Negation

Jonathan Ginzburg Université Paris-Diderot, Sorbonne Paris-Cité Robin Cooper University of Gothenburg

Type theory with records for natural language semantics, NASSLLI 2012 Lecture 3, part 2

Outline

Negative questions and answers

Negation, types and alternatives

Positive and negative questions, negative answers

References

Cooper and Ginzburg (2011); ?)

Outline

Negative questions and answers

Negation, types and alternatives

Positive and negative questions, negative answers

Negative questions

▶ Classically the content of p? is identical to that of $\neg p$? (Hamblin, 1973; Groenendijk and Stokhof, 1997).

Negative questions

- ▶ Classically the content of p? is identical to that of $\neg p$? (Hamblin, 1973; Groenendijk and Stokhof, 1997).
- The child wonders whether 2 is even. The child wonders whether 2 isn't even. (There is evidence that 2 is even) Hoepelmann (1983)

Negative questions

- ▶ Classically the content of p? is identical to that of $\neg p$? (Hamblin, 1973; Groenendijk and Stokhof, 1997).
- ► The child wonders whether 2 is even. The child wonders whether 2 isn't even. (There is evidence that 2 is even) Hoepelmann (1983)
- Epstein is investigating whether Strauss-Kahn should be exonerated Epstein is investigating whether Strauss-Kahn shouldn't be exonerated (There is evidence that Strauss-Kahn should be exonerated.)

Two desiderata for an adequate theory

Desideratum 1 p? queries the truth of p; $\neg p$? queries the truth of $\neg p$; these questions are distinct though have equivalent resolving answerhood conditions.

Two desiderata for an adequate theory

Desideratum 1 p? queries the truth of p; $\neg p$? queries the truth of $\neg p$; these questions are distinct though have equivalent resolving answerhood conditions.

Desideratum 2 $\neg p$ implies that there is evidence that p

Responses to ('Did..?')/ ('Didn't..?')

BNC

Question	Positive	Negative	No answer	Total
type	answer	answer		
Positive	53%	31%	16%	n = 106
polar				
Negative	23%	54%	22%	n = 86
polar				

Responses to ('Did..?')/ ('Didn't..?')

BNC

Question	Positive	Negative	No answer	Total
type	answer	answer		
Positive	53%	31%	16%	n = 106
polar				
Negative	23%	54%	22%	n = 86
polar				

almost mirror image distribution

Negation in dialogue

[child B approaches socket with nail]
A: No. Do(#n't) you want to be electrocuted?

B: (3) No.

A: (4) No.

Negation in dialogue

► [child B approaches socket with nail]

A: No. Do(#n't) you want to be electrocuted?

B: (3) No.

A: (4) No.

A: Did Merkel threaten Papandreou?

B: No.

A: That can't be true.

B/C: No.

Negation in dialogue

[child B approaches socket with nail]

A: No. Do(#n't) you want to be electrocuted?

B: (3) No.

A: (4) No.

A: Did Merkel threaten Papandreou?

B: No.

A: That can't be true.

B/C: No.

A: Marie est une bonne étudiante B: Oui / #Si.

A: Marie n'est pas une bonne étudiante B: #Oui / Si.

Another desideratum

Desideratum 3 negative propositions are recognizably distinct from positive propositions.

Outline

Negative questions and answers

Negation, types and alternatives

Positive and negative questions, negative answers

▶ $\neg T$ represents $(T \rightarrow \bot)$

- ▶ $\neg T$ represents $(T \rightarrow \bot)$
- distinguishes negative types from positive ones

- ▶ $\neg T$ represents $(T \rightarrow \bot)$
- distinguishes negative types from positive ones
- ► cl_¬(RecType) type of the closure of record types under negation

- ▶ $\neg T$ represents $(T \rightarrow \bot)$
- distinguishes negative types from positive ones
- ► cl_¬(RecType) type of the closure of record types under negation
- ▶ map_(RecType) type of singly negated record types

- ▶ ¬T represents ($T \rightarrow \bot$)
- distinguishes negative types from positive ones
- ► cl_¬(RecType) type of the closure of record types under negation
- ▶ map_(RecType) type of singly negated record types
- ► cl¬(map¬(RecType)) type of negated record types

```
    Sit : Rec | sit-type : cl¬(map¬(RecType))
    Austinian propositions, NegProp
```

- $\begin{vmatrix} sit & = s \\ sit\text{-type} & = [c_{run}:run(sam)] \end{vmatrix} an Austinian$ proposition
- ► sit : Rec | type of positive Austinian | propositions, PosProp
- What is the relationship between sit and sit-type?

Austinian witness

- If T is a record type, then s is an Austinian witness for T iff s: T
- If T is a record type, then s is an Austinian witness for ¬T iff s: T' for some T' incompatible with T
- ▶ If T is a type $\neg \neg T'$ then s is an Austinian witness for T iff s is an Austinian witness for T'
- ► The intuitions behind clauses 2–3 are based on an intuitive account of witnessing intuitionistic negation.

Negation of Austinian propositions

```
 \begin{bmatrix} sit & = s \\ sit\text{-type} & = T \end{bmatrix} 
 \begin{bmatrix} sit & = s \\ sit\text{-type} & = \neg T \end{bmatrix}
```

Perception complements and infonic negation

Ralph saw Mary serve Bill

Perception complements and infonic negation

- Ralph saw Mary serve Bill
- ► Saw(R,s) \land s : Serve(m,b)

Perception complements and infonic negation

- ► Ralph saw Mary serve Bill
- Saw(R,s) ∧ s : Serve(m,b)
- Ralph saw Mary not serve Bill
- Ralph saw Mary not pay her bill
- Saw(R,s) ∧ s : ¬ Serve(m,b)
- Saw(R,s) ∧ s :/Serve(m, b)

Alternative positives for infonic negation

Cooper (1998)

- ▶ $\forall s, \sigma[s : \overline{\sigma} \text{ implies}$ $\exists (Pos)\psi[s : \psi \text{ and } \psi \Rightarrow \overline{\sigma}]]$
- ▶ $\forall s, \sigma[s : \overline{\sigma} \text{ implies}$ $\exists (Pos)\psi[s : \psi \text{ and } \psi > \sigma]]$

Alternative positives in terms of Austinian witnesses

Revise definition of Austinian witness:

If T is a record type, then s is an Austinian witness for $\neg T$ iff s:T' for some T' incompatible with T and there is some T'' such that s:T'' and T''>T

Defeasible inferencing in terms of enthymemes (Breitholtz, 2010; Breitholtz and Cooper, 2011)

- $\rightarrow \lambda r : T_1(T_2)$
- enthymemes as part of (local) resources

Fillmore's frames and resources

Her father doesn't have any teeth

Fillmore's frames and resources

- Her father doesn't have any teeth
- # Her husband doesn't have any walnut shells

Fillmore's frames and resources

- ▶ Her father doesn't have any teeth
- # Her husband doesn't have any walnut shells
- Your drawing of the teacher has no nose/#noses

Fillmore's frames and resources

- ▶ Her father doesn't have any teeth
- # Her husband doesn't have any walnut shells
- Your drawing of the teacher has no nose/#noses
- ► The statue's left foot has no #toe/toes

Fillmore (1985)

Resources local to a dialogue

A: My husband keeps walnut shells in the bedroom.

B: Millie's lucky in that respect. Her husband doesn't have any walnut shells.

Outline

Negative questions and answers

Negation, types and alternatives

Positive and negative questions, negative answers

Questions as functions returning Austinian propositions I

Do (Don't) you want to be electrocuted?

$$\lambda r: Rec \left(\begin{bmatrix} sit = s \\ sit-type = [c : want(B(electrocute(B)))] \end{bmatrix} \right)$$

►
$$\lambda r$$
:Rec ($\begin{bmatrix} \text{sit} = \text{s} \\ \text{sit-type} = \begin{bmatrix} \text{c} : \neg \text{want}(\text{B}(\text{electrocute}(\text{B}))) \end{bmatrix} \end{bmatrix}$

Questions as functions returning Austinian propositions II

Relating to negative questions

▶ Wondering about $\lambda r:Rec \left(\begin{bmatrix} sit = s \\ sit-type = \neg T \end{bmatrix}\right)$ - wondering

about whether (or presupposing that) s has characteristics that typically involve T being the case

- I wonder whether two isn't even
- I wonder whether you don't want to electrocute yourself

Relating to negative questions

► Wondering about $\lambda r:Rec \left(\begin{bmatrix} sit = s \\ sit-type = \neg T \end{bmatrix}\right)$ - wondering

about whether (or presupposing that) s has characteristics that typically involve T being the case

- I wonder whether two isn't even
- I wonder whether you don't want to electrocute yourself
- ▶ The simple answerhood relation of Ginzburg and Sag (2000) which we saw yesterday ensures that the exhaustive answer to p? are $\{p, \neg p\}$, whereas to $\neg p$? they are $\{\neg p, \neg \neg p\}$, so the exhaustive answers are equivalent.

Content for *no* in different dialogue contexts

- (context: child about to put nail in socket) Parent: No!
- no in response to a predicted outcome of an observed event:
- cf reasoning about the game of Fetch

```
phon: no
cat.head = interj : syncat
ARG-ST = \langle \rangle : elist(synsem)
cont= Want(spkr, - Fulfill(o))
```

Or is the content: ¬ Want(spkr, Fulfill(o))?

Content for no in different dialogue contexts I

- Content of no is ¬T if MaxQUD : PosQ and T is an atomic answer for MaxQUD
- content of no is T if MaxQUD : NegQ and T is an atomic answer for MaxQUD
- ► EnsureNeg(p,maxqud) \leftrightarrow p = q([]) : NegProp; otherwise q([]) : PosProp and p = $\neg q([])$

```
phon: no
cat.head = adv[+ic]: syncat

ARG-ST = \( \): elist(synsem)

dgb-params.max-qud: PolQuestion
cont: NegProp
c1: EnsureNeg(cont, maxqud)
```

Positive and negative questions, negative answers

Content for no in different dialogue contexts II

Conclusions

- Positive and negative questions are distinct
- There is a type of negative propositions
- Negations require alternative positives
- Exhaustive answers to positive and negative questions are equivalent
- Distinguishing positive and negative propositions allows a straightforward characterization of the content of no-answers

References I

- Artstein, R., Core, M., DeVault, D., Georgila, K., Kaiser, E., and Stent, A., editors (2011). SemDial 2011 (Los Angelogue): Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dialogue.
- Breitholtz, E. (2010). Clarification requests as enthymeme elicitors. In Aspects of Semantics and Pragmatics of Dialogue. SemDial 2010, 14th Workshop on the Semantics and Pragmatics of Dialogue,.
- Breitholtz, E. and Cooper, R. (2011). Enthymemes as rhetorical resources. In Artstein et al. (2011).

References II

- Cooper, R. (1998). Austinian propositions, Davidsonian events and perception complements. In Ginzburg, J., Khasidashvili, Z., Levy, J. J., Vogel, C., and Vallduvi, E., editors, *The Tbilisi Symposium on Logic, Language, and Computation: Selected Papers*, pages 19–34. CSLI Publications.
- Cooper, R. and Ginzburg, J. (2011). Negation in dialogue. In Artstein et al. (2011).
- Fillmore, C. J. (1985). Frames and the semantics of understanding. *Quaderni di Semantica*, 6(2):222–254.
- Ginzburg, J. and Sag, I. A. (2000). *Interrogative Investigations:* the form, meaning and use of English Interrogatives. Number 123 in CSLI Lecture Notes. CSLI Publications, Stanford: California.

References III

- Groenendijk, J. and Stokhof, M. (1997). Questions. In van Benthem, J. and ter Meulen, A., editors, *Handbook of Logic and Linguistics*. North Holland, Amsterdam.
- Hamblin, C. L. (1973). Questions in montague english. In Partee, B., editor, *Montague Grammar*. Academic Press, New York.
- Hoepelmann, J. (1983). On questions. In Kiefer, F., editor, *Questions and Answers*. Reidel.