

Notas de Aula III Matemática Discreta

Moésio M. de Sales¹

1 Produto Catesiano

1.1 PAR ORDENADO

Um par ordenado (a, b) é uma lista de objetos a e b em uma ordem estabelecida, com a aparecendo em primeiro e b em segundo [2, 1, 3, 4]. Dois pares ordenados (a_1, b_1) são ditos iguais (a_2, b_2) se, e somente se, $a_1 = a_2$ e $b_1 = b_2$.

1.2 Produto Cartesiano

Definição 1.1 Sejam $A, B \subset U$. O produto cartesiano de A e B é o conjunto

$$A \times B = \{(a, b) \in \mathbb{U} : a \in A \ e \ b \in B\}.$$

Exemplo 1.1 Sejam $A = \{1, 2, 3\}$ $e B = \{a, b, c\}$ temos

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)\}$$

Proposição 1.1 Para quaisquer conjuntos finitos A e B temos

$$\#(A \times B) = \#A \cdot \#B$$

2 Relações

As ligações entre elementos de conjuntos são representadas utilizando uma estrutura chamada RELAÇÃO. Objetos podem ser especificados de acordo com a maneira como eles se relacionam com outros objetos.

Definição 2.1 Sejam A e B conjuntos. Dizemos que R é uma relação de A em B se $R \subset A \times B$. Se a não está relacionado com b por R, escreve-se a $\not Rb$.

Observe que relações são conjuntos de pares ordenados.

- Quando $(a, b) \in R$, diz-se que a está relacionado com b por R.
- Usa-se a notação aRb para denotar que $(a, b) \in R$.

Note que: \emptyset é uma relação. Se A e B são conjuntos, então $A \times B$ é uma relação.

Exemplo 2.1 Sejam $A = \{1, 2, 3\}$ e $B = \{t, r, s\}$. Definimos

$$R = \{(1, r), (1, s), (2, s), (3, r), (3, t)\}$$

é uma relação de A em B.

IFCE -1- 14 de marco de 2023

 $^{^{1}} moesio@gifce.edu.br\\$

Exemplo 2.2 Seja $A = \mathbb{R}$, o conjunto dos números reais. Defina a relação sobre A.

x R y se, somente se, x e y satisfaz a equação

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

O conjunto R consiste de todos os pontos sobre a elipse mostrada na figura 2

Figura 2: Relação R

Definição 2.2 Domínio de R, denotado por Dom(R) é o conjunto de todos os elementos em A que estão relacionados com algum elemento em B.

No exemplo 2.1 temos que $Dom(R) = \{1, 2, 3\}.$

Definição 2.3 Imagem de R, denotado por Ran(R) ou Im(R) é o conjunto de todos os elementos de B que são segundos elementos de pares de R.

Como relações são conjuntos, é possível aplicar as operações usuais sobre conjuntos também sobre relações. O conjunto resultante também será composto por pares ordenados e definirá uma relação.

Definição 2.4 Sejam R e S relações de A em B. Então:

- 1. $R \cap S$ define uma relação tal que: $a(R \cap S)b = aRb \wedge aSb$;
- 2. $R \cup S$ define uma relação tal que: $a(R \cup S)b = aRb \vee aSb$;
- 3. R-S define uma relação tal que: $a(R-S)b=aRb \wedge a\overline{S}b=(a,b) \in R \wedge (a,b) \notin S$.

Exemplo 2.3 Dados $A = \{1,3,4\}$ e $B = \{2,3,5\}$, defina $R,S \subset A \times B$ tais que $R = \{(x,y) \in A \times B | x < y\}$ e $S = \{(x,y) \in A \times B | x + y < 6\}$ temos $R \cup S = \{(1,2),(1,3),(1,5),(3,2),(3,5),(4,5)\}$ e $R \cap S = \{(1,2),(1,3)\}$.

Definição 2.5 Seja R uma relação de A em B. O COMPLEMENTAR de R é a relação:

 $\overline{R} = \{(a,b) \in A \times B; (a,b) \not \in R\}. \ \textit{Ou seja, a} \ \overline{R} \textit{b se, e somente se, a} \ \textit{R} \textit{b}$

Exemplo 2.4 Dados $A = \{1, 3, 4\}$ $e B = \{2, 3, 5\}$, defina $R \subset A \times B$ tal que $R = \{(x, y) \in A \times B | x < y\}$ $e \overline{R} = \{(x, y) \in A \times B | x \ge y\}$.

Propriedade 2.1 Supondo que R e S são relações de A em B.

1.
$$\overline{(R \cup S)} = \overline{R} \cap \overline{S}$$

2.
$$\overline{(R \cap S)} = \overline{R} \cup \overline{S}$$

Definição 2.6 Sejam $R \subset A \times B$ e $S \subset C \times D$. A COMPOSIÇÃO de R com S é a relação:

$$S \circ R = \{(x,z) \in A \times D; \exists y \in B \cap C \ tal \ que \ (x,y) \in R \ e \ (y,z) \in S\}$$

2.1 Relações Especiais

Quantas relações podem ser construídas sobre um conjunto com n elementos?

Definição 2.7 Sejam A e B conjuntos.

- 1. $Id_A = \{(a, a) : a \in A\}$ é uma relação de A em A, chamada identidade em A.
- 2. $Df_A = \{(a,b) \in A \times A : a \neq b\}$ é uma relação de A em A, chamada diversidade em A.

Propriedade 2.2 (Composição de Identidades) Para toda relação $R \subset A \times B$:

- 1. $R \circ Id_A = R$
- 2. $Id_B \circ R = R$

2.2 Endorrelações

Definição 2.8 Seja A um conjunto. Dizemos que R é uma ENDORRELAÇÃO em A se $R \subset A \times A$.

2.3 ÁLGEBRA DAS ENDORRELAÇÕES

Para todas as relações R, S, T em A:

1.
$$(R \circ S) \circ T = R \circ (S \circ T)$$

3.
$$R \circ \emptyset = \emptyset \circ R = \emptyset$$

2.
$$R \circ Id_A = Id_A \circ R = R$$

4.
$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

3 Conjuntos Originados de Relações

Definição 3.1 Se $x \in A$, define-se o conjunto R(x) dos R-relativos de x como sendo o conjunto de todos os y em B com a propriedade de que x está relacionado a y por R(xRy).

$$R(x) = \{ y \in B \mid xRy \}$$

Exemplo 3.1 Seja $A = \mathbb{R}$, o conjunto dos números reais. Defina a relação sobre A.

 $x\ R\ y\ se,\ somente\ se,\ x\ e\ y\ satisfaz\ a\ equação$

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

O conjunto R(0) consiste de todas as imagens da relação $\frac{x^2}{4} + \frac{y^2}{9} = 1$ onde x = 0, ou seja,

$$\frac{0^{2}}{4} + \frac{y^{2}}{9} = 1$$

$$0 + \frac{y^{2}}{9} = 1$$

$$y^{2} = 9 \Rightarrow y = \pm 3 \text{ Assim, } R(0) = \{-3, 3\}$$

Figura 3: Relação R

Definição 3.2 Similarmente, se $A_1 \subset A$, então $R(A_1)$, o conjunto dos R-relativos de A_1 é o conjunto de todos os y em B com a propriedade de que x está relacionado a y por R com $x \in A_1$.

$$R(A_1) = \{ y \in B | xRy \text{ para algum } x \in A_1 \}$$

Obs.: note que $R(A_1)$ é a união dos conjuntos R(x), onde $x \in A_1$

Exemplo 3.2 Seja

$$A = B = \{1, b, 3, d\}$$

e seja

$$R = \{(1,1), (1,b), (b,3), (3,1), (d,3), (3,b)\}$$

. $Ent\~ao$: $R(1) = \{1,b\}$, $R(b) = \{3\}$, $Dom(R) = \{1,b,3,d\}$, $Ran(R) = \{1,b,3\}$

• Se $A_1 = \{3, d\}$, então $R(A_1) = R(3) \cup R(d) = \{1, b, 3\}$

Exemplo 3.3 Seja $A = \mathbb{R}$, o conjunto dos números reais. Defina a relação sobre A.

$$x R y se$$
, somente se, $x e y$ satisfaz a equação $\frac{x^2}{4} + \frac{y^2}{9} = 1$

Para o Exemplo 2.2, temos:

- R(x) para x < -2 será $R(x) = \{\}$
- R(x) para x > 2 será $R(x) = \{\}$
- R(x) para x = -2

$$\frac{(-2)^2}{4} + \frac{y^2}{9} = 1 \implies \frac{y^2}{9} = 0 \implies R(-2) = \{0\}$$

• R(x) para x=2

$$\frac{(2)^2}{4} + \frac{y^2}{9} = 1 \implies \frac{y^2}{9} = 0 \implies R(2) = \{0\}$$

• R(x) para -2 < x < 2

$$\frac{x^2}{4} + \frac{y^2}{9} = 1 \Rightarrow \frac{y^2}{9} = 1 - \frac{x^2}{4} \Rightarrow y^2 = 9 - \frac{9x^2}{4} \Rightarrow y = \pm \sqrt{9 - \frac{9x^2}{4}} \Rightarrow R(x) = \left\{ -\sqrt{9 - \frac{9x^2}{4}}, +\sqrt{9 - \frac{9x^2}{4}} \right\}$$

Nota: A passagem $y^2 = 9 - \frac{9x^2}{4} \implies y = \pm \sqrt{9 - \frac{9x^2}{4}}$ só é possível pois -2 < x < 2. Verifique!

Propriedade 3.1 Seja R uma relação de A em B e sejam A_1 e A_2 subconjuntos de A. Então:

- 1. Se $A_1 \subset A_2$, então $R(A_1) \subset R(A_2)$
- 2. $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- 3. $R(A_1 \cap A_2) \subset R(A_1) \cap R(A_2)$

Exemplo 3.4 Prove!

Teorema 3.1 Sejam R e S relações de A em B. Se R(a) = S(a) para todo $a \in A$, então R = S.

4 Exercícios

- 1. Seja $A = \mathbb{Z}^+$, os inteiros positivos, e R a relação definido por aRb se e somente se $2a \le b+1$. Qual dos seguintes pares ordenados pertencem a R?
 - (a) (2,2)

(c) (6, 15)

(e) (15,6)

(b) (3,2)

(d) (1,1)

- (f) (n,n)
- 2. Seja $A = \mathbb{N}$. Considere a seguinte relação R em A: aRb se e somente se 2a + 3b = 30. Encontre R.
- 3. Seja $A = B = \{1, 2, 3, 4, 8\}$ e condidere a relação R.

 $aRb \iff a \notin \text{múltiplo de } b$

- (a) Determine R;
- (b) Ache R(3);
- (c) Ache R(6);
- (d) Ache $R(\{2,4,6\})$;
- 4. Seja $A = \mathbb{R}$. Considere a seguinte relação R em A: aRb se e somente se $a^2 + b^2 = 25$. Encontre Dom(R) e Ran(R).
- 5. Seja $A = \mathbb{R}$. Considere a seguinte relação R em A:

 $x\ R\ y$ se, somente se, xe ysatisfaz a equação

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Determine $R(A_1)$

(a) $A_1 = \{1, 8\}$

(b) $A_1 = \{3, 4, 5\}$

(c) $A_1 = \{\}$

Referências

- [1] Edgard de Alencar Filho. Teoria elementar dos conjuntos. Nobel, 1976.
- [2] Bernard Kolman, Robert C. Busby e Sharon Cutler Ross. *Discrete Mathematical Structures*. Prentice Hall, 2000.
- [3] L. Lovász, J. Pelikán e K. Vesztergombi. *Discrete Mathematics: Elementary and Beyond*. Undergraduate Texts in Mathematics. Springer New York, 2003.
- [4] E.R. Scheinerman. Matemática Discreta Uma Introdução. THOMSON PIONEIRA, 2003.