Recitation 5

John Chilton

July 17, 2007

Assume some f exists that is a one-to-one mapping between $\mathcal B$ and $\mathcal N$.

n	f(n)
1	<u>0</u> 01010101
2	1 <u>0</u> 0101001
3	10 <u>1</u> 111011
4	001 <u>0</u> 01010
5	1010 <u>1</u> 1101
6	11100 <u>1</u> 010
:	÷

Then construct a new infinite sequence in ${\cal B}$ that is not mapped to by any natural number.

$$L(R) \subseteq L(S) \iff L(R) \cap L(S)^C = \phi$$

$$L(R) \subseteq L(S) \iff L(R) \cap L(S)^{C} = \phi$$

- S = On input < R, S >
 - 1. Convert regular expressions R & S to DFAs $D_R \& D_S$
 - 2. Create a new DFA D_{SC} recognizing the complement of D_S
 - 3. Create a new DFA D_{new} recognizing $L(D_R) \cap L(D_{SC})$
 - 4. Run D_{new} as input on a decider of E_{DFA} , accept if it accepts, otherwise reject

S is a decider for A, so A is a decidable language.

 $ST = \{ \langle M, w \rangle \mid M \text{ is a two-tape TM and } M \text{ writes to its second tape during the computation of input } w \}$

Attempt 1

On input < M, w >:

- 1. Construct the following TM U.
 - U = "On input x
 - 1. Run M on x, if M writes to the 2^{nd} tape, accept.
 - 2. If *M* halts without writing to the second tape, *reject*."
- // U will accept w iff M writes to second tape on w
- 2. Run T (the decider for A_{TM}) on < U, w >.
- 3. Accept if T accepts, otherwise reject.

Attempt 2

On input < M, w >:

1. Construct the following two-tape Turing machine.

U = "On input x:

- 1. Simulate M on input x using only the first tape.
- 2. If M accepts x, write a symbol to the second tape.
- 3. Upon completion, reject. "
- // U writes to the second tape iff M accepts its input
- 2. Run S (the decider for ST) on input < U, w >.
- 3. Accept if S accepts, otherwise reject."

Some Undecidable languages.

 A_{TM} TM M accepts string w

 $HALT_{TM}$ TM M halts on input w

E_{TM} TM M accepts no strings

 EQ_{TM} TM M accepts same language as TM N

ALL_{CFG} CFG G generates Σ^*

PCP "Dominos" have a match

$$DIFF_{CFG} = \{ \langle G, H \rangle \mid G, H \text{ are CFGs and } L(G) \neq L(H) \}$$

Show $DIFF_{CFG}$ is undecidable.

Show *DIFF_{CFG}* is Turing recognizable.

$$SEVEN_{TM} = \{ \langle M \rangle \mid M \text{ accepts the input 7} \}$$

$$\textit{SEVEN2}_{\textit{TM}} = \{ < \textit{M} > \mid \textit{M} \text{ accepts exactly 7 strings} \}$$

Show $SEVEN_{TM}$ and $SEVEN2_{TM}$ are undecidable.

Are $SEVEN_{CFG}$ and/or $SEVEN2_{CFG}$ decidable.

 $INFINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM with an infinite language. } \}$

Show $INFINITE_{TM}$ is undecidable.

Based on your intuition is $INFINITE_{TM}$ Turing recognizable or not?

Show INFINITE_{DFA} is decidable. (HINT: Think pumping lemma.)

 $\{< M, w > \mid M \text{ doesn't move its heads left on computation of } w\}$

Is this language decidable? Prove your answer.