Convex Optimization M2

Lecture 1

Today

- Convex optimization: introduction
- Course organization and other gory details...
- Convex sets, basic definitions.

Convex Optimization

Convex Optimization

- How do we identify easy and hard problems?
- Convexity: why is it so important?
- Modeling: how do we recognize easy problems in real applications?
- Algorithms: how do we solve these problems in practice?

Least squares (LS)

minimize
$$||Ax - b||_2^2$$

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are parameters; $x \in \mathbb{R}^n$ is variable

- Complete theory (existence & uniqueness, sensitivity analysis . . .)
- Several algorithms compute (global) solution reliably
- We can solve dense problems with n=1000 vbles, m=10000 terms
- By exploiting structure (e.g., sparsity) can solve far larger problems

... LS is a (widely used) technology

Linear program (LP)

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

 $c, a_i \in \mathbb{R}^n$ are parameters; $x \in \mathbb{R}^n$ is variable

- Nearly complete theory
 (existence & uniqueness, sensitivity analysis . . .)
- Several algorithms compute (global) solution reliably
- $lue{}$ Can solve dense problems with n=1000 vbles, m=10000 constraints
- By exploiting structure (e.g., sparsity) can solve far larger problems

... LP is a (widely used) technology

Quadratic program (QP)

minimize
$$\|Fx - g\|_2^2$$
 subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

- Combination of LS & LP
- Same story . . . QP is a technology
- Reliability: Programmed on chips to solve real-time problems
- Classic application: portfolio optimization

The bad news

- LS, LP, and QP are exceptions
- Most optimization problems, even some very simple looking ones, are intractable
- The objective of this class is to show you how to recognize the nice ones. . .
- Many, many applications across all fields. . .

Polynomial minimization

minimize p(x)

p is polynomial of degree d; $x \in \mathbb{R}^n$ is variable

- **E**xcept for special cases (e.g., d=2) this is a **very difficult problem**
- Even sparse problems with size n=20, d=10 are essentially intractable
- $lue{}$ All algorithms known to solve this problem require effort exponential in n

What makes a problem easy or hard?

Classical view:

- linear is easy
- nonlinear is hard(er)

What makes a problem easy or hard?

Emerging (and correct) view:

. . . the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993

Convex optimization

minimize
$$f_0(x)$$

subject to $f_1(x) \leq 0, \dots, f_m(x) \leq 0$

 $x \in \mathbb{R}^n$ is optimization variable; $f_i : \mathbb{R}^n \to \mathbb{R}$ are **convex**:

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

for all x, y, $0 \le \lambda \le 1$

- includes LS, LP, QP, and many others
- like LS, LP, and QP, convex problems are fundamentally tractable

Example: Stochastic LP

Consider the following stochastic LP:

minimize
$$c^T x$$

subject to $\mathbf{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

coefficient vectors a_i IID, $\mathcal{N}(\overline{a}_i, \Sigma_i)$; η is required reliability

- for fixed x, $a_i^T x$ is $\mathcal{N}(\overline{a}_i^T x, x^T \Sigma_i x)$
- so for $\eta = 50\%$, stochastic LP reduces to LP

minimize
$$c^T x$$

subject to $\overline{a}_i^T x \leq b_i, \quad i = 1, \dots, m$

and so is easily solved

what about other values of η , e.g., $\eta = 10\%$? $\eta = 90\%$?

Hint

$$\{x \mid \mathbf{Prob}(a_i^T x \leq b_i) \geq \eta, i = 1, \dots, m\}$$

Convexity again

stochastic LP with reliability $\eta=90\%$ is convex, and very easily solved

stochastic LP with reliability $\eta=10\%$ is not convex, and extremely difficult

moral: **very difficult** and **very easy** problems can look **quite similar** (to the untrained eye)

Convex Optimization

A brief history. . .

- The field is about 50 years old.
- Starts with the work of Von Neumann, Kuhn and Tucker, etc.
- Explodes in the 60's with the advent of "relatively" cheap and efficient computers. . .
- Key to all this: fast linear algebra
- Some of the theory developed before computers even existed. . .

Convex optimization: history

- Convexity ⇒ low complexity:
 - "... In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." **T. Rockafellar**.
- True: Nemirovskii and Yudin [1979].
- Very true: Karmarkar [1984].
- Seriously true: convex programming, Nesterov and Nemirovskii [1994].

Standard convex complexity analysis

- All convex minimization problems with: a first order oracle (returning f(x) and a subgradient) can be solved in polynomial time in size and number of precision digits.
- Proved using the ellipsoid method by Nemirovskii and Yudin [1979].
- Very slow convergence in practice.

Linear Programming

- Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very efficient in most cases.
- Khachiyan [1979] then used the ellipsoid method to show the polynomial complexity of LP.
- Karmarkar [1984] describes the first efficient polynomial time algorithm for LP, using interior point methods.

From LP to structured convex programs

- Nesterov and Nemirovskii [1994] show that the interior point methods used for LPs can be applied to a larger class of structured convex problems.
- The self-concordance analysis that they introduce extends the polynomial time complexity proof for LPs.
- Most operations that preserve convexity also preserve self-concordance.
- The complexity of a certain number of elementary problems can be directly extended to a much wider class.

Symmetric cone programs

An important particular case: linear programming on symmetric cones

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax - b \in \mathcal{K} \end{array}$$

■ These include the LP, second-order (Lorentz) and semidefinite cone:

LP:
$$\{x \in \mathbb{R}^n : x \ge 0\}$$

Second order: $\{(x,y) \in \mathbb{R}^n \times \mathbb{R} : ||x|| \le y\}$
Semidefinite: $\{X \in \mathbf{S}^n : X \succeq 0\}$

Again, the class of problems that can be represented using these cones is extremely vast.

Course Organization

Course Plan

- Convex analysis & modeling
- Duality
- Algorithms: interior point methods, first order methods.
- Applications

Grading

Course website with lecture notes, homework, etc.

http://www.cmap.polytechnique.fr/~aspremon/OptConvexeM2.html

- A few homeworks, will be posted online.
- A final project (a few exercises, some code).

Short blurb

- Contact info on http://www.cmap.polytechnique.fr/~aspremon
- Email: alexandre.daspremont@m4x.org
- Dual PhDs: Ecole Polytechnique & Stanford University
- Interests: Optimization, machine learning, statistics & finance.

Recruiting PhD students starting next year. Full ERC funding for 3 years.

References

- All lecture notes will be posted online
- Textbook: Convex Optimization by Lieven Vandenberghe and Stephen Boyd, available online at:

http://www.stanford.edu/~boyd/cvxbook/

 See also Ben-Tal and Nemirovski [2001], "Lectures On Modern Convex Optimization: Analysis, Algorithms, And Engineering Applications", SIAM.

http://www2.isye.gatech.edu/~nemirovs/

- Nesterov [2003], "Introductory Lectures on Convex Optimization", Springer.
- Nesterov and Nemirovskii [1994], "Interior Point Polynomial Algorithms in Convex Programming", SIAM.

Convex Sets

Convex Sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbb{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull CoS: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- $||tx|| = |t| ||x|| \text{ for } t \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- **S**ⁿ is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

 $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbb{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

Affine function

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

lacktriangle the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Generalized inequalities

a convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- lacksquare positive semidefinite cone $K = \mathbf{S}^n_+$
- lacktriangleright nonnegative polynomials on [0,1]:

$$K = \{ x \in \mathbb{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

lacktriangle componentwise inequality $(K=\mathbb{R}^n_+)$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

lacktriangle matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K properties: many properties of \leq_K are similar to \leq on \mathbb{R} , e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$

 $x \in S$ is the minimum element of S with respect to \leq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

example $(K = \mathbb{R}^2_+)$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

$$K = \mathbb{R}^n_+ \colon K^* = \mathbb{R}^n_+$$

$$K = \mathbf{S}_{+}^{n} \colon K^{*} = \mathbf{S}_{+}^{n}$$

$$K = \{(x,t) \mid ||x||_2 \le t\}: K^* = \{(x,t) \mid ||x||_2 \le t\}$$

$$K = \{(x,t) \mid ||x||_1 \le t\}: K^* = \{(x,t) \mid ||x||_\infty \le t\}$$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \leq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \leq_K

• if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

References

- A. Ben-Tal and A. Nemirovski. *Lectures on modern convex optimization : analysis, algorithms, and engineering applications.* MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics : Mathematical Programming Society, Philadelphia, PA, 2001.
- N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373–395, 1984.
- L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady Akademiia Nauk SSSR, 224:1093–1096, 1979.
- A. Nemirovskii and D. Yudin. Problem complexity and method efficiency in optimization. *Nauka (published in English by John Wiley, Chichester, 1983)*, 1979.
- Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.
- Y. Nesterov and A. Nemirovskii. *Interior-point polynomial algorithms in convex programming*. Society for Industrial and Applied Mathematics, Philadelphia, 1994.