周课 7

陈漂亮

Savvy 2020

1. Non-Parametric Model	. 1
1. Penalized Likelihood	. 2
1.2 Cubic Spline	. 2
2. Generalized Additive Model (GAM)	. 4
2.1 Smoothing Interation	. 5
2.2 Common smoothing parameter	. 7
2.3 2-D smoothing	. 8
2.4 Poisson GAM: Ontario deaths	. 8
2.5 Prediction	. 11
2.5.1 Trend	. 11
2.5.3 Forcasting	. 12
2.6 Change the Parameter constraint	. 13
2.7 Modelling Seasonality	. 15
2.8 Number of Knots	. 17
2.8.1 Regression splines	. 18
$2.9~\mathrm{ML/model\text{-}based}$ smoothing	. 19
2.9.1 Random Effects	. 19
2.9.2 ML vs GCV	. 20
2.9.3 LR test	. 20
2.9.4 Generalized Additive Mixed Model	. 21

1. Non-Parametric Model

- Penalized likelihood;
- smoothing;
- fitting wiggly lines through points;
- semi-parametric models;

• splines

$$Y_i \sim \pi(\lambda_i, \theta)$$

 $g(\lambda_i) = X_i \beta + f(W_i)$

Where, $\bullet Y_i$: response

• $\pi(\lambda_i, \theta)$ is the response distribution

 $\bullet X_i, W_i are covariates$

• f(w): is the smoothing function

 $\bullet g(\lambda)$: is the link function

• β : coefficients

1. Penalized Likelihood

$$L_P(\beta, f, \alpha; Y) = \log(\pi(Y; \beta, f)) - \alpha \int \left[\frac{\partial^2 f(w)}{\partial w^2}\right]^2 du$$

Where, $\bullet \alpha$: penalty parameter, $\alpha \uparrow \Longrightarrow$ smoother f

• smoother
$$f(x) \implies \text{smaller } f''(x)$$

$$\Longrightarrow \hat{\beta}(\alpha), \hat{f}(\alpha) = \arg\min_{\beta, f} L_P(\beta, f, \alpha; Y)$$

• A good \hat{f} is a compromise between fitting the data and being smooth.

1.2 Cubic Spline

• The f that maximizes the penalized likehood must be a cubic spline polynomial...

knitr::include_graphics("1.png")

knitr::include_graphics("2.png")

• The basis function of cubic splines: $ax^3 + bx^2 + cx + d$...

Maiximizing likelihood over all possible f:

- The larger the α , the smoother the curve (f)...
- When $\alpha \to \infty$, f is a straight line.

How?:

- Divide your data (evenly) into K subsets, and fit a cubic spline on each subset. Make sure the f function is continous/1st-order-diff/2nd-order-diff at each knot...

Choosing α : Cross Validation

knitr::include_graphics("3.png")

Cross validation

- ullet Find $\hat{\lambda}^{(-i)}$ by excluding observation i
- compute $pr(Y_i|\hat{\lambda}^{(-i)})$
- $\begin{array}{l} \bullet \text{ repeat for } i=1\dots N \\ \bullet \text{ CV}(\alpha)=-\sum_i \log[pr(Y_i|\hat{\lambda}^{(-i)})] \end{array}$

$$\hat{\alpha} = \mathrm{argmax}_{\alpha} \mathsf{CV}(\alpha)$$

2. Generalized Additive Model (GAM)

• Fit a GAM for the Math score data...

	Estimate	Std. Error
(Intercept)	14.3	0.1
MinorityYes	-2.9	0.2
SexFemale	-1.4	0.2
MinorityYes:SexFemale	0.2	0.3

```
plot(mathGam)
```


mathGam\$sp # smoothing parameter

s(SES) ## 0.8254378

2.1 Smoothing Interation

• Now we fit another GAM, with interaction between the covariates that are being smoothed...

	Estimate	Std. Error
(Intercept)	14.2	0.1
MinorityYes	-3.0	0.3
SexFemale	-1.4	0.2

	Estimate	Std. Error
MinorityYes:SexFemale	0.1	0.3

mathGamInt\$sp

```
## s(SES):MinorityNo s(SES):MinorityYes
## 0.820158 0.614983
```

```
# plot the SES/minority
plot(mathGamInt, select =1)
```



```
plot(mathGamInt,select =2)
```


2.2 Common smoothing parameter

knitr::include_graphics("4.png")

$$\begin{split} Y_{ij} \sim & N(\lambda_{ij}, \tau^2) \\ \lambda_{ij} = & X_{ij} \beta + f_i(W_{ij}; \nu) \end{split}$$

- ullet Y_{ij} is the observation for individual j in ethnic group i
- X_{ij} is a vector of covariates (ethnic group, sex, interaction) $f_i(w;\nu)$ is the smoothly-varying function of SES
- - for ethnic group i
 - with roughness parameter ν .

```
mathGamIntC =gam(MathAch~s(SES,by=Minority,id=1) +Minority*Sex,
                 data=MathAchieve)
mathGamIntC$sp
```

s(SES):MinorityNo

0.7492505

2.3 2-D smoothing

s(SES,MEANSES,15.57)

• If you are from upper class, your score is still likely higher even if your school is weaker...

2.4 Poisson GAM: Ontario deaths

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = X_i\beta + f(time)$$

where, $\bullet \lambda_i$ is the relative rate of death in the ith month

	est	se
(Intercept)	9.001	0.002
monthFebruary	-0.124	0.003
monthMarch	-0.055	0.003
monthApril	-0.137	0.003
monthMay	-0.138	0.003
monthJune	-0.205	0.003
monthJuly	-0.186	0.003
monthAugust	-0.192	0.003
monthSeptember	-0.207	0.003
monthOctober	-0.118	0.003
monthNovember	-0.135	0.003
monthDecember	-0.053	0.003

- relative rate: relative to the baseline, i.e. Januarry...
- Note that different month has different number of days, so, offset!!

```
Y_i \sim Poisson(O_i \lambda_i)

\log(\lambda_i) = X_i \beta + f(time)
```

where, $\bullet \lambda_i$ is the relative rate of death in the ith month

 \bullet O_i is the offset term

	est	se
(Intercept)	5.567	0.002
monthFebruary	-0.031	0.003
monthMarch	-0.055	0.003
monthApril	-0.104	0.003
monthMay	-0.138	0.003
monthJune	-0.173	0.003
monthJuly	-0.186	0.003
monthAugust	-0.192	0.003
monthSeptember	-0.174	0.003
monthOctober	-0.118	0.003
monthNovember	-0.102	0.003
month December	-0.053	0.003

2.5 Prediction

2.5.1 Trend

2.5.3 Forcasting

```
Stime =seq(from =as.Date("2000/1/1"),
           to =as.Date("2026/1/1"),
           by ="months")
newX =data.frame(timeNumeric
            =as.numeric(difftime(Stime,
                                  timeOrigin,
                                  units ="days")),
            month =months(Stime),
            nDays =log(Hmisc::monthDays(Stime)))
deathsPred =predict(deathsGam, newX,se.fit =TRUE)
deathsPred =as.data.frame(deathsPred)
deathsPred$lower =deathsPred$fit-2*deathsPred$se.fit
deathsPred$upper =deathsPred$fit+2*deathsPred$se.fit
matplot(Stime,
        exp(deathsPred[,c("lower","upper",+"fit")]),
        type ="1", lty =1,
        col =c("grey",+"grey","black"),
        lwd = c(2,2,1), xlab = "date",
        ylab ="deaths",yaxs ="i",xaxs ="i",
        xaxt = "n")
forAxis =seq(from =as.Date("2000/1/1"),
```


2.6 Change the Parameter constraint

- Add a constant to f(x) doesn't change the penalty;
- By default, f(x) sums to 0;
- But we don't know where does f(x) = 0;
- An alternative is to set $f(x_0) = 0$...

	est	se
(Intercept)	5.510	0.003
monthFebruary	-0.031	0.003
monthMarch	-0.055	0.003
monthApril	-0.104	0.003
monthMay	-0.138	0.003
monthJune	-0.173	0.003
monthJuly	-0.186	0.003
monthAugust	-0.192	0.003
+monthSeptember	-0.174	0.003
monthOctober	-0.118	0.003
monthNovember	-0.102	0.003
month December	-0.053	0.003

2.7 Modelling Seasonality

We can see clear seasonality from the month-effect plot.

• The trick to model seasonality is apply trignomitric function as the basis functions...

- The monthly effect isn't perfectly sinusoidal
- use a 12 month and a 6 month frequency

$$\begin{split} Y_i \sim & \mathsf{Poisson}(O_i \lambda_i) \\ & \log(\lambda_i) = & X_i \beta + f(t_i) \\ X_{i0} = 1 \\ X_{i1} = & \cos(2\pi t_i/12) \\ X_{i2} = & \sin(2\pi t_i/12) \\ X_{i3} = & \cos(2\pi t_i/6) \\ X_{i4} = & \sin(2\pi t_i/6) \end{split}$$


```
oDeaths$timeYears =oDeaths$timeNumeric/365.25
oDeaths$cos12 =cos(2*pi*oDeaths$timeYears)
oDeaths\$sin12 =\sin(2*pi*oDeaths\$timeYears)
oDeaths$cos6 =cos(2*pi*oDeaths$timeYears/2)
oDeaths\$\sin6 =\sin(2*\pi*\oDeaths\$\timeYears/2)
deathsGamS =gam(Value~cos12+sin12+cos6+sin6
              +s(timeNumeric)+offset(nDays),
              data=oDeaths,family='poisson')
knitr::kable(summary(deathsGamS)$p.table[,1:2],
# Predicting the seasonality
deathGamPred =predict(deathsGamS,cbind(oDeaths[,c("sin12","cos12","sin6",
                                                    "cos6","timeNumeric")],
                                        nDays =log(1)), type ="link",
                      se.fit =TRUE)
deathGamPredMat =do.call(cbind,
                         deathGamPred)%*%+Pmisc::ciMat()
```

	est	se
(Intercept)	5.456	0.001
cos12	0.085	0.001
sin12	0.017	0.001
cos6	-0.008	0.001
sin6	-0.003	0.001

2.8 Number of Knots

	Estimate	Std. Error
(Intercept)	12.8	0.1
MinorityYes	-2.9	0.2
SexMale	1.4	0.2
Minority Yes: Sex Male	-0.1	0.3

2

	Estimate	Std. Error
(Intercept)	12.8	0.1
MinorityYes	-2.9	0.2
SexMale	1.4	0.2
MinorityYes:SexMale	-0.1	0.3

SES

s(SES,2.1).Minority.	
-4 -3 -2 -1 0 1 2 SES	
0	
(SES, 1.88).Minority/ee	
	1
-4 -3 -2 -1 0 1 2 SES	

	Estimate	Std. Error
(Intercept)	12.8	0.1
MinorityYes	-2.9	0.2
SexMale	1.4	0.2
Minority Yes: Sex Male	-0.1	0.3

- The more knots there are, the better approximation the model is;
- But we don't want that much preciseness/overfitting...
- If \hat{f} is smooth, we don't need to many knots.
- GAM + GCV is fast, but you have to use enough basis functions. (The default number of basis functions is fairly small)

```
CO<sub>2</sub> GAM
                                                         default
                                                         75
> res1 = mgcv::gam(logCo2 ~
                                                         300
    \sin 12 + \cos 12 + \sin 6 + \cos 6 +
    s(timeNumeric, pc=0, k=300),
    data=co2s)
> res2 = mgcv::gam(logCo2 ~
    \sin 12 + \cos 12 + \sin 6 + \cos 6 +
    s(timeNumeric, pc=0,k=75),
    data=co2s)
> resDefault = mgcv::gam(logCo2 ~
    \sin 12 + \cos 12 + \sin 6 + \cos 6 +
    s(timeNumeric, pc=0), data=co2s)
                                              `2010
                                                          2014
                                                                     2018
                                                                time
```

2.8.1 Regression splines

At each subset of the data between 2 knots, do a regression...

Regression splines

- what's faster than GCV?
- don't apply a roughness penalty
- control smoothness with the number of basis functions
- more knots means rougher \hat{f}
- choose knots in some ad-hoc way
- useful for models where GCV isn't possible

```
> mortGam10f = gam(logMort ~
+ s(logInc, k=10, fx=TRUE),
+ data=iMort)
> mortGam100f = gam(logMort ~
+ s(logInc, k=100, fx=TRUE),
+ data=iMort)
```


2.9 ML/model-based smoothing

Use random effects instead of penalized likelihood.

2.9.1 Random Effects

An asside: Random Walks

RW(0), independent

$$V_t \sim \mathrm{iid} \ \mathrm{N}(0,\tau^2)$$

• RW(1), Brownian motion

$$\begin{split} V_{t+1}|V_k, k < t \sim & \mathsf{N}(V_t, \tau^2) \\ V_{t+1} - V_t \sim & \mathsf{N}(0, \tau^2) \end{split}$$

• RW(2), Random slope

Using model-based GAM, we can apply the usual statistical machinery:

- MLE;

- conditional distribution;
- LR test

2.9.2 ML vs GCV

2.9.3 LR test

Test whether the model above is simply a linear model.

• p-value is pretty large, so, it is sufficient to use a simple linear model for the math data.

2.9.4 Generalized Additive Mixed Model

• GAM's are already GLMM's. So, GAMM is to add additional random effects.

$$\begin{aligned} Y_{ij} &\sim N(\lambda_{ij}, \tau^2) \\ g(\lambda_{ij}) &= X_{ij}\beta + f(W_{ij}) + U_i \\ [U_1, \cdots, U_M]^T &\sim MVN(0, \sigma_1^2 I) \\ [f(w_1) \cdots, f(w_M)]^T &\sim ARIMA_{0,2,1}(\sigma_2^2, 2 - \sqrt{3}) \\ \text{Or, } f(w) &\sim RW(2) \text{ with variance } \sigma_2^2 \end{aligned}$$