

Description

The VST15N058 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =150V, I_D =140A $R_{DS(ON)}$ =5.8m Ω , typical @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-220C

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST15N058-TC	VST15N058	TO-220C	-	-	-

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	V _G s	±20	V A	
Drain Current-Continuous	I _D	140		
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	100	Α	
Pulsed Drain Current	I _{DM}	560	А	
Maximum Power Dissipation	P _D	P _D 320		
Derating factor		2.1	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	1296	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.47	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)	<u> </u>			•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =70A	-	5.8	6.5	mΩ	
Forward Transconductance	g FS	V _{DS} =10V,I _D =70A	70	-	-	S	
Dynamic Characteristics (Note4)	<u>.</u>						
Input Capacitance	C _{lss})/ 7 51/1/ 0)/	-	5500	7150	PF	
Output Capacitance	C _{oss}	V_{DS} =75 V , V_{GS} =0 V , F=1.0MHz	-	690	890	PF	
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	24	31	PF	
Switching Characteristics (Note 4)	<u>.</u>						
Turn-on Delay Time	t _{d(on)}		-	26	-	nS	
Turn-on Rise Time	t _r	V_{DD} =75 V , I_{D} =70 A	-	36	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	47	-	nS	
Turn-Off Fall Time	t _f		-	15	-	nS	
Total Gate Charge	Qg	V _{DS} =75V,I _D =70A,	-	80	104	nC	
Gate-Source Charge	Q _{gs}	$V_{DS}-75V$, $I_{D}-70A$, $V_{GS}=10V$	-	32	41	nC	
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	22	28	nC	
Drain-Source Diode Characteristics	<u>.</u>						
Diode Forward Voltage (Note 3)	V _{SD}	$V_{GS}=0V,I_{F}=I_{S}$	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	140	А	
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	146		nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	485		nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

280
280
240
200
160
160
100
150
200
T_C-Case Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance