CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Complexity Classes

- Time Complexity Classes vs. Space Complexity Classes
- Tractability: Polynomial Time vs. Exponential Time

COMPLEXITY CLASSES - DEFINITION

- A complexity class is typically a class of problems
 - each of which is solvable by at least one algorithm of certain time complexity and/or space complexity under a specific machine model
- Typically the machine model is the deterministic Turing Machine (DTM) model OR the non-deterministic Turing Machine (NDTM) model
 - The DTM model may often be substituted by the RAM model or equivalently a general purpose programming language
 - oThe word "deterministic" refers to the nature of the computation: from a given state, on a given input, the machine will go to one specific state

- Typically we restrict ourselves to (complexity) classes of decision problems unless otherwise specified.
- Any complexity function f referred in the definition of a complexity class – must be a <u>proper complexity</u> <u>function</u>, i.e.
 - of: N --> N
 - o f is monotonic i.e. f(n+1) >= f(n) for all n
 - f(n) itself can be computed in O(n+f(n)) time using O(f(n)) space.

• Question:

- Which of the following are proper complexity functions?
 - o sin(x)
 - o f(N) = 1 if N is even, \sqrt{N} if N is odd.
 - o f(N) = p the largest prime factor of N

COMPLEXITY CLASSES — GENERIC DEFINITIONS

- Define TIME(f(n)) as the <u>complexity class of problems</u> that
 - can be solved by (RAM) algorithms of time complexity
 O(f(n)) in the worst case, where n is the size of the input

```
oTIME(f(n)) =
```

 $\{ \pi \mid \exists \text{ algorithm A: A solves } \pi \text{ in O(f(n)) time } \}$

COMPLEXITY CLASSES — GENERIC DEFINITIONS

```
oTIME(f(n)) =  \{ \pi \mid \exists \text{ algorithm A: A solves } \pi \text{ in O(f(n)) time} \}
```

- Similarly, define SPACE(f(n)) as the <u>complexity class of</u> <u>problems</u> that
 - can be solved by (RAM) algorithms of space complexity
 O(f(n)) in the worst case, where n is the size of the input:

```
oSPACE(f(n)) = 
{ π | ∃ algorithm A: A solves π in O(f(n)) space}
```

• Question:

 Given a function f(n), is there a relation between TIME(f(n)) and SPACE(f(n))?

RELATION BETWEEN TIME(F(N)) AND SPACE(F(N)) ?

COMPLEXITY CLASSES — EXAMPLES

- [2]
- An algorithm is a *polynomial time algorithm* if
 - the time taken by the algorithm is O(N^k) for some positive integer constant k, where N is the input size.
- Define $P = \{ \pi \mid \pi \text{ is a decision problem that can be solved by a polynomial time algorithm } \}$
 - i.e. $P = U_{k \in \mathbb{N}}$ TIME(n^k)

COMPLEXITY CLASSES - EXAMPLES

- [3]
- Define $\mathbb{E}XP = \{ \pi \mid \pi \text{ is a decision problem that can be solved by an exponential time algorithm } \}$
 - i.e. $\mathbb{E}XP = U_{k \in \mathbb{N}}$ TIME(2^{poly(n)}) where poly(n) is a polynomial function of n.
- $o P \subseteq EXP$
 - By definition.
 - $|SP \subseteq EXP|$?

COMPLEXITY CLASSES - HIERARCHY

- Define a function H_f such that
 - H_f(A,x) = 1 if A(x) halts after f(|x|) steps and returns 1
 = 0 otherwise
- o Lemma 3:
 - H_f can be solved in $O((f(n))^3)$ time i.e. $H_f \in TIME((f(n))^3)$
 - Proof:
 - o By construction.
- o Lemma 4:
 - $H_f \notin TIME(f(\lfloor n/2 \rfloor))$
 - Proof:
 - o By diagonalization.
- The Time Hierarchy Theorem:
 - TIME(f(n)) \subset TIME($(f(2n+1))^3$) for any f(n) >= n

COMPLEXITY CLASSES - HIERARCHY

[2]

- The Time Hierarchy Theorem:
 - TIME(f(n)) \subset TIME($(f(2n+1))^3$) for any f(n) >= n
- o Corollary:
 - P ⊂ £XP
 - Proof:
 - $\circ P \subseteq TIME(2^n)$ by definition of polynomial functions and P
 - o TIME((2^n) ⊂ TIME($(2^{2n+1})^3$) by the time hierarchy theorem
 - oTIME($(2^{2n+1})^3$) = TIME(2^{6n+3}) \subseteq EXP by definition of EXP

COMPLEXITY CLASSES - TRACTABILITY

- o $P \subset EXP$
 - Example:
 - o GENERALIZED_CHESS $\in \mathbb{E}XP P$
- We say that
 - a problem π is *tractable* if $\pi \in \mathbb{P}$ and
 - it is *intractable* otherwise

(SPACE) COMPLEXITY CLASSES -

- Define
 - PSPACE = SPACE(f(n))
 owhere f(n) is n^k for some constant k>=0
 - e.g. 3-SAT ∈ PSPACE
 - e.g. QSAT ∈ PSPACE
- QSAT is defined as follows:
 - Given a quantified propositional logic formula of the form

- find whether it evaluates to TRUE.
- Compare this with SAT.

(SPACE) COMPLEXITY CLASSES -

- Define
 - PSPACE = SPACE(f(n))
 owhere f(n) is n^k for some constant k>=0
 - e.g. QSAT ∈ PSPACE
- O Define
 - L = SPACE(f(n))
 - o where f(n) is log(n)