

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06324792 A

(43) Date of publication of application: 25 . 11 . 94

(51) Int. CI

G06F 3/03 G06F 3/03

(21) Application number: 05114751

(22) Date of filing: 17 . 05 . 93

(71) Applicant:

CANON INC

(72) Inventor:

TANAKA ATSUSHI YANAGISAWA RYOZO TOKIOKA MASAKI SATO HAJIME YOSHIMURA YUICHIRO KOBAYASHI KATSUYUKI

(54) COORDINATE INPUT DEVICE

(57) Abstract:

PURPOSE: To provide a highly accurate coordinate input device which is hardly influenced by environments whose sensors are firmly fixed.

CONSTITUTION: The sensors 6 are attached to the four corners of a vibration transmission plate 8 and are pressed down to the vibration transmission plate 8 by an FPC (flexible printed circuit). One electrode of the sensor is connected to the FPC and is connected from there to the electrode printed on the vibration transmission plate 8. In the connection part, the FPC is fixed to the plate 8 by an adhesive or the like. At this time, when the adhering part is set in a direction not desired to pick up by the sensor 6, vibration from the direction can be suppressed. Also, when the sensor is covered, the sensor can be protected from dust or the like and when it is connected to a ground potential with the covered sensor as a conductor, an electric shield can be attained as well.

COPYRIGHT: (C)1994, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-324792

(43)公開日 平成6年(1994)11月25日

(51) Int.Cl.⁵

G06F 3/03

識別記号

庁内整理番号

340

7165-5B

380 A 7165-5B

FΙ

技術表示箇所

審査請求 未請求 請求項の数4 OL (全 12 頁)

(21)出願番号

特願平5-114751

(22)出願日

平成5年(1993)5月17日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 田中 淳

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 柳沢 亮三

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 時岡 正樹

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 大塚 康徳 (外1名)

最終頁に続く

(54) 【発明の名称】 座標入力装置

(57)【要約】

【目的】センサがしっかりと固定され、高精度で環境の 影響を受けにくい座標入力装置を提供する。

【構成】センサ6は振動伝達板8の4隅に取りつけられており、FPC(フレキシブルプリント回路)により振動伝達板8に押えつけられている。センサの一方の電極はFPCに接続しており、それから振動伝達板8上にプリントされた電極に接続されている。この接続部分において、FPCは板8に接着等で固定されている。このときに接着部分をセンサ6が拾いたくない方向に設定すれば、その方向からの振動を抑制することができる。また、センサを覆う様にすればセンサをほこり等から守ることができ、それを導体としてグラウンド電位につなげば電気的なシールドとすることもできる。

10

2

【特許請求の範囲】

【請求項1】 振動を発生する振動発生手段と、

該振動発生手段により発生された振動を伝達する振動伝 達手段と、

該振動伝達板手段の振動を検知する検知手段と、

該検知手段の一端に接し、端部の固定部により前記振動 伝達板に固定された板体と、

前記検知手段により検知した振動に基づいて前記振動発 生手段により振動を発生した位置の座標を算出する手段 と、を備えることを特徴とする座標入力装置。

【請求項2】 前記板体の固定部は、前記検知手段と前記振動発生手段による振動源との間にあって前記検知手段に伝播する振動を減衰することを特徴とする請求項1 記載の座標入力装置。

【請求項3】 前記板体は導体であり、前記振動検知手 段からの出力信号を伝えることを特徴とする請求項1記 載の座標入力装置。

【請求項4】 前記板体は導体であって前記検知手段を 覆い、グラウンド電位に保たれることを特徴とする請求 項1記載の座標入力装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は座標入力装置、特に振動ペンから入力された弾性波振動を振動伝達板に複数設けられたセンサにより検出し、前記振動ペンから振動伝達板に入力された弾性波振動の伝達時間に基づき、振動ペンによる振動入力点の座標を検出する装置に関するものである。

[0002]

【従来の技術】超音波による座標入力装置は、入力面である振動伝達板上を伝播してくる波の遅延時間を検出して位置座標を算出する方式であり、振動伝達板上にマトリックス状電線等の細工がなんら施されていないので、コスト的に安価な装置を提供する事が可能である。しかも振動伝達板に透明な板硝子を用いれば他の方式に比べて透明度の高い座標入力装置を構成することができる。

【0003】このような座標入力装置において、振動を検出する手段には、PZT等の圧電素子がセンサとして用いられている。このセンサからの信号取り出し方法として、本願出願人による先願である特願平4-236807に於いては、FPC(Flexible Print Circuit)を用いてセンサの電極から信号を取り出す手段が開示され、更には、特願平4-263407に於いては、板バネをセンサの電極として信号を取り出す方法が、開示されている。

[0004]

【発明が解決しようとしている課題】このような従来の 方法における、FPCを板バネまたは半田等でセンサに 圧接、固定し、信号を取り出す手法では、板バネそのも ののコストや半田付けの工程などにより製造コストが高 50 かった。

【0005】更に、振動伝達板を伝播する振動は振動伝達板の端面で反射されてしまい、この反射された振動と 反射されていない振動とをセンサは検知してしまうため に、入力座標の精度が低下するという問題点があった。

【0006】また、従来の構成ではセンサがむき出しとなっているために、環境中の電磁波や水分等による悪影響を受けやすかった。

【0007】本発明は上記従来例に鑑みて成されたもので、環境の影響を受けにくく、また、高精度な座標入力 装置を提供することを目的とする。

[0008]

【課題を解決するための手段】及び

【作用】上記目的を達成するために本発明の座標入力装置は次のような構成からなる。

【0009】振動を発生する振動発生手段と、該振動発生手段により発生された振動を伝達する振動伝達手段と、該振動伝達板手段の振動を検知する検知手段と、該検知手段の一端に接し、端部の固定部により前記振動伝達板に固定された板体と、前記検知手段により検知した振動に基づいて前記振動発生手段により振動を発生した位置の座標を算出する手段とを備える。

[0010]

【第1実施例】図1は本実施例における座標入力装置の構造を示している。図中、1は装置全体を制御すると共に、座標位置を算出する演算制御回路である。2は振動子駆動回路であって、振動ペン3内のペン先を振動させるものである。8はアクリルやガラス板等、透明部材からなる振動伝達板であり、振動ペン3による座標入力は、この振動伝達板8上をタッチする事で行う。また実際には、図示に実線で示す符号Aの領域(以下有効エリア)内を振動ペン3で指定する事を行う。そして、この振動伝達板8の外周には、反射した振動が中央部に戻るのを防止(減少)させるための防振材7が設けられ、機械的振動を電気信号に変換する振動センサ6a~6dが固定されており、FPC12によって検出信号が取り出されている。

【0011】9は各振動センサ6a~6dで振動を検出した旨の信号を演算制御回路1に出力する信号波形検出回路である。11は液晶表示器のドット単位の表示が可能なディスプレイであり、振動伝達板の背後に配置している。そしてディスプレイ駆動回路10の駆動により振動ペン3によりなぞれらた位置にドットを表示しそれを振動伝達板8(透明部材からなる)を透かしてみる事が可能になっている。

【0012】振動ペン3に内蔵された振動子4は、振動子駆動回路2によって駆動される。振動子4の駆動信号は演算制御回路1から低レベルのパルス信号として供給され振動子駆動回路2によって所定のゲインで増幅された後振動子4に印加される。

20

【0013】電気的な駆動信号は振動子4によって機械的な超音波振動に変換され、ペン先5を介して振動伝達板8に伝達される。

【0014】ここで振動子4の振動周波数はガラス等の振動伝達板8に板波を発生する事ができる値に選択される。また、振動子駆動の際、振動伝達板8に対して図2の垂直方向に振動するモードが選択される。また、振動子4の振動周波数をペン先5を含んだ共振周波数とする事で効率の良い振動変換が可能である。

【0015】上記のようにして振動伝達板8に伝えられ 10 る弾性波は板波であり、表面波等に比して振動伝達板の表面の傷、障害物等の影響を受けにくいという利点を有する。

<演算制御回路の説明>上述した構成において、演算制御回路1は所定周期毎(例えば5ms毎)に振動子駆動回路2振動ペン3内の振動子4を駆動させる信号を出力すると共に、その内部タイマ(カウンタで構成されている)による計時を開始させる。そして、振動ペン3より発生した振動は振動センサ6a~6dまでの距離に応じて遅延して到する。

【0016】振動波形検出回路9は各振動センサ6a~6dからの信号を検出して、後述する波形検出処理により各振動センサへの振動到達タイミングを示す信号を生成するが、演算制御回路1は各センサ毎のこの信号を入力し、各々の振動センサ6a~6dまでの振動到達時間の検出、そして振動ペンの座標位置を算出する。

【0017】また演算制御回路1は、この算出された振動ペン3の位置情報を基にディスプレイ駆動回路10を駆動して、ディスプレイ11による表示を制御したり、あるいはシリアル、パラレル通信によって外部機器に座 30標出力を行う(不図示)。

【0018】図3は実施例の演算制御回路1の概略構成を示すプロック図で、各構成要素及びその動作概略を以下に説明する。

【0019】図中、31は演算制御回路1及び本座標入力装置全体を制御するマイクロコンピュータであり、内部カウンタ、操作手順を記憶したROM、そして計算等に使用するRAM、定数等を記憶する不揮発性メモリ等によって構成されている。

【0020】33は不図示の基準クロックを計時するタイマ(例えばカウンタなどにより構成されている)であって、振動子駆動回路2に振動ペン3内の振動子4の駆動を開始させるためのスタート信号を入力すると、その計時を開始する。これによって、計時開始とセンサによる振動検出の同期が取られ、センサ(6a~6d)により振動が検出されるまでの遅延時間が測定できることになる。

【0021】その他各構成要素となる回路は順を追って説明する。

【0022】振動波検出回路9より出力される各振動セ 50 の振動伝達時間をtgとして、

ンサ6a~6dよりの振動到達タイミング振動は、検出信号入力ポート35を介してラッチ回路34a~34d

に入力される。

【0023】ラッチ回路 $34a\sim34d$ のそれぞれは、各振動センサ $6a\sim6d$ に対応しており、対応するセンサよりのタイミング信号を受信すると、その時のタイマ33の計時値をラッチする。こうして全ての検出信号の受信がなされたことを判定回路36が判定すると、マイクロコンピュータ31にその旨の信号を出力する。

【0024】 μ コンピュータ31がこの判定回路36からの信号を受信すると、ラッチ回路 $34a\sim34$ dから各々の振動センサまでの振動到達時間をラッチ回路より読み取り、所定の計算を行って、振動伝達板8上の振動ペン3の座標位置を算出する。そして、I/Oポート37を介してディスプレイ駆動回路10に算出した座標位置情報を出力することにより、例えばディスプレイ11の対応する位置にドットなどを表示することができる。あるいはI/Oポート37を介してインターフェース回路に、座標位置情報を出力することによって、外部機器に座標値を出力することができる。

<振動伝搬時間検出の説明(図4,図5)>以下、振動 センサ3までの振動到達時間を計測する原理について説 明する。

【0025】図4は振動波形検出回路9に入力される検出波形と、それに基ずく振動伝達時間の計測処理を説明するための図である。尚以下、振動センサ6aの場合について説明するが、その他の振動センサ6b、6c、6dについても全く同じである。

【0026】振動センサ6aへの振動伝達時間の計測は、振動子駆動回路2へのスタート振動の出力と同時に開始することは既に説明した。この時、振動子駆動回路2から振動子4へは駆動信号41が印加されている。この信号41によって、振動ペン3から振動伝達板8に伝達された超音波振動は、振動センサ6aまでの距離に応じた時間tgをかけて進行した後、振動センサ6aで検出される。図示の42で示す信号は振動センサ6aが検出した信号波形を示している。

【0027】この実施例で用いられている振動は波形であるため振動伝達板8内での伝蕃距離に対して検出波形のエンベローブ421と位相422の関係は振動伝達中に、その伝達距離に応じて変化する。ここでエンベローブ421の進む速度、即ち、群速度をVg、そして位相422の位相速度をVpとする。この群速度Vg及び位相速度Vpから振動ペン3と振動センサ6a間の距離を検出することができる。

【0028】まず、エンベローブ421にのみ着目すると、その速度はVgであり、ある特定の波形上の点、例えば変極点や図示43で示す信号のようにピークを検出すると、振動ペン3及び振動センサ6a間の距離は、その振動伝達時間を+aklx

 $d = V g \cdot t g$

で与えれらる。この式は振動センサ6 a の一つに関する ものであるが、同じ式により他の3つの振動センサ6b ~6 dと振動ペン3の距離も同様にして表わすことがで きる。

【0029】更に、より高精度な座標決定をするため に、位相信号の検出に基ずく処理を行う。

$$d = n \cdot \lambda p + V p \cdot t p$$

となる。ここでλρは弾性波の波長、nは整数である。

【0031】前記(1)式と(2)式から上記の整数n※10

$$n = [(Vg \cdot tg - Vp \cdot tp) / \lambda p + 1/N] \qquad \cdots (3)$$

と表される。

【0032】ここで、Nは"0"以外の実数であり、適 当な値を用いる。例えば、N=2とすれば $\pm 1/2$ 波長 以内のtg等の変動であれば、nをけってすることがで きる。上記のようにして求めたnを(2)式に代入する ことで、振動ペン3及び振動センサ6 a 間の距離を精度 良く測定することができる。上述した2つの振動伝達時 間tg及びtpの測定のため信号43及び45の生成 は、振動波形検出回路9により行われるが、この振動波 20 形検出回路9は第5図に示すように構成される。図5は 実施例の振動波形検出回路9の構成を示すブロック図で ある。

【0033】図5において、振動センサ6aの出力信号 は、前置増幅回路51により所定のレベルまで増幅され る。増幅された信号は、帯域通過フィルタ511により 検出信号の余分な周波数成分が除かれ、例えば、絶対値 回路及び、低域フィルタ等により構成されるエンベロー ブ検出回路52に入力され、検出信号のエンベローブの みが取り出される。エンベローブピークのタイミング は、エンベローブピーク検出回路53によって検出され る。ピーク検出回路はモノマルチバイブレータなどから 構成された t g 信号検出回路 5 4 によって所定波形のエ ンベローブ遅延時間検出信号である信号 tg (図4信号 43) が形成され、演算制御回路1に入力される。

【0034】一方、55は信号検出回路であり、エンベ★

$$t g z' = t g z + e t$$

$$tpz' = tpz + et + toff$$

の関係がある。

☆ t p' は同様に、

【0036】一方、任意の入力点P点での実測値tg'☆40

$$tg' = tg + et$$

$$tp' = tp + et + toff$$

となる。この(4)(6)、(5)(7)両者の差を求◆ ◆めると、

$$tg'-tgz'=(tg+et)-(tgz+et)=tg-tgz$$

となり各伝達時間に含まれる回路遅延時間 e t 及び位相 オフセットtoffが除去され、原点Oの位置から入力 点Pの間のセンサ6a位置を起点とする距離に応じた真 の伝達遅延時間の差を求めることができ、前記(2)

(3) 式を用いれば距離差を求めることができる。

6 ... (1)

*【0030】位相波形信号422の特定の検出点、例え ば振動印加から、ある所定の信号レベル46後の、ゼロ クロス点までの時間を t p 45 (信号 47 に対し所定幅 の窓信号44を生成し、位相信号422と比較すること で得る)とすれば、振動センサと振動ペンの距離は、

... (2)

※は、

★ローブ検出回路52で検出されたエンベローブ信号42 1中の所定レベルの閾値信号46を越える部分のパルス 信号47を形成する。56は単安定マルチバイプレータ であり、パルス信号47の最初の立ち上がりでトリガさ れた所定時間幅のゲート信号44を開く。57はtpコ ンパレータであり、ゲート信号44の開いている間の位 相信号422の最初の立ち上がりのゼロクロス点を検出 し、位相遅延時間信号 t p 4 5 が演算制御回路1 に供給 されることになる。尚以上説明した回路は振動センサ6 a に対するものであり、他の振動センサにも同じ回路が 設けれらている。

< 回路遅延時間補正の説明>前記ラッチ回路によってラ ッチされた振動伝達時間は、回路遅延時間 e t 及び位相 オフセット時間 toffを含んでいる。これらにより生 じる誤差は、信号ペン3から振動伝達板8、振動センサ 6 a ~ 6 d ~ と行われる振動伝達の際に必ず同じ量が含 まれる。

【0035】そこで、例えば図6の原点〇の位置から、 例えば振動センサ6aまでの距離をR1 (=X/2)と し、原点Oにて振動ペン3で入力を行い実測された原点 Oからセンサ6aまでの実測の振動伝達時間をtg z'、tpz'、また原点Oカラーセンサまでの真の伝 達時間を t g z 、 t p z とすれば、これらは回路遅延時 間et及び位相オフセットtoffに関して、

... (4)

... (5)

... (6) ... (7)

... (8) ... (9)

【0037】振動センサ6aから原点〇までの距離はあ らかじめ不揮発性メモリ等に記憶してあり既知であるの で、振動ペン3と振動センサ6a間の距離を決定でき る。他のセンサ6 b~6 dについても同様に求めること 50 ができる。

【0038】上記、原点Oにおける実測値tgェ′及び t p z i は出荷時に不揮発性メモリに記憶され、

(2)、(3)式の計算の前に(8)(9)式が実行さ れ精度の高い測定ができる。

<座標位置算出の説明(図6)>次に実際に振動ペン3 による振動伝達板8上の座標位置検出の原理を説明す る。

【0039】今、振動伝達板8上の4辺の中点近傍に4*

$$x = (d a + d b) \cdot (d a - d b) / 2 X$$

 $y = (d c + d d) \cdot (d c - d d) / 2 Y$

ここでX、Yはそれぞれ振動ペンセンサ6a、6b間の 距離、振動センサ6c、6d間の距離である。

【0041】以上のようにして振動ペン3の位置座標を リアルタイムで検出することができる。

<信号取り出し部の説明>図7 (A) (B) にFPC (Flexible Print Circuit) 12とセンサ6、振動伝達 板8の関係を示す。FPC12には、センサ6と導通を 取る電極部分12-Aと、振動伝達板8に貼付される粘 着部分12-Bが設けられている。電極部分12-A は、粘着部分12-Bが振動伝達板8に貼付されること によりセンサ6の電極部分に圧接され、センサ6からの 検出信号を取り出し前置増幅回路51へ信号を伝える。 このような構成を持つことで、板バネ等の部材を省略す ることができ、信頼性、組み立て性等を向上できる。

【0042】図7(C)は、振動伝達板8の隅部にセン サを設けた場合の実施例である。この場合にはFPC1 2の粘着部分12-Bが、図示の通りに、端面反射がセ ンサに対して入射する方向に設けられており、直接波に は影響がないように、入力エリア側には粘着部分12-Bは設けられていない。伝達体8の端面には、反射防止 のため防振材が設けられているが、信号検出に影響のな いレベルまで減衰させるためには、入力エリア外に無効 領域を必要とする。このような反射のセンサへの入射 を、FPC粘着部分12-Bを用いて妨害してやること で、無効エリアの縮小や、防振材の節減等の効果が得ら

【0043】また、FPCが前記振動伝達板に対して特 定方向の粘着部を有し、振動伝達板8に圧接されること で、板バネを廃し、信頼性向上、コスト源を図ることが 可能となり、さらには、振動伝達板上における反射波の 経路に前記粘着部を設けることにより、端面反射の影響 を軽減し高精度化が図れる。

[0044]

【第2実施例】上記第1の実施例においては、反射波に 粘着部分を利用した例であるが、直接波に対して、指向 性の制御に用いることも可能である。図8は、前記例と 異なり、センサ6が辺の中央付近に配設されており、こ のような場合にはセンサと入力エリアとがかなり接近す ることがある。振動検出のレベルは、センサと入力点の 距離によって決まるので、センサ近傍と、入力エリアの 50

*つの振動センサ6a~6dを符号S1~S4の位置に設 けると、先に説明した原理に基づいて、振動ペン3の位 置Pから各々の振動センサ6a~6dの位置までの直線 距離 de~ddを求めることができる。 更に演算制御回 路1でこの直線距離 d a ~ d d に基づき、振動ペン3の 位置Pの座標(x、y)を3平方の定理から次式のよう にして求めることができる。

[0040]

... (10) ... (11)

最遠点では、レベルの差がかなり大きくなり、信号波形 検出回路9のダイナミックレンジを相当量広げる必要が ある。

【0045】これに対して、図8で示す用に、センサと 入力エリアの中央部に対してFPC粘着層12-Bを施 す。入力エリア中央部(A領域)からの振動は、粘着部 分を通過する際、FPC、粘着材の減衰特性に従った減 衰を受ける。入力エリア周辺部(B領域)は、直接セン サに入力されるため、減衰は生じない。 このように入力 エリア方向に対する入力レベルの不均一性(方向指向 性)を付加することで、センサに対して指向性を付加で きるので、信号波形検出回路9に必要とされるダイナミ ックレンジを小さくすることができる。そのため回路に 対する要求が軽くなり、回路構成を簡単ならしめること が可能になる。

【0046】上記説明においては、入力エリア側だけに 粘着部分を設けているが、当然、反対側にも設け、反射 波の防止用と併用も可能である。固定については、詳し く述べないが、センサとFPC電極が、圧接される用に 構成すれば良い。

[0047]

【第3実施例】図9は本発明の第3の実施例である。セ ンサ6の振動伝達板8側の電極は、振動伝達板8上に印 刷等で設けられた導電層13に接触されている。通常こ の部分はグランド側に設定されており、伝達板8側から のノイズシールドの役も負っている。

【0048】今、図9に示すようにFPC12の上側 (センサ電極12-Aの裏側) にFPC基材より大きめ のシールド電極12-Cを設け、この導電層12-Cと 伝達板8上の印刷電極とを導通させるように構成し、印・ 刷電極13と同電位として、シールドとして用いること で、電磁ノイズ等の飛び込みによる誤動作等を減少でき る。接触については、導電性接着剤材や圧接等、電気的 に導通可能であれば良い。また、シールド電極はFPC 基材より一部分大きくても良く、さらに粘着側に回り込 む構成を取っても良い。また、図9の説明では2層のF PCを用いているが、1層のFPCで構成し、折り込む 形で構成しても良い。

[0049]

【第4実施例】図10は第4の実施例であり、センサ6

の周囲を囲む構成としたものである。このようにセンサ 6の周囲にFPCの粘着部12-Bを設け、FPC12でセンサ6を覆うことで、例えば、センサを入力面に配したときなどに、水などの異物の混入等による、センサ 破壊から逃れることができる。さらにFPC基材を硬度のあるもので構成することで、外部衝撃から、センサを 防護することも可能になる。

【0050】当然のことながら、上述いくつかの実施例 を組み合わせることは可能であり、効果的である。

【0051】尚、本発明は、複数の機器から構成されるシステムに適用しても1つの機器から成る装置に適用しても良い。

[0052]

【発明の効果】以上説明したように、本発明にかかる座標入力装置は、環境の影響を受けにくく、また、高精度であるという効果がある。

【0053】以上説明したように、振動伝達板と、前記振動伝達いた上に入力された振動入力ペンからの弾性波振動が振動検出手段まで到達する遅延時間を基に、前記振動入力ペンにより指示された前記振動伝達板上の座標位置を算出して出力する座標入力装置において、前記振動検出手段から振動を取り出す手段を有し、該取り出し手段が、前記振動伝達板に対して、特定方向の粘着部を有し、前記伝藩手段に圧接されるすることで、板バネを廃し、信頼性向上、コスト源を図ることが可能となり、さらには、信号取り出し手段の固定部が、振動伝達手段における振動の反射経路に設けることにより、端面反射、指向性等の影響を軽減し高精度化が図る。

【0054】また、振動取り出し手段の固定部が前記振動伝達手段に設けられた電極部と電気的に導通するよう*30

*に固定することで、シールド効果を得ることが可能となり、さらには、信号取り出し手段の固定部は、前記振動 検出手段を覆うように構成されることで、センサの保護 が可能となり、高精度な座標入力装置を提供することが できる。

【図面の簡単な説明】

- 【図1】座標入力装置のプロック構成である。
- 【図2】振動ペンの構成を示す図である。
- 【図3】実施例における演算制御回路の内部構成のブロ 10 ック図である。
 - 【図4】信号処理のタイムチャートである。
 - 【図5】信号検出回路のブロック図である。
 - 【図6】座標入力装置の座標算出を説明する図である。
 - 【図7】第1の実施例の説明図である。
 - 【図8】反射経路に粘着部を持つ信号取り出し手段の図である。
 - 【図9】シールドの説明図である。
 - 【図10】センサ保護の説明図である。

【符号の説明】

- 20 1 演算制御回路、
 - 2 振動子駆動回路、
 - 3 振動入力ペン、
 - 4 振動子、
 - 5 ペン先、
 - 6 a ~ 6 d 振動センサ、
 - 7 防振材、
 - 8 振動伝達板、
 - 9 信号波形検出回路、
 - 12 FPC.
 - 13 印刷電極である。

【図6】

【図7】

【図1】

【図2】

【図3】

【図4】

【図8】

【図9】

【図10】

フロントページの続き

(72)発明者 佐藤 肇

東京都大田区下丸子3丁目30番2号 キャノン株式会社内

(72)発明者 吉村 雄一郎

東京都大田区下丸子3丁目30番2号 キャ

ノン株式会社内

(72)発明者 小林 克行

東京都大田区下丸子3丁目30番2号 キャ

ノン株式会社内