Manual de Bolso da Unificação Escalar de Niéter

Interação / Fenômeno	Regime Cf	Fórmula Escalar	Resultado Físico
Gravidade (Newton)	$Cf_j, Cf_k \ll Cf_{\max}$	$\Lambda(r) = \frac{2GM}{r}, F = \int \Lambda(r) \frac{m_1 m_2}{r^2} d^3x$	$F \approx G m_1 m_2 / r^2$
Eletromagnetismo (Coulomb)	óptico/rádio	Somatório com corte espectral $\propto 1/r^2$	$F \propto q_1 q_2/r^2$
Força Forte (Yukawa)	$Cf \sim 10^{23} \mathrm{s}^{-1}$	$V(r) \propto e^{-\mu r}/r$	Confinamento $\propto e^{-\mu r}/r$
Força Fraca	$Cf \sim 10^{25} \mathrm{s}^{-1}$	Supressão curta $\propto e^{-M_W r}/r$	Decaimentos β
Casimir / Van der Waals	Modos permitidos/proibidos	$F(d) = -\partial_d \int_{\text{modos}} \Lambda dV \sim -1/d^4$	$F \propto -1/d^4$
Espectro Atômico (H)	$Cf_n \sim n\pi/a_0$	Zeros de Bessel $\to E_n \propto (Cf_n)^2 \sim 1/n^2$	$E_n \propto 1/n^2$
Massa de Férmions	$\phi(x) = Cf(x)$	$m(\phi) = g \phi(x)$	massa dinâmica $m \propto Cf$
Energia Escura	$\Lambda_{ m int} < \Lambda_{ m ext}$	Gradiente $\Delta\Lambda \to \text{press\~ao}$	Expansão acelerada
Matéria Escura	Modos pouco acoplados	Modos ocultos somados em larga escala	Efeito gravitacional sem luz
Buracos Negros	$Cf \to \infty$ (núcleo)	Loop de distorções infinitas: $\Lambda_{\rm BH} \sim \sum_i \frac{2GM_i}{ {\bf r}-{\bf r}_i }$	Horizonte como contenção escalar

Exemplo de Redistribuição Contínua de Energia

Suponha uma onda de distorção de frequência Cf_1 em um campo dominante Cf_2 . A onda Cf_1 é compactada, acumulando energia internamente e crescendo de densidade para um observador interno, enquanto, de fora, a bolha mantém-se estável em tamanho.