Practical No 01

Linear regression by using Deep Neural network: Implement Boston housing price predictionproblem by Linear regression using Deep Neural network. Use Boston House price predictiondataset.

- 1 ## Importing required Library
- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 from sklearn.model_selection import train_test_split, KFold, cross_val_score
- 6 from sklearn.preprocessing import StandardScaler,MinMaxScaler
- 7 import tensorflow as tf
- 8 from tensorflow.keras.models import Sequential
- 9 from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten
- 10 import warnings
- 11 warnings.filterwarnings('ignore')
- 1 #Reading Dataset
- 1 housing_data = pd.read_csv('BostonHousing.csv')
- 1 # Finding Top 5 Result
- 1 housing_data.head()

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90

- 1 # Analysing Dataset
- 1 housing_data.describe()

	crim	zn	indus	chas	nox	rm	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.57
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.14
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.90
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.02
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.50
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.07
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.00
%							

1 #Finding any Null Values

```
1 housing_data.isnull().sum()
              0
   crim
   zn
   indus
              0
   chas
              0
   nox
              0
   rm
              0
   age
   dis
   rad
              0
   tax
   ptratio
              0
   lstat
              0
   medv
   dtype: int64
1 #Finding Duplicate Values
1 housing data.duplicated().sum()
1 #DataSet Distributing Traning and testing
1 X = housing_data.drop(columns = ['medv'])
2 y = housing_data.medv
3 sc = StandardScaler()
4 X = sc.fit_transform(X)
5 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state = 5)
1 X_train.shape,X_test.shape,y_train.shape,y_test.shape
   ((354, 13), (152, 13), (354,), (152,))
1 #Model Training
1 model = Sequential()
2 model.add(Dense(128, input_shape=(13, ), activation='relu', name='dense_1'))
3 model.add(Dense(64, activation='relu', name='dense_2'))
4 model.add(Dense(1, activation='linear', name='dense_output'))
5 model.compile(optimizer='adam', loss='mse', metrics=['mae'])
6 model.summary()
   Model: "sequential"
                                 Output Shape
                                                            Param #
    Layer (type)
    dense_1 (Dense)
                                 (None, 128)
                                                            1792
                                                            8256
    dense_2 (Dense)
                                 (None, 64)
    dense_output (Dense)
                                 (None, 1)
                                                            65
   Total params: 10,113
   Trainable params: 10,113
   Non-trainable params: 0
1 #Model Fitting with 200 Epochs
```

1 history = model.fit(X_train, y_train, epochs=200, validation_split=0.2)

```
Epocn 1/5/200
                     :=======] - 0s 11ms/step - loss: 5.1111 - mae: 1.5756 - val loss: 20.3476 -
9/9 [======
Epoch 176/200
Epoch 177/200
9/9 [======
                  =========] - 0s 9ms/step - loss: 5.1509 - mae: 1.5663 - val_loss: 20.3926 - \
Epoch 178/200
9/9 [====
                        =====] - 0s 11ms/step - loss: 5.0448 - mae: 1.5821 - val_loss: 20.3617 -
Epoch 179/200
9/9 [=====
                       ======] - 0s 9ms/step - loss: 5.0559 - mae: 1.6029 - val loss: 20.5059 - \
Epoch 180/200
Epoch 181/200
9/9 [======
                  :=========] - 0s 8ms/step - loss: 5.0905 - mae: 1.5621 - val_loss: 20.9358 - \
Epoch 182/200
9/9 [======
                      ======] - 0s 10ms/step - loss: 5.0026 - mae: 1.5719 - val_loss: 20.3094 -
Epoch 183/200
                      :======] - 0s 9ms/step - loss: 4.8622 - mae: 1.5599 - val_loss: 20.7895 - \
9/9 [======
Epoch 184/200
9/9 [======
                     :=======] - 0s 8ms/step - loss: 4.8883 - mae: 1.5285 - val_loss: 20.2752 - \
Epoch 185/200
9/9 [======
                      =======] - 0s 10ms/step - loss: 5.0436 - mae: 1.5816 - val loss: 20.4656 -
Epoch 186/200
9/9 [======
                    ========] - 0s 10ms/step - loss: 4.9210 - mae: 1.5656 - val_loss: 20.5648 -
Epoch 187/200
9/9 [======
                    ========] - 0s 9ms/step - loss: 4.8744 - mae: 1.5169 - val_loss: 20.1752 - \
Epoch 188/200
9/9 [======
                      =======] - 0s 11ms/step - loss: 4.7451 - mae: 1.5279 - val_loss: 20.8158 -
Epoch 189/200
9/9 [=====
                        =====] - 0s 14ms/step - loss: 4.7845 - mae: 1.5242 - val loss: 20.3473 -
Epoch 190/200
                9/9 [=======
Epoch 191/200
9/9 [======
                    ========] - 0s 9ms/step - loss: 4.8055 - mae: 1.5250 - val_loss: 20.2817 - \
Epoch 192/200
9/9 [======
                    =======] - 0s 9ms/step - loss: 4.6039 - mae: 1.4931 - val_loss: 20.6244 - \
Epoch 193/200
9/9 [======
                           ===] - 0s 11ms/step - loss: 4.6854 - mae: 1.5392 - val loss: 20.5111 -
Epoch 194/200
9/9 [======
                     ========] - 0s 8ms/step - loss: 4.6542 - mae: 1.5006 - val_loss: 20.5895 - \
Epoch 195/200
9/9 [======
                    ========] - 0s 6ms/step - loss: 4.6124 - mae: 1.5000 - val loss: 20.5493 - \
Epoch 196/200
Epoch 197/200
9/9 [======
                     =======] - 0s 8ms/step - loss: 4.6487 - mae: 1.5125 - val_loss: 20.5668 - \
Epoch 198/200
9/9 [=====
                        =====] - 0s 8ms/step - loss: 4.6026 - mae: 1.4859 - val_loss: 20.3844 - \
Epoch 199/200
9/9 [=====
                       -=====] - 0s 8ms/step - loss: 4.5009 - mae: 1.4756 - val loss: 20.7519 - \
Epoch 200/200
                  :========] - 0s 8ms/step - loss: 4.4873 - mae: 1.4943 - val_loss: 20.4057 - \
9/9 [=======
```

1 print(len(history.history['mae']))

200

1 #Visualizing Training and Validation Loss

```
1 sns.scatterplot(y = history.history['loss'],x = range(1,200+1))
2 sns.scatterplot(y = history.history['val_loss'],x = range(1,200+1))
3 plt.title('Training and Validation Loss')
4 plt.xlabel('epochs')
5 plt.ylabel('loss')
6 plt.legend(['Training Loss','Validation_Loss'])
7 plt.show()
8 sns.scatterplot(y = history.history['mae'],x = range(1,200+1))
9 sns.scatterplot(y = history.history['val_mae'],x = range(1,200+1))
10 plt.title('Training and Validation MAE')
11 plt.xlabel('epochs')
12 plt.ylabel('loss')
13 plt.legend(['Training Mae','Validation_Mae'])
14 plt.show()
```


1 #Evaluating Error

1

✓ 0s completed at 1:30 PM

• ×