Test case for the UP4 2017-18 Identification of a volcano reservoir from surface displacements

Rodolphe Le Riche, Victor Picheny, Valérie Cayol March 28, 2018

Contents

1	Fore	eword		1
2	General test case presentation			3
	2.1	Genera	al formulation	3
2.2 Installation, files provided and first steps		ation, files provided and first steps	4	
		2.2.1	Software prerequisites	4
		2.2.2	Files list	4
		2.2.3	Running the demo step by step	5
		2.2.4	Overall goal of the project	6
Building a kriging model of the weighted least squares fu				
	tion (WLS)			6
4	Identification of the volcano source			6
5				7

1 Foreword

This directory contains data files with measured displacements at the surface of the Piton de la Fournaise volcano, along with files for modeling the displacements created by a specific magma reservoir. The source files are written

Figure 1: Digital terrain of the Piton de la Fournaise with displacements projected along the line of sight as colors (top) and (bottom) contour plot of the projected displacements (versus longitude x and latitude y). These projected displacements are the quantities to match in order to estimate the magma reservoir.

in the R programming language. By matching the modeled and measured displacements, one can identify the reservoir underneath the volcano. The test case was originally developed by Valérie Cayol, a volcanologist at CNRS, and re-implemented as an illustration for the course [1]. An illustration of the test case is provided in Figure 1.

2 General test case presentation

2.1 General formulation

The magma reservoir is the source of displacements at the surface of the volcano. The reservoir is assumed to have a spherical shape. It is described by n=5 inputs:

- The position of the center of the sphere
 - the longitude and latiture in UTM meters, x^S and y^S , respectively,
 - the elevation of the source with respect to sea level in meters, z^S ,
- the source radius in meters, a,
- and the source overpressure in MPa, p.

These 5 scalars are the unknowns, or variables, of our problem and will be gathered in the vector $\boldsymbol{\theta} \in [\boldsymbol{\theta}^{min}, \boldsymbol{\theta}^{max}] \subset \mathbb{R}^5$.

The volcano displacements are seen by InSAR radars mounted on a satellite as the projection of the displacements along a line of sight (LOS). Let $u_{LOS}(x, y; \theta)$ be the modeled displacement field parameterized by longitude and latitude x and y,

$$u_{LOS}(;\boldsymbol{\theta}): \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto u_{LOS}(x,y;\boldsymbol{\theta})$$
(1)

 $u_{LOS}(;\boldsymbol{\theta})$ is expressed with the Mogi model [2, 3] which simulates the displacements created by a spherical magma chamber at the surface of a digital terrain. The displacements are measured at a finite set of m measurements points, (x^i, y^i) , which yields $u_{LOS}^{\text{meas}}(x^i, y^i)$, $i = 1, \ldots, m$. A weighted least squares distance between the measured and modeled displacements is expressed as

$$J_W^2(\boldsymbol{\theta}) = \frac{1}{2} \left(\mathbf{u}_{\mathbf{LOS}}^{\text{meas}} - \mathbf{u}_{\mathbf{LOS}}(\boldsymbol{\theta}) \right)^{\top} \mathbf{W} \left(\mathbf{u}_{\mathbf{LOS}}^{\text{meas}} - \mathbf{u}_{\mathbf{LOS}}(\boldsymbol{\theta}) \right) , \qquad (2)$$

where the bold face version of u_{LOS} denotes its vectorized version at the measured points, e.g.,

$$\mathbf{u}_{\text{LOS}}(\boldsymbol{\theta}) = \left[u_{LOS}(x^1, y^1; \boldsymbol{\theta}) \dots u_{LOS}(x^m, y^m; \boldsymbol{\theta}) \right]^{\top}$$

and **W** is a *given* weight matrix, typically the inverse of a covariance matrix.

Normalizing a weighted least squares: the distribution of $J_W^2(\theta)$ when θ is random within $[\theta^{min}, \theta^{max}]$ is far from being gaussian as it is bounded above 0 and has many very large values. The transformation $\log(1 + J_W^2(\theta))$ makes it more gaussian and will be used in the following as it makes the function more compatible with a gaussian process model.

Model identification as an optimization problem: Finding the magma reservoir that corresponds to the measurements $\mathbf{u}_{\mathbf{LOS}}^{\mathrm{meas}}$ amounts to minimizing the weighted least squares distance between the measurements and the Mogi model over the reservoir unknowns,

$$\boldsymbol{\theta}^{\star} = \arg\min_{\boldsymbol{\theta} \in [\boldsymbol{\theta}^{min}, \boldsymbol{\theta}^{max}]} J_W^2(\boldsymbol{\theta}) .$$
 (3)

In the case of ill-posed problems, the solution θ^* may not be unique.

To sum up, this project aims at learning (a normalized version of) the n dimensional function $J_W^2(\boldsymbol{\theta})$ by carrying out a design of experiments (DoE), building a Gaussian process conditioned by the results of the DoE, and using it to minimize $J_W^2(\boldsymbol{\theta})$.

2.2 Installation, files provided and first steps

2.2.1 Software prerequisites

- 1. Have R available on your computer, cf. https://www.r-project.org/
- 2. Optionally (but really helpful) have rstudio installed, cf. https://www.rstudio.com
- 3. Install the "R.matlab" package to load the data that are in matlab format (file_name.mat), either from Tools / Install Package in rstudio or with the command install.packages("R.matlab").
- 4. As above, install the following Dice suite of packages: "DiceKriging", "DiceOptim", "DiceView".

2.2.2 Files list

• data files

- fullgrid_xyzulos.csv: full digital terrain ((x, y, x)'s) and measured projected displacements in the ascii comma separated value format. Large file, only used for the plot demo (file plots_3d_full_grid.R).
- data_nonoise.mat: 220 measured (x, y, x)'s and associated u_{LOS} 's.

 Matlab format. Read and processed in the file mainScript_DatascienceClass.R.

• R source files:

- plots_3d_full_grid.R: Loads the full digital model of the volcano (fullgrid_xyzulos.csv), make a 3D plot of it, makes 2D contour maps of the displacements (target and another vector of variables).
- mainScript_DatascienceClass.R: utilities to load the data, and creates the function compute_wls which calculates a normalized J_W^2 (Eq. 2).
- wls_ulos.R : calculates the weighted least squares distance J_W^2 (Eq. 2) between the model projected displacements and the target.
- mogi_3D.R : calculate displacements on a digital terrain model from a point-wise spherical source.
- kernels.R contains utilities to build covariance functions and matrices, used here only to generate the W weight matrix of Eq. 2.
- documentation: file volcan_test_case.pdf, compiled from volcan_test_case.tex, biblio_paper.bib, contour_ulos.png and piton_ulos_2.png.

During the project, you should only use the function compute_wls and should not change the rest of the provided code.

2.2.3 Running the demo step by step

Open with rstudio the file plots_3d_full_grid.R and "source" it, or start R in a console in the file directory and type source("plots_3d_full_grid.R").
 A 3D window opens that shows the digital terrain of the volcano with a color projection of the displacements to be identified (u_{LOS}^{meas}). The line of sight is drawn at the top of the volcano. The 3D plot can be rotated. Contours plots are also given, where new set of variables θ can be tried and compared through their u_{LOS}(θ) to the targeted variables.

2. Open in rstudio the file mainScript_DatascienceClass.R, or open the file with any text editor and start R in a console. The code is split in parts separated by a line of comments (#### step #####...). The first part loads libraries and utility files (e.g., the one coding the Mogi model). The second part provides the variables bounds θ^{min} and θ^{max} (encoded as xmin and xmax) along with other variables related data. The third part (#### load data #####...) loads the data, in particular the location of the measurements, (xⁱ, yⁱ) as Glb_xi and Glb_yi, and the vector of measured displacements as Glb_ulos. The fourth and last part provides functions for norming and unnorming the variables and norming the weighted least squares (J²_W). It finishes with compute_wls <- function(x) whose input x is θ and whose output is a normalized and centered log(1 + J²_W(θ)).

2.2.4 Overall goal of the project

From that point onwards, it will be your goal to complete the code, mainly using DiceKriging and DiceOptim to

- 1. build a statistical model of the function compute_wls (the normalized $\log(1+J_W^2(\boldsymbol{\theta}))$),
- 2. validate it,
- 3. minimize it and
- 4. analyze the results

following the detailed instructions of each session.

3 Building a kriging model of the weighted least squares function (WLS)

Cf. text of "TP1: plans remplissant l'espace et krigeage" by Victor Picheny.

4 Identification of the volcano source

The goal of the practical session is to estimate solutions to the identification problem of Eq. (3). Because in real world situations, a call to the volcano

model (through the wls_ulos function) would be computationally expensive, we will use the EGO algorithm [4] in its DiceOptim version.

- 1. Write a script where the function EGO.nsteps is called with compute_wls as objective function.
- 2. Plot the results: res\$value to look at the convergence of the objective function, pairs(res\$lastmodel@X), to look at the distribution of the points in the DoE (look at the best points and at the points added), hist(res\$value) to look at the distribution of objective functions sampled by EGO.
- 3. Comment on the distribution of the best reservoir variables.

5

References

- [1] Nicolas Durrande and Rodolphe Le Riche. Introduction to Gaussian Process Surrogate Models. Lecture at 4th MDIS Formater workshop, slides as HAL report no. cel-01618068, October 2017.
- [2] N. Yamakawa. On the strain produced in a semi-infinite elastic solid by an interior source of stress. J. Seismol. Soc. Japan, 8:84–98, 1955.
- [3] Kiyoo Mogi. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. 36, 01 1958.
- [4] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive black-box functions. *Journal of Global optimization*, 13(4):455–492, 1998.