

MiniZed: Creating a Zynq Hardware Platform in Vivado

Overview

With a traditional processor, the hardware platform is pre-defined. The manufacturer selected the processor parameters and built-in peripherals when the chip was designed. To make use of this pre-defined processor, you need only target that specific hardware platform in the software development tools.

The Zynq-7000 All Programmable SoC is different. Zynq provides multiple building blocks and leaves the definition to you as the design engineer. This adds flexibility, but it also means that a bit of work needs to be done up front before any software development can take place.

The first step in completing a Zynq design is to define and build the hardware platform. The purpose of this tutorial is to show you how to quickly and easily create a base hardware platform for MiniZed.

Objectives

When this tutorial is complete, you will be able to:

- Create a new project in Vivado, targeting MiniZed
- Create a block based design to insert an ARM processor core
- Import the MiniZed Zyng PS Preset settings
- Build and export the hardware platform

Experiment Setup

Software

The software used to test this reference design is:

- Windows-7 64-bit
- Xilinx Vivado 2018.1
- Board Definition Install for Vivado 2018.1
 - MiniZed: http://minized.org/support/documentation/18891

Hardware

The hardware setup used to test this reference design includes:

- Win-7 PC with the following recommended memory¹:
 - o 1.6 GB RAM available for the Xilinx tools to complete a XC7Z010 design
 - o 2.3 GB RAM available for the Xilinx tools to complete a XC7Z015 design
 - o 1.9 GB RAM available for the Xilinx tools to complete a XC7Z020 design
 - o 2.7 GB RAM available for the Xilinx tools to complete a XC7Z030 design

Pac	ıe	2

Experiment 1: Create a New Zynq Project in Vivado

The MiniZed development board is supported by <u>Vivado WebPack</u> (which is free). The Zynq Processing System (PS) may be used without anything programmed in the Programmable Logic (PL). This PS-only style is the simplest way to use Zynq, so that is what we will do during this lab. However, the power of Zynq is found in using soft IP in the PL, interconnecting PS to PL, and routing extra PS built-in peripherals through EMIO to PL I/Os, and then programming of the PL is required.

This tutorial will take advantage of built-in 3rd-party board definition files.

- <u>www.minized.org</u> → Support → Documentation → MiniZed → MiniZed Board Definition Install
- 1. If not previously completed, download the MiniZed Board Definition Install for Vivado 2018.1 archive and follow the instructions to install the board definitions.
- 2. Launch Vivado by selecting Start → All Programs → Xilinx Design Tools → Vivado 2018.1 → Vivado 2018.1.
- Select File → New Project or click on Create New Project under Quick Start.

Figure 1 – Vivado Launched

4. Click Next >.

Figure 2 – New Vivado Project Wizard Launched

- 5. Click the browse icon . Browse to set the *Project location* to your desired project location and click **Select**.
- 6. Set the *Project name* to **MiniZed_Basic_System**. Also verify the *Create project subdirectory* checkbox is selected. Click **Next** >.

Figure 3 – Set Project Name and Location

7. The project will be RTL based, so leave the radio button for *RTL Project* selected. Since this is a brand new project, check the box for *Do not specify sources at this time*. Click **Next >**.

Figure 4 – Set Project Type

Next, the **Default Part** is selected. This can be done by specifying a specific part or by selecting a board. If you have installed the Board Definition archive correctly, you will have access to the MiniZed BDF.

- 8. In the *Select* area, select **Boards**.
- 9. Set the *Vendor* to **em.avnet.com**. This should leave only seven boards in the table.
- 10. Single-click the MiniZed Click Next >.

Figure 5 - Select the Target Board

11. A project summary is displayed. Click Finish. The Vivado cockpit is now displayed.

Figure 6 - New Project Summary

Figure 7 - Vivado Cockpit

Page 8

Copyright © 2018 Avnet, Inc. AVNET, "Reach Further," is a registered trademark of Avnet, Inc. All other brands are the property of their respective owners.

Experiment 2: Create and Edit a Block Design

The current project is blank. To access the ARM processing system, we will add an embedded source to the Vivado project using IP Integrator.

1. The recommended way to add an embedded processor is through the Block Design method via IP Integrator. Select **Create Block Design**.

Figure 8 - Create Block Design

2. Give the Block Design a name. System is commonly used. Click **OK**.

Figure 9 - Block Design Name

3. In the Diagram window, click the **Add IP** text icon [†] in either location.

Figure 10 - Add IP to the Block Design

4. The *Add Sources* window opens. Start typing "Zynq" in the search window. Find the **ZYNQ7 Processing System** IP. Either double-click this or drag and drop to the *Diagram* window.

Figure 11 – Add IP Window

The Zynq Processing system will appear in the *Diagram* window. Also a new tab will appear labeled **Address Editor**.

Figure 12 - Updated Block Diagram

5. Similar to the Add IP prompt in the previous step, notice now that the Designer Assistance has provided the hint to Run Block Automation. Click the Run Block Automation link at the top of the window.

Figure 13 - Run Block Automation

Page 12

6. Notice the block automation wizard has identified two sources of I/O that need to be made external. One is obvious, the **DDR** interface. The other is labeled **FIXED_IO**. FIXED_IO is basically the MIO pin connections. They are labeled FIXED IO because you cannot change their assignments in this window.

The Apply Board Preset checkbox applies the Preset TCL that was included as part of the board definition archive. Leave this checked. For details about how to build a system manually, please see the Developing Zyng Hardware Speedway.

The Cross Trigger options may be left Disabled.

Click **OK** to connect these external signals.

Figure 14 - Run Block Automation

7. You will now see the Zyng block with external I/O.

Figure 15 - Zynq Block Diagram for MiniZed with External I/O

8. At this point, we can **validate** our design. Click the Validate Design icon successful validation window will appear. Click **OK**.

Figure 16 - Validate Zyng Block Design

Page 14

Figure 17 - Validation Successful

9. Click **Save Block Design** icon, , to save the project.

Figure 18 - Save Block Design

10. Switch to the Sources tab by clicking on it.

Figure 19 – Sources Tab

11. Right-click on System (System.bd) and select Create HDL wrapper.

Figure 20 - Create Top Level HDL Wrapper

12. For now, leave the option selected to *Let Vivado manage wrapper and auto-update*. Click **OK**.

Figure 21 – Let Vivado Manage Wrapper

13. Once the top-level wrapper is created, you can see the design hierarchy in the *Sources* tab. Notice that **System_wrapper.vhd** is the top-level HDL wrapper that was created. **System.bd** is the Block Design.

Figure 22 - System_wrapper.vhd Generated

14. Click **Generate Bitstream** in the *Flow Navigator* window.

Figure 23 - Generate Bitstream

15. Click yes to start Synthesis and Implementation flows.

Figure 24 -- Launch Synthesis and Implementation

Figure 25 – Progress Status

16. When bitstream generation is completed, click **OK** to *Open Implemented Design*.

Figure 26 - Open Implemented Design

Experiment 3: Export Hardware Platform to SDK

Now that we've created an embedded system, we must make this platform available to the Software Development Kit (SDK). This is done by exporting the hardware platform.

In the Vivado tool, select File → Export → Export Hardware. Check the box to Include
bitstream. Click OK. You could specify a different directory, but for now, leave it as Local
to Project.

Figure 27 – Export Zyng Hardware Platform

2. We will now explore what you have created. In Windows Explorer, browse to your project directory.

Figure 28 – Project Directory Contents after Export to SDK

You will notice seven directories and one file here. The .xpr file is your Vivado Project File and can be used to re-launch your project when you come back to work on it some more.

The .cache, .hw, .runs, .sim, and .srcs directories contain everything related to the hardware design, including the block design source, wrapper HDL, and synthesis/implementation results.

The .sdk folder is the result of the *Export Hardware* operation. Everything required for SDK to import the hardware platform is contained inside one file inside this directory. A hardware engineer looking to share the design with the software team could provide this one file. This provides a very compact and portable method to send a Zynq Hardware Platform to a colleague.

Figure 29 – Zyng Hardware Platform Export for SDK

The next tutorial will show you how to open SDK, import a hardware platform, and run Hello World.

Revision History

1 to violeti i noter y		
Date	Version	Revision
23 Aug 2013	2013_2.01	Initial Avnet release for Vivado 2013.2
02 Jun 2014	2014_1.01	Update for 2014.1 using Avnet MicroZed board definition archive.
11 Jun 2014	2014_2.01	Update for 2014.2. Export hardware now produces HDF file.
29 Jun 2015	2015_1.01	Update for 2015.1. Added support for MicroZed 7020 and PicoZed 7010/15/20/30.
15 Jul 2015	2015_2.01	Update for 2015.2
06 Apr 2016	2015_4.01	Update for 2015.4. Extra connection for eMMC no longer necessary. Added instruction for new PicoZed board definitions to connect the AXI GPIO.
01 Jun 2016	2015_4.02	Update for 2015.4. Added instruction clarification for Run Automation.
15 Sept 2016	2016_2.01	Updated for 2016.2. Minor figure changes.
20 Jan 2017	2016_4.01	Updated to 2016.4.
05 Jun 2017	2017_1.01	Updated to 2017.1 for MiniZed only
10 Apr 2018	2018_1.01	Updated to 2018.1 for MiniZed