

# UNIVERSIDAD NACIONAL DEL ALTIPLANO

# FACULTAD DE INGENIERÍA ESTADÍSTICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA ESTADÍSTICA E **INFORMÁTICA**



# METODO DE BISECCION

**CURSO: PROGRAMACION NUMERICA** 

**DOCENTE:** Fred Torrez

#### **INTEGRANTES:**

- Caira Huancollo Wili Calib
- Cutipa Ramos, Nayelin Brisbany
- Quenaya Loza Luis Angel
- Quispe Ito Luz Leidy

**SEMESTRE:** Cuarto

GRUPO: "A"

PUNO – PERÚ

2025 II

# ÍNDICE

|    | Pág                                                                               | ina      |
|----|-----------------------------------------------------------------------------------|----------|
| 1. | Definición del Método de Bisección                                                | 3        |
| 2. | Procedimiento                                                                     | 3        |
| 3. | Ejemplo: Método de Bisección con función exponencial 3.1. Iteraciones paso a paso | <b>4</b> |

#### 1. Definición del Método de Bisección

El **método de bisección** es un procedimiento **numérico e iterativo** que se utiliza para encontrar una **raíz** de una función, es decir, un valor de x que hace que f(x) = 0.

Este método se basa en un principio sencillo: si una función continua cambia de signo en un intervalo cerrado [a, b], entonces existe al menos una raíz dentro de ese intervalo. En otras palabras, si:

$$f(a) \times f(b) < 0$$

entonces hay al menos una raíz entre a y b.

El método consiste en **dividir repetidamente el intervalo por la mitad** y elegir el subintervalo en el que la función cambia de signo. Con cada iteración, el intervalo se hace más pequeño y la aproximación a la raíz se vuelve más precisa.

En palabras simples: El método de bisección es como un proceso de búsqueda donde se reduce el rango a la mitad en cada paso, acercándose cada vez más al punto donde la función cruza el eje x.

**Ejemplo intuitivo:** Si f(2) > 0 y f(5) < 0, significa que hay al menos una raíz entre 2 y 5. Calculamos el punto medio  $c = \frac{2+5}{2} = 3.5$  y evaluamos f(3.5). Luego elegimos el nuevo intervalo donde ocurre el cambio de signo y repetimos el proceso hasta aproximar la raíz con la precisión deseada.

#### 2. Procedimiento

1. **PASO 1:** Calcular el punto medio (m).

$$m = \frac{a+b}{2}$$

- 2. **PASO 2:** Evaluar la función en los puntos f(a), f(b) y f(m).
- 3. PASO 3: Determinar el nuevo intervalo.
  - Si  $f(a) \cdot f(m) < 0$ , la raíz se encuentra en el intervalo [a, m]. El nuevo intervalo es (a, m).
  - Si  $f(m) \cdot f(b) < 0$ , la raíz se encuentra en el intervalo [m, b]. El nuevo intervalo es (m, b).
- 4. **PASO 4:** Calcular el error.

$$e = \frac{b - a}{2}$$

# 3. Ejemplo: Método de Bisección con función exponencial

#### Enunciado

Un ingeniero en control de procesos necesita calcular el tiempo x en horas que tarda en estabilizarse la temperatura de un horno industrial. El comportamiento de la temperatura se modela con la función:

$$f(x) = e^{3x} - 4$$

Se sabe que la raíz de la ecuación (cuando el horno alcanza el nivel de equilibrio) se encuentra en el intervalo [0, 1]. Se pide aplicar el Método de Bisección hasta obtener un error menor a 0,1.

#### **Procedimiento**

Fórmulas básicas:

$$m = \frac{a+b}{2}$$

Si 
$$f(a) \cdot f(m) < 0 \implies [a, m]$$
 Si  $f(m) \cdot f(b) < 0 \implies [m, b]$ 

$$e = \frac{b - a}{2}$$

## 3.1. Iteraciones paso a paso

**Datos iniciales:** 

$$f(x) = e^{3x} - 4$$
,  $[a, b] = [0, 1]$ ,  $e \le 0.1$ 

Iteración 1:

$$m = \frac{0+1}{2} = 0.5$$

$$f(0) = e^0 - 4 = -3, \quad f(1) = e^3 - 4 \approx 16,0855, \quad f(0.5) = e^{1.5} - 4 \approx 0.4816$$

$$\Rightarrow [0,0.5], \quad e = \frac{1-0}{2} = 0.5$$

Iteración 2:

$$m = \frac{0+0.5}{2} = 0.25$$
 
$$f(0) = -3, \quad f(0.5) = 0.4816, \quad f(0.25) = e^{0.75} - 4 \approx -1.8829$$
 
$$\Rightarrow [0.25, 0.5], \quad e = \frac{0.5 - 0}{2} = 0.25$$

Iteración 3:

$$m = \frac{0.25 + 0.5}{2} = 0.375$$

$$f(0.25) = -1.8829, \quad f(0.5) = 0.4816, \quad f(0.375) = e^{1.125} - 4 \approx -0.919$$

$$\Rightarrow [0.375, 0.5], \quad e = \frac{0.5 - 0.25}{2} = 0.125$$

#### Iteración 4:

$$m = \frac{0,375+0,5}{2} = 0,4375$$

$$f(0,4375) = e^{1,3125} - 4 \approx -0,284$$

$$\Rightarrow [0,4375,0,5], \quad e = \frac{0,5-0,375}{2} = 0,0625$$

Como e < 0,1, se detiene el método.

#### Resultado final

La raíz aproximada de la ecuación

$$f(x) = e^{3x} - 4$$

es:

 $x \approx 0.44$  con un error menor a 0.1

#### Tabla de iteraciones

| a     | b   | m      | f(a)    | f(b)    | f(m)    | e      |
|-------|-----|--------|---------|---------|---------|--------|
| 0     | 1   | 0.5    | -3      | 16.0855 | 0.4816  | 0.5    |
| 0     | 0.5 | 0.25   | -3      | 0.4816  | -1.8829 | 0.25   |
| 0.25  | 0.5 | 0.375  | -1.8829 | 0.4816  | -0.919  | 0.125  |
| 0.375 | 0.5 | 0.4375 | -0.919  | 0.4816  | -0.284  | 0.0625 |

### Representacion Grafica:

