PATENT ABSTRACTS OF JAPAN

(11)Publication number:

57-097357

(43) Date of publication of application: 17.06.1982

(51)Int.CI.

H02K 29/00

(21) Application number: 55-172392

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

05.12.1980

(72)Inventor:

GOTO MAKOTO

(54) BRUSHLESS DC MOTOR

(57) Abstract:

PURPOSE: To increase the output torque of a brushless DC motor while reducing the quantity of used expensive rare earth metal magnet by effectively disposing a rare earth magnet and a ferrite magnet.

CONSTITUTION: Rate earth magnets 11a, 11b and 12a, 12b are so disposed adjacent to each other that the N-poles and S-poles of the magnets 11a, 11b, 12a, 12b are as one set, and ferrite magnets 13, 14 and disposed between the pole pairs. A pole pair of N-poles and S-poles are magnetized at an equal pitch of 30° radially at the respective ferrite magnets 13, 14. On the other hand, two sets of N-poles and S-poles of equal pitch of 90° are formed at the position detecting poles of the outer peripheral surface and are detected by a magnetoelectric converter.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

CLIPPEDIMAGE= JP357097357A

PUB-NO: JP357097357A

DOCUMENT-IDENTIFIER: JP 57097357 A

TITLE: BRUSHLESS DC MOTOR PUBN-DATE: June 17, 1982 INVENTOR-INFORMATION:

NAME

GOTO, MAKOTO

INT-CL_(IPC): H02K029/00

US-CL-CURRENT: 318/254

ABSTRACT:

PURPOSE: To increase the output torque of a brushless DC motor while reducing the quantity of used expensive rare earth metal magnet by

effectively disposing a rare earth magnet and a ferrite magnet.

CONSTITUTION: Rate earth magnets 11a, 11b and 12a, 12b are so disposed adjacent

to each other that the N-poles and S-poles of the magnets 11a, 11b, 12a, 12b

are as one set, and ferrite magnets 13, 14 and disposed between the pole pairs.

A pole pair of N-poles and S-poles are magnetized at an equal pitch of 30°

radially at the respective ferrite magnets 13, 14. On the other hand, two sets

of N-poles and S-poles of equal pitch of 90° are formed at the position

detecting poles of the outer peripheral surface and are detected by a magnetoelectric converter.

COPYRIGHT: (C) 1982, JPO&Japio

IPCO:

H02K029/00

FPAR:

PURPOSE: To increase the output torque of a brushless DC motor while reducing the quantity of used expensive rare earth metal magnet by effectively disposing

a rare earth magnet and a ferrite magnet.

FPAR:

CONSTITUTION: Rate earth magnets 11a, 11b and 12a, 12b are so disposed adjacent to each other that the N-poles and S-poles of the magnets 11a, 11b, 12a, 12b are as one set, and ferrite magnets 13, 14 and disposed between the pole pairs.

A pole pair of N-poles and S-poles are magnetized at an equal pitch of 30° radially at the respective ferrite magnets 13, 14. On the other hand, two sets of N-poles and S-poles of equal pitch of 90° are formed at the position detecting poles of the outer peripheral surface and are detected by a

magnetoelectric converter.

19 日本国特許庁 (JP)

⑪特許出願公開

⑫ 公開特許公報(A)

昭57—97357

⑤Int. Cl.³ H 02 K 29/00 識別記号

庁内整理番号 7052—5H 43公開 昭和57年(1982)6月17日

発明の数 1 審査請求 未請求

(全 5 頁)

匈ブラシレス直流モータ

願 昭55—172392

②出 願 昭55(1980)12月5日

仰発 明 者 後藤誠

門真市大字門真1006番地松下電器産業株式会社内

⑪出 願 人 松下電器産業株式会社

門真市大字門真1006番地

個代 理 人 弁理士 中尾敏男

外1名

明細書

1、発明の名称

②特

プラシレス直流モータ

2、特許請求の範囲

モータ軸に直交する平面上に配設されたマグネ ット部を有するロータと、前記マグネット部に対 向して平面的に配設された2相のコイルを有する ステータと、前記マグネット部の発生磁束を検出 して前記2相のコイルへの通電を制御するための 信号を得る磁電変換素子を具備し、かつ、前記マ グネット部は、N極とS極の磁極対を1組有する 第1種のマグネットと、前記第1種のマグネット よりも低い残留磁束密度をもつ材料で作られ、前 記第1種のマグネットの磁極ピッチの光もしくは、 ほぼどのピッチの磁極対を1組有する第2種のマ クネットを含めて構成され、前記第1種および第 2種のマグネットを交互に隣接配置して、前記磁 電変換累子と対向する磁極面のN極、S極の磁極 ピッチを前記第1種のマクネットのN極、S極の 磁極ピッチの 3/2 もしくは、ほぼ 3/2としたこと

を特徴とするプラシレス直流モータ。

3、発明の詳細な説明

本発明は、軸方向のギャップを介してロータマ グネットとステータコイルが対向する型のブラシ レス直流モータに関するものである。

従来、ロータに取付けた単一の円板状マグネットにN極単独部分と、N極とS極が共存する第1の共存部分と、該第1の共存部分と改極が反転し、かつ両極が共存する第2の共存部分と、S極単独部分からなる4つの部分を順次繰返して配置し、ステータに2相のコイルを配設した構造のブラシレス直流モータが提案されている。この様なモータにおいては、マグネットの回転位置を磁電変換素子(ホール素子等)によって検出して2相のコイルに交互に電流を通電すれば良いために、位置検出および通電制御が簡単になるという利点がある。

ところで、この様なモータを小形化する場合には、残留磁東密度の高い希土類マクネット(SmCoマグネット等)を使用して出力トルクの増大をは

-251-

3 4-9

本発明は、その様な点を考慮して、残留磁東密度の大きなマグネット、たとえば希土類マグネット(第1種のマグネット)と残留磁東密度の小さなマグネット、たとえばフェライトマグネット(第2種のマグネット)を効果的に配置することにより、希土類マグネットの使用量を低減しながらも小形で大出力のモータを実現可能にしたもの

5 A-9

がプリント基板 6 上に配置されている。これらの 部品の具体的な取付け構造は、周知の適当な構成 が採用可能であるので、ことでの詳細な説明なら ひに図示は省略する。

第2図に前記マグネット部3の構成例を示す。 同図において、11a,11b,12a,12bは軸 方向および外周面に着磁された希土類マグネット (第1種のマグネット)であり、13,14は径 方向に着磁されたフェライトマグネット(第2種 のマグネット)である。上記希土類マグネット 11a, 11b, 12a, 12bの磁極ピッチを60° となし、N, S極を1組とするように11 aと 11bおよび1~aと12bを隣接配置して、そ れらの磁極対の間にフェライトマグネット13お よび14を配置している。フェライトマグネット 13, 14の各ピッチは希土類マクネット11a, 11b, 12a, 12b の各ピッチ (60°) と等し く、または略等しくなされ、各フェライトマクネ ット13、14には径方向に1磁極対のN、S極 が等ピッチ(30°)または略等ピッチで着磁され、

である。さらに、これらのマグネットの磁極の配置を工夫して、各マグネットの磁極を磁電変換素子にて検出することにより、2相のコイルへの通電制御信号を得るようにしている。以下、本発明を図示の実施例に基いて説明する。

第1図は本発明の実施例の要部側断面図である。 同図において、中心部に回転軸1が固着された強 磁性体製のロータ2には後述の複数個のマグネットを含めて構成されたマグネット部3が取付けられ、軸受4によってステータ5に対し回転自在に 支承されている。マグネット部3は、軸方向の端 面に駆動用の主磁極部イを、さらに外周面に位置 検出磁極部中を形成している。

一方、マグネット3の主磁極部イに対向して2相のコイル7、8が配散され、ブリント基板 6にそのコイル端を接続している。また、マグネット部3の位置検出磁極部中に対向して、その磁束を感知する磁電変換素子9(本例では、ホール業子を内蔵するホールIC)がブリント基板の上に配置されている。これらの部品の具体的な取付け作

6 4-9

ている。さらに、各フェライトマグネット13, 14の外周側に形成された磁極と隣接した希土類 マグネット11a, 11b, 12a, 12bの外周側 磁極を同極性となしている。

その結果、軸方向に発生した主磁極部イの磁東密度を半径方向(コイルのトルク発生部分)に平均化した平均磁東密度は、希土類マグネット 11a, 11b, 12a, 12bにおいてはその極性と一致し、フェライトマグネット 13, 14においては実質的に零または略零となる。一方、外周面の位置検出磁極部口には等ピッチ(90°)または略等ピッチのN, S極が2組形成され、磁電変換素子9にて検出される。

第3図に、前記ステータ5上に配設されたコイルフォ, 7b, 8a, 8bと磁電変換素子9と、それらに電流を供給する駆動回路の一例を示す。同図において、ステータ上には4個のコイルフa, 8a,°7b, 8bが等ピッチ間隔または略等ピッチ間隔で配設され、7aと7bおよび8aと8bが直列に接続されて、2相のコイル(7a, 7b),

(8a, 8b)を形成している。各コイルでa,7b, 8 a , 8 b の実効広がり角度は、前記マグネット 部3のフェライトマグネット13、14の角度幅 (60°) に等しく、または略等しくされている。 従って、これらのコイル間の間隔は、およそ300 となる。

2相のコイル (7a, 7b) と (8a, 8b) の一 端は電源の正側端子10aに接続され、他の一端 はそれぞれ駆動トランジスタ21, 22のコレク タ側に接続されている。磁電変換素子9は4端子 のホールICであり、マグネット部3の位置検出 磁極部の磁性に応じて変化する相補的な2つの出 力が得られる。これらの出力はトランジスタ21, 22のベース端子に加えられ、トランジスタ21、 22を相補的にオン、オフ動作させ、2相のコイ ル (7 a, 7 b) と (8 a, 8 b) への通電を制 御する。すなわち、マグネット部3の回転に応じ て、通電されるコイルを選択・切換えて所定方向 への持続的な回転力を得るようにしている。

第4図に前記ロータ2のマグネット部3の磁極

させ、第5図(o), (d)に示すように2相のコイル (7 a, 7 b), (8 a, 8 b) への電流 i₁, i₂ をロータの回転位置に伴って切換え制御する。そ の結果、合成の出力トルクは第5図(e)に示すよう に所定方向への接続的な回転力となり、その大き さは希土類マグネットの磁束の強さとコイルへの 電流値の積に比例する。

とのように、1磁極対の磁極を有する希土類マ グネットのごとき第1種のマグネットと、1 磁極 対の磁極を有するフェライトマグネットのことき 第2種のマグネットを交互に配置し、2 相のコイ ルには第1種のマグネットの磁束が主に作用し、 磁電変換素子には両方のマグネットの磁束が作用 するように構成したならば、高価な希土類マグネ ットの使用量は少なくしながらず、その出力トル クは大きく、かつ位置検出および通電制御の簡単 なプラシレス直流モータを得ることができるもの であり、その効果は非常に大きいものがある。

4、図面の簡単な説明

第1 図は本発明の一実施例の要部側断面図、第

構成と、ステータ5のコイル7a,7b,8a,8b および磁電変換素子9の相対的な位置関係を示す。同 図において、各コイルは一点鎖線にて表わされて いる。

次に、本実施例のモータの動作について、第5 図の波形図を参照して説明する。

フェライトマグネット13,14の磁束は外周側 の磁極と内周側の磁極が打消し合うように各コイ ル辺に作用するため、トルクの発生には無関係に なる。従って、2相のコイル(7a, 7b)と (8a,8b.)には、希土類マグネット1.1 a, 11b, 12a, 12bの磁束のみが実質的に作 用する。その結果、2相のコイル(7a,7b) と(8a,8b)にそれぞれ一定値の電流を通電 した場合に発生するトルクは、それぞれ第 5 図(a), (b)に示すようにロータの回転に伴って変化してゆ

一方、磁極変換素子のは、ロータマグネットの 外周面の磁束を検出し、その極性に応じて駆動ト ランシスタ21,22を相補的にオン,オフ動作

2 図は同実施例におけるマグネット部の磁極構成 例を示す図、第3図は同実施例における2相のコ イルと磁電変換素子および駆動回路の結線図、第 4 図は同実施例におけるマグネット部の磁極と2 相のコイルおよび磁電変換素子の相対的位置関係 を示す図、第5図(a), (b), (c), (d), (e)は同実施例 の動作を説明するためのトルクと電流の波形図で

3 ·····マグネット部、7, 8, 7 a, 7 b, 8 a , 8 b · · · · · コイル、9 · · · · · 磁電変換素子、 11 a, 11 b, 12 a, 12 b ····· 希土類マ グネッド、13、14 …… フェライトマグネッ

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 2 図

第 1 図

第 3 図

es a su

-254-

第 5 図

