

Nožnice a páska (scissors)

Day 2

Language slovenčina Time limit: 1 second

Memory limit: 1024 megabytes

Dostali ste kus papiera v tvare jednoduchého mnohouholníka S. Vašou úlohou je ho zmeniť na jednoduchý mnohouholník T, ktorého obsah je rovnako veľký ako obsah S. Na vykonanie tohto úkonu máte k dispozícii dva nástroje – nožnice a pásku. Nožnice slúžia na nastrihanie mnohouholníka na niekoľko menších mnohouholníkov. No a páska poslúži na spájanie kúskov papiera dokopy. Tieto nástroje môžete používať opakovane a v ľubovoľnom poradí.

Mnohouholník, ktorý dostanete na vstupe bude mať celočíselné súradnice. Vaše riešenie však môže vytvoriť aj útvary, ktorých súradnice sú necelé čísla.

Poďme si úlohu zadefinovať formálnejšie.

Útvar $Q = (Q_0, \dots, Q_{n-1})$ je taká postupnosť troch alebo viacerých bodov v rovine, že:

- Uzavretá krivka $Q_0Q_1Q_2\dots Q_{n-1}Q_0$ sa nekrižuje a ani nedotýka samej seba, čím vytvára jednoduchý mnohouholník.
- Body útvaru sú zadané proti smeru hodinových ručičiek.

Mnohouholník, ktorý je určený útvarom Q budeme volať P(Q).

Dva útvary nazveme **ekvivalentné** pokiaľ vieme z jedného vytvoriť pomocou posunu a otáčania druhý útvar. Avšak, zrkadlové prevracanie útvaru nie je povolené. Navyše, závisí aj na poradí bodov, ktoré určujú daný útvar. Útvar $(Q_1, \ldots, Q_{n-1}, Q_0)$ nemusí byť nutne ekvivalentný s útvarom (Q_0, \ldots, Q_{n-1}) .

Na obrázku naľavo môžeme vidieť, že útvary U a V sú ekvivalentné. Útvar W s nimi však ekvivalentný nie je, pretože body útvaru W sú zadané v inom poradí. Posledný útvar takisto nemôže byť ekvivalentný s predchádzajúcimi troma, a to bez ohľadu na poradie bodov, pretože prevracanie útvarov nie je dovolené.

Vo vstupe aj výstupe budeme útvar tvorený n vrcholmi reprezentovať jedným riadkom obsahujúcim 2n+1 medzerou oddelených čísel – najskôr n, potom súradnice jednotlivých bodov: $Q_{0,x}$, $Q_{0,y}$, $Q_{1,x}$, ...

Útvary budeme označovať pomocou **identifikačných čísel** (ID). Zadaný útvar S má ID 0, útvary, ktoré vytvoríte v priebehu riešenia dostanú postupne IDčka 1, 2, 3 ... v poradí, v akom boli vytvorené.

Útvary $B_1, \ldots B_k$ sú **rozdelením** útvaru A ak:

- Zjednotenie všetkých mnohouholníkov $P(B_i)$ tvorí mnohouholník P(A).
- Pre všetky dvojice $i \neq j$ má prienik mnohouholníkov $P(B_i)$ a $P(B_i)$ obsah rovný nule.

Pomocou **nožníc** vieme nastrihať útvar A a vytvoriť jeden alebo viacero útvarov B_1, \ldots, B_k , ktoré sú rozdelením útvaru A. Útvar A po tejto operácii zaniká.

Na obrázku naľavo vidíme útvar A (štvorec) rozdelený na útvary B_1 , B_2 a B_3 (tri trojuholníky). Jeden z možných spôsobov ako popísať jeden z útvarov B_i je "3 3 1 6 1 5.1 4".

Pomocou **pásky** vieme spojiť jeden alebo viacero existujúcich útvarov A_1, \ldots, A_k a vytvoriť nový útvar B. Na vykonanie tejto operácie je nutné špecifikovať útvary C_1, \ldots, C_k a až potom výsledný útvar B. Pre útvary C_1, \ldots, C_k musí platiť:

- Pre všetky i platí, že útvar C_i je ekvivalentný útvaru A_i .
- Útvary C_1, \ldots, C_k tvoria rozdelenie útvaru B.

Útvary A_1, \ldots, A_k po tejto operácii zanikajú. Naviac, zo spomenutých útvarov, iba útvar B dostane nové ID.

Na operáciu pásky sa môžeme intuitívne pozerať tak, že si zvolíme útvar B a potom ukážeme, ako presunúť existujúce útvary A_1, \ldots, A_k na správne pozície tak, aby dokopy vytvorili útvar B.

Input

Prvý riadok vstupu obsahuje počiatočný útvar S.

Druhý riadok vstupu obsahuje popis útvaru T, ktorý sa snažíme vytvoriť.

Všetky útvary na vstupe majú medzi 3 až 10 bodov a sú zadané vo formáte opísanom vyššie.

Všetky súradnice na vstupe sú celé čísla medzi -10^6 až 10^6 .

Navyše o útvaroch na vstupe môžete predpokladať, že žiadne tri z ich bodov netvoria uhol so stupňom menším ako 3 stupne. Táto podmienka zahŕňa aj body, ktoré nejdú v popise útvaru priamo za sebou, a preto okrem iného implikuje, že žiadne tri body zadaných útvarov nie sú kolineárne.

Môžete predpokladať, že mnohouholníky P(S) a P(T) majú rovnaký obsah.

Output

Vždy, keď chcete použiť nožnice, vypíšte niekoľko riadkov, dodržujúc formát uvedený nižšie.

```
scissors
id(A) k
B_1
B_2
...
B_k
```

Hodnota id(A) určuje ID útvaru, ktorý chceme nastrihať, k určuje počet novovytvorených útvarov a $B_1 \dots, B_k$ popisujú tieto útvary.

Vždy, keď chcete použiť pásku, vypíšte niekoľko riadkov, dodržujúc formát uvedený nižšie.

```
tape
k id(A_1) ... id(A_k)
C_1
C_2
...
C_k
B
```

Číslo k určuje počet útvarov, ktoré chceme zlepiť dokopy, $id(A_1), \ldots, id(A_k)$ sú IDčka týchto útvarov, C_1, \ldots, C_k sú útvary k nim ekvivalentné, ktoré označujú ich umiestnenie vo vnútri útvaru B a B je útvar, ktorý vznikne ich zlepením.

Je odporúčané vypisovať súradnice útvarov s presnosťou aspoň 10 desatinných miest.

Navyše, výstup musí spĺňať nasledovné podmienky:

- Všetky súradnice bodov musia byť medzi -10^7 a 10^7 .
- Každý útvar na výstupe môže obsahovať najviac 100 bodov.
- \bullet Pri každej operácii môže byť hodnota k, počet útvarov, z rozsahu 1 až 100.
- Počet vykonaných operácií nemôže presiahnuť 2000.
- Celkový počet bodov vo všetkých útvaroch na výstupe nesmie presiahnuť 20 000.
- $\bullet\,$ Na konci ostal jediný útvar, ktorý je ekvivalentný s útvarom T.
- Všetky operácie musia byť korektné vzhľadom na checker. Riešenia s malými zaokrúhľovacími chybami budú taktiež akceptované. (Všetky porovnania povoľujú absolútnu alebo relatívnu chybu 10⁻³.)

Handouts

- Inštrukcie, ako vypisovať floating-point čísla, nájdete na konci inštrukcií k vášmu programovaciemu jazyku.
- Môžete si stiahnuť binárku scissors-checker, spraviť ju spustiteľnou (chmod a+x scissors-checker) a
 potom ju lokálne používať na testovanie, či sú vaše výstupy správne
 (./scissors-checker input your_output).

Scoring

Útvar nazveme **pekným obdĺžnikom** ak je vo forme ((0,0), (x,0), (x,y), (0,y)) pre kladné celé čísla x a y.

Útvar nazveme **pekným štvorcom** ak je to pekný obdĺžnik a x = y.

Útvar A nazveme striktne konvexný ak sú všetky vnútorné uhly mnohouholníka P(A) menšie ako 180 stupňov.

Podúloha 1 (5 bodov): S a T sú pekné obdĺžniky. Navyše, všetky súradnice sú celé čísla od 0 do 10.

Podúloha 2 (13 bodov): S je pekný obdĺžnik, v ktorom platí x > y a T je pekný štvorec.

Podúloha 3 (12 bodov): S a T sú pekné obdĺžniky.

Podúloha 4 (14 bodov): S je trojuholník a T je pekný štvorec.

Podúloha 5 (10 bodov): S a T sú trojuholíky.

Podúloha 6 (16 bodov): S je striktne konvexný mnohouholník a T je pekný obdĺžnik.

Podúloha 7 (11 bodov): T je pekný obdĺžnik.

Podúloha 8 (19 bodov): žiadne d'alšie obmedzenia.

Examples

standard input	standard output
6 0 0 6 0 6 4 5 4 5 9 0 9	scissors
400707707	0 5
	3003034
	3 3 4 0 4 0 0
	3 3 0 6 0 6 4
	3 6 4 3 4 3 0
	4 0 4 5 4 5 9 0 9
	tape
	5 1 2 5 3 4
	3 0 3 0 0 4 0
	3 4 0 7 0 7 4
	4 0 3 4 0 7 4 3 7
	3 7 4 7 7 3 7
	3 3 7 0 7 0 3
	400707707
4 0 0 3 0 3 3 0 3	scissors
4 7 -1 10 -1 11 2 8 2	0 2
	3 0 0 1 3 0 3
	4 1 3 0 0 3 0 3 3
	tape
	2 1 2
	3 110 -1 111 2 110 2
	4 108 2 107 -1 110 -1 110 2
	4 107 -1 110 -1 111 2 108 2

standard input	standard output
400909101	scissors
4 0 0 3 0 3 3 0 3	0 2
	4 1.47000000000 0 9 0 9 1 1.470000000 1
	4 0 0 1.470000000 0 1.470000000 1 0 1
	scissors
	1 2
	4 1.470000000 0 6 0 6 1 1.470000000 1
	4 9 0 9 1 6 1 6 0
	tape
	2 4 3
	4 3 2 3 1 6 1 6 2
	4 6 1 1.470000000 1 1.470000000 0 6 0
	6 1.470000000 0 6 0 6 2 3 2 3 1 1.47 1
	scissors
	5 4
	4 1.470000000 0 3 0 3 1 1.470000000 1
	4 3 0 4 0 4 2 3 2
	4 4 2 4 0 5 0 5 2
	4 5 0 6 0 6 2 5 2
	tape
	5 2 6 7 8 9
	4 0 0 1.470000000 0 1.470000000 1 0 1
	4 1.470000000 0 3 0 3 1 1.470000000 1
	4 0 2 0 1 2 1 2 2
	4 0 2 2 2 2 3 0 3
	4 3 3 2 3 2 1 3 1
	4 0 0 3 0 3 3 0 3

Note

Obrázok naľavo znázorňuje prvý príklad. Naľavo je originálny útvar, ktorý sme rozstrihali, napravo sú zodpovedajúce C_i , ktoré zlepíme dokopy.

V druhom príklade si všimnite, že je postačujúce, aby bol výsledný útvar ekvivalentný s výsledným útvarom, nemusia byť identické.

Obrázok nižšie zobrazuje tri štádiá tretieho príkladu. Najskôr sa obdĺžnik zo vstupu rozstrihol na dva menšie obdĺžniky a väčší z týchto obdĺžnikov sa rozstrihol ešte raz na dva. Tento stav vidno na prvom obrázku.

Následne sme zlepili dva obdĺžniky dokopy, čím sme dostali šesťuholník, ktorý sme rozsekli na tri obdĺžniky 2×1 a jeden menší obdĺžnik. Tento stav je znázornený na druhom obrázku.

Nakoniec, posledný obrázok znázorňuje, ako zlepiť zvyšný obdĺžnik z prvého strihania a štyri nové obdĺžniky do výsledného štvorca 3×3 .

