Débat basé sur la théorie de la décision

Tony Seguin

Encadrants:
Olivier Cailloux
Meltem Öztürk
Université Paris-Dauphine - LAMSADE

12 octobre 2018

- Sujet de stage
 - Problématique
- 2 Débat
 - Introduction
 - Scénario
- O Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- A Résultats et conclusion
 - Travaux effectués
 - Résultats
 - Conclusion

Sujet de stage

- Sujet de stage
 - Problématique
- - Introduction
 - Scénario
- - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- - Travaux effectués
 - Résultats
 - Conclusion

Problématique

• Problème d'aide à la décision

Alternatives

x : Bell

y: Pomme

z: PV

Critères

c₁: écran

c₂: processeur

c₃: batterie

Poids

 $w_1 = 0.40$

 $w_2 = 0.35$

 $w_3 = 0.25$

Performances

x = (0.79, 0.65, 0.70)

y = (0.89, 0.60, 0.30)

z = (0.58, 0.55, 0,53)

Fournir une argumentation

Solution proposé

 Débat entre deux systèmes de recommandation [Cailloux and Meinard, 2018]

- Sujet de stage
 - Problématique
- 2 Débat
 - Introduction
 - Scénario
- Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- 4 Résultats et conclusion
 - Travaux effectués
 - Résultats
 - Conclusion

Sujet de stage

Notations

- S : ensemble des arguments,
- T : ensemble des propositions possibles,
- P : ensemble des perspectives.

Relations

- $\leadsto \subseteq S \times T : s \leadsto t$, l'argument s soutient la proposition t,
- $\triangleright_{\exists} \subseteq S \times S : s_2 \triangleright_{\exists} s_1$, s_2 attaque s_1 , si s_2 attaque dans au moins une perspective alors s_1 devient invalide,
- $\not \triangleright_\exists \subseteq S \times S : s_2 \not \triangleright_\exists s_1, s_2$ n'attaque pas l'argument s_1, s_1 reste valide.

Exemple de débat

y est recommandée (t)

 \uparrow

y est recommandée à cause de ses performances sur $\{c_1\}$ (N)

 $\uparrow \triangleright_{\exists}$

x est préférée à y car l'intensité de la préférence de x par rapport à y sur $\{c_3\}$ est significativement plus grande que l'intensité de la préférence de y par rapport à x sur $\{c1\}$, et tous les critères ont plus ou moins les mêmes poids. (L)

Résultats et conclusion

- - Problématique
- - Introduction
 - Scénario
- O Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- - Travaux effectués
 - Résultats
 - Conclusion

Connaissances

Sujet de stage

Ensemble d'alternatives : X

Ensemble de critères : $N = \{1, ..., n\}$

Approche [Labreuche, 2011]

- Préférences :
 - poids des critères $w=(w_0, ..., w_n)$, tel que $\sum_i w_i=1$

Approche [Nunes and al, 2014]

- Ensemble de contraintes : C.
- Préférences :
 - fonction d'utilité : $v(o_i[a_k]) \in [-1, 1]$
 - utilité associée aux contraintes
 - ullet poids des critères $w(x,a_i)\in [0,1]$ avec $\sum\limits_i w(x,a_i)=1$

Annexe

Fonction de décision

Sujet de stage

Approche [Labreuche, 2011]

• Soit $x \in X$, $d(x) \rightarrow [0,1]$: $\sum w_i \times x_i$

Approche [Nunes and al, 2014]

- Soit $x, y \in X$, $d(x,y) \rightarrow [0,1]$:
 - $\sum w_i \times AttCost(x, y, a_i)$ $i \in N$
 - $CritCost(x, y, a_i) = y_i x_i$, si $y_i > x_i$, 0 sinon.
 - ExtAversion(x,y):
 - ext(y) ext(x) si ext(x) < ext(y), 0 sinon.
 - TradeoffContrast(x,y):
 - $avg_{TradeOff} TradeOff(x, y)$ si $TradeOff(x, y) \le avg_{TradeOff}$, $TradeOff(y, x) - avg_{TradeOff}$ si $TradeOff(y, x) > avg_{TradeOff}$, 0 sinon.

Arguments: Labreuche

Choix d'explication

- \bullet ψ_{AII} : All
- ullet $\psi_{\textit{NOA}}$: Not on average
- ψ_{IVT} : Invert
- ψ_{RMG} : Remaining

Ordre d'application

 $\psi_{ALL} \lhd \psi_{NOA} \lhd \psi_{IVT} \lhd \psi_{RMG}$

Arguments

 $\psi_{\mathsf{ALL}}: \mathsf{N}$

 $\psi_{NOA}: C \cap N^+(x,y)$ et $C \cap N^-(x,y)$

 ψ_{IVT} : K_{PS} , K_{PRS} , K_{NW} , K_{NRW}

et K_{PN}

 ψ_{RMG} : N, ou N⁺ et N⁻.

Arguments : Nunes

Contenu Explication

• ϕ_{CRIT} : Critical attribute

• ϕ_{CUT} : Cut-off

• ϕ_{DOM} : Domination

• ϕ_{MIN-} : Minimum requirements -

 \bullet ϕ_{MIN+} : Minimum requirements +

• ϕ_{DECI} : Decisive criteria

• ϕ_{TRAD} : Trade-off resolution

Arguments

 ϕ_{CRIT} : critère a^*

 ϕ_{CUT} : critère c

 $\phi_{DOM}: N$

 ϕ_{MIN+} : critère a_{th}

 ϕ_{MIN-} : critère a_{th}

 $\phi_{DECI}: D$

 $\phi_{TRAD}: N^+ \text{ et } N^-$

Ordre d'application

 $\phi_{CRIT} \triangleleft \phi_{CUT}^* \triangleleft \phi_{DOM} \triangleleft$ $\phi_{MIN} \triangleleft \phi_{DECI} \triangleleft \phi_{TRAD}$

Comparaison

Figure: Comparaison entre l'approche de Labreuche, Klein et Nunes

- - Problématique
- - Introduction
 - Scénario
- - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- Résultats et conclusion
 - Travaux effectués
 - Résultats
 - Conclusion

- Revue de la littérature
 - lecture d'articles
 - choix des approches
- Implémentation :
 - Propreté du code
 - Tests unitaire explicite
- Reproduction explicite des exemples
- Erreurs relevées

Résultats

Figure: Pourcentages de solutions identiques par les deux modèles.

- Proposition d'un débat,
- Désaccord ⇒ débat possible.
- Le langage commun reste à être défini
- Protocole de débat a finaliser.
- Suite :
 - récolte des préférences,
 - fonctions de décision diverse,
 - étude utilisateur.

Répartition des ancrages

Figure: Répartition des ancrages en fonction du nombre d'alternative

Annexe

x is better than anyone else (s2) x is recommended (t) y has the best performances on N_1 (s1) compare to y, x has the worst performances on N_2 (s3) $\uparrow \triangleright \exists$ the criteria on N_1 are important and the criteria on N_2 are

not really important. (s4)

Références

Sujet de stage

Cailloux and Meinard, 2018

A formal framework for deliberated judgment

Labreuche, 2011

A general framework for explaining the results of a multi-attribute preference model

Artificial Intelligence, vol. 175, 2011, pp. 1410-1448

Nunes and al, 2014

Pattern-based EXplanation for Automated Decisions

Frontiers in Artificial Intelligence and Applications, vol. 263, ECAI 2014 pp. 669-674.

Nunes and Jannach, 2017

A Systematic Review and Taxonomy of Explanations in Decision Support and Recommender Systems