len du Santastre

Final Exam

Show all work on the exam papers. If you need additional space, use the reverse side of the paper. Closed book, closed notes, no calculator.

(20)
$$\frac{1}{2^2}$$
 Convert 101.01 from binary to decimal equivalence (20) $\frac{1}{2^2}$ $\frac{1}$

$$\frac{19}{2} = 9 \quad C_0 = 15 \quad .75 \cdot 2 = 1.5 \quad C_{-1} = 1$$

$$\frac{9}{2} = 4 \quad C_1 = 15 \quad .5 \cdot 2 = 1 \quad C_2 = 1$$

$$\frac{9}{2} = 2 \quad C_2 = 0$$

$$\frac{9}{2} = 1 \quad C_3 = 0$$

$$\frac{2}{2} = 1 \quad C_3 = 0$$

$$\frac{2}{2} = 1 \quad C_3 = 0$$

$$\frac{2}{2} = 1 \quad C_3 = 0$$

(d) What is the 8-bit 1's complement of 10000010?

(e) What is the 8-bit 2's complement of 10100000?

- Determine whether each of the following is True (T) or False (F). Circle
 the appropriate choice.
 - (a) NOT and AND form a complete logic set.

(b) AND and OR form a complete logic set.

(c) $A + \overline{A}B = A + B$

- (e) If a sequential network has a 4-state transition diagram, it will take 4 memory elements to implement its design.
- (e) If a sequential network has a 7-state transition diagram, it will take 3 memory elements to implement its design.
- (f) A 4:1 MUX has 2 select (input) lines.

- 3. Given the truth table below,
- (14) (a) Complete the truth table, for the function $f(x,y,z) = (x + y) \cdot z$

X+y	¥	x	у	z	f(x,y,z)	g(x,y,z)
1	1	0	0	0	0	0
1	1	0	0	1	ĭ	0
0	0	0	1	0	0	1
0	0	0	1	1	0	0
١	1	1	0	0	0	1
1	1	1	0	1	1	1
1	0	1	1	0	Ó	0
ĺ	0	1	1	1	ī/	0

(b) Write g(x,y,z) as a canonical sum of products.

1. TO

0#+A

4. Construct the VHDL listing that describes the logic circuit shown below:

(15)

entity problem-4 is

port (a,b,c: in bit;

end problem-4;

architecture Logic of problem-4 is

begin

F(=(b nand c) xnor not(a);

end Logic;

Given the following CMOS circuit, determine the function g (x, y, z).

nor

$ V_{DD}$	
pFETs	9 (x,4
- 1	g
, -1, -	⊢ z

				Ē	<u></u>
XVZ	9	YEZ	(1+z) · x		
000	1	To	0	1	
001	1	iel	0	A.	
010	I.	10.1	0	1	
011	1.	1	0	1,	
00	1	0	0	1	
101	0	1	1	0	
110	0	. 1	1	0.	
111	Ð	.1	1	0)	

XVY+Z X	· (4+2)
X·Y + Z X pfet soies Nfet pmalle	
y+z + x	
Y+Z · X	

	4	
	X	
	A	0
/		

 For the circuit below, calculate the propagation delay between the NAND gate and output 2, given the following parameters and assuming that both outputs drive an inverter.

 $t_{p0,NOT} = 0.5 \text{ ns}$

$$t_{pL,NOT} = 0.4 \text{ ns}$$

 $t_{p0, NAND} = 0.85 \text{ ns}$

$$t_{pL, NAND} = 0.95 \text{ ns}$$

$$t_{p0, NOR} = 0.8 \text{ ns}$$

$$t_{pL, NOR} = 0.9 \text{ ns}$$

1,16

- For each of the following, consider an 8-bit register whose initial value is
 10001111. Assume this initial state for each operation below; determine the contents of the register after each operation.
 - (a) SHL 1

(b) ROR 2

8. (a) Generate the Karnaugh map for $f(x,y,z) = \sum_{i=1}^{n} m(0,1,2,5,6)$

(22)

010

100

000

(b) Find the simplest form of the function g(w, x, y, z) which is described by the following K-map:

ZW					
xy/	11	_10	00	01	
01	/i	1	0	0	1
/ 11	1	1	0	0	
10	1	0	0	0	
00	0	(I)	0	0	

g(w,x,y,z) = yz + xzw + xzw + xzw

9. Given the following state transition table,

(20)

X	
0	1
D/0	B/0
C/0	D/0
B/0	C/0
B/0	C/1
	D/0 C/0 B/0

(a) Draw the corresponding state transition diagram

(b) Assuming you start at state A, determine the output sequence for the following input sequence: 001 11101 at A

- Multiple choice (circle the correct answer):
 (10)
 - (a) The transmission gate network below implements which of the following functions?

you would

A knor B

ab + a 5

(b) The MUX below implements which of the following functions?

A OR B

A OR NOT B

A XNOR B

Name: Just de

- 11. Draw the state transition diagram for a 3-bit odd parity network, that is, the
- (15) output should be 0 unless the third input yields a 3-bit sequence with odd parity; in this case, the output should be 1. In all events, the system should return to its initial state after the third input bit.

3 bit odd party check

Name: Jest la

12. Use an 8:1 MUX to implement the function F (A, B, C) = A•B•C + B•C (10)

c	8.C	ABC	F
1	0	0	0
0	0	0	0
.	1	0	1
0	0	0	0
1	0	0	0
0	0	۵	0
1	- 1	0	1
0	0	1	1
	0 - 0 - 0	0 0 1 0 1	0 0 0

A	B	(A.B.C	C	BC	DF
0	٥	O	0	1	0	0
0	O	1	0	0	0	0
0	1	0	0.	1	1	1
0	١	1	0	0	O.	0
- (0	0	0	1	0	0
(0	1	0	0	0	0
l	Ī	0	101	1	1.	1
1	l	1	1.	0	0	(

 Complete the timing diagram below for a positive edge-triggered D flipflop, assuming an initial value of 0 for Q.

(15)

