Statistiques: Proportions, Évolutions

Seconde 9

1 Proportions et pourcentages

1.1 Populations

Définition 1. *En statistiques, on étudie des populations, c'est-à-dire des ensembles d'éléments appelés individus.*

Exemple. Les ensembles suivants sont des populations pouvant faire l'objet d'études statistiques.

- Le sport préféré des habitants de Villeneuve-Le-Roi;
- Les initiales des élèves d'un lycée;
- Le poids de pièces de métal fabriquées par une machine.

•

•

Définition 2. On appelle sous-population d'une population P une partie des individus de P.

Exemple. On donne des exemples de sous-population correspondant aux populations données ci-dessus :

- Les sports collectifs;
- Les initiales commençant par des voyelles;
- Les pièces pesant plus de 3.8 kg;

•

•

Définition 3. On conidère une population P de N individus et une sous-population S de P de n individus. Alors la **proportion** de S par rapport à P, notée p, est donné par

$$p = \frac{n}{N}$$

Remarque. Pour obtenir la proportion d'une sous-population, on divise le nombre d'individus **concernés** par le nombre **total** d'individus.

Exemple. On vide une trousse de tous ses stylos (il y en a 15), et on compte le nombre de stylos rouges (il y en a 3).

- a) Quelle est la population étudiée? Et la sous-population?
- b) Quelle est la proportion de stylos rouges dans cette trousse?

1.2 Pourcentages

Remarque. Si l'on souhaite avoir la proportion p sous la forme de **pourcentage**, il suffit de la multiplier par 100.

Exemple. On considère les 56 animaux d'un zoo : il y a 28 lions, 12 zèbres et 16 alligators.

- a) Quelle est la population étudiée?
- b) Quelles sont les différentes sous-populations à l'étude?
- c) Donner la proportion de lions (p_L) , de zèbres (p_Z) et d'alligators (p_A) en pourcentage.

L		

Remarque.

• Si l'on connait la nombre total d'individus N et la proportion p de la sous-population S, alors on obtient le nombre d'individus n de S en faisant

$$n = p \times N$$

- Autrement dit, prendre p% de N, c'est multiplier N par $\frac{p}{100}$
- ullet Si l'on connait n et p, alors le nombre total d'individu N est donné par

$$N = \frac{n}{p}$$

• Autrement dit, si n représente p% de la population totale, alors le nombre total d'individu est donné par

$$N = \frac{n}{p}100$$

Exemple.

- a) Dans le lycée A, il y a 650 élèves, dont 20% de secondes. Combien y a-t-il de secondes?
- b) Il y a 50 terminales dans le lycée B, et ils représentent 25% de l'ensemble des élèves. Combien y a-t-il d'élèves au total dans le lycée B?

1.3 Proportions de proportions

Exemple. Dans un stade de 1600 spectateurs, 40% sont venus supporter l'équipe bleue. Parmi les supporteurs de l'équipe bleue, seul 60% d'entre eux ont acheté une boisson. Combien de spectateurs sont à la fois supporteur de l'équipe bleue et ont acheté une boisson?

Proposition 1. Soit P une population, S_1 une sous-population de P, et S_2 une sous-population de S_1 . Alors, S_2 est une sous-population de P.

De plus, si on note p_1 la proportion de S_1 par rapport à P et p_2 la proportion de S_2 par rapport à S_1 , alors la proportion de S_2 par rapport à P est donnée par

$$p = p_1 \times p_2$$

Remarque. a) La situation peut-être schématisée ainsi :

 $Proportion = p_1$

 $Proportion = p_2$

 $Proportion = p_1 \times p_2$

b) Attention si les proportions sont données en pourcentages! Dans ce cas, si l'on a p_1 % et p_2 %, la proportion de proportions correspondante est

$$\frac{p_1}{100} \times \frac{p_2}{100}$$

Exemple. Dans un autre stade (dont on ignore le nombre de spectateurs), 40% sont venus supporter l'équipe bleue. Parmi les supporteurs de l'équipe bleue, seul 60% d'entre eux ont acheté une boisson. Quelle est la proportion de spectateurs étant à la fois supporteur de l'équipe bleue et ayant acheté une boisson?

2 Évolution

2.1 Variation absolue, variation relative

On considère une quantité qui varie entre V_d sa valeur de départ et V_f sa valeur finale.

Définition 4.

- La variation absolue de la quantité est donnée par $V_f V_d$.
- La variation relative de la quantité, aussi appelée taux d'évolution, est donnée par $\frac{V_f V_d}{V_d}$.

Remarque.

- La variation absolue possède la même unité que la quantité étudiée, tandis que la variation relative ne possède pas d'unité.
- Quand la variation absolue ou relative est positive, c'est que la quantité a augmenté. Quand la variation absolue ou relative est négative, c'est que la quantité a diminué.
- Le taux d'évolution peut être donné en pourcentage : il suffit de multiplier le taux d'évolution par 100.

Exemple. Je possédais $V_d = 50$ € ce mois-ci, et je possèderai $V_f = 75$ € le mois prochain. Donner la variation absolue et le taux d'évolution concernant ce changement de budget.

$V_f - V_d$		

Proposition 2. Soit $t = \frac{V_f - V_d}{V_d}$ le taux d'évolution. Alors $V_f = (1 + t)V_d$. Autrement dit, il faut multiplier V_d par (1 + t) pour faire évoluer cette quantité vers V_f .

Définition 5. Le nombre 1 + t, où t est le taux d'évolution, est appelé **Coefficient Multiplicateur**.

Exemple. La température de la classe est initialement $V_d=20\,^{\circ}\text{C}$. Elle augmente de 25%. Calculer le coefficient multiplicateur associé et donner la température finale.

2.2 Évolutions successives

Exemple. Le prix de l'électricité augmente de 5% tous les ans pendant deux ans. De quel pourcentage a augmenté le prix de l'électricité après deux ans?

Proposition 3. La succession de deux évolutions, respectivement de taux t_1 et t_2 , a pour coefficient multiplicateur :

$$CM_t = CM_1 \times CM_2 = (1 + t_1) \times (1 + t_2)$$

Alors, le taux d'évolution **global** associé à cette succession est donné par $t = CM_t - 1$.

Exemple. Le prix du gaz, quant à lui, a augmenté de $t_1=20\%$ la première année puis a diminué de $t_2=-40\%$ la deuxième année.

- a) Donner les coefficients multiplicateurs CM_1 et CM_2 associés à t_1 et à t_2 .
- b) En déduire le coefficient multiplicateur CM_t de la succession d'évolutions.
- c) En déduire le taux d'évolution global t.

2.3 Évolution réciproque

Exemple. Un article est soldé de 33% en 2024. Mais, en 2025, on souhaite augmenter son prix d'un certain pourcentage afin d'obtenir son prix initial. Quel est ce pourcentage?

Proposition 4. Soit un taux d'évolution t, décrivant l'évolution depuis une valeur V_d vers une valeur V_f . Son coefficient multiplicateur est noté CM.

Alors, pour calculer le taux de l'évolution de V_f vers V_d , on calcule son coefficient multiplicateur

$$CM_r = \frac{1}{CM}$$

Alors le taux d'évolution réciproque est donné par

$$t_r = CM_r - 1$$

Exemple. Un autre article est augmenté de t = +60%. On se demande par quel pourcentage solder cet article pour qu'il retrouve son prix d'origine.

- a) Calculer le coefficient multiplicateur CM associé à ce taux d'évolution.
- b) En déduire le coefficient multiplicateur réciproque CM_r .
- c) En déduire le taux d'évolution réciproque t_r .