Chemistry 20 – Lesson 28 Acid/Base Stoichiometry

/77

Practice problems

2. The hydrochloric acid in a solution of kettle-scale remover is titrated with a 0.974 mol/L solution of sodium hydroxide. 10.00 mL samples of the acid solution were used. The color change of bromothymol blue indicator to green indicates the endpoint.

Trial	1	2	3	4
Final burette reading (mL) Initial burette reading (mL)	15.6 0.6	29.3 15.6	43.0 29.3	14.8 1.2
Volume of NaOH added (mL)	15.0	13.7	13.7	13.6
Color at endpoint	blue	green	green	green

$$\begin{split} &HCl_{(aq)} \quad + \quad NaOH_{(aq)} \quad \longrightarrow \quad NaCl_{(aq)} \quad + \quad HOH_{(l)} \\ &c_{HCl} = ? \qquad \qquad c_{NaOH} = 0.974 \, \text{mol/L} \qquad \qquad \\ &v_{HCl} = 0.01000L \qquad v_{NaOH} = \frac{13.7 \text{mL} + 13.7 \text{mL} + 13.6 \text{mL}}{3} = 13.667 \text{mL} \quad &\text{We ignore trial 1 since the volume is substantially more than the other trials.} \\ &In addition, the color at endpoint is blue rather than green.} \end{split}$$

We ignore trial 1 since the volume is substantially more than the other trials. rather than green.

A. calculate moles C. calculate concentration B. mole ratio $n_{\text{NaOH}} = 0.974 \, \frac{\text{mol}}{\text{L}} (0.013667 \, \text{L})$ $[HCl_{(aq)}] = \frac{.013311 mol}{0.01000 L}$ $\frac{n_{\text{NaOH}}}{1} = \frac{n_{\text{HCl}}}{1}$ $n_{NaOH} = 0.013311mol$ $[HCl_{(aq)}] = 1.33 \, \text{mol/}_L$ $n_{HCI} = 0.013311 \text{mol}$

Assignment

/3 The indicator should change at around pH = 7. Possible indicators are chorophenol red, bromothymol blue, phenol red, and phenolphthalein. In terms of indicating the exact equivalence point they would all work quite well since even a drop or two of acid or base in neutral water can change the pH by one or two points.

$$2. \hspace{0.5cm} HCl_{(aq)} \hspace{0.5cm} + \hspace{0.5cm} NaOH_{\,(aq)} \hspace{0.5cm} \longrightarrow \hspace{0.5cm} NaCl_{\,(aq)} \hspace{0.5cm} + \hspace{0.5cm} HOH_{\,(l)}$$

/6
$$c_{HCl} = 2.00 \frac{\text{mol}}{\text{L}}$$
 $m_{NaOH} = 1.20g$ $v_{HCl} = ?$

$$n_{\text{NaOH}} = \frac{1.20g}{40.00 \frac{g}{\text{mol}}}$$

$$n_{NaOH} = 0.0300 mol$$

$$\frac{n_{\text{NaOH}}}{1} = \frac{n_{\text{HCI}}}{1}$$

$$n_{HCl} = 0.0300 mol$$

$$v_{_{HCl}} = \frac{0.0300\,mol}{2.00\,{}^{mol}\!/_{\!L}}$$

$$v_{HCl} = 15.0 \, mL$$

3.
$$2 \text{ LiOH}_{(aq)}$$
 + $HOOCCOOH_{(aq)} \longrightarrow 2 \text{ HOH}_{(l)}$ + $LiOOCCOOLi_{(aq)}$

$$c_{\text{LiOH}} = ?$$
 $m_{\text{HOOCCOOH}} = 3.78g$ $v_{\text{LiOH}} = 0.125L$

$$n_{\text{HOOCCOOH-}2H_2O} = \frac{3.78g}{126.08 \frac{\text{g}}{\text{mol}}} \qquad \frac{n_{\text{LiOH}}}{2} = \frac{n_{\text{HOOCCOOH}}}{1}$$

$$n_{HOOCCOOH \cdot 2H_2O} = 0.02998 mol$$

$$\frac{n_{\text{LiOH}}}{2} = \frac{n_{\text{HOOCCOOH}}}{1}$$

$$n_{LiOH} = 2(0.02998 mol)$$

$$n_{\text{LiOH}} = 0.05996 \, \text{mol}$$

C. calculate concentration

$$[LiOH_{(aq)}] = \frac{.05996 \, mol}{0.125 L}$$

$$\boxed{[LiOH_{(aq)}] = 0.480\,{}^{mol}\!\!\!/_{L}}$$

$$4. \hspace{1.5cm} HNO_{3 \, (aq)} \hspace{1.5cm} + \hspace{1.5cm} NaOH_{\, (aq)} \hspace{1.5cm} \longrightarrow \hspace{1.5cm} NaNO_{3 \, (aq)} \hspace{1.5cm} + \hspace{1.5cm} HOH_{\, (l)}$$

/6
$$c_{\text{HNO}_3} = 3.00 \,\text{mol/L}$$
 $c_{\text{NaOH}} = 0.10 \,\text{mol/L}$ $v_{\text{NaOH}} = 0.0600 \,\text{L}$

$$n_{\text{NaOH}} = 0.10\,\text{mol/L}\,(0.0600L)$$

$$n_{\text{NaOH}} = 0.00600 mol$$

$$\frac{n_{\text{NaOH}}}{1} = \frac{n_{\text{HNO}_3}}{1}$$

$$n_{HNO_3} = 0.00600 mol$$

$$v_{HNO_3} = \frac{0.00600 \, mol}{3.00 \, \frac{mol}{L}}$$

$$v_{\text{HNO}_3} = 2.00 \,\text{mL}$$

$$5. \hspace{1.5cm} H_2SO_{4\,(aq)} \hspace{1.5cm} + \hspace{1.5cm} 2 \hspace{1.5cm} RbOH_{\,(aq)} \hspace{1.5cm} \longrightarrow \hspace{1.5cm} Rb_2SO_{4\,(aq)} \hspace{1.5cm} + \hspace{1.5cm} 2 \hspace{1.5cm} HOH_{\,(l)}$$

$$\begin{array}{ccc} & c_{\rm H_2SO_4} = 1.00 \, {}^{\rm mol}\!\!/_{\! L} & c_{\rm RbOH} = 0.35 \, {}^{\rm mol}\!\!/_{\! L} \\ & v_{\rm H_2SO_4} = ? & v_{\rm RbOH} = 0.0600 \, L \end{array}$$

$$n_{RbOH} = 0.35 \frac{mol}{L} (0.0600L)$$

 $n_{RbOH} = 0.0210 mol$

$$\frac{n_{\text{RbOH}}}{2} = \frac{n_{\text{H}_2\text{SO}_4}}{1} \qquad \qquad v_{\text{H}_2\text{SO}_4} = \frac{0.0105\,\text{mol}}{1.00\,^{\text{mol}}\!/_{\!L}}$$

$$\frac{1}{2} = \frac{1}{1}$$

$$\frac{0.0210 \,\text{mol}}{2} = \frac{n_{\text{H}_2\text{SO}_4}}{1}$$

$$\frac{v_{\text{H}_2\text{SO}_4}}{1} = 10.5 \,\text{mL}$$

 $n_{_{H_2SO_4}} = 0.0105 mol$

$$V_{\rm H_2SO_4} = \frac{3.00 \, \rm mol/L}{1.00 \, \rm mol/L}$$

$$v_{\rm H_2SO_4} = 10.5 \, \rm mL$$

6.
$$2 \text{ CH}_3\text{COOH}_{(aq)}$$
 + $\text{Ba}(\text{OH})_{2 \text{ (aq)}} \longrightarrow \text{Ba}(\text{CH}_3\text{COO})_{2 \text{ (aq)}}$ + $2 \text{ HOH}_{(1)}$

$$m_{\text{CH}_3\text{COOH}} = 3.78g$$

$$c_{\text{Ba}(\text{OH})_2} = ?$$

$$v_{Ba(OH)_2}^{} = 0.125\,L$$

$$n_{\text{CH}_3\text{COOH}} = \frac{3.78g}{60.06 \frac{\text{g}}{/\text{mol}}}$$

$$n_{\text{CH}_3\text{COOH}} = 0.062937 \text{mol}$$

B. mole ratio

$$\frac{n_{\text{Ba}(\text{OH})_2}}{1} = \frac{n_{\text{CH}_3\text{COOH}}}{2}$$

$$\frac{n_{Ba(OH)_2}}{1} = \frac{0.062937 \text{ mol}}{2} \quad \boxed{Ba(OH)_{2(aq)}} = 0.252 \frac{\text{mol}}{\text{L}}$$

$$n_{Ba(OH)_2} = 0.0314685 mol$$

$$n_{\text{CH}_3\text{COOH}} = \frac{3.78g}{60.06 \frac{\text{g}}{\text{mol}}} \qquad \qquad \frac{n_{\text{Ba}(\text{OH})_2}}{1} = \frac{n_{\text{CH}_3\text{COOH}}}{2} \qquad \qquad \left[\text{Ba}(\text{OH})_{2(\text{aq})} \right] = \frac{0.0314685 \, \text{mol}}{0.125 \, \text{L}}$$

$$\left[\text{Ba(OH)}_{2(\text{aq})} \right] = 0.252 \, \frac{\text{mol/L}}{\text{L}}$$

7.
$$HBr_{(aq)} + NaOH_{(aq)} \longrightarrow NaBr_{(aq)} + HOH_{(l)}$$

/8
$$c_{HBr} = ?$$
 $c_{NaOH} = 1.000 \, \text{mol/L}$ $v_{HBr} = 0.00500 \, \text{L}$ $v_{NaOH} = 0.00186 \, \text{L}$

A. calculate moles

$$n_{\text{NaOH}} = \! 1.000 \, \text{mol/L} \, (0.00186 L)$$

$$n_{NaOH} = 0.00186 mol$$

B. mole ratio

$$\frac{n_{\rm HBr}}{1} = \frac{n_{\rm NaOH}}{1}$$

$$n_{\rm HBr} = 0.00186 mol$$

C. calculate concentration

$$\left[HBr_{(aq)}\right] = \frac{0.00186 \, mol}{0.00500 \, L}$$

$$pH = -\log[H^+]$$

$$pH = -\log[0.372 \frac{mol}{L}]$$

$$pH = 0.429$$

8.

$$2 HA_{(aq)} + Zn_{(s)} \rightarrow ZnA_{2 (aq)} + H_{2 (g)}$$
 (non-ionic)

$$2\;H_{3}O^{^{+}}_{\;\;(aq)}\;+\;2\;A^{^{-}}_{\;\;(aq)}\;+\;\;Zn_{\;\;(s)}\;\rightarrow\;\;Zn^{2+}_{\;\;(aq)}\;+\;\;2\;A^{^{-}}_{\;\;(aq)}\;+\;\;H_{2\;\;(g)}\;+\;\;2\;H_{2}O_{\;(l)} \tag{total ionic}$$

$$2 H_3 O^{+}_{(aq)} + Z n_{(s)} \rightarrow Z n^{2+}_{(aq)} + H_{2(g)} + 2 H_2 O_{(l)}$$
 (net ionic)

$$c_{\rm H_3O^+} = m_{\rm Zn} = 3.27\,\rm g$$

$$v_{_{H_3O^+}}=0.200\,L$$

$$n_{Zn} = \frac{3.27g}{65.41 \text{g/mol}}$$

$$n_{Zn} = 0.0500 mol$$

$$\frac{n_{H^+}}{2} = \frac{n_{Zn}}{1}$$

$$\frac{n_{H^+}}{2} = \frac{0.0500 \,\text{mol}}{1}$$

$$n_{H^{+}} = 0.100 mol$$

$$[H^{+}_{(aq)}] = \frac{0.100 \, mol}{0.200 \, L}$$

$$[\,H_{(aq)}^{^{+}}\,]\,{=}\,0.500\,{}^{\text{mol}}\!\!/_{\!L}$$

$$pH = -\log[H^+]$$

$$pH = -\log[0.500\,{}^{\rm mol}\!/_{\!L}]$$

$$pH = 0.301$$

9.

/2The following indicators change colour at 4.4 (approximately): methyl orange, bromocresol green, methyl red.

10.

Volume of
$$HCl_{(aq)}$$
 added (mL) 17.6 17.1 17.0 17.2

red

Color at endpoint

$$Na_2CO_{3 (aq)}$$
 + 2 $HCl_{(aq)}$ \longrightarrow $H_2CO_{3 (aq)}$ + 2 $NaCl_{(aq)}$

orange

$$c_{Na_2CO_3} = 0.120 \, {}^{mol}/_{L}$$
 $c_{HCl} = ?$

$$v_{Na_2CO_3} = 0.01000L$$
 $v_{HCI} = \frac{17.1mL + 17.0mL + 17.2mL}{3} = 17.1mL$

We ignore trial 1 since the volume is substantially more than the other trials. In addition, the color at endpoint is red rather than orange.

orange

/6

A. calculate moles

R. Calculate Holes
$$n_{\text{Na}_2\text{CO}_3} = 0.120 \,\text{mol/}_L (0.01000\text{L})$$

$$n_{\text{Na}_2\text{CO}_3} = 0.00120 \,\text{mol}$$

$$\frac{n_{\text{HCl}}}{2} = \frac{n_{\text{Na}_2\text{CO}_3}}{1}$$

$$n_{Na_{2}CO_{3}} = 0.00120 mol \\$$

$$\frac{n_{\text{HCl}}}{2} = \frac{n_{\text{Na}_2\text{CO}_3}}{1} \qquad [\text{HCl}_{(\text{aq})}] = \frac{0.00240 \text{ m}}{0.0171 \text{L}}$$

$$\frac{n_{\text{HCl}}}{2} = \frac{0.00120 \text{ mol}}{1} \qquad [\text{HCl}_{(\text{aq})}] = 0.140 \frac{\text{mol/L}}{1}$$

 $n_{HCl} = 0.00240 \text{mol}$

B. mole ratio

orange

$$[HCl_{(aq)}] = \frac{0.00240 \, mol}{0.0171 L}$$

$$[HCl_{(aq)}] = 0.140 \frac{mol}{L}$$

11.
$$NH_{3 (aq)} + HCl_{(aq)} \longrightarrow NH_4Cl_{(aq)}$$

$$c_{HCl} = 1.48 \frac{mol}{L}$$

$$c_{NH_3} = ?$$
 $c_{HCl} = 1.48^{m}$

$$v_{NH_3} = 0.01000L$$
 $v_{HCI} = \frac{14.1mL + 13.9mL + 14.0mL}{3} = 14.0mL$

We ignore trial 1 since the volume is substantially more than the other trials. In addition, the color at endpoint is yellow rather than green.

/6 A. calculate moles

$$n_{HCl} = 1.48 \frac{\text{mol}}{\text{L}} (0.0140 \text{L})$$

$$n_{HCl} = 0.02072 mol$$

$$\frac{n_{NH_3}}{1} = \frac{n_{HCl}}{1}$$

$$\frac{n_{NH_3}}{1} = \frac{0.02072 \, mol}{1}$$

$$n_{NH_3} = 0.02072 mol$$

$$[NH_{3(aq)}] = \frac{0.02072 \, mol}{0.01000 \, L}$$

$$\boxed{[\,NH_{3(aq)}\,] = 2.07\,{}^{\text{mol}}\!\!/_{\!L}}$$

12.

$$HCl_{(aq)}$$
 + $NaOH_{(aq)}$ \longrightarrow $NaCl_{(aq)}$ + $HOH_{(l)}$

$$c_{HCl} = ?$$

$$c_{\text{NaOH}} = 0.10 \, \text{mol/L}$$

$$v_{HC1} = 0.0200L$$

$$v_{NaOH} = 0.0300L$$

A. calculate moles

$$n_{\rm NaOH} = 0.10\,{}^{\rm mol}\!\!/_{\!\! L} (0.0300L)$$

$$n_{NaOH} = 0.00300 mol$$

$$\frac{n_{\text{NaOH}}}{1} = \frac{n_{\text{HCl}}}{1}$$

$$n_{HCl} = 0.00300 mol$$

C. calculate concentration

$$[HCl_{(aq)}] = \frac{.00300mol}{0.0200\,L}$$

$$[HCl_{(aq)}] = 0.150 \, \text{mol/L}$$

13.

/1

/4				
curve	volume of titrant	pН	indicator(s)	
a	20 mL	7	bromothymol blue, phenolphthalein	
b	20 mL	9	phenolphthalein, thymolphthalein	
c	20 mL	5	bromocresol green, methyl red	
d	20 mL	7	bromothymol blue, phenolphthalein	