

CEFET-MG — Centro Federal de Educação Tecnológica de Minas Gerais

DEPARTAMENTO DE COMPUTAÇÃO DE DIVINÓPOLIS — DECOM-DV

Microprocessadores e Microcontroladores

Primeira Atividade Avaliativa

Aluno: DANIEL ALVES SANCHES

Valor: 30 pontos (cada questão vale 5 pontos)

Turma: 2024/1

Prof. M. Sc. Diego Ascânio Santos

Respostas:

1 2 3 4 5 6

Questão 1

(ENADE 2005 - 11) Apesar de todo o desenvolvimento, a construção de computadores e processadores continua, basicamente, seguindo a arquitetura clássica de von Neumann. As exceções a essa regra encontram-se em computadores de propósitos específicos e nos desenvolvidos em centros de pesquisa. Assinale a opção em que estão corretamente apresentadas características da operação básica de um processador clássico:

- a) Instruções e dados estão em uma memória física única; um programa é constituído de uma seqüência de instruções de máquina; uma instrução é lida da memória de acordo com a ordem dessa seqüência e, quando é executada, passa-se, então, para a próxima instrução na seqüência.
- b) Instruções e dados estão em memórias físicas distintas; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando o seu operando-destino necessita ser recalculado; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para o próximo operando a ser recalculado.
- c) Instruções e dados estão em uma memória física única; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando todos os seus operandos-fonte estiverem prontos e disponíveis; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para a instrução seguinte que tiver todos seus operandos disponíveis.
- d) Instruções e dados estão em memórias físicas distintas; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando todos os seus operandos-fonte estiverem prontos e disponíveis; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para a instrução seguinte que estiver com todos os seus operandos disponíveis.
- e) Instruções e dados estão em memórias físicas distintas; um programa é constituído de uma seqüência de instruções de máquina; uma instrução é lida da memória de acordo com a ordem dessa seqüência e, quando é executada, passa-se, então, para a próxima instrução na seqüência.

Questão 2

Avalie as assertivas:

- I. Todos os sinais de circuitos são elétricos, porém, podem ser categorizados em dois tipos: analógicos e digitais.
- II. Não é possível para sinais analógicos assumirem qualquer valor arbitrário dentro de um intervalo especificado.

- III. Sinais digitais são representados por valores contínuos.
- IV. Sinais digitais são representados por valores discretos.
- V. A tensão digital em nível lógico ALTO em circuitos digitais de lógica CMOS é de +5V.

Assinale a alternativa que contém todas as assertivas corretas:

- a) I, II, III e V.
- b) I, III e V.
- c) II, III, IV e V.
- d) I, IV e V.
- e) I e IV.

Questão 3

Quanto a entradas digitais no Arduino, é correto afirmar que:

- a) Esperar um tempo após a leitura de um pino digital técnica conhecida como**debounce** é uma boa prática para garantir que o valor lido seja estável.
- b) A comutação de chaves mecânicas é imune ao aparecimento de ruídos, efeito conhecido como **bouncing**.
- c) Resistores de *pull-up* fazem com que o estado padrão de uma entrada digital seja nível lógico BAIXO.
- d) Resistores de *pull-down* fazem com que o estado padrão de uma entrada digital seja nível lógico ALTO.
- e) Nenhum dos itens anteriores está correto.

Questão 4

Avalie as assertivas:

- I. Todos os sinais de circuitos são elétricos, porém, podem ser categorizados em dois tipos: analógicos e digitais.
- II. Não é possível para sinais analógicos assumirem qualquer valor arbitrário dentro de um intervalo especificado.
- III. Sinais digitais são representados por valores contínuos.
- IV. Sinais digitais são representados por valores discretos.
- V. A tensão digital em nível lógico ALTO (TTL) é de +5V.

Assinale a alternativa que contém todas as assertivas corretas:

- a) I, II, III e V.
- b) I, III e V.
- c) II, III, IV e V.
- d) I, IV e V.
- e) I e IV.

Questão 5

Quanto as interrupções, avalie as assertivas:

I. Interrupção é um mecanismo que permite a uma entidade externa interromper a execução de um programa sendo executado.

- II. Chegada de dados em uma porta de entrada/saída pode ser um exemplo de interrupção.
- III. Jammais podem ser associadas a eventos assíncronos.
- IV. O pressionamento de um botão pode ser um exemplo de interrupção.

Quais são verdadeiras?

- a) I, II, III e IV.
- b) I, II e IV.
- c) I e II apenas.
- d) I e IV apenas.
- e) II e IV apenas.

Questão 6

A respeito de entradas e saídas digitais do Arduino, resistores pull-up e pull-down, contatos normalmente abertos e normalmente fechados, avalie as assertivas:

- I. Por padrão as entradas digitais do Arduino estão preparadas para receber sinais digitais em nível lógico TTL (0V a 5V).
- II. Não é necessário realizar quaisquer tipos de adaptações para conectar circuitos digitais não-TTL (por exemplo, CMOS) ao Arduino.
- III. Um contato normalmente aberto é um contato que, em repouso, não permite a passagem de corrente elétrica.
- IV. O nível lógico de uma entrada digital do Arduino conectada a um contato normalmente aberto em seu estado de repouso é sempre 0V.
- V. Resistores pull-up são utilizados para garantir que uma entrada digital do Arduino esteja sempre em nível lógico alto em seu estado padrão.
- VI. O Arduino não dispõe de resistores pull-up internos, sendo necessário adicionar resistores externos para este fim.

São verdadeiras as assertivas:

- a) I, II, III, IV, V e VI.
- b) I, III, IV, V e VI.
- c) I, III, IV e V.
- d) II e V.
- e) II e VI.