b D
E
I
H
Y
N
T
A
M
R

GCT
TCA
CTG
GAG
GAG
GCG
GTG
GTG
CTG
GTG
CTG
CTG
GTG
CTG
CTG</t A GAT CTG GCC AGC GCC GTG GGC ATC GCC AGC ATC TTT CAT CAC TTC AAG AGC AAG BD L A S A V G I Q S G S I F H H F K S K GAT GAG ATA TTG CGT GCC GTG ATG GAG GAA ACC ATC CAT TAC AAC ACC GCG ATG ATG CGC

FIG. 14

4K K L A R N G V L Y S H G A T Q E D I F A P C TTGATGTCGGCGCATTGGATGGTTTTGGCATAGTGCTCGGCCGCAAGACTTCCTGCGAAGACGTT PLMSAALDGFGIVLGPQDFLRTAL 4QHRRCQITKAYHEARLVEQSRRQ TITITCAGGGCACGGTITCCTACAAGGTACGAGTGGCCAGCCGTTTGCTCATCAATGAAAGCCGGGCA ACACCGCAAACCGCCAGCGTACCGCCAAGTTGCGCTGCTTTGTCGAGACTGTGCTGGGACGTTTTGGT AGATCTTGAGCGTCATGAGTGCCTGGGGTACGCCTTTTCATCGCGTCCGGCGGATCGAGAGTGGGTGT PASGELVRVLPEFEAPSRSMHLV VRTALQHPHQRLKLSRTPRHMQD S R P A D R E W V R T R R I S L P H PY T A N R Q R T A K L R C F V E T V L 4V G C V A L T G G L Q A A K D L S H Q CCGGTATGAAGGAGCACCACCGTGGCGGTCGCCGGGANGCACCTAAAGATCT ß RHECLGYAF 臼

GGHRDGP-V

ì

FIG. 2

	— т	- 1		т	. 1		Т	 1				1	
%Pos	54.3	42.9	42.9	19.2		9.1	15.0	13.3	42.9	0.0	0.0	0.0	
N(+)	25	15	9	5		2	3	2	3	0	0	0	61
Z	46	35	14	26		22	20	15	7	7	5	15	212
	Involved	Involved	Uninvolved	Uninvolved		Involved	Uninvolved	Uninvolved	Uninvolved	Uninvolved	Uninvolved	Uninvolved	
Tissue	Ileum	Colon	Ileum	Colon		Colon	Colon	Colon	Ileum	Colon	Colon	Colon	
Diagnosis	CO	9	8	9)n))	క	క	Divertic	Append	I-Col	
													Total

#

Absorbance @ 405nm (GTS only reactivity subtracted)

Medium	Incubation	Organism			
Trypticase soy agar	02	Aerobes			
McConkey	02	Enterobacteriae			
Sabouroud dextrose with Chloamphenical and gentamycin	02	Yeast			
Bile eculin agar	02	Enterococcus			
Chocolate	CO ₂	Haemophilus			
CDC	An 02	Angerobes			
Brucella	An 02	Angerobes			
EYA+neomycin	An 02	Clostridium			
EYA+heat treatment	An 02	Clostridium			
CDC+heat treatments	An 02	Clostridium			
CCFA+heat treatment	An 02	C.difficile/Clostridium			
EYA+ethanol treatment	An 02	Clostridium			
CDC+ethanol treatment	An 02	Clostridium			
CCFA+ethanol treatment	An O ₂	C.difficile/Clostridium			
BBE	An 02	BFG			
LKV	An 02	Pigmenters			
Fusobacterium selective medium	An 02	Fusobacterium			
PEA	An 0 ₂	Gpc			
CFA	An 02	C.difficile			
LAMVAB	An 02	Lactobacillus			
RB	An 02	Bifidobacterium			
BBE+vancomycin	An 02	Bilophila, Sutterella			
Modified BGSA for Camplyobacter	An O ₂ ,6%O ₂ (37C), 6%O ₂ (42C)	Camplyobacter			
Campy CVA(CSL)	An O ₂ ,6%O ₂ (37C), 6%O ₂ (42C)	Camplobacter			
Modified Skirrow	An O ₂ ,6%O ₂ (37C), 6%O ₂ (42C)	Helicobacter pylori			

FIG. 7