発送日 平成18年 7月11日

拒絶理由通知書

特許出願の番号

特願2004-187989

起案日

適用条文

平成 18年 7月 7日

特許庁審査官 特許出願人代理人 9368 5D00

五貫 昭一 立石 篤司 様

第29条第2項、第36条

この出願は、次の理由によって拒絶をすべきものである。これについて意見があれば、この通知書の発送の日から60日以内に意見書を提出して下さい。

理由

イ. この出願は、特許請求の範囲の記載が下記の点で、特許法第36条第6項第1号に規定する要件を満たしていない。

記

請求項1~72においては、「フォーマット処理」の方法が何ら特定されていないが、発明の詳細な説明を参照する限り、本願所期の効果を奏する為には「ディスクの内周側に位置するゾーンから記録層MOと記録層M1とを交互に、つまり、ゾーン $O(0) \rightarrow V$ $O(0) \rightarrow V$ O(0)

よって、請求項1~72に係る発明には、発明の詳細な説明中に記載されていない構成もが含まれていると判断せざるを得ない。

(仮に、上記「フォーマット処理」が前提ではない旨主張するのであれば、その 根拠となる記載箇所を特定されたい。)

ロ. この出願は、特許請求の範囲の記載が下記の点で、特許法第36条第6項第 2号に規定する要件を満たしていない。

記

請求項1について

第5行に記載された「第2のデータ領域内における未記録領域の最大アドレスを含む最終既記録領域情報」とはどの様なものを指しているのか不明である。

即ち、上記記載では、「最終既記録領域情報」として「第2のデータ領域内における未記録領域の最大アドレス」<u>のみ</u>を用いる構成もが当該請求項に係る発明に含まれ得ることになるが、「第2のデータ領域内における未記録領域の最大アドレス」のみで「既記録領域」に関する情報を表し得るとする根拠が全く不明である。

(「未記録領域」と「既記録領域」との位置関係は、記録の進行により「既記録領域」の発生する順序、若しくは、「未記録領域」が消失する順序に依存することが自明であるが、当該請求項においては、その様な順序は何ら特定されていない。)

この点に関しては、請求項1を引用している請求項3、9~17についても同様に不明である。

請求項2について

第5行~第6行に記載された「第2のデータ領域内における未記録領域の最大 アドレスの次のアドレスを含む最終既記録領域情報」とはどの様なものを指して いるのか不明である。

即ち、上記記載では、「最終既記録領域情報」として「第2のデータ領域内における未記録領域の最大アドレスの次のアドレス」<u>のみ</u>を用いる構成もが当該請求項に係る発明に含まれ得ることになるが、「第2のデータ領域内における未記録領域の最大アドレスの次のアドレス」のみで「既記録領域」に関する情報を表し得るとする根拠が全く不明である。

(「未記録領域」と「既記録領域」との位置関係は、記録の進行により「既記録

領域」の発生する順序、若しくは、「未記録領域」が消失する順序に依存することが自明であるが、当該請求項においては、その様な順序は何ら特定されていない。)

この点に関しては、請求項2を引用している請求項3、9~17についても同様に不明である。

請求項4について

第5行~第7行に記載された「第2のデータ領域内の未記録領域のうち最大アドレスを有する未記録領域に隣接し、第2のデータ領域の終了位置にその終了位置が一致している、データが記録されている第2のデータ領域内の領域」とはどの様なものを指しているのか不明である。

即ち、「未記録領域」と「既記録領域」との位置関係は、記録の進行により「既記録領域」の発生する順序、若しくは、「未記録領域」が消失する順序に依存することが自明であるが、その様な順序が何ら特定されていないにも関わらず、「第2のデータ領域の終了位置にその終了位置が一致している、データが記録されている第2のデータ領域内の領域」が必ず存在すると認め得る根拠が全く不明である。

この点に関しては、請求項4を引用している請求項5~17についても同様に 不明である。

請求項5について

「最終既記録領域情報は、情報記録<u>媒体の最も内周側</u>にある未記録領域の終了アドレスを含む」と記載されているが、「最も内周側にある未記録領域」とは、「第2のデータ領域」内のみで決定するのか、或いは、「第1のデータ領域」と「第2のデータ領域」の双方を考慮するのかが不明である。

この点に関しては、請求項5を引用している請求項7~17についても同様に 不明である。

請求項6について

「最終既記録領域情報は、情報記録<u>媒体の最も内周側</u>にある未記録領域の終了アドレスの次のアドレスを含む」と記載されているが、「最も内周側にある未記録領域」とは、「第2のデータ領域」内のみで決定するのか、或いは、「第1のデータ領域」と「第2のデータ領域」の双方を考慮するのかが不明である。

この点に関しては、請求項 6 を引用している請求項 7 \sim 1 7についても同様に不明である。

請求項8について

「最も第2のデータ領域の終了位置に近い未記録領域の終了位置」とは、「第2のデータ領域」内のみで決定するのか、或いは、「第1のデータ領域」と「第2のデータ領域」の双方を考慮するのかが不明である。

この点に関しては、請求項8を引用している請求項9~17についても同様に 不明である。

請求項9について

「第1の記録層は、第2の記録層よりもレーザに近い位置に配置され」るという記載は、「第1の記録層は、第2の記録層よりもレーザからの光の入射面に近い位置に配置され」るとした方がより適切ではないか。

(出願人自身の責任において検討されたい。)

請求項11について

第2行の「<u>前記</u>情報領域」という記載は、当該箇所以前のどの記載を受けているのか不明である。

(少なくとも、請求項1には「情報領域」という記載は全く存在しない。) この点に関しては、請求項11を引用している請求項12~17についても同様に不明である。

請求項18、20、26~49について

請求項1、3、9~17と同様の理由により当該各請求項に係る発明の構成は 不明である。

請求項19、20、26~49について

請求項2、3、9~17と同様の理由により当該各請求項に係る発明の構成は 不明である。

請求項21~49について

請求項4~17と同様の理由により当該各請求項に係る発明の構成は不明である。

請求項22について

請求項5と同様の理由により当該請求項に係る発明の構成は不明である。 この点に関しては、請求項22を引用している請求項24~47についても同様に不明である。

請求項23について

請求項6と同様の理由により当該請求項に係る発明の構成は不明である。 この点に関しては、請求項23を引用している請求項24~47についても同様に不明である。

請求項26について

「第1の記録層は、第2の記録層よりもレーザに近い位置に配置され」るという記載は、「第1の記録層は、第2の記録層よりもレーザからの光の入射面に近い位置に配置され」るとした方がより適切ではないか。

(出願人自身の責任において検討されたい。)

請求項50について

第7行〜第8行に記載された「第2のデータ領域内における未記録領域の最大アドレスを含む最終既記録領域情報が<u>記録される領域</u>」とは、「第2のデータ領域内における未記録領域の最大アドレスを含む最終既記録領域情報」以外の情報は記録できない領域である必要があると認められるが、どの様な領域を指しているのか発明の詳細な説明を参酌しても不明である。

仮に、本願出願前に一般的なオポジットトラックパス型光ディスクにおけるユーザ領域であっても、「第2のデータ領域内における未記録領域の最大アドレスを含む最終既記録領域情報」を記録し得るのであれば、当該請求項に係る発明である「情報記録媒体」は、本願出願前に公知であることになる。

(当該請求項の記載では、オポジットトラックパス型光ディスクにおいて、「第2のデータ領域内における未記録領域の最大アドレスを含む最終既記録領域情報」が<u>記録し得る</u>ことのみが要件とされており、当該情報が情報記録媒体上に実際に記録されているか否かは無関係であると判断せざるを得ない。)

この点に関しては、請求項50を引用している請求項52、58~66についても同様に不明である。

請求項51について

第7行〜第8行に記載された「第2のデータ領域内における未記録領域の最大アドレスの次のアドレスを含む最終既記録領域情報が<u>記録される領域</u>」とは、「第2のデータ領域内における未記録領域の最大アドレスの次のアドレスを含む最終既記録領域情報」以外の情報は記録できない領域である必要があると認められるが、どの様な領域を指しているのか発明の詳細な説明を参酌しても不明である

仮に、本願出願前に一般的なオポジットトラックパス型光ディスクにおけるユーザ領域であっても、「第2のデータ領域内における未記録領域の最大アドレスの次のアドレスを含む最終既記録領域情報」を記録し得るのであれば、当該請求項に係る発明である「情報記録媒体」は、本願出願前に公知であることになる。(当該請求項の記載では、オポジットトラックパス型光ディスクにおいて、「第2のデータ領域内における未記録領域の最大アドレスの次のアドレスを含む最終既記録領域情報」が<u>記録し得る</u>ことのみが要件とされており、当該情報が情報記録媒体上に実際に記録されているか否かは無関係であると判断せざるを得ない。)

この点に関しては、請求項51を引用している請求項52、58~65、67についても同様に不明である。

請求項53について

第7行~第10行の「第2のデータ領域内の未記録領域のうち最大アドレスを有する未記録領域に隣接し、……最終既記録領域情報が記録される領域」とは、「第2のデータ領域内の未記録領域のうち最大アドレスを有する未記録領域に隣接し、……最終既記録領域情報」以外の情報は記録できない領域である必要があると認められるが、どの様な領域を指しているのか発明の詳細な説明を参酌しても不明である。

仮に、本願出願前に一般的なオポジットトラックパス型光ディスクにおけるユーザ領域であっても、「第2のデータ領域内の未記録領域のうち最大アドレスを有する未記録領域に隣接し、……最終既記録領域情報」を記録し得るのであれば

、当該請求項に係る発明である「情報記録媒体」は、本願出願前に公知であることになる。

(当該請求項の記載では、オポジットトラックパス型光ディスクにおいて、「第2のデータ領域内の未記録領域のうち最大アドレスを有する未記録領域に隣接し、……最終既記録領域情報」が<u>記録し得る</u>ことのみが要件とされており、当該情報が情報記録媒体上に実際に記録されているか否かは無関係であると判断せざるを得ない。)

この点に関しては、請求項53を引用している請求項54~65、68につい ても同様に不明である。

請求項54について

「最終既記録領域情報は、情報記録<u>媒体の最も内周側</u>にある未記録領域の終了アドレスを含む」と記載されているが、「最も内周側にある未記録領域」とは、「第2のデータ領域」内のみで決定するのか、或いは、「第1のデータ領域」と「第2のデータ領域」の双方を考慮するのかが不明である。

この点に関しては、請求項54を引用している請求項56~65についても同様に不明である。

請求項55について

「最終既記録領域情報は、情報記録<u>媒体の最も内周側</u>にある未記録領域の終了アドレスの次のアドレスを含む」と記載されているが、「最も内周側にある未記録領域」とは、「第2のデータ領域」内のみで決定するのか、或いは、「第1のデータ領域」と「第2のデータ領域」の双方を考慮するのかが不明である。

この点に関しては、請求項55を引用している請求項56~65についても同様に不明である。

請求項58について

「第1の記録層は、第2の記録層よりもレーザに近い位置に配置され」るという記載は、「第1の記録層は、第2の記録層よりもレーザからの光の入射面に近い位置に配置され」るとした方がより適切ではないか。

(出願人自身の責任において検討されたい。)

請求項69について

請求項1と同様の理由により当該請求項に係る発明の構成は不明である。 この点に関しては、請求項69を引用する請求項72についても同様の理由により不明である。

請求項70について

請求項2と同様の理由により当該請求項に係る発明の構成は不明である。 この点に関しては、請求項70を引用する請求項72についても同様の理由により不明である。

請求項71について

請求項4と同様の理由により当該請求項に係る発明の構成は不明である。 この点に関しては、請求項71を引用する請求項72についても同様の理由により不明である。

ハ. この出願は、発明の詳細な説明の記載について下記の点で、特許法第36条 第4項第1号に規定する要件を満たしていない。

記

段落番号0034について

第2行の「データが記録されと」という記載は不明である。

段落番号0080について

「図8に示されるように……「ドライブ<u>ID</u>」……」と記載されているが、図8中には対応する記載がない。

段落番号0206について

第2行〜第3行の「ユーザ<u>データ</u>は……連続的に<u>行われる</u>ものとする」という 記載は不明である。

二.この出願の請求項1~72に係る発明は、その出願前日本国内において頒布された下記の刊行物に記載された発明に基いて、その出願前にその発明の属する

技術の分野における通常の知識を有する者が容易に発明をすることができたものであるから、特許法第29条第2項の規定により特許を受けることができない。

記

引用文献:

1. 特開2002-237050号公報

備考:

引用例1には、多層光ディスク上に記録領域と未記録領域に関する記録位置情報を記録する構成が記載されている(段落番号0043参照)。

ここで、「未記録領域」に関する情報を参照すれば、未記録領域の最大アドレスを知ることができることは明らかである。

そして、オポジットトラックパス型の光ディスクが本願出願前に広く周知であると共に、請求項1~72に係る発明の構成が著しく不明(先に挙げた拒絶理由イ、口参照)である以上、本願請求項1~72に係る発明と引用例1の発明との間に格別の差異があると認めることは不可能である。

先行技術文献調査結果の記録

・調査した分野 IPC G11B 7/0045 G11B 7/007

この先行技術文献調査結果の記録は拒絶理由を構成するものではありません。

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-237050 (P2002-237050A)

(43)公開日 平成14年8月23日(2002.8.23)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

G11B 7/0045

7/095

G11B 7/0045

Z 5D090

7/095

C 5D118

審査請求 未請求 請求項の数7 OL (全 9 頁)

(21)	出願番号

特願2001-33963(P2001-33963)

(71)出顧人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(22)出願日 平成13年2月9日(2001.2.9)

(72)発明者 荒木 良嗣

埼玉県鶴ヶ島市富士見6丁目1番1号 パ

イオニア株式会社総合研究所内

(72)発明者 前田 孝則

埼玉県鶴ヶ島市富士見6丁目1番1号 パ

イオニア株式会社総合研究所内

(74)代理人 100083839

弁理士 石川 泰男

最終頁に続く

(54) 【発明の名称】 情報記録装置

(57)【要約】

【課題】 多層の光学式情報記録媒体に情報を記録する際、各情報記録層の反射率や透過率が変動する場合であっても、正確なトラッキングエラーを検出可能な情報記録装置を提供する。

【解決手段】 複数の情報記録層が積層形成された多層の光学式情報記録媒体に対して情報を記録する情報記録装置では、各情報記録層における記録領域と未記録領域を示す記録位置情報を取得し(ステップS1、S2)、記録対象となる着目層を所定の情報記録層に設定し(ステップS3)、空き領域が確認されるまで着目層を順次移行する(ステップS4、S5)。そして、空き領域が確認された着目層以外の各情報記録層において、上記の記録領域と未記録領域の境界部を判別し(ステップS6)、トラッキングへの影響が許容範囲内にないときば、該当する領域への記録を禁止し(ステップS7、S8)、それ以外の領域への記録を行う(ステップS9、S10)。

【特許請求の範囲】

【請求項1】 複数の情報記録層が積層形成された多層 の光学式情報記録媒体に対して情報を記録する情報記録 装置であって、

前記複数の情報記録層において情報を記録済みである記 録領域と初期状態である未記録領域との境界部を判別 し、一の情報記録層に記録を行う際、他の情報記録層の 前記境界部によるトラッキングサーボへの影響の度合が 大きい領域への記録を行わないことを特徴とする情報記 録装置。

【請求項2】 記録光の昭射側に近い第1情報記録層と 記録光の照射側から遠い第2情報記録層が積層形成され た2層の光学式情報記録媒体に対して情報を記録する情 報記録装置であって、

前記第1及び第2情報記録層において情報を記録済みで ある記録領域と初期状態の未記録領域との境界部を判別 し、前記第1情報記録層に記録を行う際、前記第2情報 記録層の前記境界部によるトラッキングサーボへの影響 の度合が大きい領域への記録を行わないとともに、前記 第2情報記録層に記録を行う際、前記第1情報記録層の 20 前記境界部によるトラッキングサーボへの影響の度合が 大きい領域への記録を行わないことを特徴とする情報記 録装置。

【請求項3】 前記トラッキングサーボへの影響の度合 は、前記境界部に照射される光束径内に含まれる記録済 み又は未記録のトラック数に基づいて判断することを特 徴とする請求項1又は請求項2に記載の情報記録装置。

【請求項4】 複数の情報記録層が積層形成された光学 式情報記録媒体に対して情報を記録する情報記録装置で あって、

前記複数の情報記録層において情報を記録済みである記 録領域と初期状態の未記録領域との境界部のうちトラッ キングサーボへの影響の度合が大きいものが存在しない 条件の下で、各情報記録層にはそれぞれ記録順が予め設 定され、一の情報記録層の領域全体への記録を終了した 後に、次の記録順の情報記録層への記録を開始すること を特徴とする情報記録装置。

【請求項5】 前記記録順は、記録光の照射側から最も 遠い情報記録層から、前記記録光の照射側に1層づつ近 記載の情報記録装置。

【請求項6】 前記記録順は、記録光の照射側に最も近 い情報記録層から、前記記録光の照射側から1層づつ離 れるように設定されていることを特徴とする請求項4に 記載の情報記録装置。

【請求項7】 記録光の照射側に近い第1情報記録層と 記録光の照射側から遠い第2情報記録層が積層形成され た2層の光学式情報記録媒体に対して情報を記録する情 報記録装置であって、

前記第1及び第2情報記録層において情報を記録済みで 50 ク半径方向の一方の側と他方の側でレーザパワーが非対

ある記録領域と初期状態の未記録領域との境界部のうち トラッキングサーボへの影響の度合が大きいものが存在 しない条件の下で、前記一方の情報記録層の領域全体へ の記録を終了した後に、他方の情報記録層への記録を開 始することを特徴とする情報記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報が記録された 複数の情報記録層が積層形成された多層の光学式情報記 録媒体、及び、その多層の光学式情報記録媒体に対し情 報を記録する情報記録装置の技術分野に属するものであ る。

[0002]

【従来の技術】近年、CDやDVDに代表される大容量 の光ディスクが普及している。そして、長時間の映像デ ータ等を記録する要請から光ディスクの記録密度を一層 向上させるため、2以上の情報記録層を積層形成した多 層光ディスクの開発が進みつつある。また、各情報記録 層を相変化記録面により構成すれば、情報の再生に加 え、情報を記録可能な多層光ディスクを実現することが できる。

[0003]

【発明が解決しようとする課題】しかしながら、多層光 ディスクの相変化記録面は、記録を行う前の初期状態で は結晶状態であるのに対し、記録後は非結晶状態とな る。一般に、相変化記録面が結晶状態となる未記録領域 と非結晶状態となる記録領域では、反射率及び透過率が 異なる。記録可能な2層光ディスクへの記録時に、記録 対象の情報記録層にレーザ光を照射し、その反射光を受 光する場合を考えると、レーザ側に近い情報記録層への 30 記録時は、下層の情報記録層における反射率の影響を受 ける。また、レーザ光の照射側から遠い情報記録層への 記録時は、上層の情報記録層における反射率又は透過率 の影響を受ける。そして、各情報記録層の透過率又は反 射率の分布が一様でない場合、光検出器における光ビー ムの強度分布も一様にならないことがある。

【0004】特に、上記の多層光ディスクへの記録を行 う情報記録装置においてトラッキングサーボを行う場 合、上述の透過率又は反射率の変動による影響が顕著に づくように設定されていることを特徴とする請求項4に 40 なる。すなわち、情報記録層において上記の記録領域及 び未記録領域が混在した状態になると、光検出器におけ る光強度分布には、透過率又は反射率の変動に起因する 成分が重畳されることになる。そして、記録領域と未記 録領域の境界部近辺をレーザ光が透過又は反射した場合 には、記録対象の情報記録層におけるトラッキングエラ ーにオフセットを発生させる要因になる。これは、情報 記録装置で一般的に採用されるブッシュブル法によるト ラッキングエラーの検出の場合、正確にトラック上をト レースしている場合であっても、境界部の影響でディス

称となるため、トラッキングエラーにオフセットが発生するのである。このように、記録可能な多層光ディスクに記録を行う場合、各情報記録層の記録状態に起因するトラッキングエラーのオフセットにより、トラッキングサーボの性能が確保されないことが問題であった。

【0005】そこで、本発明はこのような問題に鑑みなされたものであり、多層の光学式情報記録媒体に情報を記録する際、各情報記録層の反射率や透過率が記録の有無によって変動する場合であっても、他の情報記録層におけるトラッキングサーボに影響を与えず、正確なトラ 10ッキングエラーを検出することが可能な情報記録装置を提供することを目的とする。

[0006]

【課題を解決するための手段】上記課題を解決するために、請求項1に記載の情報記録装置は、複数の情報記録 層が積層形成された多層の光学式情報記録媒体に対して情報を記録する情報記録装置であって、前記複数の情報記録層において情報を記録済みである記録領域と初期状態である未記録領域との境界部を判別し、一の情報記録層に記録を行う際、他の情報記録層の前記境界部によるトラッキングサーボへの影響の度合が大きい領域への記録を行わないことを特徴とする。

【0007】との発明によれば、多層の光学式情報記録媒体に情報を記録する際、記録対象以外の情報記録層で記録領域と未記録領域が混在した状態となっているとき、その境界部を判別する。情報記録媒体の特性により記録領域と未記録領域で反射率又は透過率が変動する場合、境界部近辺を反射又は透過した記録光を用いて記録対象となる情報記録層で、ブッシュブル法によるトラッキングエラーの検出にオフセットとして作用する。よって、境界部近辺に対応する領域(例えば、各情報記録面が互いに法線方向で重なる所定の領域)に対する記録を行わないように制御することで、トラッキングエラーのオフセットの発生を未然に防止し、多層の光学式情報記録媒体への記録時に正確なトラッキングサーボを実現できる。

【0008】請求項2に記載の情報記録装置は、記録光の照射側に近い第1情報記録層と記録光の照射側から遠い第2情報記録層が積層形成された2層の光学式情報記録媒体に対して情報を記録する情報記録装置であって、前記第1及び第2情報記録層において情報を記録済みである記録領域と初期状態の未記録領域との境界部を判別し、前記第1情報記録層に記録を行う際、前記第2情報記録層の前記境界部によるトラッキングサーボへの影響の度合が大きい領域への記録を行り際、前記第1情報記録層の前記境界部によるトラッキングサーボへの影響の度合が大きい領域への記録を行りないことを特徴とする。

【0009】との発明によれば、2層の光学式情報記録 媒体に情報を記録する際、請求項1に記載の発明と同様 50 4

の作用により境界部を判別する。これにより、上層の第 1情報記録層の境界部における透過率又は反射率の変化 により下層の第2情報記録層でのトラッキングサーボに 影響が及ぶ領域への記録が回避されるとともに、下層の 第2情報記録層の境界部における反射率の変化により上 層の第1情報記録層でのトラッキングサーボに影響が及 ぶ領域への記録が回避される。

【0010】請求項3に記載の情報記録装置は、請求項1又は請求項2に記載の情報記録装置において、前記トラッキングサーボへの影響の度合は、前記境界部に照射される光束径内に含まれる記録済み又は未記録のトラック数に基づいて判断することを特徴とする。

【0011】との発明によれば、多層の光学式情報記録 媒体に情報を記録する際、記録光により境界部に照射された光束径内で、それぞれ記録済み又は未記録済みのトラック数を判別するようにしたので、例えば、記録領域と未記録領域の面積の概略を対比可能となり、トラッキングサーボに影響があるか否かを容易に判断できる。

【0012】請求項4に記載の情報記録装置は、複数の情報記録層が積層形成された光学式情報記録媒体に対して情報を記録する情報記録装置であって、前記複数の情報記録層に情報を記録済みである記録領域と初期状態の未記録領域との境界部のうちトラッキングサーボへの影響の度合が大きいものが存在しない条件の下で、各情報記録層にはそれぞれ記録順が予め設定され、一の情報記録層の領域全体への記録を終了した後に、次の記録順の情報記録層への記録を開始することを特徴とする。

【0013】との発明によれば、多層の光学式情報記録 媒体に情報を記録する際、各情報記録層に対し記録順を 30 予め設定しておき、最初の情報記録層の領域全体に記録 し終わってから後続の情報記録層の記録に移り、これ以 降は同様にして最後の情報記録層に至るまで記録を行っ ていく。よって、所定の情報記録層に対する記録中に は、他の情報記録層は、全体が記録領域又は未記録領域 となり、記録領域と未記録領域が混在した状態を回避 し、境界部によるトラッキングサーボに影響を及ばすこ と未然に防止し、多層の光学式情報記録媒体への記録時 に正確なトラッキングサーボを実現できる。

【0014】請求項5に記載の情報記録装置は、請求項404に記載の情報記録装置において、前記記録順は、記録光の照射側から最も遠い情報記録層から、前記記録光の照射側に1層づつ近づくように設定されていることを特徴とする。

【0015】との発明によれば、請求項4に記載の発明と同様の作用に加えて、各層の記録順は最深層である情報記録層から開始し、1層づつ上層に移行して最上層の情報記録層が最後になるように設定されているので、記録対象である情報記録層に対し、下層側は常に記録領域であり、上層側は常に未記録領域であるため、記録光の安定な照射状態を保ちつつトラッキングエラーの検出を

安定化させることができる。

【0016】請求項6に記載の情報記録装置は、請求項 4 に記載の情報記録装置において、前記記録順は、記録 光の照射側に最も近い情報記録層から、前記記録光の照 射側から1層づつ離れるように設定されていることを特 徴とする。

【0017】この発明によれば、請求項4に記載の発明 と同様の作用に加えて、各層の記録順は最上層である情 報記録層から開始し、1層づつ下層に移行して最深層の 情報記録層が最後になるように設定されているので、記 10 化する。つまり、情報が記録された記録領域は非結晶状 録対象である情報記録層に対し、上層側は常に記録領域 であり、下層側は常に未記録領域であるため、記録光の 安定な照射状態を保ちつつトラッキングエラーの検出を 安定化させることができる。

【0018】請求項7に記載の情報記録装置は、記録光 の照射側に近い第1情報記録層と記録光の照射側から遠 い第2情報記録層が積層形成された2層の光学式情報記 録媒体に対して情報を記録する情報記録装置であって、 前記第1及び第2情報記録層において情報を記録済みで ある記録領域と初期状態の未記録領域との境界部のうち 20 トラッキングサーボへの影響の度合が大きいものが存在 しない条件の下で、前記一方の情報記録層の領域全体へ の記録を終了した後に、他方の情報記録層への記録を開 始することを特徴とする。

【0019】この発明によれば、2層の光学式情報記録 媒体に情報を記録する際、請求項4に記載の発明と同様 の作用により記録順が設定される。よって、上層の第1 情報記録層では下層の第2情報記録層における反射率の 影響を受けずにトラッキングサーボを行うことができる とともに、下層の第2情報記録層では上層の第2情報記 30 なる。 録層における透過率又は反射率の影響を受けずにトラッ キングサーボを行うことができる。

[0020]

【発明の実施の形態】以下、本発明の好適な実施の形態 について、図面を参照しながら具体的に説明する。

【0021】図1は、本実施形態における多層の光学式 情報記録媒体の一例である2層光ディスク1の断面構造 を示す図である。図1に示すように、2層光ディスク1 は、カバー層11、第1情報記録層12、スペーサー層 13、第2情報記録層14、ディスク基板15が順次積 40 層された断面構造を有する。そして、本実施形態に係る 後述の情報記録装置が2層光ディスク1に対し情報を記 録するときは、図1の上側からレーザ光が照射される。

【0022】図1において、カバー層11は、第1情報 記録層12を保護するための層であり、所定の厚みを有 している。第1情報記録層12は、情報を相変化に基づ いて記録するための相変化記録面が形成されており、レ ーザ光の照射側から近い側に位置する記録層である。ス ベーサー層13は、第1情報記録層12と第2情報記録 層14は、上記の第1情報記録層12と同様に相変化記 録面が形成されており、レーザ光の照射側から遠い側に 位置する記録層である。ディスク基板15は、ポリカー ボネートなどの材料からなる所定の厚みを持つ基板であ

【0023】上記の2層光ディスク1において、第1情 報記録層12及び第2情報記録層14に形成された相変 化記録面は、初期状態では結晶状態であるのに対し、記 録時にレーザ光の照射によって非結晶状態へと特性が変 態であり、未記録領域は結晶状態となる。一般に、相変 化記録材料の性質に基づき、レーザ光に対する反射率あ るいは透過率は、結晶状態と非結晶状態によって差が生 ずる。すなわち、第1情報記録層12及び第2情報記録 層14における記録領域と未記録領域では、それぞれ反 射率と透過率が変動することになる。

【0024】図1の断面構造を持つ2層光ディスク1の 場合、第1情報記録層12への記録を行うときは第2情 報記録層14の反射率の影響を受ける。つまり、レーザ 光が第1情報記録層12に集光され、その反射光が光検 出器で検出される際、第2情報記録層14からの反射光 が迷光成分として光検出器に達するので、その反射率に 応じて検出レベルが変化するのである。また、第2情報 記録層14への記録を行うときは第1情報記録層12の 反射率及び透過率の影響を受ける。つまり、レーザ光が 第2情報記録層14に集光される際に第1情報記録層1 2を経由するため、その透過率に応じて照射される光強 度分布が変化するとともに、第1情報記録層12からの 反射光についても上述した通りの作用で影響することに

【0025】次に図2は、本実施形態に係る情報記録装 置の概略構成を示すブロック図である。図2に示す情報 記録装置は、制御部21と、スピンドルモータ22と、 スピンドルドライバ23と、ピックアップ24と、送り 機構25と、サーボ回路26と、信号処理部27とを備 えて構成され、装着された2層光ディスク1に対する記 録動作を行う。

【0026】以上の構成において、制御部21は、情報 記録装置の記録動作を総括的に制御する。制御部21 は、図2の各構成要素と接続され、データや制御信号を やり取りして制御を行う。この制御部21は、後述する ように本実施形態における記録処理を実行制御する役割

【0027】情報記録装置に装着された2層光ディスク 1は、スピンドルモータ22により回転駆動されつつビ ックアップ24によりレーザ光を照射される。このと き、2層光ディスク1に対し一定の線速度が保持される ように、スピンドルドライバ23がスピンドルモータ2 2の回転制御を行う。

層14との間に配置される透明層である。第2情報記録 50 【0028】送り機構25は、ピックアップ24を2層

光ディスク1の半径方向に移動制御する機構であり、記録時に上述の記録領域に対応するトラック位置にピックアップ24を移動させるように送りモータを駆動制御する。サーボ回路26は、ピックアップ24のアクチュエータを制御し、フォーカスサーボ及びトラッキングサーボを行う。信号処理部27は、記録された情報に基づいてピックアップ24の半導体レーザを駆動制御するとともに、ピックアップ24の検出出力に基づいて各種の信号を生成するための信号処理を行う。

【0029】そして、本実施形態では、サーボ回路26 10 る。によるトラッキングサーボを行うべく、ビックアップ2 4において、ブッシュブル法によるトラッキングエラーが検出される。この場合、ビックアップ24では、トラック上をトレースする際のディスク内周側とディスク外周側との差分出力に基づきトラッキングエラーを検出する。そして、上述したように2層光ディスク1にて記録領域と未記録領域とが混在する場合、その境界部分の影響でトラッキングエラーのオフセットが発生することが問題となる。この現象について、以下、図3及び図4を用いて説明する。 20 含む

【0030】図3は、2層光ディスク1の第2情報記録層14への記録時に、第1情報記録層12によって影響を受ける状態を説明する図である。図3(a)は、第2情報記録層14への記録時の2層光ディスク1の断面状態を示し、第1情報記録層12において、記録済みの記録領域31と初期状態の未記録領域32とが互いに境界部33で接する状態になっている。つまり、第1情報記録層12に複数回の書き込みを行う際、一部のトラック範囲が初期状態のまま残った場合に図3(a)の状態になる。

【0031】一方、カバー層11の側から照射されるレ*D=NA/n×d×2

ただし、NA: 開口数

n:基板屈折率

は:第1情報記録層12と第2情報記録層14との間隔である。例えば、NA=0.85、n=1.5、d=30μmの条件の場合、光東系Dは50μm程度になる。【0036】次に図4は、ピックアップ24の受光位置における図3の状態に対応する受光パターンを示す図であり、この図4を用いて第2情報記録層14でのトラッキングエラーにオフセットが発生するメカニズムを説明する。図4に示す受光パターンには、第2情報記録層14のビームスポットBSに対応する受光パターン41が含まれるとともに、これに重畳して第1情報記録層12の照射領域34に対応する受光パターン42が含まれる。また、ビームスポットBSに対応する受光パターン41の位置には、4分割形状の光検出器24aが配置されている。

【0037】光検出器24aは、それぞれ分割領域A、B、C、Dからなるものとし、ディスク半径方向に対

* ーザ光は、第1情報記録層12を通過し、第2情報記録層14に集光されビームスポットBSを形成する。このとき、図3(a)に示すように、第1情報記録層12の照射領域34がレーザ光によりデフォーカス状態で照射され、その一部が反射するので、照射領域34における反射率の影響を受ける。そして、後述する作用によりトラッキングエラーのオフセットの問題が生じるのは、図3(a)に示すように、第1情報記録層12における照射領域34が境界部33に重なる配置となるときであ

【0032】図3(b)は、図3(a)を上方から見た場合の第1情報記録層12の状態を模式的に説明する図である。図3(b)に示すように、第1情報記録層12における上記の照射領域34はデフォーカス状態であるため、複数のトラックTを含む比較的広い範囲に広がっている(図3(b)では、照射領域34に10本のトラックTが含まれる例を示す)。そして、図3(a)に対応して、照射領域34の中心がほぼ境界部33に一致し、記録領域31と未記録領域32を同程度の面積だけ20 含む状態になっている。

【0033】一般に、相変化記録面の透過率は結晶状態の方が非結晶状態よりも大きいので、未記録領域32の反射率は記録領域31の反射率に比べると小さくなる。よって、照射領域34からの反射光は、ディスク半径方向のパワーが非対称となった状態でピックアップ24に受光されることになる。これが第2情報記録層14からの反射光と重畳される結果、後述のようにトラッキングエラーにオフセットを発生させるのである。

【0034】なお、上記の照射領域34の光束径Dは、 30 概ね次式で与えられる。

[0035]

(1)

し、一方の側には領域A、Bが設けられ、他方の側には 領域C、Dが設けられている。そして、ブッシュブル法 によるトラッキングエラーは、各分割領域に基づく差分 出力(A+B)-(C+D)をとることにより検出でき る。一方、ビームスポットBSに対応する受光パターン 41は、主成分である0次回折光S0に加えて、トラッ クの溝に対応する1次回折光S1が重なった状態になっ ている。そして、ビームスポットBSがトラックの中心 をトレースするときは、トラック左右で1次回折光S1 が対称に分布するため、トラッキングエラーはゼロにな る。

【0038】しかし、図4の場合には、照射領域34の 受光パターン42がトラッキングエラーに影響を与え る。すなわち、トレースされるトラックに対応する位置 に境界部34が合致するので、ディスク半径方向の一方 の側が記録領域31に重なり、他方の側が未記録領域3 2に重なるため、受光レベルがディスク半径方向に非対 50 称になる。この結果、ビームスポットBSがトラックの 中心をトレースする場合であっても、光検出器24aに よる差分出力(A+B)-(C+D)がゼロにならず、 トラッキングエラーにオフセットが発生するのである。 【0039】なお、上述の2層光ディスク1の場合に限 らず、複数の情報記録層が積層された多層光ディスクの 場合も同様に考えることができる。この場合、多層光デ ィスクにおける記録対象の情報記録層は、他の情報記録 層における反射率の影響をそれぞれ受ける。よって、他 の情報記録層のうち記録領域と未記録領域が混在する状

ボにおける上記の問題が起こり得る。

【0040】また、図3及び図4の例では、第1情報記 録層12における反射率の影響に関し説明したが、透過 率の場合も同様に説明することができる。透過率の影響 のみを考慮する場合は、第1情報記録層12を透過した 光ビームは、第2情報記録層14のビームスポットBS に照射されるので、図4における受光パターン41内の みで受光レベルが非対称になる。ととで、2層光ディス ク1 において相変化記録材料の吸収率を適切に調整する 同等にすることができる。この場合は、透過率の影響を 考慮する必要はなく、反射率の影響のみ考慮すればよ

【0041】また、図3及び図4の例では、第2情報記 録層14への記録を行う際の第1情報記録層12による 影響について説明したが、第1情報記録層12に記録を 行う際の第2情報記録層14による影響についても同様 に考えることができる。ただし、この場合には、下層で ある第2情報記録層を透過した光ビームは、上層である 第1情報記録層12に照射されることがないので、第2 情報記録層14の透過率を考慮する必要はなく、反射率 の影響のみ考慮すればよい。

【0042】本実施形態においては、多層光ディスクへ の記録処理における手順によって上記の問題を回避して いる。以下、2層以上を含む一般的な多層光ディスクへ 記録処理に適用した場合において、第1の実施例及び第 2の実施例の2通りについて説明する。

【0043】まず、本実施形態に係る第1の実施例につ いて説明する。図5は、第1の実施例に対応する記録処 理の手順を説明するフローチャートである。図5に示す 40 ように、記録処理が開始されると、多層光ディスクの記 録位置情報が読み取り可能であるか否かを判別する(ス テップS1)。この記録位置情報は、多層光ディスクを 構成する各情報記録層における記録位置を示す情報であ る。すなわち、との記録位置情報に基づき、上述の記録※

 $m/(D/TP) \leq TH$

ただし、TH:予め設定されたしきい値 TP:トラックピッチ

である。なお、全体が未記録領域32であって、一部が 記録領域31であるときは、そこに含まれる記録済みの 50 に設定すればよい。

*領域31と未記録領域32及びそれらの境界部33の位 置を識別することができる。

【0044】上記の記録位置情報が多層光ディスクの所 定の記録エリアに記録されている場合(ステップS 1)、それを読み取って用いればよい。一方、記録位置 情報を多層光ディスクから読み取り不可能な場合がある (ステップS1;NO)。すなわち、多層光ディスクの 種別によっては、記録位置情報を記録するための記録エ リアを有していない場合、あるいは記録動作中の不具合 態があるとき、プッシュプル法によるトラッキングサー 10 により記録エリアに記録位置情報を適切に記録できない 状況を想定したものである。このような場合、多層光デ ィスクを構成する各情報記録層をスキャンして記録状態 をチェックする (ステップS2)。このとき、各情報記 録層の相変化記録面を高速に走査し、その反射光のレベ ルやトラッキングエラーの大きさから記録状態を識別 し、その結果、記録位置情報を判別することができる。 【0045】次に、着目層(記録対象として着目すべき 情報記録層)を所定の情報記録層にに設定する(ステッ プS3)。この場合、記録処理の都合に応じて適宜に情 ことにより、記録領域31と未記録領域32の透過率を 20 報記録層を選択することができる。そして、ステップS 1又はステップS2で取得した記録位置情報に基づい て、記録に必要な空き領域が着目層にあるか否かを判断 する(ステップS4)。その結果、着目層の空き領域が 不足であるときは (ステップS4; NO)、ステップS 3で設定された情報記録層とは別の情報記録層を着目層 として設定し(ステップS5)、再びステップS4に移 行する。なお、全ての情報記録層に空き領域がないこと が判別された場合、図5の処理を終える。

> 【0046】次に、記録位置情報に基づいて着目層以外 の各情報記録層の境界部33を判別する(ステップS 6)。すなわち、図2及び図3で説明した状態を回避す るため、境界部33に影響を受ける領域への記録を行わ ないようにするためである。そして、ステップS6で判 別された境界部33のトラッキングサーボに与える影響 を判別し、正常なトラッキングサーボを行い得る許容範 囲内であるか否かを判定する(ステップS7)。

> 【0047】ステップS7では、種々の判定ルールを用 いることができるが、その一例について説明する。具体 的には所定の上層の境界部33付近で、上記(1)式の 光束径Dの範囲内に含まれるトラック数の比率に基づき 判定できる。例えば、光束径Dの範囲内の一方側に未記 録領域32が含まれるとき、そこに含まれる未記録のト ラック数mに対し、次式で判定する。

[0048]

(2)

トラック数を用いて同様の計算を行えばよい。また、し きい値THは、光束系Dの大きさや記録領域31と未記 録領域32との反射率又は透過率の差などに応じて適宜

てもよい。あるいは、情報記録層におけるランダムな位 置に記録を行うようにしてもよい。

【0049】そして、ステップS7において、トラッキ ングサーボへの影響が許容範囲外であると判定されたと きは(ステップS7:NO)、着目層の該当する領域へ の記録が禁止される(ステップS8)。すなわち、着目 層に対し、図3及び図4で説明した状態で記録が行われ ることは避けられる。

【0050】続いて、着目層のうち禁止された領域以外 の領域において情報の記録を開始する(ステップS 9)。そして、必要な情報が記録された時点で記録が終 了する (ステップS10)。この記録の終了の判断は、 光ディスク1において予め定められた記録エリアの情報 に基づいて行う。このとき、他の情報記録層におけるト ラッキングサーボに影響を与えない程度の未記録領域3

3が残ることは許容される。

【0051】以上説明したように、第1の実施例によれ ば、多層光ディスクへの記録時に、所定の情報記録層の 中に、記録領域31と未記録領域32が混在する情報記 録層がある場合であっても、レーザ光が境界部33の近 辺に照射されることによりトラッキングサーボに影響を 与える場合、着目層における該当する領域での記録は禁 20 止されることになる。よって、情報記録層のトラック上 のビームスポットからの反射光は、ディスク半径方向で パワーの対称性が保持され、トラッキングオフセットを 発生させることなく正確なトラッキングサーボを実現す ることができる。

【0052】次に、本実施形態における第2の実施例に ついて説明する。図6は、第2の実施例に対応する記録 処理の手順を説明するフローチャートである。ここで、 との第2の実施例は、多層光ディスクへの記録に先立っ て、記録位置情報に基づいて全ての情報記録層に境界部 30 33が存在しないことが確認されたことを前提に行われ る処理である。特定の情報記録層に境界部33が存在す る場合は、例えば、上記の第1の実施例が実行されると とになる。

【0053】図6において、上記の前提の下で、着目層 を最深層(レーザ光の照射側から見て最も深い層)に設 定する(ステップS11)。そして、記録位置情報に基 づいて、記録に必要な空き領域が着目層にあるか否かを 判断する(ステップS12)。その結果、着目層の空き 領域が不足であるときは(ステップS12;NO)、1 40 対応する受光パターンを示す図である。 つ上に位置する情報記録層を着目層として設定し(ステ ップS13)、再びステップS12に移行する。なお、 着目層が最も上に位置する情報記録層に達した段階で図 6の処理を終える。

【0054】続いて、着目層に対応する情報記録層に対 し、所定の空き領域において情報の記録を開始する(ス テップS14)。そして、必要な情報が記録された時点 で記録が終了する (ステップS15)。 との場合、情報 記録層の内周側から外周側へ順次記録を行うのが一般的 であるが、外周側から内周側へ順次記録を行うようにし 50 14…第2情報記録層

【0055】以上説明したように、第2の実施例によれ ば、多層光ディスクへの記録時に、最初は最深層の全て の領域への記録を行って未記録領域32がなくなった後 に、上層に移行する。その後は、同様に各情報記録層の 全ての領域に記録を行うことを条件に、順次上層に移行 する。つまり、記録対象となる情報記録層の下層が全て 記録された状態であってレーザ光が境界部33を反射又 10 は透過することがなく、上層は未記録の状態である条件 下で記録が行われる。よって、記録の都度、境界部33 を判別する必要なく、レーザ光が境界部33近辺を透過 又は反射することに起因するトラッキングサーボにおけ る問題が回避されることになる。

【0056】なお、第2の実施例では、情報記録層に予 め設定された記録順として、最深層から順に上層に移行 する場合を説明したが、これとは逆に最上層から順に下 層に移行する場合であってもよく、あるいは各情報記録 層に所定の記録順を設定してもよい。

[0057]

【発明の効果】以上説明したように本発明によれば、多 層の光学式情報記録媒体に情報を記録する際、記録領域 と未記録領域の境界部の影響を受ける位置に記録が行わ れないような手順で記録を行うようにしたので、各情報 記録層における反射率や透過率が変動する場合であって も、記録対象である情報記録層におけるトラッキングサ ーボに影響を与えず、正確なトラッキングエラーを検出 することが可能な情報記録装置を実現することができ る。

【図面の簡単な説明】

【図1】本実施形態における多層の光学式情報記録媒体 の一例である2層光ディスクの断面構造を示す図であ

【図2】本実施形態に係る情報記録装置の概略構成を示 すブロック図である。

【図3】2層光ディスクの第2情報記録層への記録時 に、第1情報記録層により影響を受ける状態を説明する 図である。

【図4】ビックアップの受光位置における図3の状態に

【図5】第1の実施例に対応する記録処理の手順を説明 するフローチャートである。

【図6】第2の実施例に対応する記録処理の手順を説明 するフローチャートである。

【符号の説明】

1…2層光ディスク

11…カバー層

12…第1情報記録層

13…スペーサー層

14

15…ディスク基板

2 1 …制御部

22…スピンドルモータ

23…スピンドルドライバ

24…ピックアップ

24 a…光検出器

25…送り機構

26…サーボ回路

* 27…信号処理部

31…記録領域

32…未記録領域

33…境界部

34…照射領域

41…ビームスポットに対応する受光パターン

42…照射領域に対応する受光バターン

*

【図1】

【図2】

【図3】

【図4】

(b)

フロントページの続き

F ターム(参考) 5D090 AA01 BB04 BB12 CC01 DD02 FF02 FF09 FF31 FF36 5D118 AA16 BA01 BB05 BB08 BF03 CA13 CD03

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第4区分 【発行日】平成18年7月13日(2006.7.13)

【公開番号】特開2002-237050(P2002-237050A) 【公開日】平成14年8月23日(2002.8.23) 【出願番号】特願2001-33963(P2001-33963) 【国際特許分類】

【手続補正書】

【提出日】平成18年5月29日(2006.5.29)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】複数の情報記録層が積層形成された多層の光学式情報記録媒体に対して情報 を記録する情報記録装置であって、

前記複数の情報記録層において情報を記録済みである記録領域と初期状態である未記録領域との境界部を判別する判別手段と、

一の情報記録層に記録を行う際<u>のトラッキングサーボが</u>、他の情報記録層の前記境界部によって影響を受けるか否かを判断する判断手段と、前記判断手段が、前記一の情報記録層に記録を行う際のトラッキングサーボが影響を受けると判断した場合、前記一の情報記録層への記録を抑止する抑止手段と、

を有することを特徴とする情報記録装置。

【請求項2】

<u>前記判断手段は、前記境界部に照射される光東径内に含まれる記録済み又は未記録のトラック数のうち少なくともいずれか一方に基づいて前記トラッキングサーボへの影響を判断することを特徴とする請求項1に記載の情報記録装置。</u>

【請求項3】

各情報記録層の記録順を管理する管理手段を更に有し、

<u>前記判断手段が、前記一の情報記録層に記録する際のトラッキングサーボが影響を受けな</u>いと判断した時、

<u>前記管理手段は一の情報記録層の領域全体への記録を終了した後に、次の記録順の情報記録層への記録を開始することを特徴とする請求項2記載の情報記録装置。</u>

【請求項4】

<u>前記記録順は、記録光の照射側から最も遠い情報記録層から、前記記録光の照射側に1層</u> づつ近づくように設定されていることを特徴とする請求項3に記載の情報記録装置。

【請求項5】

<u>前記記録順は、記録光の照射側に最も近い情報記録層から、前記記録光の照射側から1層づつ離れるように設定されていることを特徴とする請求項3に記載の情報記録装置。</u>

【請求項6<u>】 記録光の照射側に近い第1情報記録層と記録光の照射側から遠い第2情報記録層が積層形成された2層の光学式情報記録媒体に対して情報を記録する情報記録装置</u>であって、

<u>前記第1及び第2情報記録層において情報を記録済みである記録領域と初期状態の未記録</u> 領域との境界部を判別する判別手段と、

前記第1情報記録層に記録を行う際のトラッキングサーボが前記第2情報記録層の前記境 界部によって影響を受けるか否かを判断する第1の判断手段と、

<u>前記第1の判断手段が、前記第1の情報記録層に記録を行う際のトラッキングサーボが影響を受けると判断した場合、前記第1の情報記録層への記録を抑止する第1の抑止手段と</u>

<u>前記第2情報記録層に記録を行う際のトラッキングサーボが、前記第1情報記録層の前記</u> 境界部によって影響を受けるか否かを判断する第2の判断手段

前記第2の判断手段が、前記第2の情報記録層に記録を行う際のトラッキングサーボが影響を受けると判断した場合、前記第2の情報記録層への記録を抑止する第2の抑止手段と 、を有することを特徴とする情報記録装置。

【請求項7】

前記第1及び第2の判断手段は、前記境界部に照射される光東径内に含まれる記録済み又は未記録のトラック数のうち少なくともいずれか一方に基づいて前記トラッキングサーボへの影響を判断することを特徴とする請求項6に記載の情報記録装置。

【請求項8】

各情報記録層の記録順を管理する管理手段を更に有し、

<u>前記1又は第2の判断手段が、前記一方の情報記録層に記録する際のトラッキングサーボ</u>が影響を受けないと判断した時、

前記管理手段は前記一方の情報記録層の領域全体への記録を終了した後に、他方の情報記録層への記録を開始することを特徴とする請求項6~7記載の情報記録装置。