CS174A - Lecture 2

Linear Algebra: The Algebra of Vectors and Matrices (and Scalars)

Why Study 3D Computer Graphics?

- CG has applications in many industries:
 - entertainment, scientific visualization, education
- Intellectually Challenging
 - Create and interact with realistic virtual world
 - Requires understanding of all aspects of physical world
 - New computing methods, displays, technologies
- Technically Challenging
 - Math of (perspective) projections, curves, surfaces
 - Physics of lighting and shading
 - 3D graphics software programming and hardware

Last Lecture: Computer Graphics

The Art and Science of creating imagery by computer

Course Goals

- Systems: Write complex 3D graphics programs (real-time scene in OpenGL, offline raytracer)
- Theory: Mathematical aspects and algorithms underlying modern 3D graphics systems
- This course is *not* about the specifics of 3D graphics programs and APIs like Maya, Alias, DirectX but about the concepts underlying them.

Sub-areas of CG

- Modeling
 - How do we model (mathematically represent) objects?
 - How do we construct models of specific objects?
- Animation
 - How do we represent the motions of objects?
 - How do we give animators control of this motion?
- Rendering
 - How do we simulate the real-world behavior of light?
 - How do we simulate the formation of images?
- Interaction
 - How do we enable humans and computers to interact?
 - How do we design human-computer interfaces?

Modeling

Primitives

- 3D points
- 3D lines and curves
- surfaces (BREPs): polygons, patches
- volumetric representations
- · image-based representations

Attributes

- Color, texture maps
- Lighting properties

Geometric transformations

Animation

- Keyframe animation
- Motion capture
- Physics-based animation
- Autonomous motion planning

Linear Algebra Review: The Algebra of Vectors and Matrices (and Scalars)

Motivation

- Many graphics concepts need basic math, such as linear algebra
 - Vectors (dot products, cross products,...)
 - Matrices (matrix matrix, matrix-vector mult., ...)
 - Operations like translation, or rotation of the points that forman object are most efficiently performed as a matrixvector multiply
 - Thus, we will go out of our way to write everything as a matrixvector multiply
- Chapters 2.4 (vectors) and 5.2 (matrices)
 - Fundamentals of Computer Graphics by Shirley and Marschner
 - Worthwhile to read all of chapters 2 and 5
- Should be refresher on very basic material for most of you

Lecture 2 - Outline

- Vectors,
 - Vector Basics
 - Vector Addition, Subtraction
 - Vector Multiplication
 - Dot product (2.4.3)
 - Cross product (2.4.4)
 - Constructing Coordinate Frames (2.4.5,6)
- Matrix (5.2)
 - Matrix Basics
 - Matrix Addition
 - Matrix Multiplication
 - Matrix Properties
 - Vector Multiplication in Matrix Form
- Points vs Vectors
- Lines and Planes

Vectors

N-tuple of scalar elements

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \\ \vdots \\ a_N \end{bmatrix} \qquad \begin{aligned} a_n \in \Re, \quad I \leq n \leq N \\ \vdots \\ a_N \end{bmatrix}$$

- •Length and direction. Absolute position is not important
- Use to store offsets, displacements
 - Note: Positions/locations are also represented by N-tuples, but strictly speaking, positions are not vectors and cannot be added.
 A location implicitly involves an origin, while an offset does not.

Notation

а

Scalar

• Vector $\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix}$

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1J} \\ a_{21} & & \ddots \\ a_{n} & a_{n2} & & a_{nJ} \end{bmatrix}$

Tensor

Column vs. Row Vectors

• vector:
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$
Note: This is a column

• row vector:
$$\mathbf{a}^{\mathcal{T}} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

(denoted by a vector symbol with a transpose)

Vectors

$$\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n & \cdots & x_N \end{bmatrix}^T \quad x_n \in \mathfrak{R}$$

$$|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 - \cdots - x_N^2}$$

Unit vectors
$$\hat{\mathbf{x}}$$
: $|\hat{\mathbf{x}}| = 1$

Normalizing a vector
$$\hat{\mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|}$$

Vector-Vector Subtraction

Adding a negatively scaled vector

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix}$$

 $\mathbf{u} + (-\mathbf{v})$

Example

$$\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 6 \\ 4 \end{bmatrix} =$$

$$\begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} =$$

Vector-Vector Addition

- Parallelogram rule
 - tail to head, complete the triangle

geometric interpretation: parallelogram rule

 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

algebraic: add coordinates

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$$

examples:

$$\begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix} =$$

$$\begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} =$$

Operations with Vectors

Addition

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 & \cdots & x_n + y_n & \cdots & x_N + y_N \end{bmatrix}^T \quad 1 \le n \le N$$

Multiplication with scalar (scaling)

$$a\mathbf{x} = \begin{bmatrix} ax_1 & \cdots & ax_n & \cdots & ax_N \end{bmatrix}^T \quad a, x_n \in \mathfrak{R}$$

Properties

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}, \quad a \in \Re$$

$$\mathbf{u} - \mathbf{u} = 0$$

Examples:

Linear Combination of Vectors

Definition

A linear combination of the m vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a vector of the form:

$$\mathbf{w} = a_1 \mathbf{v}_1 + ... + a_m \mathbf{v}_m, \quad a_1, ..., a_m \text{ in R}$$

Linear Independence

Definition:

• Vectors $\mathbf{v_1}$, ..., $\mathbf{v_m}$ are called *linearly independent*, if $a_1\mathbf{v_1}+...+a_m\mathbf{v_m}=0$ if and only if $a_1=a_2=...=a_m=0$

Special Cases

Linear combination

• $\mathbf{w} = a_1 \mathbf{v}_1 + ... + a_m \mathbf{v}_m$, $a_1, ..., a_m$ in IR

•Affine combination:

A linear combination of vectors for whicha₁+...+a_m = 1

Convex combination

An affine combination for whicha_i ≥ 0 for i = 1,...,m

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames

Dot Product

Motivation:

- Find angle between two vectors
 - e.g. cosine of angle between light source and surface for shading
- Finding projection of one vector on another
 - •e.g. coordinates of a point in various coordinate frameworks -- object coordinate framework, world coordinate framework, camera coordinate framework, image coordinate framework
- •Advantage: computed easily in cartesian components

Dot Product Geometry - Projection (of u on v)

• The dot product of a vector with a unit vector is the projection of that vector in the direction given by the unit vector.

$$\mathbf{u} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|} = \|\mathbf{u}\| \cos \theta$$

 $\|\mathbf{u}\|\cos\theta$

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

• as vectors become perpendicular, $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta \to 0$

Dot (Scalar) Product – Angle Computation

Geometric definition: The dot product of a vector with a unit vector is the projection of that vector in the direction given by the unit vector.

$$\theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

Dot (Scalar) Product

■ Linear algebra definition of the dot product, akt in the limit in t product or the scalar product:

u_1		\mathcal{V}_1	
•		,	
u_2	•	v_2	₫
u_3		v_3	

$$\begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix} =$$

Dot (Scalar) Product

multiply: vector * vector = scalar

u • v

dot product, aka inner product

u_1		V_1		
u_{2}	•	v_{2}	=	$= (u_1 * v_1) + (u_2 * v_2) + (u_3 * v_3)$
u_3		v_3		

$$\begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix} = (6*1) + (1*7) + (2*3) = 6 + 7 + 6 = 19$$

Dot Product and Perpendicularity

From Property 5. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Dot Product

Definition:
$$\mathbf{a}, \mathbf{b} \in \mathfrak{R}^N$$

$$\mathbf{a} \cdot \mathbf{b} = \sum_{n=1}^{N} a_n b_n = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

Properties 1. Symmetry: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

2. Linearity: $(a + b) \cdot c = a \cdot c + b \cdot c$

3. Homogeneity: $(s\mathbf{a}) \cdot \mathbf{b} = s(\mathbf{a} \cdot \mathbf{b})$

4. $|b|^2 = b \cdot b$

5. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Perpendicular Vectors

The dot product can be employed to determine if two vectors are perpendicular.

•Vectors **a** and **b** are perpendicular iff $\mathbf{a} \cdot \mathbf{b} = 0$

Also called orthogonal vectors

•It is easy to see that the standard unit vectors form an orthogonal basis:

$$\mathbf{i} \cdot \mathbf{j} = 0$$
, $\mathbf{j} \cdot \mathbf{k} = 0$, $\mathbf{i} \cdot \mathbf{k} = 0$

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames

RHS vs. LHS Coordinate Systems

right-handed coordinate system convention

right hand rule: index finger x, second finger y; right thumb points up

$$z = x \times y$$

left-handed coordinate system

left hand rule: index finger x, second finger y; left thumb points down

$$z = x \times y$$

Cross (vector) product

- Motivation: Useful in constructing coordinate systems (later)
 - Problem: Construct aorthonormal camera coordinate frame into which to transform world objects, givena (viewing direction), and a second vector b (up direction of camera)
- Cross product is a vector orthogonal to the two initial vectors
- Direction determined by right-hand rule

Cross Product

Defined only for 3D vectors and with respect to the standard unit vectors

Algebraic Definition:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

=
$$(a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Cross Product

Geometric Definition:

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

$$\|\mathbf{a} \times \mathbf{b}\|$$
 parallelogram area

 $\mathbf{a} \times \mathbf{b}$ perpendicular to parallelogram

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames

Properties of the Cross Product

- 1. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$
- 2. Antisymmetry: $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 3. Linearity: $a \times (b + c) = a \times b + a \times c$
- 4. Homogeneity: $(sa) \times b = s(a \times b)$
- 5. The cross product is normal to both vectors: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$
- 6. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta)$

Orthonormal bases/coordinate frames

- Important for representing points, locations
- Often, many sets of coordinate systemsGlobal, local, world, model, parts of model (head, hands, ...)
- Critical issue is transforming between these systems/basesTopic of next 3 lectures

Basis Vectors

- Given any two vectors that are linearly independent (nonzero and nonparallel)
 - Can define any vector in the plane a a linear combination of these two vectors

$$\mathbf{c} = w_1 \mathbf{a} + w_2 \mathbf{b}$$

Basis Vectors and Origins

- Cordinate system: just basis vectors
 - can only specify offset: vectors
- Coordinate frame: basis vectors and origin
 - can specify location as well as offset: points & vectors

$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

Orthonormal Basis Vectors

 If the basis vectors are orthonormal (perpendicular/orthogonal and unit length)

$$\mathbf{x} \bullet \mathbf{y} = 0$$
$$\|\mathbf{x}\| = \|\mathbf{y}\| = 1$$

- we have Cartesian coordinate system
- familiar Pythagorean definition of distance

Working with Frames

 $\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$

$$F_1$$
 p = (3,-1)

Working with Frames

$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

$$F_1$$
 p = (3,-1)
 F_2 p = (-1.5,2)

Generators and Base Vectors

How many vectors are needed to generate a vector space?

- Given a vector space Rⁿ we can prove that we need minimum n vectors to generate all vectors v in Rⁿ
- Any set of vectors that generate a vector space is called a generator set
- A generator set with minimum size is called a basis for the given vector space

Working with Frames

$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

 F_1 p = (3,-1)

 F_2 p = (-1.5,2)

 F_3 p = (1,2)

Standard Unit Vectors

For any vector space Rn:

$$i_1 = (1, 0, 0, \dots, 0, 0)^T$$

$$\mathbf{i}_2 = (0, 1, 0, \dots, 0, 0)^T$$

. . .

$$\mathbf{i}_n = (0, 0, 0, \dots, 0, 1)^{\mathsf{T}}$$

The elements of a vector v in R^n are the scalar coefficients of the linear combination of the basis vectors

Standard Unit Vectors

$$\mathbf{v} = (x_1, \dots, x_n)^\mathsf{T}, \ x_i \in \Re$$

$$(x_1, x_2, ..., x_n)^{\mathsf{T}} = x_1(1, 0, 0, ..., 0, 0)^{\mathsf{T}} + x_2(0, 1, 0, ..., 0, 0)^{\mathsf{T}}$$
...
 $+ x_n(0, 0, 0, ..., 0, 1)^{\mathsf{T}}$

Outline

- Vectors,
 - Vector Basics
 - Vector Addition, Subtraction
 - Vector Multiplication
 - Dot product
 - Cross product
 - Coordinate Frames
- Matrix
 - Matrix Basics
 - Matrix Addition
 - Matrix Multiplication
 - Matrix Properties
 - Vector Multiplication in Matrix Form
- Points vs Vectors
- Lines and Planes

Representation of Vectors Through Basis Vectors

Given a vector space R^n , a set of basis vectors **B** $\{b_i \text{ in } R^n, i=1,...n\}$ and a vector \mathbf{v} in R^n we can always find scalar coefficients such that:

$$\mathbf{v} = a_1 \mathbf{b}_1 + \dots + a_n \mathbf{b}_n$$

So, vector \mathbf{v} expressed with respect to B is:

$$\mathbf{v}_{B} = (a_{1}, ..., a_{n})$$

Matrices

- Can be used to transform points (vectors)
 - Translation, rotation, shear, scale (more detail next lecture)
- Section 5.2.1 and 5.2.2 of text
 - Instructive to read all of 5 but not that relevant to course

What is a Matrix

It is a two-way array (m×n = m rows, n columns) that maps one vector space into another

- Can be used to transform points (vectors)
 - Translation, rotation, shear, scale (more detail next lecture)

Matrix Addition

Addition:

$$\mathbf{A}_{m \times n} + \mathbf{B}_{m \times n} = (a_{ij} + b_{ij})$$

Properties:

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$f(A+B) = fA + fB$$

4. Transpose:
$$\mathbf{A}^T = (a_{ij})^T = (a_{ji})$$

Matrix-Matrix Addition

add: matrix + matrix = matrix

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} + \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} n_{11} + m_{11} & n_{12} + m_{12} \\ n_{21} + m_{21} & n_{22} + m_{22} \end{bmatrix}$$

example

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 5 \\ 7 & 1 \end{bmatrix} =$$

Scalar-Matrix Multiplication

multiply: scalar * matrix = matrix

$$a \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} a * m_{11} & a * m_{12} \\ a * m_{21} & a * m_{22} \end{bmatrix}$$

example

$$3\begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} =$$

Matrix-Matrix Multiplication

row by column

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$

Matrix-Matrix Multiplication

row by column

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$

$$p_{21} = m_{21}n_{11} + m_{22}n_{21}$$

$$p_{12} = m_{11}n_{12} + m_{12}n_{22}$$

Matrix-Matrix Multiplication

row by column

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$

$$p_{21} = m_{21}n_{11} + m_{22}n_{21}$$

$$p_{12} = m_{11}n_{12} + m_{12}n_{22}$$

$$p_{22} = m_{21}n_{12} + m_{22}n_{22}$$

Matrix-Matrix Multiplication

row by column

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$

$$p_{21} = m_{21}n_{11} + m_{22}n_{21}$$

$$p_{12} = m_{11}n_{12} + m_{12}n_{22}$$

$$p_{22} = m_{21}n_{12} + m_{22}n_{22}$$

Matrix-Matrix Multiplication

Number of columns in first must = rows in second

 Element (i,j) in product is the matrix product of row i of first matrix and column j of second matrix

$$\begin{pmatrix} \mathbf{a}_{1}^{T} \\ \mathbf{a}_{2}^{T} \\ \mathbf{a}_{3}^{T} \end{pmatrix} \begin{pmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{b}_{4} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{1}^{T} \mathbf{b}_{1} & \mathbf{a}_{1}^{T} \mathbf{b}_{2} & \mathbf{a}_{1}^{T} \mathbf{b}_{3} & \mathbf{a}_{1}^{T} \mathbf{b}_{4} \\ \mathbf{a}_{2}^{T} \mathbf{b}_{1} & \mathbf{a}_{2}^{T} \mathbf{b}_{2} & \mathbf{a}_{2}^{T} \mathbf{b}_{3} & \mathbf{a}_{2}^{T} \mathbf{b}_{4} \\ \mathbf{a}_{3}^{T} \mathbf{b}_{1} & \mathbf{a}_{3}^{T} \mathbf{b}_{2} & \mathbf{a}_{3}^{T} \mathbf{b}_{3} & \mathbf{a}_{3}^{T} \mathbf{b}_{4} \end{pmatrix}$$

Cross Product in Matrix Form

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
Rewrite

= Ab

A is the dual matrix of vector a

Dot Product in Matrix Form

*A vector is a column matrix

$$\mathbf{a} \cdot \mathbf{b} = \sum_{n=1}^{N} a_n b_n$$

$$= a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$= (a_1, a_2, a_3) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$= \mathbf{a}^T \mathbf{b}$$

Summary: Multiplication with Matrices

Definition:

$$\mathbf{C}_{m \times r} = \mathbf{A}_{m \times n} \mathbf{B}_{n \times r}$$
$$(\mathbf{C}_{ij}) = (\sum_{k=1}^{n} a_{ik} b_{kj})$$

Properties:

- 1. $AB \neq BA$
- 2. A(BC) = (AB)C
- 3. f(AB) = (fA)B
- 4. A(B+C) = AB + AC, (B+C)A = BA + CA
- 5. $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$
- 6. (AB)-1= B-1 A-1

Outline

- Vectors.
 - Vector Basics
 - Vector Addition, Subtraction
 - Vector Multiplication
 - Dot product
 - Cross product
 - Constructing Coordinate Frames
- Matrix
 - Matrix Basics
 - Matrix Addition
 - Matrix Multiplication
 - Matrix Properties
 - Vector Multiplication in Matrix Form
- Points vs Vectors
- Lines and Planes

Lines and Planes

In addition to vectors and points, lines and planes are fundamental geometric entities in computer graphics

Recall how we represent them mathematically...

Homogeneous Coordinates

Vectors and Points are represented as column matrices

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix} \quad P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Lines

- Explicit
 - slope-intercept form

$$y = mx + b$$

Implicit

$$y - mx - b = 0$$

Ax + By + C = 0
f(x,y) = 0

- find where function is 0
- plug in (x,y), check if0: on line
 - < 0: inside
 - > 0: outside

2D Parametric Lines

• Start at point \mathbf{p}_0 go towards \mathbf{p}_1 , according to parameter t

•
$$p(0) = p_0, p(1) = p_1$$

$$\mathbf{p}(t) = \mathbf{p}_0 + t(\mathbf{p}_1 - \mathbf{p}_0)$$

$$\mathbf{p}(t) = \mathbf{o} + t(\mathbf{d})$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 + t(x_1 - x_0) \\ y_0 + t(y_1 - y_0) \end{bmatrix}$$

N=<A,B,C>

Planes

Plane equations

Implicit
$$F(x, y, z) = Ax + By + Cz + D = 0 = N \cdot P + D$$

Points on Plane F(x,y,z) = 0

Explicit z = -(A/C)x - (B/C)y - D/C, $C \neq 0$

Parametric

$$\begin{aligned} &Plane(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0) \\ &P_0, P_1, P_2, \text{ not collinear} \end{aligned}$$

 $Plano(s,t) = P_0 + sV_1 + tV_2$, where V_1, V_2 are basis vectors

convex combination defines a triangle

 $Plane(s,t) = (1-s-t)P_0 + sP_1 + tP_2$

Summary: Lines

Representations of a line (in 2D)

 Explicit - we have one dependent variable on the left-hand side of an equation, and all the independent variables and constants on the right-hand side of the equation

$$y = \frac{dy}{dx}(x - x_0) + y_0$$

 Implicit - An implicit equation is an algebraic line/curve formed by points that satisfy an equation. Implicits TEST their (x,y) input values and return true if the implicit relationship is satisfied. The general solution of implicit equations requires a search!

$$F(x,y) = (x-x_0)dy - (y-y_0)dx$$

F(x,y) = 0 then (x,y) is on line F(x,y) > 0 (x,y) is helow line F(x,y)<0(x, y) is above line

· Parametric - also called generating functions, they generate coordinate pairs as output, given parameter values as input.

$$x(t) = x_0 + t(x_1 - x_0)$$

$$y(t) = y_0 + t(y_1 - y_0)$$

$$t \in [0, 1]$$

$$P(t) = P_0 + t(P_1 - P_0)$$
, or $P(t) = (1 - t)P_0 + tP_1$

Implicit Functions

- find where function is 0
 - plug in (x,y), check if
 - 0: on line
 - < 0: inside
 - > 0: outside
- analogy: terrain
 - sea level: f=0 altitude: function value
 - topo map: equal-value contours (level sets)

