"大数据算法"作业 3 2023 年春

注: 本次作业不计入成绩, 无需提交。

习题 1

给定一个由集合 $[n]=\{1,\cdots,n\}$ 中的 m 个整数组成的数据流 \mathcal{S} , 令 $\mathrm{HH}_k=\{i\in[n]:f_i>\frac{m}{k}\}$ 为 k-频繁项集, 其中 f_i 为 \mathcal{S} 中元素 i 的频率 (即出现次数)。

修改 Misra-Gries 算法以找到一个集合 H 使得

$$\mathrm{HH}_k(\mathcal{S}) \subseteq H \subseteq \mathrm{HH}_{2k}(\mathcal{S}).$$

你的算法应该只用一遍扫描 (one pass), 并且使用最多 $O(k(\log n + \log m))$ 比特的空间。

习题 2

设 X 和 Y 为有限集, Y^X 表示从 X 到 Y 的所有函数构成的集合。我们将这些函数视为哈希函数。如果对于 从函数族 $\mathcal{H} \subseteq Y^X$ 中均匀随机选择的函数 h, 以下属性成立, 我们称 \mathcal{H} 是强 2-全域 (strongly 2-universal) 的:

$$\forall x, x' \in X \ \forall y, y' \in Y \left(x \neq x' \Rightarrow \Pr_{h}[h(x) = y \land h(x') = y'] = \frac{1}{|Y|^2} \right).$$

给定一个由 X 中的元素组成的数据流 S, 并假设 S 中包含的不同元素最多为 s 个。设 $\mathcal{H} \subseteq Y^X$ 是一个强 2-全域的哈希函数族, 其中 $|Y|=cs^2$ (c>0 为某个常数)。假设我们使用一个随机函数 $h\in\mathcal{H}$ 来哈希。证明碰撞 (即 S 中两个不同的元素哈希到相同位置的事件) 的概率最多为 1/(2c)。

习题 3

在严格的十字转门模型 (strict turnstile model) 下, 对于一个来自 [n] 的整数数据流 \mathcal{S} , 考虑以下两个问题: (k,ℓ_2) -点查询问题: 给定一个查询 [n] 如 [n] 和 [n] 如 [n] 如 [n] 如 [n] 和 [n] 如 [n] 和 [n] 如 [n] 和 [n] 和

假设存在一个解决 (k,ℓ_2) -点查询问题的算法 A, 其失败概率为 $\frac{\delta}{n}$, 并且使用 s 比特的空间。给出一个解决 $(\frac{k}{4},\ell_2)$ -频繁项问题的算法 A', 其失败概率为 δ , 并且使用尽可能少的空间。

习题 4

在本课程中,我们学习了一个 KMV 算法 (记为 A),用来估计数据流中不同元素的个数。算法 A 的失败概率为 $\frac{1}{3}$ 。对于该问题,设计一个新算法,使得对于任意的 $\delta < \frac{1}{3}$,其失败概率最多为 δ 。你的算法可以使用 A 作为一个子程序。