IFT6135-H2020 Prof : Aaron Courville

Multilayer Perceptrons and Convolutional Neural networks

Due Date: February 4th (11pm), 2020

Instructions

- For all questions, show your work!
- Use LaTeX and the template we provide when writing your answers. You may reuse most of the notation shorthands, equations and/or tables. See the assignment policy on the course website for more details.
- Submit your answers electronically via Gradescope.
- TAs for this assignment are Jie Fu, Sai Rajeswar, and Akilesh B

Question 1 (4-4-4). Using the following definition of the derivative and the definition of the Heaviside step function:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.

Answer 1.

Question 2 (3-3-3). Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_i e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: $S(\mathbf{x}+c) = S(\mathbf{x})$, where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimensional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimensional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 2.

Question 3 (16). Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

IFT6135-H2020 Prof : Aaron Courville

TABLE 1 – Forward AD example, with $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$ at $(x_1, x_2) = (2, 5)$ and setting $\dot{x}_1 = 1$ to compute $\partial y / \partial x_1$.

	Forward evaluation trace			Towns desiration to a second					
	v_{-1}	$=x_1$	=2		Forward derivative trace				
	_	1	=5		$=\dot{v}_{-1}$	\dot{x}_1	=1		
↓	v_0	$=x_2$			$=\dot{v}_0$	\dot{x}_2	=0		
	v_1	$= \ln(v_{-1})$	$=\ln(2)$		$-\dot{v}_1$	$=\dot{v}_{-1}/v_{-1}$			
	v_2	$= v_{-1} \times v_0$	$= 2 \times 5$ $\sin(5)$ $= 0.6931 + 10$			=/ =			
	v_3	$=\sin(v_0)$			v_2	$= \dot{v}_{-1} \times v_0 + v_{-1} \times \dot{v}_0$			
	-	(0)			\dot{v}_3	$=\cos v_0 \times \dot{v}_0$	$=\cos(5)\times0$		
	v_4	$= v_1 + v_2$			\dot{v}_4	$=\dot{v}_1+\dot{v}_2$	=0.5+5		
	21	— a1. a1.	= 10.6931 + 0.9589		\dot{v}_5	$=\dot{v}_4-\dot{v}_3$	=5.5-0		
	v_5	$= v_4 - v_3$			$\overline{} = \dot{y}$	\dot{v}_{5}	= 5.5		
	y	$=v_5$	= 11.6521			<u> </u>			

TABLE 2 – Reverse AD example, with $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$ at $(x_1, x_2) = (2, 5)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ are computed in one reverse sweep.

	Forward evaluation trace						
	v_{-1}	$=x_1$	=2				
	v_0	$=x_2$	=5				
	$\overline{v_1}$	$= \ln(v_{-1})$	$= \ln(2)$				
	v_2	$= v_{-1} \times v_0$	$=2\times5$				
\Downarrow	v_3	$=\sin(v_0)$	$=\sin(5)$				
	v_4	$= v_1 + v_2$	=0.6931+10				
	v_5	$= v_4 - v_3$	= 10.6931 + 0.9589				
	-	-					
	\overline{y}	$=v_5$	= 11.6521				
	9	9					

	Reverse adjoint trace					
	\bar{x}_1 \bar{x}_2	$=\bar{v}_{-1}$	= 5.5			
	\bar{x}_2	$=\bar{v}_0$	= 1.7163			
	\bar{v}_{-1}	$= \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}}$	= 5.5			
	\bar{v}_0	$= \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_1}$	= 1.7163			
\uparrow	\bar{v}_{-1}	$=\bar{v}_2\frac{\partial v_2}{\partial v_1}$	=5			
	\bar{v}_0	$= \bar{v}_3 \frac{\partial v_3}{\partial v_0} = \bar{v}_4 \frac{\partial v_4}{\partial v_2} = \bar{v}_4 \frac{\partial v_4}{\partial v_1}$	=-0.2837			
	\bar{v}_2	$= \bar{v}_4 \frac{\partial v_4}{\partial v_2}$	=1			
	\bar{v}_1	$= \bar{v}_4 \frac{\partial \bar{v_4}}{\partial v_1}$	=1			
	\bar{v}_3	$=\bar{v}_{\rm E}\frac{\partial v_5}{\partial v_5}$	=-1			
	\bar{v}_4	$= \bar{v}_5 \frac{\partial v_3}{\partial v_5}$	=1			
	\bar{v}_5	$=\bar{y}$	= 1			

Answer 3.

Question 4 (5-5). Fundamentally, back-propagation is just a special case of reverse-mode Automatic Differentiation (AD), applied to a neural network. Based on the "three-part" notation shown in Table 1 and 2, represent the evaluation trace and derivative (adjoint) trace of the following examples. In the last columns of your solution, numerically evaluate the value up to 4 decimal places.

- 1. Forward AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.
- 2. Reverse AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ can be computed together.

Answer 4.

Question 5 (6). Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 5.

Question 6 (5-5). Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 6.

Question 7 (4-4-6). Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide a correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape (o) of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 2, p = 2.
 - (c) Assume p = 1, d = 1.

For each question, please fill up the following table:

		i	p	d	k	s	0
1.	(a)	64		1	8		32
	(b)	64				2	32
2.	(a)	32	0	1			8
	(b)	32	0	1	8	4	
3.	(a)	8	0	1			4
	(b)	8	2	2			4
	(c)	8	1	1			4

Answer 7.