Examenul de bacalaureat național 2015 Proba E. c) Matematică *M mate-info*

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră numărul complex z = 1 + i. Calculați $(z 1)^2$.
- **5p** 2. Arătați că $3(x_1 + x_2) 4x_1x_2 = 3$, știind că x_1 și x_2 sunt soluțiile ecuației $x^2 5x + 3 = 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $4^x 3 \cdot 2^x + 2 = 0$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 13.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație y = 3x + 4 și punctul A(1,0). Determinați ecuația paralelei duse prin punctul A la dreapta d.
- **5p 6.** Calculați raza cercului circumscris triunghiului ABC, știind că AB = 12 și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & a & a+1 \\ 2 & a+2 & a+3 \end{pmatrix}$, unde a este număr real.
- **5p** a) Calculați $\det(A(a))$.
- **5p b)** Determinați numărul natural n, știind că $2A(n^2) A(n) = A(6)$.
- **5p** c) Arătați că există o infinitate de matrice $X \in \mathcal{M}_{3,1}(\mathbb{R})$ care verifică relația $A(2015) \cdot X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 + mX 3$, unde m este număr real.
- **5p** a) Pentru m=2, arătați că f(1)=0.
- **5p b)** Determinați numărul real m, știind că polinomul f este divizibil cu X+1.
- **5p** c) Arătați că, pentru orice număr real strict pozitiv m, polinomul f are două rădăcini de module egale.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+1}{e^x x}$
- **5p a)** Calculați f'(x), $x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 0$, situat pe graficul funcției f.
- **5p** c) Calculați $\lim_{x \to +\infty} f(-x)$.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{\sqrt{x^2 + 4}}$.
- **5p** a) Calculați $\int_{0}^{2} f^{2}(x) dx$.
- **5p b)** Arătați că orice primitivă a funcției f este funcție crescătoare pe \mathbb{R} .
- **5p** c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 x^n f(x) dx$. Arătați că $nI_n = \sqrt{5} 4(n-1)I_{n-2}$ pentru orice număr natural n, $n \ge 3$.