

Department of Inter Disciplinary Studies, Faculty of Engineering, University of Jaffna, Sri Lanka MC 2020 : Linear Algebra

Tutorial-05 November 2023

1. What do you mean by the term "Vector Space"?

- (a) Let V be the set of all real numbers x such that x>0. Define an operation of addition by $x\oplus y=xy, \forall x,y\in V$. Define another operation of scalar multiplication by $\alpha\odot x=x^{\alpha}, \forall \alpha\in\mathbb{R}$ and $x\in V$. Prove that under the operation \oplus and \odot , the set of V is a vector space.
- (b) Let V be the set of all fifth degree polynomials with standard addition and multiplication. Is it a vector space? Justify your answer.
- 2. Let V denote the set of vectors in \mathbb{R}^2 . If $x = [x_1 \quad x_2]^T$ and $y = [y_1 \quad y_2]^T$ are elements of V and $\alpha \in \mathbb{R}$, define:

$$x + y = [x_1 + y_1 \quad x_2 y_2]^T$$
 and $\alpha [x_1 \quad x_2]^T = [\alpha x_1 \quad x_2]^T$

Is V a vector space with these operations?

3. Let V be the set of all complex valued functions f on the real line such that

$$f(t) = \overline{f(t)}; \ \forall t \in \mathbb{R}.$$

Show that, V with operations

$$(f+g)(t) = f(t) + g(t)$$

$$(cf)(t) = cf(t)$$

is a vector space over the field of real numbers.

4. Let V be a vector space and S be set and $F(S,V) = \{f \mid f: S \to V\}$. Define

$$f + g : S \to V$$
 by $(f + g)(s) = f(s) + g(s), \forall s \in S$

and

$$r.f: S \to V$$
 by $(r.f)(s) = r.f(s), \forall s \in S$

Then show the following:

- (a) F(S, V) is a vector space;
- (b) if W is a subspace of V then F(S, W) is subspace of F(S, V).

5. Let V be a vector space and S be set and $s \in S$ be any fixed element. Define

$$e_s: F(S, V) \to V$$
 by $e_s(f) = f(s)$

Show that $N = \{ f \in F(S, V) \mid e_s(f) = 0 \}$ is a subspace of F(S, V).

- 6. Let V denote the set of all 2×2 matrices and let S denote the set of all symmetric 2×2 matrices. Show that V is a vector space and S is a subspace of V.
- 7. Let the distance between two vectors x and y in a linear normed vector space be defined as:

$$d(x,y) = ||x - y||_n$$

Show that this distance function satisfies the distance properties.

8. Let $S = \{(a_1 \ a_2) : a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in S$ and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 - b_2)$$

and

$$c(a_1, a_2) = (ca_1, ca_2).$$

Then S is not a vector space.

- 9. Show that each of following is a vector spaces over \mathbb{R} under usual addition and scalar multiplication.
 - (a) The set $A = \{(x, y, z, w) | x + y + z + w = 0; x, y, z, w \in \mathbb{R} \}$
 - (b) The set of polynomials with coefficient from \mathbb{R}
 - (c) The set of solutions to a homogeneous linear system Ax = 0
 - (d) The set $\{f : \mathbb{R} \to \mathbb{R} : \frac{df}{dx} = 0\}$
- 10. Determine whether the following are vector space over \mathbb{R} .
 - (a) Under the usual addition and scalar multiplication in \mathbb{R}^3

$$S_1 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$$

(b) Under the usual addition and scalar multiplication on matrices

$$S_2 = \{ \begin{bmatrix} a & 1 \\ b & c \end{bmatrix} \mid a, b, c \in \mathbb{R} \}$$

(c) Under the usual addition and scalar multiplication in \mathbb{R}^3

$$S_3 = \{(x, y, z) \mid x + y + z = 1\}$$

(d) The set $\{f: \mathbb{R} \to \mathbb{R} : \frac{df}{dx} = 1\}$, under the usual addition and scalar multiplication for functions.

- 11. Show that the following sets are subspaces of the given spaces.
 - (a) $\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} : a+b=0 \right\}$ of $M_{2\times 2}$
 - (b) $\{P(x) \in \mathbb{P}_2 : P(7) = 0\}$ of \mathbb{P}_2
 - (c) $\{(x, y, z, w) : 2x + y + w = 0, y + 2z = 0\}$ of \mathbb{R}^4
 - (d) $\{(x, y, z) : 3x + 2y + z = 0\}$ of \mathbb{R}^3
 - (e) $\{a_o + a_1x + a_2x^2 + a_3x^3 : a_o + a_1 = 0, a_2 a_3 = 0\}$ of \mathbb{P}_3
- 12. Determine whether the following set is vector space over \mathbb{R} under the usual addition and scalar multiplication of polynomials. Justify your answer.

$$W = \{a_2 + a_1x + a_0x^2 \mid a_0, a_1, a_2 \in \mathbb{R}^+\}$$

13. Given non-zero real numbers a and b, consider

$$X = \{ (x \ y) \in \mathbb{R}^2 \ | \ ax + by = 0 \}.$$

Show that X is a subspace of vector space \mathbb{R}^2

14. Given non-zero real numbers a, b and c, consider

$$X_c = \{ (x \ y) \in \mathbb{R}^2 \mid ax + by = c \}.$$

Show that X_c is not a subspace of \mathbb{R}^2 .

- 15. Determine whether or not the following subsets of \mathbb{R}^4 are subspace:
 - (a) $\{(a, b, c, d) : a + b = c + d\}$
 - (b) $\{(a, b, c, d) : a + b = 1\}$
 - (c) $\{(a, b, c, d) : a^2 + b^2 = 0\}$
 - (d) $\{(a, b, c, d) : a^2 + b^2 = 1\}$
- 16. Determine which of the following are subspace of some Euclidean spaces over the field \mathbb{R} :
 - (a) $H = \{(a+b, 3a-b, 2a+b) : a, b \in \mathbb{R}\}$
 - (b) $H = \{(x, y, z) : x + y z = 0, 2x 3y + z = 0\}$
 - (c) $H = \{(x, y, z) : x + y z = 0, 2x 3y + z = 1\}$
 - (d) $H = \{(x, y) : xy \ge 0\}$
- 17. Determine which of the following sets of functions are subspace of V:
 - (a) All f such that $f(x^2) = (f(x))^2$
 - (b) All f such that f(0) = f(1)
 - (c) All f such that f(3) = 1 + f(-5)
 - (d) All f such that f(-1) = 0
- 18. Let $V = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is a function}\}$ with (f+g)(x) = f(x) + g(x) and (cf)(x) = cf(x). Let $S = \{f \in V : \frac{d^2f}{dx^2} + f = 0\}$, show that S is a subspace of V.