Вопрос по выбору

(Общая физика: электричество и магнетизм)

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ В ВОЛНОВОДАХ

Работу выполнили:

Лазарь Владислав, группа Б01-202 Загороднюк Владислав, группа Б01-202

> г. Долгопрудный Декабрь, 2023 год

Цель работы

Ознакомление с методами получения и анализа электромагнитных волн СВЧ-диапазона.

В работе используются

Генератор СВЧ типа Г4-83, измерительная линия Р1-28, усилитель 28 ИМ, заглушка, отрезок волновода с поглощающей нагрузкой, отрезки волноводов различных сечений, детекторная головка.

Теоретические сведения

1. Волны СВЧ и волноводы

Диапазон электромагнитных волн с частотой от 300 МГц до 300 Гц, или же с длиной волны от 1 метра до 1 миллиметра, называется диапазоном сверхвысоких частот, или же СВЧ. Передача электромагнитной энергии с помощью двухпроводной линии или коаксиальных кабелей становится малоэффективной изза больших потерь: во-первых, резко возрастает сопротивление проводов из-за скин-эффекта, а в двухпроводной линии, кроме того, потери растут вследствие излучения энергии в окружающее пространство. В СВЧ-диапазоне энергия передаётся с помощью волноводов - труб, сделанных из металла или диэлектрика (в миллиметровом диапазоне). Электромагнитные волны могут распространяться по металлическим трубам любого профиля, но из технологических соображений сечения волноводов делаются либо круглыми, либо прямоугольными.

Рис. 1: Металлический волновод

2. Концепция Бриллюэна

В концепции Бриллюэна мы рассматриваем э.м. поле в волноводе как сумму падающей и отражённой от стенок плоских волн.

Рассмотрим отражение плоской э.м. волны от идеально проводящей, бесконечно протяжённой плоской поверхности $\mathbf{x}=0$ (рис. 2). Пусть вектор напряжённости электрического поля падающей волны E параллелен этой плоскости. В наших обозначениях вектор E направлен по оси Y (на нас). Фронт волны, падающей под углом θ к нормали, показан на рис. 1 пунктиром. Оба вектора напряжённости E и H лежат в плоскости фронта волны, им перпендикулярен волновой вектор k, описывающий распространение волны.

Рис. 2: Отражение волны от поверхности металла

Для модуля вектора k (волнового числа) действительно выражение:

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{V_{\Phi}}$$

где V_{Φ} - фазовая скорость волны, совпадающая со скоростью света в пустом пространстве. Рассмотрим произвольную точку M - в неё приходят сразу две волны - падающая $E_{\text{пад}}$ и отражённая $E_{\text{отр}}$:

$$E_{\text{пад}} = E_0 \cdot e^{i(\omega t - \mathbf{k_1 r})}, E_{\text{orp}} = -E_0 \cdot e^{i(\omega t - \mathbf{k_2 r})}$$

По модулю $k_1=k_2=\frac{\omega}{c},$ тогда как их проекции на оси координат:

$$k_{1x} = -k_{2x} = -k\cos\theta, k_{1z} = k_{2z} = k\sin\theta$$

При отражении волны от проводящей поверхности происходит сдвиг фаз в 180°, откуда и появляется знак - в выражении электрической напряжённости отражённой волны. Тогда имеем выражение для суммарного электрического поля в точке М:

$$E = E_0(e^{i(\omega t - \mathbf{k_1 r})} - e^{i(\omega t - \mathbf{k_2 r})})$$

Или, подставляя компоненты вектора $\mathbf{r} = (x, 0, z)$, а также компоненты вектора \mathbf{k} , получаем:

$$E = 2iE_0 \sin(kx\cos\theta)e^{i\omega(t-z\sin\frac{\theta}{c})}$$

Мы получили уравнение волны в точке M с амплитудой $2iE_0\sin(kx\cos\theta)$ и фазовой скоростью $\frac{c}{\sin\theta}$. Отметим две важные особенности этой волны: 1) её фазовая скорость больше скорости света; 2) при фиксированном угле θ амплитуда поля гармонически зависит от x и не меняется со временем. Иначе говоря, в результате интерференции падающей и отражённой волн в пространстве над проводящей поверхностью в направлении оси X образуется система стоячих волн. Электрическое поле стоячей волны равно нулю в точках, где $kx\cos\theta=n\pi$, т.е. там, где

$$x = \frac{n\pi}{k\cos\theta}$$

Таким образом, поверхность нулевого электрического поля представляет собой плоскость, параллельную отражающей поверхности. Расположим в этой плоскости вторую проводящую поверхность. Эта поверхность не исказит полученного распределения поля, т.к. на ней автоматически удовлетворяются граничные условия E(t)=0. Точно такие же плоскости можно поставить, например, при y=0 и y=b. Эти плоскости нормальны электрическим силовым линиям, и на них выполняются граничные условия. Итак, мы показали, что в волноводе прямоугольного сечения может распространяться э.м. волна, которую в пределах волновода можно рассматривать как результат суперпозиции двух плоских волн. Каждая плоская волна является чисто поперечной, так что электрическое и магнитное поля перпендикулярны к направлению их распространения. В суммарной волне электрическое поле имеет только составляющую E_y и, следовательно, перпендикулярно оси волновода, а магнитное поле имеет составляющие H_x и H_z . Электромагнитное поле в волноводе не является чисто поперечным, а имеет продольные

составляющие. В рассмотренном случае отлична от нуля продольная составляющая магнитного поля, и поэтому такую волну называют магнитной (Н-волна). Мы могли бы взять другую поляризацию исходной падающей волны $(H=H_y)$, и тогда возникла бы электрическая волна с $E_z \neq 0$ (Е-волна). Посмотрим на вышеприведённое соотношение с другой стороны. Если даны две параллельные проводящие плоскости, расположенные на расстоянии a друг от друга, то между ними могут распространяться волны, если

$$\cos \theta_n = \frac{n\pi}{ka} = \frac{n\lambda_0}{2a} = \frac{n\pi c}{a\omega}$$

где λ_0 - длина волны в свободном пространстве. То есть движение э.м. волны по волноводу возможно только при выполнении условия:

$$\cos \theta_n = \frac{n\lambda_0}{2a} \le 1$$

поэтому для каждого п существует наибольшая критическая длина волны и соответственно наименьшая критическая частота, при которых волна ещё может проходить через волновод. Они равно, соответственно, $\omega_{\rm \kappa p} = \frac{\pi c}{a}$ и $\lambda_{\rm \kappa p} = 2a$.

Тогда мы можем найти выражение для фазовой скорости э.м. волны:

$$v_{\Phi} = \frac{c}{\sin \theta} = \frac{c}{\sqrt{1 - \cos^2 \theta}} = \frac{c}{\sqrt{1 - \left(\frac{\omega_{\text{KP}}}{\omega}\right)^2}}$$

Фазовая скорость (скорость перемещения поверхности постоянной фазы $v_{\Phi} = \frac{\omega}{k}$) в волноводе больше скорости света в пустоте, а групповая скорость (скорость распространения возмущения $u = \frac{d\omega}{dk}$) всегда меньше. Интересно отметить, что фазовая скорость зависит от частоты. В таких случаях говорят, что среда (в данном случае — волновод) обладает дисперсией. Подставив полученное выражение в самое первое уравнение нашей теорсправки, можно найти волновое число k_z , описывающее распространение волны вдоль волновода:

$$k_z = \frac{\omega}{v_{\Phi}} = \frac{\omega}{c} \sqrt{1 - \frac{\omega_{\text{\tiny KP}}}{\omega}}$$

Из этого выражения следует, что по мере убывания частоты волновое число k_z уменьшается и, наконец, при $\omega < \omega_{\rm kp}$ (или, что тоже, $\lambda_0 > 2a$) оно становится мнимым. Это означает, что при частотах $\omega < \omega_{\rm kp} = \frac{\pi c}{a}$ волны вдоль трубы экспоненциально затухают. Поэтому критическую частоту называют граничной частотой волновода. Преобразуя это соотношение, можно связать длины волн в волноводе ($\lambda_{\rm B}$), в открытом пространстве (λ_0) и критическую ($\lambda_{\rm kp}$):

$$\frac{1}{\lambda_B^2} = \frac{1}{\lambda^2} - \frac{1}{\lambda_{\text{KD}}}$$

Ясно, что никакой выделенности оси X нет, и поэтому точно так же может образоваться синусоидальное распределение поля и вдоль оси Y. Поэтому для каждого вида E- и H-волны получается бесчисленное множество решений, каждое из которых имеет свою критическую частоту и длину волны. B случае прямоугольного волновода с поперечными размерами a и b все

возможные критические длины волн определяются общей формулой:

$$\lambda | \text{KP} = \frac{1}{\sqrt{\left(\frac{m}{2a}\right)^2 + \left(\frac{n}{2b}\right)^2}}$$

где m и n — целые числа. Величина m представляет собой полное число полупериодов изменения той или иной составляющей поля вдоль пути, идущего параллельно широкой стенке волновода (a), а n — то же для узкой стенки (b). Эти же символы употребляются и в обозначениях волн — соответственно E_{mn} или H_{mn} . Обычно для передачи СВЧ-энергии по прямоугольным волноводам используется волна H_{10} . Её критическая длина волны — максимальная среди всех типов волн в прямоугольном волноводе, и поэтому её называют *основной*. Тем самым, для волновода заданного сечения существует диапазон частот, ограниченный снизу критической частотой волны H_{10} ($\lambda_{\rm kp}=2a$), а сверху — критической частотой следующей распространяющейся волны (например, H_{10} с $\lambda_{\rm kp}=2b$ или H_{20} с $\lambda_{\rm kp}=a$). В этом частотном диапазоне СВЧ-энергия переносится только одним типом волн, что существенно облегчает её дальнейшее использование.

Если в волноводе имеется какое-либо препятствие, нерегулярность (в предельном случае он просто закрыт металлической пластиной), то в нём появляется отражённая волна. Падающая и отражённая волны интерферируют и создают в волноводе стоячую волну, похожую на стоячие волны в струне. Запишем прямую и отражённую волны, движущиеся в положительном направлении оси Z, в виде:

$$E_1 = E_0 e^{i(\omega t - k_z z)}, E_2 = \rho E_0 e^{i(\omega t + k_z z + \varphi)}$$

где ρ — коэффициент отражения по амплитуде, а φ — фаза отражённой волны. Суммарное поле в волноводе имеет вид:

$$E(z) = E_1 + E_2 = E_0 e^{-ik_z z} (1 + \rho e^{i(2k_z z + \varphi)}) E^{i\omega t} = A_0 e^{i\omega t}.$$

Из этого выражения видно, что в каждом сечении волновода (z = const) поле зависит от времени по гармоническому закону, а квадрат амплитуды равен:

$$A_0^2 = E_0^2 (1 + \rho^2 + 2\rho \cos(2k_z z + \varphi)).$$

Максимальное (в пучности) и минимальное (в узле) значения поля равны соответственно:

$$E_{max} = E_0(1+\rho); E_{min} = E_0(1-\rho).$$

Из формулы для квадрата амплитуды следует, что расстояние l между соседними узлами (или пучностями) составляет:

$$l = \frac{\pi}{k_{z}} = \frac{\lambda_{B}}{2}.$$

Это даёт удобный способ измерения длины волны λ_B в волноводе. Отношение $K=\frac{E_{max}}{E_{min}}$ на-

зывается коэффициентом стоячей волны (к.с.в.). Коэффициент отражения от препятствия по амплитуде

 $\rho = \frac{E_{max} - E_{min}}{E_{max} + Emin} = \frac{K - 1}{K + 1}$

В случае полного отражения (металлическая заглушка) $\rho = 1$, а если в волновод вставлено вещество, поглощающее СВЧ-излучение (согласованная нагрузка), то $\rho = 0$. Для определения коэффициента стоячей волны обычно используют измерительную линию — отрезок волновода с продольной щелью длиной в несколько полуволн. В щели располагается зонд — небольшой металлический штырь (антенна), реагирующий на электрическое поле в волноводе. Напряжение высокой частоты, наводимое на зонд, детектируется, усиливается и подаётся на микровольтметр. Зонд может перемещаться вдоль линии — это позволяет исследовать распределение электрического поля в волноводе.

3. Экспериментальная установка

Схема для исследования структуры волн в волноводе при частоте выше критической представлена на рис. 3. Модулированный сигнал от высокочастотного генератора (цуги с частотой повторения 1 кГц) поступает на вход А измерительной линии, вдоль которой перемешается зонд S. Высокочастотный сигнал с зонда поступает на кристаллический детектор D.

Рис. 3: Экспериментальная установка для изучения структуры волн СВЧ

С нагрузки детектора (с RC-цепочки) снимается огибающая высокочастотного сигнала и подаётся на усилитель низкой частоты. Величина сигнала регистрируется вольтметром, вмонтированным в усилитель. Ручка С — настройка измерительной линии — служит для согласования зонда (как антенны) со входом усилителя. Как правило, они согласованы, и в настройке нет необходимости. В волноводе с закрытым выходом образуется стоячая волна. Определив расстояние между узлами, можно рассчитать длину волны и фазовую скорость СВЧ-сигнала в волноводе. Устройство детекторной головки, установленной на измерительной линии, таково, что отклик вольтметра U на величину напряжённости электрического поля E в волноводе $U \sim E^n$, а показатель степени n сам зависит от величины сигнала: при малых сигналах детектирование квадратичное (n=2), при больших — линейное (n=1). Если известно распределение поля E(z) вдоль измерительной линии, то, изучив распределение U(z), можно по

графику ln(U) = f[ln(E)] определить характер детектирования: в двойном логарифмическом масштабе любая степенная функция — прямая линия, по наклону которой можно определить n. Распределение E(z) нетрудно рассчитать для волновода с закороченным концом (металлической заглушкой), когда фаза отражённой волны $\varphi = \pi$, а $\rho = 1$.

Как следует из выражений напряжённости электрического поля, полученных выше, электрическое поле в этом случае имеет вид:

$$E(z) = E_0 e^{-ik_z z} (1 - e^{2ik_z z}) e^{i\omega t} = E_0 e^{i\omega t} (e^{-ik_z z} - e^{ik_z z}) = 2E_0 e^{i\omega t} \sin(k_z z) \sim \sin(k_z z)$$

где z - смещение от узла. Меняя нагрузку на выходе измерительной линии (на рис. 2) и сравнивая максимальное и минимальное показания вольтметра, можно рассчитать коэффициент стоячей волны (к.с.в.) и коэффициент отражения ρ .

Ход работы

В первую очередь подготавливаем все приборы к работе.

Определение длины волны СВЧ-сигнала в волноводе.

Восстанавливаем рабочую частоту $\nu=9320~{\rm M}$ П. Перемещая зонд, настраиваемся на пучность стоячей волны. Далее с помощью переключаталей 5 и 9 подобрали чувствительность вольтметра так, чтобы в максимуме стрелка отклонялась почти на всю шкалу. Используя весь возможный диапазон перемещения зонда вдоль измерительной линии, снимем зависимость показаний вольметра U от положения зонда z:

Nº	z, MM	<i>U</i> , дел	U, мк B
1.	10	27	2700
2.	0	32	3200
3.	4	1	100
4.	8	11	1100
5.	12	53	5300
6.	16	89	8900
7.	20	66	6600
8.	24	11	1100
9.	28	0	0
10.	32	24	2400
11.	36	73	7300
12.	40	87	8700

Таблица 1: Зависимость U от положения зонда z, $\mathbf{k}=100$ мк $\mathbf{B}/\mathrm{дел}$

Теперь построим график U=f(z) и определим по нему длину волны $\lambda_{\scriptscriptstyle \rm B}$ в волноводе.

И получаем $\lambda_{\scriptscriptstyle B}=45,\!2$ мм. Теперь можем сравнить это с теоретическим расчётом: $\lambda_{\scriptscriptstyle B}=45,\!1$ мм. Результаты практически совпадают.

Сравним длину волны λ_0 в открытом пространстве с критической $\lambda_{\rm kp}$: $\lambda_0=32,2$ мм, $\lambda_{\rm kp}=46,0$ мм.

Расчитаем фазовую скорость волн в волноводе и групповую скорость u, используя соотношение $uv_{\Phi}=c^2$: $v_{\Phi}=1514925741~\frac{\text{м}}{\text{c}}=5,1c,~u=0,198c.$

Определение характера детектирования.

Установим зонд в узел стоячей волны ($U=U_{min}$). Переключателями 5 и 9 подберём чувствительность вольметра так, чтобы отклонение стрелки было заметным. Снимем зависимость U от координаты зонда внутри выбранного диапазона.

No॒	z, MM	Δz , mm	<i>U</i> , дел	U, мкВ
1.	25,5	2	91	546
2.	26,0	1,5	52	312
3.	26,5	1	24	144
4.	27,0	0,5	9	54
5.	27,5	0	2	12
6.	28,0	0,5	6	36
7.	28,5	1	20	120
8.	29,0	1,5	41	246
9.	29,5	2	72	432

Таблица 2: Зависимость U от положения зонда z

При этом k=6 мкВ/дел, $z_{
m yзлa}=27.5$ мм, $k_z=0.00013945$ 1/м.

Построим график $ln(U) = f(ln(sin(k_z z)))$, где z — смещение от узла.

По наклону прямой теперь можем определить характер детектирования. Так как k=1,72 ближе к двум, делаем вывод о том, что характер детектирования квадратичный.

Определение коэффициентов отражения.

Теперь снимем металлическую заглушку с фланца измерительной линии. Перемещая зонд, измерим U_{max} и U_{min} напряжения в волне.

Потом наденем на выходной фланец измерительной линии отрезок волновода с поглощающей нагрузкой и снова измерим максимальное и минимальное напряжения.

Определим коэффициенты отражения r для открытого, закрытого волновода и для волновода с поглощающей нагрузкой.

	\mathbf{U}_{max} , мк \mathbf{B}	\mathbf{U}_{min} , мк \mathbf{B}	r
Отраж. заглушка	8800	24	0,99
Воздух	1860	540	0,55
Поглащ. нагрузка	1110	810	0,16

Таблица 3: Определение коэффициентов отражения

Заключение

В процессе выполнения лабораторной работы мы получили:

- 1) Длину волны в волноводе, близкую к теоретическому значению
- 2) Характер детектирования, близкий к квадратичному
- 3) Коэффициенты отражения, логически соответствующие ситуации, в которой они были получены.

Для улучшения результатов опыта стоило бы уделить больше внимания методу снятия напряжения вольтметром (данный нам вольтметр был старым и достаточно неточным, о чём говорили колебания его стрелки при отсутствии действий со стороны экспериментаторов). Но в целом, результаты эксперимента получились крайне логичными и соответствующими теории.

Литература

- 1. Сивухин Д. В. Общий курс физики. Учеб. пособие: Для вузов. Т. III. Электричество. 6-е издание. М.: ФИЗМАТЛИТ, 2019
- 2. Никулин М.Г., Попов П.В., Нозик А.А., и др. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. II. Электричество и магнетизм. 2-е издание. М.: М Φ ТИ, 2019
- 3. Описание лабораторной работы с сайта МФТИ: clck.ru/37JNSv