Introduction to structural equation modeling and mixed models in

Day 5 – Part 2: SEM

Oksana Buzhdygan

oksana.buzh@fu-berlin.de

Latent Variables in SEM

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

Latent – hypothetical, hidden

- a variable that is unmeasured, but is hypothesized to exist
- scientific concept that is not directly observed, but is hypothetical construct
- can be approximated using observable indicators

Specification operators in 'lavaan'

formula type	operator	or meaning	
Regression	~	"regressed on"	
Correlation	~~	"correlated with"	
Intercept	~ 1	"estimates intercept"	
Latent variable	=~	"is measured by"	
Composite	<~	"is caused by"	

Path Diagram Notations:

The error in the measurement of \mathbf{x} b $\boldsymbol{\eta}$

$$\mathbf{x} = \lambda_{x} \boldsymbol{\eta} + \boldsymbol{\delta}_{x}$$

 $\eta \sim N(0, SD(\eta))$

$$\delta \sim N(0, SD(\delta))$$

$$VAR(x) = \lambda_x^2 VAR(\eta) + VAR(\delta)$$

How much variance does the LV explain?

$$\frac{\lambda_x^2 \text{VAR}(\boldsymbol{\eta})}{\lambda_x^2 \text{VAR}(\boldsymbol{\eta}) + \text{VAR}(\boldsymbol{\delta})}$$

Raw scale coefficient: matches observed (co)variances to parameters $VAR(\delta)$ and $VAR(\eta)$

We explain the data well if:

$$VAR(x) = VAR(\eta) + VAR(\delta)$$

What is the scale/unit of our LV?
 It needs to be defined to get the regression weights.

$$DF = t_{max} - t = -1$$

Model is not identified

$$t \leq t_{max}$$
 $t_{max} = \frac{s(s+1)}{2} = 1$
 $s = 1 \text{ known}$
 $t = 2 \text{ unknowns}$

Rules for LV models:

- Scaling of LV
- Non-negative DF

We need at least:

- 3 indicators for a single LV
- 2 indicators per LV for models with multiple (correlated) LVs

Latent **Exogenous** Variable

Latent **Endogenous** Variable

Measurement model

(solely relates indicators to latent variables)

Latent Variables

 Be sure that the latent variable reflects the actual properties captured by the indicator variables!

Why use Latent Variables?

- Allows estimating complex and multifaceted concepts
- Reduces random error in construct (latent variable)

random error in dependent variables

→ less precisely measured estimates

random error in independent variables

→ underestimated regression coefficients

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

Multi-indicator Latent Variables

- Indicators may have causal links
- Indicators may covary for other reasons

Multi-indicator Latent Variables

Latent variable η represents shared information of observed indicators x

Multi-indicator Latent Variables

As Theoretical Constructs

Repeated Measurements

Multi-sampling

Why use Latent Variables with Multiple Indicators?

- Allows estimating complex and multifaceted concepts
- Reduces random error in construct (latent variable)
- Better accuracy in measurement of relationships due to shared variation between observed indicators.

Latent Variables in SEM

- What are Latent Variables? Why to use them?
- Multi-indicator Latent Variables
- Fitting Latent Variables

(Confirmatory Factor Analysis)

Rules for LV models:

- Scaling of LV
- Non-negative DF

$$DF = -1$$

$$t \leq t_{max}$$

$$t_{max} = \frac{s(s+1)}{2} = 3$$

$$s = 2$$
 knowns

$$t = 4$$
 unknowns

Rules for LV models:

- Scaling of LV
- Non-negative DF

We need at least:

- 3 indicators for a single LV
- 2 indicators per LV for models with multiple (correlated) LVs

$$s = 3$$
 knowns

$$t = 6$$
 unknowns

$$DF = t_{max} - t = 0$$

Two indicators of LV

Solution:

- 1) To set $\lambda_{x1} = \lambda_{x2}$, assuming that \mathbf{x}_1 and \mathbf{x}_2 have equal weight in the estimation of the LV
- 2) To measure errors experimentally.

```
# specify latent variable  
Sem.mod <- '  
n = -a1*x1 + a2*x2  
a1 = -a2 \# \lambda_{x1} = \lambda_{x2}  
x1 \sim 0.213 * x1 \# fix error variance
```

Knowing your measurement error:

- Increases accuracy in estimating relationship between variables.
- Increases explanatory power of measured variables.

- 1) Evaluate the latent relationships among variables (Confirmatory Factor Analysis).
 - Do our indicators make a Good Latent Variable?

2) Use Latent Variables as a Response or a Predictor

Population-based ecological restoration

Aim: understand the performance of transplanted plants as a function of their dissimilarity to local conditions


```
# Read and check the data
travis <- read.csv(" Travis_data.csv")</pre>
```

Travis, S. E., & Grace, J. B. (2010). Predicting performance for ecological restoration: a case study using Spartina alterniflora. Ecological Applications, 20(1), 192-204.

- Collected individuals of the salt marsh plant Spartina alterniflora eight clones each from 23 populations
- Transplanted individuals and measured their performance relative to local populations.
- Performance was approximated with stem density, the number of infloresences, clone diameter, leaf height, and leaf width

- Evaluate the latent relationships among variables (Confirmatory Factor Analysis).
 - Do our indicators make a Good Latent Variable?

A first step is to analyze the "measurement model" using CFA.

```
# Read and check the data
travis <- read.csv("Travis_data.csv")
str(travis)
# correlations
cor(travis[, 4:8])</pre>
```


> cor(travis[, 4:8])							
	stems	infls	clonediam	leafht	leafwdth		
stems	1.0000000	0.8339227	0.9333150	0.7275625	0.6457378		
infls	0.8339227	1.000000	0.8126388	0.6925888	0.6026302		
clonediam	0.9333150	0.8126388	1.0000000	0.7729843	0.7296621		
leafht	0.7275625	0.6925888	0.7729843	1.000000	0.9687725		
leafwdth	0.6457378	0.6026302	0.7296621	0.9687725	1.0000000		

Exercise

```
stem
# specify the model
                                                                                   density
cfa mod <- '
                                                                                  number of
                                                                                 infloresences
performance =~ stems + infls + clonediam + leafht + leafwdth
                                                                                                          Performance
                                                                                   clone
                                                                                  diameter
# fit the model
                                                                                    leaf
                                                                                   height
cfa fit <- sem(cfa mod, travis)</pre>
                                                                                    leaf
                                                                                   width
```

```
Warning message:
In lav_object_post_check(object) :
   lavaan WARNING: some estimated ov variances are negative
```

Exercise

> summary(cfa_fit)		
lavaan 0.6-9 ended normally after 82 it	erations	
Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	10	
Number of observations	23	
Model Test User Model:		
Test statistic	51.106	
Degrees of freedom	5	
P-value (Chi-square)	0.000	


```
> modindices (cfa fit)
        lhs op
                    rhs
                            mi
                               epc sepc.lv sepc.all sepc.nox
                  infls 10.470
                               11.784 11.784
12
                                                 0.677
                                                         0.677
      stems ~~
      stems ~~ clonediam 17.152 112.521 112.521 0.871
                                                        0.871
13
                 leafht 0.693 -7.889 -7.889 -0.517
                                                        -0.517
14
      stems ~~
               leafwdth 2.214 -1.836 -1.836
15
      stems ~~
                                                -0.346
                                                        -0.346
16
      infls ~~ clonediam 8.773 11.092
                                      11.092 0.621
                                                        0.621
17
      infls ~~
                 leafht 0.062
                               -0.312
                                      -0.312
                                                -0.148
                                                        -0.148
      infls ~~ leafwdth 2.906 -0.281
                                      -0.281 -0.383
                                                        -0.383
18
  clonediam ~~
                                                        -1.357
                leafht 4.028 -21.233 -21.233
                                                -1.357
  clonediam ~~ leafwdth 0.037
                                -0.261
                                                        -0.048
                                      -0.261 \quad -0.048
     leafht ~~ leafwdth 37.862
                               17.177
                                      17.177
21
                                                26.752
                                                        26.752
```



```
cfa_mod2 <- '
performance =~ stems + infls + clonediam + leafht + leafwdth
leafht ~~ leafwdth
'
cfa_fit2 <- sem(cfa_mod2, travis)
summary(cfa_fit2)</pre>
```


Estimator	ML
Optimization method	NLMINB
Number of model parameters	11
Number of observations	23
Model Test User Model:	
Test statistic	7.410
Degrees of freedom	4
P-value (Chi-square)	0.116

```
. . .
Latent Variables:
                  Estimate Std.Err z-value P(>|z|)
 performance =~
   stems
                     1.000
                     0.117
                            0.016
                                               0.000
   infls
                                      7.173
   clonediam
                     1.086
                            0.096
                                     11.319
                                               0.000
                    0.697
                           0.127
                                      5.509
                                               0.000
   leafht
                            0.018
                                               0.000
   leafwdth
                    0.082
                                      4.529
Covariances:
                  Estimate Std.Err z-value P(>|z|)
 .leafht ~~
   .leafwdth
                    10.831
                             3.432
                                      3.156
                                               0.002
```



```
SEM latent mod <- '
           # latent
performance =~ stems + infls + clonediam + leafht + leafwdth
           # structural paths
performance ~ geneticdist
            # correlated errors
leafht ~~ leafwdth
SEM latent fit <- sem(SEM latent mod , travis)</pre>
summary(SEM latent fit, standardize = T, rsq = T, fit.measures=T)
```

Exercise

Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	12	
Number of observations	23	
Model Test User Model:		
Test statistic	12.237	
Degrees of freedom	8	
P-value (Chi-square)	0.141	

Latent Variables:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
performance =~							
stems	1.000				15.555	0.962	
infls	0.117	0.017	6.929	0.000	1.822	0.853	
clonediam	1.106	0.096	11.508	0.000	17.199	0.969	
leafht	0.711	0.127	5.601	0.000	11.066	0.785	
leafwdth	0.084	0.018	4.650	0.000	1.308	0.718	
Regressions:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
performance ~							
geneticdist	-51.673	11.365	-4.547	0.000	-3.322	-0.708	
Covariances:							
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
.leafht ~~							
.leafwdth	10.416	3.312	3.145	0.002	10.416	0.940	

```
library(lavaanPlot)
lavaanPlot(model = SEM latent fit,
           coefs = TRUE, stand=TRUE,
           # graph options = list(layout = "circo"),
           # stars = 'regress', # shows stars for regr coef
           digits = 2)
                                                                     geneticdist
                                                                         -0.71
                                                                    performance
                                                                    0.85 0.97
                                                              0.96
                                                                                          0.72
                                                           infls
                                                                     clonediam
                                                                                               leafwdth
                                                                                    leafht.
                                               stems
```

Day 5 Task 2

Human Impact Intensity

Macroinvertebrate body size

Body size traits

Body mass Body volume Body length Body width

```
# Read and check the data
read.csv(" Bodysize_data.csv")
```

Day 5 Task 2

Day 5 Task 2

- 1. Perform the confirmatory factor analysis for the latent variable "body size"
- 2. Use the results from step 1 and perform the SEM by adding human impact variable
- 3. Fill in Standardized Coeficients and R² for the model, add the fit indices
- 4. Think about how to interpret the results