OBSERVERS

$$x_{k+1} = Ax_k + Bu_k + v_k^x$$
$$y_k = Cx_k + v_k^y$$

GOAL:

Compute an estimate \hat{x}_t of the state x_t on the basis of the measurements

ASSUMPTIONS:

- Process Disturbance v_k^x is Gaussian noise with $E[v_k^x] = 0$ and covariance $E[(v_k^x 0)(v_k^x 0)^T] = Q$
- Sensor Noise v_k^y is Gaussian noise with $E[v_k^y] = 0$ and covariance $E[(v_k^y 0)(v_k^x 0)^T] = R$
- x_0 is Gaussian with mean $E[x_0] = \bar{x}_0$ and covariance $E[(v_k^y \bar{x}_0)(v_k^x \bar{x}_0)^T] = P_0$

KALMAN FILTER

$$\hat{x}_{k|h} = E[x_k \mid y_0, ..., y_h, u_0, ..., u_h]$$

$$P_{k|h} = E[(x_k - \hat{x}_{k|h})(x_k - \hat{x}_{k|h})^T \mid y_0, ..., y_h, u_0, ..., u_h]$$

1. Prediction

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k} + Bu_k$$

 $P_{k+1|k} = AP_{k|k}A^T + Q$ covariance of the next state with info only on the last inputs and

Q always increases

outputs and thus last estimated state = prediction

the expression of K is not demonstrated here

2. Correction

$$K_{k+1|k+1} = P_{k+1|k}C^T(CP_{k+1|k}C^T + R)^{-1}$$
 changes at each time instant

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1|k+1} \left(y_{k+1} - C \hat{x}_{k+1|k} \right)$$

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1|k+1} C P_{k+1|k}$$

Cx^ is the predicted output and K is either very big (meaning prediction unreliable but sensors are) or very small (meaning prediction reliable and not sensors) -> if very big then very big K to come back to reality, otherwise it's ok because our sensing ain't good anyway so let's not move too much from where we predicted we would be

With initial conditions:

$$\hat{x}_{0|-1} = E[x_0]$$

$$P_{0|-1} = \hat{P}_0$$

same thing for Pk+1|k+1

Comparison with Classical Observers

1. Prediction

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k} + Bu_k$$

$$P_{k+1|k} = AP_{k|k}A^T + Q$$

2. Correction

$$\begin{split} K_{k+1|k+1} &= P_{k+1|k} C^T \left(C P_{k+1|k} C^T + R \right)^{-1} \\ \hat{x}_{k+1|k+1} &= \hat{x}_{k+1|k} + K_{k+1|k+1} \left(y_{k+1} - C \hat{x}_{k+1|k} \right) \\ P_{k+1|k+1} &= P_{k+1|k} - K_{k+1|k+1} C P_{k+1|k} \end{split}$$

1. Prediction

$$\hat{x}_{k+1|k}$$
=A $\hat{x}_{k|k}$ + Bu_k

not taking any account of the covariance of the prediction and thus its accuracy

2. Correction

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + L(y_{k+1} - C \hat{x}_{k+1|k})$$

Remark 1: Similar but different!

Remark 2: The Kalman filter converges to a classical observer!

Kalman Filter with intermittent observations

$$x_{k+1} = Ax_k + Bu_k + v_k^x$$

$$y_k = \Gamma_k (Cx_k + v_k^y)$$

$$\Gamma_k = \left[e_i^T \right]_{if the i-th sensor is available}$$

1. Prediction

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k} + Bu_k$$

$$P_{k+1|k} = AP_{k|k}A^T + Q$$

2. Correction

$$K_{k+1} = P_{k+1|k} C^T \Gamma_{k+1}^T \left(\Gamma_{k+1} \left(C P_{k+1|k} C + R \right) \Gamma_{k+1}^T \right)^{-1}$$

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1|k+1} \left(y_{k+1} - \Gamma_{k+1} C \hat{x}_{k+1|k} \right)$$

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1|k+1} \Gamma_{k+1} C P_{k+1|k}$$

Extended Kalman Filter

$$x_{k+1} = f(x_{k+1}, u_k) + v_k^x$$
$$y = h(x_k) + v_k^x$$

1. Prediction

$$\hat{x}_{k+1|k} = f(\hat{x}_{k|k}, u_k) P_{k+1|k} = A_k P_{k+1|k} A_k^T + Q$$

2. Correction

$$K_{k+1} = P_{k+1|k} C_k^T (C_k P_{k+1|k} C_k + R)^{-1}$$

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1|k+1} (y_{k+1} - h(\hat{x}_{k+1|k}))$$

$$P_{k+1|k+1} = P_{k+1|k} - K_{k+1|k+1} C_k P_{k+1|k}$$

$$A_k = \frac{df}{dx} \Big|_{\substack{x = \hat{x}_{k+1|k} \\ u = u_k}}$$

$$C_k = \frac{dh}{dx} \Big|_{x = \hat{x}_{k+1|k}}$$