Decomposing a vector into its mean and deviation components) Let us carry out the decomposition of \mathbf{y}_i into $\bar{x}_i\mathbf{1}$ and $\mathbf{d}_i = \mathbf{y}_i - \bar{x}_i\mathbf{1}$, i = 1, 2, for the data given in Example 3.2:

$$\mathbf{X} = \begin{bmatrix} 4 & 1 \\ -1 & 3 \\ 3 & 5 \end{bmatrix}$$

Here,
$$\bar{x}_1 = (4 - 1 + 3)/3 = 2$$
 and $\bar{x}_2 = (1 + 3 + 5)/3 = 3$, so

$$\bar{x}_1 \mathbf{1} = 2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \qquad \bar{x}_2 \mathbf{1} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

Consequently,

$$\mathbf{d}_1 = \mathbf{y}_1 - \overline{x}_1 \mathbf{1} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$

and

$$\mathbf{d}_2 = \mathbf{y}_2 - \bar{\mathbf{x}}_2 \mathbf{1} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$

We note that $\bar{x}_1 \mathbf{1}$ and $\mathbf{d}_1 = \mathbf{y}_1 - \bar{x}_1 \mathbf{1}$ are perpendicular, because

$$(\bar{x}_1\mathbf{1})'(\mathbf{y}_1 - \bar{x}_1\mathbf{1}) = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = 4 - 6 + 2 = 0$$

A similar result holds for $\bar{x}_2 \mathbf{1}$ and $\mathbf{d}_2 = \mathbf{y}_2 - \bar{x}_2 \mathbf{1}$. The decomposition is

$$\mathbf{y}_{1} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$
$$\mathbf{y}_{2} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$

For the time being, we are interested in the deviation (or residual) vectors $\mathbf{d}_i = \mathbf{y}_i - \bar{x}_i \mathbf{1}$. A plot of the deviation vectors of Figure 3.3 is given in Figure 3.4.

Figure 3.4 The deviation vectors \mathbf{d}_i from Figure 3.3.