

Algorithms and Data Structures

Amortized Analysis

Ulf Leser

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
- This lecture is not covered in [OW93] but in [Cor03]

Setting

- Note: We study a special setting not rare, yet novel here
- We have a sequence Q of operations on a data structure
 - Searching and rearranging a SOL
- Operations are not independent by changing the data structure, cost of subsequent operations is influenced
- A conventional WC-analysis produces misleading results
- Amortized analysis analyzes the complexity of any sequence of operations of length n
 - Or the worst-case average cost of an operation in any sequence
 - This is not the classical average case we do not study an "average" sequence, but the average in any sequence

Example 1: Multi-Pop

- Assume a stack S with a special op: mpop(k)
- mpop(k) pops min(k, |S|) elements from S
- Assume any sequence Q of operations
 - E.g. Q={push,push,mpop(k),push,push,push,mpop(k),...}
- Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k
 - mpop simply calls pop k times
- With |Q|=n: What cost do we expect for Q?
 - Every op in Q costs 1 (push) or 1 (pop) or k (mpop)
 - In the worst case, k can be n (n times push, than one mpop(n))
 - Worst case of a single operation is O(n)
 - Total worst-case cost: O(n²)

Note: Costs only ~2*n

Problem

- Clearly, the cost of Q is in O(n²), but this is not tight
- A simple thought shows: The cost of Q is in O(n)
 - Every element can be popped only once (no matter if this happens through a pop or a mpop)
 - Pushing an element costs 1, popping it costs 1
 - Within Q, we can at most push O(n) elements and, hence, also only pop O(n) elements
 - Thus, the total cost is in O(n)
- We want to derive such a result in a more systematic manner (analyzing SOLs is not that easy)

Example 2: Bit-Counter

We want to generate all bitstrings produced by iteratively

adding 1 n-times, starting from 0

- Q is a sequence of "+1"
- We count as cost of an operation the number of bits we have to flip
- Classical WC analysis
 - Assume bitstrings of length k
 - Roll-over counter if we exceed 2^k-1
 - A single operation can flip up to k bits
 - "1111111" +1
 - Worst case cost for Q: O(k*n)

00000000		
0000001	1	1
0000010	2	3
00000011	1	4
00000100	3	7
00000101	1	8
00000110	2	10
00000111	1	11
00001000	4	15
00001001	1	16
00001010	2	18

Problem

- Again, this complexity is overly pessimistic
- Cost actually is in O(n)
 - The right-most bit is flipped in every operation: cost=n
 - The second-rightmost bit is flipped every second time: n/2
 - The third …: n/4
 - **–** ...
 - Together

$$\sum_{i=0}^{k-1} \frac{n}{2^i} < n * \sum_{i=0}^{\infty} \frac{1}{2^i} = 2 * n$$

- Two Examples
- Two Analysis Methods
 - Accounting Method
 - Potential Method
- Dynamic Tables
- SOL Analysis

Accounting Analysis

- Idea: We create an account for Q
- Every operation deposits or withdraws from the account
- We choose the amounts deposited/withdrawn such that the current state of the account is always (throughout Q) an upper bound of the actual cost of Q
 - Let c_i be the true cost of operation i, d_i its effect on the account
 - We require

$$\forall 1 \le k \le n : \sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} d_i$$

- In particular, the account must never become negative
- It follows: An upper bound for the account is also an upper bound for the true cost

Application to mpop

- Assume $d_{push}=2$, $d_{pop}=0$, $d_{mpop}=0$
- Clearly, the account of any Q can never be zero
- We show that the sum of these costs yields an upper bound on the actual cost
 - Clearly, d_{push} is an upper bound on c_{push} (which is 1)
 - Whenever we push an element, we pay 1 for the actual cost and 1 for the operation that will (at same later time) pop exactly this element
 - It doesn't matter whether this will be in through a pop or a mpop
 - Thus, when it comes to a pop or mpop, there is always enough money on the account (deposited by previous push's)

• This proves:
$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} d_i \le 2 * n \in O(n)$$

Application to Bit-Counter

- Look at the sequence Q' of flips generated by a sequence Q
 - Every +1 corresponds to a sequence of 0-k flip-to-0 and 0-1 flip-to-1
 - There is no "flip to 1" if we roll-over
- Assume d_{flip-to-1}=2 and d_{flip-to-0}=0
 - Clearly, d_{flip-to-1} is an upper bound to c_{flip-to-1}
 - When we flip-to-1, we pay 1 for flipping and 1 for the back-flip-to-0 that might happen at some later time in Q'
 - As we start with only 0 and can backflip any 1 only once, there is always enough money on the account for the flip-to-0's
 - Thus, the account is an upper bound on the actual cost
- As every operation in Q can pay at most 2 (there is at most 1 flip-to-1), Q is in O(n)

- Two Examples
- Two Analysis Methods
 - Accounting Method
 - Potential Method
- Dynamic Tables
- SOL Analysis

Potential Method: Idea

- In the accounting method, we assign a cost to every operation and compare aggregated accounting costs of ops with real costs of ops
- In the potential method, we assign a potential Φ(D) to the data structure D manipulated by Q
- As ops from Q change D, they also change D's potential
- The trick is to design Φ such that we can (again) use it to derive an upper bound on the real cost of Q

Potential Function

- Let D₀, D₁, ... D_n be the states of D when applying Q
- We define the amortized cost d_i of the i'th operation as d_i = c_i + Φ(D_i) – Φ(D_{i-1})
- We derive the amortized cost of Q as

$$\sum_{i=1}^{n} d_{i} = \sum_{i=1}^{n} (c_{i} + \phi(D_{i}) - \phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \phi(D_{n}) - \phi(D_{0})$$

• If we find a Φ such that (a) we get formulas for the amortized costs of all d_i and (b) $\Phi(D_n) \ge \Phi(D_0)$, we have an upper bound for the real costs

Always Pay in Advance

- Operations raise or lower the potential of D
- We need to find a function Φ such that
 - 1: Φ(D_i) depends on a property of D
 - 2: $\Phi(D_n)$ ≥ $\Phi(D_0)$ [and we will always have $\Phi(D_0)$ =0]
 - 3: We can compute $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$ for any possible op
- As within a sequence we do not know its future, we also have to require that Φ(D_i) never is negative
 - Otherwise, the amortized cost of the sequence Q[1-i] is no upper bound in the real costs
- We need to pay in advance

Example: mpop

- We use the number of objects on the stack as its potential
- Then
 - 1: Φ(D_i) depends on a property of D
 - 2: $\Phi(D_0)$ ≥ $\Phi(D_0)$ and $\Phi(D_0)$ =0
 - 3: Compute $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
 - If op is push: $d_i = c_i + 1 = 2$
 - If op is pop: $d_i = c_i 1 = 0$
 - If op is mpop(k): $d_i = c_i k = 0$
- Thus, $2*n \ge \Sigma d_i \ge \Sigma c_i$ and Q is in O(n)

Example: Bit-Counter

- We use the number of "1" in the bitstring as its potential
- Then
 - 1: Φ(D_i) depends on a property of D
 - 2: $\Phi(D_0)$ ≥ $\Phi(D_0)$ and $\Phi(D_0)$ =0
 - 3: Compute $d_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
 - Let the i'th operation incur t_i flip-to-0 and 0 or 1 flip-to-1
 - Thus, $c_i \le t_i + 1$
 - If $\Phi(D_i)=0$, the this op has flipped all positions to 0, and previously they were all 1 and we have $\Phi(D_{i-1})=k$
 - If $\Phi(D_i) > 0$, then $\Phi(D_i) = \Phi(D_{i-1}) t_i + 1$
 - In both cases, we have $\Phi(D_i) \leq \Phi(D_{i-1}) t_i + 1$
 - Thus, $d_i = c_i + \Phi(D_i) \Phi(D_{i-1}) \le (t_i+1) + (\Phi(D_{i-1})-t_i+1) \Phi(D_{i-1}) \le 2$
- Thus, $2*n \ge \Sigma d_i \ge \Sigma c_i$ and Q is in O(n)

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis

Dynamic Tables

- We now use amortized analysis for something more useful: Complexity of operations on a dynamic table
- Assume an array T and a sequence Q of insert/delete ops
- We want to keep the array small, yet avoid overflows
- Method: When inserting and T is full, we double |T|; upon deleting and A is only half-full, we reduce |T| by 50%
 - Actually, deletion will be handled differently later
- Thus, if the i'th operation is a insertion (or deletion), it costs either 1 or i; as i can be up to n, the complexity of insertion is O(n); thus, the complexity of Q is O(n²)
 - Assuming that we copy A to a new location for growing / shrinking

Amortized Analysis with Potential Method

- Let num(T) be the current number of elements in T
- We use potential $\Phi(T) = 2*num(T) |T|$
 - 1: Of course
 - 2: As T is always at least half-full, Φ(T) is always ≥0
 - 2: We start with |T|=0, and thus $Φ(T_n)-Φ(T_0)≥0$
 - Intuitively a potential
 - Immediately before an expansion, num(T)=|T| and $\Phi(T)=|T|$, so there is much potential in T (we saved for the expansion to come)
 - Immediately after an expansion, num(T)=|T|/2 and $\Phi(T)=0$; all potential has been used, we need to save again for the next expansion

Operations

- 3: Let's study $d_i = c_i + \Phi(T_i) \Phi(T_{i-1})$ for insertions
- Without expansion

$$d_{i} = 1 + (2*num(T_{i})-|T_{i}|) - (2*num(T_{i-1})-|T_{i-1}|)$$

$$= 1 + 2*num(T_{i})-2*num(T_{i-1}) - |T_{i}| + |T_{i-1}|$$

$$= 1 + 2 + 0$$

$$= 3$$

With expansion

```
\begin{array}{lll} d_i &= num(T_i) + (2*num(T_i)-|T_i|) - (2*num(T_{i-1})-|T_{i-1}|) \\ &= num(T_i) + 2*num(T_i)-2*(num(T_i)-1) - 2*(num(T_i)-1) \\ &\quad + num(T_i)-1 \\ &= 3*num(T_i) - 2*num(T_i) + 2 - 2*num(T_i) + 2 + num(T_i) - 1 \\ &= 3 \end{array}
```

• Thus, $3*n \ge \Sigma d_i \ge \Sigma c_i$ and Q is in O(n) (for only insertions)

Why 3

- There is an intuitive explanation for the cost of exactly 3
- Think in terms of accounting method
- When we insert an element, we deposit 3 on the account
 - 1 for the insertion (the real cost)
 - 1 for the time when we need to copy this new element at the next expansion
 - These 1's fill the account with |T_i|/2 before the next expansion
 - 1 for one of the |T_i|/2 elements already in A
 - These fill the account with $|T_i|/2$ before the next expansion
- Thus, we have enough credit at the next expansion

Problem: Deletions

- Our strategy for deletions so far is not very clever
 - Assume a table with num(T)=|T|
 - Assume a sequence $Q = \{I,D,I,D,I,D,I...\}$
 - This sequence will perform |T| + |T|/2 + |T| + |T|/2 + ... real ops
 - As |T| is O(n), Q is in O(n²) and not in O(n)
- Simple trick: Do only contract when num(T)=|T|/4
 - Leads to amortized cost of O(n) for any sequence of operations
 - We omit the proof (see [Cor03])

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
 - Goal and idea
 - Preliminaries
 - A short proof

Re-Organization Strategies

- Think of self-organizing lists again
- When searching an element, we change the list L
 - As usual: Accessing the i'th element costs i
- Three popular strategies
 - MF, move-to-front:
 After searching an element e, move e to the front of L
 - T, transpose:
 After searching an element e, swap e with its predecessor in L
 - FC, frequency count:
 Keep an access frequency counter for every element in L and keep
 L sorted by this counter. After searching e, increase counter of e
 and move "up" to keep sorted ness

Notation

- Assume we have a self-organizing strategy A and a sequence S={s_I} of accesses to L
- After an access to element i, A may move i by swapping
 - Swap with predecessor (to-front) or successor (to-back)
 - Let F_A(I) be the number of front-swaps and X_A(I) the number of back-swaps after access number I
 - F_A/X_A for strategy A, F_{MF}/X_{MF} for strategy MF, F_T/X_T ... F_{FC}/X_{FC}
 - Of course, $\forall I: X_{MF}(I) = X_{T}(I) = X_{FC}(I) = 0$
- Let C_A(S) be the total access costs of A incurred by S
 - Again: C_{MF} for strategy MF, C_{T} for T, C_{FC} for FC
- With conventional worst-case analysis, we can only derive that $C_A(S)$ is in $O(|S|^*|L|)$ for any strategy

Theorem

Theorem (Amortized costs)
 Let A be any self-organizing strategy for a SOL L, MF be the move-to-front strategy, and S be a sequence of accesses to L. Then

$$C_{MF}(S) \le 2*C_{A}(S) + X_{A}(S) - F_{A}(S) - |S|$$

- What does this mean?
 - We don't learn more about the absolute complexity of A / MF
 - But we learn that MF is quite good
 - Any strategy following the same constraints (only series of swaps)
 will at best be roughly twice as good as MF
 - Assuming C(S)>>|S| and for |S|→∞: X(S)~F(S) for any strategy
 - Despite its simplicity, MF is a fairly safe bet in whatever circumstances (= sequences)

Idea of the Proof

- We will compare access costs in L using MF and A
- Think of both strategies running S on two copies of the same initial list L
- After each step, A and MF perform different swaps, so all list states except the first very likely are different
- We will compare list states and determine a certain property – the number of inversions ("Fehlstellungen")
 - Actually, we only analyze how the number of inversion changes
- We will show that the number of inversions define a potential of a pair of lists and can be used to derive an upper bound on the differences in real costs

Content of this Lecture

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
 - Goal and idea
 - Preliminaries
 - A short proof

Inversions

- Let L and L' be permutation of the set {1, 2, ..., n}
- Definition
 - A pair (i,j) is called an inversion of L and L' iff i and j are in different order in L than in L' (for $0 \le i,j \le n$ and $i \ne j$)
 - The number of inversions between L and L' is written inv(L, L')
- Remarks
 - Different order: Once i before j, once i after j
 - Obviously, inv(L, L') = inv(L', L)
- Example: inv($\{4,3,1,5,7,2,6\}$, $\{3,6,2,5,1,4,7\}$) = 12
- Without loss of generality, we assume that L={1,...,n}
 - Because we only look at changes in number of inversions and not at the actual set of inversions

Sequences of Changes

- Assume we applied I-1 steps creating L_{MF} using MF and L_A using A
- Let us consider the next step I, creating L_{MF}' and L_A'

Inversion Changes

- How does I change the number of inversions between L_{MF} and L_{A} ; can we compute inv(L_{MF} ', L_{A} ') from inv(L_{MF} , L_{A})?
 - Assume I accesses element i from L_A
 - We may assume it is at position i
 - Let i be at position k in L_{MF}
 - Access in L_A costs i, in L_{MF} it costs k
 - After I, A performs an unknown number of swaps; MF performs exactly k-1 front-swaps

Counting Inversion Changes 1

 Let X_i be the set of values that are before position k in L_{MF} and after position i in L_A

- Le Y_i be the values before position k in L_{MF} and before i in L_A
 - Clearly, $|X_i| + |Y_i| = k-1$
- All pairs (i,c) with c∈X_i are inversions between L_A and L_{MF}
 - There may be more; but only those including i are affected
- After step I, MF moves element i to the front
 - All inversions (i,c) with $c \in X_i$ disappear (there are $|X_i|$ many)
 - But $|Y_i| = k-1-|X_i|$ new inversions appear
- If A did nothing: $inv(L_{MF}', L_{A}') = inv(L_{MF}, L_{A}) |X_i| + k-1-|X_i|$
 - But A is doing something

Counting Inversion Changes 2

In step I, let A perform F_A(i) front-swaps and X_A(i) back-swaps

- Every front-swap (swapping i before j) in L_A decreases inv(L_{MF}',L_A') by 1
 - Before the swap, j must be before i in L_A (it is a front-swap), but after i in L_{MF} (because i now is the first element in L_{MF})
 - After the swap, i is before j in both $L_{A'}$ and $L_{MF'}$
- Equally, every back-swap increases inv(L_{MF}',L_A') by 1
- Together: After step I, we have

$$inv(L_{MF}',L_{A}') = inv(L_{MF},L_{A}) - |X_{i}| + k-1-|X_{i}| - F_{A}(i) + X_{A}(i)$$
Before step I New by MF New by A

Amortized Costs

Was c₁ ... was d₁ ... we switch to OW notation

- Let t₁ be the real costs of strategy MF for step I
- We use the number of inversions $\Phi(L_A, L_{MF}) = inv(L_A^I, L_{MF}^I)$ as the potential function of the pair of data structures L_A , L_{MF}
- Definition
 - The amortized costs of step I, called a_I, are

$$a_{l} = t_{l} + inv(L_{A}^{l}, L_{MF}^{l}) - inv(L_{A}^{l-1}, L_{MF}^{l-1})$$

- Accordingly, the amortized costs of sequence S, |S|=m, are

$$\Sigma a_l = \Sigma t_l + inv(L_A^m, L_{MF}^m) - inv(L_A^0, L_{MF}^0)$$

- This is a proper potential function
 - 1: Φ depends on a property of the pair L_A , L_{MF}
 - 2: inv() can never be negative, so $\Phi(L_A^n, L_{MF}^n) \ge \Phi(L, L) = 0$
- Let's look at how operations change the potential

Content of this Lecture

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL Analysis
 - Goal and idea
 - Preliminaries
 - A short proof (after much preparatory work)

Putting it Together

• We know for every step I from S accessing i: $inv(L_{MF}',L_{A}') = inv(L_{MF},L_{A}) - |X_{i}| + k-1-|X_{i}| - F_{A}(i) + X_{A}(i)$ and thus

$$inv(L_{MF}', L_{A}') - inv(L_{MF}, L_{A}) = -|X_{i}| + k - 1 - |X_{i}| - F_{A}(i) + X_{A}(i)$$

Using the fact that t_i=k for MF, we get amortized costs of

$$a_{l} = t_{l} + inv(L_{A}', L_{MF}') - inv(L_{A}, L_{MF})$$

= $k - |X_{i}| + k - 1 - |X_{i}| - F_{A}(i) + X_{A}(i)$
= $2(k - |X_{i}|) - 1 - F_{A}(i) + X_{A}(i)$

- Recall that $|Y_i|=k-1-|X_i|$ are those elements before i in both lists. This implies that $k-1-|X_i| \le i-1$ or $k-|X_i| \le i$
 - There can be at most i-1 elements before position i in L_A
- Therefore: $a_1 \le 2i 1 F_A(i) + X_A(i)$

Putting it Together

- This is the central trick!
- Because we only looked at inversions (and hence the sequence of values), we can draw a connection between the value that is accessed and the number of inversions that are affected

- Recall that $|Y_i|=k-1-|X_i|$ are those elements before i in both lists. This implies that $k-1-|X_i| \le i-1$ or $k-|X_i| \le i$
 - There can be at most i-1 elements before position in L_A
- Therefore: $a_1 \le 2i 1 F_A(i) + X_A(i)$

Aggregating

- We also know the cost of accessing i using A: that's i
- Together: $a_1 \le 2C_A(i) 1 F_A(i) + X_A(i)$
- Aggregating this inequality over all a_I (hence S), we get $\Sigma a_I \le 2*C_A(S) |S| F_A(S) + X_A(S)$
- By definition, we also have

$$\Sigma a_{l} = \Sigma t_{l} + inv(L_{A}^{m}, L_{MF}^{m}) - inv(L_{A}^{0}, L_{MF}^{0})$$

- Since $\Sigma t_1 = C_{MF}(S)$ and $inv(L_A{}^0, L_{MF}{}^0) = 0$, we get $C_{MF}(S) + inv(L_A{}^m, L_{MF}{}^m) \le 2*C_A(S) |S| F_A(S) + X_A(S)$
- It finally follows (inv()≥0)

$$C_{MF}(S) \le 2*C_{A}(S) - |S| - F_{A}(S) + X_{A}(S)$$

Summary

- Self-organization creates a type of problem we were not confronted with before
 - Things change during program execution
 - But not at random we follow a strategy
- Analysis is none-trivial, but
 - Helped to find a elegant and surprising conjecture
 - Very interesting in itself: We showed relationships between measures we never counted (and could not count easily)
 - Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized efficiency of list update and paging rules." Communications of the ACM 28(2): 202-208.