

IoT-oriented RISC-V-based SOTB-65nm System-on-Chip Implementations

Khai-Duy Nguyen, Koichiro Ishibashi, Cong-Kha Pham, and Trong-Thuc Hoang

Department of Computer and Network Engineering, The University of Electro-Communications, Tokyo, Japan

June 20th, 2023

- Introduction
- System On Chip
 - System Architecture
 - Core Architecture
- Measurement and Results
- Conclusions

- Introduction
- System On Chip
 - System Architecture
 - Core Architecture
- Measurement and Results
- Conclusions

[1] 8-bit Processor in SOTB 65nm

[2] 8-bit and 32-bit in 0.18µm CMOS.

[1]M. Sarmiento et al., IEEE TCAS-II, 2021.

[2]M. Sarmiento et al., IEEE TCAS-II, 2022.

- Introduction
- System On Chip
 - System Architecture
 - Core Architecture
- Measurement and Results
- Conclusions

System Architecture

- Introduction
- System On Chip
 - System Architecture
 - Core Architecture
- Measurement and Results
- Conclusions

Core Architecture

Core Architecture

Core Architecture

- Introduction
- System On Chip
 - System Architecture
 - Core Architecture
- Measurement and Results
- Conclusions

VDD:0.27V~1.2V VBB: -2.0V~2.0V	Operating Voltage	VDD:0.27V~1.2V VBB: -2.0V~2.0V
98,423	Area[µm2]	118,026
~70,000	Gate Count	~84,000
11kHz~30MHz	Operating Frequency	10kHz~30MHz
$VDD: 0.27V \sim 1.1V \\ VBB: -2.0V \sim -0.4V$	Sub-μW Operating	$VDD: \ 0.27V \sim 0.9V \\ VBB: \ \textbf{-}2.0V \sim \textbf{-}0.4V$
SERV-32E	Microprocessor	SERV-32I

Area distribution of SoCs.

- 16 registers = 28% core footprint
- SERV-32E is approximately 17% smaller than SERV-32I

Table I. ASIC Implementation in comparison.

	Tech.	VDD [V]	Power [μW/MHz]	Leakage [μW]	NAND Gate	Freq. [MHz]
[3]	SOTB 65nm	0.22	13.3	0.049	50.1k	14
[4]	FDX 22nm	0.42	4.47	105.4	-	18
[5]	FDX 22nm	0.55	6.3	6.6	-	40
[6]	FDSOI 28nm	0.4	3.3	8.4	1	40
[7]	FDSOI 65nm	0.5	13.4	-	-	0.00207
SERV-32I	SOTB 65nm	0.29	3.53	0.007	84k	0.011
SERV-32I SoC	SOTB 65nm	0.29	6.97	0.03	-	0.011
SERV-32E	SOTB 65nm	0.29	2.37	0.0024	70k	0.01
SERV-32E SoC	SOTB 65nm	0.29	3.11	0.0037	-	0.01

- Introduction
- System On Chip
 - System Architecture
 - Core Architecture
- Measurement and Results
- Conclusions

Conclusions

This paper presents two SERV serial architecture SoCs based on the RISC-V specification, SERV-32I, and SERV-32E. We have shown how architectural heterogeneity affects area overhead and power consumption. In terms of area, cutting 16 registers in the RF reduces the footprint by 28% of the processor. In terms of power consumption, the power consumption of the SERV-32I is about 1.5 times higher than that of the SERV-32E in the reverse-body bias region.

Thank You For Your Listening

Acknowledgement

This work was supported by JST-CREST Grant Number JPMJCR16Q1. It is also supported by VDEC, the University of Tokyo, in collaboration with Synopsys, Inc., Cadence Design Systems Inc., Mentor Inc., Renesas Electronics Corp., and Nippon Systemware Co., Ltd

Acknowledgement

- 1.M. Sarmiento et al., "A Sub-µW Reversed Body-Bias 8-bit Processor on 65-nm Silicon-on-Thin-Box (SOTB) for IoT Applications," IEEE TCAS-II, vol. 68, no. 9, pp. 3182–3186, Jun. 2021.
- 2.R. Serrano et al., "A Low-Power Low-Area SoC based in RISC-V Processor for IoT Applications," in ISOCC, Oct. 2021, pp. 375–376.
- 3.K. Ishibashi et al., "A Perpetuum Mobile 32bit CPU with 13.4pJ/cycle, 0.14µA sleep current using Reverse Body Bias Assisted 65nm SOTB CMOS technology," in IEEE COOL Chips, Apr. 2014, pp. 1–3.
- 4.Always-On 674μ W@4GOP/s Error Resilient Binary Neural Networks With Aggressive SRAM Voltage Scaling on a 22-nm IoT End-Node," IEEE TCAS-I, vol. 67, no. 11, pp. 3905–3918, Nov. 2020.
- 5.D. Walter et al., "A 0.55V " 6.3µW/MHz Arm Cortex-M4 MCU with Adaptive Reverse Body Bias and Single Rail SRAM," in IEEE COOL Chips, Apr. 2020, pp. 1–3.
- 6.D. Bol et al., "SleepRunner: A 28-nm FDSOI ULP Cortex-M0 MCU With ULL SRAM and UFBR PVT Compensation for 2.6–3.6-μW/DMIPS 40–80-MHz Active Mode and 131-nW/kB Fully Retentive Deep-Sleep Mode," IEEE JSSC., vol. 56, no. 7, pp. 2256–2269, Jul. 2021.
- 7.D. S. Truesdell et al., "A 6-140-nW 11Hz-8.2kHz DVFS RISC-V Mircoprocessor Using Scalable Dynamic Leakage-Suppesstion Logic," IEEE Solid-State Circ.Letters, vol. 2, no.8, pp.57-60, Aug. 2019.