22. Höhere Ableitungen

Stets in diesem Paragraphen: $I \subseteq \mathbb{R}$ sei ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

Definition

- (1) f sei auf I differenzierbar und $x_0 \in I$. f heißt in x_0 zweimal differenzierbar genau dann, wenn f' in x_0 differenzierbar ist. In diesem Fall heißt $f''(x_0) = (f')'(x_0)$ die zweite Ableitung von f in x_0 .
- (2) f heißt auf I zweimal differenzierbar genau dann, wenn f in jedem $x \in I$ zweimal differenzierbar ist. In diesem Fall heißt f'' = (f')' die zweite Ableitung von f auf I.
- (3) Entsprechend definiert man (falls vorhanden): $f'''(x_0), f^{(4)}(x_0), \dots$ bzw. $f''', f^{(4)}, \dots$
- (4) Sei $n \in \mathbb{N}$. f heißt auf I n-mal stetig differenzierbar genau dann, wenn f auf I n-mal differenzierbar ist und $f, f', \ldots, f^{(n)} \in C(I)$.
- (5) Sei $n \in \mathbb{N}$. $C^n(I) := \{g : I \to \mathbb{R} : g \text{ ist auf } I \text{ } n\text{-mal stetig differenzierbar}\}, C^0(I) := C(I),$ $f^{(0)} := f, C^{\infty}(I) := \bigcap_{n \in \mathbb{N}} C^n(I).$

Beispiele:

- (1) $(\sin x)' = \cos x$, $(\sin x)'' = -\sin x$, ...
- (2) $(e^x)^{(n)} = e^x$ auf $\mathbb{R} \ \forall n \in \mathbb{N}_0$
- (3) $f(x) := \begin{cases} x^2 & ; x \ge 0 \\ -x^2 & ; x < 0 \end{cases}$. Für x > 0: f'(x) = 2x, für x < 0: f'(x) = -2x.

Für x = 0: $\frac{f(x) - f(0)}{x - 0} = \frac{\pm x^2}{x} = \pm x$ $\xrightarrow{x \to 0} 0 \implies f$ ist in x = 0 differenzierbar und f'(0) = 0. Also: $f'(x) = 2|x| \ \forall x \in \mathbb{R}$. Also ist f in x = 0 nicht zweimal differenzierbar.

(4)
$$f(x) := \begin{cases} x^{\frac{3}{2}} \sin(\frac{1}{x}) & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

Für $x \in (0,1]$: $f'(x) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x} + x^{\frac{3}{2}}\cos\frac{1}{x}(-\frac{1}{x^2}) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x} - \frac{1}{\sqrt{x}}\cos\frac{1}{x}$.

Für x = 0: $\frac{f(x) - f(0)}{x - 0} = \sqrt{x} \sin \frac{1}{x} \xrightarrow{x \to 0} 0$. f ist also auf [0, 1] differenzierbar. $x_n := \frac{1}{n\pi} \ (n \in \mathbb{N})$. Dann $x_n \to 0 \ (n \to \infty)$. $f'(x_n) = (-1)^{n+1} \sqrt{n\pi} \nrightarrow 0 \ (n \to \infty) \implies f'$ ist nicht stetig in x = 0. Also $f \notin C^1([0, 1])$. Für später: f' ist auf [0, 1] nicht beschränkt.

Satz 22.1 (Differenzierbarkeit von Potenzreihen)

Sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe mit Konvergenzradius $r>0, I:=(x_0-r,x_0+r)$ $(I=\mathbb{R} \text{ falls } r=\infty)$ und $f(x)=\sum_{n=0}^{\infty} a_n(x-x_0)^n$ $(x\in I)$.

- (1) $f \in C^{\infty}(I)$
- (2) $\forall x \in I \ \forall k \in \mathbb{N} : f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) \cdot a_n (x-x_0)^{n-k}$.

(3)
$$a_k = \frac{f^{(k)}(x_0)}{k!} \ \forall k \in \mathbb{N}_0$$

Beweis

- (1) und
- (2) folgen induktiv aus 21.9.
- (3) folgt aus (2) und $x = x_0$

Motivation: Ist also f wie in 22.1, so gilt: $f \in C^{\infty}(I)$ und $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \ \forall x \in I$

Definition

Sei $f \in C^{\infty}(I)$ und $x_0 \in I$. Die Potenzreihe $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ heißt die zu f (und x_0) gehörende Taylorreihe.

Motivation: Frage: Wird f in einer Umgebung von x_0 durch seine Taylorreihe dargestellt? Antwort: Manchmal!

Beispiele:

(1) Ist f wie in 22.1, so lautet die Antwort: ja!

(2)
$$f(x) := \begin{cases} e^{-\frac{1}{x^2}} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

$$\ddot{\mathbf{U}}_{\mathbf{hum}} = \mathbf{h}_{\mathbf{h}} + \mathbf{h}_{\mathbf{h}} + \mathbf{f}_{\mathbf{h}} \in C^{\infty}(\mathbb{R}).$$

Übungsblatt: $f \in C^{\infty}(\mathbb{R})$ und $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$.

Dann: $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = 0 \neq f(x) \ \forall x \in \mathbb{R} \setminus \{0\}$

Definition

Sei $n \in \mathbb{N}_0, f \in C^n(I)$ und $x_0 \in I$. $T_n(x; x_0) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ heißt das **Taylorpolynom** von f.

Satz 22.2 (Satz von Taylor)

Voraussetzungen wie in obiger Definition. Weiter sei f n+1-mal differenzierbar auf I und $x \in I$. Dann existiert ein ξ zwischen x und x_0 mit:

$$f(x) = T_n(x; x_0) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Beweis

Ohne Beschränkung der Allgemeinheit sei $x_0 = 0$ und $x > x_0$.

$$\rho := (f(x) - T_n(x;0)) \frac{(n+1)!}{x^{n+1}} \implies f(x) - T_n(x;0) = \frac{\rho}{(n+1)!} x^{n+1}$$

Zu zeigen ist: $\exists \xi \in [0, x] : \rho = f^{(n+1)}(\xi)$.

Definiere $h: [0,x] \to \mathbb{R}$ durch $h(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^k - \rho \frac{(x-t)^{n+1}}{(n+1)!}$. Nachrechnen:

$$h(0) = h(x)$$
 und $h'(t) = \rho \frac{(x-t)^n}{n!} - \frac{f^{(n+1)}(t)}{n!} (x-t)^n$.

$$h(0) = h(x) \text{ und } h'(t) = \rho \frac{(x-t)^n}{n!} - \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

$$0 = \frac{h(x) - h(0)}{x - 0} \stackrel{\text{MWS}}{=} h'(\xi) \; \xi \in (0, x) \implies \rho \frac{(x-\xi)^n}{n!} = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n \implies \rho = f^{(n+1)}(\xi).$$

Beispiele:

(1) Behauptung: $e \notin \mathbb{Q}$

Beweis: Bekannt: 2 < e < 3.

Annahme: $\exists m, n \in \mathbb{N} : e = \frac{m}{n}$. Dann: $n \geq 2$ (Sonst: $e = m \in \mathbb{N}$, Wid!) $f(x) := e^x, x_0 = 0$

22.2
$$\implies \exists \xi \in (0,1) \text{ mit } \frac{m}{n} = e = f(1) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} + \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

$$\frac{m}{n} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!} + \frac{e^{\xi}}{(n+1)!} \mid \cdot n!.$$

$$\underbrace{m(n-1)!}_{\in\mathbb{N}} = \underbrace{n! + n! + \frac{n!}{2!} + \dots + \frac{n!}{n!}}_{\in\mathbb{N}} + \underbrace{\frac{e^{\xi}}{n+1}}_{>0} \implies \underbrace{\frac{e^{\xi}}{n+1}}_{\in\mathbb{N}} \in \mathbb{N} \implies 1 \leq \frac{e^{\xi}}{n+1} < \frac{e}{n+1} < \underbrace{\frac{e^{\xi}}{n+1}}_{>0} < \underbrace{\frac{e^{\xi}}{n$$

$$\frac{3}{n+1} \stackrel{n\geq 2}{\leq} 1$$
. Wid!

(2) Behauptung: $\log 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ Beweis: $I = (-1, \infty), \ f(x) = \log(1+x), \ x_0 = 0, \ x = 1$. Durch vollständige Induktion lässt sich zeigen:

$$f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{(1+x)^k} \ (k \in \mathbb{N})$$

Also gilt:

$$\frac{f^{(k)}(0)}{k!} = \begin{cases} 0, & k = 0\\ \frac{(-1)^{k+1}}{k}, & k \in \mathbb{N} \end{cases}$$

Wegen dem Satz von Taylor folgt:

$$\forall n \in \mathbb{N} \ \exists \xi_n \in (0,1) : \log 2 = f(1) = T_n(1;0) + \frac{f^{(n+1)}(\xi_n)}{(n+1)!}$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} + \frac{f^{(n+1)}(\xi_n)}{(n+1)!} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \underbrace{\frac{f^{(n+1)}(\xi_n)}{(n+1)!}}_{\equiv :c_n}$$

zu zeigen: $c_n \to 0 \ (n \to \infty)$.

$$|c_n| = \left| \frac{(-1)^{n+2} n!}{(n+1)! (1+\xi_n)^{n+1}} \right| = \frac{1}{n+1} \cdot \underbrace{\frac{1}{(1+\xi_n)^{n+1}}}_{\leq 1} \implies c_n \to 0 \ (n \to \infty).$$

Satz 22.3 (Bestimmung von Extrema durch höhere Ableitungen)

Sei $n \in \mathbb{N}, n \geq 2, f \in C^n(I), x_0 \in I$ und x_0 sei ein innerer Punkt von I. Weiter gelte: $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ und $f^{(n)}(x_0) \neq 0$.

- (1) Ist n gerade und $f^{(n)}(x_0) > 0 \implies f$ hat in x_0 ein relatives Minimum. Ist n gerade und $f^{(n)}(x_0) < 0 \implies f$ hat in x_0 ein relatives Maximum.
- (2) Ist n ungerade \implies f hat in x_0 kein relatives Extremum.

Beweis

 $f \in C^n(I) \implies f^{(n)} \in C(I), \ f^{(n)}(x_0) \neq 0.$ Damit folgt nach §18:

$$\exists \delta > 0 : U_{\delta}(x_0) \subseteq I \text{ und } f^{(n)}(x_0) f^{(n)}(\xi) > 0 \ \forall \xi \in U_{\delta}(x_0).$$
 (*)

Sei $x \in U_{\delta}(x_0) \setminus \{x_0\}$. Nach dem Satz von Taylor existiert ein ξ zwischen x und x_0 mit:

$$f(x) = \underbrace{T_{n-1}(x; x_0)}_{\stackrel{\text{Vor.}}{=} f(x_0)} + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n = f(x_0) + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n.$$

Zu (1): Sei n gerade, $x \neq x_0 \implies (x - x_0)^n > 0$. Aus $f^{(n)}(x_0) > 0$ folgt wegen (*):

$$f^{(n)}(\xi) > 0 \implies \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n > 0 \implies f(x) > f(x_0)$$

 $\implies f$ hat in x_0 ein relatives Minimum. Analog: Aus $f^{(n)}(x_0) < 0$ folgt: f hat in x_0 ein relatives Maximum.

Zu (2): Sei *n* ungerade. Sei $f^{(n)}(x_0) > 0$. Aus $x > x_0$ folgt:

$$(x-x_0)^n > 0, \ f^{(n)}(\xi) > 0 \implies f(x) > f(x_0).$$

Analog: Aus $x > x_0$ folgt: $f(x) < f(x_0) \implies f$ hat in x_0 kein Extremum.

Analog: Ist
$$f^{(n)}(x_0) < 0 \implies f(x) < f(x_0)$$
 für $x > x_0$ und $f(x) > f(x_0)$ für $x < x_0$.

Beispiel

Bemerkung: Dieses Beispiel zeigt, wann man den Satz nicht anwenden sollte.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Bekannt: $f \in C^{\infty}(\mathbb{R})$, $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$. $f(x) \geq 0 \ \forall x \in \mathbb{R}$, $f(0) = 0 \implies f$ hat in $x_0 = 0$ ein absolutes Minimum.