

MT 5103: Mathematics for Robotics Assignment 3

Due Date: October 10th, 2023 Root Solving, Numerical Differentiation, Numerical Integration, Ordinary Differential Equations

- 1) Find the root of $f(x) = e^{-x}(3.2\sin(x) 0.5\cos(x))$ on the interval [3, 4]. (Solve upto 6 iterations).
- 2) Solve $f_1(x) = 4 8y_2 + 4y_3 2y_2^3 = 0$; $f_2(x) = 1 4y_2 + 3y_3 + y_3^2 = 0$ using the Newton-Raphson technique, starting with $y^{(1)} = \left[y_2^{(1)} \ y_3^{(1)} \right] = [0.5 \ 0.5]$; (Solve upto 5 iterations)
- 3) Solve $f(x) = x^2 + 2\sin(x) + \cos(x)$ using the secant-method by considering initial approximations as $x_0 = 0$ and $x_1 = -0.1$. (Solve upto 6 iterations).
- 4) Find the value of $\cos (1.74)$ from the following table:

x:	1.7	1.74	1.78	1.82	1.86
sin(x)	0.9916	0.9857	0.9781	0.9691	0.9584

5) The distance covered by a rocket in meters from t = 8 s to t = 30 s is given by

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

- a) Using Simpson's $1/3^{rd}$ rule to find the approximate value of x
- b) Find the true error, E_t
- c) Find the absolute relative true error.
- 6) Repeat problem 5 with Simpson's 3/8th rule.

- 7) Solve the following differential equation $\frac{dy}{dx} = yx^2 1.2y$, in the interval [0 1], with initial condition as y(0) = 1 using Heun's Method with h = 0.5.
- 8) Repeat problem 7 with 4th Order Runge-Kutta Method.