שיטות חישוביות – תרגיל מחשב 2

מגיש:

ניר שניידר 316098052

שאלה 1 – פתרון משוואה בשיטת ניוטון-רפסון המניחה שורש פשוט

$$x^4 - 3 = 0$$
, b=5 – הנחה (א

מטרה – מציאת קטע [a,b] ובו לבחור ניחוש התחלתי לטובת התכנסות בשיטת ניוטון-רפסון $.s = 3^{\frac{1}{4}}$ עד לפתרון המדויק של

ראינו בכיתה את המשפט הבא:

יהמקיימת את התנאים הבאים: F(x) פונקציה ממשית המוגדרת בקטע

- (פונקציה מונוטונית) $F'(x) \neq 0$ (1
- (ללא נקודות פיתול בקטע) $F''(x) \neq 0$ (2
 - (השורש בתחום) F(a) * F(b) < 0 (3

 - $\left| \frac{F(b)}{F'(b)} \right| < b a \quad (4)$ $\left| \frac{F(a)}{F'(a)} \right| < b a \quad (5)$
- [a,b] אז שיטת ניוטון-רפסון מתכנסת לפתרון מכל תנאי התחלה מתכנסת (6

 $f(x) = x^4 - 3$ להלן גרף הפונקציה של

- $f'(x) = 4x^3 \to f'(x) \neq 0, \forall x \in (0,5]$
- $f''(x) = 12x^2 \to f''(x) \neq 0, \forall x \in (0,5]$
- 1) הפונקציה מונוטונית עולה. 2) אין לפונקציה נקודות פיתול.
 - 3) השורש בתחום.

$$f(a) * f(5) < 0 \rightarrow (a^4 - 3) * (5^4 - 3) < 0 \rightarrow a^4 < 3 \rightarrow a < \sqrt[4]{3} \rightarrow a < 1.316$$

עבור שלושת התנאים הנ"ל נסיק כי a=1 נבחר a=1. נבחר מידוק אם התנאים הבאים עבור מתקיימים גם כן.

$$\left| \frac{F(b)}{F'(b)} \right| < b - a \rightarrow \left| \frac{622}{500} \right| < 5 - a \rightarrow 1 = a < 3.756 \ \sqrt{\ }$$
 (4)

$$\left|\frac{F(a)}{F'(a)}\right| < b - a - <\left|\frac{a^4-3}{4a^3}\right| > 5 - a \to \{a=1\} \to \left|-\frac{2}{4}\right| < 5 - 1 \to 0.5 < 4\,\sqrt$$
 (5 עבור $a=1$ כל התנאים יתקיימו להתכנסות ע"פ שיטת ניוטון-רפסון ולכן נבחר בקטע $a=1$ כל התנאים יתקיימו

 $x_0 = a + \frac{I_1}{I_1 + I_2}(b - a)$, $I_{1,2} = 316098052$ ב (שתמש בנוסחה: x_0 נשתמש בנוסחה: ב

 $x_0=3$ לכן הניחוש ההתחלתי הינו $x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$: צעד איטרציה בשיטת ניוטון-רפסון $|x_{n+1}-x_n|\leq tolerance=10^{-12}$

להלן התוצאות של 8 האיטרציות עד ההגעה להתכנסות.

n	x_ n	X_n_diff	error
-			
1	3	0.7222222222222	1.68392598704751
2	2.27777777777778	0.505980478454398	0.961703764825285
3	1.77179729932338	0.308109196470072	0.455723286370887
4	1.46368810285331	0.126747107047715	0.147614089900816
5	1.33694099580559	0.0203835084351842	0.0208669828531005
6	1.31655748737041	0.000483208166391247	0.000483474417916296
7	1.31607427920402	2.66251444225318e-07	2.66251525049555e-07
8	1.31607401295257	8.08242361927114e-14	8.08242361927114e-14

 $arepsilon_n = |x_n - s|$ כאשר ו $\log arepsilon_{n-1}$ כפונקציה של כפונקציה של כפונקציה של להלן הגרף של

קצב ההתכנסות הינו שיפוע הגרף ומקצב ההתכנסות ניתן לחלץ את קבוע ההתכנסות.

$$\lim_{n o\infty}rac{arepsilon_{n+1}}{arepsilon_n^\eta}=A, \qquad A-$$
קבוע ההתכנסות קבוע, $\eta-$

 $\log arepsilon_{n+1} = \log A + \eta \log arepsilon_n$ עבור n מספיק גדול נקבל את השוויון מהפיתוח רואים כי קצב ההתכנסות הוא שיפוע הגרף ובעקבות זאת נוכל לחשב את קבוע ההתכנסות

$$\eta = m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7.635 + 30.15}{-3.87 + 15.14} = 1.998 \approx 2$$
$$\log A = y - mx = -30.15 - 2 * (-15.14) = 0.13 \rightarrow A = e^{0.13} = 1.138$$

נשים לב כי לא הגענו לערך המדויק של סדר ההתכנסות כי זהו ערך אסימפטוטי ובשל מגבלות הייצוג של המחשב.

<u>שאלה 2 – פתרון שיטת המיתר</u>

א) בשיטה זו נצטרך שתי נקודות לניחוש ההתחלתי המחושבות על פי הנוסחאות הבאות:

$$x_0 = a + \frac{I_1}{I_1 + I_2}(b - a) = 3, \qquad x_1 = x_0 + \frac{I_1}{I_1 + I_2}(b - x_0) = 4$$

 $x_{n+1} = x_n - f(x_n) * \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$ צעד איטרציה בשיטת המיתר הינו: להלן התוצאות של 13 האיטרציות עד ההגעה להתכנסות

n	x_n	X_n_diff	error	
_				
1	3	1	1.68392598704751	
2	4	1.44571428571429	2.68392598704751	
3	2.55428571428571	0.268015688916007	1.23821170133322	
4	2.28627002536971	0.427574237369172	0.970196012417215	
5	1.85869578800054	0.248301457211682	0.542621775048044	
6	1.61039433078885	0.177564626866606	0.294320317836362	
7	1.43282970392225	0.085913540019338	0.116755690969756	
8	1.34691616390291	0.0270945326960501	0.0308421509504184	
9	1.31982163120686	0.00361872085169246	0.00374761825436831	
10	1.31620291035517	0.000128348184623706	0.000128897402675854	
11	1.31607456217054	5.49137372463093e-07	5.49218052148248e-07	
12	1.31607401303317	8.06796851549052e-11	8.06796851549052e-11	
13	1.31607401295249	0	0	

 $arepsilon_n = |x_n - s|$ כאשר כפונקציה של כפונקציה של כפונקציה אורף בל כפונקציה אורף להלן הגרף ב

$$\eta = m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-23.24 + 8.956}{-14.41 + 5.587} = 1.618$$
$$\log A = y - mx = -23.24 + 2 * (-14.41) = 0.075 \rightarrow A = e^{0.075} = 1.07$$

נשים לב כי השיפוע שואף לערך 1.618 וקצב ההתכנסות שואף לקצב התיאורטי אליו ציפינו (יחס הזהב). כמו בן, ההתכנסות בשיטה זו איטית יותר מההתכנסות בשיטת ניוטון-רפסון.

להלן החישוב התיאורטי שהוכח בהרצאה 8 בכיתה:

נפתח שיטה דומה לניוטון-רפסון המצריכה רק את חישוב ערכי הפונקציה F(x). לצורך כך נקרב את הנגזרת ע"י:

$$F'(x) = \lim_{u \to x} \frac{F(x) - F(u)}{x - u} \to F'(x_n) \cong \frac{F(x_n) - F(x_{n-1})}{x_n - x_{n-1}}$$

$$Newton iteration: x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)} \to$$

$$\to x_{n+1} = x_n - F(x_n) \frac{x_n - x_{n-1}}{F(x_n) - F(x_{n-1})}; n \ge 1$$

ניתן לראות שסדר ההתכנסות בשיטת המיתר

$$\begin{split} |\varepsilon_{n+1}| &= A|\varepsilon_n|^{\alpha} \; ; \; \begin{cases} &\alpha = \frac{1+\sqrt{5}}{2} = 1.618 < 2 \\ &A = 0.5 \left| \frac{F''(s)}{F'(s)} \right|^{0.5} \; newton - raphson \end{cases} \\ &\lim_{n \to inf} \frac{|\varepsilon_{n+1}|}{|\varepsilon_n|^{\alpha}} = A \end{split}$$

 $\alpha_{secant} < \alpha_{Newton-Raphson} = 2$

ההתכנסות בשיטת המיתר איטית יותר משיטת ניוטון רפסון.

שאלה 3 – פתרון בשיטת ניוטון-רפסון המניחה שורש מרובה

 $f(x)=x^5-6x^4+14x^3-20x^2+24x-16=0$ א) כעת נרצה לפתור המשוואה (בהתאם לעוד המייצבות של 12 הספרות הראשונות (בהתאם לאחר התייצבות של 12 הספרות הראשונות $x_0=5$

n —	X_n	X_n_diff	error	
1	5	0.72972972972973	3	
2	4.27027027027027	0.573561577993864	2.27027027027027	
3	3.69670869227641	0.446412663555897	1.69670869227641	
4	3.25029602872051	0.342839992236089	1.25029602872051	
5	2.90745603648442	0.25891841252475	0.90745603648442	
6	2.64853762395967	0.191813677369928	0.648537623959669	
7	2.45672394658974	0.139276011607369	0.456723946589741	
8	2.31744793498237	0.0992141521984351	0.317447934982372	
9	2.21823378278394	0.0695034162768882	0.218233782783937	
10	2.14873036650705	0.0480303175349777	0.148730366507049	
11	2.10070004897207	0.0328444013190401	0.100700048972071	
12	2.06785564765303	0.0222863722337188	0.067855647653031	
13	2.04556927541931	0.0150386428435234	0.0455692754193122	
14	2.03053063257579	0.0101086469572631	0.0305306325757888	
15	2.02042198561853	0.00677667985318164	0.0204219856185257	
16	2.01364530576534	0.00453471609345213	0.0136453057653441	
17	2.00911058967189	0.0030307366261062	0.00911058967189193	
18	2.00607985304579	0.00202388602694858	0.00607985304578573	
19	2.00405596701884	0.00135077236388437	0.00405596701883715	
20	2.00270519465495	0.000901190148391073	0.00270519465495278	
21	2.00180400450656	0.00060109361115801	0.00180400450656171	
22	2.0012029108954	0.00040086403173234	0.0012029108954037	
23	2.00080204686367	0.000267300930629766	0.000802046863671357	
24	2.00053474593304	0.000178226070420617	0.000534745933041592	
25	2.00035651986262	0.000118821152594428	0.000356519862620974	
26	2.00023769871003	7.92389130341853e-05	0.000237698710026546	
27	2.00015845979699	5.28779184358896e-05	0.000158459796992361	
28	2.00010558187856	3.52307044617639e-05	0.000105581878556471	
29	2.00007035117409	2.36069393553251e-05	7.03511740947071e-05	
30	2.00004674423474	1.58974068078521e-05	4.67442347393821e-05	
31	2.00003084682793	9.1265403110441e-06	3.08468279315299e-05	
32	2.00002172028762	8.36716456875664e-06	2.17202876204858e-05	
33	2.00001335312305	0	1.33531230517292e-05	

נשים לב כי לקח לנו 33 איטרציות לטובת ההתכנסות לפתרון x=2.

 $: arepsilon_n = |x_n - s|$ כאשר ו $\log arepsilon_{n-1}$ כפונקציה של כפונקציה של כפונקציה אורף של

שיפוע הגרף יניב את קצב ההתכנסות ובעזרתו נגלה את קבוע ההתכנסות

$$\eta = m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3.489 + 11.22}{-3.089 + 10.74} = 1.0105 \approx 1$$

$$\log A = |y - mx| = |-11.22 - 1.01 * (-10.74)| = 0.372 \to A = e^{0.372} = 1.451$$

אכן תום לתיאוריה לפיה נצפה שהשיפוע שואף ל1 במקרה בו ריבוי השורש גדול מ-1 (שיפוע לינארי).

לפונקציה q לפונקציה במקום בעלת שורשי בעלת שורשי בעלת בעלת $u(x) = \frac{f(x)}{f'(x)}$ (ב . נפעיל על פונקציה זו את שיטת ניוטון-רפסון. q'=1 השורשים מריבוי

$$u'(x) = 1 - \frac{f(x) * f''(x)}{f'(x) * f'(x)}$$

$$x_{n+1} = x_n - \frac{u(x)}{u'(x)}$$
צעד האיטרציה הינו

n	X_n	X_n_diff	error
-			
1	5	3.45674740484429	3
2	1.54325259515571	0.406638300101928	0.456747404844291
3	1.94989089525764	0.0495421051161298	0.0501091047423634
4	1.99943300037377	0.000566940351703016	0.000566999626233633
5	1.99999994072547	1.9978866117043e-08	5.92745306171594e-08

נשים לב כי לקח לנו 5 איטרציות להתכנסות. מכיוון שההתכנסות כאן מהירה יותר נסיק כי יש ריבוי *q* של השורש.

להלן הגרף:

שיפוע הגרף יניב את קצב ההתכנסות ובעזרתו נגלה את קבוע ההתכנסות
$$\eta=m=\frac{y_2-y_1}{x_2-x_1}=\frac{-7.475+16.64}{-2.994+7.475}=2.04~\approx 2$$

$$\log A = |y - mx| = |-16.64 + 2.04 * (-7.475)| = 1.391 \rightarrow A = e^{1.391} = 4.019$$

u(x) אכן בהתאם לתיאוריה השיפוע בקירוב 2 (התכנסות ריבועית בהתאם לשאלה 1 ואכן מה שמצופה משורש מריבוי 1 בשיטה זו. ע"י שימוש ב-u(x) ביטלנו למעשה את התאפסות הנגזרות הראשונה והשנייה ולאחר מכן הפעלנו את שיטת ניוטון-רפסון עבור שורשים מריבוי 1 עבור פונקציה המקיימת את תנאי ההתכנסות לשם קבלת התכנסות ריבועית.

$$q$$
 קשר לחישוב הריבוי – $\lim_{x \to s} \frac{u(x)}{x-s} = \frac{1}{q}$ (ג

$$\lim_{x \to s} \frac{u(x)}{x - s} = \lim_{x \to 2} \frac{\frac{(x - 2)(x^2 + 2)}{5x^2 - 4x + 6}}{x - 2} = \lim_{x \to s} \frac{x^2 + 2}{5x^2 - 4x + 6} = \frac{1}{3} = \frac{1}{q} \to q = 3$$

q=3 כעת נבצע את שיטת ניוטון-רפסון עבור

$$x_{n+1} = x_n - q \frac{f(x_n)}{f'(x_n)}$$
 - צעד האיטרציה

q=2.999 נמנע משגיאת חישוב של צמצום בביטוי ע"י קביעת

n	x _n	X_n_diff	error
-			
1	5	0.72972972972973	3
2	4.27027027027027	1.7201111724036	2.27027027027027
3	2.55015909786667	0.495475474229761	0.550159097866673
4	2.05468362363691	0.0540150934167967	0.0546836236369121
5	2.00066853022012	0.000668206814975925	0.000668530220115482
6	2.00000032340514	0	3.23405139557309e-07

נשים לב כי לקח להתכנסות 6 איטרציות.

שיפוע הגרף יניב את קצב ההתכנסות ובעזרתו נגלה את קבוע ההתכנסות
$$\eta=m=\frac{y_2-y_1}{x_2-x_1}=\frac{-7.31+14.94}{-2.906+7.31}=1.732~\approx 2$$

$$\log A = y - mx = -14.94 - 1.732 * (-7.31) = -2.279 \rightarrow A = e^{-2.279} = 0.102$$

נשים לב כי השיפוע בקירוב 2, כלומר התכנסות ריבועית כפי שציפינו מבחינה תיאורטית לשיטת ניוטון-רפסון.

נצרף כאן את סיכום הטבלאות של הסעיפים הנ"ל לצורך השוואה חזותית:

n	x_ n	X_n_diff	error				
_		0.70070070070070	3				
1 2	5 4.27027027027027	0.72972972972973 0.573561577993864	2.27027027027027				
3	3.69670869227641	0.373361377993864	1.69670869227641				
4	3.25029602872051	0.342839992236089	1.25029602872051				
5	2.90745603648442	0.25891841252475	0.90745603648442	n	X_n	X_n_diff	error
6	2.64853762395967	0.191813677369928	0.648537623959669	-			
7	2.45672394658974	0.139276011607369	0.456723946589741	_			
8	2.31744793498237	0.0992141521984351	0.317447934982372	1	5	0.72972972972973	3
9	2.21823378278394	0.0695034162768882	0.218233782783937	2	4.27027027027027	1.7201111724036	2.27027027027027
10	2.14873036650705	0.0480303175349777	0.148730366507049	3	2.55015909786667	0.495475474229761	0.550159097866673
11	2.10070004897207	0.0328444013190401	0.100700048972071	4	2.05468362363691	0.0540150934167967	0.0546836236369121
12	2.06785564765303	0.0222863722337188	0.067855647653031	5	2.00066853022012	0.000668206814975925	0.000668530220115482
13	2.04556927541931	0.0150386428435234	0.0455692754193122	6	2.00000032340514	0	3.23405139557309e-07
14	2.03053063257579	0.0101086469572631	0.0305306325757888				
15	2.02042198561853	0.00677667985318164	0.0204219856185257				
16	2.01364530576534	0.00453471609345213	0.0136453057653441				
17	2.00911058967189	0.0030307366261062	0.00911058967189193				
18	2.00607985304579	0.00202388602694858	0.00607985304578573				
19	2.00405596701884	0.00135077236388437	0.00405596701883715				
20	2.00270519465495	0.000901190148391073	0.00270519465495278				
21	2.00180400450656	0.00060109361115801	0.00180400450656171	n	x_ n	X_n_diff	error
22	2.0012029108954	0.00040086403173234	0.0012029108954037	-			
23	2.00080204686367	0.000267300930629766	0.000802046863671357	1	5	3.45674740484429	3
24	2.00053474593304	0.000178226070420617	0.000534745933041592	2	1.54325259515571	0.406638300101928	0.456747404844291
25	2.00035651986262	0.000118821152594428	0.000356519862620974	3	1.94989089525764	0.0495421051161298	0.0501091047423634
26	2.00023769871003	7.92389130341853e-05	0.000237698710026546	4	1.99943300037377	0.000566940351703016	0.000566999626233633
27	2.00015845979699	5.28779184358896e-05	0.000158459796992361	5	1.99999994072547	1.9978866117043e-08	5.92745306171594e-08
28	2.00010558187856	3.52307044617639e-05	0.000105581878556471				
29	2.00007035117409	2.36069393553251e-05	7.03511740947071e-05				
30	2.00004674423474	1.58974068078521e-05	4.67442347393821e-05				
31	2.00003084682793	9.1265403110441e-06	3.08468279315299e-05				
32	2.00002172028762	8.36716456875664e-06	2.17202876204858e-05				
33	2.00001335312305	0	1.33531230517292e-05				

שאלה 4 – פתרון משוואה בשיטת נקודת שבת

$$f(x) = x - 2\sin(\mathbf{x}) \; (\mathbf{x})$$
 נבחר נקודת התחלה $g(x) = 2\sin(x)$. ו- $x_0 = \frac{\pi}{2}$

n —	x_n	X_n_diff	error				
1	1.5707963267949	0	0				
2	2	0.181405146348637	0.104505732966				
3	1.81859485365136	0.120314599417193	0.0768994133826366				
4	1.93890945306856	0.0728934367080492	0.0434151860345564				
5	1.86601601636051	0.0474604770811644	0.0294782506734927				
6	1.91347649344167	0.0297615342869826	0.0179822264076717				
7	1.88371495915469	0.0191633627622889	0.0117793078793109				
8	1.90287832191698	0.0121470467060727	0.007384054882978				
9	1.89073127521091	0.00778048304313739	0.0047629918230947	35	1.89549422702995	6.55283978190369e-08	4.00040467418705e-08
10	1.89851175825404	0.00495141310068314	0.00301749122004269	36	1.89549429255835	4.18100687404888e-08	2.55243510771663e-08
11	1.89356034515336	0.00316430576696058	0.00193392188064045	37	1.89549425074828	2.66767077317098e-08	1.62857176633224e-08
12	1.89672465092032	0.00201685877604829	0.00123038388632013	38	1.89549427742499	1.70209411010092e-08	1.03909900683874e-08
13	1.89470779214427	0.00128769502486703	0.000786474889728161	39	1.89549426040405	1.08601272419406e-08	6.62995103262176e-09
14	1.89599548716914	0.000821259241675198	0.000501220135138869	40	1.89549427126418	6.92925050671533e-09	4.23017620931887e-09
15	1.89517422792746	0.000524141397174827	0.000320039106536329	41	1.89549426433493	4.42117409349407e-09	2.69907429739646e-09
16	1.89569836932464	0.000334368226659443	0.000204102290638497	42	1.8954942687561	2.82090839576199e-09	1.72209979609761e-09
17	1.89536400109798	0.000213365388669118	0.000130265936020946	43	1.89549426593519	1.79986670012511e-09	1.09880859966438e-09
18	1.89557736648665	0.000136127191581625	8.30994526481721e-05	44	1.89549426773506	1.14839604492545e-09	7.01058100460727e-10
19	1.89544123929507	8.68591601255186e-05	5.30277389334533e-05	45	1.89549426658666	7.3272854450579e-10	4.47337944464721e-10
20	1.89552809845519	5.54184767456167e-05	3.38314211920654e-05	46	1.89549426731939	4.67514027491234e-10	2.85390600041069e-10
21	1.89547267997845	3.53601277731652e-05	2.15870555535513e-05	47	1.89549426685188	2.98295166345497e-10	1.82123427450165e-10
22	1.89550804010622	2.25610925652653e-05	1.37730722196139e-05	48	1.89549426715017	1.90325755156096e-10	1.16171738895332e-10
23	1.89548547901365	1.43950999862419e-05	8.7880203456514e-06	49	1.89549426695985	1.21436416478105e-10	7.41540162607635e-11
24	1.89549987411364	9.18467886834584e-06	5.60707964059048e-06	50	1.89549426708128	7.74820207993798e-11	4.72824002173411e-11
25	1.89549068943477	5.86025653803723e-06	3.57759922775536e-06	51	1.8954942670038	4.94371210635336e-11	3.01996205820387e-11
26	1.89549654969131	3.73910047346548e-06	2.28265731028188e-06	52	1.89549426705324	3.15432124864401e-11	1.92375004814949e-11
27	1.89549281059084	2.38571747002148e-06	1.45644316318361e-06	53	1.89549426702169	2.01261229904048e-11	1.23057120049452e-11
28	1.89549519630831	1.52219402660414e-06	9.29274306837868e-07	54	1.89549426704182	1.28415056366293e-11	7.8204109854596e-12
29	1.89549367411428	9.71228846458061e-07	5.92919719766272e-07	55	1.89549426702898	8.19344592173366e-12	5.02109465116973e-12
30	1.89549464534313	6.19687558600646e-07	3.78309126691789e-07	56	1.89549426703717	5.22781817835494e-12	3.17235127056392e-12
31	1.89549402565557	3.953886587027e-07	2.41378431908856e-07	57	1.89549426703194	3.33577609978875e-12	2.05546690779101e-12
32	1.89549442104423	2.52275743184427e-07	1.54010226793844e-07	58	1.89549426703528	2.12851958281135e-12	1.28030919199773e-12
33	1.89549416876848	1.60963302020534e-07	9.82655163905832e-08	59	1.89549426703315	1.35824684832642e-12	8.4821039081362e-13
34	1.89549432973179	1.02701832371821e-07	6.26977856299504e-08	60	1.89549426703451	8.66640093022397e-13	5.10036457512797e-13

נשים לב כי להתכנסות לקח 60 איטרציות.

שיפוע הגרף יניב את קצב ההתכנסות ובעזרתו נגלה את קבוע ההתכנסות
$$\eta=m=\frac{y_2-y_1}{x_2-x_1}=\frac{-11..64+28.3}{-11.29+27.8}=1.009~\approx 1$$

$$\log A = y - mx = -28.3 - 1.009 * (-27.8) = -0.25 \rightarrow A = e^{-0.25} = 0.779$$

שיפוע הגרף הינו בקירוב 1, כלומר התכנסות לינארית כפי שציפינו מהתיאוריה של שיטת נקודת השבת. סדר ההתכנסות תלוי בסדר הנגזרות שאינן מתאפסות.

$$g'(s) = 2\cos(s) = 2\cos(1.895) \neq 0$$

מכיוון שאין התאפסות של הנגזרת הראשונה אז ההתכנסות הינה לינארית.

גם חישוב קבוע ההתכנסות קרוב לחישוב התיאורטי שכן קיבלנו:

$$A = |g'(s)| = |2\cos(1.895)| = 0.637$$

באלה 1 משאלה 1 רק NP נבצע שלבים דומים לסעיף א' כאשר ניעזר באלגוריתם בשיטת $x-2\sin(x)$ שכעת נבצע את השלבים עבור המשוואה

n	x _n	X_n_diff	error	
-				
1	1.5707963267949	0.429203673205103	0.324697940239103	
2	2	0.099004405796091	0.104505732966	
3	1.90099559420391	0.00548394882431436	0.00550132716990892	
4	1.89551164537959	1.73781708814325e-05	1.73783455945653e-05	
5	1.89549426720871	1.74732228686025e-10	1.74713132850002e-10	
6	1.89549426703398	0	1.90958360235527e-14	

נשים לב שלטובת ההתכנסות לקח לנו 6 איטרציות.

שיפוע הגרף יניב את קצב ההתכנסות ובעזרתו נגלה את קבוע ההתכנסות
$$\eta=m=\frac{y_2-y_1}{x_2-x_1}=\frac{-5.203+22.47}{-2.259+10.96}=1.984\approx 2$$

$$\log A = y - mx = -22.47 - 1.98 * (-10.96) = 0.725 \rightarrow A = e^{-0.725} = 0.484$$

בהתאם לציפייה מהחלק התיאורטי נקבל קצב התכנסות של 2 בקירוב.

$$A = \frac{1}{2} \left| \frac{f''(s)}{f'(s)} \right| = 0.579 \; NP$$
 עבור קבוע ההתכנסות קיבלנו בקירוב עבור שיטת

כפי שציפינו, שיטת ניוטון-רפסון בעלת התכנסות מהירה יותר מאשר שיטת נקודת השבת ועל כן נעדיף את שיטת ניוטון רפסון.

.'ע"י שימוש ב-q(x) מסעיף א' ע"י שימוש ב-q(x) מסעיף א'.

סינוס שהיא המשוואה של נקודת השבת הינה פונקציה זוגית ולכן במידה ו-s פתרון למשוואה אז גם s- הינו פתרון למשוואה. בנוסף, x=0 פתרון גם הוא. מכאן נקבל כי $s_1 = 0, s_{2,3} = \pm 1.895$ השורשים של המשוואה הינם:

עבור תנאי ההתחלה שקבענו, s_3 שיקולי $g(\mathbf{x})$ "עבור $\mathbf{x}_0 = \frac{\pi}{2}$, משיקולי שקבענו, $x_0=-rac{\pi}{2}$ סימטריה נקבל את השורש s_3 באמצעות g(x) גם כן אך עם תנאי ההתחלה $:s_{2,3}$ ניתן להגיע להתכנסות עבור ניחוש התחלתי ועובר השורשים

$$|g'(x_0)| = |2\cos(x_0)| = |2\cos(\pm \frac{\pi}{2})| = 0 < 1$$

$$|g'(s_{2,3})| = |2\cos(s_{2,3})| = |2\cos(\pm 1.895)| = 0.638 < 1$$

 $|g'(s_1)| = |2\cos(0)| = 2 > 1$

עבור s_1 התנאי להתכנסות לא מתקיים על פי שיטת נקודת השבת ולכן לכל נקודת הבור $s_1=0$ התחלה שניקח השיטה לא תתכנס עבור הפתרון

רסים את הניחוש את עבורו נבחר את הניחוש ההתחלתי . $g(x)=\sin^{-1}(\frac{x}{2})$ (ד $g(x)=\sin^{-1}(\frac{x}{2})$ (די לקבל התכנסות בנקודה x=0. נבדוק תחילה מתי תנאי ההתכנסות לg'(x) מתקיים g'(x)=(y=1). $g'(x)=\frac{1}{\sqrt{4-x^2}}$

עבור $x\in[-1.732,1.732]$ תתקיים ההתכנסות ולכן נבחר ניחוש התחלתי בתחום זה. גבחר את נקודת ההתחלה $x_0=0.5$ גבחר את נקודת ההתחלה $x_{n+1}=g(x_n)=\sin^{-1}(\frac{x_n}{2})$ צעד האיטרציה הינו $x_n=0$, צעד איטרציה הינו אין והפצרון $x_n=0$

n	x_n	X_n_diff	error
_			
1	0.5	0	0
2	0.252680255142079	0.126001586984352	0.252680255142079
3	0.126678668157726	0.0632969058946156	0.126678668157726
4	0.0633817622631107	0.0316855741443422	0.0633817622631107
5	0.0316961881187685	0.0158474305776675	0.0316961881187685
6	0.015848757541101	0.0079242958319506	0.015848757541101
7	0.00792446170915041	0.00396222048714442	0.00792446170915041
8	0.00396224122200599	0.00198111931507084	0.00396224122200599
9	0.00198112190693515	0.000990560791475951	0.00198112190693515
10	0.000990561115459197	0.000495280537480642	0.000990561115459197
11	0.000495280577978554	0.000247640286458158	0.000495280577978554
12	0.000247640291520397	0.000123820145443808	0.000247640291520397
13	0.000123820146076588	6.19100729987 454 e-05	0.000123820146076588
14	6.19100730778429e-05	3.09550365339779e-05	6.19100730778429e-05
15	3.09550365438651e-05	1.54775182713146e-05	3.09550365438651e-05
16	1.54775182725505e-05	7.73875913619799e-06	1.54775182725505e-05
17	7.73875913635248e-06	3.86937956816659e-06	7.738759136352 4 8e-06
18	3.8693795681859e-06	1.93468978409174e-06	3.8693795681859e-06
19	1.93468978409415e-06	9.67344892046927e-07	1.93468978409415e-06
20	9.67344892047228e-07	4.83672446023595e-07	9.67344892047228e-07
21	4.83672446023633e-07	2.41836223011814e-07	4.83672446023633e-07
22	2.41836223011819e-07	1.20918111505909e-07	2.41836223011819e-07
23	1.2091811150591e-07	6.04590557529548e-08	1.2091811150591e-07
24	6.04590557529549e-08	3.02295278764774e-08	6.04590557529549e-08
25	3.02295278764775e-08	1.51147639382387e-08	3.02295278764775e-08
26	1.51147639382387e-08	7.55738196911936e-09	1.51147639382387e-08
27	7.55738196911936e-09	3.77869098 4 55968e-09	7.55738196911936e-09
28	3.77869098 4 55968e-09	1.88934549227984e-09	3.77869098 4 55968e-09
29	1.88934549227984e-09	9.44672746139921e-10	1.88934549227984e-09
30	9.44672746139921e-10	4.7233637306996e-10	9.44672746139921e-10
31	4.7233637306996e-10	2.3616818653498e-10	4.7233637306996e-10
32	2.3616818653498e-10	1.1808409326749e-10	2.3616818653 4 98e-10
33	1.1808409326749e-10	5.9042046633745e-11	1.1808409326749e-10
34	5.9042046633745e-11	2.95210233168725e-11	5.9042046633745e-11
35	2.95210233168725e-11	1.47605116584363e-11	2.95210233168725e-11
36	1.47605116584363e-11	7.38025582921813e-12	1.47605116584363e-11
37	7.38025582921813e-12	3.69012791460906e-12	7.38025582921813e-12
38	3.69012791460906e-12	1.84506395730453e-12	3.69012791460906e-12
39	1.84506395730453e-12	9.22531978652266e-13	1.84506395730453e-12

נשים לב כי לטובת ההתכנסות לקח 39 איטרציות.

שיפוע הגרף יניב את קצב ההתכנסות ובעזרתו נגלה את קבוע ההתכנסות
$$\eta=m=\frac{y_2-y_1}{x_2-x_1}=\frac{-10.38+27.02}{-9.69+26.33}=1$$

$$\log A = y - mx = -27.02 + 26.33 = -0.69 \rightarrow A = e^{-0.69} = 0.502$$

בהתאם לתיאוריה שלמדנו, השיפוע בקירוב 1 משמע התכנסות לינארית g'(0)=0.5כפי שציפינו בשיטת נקודת השבת במקרה בו הנגזרת הראשונה אינה מתאפסת באפס.

אני אוסיף כאן מספר אזכורים מהרשימות של ההרצאות שעשויות להבהיר את צעדי :החישוב התיאורטי

:1 שאלה

$$0 = F(S) = F(S-X_N+X_N) = F(X_N-E_N) = F(X_N)-E_NF(X_N)+\frac{E_N^2}{2}F^*(F)$$

$$|P| = F(X_N)-E_NF(X_N)-\frac{E_N^2}{2}F^*(F)$$

$$|P| = F(X_N)-E_NF(X_N)-\frac{E_N^2}{2}F^*(F)$$

$$|P| = F(X_N)-\frac{E_NF(X_N)-\frac{E_N^2}{2}F^*(F)}{2}F^*(F)$$

$$|P| = F(X_N)-\frac{E_NF(X_N)-\frac{E_N^2}{2}F^*(F)}{2}F^*(F)$$

$$|P| = F(X_N)-\frac{E_NF(X_N)-\frac{E_N^2}{2}F^*(F)}{2}F^*(F)$$

$$|P| = F(X_N)-\frac{E_N}{2}F^*(F)$$

$$|P| = F(X_N)$$

20-"383 5312"-h P"pe MIJI F(x)+0-e 20 X, E[ab] 73/11 8(20 N"pe MIJ) 8/10 E18 S= X0+h 7N/B F(X0+h)=0-e

$$0 \approx F(X_0) + h F'(X_0)$$

$$\rightarrow h = -\frac{F(X_0)}{F'(X_0)} \rightarrow S = X_0 + h \approx X_0 - \frac{F(X_0)}{F'(X_0)}$$

$$F'(x_0)$$

$$\frac{F'(x_0)}{|x_0|} = x_0 + h_0 = x_0 - \frac{F(x_0)}{|F'(x_0)|}$$

$$\frac{F'(x_0)}{|x_0|} = x_0 + h_0 = x_0 - \frac{F(x_0)}{|F'(x_0)|}$$

```
:3 שאלה
```

* נוסה לדקול את כציות אי יציצת הרימו הברק שונה $G(s) \neq 0$ nets $E(x) = (x-s)^{q} G(x)$: $e_{n}(x) = (x-s)^{n} G(x) + (x-s)^{q} G(x)$ $U(x) = \frac{F(x)}{F(x)} = \frac{(x-s)^{q} G(x)}{q(x-s)^{q} G(x) + (x-s)^{q} G(x)} = \frac{(x-s) G(x)}{q G(x) + (x-s) G(x)} = \frac{(x-s) G(x)}{q G(x) + (x-s) G(x)} = \frac{(x-s) G(x)}{q G(x) + (x-s) G(x)}$ $\lim_{X\to S} \frac{U(x)}{x-S} = \lim_{X\to S} \frac{(x-S)G(x)}{(x-S)(QG(x)+(x-S)G'(x))} = \frac{1}{Q} \pm 0$ (ADSEPTION ANT SE EST NOOFW DISPOSED PO) X=5-D GOO ENIC LL(X) -5 < :X=S NEDD & W(X)=0 11200 DE DE DE NE SEGON DOCK , 158 $X^{N+N} = X^N - \frac{\Pi_1(X^N)}{(Y(X^N))}$ $\frac{U'(x) = \frac{\left(F'(x)\right)^2 - F(x)F''(x)}{\left(F'(x)\right)^2} = 1 - \frac{F(x)}{F'(x)} \frac{F''(x)}{F'(x)} = 1 - \frac{F(x)}{F'(x)} U(x)$ מתבנסת שתשב תפיות ריבוצית (ב) enlen to X=5 nets F(X)=0 attlent ally : Proposition $F^{(j)}(x)|_{x=s} = 0$; j < q | [M | 2 W2 $j = 0, 1, \dots, q = 1$ $F^{(q)}(x)|_{x=s} = 0$ | Assign M" [7] A real of the Marko X=S DOD F(X) REDIENT AF LEDIENT $F(x) = F(s) + \frac{1}{4!} (x-s) F^{(4)}(s) + \frac{1}{2!} (x-s)^2 F^{(2)}(s) + \dots + \frac{1}{(q-1)!} (x-s)^{q-1} F^{(q-1)}(s) + \frac{1}{2!} (x-s)^2 F^{(q)}(s)$ S- 8 X 1'2 YGD AEBUR OBY F(X) F(X)=(X-5) &G(X) 1/2 1/007-1/6/1 1/002 2/00/ 00/00 1/05/ 1/05 $F'(x) = q_1(x-s)^{q-1} G(x) + (x-s)^{q} G'(x)$ $X_{N+1} = X_N - P \frac{F(X_N)}{F'(X_N)}$ ונסח את האטרציה השינוי הטו 'al'n refe P sets $X_{N+1} = X_N - P \frac{(X_N - S)^{9} G(X_N)}{Q(X_N - S)^{9/3} G(X_N) + (X_N - S)^{9/3} G(X_N)} = 38 \text{ JM/302 /1007 - /101/3 ACRD } = 38 \text{ JM/302 /1007 - /101/$

 $= \chi_{N} - P \frac{(x_{N} - S) G(x_{N})}{Q G(x_{N}) + (x_{N} - S) G'(x_{N})}$

$$\begin{split} \mathcal{E}_{N+A} &= \times_{N+A} - S = \underbrace{\left(\times_{N} - S \right)}_{\mathcal{E}_{N}} - P \frac{\int_{(x_{N} - S)}^{NOJ2NPR} \, 23P \, Ak \, In \, 2JI \, NOJ2NN \, RC'CRC \, NJJ}{Q \, G(x_{N}) + (x_{N} - S) \, G'(x_{N})} \\ \mathcal{E}_{N+A} &= \mathcal{E}_{N} - P \, \frac{\mathcal{E}_{N} \, G(x_{N})}{Q \, G(x_{N}) + \mathcal{E}_{N} \, G'(x_{N})} \\ &= \frac{(Q - P) \, G(x_{N})}{Q \, G(x_{N}) + \mathcal{E}_{N} \, G'(x_{N})} \, \mathcal{E}_{N} + \frac{G'(x_{N})}{Q \, G(x_{N}) + \mathcal{E}_{N} \, G'(x_{N})} \, \mathcal{E}_{N}^{2} \\ \mathcal{E}_{N}^{2} - 2J \, \mathcal{E}_{N} - 2 \, 2J \, \mathcal{G}_{N} \, N+A \, - 2 \, 3332 \, 2F'ccR \end{split}$$

```
(ABC) (ABC) (ABC) (BC)
(ABC) (ABC) (ABC)
(ABC) (ABC) (ABC)
(ABC) (ABC) (ABC)
(ABC) (ABC) (ABC) (ABC)
(ABC) (ABC) (ABC) (ABC)
(ABC) (ABC) (ABC) (ABC) (ABC)
(ABC) (ABC) (ABC) (ABC) (ABC) (ABC)
<math display="block">(ABC) (ABC) (A
```

 $\lim_{N\to\infty} x_N = S : X = S \text{ as the poly of the poly o$

A=1 19(P)(S) NOIDM NADI d=P NOIDM 730 PM N'2'66/2 7Ce

Contents

- variables
- Question 1
- Ouestion 2
- Question 3
- Question 4
- Sub-Functions

variables

```
a = 1;
b = 5;
I1 = 316098052;% my ID
tolerance = 10^(-12);
s = 3^(1/4); %Solution for Question 1 and 2
x_0 = a + (b - a) * (I1 / (I1 + I1)); %Initial guess //I1=I2
format long %long display for output
```

Question 1

```
[x_n_1, error_n, x_n_diff_1] = Newton_Raphson(x_0, tolerance, s, 1);
%Graph
figure(1)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1))
plot(x_axis, y_axis, '-o');
title('Question 1 - Newton Raphson');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-_1))');
grid on;
movegui('west');
%Required table
n = [1 : length(error_n)]';
X_n = x_n_1(:, 1 : length(x_n_1) - 1)';
X_n_diff = x_n_diff_1';
error = error_n';
T1 = table(n, X_n, X_n_diff, error);
%disp(T1);
```


Question 2

```
x1 = x_0 + (b-x_0)*(I1/(I1+I1)); %Second Initial guess - I1=I2
[x_n_2, error_n, x_n_diff_2] = Secant(x_0, x1, tolerance, s);

%Graph
figure(2)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n-1)
plot(x_axis, y_axis, '-o');
title('Question 2 - Secant');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n--1))');
grid on;
movegui('north');

%Required table
n = [1:length(error_n)]';
```

```
X_n = x_n_2(:,1:length(x_n_2)-1)';
X_n_diff = x_n_diff_2';
error = error_n';
T2 = table(n,X_n, X_n_diff, error);
%disp(T2);
```


Question 3

Part A

```
x_0 = 5;
s3 = 2;
[x\_n\_3A, \ error\_n, \ x\_n\_diff\_3A] \ = \ Newton\_Raphson\_multiple\_roots(x\_0, \ 1, \ tolerance, \ s3, \ 1);
%Graph
figure(3)
subplot(2,2,1)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1)
plot(x_axis, y_axis, '-o');
title('Question 3A - Newton Raphson with multiple roots');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-_1))');
grid on;;
%Required table
n = [1 : length(error_n)]';
X_n = x_n_3A(:, 1 : length(x_n_3A) - 1)';
X_n_diff = x_n_diff_3A';
error = error_n';
T3A = table(n, X_n, X_n_diff, error);
%disp(T3A); %Display the table in the command window.
% Part B
[X\_n\_3B, \ error\_n, \ Xn\_diff\_3B] \ = \ Newton\_Raphson\_multiple\_roots(x\_0, \ 1, \ tolerance, \ s3, \ 2);
%Graph
subplot(2,2,2)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1)
plot(x_axis, y_axis, '-o');
title('Question 3B - Newton Raphson with multiple roots');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-1))');
grid on;;
%Required table
n = [1 : length(error_n)]';
X_n = X_n_3B(:, 1 : length(X_n_3B) - 1)';
X_n_diff = Xn_diff_3B';
error = error_n';
T3B = table(n, X_n, X_n_diff, error);
%disp(T3B);
% Part C
[X_n_3C, error_n, Xn_diff_3C] = Newton_Raphson_multiple_roots(x_0,2.999,tolerance,s3, 1); %the reason for 2.999 explained in the report
%Graph
subplot(2,2,3)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1)
plot(x_axis, y_axis, '-o');
```

```
title('Question 3C - Newton Raphson with multiple roots');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-_1))');
grid on;
movegui('east');
%Required table
n = [1:length(error_n)]';
X_n = X_n_3C(:,1:length(X_n_3C)-1)';
X_n_diff = Xn_diff_3C';
error = error_n';
T3C = table(n,X_n, X_n_diff, error);
%disp(T3C);
```

Question 3A - Newton Raphson with multiple root

Question 3C - Newton Raphson with multiple roots

Question 4

Part A

```
x \theta = pi/2;
s4 = 1.895494267034;
[X_n_4A, error_n, Xn_diff_4A] = Fixed_Point(x_0, tolerance, s4, 1);
%Graph
figure(4)
subplot(2,2,1)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1)
plot(x_axis, y_axis, '-o');
title('Question 4A - Fixed Point');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-_1))');
grid on;
%Required table
n = [1 : length(error_n)]';
X_n = X_n_4A(:, 1 : length(X_n_4A) - 1)';
X_n_diff = Xn_diff_4A';
error = error_n';
T4A = table(n, X_n, X_n_diff, error);
%disp(T4A);
% Part B
[X_n\_4B, error\_n, Xn\_diff\_4B] = Newton\_Raphson(x\_0, tolerance, s4, 4);
%Graph
subplot(2,2,2)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1)
plot(x_axis, y_axis, '-o');
title('Question 4B - Newton Raphson');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-_1))');
grid on:
%Required table
n = [1 : length(error_n)]';
X_n = X_n_4B(:, 1 : length(X_n_4B) - 1)';
X_n_diff = Xn_diff_4B';
error = error_n';
T4B = table(n, X_n, X_n_diff, error);
%disp(T4B);
```

```
% Part D
s4D = 0;
x_0 = 1/2;
[X_n_4D, error_n, Xn_diff_4D] = Fixed_Point(x_0, tolerance, s4D, 2);
%Graph
subplot(2,2,3)
y_axis = log(error_n(2 : end)); %log(epsilon_n)
x_axis = log(error_n(1 : end-1)); %log(epsilon_n_-1)
plot(x_axis, y_axis, '-o');
title('Question 4D - Fixed Point');
ylabel('log(epsilon_n)');
xlabel('log(epsilon_n_-_1))');
grid on;
movegui('south');
%Required table
n = [1:length(error_n)]';
X_n = X_n_4D(:,1:length(X_n_4D)-1)';
X_n_diff = Xn_diff_4D';
error = error_n';
T4D = table(n, X_n, X_n_diff, error);
%disp(T4D);
```


Sub-Functions

```
%Newton-Raphson
function [x_n, error_n, x_n_diff] = Newton_Raphson(x_0, tolerance, s, question)
   iteration = 2;
    error_n = zeros;
    x_n_diff = zeros;
    x_n(1) = x_0; %initial guess
    if question == 1
        fx_div_fx_tag = (x_0^4 - 3) / (4*x_0^3);
    elseif question == 4
       fx_div_fx_tag = (x_0 - 2*sin(x_0)) / (1 - 2*cos(x_0));
   x_n(2) = x_0 - fx_div_fx_tag;
     x_n\_diff\_abs = abs(x_n(iteration) - x_n(iteration - 1)); \; %|x_n - x_n_{-1})| 
    x_n_diff(1) = x_n_diff_abs;
    error_n(1) = abs(x_n(1) - s); %|x_n - s|
    while x_n_diff_abs >= tolerance
        if question == 1
            fx_div_fx_tag = (x_n(iteration)^4 - 3) / (4*x_n(iteration)^3);
        elseif question == 4
             fx\_div\_fx\_tag = (x\_n(iteration) - 2*sin(x\_n(iteration))) \ / \ (1 - 2*cos(x\_n(iteration))); 
        x_n(iteration+1) = x_n(iteration) - fx_div_fx_tag;
        error_n(iteration) = abs(x_n(iteration) - s);
        iteration = iteration + 1;
        x_n_{diff_abs} = abs(x_n(iteration) - x_n(iteration - 1));
        x_n_diff(iteration-1) = x_n_diff_abs;
    end
end
%Secant
function [x_n, error_n, x_n\_diff] = Secant(x0, x1, tolerance, s)
   iteration = 2;
    error_n = zeros;
    x_n_diff = zeros;
    x_n(1) = x0; %initial guess sol.
    x_n(2) = x1; %Second guess sol.
     x_n\_diff\_abs = abs(x_n(iteration) - x_n(iteration-1)); \; %|x_n - x_n_-1|
```

```
x_n_diff(1) = x_n_diff_abs;
         error_n(1) = abs(x_n(1) - s);
         while abs(x_n(iteration) - x_n(iteration-1)) > tolerance
                 x_n(iteration + 1) = x_n(iteration) - ((x_n(iteration))^4 - 3) * (x_n(iteration) - x_n(iteration - 1)) / ((x_n(iteration)^4 - 3) - (x_n(iteration - 1)) / ((x_n(iteration)^4 - 3) - (x_n(iteration)^4 - 3)) / ((x_n(iteration)^4 - 3)) / ((
                  error_n(iteration) = abs(x_n(iteration) - s); % |x_n - s|
                 iteration = iteration + 1;
                  x_n_{diff_abs} = abs(x_n(iteration) - x_n(iteration - 1));
                 x_n_diff(iteration - 1) = x_n_diff_abs;
         end
end
{\it Newton-Raphson} with multiple roots
\%fx = x^5 - 6*x^4 + 14*x^3 - 20*x^2 + 24*x - 16;
         fx_{ag} = 5*x^4 - 24*x^3 + 42*x^2 - 40*x + 24;
        fx_double_tag = 20*x^3 - 72*x^2 + 84*x - 40;
         iteration = 2;
         error_n = zeros;
         x_n_diff = zeros;
         x_n(1) = x_0;
        u\_x0 = (x\_0^{\circ}5 - 6*x\_0^{\circ}4 + 14*x\_0^{\circ}3 - 20*x\_0^{\circ}2 + 24*x\_0 - 16) \ / \ (5*x\_0^{\circ}4 - 24*x\_0^{\circ}3 + 42*x\_0^{\circ}2 - 40*x\_0 + 24); \ \%u(x\_0) = f(x\_0)/f'(x\_0)
         y = 0;
         if option == 1
                 y = u_x0; % y = u(x_0)
         elseif option == 2
                 fx = x_0^5 - 6*x_0^4 + 14*x_0^3 - 20*x_0^2 + 24*x_0 - 16;
                 fx_{ag} = 5*x_{0}^{4} - 24*x_{0}^{3} + 42*x_{0}^{2} - 40*x_{0} + 24;
                 fx_double_tag = 20*x_0^3 - 72*x_0^2 + 84*x_0 - 40;
                 u_x0_tag = 1 - (fx*fx_double_tag) / (fx_tag^2);
                 y = (u_x0) / u_x0_{tag}; % y = u(x_0)/u'(x_0)
         x_n(2) = x_0 - y;
         x_n_{diff_abs} = abs(x_n(iteration) - x_n(iteration - 1)); %|x_n - x_n_-1|
         x_n_diff(1) = x_n_diff_abs;
         error_n(1) = abs(x_n(1) - s);
          u_x n = (x_n(iteration)^5 - 6*x_n(iteration)^4 + 14*x_n(iteration)^3 - 20*x_n(iteration)^2 + 24*x_n(iteration) - 16) / (5*x_n(iteration)^4 - 24*x_n(iteration)^4) / (5*x_n(iteration)^4) / (5*x_n(iteration
                 if option == 1
                        y = u_xn; % y = u(x_n)
                 elseif option == 2
                         fx = x_n(iteration)^5 - 6*x_n(iteration)^4 + 14*x_n(iteration)^3 - 20*x_n(iteration)^2 + 24*x_n(iteration) - 16; 
                           fx\_tag = 5*x\_n(iteration)^4 - 24*x\_n(iteration)^3 + 42*x\_n(iteration)^2 - 40*x\_n(iteration) + 24; 
                          fx\_double\_tag = 20*x\_n(iteration)^3 - 72*x\_n(iteration)^2 + 84*x\_n(iteration) - 40;
                          u_xn_tag = 1 - (fx*fx_double_tag) / (fx_tag^2);
                          y = (u_xn) / u_xn_{tag}; % y = u(x_n)/u'(x_n)
                  end
                 x_n(iteration+1) = x_n(iteration) - q * y;
                  error_n(iteration) = abs(x_n(iteration) - s); % |x_n - s|
                 iteration = iteration + 1;
                 x_n_diff_abs = abs(x_n(iteration) - x_n(iteration - 1));
                 x_n_diff(iteration - 1) = x_n_diff_abs;
        end
end
%Fixed Point
iteration = 2:
         error n = zeros:
        x n diff = zeros:
        x_n(1) = x_0;
         g = 0;
        if option == 1
                 g = 2*sin(x_n(1));
         elseif option == 2
                g = asin(x_n(1) / 2);
         x n(2) = g;
         while abs(x_n(iteration) - x_n(iteration - 1)) >= tolerance
                if option == 1
                          g = 2*sin(x_n(iteration));
                 elseif option == 2
                        g = asin(x_n(iteration) / 2);
                 end
                 x_n(iteration + 1) = g;
                  error_n(iteration) = abs(x_n(iteration) - s);
                 iteration = iteration + 1;
                 Xn_Diff = abs(x_n(iteration)-x_n(iteration-1));
                 x_n_diff(iteration-1) = Xn_Diff;
        end
end
```