K Teoria Algebraica Els grups K_0 i K_1

Xavier López

Universitat Autònoma de Barcelona xavier.lopeze@gmail.com

5 de juliol de 2017

Contingut

- Introducció
 - Propietat IBN
- 2 El grup K_0
 - Construcció
 - Casos
 - Successió exacta i K₀ relatiu
- 3 El grup K_1
 - Construcció
 - Casos
 - K₁ relatiu i la successió exacta

Introducció

R-mòdul

Sigui R un anell, un R-mòdul per l'esquerra és un grup abelià additiu M amb una operació binària $\cdot: R \times M \to M$, $(r, m) \to rm$, tal que

- r(m+n) = rm + rn
- (r+s)m = rm + sm
- (rs)m = r(sm)
- \bullet 1m = m

Per tot $r, s \in R$ i $m, n \in M$, per a un $1 \in R$.

Dimensió

Els grup additiu format pels racionals $\mathbb Q$ és un $\mathbb Z$ -mòdul sense base.

Invariància del cardinal de la base (IBN)

El cardinal de la base no és un invariant sobre tot R-mòdul, amb R anell no necessàriament commutatiu.

Grup de Grothendieck

Semigrup N

Els monoides $\mathbb N$ i Proj R són isomorfs si R és un cos.

Grup de Grothendieck

Sigui S un semigrup commutatiu (sense necessitat de tenir element unitat). Existeix un grup abelià G, anomenat **grup de Grothendieck** o grup completat de S, junt amb un homomorfisme de semigrups $\varphi:S\to G$, tal que per a tot grup H i tot homomorfisme $\psi:S\to H$, hi ha un únic homomorfisme $\theta:G\to H$ amb $\psi=\theta\circ\varphi$.

Idempotents

K_0 a paritr d'Idempotents

Per a tot anell R, podem identificar Proj R com el conjunt d'òrbites de l'acció de GL(R) a Idem R. L'operació de semigrup és induïda per $(p,q)\mapsto \begin{pmatrix} p&0\\0&q \end{pmatrix}$. Per tant $K_0(R)$ és el grup de Grothendieck d'aquest semigrup.

Invariància de Morita

Per a tot anell R i tot enter positiu n hi ha un isomorfisme natural

$$K_0(R) \leftrightarrow K_0(M_n(R))$$
.

Donats dos anells R_1 i R_2 ,

$$K_0(R_1 \times R_2) \cong K_0(R_1) \oplus K_0(R_2).$$

El cas d'un cos

Si R és un cos, $K_0(R) \cong \mathbb{Z}$.

El cas d'un DIP

Si R és un DIP, tot submòdul d'un R-m.II.f.g. és lliure, a més és isomorf a R^n per a un únic n, anomenarem a aquest N rang del mòdul.

El cas d'un anell local

Si R és un anell local, no necessàriament commutatiu, aleshores tot R-m.p.f.g. és lliure amb un rang unívocament determinat. En particular $\mathcal{K}_0(R)\cong\mathbb{Z}$ i té per element generador la classe de mòduls de rang 1.

- $K[x]/(x^n)$ és un anell local.
- Sigui p un nombre primer i k > 0, aleshores l'anell $\mathbb{Z}/(p^k\mathbb{Z})$ és local.

K_0 relatiu

El grup K_0 -relatiu d'un anell R i un ideal I ve definit per

$$\textit{K}_0(\textit{R},\textit{I}) = \ker((\textit{p}_1)_*) : \textit{K}_0(\textit{D}(\textit{R},\textit{I})) \rightarrow \textit{K}_0(\textit{R})).$$

Successió exacta

Sigui R un anell i $I \subset R$ un ideal. Aleshores existeix una successió exacta curta

$$K_0(R, I) \to K_0(R) \xrightarrow{q_*} K_0(R/I)$$

on q_* és induïda per l'aplicació quocient $q:R\to R/I$ i l'aplicació $K_0(R,I)\to K_0(R)$ és induïda per $p_2:D(R,I)\to R$ (la projecció a la segona component).

Escisió

Si I és un ideal bilàter en un anell R, aleshores $K(R, I) \cong K_0(I)$ (i per tant no depèn de R, només en l'estructura de I com a anell sense unitat).

Xavier López (UAB) K-Teoria Algebraica 5 de juliol de 2017 7 / 14

Construcció de K₁

Lema de Whitehead

Sigui R un anell,

$$[GL(R), GL(R)] = [E(R), E(R)] = E(R).$$

K_1

Sigui R un anell amb unitat, denotarem per $K_1(R)$ el **grup abelianitzat** $GL(R)_{ab} = GL(R)/E(R)$.

Invariància de Morita sobre K_1

Per a tot anell R

$$K_1(R) \cong K_1(M_n(R)).$$

Siguin R_1 i R_2 anells, aleshores

$$K_1(R_1 \times R_2) \cong K_1(R_1) \oplus K_2(R_2).$$

Casos

Corol · lari

Sigui $A \in GL(n,R)$, la matriu $2n \times 2n \begin{pmatrix} A & 0 \\ 0 & A^{-1} \end{pmatrix}$ pertany a E(2n,R).

El cas d'un cos

Si F és un cos, el determinant indueix un isomorfisme $\det: \mathcal{K}_1(F) \to F^{\times}$.

- anells de divisió
- anells locals

Determinant per anells locals

Sigui R un anell local no necessàriament commutatiu, aleshores existeix una **única** aplicació "determinant": $GL(R) \to R_{ab}^{x}$ amb les següents propietats:

- a) El determinant és invariant sota operacions elementals per files, en altres paraules, si $A \in GL(n,R)$ i A' és la matriu resultant de A a través d'afegir un múltiple per l'esquerra d'una fila a una altra, aleshores $\det(A') = \det(A)$.
- b) El determinant de la matriu identitat és 1.
- c) Si $A \in GL(n,R)$, $a \in R^x$, i A' és la matriu obtinguda a partir de multiplicar per a una de les files de A, aleshores $(\overline{a})(\det A)$, on \overline{a} és la imatge de a a R^x_{ab} .
- d) Si $A, B \in GL(n, R)$, aleshores $\det(AB) = (\det A)(\det B)$.
- e) Si $A \in GL(n, R)$ i si A' es obtingut a partir de A intercanviant dues files, aleshores $\det A' = (-\overline{1})(\det A)$.
- f) El determinant d'una matriu i la seva transposta sempre és el mateix.

Exemple

Per a tot m > 0

$$K_1(\mathbb{Z}/(m)) \cong \left(\frac{\mathbb{Z}}{p_1^{k_1}\mathbb{Z}}\right)^{\times} \times \cdots \times \left(\frac{\mathbb{Z}}{p_n^{k_n}\mathbb{Z}}\right)^{\times},$$

Els Quaternions

$$\mathbb{H}_{\mathsf{ab}}^{ imes}\cong\mathbb{R}_{+}^{ imes}$$
 Observem que $\ker extbf{ extit{N}}=[\mathbb{H},\mathbb{H}]$

Dominis Euclidians

Un domini d'integritat (anell no trivial sense divisors de zero) commutatiu R es diu **domini Euclidià** si hi ha una funció norma $||:R\to\mathbb{N}$ amb les següents propietats:

- i) Si $a \in R$, |a| = 0 si i només si a = 0.
- ii) Si $a, b \in R$, |ab| = |a||b|.
- iii) Si $a, b \in R$, $b \neq 0$, aleshores existeix $q, r \in R$, que anomenarem quocient i residu respectivament, els quals compleixen a = qb + r i $0 \leq |r| < |b|$.

Si R és un domini Euclidià, aleshores $K_1(R) \cong R^x$.

Exemples

$$\begin{array}{ll} {\it K}_1(\mathbb{Z}) \;\cong\; \{1,-1\},\; {\it K}_1(\mathbb{Z}[\emph{i}]) \;\cong\; \{1,\emph{i},-1,-\emph{i}\},\; {\it K}_1(\emph{K}(\emph{x})) \cong \emph{K}^{\times} \\ {\it i}\; {\it K}_1(\mathbb{Z}[\frac{-1+\emph{i}\sqrt{3}}{2}]) \cong \{\emph{z} \in \mathbb{C}; \emph{z}^6 = 1\}. \end{array}$$

K_1 relatiu i la successió exacta

K_1 relatiu

Sigui R un anell (amb unitat) i I un ideal bilàter de R. Definim el grup K_1 relatiu de l'anell R i l'ideal I com

$$K_1(R, I) = \ker((p_1)_* : K_1(D(R, I)) \to K_1(R))$$

Successió exacta

Sigui R un anell i $I \subset R$ un ideal. Aleshores existeix una successió exacta

$$K_1(R,I) \to K_1(R) \xrightarrow{q_*} K_1(R/I) \xrightarrow{\partial} K_0(R,I) \to K_0(R) \xrightarrow{q_*} K_0(R/I),$$
 (1)

on q_* ve induïda per l'aplicació quocient $q:R \twoheadrightarrow R/I$ i les aplicacions $K_j(R,I) \to K_j(R)$ venen induïdes per $p_2:D(R,I) \to R$.

