

1 of 3 30-04-15 17:56

- \$ sudo umount /dev/sdc*
- \$ sudo dd if=output/images/soekris.img of=/dev/sdc bs=1M
- \$ sudo sync

Above command assumes the CF card reader is connected as /dev/sdc. Check the output of the command <code>dmesg | tail directly</code> after inserting a CF card to see if this is the case. If not change the device name to comply with your configuration.

To test the kernel and rootfs with QEMU:

\$ qemu-system-i386 -kernel output/images/bzImage -append "root=/dev/sda panic=1 console=ttyS0" -no-rebo

This command will boot a virtualized Soekris. In fact it is running the Soekris root filesystem on a virtualized PC.

After booting the real or the virtual Soekris you should be able to login as root with password root.

Raspberry Pi

Build an Embedded Linux distribution and crosscompilation toolchain for the Raspberri Pi.:

- \$ cd buildroot
- \$ make raspberrypi_defconfig
- \$ make

Now you will have to wait quite a while for it to complete. If everything went well a kernel (zImage), a root filesystem (rootfs), and a bootable disk image (rpi.img) will be available in the directory output/images/.

The toolchain generated by Buildroot is located by default in <code>output/host/</code>. The simplest way to use it is to add <code>output/host/usr/bin/</code> to your PATH environment variable (<code>export PATH=\$PATH:\$HOME/buildroot/output/host/usr/bin</code>). To make this permament enter it in your .bashrc file (<code>echo 'export PATH=\$PATH:\$HOME/buildroot/output/host/usr/bin' >> ~/.bashrc</code>). You can then use the crosscompilers simply as <code>arm-linux-gcc</code> (C compiler) and <code>arm-linux-g++</code> (C++ compiler) without a path prefix.

The disk image should be written on a SD card and inserted in the Raspberry Pi. Writing the image on the SD card can be done as follows:

- \$ sudo umount /dev/mmcblk0*
- \$ sudo dd if=output/images/rpi.img of=/dev/mmcblk0 bs=4M
- \$ sudo sync

Above command assumes the SD card reader is connected as /dev/mmcblk0. Check the output of the command dmesg | tail directly after inserting a SD card to see if this is the case. If not change the device name to comply with your configuration.

To test the kernel and rootfs with QEMU first download a suitable gemu compatible kernel:

\$ wget http://xecdesign.com/downloads/linux-qemu/kernel-qemu

Then start QEMU with your new rootfilesystem:

\$ qemu-system-arm -M versatilepb -cpu arm1176 -m 256 -kernel kernel-qemu -append "root=/dev/sda panic=1

2 of 3 30-04-15 17:56

This command will boot a virtualized Raspberry Pi. In fact it is running the Rapberry Pi root filesystem on a virtualized VersatilePB board.

After booting the real or the virtual Raspberry Pi you should be able to login as root with password root.

© 2015 GitHub, Inc. Terms Privacy Security Contact

Status API Training Shop Blog About

3 of 3 30-04-15 17:56