Часть 1. Тест.

Вопрос 1 🕹	Мультиколлинеарность приводит к смещению оценок коэффициентов регрессии.
А верно	не верно
Вопрос 2 🕹 меньших ква	Для устранения мультиколлинеарности применяется обобщенный метод наидратов.
А верно	не верно
Вопрос 3 ♣ незначимост:	Признаком мультиколлинеарности является значимость модели в целом при и отдельных коэффициентов.
верно	В не верно
Вопрос 4 ♣ ка.	Тест Дарбина-Уотсона применим тольков случае автокорреляции первого поряд-
верно	В не верно
Вопрос 5 🜲	Мультиколлинеарность приводит к высокой дисперсии оценок коэффициентов.
верно	В не верно
Вопрос 6 🕏 помогает сде.	В случае гетероскедастичности применение стандартных ошибок в форме Уайта лать оценки коэффициентов эффективными.
А верно	не верно
Вопрос 7 👫 новятся несос	Если регрессор коррелирован с ошибкой модели, то оценки коэффициентов стастоятельными.
А верно	не верно
Вопрос 8 🌲	Нулевая гипотеза в тесте Дарбина-Уотсона – наличие автокорреляции.
А верно	не верно
Вопрос 9 ♣ щенными.	В случае автокорреляции оценки дисперсий коэффициентов оказываются сме-
А верно	не верно

Вопрос 10 ♣ Мультиколлинеарность приводит к смещению оценок дисперсий коэффициентов регрессии.

А верно

не верно

Часть 2. Задачи.

1. Ниже представлена оценка следующей модели для выборки, состоящей из женщин 18–60 лет:

$$ln(wage_i) = \beta_1 + \beta_2 educ_i + \beta_3 marst_i + \beta_4 age_i + \beta_5 child_i + \epsilon_i$$

где $wage_i$ — величина заработной платы, руб.

 $educ_{i}$ — бинарная переменная (1 – в случае наличия высшего образования, 0 – иначе);

 $marst_{i}$ — бинарная переменная (1 - в случае наличия постоянного партнера, 0 - иначе);

 age_i — возраст женщины, лет;

 $child_i$ — количество детей младше 18 лет, чел.

Регрессионная статистика	
Множественный R	0.318
R-квадрат	0.101
Нормированный R-квадрат	B10
Стандартная ошибка	B 7
Наблюдения	B4

	df	SS	MS	F	Значимость F
Регрессия Остаток Итого				В9	0.000

	Коэф-ты	Стандартная ошибка	t- статистика	Р- значение	Нижние 95%	Верхние 95%
Ү-пересечение	9.296	0.205	45.333	0.000	8.893	9.699
educ	B1	B2	B 3	0.000	0.283	0.524
marst	-0.227	0.065	-3.498	0.001	-0.355	-0.100
age	0.003	0.005	0.760	0.448	-0.005	0.012
nchild18	-0.017	0.037	-0.470	0.638	-0.089	0.055

Вставьте пропущенные числа на месте пропусков (округляйте ответ до 3 знака после запятой):

B1=	B5=	B9=
B2=	B6=	B10=
B3=	B7=	
B4=	B8=	

- 2. Для 500 квартир Москвы была оценена зависимость их цены (price, тыс. \$) от общей площади (totsp, кв. м), расстояния до метро (metrdist, мин), возможности добраться до метро пешком (walk, 1 если такая возможность есть, 0 иначе):
 - $\widehat{price}_i = -28.87 + 2.26totsp_i 2.57metrdist_i 33.94walk_i + 1.70walk_i * metrdist_i + 0.51walk_i * totsp_i$ $R^2 = 0.608$
 - Кроме того, была получена следующая модель: $\widehat{price}_i = -49.30 + 2.56 tots p_i 1.37 metr dist_i$

$$R^2 = 0.576$$

- а) Проверьте гипотезу об адекватности регрессии для модели из пункта а) (выпишите H0, H1, вычислите расчетную статистику, укажите её распределение, найдите критическую статистику, сделайте выводы)
- б) Проверьте, можно ли использовать объединенную модель для квартир, находящихся в пешей доступности от метро, и остальных квартир.
- в) Проинтерпретируйте для модели а) коэффициент при переменной $walk_i*metrdisst_i$ (учитывая, что все коэффициенты модели значимы на 10% уровне значимости).
- 3. На основании опроса 100 студентов ВШЭ была оценена зависимость выпитого кофе в день $(coffe_i,$ чашек) от прорешанных задач по эконометрике $(metrics_i)$:

$$\widehat{coffee}_i = 1 + 0.1 metrics_i.$$

Оценка ковариационной матрицы коэффициентов выглядит следующим образом:

$$Var(\hat{\beta}) = \begin{pmatrix} 19 & 0.1 \\ 0.1 & 1 \end{pmatrix}$$

- а) Сколько чашек кофе выпьет студент Петя, если решит 10 задач по эконометрике?
- б) Постройте 95%-ый доверительный интервал для $E(coffee_i|metrics_i=10)$ ожидаемой величины выпитого кофе при 10 прорешанных задачах.
- 4. По ежемесячным данным с января 2003 по февраль 2014 года была оценена зависимость сбережений домашних хозяйств РФ ($save_t$) от располагаемого дохода (inc_t) и индекса потребительских цен (ipc_t):

$$\widehat{save}_i = 211.75 + 0.067inc_t - 10.19ipc_t, R^2 = 0.54$$

Кроме того, были оценены следующие модели:

$$\hat{e_t} = -1.64 + 0.000069inc_t + 0.11ipc_t + 0.12e_{t-1} + 0.12e_{t-2}, R^2 = 0.03$$

$$\hat{e_t}^2 = 95030.38 - 38.36inc_t + 0.0035inc_t^2 - 11810.24ipc_t + 364.98ipc_t^2 + 2.75ipc_tinc_t, R^2 = 0.068$$

- а) Проведите соответствующий тест на гетероскедастичность (укажите H_o , H_a , вычислите расчетную статистику, укажите её распределение, найдите критическую статистику и сделайте выводы).
- б) Проведите соответствующий тест на автокорреляцию (укажите H_o , H_a , вычислите расчетную статистику, укажите её распределение, найдите критическую статистику и сделайте выводы).

Часть 3. Теоретические вопросы.

- 1. Опишите тест Дарбина-Уотсона (сформулируйте нулевую и альтернативную гипотезы, условия применимости, методику расчета статистики и её распределение).
- 2. Сформулируйте теорему Гаусса-Маркова.
- 3. Опишите тест Чоу (сформулируйте нулевую и альтернативную гипотезы, методику расчёта статистики и её распределение).