#### 12.109

# **Magmatic Processes**

<u>Phase equilibrium controls</u> – these have formed basis for much of our discussions – other factors can be important

<u>Magma mixing</u> – requires melts of different composition to be in close proximity... evidence for zoning in magma chambers?

Assimilation of wall rock xenoliths – this happens! Need to track thermal energy budget

<u>Soret diffusion</u> – diffusion in response to presence of a temperature gradient in a material (magma in our case). A kinetic effect that requires sustenance of a temperature gradient.

Liquid immiscibility – not an important process for most magmas, only for very silicate rich rocks

Gas-liquid element transfer

# Non-magmatic Processes

 $\underline{\text{Metasomatism}}$  – chemical change. Chemical transfer in absence of silicate melt – a metamorphic process and the basis of the granitization hypothesis – theory that pre-existing rocks are transformed into granite by the action of fluids of appropriate composition

#### Granitic rocks

<u>Historical perspectives on the granite problem</u>

Carmichael, Turner, and Verhoogen (1974) Igneous Petrology p. 593-596.

Daly (1933) Igneous rocks and the depths of the earth Chap. XVII.

Marmo (1967) Earth Sci Rev 3:7-29.

## Proposed origins of granite problem and misconceptions

- 1) Metasomatic granitization on a large scale without participation of a silicate melt... Origin by hydrothermal replacement or solid diffusion
- 2) Granites' derivative liquids produced by fractional crystallization of basalt... Origin as magmatic liquids.
- 3) What are sources of magmas? Where are these located?
- 4) Enormous "granite" batholiths are not granite. Much of the plutonic rock is granodiorite tonalite quartz diorite.

Tuttle and Bowen's (1958) [GSA Memoir 74] experimental work distinguished between hypotheses 1) and 2). Bowen and Tuttle showed that the system Ab-Or-Qtz-H<sub>2</sub>O contained a ternary minimum and that all granites plotted near that minimum. The easiest way to produce such a clustering is by fractional crystallization.

Today's major granite problem is source for the large continental batholiths.

### Information contained in granitic rocks

Compositions of spatially and temporally related granitic rocks may record a "liquid line of descent" at some P, T, and  $P_{H2O}$ .

Some strange textures in granites have also intrigued petrologists. Rapakivi = plagioclase feldspar overgrowths on alkali feldspar. Anti-rapakivi = alkali feldspar overgrowths on plagioclase. The proposals for the origin of these different textures center around the role of variable T, P, and  $H_2O$  on the termination of the two feldspar + liquid (2 fsp + liq) boundary curve.

Anti-rapakivi, the mantling of plagioclase by alkali feldspar, is found in many rocks... from absarokite to shoshonite to syenite (these are rocks with low  $a_{SiO2}$  and  $P_{H2O}$ ). Usually low-pressure environments. Experiments at low P show that the 2 fsp + liq curve lies on the alkali feldspar side of the solvus-solidus intersection. Therefore, one can explain the alkali feldspar rims on plagioclase as a consequence of low P fractional crystallization. This is the equivalent to a peritectic reaction,

Sometimes (Often) there is <u>no</u> reaction overgrowth relation in two feldspar rocks. This observation is consistent with increasing  $a_{SiO2}$  and  $P_{H2O}$ . Experimental results show that increases in  $H_2O$  and  $SiO_2$  make the 2 fsp + liq boundary a cotectic.

Rapakivi textures are harder to explain. Quartz is present in rapakivi associations. There is no evidence from phase relations that the 2 fsp + liq curve lies on the plag side of the solidus-solvus intersection under any P or  $a_{\rm H2O}$  conditions. The experiments show that the 2 fsp + liq boundary is either plagioclase peritectic or cotectic all the way.

What is the explanation, then? Degassing – a decrease in  $P_{\rm H2O}$  causes the 2 fsp + liq boundary to move toward the alkali feldspar corner. This movement decreases the area of the alkali feldspar liquidus field, and a liquid on the 2 fsp + liq boundary at higher pressures will find itself in the plag primary phase volume after a pressure drop. An intriguing thought is that rapakivi granites may be the recorders of catastrophic silicic volcanic eruptions!