En el texto se considera la distribución espacial de la energía para dos fuentes puntuales. Se afirma que para el caso en el cual la separación a es mucho mayor que la longitud de onda λ de la onda, el promedio espacial de I_{12} es cero. Porque esto es cierto? Que sucede cuando a es mucho menor que la longitud de onda?

2 Solución

Enunciado

1

Para iniciar hay que saber que $a=r_{max}-r_{min}$. Ahora bien, dado $\epsilon_1=\epsilon_2, \, \delta=k(r_1-r_2)$ varia desde 0 a ka. Si $a\gg \lambda$ δ (y por lo tanto I_{12}) tendrían muchos máximos y mínimos y por lo tanto promediaría a 0 en una porción considerable de espacio. En contraste, si $a\ll \lambda, \, \delta$ variaría muy poco y por tanto I_{12} no promediaría a 0 y tomando en cuenta esto y la ecuación 1 cambia muy poco con $4I_0$. Por lo que las fuentes se comportarían esencialmente como una sola con el doble de la fuerza.

3 Contexto

$$I = 2I_0 (I + \cos \delta) = 4l_0 \cos^2 \frac{\delta}{2}.$$
 (1)

Name: Monica Cano

Yeferson Camacho Sergio Montoya