数据结构与算法B 15-拓扑排序与关键路径

目录

- 15.1 拓扑排序算法
- 15.2 关键路径

15.1 拓扑排序算法

- 具有先后次序的流程的问题,通常可以用图来建模
- 下图展示了制作一批早餐松饼的流程
 - 关键在于,确定一个活动的执行顺序
 - 活动顺序不唯一,例如可以先加热平底锅,也可以先准备原材料

- 大学的课程培养方案也涉及拓扑排序问题
 - 部分课程具有先修课要求
 - 学生必须修读要求的全部课程,因而需要自行决定修读的顺序
- 其他的拓扑排序例子包括软件项目调度、优化数据库查询的优先级表等等

拓扑排序问题

- 在有向图中,用顶点代表活动,有向边代表活动间的先后关系,则该有向图称为顶点活动图(AOV网,Activity on Vertex Network)
- 对于一个AOV网 G = (V, E),其拓扑排序是 G 中所有结点的一种线性次序,满足如下条件
 - 如果图 G 包含边 <u, v>,则顶点 u 在拓扑排序中处于顶点 v 的前面
- 对于有向无环图(Directed Acyclic Graph, DAG),一定存在拓扑排序,如果图中存在环,则不存在拓扑排序,算法应该识别环的存在。

拓扑排序算法

- 直观的思路:不断查看图中是否存在可以立即完成的活动,如果存在就进行该活动
- 对应到图中:
 - 从AOV 网中选择一个入度为 0 的顶点,将其输出到拓扑排序序列中
 - 从AOV 网中删除此顶点,以及该顶点的所有出边
- 反复执行以上两步,直到:
 - 所有顶点都已经输出,此时拓扑排序已经完成
 - 或者,剩下的顶点入度都不为0,此时说明AOV网中存在回路,拓 扑排序无法进行

- 对如下图进行拓扑排序
 - 当前入度为 0 的结点: [高等数学,程序语言]
 - 拓扑排序序列:[]

- 对如下图进行拓扑排序
 - 当前入度为0的结点:[程序语言,普通物理]
 - 拓扑排序序列:[高等数学]

- 对如下图进行拓扑排序
 - 当前入度为0的结点:[普通物理,离散数学,算法设计]
 - 拓扑排序序列:[高等数学,程序语言]

- 对如下图进行拓扑排序
 - 当前入度为0的结点: [离散数学, 算法设计, 计算机原理]
 - 拓扑排序序列:[高等数学,程序语言,普通物理]

- 对如下图进行拓扑排序
 - 当前入度为0的结点: [算法设计, 计算机原理, 数据结构]
 - 拓扑排序序列:[高等数学,程序语言,普通物理,离散数学]

- 对如下图进行拓扑排序
 - 当前入度为0的结点:[计算机原理,数据结构]
- 拓扑排序序列:[高等数学,程序语言,普通物理,离散数学,算法设计]

- 对如下图进行拓扑排序
 - 当前入度为0的结点: [数据结构]
 - 拓扑排序序列:[高等数学,程序语言,普通物理,离散数学,算法设计,计算机原理]

- 对如下图进行拓扑排序
 - 当前入度为0的结点: [编译原理,操作系统]
 - 拓扑排序序列:[高等数学,程序语言,普通物理,离散数学,算法设计,计算机原理,数据结构]

编译原理

操作系统

- 对如下图进行拓扑排序
 - 当前入度为0的结点: [操作系统]
 - 拓扑排序序列:[高等数学,程序语言,普通物理,离散数学,算法设计,计算机原理,数据结构,编译原理]

操作系统

- 对如下图进行拓扑排序
 - 当前入度为0的结点:[]
 - 拓扑排序序列:[高等数学,程序语言,普通物理,离散数学,算法设计,计算机原理,数据结构,编译原理,操作系统]

拓扑排序算法的时间复杂度

- 记 n = |V|, e = |E|, 拓扑排序算法的主要代价包括:
 - 初始时维护所有结点的度数,代价为O(n+e)
 - 每条边会被处理一次, 代价为 O(e)
 - 每个顶点会被添加到队列中,并输出到结果序列中,代价为O(n)
- 因此, 拓扑排序算法的时间复杂度为 O(n+e)

15.2 关键路径

- 拓扑排序将 AOV 网络转化为可以顺序执行的线性序列
- 而现实场景中,先后次序无关的多个活动往往是可以同时进行的,完成不同活动所需的时间也往往不同
 - 此时,适合使用边活动图(AOE 网, Activity on Edge Network)
 - 顶点表示事件,边代表活动,边权代表活动所需的时间
 - 例如, V_0 表示起始, V_1 表示活动 a_0 结束, V_8 表示全部活动结束

- 我们的目标是使整个工程尽快完成,即回答以下问题
- 1. 每个事件最早可以在什么时间发生?
- 2. 整个工程最早可以在什么时间完成?
 - 所有的事件都发生了就代表着完成了整个工程。因此,所有事件最早发生时间的最大值即为工程的最早完成时间

- 3. 每个事件最晚可以在什么时间发生?
 - 有的事件,并不是可以发生了就必须立即发生;将其推迟一些发生, 也可以不影响整体的工期

- 3. 每个事件最晚可以在什么时间发生?
 - 有的事件,并不是可以发生了就必须立即发生;将其推迟一些发生, 也可以不影响整体的工期
 - 例如事件 V_2 ,最早发生时间为 5,但实际上可以将活动 a_1 推迟,使 V_2 在 7 时刻发生,而不影响工程的最早完成时间

关键活动

- 4. 哪些活动是关键活动?
 - 活动的最早开始时间 = 起点事件的最早发生时间
 - 活动的最晚开始时间=终点事件的最晚发生时间—活动时长
- 最早开始时间与最晚开始时间相等的活动, 称为工程的关键活动
- 关键活动不得推迟,否则将导致整个工期的延长

关键路径

- 5. 求出关键路径
 - 关键路径是 AOE 网络上权值之和最大的路径,即最长路径
 - 关键路径上的活动都是关键活动
 - 关键路径可能不唯一。因此,即便减少了某一条关键路径上活动的 耗时,并不一定导致工程提前完成

- 关键路径算法的主要思想为,借助拓扑排序,求出每个事件的最早与最晚发生时间,进而确定关键活动与关键路径。
- 为了求出所有事件 V_i 的最早发生时间 earliest[i]:
 - 首先将所有 earliest[i] 都初始为 0
 - 对AOE 网络进行拓扑排序
 - 按拓扑排序序列的顺序,更新事件的 earliest 值
 - 对于顶点 V_i ,考察所有出边 $< V_i, V_i >$ 即相应的权值 W_{ij}
 - 由于 V_i 最早在 earliest[i] 发生,因此 V_j 最早在 earliest[i] + W_{ij} 发生
 - 执行 earliest[j] = $max(earliest[j], earliest[i] + W_{ij})$

- 为了求出所有事件 V_i 的最晚发生时间 latest[i]:
 - 首先将所有 latest[i] 都初始为工程的最早完成时间,即所有 earliest 值的最大值
 - 对AOE 网络进行拓扑排序
 - 按拓扑排序序列的逆序,更新事件的 latest 值
 - 对于顶点 V_i ,考察所有出边 $< V_i, V_j >$ 即相应的权值 W_{ij}
 - 由于 V_j 需要在 latest[j] 之前发生,因此 V_i 最晚需要在 latest[j] W_{ij} 之前发生
 - 执行 earliest[i] = min(earliest[i], earliest[j] W_{ij})
- 然后,基于 earliest 值与 latest 值求出每个活动的最早和最晚开始时间,确认关键活动与关键路径
- 算法的时间复杂度为 O(n+e)

事件	$\mathbf{V_0}$	V_1	$\mathbf{V_2}$	V_3	V_4	V_5	V_6	V_7	$\overline{\mathrm{V_8}}$
最早发生时间	0	7	5	6	9	9	19	17	22
最晚发生时间	0	7	7	9	9	12	19	17	22

 活动	$\mathbf{a_0}$	\mathbf{a}_1	$\mathbf{a_2}$	a ₃	a ₄	a ₅	a ₆	a ₇	$\mathbf{a_8}$	a ₉	a ₁₀
最早开始时间	0	0	0	7	5	6	9	9	9	19	17
最晚开始时间	0	2	3	7	7	9	9	9	12	19	17

