BONAFIDE CERTIFICATE

Certified that this project titled "A NOVEL METHOD FOR HANDWRITTENDIGIT RECOGNITION" is the Bonafide work of HARIPRIYA S(731119106009), PUJA SHREE J(731119106025),MONICA T(731119106018) and UMA MEENATCHI SUNDHARI S(731119106037) who carried out the project work under my supervision.

SIGNATURE OF HOD

Dr.R.VALARMATHI.M.E.,Ph.D.,
HEAD OF THE DEPARTMENT,
DEPARTMENT OF ECE,
GOVERNMENT COLLEGE OF
ENGINEERING, ERODE-638316

SIGNATURE OF SPOC

Dr.G.GOWRISON,M.E.,Ph.D., ASSISTANT PROFESSOR(SR), DEPARTMENT OF ECE, GOVERNMENT COLLEGE OF ENGINEERING, ERODE-638316

SIGNATURE OF FACULTY MENTOR

Dr.G.GOWRISON,M.E.,Ph.D., ASSISTANT PROFESSOR(SR), DEPARTMENT OF ECE, GOVERNMENT COLLEGE OF ENGINEERING,ERODE-638316

SIGNATURE OF EVALUATOR

Dr.S.BHARATHI,M.Tech.,Ph.D., ASSISTANT PROFESSOR(SR), DEPARTMENT OF ECE, GOVERNMENT COLLEGE OF ENGINEERING,ERODE-638316

Project Report Submission

Team ID: PNT2022TMID44334

Project Name: A Novel Method for Handwritten Digit Recognition System

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

CHAPTER 1

INTRODUCTION

Handwritten Digit Recognition is the capability of a computer to process the handwritten integers from different sources like images, papers and transcripts and classify them into 10 predefined classes (0-9). Digit recognition is the process of detecting and recognizing Handwritten digits from the input image and converts it into ASCII or other equivalent machine editable form. Handwritten Digit Recognition System involves analysis and interpretation of handwritten digits by a system. Handwritten digit Recognition has a wide area of study and research due to its enormous applications like automatic bank cheques processing, billing and automatic postal service. Systems that are used to recognize digits help people to solve more complex problems that otherwise it would be time-consuming one. An example is the use of automatic processing systems which are used in banks to process bank cheques. Without automated bank cheque processing systems, the bank would be required to employ many employees who may not be as efficient as the computerized processing system.

1.1 Project Overview

In recent years, different recognition systems have been proposed to be used in various fields where high classification efficiency is needed. In this field, convolutional neural networks have made a substantial breakthrough in visual recognition, especially handwritten digit recognition. These networks have a great ability for learning and extracting image features easily. CNN architectures for image classification have two different types of layers: convolutional layers for extracting image features and fully connected layers for performing the classification task based on the features extracted

by the preceding convolutional layers .The CNN have used MNIST handwritten digits as a dataset. CNN is the most optimal technique to recognize handwritten digits with accuracy of about 95 percentage.

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit, this image is analyzed by the model and the detected result is returned on to UI.

1.2 Purpose

The applications where these handwritten digit recognition can be used are Banking sector where it can be used to maintain the security pin numbers, it can be also used for blind peoples by using sound output. For example Convolution Neural networks with back propagation for image processing. Handwritten character recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc. Handwritten character recognition (HCR) is the detection of characters from images, documents and other sources and changes them in machine-readable shape for further processing.

CHAPTER 2 LITERATURE SURVEY

2.1 Existingproblem

Digit recognition plays a major role in the modern world. Handwritten digit recognition is a more challenging problem so that the researchers had been study in this area for the recent years. In our study research, there are many terms relate with Handwritten numbers, say for example, cheques in banks or number plates in car or pincode recognition of postal and courier services, the knowledge of recognition of digits emerges. A dedicated system for the recognition of isolated digits may be a suitable approach for handling with such applications. In other words, the computer understand the digital numbers that is written manually by users and analyse them according to the processor. Engineers who have better skills and knowledge in image processing,data analysis and pattern recognition have developed different methods to deal with handwriting number recognition problems such as decision tree, minimum distance, and statistics. The major problem is to correctly identify digits from a dataset of thousands of handwritten images and experiment with different algorithms to learn first-hand what works well and how techniques compare. Converting handwritten digits into digital ones is a major challenge.

2.2 References

In the year of 2013 Yang Zong-chang, In this study, to the main problem of establishing structure for the Artificial Neural Networks (ANN), from a microscopical perspective, two ideas called the fractal measurement of association multifaceted nature (FDCC) and the fractal measurement of the desire many-sided quality (FDEC) are presented. At that point a paradigm reference for setting up ANN structure taking into account the two

proposed ideas is displayed that, the FDCC won't not be lower than its (FDEC), and when FDCC is equivalent or surmised to FDEC, the ANN structure may be an ideal one. The proposed measure is inspected with great results.

In the year of 2013 Selvi, P.P.; Meyyappan, T,In the Study of the authors propose a method to recognize Arabic numerals using back propagation neural system. Arabic digit are the ten digits that were descended from the Indian numeral system. The recognition phase recognizes the numerals precisely. The prospect technique is implemented with Matlab coding. Model andwritten descriptions are tested with the proposed method and the results are plotted.

In the year of 2013 Sahu, N.; Raman, N.K., In the Study of Character recognition systems for various languages and script has gain importance in recent decades and is the area of deep interest for a lot of researchers. Their growth is strongly integerated with Neural Networks.

In the year of 2012 Nguang Sing Ping; Yusoff, M.A., Investigated on describes the application of 13-point feature of skeleton for an image-to-character credit. The representation can be a scanned handwritten character or drawn character from any graphic designing tool like Windows Paint clash. The representation is processed through conventional and 13-point feature of skeleton methods to extract the raw data. In the year of 2012 Pradeep, J.; Srinivasan, E.; Himavathi, S.,In the Study of, an offline handwritten English character recognition system using hybrid feature extraction technique and neural network classifiers are proposed. Neural Network (NN) topologies, namely, rear spread neural network and radial basis function network are built to classify the font. The k-nearest neighbour network is also built for evaluation. The nosh onward NN topology exhibits the highest recognition accuracy and is identified to be the most suitable classifier.

In the year of 2011 Budiwati, S.D.; Haryatno, J.; Dharma, E.M., Investigated on Japanese language has complex writing systems, Kanji and Kana (Katakana and Hiragana). Each one has different style of writing. One simple way to differentiate is Kanji have more strokes than Kana. Meanwhile, it needs a lot of effort to remember

characters of Katakana and Hiragana, thus it will be very difficult to distinguish handwritten Katakana and Hiragana, since there are a lot of similar characters. This is the reason why we need pattern recognition.

2.3 Problem Statement Definition

Data entering by hand takes numerous time. 10,000 to 15,000 keystrokes per hour is a decent rate for entering data from paper documents. Complex facts that require understanding before entry would slowdown the process even more. Thus, it would take an experienced operator between eight and 10 minutes to enter 400 units of data, which is unsatisfactory when the volume of data is considerable.

The main aim for our project is to recognize isolated digits which exist in various applications. For example, different users have different handwriting styles where here the major challenge falls to let the computer system understand these different types of these handwriting styles and recognize them as standard form of writing.

CHAPTER 3 IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

- (L) 10 minutes to prepare
- I hour to collaborate
- 2-8 people recommended

3.3 Proposed Solution

The proposed solution table with problem statement ,solution ,social impact ,scalability of solution and uniquenss will be given below

s.no	Parameter	Description
1.	Problem Statement	The major problem is to correctly identify digits
	(Problem to be solved)	from a dataset of thousands of handwritten images and experiment with different algorithms to learn first-hand what works well and how techniques compare. Converting handwritten digits into digital ones is a major challenge.
2.	Idea / Solution description	Train a model to interpret the handwritten digits. Use CNN (Convolutional Neural Network) model for handwritten digit recognition. Its built-in convolutional layer reduces the high dimensionality of image without losing its information.
3.	Novelty / Uniqueness	CNN can extract informative features from images and eliminates the need of traditional manual image processing methods. CNN is better for training phase with less computational power and less information loss for high accuracy.
4.	Social Impact / Customer Satisfaction	 Postal department and courier services can easily find the digits written. Old people who have eye sight issues with handwritten digits. Processing of bank cheque books.
5.	Business Model (Revenue Model)	Helps in Banking sector and Postal sector by providing the services.

		Tracking the Number plates of vehicles.
		Helps in digitalization of libraries.
6.	Scalability of the Solution	

3.4 Problem solution fit

CHAPTER 4

REQUIREMENT ANALYSIS

4.1 Functional requirement

Functional Requirements: Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through Web Application
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
		Confirmation via Password
FR-3	User Login	Login via Registered Username.
		Login via Email &Password.
FR-4	User Authentication	Authentication through Captcha
		Banking sector:
		Authentication through IFSC code&
		Authentication through finger print
		Library and postal sector:
		Authentication through Identification Card .
FR-5	User Input	Upload the input as Scanned image
		Upload the input from Database
		Get the input as Real time image
FR-6	System configuration	RAM At least 4GB
		System with Graphical User Interface
		Camera with better resolution
FR-7	Business Rules	System provides an error message when the input is
		not in a required format.
		Minimum resolution of image should be of 180 DPI.
		Size of the image should not exist 1MB.

4.2 Non-Functional requirement

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Useful for areas that deals with large
		databases to reduce complexity
		User friendly.
NFR-2	Security	Access only to authorized persons.
		Easy to track users.
NFR-3	Reliability	This model is highly trained,accuracy is highly
		improved.
NFR-4	Performance	Reduces a human supervision and improves
		Efficiency.
NFR-5	Availability	Available for every users like Banks,Post
		Office,Library,etc.
NFR-6	Scalability	Model is predicted to have accuracy of 95%
		and has oppurtunity of extending model to
		recognize text.

CHAPTER 5

PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution and Technical Architecture

Design

Design for converting handwritten characters into machine readable formats.

Availability

Available for every users like Banks,Post office,Library,ete.

Usability

Useful for areas that deals with large databases to reduce a complexity.

Reliable

Creating interactive dashboard which is easy to understand and useful for the users.

Functional

The ability to automatically detect the important features of an object without any human supervision

Technical Architecture

5.3 User Stories

User	Functional	User	User story/Task	Acceptance criteria	Priority	Release
Туре	requirement	story				
	(epic)	Numb				
		er				
Custom	Home	USN-1	As a user,can sign up to create an	I can view the awareness to	Low	Sprint-1
er(mobi			account and set password.	use this application and its		
le user)				limitations.		
		USN-2	As a user, I will receive confirmati	I can gain knowledge to use	Low	Sprint-1
			on email once I have registered for	this application by a practical		
			the application	method.		
		USN-3	As a user, we can upload video to	I can read instructions also to	Low	Sprint-2
			interface.	use it in a userfriendly		
				method.		
	Recognize	USN-4	As a user, In this prediction page I	I can choose the image from	High	Sprint-2
			get to choose the image.	our local system and predict		
				the output.		
	Predict	USN-5	As a user, I can log into the	I can upload and choose the	Medium	Sprint-3
			application by entering email &	image from the storage		
			password			

		USN-6	I can choose the image from our .	I can able to train and test the	High	Sprint-4
			local system and predict the	application until it gets		
			output.	maximum accuracy of the		
				result		
		USN-7	As a user, I'm Allowed to upload	I can access the MNIST data	Medium	Sprint-3
			and choose the image to be	set to produce the accurate		
			uploaded	result.		
Custom	Home	USN-8	As a user, I can access the MNIST	I can view the awareness of	Low	Sprint-1
er(Web			data set .	this application and its		
user)				limitations.		
	Recognize	USN-9	As a user, I'm allowed to view	I can use the application	High	Sprint-1
			video .	portable anywhere		
		USN-	As a user can install in Free of	I can use it without any	Medium	Sprint-2
		10	cost.	payment to be paid for it to		
				access		
		USN-	As a user, can use the application	I can use it without the	Medium	Sprint-4
		11	virtually anywhere	installation of the application		
				or any software.		
	Predict	USN-	As it is an open source, can use it	I can upload and choose the	Medium	Sprint-3
		12	cost freely.	image from the storage.		

CHAPTER 6

PROJECT PLANNING AND SCHEDULING

6.1Sprint Planning & Estimation

TITLE	DESCRIPTION	DATE
Prepare Empathy Map	Prepare Empathy Map	15 SEPTEMBER 2022
	Canvas to capture the	
	user Pains & Gains,	
	Prepare list of problem	
	statements	
Literature Survey &	Literature survey on the	15 SEPTEMBER 2022
Information Gathering	selected project &	
	gathering information by	
	referring the, technical	
	papers,research	
	publications etc.	
Ideation	List the by organizing the	18 SEPTEMBER 2022
	brainstorming session	
	and prioritize the top 3	
	ideas based on the	
	feasibility & importance.	
Proposed Solution	Creation of proposed	18 SEPTEMBER 2022
	solution document, which	
	includes the novelty,	
	feasibility of idea,	
	business model, social	
	impact, scalability of	
	solution, etc	
Problem Solution Fit	Creation of problem	24 SEPTEMBER 2022
	solution fit document.	
Solution Architecture	Solution Architecture	24 SEPTEMBER 2022

Customer Journey	Prepare the customer	18 OCTOBER 2022
	journey maps to	
	understand the user	
	interactions &	
	experiences with the	
	application.	
Data Flow Diagrams	Draw the data flow	18 OCTOBER 2022
	diagrams and submit for	
	review	
Technology Architecture	Prepare the technology	18 OCTOBER 2022
	architecture diagram	

6.2 Sprint Delivery & Schedule

Sprint	Functional	User	User Story / Task	Story Points	Priority	Team Members
	Requirement	Story				
		Number				
Sprint-1	Data Collection	USN-1	As a user, I can	10	Low	Monica T
			collect the dataset			Uma Meenatchi
			from various			Sundhari.S
			resources with			
			different			
			handwritings.			
Sprint-1	Data Preprocessing	USN-2	As a user, I can load	10	Medium	Hari Priya.S
			the dataset, handling			Puja Shree.J
			the missing data,			
			scaling and split data			
			into train and test.	_		
Sprint-2	Model Building	USN-3	As a user, I will get	5	High	Monica.T
			an application with			Uma Meenatchi
			ML model which			Sundhari.S
			provides high			Hari Priya.S
			accuracy of			Puja Shree.J
			recognized			
			handwritten digit			
Sprint-2	Add CNN layers	USN-4	Creating the model	5	High	Uma Meenatchi

			and adding the			Sundhari.S
			input, hidden, and			
			output layers to it			
Sprint-2	Compiling the	USN-5	With both the	2	Medium	Hari Priya.S
Spriit-2		0314-3		2	iviediuiti	Hall Fliya.5
	mode		training data defined			
			and model			
Sprint-2	Train and test the	USN-6	As a user,let us train	6	Medium	Puja Shree.J Haripriya.S
	model		our model with our			Monica.T
			image dataset.			
Sprint-2	Save the model	USN-7	As a user,the model	2	Low	Monica.T
			is saved and			
			integrated as android			
			application or web			
			application inorder to			
0	Duildin - III	LIONLO	predict something.	10	I II ada	Duis Oleman I
Sprint-3	Building UI	USN-8	As a user,I will upload the	10	High	Puja Shree.J Monica.T
	application		handwritten digit			Monica. i
			image to the			
			application through			
			upload option.			
Sprint-3		USN-9	As a user,I know the	5	Low	Haripriya.S
•			details of the			
			fundamental details			
			of the application.			
Sprint-3		USN-10	As a user,I can see	5	Medium	Uma Meenatchi
			the predicted or			Sundhari.S
			recognised digits in			
			the application.			
Sprint-4	Train the model on	USN-11	As auser,I will train	10	High	Puja Shree.J
	IBM		my model on IBM			
			and integrate			
			flask/Django with			
0 :		11011.10	scoring end point.	4.0	11: 1	11 'D'
Sprint-4	Cloud deployment .	USN-12	As a user,I can	10	High	HariPriya.S
			access the web			
			application and make			
			use ofthe product from anywhere			
			Hom anywhere			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total	Durati	Sprint	Sprint	Story	Sprint
	Story	on	Start	End	Points	Relea
	Points		Date	Date	Comple	se
				(Planne	ted (as	Date
				d)	on	(Actua
					Plann	l)
					ed End	
					Date)	
Sprint-1				04 Nov		
20 5				2022		
Days 31						
Oct						
2022						

6.3 Reports from JIRA

JIRA is a project management tool developed by an Australian based software company known as Atlassian Corporation Plc.Jira Software is part of a family of products designed to help teams of all types manage work. Originally, Jira was designed as a bug and issue tracker. But today, Jira has evolved into a powerful work management tool for all kinds of use cases, from requirements and test case management to agile software development.

JIRA ROADMAP

		No
Sprints		IDR IDR IDR ID
DR-33 Sprint 1: Understanding the data	DONE	
IDR-34 Sprint 2: Model building		
✓ IDR-42 Add CNN Layers	DONE	
✓ IDR-43 Compiling The Model	DONE	
✓ IDR-44 Train The Model	DONE	
✓ IDR-45 Observing The Metrics	DONE	
✓ IDR-46 Test The Model	DONE	
✓ IDR-47 Save The Model	DONE	
✓ IDR-48 Test With Saved Model	DONE	
DR-35 Sprint 3: Application building	DONE	
✓ IDR-49 Create An HTML File	DONE	
✓ IDR-50 Build Python Code	DONE	
✓ IDR-51 Run The Application	DONE	
DR-36 Sprint 4: Train the model on IBM	DONE	
✓ IDR-52 Register For IBM Cloud	DONE	
✓ IDR-53 Train The Model On IBM	DONE	

Sprint Burndown chart - sprint 1

Sprint Burndown chart - sprint 2

Sprint Burndown chart - sprint 3

Sprint Burndown chart - sprint 4

CHAPTER 7 CODING & SOLUTIONING

7.1 Import libraries

import numpy
import tensorflow
from tensorflow.keras.datasets import mnist
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras.layers import Conv2D
from keras.models import Sequential
from keras.optimizers import Adam
from keras.utils import np_utils

7.2 Loading the data

(X_train,y_train),(X_test,y_test) = mnist.load_data()
print(X_train.shape)
print(X_test.shape)

ANALYSING THE DATA

X_train[0]

y_train[0]

import matplotlib.pyplot as plt

plt.imshow(X_train[0])

Reshaping the data

```
X_{train} = X_{train.reshape}(60000,28,28,1).astype('float32')
X_test = X_test.reshape(10000,28,28,1).astype('float32')
One Hot Encoding
number_of_classes = 10
y_train = np_utils.to_categorical(y_train,number_of_classes)
y_test=np_utils.to_categorical(y_test,number_of_classes)
y_train[0]
ADD CNN LAYERS
model = Sequential()
#adding model layer
model.add(Conv2D(64,(3,3),input_shape=(28,28,1),activation='relu'))
model.add(Conv2D(32,(3,3),activation='relu'))
model.add(Flatten())
model.add(Dense(number_of_classes,activation='softmax'))
Compiling the model
model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy'])
Train the model
model.fit(X_train,y_train,epochs= 2,validation_data=(X_test,y_test),batch_size=32)
OBSERVING THE METRICS
metrics= model.evaluate(X_test,y_test,verbose=0)
print("Metrics(Test loss & Test Accuracy): ")
print(metrics)
PREDICTING THE OUTPUT
prediction = model.predict(X_test[:4])
```

```
print(prediction)
import numpy as np
print(np.argmax(prediction,axis=1))
print(y_test[:4])
example = X_train[1]
prediction = model.predict(example.reshape(1, 28, 28, 1))
print ("Prediction (Softmax) from the neural network:\n\n {}".format(prediction))
hard_maxed_prediction = np.zeros(prediction.shape)
hard_maxed_prediction[0][np.argmax(prediction)] = 1
print ("\n\nHard-maxed form of the prediction: \n\n {}".format(hard_maxed_prediction))
print ("\n\n----- \n\n")
plt.imshow(example.reshape(28, 28), cmap="gray")
plt.show()
print("\n\nFinal Output: {}".format(np.argmax(prediction)))
OBSERVING THE METRICS
metrics= model.evaluate(X_test,y_test,verbose=0)
print("Metrics(Test loss & Test Accuracy): ")
print(metrics)
prediction = model.predict(X_test[:4])
print(prediction)
import numpy as np
print(np.argmax(prediction,axis=1))
print(y_test[:4])
SAVE THE MODEL
import cv2
image = cv2.imread('test_image.jpg')
image = np.full((100,80,3), 12, dtype = np.uint8)
grey = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2GRAY)
```

```
ret, thresh = cv2.threshold(grey.copy(), 75, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMP
preprocessed_digits = []
for c in contours:
x,y,w,h = cv2.boundingRect(c)
# Creating a rectangle around the digit in the original image (for displaying the digits
cv2.rectangle(image, (x,y), (x+w, y+h), color=(0, 255, 0), thickness=2)
# Cropping out the digit from the image corresponding to the current contours in the for
digit = thresh[y:y+h, x:x+w]
# Resizing that digit to (18, 18)
resized_digit = cv2.resize(digit, (18,18))
# Padding the digit with 5 pixels of black color (zeros) in each side to finally produce
padded_digit = np.pad(resized_digit, ((5,5),(5,5)), "constant", constant_values=0)
# Adding the preprocessed digit to the list of preprocessed digits
preprocessed_digits.append(padded_digit)
print("\n\n-----")
import os, types
import pandas as pd
def __iter__(self): return 0
print=("\n\n\n-----")
plt.imshow(image, cmap="gray")
plt.show()
inp = np.array(preprocessed_digits)
SAVE THE MODEL
model.save('model.h5')
TEST WITH SAVED MODEL
from tensorflow.keras.models import load_model
```

```
model=load_model(r'C:/Users/DELL/Hand written recognition
System/models/mnistCNN.h5)
from PIL import Image
import numpy as np
for index in range(4):
    img=Image.open('data/' +str(index) + 'png').convert("L")
    img=img.resize((28,28))
    im2arr=np.array(img)
    im2arr=np.array(img)
    im2arr=im2arr.reshape(1,28,28,1)
    y_pred=model.predict(im2arr)
    print(y_pred)
```

CHAPTER 8 TESTING

8.1TEST CASES

Test case ID	Feature Type	Compone nt	Test Scenario	Steps To Execute	Test Data	Expected Result	Actual Result	Statu s	BUG ID	Executed By
LoginPage_TC_O O1	Functional	Home Page	Verify user is able to see the Login/Signup popup when user dicked on My account button	Enter URL and click go Click on My Account dropdown button Werify login/Singup popup displayed or not	https://shopenzer.com/	Login/Signup popup should display	Working as expected	Pass		
LoginPage_TC_O O2	u	Home Page	Verify the UI elements in Login/ Signup popup	1.Enter URL and dick go 2.Click on My Account dropdown button 3.Verify logt/Singup popup with below UI elements: a.email text box b.password text box c.Login button d.New customer? Create account link e.Last password? Recovery password link	https://shopenzer.com/	Application should show below UI elements: a email text box b password text box ct.ogin button with orange cdour d. New customer? Create account link et.ast password? Recovery psssword link	Working as expected	Fail	BUG- 1234	
LoginPage_TC_O O3	Functional	Home page	Verify user is able to log into application with Valid credentials	Enter valid password in password text box Click on login button	Username: chalam@gmail.com password: Testing123	User should navigate to user account homepage				
LoginPage_TC_O O4	Functional	Home page	Verify user is able to log into application with InValid credentials	1.Enter URL (https://shopenzer.com/) and dick go 2.Click on My Account dropdown button 3.Enter InValid username/email in Email text box 4.Enter valid password in password text box 5.Click on login button	Username: chalam@gmail password: Testing123	Application should show 'Incorrect email or password ' validation message.				
HP_TC_001	UI	Home page	Verify UI elements in the Home Page	Open the page 2) Check if all the UI elements are displayed Sylverify recognize button displayed or not	127.0.0.8000		Home page is displayed	expe		Haripriya S , Puja shree J
HP_TC_002	Functional	Home page	Check if user can upload their file	Open the page 2) Click on select button 3) Select the input image	1.png	The input image should be uploaded to the application successfully	Image uploaded successfully	worki ng as expe cted		Monica T, Uma meenatchi sundhari S
HP_TC_003	Functional	Home page	Check if user can upload thei file	Open the page 2) Click on select button 3) Select the input ima	1.png	The input image should be uploade	king as expe	Pass	- 1	Haripriya S , Puja shree
HP_TC_004	Functional	Home Page	if user cannot upload unsupporte	 Open the page 2) Click on select button 3) Select a randon 	PDF file	The application should not allow us	User is able	Pass		Monica T, Uma meenat
BE_TC_001	Functional	Backend		1) Go to Home Page 2) Upload the input image 3) Check the	1.png	All the routes should properly work	Working as 6	Fail		Haripriya S , Puja shree
M_TC_001	Functional	Model	Check if the model can handle various image sizes	Open the page in a specific device 2) Upload the input image 3) Repeat the above steps with different input image.	1.png, 2.png, 3.png	The model should predict the number	Working as expected	Pass		Monica T, Uma meenatchi sundhari S
M_TC_002	Functional	Model	Check if the model predicts the digit	Open the page 2) Click on select button 3) Select the input image 4) Check the results Open the page 2) Click on select button 3) Select the	1.png	The model should predict the number in the complex image The Result page must be	Working as expected	Pass		Haripriya S , Puja shree J
M_TC_003	Functional	Model	Check if the model can handle complex input image	input image 4) Check the results	4.png	displayed properly	Working as expected	Pass		Monica T, Uma meenatchi sundhari S
RP_TC_001	UI	Result Page	Verify UI elements in the Result Page	Open the page 2) Click on select button 3) Select the input image 4) Checkif all the UI elements are displayed properly	1.png	The input image should be displayed properly	Working as	Pass		Haripriya S , Puja shree J
RP_TC_002	UI	Result Page	Check if the input image is displayed properly	 Open the page 2) Click on select button 3) Select the input image 4) Check if the input image are displayed 	1.png	The result should be displayed properly	Working as e	Pass		Monica T, Uma meenatchi sundhari S
RP_TC_00	UI	Result Page	Check if the result is displayed properly	Open the page 2) Click on select button 3) Select the input image 4) Check if the result is displayed	1.png	The result should be displayed pro	Working as expected	Pass		Haripriya S , Puja shree J
RP_TC_004	UI	Result Page	Check if the other predictions are displayed properly	Open the page 2) Click on select button 3) Select the input image 4) Check if all the other predictions are displayed	1.png	The other predictions should be dis	Working as expected	Pass	Act	monica T, Uma meenatchi sundhari S
									So t	o Settinas ta

8.2 USER ACCEPTANCE TESTING

1. Purpose of Document:

The purpose of this document is to briefly explain the test coverage and open issues of the A novel method for handwritten digit recognition project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	13	4	2	5	24
Duplicate	1	0	0	2	3
External	2	3	1	1	7
Fixed	4	6	4	10	24
Not Reproduced	1	1	1	1	4
Skipped	1	2	0	1	4
Won't Fix	0	5	2	4	11
Totals	22	21	10	24	77

3. Test Case Analysis: This report shows the number of test cases that have passed, failed, and untested

CHAPTER 9 RESULTS

PERFORMANCE METRICS:

```
metrics[["loss","val_loss"]].plot()
     <matplotlib.axes._subplots.AxesSubplot at 0x7f963fdf09d0>
      0.225
                                                    loss
val loss
      0.200
      0.175
      0.150
      0.125
      0.100
      0:075
      0.050
      0.025
metrics[["accuracy", "val_accuracy"]].plot()
     <matplotlib.axes._subplots.AxesSubplot at 0x7f96432e5f50>
                accuracy
      0:97
      0.96
      0.95
model.metrics_names
```


Activate Windows
Go to Settings to activate Windows.

CHAPTER 10 ADVANTAGES & DISADVANTAGES

Advantages:

- ➤ It is highly efficient and accurate
- ➤ This method elimates tiresome process.
- ➤ It is very helpful in banking and postal sector.
- ➤ The cost of implementation is less in this method.
- ➤ The generative models can perform recognition driven segmentation.
- ➤ This method not only produces classification of the digit but also rich description of the instantiation parameters.

<u>Disadvantages:</u>

- ➤ In this method, uploading input is a tedious process.
- ➤ It requires a lot of training for precision.
- ➤ It is highly complex due to diversity.
- ➤ Sometimes,it is more technical.
- ➤ It is not done in real time as a person writes and therefore not appropriate for immediate text input.

CHAPTER 11

CONCLUSION

An implementation of Handwritten Digit Recognition using Deep Learning has been implemented in this project. Additionally, some of the most widely used Machine Learning algorithms i.e. CNN using Tensorflow have been trained and tested on the same data to draw a comparison as to why we require deep learning methods in critical applications like Handwritten Digit Recognition. In this project, we have shown that that using Deep Learning techniques, a very high amount of accuracy can be achieved. Using the Convolutional Neural Network with Keras as backend, we are able to get an accuracy of 97.48%. Every tool has its own complexity and accuracy. Although, we see that the complexity of the code and the process is bit more as compared to normal Machine Learning algorithms but looking at the accuracy achieved, it can be said that it is worth it. Thus we settled on classifying a given handwritten digit image as the required digit using different algorithms and consequently testing its accuracy. In future we are planning to further explore the topic to recognize people's handwriting.

CHAPTER 12

FUTURE SCOPE

The task of handwritten digit recognition, using a classifier, has great importance and use such as - online handwriting recognition on computer tablets, recognize zip codes on mail for postal mail sorting, processing bank check amounts, numeric entries in forms filled up by hand and so on. The future development of the applications based on algorithms of deep and machine learning is practically boundless. In the future, we can work on a denser or hybrid algorithm than the current set of algorithms with more manifold data to achieve the solutions to many problems. In future, the application of these algorithms lies from the public to highlevel authorities, as from the differentiation of the algorithms above and with future development we can attain high-level functioning applications which can be used in the classified or government agencies as well as for the common people, we can use these algorithms in hospitals application for detailed medical diagnosis, treatment and monitoring the patients, we can use it in surveillances system to keep tracks of the suspicious activity under the system, in fingerprint and retinal scanners, database filtering applications, Equipment checking for national forces and many more problems of both major and minor category. The advancement in this field can help us create an environment of safety, awareness and comfort by using these algorithms in day-to-day application and high-level application (i.e., corporate level or Government level). Application-based on artificial intelligence and deep learning is the future of the technological world because of their absolute accuracy and advantages over many major problems.

CHAPTER 13 APPENDIX

Source Code

html code

```
<!DOCTYPE html>
<html>
<head>
<title>Home</title>
<style>
body
{
  background-image: url("../static/home_background.jpg");
  background-size: cover;
}
.pd{
padding-bottom:100%;}
.navbar
margin: 0px;
padding:20px;
background-color:white;
opacity:0.6;
```

```
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
}
а
color:grey;
float:right;
text-decoration:none;
font-style:normal;
padding-right:20px;
}
a:hover{
background-color:black;
color:white;
border-radius:15px;0
font-size:30px;
padding-left:10px;
}
p
color:turqouise;
font-style:italic;
font-size:30px;
</style>
</head>
```

```
<body>
<div class="navbar">
<a href="{{url_for('upload_file2')}}">Recognize</a>
<br>
</div>
<br>
<center><b class="pd"><font color="white" size="15" font-family="Comic Sans MS"</pre>
>Handwritten Recognition System</font></b></center><br>
<div>
<br>
<center>
<font color="white">Handwritten Text Recognition is a technology that is much needed
in this world as of today.
This digit Recognition system is used to recognize the digits from different sources like
emails, bank cheque, papers, images, etc.
Before proper implementation of this technology we have relied on writing texts with our
own hands which can result in errors.
It's difficult to store and access physical data with efficiency. The project presents
recognizing the handwritten digits (0 to 9) from the famous MNIST dataset.
Here we will be using artificial neural networks/ convolution neural network.
</center>
</div>
</body>
</html>
<!DOCTYPE html>
<html>
<body>
```

```
<div style="float:left">
<h2><font color="red" size="15" font-family="sans-serif"><b>Digit
Recognition</b></font></h2><br>>
<div>
  <form action="{{ url_for('upload_image_file')}}" method="POST" enctype="multipart/form-
data">
   <label for="imageUpload" class="upload-label">
      Choose...
    </label>
    <input type="file" name="file" id="imageUpload" accept=".png, .jpg, .jpeg">
  </form>
 <center> <div class="image-section" style="display:none;">
    <div class="img-preview">
      <div id="imagePreview">
      </div></center>
    </div>
    <center><div>
      <a href="{{url_for('upload_file1')}}">Recognize</a>
   </center></div>
  </div>
  <div class="loader" style="display:none;margin-left: 450px;"></div>
  <h3 id="result">
    <span> </span>
```

```
</h3>
</div>
</div>
</body>
</html>
Python code
import flask
from flask import Flask
app = Flask(__name__)
from flask import render_template,request
import PIL
from PIL import Image
import numpy as np
from tensorflow.keras.models import load_model
import tensorflow as tf
@app.route("/")
def upload_file():
  return render_template ('main.html')
@app.route("/about")
def upload_file1():
  return render_template('main.html')
@app.route('/upload')
def upload_file2():
  return render_template('index6.html')
@app.route('/predict',methods = ['POST'])
def upload_image_file():
  if request.method == 'post':
   img = Image.open(request.files['file'].stream).convert("L")
```

```
img = img.resize((28,28))
   im2arr = np.array(img)
   im2arr = im2arr.reshape(1,28,28,1)
   y_pred = model.predict_classes(im2arr)
   print(y_pred)
  if(y_pred==0):
   return render_template("0.html",showcase = str(y_pred))
  elif(y_pred == 1):
    return render_template("1.html",showcase = str(y_pred))
  elif(y_pred == 2):
    return render_template("2.html", showcase=str(y_pred))
  elif (y_pred == 3):
    return render_template("3.html", showcase=str(y_pred))
  elif (y_pred == 4):
    return render_template("4.html", showcase=str(y_pred))
  elif (y_pred == 5):
    return render_template("5.html", showcase=str(y_pred))
  elif (y_pred == 6):
    return render_template("6.html", showcase=str(y_pred))
  elif (y_pred == 7):
    return render_template("7.html", showcase=str(y_pred))
  elif (y_pred == 8):
    return render_template("8.html", showcase=str(y_pred))
  elif (y_pred == 9):
    return render_template("9.html", showcase=str(y_pred))
  else:
    return none
if __name__=='__main___':
             app.run(host='0.0.0.0', port=8000, debug=True)
```

Git hub link:

https://github.com/IBM-EPBL/IBM-Project-537-1658305734

Video link:

