#### BoxPlot

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

- ▶ The Quartiles  $Q_1, Q_2 = Median, Q_3$
- the Lower and Upper Fences  $W_1 = \min\{x_i : x_i \geq Q_1 1.5 \cdot IQR\}$  and  $W_2 = \max\{x_i : x_i \leq Q_3 + 1.5 \cdot IQR\}$ , i.e., the first and last observations lying in

$$\left[Q_1-\frac{3}{2}IQR,\ Q_3+\frac{3}{2}IQR\right];$$

the lines joining that fences to corresponding quartiles are the *Whiskers*;

▶ the set of all Outliers

$$O = \left\{ x_i : x_i \not\in \left[ Q_1 - \frac{3}{2}IQR, Q_3 + \frac{3}{2}IQR \right] \right\}$$

Then we draw the points  $W_1$ ,  $Q_1$ ,  $Q_2$ ,  $Q_3$ ,  $W_2$  on the real line and add all outliers, and make a box over  $[Q_1, Q_3]$ .

**Example:** Draw the Boxplot of

$$x: 0, -2, 2, 1, 5, 6, 4, 1, 2, 1, 12$$

Now, using **R**:

```
x \leftarrow c(0, -2, 2, 1, 5, 6, 4, 1, 2, 1, 12)
boxplot(x)
```

Here are some Datasets' Histograms along with the BoxPlots:

```
x <- rnorm(1000, mean = -3, sd = 2)
par(mfrow=c(2,1)); hist(x)
boxplot(x, horizontal = T, col = "cyan")</pre>
```





#### Note

Recall that an **Outlier** in the BoxPlot sense is a Datapoint  $x_k$  with

$$x_k \not\in \left[Q_1 - \frac{3}{2}IQR, \ Q_3 + \frac{3}{2}IQR\right].$$

Another way to define an Outlier: Datapoint  $x_k$  is an Outlier, if

$$|x_k - \bar{x}| \geq 3 \cdot sd(x)$$
.

**Note:** Where the coefficient  $\frac{3}{2}$  in front of the IQR comes from? This comes from the Normal Distribution: if our r.v. X is Normally Distributed, then (with theoretical Quartiles)

$$\mathbb{P}(X \in [Q_1 - 1.5 \cdot IQR, Q_3 + 1.5 \cdot IQR]) \approx 0.993,$$

so the chances that an Observation will be outside of this interval are very small. So if we see that kind of Observation, we think that this number is an Outlier.

## Sample Quantiles

Now we want to generalize the idea of the Median and Quartiles. Recall that:

- ▶ 50% of Datapoints are to the left of the Median, and 50% are to the right, so Median divides the (sorted) Dataset in the (approximate) proportion 50% 50%
- ▶ 25% of Datapoints are to the left of the Lower Quartile Q<sub>1</sub>, and 75% are to the right, so Q<sub>1</sub> divides the (sorted) Dataset in the (approximate) proportion 25%-75%
- ▶ 75% of Datapoints are to the left of the Upper Quartile Q<sub>3</sub>, and 25% are to the right, so Q<sub>3</sub> divides the (sorted) Dataset in the (approximate) proportion 75%-25%

Now, let  $\alpha \in (0,1)$ . We want to find a real number  $q_{\alpha}$  dividing our (sorted) Dataset into the proportion  $100\alpha\% - 100(1-\alpha)\%$ , i.e.,  $q_{\alpha}$  is a point such that the  $\alpha$ -portion of the Datapoints are to the left to  $q_{\alpha}$ , and others are to the right.

Let  $x: x_1, x_2, ..., x_n$  be our 1D numerical Dataset. Assume also that  $\alpha \in (0,1)$ .

**Definition:** The Quantile of order  $\alpha$  (or  $100\alpha\%$  order, the  $\alpha$ -Quantile) of x is defined by

$$q_{\alpha} = q_{\alpha}^{\mathsf{x}} = \mathsf{x}_{([\alpha \cdot n])}.$$

**Note:**  $[\alpha \cdot n]$  is the integer part of  $\alpha \cdot n$ , and  $x_{([\alpha \cdot n])}$  is the  $[\alpha \cdot n]$ -th Order Statistics.

**Note:** There are different definitions of the  $\alpha$ -quantile in the literature and in software implementations. Say, **R** has 9 methods to calculate quantiles.

**Definition:** The Quantile of order  $\alpha$  (or  $100\alpha\%$  order, the  $\alpha$ -Quantile) of x is defined by

$$q_{\alpha} = q_{\alpha}^{\mathsf{x}} = \mathsf{x}_{([\alpha \cdot \mathsf{n}])}.$$

**Note:** In the case when  $[\alpha \cdot n] = 0$ , we take  $x_{(0)} = x_{(1)}$ .

**Note:** Quartiles are not always Quantiles (in the sense of our definitions). Say,  $Q_1$  is not always the 25% Quantile (despite their idea is to split the Dataset into the proportion 25%-75%). By our definition, *Quantile is a Datapoint*, but a Quartile is not necessarily a Datapoint.

**Definition:** The Quantile of order  $\alpha$  (or  $100\alpha\%$  order, the  $\alpha$ -Quantile) of x is defined by

$$q_{\alpha} = q_{\alpha}^{\mathsf{x}} = \mathsf{x}_{([\alpha \cdot n])}.$$

**Note:** In the case when  $[\alpha \cdot n] = 0$ , we take  $x_{(0)} = x_{(1)}$ .

**Note:** Quartiles are not always Quantiles (in the sense of our definitions). Say,  $Q_1$  is not always the 25% Quantile (despite their idea is to split the Dataset into the proportion 25%-75%). By our definition, *Quantile is a Datapoint*, but a Quartile is not necessarily a Datapoint.

Note: Sometimes Quantiles are called Percentiles.

**Example:** Find the 20% and 60% quantiles of

$$x: -2, 3, 5, 7, 8, -3, 4, 5, 2$$

### Theoretical Quantiles

Now assume X is a r.v. with CDF F(x) or, in the case X is continuous, with PDF f(x). For  $\alpha \in (0,1)$ , we define the  $\alpha$ -quantile  $q_{\alpha}$  to be the real number satisfying:

$$q_{\alpha} = q_{\alpha}^{F} = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}.$$

If F is stricly increasing and continuous, then we can define

$$F(q_{\alpha}) = \alpha,$$
 i.e.,  $q_{\alpha} = F^{-1}(\alpha).$ 

If F has a Density, f(x), then  $q_{\alpha}$  can be calculated from

$$\int_{-\infty}^{q_{\alpha}} f(x) dx = \alpha.$$

# Theoretical Quantiles, Geometrically, by CDF

First we draw the CDF y = F(x) graph, then draw the line  $y = \alpha$ . Now, we keep the portion of the graph of y = F(x) above (or on) the line  $y = \alpha$ . Then we take the leftmost point of the remaining part, and the x-coordinate of that point will be  $q_{\alpha}$ .

## Theoretical Quantiles, Geometrically, by CDF

```
alpha <- 0.3
x <- seq(-1,5, by = 0.01)
y <- pnorm(x, mean = 2, sd = 0.5)
plot(x,y, type = "l", xlim = c(-1,5), lwd = 2)
abline(h = alpha, lwd = 2, col = "red")</pre>
```



Now, assume our Distribution is continuous. We plot the graph of the PDF y = f(x).

Now, assume our Distribution is continuous. We plot the graph of the PDF y=f(x). We take  $q_{\alpha}$  to be the smallest point such that the area under the PDF curve **left to**  $q_{\alpha}$  is exactly  $\alpha$ .

### Theoretical Quantiles, Geometrically, by PDF

```
alpha <- 0.3; q.alpha <- qnorm(alpha, mean = 2, sd = 0.5)
x <- seq(-1,5, by = 0.01)
y <- dnorm(x, mean = 2, sd = 0.5)
plot(x,y, type = "l", xlim = c(-1,5), lwd = 2)
abline(v = q.alpha, lwd = 2, col = "red")
polygon(c(x[x<=q.alpha], q.alpha),c(y[x<=q.alpha],0),col="cyan")</pre>
```



**Example:** Find the 30% quantile of *Unif* [3, 10]

Example: Find the 70% quantile of the Distribution with the PDF

$$f(x) = \begin{cases} 3x^2, & x \in [0, 1] \\ 0, & otherwise \end{cases}$$

Solution: OTB