Machine Learning

Prof. Barbara Caputo

Dip. Ingegneria Informatica, Automatica e Gestionale, Roma

- Observe some data xi
- Want to estimate p(x)

- Observe some data xi
- Want to estimate p(x)
 - Find unusual observations (e.g. security)
 - Find typical observations (e.g. prototypes)

- Observe some data xi
- Want to estimate p(x)
 - Find unusual observations (e.g. security)
 - Find typical observations (e.g. prototypes)
 - Classifier via Bayes Rule

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y'} p(x|y')p(y')}$$

Need tool for computing p(x) easily

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	5	2	3	1	0
female	6	3	2	2	1

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female

not enough data

Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system
 - ...

#bins grows exponentially

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system
 - ...
- Continuous random variables
 - Income
 - Bandwidth
 - Time

need many bins per dimension

#bins grows exponentially

- Continuous domain = infinite number of bins
- Curse of dimensionality
 - 10 bins on [0, 1] is probably good
 - 10¹⁰ bins on [0, 1]¹⁰ requires high accuracy in estimate: probability mass per cell also decreases by 10¹⁰

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

- This breaks if we see slightly different instances
- Kernel density estimate

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

- This breaks if we see slightly different instances
- Kernel density estimate
 Smear out empirical density with a nonnegative smoothing kernel k_x(x') satisfying

$$\int_{\mathcal{X}} k_x(x')dx' = 1 \text{ for all } x$$

Density estimate

$$p_{\text{emp}}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} k_{x_i}(x)$$

Smoothing kernels

$$(2\pi)^{-\frac{1}{2}}e^{-\frac{1}{2}x^2}$$

$$\frac{1}{2}e^{-|x|}$$

$$(2\pi)^{-\frac{1}{2}}e^{-\frac{1}{2}x^2}$$
 $\frac{1}{2}e^{-|x|}$ $\frac{3}{4}\max(0, 1-x^2)$ $\frac{1}{2}\chi_{[-1,1]}(x)$

$$\frac{1}{2}\chi_{[-1,1]}(x)$$

Nearest Neighbor

Nearest Neighbors

Table lookup
 For previously seen instance remember label

Nearest Neighbors

- Table lookup
 For previously seen instance remember label
- Nearest neighbor
 - Pick label of most similar neighbor
 - Slight improvement use k-nearest neighbors

Nearest Neighbors

- Table lookup
 For previously seen instance remember label
- Nearest neighbor
 - Pick label of most similar neighbor
 - Slight improvement use k-nearest neighbors
 - Really useful baseline!
 - Easy to implement for small amounts of data.

1-Nearest Neighbor

4-Nearest Neighbors Sign

If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if separation
 - Twice the minimal error rate 2p(1-p) for noisy problems

If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if separation
 - Twice the minimal error rate 2p(1-p) for noisy problems
- k-Nearest Neighbor
 - Converges to perfect solution if separation (but needs more data)
 - Converges to minimal error min(p,1-p) for noisy problems (use increasing k)

5 minutes break

Support Vector Machines

Outline

- Support Vector Classification
 Large Margin Separation, optimization problem
- Properties
 Support Vectors, kernel expansion
- Soft margin classifier
 Dual problem, robustness

Linear Separator

Linear Separator

linear function

$$f(x) = \langle w, x \rangle + b$$

$$\frac{\langle x_{+} - x_{-}, w \rangle}{2 \|w\|} = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] + \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+}, w \rangle + b \right] = \frac{1}{2 \|w\|} \left[\langle x_{+},$$

$$\frac{\langle x_{+} - x_{-}, w \rangle}{2 \|w\|} = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{\|w\|}$$

 $\underset{w,b}{\text{maximize}} \frac{1}{\|w\|} \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$

 $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$

Primal optimization problem

$$\underset{w,b}{\operatorname{minimize}}\,\frac{1}{2}\left\|w\right\|^{2}\ \mathrm{subject\ to}\ y_{i}\left[\left\langle x_{i},w\right\rangle +b\right]\geq1$$

Primal optimization problem

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

Lagrange function

constraint

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_{i} [y_{i} [\langle x_{i}, w \rangle + b] - 1]$$

Primal optimization problem

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

Lagrange function

constraint

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_{i} [y_{i} [\langle x_{i}, w \rangle + b] - 1]$$

Optimality in w, b is at saddle point with α

Derivatives in w, b need to vanish

• Lagrange function
$$L(w,b,\alpha) = \frac{1}{2} \left\|w\right\|^2 - \sum_i \alpha_i \left[y_i \left[\langle x_i,w\rangle + b\right] - 1\right]$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

Derivatives in w, b need to vanish

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

Derivatives in w, b need to vanish

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

$$\partial_b L(w, b, a) = \sum_i \alpha_i y_i = 0$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

• Derivatives in w, b need to vanish

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

$$\partial_b L(w, b, a) = \sum_i \alpha_i y_i = 0$$

• Plugging terms back into L yields

$$\underset{\alpha}{\text{maximize}} - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$$

subject to
$$\sum \alpha_i y_i = 0$$
 and $\alpha_i \ge 0$

Support Vector Machines

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

subject to
$$\sum \alpha_i y_i = 0$$
 and $\alpha_i \ge 0$

That's all!