Exercise 8.1

- (a) $S = \{ f \mid f \text{ is undefined for input } 0 \}$
- (b) $S = \{ f \mid f \text{ is a total function and computable } \}$
- (c) There exists a TM that accepts the same language as a another TM but one halts on an even number of steps while the other on an uneven number of steps.
- (d) $S = \{f \mid f \text{ computes the binary multiplication function mul: } \mathbb{N}_0^2 \to \mathbb{N}_0 \text{ with mul}(x, y) = x * y\}$

Exercise 8.2

Since there exist functions to transform a given type-0 grammar to a DTM and vice versa, we can look at the problem from a DTM perspective.

Let $S = \{L(M)|L(M) = \emptyset\}$ be the set of languages that contains all languages of TM's that have an empty language.

Let M_1 be a DTM with $L(M_1) = \emptyset$. For example M_1 could reject every input immediately. Then let M_2 be a DTM with $L(M_2) \neq \emptyset$. For example M_2 could accept a single string.

In this case, $L(M_1) \in S$ but $L(M_2) \notin S$ and we see that S is a non-trivial property of Turing Machine languages.

Now Rice theorem tells us that every non-trivial property of a language is undecidable and because there exist functions to transform from a DTM to a type-0 grammar, we can apply this result also for the type 0 grammars. Therefore EMPTINESS is in fact undecidable.

Exercise 8.3

(a) A non-deterministic algorithm for the Hitting Set problem is as follows:

Algorithm 1 Non-deterministic Algorithm for HittingSet (short version)

- 1: Choose a set H of size at most k non-deterministically.
- 2: for each set $S_i \in S$ do
- 3: Check whether $S_i \cap H$ is non-empty.
- 4: **if** $S_i \cap H$ is empty **then**
- 5: Reject the instance.
- 6: end if
- 7: end for
- 8: Accept the instance.

The algorithm runs in polynomial time because each non-deterministic choice can be made in polynomial time. The size of the input is proportional to the size of the set U and the number of sets in S, so the runtime is polynomial in the size of the input.

The algorithm is correct because if there exists a hitting set of size at most k, then the algorithm will accept the instance. If there does not exist a hitting set of size at most k, then the algorithm will reject the instance for any choice of H of size at most k. Therefore, the algorithm correctly decides the decision version of the Hitting Set problem.

Algorithm 2 Deterministic Algorithm for HittingSet (short version) xD

- (b) 1: for each $H' \in \text{all possible subsets of } U \text{ with } |H'| \leq k \text{ do}$
 - 2: Check if $S_i \cap H' \neq \emptyset$ for all $Si \in S$.
 - 3: **return** True
 - 4: end for
 - 5: **return** False

Exercise 8.4

- (a) n^3 will dominate as n gets larger. Therefore the runtime of X is bound to a polynomial function and we can conclude that X is a P problem.
- (b) The runtime of $n^{\log_2(n)}$ grows faster than any polynomial function because the exponent is not constant and grows with the size of n. We cannot conclude that X is in P for that reason.