Daily Research Logs

Yi Chen California institute of technology chen.yi.first@gmail.com

October 7, 2010

Contents

1	\mathbf{Sep}	\mathbf{tembe}	r 2010	3			
	1.1	6263 I	Log (Septemper 29, 2010)	4			
		1.1.1	Goals	4			
		1.1.2	Summary List	4			
		1.1.3	Latex logbook	4			
		1.1.4	Reading exotica hotline code	5			
		1.1.5	Reflection	5			
		1.1.6	Goals for next work day	5			
	1.2	6264 I	Log (Septemper 30, 2010)	6			
		1.2.1	Goals	6			
		1.2.2	Summary List	6			
		1.2.3	Go through vecbos meetings in September	6			
			1.2.3.1 Espace meetings	6			
			1.2.3.2 V+Jet meetings	7			
		1.2.4	Go through Heal meetings on noise	7			
			1.2.4.1 Heal Noise WG	7			
			1.2.4.2 Heal DPG	8			
		1.2.5	Updating VecBosApp to newest version and test run on				
			data (2.66/pb)	8			
		1.2.6		10			
				10			
		1.2.7		10			
		1.2.8	Goals for next work day				
2	Oct	ober 2	2010	11			
	2.1	6265 I	Log (October 1, 2010)	12			
		2.1.1		12			
		2.1.2	Summary List	12			
		2.1.3		12			
		2.1.4		12			
			2.1.4.1 Things tried	12			
				12			
				14			
			2.1.4.4 Other items - moved to next work day to think				
			· · · · · · · · · · · · · · · · · · ·	14			
		2.1.5		15			
			9	15			
				15			

	2.1.6	To-do's for next week
		2.1.6.1 Z+Jet Candle
		2.1.6.2 W+Jet Fit Without b-tagging 16
		2.1.6.3 Heal Noise Characterization 16
		2.1.6.4 Heal Noiseline Project
		2.1.6.5 Heal DQM Integration
	2.1.7	Reflection
	2.1.8	Goals for next work day
2.2	6267 I	Log (October 3, 2010)
	2.2.1	Goals
	2.2.2	<u>Summary List</u>
	2.2.3	Reading exotica hotline code
		2.2.3.1 "Physics signature" in exotica hotline 18
		2.2.3.2 Event cleaning in exotica hotline 19
	2.2.4	<u>Reflection</u>
	2.2.5	Goals for next work day
2.3	6271 I	Log (October 4, 2010)
	2.3.1	Goals
	2.3.2	<u>Summary List</u>
	2.3.3	Making exotica hotline run as is
	2.3.4	Reading of CMS paper draft EXO-10-002-001 21
	2.3.5	Heal noise classification
	2.3.6	Checking status of the ZJets candle note
	2.3.7	<u>Reflection</u>
	2.3.8	Goals for next work day
2.4	$6272 \; {\rm I}$	Log (October 5, 2010)
	2.4.1	Goals
	2.4.2	Summary List
	2.4.3	Signal pulse shape for classification studies 23
	2.4.4	Heal DQM installation
	2.4.5	Meeting with Artur on CMS noiseline
	2.4.6	Adding basic filters to the noiseline
	2.4.7	Vecbos Z fitting
	2.4.8	Reflection
	2.4.9	Goals for next work day
2.5	6273 I	Log (October 6, 2010)
	2.5.1	Goals
	2.5.2	Summary List
	2.5.3	Vecbos to-do chart
	2.5.4	Reflection 28
	2.5.5	Goals for next work day
		2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

Chapter 1

September 2010

1.1 6263 Log (Septemper 29, 2010)

1.1.1 Goals

- 1. Catch up with Maria
- 2. Get some rest

1.1.2 Summary List

- 1. Back from vacation. Trying to catch up.
- 2. Copied exotica hotline code to CMSDetNoiseLine package. Nothing modified.
- 3. Setup new logbook in latex.
- 4. Start reading exotica hotline code.

1.1.3 Latex logbook

The main goal is to have a logbook that is easily searchable and scalable. Original handwritten logbooks have the advantage of sketching ideas, but is not suitable for searching or write texts with a lot of revisions. In the near future I might start using scanners to scan sketches as pictures and include them in the latex logbook. To make it scalable, each day is to have its own tex segment which can be included in a tex file that does the structuring. The title and (sub-) sections are newly defined commands that can be reassigned in the structuring tex file.

The structure of each day is as follows:

- 1. Daily goals.
- 2. Summary of things done.
- 3. For each non-trivial item, write something about it.
- 4. Meeting notes.
- 5. Anything else worth noting.
- 6. Reflection. What was done and what could be done better.
- 7. Progress on studying, summary on paper reading.
- 8. Minimum goal for the next workday.

Not all of them need to be filled in.

1.1.4 Reading exotica hotline code

The code is in package UserCode/ExoticaHotLine/src/HotlineSkimCode/RecoSkim. In the final configuration file, each filter is a module, and there are various paths assembling them together. In the end the events are kept using the SelectEvents field in PoolOutputModule.

Even though it need not be the case, it appears that all the filters are implemented together as a EDFilter named RecoSkim. Different filters are the same module with different parameters. For Hcal noise we definitely can implement multiple filter modules.

There are two modules in the hotline code directory. One is the aforementioned RecoSkim filter, which looks like basic cut-based selections with cut values specified in the configuration file. The other one is an analyzer HotlineSummary, and it appears to be printing various summary values from edm collections. The printout is long....this module is probably only for debugging purposes.

1.1.5 Reflection

Need to think through the purpose of heal noise hotline. I want to be able to estimate noise rate (of various type) for any given run from the hotline. Also it will be good to include some kind of correlation with beam luminosity and/or triggers.

On latex logbook, need to think about possible types of extensions and how to implement them. In principle the current framework should be enough.

1.1.6 Goals for next work day

- 1. Skim through Hcal noise meetings
- 2. Skim through vecbos meetings
- 3. Catch up with progress on the candle note and make a list of items to do
- 4. Move the daily latex logbook to svn
- 5. Catch Maria

1.2 6264 Log (Septemper 30, 2010)

1.2.1 Goals

- 1. Go through vecbos meetings in september
- 2. Go through Hcal meetings in september
- 3. Move the logbook to subversion
- 4. Make a list of things to do for the candle note

1.2.2 Summary List

- 1. Skimmed through vecbos meetings in espace and V+Jet meetings
- 2. Skimmed through heal WG meetings and DPG meetings
- 3. Moved logbook to subversion
- 4. Update VecbosApp to newest version, test run on the current muon list (up to run 144114). No obvious problem spotted.

1.2.3 Go through vecbos meetings in September

1.2.3.1 Espace meetings

- 1. September 8, "Thresholds" by Maria Spiropulu. Default value: CaloJet 30, UncorrectedCalo 20, Track 15, PF 30
- 2. September 8, "Lucas Fit" by Lukas Vanelderen.
 - (a) Fit MT for W, t+X, other
 - (b) Fix shape to MC for W, t+X, and float the other
 - (c) "W and top+X separated well and unbiassed from other"
 - (d) Fit W+LF vs. W+HF with t+X, and use the HF fraction from MC to recover W yield
- 3. September 15, "btag" by Lukas Vanelderen. Control sample for HF from data. Need to read about b-tagging algorithms.
- 4. September 15, "Vecbos Meeting" by Matthias Ulrich Mozer. Revisit uncertainties on AlphaL and AlphaR.
 - (a) Traditional fit: fix alpha to best known value, and redo fit with different alpha to get uncertainty
 - (b) Nuisance parameter: constrain alpha by a gaussian centered at the best known value.
 - (c) 7-fit plot.
- 5. September 22, "Vecbos Meeting". "W and Z + jets" by E. di Marco in General EWK meeting.
- 6. September 22, "Vecbos Meeting". Lukas updated results on WJet fit.

- September 22, "Vecbos Meeting". Will Reece updated on trigger efficiencies.
- 8. September 29, "W fit strategy, flavor part" by Lukas Vanelderen. Estimate PDF from b-tag variables from control samples for t+X and W+LF. Seems to have problem in the 2Jet bin.

1.2.3.2 V+Jet meetings

- 1. September 7. Lukas on fit strategy in W+Jets (sane as the one in espace). Z candle analysis status report (with toys).
- 2. September 21, "Introduction on Zbb issues and current plans" by Alexandre Nikitenko. Z+b is similar to H+b
- 3. September 21, "Task list overview" by Vitaliano Ciulli and Ilaria Segoni.
- 4. September 28, "Report on Zbb analysis" by Anne-Marie Magnan.
- 5. September 28, "Report on Zb(b) analysis" by Natalie Heracleous.
- 6. September 28, "Update on Z(ee)+jets and W(enu) +jet studies" by Sarah Malik. (....)
- 7. September 28, "Status on PFlow Z+Jets Analysis" by Anil Pratap Singh.

1.2.4 Go through Hcal meetings on noise

1.2.4.1 Hcal Noise WG

- 1. September 9, "HF Flags in 3_8 (slides for Maria)". Some notes on HF reconstruction and flagging.
- 2. September 9, "Isolated Noise Filtering" by John Paul Chou. Summary of the isolation-based noise filter. Performance on ttbar and Ztautau. Suggests going on to JetID. Reviewed reconstruction chain.
- 3. September 9, "HPD Pulseshape Discriminators" by Jason St. John. Included HE. MC shape needs work.
- 4. September 9, "Hits in a Jet" by Hongxuan Liu. Good hits and PMT window hit could overlap.
- 5. September 9, "HBHE Timing and Noise Studies" by Phil Dudero. Derive time envelope from collisions. Plots for time envelope with/without low energy hits as well as square filter (energy independent).
- September 9, "Impact on MET due to ECAL masked/dead cells" by Hongxuan Liu. Jet response 2% quantile map. Holes correspond to dead cells. Jet energy recovery algorithm.
- 7. September 23, "Isolated Noise Filter: Performance" by John Paul Chou. Update his filter to be used as a hit cleaner and not a event filter.
- 8. September 23, "HBHE Timing and Noise Studies" by Phil Dudero. Some error/problem two weeks ago. Updated square filter results.

1.2.4.2 Hcal DPG

Note: Talks that have nothing to do with noise are omitted here.

- 1. September 13, "HCAL QIE Offsets" by a list of people. The new setting is consistent with old setting (with a overall constant shift) for HB and HE
- September 13, "HCAL Noise" by Maria. A summary to be used in Bodrum.
- 3. September 27, "TP Energy Scale" by Patrick Tseng. He recalibrated and checked TP energy.
- 4. September 27, "QIE hardware offset and time reco" by Pawel de Barbaro. Validated new QIE settings. Overall good. Time spread is smaller. Some channels (not many) are off.
- 5. September 27, "Precise time correction" by Jeremiah Mans. An independent analyses to derive time corrections. Compared with those from Pawel et al. and looked at channels that disagree.
- 6. September 27, "An Isolated HB/HE Noise Filter" by John Paul Chou. Same talk as in Hcal noise WG.
- 7. September 30, "Phi calibration of HB, HE initial results" by Igor Vodopiyanov. Intercalibration using non-ZS data. Not clear from the presentation what "E1" is.

The QIE hardware timing offset is adjusted since runs 146XXX!

1.2.5 Updating VecBosApp to newest version and test run on data (2.66/pb)

- 1. Everything went fine on cvs update and merging versions.
- 2. Test run on ZJetsMADGRAPH sample, all jobs finished successfully, though castor was busy for one job. Rerun does the job.
- 3. Copying from castor back to local disk gives ". : Invalid argument". Maybe castor was extremely busy.
- 4. ps. the error means that disk quota was exceeded.
- 5. No problem spotted in ZJetsMADGRAPH sample from the QM plots.
- 6. Test run on current dataset (up to run 144114, 2.66/pb reported). While submitting jobs, encountered one instance of "LSF js on lxbsp0901.cern.ch: LFS js: no AFS token" error. It doesn't seem to be related to the updating of VecBosApp. It doesn't seem to be affecting anything either. Jobs are successful.
- 7. The castor-friendly safety sleep time (10s) is getting annoying now that there is more statistics. Let's try to reduce it to 3 seconds.
- 8. Data looked OK at first glance.
- 9. The mass of any two global muons looks nice, see figure 1.1.

Figure 1.1: Mass of any two global muons from all processed data so far (up to run 144114). Peaks from right to left are speculated to be Z (\sim 90), Upsilon family (\sim 10), J/Psi(1s, 2s) (\sim 3), phi (\sim 1), rho/omega (0.7 \sim 0.8), and muonium (\sim 0.2). (ps. The last one was just kidding. It's probably from doubly reconstructed ghost muons. Though further investigation is needed.)

1.2.6 Meeting notes

1.2.6.1 Caltech group meeting

- 1. There is some narrow peak discovered (!?)
- 2. Maria: the comment system needs to be rethought. Actual commitment is needed. Comments on physics, not styles.
- 3. Artur gave a presentation on the recent drama on Hcal. Accidental unmasking of hcal bad channels, severity level in HLT
- 4. Piotr reports on the peak of opposite-sign dimuons around 244 GeV.
- 5. Update from Jan. $Z \rightarrow \mu\mu$ vs. $\mu\mu + \gamma$, Energy scale of photon.
- 6. Action items for next Tuesday to be emailed out by Dorian

1.2.7 Reflection

To fully understand heal noise, we need to have real categories (instead of the simplistic ion/hpd/rbx picture), and monitor the change over time to obtain a control sample estimate of the amount of noise of each type for all RBXs.

1.2.8 Goals for next work day

- 1. Sort out goals for Hcal noise line
- 2. Make sure how prescale works with multiple triggers
- 3. Make a list of to-do items for candle analysis
- 4. Review/summarize progress so far on pulse shape variables
- 5. Check strategy on Z shape fit, find out ways to contrain RooFormulaVar

Chapter 2

October 2010

2.1 6265 Log (October 1, 2010)

2.1.1 Goals

- 1. Check the opposite-sign dimuon spectrum and note anything interesting, especially the "muonium" peak.
- 2. How does the trigger prescale work?
- 3. Sort out the purpose of Hcal noiseline and how/what to implement
- 4. Summarize work on noise characterization so far
- 5. Make a list of to-do items on candle note
- 6. How to do the fit on Z shape?

2.1.2 Summary List

- 1. Noiseline meeting. Not too productive without a clear-cut goal.
- 2. Checked quickly opposite-sign di-muon mass spectrum.

2.1.3 Opposite-sign dimuon (global) spectrum

The result of almost all data is shown in figure 2.1. I still need to think about the overall underlying shape of the curve. For example, what is the wide bump around 2 GeV and 14 GeV. The resonances are nice however. The tail also bends after the Z peak.

2.1.4 Work so far on noise characterization

2.1.4.1 Things tried

- 1. First three TS should be compatible to zero.
- 2. The maximum N continuous time slices. Generalization of E2.
- 3. Number of time slices required to achieve P%. Useful to pick out sharp noise and broad noise.
- 4. RMS vs. mean of the 10 TS.
- 5. Linear fit of the pulse shape. Potentially useful to pick out flat pulses.
- 6. Two-step fit.

2.1.4.2 Late pulses - produced at interaction

Skimmed through PDG tables and estimate what might be late, and how much energy they will deposit. Assume distance to go is 1.4m. See table 2.1 for numbers.

Figure 2.1: Opposite-sign dimuon (global) mass spectrum for almost full statistics (full = 2.66/pb). The last job is still running, and I don't think it matters for this. The muonium peak goes away, which is nice.

Particle	Mass (GeV)	τ (ns)	$\min(\beta)$	max delay (ns)	Energy (GeV)
$\pi+$	0.13957	26.033	0.176	26.45	0.142
K+	0.493677	12.38	0.353	13.23	0.528
K_{0L}	0.497614	51.16	0.0908	51.37	0.500
p	0.938	∞	0.000	∞	0.938
n	0.940	∞	0.000	∞	0.940
Ω -	1.67245	0.0821	0.9998	4.667	95.08
Ξ_0	1.31486	0.29	0.998	4.676	21.20
Ξ_	1.32171	0.1639	0.9994	4.670	37.656

Table 2.1: Table for maximum delay (constrained by particle lifetime) of particles produced at interaction point and travelled 1.4 m. The "maximum delay" is calculated using the mean lifetime. Other particles decay too quickly, the delay would be tiny.

Out of these, only $\pi+$, K+, K_{0L} , proton and neutron have the chance to reach 1.4m at 12.5 ns or more. The equivalent total energy would be 0.15, 0.53, 0.54, 1.01, 1.01 GeV, respectively. Longer time delay means smaller energy these are the ballpark numbers we expect. If the allowed length is 3m, then the total energy will be 0.23, 0.82, 0.83, 1.56, 1.57 GeV. So from the slow (relatively) stable particles produced at interaction we expect O(1 GeV) energy deposit at most, if they were half TS or more late.

2.1.4.3 Late pulses - decay-in-flight

The idea here is that there might be some heavy stuff produced at small β , and decay after a while to light, energetic particles. Lab frame lifetime is $\gamma \tau$, and let's take an assumption that the decay product is extremely energetic, ie, $\beta \sim 1$. Let's do the calculation when the parent particle stays on average 12.5 ns in lab frame, and the minimum required energy of it.

$$\begin{array}{rcl} T&=&12.5ns\\ \gamma&=&\frac{T}{\tau}\\ \\ \beta&=&\sqrt{1-\gamma^{-2}}=\sqrt{1-\frac{\tau^2}{T^2}}\\ \\ \text{Distance travelled}&=&\beta\gamma c\tau=\beta cT=\beta\times 3.74m \end{array}$$

Unless τ is close enough to T, the particle won't stay in the detector for 12.5 ns. Which means that under the assumption that the decay product is relativistic, decay-in-flight particles will at most deposit same order of energy as the ones produced at production. If the decay product has classical velocity, it won't deposit much energy anyways.

2.1.4.4 Other items - moved to next work day to think about

After the afternoon noiseline meeting, it seems that I have a lot on my plate already. Let me make a definite plan on how to tackle each of them first....

- 1. Late pulses late hadronic/EM shower-developement....what's the typical shower develop time? What's the chance that a shower fragment makes an ion-feedback noise?
- 2. Out-of-time pulses radiation from other sub-detectors...how is the strength of radiation related to dosage history (for different material)? What's the expected dosage for certain instantaneous luminosity? Can we estimate the radiation from the environment? What's the radiation content? Mostly photons? How about hadrons?
- 3. Out-of-time pulses beam background
- 4. Out-of-time pulses cosmic muons
- 5. Things that might worth trying

2.1.5 Meeting notes

2.1.5.1 6265 Morning Noiseline Meeting

- 1. Maria had a car accident. I hope it's not too serious.
- 2. The main thing to clarify is the purpose of the noiseline. Everything goes from there.
- 3. Adi mentioned a few possible use cases:
 - (a) Find noise that won't be caught otherwise
 - (b) Correlation between detectors (more like DQM plots)
 - (c) Radiation damage?
- 4. What I want is some kind of noise trend monitoring, finer than the current ion/HPD/RBX categories
- 5. To begin with, Artur will send me examples of DQM codes so that I can play with it.

2.1.5.2 6265 Afternoon Noiseline Meeting

- 1. Until we have the first result, the noiseline should be the same as exotica hotline keep events so that we can look at it. We want to integrate into DQM and P5 event display.
- 2. Have one firework display that constantly show noises + physics. (And one for normal events, one for exotica hotline.)
- 3. Eventually it will become a skim.
- 4. To start with, we should see what is meaningful. Find noise overlapping with physics signature (muons, etc.).
- 5. Artur: integrate into Hcal DQM?
- 6. JetMET? Homework for Artur?
- 7. What is Muon DPG doing? Homework for Piotr.
- 8. Now we should put whatever we have in (HCAL, ECAL).
- 9. Maria: We need to think about the workflow to rereco without noise cleaning.
- 10. How to catch new forms of noise?
- 11. Piotr will show dimuon results! He will check noise in muon system and report.
- 12. Exotica hotline spots possible types of new noise, and we follow up on them
- 13. Integrate Shuichi's monitoring to DQM?
- 14. Run first on exotica hotline files and see how many we keep.

- 15. As a first step, try to run the exotica hotline workflow.
- 16. Aim to have a prototype in the next two weeks.
- 17. Artur wants to have Hcal noise DQM done in the next two weeks. (Attack for bonus point!)

2.1.6 To-do's for next week

2.1.6.1 **Z**+Jet Candle

- 1. Find Matthias and update on the status of fit...strategy, etc.
- 2. Find out how to constrain RooFormulaVar to be greater than zero.
- 3. Check out a copy of the Z candle note and make a list of items to produce (and automize).
- 4. Check with Maurizio and see if I miss anything.

2.1.6.2 W+Jet Fit Without b-tagging

 Check with Chris to discuss on the strategy. Maybe there is a working fit from electrons.

2.1.6.3 Heal Noise Characterization

- 1. Continue doing subtraction from noise sample.
- 2. Make a signal root file and see where the signal lands.
- 3. Get the most recent timing correction from Jeremy et. al.
- 4. Condense into a few categories of noise shape and make EDFilter of them.
- 5. Then it's ripe to integrate into DQM

2.1.6.4 Hcal Noiseline Project

- 1. Check out the exotica hotline twiki (https://twiki.cern.ch/twiki/bin/view/CMS/ExoticaHotline) and follow the steps to get a working version.
- 2. Read and make a map of various paths in the exotica hotline to see what physics signatures are included.
- 3. Check what kinds of noise cleaning are done in the hotline.
- 4. If noise filter is not there, include a simple one (ICHEP JP filter) to start.

2.1.6.5 Hcal DQM Integration

- 1. Get code structure from Artur, make a working private copy.
- 2. Learn how the structure is in the DQM.
- 3. Add a simple practice plot to the structure.
- 4. Somehow find out where Shuichi's code is, and extract the requirements on different categories.
- 5. Put Shuichi's monitoring tool into DQM plots.
- 6. Integrate ICHEP JP filter variables into this private DQM.
- 7. Integrate JP isolation filter-related variables into this private DQM.

2.1.7 Reflection

.....

2.1.8 Goals for next work day

See previous section "To-do's for next week"

2.2 6267 Log (October 3, 2010)

2.2.1 Goals

- 1. Understand the filtering logic behind exotica hotline
- 2. Make the hotline code work
- 3. Make a list of people to bug

2.2.2 Summary List

- 1. Read exotica hotline code and list the physics signatures it is catching.
- 2. Checked the event cleaning in exotica hotline.

2.2.3 Reading exotica hotline code

2.2.3.1 "Physics signature" in exotica hotline

Paths available in the hotlineSkim_AllFilters_cfg.py. All paths are basicFilters(NoPV) + ak5CaloJetsL2L3 + HBHENoiseFilter and then the target filter.

- 1. High Ht (NoPV). HtJetThreshold = 30, HtMin = 700
- 2. High Met. PFMetMin = 300
- 3. High Pt Electron. gsfElectron, PT Min = 100
- 4. High Pt Photon. 150 GeV, photons collection
- 5. High Pt Jet. 350 GeV. ak5CaloJet.
- 6. High Pt Muon. 80 GeV. Standard muon collection.
- 7. Multi Track (NoPV). 600 tracks. generalTracks collection
- 8. Multi Muon. Two muons above 45 GeV.
- 9. Multi Electron (NoPV). Two electrons above 45 GeV.
- 10. Multi Jet (NoPV). Five jets above 50 GeV.
- 11. Multi Photon (NoPV). Three photons above 30 GeV.
- 12. Top Electron (NoPV). b-jet PT min 50 GeV, b-jet discriminator 1.7, one b-jet. HtJetThreshold 30, HtMin 150. At least one electrons above 80 GeV.
- 13. Top Muon (NoPV). Same as the previous path.
- 14. Top Hadron (NoPV). b-jet requirement same as before. HtMin become 200.

2.2.3.2 Event cleaning in exotica hotline

- 1. Basic filters (with/without PV).
 - (a) Primary vertex. n.d.o.f. at least 4, max z deviation 25, max d0 deviation 2. offlinePrimaryVertices collection
 - (b) Physics declared.
 - (c) Scraping. 10 tracks above 0.2.
- 2. ak5CaloJetL2L3. JetMETCorrections.Configuration.DefaultJEC_cff.
- 3. HBHENoiseFilter. Same as the one in CommonTools.RecoAlgos.HBHENoiseFilter_cfi except that the EMF requirement is added. The version in CMSSW_3_8_2 is confirmed to be the same as the ICHEP one.

2.2.4 Reflection

Orz. Not much done today.... Sunday isn't really productive.

The ecal spike cleaning seems to be turned on by default before the hotline. Maybe we want to somehow read from the uncleaned version of it, and coincide spike signature with physics signature. But for the time being I'll reverse the Hcal filter only.

2.2.5 Goals for next work day

- 1. Make the hotline work!
- 2. Ecal spikes vs. hotline?
- 3. Read EXO-10-002-001 and compile a list of comments.
- 4. Bug Artur for DQM code
- 5. Bug Maurizio/Matthias for fitting strategy

2.3 6271 Log (October 4, 2010)

2.3.1 Goals

- 1. Make the hotline work!
- 2. Ecal spikes vs. hotline?
- 3. Read EXO-10-002-001 and compile a list of comments.
- 4. Bug Artur for DQM code
- 5. Bug Maurizio/Matthias for fitting strategy

2.3.2 Summary List

- 1. First attempt at running exotica hotline code. Local running is fine. For CAF access or to run cronjobs, I'll have to wait a bit.
- 2. Quickly read through EXO-10-002 and made a small list of comments.
- 3. Got the Heal DQM instructions from Artur.
- 4. Start getting a signal shape sample.

2.3.3 Making exotica hotline run as is

Following instructions on the twiki https://twiki.cern.ch/twiki/bin/viewauth/CMS/ExoticaHotline.

1. First step is to run it locally and see if it works.

```
scramv1 project CMSSW CMSSW_3_8_2
cd CMSSW_3_8_2/src
cvs co -r V00-02-02 -d HotlineSkimCode/RecoSkim \\
    UserCode/ExoticaHotLine/src/HotlineSkimCode/RecoSkim
scramv1 build
cd HotlineSkimCode/RecoSkim/test
eval 'scramv1 runtime -sh'
cmsRun hotlineSkim_AllFilters_cfg.py
```

- 2. Successfully built. hotlineTopHadron_cfi.py is missing! Copy from the checked out version from last week. This example file read SUSY LM1 relval samples. Now it seems to be working after copying the configuration file fragment.
- 3. Disk quota exceeded. :(Change to output to tmp directory.
- 4. Done. The output is a edm format file with some events in it. Meow. cmsShow is cool.
- 5. Next thing to try is to setup cron job.

cd /afs/cern.ch/user/t/tulika/scratch2/ExoticaHotLine/cronJob
python exoHotLineCron.py Run2010B ExpressPhysics \\
 /afs/cern.ch/user/t/tulika/scratch2/ExoticaHotLine/CMSSW_3_8_2/src

- 6. Permission denied!!! Oops.
- 7. Maria is asking Luca Malgeri for permissions on CAF.

2.3.4 Reading of CMS paper draft EXO-10-002-001

Information on the version read:

2010/09/21 Head Id: 17377 Archive Id: 17381

Archive Date: 2010/09/20 Archive Tag: trunk

Overall it is a good paper, though it will be good to elaborate a bit on details. Whether to add more detail to paper is another thing, but I would like to know how the analysis is done. Main questions/comments below:

- 1. Line 26. Why choose positive sign?
- 2. Line 54. Cone size of 0.7 is huge, especially since the eta range is only 1.4 units or so for each region. Is there any particular reason smaller cone sizes are not used?
- 3. Line 80-83. Elaborate a bit more on this? The reference didn't say much either.
- 4. Line 92. How is the 20% determined?
- 5. Figure 1. The choice of division points for mass is perplexing....
- 6. Figure 1. How much systematics is expected on pythia prediction? Is it okay to plot the band too?
- 7. Line 100. What is ρ_j exactly?
- 8. Line 108-109. Is the overall shift in units of ratio? Could the choice of constant shift be justified?
- 9. Line 129-134. Where does the 10x amplification come from?

Cosmetics left for other people to pick. I'm not good at English.

2.3.5 Heal noise classification

- 1. The most important thing is to get a sample of signal pulse shape, and also noises from a couple other runs. Let me do that now.
- 2. Copied code from Work to Workspace on lxplus. The code is in lxplus:scratch0/Workspace/HcalNoise/ExamplePulseShapes/6271. Batch submitted for signal pulses. Input: DigiTree, Output: QM histograms and PulseShape tree.

- 3. The run time for individual job is about 20 minutes, as estimated by the test run.
- 4. Encountered "No space left on device" error. Since the files are too large (more than 2 GB), so I copied them to local tmp folder before running....Orz....
- 5. For now, let's leave it there and see how bad it is. All I need is some samples of pulses.
- 6. No. Change it back to rfio access. At least I will have some useful pulses this way.
- 7. Cloned a copy of the analyzer code to pccit28:Workspace/HcalNoise/PulseShapeVariableBrainStorm/6271.
- 8. There are repeating entries due to castor error. After 2GB is reached, trees won't be read and the content of the branches appear repeating.
- 9. For now make a comparison of ADC to previous entry, and if it is the same, drop the event.

2.3.6 Checking status of the ZJets candle note

- 1. First I need to find the svn repository....can't find it.
- 2. Maybe it's easier to bug people for it.

2.3.7 Reflection

Start from the afternoon, I was getting dizzy and lowered the work efficiency. How can I improve this?

2.3.8 Goals for next work day

- 1. Install DQM from Artur
- 2. Fit!
- 3. Finish up Hcal signal sample shape

2.4 6272 Log (October 5, 2010)

2.4.1 Goals

- 1. Install DQM from Artur
- 2. Fit!
- 3. Finish up Hcal signal sample shape

2.4.2 Summary List

- 1. Heal DQM basic code checkout. The GUI is not installed yet.
- 2. Created signal pulse shape sample.
- 3. Compared signal and noise pulse shapes with the brainstorm ideas.
- 4. Met with Artur to briefly talk about noiseline ideas
- 5. Encorporated JP's isolation filter into the noiseline package
- 6. The float-all version of the candle fit works.

2.4.3 Signal pulse shape for classification studies

Comparing ADC collection might take a lot of time. Changed to event number/run number. The result looks fine from a test run.

2.4.4 Hcal DQM installation

Following the instructions in the twiki page https://twiki.cern.ch/twiki/bin/viewauth/CMS/HcalDQM, I checked out the three packages in CMSSW version 3_8_2.

```
cvs co -r V14-00-16 DQM/HcalMonitorClient
cvs co -r V14-00-10 DQM/HcalMonitorModule
cvs co -r V14-00-27 DQM/HcalMonitorTasks
scramv1 build
```

Then proceed into running the test python configuration file. The input file is missing but after relacing the input list with a root file of RAW format, it runs fine. The root file used is

```
/store/data/Run2010B/MinimumBias/RAW/v1/000/146/804/
E89586EA-AOCA-DF11-BBD1-001617DBD472.root.
```

After the job is done, there is a root file produced in the temp directory. Inside there are a lot of root files and pieces of information. Does this mean that the installation was successful?

Now onto the GUI. The twiki is at https://twiki.cern.ch/twiki/bin/view/CMS/DQMTest.

....Looks complicated. Wait until Artur comes to see what is what.

2.4.5 Meeting with Artur on CMS noiseline

We agreed on trying the following

- 1. Put in the noise filters (standard one, JP isolation filter) to the noiseline
- 2. Are there spike in $|i\eta|$ 85?
- 3. Double-spike algorithm
- 4. Try to run on the runs from last week where the bad channel is unmasked accidentally. And see if it can be picked out.

2.4.6 Adding basic filters to the noiseline

Checked out the JP isolation filter and it compiled fine. However, the boolean value that was used to be there is gone. So I copied the boolean part from his code (earlier version) and merged it into the current version. One can now run the python configuration file and use the result from the reflagging.

2.4.7 Vecbos Z fitting

Updated the fit script. New things:

- 1. The confusing yield plot is not produced anymore. Instead, a table (plot) is produced which includes the yields.
- 2. Initial guess of signal yields is estimated using the total number of events and slope 0.2.
- 3. No top level models that contain signal/background. Each jet bin is a model by itself and included in the final pdf separately. This is to simplify the final yield calculation.

Note. If the initial guess is too far from reality, the errors will go crazy. Sometimes they will be incredibly small (1e-8 level), or more often they will be larger than the fitted yields. Currently I fix only α_L . The result of fit for calojet (30 GeV) and PF jet (30 GeV) are shown in figure 2.2 and 2.3.

Description of the fit implemented.

- 1. Each jet bin is to have its own function. Cruijff for signal, and exponential for background. The function for each jet bin is multiplied by a RooSameAs or RooAtLeast to constrain it in the designated bin.
- 2. The bins are exclusive, except the last one.
- 3. Signal yields are declared to be inclusive, and the number assigned to the signal function in each jet bin is a RooFormulaVar which is just the subtraction of the two relavent inclusive numbers (except the last one).
- 4. Initial guess of inclusive signal yields is the total number of events, with slope 0.2.
- 5. The cruijff function is constrained to be exactly the same in all jet bins.
- 6. The α_L value is fixed, and all others are left floating.

Summary Plot

Figure 2.2: Result of float-all-signal-yield fit of Calo jets with 30 GeV. No restriction on relative yield is applied. The error on inclusive yield is from roofit directly. The fit takes care of the error. The error on exclusive signal yield is not defined for RooFormulaVar, so it shows zero. The out-of-the-box background yields are the exclusive ones, and the inclusive yield errors are added in quadrature. (α_L is fixed to 0.485)

Summary Plot

Figure 2.3: Result of float-all-signal-yield fit of PF jets (30 GeV). Refer to the calojet one (figure 2.2) for more information.

2.4.8 Reflection

Not enough focus on vecbos.... The DQM work can be slower.

2.4.9 Goals for next work day

- 1. Read and understand the double spike algorithm
- 2. Make sure if anyone is doing the vecbos PDMu dataset
- 3. Make a set of loose cuts to remove obvious noise, and skim through pulse shapes of the rest
- 4. Port the HCAL ideal pulse shape (as in CMSSW) to RooFit
- 5. Vecbos fitting strategy?
- 6. To-do chart for ZJets candle note for fast execution once target data ($\sim 50 pb^{-1}$) arrives

2.5 6273 Log (October 6, 2010)

2.5.1 Goals

- 1. Read and understand the double spike algorithm
- 2. Make sure if anyone is doing the vecbos PDMu dataset
- 3. Make a set of loose cuts to remove obvious noise, and skim through pulse shapes of the rest
- 4. Port the HCAL ideal pulse shape (as in CMSSW) to RooFit
- 5. Vecbos fitting strategy?
- 6. To-do chart for ZJets candle note for fast execution once target data ($\sim 50 pb^{-1}$) arrives

2.5.2 Summary List

1. Made a checklist and sent to Maurizio for comment

2.5.3 Vecbos to-do chart

- 1. Data, numbers after each cut. (Ready)
- 2. Data, tight isolation to get alphaL. (Ready)
- 3. Data, simultaneous fit to get the right error on signal inclusive yields without enforcing linear constraint. (Ready)
- 4. Data, fit with the linear constraint. To be compared with the one without enforcing constraint. (Coming soon)
- 5. Data, get the ratio plot from the result of the fit. (Need the script to take the fit output and make the final plot)
- 6. Data, repeat the fit 4 times for JEC uncertainty. (Not yet done...coming soon)
- 7. Data, anti-isolation selection. (Ready)
- 8. Data, splot to get Z PT, leading-jet PT spectrum, etc. (???)
- 9. MC, numbers after each cut, as well as numbers in each jet bin. (Ready)
- 10. MC, demonstration that the isolation does not have a large impact on alphaL. (Ready)
- 11. MC, anti-muon selection & QCD normal selection. (Ready...though QCD sample is small)
- 12. MC, justify that an isolation is needed with PF stuff. (Ready)
- 13. MC, $Z \to \mu\mu$ PT shape vs. $Z \to \nu\nu$ MET shape comparison. (Not yet done)

- 14. MC, efficiencies in different jet bin. (Not ready)
- 15. Toy MC, on the functional form itself. Generate sample with cruijff, fit to check the spread. (OK, repeatable within a day)
- 16. Toy MC, if the parameters are off, how much bias will there be. Show that only alphaL matters. (OK, repeatable within a day)
- 17. Show that the error we get from the simultaneous fit is reasonable (???)
- 18. Efficiency of the trigger (???)

Reply from him:

- 1. There is a tool to calculate splots in RooStat
- 2. Not much to be done in trigger efficiency

2.5.4 Reflection

An extremely slow day....

2.5.5 Goals for next work day

- 1. Read and understand the double spike algorithm
- 2. Make sure if anyone is doing the vecbos PDMu dataset
- 3. Make a set of loose cuts to remove obvious noise, and skim through pulse shapes of the rest
- 4. Port the HCAL ideal pulse shape (as in CMSSW) to RooFit