C	D	Λ	W	1		7		Λ		П	
	П	H	٧١	/ \	U	_	U	Н	\perp		

Wstęp do techniki cyfrowej

Informatyka 4i1 niestacjonarne

Semestr letni 2022

Bartłomiej Błaszczyk

236382

Spis treści

1.7 Półsumator	4
1.8 Pełny sumator jednobitowy	6
2.1. Multiplexer i demultiplexer 4-bitowy	9
2.2. Przerzutniki RS	12
2.3. Przerzutnik synchroniczny JK w układzie Master-Slave	17
2.4. Przerzutnik D, w wersji statycznej oraz transmisyjnej	19
2.5 Przerzutnik D wyzwalany zboczem	23
3.1. Trzybitowy licznik synchroniczny	25
4.1. Inwerter CMOS	27
4.2. Dwuwejściowe statyczne bramki logiczne CMOS	28
4.3. Bramka XOR, jako statyczna bramka logiczna CMOS	32
5.1. Transmisyjna bramka XOR	33
Tabela prawdy 1 Półsumator	5
Tabela prawdy 2 Pełny sumator jednobitowy	7
Tabela prawdy 3 Multiplexer	10
Tabela prawdy 4 Demultiplexer	10
Tabela prawdy 5 Przerzutnik RS asynchroniczny	13
Tabela prawdy 6 Przerzutnik RS synchroniczny	15
Tabela prawdy 7 Przerzutnik J-K Master Slave	18
Tabela prawdy 8 Przerzutnik D statyczny	19
Tabela prawdy 9 przerzutnik D wyzwalany zboczem	24
Tabela prawdy 10 Inwerter CMOS	27
Tabela prawdy 11 bramka NAND	
Tabela prawdy 12 bramka NOR	

Tabela prawdy 13 bramka XOR	32
Tabela prawdy 14 transmisyjna bramka XOR	33
Tabela wyników 1 Półsumator	4
Tabela wyników 2 Pełny sumator jednobitowy	7
Tabela wyników 3 Multiplexer i demultiplexer 4-bitowy	10
Tabela wyników 4 Przerzutnik RS asynchroniczny	12
Tabela wyników 5 Przerzutnik RS synchroniczny	15
Tabela wyników 6 Przerzutnik J-K Master Slave	18
Tabela wyników 7 Przerzutnik statyczny	19
Tabela wyników 8 Przerzutnik D transmisyjny	22
Tabela wyników 9 przerzutnik D wyzwalany zboczem	23
Tabela wyników 10 bramka NAND	28
Tabela wyników 11 bramka NOR	29
Tabela wyników 12 bramka XOR	32
Tabela wyników 13 transmisyjna bramka XOR	33
Schemat 1 Półsumator	4
Schemat 2 Pełny sumator jednobitowy	6
Schemat 3 Multiplexer	9
Schemat 4 Demultiplexer	9
Schemat 5 Przerzutnik RS asynchroniczny	12
Schemat 6 Przerzutnik RS synchroniczny	14
Schemat 7 Przerzutnik J-K Master Slave	17
Schemat 8 Przerzutnik D statyczny	19
Schemat 9 Przerzutnik D transmisyjny	20

Schemat 10 przerzutnik D wyzwalany zboczem	23
Schemat 11 licznik synchroniczny	26
Schemat 12 Inwerter CMOS	27
Schemat 13 bramka NAND	28
Schemat 14 bramka NOR	29
Schemat 15 bramka XOR	32
Schemat 16 transmisyjna bramka XOR	33
Przebieg czasowy 1 półsumator	5
Przebieg czasowy 2 pełen sumator	8
Przebieg czasowy 3multiplexer i demultiplexer	11
Przebieg czasowy 4 przerzutnik asynchroniczny	13
Przebieg czasowy 5przerzutnik synchroniczny	16
Przebieg czasowy 6 przerzutnik J-K SM	18
Przebieg czasowy 7przerzutnik D statyczny	20
Przebieg czasowy 8przerzutnik D transmisyjny	22
Przebieg czasowy 9 przerzutnik wyzwalany zboczem	24
Przebieg czasowy 10 bramki CMOS	31

1.7 Półsumator

Funkcja SUM jest zrealizowana za pomocą bramki XOR, funkcja CARRY z wykorzystaniem bramki AND. Poprawne działanie należy zweryfikować w symulacji.

Schemat 1 Półsumator

Tabela wyników 1 Półsumator

Przebieg czasowy 1 półsumator

Α	В	CARRY	SUM
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Tabela prawdy 1 Półsumator

1.8 Pełny sumator jednobitowy

Układ ten posiada trzy równoważne wejścia oraz jedno wyjście dwubitowe. Działanie tego układu polega na zliczaniu jedynek logicznych obecnych na wejściach oraz podawaniu ich liczby na wyjściu, w postaci liczby binarnej w kodzie naturalnym. Wyjście SUM to młodszy a CARRY to starszy bit tej liczby.

Schemat 2 Pełny sumator jednobitowy

Tabela wyników 2 Pełny sumator jednobitowy

Α	В	С	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Tabela prawdy 2 Pełny sumator jednobitowy

Przebieg czasowy 2 pełen sumator

2.1. Multiplexer i demultiplexer 4-bitowy

Multiplekser (selektor danych) jest układem cyfrowym posiadającym n wejść danych, jedno wyjście y oraz wejścia adresowe. Na wyjściu y pojawia się stan wejścia danych, którego numer (adres) podany został na wejścia adresowe. Przykładowy projekt dotyczy układu z czterema wejściami danych D0, D1, D2, D3, z jednym wyjściem Y oraz dwoma wejściami adresowymi A i B.

Schemat 3 Multiplexer

Schemat 4 Demultiplexer

Tabela wyników 3 Multiplexer i demultiplexer 4-bitowy

В	Α	D0	D1	D2	D3	Υ
0	0	0	Х	Х	Х	0
0	1	Х	0	Х	Х	0
1	0	Х	X	0	Х	0
1	1	X	X	X	0	0
0	0	1	Х	Х	Х	1
0	1	Х	1	Х	Х	1
1	0	Х	Х	1	Х	1
1	1	Х	Х	Х	1	1

Tabela prawdy 3 Multiplexer

В	Α	G	Y0	Y1	Y2	Y3
Х	Х	0	0	0	0	0
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Tabela prawdy 4 Demultiplexer

Przebieg czasowy 3multiplexer i demultiplexer

2.2. Przerzutniki RS

Przerzutnik powstaje dzięki sprzężeniu zwrotnemu wyjść z wejściami. Sprzężenie zwrotne powoduje, iż przerzutnik utrzymuje ostatni stan wyjść po przejściu stanów logicznych na wejściach w stan neutralny.

Schemat 5 Przerzutnik RS asynchroniczny

Tabela wyników 4 Przerzutnik RS asynchroniczny

Przebieg czasowy 4 przerzutnik asynchroniczny

R	S	Q	~Q
0	1	1	0
1	0	0	1
0	0	Q _{n-1}	~Q _{n-1}
1	1	0	0

Tabela prawdy 5 Przerzutnik RS asynchroniczny

Schemat 6 Przerzutnik RS synchroniczny

Tabela wyników 5 Przerzutnik RS synchroniczny

S	R	С	Q	~Q
Х	X	0	Q _{n-1}	~Q _{n-1}
0	0	X	Q _{n-1}	~Q _{n-1}
1	0	1	1	0
0	1	1	0	1
1	1	1	1	1

Tabela prawdy 6 Przerzutnik RS synchroniczny

Przebieg czasowy 5przerzutnik synchroniczny

2.3. Przerzutnik synchroniczny JK w układzie Master-Slave

Wyzwalanie przerzutnika następuje tylko w momencie przejścia sygnału zegara ze stanu 1 na 0. Natomiast czas pomiędzy kolejnymi zboczami sygnału zegarowego może być dowolnie długi.

Schemat 7 Przerzutnik J-K Master Slave

Pamięć przerzutnika Slave, mimo wysokiego stanu przerzutnika Master.sprawia, że Slave czeka na sygnał zegara.

Utwierdzenie stanu przez przerzutnik Slave na sygnał niskiego stanu zegara.

Rozbudowanie przerzutnika o dodatkowy człon bramek skutkuje brakiem sygnału zabronionego.

W tym układzie (Master-Slave), przerzutnik na sygnał zegara będzie zmieniał stan wyjść na przemian.

Tabela wyników 6 Przerzutnik J-K Master Slave

J	K	С	Q
Х	X	0	Q _{n-1}
X	X	1	Q _{n-1}
0	0	X	Q _{n-1}
1	0	1→0	1
0	1	1→0	0
1	1	1→0	~Q _{n-1}

Tabela prawdy 7 Przerzutnik J-K Master Slave

Przebieg czasowy 6 przerzutnik J-K SM

2.4. Przerzutnik D, w wersji statycznej oraz transmisyjnej

Gdy wejście zegarowe C jest w stanie nieaktywnym, przerzutnik pamięta swój poprzedni stan. Gdy wejście C przechodzi w stan aktywny, do przerzutnika zostaje wpisany stan wejścia D, tzn. na wyjściu Q pojawia się ten sam stan, który występuje na wejściu D. Gdy wejście zegarowe C powróci w stan nieaktywny, wpisany z wejścia D stan jest pamiętany w przerzutniku. Zwróć uwagę, iż w przerzutniku D nie występują stany zabronione.

Schemat 8 Przerzutnik D statyczny

Przerzutnik czeka na stan wysoki zegara

Przerzutnik zmienia stan wyjściowy przy wysokim stanie zegara

Tabela wyników 7 Przerzutnik statyczny

D	С	Q	صٍ
Х	С	Q _{n-1}	~Q _{n-1}
0	1	0	1
1	1	1	0

Tabela prawdy 8 Przerzutnik D statyczny

Przebieg czasowy 7przerzutnik D statyczny

Schemat 9 Przerzutnik D transmisyjny

Tabela wyników 8 Przerzutnik D transmisyjny

Przebieg czasowy 8przerzutnik D transmisyjny

Czas propagacji sygnału może to sprawiać kłopoty w odpowiednio szybkim przekazywaniu sygnału wejściowego na odpowiednie wyjście bramki CMOS.

Przerzutnik D typu transmisyjnego ma początkowo niezainicjalizowane stany wyjściowe.

2.5 Przerzutnik D wyzwalany zboczem

Przerzutnik zapamiętuje stan wejścia D tylko przy odpowiedniej zmianie poziomu logicznego na wejściu zegarowym C. Architektura przypomina przerzutnik RS Master-Slave.

Schemat 10 przerzutnik D wyzwalany zboczem

Tabela wyników 9 przerzutnik D wyzwalany zboczem

D	С	Q	~Q
0	X	0	1
1	0→1	1	0
0	0→1	0	1

Tabela prawdy 9 przerzutnik D wyzwalany zboczem

Przebieg czasowy 9 przerzutnik wyzwalany zboczem

3.1. Trzybitowy licznik synchroniczny

Sekwencja stanów dla licznika: 1, 3, 5, 7, 0

t	t+1
1	3
3 5	3 5
5	7
7	0
0	1

Tabela 1 sekwencji stanów

	t			t+1	
q2	q1	q0	q2	q1	q0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	1	0	1
1	0	1	1	1	1
1	1	1	0	0	0
0	0	0	0	0	1

Tabela 2 stanów zakodowana na trzech bitach

D2		Q2 i Q1			
D2		00	01	11	10
	0	0	-	-	-
Q0	1	0	0	1	1

$$D2 = Q0*Q2$$

D1		Q2 i Q1			
D1		00	01	11	10
	0	0	-	-	_
Q0	1	0	1	1	0

D0		Q2 i Q1			
D0		00	01	11	10
	0	0	-	-	-
Q0	1	1	1	1	1

$$D0 = 00$$

Tabela 3 siatka Karnaugha dla przerzutników D0, D1, D2 wraz ze zminimalizowaną funkcją logiczną

Schemat 11 licznik synchroniczny

4.1. Inwerter CMOS

Schemat 12 Inwerter CMOS

IN	OUT
0	1
1	0

Tabela prawdy 10 Inwerter CMOS

4.2. Dwuwejściowe statyczne bramki logiczne CMOS

Schemat 13 bramka NAND

Tabela wyników 10 bramka NAND

Α	В	Υ
0	0	1
0	1	1
1	1	0
1	0	1

Tabela prawdy 11 bramka NAND

Schemat 14 bramka NOR

Tabela wyników 11 bramka NOR

Α	В	Υ
0	0	1
0	1	0
1	1	0
1	0	0

Tabela prawdy 12 bramka NOR

Tabela wyników 12 bramki CMOS

Przebieg czasowy 10 bramki CMOS

4.3. Bramka XOR, jako statyczna bramka logiczna CMOS

Schemat 15 bramka XOR

Tabela wyników 13 bramka XOR

Α	В	Υ
0	0	0
1	0	1
0	1	1
1	1	0

Tabela prawdy 13 bramka XOR

5.1. Transmisyjna bramka XOR

Schemat 16 transmisyjna bramka XOR

Tabela wyników 14 transmisyjna bramka XOR

Α	В	Υ
0	0	0
1	0	1
0	1	1
1	1	0

Tabela prawdy 14 transmisyjna bramka XOR