

Modality-invariant Visual Odometry for Embodied Vision

vo-transformer.github.io

Marius Memmel, Roman Bachmann, Amir Zamir

Motivation

We can switch between modalities to localize ourselves. Odometry should too!

Sensors fail, change or are intentionally looped out causing Visual Odometry methods to fail!

We propose a **modality-agnostic framework** based on the **Vision Transformer** [3] architecture that **deals with optional modalities** without sacrificing performance.

Visual Odometry Transformer

- ► Transformer architecture → agnostic to the number of input tokens and number of modalities
- ► Condition Transformer with action token & MultiMAE [4] pre-training → Reduce data requirements to 5% of previous architectures!
- ▶ Dropping modalities during training → Explicitly prepare the architecture for test-time modality invariance

Navigation performance under missing modalities

Top-down map of the agent navigating from **start** to **goal**. The plot shows the **shortest path**, the **path taken by the agent**, and the **"imaginary" path the agent took**, i.e., its VO estimate.

w/o explicit invariance training (VOT-B): agent heavily relies on both modalities (RGB < Depth) and fails catastrophically if either is unavailable (Drop: RGB, or Drop: Depth)

w/ explicit invariance training (VOT-B w/ inv.): agent succeeds even when modalities are missing!

Attention maps

- Action token serves as powerful prior
- VOT attends to relevant image regions
- Action token resolves ambiguities caused by noise and collision

$o_t(RGB)$ $o_{t+1}(RGB)$ $o_t(Depth)$ $o_{t+1}(Depth)$

Quantitative results under missing modalities

Method	Drop	$S\uparrow$	SPL↑	SSPL↑	$d_g \downarrow$
VOT RGB	_	59.3	45.4	66.7	66.2
VOT Depth	_	93.3	71.7	72.0	38.0
[1]	_	64.5	48.9	65.4	85.3
VOT	_	88.2	67.9	71.3	42.1
VOT w/ inv.	_	92.6	70.6	71.3	40.7
[1]	RGB	0.0	0.0	5.4	398.7
VOT	RGB	75.9	58.5	69.9	59.5
VOT w/ inv.	RGB	91.0	69.4	71.2	37.0
[1]	Depth	0.0	0.0	5.4	398.7
VOT	Depth	26.1	20.0	58.7	148.1
VOT w/ inv.	Depth	60.9	47.2	67.7	72.1

- ConvNet-based architecture [1,2] can't deal with optional modalities
- Explicit invariance training performs on par with single modality model when modalities are dropped
- ▶ Depth is more informative than RGB for the VO task

Habitat challenge

Highest SSPL training on only 5% of the data on Habitat Challenge 2021.

Kalik	Participant team	3	SPL	33PL
1	MultiModalVO (VOT) (<i>ours</i>)	93	74	77
2	VO for Realistic PointGoal	94	74	76
3	inspir.ai robotics	91	70	71
4	VO2021	78	59	69
5	Differentiable SLAM-net	65	47	60

Takeaways

- ► VOT is a versatile multi-modal Odometry framework
- Dropping modalities during training helps dealing with missing modalities during test time
- Action prior and multi-modal pre-training drastically reduce data requirements

References: [1] Integrating Egocentric Localization for More Realistic Point-Goal Navigation Agents. Datta et al. CoRL 2021

- -/ 100\/ 2004
- [3] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Dosovitskiy et al. ICLR 2021
- [2] The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation. Zhao et al. ICCV 2021