Теорія груп і симетрія Представлення груп (2)

Олександр Зенаєв

Еквівалентні представлення групи \mathbb{Z}_4

• \mathbb{Z}_4 : група поворотів на $(0,\pi/2,\pi,3\pi/2)$, або цілих чисел (0,1,2,3) з операцією додавання за модулем 4, що складається з 4 елементів $R_0 \equiv e, R_1, R_2, R_3$ з таблицею множення:

ullet Наступні еквівалентні представлення групи \mathbb{Z}_4 пов'язані матрицею $\mathcal{S}=egin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}$

g	D(g)	$D'(g) = S^{-1}D(g)S$	$\chi(g)$		
R_0	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2		
R_1	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 3 & 2 \\ -5 & -3 \end{pmatrix}$	0	$S^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$)
R_2	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	-2	(-1 2)	/
R_3	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} -3 & -2 \\ 5 & 3 \end{pmatrix}$	0		

• Якщо S це матриця повороту $\begin{pmatrix} cos(\theta) & sin(\theta) \\ -sin(\theta) & cos(\theta) \end{pmatrix}$, або масштабування $c \times \mathbb{I}$, то R_i залишаються такими самими (бо повороти комутують з поворотами та зміною