Lecture #1 Notes Summary

Prepared by Laurence Davies

Topics Covered

	Page
Introduction I	1
Historical Example: Lunes II	2

Introduction I

There are three main parts to this course:

- 1. Geometry (extra Euclidean geometry)
 - Centres of triangles (mean, circumcentre, and so on)
 - Circles
- 2. Transformations in geometry
 - (Rotations, reflections, glide reflections, similarities)
- 3. Groups (abstract algebra)
 - e.g. Groups of symmetries:

Consider the reflective symmetries of an equilateral triangle.

• There will also be material on freeze groups and wallpaper groups.

Historical Example: Lunes II

Please see the handout on Hippocrates Lunes (450BC). Find a square with the same area as a curved lune.

Examine areas A, B, C and D. This example will show that C = A + B and hence the area of the lune A + D + B = C + D which is the area of the triangle $\frac{1}{2} \times base \times height$.

Consider the Pythagorean relationship $c^2 = a^2 + b^2$.

The relationship between an area and the corresponding chord length is a quadrature i.e. $A = \lambda a^2$ where λ is the same for all three segments.