Тощев Александр Сергеевич

ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ИТ-СЛУЖБЫ ПРЕДПРИЯТИЯ

Специальность 05.13.01 — «Системный анализ, управление и обработка информации (информационные технологии)»

Автореферат

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Казанском (Приволжском) федеральном университете

Научный руководитель: доктор физико-математических наук, профессор, за-

служенный деятель науки Республики Татарстан

А.М. Елизаров

Официальные оппоненты: Соловьев Валерий Дмитриевич,

доктор физико-математических наук, профессор, Казанский (Приволжский) федеральный университет, Институт филологии и межкультурной комму-

никации им. Льва Толстого, ведущий научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным длин-

ным длинным названием,

старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное образо-

вательное учреждение высшего профессионального образования с длинным длинным длинным длинным

названием

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета NN на базе Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Автореферат разослан DD mmmmmmmm YYYY года.

Ученый секретарь диссертационного совета

Sign

NN, д-р физ.-мат. наук

Фамилия Имя Отчество

Общая характеристика работы

Целью работы является разработка интеллектуальной системы повышения эффективности деятельности ИТ-службы предприятия.

Область исследования — разработка методов и алгоритмов решения задач системного анализа, оптимизации, управления, принятия решений и обработки информации в ИТ-отрасли.

<u>Предметом исследования</u> является процесс регистрации и устранения проблемных ситуаций, возникающих в ИТ-инфраструктуре предприятия.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. Провести теоретико-множественный и теоретико-информационный анализ сложных систем в области поддержки информационной инфраструктуры;
- 2. Создать модель целевой области;
- 3. Исследовать модели мышления и выбрать наиболее подходящую;
- 4. На основе выбранной модели мышления разработать модель проблемно-ориентированной системы управления, принятия решений и оптимизации процесса принятия, анализа и обработки запросов пользователя в области обслуживания информационной структуры предприятия;
- 5. Создать архитектуру приложения на основе модели;
- 6. Реализовать на основе этой архитектуры прототип интеллектуальной вопросно-ответной системы повышения эффективности деятельности ИТ-службы предприятия;
- 7. Провести апробацию прототипа на тестовых данных.

Основные положения, выносимые на защиту:

- 1. Теоретико-множественный и теоретико-информационный анализ сложных систем в области поддержки информационной инфраструктуры;
- 2. Построенная модель проблемно-ориентированной системы управления, принятия решений и оптимизации технических объектов в области обслуживания информационной инфраструктуры;
- 3. Созданный прототип программной реализации модели проблемноориентированной системы управления, принятия решений и оптими-

- зации обработки запросов пользователя в области обслуживания информационной инфраструктуры;
- 4. Апробация прототипа проблемно-ориентированной системы управления, принятия решений и оптимизации деятельности на контрольных примерах и анализ ее результатов.

Научная новизна:проведенного исследования состоит в следующем:

- 1. Создана модель проблемно-ориентированной системы управления, принятия решений в области обслуживания информационной структуры предприятия на основе модели мышления;
- 2. Представлены новая модель данных для модели мышления и оригинальный способ хранения для этой модели, эффективный по сравнению с другими базами данных;
- 3. Выполнено оригинальное исследование моделей мышления применительно к области обслуживания информационной структуры предприятия;
- 4. На основе модели мышления Мински созданы архитектура системы обслуживания информационной структуры предприятия и программный прототип этой системы.

Практическая значимость Система, разработанная в рамках данной диссертации носит значимый практический характер. Идея работы зародилась под влиянием производственных проблем в ИТ-отрасли, с которыми автор сталкивался каждый день в процессе разрешения различных инцидентов, возникающих в деятельности службы технической поддержки ОАО "АйСиЭл КПО-ВС (г. Казань)" — одном из крупнейших системообразующих предприятий ИТ-области Республике Татарстан. Поэтому было необходимо выработать глубокое понимание конкретной предметной области, чтобы выбрать приемлемое решение, получившее практическое применение в работе на проекте поддержки крупной сети продуктовых магазинов.

Достоверность научных исследований и практических рекомендаций базируется на корректной постановке общих и частных рассматриваемых задач, использовании известных фундаментальных теоретических положений системного анализа, достаточном объёме данных, использованных при статистическом моделировании, и широком экспериментальном материале, использованном для численных оценок достижимых качественных показателей.

Исследования, проведенные в диссертации, соответствуют паспорту специальности 05.13.01 — Системный анализ, управление и обработка информации, сопоставление приведено в таблице 1.

Таблица 1 — Сопоставление направлений исследований в рамках специальности 05.13.01 и исследований, проведенных в диссертации

Направление исследования	Результат работы	
Разработка критериев и моделей	В рамках работы была разработана мо-	
описания и оценки эффективно-	дель системы принятия решения и об-	
сти решения задач системного	работки информации в области решения	
анализа, оптимизации, управле-	запросов пользователя на естественном	
ния, принятия решений и обра-	языке.	
ботки информации		
Разработка проблемно-	По модели, разработанной в предыду-	
ориентированных систем	щем пункте был разработан прототип	
управления, принятия решений	системы принятия решения Thinking	
и оптимизации технических	Understanding, который был испытан на	
объектов	модельных данных.	
Методы получения, анализа и	В рамках системы TU был разработан ме-	
обработки экспертной информа-	тод обработки экспертной информации -	
ции	обучение при помощи модели мышления	
	TU, основанной на принципах модели 6-	
	ти Марвина Мински.	
Разработка специального мате-	В рамках разработки системы TU были	
матического и алгоритмическо-	созданы специальные алгоритмы для ана-	
го обеспечения систем анализа,	лиза запросов пользователя и принятия	
оптимизации, управления, при-	решений.	
нятия решений и обработки ин-		
формации		

Таблица 1 – продолжение

Направление исследования	Результат работы			
Теоретико-множественный и	В рамках работы был проведен ком-			
теоретико-информационный	плексный анализ области поддержки про-			
анализ сложных систем	граммного обеспечения, с помощью кото-			
	рого была построена система данной об-			
	ласти и выделены участки для оптимиза-			
	ции принятия решений.			
Методы и алгоритмы интеллек-	Система, разработанная в рамках данной			
туальной поддержки при приня-	работы в включает в себя инновационные			
тии управленческих решений в	методы и алгоритмы поддержки принятия			
технических системах	решений, использующих в своей основе			
	модель мышления на базе модели мышле-			
	ния Человека, описанной в книге Марви-			
	на Мински.			
Визуализация, трансформация и	Представлена наглядная визуализация			
анализ информации на осно-	данных по системному анализу области			
ве компьютерных методов обра-	удаленной поддержки инфраструктуры.			
ботки информации				

Апробация работы. Основные результаты диссертационной работы докладывались на следующих конференциях:

- Десятая молодежная научная школа-конференция "Лобачевские чтения —2011. Казань, 31 октября —4 ноября 2011";
- 3rd World Conference on Information Technology (WCIT-2012);
- Искусственный интеллект и естественный язык (AINL-2013);
- Электронная Казань 2014;
- Электронные библиотеки: перспективные методы и технологии, электронные коллекции (RCDL-2014);
- Agents and multi-agent systems: technologies and applications (AMSTA-2015).

Практическая апробация результатов работы проводилась на выгрузке инцидентов из системы регистрации запросов службы технической поддержки ИТ-инфраструктуры ОАО "АйСиЭл КПО-ВС (г. Казань)". Созданная система по-

казала требуемые результаты (процент успешно обработанных запросов более чем 30%) обработки данной информации.

<u>Личный вклад.</u> Автор исследовал целевую область: проводил анализ запросов пользователей и классифицировал их, вместе с Талановым Максимом Олеговичем изучал модель мышления Марвина Мински; создавал базовую архитектуру систему; вместе с Талановым Максимом Олеговичем проводил разработку компонентов модели, адаптируя теорию Марвина Мински. Автор проводил испытание системы на целевых запросах; отлаживал работу системы.

Публикации. Основные результаты по теме диссертации изложены в 9 печатных изданиях [1], [2], [3], [4], [5], [6], [7], [8], [9], из которых статьи [7], [8] проиндексированы в БД Scopus, статья [8] проиндексирована в БД Web Of Science, работа [9] опубликована в журнале из списка ВАК, статья [4] проиндексирована в БД РИНЦ, работы [1], [2], [3], [4] опубликованы в материалах международных и всероссийских конференций.

Содержание работы

Во <u>введении</u> обосновывается актуальность исследования, проводимых в рамках данной диссертационной работы, дается общая характеристика работы. Проводится обзор области и производится постановка задачи.

Первая глава посвящена обзору интеллектуальных систем регистрации и анализа проблемных ситуаций, возникающих в ИТ-инфраструктуре предприятия. Здесь представлен сравнительный анализ систем регистрации и устранения проблемных ситуаций. В главе определяются основные требования к интеллектуальным системам регистрации и анализа проблемных ситуаций в ИТ. Одним из важных элементов подобных систем является обработка естественного языка, поэтому здесь представлен сравнительный анализ методов и комплексов обработки текстов на естественном языке.

Во время анализа были использованы следующие обработчики естественного языка: Open NLP; Relex; StanfordParser. Результат работы подсчитывался при помощи метрик, представленных в Таблице 2.

Результаты приведены на сводной диаграмме Рисунок ??.

Все рассмотренные системы не соответствуют полному комплексу необходимых требований. В Таблице 3 приведены сводные данные по системам. Ввиду развитости и доступности было решено использовать OpenCog RelEx.

Таблица 2 — Таблица метрик

Метрика	Описание	Формула
Precision	Точность	$P = \frac{tp}{tp + fp}$
		где Р — precision,
		tp — успешно обрабо-
		танные, fp — ложно
		успешные
Recall	Чувствительность	$R = \frac{tp}{tp + fn}$ где R — recall, tp — успешно обработанные, fn — ложно неуспешные
F	F — measure (результативность)	$F = \frac{P*R}{P+R}$ Где Р — precision, R — recall.

Таблица 3 — Сравнительный анализ существующих решений

Сравнительный пункт	HP Open View	ServiceNOW	IBM Watson
Мониторинг	Да	Да	Да
Регистрация инцидентов	Да	Да	Да
Управление системами	Да	Нет	Нет
Создание цепи обработки	Да	Да	Нет
(Workflow) инцидента			
Понимания и формализа-	Нет	Нет	Да
цию запросов на естествен-			
ном языке			
Поиск решений	Нет	Нет	Да
Применение решений	Нет	Нет	Нет
Обучение решению инци-	Нет	Нет	Да
дента			

Таблица 3 – продолжение

Сравнительный пункт	HP Open View	ServiceNOW	IBM Watson
Умение проводить ло-	Нет	Нет	Нет
гические рассуждения:			
генерализацию, специа-			
лизацию, синонимичный			
поиск			

Вторая глава посвящена построению модели интеллектуальной системы принятия решений для регистрации и анализа проблемных ситуаций в ИТ-инфраструктуре предприятия. Созданными и испытанными моделями, использованными при создании системы принятия решений для регистрации и анализа проблемных ситуаций в ИТ-инфраструктуре предприятия, являются:

- модель Menta 0.1, построенная с использованием деревьев принятия решений;
- модель Menta 0.3, построенная с использованием генетических алгоритмов;
- модель TU 1.0, основанная на модели мышления Марвина Мински.

Модель, построенная на базе нейронных сетей (поддерживающая обучение) была отброшена на предварительной стадии оценки, так как она предъявляет большие требования к производительности, что в свою очередь порождает высокую стоимость. Далее каждая модель будет рассмотрена подробно.

Модель с использованием Деревьев Принятия Решений (Menta 0.1). Данная модель являлась одной из первых, которая была опробована. Модель была основана на деревьях принятия решений. В построение модели данной системы использовались следующие компоненты: обработка запросов на естественном языке; поиск решения; применение решения.

Системы была ориентирована на выполнение простых команд, например, добавить поле на форму. В целом работа системы описывается следующим алгоритмом:

- 1. Получение и формализация запроса
- 2. Поиск решения при помощи Деревьев Принятия Решений
- 3. Изменение модели приложения в формате OWL
- 4. Генерация и компиляция приложения

После проведения экспериментов были выявлены следующие проблемы: отсутствие устойчивости к ошибкам входной информации: грамматическим и содержательным. Например, входной файл не имел отношения к программной системе, модель которой была в базе знаний в формате OWL; система поиска решения работала только в рамках модели одной программы; отсутствовала функция обучения.

Модель с использованием Генетических алгоритмов на базе модели мышления Питера Норвига (Menta 0.2-0.3). В рамках модели Menta 0.3 были отработаны следующие основные компоненты будущей итоговой модели: критерии приемки (Ассерtance Criteria); How-To — для хранения решений проанализированных проблем; формат данных OWL; использование логических вычислений для проверки решения. Система Menta 0.3 содержала внутри себя модель целевого приложения (как и Menta 0.1) и список решений тех или иных проблем (How-To). При помощи генетического алгоритма модель строила Ноw-To решение проверяла его при помощи логического движка NARS на соответствие входным критериям приемки. С точки зрения генетических алгоритмов это — функция отбора особей из поколения.

После проведения экспериментов были выявлены следующие проблемы: отсутсвие обучения; отсутсвие обработки естественного языка; после апробации оказалось, что критерии приемки практически описывают необходимое решение (то которое должно быть найдено), что являлось недопустимым.

Модель мышления Марвина Мински (Модель 6-ти). Модель была построена с применением теории Марвина Мински. Эта модель сохранила следующие основные концептуальные элементы предыдущих моделей и показала свою состоятельность на контрольных примерах: Ассерtance Criteria; обучение; поиск и применение решения; Отсутсвие обработки естественного языка. Данная модель является более универсальной и представляет собой верхнеуровневую архитектуру обработки запроса (мышления), где компонентами являются лучшие части предыдущих систем. Реализация модели получила название TU.

Одним из основных компонентов системы является <u>Критик – Селектор – Образ мышления</u>. На Рисунке 1 представлена схематичное изображение Критика-Селектора-Образа мышления.

Рис. 1 — Критик-Селектор-Образ мышления

<u>Критик (Critic)</u> представляет собой определенный переключатель: внешние обстоятельства, события или иное воздействие. Например, «включился свет, и зрачки сузились», «обожглись и одернули руку». Критик активируется только тогда, когда для этого достаточно обстоятельств. Одновременно могут активироваться несколько критиков. Например, человек решает сложную задачу, идет активация множество критиков: выполнить расчет, уточнить технические детали. Кроме того, параллельно может активироваться критик переработки, сообщающий о необходимости отдыха.

<u>Селектор (Selector)</u> занимается выбором определенных ресурсов, которыми также являются Образ мышления.

Образ мышления (WayToThink) — это способ решения проблемы. Образ мышления может быть сложным и, например, активировать другие критики. Например, размышляя над проблемой, специалист понимает, что нужно произвести полный перебор, и тут он решает поискать готовое решение: а может кто-то уже сделал такой перебор и можно будет его использовать. Здесь "поиск готового решения" является критиком внутри образа мышления "поиск решения".

На рисунке 2 представлена расширенная модель работы триплета Критик –Селектор –Образ мышления. Критик активирует Селектор, который активирует Образ мышления (синий круг). Последний в свою очередь может активировать нового Критика или же совершить определенные действия. Например, зажегся зеленый свет светофора, значит, можно переходить дорогу. Под ресурсами здесь понимается набор знаний из базы знаний: Критики, Селекторы, Образы мышления, готовые решения.

Если активировалось много критиков, то проблему нужно уточнить, так как степень неопределенности слишком высока. Если проблема очень похожа на уже проанализированную, то можно действовать и судить по аналогии.

Рис. 2 — Критик-Селектор-Образ мышления в разрезе ресурсов

Другой важной концепцией теории являются уровни мышления. Это концепция распределяет активность мышления между 6-ю уровнями: чем выше уровень, тем сильне активность. В Таблице 4 представлено описание уровней мышления с примерами.

На этом исследование моделей мышлений было завершено и были сделаны выводы.

Для программной экспертной системы очень важно обладать способностью мыслить и рассуждать. Например, очень важно для системы уметь действовать по аналогии. Так как множество запросов типичны и отличаются лишь параметрами. Например, пожалуйста, установить Office, Antivirus и т.д.

Также для экспертной системы важно уметь абстрагировать специализированные рецепты решения. К примеру, система научилась решать инцидент "Please install Firefox". Абстрагировав данный инцидент до степени "Please

Таблица 4 — Описание уровней мышления модели 6-ти

Уровень	Описание		
Инстинктивный уро-	На данном уровне происходят инстинктивные		
вень	реакции (врожденные). Например, коленный ре		
	флекс. Общую формулу для этого уровня можно		
	выразить как "Если, то сделать так".		
Уровень обученных ре-	На данном уровне происходит мышление обучен-		
акций	ных реакций, то есть тех реакций, которыми чело-		
	век обучается в течение жизни. Например, перехо-		
	дить дорогу на зеленых свет. Общую формулу для		
	этого уровня можно выразить как "Если, то сде-		
	лать так".		
Уровень рассуждений	а данной уровне происходит мышление с использо-		
	ванием рассуждений. Если я сделаю так, то будет		
	Например, если перебежать дорогу на зеленый		
	свет, то можно успеть вовремя. На данном уровне		
	сравниваются последствия нескольких решений и		
	выбирается оптимальное. Общую формулу для это-		
	го уровня можно выразить как "Если, то сделать		
D 1	так, тогда будет так".		
Рефлексивный уровень	На данном уровне происходит рассуждение с уче-		
	том анализа прошлых событий. Например, в про-		
	шлый раз я побежал на моргающий зеленый и чуть		
Correspondence	не попал под машину.		
Саморефлексивный	На данном уровне происходит оценка себя. Строит-		
уровень	ся определенная модель с помощью которой идет		
	оценка своих поступков. Например, мое решение		
	не пойти на это собрание было неверным, так как я упустил столько возможностей, я был легкомыс-		
	ленный.		
Самосознательный	На данном уровне идет оценка поступков человека		
уровень	с точки зрения высших идеалов и внешних оценок.		
уровень	Например, а что подумают мои друзья? А как бы		
	поступил мой герой?		
	noorymun mon repon:		

install browser"система сможет теми же способами попробовать решить новый инцидент.

После рассмотрения нескольких моделей была выбрана модель мышления Марвина Мински, так как данная модель наиболее точно ложится на целевую область решения инцидентов в области IT. На основе подхода Мински была построена модель системы, которая поддерживает основные функции: обучение, понимание инцидента, поиск решения, применение решения.

В **третьей главе** приведено описание архитектуры и реализации системы, основанной на модели ТU. Архитектура системы представляет собой модули. Основными компоненты системы описаны в Таблице 5. Система может функционировать в режиме обучения и в режиме решения запросов.

Таблица 5 — Основные компоненты системы ThinkingUnderstanding

Компонент	Описание	
TU Webservice	Основной компонент взаимодей-	
	ствия со внешними система, включая	
	пользователя.	
CoreService	Ядро системы, содержит основные	
	классы.	
DataService	Компонент работы с данными.	
Reasoner	Компонент вероятностной логики.	
ClientAgent	Компонент выполнения скриптов на	
	целевой машине.	
MessageBus	Шина данных для системы.	

В главе приводится основной рабочий поток работы приложения.

- 1. Поступает запрос от пользователя
 User had received wrong application. User has ordered Wordfinder
 Business Economical. However she received wrong version, she received
 Wordfinder Tehenical instead of Business Economical. Please assist.
- 2. GoalManger устанавливает цель системы HelpUser
- 3. Активируется набор Critic, привязанный к данной цели
- 4. Preliminary Annorator разбирает фразу
- 5. KnowledgeBaseAnnotator создает семантическую сеть и ссылки на нее

- 6. Critic, привязанный к цели HelpUser на Рефликсивном уровне запускает WayToThink ProblemSolving с целью: ResolveIncident
- 7. Critic на Рефликсивном уровне выбирает WayToThink KnowingHow
 - (a) Запускаются параллельно все Critic, которые привязаны к IncidentClassification Critic, который привязан к ResolveIncident цели, в данном случае это DirectInstruction, ProblemWithDesiredState, ProblemWithoutDesiredState
 - (b) Selector выбирает наиболее вероятный результат работы среди всех результатов компонентов. В данном случае будет результат работы Problem Description with desired state.
 - (c) KnowingHow сохраняет варианты выбора Selector.
 - (d) Simulation WayToThink с параметрами "Создать модель текущий ситуации"создает: CurrentSituation, User, Software
 - (e) Reformulation WayToThink, используя результаты предыдущего шага синтезирует артефакты, которых не хватает, чтобы получить из CurrentState DesiredState, так как он не указан явно. WayToThink запускает Critic размышления, чтобы найти корень проблемы. Он находит CurrentState- Wordfinder Tehcnical, DesiredState-Wordfinder Business Economical
 - (f) Рефлексивные Critic оценивают состояние системы на каком шаге она находится, и если цель не достигнута, то запускают другой WayToThink, например, DirectInstruction.
 - (g) Critic генерации решения запускает KnowingHow WayToThink, ExtensiveSearch.
 - (h) Selector выбирает наиболее вероятный образ мышления. В данном случае ExtensiveSearch, который будет находить решения, позволяющие привести систему в необходимое состояние (DesiredState). Если он не сможет, то он иницирует коммуникацию с пользователем.

- 8. Рефлексивный Critic проверяет состояние системы. Если Цель достигнута, то пользователю посылается ответ.
- 9. Само Сознательные Critic активируется на данном шаге и сохраняют информацию о затратах на решение.

В главе приведено описание созданной специально для системы модели данных TUKnowledge 3.

Рис. 3 — Схема данных TU Knowledge в формате UML

В <u>Главе 4</u> приведены Экспериментальные исследования эффективности работы модели ТU. Система показала свою жизнеспособность на модельных данных. Были проведены тесты в сравнении с работой человеческого специалиста. Был выбран контрольный список инцидентов. Сравнивался поиск решения для инцидентов. Основное время при опросе специалиста тратилось на коммуникацию. В Таблице приведены результаты сравнения 6. Тесты были выполнены на машине Intel Core i7 1700 MHz, 8GB RAM, 256 GB SSD, FreeBSD.

Таблица 6 — Результаты сравнения с работой человеческого специалиста

Инцидент	TSS1 (.mc)	ТU (.мс)
Tense is kind of concept.	15000	385
Please install Firefox.	9000	859
Browser is an object.	20000	400
Firefox is a browser.	5000	659
Install is an action.	8000	486
User miss Internet Explorer 8.	10000	10589
User needs document portal update.	15000	16543
Add new alias Host name on host that alias is wanted to:	10000	18432
hrportal.lalala.biz IP adress on host that alias is wanted to:		
322.223.333.22 Wanted Alias: webadviser.lalala.net		
Outlook Web Access (CCC) - 403 - Forbidden: Access is	15000	10342
denied		
PP2C - Cisco IP communicator. Please see if you can fix	13000	12343
the problem with the ip phone, it's stuck on configuring ip		
+ sometimes Server error rejected: Security etc.		

В заключении приведены основные выводы по работе.

В работе были выполнены следующие задачи и достигнуты следующие результаты.

- 1. Была создана модель проблемно-ориентированной системы управления, принятия решений в области обслуживания информационной структуры предприятия на основе модели мышления
- 2. Была представлена новая модель данных для модели мышления и оригинальный способ ее хранения, эффективный по сравнению с другими базами данных

- 3. Было выполнено оригинальное исследование моделей мышления в области обслуживания информационной структуры предприятия
- 4. На основе модели была создана архитектура системы и ее прототип
- 5. Были созданы специальные алгоритмы для анализа запросов пользователя и принятия решений.
- 6. Система, разработанная в рамках данной работы, включает в себя инновационные методы и алгоритмы поддержки принятия решений, использующих в своей основе модель мышления на базе модели мышления Человека, описанной в книге Марвина Мински.
- 7. Была представлена наглядная визуализация структуры области удаленной поддержки инфраструктуры

Представленная в данной работе модель мышления, ее архитектура и реализация является уникальной в своем роде. На момент написания это была единственная реализация модели мышления Марвина Мински.

Разработанная в рамках работы системы не является узкоспециализированной. Она также подходит для других областей, где требуется поддержка принятия решений. Например, при постановке медицинского диагноза, чтобы отбросить ложные диагнозы.

Например, систему можно обучить органам человека и их взаимосвязи. Далее можно обучить каким заболеваниям подвержен тот или иной орган. Далее к каждому заболеванию добавить симптом. После этого можно делать запрос с симптомами и система выдаст список вероятных заболеваний со способами их лечения.

В области диагностики проблем в машиностроении. Обучить систему узлам автомобиля, проблемам с ними связанными, признаками этих проблем и способами их устранения.

Публикации автора по теме диссертации

1. Тощев А. С. К новой концепции автоматизации программного обеспечения // Труды Математического центра имени Н.И. Лобачевского. Материалы Десятой молодежной научной школы-конференции "Лобачевские чтения — 2011. Казань, 31 октября —4 ноября 2011". — 2011. — Т. 44, № 4. — С. 279—282.

- Toshchev A. Talanov M. Krehov A. Thinking-Understanding approach in IT maintenance domain automation // Global Journal on Technology, Vol 3 (2013): 3rd World Conference on Information Technology (WCIT-2012). 2013. Vol. 3. Pp. 879 –894.
- 3. *Toshchev A. Talanov M.* Thinking model and machine understanding of English primitive texts and it's application in Infrastructure as Service domain // *Proceedings of conference "Artificial Intelligence and natural language (AINL-2013)"*. 2013. С. 14—19. Режим доступа: http://ainlconf.ru/material201303.
- 4. *Toshchev A. Talanov M.* Архитектура и реализация интеллектуального агента для автоматической обработки входящих заявок с помощью искусственного интеллекта и семантических сетей // *Ученые записки ИСГ*3. 2014. Т. 2. С. 288 –292.
- 5. *Toshchev A. Talanov M.* Computational emotional thinking and virtual neurotransmitters // *International Journal of Synthetic Emotions (IJSE)*. 2014. Vol. 5. Pp. 30 –35.
- 6. *Toshchev A. Talanov M.* Appraisal, Coping and High Level Emotions Aspects of Computational Emotional Thinking // *International Journal of Synthetic Emotions* (*IJSE*). 2015. Vol. 06. Pp. 65 –72.
- 7. *Toshchev A*. Thinking model and machine understanding in automated user request processing // *CEUR Workshop Proceedings*. 2014. Vol. 1297. Pp. 224 –226.
- 8. Toshchev A. Talanov M. Thinking Lifecycle as an Implementation of Machine Understanding in Software Maintenance Automation Domain // Agent and Multi-Agent Systems: Technologies and Applications: 9th KES International Conference, KES-AMSTA 2015 Sorrento, Italy, June 2015, Proceedings (Smart Innovation, Systems and Technologies). 2015. Vol. 38. Pp. 301–310.
- 9. *Тощев А.* Возможности автоматизации разрешения инцидентов для области удаленной поддержки информационной инфраструктуры предприятия // Экономика и менеджмент систем управления. 2015. Т. 4.2. С. 293—295.