数据可视化技术

学分及成绩分布

• 要求:考核不通过者需重修。

· 学时: 25学时(4~5天)。

- 最终考核由课堂表现、课堂实践作业、期末考核组合而成,各部分所占比例如下:
 - •1)上课参与程度与出勤率:12%(自律能力与事情规划能力)
 - 2) 课堂实践作业:48%(现场学习能力与实践动手能力)
 - 3) 期末考核: 40%(主要考核对课程所有知识点的掌握程度、问题分析能力、问题解决能力)。

考核形式与内容

· 期末考核形式: 大作业答辩;

• 期末考核内容:用可视化方法将一件事物清晰地描述出来。

• 所需提交材料:可视化作品(图集、动态图表、视频均可)+讲解稿(PPT、Word均可)。

示例

用可视化方法将一件事物清晰地描述出来;主题自选。

技能列表

- 逻辑抽象能力
- 可视化编码方法
- 可视化呈现工具

挑战一下:逻辑抽象

• 带着如下两个问题阅读一段材料:

- 问题—:
 - 下面一段文字描述的现象与情景, 你在生活中有过类似体验吗?
- 问题二:
 - 下面的一段文字体现了哪些大数据术语或技术?

材料-人与数据

•每个人的见闻与学识都有局限,要想打破局限,须从内心发力, 主动交流、探索、思考,但是人的所知与未知,永远有一个边界, 你所知越多,这个知识边界就越长,这时你甚至会忘了你的全部 所知都详细包含什么,直到与他人交流的时候,你会根据自己的 已知,组织思路和语言去表达,然后你又重新发现和应用了自己 的所知,甚至能在交流和表达的过程中,根据你的已知发现新知, 亦或重新发现了哪些是自己的未知。

材料-人与数据

•每个人的见闻与学识都有局限,要想打破局限,须从内心发力, 主动交流、探索、思考,但是人的所知与未知,永远有一个边界, 你所知越多,这个知识边界就越长,这时你甚至会忘了你的全部 所知都详细包含什么,直到与他人交流的时候,你会根据自己的 已知,组织思路和语言去表达,然后你又重新发现和应用了自己 的所知,甚至能在交流和表达的过程中,根据你的已知发现新知, 亦或重新发现了哪些是自己的未知。

TED演讲

流程:

- 1.背景引出问题
- 2.提出解决方案
- 3.展示解决过程
- 4.分享解决结果

(可类比硕士论 文写作流程)

注意:数据的可

视化映射

数据科学的方法和流程

课堂主要讲解内容

- 可视化编码方法:
 - 标记和视觉通道(理论基础)
 - 格式塔理论(理论基础)
 - 奥卡姆剃刀原理(理论基础)
 - 简单的数据源处理、数据的统计与预测(实践操作)
 - 数据图表的优化(实践操作)
 - 常用的统计图表绘制与优化(实践操作)
 - 绘制动态图表和加入视觉隐喻的图表(实践操作)
- 可视化呈现工具:
 - Excel 2016等

分组与作业提交

- 同一小组坐一起方便讨论和实践操作成绩统计;
- 课堂练习的实践作业数据表严格按要求命名
 - 命名为"学号-姓名-初始实践数据表名称";
- 学习过程中确定期末大作业主题。

课堂练习的实践作业数据表命名示例

初始实践数据表命名

- 1.数据源处理 () .xlsx
- 2.数据源处理(二).xlsx
- 3.数据统计.xlsx
- 4.数据预测.xlsx
- 5.可视化元素应用.xlsx
- 6.数据与图表优化.xlsx
- 7.柱状图与条形图优化.xlsx
- 8.复杂柱状图或条形图.xlsx
- ☑ 9.折线图.xlsx
- 10.併图.xlsx
- 11散点图和气泡图.xlsx
- 12.特殊图.xlsx
- 13.动态图表.xlsx
- 14.可视化隐喻.xlsx

提交时实践数据表命名

- 図 ZF1721102-白玉廷-1.数据源处理(一).xlsx
- ZF1721102-白玉廷-2.数据源处理(二).xlsx
- 図 ZF1721102-白玉廷-3.数据统计.xlsx
- ZF1721102-白玉廷-4.数据预测.xlsx
- ZF1721102-白玉廷-5.可视化元素应用.xlsx
- 図 ZF1721102-白玉廷-6.数据与图表优化.xlsx
- 図 ZF1721102-白玉廷-7.柱状图与条形图优化.xlsx
- ☑ ZF1721102-白玉廷-8.复杂柱状图或条形图.xlsx
- ☑ ZF1721102-白玉廷-9.折线图.xlsx
- 図 ZF1721102-白玉廷-10.饼图.xlsx
- 図 ZF1721102-白玉廷-11.散点图和气泡图.xlsx
- 図 ZF1721102-白玉廷-12.特殊图.xlsx
- 図 ZF1721102-白玉廷-13.动态图表.xlsx
- 図 ZF1721102-白玉廷-14.可视化隐喻.xlsx

祝学习愉快,学以致用!

数据可视化技术基础(一)

```
提炼(排序、筛选、分类汇总)
抽样(周期抽样、随机抽样、随机抽样优化)
     集中趋势度量(平均数、中位数、众数)
• 数据统计 离中趋势度量(标准差、变异系数、方差)
       数据分布特征(概率密度函数、积累分布函数)
•数据预测(移动平均法预测、指数平滑法预测、一元线性回归预测)
```

数据可视化技术基础(二)

「标记(点、线、面、体) • 标记与视觉通道 | 视觉通道(标记的颜色、大小、长短、角度、位置)

视觉通道的表现力(精确性、可辨认性、可分离性、视觉突出)

「 突出显示(突出显示单元格、项目选取规则) • 可视化元素应用 \ 视觉通道(数据条、色阶) 综合应用(图标集、迷你图)

• 数据与图表优化 — 数据优化(数据单位、负值对比、日期格式) 图表优化(行列位置、数据量、关键字顺序)

标记与视觉通道

标记:

数据属性到可视化图形元素的映射,用于直观代表数据的性质分类; 常见的有点、线、面、体等;

视觉通道:

数据属性的值到标记的视觉表现属性的映射,用于展现数据属性的定量信息,常见的有标记的颜色、长短、大小、形状、空间位置等。

什么标记?什么通道?

柱状图

- 标记: 平面上的矩形

- 通道: x 坐标位置,

矩形的高度

散点图

- 标记: 平面上的圆形

- 通道: 圆心x,y 坐标位置, 圆形的色彩, 圆形的半径

从可视编码的角度分析

• 依标记类型,可分为

点

- 散点图

线

- 折线图

区域

- 柱状\ 饼状图

复合类型

- 盒须图

柱形图与条形图

标记:矩形

· 必备的视觉通道: 矩形的高度与x 坐标次序

• 常见的视觉通道: **色彩、纹理、y 坐标绝对位置**

· 适用场景: 小规模数据集中,显示各个数据大小、突出系列之间数值差别,等。

内容导览

• 六种优化:

- 零基线
- 条间距
- 网格线
- 图例
- 颜色填充
- 刻度线

• 三个变种:

- 三维柱状图 (三维锥状图)
- 簇状堆叠柱形图
- 并列对称条形图

折线图

标记:折线

• 必备的视觉通道:拐点的x,y坐标

· 常见的视觉通道: **色彩、宽度、形态(虚实,箭头等)**

通常情况下可供发挥的空间相当有限。

· 适用场景:**显示有序的变化趋势、多个类别的趋势对比,等**。

45度角原则:微观

• 夹角相等的两条线段,当它们 平均绝对角度为45°时能够最大程度被区分。

内容导览

- 坐标系优化:
 - 坐标轴刻度
 - 日期格式
 - 坐标刻度标签位置
 - 对比线
- 标记元素优化:
 - 突出显示数据点
 - 减少折线条数
 - 增加柱形图
 - 增加面积图

饼图

标记:扇形面

• 必备的视觉通道:扇形所对应的弧度

· 常见的视觉通道: **色彩、纹理、半径等。**

· 适用场景: 一个数据系列中,显示各项大小与其总体的比例、数据集中无负值,等。

内容导览

- 两种优化:
 - 扇区位置
 - 颜色填充
- 六个变种:
 - 分离饼图
 - 半饼图
 - 复合饼图
 - 叠饼图
 - 环饼图
 - 雷达图

散点图

•标记:**点**

• 必备的视觉通道: x,y 坐标

· 常见的视觉通道: 大小、色彩、形状(X\O\.)

· 适用场景: 大量数据点、看数值分布和分簇状态,等。

内容导览

- 标记元素优化:
 - 加连线
 - 加趋势线
 - 气泡图
 - 复合散点图
- 坐标系优化:
 - 刻度
 - 均匀坐标刻度
 - 不均匀坐标刻度
 - 坐标刻度标签
 - 坐标轴
 - 平移
 - 转置

箱须图(Box Plot)

- 标记:
 - ・矩 形 (用于编码lower quartile 与upper quartile) ,
 - ・点(用于编码最大\最小值\中值),
 - ・线(用于编码最大\最小值之间的范围)。
- 必备的视觉通道:
 - ·矩 形与点的y 坐标位置与x 坐标次序, 矩形的高度
- 常见的视觉通道:
 - ・矩形的形状
- 适用场景:用于表示数据的分布。

箱须图(Box Plot)

箱须图(Box Plot)

• 几种变形

特殊图表内容导览

• 瀑布图:显示单个系列的变动情况

• 甘特图:管理项目

• 断层图:显示差距较大的数据

• 子弹图:显示数据优劣

• 温度计图:展示工作进度

• 滑珠图:对比不同系列的数值差异

•漏斗图:进行业务流程的差异分析

动态图表内容导览

- 数据透视表:透视数据库的交互式报表
- 日期字段:组合透视表中的日期字段
- 横向切片器:使用横向切片器筛选数据
- 值字段:值字段让你的透视表变化万千
- 透视图:比透视表更加直观的透视图

可视化隐喻内容导览

- 透明度:不要让颜色的透明度影响信息的表达
- 背景图片: 在图表区填充恰如其分的图片
- 象形图:用象形图替代图表中的数据系列
- 手绘图: 手动绘制图形展现更生动的信息
- 图标优化:不要用缩放不一致的图标表示数据大小
- SmartArt 图形:巧用 SmartArt 图形表示文本信息

格式塔(gestalt)原则

最基本的法则:简单精炼法则

结构比元素重要(整体不等于部分的和)

看到的比实际多

看到的比实际多

贴近原则(Proximiy)

相似原则(Similarly)

连续原则(Continuity)

闭合原则 (Closure)

共势原则(Common fate)

look at me, follow me, read me!

好图原则(Good figure)

对称性原则(Symmetry)

经验原则 (Past experience)

奥卡姆剃刀(Occam's Razor)原则

简单有效原理:如无必要,勿增实体。

切勿浪费较多东西去做,用较少的东西,同样可以做好的事情。

谢谢!