PD assignment Data Analysis

- Of the 1163 active players, the vast majority are male (84%). There also exists, a smaller, but notable proportion of female players (14%).
- Our peak age demographic falls between 20-24 (44.8%) with secondary groups falling between 15-19 (18.60%) and 25-29 (13.4%).

Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

In [1]: # Dependencies and Setup pandas, numpy

import pandas as pd
import numpy as np

Read Purchasing File and store into Pandas data frame

data=pd.read_csv('/Users/roatny/Desktop/ICT Master Application/3.Pr
data

Out[1]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44
775	775	Aethedru70	21	Female	60	Wolf	3.54
776	776	Iral74	21	Male	164	Exiled Doomblade	1.63
777	777	Yathecal72	20	Male	67	Celeste, Incarnation of the Corrupted	3.46
778	778	Sisur91	7	Male	101	Final Critic	4.19
779	779	Ennrian78	24	Male	50	Dawn	4.60

780 rows × 7 columns

In [2]: #check for missing/na

data.isna().sum()

Out[2]: Purchase ID

SN 0
Age 0
Gender 0
Item ID 0
Item Name 0
Price 0
dtype: int64

Player Count

• Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- Display the summary data frame

Out[17]:

	uni_items	aver_price	num_pur	total_sales	
0	183	3.050987	780	2379.77	

Gender Demographics

- Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

Out[33]:

Total Count	Percentage	Gender
--------------------	------------	--------

Gender		
Female	81	14.062500
Male	484	84.027778
Other / Non-Disclosed	11	1.909722

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

Out[39]:

Total Count Purchase Count Avg Purchase Price Total Revenue

Gender				
Female	81	113	3.203009	361.94
Male	484	652	3.017853	1967.64
Other / Non-Disclosed	11	15	3.346000	50.19

In [27]:

Out[27]:

	Number of Players	Purchase Count	Avg Purchase Price	Total Revenue
Female	81	113	\$3.20	\$361.94
Male	484	652	\$3.02	\$1,967.64
Other / Non- Disclosed	11	15	\$3.35	\$50.19

Age Demographics

In [41]: #establish bins

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

Out [44]:

Total Count Percentage of Players

Age Labels		
<10	17	2.951389
10-14	22	3.819444
15-19	107	18.576389
20-24	258	44.791667
25-29	77	13.368056
30-34	52	9.027778
35-39	31	5.381944
40+	12	2.083333

In [30]: #groupby

25-29

30-34

35-39

40+

#create dataframe to show total count and percentage of total playe

13.37

9.03

5.38

2.08

Out [30]:

age_group		
<10	17	2.95
10-14	22	3.82
15-19	107	18.58
20-24	258	44.79

77

52

31

12

Total Count Percentage of Players

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

Out [49]:

Purchase Count Average Purchase Price Total Purchase Value

Age Labels			
<10	23	3.353478	77.13
10-14	28	2.956429	82.78
15-19	136	3.035956	412.89
20-24	365	3.052219	1114.06
25-29	101	2.900990	293.00
30-34	73	2.931507	214.00
35-39	41	3.601707	147.67
40+	13	2.941538	38.24

In [31]: #isolate columns needed for chunk in two frames

#totals purchase by age bin

#Dollar values of purchase by age

#display summary df

Out[31]:

	Purchase Count	Average Purchase Price	Total Purchase Value
age_group			
<10	23	\$3.35	\$77.13
10-14	28	\$2.96	\$82.78
15-19	136	\$3.04	\$412.89
20-24	365	\$3.05	\$1114.06
25-29	101	\$2.90	\$293.00
30-34	73	\$2.93	\$214.00
35-39	41	\$3.60	\$147.67
40+	13	\$2.94	\$38.24

Top Spenders

- Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [52]: #Count purchases made by unique SN
         purchase sn=data.groupby(['SN'])
         count_purchase_sn=purchase_sn['Purchase ID'].count()
         #Calculate the average purchase by unique SN
         Avg_purchase_sn=purchase_sn['Price'].mean()
         #Calculate the total revenue from each unique SN
         total_revenue_sn=purchase_sn['Price'].sum()
         #display summary df
         Top_Spender=pd.DataFrame({'Purchase Count':count_purchase sn,
                                 'Average Purchase Price': Avg_purchase_sn,
                                 'Total Purchase Value':total_revenue_sn})
         #create df, sort and format
         Top_Spender=Top_Spender.sort_values(['Total Purchase Value'],ascend
         Top Spender["Average Purchase Price"]=Top Spender['Average Purchase
         Top_Spender["Total Purchase Value"]=Top_Spender['Total Purchase Val
         Top Spender[['Purchase Count', 'Average Purchase Price', 'Total Purch
```

Out [52]:

			101011 011011000 101100
SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.41	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Purchase Count Average Purchase Price Total Purchase Value

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [74]: #isolate columned needed
         item_isolate=data[['Item ID','Item Name','Price']]
         #count transactions for each item
         item_count=item_isolate.groupby(['Item ID','Item Name'])
         purchase_item_count=item_count['Item ID'].count()
         #Price of each item
         Price item=item count['Price'].mean()
         #Calculate total revenue from each item
         Total_revenue_item=item_count['Price'].sum()
         #display summary df
         item_data=pd.DataFrame({'Purchase Count':purchase_item_count,
                                 'Item Price':Price item,
                                'Total Purchase Value':Total_revenue_item})
         #create new df, sort and format
         item_data=item_data.sort_values(['Purchase Count'],ascending=False)
         item_data['Item Price']=item_data['Item Price'].map('${:,.2f}'.form
         item data['Total Purchase Value']=item data['Total Purchase Value']
         #print the DF
         item_data[['Purchase Count','Item Price','Total Purchase Value']].h
```

Out[74]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

- Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

In [77]: #re-sort above table by total purchase item_data['Total Purchase Value']=item_data['Total Purchase Value'] item_data=item_data.sort_values(['Total Purchase Value'],ascending=

#print the DF

In [78]: item_data['Total Purchase Value']=item_data['Total Purchase Value']

In [79]:

item_data[['Purchase Count','Item Price','Total Purchase Value']].h

Out [79]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80

In []: