ПОЛОЖИТЕЛЬНЫЕ ПРОЕКТОРЫ И УСЛОВНЫЕ МАТЕМАТИЧЕСКИЕ ОЖИПАНИЯ

В настоящей статье изучается строение положительных проекторов в и их связь с условными математическими ожиданиями. В отличие от других работ на эту тему (напр.[2]) не делается ника-ких-предположений относительно нормы и используются только "порядковые" свойства оператора. Мы придерживаемся терминологии и обозначений теории полуупорядоченных пространств[3].

I. Пусть $\{\Omega, A, P\}$ —пространство с вероятностной мерой, \top – линейний положительний идемпотентний оператор ("проектор"), действующий в $L^1(\Omega, A, P)$. Такой оператор вполне линеен и имеет компоненту существенной положительности χ_0 . Это означает, что

$$Tx > 0$$
 npu $x \in X_o^+$, $Tx = 0$ npu $x \in X_o^d$.

Компоненту X_o можно представлять как $L^1(\Omega_o, \mathbb{A}|_{\Omega_o}, \mathbb{P})$, $\Omega_o \subset \Omega$. Пусть $U = U_X$ — "канонический" проектор на X_o . Положим $\widetilde{T} = U T$. Ясно, что TU = T , поэтому $\widetilde{T}^2 = U T U T = U T^2 = U T = \widetilde{T}$, так что \widetilde{T} — проектор. Он строго положителен на X_o : если $x \in X_o$, то $T(\widetilde{T}x) = T^2x = Tx > 0$ и Tx > 0. Итак, изучение произвольного положительного проектора сводится к случаю, когда он строго положителен. X_o

П. Рассмотрим строго положительный проектор T. Пусть $Y = T(L') = \{f \mid Tf = f\}$. Покажем, что Y - 3 амк нутая линейная подструктура в L'. (это верно и в произвольном К-пространстве).

ж) в роли "дополнительного" оператора $T-\widetilde{T}$ может выступать любой W со свойствами: $W\gg 0$, $WU=W\widetilde{T}=W$, $UW=W^2=0$.

рая \mathcal{G} -алгебра, \mathcal{G} - неотрицательная \mathcal{H} -измеримая функция. Будем рассматривать только множество $\Omega_{\downarrow} = \left\{ \begin{array}{c} x \mid g(x) > 0 \right\}$. Это равносильно виделению из \bot компоненти X_{\downarrow} , порожденной элементом \mathcal{G} . Поскольку, очевидно, $\mathcal{G} \in Y$, то $T_{\mathcal{G}} = \mathcal{G}$ и эта компонента T — инвариантна. Рассмотрим пространство $R = \mathcal{G} \cup (\Omega_{\downarrow}, \mathcal{H}|_{\Omega_{\downarrow}}, P)$ и в нем оператор $T_{\downarrow} = \bigvee_{\mathcal{G}} T \bigvee_{\mathcal{G}^{-1}} (\bigvee_{\mathcal{G}} - \text{ оператор умножения на } \mathcal{G}$). Ясно, что T_{\downarrow} — строго положительный проектор в R. Введем в R норму: $\|h\|_{*} = \|T_{\downarrow}(|h|)\|_{L^{1}} = \|\mathcal{G} T \left(\frac{|h|}{\mathcal{G}}\right)\|_{L^{1}}$. Относительно этой нормы оператор T_{\downarrow} будет изометричен:

$$\|T_{1}h\|_{*} = \|T_{1}^{2}(|h|)\|_{L^{1}} = \|T_{1}(|h|)\|_{L^{1}} = \|h\|_{*}.$$

Используя общие теоремы о представлении функционалов[3], легко показать, что новая норма имеет интегральное представление:

 $\|h\|_{*} = \left\{ \|h\| d\widetilde{P} \right\},$

где \widetilde{P} – некоторая мера на $\#^{\Omega_i}$, абсолютно непрерывная относи – тельно P .

Докажем, что T_1 есть условное математическое ожидание относительно алгеори \mathcal{B} и меры \widetilde{P} в пространстве R . Для этого нужно проверить, что $\int_{\mathbb{R}} T_1 \ln d\widetilde{P} = \int_{\mathbb{R}} \ln d\widetilde{P}$ при всех $R \in \mathbb{R}$, $R \in \mathbb{R}$. Мы проверим это для функций вида $R \in \mathbb{R}$, $R \in \mathbb{R}$ и образуют там фундаментальное множество). Прежде всего заметим, что $R \in \mathbb{R}$ и $R \in \mathbb{R}$ и $R \in \mathbb{R}$ и $R \in \mathbb{R}$ и $R \in \mathbb{R}$ и образуют там фундаментальное множество). Прежде всего заметим, что $R \in \mathbb{R}$ и $R \in \mathbb{R}$ и $R \in \mathbb{R}$ и образуют там фундаментальное множество).

 $T_1 g^2 = g T g = g^2. \tag{I}$

Аналогично $T_1(g^2\chi_g) = g^2\chi_g$, $(B \in \mathcal{B})$. Палее, при всех $S \in \mathcal{A}, B \in \mathcal{B}$ $\int_{\mathcal{B}} g^2\chi_g d\tilde{P} \gg \int_{\mathcal{B}} T_1(g^2\chi_g) d\tilde{P}. \tag{2}$

Действительно, это следует из неравенств

$$\begin{split} & T_{1}(q^{2}\chi_{B \cap S}) \leqslant T_{1}(q^{2}\chi_{B}) = g^{2}\chi_{B}, \ T_{1}(g^{2}\chi_{CB \cap S}) \leqslant g^{2}\chi_{CB}, \\ & \int_{B} T_{1}(g^{2}\chi_{S}) d\widetilde{P} = \int_{B} T_{1}(g^{2}\chi_{S \cap B}) dP + \int_{B} T_{1}(g^{2}\chi_{S \cap CB}) d\widetilde{P} = \\ & = \int_{B} T_{1}(g^{2}\chi_{S \cap B}) d\widetilde{P} \leqslant \|T_{1}(g^{2}\chi_{S \cap B})\|_{*} = \int_{B} g^{2}\chi_{S} d\widetilde{P}. \end{split}$$

Теперь можно написать (используя (I)):

$$\int_{\mathcal{B}} g^2 \chi_s d\tilde{P} + \int_{\mathcal{B}} g^2 \chi_{cs} d\tilde{P} = \int_{\mathcal{B}} T_1(g^2 \chi_s) d\tilde{P} + \int_{\mathcal{B}} T_1(g^2 \chi_{cs}) d\tilde{P}.$$

Отсюда, в силу (2), следует, что

$$\int_{B} g^{2} \chi_{s} d\widetilde{P} = \int_{B} T_{1}(g^{2} \chi_{s}) d\widetilde{P}.$$

Это и требовалось доказать.

Нетрудно проверить, что пространство \mathcal{R} , где действует оператор \mathcal{T} , совпадает с $\mathcal{L}(\Omega_1,\widetilde{\mathbb{P}})$. Что касается отброшенного слагаемого $\mathcal{T} - \mathcal{V}_{q^{-1}}\mathcal{T}_{1}\mathcal{V}_{q}$, то легко установить, что им может быть любой положительный оператор, равный нулю на \mathcal{X}_{1} и отображающий \mathcal{X}_{1}^{0} в $\mathcal{T}(\mathcal{X}_{1}) = \mathcal{Y}$.

Ш. Условимся говорить, что A есть оператор "типа у.м.о.", если $A = V_{\tau} B V_{\tau^{-1}}$, где τ – строго положительная функция,

В - условное математическое ожидание относительно некоторой абсолютно непрерывной меры. В п. П показано, как из строго положительного проектора выделить оператор типа у.м.о. Окончательный результат может быть сформулирован в виде теоремы:

Здесь X_1 и X_2 — взаимно дополнительные компоненты; $X_1 \neq 0$; T_1 — оператор типа у.м.о. в X_1 ; T_2 — положительный оператор из X_2 в X_4 такой, что $T_2(X_2) \subset T_4(X_4)$.

Нетрудно дать также описание и произвольного положительного проектора (см. примечание на стр. 172).

JINTEPATYPA

- I. Douglas R.G., Contractive projections on an L space. Pacific J. Math., 1965, I5, 443-462.
- Daniel E., Wulbert., A note on the characterization of conditional expectation operators. Pacific J.Math. 1970, 34, 285-288.
- 3. Вулих Б.З., Введение в теорию полуупорядоченных пространств. М., Физматгиз, 1961.