AGENTE CONVERSACIONAL PARA INTERAÇÃO APRIMORADA EM SISTEMAS

Artigo em produção - Checklist de produção

☐ Edição do artigo
☐ Aplicar ABNT
☐ Aplicar formatação da SATC
□ Escrita
□ Resumo
☐ Revisão após finalizar o artigo
☑ Introdução (preciso de umas referências)
☐ Material e métodos
\boxtimes Abordagem geral
☐ Procedimento experimental de cada alternativa
☐ Resultados e discussão
☐ Considerações finais
□ Referências
☐ Formatar ABNT

Lucas de Castro Zanoni¹

Thyerri Fernandes Mezzari²

Resumo: Este trabalho apresenta o desenvolvimento de um agente conversacional baseado em inteligência artificial para aprimorar a interação entre usuários e sistemas. Utilizando técnicas avançadas de processamento de linguagem natural, o agente proposto visa simplificar a comunicação em interfaces complexas, proporcionando uma experiência digital unificada e adaptável às necessidades dos usuários. A metodologia inclui o desenvolvimento, implementação e avaliação do agente em ambientes reais de uso. Os resultados demonstram que a solução proposta contribui significativamente para a melhoria da acessibilidade e usabilidade dos sistemas, reduzindo barreiras de interação e promovendo uma comunicação mais fluida e intuitiva.

Palavras-chaves: agente conversacional, interação, sistema, inteligência artificial.

 $^{^1{\}rm Graduando}$ em Engenharia de software no semestre letivo de 2024-2. E-mail: castro.lucas
290@gmail.com

²Professor do Centro Universitário UniSATC E-mail: thyerri.mezzari@satc.edu.br

1 INTRODUÇÃO

A evolução das interfaces de usuário tem gerado uma diversidade de padrões de design e usabilidade, resultando frequentemente em barreiras para a plena acessibilidade e interação dos usuários com os sistemas digitais. Com o aumento da complexidade do frontend e a multiplicidade de paradigmas de interação, muitos usuários enfrentam dificuldades significativas para utilizar efetivamente as funcionalidades oferecidas pelos sistemas computacionais modernos (Rapp et al. 2018) (Kocaballi et al. 2019).

Nesse cenário, os agentes conversacionais baseados em inteligência artificial emergem como uma alternativa promissora para simplificar a comunicação entre humanos e máquinas, oferecendo uma camada intermediária de interação que pode traduzir comandos em linguagem natural para ações específicas no sistema.

Estudos recentes têm demonstrado que agentes conversacionais podem aprimorar significativamente a experiência do usuário ao simplificar interações com sistemas complexos (Fast et al. 2017). Além disso, a implementação de interfaces baseadas em linguagem natural tem mostrado potencial para melhorar a usabilidade em contextos domésticos e inteligentes, reduzindo o tempo e o esforço necessários para completar tarefas complexas (Guo et al. 2024). Ademais, tais interfaces oferecem vantagens consideráveis em termos de acessibilidade, permitindo uma comunicação mais inclusiva e adaptável a usuários com diferentes necessidades especiais (Lister et al. 2020) (Deng 2023).

A problemática central desta pesquisa reside na questão: de que forma um agente conversacional baseado em IA pode potencializar a interação entre usuários e sistemas, promovendo uma comunicação fluida mesmo em ambientes com interfaces complexas? Essa pergunta reflete a necessidade crescente de soluções que democratizem o acesso à tecnologia, reduzindo a curva de aprendizado necessária para a utilização de sistemas especializados e tornando-os mais acessíveis para diferentes perfis de usuários.

Adicionalmente, trabalhos recentes indicam que avanços na arquitetura de modelos de IA, como o uso de transformers sem camadas de normalização, podem influenciar positivamente o desempenho e a eficiência desses agentes (Zhu et al. 2025).

A relevância deste estudo evidencia-se pelo potencial transformador que os agentes conversacionais representam para a área de interação humano-computador. Ao implementar um sistema intermediário capaz de interpretar linguagem natural e traduzi-la em ações específicas dentro de um sistema, cria-se uma ponte que permite aos usuários interagir de forma mais intuitiva e natural com as tecnologias digitais. Esta abordagem tem o potencial de mitigar as barreiras impostas por interfaces complexas, contribuindo para uma maior inclusão digital e para a melhoria da experiência do usuário em diversos contextos de aplicação.

2 PROCEDIMENTO EXPERIMENTAL

Este trabalho adota uma abordagem metodológica estruturada em múltiplas etapas para investigar e avaliar diferentes métodos de integração entre agentes conversacionais baseados em LLMs (Large Language Models) e sistemas computacionais. A pesquisa se desenvolve através de uma análise comparativa de quatro abordagens distintas de integração, cada uma com suas características, vantagens e limitações específicas.

O processo investigativo inicia-se com uma revisão sistemática da literatura sobre integrações entre LLMs e sistemas, estabelecendo uma base teórica sólida para a análise subsequente. Em seguida, são exploradas quatro abordagens principais de integração: (1) conexão direta com banco de dados, permitindo consultas e manipulações diretas; (2) integração via plugins ORM, facilitando o acesso através de camadas de abstração existentes; (3) integração via API/Swagger, utilizando interfaces padronizadas de comunicação; e (4) integração via Model Context Protocol (MCP), explorando um paradigma emergente de comunicação entre LLMs e sistemas.

Para cada abordagem, será desenvolvida uma prova de conceito que demonstre sua viabilidade técnica e permita uma avaliação objetiva de seus aspectos funcionais e não-funcionais. A avaliação seguirá critérios predefinidos, incluindo desempenho, segurança, facilidade de implementação, manutenibilidade e experiência do usuário. Os resultados serão documentados e analisados de forma sistemática, permitindo uma comparação objetiva entre as diferentes abordagens.

2.1 MATERIAIS

Esta seção deve indicar os recursos utilizados para realizar a pesquisa. Deve, portanto, apresentar os materiais utilizados na pesquisa o tamanho da amostra e como ela foi determinada.

2.2 MÉTODOS

Em métodos deve ter uma explicação minuciosa, detalhada, rigorosa e exata de toda ação desenvolvida no método (caminho) do trabalho de pesquisa. É necessário descrever quais equipamentos serão utilizados e todo o procedimento experimental.

É a explicação do tipo de pesquisa, do instrumental utilizado (softwares, equipamentos, questionários, entrevistas, etc.), do tempo previsto, do laboratório, das formas de tabulação e tratamento dos dados, enfim, de tudo aquilo que se utilizou ou será utilizado no trabalho.

A seguir regras de formatação para o desenvolvimento do artigo:

É de extrema importância realizar uma pesquisa bibliográfica, do tema a ser estudado, baseada em periódicos nacionais e internacionais (artigos, anais de congressos, revistas especializadas) e também em livros, teses e dissertações para direcionar os procedimentos experimentais adotados e os resultados e discussões obtidos. Essas referências deveram ser citadas ao longo do artigo.

É importante compreender que cópias de trechos deverão ser feitas de acordo com as normas da ABNT, ou seja: citações diretas e/ou indiretas, curtas e/ou longas. Cópia de trechos e/ou na íntegra sem os devidos créditos é considerado plágio (lei nº 9.610, de 19.02.98, que altera, atualiza e consolida a legislação sobre direitos autorais). Não se esqueça de nomear a seção.

3 RESULTADOS E DISCUSSÕES

Nos Resultados e Discussões, deve-se apresentar os resultados obtidos no Procedimento Experimental e fazer uma discussão e análise sobre os mesmos sempre que possível referenciando a literatura pesquisada.

4 CONSIDERAÇÕES FINAIS

Etapa esta que servirá para você evidenciar as conquistas alcançadas com o estudo e indicar as limitações e as reconsiderações. Além disso, você poderá apontar a relação entre fatos verificados e teoria e mostrar a contribuição da pesquisa para o meio acadêmico, empresarial e/ou para o desenvolvimento da ciência e tecnologia. Além disso, você poderá sugerir temas complementares a sua pesquisa para estudos futuros. Responda aqui a sua pergunta-problema de pesquisa.

REFERÊNCIAS

- Deng, Xiang. 2023. "A More Accessible Web with Natural Language Interface." Proceedings of the 20th International Web for All Conference. https://api.semanticscholar.org/CorpusID:258259387.
- Fast, Ethan, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael Bernstein. 2017. "Iris: A Conversational Agent for Complex Tasks." https://arxiv.org/abs/1707.05015.
- Guo, Siqi, Minsoo Choi, Dominic Kao, and Christos Mousas. 2024. "Collaborating with My Doppelgänger: The Effects of Self-Similar Appearance and Voice of a Virtual Character During a Jigsaw Puzzle Co-Solving Task." In Proceedings of the ACM on Computer Graphics and Interactive Techniques. Vol. 7. 1. https://www.researchgate.net/publication/335223260_The_E ffects_of_Continuous_Conversation_and_Task_Complexity_on_Usability_of_an_AI-Based_Conversational_Agent_in_Smart_Home_Environ ments.
- Kocaballi, Ahmet Baki, Juan Carlos Quiroz, Dana Rezazadegan, Shlomo Berkovsky, Farah Magrabi, Enrico Coiera, and Liliana Laranjo. 2019. "The Personalization of Conversational Agents in Health Care: Systematic Review." *J Med Internet Res* 21 (11): e15360. https://doi.org/10.2196/15360.
- Lister, Kate, Tim Coughlan, Francisco Iniesto, Nick Freear, and Peter Devine. 2020. "Accessible Conversational User Interfaces: Considerations for Design." Proceedings of the 17th International Web for All Conference. https://api.semanticscholar.org/CorpusID:218539971.
- Rapp, Amon, Federica Cena, Romina Castaldo, Roberto Keller, and Maurizio Tirassa. 2018. "Designing Technology for Spatial Needs: Routines, Control

and Social Competences of People with Autism." International Journal of Human-Computer Studies 120: 49–65. https://doi.org/https://doi.org/10.1016/j.ijhcs.2018.07.005.

Zhu, Jiachen, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. 2025. "Transformers Without Normalization." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.