Outline

Lecture 2:

Foundations II: Degradations in Digital Images

Contents

- 1. Noise
- 2. Blur
- 3. Combined Blur and Noise

Recently on IPCV ...

Recently on IPCV ...

Digital images are discretised in two ways: in the domain (sampling) and the co-domain (quantisation).

 256×256 pixels 32×32 pixels

 256×256 pixels

256 greyscales

256 greyscales

2 greyscales

- generalisation of the domain: m-dimensional images, image sequences
- generalisation of the co-domain: vector-valued images, matrix-valued images

8 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Image Processing and Computer Vision 2023

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

Lecture 2:

Foundations II: Degradations in Digital Images

Contents

- 1. Noise
- 2. Blur
- 3. Combined Blur and Noise

Noise (1)

Noise

- very common in digital images
- can have many reasons, e.g.
 - image sensor of a digital camera, in particular in low light situations
 - grainy photographic films that are digitised
 - specific acquisition methods:
 e.g. ultrasound imaging always creates ellipse-shaped speckle noise
 - atmospheric perturbances during wireless transmission
- our goal today: classify and simulate noise
- Simulating noise is important for the evaluation of image denoising methods, since one knows both the original and the noisy image.
- Algorithms for denoising will be discussed in later lectures.
- Noise is modelled in a stochastic way.

29 30

31 32

Noise (2)

Additive Noise

- most important type of noise
- grey values and noise are assumed to be independent:

$$f_{i,j} = g_{i,j} + n_{i,j}$$

- $g = (g_{i,j})$: original discrete image
- $\boldsymbol{n}=(n_{i,j})$: noise
- $f = (f_{i,j})$: observed noisy image
- noise n may have different distributions, e.g.
 - uniform distribution (very simple)
 - Gaussian distribution (very common)

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

- 5 6
- 8
- 10
- 11 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 22
- 23 24
- 25 26
- 27 28
- 29 30
- 31 32

33

Uniform Noise

- often not the most realistic noise model, but easy to simulate
- has a constant density function within some interval [a, b]:

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b], \\ 0 & \text{else.} \end{cases}$$

Often one chooses a symmetric interval w.r.t. 0, i.e. [-b, b] with b > 0.

can be used in connection with quantisation (cf. Assignment H1, Problem 5): adding uniform noise makes coarse quantisation levels visually more pleasant

Density function for uniform noise. Author: M. Mainberger.

Noise (4)

How Can One Simulate Uniform Noise?

lacktriangle a random variable U with uniform distribution in [a,b] simulated in C:

$$U = a + (double)rand() / RAND_MAX * (b - a);$$

(double)rand() / RAND_MAX ightarrow uniformly distributed random number in [0,1]

• Degrading some image g with uniform noise is easy: Replace g by g+U with some uniformly distributed random variable U. 1 2

3 4

5 6

7 8

9 | 10 |

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (5)

Left: Original image, 256×256 pixels, grey value range [0, 255]. **Right:** After adding noise with uniform distribution in [-70, 70]. Resulting grey values outside [0, 255] have been cropped. Author: J. Weickert.

1 2

3 | 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

1 22

31 32

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

Gaussian Noise (White Noise)

- most important noise model: good approximation in many practical situations, e.g.
 - thermal noise created by the imaging sensor
 - circuit noise caused by signal amplifications
- has density function

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

where μ is the mean and σ the standard deviation of the Gaussian

Density function for Gaussian noise. Author: M. Mainberger.

Noise (7)

- lacklosp p(x) has inflection points at $x=\mu-\sigma$ and $x=\mu+\sigma$.
- For a Gaussian-distributed random variable X the following probabilities hold:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 68\%$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 95.5\%$$

$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 99.7\%$$

Hence, Gaussian noise lives almost completely in the interval $[\mu-3\sigma, \mu+3\sigma]$.

5 6

8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

How Can One Simulate Gaussian Noise?

Box–Muller algorithm for creating two random variables with *normal distribution* (Gaussian distribution with μ =0, σ =1) from two uniformly distributed variables:

◆ It works in 2D and uses polar coordinates.
This setting is mathematically more pleasant to handle than the 1D case, since there is no analytical solution for the 1D Gaussian distribution

$$\Phi(x) = \int_{-\infty}^{x} p(s) \, ds \, .$$

lacktriangle Create independent random variables U and V with uniform distribution in [0,1]:

• If U > 0 compute

$$N = \sqrt{-2 \ln U} \cos(2\pi V),$$

$$M = \sqrt{-2 \ln U} \sin(2\pi V).$$

Noise (8)

Box-Muller algorithm (continued)

- In the Preparatory Assignment P1, Problem 2 the following is proven: N and M are independent random variables with normal distribution.
- lacktriangle How can one degrade a grey value f by additive Gaussian noise with mean 0 and standard deviation σ ?
 - Take some random variable N with normal distribution and replace f by $f + \sigma N$.

7 8

9 |10|

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

21 20

29 30

31 32

Noise (9)

Left: Original image, 256×256 pixels, grey value range: [0, 255]. **Right:** After adding Gaussian noise with $\sigma=64.48.$ Grey values outside [0,255] have been cropped. Author: J. Weickert.

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (10)

Be Careful!

- lacktriangle Images with byte-wise coding have grey values in [0,255].
- By adding Gaussian noise, one may leave this interval.
- Byte-wise coding either crops these values or misinterprets them.
- In both cases no real Gaussian noise is obtained.
- Two remedies, if real Gaussian noise is required:
 - Do not store the noisy image in a byte-wise manner. Use real numbers (float or double) instead.
 - Alternatively, avoid storing the noisy image at all. Simply create Gaussian noise within the program for testing.
- Similar considerations apply for uniform noise.

11 12

10

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (11)

Multiplicative Noise

- Multiplicative noise is signal-dependent (unlike additive noise).
- Usually one assumes that the perturbation is proportional to the grey value:

$$f_{i,j} = g_{i,j} + n_{i,j} g_{i,j}$$

= $(1 + n_{i,j}) g_{i,j}$

Example:

Noise caused by the grains of a photographic emulsion in analog photos.

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (12)

Left: Original image, 256×256 pixels, grey value range: [0, 255]. **Right:** After applying multiplicative noise where n has uniform distribution in [-0.5, 0.5]. Resulting grey values outside [0, 255] have been cropped. Note that darker grey values are less affected by noise than brighter ones. Author: J. Weickert.

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (13)

Impulse Noise

- degrades the image in some (!) pixels where erroneous grey values are created (in contrast to additive or multiplicative noise that affects *all* pixels)
- Example: pixel defects in the sensor chip of a digital camera
- Unipolar impulse noise gives degradations having only one grey value. Bipolar impulse noise attains two grey values.
- Salt-and-pepper noise is bipolar noise attaining the highest and lowest grey values.

5 6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (14)

Left: Original image, 256×256 pixels. **Right:** 20 % of all pixels have been degraded by salt-and-pepper noise, where bright and dark values have equal probability. Author: J. Weickert.

1 | 2

3 | 4

5 | 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (15)

Measuring Noise

- Let $g = (g_{i,j})$ be the undegraded image (without noise) with $M \times N$ pixels.
- ◆ Its mean (average grey value, Mittelwert) is given by

$$\mu(\boldsymbol{g}) := \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} g_{i,j}.$$

◆ The *variance (Varianz)* measures the average quadratic deviation from the mean:

$$\sigma^2(\boldsymbol{g}) := \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (g_{i,j} - \mu)^2.$$

• Its square root $\sigma(g)$ is called *standard deviation (Standardabweichung, Streuung)*.

7 | 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

31 32

Noise (16)

• Let $f = (f_{i,j})$ be a noisy version of g. The mean squared error (MSE, mittlerer quadratischer Fehler) of f w.r.t. g is

MSE
$$(\boldsymbol{f}, \boldsymbol{g}) := \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (f_{i,j} - g_{i,j})^2.$$

The smaller, the better.

◆ In image compression one often uses the *peak-signal-to-noise ratio* (*PSNR*, *Spitzen-Signal-Rausch-Abstand*).

It relates the noise to the grey value range in a logarithmic way. For a grey value range [0,255], the PSNR is defined as

$$\mathrm{PSNR}\left(oldsymbol{f}, oldsymbol{g}
ight) \ := \ 10 \ \mathrm{log}_{10} \left(rac{255^2}{\mathrm{MSE}\left(oldsymbol{f}, oldsymbol{g}
ight)}
ight)$$

Note that 255^2 is the maximal MSE.

The unit of the PSNR is decibel (dB). The higher the better. Noise with PSNR values ≥ 30 dB is hardly visible.

1 2

3 4

5 6

7 | 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Noise (17)

Top left: Original image, 256×256 pixels. **Top right:** Adding Gaussian noise with $\sigma = 15$ gives MSE = 226.06 and PSNR = 24.59 dB. **Bottom left:** $\sigma = 30$ yields MSE = 904.24 and PSNR = 18.57 dB. Bottom right: $\sigma = 60$ yields MSE = 3616.95 and PSNR = 12.55 dB. Grey values outside [0, 255] are cropped in the visualisation. Author: J. Weickert.

4

5 6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Outline

Lecture 2:

Foundations II: Degradations in Digital Images

Contents

- 1. Noise
- 2. Blur
- 3. Combined Blur and Noise

31 32

Blur (1)

Blur (Unschärfe)

- second source of image degradations (besides noise)
- caused e.g. by defocussing, imperfections of the optical system, atmospheric perturbances, or motion during image acquisition.
- For simplicity, let us assume that the blurring effect is identical at all locations (shift-invariant blur model).
- This leads to weighted averaging of grey values within a certain neighbourhood.
- ◆ The shape of neighbourhood and the weights depend on the source of degradation.
- ◆ The mathematical tool to describe such a weighted averaging is called convolution.

9 | 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

21 20

31 32

Blur (2)

A real-world example for motion blur: Zoom into a photo of a crab (grapsus adscenionis, Rote Felsenkrabbe) that has been degraded by camera motion. Image size: 768×512 pixels. Can you see the direction of the camera motion? Photo: J. Weickert.

5 6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

- 5 6
- 8
- 10
- 11 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 22
- 23 24
- 25 26
- 27 28
- 29 30
- 31 32
- 33

Convolution (Faltung)

One-Dimensional Convolution

discrete convolution of two 1-D signals $g = (g_i)_{i \in \mathbb{Z}}$ and $w = (w_i)_{i \in \mathbb{Z}}$:

$$(\boldsymbol{g} * \boldsymbol{w})_i := \sum_{k \in \mathbb{Z}} g_{i-k} w_k.$$

- Components of w are mirrored weights for averaging components of g.
- *continuous convolution* of two 1-D signals $g, w : \mathbb{R} \to \mathbb{R}$:

$$(g*w)(x) := \int_{\mathbb{D}} g(x-x') w(x') dx'.$$

Blur (4)

Example

- Let g_i be the stock market price (Börsenkurs) at day i.
- We want to compute the average price f_i within the last 200 days:

$$f_i = \frac{1}{200} \sum_{k=0}^{199} g_{i-k}.$$

lacktriangle This is as a discrete convolution between g and a suitable "blur kernel" w:

$$f_i = \sum_{k \in \mathbb{Z}} g_{i-k} w_k$$

with

$$w_k := \begin{cases} \frac{1}{200} & \text{for } k \in \{0, ..., 199\}, \\ 0 & \text{else.} \end{cases}$$

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

German stock market index (DAX) on October 20, 2005. **Blue:** Daily values. **Red:** Averaged over the last 38 days. **Green:** Averaged over the last 200 days. Source: http://www.spiegel.de.

- 3 4
- 5 6
- 8
- 10
- 11 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 | 22 |
- 23 24
- 25 26
- 27 28
- 29 30
- 31 32
- 33

Properties of the Convolution

For the continuous convolution, the following properties are not difficult to show (cf. Assignment H1, Problem 4), and they make life easier:

- lacktriangle Commutativity: f * g = g * f.
- Associativity: (f * g) * h = f * (g * h).
- Distributivity: (f+g)*h = f*h + g*h,

$$f * (g+h) = f * g + f * h.$$

- Differentiation: (f * q)' = f' * q = f * q'.
- Differentiability: If $f \in C^0(\mathbb{R})$ and $g \in C^n(\mathbb{R})$, then $(f * g) \in C^n(\mathbb{R})$.

 $(C^n(\mathbb{R}): n \text{ times continuously differentiable functions on } \mathbb{R})$

- $(\alpha f + \beta g) * h = \alpha (f * h) + \beta (g * h)$ with $\alpha, \beta \in \mathbb{R}$. Linearity:
- Shift Invariance: $(T_b f) * g = T_b (f * g)$ for all translations T_b with

$$(T_b f)(x) := f(x-b).$$

These properties also hold for discrete convolution (apart from the purely continuous properties "Differentiation" and "Differentiability").

Two-Dimensional Convolution

discrete convolution of two images $g = (g_{i,j})_{i,j \in \mathbb{Z}}$ and $w = (w_{i,j})_{i,j \in \mathbb{Z}}$:

$$(\boldsymbol{g} * \boldsymbol{w})_{i,j} := \sum_{k \in \mathbb{Z}} \sum_{\ell \in \mathbb{Z}} g_{i-k, j-\ell} w_{k,\ell}$$

continuous convolution of two images $g, w : \mathbb{R}^2 \to \mathbb{R}$:

$$(g*w)(x,y) := \int_{\mathbb{R}} \int_{\mathbb{R}} g(x-x',y-y') w(x',y') dx' dy'.$$

The double integral can be computed first with respect to x' and then with respect to y' (Fubini's theorem).

5 6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

8

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

Example

lacktriangle Let a continuous convolution kernel w(x,y) be given by

$$w(x,y) := \begin{cases} \frac{1}{\pi r^2} & \text{for } x^2 + y^2 \le r^2, \\ 0 & \text{else}, \end{cases}$$

Then g * w describes a smoothing of the image g by averaging all grey values within a disk-shaped neighbourhood of radius r.

Remark:

Computing this convolution by calculating the integral becomes time-consuming when r is large.

We will soon study a more efficient alternative: the Fourier transform.

Blur (9)

Modelling Blur by Convolutions

Defocussed Optical System:

usually approximated by a cylinder-shaped convolution kernel ("pillbox kernel")

Cylinder-shaped convolution kernel. Author: B. Burgeth.

1 2

3 | 4

5 | 6

7 | 8

9 | 10 |

11 12

13 14

15 16

17 18

19 20

21 22

22 24

23 24

25 26

27 28

20 20

29 30

31 32

Atmospheric Perturbations (e.g. Telescopes):

can be approximated by a 2-D Gaussian (product of two 1-D Gaussians):

$$w(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-(x-\mu_1)^2 - (y-\mu_2)^2}{2\sigma^2}\right)$$

2-D Gaussian. Author: B. Burgeth.

1 2

3 4

5 | 6

7 | 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

07.06

27 28

29 30

31 32

Blur (11)

Motion Blur:

in the simplest case (uniform motion, all objects in equal distance to camera): 1-D box function oriented along the motion direction

Kernel for a convolution with a 1-D box function. Author: B. Burgeth.

3 4

5 | 6

7 | 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

21 22

31 32

Blur (12)

horizontal motion blur

Simulation of different types of blur.

1 2	

5 6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Outline

Lecture 2:

Foundations II: Degradations in Digital Images

Contents

- 1. Noise
- 2. Blur
- 3. Combined Blur and Noise

31 32

Combined Blur and Noise

Combined Blur and Noise

- Often digital images suffer from both blur and noise.
- ◆ A typical degradation model combines shift invariant blur with additive noise:

$$f = g * w + n.$$

Left: Original image, 256×256 pixels. **Middle:** Blurred with a pillbox kernel of radius 5 pixels. **Right:** Further degradation by additive Gaussian noise with $\sigma = 30$. Values outside [0, 255] are cropped. The result simulates a digital camera that is out of focus and suffers from sensor noise. Author: J. Weickert.

1 | 2

3 | 4

5 | 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

1 22

31 32

Summary

Summary

- Noise and blur are frequent degradations in digital images.
- Noise can be modelled and simulated in a stochastic way.
 Most important is additive Gaussian noise with zero mean.
 It can be simulated with the Box-Muller algorithm.
 Sometimes also multiplicative and impulse noise is present.
- Shift-invariant blur can be simulated by convolution with a suitable kernel (e.g. pillbox kernel, Gaussian, 1-D box function).
- lacktriangle A frequently used degradation model of some initial image g with a shift-invariant blur kernel w and additive noise n is given by

$$f = g * w + n.$$

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

References

References

- ◆ R. C. Gonzalez, R. E. Woods: *Digital Image Processing*. Prentice Hall, Upper Saddle River, International Edition, 2017.
 - (Chapter 5 deals with noise and blur models)
- G. E. P. Box, M. E. Muller: A note on the generation of random normal deviates. Annals of Mathematical Statistics, Vol. 29, 610–611, 1958.
 (original paper on the Box–Muller method)
- C. Boncelet: Image noise models. In A. Bovik (Ed.): Handbook of Image and Video Processing.
 Academic Press, San Diego, pp. 325–335, 2000.

 (good description of noise models for images)
- ◆ H. Tijms: *Understanding Probability*. Cambridge University Press, Third Edition, 2012. (elementary introduction to the probabilistic concepts used in this lecture)

5

6

9 10

11 12

13 14

15 16

17 | **18** |

19 20

21 22

23 24

25 26

27 28

29 30

31 32