Algèbre linéaire Série 3

Exercice 1. Montrer que l'ensemble $W = \{(x, y, z) : x, y, z \in \mathbb{R}, x + 2y + 2z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

Exercice 2. Soit V un \mathbb{R} -espace vectoriel. On note $\mathbf{0}$ l'élément trivial de V. Montrer que si $\lambda \in \mathbb{R}$ alors $\lambda \cdot \mathbf{0} = \mathbf{0}$.

Exercice 3. Soit $V = \mathbb{R}^2$. Donner deux sous espaces vectoriels U_1 et U_2 de V tels que $U = U_1 \cup U_2$ n'est pas un sous espace vectoriel de V. (**Note.** En général, l'union U de deux sous espaces vectoriels U_1 et U_2 d'un \mathbb{R} -espace vectoriel V n'est pas un sous espace vectoriel de V.)

Exercice 4. Donner un exemple d'un sous-ensemble $U \subset \mathbb{R}^2$ tel que U soit clos pour la multiplication par scalaires et U ne soit pas un sous-espace vectoriel de \mathbb{R}^2 .

Exercice 5. Soient V un \mathbb{R} -espace vectoriel, et U, W deux sous espaces vectoriels de V. Montrer que $U \cap W$ est un sous espace vectoriel de V.

Exercice 6. Soit $\mathbb{P}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des polynômes en la variable x et à coefficients dans \mathbb{R} .

- (i) Soit $U = \{ax^2 + bx^5 : a, b \in \mathbb{R}\}$. Montrer que U est un sous-espace vectoriel de $\mathbb{P}(\mathbb{R})$.
- (ii) Trouver un sous-espace vectoriel W de $\mathbb{P}(\mathbb{R})$ tel que $\mathbb{P}(\mathbb{R}) = U \oplus W$.

Exercice 7. Prouver ou trouver un contre-exemple à l'énoncé suivant :

Enoncé. Soit V un \mathbb{R} -espace vectoriel. Si W_1 , W_2 , W_3 sont des sous-espaces vectoriels de V tels que $W_1 + W_3 = W_2 + W_3$, alors $W_1 = W_2$.

Exercice 8. Soient V un \mathbb{R} -espace vectoriel et U, W des sous-espaces vectoriels de V tels que la somme U+W soit directe. Montrer que tout élément v de U+W s'écrit de manière unique sous la forme v=u+w avec $u\in U$ et $w\in W$.

Exercice 9. Prouver ou trouver un contre-exemple à l'énoncé suivant :

Enoncé. Soit V un \mathbb{R} -espace vectoriel. Si W_1 , W_2 , W_3 sont des sous-espaces vectoriels de V tels que $W_1 \oplus W_3 = W_2 \oplus W_3$, alors $W_1 = W_2$.

Indications. Penser à $V = \mathbb{R}^2$.

Exercice 10. Soit $V = \mathbb{P}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des polynômes en la variable x et à coefficients dans \mathbb{R} .

- (i) Soit $U = \{ p \in V : p(a) = p(b) \ \forall a, b \in \mathbb{R} \}$. Montrer que U est un sous-espace vectoriel de V.
- (ii) Soit $W = \{ p \in V : p(0) = 0 \}$. Montrer que W est un sous-espace vectoriel de V.
- (iii) Montrer que $V = U \oplus W$.

Exercice 11. Soient $S = \{(1,2,3), (0,1,2)\}, T = \{(2,3,4), (0,0,1)\} \subset \mathbb{R}^3$.

- (i) Déterminer Vect(S) + Vect(T). Peut on trouver un sous ensemble R_1 de Vect(S) + Vect(T) tel que $Vect(R_1) = Vect(S) + Vect(T)$ et |R| = 3? Si oui, déterminer un tel ensemble R_1 .
- (ii) Déterminer $\text{Vect}(S) \cap \text{Vect}(T)$. En particulier, donner un sous ensemble R_2 de $\text{Vect}(S) \cap \text{Vect}(T)$ tel que $\text{Vect}(R_2) = \text{Vect}(S) \cap \text{Vect}(T)$ et $|R_2|$ soit le plus petit possible.

(iii) La somme Vect(S) + Vect(T) est elle directe?

Exercice 12. (Pas facile!) Soit $V = \{(x, y, z) : x, y, z \in \mathbb{R}, x + y + z = 1\}$. Soient $v = (x, y, z) \in V$, $v_1 = (x_1, y_1, z_1) \in V$, $v_2 = (x_2, y_2, z_2) \in V$ et $r \in \mathbb{R}$. Montrer que V est un \mathbb{R} -espace vectoriel sous les opérations suivantes :

$$v_1 + v_2 = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$$

 et

$$rv = r(x, y, z) = (rx - r + 1, ry, rz).$$