1. Determination of Work Function and Planck's Constant Using Photoelectric Effect

1. What is the photoelectric effect?

The photoelectric effect is the emission of electrons from a metal surface when it is exposed to light of sufficient frequency.

2. What is Planck's constant?

Planck's constant () is a fundamental constant representing the energy of a photon divided by its frequency ().

3. What is the stopping potential?

The stopping potential is the minimum voltage required to stop photoelectrons from reaching the anode.

4. Why are different color filters used in the experiment?

To provide light of different frequencies for measuring the stopping potential and determining and work function.

5. What is the work function of a material?

The work function () is the minimum energy required to eject an electron from the surface of a metal.

6. Why is a vacuum photo tube used?

To prevent collisions between emitted electrons and air molecules, ensuring accurate measurements.

7. How is the slope of the graph related to Planck's constant?

The slope of the graph between stopping potential and frequency is, allowing determination of.

8. Why does light intensity not affect stopping potential?

Stopping potential depends only on the frequency of light, not its intensity.

9. What is the standard value of Planck's constant?

10. What happens if the frequency of light is below the threshold frequency? No photoelectrons are emitted regardless of light intensity.

2. Determination of Hall Coefficient and Carrier Concentration

1. What is the Hall effect?

It is the production of a voltage across a conductor when it is placed in a magnetic field perpendicular to the current.

2. What is the Hall coefficient?

The Hall coefficient () is a measure of the voltage generated per unit current per unit magnetic field.

3. How is carrier concentration related to the Hall coefficient?

Carrier concentration () is inversely proportional to the Hall coefficient: .

4. What is the significance of Hall voltage?

It indicates the type of charge carriers (positive for holes, negative for electrons) and their concentration.

5. Why is the Hall probe calibrated before the experiment?

To ensure accurate measurements of the magnetic field and Hall voltage.

6. What are the applications of the Hall effect?

It is used in magnetic field sensors, position sensors, and determining material properties.

7. What factors affect the Hall voltage?

The magnetic field, current, thickness of the material, and type of charge carriers.

8. Why is the Hall probe kept perpendicular to the magnetic field?

To maximize the Hall voltage and obtain accurate readings.

9. What is carrier mobility?

It is the ability of charge carriers to move through a material under the influence of an electric field.

10. How does temperature affect the Hall coefficient?

Temperature can influence the mobility and concentration of charge carriers, thus affecting.