Fachhochschule Brandenburg Fachbereich Informatik und Medien

Kolloquium zur Diplomarbeit

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens

Tino Schonert

Übersicht

Darstellung und Einordnung des Problems

Genetische Algorithmen

Entwurf und Implementierung

Vorstellung der Programmoberfläche

Zusammenfassung und Ausblick

Beschreibung des Problems

- mehrere Kunden, die von einem zentralen Fahrzeugdepot aus angefahren werden müssen
- ➤ Wachobjekte, Zeitfenster, Kontrollzeiten, Zeitrestriktionen der Fahrer

Ziel:

die verschiedenen Kunden so auf n Routen aufzuteilen, dass die dafür benötigte Zeit und Gesamtstrecke möglichst optimal wird

Tourenplanung

Aufteilung d. Objekte auf mehrere Routen/Fahrer, so dass alle Zeitbedingungen erfüllt werden und Gesamtkilometerzahl oder Zeitaufwand minimal wird!

Einordnung

★ lässt sich als Vehicle Routing Problem beschreiben

Vehicle Routing Problem
ähnelt stark dem bekannten
Problem des Handelsreisenden

Aufgabe: optimale Lösung finden

Absuchen des Lösungsraums!

Laufzeitkomplexität

3 Wachobjekte A,B,C Fahrzeugdepot D ein Fahrzeug

Jede mögliche Kombination muss evaluiert werden hinsichtlich der Erfüllung sämtlicher Restriktionen sowie der dafür benötigte Zeitaufwand!

Permutation: es gibt n! mögliche Anordnungen von n verschiedenen Objekten

D,C,B,A,D

(Beispiel n=3): 3! = 3*2*1= 6 mögliche Kombinationen

Laufzeitkomplexität

★ der Lösungsraum kann sehr groß werden

Anzahl d. Möglichkeiten

10 Objekte 3.628.800 12 Objekte 479.001.600 16 Objekte $\approx 2.1*10^{13}$

- ➤ Problem ist NP-vollständig (hohe Laufzeitkomplexität)
- ★ für größere Probleme unmöglich alle Kombinationen in akzeptabler Zeit zu untersuchen (Rechenzeit!)
- **★** Einsatz von **heuristischen Suchverfahren** (suboptimale Lösungen)

Bergsteigerprinzip Sintflut-Algorithmus

★ Naturanaloge Verfahren (**Evolutionäre Algorithmen**)

Genetische Algorithmen als Optimierungsverfahren

- ★ Modell nach Vorbild der biologischen Evolution und der molekularen Genetik
- ★ simuliert den Evolutionsprozeß auf dem Rechner in vereinfachter Form nach

Eigenschaften:

- **★** Repräsentations-Schema (geeignete Codierung)
- **≭** Fitness-Bestimmung, Genetische Operatoren
- ★ Parameter des GA: Populationsgröße, Pm,Pr,Pc, Selektionsform u.v.a.
- * Abbruchkriterium

Lösungsansatz

Voraussetzung

- ★ Für die Optimierung des Tourenplans benötigt man die kürzesten Entfernungen (Fahrzeit, Distanz) zwischen den einzelnen Objekten in Form eines vollständigen Graphen
- ★ in einem vollständigen Graphen ist jeder Knoten i mit jedem anderen Knoten j durch genau einen Bogen verbunden

$$b = \frac{k \cdot (k-1)}{2}$$

k = 4

b = 6

k = 5

b = 10

k = 6

b = 15

Repräsentation des Straßennetzes

* mögliche Ansätze:

1. Euklidischer Abstand (Luftlinienentfernung)

keine Berücksichtigung des zugrundeliegenden Straßennetzes (ungenau)

2. Eingabe der gesamten Entfernungsmatrix

z.B. Verwendung eines Routenplaners hoher Wartungsaufwand beim Hinzufügen von neuen Wachobjekten

3. Abbildung des Straßennetzes von Brandenburg und Umgebung

gerichteter bewerteter Graph Implementierung eines shortest-path Algorithmus

Repräsentations-Schema (Codierung)

- **★** Codierung einer Lösung des VRP als "Chromosom"
- **★** Verwendung einer **Permutationscodierung** (*Pfadrepräsentation*)

★ Jedes Chromosom(Individuum) stellt eine mögliche Lösung des Problems (Punkt im Suchraum) dar

Repräsentations-Schema (Codierung)

★ Blankzeichen zur Unterscheidung der verschiedenen Routen

★ Die Verwendung einer Permutationscodierung erfordert spezielle Mutations- und Crossoveroperatoren (inkonsistente Nachkommen)

Veränderung des Erbguts

Mutation:

Prinzip des Zweiertausches

Verschiebung eines Sequenz-Teilstückes

Veränderung des Erbguts

PMX-Crossover:

Fitnessbestimmung

Individuum: $t_{0,5}$ $t_{5,8}$ $t_{8,12}$ $t_{12,7}$ $t_{12,7}$ $t_{12,7}$ $t_{12,7}$ $t_{12,7}$ $t_{12,7}$ $t_{12,7}$ $t_{13,1}$ $t_{13,1}$

★ Unterschiedliche Zielkriterien

Fahrzeit
$$t_{0,\pi(1)} + \sum_{i=1}^{n-1} t_{\pi(i),\pi(i+1)} + t_{\pi(n),0}$$

Zeitfensterverletzungen

Arbeitszeitverletzungen

Schlüsselverletzungen

- **★** Bewertung der Tourenpläne (Mehrzieloptimierung)
- **×** Aggregationsansatz

$$F(x) = w_1 \cdot f_1(x) + w_2 \cdot f_2(x) + \dots + w_n \cdot f_n(x)$$

Entwicklungsumgebung

- **≭** Erstellung einer Windows-Applikation
- **★Borland C++**
- **×**Object Windows Library (OWL)

Zusammenfassung und Ausblick

Komplexität des Problems

Lösungsverfahren (z.B. Genetischer Algorithmus)

Modellierung

Entwurf eines GA

Windows-Anwendung

Erweiterung des Straßennetzes

