Algorithmic Methods for Singularities Talk 2: Invariants from the computational perspective

Anne Frühbis-Krüger and Matthias Zach

Institut für Mathematik Universität Oldenburg

Sao Carlos, July 12th 2022

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number l

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[\underline{x}]/I$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[\underline{x}]/I$

minimal number of generators of an m-primary ideal

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- ▶ minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$
- ▶ Noether normalization $\mathbb{C}[y_1, \dots, y_d] \subset \mathbb{C}[\underline{x}]/I$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurini number l

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

maximal length d of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- ▶ minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$
- ▶ Noether normalization $\mathbb{C}[y_1, \dots, y_d] \subset \mathbb{C}[\underline{x}]/I$
- $ightharpoonup \deg_t(HSP(\mathbb{C}[\underline{x}]_{\mathfrak{m}}/I))$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let $X = V(I) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be irreducible.

What is $\dim(X)$ or $\dim(\mathbb{C}[\underline{x}]/I)$ at a point $x = V(\mathfrak{m}) \in X$?

▶ maximal length *d* of a chain of prime ideals

$$P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_d$$

in $\mathbb{C}[x]/I$

- ▶ minimal number of generators of an m-primary ideal
- ▶ $trdeg_{\mathbb{C}}(Quot(\mathbb{C}[\underline{x}]/I))$
- ▶ Noether normalization $\mathbb{C}[y_1, \ldots, y_d] \subset \mathbb{C}[\underline{x}]/I$
- $\blacktriangleright \deg_t(\mathit{HSP}(\mathbb{C}[\underline{x}]_{\mathfrak{m}}/I))$

Efficiently computable: the last two items!

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number l

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

Hilbert-Samuel Function:

$$HS_A(k) := \dim_{\mathbb{C}} A/\mathfrak{m}^k$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number l

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

Hilbert-Samuel Function:

$$HS_A(k) := \dim_{\mathbb{C}} A/\mathfrak{m}^k$$

Hilbert-Samuel Polynomial:

$$\exists P \in \mathbb{Q}[t] : HS_A(k) = P(k) \quad \forall k >> 0$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

Let (A, \mathfrak{m}) be a localization of an affine \mathbb{C} -algebra.

Hilbert-Samuel Function:

$$HS_A(k) := \dim_{\mathbb{C}} A/\mathfrak{m}^k$$

Hilbert-Samuel Polynomial:

$$\exists P \in \mathbb{Q}[t] : HS_A(k) = P(k) \quad \forall k >> 0$$

Let
$$P(t) = \sum_{\nu=0}^{d} a_i t^d$$
, then

- ightharpoonup dim(A) = d
- ightharpoonup mult(A) = $d! \cdot a_d$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

A monomial example

Consider the 3 coordinate axes in $(\mathbb{C}^3, 0)$:

$$I = \langle xy, xz, yz \rangle \subseteq \mathbb{C}[x, y, z]_{\langle x, y, z \rangle}$$
$$A = \mathbb{C}[x, y, z]_{\langle x, y, z \rangle} / I$$

k	new monomials	total number
1	1	1
2	x, y, z	4
3	x^2, y^2, z^2	7
4	$ \begin{vmatrix} x, y, z \\ x^2, y^2, z^2 \\ x^3, y^3, z^3 \end{vmatrix} $	10
:		

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

A monomial example

Consider the 3 coordinate axes in $(\mathbb{C}^3, 0)$:

$$I = \langle xy, xz, yz \rangle \subseteq \mathbb{C}[x, y, z]_{\langle x, y, z \rangle}$$
$$A = \mathbb{C}[x, y, z]_{\langle x, y, z \rangle} / I$$

k	new monomials	total number
1	1	1
2	x, y, z	4
3	x^2, y^2, z^2	7
4	x, y, z x^2, y^2, z^2 x^3, y^3, z^3	10
÷		

Obviously, $P(t) = 3 \cdot t - 2$

Hence: dim(X) = 1 and mult(X) = 3 as expected

First Steps

Anne Frühbis-Krüger and Matthias Zach

Computing Dimension

Standard Bases

Milnor and Tjurina number I

From ideal to monomial ideal

Key to computing previous example: Monomial ideal

And in the non-monomial case?

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

From ideal to monomial ideal

Key to computing previous example: Monomial ideal

And in the non-monomial case? standard bases

- K a (exact computable) field
- \triangleright > suitable total ordering on Mon(\underline{x})
- ▶ LT(f) largest monomial in $f \in K[\underline{x}]$ w.r.t. >
- $\blacktriangleright L(I) := \langle LT(f) \mid f \in I \rangle$

$$G = \{g_1, \dots, g_s\}$$
 standard basis of I
 \iff
 $L(G) = L(I) \text{ and } \langle G \rangle = I$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Standard Bases

$$G = \{g_1, \dots, g_s\}$$
 standard basis of I
 \iff
 $L(G) = L(I) \text{ and } \langle G \rangle = I$

Facts:

- $\qquad \mathsf{dim}(K[\underline{x}]_{\langle\underline{x}\rangle}/I) = \mathsf{dim}(K[\underline{x}]_{\langle\underline{x}\rangle}/L(I))$
- $\qquad \mathsf{mult}(K[\underline{x}]_{\langle\underline{x}\rangle}/I) = \mathsf{mult}(K[\underline{x}]_{\langle\underline{x}\rangle}/L(I))$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurini number l

Example

Consider

- $I = \langle x^2 + y^2, xy \rangle \subseteq \mathbb{Q}[x, y]_{\langle x, y \rangle}$
- > negative degree reverse lexicographical ordering
- $L(x^2 + y^2) = x^2$, L(xy) = xy

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Example

Consider

- $I = \langle x^2 + y^2, xy \rangle \subseteq \mathbb{Q}[x, y]_{\langle x, y \rangle}$
- > negative degree reverse lexicographical ordering

$$L(x^2 + y^2) = x^2$$
, $L(xy) = xy$

Obviously:

$$y^3 = y \cdot (x^2 + y^2) - x \cdot xy \in I$$
 and hence in $L(I)$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Example

Consider

- $I = \langle x^2 + y^2, xy \rangle \subseteq \mathbb{Q}[x, y]_{\langle x, y \rangle}$
- > negative degree reverse lexicographical ordering

$$L(x^2 + y^2) = x^2$$
, $L(xy) = xy$

Obviously:

$$y^3 = y \cdot (x^2 + y^2) - x \cdot xy \in I$$
 and hence in $L(I)$

Actually, standard basis of I:

$$G = \{x^2 + y^2, xy, y^3\}$$

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

A multiplicity 4 space curve example

Consider

- $I = \langle xy, x^2 + y^2 + z^2 \rangle \subseteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$
- > suitable negative degree ordering (e.g. negdeglex(z > y > x))
- L(xy) = xy, $L(x^2 + y^2 + z^2) = z^2$

This is already a standard basis.

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number l

A multiplicity 4 space curve example

Consider

- $I = \langle xy, x^2 + y^2 + z^2 \rangle \subseteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$
- > suitable negative degree ordering (e.g. negdeglex(z > y > x))
- L(xy) = xy, $L(x^2 + y^2 + z^2) = z^2$

This is already a standard basis.

k	newmonomials	totalnumber
1	1	1
2	x, y, z	4
3	x^2, y^2, xz, yz	8
4	x, y, z x^2, y^2, xz, yz x^3, y^3, x^2z, y^2z3	12
:		I

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

A multiplicity 4 space curve example

Consider

$$I = \langle xy, x^2 + y^2 + z^2 \rangle \subseteq \mathbb{Q}[x, y, z]_{\langle x, y, z \rangle}$$

- > suitable negative degree ordering (e.g. negdeglex(z > y > x))
- L(xy) = xy, $L(x^2 + y^2 + z^2) = z^2$

This is already a standard basis.

k	newmonomials	totalnumber
1	1	1
2	X, Y, Z	4
3	x^2, y^2, xz, yz	8
4	$ \begin{vmatrix} x, y, z \\ x^2, y^2, xz, yz \\ x^3, y^3, x^2z, y^2z3 \end{vmatrix} $	12
:		

$$P(t) = 4 \cdot t - 4$$
, dim = 1, mult = 4

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I

Jupyter Notebook 2, Block 1

First Steps

Anne Frühbis-Krüger and Matthias Zach

Dimension

Standard Bases

Milnor and Tjurina number I