Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный технический университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Лазерные и оптико-электронные системы»

Домашнее задание

по курсу:

«Автоматизированное проектирование оптических систем»

Преподаватель	 Тимашова Л.Н.
Студент гр. РЛ2-62Б	Иванченко А.М.

Задание: синтезировать оптическую систему с характеристиками:

Угловое поле,	Относительное	Диагональ	Размер
2W	отверстие, A	МПИ, d _м 6 мм	элемента, а₃
1°	1:5		5 мкм

Габаритный расчёт

Чтобы синтезировать систему с таким угловым полем, воспользуемся телеобъективом на базе телескопической системы Галилея (ТСГ) и фокусирующего объектива (ФО).

Фокусирующий объектив – светосильный объектив М.М.Русинова.

Телескопическая система преобразует малое входное угловое поле в умеренное угловое поле Φ О.

В результате синтеза длина объектива должна быть меньше его фокусного расстояния.

Исходная оптическая система объектива «Телеобъектив»

1.1 Условия работы

Угловое поле $2W = 2^{\circ}$;

Параметры МПИ

Размеры $a_M \times b_M = 3,6 \times 4,8 M M^2$;

Диагональ $d_M = 6 MM$;

Размер элемента $a_9 = 5 мкм$;

Оптическая частота элементов $v_M = \frac{1}{2a_3} = 100 \text{мм}^{-1}$;

Параметры объектива «Телеобъектив»

Угловое поле $2W = 1^0 = 0.0174533$

Фокусное расстояние $f' = \frac{d_M}{2W} = 343,7$ мм

Из условия А = 1:5

Разрешающая способность в плоскости изображения $\nu' = 100 \text{мм}^{-1}$; Коэффициент передачи модуляции $m(\nu' = 100) \ge 0.5$.

1.2 Конструкция телеобъектива ТО = ТСГ+ФО

Фокусирующий (светосильный) объектив (ФО) содержит:

2-хлинзовый склеенный объектив;

2-х линзовый склеенный толстый мениск;

Линзу Смита;

входной зрачок на первой поверхности

Телескопическая система Галилея

Содержит 1-й компонент с положительной оптической силой и 2-й компонент с положительной оптической силой.

ТСГ выполняет 2 функции –

преобразует малое угловое поле $2W = 1^{\circ}$ в умеренное угловое поле фокусирующего объектива;

Корректирует аберрации фокусирующего объектива.

2 Синтез ФО

Примем угловое поле ΦO равным $2W_{\Phi O} = 10^{\circ}$

2.1 Параметры ФО

Угловое поле $2W_{\Phi 0}=10^\circ=\frac{\pi}{18}\approx \frac{1}{6}$ рад.;

Фокусное расстояние $f'_{\Phi 0} = \frac{d_M}{2W} = 36$ мм;

Относительное отверстие $A_{\phi O} > 2\lambda_{MAKC} \cdot \nu_{M} = 0,13 = 1:7;$

Примем $A_{\phi O} = 1:4;$

Диаметр входного зрачка ФО:

$$D_{\Phi 0} = f'_{\Phi 0} \cdot A_{\Phi 0} = 9 \text{ mm}$$

Разрешающая способность в плоскости изображения

$$v'_{\Phi O} = v_M = 100 \text{Mm}^{-1};$$

Коэффициент передачи модуляции $m(v'_{\phi O} = 100) \ge 0,5;$

Задний фокальный отрезок $S'_{\phi O} = 1$ мм.

Синтез системы в программе ZEMAX

В качестве фокусирующего объектива используем объектив, синтезированный в Лаб. 2.

Параметры объектива Лаб. 2 (СКЛ+ТМ+ЛС)

$$\Delta \lambda = 0,48 - 0,65 \text{ MKM};$$

$$f'_{\Phi O} = 19 MM;$$

$$2W_{\phi\phi} = 10^{\circ}$$
;

$$A_{\Phi O} = 1:2$$
.

Прооптимизируем ФО для условий работы в телеобъективе

$$f'_{\Phi 0} = 36$$
мм, $2W_{\Phi 0} = 10^{\circ}$ и $A_{\Phi O} = 1:4$.

МПФ для $f'_{\Phi 0} = 36$ мм, $2W_{\Phi 0} = 10^{\circ}$ и $A_{\Phi O} = 1:4$.

Синтез телескопической системы Галилея (ТСГ)

- 1-й компонент ТСГ положительный, обращен к пространству объектов.
- 2-й отрицательный компонент расположен в непосредственной близости к фокусирующему объективу.

Параметры ТСГ

Входное угловое поле $2W = 1^0$

Выходное угловое поле $2W' = 2W_{\Phi O} = 10^{0}$;

Угловое увеличение $\Gamma = \frac{2W'}{2W} = 10^x$;

Положение входного и выходного зрачков

Выходной зрачок совпадает с входным зрачком ФО.

Входной зрачок расположен перед ТСГ.

Диаметр выходного зрачка D' = $D_{\Phi 0}$ = 9мм;

Относительное отверстие 1 и 2 компонентов равны $A_1 = A_2$;

Примем $A_1 = A_2 \ll 1$, $A_1 = A_2 = 1:5$.

2-й компонент — отрицательная плосковогнутая линза, обращенная вогнутой поверхностью к Φ O с радиусом r_2 .

Параметры отрицательной плосковогнутой линзы (2-й компонент)

Фокусное расстояние $f'_2 = \frac{D_{\Phi 0}}{A_1} = -45$ мм;

Показатель преломления $n_2 = 1,75$;

Число Аббе $\mu_2 = 28$; Стекло ТФ5;

$$r_2 = f'_2(n_2 - 1) = 34$$
 mm;

Толщина $d_2 = 3 м M$;

Параметры положительной плосковыпуклой линзы (1-й компонент)

Линза обращена выпуклой поверхностью к пространству объектов.

Фокусное расстояние $f_1 = -f'_2 * \Gamma = 450$ мм;

Показатель преломления $n_1 = 1,75$;

Число Аббе $\mu_2 = 50$; Стекло СТК19;

$$r_1 = r_2 * \Gamma = 340 \text{ mm};$$

Толщина $d_1 = 10 мм;$

Расстояние между компонентами (приближенная формула)

$$d_{12} = f'_2 + f'_1 = 405$$
 mm;

Вводим перед ФО 6 строчек для задания параметров ТСГ (перед STO).

В «GENERAL» вводим диаметр входного зрачка

Диаметр входного зрачка $D=D'*\Gamma=D_{\Phi\Omega}*\Gamma=90$ мм.

Корректировка расстояния между компонентами d_{12}

Расстояние до плоскости изображения $\Phi O \ S'_{\phi O} = 1$ мм обеспечивается при $d_{12} = 404,45$ мм, фокусное расстояние f' = 365,013 мм

3 2-линзовая ТСГ+ФО

TO с 2-хлинзовой $TC\Gamma$ и f'=365 мм

При исходном зрачке ФО (перед 1-й склейкой) диаметр первого положительного компонента ТСГ (выпуклоплоской линзы) получается очень большим. Поэтому аберрации ТСГ будут недопустимо большими.

Поэтому целесообразно сместить зрачок в сторону положительной линзы. Устанавливаем «Ray arming».

4 2-линзовая ТСГ+ФО со смещенным зрачком

МПФ ТО с 2-хлинзовой ТСГ со смещенным зрачком

Качество остается плохим, в основном из-за сферической аберрации и хроматизма положения.

Для уменьшения этих аберраций заменить выпуклоплоскую первую линзу на двухлинзовую склейку.

5 ТСГ (со склейкой) +ФО

Исходные волновые аберрации

Результаты оптимизации

Качество неудовлетворительное.

7 ТСГ (со склейкой) +ФО (без линзы Смита)

Длина системы – 611 мм.

Оптимизация, Hammer-оптимизация.

Результаты оптимизации

Su	rf:Type	Comment	Radius		Thickness		Glass		
OBJ	Standard		Infinity		Infinity			i 1	
1	Standard		Infinity		20.000				
2	Standard		225.511	v	10.000		LZ_BF21	S	
3	Standard		-432.256	V	5.000		LZ_CTK19	S	
4	Standard		424.393	V	304.450	8 78		5 2	5
STO	Standard		Infinity		100.000				
6	Standard		222.417	v	3.000		LZ_TF5	S	
7	Standard		109.110	V	1.000	2 42		7	
8	Standard		108.115	V	5.000		LZ_BF1	S	
9	Standard		-372.022	v	3.000		LZ_TF1	S	
10	Standard		1955.027	v	472.834	v	1000		
11	Standard		34.219	V	4.000		LZ_TK21	S	
12	Standard		19.451	V	3.000		LZ_BF11	S	
13	Standard		168.312	v	34.301				
IMA	Standard		Infinity			Ħ			

$$f'=36$$
мм, $2W=10^\circ$; $A_{\varphi_O}=1:4$ $A=1:4$; $d_\Sigma=965$ мм

КПМ на частоте матрицы $m(\theta_M = 100 \text{ мм}^{-1}) > 0.2$

Добавим склейку на последнюю поверхность для исправления аберраций

Результаты оптимизации

© Lens Data Editor − □ ×
Edit. Solves View Help

St	arf:Type	Comment	Radius	Thickness		Glass	Semi-Diameter	Conic	Par 0 (unused)	Par 1 (unused)	Par 2 (unused)	Par 3 (u
OBJ	Standard		Infinity	Infinit	У		Infinity	0.000				
1	Standard		Infinity	20.00	10		48.725	0.000				
2	Standard		479.091	V 10.00	10	LZ_F8 S	48.529	0.000				
3	Standard		-317.370	V 5.00	10	LZ_TF4 S	48.359	0.000				
4	Standard		3084.237	V 304.45	0		48.075	0.000				
STO	Standard		Infinity	100.00	0		35.054	0.000				
6	Standard		292.652	V 5.00	10	LZ_F4 S	32.864	0.000				
7	Standard		165.841	V 1.00	0		32.509	0.000				
8	Standard		131.048	V 10.00	10	LZ_F4 S	32.572	0.000				
9	Standard		72.951	V 15.00	0	LZ_TK12 S	31.563	0.000				
10	Standard		-175.653	V 10.00	10		31.243	0.000				
11	Standard		-124.456	V 10.00	10	LZ_LF7 S	29.289	0.000				
12	Standard		-69.904	V 7.00	10	LZ_K100 S	29.008	0.000				
13	Standard		198.977	V 5.00	0	LZ_K8 S	28.125	0.000				
14	Standard		-508.430	V 212.92	4 M		27.997	0.000				
IMA	Standard		Infinity		-		3.186	0.000				

5: BLNK	BLNK Sequential merit function: RMS spot radius ce	entroid GQ 3 rings 6 arms	
6: BLNK	BLNK No default air thickness boundary constraints	ı.	
7: BLNK	BLNK No default glass thickness boundary constrain	nts.	
: DLNA	BLNA NO derault glass thickness boundary constrain	103.	

Optical Path Difference

14.06.2022

Maximum Scale: ± 0.500 Waves. 0.486 0.588 0.656

Surface: Image

супер оптимизация.zmx Configuration 1 of 1

14.06.2022

Data for 0.4861 to 0.6563 μm . Surface: Image

супер оптимизация.zmx Configuration 1 of 1 Полученная система близка к дифракционной, КПМ на частоте матрицы $m(\nu_{\scriptscriptstyle M}=100{\it mm}^{-1})>0,5.$ Но длина системы (от первой поверхности до плоскости изображения $d_{\Sigma}=965~{\rm mm}>f'$

8 Уменьшение длины оптической системы

Самый большой воздушный промежуток — между компонентами ТСГ. Последовательно уменьшаем расстояние между компонентами на несколько мм и после каждого изменения проводим оптимизацию.

При уменьшении процессе длины системы оптимизации осуществляется взаимная компенсация аберраций компонентов 315 системы. Однако при длине MM качество снижается. Коррекционные возможности исчерпаны.

Длина системы 315 мм.

5	Surf:Type	Comment	Radius	Thickness	Glass		Semi-Diameter	Conic	Par 0 (unused)	Par 1 (unused)	Par 2 (unused)
OBJ	Standard		Infinity	Infinity		П	Infinity	0.000		T	
1	Standard		Infinity	20.000			46.138	0.000			
2	Standard		138.637	15.000	LZ_LK3	S	45.895	0.000			
3	Standard		-289.122	5.000	LZ_F4	S	45.469	0.000			
4	Standard		2342.959	70.000			44.611	0.000			
STO	Standard		Infinity	18.000			34.652	0.000			
6	Standard		69.084	6.000	LZ_BF16	S	31.495	0.000			
7	Standard		124.785	5.000			30.878	0.000			
8	Standard		150.810	10.000	LZ_F8	S	29.734	0.000			
9	Standard		26.724	20.000	LZ_TK23	S	24.158	0.000			
10	Standard		-120.660	6.000			23.634	0.000			
11	Standard		-62.187	10.000	LZ_TF3	S	21.110	0.000			
12	Standard		-36.245	7.000	LZ_K100	S	20.317	0.000			
13	Standard		23.831 \	7.000	LZ_TF4	S	16.037	0.000			
14	Standard		29.006	116.000			14.616	0.000			
IMA	Standard		Infinity	-			3.203	0.000			

Transverse Ray Fan Plot

15.06.2022

Maximum Scale: ± 50.000 μm.
0.486 0.588 0.656

Surface: Image

super_optimizatsia8.zmx Configuration 1 of 1

Параметры синтезированного телеобъектива

Угловое поле 2W=1°

Фокусное расстояние f'=365 мм

Относительное отверстие А=1:5

Коэффициент передачи модуляции $m(100 \text{мм}^{-1})=0.5$

Диаметр изображения 2у'=6 мм

Количество линз – 8

Длина $d_{\Sigma} = 347 \text{ мм} < \text{f}'$