Homework 1

Jan 26, 2017

Earle Aguilar (804501476)

Problem 1.0:

\mathbf{a}

Let $M=(Q,\Sigma,\delta,q_0^{'},F)$ be a DFA that accepts w. We construct an NFA $N=(Q^{'},\Sigma,\delta^{'},q_0,F^{'})$ that also accepts w.

Construct N:

- 1. Q' = Q
- 2. $q_0' = q_0$
- 3. $\delta'(q_i, w_i) = \{\delta(q_i, w_i)\}\$ a unit set.

From this contruction we emulate M exactly since our delta function only uses one of the possible paths an NFA could take. After the finishing the computation of w there is only one accept state and only one path.

b

Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA that accepts w. We construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$ that also accepts w. Construct M:

- 1. $Q' = \mathcal{P}(Q)$
- 2. $\delta'(R, w_i) = \epsilon closure(\bigcup_{r \in R} \delta(r, w_i))$
- 3. $q_0 = \epsilon closure(\{q_0\})$ 4. $F' = \{a \in Q' \mid |a \in F| > \frac{|a|}{3}\}$

Problem 2.0:

We $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L. We construct an NFA M' that accepts L_R

Constructing M':

- 1. Q' = Q
- 2. $\Sigma = \Sigma$
- 3. $\delta'(q_i, a \in \Sigma) = \{q_i \mid \delta(q_i, a \in \Sigma) = q_i\}$
- 4. $q_0' \in F$
- 5. $F' = q_0$

Claim: w is accepted by $M \iff w^R$ is accepted by M'

Proof.

- (\Leftarrow) Let $w = w_1 w_2 \dots w_m \in L$. Machine M starts at q_0 and $\forall i \geq 0$, $q_{i+1} = \delta(q_i, w_i)$. When we reach w_n , $\delta(q_{n-1}, w_n) \in F$.
- (\Rightarrow) Let $w^R = w_n w_{n-1} \dots w_1 \in L_R$. By construction Machine M' starts at $q_0' \in F$, the accepting states of M. Also by construction of the delta function, $\delta'(q_i, a \in \Sigma)$, we reversed the paths of Machine M s.t $\forall i \leq n, \ \delta'(q_i, a)$ will send us to a state q_j where $\delta(q_j, a) = q_i$. When we reach w_1 , $\delta(q_1, w_1) \in F' = q_0$, the start state of M.

Problem 3.0:

We $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L. We construct an NFA M' that accepts L_{alt}

Constructing M':

- 1. Q' = Q
- $2. \ \Sigma = \Sigma$
- 3. $\delta'(q_i, a \in \Sigma) = \{q_j \mid \delta(q_{i+1}, b \in \Sigma) = q_j\}$
- 4. $q_0' = q_0$
- 5. $F' = \{q_{n-2}, q_n\}$

Claim: w is accepted by $M \iff w_{alt}$ is accepted by M'

Proof.

- (\Leftarrow) Let $w = w_1 w_2 \dots w_m \in L$. Machine M starts at q_0 and $\forall i \geq 0$, $q_{i+1} = \delta(q_i, w_i)$. When we reach w_n , $\delta(q_{n-1}, w_n) \in F$
- (\Rightarrow) Let $w_{alt} = w_1 w_3 w_5 \dots w_m \in L_{alt}$. By construction machine M' starts at q_0 . Also by construction of $\delta'(q_i, a \in \Sigma)$ we skip every other state into a state q_j s.t $\delta(q_{i+1}, b \in \Sigma) = q_j$. When we process w_m we will be in one of the accepting states q_{n-2} when m is odd and q_n when m is even. \square

Problem 4.0:

We $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L. We construct an NFA M' that accepts $L_{\frac{1}{2}}$

Constructing M':

1.
$$Q' = Q \times Q$$

2.
$$\Sigma = \Sigma$$

3.
$$\delta'(q_i, a \in \Sigma) = \begin{cases} \delta(q_i, a) \\ q_j \mid \exists \ \delta(q_j, b \in \Sigma) = q_i \end{cases}$$

4.
$$q'_0 = \{(q_0, q_i) \mid q_i \in F\}$$

5. $F' = \{(q_i, q_j) \mid i = j\}$

5.
$$F' = \{(q_i, q_j) \mid i = j\}$$

Claim: w is accepted by M $\iff w_{\frac{1}{2}-}$ is accepted by M'

Proof. (\Leftarrow) Let $w = w_1 w_2 \dots w_m \in L$. Machine M starts at q_0 and $\forall i \geq 0$, $q_{i+1} = \delta(q_i, w_i)$. When we reach w_n , $\delta(q_{n-1}, w_n) \in F$

 (\Rightarrow) Let $w_{\frac{1}{2}-}=w_1w_2\dots w_{m/2}$ $inL_{\frac{1}{2}-}$. By construction machine M' starts at $\{(q_0,q_i)\mid q_i\in F\}$. So we run two machines the original machine M and a modified version of M in reverse. By construction of δ'