Dernière mise à jour	Référentiels et bases associées	Denis DEFAUCHY
08/12/2015		Résumé

Référentiels et bases associées

Résumé

Projections Le minimum vital

Programme - Compétences		
B29	MODELISER	Solide indéformable: - référentiel, repère - vecteur-vitesse angulaire de deux référentiels en mouvement l'un par rapport à l'autre

Dernière mise à jour	Référentiels et bases associées	Denis DEFAUCHY
08/12/2015		Résumé

Les projections - Le minimum vital

Paramétrage angulaire

Un angle $\theta_{i/i}$ est un angle orienté, algébrique, allant de $\overrightarrow{x_i}$ vers $\overrightarrow{x_l}$ Il est représenté par une flèche allant de $\overrightarrow{x_i}$ vers $\overrightarrow{x_i}$ dont le sens définit le signe (sens direct

3 rotations usuelles

$$\overrightarrow{y_j} = \cos \theta_{j/i} \, \overrightarrow{y_i} + \sin \theta_{j/i} \, \overrightarrow{z_i}$$

$$\overrightarrow{z_j} = -\sin \theta_{i/i} \, \overrightarrow{y_j} + \cos \theta_{i/i} \, \overrightarrow{z_j}$$

$$\overrightarrow{z_j} = \cos \theta_{j/i} \, \overrightarrow{z_i} + \sin \theta_{j/i} \, \overrightarrow{x_i}$$

$$\overrightarrow{x_i} = -\sin \theta_{i/i} \, \overrightarrow{z_i} + \cos \theta_{i/i} \, \overrightarrow{x}$$

$$\overrightarrow{y_j} = \cos \theta_{j/i} \, \overrightarrow{y_t} + \sin \theta_{j/i} \, \overrightarrow{z_t} \qquad \overrightarrow{z_j} = \cos \theta_{j/i} \, \overrightarrow{z_t} + \sin \theta_{j/i} \, \overrightarrow{x_t} \qquad \overrightarrow{x_j} = \cos \theta_{j/i} \, \overrightarrow{x_t} + \sin \theta_{j/i} \, \overrightarrow{y_t}$$

$$\overrightarrow{z_j} = -\sin \theta_{j/i} \, \overrightarrow{y_t} + \cos \theta_{j/i} \, \overrightarrow{z_t} \qquad \overrightarrow{x_j} = -\sin \theta_{j/i} \, \overrightarrow{x_t} \qquad \overrightarrow{y_j} = -\sin \theta_{j/i} \, \overrightarrow{x_t} + \cos \theta_{j/i} \, \overrightarrow{y_t}$$

Astuce : Vecteur rotation « vers nous » et représentation directe de la base

Dernière mise à jour	Référentiels et bases associées	Denis DEFAUCHY
08/12/2015		Résumé

Page **3** sur **4**Bases orthonormées directes - Vecteurs unitaires

Dernière mise à jour	Référentiels et bases associées	Denis DEFAUCHY
08/12/2015		Résumé

