M 361K: Real Analysis

Ishan Shah

Fall 2022

Contents		
1	August 25 1.1 Algebraic Axioms	1
2	August 302.1 Upper and Lower Bounds2.2 Completeness Axiom	4
3	September 8 3.1 Limits of Sequences	5
4	September 13 4.1 Monotone Sequences	6
1	August 25	
1.	1 Algebraic Axioms	
$\forall a$	$b, c \in \mathbb{R}$	

- (A1) a + b = b + a.
 - (A2) (a+b) + c = a + (b+c).
 - (A3) \exists an element $o \in \mathbb{R}$ such that a + o = o + a = a.
 - (A4) For each element $a \in \mathbb{R}$, \exists an element $(-a) \in \mathbb{R}$ such that a + (-a) = 0.
 - (M1) ab = ba.
 - (M2) (ab)c = a(bc).
 - (M3) \exists an element $1 \in \mathbb{R}$ such that a * 1 = 1 * a = a.
 - (M4) For each element $a \in \mathbb{R} \setminus 0$, \exists an element $\frac{1}{a} \in \mathbb{R}$ such that $a * \frac{1}{a} = \frac{1}{a} * a = 1$.

• (D)
$$a * (b + c) = a * b + a * c$$
.

Remark (Equality property of \mathbb{R}). If a = b and c = d, then a + c = b + d and a * c = b * d. $\forall x, y, z \in \mathbb{R}$:

Theorem 1.1. If x + z = y + z then x = y.

Proof.

$$x + z = y + z \quad (A4)$$

$$(x + z) + (-z) = (y + z) + (-z) \quad (A2)$$

$$x + (z + (-z)) = y + (z + (-z)) \quad (A4)$$

$$x + 0 = y + 0 \quad (A3)$$

$$x = y$$

Theorem 1.2. For any $x \in \mathbb{R}$, x * 0 = 0.

Proof.

$$x * 0 = x * (0 + 0)$$

$$x * 0 = x * 0 + x * 0$$

$$x * 0 + (-x * 0) = (x * 0 + x * 0) + (-x * 0)$$

$$0 = x * 0 + (x * 0 + (-x * 0))$$

$$= x * 0 + 0$$

$$= x * 0$$

Theorem 1.3. -1 * x = -x i.e. x + (-1) * x = 0.

Proof.

$$x + (-1) * x = x + x * (-1)$$

$$= x * 1 + x * (-1)$$

$$= x * (1 + (-1))$$

$$= x * 0$$

$$= 0$$

Theorem 1.4 (Zero-product property). $\forall x, y \in \mathbb{R}, x * y = 0 \iff x = 0 \lor y = 0.$

Proof. Let $x, y \in \mathbb{R}$, if x = 0 or y = 0, then x * y = 0. Suppose $x \neq 0$, then we must show y = 0. Since $x \neq 0$, $\frac{1}{x}$ exists. Thus, if:

$$xy = 0$$

$$\frac{1}{x} * (xy) = \frac{1}{x} * 0$$

$$(\frac{1}{x} * (xy)) * y = 0$$

$$1 * y = 0$$

$$y = 0$$

1.2 Order Axioms

 $\forall x, y \in \mathbb{R}$:

• (O1) One of x < y, x > y or x = y is true.

• (O2) If x < y and y < z, then x < z.

• (O3) If x < y then x + z < y + z.

• (O4) If x < y and z > 0 then xz < yz.

Theorem 1.5. If x < y then -y < -x.

Proof.

$$x < y$$

$$x + (-x + -y) < y + (-x + -y)$$

$$(x + -x) + -y < (y + -y) + -x$$

$$0 + -y < 0 + -x$$

$$-y < -x$$

Theorem 1.6. If x < y and z > 0 then xz > yz.

Proof. If x < y and z > 0 then -z > 0. Thus, x(-z) < y(-z). But,

$$x(-z) = x(-1 * z)$$

$$= (x * -1) * z$$

$$= (-1 * x) * z$$

$$= -1(x * z)$$

$$= -x * z$$

Similarly, y(-z) = -y * z. Thus, -x * z < -y * z, so xz > yz.

Remark (Completeness of \mathbb{R}). \mathbb{R} is an ordered field. \mathbb{R} is complete, while \mathbb{Q} is not complete.

2 August 30

Theorem 2.1. $\sqrt{2}$ is irrational.

Proof. Suppose not. Suppose that $\sqrt{2}$ is rational. Then $\exists m, n \in \mathbb{Z}$ such that $\sqrt{2} = \frac{m}{n}, n \neq 0$ and m and n share no common factors. Then,

$$2 = \frac{m^2}{n^2}$$
$$2n^2 = m^2$$

Thus, m^2 is even and m is even. Then, m=2k for some $k \in \mathbb{Z}$. But, by substituting m=2k into the above equation, we get

$$2n^2 = (2k)^2$$
$$2n^2 = 4k^2$$
$$n^2 = 2k^2$$

Thus, n^2 is even, so n is even. So, n is a perfect square, which is a contradiction. Thus, $\sqrt{2}$ is irrational.

2.1 Upper and Lower Bounds

Theorem: Let S be a subset of \mathbb{R} . If there exists a real number m such that $m \geq s \forall s \in S$, m is called an **upper bound** for S. If $m \leq s \forall s \in S$, m is called a **lower bound** for S. **Minimums** and **maximums** must exist in the set to be valid.

$$T = \{ q \in \mathbb{Q} \mid 0 \le q \le \sqrt{2} \}$$

• Lower bound: -420, -1

• Upper bound: 100, 5, 2

• Minimum: 0

• Maximum: No max

Because rationals are not complete, there is no upper bound for T.

Definition 2.1 (Supremum). The least upper bound of a set is called the supremum of the set.

Definition 2.2 (Infimum). The greatest lower bound of a set is called the infimum of the set.

4

2.2 Completeness Axiom

Definition 2.3 (Completeness axiom). Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound. That is, sup S exists and is a real number.

Theorem 2.2. The set of natural numbers \mathbb{N} is unbounded above.

Proof. Suppose not. Suppose that \mathbb{N} is bounded above. If \mathbb{N} were bounded above, it must have a supremum m. Since $\sup \mathbb{N} = m$, m-1 is not an upper bound. Thus, $\exists n_0 \in \mathbb{N}$ such that $n_0 > m-1$. But then, $n_0 + 1 > m$. This is a contradiction since $n_0 + 1 \in N$. Thus, N is unbounded above.

Theorem 2.3. If A and B are nonempty subsets of \mathbb{R} , let $C = \{x + y \mid x \in A, y \in B\}$. If $\sup A$ and $\sup B$ exist, then $\sup C = \sup A + \sup B$.

Proof. Let $\sup A = a$ and $\sup B = b$. Then if $z \in C$, z = x + y for some $x \in A$, $y \in B$. Then,

$$z = x + y \le a + b = \sup A + \sup B$$

By the completeness axiom, \exists a least upper bound of $C, c = \sup C$. It must be that $c \le a + b$, so we must show $c \ge a + b$. Let $\epsilon > 0$. Since $a = \sup A$, $a - \epsilon$ is not an upper bound for A. $\exists x \in A$ such that $a - \epsilon < x$. Likewise, $\exists y \in B$ such that $b - \epsilon < y$. Then,

$$(a - \epsilon) + (b - \epsilon) = a + b - 2 * \epsilon < x + y \le c$$

Thus, $a + b < c + 2 * \epsilon \forall \epsilon > 0$. So, $a + b \le c : c = a + b$.

3 September 8

3.1 Limits of Sequences

Definition 3.1 (Limit of a sequence). A sequence a_n is said to converge to a real number s, if for any $\epsilon > 0$, \exists a real number k such that for all $n \ge k$, the terms a_n satisfy $|a_n - s| < \epsilon$.

Theorem 3.1. $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$.

Proof. We need to find some N such that $n > N \forall \epsilon > 0$.

$$\left| \frac{1}{\sqrt{n}} - 0 \right| < \epsilon$$

$$\frac{1}{\sqrt{n}} < \epsilon$$

$$\frac{1}{n} < \epsilon^{2}$$

$$n > \frac{1}{\epsilon^{2}}$$

Let $\epsilon > 0$ and $N = \frac{1}{\epsilon^2}$. Then, if n > N, we have that

$$\left|\frac{1}{\sqrt{n}} - 0\right| = \frac{1}{\sqrt{n}}$$

$$< \frac{1}{\sqrt{\frac{1}{\epsilon^2}}}$$

$$\equiv \epsilon$$

Thus,
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$
.

Theorem 3.2. $\lim_{n\to\infty} 1 + \frac{1}{2^n} = 1$.

Proof. Let $\epsilon > 0$ and $N = \frac{1}{\epsilon}$. Then, we have

$$|1 + \frac{1}{2^n} - 1| < \epsilon$$

$$|\frac{1}{2^n}| = \frac{1}{2^n} < \frac{1}{n} < \frac{1}{\frac{1}{\epsilon}} < \epsilon$$

$$n > \frac{1}{\epsilon}$$

Thus, $\lim_{n\to\infty} 1 + \frac{1}{2^n} = 1$.

Theorem 3.3. Every convergent sequence is bounded.

Proof. Let S_n be a convergent sequence with a limit s and $\epsilon = 1$. Then, there exists some N such that $|S_n - s| < 1$. That is, $|S_n| < |s| + 1$.

Let
$$M = \max\{S_1, S_2, \dots, S_n, |s| + 1\}$$
. Then, $|S_n| \leq M$, so S_n is bounded.

Theorem 3.4. If a sequence converges, its limit is unique.

Proof. Suppose a sequence S_n converges to s and t. Let $\epsilon > 0$. Then, $\exists N_1$ such that $|S_n - s| < \frac{t}{2}$. For $n > N_1$, $\exists N_2$ such that $|S_n - t| < \frac{t}{2}$. For $n > N_2$, let $N = m + \{N_1, N_2\}$. Then, for n > N, we have

$$|s - t| = |s + S_n - S_n - t|$$

$$= |s - S_n + S_n - t|$$

$$\leq |s - S_n| + |S_n - t|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$|s - t| = \epsilon$$

Thus, the limit is unique.

4 September 13

4.1 Monotone Sequences

Definition 4.1 (Monotone sequence). A sequence S_n of real numbers is said to be increasing $\iff S_n \leq S_{n+1} \ \forall \ n \in \mathbb{N}$ and decreasing $\iff S_n \geq S_{n+1} \ \forall \ n \in \mathbb{N}$.

The Fibonacci sequence is an example of an increasing sequence.

Definition 4.2 (Monotone convergence theorem). A monotone sequence is convergent if and only if it is bounded.

Theorem 4.1. An increasing bounded sequence is convergent.

Proof. Suppose S_n is a bounded increasing sequence. Let S be the set $\{S_n \mid n \in \mathbb{N}\}$. By the completeness axiom, sup S exists. Let $s = \sup S$. We claim $\lim_{n\to\infty} S_n = s$. Given $\epsilon > 0, s - \epsilon$ is not an upper bound for S.

Thus, $\exists N \in \mathbb{N}$ such that $S_N > s - \epsilon$. Furthermore, since S_n is increasing and s is an upper bound for S, we have $s - \epsilon < S_N \le S_n \le s \ \forall n \ge N$.

Remark. This is an elementary proof because it only uses axioms to make the conclusion.

Ex.
$$S_{n+1} = \sqrt{1 + S_n}, S_1 = 1.$$

Theorem 4.2. If S_n is an unbounded increasing sequence, then $\lim_{n\to\infty} S_n = \infty$.

Proof. Let S_n be an increasing unbounded sequence. Then, $\{S_n \mid n \in \mathbb{N}\}$ is not bounded above, but S is bounded below by S_1 . Thus, given $M \in \mathbb{R}, \exists N \in \mathbb{N}$ such that $S \mid N > M$. But since S_n is increasing, $S_n > M \ \forall \ n > N$. Thus $\lim_{n \to \infty} S_n = \infty$.