Week 3 (Cont.) Word Embeddings: Count-based Approach

Nhung Nguyen slides courtesy of Phong Le

Recap

- A brief introduction to distributional semantics
- A very simple method using co-occurrence vectors
- Pros and cons of using vectors to represent word meanings

Count-based approach: Term-document matrix

If word u appears in document d, d is a context of u

- 1. Collect a lot of documents (from, e.g. Wikipedia)
- 2. Count how many time a word *u* appearing with a document *d*
- 3. The meaning of word u is vector [count(u, d_1), count(u, d_2),...]

Shakespeare plays

	As You Like It	Twelfth Night	Julius Caesar /	Henry V
battle	1	0	7	13
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

Term-document matrix (cont.): Document vectors

Two ways to extract information from the matrix

Column-wise: a document is represented by a |V|-dim vector (V: vocabulary)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Widely used in information retrieval:

- find similar documents
- find documents close to a query

Term-document matrix (cont.): Document vectors

Find similar documents:

Two documents that are similar will tend to have similar words

Term-document matrix (cont.): Document vectors

Find documents close to a query

Consider a query as a document

Term-document matrix (cont.): Word vectors

2. Row-wise: a word is represented by a |D|-dim vector (D: document set)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
good fool	36	58	1	4
wit	20	15	2	3

Count-based approach: Term-term matrix

we have seen it before (co-occurrence vectors): Count how many times a word *u* appearing with a word *v*

> sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**. for the purpose of gathering data and **information** necessary for the study authorized in the

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from

	aardvark	computer	data	pinch	result	sugar	•••
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Count-based approach: raw frequency is bad

sugar, a sliced lemon, a tablespoonful of their enjoyment. Cautiously she sampled her first well suited to programming on the digital for the purpose of gathering data and information

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

- Not all contextual words are equally important: of, a, ... vs. sugar, jam, fruit...
- Which words are important, which ones are not?
 - infrequent words are more important than frequent ones (examples?)
 - correlated words are more important than uncorrelated ones (examples?)
 - 0 ...
- → weighing schemes (TF-IDF, PMI,...)

Weighing terms: TF-IDF (for term-document matrix)

tf (term frequency): frequency count

$$tf(t,d) = \log_{10}(1 + count(t,d))$$

idf (inverse document frequency): popular terms (terms that appear in many documents) are down weighed
 Total number of documents

$$idf(t) = \log_{10} rac{N}{df(t)}$$

in the collection

Number of documents in which term *t* occurs

••• TF-IDF:
$$tf ext{-}idf(t,d)=tf(t,d) imes idf(t)$$

Weighing terms: TF-IDF (example)

Shakespeare plays

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

raw frequency

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Count-based approach: so many 0s

	aardvark	computer	data	pinch	result	sugar	•••
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

- Many word pairs should have > 0 counts, but their corresponding matrix entries are 0s because of lacking data (data sparsity)
 - → Laplace smoothing: adding 1 to every entry (pseudocount)

Pros

- Simple and intuitive
- Dimensions are meaningful (e.g. each dim is a document / a contextual word)
 - → easy to debug and interpret (Think about Explainable AI)

Cons

- Word/document vectors are sparse (dims are |V|, vocabulary size, or |D|, number of documents, often from 2k to 10k) → difficult for machine learning algorithms
- How to represent word meaning in a specific context?

From sparse vectors to dense vectors

- Employ dimensionality reduction (e.g. latent semantic analysis LSA)
- Use a different approach: prediction (coming up next)