Report of the Subcommittee to review the course number: MTH102 Title of the course: (Mathematics II) 3L-1T-0P-0A (11 credits)

Objective of the course: The course gives the student a foundation in linear algebra and ordinary differential equations.

Specialized Infrastructure requirement: Sufficiently sized room to handle large class size.

Instructional aspects: Tutorial sessions either at the end or beginning of the week.

Course content: See break-up below

Lecture-wise break-up: (please note that the duration of each lecture is 50 minutes)

S. No.	Topic: Linear Algebra	Suggested Number of Lectures
1	Matrices, System of linear equations, Gauss elimination method, Elementary matrices.	1
2	Elementary matrices, Invertible matrices Gauss-Jordon method for finding inverse of a matrix.	1
3	Determinants, Basic properties of determinants.	2 .
4	Cofactor expansion, Determinant method for finding inverse of a matrix, Cramer's Rule.	1
5	Vector space, Subspace, Examples.	1
6	Linear span, Linear independence and dependence, Examples.	1
7	Basis, Dimension, Extension of a basis of a subspace, Intersection and sum of two subspace, Examples.	2
8	Linear transformation, Kernel and Range of a linear map, Rank-Nullity Theorem.	1
9	Rank of a matrix, Row and column spaces, Solvability of system of linear equations, some applications	1
10	Inner product on \mathbb{R}^n , Cauchy-Schwartz inequality, Orthogonal basis, Gram-Schmidt orthogonalization process.	1
11	Orthogonal projection, Orthogonal complement, Projection theorem, Fundamental subspaces.	1
12	Fundamental subspaces and their relations, An application (Least square solutions and least square fittings).	1

13	Eigen-values, Eigen- Vectors, Characterization of a diagonalizable matrix.	1
14	Diagonalization: Example, An application.	1
15	Diagonalization of a real symmetric matrix.	1
16	Representation of a real linear maps by matrices (optional)	1
	Topic: Ordinary differential equations	
17	Introduction to DE, Order of DE, First Order ODE $F(x, y, y') = 0$.	1
18	Concept of solution (general solution, singular solution, implicit solution etc.),	1
10	Geometrical interpretations (direction fields, nullclines)	1
10	Separable form, Reduction to separable form, Exact equations, Integrating	1
19	factors [of the form F(x) and F(y)].	1
20	Linear equations, Bernoulli equation, orthogonal trajectories.	1
21	Picard's existence and uniqueness theorem (without proof), Picard's iteration	
	method.	1
22	Numerical methods: Euler's method, improved Euler's method.	1
22	Second order linear ODE: fundamental system and general solutions of	
23	homogeneous equations, Wronskian, reduction of order.	- 1
24	Characteristic equations: real distinct roots, complex roots, repeated roots.	1
25	Non-homogeneous equations: undetermined coefficients	1
26	Non-homogeneous equations: variation of parameters	1
27	Extension to higher order differential equations, Euler-Cauchy equation.	1
28	Power series solutions: ordinary points (Legendre equation).	1
20	Power series solutions: regular singular points (Bessel equation), Frobenius	1
29	method, indicial equations.	1
30	Legendre polynomials and properties	1
31	Bessel functions and properties	1
32	Sturm comparison theorem, Sturm-Liouville boundary value problems,	1
32	orthogonal functions.	1
33	Laplace transform: Laplace and inverse Laplace transforms, first shifting	1
33	theorem, existence, transforms of derivative and integral	1
34	Laplace transform: Differentiation and integration of transforms, unit step	1
34	function, second shifting theorem.	1
35	Laplace transform: Convolution and applications, initial value problems	1
	TOTAL	37

Suggested reference material:

- (1) Linear Algebra G. Strang, "Introduction to linear algebra", 4th Edition, Wellesley Cambridge Press.
- (2) Ordinary Differential Equations G.F. Simmons, "Differential equations with applications and historical notes", 2nd Edition.

Main differences suggested in this review:

- (1) The course content has been changed. The new MTH102 covers the topics of linear algebra and ordinary differential equations.
- (2) The contents are similar to that covered under similar topics in MTH102 and MTH203, earlier.