<u>Codebook</u>:

The Global Resources Dataset

Version 1.1 October 8, 2022

When using these data, please cite them as:

Denly, Michael, Michael Findley, Joelean Hall, Andrew Stravers, and James Igoe Walsh. 2022. "Do Natural Resources Really Cause Civil Conflict? Evidence from the New Global Resources Dataset." *Journal of Conflict Resolution* 66(3): 387-412.

¹ Research Fellow, Institute for Advanced Study in Toulouse. michael.denly@iast.fr

² Erwin Centennial Professor of Government, University of Texas at Austin, mikefindley@utexas.edu

³ M.A. Student, Technical University of Munich, jolynnhall15@gmail.com

⁴ Fellow, Clements Center for National Security, University of Texas at Austin, stravers@utexas.edu

⁵ Professor of Political Science, University of North Carolina at Charlotte, jwalsh@uncc.edu

Table of Contents

Ta	able of Contents	2
1	Overview	5
2	Coding Process	5
3	Frequently Asked Questions	5
4	Variables	7
	4.1 resource	7
	4.2 country	12
	4.3 year	16
	4.4 COW_code	16
	4.5 gwno	16
	4.6 wb_ccode	16
	4.7 region_wb	16
	4.8 continent	17
	4.9 gid	17
	4.10 gid_centroid_latitude	17
	4.11 gid_centroid_longitude	17
	4.12 standard_measure	17
	4.13 comtrade_unit	18
	4.14 wb_unit	18
	4.15 usgs_unit	18
	4.16 multicolour_unit	18
	4.17 APIforoil	19
	4.18 SGforoil	19
	4.19 density	20

4.20	heat_content	20
4.21	specific_surface_area	20
4.22	locationname	21
4.23	mineownership	21
4.24	minetype	22
4.25	admin1	22
4.26	admin2	23
4.27	latitude	23
4.28	longtitude	23
4.29	precisioncode	23
4.30	comtrade_price_mult	24
4.31	wb_price_mult	24
4.32	usgs_price_mult	24
4.33	$multicolour_price_mult $	25
4.34	$multiplier_comtrade \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	25
4.35	$multiplier_wb \dots $	25
4.36	$multiplier_usgs \dots \dots \dots \dots \dots \dots \dots \dots \dots $	26
4.37	$multiplier_multicolour \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	26
4.38	annual allocation capacity	26
4.39	exp_annual_value_location1	26
4.40	exp_annual_value_location2	27
4.41	$wd_annual_value_location 1 \ \dots \dots$	27
4.42	wd_annual_value_location2	27
4.43	comtrade_value	28
4.44	wb_value	28
4.45	usgs_value	28
4.46	world_val_nomc	28
4 47	world val withme	28

	4.48 lootable	29
5	Resource Price Data Availability	29
6	Contact	40
7	Citation	40
8	Contributors	40
Bi	bliography	42

1. Overview

This codebook describes the Global Resources Dataset.

2. Coding Process

The unit of observation is the mine, resource extraction site, or resource processing facility in each year. The data are coded from annual country fact sheets produced by the United States Geological Survey (USGS) website.

We undertook a number of safeguards to ensure high quality data. First, we undertook an initial round of coding. Next, especially since geolocations are not always clear with higher level precision codes, we undertook a second round of coding to check all of the entries for accuracy. At the end of the second round of coding, the coders randomly sampled each other's work and performed some triple-checks. In the third round of coding, coders performed an initial coding of each location-year, with another coder double-checking over each coded entry. Senior coders also performed spot checks throughout and adjudicated all difficult cases that were not initially clear from the PDF documents produced by the United States Geological Survey (USGS). After the second and third rounds of coding, we further examined instances in which the same location was given different latitudes and longitudes for different location-years. Accordingly, an expert coder then re-checked those locations and assigned a final latitude and longitude to them ex post.

3. Frequently Asked Questions

1. Did you perform any interpolation or imputation, and can you explain the coding gaps?

No, we did not do any interpolation or imputation. First, most yearly USGS country reports tend to be written by the same author or set of authors every year. Essentially, there does not appear to be much staff turnover over time for the authors of

these country reports. Accordingly, it stands to reason that the USGS country experts would not remove observations from year-to-year without a reason. Second, civil wars and natural disasters, for example, could affect mine output levels, so we would not recommend that users perform any sort of interpolation without specific knowledge of the country-years in question. Where interpolation/imputation could be germane is if the observations refer to contiguous gaps in USGS country reports. Users can discern whether there are contiguous gaps for a particular country by referring to Table D2. By the same token, we would still advise each user who is considering interpolation/imputation to analyse the specific country-years in question. For example, it is possible that there is a coding gap due to a civil war or natural disaster, in which case the gap might be justifiable. On our end, we endeavored to ensure that all coding gaps were a result of there not being a USGS country report available for a particular country-year. In other words, once we started coding a country, we did not stop until there were no more USGS reports available.

2. I noticed that the GRD only goes until 2014 or 2015 for most countries. Others countries only extend until 2012 or 2013. Still others have uncoded country reports for years prior to 2002. Why is that the case?

We coded as many years as possible for each country. Thus far, 88 different coders have contributed to the GRD. Given the enormous coding task posed by the sheer number of countries in the GRD and the non-uniform release of newer reports for each country, the newer years are inevitably the ones for which the GRD is least likely to cover. Pending resource availability, we may extend the GRD to cover some earlier and later country-years for which USGS country reports are available. Additionally, we may extend the GRD to new countries.

3. How do you distinguish between pure minerals/concentrates and ores?

The extent to which USGS country reports distinguish between pure minerals/concentrates and ores is extremely limited in our large dataset. More broadly, simply because USGS

reports output of a certain quantity of units at a given mine in each year does not necessarily mean that all of those units are pure minerals/concentrates. Many minerals contain significant impurities, especially when they are mined from the ground and caves. In any case, the extent to which the minerals reported will also contain impurities is not something that we—or even USGS—can realistically know: impurity levels will differ by mineral, country, and mine; and USGS does not individually inspect the output of each mine. Against this backdrop, we decided to sum the outputs of ores and concentrates in the few instances when the USGS reports them separately for a given mine. At one point, we considered dropping the ores from output, but the ores are clearly worth some portion of the pure minerals/concentrates, even if they are reported separately in some cases. Additionally, the prices of ores are only available for a few different minerals, so we generally have no choice to combine ores and concentrates. Otherwise, we cannot put a value on the mine or extraction site for the ores. In the limited instances when we summed the output of ores and concentrates, there may be some concern of potential mine value inflation. However, following our Journal of Conflict Resolution article and the broader literature, any such value inflation can be minimized by taking the log of each mine/site's value.

4. Variables

This section outlines the variables in the dataset.

4.1. resource

This information is taken from United States Geological Survey (USGS). Details on the individuals resources covered in this dataset are found in Table D1. In total, there are 192 different resources in the dataset.

Table D1: Resources in the Global Resources Dataset (GRD)

Resource	Number of Observations
alumina	674
aluminum	1,614
aluminum floride	11
amazonite	2
amber	7
amethyst	21
ametrine	7
ammonia	198
ammonium nitrate	1
andalusite	65
anhydrite	14
antimony	386
antimony trioxide	15
apatite	28
aquamarine	14
arsenic	7
arsenic trioxide	10
asbestos	179
asphalt	16
attapulgite	22
barite	655
basalt	19
bauxite	1,027
bentonite	98
beryl	3
beryl and emerald	4
beryllium	1
bismuth	158
black carbon	46
borax	6
boron	308
bromine	12
cadmium	17
calcite	6
calcium carbonate	216
carbon dioxide	10
caustic soda	18
celestite	9
cement	10,043
chlorine	3

Table D1: Resources – continued

Table D1: Resources – continued				
Resource	Number of Observations			
chromite	1,026			
chromite ferrochromium	15			
chromium	55			
citrine	3			
clay	206			
coal	3,288			
cobalt	386			
coke	175			
copper	4,092			
copper sulfate	32			
diamond	1,015			
diatomite	49			
diesel	6			
dolomite	63			
emerald	74			
feldspar	189			
ferro-chromium	106			
ferro-manganese	4			
ferro-molybdenum	17			
ferro-nickel	29			
ferro-silicon	50			
ferro-vanadium	14			
ferroalloys	1,077			
fertilizer	753			
fluorspar	559			
gallium	19			
garnet	37			
gasoline	54			
gemstones	73			
germanium	11			
glass	53			
gold	5,196			
granite	73			
graphite	434			
guano	2			
gypsum	830			
helium	49			
indium	51			
iodine	93			
iron	2,676			
iron and steel	249			

Table D1: Resources – continued

Resource Number of Observations				
iron oxides	18			
iron pyrites	22			
kaolin	422			
kerosene	6			
kyanite	84			
labradorite	46			
lapis	15			
lead	1,424			
lignite	110			
lime	422			
limestone	569			
liquified natural gas	182			
liquified petroleum gas	24			
lithium	49			
lithium chloride	11			
lithium hydroxide	10			
magnesite	183			
magnesium	77			
manganese	946			
marble	327			
mercury	62			
methane	6			
methanol	69			
mica	110			
molybdenum oxide	18			
morganite	7			
naphtha	4			
natural gas	2,392			
nickel	948			
niobium	243			
niobium and tantalum	207			
nitrates	102			
nitrogen	333			
nitrogen ammonia	78			
nitrogen urea	24			
oil	8,323			
onyx	4			
opal	9			
palladium	259			
panadrum	49			
perlite	45			
Perme	10			

Table D1: Resources – continued

Resource	Number of Observations
petroleum products	1,096
phosphate	1,192
phosphoric acid	226
phosphorite	40
platinum	714
potash	76
potassium	12
potassium chloride	16
potassium nitrate	27
potassium sulfate	7
pozzolan	62
pozzolana	13
pumice	90
pyrophyllite	74
	74
quartz quartzite	4
rare earths	39
rebar	1
rhenium	$\frac{1}{34}$
rhodium	258
rhyolite	256
ruby	56
ruthenium	38
salt	
sand	$1{,}149$ 103
	62
sand and gravel	
sandstone	13
sapphire	128
selenium	52
sepiolite silica	4
	269 1
silicomanganese	
silicon silver	17
	1,860
soapstone	12
soda ash	140
sodium	1
sodium nitrate	15
sodium silicate	19
sodium sulfate	68
sodium tripolyphosphate	4

Table D1: Resources – continued

Nl. or of Ol cometical		
Resource	Number of Observations	
steel	4,896	
stone	308	
strontium	36	
sulfur	408	
sulfuric acid	320	
synthetic fuels	25	
talc	140	
tantalite	8	
tantalum	84	
tanzanite	64	
tellurium	34	
an	1,706	
titanium	583	
tourmaline	39	
travertine	46	
tuff	108	
tungsten	496	
turquoise	12	
uranium	197	
urea	73	
vanadium	44	
vanadium pentoxide	70	
vermiculite	60	
wolframite	12	
wollastonite	13	
zeolite	48	
zinc	2,161	
zircon	3	
zirconium	257	
Total	77,782	

4.2. country

This variable identifies the country in which a resource-location-year observation is located. Table D2 lists the countries included in the GRD, the first and last year for which data is included, and the total number of resource location-years for each country. The

number in parentheses after the country name indicates the number of years for which data are missing. In most cases, this is because there is no USGS country report for that year. Most missing observations occur before 2004.

Table D2: Country-Years in the Global Resources Dataset

Country	Beginning Year	Ending Year	Observations
Afghanistan	2008	2015	163
Albania	1994	2015	826
Algeria (3)	2001	2015	1418
Angola	2002	2014	437
Argentina	1994	2015	1369
Armenia (1)	1994	2015	422
Bahrain	2006	2015	239
Bangladesh	2006	2015	418
Belize	2005	2015	30
Benin	2004	2015	39
Bhutan	2006	2015	59
Bolivia (7)	1994	2015	1727
Botswana (2)	2003	2015	162
Brazil	1994	2015	8866
Burkina Faso (1)	2002	2012	100
Burundi	2004	2015	320
Cambodia	2006	2015	93
Cameroon (1)	2003	2015	80
Cape Verde (3)	2004	2014	11
Chad	2004	2015	121
Chile (1)	1994	2015	3787
China	1994	1996	320
Colombia (1)	1994	2014	1029
Costa Rica (6)	1994	2014	172
Cote d'Ivoire	2002	2012	114
Cuba	2007	2014	190
Democratic Republic of Congo (2)	2003	2014	1014
Djibouti (1)	2004	2015	67
Dominican Republic (7)	1994	2015	127
Ecuador	2005	2014	246
Egypt (4)	1994	2015	1359
El Salvador (2)	2001	2015	95
Equatorial Guinea	2005	2015	132
Eritrea	2002	2015	81

Table D2: Country-Years in the Global Resources Dataset - continued

Country	Beginning Year	Ending Year	Observations
Ethiopia	2002	2015	574
French Guiana	2013	2013	9
Gabon (5)	1994	2014	408
Ghana (3)	1994	2014	445
Guatemala (2)	1994	2014	308
Guinea	2002	2014	178
Guyana	1994	2014	251
Honduras (3)	1994	2014	141
India	1994	2015	4135
Indonesia (2)	1994	2016	1401
Iran (3)	2000	2014	2025
Iraq (2)	2001	2014	605
Israel	2001	2014	530
Jamaica (6)	1994	2015	166
Jordan	2003	2014	453
Kazakhstan (20)	1994	2014	106
Kenya (1)	2004	2014	400
Kuwait (6)	1994	2014	557
Kyrgyzstan	2007	2013	370
Laos	2007	2016	316
Lebanon	2004	2013	148
Lesotho	2006	2014	34
Liberia (3)	2004	2014	24
Libya (1)	2004	2014	679
Madagascar	2001	2014	444
Malawi	2002	2014	194
Malaysia	1994	2015	1141
Mali (2)	2002	2014	95
Mauritania (2)	2002	2014	118
Mauritius (1)	2002	2014	33
Mexico	1994	2015	3271
Moldova	1994	2016	89
Mongolia	2006	2015	209
Morocco (2)	2002	2014	840
Mozambique	2001	2014	316
Myanmar (Burma)	2005	2014	227
Namibia (1)	2003	2014	319
Nepal	2006	2015	82
Nicaragua (3)	1994	2014	110
Niger (2)	2002	2014	71
Nigeria (5)	1994	2014	530

Table D2: Country-Years in the Global Resources Dataset - continued

Country	Beginning Year	Ending Year	Observations
Oman	2006	2012	362
Pakistan	2005	2014	551
Panama (5)	1994	2014	55
Paraguay	2004	2014	44
Peru	1994	2015	2224
Philippines (3)	1994	2015	675
Poland	1994	2015	2721
Qatar (3)	2001	2014	532
Republic of Congo (1)	2004	2014	289
Reunion (2)	2002	2013	9
Russia (6)	1988	2014	4127
Rwanda	2002	2014	281
Saudi Arabia (7)	1994	2015	842
Senegal (1)	2002	2014	133
Seychelles	2006	2013	17
Sierra Leone (1)	2002	2014	75
Somalia	2002	2003	14
South Africa (1)	2002	2014	4220
South Sudan	2011	2015	30
Sri Lanka	2006	2015	150
Sudan	2002	2015	353
Suriname (1)	1994	2015	184
Swaziland (Eswatini)	2006	2015	26
Syria	2004	2015	836
Taiwan	1994	2015	551
Tajikistan	1994	2015	750
Tanzania	2002	2015	513
Thailand	1994	2015	1410
Togo	2002	2015	105
Tunisia	2004	2015	809
Turkey	2007	2015	1704
Uganda	2001	2015	348
United Arab Emirates	2006	2015	718
Uruguay (10)	1994	2015	60
Venezuela	1994	2015	1248
Vietnam	2002	2015	1076
Western Sahara (3)	2002	2015	14
Yemen (4)	2001	2015	339
Zaire	1994	1994	20
Zambia	2006	2015	479

Table D2: Country-Years in the Global Resources Dataset – continued

Country	Beginning Year	Ending Year	Observations
Zimbabwe (7)	1998	2015	903

4.3. year

This variable corresponds to the year of the respective resource value. This information is taken from United States Geological Survey (USGS). Years range from 1994–2015. Data availability varies by country. Details on the individuals country-years covered in this dataset can be found in Table D2.

4.4. COW_code

This variable corresponds to the Correlates of War (COW) country code.

4.5. gwno

This variable corresponds to the Gleditsch-Ward country code.

4.6. wb_ccode

This variable corresponds to the World Bank/ISO3 country code.

4.7. region_wb

This variable corresponds to World Bank region of the mine location or resource extraction site. There are five regions in the dataset: (Subsaharan) Africa; Middle East and North Africa; Latin America and Caribbean; South Asia; and East Asia and Pacific.

4.8. continent

This variable corresponds to the continent of the mine location or resource extraction site. The dataset contains observations from Asia; Europe; the Americas (South and Central America); and Africa.

4.9. gid

This variable corresponds to the grid-cell ID from the PRIO-GRID (see Tollefsen, Strand and Buhaug, 2012). In line with Tollefsen, Strand and Buhaug (2012), we performed the relevant spatial join with the WGS84 coordinate reference system, using the sf package in R (Pebesma, 2018).

4.10. gid_centroid_latitude

This variable corresponds to the latitude of the grid-cell centroid from the PRIO-GRID. In line with Tollefsen, Strand and Buhaug (2012), we performed the relevant spatial join with the WGS84 coordinate reference system

4.11. gid_centroid_longitude

This variable corresponds to the longitude of the grid-cell centroid from the PRIO-GRID. In line with Tollefsen, Strand and Buhaug (2012), we performed the relevant spatial join with the WGS84 coordinate reference system.

4.12. standard_measure

This variable identifies the standard unit of measure for each resource. Information is taken from United States Geological Survey (USGS). Data are recorded using the following units: 42-gallon barrels, 42-gallon barrels per day, billion cubic meters, carats, cubic meters, kilograms, metric tons, metric tons per day, million 42-gallon barrels, million bricks, million cubic meters, million cubic meters per day, million metric tons, square meters, thousand

41-gallon barrels, thousand 41-gallon barrels, thousand 42-gallon barrels per day, thousand 42-gallon barrels per day, thousand bricks, thousand carats, thousand cubic meters, thousand metric tons, and thousand square meters.

4.13. comtrade_unit

This information is taken from UN Comtrade. It describes the unit measure for the respective UN Comtrade prices. Prices are expressed in carats, cubic meters, kilograms, and liters.

4.14. wb_unit

This information is taken from the World Bank's Global Economic Monitor. The variable describes the unit corresponding to the world price of the respective mineral or resource. Prices are expressed in 42-gallon barrels, metric tons, troy ounces, and mmbtu.

4.15. usgs_unit

This information is taken from the United States Geological Survey (USGS). The variable describes the unit corresponding to the US prices of the respective mineral or resource. Prices are expressed in metric tons.

4.16. multicolour_unit

This is information is taken from Multicolour. The variable describes the unit corresponding to the world price of the respective mineral or resource. All Multicolour prices are given in carats. For more inquiries on Multicolour prices, please contact David Weinberg at Multicolour: info@multicolour.com.

| API Gravity Measure | Corresponding Density (kg/m³) | 20 | 933.993 | 25 | 904.152 | 30 | 876.161 | 35 | 849.850 | 40 | 825.073 | 45 | 800.8 |

Table D3: API Gravity to Density Conversions

4.17. APIforoil

This information refers to the American Petroleum Institute (API) gravity measure for oil/petroleum or products thereof. It is the industry standard for expressing density, as compared to the density of water. Higher API gravities entail lower densities, which in turn return higher prices on commodity spot markets. When oil has a lower API gravity/higher density, yielding a heavier 42-gallon oil barrel/drum, it requires additional processing steps to make the oil usable.

Table D3 provides the densities in kg/m³ corresponding to the API gravity measures for a sample of API gravities used in this dataset. The data availability for API gravity based on oil field assays is limited. Thus, when we were unable to find the API gravity each oil field, we approximated the API gravities by country based on information here, here, here, here, other websites, and:

Awadh, Salih Muhammed, and HebaSadoon Al-Mimar. 2013. "Statistical Analysis of the Relations between API, Specific Gravity, and Sulfur Content in the Universal Crude Oil." *International Journal of Science and Research* 4(5): 1279-1284.

4.18. SGforoil

This variable pertains to the specific gravity of oil/petroleum and products thereof.

The specific gravity can be calculated as follows:

4.19. density

This information refers to the density of variables for which output data is expressed in terms of mass but price data is given in volume or heat content—or vice-versa. Table D4 provides the relevant densities (kg/m³) used in this dataset. Note that densities are only relevant when converting between mass, volume, or heat content units.

Corresponding Density Resource (kg/m^3) clay (bricks) 1900 gasoline 719.7granite 2075 helium 147 limestone 2360 liquefied petroleum gas 550 liquefied natural gas 450 marble 2700 natural gas 0.8oil see Table D3 1025 salt stone 2515

Table D4: Density by Resource

4.20. heat_content

This variable describes the heat content of certain resources in MMBtu/bbl. Refer to Table D5 for the resource for which it was necessary to have heat content information due to conversions between mass, volume, and heat content units. Heat contents by resource can be found on the website of the Society for Petroleum Engineers.

4.21. specific_surface_area

This variable corresponds to the specific surface area of stone, sandstone, granite, and marble in meters²/grams. This variable is necessary for these minerals because USGS annual

Resource	Heat Content (MMBtu/bbl)
liquified natural gas	3.735
natural gas	3.735
oil/petroleum	5.8
petrochemicals	5.976
petroleum products	5.976

Table D5: Heat Content by Resource

allocation capacity figures are expressed in square meters. We obtained data from the following resources:

- Keppert, Martin, Jaromir Zumar, Monika Cachova, Dana Konakova, Petr Svora, Zbysek Pavlik, Eva Vejmelkova, and Robert Cerny. 2016. "Water Vapor Diffusion and Adsorption of Sandstones." Advances in Materials Science and Engineering (2016). DOI:10.1155/2016/8039748
- Ticknor, Kenneth V., and Preet P.S. Saluja. 1990. "Determination of Surface Areas of Mineral Powders By Adsorption Capacity" Clays and Clay Minerals (38)4: 437-441.

4.22. locationname

This information is taken from United States Geological Survey (USGS). The location information describes the closest available city, town, or point of interest to the mine or resource extraction site.

4.23. mineownership

This information comes from United States Geological Survey (USGS). The following different types of mines are available in the data: artisanal, artisanal/military, cooperative, cooperative/industrial, industrial, industrial/government, and government. When ownership information is not available, it has been listed as "n/a". The mixed categories with more than one type of owner are for instances in which there is more than one owner and neither owns a majority stake (i.e. greater than 50%). When any one of the above owns more than

a 50% stake, it is classified as only one of the above categories.

4.24. minetype

This variable denotes whether the site is a mine, other extraction site, refinery, or downstream plant/processing facility. Coders consulted a variety of sources to determine the minetype, including the USGS country reports, Internet searches, specialized publications, and remote sensing images of the location.

We define these values as follows:

- 1. Mines are generally related to ores and minerals. They can be underground, or aboveground in the case of strip-mining.
- 2. Extraction sites cover a broader scope, and includes gas and oil. This minetype value also river deposits of commodities such as diamonds or gold.
- 3. Production facilities are locations which smelt or produce a commodity, rather than extract it. Cement and steel are examples, as well as anything specified as a "metal" or a product of some process.
- 4. Refineries are generally only put as a minetype if it is specifically referred to as such in the USGS .pdf. An example of this would be "Petroleum: Refined", rather than the usual "Petroleum" or "Petroleum: Crude". We apply the same process to metals.
 - 5. The Unknown minetype exists in the event that no minetype can be identified.

4.25. admin1

This information is taken from GeoNames (www.geonames.org) or Google Maps on the basis of the location name from USGS. This information corresponds to the administrative level 1 precision code. Generally, it corresponds to a province/department/state.

4.26. admin2

This information is taken from GeoNames (www.geonames.org) or Google Maps on the basis of the location name from USGS. This information corresponds to the administrative level 2 precision code. Generally, it corresponds to a district/municipality.

4.27. latitude

This information is taken from GeoNames (www.geonames.org) or Google Maps on the basis of the location name from USGS. In instances where there are multiple location names that match the USGS description, the coder arbitrates between the locations given clues on the USGS document, such as province information given by USGS. Further, geonames provides aerial shots of the location, which can be used to pinpoint a probable mine location.

4.28. longtitude

This information is taken from GeoNames (www.geonames.org) or Google Maps on the basis of the location name from USGS. In instances where there are multiple location names that match the USGS description, the coder arbitrates between the locations given clues on the USGS document, such as province information given by USGS. Further, geonames provides aerial shots of the location, which can be used to pinpoint a probable mine location.

4.29. precisioncode

This information is derived from GeoNames (www.geonames.org) or Google Maps on the basis of the location name from USGS. We use the following precision codes:

- 1: Mine/production facility itself
- 2: Nearby city
- 3: District level
- 4: Province

• 9: Unsure if location is correct

4.30. comtrade_price_mult

This variables corresponds to the UN Comtrade export price of the resource, expressed in its standard measure output unit (see above). Thus, prices are available for specific resources and years but also each respective country. All prices are deflated to represent their 2010 United States dollar value. To access the deflators, refer to the World Bank's World Development Indicators.

4.31. wb_price_mult

This variables corresponds to the World Bank price for the resource, expressed in its standard measure unit (see above). All prices, which are world prices, are deflated to represent their 2010 United States dollar value. To access the deflators, refer to the World Bank's World Development Indicators.

4.32. usgs_price_mult

This variables corresponds to the USGS for the resource, expressed in its standard measure unit (see above). All prices, which are world prices, are deflated to represent their 2010 United States dollar value. To access the deflators, refer to the World Bank's World Development Indicators.

Kindly also note the following:

- 1. We merge antimony and antimony ore into one antimony price variable. There are few antimony ore observations in our dataset, and pure antimony is a very rare in occurrence. So, it is logical to use one price for antimony.
- 2. We merge boron and boron refined concentrates into one boron price. There are few boron observations in the dataset.

4.33. multicolour_price_mult

This variable corresponds to the Multicolour price for the resource, expressed in its standard measure unit. All prices, which are world prices, are deflated to represent their 2010 United States dollar value. To access the deflators, refer to the World Bank's World Development Indicators. For all information regarding Multicolour, please contact David Weinberg: info@multicolour.com

Kindly also note the following:

- 1. We merge bi-color tourmaline with chrome tourmaline into one tourmaline price. Often, it is possible to find tourmalines of different colors in the same mines.
- 2. We merge color change sapphire, fancy sapphire, and sapphire into one sapphire price. It is possible to find sapphires of different colors in the same mine.
- 3. We merge grossular garnet, tsavorite, color change garnet, and garnet into one garnet price. Garnets of different colors can be found in the same mine.
- 4. We merge chrysocolla quartz, rose quartz, rutilated quartz, and quartz into one quartz price.

4.34. multiplier_comtrade

This variable corresponds to the multiplier used for the conversion of the UN Comtrade price unit conversion into the standard measure unit.

4.35. multiplier_wb

This variable corresponds to the multiplier used for the conversion of the World Bank price unit conversion into the standard measure unit.

4.36. multiplier_usgs

This variable corresponds to the multiplier used for the conversion of the United States Geological Service (USGS) price unit conversion into the standard measure unit.

4.37. multiplier_multicolour

This variable corresponds to the multiplier used for the conversion of the USGS or World Bank price unit conversion into the standard measure unit.

4.38. annual allocation capacity

This information is taken from United States Geological Survey (USGS). It measures yearly output of the mine or resource extraction site in the standard measure unit.

4.39. exp_annual_value_location1

This variable accounts for annual value of the location in 2010 United States Dollars (USD). This measure of the annual value of the location prioritizes UN Comtrade export prices first. Then, it incorporates prices from the World Bank, followed by those of the USGS. The variable excludes prices from Multicolour.

A few reasons underpin our rationale provide one set of prices without Multicolour values. First, not each resource-year in the Multicolour dataset has a high number of observations. Second, Multicolour sales tend to be a on a very small scale, with typical prices being at the gram or carat level. Accordingly, small fluctuations in the Multicolour prices per carat, which is normal given factors such as gem quality size, clarity, and color, can make a significant difference in the price. By contrast, the prices for most minerals from UN Comtrade, USGS, the World Bank tend to be aggregated at the kilogram, metric ton, or thousand metric ton levels, making them less prone changes from small fluctuations.

4.40. exp_annual_value_location2

This variable accounts for annual value of the location in 2010 United States Dollars (USD). This measure of the annual value of the location prioritizes UN Comtrade export prices first. Then, it incorporates world prices from World Bank, USGS, and Multicolour (in that order).

4.41. wd_annual_value_location1

This variable accounts for annual value of the location in 2010 United States Dollars (USD). This measure of the annual value of the location prioritizes world prices from World Bank. Then, it incorporates US prices from USGS, followed by country-specific export prices from UN Comtrade. The variable excludes prices from Multicolour.

A few reasons underpin our rationale provide one set of prices without Multicolour values. First, not each resource-year in the Multicolour dataset has a high number of observations. Second, Multicolour sales tend to be a on a very small scale, with typical prices being at the gram or carat level. Accordingly, small fluctuations in the Multicolour prices per gram or carat, which is normal given factors such as gem quality size, clarity, and color, can make a significant difference in the price. By contrast, the prices for most minerals from UN Comtrade, USGS, the World Bank tend to be aggregated at the kilogram, metric ton, or thousand metric ton levels, making them less prone to changes from small fluctuations.

4.42. wd_annual_value_location2

This variable accounts for annual value of the location in 2010 United States Dollars (USD). This measure of the annual value of the location prioritizes world prices from World Bank and US prices from USGS. Then, it incorporates export prices from UN Comtrade. The variables excludes prices from Multicolour.

4.43. comtrade_value

This variable corresponds to the annual value of the location using only export prices from UN comtrade.

4.44. wb_value

This variable corresponds to the annual value of the location using only world prices from the World Bank's Global Economic Monitor Commodities Pink Sheet.

4.45. usgs_value

This variable corresponds to the annual value of the location using only US prices from the United States Geological Survey (USGS).

4.46. world_val_nomc

This variable corresponds to the the annual value of the location using world prices from the World Bank or US prices from USGS (in that order), excluding world prices from Multicolour. We include USGS prices alongside World Bank ones since, based our data, wb_value and usgs_value correlate at 0.99. That is even before logging the data, too.

4.47. world_val_withmc

This variable corresponds to the the annual value of the location using world prices from the World Bank, US prices from USGS or world prices from Multicolour (in that order). We include USGS prices alongside World Bank ones since, based our data, wb_value and usgs_value correlate at 0.99. That is even before logging the data, too.

4.48. lootable

This is a dummy variable indicating, based on our research, that the resource is potentially lootable. To be lootable, a resource must have high value and low barriers to entry/extraction. We say "potentially" lootable because certain types of resources can be found in different extraction sites, and some of these extraction sites make it easier to extract than others. For example, gold may be mined through placer techniques, which can be done by most anyone. By the same token, gold can also be mined through the use of expensive dredging or digging machinery. Even though not everyone has access to the expensive machinery, the fact that almost anyone can mine gold through placer techniques makes the resource "lootable" for the purposes of this dataset.

5. Resource Price Data Availability

Table E6 provides the availability of prices used in this dataset by resource. In cases when there are prices from more than one source by variable, refer to Section 4 for how we calculate the respective prices.

Table E6: Source of Resource Prices

	UN Comtrade	World Bank	USGS	Multicolour
alumina	X		X	
aluminum	X	X	X	
aluminum floride	X			
amazonite				
amber				
amethyst				X

Table E6 : Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
ametrine				X
ammonia	X			
ammonium nitrate				
andalusite	X			X
anhydrite	X			
antimony	X		X	
antimony trioxide	X			
apatite				X
aquamarine				X
arsenic	X			
arsenic trioxide				
asbestos	X		X	
asphalt	X			
attapulgite				
barite	X		X	
basalt	X			
bauxite	X		X	
bentonite	X		X	
beryl				X

Table E6: Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
beryl and emerald				
beryllium			X	
bismuth	X		X	
black carbon	X			
borax				
boron	X		X	
bromine	X		X	
cadmium	X		X	
calcite				
calcium carbonate	X			
calcium oxide				
carbon dioxide	X			
caustic soda	X			
celestite				
cement			X	
chlorine				
chromite	X			
chromite ferrochomium				
chromium	X		X	

Table E6: Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
citrine				X
clay	X		X	
coal	X	X		
cobalt	X		X	
coke				
copper	X	X	X	
copper sulfate				
diamond	X		X	X
diatomite	X		X	
diesel				
dolomite	X			
emerald	X			X
feldspar	X		X	X
ferro-chromium	X			
ferro-manganese	X			
ferro-molybdenum	X			
ferro-nickel	X			
ferro-silicon	X			
ferro-vanadium				

Table E6: Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
ferroalloys	X			
fertilizer				
fluorspar	X		X	
gallium	X		X	
garnet	X		X	X
gasoline	X			
gemstones	X		X	
germanium			X	
glass				
gold	X	X	X	
granite	X			
graphite			X	
guano				
gypsum	X		X	
helium			X	
indium	X		X	
iodine	X		X	
iron	X	X		
iron and steel			X	

Table E6: Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
iron oxides			X	
iron pyrites	X			
kaolin	X		X	
kerosene				
kyanite	X		X	X
labradorite				X
lapis				X
lead	X	X	X	
lignite	X			
lime	X		X	
limestone	X			
liquefied natural gas	X	X		
liquefied petroleum gas	X			
lithium			X	
lithium carbonate				
lithium chloride				
lithium hydroxide	X			
magnesite	X			
magnesium	X		X	

Table E6 : Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
manganese	X		X	
marble	X			
mercury	X		X	
methane				
methanol	X			
mica	X		X	
molybdenum oxide	X			
morganite				X
naphtha				
natural gas	X			
nickel	X	X	X	
niobium	X		X	
niobium and tantalum	X			
nitrates	X			
nitrogen	X		X	
nitrogen ammonia				
nitrogen urea				
oil	X	X		
onyx				

Table E6 : Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
opal				X
palladium	X			
peat	X		X	
perlite	X		X	
petroleum products	X			
phosphate	X	X	X	
phosphoric acid	X			
phosphorite				
platinum	X	X	X	
potash				
potassium				
potassium chlorite				
potassium nitrate				
potassium sulfate	X			
pozzolan				
pozzolana				
pumice			X	
pyrophyllite			X	
quartz	X		X	X

Table E6 : Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
quartzite				
rare earths			X	
rebar				
rhenium	X		X	
rhodium	X			
rhyolite				
ruby	X			X
ruthenium	X			
salt	X		X	
sand	X			
sand and gravel	X		X	
sandstone	X			
sapphire	X			X
scoria				
selenium	X		X	
sepiolite				
silica	X			
silicomanganese				
silicon	X		X	

Table E6: Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
silver	X	X	X	
soapstone				
soda ash	X		X	
sodium				
sodium nitrate	X			
sodium silicate				
sodium sulfate			X	
sodium tripolyphite	X			
steel			X	
stone	X		X	
strontium	X		X	
sulfur	X		X	
sulfuric acid	X			
synthetic fuels				
talc	X		X	
tantalite				
tantalum	X		X	
tanzanite				X
tellurium	X		X	

Table E6 : Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
tin	X	X	X	
titanium			X	
titanium oxide				
tourmaline				X
travertine				
tuff				
tungsten	X		X	
tungsten anhydrite				
turquoise				X
uranium	X			
urea	X	X		
vanadium	X		X	
vanadium pentoxide	X			
vermiculite	X			
wolframite				
wollastonite			X	
zeolite				
zinc	X	X	X	
zircon				X

Table E6: Source of Resource Prices – continued

Resource	UN Comtrade	World Bank	USGS	Multicolour
zirconium	X		X	

6. Contact

If you have any questions or would like to alert us to any discrepancies, please contact Mike Denly (mdenly@utexas.edu), Mike Findley (mikefindley@utexas.edu), and Jim Walsh (jwalsh@uncc.edu).

7. Citation

When using these data, please cite them as:

Denly, Michael, Michael Findley, Joelean Hall, Andrew Stravers, and James Igoe Walsh. 2022. "Do Natural Resources Really Cause Civil Conflict? Evidence from the New Global Resources Dataset." *Journal of Conflict Resolution* 66(3): 387-412.

8. Contributors

We are greatly indebted to the multitude of coders who made this project possible. At the University of Texas at Austin's Innovations for Peace and Development research lab, the following graduate research fellows and research affiliates contributed to the data collection: Nicole Pownall, Annie Kilroy, Erica Colston, Vanessa Lizcano, Erin Eggleston, Iasmin Goes, Oliver Babcock, Raheem Chaudhry, Daniel Chapman, Garrett Shuffield, Akshat Gautam, Abby Brown, Delainey Peterson, Eduardo Velasquez, Evelin Caro, Jonathan Velasquez, Alex

Walheim, Amanda Long, Haley McCoin, Maria Fernanda Guerrero, Jake Barnet, Tawheeda Wahabzada, Bianca Remmie, Anna Scanlon, Alejandra Gaytan, Vishal Duvuuru, Jennifer Johnson, Sam Gorme, Miles Hudson, Sarah Fischer, Vivianna Brown, Leah Havens, Daniela Garcia, Jennifer McGinty, Chris Zimmer, Lizzette Marrero, Nathalia Rojas, Josh Hamlin, Maren Taylor, Kristle Hinola, Johnny Shaw, Regan Seckel, Kiara Hays, Kolby Vidrine, Katherine Donovan, Kate Adams, Anita Basavaraju, Arijit Paladhi, Arvind Ashok, Brandon Gajeton, Carlos Diaz, Destiny Alvarez, Domingo Salerno, Drew Burd, Hannah Greer, Raven Langhorne, Jade Tucker, Tyler Morrow, Ji Na Gil, Kanika Varma, Karan Kanatala, Kimberly Schuster, Levi Malloy, Lila Al-Kassem, Mackenna Shull, Mariana Caldas, Patrick Golden, Samiya Javed, Michael Hankins, Justin Ahamed, Sam Bennett, Skyler Thomas, Andrew Butemeyer, Samantha Shoff, Beomhak Lee, Benjamin Vega, Mobin Piracha, Ashley Frey, Rama Singh Rastogi, Adityamohan Tantravahi, Jake Reynolds, Kelvin Efiya, JP Repetto, Nick Romanov, Nikola Skerl, Keeton Schenck, and Ethan Masucol. At the University of North Carolina at Charlotte, Megan Bird and Nathan Duma contributed to the data collection as well.

Bibliography

Pebesma, Edzer. 2018. "Simple Features for R: Standardized Support for Spatial Vector Data." R Journal 10(1):439–446.

Tollefsen, Andreas Forø, Håvard Strand and Halvard Buhaug. 2012. "PRIO-GRID: A Unified Spatial Data Structure." *Journal of Peace Research* 49(2):363–374.