Отчет о выполнении лабораторной работы 3.3.4 Эффект Холла в полупорводниках

Исламов Сардор, группа Б02-111

17 сентября 2022 г.

Аннотация. В данной работе проведено измерение подвижности и концентрации носителей заряда в полупроводниках посредством изучения зависимости ЭДС Холла от внешнего магнитного поля и тока, протекающего по образцу. Также определен тип проводимости образца.

Теоретическое введение

Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\text{\tiny II}} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e- абсолютный заряд электрона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока $I = ne |\langle v_x \rangle| la$, найдем ЭДС Холла:

$$\varepsilon_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок, b_e b_p - их подвижности.

Экспериментальная установка

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять регуляторами источника питания электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания. При замыкании K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром. В образце, помещённом в зазор, возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Влияние омического падения напряжения исключается измерением напряжения U_0 между 3 и 4 в отсутствие магнитного поля. По знаку $\mathcal{E} = U_{34} \pm U_0$ можно определить характер проводимости — электронный или дырочный, зная напрявление тока в образце и напрвление магнитного поля.

Померив ток I_{35} в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля можно рассчитать проводимость материала по формуле

$$\sigma = \frac{I \ L_{35}}{U_{35} a \ l},$$

где L_{35} – расстояние между контактами 3 и 5, а a и l – толщина и ширина образца.

Результаты измерений и обработка данных

При помощи датчика установим зависимость магнитной индукции B от силы тока I_M , постепенно уменьшая ее от максимума до минимума. При измерении индукции имеет значение также ориентация датчика, в связи с чем показания следует снимать в обоих положениях, далее усредняя полученные значения. Результаты занесем в таблицу 1.

I_M , A	1.07		0.89		0.70		0.53		0.36		0.18	
B, м T л	946	980	850	878	746	715	550	582	399	367	190	220

Таблица 1: Зависимость магнитной индукции от тока

Построим график по полученным данным (рис. 2)

Рис. 3: Зависимость магнитной индукции от тока

Коэффицент наклона прямой по МНК равен $k_1 = 970 \pm 30 \frac{{}_{\rm M}{
m T}{}_{\rm A}}{}$.

Теперь вставим исследуемый образец между полюсами магнита и установим зависимость напряжения U_{34} от силы тока I_M через электромагнит. Измерения проведем при тех же значениях тока, что были установлены в предыдущем опыте. Значения тока через образец будем изменять в пределах от 30 мA до 100 мA.

Также начальное напряжение U_0 , отображающееся на вольтметре при отсутствии образца между полюсами, следует принять за нулевое.

Измерения при максимальном токе через образец проведем для обоих направлений поля через него, развернув образец.

I, мА	U_0 , мкВ	U_{34} , мкВ							
30	-56	55	45	31	14	5	-30		
40	-74	73	59	41	17	-8	-39		
50	-93	92	75	52	22	-10	-49		
60	-111	108	91	62	28	-11	-60		
70	-131	125	106	72	32	-16	-68		
80	-149	144	122	82	38	-15	-79		
90	-168	162	136	92	42	-19	-90		
100	-186	179	149	104	46	-19	-99		
100 ↓	-186	-571	-540	-487	-427	-355	-273		

Таблица 2: Зависимость напряжения от тока

10,09. 2022. Dornah

Отобразим зависимость ЭДС Холла от тока (рис. 4)

Рис. 4: Зависимость ЭДС Холла от тока

Теперь найдем зависимость угла наклона от I.

I, мА	30	40	50	60	70	80	90	100
$k, \frac{MB}{A},$	-82.9	-116.2	-146.0	-171.2	-198.8	-227.8	-258.1	-283.9
$\sigma_k, \frac{MB}{A}$	5.0	4.6	6.0	8.3	9.5	11.0	12.2	13.6

Puc. 5: Зависимость k(I)

Коэффицент наклона $k_2 = -2.85 \pm 0.01 \frac{\text{B}}{\text{A}^2}$.

Также указанные на образце параметры: a=2.2 мм, L=6.0 мм, l=7 мм.

$$R_x = -\frac{\varepsilon_x}{IB}a = -\frac{\varepsilon_x}{I \cdot I_M} \frac{I_M}{B}a = -\frac{k_2}{k_1}a = (750 \pm 50) \cdot 10^{-3} \frac{\text{B} \cdot \text{m}}{\text{Ta} \cdot \text{A}}$$

Концентрация носителей заряда $n=\frac{1}{eR_x}=(8.3\pm0.6)\cdot10^{18}\frac{1}{\text{м}^3}$ Для определения удельной проводимости выключим источник питания и измерим падение напряжения U_{35} (1 мA)= -2,488 мВ. Тогда $\sigma=\frac{IL}{U_{35}al}=156.6\pm3\frac{1}{\text{Ом·м}}$. Также вычислим подвижность носителей заряда $b=\frac{\sigma}{en}=\sigma R_x=(0.12\pm0.01)\cdot10^{-3}\frac{\text{м}^2}{\text{B·c}}$

Подведение итогов

В ходе работы изучено явление Холла на основе образца. Также вычислена постоянная Холла для исследуемого образца $R_x = (750 \pm 50) \cdot 10^{-6} \frac{\text{В·м}}{\text{Тл·A}} \ (\varepsilon \approx 7\%)$, концентрация носителей заряда $n = (8.3 \pm 0.6) \cdot 10^{21} \frac{1}{\text{м}^3} \ (\varepsilon \approx 8\%)$, удельная проводимость $\sigma = 156.6 \pm 3 \frac{1}{\text{Ом·м}} \ (\varepsilon \approx 8\%)$ 2%) и подвижность носителей заряда $b=120\pm 10\frac{\rm cm^2}{\rm B\cdot c}~(\varepsilon\approx 9\%)$. Полученные данные могут отличаться от табличных в связи с сильной чувствительностью используемого прибора к нагреву, происходящему при проходе через него тока, и большим количеством примесей в рассматриваемом образце.