Visualisation and Analysis of Geographic Information: Algorithms and Data Structures

João Valença valenca@student.dei.uc.pt

Department of Informatics Engineering University of Coimbra

July 13, 2015

Visualisation and Analysis of Geographic Information

1. Motivation

- A QREN project with Smartgeo and UC
- Create a real-time algorithm for a web-application
- ► Reduce visual information when displaying large numbers of geographic points (e.g. Points of interest)
- Find a representative subset of a collection of points in a map

The set of points can change (zooming/panning)

Visualisation and Analysis of Geographic Information

1. Work Plan

▶ 1st Semester

- ▶ Formalise the representation problem as the *k*-centre problem.
- Development of a branch-and-bound approach.
- Implement an integer linear programming approach.
- Experimental analysis of the algorithms.

2nd Semester

- ▶ Formalise the representation problem as geometric disk cover.
- ▶ Development of an approximation algorithm approach.
- Development of heuristic speed-ups.
- ► Experimental analysis of the algorithms.

Defining Coverage

- ▶ Given a set *N* of points, find a subset *P* of *k* centroids.
- ► Goal : to minimise the largest distance between a point and its closest centroid.

$$\min_{\substack{P \subseteq N \\ |P|=k}} \max_{n \in N} \min_{p \in P} \|p - n\|$$

Branch-and-bound

- Branching
 - Divide search space in a binary tree
 - At each step, decide if a point is a centroid or non-centroid
 - Update objective function accordingly
- Bound
 - Assume best possible case
 - Prune tree

Naïve Branch-and-bound

- ► Inserting a Centroid
 - Search all non-centroids for assignment update
 - Smaller or equal coverage
- ▶ Inserting a Non-centroid
 - Search for closest centroid
 - Larger or equal coverage

Naïve Branch-and-bound

- ► Removing a Centroid
 - Update all non-centroids
 - Larger or equal coverage
- Removing a Non-centroid
 - Update objective function
 - Smaller or equal coverage

Naïve Branch-and-bound

- Assume all remaining points are centroids
- ▶ If the closest one is too far, the branch can be pruned

Only if a better solution has been found

Geometric Branch-and-bound

- Use geometric structures to speed-up the update of the objective function
- Delaunay triangulations
- Sort points by Hilbert curve

Geometric Branch-and-bound

- Inserting a Centroid
 - Insert centroid in triangulation
 - Search all non-centroids for assignment update
 - Smaller or equal coverage
- Inserting a Non-centroid
 - Search for closest centroid using greedy routing
 - Update objective function
 - Larger or equal coverage

Naïve Branch-and-bound

- ► Removing a Centroid
 - Revert assignment
 - Remove centroid from triangulation
 - Larger or equal coverage
- ► Removing a Non-centroid
 - Update objective function
 - Revert assignment
 - Smaller or equal coverage

Algorithm Comparison - Effect of N

Algorithm Comparison - Effect of K

Disadvantages

- All approaches are too slow.
- ▶ So solve the problem we need to know how many clusters to choose.

3. Geometric Disk Cover Problem Definition

- Given a set of points N and a distance d
- Find the minimum number of disks of radius d and centred in $P \subseteq N$ to cover all points in N

Approximation Algorithm - Chosing a distance

Approximation Algorithm

► Given *N* points.

Approximation Algorithm

► Connect all pairs whose distance is less than *d*

Approximation Algorithm

▶ Select point with most connections and remove its neighbours.

Approximation Algorithm

▶ Repeat until all points are either removed or selected.

k-d Trees vs. Line Sweep

▶ Line Sweep algorithm is faster.

k-d Trees vs. Line Sweep

▶ Both algorithms use the same space (up to 4Gb)

k-d Trees vs. Line Sweep

▶ Both algorithms give the same results

Heuristic Speed-ups: Random Sampling

- Randomly discard a fraction of the input points.
- Uniform sets should keep a similar distribution.
- Less points to deal means faster times.

Heuristic Speed-ups: Random Sampling

- Randomly discard a fraction of the input points.
- Uniform sets should keep a similar distribution.
- Less points to deal means faster times.

Heuristic Speed-ups: Two-Phase Filtering

- Solve the problem with a smaller distance first.
- ▶ Use the output as a new input for the given distance.
- Sparser graphs mean faster CPU times.

Heuristic Speed-ups: Two-Phase Filtering

- Solve the problem with a smaller distance first.
- ▶ Use the output as a new input for the given distance.
- Sparser graphs mean faster CPU times.

Heuristic Speed-ups: Two-Phase Filtering

▶ Two-phase algorithm is 10× faster than line sweep

Heuristic Speed-ups: Two-Phase Filtering

• Uses less memory $(\approx 100 \text{Mb for } d' = 0.1d)$

Heuristic Speed-ups: Two-Phase Filtering

▶ Maintains a similar quality of the results.

Heuristic Speed-ups: Two-Phase Filtering

3. Geometric Disk Cover Problem Panning

► Give priority to already chosen centroids

Zooming

▶ Give priority to already chosen centroids

4. Future Work

- ▶ Integration with the Web application.
- ▶ Further research on range search algorithms
- Experiment with different notions of representations.

Integer Linear Programming

k-centre

minimise	D	
subject to	$\sum_{j=1}^{N} y_j = k$	
	$\sum_{j=1}^{N} x_{ij} = 1$	$i=1,\ldots,N$
	$\sum_{j=1}^N d_{ij} x_{ij} \leq D$	$i=1,\ldots,N$
	$x_{ij} \le y_j$ $x_{ij}, y_j \in \{0, 1\}$	i = 1,, N; j = 1,, N i = 1,, N; j = 1,, N

Integer Linear Programming

Geometric Disk Cover

minimise	k	
subject to	$\sum_{j=1}^N y_j \le k$	
	$\sum_{j=1}^N x_{ij} = 1$	$i=1,\ldots, N$
	$\sum_{j=1}^N d_{ij} x_{ij} \leq D$	$i=1,\ldots,N$
	$x_{ij} \leq y_j$	$i=1,\ldots,N; j=1,\ldots,N$
	$x_{ij},y_j\in\{0,1\}$	$i=1,\ldots,N; j=1,\ldots,N$

Delaunay Triangulations

Delaunay Triangulations

Voronoi Diagrams

Greedy Routing

k-d Trees

k-d Trees Range Search

Line Sweep

Geometric Disk Cover

Random Sampling

▶ Faster Times than the line sweep algorithm

Geometric Disk Cover

Random Sampling

▶ Uses less memory (150Mb)

Geometric Disk Cover

Random Sampling

