2018/5/22 试卷下载

上海财经大学2017-2018第一学期《线性代数》期末试卷(卷1)

试卷总分: 100分, 共1套试卷

—	埴空题	(本大题共 15 小题	. 共 45 分

1、设A为n阶矩阵,矩阵 $X=(x_1,x_2,\Lambda,x_n)^T$,分块矩阵 $A=(A_1,A_2,\Lambda,A_n)$,则下列等式正确的是 $__$

- $A\ (A_1,A_2,\Lambda,A_n)X=(A_1X,A_2X,\Lambda,A_nX)$
- $B\ X(A_1,A_2,\Lambda,A_n)=(XA_1,XA_2,\Lambda,XA_n)$

$$C (A_1, A_2, \Lambda, A_n) \begin{pmatrix} X_1 \\ M \\ X_- \end{pmatrix} = \sum_{i=1}^n A_i x_i$$

$$B \ X(A_1,A_2,\Lambda,A_n) = (XA_1,XA_2,\Lambda,XA_n)$$
 $C \ (A_1,A_2,\Lambda,A_n) egin{pmatrix} X_1 \ M \ X_n \end{pmatrix} = \sum\limits_{i=1}^n A_i x_i$ $D \ \begin{pmatrix} X_1 \ M \ X_n \end{pmatrix} (A_1,A_2,\Lambda,A_n) = egin{pmatrix} x_1A_1 & \Lambda & x_1A_n \ M & M \ x_nA_1 & \Lambda & x_nA_n \end{pmatrix}$ (本小题3分)(题目ID:39960)

- 2、若向量组 α , β , γ 线性无关, α , β , δ 线性相关,则 ____
- A α 必可由 β , γ , δ 线性表出
- B β 必不能由 α, γ, δ 线性表出
- C δ 必可由 α, β, γ 线性表出
- D δ 必不能由 α, β, γ 线性表出(本小题3分)(题目ID:39961)
- 3、设 A 是 $m \times n$ 矩阵 , 则与线性方程组 AX = B 同解的情形是 _
- B 当 $r(A)=r(\overline{A})=r$ 时,由 AX=B 的前 r 个方程构成的方程组
- C 当 r(P) = m, 其中 $P_{n \times m}$, PAX = PB
- D 当 r(P) = n, 其中 $P_{n \times m}$, PAX = PB(本小题3分)(题目ID:39962)
- 4、已知 $oldsymbol{A}$ 是三阶矩阵, $oldsymbol{r}(oldsymbol{A})=1,$ 则 $oldsymbol{0}$
- A 必是 A 的二重特征值
- B 至多是 A 的二重特征值
- C 至少是 A 的二重特征值
- **D** 一,二,三重都有可能(本小题3分)(题目ID:39963)
- 5、实二次型 $f(x_1,x_2,\Lambda,x_n)=X^TAX$ 为正定的充分必要条件是 ___
- A f 的负惯性指数为 0
- B 任意 $x_1 \neq 0, x_2 \neq 0, \Lambda, x_n \neq 0$ 代入二次型 $f(x_1, x_2, \Lambda, x_n)$ 都有 f>0
- $oldsymbol{C}$ 存在 $oldsymbol{n}$ 阶矩阵 $oldsymbol{C}$ 使得 $oldsymbol{A} = oldsymbol{C}^T oldsymbol{C}$
- **D A** 的特征值全大于零(本小题3分)(题目ID:39964)
- 7、设 \pmb{A} 是 \pmb{m} 阶方阵, \pmb{B} 为 \pmb{n} 阶方阵,且已知 $|\pmb{A}|=\pmb{a}, |\pmb{B}|=\pmb{b},$ 则行列式 $\begin{pmatrix} O & \pmb{A} \\ \pmb{B} & O \end{pmatrix}$ ______(本小题3分)(题目ID:39966)
- 8、设 $(A+I)^3 = (A-I)^3$,则 $A^{-1} =$ _____(本小题3分)(题目ID:39967)
- 10、设n 阶矩阵A 的各行元素之和均为零,且A 的秩为n-1,则线性方程组AX=0 的通解为_____(本小题3分)(题目ID:39969)
- 11、设 $\begin{pmatrix} 2/3 & 2/3 & 1/3 \\ -1/3 & y & -2/3 \\ x & 1/3 & 2/3 \end{pmatrix}$ 为正交矩阵,则 x-y= _________(本小题3分)(题目ID:39970)

12、已知 $f(x_1,x_2,x_3)=(a_1x_1+a_2x_2+a_3x_3)(b_1x_1+b_2x_2+b_3x_3)$ 为非零二次型,令 $\alpha=(a_1,a_2,a_3)^T$, $\beta=(b_1,b_2,b_3)^T$ 则此二次型矩阵为 ______目ID:39971)

- 13、设 A 为 $n(n \ge 2)$ 阶方阵, A^* 为 A 的伴随矩阵,若对于任一个 n 维列向量 α 均有 $A^*\alpha = 0$. 则线性方程组 AX = 0 的基础解系所含解向量个数 k 满足 ______(题目ID:39972)
- 14、已知 $m{A}$ 为满足 $m{A^2} = m{A}$ 的 $m{n}$ 阶实对称矩阵, $m{r(A)} = m{r}$,则 $|m{I} + m{A} + m{A^2} + m{\Lambda} + m{A^k}| =$ ______(本小题3分)(题目ID:39973)

15、已知
$$A=\begin{pmatrix} -4 & -10 & 0 \\ 1 & 3 & 0 \\ 3 & y & 1 \end{pmatrix}$$
相似与对角阵 $\begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$,则 $y=$ _______(本小题3分)(题目ID:39974)

- 二、计算题 (本大题共6小题,共50分)
 - 1、 计算 **n** 阶行列式

- 2、设 $\alpha=(a_1,a_2,\Lambda,a_n)^T$ 是单位向量,其中 $a_1\neq 0$,求矩阵 $A=\alpha\alpha^T$ 的全部特征值和特征向量。(本小题7分)(题目ID:39976)
- 3、设二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+2\alpha x_1x_2+2x_1x_3+2\beta x_2x_3$ 经过正交变换 X=PY 化为 $f=y_2^2+2y_3^2$,求常数 α,β 。 (本小题5分)(题目ID:39977)
- 4、已知齐次线性方程组 $\begin{cases} x_1+2x_2+x_3+2x_4=0\\ x_2+tx_3+tx_4=0\\ x_1+tx_2+x_4=0 \end{cases}$ 有两个线性无关的解向量,求 t 的值及线性方程组的通解。(本小题10分)(题目ID:39978)
- 5、设三阶方阵 \pmb{A},\pmb{B} 满足 $\pmb{A^2B-A-B}=\pmb{I},$ 若 $\pmb{A}=\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{2} & \mathbf{0} \\ -\mathbf{2} & \mathbf{0} & \mathbf{1} \end{pmatrix},$ 求 $|\pmb{B}|$ 和 \pmb{B} 。(本小题8分)(题目ID:39979)

$$6$$
、 $A=egin{pmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{pmatrix}$,(1)问 k 为何值时,存在可逆矩阵 P ,使得 $P^{-1}AP=\Lambda$ 并求出 $P,\Lambda,$ (2)若 $\beta=egin{pmatrix} a \\ 4 \\ 2 \end{pmatrix}$,且 $A^{2017}\beta=-eta$,求 a 。(本小题12分)(题目ID:39980)

- 三、证明题 (本大题共 1 小题 , 共 5 分)
 - 1、设 A 为 n 阶正定矩阵, $\alpha_1,\alpha_2,\Lambda,\alpha_m$ 为 n 维非零列向量,且对任意 $i\neq j$ 都有 $\alpha_i^TA\alpha_j=0, i,j=1,2,\Lambda,m$,证明 $\alpha_1,\alpha_2,\Lambda,\alpha_m$ 线性无关。(本小题5分)(题目ID:39981)