lmię i nazwisko	Kierunek	Rok i grupa studiów
Anna Jasielec	Informatyka Techniczna	rok 1, grupa 4
Data zajęć:	Numer i temat sprawozdania:	
30.11.2022	Zajęcia 7. Systemy i reprezentacja	a liczb

1. Przebieg zajęć: Zajęcia 7. dotyczyły systemów liczbowych.

- Poznanie systemów liczbowych: dziesiętnego, binarnego (dwójkowego), heksadecymalnego (szesnastkowego) i ósemkowego (oktalnego).
- Poznanie metod zamiany systemu dziesiętnego na binarny.
- Wykonanie zadania 1, polegającego na ręcznej zamianie liczby na inne systemy.

2. Zadania:

- 1. Zamień liczbę:
- a) z systemu dziesiętnego na system binarny:
- \bullet 133 = 64 + 32 + 16 + 1

128	64	32	16	8	4	2	1
0	1	1	1	0	0	0	1

133 → 01110001

 \bullet 432 = 256 + 128 + 32 + 16

512	256	128	64	32	16	8	4	2	1
0	1	1	0	1	1	0	0	0	0

432 → 0110110000

b) z systemu dziesiętnego na system szesnastkowy:

 \bullet 555 = 512 + 32 + 8 + 2 + 1

2048	1024	512	256	128	64	32	16	8	4	2	1	
0	0	1	0	0	0	1	0	1	0	1	1	
8	4	2	1	8	4	2	1	8	4	2	1	(+)
	2				2	2			B(:	11)		

555 → 22B

• 8736 = 8192 + 512 + 32

8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	
1	0	0	0	1	0	0	0	1	0	0	0	0	0	
2	1	8	4	2	1	8	4	2	1	8	4	2	1	(+)
2	2		2				2	2			()		

8736 → 2220

c) z systemu binarnego na system dziesiętny:

• 10011 → 19

1	0	0	1	1
16	8	4	2	1

• 101001011 → 331

1	0	1	0	0	1	0	1	1
256	128	64	32	16	8	4	2	1

256 + 64 + 8 + 2 + 1 = 331

d) z systemu szesnastkowego na system dziesiętny:

• D5E7 → 54 759

	(13) = 8	+ 4 + 1		5 = 4 + 1				E (14) = 8	3 + 4 +	- 2	7	′ = 4 +	2 + :	1
8	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1
1	1	0	1	0	1	0	1	1	1	1	0	0	1	1	1
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

32768 + 16384 + 4096 + 1024 + 256 + 128 + 64 + 32 + 4 + 2 + 1 = 54 759

• F01A33 → 15 735 347

F(15	5)=8+4	+2+1		0				1				A(10)=8+2)		3 = 2	+ 1			3 =	= 2 +	· 1	
8	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1	8	4	2	1
1	1	1	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	1	0	0	1	1
2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	512	256	128	64	32	16	8	4	2	1

8388608 + 4194304 + 2097152 + 1048576 + 4096 + 2048 + 512 + 16 + 32 + 2 + 1 = 15 735 347

e) z systemu ósemkowego na system szesnastkowy:

	0		7	= 4 + 2 +	1		5 = 4 + 1			2	
4	2	1	4	2	1	4	2	1	4	2	1
0	0	0	1	1	1	1	0	1	0	1	0
8	4	2	1	8	4	2	1	8	4	2	1
	1				E(:	14)			A(:	10)	

• 2641 → 5A1

	2			6 = 4 + 2			4			1	
4	2	1	4	2	1	4	2	1	4	2	1
0	1	0	1	1	0	1	0	0	0	0	1
8	4	2	1	8	4	2	1	8	4	2	1
	5				A(:	10)			:		

2. Na podstawie przedstawionych wcześniej sposobów konwersji liczb napisz funkcję, która:

a) przyjmie liczbę z systemu dziesiętnego i zwróci jej odpowiednik w systemie binarnym.

Podaj liczbę w systemie dziesiętnym: 2137 Liczba 2137 w systemie binarnym to: 100001011001

b) przyjmie liczbę z systemu dziesiętnego i zwróci jej odpowiednik w systemie szesnastkowym.

Podaj liczbę w systemie dziesiętnym: 1249 Liczba 1249 w systemie szesnastkowym to: 4E1

c) przyjmie liczbę z systemu binarnego i zwróci jej odpowiednik w systemie dziesiętnym.

Podaj liczbe w systemie binarnym: 11001010111 Liczba 11001010111 w systemie dziesiętnym to: 1623

d) przyjmie liczbę z systemu binarnego i zwróci jej odpowiednik w systemie szesnastkowym.

Podaj liczbe w systemie binarnym: 111000101101011 Liczba 111000101101011 w systemie szesnastkowym to: 716B

e) przyjmie liczbę z systemu ósemkowego i zwróci jej odpowiednik w systemie binarny.

Podaj liczbe w systemie ósemkowym: 6732 Liczba 6732 w systemie binarnym to: 110111011010

f) przyjmie liczbę z systemu szesnastkowego i zwróci jej odpowiednik w systemie dziesiętnym.

Podaj liczbe w systemie szesnastkowym: 12F Liczba 12F w systemie dziesietnym to: 303

g) przyjmie liczbę z systemu ósemkowego i zwróci jej odpowiednik w systemie szesnastkowym.

Podaj liczbę w systemie ósemkowym: 7201 Liczba 7201 w systemie szesnastkowym to: E81

Wnioski:

- Na zajęciach nauczyłam się przedstawiać liczby w różnych systemach liczbowych (binarnym, dziesiętnym, ósemkowym i szesnastkowym).
- Liczby w systemie binarnym składają się z 0 i 1, w dziesiętnym od 0 9, w ósemkowym od 0 7, a w szesnastkowym od 0 15, przy czym 10 to A, 11 B, 12 C, 13 D, 14 E, 15 F.
- Wiem, jakie działania należy przeprowadzić aby zamieniać liczby na inne systemy.
- Nauczyłam się przedstawiać te działania w programie.
- Funkcje umożliwiające zamianę systemów liczbowych potrafią być bardzo skomplikowane.