1. Considereu la funció següent:

$$f(x) = \frac{1}{\sqrt{(1-x)^5}}$$

- a) (4 punts) Trobeu el seu polinomi de Taylor de grau 2 centrat en x=0 i l'expressió del residu corresponent en la forma de Lagrange.
- b) (4 punts) Fent ús del polinomi i de l'expressió del residu trobats a l'apartat anterior i explicitant tots els càlculs, doneu el valor aproximat de $\frac{1}{\sqrt{(1.05)^5}}$ i acoteu l'error.
- c) (2 punts) Fent ús de Maple s'obté: $eval f\left(\frac{1}{\sqrt{(1.05)^5}}\right) = 0.8851701342$. Prenent aquest valor com a valor correcte, evalueu l'error de l'aproximació trobada a l'apartat b) i comproveu que és consistent amb el valor de la cota de l'error trobat a l'apartat b).

SOLUCIÓ:

a) El polinomi de Taylor de grau 2 d'una funció f(x) centrat en x = 0 és: $P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2$ i l'expressió del residu corresponent en la forma de Lagrange és: $R_2(x) = \frac{f'''(c)}{3!}x^3$ per a cert c entre 0 i x. Les derivades primera, segona i tercera de f són:

$$f'(x) = \frac{5}{2(1-x)^{\frac{7}{2}}}, \quad f''(x) = \frac{35}{4(1-x)^{\frac{9}{2}}} \quad i \quad f'''(x) = \frac{315}{8(1-x)^{\frac{11}{2}}}.$$

Substituïnt x per 0 s'obté $f'(0) = \frac{5}{2}$ i $f''(0) = \frac{35}{4}$, llavors el polinomi de Taylor de grau 2 de la funció f(x) centrat en x = 0 és:

$$P_2(x) = 1 + \frac{5}{2}x + \frac{35}{8}x^2.$$

I l'expressió del residu corresponent en la forma de Lagrange és:

$$R_2(x) = \frac{105}{16(1-c)^{\frac{11}{2}}}x^3$$

per a cert c entre 0 i x.

b) Fent ús del polinomi trobat el valor aproximat de $\frac{1}{\sqrt{(1.05)^5}}$ és: $\frac{1}{\sqrt{(1.05)^5}} = \frac{1}{\sqrt{(1-(-0.05))^5}} = f(-0.05) \simeq P_2(-0.05) = 0.8859375000.$

L'error de l'aproximació $\frac{1}{\sqrt{(1.05)^5}} \simeq P_2(-0.05)$ és el valor absolut del residu: $|R_2(-0.05)|$. Fent x = -0.05 en l'expressió del residu de l'apartat a) s'obté:

$$|R_2(-0.05)| = \frac{105}{16(1-c)^{\frac{11}{2}}}(0.05)^3$$
, per a cert c tal que $-0.05 < c < 0$.

Aquesta expressió és creixent en c, per tant, en ser -0.05 < c < 0, es té:

$$|R_2(-0.05)| = \frac{105}{16(1-c)^{\frac{11}{2}}}(0.05)^3 < \frac{105}{16}(0.05)^3 \simeq 0.00082032.$$

Així, una cota superior de l'error comès en el càlcul de l'apartat anterior és $\cot a_{error} = 0.00082032$.

c) Prenent el valor 0.8851701342 com a valor correcte de $\frac{1}{\sqrt{(1.05)^5}}$, l'error de l'aproximació trobada a l'apartat b) és:

$$|0.8851701342 - 0.8859375000| = 0.0007673658$$

Donat que $0.0007673658 < cot a_{error} = 0.00082032$, queda comprovat que és consistent amb el valor de la cota de l'error trobat a l'apartat b).

- **2.** Donades les funcions $f(x) = \sqrt{\frac{x}{2}}$ i g(x) = |1 x|.
 - a) (2 punts) Representeu en una mateixa gràfica les corbes y = f(x) i y = g(x).
 - b) (4 punts) Calculeu l'àrea del recinte del pla limitat per les dues corbes y = f(x) i y = g(x).
 - c) (4 punts) Considereu les funcions $F(x) = \int_1^x f(t) dt$ i $G(x) = \int_x^{x^2} g(t) dt$. Justifiqueu l'existència de les seves derivades F'(x) i G'(x) per a x > 1 i calculeu-les.

SOLUCIÓ:

a) La figura següent mostra la gràfica de les corbes y = f(x) i y = g(x) i el recinte del pla limitat per les dues corbes:

b) Atès que g(x) = 1 - x si $x \le 1$ i g(x) = x - 1 si $x \ge 1$, l'àrea del recinte es pot calcular fent:

$$\int_{\frac{1}{2}}^{1} \left(\sqrt{\frac{x}{2}} - (1 - x) \right) dx + \int_{1}^{2} \left(\sqrt{\frac{x}{2}} - (x - 1) \right) dx = \frac{13}{24}$$

c) La funció f és contínua per a tot x>1, per tant el Teorema Fonamental de Càlcul ens assegura que la funció F és derivable per a tot x>1 i que $F'(x)=f(x)=\sqrt{\frac{x}{2}}.$

La funció g és contínua per a tot x>1 i tant x com x^2 són derivables per a tot x>1, per tant el Teorema Fonamental de Càlcul i la Regla de la cadena ens permeten afirmar que la funció G és derivable per a tot x>1 i que $G'(x)=g(x^2)\cdot 2x-g(x)=(x^2-1)\cdot 2x-(x-1)=2x^3-3x+1$.

- 3. Considereu la funció $f(x,y) = x^2 3x + y^2 2y$.
 - a) (3 punts) Calculeu la derivada direccional de f en el punt (1, 2) en la direcció del vector que forma un angle de $\frac{\pi}{4}$ amb el sentit positiu de l'eix d'abcisses.
 - b) (3 punts) Justifiqueu l'existència d'extrems absoluts de f en el recinte $K \subset \mathbb{R}^2$ definit per:

 $K = \{(x, y) \in \mathbb{R}^2 : \frac{x}{2} \le y \le 2x, \ x^2 + y^2 \le 5\}.$

c) (4 punts) Trobeu els extrems absoluts de f en K.

SOLUCIÓ:

a) La funció f és polinòmica i per tant de classe C^1 en tot \mathbb{R}^2 . Les seves derivades parcials són: $\frac{\partial f}{\partial x} = 2x - 3$ i $\frac{\partial f}{\partial y} = 2y - 2$, per tant $\vec{\nabla} f(1,2) = (-1,2)$.

El vector unitari que forma un angle de $\frac{\pi}{4}$ amb el sentit positiu de l'eix d'abcisses és el vector $\vec{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Per tant la devivada direccional demanada és:

$$D_{\vec{v}}f(1,2) = \vec{\nabla}f(1,2) \cdot \vec{v} = (-1,2) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{\sqrt{2}}{2}.$$

b) Un esquema de la representació gràfica del recinte K és:

Atès que f és contínua en tot \mathbb{R}^2 i el recinte K és un compacte (és tancat ja que conté a tots els seus punts frontera $(Fr(K) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 5, 1 \le x \le 2\} \cup \{(x,y) \in \mathbb{R}^2 : y = \frac{x}{2}, 0 \le x \le 2\} \cup \{(x,y) \in \mathbb{R}^2 : y = 2x, 0 \le x \le 1\}$), i és acotat ja que $K \subset B((0,0);3)$), pel teorema de Weierstrass, f té extrems absoluts en K.

c) Els punts crítics de f són les solucions del sistema d'equacions:

$$\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 3 = 0 \\ 2y - 2 = 0 \end{cases}$$

Per tant la funció f té un únic punt crític que és el punt $\left(\frac{3}{2},1\right)$. Aquest punt crític pertany a l'interior de K, per tant hi ha un punt crític de f a l'interior de K: el $\left(\frac{3}{2},1\right)$.

Buscarem els punts crítics de f condicionats a ser en la frontera de K:

(i) Punts crítics de f condicionats a ser sobre el segment $\{(x,y) \in \mathbb{R} : y = \frac{x}{2}, \ 0 \le x \le 2\}$: fent $y = \frac{x}{2}$ tenim $f(x, \frac{x}{2}) = \frac{5}{4}x^2 - 4x$, que és una funció d'una variable $\varphi(x) = \frac{5}{4}x^2 - 4x$. Per trobar els punts crítics igualem la seva derivada a 0 i resolem: $\varphi'(x) = \frac{5}{x}x - 4 = 0 \Rightarrow x = \frac{8}{5}$. Així s'obté el punt crític $\left(\frac{8}{5}, \frac{4}{5}\right)$.

(ii) Punts crítics de f condicionats a ser sobre el segment $\{(x,y) \in \mathbb{R} : y = 2x, 0 \le x \le 1\}$: fent y = 2x tenim $f(x,2x) = 5x^2 - 7x$, que és una funció d'una variable $\psi(x) = 5x^2 - 7x$. Per trobar els punts crítics igualem la seva derivada a 0 i resolem: $\psi'(x) = 10x - 7 = 0 \Rightarrow x = \frac{7}{10}$. Així s'obté el punt crític $\left(\frac{7}{10}, \frac{7}{5}\right)$.

(iii) Punts crítics de f condicionats a ser sobre el segment circular $\{(x,y)\in\mathbb{R}:\ x^2+y^2-5=0,\ 1\leq x\leq 2\}$: aplicant el mètode de Lagrange, construïm la funció de Lagrange:

$$L(x, y, \lambda) = x^2 - 3x + y^2 - 2y - \lambda(x^2 + y^2 - 5)$$

Igualem les seves tres derivades parcials a zero i resolem:

$$\begin{cases} L'_x = 0 \\ L'_x = 0 \\ L'_\lambda = 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 3 - 2\lambda x = 0 \\ 2y - 2 - 2\lambda y = 0 \\ x^2 + y^2 - 5 = 0 \end{cases}$$

Per la primera equació x no pot ser igual a 0 i per la segona y tampoc. Multiplicant la primera equació per y, la segona equació per x i restant les equacions resultants tenim: -3y + 2x = 0 i per tant $y = \frac{2}{3}x$. Fent $y = \frac{2}{3}x$ en la tercera equació, s'obté: $\frac{13}{9}x^2 - 5 = 0$, i per tant $x^2 = \frac{45}{13}$, d'on la solució positiva és: $x = \frac{3\sqrt{65}}{13}$ i s'obté el punt crític $\left(\frac{3\sqrt{65}}{13}, \frac{2\sqrt{65}}{13}\right)$. (iv) Vèrtexs de K: (0,0), (1,2) i (2,1).

Les imatges per f dels punts crítics trobats són:

$$f\left(\frac{3}{2},1\right) = -\frac{13}{4}, \ f\left(\frac{8}{5},\frac{4}{5}\right) = -\frac{16}{5}, \ f\left(\frac{7}{10},\frac{7}{5}\right) = -\frac{49}{20},$$
$$f\left(\frac{3\sqrt{65}}{13},\frac{2\sqrt{65}}{13}\right) = 5 - \sqrt{65}, \ f(0,0) = 0, \ f(1,2) = -2, \ f(2,1) = -1,$$

Per tant, el valor màxim absolut de f en K és 0 i l'assoleix al punt (0,0) i i el valor mínim absolut de f en K és $-\frac{13}{4}$ i l'assoleix al punt $\left(\frac{3}{2},1\right)$.