VII. EXTREMUMS LOCAUX. INVERSION LOCALE

Extremums locaux

1) Déterminer les extremums locaux des applications suivantes, où
$$\varphi(t)=3t^2-2t^3$$
: $a\colon \mathbb{R}^3 \to \mathbb{R}$; $b\colon \mathbb{R}^2 \to \mathbb{R}$; $c\colon \mathbb{R}^2 \to \mathbb{R}$. $(x,y,z)\mapsto \varphi(x)+\varphi(y)+\varphi(z)$ $(x,y)\mapsto x\operatorname{e}^y+y\operatorname{e}^x$ $(x,y)\mapsto 3x^4-4x^2y+y^2$

2) On considère le disque $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ et l'application

$$u \colon D \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto 8\sqrt{1-x^2-y^2} + 5x^2$$

- a) Montrer que u est bornée et atteint ses bornes.
- b) Déterminer les bornes de u ainsi que les points où u les atteint.
- c) Étudier la nature des points critiques de u dans le disque ouvert \tilde{D} .
- 3) On considère l'application $v\colon]0,+\infty[\times]0,+\infty[\longrightarrow \mathbb{R}$ $(x,y) \longmapsto \frac{xy}{(1+x)(1+y)(x+y)}$
 - a) Soient x > 0 et y > 0. Montrer que : v(x,y) < x et v(x,y) < y et $v(x,y) < \frac{1}{x}$ et $v(x,y) < \frac{1}{y}$.
 - b) En déduire que v prend une plus grande valeur.
 - c) Déterminer le maximum de v.
- 4) On pose : $U =]0, +\infty[\times]0, +\infty[$ et $f(x,y) = \frac{e^{x^2 + xy + y^2}}{xy}$ pour $(x,y) \in U$.
 - a) Démontrer que f est convexe sur $U^{(\star)}$

Indication : appliquer à $\ln \circ f$ le critère de convexité avec la différentielle seconde (exp croît).

- b) Démontrer que f a un minimum sur U et calculer ce minimum. Indication: appliquer à f le critère de convexité avec la différentielle première.
- 5) On se donne $a, b, c \in \mathbb{R}^n$ et pose $g(x) = \|x a\|_2 + \|x b\|_2 + \|x c\|_2$ pour $x \in \mathbb{R}^n$.
 - a) Vérifier que $g(x) \xrightarrow[\|x\|_2 \to +\infty]{} +\infty$ et en déduire que g a un minimum global. Indication: on pourra par exemple considérer la partie $K := \{x \in \mathbb{R}^n \mid g(x) \leq g(0)\}\ de \mathbb{R}^n$.
 - b) Démontrer que l'application $g: \mathbb{R}^n \to \mathbb{R}$ est convexe.
 - c) Démontrer que si $x \in \mathbb{R}^n \setminus \{a, b, c\}$ est point critique de g, alors g atteint son minimum en x. $\begin{array}{l} \textit{Indication}: \text{supposer par l'absurde que } y \in \mathbb{R}^n \text{ vérifie } g(y) < g(x) \text{ puis passer à la limite} \\ t \to 0^+ \text{ dans l'inégalité } \frac{g((1-t)x+ty)-g(x)}{t} \ \leq \ g(y)-g(x). \end{array}$
 - d) Déterminer le minimum de g quand n=3 et (a,b,c) est la base canonique de \mathbb{R}^3 .
- (\star) (a) Soit f une application d'un convexe C de \mathbb{R}^n dans \mathbb{R} . On dit que f est convexe si : $f((1-t)x+ty) \le (1-t)f(x)+tf(y) \qquad \text{pour tous } x,y \in C \text{ et } t \in [0,1];$
- (b) Soit f une application différentiable d'un ouvert convexe U de \mathbb{R}^n dans \mathbb{R} .

L'application f est convexe si et seulement si : $f(y) - f(x) \ge df(x) \cdot (y - x)$ pour tous $x, y \in U$.

(c) Soit f une application deux fois différentiable d'un ouvert convexe U de \mathbb{R}^n dans \mathbb{R} .

L'application f est convexe si et seulement si : $d^2f(x) \cdot h^2 \ge 0$ pour tous $x \in U$ et $h \in \mathbb{R}^n$.

Inversion locale

- 6) a) Montrer que l'application $f \colon \mathbb{R} \times]-1,1[\longrightarrow \mathbb{R} \times]-1,1[$ est un C¹-difféomorphisme. $(x,y) \longmapsto (x-y\sin x,y)$
 - b) Soit $\| \|$ une norme sur $\mathcal{L}(\mathbb{R}^n)$ associée à une norme donnée sur \mathbb{R}^n . On considère une application $N \colon \mathbb{R}^n \to \mathbb{R}^n$ de classe C^1 vérifiant : $\sup_{x \in \mathbb{R}^n} \| dN(x) \| < 1$. Démontrer que l'application $A := \mathrm{id}_{\mathbb{R}^n} - N$ est un C^1 -difféomorphisme de \mathbb{R}^n sur \mathbb{R}^n . Indication : fixer $y \in \mathbb{R}^n$ et utiliser l'application $N_y \colon x \mapsto N(x) + y$.
- 7) On considère l'application $F \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. $(x,y) \longmapsto (x^2 + y^2, x^3 y^3)$
 - a) Au voisinage de quels points l'application F se restreint-elle en un C^1 -difféomorphisme?
 - b) Pour chaque solution (x_0, y_0) de l'équation $(E): x^2 + y^2 = 2 \text{ et } x^3 y^3 = 0,$ donner une approximation à l'ordre 1 en 0 par rapport à ε de la solution de l'équation $(E_{\varepsilon}): x^2 + y^2 = 2 \varepsilon \text{ et } x^3 y^3 = \varepsilon$ qui est « voisine de (x_0, y_0) ».
- 8) On considère l'application $K \colon \mathfrak{M}(2,\mathbb{R}) \longrightarrow \mathfrak{M}(2,\mathbb{R})$. $A \longmapsto A^2$
 - a) Existe-t-il une réciproque locale de classe C^1 de K qui envoie $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ sur $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$? sur $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?
 - b) Prouver que $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est isolé dans $K^{-1}(\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\})$ et que $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ n'est pas intérieur à $K^{-1}(\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\})$.
- 9) a) Montrer qu'il existe un ouvert Ω de \mathbb{R}^2 contenant (0,0), et des applications $x \colon \Omega \to \mathbb{R}$ et $y \colon \Omega \to \mathbb{R}$ de classe C^{∞} , vérifiant :

(*)
$$x(0,0) = y(0,0) = 1$$
 et
$$\begin{cases} x(u,v)^3 + y(u,v)^2 + u \, x(u,v) = 2 \\ y(u,v)^3 - v \, x(u,v)^2 = 1 \end{cases}$$
 pour tout $(u,v) \in \Omega$.

- b) Calculer les développements limités à l'ordre 1 de x et de y en (0,0).
- 10) On pose : $P_{a,b,c} = X^3 + aX^2 + bX + c$ pour $(a, b, c) \in \mathbb{R}^3$.
 - a) Soient $a_0, b_0, c_0, x_0 \in \mathbb{R}$ tels que $P_{a_0, b_0, c_0}(x_0) = 0$. À quelle condition existe-t-il un voisinage ouvert Ω de (a_0, b_0, c_0) dans \mathbb{R}^3 et une application $x \colon \Omega \to \mathbb{R}$ de classe \mathbb{C}^1 , tels que :

(**)
$$x(a_0, b_0, c_0) = x_0$$
 et $P_{a,b,c}(x(a,b,c)) = 0$ pour tout $(a,b,c) \in \Omega$?

- b) Trouver une approximation à l'ordre 2 en (h, k) d'une des trois racines de $X^3 + pX + q$, à choisir parmi x(0, p, q) < y(0, p, q) < z(0, p, q), lorsque p = -1 + h et q = k avec $(h, k) \to (0, 0)$.
- c) On pose $U := \{(a, b, c) \in \mathbb{R}^3 \mid P_{a,b,c} \text{ a 3 racines réelles distinctes}\}$. On introduit $\rho \colon U \to \mathbb{R}^3$ où x, y, z sont les racines de $P_{a,b,c}$ avec x < y < z. $(a, b, c) \mapsto (x, y, z)$

Montrer que U est un ouvert connexe de \mathbb{R}^3 et que l'application ρ se restreint (à l'arrivée) en un C^1 -difféomorphisme ρ_0 de U sur un ouvert V de \mathbb{R}^3 .