Gabarito - Lista 4

Mensuração e Estatística Descritiva

Gabarito

Exercício 1 [3 pontos]. A tabela abaixo mostra o número de habitantes por km² em alguns países do Leste Europeu. Calcule as seguintes estatísticas e mostre todas as etapas dos cálculos, nos casos em que eles forem necessários (essa é a última vez que vamos pedir para você fazer isso na mão).

- a Média
- b Mediana
- c Moda
- d Variância
- e Desvio-padrão

Country	Density		
Poland	123		
Czech Rep.	132		
Croatia	85		
Bosnia	87		
Romania	96		
Russia	8.8		
Estonia	36		
Latvia	40		
Lithuania	58		
Ukraine	87		
Belarus	50		
Georgia	81		

a

$$\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{123 + 132 + 85 + 87 + 96 + 8.8 + 36 + 40 + 58 + 87 + 50 + 81}{12} = 73,65$$

b

8.8 36 40 50 58 81 || 85 87 87 96 123 132
$$\Rightarrow Med(y) = \frac{81 + 85}{2} = 83$$

c 87

d Para ajudar a fazer o cálculo da variância, sugerimos que se construa a seguinte tabela:

country	density	$y_i - \bar{y}$	$(y_i - \bar{y})^2$	
Poland	123	49,35	2435,42	
CzechRep.	Rep. 132 58,35		3404,72	
Croatia	85	11,35	128,82	
Bosnia	87	13,35	178,22	
Romania	96	22,35	499,52	
Russia	8,8	-64,85	4205,52	
Estonia	36	-37,65	1417,52	
Latvia	40	-33,65	1132,32	
Lithuania	58	-15,65	244,92	
Ukraine	87	13,35	178,22	
Belarus	50	-23,65	559,32	
Georgia	81	7,35	54,02	
Soma	883,8	-	14438,57	
n	12	-	-	
Média	73,65	-	-	

Em seguida, podemos utilizar a soma do quadrado dos desvios para completar a fórmula da variância:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 = \frac{14438,57}{11} = 1312,6$$

e
$$\sigma = \sqrt{1312, 6} = 36, 23$$

Exercício 2 [2 **pontos**]. Referindo-se aos conceitos de média e desvio-padrão, Agresti e Finlay ora utilizam caracteres romanos (\bar{y} e s, respectivamente), ora utilizam caracteres gregos (μ e σ , respectivamente). Por que existe essa diferença? Explique em que casos são utilizadas cada uma das notações.

Agresti e Finlay utilizam uma notação comum nos livros-texto de introdução à Estatística: usar caracteres romanos para se referir a amostras e caracteres gregos para se referir a parâmetros populacionais. Assim, \bar{y} se refere à média amostral, enquanto μ se refere à média populacional.

Vale notar que, de modo geral, os livros abrem uma exceção a essa regra e utilizam p para a proporção populacional. Isso acontece porque o equivalente grego seria π , e ficaria muito esquisito calcular uma proporção populacional e concluir, por exemplo, que $\pi = 0.73$.

Exercício 3 [2 pontos]. Um colega de departamento conseguiu um financiamento para fazer uma *survey* com amostra aleatória simples, de maneira que todos os indivíduos da população de interesse têm a mesma chance de participar da pesquisa. Assim, diz ele, as estimativas de sua pesquisa não sofrerão problemas erro amostral. Você concorda com ele? Discuta.

O pesquisador está com uma concepção equivocada do que significa erro amostral. Erro amostral é a variação esperada da média (ou de qualquer outra estatística) quando repetimos a pesquisa diversas vezes. O erro amostral não está associado, a princípio, a falhas de amostragem ou de desenho de pesquisa, embora possa ser amplificado por esses fatores. Em outras palavras: mesmo uma pesquisa com desenho e amostragem perfeitos terá erro amostral.

Exercício 4 [3 pontos]. A imagem abaixo mostra as estatísticas descritivas básicas para a variável *gdp_cap*, disponível no banco de dados *world95.dta*. A variável é medida em dólares, de maneira que o PIB *per capita* médio dos países do banco é de \$5833.33.

. sum gdp_cap					
Variable	Obs	Mean	Std. Dev.	Min	Max
gdp_cap	102	5883.333	6603.27	122	23474

- a Para convertermos o PIB *per capita* dos países para Reais, teríamos que multiplicar todas os valores pela taxa de câmbio. Se fizéssemos isso, a média da variável seria a mesma? E o desvio-padrão? Explique.
- b O que acontece com a média e o desvio-padrão da variável PIB per capita se adicionarmos 100 dólares em todos os países?

<u>Dica</u>: Existem várias maneiras de responder esse exercício. Você pode apresentar uma resposta analítica, um exemplo com os cálculos feitos à mão ou uma simulação no Stata. Qualquer estratégia será aceita, desde que produza os resultados corretos.

- a Ao multiplicar uma variável de média \bar{y} e desvio-padrão s por um valor v qualquer, a média passa a ser $v\bar{y}$ e o desvio-padrão passa a ser |v|s. Assim, supondo uma taxa de câmbio de R\$3,59, a nova média seria de 21.121,15, e o novo desvio-padrão seria de 23.705,74.
- b Ao adicionar uma constante v a uma variável de média \bar{y} e desvio-padrão s, a média passa a ser $\bar{y} + v$, e o desvio-padrão não se altera (pense que você apenas está deslocando a distribuição à direita no eixo x). Assim, a média passaria a ser 5.983,33, e o desvio-padrão permaneceria 6603,27.