Homework 10

- 1. Let V_i i=1,...,N be a collection of vector spaces over a field F. Consider the Cartesian product $V=V_1\times...\times V_N$ equipped with the natural projections $p_i:V\to V_i$.
 - (a) Prove that p_i is linear and compute its kernel.
 - (b) Let U be a vector space and $T_i: U \to V_i$ linear transformations. Prove there exists a unique $T: U \to V$ such that $p_i \circ T = T_i$.
- 2. Let V be a finite dimensional vector space over a field F. Let $B = \{v_1, ..., v_n\}$ be a basis and consider the dual basis $B^* = \{v_1^*, ..., v_n^*\}$.
 - (a) Let $v \in V$. Prove that

$$v = \sum_{i=1}^{n} v_i^* \left(v\right) v_i.$$

(b) Let $\alpha \in V^*$. Prove that

$$v = \sum_{i=1}^{n} \alpha(v_i) v_i^*.$$

- 3. Let V be a vector space. Consider the vector space $W = (V^*)^* = Hom(Hom(V, F), F)$ (the dual of the dual). Consider the map $\theta: V \to (V^*)^*$ given by: $\theta(v)(\alpha) = \alpha(v)$.
 - (a) Prove that θ is a linear transformation.
 - (b) Prove that θ is injective.
 - (c) Prove that if V is finite dimensional then θ is bijective.
- 4. Let V be a f.d vector space. Let $T: V \to V$ be a linear map.
 - (a) Consider the dual map $T^*: V^* \to V^*$. Write the definition of T^* and prove it is linear.
 - (b) Consider an ordered basis $B = (v_1, ..., v_n)$ and its dual basis B^* . Let M_T be the matrix associated with T with respect to B. Let M_{T^*} be the matrix associated with T^* with respect to B^* . Prove that $M_{T^*} = M_T^t$. that is $b_{ij} = a_{ji}$.
 - (c) Consider the dual of the dual $T^{**}:V^{**}\to V^{**}$. Prove that under the isomorphism θ from question 4, $T^{**}=T$.
- 5. Let V be a vector space over F finite dimensional. Let $U\subset V$ and consider the orthogonal complement $U^\perp\subset V^*$
 - (a) Write the complete proof that $\dim U + \dim U^{\perp} = \dim V$.

- (b) Consider the vector space $(U^{\perp})^{\perp} \subset (V^*)^*$. Prove that $\theta: V \to (V^*)^*$ maps U isomorphically onto $(U^{\perp})^{\perp}$. Hint: its enough to prove that θ maps U injectively into $(U^{\perp})^{\perp}$ and that $\dim U = \dim (U^{\perp})^{\perp}$.
- 6. Consider the operation of transpose: $(-)^t: Mat_{m \times n}(F) \to Mat_{n \times m}(F)$.
 - (a) Prove that $(-)^t$ is a linear transformation. Moreover, prove that $(-)^t$ is an isomorphism.
 - (b) Consider the case n = m. Prove that $(A \cdot B)^t = B^t \cdot A^t$.
 - (c) Let $A \in GL_n(F)$. Prove that $(A^{-1})^t = (A^t)^{-1}$. Conclude that A is invertible iff A^t is invertible.
 - (d) Prove that if $A, B \in Mat_{n \times n}$ are similar then A^t, B^t are similar.