Chapitre : Etude de fonctions

I. Sens de variations et extremums

1) Sens de variations

Définition 1

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

Dire que f est strictement _____

 $\mathsf{sur}\,I\,\mathsf{signifie}\,\mathsf{que}\,f\,\underline{\hspace{1cm}}\mathsf{l'ordre},$

c'est-à-dire :

$\underline{ {\bf D\'efinition~2:}} \ {\bf Soit} \ f \ \ {\bf une~fonction~d\'efinie~sur~un~intervalle} \ I \ \ {\bf de~1} \ \\$	$\mathbb{R}.$
Dire que f est	$_{_}$ sur I signifie que :
Pour tous nombres a et b de I, si $a < b$, alors	
(inégalité large).	

Définition 3 :

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

Dire que f est strictement

 $\operatorname{sur} I \operatorname{signifie} \operatorname{que} f \underline{\hspace{1cm}}$

l'ordre, c'est-à-dire :

Pour tous nombres a et b de I, si a < b, alors _____ (inégalité stricte).

Définition 4 : Soit f	une fonction	définie sur	un intervalle	I de $\mathbb R$

Dire que f est ______ sur I signifie que :

Pour tous nombres a et b de I, si a < b, alors _____

(inégalité large).

$\frac{\text{Définition 5:}}{\text{Soit } f \text{ une fonction définie sur un intervalle } I \text{ de } \mathbb{R}.$	
Dire que f est sur I signifie que :	a b 0 I
Pour tous nombres a et b de I , il existe un réel k	
tel que :	

<u>Définition 6</u>: Soit f une fonction définie sur un intervalle I de \mathbb{R} . Dire que f est monotone sur I signifie que f est croissante ou décroissante sur I.

<u>Définition 7</u>: Etudier les variations d'une fonction f, c'est déterminer les intervalles sur lesquels la fonction est monotone, c'est-à-dire croissante ou décroissante.

Application 1:

Soit *f* la fonction définie par la courbe ci-contre :

1. Donner l'ensemble de définition de la fonction *f*

2. Donner le tableau de variations de la fonction f	

Exercice 1 : Passer de la courbe au tableau de variation et au tableau de signes

On donne, dans chacun des cas suivants numérotés de $\mathbf{1}$ à $\mathbf{9}$, la représentation graphique d'une fonction f.

- 1. Préciser l'ensemble de définition
- 2. Dresser le tableau de variation de la fonction f.
- 3. Préciser les extremums de la fonction f sur son ensemble de définition.
- 4. Dresser le tableau de signes de la fonction f.

Exercice 2: Utiliser un tableau de variation

On donne, dans chacun des cas suivants numérotés de $\boxed{1}$ à $\boxed{6}$, le tableau de variation d'une fonction f.

- 1. Préciser l'ensemble de définition
- 2. Tracer une courbe susceptible de représenter la fonction f à partir de son tableau de variation.
- 3. Préciser les extremums de la fonction f sur son ensemble de définition. En guelles valeurs sont-ils atteints?

Exercice 3 : Attribuer à chaque courbe son tableau de variations

Attribuer à chaque courbe son tableau de variations : x -5

2) Extremum

<u>Définition 8 :</u> Soit f une fonction	définie sur un intervalle I de $\mathbb R$ et a un nombre réel de I .
Dire que f admet un signifie que :	atteint en $x = a \operatorname{sur} I$
Pour tout nombre réel $x \in I$:	·

Définition 9 : Soit f une fonction définie sur un intervalle I de \mathbb{R} et b un nombre réel de I. Dire que f admet un ______ atteint en x=b sur Isignifie que : Pour tout nombre réel $x \in I$:

Définition 10 : Soit f une fonction définie sur un intervalle I de \mathbb{R} . Dire que f admet un extremum sur I signifie que f admet un minimum ou un maximum sur I.

Application 1 (suite):

3. Quel est le maximum de la fonction f sur $[-5;3]$. En quelle valeur est-il atteint	?

4. Quel est le minimum de la fonction f sur $[-5; 3]$. En quelle valeur est-il atteint?

3) Tableaux de signes

Lors de l'étude d'une fonction, il est souvent utile de déterminer le signe de la fonction en tout point.

<u>Définition 11</u>: Soit f une fonction définie sur un intervalle I de \mathbb{R} .

• On dit que f est **positive** sur I lorsque pour tout x de I:

____·

• On dit que f est **négative** sur I lorsque pour tout x de I:

Cette étude peut être résumée dans un tableau de signes, c'est un tableau de deux lignes :

Dans la première ligne, on indique les valeurs remarquables : les extrémités de l'ensemble de définition et les valeurs qui annulent la fonction.

Application 1 (suite):

5. Donner le tableau de signe de la fonction f.

Exercice 4: Comparaison

On donne le tableau de variation d'une fonction f.

- 1. Déterminer l'ensemble de définition de f.
- 2. Décrire les variations de f.
- 3. Quelle est le maximum de la fonction f sur [0; 6]?
- 4. En justifiant ces réponses, indiquer dans chaque cas si l'affirmation est vraie ou fausse ou si le tableau ne permet pas de conclure.
- a. f(1) < f(3)

f. f(1) = 0

b. f(-2) > f(-1)

g. f(2) > 3

c. f(-3) < 4

h. f(-3,5) = f(2)

- d. f(0,1) < 0
- e. $f(x) \ge -1 \text{ sur } [-4; 6]$

i. Le minimum de f sur [-4; 6] est -1

Exercice 5 : Comparaison

On donne le tableau de variation d'une fonction f.

- 1. Déterminer l'ensemble de définition de f.
- 2. Décrire les variations de f.
- 3. Quelle est le minimum de la fonction f sur [2; 5]?
- 4. En justifiant ces réponses, indiquer dans chaque cas si l'affirmation est vraie ou fausse ou si le tableau ne permet pas de conclure.
- a. f(1) < f(3)

f. f(1) = -4.5

b. f(1) < f(0)

g. f(1) < f(5)

c. f(3) < 0

h. f(2) = f(5)

d. f(3) = -3

i. Le minimum de f sur [0;5] est -2

e. $f(x) \le -1 \, \text{sur} \, [0; 5]$

Exercice 6 : Images et antécédents

On donne le tableau de variation d'une fonction f.

- 1. Déterminer l'ensemble de définition de f.
- 2. Quelles sont les images par f de -1, 3 et 6?
- 3. Compléter le plus précisément possible :
- a. $\dots \leq f(2) \leq \dots$
- b. $\dots \leq f(4) \leq \dots$
- 4. Donner un antécédent de -1.

En possède-t-il d'autre(s)?

5. Combien 0 a-t-il d'antécédent ?

Exercice 7: Tracer une courbe

On donne le tableau de variation et le tableau de signe de la fonction f.

Proposer une représentation graphique de cette fonction.

II. Parité

Définition 12:

Un ensemble D est symétrique par rapport à zéro $\Leftrightarrow \forall x \in D : \neg x \in D$.

Remarque: Le symbole \forall signifie « quel que soit ». La notation $\forall x \in D$ se lit : « quel que soit x appartenant à D », ce qui signifie « pour tout élément x de l'ensemble D ».

Application 2 : Entourer en rouge les ensembles qui sont symétriques par rapport à zéro :

$$[-10; 10]$$
 $\left[-5; +\infty\right[\left[-2; 2\left[\right]\right] - \infty; -1\left[\cup \right] 1; +\infty\left[\left[\right] \mathbb{R} \right] \mathbb{R}_{+}$

<u>Définition 13</u>: Soit f une fonction définie sur D

Une fonction est si et seulement si :

- Son ensemble de définition D est symétrique par rapport à 0.
- Pour tout $x \in D$,

<u>Propriété 2 :</u> La courbe d'une fonction paire est symétrique par rapport

<u>Définition 14</u>: Soit f une fonction définie sur D

Une fonction est ______ si et seulement si :

- Son ensemble de définition D est symétrique par rapport à 0.
- Pour tout $x \in D$,

<u>Propriété 3 :</u> La courbe d'une fonction impaire est symétrique par rapport

Application 3: Etudier la parité de la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^2-1}{x^2+1}$

Exercice 8:

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = 2x^2 + 3$$
.

- 1. Démontrer que cette fonction est paire.
- 2. Que pouvez-vous en déduire pour la représentation graphique de f?
- 3. Calculer, sans calculatrice, les images de 0, 5 et 10.
- 4. Quelles autres images pouvez-vous donner, sans aucun calcul ?

Exercice 9:

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = -x^3 + 2x.$$

- 1. Démontrer que cette fonction est impaire.
- 2. Que pouvez-vous en déduire pour la représentation graphique de *f* ?
- 3. VRAI ou FAUX ? Justifier...
- a) Le point A(2; -4) appartient à la courbe de f.
- b) Le point B(-2; -4) appartient à la courbe de f.
- c) Le point C(-2; 4) appartient à la courbe de f.

III. Problème

Exercice 10 : Ne pas confondre recette et bénéfice

Une entreprise fabrique et commercialise un produit. Chaque semaine, elle limite sa production à 21kg.

I) Etude de la recette

L'entreprise vend ce produit 84€/kg.

- a. Quelle est sa recette si elle en vend 5kg ? 10kg ?
- b. Pour x kg vendus, on note la recette R(x). Déterminer l'expression de R(x) en fonction de x.
- c. Dans le repère ci-contre, identifier la courbe représentative de la fonction R.

II) Etude du coût de production

Pour x kg de produit fabriqué, le coût de fabrication en euros est donné par :

$$C(x) = \frac{1}{3}x^3 - 10x^2 + 120x + 72$$

- a. Combien coûte la fabrication de 6kg de produit ? 10kg ?
- b. Donner le tableau de valeurs de la fonction C sur [0; 21] avec un pas de 3.
- c. On admet que la fonction $\mathcal C$ est croissante sur $[0\ ; 21]$. Identifier la courbe représentative de la fonction $\mathcal C$.
- d. Résoudre graphiquement l'équation R(x) = C(x)
- e. Résoudre graphiquement l'inéquation R(x) > C(x)
- f. Interpréter ces deux derniers résultats.

III) Etude du bénéfice

Pour x kg de produit fabriqué et vendu, le bénéfice est donné par :

$$B(x) = R(x) - C(x)$$

- a. Montrez que le bénéfice est donné par : $B(x) = -\frac{1}{3}x^3 + 10x^2 36x 72$
- b. Donner le tableau de valeurs de la fonction $B \sup [0; 21]$ avec un pas de 3.
- c. On admet que la fonction ${\it B}$ est décroissante sur $[0\,;21]$. Identifier la courbe représentative de la fonction B.
- d. Résoudre graphiquement l'équation B(x) = 0. Est-ce cohérent avec votre réponse à la question II (d) ?
- e. Résoudre graphiquement l'équation B(x) > 0. Est-ce cohérent avec votre réponse à la question II (f) ?
- f. Déterminer graphiquement la quantité pour laquelle le bénéfice est maximal. Quelle est alors la valeur de ce bénéfice ? Comment aurait été possible d'établir ce résultat grâce aux courbes représentatives des fonctions *R* et *C* ?