170S Week 1 Discussion Notes

Colin Ni

January 8, 2025

Warm-up

The Beta distribution Beta(α, β) for parameters $\alpha > 0$ and $\beta > 0$ is defined by the pdf

$$f_{\mathrm{Beta}(\alpha,\beta)}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \quad \text{for } 0 \le x \le 1.$$

Here the $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$ term is a normalizing constant so that $\int_0^1 f_{\mathrm{Beta}(\alpha,\beta)} \, \mathrm{d}x = 1$, and $\Gamma(x)$ is the Gamma function which we recall generalizes the factorial function via $\Gamma(n+1) = n!$ and satisfies $\Gamma(x+1) = x\Gamma(x)$. Show that the mean of $\mathrm{Beta}(\alpha,\beta)$ is $\frac{\alpha}{\alpha+\beta}$.

Solution. At once

$$\mathbb{E}(\mathrm{Beta}(\alpha,\beta)) = \int_0^1 x f_{\mathrm{Beta}(\alpha,\beta)}(x) \, \mathrm{d}x \qquad \qquad (\mathrm{definition\ of\ mean})$$

$$= \int_0^1 \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^\alpha (1-x)^{\beta-1} \, \mathrm{d}x \qquad (\mathrm{definition\ of\ Beta}(\alpha,\beta))$$

$$= \frac{\Gamma(\alpha+1)\Gamma(\alpha+\beta)}{\Gamma(\alpha+1+\beta)\Gamma(\alpha)} \int_0^1 \frac{\Gamma(\alpha+1+\beta)}{\Gamma(\alpha+1)\Gamma(\beta)} x^\alpha (1-x)^{\beta-1} \, \mathrm{d}x$$

$$\qquad (\mathrm{massage\ the\ integrand\ to\ become\ } f_{\mathrm{Beta}(\alpha+1,\beta)})$$

$$= \frac{\Gamma(\alpha+1)\Gamma(\alpha+\beta)}{\Gamma(\alpha+1+\beta)\Gamma(\alpha)}$$

$$(\mathrm{the\ integral\ is\ 1\ because\ we\ made\ the\ integrand\ } f_{\mathrm{Beta}(\alpha+1,\beta)})$$

$$= \frac{\alpha\Gamma(\alpha)\Gamma(\alpha+\beta)}{(\alpha+\beta)\Gamma(\alpha+\beta)\Gamma(\alpha)}$$

$$\qquad (\mathrm{using\ the\ reminder\ } \Gamma(x+1) = x\Gamma(x))$$

$$= \frac{\alpha}{\alpha+\beta}.$$

Intro to Order Statistics

Given some sampled values, the order statistics are the values put in order.

Definition. Let X_1, \ldots, X_n be independent samples from a random variable X. The rth order statistic $X_{(r)}$, where $1 \le r \le n$, of these samples is the rth smallest value, or in other words $X_{(1)} \le \cdots \le X_{(n)}$.

Example. If $X_1 = 0.80$, $X_2 = 0.31$, and $X_3 = 0.50$ were sampled from the uniform distrubtion Unif(0,1) on [0,1], then $X_{(1)} = 0.31$, $X_{(2)} = 0.50$, and $X_{(3)} = 0.80$.

The pdf of $X_{(r)}$ has an extremely nice description.

Key Fact. The pdf of $X_{(r)}$ is

$$f_{X_{(r)}}(x) = r \binom{n}{r} F_X(x)^{r-1} (1 - F_X(x))^{n-r} f_X(x).$$

The slogan to keep in mind is as follows:

Slogan. The pdf of $X_{(r)}$ is a nice polynomial of the cdf and pdf X.

Let us prove this key fact, because the lectures will likely skip this proof.

Proof. The cdf of $X_{(r)}$ is

$$\begin{split} F_{X_{(r)}}(x) &= \mathbb{P}(X_{(r)} \leq x) & \text{(by definition)} \\ &= \mathbb{P}(\text{at least } r \text{ of the } n \text{ samples are } \leq x) & \text{(think carefully)} \\ &= \sum_{j=r}^{n} \binom{n}{j} F_X(x)^j (1 - F_X(x))^{n-j}. \end{split}$$

(these are Bernoulli trials with success probability $\mathbb{P}(X_i \leq x) = F_X(x)$)

Therefore, taking the derivative gives the pdf

$$f_{X_{(r)}}(x) = \frac{\mathrm{d}F_{X_{(r)}}}{\mathrm{d}x}(x) \qquad \text{(an important fact from probability)}$$

$$= \sum_{j=r}^{n} \binom{n}{j} \frac{\mathrm{d}}{\mathrm{d}x} \left[F_X(x)^j (1 - F_X(x))^{n-j} \right] \qquad \text{(using our determination of the cdf)}$$

$$= \sum_{j=r}^{n} \binom{n}{j} j F_X(x)^{j-1} f_X(x) (1 - F_X(x))^{n-j}$$

$$+ \sum_{j=r}^{n} \binom{n}{j} F_X(x)^{j} (n-j) (1 - F_X(x))^{n-j-1} (-f_X(x)).$$

(product rule and chain rule, recalling again that $\frac{dF_X}{dx}(x) = f_X(x)$)

To simplify this expression, observe that since $\binom{n}{j} = \frac{n!}{j!(n-j)!}$, we have the identities

$$\binom{n}{j}j = \frac{n!}{(j-1)!(n-j)!}$$
 for $0 < j \le n$
$$\binom{n}{j}(n-j) = \frac{n!}{j!(n-j-1)!}$$
 for $0 \le j < n$,

where we need to be careful with the bounds for j so that the expressions (j-1)! and (n-j-1)! make sense. For the first sum, we can plug the first identity without worry because $1 \le r \le n$, and for the second sum, the term with j=n is zero anyway. Thus we get

$$\sum_{j=r}^{n} \frac{n!}{(j-1)!(n-j)!} F_X(x)^{j-1} (1 - F_X(x))^{n-j} f_X(x)$$
$$-\sum_{j=r}^{n-1} \frac{n!}{j!(n-j-1)!} F_X(x)^{j} (1 - F_X(x))^{n-j-1} f_X(x).$$

Replacing j with j+1 in the second sum and changing the bounds to j=r+1 to n shows that all terms cancel except for the j=r term in the first sum, which is

$$\frac{n!}{(r-1)!(n-r)!}F_X(x)^{r-1}(1-F_X(x))^{n-r}f_X(x),$$

as desired.

Fun puzzle / interview problem

Puzzle. Sample 10 values X_1, \ldots, X_{10} uniformly on [0, 1]. What is the expected difference between the 6th and 5th smallest values?

Solution. We want $\mathbb{E}(X_{(6)} - X_{(5)})$. Here our n = 10 samples are generated from Unif(0,1) which has $f_{\text{Unif}(0,1)}(x) = 1$ and $F_{\text{Unif}(0,1)}(x) = x$. By our Key Fact, the rth order statistic has pdf

$$f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!}x^{r-1}(1-x)^{n-r}.$$

This is precisely the pdf of Beta(r, n-r+1)! Using the warm-up, the mean of this is $\frac{r}{n+1}$, so

$$\mathbb{E}(X_{(6)} - X_{(5)}) = \mathbb{E}(X_{(6)}) - \mathbb{E}(X_{(5)}) = \frac{6}{11} - \frac{5}{11} = \frac{1}{11}.$$

Here is the important takeaway.

Slogan. The order statistics for Unif are Beta.

Challenge. Come up with a more intuitive solution to this puzzle, using the following idea: uniformly sampling 10 points on [0,1] is the same thing as uniformly sampling 11 points on a circle.