ESERCIZIO 1

ESERCIZIO 2

Il vettore \overrightarrow{d} ha un modulo di 5.0 unità ed è orientato verso est. Il vettore \overrightarrow{b} è orientato in direzione di 35° a est rispetto al nord e ha un modulo di 4.0 unità. Si costruiscano i diagrammi vettoriali per calcolare $\overrightarrow{d} + \overrightarrow{b}$ e $\overrightarrow{b} - \overrightarrow{d}$. Si stimino i moduli e le direzioni dei vettori somma e differenza in base ai diagrammi.

ESERCIZIO 3

Tre vettori, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} ciascuno con un modulo di 50 unità, giacciono sul piano xy e formano angoli rispettivamente di 30°, 195° e 315° con l'asse x. Trovare con metodo grafico i moduli e le direzioni dei vettori $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$

ESERCIZIO 4

Dati i vettori nel piano a = (2;1) e b = (1;3) calcolare il prodotto scalare tra i due vettori e l'angolo tra essi formato.

ESERCIZIO 5

Siano \vec{a} e \vec{b} due vettori del piano di componenti rispettivamente: \vec{a} = (3;9) \vec{b} = (4;5)

Determinare l'angolo compreso tra di essi, il prodotto scalare ed il prodotto vettoriale dei due vettori.

Soluzioni:

$$\alpha = 71,6^{\circ}$$

$$B = 51.4^{\circ}$$

ESERCIZIO 6

Sul calcolo di una componente partendo dal prodotto scalare

Il prodotto scalare di due vettori è $\vec{A}\cdot\vec{B}=10$. Se il vettore \vec{B} ha componenti $\vec{B}=(2,1)$ e la componente y del vettore \vec{A} è $A_v=0$

• Calcola la componente A_x

ESERCIZIO 7

Sapendo che

$$|a|=4 \angle a=225^{\circ}$$

- I) Calcola le componenti cartesiane dei due vettori.
- II) Calcola il prodotto scalare a b fra i due vettori.

ESERCIZIO 8

Sul calcolo dell'angolo usando il prodotto scalare

Dati i vettori \vec{A} e \vec{B} di modulo, rispettivamente, $|\vec{A}|=4$ e $|\vec{B}|=3$ il loro prodotto scalare è $\vec{A}\cdot\vec{B}=6$

· Calcola l'angolo tra i due vettori

ESERCIZIO 9

Considerando che

$$|a|=4 \angle a=45^{\circ}$$

$$|b|=5 \angle b=15^{\circ}$$

I) Calcola le componenti dei vettori \overline{a} e \overline{b} .

ESERCIZIO 10

Sull'angolo tra due vettori

Siano $A_x=5$ ed $A_y=12$ le componenti del vettore \vec{A} e siano $B_x=3$ e $B_y=4$ le componenti del vettore \vec{B}