Unidade I: Introdução - Noções de Complexidade

Slides do prof. Daniel Capanema

Agenda

• Exercícios iniciais

• Contagem de operações

Noção sobre as notações O, Ωe Θ

Agenda

Exercícios iniciais

• Contagem de operações

Noção sobre as notações O, Ωe Θ

Exercício (1)

Resolva as equações abaixo:

a)
$$2^0 =$$

d)
$$2^3 =$$

g)
$$2^6 =$$

$$j) 2^9 =$$

b)
$$2^1 =$$

e)
$$2^4 =$$

h)
$$2^7 =$$

$$k) 2^{10} =$$

c)
$$2^2 =$$

f)
$$2^5 =$$

i)
$$2^8 =$$

I)
$$2^{11} =$$

Exercício (2)

Resolva as equações abaixo:

a)
$$lg(2048) =$$

d)
$$lg(256) =$$

$$g) lg(32) =$$

$$j) Ig(4) =$$

b)
$$lg(1024) =$$

e)
$$lg(128) =$$

h)
$$lg(16) =$$

$$k) lg(2) =$$

c)
$$lg(512) =$$

$$f) lg(64) =$$

i)
$$lg(8) =$$

I)
$$lg(1) =$$

Exercício (3)

Resolva as equações abaixo:

a)
$$[4,01]$$
=

d)
$$|4,99|=$$

g)
$$lg(17) =$$

$$j) Ig(15) =$$

b)
$$[4,01]=$$

e)
$$||g(16)|| =$$

h)
$$[g(17)] =$$

$$k) |g(15)| =$$

c)
$$4,99$$
=

f)
$$||g(16)||=$$

i)
$$||g(17)||=$$

Exercício (4)

Plote um gráfico com todas as funções abaixo:

a)
$$f(n) = n$$

b)
$$f(n) = n^2$$

c)
$$f(n) = n^3$$

d)
$$f(n) = sqrt(n)$$

e)
$$f(n) = lg(n) = log_2(n)$$
 j) $f(n) = n * lg(n)$

f)
$$f(n) = 3n^2 + 5n - 3$$

g)
$$f(n) = -3n^2 + 5n - 3$$

h)
$$f(n) = |-n^2|$$

i)
$$f(n) = 5n^4 + 2n^2$$

Agenda

• Exercícios iniciais

Contagem de operações

Noção sobre as notações O, Ωe Θ

```
...
a--;
a -= 3;
a = a - 2;
```



```
...
a--;
a -= 3;
a = a - 2; //três subtrações
```

```
if (a + 5 < b + 3){
    i++;
    ++b;
    a += 3;
} else {
    j++;
}</pre>
```


Cenários Possíveis

 Melhor caso: menor "tempo de execução" para todas entradas possíveis de tamanho n

- · Pior caso: maior "tempo de execução" para todas entradas possíveis
- •Caso médio (ou esperado): média dos tempos de execução para todas as entradas possíveis (abordado em grafos e PAA)

Contagem de Operações com Condicional

Será o custo da condição mais ou o da lista de verdadeira ou o da falsa

```
if ( condição() ){
   lista Verdadeiro();
} else {
   listaFalso();
 Melhor caso: condição() + mínimo(listaVerdadeiro(), listaFalso())
 Pior caso: condição() + máximo(listaVerdadeiro(), listaFalso())
```

```
if (a + 5 < b + 3 || c + 1 < d + 3){
    i++;
    ++b;
    a += 3;
} else {
    j++;
}</pre>
```

Calcule o número de adições que o código abaixo realiza:


```
if (a + 5 < b + 3 || c + 1 < d + 3){
    i++;
    ++b;
    a += 3;
} else {
    j++;
}</pre>
```

Resposta: O número máximo de adições acontece quando a primeira condição do if é falsa e a segunda, verdadeira. Se a primeira condição for verdadeira, o Java nem executa a segunda condição (ver AND_OR.java)

Α	В	OR
F	X	X
Т	X	Т

Α	В	AND
F	Х	F
Т	X	X

•Quando tivermos uma estrutura de repetição em que o contador começa com zero, repete enquanto menor que n e é incrementado em uma unidade, faremos n iterações

```
for (int i = 0; i < n; i++){
    lista();
}</pre>
```

 Será o custo da condição mais o número de iterações multiplicado pela soma dos custos da condição e da lista a ser repetida

```
while ( condição() ){
    lista();
}
Custo: condição() + n x [lista() + condição()]

    onde n é o número de vezes que o laço será repetido
```

•Será o número *n* de iterações multiplicado pela soma dos custos da lista de comandos e da condição

```
do {
    lista();
} while ( condição() );

Custo: n x [lista() + condição()]

onde n é o número de vezes que o laço será repetido
```

Calcule o número de subtrações que o código abaixo realiza:

Sua resposta deve ser em função de n

Calcule o número de subtrações que o código abaixo realiza:

Sua resposta deve ser em função de n

```
int i = 0, b = 10;
while (i < 3){
    i++;
    b--;
}</pre>
```


Calcule o número de subtrações que o código abaixo realiza:

Se n = 6, temos subtrações quando i vale 3, 4, 5 (6 - 3 = 3, vezes)

$$n = 7$$

$$3, 4, 5, 6 (7 - 3 = 4 \text{ vezes})$$

$$n = 10$$

$$3, 4, 5, 6, 7, 8, 9 (10-3=7 \text{ vezes})$$

•Quando tivermos uma estrutura de repetição em que o contador começa com **a**, repete enquanto menor que n e é incrementado em uma unidade, faremos (n - a) iterações

```
for (int i = a; i < n; i++){
    lista();
}</pre>
```

Exercício (5)

```
int i = 10;
while (i >= 7){
    i--;
}
```

Exercício (6)

Exercício (7)

```
for (int i = 0; i < 5; i++){
    if (i % 2 == 0){
        a--;
        b--;
    } else {
        c--;
    }
```



```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

· Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

Solução fácil: 3 x 2 x 1

· Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

Solução fácil: 3 x 2 x 1

Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

Solução fácil: 3 x 2 x 1

Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

Solução fácil: 3 x 2 x 1

· Calcule o número de subtrações que o código abaixo realiza:


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0		0

Solução difícil


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	0	

i	j	sub
0	0	


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
    }
}</pre>
```

i	j	sub
0	0	1


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++)}{
        a--;
    }
}</pre>
```

i	j	sub
0	1	1


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	1	1


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
    }
}</pre>
```

i	j	sub
0	1	2


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++)}{
        a--;
    }
}</pre>
```

i	j	sub
0	2	2


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
0	2	2


```
int a = 10;

for (int i = 0; i < 3 i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1		2

i	j	sub
1		2


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	0	2


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	0	2


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
    }
}</pre>
```

i	j	sub
1	0	3


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++)}{
        a--;
    }
}</pre>
```

i	j	sub
1	1	3


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	1	3


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
    }
}</pre>
```

i	j	sub
1	1	4


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++)}{
        a--;
    }
}</pre>
```

i	j	sub
1	2	4


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
1	2	4


```
int a = 10;

for (int i = 0; i < 3 i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2		4

i	j	sub
2		4


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	0	4


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	0	4


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
    }
}</pre>
```

i	j	sub
2	0	5

i	j	sub
2	1	5


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	1	5


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
    }
}</pre>
```

i	j	sub
2	1	6


```
int a = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	2	6


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
2	2	6


```
int a = 10;

for (int i = 0; i < 3 i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
3		6


```
int a = 10;
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
    }
}</pre>
```

i	j	sub
3		6

```
int a = 10, b = 10, c = 10, d = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
        b--;
        c--;
        d--;
    }
}</pre>
```



```
int a = 10, b = 10, c = 10, d = 10;

for (int i = 0; i < 3; i++){
    for (int j = 0; j < 2; j++){
        a--;
        b--;
        c--;
        d--;
    }
} // (3 x 2 x 4)</pre>
```

Exercício (8)

```
for (int i = 0; i < n; i++){
    for (int j = 0; j < n; j++){
        a--;
    }
}
```

Exercício (10)

```
for (int i = 0; i < n; i++)
for (int j = 0; j < n - 3; j++)
a *= 2;
```

Exercício (11)

```
for (int i = n - 7; i >= 1; i--)

for (int j = 0; j < n; j++)

a *= 2;
```

Exercício (12)

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Observação

•Sempre que o tamanho de um problema for, sistematicamente, dividido por dois, temos um custo logarítmico

Exercício (14)

```
for (int i = n - 7; i >= 1; i--)
for (int j = n - 7; j >= 1; j--)
a *= 2;
```

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Calcule o número de multiplicações que o código abaixo realiza:

Quando n é uma potência de 2, realizamos lg(n) + 1 multiplicações

Se n = 8, efetuamos a multiplicação quando i vale 8, 4, 2, 1

Calcule o número de multiplicações que o código abaixo realiza:

Para um valor qualquer de n, temos [lg(n)]+ 1 multiplicações

Contagem de Operações com Repetição

•Quando tivermos uma estrutura de repetição em que o escopo de busca é, sistematicamente, dividido pela metade, temos um custo logarítmico

```
for (int i = n; i > 0; i /= 2){
    lista();
}
```

Observe que isso apareceu duas vezes e tem 99.9% de chance de cair na prova (leia em todas as provas)

Exercício (15)

```
for (int i = n + 1; i > 0; i /= 2)
a *= 2;
```

Exercício (16)

```
for (int i = n; i > 1; i /= 2)
a *= 2;
```

Exercício (17)

```
for (int i = 1; i < n; i *= 2)
a *= 2;
```

Exercício (18)

```
for (int i = 1; i <= n; i*= 2)
a *= 2;
```

- •Faça um método que receba um número inteiro n e efetue o número de subtrações pedido em:
 - a) $3n + 2n^2$
 - b) $5n + 4n^3$
 - c) lg(n) + n
 - d) $2n^3 + 5$
 - e) $9n^4 + 5n^2 + n/2$
 - f) Ig(n) + 5 Ig(n)

 Faça um método que receba um número inteiro n e efetue o número de subtrações pedido em:

- a) $3n + 2n^2$
- b) $5n + 4n^3$
- c) lg(n) + n
- d) $2n^3 + 5$
- e) $9n^4 + 5n^2 + n/2$
- f) lg(n) + 5 lg(n)

```
i = 0;
while (i < n)
     i++;
     a--; b--; c--;
for (i = 0; i < n; i++){
     for (j = 0; j < n; j++){
          a--: b--:
```

• Encontre o menor valor em um array de inteiros

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

2º) Quantas vezes ela será executada?

• Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

• Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

1º) Qual é a operação relevante?

R: Comparação entre elementos do array

2º) Quantas vezes ela será executada?

R: Se tivermos n elementos: T(n) = n - 1

• Encontre o menor valor em um array de inteiros


```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

 3°) O nosso T(n) = n – 1 é para qual dos três casos?

Qual é o número total de comparações (i < n) no código abaixo?

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

Qual é o número total de comparações (i < n) no código abaixo?

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```



```
RESP) T(n) = n - 1 + 1 = n
```

· Qual é o número total de comparações no código abaixo?

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```

· Qual é o número total de comparações no código abaixo?

```
int min = array[0];

for (int i = 1; i < n; i++){
    if (min > array[i]){
        min = array[i];
    }
}
```


RESP) O código abaixo tem duas comparações: $\underline{i < n}$ e $\underline{min > array[i]}$ \underline{n} $\underline{(n-1)}$

$$T(n) = n + (n-1)$$

= 2n - 1

Agenda

• Exercícios iniciais

• Contagem de operações

Noção sobre as notações O, Ω e Θ

"Mão na roda" e podem ser lidas como aproximadamente

Abordadas mais à frente da disciplina (Unidade III)

• Neste ponto, apresentamos "somente" noções sobre as notações

•A partir deste ponto, utilizaremos as notações O, Ω e Θ para identificar a complexidade (número de operações) de um algoritmo, assim:

- \circ Um algoritmo que realiza 1 operação é O(1), $\Omega(1)$ e $\Theta(1)$
- \circ Um algoritmo que realiza **n** operações é \emph{O} (n), Ω (n) e Θ (n)
- Um algoritmo que realiza n² operações é O(n²), Ω(n²) e Θ(n²)
- \circ Um algoritmo que realiza **Ig(n)** operações é O(Ig(n)), $\Omega(Ig(n))$ e O(Ig(n))

- Nas notações, ignoramos as constantes:
 - Um algoritmo que realiza 2, 3 ou 5 operações é O(1), Ω(1) e Θ(1)
 - \circ Um algoritmo que realiza 2n, 3n ou 5n operações é O(n), $\Omega(n)$ e O(n)
 - \circ Um algoritmo que realiza $2n^2$, $3n^2$ ou $5n^2$ operações é $\emph{O}(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$
 - Um algoritmo que realiza 2lg(n), 3lg(n) ou 5lg(n) operações é O(lg(n)), Ω
 (lg(n)) e Θ(lg(n))

- Nas notações, ignoramos termos com menor crescimento:
 - Um algoritmo que realiza $3n + 2n^2$ operações é $O(n^2)$, $\Omega(n^2) \in O(n^2)$
 - Um algoritmo que realiza $5n + 4n^3$ operações é $O(n^3)$, $\Omega(n^3)$ e $O(n^3)$
 - \circ Um algoritmo que realiza lg(n) + n operações é O(n), $\Omega(n) \in O(n)$
 - Um algoritmo que realiza $2n^3 + 5$ operações é $O(n^3)$, $\Omega(n^3)$ e $O(n^3)$
 - Um algoritmo que realiza $9n^4 + 5n^2 + n/2$ operações é $O(n^4)$, $\Omega(n^4)$ e $O(n^4)$
 - Um algoritmo que realiza lg(n) + 5 lg(n) operações é O(lg(n)), Ω(lg(n)) e Θ
 (lg(n))

- Nas notações, ignoramos tetos e pisos:
 - \circ Um algoritmo que realiza $\begin{bmatrix} n^2 \end{bmatrix}$ ou $\begin{bmatrix} n^2 \end{bmatrix}$ operações é $\emph{O}(n^2)$, $\Omega(n^2)$ e $\Theta(n^2)$
 - o Um algoritmo que realiza $\begin{bmatrix} n \end{bmatrix}$ ou $\begin{bmatrix} n \end{bmatrix}$ operações é O(n), $\Omega(n)$ e O(n)
 - Um algoritmo que realiza [n³] ou |n³| operações é O(n³), Ω(n³) e Θ(n³)
 - ∪m algoritmo que realiza n

 n

 ou n

 ou n

 operações é O(n

 operações
 - Um algoritmo que realiza [Ig(n)] ou [Ig(n)] operações é O(Ig(n)), Ω(Ig(n)) e Θ
 (Ig(n))

Trabalho Teórico 5

• Pergunta 1: Qual é a diferença entre as notações O, Ω e Θ ? Pesquise!!!

•Pergunta 2: Qual é a notação O, Ω e Θ para todos os exercícios feitos nesta Unidade 1b?