Responding to anthrax contamination: Listening to surfaces and talking to people

Presentation for the Society for Risk Analysis Annual Meeting, December 5, 2006

Patrick Gurian, Nicholas Dudley Ward, Ashley Kenyon Drexel University

Objectives

- Consider a subset of decisions that responders would face
- Try to identify both technical and public perception elements of decision making
- Example calculations to structure problem

Areas addressed here

- Buildings: even an outdoor release may penetrate into the indoor environment
 - Indoor environment will offer protection from UV, most persistent problem (Wein et al. 2005)

The Decisions

Decision #1: What's hot?

- This decision is driven by specifics of the event
- Likely not informed by detailed modeling or sampling

Decision #2

- Where do I sample?
- What do I want to learn?
- Option A: identify release amount, location, and release time, model dispersion
- Option B: sample like crazy, classify areas as hot or not based on results, repeat
- Option A sounds better but
 - Are we really that good?
 - Will we have all the inputs we need?

Option B

- How would we assess the overall risk at a location or person based on sampling?
- Surface deposition will record time integrated air concentration -> dose->risk

 Of course we really want to do both A and B

What are the right surfaces to sample?

- Concentration of anthrax
 - An important factor but not the only factor
- Want an accurate record
 - Standardized material so that recovery can be determined in laboratory experiments
 - Component of manufactured system?
- First let's think about how we would make the correspondence between what we measure after the fact and risk

Modeling Objective

- Simulate a release of anthrax in a wellmixed compartment
 - can be indoor or outdoor source
- Identify where different size fractions end up
- Map risk due to air exposure with amount of anthrax on surfaces

Schematic of Model

Following Sextro et al. 2002 for both structure and parameters

Modeling Approach

Can express as a system of coupled ordinary differential equations

$$\begin{pmatrix} \dot{M}_1 \\ \dot{M}_2 \\ \dot{M}_3 \\ \dot{M}_4 \\ \dot{M}_5 \end{pmatrix} = \begin{pmatrix} [(1-e)p-1]\frac{Q}{V} - (\lambda_2 + \lambda_3 + \lambda_4) & \mu_2 & 0 & 0 & 0 \\ & \lambda_2 & & -\mu_2 & 0 & 0 & 0 \\ & \lambda_3 & & 0 & 0 & 0 & 0 \\ & & \lambda_4 & & 0 & 0 & 0 & 0 \\ & & ep\frac{Q}{V} & & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} M_1 \\ M_2 \\ M_3 \\ M_4 \\ M_5 \end{pmatrix}$$

Can be extended to arbitrary number of compartments Analytical solutions available

Parameters

	1 μM	3 µM	5 μΜ	10 μΜ
Resusp	1.2x10 ⁻⁴	1.9x10 ⁻³	0.8x10 ⁻³	0.4x10 ⁻²
Dep (floor)	0.1	0.6	2.0	8.1
Dep (walls & ceiling)	0.1	0.4	0.8	0.9
Filter Efficiency	0.098	0.49	0.74	0.88

From Sextro et al. 2002

Time scale ~ hours

Time scale

 If we choose 8 hours as a time period then the initial release has dissipated: "pseudoequilibrium"

 Ongoing low level air concentrations due to re-suspension

Surface deposition

- Consider each surface
- How much of each size fraction of anthrax is on the surface?
- How good is the "pseudo-equilibrium" assumption?
 - Need this to hold for our surface concentrations to be indicative of dose

Potential to link surface concentrations with risk

- Correlating surface concentrations with risk seems most promising for smaller size fractions
 - 10 μM fraction is more subject to resuspension
 - Also will deposit in the shortest time so may not be present in the downwind areas of interest here

Where to sample?

- Filters look promising
 - But PCR inhibition is likely to be a problem
- For the smaller size fractions walls may be better than floor
- Horizontal surfaces may be more problematic than vertical
 - Not as clear a "pseudo-equilibrium"

Decision #3

- Revising areas considered "hot"
- Ideally just compare sample results to threshold
 - This is our *decision threshold*, not a biological threshold on infectivity
- Problems:
 - sample size, recovery, detection limit, confidence level
 - two kinds of "hot": prospective and retrospective

An example calculation for wall concentrations

Diameter, µM	1	3	5	10
1 in a million retrospective risk,	0.03	0.08	0.08*	0.04*
<i>B. anthracis</i> /m²				

~2-5 bugs/office, *assumes respirable

No HVAC filter, Druett/Glassman k (Haas 2002)

For low doses risk is linear

How about 1 in 1000?

Diameter, µM	1	3	5	10
1 in 1000 retrospective risk, <i>B. anthracis</i> /m ²	30	80	80*	40*

2,000-5,000 bugs/office, *assumes respirable

No HVAC filter, Druett/Glassman k (Haas 2002)

Retrospectively hot

- Were people in an area exposed to harmful concentrations of anthrax?
 - Administer antibiotics
 - Possibly vaccinate

Prospectively hot

- Will people in an area be exposed to harmful anthrax concentrations in the future?
 - Remove building from use
 - Disinfect
 - Clear for reoccupation
 - Vaccinated reoccupation?
 - Monitored reoccupation?

Comparing prospective and retrospective thresholds

- Let's assume that deposited fraction will eventually be aerosolized
- In immediate vicinity of release we have mostly large particles
 - Little difference between prospective and retrospective thresholds

For smaller particles

- For areas removed from the initial release, small particles will account for a large portion of risk
 - Prospective threshold will be higher than retrospective threshold because only a small percentage of original airborne mass/risk is recovered when re-aerosolized

Public communication issues

- Particularly downwind it may make sense to treat for retrospective risk but not prospective risk
- Sampling clearly is limited in its ability to detect low risks
- Need to communicate this so that public understands and accepts approach

Additional work

- Compare with re-suspension observed by Weis et al. 2002.
- Critically review parameter values
- Uncertainty/sensitivity analysis
 - Different geometries (surface area to volume ratios
 - Different HVAC parameters Q/V, p, e
 - What are robust indicators of risk?

Acknowledgements

- Funding through CAMRA, joint EPA and DHS research center
- Elizabeth Casman, Charles Haas, and Agami Reddy

