Literature review of pressure-induced amorphization

Feng Wang

October 2, 2018

Approaches to obtaining amorphous solids

Approaches to obtaining amorphous solids

Approaches to obtaining amorphous solids

Literature review of PIA Feng Wang 1/12

Converting crystals to amorphous solids

- Pressured-induced amorphization (PIA)
 - most cases are increasing pressure, i.e. compression
 - ▶ depressurization amorphization: e.g. boron carbide (B₄C) PRL 102, 075505 (2009)

> Shock

- e.g. Boron carbide B₄C, PRL 102, 075505 (2009)
- ▶ it may related to quenching or pressured-induced amorphization
- > Irradiation (accumulating defects)
 - Cubic silicon carbide (SiC) (has very rich and interesting properties). PRL 111, 155501 (2013)
 - fcc Si sublattice is unstable if C is removed. This intrinsic mechanical instability drives the amorphization. The obtained g(r) is very similar to the one from quenching a liquid.
 - ► For single component system (e.g. LJ fcc crystal), amorphization won't happen till the accumulated interstitial concentration > 25%. RPL 59, 2760 (1987)
- Instability of metastable solid solution Mo Li, PRL 70, 1120 (1993)

Literature review of PIA Feng Wang 2/12

Pressure scale

Literature review of PIA Feng Wang 3/12

Materials showing PIA

Mainly are tetrahedrally coordinated materials. PRB 71, 224119 (2005)

- Ice I_h Nature 310, 393 (1984); Nature 384, 546 (1996);
 - low density amorphous ice (LDA): usually from vapor-deposition
 - ▶ high density amorphous ice (HDA): compress ice I_h at 77 K to 1.6 GPa, or compress LDA at 77 K to 0.5 GPa
 - ▶ very high density amorphous ice: warm HDA to 160K 77 K at ~2 GPa
- silica SiO₂: coesite PNAS 114, 12894 (2017); quartz Treatise on Geophysics (Second Edition) (2015); Nature 334, 52 (1988); PRL 69, 1387 (1992)
- ➤ GeO₂ PRL 93, 115502 (2004)
- ➤ Ge₂Sb₂Te₅ PNAS 108, 10410 (2011)
- \sim α -berlinite AlPO₄ Science 255, 1559 (1992)
- > boron carbide (B₄C): one of the superhard materials, it also has very low density, used as armor ceramic
- Zirconium tungstate ZrW2O8: the most studied negative thermal expansion material Science 280, 886 (1998)
- > Snl₄ JCP 143 164508 (2015)
- clathrate hydrates JCP 94, 623 (1991)
- > zeolite silica (microporous: pores diameter < 2nm) Nature 369, 724 (1994)
- > pressure-release amorphization: perovskite-structured modification of CaSiO₃, one of the main minerals of the Earth's lower mantle, which at ambient conditions turns to a glass within a few hours. Treatise on Geophysics (Second Edition) (2015)
- > Progress in Materials Science 40, 1 (1996) gives a two-page table on the transformation pressure of about 50 materials known up to 1994.

PIA types

➤ True PIA

▶ a crystalline material that transforms (upon change of the external pressure) to a completely amorphous structure when a well defined transition pressure is reached.

➤ Weak PIA

▶ A single-crystal sample transform to an X-ray amorphous state, e.g. a polycrystal with a sufficiently small crystal size. PRB 71, 224119 (2005)

Literature review of PIA Feng Wang 5/12

Mechanism of PIA

- > Mechanical instability: Most support it, e.g.
 - *elastic modulus* = 0: HDA ice Nature 384, 546–549 (1996); Nature 400, 647649 (1999); α quartz PRL 70, 174 (1993); PRE 52, 6484 (1995)
 - ▶ soft phonon mode on the boundary of Brillouin zone PRB 54, 12036 (1996)
 - ► low-frequency vibrational rigid unit mode (RUM): ZrW₂O₈ Science 280, 886 (1998) Simultaneous softening a phonon branch along a direction in the Brillouin zone
- ➤ Kinetically frustrated phase transition to another crystalline state PRL 68, 3311 (1992); PRB 51, 11262 (1995)
- > Forming new chemical bonds
 - ▶ amorphization of cubic Ge₂Sb₂Te₅ is caused by the large displacement of Te atoms to the nearby vacancy position results into very strong Te-Te covalent bonds and Ge/Sb homopolar bonds PRL 102, 205502 (2009); PNAS 108, 10410 (2011) (simulation)
- Bending of chemical bonds
 - ▶ depressurization amorphization of single-crystal boron carbide (B₄C) is caused by "pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices." PRL 102, 075505 (2009) (experiments and simulation)

Literature review of PIA Feng Wang 6/12

Abrupt vs. progressive transformation

Most are **Abrupt**

> ice l_h Nature 310, 393 (1984)

progressive

- $ightharpoonup ZrW_2O_8$ Science 280, 8869 (1998) start at 1.5 GPa and complete at 3 GPa
- ightharpoonup Ge₂Sb₂Te₅ PNAS 108, 10410 (2011) start at 18 GPa and complete at 22 GPa

Literature review of PIA Feng Wang 7/12

Reversibility

Reversible: memory effect

- \sim α -berlinite AlPO₄ Science 255, 1559 (1992)
- Clathrate hydrate of tetrahydrofuran (THF) and sulphur hexafluoride, and THF zeolite JCP 94, 623 (1991); Nature 369, 724 (1994)
- ZrW₂O₈ annealed at 923K Science 280, 8869 (1998)
- Ge₂Sb₂Te₅ can recover at 145°C PNAS 108, 10410 (2011)
- Co(OH)₂ PRL 78, 1936 (1997) (only O-H bond is disordered)

Irreversible: can be stable when depressurized

- > ice
- $\triangleright \alpha$ quartz PRL 70, 174 (1993)
- ZrW₂O₈ at 300K Science 280, 8869 (1998)
- ➤ GeO₂ PRL 93, 115502 (2004)
- Ge₂Sb₂Te₅ can recover at 25°C PNAS 108, 10410 (2011)

The rigid unit (e.g. WO_4 and PO_4) is the key for reversibility

Literature review of PIA Feng Wang 8/12

Is the structure the same as liquid?

Yes

> ice l_h Nature 310, 393 (1984)

Note: based on g(r)

No

- LDA and HDA ice Nature 400, 647 (1999)

 differ in local structure
- ➤ SiO₂ PRL 70, 174 (1993)

 "no structual relationships between pressure-amorphized quartz and silica glass"
- > X-ray amorphous core-soften system PRB 71, 224119 (2005)

Literature review of PIA Feng Wang 9/12

Is PIA low-temperature melting?

Yes

- ightharpoonup ice I_h Nature 384, 546–549 (1996) crossover at 140-165 K: equilibrium melting ightharpoonup sluggish amorphization
- \sim α -quartz and coesite Nature 334, 52 (1988)

No

- LDA and HDA ice Nature 400, 647 (1999) differ from liquid, indicating not melting
- $\sim \alpha$ quartz PRL 70, 174 (1993) Anisotropy in PIA

Literature review of PIA Feng Wang 10/12

Is PIA less studied now?

- > Yes, PIA is only a small subset of pressure-induced phase transformation.
 - ▶ Hydrogen-riched high-pressure high-Tc superconductivity PRL 98, 117004 (2007); PRL 100, 045504 (2008); Nature 525, 73 (2015) SH₃: $T_c = 203$ K at 90 GPa; AlH₃, SiH₄, SnH₄ theory prediction: atomic phase metallic hydrogen $T_c = 300$ -350K at 500 GPa Rev. Mod. Phys. 84, 1607 (2012)
 - high pressure solid-solid transition: e.g., related to deep earthquakes PNAS 104,
 9133 (2007), elements Phase Transformations of Elements Under High Pressure (2005)
- > No, PIA has many practical applications
 - ▶ Boron carbide B₄C for armor
 - ▶ PIA-based phase-change random access memory Ge₂Sb₂Te₅ for fast reading/writing PRL 102, 205502 (2009); PNAS 108, 10410 (2011)
 - nanocrystalline alloys produced by crystallization of amorphous alloys Current Topics in Amorphous Materials: Physics & Technology (2013)

Literature review of PIA Feng Wang 11/12

Periodic table

Group	1 Alkali metals	2 Alkaline earth metals	3		4	5	6	7	8	9	10	11	12	13	14	15 Pnictogens	16 Chalcogens	17 Halogens	18 Noble ga
riod	Hydrogen																		Heliu
1	1 H 1.008																		2 He 4.002
	Lithium	Beryllium												Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neor
2	3 Li 6.94	4 Be 9.0122												5 B 10.81	6 C 12.011	7 N 14.007	8 0 15.999	9 F 18.998	10 Ne 20.18
	Sodium 11	Magnesium												Aluminium	Silicon	Phosphorus	Sulfur	Chlorine 17	Argo
3	Na 22.990	12 Mg 24.305												13 AI 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	CI 35.45	18 Ar 39.94
	Potassium	Calcium	Scandium		Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypti
4	19 K 39.098	20 Ca 40.078	21 Sc 44.956		22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.971	35 Br 79.904	36 Kr 83.79
	Rubidium	Strontium	Yttrium		Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xeno
5	37 Rb 85.468	38 Sr 87.62	39 Y 88.906		40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc [98]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 1 126.90	54 Xe 131.2
	Caesium	Barium	Lanthanum		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Rado
<u>6</u>	55 Cs 132.91	56 Ba 137.33	57 La 138.91	*	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222
	Francium	Radium	Actinium		Ruther- fordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darm- stadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganes
7	87 Fr [223]	88 Ra [226]	89 Ac [227]	. * .	104 Rf [267]	105 Db [268]	106 Sg [269]	107 Bh [270]	108 Hs [270]	109 Mt [278]	110 Ds [281]	111 Rg [282]	112 Cn [285]	113 Nh [286]	114 FI [289]	115 Mc [290]	116 Lv [293]	117 Ts [294]	118 Og [294
				-	Cerium	Praseo-	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	-
				*	58 Ce 140.12	dymium 59 Pr 140.91	60 Nd 144.24	61 Pm [145]	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97	
				-	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	=
				*	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np [237]	94 Pu	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [266]	

Literature review of PIA Feng Wang 12/12