

Techniki kompilacji

Informatyka Stosowana III rok akademicki 2018/2019

Tytuł projektu: GUI do SPASS-a oraz translacja z LTL-a

Prowadzący:

• dr inż. Radosław Klimek

Autorzy:

- Kamila Małochleb
- Miłosz Lazarowicz
- Łukasz Zakrzewski
- Natalia Kocoł

1. Interpretacja GUI	3
2. Wydajność obliczeniowa	6
3. Glosariusz	9

1. Interpretacja GUI

.txt SPASS file - Przycisk za pomocą którego wybieramy plik textowy z naszego komputera do rozwiązania przez spassa.

Spass.exe - Przycisk za pomocą którego należy dodać plik z aplikacją spass.

Solve - Przycisk służący do rozwiązania problemu.

Translate and solve - "Tłumaczy" zdania z języka LTL napisane w polach Axioms i Conjectures i przekłada to na First Order Logic, i podaje wynik jako Spass output.

Generate and solve - Generuje zdania w języku LTL i przekłada to na First Order Logic, i podaje wynik jako Spass output.

Number of generation - Podajemy liczbę formuł którą chcemy wygenerować.

SPASS input - Miejsce na wpisanie danych wejściowych Spassa.

Axioms written in LTL - Pole tekstowe na aksjomaty napisane w LTL.

Conjectures written in LTL - Przypuszczenie napisane w LTL

SPASS output - Wyświetla rozwiązanie jako Spass output.

2. Wydajność obliczeniowa

Ze względu na ograniczoną dostępną nam moc obliczeniową musieliśmy ograniczyć liczbę generacji do 5000.

Liczba generacji	10	100	500	1000	5000
Czas do rozwiązania problemu	0.01s	0.06s	0.68s	2.40s	56.85s
Zajęta pamięć	0.6MBytes	0.9MBytes	2.5MBytes	4.5MBytes	20MBytes
llość użytych klauzul	17	21	21	21	21
Formuły użyte do udowodnienia	conjecture0, conjeture9	conjecture72, conjecture0	conjecture20, conjecture0	conjecture74, conjecture0	conjecture69, conjecture1
Czy problem udało się rozwiązać	Dowód znaleziony	Dowód znaleziony	Dowód znaleziony	Dowód znaleziony	Dowód znaleziony

Okno programu przy 10 generacjach:

Okno programu przy 100 generacjach:

Okno programu przy 500 generacjach:

Okno programu przy 1000 generacjach:

Okno programu przy 5000 generacjach:

3. Glosariusz

Ze względu na ułatwienie wprowadzania danych wszystkie formuły zostały zapisane bez użycia nawiasów, dodatkowo zastosowaliśmy następujące symbole:

- kwadrat 'F',
- diament 'G',
- implikacja '>',
- koniunkcja '+',
- alternatywa '*',
- negacja '!'.