Towards High-Order Differentiation using Semi-Implicit Euler Discretization

L. Michel¹, M. Ghanes¹, F. Plestan¹, Y. Aoustin² and JP Barbot^{1,3}

¹ Ecole Centrale de Nantes-LS2N, UMR 6004 CNRS
² Nantes Universite-LS2N, UMR 6004 CNRS
³ ENSEA Quartz Laboratory EA 7393
*This work has been supported by the ANR project DigitSlid ANR-18-CE40-0008-01

Introduction

General overview

- Introduced by the work of Brogliato et al. 1, the implicit discretization method is well adapted to sliding-mode controllers, high-order differentiation and more generally to differential inclusion $\dot{x} \in F(x)$
- It aims to replace the sign function by an implicit projector with very promising results² including
 - reduction of the chattering effect
 - robustness of the control under lower sampling frequencies
 - preservation of the global stability

^{1.} V. Acary, B. Brogliato "Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems" Systems and Control Letters, Elsevier, 2010, 59 (5), pp.284-295.

^{2.} M.R. Mojallizadeh et al. "A survey on the discrete-time differentiators in closed-loop control systems: experiments on an electro-pneumatic system" Control Engineering Practice, 2023, 136 (105546), pp.1-23.

Introduction

Explicit vs implicit Euler scheme : toward a projector-based solution

- ✓ To estimate x^+ , we need to know \dot{x}^+
 - Linear case : example $\dot{x} = -ax$, a > 0
 - 1. Explicit: $x^+ = (1 ha)x \implies$ stable if $h < \frac{2}{a}$ (small h)
 - 2. Implicit: $x^+ = \frac{x}{1 + ha}$ \implies stable $\forall h$ if $O(h^2) \simeq 0$
 - Sliding mode case :
 - 1. Explicit: Chattering
 - 2. Implicit: No Chattering (Projector-based solution)

Toward implicit & projector-based differentiation

Extension of the sign properties from the sliding mode control: the implicit scheme

✓ The exact discretized system, under a sampling-time h, is controlled by the *implicit projector* $\mathcal{N}_{\lambda,h}$ that gives

$$\begin{cases} x_{k+1} = x_k + h \, u_{k+1} \\ u_{k+1} = -\lambda \operatorname{sgn}(x_{k+1}) \end{cases}$$
 (1)

where $\operatorname{sgn}(x_{k+1})$ is evaluated thanks to the operator $\mathcal{N}_{\lambda, h}$ with $\lambda > 0$ that is defined as

$$\begin{cases} |x_k| < \lambda h \to \mathcal{N}_{\lambda, h} = \frac{x_k}{\lambda h} & (i.e. \quad x_{k+1} = 0) \\ |x_k| \ge \lambda h \to \mathcal{N}_{\lambda, h} = \operatorname{sgn}(x_k) & (i.e. \quad x_{k+1} \ne 0) \end{cases}$$
(2)

Towards implicit & projector-based differentiation

Extension of the sign properties from the sliding mode control : basic semi-implicit control

 \checkmark Given the state variable x_k , the backward Euler semi-implicit scheme reads

$$\begin{cases} x_{k+1} = x_k + h \, u_{k+1} \\ u_{k+1} = -|x_k|^{\alpha} \underbrace{\mathcal{N}_{\lambda, h}}_{\text{sgn}(x_{k+1})} \end{cases}$$

- Depending on x_k , u_{k+1} belongs either to the saturation mode 3 defined by $u_{k+1} = -\lambda \operatorname{sgn}(x_k)$, or u_{k+1} belongs to the linear mode and corresponds to a $1/\lambda$ -contraction of $\frac{x_k}{\lambda h}$
- The term $|x_k|^{\alpha}$ is the explicit part that overcomes the chattering phenomena w.r.t. the homogeneous exponent α

The sign function is generalized by $\mathcal{N}_{\lambda, h}$ whose purpose is to anticipate the next x_{k+1} step

^{3.} The sgn(x) function verifies : if x > 0, then +1; if x < 0 then -1; if x = 0 then]-1,1[.

Towards implicit & projector-based differentiation

Extension of the sign properties from the sliding mode control : basic semi-implicit control / representation of the projector

Examples of representation of $\mathcal{N}_{\lambda,h,\alpha}$ versus α

Towards implicit & projector-based differentiation

Extension of the sign properties from the sliding mode control: basic semi-implicit

State variable x (top) and control input u (bottom) versus time (s), for different values of α

^{4.} L. Michel et al. "Semi-Implicit Euler Discretization for Homogeneous Observer-based Control: one dimensional case" IFAC-PapersOnLine, Volume 53, Issue 2, 2020, Pages 5135-5140.

First & Sec. order semi-implicit differentiation \checkmark Considering the error $\epsilon_1=x-z_1$ and $\alpha\in[0.5\ ,1[$, the first order differentiation (SIHD1) reads

$$\begin{cases}
z_1^+ = z_1 + h \left(z_2^+ + \lambda_1 \mu |\epsilon_1|^{\alpha} \mathcal{N}_1(\epsilon_1) \right) \\
z_2^+ = z_2 + E_1^+ h \lambda_2 \mu^2 |\epsilon_1|^{2\alpha - 1} \mathcal{N}_2(\epsilon_1)
\end{cases}$$
(3)

where the projector $\mathcal{N}_q,\ q=1...2$ and the activation of the flag E_1^+ are such as

$$\mathcal{N}_{q}(\epsilon_{1}) := \begin{cases} \epsilon_{1} \in SD & \to \mathcal{N}_{q} = \frac{\lceil \epsilon_{1} \rfloor^{q(1-\alpha)}}{\lambda_{q}(\mu h)^{q}}, \quad E_{q}^{+} = 1 \\ \\ \epsilon_{1} \notin SD & \to \mathcal{N}_{q} = \operatorname{sign}(\epsilon_{1}), \quad E_{q}^{+} = 0 \end{cases}$$

$$(4)$$

with the domain of attraction $SD = \{\epsilon_1 / |\epsilon_1| \leq (\lambda_1 \mu h)^{\frac{1}{q(1-\alpha)}}\}$

First & Sec. order semi-implicit differentiation / Application to robotics

SIHD2-based (real-time) estimation in open-loop

Cable Parallel Robot prototype located at LS2N, Nantes, France

https://www.youtube.com/watch?v=I-IOcAGha3o

 \checkmark Extension to third order estimation (position, velocity, acc. and jerk) incl. correction terms that refine the Taylor expansion ⁵

$$\begin{cases}
z_{4}^{+} = z_{4} + E_{1}^{+} E_{2}^{+} E_{3}^{+} h \left(\lambda_{4} \mu^{4} | e_{1} |^{4 \alpha - 3} \mathcal{N}_{4} \right) \\
z_{3}^{+} = z_{3} + E_{1}^{+} E_{2}^{+} h \left(z_{4}^{+} + \lambda_{3} \mu^{3} | e_{1} |^{3 \alpha - 2} \mathcal{N}_{3} \right) \\
z_{2}^{+} = z_{2} + E_{1}^{+} h \left(z_{3}^{+} - \mathbf{E}_{3}^{+} h \frac{1}{2} z_{4}^{+} + \lambda_{2} \mu^{2} | e_{1} |^{2 \alpha - 1} \mathcal{N}_{2} \right) \\
z_{1}^{+} = z_{1} + h \left(z_{2}^{+} - \mathbf{E}_{2}^{+} \frac{h}{2} z_{3}^{+} + \mathbf{E}_{3}^{+} \mathbf{E}_{2}^{+} \frac{h^{2}}{3!} z_{4}^{+} + \lambda_{1} \mu | e_{1} |^{\alpha} \mathcal{N}_{1} \right)
\end{cases} (5)$$

https://github.com/LoicMichelControl/SemiImplicitDifferentiation

Analysis of convergence of the sec. order differentiator ⁶

- **5.** L. Michel and J.P. Barbot "A note about high-order semi-implicit differentiation: application to a numerical integration scheme with Taylor-based compensated error" arXiv:2408.00497, Aug. 2024.
- **6.** L. Michel et al. "Semi-Implicit Homogeneous Euler Differentiator for a Second-Order System: Validation on Real Data" 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 2021, pp. 5911-5917.

Example of SIHD3-based differentiation of a sine function without extra noise

Example of SIHD3-based differentiation of a sine function without extra noise - estimation errors

Example of SIHD3-based differentiation of a sine function including extra noise (of order 10^{-6})

Example of SIHD3-based differentiation of a sine function including extra noise (of order 10^{-6}) - estimation errors

Application to closed-loop robotics

PID-based Γ-torque control (tracking of desired variables)

$$\Gamma = \Im(\dot{x}_2^d - K_v(z_2 - x_2^d) - K_p(x_1 - x_1^d) - K_i \int_0^t (x_1 - x_1^d) d\tau)$$

Example of evolution of the tracking error for an orbital movement