答案: 第三章 中值定理与导数应用测试题

一、选择题(每题3分,共15分)

1.解:
$$f'(x) = \sin x + x \cos x - \sin x = x \cos x$$
, 显然 $f'(0) = 0$, $f'(\frac{\pi}{2}) = 0$,

又
$$f''(x) = \cos x - x \sin x$$
, 且 $f''(0) = 1 > 0$, $f''(\frac{\pi}{2}) = -\frac{\pi}{2} < 0$, 所以 $f(0)$ 是极小值,

$$f(\frac{\pi}{2})$$
是极大值.故应选(B)

2.解 因为
$$\lim_{x \to \infty} y = \lim_{x \to \infty} (2 \ln \frac{x+3}{x} - 3) = -3,$$

所以
$$y = -3$$
 为 $y = 2 \ln \frac{x+3}{x} - 3$ 的水平渐近线. 故应选 (C).

3.解 $y' = 3ax^2 + 2bx$, y'' = 6ax + 2b, 若 (1,3) 为曲线的拐点,则必满足

$$y \mid_{x=1} = 3$$
, $y \mid_{x=1} = 0$, 即
$$\begin{cases} a+b+1=3 \\ 6a+2b=0 \end{cases}$$
, 解 得
$$\begin{cases} a=-1 \\ b=3 \end{cases}$$
 选 A

4.
$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(\xi)x^2$$
, $f(\sin^2 x) = \frac{1}{2}f''(\xi)\sin^4 x$.

故
$$\lim_{x \to 0} \frac{f(\sin^2 x)}{r^4} = \lim_{x \to 0} \frac{f''(\xi)\sin^4 x}{2r^4} = 3.$$
 选 D

5. 解 因为
$$\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)^2} = -1$$
,所以 $\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)} = 0$,

即
$$f'(a) = 0$$
. 又 在 a 的 某 一 去 心 邻 域 内 有 $\frac{f(x) - f(a)}{(x - a)^2} < 0$, 即 $f(x) - f(a) < 0$,

所以f(x)在x = a处取极大值,所以只有(B)项正确.

二、填空题(每题3分,共15分)

1. 解 因为 f''(x) 存在,则 f'(x) 存在,利用洛必达法则有

$$\lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2} = \lim_{h \to 0} \frac{f'(a+h) - f'(a-h)}{2h}$$

2.
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \cot^2 x \right) = \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$$

$$= \lim_{x \to 0} \frac{(\sin x + x \cos x)(\sin x - x \cos x)}{x^4} = \lim_{x \to 0} \frac{\sin x + x \cos x}{x} \cdot \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3}$$

$$= \lim_{x \to 0} \frac{\cos x - \cos x + x \sin x}{3x^2} = 2 \cdot \frac{1}{3} = \frac{2}{3}.$$

3. 属于 $1^{+\infty}$ 型,可转化成 $e^{\ln f(x)}$ 形式求解.

故
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x\right)^x = \lim_{x \to +\infty} e^{\frac{x \ln(\frac{2}{\arctan x})}{\pi}} = e^{\frac{\lim_{x \to +\infty} \frac{\ln(\frac{2}{\arctan x})}{\pi}}{\pi}} = e^{\lim_{x \to +\infty} \frac{1}{\arctan x} \frac{1}{1+x^2} \cdot (-x^2)} = e^{-\frac{2}{\pi}}.$$

$$4. \text{ } \text{ } \text{ } \text{ } \text{ } \lim_{x \to \infty} e^{-x} \left(1 + \frac{1}{x} \right)^{x^2} = \lim_{x \to \infty} \left[\left(1 + \frac{1}{x} \right)^x e^{-1} \right]^x$$

$$= \exp \left\{ \lim_{x \to \infty} \left[\ln \left(1 + \frac{1}{x} \right)^x - 1 \right] x \right\} = \exp \left\{ \lim_{x \to \infty} x \left[x \ln \left(1 + \frac{1}{x} \right) - 1 \right] \right\}$$

$$= \exp \left\{ \lim_{x \to \infty} x \left[x \left(\frac{1}{x} - \frac{1}{2x^2} + o \left(\frac{1}{x^2} \right) \right) - 1 \right] \right\} = e^{-\frac{1}{2}}.$$

5.
$$M: f'(x) = \left(1 + \frac{1}{x}\right)^x \left[\ln(1 + \frac{1}{x}) - \frac{1}{1+x}\right]$$

$$\Leftrightarrow g(x) = \ln(1 + \frac{1}{x}) - \frac{1}{1+x}, \quad g'(x) = \frac{1}{1+x} - \frac{1}{x} + \frac{1}{(1+x)^2} = -\frac{1}{x(1+x)^2} < 0$$

所以函数
$$g(x)$$
在 $(0,+\infty)$ 上单减,由于 $\lim_{x\to+\infty}\left[\ln(1+\frac{1}{x})-\frac{1}{1+x}\right]=0$

故对任意
$$x \in (0, +\infty), g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1 + x} > 0$$

从而f'(x) > 0(x > 0),函数f(x)在 $(0,+\infty)$ 上单增。

三、计算、证明题(1-10 题每题 6 分, 第 11 题 10 分, 共 70 分)

1.#\(\text{1}\)
$$f_{-}'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{-x^{3}}{x} = 0,$$

$$f_{+}'(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{x \arctan x}{x} = 0,$$

由
$$f_{-}^{'}(0) = f_{+}^{'}(0)$$
,所以 $f'(0) = 0$.

(2) 当
$$x < 0$$
 时, $f'(x) = -3x^2 < 0$; 当 $x > 0$ 时, $f'(x) = \arctan x + \frac{x}{1 + x^2} > 0$,

所以 f(x) 的单调增区间为 $(0,+\infty)$,减区间为 $(-\infty,0)$.

$$2. \Re \lim_{x \to +\infty} e^{-x \cos \frac{1}{x}} \left(1 + \frac{1}{x}\right)^{x^{2}}$$

$$= \lim_{x \to +\infty} e^{-x \left[1 - \frac{1}{2x^{2}} + o\left(\frac{1}{x^{2}}\right)\right]} \cdot e^{x^{2} \ln(1 + \frac{1}{x})}$$

$$= \lim_{x \to +\infty} e^{-x + \frac{1}{2x} + o\left(\frac{1}{x}\right)} \cdot e^{x^{2} \left[\frac{1}{x} - \frac{1}{2x^{2}} + o\left(\frac{1}{x^{2}}\right)\right]}$$

$$= \lim_{x \to +\infty} \left[-x + \frac{1}{2x} + o\left(\frac{1}{x}\right) + x - \frac{1}{2} + x^{2} \cdot o\left(\frac{1}{x^{2}}\right)\right] = e^{-\frac{1}{2}}$$

3.证 因为 $y = \ln x$ 是单调增加函数,所以欲证明 $(a + x)^a < a^{a+x}$,

只 须 证 $a \ln(a+x) < (a+x) \ln a$. 设 $f(x) = (a+x) \ln a - a \ln(a+x)$, 则 f(x) 在 $[0,+\infty)$ 内

连续且可导,又有
$$f'(x) = \ln a - \frac{a}{a+x}$$

因为 $\ln a > 1$, $\frac{a}{a+x} < 1$, 故 f'(x) > 0, 所以函数 f(x) 在 $[0,+\infty)$ 内单调增加 .

而f(0) = 0, 所以 $f(x) > 0(0 < x < +\infty)$,

即 $a \ln(a + x) < (a + x) \ln a$, 也即 $(a + x)^a < a^{a+x}$.

4.证 明 构造函数 $F(x) = f(x)(1-x)^2$,则F(x)在[0,1]上满足罗尔定理条件至少存在一点 $\xi \in (0,1)$,使 $F'(\xi) = 0$ 即 ξ $f'(\xi) + 2f(\xi) = f'(\xi)$

5.解 由于y = f(x)为y'' - 2y' + 4y = 0的解,从而

$$f''(x) - 2f'(x) + 4f(x) = 0$$

特别的, 当 $f(x_0) > 0$ 时, 上述方程可以化为

$$f''(x_0) + 4f(x_0) = 0$$
 $f''(x_0) = -4f(x_0) < 0$

由 极 值 得 第 二 充 分 条 件 可 以 得 知 , x_0 为 的 极 值 点 , 且 为 极 大 值 点 . 即 f(x) 在 x_0 点 取 得 极 大 值 .

6.解 设切点为 (x_0, x_0^2) , $x_0 > 0$, 则切线方程为 $y - x_0^2 = 2x_0(x - x_0)$,

即
$$y = 2x_0 x - x_0^2$$
, 切线与 x 轴交点为 $(\frac{x_0}{2}, 0)$.

又当 x=8 时, $y=2\,x_{_0}\cdot 8-x_{_0}^{^2}=16\,x_{_0}-x_{_0}^{^2}$,所以三角形面积为

$$S = \frac{1}{2} \times \hat{\mathbb{K}} \times \hat{\mathbb{B}} = \frac{1}{2} (8 - \frac{x_0}{2}) (16x_0 - x_0^2) = \frac{1}{4} (16 - x_0)^2 \cdot x_0$$

$$S' = -\frac{1}{2}(16 - x_0)x_0 + \frac{1}{4}(16 - x_0)^2 = \frac{1}{4}(16 - x_0)(16 - 3x_0).$$

令
$$S'(x_0) = 0$$
 , 得 $x_0 = 16$ (舍), $x_0 = \frac{16}{3}$.

所以当 $x_0 = \frac{16}{3}$ 时三角形面积最大.

7. if
$$ignorphi f(x) = \frac{1}{x^2} - \frac{1}{\tan^2 x} (0 < x < \frac{\pi}{2})$$
, $ignorphi$

$$f'(x) = -\frac{2}{x^3} + \frac{2\cos x}{\sin^3 x} = \frac{2(x^3 \cos x - \sin^3 x)}{x^3 \sin^3 x},$$

$$\oint \varphi(x) = \frac{\sin x}{\sqrt[3]{\cos x}} - x(0 < x < \frac{\pi}{2}), \quad [m]$$
(1)

$$\varphi'(x) = \frac{\cos^{4/3} x + \frac{1}{3} \cos^{-2/3} x \sin^2 x}{\cos^{2/3} x} - 1 = \frac{2}{3} \cos^{2/3} x + \frac{1}{3} \cos^{-4/3} x - 1.$$

由均值不等式, 得

$$\frac{2}{3}\cos^{2/3}x + \frac{1}{3}\cos^{-4/3}x = \frac{1}{3}(\cos^{2/3}x + \cos^{2/3}x + \cos^{-4/3}x) > \sqrt[3]{\cos^{2/3}x \cdot \cos^{2/3}x \cdot \cos^{-4/3}x} = 1.$$

所以当 $0 < x < \frac{\pi}{2}$ 时, $\varphi'(x) > 0$,从而 $\varphi(x)$ 单调递增.又 $\varphi(0) = 0$,因此 $\varphi(x) > 0$,即

$$x^3\cos x - \sin^3 x < 0.$$

由 (1)式 得 f(x) < 0, 从 而 f(x)在 区 间 $(0, \frac{\pi}{2})$ 单 调 递 减

所以 $0 < x < \frac{\pi}{2}$ 时,有

$$\frac{4}{\pi^2} < \frac{1}{r^2} - \frac{1}{\tan^2 r} < \frac{2}{3}$$
.

8.证 在 [-2,0]和 [0,2]上分别对f(x)应用拉格朗日中值定理,可知存在

$$\xi_1 \in \left(-2,0\right), \quad \xi_2 \in \left(0,2\right), \quad \notin \ \, \text{\not $ } \quad f'(\xi_1) = \frac{f(0) - f(-2)}{2}, \quad f'(\xi_2) = \frac{f(2) - f(0)}{2}.$$

由于 $\left|f(x)\right| < 1$,所以 $\left|f'(\xi_1)\right| \le 1$, $\left|f'(\xi_2)\right| \le 1$.

设
$$F(x) = f^{2}(x) + \left[f'(x)\right]^{2}$$
,则
$$\left|F(\xi_{1})\right| \leq 2, \left|F(\xi_{2})\right| \leq 2.$$
 ①

由于 $F(0) = f^2(0) + [f'(0)]^2 = 4$,且F(x)为 $[\xi_1, \xi_2]$ 上的连续函数,应用闭区间上连续函数的最大值定理,F(x)在 $[\xi_1, \xi_2]$ 上必定能够取得最大值,

设为M,则当 ξ 为F(x)的最大值点时, $M=F(\xi)\geq 4$,由①式知 $\xi\in\left(\xi_1,\ \xi_2\right),$

所以 ξ 必是F(x)的极大值点.注意到F(x)可导,由极值的必要条件可知

$$F'(\xi) = 2f'(\xi) \left[f(\xi) + f''(\xi) \right] = 0.$$

由于
$$F(\xi) = f^2(\xi) + [f'(\xi)]^2 \ge 4, |f(\xi)| \le 1$$
, 可知 $f'(\xi) \ne 0$.由上式知 $f(\xi) + f''(\xi) = 0$.

9.解 曲线 y = f(x)在点 p(x, f(x))处的切线方程为

$$Y - f(x) = f'(x)(X - x),$$

令
$$Y = 0$$
, 则 有 $X = x - \frac{f(x)}{f'(x)}$, 由 此 $u = x - \frac{f(x)}{f'(x)}$, 且 有

$$\lim_{x \to 0} u = \lim_{x \to 0} \left(x - \frac{f(x)}{f'(x)} \right) = -\lim_{x \to 0} \frac{\frac{f(x) - f(0)}{x}}{\frac{f'(x) - f'(0)}{x}} = \frac{f'(0)}{f''(0)} = 0.$$

由f(x)在x = 0处的二阶泰勒公式

得
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^{2} + o(x^{2}) = \frac{f''(0)}{2}x^{2} + o(x^{2}),$$

$$\lim_{x \to 0} \frac{u}{x} = 1 - \lim_{x \to 0} \frac{f(x)}{xf'(x)} = 1 - \lim_{x \to 0} \frac{\frac{f''(0)}{2}x^{2} + o(x^{2})}{xf'(x)}$$

$$= 1 - \lim_{x \to 0} \frac{\frac{f''(0)}{2} + \frac{o(x^{2})}{x^{2}}}{\frac{f''(x) - f'(0)}{x}} = 1 - \frac{1}{2} \frac{f''(0)}{f''(0)} = \frac{1}{2},$$

故

$$\lim_{x \to 0} \frac{x^3 f(u)}{f(x) \sin^3 u} = \lim_{x \to 0} \frac{x^3 (\frac{f''(0)}{2} u^2 + o(u^2))}{u^3 (\frac{f''(0)}{2} x^2 + o(x^2))} = \lim_{x \to 0} \frac{x}{u} = 2.$$

10.解 设圆柱体容器的高为h,上下底的半径为r,则有

$$\pi r^2 h = V, \quad \text{ if } h = \frac{V}{\pi r^2},$$

所需费用为

$$F(r) = 2a\pi r^{2} + 2b\pi rh = 2a\pi r^{2} + \frac{2bV}{r}.$$

显 然

$$F'(r) = 4a\pi r - \frac{2bV}{r^2},$$

那么,费用最少意味着F'(r)=0,也即 $r^3=\frac{bV}{2a\pi}$.

这时高与底的直径之比为 $\frac{h}{2r} = \frac{V}{2\pi r^3} = \frac{a}{b}$.

11.证 (1) 令 F(x) = f(x) - x,则 F(x)在 [0,1]上 连 续 , 且 有

$$F\left(\frac{1}{2}\right) = \frac{1}{2} > 0, F(1) = -1 < 0$$

所以,存在一个 $\xi \in \left(\frac{1}{2},1\right)$,使得 $F(\xi) = 0$,即 $f(\xi) = \xi$.

(2) 令
$$G(x) = e^{-x} [f(x) - x]$$
, 那 么 $G(0) = G(\xi) = 0$.
这样,存在一个 $\eta \in (0, \xi)$, 使得 $G'(\eta) = 0$, 即
$$G'(\eta) = e^{-\eta} [f'(\eta) - 1] - e^{-\eta} [f(\eta) - \eta] = 0,$$
也即 $f'(\eta) = f(\eta) - \eta + 1$.

四、**附加题** (1-3 题每题 4 分, 4 题 8 分, 共 20 分)

1.解 对左式使用洛必达法则,可得 $\lim_{x\to 0} \frac{\frac{1}{1+x} - (a+2bx)}{2x} = 2$

左式 =
$$\lim_{x \to 0} \frac{\frac{1}{1+x} - (1+2bx)}{2x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2} - 2b}{2} = 2$$

解得-1-2b=4 即 $b=-\frac{5}{2}$

$$\frac{1}{2.\text{MF}} \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(\frac{1 + \frac{1}{-}\right)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} = e^{\lim_{x \to 0^{+}} \frac{\ln(1+x) - x}{x^{2}}} = e^{\lim_{x \to 0^{+}} \frac{1}{(1+x)} - 1} = e^{-\frac{1}{2}} = \lim_{x \to 0^{-}} f(x)$$

因此, f(x) 在 x = 0 处连续

3. 解

$$f^{(n)}(x)\Big|_{x=0} = 2C_n^2 \left[\ln\left(1+x\right) \right]^{(n-2)} \Big|_{x=0} = n(n-1) \frac{\left(-1\right)^{n-3} \left(n-3\right)!}{\left(1+x\right)^{n-2}} = \left(-1\right)^{n-3} \frac{n!}{n-2}$$

4.解 使用洛必达,可得

$$\lim_{x \to 0} \frac{\sin x + xf(x)}{x^3} = \lim_{x \to 0} \frac{\cos x + f(x) + xf'(x)}{3x^2} = \frac{1}{2}$$

则 $\lim_{x\to 0} [\cos x + f(x) + xf'(x)] = 0$, 即1 + f(0) = 0, 可得f(0) = -1.

$$\lim_{x \to 0} \frac{\cos x + f(x) + xf'(x)}{3x^2} = \frac{1}{3} \lim_{x \to 0} \frac{\cos x + f(x)}{x^2} + \frac{1}{3} \lim_{x \to 0} \frac{f'(x)}{x}$$

$$= \frac{1}{3} \lim_{x \to 0} \frac{-\sin x + f'(x)}{2x} + \frac{1}{3} \lim_{x \to 0} \frac{f'(x)}{x} = -\frac{1}{6} + (\frac{1}{6} + \frac{1}{3}) \lim_{x \to 0} \frac{f'(x)}{x} = \frac{1}{2}$$

这说明 f'(0) = 0.

由
$$-\frac{1}{6} + (\frac{1}{6} + \frac{1}{3}) \lim_{x \to 0} \frac{f'(x)}{x} = \frac{1}{2}$$
 得 $\lim_{x \to 0} \frac{f'(x)}{x} = \frac{1}{3}$ 根据导数定义 $f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0} \frac{f'(x)}{x} = \frac{4}{3}$