

MODIFICATION RECORD

Version 1.11.0 May 10, 2011

- Added Section 5.3.6 to verify that End-Node can process a tunneled ICMPv6 Packet Too Big Message and correctly reassemble/fragment packet
- Modified Section 5. 1 End-Node Transport Mode Packet Too Big Reception to fragment inbound Echo Request.
- Removed ESP Null Authentication Tests
- Typos and bug fixes

Version 1.10.0 May 31, 2010

- Support Authentication Algorithm HMAC-SHA-256 in RFC 4868 (Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec) (Section 5.2.8, and 6.2.8)
- Added the description to Section 6.1.6 Possible Problems
 Eabruary 03 2010

Version 1.9.2 February 03, 2010

- Corrected pre-shared key at subsection 5.1.5
- Corrected packet format of dummy packet at subsection 6. 1. 7
- Clarified relationship between steps in procedure and judgment at all subsections.

Version 1.9.1 January 07, 2009

 Support the passive node which doesn't have ping6 application (as Possible Problems in Section 5.1.2)

Version 1.9.0 December 09. 2008

- Support RFC 4312 (The Camellia Cipher Algorithm and Its Use With IPsec) (Section 5.2.7. 6.2.7)
- Use IPv6 prefix defined in RFC 3849 for the documentation

Version 1.8.1 October 11, 2007

• Remove ESN test cases (Section 5.1.12, 6.1.14)

Version 1.8.0 April 27, 2007

• Support IPsec v3

Version 1.7.7 April 6, 2006

• Correct 5.3.4 Category

Version 1.7.6 December 22, 2005

 Correct expected MTU value in ICMP Packet Too Big message for 6.1.5 Packet Too Big Forwarding.

Version 1.7.5 September 20. 2005

 Correct the maximum MTU value for 6.1.4 Packet Too Big Transmission.

Version 1.7.4 June 13, 2005

Fix typos.

Version 1.7.3 June 7, 2005

 Removed test for Packet Too Big Forwarding (Known Original Host) for SGW.

Version 1.7.2 April 20. 2005

Fix typos.

Version 1.7.1 April 18, 2005

• Change Security Policy for 5.3.2.

Version 1.7 April 8, 2005

Add Sequence Number Increment Test.

• Add ICMP Error Test.

Version 1.6 March 1, 2005

Change Keys

Add Select SPD test for tunnel mode

Version 1.5 November 26, 2004

Change packet description of 5.1.4

Version 1.4 November 19, 2004

• Change Host to End-Node,

 Default algorithms changed to (3DES-CBC, HMAC-SHA1) for Architecture test.

• Editorial fix

Version 1.3 September 24, 2004

Version 1.2 September 22, 2004

Version 1.1 September 13, 2004

Version 1.0 September 8, 2004

ACKNOWLEDGEMENT

IPv6 Forum would like to acknowledge the efforts of the following organizations in the development of this test specification.

Principle Author:

• TAHI Project

Commentators:

- IRISA
- University of New Hampshire Interoperability Laboratory (UNH-IOL)

INTRODUCTION

The IPv6 forum plays a major role in bringing together industrial actors, to develop and deploy the next generation of IP protocols. Contrary to IPv4, which started with a small closed group of implementers, the universality of IPv6 leads to a huge number of implementations. Interoperability has always been considered as a critical feature in the Internet community.

Due to the large number of IPv6 implementations, it is important to provide the market a strong signal proving the level of interoperability across various products. To avoid confusion in the mind of customers, a globally unique logo program should be defined. The IPv6 logo will give confidence to users that IPv6 is currently operational. It will also be a clear indication that the technology will still be used in the future. To summarize, this logo program will contribute to the feeling that IPv6 is available and ready to be used.

The IPv6 Logo Program consists of three phases:

Phase 1:

In a first stage, the Logo will indicate that the product includes IPv6 mandatory core protocols and can interoperate with other IPv6 implementations.

Phase 2:

The "IPv6 ready" step implies a proper care, technical consensus and clear technical references. The IPv6 ready logo will indicate that a product has successfully satisfied strong requirements stated by the IPv6 Logo Committee (v6LC).

To avoid confusion, the logo "IPv6 Ready" will be generic. The v6LC will define the test profiles with associated requirements for specific functionalities.

Phase 3:

Same as Phase 2 with IPsec mandated.

REQUIREMENTS

To obtain the IPv6 Ready Logo Phase-2 for IPsec (IPsec Logo), the Node Under Test (NUT) must satisfy following requirements.

Equipment Type:

We define two possibilities for equipment types, they are as follows:

End-Node:

A node who can use IPsec only for itself. Host and Router can be an End-Node.

SGW (Security Gateway):

A node who can provide IPsec tunnel mode for nodes behind it. Router can be a SGW.

Security Protocol:

A NUT is required to pass all of the ESP tests regardless the equipment type. The IPv6 Ready Logo Program does not focus on AH.

Mode:

The mode requirement depends on the type of NUT.

End-Node:

If the NUT is an End-Node, it must pass all the Transport mode tests. If the NUT

supports the Tunnel mode, it also must pass all the Tunnel mode tests. (i.e., Tunnel mode is ADVANCED functionality for End-Node)

SGW:

If the NUT is a SGW, it must pass all the Tunnel mode tests.

Encryption Algorithm:

IPv6 Logo Committee had defined 2 encryption algorithm categories: BASE ALGORITHM and ADVANCED ALGORITHM. All NUTs must pass the BASE ALGORITHM tests to obtain an IPsec Logo. A NUT which supports algorithms listed as ADVANCED ALGORITHM, must pass all corresponding tests.

The algorithm requirement is independent from NUT type.

BASE ALGORITHM:

• 3DES-CBC

ADVANCED ALGORITHM:

- AES-CBC
- AES-CTR
- NULL
- CAMELLIA-CBC

Authentication Algorithm:

IPv6 Logo Committee had defined BASE ALGORITHM and ADVANCED ALGORITHM.

All NUTs have to pass all the test of BASE ALGORITHM to obtain the IPsec Logo.

The NUTs, which support the algorithms that are listed as ADVANCED ALGORITHM, have to pass all the corresponding tests.

The algorithm requirement is independent from NUT type.

BASE ALGORITHM:

HMAC-SHA1

ADVANCED ALGORITHM:

- AES-XCBC-MAC-96
- **NULL**
- HMAC-SHA-256

Category:

All NUTs are required to support BASIC. ADVANCED is required for all NUTs description contains a Category section which lists the requirements to satisfy the test.

REFERENCES

This test specification focus on the following IPsec related RFCs.

- [RFC2404] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998.
- [RFC2410] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and Its Use With IPsec", RFC 2410, November 1998.
- [RFC2451] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms", RFC 2451, November 1998.
- [RFC3566] Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec", RFC 3566, September 2003.
- [RFC3602] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher Algorithm and Its Use with IPsec", RFC 3602, September 2003.
- [RFC3686] Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)", RFC 3686, January 2004.
- [RFC4301] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
- [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
- [RFC4305] Eastlake, D., "Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)", RFC 4305, December 2005.
- [RFC4312] A. Kato, S. Moriai, and M. Kanda, "The Camellia Cipher Algorithm and Its Use With IPsec", RFC 4312, December 2005.
- [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 4443, March 2006.
- [RFC4868] S. Kelly, and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec", RFC4868, May 2007.

TABLE OF CONTENTS

MODIFICATIO	N RECORD	1
ACKNOWLED	GEMENT	3
INTRODUCTIO	ON	4
REQUIREMEN	TS	5
REFERENCES.		8
TABLE OF COM	NTENTS	10
1. Test Details.		13
2. Test Topolog	gy	15
For End-Node	e: Transport and Tunnel Mode with End-Node Test	15
For End-Node	e: Tunnel Mode with SGW Test	16
For SGW: Tu	nnel Mode with End-Node Test	17
For SGW: Tu	nnel Mode Test	18
3. Description.		20
4. Required Te	sts	21
For End-Node	2:	22
For SGW:		23
5. End-Node T	est	24
5.1. Architec	ture	24
5.1.1. Selec	t SPD	25
5.1.2. Selec	t SPD (ICMP Type)	30
5.1.3. Seque	ence Number Increment	35
5.1.4. Packet	et Too Big Reception	39
5.1.5. Recei	pt of No Next Header	45
5.1.6. Bypa:	ss Policy	50
5.1.7. Disca	rd Policy	55
5.1.8. Trans	port Mode Padding	60
5.1.9. Trans	port Mode TFC Padding	64
5.1.10. Non	-Registered SPI	68

IPsec

	5.1.11	. ICV	12
5	5.2. Alş	gorithm Test	76
	5.2.1.	Transport Mode ESP=3DES-CBC HMAC-SHA1	77
	5.2.2.	Transport Mode ESP=3DES-CBC AES-XCBC	81
	5.2.3.	Transport Mode ESP=3DES-CBC NULL	85
	5.2.4.	Transport Mode ESP=AES-CBC (128-bit) HMAC-SHA1	86
	5.2.5.	Transport Mode ESP= AES-CTR HMAC-SHA1	90
	5.2.6.	Transport Mode ESP=NULL HMAC-SHA1	94
	5.2.7.	Transport Mode ESP=CAMELLIA-CBC (128-bit) HMAC-SHA1	98
	5.2.8.	Transport Mode ESP=3DES-CBC HMAC-SHA-256	102
5	5.3. Tu	nnel Mode	106
	5.3.1.	Tunnel Mode with End-Node	106
	5.3.2.	Tunnel Mode with SGW	.110
	5.3.3.	Select SPD for 2 Hosts behind 1 SGW	.114
	5.3.4.	Tunnel Mode Padding	120
	5.3.5.	Tunnel Mode TFC Padding	125
	5.3.6.	Tunnel Mode with SGW Fragmentation	129
6.	SGW	Test	141
(6.1. Ar	chitecture	141
	6.1.1.	Select SPD	142
	6.1.2.	Select SPD (ICMP Type)	149
	6.1.3.	Select SPD for 2 Hosts behind 1 SGW	156
	6.1.4.	Sequence Number Increment	163
	6.1.5.	Packet Too Big Transmission	167
	6.1.6.	Packet Too Big Forwarding (Unknown Original Host)	172
	6.1.7.	Receipt of No Next Header	178
	6.1.8.	Bypass Policy	183
	6.1.9.	Discard Policy	188
	6.1.10	. Tunnel Mode Padding	193
	6.1.11	. TFC Padding	198
	6.1.12	. Non-Registered SPI	202

6.1.13. ICV	206
6.1.14. Tunnel Mode with End-Node	210
6.2. Algorithm Test	214
6.2.1. Tunnel Mode ESP=3DES-CBC HMAC-SHA1	215
6.2.2. Tunnel Mode ESP=3DES-CBC AES-XCBC	219
6.2.3. Tunnel Mode ESP=3DES-CBC NULL	223
6.2.4. Tunnel Mode ESP=AES-CBC (128-bit) HMAC-SHA1	224
6.2.5. Tunnel Mode ESP=AES-CTR HMAC-SHA1	228
6.2.6. Tunnel Mode ESP=NULL HMAC-SHA1	232
6.2.7. Tunnel Mode ESP= CAMELLIA-CBC (128-bit) HMAC-SHA1	236
6.2.8. Tunnel Mode ESP=3DES-CBC HMAC-SHA256	240
Appendix-A annex-5.1.2 for the passive node	244
1.1. using UDP application to invoke ICMPv6 Destination Unreachable (F	Port
unreachable)	245
1.2 invoking Neighbor Unreachability Detection	250

1. Test Details

This chapter contains detailed information, including terminology, which is described below.

Terminology:

TN: Tester Node

NUT: Node Under Test (Target Implementation)

SGW : Security Gateway

Required Application:

All tests use ICMP Echo Request and Echo Reply messages by default. ICMP is independent from any implemented application and this adds clarity to the test. If the NUT can not apply IPsec for ICMPv6 packets, it is acceptable to use other protocols rather than ICMPv6. In this case, the device must support either ICMPv6, TCP or UDP. The application and port number are unspecified when TCP or UDP packets are used. The test coordinator should support any ports associated with an application used for the test. Applicants must mention the specific protocol and port that was used to execute the tests.

IPsec Configuration:

Manual key configuration is used by default and is a minimal requirement. IKE is an acceptable alternative to use when IPsec is tested. When IKE is used, the encryption key and authentication key are negotiated dynamically. In that case, dynamic keys are used rather than the static keys specified in this document.

The tester should support the alternative of using IKE with dynamic keys to execute the tests.

Topology:

In "2. Test Topology" the network topology for the test is shown.

2. Test Topology

These logical Network Topologies are used for test samples.

For End-Node: Transport and Tunnel Mode with End-Node Test

- 1. Set global address to NUT by RA (NUT_Link0)
- 2. Set MTU to NUT by RA (MTU value is 1500 for Link0)
- 3. Make IPsec transport mode between NUT and HOST1 and HOST2

Fig. 1 Topology for End-Node: Transport and Tunnel mode with End-Node

For End-Node: Tunnel Mode with SGW Test

- 1. Set global address to NUT by RA (NUT_Link0)
- 2. Set MTU to NUT by RA (MTU value is 1500 for Link0)
- 3. Make IPsec tunnel mode between NUT and SGW1.

Fig. 2 Topology for End-Node: Tunnel mode with SGW

For SGW: Tunnel Mode with End-Node Test

- 1. Set global address to NUT manually (NUT_Link0, NUT_Link1)
- 2. Set routing table to NUT manually (ROUTER1_Link1 for Link2)
- 3. Set MTU to NUT manually for Link0 and Link1 (MTU value is 1500 for Link0 and Link1)
- 4. Make IPsec tunnel mode between NUT and HOST2.

Fig. 3 Topology for SGW: Tunnel mode with End-Node

For SGW: Tunnel Mode Test

- 1. Set global address to NUT manually (NUT_Link0, NUT_Link1)
- 2. Set routing table to NUT manually (ROUTER1_Link1 for Link2, Link3 and Link4)
- 3. Set MTU to NUT manually for Link0 and Link1 (MTU value is 1500 for Link0 and Link1)
- 4. Make IPsec tunnel mode between NUT and SGW1 and SGW2

18

Fig. 4 Topology for SGW: Tunnel mode with SGW

19

3. Description

Each test specification consists of following parts.

Purpose: The Purpose is the short statement describing what the test attempts to achieve. It is

usually phrased as a simple assertion of the future or capability to be tested.

Category: The Category shows what classification of device must satisfy the test.

References: The References section contains some parts of specification related to the tests. It

also shows the document names and section numbers.

Initialization: The Initialization describes how to initialize and configure the NUT before starting

each test. If a value is not provided, then the protocol's default value is used.

Packets: The Packets describes the simple figure of packets which is used in the test. In this

document, the packet name is represented in Italic style font.

Procedure: The Procedure describes step-by-step instructions for carrying out the test.

Observable The Judgment describes expected result. If we can observe as same result as the

Results: description of Judgment, the NUT passes the test.

Possible This section contains a description of known issues with the test procedure, which

Problems: may affect test results in certain situations.

4. Required Tests

The following table lists which tests a device is required to pass based on category.

For End-Node:

Test Title	Category	Note
5. 1. 1 Select SPD	BASIC	
5. 1. 2 Select SPD (ICMP Type)	ADVANCED	IPsec v3 Must be tested by ICMP
5. 1. 3 Sequence Number Increment	BASIC	
5. 1. 4 Packet Too Big Reception	BASIC	
5.1.5 Receipt of No Next Header	ADVANCED	IPsec v3
5.1.6 Bypass Policy	ADVANCED	Either of Bypass or Discard
5. 1. 7 Discard Policy	ADVANCED	Policy is required
5.1.8 Transport Mode Padding	BASIC	
E 1 0 Turnsunt Neds TEO Dedding	ADVANOED	IPsec v3
5.1.9 Transport Mode TFC Padding	ADVANCED	Must be tested by UDP
5. 1. 10 Non-Registered SPI	BASIC	
5. 1. 11 ICV	BASIC	
5. 2. 1 Transport Mode ESP=3DES-CBC HMAC-SHA1	BASIC	
5. 2. 2 Transport Mode ESP=3DES-CBC AES-XCBC	ADVANCED	
5. 2. 3 Transport Mode ESP=3DES=CBC NULL	ADVANCED	
5. 2. 4 Transport Mode ESP=AES-CBC (128-bit) HMAC-SHA1	ADVANCED	
5. 2. 5 Transport Mode ESP=AES-CTR HMAC-SHA1	ADVANCED	IPsec v3
5. 2. 6 Transport Mode ESP=NULL HMAC-SHA1	ADVANCED	
5. 2. 7 Transport Mode ESP=CAMELLIA-CBC (128-bit) HMAC-SHA1	ADVANCED	
5. 2. 8 Transport Mode ESP=3DES-CBC HMAC-SHA-256	ADVANCED	
5. 3. 1 Tunnel Mode with End-Node	ADVANCED	
5.3.2 Tunnel Mode with SGW	ADVANCED	
5.3.3 Select SPD for 2 Hosts behind 1 SGW	ADVANCED	
5.3.4 Tunnel Mode Padding	ADVANCED	
5.3.5 Tunnel Mode TFC Padding	ADVANCED	IPsec v3
5.3.6 Tunnel Mode with SGW Fragmentation	BASIC	

For SGW:

Test Title	Category	Note
6.1.1 Select SPD	BASIC	
6.1.2 Select SPD (ICMP Type)	ADVANCED	IPsec v3 Must be tested by ICMP
6.1.3 Select SPD for 2 Hosts behind 1 SGW	BASIC	
6.1.4 Sequence Number Increment	BASIC	
6.1.5 Packet Too Big Transmission	BASIC	
6.1.6 Packet Too Big Forwarding (Unknown Original Host)	BASIC	
6.1.7 Receipt of No Next Header	ADVANCED	IPsec v3
6.1.8 Bypass Policy	ADVANCED	Either of Bypass or Discard
6.1.9 Discard Policy	ADVANCED	Policy is required
6.1.10 Tunnel Mode Padding	BASIC	
6.1.11 Tunnel Mode TFC Padding	ADVANCED	IPsec v3
6.1.12 Non-Registered SPI	BASIC	
6. 1. 13 ICV	BASIC	
6.1.14 Tunnel Mode with End-Node	BASIC	
6. 2. 1 Tunnel Mode ESP=3DES-CBC HMAC-SHA1	BASIC	
6. 2. 2 Tunnel Mode ESP=3DES-CBC AES-XCBC	ADVANCED	
6. 2. 3 Tunnel Mode ESP=3DES=CBC NULL	ADVANCED	
6. 2. 4 Tunnel Mode ESP=AES-CBC (128-bit) HMAC-SHA1	ADVANCED	
6. 2. 5 Tunnel Mode ESP=AES-CTR HMAC-SHA1	ADVANCED	IPsec v3
6. 2. 6 Tunnel Mode ESP=NULL HMAC-SHA1	ADVANCED	
6. 2. 7 Tunnel Mode ESP=CAMELLIA-CBC (128-bit) HMAC-SHA1	ADVANCED	
6. 2. 8 Tunnel Mode ESP=3DES-CBC HMAC-SHA-256	ADVANCED	

5. End-Node Test

This Chapter describes the test specification for End-Node. The test specification consists of 2 sections. One is regarding "IPsec Architecture" and another part is regarding "Encryption and Authentication Algorithms".

5.1. Architecture

Scope:

Following tests focus on IPsec Architecture.

Overview:

Tests in this section verify that a node properly process and transmit based on the Security Policy Database and Security Association Database.

5.1.1. Select SPD

Purpose:

Verify that a NUT (End-Node) selects appropriate SPD (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1	> <	SA1-I
HOST2_Link1	>	NUT SA2-I

Security Association Database (SAD) for SA1-I

Total 10 Model at 1011 Batanace (CMB) 101 CM 1		
source address	HOST1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA1-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

Security Association Database (SAD) for SA2-I

Total Its Modernation Buttabaco (SMB) For SME 1		
source address	HOST2_Link1	
destination address	NUT_Link0	
SPI	0x3000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin02	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in02	

Security Policy Database (SPD) for SA2-I

source address	H0ST2_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA2-0

source address	NUT_Link0
destination address	HOST2_Link1
SPI	0x4000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD) for SA2-0

source address	NUT_Link0
destination address	HOST2_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

Packets:

ICMP Echo Request with SA1's ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with SA1's ESP

Tomi Lone Reply Witth Offi & Lor		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)

ICMP Echo Request with SA2's ESP

IP Header	Source Address	H0ST2_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with SA2's ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST2_Link1
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
ICMP	Type	129 (Echo Reply)

Procedure:

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request with SA1's ESP"
- 2. Observe the packet transmitted by NUT
- 3. Host2 sends "ICMP Echo Request with SA2's ESP"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1): NUT transmits "ICMP Echo Reply with SA1's ESP". Step-4 (Judgment #2):

NUT transmits "ICMP Echo Reply with SA2's ESP".

Possible Problems:

None.

5.1.2. Select SPD (ICMP Type)

Purpose:

Verify that a NUT (End-Node) selects appropriate SPD (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

IPsec v3)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ----- NUT -----> SA1-I <----- SA1-0 -----> SA2-I <----- SA2-0

Security Association Database (SAD) for SA1-I

Total 123 Notice Tation Bacasacc (GNB) 101 CN1 1	
HOST1_Link1	
NUT_Link0	
0x1000	
transport	
ESP	
3DES-CBC	
ipv6readylogo3descbcin01	
HMAC-SHA1	
ipv6readylogsha1in01	

Security Policy Database (SPD) for SA1-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	ICMPv6 Echo Request
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	ICMPv6 Echo Request
direction	out
protocol	ESP
mode	transport

Security Association Database (SAD) for SA2-I

Court by Modoration Bacasago (OND) for ONE 1	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x3000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin02
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in02

Security Policy Database (SPD) for SA2-I

source address	H0ST1_Link1
destination address	NUT_Link0
upper spec	ICMPv6 Echo Reply
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA2-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x4000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD) for SA2-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	ICMPv6 Echo Reply
direction	out
protocol	ESP
mode	transport

Packets:

ICMP Echo Request with SA1-I's ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with SA2-0's ESP

10mm Lorio Ropry Witti One o Con		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

ICMP Echo Request with SA1-0's ESP

I am Zerie Negadet in an en e zer		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with SA2-I's ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
ICMP	Type	129 (Echo Reply)

Procedure:

Part A (ADVANCED):

- 1. HOST1 sends "ICMP Echo Request with SA1-I's ESP"
- 2. Observe the packet transmitted by NUT
- 3. NUT sends "ICMP Echo Request with SA1-0's ESP"
- 4. Observe the packet transmitted by NUT
- 5. HOST1 sends "ICMP Echo Reply with SA2-I's ESP"

Observable Results:

Part A:

```
Step-2 (Judgment #1):
   NUT transmits "ICMP Echo Reply with SA2-0's ESP".
Step-4 (Judgment #2):
   NUT transmits "ICMP Echo Request with SA1-0's ESP".
```

Possible Problems:

NUT may be a passive node which does not implement an application for sending Echo Requests. One of the following method to perform this test is required for the passive node.

- a) using UDP application to invoke ICMPv6 Destination Unreachable (Port unreachable) (see Appendix-A Section 1.1)
- b) invoking Neighbor Unreachability Detection (see Appendix-A Section 1.2)

5.1.3. Sequence Number Increment

Purpose:

Verify that a NUT (End-Node) increases sequence number correctly, starting with 1. (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA-I <------ SA-O

Security Association Database (SAD) for SA-I

occurred his contraction business (only not on 1	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_Link0	
destination address	HOST1_Link1	
SPI	0x2000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Sequence	$1^{st} = 1, 2^{nd} = 2$
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with ESP

	zem zene nepry men zen		
IP Header	Source Address	NUT_Link0	
	Destination Address	HOST1_Link1	
ESP	SPI	0x2000	
	Sequence	$1^{st} = 1, 2^{nd} = 2$	
	Algorithm	3DES-CBC	
	KEY	ipv6readylogo3descbcout1	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1out1	
ICMP	Type	129 (Echo Reply)	

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Request with ESP"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits an "ICMP Echo Reply with ESP" with an ESP Sequence Number of 1.

Step-4 (Judgment #2):

NUT transmits an "ICMP Echo Reply with ESP" with an ESP Sequence Number of 2.

Possible Problems:

5.1.4. Packet Too Big Reception

Purpose:

Verify that a NUT (End-Node) can fragment and reassemble fragments correctly. (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1. Router1's interface to Link1 has an MTU value of 1280.

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_Link0	
destination address	HOST1_Link1	
SPI	0x2000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

Fragmented ICMP Echo Request with ESP 1

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
Payload Length		1240
Fragment Header	Offset	0
	More	1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request with ESP 2

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
	Payload Length	116
Fragment Header	Offset	154
	More	0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

Tomi Lone Reply With Lor		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
	Payload Length	1340
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

ICMP Error Message (Packet Too Big)

IP Header	Source Address	Router_Link1
	Destination Address	NUT_Link0

ICMP	Type	2 (Packet Too Big)
	MTU	1280
	Data	1232Byte of ICMP Echo Reply with
		ESP

Fragmented ICMP Echo Reply with ESP 1

, ,		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
	Payload Length	1240
Fragment	Offset	0
	More Flag	1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

Fragmented ICMP Echo Reply with ESP 2

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
	Payload Length	116
Fragment	Offset	154
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Reply with ESP</i>

Part A (BASIC):

- 1. HOST1 sends "Fragmented ICMP Echo Request with ESP1 and 2"
- 2. Observe the packet transmitted by NUT
- 3. ROUTER1 sends "ICMP Error Message (Packet Too Big)
- 4. HOST1 sends "Fragmented ICMP Echo Request with ESP1 and 2"
- Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Step-5 (Judgment #2):

NUT transmits "Fragmented ICMP Echo Reply with ESP 1" and "Fragmented ICMP Echo Reply with ESP 2"

Possible Problems:

5.1.5. Receipt of No Next Header

Purpose:

Verify that a NUT (End-Node) process the dummy packet (the protocol value 59) correctly. (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

IPsec v3)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA1-I <------ SA1-0

Security Association Database (SAD) for SA1-I

decar ity hosseration bacasacs (only its on i		
HOST1_Link1		
NUT_Link0		
0x1000		
transport		
ESP		
3DES-CBC		
ipv6readylogo3descbcin01		
HMAC-SHA1		
ipv6readylogsha1in01		

Security Policy Database (SPD) for SA1-I

source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA1-0

order to the transfer of the t		
source address	NUT_Link0	
destination address	HOST1_Link1	
SPI	0x2000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with SA1-I's ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with SA1-0's ESP

Tomi Lond Nopry Witti Only & Edi		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

No Next Header with SA1-I's ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Next Header	no next header (59)
Upper Layer	Data	empty

Part A (ADVANCED): No Next Header w/o TFC Padding

- 1. HOST1 sends "ICMP Echo Request with SA1-I's ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "No Next Header with SA1-0's ESP". The ESP sequence number must be incremented than the packet transmitted at step 1
- 4. HOST1 sends "ICMP Echo Request with SA1-0's ESP". The ESP sequence number must be incremented than the packet transmitted at step 3
- 5. Observe the packet transmitted by NUT

Part B (ADVANCED): No Next Header w/ TFC Padding

- 6. HOST1 sends "ICMP Echo Request with SA1-I's ESP"
- 7. Observe the packet transmitted by NUT
- 8. HOST1 sends "No Next Header with SA1-O's ESP". The ESP sequence number must be incremented than the packet transmitted at step 6. The data in upper layer consists of random bytes as the plaintext portion.
- 9. HOST1 sends "ICMP Echo Request with SA1-0's ESP". The ESP sequence number must be incremented than the packet transmitted at step 8
- 10. Observe the packet transmitted by NUT

Observable Results:

```
Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Reply with SA1-0's ESP".
Step-5 (Judgment #2):
NUT transmits "ICMP Echo Reply with SA1-0's ESP".

Part B:
Step-7 (Judgment #1):
NUT transmits "ICMP Echo Reply with SA1-0's ESP".
Step-10 (Judgment #2):
NUT transmits "ICMP Echo Reply with SA1-0's ESP".
```

Possible Problems:

5.1.6. Bypass Policy

Verify that a NUT (End-Node) select bypass or discard policies

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Bypass Policy, regardless of explicitly or implicitly)

SGW : N/A

NOTE: NUT needs to pass at least either of "Bypass Policy" or "Discard Policy" tests.

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA-I <------ SA-0

Security Association Database (SAD) for SA-I

cocal its moscoliation bacasace (ens., its en s.	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
	Payload Length	1460
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
	Payload Length	1460
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link1
	Destination Address	NUT_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	NUT_Link0
	Destination Address	HOST2_Link1
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED -- except Either of Bypass or Discard Policy is required):

- 1. Set Bypass policy for above ICMP Echo Request to NUT as following example
- 2. Host1 sends "ICMP Echo Request with ESP"
- 3. Observe the packet transmitted by NUT
- 4. HOST2 sends "ICMP Echo Request"
- 5. Observe the packet transmitted by NUT

Example 1: Security Policy Database (SPD) for policy=Bypass

source address	HOST2_Link1
destination address	NUT_Link0
upper spec	any
direction	in
policy	bypass (none)

Example 2: Security Policy Database (SPD) for policy=Bypass as default policy

source address	any
destination address	any
upper spec	any
direction	in
policy	bypass (none)

Observable Results:

```
Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Reply with ESP"
Step-5 (Judgment #2):
NUT transmits "ICMP Echo Reply"
```

Possible Problems:

5.1.7. Discard Policy

Purpose:

Verify that a NUT (End-Node) select bypass or discard policies

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Discard Policy, regardless of explicitly or implicitly)

SGW : N/A

NOTE: NUT need to pass at least either of "Bypass Policy" or "Discard Policy" tests.

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA-I <------ SA-0

Security Association Database (SAD) for SA-I

Total 125 Modernation Basabase (emb) 101 em 1	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
	Payload Length	1460
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with ESP

20.00 Nop., 0.1 20.		
IP Header Source Address		NUT_Link0
	Destination Address	HOST1_Link1
	Payload Length	1460
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link1
	Destination Address	NUT_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	NUT_Link0
	Destination Address	HOST2_Link1
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED -- except Either of Bypass or Discard Policy is required):

- 1. Set Discard policy for above ICMP Echo Request to NUT as following example
- 2. Host1 sends "ICMP Echo Request with ESP"
- 3. Observe the packet transmitted by NUT
- 4. HOST2 sends "ICMP Echo Request"
- 5. Observe the packet transmitted by NUT

Example 1: Security Policy Database (SPD) for policy=Discard

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
policy	discard

Example 2: Security Policy Database (SPD) for policy=Discard as default policy

source address	any
destination address	any
upper spec	any
direction	in
policy	discard

Observable Results:

Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Reply with ESP"
Step-5 (Judgment #2):
NUT does not transmit any packets.

Possible Problems:

5.1.8. Transport Mode Padding

Purpose:

Verify that a NUT (End-Node) supports padding & padding byte handling (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA-I <------ SA-O

Security Association Database (SAD) for SA-I

Court by Modernation Bacasace (CMB) for CM 1	
HOST1_Link1	
NUT_Link0	
0x1000	
transport	
ESP	
3DES-CBC	
ipv6readylogo3descbcin01	
HMAC-SHA1	
ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP 1

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP SPI		0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	Sequential
	Padding Length	7
ICMP	Туре	128 (Echo Request)
	Data Length	7

ICMP Echo Request with ESP 2

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	Sequential
	Padding Length	255
ICMP	Type	128 (Echo Request)
	Data Length	7

ICMP Echo Reply with ESP

Tomi Lone Hopry W	CIT LOT	
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
	Padding Length	7+8n (0 <= n <= 31)
ICMP	Type	129 (Echo Reply)
	Data Length	7

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request with ESP 1"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Request with ESP 2"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Step-4 (Judgment #2):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.1.9. Transport Mode TFC Padding

Purpose:

Verify that a NUT (End-Node) supports TFC Padding (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

IPsec v3)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA1-I <------ SA1-O

Security Association Database (SAD) for SA1-I

Total 129 Modernation Bushades (chb) 101 Chi 1	
source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA1-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

UDP Echo Request with SA1-I's ESP * TFC Padded

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP SPI		0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
UDP	Source Port	10000
	Destination Port	7 (echo)

UDP Echo Reply with SA1-0's ESP

IP Header	Source Address	NUT_Link0
	Destination Address	H0ST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
UDP	Source Port	7 (echo)
	Destination Port	10000

Part A (ADVANCED):

- 1. HOST1 sends "UDP Echo Request with SA1-I's ESP * TFC Padded"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "UDP Echo Reply with SA1-0's ESP".

Possible Problems:

5.1.10. Non-Registered SPI

Purpose:

Verify that a NUT (End-Node) can behave when No valid Security Association is configured.

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

Total 10 /100001401011 Database (c/lb/ 101 o/l 1	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP 1

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with ESP 1

Source Address	NUT_Link0
Destination Address	HOST1_Link1
SPI	0x2000
Algorithm	3DES-CBC
Key	ipv6readylogo3descbcout1
Authentication Algorithm	HMAC-SHA1
Authentication Key	ipv6readylogsha1out1
Type	129 (Echo Reply)
	Destination Address SPI Algorithm Key Authentication Algorithm Authentication Key

ICMP Echo Request with ESP 2 with non-registered SPI

Tomi Lond Roddoot With Lor 2 With hon rogretored or 1		
Source Address	HOST1_Link1	
Destination Address	NUT_Link0	
SPI	0x9000 (Different from SA-I's	
	SPD)	
Algorithm	3DES-CBC	
Key	ipv6readylogo3descbcin01	
Authentication Algorithm	HMAC-SHA1	
Authentication Key	ipv6readylogsha1in01	
Type	128 (Echo Request)	
	Source Address Destination Address SPI Algorithm Key Authentication Algorithm Authentication Key	

ICMP Echo Reply

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ICMP	Type	129 (Echo Reply)

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request with ESP 1"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Request with ESP 2"(different SPI)
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1): NUT transmits "ICMP Echo Reply with ESP 1" Step-4 (Judgment #2): NUT does not transmit any packets.

Possible Problems:

5.1.11. ICV

Purpose:

Verify that a NUT (End-Node) can detect the modification by examining the ICV (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ----- NUT ----> SA-I <----- SA-0

•	•
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP 1

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Sequence number	1
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)
	Data	"EchoData"

ICMP Echo Reply with ESP 1

IP Header	Source Address	NUT_Link0
	Destination Address	H0ST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)
	Data	"EchoData"

ICMP Echo Request with ESP 2

WILLII LOI Z	
Source Address	HOST1_Link1
Destination Address	NUT_Link0
SPI	0x1000
Sequence number	2
Algorithm	3DES-CBC
Key	ipv6readylogo3descbcin01
Authentication Algorithm	HMAC-SHA1
Authentication Key	ipv6readylogsha1in01
ICV	aaaaaaaaaaaaaaa
Туре	128 (Echo Request)
Data	"cracked"
	Source Address Destination Address SPI Sequence number Algorithm Key Authentication Algorithm Authentication Key ICV Type

ICMP Echo Reply

,	-	
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ICMP	Type	129 (Echo Reply)

Procedure:

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request with ESP 1"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Request with ESP 2" (ICV is modified)
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Reply with ESP 1"
Step-4 (Judgment #2):
 NUT does not transmit any packets.

Possible Problems:

5.2. Algorithm Test

Scope:

Following tests focus on Encryption and Authentication Algorithms.

Overview:

Tests in this section verify that the NUT properly decrypt the received packet s and encrypts the transmitting packets using Encryption algorithms specified in the SAD.

And they verify that the NUT properly processes the authentication algorithms specified in the SAD.

5.2.1. Transport Mode ESP=3DES-CBC HMAC-SHA1

Purpose:

End-Node transport mode, ESP=3DES-CBC HMAC-SHA1

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC2404]
- [RFC2451]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ----- NUT ----> SA-I <----- SA-0

•	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	H0ST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with ESP

10mi Lono Nopry Witch Lon		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

79

Procedure:

HOST1_Link1(TN)	Target (NUT)
	> ICMP Echo Request with ESA
<	<i>ICMP Echo Reply with ESP</i>
İ	(Judgment #1)

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.2.2. Transport Mode ESP=3DES-CBC AES-XCBC

Purpose:

End-Node transport mode, ESP=3DES-CBC AES-XCBC

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

AES-XCBC as an authentication algorithm)

SGW : N/A

References:

- [RFC2451]
- [RFC3566]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ----- NUT ----> SA-I <----- SA-0

•	·
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	AES-XCBC-MAC-96
ESP authentication key	ipv6readaesxin01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	AES-XCBC-MAC-96
ESP authentication key	ipv6readaesxout1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	AES-XCBC-MAC-96
	Authentication Key	ipv6readaesxin01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

Tomi Lone Ropty with Lor		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	AES-XCBC-MAC-96
	Authentication Key	ipv6readaesxout1
ICMP	Туре	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target(NUT)
 	 > ICMP Echo Request with ESF
 <	ICMP Echo Reply with ESP
	(Judgment #1)

Part A (ADVANCED)

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.2.3. Transport Mode ESP=3DES-CBC NULL

Purpose:

End-Node transport mode, ESP=3DES-CBC NULL

Removed at revision 1.11.0.

5.2.4. Transport Mode ESP=AES-CBC (128-bit) HMAC-SHA1

Purpose:

End-Node transport mode, ESP=AES-CBC (128-bit) HMAC-SHA1

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

AES-CBC (128-bit) as an encryption algorithm)

SGW : N/A

References:

- [RFC2404]
- [RFC3602]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA-I <------ SA-0

order to the second of the sec		
source address	HOST1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	transport	
protocol	ESP	
ESP algorithm	AES-CBC (128-bit)	
ESP algorithm key	ipv6readaescin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	AES-CBC(128-bit)
ESP algorithm key	ipv6readaescout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	AES-CBC(128-bit)
	Key	ipv6readaescin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

Zemi Lene Nepry Witti Len		
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	AES-CBC (128-bit)
	Key	ipv6readaescout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target(NUT)
 	 > ICMP Echo Request with ESF
 <	ICMP Echo Reply with ESP
	(Judgment #1)

Part A (ADVANCED):

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1): NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.2.5. Transport Mode ESP= AES-CTR HMAC-SHA1

P	u	r	n	ი	s	e	٠

End-Node transport mode, ESP= AES-CTR HMAC-SHA1

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

AES-CTR as an encryption algorithm)

SGW : N/A

References:

- [RFC3686]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ----- NUT ----> SA-I <----- SA-0

(Cook 12) //Cook 1421011 Patazace (C	occurred herocratical parameter (only for on 1		
source address	HOST1_Link1		
destination address	NUT_Link0		
SPI	0x1000		
mode	transport		
protocol	ESP		
ESP algorithm	AES-CTR		
ESP algorithm key	ipv6readylogaescin01		
ESP authentication	HMAC-SHA1		
ESP authentication key	ipv6readylogsha1in01		

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_Link0	
destination address	HOST1_Link1	
SPI	0x2000	
mode	transport	
protocol	ESP	
ESP algorithm	AES-CTR	
ESP algorithm key	ipv6readylogaescout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	AES-CTR
	Key	ipv6readylogaescin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

Tomi Lone Hopry II		
IP Header	Source Address	NUT_Link0
	Destination Address	H0ST1_Link1
ESP	SPI	0x2000
	Algorithm	AES-CTR
	Key	ipv6readylogaescout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target(NUT)
 	 > ICMP Echo Request with ESF
 <	ICMP Echo Reply with ESP
	(Judgment #1)

Part A (ADVANCED):

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.2.6. Transport Mode ESP=NULL HMAC-SHA1

Purpose:

End-Node transport mode, ESP=NULL HMAC-SHA1

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

NULL as an encryption algorithm)

SGW : N/A

References:

- [RFC2404]
- [RFC2410]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1		
	>	SA-I
	<	SA-0

country modernation bacasace (one, for on i		
source address	HOST1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	transport	
protocol	ESP	
ESP algorithm	NULL	
ESP algorithm key		
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

source address	NUT_LinkO
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	NULL
ESP algorithm key	
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	H0ST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	NULL
	Key	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

Tomi Lone Hopry II	CIT LOT	
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	NULL
	Key	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target(NUT)
 	 > ICMP Echo Request with ESF
 <	ICMP Echo Reply with ESP
	(Judgment #1)

Part A (ADVANCED):

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.2.7. Transport Mode ESP=CAMELLIA-CBC (128-bit) **HMAC-SHA1**

Pur	pose	:
	P-0-0-0	•

End-Node transport mode, ESP=CAMELLIA-CBC (128-bit) HMAC-SHA1

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

CAMELLIA-CBC (128-bit) as an encryption algorithm)

SGW : N/A

References:

- [RFC2404]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4312]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ----- NUT -----> SA-I <----- SA-0

source address	HOST1_Link1
Destination address	NUT_Link0
SPI	0x1000
Mode	transport
Protocol	ESP
ESP algorithm	CAMELLIA-CBC(128-bit)
ESP algorithm key	ipvcamelliacin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	Any
direction	In
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	CAMELLIA-CBC(128-bit)
ESP algorithm key	ipvcamelliacout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	Any
direction	Out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	CAMELLIA-CBC(128-bit)
	Key	ipvcamelliacin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	CAMELLIA-CBC(128-bit)
	Key	ipvcamelliacout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Type	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target(NUT)
 	 > ICMP Echo Request with ESF
 <	ICMP Echo Reply with ESP
	(Judgment #1)

Part A (ADVANCED):

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.2.8. Transport Mode ESP=3DES-CBC HMAC-SHA-256

Purpose:	
----------	--

End-Node transport mode, ESP=3DES-CBC HMAC-SHA-256

Category:

End-Node : BASIC (A requirement for all End-Node NUTs)

SGW : N/A

References:

- [RFC2451]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]
- [RFC4868]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

HOST1_Link1 ------ NUT -----> SA-I <------ SA-0

occurred moccordation bacasace (only for on i	
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA-256
ESP authentication key	ipv6readylogoph2ipsecsha2256in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	Any
direction	In
protocol	ESP
mode	Transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	Transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA-256
ESP authentication key	ipv6readylogoph2ipsecsha2256out1

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	transport

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA-256
	Authentication Key	ipv6readylogoph2ipsecsha2256in01
ICMP	Type	128 (Echo Request)

ICMP Echo Reply with ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA-256
	Authentication Key	ipv6readylogoph2ipsecsha2256out1
ICMP	Type	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target(NUT)
 	 > ICMP Echo Request with ESF
 <	ICMP Echo Reply with ESP
	(Judgment #1)

Part A (BASIC):

- 3. HOST1 sends "ICMP Echo Request with ESP"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Reply with ESP"

Possible Problems:

5.3. Tunnel Mode

5.3.1. Tunnel Mode with End-Node

Purpose:

Verify that a NUT (End-Node) can build IPsec tunnel mode with End-Node correctly. (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Tunnel Mode)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 1

Set NUT's SAD and SPD as following:

occurred herocoración bacasaco (one) for on i		
source address	HOST1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

tunnel source address	HOST1_Link1
tunnel destination address	NUT_Link0
source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

Cocal Tey Moderation Bacasaco (CMB) Toll CM C		
NUT_Link0		
HOST1_Link1		
0x2000		
tunnel		
ESP		
3DES-CBC		
ipv6readylogo3descbcout1		
HMAC-SHA1		
ipv6readylogsha1out1		

tunnel source address	NUT_Link0
tunnel destination address	HOST1_Link1
source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request within ESP tunnel

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	H0ST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ICMP	Type	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target (NUT)	
	> ICMP Echo Request within	ESP tunnel
<		SP tunnel
	(Judgment #1)	

Part A (ADVANCED):

- 1. HOST1 sends "ICMP Echo Request with ESP tunnel"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits the packet "ICMP Echo Reply within ESP tunnel".

Possible Problems:

None.

5.3.2. Tunnel Mode with SGW

Purpose:

Verify that a NUT (End-Node) can build IPsec tunnel mode with SGW correctly (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Tunnel Mode)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 2

Set NUT's SAD and SPD as following:

HOST1 -- SGW1 ----- NUT -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

occurrey house faction bacasace (only for on 1	
source address	SGW1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

tunnel source address	SGW1_Link1
tunnel destination address	NUT_Link0
source address	Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

decar ity hosseration bacabase (only itel on o	
source address	NUT_Link0
destination address	SGW1_Link1
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

•	
tunnel source address	NUT_Link0
tunnel destination address	SGW1_Link1
source address	NUT_Link0
destination address	Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request within ESP tunnel

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Type	129 (Echo Reply)

Procedure:

SGW1_Link1(TN)	Target (NUT)	
ļ		e l
ļ		
\<	ICMP Echo Reply to HOST1 within ESP tunnel	
1	(Judgment #1)	

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

IPv6 FORUM TECHNICAL DOCUMENT

NUT transmits the packet "ICMP Echo Reply within ESP tunnel".

Possible Problems:

None.

5.3.3. Select SPD for 2 Hosts behind 1 SGW

Purpose:

Verify that a NUT (End-Node) can build IPsec tunnel mode with SGW correctly (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Tunnel Mode)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 2

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA1-I

occurred hose traction bacabace (one) for one i		
source address	SGW1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA1-I

tunnel source address	SGW1_Link1
tunnel destination address	NUT_Link0
source address	HOST1_Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA1-0

Cooding Modociation bacasage (OND) for ONI o	
source address	NUT_Link0
destination address	SGW1_Link1
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link0
tunnel destination address	SGW1_Link1
source address	NUT_Link0
destination address	HOST1_Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-I

occurred hoccorderon bacasaco (ons) for one i	
source address	SGW1_Link1
destination address	NUT_Link0
SPI	0x3000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin02
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in02

Security Policy Database (SPD) for SA2-I

SGW1_Link1
NUT_Link0
HOST2_Link2
NUT_Link0
any
in
ESP
tunnel

Security Association Database (SAD) for SA2-0

documents house the bacabase (one) for one of	
source address	NUT_Link0
destination address	SGW1_Link1
SPI	0x4000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD) for SA2-0

tunnel source address	NUT_Link0
tunnel destination address	SGW1_Link1
source address	NUT_Link0
destination address	H0ST2_Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request from HOST1 within ESP tunnel

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST1 within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Type	129 (Echo Reply)

ICMP Echo Request from HOST2 within ESP tunnel

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
IP Header	Source Address	HOST2_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST2 within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
IP Header	Source Address	NUT_Link0
	Destination Address	HOST2_Link2
ICMP	Type	129 (Echo Reply)

Procedure:

SGW1_Link1(TN)	Target (NUT)
	 > ICMP Echo Request from HOST1 within ESP tunnel
 < 	<i>ICMP Echo Reply to HOST1 within ESP tunnel</i> (Judgment #1)
 	 > <i>ICMP Echo Request from HOST2 within ESP tunnel</i>
<	<i>ICMP Echo Reply to HOST2 within ESP tunnel</i> (Judgment #2)

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 2. Observe the packet transmitted by NUT
- 3. SGW1 sends "ICMP Echo Request from HOST2 within ESP tunnel"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits the packet "ICMP Echo Reply to HOST1 within ESP tunnel". Step-4 (Judgment #2):

NUT transmits the packet "ICMP Echo Reply to HOST2 within ESP tunnel".

Possible Problems:

None.

5.3.4. Tunnel Mode Padding

Purpose:

Verify that a NUT (End-Node) supports padding & padding byte handling (End-Node Tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Tunnel Mode)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 2

Set NUT's SAD and SPD as following:

HOST1 -- SGW1 ----- NUT -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

tunnel source address	SGW1_Link1
tunnel destination address	NUT_Link0
source address	Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

Coodiney Modocration bacabase (OND) for on o		
source address	NUT_Link0	
destination address	SGW1_Link1	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

tunnel source address	NUT_Link0
tunnel destination address	SGW1_Link1
source address	NUT_Link0
destination address	Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request within ESP tunnel 1

IP Header	Source Address	SGW1_Link1
II lieauei		
	Destination Address	NUT_Link0
ESP SPI		0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	sequential
	Padding Length	7
IP Header	Source Address	H0ST1_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)
	Data Length	7

ICMP Echo Request within ESP tunnel 2

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	sequential
	Padding Length	255
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)
	Data Length	7

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
	Padding Length	7+8n (0 <= n <= 31)
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Type	129 (Echo Reply)
	Data Length	7

Procedure:

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 2. Observe the packet transmitted by NUT
- 3. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits the packet "ICMP Echo Reply to HOST1 within ESP tunnel". Step-4 (Judgment #2):

NUT transmits the packet "ICMP Echo Reply to HOST1 within ESP tunnel".

Possible Problems:

None.

5.3.5. Tunnel Mode TFC Padding

Purpose:

Verify that a NUT (End-Node) supports TFC Padding (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node: ADVANCED (This test is required for all End-Node NUTs which support

Tunnel Mode and IPsec v3)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 2

Set NUT's SAD and SPD as following:

HOST1 -- SGW1 ------ NUT -----> SA-I <------ SA-0

Security Association Database (SAD) for SA-I

Total 125 Mood Table Database (ONE) 101 ON 1		
source address	SGW1_Link1	
destination address	NUT_LinkO	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

tunnel source address	SGW1_Link1
tunnel destination address	NUT_Link0
source address	Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

Coodiney Modocration bacabase (OND) for on o		
source address	NUT_Link0	
destination address	SGW1_Link1	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

•	
tunnel source address	NUT_Link0
tunnel destination address	SGW1_Link1
source address	NUT_Link0
destination address	Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request within ESP tunnel * TFC Padded

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Type	129 (Echo Reply)

Procedure:

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel * TFC Padded"
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits the packet "ICMP Echo Reply within ESP tunnel".

Possible Problems:

None.

5.3.6. Tunnel Mode with SGW Fragmentation

Purpose:

Verify that a NUT can reassemble/fragment packets correctly inside ESP Tunnel

Category:

End-Node: BASIC (This test is required for all End-Node NUTs which support Tunnel

Mode and IPsec v3)

SGW : N/A

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 2 MTU value is 1280 for Link2.

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

Total 12) Modernation Basanas (only 101 on 1		
source address	SGW1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

tunnel source address	SGW1_Link1
tunnel destination address	NUT_Link0
source address	Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

decar ity hosestation bacabass (shb) for the		
source address	NUT_Link0	
destination address	SGW1_Link1	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

tunnel source address	NUT_Link0
tunnel destination address	SGW1_Link1
source address	NUT_Link0
destination address	Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request A within ESP tunnel

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request A

IP Header	Source Address	H0ST1_Link2
	Destination Address	NUT_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply A

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply A within ESP tunnel

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Type	129 (Echo Reply)

Fragmented ICMP Echo Request B to NUT2 1

IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
	Payload Length	<i>1stPL</i> (=MTU-40) (e.g., 1240)
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request B to Host2 2

IP Header	Source Address	H0ST1_Link2
	Destination Address	NUT_Link0
	Payload Length	2ndPL (=1476-1stPL)
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request B to Host2 within ESP 1

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
	Payload Length	1stPL
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request B to Host2 within ESP 2

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
	Payload Length	2ndPL
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

ICMP Echo Reply B within ESP tunnel

Source Address	NUT_Link0
Destination Address	SGW1_Link1
SPI	0x2000
Algorithm	3DES-CBC
Key	ipv6readylogo3descbcout1
Authentication Algorithm	HMAC-SHA1
Authentication Key	ipv6readylogsha1out1
Source Address	NUT_Link0
Destination Address	H0ST1_Link2
Type	129 (Echo Reply)
	Destination Address SPI Algorithm Key Authentication Algorithm Authentication Key Source Address Destination Address

ICMP Echo Reply B

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
ICMP	Type	129 (Echo Reply)

ICMP Packet Too Big within ESP

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	SGW1_LINK2
	Destination Address	NUT_Link0
ICMP	Туре	2 (Packet Too Big)
	MTU	1280 <= n <= 1430 (e.g., 1280)
	Data	1232Byte of <i>ICMP Echo Reply B</i>

Fragmented ICMP Echo Request C to NUT2 1

IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
	Payload Length	<i>1stPL</i> (=MTU-40) (e.g., 1240)
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request C to Host2 2

	•	
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
	Payload Length	<i>2ndPL</i> (=1476-1stPL)
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request C to Host2 within ESP 1

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_Link0
	Payload Length	1stPL
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request C to Host2 within ESP 2

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link0
	Payload Length	2ndPL
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Reply C to NUT2 1

	, ,	
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
	Payload Length	<i>1stPL</i> (=MTU-40) (e.g., 1240)
Fragment	Offset	0
	More Flag	1
ICMP	Type	129 (Echo Reply)

Fragmented ICMP Echo Reply C to Host2 2

IP Header	Course Address	MIIT Limbo
ir neader	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
	Payload Length	<i>2ndPL</i> (=1476-1stPL)
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Reply</i>

Fragmented ICMP Echo Reply C to Host2 within ESP 1

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	H0ST1_Link2
	Payload Length	1stPL
Fragment	Offset	0
	More Flag	1
ICMP	Type	129 (Echo Reply)

Fragmented ICMP Echo Reply C to Host2 within ESP 2

IP Header	Source Address	NUT_Link0
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link2
	Payload Length	2ndPL
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Reply</i>

Procedure:

Target (NUT) SGW1	_Link1(TN) HOST	T1_Link2(TN)
 	 - > 	ICMP Echo Request A (size < 1000 bytes) (SRC=HOST1_Link2/DST=NUT_Link0) ICMP Echo Request A within ESP ICMP Echo Reply A within ESP (Judgment #1) ICMP Echo Reply (SRC=NUT_Link0/DST=HOST1_Link2)
 	 	- Fragmented ICMP Echo Request B #1 (SRC=HOST1_Link2/DST=NUT_Link0) - Fragmented ICMP Echo Request B #2 (SRC=HOST1_Link2/DST=NUT_Link0) Fragmented ICMP Echo Request B #1 within ESP Fragmented CMP Echo Request B #2 within ESP
 <	 - -	ICMP Echo Reply B within ESP (Judgment #2) ICMP Packet Too Big within ESP
 	 	Fragmented ICMP Echo Request C #1 (SRC=HOST1_Link2/DST=NUT_Link0) Fragmented ICMP Echo Request C #2 (SRC=HOST1_Link2/DST=NUT_Link0) Fragmented ICMP Echo Request C #1 within ESP Fragmented ICMP Echo Request C #2 within ESP
 	; 	Fragmented ICMP Echo Reply C #1 within ESP (Judgment #3) Fragmented ICMP Echo Reply C #2 within ESP (Judgment #3)
	> >	Fragmented ICMP Echo Reply C #1 (SRC=NUT_Link0/DST=H0ST1_Link2) Fragmented ICMP Echo Reply C #2 (SRC=NUT_Link0/DST=H0ST1_Link2)

Part A (BASIC):

- 1. SGW1 sends ICMPv6 Echo Request from Host1 to NUT within ESP
- 2. Observe the packet transmitted by NUT
- 3. SGW1 sends ICMPv6 Echo Request fragments totaling 1500 Bytes from Host1 to NUT within ESP Tunnel
- 4. Observe the packet transmitted by NUT
- 5. SGW1 sends ICMPv6 Packet Too Big Message within ESP Tunnel to NUT
- 6. SGW1 sends ICMPv6 Echo Request fragments totaling 1500 Bytes from Host1 to NUT within ESP Tunnel
- 7. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits ICMPv6 Echo Reply from NUT to Host1 within ESP Tunnel Step-4 (Judgment #2):

NUT reassembles ICMPv6 Echo Request and transmits fully assembled ICMPv6 Echo Reply from NUT to Host1 within ESP Tunnel

Step-7 (Judgment #3):

NUT reassembles ICMPv6 Echo Request and transmits fragmented ICMPv6 Echo Reply from NUT to Host1 within ESP Tunnel

Possible Problems:

None.

6. SGW Test

This Chapter describes the test specification for SGW. The test specification consists of 2 parts. One is regarding "IPsec Architecture" and another part is regarding to "Encryption and Authentication Algorithms".

6.1. Architecture

Scope:

Following tests focus on IPsec Architecture.

Overview:

Tests in this section verify that a node properly process and transmit based on the Security Policy Database and Security Association Database.

6.1.1. Select SPD

Purpose:

Verify that a NUT (SGW) selects appropriate SPD (SGW tunnel mode, ESP=3DES-CBC)

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA1-I

deddirey neederacron bacasado (ons) for ont i	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA1-I

tunnel source address	SGW1_Link2
tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA1-0

occurred hospitalion bacabaco (onb) for one o	
source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-I

order to the section because (one) for one i	
source address	SGW2_Link2
destination address	NUT_Link1
SPI	0x3000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin02
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in02

Security Policy Database (SPD) for SA2-I

tunnel source address	SGW2_Link2
tunnel destination address	NUT_Link1
source address	Link4
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-0

Occurry hosporation battabass (OND) for ONE o		
source address	NUT_Link1	
destination address	SGW2_Link2	
SPI	0x4000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout2	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out2	

Security Policy Database (SPD) for SA2-0

•	
tunnel source address	NUT_Link1
tunnel destination address	SGW2_Link2
source address	Link0
destination address	Link4
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request within SA1's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request from HOST2

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST2

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within SA1's ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Request within SA2's ESP

Tomi Lono Hogadot		
IP Header	Source Address	SGW2_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_LinkO
ICMP	Type	128 (Echo Request)

ICMP Echo Request from HOST4

IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST4

IP Header	Source Address	H0ST1_Link0
	Destination Address	HOST4_Link4
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within SA2's ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW2_Link2
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST4_Link4
ICMP	Type	129 (Echo Reply)

Procedure:

Part A (BASIC):

- 1. SGW1 sends "ICMP Echo Request within SA1's ESP" (originally from HOST2)
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply to HOST2"
- 4. Observe the packet transmitted by NUT
- 5. SGW1 sends "ICMP Echo Request within SA2's ESP" (originally from HOST4)
- 6. Observe the packet transmitted by NUT
- 7. HOST1 sends "ICMP Echo Reply to HOST4"
- 8. Observe the packet transmitted by NUT

Observable Results:

```
Part A:
  Step-2 (Judgment #1):
   NUT transmits "ICMP Echo Request from HOST2"
 Step-4 (Judgment #2):
   NUT transmits "ICMP Echo Reply within SA1's ESP"
 Step-6 (Judgment #3):
   NUT transmits "ICMP Echo Request from HOST4"
  Step-8 (Judgment #4):
   NUT transmits "ICMP Echo Reply within SA2's ESP"
```

Possible Problems:

None.

6.1.2. Select SPD (ICMP Type)

Purpose:

Verify that a NUT (SGW) selects appropriate SPD (SGW tunnel mode, ESP=3DES-CBC)

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support IPsec

v3)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 ------ SA1-I <------ SA1-0 ----- SA2-I

Security Association Database (SAD) for SA1-I

documents house action bacasace (one) for one i		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA1-I

occasi i cy i ci i cy zacana acc (ci z) i ci i ci i c		
SGW1_Link2		
NUT_Link1		
Link3		
Link0		
ICMPv6 Echo Request		
in		
ESP		
tunnel		

Security Association Database (SAD) for SA1-0

Cooding Mocociation battabase (OND) for ONI C		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	ICMPv6 Echo Request
direction	out
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-I

order to the second of the sec		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x3000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin02	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in02	

Security Policy Database (SPD) for SA2-I

tunnel source address	SGW1_Link2
tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	ICMPv6 Echo Reply
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-0

COCALLEY MODEOLATION PARABOON (OND) TOT ONE O		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x4000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout2	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out2	

Security Policy Database (SPD) for SA2-0

tunnel source address	NUT_Link1	
tunnel destination address	SGW1_Link2	
source address	Link0	
destination address	Link3	
upper spec	ICMPv6 Echo Reply	
direction	out	
protocol	ESP	
mode	tunnel	

Packets:

ICMP Echo Request within SA1-I's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request from HOST2

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST2

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within SA2-0's ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Request to HOST2

IP Header	Source Address	H0ST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	128 (Echo Rquest)

ICMP Echo Request within SA1-0's ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	128 (Echo Request)

ICMP Echo Reply within SA2-I's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply from HOST2

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	129 (Echo Reply)

Procedure:

SGW1_Link2(TN)	Target (NUT)	HOST1_LinkO(TN)
 	 	ICMP Echo Request within SA1-I's ESP > ICMP Echo Request from HOST2 (SRC=HOST2_Link3/DST=HOST1_Link0) (Judgment #1)
 <	 < 	ICMP Echo Reply to HOST2 (SRC=HOST1_Link0/DST= HOST2_Link3) ICMP Echo Reply within SA2-0's ESP (Judgment #2)
SGW1 Link2(TN)	Target(NUT)	HOST1_LinkO(TN)
	<u> </u>	<i>ICMP Echo Request to HOST2</i> (SRC=HOST1_Link0/DST= HOST2_Link3)
 < !	 	ICMP Echo Request within SA1-0's ESP
	!	(Judgment #3)
	> >	(Judgment #3) <i>ICMP Echo Reply within SA2-I's ESP</i>

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within SA1-I's ESP" (originally from HOST2)
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply to HOST2"
- 4. Observe the packet transmitted by NUT
- 5. HOST1 sends "ICMP Echo Request to HOST2"
- 6. Observe the packet transmitted by NUT
- 7. SGW1 sends "ICMP Echo Reply within SA2-I's ESP" (originally from HOST2)
- 8. Observe the packet transmitted by NUT

Observable Results:

```
Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Request from HOST2"
Step-4 (Judgment #2):
NUT transmits "ICMP Echo Reply within SA2-0's ESP"
Step-6 (Judgment #3):
NUT transmits "ICMP Echo Request within SA1-0's ESP"
Step-8 (Judgment #4):
NUT transmits "ICMP Echo Reply from HOST2"
```

Possible Problems:

None.

6.1.3. Select SPD for 2 Hosts behind 1 SGW

Purpose:

Verify that a NUT (SGW) selects appropriate SPD (SGW tunnel mode, ESP=3DES-CBC)

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA1-I

occurred hoccorderon bacasaco (ons) for one i		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA1-I

occurred accommon (e. 2) i.e. on .		
SGW1_Link2		
NUT_Link1		
HOST2_Link3		
Link0		
any		
in		
ESP		
tunnel		

Security Association Database (SAD) for SA1-0

occurred hospitalion bacabase (only for only		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	HOST2_Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-I

decarred house action bacasace (one) for one i		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x3000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin02	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in02	

Security Policy Database (SPD) for SA2-I

cook is year of parameter (c. 2) is one i		
tunnel source address	SGW1_Link2	
tunnel destination address	NUT_Link1	
source address	HOST3_Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA2-0

Occurrey Mococration Batabaco (OND) for ONE o		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x4000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout2	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out2	

Security Policy Database (SPD) for SA2-0

tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	HOST3_Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request within SA1's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request from HOST2

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST2

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within SA1's ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Request within SA2's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
IP Header	Source Address	HOST3_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST3

IP Header	Source Address	HOST3_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply to HOST3

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST3_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within SA2's ESP

IP Header	Source Address	NUT Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout2
	Authentication Algorithm HMAC-SHA1	
	Authentication Key	ipv6readylogsha1out2
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST3_Link3
ICMP	Type	129 (Echo Reply)

Procedure:

SGW1_Link2(TN)	Target (NUT)	HOST1_LinkO(TN)	
 	> >	 ICMP Echo Request within S.	41's ESP
	 	> <i>ICMP Echo Request from HOS</i> (SRC= HOST2_Link3 /DST=HOST1_ (Judgment #1)	
	 < 	<i>ICMP Echo Reply to HOST2</i> (SRC=HOST1_LinkO/DST= HOST2 _	_Link3)
 < 	 	ICMP Echo Reply within SA1 (Judgment #2)	's ESP
 	> >	 ICMP Echo Request within S.	42's ESP
	 	> <i>ICMP Echo Request from HOS</i> (SRC= HOST3_Link3 /DST=HOST1_ (Judgment #3)	
	 < 	 <i>ICMP Echo Reply to HOST3</i> (SRC=HOST1_LinkO/DST= HOST3 _	_Link3)
 < 	 	 <i>ICMP Echo Reply within SA2</i> (Judgment #4)	's ESP

Part A (BASIC):

- 1. SGW1 sends "ICMP Echo Request within SA1's ESP" (originally from HOST2)
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply to HOST2"
- 4. Observe the packet transmitted by NUT
- 5. SGW1 sends "ICMP Echo Request within SA2's ESP" (originally from HOST3)
- 6. Observe the packet transmitted by NUT
- 7. HOST1 sends "ICMP Echo Reply to HOST3"
- 8. Observe the packet transmitted by NUT

Observable Results:

```
Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Request from HOST2"
Step-4 (Judgment #2):
NUT transmits "ICMP Echo Reply within SA1's ESP"
Step-6 (Judgment #3):
NUT transmits "ICMP Echo Request from HOST3"
Step-8 (Judgment #4):
NUT transmits "ICMP Echo Reply within SA2's ESP"
```

Possible Problems:

None.

6.1.4. Sequence Number Increment

Purpose:

Verify that a NUT (SGW) increases sequence number correctly, starting with 1. (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

·	•
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request

IP Header	Source Address	H0ST1_Link0
	Destination Address	H0ST2_Link3
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Sequence	$1^{st} = 1, 2^{nd} = 2$
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	128 (Echo Request)
	Data Length	7

Procedure:

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Request"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits an "ICMP Echo Request within ESP" with an ESP Sequence number of 1

Step-4 (Judgment #2):

NUT transmits an "ICMP Echo Request within ESP" with an ESP Sequence number of 2 $\,$

Possible Problems:

None.

6.1.5. Packet Too Big Transmission

Purpose:

Verify that a NUT (SGW) transmits the ICMP Error Message (Packet Too Big) correctly. (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC2404]
- [RFC2451]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

deddirey hoddorderon bacabadd (dhb) for the		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request

	20 20.70 1104.000		
IP Header Source Address		Source Address	HOST1_Link0
		Destination Address	HOST2_Link3
		Payload Length	1460
	ICMP	Type	128 (Echo Request)

ICMP Error Message (Packet Too Big)

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link0
ICMP	Type	2 (Packet Too Big)
	MTU	1280 <= n <= 1430 (e.g., 1280)
	Data	1232Byte of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request to Host2 1

Tragmeried Tem Zerre Hegaeee to Heeez T		
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	<i>1stPL</i> (=MTU-40) (e.g., 1240)
Fragment	Offset	0
	More Flag	1
ICMP	Туре	128 (Echo Request)

Fragmented ICMP Echo Request to Host2 2

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	<i>2ndPL</i> (=1476-1stPL)
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request to Host2 within ESP 1

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1stPL
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request to Host2 within ESP 2

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	2ndPL
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

Procedure:

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "Fragmented ICMP Echo Request to HOST2 1" and "Fragmented ICMP Echo Request to HOST2 2"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Error Message (Packet Too Big)"

Step-4 (Judgment #2):

NUT transmits "Fragmented ICMP Echo Request within ESP 1" and "Fragmented ICMP Echo Request within ESP 2"

Possible Problems:

None.

6.1.6. Packet Too Big Forwarding (Unknown Original Host)

Purpose:

Verify that a NUT (SGW) forwards the ICMP Error Message (Packet Too Big) correctly when NUT can not determine the original host. (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A

: BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4. Router1's interface to Link2 has an MTU value of 1356.

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

	(
source address SGW1_Link2	
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

decar ity house the in bacasact (only for on o		
NUT_Link1		
SGW1_Link2		
0x2000		
tunnel		
ESP		
3DES-CBC		
ipv6readylogo3descbcout1		
HMAC-SHA1		
ipv6readylogsha1out1		

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

Packets:

ICMP Echo Request

20111 20110 110941			
IP Header	Source Address	HOST1_Link0	
	Destination Address	HOST2_Link3	
	Payload Length	1360	
ICMP	Туре	128 (Echo Request)	

ICMP Error Message to NUT (Packet Too Big)

IP Header	Source Address	ROUTER1_Link2
	Destination Address	NUT_Link1
ICMP	Туре	2 (Packet Too Big)
	MTU	1356
	Data	1232Byte of <i>ICMP Echo Request</i>

ICMP Error Message to HOST1 (Packet Too Big)

IP Header	Source Address	ROUTER1_Link2 or NUT_Link1
	Destination Address	HOST1_Link0
ICMP	Type	2 (Packet Too Big)
	MTU	1280 - 1286
	Data	1232Byte of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request 1

Tragmeried Lem Zerre Hegaeee T		
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1240
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request 2

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	136
Fragment	Offset	154
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

ICMP Echo Request within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	H0ST2_Link3
	Payload Length	1360
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request within ESP 1

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1240
Fragment	Offset	0
	More Flag	1
ICMP	Type	128 (Echo Request)

Fragmented ICMP Echo Request within ESP 2

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	136
Fragment	Offset	154
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>

Procedure:

SGW1_Link2(TN)	ROUTER1_Link2(TN)	Target (NUT)	HOST1_LinkO(TN)	
		 <	ICMP Echo Request	
 	 	 	ICMP Echo Request to HOST2 within ES (Judgment #1)	i _P
	 	> 	ICMP Error Message (Packet Too Big)	to NUT
			ICMP Echo Request	
		 	> <i>ICMP Error Message</i> <i>to HOST1 (Packet Too</i> (Judgment #2)	
		 < <	Fragmented ICMP Ed Request 1 Fragmented ICMP Ed Request 2	
 	 	 	Fragmented ICMP Ed Request within ESF Fragmented ICMP Ed Request within ESF (Judgment #3)	P 1 :ho

Part A (BASIC):

- 1. HOST1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT
- 3. ROUTER1 sends "ICMP Error Message to NUT (Packet Too Big)"
- 4. HOST1 sends "ICMP Echo Request"
- 5. Observe the packet transmitted by NUT
- 6. HOST1 sends "Fragmented ICMP Echo Request 1" and "Fragmented ICMP Echo Request 2"
- 7. Observe the packet transmitted by NUT

Observable Results:

Step-2 (Judgment #1): NUT transmits "ICMP Echo Request within ESP"

Step-5 (Judgment #2):

NUT transmits "ICMP Error Message to HOST1 (Packet Too Big)"

Step-7 (Judgment #3):

NUT transmits "Fragmented ICMP Echo Request within ESP 1" and "Fragmented ICMP Echo Request within ESP 2"

Possible Problems:

The NUT (SGW) may choose to process the ICMPv6 Packet Too Big PMTU information on the ciphertext side of the interface. In this case, the NUT will not generate and send a Packet Too Big Message to Host1, but will instead fragment IPv6 Packets from Host1 after tunneling and applying ESP. Host1 will continue to transmit whole packets. See RFC 4301 Section 6.1.

6.1.7. Receipt of No Next Header

Purpose:

Verify that a NUT (SGW) process the dummy packet (the protocol value 59) correctly. (SGW tunnel mode, ESP=3DES-CBC)

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support IPsec

v3)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA1-I <----- SA1-O

Security Association Database (SAD) for SA1-I

occurred hoccorderon bacasaco (ons) for on 1	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA1-I

tunnel source address	SGW1_Link2
tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA1-0

COOCH TEST NOODOTALTON DULLUBAGO (OND) TOT ONL O	
source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within SA1-I's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST2

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

No Next Header within SA1-I's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Next Header	no next header (59)
Upper Layer	Data	empty

Procedure:

Part A (ADVANCED): No Next Header w/o TFC Padding

- 1. SGW1 sends "ICMP Echo Request within SA1-I's ESP" (originally from HOST2)
- 2. Observe the packet transmitted by NUT
- 3. SGW1 sends "No Next Header within SA1-I's ESP" (originally from HOST2). The ESP sequence number must be incremented than the packet transmitted at step 1
- 4. Observe the packet transmitted by NUT
- 5. SGW1 sends "ICMP Echo Request within SA1-I's ESP" (originally from HOST2). The ESP sequence number must be incremented than the packet transmitted at step 3
- 6. Observe the packet transmitted by NUT

Part B (ADVANCED): No Next Header w/ TFC Padding

- 7. SGW1 sends "ICMP Echo Request within SA1-I's ESP" (originally from HOST2)
- 8. Observe the packet transmitted by NUT
- 9. SGW1 sends "No Next Header within SA1-I's ESP" (originally from HOST2). The ESP sequence number must be incremented than the packet transmitted at step 7. The data in upper layer consists of random bytes as the plaintext portion.
- 10. Observe the packet transmitted by NUT
- 11. SGW1 sends "ICMP Echo Request within SA1-I's ESP" (originally from HOST2). The ESP sequence number must be incremented than the packet transmitted at step 9
- 12. Observe the packet transmitted by NUT

Observable Results:

```
Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Request from HOST2"
Step-4 (Judgment #2):
NUT does not transmit any packets.
Step-6 (Judgment #3):
NUT transmits "ICMP Echo Request from HOST2"

Part B:
Step-8 (Judgment #1):
NUT transmits "ICMP Echo Request from HOST2"
Step-10 (Judgment #2):
NUT does not transmit any packets.
Step-12 (Judgment #3):
NUT transmits "ICMP Echo Request from HOST2"
```

Possible Problems:

6.1.8. Bypass Policy

Verify that a NUT (SGW) select bypass or discard policies

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support Bypass

Policy, regardless of explicitly or implicitly)

NOTE: NUT need to pass at least either of "Bypass Policy" or "Discard Policy" tests.

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <------ SA-O

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

Court by Moderation Bucusado (CMB) 101 ON C		
NUT_Link1		
SGW1_Link2		
0x2000		
tunnel		
ESP		
3DES-CBC		
ipv6readylogo3descbcout1		
HMAC-SHA1		
ipv6readylogsha1out1		

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST2

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request from HOST4

IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

Procedure:

Part A (ADVANCED -- except Either of Bypass or Discard Policy is required):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. Set Bypass Policy for above ICMP Echo Reply to NUT as following example
- 4. SGW2 forwards "ICMP Echo Request from HOST4"
- 5. Observe the packet transmitted by NUT

Example 1: Security Policy Database (SPD) for policy=bypass (none)

source address	HOST4_Link4
destination address	HOST1_Link0
upper spec	any
direction	out
policy	bypass (none)

Example 2: Security Policy Database (SPD) for policy=bypass (none) as default policy

source address	any
destination address	any
upper spec	any
direction	out
policy	bypass (none)

Phase-2 Test Specification

Observable Results:

Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Request" on Link0
Step-5 (Judgment #2):
NUT transmits "ICMP Echo Request from HOST4" on Link0

Possible Problems:

6.1.9. Discard Policy

Pur	pose	:
ıuı	post	•

Verify that a NUT (SGW) select bypass or discard policies

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support Discard

Policy, regardless of explicitly or implicitly)

NOTE: NUT need to pass at least either of "Bypass Policy" or "Discard Policy" tests.

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <------ SA-O

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

deduting header action bacasage (only for on o		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request from HOST4

IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

Procedure:

Part A (ADVANCED -- except Either of Bypass or Discard Policy is required):

- 1. SGW1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT
- 3. Set discard policy for above ICMP Echo Reply to NUT as following example
- 4. HOST4 sends "ICMP Echo Request from HOST4"
- 5. Observe the packet transmitted by NUT

Example 1: Security Policy Database (SPD) for policy=discard

source address	HOST4_Link4
destination address	HOST1_Link0
upper spec	any
direction	out
policy	discard

Example 2: Security Policy Database (SPD) for policy=discard as default policy

source address	any
destination address	any
upper spec	any
direction	out
policy	discard

Observable Results:

```
Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Request" on LinkO.
Step-5 (Judgment #2):
NUT does not transmit any packets.
```

Possible Problems:

6.1.10. Tunnel Mode Padding

Purpose:

Verify that a NUT (SGW) supports padding & padding byte handling (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

cocarrey hoseoratron battabase (onb) for on 1		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

Cood it y necestation batabase (one) for one	
source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link0
Tunnel destination address	HOST1_Link1
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header Source Address		SGW1_Link2
	Destination Address	NUT_Link1
ESP SPI		0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	Sequential
	Padding Length	7+8n (0 <= n <= 31)
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)
	Data Length	7

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP SPI		0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
	Padding	Sequential
	Padding Length	7+8n (0 <= n <= 31)
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)
	Data Length	7

Procedure:

SGW1_Link2(TN)	Target (NUT)	HOST1_Link0(TN)
 	 > 	 <i>ICMP Echo Request within ESP</i> (padding length is 7)
	 	> ICMP Echo Request (SRC=HOST2_Link3/DST=HOST1_Link0) (Judgment #1)
	 < 	<i>ICMP Echo Reply</i> (SRC=HOST1_Link0/DST=HOST2_Link3)
	 	<i>ICMP Echo Reply within ESP</i> (Judgment #2)
	> 	<i>ICMP Echo Request within ESP</i> (padding length is 255)
	 	> <i>ICMP Echo Request</i> (SRC=HOST2_Link3/DST=HOST1_Link0) (Judgment #3)
	 < 	<i>ICMP Echo Reply</i> (SRC=HOST1_Link0/DST=HOST2_Link3)
 < 	 	<i>ICMP Echo Reply within ESP</i> (Judgment #4)

Part A (BASIC):

- 1. SGW1 sends "ICMP Echo Request within ESP" (Padding Length=7)
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT
- 5. SGW1 sends "ICMP Echo Request within ESP" (Padding Length=255)
- 6. Observe the packet transmitted by NUT
- 7. HOST1 sends "ICMP Echo Reply"
- 8. Observe the packet transmitted by NUT

Observable Results:

Part A:
Step-2 (Judgment #1):
NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
NUT transmits "ICMP Echo Reply within ESP"
Step-6 (Judgment #3):
NUT transmits "ICMP Echo Request"
Step-8 (Judgment #4):
NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.1.11. TFC Padding

Purpose:

Verify that a NUT (SGW) supports TFC Padding (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support IPsec

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA1-I <----- SA1-0

Security Association Database (SAD) for SA1-I

order to the second of the sec	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA1-I

tunnel source address	SGW1_Link2	
tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA1-0

Cooding Modociation bacabase (OND) for ONI o	
source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within SA1-I's ESP * TFC Padded

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST2

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

Procedure:

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within SA1-1's ESP * TFC Padded" (originally from HOST2)
- 2. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT transmits "ICMP Echo Request from HOST2"

Possible Problems:

6.1.12. Non-Registered SPI

Purpose:

Verify that a NUT (SGW) can behave when No valid Security Association is configured.

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

country moderation business (emb) for enti-		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

decarry necestation bacasage (one) for one		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP 1

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Sequence Number	1
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request within ESP 2 with non-registered SPI

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x9000 (different from SA-I's
		SPD)
	Sequence Number	1
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

Procedure:

Part A (BASIC):

- 1. SGW1 sends "ICMP Echo Request within ESP 1"
- 2. Observe the packet transmitted by NUT
- 3. SGW1 sends "ICMP Echo Request within ESP 2"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT does not transmit any packets.

Possible Problems:

6.1.13. ICV

Purpose:

Verify that a NUT (SGW) can detect the modification by examining the ICV (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

country moderation business (only not on 1		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP 1

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Sequence number	1
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)
	Data	"PadLen is zero"

ICMP Echo Request

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Type	128 (Echo Request)
	Data	"PadLen is zero"

ICMP Echo Request within ESP 2

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Sequence number	2
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
	ICV	aaaaaaaaa
IP Header	Source Address	H0ST2_Link3
	Destination Address	H0ST1_Link0
ICMP	Type	128 (Echo Request)
	Data	"cracked"

Procedure:

Part A (BASIC):

- 1. SGW1 sends "ICMP Echo Request within ESP 1"
- 2. Observe the packet transmitted by NUT
- 3. SGW1 sends "ICMP Echo Request with ESP 2" (with INCORRECT ICV)
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT does not transmit any packets.

Possible Problems:

6.1.14. Tunnel Mode with End-Node

Purpose:

Verify that a NUT (SGW) can build IPsec tunnel mode with End-Node correctly, ESP=3DES-CBC

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 3

Set NUT's SAD and SPD as following:

Security Association Database (SAD) for SA-I

source address	HOST2_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

tunnel source address	HOST2_Link2
tunnel destination address	NUT_Link1
source address	HOST2_Link2
destination address	HOST1_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

decar ity hosestation bacasacs (one) for one		
source address	NUT_Link1	
destination address	H0ST2_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-0

tunnel source address	NUT_Link1
tunnel destination address	HOST2_Link2
source address	HOST1_Link0
destination address	HOST2_Link2
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP tunnel

IP Header	Source Address	H0ST2_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link2
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link2
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link2
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT_Link1
	Destination Address	H0ST2_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link2
ICMP	Type	129 (Echo Reply)

Procedure:

Part A (BASIC):

- 1. HOST2 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2. Algorithm Test

Scope:

Following tests focus on Encryption and Authentication Algorithms.

Overview:

Tests in this section verify that the NUT properly decrypt the received packet s and encrypts the transmitting packets using Encryption algorithms specified in the SAD.

And they verify that the NUT properly processes the authentication algorithms specified in the SAD.

6.2.1. Tunnel Mode ESP=3DES-CBC HMAC-SHA1

Purpo	se
-------	----

SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1

Category:

End-Node : N/A

SGW : BASIC (A requirement for all SGW NUTs)

References:

- [RFC2404]
- [RFC2451]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

documents house action bacasace (one) for one		
NUT_Link1		
SGW1_Link2		
0x2000		
tunnel		
ESP		
3DES-CBC		
ipv6readylogo3descbcout1		
HMAC-SHA1		
ipv6readylogsha1out1		

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	H0ST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	H0ST2_Link3
ICMP	Туре	129 (Echo Reply)

Part A (BASIC):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2.2. Tunnel Mode ESP=3DES-CBC AES-XCBC

Dire	pose	
rur	pose	•

SGW tunnel mode, ESP=3DES-CBC AES-XCBC

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support AES-XCBC

as an authentication algorithm)

References:

- [RFC2451]
- [RFC3566]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

cooding necessary bacasace (ens) for enti-		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	AES-XCBC	
ESP authentication key	ipv6readaesxin01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

occurred hospitalion bacabaco (onb) for on o		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcout1	
ESP authentication	AES-XCBC	
ESP authentication key	ipv6readaesxout1	

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

,		
IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	AES-XCBC
	Authentication Key	ipv6readaesxin01
IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	AES-XCBC
	Authentication Key	ipv6readaesxout1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2.3. Tunnel Mode ESP=3DES-CBC NULL

Purpose:

SGW tunnel mode, ESP=3DES-CBC NULL

Removed at revision 1.11.0.

6.2.4. Tunnel Mode ESP=AES-CBC (128-bit) HMAC-SHA1

Dire	pose	
rur	pose	•

SGW tunnel mode, ESP=AES-CBC (128-bit) HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support AES-CBC

(128-bit) as an encryption algorithm)

References:

- [RFC2404]
- [RFC3602]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

• • • • • • • • • • • • • • • • • • • •	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	AES-CBC(128-bit)
ESP key	ipv6readaescin01
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	AES-CBC(128-bit)
ESP key	ipv6readaescout1
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	AES-CBC(128-bit)
	Key	ipv6readaescin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	AES-CBC(128-bit)
	Key	ipv6readaescout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2.5. Tunnel Mode ESP=AES-CTR HMAC-SHA1

D		n	_	_	_	•
Pu	ľ	μ	U	ঠ	u	٠

SGW tunnel mode, ESP=AES-CTR HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support AES-CTR

as an encryption algorithm)

References:

- [RFC3686]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

•	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	AES-CTR
ESP key	ipv6readylogaescin01
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	AES-CTR
ESP key	ipv6readylogaescout1
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	AES-CTR
	Key	ipv6readylogaescin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	AES-CTR
	Key	ipv6readylogaescout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2.6. Tunnel Mode ESP=NULL HMAC-SHA1

Dire	pose	
rur	pose	•

SGW tunnel mode, ESP=NULL HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support NULL

as an encryption algorithm)

References:

- [RFC2404]
- [RFC2410]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <------ SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	NULL	
ESP key		
ESP authentication algorithm	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

decar ity hosseration bacasage (only for on o	
source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	NULL
ESP key	
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

,		
IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	NULL
	Key	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	NULL
	Key	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2.7. Tunnel Mode ESP= CAMELLIA-CBC (128-bit) HMAC-SHA1

Dire	pose	
rur	pose	•

SGW tunnel mode, ESP= CAMELLIA-CBC HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support

CAMELLIA-CBC (128-bit) as an encryption algorithm)

References:

- [RFC2404]
- [RFC4301]
- [RFC4303]
- [RFC4305]
- [RFC4312]
- [RFC4443]

Initialization:

Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <------ SA-0

Security Association Database (SAD) for SA-I

•	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	CAMELLIA-CBC(128-bit)
ESP key	ipvcamelliacin01
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

documents house the form bacabase (only) for on o	
source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	CAMELLIA-CBC(128-bit)
ESP key	ipvcamelliacout1
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	CAMELLIA-CBC(128-bit)
	Key	ipvcamelliacin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	CAMELLIA-CBC(128-bit)
	Key	ipvcamelliacout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED):

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "ICMP Echo Reply"
- 4. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

6.2.8. Tunnel Mode ESP=3DES-CBC HMAC-SHA256

Purpose:
SGW tunnel mode, ESP=3DES-CBC HMAC-SHA256
Category:
End-Node: N/A SGW: ADVANCED (This test is required for all SGW NUTs which support HMAC-SHA-256 as an authentication algorithm)
References:
- [RFC2451] - [RFC4301] - [RFC4303] - [RFC4305] - [RFC4443] - [RFC4868]
Initialization:
Use common topology described as Fig. 4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ----- NUT -- HOST1_Link0

-----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA-256
ESP authentication key	ipv6readylogoph2ipsecsha2256in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

document in the control of the contr		
source address	NUT_Link1	
destination address	SGW1_Link2	
SPI	0x2000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA-256	
ESP authentication key	ipv6readylogoph2ipsecsha2256out1	

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcin01
	Authentication Algorithm	AES-XCBC
	Authentication Key	ipv6readylogoph2ipsecsha2256in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Request

IP Header	Source Address	H0ST2_Link3
	Destination Address	HOST1_Link0
ICMP	Type	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Key	ipv6readylogo3descbcout1
	Authentication Algorithm	AES-XCBC
	Authentication Key	ipv6readylogoph2ipsecsha2256out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Type	129 (Echo Reply)

Part A (ADVANCED):

- 5. SGW1 sends "ICMP Echo Request within ESP"
- 6. Observe the packet transmitted by NUT
- 7. HOST1 sends "ICMP Echo Reply"
- 8. Observe the packet transmitted by NUT

Observable Results:

Part A:

Step-2 (Judgment #1):
 NUT transmits "ICMP Echo Request"
Step-4 (Judgment #2):
 NUT transmits "ICMP Echo Reply within ESP"

Possible Problems:

Appendix-A annex-5.1.2 for the passive node

This appendix describes alternative methods to perform Test 5.1.2 on the passive node which doesn't have the application to send ICMPv6 Echo Request.

1.1.using UDP application to invoke ICMPv6 Destination

Unreachable (Port unreachable)

Requirements:

- Must respond to ICMPv6 Echo Request with ICMPv6 Echo Reply
- Must respond to UDP packet toward the closed port with ICMPv6 Destination Unreachable (Port unreachable)

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

```
(passive node)
HOST1 ----- transport ---- NUT
              ----- spi=0x1000 -----> SA1-I ICMPv6 Echo Request
           <----- spi=0x2000 ----- SA2-0 ICMPv6 Echo Reply
<----- spi=0x3000 ----- SA3-0 ICMPv6 Destination Unreachable</pre>
                                                     (Port unreachable)
```


• SA1-I

Security Association Database (SAD)

source address	HOST1 Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD)

source address	HOST1_Link1
destination address	NUT_Link0
upper spec	ICMPv6 Echo Request
direction	inbound
protocol	ESP
mode	transport

• SA2-O

Security Association Database (SAD)

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD)

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	ICMPv6 Echo Reply
direction	outbound
protocol	ESP
mode	transport

• SA3-O

Security Association Database (SAD)

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x3000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout3
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out3

Security Policy Database (SPD)

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	ICMPv6 Destination Unreachable
direction	outbound
protocol	ESP
mode	transport

ICMPv6 Echo Request with ESP1

IPv6	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMPv6	Type	128 (Echo Request)

ICMPv6 Echo Reply with ESP2

IPv6	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
ICMPv6	Type	129 (Echo Reply)

UDP packet toward closed port

IPv6	Source Address	HOST1_Link1
	Destination Address	NUT_Link0
UDP	Source Port	Any unused port on HOST1
	Destination Port	Any closed port on NUT

ICMPv6 Destination Unreachable with ESP3

IPv6	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout3
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out3
ICMPv6	Type	1 (Destination Unreachable)
	Code	4 (Port unreachable)

Part A (ADVANCED):

- 1. HOST1_Link1 sends "ICMPv6 Echo Request with ESP1" to NUT_Link0
- 2. Observe the packet transmitted by NUT_Link0
- 3. HOST1_Link1 sends "UDP packet toward closed port" to NUT_Link0
- 4. Observe the packet transmitted by NUT_Link0

Observable Results:

Part A:

Step-2 (Judgment #1):

NUT_Link0 transmits "ICMPv6 Echo Reply with ESP2"

Step-4 (Judgment #2):

NUT_Link0 transmits "ICMPv6 Destination Unreachable with ESP3"

Possible Problems:

1.2. invoking Neighbor Unreachability Detection

Requirements:

Must respond to ICMPv6 Echo Request with ICMPv6 Echo Reply

Initialization:

Use following topology

Reboot NUT making sure it has cleared its neighbor cache. Allow time for all devices on Link0 to perform Stateless Address Autoconfiguration and Duplicate Address Detection.

- 1. Set the global address (NUT_Link0) to NUT by RA if NUT is the host. Otherwise set the global address (NUT_Link0) to NUT manually
- 2. Set MTU (1500 bytes for Link0) to NUT by RA if NUT is the host. Otherwise set MTU (1500 bytes for Link0) to NUT manually.
- 3. Set NUT's SAD and SPD as following:

(passive node) HOST1 transport NUT		
> spi=0x1000> SA1-I	ICMPv6 Echo Request	
< spi=0x2000 SA2-0	ICMPv6 Echo Reply	
< spi=0x3000 SA3-0	ICMPv6 Neighbor Solicitation	
> SA4-I	ICMPv6 Neighbor Advertisement	

• SA1-I

Security Association Database (SAD)

source address	HOST1_Link0
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD)

source address	HOST1_Link0
destination address	NUT_Link0
upper spec	ICMPv6 Echo Request
direction	inbound
protocol	ESP
mode	transport

• SA2-O

Security Association Database (SAD)

source address	NUT_Link0
destination address	HOST1_Link0
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD)

source address	NUT_Link0
destination address	HOST1_Link0
upper spec	ICMPv6 Echo Reply
direction	outbound
protocol	ESP
mode	transport

• SA3-O

Security Association Database (SAD)

source address	NUT_Link0
destination address	HOST1_Link0
SPI	0x3000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout3
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out3

Security Policy Database (SPD)

source address	NUT_Link0
destination address	HOST1_Link0
upper spec	ICMPv6 Neighbor Solicitation
direction	ipv6readylogo3descbcin01outbound
protocol	ESP
mode	transport

• SA4-I

Security Association Database (SAD)

source address	HOST1_Link0
destination address	NUT_Link0
SPI	0x4000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin04
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in04

Security Policy Database (SPD)

source address	HOST1_Link0
destination address	NUT_Link0
upper spec	ICMPv6 Neighbor Advertisement
direction	inbound
protocol	ESP
mode	transport

ICMPv6 Neighbor Solicitation (multicast)

IPv6	Hop Limit	255	
	Source Address	HOST1_Link0	
	Destination Address	NUT_Link0	
		(solicited-node multicast address)	
ICMPv6	Type	135 (Neighbor Solicitation)	
	Target Address NUT_Link0		
	Source link-layer address Option		
	Link-Layer Address: HOST1_Link0 MAC address		

ICMPv6 Neighbor Advertisement

IPv6	Hop Limit	255
	Source Address	NUT_Link0
	Destination Address	HOST1_Link0
ICMPv6	Type	136 (Neighbor Advertisement)
	R	false (if NUT is the host)
		true (if NUT is the router)
	S	true
	0	true
	Target Address	NUT_Link0
	Target link-layer address Option	
	Link-Layer Address: NUT_Link0 MAC address	

ICMPv6 Echo Request with ESP1

IPv6	Source Address	HOST1_Link0
	Destination Address	NUT_Link0
ESP	SPI	0x1000
	Sequence Number	1
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMPv6	Type	128 (Echo Request)

ICMPv6 Echo Reply with ESP2

IPv6	Source Address	NUT_Link0
	Destination Address	HOST1_Link0
ESP	SPI	0x2000
	Sequence Number	1
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
ICMPv6	Type	129 (Echo Reply)

$ICMPv6\ Neighbor\ Solicitation\ with\ ESP3$

IPv6	Hop Limit	255
	Source Address	NUT_Link0
	Destination Address	HOST1_Link0
ESP	SPI	0x3000
	Sequence Number	1
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout3
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out3
ICMPv6	Type	135 (Neighbor Solicitation)
	Target Address	HOST1_Link0
	Source link-layer address Option	
	Link-Layer Address: NUT_Link0 MAC address	

ICMPv6 Neighbor Advertisement with ESP4

IPv6	Hop Limit	255
	Source Address	HOST1_Link0
	Destination Address	NUT_Link0
ESP	SPI	0x4000
	Sequence Number	1
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin04
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in04
ICMPv6	Type	136 (Neighbor Advertisement)
	R	false
	S	true
	0	true
	Target Address	HOST1_Link0
	Target link-layer address Option	
	Link-Layer Address: HOST1_Link0 MAC address	

Part A (ADVANCED):

- 1. HOST1_Link0 sends "ICMPv6 Neighbor Solicitation (multicast)" to NUT_Link0
- 2. Observe the packet transmitted by NUT_Link0
- 3. HOST1_Link0 sends "ICMPv6 Echo Request with ESP1" to NUT_Link0
- 4. Observe the packet transmitted by NUT_Link0
- Observe the packet transmitted by NUT_Link0 for DELAY_FIRST_PROBE_TIME (5) seconds
- 6. HOST1_Link0 sends "ICMPv6 Neighbor Advertisement with ESP4" to NUT_Link0

Observable Results:

```
Part A:

Step-2 (Judgment #1):

NUT_Link0 transmits "ICMPv6 Neighbor Advertisement"

Step-4 (Judgment #2):

NUT_Link0 transmits "ICMPv6 Echo Reply with ESP2"

Step-5 (Judgment #3):

NUT_Link0 transmits "ICMPv6 Neighbor Solicitation with ESP3"
```

Possible Problems:

All Rights Reserved. Copyright (C) 2004
Yokogawa Electric Corporation
IPv6 Forum

No part of this documentation may be reproduced for any purpose without prior permission.