SLOTTED POLYIMIDE-AEROGEL-FILLED-WAVEGUIDE ARRAYS

Rafael A. Rodríguez Solís, Héctor L. Pacheco, Félix A. Miranda, Mary Ann B. Meador

OUTLINE

- Introduction
- Aerogel Measurements
- Millimeter-wave waveguides
- Slotted arrays
- Conclusions
- Questions

INTRODUCTION

- Polyimide aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems.
- They are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties.
- Aggressively explored for thermal insulation
- Little effort has been made to use them for microwave and millimeter-wave antenna applications

POLYIMIDE AEROGELS

- Formulation made using DMBZ, BPDA and TAB cross-link
 - Lowest density (0.14 g/cm³)
 - Lowest dielectric measured (1.16)
 - Lowest loss tangent
 - Great mechanical properties
- Fabricated suitable sizes to make antennas

AEROGEL MEASUREMENTS

 Measured 12 different aerogel formulations with Agilent PNA E8364C/85071E (X-band and Ka-band), and with Agilent 4291B (1 MHz – 1.2 GHz).

AEROGEL MEASUREMENTS

- First time the electrical properties of these aerogels are measured at Kaband
- Best electrical performance for formulation 17.03
- ϵ_r =1.16, tan δ_X =0.0015 tan δ_{Ka} =0.0008

MILLIMETER-WAVE WAVEGUIDES

- Reference: WR28, 1.016 mm thick Al 6061 walls.
- Aerogel (ϵ_r =1.16, tan δ =0.001) filled: same fc_{mn} as WR28, 2 μ m thick Au walls.
- Duroid 5880 SIW: same fc₁₀ as WR28, 17 μm thick Cu walls.
- Aerogel SIW: same fc₁₀
 as WR28, 2 μm thick Au walls.

Waveguide type	mass (g) for 20 mm long section	
Aerogel filled WG	0.081	
Commercial WG	1.394	
Aerogel SIW	0.025	
Duroid 5880 SIW	0.140	

SLOTTED WAVEGUIDE ARRAY

- Scaled from X-band to Ka-band a slotted waveguide array reported by Orefice and Elliott.
- Used one of the columns of the planar array on a WR28 waveguide.
- Aerogel filled waveguide designed to have the same $\lambda_{\rm g}$ as WR28.
- All arrays provide about the same gain (9.4 dBi).

SLOTTED WAVEGUIDE ARRAY

WR28	Aerogel Slot	Aerogel Folded Slot
3.870	3.599	3.560
3.863	3.592	3.554
19.67	19.67	19.67
-23.74	-23.74	-23.74
0.375	0.349	0.169
N/A	N/A	0.143
	3.870 3.863 19.67 -23.74 0.375	3.870 3.599 3.863 3.592 19.67 19.67 -23.74 -23.74 0.375 0.349

SLOTTED WAVEGUIDE ARRAYS

- Used fundamental Floquet modes in HFSS to determine S parameters for variations in folded slot dimensions
- Used these results in antenna design

SLOTTED WAVEGUIDE ARRAYS: S_{F1} , VARYING Θ

SLOTTED WAVEGUIDE ARRAYS: S_{21} , VARYING Θ

SLOTTED WAVEGUIDE ARRAYS: S_{F1} , VARYING L_S

SLOTTED WAVEGUIDE ARRAYS: S11, VARYING L_S

SLOTTED WAVEGUIDE ARRAYS: S_{F1} , VARYING S

SLOTTED WAVEGUIDE ARRAYS: S21, VARYING S

SLOTTED WAVEGUIDE ARRAYS: S₁₁ AND GAIN FOR WR28 SLOT, AEROGEL SLOT AND AEROGEL FOLDED-SLOT ARRAYS

CONCLUSIONS

- Polyimide aerogels could be used to substitute PTFE and ceramic loaded substrates (e.g., Duroid) in applications where mass is of great importance.
- The operating bandwidth and gain of antennas can be increased when compared to standard antenna substrates.
- Their low dielectric constant make coaxial probe and aperture-coupled feeding more attractive alternatives for microstip antennas.
- For waveguide applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide, when compared to a commercial waveguide.

ACKNOWLEDGEMENTS

- Anna Sandberg
- Dr. Fred Van Keuls
- Pedro Mundo
- NASA Glenn Faculty Fellowship Program

QUESTIONS

