

#### **EDF R&D**

MANAGEMENT DES RISQUES INDUSTRIELS

ETUDES PROBABILISTES DE SURETE ET DE DISPONIBILITE DES SYSTEMES

7 boulevard Gaspard Monge 91120 PALAISEAU - +33 (1) 78 19 32 00

27/10/2016

#### Syntaxe du langage de modélisation probabiliste Figaro

BOUISSOU Marc
BUFFONI Lena
HOUDEBINE Jean-Christophe

EDF R&D - MRI Linköping University Société Aristè

| 6125-1612-2016-15549-FR             | 1.0 |  |  |
|-------------------------------------|-----|--|--|
| Type d'information : Note technique |     |  |  |

Ce document fournit la description détaillée de la syntaxe du langage Figaro. Il est destiné à accompagner le manuel de référence du langage qui explique les principes de modélisation, l'existence de deux niveaux appelés ordre 1 et ordre 0, la sémantique du langage et la façon de l'utiliser pour construire des bases de connaissances permettant la modélisation fiabiliste des systèmes discrets. Le présent document est conçu pour être facile à utiliser par une personne connaissant les concepts du langage Figaro, mais pas la façon détaillée de les mettre en œuvre ; il présente successivement les aspects suivants : 1) le lexique du langage en Anglais et en Français, 2) la grammaire du langage, 3) les contrôles grammaticaux effectués sur la base de connaissances, 4) les fonctions prédéfinies dans le langage.

| Accessibilité : Libre | Mention spéciale : | Statut : Publié |
|-----------------------|--------------------|-----------------|
|                       | Page I sur III     | © EDF SA 2016   |

| EDF R&D | Syntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR |
|---------|--------------------------------------------------------|-------------------------|
|         |                                                        | Version 1.0             |
|         |                                                        |                         |

### Circuit de validation

| Auteur       | BOUISSOU Marc       | 01/09/2016 | Bourna   |
|--------------|---------------------|------------|----------|
| Vérificateur | CHAUDONNERET Thomas | 06/09/2016 | Att      |
| Approbateur  | PESME Helene        | 27/10/2016 | H. Pesme |

| Code affaire | P11DD |  |
|--------------|-------|--|
| Code affaire | P11DD |  |

| EDF R&D | Syntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR |
|---------|--------------------------------------------------------|-------------------------|
|         |                                                        | Version 1.0             |

### Liste de diffusion

| Groupe destinataire |  |
|---------------------|--|
| 1612-EPSDS          |  |

| Pré-diff | Diff | Destinataire              | Structure            | E-mail                     |
|----------|------|---------------------------|----------------------|----------------------------|
|          | Х    | BOUISSOU Marc             | EDF R&D - MRI        | marc.bouissou@edf.fr       |
|          | Х    | BOUSKELA Daniel           | EDF R&D - STEP       | daniel.bouskela@edf.fr     |
| Х        | Х    | BUFFONI Lena              | Linköping University | lena.buffoni@liu.se        |
|          | Х    | CHAUDONNERET Thomas       | EDF R&D - MIRE       | thomas.chaudonneret@edf.fr |
| Х        | Х    | HOUDEBINE Jean-Christophe | Société Aristè       | ariste@wanadoo.fr          |
|          | Х    | LAAROUCHI Youssef         | EDF R&D - SINETICS   | youssef.laarouchi@edf.fr   |
|          | Х    | PESME Helene              | EDF R&D - MRI        | helene.pesme@edf.fr        |
|          | Х    | THUY N                    | EDF R&D - STEP       | n.thuy@edf.fr              |

| EDF R&D | Syntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR<br>Version 1.0 |
|---------|--------------------------------------------------------|----------------------------------------|
|         |                                                        |                                        |

#### **AVERTISSEMENT / CAUTION**

L'accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d'une action en responsabilité contractuelle, en responsabilité délictuelle ou de toute autre action, de tout dommage direct ou indirect, ou de quelque nature qu'il soit, ou de tout préjudice, notamment, de nature financière ou commerciale, résultant de l'utilisation d'une guelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies "en l'état" sans aucune garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d'éléments, réutilisation de tout ou partie de ce document sans autorisation préalable écrite d'EDF ainsi que toute diffusion externe à EDF du présent document ou des informations qu'il contient est strictement interdite sous peine de sanctions.

-----

The access to this document and its use are strictly limited to the persons expressly authorized to do so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage, including, among others, commercial or financial loss arising from the use of any information contained in this document.

This document and the information contained therein are provided "as are" without any warranty of any kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this document or its content, without the express and prior written consent of EDF is strictly forbidden. Failure to comply to the above provisions will expose to sanctions.

### **Sommaire**

| AVERTISSEMENT / CAUTION                                                                                                   | 1                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| SOMMAIRE                                                                                                                  | 2                                                                                                |
| 1. GÉNÉRALITÉS                                                                                                            | 3                                                                                                |
| 2. COMMENTAIRES                                                                                                           | 3                                                                                                |
| 3. LEXIQUE DU LANGAGE FIGARO                                                                                              | 4                                                                                                |
| 3.2. MOTS CLÉS DU LANGAGE FIGARO                                                                                          | ES ET DÉLIMITEURS                                                                                |
| <ul> <li>5.1. CONTRAINTES GRAMMATICALES LIÉES À L'HÉRIT</li> <li>5.2. CONTRAINTES GRAMMATICALES LIÉES AUX INTE</li> </ul> | IGAGE FIGARO 1       19         FAGE       19         ERFACES       20         RESSIONS       20 |
| 6. ANNEXE: LISTE DES FONCTIONS                                                                                            | 24                                                                                               |
| 6.2. FONCTIONS RETOURNANT UN NOMBRE ALÉATOI                                                                               |                                                                                                  |

### 1. Généralités

Ce document fournit la description détaillée de la syntaxe du langage Figaro. Il est destiné à accompagner le manuel de référence du langage qui explique les principes de modélisation, l'existence de deux niveaux appelés ordre 1 et ordre 0, la sémantique du langage et la façon de l'utiliser pour construire des bases de connaissances permettant la modélisation fiabiliste des systèmes discrets.

Le présent document est conçu pour être facile à utiliser par une personne connaissant les concepts du langage Figaro, mais pas la façon détaillée de les mettre en œuvre ; il présente successivement :

- Le lexique du langage en Anglais et en Français
- La grammaire du langage
- Les contrôles grammaticaux effectués sur la base de connaissances.
- Les fonctions prédéfinies dans le langage

Le langage Figaro à l'ordre 1 permet de décrire des connaissances génériques, alors qu'à l'ordre 0 il ne peut être employé que pour décrire des systèmes particuliers et sert d'entrée à tous les algorithmes de traitement des modèles. En Figaro 1, on a deux types de fichiers : les fichiers de bases de connaissances et les fichiers de description de systèmes. Les bases de connaissances ne peuvent contenir que des types (TYPE) et des objets permanents et visibles de tous les autres objets (OBJET\_SYSTEME), alors que les descriptions de systèmes ne peuvent contenir que des objets (OBJET). A l'ordre 0, il existe un seul type de fichier, qui ne peut contenir que des objets (OBJET). Le parser FIGARO a deux modes différents faits pour le contrôle de modèles à l'ordre 1 et à l'ordre 0.

A quelques détails près, qui seront signalés explicitement, le langage d'ordre 0 est un sous-langage de l'ordre 1.

Les conventions d'écriture sont les suivantes dans la définition de la syntaxe :

- | : indique un choix exclusif entre différentes possibilités,
- [c] : indique que la présence de la construction syntaxique c est facultative,
- Caractères italiques: indique un mot clé ou une construction disponible seulement à l'ordre 1,
- Les parenthèses servent à grouper des éléments : (a|b) c signifie (a ou b) suivi de c alors que a |
   (bc) signifie a ou (b suivi de c). Les parenthèses faisant partie du texte Figaro seront notées LPAR et RPAR.

La distinction entre majuscules et minuscules est importante. Les termes TERM et term représentent donc deux entités différentes. Tous les mots-clés du langage Figaro sont en majuscules.

#### 2. Commentaires

Les commentaires sont autorisés partout dans le code Figaro. Tout texte compris entre « (\* » et « \*) » est pris comme commentaire. Les commentaires imbrigués sont autorisés.

#### Exemple:

```
(* commentaire
   (* commentaire imbriqué *)
*)
```

# 3. Lexique du langage Figaro

Le lexique est l'ensemble des éléments atomiques de la syntaxe.

### 3.1. Construction des identificateurs, nombres et délimiteurs

| contenu                                                                               | suite de caractères attendue                     |
|---------------------------------------------------------------------------------------|--------------------------------------------------|
| lettre                                                                                | A   B   Z   a   b   z   _                        |
| chiffre                                                                               | 0   1   9                                        |
| suitecar (suite de caractères)                                                        | ( lettre   chiffre ) (   suitecar)               |
| identificateur (appelé ID dans les<br>diagrammes syntaxiques)                         | lettre suitecar                                  |
| chaîne de caractères                                                                  | suite de caractères <i>quelconques</i> sauf " et |
| LITERAL_STRING (chaîne de caractères entre doubles apostrophes)                       | "chaîne de caractères"                           |
| identificateur entre barres<br>verticales (ID)                                        | " " chaîne de caractères " "                     |
| identificateur entre apostrophes (QUOTID)                                             | ' suitecar '                                     |
| entier (LITERAL_INTEGER)                                                              | chiffre (   entier )                             |
| réel (LITERAL_REAL)                                                                   | entier[.entier][(E e)[- +]entier]                |
| fin d'ordre Figaro                                                                    | ;                                                |
| séparateur d'identificateurs,<br>d'actions                                            | ,                                                |
| parenthèses ouvrante et fermante<br>(LPAR et RPAR dans les<br>diagrammes syntaxiques) | ( )                                              |
| Préfixe de désignation d'une variable d'un système d'équations                        | ?                                                |

# 3.2. Mots clés du langage Figaro

### 3.2.1. Principales entités Figaro

Ces mots-clés sont ceux que l'on va trouver au plus haut niveau dans l'arbre syntaxique d'un texte Figaro.

| sens Figaro                     | terme Français   | terme Anglais |
|---------------------------------|------------------|---------------|
| annonce de la liste d'étapes    | ORDRE_DES_ETAPES | STEPS_ORDER   |
| annonce d'une condition d'étape | CONDITION        | CONDITION     |
| annonce de la liste des groupes | NOMS_DES_GROUPES | GROUP_NAMES   |

| Accessibilité : Libre | Page 4 sur 27 | © EDF SA 2016 |
|-----------------------|---------------|---------------|
|                       |               |               |

| EDF R&D | Syntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR |
|---------|--------------------------------------------------------|-------------------------|
|         |                                                        | Version 1.0             |
|         |                                                        |                         |

| annonce de la liste des systèmes d'équations | NOMS_DES_SYSTEMES | SYSTEM_NAMES  |
|----------------------------------------------|-------------------|---------------|
| annonce d'un type                            | TYPE              | CLASS         |
| lien d'héritage d'un type                    | SORTE_DE          | KIND_OF       |
| ensemble de tous les objets (Figaro 1)       | OBJET             | OBJECT        |
| annonce d'un objet (Figaro 1 et Figaro 0)    |                   |               |
| annonce d'un objet « permanent » et global   | OBJET_SYSTEME     | SYSTEM_OBJECT |
| lien d'héritage d'un objet                   | EST_UN   EST_UNE  | IS_A   IS_AN  |

# 3.2.2. Opérateurs élémentaires

| sens Figaro                             | terme Français | terme Anglais |
|-----------------------------------------|----------------|---------------|
| opérateur d'assignation                 | <              | <             |
| opérateur booléen égalité               | =              | =             |
| assignation en Figaro 0                 |                |               |
| opérateur booléen différent             | <>             | <>            |
| opérateur booléen inférieur strictement | <              | <             |
| opérateur booléen inférieur ou égal     | <=             | <=            |
| opérateur booléen supérieur strictement | >              | >             |
| opérateur booléen supérieur ou égal     | >=             | >=            |
| opérateur de multiplication             | *              | *             |
| opérateur de division                   | 1              | 1             |
| opérateur d'addition                    | +              | +             |
| opérateur de soustraction               | -              | -             |
| modulo (a % b désigne a modulo b)       | %              | %             |
| puissance (a**b désigne a puissance b)  | **             | **            |
| négation booléenne                      | NON            | NOT           |
| opérateur booléen ET                    | ET             | AND           |
| opérateur booléen OU                    | OU             | OR            |

### 3.2.3. Interfaces

| sens Figaro                                                               | terme Français | terme Anglais |
|---------------------------------------------------------------------------|----------------|---------------|
| annonce des INTERFACES Figaro                                             | INTERFACE      | INTERFACE     |
| annonce du type des objets autorisés dans une interface                   | GENRE          | KIND          |
| annonce des limites du nombre d'objets admis dans une interface           | CARDINAL       | CARDINAL      |
| annonce de la limite maximale du nombre d'objets admis dans une interface | JUSQUA         | ТО            |
| limite infinie pour le nombre d'objets admis                              | INFINI         | INFINITY      |

| Accessibilité : Libre | Page 5 sur 27 | © EDF SA 2016 |
|-----------------------|---------------|---------------|
|-----------------------|---------------|---------------|

| dans une interface |  |
|--------------------|--|
|                    |  |

### 3.2.4. Termes propres aux règles d'occurrence

| sens Figaro                                                                                                                                                       | terme Français                                                                                                                     | terme Anglais             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| annonce des règles d'occurrence                                                                                                                                   | OCCURRENCE                                                                                                                         | OCCURRENCE                |
| annonce d'une condition de règle s'ajoutant<br>à la condition implicite liée à l'utilisation des<br>mots-clés DEFAILLANCE ou REPARE<br>suivis d'un nom de PANNE   | SI                                                                                                                                 | IF                        |
| annonce d'une transition                                                                                                                                          | IL_PEUT_SE_PRODUIRE                                                                                                                | MAY_OCCUR                 |
| annonce d'une transition alternative                                                                                                                              | OU_BIEN                                                                                                                            | OR_ELSE                   |
| transition standard                                                                                                                                               | TRANSITION                                                                                                                         | TRANSITION                |
| transition de type défaillance                                                                                                                                    | DEFAILLANCE                                                                                                                        | FAULT                     |
| transition de type indisponibilité                                                                                                                                | INDISPONIBILITE                                                                                                                    | UNAVAILABILITY            |
| transition de type réparation                                                                                                                                     | REPARATION                                                                                                                         | REPAIR                    |
| annonce de la liste des pannes réparées par la transition                                                                                                         | REPARE                                                                                                                             | REPAIRS                   |
| annonce du type de loi de probabilité liée à la transition                                                                                                        | LOI                                                                                                                                | DIST                      |
| annonce des conséquences de la transition                                                                                                                         | PROVOQUE                                                                                                                           | INDUCING                  |
| loi de probabilité de type exponentielle                                                                                                                          | EXP   EXPONENTIELLE                                                                                                                | EXP   EXPONENTIAL         |
| loi de probabilité de type instantanée                                                                                                                            | INS   INSTANTANEE                                                                                                                  | INS   INSTANTANEOUS       |
| loi de "probabilité" de type temps constant                                                                                                                       | T_C  <br>TEMPS_CONSTANT                                                                                                            | C_T   CONSTANT_TIME       |
| autres lois, utilisables seulement dans des<br>modèles destinés à être traités par<br>simulation de Monte Carlo : cf. tableau au<br>§6.                           | CYCLE, POINT, UNI<br>(Uniform), TRIANG, ERL<br>(Erlang), WEI   WEIBULL,<br>GUMBEL, FRECHET,<br>PARETO, NORMAL, LGN,<br>GAMMA, BETA | Mêmes noms qu'en français |
| Version « avec mémoire » des lois précédentes.  On retrouve toutes les lois définissant des temps sauf la loi exponentielle, qui par définition est sans mémoire. | T_C_M, CYCLE_M, POINT_M, UNI_M, TRIANG_M, ERL_M, WEI_M, GUMBEL_M, FRECHET_M, PARETO_M, NORMAL_M, LGN_M, GAMMA_M, BETA_M            | Mêmes noms qu'en français |

# 3.2.5. Termes propres aux règles d'interaction

| sens Figaro                                       | terme Français | terme Anglais |
|---------------------------------------------------|----------------|---------------|
| annonce des règles d'interaction                  | INTERACTION    | INTERACTION   |
| annonce des étapes auxquelles la règle appartient | ETAPE          | STEP          |

| Syntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR |   |
|--------------------------------------------------------|-------------------------|---|
|                                                        | Version 1.0             | ĺ |

| D |
|---|
|   |

| annonce des groupes auxquels la règle appartient                    | GROUPE | GROUP |
|---------------------------------------------------------------------|--------|-------|
| annonce de la condition de la règle                                 | SI     | IF    |
| annonce de l'action exécutée lors de la réalisation de la condition | ALORS  | THEN  |
| annonce de l'action exécutée lors de la réfutation de la condition  | SINON  | ELSE  |

# 3.2.6. Termes communs aux règles d'occurrence et d'interaction

| sens Figaro                                                                                 | terme Français     | terme Anglais |
|---------------------------------------------------------------------------------------------|--------------------|---------------|
| permet à une règle de faire référence à l'objet qui contient cette règle                    | MOI_MEME           | MYSELF        |
| quantificateur                                                                              | SOIT               | GIVEN         |
| quantificateur                                                                              | QQSOIT             | FOR_ANY       |
| quantificateur                                                                              | IL_EXISTE          | IT_EXISTS     |
| annonce d'un ensemble d'objets (interface ou OBJET)                                         | UN   UNE           | A   AN        |
| annonce d'un nom d'objet ou d'interface de cardinal 1                                       | DE                 | OF            |
| annonce d'un nom de type                                                                    | DE_TYPE            | OF_TYPE       |
| annonce une condition constante                                                             | VERIFIANT          | VERIFYING     |
| annonce de la condition associée à un quantificateur QQSOIT                                 | ON_A               | WE_HAVE       |
| annonce de la condition associée à un quantificateur IL_EXISTE                              | TEL_QUE, TELLE_QUE | SUCH_THAT     |
| opérateur booléen de test de l'ensemble<br>des pannes d'un objet                            | MARCHE             | WORKING       |
| opérateur booléen de test de l'ensemble<br>des pannes d'un objet                            | PANNE              | FAILURE       |
| début de l'expression au moins parmi                                                        | AU_MOINS           | AT_LEAST      |
| ou au moins x                                                                               |                    |               |
| annonce d'un ensemble d'expressions<br>booléennes à tester suivant le mode au<br>moinsparmi | PARMI              | WITHIN        |
| opérateur de test de l'appartenance d'un<br>objet à un ensemble (interface)                 | INCLUS_DANS        | INCLUDED_IN   |
| annonce un ensemble d'objets sur lesquels<br>une action est définie                         | POUR_TOUT          | FOR_ALL       |
| annonce des actions associées au quantificateur POUR_TOUT                                   | FAIRE              | DO            |
| opérateur somme                                                                             | SOMME              | SUM           |
| opérateur produit                                                                           | PRODUIT            | PRODUCT       |

| Accessibilité : Libre | Page 7 sur 27 | © EDF SA 2016 |
|-----------------------|---------------|---------------|
|                       |               |               |

| opérateur maximum                                                       | MAXIMUM    | MAXIMUM  |
|-------------------------------------------------------------------------|------------|----------|
| opérateur minimum                                                       | MINIMUM    | MINIMUM  |
| annonce des termes des opérateurs<br>somme, produit, maximum et minimum | DES_TERMES | OF_TERMS |

# 3.2.7. VARIABLES, EDITION, DOMAINE ET VALEURS

| sens Figaro                                                                                                                                                                                                                                                                                                                                                                                                                                         | terme Français | terme Anglais  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| annonce d'une chaîne de caractères de<br>commentaire d'une facette d'un type                                                                                                                                                                                                                                                                                                                                                                        | LIBELLE        | LABEL          |
| annonce des constantes Figaro                                                                                                                                                                                                                                                                                                                                                                                                                       | CONSTANTE      | CONSTANT       |
| annonce des paramètres de loi probabiliste (considérés comme des constantes)                                                                                                                                                                                                                                                                                                                                                                        | PARAMETRE_LOI  | DIST_PARAMETER |
| annonce des attributs Figaro                                                                                                                                                                                                                                                                                                                                                                                                                        | ATTRIBUT       | ATTRIBUTE      |
| annonce des effets Figaro                                                                                                                                                                                                                                                                                                                                                                                                                           | EFFET          | EFFECT         |
| annonce des pannes Figaro                                                                                                                                                                                                                                                                                                                                                                                                                           | PANNE          | FAILURE        |
| annonce d'une propriété d'édition d'une variable (constante, attribut, effet, panne)                                                                                                                                                                                                                                                                                                                                                                | EDITION        | EDITION        |
| valeur de la propriété d'édition d'une variable                                                                                                                                                                                                                                                                                                                                                                                                     | VISIBLE        | VISIBLE        |
| valeur de la propriété d'édition d'une<br>variable                                                                                                                                                                                                                                                                                                                                                                                                  | MODIFIABLE     | MODIFIABLE     |
| valeur de la propriété d'édition d'une variable                                                                                                                                                                                                                                                                                                                                                                                                     | OBLIGATOIRE    | MANDATORY      |
| annonce de contraintes sur les utilisations d'une caractéristique. Ces contraintes sont liées aux algorithmes de construction d'objets déduits. Cf. les différents rôles possibles dans les points suivants :                                                                                                                                                                                                                                       | ROLE           | ROLE           |
| aucune contrainte sur l'utilisation d'une caractéristique. Sert à supprimer des contraintes héritées.                                                                                                                                                                                                                                                                                                                                               | STANDARD       | STANDARD       |
| contrainte sur l'utilisation d'une     CONSTANTE : ne peut pas changer de     valeur dans une variante. Ainsi on peut     s'appuyer sur cette constante dans les     algorithmes d'objets déduits. Par extension,     c'est une contrainte que l'on doit ajouter aux     paramètres intervenant dans les modèles de     fiabilité, car le générateur d'arbres ne saurait     pas gérer des variantes portant sur les     valeurs de ces paramètres. | CONCEPTION     | DESIGN         |
| désigne les interfaces permettant de savoir si un objet déduit peut être conservé (au cas                                                                                                                                                                                                                                                                                                                                                           | REFERENCE      | REFERENCE      |

|                                                                                                        | 1                   |                  |
|--------------------------------------------------------------------------------------------------------|---------------------|------------------|
| où on en a modifié des caractéristiques) au                                                            |                     |                  |
| lieu de le reconstruire.                                                                               | PROVISOIRE          | TEMPORARY        |
| signale une caractéristique qui ne sert que                                                            | TROVIOUNE           | TEMI SIVAICI     |
| lors de la construction des objets déduits, et                                                         |                     |                  |
| n'a pas d'utilité dans le modèle Figaro final.<br>annonce d'une chaîne de caractères                   | DESCRIPTION         | DESCRIPTION      |
| associée à un objet                                                                                    | BEGGINI FIGH        |                  |
| annonce de la description du domaine<br>d'une variable                                                 | DOMAINE             | DOMAIN           |
| annonce de l'expression de définition de la<br>valeur initiale par défaut d'une variable               | PAR_DEFAUT          | DEFAULT          |
| annonce de l'expression de description de<br>la valeur de réinitialisation d'une variable              | REINITIALISATION    | REINITIALISATION |
|                                                                                                        | VRAI                | TRUE             |
|                                                                                                        | FAUX                | FALSE            |
|                                                                                                        | ENTIER              | INTEGER          |
|                                                                                                        | REEL                | REAL             |
|                                                                                                        | BOOLEEN             | BOOLEAN          |
| variable donnant le temps courant<br>(utilisable seulement en simulation de<br>Monte Carlo)            | DATE_COURANTE       | CURRENT_DATE     |
| annonce de modèles de fiabilité associés à une PANNE                                                   | DONNEES_FIABILISTES | RELIABILITY_DATA |
| annonce du modèle de fiabilité par défaut                                                              | MODELE_PAR_DEFAUT   | DEFAULT_MODEL    |
| annonce du modèle de fiabilité remplacé                                                                | MODELE_REMPLACE     | MODEL_REPLACED   |
| modèle de fiabilité : fréquence                                                                        | MODELE_F            | MODEL_F          |
| modèle de fiabilité : valeur constante VRAI<br>ou FAUX                                                 | MODELE_FIGE         | MODEL_FROZEN     |
| modèle de fiabilité : probabilité indépendante du temps                                                | MODELE_G            | MODEL_G          |
| modèle de fiabilité : réparable, défaillances<br>à la sollicitation et en fonctionnement               | MODELE_GLM          | MODEL_GLM        |
| modèle de fiabilité : défaillance à la<br>sollicitation et en fonctionnement, temps de<br>mission fixé | MODELE_GLTM         | MODEL_GLTM       |
| modèle de fiabilité : testé aléatoirement                                                              | MODELE_TA           | MODEL_RT         |
| modèle de fiabilité : testé selon calendrier fixé                                                      | MODELE_TPE          | MODEL_PET        |
| modèle de fiabilité : non réparable, loi de<br>Weibull                                                 | MODELE_WB           | MODEL_WB         |
| nom de paramètre de modèle de fiabilité<br>associé à une PANNE                                         | ALPHA               | ALPHA            |
| idem                                                                                                   | FREQUENCE           | FREQUENCE        |

| ntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR |  |
|------------------------------------------------------|-------------------------|--|
|                                                      | Version 1.0             |  |

| idem | GAMMA                   | GAMMA                  |
|------|-------------------------|------------------------|
| idem | GAMMA_NON_DETECTI<br>ON | GAMMA_NO_DETECTIO<br>N |
| idem | GAMMA_RECONFIG          | GAMMA_RECONFIG         |
| idem | GAMMA_TEST              | GAMMA_TEST             |
| idem | LAMBDA                  | LAMBDA                 |
| idem | LAMBDA_TEST             | LAMBDA_TEST            |
| idem | MU                      | MU                     |
| idem | T_C_M                   | C_T_M                  |
| idem | T_INIT_TEST             | T_INIT_TEST            |
| idem | T_INTER_TEST            | T_INTER_TEST           |
| idem | T_TEST                  | T_TEST                 |
| idem | TO                      | TO                     |
| idem | TM                      | MT                     |

# 3.2.8. Systèmes d'équations linéaires

EDF R&D

| sens Figaro                                         | terme Français    | terme Anglais   |
|-----------------------------------------------------|-------------------|-----------------|
| annonce d'une liste d'équations                     | EQUATION          | EQUATION        |
| type des équations                                  | LINEAIRE          | LINEAR          |
| annonce des systèmes auxquels est liée une équation | SYSTEME_EQUATIONS | EQUATION_SYSTEM |
| demande de résolution d'un système d'équations      | RESOUDRE_SYSTEME  | SOLVE_SYSTEM    |
| annonce d'une équation                              | FORMULE           | FORMULA         |

# 4. Syntaxe du langage Figaro

Ce chapitre détaille la syntaxe du langage, autrement dit la décomposition de l'arbre syntaxique en structures de plus en plus élémentaires jusqu'à arriver aux éléments lexicaux décrits dans le chapitre précédent. Les diagrammes syntaxiques utilisent les conventions données au début du document.

Remarque importante : depuis la dernière version de Figaro 1 l'utilisation de variables GLOBALES a été supprimée car elle était une source de bugs ; elle est remplacée par les objets système.

NB : afin de faciliter la maintenance de ce document, les « diagrammes syntaxiques » de ce chapitre sont donnés avec le vocabulaire et les mots clés anglais. Les mots clés Figaro sont écrits en gras pour faciliter leur repérage et les distinguer des éléments terminaux de la syntaxe qui sont aussi notés en majuscules (Ex : LITERAL\_STRING). Ce qui est en italiques est réservé à l'ordre 1.

La racine de l'arbre syntaxique d'un texte Figaro est Figaro model.

```
Figaro_model :
   (KB_DESCRIPTION LITERAL_STRING ; | steps | groups | systems | class |
object) [Figaro_model]
```

#### Contraintes:

- Il peut y avoir au plus une description introduite par KB\_DESCRIPTION dans une base de connaissances.
- Les structures steps, groups, systems doivent être déclarées au plus une fois.

### 4.1. Déclaration de la liste des étapes

#### Contraintes:

• Une étape ne peut apparaître qu'une fois dans la liste.

#### Remarque:

• Une règle d'interaction non associée explicitement à une étape est mise dans l'étape (toujours existante) appelée etape\_par\_defaut (default\_step en anglais).

### 4.2. Déclaration de la liste des groupes

```
groups : GROUP_NAMES group_list
```

```
group list: ID [LABEL label string] ; [group list]
```

#### Contraintes:

• Un groupe ne peut apparaître qu'une fois dans la liste.

### 4.3. Déclaration de la liste des systèmes d'équations

```
systems : SYSTEM_NAMES system_list
system_list : ID [LABEL label_string] ; [system_list]
```

#### Contraintes:

• Un système ne peut apparaître qu'une fois dans la liste.

### 4.4. Définition d'un type

```
class :
   CLASS ID [GR_LINK|GR_NODE] [KIND_OF enum_ids] ; fields

fields :
   (const | attribute | effect | failure | dist_param | interface | occurrence | interaction | equation | description) [fields]
```

#### Contraintes:

- Les mots-clés GR\_LINK et GR\_NODE servent uniquement pour indiquer à un outil de visualisation graphique (pendant son paramétrage) que les objets de ce type doivent être représentés sous la forme d'une icône ou d'un lien. Ils ne doivent normalement pas rester présents dans une base de connaissances finalisée.
- Un type ne doit être défini qu'une seule fois.
- Chaque type père ne doit apparaître qu'une seule fois dans la liste des pères annoncée par KIND\_OF.

### 4.5. Définition d'un objet

#### Contraintes:

• Un objet ne peut être défini qu'une seule fois.

 Un objet système est un objet spécial, créé d'emblée lors de l'initialisation et visible de tous les autres objets du système. Il peut donc être utilisé pour partager des valeurs. Un tel objet ne peut être déclaré que dans un fichier base de connaissances.

### 4.6. Définition des caractéristiques d'un type ou d'un objet

Ci-après, quelques structures communes à plusieurs caractéristiques.

Un rôle sert à définir des contraintes sur l'utilisation d'une caractéristique. Cf. tableau du 3.2.7 pour plus de détails.

#### Contraintes:

- Le domaine ne peut pas être défini plusieurs fois pour une même variable.
- Un domaine énuméré ne peut pas contenir deux fois la même valeur.
- La valeur par défaut et la valeur de réinitialisation (si elle existe) d'une variable sont identiques et ne peuvent être définies qu'une seule fois pour chaque variable.
- Le libelle ne peut être défini qu'une seule fois par caractéristique.

#### 4.6.1. Définition des Variables

#### Contraintes:

- Une variable (CONSTANTE, EFFET, PANNE, ATTRIBUT, PARAMETRE\_LOI) ne peut être définie qu'une seule fois dans chaque description de type.
- Une variable ne peut pas avoir le même nom qu'une interface.
- Pour chaque variable, un certain nombre de « facettes » (slots en anglais) ont un nom dans les diagrammes syntaxique commençant par f\_. Chacune de ces facettes doit être définie au plus une fois.

• Dans un type, on peut seulement lui donner une valeur par défaut (default\_term) ou de réinitialisation (reinit\_term), alors que dans un objet, on peut seulement lui donner une valeur initiale (affect\_term) ou de réinitialisation (reinit\_term).

#### 4.6.1.1. Attributs

NB : la "structure" error (qu'on verra en de multiples endroits) peut être ignorée, car elle sert au *parser* à pouvoir continuer l'analyse syntaxique même si une erreur est rencontrée dans la structure en cours d'analyse, délimitée par un « ; ». Ainsi l'utilisateur peut avoir plusieurs diagnostics d'erreur en un seul passage du vérificateur de syntaxe.

#### 4.6.1.2. Constantes

```
const : CONSTANT constants
constants : ID f_constant ; [constants]

f_constant : (edition | role | domain | default_term | affect_term | label)
[f_constant]
```

#### 4.6.1.3. Paramètres de loi

Il n'y a pas de différence de fond entre la déclaration d'un PARAMETRE\_LOI (DIST\_PARAMETER) et d'une CONSTANTE *réelle*. Il y a deux mots-clés différents seulement pour faciliter la compréhension d'une base de connaissances. Un PARAMETRE\_LOI doit être utilisé uniquement, comme son nom l'indique, dans la définition des lois de probabilité, et ne peut être employé en Figaro 0.

```
dist_param : DIST_PARAMETER dist_params
dist_params : (ID f_dist_param ; | error) [dist_params]
f_dist_param : (edition | affect_term | role | default_term | label)
[f dist_param]
```

#### 4.6.1.4. Pannes

```
failure : FAILURE failures
failures : ID f_failure ; [failures]

f_failure : (edition | affect_term | role | default_term | label | rel_data) [f_failure]
```

#### 4.6.1.5. Effets

```
effect : EFFECT effects
effects : (ID f_effect| error) ; [effects]
f effect : (edition | role | label) [f effect]
```

#### 4.6.2. Définition des Interfaces

interface : **INTERFACE** interfaces

#### Contraintes:

- Une variable ne peut pas avoir le même nom qu'une interface.
- Le minimum du cardinal doit être inférieur ou égal au maximum.

#### 4.6.3. Définition des Règles

Remarque : pour les deux types de règles (occurrence et interaction), on trouve les structures suivantes :

```
condition : IF term
group : GROUP enum_ids
```

Contrainte : ces deux structures ne doivent apparaître qu'une fois dans une règle.

#### 4.6.3.1. Règles d'occurrence

```
occurrence : OCCURRENCE occurrences
occurrences : ([ID] f occurrence MAY OCCUR
      alternatives | error) ; [occurrences]
f occurrence : (group | condition | label) [f occurrence]
alternatives : [alternatives OR_ELSE] alternative
alternative : (TRANSITION \mbox{ID} f transition
      | FAILURE ID f failure
      | REPAIR ID f reparation
      | UNAVAILABILITY ID f unavail)
f_transition : (label | dist | induces) [f_failure]
f failure : (label | dist | induces) [f failure]
f unavail : (label | dist | induces) [f unavail]
f repair : (label | dist | repairs | induces) [f repair]
dist : DIST ID LPAR term RPAR
induces : INDUCING action
repairs : REPAIRS enum ids
```

#### Contraintes:

- Une règle d'occurrence ne peut être définie qu'une seule fois par type.
- Une règle d'occurrence doit avoir au moins une transition.
- Une règle d'occurrence contenant plus d'une alternative (donc contenant le mot-clé OU\_BIEN (OR ELSE) ne doit contenir que des lois de type INSTANTANE.
- Toutes les transitions d'une même règle doivent avoir un nom différent.
- La facette LOI (DIST) et la facette PROVOQUE (INDUCES) ne doivent pas être définies plus d'une seule fois pour chaque transition.
- La facette REPARE (REPAIRS) ne doit pas contenir deux fois la même réparation.
- La facette GROUPE (GROUP) doit contenir au moins un groupe défini dans la liste des groupes.

#### 4.6.3.2. Règles d'interaction

```
interaction : INTERACTION interactions
interactions : ([ID] f_interaction | error) ; [interactions]

f_interaction : (step | group | condition | label | given | then | else)
[f_interaction]

step : STEP enum_ids

given : (GIVEN anobject | given AND anobject | given , GIVEN anobject)

then : THEN action

else : ELSE action

anobject : ID (A|AN) obj [OF_TYPE ID] [VERIFYING term]
```

#### Contraintes:

- Une règle d'interaction ne peut être définie qu'une seule fois par type.
- Une règle d'interaction doit avoir au moins la facette ALORS (THEN).
- La facette ETAPE doit contenir au moins une étape définie dans la liste des étapes.
- La facette GROUPE doit contenir au moins un groupe défini dans la liste des groupes.

#### 4.6.4. Définition des équations

#### Contraintes:

- Une équation ne peut être définie qu'une seule fois par type.
- La facette SYSTEME\_EQUATIONS (EQUATION\_SYSTEM) doit utiliser le nom d'un système défini dans la liste des systèmes.

#### 4.6.5. Actions

#### Contraintes:

• Le système annoncé dans la facette RESOUDRE\_SYSTEME (SOLVE\_SYSTEM) doit être présent dans la liste de systèmes.

### 4.6.6. Définition des termes des expressions

```
term : constante | var
      | term (> | >= | = | <> | < | <=) term
      | isworking | failed
      | term (AND | OR) term | NOT term
      | FOR ANY anobject WE HAVE term
      | IT EXISTS anobject SUCH THAT term
      | {\it IT\_EXISTS~AT\_LEAST} term anobjectin {\it SUCH\_THAT} term
      | AT LEAST term WITHIN LPAR list sep terms RPAR
      | obj INCLUDED IN obj
      | CARDINAL OF obj
      | CARDINAL LPAR obj RPAR
      | term( + | - | * | / | ** | % ) term
      | term ?= LPAR free terms RPAR
      | LPAR error RPAR
      | LPAR term RPAR
      | - term
      | ?var
                         (attention : pas de blanc après le "?")
      | SUM FOR ALL anobject OF TERMS term
      | PRODUCT FOR ALL anobject OF TERMS term
      | MAXIMUM FOR ALL anobject OF TERMS term
      | MINIMUM FOR ALL anobject OF TERMS term
      RAND
      CURRENT DATE
      | INTEGRAL LPAR term RPAR
      | ALREADY REALIZED LPAR term RPAR
      | STATE TIME LPAR term RPAR
```

```
anobjectin : ID INCLUDED_IN obj [OF_TYPE ID] [VERIFYING term]
isworking : WORKING [LPAR obj RPAR | OF obj]
failed : FAILURE [LPAR obj RPAR | OF obj]
var : ID [LPAR var RPAR | LPAR list_terms RPAR | OF var]
list_terms : term [, list_terms]
list_sep_terms : term [, list_sep_terms]
constant : (LITERAL_INTEGER | LITERAL_REAL | TRUE | FALSE | QUOTID)
obj : ID (LPAR obj RPAR | OF obj) | MYSELF
```

#### Contraintes:

 Les mots clés RAND, CURRENT\_DATE, INTEGRAL, ALREADY\_REALIZED et STATE\_TIME ne peuvent être utilisés que dans des modèles destinés à être exploités par simulation de Monte Carlo.

#### 4.6.7. Définition d'un modèle fiabiliste et des données associées

Cette structure sert à définir un ou plusieurs modèles de feuilles associés à une PANNE en vue de générer des arbres de défaillances.

On ne peut déclarer des modèles fiabilistes qu'en Figaro d'ordre 1.

#### Contraintes

• Plusieurs modèles peuvent être définis, mais un seul peut être déclaré comme modèle par défaut.

```
model_type :
    MODEL_GLM | MODEL_FROZEN | MODEL_GLTM | MODEL_G | MODEL_F | MODEL_RT |
    MODEL_PET | MODEL_WB

Rappel des noms en français :
    MODELE_GLM | MODELE_FIGE | MODELE_GLTM | MODELE_G | MODELE_F |
    MODELE_TA | MODELE_TPE | MODELE_WB
```

# 5. Contraintes grammaticales du langage Figaro 1

Dans les chapitres précédents, des contraintes simples car locales aux structures syntaxiques décrites ont déjà été énoncées. Le respect de ces contraintes ne suffit pas à assurer la cohérence d'ensemble d'un modèle Figaro.

Le présent chapitre a pour but de décrire les contraintes plus globales qui existent aussi. Le respect de ces contraintes est vérifié par les outils Figaro. Leur non-respect donne lieu, selon le cas, à des avertissements ou à des erreurs.

### 5.1. Contraintes grammaticales liées à l'héritage

Les contraintes grammaticales liées à l'héritage exigent en premier lieu l'existence d'au moins un type dans la base de connaissances.

Un type est décrit par ses caractéristiques statiques (variables et interfaces) et dynamiques (règles d'occurrence et d'interaction, équations). Chaque caractéristique des types pères d'un type est copiée au niveau même du type afin de réaliser la surcharge des facettes.

Le mécanisme de surcharge est mis en œuvre par l'intermédiaire des deux principes suivants :

- L'héritage des caractéristiques se fait dans l'ordre SORTE\_DE, par noms (si deux variables ont le même nom, il y a surcharge) et par facettes (seules les facettes surchargées sont modifiées, les autres sont conservées).
- "Le dernier qui parle a raison": la surcharge peut s'effectuer entre types hérités, dans ce cas, c'est l'ordre des noms précisés dans la facette SORTE\_DE qui détermine l'ordre de prise en compte des caractéristiques et, par-là, celui de leurs facettes. Ainsi, dans l'exemple suivant:

```
TYPE A;

ATTRIBUT poids DOMAINE reel PAR_DEFAUT 14;

TYPE B;

ATTRIBUT poids DOMAINE reel PAR_DEFAUT 18;

TYPE C SORTE_DE B A;
```

La valeur par défaut de poids dans C est 14.

La résolution de l'héritage exige les contraintes grammaticales suivantes sur les surcharges par noms et par facettes et sur le graphe d'héritage entre types :

Les surcharges par noms :

- Un même nom ne peut être utilisé pour une variable dans un type père et pour une variable de type de champ différent dans un type héritant.
- Un type ne peut hériter de deux variables, de types de champ différents et de même nom, provenant de deux types différents.
- Il est recommandé d'utiliser des noms différents pour une règle d'interaction définie dans un type père et une règle d'occurrence définie dans le type héritant du type père et inversement.
- Il est recommandé de ne pas utiliser un nom de transition héritée pour définir une nouvelle transition dans un type héritant.
- · Les surcharges par facettes :
  - Les domaines des variables héritées ne doivent pas être redéfinis dans le type héritant à l'exception des domaines énumérés.
  - Le genre déclaré pour une INTERFACE doit être un sous-type du type déclaré comme GENRE dans l'interface de même nom du type père.
- Il est interdit de créer une boucle dans les liens d'héritage.

### 5.2. Contraintes grammaticales liées aux interfaces

Les contraintes grammaticales liées aux interfaces sont les suivantes :

- Le type référencé par la facette GENRE d'une interface doit être défini dans la base de connaissances.
- Il est recommandé de ne pas utiliser le même nom pour une interface et un type.

# 5.3. Contraintes grammaticales liées aux expressions

Les contraintes grammaticales liées aux expressions sont les suivantes :

- Pour une variable :
  - ♦ Les valeurs par défaut des constantes CONSTANTE et PARAMETRE\_LOI doivent être des expressions constantes, c'est-à-dire des valeurs numériques ou littérales faisant intervenir uniquement d'autres constantes. Il ne doit pas y avoir de définition circulaire entre constantes.
  - ♦ Les expressions des valeurs par défaut doivent être compatibles avec les domaines des variables. Le tableau ci-après donne les combinaisons autorisées.
  - ♦ Les valeurs de réinitialisation des variables ATTRIBUT doivent être des expressions constantes, c'est-à-dire des valeurs numériques ou littérales faisant intervenir uniquement des constantes.
  - ♦ Les expressions des valeurs de réinitialisation doivent être compatibles avec les domaines des variables. Le tableau ci-après donne les combinaisons autorisées.
  - ♦ Les opérateurs PANNE et MARCHE doivent être appliqués sur des objets possédant des variables PANNE.
  - ♦ Le tableau suivant donne les règles de « promotion » possibles lors de la définition de valeurs par défaut ou de valeurs de réinitialisation.

| Domaine de la variable | Domaine de l'expression | Autorisé                                                            |
|------------------------|-------------------------|---------------------------------------------------------------------|
| BOOLEEN                | BOOLEEN                 | Oui                                                                 |
| BOOLEEN                | ENTIER                  | Non                                                                 |
| BOOLEEN                | REEL                    | Non                                                                 |
| BOOLEEN                | Enuméré                 | Non                                                                 |
| ENTIER                 | BOOLEEN                 | Oui (pris égal à 0 ou 1)                                            |
| ENTIER                 | ENTIER                  | Oui                                                                 |
| ENTIER                 | REEL                    | Non                                                                 |
| ENTIER                 | Enuméré                 | Non                                                                 |
| REEL                   | BOOLEEN                 | Oui (pris égal à 0 ou 1)                                            |
| REEL                   | ENTIER                  | Oui                                                                 |
| REEL                   | REEL                    | Oui                                                                 |
| REEL                   | Enuméré                 | Non                                                                 |
| Enuméré                | BOOLEEN                 | Non                                                                 |
| Enuméré                | ENTIER                  | Non                                                                 |
| Enuméré                | REEL                    | Non                                                                 |
| Enuméré                | Enuméré                 | Oui, si et seulement si<br>une valeur est commune<br>aux 2 domaines |

- Plus généralement, au sein d'une expression, un booléen est promu en entier (0 ou 1) lorsqu'il est l'un des opérandes d'une opération numérique dont l'autre opérande est un nombre. Le résultat d'une opération entre un entier et un réel est un réel.
- Pour une équation :
  - ♦ Les inconnues d'une équation doivent être des attributs réels.
  - ♦ Une équation a un genre qui ne peut être que LINEAIRE :
    - \* l'opérateur \* ne doit avoir qu'un seul de ses opérandes contenant une inconnue, l'autre ne doit pas en contenir.
    - \* L'opérateur / ne doit pas contenir d'inconnue dans son opérande droit.
    - \* L'opérateur PRODUIT dispose de deux opérandes, le premier déclare une variable liée et le second est une expression. Cette dernière expression ne doit pas contenir d'inconnue sauf si le cardinal de l'ensemble sur lequel la variable liée est définie est 0 ou 1.
    - \* L'opérateur SOMME dispose de deux opérandes, le premier déclare une variable liée et le second est une expression. Cette dernière expression doit respecter les règles annoncées sur les opérateurs \* et /.
  - ♦ La facette SI utilisée pour décrire la condition d'application d'une équation doit porter sur une expression booléenne.
- Pour une règle en général :
  - ♦ Si au moins une règle de la base de connaissances appartient à un groupe, il est recommandé que toutes les règles de la base appartiennent à au moins un groupe .

- Pour une règle d'interaction :
  - ♦ Si au moins une règle d'interaction appartient à une étape, il est recommandé que toutes les règles d'interaction appartiennent à une étape.
- Pour une règle d'occurrence :
  - ♦ Seule la dernière transition d'une règle instantanée peut être dispensée de la facette LOI. Dans tous les autres cas, la facette LOI est obligatoire.
  - ♦ Des transitions correspondant à des types de lois différents ne peuvent appartenir à une même règle d'occurrence.
  - ♦ Le nombre de transitions définies dans une règle d'occurrence doit être au moins égal à un pour les lois instantanées et égal à un pour toutes les autres lois.
  - ♦ Pour les actions en conclusion de règles (une transition sans action explicite ni action implicite est une erreur) :
    - \* Si la transition n'est ni une défaillance, ni une réparation, ni une indisponibilité, la facette PROVOQUE est obligatoire.
    - \* Si la transition est une défaillance et si son nom ne correspond pas à une variable PANNE, la facette PROVOQUE est obligatoire.
    - \* Si la transition est une réparation :
      - ÷ Si la facette REPARE existe, celle-ci doit être appliquée à une variable PANNE.
      - ÷ Si la facette REPARE n'est pas précisée, la facette PROVOQUE est obligatoire.
    - \* Si la transition est une indisponibilité,
      - ÷ Si le nom de la transition ne correspond pas à une variable PANNE, la facette PROVOQUE est obligatoire.
      - ÷ La transition doit être instantanée.
- Pour une expression de façon générale :
  - ♦ La facette VERIFIANT doit être une expression ne faisant intervenir que des constantes de CONCEPTION.
  - Les deux opérandes d'un opérateur binaire doivent avoir des domaines compatibles. Le tableau suivant donne pour divers opérateurs le domaine de l'expression, le nombre et le type des opérandes attendus.

| Opérateur | Domaine expression | Premier opérande        | Deuxième opérande    |
|-----------|--------------------|-------------------------|----------------------|
| DE_TYPE   | Objet              | Expression Sélection    | Nom type             |
| VERIFIANT | Objet              | Expression Sélection    | Expression booléenne |
| ET        | Booléen            | Expression<br>booléenne | Expression booléenne |
| OU        | Booléen            | Expression<br>booléenne | Expression booléenne |
| NON       | Booléen            | Expression<br>booléenne |                      |

|                      | 1                  |                                           |                             |
|----------------------|--------------------|-------------------------------------------|-----------------------------|
| Opérateur            | Domaine expression | Premier opérande                          | Deuxième opérande           |
| INCLUS_DANS          | Booléen            | Expression Accès à ensemble de cardinal 1 | Expression Accès à ensemble |
| CARDINAL             | Entier             | Expression Accès à ensemble               |                             |
| PANNE                | Booléen            | Expression Accès à ensemble de cardinal 1 |                             |
| MARCHE               | Booléen            | Expression Accès à ensemble de cardinal 1 |                             |
| QQSOIT<br>ON_A       | Booléen            | Expression Création alias                 | Expression booléenne        |
| IL_EXISTE<br>TEL_QUE | Booléen            | Expression Création alias                 | Expression booléenne        |

### 6. Annexe: Liste des Fonctions

L'application d'une fonction de nom ID à un ensemble d'arguments est représentée dans la grammaire par ID puis " (" liste de termes séparés par des virgules ")". Ceci est accepté de manière générale de façon à éviter de changer les fichiers Lex et Yacc à chaque ajout d'une fonction. Lorsqu'il rencontre ce type de construction, le *parser* Figaro cherche dans une liste d'opérateurs si la fonction existe.

Les fonctions ont le même nom en français et en anglais, sauf les fonctions spéciales listées au § 6.3.

### 6.1. Fonctions mathématiques

Dans le tableau ci-dessous, a désigne un entier, r désigne un nombre réel et x, y et z peuvent être entiers ou réels.

| Nom de la fonction                                | Syntaxe       |
|---------------------------------------------------|---------------|
| Exponentielle                                     | EXP( r)       |
| Sinus                                             | SIN(r)        |
| Cosinus                                           | COS(r)        |
| Tangente                                          | TAN(r)        |
| Racine carrée                                     | SQRT(r)       |
| Logarithme népérien                               | LN(r)         |
| Logarithme en base 10                             | LOG(r)        |
| Valeur absolue                                    | ABS(r)        |
| Entier supérieur                                  | CEIL(r)       |
| Entier inférieur                                  | FLOOR( r)     |
| Nombre entier le plus proche                      | NINT(r)       |
| Factorielle (n!)                                  | FACT(a)       |
| Logarithme en base 10 de la factorielle (log(n!)) | LFACT(a)      |
| Maximum                                           | MAX(x, y, z,) |
| Minimum                                           | MIN(x, y, z,) |

# 6.2. Fonctions retournant un nombre aléatoire suivant une loi donnée

Toutes les fonctions citées dans cette section ne peuvent être utilisées que dans le cadre d'une simulation de Monte Carlo.

RAND\_EXP, RAND\_POINT, RAND\_UNI, RAND\_TRIANG, RAND\_ERL, RAND\_WEI, RAND\_GUMBEL, RAND\_FRECHET, RAND\_PARETO, RAND\_NORMAL, RAND\_LGN, RAND\_GAMMA, RAND\_BETA.

La définition des lois et leurs paramètres sont les mêmes que ce que l'on trouve dans la définition des délais aléatoires de tir pour les transitions temporisées. Le tableau ci-dessous donne ces définitions.

Remarque : on ne trouve pas RAND\_CYCLE dans la liste ci-dessus, car CYCLE a une signification bien spécifique. Ce mot clé est utilisé comme « loi » associée à une transition pour modéliser que cette transition se déclenche à intervalles réguliers, de manière déterministe.

| Nom                 | Nombre<br>d'arguments | Type des arguments                                        | Commentaire                                                 |
|---------------------|-----------------------|-----------------------------------------------------------|-------------------------------------------------------------|
| ΕΧΡ(λ)              | 1                     | réel                                                      | Loi exponentielle                                           |
|                     |                       |                                                           | λ est le taux d'occurrence                                  |
| CYCLE(T,T0)         | 2                     | réels                                                     | Loi pour un événement cyclique                              |
|                     |                       |                                                           | T est la période du cycle                                   |
|                     |                       |                                                           | T0 est l'instant du premier événement                       |
| POINT(T1,F1,,Tn,Fn) | 2*n                   | réels                                                     | Loi définie point par point par sa fonction de répartition  |
|                     |                       |                                                           | 0<=Tn<=Tn+1                                                 |
|                     |                       |                                                           | 0<=Fn<=Fn+1<=1                                              |
| UNI(A,B)            | 2                     | réels                                                     | Loi uniforme sur [A,B] (A<=B)                               |
| TRIANG(A,M,B)       | 3                     | réels                                                     | Loi triangulaire sur [A,B] de sommet d'abscisse M (A<=M<=B) |
| ERL(λ1,Κ1,,λn,Κn)   | 2*n                   | arguments<br>impairs réels,<br>arguments pairs<br>entiers | Loi d'Erlang généralisée                                    |
| WEI(S,T,A,β)        | 4                     | premier argument entier,                                  | Loi de Weibull                                              |
|                     |                       |                                                           | S = 1 : A moyenne,                                          |
|                     |                       | les autres<br>arguments réels                             | S = 2 : A médiane,                                          |
|                     |                       |                                                           | S = 3 : A échelle,                                          |
|                     |                       |                                                           | T décalage (T>=0),                                          |
|                     |                       |                                                           | β paramètre de forme (β>0)                                  |
| GUMBEL(m,σ)         | 2                     | réels                                                     | Loi de Gumbel                                               |
|                     |                       |                                                           | m : moyenne (m>0)                                           |
|                     |                       |                                                           | σ : écart-type (s>0)                                        |

| Nom             | Nombre<br>d'arguments | Type des arguments                                           | Commentaire                                                                                                                                                          |
|-----------------|-----------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FRECHET(T,α,β)  | 3                     | réels                                                        | Loi de Fréchet  T : décalage (T>=0)  α : échelle (α>0)  β : paramètre de forme (β>0)                                                                                 |
| ΡΑΚΕΤΟ(Τ,σ,β,δ) | 4                     | réels                                                        | Loi de Pareto  T : décalage (T>=0) $\sigma$ : échelle ( $\sigma$ >0) $\beta$ : paramètre de forme ( $\beta$ >0) $\delta$ : paramètre de forme inverse ( $\delta$ >0) |
| NORMAL(m,σ)     | 2                     | réels                                                        | Loi normale  m : moyenne  σ : écart-type (σ>0)                                                                                                                       |
| LGN(S,A,B)      | 3                     | premier argument<br>entier,<br>les autres<br>arguments réels | Loi log normale  S = 1 : A moyenne, B écart-type  S = 2 : A médiane, B facteur d'erreur  S = 3 : A moyenne, B facteur d'erreur                                       |
| GAMMA(S,T,A,B)  | 4                     | premier argument<br>entier,<br>les autres<br>arguments réels | Loi gamma S = 1 : A moyenne, B écart-type S = 2 : A échelle, B paramètre de forme                                                                                    |
| BETA(p,q,a,b)   | 4                     | réels                                                        | Loi beta de type I de paramètres p,q a : minimum b : maximum a<=b                                                                                                    |

| EDF R&D | Syntaxe du langage de modélisation probabiliste Figaro | 6125-1612-2016-15549-FR |
|---------|--------------------------------------------------------|-------------------------|
|         |                                                        | Version 1.0             |
|         |                                                        |                         |

# 6.3. Fonctions spéciales

Toutes les fonctions citées dans cette section ne peuvent être utilisées que dans le cadre d'une simulation de Monte Carlo.

Dans le tableau ci-dessous, b désigne une expression booléenne et x une expression réelle.

| sens Figaro                                                                                          | terme Français  | terme Anglais       |
|------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| Variable booléenne indicatrice du fait que l'argument b est passé à VRAI à DATE_COURANTE ou plus tôt | DEJA_REALISE(b) | ALREADY_REALIZED(b) |
| Calcul de l'intégrale de 0 à DATE_COURANTE de l'expression x en argument.                            | INTEGRALE(x)    | INTEGRAL(x)         |
| Cumul des temps passés dans l'état défini par l'expression indicatrice b, entre 0 et DATE_COURANTE.  |                 | STATE_TIME(b)       |