# \*Ground Truth Recovery-procedure

Power laws in human individual behavior

Hu et al.

Backgroun

Power-Law or Burstiness

Structural model

Other Candidates

Conclsuior

- **1** Start with ground truth parameters  $(G, \lambda, \delta)^6$
- 2 Run simulation to predict behavior using these parameters
- **3** Extract key statistics describing the simulation:  $(\beta, R^2, \%1)$
- 4 Find best match in variation.csv: Use 1-Nearest Neighbor to find simulation with most similar  $(\beta, R^2, \%1)$  among a large set of catalogued simulations
- **5** The  $(G,\lambda,\delta)$  of this best-matching simulation are the recovered ground truth
- 6 Calculate the euclidiean distance between the ground truth parameters and the best-matching ones.

#### Parameter range:

- G: [0.25, 0.262, 0.275, 0.288, 0.3]
- λ: [0.068, 0.097, 0.126, 0.155, 0.184, 0.213, 0.242, 0.271, 0.3]
- $\delta$ : [0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3]

<sup>&</sup>lt;sup>6</sup>Note that here we are fixing GD,  $\kappa, \alpha$  across aggregated simulations

## \*Ground Truth Recovery-metric

Power laws in human individual behavior

Hu et al.

Background

Power-Law or Burstiness

Structural model

Other Candidates

Conclsuio

• In Step 6, the euclidean distance between the ground truth parameters and the best-matching ones is calculated as the following:

$$\mathsf{Distance} = \sqrt{|g_{\mathsf{gt}} - g_{\mathsf{fit}}|^2 + |\lambda_{\mathsf{gt}} - \lambda_{\mathsf{fit}}|^2 + |\delta_{\mathsf{gt}} - \delta_{\mathsf{fit}}|^2}$$

- By construction, the maximum distance we can get is around 0.3104 and the minimum is 0 (=perfect fit).
- The following are more examples:
  - Distance  $\simeq 0.012$ :

$$(g_{gt}, g_{fit}, \lambda_{gt}, \lambda_{fit}, \delta_{gt}, \delta_{fit}) = (0.25, 0.262, 0.125, 0.125, 0.126, 0.126)$$

• Distance  $\simeq 0.05$ :

$$(g_{gt}, g_{fit}, \lambda_{gt}, \lambda_{fit}, \delta_{gt}, \delta_{fit}) = (0.262, 0.3, 0.068, 0.25, 0.25, 0.068)$$

• Distance  $\simeq 0.075$ :

$$(g_{gt}, g_{fit}, \lambda_{gt}, \lambda_{fit}, \delta_{gt}, \delta_{fit}) = (0.288, 0.15, 0.271, 0.25, 0.125, 0.213)$$

• Distance  $\simeq 0.1$ :

$$(g_{gt}, g_{fit}, \lambda_{gt}, \lambda_{fit}, \delta_{gt}, \delta_{fit}) = (0.25, 0.15, 0.068, 0.25, 0.25, 0.097)$$

# \*Ground Truth Recovery-empirical fit

Power laws in human individual behavior

Caltech

Hu et al.

Background

Power-Law or Burstiness

Structural model

Other Candidate

Conclsuio

| data   | $(g_{gt}, \lambda_{gt}, \delta_{gt})$ | $(g_{\mathit{fit}}, \lambda_{\mathit{fit}}, \delta_{\mathit{fit}})$ | distance |
|--------|---------------------------------------|---------------------------------------------------------------------|----------|
| gym    | (0.25,0.275,0.126)                    | (0.262, 0.300, 0.126)                                               | 0.028    |
| Moment | (0.25, 0.175, 0.126)                  | (0.262, 0.175, 0.126)                                               | 0.012    |
| Zearn  | (0.35,0.200,0.155)                    | (0.300,0.175,0.155)                                                 | 0.055    |
| Weibo  | (0.25, 0.175, 0.155)                  | (0.250,0.175,0.155)                                                 | 0.000    |

# \*Ground Truth Recovery-results

Power laws in human individual behavior

Hu et al.

Background

Power-Law or

Structural model

Other Candidate

Conclsuio



# \*Ground Truth Recovery-CDF

Power laws in human individual behavior

Hu et al.

Background

Power-Law on

Structural model

Other Candidates

Conclsuior



## \*Ground Truth Recovery-NaN values

Power laws in human individual behavior

Hu et al.

Background

Power-Law or

Structural model

Other

Conclsuior



# \*Ground Truth Recovery-Sensitivity Analysis

Power laws in human individual behavior

Hu et al.

Background

Power-Law or

Structural model

Other Candidate

Conclsuior

