Перспективный алгоритм хэширования

Д. В. Матюхин, В. И. Рудской, В. А. Шишкин

2 апреля 2010 года

Основные криптографические требования к функции хэширования $H:\{0,1\}^* o \{0,1\}^n$

Задача	Трудоемкость
(построение)	(вычислений $H)$
прообраза:	
по $h \in \{0,1\}^n$ найти $M \in \{0,1\}^*$:	$\gtrsim 2^n$
H(M) = h	
коллизии:	
найти $M, M' \in \{0, 1\}^*$:	$\gtrsim 2^{n/2}$
$M \neq M', H(M) = H(M')$, -
второго прообраза:	
по $M \in \{0,1\}^*$ найти $M' \in \{0,1\}^*$:	$\gtrsim 2^n/ M $
$M' \neq M, H(M') = H(M)$	
по $ M , H(M)$ найти $M' \in \{0,1\}^*, H(M\ M')$	$\gtrsim 2^n$
(length-extension attack)	

Последние результаты криптографического анализа хэш-функции ГОСТ Р 34.11-94 (n=256)

F. Mendel, N. Pramstaller, C. Rechberger, M. Kontak, J. Szmidt, CRYPTO 2008: алгоритмы построения прообраза за 2^{192} вычислений функций сжатия, коллизии за 2^{105} вычислений функций сжатия. Меньше «универсальных» оценок 2^{256} и 2^{128} соответственно!

Принципы синтеза перспективной хэш-функции

- отсутствие свойств, позволяющих эффективно применить известные методы криптографического анализа
- использование только хорошо изученных конструкций и преобразований
- максимальное быстродействие при указанных выше условиях
- ничего лишнего: каждое преобразование обеспечивает определенные криптографические свойства

Общая схема перспективной хэш-функции

- n=512, итерационная конструкция Меркля-Дамгорда: $M=m_t||\dots||m_1$, $H_i=g_{512(i-1)}(H_{i-1},m_i), i=1,\dots,t-1$
- ullet функция сжатия $g_{512(i-1)}:\{0,1\}^{512} imes\{0,1\}^{512} o\{0,1\}^{512}$ зависит от номера итерации
- MD-усиление: $\overline{m}_t = 0^{511-|m_t|}||1||m_t$, $H_t = g_{512(t-1)}(H_{t-1}, \overline{m}_t)$
- применение функции сжатия для длины сообщения |M| и контрольной суммы $\Sigma = m_1 \boxplus \ldots \boxplus m_{t-1} \boxplus \overline{m}_t$ в качестве завершающих итераций: $H_{t+1} = g_0(H_t, |M|), H(M) = g_0(H_{t+1}, \Sigma)$

Общая схема перспективной хэш-функции

Функции сжатия

Конструкция Миягучи-Принеля:

$$g_N(h,m)=E(K_N(h),m)\oplus h\oplus m,$$
где $E:\{0,1\}^{512} imes\{0,1\}^{512} o\{0,1\}^{512}$ — блочный шифр

Функции сжатия

$$K_N(h) = LPS(h \oplus N)$$
 $E(K,m) = X[K_{13}]LPSX[K_{12}]\dots LPSX[K_2]LPSX[K_1](m)$ $K_1 = K, \quad K_i = LPS(K_{i-1} \oplus C_{i-1}), i = 2,\dots,13$ Фиксированные $C_i \in \{0,1\}^{512}$ и $X[k], S, P, L: \{0,1\}^{512} \to \{0,1\}^{512}$ $X[k](a) = k \oplus a, k \in \{0,1\}^{512}$ $S(a) = S(a_{63}||\dots||a_0) = \pi(a_{63})||\dots||\pi(a_0), \pi \in S_{256}, a_i \in \{0,1\}^8$ $P(a) = P(a_{63}||\dots||a_0) = a_{\tau(63)}||\dots||a_{\tau(0)}, \tau \in S_{64}, a_i \in \{0,1\}^8$ $L(a) = L(a_7||\dots||a_0) = l(a_7)||\dots||l(a_0), l$ линейное на 64 битах

Функции сжатия

Блочный шифр

	$X[K_1]$	
π π π π	• • •	$egin{bmatrix} \pi \ \end{bmatrix} egin{bmatrix} \pi \ \end{bmatrix} egin{bmatrix} \pi \ \end{bmatrix} egin{bmatrix} \pi \ \end{bmatrix}$
	τ	
l	•••	l
	$X[K_2]$	
	•••	
	$X[K_{12}]$	
π π π	• • •	π π π π
	τ	
l	•••	l
	$X[K_{13}]$	

Криптографические и эксплуатационные качества перспективной хэш-функции

- удовлетворяет основным криптографическим требованиям к функциям хэширования (см. выше)
- скорость хэширования 40 Мбайт/с (50 тактов/байт) на 1 ядре Intel Xeon quadcore (64 bit) 2.0 ГГц, компилятор Microsoft Visual Studio 2005 (С++) (на 20% быстрее ГОСТ Р34.11-94)