PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-017735

(43) Date of publication of application: 25.01.1994

(51)Int.Cl.

F02P 5/155

(21)Application number: 03-300705

(71)Applicant: KOKUSAN DENKI CO LTD

(22)Date of filing:

15.11.1991

(72)Inventor: YUGAWA HIDEKI

HORIBE HIROYUKI

(54) IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINE

(57)Abstract:

PURPOSE: To enable a stable advance control to be carried out in a range below the idling speed of an engine so as to surely prevent the engine stall at the time of rapid deceleration.

CONSTITUTION: A plurality of reluctors r0, r1 are provided at a rotor of a signal generator synchronously rotating with an internal combustion engine, and with these reluctors magnetic flux change is generated in a signal generation element 202 to generate a control signal Vp. The circular arc length of the specified reluctor r1 is made longer than that of the reluctor r0, and with the difference between these lengths a relation between each control signal generated from the element 202 and the rotation angle of engine is specified. At the time of start-up of internal combustion engine, an ignition signal is generated with the control signal generated at the rear end of the reluctor r0, while the ignition signal is generated with the control signal generated at the front end of the reluctor r0 when the

engine speed is over the start-up speed and below the idling speed.

LEGAL STATUS

[Date of request for examination]

19.11.1996

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration] [Date of final disposal for application]

[Patent number]

3109188

[Date of registration]

14.09.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-17735

(43)公開日 平成6年(1994)1月25日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

F02P 5/155

F

Ε

N

審査請求 未請求 請求項の数1(全 13 頁)

(21)出願番号

特願平3-300705

(71)出願人 000001340

国産電機株式会社

(22)出願日

平成3年(1991)11月15日

静岡県沼津市大岡3744番地

(72)発明者 湯川 秀樹

静岡県沼津市大岡3744番地 国産電機株式

会社内

(72)発明者 堀部 浩之

静岡県沼津市大岡3744番地 国産電機株式

会社内

(74)代理人 弁理士 松本 英俊 (外1名)

(54) 【発明の名称 】 内燃機関用点火装置

(57)【要約】

【目的】機関のアイドリング回転数以下の領域での進角 制御を安定して行わせ、機関の急減速時のエンジンスト ールを確実に防止する。

【構成】内燃機関と同期回転する信号発電機のロータに複数のリラクタr0, r1を設け、これらのリラクタにより信号発電子202に磁束変化を生じさせて制御信号 Vpを発生させる。特定のリラクタr1の円弧長をリラクタr0の円弧長よりも長くしておき、これらのリラクタの円弧長の相違を利用して信号発電子202から発生する各制御信号と機関の回転角度との関係を特定する。内燃機関の始動時には、リラクタr0の後端縁で発生する制御信号により点火信号を発生させ、内燃機関の回転数を超え、アイドリング回転数以下のときには、リラクタr0の前端縁で発生する制御信号により点火信号を発生させる。

1

【特許請求の範囲】

【請求項1】内燃機関の回転に同期して信号を発生する信号発生装置と、前記信号発生装置の出力から回転角度情報と回転数情報とを得て内燃機関の点火位置で点火信号を発生させる点火位置制御装置と、前記点火信号が与えられたときに点火コイルの1次電流を制御して点火用の高電圧を発生させる点火回路とを備えた内燃機関用点火装置において、

前記信号発生装置は、周方向に並ぶ複数のリラクタを有していて1つのリラクタの円弧長が他のリラクタの円弧 10 長よりも長く設定されたロータと、該ロータのリラクタの回転方向の前端縁及び後端縁でそれぞれ制御信号を発生する信号発電子とからなる信号発電機を備え、

前記点火位置制御装置は、

前記制御信号の周期から内燃機関の回転数を演算する回 転数情報検出手段と、

前記制御信号の発生間隔を順次比較して前記円弧長が長いリラクタに相応する制御信号の発生間隔を識別することにより、特定の制御信号の発生位置を基準位置として定め、該基準位置を基にして前記各制御信号の発生位置と機関の回転角度との関係を検出する回転角度情報検出手段と、

内燃機関の始動時に前記円弧長が長いリラクタ以外の特定のリラクタの後端縁で発生する制御信号の発生位置で 点火信号を発生させる始動時点火信号発生手段と、

内燃機関の回転数が始動時の回転数を超え、アイドリング回転数以下のときに、前記特定のリラクタの前端縁で発生する制御信号の発生位置で点火信号を発生させる低回転時進角信号発生手段と、

内燃機関の回転数が前記アイドリング回転数以上になっ 30 ているときに回転数に応じて演算された位置で前記点火信号を発生させる演算点火信号発生手段とを具備したことを特徴とする内燃機関用点火装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マイクロコンピュータ を用いて点火位置を制御する内燃機関用点火装置に関す るものである。

[0002]

【従来の技術】内燃機関用点火装置は、機関の所定の点 40 火位置で点火信号を発生する点火位置制御装置と、点火 信号が与えられたときに点火コイルの1次電流を急激に 変化させるように制御して点火コイルの2次側に点火用 の高電圧を発生する点火回路とにより構成される。

【0003】点火回路としては、点火位置より前の位置で充電したコンデンサの電荷を点火コイルの1次コイルに放電させることにより点火用の高電圧を誘起させるコンデンサ放電式の回路や、点火位置よりも前の位置でバッテリから点火コイルの1次コイルに流しておいた電流を遮断することにより点火用の高電圧を誘起させる電流50

遮断式の回路等が用いられる。

【0004】バッテリを電源とした電流遮断式の回路が用いられる場合には、点火信号の他に、点火コイルに1次電流を流す期間(通電角)を定めるための通電信号を必要とする。電流遮断式の点火コイルにおいて点火コイルの1次電流を制御するスイッチ素子として、所定の通電信号が与えられている間だけ導通するスイッチ素子(例えばトランジスタ)を用いる場合には、該スイッチ素子に通電信号が零にされたときに1次電流が遮断されて点火動作が行われる。この場合には通電信号の零への立ち下がりが点火信号となる。

【0005】いずれの点火回路が用いられる場合でも、機関を正常に動作させてその特性を十分に引き出すためには、点火信号が発生する位置(点火位置)を機関の回転数に応じて正確に制御することが必要であり、最近では、マイクロコンピュータを用いて点火位置を制御する点火位置制御装置が多く用いられるようになった。

【0006】一般にマイクロコンピュータを用いた点火位置制御装置では、機関と同期回転する信号発電機の出力から機関の回転角度情報と回転数情報とを得て、各回転数における点火位置を、時間データ(機関が基準回転角度位置から点火位置まで回転するのに要する時間)の形でマイクロコンピュータにより演算する。マイクロコンピュータにより演算する。マイクロコンピュータにより演算する。マイクロコンピュータにより演算する。マイクロコンピュータにより演算する。マイクロコンピュータにより演算する。とき日該進角カウンタに点火位置を示す時間データに相当する計数値をセットして計数動作を開始させる。そして進角カウンタが点火位置に相当する計数値を計数したときに点火信号を発生させ、該点火信号を点火回路に与える。

【0007】点火回路は、点火信号が与えられたときに 点火コイルの1次電流を急変させるように制御して点火 コイルの2次側に高電圧を誘起させる。この高電圧は機 関の気筒に取付けられた点火プラグに印加されるため、 該点火プラグに火花が生じ、機関が点火される。

[0008]

【発明が解決しようとする課題】従来の内燃機関用点火装置では、例えば図7(C)に示したように、始動回転数N1 からアイドリング回転数N2 まで点火位置を一定の位置 θ 1 とし、アイドリング回転数N2 を超える領域で点火位置を進角させていた。

【0009】上記のように、アイドリング回転数N2以下の回転領域で点火位置を一定とした場合には、機関を急加速してから急減速したような場合に、たまたま機関に取り付けられている発電機に接続されている電気負荷が作動したり、機関の機械的なロスが大きくなったりして機関の負荷が増加すると、機関の回転数がアイドリング回転数以下に落ち込んでエンジンストールを起こす(機関が停止する)ことがあった。

20

40

3

【0010】上記の問題を解決するためには、アイドリ ング回転数以下の特定の回転領域で点火位置を進角させ るようにすればよい。このように構成しておくと、機関 の回転数がアイドリング回転数以下に落ち込んだとき に、点火位置が進角して機関の回転数を上昇させるた め、急減速時にエンジンストールが起こるのを防ぐこと ができる。

【0011】マイクロコンピュータを用いて点火位置を 制御する内燃機関用点火装置において、アイドリング回 転数以下の特定の回転領域で点火位置を進角させる場合 10 段9とにより構成する。 には、機関の基準回転角度位置から進角カウンタにより 演算された点火位置の計測を行わせて、点火位置が計測 されたときに点火信号を発生させることになるが、アイ ドリング回転数以下の回転領域は非常に回転変動が大き い領域であるため、上記のように進角カウンタを用いて 点火位置の計測を行わせた場合には、点火位置が大幅に 変動し、必要以上に進角した位置で点火動作が行われて 機関の動作を不安定にしたり、点火位置の進角量が不足 してエンジンストールを防ぐことができなくなったりす るおそれがあった。

【0012】本発明の目的は、アイドリング回転よりも 低い回転領域での進角制御を安定に行わせて、急減速時 のエンジンストールを防止することができるようにした 内燃機関用点火装置を提供することにある。

[0013]

【課題を解決するための手段】本発明は、内燃機関1の 回転に同期して信号を発生する信号発生装置2と、信号 発生装置2の出力から回転角度情報と回転数情報とを得 て内燃機関の点火位置で点火信号を発生させる点火位置 制御装置3と、点火信号が与えられたときに点火コイル の1次電流を制御して点火用の高電圧を発生させる点火 回路4とを備えた内燃機関用点火装置に係わるものであ る。

【0014】本発明においては、上記信号発生装置2 に、周方向に並ぶ複数のリラクタを有していて1つのリ ラクタの円弧長が他のリラクタの円弧長よりも長く設定 されたロータと、該ロータのリラクタの回転方向の前端 縁及び後端縁でそれぞれ制御信号を発生する信号発電子 とからなる信号発電機を用いる。信号発電機から得られ る制御信号の波形が点火位置制御装置で用いるのに適し ていない場合には、上記信号発生装置に、制御信号を点 火位置制御装置で用いるのに都合が良い波形の信号に変 換する波形整形回路を更に設けることができる。

【0015】点火位置制御装置3は、制御信号の周期か ら内燃機関の回転数を演算する回転数情報検出手段5 と、制御信号の発生間隔を順次比較して円弧長が長いり ラクタに相応する制御信号の発生間隔を識別することに より、特定の制御信号の発生位置を基準位置として定 め、該基準位置を基にして各制御信号の発生位置と機関 の回転角度との関係を検出する回転角度情報検出手段6

と、内燃機関の始動時には円弧長が長いリラクタ以外の 特定のリラクタの後端縁で発生する制御信号の発生位置 で点火信号を発生させる始動時点火信号発生手段7と、 内燃機関の回転数が始動時回転数を超え、アイドリング 回転数以下のときに、特定のリラクタの前端縁で発生す る制御信号の発生位置で点火信号を発生させる低回転時 進角信号発生手段8と、内燃機関の回転数がアイドリン グ回転数以上になっているときには回転数に応じて演算 された位置で点火信号を発生させる演算点火信号発生手

[0016]

【作用】上記のように、本発明においては、内燃機関の 始動時に特定のリラクタの後端縁で発生する制御信号の 発生位置で点火信号を発生させ、内燃機関の回転数が始 動時回転数を超え、アイドリング回転数以下のときに、 特定のリラクタの前端縁で発生する制御信号の発生位置 で点火信号を発生させる。即ち、アイドリング回転数以 下の特定の回転領域では、マイクロコンピュータにより 点火位置を演算するのではなく、信号発電機から得られ る特定の制御信号の発生位置で点火信号を発生させる。 回転速度の変動が大きいアイドリング回転以下の領域で も、信号発電機が制御信号を発生する回転角度位置は一 定であるため、上記のように構成すると、アイドリング 回転数以下の領域での進角制御を安定して行わせること ができ、機関の急減速時のエンジンストールを確実に防 止することができる。

【実施例】図2は単気筒内燃機関を点火する内燃機関用 点火装置に本発明を適用した実施例で用いるハードウェ アの構成を示したもので、同図において信号発生装置2 は、誘導子形の信号発電機2Aと波形整形回路2Bとか らなっている。信号発電機2Aは、外周部に2個のリラ クタr1 及びr0 を有するロータ201と、鉄心Coに 巻回された信号コイルWs を有する信号発電子202と からなっている。

【0018】ロータ201は、内燃機関の回転軸に取り 付けられていて、機関の回転に伴って図示の矢印方向 (時計方向) に回転する。この例では、リラクタr1 の 円弧長がリラクタr0 の円弧長よりも長く設定され、リ ラクタ r 1 の回転方向の前端縁とリラクタ r 0 の後端縁 との間の角度間隔が90度に設定されている。

【0019】信号発電子202は、鉄心Coに磁束を流 す永久磁石を更に備えていて、鉄心Coに設けられた磁 極部がロータ201に対向させられている。機関の回転 に伴ってロータ201のリラクタr1, r0 が鉄心Co の磁極部に対向すると信号コイルWs に鎖交する磁束が 多くなり、リラクタr1 ,r0 が鉄心Coの磁極との対 向を終えると、信号コイルWs に鎖交する磁束が減少す る。信号コイルWs には、リラクタr1, r0 の前端縁 が鉄心Сοの磁極部に対向する際及び、リラクタ r 1,

r0 の後端縁が鉄心Colong on との対向を終える際に、図3(A)に示すようなパルス状の制御信号Vp が発生する。図3(A)においてVplはリラクタr1の前端縁が信号発電子の磁極に対向する際に発生する正極性の制御信号であり、Vp1 はリラクタr1 の後端縁が信号発電子の磁極との対向を終える際に発生する負極性の制御信号である。またVp0はリラクタr0 の前端縁が信号発電子の磁極に対向する際に発生する正極性の制御信号であり、Vp0 はリラクタr0 の後端縁が信号発電子の磁をの対向を終える際に発生する負極性の制御信号であり、Vp0 はリラクタr0 の後端縁が信号発電子の磁をの対向を終える際に発生する負極性の制御信号である。制御信号Vp1, Vp1 、Vp0及びVp0 がそれぞれ発生する回転角度位置をp1 、p1 、p2 及びp1 とする。本実施例では、制御信号p1 及びp1 及びp1 とする。本実施例では、制御信号p1 及びp1 を付けて、これらの制御信号を特定する。

【0020】尚図2に示した例では、各リラクタがロータの周方向に伸びる円弧状の突起からなっているが、各リラクタをロータの周方向に伸びる凹部により構成してもよい。

【0021】波形整形回路2 Bは、図3(A)の制御信号を入力としてリラクタr1, r0の前端縁で正極性の制御信号Vp1, Vp0が発生したときに立ち上がり、リラクタr1, r0 の後端縁で負極性の制御信号Vp1, Vp0が発生したときに立ち下がる矩形被信号Vinを出力する。

【0022】点火回路 4は、点火コイル4 Aと、点火位置制御装置 3 から点火信号 V f が与えられたときに点火コイルの 1 次コイルW1 に流れる電流を急激に変化させるように制御する 1 次電流制御回路 4 Bと、内燃機関の気筒に取付けられ、点火コイルの 2 次コイルW2 に接続された点火プラグ P 1 とにより構成されている。この実施例では、点火回路 4 がコンデンサ放電式の回路であるとし、点火位置でこの点火回路を動作させるために点火信号のみを必要とするものとする。

【0023】図1に示した点火位置制御装置3を構成する各手段は、CPU3Aと記憶装置RAM3B及びROM3Cとを備えたマイクロコンピュータにより実現される。CPUの入力ポートA1に上記矩形波信号Vinが入力され、CPUの出力ポートB1から点火信号Vfが出力される。

【0024】マイクロコンピュータは、ROM3Cに記憶された所定のプログラムにより、図8(A)及び図9に示すメインルーチンと、図10及び図11に示した割り込みルーチンとを実行して、図1に示した手段5~9を実現する。

【0025】電源が投入されると、図8(A)のメインルーチンが実行される。このメインルーチンでは、先ず CPU及びRAMの初期設定を行った後割り込みを許可し、その後回転数N[rpm]の演算と進角度 α の演算とを繰り返し行う。回転数は例えば、矩形波信号Vinの 50

14 | | |

周期TH+TLと、リラクタr1の前端縁とリラクタr0の前端縁との間の角度(一定)とにより求めることができる。進角度 α は、予め演算されてROMに記憶されている各回転数Nと点火位置との関係を示すマップから各回転数における点火位置を読み取ることにより決定するか、または所定の演算式に基づいてその都度演算することにより決定する。演算された進角度 α (演算点火位置)のデータは、機関が基準となる回転角度位置から演算点火位置まで回転するのに要する時間の形で与えられ、RAMに記憶される。

【0026】メインルーチンではまた、回転数Nの演算を行った後、進角度 α の演算を行う前に、図9に示すフローチャートに従ってフラグのセットまたはリセットを行う。即ち、演算された回転数Nを始動回転数N1と比較して、回転数Nが始動回転数N1以上のときにフラグFLG1をセットし、回転数Nが始動回転数N1未満のときにフラグFLG1をリセットする。また回転数Nがアイドリング回転数N2とを比較して、回転数Nがアイドリング回転数N2以上のときにフラグFLG2をセットし、回転数Nがアイドリング回転数N2は進角開始回転数N3とを比較して、回転数Nが進角開始回転数N3以上のときにフラグFLG3をセットし、回転数Nが進角開始回転数N3以上のときにフラグFLG3をセットし、回転数Nが進角開始回転数N3以上のときにフラグFLG3をリセットする。

【0027】メインルーチンが行われている間に矩形波信号の立ち上がりが検出されると、図10の割り込みルーチンが実行される。この割り込みルーチンでは、矩形波信号の立ち上がりが検出されるまでの矩形波信号の零期間と、その直前の高レベルの期間TLよりも長いの高レベルの期間TLよりも長いことを検出したときに、この矩形波信号の立ち上がりがシグナル番号0の制御信号(リラクタr0の前端縁で発生する制御信号Vp0、図3参照)の発生位置であると判断してシグナル番号を記憶するRAMにシグナル番号1の制御信号の発生位置であると判断して、シグナル番号を記憶するRAMにシグナル番号を記憶するRAMにシグナル番号を記憶するRAMにシグナル番号を記憶するRAMにシグナル番号1をセットする。

【0028】シグナル番号が0である場合には、次いでフラグFLG3~FLG1がセットされているか否かを順次判別し、フラグFLG3及びフラグFLG2がセットされておらず、フラグFLG1のみがセットされている場合には、直ちに(シグナル番号0の制御信号Vp0の発生位置 02で)点火信号Vfを発生させてメインルーチンに復帰する。またフラグFLG3がセットされておらず、フラグFLG2がセットされている場合(機関の回転数がアイドリング回転数を以上になっている場合)には、クロックパルスを計数する進角カウンタに、既に演算されている進角度を示すデータを計数値としてセッ

10

20

トし、該進角カウンタに計数を開始させる。この場合には、角度 θ 21で進角カウンタがセットされた計数値の計数を終了したときに点火信号を発生する。機関の回転数が進角回転数N3以上になってフラグFLG3がセットされている場合には、メインルーチンに復帰する。

【0029】次にシグナル番号が1であると判定された場合には、フラグFLG3がセットされているか否かの判定を行い、フラグFLG3がセットされいてる場合(N>N3の場合)には、そのときに演算されている進

(N≥N3 の場合)には、そのときに演算されている進角度のデータを進角カウンタにセットして、計数動作を開始させる。進角カウンタは演算された点火位置で計数を終了して点火信号Vf を発生する。

【0030】また矩形波信号Vinの立ち下がりが検出される毎に、図11の割り込みルーチンが実行される。この割り込みルーチンでは、フラグFLG $3\sim F$ LG1がセットされているか否かの判定を行い、いずれのフラグもがセットされていない場合に、シグナル番号の判定を行い、シグナル番号が0になっている時(今回の矩形波信号の立ち下がりが角度01 である場合)には、直ちに点火信号07 を発生させる。

【0031】上記の動作により、図7(A)に示すように、始動回転数N1まではリラクタr0の後端縁 $\theta1$ の位置で点火が行われ、始動回転数を超え、アイドリング回転数N2以下の領域ではリラクタr0の前端縁 $\theta2$ で点火が行われ、アイドリング回転数N2以上の領域ではマイクロコンピュータにより演算された位置で点火が行われる点火特性が得られる。

【0032】また進角開始回転数N3以上の領域での進角度の演算のしかたにより、種々の進角特性を得ることができる。例えば図7(B)に示すように、設定回転数 30 N4以上の領域で点火位置を遅角させ、設定回転数<math>N5 以上の領域で点火位置を $\theta1$ の位置に固定する特性を得ることもできる。

【0033】上記の実施例では、リラクタr0の円弧角により低速時の進角幅($\theta2-\theta1$)が決まる。

【0034】上記の実施例では、図8(A)のメインルーチンの回転数を演算する過程により図1の回転数情報検出手段5が実現され、図10の割り込みルーチンの、THとTLの大小を判定する過程及びシグナル番号をセットする過程により回転角度情報検出手段6が実現され40る。また図11の割り込みルーチンにより始動時点火信号発生手段7が実現され、図10の割り込みルーチンの、フラグFLG3~FLG1がセットされているか否かを判定する過程と点火信号を発生させる過程とにより、低回転時進角信号発生手段8が実現される。更に図8(A)のメインルーチンの進角度を演算する過程と、図10の割り込みルーチンのフラグFLG3のセットの有無を判定する過程及び進角カウンタをスタートさせる過程とにより、演算点火信号発生手段9が実現される。

【0035】上記の実施例では、単気筒内燃機関を点火 50 を行わせるものとする。また始動回転数N1 を超え、ア

140010 111

する場合を例にとったが、2気筒以上の多気筒内燃機関を点火する場合にも本発明を適用することができる。図4は4気筒内燃機関を点火する場合に用いる点火装置に本発明を適用した実施例を示したもので、この例では、点火回路4が、2次コイルに2つの点火プラグを接続して両点火プラグに同時に火花を生じさせる2個の同時発火式点火コイル4A1,4A2を備え、これらの点火コイルに接続された合計4個の点火プラグP1~P4が内燃機

関の第1ないし第4の気筒にそれぞれ取り付けられている。第1の気筒ないし第4の気筒の順に順次90度間隔で点火動作を行わせるものとする。

【0036】またこの例では1次電流制御回路4Bが電流遮断形の回路からなっていて、図示しないバッテ点火位置で遮断することにより各点火コイルの2次コイルに流したにより各点火コイルの2次コイルに1次電流を流す期間を定める通電信号を表点火コイルに1次電流を流す期間を定める通電信号を表して、コレクタエミッタ間回路が点火コイルの1次電流を制御するスイッの1次は1次電流を制御するスイッチコイルに直列に接続されたトランジスタが用いられて通電号を与えることにより、該トランジスタを導通させて、カルに電流を流し、点火位置では、上火コイルの1次コイルに電流を流し、点火位置では、火コイルの1次電流を遮断する。従ってこの場合には、通電信号の零レベルへの立ち下がりが点火信号となる。

【0037】また図5にも示したように、本実施例で は、信号発電機2Aのロータ201が6個のリラクタr 0~r5を有している。リラクタr0~r5の後端縁相 互間の角度間隔が等しく(=60度)設定され、1つの リラクタ r 1 の円弧長が他のリラクタの円弧長よりも長 く設定されている。ロータ201は反時計方向に回転す るものとし、図6(A)に示したように、各リラクタの 回転方向の前端縁が信号発電子202の磁極に対向する 際に信号コイルWsに負極性の制御信号が発生し、各リ ラクタの回転方向の後端縁が信号発電子の磁極との対向 を終える際に信号コイルWs に正極性の制御信号が発生 するものとする。この例では、リラクタr0~r1の回 転方向の後端縁でそれぞれ制御信号Vp0~Vp5が発生 し、リラクタr0~r1の前端縁でそれぞれ制御信号V pO´~Vp5´が発生する。これらの制御信号は波形整形 回路2Bに入力されて、図6(B)に示したような矩形

【0038】本実施例では、図6(A)に示したように制御信号 $Vp0\sim Vp5$ にそれぞれシグナル番号 $0\sim 5$ を付してこれらの制御信号を特定するものとする。そして、始動回転数N1では制御信号Vp0の発生位置 $\theta1$ で第1の点火コイル4A1側で点火動作を行わせ、制御信号Vp3の発生位置 $\theta1$ で第2の点火コイル4A2側で点火動作を行わせるものとする。また始動回転数N1を超え、ア

波信号Vinに変換される。

イドリング回転数以下の低速時進角領域では、制御信号

Vp0´の発生位置 θ2 で第1の点火コイル4A1側で点火

動作を行わせ、制御信号Vp3´の発生位置θ2 ´で第2

の点火コイル4A2側で点火動作を行わせる。またアイド

リング回転数以下の領域では、図6 (C) に示すように

断してシグナル番号を記憶するRAMにシグナル番号1 をセットする。以下矩形波信号Vinの新たな立上がりが

検出されるごとにシグナル番号を1つずつ更新してい き、シグナル番号5の次の制御信号Vp0に相応する矩形 波信号の立上がりが検出されたときにシグナル番号を 0

10

制御信号Vp2の発生位置 θ 0 で第 1 の点火コイル 4 A1に 1次電流 I 11を流し始め、図6(D)に示すように制御 信号Vp5の発生位置 θ0 ~で第2の点火コイル4A2に1 次電流 I 12を流し始めるものとする。

して突起を用いているが、リラクタはその前端縁及び後 端縁で信号発電子に磁束変化を生じさせるものであれば よいので、ロータの外周に設けた凹部をリラクタとして もよい。

【0040】図1に示した点火位置制御装置3を構成す る各手段は、CPU3Aと記憶装置RAM3B及びRO M3Cとを備えたマイクロコンピュータにより実現され る。CPUの入力ポートA1 に上記矩形波信号Vinが入 力され、CPUの出力ポートB1 及びB2 からそれぞれ 第1, 第3の気筒用の通電信号Vt1及び第2, 第4の気 20 筒用の点火信号Vf2が出力される。

【0041】本実施例では、マイクロコンピュータのR OMに記憶されているプログラムにより、図8(B)及 び図12に示したメインルーチンと、図13の割り込み ルーチンとが実行されて図1の各手段が実現される。図 8 (B) に示したメインルーチンでは、先ずCPU及び RAMの初期設定を行った後割り込みを許可し、その後 回転数N [rpm]の演算と進角度 aの演算と点火コイ ルの1次電流の通電角の演算とを繰り返し行う。

【0042】メインルーチンではまた、回転数Nの演算 を終了した後、図12に示したフローチャートにしたが ってフラグのセット及びリセットを行う。即ち、演算さ れた回転数Nを始動回転数N1 と比較して、回転数Nが 始動回転数N1 以上のときにフラグFLG1をセット し、回転数Nが始動回転数N1未満のときにフラグFL G1をリセットする。また回転数Nとアイドリング回転 数N2 とを比較して、回転数Nがアイドリング回転数N 2 以上のときにフラグFLG 2 をセットし、回転数 Nが アイドリング回転数N2 未満のときにフラグFLG2を リセットする。

【0043】またメインルーチンが行われている間に矩 形波信号Vinの立ち上がりが検出されると、図10の割 り込みルーチンと同様の割り込みルーチンが実行され て、各シグナル番号がセットされる。即ち、矩形波信号 の立ち上がりが検出されるまでの矩形波信号の零期間 と、その直前の高レベルの期間とを比較して、直前の高 レベルの期間TH が零レベルの期間TL よりも短いこと (TH < TL) を検出したときに、この矩形波信号の立 ち上がりがシグナル番号1の制御信号(リラクタ r 1 の 後端縁で発生する制御信号Vpl) の発生位置であると判 50

【0044】また矩形波信号Vinの各立上がりで実行さ れる割り込みルーチンでは、回転数Nがアイドリング回 転数N2 以下でシグナル番号2が検出されたときに直ち 【0039】本実施例でも、ロータに設けるリラクタと 10 に、通電信号Vt1を1次電流制御回路4Bに与える。こ れにより点火コイル4A1に1次電流 I11が流れ始める。 また回転数Nがアイドリング回転数N2 以下でシグナル 番号5が検出されたときに直ちに、通電信号Vt2を1次 電流制御回路4Bに与える。これにより点火コイル4A2 に1次電流 I 12が流れ始める。

> 【0045】また矩形波信号Vinの立ち下がりが検出さ れる毎に、図13の割り込みルーチンが実行される。こ の割り込みルーチンでは、フラグFLG2がセットされ ておらず、フラグFLG1がセットされていて、しかも その時点でセットされているシグナル番号が5である場 合(今回の立ち下がりが θ 2 である場合)に、第1,第 3の気筒用の通電信号Vtlを零に立ち下がらせる(点火 信号を発生する)。このとき点火コイル4A1の1次電流 が遮断されて点火コイル4A1の2次側に高電圧が誘起 し、この高電圧により点火プラグP1, P3 に同時に火 花が発生する。これにより、第1の気筒または第3の気 筒の内、点火時期にある一方の気筒で点火が行われる。 【0046】フラグFLG2がセットされておらず、フ

> ラグFLG1のみがセットされていて(N2>N≥N1 で)、セットされているシグナル番号が2である場合 (今回の矩形波信号の立ち下がりが θ 2 ´である場合) には、第2,第4の気筒用の通電信号Vt2を零に立ち下 がらせ、点火コイル4A2の1次電流I12を遮断させる。 このとき点火コイル4A2の2次側に高電圧が誘起し、第 2または第4の気筒の内、点火時期にある一方の気筒で 点火動作が行われる。

> 【0047】この実施例では、第1,第3の気筒の低速 時の進角幅(θ 2 $-\theta$ 1)がリラクタr0 の円弧角 α 1 により決まり、第2, 第4の気筒の低速時の進角幅 (θ $2 - \theta 1$ がリラクタr3 の円弧角により決まる。

> 【0048】尚図4に示した実施例において、2気筒内 燃機関を点火する場合には、点火コイル4A1の2次コイ ルに第1の気筒の点火プラグのみを接続し、点火コイル 4A2の2次コイルに第2の気筒の点火プラグのみを接続 すればよい。

【0049】上記の各実施例では、信号発電子202と して、信号コイルを備えたものを用いたが、信号コイル に代えてホール素子を用いて信号を得るようにした信号 発電子を用いることもできる。

[0050]

【発明の効果】以上のように、本発明によれば、内燃機関のアイドリング回転数以下の特定の回転領域では、マイクロコンピュータにより点火位置を演算するのではなく、信号発電機から得られる特定の制御信号の発生位置で点火信号を発生させるようにしたので、アイドリング回転数以下の領域での進角制御を安定して行わせることができ、機関の急減速時のエンジンストールを確実に防止することができる利点がある。

【図面の簡単な説明】

【図1】本発明の全体的な構成を示すブロック図であ ス

【図2】本発明の第1の実施例で用いるハードウェアの 構成を示す構成図である。

【図3】(A)及び(B)はそれぞれ、第1の実施例で 用いる制御信号波形及び該制御信号を波形整形して得た 矩形波信号の波形を示した波形図である。

【図4】本発明の第2の実施例で用いるハードウェアの 構成を示す構成図である。

【図5】第2の実施例で用いる信号発電機の構成を概略 的に示した構成図である。

【図6】(A)ないし(D)は第2の実施例の各部の信号波形を示した波形図である。

【図7】(A)及び(B)は本発明により得られる点火 特性の例を示した線図である。(C)は従来の点火装置 により得られる点火特性を示した線図である。: *【図8】(A)及び(B)はそれぞれ第1及び第2の実施例において実行されるメインルーチンのアルゴリズムを示すフローチャートである。

12

【図9】図8(A)のメインルーチンにおいてフラグのセット及びリセットを行う過程のアルグリズムを示したフローチャートである。

【図10】第1の実施例において矩形波信号の立上がりで実行される割り込み処理のアルゴリズムを示したフローチャートである。

0 【図11】第1の実施例において矩形波信号の立ち下がりで実行される割り込み処理のアルゴリズムを示すフローチャートである。

【図12】図8(B)のメインルーチンにおいてフラグのセット及びリセットを行う過程のアルゴリズムを示したフローチャートである。

【図13】第2の実施例において矩形波信号の立ち下がりで実行される割り込み処理のアルゴリズムを示したフローチャートである。

【符号の説明】

1…内燃機関、2…信号発生装置、2A…信号発電機、201…ロータ、r0~r5 …リラクタ、202…信号発電子、3…点火位置制御装置、4…点火回路、5…回転数情報検出手段、6…回転角度情報検出手段、7…始動時点火信号発生手段、8…低回転時進角信号発生手段、9…演算点火信号発生手段。

【図1】 【図5】 202 内燃機関 601 201 信号発生装置 3点火位置 制御装置 回転数情報 始動時点火信号 検出手段 発生手段 8 回転角度情報 低回転時進角信号 点火回路 検出手段 発生手段 演算点火信号 発生手段

【図2】

[図3]

【図4】

【図9】

【図10】

【図11】

【図12】

【図13】

【手続補正書】

【提出日】平成5年9月1日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】図3

【補正方法】変更

【補正内容】

【図3】<u>本発明の</u>第1の実施例で用いる制御信号波形及 び該制御信号を波形整形して得た矩形波信号の波形を示 した波形図である。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】図6

【補正方法】変更

【補正内容】

【図6】<u>本発明の</u>第2の実施例の各部の信号波形を示した波形図である。