Análise de desempenho do particionamento do algoritmo quicksort para os métodos de Hoare e Lomuto

Eugenio Souza Carvalho¹, Hugo Santos Piauilino Neto¹

¹Departamento de Computação Universidade Federal do Piauí (UFPI) Teresina – PI – Brazil

{hugos94, eugeniucarvalho}@gmail.com

Abstract. This paper presents a performance analysis of the quicksort partitioning for the methods proposed by Hoare and Lomuto [Cormen et al. 2009], in addition to a general overview of the history and operation of the sorting algorithm.

Resumo. Este trabalho apresenta uma análise de desempenho do particionamento do algoritmo de ordenação quicksort para os métodos propostos por Hoare e Lomuto [Cormen et al. 2009], além de apresentar um resumo geral sobre a história e funcionamento do algoritmo de ordenação.

1. Introdução

Problemas são questões propostas em busca de uma solução. Com o propósito de conceder uma solução para certo problema, existem os algoritmos. Cada problema que é decídivel possui um algoritmo que determina uma solução para cada instância desse problema.

Algoritmos descrevem passo a passo os procedimentos para chegar a uma solução de um problema e podem ser representados de três formas: descrição narrativa, fluxograma e a linguagem algoritma.

Um tipo de algoritmo muito usado na resolução de problemas computacionais são os algoritmos de ordenação, que servem para ordenar/organizar uma lista de números ou palavras de acordo com a sua necessidade.

Algoritmo de ordenação, em ciência da computação, é um algoritmo que coloca os elementos de uma dada sequência em uma certa ordem. Em outras palavras efetua sua ordenação completa ou parcial. O objetivo da ordenação é facilitar a recuperação dos dados de uma lista.

Os mais populares algoritmos de ordenação são: *insertionsort*, *selectionsort*, *bubblesort*, *combsort*, *quicksort*, *mergesort*, *heapsort* e *shellsort*. Neste artigo será apresentado apenas o algoritmo *quicksort*, explicando o seu funcionamento e suas peculiaridades.

2. Quicksort

O *quicksort* é um algoritmo de ordenação eficiente e muito rápido. Foi desenvolvido em 1961 por *C.A.R. Hoare* [Hoare 1961], quando visitava a Universidade de *Moscovo* como estudante.

Hoare trabalhava em um projeto de tradução de máquina para o National Physical Laboratory. Ele criou o quicksort ao tentar traduzir um dicionário de inglês para russo, ordenando as palavras, tendo como objetivo reduzir o problema original em subproblemas que poderiam ser resolvidos mais fácil e rapidamente. O algoritmo só foi publicado após uma série de refinamentos.

O *quicksort* é um algoritmo de ordenação por comparação não-estável, ou seja, ele não preserva a ordem de registro de chaves iguais.

3. Estratégia Utilizada

O *quicksort* adota a estratégoa de divisão e consquita. A estratégia consiste em rearranjar as chaves de modo que chaves "menores" precedam chaves "maiores". Em seguida o *quicksort* ordena as duas sublistas de chaves menores e maiores recursivamente até que a lista completa se encontre ordenada [Baase 1988].

O algoritmo quicksort executa os seguintes passos:

- 1. Escolha um elemento da lista, denominado pivô;
- 2. Rearranje a lista de forma que todos os elementos anteriores ao pivô sejam menores que ele, e todos os elementos posteriores ao pivô sejam maiores que ele. Ao fim do processo o pivô estará em sua posição final e haverão duas sublistas não-ordenadas. Essa operação é denominada particionameto;
- 3. Recursivamente ordene a sublista dos elementos menores e a sublista dos elementos maiores.

A base da recursão são as listas de tamanho zero ou um, que estão sempre ordenadas. O processo é finito, pois a cada iteração pelo menos um elemento é posto em sua posição final e não será mais manipulado na iteração seguinte.

3.1. Pseudo-Código

O Algoritmo 1 demonstra o pseudo-código para o algoritmo *quicksort*. Podemos verificar que a função *quicksort* recebe como parâmetros de entrada um *array* e as posições final e inicial deste *array*. Logo, o método de particionamento escolhido é chamado e como resultado retorna um elemento pivô. Este pivô é utilizado para realizar as chamadas recursivas das sublistas esquerda e direita do elemento pivô. Quando as listas se tornarem de tamanho 1, o algoritmo retorna o *array* devidamente ordenado.

O método *Partition* do Algoritmo 1 dependerá do particionamento escolhido para executar o algoritmo.

```
Function quicksort (A[], primeiro, ultimo)

if primeiro < ultimo then

pivo = Partition(A, primeiro, ultimo);
quicksort(A, primeiro, pivo-1);
quicksort(S, pivo+1, ultimo);
end

Result: O algoritmo retorna o vetor ordenado.
Algorithm 1: Pseudo-código do algoritmo quicksort.
```

3.2. Dimensão de Desempenho

Para uso prático, facilidade de implementação pode ser sacrificado em prol de eficiência. Em uma base teórica, podemos determinar o número de comparações de elementos e trocas para comparar o desempenho. Além disso, o tempo de funcionamento real será influenciado por outros fatores, como desempenho de *caches* e escalonamento de *threads*.

Como será mostrado abaixo, os métodos possuem comportamento semelhante em permutações aleatórias, exceto pelo número de trocas. Aqui, o método de *Lomuto* necessita de três vezes mais trocas do que o particionamento de *Hoare*.

3.3. Número de Comparações

Ambos os métodos podem ser implementados utilizando n-1 comparações para particionar um array de comprimento n. Isto é essencialmente ideal, uma vez que precisamos comparar cada elemento com o pivô para decidir onde colocá-lo.

3.4. Número de Trocas

O número de trocas é aleatório para ambos os algoritmos, dependendo dos elementos no *array*. Se assumirmos permutações aleatórias, ou seja, todos os elementos são distintos e cada permutação dos elementos é igualmente provável, podemos analisar o número esperado de trocas.

Como apenas a ordem relativa conta, assumimos que os elementos são os números 1, ..., n. Isso faz com que a discussão abaixo se torne mais fácil pois a posição de um elemento e seu valor coincidem.

3.5. Método de Lomuto

A variável índice j escaneia o array completo e sempre que encontra um elemento A[j] menor que o pivô x, a troca é realizada. Entre os elementos 1,...,n, exatamente x-1 são menores que x, então nós teremos x-1 trocas se o pivô for x.

A expectativa geral então resulta do cálculo da média de todos os pivôs. Cada valor em $\{1,...,n\}$ tem a mesma probabilidade de se tornar pivô (especificamente probabilidade de $\frac{1}{n}$), então temos

$$\frac{1}{n}\sum_{x=1}^{n}(x-1) = \frac{n}{2} - \frac{1}{2} \tag{1}$$

trocas, em média, para particionar um array de comprimento n com o método de Lomuto.

3.6. Método de Hoare

Para este método, a análise é um pouco mais complexa. Mesmo fixando o pivô x, o número de trocas permanece aleatório.

Mais precisamente: os índices i e j correm um em direção ao outro até que eles se cruzem, que sempre acontece em x (por correção do algoritmo de particionamento de Hoare). Isto divide eficazmente o array em duas partes: a parte esquerda que é verificada pela variável índice i e uma parte direita que é verificada pela variável índice j.

Agora, uma troca é feita para cada par de elementos "fora do lugar", isto é, um elemento grande (maior do que x, que pertence a partição direita) que atualmente está

localizado na partição esquerda e um elemento pequeno localizado na partição direita. Note-se que este par formado trabalha sempre para fora, ou seja, o número de pequenos elementos inicialmente na partição direita é igual ao número de grandes elementos na partição esquerda.

Pode-se mostrar que o número destes pares é hiper geometricamente distribuído Hyp(n-1,n-x,x-1): para os n-x maiores elementos nós aleatoriamente traçamos suas posições no array e temos x-1 posições na partição esquerda . Por conseguinte, o número esperado de pares é (n-x)(x-1)/(n-1) dado que o pivô é x.

Finalmente, nós tiramos a média de todos os valores dos pivôs para obter o número total esperado de trocas para o método de particionamento de *Hoare*:

$$\frac{1}{n}\sum_{x=1}^{n}\frac{(n-x)(x-1)}{n-1} = \frac{n}{6} - \frac{1}{3}.$$
 (2)

Mais informações podem ser encontradas em [Wild 2013, Pág. 29].

3.7. Padrão de Acesso a Memória

Ambos os métodos usam dois ponteiros que escaneiam o *array* sequencialmente. Portanto, ambos possuem comportamento quase ideal.

3.8. Elementos Iguais e Listas Ordenadas

A performance dos algoritmos diferem mais drasticamente para listas que não estão aleatoriamente permutadas.

Em um *array* já ordenado, o método de *Hoare* não realiza nenhuma troca, já que não existem pares mal posicionados, ao passo que o método de *Lomuto* realiza cerca de $\frac{n}{2}$ trocas.

A presença de elementos iguais requere cuidados especiais na utilização do algoritmo *quicksort*. Considere um exemplo extremo onde um *array* é preenchido apenas com elementos 0. Para este *array*, o método de *Hoare* realiza um troca para cada par de elementos - configurando o pior caso para o particionamento de *Hoare* - mas i e j sempre encontram-se no meio do *array*. Assim, temos um particionamento ideal e o tempo total de execução permanece em $\mathcal{O}(n \log n)$.

O método de *Lomuto* possui comportamento pior para o *array* apenas com elementos 0: a comparação A[j] <= x sempre irá retornar verdadeira, então serão realizadas trocas para todos os elementos. Entretanto piora: após o *loop*, sempre teremos i=n, então observamos o pior caso de particionamento, fazendo com que a performance do método seja degradada para $\Theta(n^2)$.

4. Materiais

4.1. Software

O algoritmo *quicksort* e os métodos de *Hoare* e *Lomuto* foram implementados utilizando a linguagem de programação C. Para a compilação, foi utilizado o compilador gcc (TDM-2 mingw32) versão 4.4.1 2009 [Mingw 2009].

O ambiente de desenvolvimento integrado (IDE - *Integrated Development Environment*) utilizado foi o Code::Blocks versão 13.12 [Code:Blocks 2016].

O sistema operacional utilizado para realizar as simulações foi o *Windows* 10 de 64 bits versão *Professional* [Microsoft 2015].

4.2. Hardware

A máquina utilizada para realizar as simulações possui processador AMD Phenom(tm) II X4 B97 Processor 3.20 GHz com três pentes de memória RAM de 4 GB DDR3 2000Mhz, totalizando 12 GB de memória RAM.

5. Resultados

Para comparar os métodos, foram escolhidos dez diferentes tamanhos para o *array*: 100, 500, 1.000, 5.000, 30.000, 80.000, 100.000, 150.000 e 200.000 elementos.

Para cada tamanho especificado foram gerados *arrays* de números aleatórios, permitindo valores repetidos. Foram realizadas 5 simulações para cada tamanho em cada método. A média dos tempos de execuções foram utilizadas para realizar a análise comparativa.

Podemos verificar na Figura 1 que para pequenos tamanhos do *array* de elementos, o método de *Lomuto* executou mais rápido. Porém, ao aumentarmos o tamanho do *array* de elementos, o método de *Hoare* apresenta melhores tempos de execução.

Isto mostra, que para pequenos conjuntos de elementos, o método de *Lomuto* possui bom desempenho e que pode se equiparar ou ser até melhor que o método de *Hoare*. Porém, para grandes conjuntos de elementos o método de *Hoare* possui melhor desempenho.

Figura 1. Gráfico comparativo entre os tempo de execução dos métodos de *Hoare* e *Lomuto*.

6. Conclusão

O método de *Lomuto* é simples e de fácil implementação, porém, não deve ser utilizado quando alto desempenho é exigido. O método de *Hoare* comporta-se melhor para pro-

blemas que exigem alto desempenho e possui um melhor comportamento para listas já ordenadas ou preenchidas apenas com valores 0.

Portanto, para utilização em softwares comerciais ou industriais, recomenda-se a utilização do método de *Hoare*, ao invés do método de *Lomuto*.

Referências

- Baase, S. (1988). *Computer algorithms: introduction to design and analysis*. Addison-Wesley series in computer science. Addison-Wesley, Reading Mass.
- Code:Blocks (2016). Code::blocks. https://www.codeblocks.org/. Acessado em: 11-06-2016.
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition.
- Hoare, C. A. R. (1961). Algorithm 64: Quicksort. Commun. ACM, 4(7):321-.
- Microsoft (2015). Windows 10. https://www.microsoft.com/pt-br/windows/. Acessado em: 11-06-2016.
- Mingw (2009). Mingw. https://www.mingw.org/. Acessado em: 11-06-2016.
- Wild, S. (2013). Java 7's dual pivot quicksort. Master's thesis, Technische Universität Kaiserslautern.