### **AI Robotics**

Week 3



1/48

# **Learning Objectives**

- Understand the different sensor types used in robotics and where they should be applied
- Understand the Kalman filter process
- Understand the purpose of SLAM
- Understand how the Extended Kalman Filter is used to solve the problem of SLAM

2/48

### **Outline**

- Sensing Modalities
  - Ranging Based
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



3/48

- In order to navigate and manipulate its environment a robot needs to be able to sense and interpret the incoming information
- Six human senses: sight, smell, touch, taste, hearing, balance
- Robots can be equipped with sensors to accommodate all these senses and many unavailable to humans in high precision

4/48

#### Sensor Attributes

#### Accuracy and Resolution

- Precision how repeatable the measurement is
- Accuracy how close the sensor reading is to the real value
- The smallest discernible distance

#### Bandwidth

- Particularly important for measurement of things which change rapidly
- Describes the response of the sensor as a function of input frequency

#### Sensitivity

- Describes the relationship between the input signal and the output signal
- High sensitivity Small change in input creates a large change in output



5/48

### Sensor Attributes

- Stability
  - All electronics are sensitive to their environment
  - Sensors need to be chosen for their specific environment
- Field of View
  - Non contact based sensor specify an region in which they are designed to measure from
  - Field of view is not necessarily symmetric in the vertical and horizontal direction
  - Often measurement sensitivity decreases off-axis
- Power requirements
  - Mobile robots are constrained by the energy and power capacity of their energy storage
  - Lower power consumption is desired
- Size
  - Needs to fit the weight and size constraints of the robot and task



6/48

### **Outline**

- Sensing Modalities
  - Ranging Based
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



Al Robotics Week 3 7/48

# Range Finding Sensors

- Accurate determinate of distance is a key area in which robots exceed humans
- Fast and accurate depth sensing is required for collision avoidance, mapping and manipulation
- Many sensor types exist for this with varying levels of accuracy, precision, speed and cost
- Sensors in this category typically utilise time-of-flight measurement to determine distance

8/48

# Time-of-flight measurement



- ullet  $\nu$  is the speed of the signal
- t is the time between emitting the signal and receiving the reflected signal



9/48

### Ultrasonic Sensors

- Uses a piezo to produce ultrasonic pulses, which reflect off objects
- Reflected pulse is received by another piezo
- Delay between emission of the pulse and reception give the distance
- Typically used of ranges between a few cm to a few meters
- Inexpensive
- Has a typical field of view of 4-15°
- Can be used in any medium (except vacuum)

10/48

### **LIDAR Sensors**

- Uses one or more lasers to produce pulses for distance measurement
- Due to low divergence of laser output range can be very high (>200m)
- Angular resolution 0.1°
- Distance accuracy on order 2cm
- Field of view can be full 360°



11/48

### **LIDAR Sensors**

- Expensive
- Reduced performance in cloudy/foggy conditions
- Unreliable in water
- Large data streams
- Requires more power

12/48

# Common problems

- Time of flight based sensors are susceptible to the following issues
  - Specular reflection: When an input wave is reflected away from the surface
  - Absorption: Emitted signal is absorbed by the target surface
  - Cross-talk: Inability to distinguish if a reflected signal was generated by itself or by another emitter

13/48

### **Outline**

- Sensing Modalities
  - Ranging Base
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



14/48

### Monocular RGB

- One of the most commonly found sensors
- CCD based image sensors are cheap
- Require additional optics for high quality image formation
- Does not need to be limited to visible light
  - ► IR (Thermal) Imaging
  - UV Imaging
  - X-Ray Imaging

15/48

Robotics Week 3

## **Outline**

- Sensing Modalities
  - hariging bas
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



16/48

# **Bump Sensors**

Simple switch mechanism which is contact high



Al Robotics Week 3 17/48

### **Force Sensors**

- Most commonly built using strain gauges
  - $\blacktriangleright$  The basic working principle uses the fact that Resistivity  $\propto$  wire cross section
  - Applied force causes expansion and stretching of wire
- Geometry can be built to isolate different types of load
  - Compression and Tension
  - Torsion
  - Bending



18/48

## **Outline**

- Sensing Modalities
  - naligilig basi
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



19/48

### **Accelerometers**

- Measures acceleration in one or more directions
- Most commonly now MEMS (microelectromechanical systems) based
- Bandwidth can range from 1Hz-50kHz
- Can measure large accelerations



20/48

## **Outline**

- Sensing Modalities
  - Ranging Base
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



Al Robotics Week 3 21/48

#### Kalman Filters

- A mathematical process which is used to estimate the true value of a measured variable
- Both the measurement model and the process model can include uncertainty
- No measurement can be made without some non-zero amount of uncertainty
- Uncertainty can come from systematic sources. e.g. Finite measuring resolution, calibration factors or random sources e.g. electrical noise

Al Robotics Week 3 22/48

# Example problem

• A car is traveling in one dimension (x) we want to know its position x and its velocity  $\dot{x}$ 

23/48

### Kalman Filter Overview



24/48

### **Process Model**

The process model describes the time evolution of the state vector

$$x_k = Ax_{k-1} + Bu_k + w_k$$

- A is the transition matrix
- B is the control-input matrix
- w is the noise vector



25/48

### **Process Model**

- In our example we have motion in the x dimension and we are tracking the position of the car
- Position is given by  $x = x + vt + \frac{1}{2}at^2$
- What are our vectors x and u?
- What are our transition matrix A and control-input B?



26/48

### **Process Model**

$$x_{k} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}, u_{k} = \begin{bmatrix} a_{x} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} \frac{1}{2}a\Delta t^{2} \\ \Delta t \end{bmatrix}$$

$$X_{k} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} \frac{1}{2}a\Delta t^{2} \\ \Delta t \end{bmatrix} \begin{bmatrix} a_{x} \end{bmatrix}$$

• How does this extend in 2D and 3D?



Al Robotics Week 3 27/48

### Measurement Model

 Measurement model describes the relationship between the state and measurement at a given timestep

$$z_k = Hx_k + \nu_k$$

- H is the measurement matrix
  - The structure of H depends on the sensor used as sensors do not typically output values directly in the units of the state description
- $\nu_k$  is the measurement noise vector



28/48

### **Covariance Matrices**

- Covariance describes the strength of correlations between two random variables
- Three covariance matrices are used in the basic Kalman Filter
  - P Predicted error covariance
  - Q Process noise covariance
  - R Measurement noise covariance

### **Noise Vectors**

• The process noise w and measurement noise  $\nu$  are typically assumed to be Gaussian with covariance Q and R

$$w \sim \mathcal{N}(0, Q)$$
  
 $\nu \sim \mathcal{N}(0, R)$ 



30/48

### Error covariance

 The predicted error covariance describes the models uncertainty in the estimate

$$P_k = AP_{k-1}A^T + Q$$

31/48

### Kalman Gain

 Describes the belief which we attach to the either the estimate and provides an output over the interval (0,1]

$$K_k = \frac{P_{k-1}H^T}{HPH^T + R}$$

- Recall that R is the measurement uncertainty
- If the sensor is exactly accurate  $K_t = 1$
- As the sensor uncertainty increases K approaches 0



32/48

# Kalman Filter Update

- First step is to compute the measurement residual
- Second step is the calculation of Kalman Gain
- Update the State estimate
- Update the Error Covariance



33/48

## **Outline**

- Sensing Modalities
  - Ranging Base
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



34/48

### What is SLAM

- When navigating an environment a robot needs to be able to estimate its current position (localisation) a robot also needs to build a map of the positions of objects and obstacles in the environment (mapping)
- SLAM is the process of simultaneously mapping the environment and determining its position
- Extended Kalman Filter estimates the position of the robot through the combination of odometry data and observed landmarks

35/48

### When is SLAM Used

- SLAM is needed when the robots odometry cannot be fully trusted
- Odometery data provides an estimated position based on the robots knowledge of its own movement

36/48

#### Extended Kalman Filter

- Regular Kalman filter is limited to linear dynamic systems, in the case of nonlinear dynamics the extended kalman filter can be used.
- No longer view the process and control models as matrices but non-linear functions which act on our state and control vectors

37/48

#### State transition and measurement

 Replace the State Transition Matrices F and B and the measurement matrix H with the following

$$x_k = g(x_{k-1}, u_{k-1}) + w_{k-1}$$
  
 $z_k = h(x_k) + \nu_k$ 

38/48

### **Jacobians**

 Given some vector valued function g(x) and some input vector x the Jacobian is given as

$$G_{x} = \begin{bmatrix} \frac{\delta g_{1}}{\delta x_{1}} & \frac{\delta g_{1}}{\delta x_{2}} & \frac{\delta g_{1}}{\delta x_{2}} & \cdots & \frac{\delta g_{1}}{\delta x_{n}} \\ \frac{\delta g_{2}}{\delta x_{1}} & \frac{\delta g_{2}}{\delta x_{2}} & \frac{\delta g_{2}}{\delta x_{3}} & \cdots & \frac{\delta g_{2}}{\delta x_{n}} \\ \frac{\delta g_{3}}{\delta x_{1}} & \frac{\delta g_{3}}{\delta x_{2}} & \frac{\delta g_{3}}{\delta x_{3}} & \cdots & \frac{\delta g_{3}}{\delta x_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\delta g_{m}}{\delta x_{1}} & \frac{\delta g_{1}}{\delta x_{2}} & \frac{\delta g_{m}}{\delta x_{1}} & \cdots & \frac{\delta g_{m}}{\delta x_{n}} \end{bmatrix}$$



Al Robotics Week 3 39/48

#### EKF in 1 Slide

Input: 
$$x_{k-1}$$
,  $u_k$ ,  $P_{k-1}$ ,  $z_k$ 

$$x_k = g(x_{k-1}, u_{k-1})$$

$$P_t = G_k P_{k-1} G_k^T + R_k$$

$$y_k = z_k - h(x_k)$$

$$K = P_k H_k^T (H_k P_k H_k^T + Q_k)^{-1}$$

$$x_k = x_k + K_k y_k$$

$$P_t = (I - K_k H_k) P_k$$
**Result:**  $x_k$ ,  $P_k$ 

Al Robotics Week 3 40/48

### **Outline**

- Sensing Modalities
  - Ranging Base
  - Vision Based
  - Contact Based
  - Inertial Sensors
- Simultaneous Localisation and Mapping (SLAM)
  - Kalman Filters
  - SLAM
  - SLAM EKF



41/48

# System state vector

- As previosuly mentioned the position of the robot is encoded as  $(x, y, \theta)$ . The x,y coordinates on the given world frame and the orientation.
- Landmarks can be designates simply with their x and y coordinates  $(x_i, y_i)$ .

$$X = \begin{bmatrix} x_r & y_r & \theta_r & x_1 & y_1 & \dots & x_n & y_n \end{bmatrix}^T$$

42/48

#### **Covariance Matrix**

 The covariance matrix represent how strongly correlated elements of the state vector are

$$P_{k} = \begin{bmatrix} P_{R} & P_{RL_{1}} & P_{RL_{2}} & \cdots & P_{RL_{n}} \\ P_{L_{1}R} & P_{L_{1}} & P_{L_{1}L_{2}} & \cdots & P_{L_{1}L_{n}} \\ P_{L_{2}R} & P_{L_{2}L_{1}} & P_{L_{2}} & \cdots & P_{L_{2}L_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ P_{L_{n}R} & P_{L_{n}L_{1}} & P_{L_{n}L_{2}} & \cdots & P_{L_{n}} \end{bmatrix}$$

43/48

### **SLAM Measurement Model**

Measurement is based on the distance and angle to landmarks

$$h = \begin{bmatrix} \sqrt{(\lambda_x - x)^2 + (\lambda_y - y)^2} + \nu_r \\ \tan^{-1}(\frac{\lambda_y - y}{\lambda_x - x}) - \theta + \nu_\theta \end{bmatrix}$$

$$H = \begin{bmatrix} \frac{x - \lambda_x}{r} & \frac{y - \lambda_y}{r} & 0 \\ \frac{\lambda_y - y}{r^2} & \frac{\lambda_x - x}{r^2} & -1 \end{bmatrix}$$



### Step 1

- First step in SLAM is to use the current odometry data to update the state
- In ideal case the robot tracks its change in x, y and  $\theta$

$$x_k = \begin{bmatrix} x + \delta x \\ y + \delta y \\ \theta + \delta \theta \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & -\delta y \\ 0 & 1 & \delta x \\ 0 & 0 & 1 \end{bmatrix}$$



Al Robotics Week 3 45/48

## Step 2

 The second step in SLAM is to refine the predicted state based on the observation of landmarks

46/48

### Step 3

- Steps 1 and 2 cover the normal EKF Prediction and Update cycle.
   Step 3 is unique to SLAM in that the state vector x and covariance matrix P are updated with new landmarks
- Any newly detected landmarks are appended to the state vector  $x = \begin{bmatrix} x & x_N & y_N \end{bmatrix}^T$



Al Robotics Week 3 47/48

# Summary

- Introduced key characteristics of sensors
- Introduced the Kalman Filter and Extended Kalman Filter and how they relate to SLAM

- Next Lecture
  - Spatial Descriptions and Configuration Space of rigid bodies

48/48

Robotics Week 3