Esercitazione di Fisica - 11

Riccardo Nicolaidis

05/06/2025

1 Problema 1

n moli di un gas ideale monoatomico si trovano in un recipiente con un pistone libero di muoversi. Inizialmente il gas si trova a pressione P_1 (Pa) e temperatura T_1 (K). Il gas viene fatto espandere mantenendolo a pressione costante fino a raggiungere V_2 (m^3). L'espansione isobara irreversibile viene effettuata ponendo il recipiente del gas a contatto termico con un serbatoio a temperatura T_2 (K). La variazione di entropia dell'universo é ΔS_U . Calcolare ΔS_U . Dati: n = 1, $T_1 = 300$, $T_2 = 600$ K, $T_2 = 10^5$.

2 Problema 2

Una mole di H_2 (gas perfetto) in equilibrio termodinamico alla temperatura $T_1 = 100 \,\mathrm{K}$ occupa il volume $V_1 = 10 \,\mathrm{L}$. Tale sistema subisce una trasformazione che lo porta ad uno stato finale caratterizzato dalla temperatura $T_2 = 600 \,\mathrm{K}$ e dal volume $V_2 = 100 \,\mathrm{L}$. Calcolare la variazione di entropia dell'ambiente nei seguenti casi:

- 1. la trasformazione è reversibile;
- 2. la trasformazione è irreversibile e viene effettuata mettendo a contatto il gas con una sorgente termica a temperatura $T_0 = 750 \,\mathrm{K}$ e lasciando espandere il gas contro una pressione esterna $P_0 = 0.49 \,\mathrm{atm}$.

3 Problema 3

Una macchina di Carnot ideale C lavora fra una sorgente calda a $T_c = 400$ K e una sorgente fredda a $T_f = 300$ K. La sorgente fredda è costituita da un sistema termodinamico \mathcal{X} con capacità termica molto grande, in modo che qualunque sia la quantità di calore scambiata da \mathcal{X} la sua temperatura rimanga sempre T_f . Sapendo che dopo un ciclo della macchina C il sistema \mathcal{X} ha variato la propria entropia di $\Delta S = 5$ J/K, calcolare la quantità di calore che C assorbe dalla sorgente calda.

Problema 4

Un cilindro a pareti isolanti di volume V_0 è chiuso alla sua estremità da un pistone anch'esso isolante. Inizialmente, il volume V_0 è diviso da un setto rigido S in due parti uguali, A e B. La parte A contiene una mole di gas perfetto monoatomico alla temperatura di $T_A = 27$ °C (e volume $V_A = V_0/2$). La parte B, anch'essa di volume $V_B = V_0/2$, è vuota.

Ad un certo istante il setto S viene rimosso e il gas inizialmente racchiuso nella parte A compie un'espansione libera, occupando l'intero volume $V_A + V_B = V_0$. Successivamente, il gas viene compresso dal pistone P in maniera quasi-statica fino a riportarlo ad occupare il volume $V_A = V_0/2$.

Disegnare le due trasformazioni nel piano di Clapeyron e determinare le corrispondenti variazioni di energia interna ΔU e di entropia ΔS .

4 Problema 5

n moli di gas monoatomico ideale si trovano all'interno di un recipiente con una parete al centro che separa in due parti il volume. Il gas si trova nella prima porzione con volume V_1 (m^3). Il gas si trova all'equilibrio ad

una temperatura T_1 (K) La seconda porzione di recipiente, con volume V_2 (m^3), é vuota. Ad un certo istante la parete viene rimossa e il gas viene fatto espandere liberamente. La variazione di entropia dell'universo é ΔS_U . Calcolare ΔS_U . Dati: $n=1,\,T_1=300,\,V_1=0.02,\,V_2=0.05$.