		 		-	_	_		
Reg. No.								

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth Semester

21CSE306J - QUANTUM COMPUTATION

(For the candidates admitted from the academic year 2022-2023 onwards)

Note:									
(i)		over	to hall invigilator at the end of 40th n	ninute		t shoul	d be	han	ded
(ii)		Part	t - B and Part - C should be answere	d in a	inswer booklet.				
Time	: 3	Hour	S			Max.	Ma	rks:	75
			$PART - A (20 \times 1 =$	= 20N	Jarks)	Marks	BL	со	PO
	Answer ALL Questions								
	1.	Wha	t is the radius of Bloch sphere?			1	1	1	1
		(A)		(B)					
		(C)	2	(D)	1				
	2.		ch one of the following represent $ Q\rangle = C_1 10\rangle + C_3 01\rangle$	s the (B)	unentangled state? $ Q\rangle = C_1 00\rangle + C_3 11\rangle$	1	2	1	2
			, , -, ,		$ Q\rangle = C_1 11\rangle + C_3 00\rangle$				
		(-)	[2] -1 /3 /		12/ 11 / 31 /				•
	3.		es used in Bell circuit are	(D)	11 137	1	1	1	2
		` '	H and X	· /	H and Y H and C NOT				
		(C)	H and CC NOT	(D)	II and C NOT				
	4.		tify the state of a bipartite system	1.		1	1	1	2
		(A)	$C_1 00 \rangle + C_2 11 \rangle$		$C_1 00 \rangle + C_2 01 \rangle + C_3 10 \rangle + C_4 11 \rangle$				
		(C)	$C_1 0 \rangle + C_2 1 \rangle$	(D)	$C_1 01 \rangle + C_2 10 \rangle$				
	5	Whi	ch rule of quantum circuit is cons	sidere	ed wrong?	1	1	2	1
	J.				Wires represents identity matrix				
		(C)	There are loops in circuit	(D)	There are quantum wires and classical wires				
	6	The	outer product from of 'Y' gate is			1	1	2	2
	•		$Y = -i 0\rangle\langle 1 + i 1\rangle\langle 0 $		$Y = -i 0\rangle\langle 1 -i 1\rangle\langle 0 $				
			$Y = -i 0\rangle\langle 1 -i 1\rangle\langle 0 $		$Y = -i \left 0 \right\rangle \left\langle 1 \right + i \left 1 \right\rangle \left\langle 1 \right $				
		` /	1 7 1 1 7 1		1 / (1 1 / (1		•		•
	7.	Iden	tify the θ value of $ 0\rangle$ state			1	2	2	2
		(A)	π	(B)	θ				
		(C)	$\frac{\pi}{2}$	(D)	$\frac{\pi}{4}$				
			2						
	8.	Whi basis		ms c	computational basis into diagonal	1	2	2	2

(B) Y gate

(D) H gate

17MF4-21CSE306J

(A) X gate

(C) Z gate

Page 1 of 3

9.	_		ompu	ters have over classical computer	1	1	3	2
		Cost Gates		Parallelism Wires				
10.	` ,	f(x) be a single qubit function	` /	f(0) = f(1), then $f(x)$ is known as	1	2	3	2
	(A)	function. Unique	(D)	Distributed				
	(C)	=	` '	Distributed Balanced				
11.				t can be done on N qubit system? N ² operations	1	1	3	1
		N(N+1) operations	(D)	N ² operations 2 ^N operations				
12.	Whe	en a state $ x\rangle y\rangle$ passes through	quant	um oracle f(x) the output is	1	3	3	2
		$\begin{vmatrix} x \rangle f(x) \rangle \\ x \rangle y \oplus f(x) \rangle$	(D)	$ x\rangle y\rangle f(x)\rangle$				
13	W/hi	ch of the following is a quantum			1	1	4	1
15.		RSA	(B)		•		·	•
	` '	BB64	` /	DES				
14	Amı	olitude amplification is a technique	ne nca	ed in	1	1	4	2
1 1.				Grover's algorithm				
		Deustch algorithm		QKD				
15.	The	state required for quantum telepo	ortatio	on is	1	2	4	2
		Mixed state		Pure state				
	(C)	EPR pair	(D)	Qutrit				
16.		ver's query complexity for search			1	2	4	2
		$O(N)$ $O(\sqrt{N})$. ,	$O(N^2)$ $O(1)$				
17.			` ,		1	1	,	•
1/.		main use of quantum annealers i Searching		es problems. Optimization	1	1	5	2
		Factorization		Phase estimation				
18	Prot	ein folding is an use case of	()		1	1	5	1
10.		Quantum finance	(B)	Quantum sensing	•	•	2	
	(C)	Quantum physics	` ,	Quantum chemistry				
19.	Acro	onym for QAOA is			1	1	5	1
~~.		Quantum Approximate Optimization Algorithm	(B)	Quantum Alternating Operator Algorithm				
	(C)	_	(D)	Quantum Approximate Operator				
		Optimization Analysis		Algorithm				
20.			ay a v	vital role in solving optimization	1	1	5	2
	relat	ed problems, more effectively?						
		Superposition and interference Entanglement and interference		Superposition and entanglement				

$PART - B (5 \times 8 = 40 Marks)$

Marks BLCO PO

Answer ALL Questions

21. a. Sketch the bell circuit and derive the maximally entangled states from the circuit.

- b. Let $A = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ are two vectors, derive the inner product $\langle A | B \rangle$ and outer product $|A\rangle\langle B|$ of A and B.
- 22. a. Sketch Toffoli gate and compute its density matrix from its outer product.

(OR)

- b. Prepare a Turning machine program to add 1 to a binary number and given step-by-step sequence to add 1 with 1011.
- 23. a. Explain quantum parallelism with example.

(OR)

- b. Illustrate Deutsch Jozsa algorithm to show whether the given function f(x) is constant or balanced.
- 24. a. Demonstrate the quantum supremacy in unstructured database search in comparison with the classical algorithm.

(OR)

- b. Sketch a quantum circuit for teleporting a qubit and explain how it helps Alice to transfer her state information to Bob.
- 25. a. Demonstrate the process of solving optimization problems through quantum annealing.

(OR)

b. Discuss about any two use cases in quantum finance.

Marks

 $PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question

- 26. Explain in detail about the geometry of quantum states $|0\rangle$, $|1\rangle$, $|+\rangle$, $|-\rangle$, $|i\rangle$ and $|-i\rangle$ with suitable diagrams.
- 15 27. Design a quantum half adder and quantum half subtractor circuits and derive their truth tables with explanation.