where the constant c is independent of A and n (but does depend on the dimension of $\operatorname{Ran}(P)$). We use that $\int_1^\infty t^{s-2} dt < \infty$ for s < 1 to bound the second term. Thus, there exists a constant C(s) such that

$$\int_{n}^{n+1} \|(A+x)^{-1}\|^{s} dx \le C(s)$$

for all maximally dissipative A, where C(s) is independent of n and $\operatorname{Ran}(P)$. Using that $\sum_{n\in\mathbb{Z}}\frac{1}{1+(|n|-1)^2}<\infty$, we can therefore bound the right hand side of (9) for all |z|>1. If |z|<1, we drop a minus sign in both norms in (9) and use that $i\widehat{F}_z$ and $i\widehat{F}_z^{-1}$ are dissipative. Repeating the arguments from above yields the bound for all |z|<1.

The case $x^{(i)} = y^{(j)}$ is significantly easier: We can directly take $\alpha = \omega_x$ and do not need β . The operators F_z and \widehat{F}_z act on \mathbb{C}^3 , while all other estimates still hold. The integrals in (9) can be similarly bounded by Lemma 1.

We state a simplified version of Lemma 3.1 from [3], which we use to bound the integrals in the proof of Theorem 2.

Lemma 1. Let \mathcal{H} be a separable Hilbert space, A be a maximally dissipative operator with strictly positive imaginary part and $M_1, M_2 : \mathcal{H} \to \mathcal{H}$ be Hilbert-Schmidt operators. Then there exists a constant c independent of A, M_1 and M_2 such that for any t > 0:

$$\left| \left\{ x \in \mathbb{R} \text{ s.t. } \|M_1 (A+x)^{-1} M_2 \| > t \right\} \right| \le c \|M_1\|_{HS} \|M_2\|_{HS} \frac{1}{t},$$

where $|\cdot|$ denotes the Lebesgue measure.

4.2 The boundary of a box

We want to define a "box" Λ_L for any size $L \in \mathbb{N}^2$, whose sides have lengths L_1 and L_2 , such that the Quantum Walker is unable to cross the boundary of Λ_L . Restricting the Walker to some box Λ_L is achieved by changing the coin matrix at specific lattice sites on the boundary of Λ_L . In other words, we want to obtain unitary operators $U_{\omega}^{(L)} = U_{\omega}^{\Lambda_L} \oplus U_{\omega}^{\Lambda_L^C}$ and subspaces $\mathcal{H}_L \oplus \mathcal{H}_L^C = \mathcal{H}$ such that \mathcal{H}_L , respectively \mathcal{H}_L^C , are invariant under $U_{\omega}^{\Lambda_L}$, respectively $U_{\omega}^{\Lambda_L^C}$. Note that we call a subspace $\mathcal{H}' \subset \mathcal{H}$ invariant under U if $U\mathcal{H}' \subset \mathcal{H}'$. Recalling the definition of $\mathcal{H}^{j,k}$ (4), we use that C_0 induces a fully localized Quantum Walk, see section 2, and define the invariant subspaces:

$$\mathcal{H}_L = \bigoplus_{\substack{-L_1 \leq j \leq L_1 - 1 \\ -L_2 \leq k \leq L_2 - 1 \\ j + k > -L_1 - L_2}} \mathcal{H}^{j,k}, \quad \mathcal{H}_L^C = \mathcal{H} \setminus \mathcal{H}_L.$$

The choice $j+k>-L_1-L_2$ is not necessary, but simplifies the structure of Λ_L , see Figure 3. We call the number of Γ_A -vertices in Λ_L the volume of Λ_L , that is:

$$\operatorname{vol}(\Lambda_L) = 4L_1L_2 - 1 \text{ and } |L| = \sqrt{L_1^2 + L_2^2}.$$
 (10)

To obtain a Quantum Walk such that these two subspaces are invariant, we need to change the coin matrix at specific lattice sites from C to C_0 . In particular, we use the coin matrix C_0 at all Γ_B sites in

$$\Gamma_{C_0}^{(L)} = \left\{ |j, k\rangle \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ s.t. } \left(-L_1 \le j \le L_1 - 1, k = L_2 - 1 \right) \text{ or } \right.$$

$$\left(-L_1 + 1 \le j \le L_1, k = -L_2 - 1 \right) \text{ or } \left(j = L_1, -L_2 \le k \le L_2 - 2 \right)$$
or
$$\left(j = -L_1, -L_2 \le k \le L_2 - 2 \right) \right\}.$$