# Honors Mathematics IV RC 5

**CHEN Xiwen** 

**UM-SJTU** Joint Institute

November 19, 2018

#### Table of contents

### Complex Analysis

Complex Differentiability Sets in the Complex Plane Power Series

### Properties of Holomorphic Functions

Complex Integrals
Practical Integration
Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

### Complex Differentiability

Sets in the Complex Plane Power Series

### Properties of Holomorphic Functions

Complex Integrals
Practical Integration
Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

# Holomorphic Functions

Definition. A function  $f:\mathbb{C}\to\mathbb{C}$  is *complex differentiable*, or *holomorphic*, as  $z\in\mathbb{C}$  if

$$f'(z) := \lim_{\substack{h \to 0 \\ h \in \mathbb{C}}} \frac{f(z+h) - f(z)}{h}$$

#### exists.

- ▶ A holomorphic function is infinitely often differentiable.
- A holomorphic function is analytic.
- ▶ Any closed integral of a holomorphic function vanished.

# Complex Differentiability

Cauchy-Riemann differential equations. The complex function

$$f: \mathbb{C} \to \mathbb{C}, \quad f(x+yi) = u(x,u) + iv(x,y)$$

is holomorphic only if its components u, v satisfy

$$u_x = v_y, \qquad u_y = -v_x.$$

# Complex Differentiability

### Differential operators.

Define

$$\frac{\partial}{\partial z} := \frac{1}{2} \left( \frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right), \qquad \frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left( \frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right).$$

▶ If  $f = u + iv : \mathbb{C} \to \mathbb{C}$  is holomorphic at  $z \in \mathbb{C}$ , then

$$f'(z) = \frac{\partial f}{\partial z} = 2\frac{\partial u}{\partial z}, \qquad \frac{\partial f}{\partial \overline{z}} = 0.$$

Complex Differentiability

Sets in the Complex Plane

Power Series

### Properties of Holomorphic Functions

Complex Integrals
Practical Integration

Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

# Sets in the Complex Plane

Let  $\Omega \subset \mathbb{C}$ , then it is

► Open:

$$\forall z \in \Omega, \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(z) = \{ w \in \mathbb{C} : |w - z| < \varepsilon \} \subset \Omega.$$

- ▶ *Bounded*:  $\Omega \subset B_R(0)$  for some R > 0.
- **▶ Compact** (denoted as *K*):
  - ▶ Definition. Every sequence in *K* has a converging subsequence with limit in *K*.
  - K is compact  $\Leftrightarrow K$  is closed and bounded.
- ▶ *Disconnected*: For an open(closed) set  $\Omega$ , there exists two open(closed) sets  $\Omega_1, \Omega_2 \in \mathbb{C}$  such that

$$\Omega = \Omega_1 \cup \Omega_2, \qquad \Omega_1 \cap \Omega_2 = \emptyset.$$

▶ Region(domain): An open and connected set in C.



Complex Differentiability
Sets in the Complex Plane

Power Series

### Properties of Holomorphic Functions

Complex Integrals
Practical Integration
Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

### Power Series

Convergence. The series of the form

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

with radius of convergence  $\rho$ :  $(1/\rho = \lim_{n\to\infty} \sup |a_n|^{1/n}.)$ 

- converges if  $|z| < \rho$ .
- diverges if  $|z| > \rho$ .
- Differentiation. Within the disc of convergence,

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

is the derivative of f and has the same radius of convergence as f.

# Trigonometric Functions

► Series definition.

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \qquad \sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

► Euler formulas.

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

### **Analytic Functions**

Definition. A function f defined on an open set  $\Omega \subset \mathbb{C}$  is said to be *analytic* (or have a power series expansion) at  $z_0$  if there exists a power series centered at  $z_0$ , with positive radius of convergence such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for all z in a neighborhood of  $z_0$ . Moreover, with the same radius of convergence,

$$f'(z) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}.$$

Note. A holomorphic function is automatically analytic.

Complex Differentiability
Sets in the Complex Plane
Power Series

# Properties of Holomorphic Functions

### Complex Integrals

Practical Integration Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

# Integrals along Complex Curves

Definition. Let  $\Omega \subset \mathbb{C}$  be an open set, f is holomorphic on  $\Omega$  and  $\mathcal{C}^* \subset \Omega$  and oriented smooth curve, the integral of f along  $\mathcal{C}^*$  is defined as

$$\int_{\mathcal{C}^*} f(z)dz := \int_I f(\gamma(t)) \cdot \gamma'(t)dt.$$

In particular, we have

► Curve length:

$$\ell(\mathcal{C}) := \left| \int_{\mathcal{C}} dz \right|.$$

Orientation:

$$\int_{-\mathcal{C}^*} f(z)dz = -\int_{\mathcal{C}^*} f(z)dz.$$

Inequality:

$$\left| \int_{\mathcal{C}^*} f(z) dz \right| \leq \ell(\mathcal{C}) \cdot \sup_{z \in \mathcal{C}} |f(z)|.$$

### **Primitives**

Consider a continuous function f in an open set  $\Omega \subset \mathbb{C}$  and an oriented curve  $\mathcal{C}^*$ .

▶ 2.2.5. Theorem. If  $C^*$  begins at  $w_1$  and ends at  $w_2$  and has primitive F,

$$\int_{\mathcal{C}^*} f(z)dz = F(w_2) - F(w_1), \quad \oint_{\mathcal{C}} f(z)dz = 0.$$

▶ 2.2.9 and 10. Theorem. f is holomorphic.  $D \subset \Omega$  is a triangle or a rectangle whose interior is contained in  $\Omega$ 

$$\oint_D f(z)dz=0.$$

▶ 2.2.11. Theorem. f is holomorphic in an open disc  $\Rightarrow f$  has a primitive in that disc.



# Cauchy's Theorem

▶ 2.2.12. Cauchy's Theorem. f is holomorphic in a disc, then for any closed curve C in that disc,

$$\oint_{\mathcal{C}} f(z)dz = 0.$$

▶ Morera's Theorem (converse of Cauchy's theorem). f is a continuous function in the open disc D, such that for any triangle T contained in D,

$$\int_T f(z)dz=0,$$

then f is holomorphic.

Complex Differentiability
Sets in the Complex Plane
Power Series

### Properties of Holomorphic Functions

Complex Integrals

Practical Integration

Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

# Evaluating Real Integrals using Cauchy's Theorem

- 1. Transform the integrand into a complex function f(z).
- 2. Select appropriate contour and use Cauchy's theorem to obtain

$$\int_{-R}^{-\varepsilon} f(z)dz + \underbrace{\int_{-C_{\varepsilon}} f(z)dz}_{I_{\varepsilon}} + \int_{\varepsilon}^{R} f(z)dz + \underbrace{\int_{C_{R}} f(z)dz}_{I_{R}} = 0.$$

3. Let  $\varepsilon \to 0, R \to \infty$ . In many cases,

$$I_R \rightarrow 0, \qquad I_\varepsilon \rightarrow I_0.$$

4. Then

$$\int_{\mathbb{R}} f(x) dx = -I_0.$$

**Note.**  $-I_0$  is usually not the desired integral. We need to take some transformations.

# Evaluating Real Integrals using Cauchy's Theorem

### Example 1. Show that if $\xi \in \mathbb{R}$ , then

$$e^{-\pi\xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi} dx.$$

This means that  $e^{-\pi x^2}$  is its own Fourier transform (later). If  $\xi=0$ , the formula is the know integral

$$1=\int_{-\infty}^{\infty}e^{-\pi x^2}dx.$$

# Evaluating Real Integrals using Cauchy's Theorem

Remarks. Evaluate the following integrals.

1. Slide Example 2.2.14. Verify that

$$\int_0^\infty \frac{1-\cos x}{x^2} dx = \frac{\pi}{2},$$

by integrating

$$f(z)=\frac{1-e^{iz}}{z^2}.$$

2. Assignment 5.4 Show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

by integrating

$$f(z)=\frac{e^{iz}-1}{2iz}.$$

### Jordan's Lemma

2.2.15. Jordan's Lemma. Assume that for some  $R_0 > 0$  the function  $g : \mathbb{R} \setminus B_{R_0}(0) \to \mathbb{C}$  is holomorphic, Let

$$f(z) = e^{iaz}g(z)$$
, for some  $a > 0$ .

Let

$$C_R = \{ z \in \mathbb{C} : z = R \cdot e^{i\theta}, 0 \le \theta \le \pi \}$$

be a semi-circle segment in the upper half-plane and assume that

$$\sup_{0\leq\theta\leq\pi}|g(Re^{i\theta})|\xrightarrow{R\to\infty}0.$$

Then

$$\lim_{R\to\infty}\int_{C_R}f(z)dz=0.$$

# Cauchy's Integral Formula

2.2.16. Cauchy's Integral Formula. Suppose f is a holomorphic function in an open set  $\Omega \subset \mathbb{C}$ . If D is an open disc whose closure is contained in  $\Omega$ , then

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
 for all  $z \in D$ ,

where  $C = \partial D$  is the (positively oriented) boundary circle of D. Furthermore,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \quad \text{for all } z \in D.$$

Complex Differentiability Sets in the Complex Plane Power Series

### Properties of Holomorphic Functions

Complex Integrals
Practical Integration

Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

#### Residue Calculus

The Residue Theorem

### Analytic Functions.

2.2.20. Theorem. Suppose f is a holomorphic function in an open set  $\Omega$ . If D is an open disc centered at  $z_0$  whose closure is contained in  $\Omega$ , then f has a power series expansion at  $z_0$ 

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

for all  $z \in D$  and the coefficients are given by

$$a_n = \frac{f^{(n)}(z_0)}{n!}, \qquad n \in \mathbb{N}.$$

### **Analytic Functions**

2.2.23. Theorem. Let  $\Omega\subset\mathbb{C}$  be a region and  $f,g:\Omega\to\mathbb{C}$  two holomorphic functions. Suppose  $S\subset\Omega$  has an accumulation point that is contained in  $\Omega$  and that

$$f(z) = g(z)$$
 for all  $z \in S$ .

Then f(z) = g(z) for all  $z \in \Omega$ . Analytic Continuation.  $g: \Omega \to \mathbb{C}, \Omega \subset \mathbb{C}$  is an analytic continuation of  $f: M \to \mathbb{C}, M \subset \Omega$  if

- ▶ g is holomorphic.
- g(z) = f(z) for  $z \in M$ .

Complex Differentiability
Sets in the Complex Plane
Power Series

### Properties of Holomorphic Functions

Complex Integrals Practical Integration Analytic Functions

### Singularities and Poles

Classification of Singularities

Representation Near Poles

#### Residue Calculus

The Residue Theorem

# Classification of Singularities

Definition.  $\Omega \subset \mathbb{C}$  is open,  $z_0 \in \Omega$  and  $f : \Omega \setminus \{z_0\} \to \mathbb{C}$  is holomorphic. (f has a **point singularity at**  $z_0$ .) The singularity is

- ▶ *removable*: there exists an analytic continuation  $\tilde{f}: \Omega \to \mathbb{C}$ . (i.e.,  $\lim_{z \to z_0} f(z)$  exists.)
- **▶** a *pole*:
  - 1. g = 1/f is holomorphic on  $\Omega \setminus \{z_0\}$ .
  - 2. g has a removable singularity at  $z_0$ .
  - 3.  $\tilde{g}(z_0) = 0$ .
- essential: it is neither removable nor a pole.

### Zeros

2.3.5. Theorem. f is holomorphic in a connected open set  $\Omega$  with a zero at  $z_0 \in \Omega$  and does not vanish identically in  $\Omega$ . In a neighborhood  $U \subset \Omega$  of  $z_0$ ,

$$f(z) = (z - z_0)^n g(z)$$
 for all  $z \in U$ ,

where g is non-vanishing and holomorphic.

- ▶ n, g are both unique.
- ▶ *n* is the *multiplicity* or *order* of the zero.
- ▶ The zero is *simple* if n = 1.

### **Poles**

2.3.8. Theorem.  $f:\Omega\to\mathbb{C}$  has a pole at  $z_0\in\Omega$ , then in a neighborhood U of  $z_0$ ,

$$f(z)=(z-z_0)^{-n}h(z)\qquad \text{for all }z\in U,$$

where h is non-vanishing and holomorphic.

- n, h are both unique.
- ▶ n is the multiplicity or order of the pole.
- ▶ The pole is *simple* if n = 1.

Complex Differentiability Sets in the Complex Plane Power Series

### Properties of Holomorphic Functions

Complex Integrals Practical Integration Analytic Functions

### Singularities and Poles

Classification of Singularities

Representation Near Poles

#### Residue Calculus

The Residue Theorem

### Representation Near Poles

2.3.11. Theorem. If  $f:\Omega\to\mathbb{C}$  has a pole of order n at  $z_0\in\Omega$ , then there exists a neighborhood  $U\subset\Omega$  of  $z_0$ , numbers  $a_{-n},\ldots,a_{-1}\in\mathbb{C}$  and a holomorphic function  $G:U\to\mathbb{C}$  such that

$$f(z) = \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-n+1}}{(z-z_0)^{n-1}} + \cdots + \frac{a_{-1}}{z-z_0} + G(z)$$

for all  $z \in U$ .

Principal part:

$$P(z) := \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-n+1}}{(z-z_0)^{n-1}} + \cdots + \frac{a_{-1}}{z-z_0}.$$

► Residue:

$$\operatorname{res}_{z_0} f := a_{-1} = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z)).$$



Complex Differentiability Sets in the Complex Plane Power Series

### Properties of Holomorphic Functions

Complex Integrals
Practical Integration
Analytic Functions

### Singularities and Poles

Classification of Singularities Representation Near Poles

# Residue Calculus

The Residue Theorem

### The Residue Theorem

2.4.2. Theorem. Suppose that f is holomorphic in an open set containing a (positively oriented) toy contour C and its interior, except for poles at the points  $z_1, \ldots, z_N$  inside C. Then

$$\int_{\mathcal{C}} f(z)dz = 2\pi i \sum_{k=1}^{N} \operatorname{res}_{z_{k}} f.$$

### Residue Calculus

2.4.5. Theorem. Let P and Q be polynomials of degree m and n, respectively, where  $n \ge m+2$ . If  $Q(x) \ne 0$  for x>0, if Q has a zero of order at most 1 at the origin and if

$$f(z) = \frac{z^{\alpha}P(z)}{Q(z)}, \qquad 0 < \alpha < 1,$$

then

$$\int_0^\infty \frac{x^\alpha P(x)}{Q(x)} dx = \frac{2\pi i}{1 - e^{2\pi \alpha i}} \sum_{j=1}^k \operatorname{res}_{z_j} f,$$

where  $z_1, \ldots, z_k$  are the nonzero poles of P/Q.

### Evaluating Real Integrals Using Residue Calculus

- 1. Extend the real domain to complex domain.
  - ▶ Change  $x \in \mathbb{R}$  to  $z \in \mathbb{C}$ .
  - ▶ Consider  $e^{iz}$  for  $\sin x$ ,  $\cos x$ .
- 2. Find a suitable contour and the branch (if needed).
- 3. Find poles for f(z).
- Calculate residues for poles. (If the contour cannot be decided yet, find residue for all poles.)
  - Write out expression near poles.
  - Use

$$\operatorname{res}_{z_0} f = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z)).$$

- Write out residue theorem.
- 6. Save the desired integral and solve other parts.

Exercise 1. Suppose U and V are open sets in the complex plane. Prove that if  $f:U\to V$  and  $g:V\to\mathbb{C}$  are two functions that are differentiable (in the real sense, that is, as functions of the two real variables x and y), and  $h=g\circ f$ , then

$$\frac{\partial h}{\partial z} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \overline{z}} \frac{\partial f}{\partial \overline{z}}$$

and

$$\frac{\partial h}{\partial \overline{z}} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial \overline{z}} + \frac{\partial g}{\partial \overline{z}} \frac{\partial f}{\partial z}.$$

This is the complex version of the chain rule.

Exercise 2. Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{and} \quad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}.$$

Use these equations to show that the logarithm function defined by

$$\ln z = \ln r + i\theta$$
 where  $z = e^{i\theta}$  with  $-\pi < \theta < \pi$ 

is holomorphic in the region r > 0 and  $-\pi < \theta < \pi$ .

### Exercise 3. Evaluate the integrals

$$\int_0^\infty e^{-ax} \cos(bx) dx \quad \text{and} \quad \int_0^\infty e^{-ax} \sin(bx) dx$$

by integrating  $e^{-Az}$ ,  $A = \sqrt{a^2 + b^2}$ , over an appropriate sector with angle  $\omega$ , with  $\cos \omega = a/A$ .

Exercise 4. Let  $\Omega$  be an open subset of  $\mathbb C$  and let  $T\subset \Omega$  be a triangle whose interior is also contained in  $\Omega$ . Suppose that f is a function holomorphic in  $\Omega$  except possibly at a point w inside T. Prove that if f is bounded near w, then

$$\int_T f(z)dz=0.$$

Exercise 5. If f is a holomorphic function on the strip  $-1 < y < 1, x \in \mathbb{R}$  with

$$|f(z)| \leq A(1+|z|)^{\eta}$$

for all z in that strip, where  $\eta$  is a fixed real number. Show that for each integer  $n \ge 0$  there exists  $A_n \ge 0$  so that

$$|f^{(n)}(x)| \le A_n(1+|x|)^{\eta}$$

for all  $x \in \mathbb{R}$ .

Thanks for your attention!