Principles of Computer System Design An Introduction

Complete Table of Contents

Jerome H. Saltzer
M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-Non-commercial-Share Alike 3.0 United States License. For more information on what this license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which the authors are aware of a claim, the product names appear in initial capital or all capital letters. All trademarks that appear or are otherwise referred to in this work belong to their respective owners.

Suggestions, Comments, Corrections, and Requests to waive license restrictions: Please send correspondence by electronic mail to:

Saltzer@mit.edu

and

kaashoek@mit.edu

Contents

PART I [In Printed Textbook]

List of Sidebarsxix	
Prefacexxvii	
Where to Find Part II and other On-line Materials	
Acknowledgmentsxxxix	
Computer System Design Principles	
CHAPTER 1 Systems1	
Overview	
1.1. Systems and Complexity	
1.1.1 Common Problems of Systems in Many Fields	
1.1.2 Systems, Components, Interfaces and Environments 8	
1.1.3 Complexity	
1.2. Sources of Complexity	
1.2.1 Cascading and Interacting Requirements	
1.2.2 Maintaining High Utilization	
1.3. Coping with Complexity I	
1.3.1 Modularity	
1.3.2 Abstraction	
1.3.3 Layering	
1.3.4 Hierarchy	
1.3.5 Putting it Back Together: Names Make Connections	
1.4. Computer Systems are the Same but Different	
1.4.1 Computer Systems Have no Nearby Bounds on Composition 28	
1.4.2 d(technology)/dt is Unprecedented	
1.5. Coping with Complexity II	
1.5.1 Why Modularity, Abstraction, Layering, and Hierarchy aren't	
Enough	
1.5.2 Iteration	
1.5.3 Keep it Simple	
What the Rest of this Book is about	
Exercises	iii

Saltzer & Kaashoek Ch. 0, p. iii June 24, 2009 12:21 am

CHAPTER 2 Elements of Computer System Organization	43
Overview	44
2.1. The Three Fundamental Abstractions	45
2.1.1 Memory	45
2.1.2 Interpreters	53
2.1.3 Communication Links	59
2.2. Naming in Computer Systems	60
2.2.1 The Naming Model	
2.2.2 Default and Explicit Context References	66
2.2.3 Path Names, Naming Networks, and Recursive Name Resolution	
2.2.4 Multiple Lookup: Searching through Layered Contexts	73
2.2.5 Comparing Names	75
2.2.6 Name Discovery	76
2.3. Organizing Computer Systems with Names and Layers	78
2.3.1 A Hardware Layer: The Bus	80
2.3.2 A Software Layer: The File Abstraction	87
2.4. Looking Back and Ahead	90
2.5. Case Study: UNIX® File System Layering and Naming	91
2.5.1 Application Programming Interface for the UNIX File System	
2.5.2 The Block Layer	93
2.5.3 The File Layer	95
2.5.4 The Inode Number Layer	96
2.5.5 The File Name Layer	96
2.5.6 The Path Name Layer	98
2.5.7 Links	99
2.5.8 Renaming	101
2.5.9 The Absolute Path Name Layer	102
2.5.10 The Symbolic Link Layer	104
2.5.11 Implementing the File System API	106
2.5.12 The Shell, Implied Contexts, Search Paths, and Name Discovery	
2.5.13 Suggestions for Further Reading	112
Exercises	112
CHAPTER 3 The Design of Naming Schemes	115
Overview	115
3.1. Considerations in the Design of Naming Schemes	116
3.1.1 Modular Sharing	116

June 24, 2009 12:21 am Saltzer & Kaashoek Ch. 0, p. iv

Metadata and Name Overloading	. 120
Addresses: Names that Locate Objects	. 122
Generating Unique Names	. 124
Intended Audience and User-Friendly Names	. 127
Relative Lifetimes of Names, Values, and Bindings	. 129
Looking Back and Ahead: Names are a Basic System Component	. 131
e Study: The Uniform Resource Locator (URL)	. 132
Surfing as a Referential Experience; Name Discovery	. 132
Interpretation of the URL	. 133
URL Case Sensitivity	. 134
Overloading of Names in URLs	. 137
r Stories: Pathologies in the Use of Names	. 138
A Name Collision Eliminates Smiling Faces	. 139
Fragile Names from Overloading, and a Market Solution	. 139
More Fragile Names from Overloading, with Market Disruption .	. 140
Case-Sensitivity in User-Friendly Names	. 141
Running Out of Telephone Numbers	. 142
	. 144
4 Enforcing Modularity with Clients and Services	.147
v	148
	• 1 10
ent/service organization	
ent/service organization	149
From soft modularity to enforced modularity	. 149 . 149 . 155
From soft modularity to enforced modularity	. 149 . 149 . 155 . 163
From soft modularity to enforced modularity	. 149 . 149 . 155 . 163
From soft modularity to enforced modularity	. 149 . 149 . 155 . 163 . 163
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service	. 149 . 149 . 155 . 163 . 163 . 165
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service Remote procedure call (RPC)	. 149 . 149 . 155 . 163 . 165 . 167
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service Remote procedure call (RPC) RPCs are not identical to procedure calls	. 149 . 149 . 155 . 163 . 163 . 165 . 167 . 169
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service Remote procedure call (RPC)	. 149 . 149 . 155 . 163 . 163 . 165 . 167 . 169
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service Remote procedure call (RPC) RPCs are not identical to procedure calls	. 149 . 149 . 155 . 163 . 165 . 167 . 167 . 172
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service Remote procedure call (RPC) RPCs are not identical to procedure calls Communicating through an intermediary	. 149 . 149 . 155 . 163 . 165 . 167 . 169 . 172
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service munication between client and service Remote procedure call (RPC) RPCs are not identical to procedure calls Communicating through an intermediary nmary and the road ahead	. 149 . 149 . 155 . 163 . 165 . 167 . 169 . 172 . 173
From soft modularity to enforced modularity Client/service organization Multiple clients and services Trusted intermediaries A simple example service mmunication between client and service Remote procedure call (RPC) RPCs are not identical to procedure calls Communicating through an intermediary mary and the road ahead estudy: The Internet Domain Name System (DNS)	. 149 . 149 . 155 . 163 . 165 . 167 . 169 . 172 . 173 . 175
	Addresses: Names that Locate Objects Generating Unique Names Intended Audience and User-Friendly Names Relative Lifetimes of Names, Values, and Bindings Looking Back and Ahead: Names are a Basic System Component se Study: The Uniform Resource Locator (URL) Surfing as a Referential Experience; Name Discovery Interpretation of the URL URL Case Sensitivity Wrong Context References for a Partial URL Overloading of Names in URLs or Stories: Pathologies in the Use of Names. A Name Collision Eliminates Smiling Faces Fragile Names from Overloading, and a Market Solution More Fragile Names from Overloading, with Market Disruption Case-Sensitivity in User-Friendly Names Running Out of Telephone Numbers

Saltzer & Kaashoek Ch. 0, p. v June 24, 2009 12:21 am

vi Contents

4.4.4 Name discovery in DNS	183
4.4.5 Trustworthiness of DNS responses	184
4.5. Case study: The Network File System (NFS)	184
4.5.1 Naming remote files and directories	
4.5.2 The NFS remote procedure calls	
4.5.3 Extending the UNIX file system to support NFS	190
4.5.4 Coherence	192
4.5.5 NFS version 3 and beyond	194
Exercises	195
CHAPTER 5 Enforcing Modularity with Virtualization	199
Overview	
5.1. Client/Service Organization within a Computer using Virtualizati	on 201
5.1.1 Abstractions for Virtualizing Computers	203
5.1.1.1 Threads	204
5.1.1.2 Virtual Memory	206
5.1.1.3 Bounded Buffer	
5.1.1.4 Operating System Interface	207
5.1.2 Emulation and Virtual Machines	
5.1.3 Roadmap: Step-by-Step Virtualization	208
5.2. Virtual Links using SEND, RECEIVE, and a Bounded Buffer	
5.2.1 An Interface for SEND and RECEIVE with Bounded Buffers	
5.2.2 Sequence Coordination with a Bounded Buffer	211
5.2.3 Race Conditions	214
5.2.4 Locks and Before-or-After Actions	218
5.2.5 Deadlock	221
5.2.6 Implementing acquire and release	222
5.2.7 Implementing a Before-or-After Action Using the One-Writer	
Principle	225
5.2.8 Coordination between Synchronous Islands with Asynchronous	
Connections	
5.3. Enforcing Modularity in Memory	
5.3.1 Enforcing Modularity with Domains	
5.3.2 Controlled Sharing using Several Domains	
5.3.3 More Enforced Modularity with Kernel and User Mode	
5.3.4 Gates and Changing Modes	
5.3.5 Enforcing Modularity for Bounded Buffers	237

Saltzer & Kaashoek Ch. 0, p. vi

5.3.6 The Kernel	38
5.4. Virtualizing Memory	42
5.4.1 Virtualizing Addresses	
5.4.2 Translating Addresses using a Page Map	45
5.4.3 Virtual Address Spaces	48
5.4.3.1 Primitives for Virtual Address Spaces	48
5.4.3.2 The Kernel and Address Spaces	50
5.4.3.3 Discussion	51
5.4.4 Hardware versus Software and the Translation Look-Aside Buffer 2	52
5.4.5 Segments (Advanced Topic)	53
5.5. Virtualizing Processors using Threads	55
5.5.1 Sharing a processor among multiple threads	55
5.5.2 Implementing YIELD	
5.5.3 Creating and Terminating Threads	64
5.5.4 Enforcing Modularity with Threads: Preemptive Scheduling 2	69
5.5.5 Enforcing Modularity with Threads and Address Spaces 2	71
5.5.6 Layering Threads	71
5.6. Thread Primitives for Sequence Coordination	73
5.6.1 The Lost Notification Problem	73
5.6.2 Avoiding the Lost Notification Problem with Eventcounts and	
Sequencers	75
5.6.3 Implementing AWAIT, ADVANCE, TICKET, and READ (Advanced	
Topic)	
5.6.4 Polling, Interrupts, and Sequence coordination	
5.7. Case study: Evolution of Enforced Modularity in the Intel x86 2	
5.7.1 The early designs: no support for enforced modularity 2	
5.7.2 Enforcing Modularity using Segmentation	
5.7.3 Page-Based Virtual Address Spaces	
5.7.4 Summary: more evolution	
5.8. Application: Enforcing Modularity using Virtual Machines 2	
5.8.1 Virtual Machine Uses	
5.8.2 Implementing Virtual Machines	
5.8.3 Virtualizing Example	
Exercises	.94
CHARTER & Roufermones) ()
CHAPTER 6 Performance	

Saltzer & Kaashoek Ch. 0, p. vii June 24, 2009 12:21 am

viii Contents

6.1. Designing for Performance	300
6.1.1 Performance Metrics	302
6.1.1.1 Capacity, Utilization, Overhead, and Useful Work	302
6.1.1.2 Latency	302
6.1.1.3 Throughput	303
6.1.2 A Systems Approach to Designing for Performance	304
6.1.3 Reducing latency by exploiting workload properties	306
6.1.4 Reducing Latency Using Concurrency	307
6.1.5 Improving Throughput: Concurrency	309
6.1.6 Queuing and Overload	
6.1.7 Fighting Bottlenecks	
6.1.7.1 Batching	314
6.1.7.2 Dallying	314
6.1.7.3 Speculation	314
6.1.7.4 Challenges with Batching, Dallying, and Speculation	315
6.1.8 An Example: the I/O bottleneck	
6.2. Multilevel Memories	321
6.2.1 Memory Characterization	322
6.2.2 Multilevel Memory Management using Virtual Memory	323
6.2.3 Adding multilevel memory management to a virtual memory	327
6.2.4 Analyzing Multilevel Memory Systems	
6.2.5 Locality of reference and working sets	
6.2.6 Multilevel Memory Management Policies	
6.2.7 Comparative analysis of different policies	
6.2.8 Other Page-Removal Algorithms	
6.2.9 Other aspects of multilevel memory management	
6.3. Scheduling	
6.3.1 Scheduling Resources	
6.3.2 Scheduling metrics	
6.3.3 Scheduling Policies	
6.3.3.1 First-Come, First-Served	
6.3.3.2 Shortest-job-first	
6.3.3.3 Round-Robin	
6.3.3.4 Priority Scheduling	357
6.2.2.5 Deal time Schadulare	250

Saltzer & Kaashoek Ch. 0, p. viii June 24, 2009 12:21 am

6.3.4 Case study: Scheduling the Disk Arm	
Exercises	
About Part II	369
Appendix A: The Binary Classification Trade-off	371
Suggestions for Further Reading	375
Problem Sets for Part I	425
Glossary	475
Index of Concepts	513
Part II [On-Line]	
CHAPTER 7 The Network as a System and as a System Compon	ent7–1
Overview	7–2
7.1. Interesting Properties of Networks	7–3
7.1.1 Isochronous and Asynchronous Multiplexing	7–5
7.1.2 Packet Forwarding; Delay	7–9
7.1.3 Buffer Overflow and Discarded Packets	7–12
7.1.4 Duplicate Packets and Duplicate Suppression	7–15
7.1.5 Damaged Packets and Broken Links	
7.1.6 Reordered Delivery	
7.1.7 Summary of Interesting Properties and the Best-Effort Co	ntract . 7–20
7.2. Getting Organized: Layers	7–20
7.2.1 Layers	7–23
7.2.2 The Link Layer	7–25
7.2.3 The Network Layer	7–27
7.2.4 The End-to-End Layer	
7.2.5 Additional Layers and the End-to-End Argument	7–30
7.2.6 Mapped and Recursive Applications of the Layered Model	17–32
7.3. The Link Layer	7–34
7.3.1 Transmitting Digital Data in an Analog World	7–34
7.3.2 Framing Frames	
7.3.3 Error Handling	7–40
7.3.4 The Link Layer Interface: Link Protocols and Multiplexin	g 7–41
7.3.5 Link Properties	7–44

Saltzer & Kaashoek Ch. 0, p. ix June 24, 2009 12:21 am

x Contents

7.4. The Network Layer	.7-46
7.4.1 Addressing Interface	7–46
7.4.2 Managing the Forwarding Table: Routing	7–48
7.4.3 Hierarchical Address Assignment and Hierarchical Routing	
7.4.4 Reporting Network Layer Errors	7–59
7.4.5 Network Address Translation (An Idea That Almost Works)	7–61
7.5. The End-to-End Layer	.7-62
7.5.1 Transport Protocols and Protocol Multiplexing	7–63
7.5.2 Assurance of At-Least-Once Delivery; the Role of Timers	7–67
7.5.3 Assurance of At-Most-Once Delivery: Duplicate Suppression	7–71
7.5.4 Division into Segments and Reassembly of Long Messages	7–73
7.5.5 Assurance of Data Integrity	7–73
7.5.6 End-to-End Performance: Overlapping and Flow Control	7–75
7.5.6.1 Overlapping Transmissions	7–75
7.5.6.2 Bottlenecks, Flow Control, and Fixed Windows	7–77
7.5.6.3 Sliding Windows and Self-Pacing	7–79
7.5.6.4 Recovery of Lost Data Segments with Windows	7–81
7.5.7 Assurance of Stream Order, and Closing of Connections	
7.5.8 Assurance of Jitter Control	
7.5.9 Assurance of Authenticity and Privacy	7–85
7.6. A Network System Design Issue: Congestion Control	
7.6.1 Managing Shared Resources	7–86
7.6.2 Resource Management in Networks	7–89
7.6.3 Cross-layer Cooperation: Feedback	7–91
7.6.4 Cross-layer Cooperation: Control	7–93
7.6.5 Other Ways of Controlling Congestion in Networks	7–94
7.6.6 Delay Revisited	7–98
7.7. Wrapping up Networks	.7–99
7.8. Case Study: Mapping the Internet to the Ethernet	7-100
7.8.1 A Brief Overview of Ethernet	.7–100
7.8.2 Broadcast Aspects of Ethernet	
7.8.3 Layer Mapping: Attaching Ethernet to a Forwarding Network .	.7–103
7.8.4 The Address Resolution Protocol	
7.9. War Stories: Surprises in Protocol Design	
7.9.1 Fixed Timers Lead to Congestion Collapse in NFS	
7.9.2 Autonet Broadcast Storms	
7.9.3 Emergent Phase Synchronization of Periodic Protocols	.7 - 108

Saltzer & Kaashoek Ch. 0, p. x June 24, 2009 12:21 am

7.9.4 Wisconsin Time Server Meltdown	
Exercises	7–111
CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable	• Components
Overview	8–2
8.1. Faults, Failures, and Fault Tolerant Design	8–3
8.1.1 Faults, Failures, and Modules	8–3
8.1.2 The Fault-Tolerance Design Process	8–6
8.2. Measures of Reliability and Failure Tolerance	
8.2.1 Availability and Mean Time to Failure	
8.2.2 Reliability Functions	
8.2.3 Measuring Fault Tolerance	
8.3. Tolerating Active Faults	
8.3.1 Responding to Active Faults	
8.3.2 Fault Tolerance Models	
8.4. Systematically Applying Redundancy	
8.4.1 Coding: Incremental Redundancy	
8.4.2 Replication: Massive Redundancy	
8.4.4 Repair	
8.5. Applying Redundancy to Software and Data	
8.5.1 Tolerating Software Faults	
8.5.2 Tolerating Software (and other) Faults by Separating Sta	
8.5.3 Durability and Durable Storage	
8.5.4 Magnetic Disk Fault Tolerance	
8.5.4.1 Magnetic Disk Fault Modes	
8.5.4.2 System Faults	
8.5.4.3 Raw Disk Storage	
8.5.4.4 Fail-Fast Disk Storage	
8.5.4.5 Careful Disk Storage	
8.5.4.6 Durable Storage: RAID 1	
8.5.4.7 Improving on RAID 1	
8.5.4.8 Detecting Errors Caused by System Crashes	
8.5.4.9 Still More Threats to Durability	
,	

Saltzer & Kaashoek Ch. 0, p. xi June 24, 2009 12:21 am

xii Contents

8.6. Wrapping up Reliability	8–51
8.6.1 Design Strategies and Design Principles	8-51
8.6.2 How about the End-to-End Argument?	8–52
8.6.3 A Caution on the Use of Reliability Calculations	8–53
8.6.4 Where to Learn More about Reliable Systems	8–53
8.7. Application: A Fault Tolerance Model for CMOS RAM	8–55
8.8. War Stories: Fault Tolerant Systems that Failed	8–57
8.8.1 Adventures with Error Correction	8–57
8.8.2 Risks of Rarely-Used Procedures: The National Archives	8–59
8.8.3 Non-independent Replicas and Backhoe Fade	8–60
8.8.4 Human Error May Be the Biggest Risk	8–61
8.8.5 Introducing a Single Point of Failure	8–63
8.8.6 Multiple Failures: The SOHO Mission Interruption	8–63
Exercises	8–64
CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After	9–1
Overview	9–2
9.1. Atomicity	
9.1.1 All-or-Nothing Atomicity in a Database	
9.1.2 All-or-Nothing Atomicity in the Interrupt Interface	
9.1.3 All-or-Nothing Atomicity in a Layered Application	
9.1.4 Some Actions With and Without the All-or-Nothing Property	
9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads.	
9.1.6 Correctness and Serialization	9–16
9.1.7 All-or-Nothing and Before-or-After Atomicity	9–19
9.2. All-or-Nothing Atomicity I: Concepts	9–21
9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT	
9.2.2 Systematic Atomicity: Commit and the Golden Rule	
9.2.3 Systematic All-or-Nothing Atomicity: Version Histories	9–30
9.2.4 How Version Histories are Used	9–37
9.3. All-or-Nothing Atomicity II: Pragmatics	9–38
9.3.1 Atomicity Logs	9–39
9.3.2 Logging Protocols	
9.3.3 Recovery Procedures	
9.3.4 Other Logging Configurations: Non-Volatile Cell Storage	9–47
9.3.5 Checkpoints	
9.3.6 What if the Cache is not Write-Through? (Advanced Topic)	9–53

Saltzer & Kaashoek Ch. 0, p. xii

June 24, 2009 12:21 am

9.4. Before-or-After Atomicity I: Concepts	. 9–54
9.4.1 Achieving Before-or-After Atomicity: Simple Serialization	. 9–54
9.4.2 The Mark-Point Discipline	. 9–58
9.4.3 Optimistic Atomicity: Read-Capture (Advanced Topic)	. 9–63
9.4.4 Does Anyone Actually Use Version Histories for Before-or-After	
Atomicity?	. 9–67
9.5. Before-or-After Atomicity II: Pragmatics	. 9–69
9.5.1 Locks	. 9–70
9.5.2 Simple Locking	. 9–72
9.5.3 Two-Phase Locking	. 9–73
9.5.4 Performance Optimizations	. 9–75
9.5.5 Deadlock; Making Progress	. 9–76
9.6. Atomicity across Layers and Multiple Sites	. 9–79
9.6.1 Hierarchical Composition of Transactions	. 9–80
9.6.2 Two-Phase Commit	. 9–84
9.6.3 Multiple-Site Atomicity: Distributed Two-Phase Commit	. 9–85
9.6.4 The Dilemma of the Two Generals	. 9–90
9.7. A More Complete Model of Disk Failure (Advanced Topic)	. 9–92
9.7.1 Storage that is Both All-or-Nothing and Durable	. 9–92
9.8. Case Studies: Machine Language Atomicity	. 9–95
9.8.1 Complex Instruction Sets: The General Electric 600 Line	. 9–95
9.8.2 More Elaborate Instruction Sets: The IBM System/370	. 9–90
9.8.3 The Apollo Desktop Computer and the Motorola M68000	
Microprocessor	. 9–97
Exercises	9–98
CHAPTER 10 Consistency	10–1
Overview	10 ′
10.1. Constraints and Interface Consistency 10.2. Cache Coherence	
10.2.1 Coherence, Replication, and Consistency in a Cache	
10.2.2 Eventual Consistency with Timer Expiration	
10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen.	
10.2.4 Obtaining Strict Consistency with the Snoopy Cache	
10.3. Durable Storage Revisited: Widely Separated Replicas	
10.3.1 Durable Storage and the Durability Mantra	
10.3.2 Replicated State Machines	10-1

Saltzer & Kaashoek Ch. 0, p. xiii June 24, 2009 12:21 am

xiv Contents

10.3.3	Shortcuts to Meet more Modest Requirements	10-13
10.3.4	Maintaining Data Integrity	10-15
10.3.5	Replica Reading and Majorities	10–16
	Backup	
10.3.7	Partitioning Data	10–18
10.4. Rec	onciliation	10–19
10.4.1	Occasionally Connected Operation	10-20
10.4.2	A Reconciliation Procedure	10-22
	Improvements	
10.4.4	Clock Coordination	10–26
10.5. Pers	pectives	10–26
10.5.1	History	10–27
10.5.2	Trade-Offs	10–28
10.5.3	Directions for Further Study	10–31
Exercises		10–32
CHAPTER 11	Information Security	11–1
Overview.		11–4
11.1. Intr	oduction to Secure Systems	11–5
	Threat Classification	
11.1.2	Security is a Negative Goal	11–9
11.1.3	The Safety Net Approach	11-10
11.1.4	Design Principles	11–13
11.1.5	A High d(technology)/dt Poses Challenges For Security	11–17
11.1.6	Security Model	11–18
11.1.7	Trusted Computing Base	11–26
11.1.8	The Road Map for this Chapter	11–28
11.2. Aut	henticating Principals	11–28
11.2.1	Separating Trust from Authenticating Principals	11–29
11.2.2	Authenticating Principals	11–30
11.2.3	Cryptographic Hash Functions, Computationally Secure,	Window of
	Validity	
11.2.4	Using Cryptographic Hash Functions to Protect Passwords	311–34
11.3. Aut	henticating Messages	11–36
11.3.1	$Message\ Authentication\ is\ Different\ from\ Confidentiality\ .$	11–37
	Closed versus Open Designs and Cryptography	
11.3.3	Key-Based Authentication Model	11–41

Saltzer & Kaashoek Ch. 0, p. xiv

June 24, 2009 12:21 am

Saltzer & Kaashoek Ch. 0, p. xv June 24, 2009 12:21 am

xvi Contents

11.7. Advanced Topic: Reasoning about Authentication	11–85
11.7.1 Authentication Logic	
11.7.1.1 Hard-wired Approach	11–88
11.7.1.2 Internet Approach	11–88
11.7.2 Authentication in Distributed Systems	11–89
11.7.3 Authentication across Administrative Realms	11–90
11.7.4 Authenticating Public Keys	11–92
11.7.5 Authenticating Certificates	
11.7.6 Certificate Chains	11–97
11.7.6.1 Hierarchy of Central Certificate Authorities	11–97
11.7.6.2 Web of Trust	11–98
11.8. Cryptography as a Building Block (Advanced Topic)	11–99
11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)	11–99
11.8.2 Pseudorandom Number Generators	11–101
11.8.2.1 Rc4: A Pseudorandom Generator and its Use	11–101
11.8.2.2 Confidentiality using RC4	11–102
11.8.3 Block Ciphers	11–103
11.8.3.1 Advanced Encryption Standard (AES)	11–103
11.8.3.2 Cipher-Block Chaining	11–105
11.8.4 Computing a Message Authentication Code	
11.8.4.1 MACs Using Block Cipher or Stream Cipher	11–107
11.8.4.2 MACs Using a Cryptographic Hash Function	11–107
11.8.5 A Public-Key Cipher	
11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher	
11.8.5.2 Computing a Digital Signature	
11.8.5.3 A Public-Key Encrypting System	
11.9Summary	
11.10. Case Study: Transport Layer Security (TLS) for the Web	
11.10.1 The TLS Handshake	
11.10.2 Evolution of TLS	11–120
11.10.3 Authenticating Services with TLS	11–121
11.10.4 User Authentication	11–123
11.11. War Stories: Security System Breaches	11–125
11.11.1 Residues: Profitable Garbage	11–126
11 11 1 1 1963: Residues in CTSS	11_126

Saltzer & Kaashoek Ch. 0, p. xvi

11.	11.1.2	1997: Residues in Network Packets	11-12
11.	11.1.3	2000: Residues in HTTP	11-12
11.	11.1.4	Residues on Removed Disks	11-128
11.	11.1.5	Residues in Backup Copies	11–128
		Magnetic Residues: High-Tech Garbage Analysis	
		2001 and 2002: More Low-tech Garbage Analysis	
		text Passwords Lead to Two Breaches	
11.11.	3 The	Multiply Buggy Password Transformation	11–13
11.11.	4 Cont	trolling the Configuration	11–13
11.	11.4.1	Authorized People Sometimes do Unauthorized Things	11–132
11.	11.4.2	The System Release Trick	11–132
11.	11.4.3	The Slammer Worm	11–132
11.11.	5 The	Kernel Trusts the User	11-135
11.	11.5.1	Obvious Trust	11-13
11.	11.5.2	Nonobvious Trust (Tocttou)	11–130
11.	11.5.3	Tocttou 2: Virtualizing the DMA Channel	11–130
		nology Defeats Economic Barriers	
11.	11.6.1	An Attack on Our System Would be Too Expensive	11–137
11.	11.6.2	Well, it Used to be Too Expensive	11–13
11.11.	7 Mere	Mortals Must be Able to Figure Out How to Use it	11–13
11.11.	8 The	Web can be a Dangerous Place	11-139
		Reused Password	
11.11.	10 Sign	naling with Clandestine Channels	11–14
11.	11.10.1	Intentionally I: Banging on the Walls	11–14
11.	11.10.2	2 Intentionally II	11–14
11.	11.10.3	3 Unintentionally	11-142
11.11.	11 It S	eems to be Working Just Fine	11–142
11.	11.11.1	I Thought it was Secure	11-143
11.	11.11.2	2 How Large is the Key SpaceReally?	11–14
11.	11.11.3	B How Long are the Keys?	11-14
		ection For Fun and Profit	
11.	11.12.1	Injecting a Bogus Alert Message to the Operator	11-14
11.	11.12.2	2 CardSystems Exposes 40,000,000 Credit Card Records	to SQI
		Injection	11-14
11.11.	13 Haz	zards of Rarely-Used Components	11-148

Saltzer & Kaashoek Ch. 0, p. xvii June 24, 2009 12:21 am

xviii Contents

11.11.14 A Thorough System Penetration Job	11–148
11.11.15 Framing Enigma	11–149
Exercises	
Suggestions for Further Reading	SR-1
Problem Sets	PS-1
Glossary	GL-1
Complete Index of Concepts	INDEX-

Saltzer & Kaashoek Ch. 0, p. xviii June 24, 2009 12:21 am

List of Sidebars

PART I [In Printed Textbook]

Sidebar 1.2: W Sidebar 1.3: To Sidebar 1.4: Th Sidebar 1.5: H	tems topping a Supertanker
Sidebar 2.1: To Sidebar 2.2: H Sidebar 2.3: Ro Sidebar 2.4: W	nents of Computer System Organization erminology: durability, stability, and persistence46 low magnetic disks work49 epresentation: pseudocode and messages54 What is an operating system?79 luman engineering and the principle of least astonishment85
Sidebar 3.1: G Sidebar 3.2: H CHAPTER 4 Enfo Sidebar 4.1: En Sidebar 4.2: Ro Sidebar 4.3: Ro Sidebar 4.4: Ti	Design of Naming Schemes Identification a unique name from a timestamp
Sidebar 5.1: RS Sidebar 5.2: Co Sidebar 5.3: Bo Sidebar 5.4: Pr Sidebar 5.5: Po Sidebar 5.6: In Sidebar 5.7: Av	precing Modularity with Virtualization 5M, test-and-set and avoiding locks

Saltzer & Kaashoek Ch. 0, p. xix

June 24, 2009 12:21 am

xix

List of Sidebars

 $\mathbf{X}\mathbf{X}$

	Design hint: Optimiz for the common case
Sidebar 6.3:	Design hint: Instead of reducing latency, hide it
Sidebar 6.4:	RAM latency323
Sidebar 6.5:	Design hint: Separate mechanism from policy
Sidebar 6.6:	OPT is a stack algorithm and optimal
Sidebar 6.7:	Receive livelock
Sidebar 6.8:	Priority inversion
Part II [On-Li	ne]
CHAPTER 7 Th	ne Network as a System and as a System Component
Sidebar 7.1:	Error detection, checksums, and witnesses
Sidebar 7.2:	The Internet
Sidebar 7.3:	Framing phase-encoded bits
Sidebar 7.4:	Shannon's capacity theorem
Sidebar 7.5:	Other end-to-end transport protocol interfaces
Sidebar 7.6:	Exponentially weighted moving averages7–70
Sidebar 7.7:	What does an acknowledgment really mean?7–77
Sidebar 7.8:	The tragedy of the commons7–93
Sidebar 7.9:	Retrofitting TCP7–95
Sidebar 7.10	The invisible hand
	ault Tolerance: Reliable Systems from Unreliable Components
Sidebar 8.1:	Reliability functions
Sidebar 8.2:	Risks of manipulating MTTFs
	Are disk system checksums a wasted effort?
Sidebar 8.4:	Detecting failures with heartbeats
CHAPTER 9 At	omicity: All-or-Nothing and Before-or-After
	Actions and transactions
Sidebar 9.2:	Events that might lead to invoking an exception handler9–7
	Cascaded aborts
Sidebar 9.4:	The many uses of logs9–40

Saltzer & Kaashoek Ch. 0, p. xx June 24, 2009 12:21 am

List of Sidebars xxi

CHAPTER 10 Consistency

CHAPTER 11 Information Security			
Sidebar 11.1:	Privacy		
Sidebar 11.2:	Should designs and vulnerabilities be public?		
Sidebar 11.3:	Malware: viruses, worms, trojan horses, logic bombs, bots, etc $11-19$		
Sidebar 11.4:	Why are buffer overrun bugs so common?		

Saltzer & Kaashoek Ch. 0, p. xxi June 24, 2009 12:21 am

xxii List of Sidebars

Saltzer & Kaashoek Ch. 0, p. xxii

June 24, 2009 12:21 am