

Università degli Studi di Padova

Scuola Galileiana di Studi Superiori

Classe di Scienze Naturali

Tesi di Diploma Galileiano

Towards an implementation in LambdaProlog of the two level Minimalist Foundation

Relatore Prof. Claudio Sacerdoti Coen Diplomando Alberto Fiori

Contents

A	General Predicates	2
В	Dependent Products	8
C	Propositional Equalities	13

A General Predicates

```
% dependents products: setPi
  type setPi mttType →
       (mttTerm \rightarrow mttType) \rightarrow
       mttType.
5 type lambda mttType →
       (mttTerm \rightarrow mttTerm) \rightarrow
       mttTerm.
  type app mttTerm →
       mttTerm \rightarrow
       mttTerm.
  %%— propositional conjunction: and
13 type and mttType →
       mttType \rightarrow
       mttType.
  type pair_and mttType →
       mttType \rightarrow
17
       mttTerm →
       mttTerm →
19
       mttTerm.
21 type p1_and, p2_and mttTerm → mttTerm.
23
  %%— dependet sums: setSigma
25
  type setSigma mttType →
       (mttTerm \rightarrow mttType) \rightarrow
       mttType.
29 type pair mttType →
       (mttTerm \rightarrow mttType) \rightarrow
       mttTerm → mttTerm →
       mttTerm.
33 type elim_setSigma mttTerm →
       (mttTerm \rightarrow mttType) \rightarrow
       (mttTerm \rightarrow mttTerm \rightarrow mttTerm) \rightarrow
       mttTerm.
  % existential quantifier: exist
39 type exist mttType →
       (mttTerm \rightarrow mttType) \rightarrow
       mttType.
  type pair_exist mttType →
       (mttTerm \rightarrow mttType) \rightarrow
43
       mttTerm →
       mttTerm →
       mttTerm.
```

```
type elim_exist mttTerm →
       mttType \rightarrow
       (mttTerm \rightarrow mttTerm \rightarrow mttTerm) \rightarrow
       mttTerm.
51
53 \% universal quantifier: forall
  type forall mttType →
       (mttTerm \rightarrow mttType) \rightarrow
       mttType.
57 type forall_lam mttType →
       (mttTerm \rightarrow mttTerm) \rightarrow
       mttTerm.
  type \ for all\_app \ mttTerm \rightarrow
       mttTerm →
       mttTerm.
  % intensional propositional equality: propId
65 type propId mttType →
       mttTerm →
       mttTerm →
67
       mttType.
69 type id mttType →
       mttTerm →
       mttTerm.
  type elim_id mttTerm →
73
       (mttTerm \rightarrow mttTerm \rightarrow mttType) \rightarrow
       (mttTerm \rightarrow mttTerm) \rightarrow
       mttTerm.
75
77 %— implication: implies
  type implies mttType →
       mttType \rightarrow
       mttType.
81 type impl_lam mttType →
       (mttTerm \rightarrow mttTerm) \rightarrow
83
       mttTerm.
  type impl_app mttTerm →
       mttTerm →
85
       mttTerm.
  % local definitions: letIn
89 type letIn mttType
       \rightarrow mttTerm
       \rightarrow (mttTerm \rightarrow mttTerm)
       → mttTerm
95 %— propositional disjunction: or
```

```
type or mttType \rightarrow mttType \rightarrow mttType.
97 type inl_or, inr_or mttType
        \rightarrow mttType
        → mttTerm
        → mttTerm
101
   type elim_or mttType
103
        \rightarrow mttTerm
        \rightarrow (mttTerm \rightarrow mttTerm)
        \rightarrow (mttTerm \rightarrow mttTerm)
105
        → mttTerm
107
type setSum mttType \rightarrow mttType \rightarrow mttType.
|m| type in1, inr mttType \rightarrow
        mttType \rightarrow
        mttTerm →
        mttTerm.
type elim_setSum (mttTerm → mttType) →
        mttTerm →
117
        (mttTerm \rightarrow mttTerm) \rightarrow
        (mttTerm \rightarrow mttTerm) \rightarrow
        mttTerm.
119
121 % singleton set/unit type: singleton
   type singleton mttType.
123 type star mttTerm.
   type elim_singleton mttTerm →
        (mttTerm \rightarrow mttType) \rightarrow
        mttTerm \rightarrow mttTerm.
   /* UNITYPED COMPUTATIONAL PREDICATES */
type hstep, dconv, hnf, conv, interp A \rightarrow A \rightarrow prop.
/*MTT PREDICATES*/
   kind mttTerm, mttType, mttKind, mttLevel type.
type ext, int mttLevel.
   type\ col\ ,\ set\ ,\ propc\ ,\ props\ mttKind\ .
137 type locDecl mttTerm → mttType → prop.
   type locDeclType mttType \rightarrow mttKind \rightarrow prop.
139 type of Type mttType \rightarrow mttKind \rightarrow mttLevel \rightarrow prop.
   type of, is a mttTerm \rightarrow mttType \rightarrow mttLevel \rightarrow prop.
   type locDef mttTerm \rightarrow mttType \rightarrow mttTerm \rightarrow prop.
143
  type forall mttType →
```

```
(mttTerm \rightarrow mttType) \rightarrow
145
       mttType.
  hnf A B \vdash hstep A C, !, hnf C B.
149 hnf A A.
151 conv A A ⊢ ! .
  conv \mathbf{A} \mathbf{B} \vdash (locDecl \_ (propEq \_ \mathbf{A} \mathbf{B})).
153 conv A B
       ⊢ spy(hnf A A')
       , spy(hnf B B')
          spy (dconv A' B')
157
159 dconv A A ⊢ !.
161 pts_leq A A.
  pts_leq props set.
pts_leq props col.
  pts_leq props propc.
pts_leq set col.
  pts_leq propc col.
167
169 pts_prop props props props ⊢ !.
  pts_prop _ _ propc.
171
  pts_fun A B set
       \vdash spy(pts_leq A set)
173
       , spy(pts_leq B set)
       , !
175
pts_fun _ col.
pts_for A props props \( \to \) pts_leq A set, !.
  pts_for _ _ propc.
181
  % of Type A KIND IE ⊢ loc Decl Type A KIND.
183
  isaType Type Kind IE
       ⊢ spy(ofType Type Kind' IE)
185
         spy(pts_leq Kind' Kind)
187
of (fixMe2 M T ) T int
          print "| < | Found a FixMe! | > | "
191
           print M
         term_to_string T S, print S
193
```

```
195
   isa (fixMe M) T int
197
           print "| <| Found a FixMe! | >|"
           print M
199
           term_to_string T S, print S
201
203
   isa Term TY IE
       ⊢ spy(of Term TY' IE)
205
       , spy(conv TY' TY)
207
   of X Y \_ \vdash locDecl X Y.
211
   tau_proof_eq A A T H'
213
       ⊢ interp_isa A T Ai
           setoid_refl T H
215
          H' = H Ai
217
219 tau_proof_eq A B T Hi
       \vdash spy(locDecl H (propEq T' A B)), !
       , spy(interp_isa H (propEq T A B) Hi)
   tau_proof_eq A B T Hi
       \vdash (locDecl H (propEq T' B A))
          spy(interp_isa H (propEq T B A) Hi')
           spy (setoid_symm T Q)
           Hi = Q Hi'
229
tau \mathbf{A} \mathbf{A} (\mathbf{x} \setminus \mathbf{x}) \vdash !
235 tau_trasp A A (x\y\h\ h) \vdash !
  %interpret X: _ext T in un Xi di tipi Ti
239 interp_isa X T Xi
       \vdash spy(of X T_inf ext)
       , spy(interp X Xi')
241
       , spy(tau T_inf T F)
```

```
spy(Xi = F Xi')
   locDecl (k_propId Te)
       (for all T t1\
247
            forall T t1'\
            implies (E t1 t1')
                 (forall T t2\ forall T t2'\
                     implies (E t2 t2')
251
                          (implies (E t1 t2)
                               (E t1' t2'))))
       ⊢ interp Te T
           setoid_eq Te E
255
   setoid_symm T (x\ fixMe "prova di symmetria").
259
   macro_tau B B' Q
       ⊢ spy(setoid_eq B EquB)
261
           spy(interp B Bi)
           spy(interp B' Bi')
263
           spy(pi x1 \ pi x2 \ pi h\
            pi x1i\ pi x2i\ pi hi\
265
               locDecl x1 B
            \Rightarrow locDecl x2 B'
267
            ⇒ locDecl x1i Bi
            ⇒ locDecl x2i Bi'
269
            ⇒ interp x1 x1i
            ⇒ interp x2 x2i
271
            \Rightarrow (locDecl h (propEq B x1 x2))
            \Rightarrow (locDecl hi (EquB x1i x2i))
273
            ⇒ interp h hi
            \Rightarrow spy(\mathbf{Q} x1 x2 h x1i x2i hi)
275
277
   macro\_interp B Q \vdash macro\_tau B B Q.
```

elpi/main.elpi

B Dependent Products

```
ofType (setPi B C) KIND3 IE
       \vdash (ofType B KIND1 IE)
        , (pi x \setminus locDecl x B
            \Rightarrow (ofType (C x) KIND2 IE))
            spy(pts_fun KIND1 KIND2 KIND3)
10 of (lambda B F) (setPi B C) IE
       \vdash spy (ofType B _ IE)
        , spy (pi x\ locDecl x \mathbf{B} \Rightarrow isa (\mathbf{F} x) (\mathbf{C} x) \mathbf{IE})
  of (app Lam X) (CX) IE
        \vdash spy(of Lam (setPi B C) IE)
           spy(isa X B IE)
           \mathbf{C}\mathbf{X} = \mathbf{C} \mathbf{X}
22 hstep (app LAM Bb) (F Bb)
       ⊢ of LAM (setPi B C) IE
           (ofType B _ IE)
           (isa Bb B IE)
           hnf LAM (lambda B' F)
           conv B B'
           (pi x\ locDecl x \mathbf{B} \Rightarrow isa (\mathbf{F} x) (\mathbf{C} x) \mathbf{IE})
           (pi x\ locDecl x \mathbf{B} \Rightarrow \text{ofType} (\mathbf{C} x) - \mathbf{IE})
32 dconv (setPi B C) (setPi B' C')
       \vdash (conv B B')
        , (pi x\ locDecl x \mathbf{B} \Rightarrow \text{conv} (\mathbf{C} \ x) (\mathbf{C'} \ x))
36 dconv (app F X) (app F' X')
       \vdash (conv F F')
        , (conv X X')
  dconv (lambda B \ F) (lambda B' \ F')
     \vdash (conv B B')
           pi x\ locDecl x \mathbf{B} \Rightarrow (\text{conv} (\mathbf{F} \times \mathbf{x}))
46 interp (setPi B C) T
```

```
⊢ spy(interp B Bi)
          spy(pi x\ pi xi\ locDecl x B
          ⇒ locDecl xi Bi
          ⇒ interp x xi
          \Rightarrow interp (C x) (Ci xi))
          spy(setoid_eq B EquB)
          spy(pi x\ pi xi\ locDecl x B
          ⇒ locDecl xi Bi
          ⇒ interp x xi
          \Rightarrow setoid_eq (C x) (EquC xi))
          spy(pi x1 \ pi x2 \ pi h\
           pi x1i\ pi x2i\ pi hi\ locDecl x1 B
58
           \Rightarrow locDec1 x2 B
           ⇒ locDecl x1i Bi
           ⇒ locDecl x2i Bi
          ⇒ interp x1 x1i
           ⇒ interp x2 x2i
           \Rightarrow (locDecl h (propEq B x1 x2))
          \Rightarrow (locDecl hi (EquB x1i x2i))
          ⇒ interp h hi
          \Rightarrow spy(tau (C x1) (C x2)
                (TauC x1i x2i hi)))
         T = setSigma (setPi Bi Ci) f
           (forall (Bi) x1\
70
           (forall Bi x2\
           (forall (EquB x1 x2) h\
           (EquC x2
                (TauC x1 x2 h (app f x1))
                (app f x2))))
  interp (app F X) R
      \vdash spy(of \mathbf{F} (setPi \mathbf{B} \mathbf{C}) ext)
          spy(interp_isa X B Xi)
          spy(interp F Fi)
82
          spy(of Fi T int)
          spy(T = (setSigma PI _))
         \mathbf{R} = (\mathbf{app})
           (elim_setSigma Fi (\_\PI) (x\y\x))
           Xi)
  interp (lambda B F) R
      \vdash spy(of (lambda B F) (setPi B C) ext)
          spy(interp (setPi B C)
           (setSigma (setPi Bi Ci) H))
94
          macro_interp B
```

```
(x\setminus_\setminus xi\setminus_\setminus interp (F x) (Fi xi))
            setoid_eq B EquB
            macro_interp B
              (x1\x2\h\x1i\x2i\hi\
                   tau_proof_eq (F x1) (F x2) (C x2)
100
                        (K_EQU x1i x2i hi))
            \mathbf{R} = \mathbf{pair} \ (\mathbf{setPi} \ \mathbf{Bi} \ \mathbf{Ci}) \ (\mathbf{H}) \ (\mathbf{lambda} \ \mathbf{Bi} \ \mathbf{Fi})
              (forall_lam Bi x1\
              forall_lam Bi x2\
104
              forall_lam (EquB x1 x2) h\
                  \mathbf{K}_{\mathbf{L}}\mathbf{E}\mathbf{Q}\mathbf{U} x1 x2 h)
108
setoid_eq (setPi B C) P
        ⊢ spy(interp B Bi)
            spy(pi x\ pi xi\ locDecl x B
             ⇒ locDecl xi Bi
114
             ⇒ interp x xi
             \Rightarrow interp (C x) (Ci xi))
            spy(pi x\ pi xi\locDecl x B
116
             ⇒ locDecl xi Bi
             ⇒ interp x xi
118
             \Rightarrow (interp (C x) (Ci xi)
                   , setoid_eq (C x) (EquC xi))
120
            \mathbf{P} = (f \setminus g \setminus
              forall Bi x\
             EquC x
              (app (elim_setSigma f
124
                   (\_\setminus setPi Bi Ci) (x\setminus y\setminus x) ) x)
              (app (elim_setSigma g
126
                   (\_\set Pi Bi Ci) (x\y\x) ) x))
128
   tau_proof_eq (app F X1) (app F X2) T H
        \vdash of \mathbf{F} (setPi \mathbf{B} \mathbf{T}') ext
            spy(tau_proof_eq X1 X2 B G)
132
            spy(interp F Fi)
            spy(of Fi (setSigma TyF MorF) int)
134
            PI1 = (c \setminus elim\_setSigma c
             P2Fi = elim_setSigma Fi
             (c \ MorF (PI1 c))
138
             (x \setminus y \setminus y)
            spy(interp_isa X1 B X1i)
            spy(interp_isa X2 B X2i)
            spy (tau
142
              (propEq (T' X2) (app F X1) (app F X2))
              (propEq\ (T)\ (app\ F\ X1)\ (app\ F\ X2))
144
```

```
TAU)
          H = TAU
146
            (forall_app
            (forall_app
148
            (forall_app P2Fi X1i) X2i) G)
150
  tau (setPi B C) (setPi B' C') P
       ⊢ spy(interp (setPi B C) (setSigma T1 T2))
          spy(T1 = setPi Bi Ci)
           spy(interp (setPi B' C') (setSigma T1' T2'))
           spy(T1' = setPi Bi' Ci')
156
           spy(setoid_eq B' EquB')
           spy(macro_interp B
158
            ( \x2 \x2 \x2 \x2 \x2 \x
                setoid_eq (C x2) (EquC x2i)))
160
           spy(tau B' B FB)
           spy (macro_tau B B'
            tau (C x) (C' x') (FC' xi xi')))
164
           spy(macro_interp \mathbf{B} (x1\x2\_\x1i\x2i\_\
            tau (C x1) (C x2) (FCC x1i x2i)))
166
           spy(tau_trasp B' B KB)
           spy(macro_tau B B' x\x'\_\xi\xi'\hi\
168
            tau_trasp (C x) (C' x') (KC' xi xi' hi))
          P = (w \setminus elim\_setSigma w)
            (\_\setSigma\ T1'\ T2')\ f\p\
            pair T1' T2'
            (lambda Bi' x \setminus FC' (FB x) x (app f (FB x)))
            (forall_lam Bi' y1'\
            forall_lam Bi' y2'\
            forall_lam (EquB' y1' y2') d'\
176
           KC' (FB y2')
                y2'
                d'
                (FCC (FB y1') (FB y2') (app f (FB y1')))
180
                (app f (FB y2'))
                (forall_app
182
                     (forall_app
                     (forall_app p (FB y1'))
184
                     (FB y2'))
                     (KB y1' y2' d'))))
186
188
  tau_trasp (setPi B C) (setPi B' C') P
       \vdash spy(macro_tau B B' x \setminus x' \setminus xi \setminus xi' \setminus hi \setminus
190
            tau_trasp (C x) (C' x') (KC' xi xi' hi))
           spy(tau B' B FB)
192
          P = f \setminus g \setminus d \setminus forall_lam B' y' \setminus
```

elpi/calc/setPi.elpi

C Propositional Equalities

Extensional

```
2 % calc_Eq.elpi
  type propEq mttType → mttTerm →
      mttTerm \rightarrow mttType.
  type eq
            mttType \rightarrow
       mttTerm \rightarrow mttTerm.
10 pts_eq K props \vdash pts_leq K set, !.
  pts_eq _ propc.
  ofType (propEq A AA1 AA2) KIND ext
      ⊢ of Type A KIND' ext
       , pts_eq KIND' KIND
         isa AA1 A ext
          isa AA2 A ext
18
  of (eq C Cc) (propEq C Cc Cc) ext
      \vdash spy(of \mathbf{Cc} \ \mathbf{C} \ \mathbf{ext})
  %dstep A B \vdash of ()
  dconv (propEq A AA1 AA2)
         (propEq A' AA1' AA2')
30
      ⊢ spy(conv A A')
       , spy(conv AA1 AA1')
          spy (conv AA2 AA2')
36 dconv (eq A AA) (eq A' AA')
      ⊢ conv A A'
          conv AA AA'
  interp (propEq A Aa1 Aa2) R
      ⊢ spy(setoid_eq A EquA)
          spy(interp_isa Aa1 A Aa1')
          spy(interp_isa Aa2 A Aa2')
       , spy(\mathbf{R} = (\mathbf{EquA} \ \mathbf{Aa1'} \ \mathbf{Aa2'}))
```

```
46
48 interp (eq A Aa) T
      ⊢ spy(setoid_refl A ReflA)
         spy(interp Aa Aa')
         T = (ReflA Aa')
setoid_refl (propEq _ _ _)
               (_\id singleton star).
setoid_eq (propEq A Aa1 Aa2)
             (\_\setminus \_\setminus (propId\ singleton\ star\ star)).
58
  tau (propEq T_T T1 T2) (propEq T T1' T2') (F)
      ⊢ spy(tau_proof_eq T1 T1' T F1)
         spy(tau_proof_eq T2 T2' T F2)
          spy(interp_isa T1 T T1i)
          spy(interp_isa T2 T T2i)
          spy(interp\_isa~T1'~T~T1i')
         spy(interp_isa T2' T T2i')
         spy(interp T Ti)
66
         F = x \setminus impl_app (
           impl_app (
           forall_app (
           forall_app (
           impl_app (
           forall_app (
           forall_app (k_propId T)
               T1i)
               T1i')
               F1)
               T2i)
               T2i')
               F2) x
80
  tau\_trasp~(propEq~\_~\_~)
      (propEq _ _ _)
      (h \mid h' \mid k \mid k).
  tau\_proof\_eq \quad \_ \ \_ \ (propEq \ T \ A \ B)
      (id singleton star).
```

elpi/calc/propEq.elpi

Intensional

```
ofType (propId A AA1 AA2) KIND IE
```

```
⊢ isa AA1 A int
         isa AA2 A int
          ofType A KIND1 int
          (spy(pts_leq KIND1 set , KIND = props), !
          ; KIND = propc)
10 of (id A AA) (propId A AA AA) int
      \vdash of Type A _ int
         isa AAA int
  of (elim_id P C CC) (C AA1 AA2) int
      ⊢ (of P (propId A AA1 AA2) int)
       , (pi x\ pi y\ locDecl x A
           \Rightarrow locDecl y A
18
           \Rightarrow isaType (C x y) propc int)
       , (pi x \ locDecl x A
           \Rightarrow of (CC x) (C x x) int)
22
24 hstep (elim_id (id A AA) C CC) (CC AA)
      \vdash (isa \mathbf{A}\mathbf{A} \mathbf{A} int)
       , (pi x \in pi y \in loc Decl x A
          \Rightarrow locDecl y A
          \Rightarrow isaType (C x y) propc int)
       , (pi x\ locDecl x A
          \Rightarrow of (CC x) (C x x) int)
30
  dconv (id A AA) (id A' AA')
      ⊢ (conv A A')
       , (conv AA AA')
dconv (propId A AA1 AA2) (propId A' AA1' AA2')
      ⊢ spy (conv A A')
         spy (conv AA1 AA1')
          spy (conv AA2 AA2')
```

elpi/calc/propId.elpi