701

Geodesic convexity: why, and what we need

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Why optimizers love convexity

In a linear space \mathcal{E} , a minimization problem

$$\min_{x \in S} f(x)$$

is convex if the search space S and the cost function f are convex.

This is a fruitful notion because:

- 1. Local minima are global minima.
- 2. This comes up in applications and it's easy to spot.
- 3. We have good algorithms.

Convexity in linear spaces

Def.: A set $S \subseteq \mathbb{R}^n$ is convex if

$$x, y \in S \Rightarrow (1 - t)x + ty \in S \text{ for all } t \in [0, 1].$$

Def.: A function $f: S \to \mathbf{R}$ is convex if its domain S is convex and

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

for all $x, y \in S$ and $t \in [0, 1]$.

Our goal is to extend these notions to optimization on manifolds.

What will it take?

Look ahead: the key fact "local min \Rightarrow global min" will be preserved.