IV. Szeregi liczbowe.

1. Podstawowe definicje i fakty.

Definicja 1.1.

Szeregiem liczbowym nazywamy wyrażenie

$$a_1 + a_2 + a_3 + \dots$$

zapisane w postaci

$$\sum_{n=1}^{\infty} a_n, \tag{1}$$

gdzie $a_n \in R$ dla n = 1, 2, 3, ...

Definicja 1.2.

Ciąg $\{S_n\}$ zdefiniowany następująco

$$S_n := \sum_{k=1}^n a_k$$

nazywamy ciągiem sum częściowych szeregu (1).

Definicja 1.3.

Jeżeli ciąg $\{S_n\}$ jest zbieżny do granicy właściwej s, to szereg (1) nazywamy zbieżnym, zaś liczbę s nazywamy sumą tego szeregu i piszemy

$$\sum_{n=1}^{\infty} a_n = s = \lim_{n \to \infty} S_n.$$

Jeśli $\lim_{n\to\infty} S_n = \pm \infty$, to mówimy, że szereg (1) jest rozbieżny odpowiednio do $\pm \infty$. W pozostałych sytuacjach szereg (1) jest rozbieżny.

Twierdzenie 1.4.

Jeżeli w szeregu zbieżnym zmienimy, opuścimy lub dołączymy skończoną ilość wyrazów, to otrzymany szereg będzie również zbieżny.

Fakt 1.5. (o szeregu geometrycznym)

Szereg geometryczny

$$\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + \dots$$

jest zbieżny dla |q| < 1, rozbieżny do ∞ dla $q \ge 1$, a rozbieżny dla $q \le -1$.

Dla zbieżnego szeregu geometrycznego mamy

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}.$$

Fakt 1.6. (o szeregu harmonicznym)

Szereg postaci

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}},$$

zwany szeregiem harmonicznym rzędu α jest zbieżny dla $\alpha>1$ i rozbieżny do ∞ dla $0<\alpha\leq 1$.

Twierdzenie 1.7. (warunek konieczny zbieżności)

Jeżeli szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to $\lim_{n\to\infty} a_n = 0$.

Uwaga.

Implikacja odwrotna nie jest prawdziwa, np. $\frac{1}{n} \to 0$, gdy $n \to \infty$, zaś szereg $\sum_{n=1}^{\infty} \frac{1}{n}$, zwany krótko szeregiem harmonicznym, jest rozbieżny do $+\infty$.

Twierdzenie 1.7 można sformułować w postaci:

Jeżeli $\lim_{n\to\infty} a_n \neq 0$, to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.

Przykład 4.1.

Zbadamy zbieżność szeregu $\sum_{n=1}^{\infty} \frac{n+2}{n+200}$. Obliczamy

$$\lim_{n \to \infty} \frac{n+2}{n+200} = 1 \neq 0.$$

Zatem nie jest spełniony warunek konieczny zbieżności szeregu i stąd szereg $\sum_{n=1}^{\infty} \frac{n+2}{n+200}$ jest rozbieżny.

2. Kryteria zbieżności szeregów o wyrazach nieujemnych.

Twierdzenie 2.1. (kryterium d'Alamberta)

Załóżmy, że $a_n>0$ oraz istnieje granica

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q.$$

- (i) Jeżeli q < 1, to szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny.
- (i) Jeżeli q > 1, to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.

Przykład 4.2.

Zbadamy zbieżność szeregu $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}.$

Twierdzenie 2.2. (kryterium Cauchy'ego)

Załóżmy, że $a_n \geq 0$ oraz istnieje granica

$$\lim_{n\to\infty} \sqrt[n]{a_n} = q.$$

- (i) Jeżeli q < 1, to szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny.
- (ii) Jeżeli q > 1, to szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny.

Przykład 4.3.

Zbadamy zbieżność szeregu $\sum_{n=2}^{\infty} \ln^n (4 + \frac{1}{n})$.

Twierdzenie 2.3. (kryterium porównawcze)

Niech $a_n,b_n\geq 0.$ Załóżmy, że nierówność

$$a_n \leq b_n$$

zachodzi dla wszystkich $n \geq n_0$ począwszy od pewnego numeru n_0 . Wówczas

- (i) Jeżeli szereg $\sum_{n=1}^{\infty} b_n$ jest zbieżny, to szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny.
- (ii) Jeżeli szereg $\sum_{n=1}^{\infty} a_n$ jest rozbieżny, to szereg $\sum_{n=1}^{\infty} b_n$ jest rozbieżny.

Przykład 4.4.

Zbadamy zbieżność szeregów $\sum_{n=1}^{\infty} \frac{2}{n^2+n}$ oraz $\sum_{n=1}^{\infty} \frac{n+1}{n^2-n}$.

3. Szeregi o wyrazach naprzemiennych. Zbieżność bezwzględna szeregów.

Definicja 3.1.

Szereg $\sum_{n=1}^{\infty} (-1)^n a_n$, gdzie $a_n \ge 0$, nazywamy szeregiem naprzemiennym.

Twierdzenie 3.2. (kryterium Leibniza)

Dany jest szereg $\sum_{n=1}^{\infty} (-1)^n a_n$. Jeżeli spełnione są warunki:

- (i) $a_n \geq 0$,
- (ii) $\lim_{n\to\infty} a_n = 0$,
- (iii) ciąg $\{a_n\}$ jest nierosnący,

to szereg naprzemienny $\sum_{n=1}^{\infty} (-1)^n a_n$ jest zbieżny.

Definicja 3.3.

Szereg $\sum_{n=1}^\infty a_n$ nazywamy szeregiem bezw
ględnie zbieżnym, jeśli zbieżny jest szereg $\sum_{n=1}^\infty |a_n|.$

Twierdzenie 3.4.

Szereg bezwględnie zbieżny jest zbieżny, tzn. jeśli zbieżny jest szereg $\sum_{n=1}^{\infty} |a_n|$, to zbieżny jest szereg $\sum_{n=1}^{\infty} a_n$.

Definicja 3.5.

Szereg, który jest zbieżny, ale nie jest bezwględnie zbieżny nazywamy szeregiem warunkowo zbieżnym.

Przykład 4.5.

Zbadamy zbieżność szeregu $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$

Przykład 4.6.

Zbadamy zbieżność szeregu $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n-1}{2n+1}\right)^n$.