Lesson EPSI-02-01 Download the pdf file

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

■EPSI-02-10: recorded live, Dec 1, 2013

- Differential pairs
- A secret to immunize confusion about diff pairs
- Don't use Differential mode impedance
- Differential pairs, differential signals and odd and even mode impedance

Teledyne LeCroy Signal Integrity Academy

2014

Lesson EPSI-02-10 Intro to Diff Pairs

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

- ■EPSI-02-10: recorded live, Dec 1, 2013
 - Differential pairs
 - A secret to immunize confusion about diff pairs
 - Don't use Differential mode impedance
 - Differential pairs, differential signals and odd and even mode impedance

Teledyne LeCroy Signal Integrity Academy

- Day 1
 - EPSI 1 Transmission Lines
 - EPSI 2 Differential Pairs and Lossy Lines
 - Lunch
 - EPSI 3 Reflections and Terminations
 - EPSI 4 Routing Topologies and Discontinuities
- Day 2
 - EPSI 5 Eliminating Ground Bounce
 - EPSI 6 Navigating Return Path Discontinuities
 - Lunch
 - EPSI 7 NEXT and FEXT Features
 - EPSI 8 PDN and EMI Design

Teledyne LeCroy Signal Integrity Academy

3

Differential mode Common mode Common mode Think: Differential signals Common signals Odd mode Even mode Teledyne LeCroy Signal Integrity Academy Teledyne LeCroy Signal Integrity Academy A Secret to Minimize Confusion About Differential Impedance Think: Differential signals Common signals Odd mode Even mode

Lesson EPSI-02-20 Differential Signals

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

■EPSI-02-20: recorded live, Dec 1, 2013

- Differential and common signals in LVDS drivers
- Decomposing any signal into diff and common components
- What is the impedance the differential signal sees
- When microstrip traces are far apart what is the differential impedance

Teledyne LeCroy Signal Integrity Academy

2014

.

Differential and Common Refer to SIGNALS

LVDS

- Definitions:
 - $V_{diff} = V1 V2$
 - $V_{comm} = \frac{1}{2} (V1 + V2)$

Differential and common signals propagate independently on differential pairs

Teledyne LeCroy Signal Integrity Academy

Differential Impedance and Single-ended Impedance

What is the equivalent impedance between the two signal lines?

with no coupling:

$$Z_{\text{diff}} = Z_0 + Z_0$$

$$Z_{diff} = 2 \times Z_0$$

What happens to Z0 when traces move closer together?

Teledyne LeCroy Signal Integrity Academy

Lesson EPSI-02-30 Differential Impedance and Coupling

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

■EPSI-02-30: recorded live, Dec 1, 2013

- Impedance of one line when the other line is driven opposite
- Differential impedance and coupling
- Why tightly coupled differential pairs should be the first choice
- How to maintain 100 Ohms and tight coupling

Teledyne LeCroy Signal Integrity Academy

2014

Differential Impedance and Single-ended Impedance

What is the equivalent impedance between the two signal lines?

with no coupling:

$$Z_{\text{diff}} = Z_0 + Z_0$$

$$Z_{diff} = 2 \times Z_0$$

What happens to Z0 when traces move closer together?

Teledyne LeCroy Signal Integrity Academy

Lesson EPSI-02-40 Currents on Differential Pairs

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

EPSI-02-40: recorded live, Dec 1, 2013

- The most important principle of differential signal propagation
- How to think about how a differential signal propagates
- Design Space for constant differential impedance
- The Johnny Cash Principle for diff pair design
- TDR example of single ended and differential impedance

Teledyne LeCroy Signal Integrity Academy

014

Lesson EPSI-02-50 Tight to Loose Coupling

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

- ■EPSI-02-50: recorded live, Dec 1, 2013
 - The most important consequence of tight coupling
 - Trade off analysis: tight or loosely coupled diff pairs?
 - The cost-bandwidth-loss tradeoffs

TELEDYNE LECROY Everywhereyoulook

Teledyne LeCroy Signal Integrity Academy

14

Which is Better, Tight or Loose Coupling?

- Lowest cost will always be with highest interconnect density:
 - Tight coupling should always be the first choice.
- What is the downside to tight coupling?
 - Narrower line width → more loss
 - If loss is important, > 2-3 Gbps, <u>and</u> long lines, consider loose coupling (Can actually be <u>slight increase</u> in channel to channel cross talk from tighter coupling!)
 - @ > 10 Gbps, loss is critical: loose coupling should be first choice
- Regardless of bit rate, always do your own analysis

Teledyne LeCroy Signal Integrity Academy

40

Lesson EPSI-02-60 Frequency dependent loss- so what

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

- **EPSI-02-60**: recorded live, Dec 1, 2013
 - The typical attenuation in a channel
 - The rise time of the signal out of a lossy channel
 - Consequence of the frequency dependence of loss
 - Why lossy interconnects can completely close eyes

Teledyne LeCroy Signal Integrity Academy

114

The Most Important Building Block Circuit Element: A Differential Pair Transmission Line What is a differential pair transmission line? Ans: Any Two Single-ended Transmission Lines Primary features for optimized performance: (L) Wide lines, low Df laminate (R) Uniform differential impedance (controlled impedance) (N) Far from other channels (M) Symmetric lines: matched length, cross section What is the optimum coupling? tight or loose? "It depends!"

Lesson EPSI-02-70 How much attenuation is too much?

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

- **EPSI-02-70**: recorded live, Dec 1, 2013
 - Attenuation in a channel
 - A quick review of the dB
 - Eye diagram at different data rates
 - How much attenuation at the Nyquist is too much?
 - Instantly estimating channel bandwidth from the attenuation

TELEDYNE LECROY
Everywherevoulook

Teledyne LeCroy Signal Integrity Academy

Quick Review of	of the dB	
$\frac{V_{\text{output}}}{10^{20}} = 10^{\frac{A_{\text{dB}}}{20}}$	(Voitout)	0 dB = 1
$\frac{1}{V_{\text{input}}} = 10^{23}$	$A_{dB} = 20 \text{ x log} \left(\frac{V_{output}}{V_{input}} \right) dB$	-20 dB is:
Ratio of amplitudes	value in dB	$\frac{V_{\text{output}}}{V_{\text{output}}} = 10^{\frac{-20}{20}} = 0.1 = 10\%$
100% 90%	0 dB -1 dB	V_{input}
80% 70%	-2 dB -3 dB	-40 dB is:
50%	-6 dB	$\frac{V_{\text{output}}}{V_{\text{output}}} = 10^{\frac{-40}{20}} = 0.01 = 1\%$
30% 10%	-10 dB -20 dB	V_{input}
5% 3%	-26 dB -30 dB	-10 dB is:
1%	-40 dB	
		$\frac{V_{output}}{V_{input}} = 10^{\frac{-10}{20}} = \frac{1}{\sqrt{10}} \sim 30\%$
TELEDYNE LECROY Everywhereyoulook	To	eledyne LeCroy Signal Integrity Academy 26

What if Attenuation @ Nyquist is > |-8| dB?

- Bit error ratio (BER) maybe too high
- Must use equalization to recover data:
 - CTLE: continuous time linear equalizer
 - FFE: feed forward equalization
 - DFE: decision feedback equalization
- Just CTLE may give acceptable eye when |S21| < |-15| dB
- Very good equalization may give acceptable eye when |S21| < |-25| dB

Teledyne LeCroy Signal Integrity Academy

Lesson EPSI-02-80 Estimating attenuation in a channel

Course EPSI: Essential Principles of Signal Integrity

With Eric Bogatin,
Signal Integrity Evangelist,
Teledyne LeCroy Front Range Signal Integrity Lab

■EPSI-02-80: recorded live, Dec 1, 2013

- A simple model for estimating attenuation
- Dielectric loss and material properties like dissipation factor
- Conductor loss and skin depth
- Impact from surface roughness

Teledyne LeCroy Signal Integrity Academy

14

31

Estimating Attenuation (a first order approximation)

atten[dB/in] = 4.34 x
$$\left(\frac{R_{len}[Ohms/in]}{Z_0[Ohms]} + G_L[Siemens/in] \times Z_0[Ohms]\right)$$

Conductor loss

Dielectric loss

$$G_{L} = 2\pi f \times C_{0} \times Dk \times Df = 2\pi f \times C_{L} \times Df$$

$$Z_{0} = \frac{\sqrt{Dk}}{c C_{Len}}$$

$$A = -4.34 \times \left(2\pi f C_{Len} Df \times \frac{\sqrt{Dk}}{c C_{Len}}\right) = -\frac{4.34 \times 2\pi}{11.8 \frac{inch}{nsec}} \times f \times Df \times \sqrt{Dk}$$

$$= -2.3 \times f \times Df \times \sqrt{Dk}$$

Attenuation from dielectric loss:

- only depends on the materials, NOT design
- scales linearly with frequency
- is dominated by dissipation factor of material

- simple figure of merit (FOM): dB/in/GHz = 2.3 x Df x sqrt(Dk) = 0.1 dB/inch/GHz

FR4:

Teledyne LeCroy Signal Integrity Academy

Attenuation from Dielectric: Figure of Merit						
atten per length[dB / inch] = 2.3 x f x Df x \sqrt{Dk} dB / inch						
<u>@ ~ 1 GHz</u>						
<u>Material</u>	<u>Dk</u>	<u>Df</u>	atten, dB/inch/GHz			
Park Nelco N4000-6	4.3	0.02	0.1			
■ Isola 370HR	4.4	0.016	0.077			
GETEK	3.5-4.4	0.008- 0.01	0.046			
■ N4000-13SI	3.4	0.01	0.042			
■ Isola FR408HR	3.7	0.009	0.04	Typical Vendors:		
Park-Nelco N4000-13EP	3.6	0.008	0.035	Isola, Taconics, Rogers, Park-Nelco, Panasonic, Gore		
Rogers RO4350	3.6	0.004	0.017			
 GoreSpeedBoard 	2.6	0.004	0.015	i anasomo, corc		
Panasonic Megtron 6	3.7	0.002	0.009			
TELEDYNE LECROY Everywhereyoulook Teledyne LeCroy Signal Integrity Academy						

Skin Depth Limited Current Distributions: Smooth Copper Microstrip: f in GHz 50 Ohm, FI @100 MHz $\varepsilon_{\rm r}$ = 4.2 $h = 38 \mu$ t = 3 mils @ 1 GHz, skin depth = 2 u w = 5 milsAnsoft SI 2D Properties of series resistance: Above ~ 10 MHz, for 1 oz copper, current is skin depth limited R will increase ~ sqrt(freq) All high end 2D field solvers will calculate the resistive and dielectric **Estimating conductor loss:** loss over frequency 1. Smooth copper Polar 2. Skin depth Mentor Graphics HyperLynx 3. Return current loss Agilent ADS HFSS, CST, ... 4. Roughness TELEDYNE LECROY **Teledyne LeCroy Signal Integrity Academy**

Lesson EPSI-02-90 Examples of attenuation in channels

Course EPSI: **Essential Principles of Signal Integrity**

With Eric Bogatin, Signal Integrity Evangelist, Teledyne LeCroy Front Range Signal Integrity Lab

■EPSI-02-90: recorded live, Dec 1, 2013

- Estimating attenuation in lossy and low loss channels
- The most important figure of merit for a channel
- Examples of attenuation figure of merit in a few interconnects
- How to engineer lower attenuation in an interconnect

Teledyne LeCroy Signal Integrity Academy

Typical Worst Case: Total Attenuation in FR4

$$atten[dB/in] = 4.34 \times \left(\frac{R_{len}[Ohms/in]}{Z_{0}[Ohms]} + \frac{G_{L}[Siemens/in] \times Z_{0}[Ohms]}{Z_{0}[Ohms]}\right)$$

$$atten[dB/in] \sim \frac{1}{w[mils]} \sqrt{f[GHz]} + 2.3 \times f[GHz] \times Df \times \sqrt{Dk}$$

- current on both surfaces
- resistance of return path
- 2x surface roughness
- for 50 Ohm single-ended, 100 Ohm diff

Example: @ 1 GHz, (2 Gbps) w = 5 mil, Dk = 4.3, Df = 0.02 atten[dB/in] $\sim \frac{1}{5} \sqrt{1} + 2.3 \times 1 \times 0.02 \times \sqrt{4.3} = 0.02$

atten[dB/in]
$$\sim \frac{1}{5}\sqrt{1} + 2.3 \times 1 \times 0.02 \times \sqrt{4.3} =$$

Figure of Merit ~ 0.3 dB/in/GHz

0.2dB / in + 0.1dB / in = 0.3dB / in

Example: @ 4 GHz, (8 Gbps) w = 5 mil, Dk = 4.3, Df = $0.02_{atten[dB/in]} \sim \frac{1}{5} \sqrt{4} + 2.3 \times 4 \times 0.02 \times \sqrt{4.3} = 0.02$ Figure of Merit ~ 0.22 dB/in/GHz

0.4dB / in + 0.5dB / in = 0.9dB / in

Teledyne LeCroy Signal Integrity Academy

Typical Best Case: Total Attenuation in Megtron6

atten[dB/in] = 4.34 x
$$\left(\frac{R_{len}[Ohms/in]}{Z_0[Ohms]} + G_L[Siemens/in] \times Z_0[Ohms]\right)$$

atten[dB/in]
$$\sim \frac{1}{w[mils]} \sqrt{f[GHz]} + 2.3 \times f[GHz] \times Df \times \sqrt{Dk}$$

- skin depth
- current on both surfaces
- resistance of return path
- 2x surface roughness
- for 50 Ohm single-ended, 100 Ohm diff

Example: @ 1 GHz, (2 Gbps) w = 7 mil, Dk = 3.7,

Df = 0.002

atten[dB/in] $\sim \frac{1}{7}\sqrt{1} + 2.3 \times 1 \times 0.002 \times \sqrt{3.7} =$

0.14dB / in + 0.009dB / in = 0.15dB / in

Figure of Merit ~ 0.15 dB/in/GHz

Example: @ 4 GHz, (8 Gbps) w = 7 mil, Dk = 3.7,

Df = 0.002

atten[dB/in] $\sim \frac{1}{7} \sqrt{4 + 2.3} \times 4 \times 0.002 \times \sqrt{3.7} =$

Figure of Merit ~ 0.08 dB/in/GHz

0.28dB / in + 0.035dB / in = 0.32dB / in

Very expensive material wasted by conductor loss

TELEDYNE LECROY
Everywherevoulook*

3

Attenuation and SDD21: Measured Backplane Channels

How do we Engineer Interconnects to Have Insertion loss below ~ -25 dB?

- Shortest interconnects practical:
 - For low loss FOM ~ 0.1 dB/inch/GHz, @ 5 GHz (10 Gbps), atten ~ 0.5 dB/inch. 50 inches max length for < -25 dB
- Minimize conductor loss
 - Engineer widest line width balanced with required interconnect density

 - Loose coupling
 Lowest impedance practical
 Lowest Dk practical
 Thickest dielectric layers practical
 Conductor thickness > ½ oz. copper not much impact
 - Use smoother copper
- Minimize dielectric loss (no design features affect dielectric loss)
 - Lowest dissipation factor laminate practical
 - Use lower loss laminate on selected layers for lowest cost
- Keep surface traces (microstrip) short
 - Humidity sensitivity
 - Higher loss from surface treatment, rougher copper

Teledyne LeCroy Signal Integrity Academy

