Constrained RPA

Jinyuan Wu

April 6, 2023

Jinyuan Wu Constrained RPA April 6, 2023 1/2

Table of contents

- Important papers
- 2 General idea
- 3 The problem of dynamic Hubbard model
- 4 Entangled bands
- 5 Existing implementations
- 6 Example: Fe-based superconductor

Jinyuan Wu Constrained RPA April 6, 2023 2 / 20

Important papers about cRPA

- F Aryasetiawan et al. "Frequency-dependent local interactions and low-energy effective models from electronic structure calculations".
 In: Physical Review B 70.19 (2004). Fig. 3 and Fig. 4 in the article are swapped in the published version: compare them with Fig 2, p. 195104
- F Aryasetiawan, T Miyake, and R Sakuma. "The constrained RPA method for calculating the Hubbard U from first-principles". In: The LDA+ DMFT approach to strongly correlated materials. 2011

Jinyuan Wu Constrained RPA April 6, 2023 3/20

Motivation

Strongly correlated electrons are ...

- Hard to treat ab initio
- Should be described by a lattice model

$$H = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}. \tag{1}$$

But should all electrons be included?

- *d* electron: correlated ones
- r electron: "trivial" ones

Jinyuan Wu Constrained RPA April 6, 2023 4/20

Diagrammatics

Screening by d and r = first screened by r and then d

$$W = (1 - vP)^{-1}v = (1 - W_rP_d)^{-1}W_r, \quad W_r = (1 - vP_r)^{-1}v, \quad (2)$$

- W is effective interaction
- where P_d is the polarization within d subspace,
- and $P_r = P P_d$

RPA works

RPA doesn't work

5/20

Jinyuan Wu Constrained RPA April 6, 2023

Diagrammatics

- P_d hard to obtain ⇒ we left it to an effective interaction without doing resummation for it
- P_r can be done by epsilon $\Rightarrow W_r$ can be obtained by epsilon
- But

is not in P_r , or otherwise we have double counting

- That's what we call constrained RPA (cRPA)
- A program to calculate a single ring diagram is needed

Jinyuan Wu Constrained RPA April 6, 2023 6 / 20

Band part

In GW:

$$\varepsilon^{GW} = \varepsilon^{0} + \Sigma^{\text{Hartree}} + \Sigma^{GW}$$

$$= \underbrace{\varepsilon^{0} + \Sigma^{\text{Hartree}} + V^{\text{xc}}}_{\text{WFN}} + \underbrace{\Sigma^{GW}}_{\text{sigma}} - \underbrace{V^{\text{xc}}}_{\text{vxc.dat}}$$
(3)

In the effective model . . .

- ullet We want $arepsilon^0$
- So the same $-V^{xc}$ procedure is needed(?)

Jinyuan Wu Constrained RPA April 6, 2023 7/

Risks in accuracy

Uncontrolled approximation: does RPA work for

The hopping between d electrons is small \Rightarrow it's safe to do so¹

Jinyuan Wu Constrained RPA April 6, 2023 8 / 20

¹F Aryasetiawan et al. "Frequency-dependent local interactions and low-energy effective models from electronic structure calculations". In: *Physical Review B* 70.19 (2004). Fig. 3 and Fig. 4 in the article are swapped in the published version: compare them with Fig. 2 p. 195104a.

Dynamic interaction in Hubbard model

Recall that $W = W(\mathbf{r}, \mathbf{r}, \boldsymbol{\omega}) \Rightarrow U_{ijkl}(\boldsymbol{\omega}) \Rightarrow$ retarded interaction!

- Hamiltonian form: interactions are always immediate (bosonic auxiliary field required to create retardation)
- ...or path integral formalism is to be used
- In either cases, it's slow!!!

Jinyuan Wu Constrained RPA April 6, 2023 9 / 20

Comment: frequency dependence in effective models

This actually reflects something deep about downfolding . . .

- Hamiltonian effective theory; Rayleigh-Schrodinger perturbation theory. In 1/(E-H), E is unperturbed energy
- Feynman diagram resummation. After splitting G into G^+ and G^- , it's equivalent to Brillouin-Wigner perturbation theory; In 1/(E-H), E is the *perturbed* energy
- An item in BWPT splits into an infinite series in RSPT!²

$$E^{GW} \simeq E^{DFT} + i W \frac{1}{E^{GW} - E^{DFT}}$$

$$= E^{DFT} + i W \frac{1}{E^{DFT} - E^{DFT \text{ (other bands)}}} + \cdots$$
(4)

⇒ why we need eigenvalue self-consistency

Jinyuan Wu Constrained RPA April 6, 2023 10 / 20

²KA Brueckner. "Many-body problem for strongly interacting particles. II. Linked cluster expansion". In: *Physical Review* 100.1 (1955), p. 36.

Dynamic interaction in Hubbard model

Is it possible to just enforce $\omega=0$...But it's not accurate!³

Ni self-energy, from static Hubbard $U=W_r(\omega=0)$, and from full $W(\omega)$

Jinyuan Wu Constrained RPA April 6, 2023

11/20

³Aryasetiawan et al., "Frequency-dependent local interactions and low-energy effective models from electronic structure calculations".

Dynamic interaction in Hubbard model

Why Im Σ is better captured by static U than Re Σ ?

Because Im $\Sigma \propto \text{DOS}$

And then high-frequency electrons contribute to low-frequency $\text{Re}\,\Sigma$

Jinyuan Wu Constrained RPA April 6, 2023 12 / 20

Making the Hubbard model static: method 1

Key point: correct the single-electron Hamiltonian using the retarded interaction

- Find static non-interactive \tilde{G}_d such that –
- ullet With the same static U, \tilde{G}_d leads to an interactive Green function close enough to the real one

Jinyuan Wu Constrained RPA April 6, 2023 13 / 20

Making the Hubbard model static: method 1

Method 1: correct the single-electron Hamiltonian using the retarded interaction

- Def: G_d = Green function for d electrons; \tilde{G}_d = Green function for d electrons corrected by $W-W_d$; W = RPA screened Coulomb interaction; W_d = static Hubbard U screened by G_d ; \tilde{W}_d = static Hubbard U screened by G_d ;
- Ignoring hopping between d and r subspaces caused by W (so the i $W(G-G_d)$ term is irrelevant for d electrons), we have

$$\tilde{G}_d^{-1} - i \, \tilde{G}_d \, \tilde{W}_d = G_d^{-1} - i \, G_d W_d - i \, G_d (W - W_d).$$
 (5)

From

$$W = (1 - UP)^{-1}U, \quad P = -i GG \Rightarrow G^{-1} - i GW = (1 - UP)^{-1}G^{-1}$$
(6)

we get the final equation: (here $\tilde{P}_d = -\mathrm{i}\; \tilde{G}_d \, \tilde{G}_d$, $P_d = -\mathrm{i}\; G_d \, G_d$)

$$(1 - U\tilde{P}_d)^{-1}\tilde{G}_d^{-1} = (1 - UP_d^{-1})^{-1}G_d^{-1} - iG_d(W - W_d).$$
 (7)

Jinyuan Wu Constrained RPA April 6, 2023 14 / 20

Making the Hubbard model static: method 2

Key point: introducing a bosonic field to "carry" the frequency-dependent $W(\omega)$.⁴

(Similar techniques are used in DMFT)

Jinyuan Wu Constrained RPA April 6, 2023 15 / 20

https://link.aps.org/doi/10.1103/PhysRevLett.109.126408 > < 5 >

⁴M. Casula et al. "Low-Energy Models for Correlated Materials: Bandwidth Renormalization from Coulombic Screening". In: *Phys. Rev. Lett.* 109 (12 2012), p. 126408. DOI: 10.1103/PhysRevLett.109.126408. URL:

cRPA for entangled bands

Jinyuan Wu

Entangled band problem A band consisting mostly of s electrons and a band consisting mainly of d electrons may cross each other

And an effective theory solely targeting d electrons is not well-defined

Constrained RPA

April 6, 2023

16 / 20

cRPA for entangled bands

Solution Sacrifice some inter-orbital hopping terms for disentangled band structure

- Standard DFT+Wannier run.
- Wannier and fake Bloch functions for the d subspace:

$$\psi_{ni}^{d} = \frac{1}{N} \sum_{\mathbf{k}} e^{-\mathbf{k} \cdot \mathbf{R}_{i}} \underbrace{\sum_{m} U_{mn}(\mathbf{k}) \psi_{m\mathbf{k}}}_{\psi_{d\mathbf{k}}^{d}}, \tag{8}$$

Getting the r-subspace

$$\psi_{nk}^{r} = \left(1 - \sum_{m} |\psi_{mk}^{d}\rangle\langle\psi_{mk}^{d}|\right)\psi_{nk}.$$
 (9)

Calculating

$$H^{dd} = \left[\left\langle \psi_{mk}^{d} \middle| H(k) \middle| \psi_{nk}^{d} \right\rangle \right], \quad H^{rr} = \left[\left\langle \psi_{mk}^{r} \middle| H(k) \middle| \psi_{nk}^{r} \right\rangle \right]$$
 (10)

 H^{dr} is thrown away.

cRPA for entangled bands

Left: original bands

Right: H^{dd} and H^{rr} ; after throwing away some s-d hopping (and closing several band gaps), the energy of H^{dd} is now bounded

Jinyuan Wu Constrained RPA April 6, 2023 18 / 20

Existing implementations

- VASP ALGO=CRPA selects constrained RPA calculations, available as of VASP.6.4
- ABINIT ucrpa before version 9, as an option in the RPA module
- BerkeleyGW XUnfortunately . . .
- RESPACK⁵: from Quantum ESPRESSO

Jinyuan Wu Constrained RPA April 6, 2023 19 / 20

⁵Kazuma Nakamura et al. "RESPACK: An ab initio tool for derivation of effective low-energy model of material". In: *Computer Physics Communications* 261 (2021) p. 107781. ≥ → ○ ○

Example: Fe-based superconductor

The cRPA-to-Hubbard methodology has already been applied to Fe-based SC⁶⁷

Some claim that they can obtain the correct doping concentration required for SC^8

⁶Kazuma Nakamura, Ryotaro Arita, and Masatoshi Imada. "Ab initio derivation of low-energy model for iron-based superconductors LaFeAsO and LaFePO". In: *Journal of the Physical Society of Japan* 77.9 (2008), p. 093711.

8 Takahiro Misawa and Masatoshi Imada. "Superconductivity and its mechanism in an ab ✓ ९ ० Jinyuan Wu Constrained RPA April 6, 2023 20 / 20

⁷Takashi Miyake et al. "Comparison of ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe, LiFeAs, FeSe, and FeTe: Electron Correlation and Covalency". In: *Journal of the Physical Society of Japan* 79.4 (2010), p. 044705. DOI: 10.1143/jpsj.79.044705. URL: https://doi.org/10.1143%2Fjpsj.79.044705.