域与 Galois 理论笔记

魔法少女 Alkali

最后编译: 2023 年 6 月 2 日

0 前言

这份笔记是笔者学习 Fields 奖得主 Richard Borcherds 所讲授的网课 Galois Theory (链接: YouTube 或 bilibili) 时记录的笔记. 原始的笔记是英文的, 但笔者思考之后决定还是使用中文整理出最终的笔记.

这份笔记不是网课的逐字稿, Borcherds 教授所讲的内容中有些部分没有被记录下来 (例如正十七边形的具体构造), 也有一些教授略过的部分被详细地补充 (例如任意集合的分裂域的同构延拓定理). 更多地, 这份笔记被整理成了笔者心目中适合自己和他人阅读的模样. 因此, 这份笔记便不可避免地带有了笔者的个人色彩, 从而许多地方的讲法与证明并不一定是最好的. 更为致命的是, 本份笔记是作者为备考中科院 2023 年"代数与数论"暑期学校而突击整理的笔记 (虽然应该没有办法在考前整理出来), 因此错误应当俯拾即是, 所以还盼望读者指正.

联系我可以通过我的邮箱.

本笔记用到的参考文献

[1] Emil Artin. *Galois theory*. second. Edited and with a supplemental chapter by Arthur N. Milgram. Dover Publications, Inc., Mineola, NY, 1998, pp. iv+82. ISBN: 0-486-62342-4.

- [2] Kenneth Ireland and Michael Rosen. A classical introduction to modern number theory. Second. Vol. 84. Graduate Texts in Mathematics. Springer-Verlag, New York, 1990, pp. xiv+389. ISBN: 0-387-97329-X. DOI: 10.1007/978-1-4757-2103-4.
- [3] Serge Lang. *Algebra*. third. Vol. 211. Graduate Texts in Mathematics. Springer-Verlag, New York, 2002, pp. xvi+914. ISBN: 0-387-95385-X. DOI: 10.1007/978-1-4613-0041-0.
- [4] Serge Lvovski. *Principles of complex analysis*. Vol. 6. Moscow Lectures. Translated from the 2017 Russian original by Natalia Tsilevich. Springer, Cham, 2020, pp. xiii+257. ISBN: 978-3-030-59364-3; 978-3-030-59365-0. DOI: 10.1007/978-3-030-59365-0.
- [5] Patrick Morandi. Field and Galois theory. Vol. 167. Graduate Texts in Mathematics. Springer-Verlag, New York, 1996, pp. xvi+281. ISBN: 0-387-94753-1. DOI: 10.1007/978-1-4612-4040-2.
- [6] Jean-Pierre Serre. Local fields. Vol. 67. Graduate Texts in Mathematics. Translated from the French by Marvin Jay Greenberg. Springer-Verlag, New York-Berlin, 1979, pp. viii+241. ISBN: 0-387-90424-7.
- [7] 章璞. 伽罗瓦理论——天才的激情. 高等教育出版社, 2013.

1 域扩张

我们先给出域扩张的定义.

定义 1.1. 设 K,L 是域, 且满足 $K \subset L$, 那么称 L 是 K 的一个**扩域**, 记作 L/K.

例 1.2. 我们最熟悉的扩域的例子是 $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

定义 1.3. 设有域扩张 L/K.

1. 定义扩张的**度数**为 $[L:K] = \dim_K L$, 当 $[L:K] < \infty$ 时, 称 L/K 为**有 限扩张**;

- 2. 设 $\alpha \in L$, 如果 α 是某个多项式 $p(x) \in K[x]$ 的根, 那么称 α 在 K 上是 **代数**的, 否则称为是**超越**的;
- 3. 设 α 是 K 上的代数元, 设 $p(x) \in K[x]$ 是 α 的极小多项式, 即以 α 为根的次数最低的多项式, 那么定义 α 的度数 $\deg \alpha = \deg p(x)$.

例 1.4. 我们给出一些域扩张的例子.

- 1. 对 $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, 有 $[\mathbb{C} : \mathbb{R}] = 2$, $[\mathbb{R} : \mathbb{Q}] = \infty$. (具体而言, $[\mathbb{R} : \mathbb{Q}] = 2^{\aleph_0}$)
- 2. 取 $K = \mathbb{Q}$, 那么 $\alpha = \sqrt[5]{2}$ 是代数的, $\pi, e \in \mathbb{R}$ 是超越的.
- 3. 对 $\mathbb{Q} \subset \mathbb{Q}(x)$, 即 \mathbb{Q} 上的有理函数域作为 \mathbb{Q} 的扩域, x 在 \mathbb{Q} 上是超越的.
- 4. $\alpha = \cos(2\pi/7)$ 是代数的. 注意到对 $\zeta = e^{2\pi/7}$, 有 $\alpha = (\zeta + \zeta^{-1})/2$. 而

$$1 + \zeta + \dots + \zeta^6 = 0 \implies \zeta^{-3} + \zeta^{-2} + \dots + 1 + \dots + \zeta^3 = 0$$
$$\implies (2\alpha)^3 + (2\alpha)^2 - 2(2\alpha) - 1 = 0$$
$$\iff 8\alpha^3 + 4\alpha - 4\alpha - 1 = 0$$

所以 α 是 \mathbb{Q} 上的代数元.

记号 1.5. 对 L/K 及集合 $S \subset L$, 我们记 K(S) 为包含 S 中所有元素的最小的扩域, 并称为**由** S **生成的扩域**. 特别地, 当 $S = \{\alpha_1, \dots, \alpha_n\}$ 时, 我们记 $K(S) = K(\alpha_1, \dots, \alpha_n)$.

考虑由单个代数元 α 生成的扩域, 我们有如下的引理

引理 1.6. 设 L/K, $\alpha \in L$ 是 K 上的代数元, 有极小多项式 $m(x) \in K[x]$, 那 么 $K(\alpha) \simeq K[x]/\langle m(x) \rangle$, 其中 $\langle m(x) \rangle$ 是 p(x) 生成的理想.

证明. 定义同态

$$\varphi: K[x] \to K(\alpha)$$

$$p(x) \mapsto p(\alpha)$$

考虑核 $\ker \varphi$, 显然 $\ker \varphi \neq K[x]$, 且极小多项式 $m(x) \in \ker \varphi$. 由于 K[x] 是主理想整环, $\ker \varphi$ 单生成, 且生成元整除 m(x). 但容易证明 m(x) 是不可约多项式, 结合 $\ker \varphi \neq K[x]$ 可知生成元与 m(x) 相伴, 从而 $\ker \varphi = \langle m(x) \rangle$. 由第一同构定理即知

$$K(\alpha) \simeq \frac{K[x]}{\langle m(x) \rangle}$$

关于有限扩张与代数扩张, 有如下的结论

定理 1.7. 设有域扩张 M/K, $\alpha \in M$ 是 K 上的代数元当且仅当 α 包含在 K 的一个有限扩张中.

证明. 一方面,假设 α 是代数元,那么 $\alpha \in K(\alpha)$. 设 $\deg \alpha = n$,那么 $1, \alpha, \dots, \alpha^{n-1}$ 是 $K(\alpha)$ 的一组基, $K(\alpha)/K$ 是有限扩张. 另一方面,假设 α 包含在 K 的有限扩张中,不妨设 $[M:K]=n<\infty$. 那么 $1, \alpha, \dots, \alpha^{n-1}, \alpha^n$ 一定线性相关,从而 α 是一个多项式的根,是一个代数元.

定理 1.8 (望远镜公式). 设 $K \subset L \subset M$ 均为有限扩张, 那么有 [M:K] = [M:L][L:K]

证明. 设 x_1, \dots, x_m 是 L/K 的一组基, y_1, \dots, y_n 是 M/L 的一组基. 我们 考虑 $\{x_iy_j\}_{(i,j)\in[m]\times[n]}^1$. 首先对 $a_{ij}\in K$ 及指标 $(i,j)\in R\times S\subset [m]\times[n]$ 有

$$\sum_{(i,j)\in R\times S} a_{ij}(x_i y_j) = 0$$

$$\implies \sum_{j\in S} a_{ij} y_j = 0, \ \forall i \in R$$

$$\implies a_{ij} = 0, \ \forall (i,j) \in R \times S$$

所以 $x_i y_j$ 线性无关. 其次, 显然 M 中的每个元素可以表示为 $x_i y_j$ 的 K-线性组合, 所以 $\{x_i y_j\}_{(i,j) \subset [m] \times [n]}$ 是 M/L 的一组基. 从而命题得证.

通过望远镜公式, 我们可以证明

定理 1.9. 设 α, β 是 K 上的代数元, 那么 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 均为 K 上的代数元.

证明. 考虑扩张链 $K \subset K(\alpha) \subset K(\alpha,\beta)$, 两个扩张均为代数扩张, 所以都是有限扩张. 由定理 1.8, $K(\alpha,\beta)/K$ 是代数扩张. 而 $\alpha \pm \beta, \alpha\beta, \alpha/\beta$ 均包含在 $K(\alpha,\beta)$ 中, 所以都是代数元.

 $[[]m] = \{1, \dots, m\}$, 组合数学中的常用记号.

定理 1.10. 设 α 是一个由 K 上代数元系数构成的多项式的根, 那么 α 是代数的.

证明.设

$$\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0 = 0$$

且 a_{n-1}, \dots, a_0 均为 K 上代数元. 考虑域扩张链

$$K \subset K(a_0)$$

$$\subset K(a_0, a_1)$$

$$\cdots$$

$$\subset K(a_0, \cdots, a_{n-1})$$

$$\subset K(a_0, \cdots, a_{n-1}, \alpha)$$

前 n 步扩张每一步都是添加一个代数元 a_i ,所以都是有限的,因此 K 上的扩域 $K(a_0,\cdots,a_{n-1})$ 是有限的。而由假设, α 在 $K(a_0,\cdots,a_{n-1})$ 上代数,所以最后一步扩张也是有限的。因此扩张 $K(a_0,\cdots,a_{n-1},\alpha)/K$ 是有限的,从而 α 是 K 上代数元.

推论 1.11. 假设 E/L, L/K 均为代数扩张, 那么 E/K 也是代数扩张.

而关于超越元, 我们已知 e,π 在 $\mathbb Q$ 上是超越的, 但是有如下的公开问题 **问题.** $e+\pi,e\pi$ 在有理数域上超越吗?

不过我们可以有这样的结论

命题 1.12. $e + \pi, e\pi$ 至多有一个是代数的.

证明. 否则 $e + \pi$, $e\pi$ 都是代数的, 由定理 1.10 可知方程

$$x^{2} - (e + \pi)x + e\pi = 0 \tag{1}$$

的根是代数的. 但方程 (1) 的根是 e 和 π , 这与我们已知的 e 与 π 的超越性矛盾.

2 分裂域

给定一个域 K 及 K 上的多项式 $p(x) \in K[x]$,我们希望找到一个扩域 L/K 使得 p(x) 在 L 上 "有所有的根". 给 "有根"这一点以严格的定义,我们 便得到了**分裂域**的概念:

定义 2.1. 设 K 是域, $p(x) \in K[x]$, 如果扩域 L/K 使得 p(x) 在 L 上可以分解为一次因式的乘积 (简称为**分**裂)

$$p(x) = (x - \alpha_1) \cdots (x - \alpha_n)$$

且 $L = K(\alpha_1, \dots, \alpha_n)$, 那么称 $L \neq p(x)$ 在 K 上的**分裂域**.

在证明分裂域的存在性与唯一性之前, 我们先给出一些分裂域的例子.

例 2.2. 给定底域 K, 讨论多项式 $p(x) \in K[x]$.

- 1. $p(x) = x a_0, a_0 \in K$, 那么分裂域就是 K.
- 2. $p(x) = x^2 a_1 x + a_0$, $a_1, a_0 \in K$, 且 p(x) 不可约. 那么 $L = K[x]/\langle p(x) \rangle$ 包含了 p(x) 的一个根 α , 而事实上, L 也包含了另一个根 $a_1 \alpha$. 所以 $L \neq p(x)$ 的一个分裂域.
- 3. 取 $K = \mathbb{Q}$ 及 $p(x) = x^3 2$. $L = \mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[x]/\langle x^3 2 \rangle$ 包含了 $\sqrt[3]{2}$, 但 不包含 $x^3 2$ 的复根, 此时 $x^3 2 = (x \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + \sqrt[3]{4})$. 于是取 $M = L[y]/\langle y^2 + \sqrt[3]{2}y + \sqrt[3]{4}$, 则 M 是一个分裂域, 并且有 [M:k] = 6.
- 4. $p(x) = 8x^3 + 4x^2 4x 1$.

我们现在证明分裂域的存在性.

证明. 给定域 K 及 $p=p_1p_2\cdots p_m\in K[x]$, 其中 p_i $(i=1,\cdots,m)$ 均不可约. 我们对 $\deg p$ 用归纳法. 当 $\deg p=1$ 时, K 本身就是 p(x) 的分裂域. 假设对 $\deg p=n-1$ 成立. 对 $\deg p=n$, 考虑域 $K_1=K[x]/\langle p_1(x)\rangle$, 那么 p 在 K_1 上至少有一个根 α , p 在 K_1 上可以分解为

$$p(x) = (x - \alpha)p_a(x)$$

对 $p_a(x)$ 用归纳假设, 存在扩域 L/K_1 使得 $p_a(x)$ 分裂为一次因式的乘积, 从 而在扩域 L/K 上 p(x) 分裂为一次因式的乘积. 由归纳原理得证.

我们着手证明分裂域的同构唯一性. 我们把这个命题加强为分裂域作为域扩张是同构唯一的, 即对域 K 及分裂域 L,L', 有如下的图表交换

定理 2.3 (分裂域的同构唯一性). 设 K 是域, $p(x) \in K[x]$, 域 K' 与 K 同构, 且 p(x) 在同构映射下的像为 p'(x). 设 L, L' 分别是 p(x), p'(x) 的分裂域, 那么存在同构 $L \to L'$ 使得以下图表交换

$$\begin{array}{ccc} L & \stackrel{\sim}{\longrightarrow} & L' \\ \uparrow & & \uparrow \\ K & \stackrel{\sim}{\longrightarrow} & K' \end{array}$$

证明. 设 $i: K \xrightarrow{\sim} K'$ 是同构, 我们也用 i 表示延拓到 $K[x] \to K'[x]$ 的同构. 依然对 p(x) 的次数用归纳法. $\deg p = 1$ 时, K = L, K' = L', 命题显然成立. 假设命题对 $\deg p = n - 1$ 成立, 那么对 p 的某个不可约因子 p_1 , 有

$$K(\alpha) = \frac{K[x]}{\langle p(x) \rangle} \simeq \frac{K'[x]}{\langle i(p(x)) \rangle} = K(\alpha')$$

从而可以得到交换图

$$K(\alpha) \xrightarrow{\sim} K'(\alpha)$$

$$\uparrow \qquad \uparrow$$

$$K \xrightarrow{\sim} K'$$

而在 $K(\alpha)$, $K'(\alpha')$ 上 p(x), p'(x) 分别分解为一次因式与一个 n-1 次多项式的乘积, 从而按归纳假设, 可以得到两个 n-1 次多项式的分裂域的同构

$$\begin{array}{ccc} L & \stackrel{\sim}{\longrightarrow} L' \\ \uparrow & & \uparrow \\ K(\alpha) & \stackrel{\sim}{\longrightarrow} K'(\alpha') \end{array}$$

从而有大图表

交换, 即得到所欲证命题.

评注 2.4. 需要注意到, 两个分裂域之间的同构不一定是唯一的. 例如分别使用 i,j 表示虚数单位, x^2+1 在 \mathbb{R} 上的两个分裂域

其中 $h: \mathbb{R}(i) \to \mathbb{R}(j)$ 可以取为 $i \mapsto j$ 与 $i \mapsto -j$, 得到两个同构.

3 代数闭包

定义 3.1. 设 K 是一个域, 如果扩域 \overline{K}/K 满足

- (1) K[x] 中的任意多项式在 \overline{K} 中均分裂;
- (2) \overline{K} 由 K[x] 中多项式的根生成,

那么称 \overline{K} 是 K 的**代数闭包**.

我们给出代数闭包的构造.

定理 3.2. 任意域 K 均存在代数闭包.

引理 3.3. 设 L/K 是代数扩张, 那么有 $|L| \leq \max\{|K|, |\mathbb{N}|\}$.

证明. 我们有分解

$$L = \bigcup_{n \ge 1} \{ \alpha \in L : \deg \alpha = n \}$$

而对每个 $\{\alpha \in L : \deg \alpha = n\}$ 中的元素 α , α 与另外至多 n-1 个元素与 K 中 n 个系数决定的首一多项式对应, 从而有

$$\{\alpha \in L : \deg \alpha = n\} \subset [n] \times K^n$$

对无限的 K 而言, $|[n] \times K^n| = |K|$, 从而

$$|L| = \left| \bigcup_{n \ge 1} \{ \alpha \in L : \deg \alpha = n \} \right|$$

$$\le |\mathbb{N} \times K|$$

$$= |K|$$

对有限的 F 而言, $|[n] \times K^n| = n|K|^n \le |\mathbb{N}|$, 此时

$$|L| = \left| \bigcup_{n \ge 1} \{ \alpha \in L : \deg \alpha = n \} \right|$$

$$\leq |\mathbb{N} \times \mathbb{N}|$$

$$= |\mathbb{N}|$$

综上, 可以得到

$$|L| \le \max\{|K|, |\mathbb{N}|\}$$

代数闭包存在性的证明. 设 A 是 K 上所有代数扩域的集合. 取 S 满足 $F \subset S$ 且 $|S| > \max\{|K|, |\mathbb{N}|\}$,那么由引理,K 的代数扩张均包含在 S 中,从而 $A \subset \mathcal{P}(S)$ 是一个集合. 使用包含关系作为偏序,那么注意到对任意一条链 $c: (\{K_i\}, \subset)$,易见 $\bigcup_{i\geq 1} K_i$ 是 c 的一个上界. 因此由 Zorn 引理,A 中存在 极大元 M. 断言在 M 中任意 $p(x) \in K[x]$ 分裂. 否则假设存在一个 p(x) 在 M 上不能分解为一次因式的乘积,那么设 p(x) 在 M 上具有分裂域 E,E/M,M/K 都是代数扩张,从而 E/K 是代数扩张(推论 $\mathbf{1.11}$), $E \in A$. 然 而 $M \subsetneq E$,这与 M 在 A 中的极大性矛盾. 因此 M 中任意 $p(x) \in K[x]$ 分 裂,取 M 的由 K[x] 中所有多项式的根生成的子域 \overline{K} 即得到 K 的代数闭包. (证明中用到的集合论结论可以参考 $[\mathbf{3}$,附录 $\mathbf{2}$ 第 $\mathbf{2}$, $\mathbf{3}$ 节])

关于代数闭包,有一个密切相关的概念是代数闭域:

定义 3.4. 域 L 被称为是**代数闭域**, 如果 L[x] 中的任意多项式都在 L 中有根.

命题 3.5. 域 K 的代数闭包 \overline{K} 是代数闭域.

证明. 设 $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, $a_i \in \overline{K}$. 由于 \overline{K} 由 K[x] 中多项式的根生成, 因此 a_i 均为 K 上的代数元. 对 p(x) 在某个根 α , 考虑扩张链

$$K \subset K(a_0, \cdots, a_{n-1}) \subset K(a_0, \cdots, a_{n-1}, \alpha)$$

容易发现两个扩张都是有限的, 所以 α 也是 K 上的代数元, 从而在 \overline{K} 内. 因此 \overline{K} 是代数闭域.

我们接下来讨论一种弱于代数闭的性质. 我们希望找到一个扩域 L/K, 使得 L 在开根号下封闭.

构造. 想法是不断地添加平方根. 取 $K_0=K$, K_1 为 K_0 上所有形如 x^2-a , $a\in K_0$ 的多项式的分裂域 (它包含在 K_0 的一个代数闭包中,所以存在). 递归地定义 K_{n+1} 为 K_n 上所有形如 x^2-b , $b\in K_n$ 的多项式的分裂域. 取 $L=\bigcup_{n\in\mathbb{N}}K_n$, 那么容易验证 L 是一个域; 同时对任意 $\alpha\in L$, 存在某个 K_i 使得 $\alpha\in K_i$, 那么 α 的平方根按定义在 $K_{i+1}\subset L$ 中. 因此 L 关于开根号封 闭.

接下来我们给出一些代数闭包的例子.

例 3.6. 我们最熟悉的代数闭包莫过于 \mathbb{R} 的代数闭包 \mathbb{C} . 这个结论被称为代数基本定理. 在之后我们会利用 Galois 理论证明代数基本定理, 但是比较简单的方法是利用复分析中的 Liouville 定理或者卷绕数. 对这些证明, 可以参考 [4, 命题 8.13].

其他的一些"自然"的代数闭包的例子有

例 3.7. 1. \mathbb{C}/\mathbb{R} ;

2. 有理数的代数闭包 $\overline{\mathbb{Q}} \subset \mathbb{C}$, 称为代数数.

3. 考虑形式 Laurent 级数 $\mathbb{C}[[x]][x^{-1}]$, 它的代数闭包被称为 Puiseux 级数, 即

$$\bigcup_{n\geq 1}\mathbb{C}[[x^{1/n}]][x^{-1/n}]$$

证明参考 [6, 命题 II.8].

现在我们证明代数闭包的同构唯一性. 我们证明一个更强的命题

定理 3.8 (同构延拓定理). 设 K 是一个域, $S \subset K[x]$ 是一族多项式, K' 与 K 同构且 S 在同构映射下的像为 S'. 设 E, E' 分别是 S, S' 的分裂域, 那么 存在同构 $S \to S'$ 使得下图交换

$$S \xrightarrow{\sim} S'$$

$$\uparrow \qquad \uparrow$$

$$K \xrightarrow{\sim} K$$

证明. 设 A 是由子域与嵌入 (F,τ) 构成的集合, 其中 $K\subset F\subset E$ 且使得下图交换

我们在 A 上定义偏序 $(F,\tau) \prec (F',\tau')$ 当且仅当 $F \subset F'$ 且 $\tau'|_F = \tau$. 对任 意一条链 $\{(F_i,\tau_i)\}$,取 $F = \bigcup_{i\geq 0} F_i$, $\tau: F \to E'$ 满足 $\tau|_{F_i} = \tau_i$. 那么容易验证 (F,τ) 是这条链的一个上界. 由 Zorn 引理, A 中存在一个极大元 $(M,\tilde{\sigma})$. 断言 M=E. 否则的话存在一个 S 中的多项式 p(x) 在 M 上不分裂,那么对 p(x) 的一个根 α ,可以按下图延拓得到 $\tilde{\sigma}': M(\alpha) \to E'$

这与 M 的极大性矛盾, 所以 M = E. 注意到 E 包含了 S 中所有多项式的根, 并被 $\tilde{\sigma}$ ——地映到 E' 中. 而 E' 是包含 S' 中所有多项式的根的最小的域, 所以一定有 $\tilde{\sigma}(E) = E'$. 因此命题得证.

评注 3.9. 我们指出代数闭包间的同构也不是唯一的. 并且我们也无法"自然"地找出两个代数闭包之间的同构,也就是说 \overline{K} 的**绝对** Galois 群是没有单位元的. 这种情形与拓扑空间 X 中的道路的同伦类 $\pi_1(X)$ 相似: 我们可以定义道路的同伦类之间的乘法, 但是无法自然地找到单位元. 在这种情形下,我们会把 $\operatorname{Aut}(\overline{K}/K)$ 及 $\pi_1(X)$ 称为群胚. 在范畴论中,群胚被定义为所有态射都是同构的范畴.

4 有限域

回忆整数到一个域 K 有一个自然的同态

$$\lambda: \mathbb{Z} \to K$$
$$m \mapsto m \cdot 1$$

如果 $\ker \lambda = \mathbb{Z}$, 那么称 K 的**特征**为 0; 如果 $\ker \lambda = \langle n \rangle$, 那么称 K 的特征 为 n > 0. 记 K 的特征为 $\operatorname{char} K$. 容易证明, 当 $\operatorname{char} K = 0$ 时, K 一定包含 \mathbb{Q} 作为子域; 当 $\operatorname{char} K > 0$ 时, K 的特征一定是素数 (设为 p), 且包含 $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ 作为子域. 我们将 \mathbb{Q} 与 \mathbb{F}_p (p 素数) 称为**素域**.

假设 F 是有限域, 那么 F 一定有正的特征 p>0. 那么此时素域 $\mathbb{F}_p\subset F$, F 是 \mathbb{F}_p 上的向量空间. 如果 $\dim_{\mathbb{F}_p}F=n$, 那么每个坐标分量有 p 种取法, 则 $|F|=p^n$. 因此我们得到

命题 4.1. 有限域 F 的阶为 p^n , 其中 $p = \operatorname{char} F$ 是素数, $n = [F : \mathbb{F}_p]$.

相同的论证我们可以得到

命题 4.2. 有限域 $\mathbb{F}_{n^n} \subset \mathbb{F}_{n^m}$ 当且仅当 n|m.

记号 4.3. 对素数 p, 在上下文意义明确时我们记它的一个方幂 $p^n := q$. 对 q 阶有限域, 我们将其记为 $GF(q) = GF(p^n) = \mathbb{F}_q = \mathbb{F}_{p^n}$.

²似乎这需要先证明有限域是唯一的, 不过这件事情之后我们确实会做.

首先我们证明有限域的存在性.

定理 4.4. 对素数 p 及 $q = p^n$, 存在 q 阶有限域.

证明. 取 $x^q - x$ 在 \mathbb{F}_p 上的一个分裂域 L, 我们证明 L 恰好由 $x^q - x$ 的所有根构成. 我们先证明 $x^q - x$ 的根构成一个域. 对根 x, y, 由 $\operatorname{char} L = p$ 可知 $\binom{q}{k} = 0, \ k = 1, \cdots, q-1,$ 从而

$$(x-y)^q = x^q - y^q$$
 $(p = 2$ 时 $1 = -1$,所以均写为减号)
= $x - y$

所以 x-y 是 x^q-x 的一个根; 而当 $y\neq 0$ 时

$$\left(\frac{x}{y}\right)^{q} - \frac{x}{y} = \frac{x^{q}y - xy^{q}}{y^{q+1}}$$
$$= \frac{xy - yx}{y^{q+1}}$$
$$= 0$$

所以 x/y 也是一个根. 因此 $x^q - x$ 的根在减法与除法下封闭,构成一个域. 由于分裂域由根生成,所以 L 恰好由 $x^q - x$ 的根构成. 另一方面,由于 $(x^q - x)' = qx^{q-1} - 1 = -1$,与 $x^q - x$ 互素,所以 $x^q - x$ 没有重根. 因此 $|L| = \deg(x^q - x) = q$.

然后我们证明有限域的唯一性.

定理 4.5. 两个有限域同构当且仅当他们阶数相同.

证明. 设有限域 F 的阶数为 q, 我们证明 F 一定是 $x^q - x$ 的分裂域. 这只需要证明对任意 $a \in F$ 有 $a^q = a$ 即可. a = 0 时这是平凡的. 对 $a \in F^*$, 由 Lagrange 定理, $a^{|F^*|} = 1$, 即 $a^{q-1} = 1$, 从而 $a^q = a$. 因此 F 是 $x^q - x$ 的分裂域, 在同构意义下是唯一的.

对于给定的 q, 我们希望问

问题. 如何构造 q 阶有限域?

回答很简单,我们取一个 n 次不可约多项式 $f(x) \in \mathbb{F}_p[x]$,那么就有 $GF(q) = \mathbb{F}_p[x]/\langle f(x) \rangle$. 我们看一个例子.

例 4.6. 给定 p=2. 我们写一些低次数的不可约多项式:

$$x, x + 1,$$

$$x^{2} + x + 1,$$

$$x^{3} + x + 1, x^{3} + x^{2} + 1,$$

$$x^{4} + x + 1, x^{4} + x^{3} + x^{2} + x + 1, x^{4} + x^{3} + 1$$

那么我们有

(1) 次数为 $4 = 2^2$: GF(4) = $\mathbb{F}_2[x]/\langle x^2 + x + 1 \rangle$, 习惯上把 x 记为三次单位 根 ω , 域中的元素为

$$0, 1, \omega, \omega + 1$$

(2) 次数为 $8 = 2^3$: $GF(8) = \mathbb{F}_2[x]/\langle x^3 + x + 1 \rangle$, 此时域中的元素为

$$0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1$$

同时也有 GF(8) = $\mathbb{F}_2[y]/\langle y^3 + y^2 + 1 \rangle$, 这两种构造下的域应当是同构的. 事实上, 注意到 $(y+1)^3 + (y+1) + 1 = 0$, 所以同构映射可以由 x = y+1 给出.

通过以上这个例子,我们可以看出确实没有"典范"的构造有限域的方法.

最后,我们讨论求有限域上不可约多项式的个数的问题.我们只在有限 素域上考虑这个问题.

命题 4.7. 设 $F_d(x)$ 是 \mathbb{F}_p 上所有 d 次不可约多项式的乘积, 那么有

$$x^{p^n} - x = \prod_{d|n} F_d(x)$$

引理 4.8. $\mathbb{F}_p[x]$ 中的不可约多项式均没有重根.

证明. 设 $f(x) \in \mathbb{F}_p[x]$ 不可约. 如果 $f'(x) \neq 0$, 那么 (f(x), f'(x)) = 1, 从而 f(x) 没有重根. 如果 f'(x) = 0, 那么 f(x) 一定具有形式 (不妨设首一)

$$f(x) = x^{np} + a_{n-1}x^{(n-1)p} + \dots + a_1x^p + a_0$$

= $(x^n + a_{n-1}x^{n-1} + \dots + a_0)^p$

与 f(x) 不可约矛盾. 所以 f(x) 没有重根.

命题 4.7 的证明. 首先我们说明如果次数至少为 1 的多项式 $f(x)|x^{p^n}-x$, 那 么 $f^2(x) \nmid x^{p^n}-x$. 事实上如果有 $x^{p^n}-x=f^2(x)g(x)$, 那么计算形式导数有

$$-1 = 2f(x)f'(x)g(x) + f^{2}(x)g'(x)$$

从而 f(x)|1,矛盾. 其次我们说明 $f(x)|x^{p^n}-x$ 当且仅当 $d=\deg f(x)|n$. 设 L 是 $x^{p^n}-x$ 的分裂域,即 $GF(p^n)$. 对 f(x) 的一个根 α ,考虑 $\mathbb{F}_p(\alpha)$. 那 么 $[\mathbb{F}_p(\alpha):\mathbb{F}_p]=d$,由命题 4.2, $\mathbb{F}_p(\alpha)\subset L$ 当且仅当 d|n,即 $x-\alpha|x^{p^n}-x$ 当且仅当 d|n. 因此 $f(x)|x^{p^n}-x$ 时一定有 $x-\alpha|x^{p^n}-x$,从而 d|n; d|n 时 f(x) (在 L 上) 的所有根 α,β,\cdots 满足 $x-\alpha,x-\beta,\cdots$ 均整除 $x^{p^n}-x$,又 因为 f(x) 没有重根,这些一次因式两两互素,有 $f(x)|x^{p^n}-x$. 综上可知命题成立.

对命题 4.7 使用 Möbius 变换 ([2, 第 2 章定理 2]), 我们可以得到

定理 4.9. $\mathbb{F}_p[x]$ 上 n 次不可约多项式的个数为

$$\frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d$$

推论 4.10. 对任意正整数 n, $\mathbb{F}_n[x]$ 中存在 n 次不可约多项式.

证明. n 次不可约多项式的个数为 $n^{-1}(p^n \pm \cdots + p\mu(n))$, 括号中的式子被 p 恰整除 (即 p^2 不整除这个式子), 所以一定不是 0.

5 正规扩张与可分扩张

对于一个代数扩张 L/K 及 K 上的一个多项式 $p(x) \in K[x]$,假设 L 中包含了 p(x) 的一个根. 那么我们会问, L 包含了 p(x) 的所有根吗? 看以下两个例子.

例 5.1. 取底域为 ◎.

- (1) $p(x) = x^3 2$ 在 $\mathbb{Q}(\sqrt[3]{2})$ 上有一个根, 但是 $\mathbb{Q}(\sqrt[3]{2})$ 不包含 $x^3 2$ 的复根;
- (2) $p(x) = 8x^3 + 4x^2 + 4x 1$, 取 $\alpha = \cos 2\pi/7$, 那么 α 是 p(x) 的一个根. 而 p(x) 的另外两个根为 $\cos 4\pi/7 = 2a^2 1$, $\cos 6\pi/7 = 2(2\alpha^2 1)^2 1$, 均在 $\mathbb{Q}(\alpha)$ 中.

以下我们给出关于代数扩张的三个等价命题,每一个命题都可以用来描述**正规扩张**.

定理 5.2. 设 $K \subset L$ 是代数扩张, 那么以下三个命题等价:

- (1) K[x] 中任何在 L 上有根的多项式 p(x) 在 L[x] 中分裂;
- (2) L 是 K 上某一族多项式的分裂域;
- (3) \overline{K} 的所有固定 K 不动的自同构都将 L 映为 L.

定义 5.3. 满足定理 5.2 中三个等价条件中任意一个的代数扩张称为**正规扩** 张.

定理 5.2 的证明. 我们按照 $(1) \implies (2) \implies (3) \implies (1)$ 的顺序证明它们等价.

- (1) \Longrightarrow (2): 对任意 $\alpha \in L$, 由于 L/K 是代数扩张, 因此可以取 α 在 K 上的极小多项式 $p_{\alpha}(x)$, 那么 L 是 $S = \{p_{\alpha} \in K[x] : \alpha \in L\}$ 的分裂域.
- $(2) \implies (3)$: 设 $L \not\in S \subset K[x]$ 的分裂域, $\sigma \in \operatorname{Aut} \overline{K}$ 固定 K 不动. 那么 σ 也固定 S 中多项式的系数不动, 从而 S 中多项式的根也被固定不动. 而 L 是 S 中多项式的根的分裂域, 所以也被固定不动.
- (3) \Longrightarrow (1): 设 $p(x) \in K[x]$ 具有一个根 $\alpha \in L$, 不妨设 p(x) 不可约. 设 $\beta \in \overline{K}$ 是 p(x) 的另一个根, 由于 p(x) 不可约, 所以存在固定 K 不动的同构

 $K(\alpha) \to K(\beta)$. 按照同构延拓定理 (定理 3.8), 这个同构可以延拓为 \overline{K} 的自同构 $\sigma: \overline{K} \to \overline{K}$

$$K \longrightarrow K(\alpha) \longrightarrow \overline{K}$$

$$\downarrow = \qquad \qquad \downarrow \sigma \qquad \qquad \downarrow \sigma$$

$$K \longrightarrow K(\beta) \longrightarrow \overline{K}$$

那么按照假设, σ 将 L 中的 α 映成 L 中的 β , 即 $\beta \in L$. 从而 p(x) 的根均在 L 中, p(x) 在 L[x] 中分裂.

例 5.4. 我们再看几个例子.

- (1) 我们在前面知道了 $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ 不是正规的, 但 $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$ 是正规的.
- (2) 如果 $K \subset L$ 且 [L:K] = 2, 那么 L/K 一定是正规的: L 一定是单生成的,否则存在三个 K-线性无关的元素 $1, \alpha, \beta$, 矛盾. 那么设 $L = K(\alpha)$, 由于 [L:k] = 2, α 的极小多项式是二次的,不妨设为 $x^2 + bx + c$. 从而极小多项式的另一个根为 $-b \alpha \in L$,所以极小多项式在 L[x] 中分裂,L/K 是正规的.
- (3) 假设 L/K, M/L 都是正规扩张, 那么 M/K 是正规扩张吗? 答案是否定的, 一个简单的例子是 $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$.

接下来我们给出可分多项式,可分元及可分扩张的定义.

定义 5.5. 设 K 是域, $f(x) \in K[x]$, 如果 f(x) 在 \overline{K} 中没有重根, 那么称 f(x) 是一个可分多项式. 如果 $K \subset L$, $\alpha \in L$ 是一个可分多项式的根, 那么称 α 是可分元. 如果 L/K 中每个元素都是可分的, 那么称 L/K 是可分扩张.

可分多项式的一个简单的判别法是

命题 5.6. $f(x) \in K[x]$ 是可分多项式当且仅当它的形式导数 f'(x) 与其互素.证明.设 α 是 f(x) 的一个根,那么 f(x) (在分裂域或者代数闭包上)有分解

$$f(x) = (x - \alpha)^{n_1} f_1(x), \ f_1(\alpha) \neq 0$$

当 $n_1 \ge 2$ 时, 求导有

$$f'(x) = n_1(x - \alpha)^{n_1 - 1} f_1(x) + (x - \alpha)^{n_1} f_1'(x)$$

仍被 $x-\alpha$ 整除, 从而 $x-\alpha|(f,f')$, 两者不互素. 当 $n_1=1$ 时, 求导的结果为

$$f'(x) = f_1(x) + (x - \alpha)^{n_1} f_1'(x)$$

此时 $f'(\alpha) = f_1(\alpha) \neq 0$, 从而 $x - \alpha \nmid f'(x)$. 那么当 f 可分时, f 的任意根都不是 f' 的根, 从而 (f, f') = 1.

例 5.7. 我们给出一些可分或不可分扩张的例子.

- (1) 设 $K \subset L$ 是代数扩张, char K = 0, 那么 L 是可分扩张. 事实上, 对任意 $\alpha \in L$, 取 α 在 K 上的极小多项式 f(x), 那么 f(x) 在 K 上是不可约的. 从而对非零的 f'(x) 一定有 (f,f')=1, 即 α 的极小多项式可分, α 是可分元.
- (2) 而当 char K > 0 时, K 的代数扩张不一定是可分的. 因为此时 f'(x) 可以是 0, 比如 $f(x) = a_n x^{np} + a_{n-1} x^{(n-1)p} + \cdots + a_0$. 具体地举一个例子, 设 k 是一个特征 p 的域, 取 $K = k(t^p), L = k(t)$, 其中 t 是 k 上的超越元. 那么 L/K 是有限扩张, 从而是代数的. 但 t 不是可分元: t 在 K 上具有极小多项式 $x^p t^p$, 但 $x^p t^p = (x t)^p$ 只有一个根.
- (3) 有限域的代数扩张都是可分的. 事实上设 α 是 \mathbb{F}_q 上的代数元, 设其是 n 次的, 那么 $[\mathbb{F}_q(\alpha):\mathbb{F}_q]=n$. 从而 α 是多项式 $f(x)=x^{q^n}-x$ 的根, 而 f'(x)=-1, 与 f(x) 互素, 从而 f(x) 可分, 则 α 可分.

而对于不可分扩张, 最极端的情况是如下定义的纯不可分扩张

定义 5.8. 设 $K \subset L$, char K = p, 如果对任意 $\alpha \in L$, α 都是 K 上某个多项式 $x^{p^n} - a$ 的根, 那么称 L/K 是**纯不可分扩张**.

对一般的代数扩张, 我们有如下命题

定理 5.9. 设 L/K 是代数扩张, 那么 L/K 可以分解为 $K \subset K^{\text{sep}} \subset L$, 使得 K^{sep}/K 是可分扩张, L/K^{sep} 是纯不可分扩张. K^{sep} 称为 K 的**可分闭包**.

由于本笔记中只处理可分扩张, 所以这个命题的证明我们直接引用 [3, 第 V 章, 命题 6.6]