DEVOIR DE MATHS

Niveau: 7D Durée:4h Proposé le 21 Février 2016 de 8h à 12h

EXERCICE 1 (5 POINTS)

A- Soit f une fonction dérivable sur $IR/\{1\}$ de tableau de variations :

Choisir la bonne réponse :(la justification n'est pas demandée)

Proposition	Choix A	Choix B	Choix C
Le domaine de définition de f est:	<i>IR</i> / {1}	$IR/\{1;3\}$	$]-\infty,1[\cup]1,3[\cup]3,+\infty[$
La fonction f est	paire	impaire	Ni paire ni impaire
La courbe C admet une asymptote d'équation	x=3	x = 1	y=3x-2
La courbe C admet une asymptote d'équation	y = -2	y=1	x = -2
Une équation de la tangente à C au point	y = -2	y=3x-2	x = -2
d'abscisse 3 est :	van	imo	yth 1
$\lim_{x \to \infty} \frac{f(x)}{x} = 0$	$-\infty$	+∞	0
<i>X</i>			
L'équation $f(x) = 0$ admet exactement	3 solutions	2 solutions	1 solution
Si $\lim_{x \to \infty} \frac{f(x)}{x} = 0$ alors C admet une branche vers	(Oy) /	(Ox)	y = 2x

B- Sachant que f(0) = 1 et $f(x) = 0 \Rightarrow x = -1$ ou x = 2 ou x = 4. et $\lim_{x \to \infty} \frac{f(x)}{x} = 0$ Tracer sa courbe C.

EXERCICE 2 (3 POINTS)

Soit (u_n) la suite définie par : $u_1 = \frac{1}{2}$ et pour tout n de \mathbb{N}^* on a : $u_{n+1} = \frac{n+1}{2n}u_n + \frac{n-1}{2n}u_n$

- **1-** Calculer les termes u_2 , u_3 et u_4 .
- **2-** On définit la suite (v_n) pour tout entier $n \ge 1$ par : $v_n = \frac{u_n 1}{n}$.
 - a. Montrer que (v_n) est une suite géométrique.
 - **b.** Exprimer v_n puis u_n en fonction de n.
 - **c.** Calculer la limite de (v_n) .

EXERCICE 3 (3 POINTS)

On considère les nombres complexes $z_1 = \frac{3+i}{1+2i}$, $z_2 = \frac{3-i}{1-i}$ et $z_3 = (1+i)^2$.

- **1-** Ecrire z_1 , z_2 et z_3 sous forme algébrique. Et z_1 sous forme trigonométrique.
- 2- Dans le plan complexe muni d'un repère orthonormé direct, on désigne par A, B et C les points d'affixes respectives z_1 , z_2 et z_3 .
 - **a-** Placer les points A, B et C.
- **b-** Déterminer la nature du triangle *ABC*. **c-** Déterminer l'affixe du point D tel que ABCD soit un parallélogramme.
 - 3- Soit f l'application définie pour tout $z \neq 2i$ par : $f(z) = \frac{(1+i)z-2}{z-2i}$ Montrer que pour tout $z \neq 2i$, on a : $f(z) = (1+i)\frac{z-1+i}{z-2i}$.
 - 4- Déterminer et représenter, dans le même repère, les ensembles des points M du plan d'affixe z dans chacun des cas suivants :
 - **a.** Γ_1 tel que $|f(z)| = \sqrt{2}$. **b.** Γ_2 tel que $Arg(f(z)) = \frac{\pi}{4} [\pi]$ **c.** Γ_3 tel que $Arg(f(z)) = -\frac{\pi}{4} [\pi]$.

EXERCICE 4 (9 POINTS) www.amimath.

Soit $f(x) = \frac{x^2 - x - 1}{x - 2}$ et soit C sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

 1° Déterminer l'ensemble de définition de f , puis déterminer les réels a,b et c tels que

$$f(x) = ax + b + \frac{c}{x - 2}$$

- 2° Calculer la dérivée f' de f. 3° Dresser le tableau de variations de f.
- 4° Donner une équation de la tangente de C à son point d'intersection avec l'axe des ordonnées.
- $\mathbf{5}^{\circ}$ Résoudre l'équation f(x) = 0. Et interpréter graphiquement ses solutions.
 - 6° a- Montrer que C admet deux asymptotes l'une oblique D.
 - **b-** Etudier les positions relatives de D par rapport à C.
 - 7° Vérifier que f(4-x)+f(x)=6 puis l'interpréter graphiquement.
 - 8° Tracer C avec ses asymptotes.
 - 9° Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation : $x^2 - (1+m)x - 1 + 2m = 0$.
 - **10°** Soit g la restriction de f sur l'intervalle $I =]-\infty,1]$.
 - a- Démontrer que g réalise une bijection de I sur un intervalle J que l'on précisera.
 - **b-** Calculer $\left(g^{-1}\right)'\left(\frac{1}{2}\right)$.
 - **c-** Construire dans un nouveau repère orthonormé les courbes de g et de g^{-1} .

Fin.