esercizi rappresentazione numeri in virgola mobile

- Convertire il numero -30,375 in formato a virgola mobile IEEE 754 (precisione singola).
- Che numero rappresenta la seguente configurazione binaria in formato IEEE 754 ?

010001100100011000000000000000000

Soluzione1

```
(-30.375)_{10} = (-11110.011)_{binario}
= (-1.1110011)_{binario} \times 2^4
= (-1)1 \times (1 + 0.1110011) \times 2^{(131-127)}
Ricordando che il formato IEEE 754 utilizza il seguente schema di rappresentazione (-1)segno \times (1 + significando) \times 2^{(esponente-127)}
Abbiamo:
segno = 1
esponente = 131 = (10000011)_{binario}
significando = (1110011000000000000000)_{binario}
e quindi: (-30.375)_{10} = (1 \ 10000011 \ 1110011000000000000000)_{binario}
```

Soluzione2

Configurazione da convertire

0 10001100 100011000000000000000000

```
segno 0 \rightarrow \text{segno} +
```

esponente $10001100 \rightarrow 140$ decimale, a cui bisogna sottrarre la polarizzazione (127) per ottenere il vero esponente, cioè 13

Pertanto il numero è dato da

$$+1 \times 1,546875 \times 2^{13} = 12672,0$$

esercizio pipeline

Si consideri una pipeline a 4 stadi: fetch (IF), decodifica (ID), elaborazione (EI), e scrittura dei risultati (WO), per cui:

• i salti incondizionati sono risolti (identifi-	• i salti condizionati sono risolti (identifi-
cazione salto e calcolo indirizzo target) alla	cazione salto, calcolo indirizzo target e cal-
fine del secondo stadio (ID);	colo condizione) alla fine del terzo stadio
	(EI);
• il primo stadio (IF) è indipendente dagli	
altri;	

inoltre si assuma che non ci siano altre istruzioni che possano mandare in stallo la pipeline e che non sia implementato alcun meccanismo di trattamento dei salti.

Sapendo che:

• il 17% delle istruzioni sono di salto con-	• il 1% delle istruzioni sono di salto incon-
dizionale;	dizionale;
• il 70% delle istruzioni di salto condizionale	
hanno la condizione soddisfatta (prese);	

Si calcoli il fattore di velocizzazione della pipeline.

Soluzione

Per calcolare le prestazioni in presenza di stalli bisogna calcolare:

- la probabilità di eseguire una delle istruzioni di salto
 - salto incondizionato $\rightarrow 0,01$ perchè 1 su 100 è un salto incondizionato
 - salto condizionato preso $\rightarrow 0, 17*0, 7=0, 119$ perchè 17 istr. su 100, e il 70% salta
 - -salto condizionato non preso $\rightarrow 0, 17*0, 3=0, 051$ perchè 17 istr. su 100, e il 30% non salta
- la frazione di cicli di stallo per tipo di istruzione di salto
 - salto incondizionato $\rightarrow 1$ ciclo di stallo
 - -salto condizionato preso $\rightarrow 2$ cicli di stallo
 - -salto condizionato non preso $\rightarrow 0$ cicli di stallo

Pertanto il fattore di velocizzazione è:

$$\frac{4}{1+0,01*1+0,119*2+0,051*0} = 3,205128$$