Gesture Recognition Assignment using neural networks:

Group Members:

- Rohan Bhale
- Rahul Agarwal

Problem statement:

Given a sequence of images representing a video classify the gesture being used to control a smart tv functionality to 5 given class:

1. Thumbs up: Increase the volume

2. Thumbs down: Decrease the volume

3. Left swipe: Jump backwards 10 seconds

4. Right swipe: Jump forwards 10 seconds

5. Stop: Pause the movie

Image preprocessing:

• Image size: 360*360:

Scaled down to 100*100

• Image size: 120*160

o Horizontal crop: 20 from left and right each

Scaled down to 100 * 100

Conv3D base model:

- Start Batch size: 100, Time steps used: 15(img idx generated using range(0,30,2))
- Architecture:
 - o Input: (15, 100,100,3)
 - o Conv3d: 32 kernels of size 2, padding same, activation relu
 - o MaxPool3D
 - Conv3d: 16 kernels of size 2, padding same, activation relu
 - o MaxPool3D
 - o Conv3d: 8 kernels of size 2, padding same, activation relu
 - o MaxPool3D
 - o Flatten
 - o Dense: 512, activation relu
 - o Dense: 256, activation relu
 - Dense: 5, activation: softmax ~~~Output
- Starting learn rate: 0.001, Optimizer used: Adam

Experiment Number	Model	Result	Decision + Explanation
1	Conv3D	Throws	Reduce batch size to 50
	Tried overfitting on	Resource	
	50% data.	Exhausted error	
	Chose batch size of		
	100		
2	Conv3D	Throws	Reduce batch size to 25
	Tried overfitting on	Resource	
	50% data.	Exhausted error	
	Chose batch size of 50		
3	Conv3D	Worked. Model	Increase the amount of
3	Tried overfitting on	overfitted.	trainable data
	50% data.	overnitied.	trainable data
	Chose batch size of	Train-Val	
	50	accuracy: 96-70	
4	Conv3D	Model	Lets try reduce the params.
•	Tried overfitting on	overfitted.	For this lets replace the
	100% data.	Convergence	Dense layer of 256 with 64.
		was quicker	We choose this because it
		with 100% data	reduces the param count
		for train	moderately. We want to
			slowly reduce the params if
		Train-Val	needed
		accuracy: 96-70	
5	Conv3D	Model still	As accuracies remain almost
		overfitted.	the same, lets try adding
		T	dropouts of 0.2 for the
		Train-Val	Dense layer inputs.
6	Conv3D	accuracy: 96-70 Reduced the	Increase the dranguts to
0	COLIVED	Overfitting.	Increase the dropouts to 0.25
		Overniting.	0.23
		Train-Val	
		accuracy: 96-80	
		, , , , , , , , , , , , , , , , , , , ,	
		Val accuracy	
		plateaued at 80	
7	Conv3D	Reduced the	Add Batch Normalization for
		Overfitting.	the Dense layer
		Train-Val	
		accuracy: 96-85	
		Val accuracy	
		plateaued	
		around 85	

8	Conv3D	The	The overfitting doesn't seem
		convergence	to reduce from now
		was quicker	onwards. So lets pick the
		reducing the	best model and fine tune
		epochs required	with a low learning rate. We
		to reach train-	tried different Ir and 0.00001
		val accuracy of	turned out to be good.
		92-86 to 13	
		epochs	
10	Conv3D	After fine tuning	We now stopped the
		with Ir of	experiments here for
		0.00001 for 11	Conv3D as we got a good
		more epochs we	model. The observed size of
		got the best	the final model saved in h5
		train-val	file was 7.7 Mb
		accuracy of 96-	
		96	

Conv2D + GRU base model:

• Start Batch size: 25, Time steps used: 15(img_idx generated using range(0,30,2))

• Architecture:

o Input: (15, 100,100,3)

TimeDistributed

■ Input: (100, 100, 3)

Conv2d: 64 kernels of size 2, padding same, activation relu

MaxPool2D

Conv2d: 32 kernels of size 2, padding same, activation relu

MaxPool2D

Conv2d: 16 kernels of size 2, padding same, activation relu

MaxPool2D

Flatten

GRU: 128 cellsGRU: 64 cellsGRU: 32 cells

Dense: 512, activation reluDense: 256, activation relu

Dense: 5, activation softmax ~ ~ Ouput
 Starting learn rate: 0.001, Optimizer used: Adam

Experiment Number	Model	Result	Decision + Explanation	
1	Conv2D + GRU	Overfitted on	Now try overfitting on the	
		the data	full train set.	

	Tried overfitting on 50% data.		
2	Conv2D + GRU	Model overfitted. Convergence was quicker with 100% data for train	As accuracies remain almost the same, lets try adding dropouts of 0.2 for the GRUs with 128 and 64 cells.
		Train-Val accuracy: 98-70	
3	Conv2D + GRU	Model still overfitted.	As accuracies remain almost the same, lets try adding dropouts of 0.2 for the
		Train-Val accuracy: 98-70	Dense layer inputs.
6	Conv2D + GRU	Reduced the Overfitting. Train-Val accuracy: 98-85	Lets reduce params by removing the Dense layer with 256 neurons. We selected this layer as this moderately reduces the
		in 22 epochs Val accuracy plateaued at 85	params.
7	Conv2D + GRU	Reduced the Overfitting. Train-Val accuracy: 96-92 in 24 epochs.	We now stopped the experiments here for Conv2D + GRU as we got a good model. The observed size of the final model saved in h5 file was 12.2 Mb

Comparisons:

Sr. No	Model	Accuracy(Train_Val)	H5 File size
1	Conv3D	96-96	7.7 MB
2	Conv2D + GRU	97-92	12.2 MB

Summary:

- Conv3D is lighter and provides a descent level of accuracy. The Conv2d + GRU also provides high accuracy but the size is 12.2 MB. For our case as the model will be loaded on the smart tv with memory constraints, its better to go with the Conv3D model.
- o So our model of choice is **Conv3D**.