基本数值计算方法

第12周习题

更新时间: 2020.05.21

作业要求

请在下周五(2020.05.29)之前在Canvas平台上交作业。

小组作业

1. (1) 利用组合梯形公式计算积分

$$I = \int_0^1 \frac{\sin x}{x} dx$$

的近似值,使截断误差不超过 5×10^{-4} .

(2) 对于相同的节点函数值, 若改用组合Simpson1/3公式计算结果如何?

提示: 令
$$f(x) = \frac{\sin x}{x}$$
,则 $|f^{(k)}| \leq \frac{1}{k+1}$.

2. (1) 编写程序应用辛普森1/3算法计算积分

$$I(x) = \int_0^x \frac{t^3}{e^t - 1} dt$$

- (2) 请画出函数曲线I(x).
- (3) 求当x = ?时,I(x) = 5.
- 3. 空气流过直径为16cm的圆形导管. 由导管的中心线开始, 在不同半径r处采集到如下的速度值:

r_k cm	0	1.60	3.20	4.80	6.40	7.47	7.87	7.95	8
v_k m/s	10	9.69	9.30	8.77	7.95	6.79	5.57	4.89	0

综合使用牛顿-科特斯面积公式计算质量流通率S

$$S = \int_0^R
ho v 2\pi r dr$$

其中 ρ 为密度($\rho=1.2$ kg/m 3). 请用kg/s表示你的结果。

4. 使用隆贝格积分算法求

$$\int_0^{10} \ln\left(x + \sqrt{x^2 + 1}\right)$$

现在已知一阶隆贝格积分值, 求二阶和三阶隆贝格积分:

$$\begin{pmatrix} 19.0577 & ? & ? \\ 20.4281 & ? & \\ 20.8107 & & \end{pmatrix}$$

5. 求数值积分

$$I = \int_{0.8}^{3} \frac{1}{1 + \sinh(2x)\ln(x)^2}$$

6. 计算积分

$$I = \int_0^\infty e^{-x^2} dx$$