Álgebra II

CP2: Combinación lineal de vectores. Subespacios generado por un sistema de vectores

Lic. David Balbuena Cruz

Objetivos

Esta clase práctica tiene como objetivos:

- Determinar cuándo un vector se puede expresar como combinación lineal de otros vectores.
- Construir el subespacio generado por un sistema de vectores.
- Analizar si dos sistemas de vectores generan el mismo subespacio.

Le recomendamos realizar los ejercicios señalados y consultar el libro $\acute{A}lgebra~Tomo~I$ de Teresita Noriega. Secciones 1.6 y 1.7.

Ejercicios

Ejercicio 1: Exprese, si es posible, el vector v como combinación lineal de los vectores del sistema de vectores $\{e_1, e_2, e_3\} = \{e_i\}_{i=1,2,3}$.

(a) En
$$\mathbb{R}^3$$
: $v = (-1, -2, 5)$, $e_1 = (1, 1, 1)$, $e_2 = (1, 2, 3)$, $e_3 = (2, -1, 1)$

(b) En
$$\mathbb{R}^3$$
: $v = (2, -5, 3)$, $e_1 = (1, -3, 2)$, $e_2 = (2, -4, -1)$, $e_1 = (1, -5, 7)$

Ejercicio 2: ¿Para qué valores del parámetro k se puede escribir el vector v = (1, k, -2) de \mathbb{R}^3 como combinación lineal de los vectores $a_1 = (3, -2, 0)$ y $a_2 = (2, -5, -1)$?

Ejercicio 3: En el espacio $\mathbb{R}_3[x]$ escriba el polinomio $p(x) = -3 + 4x + x^2$ como combinación lineal de los vectores:

$$q_1(x) = x^2 - 2x + 5$$
 $q_2(x) = x^2 - 3x$ $q_3(x) = x + 3$

Ejercicio 4: En el espacio $M_2(\mathbb{R})$ exprese la matriz

$$A = \left(\begin{array}{cc} 1 & -1 \\ 3 & 1 \end{array}\right)$$

como combinación lineal de los vectores

$$E_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix}$$

Ejercicio 5: Determine el subespacio vectorial generado por los siguientes sistemas de vectores:

(a) $\{p_1, p_2, p_3, p_4\}$ sistema de K[x], donde

$$p_1(x) = -2x + 5$$
 $p_2(x) = x^2 - 2x + 3$
 $p_3(x) = 2x^2 - 6x + 11$ $p_4(x) = -x^2 - 4x + 12$

(b) $\{a_1, a_2, a_3\}$ sistema de $(\mathbb{C}^2, \mathbb{R})$, donde

$$a_1 = (1+i,2)$$
 $a_1 = (1+i,2)$ $a_1 = (1+i,2)$

Ejercicio 6: Muestre que en el espacio vectorial K^3 , los vectores:

$$a_1 = (1, 1, -1)$$
 $a_2 = (2, 3, -1)$ $a_3 = (3, 1, -5)$

generan el mismo subespacio que los vectores

$$b_1 = (1, -1, -3)$$
 $b_2 = (3, -2, -8)$ $b_3 = (2, 1, -3)$

Ejercicio 7: Muestre que en el espacio vectorial $F(\mathbb{R}, \mathbb{C})$, los vectores:

$$u_1(t) = 1$$
 $u_2(t) = \sin t$ $u_3(t) = \cos t$

generan el mismo subespacio que los vectores

$$v_1(t) = 1$$
 $v_2(t) = e^{it}$ $v_3(t) = e^{-it}$