HOMEWORK 8

Chapter 6

28.

a. $\left(\frac{x_1}{\theta} \exp\left[-x_1^2/2\theta\right]\right) ... \left(\frac{x_n}{\theta} \exp\left[-x_n^2/2\theta\right]\right) = \left(x_1...x_n\right) \frac{\exp\left[-\Sigma x_i^2/2\theta\right]}{\theta^n}$. The natural log of the likelihood function is $\ln(x_i...x_n) - n\ln(\theta) - \frac{\Sigma x_i^2}{2\theta}$. Taking the derivative with respect to θ and equating to 0 gives $-\frac{n}{\theta} + \frac{\Sigma x_i^2}{2\theta^2} = 0$, so $n\theta = \frac{\Sigma x_i^2}{2}$ and $\theta = \frac{\Sigma x_i^2}{2n}$. The mle is therefore $\hat{\theta} = \frac{\Sigma X_i^2}{2n}$, which is identical to the unbiased estimator suggested in Exercise 15.

Chapter 7

3.

- **a.** A 90% confidence interval will be narrower. The *z* critical value for a 90% confidence level is 1.645, smaller than the *z* of 1.96 for the 95% confidence level, thus producing a narrower interval.
- **b.** Not a correct statement. Once and interval has been created from a sample, the mean μ is either enclosed by it, or not. We have 95% confidence in the general procedure, under repeated and independent sampling.
- **c.** Not a correct statement. The interval is an estimate for the population mean, not a boundary for population values.
- **d.** Not a correct statement. In theory, if the process were repeated an infinite number of times, 95% of the intervals would contain the population mean μ . We *expect* 95 out of 100 intervals will contain μ , but we don't know this to be true.

4.

a.
$$58.3 \pm \frac{1.96(3)}{\sqrt{25}} = 58.3 \pm 1.18 = (57.1, 59.5).$$

c.
$$58.3 \pm \frac{2.58(3)}{\sqrt{100}} = 58.3 \pm .77 = (57.5, 59.1).$$

e.
$$n = \left[\frac{2(2.58)3}{1} \right]^2 = 239.62 \text{ Z} \quad 240.$$

6.

a.
$$8439 \pm \frac{(1.645)(100)}{\sqrt{25}} = 8439 \pm 32.9 = (8406.1, 8471.9).$$

b.
$$1 - \alpha = .92 \Rightarrow \alpha = .08 \Rightarrow \alpha / 2 = .04$$
 so $z_{\alpha/2} = z_{.04} = 1.75$.