NAME: ABHIK SARKAR MATRIKELNUMMER: 23149662

IDM Id: lo88xide

EMAIL: abhik.sarkar@fau.de / abhik.sarkar.718@gmail.com

ANLA ASSIGNMENT - 3

```
Exercise 1 - Big-0 Notation
```

- (a) $\sin x = 0$ (1) as $x \to \infty$ We can say, $|\sin x| \le 1$ $\forall x \in TR$ $\Rightarrow |\sin x| \le 1$ $\forall x \ge 0$ $\therefore |\sin x| \le C \cdot (1)$ $\forall x \ge t_0$ where C = 1 and $t_0 = 0$. - TRUE
- (b) $\sin \alpha = 0$ (1) as $\alpha \to 0$ $\rightarrow |\sin \alpha| \le 1$ $\forall \alpha \in [0, \pi/2]$ $\rightarrow |\sin \alpha| \le C(1) \forall \alpha \le t_0$ where C=1 and $t_0 = \pi/2$.

(c)
$$\ln x = 0$$
 ($x^{1/100}$) as $x \to \infty$.
 $\rightarrow |\ln x| \leq c$. $x^{1/100}$.
 $\rightarrow |\ln x|^{1/c}| \leq x^{1/100}$.
Let us assume $c = 100$,
 $\rightarrow |\ln x^{1/100}| \leq x^{1/100}$.
Since, we know that $(|\ln k| \leq k + k \geq 1)$.
 $\therefore |\ln x| \leq c \cdot x^{1/100} + x \geq t$ where $c = 100$ and $t_0 = 1$.
 $- TRUE$

(d)
$$n! = 0$$
 $\left(\left(\frac{n}{e}\right)^n\right)$ as $n \to \infty$ (Hint: Stirling's Approximation), $\to n! \subseteq C \cdot \left(\left(\frac{n}{e}\right)^n\right)$.

We know from Stirling's Equation:

$$e^{\frac{1}{12n+1}} \stackrel{\angle}{\leq} \frac{n!}{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n} \stackrel{\angle}{\leq} e^{\frac{1}{12n}}$$

$$\Rightarrow \frac{n!}{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n} \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \frac{1}{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n}$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel{\angle}{\leq} e^{\frac{1}{12n}} \cdot \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

$$\Rightarrow n! \stackrel$$

(e)
$$fl(\pi) - \pi = 0$$
 (Em) as $Em \to 0$
 $\rightarrow \pi(1+E) - \pi \neq c$ (Em).
 $\rightarrow \pi \in \{ c(Em) - (: E < Em) \}$
 $\rightarrow c = \pi$. will satisfy the above equation where
 $E < Em$ - where thresold $t_0 = 100$.

Exercise 2 - Stability:

(a) Data: $z \in \mathbb{C}$. Solution: 2x, computed as $z \oplus x$.

Now, checking for accuracy:

$$\frac{\|\widehat{f}(x) - f(x)\|}{\|f(x)\|} = 0 \left(\frac{\mathcal{E}_{machine}}{\mathcal{E}_{machine}} \right)$$

$$= \frac{\|2x(1+\varepsilon) - (x+x)\|}{\|(x+x)\|}$$

$$= \frac{\|2x + 2x\varepsilon - 2x\|}{\|2x\|}$$

$$= \frac{\|2x\varepsilon\|}{\|2x\|} = \frac{\|\varepsilon\|}{\|\varepsilon\|} = 0 \left(\frac{\mathcal{E}_{machine}}{\mathcal{E}_{machine}} \right).$$

.. The above algorithm is accurate.

Now, checking for backward Stability.

Condition to be satisfied for backward stability, $\widetilde{f}(x) = f(\widetilde{x}) \quad \text{for some } \widetilde{x} \quad \text{with } \quad \underline{||\widetilde{x} - x||} = 0 \quad \text{(Emachine)}$

LHS
$$\rightarrow \widetilde{f}(n) = 2\widetilde{x}$$
.

RHS
$$\rightarrow$$
 $f(\tilde{\chi}) = \tilde{\chi} + \tilde{\chi} = 2\tilde{\chi}$.

$$f(x) = f(x)$$

(b) Data: $2 \in \mathbb{C}$. Solution: 2^2 , computed as $2 \otimes 2$.

$$f(\alpha) = \alpha \otimes \alpha$$

$$= f(\alpha) \otimes f(\alpha)$$

$$= \alpha (1+\epsilon) \otimes \alpha (1+\epsilon)$$

$$= [\alpha (1+\epsilon)]^{2} \cdot (1+\epsilon_{0}) \quad [As \epsilon_{0} \text{ is very small}, 1+\epsilon_{0} \approx 1]$$

$$= (\alpha)^{2} \cdot [\alpha \in \alpha]$$

$$= (\alpha)^{2} \cdot [\alpha \in \alpha]$$

First, we are checking for the accuracy:

Condition to satisfy occuracy,

$$\frac{\|f(x)-f(x)\|}{\|f(x)\|} = 0.(\epsilon_{\text{machine}})$$

LHS =
$$\frac{\|[x(1+\epsilon)]^2 - (x \times x)\|}{\|(x \times x)\|}$$

= $\frac{\|x^2 + x^2 \epsilon^2 + 2 \epsilon x^2 - x^2\|}{\|x^2\|}$
= $1\epsilon^2 - 2\epsilon x^2 1$

$$=$$
 $1 \varepsilon (\varepsilon - 2x^2) = 0 (\varepsilon_{\text{machine}}).$

.. The above algorithm is accurate.

Now, we are checking for backward Stability:

Condition to be satisfied for backward stability, $f(x) = f(\tilde{x}) \quad \text{for some } \tilde{x} \quad \text{with} \quad \frac{||\tilde{x} - x||}{||x||} = 0 \quad \text{(Emachine)}$

LHS \rightarrow $\hat{f}(x) = (\tilde{\chi})^2$

RHS \rightarrow $f(\tilde{x}) = (\tilde{x} \times \tilde{x}) = (\tilde{x})^2$

 $f(\alpha) = f(\tilde{\alpha})$

.. The above algorithm is backward stable

(e) Data: $x \in C \setminus \{0\}$. Solution: 1, computed as $x \in X$.

$$\widetilde{f}(x) = x x x x$$

$$= fl(x) / fl(x) .$$

Now, we are checking for accuracy, Condition to satisfy accuracy,

$$\frac{1}{\|\widehat{f}(x) - f(x)\|} = 0.(\epsilon_{\text{machine}})$$

LHS
$$\frac{11+\epsilon_0-(2/2)|1}{11(2/2)|1}$$
 $\frac{11+\epsilon_0-1}{11}$
 $\frac{1+\epsilon_0-1}{11}$
 $\frac{1}{11}$
 $\frac{1}{11}$
 $\frac{1}{11}$
 $\frac{1}{11}$
 $\frac{1}{11}$

Now, we are checking for backward stability

Condition to be satisfied for backward stability,
$$\widetilde{f}(x) = f(\widetilde{x}) \quad \text{for some } \widetilde{x} \quad \text{with } \underline{||\widetilde{x} - x||} = 0 \quad \text{(Emachine)}$$

LHS
$$\rightarrow$$
 $\hat{f}(x) = 1 + \epsilon_0$.

RHS
$$\rightarrow f(\tilde{\chi}) = \tilde{\chi} / \tilde{\chi} = 1.$$

$$f(x) \neq f(x)$$

i. The above algorithm is not backward stable.

$$\frac{\|\widetilde{f}(x) - f(\widetilde{x})\|}{\|f(\widetilde{x})\|} = 0 \quad (\text{Emachine}).$$

LHS =
$$\frac{|| 1 + \epsilon_0 - 1 ||}{|| 1 || 1|}$$

= $|| \epsilon_0 || = 0 \cdot (\epsilon_{machine})$.

(d) Data:
$$x \in \mathbb{C}$$
. Solution = 0, computed as $z \ominus x$.
$$\widehat{f}(x) = z \ominus x$$
.

$$= \int x(x) - f(x)$$

$$= [x(1+\epsilon) - x(1+\epsilon)] (1-\epsilon_0)$$

Now, we are checking for accuracy, Condition to satisfy accuracy,

$$\frac{1}{|f(x)-f(x)|} = 0.(\epsilon_{machine})$$

$$\frac{1}{|f(x)|}$$

$$\frac{10-(2-2)1}{112-211}$$

$$\frac{0}{0}$$
 \pm 0. (Emachine).

... The above algorithm is not accurate

Now, we are checking for backward stability Condition to be satisfied for backward stability, $\widetilde{f}(x) = f(\widetilde{x}) \quad \text{for some } \widetilde{x} \quad \text{with } \frac{\|\widetilde{x} - x\|}{\|x\|} = 0 \ (\text{Emachine})$ LHS $\rightarrow \widetilde{f}(x) = 0$

RHS
$$\Rightarrow$$
 $f(\tilde{x}) = \tilde{x} - \tilde{x} = 0$
 $f(x) = f(\tilde{x})$.

... The above algorithm is backward stable.

Given: $A \in \mathbb{C}^{m \times n}$, rank = $n \rightarrow m > n$ $b \in \mathbb{C}^{m}$

$$\begin{pmatrix} I & A \\ A* & O \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \end{pmatrix} = \begin{pmatrix} b \\ O \end{pmatrix}.$$

I > mxm identity.

To show: System has unique solution (r, x) and vectors of a x are residual and the solution for least square problem.

$$\begin{pmatrix}
I & A \\
A^* & 0
\end{pmatrix}
\begin{pmatrix}
\gamma \\
\chi
\end{pmatrix} = \begin{pmatrix}
b \\
0
\end{pmatrix}$$

$$\Rightarrow \begin{pmatrix}
I\gamma + A\chi \\
A^*\gamma + 0
\end{pmatrix} = \begin{pmatrix}
b \\
0
\end{pmatrix}$$

$$\Rightarrow \gamma + A\chi \ge b$$

$$A^*\gamma = 0$$

Now, by finding the determinant of the matrix, we could say, $\begin{vmatrix}
I & A \\
A^* & 0
\end{vmatrix} = |I \times 0 - A^*A| = A^*A \neq 0$. A has full rank, so A^*A is non-singular and cannot be equal to 0.

Be equal to 0.

As A^*A is non-singular and A has full rank, so, it has unique solutions such as x and residual x.

Where x = b - Ax.

Exercise 4- Reverse Engèneering

import numpy as mp

def magic (A):

 $A = U \cdot S \cdot V^{\mathsf{T}}$

 $V_1, S_1, V_2 = np$. linalg. svd (A) # calculating Singular Value Decomposition eps = np. spacing (1). # calculating machine epsilon tol = $max(np.shape(A))*S[0] * eps # <math>max(m:n) * v_1 * eps (calculated abv.)$ $v_2 = sum(S>+ol) . # Calculating the rank$

S = np. diag (np. ones (r) / SEO:r]) #calculating inverse of S.<math>X = np. dot (V. transpose () [:, 0:r], np. dot (S,V[:, 0:r]. transpose []))#Calculating the value of $A^{-1} = (V. S^{-1}. V^{T})$.

return R. # Returning the A-1 value as X.

Therefore, the above function magic (A) computes the pseudo inverse of matrix A of shape (mxn) through Singular Value decomposition.