

PRESENTED BY

cloudera

strataconf.com #StrataHadoop https://github.com/jayantshekhar/strata-2016

Building machinelearning apps with Spark

MLlib, ML Pipelines, and GraphX

Jayant / Amandeep / Krishna / Vartika

Agenda

Overview	10 min (9:00-9:10)	
Lab Environment Setup	15 min (9:10-9:25)	IntelliJ/Scala IDE for Eclipse/Zeppelin
MLIib	90 min (9:25-10:55)	Overview, Linear Regression, Random Forest, Custering, Recommendations, FPG, Text Analytics
Break	10 min (10:55-11:05)	
GraphX	50 min (11:05-11:55)	Overview, Exploring Structures, Community-Affiliation, Algorithms, The AlphaGo Community, Wikepedia Page Rank
ML Pipelines	15 min (11:55-12:10)	CrossValidation
Streaming MLIib	10 min (12:10-12:20)	Streaming K-Means
Closing	10 min (12:20-12:30)	

Strata+Hadoop

Download stuff if you haven't yet

http://conferences.oreilly.com/strata/hadoop-big-data-ca/public/schedule/detail/

46943

https://github.com/jayantshekhar/strata-2016

Your speakers

- Krishna Shankar
- Jayant Shekar
- Vartika Singh
- Supporting cast: Amandeep Khurana

Why?

- We are on the edge of change comparable to the rise of human life on Earth. –
 Vernor Vinge (Prof, SDSU)
- Al is fast becoming a reality
 - ANI (Narrow)
 - AGI (General)
 - ASI (Super Intelligence)
- We are currently in ANI stage
- To go to AGI and ASI
 - More compute power
 - Better algorithms and systems

Reference: http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html #StrataHadoop
Strata+Hadoop

Machine Learning & Big Data

- Better systems => ML @ scale
 - Bigger training set => better models => better accuracy
 - Can't be cost prohibitive
- Spark ecosystem
 - MLlib
 - GraphX
- Others out there
 - H20
 - Dato
 - Graphlab

What's a ML app?

- Collect data
- Clean data make it usable
- Build model
- Train model
- Test model
- Use model
 - Apply to data at rest (historical)
 - Apply to making decisions as data comes in (current / future)

MLIIb

MLIIO

Overview	05 min	
Linear Regression	15 min	Predict House Prices
Random Forest	10 min	Titanic Predict Survival
Clustering	20 min	Topic Modeling on newsgroup data with LDA
Recommendations	10 min	Movie Lens Ratings and Recommendations
FPG	05 min	Shopping Cart Analysis
Text Analytics	25 min	Mood Of the Nation/Mood of the Presidential debates

Strata+Hadoop

- Data Types
- Basic Statistics
- Feature Extraction & Transformation
- Summary Statistics
- Correlations
- Stratified Sampling
- Hypothesis Testing
- Random Data Generation

- Local Vector
- Labeled Point
- Local Matrix
- Distributed Matric

- TF-IDF
- Word2Vec
- Tokenizer
- OneHotEncoder
- n-gram

- Classification & Regression
 - Linear Models (SVMs, Linear
 Regression, Logistic Regression)
 - Naïve Bayes
 - Decision Tree
 - Ensembles
 - Random Forests
 - Gradient Boosted Trees

- Collaborative Filtering
 - ALS
- Frequent Pattern Mining
- Clustering
 - K-Means
- Dimensionality Reduction
 - SVD
 - PCA
- PMML model export

Linear Methods

Linear Regression

Linear Regression

Regularizer

 Defines the trade off between minimizing the loss function and minimizing the model complexity

Loss Function

- Measures the error of the model on the training data.
- Squared Loss, which is a convex function

Housing Prices Prediction

Removed the header row when reading Reformatted the data to have it in format: Housing Price, <feature attribute values, space separated>

Data

- 13 continuos attributes, 1 binary valued attribute

MEDV ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

24.00,18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 21.60,0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 34.70,0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 33.40,0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94

- Target Variable
 - MEDV
- Predictor Variables
 - ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

More about Data

Attribute Information

- CRIM per capita crime rate by town
- ZN proprotion of residential land zoned for lots over 25,000 sq.ft
- INDUS prop of non-retail business over town
- CHAS charles river dummy variable
- NOX nitric oxide concentrates
- RM average number of rooms per dwelling
- DIS weighted distance to five Boston employment centers
- RAD index of accessibility to highways

....

....

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names

Housing Prices Prediction - Code

Read the data as a text file and convert it to an RDD of LabeledPoints Data types

```
val parsedData = data.map { line =>
    val parts = line.split(',')
    val label = parts(0).toDouble
    val features = parts(1).split(' ').map(_.toDouble)
    LabeledPoint(label, Vectors.dense(features))
}.cache()
```

Normalize the data across feature vectors using StandardScaler

```
Import org.apache.spark.mllib.feature.StandardScaler
val scaler = new StandardScaler(withMean = true, withStd = true).fit(parsedData.map(x => x.features))
```


Housing Prices Prediction - Code

- Tuning
 - Set Intercept to be True

val algorithm = new LinearRegressionWithSGD()
algorithm.setIntercept(true)

- Play with Number of iterations and step size

algorithm.optimizer.setNumIterations(numIterations).setStepSize(stepSize)

Train the model and see the result

```
val model = algorithm.run(scaledData)
scaledData.take(5).foreach{ x=> println(s"Predicted: ${model.predict(x.features)}, Label: ${x.label}")}
```

Titanic Survival Prediction

Random Forest

Data

Passengerld, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked

1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S

2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C

3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S

- Target Variable
 - Survived
- Predictor Variables
 - Pclass, Sex, Age, Fare

Titanic DataSet

VARIABLE DESCRIPTIONS:

survival Survival

(0 = No; 1 = Yes)

pclass Passenger Class

(1 = 1st; 2 = 2nd; 3 = 3rd)

name Name

sex Sex

age Age

sibsp Number of Siblings/Spouses Aboard

parch Number of Parents/Children Aboard

ticket Ticket Number

fare Passenger Fare

cabin Cabin

embarked Port of Embarkation

(C = Cherbourg; Q = Queenstown; S = Southampton)

#StrataHadoop

NOTES:

Pclass is a proxy for socio-economic status (SES)

1st ~ Upper; 2nd ~ Middle; 3rd ~ Lower

Age is in Years; Fractional if Age less than One (1)

If the Age is Estimated, it is in the form xx.5


```
root
|-- PassengerId: string (nullable = true)
|-- Survived: string (nullable = true)
|-- Pclass: string (nullable = true)
|-- Name: string (nullable = true)
|-- Sex: string (nullable = true)
|-- Age: string (nullable = true)
|-- SibSp: string (nullable = true)
|-- Parch: string (nullable = true)
|-- Ticket: string (nullable = true)
|-- Fare: string (nullable = true)
|-- Cabin: string (nullable = true)
|-- Embarked: string (nullable = true)
```

Random Forest

- numTrees: Number of trees in the forest.
- maxDepth: Maximum depth of each tree in the forest.
- categoricalFeaturesInfo: Specifies which features are categorical and how many categorical values
 each of those features can take. This is given as a map from feature indices to feature arity (number
 of categories). Any features not in this map are treated as continuous.
 - E.g., Map(0 -> 2, 4 -> 10) specifies that feature 0 is binary (taking values 0 or 1) and that feature 4 has 10 categories (values {0, 1, ..., 9}). Feature indices are 0-based: features 0 and 4 are the 1st and 5th elements of an instance's feature vector.

- Tree 0:
- If (feature 0 in {0.0})
- If (feature 4 <= 8.7125)
- If (feature 3 <= 0.0)
- If (feature 2 <= 0.0)
- Predict: 0.0
- Else (feature 2 > 0.0)
- Predict: 0.0
- Else (feature 3 > 0.0)
- If (feature 1 <= 0.42)
- Predict: 1.0
- Else (feature 1 > 0.42)
- Predict: 0.0
- Else (feature 4 > 8.7125)
- If (feature 1 <= 14.0)
- If (feature 2 <= 2.0)
- Predict: 1.0
- Else (feature 2 > 2.0)
- Predict: 0.0
- Else (feature 1 > 14.0)

- **Tree 1:**
- If (feature 0 in {0.0})
- If (feature 4 <= 9.8375)
- If (feature 4 <= 7.8958)
- If (feature 4 <= 7.8292)
- Predict: 0.0
- Else (feature 4 > 7.8292)
- Predict: 0.0
- Else (feature 4 > 7.8958)
- If (feature 2 <= 0.0)
- Predict: 0.0
- Else (feature 2 > 0.0)
- Predict: 1.0
- Else (feature 4 > 9.8375)
- If (feature 3 <= 0.0)
- If (feature 4 <= 26.0)
- Predict: 0.0
- Else (feature 4 > 26.0)
- Predict: 0.0
- Else (feature 3 > 0.0)

Clustering

Topic Modeling – News Group Data

Clustering

- K-Means
- EM
- GMM
- LDA
- Streaming K-Means

Clustering - Motivation

- A good clustering has predictive power.
- Predictions while uncertain, are useful, because we believe that the underlying cluster labels are meaningful and can help us take meaningful actions.

Clustering - Motivation

Compression and Vector Quantization

Clustering - Motivation

- Failures of the cluster model may highlight interesting objects that deserve special attention, a.k.a outliers.
- Dimensionality reduction.
- Compression

K-means — ml.lib

- Parameters
 - K: Number of clusters.
 - maxIterations: maximum number of iterations to run
 - initializationMode: random or via K-Means||
 - Runs: number of sets to run
 - initializationSteps: number of steps in the K-Means|| algorithm
 - Epsilon: threshold
 - initialModel: optional set of clusters used for initialization

K-means – sample run

- Imports
 - org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
 - org.apache.spark.mllib.linalg.Vectors
- Loading the data and Cache

- Specifying params
- Compute cost
- Saving and Loading the model

- Maximizes lower bound on the log likelihood: Each step guaranteed to improve our answer until convergence
- Iterative method for finding maximum likelihood or maximum a posteriori estimates of parameters in statistical models, where the model depends on unobserved data.

Gaussian Mixture Modelling

- Distance function Expectation Maximization
- A more Bayesian approach.
- For k clusters, and each component is represented as $z_k \sim N(\mu_k, \Sigma_k)$
- Each data point is x is generated from one of these components with a certain probability (Σ_k = 1 for each x)
- Parameters:
 - K: Number of desired clusters
 - convergenceTol: maximum change in log-likelihood at which we consider convergence achieved
 - maxIterations: Maximum number of iterations to perform before reaching convergence
 - initialModel: Optional starting point.

LDA – A topic mode

- Infers topics from a collection of documents
- Topic correspond to cluster centers, and documents correspond to examples(rows) in a dataset.
- Topics and documents both exist in a feature space, where feature vectors are vectors of word counts.
- Distance function uses statistical model of how text documents are generated.

LDA – Optimizers

- EMLDAOptimizer
 - Uses EM on likelihood function
 - Stores comprehensive results in DistributedLDAModel
 - Desirable to keep *maxIterations* greater than 50.
- OnlineLDAOptimizer
 - Iterative mim-batch sampling for online variational inference and is generally memory friendly
 - Stores the inferred topics in LocalLDAModel
 - docConcentration: Assymetric priors can be used.

Code Walkthrough - LDA

Read the input documents and the stopwords File

```
val rawTextRDD = sc.wholeTextFiles(inputDir).map(_._2)
val stopwords = sc.textFile(stopWordFile).collect
```

Tokenize the documents

Split the data and Generate the model

Code Walkthrough - LDA

■ Define the Estimator and train a model – CountVectorizer: Performs a vocabulary extraction and transforms it into

Run the LDA

Sample Output- LDA

TOPIC 0 gatech 0.009160678955551409 0.007574289447944401 0.006716068304197075 theory prism 0.006568455199953412 0.006281138868875978 cantaloupe 0.0062405306308394625 uoknor 0.006108729953431769 boeing 0.0061058977079593854 atlanta 0.005408553307510841 georgia

 TOPIC 2

 talk
 0.011332796061488924

 religion
 0.01122579197418867

 people
 0.011175304719441202

 misc
 0.006154609606306365

 atheism
 0.006154507977337078

 jesus
 0.005934418956112216

 news
 0.005635678269501505

 writes0.005513754989295043

 abortion
 0.005407887588198011

TOPIC 7 0.015014415450966085 culture 0.01340655453428123 turkish 0.00873257449120752 armenian politics 0.00751867392573033 0.00726461778751153 armenians 0.0068082533701256855 0.006743333373614261 0.006675121118441786 people soviet 0.006597592366267302 0.005324235523883088 history

LDA – Optimizers

- EMLDAOptimizer
 - Uses EM on likelihood function
 - Stores comprehensive results in DistributedLDAModel
 - Desirable to keep *maxIterations* greater than 50.
- OnlineLDAOptimizer
 - Iterative mim-batch sampling for online variational inference and is generally memory friendly
 - Stores the inferred topics in LocalLDAModel
 - docConcentration: Assymetric priors can be used.

Recommendations

Movie Lens Ratings

MovieLens 100K Dataset

Stable benchmark dataset. 100,000 ratings from 1000 users on 1700 movies. Released 4/1998.

- README.txt
- ml-100k.zip (size: 5 MB, checksum)
- Index of unzipped files

Permalink: http://grouplens.org/datasets/movielens/100k/

MovieLens 1M Dataset

Stable benchmark dataset. 1 million ratings from 6000 users on 4000 movies. Released 2/2003.

- README.txt
- ml-1m.zip (size: 6 MB, checksum)

Permalink: http://grouplens.org/datasets/movielens/1m/

MovieLens 10M Dataset

Stable benchmark dataset. 10 million ratings and 100,000 tag applications applied to 10,000 movies by 72,000 users. Released 1/2009.

- README.html
- ml-10m.zip (size: 63 MB, checksum)

MovieLens

Userid, movie id, rating

0::2::3

0::3::1

0::5::2

Recommendations with ALS

- Fill in the missing entries of a user-item association matrix
- numBlocks is the number of blocks used to parallelize computation (set to -1 to auto-configure).
- rank is the number of latent factors in the model.
- iterations is the number of iterations to run.
- lambda specifies the regularization parameter in ALS.
- implicitPrefs specifies whether to use the explicit feedback ALS variant or one adapted for implicit feedback data.
- alpha is a parameter applicable to the implicit feedback variant of ALS that governs the baseline confidence in preference observations.

discover actual shopping behavior

Frequent Pattern Mining

FPG

Frequent Pattern Mining

• Mllib has parallel implementation of FP-Growth

- minSupport: the minimum support for an itemset to be identified as frequent. For example, if an item appears 3 out of 5 transactions, it has a support of 3/5=0.6.
- numPartitions: the number of partitions used to distribute the work.

FPGrowth

Create RDD of ArrayList<String>

rzhkp zyxwv uts sxonr xzymt sqe

Run
FPGrowth

```
[s], 3
[s,x], 3
[s,x,z], 2
[s,z], 2
[r], 3
[r,x], 2
[r,z], 2
[y], 3
[y,s], 2
[y,s,x], 2
```

Print Results

ML Pipelines

15 min

Typical Machine Learning Workflow

- Data Ingest Load
- Feature Extraction
- Training/Tuning the model
- Prediction/Inference

- Split each document's text into words.
- Convert each document's words into a numerical feature vector.
- Learn a prediction model using the feature vectors and labels.

ML Pipelines

- Facilitates a quick and easy assembly and configuration of practical machine learning pipelines.
- Are like DAG of nodes sequence of stages Estimators and Transformers.
- Can be saved and loaded when needed to be applied in real time to new data.
- Parameter Tuning
- Flexible coding and Easy debugging Use DataFrames

How it Works

- Input DataFrame is transformed as it passes through stages
- Transformer Stages .transform()
- Estimator Stages .fit() produces a transformer
- Help ensure that training and test data go through identical feature processing steps
- Linear and Non-linear pipelines as long a data flow graph forms a DAG
- Only run time checking

- Data
 - Housing data: data/housing/Housing.csv
 - Contains Categorical Variables
 - Use One-Hot-Encoding
- Algorithm
 - Continue with LinearRegression

Read Data and map it to a constructor

Define Categorical Variables

```
val categoricalVariables = Array("driveway", "recroom", "fullbase", "gashw", "airco", "prefarea")
```


Define Pipeline Stages – Convert Categorical variables to Continuos values

Define the estimator

Get the stages together

Define the pipeline with above stages

```
val pipeline = new Pipeline()
.setStages(steps)
```

Define the estimator

Split the data and Generate the model

```
val Array(training, test) = data.randomSplit(Array(0.75, 0.25), seed = 12345)
val model = tvs.fit(training)
```


Model Selection

- Cross Validation
 - Uses CrossValidator class Estimator, a set of ParamMaps and an Evaluator
 - Data split into folds.
 - Evaluator: RegressionEvaluator, BinaryClassificationEvaluator and MultiClassClassificationEvaluator
 - Can use ParamGridBuilder utility to provide multiple parameters for optimal tuning.
 - Can be expensive, but well established method for parameter tuning.
- Train Validation Split
 - Only evaluates each combination of parameters once, as opposed to k times as done by CrossValidator
 - Splits data into training and testing

Define the model Model Selector

Split the data and Generate the model

```
val Array(training, test) = data.randomSplit(Array(0.75, 0.25), seed = 12345)
val cvModel = cv.fit(training)
```


Streaming MLlib10 min

Streaming K-Means

Estimate clusters on one stream of data and make predictions on another stream

Streaming K-Means

- Each training point should be formatted as [x1, x2, x3]
- Test data point should be formatted as (y, [x1, x2, x3]), where y is some useful label or identifier (e.g. a true category assignment).
- Anytime a text file is placed in ../trainingDir the model will update
- Anytime a text file is placed in ../testDir they would be processed to produce predictions using the current model
- The decay can be specified using a halfLife parameter, which determines the correct decay factor such that, for data acquired at time t, its contribution by time t + halfLife will have

