Computing quadratic estimator, delensing in curvedsky

Toshiya Namikawa

May 6, 2019

Abstract

Here, I describe an algorithm for computing the quadratic estimator normalization of the lensing, cosmic bi-refringence, patchy reionization, and so on.

Contents

1	Nota	ations	2		
	1.1	CMB	2		
	1.2	Lensing	2		
	1.3	Rotation	2		
	1.4	Inhomogeneous Reionization	3		
	1.5	Spherical Harmonics and Wigner-3j	3		
	1.6	Derivatives of Spherical Harmonics	3		
	1.7	Map derivatives	3		
2	Dist	ortion of CMB anisotropies	4		
	2.1	Lensing distortion	4		
		2.1.1 Lens distortion in harmonic space: Temperature	4		
		2.1.2 Lens distortion in harmonic space: Polarization	5		
	2.2	Rotation distortion	6		
	2.3	Patchy-tau distortion	7		
	2.4	Summary	7		
	2.4	Summary	,		
3	Quadratic estimator 8				
	3.1	Distortion induced anisotropies	8		
	3.2	Weight Function	8		
	3.3	Weight Function: Derivations	9		
4	Con	nputing quadratic estimator	10		
	4.1	Spherical Harmonics	10		
	4.2	Healpix	10		
	4.3		11		
			12		
		4.3.2 EE	12		
	4.4		12		
		<u>.</u>	12		
5	Con	nputing Quadratic Estimator Normalization	14		
J	5.1		14		
	5.1		14 15		
	3.2	Noise Covariance and Reffici function	IJ		
6			17		
		8	17		
	60	Varmal Experience Detation	n		

7	Computing delensed CMB anisotropies		
	7.1 Linear template of lensing B mode	21	

1 Notations

In the followings, we use small letters for multipoles of the CMB anisotropies (e.g., ℓ), while large letters are used for multipoles of the distortion fields (lensing, rotation, etc).

1.1 CMB

 Θ denotes the CMB temperature fluctuations, and Q and U denote the Stokes parameters of the CMB linear polarization. The following equation defines the harmonic coefficients of the temperature anisotropies (and, in general, any scalar quantities x):

$$x_{LM} = \int \mathrm{d}^2 \hat{\boldsymbol{n}} \ Y_{LM}^*(\hat{\boldsymbol{n}}) x(\hat{\boldsymbol{n}}) \,. \tag{1}$$

where Y_{LM} is the spin-0 spherical harmonics. On the other hand, Q and U are changed by the rotation of the sphere, and are therefore usually transformed into the rotational invariant quantities, the E and B modes, as

$$[E \pm iB]_{\ell m} = \int d^2 \hat{\boldsymbol{n}} \ (Y_{\ell m}^{\pm 2})^* (\hat{\boldsymbol{n}}) [Q \pm iU] (\hat{\boldsymbol{n}}). \tag{2}$$

Here, $Y_{\ell m}^{\pm 2}$ is the spin-2 spherical harmonics. For short notation, we also use

$$\Xi^{\pm} = E \pm iB,$$

$$P^{\pm} = Q \pm iU$$
(3)

1.2 Lensing

The lensing effect on CMB anisotropies is described as remapping of the unlensed CMB anisotropies by the deflection angle [1, 2]

$$X(\hat{\boldsymbol{n}}) = X(\hat{\boldsymbol{n}} + \boldsymbol{d}), \tag{4}$$

where X is Θ or P^{\pm} . The deflection angle of the CMB lensing is decomposed into the lensing potential, ϕ , and curl mode, ϖ , as [3]

$$d = \nabla \phi + \Delta \varpi \,, \tag{5}$$

where the operator $\Delta = \star \nabla$ denotes the derivatives with 90° rotation counterclockwise on the plane perpendicular to the line-of-sight direction and then operation. The harmonic coefficients of ϕ and ϖ are given by Eq. (1). The remapping of the CMB anisotropies is then given by

$$X(\hat{\boldsymbol{n}}) = X(\hat{\boldsymbol{n}}) + [\nabla \phi + \Delta \varpi] \cdot \nabla X + \mathcal{O}(\phi^2, \varpi^2).$$
(6)

1.3 Rotation

If the rotation angle is small, the modulation of polarization after a rotation by an angle α is given by (e.g. [4])

$$\delta P^{\pm} = \pm 2\alpha P^{\pm} \,. \tag{7}$$

The harmonic coefficients of α is given by Eq. (1).

1.4 Inhomogeneous Reionization

The inhomogeneities of the reionization could vary the optical depth τ across the CMB sky. If the spatial variation of τ is very small, this leads to the modulation in CMB temperature and polarization as (e.g. [5])

$$\Theta \to \Theta + \tau \Theta . P^{\pm} \to P^{\pm} + \tau P^{\pm} .$$
 (8)

The harmonic coefficients of τ is given by Eq. (1).

1.5 Spherical Harmonics and Wigner-3j

The spherical harmonics is related to the Wigner-3j symbols as [6]

$$\int d^2 \hat{\boldsymbol{n}} \ Y_{\ell_1 m_1}^{s_1} Y_{\ell_2 m_2}^{s_2} Y_{\ell_3 m_3}^{s_3} = \sqrt{\frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell_3 + 1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -s_1 & -s_2 & -s_3 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} . \quad (9)$$

1.6 Derivatives of Spherical Harmonics

In general, denoting $a_{\ell}^s = \sqrt{(\ell - s)(\ell + s)/2}$, the derivative of the spherical harmonics is given by [6]

$$\nabla Y_{\ell m}^{s} = a_{\ell}^{s} Y_{\ell m}^{s+1} e^{*} - a_{\ell}^{-s} Y_{\ell m}^{s-1} e.$$
(10)

Here, we introduce the polarization vector e which are defined

$$e = \frac{e_1 + \mathrm{i}e_2}{\sqrt{2}} \tag{11}$$

with e_i denoting the basis vectors orthogonal to the radial vector. The polarization vector satisfies $e \cdot e = 0$, $e \cdot e^* = 1$, $\star e = -ie$. In particular, for s = 0,

$$\nabla Y_{\ell m} = a_{\ell}^{0} (Y_{\ell m}^{1} e^{*} - Y_{\ell m}^{-1} e), \qquad (12)$$

and, for $s=\pm 2$, denoting $a^\pm=a_\ell^{\pm 2}$,

$$\nabla Y_{\ell m}^{2} = a_{\ell}^{+} Y_{\ell m}^{3} e^{*} - a_{\ell}^{-} Y_{\ell m}^{1} e,$$

$$\nabla Y_{\ell m}^{-2} = a_{\ell}^{-} Y_{\ell m}^{-1} e^{*} - a_{\ell}^{+} Y_{\ell m}^{-3} e.$$
(13)

1.7 Map derivatives

Derivative of scalar quantities such as the CMB temperature fluctuations and lensing potential is

$$\nabla x = \sum_{LM} x_{LM} \nabla Y_{LM} = \sum_{LM} x_{LM} a_L^0 \left(Y_{LM}^1 e^* - Y_{LM}^{-1} e \right) = x^+ e^* - x^- e.$$
 (14)

where we define

$$x^{\pm} \equiv \sum_{LM} x_{LM} a_L^0 Y_{LM}^{\pm 1} \,, \tag{15}$$

and $(x^+)^* = -x^-$. The rotation of a pseudo-scalar quantity is given by

$$\Delta \varpi = \sum_{LM} \varpi_{LM} \Delta Y_{LM} = \sum_{LM} \varpi_{LM} a_L^0 i \left(Y_{LM}^1 e^* + Y_{LM}^{-1} e \right) = i \left(\varpi^+ e^* + \varpi^- e \right), \tag{16}$$

and $(\varpi^+)^* = -\varpi^-$. Spin-2 fields such as the CMB linear polarization is given by

$$\nabla P^{+} = \sum_{\ell m} \Xi_{\ell m}^{+} \nabla Y_{\ell m}^{2} = \sum_{\ell m} \Xi_{\ell m}^{+} \left(a_{\ell}^{+} Y_{\ell m}^{3} e^{*} - a_{\ell}^{-} Y_{\ell m}^{1} e \right) = \Xi^{+} e^{*} - \Xi^{+} e^{*}, \tag{17}$$

$$\nabla P^{-} = (\nabla P^{+})^{*} = \sum_{\ell m} \Xi_{\ell m}^{-} \nabla Y_{\ell m}^{-2} = \sum_{\ell m} \Xi_{\ell m}^{-} \left(a_{\ell}^{-} Y_{\ell m}^{-1} e^{*} - a_{\ell}^{+} Y_{\ell m}^{-3} e \right) = \Xi^{-+} e^{*} - \Xi^{--} e.$$
 (18)

Note that $(\Xi^{+})^* = -\Xi^{-}$ and $(\Xi^{+})^* = -\Xi^{-}$.

2 Distortion of CMB anisotropies

In the following, we first define useful quantities to compute the distortion effect. The parity symmetry indicator is given by

$$p_{\ell_1\ell_2\ell_3}^{\pm} \equiv \frac{1 \pm (-1)^{\ell_1 + \ell_2 + \ell_3}}{2} \,, \tag{19}$$

(20)

An even (odd) parity quantity contains $p^+(p^-)$. A multipole factor is defined as

$$\gamma_{\ell_1 \ell_2 \ell_3} \equiv \sqrt{\frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell_3 + 1)}{4\pi}} \,. \tag{21}$$

The convolution operator in full sky is defined as

$$\widetilde{\sum_{LM\ell'm'}}^{(\ell m)} \equiv \sum_{LM\ell'm'} (-1)^m \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix}.$$
(22)

2.1 Lensing distortion

The lensing contributions in the position space become

$$\delta^{\phi}\Theta = \nabla\phi \cdot \nabla\Theta = -\phi^{-}\Theta^{+} - \phi^{+}\Theta^{-},$$

$$\delta^{\varpi}\Theta = \Delta\varpi \cdot \nabla\Theta = i(\varpi^{-}\Theta^{+} - \varpi^{+}\Theta^{-}),$$

$$\delta^{\phi}P^{\pm} = \nabla\phi \cdot \nabla P^{\pm} = -\phi^{-}\Xi^{\pm^{+}} - \phi^{+}\Xi^{\pm^{-}},$$

$$\delta^{\varpi}P^{\pm} = \Delta\varpi \cdot \nabla P^{\pm} = i(\varpi^{-}\Xi^{\pm^{+}} - \varpi^{+}\Xi^{\pm^{-}}).$$
(23)

2.1.1 Lens distortion in harmonic space: Temperature

The harmonics transform of the lensing contributions is

$$\delta^{\phi}\Theta_{\ell m} = -\int d^{2}\hat{\boldsymbol{n}} Y_{\ell m}^{*} [\phi^{-}\Theta^{+} + \phi^{+}\Theta^{-}]
= -\sum_{LM\ell'm'} \phi_{LM}\Theta_{\ell'm'} a_{L}^{0} a_{\ell'}^{0} \int d^{2}\hat{\boldsymbol{n}} (-1)^{m} Y_{\ell,-m} [Y_{LM}^{-1}Y_{\ell'm'}^{1} + Y_{LM}^{1}Y_{\ell'm'}^{-1}]
= -\sum_{LM\ell'm'} \phi_{LM}\Theta_{\ell'm'} 2a_{L}^{0} a_{\ell'}^{0} p_{\ell L \ell'}^{+} \gamma_{\ell L \ell'} (-1)^{m} \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix}
= -\sum_{LM\ell'm'} (\ell m) \phi_{LM}\Theta_{\ell'm'} 2a_{L}^{0} a_{\ell'}^{0} p_{\ell L \ell'}^{+} \gamma_{\ell L \ell'} \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix}
= \sum_{LM\ell'm'} (\ell m) \phi_{LM}\Theta_{\ell'm'} W_{\ell L \ell'}^{\phi,0} .$$
(24)

Here we introduce coefficients $c_{\phi} = 1$ and $c_{\varpi} = -i$, and denote

$$W_{\ell_1\ell_2\ell_3}^{\phi,0} = -2c_{\phi}a_{\ell_2}^0 a_{\ell_3}^0 p_{\ell_1\ell_2\ell_3}^+ \gamma_{\ell_1\ell_2\ell_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 1 & -1 \end{pmatrix}. \tag{25}$$

Note that $(W_{\ell_1\ell_2\ell_3}^{\phi,0})^* = W_{\ell_1\ell_2\ell_3}^{\phi,0}$

On the other hand, for curl mode,

$$\delta^{\varpi}\Theta_{\ell m} = i \int d^{2}\hat{\boldsymbol{n}} Y_{\ell m}^{*} \left[\varpi^{-}\Theta^{+} - \varpi^{+}\Theta^{-}\right]$$

$$= \sum_{LM\ell'm'} \varpi_{LM}\Theta_{\ell'm'} 2ia_{L}^{0} a_{\ell'}^{0} p_{\ell L\ell'}^{-} \gamma_{\ell L\ell'} (-1)^{m} \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix}$$

$$= \sum_{LM\ell'm'}^{(\ell m)} \varpi_{LM}\Theta_{\ell'm'} W_{\ell L\ell'}^{\varpi,0}, \qquad (26)$$

with

$$W_{\ell_1\ell_2\ell_3}^{\varpi,0} = -2c_{\varpi}a_{\ell_2}^0 a_{\ell_3}^0 p_{\ell_1\ell_2\ell_3}^- \gamma_{\ell_1\ell_2\ell_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 1 & -1 \end{pmatrix}.$$
 (27)

Note that the above quantity is consistent with Ref. [7] and also $(W_{\ell_1\ell_2\ell_3}^{\varpi,0})^* = (-1)^{\ell_1+\ell_2+\ell_3}W_{\ell_1\ell_2\ell_3}^{\varpi,0}$ which is consistent with (27).

2.1.2 Lens distortion in harmonic space: Polarization

The lensed anisotropies for polarizations are given by

$$\delta^{\phi}\Xi_{\ell m}^{\pm} = -\int d^{2}\hat{\boldsymbol{n}} \ (Y_{\ell m}^{\pm 2})^{*} [\phi^{-}\Xi^{\pm^{+}} + \phi^{+}\Xi^{\pm^{-}}]
= -\sum_{LM\ell'm'} \phi_{LM}\Xi_{\ell'm'}^{\pm} a_{L}^{0} \int d^{2}\hat{\boldsymbol{n}} \ (Y_{\ell m}^{\pm 2})^{*} [a_{\ell'}^{+}Y_{LM}^{\mp 1}Y_{\ell'm'}^{\pm 3} + a_{\ell'}^{-}Y_{LM}^{\pm 1}Y_{\ell'm'}^{\pm 1}]
= -\sum_{LM\ell'm'} (-1)^{m} \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix} \phi_{LM}\Xi_{\ell'm'}^{\pm} \gamma_{\ell L\ell'} a_{L}^{0} \left[a_{\ell'}^{+} \begin{pmatrix} \ell & L & \ell' \\ \mp 2 & \mp 1 & \pm 3 \end{pmatrix} + a_{\ell'}^{-} \begin{pmatrix} \ell & L & \ell' \\ \mp 2 & \pm 1 & \pm 1 \end{pmatrix} \right]
= \sum_{LM\ell'm'} \phi_{LM}\Xi_{\ell'm'}^{\pm} W_{\ell L\ell'}^{\phi,\pm 2} ,$$
(28)

with

$$S_{\ell_1\ell_2\ell_3}^{\phi,2} = (-1)^{\ell_1+\ell_2+\ell_3} S_{\ell_1\ell_2\ell_3}^{\phi,-2} = -c_{\phi} \gamma_{\ell_1\ell_2\ell_3} a_{\ell_2}^0 \left[a_{\ell_3}^+ \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -2 & -1 & 3 \end{pmatrix} + a_{\ell_3}^- \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -2 & 1 & 1 \end{pmatrix} \right]. \tag{29}$$

For curl mode,

$$\delta^{\varpi}\Xi_{\ell m}^{\pm} = i \int d^{2}\hat{n} \ (Y_{\ell m}^{\pm 2})^{*} [\varpi^{-}\Xi^{\pm^{+}} - \varpi^{+}\Xi^{\pm^{-}}]
= \pm i \sum_{LM\ell'm'} (-1)^{m} \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix} \varpi_{LM}\Xi_{\ell'm'}^{\pm} a_{L}^{0} \gamma_{\ell L \ell'} \left[a_{\ell'}^{+} \begin{pmatrix} \ell & L & \ell' \\ \mp 2 & \mp 1 & \pm 3 \end{pmatrix} - a_{\ell'}^{-} \begin{pmatrix} \ell & L & \ell' \\ \mp 2 & \pm 1 & \pm 1 \end{pmatrix} \right]
= \sum_{LM\ell'm'} (\ell m) \omega_{LM}\Xi_{\ell'm'}^{\pm} W_{\ell L \ell'}^{\varpi, \pm 2},$$
(30)

with

$$W_{\ell_1\ell_2\ell_3}^{\varpi,2} = -(-1)^{\ell_1+\ell_2+\ell_3} W_{\ell_1\ell_2\ell_3}^{\varpi,-2} = -c_{\varpi} \gamma_{\ell_1\ell_2\ell_3} a_{\ell_2}^0 \left[a_{\ell_3}^+ \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -2 & -1 & 3 \end{pmatrix} - a_{\ell_3}^- \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -2 & 1 & 1 \end{pmatrix} \right]. \tag{31}$$

Now we consider the lensed E/B modes separately. In general, for $X^{\pm} = A \pm iB = (a \pm ib)c^{(\pm)}$,

$$A = \frac{X^{+} + X^{-}}{2} = \left(a\frac{c^{(+)} + c^{(-)}}{2} + ib\frac{c^{(+)} - c^{(-)}}{2}\right), \tag{32}$$

$$B = \frac{X^{+} - X^{-}}{2i} = \left(-ai\frac{c^{(+)} - c^{(-)}}{2} + b\frac{c^{(+)} + c^{(-)}}{2}\right)$$
(33)

CONTENTS 2.2 Rotation distortion

The lensing correction terms for E/B modes are then given by

$$\delta^{x} E_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} \phi_{LM} \left[W_{\ell L\ell'}^{x,+} E_{\ell'm'} + W_{\ell L\ell'}^{x,-} B_{\ell'm'} \right] , \qquad (34)$$

$$\delta^x B_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} \phi_{LM} \left[-W_{\ell L\ell'}^{x,-} E_{\ell'm'} + W_{\ell L\ell'}^{x,+} B_{\ell'm'} \right] . \tag{35}$$

Here we define

$$W_{\ell_{1}\ell_{2}\ell_{3}}^{x,+} \equiv \frac{W_{\ell_{1}\ell_{2}\ell_{3}}^{x,2} + W_{\ell_{1}\ell_{2}\ell_{3}}^{x,-2}}{2} = \frac{1 + c_{x}^{2}(-1)^{\ell_{1}+\ell_{2}+\ell_{3}}}{2} W_{\ell_{1}\ell_{2}\ell_{3}}^{x,2}$$

$$= -\wp_{\ell_{1}\ell_{2}\ell_{3}}^{x,+} \gamma_{\ell_{1}\ell_{2}\ell_{3}} a_{\ell_{2}}^{0} \left[a_{\ell_{3}}^{+} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ -2 & -1 & 3 \end{pmatrix} + c_{x}^{2} a_{\ell_{3}}^{-} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ -2 & 1 & 1 \end{pmatrix} \right],$$

$$W_{\ell_{1}\ell_{2}\ell_{3}}^{x,-} \equiv i \frac{W_{\ell_{1}\ell_{2}\ell_{3}}^{x,2} - W_{\ell_{1}\ell_{2}\ell_{3}}^{x,-2}}{2} = i \frac{1 - c_{x}^{2}(-1)^{\ell_{1}+\ell_{2}+\ell_{3}}}{2} W_{\ell_{1}\ell_{2}\ell_{3}}^{x,2}$$

$$= -\wp_{\ell_{1}\ell_{2}\ell_{3}}^{x,-} \gamma_{\ell_{1}\ell_{2}\ell_{3}} a_{\ell_{2}}^{0} \left[a_{\ell_{3}}^{+} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ -2 & -1 & 3 \end{pmatrix} + c_{x}^{2} a_{\ell_{3}}^{-} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ -2 & 1 & 1 \end{pmatrix} \right], \tag{36}$$

where we reintroduce a parity indicator as

$$\wp_{\ell_1\ell_2\ell_3}^{x,+} = c_x \frac{1 + c_x^2(-1)^{\ell_1 + \ell_2 + \ell_3}}{2},$$

$$\wp_{\ell_1\ell_2\ell_3}^{x,-} = ic_x \frac{1 - c_x^2(-1)^{\ell_1 + \ell_2 + \ell_3}}{2}.$$
(37)

2.2 Rotation distortion

The E and B modes after the rotation are given by

$$\delta \Xi_{\ell m}^{\pm} = \pm 2 \int d^{2} \hat{\boldsymbol{n}} \ (Y_{\ell m}^{\pm 2})^{*} \alpha P^{\pm}$$

$$= \pm 2 \sum_{LM\ell'm'} \alpha_{LM} \Xi_{\ell'm'}^{\pm} \int d^{2} \hat{\boldsymbol{n}} \ (Y_{\ell m}^{\pm 2})^{*} Y_{LM} Y_{\ell'm'}^{\pm 2}$$

$$= \pm 2 \sum_{LM\ell'm'} (-1)^{m} \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix} \alpha_{LM} \Xi_{\ell'm'}^{\pm} \gamma_{\ell L \ell'} \begin{pmatrix} \ell & L & \ell' \\ \mp 2 & 0 & \pm 2 \end{pmatrix}$$

$$= \sum_{LM\ell'm'} \alpha_{LM} \Xi_{\ell'm'}^{\pm} W_{\ell L \ell'}^{\alpha, \pm 2} , \qquad (38)$$

with

$$W_{\ell_1 \ell_2 \ell_3}^{\alpha, \pm 2} = \pm 2 \gamma_{\ell_1 \ell_2 \ell_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ \mp 2 & 0 & \pm 2 \end{pmatrix}. \tag{39}$$

The distorted E and B modes are then described as

$$\delta E_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} \alpha_{LM} \left(E_{\ell'm'} W_{\ell L\ell'}^{\alpha,+} + B_{\ell'm'} W_{\ell L\ell'}^{\alpha,-} \right) , \qquad (40)$$

$$\delta B_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} \alpha_{LM} \left(-E_{\ell'm'} W_{\ell L \ell'}^{\alpha,-} + B_{\ell'm'} W_{\ell L \ell'}^{\alpha,+} \right) \tag{41}$$

where we define $c_{\alpha} = 1$ and

$$W_{\ell_1 \ell_2 \ell_3}^{\alpha, \pm} = 2\wp_{\ell_1 \ell_2 \ell_3}^{\alpha, \mp} \gamma_{\ell_1 \ell_2 \ell_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ -2 & 0 & 2 \end{pmatrix}$$
(42)

2.3 Patchy-tau distortion

The harmonics transform of $au(\hat{m{n}})\Theta(\hat{m{n}})$ is

$$\delta\Theta_{\ell m} = \int d^{2}\hat{\boldsymbol{n}} Y_{\ell m}^{*} \tau(\hat{\boldsymbol{n}}) \Theta(\hat{\boldsymbol{n}})$$

$$= \sum_{LM\ell'm'} \tau_{LM} \Theta_{\ell'm'} \int d^{2}\hat{\boldsymbol{n}} Y_{\ell m}^{*} Y_{LM} Y_{\ell'm'}$$

$$= \sum_{LM\ell'm'} \tau_{LM} \Theta_{\ell'm'} p_{\ell L\ell'}^{+} \gamma_{\ell L\ell'} (-1)^{m} \begin{pmatrix} \ell & L & \ell' \\ -m & M & m' \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \sum_{LM\ell'm'} \iota_{LM} \Theta_{\ell'm'} W_{\ell L\ell'}^{\tau,0}, \qquad (43)$$

where

$$W_{\ell L \ell'}^{\tau,0} = p_{\ell L \ell'}^{+} \gamma_{\ell L \ell'} \begin{pmatrix} \ell & L & \ell' \\ 0 & 0 & 0 \end{pmatrix}. \tag{44}$$

2.4 Summary

The above all distortions are described in the following form:

$$\delta\Theta_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} x_{LM} \Theta_{\ell'm'} W_{\ell L \ell'}^{x,0}, \qquad (45)$$

$$\delta E_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} x_{LM} \left(E_{\ell'm'} W_{\ell L \ell'}^{x,+} + B_{\ell'm'} W_{\ell L \ell'}^{x,-} \right) , \tag{46}$$

$$\delta B_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} x_{LM} \left(-E_{\ell'm'} W_{\ell L\ell'}^{x,-} + B_{\ell'm'} W_{\ell L\ell'}^{x,+} \right) \tag{47}$$

where x is a distortion field. The functional form of W is given above.

3 Quadratic estimator

3.1 Distortion induced anisotropies

The distortion fields x described above induce the off-diagonal elements of the covariance ($\ell \neq \ell'$ or $m \neq m'$), [8, 9]

$$\langle \widetilde{X}_{\ell m} \widetilde{Y}_{\ell' m'} \rangle_{\text{CMB}} = \sum_{LM} \begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix} f_{\ell L \ell'}^{x, \text{XY}} x_{LM}^*, \tag{48}$$

where $\langle \cdots \rangle_{\rm CMB}$ denotes the ensemble average over the primary CMB anisotropies with a fixed realization of the distortion fields. We ignore the higher-order terms of the distortion fields. The functional form of the weight functions f are discussed later.

With a quadratic combination of observed CMB anisotropies, \widehat{X} and \widehat{Y} , the general quadratic estimators are formed as

$$[\widehat{x}_{LM}^{XY}]^* = A_L^{x,XY} \sum_{\ell\ell'mm'} \begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix} g_{\ell L\ell'}^{x,XY} \widehat{X}_{\ell m} \widehat{Y}_{\ell'm'}. \tag{49}$$

Here we define

$$g_{\ell L \ell'}^{x, \mathrm{XY}} = \frac{[f_{\ell L \ell'}^{x, \mathrm{XY}}]^*}{\Delta^{\mathrm{XY}} \hat{C}_{\ell}^{\mathrm{XY}} \hat{C}_{\ell'}^{\mathrm{YY}}}$$
(50)

$$A_L^{x,XY} = \frac{1}{2L+1} \sum_{\ell\ell'} f_{\ell L \ell'}^{x,XY} g_{\ell L \ell'}^{x,XY} , \qquad (51)$$

where $\Delta^{\rm XX}=2$, $\Delta^{\rm EB}=\Delta^{\rm TB}=1$, and $\widehat{C}_{\ell}^{\rm XX}$ ($\widehat{C}_{\ell}^{\rm YY}$) is the observed power spectrum.

3.2 Weight Function

The weight functions are, in general, given as

$$f_{\ell L \ell'}^{x,(\Theta\Theta)} = W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta} + p_x W_{\ell' L \ell}^{x,0} C_{\ell}^{\Theta\Theta} , \qquad (52)$$

$$f_{\ell L \ell'}^{x,(\Theta E)} = W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta E} + p_x W_{\ell' L \ell}^{x,+} C_{\ell}^{\Theta E},$$
(53)

$$f_{\ell L \ell'}^{x,(\Theta B)} = p_x W_{\ell' L \ell}^{x,-} C_{\ell}^{\Theta E}, \qquad (54)$$

$$f_{\ell L \ell'}^{x,(EE)} = W_{\ell L \ell'}^{x,+} C_{\ell'}^{\text{EE}} + p_x W_{\ell' L \ell}^{x,+} C_{\ell}^{\text{EE}} , \qquad (55)$$

$$f_{\ell L \ell'}^{x,(EB)} = W_{\ell L \ell'}^{x,-} C_{\ell'}^{\text{BB}} + p_x W_{\ell' L \ell}^{x,-} C_{\ell}^{\text{EE}} , \qquad (56)$$

$$f_{\ell L \ell'}^{x,(BB)} = W_{\ell L \ell'}^{x,+} C_{\ell'}^{BB} + p_x W_{\ell' L \ell}^{x,+} C_{\ell}^{BB} . \tag{57}$$

Here, the parity index is $p_{\phi} = p_{\epsilon} = 1$ and $p_{\varpi} = p_{\alpha} = -1$. Strictly speaking, p_x should be $(-1)^{\ell' + L + \ell}$. However, W is only non-zero when $\ell' + L + \ell$ is even, and vice versa. The parity even quantities are $x = \phi$ and ϵ . Note that the above weight functions are consistent with Ref. [7] $(W_{\ell L \ell'}^{x,-} = -_{\ominus} S_{\ell L \ell'}^x)$ for the lensing case.

3.3 Weight Function: Derivations

Let us first consider the temperature case. There are two contributions to the temperature quadratic estimator, and the one is given as

$$\langle \Theta_{\ell''m''}\delta\Theta_{\ell m}\rangle = \sum_{LM\ell'm'}^{(\ell m)} x_{LM}\langle \Theta_{\ell''m''}\Theta_{\ell'm'}\rangle W_{\ell L\ell'}^{x,0}$$

$$= \sum_{LM\ell'm'}^{(\ell m)} x_{LM}\delta_{\ell''\ell'}\delta_{m'',-m'}(-1)^{m'}C_{\ell'}^{\Theta\Theta}W_{\ell L\ell'}^{x,0}$$

$$= \sum_{LM} \begin{pmatrix} \ell & \ell'' & L \\ m & m'' & M \end{pmatrix} x_{LM}^*C_{\ell''}^{\Theta\Theta}W_{\ell L\ell''}^{x,0}.$$
(58)

Here, we use

$$\sum_{LM\ell'm'}^{(\ell m)} \delta_{\ell''\ell'} \delta_{m'',-m'} (-1)^{m'} x_{LM} = \sum_{LM} (-1)^{m+m'} \begin{pmatrix} \ell & L & \ell'' \\ -m & M & -m'' \end{pmatrix} x_{LM} \\
= \sum_{LM} (-1)^{-M} \begin{pmatrix} \ell & \ell'' & L \\ m & m'' & -M \end{pmatrix} x_{LM} \\
= \sum_{LM} \begin{pmatrix} \ell & \ell'' & L \\ m & m'' & M \end{pmatrix} x_{LM}^* \tag{59}$$

The other term is obtained by $(\ell'', m'') \leftrightarrow (\ell, m)$ and is given by

$$\langle \Theta_{\ell m} \delta \Theta_{\ell'' m''} \rangle = \sum_{LM} (-1)^{\ell + \ell'' + L} \begin{pmatrix} \ell & \ell'' & L \\ m & m'' & M \end{pmatrix} x_{LM}^* C_{\ell}^{\Theta\Theta} W_{\ell'' L \ell}^{x,0} . \tag{60}$$

The sign $(-1)^{\ell+\ell''+L}$ depends on the parity of W.

In the EB estimator, the two contributions are given as

$$E_{\ell''m''}\delta B_{\ell m} = -\sum_{LM\ell'm'}^{(\ell m)} x_{LM} \langle E_{\ell''m''}E_{\ell'm'} \rangle W_{\ell L\ell'}^{x,-}$$

$$= -\sum_{LM\ell'm'}^{(\ell m)} x_{LM} (-1)^{m''} \delta_{\ell''\ell'}\delta_{m'',-m'} C_{\ell''}^{\text{EE}} W_{\ell L\ell'}^{x,-}$$

$$= -\sum_{LM} \begin{pmatrix} \ell & \ell'' & L \\ m & m'' & M \end{pmatrix} x_{LM}^* C_{\ell''}^{\text{EE}} W_{\ell L\ell'}^{x,-},$$
(61)

and

$$B_{\ell''m''}\delta E_{\ell m} = \sum_{LM\ell'm'}^{(\ell m)} x_{LM} \langle E_{\ell''m''} E_{\ell'm'} \rangle W_{\ell L\ell'}^{x,-}$$

$$= \sum_{LM} (-1)^{\ell + \ell'' + L} \begin{pmatrix} \ell & \ell'' & L \\ m & m'' & M \end{pmatrix} x_{LM}^* C_{\ell}^{EE} W_{\ell''L\ell}^{x,-}.$$
(62)

4 Computing quadratic estimator

4.1 Spherical Harmonics

The polarization vectors satisfy, $e \cdot e^* = 1$, and, $e \cdot e = e^* \cdot e^* = 0$. We obtain

$$\nabla Y_{\ell m}^{s} = \sqrt{\frac{(\ell - s)(\ell + s + 1)}{2}} Y_{\ell m}^{s+1} e^{*} - \sqrt{\frac{(\ell + s)(\ell - s + 1)}{2}} Y_{\ell m}^{s-1} e.$$
 (63)

The complex conjugate is $(Y^s_{\ell m})^* = (-1)^{s+m} Y^{-s}_{\ell,-m}.$ In particular, for s=0,

$$\nabla Y_{\ell m}^* = \sqrt{\frac{\ell(\ell+1)}{2}} \left((Y_{\ell m}^1)^* e - (Y_{\ell m}^{-1})^* e^* \right), \tag{64}$$

and, for s = -2,

$$\nabla Y_{\ell m}^{-2} = \sqrt{\frac{(\ell+2)(\ell-1)}{2}} Y_{\ell m}^{-1} e^* - \sqrt{\frac{(\ell-2)(\ell+3)}{2}} Y_{\ell m}^{-3} e,$$

$$\nabla (Y_{\ell m}^{-2})^* = \sqrt{\frac{(\ell+2)(\ell-1)}{2}} (Y_{\ell m}^{-1})^* e - \sqrt{\frac{(\ell-2)(\ell+3)}{2}} (Y_{\ell m}^{-3})^* e^*.$$
(65)

4.2 Healpix

Healpix is a useful public package for fullsky analysis [10]. Here, we consider the Healpix spin-s harmonic transform of a map $S(\hat{n}) = S^+(\hat{n}) + iS^-(\hat{n})$ where S^{\pm} is real and $s \ge 0$. The harmonic coefficient is given by

$$S^{+} + iS^{-} = \sum_{\ell m} a_{\ell m}^{s} Y_{\ell m}^{s} .$$
 (66)

Note that $a_{\ell m}^{-s}$ is defined as

$$S^{+} - iS^{-} = \sum_{\ell m} a_{\ell m}^{-s} Y_{\ell m}^{-s} . \tag{67}$$

Then we obtain $(a_{\ell m}^s)^*=(-1)^{m+s}a_{\ell,-m}^{-s}$. The subroutine map2alm_spin transform S^\pm to $a_{\ell m}^{s,\pm}$ where

$$a_{\ell m}^{s,+} = -\frac{a_{\ell m}^s + (-1)^s a_{\ell m}^{-s}}{2} \tag{68}$$

$$a_{\ell m}^{s,-} = -\frac{a_{\ell m}^s - (-1)^s a_{\ell m}^{-s}}{2i},$$
(69)

are the rotational invariant coefficients with parity even and odd, respectively. Since $(a_{\ell m}^s)^* = (-1)^{m+s} a_{\ell,-m}^{-s}$, the above coefficients satisfy

$$(a_{\ell m}^{s,\pm})^* = (-1)^m a_{\ell,-m}^{s,\pm} \,. \tag{70}$$

On the other hand, alm2map_spin transform $a_{\ell m}^{s,\pm}$ to S^\pm , but $a_{\ell m}^{s,\pm}$ should satisfy the above condition. Note that, with $S\equiv S^++{\rm i} S^-$, we find

$$a_{\ell m}^{s,+} = -\frac{1}{2} \int d\hat{\boldsymbol{n}} \left[(Y_{\ell m}^s)^* S + (-1)^s (Y_{\ell m}^{-s})^* S^* \right], \tag{71}$$

$$a_{\ell m}^{s,-} = -\frac{1}{2i} \int d\hat{\boldsymbol{n}} \left[(Y_{\ell m}^s)^* S - (-1)^s (Y_{\ell m}^{-s})^* S^* \right]. \tag{72}$$

Let us consider the case we want to transform $a_{\ell m}$ with a spin-s spherical harmonics using alm2map_spin. The outputs, S^{\pm} , are given by:

$$S^{+} + iS^{-} = \sum_{\ell m} a_{\ell m} Y_{\ell m}^{s} . \tag{73}$$

The complex conjugate of the above quantity becomes

$$S^{+} - iS^{-} = (-1)^{s} \sum_{\ell m} a_{\ell m} Y_{\ell m}^{-s}.$$
 (74)

The inputs of alm2map_spin become

$$a_{\ell m}^{s,+} = -\frac{1 + (-1)^s}{2} a_{\ell m} , \qquad (75)$$

$$a_{\ell m}^{s,-} = -\frac{1 - (-1)^s}{2i} a_{\ell m} \,.$$
 (76)

4.3 Lensing quadratic estimator

In fullsky, the quadratic estimator of the gradient and curl modes are given by [9, 7]:

$$\widehat{\phi}_{\ell m}^{(\alpha)} = A_{\ell}^{\phi,(\alpha)} \int d^2 \hat{\boldsymbol{n}} \left[\boldsymbol{\nabla} Y_{\ell m}^*(\hat{\boldsymbol{n}}) \right] \cdot \boldsymbol{v}^{(\alpha)}(\hat{\boldsymbol{n}}), \tag{77}$$

$$\widehat{\varpi}_{\ell m}^{(\alpha)} = A_{\ell}^{\varpi,(\alpha)} \int d^2 \hat{\boldsymbol{n}} \left[(\star \nabla) Y_{\ell m}^*(\hat{\boldsymbol{n}}) \right] \cdot \boldsymbol{v}^{(\alpha)}(\hat{\boldsymbol{n}}), \tag{78}$$

where $N_{\ell}^{x,(\alpha)}$ is the normalization of the quadratic estimator and we define

$$\boldsymbol{v}^{\Theta\Theta}(\hat{\boldsymbol{n}}) = A_{\Theta}^0 \boldsymbol{\nabla} A_{\Theta\Theta}^0 \,, \tag{79}$$

$$\boldsymbol{v}^{\Theta E}(\hat{\boldsymbol{n}}) = \Re(A_E^2 \nabla A_{\Theta E}^{-2}) + A_{\Theta} \nabla A_{E\Theta}, \qquad (80)$$

$$\boldsymbol{v}^{\Theta B}(\hat{\boldsymbol{n}}) = \Re(A_{iB}^2 \nabla A_{\Theta E}^{-2}), \tag{81}$$

$$\mathbf{v}^{EE}(\hat{\mathbf{n}}) = \Re(A_E^2 \nabla A_{EE}^{-2}),$$
 (82)

$$\mathbf{v}^{EB}(\hat{\mathbf{n}}) = \Re(A_{iB}^2 \nabla A_{EE}^{-2}) + \Re(A_E^2 \nabla A_{iBiB}^{-2}),$$
(83)

$$\mathbf{v}^{BB}(\hat{\mathbf{n}}) = \Re(A_{iB}^2 \nabla A_{iBiB}^{-2}).$$
 (84)

Here we define

$$A_X^s(\hat{\boldsymbol{n}}) = \sum_{\ell m} \overline{X}_{\ell m} Y_{\ell m}^s(\hat{\boldsymbol{n}}), \qquad (85)$$

$$A_{XY}^{s}(\hat{\boldsymbol{n}}) = \sum_{\ell m} C_{\ell}^{XY} \overline{X}_{\ell m} Y_{\ell m}^{s}(\hat{\boldsymbol{n}}), \qquad (86)$$

with $\overline{X}_{\ell m} = \widehat{X}_{\ell m}/\widehat{C}_{\ell}^{XY}$ being the inverse-variance filtered multipoles by the lensed angular power spectra including instrumental noise. The quantity $v^{\Theta E}$ gives the nearly optimal estimator [9].

In general, we can decompose the 2D vector, $v^{(\alpha)}$, into

$$\mathbf{v}^{(\alpha)} = \frac{1}{\sqrt{2}} [v_{-}^{(\alpha)} \mathbf{e} + v_{+}^{(\alpha)} \mathbf{e}^*].$$
 (87)

Since $v^{(\alpha)}$ is real, we find $(v_-^{(\alpha)})^*=v_+^{(\alpha)}\equiv v^{(\alpha)}$. Then we obtain

$$\hat{\phi}_{\ell m}^{(\alpha)} = \frac{\sqrt{\ell(\ell+1)} A_{\ell}^{\phi,(\alpha)}}{2} \int d^2 \hat{\boldsymbol{n}} \left[(Y_{\ell m}^1)^* v^{(\alpha)} - (Y_{\ell m}^{-1})^* (v^{(\alpha)})^* \right]
= -\sqrt{\ell(\ell+1)} A_{\ell}^{\phi,(\alpha)} v_{\ell m}^{1,+},$$
(88)

$$\widehat{\varpi}_{\ell m}^{(\alpha)} = -i \frac{\sqrt{\ell(\ell+1)} A_{\ell}^{\varpi,(\alpha)}}{2} \int d^{2} \hat{\boldsymbol{n}} \left[(Y_{\ell m}^{1})^{*} v^{(\alpha)} + (Y_{\ell m}^{-1})^{*} (v^{(\alpha)})^{*} \right]$$

$$= -\sqrt{\ell(\ell+1)} A_{\ell}^{\varpi,(\alpha)} v_{\ell m}^{1,-},$$
(89)

where $v_{\ell m}^{1,\pm}$ are the outputs of map2alm_spin by inputting, $S=v^{(\alpha)},$ with s=1.

4.3.1 TE

$$v^{\Theta E} = \Re \left[\sum_{\ell m} \overline{E}_{\ell m} Y_{\ell m}^{+2} \sum_{\ell m} C_{\ell}^{\Theta E} \overline{\Theta}_{\ell m} \left(\sqrt{\frac{(\ell+2)(\ell-1)}{2}} Y_{\ell m}^{-1} e^* - \sqrt{\frac{(\ell-2)(\ell+3)}{2}} Y_{\ell m}^{-3} e \right) \right]$$

$$+ \sum_{\ell m} \overline{\Theta}_{\ell m} Y_{\ell m} \sum_{\ell m} C_{\ell}^{\Theta E} \overline{E}_{\ell m} \sqrt{\frac{\ell(\ell+1)}{2}} \left(Y_{\ell m}^{1} e^* - Y_{\ell m}^{-1} e \right)$$

$$= \frac{1}{2\sqrt{2}} \left[(Q^{E} + iU^{E}) \left[-(\Theta_{1}^{+} - i\Theta_{1}^{-}) e^* + (\Theta_{3}^{+} - i\Theta_{3}^{-}) e \right] + \text{c.c.} \right]$$

$$+ \frac{1}{\sqrt{2}} \overline{\Theta} \left[(E_{1}^{+} + iE_{1}^{-}) e^* + (E_{1}^{+} - iE_{1}^{-}) e \right].$$

$$(90)$$

where we define

$$Q^{E} + iU^{E} \equiv \sum_{\ell m} Y_{\ell m}^{2} \overline{E}_{\ell m} = A_{E}^{2},$$

$$\Theta_{1}^{+} + i\Theta_{1}^{-} \equiv \sum_{\ell m} Y_{\ell m}^{1} \overline{\Theta}_{\ell m} C_{\ell}^{\Theta E} \sqrt{(\ell + 2)(\ell - 1)},$$

$$\Theta_{3}^{+} + i\Theta_{3}^{-} \equiv \sum_{\ell m} Y_{\ell m}^{3} \overline{\Theta}_{\ell m} C_{\ell}^{\Theta E} \sqrt{(\ell - 2)(\ell + 3)},$$

$$E_{1}^{+} + iE_{1}^{-} \equiv \sum_{\ell m} Y_{\ell m}^{1} \overline{E}_{\ell m} C_{\ell}^{\Theta E} \sqrt{\ell(\ell + 1)}.$$
(91)

The above quantities are obtained by map2alm_spin. We find that

$$v^{\Theta E} = \frac{1}{2} [(Q^E + iU^E)(-\Theta_1^+ + i\Theta_1^-) + (Q^E - iU^E)(\Theta_3^+ + i\Theta_3^-)] + \overline{\Theta}(E_1^+ + iE_1^-)$$

$$= \frac{1}{2} [Q^E(\Theta_3^+ - \Theta_1^+) + U^E(\Theta_3^- - \Theta_1^-) + i[Q^E(\Theta_3^- + \Theta_1^-) - U^E(\Theta_3^+ + \Theta_1^+)]] + \overline{\Theta}(E_1^+ + iE_1^-). \quad (92)$$

4.3.2 EE

$$\mathbf{v}^{(EE)} = \frac{1}{2} (Q^E + iU^E) \sum_{\ell m} C_{\ell}^{EE} \overline{E}_{\ell m} \left(\sqrt{\frac{(\ell+2)(\ell-1)}{2}} Y_{\ell m}^{-1} \mathbf{e}^* - \sqrt{\frac{(\ell-2)(\ell+3)}{2}} Y_{\ell m}^{-3} \mathbf{e} \right) + \text{c.c}$$

$$= \frac{1}{2\sqrt{2}} (Q^E + iU^E) [-(\mathcal{E}_1^+ - i\mathcal{E}_1^-) \mathbf{e}^* + (\mathcal{E}_3^+ - i\mathcal{E}_3^-) \mathbf{e}] + \text{c.c},$$
(93)

where we define

$$\mathcal{E}_{1}^{+} + i\mathcal{E}_{1}^{-} \equiv \sum_{\ell m} Y_{\ell m}^{1} \overline{E}_{\ell m} C_{\ell}^{EE} \sqrt{(\ell+2)(\ell-1)},$$

$$\mathcal{E}_{3}^{+} + i\mathcal{E}_{3}^{-} \equiv \sum_{\ell m} Y_{\ell m}^{3} \overline{E}_{\ell m} C_{\ell}^{EE} \sqrt{(\ell-2)(\ell+3)}.$$
(94)

Then we obtain

$$v^{(EE)} = \frac{1}{2} (Q^E + iU^E) [-\mathcal{E}_1^+ + i\mathcal{E}_1^-] + \frac{1}{2} (Q^E - iU^E) [\mathcal{E}_3^+ + i\mathcal{E}_3^-]$$

$$= \frac{1}{2} [Q^E (\mathcal{E}_3^+ - \mathcal{E}_1^+) + U^E (\mathcal{E}_3^- - \mathcal{E}_1^-)] + \frac{i}{2} [Q^E (\mathcal{E}_3^- + \mathcal{E}_1^-) - U^E (\mathcal{E}_3^+ + \mathcal{E}_1^+)],$$
(95)

4.4 Polarization rotation quadratic estimator

4.4.1 EB

The EB quadratic estimator for the polarization rotation is given by

$$\left[\widehat{\alpha}_{LM}^{\text{EB}}\right]^* = A_L^{\alpha, \text{EB}} \sum_{\ell\ell'mm'} \begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix} \left[W_{\ell L\ell'}^{\alpha,-} C_{\ell'}^{\text{BB}} - W_{\ell'L\ell}^{\alpha,-} C_{\ell}^{\text{EE}} \right] \overline{E}_{\ell m} \overline{B}_{\ell'm'}. \tag{96}$$

Using the property of the Wigner 3j, we obtain

$$\begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix} W_{\ell L \ell'}^{\alpha,-} = 2\wp_{\ell L \ell'}^{\alpha,+} \gamma_{\ell L \ell'} \begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix} \begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix}$$

$$= [1 + (-1)^{\ell + L + \ell'}] \gamma_{\ell L \ell'} \begin{pmatrix} \ell & \ell' & L \\ -2 & 2 & 0 \end{pmatrix} \begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix}$$

$$= \gamma_{\ell L \ell'} \begin{bmatrix} \ell & \ell' & L \\ -2 & 2 & 0 \end{pmatrix} + \begin{pmatrix} \ell & \ell' & L \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix}$$

$$= \int d\hat{\mathbf{n}} \ Y_{LM} [Y_{\ell m}^{-2} Y_{\ell'm'}^2 + Y_{\ell m}^2 Y_{\ell'm'}^{-2}] . \tag{97}$$

The second term is also the same as the first term;

$$\begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix} W_{\ell'L\ell}^{\alpha,-} = \int d\hat{\boldsymbol{n}} \ Y_{LM} [Y_{\ell m}^{-2} Y_{\ell'm'}^2 + Y_{\ell m}^2 Y_{\ell'm'}^{-2}]. \tag{98}$$

We then obtain

$$\widehat{\alpha}_{LM}^{\text{EB}} = A_L^{\alpha, \text{EB}} \int d\widehat{n} \ Y_{LM}^* \Big[\sum_{\ell m} Y_{\ell m}^{-2} \overline{E}_{\ell m} \sum_{\ell' m'} Y_{\ell' m'}^2 C_{\ell'}^{\text{BB}} \overline{B}_{\ell' m'} + \sum_{\ell m} Y_{\ell m}^2 \overline{E}_{\ell m} \sum_{\ell' m'} Y_{\ell' m'}^{-2} C_{\ell'}^{\text{BB}} \overline{B}_{\ell' m'}$$

$$- \sum_{\ell m} Y_{\ell m}^2 C_{\ell}^{\text{EE}} \overline{E}_{\ell m} \sum_{\ell' m'} Y_{\ell' m'}^{-2} \overline{B}_{\ell' m'} - \sum_{\ell m} Y_{\ell m}^{-2} C_{\ell}^{\text{EE}} \overline{E}_{\ell m} \sum_{\ell' m'} Y_{\ell' m'}^2 \overline{B}_{\ell' m'} \Big]$$

$$= -i A_L^{\alpha, \text{EB}} \int d\widehat{n} \ Y_{LM}^* \left[(Q^E - i U^E) (Q^B + i \mathcal{U}^B) + (Q^E + i \mathcal{U}^E) (Q^B - i U^B) - \text{c.c.} \right]$$

$$= 2 A_L^{\alpha, \text{EB}} \int d\widehat{n} \ Y_{LM}^* \left[Q^E \mathcal{U}^B - U^E Q^B + \mathcal{U}^E Q^B - Q^E U^B \right] .$$

$$(99)$$

where we define

$$Q^{E} + iU^{E} = \sum_{\ell m} Y_{\ell m}^{2} \overline{E}_{\ell m} = (\sum_{\ell m} Y_{\ell m}^{-2} \overline{E}_{\ell m})^{*}$$

$$Q^{B} + i\mathcal{U}^{B} = \sum_{\ell m} Y_{\ell m}^{2} i C_{\ell}^{BB} \overline{B}_{\ell m}$$

$$Q^{E} + i\mathcal{U}^{E} = \sum_{\ell m} Y_{\ell m}^{2} C_{\ell}^{EE} \overline{E}_{\ell m}$$

$$Q^{B} + iU^{B} = \sum_{\ell m} Y_{\ell m}^{2} i \overline{B}_{\ell m} = -(\sum_{\ell m} Y_{\ell m}^{-2} i \overline{B}_{\ell m})^{*}.$$

$$(100)$$

5 Computing Quadratic Estimator Normalization

Here, I generalize the algorithm of [11] to the case including the cosmic bi-refringence, patchy reionization, and so on.

5.1 Normalization and Kernel function

The normalization of the $\Theta\Theta$ quadratic estimator is

$$\frac{1}{A_L^{x,(\Theta\Theta)}} = \frac{1}{2L+1} \sum_{\ell\ell'} \frac{\left[W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta} + p_x W_{\ell' L \ell}^{x,0} C_{\ell'}^{\Theta\Theta} \right]^2}{2\widehat{C}_{\ell}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \\
= \frac{1}{2} \Sigma_L^{(0),x} \left[\frac{1}{\widehat{C}^{\Theta\Theta}}, \frac{(C^{\Theta\Theta})^2}{\widehat{C}^{\Theta\Theta}} \right] + p_x \Gamma_L^{(0),x} \left[\frac{C^{\Theta\Theta}}{\widehat{C}^{\Theta\Theta}}, \frac{C^{\Theta\Theta}}{\widehat{C}^{\Theta\Theta}} \right] + \frac{1}{2} \Sigma_L^{(0),x} \left[\frac{(C^{\Theta\Theta})^2}{\widehat{C}^{\Theta\Theta}}, \frac{1}{\widehat{C}^{\Theta\Theta}} \right], \quad (101)$$

where we define kernel functions as

$$\Sigma_L^{(0),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} (W_{\ell L \ell'}^{x,0})^2 A_{\ell} B_{\ell'}, \qquad (102)$$

$$\Gamma_L^{(0),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} W_{\ell L \ell'}^{x,0} W_{\ell' L \ell}^{x,0} A_{\ell} B_{\ell'}.$$
(103)

For ΘE ,

$$\frac{1}{A_L^{x,(\Theta E)}} = \frac{1}{2L+1} \sum_{\ell\ell'} \frac{|W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta E} + p_x W_{\ell' L \ell}^{x,+} C_{\ell}^{\Theta E}|^2}{\widehat{C}_{\ell}^{\Theta \Theta} \widehat{C}_{\ell'}^{EE}}$$

$$= \frac{1}{2L+1} \sum_{\ell\ell'} \left[(W_{\ell L \ell'}^{x,0})^2 \frac{(C_{\ell'}^{\Theta E})^2}{\widehat{C}_{\ell}^{\Theta \Theta} \widehat{C}_{\ell'}^{EE}} + 2p_x W_{\ell L \ell'}^{x,0} W_{\ell' L \ell}^{x,+} \frac{C_{\ell'}^{\Theta E} C_{\ell}^{\Theta E}}{\widehat{C}_{\ell'}^{\Theta \Theta} \widehat{C}_{\ell'}^{EE}} + (W_{\ell' L \ell}^{x,+})^2 \frac{(C_{\ell'}^{\Theta E})^2}{\widehat{C}_{\ell'}^{\Theta \Theta} \widehat{C}_{\ell'}^{EE}} \right]$$

$$= \Sigma_L^{(0),x} \left[\frac{1}{\widehat{C}_{\Theta \Theta}}, \frac{(C_{\ell'}^{\Theta E})^2}{\widehat{C}_{\ell'}^{EE}} \right] + 2p_x \Gamma_L^{(\times),x} \left[\frac{C_{\ell'}^{\Theta E}}{\widehat{C}_{\ell'}^{\Theta E}}, \frac{C_{\ell'}^{\Theta E}}{\widehat{C}_{\ell'}^{EE}} \right] + \Sigma_L^{(+),x} \left[\frac{1}{\widehat{C}_{\ell'}^{EE}}, \frac{(C_{\ell'}^{\Theta E})^2}{\widehat{C}_{\ell'}^{\Theta \Theta}} \right], \quad (104)$$

where kernel functions are defined as

$$\Gamma_L^{(\times),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} W_{\ell L \ell'}^{x,0} W_{\ell' L \ell}^{x,+} A_{\ell} B_{\ell'},$$

$$\Sigma_L^{(+),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} (W_{\ell L \ell'}^{x,+})^2 A_{\ell} B_{\ell'}.$$
(105)

For ΘB ,

$$\frac{1}{A_L^{x,(\Theta B)}} = \frac{1}{2L+1} \sum_{\ell\ell'} \frac{|W_{\ell'L\ell}^{x,-}C_{\ell}^{\Theta E}|^2}{\widehat{C}_{\ell}^{\Theta\Theta}\widehat{C}_{\ell'}^{BB}}$$

$$= \Sigma_L^{(-),x} \left[\frac{1}{\widehat{C}^{BB}}, \frac{(C^{\Theta E})^2}{\widehat{C}^{\Theta\Theta}} \right], \tag{106}$$

where

$$\Sigma_L^{(-),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} |W_{\ell L \ell'}^{x,-}|^2 A_{\ell} B_{\ell'}.$$
 (107)

For EE (and for BB by replacing EE \rightarrow BB),

$$\frac{1}{A_L^x} = \frac{1}{2L+1} \sum_{\ell\ell'} \frac{|W_{\ell L \ell'}^{x,+} C_{\ell'}^{EE} + p_x W_{\ell' L \ell}^{x,+} C_{\ell}^{EE}|^2}{2\widehat{C}_{\ell}^{EE} \widehat{C}_{\ell'}^{EE}}
= \Sigma_L^{(+),x} \left[\frac{1}{\widehat{C}^{EE}}, \frac{(C^{EE})^2}{\widehat{C}^{EE}} \right] + p_x \Gamma_L^{(+),x} \left[\frac{C^{EE}}{\widehat{C}^{EE}}, \frac{C^{EE}}{\widehat{C}^{EE}} \right],$$
(108)

where

$$\Gamma_L^{(+),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} W_{\ell'L\ell}^{x,+} W_{\ell L \ell'}^{x,+} A_{\ell} B_{\ell'} = \Gamma_L^{(+),x}[B,A].$$
(109)

For EB,

$$\frac{1}{A_L^{x,(EB)}} = \frac{1}{2L+1} \sum_{\ell\ell'} \frac{|W_{\ell L \ell'}^{x,-} C_{\ell'}^{BB} + p_x W_{\ell' L \ell}^{x,-} C_{\ell}^{EE}|^2}{\widehat{C}_{\ell}^{EE} \widehat{C}_{\ell'}^{BB}}
= \Sigma_L^{(-),x} \left[\frac{1}{\widehat{C}^{EE}}, \frac{(C^{BB})^2}{\widehat{C}^{BB}} \right] + 2p_x \Gamma_L^{(-),x} \left[\frac{C^{EE}}{\widehat{C}^{EE}}, \frac{C^{BB}}{\widehat{C}^{BB}} \right] + \Sigma_L^{(-),x} \left[\frac{1}{\widehat{C}^{BB}}, \frac{(C^{EE})^2}{\widehat{C}^{EE}} \right],$$
(110)

where

$$\Gamma_L^{(-),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} [W_{\ell L\ell'}^{x,-}]^* W_{\ell' L\ell}^{x,-} A_{\ell} B_{\ell'} = \Gamma_L^{(-),x}[B,A]. \tag{111}$$

5.2 Noise covariance and kernel function

For $\Theta\Theta\Theta E$,

$$\begin{split} \frac{A_{L}^{x,(\Theta\Theta)}A_{L}^{x,(\ThetaE)}}{N_{L}^{x,(\Theta\Theta\ThetaE)}} &= \frac{1}{2L+1} \sum_{\ell\ell'} \left[\frac{W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta}}{2\widehat{C}_{\ell}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} + p_{x}(\ell \leftrightarrow \ell') \right] \left[\frac{(W_{\ell L \ell'}^{x,0} C_{\ell'}^{\ThetaE} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell}^{\ThetaE}) \widehat{C}_{\ell'}^{\ThetaE}}{\widehat{C}_{\ell'}^{EE}} + p_{x}(\ell \leftrightarrow \ell') \right] \\ &= \frac{1}{2L+1} \sum_{\ell\ell'} \left[\frac{W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta}}{\widehat{C}_{\ell}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \frac{(W_{\ell L \ell'}^{x,0} C_{\ell'}^{\ThetaE} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell'}^{\ThetaE}) \widehat{C}_{\ell'}^{\ThetaE}}{\widehat{C}_{\ell'}^{EE}} \right. \\ &\quad + p_{x} \frac{W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta}}{\widehat{C}_{\ell'}^{\Theta\Theta}} \frac{(W_{\ell' L \ell}^{x,0} C_{\ell'}^{\ThetaE} + p_{x} W_{\ell' L \ell'}^{x,+} C_{\ell'}^{\ThetaE}) \widehat{C}_{\ell'}^{\ThetaE}}{\widehat{C}_{\ell'}^{EE}} \right] \\ &\quad = \Sigma_{L}^{(0),x} \left[\frac{1}{\widehat{C}_{\Theta\Theta}}, \frac{C_{\Theta\Theta} C_{\ThetaE} \widehat{C}_{\ThetaE}}{\widehat{C}_{\Theta\Theta} \widehat{C}_{EE}} \right] + p_{x} \Gamma_{L}^{(\times),x} \left[\frac{C_{\ThetaE}}{\widehat{C}_{\Theta\Theta}}, \frac{C_{\Theta\Theta} \widehat{C}_{\ThetaE}}{\widehat{C}_{\Theta\Theta} \widehat{C}_{EE}} \right] \\ &\quad + p_{x} \Gamma_{L}^{(0),x} \left[\frac{C_{\ThetaE} \widehat{C}_{\ThetaE}}{\widehat{C}_{\Theta\Theta} \widehat{C}_{EE}}, \frac{C_{\Theta\Theta}}{\widehat{C}_{\Theta\Theta}} \right] + \Sigma_{L}^{(\times),x} \left[\frac{\widehat{C}_{\ThetaE}}{\widehat{C}_{\Theta\Theta} \widehat{C}_{EE}}, \frac{C_{\ThetaE} C_{\Theta\Theta}}{\widehat{C}_{\Theta\Theta}} \right], \end{cases} \tag{112}$$

where

$$\Sigma_L^{(\times),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} W_{\ell L \ell'}^{x,0} W_{\ell L \ell'}^{x,+} A_{\ell} B_{\ell'}.$$
(113)

For $\Theta\Theta EE$,

$$\begin{split} \frac{A_{L}^{x,(\Theta\Theta)}A_{L}^{x,(EE)}}{N_{L}^{x,(\Theta\ThetaEE)}} &= \frac{1}{2L+1} \sum_{\ell\ell'} \left[\frac{W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta}}{2\widehat{C}_{\ell}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} + p_{x}(\ell \leftrightarrow \ell') \right] \left[\frac{(W_{\ell L \ell'}^{x,+} C_{\ell'}^{EE} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell}^{EE}) \widehat{C}_{\ell}^{\ThetaE} \widehat{C}_{\ell'}^{\ThetaE}}{2\widehat{C}_{\ell}^{EE} \widehat{C}_{\ell'}^{EE}} + p_{x}(\ell \leftrightarrow \ell') \right] \\ &= \frac{1}{2L+1} \sum_{\ell\ell'} \frac{W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta}}{\widehat{C}_{\ell'}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \left[\frac{(W_{\ell L \ell'}^{x,+} C_{\ell'}^{EE} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell}^{EE}) \widehat{C}_{\ell}^{\ThetaE} \widehat{C}_{\ell'}^{\ThetaE}}{2\widehat{C}_{\ell}^{EE} \widehat{C}_{\ell'}^{EE}} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell'}^{EE}) \widehat{C}_{\ell}^{\ThetaE} \widehat{C}_{\ell'}^{\ThetaE}} + p_{x}(\ell \leftrightarrow \ell') \right] \\ &= \frac{1}{2L+1} \sum_{\ell\ell'} \frac{W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta\Theta}}{\widehat{C}_{\ell'}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \left[\frac{(W_{\ell L \ell'}^{x,+} C_{\ell'}^{EE} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell}^{EE}) \widehat{C}_{\ell}^{\ThetaE} \widehat{C}_{\ell'}^{\ThetaE}}{\widehat{C}_{\ell'}^{EE} \widehat{C}_{\ell'}^{EE}} \right] \\ &= \sum_{\ell} \frac{\widehat{C}_{\ell'}^{\ThetaE}}{\widehat{C}_{\ell'}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \underbrace{\widehat{C}_{\ell'}^{\Theta\Theta}} \widehat{C}_{\ell'}^{\Theta\Theta} \underbrace{\widehat{C}_{\ell'}^{\Theta\Theta}} \widehat{C}_{\ell'}^{\Theta\Theta}} + p_{x} \Gamma_{L}^{(\times),x} \underbrace{\widehat{C}_{\ell'}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \widehat{C}_{\ell'}^{\Theta\Theta} \widehat{C}_{\ell'}^{\Theta\Theta}} \right]. \tag{114}$$

For ΘEEE .

$$\frac{A_{L}^{x,(\Theta E)}A_{L}^{x,(EE)}}{N_{L}^{x,(\Theta E E E)}} = \frac{1}{2L+1} \sum_{\ell\ell'} \left[\frac{W_{\ell L \ell'}^{x,+} C_{\ell'}^{EE}}{2\widehat{C}_{\ell}^{EE}\widehat{C}_{\ell'}^{EE}} + p_{x}(\ell \leftrightarrow \ell') \right] \left[\frac{(W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta E} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell}^{\Theta E}) \widehat{C}_{\ell}^{\Theta E}}{\widehat{C}_{\ell}^{\Theta \Theta}} + p_{x}(\ell \leftrightarrow \ell') \right] \\
= \frac{1}{2L+1} \sum_{\ell\ell'} \left[\frac{W_{\ell L \ell'}^{x,+} C_{\ell'}^{EE}}{\widehat{C}_{\ell}^{EE}} + p_{x} \frac{W_{\ell' L \ell}^{x,+} C_{\ell}^{EE}}{\widehat{C}_{\ell'}^{EE}} \right] \left[\frac{(W_{\ell L \ell'}^{x,0} C_{\ell'}^{\Theta E} + p_{x} W_{\ell' L \ell}^{x,+} C_{\ell}^{\Theta E}) \widehat{C}_{\ell}^{\Theta E}}{\widehat{C}_{\ell}^{\Theta \Theta}} \right] \\
= \sum_{L}^{(\times),x} \left[\frac{\widehat{C}^{\Theta E}}{\widehat{C}^{\Theta E}\widehat{C}^{EE}}, \frac{C^{\Theta E}}{\widehat{C}^{EE}} \right] + p_{x} \Gamma_{L}^{(+),x} \left[\frac{C^{\Theta E}\widehat{C}^{\Theta E}}{\widehat{C}^{\Theta \Theta}\widehat{C}^{EE}}, \frac{C^{EE}}{\widehat{C}^{EE}} \right] \\
+ p_{x} \Gamma_{L}^{(\times),x} \left[\frac{\widehat{C}^{\Theta E}C^{EE}}{\widehat{C}^{\Theta \Theta}\widehat{C}^{EE}}, \frac{C^{\Theta E}}{\widehat{C}^{EE}} \right] + \sum_{L}^{(+),x} \left[\frac{C^{\Theta E}\widehat{C}^{\Theta E}C^{EE}}{\widehat{C}^{\Theta \Theta}\widehat{C}^{EE}}, \frac{1}{\widehat{C}^{EE}} \right]. \tag{115}$$

For ΘBEB ,

$$\frac{A_{L}^{x,(\Theta B)}A_{L}^{x,(EB)}}{N_{L}^{x,(\Theta BEB)}} = \frac{1}{2L+1} \sum_{\ell\ell'} \left[\frac{(W_{\ell L \ell'}^{x,-})^{*}C_{\ell'}^{BB} - p_{x}(W_{\ell' L \ell}^{x,-})^{*}C_{\ell}^{EE}}{\widehat{C}_{\ell}^{EE} \widehat{C}_{\ell'}^{BB}} \right] \left[\frac{-p_{x}W_{\ell' L \ell}^{x,-}C_{\ell}^{\Theta E} \widehat{C}_{\ell}^{\Theta E}}{\widehat{C}_{\ell}^{\Theta \Theta}} \right]$$

$$= -p_{x}\Gamma_{L}^{(-),x} \left[\frac{C^{\Theta E} \widehat{C}^{\Theta E}}{\widehat{C}^{\Theta \Theta} \widehat{C}^{EE}}, \frac{C^{BB}}{\widehat{C}^{BB}} \right] + \Sigma_{L}^{(-),x} \left[\frac{C^{\Theta E} \widehat{C}^{\Theta E} C^{EE}}{\widehat{C}^{\Theta \Theta} \widehat{C}^{EE}}, \frac{1}{\widehat{C}^{BB}} \right].$$
(116)

6 Explicit Kernel Functions

Here we consider expression for the Kernel functions in terms of the Wigner d-functions. In the following calculations, we frequently use

$$\int_{-1}^{1} \mathrm{d}\mu \ d_{s_1,s_1'}^{\ell_1}(\beta) d_{s_2,s_2'}^{\ell_2}(\beta) d_{s_3,s_3'}^{\ell_3}(\beta) = 2 \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ s_1 & s_2 & s_3 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ s_1' & s_2' & s_3' \end{pmatrix}, \tag{117}$$

with $s_1+s_2+s_3=s_1'+s_2'+s_3'=0$ and $\mu=\cos\beta$, and the symmetric property:

$$d_{mm'}^{\ell}(\beta) = (-1)^{m-m'} d_{-m,-m'}^{\ell}(\beta) = (-1)^{m-m'} d_{m'm}^{\ell}(\beta)$$
(118)

$$d_{mm'}^{\ell}(\beta) = (-1)^{\ell+m} d_{m,-m'}^{\ell}(\pi - \beta). \tag{119}$$

We also define

$$X^{p\dots q} = a_{\ell}^p \dots a_{\ell}^q X_{\ell} \,. \tag{120}$$

6.1 Kernel Functions: Lensing

We obtain

$$\Sigma_{L}^{(0),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} |W_{\ell L \ell'}^{x,0}|^{2} A_{\ell} B_{\ell'}
= \sum_{\ell\ell'} 4\pi L(L+1) \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} \ell'(\ell'+1) \frac{1+c_{x}^{2}(-1)^{\ell+L+\ell'}}{2} \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix}^{2}
= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} 2\ell'(\ell'+1) \left[\begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix}^{2} + c_{x}^{2} \begin{pmatrix} \ell & L & \ell' \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} \right]
= \int_{-1}^{1} d\mu \, \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} \ell'(\ell'+1) [d_{00}^{\ell} d_{11}^{L} d_{11}^{\ell'} + c_{x}^{2} d_{00}^{\ell} d_{1,-1}^{L} d_{1,-1}^{\ell'}]
= \int_{-1}^{1} d\mu \, \pi L(L+1) \{\xi_{00}[A]\xi_{11}[B^{00}] d_{11}^{L} + c_{x}^{2}\xi_{00}[A]\xi_{1,-1}[B^{00}] d_{1,-1}^{L} \}, \tag{121}$$

where

$$\xi_{mm'}[A] = \sum_{\ell} \frac{2\ell + 1}{4\pi} A_{\ell} d_{mm'}^{\ell} \,. \tag{122}$$

The cross-term is

$$\begin{split} \Gamma_L^{(0),x}[A,B] &= \frac{1}{2L+1} \sum_{\ell\ell'} (W_{\ell L \ell'}^{x,0})^* W_{\ell' L \ell}^{x,0} A_\ell B_{\ell'} \\ &= \sum_{\ell\ell'} 4\pi L (L+1) \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} a_\ell^0 a_{\ell'}^0 \frac{1+c_x^2 (-1)^{\ell+L+\ell'}}{2} \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \ell' & L & \ell \\ 0 & 1 & -1 \end{pmatrix} \\ &= \pi L (L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell^0 \frac{2\ell'+1}{4\pi} B_{\ell'}^0 2 \left[\begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ 1 & -1 & 0 \end{pmatrix} + c_x^2 \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ -1 & 1 & 0 \end{pmatrix} \right] \\ &= \int_{-1}^1 \mathrm{d}\mu \ \pi L (L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell^0 \frac{2\ell'+1}{4\pi} B_{\ell'}^0 [d_{01}^\ell d_{1,-1}^L d_{-1,0}^\ell + c_x^2 d_{0,-1}^\ell d_{11}^L d_{-1,0}^\ell] \\ &= -\int_{-1}^1 \mathrm{d}\mu \ \pi L (L+1) \{ \xi_{01}[A^0] \xi_{0,-1}[B^0] d_{1,-1}^L + c_x^2 \xi_{01}[A^0] \xi_{01}[B^0] d_{11}^L \} \,. \end{split} \tag{123}$$

Denoting $p = \pm$ and $x = \phi, \varpi$, we rewrite the kernel for polarization as

$$\begin{split} &\Sigma_{L}^{(p),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} |W_{\ell L \ell'}^{x,p}|^2 A_\ell B_{\ell'} \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} 2[1 + p c_x^2 (-1)^{\ell+L+\ell'}] \left[a_{\ell'}^+ \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix} + c_x^2 a_{\ell'}^- \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix} \right]^2 \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} [1 + p c_x^2 (-1)^{\ell+L+\ell'}] \\ &\times 2 \left[(a_{\ell'}^+)^2 \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix}^2 + (a_{\ell'}^-)^2 \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix}^2 + 2 c_x^2 a_{\ell'}^+ a_{\ell'}^- \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix} \right] \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} \\ &\times 2 \left[(a_{\ell'}^+)^2 \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix}^2 + (a_{\ell'}^-)^2 \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix}^2 + 2 c_x^2 a_{\ell'}^+ a_{\ell'}^- \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix} \right] \\ &+ p c_x^2 (a_{\ell'}^+)^2 \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix} + p c_x^2 (a_{\ell'}^-)^2 \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ -2 &$$

and

$$\begin{split} &\Gamma_L^{(p),x}[A,B] = \frac{1}{2L+1} \sum_{\ell\ell'} (W_{\ell L \ell'}^{x,p})^* W_{\ell' L \ell}^{x,p} A_\ell B_{\ell'} \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} 2[1+pc_x^2(-1)^{\ell+L+\ell'}] \\ &\times \left[a_{\ell'}^+ \binom{\ell}{-2} \frac{L}{-1} \frac{\ell'}{3} \right) + c_x^2 a_{\ell'}^- \binom{\ell}{-2} \frac{L}{1} \frac{\ell'}{1} \right] \left[a_{\ell}^+ \binom{\ell'}{-2} \frac{L}{-1} \frac{\ell}{3} \right) + c_x^2 a_{\ell}^- \binom{\ell'}{-2} \frac{L}{1} \frac{\ell}{1} \right] \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} 2[(-1)^{\ell+L+\ell'} + pc_x^2] \\ &\times \left[a_{\ell'}^+ \binom{\ell}{-2} \frac{L}{-1} \frac{\ell'}{3} \right) + c_x^2 a_{\ell'}^- \binom{\ell}{-2} \frac{L}{1} \frac{\ell'}{1} \right] \left[a_{\ell}^+ \binom{\ell}{3} \frac{L}{-1} - 2 \right) + c_x^2 a_{\ell}^- \binom{\ell}{1} \frac{L}{1} \frac{\ell'}{-2} \right] \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} \\ &\times 2 \left\{ \left[a_{\ell'}^+ \binom{\ell}{2} \frac{L}{1} \frac{\ell'}{3} \right] + c_x^2 a_{\ell'}^- \binom{\ell}{2} \frac{L}{-1} \frac{\ell'}{1} \right] \left[a_{\ell}^+ \binom{\ell}{3} \frac{L}{-1} - 2 \right) + c_x^2 a_{\ell}^- \binom{\ell}{1} \frac{L}{1} - 2 \right] \\ &+ p \left[c_x^2 a_{\ell'}^+ \binom{\ell}{-2} \frac{L}{1} \frac{\ell'}{3} \right] + a_{\ell'}^- \binom{\ell}{2} \frac{L}{1} \binom{\ell'}{1} \right] \left[a_{\ell}^+ \binom{\ell}{3} \frac{L}{-1} - 2 \right) + c_x^2 a_{\ell}^- \binom{\ell}{1} \frac{L}{1} - 2 \right] \right\} \\ &= \int_{-1}^1 \mathrm{d} \mu \ \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} \\ &\times \left[a_{\ell'}^+ a_{\ell'}^+ d_{23}^\ell d_{1,-1}^+ d_{-3,-2}^\ell + c_x^2 a_{\ell'}^+ a_{\ell}^\ell d_{21}^\ell d_{11}^\ell d_{-3,-2}^\ell + c_x^2 a_{\ell'}^+ a_{\ell'}^\ell d_{23}^\ell d_{11}^L d_{-1,-2}^\ell - 2 \right] \\ &+ p \left[c_x^2 a_{\ell'}^+ a_{\ell'}^+ d_{23}^\ell d_{1,-1}^\ell d_{-3,-2}^\ell + c_x^2 a_{\ell'}^\ell a_{\ell'}^\ell d_{21}^\ell d_{11}^\ell d_{-3,-2}^\ell + c_x^2 a_{\ell'}^- a_{\ell'}^\ell d_{23}^\ell d_{11}^\ell d_{-1,-2}^\ell - 2 \right] \\ &+ p \left[c_x^2 a_{\ell'}^+ a_{\ell'}^+ d_{23}^\ell d_{11}^\ell d_{3,-2}^\ell + c_x^2 a_{\ell'}^\ell a_{\ell'}^\ell d_{21}^\ell d_{11}^\ell d_{-3,-2}^\ell + c_x^2 a_{\ell'}^- a_{\ell'}^\ell d_{23}^\ell d_{11}^\ell d_{1,-2}^\ell d_{-2,1}^\ell d_{11}^\ell d_{-3,-2}^\ell + c_x^2 a_{\ell'}^\ell a_{\ell'}^\ell d_{23}^\ell d_{11}^\ell d_{1,-2}^\ell + c_x^2 a_{\ell'}^\ell a_{\ell'}^\ell d_{21}^\ell d_{11}^\ell d_{1,-2}^\ell d_{-2,1}^\ell d_{11}^\ell d_{11}^\ell d_{-2}^\ell d_{-2,1}^\ell d_{11,-2}^\ell d_{11,-2}^\ell d_{-2,2}^\ell d_{11,-2}^\ell d_{11,-2$$

The temperature-polarization kernel is

$$\begin{split} \Sigma_{L}^{(\times),x}[A,B] &= \frac{1}{2L+1} \sum_{\ell\ell'} (W_{\ell L \ell'}^{x,0})^* W_{\ell L \ell'}^{x,+} A_{\ell} B_{\ell'} \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} a_{\ell'}^0 2[1 + c_x^2(-1)^{\ell+L+\ell'}] \\ &\qquad \times \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} \begin{bmatrix} a_{\ell'}^+ \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix} + c_x^2 a_{\ell'}^- \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix} \end{bmatrix} \\ &= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} a_{\ell'}^0 \\ &\qquad \times 2 \left[\begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} + c_x^2 \begin{pmatrix} \ell & L & \ell' \\ 0 & -1 & 1 \end{pmatrix} \right] \begin{bmatrix} a_{\ell'}^+ \begin{pmatrix} \ell & L & \ell' \\ -2 & -1 & 3 \end{pmatrix} + c_x^2 a_{\ell'}^- \begin{pmatrix} \ell & L & \ell' \\ -2 & 1 & 1 \end{pmatrix} \end{bmatrix} \\ &= \int_{-1}^1 \mathrm{d} \mu \ \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} a_{\ell'}^0 \\ &\qquad \times \begin{bmatrix} a_{\ell'}^+ d_{0,-2}^\ell d_{1,-1}^L d_{-1,3}^{\ell'} + c_x^2 a_{\ell'}^- d_{0,-2}^L d_{11}^L d_{-1,1}^{\ell'} + c_x^2 a_{\ell'}^+ d_{0,-2}^\ell d_{11}^L d_{13}^{\ell'} + a_{\ell'}^- d_{0,-2}^\ell d_{-1,1}^L d_{11}^{\ell'} \end{bmatrix} \\ &= \int_{-1}^1 \mathrm{d} \mu \ \pi L(L+1) \{ c_x^2 (\xi_{20}[A]\xi_{1,-1}[B^{0-}]) + \xi_{20}[A]\xi_{31}[B^{0+}]) d_{11}^L \\ &\qquad + (\xi_{20}[A]\xi_{3,-1}[B^{0+}] + \xi_{20}[A]\xi_{11}[B^{0-}]) d_{1,-1}^L \}, \end{split}$$
(126)

and

$$\begin{split} \Gamma_L^{(\times),x}[A,B] &= \frac{1}{2L+1} \sum_{\ell\ell'} (W_{\ell L \ell'}^{x,0})^* W_{\ell' L \ell}^{x,+} A_\ell B_{\ell'} \\ &= \pi L (L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} a_{\ell'}^0 2[1 + c_x^2 (-1)^{\ell+L+\ell'}] \\ &\qquad \times \begin{pmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} \begin{bmatrix} a_\ell^+ \begin{pmatrix} \ell' & L & \ell \\ -2 & -1 & 3 \end{pmatrix} + c_x^2 a_\ell^- \begin{pmatrix} \ell' & L & \ell \\ -2 & 1 & 1 \end{pmatrix} \end{bmatrix} \\ &= \pi L (L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} a_{\ell'}^0 \\ &\qquad \times 2 \begin{bmatrix} \ell & L & \ell' \\ 0 & 1 & -1 \end{pmatrix} + c_x^2 \begin{pmatrix} \ell & L & \ell' \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} a_\ell^+ \begin{pmatrix} \ell & L & \ell' \\ -3 & 1 & 2 \end{pmatrix} + c_x^2 a_\ell^- \begin{pmatrix} \ell & L & \ell' \\ -1 & -1 & 2 \end{pmatrix} \end{bmatrix} \\ &= \int_{-1}^1 \mathrm{d}\mu \ \pi L (L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_\ell \frac{2\ell'+1}{4\pi} B_{\ell'} a_{\ell'}^0 \\ &\qquad \times \begin{bmatrix} a_\ell^+ d_{0,-3}^\ell d_{11}^L d_{-1,2}^\ell + c_x^2 a_\ell^- d_{0,-1}^\ell d_{1,-1}^L d_{-1,2}^\ell + c_x^2 a_\ell^+ d_{0,-3}^\ell d_{1,-1}^L d_{12}^\ell + a_\ell^- d_{0,-1}^\ell d_{11}^L d_{12}^\ell \end{bmatrix} \\ &= \int_{-1}^1 \mathrm{d}\mu \ \pi L (L+1) \{ -(\xi_{30}[A^+]\xi_{2,-1}[B^0] + \xi_{10}[A^-]\xi_{12}[B^0]) d_{11}^L \\ &\qquad - c_x^2 (\xi_{10}[A^-]\xi_{2,-1}[B^0] + \xi_{30}[A^0]\xi_{21}[B^-]) d_{1,-1}^L \} \,. \end{split}$$

6.2 Kernel Functions: Rotation

Next we consider the kernel functions for $x = \alpha$. If p = - and $x = \alpha$,

$$\Sigma_{L}^{(-),\alpha}[A,B] = \pi \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} 8[1+(-1)^{\ell+L+\ell'}] \begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix}^{2}$$

$$= \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} 8 \left[\begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix}^{2} + \begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix} \begin{pmatrix} \ell & L & \ell' \\ 2 & 0 & -2 \end{pmatrix} \right]$$

$$= \int_{-1}^{1} d\mu \, \pi L(L+1) \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} 4 (d_{-2,-2}^{\ell} d_{00}^{L} d_{22}^{\ell'} + d_{-2,2}^{\ell} d_{00}^{L} d_{2,-2}^{\ell'})$$

$$= \int_{-1}^{1} d\mu \, 4\pi (\xi_{-2,-2}[A] \xi_{22}[B] + \xi_{-2,22}[A] \xi_{22}[B]) d_{00}^{L}, \qquad (128)$$

and

$$\Gamma_{L}^{(-),\alpha}[A,B] = \pi \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} 8[1+(-1)^{\ell+L+\ell'}] \begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix} \begin{pmatrix} \ell' & L & \ell \\ -2 & 0 & 2 \end{pmatrix} \\
= \pi \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} \\
\times 8 \begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix} \left[\begin{pmatrix} \ell & L & \ell' \\ -2 & 0 & 2 \end{pmatrix} + \begin{pmatrix} \ell & L & \ell' \\ 2 & 0 & -2 \end{pmatrix} \right] \\
= \int_{-1}^{1} d\mu \, \pi \sum_{\ell\ell'} \frac{2\ell+1}{4\pi} A_{\ell} \frac{2\ell'+1}{4\pi} B_{\ell'} 4[d_{-2,-2}^{\ell} d_{00}^{L} d_{22}^{\ell'} + d_{-2,2}^{\ell} d_{00}^{L} d_{2,-2}^{\ell'}] \\
= \int_{-1}^{1} d\mu \, 4\pi (\xi_{-2,-2}[A] \xi_{22}[B] + \xi_{-2,2}[A] \xi_{2,-2}[B]) d_{00}^{L}. \tag{129}$$

Computing delensed CMB anisotropies 7

Linear template of lensing B mode

The gradient of lensing potential $\nabla \phi$ is transformed as

$$\nabla \phi = \sum_{\ell m} \nabla Y_{\ell m} \phi_{\ell m} = \sum_{\ell m} \sqrt{\frac{\ell(\ell+1)}{2}} \phi_{\ell m} (Y_{\ell m}^{1} e^{*} - Y_{\ell m}^{-1} e)$$

$$= (\phi^{+} + i\phi^{-}) e^{*} + (\phi^{+} - i\phi^{-}) e, \qquad (130)$$

where ϕ^{\pm} is obtained by spin-1 inverse harmonic transform of $\phi_{\ell m} \sqrt{\ell(\ell+1)/2}$. Similarly the gradient of polarization $\nabla P^{\pm} = \nabla (Q \pm iU)$ is

$$\nabla P^{+} = -\sum_{\ell m} E_{\ell m} \nabla Y_{\ell m}^{2}$$

$$= -\sum_{\ell m} E_{\ell m} \left(\sqrt{\frac{(\ell - 2)(\ell + 3)}{2}} Y_{\ell m}^{3} e^{*} - \sqrt{\frac{(\ell + 2)(\ell - 1)}{2}} Y_{\ell m}^{1} e \right)$$

$$= -(E_{3}^{+} + iE_{3}^{-}) e^{*} + (E_{1}^{+} + iE_{1}^{-}) e, \qquad (131)$$

$$\nabla P^{-} = (\nabla P^{+})^{*} = (E_{1}^{+} - iE_{1}^{-}) e^{*} - (E_{3}^{+} - iE_{3}^{-}) e. \qquad (132)$$

$$\nabla P^{-} = (\nabla P^{+})^{*} = (E_{1}^{+} - iE_{1}^{-})e^{*} - (E_{3}^{+} - iE_{3}^{-})e.$$
(132)

This leads to

$$\nabla \phi \cdot \nabla P^{+} = -(E_{3}^{+} + iE_{3}^{-})(\phi^{+} - i\phi^{-}) + (E_{1}^{+} + iE_{1}^{-})(\phi^{+} + i\phi^{-})$$
(133)

$$\nabla \phi \cdot \nabla P^{-} = (\nabla \phi \cdot \nabla P^{+})^{*}. \tag{134}$$

The harmonic transform of the above quantity becomes the E/B combinations.

REFERENCES REFERENCES

References

[1] A. Lewis and A. Challinor, "Weak gravitational lensing of the CMB", Phys. Rep. **429** (2006) 1–65, [astro-ph/0601594].

- [2] D. Hanson, A. Challinor, and A. Lewis, "Weak lensing of the CMB", Gen. Rel. Grav. 42 (2010) 2197–2218, [arXiv:0911.0612].
- [3] C. M. Hirata and U. Seljak, "Reconstruction of lensing from the cosmic microwave background polarization", Phys. Rev. D **68** (2003) 083002, [astro-ph/0306354].
- [4] V. Gluscevic, M. Kamionkowski, and A. Cooray, "Derotation of the cosmic microwave background polarization: Full-sky formalism", Phys. Rev. D **80** (2009) 023510, [arXiv:0905.1687].
- [5] C. Dvorkin and K. M. Smith, "Reconstructing Patchy Reionization from the Cosmic Microwave Background", Phys. Rev. D 79 (2009) 043003, [arXiv:0812.1566].
- [6] D. Varshalovich, A. Moskalev, and V. Kersonskii, *Quantum Theory of Angular Momentum*. World Scientific, Singapore, 1989.
- [7] T. Namikawa, D. Yamauchi, and A. Taruya, "Full-sky lensing reconstruction of gradient and curl modes from CMB maps", J. Cosmol. Astropart. Phys. 1201 (2012) 007, [arXiv:1110.1718].
- [8] W. Hu and T. Okamoto, "Mass Reconstruction with CMB Polarization", Astrophys. J. 574 (2002) 566–574, [astro-ph/0111606].
- [9] T. Okamoto and W. Hu, "CMB Lensing Reconstruction on the Full Sky", Phys. Rev. D 67 (2003) 083002, [astro-ph/0301031].
- [10] K. Gorski et al., "HEALPix A Framework for high resolution discretization, and fast analysis of data distributed on the sphere", Astrophys. J. 622 (2005) 759–771, [astro-ph/0409513].
- [11] K. M. Smith, D. Hanson, M. LoVerde, C. M. Hirata, and O. Zahn, "Delensing CMB Polarization with External Datasets", J. Cosmol. Astropart. Phys. **06** (2012) 014, [arXiv:1010.0048].