Dynamic Programming: All-pairs shortest paths

(Chapter 8)

All-pairs shortest paths

• Problem:

- Given a directed weighted graph G with n vertices, find the shortest path from any vertex v_i to any other vertex v_j , for all $1 \le (i,j) \le n$
- Note: this problem is always solved with an adjacency matrix graph representation
- Applications: This problem occurs in lots of applications

 notably in computer games, where it is useful to find shortest paths before planning movement.

- Consider Warshall's algorithm, with some changes:
 - Add weight (or cost) to each edge in the initial graph
 - When no edge exists the weight is ∞
 - "You can't get there from here" (yet)
 - Set the weights on the diagonal to be 0
 - The shortest path from a vertex to itself should be 0

- And the real key change:
 - Warshall's algorithm says this:
 - if (i,k) == (k,j) == 1 then set $(i,j) \leftarrow 1$
 - i.e. If you can get from i to k and from k to j, then now you can get from i to j
 - ...but for Floyd's we will say this:
 - if (i,k) + (k,j) < (i,j) then set $(i,j) \leftarrow (i,k) + (k,j)$
 - i.e. If i-k-j costs less than the (so far) best known path from i to j, then update the best known path"

Initial representation of the graph

j

	1	2	3	4
1	0	1	8	1
2	8	0	1	8
3	8	8	0	1
4	8	1	∞	0

Step 1:

- select row 1 and column 1
- for all i,j

if
$$(i,1) + (1,j) < (i,j)$$
 then set $(i,j) \leftarrow (i,1) + (1,j)$

			j			
		1	2	3	4	
	1	0	1	∞	1	
i	2	∞	0	1	8	
	3	∞	8	0	1	
	4	∞	1	8	0	
,						•

In this case there are no changes.

Step 2:

- select row 2 and column 2
- for all i,j

if
$$(i,2) + (2,j) < (i,j)$$
 then set $(i,j) \leftarrow (i,2) + (2,j)$

Notice:

$$(1,2) + (2,3) < \infty \rightarrow \text{set } (1,3) \leftarrow 2$$

 $(4,2) + (2,3) < \infty \rightarrow \text{set } (4,3) \leftarrow 2$

Step 3:

- select row 3 and column 3
- for all i,j if (i,3) + (3,j) < (i,j) then set $(i,j) \leftarrow (i,3) + (3,j)$

			j)	
		1	2	3	4	
	1	0	1	2	1	
i	2	8	0	$\left(1\right)$	2	
	3	∞	8	0	(1)	
	4	8	1	2	0	
,						•

There is only one change this time ...

$$(2,3) + (3,4) < \infty \rightarrow \text{set } (2,4) \leftarrow 2$$

Step 4:

- select row 4 and column 4
- for all i,j if (i,4) + (4,j) < (i,j) then set $(i,j) \leftarrow (i,4) + (4,j)$

			j			
		1	2	3	4	
	1	0	1	2	1	
i	2	8	0	1	2	
	3	8	2	0	\bigcirc 1	
	4	∞	(1)	2	0	

Again, only one change ...

$$(3,4) + (4,2) < \infty \rightarrow \text{set } (3,2) \leftarrow 2$$

This time our solution gives the shortest paths from any i to any j.

We can see that the none of 2,3, or 4 have paths to 1, and the algorithm has discovered two hop paths for $1\rightarrow 3$, $2\rightarrow 4$, $3\rightarrow 2$, and $4\rightarrow 3$,

j

	1	2	3	4
1	0	1	2	1
2	8	0	1	2
3	8	2	0	1
4	8	1	2	0

- The final matrix gives the shortest paths from any i to any j.
- Observations:
 - You can't get from anywhere to 1
 - The algorithm discovered two-hop paths for $1 \rightarrow 3$, $2 \rightarrow 4$, $3 \rightarrow 2$, and $4 \rightarrow 3$

Floyd's Algorithm (pseudocode)

```
Floyd(G[1..n, 1..n])
  for k ← 1 to n {
     for i ← 1 to n {
          cost_thru_k ← G[i,k] + G[k,j]
          if ( cost_thru_k < G[i,j] ) {
                set G[i,j] ← thru_k
          }
     }</pre>
```

This middle section is referred to as the "Warshall Parameter". We can change it around to solve a variety of problems.

Efficiency: ?

How is this DP?

- (Like Warshall's) the "sub-problem" is that it is finding shortest paths that use vertices 1..k as hopping points
- One new vertex (k) is added into the picture at each step
- After each step, you have a matrix D_k that gives the best (yet) distance through those vertices

Another Example

$$D^{(1)} = \begin{array}{c|cccc} & 0 & \infty & 3 & \infty \\ \hline 2 & 0 & \mathbf{5} & \infty \\ & \infty & 7 & 0 & 1 \\ & 6 & \infty & \mathbf{9} & 0 \\ \end{array}$$

$$D^{(3)} = \begin{array}{c} 0 & \mathbf{10} & 3 & \mathbf{4} \\ 2 & 0 & 5 & \mathbf{6} \\ 9 & 7 & 0 & 1 \\ \hline 6 & \mathbf{16} & 9 & 0 \end{array}$$

$$D^{(4)} = \begin{array}{ccccc} 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ \hline 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{array}$$