数学模型第三次小组作业

姓名	学号	序号
陈鹏宇	20204227	73
赵家乐	20204241	78
王星然	20204256	86

题目

收集重庆市的人口数据,采用马尔萨斯和阻滞人口模型预测2025年重庆市的人口数。

重庆近20年来常住人口数(单位:万人)

2020	2019	2018	2017	2016	2015	2014	2013	2012	2011
3412.71	3416.29	3403.64	3389.82	3392.11	3371.84	3375.20	3358.42	3343.44	3329.81

2010	2009	2008	2007	2006	2005	2004	2003	2002	2001
3303.45	3275.61	3257.05	3235.32	3198.87	3169.16	3144.23	3130.10	3113.83	3097.91

数据来源:重庆市统计局. 重庆统计年鉴——2021(3-1 主要年份总户数、总人口)

模型

(1)马尔萨斯人口增长模型

马尔萨斯人口模型又称指数增长模型

马尔萨斯假设人口的增长率是一个很小的常数,且将人口增长连续化

由此可建立微分方程, 进而推出人口函数的形式

x(t)~时刻t的人口

$$x(t) = x_0 e^{rt}$$

为了使拟合结果更准确,计算量更小,可将此非线性化拟合化为线性化拟合

$$ln(x) = lnx_0 + rt$$

(2)阻滞人口模型

阻滞人口模型又名Logistic模型

阻滞人口模型考虑到人口增长到一定数量后,增长率会由于资源、环境等因素对人口增长的阻滞作用下降。且阻滞作用会随人口数量增加而变大

为了建立模型和计算的方便, 我们可以假设r是x的线性减函数, 即

$$r(x) = r - sx(r, s > 0)$$

r为人口的固有增长率(x很小时), x_m 是人口容量(资源、环境能容纳的最大数量)

$$r(x_m)=0$$
 ,则可解得 $s=rac{r}{x_m}$, $r(x)=r(1-rac{x}{x_m})$

由微分方程

$$\frac{dx}{dt} = r(x)x$$

可得人口函数形式为

$$x(t) = rac{x_m}{1 + (rac{x_m}{x_0} - 1)e^{-rt}}$$

要将该函数非线性化拟合转为线性化拟合,需假设人口容量 x_m ,不易确定人口容量 x_m 的值,故直接采用非线性拟合

人口函数也可写为

$$x(t) = rac{1}{rac{1}{x_m} + (rac{1}{x_0} - rac{1}{x_m})e^{-rt}}$$

$$\Rightarrow a = \frac{1}{x_m}, b = \frac{1}{x_0} - \frac{1}{x_m}$$

为了简化计算, 省去每次更新系数时除法的计算

函数可变为

$$\frac{1}{x(t)} = a + be^{-rt}$$

这样拟合得到的r的数据异常偏离实际,故最终使用直接拟合得到数据

程序

马尔萨斯人口增长模型

```
%人口数据
xdata =
[3412.71,3416.29,3403.64,3389.82,3392.11,3371.84,3375.20,3358.42,3343.44,3329.81
3303.45,3275.61,3257.05,3235.32,3198.87,3169.16,3144.23,3130.10,3113.83,3097.91]
%2020~19 2001~0
T = [19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0];
%拟合
p = polyfit(T,log(xdata),1)
x_0 = exp(p(2));
r = p(1);
%作出拟合曲线图
X = 0:0.1:30;
Y = x_0 .* exp(r.*x);
plot(X,Y);
hold on;
scatter(T,xdata);
```

```
%计算RA2量化拟合效果
X_R = 0:1:19;
Y_R = xdata;
F_R = x_0 .* exp(r.*X_R);
AVG_Y_R = sum(Y_R)/20;
SSTOT = sum((Y_R-AVG_Y_R).^(2));
SSRES = sum((Y_R-F_R).^(2));
R_2 = 1-SSRES/SSTOT
```

阻滞人口模型

```
%人口数据
xdata =
[3412.71,3416.29,3403.64,3389.82,3392.11,3371.84,3375.20,3358.42,3343.44,3329.81
3303.45,3275.61,3257.05,3235.32,3198.87,3169.16,3144.23,3130.10,3113.83,3097.91]
%2020~19 2001~0
T = [19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0];
%拟合参数上界和下界
1b = [0,0,0];
ub = [Inf,Inf,Inf];
fun = @(x,xdata)x(1) ./ (1+(x(1)/x(2) - 1) .* exp(-x(3) .* xdata);
%选取初始点
x0 = [3412.71,3097.91,1];
format shortG;
n = lsqcurvefit(fun,x0,T,xdata,lb,ub)
%绘图看拟合效果
X = 0:0.01:50;
Y = fun(n,X);
plot(X,Y);
hold on;
scatter(T,xdata);
%计算R^2量化拟合效果
X_R = 0:1:19;
Y_R = xdata;
F_R = fun(n, X_R);
AVG_Y_R = sum(Y_R)/20;
SSTOT = sum((Y_R-AVG_Y_R).^{(2)});
SSRES = sum((Y_R-F_R).^{(2)});
R_2 = 1-SSRES/SSTOT
```

结果

p =

0. 0055563 8. 0441

 $R_2 =$

-2.8951

r为0.0055563, lnx_0 为8.0441

判定系数 R^2 为-2.8951

2025年重庆市人口:3559.73万人

阻滞人口模型

n =

3543. 5

3075. 3 0. 079092

R 2 =

-2.841

 x_m 为3543.5万, x_0 为3075.3万,r为0.079092

判定系数 R^2 为-2.841

2025年重庆市人口:3464.44万人

分析

由拟合出的图像和判定系数来看,两个模型对于模拟短期内重庆市人口的效果都不是很好。

两个模型都是假设人口数量随着时间会递增的,而重庆市的人口数据在某些年甚至会减少,这与模型假 设不符, 故拟合效果不理想。

这可能是两个模型考虑的因素过少,重庆市面积较小,现代人口流动因素多造成的。两个模型在宏观 上,对于100~200年间一个国家的人口数量拟合效果较好,而在微观上,考虑一个区域人口数量,及人 口结构等问题就需要更加精细的模型。

从两个模型对比上看,Logistic模型的拟合效果要比Malthus模型稍好一些。

其中Logistic模型的拟合方式是直接采用非线性拟合,这对初始点的选取要求较高,很难取得最优解。若 可估测重庆市人口容量的大致值则可将其转化为线性拟合, 而查找文献后, 没有找到最近对于重庆市人 口容量较为可信的研究,故只能放弃估测,采用直接拟合的方式,对结果的精度可能有较大影响。