INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4086B gates 4-wide 2-input AND-OR-invert gate

Product specification
File under Integrated Circuits, IC04

January 1995

4-wide 2-input AND-OR-invert gate

HEF4086B gates

DESCRIPTION

The HEF4086B is a 4-wide 2-input AND-OR-invert (AOI) gate with two additional inputs (I₈ or \bar{I}_9) which can be used as either expander or inhibit inputs by connecting them to any standard LOCMOS output. A HIGH on I₈ or a LOW on \bar{I}_9 forces the output (O) LOW independent of the other eight inputs (I₀ to I₇). The output (O) is fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4086BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4086BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4086BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

PINNING

I₀ to I₈ gate inputs

Ī₉ gate input (active LOW)O output (active LOW)

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications

4-wide 2-input AND-OR-invert gate

HEF4086B gates

LOGIC EQUATION

$$O = \overline{I_0 \cdot I_1 + I_2 \cdot I_3 + I_4 \cdot I_5 + I_6 \cdot I_7 + I_8 + I_9}$$

Philips Semiconductors Product specification

4-wide 2-input AND-OR-invert gate

HEF4086B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
I_0 to $I_7 \rightarrow O$	5		90	180	ns	63 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	30	65	ns	19 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
	5		80	155	ns	53 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	30	60	ns	19 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
$I_8 \rightarrow O$	5		70	140	ns	43 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	25	55	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
	5		55	115	ns	28 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15		15	25	ns	7 ns + (0,16 ns/pF) C _L
$\bar{l}_9 \rightarrow O$	5		55	105	ns	28 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	20	45	ns	9 ns + (0,23 ns/pF) C _L
	15		15	30	ns	7 ns + (0,16 ns/pF) C _L
	5		45	90	ns	18 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	15	35	ns	4 ns + (0,23 ns/pF) C _L
	15		10	25	ns	2 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	525 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	2600 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	$7300~f_i + \Sigma~(f_oC_L) \times V_{DD}{}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

4-wide 2-input AND-OR-invert gate

HEF4086B gates

APPLICATION INFORMATION

Figure 4 shows two HEF4086B ICs connected to obtain an 8-wide 2-input AOI function. The output (O_A) of the first IC is fed directly into the \bar{I}_{9B} gate input of the second IC. Similarly, any NAND gate output can be fed directly into the \bar{I}_{9} gate input to obtain a 5-wide AOI function. In addition, any AND gate output can be fed directly into the I_{8} gate input with the same result.

Logic equation for Fig.4:

$$O_{B} = \overline{I_{0A} \cdot I_{1A} + I_{2A} \cdot I_{3A} + I_{4A} \cdot I_{5A} + I_{6A} \cdot I_{7A} + I_{0B} \cdot I_{1B} + I_{2B} \cdot I_{3B} + I_{4B} \cdot I_{5B} + I_{6B} \cdot I_{7B}}$$

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.