Machine Learning in Cyber Security

Shawn Saliyev

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

17 November 2018 UMM, Morris

Malicious Software

Malicious Software

Malicious Software

File 1 File 2

File 3

Malicious Software

Malicious Software

Malicious Software

Malicious Software

Adware

Spyware

Malicious Software

Adware

Spyware

KeyLogger

Why use Machine Learning for Detecting Malware?

- Dynamic Environment
- More Advanced types of Malware
- New Efficient Detection Systems

Old Traditional Way for Detecting Malware

Signature Based Detection System

Signature

- Instruction Sequences
- Binary Sequences

Old Traditional Way for Detecting Malware

Old Traditional Way for Detecting Malware

Signature Based Detection System

Weaknesses

- Zero Day Attacks
- Polymorphic Malwares

Outline

- Background
 - Machine Learning
 - Deep Neural Network
- Deep Neural Network Approach
 - Data Gathering
 - Structure Data Generation
 - Feature Extraction
 - Modeling
 - Results
- Conclusion

Machine Learning

• Process Big Multidimensional Data

- Process Big Multidimensional Data
- Categorization of Data

- Supervised
 - Labeled Data
 - Classification

- Supervised
 - Labeled Data
 - Classification
- Unsupervised
 - Unlabeled Data
 - o Clustering

Deep Neural Network

Deep Neural Network

Deep Neural Network

Input Layer Hidden Layer 1

Hidden Layer 2

Output Layer

Deep Neural Network

• Loss Function - J(w)

J(w)

• Back Propagation

Background cont.

Back Propogation

Input Layer Hi

Hidden Layer 1

Hidden Layer 2

Output Layer

Background cont.

Back Propagation

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Outline

- Background
 - o Machine Learning
 - Deep Neural Network
- Deep Neural Network Approach

- Malicious Files
 - Malicia Project
 - 11,064 Assembly Files

- Malicious Files
 - Malicia Project
 - 11,064 Assembly Files
- Benign Files
 - Windows Systems
 - 2,800 Assembly Files
 - Adaptive Synthetic oversampling technique (ADASYN)

- Malicious Files
 - Malicia Project
 - 11,064 Assembly Files
- Benign Files
 - Windows Systems
 - 2,800 Assembly Files
 - Adaptive Synthetic oversampling technique (ADASYN)
- Total around 22,000 Assembly Files
 - ~ 15,000 Files for Training
 - ~ 7,000 Files for Testing

Structure Data Generating

- Opcode
- Frequency Tables

Operation Code (Opcode)

Assembly File

SUB AX,BX

MOV CX,AX

MOV DX,0

ADD CX,BX

Generating Frequency Table

Feature Extraction

Autoencoder (AE)

- Encoder
- Decoder
- Bottleneck Layer

Feature Extraction

Autoencoder (AE)

• 1-Layer Autoencoder

Feature Extraction

Autoencoder (AE)

- 1-Layer Autoencoder
- 3-Layer Autoencoder

Feature Extraction

Autoencoder (AE)

- 1-Layer Autoencoder
- 3-Layer Autoencoder
- ADAM optimizer

Feature Extraction

Autoencoder (AE)

- 1-Layer Autoencoder
- 3-Layer Autoencoder
- ADAM optimizer
- ELU Activation Function

Modeling

Autoencoder

Deep Neural Network

Modeling

Deep Neural Network

- 2-hidden layer DNN
- 4-hidden layer DNN
- 7-hidden layer DNN
- ELU (Activation Function)
- Output Layer Sigmoid Activation
- ADAM optimizer

Modeling

Deep Neural Network

- 2-hidden layer DNN
- 4-hidden layer DNN
- 7-hidden layer DNN
- ELU (Activation Function)
- Output Layer Sigmoid Activation
- ADAM optimizer

Χ

Results

Outline

- Background
 - Machine Learning
 - Deep Neural Network
- Deep Neural Network Approach
 - Data Gathering
 - Structure Data Generation
 - Feature Extraction
 - Modeling
 - Results
- Conclusion

Conclusion

- Cyber Security is really important
- Deep Neural Network shows good performance
- There are still more techniques to explore

Acknowledgements

Thank you for your time and attention!

Special thanks to K.K. Lamberty, Elena Machkasova and Nic McPhee for your guidance and feedback.

References

- Mohit Sewak, Sanjay K. Sahay, and Hemant Rathore. 2018. An investigation of a deep learning based malware detection system. In Proceedings of the 13th International Conference on Availability, Reliability and Security (ARES 2018). ACM, New York, NY, USA
- I. Goodfellow, Y. Bengio, and A. Courville.DeepLearning. MIT Press, 2016. http://www.deeplearningbook.org
- Wikipedia contributors. (2018, November 13). Malware. In *Wikipedia, The Free Encyclopedia*. Retrieved 11:36, November 18, 2018, from https://en.wikipedia.org/w/index.php?title=Malware&oldid=868580417
- Wikipedia contributors. (2018, November 3). Intrusion detection system. In *Wikipedia, The Free Encyclopedia*. Retrieved 11:37, November 18, 2018, from https://en.wikipedia.org/w/index.php?title=Intrusion_detection_system&oldid=867076009