S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF02

Mathematical Finance: QF

Exercises (for discussion on Monday, 13.11.2023)

Exercise 1. Let X and Y be random variables representing the outcomes of two independently thrown fair dice.

- 1. Compute $E(X + Y \mid \{X = 4\})$, i.e. the conditional expectation of the sum of both scores given that the first die shows 4.
- 2. Compute $E(X \mid \{X + Y = 9\})$, i.e. the conditional expectation of the score of the first die given that the sum of both scores is 9.

Exercise 2. Let $(\Omega, \mathfrak{P}(\Omega), P)$ be a probability space with $\Omega = \{1, \ldots, 6\}$ and $P(\{1\}) = 0.3$, $P(\{2\}) = 0.1$, $P(\{3\}) = 0.1$, $P(\{4\}) = 0.2$, $P(\{5\}) = 0.2$, $P(\{6\}) = 0.1$. Furthermore, consider the σ -algebra $\mathcal{F} = \sigma(F_1, F_2, F_3)$ with $F_1 = \{1, 2\}$, $F_2 = \{3, 4\}$, $F_3 = \{5, 6\}$ and the random variable $X : \Omega \to \mathbb{R}$ with $X(\omega) = \omega$. We can illustrate the filtration $\mathcal{F}_0 := \{\emptyset, \Omega\}$, $\mathcal{F}_1 := \mathcal{F}$ and $\mathcal{F}_2 := \mathfrak{P}(\Omega)$ in the following tree:

Find the expectation of X and the conditional expectations of X given the events in the tree.

Exercise 3. Let $(\Omega, \mathfrak{P}(\Omega), P)$ be a probability space with $\Omega = \{\omega_1, \ldots, \omega_7\}$. We consider the stochastic process $X = (X_0, \ldots, X_4)$ given by the following table.

ω	$X_0(\omega)$	$X_1(\omega)$	$X_2(\omega)$	$X_3(\omega)$	$X_4(\omega)$
ω_1	1	2	2	3	3.5
ω_2	1	2	2	1	1
ω_3	1	0.5	0.5	0.5	3
ω_4	1	0.5	0.5	0.5	0.5
ω_5	1	1	2	2	3
ω_6	1	1	0.5	2	3
ω_7	1	1	0.5	1	1

- 1. Represent the filtration $\mathcal{F}_0, \ldots, \mathcal{F}_4$ generated by the process X in a tree.
- 2. Determine for n = 0, ..., 4 and each node on level n the values of X_n, X_{n-} and ΔX_n on the respective event.
- 3. Suppose that the probability measure P is given by the following table.

Is the process X a martingale, a submartingale, a supermartingale, or none of these? Prove your answer!

Exercise 4. Let \mathcal{A} and \mathcal{B} be two σ -algebras to a set Ω .

- 1. Is $A \cup B$ always a σ -algebra? Prove your answer!
- 2. Is $A \cap B$ always a σ -algebra? Prove your answer!