A Real Implementation for Constructive Negation

Susana Muñoz

Juan José Moreno

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
jjmoreno@fi.upm.es

Motivation

- Negation role at Logic Programming
- Problems of the proposals:
 - Complexity
 - Expressiveness
 - Semantics
- Limited implementations:
 - Negation as failure
 - Delay technique

Negation as failure

• SLDNF resolution
$$\begin{cases} naf(G): - call(G), !, \\ naf(G). \end{cases}$$

• Execution:

```
?- naf(even(s(s(0)))).
                                    ?- naf(even(X)).
no
                                   no
?- naf(even(s(0))).
                                    ?- naf(even(s(Y))).
yes
                                   no
```

Problem: naf is not sound and complete.

Interpretation of Quantifications

$$\operatorname{naf}(p(\overline{X})) \equiv \neg \exists \overline{X}. \ p(\overline{X})$$

• $naf(p(\overline{X})$ checks if $p(\overline{X})$ is "true" or "false" \Rightarrow No variable instantiation

$$\operatorname{cneg}(p(\overline{X})) \equiv \exists \overline{X}. \neg p(\overline{X})$$

• $cneg(p(\overline{X}))$ provides the values of \overline{X} that make false $p(\overline{X}) \Rightarrow$ Constructive answer

Constructive Answers

```
?- cneg(even(X)). ?- cneg(even(X)).
X = s(0) ?;
                      X = / = 0, X = / = s(s(fA(Y))) ?;
                      X=s(s(Y)),
X = s(s(s(0))) ?;
                      Y=/=0, Y=/=s(s(fA(Z))) ?;
?- cneg(null(X)).
                      ?- cneg(null(X)).
X = s(0) ?;
                      X = /= 0 ?;
X = s(s(0)) ?;
                      no
X = s(s(s(0))) ?;
```

Constructive Negation

- Papers about Semantical aspects
- Practical Chan's proposal (coroutining)
- Implementation problems (Eclipse)
- We provide:
 - A complete theoretical algorithm (refining and extending to the constructive negation method)
 - A discussion about implementation issues
 - A preliminary implementation

Negation of the Frontier

```
even(0).
                                           ?- cneg(even(Y)).
even(s(s(X))):-even(X).
Frontier(even(Y)) = C_1 \vee C_2 =
           (Y=0) \lor (\exists X \ Y=s(s(X)) \land even(X))
\neg Frontier(even(Y)) = \neg C_1 \land \neg C_2 = [Y \neq 0] \land
[(\forall X1.\ Y \neq s(s(X1))) \lor ((\exists X2.\ Y = s(s(X2)) \land \neg\ even(X2))]
```

Implementation Issues

Disequality constraints (Attributed variables)
 Constraints Normal Form

$$\bigwedge_{i}(X_{i}=t_{i})$$
 \land positive information

$$\left(\bigwedge_{j} \forall \overline{Z}_{j}^{1} \left(Y_{j}^{1} \neq s_{j}^{1}\right) \vee \ldots \vee \bigwedge_{l} \forall \overline{Z}_{l}^{n} \left(Y_{l}^{n} \neq s_{l}^{n}\right)\right)$$

negative information

Examples

```
?- cneg(boole(X)).
boole(0).
                       X = / = 1, X = / = 0 ?;
boole(1).
                       no
                        ?- cneg(positive(X)).
                       X=/=s(fA(_A)), X=/=0 ?;
positive(0).
                       X = s(A),
positive(s(X)):-
                       A = /=s(fA(B)), A = /=0 ?;
      positive(X).
                       X = s(s(\underline{A})),
                        A = /=s(fA(B)), A = /=0?
```

yes

Experimental results

goals	Goal	naf(Goal)	cneg(Goal)	ratio
boole(1)	2049	2099	2069	0.98
positive(s(s(s(s(s(0))))))	2079	1600	2159	1.3
greater(s(s(s(0))),s(0))	2110	2099	2100	1.00
average				1.06
positive(s ⁵⁰⁰⁰⁰⁰ (0))	2930	2949	41929	14.21
positive(s ¹⁰⁰⁰⁰⁰⁰ (0))	3820	3689	81840	22.18
greater(s ⁵⁰⁰⁰⁰⁰ (0),s ⁵⁰⁰⁰⁰⁰ (0))	3200	3339	22370	7.70
average				14.69
positive(X)	2020	-	7189	
greater(s(s(s(0))),X)	2099	-	6990	
queens(s(s(0)),Qs)	6939	-	9119	

Conclusion and Future Work

- Detailed description of the modified algorithm (w.r.t. Chan's proposal)
- Complete and consistent implementation
- Optimizations
 - Compact information
 - Pruning subgoals
 - Constraint simplifi cation
 - Finite constructive negation (cnegf)
- Efficiency problem
 - WAM level (future work)
 - Negation System for Prolog

Negation System for Prolog

Static phase + Dynamic phase

A Real Implementation for Constructive Negation

Susana Muñoz

Juan José Moreno

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
jjmoreno@fi.upm.es