Вычисление определенных интегралов.

ЦЕЛЬ РАБОТЫ:

Изучение возможных путей для вычисления определенных интегралов с помощью компьютера.

ЗАДАНИЕ К ЛАБОРАТОРНОЙ РАБОТЕ:

- 1. Реализовать численное нахождение определённых интегралов от произвольной функции (квадратурные формулы треугольников, трапеций, Симпсона).
- 2. Выполнить тестирование на 8 различных тестовых интегралах. Сравнить погрешности полученных результатов. (Интегралы для точной оценки можно вычислить в ручную)
- 3. Построить графики функций и квадратур. Сравнить погрешности полученных для различного числа точек, разбивающих отрезок.

СОДЕРЖАНИЕ ОТЧЕТА:

- 1. Краткая постановка задачи.
- 2. Краткое описание выполнения задания.
- 3. Графики и результаты вычисления по всем заданиям.
- 4. Листинг программного кода и результатов работы программы.
- 5. Выполняемый ехе файл, скомпилированный для запуска на неподготовленном компьютере. Инструкция пользователя.
- 6. Выводы.

СОДЕРЖАНИЕ РАБОТЫ:

Квадратурные формулы

Пусть на отрезке [a, b] задана непрерывная функция f(x). Разобьем отрезок [a, b] на n частей: $a = x_0 < x_1 < x_2 < ... < x_n = b$.

Обозначим: $\Delta x_1 = x_1 - x_0$, $\Delta x_2 = x_2 - x_1, ...$, $\Delta x_i = x_i - x_{i-1}, ...$ В каждом из отрезков $\left[x_{i-1}, x_i\right]$ возьмем по точке $\xi_i \in \left[x_{i-1}, x_i\right]$.

Составим сумму:

$$S_n = f(\xi_1) \cdot \Delta x_1 + f(\xi_2) \cdot \Delta x_2 + \dots + f(\xi_n) \cdot \Delta x_n = \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i.$$

Определение. Геометрически S_n есть алгебраическая сумма площадей прямоугольников, имеющих основания Δx_i и высоты $f(\xi_i)$. S_n называют интегральной суммой для f(x) на отрезке [a, b]. Если при любых разбиениях отрезка [a, b] таких, что $\max_i \Delta x_i \to 0$, и при любом выборе точек ξ_i

интегральная сумма $S_n = \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i$ стремится к одному пределу S, то этот предел называется *определенным интегралом* от функции f(x) на отрезке [a, b] и $\int_a^b f(x) dx$.

Широко используемым методом приближенного вычисления определенного интеграла $J=\int\limits_a^b f(x)dx$, является аппроксимация функции $f(x)=\sum_{i=0}^n \alpha_i(x)\cdot f(x_i)+r(x)$, где r(x) — есть погрешность аппроксимации, с последующим интегрированием:

$$J = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} C_{i} \cdot f(x_{i}) + R, \ C_{i} = \int_{a}^{b} \alpha_{i}(x) dx, \ R = \int_{a}^{b} r(x) dx.$$

Определение. Тогда $J = \int_a^b f(x) dx \approx \sum_{i=0}^n C_i \cdot f(x_i)$ называется квадратурной формулой, которая называется точной, если ее остаточный член (погрешность) равен нулю.

Для построения квадратурной формулы вычисления определенного интеграла будем аппроксимировать функцию f(x) интерполяционным полиномом Лагранжа: $f(x) \sim L_n(x)$. При n=0, т.е. без разбиения исходного отрезка на части, полином Лагранжа имеет вид: $L_0(x) = f\left(\frac{a+b}{2}\right)$, $x \in [a, b]$, и $S = (b-a) \cdot f\left(\frac{a+b}{2}\right)$ — формула серединных прямоугольников. Остаток при этом может быть найден как $R = \frac{(b-a)^3}{24} f''(\eta)$.

Для повышения точности вычисления определенного интеграла следует разбить отрезок $\begin{bmatrix} a, \ b \end{bmatrix}$ на m частей, длина каждой из которых $h = \frac{b-a}{m}$, тогда к каждой части применяем формулу серединных прямоугольников, и получаем: $S = \frac{b-a}{m} \bigg(f \bigg(a + \frac{h}{2} \bigg) + f \bigg(a + \frac{3h}{2} \bigg) + ... + f \bigg(a + \frac{2m-1}{2} \cdot h \bigg) \bigg) - cocmaвная квадратурная формула прямоугольника.$

Погрешность которой имеет вид: $R = \frac{(b-a)^3}{24m^2} f''(\eta)$, откуда можно найти оценку погрешности $R \leq \frac{(b-a)^3}{24} \cdot M \cdot h^2$, $M = \sup_{x \in [a, b]} |f''(x)|$ и сделать вывод, что при малых h формула имеет погрешность порядка $O(h^2)$.

Аналогично при n=1, можно получить квадратурную формулу трапеции $S = \frac{(b-a)}{2} \cdot (f(a) + f(b))$ с погрешностью $R = -\frac{(b-a)^3}{12} f''(\eta)$, а составная квадратурная формула трапеции примет вид:

$$S = \frac{b-a}{2m} (f_0 + 2f_1 + ... + 2f_{m-1} + f_m),$$

а погрешность $R = -\frac{(b-a)^3}{12m^2} f''(\eta)$ и имеет порядок $O(h^2)$.

При n=2 функция на каждом промежутке аппроксимируется параболой , что приводит к *квадратурной формуле Симпсона*:

$$S = \frac{(b-a)}{6} \cdot \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right),$$

с погрешностью $R = -\left(\frac{b-a}{2}\right)^5 \cdot \frac{f^{IV}(\eta)}{90}$.

Делим отрезок на 2m частей, к каждой части применяем квадратурную формулу Симпсона, суммируем и получаем составную квадратурную формулу

Симпсона:

$$S = \frac{b-a}{6m} \left(f_0 + f_{2m} + 2 \left(f_2 + f_4 + \ldots + f_{2m-2} \right) + 4 \left(f_1 + f_3 + \ldots + f_{2m-1} \right) \right)$$
 с погрешностью

 $R = -\left(\frac{b-a}{2}\right)^5 \cdot \frac{f^{IV}(\eta)}{90m^4}$ порядка $O(h^4)$, что на два порядка точнее более простых формул.