ELECTRÓNICA ANALÓGICA. 2º CURSO ING. TELECOMUNICACIÓN EXAMEN PARCIAL. FEBRERO 2009

- 1. En circuito de la figura, los transistores tienen $|V_{BE}| = 0.7 \text{ V y } V_A = 200 \text{ V}.$
 - a. Construya una tabla con los valores de las corrientes de polarización de los transistores así como g_m y r_0 de los transistores Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , y r_0 para Q_C , Q_D y Q_G (suponga despreciable el efecto Early y las corrientes de base).
 - b. Suponiendo β =100, calcule la ganancia $v_0/(v_+-v_-)$ y la resistencia de entrada.
 - c. Calcule el rango de entrada en modo común para garantizar la operación lineal.
 - d. Calcule el rango de salida (suponga V_{CEsat}=0.3 V)

- 2. La figura muestra un amplificador MOSFET de dos etapas.
 - a. Estime el ancho de banda si R = 50 k Ω , g_m = 6 mA/V, R_D = 5 k Ω , y C_{gs} = 3 pF y C_{gd} = 4 pF.
 - b. ¿Cuál es la ganancia en tensión a frecuencias medias cuando la salida es diferencial?
 - c. ¿Qué efecto tiene la reducción de la resistencia del generador de señal R sobre el ancho de banda?

