

IMPROVMENT OF BACKTRACKING

Improving Backtracking with Arc Consistency (AC-3)

A More Efficient Approach to

Constraint Satisfaction

Problems (CSPs)

- - Backtracking alone is inefficient in CSPs with large search spaces.
 - - It often leads to unnecessary re-exploration of inconsistent paths.
 - - Solution? Arc Consistency (AC-3) helps reduce the

What is Arc Consistency?

 - AC-3 is a constraint propagation algorithm.

 - It removes values that cannot be part of a consistent solution before search begins.

 - Works with binary constraints (relations between two

How AC-3 Works?

Convert each binary constraint into two arcs.

2 Add all arcs to an agenda (queue).

While the agenda is not empty:

 Take an arc (Xi, Xj) and check for consistency.

Remove values from Xi that don't satisfy the constraint with any value of X

- If Xi is modified, add arcs (Xk, Xi) back to the agenda.

AC-3 in Action

(Example) Given variables and constraints:

- Domains: {1,2,3,4} for A, B, and C
- - Constraints:

A > B

Solution

Problem Statement

$$\bullet A = \{1,2,3,4\}$$

$$\bullet B = \{1,2,3,4\}$$

$$\cdot C = \{1,2,3,4\}$$

•

- •Constraints:
- •1. A > B (A should be a proper superset of B)
- •2. B = C (B and C are equal sets)

Initial Domains and

•
$$A = \{1,2,3,4\}, B = \{1,2,3,4\}, C = \{1,2,3,4\}$$

ets:

- •2. Apply constraints:
- B = C → No change in values.
- A > B → A must only contain values strictly greater than B.

Removing not larger

value exists in B).

•
$$\rightarrow A = \{2,3,4\}$$

- •2. B = C remains unchanged for now.
- •3. Adjust B and C to maintain consistency:
- Since A > B, the
 largest B can have is 3
 (to ensure at least one
 element in A is greater
 than B).

Final Domain after arc Consistency

•Final Domains:

$$\bullet A = \{2,3,4\}$$

$$\bullet B = \{1,2,3\}$$

$$\cdot C = \{1,2,3\}$$

AC-3 vs.

Backtracking

Summary

AC-3 makes backtracking faster by eliminating inconsistent values before searching.

- Works best for binary constraints in CSPs.

Reduces unnecessary search space, leading to more efficient problem-solving.

