Βέλτιστη Εκτίμηση Κατάστασης

Ι. Φίλτρο Kalman

Περιεχόμενα

- Εκτίμηση Κατάστασης
- Κανόνας Bays
- Ιδιότητες Κανονικής Κατανομής
- Φίλτρο Kalman
- Ιδιότητες του Φίλτρου Kalman

Σύστημα

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

$$x_{k+1} = f(x_k, u_k)$$

$$y_k = h(x_k, u_k)$$

Μετράμε τα u_k , y_k και θα θέλαμε να ξέρουμε το x_k .

Σύστημα

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

$$x_{k+1} = f(x_k, u_k)$$

$$y_k = h(x_k, u_k)$$

Μετράμε τα u_k , y_k και θα θέλαμε να ξέρουμε το x_k .

Παρατηρητές Κατάστασης

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k + L(y_k - C\hat{x}_k)$$

Σύστημα

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

$$x_{k+1} = f(x_k, u_k)$$

$$y_k = h(x_k, u_k)$$

Μετράμε τα u_k , y_k και θα θέλαμε να ξέρουμε το x_k .

Παρατηρητές Κατάστασης

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k + L(y_k - C\hat{x}_k)$$
 ??

Αλλά πώς διαλέγουμε το L?

Παράδειγμα

$$x_t = z_t + v_t$$

prediction

observation

 $\hat{z}_{t|t-1}$

 x_t

2

Σύστημα: Στοχαστική περιγραφή

$$x_{k+1} = Ax_k + Bu_k + w_k$$

$$y_k = Cx_k + Du_k + v_k$$

 $x_o \sim \text{Distribution}$

Στοχαστική περιγραφή μοντελοποιεί την <mark>άγνοιά</mark> μας ή την <mark>αδυναμία</mark> μας να προβλέπουμε

Εφαρμογές

- Localization in autonomous vehicles and robots (first application in Apollo mission)
- Sensor Fusion
- Fault Detection
- Power Systems Monitoring
- Financial/Environmental/Biomedical etc.

The Filtering Problem

Επιλύσιμα με ακριβείς τεχνικές

- Πεπερασμένος χώρος κατάστασης Hidden Markov Model
- Γραμμικό σύστημα με <u>γκαουσιανές</u> διαταραχές και θόρυβο μέτρησης Kalman Filter

Προσεγγιστικές Τεχνικές

- Γραμμικοποιούμε και χρησιμοποιούμε το φίλτρο Kalman Extended Kalman Filter
- Υποθέτουμε κανονικές κατανομές και υπολογίζουμε τα χαρακτηριστικά τους Sigma Point Filters
- Χρησιμοποιούμε τεχνικές Monte Carlo (στοχαστικής προσομοίωσης) Particle Filter

Κανόνας του Bayes

Κανόνας του Bayes για Ενδεχόμενα

Kανόνας Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)}$$

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Κανόνας του Bayes για Πυκνότητες

Κανόνας του Bayes για Πυκνότητες

Για τ.μ. Χ, Υ,

$$f_{X|Y=y}(x)=rac{f_{X,Y}(x,y)}{f_{Y}(y)} \hspace{1cm} f_{X|Y=y}(x)=rac{f_{Y|X=x}(y)f_{X}(x)}{f_{Y}(y)} \hspace{1cm} f_{X|Y=y}(x)=rac{f_{Y|X=x}(y)f_{X}(x)}{f_{Y}(y)}$$

Θα χρησιμοποιήσουμε αναδρομικά τον κανόνα του Bayes για να εκτιμήσουμε την κατάσταση του συστήματος από μετρήσεις

Κανόνας του Bayes και Εκτίμηση Κατάστασης

<u>Ιδέα</u>

- Μετράμε τα γ
- Ξέρουμε την κατανομή των *y*|*x*
- Ποια είναι η κατανομή του *x* δοσμένων των μετρήσεων ;

<u>Όμως</u>

Πώς κάνουμε τους υπολογισμούς αναδρομικά όταν έχουμε πολλές μετρήσεις;

Ιδιότητες της Κανονικής Κατανομής

Μερικά Πράγματα για την Κατανομή Gauss

Κατανομή Gauss

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

μ: μέσος

Σ: Συν-διακύμανση

Γραμμικοί Μετασχηματισμοί Κανονικής Κατανομής

```
Av x \sim N(\mu, \Sigma)

Τότε

y = Ax + b \sim N(A\mu + b, A\Sigma A^T)
```

Γραμμικοί Μετασχηματισμοί Κανονικής Κατανομής

Av
$$x \sim N(\mu, \Sigma)$$

Τότε

$$y = Ax + b \sim N(A\mu + b, A\Sigma A^T)$$

Απόδειξη

$$E[Ax+b] = AE[X] + b = A\mu + b$$

$$E[(y-\mu_y)(y-\mu_y)^T] = E[(Ax+b-(A\mu+b))(Ax+b-(A\mu+b))^T]$$

$$= E[(A(x-\mu))(A(x-\mu))^T]$$

$$= AE[(x-\mu)(x-\mu)^T]A^T$$

Av x_a , x_b jointly Gaussian

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix}$$
.

We also define corresponding partitions of the mean vector μ given by

$$oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix}$$

$$egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

Τότε

$$egin{array}{lll} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - oldsymbol{\mu}_b) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{ba}^{-1} oldsymbol{\Sigma}_{ba}. \end{array}$$

$$\mathbf{\Sigma}_{a|b} = \mathbf{\Sigma}_{aa} - \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1} \mathbf{\Sigma}_{ba}.$$

Απόδειξη

Ο εκθέτης γίνεται:

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) =$$

$$-\frac{1}{2}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a})^{\mathrm{T}} \boldsymbol{\Lambda}_{aa}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a}) - \frac{1}{2}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a})^{\mathrm{T}} \boldsymbol{\Lambda}_{ab}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b})$$

$$-\frac{1}{2}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b})^{\mathrm{T}} \boldsymbol{\Lambda}_{ba}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a}) - \frac{1}{2}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b})^{\mathrm{T}} \boldsymbol{\Lambda}_{bb}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b}).$$

Αν το x_b είναι δοσμένο

μέσος

Απόδειξη

Ο εκθέτης γίνεται:

$$\begin{split} -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) &= \\ -\frac{1}{2}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a})^{\mathrm{T}} \boldsymbol{\Lambda}_{aa}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a}) - \frac{1}{2}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a})^{\mathrm{T}} \boldsymbol{\Lambda}_{ab}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b}) \\ -\frac{1}{2}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b})^{\mathrm{T}} \boldsymbol{\Lambda}_{ba}(\mathbf{x}_{a} - \boldsymbol{\mu}_{a}) - \frac{1}{2}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b})^{\mathrm{T}} \boldsymbol{\Lambda}_{bb}(\mathbf{x}_{b} - \boldsymbol{\mu}_{b}). \end{split}$$

Για x_b είναι δοσμένο. Όροι $2^{\eta c}$ τάξης στο x_a

$$-\frac{1}{2}\mathbf{x}_{a}^{\mathrm{T}}\mathbf{\Lambda}_{aa}\mathbf{x}_{a}$$

Γραμμικοί όροι στο *x_a*

$$\mathbf{x}_a^{\mathrm{T}} \left\{ \mathbf{\Lambda}_{aa} \boldsymbol{\mu}_a - \mathbf{\Lambda}_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b) \right\}$$

$$egin{array}{lll} oldsymbol{\Sigma}_{a|b} & = oldsymbol{\Lambda}_{aa}^{-1}. & oldsymbol{\mu}_{a|b} & = oldsymbol{\Sigma}_{a|b} \left\{ oldsymbol{\Lambda}_{aa} oldsymbol{\mu}_a - oldsymbol{\Lambda}_{ab} (\mathbf{x}_b - oldsymbol{\mu}_b)
ight\} \ & = oldsymbol{\mu}_a - oldsymbol{\Lambda}_{aa}^{-1} oldsymbol{\Lambda}_{ab} (\mathbf{x}_b - oldsymbol{\mu}_b) \end{array}$$

 $-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = -\frac{1}{2} \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \underline{\boldsymbol{\mu}} + \text{const}$

Απόδειξη

Μένει να βρούμε το Λ_{aa}

Θα Χρησιμοποιήσουμε την ταυτότητα

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{M} & -\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{M} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \end{pmatrix}$$

where we have defined

$$\mathbf{M} = (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}.$$

The quantity M^{-1} is known as the *Schur complement* of the matrix on the left

Απόδειξη

Μένει να βρούμε το Λ_{aa}

Αφού

$$egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}^{-1} = egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix}$$

Έχουμε

$$egin{array}{lcl} oldsymbol{\Lambda}_{aa} &=& (oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{ba}^{-1} oldsymbol{\Sigma}_{ba})^{-1} \ oldsymbol{\Lambda}_{ab} &=& -(oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba})^{-1} oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1}. \end{array}$$

Το Φίλτρο Kalman

Γραμμικό Στοχαστικό Σύστημα

$$x_{k+1} = A_k x_k + B_k + w_k,$$

$$y_k = C_k x_k + D_k + v_k$$

Υπόθεση w_k , v_k είναι κανονικές με μηδενικό μέσο και πίνακες συν-διακύμανσης Q, R Θέλουμε να βρούμε την καλύτερη εκτίμηση για το x_k δοσμένων των μετρήσεων

Αναδρομικά

- Έχουμε την κατανομή του x_k δοσμένου $y_{0:k}$ κανονική με μέσο \hat{x}_k και συν-διακύμανση P_{x_k}
- Υπολογίζουμε την κατανομή του x_{k+1} given $y_{0:k+1}$

Παράδειγμα (<u>Xiu</u>)

Παράδειγμα (<u>Xiu</u>)

$$egin{aligned} oldsymbol{\mu}_{a|b} &= oldsymbol{\mu}_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - oldsymbol{\mu}_b) \ oldsymbol{\Sigma}_{a|b} &= oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{ba}^{-1} oldsymbol{\Sigma}_{ba}. \end{aligned}$$

Βήμα πρόβλεψης

$$\hat{x}_{k+1}^- = A_k \hat{x}_k + B_k,$$

$$P_{x_{k+1}}^{-} = A_k P_{x_k} A_k^T + Q.$$

Βήμα διόρθωσης

$$\hat{y}_{k+1}^- = C_{k+1}\hat{x}_{k+1}^- + D_k,$$

$$P_{y_{k+1}}^- = C_{k+1} P_{x_{k+1}}^- C_{k+1}^T + R,$$

$$P_{x_{k+1}y_{k+1}}^- = P_{x_{k+1}}^- C_{k+1}^T.$$

Έστω

$$\hat{x}_k = E[x_k \mid y_{0:k}]$$

Βήμα πρόβλεψης

$$\hat{x}_{k+1}^- = A_k \hat{x}_k + B_k,$$

$$P_{x_{k+1}}^{-} = A_k P_{x_k} A_k^T + Q.$$

Βήμα διόρθωσης

$$\hat{y}_{k+1}^{-} = C_{k+1}\hat{x}_{k+1}^{-} + D_k,$$

$$P_{y_{k+1}}^- = C_{k+1} P_{x_{k+1}}^- C_{k+1}^T + R,$$

$$P_{x_{k+1}y_{k+1}}^- = P_{x_{k+1}}^- C_{k+1}^T.$$

$$K_{k+1} = P_{x_{k+1}y_{k+1}}^{-} P_{y_{k+1}}^{-1}.$$

$$\hat{x}_{k+1} = \hat{x}_{k+1}^{-} + K_{k+1} \left(y_{k+1} - \hat{y}_{k+1}^{-} \right),$$

$$P_{x_{k+1}} = P_{x_{k+1}}^- - K_{k+1} P_{y_{k+1}}^- K_{k+1}^T.$$

$$egin{array}{lll} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - oldsymbol{\mu}_b) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{ba}^{-1} oldsymbol{\Sigma}_{ba}. \end{array}$$

Έστω

$$\hat{x}_k = E[x_k \mid y_{0:k}]$$

$$egin{array}{lcl} oldsymbol{\mu}_{a|b} &=& oldsymbol{\mu}_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - oldsymbol{\mu}_b) \ oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba}. \end{array}$$

Βήμα πρόβλεψης

$$\hat{x}_{k+1}^- = A_k \hat{x}_k + B_k,$$

$$P_{x_{k+1}}^{-} = A_k P_{x_k} A_k^T + Q.$$

Βήμα διόρθωσης

$$\hat{y}_{k+1}^{-} = C_{k+1}\hat{x}_{k+1}^{-} + D_k,$$

$$P_{y_{k+1}}^- = C_{k+1} P_{x_{k+1}}^- C_{k+1}^T + R,$$

$$P_{x_{k+1}y_{k+1}}^- = P_{x_{k+1}}^- C_{k+1}^T.$$

$$K_{k+1} = P_{x_{k+1}y_{k+1}}^{-} P_{y_{k+1}}^{-1}.$$

$$\hat{x}_{k+1} = \hat{x}_{k+1}^- + K_{k+1} \left(y_{k+1} - \hat{y}_{k+1}^- \right), \longrightarrow$$

$$P_{x_{k+1}} = P_{x_{k+1}}^- - K_{k+1} P_{y_{k+1}}^- K_{k+1}^T.$$

Έστω

$$\hat{x}_k = E[x_k \mid y_{0:k}]$$

Μέσο

Συν-διακύμανση

Βήμα πρόβλεψης

$$\hat{x}_{k+1}^{-} = A_k \hat{x}_k + B_k, P_{x_{k+1}}^{-} = A_k P_{x_k} A_k^T + Q.$$

Βήμα διόρθωσης

$$\hat{y}_{k+1}^{-} = C_{k+1}\hat{x}_{k+1}^{-} + D_k,$$

$$P_{y_{k+1}}^{-} = C_{k+1}P_{x_{k+1}}^{-}C_{k+1}^{T} + R,$$

$$P_{x_{k+1}y_{k+1}}^{-} = P_{x_{k+1}}^{-}C_{k+1}^{T}.$$

$$K_{k+1} = P_{x_{k+1}y_{k+1}}^{-}P_{y_{k+1}}^{-1}.$$

$$\hat{x}_{k+1} = \hat{x}_{k+1}^{-} + K_{k+1}\left(y_{k+1} - \hat{y}_{k+1}^{-}\right),$$

$$P_{x_{k+1}}^{-} = P_{x_{k+1}}^{-} - K_{k+1}P_{y_{k+1}}^{-}K_{k+1}^{T}.$$

Πραγματικό σύστημα

$$x_{k+1} = A_k x_k + B_k + w_k,$$

$$y_k = C_k x_k + D_k + v_k$$

Εκτίμηση

$$\begin{split} \hat{x}_{k+1}^{-} &= A_k \hat{x}_k + B_k \\ \hat{x}_{k+1}^{-} &= \hat{x}_{k+1}^{-} + K_{k+1} \left(y_{k+1} - \left(C_{k+1} \hat{x}_{k+1}^{-} + D_k \right) \right) \end{split}$$

 K_{k+1} ανεξάρτητο των μετρήσεων!

Σύστημα

$$x_{k+1} = 1.2x_k + w_k$$
$$y_k = x_k + v_k$$
$$x_0, w_k, v_k \sim N(0,1)$$

Λαμβάνουμε τις μετρήσεις $y_0=1$ και $y_1=1.4$. Ποια είναι η κατανομή του x_1 ;

Σύστημα

$$x_{k+1} = 1.2x_k + w_k$$

$$y_k = x_k + v_k$$

$$x_0, w_k, v_k \sim N(0,1)$$

$$\hat{y}_{k+1}^{-} = C_{k+1}\hat{x}_{k+1}^{-} + D_k,$$

$$P_{y_{k+1}}^{-} = C_{k+1}P_{x_{k+1}}^{-}C_{k+1}^{T} + R,$$

$$P_{x_{k+1}y_{k+1}}^{-} = P_{x_{k+1}}^{-}C_{k+1}^{T}.$$

$$K_{k+1} = P_{x_{k+1}y_{k+1}}^{-}P_{y_{k+1}}^{-1}$$

$$\hat{x}_{k+1} = \hat{x}_{k+1}^{-} + K_{k+1}\left(y_{k+1} - \hat{y}_{k+1}^{-}\right)$$

$$P_{x_{k+1}} = P_{x_{k+1}}^{-} - K_{k+1}P_{y_{k+1}}^{-}K_{k+1}^{T}.$$

Λαμβάνουμε τις μετρήσεις y_0 =1 και y_1 =1.4. Ποια είναι η κατανομή του x_1 ; <u>Βήμα διόρθωσης 0</u>

$$y_0^- = 0,$$
 $P_{y_0}^- = 1 + 1$
 $P_{x_0 y_0}^- = 1,$ $K_0 = 1 \cdot 2^{-1} = 1/2$
 $\hat{x}_0 = 0 + \frac{1}{2}(y - 0) = \frac{y}{2},$ $P_{x_0} = 1 - \frac{1}{2}2\frac{1}{2} = 1/2$

<u>Βήμα Πρόβλεψης 1</u>

$$\hat{x}_1^- = 1.2\hat{x}_0 = 1.2 \cdot 1/2 = 0.6$$

$$P_{x_1}^- = 1.2 \cdot \frac{1}{2} \cdot 1.2 + 1 = 1.72$$

Βήμα Διόρθωσης 1

$$y_1^- = 0.6$$
,

$$P_{x_1y_1}^- = 1.72,$$

$$\hat{x}_1 = 0.6 + 0.632(1.4 - 0.6) = 1.106,$$

$$P_{v_1}^- = 1.72 + 1 = 2.72$$

$$K_1 = 1.72 \cdot 2.72^{-1} = 0.632$$

$$P_1 = 1.72 - 0.632^2 \cdot 2.72 = 0.633$$

$$\hat{x}_{k+1}^{-} = A_k \hat{x}_k + B_k, P_{x_{k+1}}^{-} = A_k P_{x_k} A_k^T + Q.$$

$$\hat{y}_{k+1}^- = C_{k+1}\hat{x}_{k+1}^- + D_k,$$

$$P_{y_{k+1}}^- = C_{k+1} P_{x_{k+1}}^- C_{k+1}^T + R,$$

$$P_{x_{k+1}y_{k+1}}^- = P_{x_{k+1}}^- C_{k+1}^T.$$

$$K_{k+1} = P_{x_{k+1}y_{k+1}}^{-} P_{y_{k+1}}^{-1}$$

$$\hat{x}_{k+1} = \hat{x}_{k+1}^- + K_{k+1} \left(y_{k+1} - \hat{y}_{k+1}^- \right)$$

$$P_{x_{k+1}} = P_{x_{k+1}}^- - K_{k+1} P_{y_{k+1}}^- K_{k+1}^T.$$

$$x_{k+1} = 1.2x_k + w_k$$

$$y_k = x_k + v_k$$

$$x_0, w_k, v_k \sim N(0,1)$$

Prior, Measurement, Posterior x_0

Prior, Measurement, Posterior x₁

Κάποιες Ιδιότητες του Φίλτρου Kalman

Φίλτρο Kalman: Απλοποιημένες Εκφράσεις

Εκτίμηση πριν την τελευταία μέτρηση $\hat{x}_k = E[x_k \mid y_{0:k-1}]$

Απλοποιημένες εκφράσεις για το κέρδος K_k

$$K_{k} = AP_{k}C\left(CP_{k}C^{T} + R\right)^{-1}$$

$$P_{k+1} = AP_{k}A^{T} - AP_{k}C^{T}\left(CP_{k}C^{T} + R\right)^{-1}CP_{k}A^{T} + Q$$

$$P_{0} = E\left[x_{0}x_{0}^{T}\right]$$

$$\hat{x}_{k+1} = A\hat{x}_{k} + B_{k} + K_{k+1}\left(y_{k} - C\hat{x}_{k}\right)$$

Σας θυμίζει κάτι;

* Παρόμοια μορφή προκύπτει και με τις αρχικές (όχι απλοποιημένες) εκφράσεις

Stationary Solutions

Στη μόνιμη κατάσταση

$$K = APC \left(CPC^{T} + R \right)^{-1}$$

$$P = APA^{T} - APC^{T} \left(CPC^{T} + R \right)^{-1} CPA^{T} + Q$$

Θεώρημα: Έστω ότι το ζευγάρι (A,C) είναι παρατηρήσιμο, και ο πίνακας Q γράφεται στη μορφή $Q = DD^T$. Αν επιπλέον, το ζευγάρι (A,D) είναι ελέγξιμο τότε υπάρχει μοναδική λύση θετικά ημι-ορισμένη λύση.

Υπολογισμός του P idare(A,C',Q,R)

Kalman Filter: Observer Form

mage from <u>article</u>

Υποθέσεις Φίλτρου Kalman

- Σύστημα είναι γραμμικό
- Οι θόρυβοι και οι διαταραχές έχουν κανονική κατανομή
- Η αρχική κατάσταση κατανέμεται κανονικά

Αν ισχύουν όλα αυτά τότε η posterior κατανομή του x_k δοσμένων των μετρήσεων **είναι** κανονική με γνωστή μέση τιμή και συν-διακύμανση

$$x_k \mid y_{0:k} \sim N(\hat{x}_k, P_{x_k})$$

Όταν δεν ισχύουν οι υποθέσεις .. θα δουλέψουμε προσεγγιστικά

Ελαχιστοποίηση Συν-διακύμανσης

Αν όλες οι υποθέσεις ισχύουν εκτός του ότι οι θόρυβοι και οι διαταραχές είναι Gaussian

Θεώρημα

Ανάμεσα σε όλα τα γραμμικά φίλτρα το φίλτρο Kalman είναι αυτό που έχει το ελάχιστο σφάλμα πρόβλεψης. Δηλαδή για ένα γραμμικό φίλτρο με εκτίμηση $\hat{x}_{k|0:k-1}$ ισχύει

$$\Sigma = E \left[\left(x_k - \hat{x}_{k|0:k-1} \right) \left(x_k - \hat{x}_{k|0:k-1} \right)^T \right] \longrightarrow \Sigma \ge \Sigma^{KF}$$

Επιπλέον

$$E\left[x_k - \hat{x}_{k|0:k-1}\right] = 0$$
 (unbiassed)

Έλεγχος LQG

Βέλτιστος Στοχαστικός Έλεγχος (θα το δούμε στη συνέχεια)

Για γραμμικά συστήματα με τετραγωνικό κόστος λύνουμε ξεχωριστά

- Πρόβλημα Εκτίμησης με φίλτρο Kalman
- Πρόβλημα βέλτιστου ελέγχου