Tufts University Department of Mathematics Homework #3: Due on 10/6¹

All sections referred to Heil's Introduction to real analysis.

Fall, 2023

1. Reading assignment

Math 235

- 1.1 Sections 3.1–3.3
- 2. Problems: The problems with bolded numbers will be collected for grading for both completeness and correctness. However, credit will also be given for attempts that are fully justified.
 - 2.1 These questions are independent and will be graded.
 - 2.1.1 Let S be the set of irrationals in [0,1]. Prove that S has positive exterior Lebesgue measure but S contains no open intervals.
 - 2.1.2 Let $S = (0,1)^2$ be the open unit square in \mathbb{R}^2 . Prove that there does not exits a collection of disjoint open ball $\{B_j\}_{j\in J}$ whose union is S.
 - 2.1.3 Using only the definition, find the Lebesgue measure of $A = \{(x, y) : 0 \le x \le 1, 0 \le y \le x^2\}$.
 - 2.1.4 Let $A \subset [0,1]$. Prove that A is Lebesgue measurable if and only if $|A|_e + |[0,1] \setminus A|_e = 1$.
 - 2.2 **This problem will be graded.** Let \mathcal{M} be a nonempty collection of subsets of a set X. We say that \mathcal{M} is a monotone class if given sets $E_n, F_n \in \mathcal{M}$ such that $E_1 \subset E_2 \subset \ldots$ and $F_1 \supset F_2 \supset \ldots$, we have both $\bigcup_n E_n \in \mathcal{M}$ and $\bigcap_n F_n \in \mathcal{M}$. Prove the following statements.
 - 2.2.1 Every σ -algebra on X is a monotone class.
 - 2.2.2 If \mathcal{A} is a nonempty collection of subsets of X, then there exists a smallest monotone class \mathcal{M} that contains \mathcal{A} .
 - 2.2.3 If \mathcal{A} is a nonempty collection of subsets of X, if \mathcal{M} is the smallest monotone class that contains \mathcal{A} , and if Σ is the σ -algebra generated by \mathcal{A} , then $\mathcal{A} \subset \mathcal{M} \subset \Sigma$. This inclusion can be proper.
 - 2.3 3.1.14, 3.1.15, **3.1.16**, 3.1.17, **3.1.18**, **3.1.19**.

¹©Kasso Okoudjou, and Tufts University