WYZNACZANIE WSPÓŁCZYNNIKA INDUKCJI WZAJEMNEJ

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

Układ pomiarowy do badania zjawiska indukcji elektromagnetycznej zawiera:

- generator funkcyjny sygnałów harmonicznych o regulowanej amplitudzie i zakresie częstotliwości 0,1 100 kHz,
- cyfrowy miernik częstotliwości o 4. dekadach używany do dokładnego określania częstotliwości sygnału generatora,
- dwa multimetry stosowane do pomiaru napięcia oraz natężenia prądu,
- dużą cewkę uzwojenia pierwotnego: długość l=750 mm, 485 zwoi/metr, średnica kanału 79 mm, opór 0,3 Ω, indukcyjność 1 mH;
- siedem mniejszych cewek uzwojenia wtórnego o różnej długości, umieszczanych wewnątrz uzwojenia pierwotnego, o parametrach zebranych w tabeli:

	n - ilość	średnica	indukcyjność	opór
nr	zwojów	mm	μН	Ω
1	300	41	800	3,5
2	300	33	530	2,8
3	300	26	330	2,2
4	200	41	500	2,2
5	150	26	90	0,3
6	100	41	240	1,1
7	75	26	24	0,15

Jedna z cewek uzwojenia wtórnego [2] znajduje się wewnątrz cewki uzwojenia pierwotnego [1]. Korzystając z generatora funkcyjnego [3] otrzymujemy prąd sinusoidalny o częstotliwościach zmieniających się w zakresie 1 – 10 kHz. W celu dokładnego wyznaczenia częstotliwości generowanego sygnału do generatora [3] podłączony jest równolegle miernik [4] pracujący w trybie częstościomierza. Do zmierzenia wartości skutecznej natężenia prądu płynącego przez cewkę uzwojenia pierwotnego służy jeden z multimetrów [6] pracujący w trybie amperomierza. Generator [3], amperomierz [6], cewka uzwojenia pierwotnego [1] tworzą obwód pierwotny. Obwód drugi (wtórny) to multimetr [5] pracujący, jako woltomierz podłączony do jednej z cewek [2]. Multimetr [5] pozwala zmierzyć wartość skuteczną napięcia generowanego w drugim obwodzie. Najlepsze zobrazowanie badanego zjawiska indukcji elektromagnetycznej uzyskuje się, gdy cewki [2] umieszcza się w połowie długości kanału cewki [1].

3. Przeprowadzenie pomiarów

Uwagi do stosowanego sprzętu:

- Mierniki uniwersalne wyposażone są w układy samowyłączające w przypadku wyłączenia się miernika w trakcie ćwiczenia należy włączyć go ponownie przełączając zakresy pomiarowe;
- Generator posiada dwie funkcje sterujące parametrami natężenia prądu, których nastawienia sumują się: potencjometr amplitudy sygnału harmonicznego (używany w ćwiczeniu) i mniejszy potencjometr OFFSET ustalający poziom sygnału stałego;

Przy przeprowadzaniu ćwiczenia zalecany jest jeden z następujących wariantów wyboru cewek:

- (*) Wybór minimum dwóch cewek o jednakowej ilości zwojów, a różniące się przekrojem. Taki wybór umożliwia doświadczalne przeanalizowanie zależności wyznaczanych parametrów od pola przekroju.
- (**) Wybór minimum dwóch cewek o jednakowym przekroju, a różniące się ilością zwojów. Taki wybór umożliwia doświadczalne przeanalizowanie zależności wyznaczanych parametrów od ilości zwojów.
- (***) Wybór jednej cewki, którą bada się dla minimum dwóch ustalonych częstotliwości i minimum dwóch ustalonych natężeń prądu w uzwojeniu pierwotnym.

Taki wybór umożliwia doświadczalne przeanalizowanie charakteru zmian indukcyjności wzajemnej M_{ω} (przy stałej częstości) oraz M_{I} (przy stałym natężeniu) danej cewki.

- 1. Sprawdzić, czy obwód jest połączony tak jak na zdjęciu, a nastawy przyrządów odpowiadają wymogom pomiaru współczynnika indukcji wzajemnej.
- 2. Pomiary z punktu 3 4 przeprowadzamy dla cewek uzwojenia wtórnego wskazanych przez prowadzącego.
- 3. Pomiar napięcia skutecznego w obwodzie wtórnym $E_s(f)$ w funkcji częstotliwości prądu obwodu pierwotnego prowadzić w zakresie:
 - 1 10 kHZ co 1 kHz,
 - przy stałej wartości natężenia prądu I_p z zakresu około 3 7 mA.

Po nastawieniu częstotliwości sprawdzamy i korygujemy wartość natężenia prądu do przyjętej wartości parametru. Następnie odczytujemy i zapisujemy wartość napięcia indukowaną w obwodzie wtórnym.

- 4. Pomiar napięcia skutecznego w obwodzie wtórnym $E_s(I_p)$ w funkcji natężenia prądu obwodu pierwotnego prowadzić w zakresie:
 - 1 − 10 mA natężenia prądu co 1 mA,
 - przy stałej wartości częstotliwości f z zakresu 8 10 kHz.

Po nastawieniu natężenia sprawdzamy i korygujemy wartość częstotliwości prądu do przyjętej wartości parametru. Następnie odczytujemy i zapisujemy wartość napięcia indukowaną w obwodzie wtórnym.

5. Zapisać parametry stanowiska i niepewności pomiarowe.

4. Opracowanie wyników pomiarów

Wykonanie wykresu (1)

- zależności napięcia na cewce wtórnej od częstotliwości prądu w cewce pierwotnej

Na jednym wykresie należy nanieść wszystkie badane przypadki.

- 1. Nanieść wykres punkty pomiarowe $E_s(f)$ wraz z ich niepewnościami.
- 2. Korzystając z metody aproksymacji najmniejszych kwadratów Gaussa dokonać aproksymacji punktów pomiarowych prostymi $y=\bar{a}x+\bar{b}$, gdzie x=f, $y=E_S$. Parametry prostej oraz ich niepewności wyznaczamy z

$$\overline{a} = \frac{\left(\sum_{i=1}^{n} x_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right) - n \cdot \left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} - n \cdot \left(\sum_{i=1}^{n} x_{i}^{2}\right)}, \quad \overline{b} = \frac{\left(\sum_{i=1}^{n} y_{i}\right) - \overline{a} \cdot \left(\sum_{i=1}^{n} x_{i}\right)}{n},$$

$$u(\overline{a}) = \sigma_{\overline{a}} = \sqrt{\frac{n}{n-2} \cdot \frac{\left(\sum_{i=1}^{n} y_{i}^{2}\right) - \overline{a} \cdot \left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right) - \overline{b} \cdot \left(\sum_{i=1}^{n} y_{i}\right)}{n}} \quad u(\overline{b}) = \sigma_{\overline{b}} = \sigma_{\overline{a}} \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}$$

Przy wyznaczaniu parametrów prostych zaleca się wykonanie tabeli zawierającym kolumny z poszczególnymi wartościami: x_i , y_i , x_i^2 , y_i^2 , $x_i \cdot y_i$ oraz ich sumy w celu uniknięcia błędów przy przetwarzaniu wartości zmierzonych.

Prostą wraz z wyznaczonymi parametrami nanieś na wykres (1).

Wyznaczenie współczynniki indukcyjności wzajemnej M_I (przy stałym natężeniu) wraz z niepewnościami Obliczenia wykonać dla każdej z badanych cewek.

- 3. W oparciu o zależność $M_I = \left(\frac{E_S}{f}\right) \cdot \frac{1}{2\pi \cdot I_p}$ wyznaczyć współczynnik indukcyjności wzajemnej ze współczynnika kierunkowego prostej $E_S = (2\pi \cdot I_p \cdot M_I) \cdot f \rightarrow \bar{M}_I = \frac{\bar{a}}{2\pi \cdot I_p}$.
- 4. Biorąc pod uwagę niepewności maksymalne $u(\bar{a}), \Delta I_p$ obliczyć standardową niepewność złożoną względną: $u_{c,r}(\bar{M}_I) = \sqrt{\left(\frac{u(\bar{a})}{\bar{a}}\right)^2 + \frac{1}{3}\left(\frac{\Delta I_p}{I_p}\right)^2}$
- 5. Wyznaczyć standardową niepewność złożoną bezwzględną $u_c(\bar{M}_I) = \bar{M}_I \cdot u_{c,r}(\bar{M}_I)$
- 6. Wyznaczyć niepewność rozszerzoną $U(\bar{M}_I) = 2 \cdot u_c(\bar{M}_I)$.

<u>Wykonanie wykresu (2)</u> - zależności napięcia na cewce wtórnej od wartości prądu w cewce pierwotnej

Na jednym wykresie należy nanieść wszystkie badane przypadki.

- 1. Nanieść na wykres punkty pomiarowe $E_s(l_p)$ wraz z ich niepewnościami.
- 2. Korzystając z metody aproksymacji najmniejszych kwadratów Gaussa dokonać aproksymacji punktów pomiarowych prostymi $y = \bar{a}x + \bar{b}$, gdzie $x = I_p$, $y = E_S$, a odpowiednie parametry i ich niepewności wyznaczyć jak w punkcie 2.

Wyznaczenie współczynniki indukcyjności wzajemnej M_{ω} (przy stałej częstości) wraz z niepewnościami

Obliczenia wykonać dla każdej z badanych cewek.

- 3. W oparciu o zależność $M_{\omega} = \frac{E_S}{\omega \ l_p} = \left(\frac{E_S}{l_p}\right) \cdot \frac{1}{2\pi \cdot f}$ wyznaczyć współczynnik indukcyjności wzajemnej ze współczynnika kierunkowego prostej $E_S = (2\pi \cdot f \cdot M_{\omega}) \cdot l_p \rightarrow \bar{M}_{\omega} = \frac{\bar{a}}{2\pi \cdot f}$.
- 4. Biorąc pod uwagę niepewności maksymalne $u(\bar{a})$, Δf obliczyć niepewność standardową złożoną względną: $u_{c,r}(\bar{M}_{\omega}) = \sqrt{\left(\frac{u(\bar{a})}{\bar{a}}\right)^2 + \frac{1}{3}\left(\frac{\Delta f}{f}\right)^2}$
- 5. Wyznaczyć niepewność standardową złożoną bezwzględną $u_c(\bar{M}_\omega)=\bar{M}_\omega\cdot u_{c,r}(\mathbf{M}_\omega)$
- 6. Wyznaczyć niepewność rozszerzoną $U(\bar{M}_{\omega}) = 2 \cdot u_c(\bar{M}_{\omega})$.

Wyznaczenie teoretycznego współczynniki indukcyjności wzajemnej M_0

Obliczenia wykonać dla każdego zestawu cewka uzwojenia pierwotnego - wtórnego.

7. Korzystając ze wzoru $M_0 = \mu(Sn) \left(\frac{N}{l}\right)$ obliczyć teoretyczne wartości współczynników indukcji wzajemnej dla stosowanych zestawów cewek, gdzie: μ – przenikalność magnetyczna powietrza, S – pole przekroju jednego zwoju w cewce uzwojenia wtórnego, n – ilość zwojów cewki uzwojenia wtórnego, N – ilość zwojów cewki uzwojenia pierwotnego, l – długość cewki uzwojenia pierwotnego.

5. Podsumowanie

- 1. Zgodnie z regułami prezentacji wyników zestawić wyznaczone wielkości dla wszystkich pomiarów $\left(\bar{M}_{\omega}, u_{c}(\bar{M}_{\omega}), u_{c,r}(\bar{M}_{\omega}), U(\bar{M}_{\omega})\right)$ oraz wartość odniesienia M_{0} , $\left(\bar{M}_{I}, u_{c}(\bar{M}_{I}), u_{c,r}(\bar{M}_{I}), U(\bar{M}_{I})\right)$ oraz wartość odniesienia M_{0} .
- 2. Przeanalizować uzyskane rezultaty:
 - a) która z niepewności wnosi największy wkład do niepewności złożonej $u_c(\bar{M}_{\omega})$,
 - b) czy spełniona jest relacja $u_{c,r}(\bar{M}_{\omega}) < 0.1$,
 - c) czy spełniona jest relacja $|M_0 \bar{M}_{\omega}| < U(\bar{M}_{\omega})$,
 - d) rozkład punktów na wykresach $E_s(f)$,
 - e) która z niepewności wnosi największy wkład do niepewności złożonej $u_c(\bar{M}_I)$,
 - f) czy spełniona jest relacja $u_{c,r}(\bar{M}_I) < 0.1$,
 - g) czy spełniona jest relacja $|M_0 \bar{M}_I| < U(\bar{M}_I)$,
 - h) rozkład punktów na wykresach $E_s(I_p)$,
 - pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych.
- 3. Wnioski z analizy rezultatów.
- a) Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych i ich przyczyn w zależności od przyjętego wariantu doboru cewek:
- (*) Jaki wpływ ma zmiana pola przekroju S cewki uzwojenia wtórnego na wartość M_{ω} ?
- (*) Jaki wpływ ma zmiana pola przekroju S cewki uzwojenia wtórnego na wartość M_I ?
- (**) Jaki wpływ ma zmiana ilości zwojów cewki uzwojenia wtórnego na wartość M_{ω} ?
- (**) Jaki wpływ ma zmiana ilości zwojów cewki uzwojenia wtórnego na wartość M_I ?
- (***) Jaki wpływ ma zmiana ustalonej częstotliwości prądu w cewce uzwojenia pierwotnego na wartość M_{ω} (***) Jaki wpływ ma zmiana ustalonego natężenia prądu w cewce uzwojenia pierwotnego na wartość M_I ?
 - b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cele ćwiczenia zostały osiągnięte.

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

- 1. Od czego zależy indukcyjność cewki.
- 2. Omówić zjawisko indukcyjności wzajemnej.
- 3. Omówić zjawisko samoindukcji.
- 4. Omówić zasadę przekory Lenza.
- 5. Omówić prawo indukcji elektromagnetycznej.
- 6. Omówić właściwości pola magnetycznego od przewodnika prostoliniowego.
- 7. Omówić właściwości pola magnetycznego od przewodnika kołowego.
- 8. Wyprowadzić zależność na indukcję pola magnetycznego w środku kołowego obwodu z prądem.
- 9. Omówić prawo Biota-Savarta.

Zadania dodatkowe do wyznaczenia i analizy:

 Wyznaczyć współczynnik korelacji liniowej dla obu wykresów i zapisać go na wykresie. Wynik poddać analizie i wyciągnąć wnioski.

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})\right]^{2}}{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right] \cdot \left[\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}\right]}$$

- Przebadać więcej niż dwie cewki w wariantach (*) lub (**).
- Przebadać więcej niż dwa ustalone natężenia w wariancie(***).
- Przebadać więcej niż dwie ustalone częstotliwości w wariancie (***).

sprawdził dr inż. Zbigniew Krajewski, wersja z dnia 6.10.2022

Zespół w składzie
cele ćwiczenia: a) <u>wyznaczenie współczynnika indukcji wzajemnej M_{ω};</u> b) <u>wyznaczenie współczynnika indukcji wzajemnej M_I;</u> c) wariant (*) - ustalenie zależności współczynników M_I i M_{ω} od pola przekroju uzw. wtórnego; d) wariant (**) - ustalenie zależności współczynników M_I i M_{ω} od ilości zwojów uzw. wtórnego; e) wariant (***) - ustalenie stałości współczynników M_I i M_{ω} dla jednej cewki.
1. Wartości teoretyczne wielkości wyznaczanych lub określanych:
2. Parametry stanowiska (wartości i niepewności):
Cewka 0
Cewka A
Cewka B
3. Pomiary i uwagi do ich wykonania:
niepewność pomiaru I _p
niepewność pomiaru f
niepewność pomiaru E _S

		f [kHz]									
Ip [mA]	1	2	3	4	5	6	7	8	9	10	
1											
2											Zaznacz na schemacie obok
3											wybór 20 punktów
4											pomiarowych zakreślając
5											odpowiedni wiersz i kolumnę.
6											-
7											
8											
9											
10											

Cewka A

I _p [mA] ustalone	f [kHz]	Es []	L.p.	f [kHz] ustalone	I _p [mA]	Es []
			1			
			2			
			3			
			4			
			5			
			6			
			7			
			8			
			9			
			10			

Cewka B

I _p [mA] ustalone	f [kHz]	Es []	L.p.	f [kHz] ustalone	Ip [mA]	Es []
			1			
			2			
			3			
			4			
			5			
			6			
			7			
			8			
			9			
			10			