ASTR 400B In Class Worksheet 1

Jan 25 2018

1 Schechter Function

The galaxy luminosity function in the nearby universe is well described by a Schechter Function:

$$\Phi(M)dM = (0.4 \ln 10) \phi_* 10^{0.4(M_* - M)(\alpha + 1)} e^{-10^{0.4(M_* - M)}} dM$$
(1)

With the following parameters from Smith+2009 for Field Galaxies in SDSS at $z\sim0.1$ in the Kband:

- 1. $\phi_* = 1.66 \times 10^{-2} \text{ Mpc}^{-3}$
- 2. $\alpha = -0.81$
- 3. $M^* = M_k^* = -23.19$

This function is long so try to break this up into different components. E.g. a = power law part, b= exponential part.

1.1 Question 1

Define a function called *Schechter*, that takes as input: α , M*, ϕ_* . tip: import numpy as np then you can use np.log and np.exp

Plot the Schechter Function using the above parameter values over a magnitude range of -17 to -26. Try to reproduce the black solid line in Figure ??, from Smith+2009 Plotting tips:

- 1. import matplotlib.pyplot as plt this lets you use plotting functions.
- 2. np.arange(0,10,0.1) will return an array from 0 to 10 spaced in intervals of 0.1
- 3. plt.semilogy lets you plot the y axis as log.

Figure 1: Luminosity Function from Smith+2009, UKIDSS + SDSS KBand

1.2 Question 2

Galaxies in the Virgo Cluster have different parameters, like α =-1.35 (Ferrarese+2016 ApJ 824) Overplot the Schechter Function with this new value of α . Try a smaller value of α = -0.6. How does the function change? What does this mean?

2 The IMF

Create a function called *Salpeter* that defines the Salpeter IMF:

$$\xi(M) = \xi_0 (M/M_{\odot})^{-\alpha} \tag{2}$$

 $\alpha=2.35$ The function should take as input an array of stellar masses, M. You will need to determine the normalization, ξ_0 , by integrating this equation over mass from 0.1 to 120 M_{\odot} and setting the value to 1. The function should then return $\xi(M)$, which will now represent the fractional number of stars.

- from scipy.integrate import quad
- quad(lambda x: fxn(x),xmin,xmax)
- quad returns an array with 2 values. you want the first value.

2.1 Question 3

Integrate your normalized function to compute the fraction of stars with stellar masses greater than the sun and less than 120 ${\rm M}_{\odot}$. ** Double Check: if you integrate your function from 0.1 to 120 you should return 1.0