3.3. Evaluer p(s) pour jw=0 en utilisant la fonction prédéfinie polyval :
patfuloun, den
S.4. Décomposer n en álément
5.4. Décomposer p en éléments simples et tracer son évolution pour une entrée impulsion :
21, P, K. J. = Mesidue (num, den)
0-11-11
y= n' * exp (p* t) plot (+,y)
Exercice 4 : Création des fonctions (5points)
are tottetions (opoints)
Onvrir un nouveeu Californi (
Ouvrir un nouveau fichier, créer une fonction Newton qui permet de :
- Calculer le zéro d'une fonction par sur un la méthode de newton [a, b] avec une
tolérance tol.
- Les arguments d'entrée sont : le domaine [a, b], l'expression de la fonction sous
forme d'une chaine de caractère et la tolérance.
- L'argument de sortie : le zéro de la fonction :
Colonia de sorte : le zero de la lonction :
Calculez le zéro de : $f(x) = x^2 - 6x + 5$, $g(x) = \cos(x) - x$:
Exercice 5 : Création des fonctions (5points)
Ouvrir un nouveau fichier, créer une fonction simpson qui permet de :
b
-Calculer $\int f(x) dx$ par la méthode de simpson.
a
- L'approximation de simpson est donnée par :
$b = n h \left(x + y \right)$
$\int_{a}^{b} f(x) dx = \sum_{k=1}^{n} \frac{h}{6} \left(f(x_{k}) + 4f\left(\frac{x_{k} + x_{k+1}}{2}\right) + f(x_{k+1}) \right)$
k=16
π
$\frac{\pi}{2}$
Calculez l'intégrale de la fonction : $\int_{1}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$:
Calculez l'intégrale de la fonction : $\int_{0}^{\frac{\pi}{2}} \sin(x) dx$: