Wie lange gibt es noch Eis in den Tropen?

Gletscherveränderungen und ihre Ursachen am Beispiel des Kilimanjaro in Ostafrika

Wo befinden wir uns?

- Ostafrika, Tansania: 350 km südlich des Äquators im Kilimanjaromassiv, welches aus drei Gipfeln besteht:
 - Kibo (5 895 m)
 - Mawensi (5 270 m)
 - Schira (4 000 m)
 - Klimatische Bedingungen: Tageszeitenklima der Tropen → Ganzjährig hohe Temperaturen sowie Feuchtigkeit

Gletscherrückgang des Kilimanjaro – ein Überblick

1912 1972 2016

Tropische Gletscher

- Lage in den astronomischen
- Temperaturen ganzjährig gleichbleibend → große Tag-Nacht-Schwankungen
- Einfluss der Intertropischen Konvergenzzone -> Aufeinanderfolgen von Trockenund Feuchtperioden
 - Ablation erfolgt das ganze Jahr
 - Akkumulation nur in feuchten Perioden

Sonneneinstrahlung

ightarrow Veränderung de ngere Aussetzun chnellere Abnahme es Gletschers (bes ei Hanggletschern)

Abforstung

bholzung der iletscher wird nicht genährt

Ursachen des Gletscherrückgangs

Klimawandel

Globale Temperaturzunahme bei gleichbleibenden Niederwärmung führt zum Gletscherschwund

Trockenheit

eränderung der Dy

Der Kilimanjaro be-

Plateaugletscher

zerbrochen

Hanggletscher

sitzt zwei Gletscherarten:

Flächige Vergletscherung mit geringer

gen Hochplateaus mit wenig Relief

Mächtigkeit auf welligen, kuppenförmi-

→ Nördliches Eisfeld, 2012 in zwei Teile

Kleinere Ansammlungen von Eismassen /

an Hängen ohne Zungenbildung; oft-

maliges Abbrechen an einer Kante/

→ Südliches Eisfeld

Ozeans > weniger Niederschläge in den

ne des Gletschers

Mote & Kaser 2007)

Folgen des Gletscherschwundes

Die Folgen eines Gletscherschwundes sind vielfältig und, ebenso wie die Ursachen des Gletscherrückgangs, in der Wissenschaft heiß diskutiert und mit Vorsicht zu genießen:

- Geomorphologische Folgen:
 - Abflüsse des Kilimanjaromassivs sind abhängig vom Schmelzwasser der Hanggletscher -> würden versiegen
 - Tauen des Permafrosts erhöht Naturgefahren durch Felsinstabili-
- Folgen für die Bevölkerung:
 - betten -> weniger Wasserverfügbarkeit für Bevölkerung (Trinkwasser), Landwirtschaft und Stromgewinnung
 - Fernbleibens der Bergtourist*innen -> sinken der Haupteinnahmequelle Tansanias

Wann ist der Kilimanjaro völlig abgeschmolzen? - Prognosen der Gletscherentwicklung

Die Prognosen für den Kilimanjaro sind umstritten und fallen aufgrund der vers. Sichten auf die Ursachen des Gletscherschwundes unterschiedlich aus:

schmolzen sein → Thompson et al. sagten bereits 2015 voraus!

schwindet kom-

plett und wird

spätestens im

Jahr 2030 abge-

- Durch den globalen Klimawandel könnte das Eis des Kilimanjaro gerettet werden: Erwärmung der Atmosphäre über 0°C -> steilere Hanggletscherbildung → bei steigenden Niederschlägen größere
 - Schneeakkumulation möglich -> evtl. Gletscherwachstum

schlägen → Klimaer-

Cullen, N. J. et al. (2006): Kilimanjaro Glaciers: Recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. In: Geophysical Research Letters, 33, S. 1-6. Cullen, N. J. (2013): A century of ice retreat on Kilimanjaro: the mapping reloaded. In: The Cryosphere, 7, 419-431. dDara: Hitzewelle Icon von flaticon.com. Freepik: Gletscher, Drought & Erdrutsch Icons von flaticon.com. IPCC (2019): IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press. Kasang, D. (2013a): Kilimandscharo_1912-2011. | Shiften of the control of the contr Abgerufen 08.03.21). Kaser, G. et al. (2004): Modern Glacier Retreat on Kilimanjaro: Can Global Warming Be Blamed? In: American Scientist, 95, S. 318-325. Mölg, T. (2002): Modellierung der kurzwelligen Einstrahlung mit GIS am Beispiel eines tropischen Hochgebirges. In: Beiträge zum AGIT-Symposium Salzburg. S. 347-356. Mölg, T. et al. (2012): Limited forcing of glacier loss through land-cover change on Kilimanjaro. In: Lozán, J. L., Grassl, H., Kasang, D. & H. Escher-Vetter (Hrsg.). Warnsignal Klima: Das Eis der Erde. S. 159-163. Nüsser, M. (2009): Kilimanjaro and Mount Kenya: Colonized Mountains and their Rediscovery as Symbols of Global Climate Change. In: Geographische Rundschau International Edition, 5, 4, S. 26-32. Pixel perfect: Mount Kilimanjaro Icon von flaticon.com. Sémhur (2009): Mount Kilimanjaro and Mount Meru map-fr.svg#/media/File: Tansania map-Wrong. Washington: Science and Policy. S. 11ff. Thompson, L. et al. (2002): Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa. In: Science magazine, 298, S. 589-593. U.S. Department of the Interior (o. J.): The Glaciers of Kilimanjaro. A Mount Kilimanjaro, Tanzania story. https://eros.usgs.gov/image-gallery/earthshot/the-glaciers-of-kilimanjaro

Bearbeitet von: Almut Ballstaedt almut.ballstaedt@students.uni-freiburg.de Albert-Ludwigs-Universität Freiburg "Geographien des Globalen Wandels" (MSc.) 24.03.2021