Taylor's Theorem

Taylor's Theorem is a fundamental result that we'll use often in MACM 316!!

Text §1.1

<u>Theorem:</u> Let f(x) and its first n+1 derivatives be continuous on [a,b], and let $x_o \in [a,b]$ be some given point. Then for every $x \in [a,b]$, there is some real number c between x_o and x such that

$$f(x) = P_n(x) + E_n(x)$$

where the nth order Taylor polynomial is

$$\begin{split} P_n(x) &= f(x_o) + f'(x_o)(x - x_o) + \frac{f''(x_o)}{2!}(x - x_o)^2 + \dots + \frac{f^{(n)}(x_o)}{n!}(x - x_o)^n \\ &= \sum_{k=0}^n \frac{f^{(k)}(x_o)}{k!}(x - x_o)^k \end{split}$$

and the remainder (or truncation error) term is

$$E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_o)^{n+1}$$

<u>Alternate formulation</u> (let $x = x_o + h$, then replace $x_o \rightarrow x$):

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \dots + \frac{f^{(n)}(x)}{n!}h^n + \frac{f^{(n+1)}(c)}{(n+1)!}h^{n+1} \qquad \text{for c between} \\ x \text{ and } x + h$$

Taylor Polynomials: Example 1

Approximate the function $f(x) = \cos(x)$ for $0 \le x \le 2\pi$ with a Taylor polynomial of degree 4 near the point $x_0 = 0$:

• Compute derivatives of f:

$$f'(x) = -\sin(x) , f''(x) = -\cos(x)$$

$$f''(x) = \sin(x) , f''(x) = \cos(x)$$

• Evaluate derivatives at $x_0 = 0$:

$$f(c) = 1$$
, $f'(c) = 0$, $f''(c) = -1$
 $f'''(c) = 0$, $f'''(c) = 1$

• Substitute into Taylor's formula:

$$\cos(x) = 1 - \frac{1}{z!} x^2 + \frac{1}{4!} x^4 - \frac{4 \ln c}{5!} x^5$$

$$P_{\mu}(x)$$

$$E_{\mu}(x)$$

for c between 0 and x

Note: When x is close to
$$x_0=0$$

$$\frac{1}{5!}, x^5 \text{ is small} \Longrightarrow F_4(x)$$

$$|\sin(c)| \leq$$

Taylor Polynomials: Example 1b

Repeat the last example, but approximate cos(x) at $x_0 = \frac{\pi}{2}$:

$$f(\frac{\pi}{2}) = 0 \qquad f'(\frac{\pi}{2}) = -1 \qquad f''(\frac{\pi}{2}) = 0 \qquad f'''(\frac{\pi}{2}) = 0$$

$$\cos x = -(x - \frac{\pi}{2}) + \frac{1}{3!}(x - \frac{\pi}{2})^3 - \frac{\sin c}{5!}(x - \frac{\pi}{2})^5$$

$$E_{\mu}(x)$$

$$E_{\mu}(x)$$

which holds for some c between $\frac{\pi}{2}$ and x.

Note: To obtain a useful approximation, you *must* know values of $f(x_o)$, $f'(x_o)$, $f''(x_o)$, ... analytically. So be strategic in your choice of x_o .

Taylor Polynomials: Example 2

Approximate $\sqrt{4.04}$ using Taylor polynomials of degree n = 1, 2:

• Define $f(x) = \sqrt{\chi}$ and choose $x_0 = 4$ \longrightarrow since 4 is close to 4.04

$$f(x) = x^{\frac{1}{2}}, f'(x) = \frac{1}{2}x^{\frac{1}{2}}, f''(x) = \frac{1}{4}x^{-\frac{1}{2}}, f'''(x) = \frac{3}{8}x^{-\frac{1}{2}}$$

• Taylor polynomial approximation of order n = 1 (2 terms) is

$$P_1(x) = f(4) + f'(4)(x - 4) = x^{\frac{1}{2}} + \frac{1}{2}x^{\frac{1}{2}}(x - 4)$$

$$P_1(4.04) = 2 + \frac{1}{4}(4.04 - 4) = 2.01$$
 (Exact $\sqrt{4.04} = 2.009975124224...$)

- Error estimate: how accurate is $P_1(4.04)$?

 * Take remainder term $E_1(4.04) = \frac{1}{2}f''(c)(4.04-4)^2$ c is some number between 4 and 4.04(we don't know it is, thus, it is estimated)

 - * Holds for $c \in [4, 4.04]$, but estimate $f''(c) \approx f''(4) = -\frac{1}{32}$
 - * Then absolute error is $|E_1(4.04)| \approx \frac{1}{2} (-\frac{1}{32}) (4.04-4)^2 \approx 0.25 \times 10^{-4}$ corresponding to a relative error $\approx 0.25 \times 10^{-4} = 0.125 \times 10^{-4}$ real value is roughly Z
- Compare using exact value for relative error:

$$\left|\frac{2.01-\sqrt{4.04}}{\sqrt{4.04}}\right|\approx 6.1238\times10^{-4}$$
 Error is roughly within 5 sig digits

• The 3-term Taylor polynomial (n = 2, $x_o = 4$, x = 4.04) can be found using the previous result and adding one more term:

$$P_{2}(x) = \underbrace{f(x_{o}) + f'(x_{o})(x - x_{o})}_{2} + \underbrace{\frac{f''(x_{o})}{2}(x - x_{o})^{2}}_{2}$$

$$P_{2}(4.04) = f(4) + f'(4) (4.04 - 4) + \underbrace{f''(4)}_{2} (4.04 - 4)^{2}$$

$$= 4^{\frac{1}{2}} + \frac{1}{2}(45^{\frac{1}{2}}(0.04) - \frac{1}{3}(40.04)^{2} = 2.0099$$

$$= 2 + \frac{1}{4}(0.04) - \frac{1}{14}(0.04)^{2} = 2.0099$$

Exercise: Estimate error using the remainder term $E_2(x)$.

$$E_{2}(x) = \frac{1}{3!} f'''(x_{0}) (x-x_{0})^{3}$$

$$= \frac{1}{9} (\frac{3}{8} 14)^{-\frac{5}{2}}) (4.04-4)^{3}$$

$$= 8.333 \times 10^{-8} \approx 0.83 \times 10^{-9}$$

40/48

Limiting Behaviour of the Remainder

Consider "alternate form" of Taylor's formula:

$$f(x+h) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}}_{P_{n}(x)} + \underbrace{\frac{f^{(n+1)}(c)}{(n+1)!} h^{n+1}}_{E_{n}(x)}$$

- For small h, this form has two advantages:
 - * it emphasizes that you're approximating f at a point close to x (if |h| > 1 then $E_n(x)$ grows with n)
 - * the remainder term $E_n(x)$ is clearly $O(h^{n+1})$
- When viewed as an "algorithm", the Taylor polynomial approximation can be improved (accuracy increased) by either:
 - * reducing h: smaller interval, but more restrictive \implies O (h^{n+1})
 - * increasing n: more terms, also more expensive \implies $O\left(\frac{1}{(n+1)!}\right)$
 - ... there is an obvious trade-off in accuracy vs. efficiency

(such trade-offs are a common theme in MACM 316)

Taylor Polynomials: Example 3

1. (a) Approximate π using the Taylor polynomial for $\arctan x$ at $x_0 = 0$:

$$\arctan x \approx x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{x^{2n-1}}{2n-1}$$
$$= \sum_{k=1}^{n} (-1)^{k-1} \left(\frac{x^{2k-1}}{2k-1} \right) = P_n(x)$$

and recalling $\tan \left(\frac{\pi}{4}\right) = 1 \implies \pi = 4 \arctan(1) = 4 \left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right]$

(b) Use the first neglected term to estimate the order n needed so that π is correct to 5 significant digits.

Recall from Calc II:

for alternating series only, the first neglected term is a bound for the remainder!

2. Then use the amazing formula

$$\pi = 4 \left(\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) \right)$$

combined with the Taylor polynomial to approximate π .

MATLAB code: piapprox.m implements both formulas – play with it!

Question: Why is approximation #2 so much better than #1?

Estimating Pi Throughout History

People have actually been trying to estimate π at least since the days of King Solomon and the prophet Jeremiah:

The 'Molten Sea'

"And he made a molten sea, ten cubits from the one brim to the other. It was round all about, and its height was five cubits. And a line of thirty cubits did compass it round about."

(1 Kings 7:23)

Corollary: $\pi = \frac{30 \text{ cubits}}{10 \text{ cubits}} = 3$?

Computing Pi's Digits

- These arctan series are the simplest of many formulas for approximating π .
- The most famous of all is the Bailey–Borwein^{SFU}–Plouffe (BBP) formula:

$$\pi = \sum_{k=0}^{\infty} \frac{1}{16^{k}} \left[\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right]$$

- BBP can compute binary or hex digits of π starting at any position ... without computing any preceding digits!
- Every so often, newspapers report on someone who has computed π to some ridiculously huge number of digits ... the current record is 31 trillion! (set in March 2019)
- For most practical purposes 16 decimal digits are sufficient actually, the best that you can hope for (think $\varepsilon_{\rm M}$).
- BUT BBP remains an important benchmark algorithm for testing speed and correctness of new super-computers.

[Source: http://fivethirtyeight.com]

Practical Algorithms via Taylor Polynomial Approximation

- Taylor polynomials are incredibly useful, and ubiquitous in software
- MATLAB provides many built-in functions you'll study two of these on Hwk #2:

```
>> type linspace

function y = linspace(d1, d2, n)
% LINSPACE Linearly spaced vector.
% LINSPACE(d1, d2, n) generates a row vector of
% n equally spaced points between d1 and d2.
. . .
y = d1 + (0:n-1).*((d2 - d1)./(n-1));
```

• MATLAB implements sin using a C code from FDLIBM available at NETLIB, which is THE most trusted source of numerical software:

```
http://www.netlib.org/fdlibm --> k_sin.c
```

For fun: Look up other basic math functions in FDLIBM!

```
* Copyright (C) 1993 by Sun Microsystems, Inc.
 * ========= */
/* kernel sin(x, y, iy)
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 * ALGORITHM:
       1. Since sin(-x) = -sin(x), we need only to consider positive x.
       2. if x < 2^{-27} (hx<0x3e400000 0), return x with inexact if x!=0.
       3. \sin(x) is approximated by a polynomial of degree 13 on
         [0,pi/4]
                            3
                                       13
              \sin(x) ~ x + S1*x + ... + S6*x
         where
       Isin(x)
                    2
                               6
                                    8 10 12 I -58
       |-----| (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x ) | <= 2
 */
. . .
= -1.666666666666666324348e-01, /* 0xBFC55555, 0x555555549 */
    = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S2
S3
    = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
   = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
    = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S5
   = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
S6
```

Intermediate Value Theorem or IVT

Text §1.1

Theorem: Let f(x) be continuous for all $x \in [a, b]$, and let K be any number between f(a) and f(b). Then there exists some real number $c \in (a, b)$ with f(c) = K.

This expresses the intuitive idea that continuous functions have no gaps or jumps.

Example: Apply IVT to the function

$$p(x) = 9 - 14x + 7x^2 - x^3$$

on the interval $[\frac{1}{2}, 5]$.

- Consider K = 0 and K = 2.
- Endpoints: $p(\frac{1}{2}) = 3.625$, p(5) = -11
- Because K = 0 lies in between, there must be a $c \in [\frac{1}{2}, 5]$ with p(c) = 0.
- Similarly for K = 2 (see plot).

<u>Aside:</u> If interval was $[\frac{1}{2}, 4]$ instead, then p(4) = 1 and K = 2 still lies between the endpoint values, <u>BUT IVT</u> doesn't apply with K = 0 anymore.

Mean Value Theorem or MVT

<u>Theorem:</u> Let f(x) be continuous and differentiable for all $x \in [a, b]$. Then there exists some real number $c \in (a, b)$ with

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

- This is simply a statement equating:
 - * slope of secant line joining x = a, b (RHS)
 - * slope of tangent line at x = c (LHS)
- We'll use MVT mostly to prove other useful results.

Text §1.1

MVT Example

Apply MVT to the polynomial

$$f(x) = 1 - x + 3x^3$$
 for $0.5 \le x \le 2.5$

where the endpoints are (0.5, 0.875) and (2.5, 45.375):

• The secant line through these two points is

$$S(x) = -10.25 + 22.25x$$
 (slope = $\frac{45.375 - 0.875}{2.5 - 0.5} \approx 22.25$)

• Now, determine which tangent line has the same slope:

$$f'(c) = -1 + 9c^2 \approx 22.25 \implies c \approx 1.607, f(c) \approx 11.85$$

• Tangent line to f(x) at x = 1.607 is

$$T(x) = -23.91 + 22.25x$$

