Multiple Choice Questions For BSc / BS (Maths)

Chapters:

- 1. Complex Numbers
- 2. Groups
- 3. Matrices
- 4. System of Linear Equations
- 5. Determinants
- 6. Metric Spaces
- 7. Number Theory

These notes are originally prepared by

Akhtar Abbas

Lecturer at University of Jhang

Contact: 0310-8385667 (Whatsapp)

Email: akhtarabbas@math.qau.edu.pk

For detailed solutions of these, visit

YouTube Channel: Suppose Math https://www.youtube.com/supposemath

Multiple Choice Questions For BA, BSc (Mathematics)

Complex Numbers

An effort by: Akhtar Abbas

- 1. If z is any complex number, then $\overline{z} z$ equals:
 - A. $2 \operatorname{Im}(z)$
 - B. $-2 \operatorname{Im}(z)$
 - C. $2 \operatorname{Im}(z)i$
 - D. $-2 \operatorname{Im}(z)i$
- 2. Complex numbers with 0 as real part are called:
 - A. imaginary numbers
 - B. pure non real numbers
 - C. pure imaginary numbers
 - D. pure complex numbers
- 3. The argument of which of the following number is not defined:

 A. 0

 B. 1

 C. 1/0

 D. i
- 4. If θ is the principal argument $\operatorname{Arg}(z)$ of a complex number z, then:
- 5. For $k \in \mathbb{Z}$, the relationship between $\arg(z)$ and $\operatorname{Arg}(z)$ is:
 - A. $arg(z) = Arg(z) + 2k\pi$
 - B. $Arg(z) = arg(z) + 2k\pi$
 - C. $arg(z) = Arg(z) 2k\pi$
 - D. All of these

- 6. Which of the following is unique?
 - A. Arg(z)
 - B. arg(z)
 - C. Both A and B
 - D. None of these
- 7. We can write $r(\cos \theta + i \sin \theta)$ as:
 - A. $rsic\theta$
 - B. $rcsi\theta$
 - C. $rcis\theta$
 - D. $r\cos\theta$
- 8. The value of arg(5) is:
 - A. 0°
 - B. 90°
 - C. 180°
 - D. 270°
- ARRAS Cesupposendin 9. The value of arg(-5) is:
 - A. 0°
 - B. 90°
 - C. 180°
 - D. 270°
- 10. The value of arg(5i)

 - D. 270°
- 11. The value of arg(-5i) is:
 - A. 0°
 - B. -90°
 - C. 180°
 - D. 270°

- 12. The value of Arg(-5i) is:
 - A. 0°
 - B. 90°
 - C. 180°
 - D. 270°
- 13. The value of Arg(-5) is:
 - A. 0°
 - B. 90°
 - C. 180°
 - D. 270°
- z₂) cultiposendin 14. The equation of a circle with center at origin and radius 2 is:
 - A. |z| = 2
 - B. |z| = 4
 - C. $|z| = \sqrt{2}$
 - D. None of these
- 15. Which of the following is not true?
 - A. $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$
 - B. $\operatorname{Arg}(z_1z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$ C. $z\overline{z} = |z|^2$

 - D. $\arg(\frac{z_1}{z_2}) = \arg(z_1) \arg(z_2)$
- 16. The least value of $|z_1 + z_2|$ is

 - C. $||z_1|/|z_2||$
- 17. The inequality $||z_1| |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$ is called:
 - A. Triangle Inequality
 - B. Minkowski Inequality
 - C. Cauchy-Schwarz Inequality
 - D. Holder's Inequality

- 18. The principal argument of any complex number can not be:

 - B. $\frac{7\pi}{6}$
 - C. $\frac{\pi}{2}$
 - D. $-\frac{\pi}{2}$
- 19. If |z| = 2i(1-i)(2-4i)(3+i), then |z| equals:
 - A. 20
 - B. -20
 - C. 40

- C. z=-zD. $z=z^{-1}$ 21. If $z_1=24+7i$ and $|z_2|=6$, then the least value of $|z_1+z_2|$ is:

 A. 31
 B. 19
 C. -19D. -13 $\frac{|az+b|}{|\overline{b}z+\overline{a}|}=1$, for $|z_1|=?$ A. 1
 B. 0
 C.

 - D. -1
 - 23. Locus of the points satisfying $Re(i\overline{z}) = 3$ is:
 - A. a line parallel to x-axis
 - B. a line parallel to y-axis
 - C. a circle
 - D. a parabola

- 24. For all integers n, we have:
 - A. $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
 - B. $(\cos \theta + i \sin \theta)^n = \cos n\theta i \sin n\theta$
 - C. $(\cos \theta i \sin \theta)^n = \cos n\theta + i \sin n\theta$
 - D. $(\cos \theta + i \sin \theta)^{-n} = \cos n\theta + i \sin n\theta$
- 25. The value of $\left(\frac{\sqrt{3-i}}{\sqrt{3+i}}\right)^6$ is:
 - A. 0
 - B. $\frac{1}{2}$

- $\cos n(\frac{\pi}{2} x)$ $\cos n(\frac{\pi}{2} x)$ $\cos n(\frac{\pi}{2} x)$ $\therefore \sin n(\frac{\pi}{2} + x) + i \cos n(\frac{\pi}{2} + x)$ D. $\sin n(\frac{\pi}{2} + x) + i \cos n(\frac{\pi}{2} + x)$ 27. If $x = \cos \theta + i \sin \theta$, then the value of $\frac{1}{x}$ A. $\cos \theta + i \sin \theta$ B. $\sin \theta + i \cos \theta$ C. $\cos \theta i \sin \theta$ D. $\sin \theta i \cos \theta$ If $x = \cos \theta + i \sin \theta$, then the value of $\frac{1}{x}$ A. $\cos n\theta + i \sin \theta$ B. $\sin \theta i \cos \theta$

 - C. $\cos n\theta i \sin n\theta$
 - D. $\sin n\theta i\cos n\theta$
 - 29. If $x = \cos \theta + i \sin \theta$, then the value of $x^n + \frac{1}{x^n}$
 - A. $2i\sin n\theta$
 - B. $2i\cos n\theta$
 - C. $2\cos n\theta$
 - D. $2\sin n\theta$

- 30. If $x = \cos \theta + i \sin \theta$, then the value of $x^n \frac{1}{x^n}$
 - A. $2i \sin nx$
 - B. $2i\cos nx$
 - C. $2\cos nx$
 - D. $2\sin nx$
- 31. If |z| = r and $\arg(z) = \theta$, then all the nth roots of z are:
 - A. $r^{\frac{1}{n}} cis(\frac{2k\pi+\theta}{n})$
 - B. $r^{\frac{1}{n}} cis(\frac{2\pi+\theta}{kn})$
 - C. $r^{\frac{1}{n}} cis(\frac{2\pi + k\theta}{n})$
- C. 2i
 D. None of these

 33. If z is a root of w, then which of following is also a voot of w?

 A. 1
 B. -zC. \overline{z} D. z^{-1} Three cube roots of 3i are:
 A. $2, 2\omega, 2\omega^2$ B. $2i | 2i\omega, 2i\omega^2$ C. $2, -2\omega, -2\omega^2$ D. -2i

 - 35. Sum of four fourth roots of unity is:
 - A. 0
 - B. 1
 - C. i
 - D. -1

36.
$$\frac{(\cos \theta + i \sin \theta)^n}{(\cos \phi + i \sin \phi)^m}$$
 equals:

- A. $cos(m\theta + n\phi) + i sin(m\theta + n\phi)$
- B. $\cos(n\theta + m\phi) + i\sin(n\theta + m\phi)$
- C. $\cos(m\theta n\phi) + i\sin(m\theta n\phi)$
- D. $\cos(n\theta m\phi) + i\sin(n\theta m\phi)$

37.
$$\frac{(\cos \alpha - i \sin \alpha)^{11}}{(\cos \beta + i \sin \beta)^9}$$
 equals:

- A. $cos(11\alpha + 9\beta) + i sin(11\alpha + 9\beta)$

A.
$$\cos(11\alpha + 9\beta) + i\sin(11\alpha + 9\beta)$$

B. $\cos(11\alpha - 9\beta) + i\sin(11\alpha - 9\beta)$
C. $\cos(-11\alpha + 9\beta) + i\sin(-11\alpha + 9\beta)$
D. $\cos(-11\alpha - 9\beta) + i\sin(-11\alpha - 9\beta)$
38. For a complex number z , $\frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})} =$
A. $\cot z$
B. $\tan z$
C. $\coth z$
D. $\tanh z$

39. $\sin^2 z + \cos^2 z =$
A. 1
B. -1
C. 0
D. $2\sin z \cos z$

40. $\sin iz =$
A. $\sin hz$
B. $\sinh iz$
C. $i\sin z$
D. $i\sinh z$

39.
$$\sin^2 z + \cos^2 z =$$

40. $\sin iz =$

- D. $i \sinh z$

41. $\cos iz =$

- A. $\cosh z$
- B. $\cosh iz$
- C. $i\cos z$
- D. $i \cosh z$

- 42. $\tan iz =$
 - A. $\tanh z$
 - B. $\tanh iz$
 - C. $i \tan z$
 - D. $i \tanh z$
- 43. $\sinh iz =$
 - A. $\sin z$
 - B. $i \sin z$
 - C. $\sinh z$
 - D. $i \sinh z$
- 44. $\cosh iz =$
 - A. $\cos z$
 - B. $i\cos z$
 - C. $\cosh z$
 - D. $i \cosh z$
- 45. $\tanh iz =$
 - A. $\tan z$
 - B. $i \tan z$
 - C. $\tanh z$
 - D. $i \tanh z$

BBAS @supposematic Important Poims

- (i). e^z is never zero.
- (ii). For z = x + iy, $|e^z| = e^x$.
- (iii) $|e^{i\theta}| = 1$, where $\theta \in \mathbb{R}$.
- (iv). $e^z = 1$ if and only if $z = 2k\pi i$, where $k \in \mathbb{Z}$.
- (v). $e^{z_1} = e^{z_2}$ if and only if $z_1 z_2 = 2k\pi i$, where $k \in \mathbb{Z}$.

- 46. Multiplication of a vector z by ... rotates the vector z counterclockwise through an angle of measure α .
 - A. e^{α}
 - B. $e^{-\alpha}$
 - C. $e^{i\alpha}$
 - D. $e^{-i\alpha}$
- 47. -3 4i =
 - A. $5e^{i\tan^{-1}\frac{4}{3}}$
 - B. $5e^{i(-\tan^{-1}\frac{4}{3})}$
- - - B. $\ln z + i \operatorname{Arg} |z|$
 - C. $\ln|z| + i \operatorname{Arg}|z|$
 - D. All of these
 - 51. The value of Log(-i) is:
 - A. $\frac{\pi}{2}i$
 - B. $\frac{3\pi}{2}i$
 - C. $-\frac{\pi}{2}i$
 - D. $-\frac{3\pi}{2}i$

- 52. If x is any negative real number, then Log x is:
 - A. $\ln x + i\pi$
 - B. $\ln x i\pi$
 - C. $\ln(-x) + i\pi$
 - D. $\ln(-x) i\pi$
- 53. $\log(e^z) =$
 - A. z
 - B. $z + 2n\pi$
 - C. $z + 2n\pi i$
 - D. e^z
- ABBAS @ SUPPOSERRATION OF THE PROPERTY OF THE 54. If z is a positive real number, then
 - A. $\log(z) = \log(z)$
 - B. $\log(z) = \log(z) + 2n\pi$
 - C. $\log(z) = \log(z) + 2n\pi$
 - D. None of these
- 55. $\sinh^{-1} z =$
 - A. $\log(z + \sqrt{z^2 + 1})$
 - B. $\log(z \sqrt{z^2 + 1})$
 - C. $\log(z + \sqrt{z^2 1})$
 - D. $\log(z \sqrt{z^2 1})$
- 56. $\cosh^{-1} z =$

 - C. $\log(z + \sqrt{z^2 1})$
 - D. $\log(z \sqrt{z^2 1})$
- 57. $\sin^{-1} z =$
 - A. $i \log(iz + \sqrt{1+z^2})$
 - B. $-i \log(iz \sqrt{1 z^2})$
 - C. $-i \log(iz + \sqrt{1+z^2})$
 - D. $-i \log(iz + \sqrt{1-z^2})$

- 58. If z and w are complex numbers, then z^w =
 - A. $\exp(z \log w)$
 - B. $z \exp(\log w)$
 - C. $\exp(w \log z)$
 - D. $w \exp(\log z)$
- 59. If z and w are complex numbers, then the principal value of z^w is:
 - A. $\exp(z \text{Log} w)$
 - B. $z \exp(\text{Log}w)$
 - C. $\exp(w \log z)$
 - D. $w \exp(\text{Log}z)$
- 60. The principal value of i^i is:
 - A. $e^{\frac{\pi}{2}}$
 - B. $-e^{\frac{\pi}{2}}$
 - C. $e^{-\frac{\pi}{2}}$
 - D. $-e^{-\frac{\pi}{2}}$
- 61. The principal value of $(-1)^i$ is:
 - A. e^{π}
 - B. $e^{-\pi}$
 - C. $-e^{\pi}$
- ABBAS @ SUPPOSEMATIN 62. The principal value of

 - D. $-e^{-\frac{\pi}{2}}$
- 63. If a is a positive real number, then the principal value of a^i is:
 - A. $\cos(\ln a) + i\sin(\ln a)$
 - B. $\cos(a) + i\sin(a)$
 - C. $\sin(a) + i\cos(a)$
 - D. $\sin(\ln a) + i\cos(\ln a)$

- 64. Log(1-i)=
 - A. $\frac{1}{2} \ln 2 + \frac{\pi i}{4}$
 - B. $\frac{1}{2} \ln 2 \frac{\pi i}{4}$
 - C. $\frac{1}{2} \ln 2 + \frac{3\pi i}{4}$
 - D. $\frac{1}{2} \ln 2 \frac{3\pi i}{4}$
- 65. $(-1+i)^{i+\sqrt{3}} =$
 - A. $\exp[(i \sqrt{3})\log(-1 i)]$
 - AHITAP OUTUBE CHIPPOS CHICHN B. $\exp[(-1+i)\log(i+\sqrt{3})]$
 - C. $\exp[(i + \sqrt{3})\log(-1 + i)]$
 - D. $\exp[(i + \sqrt{3})\log(-1 i)]$

Multiple Choice Questions For BA, BSc (Mathematics)

Groups

An effort by: Akhtar Abbas

- 1. Which of the following is not a binary operation on \mathbb{R} ?
 - A. +
 - В. –
 - $C. \times$
 - D. ÷
- $D = a^2b$ D = ba = e3. An element x of a group G is said to be ... if $x^2 = x$.

 A. Nilpotent
 B. Involutory
 C. Idempotent
 D. Square

 The only idempotent element in a group is:

 A. Inverse
 B. Identity
- - C. Both A and B
 - D. None of these
- 5. Which of the following is a group under multiplication?
 - $A. \mathbb{Z}$
 - B. \mathbb{Q}
 - $C. \mathbb{R}$
 - D. $\mathbb{Q} \{0\}$

- 6. A group is abelian if its Cayley's table is ... about its main diagonal.
 - A. Symmetric
 - B. Skew symmetric
 - C. Hermitian
 - D. Skew Hermitian
- 7. The set of all the nth roots of unity, $C_n = \{e^{\frac{2k\pi i}{n}}, k = 0, 1, ..., n-1\}$ is a group under:
 - A. Addition
 - B. Subtraction
 - C. Multiplication
 - D. Division
- a grour 8. In the group of Quaternions $\{\pm I, \pm i, \pm j, \pm k\}$, which of the following is not true?
 - A. jk = i
 - B. ik = -j
 - C. $j^2 = -I$
 - D. None of these
- 9. In the group \mathbb{Z}_5 , the inverse of $\overline{3}$ is:
 - A. $\overline{1}$
 - B. $\overline{2}$
 - C. $\overline{3}$
 - D. $\overline{4}$
- 10. Which of the following
 - A. Cancel¹ation
 - B. Associative
 - C. Beth A and B
 - D. None of these
- 11. For $a, b \in G$, we have $(ab)^{-1} =$
 - A. ab
 - B. $a^{-1}b^{-1}$
 - C. $b^{-1}a^{-1}$
 - D. ba

- 12. The number of elements in a group is called its:
 - A. degree
 - B. order
 - C. power
 - D. None of these
- 13. The least positive integer n, such that $a^n = \dots$ is called order of a.
 - A. e
 - B. a
 - C. a^{-1}
 - D. None of these
- E if and only E if and only14. Let $a \in G$ has order n. Then, for any integer k, $a^k = e$ if and only if ..., where q is an
- - B. Multiplication
 - C. Addition modulo 8
 - D. Multiplication modulo 8
- 17. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under Multiplication modulo 8. The inverse of $\overline{5}$ is:
 - A. $\overline{1}$
 - B. $\overline{3}$
 - C. $\overline{5}$
 - D. $\overline{7}$

- 18. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under Multiplication modulo 8. The order of $\overline{5}$ is:
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 19. Let G be a group and $a, b \in G$, which of the following is true?
 - A. $|a| = |a^{-1}|$
 - B. |ab| = |ba|
 - C. $|a| = |bab^{-1}|$
 - D. All of these
- 20. Every group of ... order contains at least one element of order 2.

 A. Prime
 B. Even
 C. Odd
 D. Composite

 21. Let G be a group and the order of $x \in G$ is odd. Then there exists an element $y \in G$ such that: G il odd. such that:
 - A. y = x
 - B. $y^2 = x$
 - C. $y = x^2$
 - D. $y = x^3$
- 22. Which of the following are not groups? (Free to choose more than one options).
 - A. The set of posicive rational numbers under multiplication
 - B. The set of complex numbers z such that |z| = 1, under multiplication
 - C. The set \mathbb{Z} of all integers under the binary operation \star defined by

$$a\star b=a-b, \ \forall \ a,b \ \in \mathbb{Z}$$

- D. The set \mathbb{Q}' of all irrational numbers under multiplication
- E. $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ under multiplication
- F. $\mathbb{R}^- = \{x \in \mathbb{R} : x < 0\}$ under multiplication
- G. $E = \{e^x : x \in \mathbb{R}\}$ under multiplication

- 23. Let G be a group and $x^2 = e$, for all $x \in G$, then G is:
 - A. Abelian
 - B. Non Abelian
 - C. Commutative
 - D. Both A and C
- 24. Which of the following is false? (Free to choose more than one options).
 - A. A group can have more than one identity element.
 - B. The null set can be considered to be a group.
 - C. There may be groups in which the cancellation law fails.
 - D. Every set of numbers which is group under addition is also a group under multiplication and vice versa.
 - E. The set \mathbb{R} of real numbers is a group under subtraction.
 - F. The set of all nonzero integers is a group under division.
 - G. To each element of a group, there corresponds only one inverse element.
- 25. Let G be a group. Which of the following is not unique in G
 - A. identity
 - B. inverse of an element
 - C. idempotent
 - D. None of these
- ords of trique in 26. The set $GL_2(\mathbb{R})$ is the collection of all 2×2 matrices with real entries whose determinant is:
- 27. $(\mathbb{Z},+)$ is a subgroup of:
 - A. $(\mathbb{Z},+)$
 - B. $(\mathbb{R},+)$
 - C. $(\mathbb{C},+)$
 - D. All of these

- 28. Every group has at least ... subgroups.
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 29. A non empty subset of a group G is a subgroup of G if and only if for $a, b \in H$, we have:
 - A. $ba^{-1} \in H$
 - B. $ab^{-1} \in H$
- a subgroup.

 Antersection

 B. Union

 C. Difference

 D. Symmetric difference

 31. If every element of a group G is a power of one and the same element, then G is called:

 A. Infinite

 B. Finite

 C. Cyclic

 D. Symmetric

 P. Every subgroup of a cyclic or and the same element.

 - - B. Nermal

 - D. Trivial
 - 33. Let G be a group of order 18, then G must have a unique subgroup of order:
 - A. 5
 - B. 6
 - C. 7
 - D. 8

34.	Every cyclic group is:
	A. Abelian
	B. Normal
	C. Finite
	D. Infinite
35.	Every cyclic group of even order has a unique subgroup of order:
	A. 2
	B. 3
	C. 4
	D. 5
36.	The number of subgroups of a cyclic group of order 12 is:
	A. 3
	B. 4
	C. 5
	A. 3 B. 4 C. 5 D. 6
37.	Group of order has not a proper non-trivial subgroup?
	A. 46
	B. 47
	C. 48
	D. 50
38.	An infinite cyclic group has exactly generators.
	A. 1
	B. 2
	B. 2 C. 3
	D. 1
39.	The order of $\overline{3}$ in the group $\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ is:
	A. 1
	B. 2
	C. 3
	D. 4

- 40. Let G be a group, H be a subgroup of G and $a \in G$, then which of the following is a subgroup of G?
 - A. aH
 - B. *Ha*
 - C. Ha^{-1}
 - D. aHa^{-1}
- 41. If H and K are subgroups of a group G, then which of the following need not to be a subgroup of G?
 - A. $H \cup K$
 - B. $H \cap K$
 - C. He
 - D. eK
- by e 42. Let G be a group and $G = \langle a \rangle$, for some $a \in G$, then a scalled ... of G.
 - A. Involutory
 - B. Idempotent
 - C. Generator
 - D. None of these
- 43. Let G be a finite group of order n generated by $a \in G$. Then $a^i = a^j$ if and only if: A. n|(i-j) B. n|(i+j) C. i=j

 - C. i = jD. None of thes
- 44. Let G be an infinite group generated by $a \in G$. Then $a^i = a^j$ if and only if:
 - A. n|[i-j]
 - B. $n_1(i+j)$
 - C. i = j
 - D. None of these
- 45. Let G be a cyclic group of order 18. How many subgroups of G are of order 6?
 - A. 1
 - B. 2
 - C. 3
 - D. None of these

- 46. A partition of a set A is the collection of subsets $\{A_i : i \in I\}$ of A such that
 - A. $A = \bigcup \{A_i : i \in I\}$ and $A_i \cap A_j = \emptyset$, where $i, j \in I$ and $i \neq j$.
 - B. $A = \bigcup \{A_i : i \in I\}$ and $A_i \cap A_j = \emptyset$, where $i, j \in I$ and i = j.
 - C. $A = \bigcup \{A_i : i \in I\}$ and $A_i \cap A_j \neq \emptyset$, where $i, j \in I$ and $i \neq j$.
 - D. $A = \cap \{A_i : i \in I\}$ and $A_i \cap A_j = \phi$, where $i, j \in I$ and $i \neq j$.
- 47. Let H be a subgroup of G. Then the set of all left cosets of H in G defines a ... on G.
 - A. Equivalence relation
 - B. Partition
 - C. Transitive relation
 - D. All of these
- . Order D. Partition 49. The index of $\{\overline{0},\overline{2},\overline{4}\}$ in $\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\}$ is: A. 1
 B. 2
 C. 3
 D. 4
 . The index of $\{0,\pm 2,\pm 4,\dots\}$ 48. The number of distinct left cosets of a subgroup H of a group G is called the ... of H
- - С.
 - D. ∞
- 51. "Both the order and index of a subgroup of a finite group divides the order of the group" is the statement of:
 - A. Division Algorithm
 - B. Lagrange Theorem
 - C. Euclid Theorem
 - D. Cayley Theorem

- 52. The order of an element of a finite group divides:
 - A. the order of group
 - B. the order of subgroup
 - C. the index of every subgroup
 - D. None of these
- 53. A group of order ... is always cyclic.
 - A. 7
 - B. 8
 - C. 9

- C. Odd
 D. Composite

 55. Which of the following abelian group is not cyclic?

 A. (Z, +)
 B. (Q, +)
 C. (R, +)
 D. Both B and C

 Let G be a group of exter 90. Feen be
 A. 30
 B. 40

 - 57. Let G be a cyclic group of order n generated by a. Then for any $1 \le k < n$, the order of a^k is:
 - A. $\frac{k}{\gcd(n,k)}$
 - B. $\frac{n}{lcm(n,k)}$

 - D. $\frac{k}{lcm(n.k)}$

- 58. Let G be a cyclic group of order 24 generated by a. Then the order of a^{10} is:
 - A. 6
 - B. 14
 - C. 18
 - D. 24
- 59. Let H and K be two finite subgroups of a group G whose orders are relatively prime, then $H \cap K$ equals:
 - A. $\{e, a\}$
 - B. $H \cup K$
 - C. HK
 - D. $\{e\}$
- 60. Let X be a nonempty set. A bijective function $f: X \to X$ is called a ... on X.
- - B. Subtraction
 - C. Multiplication
 - D. Composition
 - 63. The order of symmetric group of degree n is:
 - A. n
 - B. n!

 - D. $\left(\frac{n}{2}\right)!$

- 64. Composition of permutations is not:
 - A. Associative
 - B. Closed
 - C. Commutative
 - D. All of these
- 65. If $f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, then $f_1 \circ f_2$ equals:
 - A. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
 - B. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
 - C. $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
 - D. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
- 66. A permutation of the form $\begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_2 & a_3 & \dots & a_1 \end{pmatrix}$ is called a ... of length k.
 - A. Permutation
 - B. Cycle
 - C. Transposition
 - D. Matrix
- 67. If two cycles act on mutually disjoint sets, then they:
 - A. can commute
 - B. must commute
 - C. don't commute
 - D. None of these
- 68. If $\alpha = (1\ 2\ 3)$ and $\beta = (5\ 7\ 8)$, then:
 - A. $\alpha\beta = I$
 - B. $\beta \alpha = I$
 - C. $\alpha\beta = \beta\alpha$
 - D. $\alpha\beta \neq \beta\alpha$

BSc	Multiple Choice Questions	Page 13 of ??
69.	Every permutation of degree n can be written as a of cyclic permutation mutually disjoint sets.	tions acting on
	A. Sum	
	B. Difference	
	C. Product	
	D. Quotient	
70.	A cycle of length 2 is called a:	
	A. Permutation	
	B. Transposition	
	C. Cycle	
	D. Matrix	
71.	Every cyclic permutation can be expressed as a of transposition.	
	A. Sum	
	B. Difference	
	C. Product	
	A. Sum B. Difference C. Product D. Quotient	
72.	A permutation α in S_n is said to be permutation if it can be written an even number of transposition. A. Even	as a product of
	A. Even	
	B. Odd	
	C. Composite	
	D. Cyclic	
73.	Every transposition is an permutation.	
	A. Even	
	B. Odd	
	C. Composite	
	D. Cyclic	
74.	A cycle of even length is an permutation.	

- B. Odd
- C. Composite
- D. Cyclic

	Manufac Choice Questions	1 450 11 01
75.	The product of two even permutations is permutation.	
	A. Even	
	B. Odd	
	C. Composite	
	D. Cyclic	
76.	The product of two odd permutations is permutation.	
	A. Even	
	B. Odd	
	C. Composite	
	D. Cyclic)
77.	The product of an even and an odd permutations is permutation.	
	A. Even	
	B. Odd	
	A. Even B. Odd C. Composite D. Cyclic	
	D. Cyclic	
78.	If α is an odd permutation and τ is a transfesition, then $\alpha\tau$ is permu	tation.
	A. Even	
	B. Odd	
	C. Both A and B	
	D. None of these	
79.	For $n \geq 2$, the number of even permutations in S_n is the number of odd	permutations
	in S_n .	
	A. Equal to	
	B. Not equal to	
	C. Greater than	
	D. Lesser than	
80.	The set of even permutations in S_n is denoted by:	
	A. A_n	
	B. E_n	
	C. $S_{\frac{n}{2}}$	
	D. None of these	

- 81. The number of elements in alternating group A_n is:
 - A. *n*
 - B. $\frac{n}{2}$
 - C. n!
 - D. $\frac{n!}{2}$
- 82. The order of a cyclic permutation of length m is:
 - A. m
 - B. $\frac{m}{2}$
 - C. m!
 - D. $\frac{m!}{2}$
- 83. The order of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 1 & 7 & 9 & 6 & 5 & 8 & 10 \end{pmatrix}$ is:
 - A. 10
 - B. 12
 - C. 15
 - D. 20
- 84. Inverse of the permutation

 - D. All of these
- 85. A ring R 's an abelian group under:
 - A. Addition
 - B. Subtraction
 - C. Multiplication
 - D. Division

- 86. Which of the following is a ring under usual addition and multiplication?
 - $A. \mathbb{Z}$
 - B. \mathbb{Q}
 - $C. \mathbb{R}$
 - D. All of these
- 87. If $(R, +, \cdot)$ is a ring with additive identity 0, then for all $a, b \in R$, we have:
 - A. a0 = 0a = 0
 - B. a(-b) = (-a)b = -ab
 - C. (-a)(-b) = ab

- D. None of these

 89. An element of a ring whose multiplicative inverse exists, is called:

 A. Unit

 B. Unity

 C. Identity

 D. None of these

 Let R be a ring with 90. Let R be a ring with wity. If very nonzero element of R is unit, then R is called:
 - A. Division ring
 - B. Skew field
 - C. In Caral domain
 - D. Both A and B
- 91. A commutative division ring is called:
 - A. Integral Domain
 - B. Skew field
 - C. Field
 - D. Commutative ring

92. V	Which	of the	following	is(are)	field((s)	?
-------	-------	--------	-----------	---------	--------	-----	---

- $A. \mathbb{Q}$
- B. \mathbb{R}
- $C. \ \mathbb{C}$
- D. All of these
- 93. \mathbb{Z}_n is a field if and only if n is:
 - A. Prime
 - B. Composite
 - C. Even
 - D. Odd
- 94. Which of the following are true? (Free to choose more than one option).
 - A. Every field is a ring.
 - B. Every ring has a multiplicative identity.
 - C. Multiplication in a field is commutative.
 - D. The nonzero elements of a field form a group water multiplication.
 - E. Addition in every ring is commutative.
 - $\label{eq:continuous} \text{addi}.$ C. \mathbb{Z}_{13} D. None of these F. Every element in a ring has an additive inverse.
- 95. Which of the following is a field?

Akhtar Abbas

Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

An effort by: Akhtar Abbas Matrices

- 1. If a matrix has 3 columns and 6 rows then the order of matrix is:
 - A. 3×6
 - B. 18
 - C. 6×3
 - D. 3×3
- 2. If order of a matrix A is 3×6 , then each row of A consists ... elements. square if: $m \neq n$ C. m < n D. m > n A. Rectangular B. Identity C. Diagenal D. Schlar $matrix A = \lceil c \rceil$

 - - A. n = 1
 - B. $n \neq 1$
 - C. m = 1
 - D. $m \neq 1$

- 6. In a square matrix $A = [a_{ij}]_{n \times n}$, the elements $a_{11}, a_{22}, ... a_{nn}$ are called ... elements.
 - A. Diagonal
 - B. Scalar
 - C. Identity
 - D. Unit
- 7. A square matrix $A = [a_{ij}]_{n \times n}$ is called upper triangular if $a_{ij} = 0$ for all:
 - A. i > j
 - B. i < j
 - C. $i \ge j$
 - D. $i \leq j$
- $\begin{array}{c} \text{Scalar} \\ \text{D. Diagonal} \\ 9. \text{ Which of the following is a diagonal matrix?} \\ \text{A.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 8 & 0 \end{bmatrix} \\ \text{B.} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 6 & 8 & 0 \end{bmatrix} \\ \text{C.} \begin{bmatrix} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 6 & 0 & 0 \end{bmatrix} \\ \text{D. Now} \end{array}$ 8. A matrix, all of whose elements are zero except those in the main diagonal, is called a

 - - D. None of these
- 10. Every scalar matrix is a ... matrix.
 - A. Unit
 - B. Identity
 - C. Diagonal
 - D. All of these

11. If $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ Then which of the following is true for A?

A.
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

B.
$$A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$

$$C. A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- D. None of these
- 12. If A and B are matrices of orders $m \times n$ and $p \times q$ respectively, then the product AB is possible if:

A.
$$n = p$$

B.
$$n = q$$

C.
$$m = q$$

D.
$$m = p$$
 and $n = q$

and 5×7 respectively, then the order of AB is: 13. If A and B are matrices of orders 4×5 and 5×6

A.
$$5 \times 5$$

B.
$$4 \times 7$$

C.
$$5 \times 4$$

D.
$$7 \times 5$$

 $[b_{i,j}]_{i,\times p}$, then (i,j)th element of AB is: 14. Let $A = [a_{ij}]_{m \times n}$ and B =

A.
$$\sum_{k=1}^{n} a_{ik} b_{kj}$$
B.
$$\sum_{k=1}^{n} a_{ki} b_{ij}$$
C.
$$\sum_{k=1}^{n} a_{ik} b_{jk}$$

B.
$$\sum_{k=1}^{n} a_{ki}b_{k}$$

C.
$$\sum_{k=1}^{n} a_{ik} h_{jk}$$

D.
$$\sum_{k=1}^{n} a_{ki} b_{jk}$$

15. If A and B are two nonzero matrices. Is it possible to have AB = 0?

- 16. Which law does not hold in matrices?
 - A. Associative law of multiplication
 - B. Distributive law of multiplication over addition
 - C. Cancellation law
 - D. Both A and B

- 17. If the matrices A, B and C are conformable for the sums and multiplications, then which of the following is correct?
 - A. A(BC) = (AB)C
 - B. A(B+C) = AB + AC
 - C. k(AB) = (kA)B
 - D. All of these
- 18. If order of A is 8×7 , then the order of AA^t is:
 - A. 7×8
 - B. 7×7
 - C. 8×8
 - D. Product is not possible
- $(\wedge A)^t = kA^t$ D. All of these $20. \ \, \text{A square matrix } A \ \, \text{for which } A^{k+1} = A, \ \, \text{(k beits a positive integer), is called a ... matrix.}$ A. Nilpotent B. Periodic C. Involutory D. Idempotent . If $A^6 = A$, then the
- - C. 7
 - D. Not period
- 22. A matrix of period 1 is:
 - A. Nilpotent
 - B. Involutory
 - C. Idempotent
 - D. Involutory

- 23. A square matrix A for which $A^p = 0$ (p being a positive integer), is called ...
 - A. Nilpotent
 - B. Involutory
 - C. Idempotent
 - D. Involutory
- 24. A square matrix A such that ... is called an involutory matrix.
 - A. $A^2 = A$
 - B. $A^2 = I$
 - C. $A^2 = -A$

- $A A^{t} \text{ is:}$ $A A^{t} \text{ is:}$ A -27. If A is a square matrix wer \mathbb{C} and $A(\overline{A})^t = 0$, then which of the following is true?

 - D. All of these
 - 28. If A is a square matrix and B is left inverse of A, then:
 - A. B can be right inverse of A
 - B. B must be right inverse of A
 - C. B must not be right inverse of A
 - D. There is no relation between A and B

- 29. A square matrix, whose inverse exists, is called:
 - A. Singular
 - B. Nonsingular
 - C. Invertible
 - D. Both B and C
- 30. If A and B are nonsingular matrices of the same order, then $(AB)^{-1}$ equals:
 - A. AB
 - B. $A^{-1}B^{-1}$
 - C. BA
 - D. $B^{-1}A^{-1}$
- 31. A matrix obtained by applying an elementary row operation on J_n is called:
 - A. Invertible
 - B. Non Invertible
 - C. Elementary
 - D. Secondary
- 32. Every elementary matrix E is:
 - A. Singular
 - B. Nonsingular
 - C. Non invertible
 - D. Symmetric
- Jon on J_n 33. A square matrix A of order n is nonsingular if and only if A is row equivalent to:
- 34. If an $m \times n$ matrix B is obtained from an $m \times n$ matrix A by a finite number of elementary row and column operations, then B is said to be ... to A.
 - A. Equal
 - B. Equivalent
 - C. Similar
 - D. Not equal

- 35. Every nonzero $m \times n$ matrix is equivalent to an $m \times n$ matrix $D = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$. Then D is called ... form of A.
 - A. Normal
 - B. Canonical
 - C. Both A and B
 - D. None of these
- 36. The rank of matrix $A \begin{bmatrix} 4 & 1 & 8 \\ 0 & 7 & 7 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ is:
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- Per O, then. 37. The rank of matrix $A \begin{vmatrix} 1 & 0 \\ 0 & -2 \\ 5 & -1 \\ -2 & 3 \end{vmatrix}$ is:
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 38. If A is invertible and

 - D. B is nonsingular
- 39. If A and B are square matrices of order n, then AB BA is:
 - A. Symmetric
 - B. Hermitian
 - C. Skew Symmetric
 - D. All of these

- 40. If $A = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$, then A^{50} equals:
 - A. $\begin{bmatrix} 50 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$
 - B. $\begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix}$
 - C. $\begin{bmatrix} 25 & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$
 - D. $\begin{bmatrix} 25 & 0 \\ 50 & 1 \end{bmatrix}$
- 41. If a matrix A is symmetric as well as skew symmetric, then A is:
 - A. Identity
 - B. Nill
 - C. Idempotent
 - D. Diagonal
- 42. If $A^2 A I = 0$, then the inverse of A is:
 - A. A + I
 - B. A I
 - C. I A
 - D. -A I
- Seculpose mail 43. If A and B are square matrices of same order and $A^2 - B^2 = (A + B)(A - B)$, then which of the following must be true?

 - A. A = BB. AB = BA
 - C. Either A or B is a zero matrix
 - D. Fither A or B is an identity matrix

Akhtar Abbas

Lecturer in Mathematics University of Jhang 0332-6297570

System of Linear Equations

An effort by: Akhtar Abbas

- 1. A system of linear equations Ax = b is called non homogeneous if:
 - A. b = 0
 - B. $b \neq 0$
 - C. A = 0
 - D. $A \neq 0$
- 2. If $rank(A) = rank(A_b)$, then the system Ax = b:
 - A. is consistent
 - B. can have unique solution
 - C. can have infinite solutions
 - D. All of these
- and 3. Let Ax = b be a system of 3 linear equations in 7 variables, then which of the following can be the maximum value of rank (A_h) ?
 - A. 3
 - B. 4
 - C. 6
 - D. 7
- \times 5 and rank(A)=rank(A_b)=3, then the system Ax = b4. Let A be a matrix of order has:
 - A. unique solution
 - B. no solution
 - C. infinitely many solutions
 - D. None of these
- 5. The system $\begin{bmatrix} -3 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has:
 - A. unique solution
 - B. no solution
 - C. infinitely many solutions
 - D. None of these

- 6. If the augmented matrix of a system is $\begin{bmatrix} 1 & 1 & 0 & 2 \end{bmatrix}$, then the system has:
 - A. unique solution
 - B. no solution
 - C. infinitely many solutions
 - D. None of these
- 7. Let A be a 4×4 matrix and the system Ax = b has infinitely many solutions, then:
 - A. rank(A) = 4
 - B. $rank(A) \neq 4$
 - C. rank(A) < 4
 - D. rank(A) > 4
- 8. If Ax = b does not have any solution, then the system is called:

 A. consistent

 B. inconsistent

 C. Both A and B

 D. None of these

 9. Every homogeneous system of linear equations:

 A. is consistent

 B. is inconsistent
- - C. has only trivial solution
 - D. has infinitely many solutions
- 10. For what value of λ , the system

$$(1 - \lambda)x_1 - x_2 = 0$$
$$x_1 + (1 - \lambda) = 0$$

$$x_1 + (1 - \lambda) = 0$$

has non trivial solution?

- A. 0
- B. 2
- C. 3
- D. 4

- 11. In Gauss Elimination method, we need to reduce the augmented matrix into:
 - A. Echelon form
 - B. Reduced echelon form
 - C. Both A and B
 - D. None of these
- 12. A system Ax = 0 of n equations and n unknowns has a unique solution if A is:
 - A. singular
 - B. non singular
 - C. non invertible
 - D. None of these
- 13. The system Ax = b of m equations and n unknowns has solution (is consistent) if owns - chickly rank(A) ... $rank(A_b)$.
 - A. =
 - В. ≠
 - C. >
 - D. <
- and n knkn 14. The system Ax = b of m equations and n inknowns has no solution (is inconsistent) if rank(A) ... $rank(A_b)$.
 - A. =
 - B. \neq
 - C. >
 - D. <
- 15. The system

$$x_1 + 2x_2 = 1$$

$$2x_1 + x_2 = 2$$

has a solution:

- A. (1,1)
- B. (1,2)
- C. (2,1)
- D. (1,0)

- 16. In Gauss-Jordan elimination method, we reduce the augmented matrix into:
 - A. Echelon form
 - B. Reduced echelon form
 - C. Both A and B
 - D. None of these
- 17. If a system of 2 equations and 2 unknowns has no solution, then the graph look like:
 - A. Intersecting lines
 - B. Non intersecting lines
 - C. Same lines
 - D. None of these
- 18. Which of the following is a linear equation in the variables x, y, z
 - A. x 2y = 0
 - B. x + cosy = z
 - C. $\sin x + \cos y + \tan z = 0$
 - D. None of these
- 19. Which one of the following is a linear equation?
 - A. $xy = e^{\pi}$
 - B. $x + y = e^{\pi}$
 - C. $y = \sqrt{3x}$
- and x, y, quation? 20. If applying row operations to a matrix A of order $n \times n$ results in a row of zeros, then how many solution, goes the system Ax + b = 0 have?
 - A. No solutions
 - B. Unique solution
 - C. Infinitely many solutions
 - D. More information is needed
- 21. A system of m homogeneous linear equations in n unknowns has a nontrivial solution if:
 - A. m=n
 - B. $m \neq n$
 - C. m < n
 - D. m > n

- 22. A system of m homogeneous linear equations Ax = 0 in n unknowns has a nontrivial solution if and only if rank(A):
 - A. = n
 - B. $\neq n$
 - C. = m
 - D. $\neq m$
- 23. For any matrix A, the collection $\{x: Ax = 0\}$ is called ... of A.
 - A. Rank
 - B. Solution space
 - C. Both A and B
 - D. None of these
- nas a vince of the control of the co 24. A system of m linear equations Ax = b in n unknowns has a unique solution if and only if $rank(A) = rank(B) \dots$
 - A. = m
 - B. = n
 - C. $\neq m$
 - D. $\neq n$

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Determinants

An effort by: Akhtar Abbas

- 1. If A is any matrix of order $n \times n$ and k is a non zero real number, then:
 - A. |kA| = k|A|
 - B. |kA| = |k||A|
 - C. $|kA| = k^2 |A|$
 - D. $|kA| = k^n |A|$
- 2. The determinant of a unit matrix is:
- $3. \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & b_{12} \\ a_{21} & b_{22} \end{vmatrix} =$
- $\begin{vmatrix} a_{11} & a_{12} + b_{12} \\ |a_{21} & a_{22} + b_{22} | \end{vmatrix}$ C. 0

 D. Addition is not possible

 be a square matrix of order ncolumn is again a matrix ijth arinor of A ijth order

 eters 4. Let A be a square matrix of order n. A matrix obtained from A by deleting its ith row and jth column is again a matrix of order n-1 which is called:

 - C. Determinant of A
 - D. None of these
- 5. Let M_{ij} be the ijth minor of a square matrix A of order n. Then ijth cofactor of A is:
 - A. $|M_{ij}|$
 - B. $-|M_{ij}|$
 - C. $\pm |M_{ij}|$
 - D. $(-1)^{i+j}|M_{ij}|$

- $\begin{bmatrix} 3 & 2 & 1 & -1 \\ 4 & 5 & 1 & 2 \\ -2 & 3 & 0 & 1 \\ 2 & 1 & 3 & 5 \end{bmatrix}$, then 33th cofactor of A is: 6. Let A =
 - A. 43
 - B. 34
 - C. 56
 - D. -56
- D. -678. Let $A=[a_{ij}]$ be an $n\times n$ triangular matrix, then |A| equals.

 A. $a_{11}a_{22}...a_{nn}$ B. $a_{11}+a_{22}+...+a_{nn}$ C. $-a_{11}-a_{22}-...-a_{nn}$ D. There is no formula

 9. Let A be a square matrix of order 4×4 , then |A|=A. -|A|B. $|A^t|$ C. $-|A^t|$ D. 0Row $\exp^{-x^{-1}}$

 - 10. Row expansion of |A| ... column expansion of |A|.
 - A. =
 - В. ≠
 - C. There is no comparison
 - D. None of these

- 11. For any $n \times n$ matrices A and B, we have:
 - A. |AB| = |BA|
 - B. $|AB| \neq |BA|$
 - C. |AB| < |BA|
 - D. |AB| > |BA|
- 12. Let A, B be matrices of order 6 such that $|AB^2| = 144$ and $|A^2B^2| = 72$, then |A| = 12
 - A. 2
 - B. $\frac{1}{2}$
 - C. -2
- $\begin{array}{c} \smile |A|^{-1} \\ \mathrm{D.} \ -|A|^{-1} \\ \end{array}$ 14. For 2×2 matrices A and B, which of the following equations hold? (Can choose more than one options) $\begin{array}{c} \mathrm{A.} \ |A+B| = |A| + |B| \\ \mathrm{B.} \ |A+B|^2 = |(A+B)^2| \\ \mathrm{C.} \ |A+B|^2 = |A|^2 + |B|^2 \\ \mathrm{D.} \ |(A+B)^2| = |A^2 + 2AB + B^2| \\ \end{array}$ $\begin{array}{c} \mathrm{D.} \ |(A+B)^2| = |A^2 + 2AB + B^2| \\ -a \ 0 \ c \\ b \ -c \ 0 \\ \end{array}$ $\begin{array}{c} \mathrm{D.} \ |A \ 0 \\ \mathrm{D.} \end{array}$

 - - C. -1
 - D. abc
 - 16. If A is an $n \times n$ skew symmetric matrix and n is odd, then |A|=
 - A. 0
 - B. 1
 - C. -1
 - D. ± 1

17. If a, b, c are different numbers. For what value of x, the matrix $\begin{bmatrix} 0 & x+b & x^2+c \\ x-b & 0 & x^2-a \\ x^3-c & x+a & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & x+b & x^2+c \\ x-b & 0 & x^2-a \\ x^3-c & x+a & 0 \end{bmatrix}$$

is singular?

- A. 0
- B. a
- C. b
- D. c
- 18. If A is a square matrix of odd order, then |-A|=
 - A. |A|
 - B. -|A|
 - C. 0
 - D. 1
- - A. α is a root of unity
 - B. β is a root of unity
 - C. $\alpha\beta$ is a root of unity
 - D. $\frac{\alpha}{\beta}$ is a root of unity
- which which 20. If A is an $n \times n$ non singular matrix, then which of the following is true? A. $|\operatorname{adj}(A)| = |A|$ B. $|\operatorname{adj}(A)| = 1$
- 4k. If $|A^2| = 16$, then the value of k is:
 - A. 1
 - B. 4
 - C. 16
 - D. $\frac{1}{4}$

Akhtar Abbas

Lecturer in Mathematics University of Jhang 0332-6297570

Metric Spaces

An effort by: Akhtar Abbas

- 1. The property d(x,y) = d(y,x) is named as:
 - A. Non negativity
 - B. Reflexive
 - C. Symmetry
 - D. Triangle inequality
- D. Triangle inequality

 3. If (X, d) is a metric space then d is called a ... on X.

 A. Function
 B. Relation
 C. Metric
 D. Metric space

 4. If (X, d) is a metric space then X is called:
 A. Metric
 B. Ground Set
 C. Underlying 2. The property $d(x,y) \leq d(x,z) + d(z,y)$ is named as:

 - - D. Both B and C
 - 5. Which of the following is not a metric on \mathbb{R} ?
 - A. d(x, y) = |x| + |y|
 - B. $d(x, y) = max\{|x|, |y|\}$
 - C. Both A and B
 - D. None of these

- 6. Let (X,d) be a metric space. Which of the following is not a metric on X?
 - A. $d_1(x,y) = kd(x,y)$, where k is a positive number
 - B. $d_2(x,y) = \frac{d(x,y)}{1+d(x,y)}$
 - C. $d_3(x,y) = \frac{kd(x,y)}{1+kd(x,y)}$
 - D. $d_4(x,y) = \frac{1-d(x,y)}{1+d(x,y)}$
- 7. Let (X,d) be a metric space and $x_1, x_2, ..., x_n$ be points of X, then the property

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n)$$

is called:

- A. Generalized Triangle Inequality

- B. Generalized Reflexive

 8. The usual (or Euclidean) metric on \mathbb{R} is defined as:

 A. d(x,y) = |x+y|B. d(x,y) = |z-y|C. d(x,y) = |x| + |y|D. d(x,y) = ||x| |y||The usual (or Euclidean) metric on $y = (y_1, y_2)$. 9. The usual (or Euclidean) merric on \mathbb{R}^2 is defined as ..., where $x = (x_1, x_2)$ and
 - A. $d(x,y) = \sqrt{(x_1 y_1)^2 + (y_2 y_2)^2}$
 - B. $d(x,y) = |x_1 y_1| + |x_2 y_2|$
 - C. $d(x,y) = max\{|x_1 y_1|, |x_2 y_2|\}$
 - D. None of these
- 10. The taxi-cab metric on \mathbb{R}^2 is defined as ..., where $x=(x_1,x_2)$ and $y=(y_1,y_2)$.
 - A. $d(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
 - B. $d(x,y) = |x_1 y_1| + |x_2 y_2|$
 - C. $d(x,y) = max\{|x_1 y_1|, |x_2 y_2|\}$
 - D. None of these

11. The discrete metric on a non empty set X is defined as:

A.
$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

B.
$$d(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ 1 & \text{if } x = y \end{cases}$$

C.
$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ -1 & \text{if } x \neq y \end{cases}$$

D.
$$d(x,y) = \begin{cases} -1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

12. Let $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ be any two points of \mathbb{R}^n . Then

$$\sum_{k=1}^n |x_k y_k| \le (\sum_{k=1}^n |x_k|^2)^{\frac12} (\sum_{k=1}^n |y_k|^2)^{\frac12}.$$
 : ality arz Inequality nequality umbers, then $(|x_1| + |x_2|^{\frac12}, \dots + |x_n|)^{\frac12}\dots + \dots + |x_n|^2$

This inequality is called:

- A. Cauchy Inequality
- B. Cauchy-Schwarz Inequality
- C. Minkowski's Inequality
- D. Holder's Inequality

13. If $x_1, x_2, ..., x_n$ be real numbers, then ($|x_1|$

A.
$$\leq |x_1|^2 + |x_2|^2 + \dots + |x_n|^2$$

B.
$$\leq n(|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2)$$

C.
$$\geq n(|x_1|^2 + |x_2|^2 + ... + |x_n|^2)$$

D. None of these

14. Let
$$x = (x_1, x_2, ..., x_n), y = (v_1, y_2, ..., y_n)$$
 be any two points of \mathbb{R}^n . Then
$$(\sum_{k=1}^n |x_k + y_k|)^{\frac{1}{2}} \leq (\sum_{k=1}^n |x_k|^2)^{\frac{1}{2}} + (\sum_{k=1}^n |y_k|^2)^{\frac{1}{2}}.$$

This inequality is called:

- A. Cauchy Inequality
- B. Cauchy-Schwarz Inequality
- C. Minkowski's Inequality
- D. Holder's Inequality

- 15. The collection of all continuous real-valued functions defined on a closed interval [a, b]is denoted as:
 - A. C[a,b]
 - B. L[a,b]
 - C. D[a,b]
 - D. l^{∞}
- 16. Let (X, d) be a metric space and $x, y, z \in X$. Then which of the following is true?
 - A. |d(x,z) d(y,z)| < d(x,y)
 - B. |d(x,y) d(x,z)| < d(y,z)
 - C. |d(x,y) d(y,z)| < d(x,z)
 - D. All of these
- 17. The distance between a point x and subset A of a metric space (X, d) is defined as:
 - A. $d(x, A) = \inf\{d(x, a) : a \in A\}$
 - B. $d(x, A) = \sup\{d(x, a) : a \in A\}$
 - C. $d(x, A) = \inf\{d(x, y) : x, y \in A\}$
 - D. $d(x, A) = inf\{|x 1| : a \in A\}$
- 18. The distance between two subsets A, B of a metric space (X, d) is defines as:
 - A. $d(A, B) = \inf\{d(x, a) : a \in A\}$

 - B. $d(A, B) = \inf\{d(x, b) \cdot b \in B\}$ C. $d(A, B) = \inf\{d(a, b) \cdot a \in A, l \in B\}$
 - D. All of these
- 19. Let A and B be overlapping subsets of a metric space (X,d), then distance between A and B is:
 - A. Not defined
 - B. Zero
 - C. Infinity
 - D. None of these
- 20. The distance between $A = \{(x,y) \in \mathbb{R}^2 : y = \frac{1}{x}, x \neq 0\}$ and $B = \{(x,y) \in \mathbb{R}^2 : y = 0\}$ is:
 - A. Not defined
 - B. Zero
 - C. Infinity
 - D. None of these

21.	If A	is a	subset	of a	metric	space	(X,d)) such	that δ	(A) <	∞ ,	then	A is	called:
-----	--------	------	--------	------	--------	-------	-------	--------	---------------	----	-----	------------	------	------	---------

- A. Finite
- B. Bounded
- C. Open
- D. Closed
- 22. Let (X, d) be a metric space and $\delta(X) < \infty$, then d is called ... metric.
 - A. Finite
 - B. Bounded
 - C. Open
 - D. Closed

- Jone of these

 24. Intersection of many many bounded sets is:

 A. Bounded

 B. Unbounded

 C. Empty

 D. Open

 Union of finitely many bounded

 A. Bounded

 A. Bounded

 A. Bounded

 A. Bounded

 - B. Not necessarily bounded
 - C. Unbounded
 - D. Open

- 26. Let (X,d) be a metric space. If $a \in X$ and r > 0, then the open ball centered at a and with radius r is:
 - A. $B(a;r) = \{x \in X : d(a,x) < r\}$
 - B. $B(a; r) = \{x \in X : d(a, x) < r\}$
 - C. $\overline{B}(a; r) = \{x \in X : d(a, x) < r\}$
 - D. $\overline{B}(a; r) = \{x \in X : d(a, x) < r\}$
- 27. A point $y \in B(a,r)$ if and only if:
 - A. d(a, y) > r
 - B. d(a, y) > r
 - C. d(a, y) < r
 - D. d(a, y) < r
- .dies 28. An open ball in (\mathbb{R}, d) (usual metric) with center a and radius is:
 - A. (a-r,a+r)
 - B. [a r, a + r]
 - C. (r-a,r+a)
 - D. [r a, r + a]
- 29. The unit open ball in (\mathbb{R}^2, d) (usual metric) at the origin is:

 - A. $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ B. $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$ C. $\{(x,y) \in \mathbb{R}^2 : |x| + |y| < 1\}$
 - D. $\{(x,y) \in \mathbb{R}^2 : |x| + |y| > 1$
- 30. The unit open ball in (\mathbb{R}^2, d') (Taxi-cab metric) at the origin is:

 - A. $\{(x,y) \in \mathbb{R}^2 : x^2 y^2 < 1\}$ B. $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$ C. $\{(x,y) \in \mathbb{R}^2 : |x| + |y| < 1\}$
 - D. $\{(x,y) \in \mathbb{R}^2 : |x| + |y| > 1\}$
- 31. Let (X, d_0) be a discrete metric space, $a \in X$ and r > 1, then B(a, r) =
 - A. ϕ
 - B. $\{a\}$
 - C. X
 - D. $X \{a\}$

- 32. Let (X, d_0) be a discrete metric space, $a \in X$ and $0 < r \le 1$, then B(a, r) =
 - Α. φ
 - B. $\{a\}$
 - C. X
 - D. $X \{a\}$
- 33. Let (X, d) be a metric space. A subset $O \subset X$ is called ... if for each $x \in O$, there exists r > 0 such that $B(x; r) \subset O$.
 - A. Open
 - B. Closed
 - C. Bounded
 - D. Unbounded
- D. Unbounded

 34. Any open ball in a metric space is:

 A. Open set
 B. Closed set
 C. Bounded set
 D. Not necessarily a closed set

 35. A subset O of a metric space (X, d) is open if and only if O is the ... of open balls.
 - A. Union
 - B. Intersection
 - C. Complement
 - D. Any of A, B or V
- 36. Let (X, d) be a metric space. Then ϕ and X are:
 - A. Open
 - B. Closed
 - C. Poth A and B
 - D. None of these
- 37. The arbitrary ... of open sets is an open set.
 - A. Union
 - B. Intersection
 - C. Complement
 - D. Symmetric Difference

- 38. The finite ... of open sets is an open set.
 - A. Union
 - B. Intersection
 - C. Complement
 - D. Symmetric Difference
- 39. The arbitrary intersection of open sets in a metric space:
 - A. Is open
 - B. Is not necessarily open
 - C. Is closed
 - D. Is not necessarily closed
- Juals:

 Juals:

 Juals:

 D. (0,1)

 41. Every subset of a discrete metric space is:

 A. Open
 B. Closed
 C. Open as well as closed
 D. Not open, nor closed
 Every finite subset of a metric space
 A. Open
 B. C

 - - B. Closed
 - C. Open as well as closed
 - D. Not open, nor closed
 - 43. Let (X,d) be a metric space and let a be any point of X. A subset N of X is called ... if there exists an open ball B(a;r) such that $B(a;r) \subseteq N$.
 - A. Open set
 - B. Closed set
 - C. Neighborhood of a
 - D. None of these

- 44. If a subset N of a metric space (X, d) is neighborhood of each of its points, then N is:
 - A. Open
 - B. Closed
 - C. Bounded
 - D. Compact
- 45. If N is a neighborhood of a and $N \subset M$, then M is:
 - A. Neighborhood of a
 - B. Open
 - C. Closed
 - D. Bounded
- 46. If N is a neighborhood of a point a, then a is called ... of N.
- D. Boundary point

 47. For any subset A of a metric space (X, d), interior of A is:

 A. Open

 B. Not necessarily open
 C. Closed
 D. Not necessarily closed

 3. For any subset A of a metric
 A. A C (X,d), which of the following is true?
- 49. A subset A of a metric space (X, d) is open if and only if:
 - A. $A = A^o$
 - B. A is neighborhood of each of its points
 - C. Both A and B are true
 - D. None of these

- 50. Let A = [a, b] be any subset of \mathbb{R} with usual metric. Then A^o equals:
 - A. [a,b]
 - B. [a,b)
 - C. (a,b]
 - D. (a,b)
- 51. Let A = [a, b] be any subset of \mathbb{R} with discrete metric. Then A^o equals:
 - A. [a,b]
 - B. [a, b)
 - C. (a, b]
 - D. (a,b)
- 52. For any subset A of a metric space (X, d), ... is the largest open subset of A^c .
 - A. Interior of A
 - B. Exterior of A
 - C. Closure of A
 - D. Boundary of A
- rerath 53. For any subset A of a metric space (X,d), interior of A is the ... of all open subsets of A.

 A. Union
 B. Intersection
 C. Symmetric difference
 D. All of these

 - D. All of these
- 54. For any subsets A, B of a metric space (X, d), which of the following is false?

 - B. $A \subseteq B$ implies $A^o \subseteq B^o$
 - $A \cap B)^o = A^o \cap B^o$
 - D. $(A \cup B)^o = A^o \cup B^o$
- 55. Consider \mathbb{Q} as a subset of \mathbb{R} with usual metric, then Q^o equals:
 - Α. φ
 - B. \mathbb{Q}
 - C. \mathbb{Q}'
 - D. \mathbb{R}

- 56. For any two subsets A and B of a metric space (X, d), $(A \cup B)^o \dots A^o \cup B^o$.
 - $A.\subseteq$
 - В. ⊃
 - C. =
 - D. None of these
- 57. If $A = \phi$ and $B = \mathbb{R}$, then $A^o \cup B^o =:$
 - Α. φ
 - B. \mathbb{R}
 - C. (a,b)
 - D. [a,b]
- 58. Let A be any subset of a metric space (X,d). A point $x \in X$ is called a limit point of $\{x\} \neq \phi$ $(D(x;r) - \{x\}) \cap A \neq \phi$ D. All of these $59. \text{ The set of all limit points of } A, \text{ denoted as } A^d \text{ is called } \dots \text{ of } A.$ A. Interior
 B. Derived set
 C. Boundary
 D. Closure $Consider \mathbb{Z} \text{ as a subset of } \mathbb{R}^{m \times m}$ A. ϕ A, if for every open ball B(x;r), we have:
- - D. \mathbb{R}
- 61. A subset K of a metric space (X, d) isif K^c is open.
 - A. Closed
 - B. Interior of K
 - C. Closure of K
 - D. Boundary of K

- 62. A set K is closed if and only if
 - A. $K^d \subseteq K$
 - B. $K \subseteq K^d$
 - C. K = K
 - D. Any of A, B or C
- 63. Consider $A = \{1, \frac{1}{2}, \frac{1}{3}...\}$ as a subset of Euclidean metric space (\mathbb{R}, d) , then $A^d =$.
 - A. $\{0\}$
 - B. {1}
 - C. A
 - D. R
- D. $\{a,b\}$ 65. If x is a limit point of A, then every neighborhood of x contains ... number of points.

 A. Finite

 B. Infinite

 C. Finite or Infinite

 D. None of these

 3. \mathbb{Z} is ... subset of \mathbb{R} with usual metric.

 A. Open

 B. \mathbb{R}^{c}
- - B. Bourded
 - C. Closed
 - D. Compact
- 67. $\mathbb{Q}^d = ?$
 - Α. φ
 - B. \mathbb{Q}
 - C. \mathbb{Q}'
 - D. \mathbb{R}

- 68. $(\mathbb{Q}')^d = ?$
 - A. ϕ
 - B. \mathbb{Q}
 - $C. \mathbb{O}'$
 - D. \mathbb{R}
- 69. Let (X,d) be a metric space and $a \in X$. For a positive real number r, the closed ball with center at x and radius r is
 - A. $B(a; r) = \{x \in X : d(a, x) < r\}$
 - B. $B(a;r) = \{x \in X : d(a,x) < r\}$
 - is Celippose math C. $\overline{B}(a;r) = \{x \in X : d(a,x) < r\}$
 - D. $\overline{B}(a;r) = \{x \in X : d(a,x) < r\}$
- 70. A closed ball in a metric space is
 - A. A closed set.
 - B. Not necessarily a closed set
 - C. An open set
 - D. Not an open set
- 71. Arbitrary intersection of closed sets is
 - A. A closed set.
 - B. Not necessarily a close i set
 - C. An open set
 - D. Not an open set
- 72. A point $x \in (X, d)$ is alled a... point if for every r > 0, $B(x; r) \cap A \neq \phi$
 - A. Limit point
 - B. Adherent point
 - C. Isolated point
 - D. Interior point
- 73. Let (X,d) be a metric space and $A\subseteq X$. A point $x\in A$ is called ... point of A if x is not a limit point of A.
 - A. Limit point
 - B. Adherent point
 - C. Isolated point
 - D. Interior point

- 74. A set is called ... if it is closed and has no isolated point
 - A. Perfect
 - B. Closed
 - C. Compact
 - D. Dense
- 75. The collection of all adherent points of a set A is called ... of A.
 - A. Interior
 - B. Exterior
 - C. Closure
 - D. Boundary
- 76. If A = (0, 1), then $\overline{A} =$
 - A. (0,1)
 - B. [0,1)
 - C. (0,1]
 - D. [0,1]
- AR ABBAS @ SUPPOSemain

 AR AUTUBE

 AR AUTUBE 77. If $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, then $\overline{A} =$
 - A. A
 - B. $A \cup \{0\}$
 - C. $A \{0\}$
 - D. ϕ
- 78. $A \cup A^d =$
- 79. \overline{A} is ...
 - A. Open
 - B. Closed
 - C. Compact
 - D. Bounded

- 80. Which of the following is true?
 - A. $A \subseteq \overline{A}$
 - B. $\overline{A} \subseteq A$
 - C. $A \subseteq A^o$
 - D. $(A')^o = A$
- 81. The smallest closed superset of A is
 - A. A^o
 - B. ext(A)
 - C. A^d
 - D. \overline{A}
- ...ig is false? $\varphi, \overline{X} = X$ $\therefore A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$ $C. (\overline{A \cup B}) = \overline{A} \cup \overline{B}$ $D. \overline{A \cap B} = \overline{A} \cap \overline{B}$ =? $\cdot \overline{A}$ A^d Fr(A)82. For any subset A of a metric space (X, d), we have $\overline{\overline{A}}$ =
- 83. Which of the following is false?
- 84. $\overline{A} \cap \overline{A^c} = ?$
- 85. Which of the following is true
 - A. $Fr(A) = \overline{A} A^o$
 - B. $\overline{A} = A^o \cup Fr(A)$
 - C. $Fr(A) \cap A^o = \phi$
 - D. All of these

- 86. A is called if and only if
 - A. $Fr(A) \subseteq A$
 - B. $Fr(A) \supseteq A$
 - C. $Fr(A) \subset A^c$
 - D. $Fr(A) \supset A^c$
- 87. A is open if ...
 - A. $Fr(A) \subseteq A$
 - B. $Fr(A) \supseteq A$
 - C. $Fr(A) \subset A^c$
 - D. $Fr(A) \supset A^c$
- 88. Which of the following is false?
 - A. $ext(A \cup B) = ext(A) \cup ext(B)$
 - B. $ext(A \cap B) = ext(A) \cap ext(B)$
 - C. $ext(ext(A)) \supseteq A^o$
 - D. $A \cap ext(A) = \phi$
- er city 89. A subset A of a metric space (X, d) is closed if and only if:

 A. $A = \overline{A}$ B. $A = A^o$ C. $A \neq \overline{A}$ D. $A \neq A^o$
- 90. A subset A of a metric space (X,d) is open if and only if: A. $A=\overline{A}$ B. $A=A^o$

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

An effort by: Akhtar Abbas

Number Theory

1. For any positive integers a and b, there exists a positive integer n such that na > b is called:

- A. Archimedean Property
- B. Division Algorithm
- C. Density Theorem
- D. Fundamental Theorem of Arithmetic
- 2. Let $S \subseteq \mathbb{N}$ having the properties:
 - (i) $1 \in S$ and
 - (ii) Whenever $k \in S$, then $k + 1 \in S$, then
 - A. $S = \mathbb{N}$
 - B. $S \subseteq \mathbb{N}$
 - C. $S \supset \mathbb{N}$
 - D. $S \neq \mathbb{N}$
- 3. 2[1+2+3+....+n]=
 - A. $\frac{n(n+1)}{2}$

 - C. n(n+1)D. n(n-1)
- ABAS @supposemath 4. Given integers c and b with $b \neq 0$, there exist unique integers q and r satisfying
 - A. $a = kq + r, \ 0 \le r < |b|$
 - B. $a = bq + r, 0 \le q < |b|$
 - C. a = bq + r, 0 < r < |a|
 - D. $a = bq + r, 0 \le q < |a|$
- 5. Which of the following is false?
 - A. a|a
 - B. If a|b and b|c, then a|c
 - C. If a|b and b|a, then a=b
 - D. If a|b then a|bc

- 6. If a|b and a|c, then for any $x, y \in \mathbb{Z}$, we have
 - A. a|(bx+cy)
 - B. a|(bx-cy)
 - $C. \ a|bc$
 - D. All of these
- 7. If a|(b+c) and a|b, then
 - A. a|c
 - B. $a \nmid c$
 - C. a|(b-c)
- 8. If a = 73 and b = 8, then
- 9. If a = -23 and b = 7, then
- 10. We read a|b as
- t, then a, r = 5 c. q = -4, r = 5 c. q = 4, r = -5 d. a|b as a divides b
 b is divisible by a
 b is multiple of
 ll of the
- 11. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Then a|b if for some $c \in \mathbb{Z}$,
 - A. a = bc
 - B. b = ac
 - C. c = a + b
 - D. c = ab

- 12. Any integer can be expressed in the form
 - A. 2n or 2n + 1
 - B. 3n, 3n + 1 or 3n + 2
 - C. 4n, 4n + 1, 4n + 2 or 4n + 3
 - D. All of these
- 13. For any $n \in \mathbb{Z}$, $2.7^n + 3.5^n 5$ is divisible by
 - A. 24
 - B. 23
 - C. 9
 - D. 13
- 14. The product of any three consecutive integers is divisible by
 - A. 4
 - B. 5
 - C. 6
 - D. 7
- er axin Ative integral of the control of the 15. Let a, b be nonzero integers. Then a positive integer d is called ... of a and b if
 - (i) d|a and d|b
 - (ii) If c|a and c|b, then $c \leq d$.
 - A. G. C. D
 - B. L. C. M
 - C. H. C. F
 - D. Both A and C

[We denote G. \circlearrowleft . D. of a and b as (a,b) or gcd(a,b).]

- 16. Let a, b be nonzero integers and (a, b) = 1, then a, b are called
 - A. Prime to each other
 - B. Coprime
 - C. Relatively prime
 - D. All of these

- 17. The G.C.D of two non zero integers a and b:
 - A. Is always unique
 - B. Is not necessarily unique
 - C. Always exists
 - D. Both A and C
- 18. If a|b, then (a, b) =
 - A. a
 - B. *b*
 - C. |a|
 - D. |b|
- C. 2
 D. -220. If d=(a,b), then there exist $x,y\in\mathbb{Z}$ such that:

 A. d=ax+byB. d=ax-byC. d=ay+bxD. All of these

 1. Let $k\in\mathbb{Z}$ and $a,b\in\mathbb{Z}-\{0\}$ A. k(a,b)B. |k|(a,b)C. Both A and P
 D. No
- - D. None of these
- 22. If d = (a, b), then
 - A. $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$
 - B. $\left(\frac{a}{d}, \frac{b}{d}\right) = d$
 - C. $\left(\frac{a}{b}, \frac{b}{a}\right) = d$
 - D. $\left(\frac{a}{b}, \frac{b}{a}\right) = 1$

- 23. If a|bc and (a,b) = 1, then
 - A. a|c
 - B. b|c
 - C. $a \nmid c$
 - D. a|(b+c)
- 24. Let $a, b \in \mathbb{Z} \{0\}$. Then a positive integer m is called ... of a and b if
 - (i) a|m and b|m
 - (ii) If a|n and b|n then $m \le n$.
 - A. G. C. D
 - B. L. C. M
 - C. H. C. F
 - D. Both B and C

[We denote L. C. M of a and b as a > b, a > b or a > b.]

For any non zero integers a, b we have

A. a > b > a > a > bB. a > b > a > bC. a = a > b > bD. a > b > a > b

- 25. For any non zero integers a, b we have
- 26. If a = bq + r, then which of the ishowing is rue?
 - A. (a, b) = (b, r)

 - B. (a, r) = (b, r)C. < a, b > = < o, r
- 27. For any two non zero integers a, b, we have (a, (a, b))=

 - B. *a*
 - C. ab
 - D. a+b

- 28. Let a, b be non zero integers and $c \in \mathbb{Z}$, the equation ax + by = c is called ... in two variables.
 - A. Polynomial
 - B. Linear Diophantine
 - C. Linear Equation
 - D. Quadratic
- 29. Let d = (a, b). The Linear Diophantine equation ax + by = c has a solution if and only if:
 - A. d|c
 - B. c|d
 - C. (c,d) = 1
 - D. c|(a+b)
- 30. If (x_o, y_o) is a solution of Linear Diophantine equation ax + by = c, then the solution set of equation is:

 A. $\{(x_o + \frac{b}{d}t, y_o + \frac{a}{d}t) : t \in \mathbb{Z}\}$ B. $\{(x_o + \frac{b}{d}t, y_o \frac{a}{d}t) : t \in \mathbb{Z}\}$ C. $\{(x_o \frac{b}{d}t, y_o + \frac{a}{d}t) : t \in \mathbb{Z}\}$ D. $\{(x_o \frac{b}{d}t, y_o \frac{a}{d}t) : t \in \mathbb{Z}\}$
- 31. A point (x_o, y_o) with integral coordinates is called:
 A. Common point
 B. Lattice point
 C. Integral point
 D. None of these

32.	A number n whose only positive divisors are 1 and n , is called:	
	A. Prime	
	B. Coprime	
	C. Relatively prime	
	D. All of these	
33.	The smallest prime number is:	
	A. 1	
	B. 2	
	C. 3	
	D. 5	
34.	An integer which is not a prime, nor composite is:	
	A. 1	
	B. 2	
	C. 3	
	An integer which is not a prime, nor composite is: A. 1 B. 2 C. 3 D. 4 Every integer $n > 1$ has a: A. Prime divisor B. Composite divisor C. Common multiple D. Both A and C If p is a prime and $p ab$, then	
35.	Every integer $n > 1$ has a:	
	A. Prime divisor	
	B. Composite divisor	
	C. Common multiple	
	D. Both A and C	
36.	If p is a prime and $p ab$, then	
	A. $p a \text{ or } p b$	
	A. $p a$ or $p b$ B. $p a$ and $p b$ C. $p \nmid a$ and $p \nmid b$	
	C. $p \nmid a$ and $p \nmid b$	
	D. $p \mid a$ but $p \nmid b$	
37.	There are number of primes. (Euclid's theorem)	
	A. Finite	
	B. Infinite	

C. Countable

D. None of these

- 38. Let n > 1 be a composite number, then there exists a prime p such that p|n and
 - A. $p \leq \sqrt{n}$
 - B. $p \ge \sqrt{n}$
 - C. $p < \sqrt{n}$
 - D. $p > \sqrt{n}$
- 39. Every integer n > 1 can be represented uniquely as a product of:
 - A. Prime numbers
 - B. Composite numbers
 - C. Even numbers
 - D. Odd numbers
- 40. For n > 0, the numbers of the form $2^{2^n} + 1$ are called ... numbers
 - A. Fermat
 - B. Mersenne
 - C. Perfect
 - D. None of these
- 41. Any two Fermat numbers are:
 - A. Prime
 - B. Coprime
 - C. Composite
 - D. None of these
- 42. For n > 0, the numbers of the form $M_n = 2^n 1$ are called:
 - A. Fermat's
 - B. Mersenne
 - C. Periect
 - D. None of these
- 43. If M_n is prime, then n is:
 - A. Prime
 - B. Composite
 - C. Not necessarily prime
 - D. Not necessarily composite

- 44. Given a positive integer n, $\tau(n)$ or d(n) denotes the:
 - A. Sum of positive divisors of n
 - B. Number of positive divisors of n
 - C. Number of coprime numbers of n
 - D. None of these
- 45. Given a positive integer n, $\sigma(n)$ denotes the:
 - A. Sum of positive divisors of n
 - B. Number of positive divisors of n
 - aese ABBAS @ SUPPOS emails
 ARAUTIUDE
 ARAUTIUDE C. Number of coprime numbers of n
 - D. None of these
- 46. $\tau(n) =$
 - A. $\sum_{d|n} 1$
 - B. $\sum_{d|n} d$
 - C. Both of these
 - D. None of these
- 47. $\sigma(n) =$
 - A. $\sum_{d|n} 1$
 - B. $\sum_{d|n} d$
 - C. Both of these
 - D. None of these
- 48. $\tau(10) =$
- 49. $\sigma(10) =$
 - A. 5
 - B. 9
 - C. 10
 - D. 18

- 50. If $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$, then $\tau(n) =$
 - A. $(k_1+1)(k_2+1)...(k_r+1)$
 - B. $k_1 k_2 ... k_r$
 - C. $k_1(k_2+1)...(k_r+1)$
 - D. $n(k_1+1)(k_2+1)...(k_r+1)$
- 51. $\tau(180) =$
 - A. 18
 - B. 9
 - C. 180
 - D. 90
- 53. Let m be a fixed positive integer. Then an integer a is congruent to an integer b modulo m, written as $a \equiv b \pmod{m}$ if:

 A. a|(m+b)B. m|(a-b)C. m|(b-a)D. Both B and C

 54. Congruence is ... relation on $\mathbb Z$ A. Equivalence
 B. Partial c^{-1}

 - - C. Anti symmetric
 - D. Anti reflexive
 - 55. Let $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{m}$ if and only if a, b have the same ... after division by m.
 - A. Quotient
 - B. Remainder
 - C. Both A and B
 - D. None of these

- 56. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then which of the following is false?
 - A. $a + c \equiv b + d \pmod{m}$
 - B. $ac \equiv bd \pmod{m}$
 - C. $na \equiv nb \pmod{m}$, where $n \in \mathbb{Z}$
 - D. None of these
- 57. Which of the following is true?
 - A. If $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$
 - B. If $na \equiv nb \pmod{m}$ and (m,n) = d, then $a \equiv b \pmod{\frac{m}{d}}$
 - C. If $na \equiv nb \pmod{m}$ and (m, n) = 1, then $a \equiv b \pmod{m}$
 - D. All of these

- ρ) if and only if

 ... a prime

 B. p is an odd prime

 C. p is an odd integer

 D. None of these

 60. For $a, m \in \mathbb{Z}$, $a^{\phi(m)} \equiv 1(m \approx m)$ if

 A. $(a, m) \neq 1$ B. (a, m) = 1C. $\langle a, m \rangle \neq 1$ D. $\langle a, m \rangle = 1$ Which of the follow:

 A. If ℓ B. If $m = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$, then $\phi(m) = m(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})...(1 - \frac{1}{p_r})$
 - C. $\phi(372) = 120$
 - D. All of these

Akhtar Abbas

Lecturer in Mathematics University of Jhang 0332-6297570