QUESTION BANK

Discrete Mathematics (KCA-104)

- 1. Write down all Possible subsets of $A = \{2, 3\}$ and $B = \{a, b, c\}$.
- **2.** Define the Power set. If $A = \{1, 2, 3\}$ find P(A) and $n\{P(A)\}$.
- 3. Illustrate the Distributive and Associative laws of set theory.
- **4.** Show that for any two sets A and B in the set theory: $A (A \cap B) = A B$.
- 5. A computer company must hire 20 programmers to handle system programming jobs and 30 programmers for applications programming. Of these hired, 5 are expected to perform jobs of both types. How many programmers must be hired?
 Ans:- 45
- **6.** Define the Composite relation. And Led set $A = \{1, 2, 3\}$, $B = \{p, q, r\}$, $C = \{x, y, z\}$ and the relations are, $R = \{(1, p), (1, r), (2, q), (3, q)\}$ and $S = \{(p, y), (q, x), (r, z)\}$, then compute RoS.
- 7. Show that relation "xRy iff (x y) is divisible by 3" is an equivalence relation on the set of integers.
- **8.** Define the function and explain the difference between function and relation with example.
- 9. Let f and g: R \rightarrow R, be defined as follows: f(x) = x + 2, $g(x) = 1 / (x^2 + 1)$. Compute f o g (x).
- **10.** Let $X = \{a, b, c\}$. Define $f: X \to X$ such that $f = \{(a, b), (b, a), (c, c)\}$.

Find (i)
$$f^2$$
 (ii) f^3 (iii) f^4

Ans:-
$$f^2 = \{(a, a), (b, b), (c, c)\}, f^3 = \{(a, b), (b, a), (c, c)\} \text{ and } f^4 = \{(a, a), (b, b), (c, c)\}$$

- **11.** Consider the Poset $S = (\{1, 2, 3, 4, 6, 9, 12, 18, 36\}, /)$. Find the Greatest Lower Bound and Least Upper Bound of the sets $\{6, 18\}$ and $\{4, 6, 9\}$.
- 12. Explain the Hasse diagram with example.
- 13. Draw the Hasse diagram of poset $(D_{72}, '/')$. '/' represent the divisibility operation.
- 14. Let D_m denote the positive divisors of integers m ordered by divisibility. Draw the Hasse diagrams of : (a) D_{24} (b) D_{15}
- 15. State complement axiom of Boolean algebra.
- **16.** Define the well-ordered set? Give an example of well-ordered set.
- **17.** Define Complemented lattice with example.
- **18.** Let $S = \{x, y, z\}$ and P(S) be its power set. Show that $(P(S), \subseteq)$ is a Lattice.
- 19. Classify the Modular Lattice. Also Show that: Every Distributive lattice is Modular.
- **20.** If B = $\{1, 3, 5, 15\}$, then show that (B, +, ., ') is a Boolean Algebra, where a + b = lcm (a, b),

a. b = gcd (a, b) and
$$a' = \frac{15}{a}$$
.