Devoir surveillé n° 05

Durée : 3 heures, calculatrices et documents interdits

Traiter (I, II et III) ou (exclusif!) (I, II et IV).

I. Un exercice vu en TD.

Soit $a, b \in \mathbb{R}_+^*$, étudier la limite en 0 des applications suivantes.

1)
$$x \mapsto \frac{x}{a} \left| \frac{b}{x} \right|$$

2)
$$x \mapsto \frac{a}{x} \left| \frac{x}{b} \right|$$

II. Loi de groupe sur une courbe.

Soit $G = \{ (a, b) \in \mathbb{N} \times \mathbb{Z} \mid a^2 - 2b^2 = 1 \}$. Pour $x = (a, b) \in G$ et $y = (c, d) \in G$, on pose:

$$x \times y = (ac + 2bd, ad + bc).$$

- 1) Montrer que (G, \times) est un groupe commutatif.
- 2) On note $x_0 = (3, 2)$, on peut vérifier que c'est un élément de G. On adopte les notations usuelles pour les puissances dans un groupe multiplicatif. Pour $n \in \mathbb{N}$, on note a_n et b_n les deux entiers tels que $x_0^n = (a_n, b_n)$.
 - a) Montrer que $a_0 = 1$, $b_0 = 0$ et $\forall n \in \mathbb{N}$, $\begin{cases} a_{n+1} = 3a_n + 4b_n \\ b_{n+1} = 2a_n + 3b_n \end{cases}$.
 - **b)** Montrer que pour tout $n \in \mathbb{N}$, on a $0 \leq b_n < a_n$. En déduire que, pour tout $n \in \mathbb{N}$, $5b_n < b_{n+1}$, puis que la suite (b_n) est strictement croissante de limite $+\infty$.
- 3) Soit $(a, b) \in G$ avec b > 0.
 - a) Justifier l'existence d'un entier $n \in \mathbb{N}^*$ tel que $b_n \leq b < b_{n+1}$. On pourra considérer l'ensemble $A = \{ p \in \mathbb{N} \mid b_p > b \}$.
 - **b)** En déduire que $0 \le ba_n ab_n < b_{n+1}a_n a_{n+1}b_n = 2$. On pourra remarquer (en le justifiant) que :

$$\left(\frac{a_{n+1}}{b_{n+1}}\right)^2 - 2 < \left(\frac{a}{b}\right)^2 - 2 \leqslant \left(\frac{a_n}{b_n}\right)^2 - 2.$$

- c) Montrer alors que $(a,b) \times x_0^{-n} = (1,0)$. Que vaut (a,b)?
- d) Quels sont les entiers positifs a et b tels que $a^2 2b^2 = 1$?

III. Une inéquation fonctionnelle.

Le but de cet exercice est de déterminer toutes les fonctions f définies sur \mathbb{R} à valeurs dans \mathbb{R} qui vérifient les trois conditions

- $(C_1) \ \forall (x,y) \in \mathbb{R}^2, f(x+y) \leqslant f(x) + f(y);$
- (C_2) f est continue en 0;
- (C_3) il existe un réel λ tel que $\underbrace{f(t)}_{t} \xrightarrow[t \to 0]{} \lambda$.

Soit f une fonction qui vérifie (C_1) , (C_2) et (C_3) .

- 1) À l'aide de (C_2) et (C_3) , montrer que f(0) = 0.
- 2) Dans cette question, on suppose que $\lambda = 0$.
 - a) Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, f(nx) \leq nf(x)$. En déduire que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, f(x) \leq nf\left(\frac{x}{n}\right)$.
 - **b)** À l'aide de la question précédente, montrer que $\forall x > 0, \frac{f(x)}{x} \leq 0 \text{ et } \forall x < 0, \frac{f(x)}{x} \geq 0.$ En déduire le signe de f sur \mathbb{R}^* .
 - c) En utilisant (C_1) et le signe de f déterminé précédemment, montrer que f est constante sur \mathbb{R} .
 - d) Que conclure sur la fonction f?
- 3) Dans cette question on reprend $\lambda \in \mathbb{R}$ quelconque. En appliquant la question 2. sur une fonction auxiliaire g bien choisie, déterminer f.
- 4) Conclure.

IV. Un résultat de Šarkovskii : période 3 implique chaos.

Soit I une partie de \mathbb{R} et $f: I \to I$ une fonction. On note f^n la fonction $f \circ f \circ \cdots \circ f$ (f est itérée n fois). Soit $n \geq 1$ un entier. Un point $x \in I$ est dit n-périodique si $f^n(x) = x$ et $f^p(x) \neq x$ pour tout entier p tel que $1 \leq p < n$; l'entier n s'appelle la période de x. Un point $x \in I$ est périodique s'il est n-périodique pour un entier $n \geq 1$.

L'objectif de ce problème est de démontrer une version faible du Théorème de Šarkovskií (1964) :

Théorème : Soient I un segment de \mathbb{R} et $f: I \to I$ une fonction continue. S'il existe un point de période 3, alors il existe un point de période n pour tout $n \ge 1$.

Dans tout le problème, I est un segment de \mathbb{R} non-vide et f est une fonction continue de I dans I.

1) Montrer que f admet un point fixe dans I.

- 2) Soit J un segment non vide inclus dans I. Soit K un segment non vide inclus dans f(J). On se propose de montrer qu'il existe un segment L inclus dans J tel que K = f(L).
 - a) On suppose K réduit à un point. Montrer l'existence de L.
 - **b)** On suppose désormais $K = [\alpha, \beta]$, $\alpha < \beta$. Montrer l'existence de a, b dans I tels que $f(a) = \alpha$ et $f(b) = \beta$. Par symétrie, on suppose a < b. (Le lecteur consciencieux vérifiera chez lui que le raisonnement est équivalent si b < a.)
 - c) Soit $A = \{x \in [a, b] \mid f(x) = \beta\}$. Justifier l'existence de $v = \min A$.
 - d) Soit $B = \{x \in [a, v] \mid f(x) = \alpha\}$. Justifier l'existence de $u = \max B$. En déduire l'existence de L.
- 3) Soit K un segment non-vide inclus dans I tel que $K \subset f(K)$. Montrer que f admet un point fixe dans K. (Étudier $g: x \mapsto f(x) x$ sur K.)

Soient I_1, I_2 deux segments inclus dans I. On dit que I_1 f-recouvre I_2 et on note $I_1 \to I_2$ si $f(I_1) \supset I_2$. On note $I_1 \to I_2 \to I_3$ si $f(I_1) \supset I_2$ et $f(I_2) \supset I_3$, et ainsi de suite...

- **4)** On suppose qu'il existe n+1 segments non vides I_0, I_1, \ldots, I_n inclus dans I tels que, pour tout $0 \le k \le n-1$, $I_k \to I_{k+1}$. Montrer qu'il existe une suite $(J_k)_{0 \le k \le n-1}$ de n segments non vides tels que :
 - pour tout entier k tel que $0 \leqslant k \leqslant n-1$, $J_k \subset I_k$ et $f(J_k) = J_{k+1}$;
 - $--f(J_{n-1})=I_n.$

Si $x_0 \in J_0$, que peut-on dire de $f^k(x_0)$ où $0 \le k \le n-1$.

- 5) On suppose qu'il existe un point 3-périodique x. On introduit les réels $x_0 = \min\{x, f(x), f^2(x)\}$, $x_1 = f(x_0)$ et $x_2 = f(x_1)$. À l'aide de x_0, x_1, x_2 , déterminer deux segments S_1 et S_2 inclus dans I ayant un seul point commun tels que $S_1 \to S_1$ et $S_1 \to S_2 \to S_1$. En déduire qu'il existe un point fixe et un point 2-périodique. (On pourra distinguer $x_1 < x_2$ et $x_2 < x_1$.)
- 6) On suppose toujours que x est un point 3-périodique. Montrer qu'il existe un point n-périodique pour tout entier $n \ge 1$. (On cherchera une suite de la forme $S_1 \to S_2 \to \cdots \to S_2 \to S_1$.)
- 7) Montrer que l'application $f:[0,1] \to [0,1]$ donnée par f(x) = 4x(1-x) admet des points de période n pour tout $n \in \mathbb{N}^*$. (On pourra utiliser les points particuliers 0, 1/2, 3/4, 1.)

Pour conclure, énonçons le théorème de Šarkovskii : l'ordre de Šarkovskii sur \mathbb{N}^* est l'ordre total \succ défini comme suit :

$$3 \succ 5 \succ 7 \succ 9 \succ \cdots \succ 2 \times 3 \succ 2 \times 5 \succ 2 \times 7 \succ 2 \times 9 \succ \cdots$$

$$\cdots \succ 2^n \times 3 \succ 2^n \times 5 \succ \cdots \succ 2^{n+1} \times 3 \succ 2^{n+1} \times 5 \succ \cdots \succ 2^n \succ 2^{n-1} \succ \cdots 4 \succ 2 \succ 1.$$

Théorème : Soit I un segment et $f: I \to I$ une application continue ayant un point n-périodique. Alors il existe un point p-périodique pour tout entier p tel que $n \succ p$.

8) Écrire un programme ordre(a,b) en Python qui prend en argument deux entiers a, b $\in \mathbb{N}^*$ et qui renvoie le booléen True si $a \succ b$ et False sinon