

Chemical kinetics Procida June 2015

Module 2

Module 2

- Reaction mechanisms (PG)
 - Understanding complex gas-phase reactions
 - Developing detailed chemical kinetic models
- Task 1: Oxidation of aromatic compounds
 - Introduction (AC)
 - -Solving using OpenSMOKE++ (AC, PG)

Case: engine knock

Knock:

The gas in A ignites before the primary flame front arrives

- How fast does the gas in A ignite?
 - Composition
 - Temperature
 - Pressure
- How can we prevent knock?

Stable molecules and chain carriers

Hydrogen (H₂):

- Stable molecule
- Comparatively unreactive
- Can be stored in a box

Hydrogen atom (H):

- Radical (unpaired electrons)
- Reactive
- Cannot be stored

Chain carrier

Gas-phase processes

- Initiation
 - Formation of the initial radicals
- Propagation / branching
 - Reactions preserving or increasing the number of radicals
- Termination
 - Reactions that act as a radical sink

The water-gas shift reaction $CO + H_2O = CO_2 + H_2$

Initiation

$$-H_2O + O_2 \text{ (trace)} \rightarrow OH + HO_2$$

Propagation

$$-CO + OH \rightarrow CO_2 + H$$
$$-H + H_2O \rightarrow H_2 + OH$$

Termination

$$-OH \rightarrow inert$$

Moist CO oxidation

Initiation

$$-H_2O + O_2 \rightarrow OH + HO_2$$

Propagation / branching

$$-CO + OH \rightarrow CO_2 + H$$
 (propagating)

$$-H + O_2 \rightarrow O + OH$$
 (branching)

$$-O + H_2O \rightarrow OH + OH$$
 (branching)

Termination

-OH → inert

Case

Thought experiment (Glassman, 1987)

Reactor of 1 cm³ 10¹⁹ molecules A 1 chain carrier R 10⁸ collisions/sec Question:
How long does it take
to consume all A molecules?

The importance of chain carriers

Thought experiment (Glassman, 1987)

Reactor of 1 cm³ 10¹⁹ molecules A 1 chain carrier R 10⁸ collisions/sec Straight chain reaction:

$$A + R \rightarrow B + R$$

Consumption time:

$$t_{cons} \sim 30 \text{ years}$$

The importance of chain carriers

Thought experiment (Glassman, 1987)

Reactor of 1 cm³ 10¹⁹ molecules A 1 chain carrier R 10⁸ collisions/sec Straight chain reaction: $A + R \rightarrow B + R$

Consumption time: $t_{cons} \sim 30 \text{ years}$

Chain-branching reaction:

$$A + R \rightarrow B + R$$
...
$$A + R \rightarrow B + R$$

$$A + R \rightarrow B + R$$

$$A + R \rightarrow B + R + R$$
99 steps

Consumption time:

$$t_{cons} \sim 50 \; \mu sec$$

The H₂ - O₂ system

What happens?

Initiation

$$-H_2 + O_2 \rightarrow H + HO_2$$

Branching

$$-H + O_2 \rightarrow O + OH$$

$$-0 + H_2O \rightarrow OH + OH$$

$$-OH + H_2 \rightarrow H_2O + H$$

Termination

$$-H + O_2 + M \rightarrow HO_2 + M$$

 $HO_2 \rightarrow inert (wall)$

H₂ - O₂ explosion limits

- A (no explosion)
 - -H → inert (wall)
- B (explosion)

$$-H + O_2 \rightarrow O + OH$$

C (no explosion)

$$-H + O_2 + M \rightarrow HO_2 + M$$

 $HO_2 \rightarrow inert (wall)$

D (explosion)

$$-HO_2 + H_2 \rightarrow H + H_2O_2$$
 (thermal explosion)

The hydrogen-oxygen reaction mechanism

no.	reaction	A	β	$E_{\mathbf{a}}$
1	$O + OH \Rightarrow H + O_2$	2.0×10^{14}	-0.40	0
2	$O + H_2 \rightleftharpoons H + OH$	5.0×10^{4}	2.67	6 290
3	$OH + H_2 \Rightarrow H_2O + H$	2.1×10^{8}	1.52	3 450
4	$OH + OH \Rightarrow H_2O + O$	4.3×10^{3}	2.70	-2486
5	$H + H + M = H_2 + M$	1.0×10^{18}	-1.00	0
	enhanced third-body efficiencies: $H_2O = 0$			
6	$H + H + H_2O \Rightarrow H_2 + H_2O$	6.0×10^{19}	-1.25	0
7	$H + O + M \rightarrow OH + M$	6.2×10^{16}	-0.60	0
	enhanced third-body efficiencies: $H_2O = 5$			
8	$H + OH + M \Rightarrow H_2O + M$	1.6×10^{22}	-2.00	0
	enhanced third-body efficiencies: $H_2O = 5$			
9	$O + O + M \Rightarrow O_2 + M$	1.9×10^{13}	0.00	-1788
	enhanced third-body efficiencies: H ₂ O = 5	19		_
10	$H + O_2 + M \Rightarrow HO_2 + M$	2.1×10^{18}	-1.00	0
	enhanced third-body efficiencies: $N_2 = 0$, $H_2O = 10$	0.7 4019		
11	$H + O_2 + N_2 = HO_2 + N_2$	6.7×10^{19}	-1.42	0
12	$HO_2 + H \Rightarrow H_2 + O_2$	4.3×10^{13}	0.00	1 411
13	$HO_2 + H \Rightarrow OH + OH$	1.7×10^{14}	0.00	875
14 15	$HO_2 + H \rightleftharpoons O + H_2O$ $HO_2 + O \rightleftharpoons OH + O_2$	3.0×10^{13} 3.3×10^{13}	0.00	1 721 0
16	$HO_2 + OH \rightarrow O_2$ $HO_2 + OH \rightarrow H_2O + O_2$	1.9×10^{16}	-1.00	0
17	$HO_2 + HO_2 \Rightarrow H_2O_2 + O_2$	1.3×10^{11}	0.00	-1630
17	$HO_2 + HO_2 \Rightarrow H_2O_2 + O_2$	4.2×10^{14}	0.00	11 980
18	$H_2O_2 + M \Rightarrow OH + OH + M$	1.3×10^{17}	0.00	45 500
10	enhanced third-body efficiencies: H ₂ O = 5	1.0 × 10	0.00	45 500
19	$H_2O_2 + H \Rightarrow HO_2 + H_2$	1.7×10^{12}	0.00	3 755
20	$H_2O_2 + H \Rightarrow H_2O + OH$	1.0×10^{13}	0.00	3 576
21	$H_2O_2 + O \Rightarrow HO_2 + OH$	6.6×10^{11}	0.00	3 974
22	$H_2O_2 + OH \Rightarrow H_2O + HO_2$	7.8×10^{12}	0.00	1 330
			_, _,	

DTU Chemical Engineering, Technical University of Denmark

$$k = A T^{\beta} exp(-E_a/RT)$$

Hydrogen-air ignition

DTU Chemical Engineering, Technical University of Denmark

Thermal NO formation

- Mechanism for [NO] \approx 0: $O+N_2 -> NO+N$ (1) $N+O_2 -> NO+O$ (2)
- Formation rate of NO: $d[NO]/dt = k_1[O][N_2]+k_2[N][O_2]$
- Steady-state assumption for N: $d[N]/dt = k_1[O][N_2]-k_2[N][O_2]=0 \Leftrightarrow$ $[N]_{ss}=k_1[O][N_2] / k_2[O_2]$
- Partial equilibrium assumption for $O_2+M=O+O+M$ (3): $K_{c,3}=[O]^2/[O_2] \Leftrightarrow [O]_{pe}=(K_{c,3}[O_2])^{1/2}$
- Resulting expression:

$$d[NO]/dt = 2k_1 (K_{c,3}[O_2])^{1/2}[N_2]$$

= 1.3E15exp(-67500/T) $[O_2]^{1/2}[N_2]$

Steady-state approximation

If B is consumed rapidly, then rate of formation = rate of consumption

$$\frac{d[B]}{dt} = 0$$

Example: radicals like H, O, OH

Partial equilibrium assumption

If a reaction is rapid in both the forward and reverse direction,

it can be assumed in partial equilibrium:

$$A + B = C + D$$

Example: $OH+H_2 = H_2O+H$

Formation of Thermal NO

Solid lines: full model

Dashed lines: global model

$$[NO] = 1.3 \cdot 10^{15} \times \exp(-67650/T) \times [O_2]^{0.5} [N_2] \times t$$

Rate constant for $N+NO = O+N_2$

Flow reactor experiments:

 N_2+O_2+ trace H_2O , measure NO $k = 9.4E12 T^{0.14} cm^3 mol^{-1} s^{-1}$

Abian et al. (2015)

Case: engine knock

Knock:

The gas in A ignites before the primary flame front arrives

- How fast does the gas in A ignite?
 - Composition
 - Temperature
 - Pressure
- How can we prevent knock?

Assume moist CO oxidation

Moist CO oxidation

Initiation

$$H_2O + O_2 \rightarrow OH + HO_2$$

Propagation / branching

1.
$$CO + OH \rightarrow CO_2 + H$$

2.
$$H + O_2 \rightarrow O + OH$$

3.
$$O + H_2O \rightarrow OH + OH$$

Termination

4. OH
$$\rightarrow$$
 inert

- •H, O in steady-state:
- d[OH]/dt = {2k₁[CO]-k₄}[OH]
- If d[OH]/dt > 0: explosion
- Control knock:
 - -Lower k₁
 - -Increase k₄

Knock control

Lower k₁:Lower temperature

Figure 2. Arrhenius plot for the rate coefficient of reaction CO + OH; buffer gas is argon.

- Reduce end gas temperature
 - Lower compression ratio
 - Delay ignition

• Increase k₄:

Use additives

- -Lead
- Aromatic compounds
- MTBE

Development of a chemical kinetic model

Reaction Mechanism: CH₂O Subset

Reaction subset for CH2O. Rate constants for reactions 21-24 are reported elsewhere [24].

		A [cm, mole, s]	β	E _a [cal/mole]	Source
1.	$CH_2O + M \rightleftharpoons HCO + H + M^a$	6.1E15	0.00	76900	[28]
2.	$CH_2O + M \rightleftharpoons CO + H_2 + M^a$	2.8E15	0.00	63800	[28]
3.	$CH_2O + H \rightleftharpoons HCO + H_2$	5.7E07	1.90	2740	[5]
4.	$CH_2O + O \rightleftharpoons HCO + OH$	1.8E13	0.00	3080	[31] ^b
5.	$CH_2O + OH \rightleftharpoons HCO + H_2O$	3.4E09	1.18	-447	[31] ^b
6.	$CH_2O + HO_2 \rightleftharpoons HCO + H_2O_2$	4.1E04	2.50	10200	[32]
7.	$CH_2O + O_2 \rightleftharpoons HCO + HO_2$	5.0E04	3.00	39000	see text
8.	$HCO + M \rightleftharpoons H + CO + M^a$	4.8E17	-1.20	17700	[46]
9.	$HCO + H \rightleftharpoons CO + H_2$	1.2E13	0.25	0	[24] ^b
10.	$HCO + O \rightleftharpoons CO + OH$	3.0E13	0.00	0	[34] ^b
11.	$HCO + O \rightleftharpoons CO_2 + H$	3.0E13	0.00	0	[34] ^b
12.	$HCO + OH \rightleftharpoons CO + H_2O$	1.0E14	0.00	0	[34] ^b
13.	$HCO + HO_2 \rightleftharpoons CO_2 + OH + H$	3.0E13	0.00	0	[31]
14.	$HCO + O_2 \rightleftharpoons CO + HO_2$	3.4E12	0.00	0	[45]
15.	$HCO + HCO \rightleftharpoons CO + CH_2O$	3.0E13	0.00	0	[29]
16.	$CH_2O + NO_2 \rightleftharpoons HCO + HONO$	8.0E02	2.77	13730	[54] ^b
17.	$HCO + NO \rightleftharpoons CO + HNO$	7.0E13	-0.40	0	[44]
18.	$HCO + HNO \rightleftharpoons NO + CH_2O$	6.0E11	0.00	2000	[54] ^b
19.	$HCO + NO_2 \rightleftharpoons CO + HONO$	1.2E23	-3.29	2355	[54] ^b
20.	$HCO + NO_2 \rightleftharpoons H + CO_2 + NO$	8.4E15	-0.75	1930	[54] ^b
25.	$NO_2 + HO_2 \rightleftharpoons HONO + O_2$	6.3E08	1.25	5000	[48]
26.	$HNO + O_2 \rightleftharpoons NO + HO_2$	2.0E13	0.00	16000	[55]

^a Enhanced third-body efficiencies: $H_2O = 5$.

^b Adopted from Glarborg et al. [24]

Reaction mechanism: other format

 $k = A T^n exp(-E_a/RT)$

Reaction			A_{f}	n_f	Ea_f	A_r	n_r	Ea _r
c2h5oh	=	c2h4+h2o	1.25E+14	0.1	6.70E+04	1.11E+07	1.77	8.08E+03
c2h5oh	=	ch2oh+ch3	2.00E+23	-1.68	9.64E+04	8.38E+14	-0.22	7.02E+03
c2h5oh	=	c2h5+oh	2.40E+23	-1.62	9.95E+04	9.00E+15	-0.24	4.65E+03
c2h5oh	=	ch3cho+h2	7.24E+11	0.1	9.10E+04	4.91E+07	0.99	7.50E+04
c2h5oh+o2	=	pc2h4oh+ho2	2.00E+13	0	5.28E+04	2.19E+10	0.28	4.43E+02
c2h5oh+o2	=	sc2h4oh+ho2	1.50E+13	0	5.02E+04	1.95E+11	0.09	4.88E+03
c2h5oh+oh	=	pc2h4oh+h2o	1.81E+11	0.4	7.17E+02	4.02E+08	0.92	1.79E+04
c2h5oh+oh	=	sc2h4oh+h2o	6.18E+10	0.5	3.80E+02	1.63E+09	0.83	2.39E+04
c2h5oh+oh	=	c2h5o+h2o	1.50E+10	0.8	2.53E+03	7.34E+09	0.91	1.72E+04
c2h5oh+h	=	pc2h4oh+h2	1.88E+03	3.2	7.15E+03	3.93E-01	3.83	9.48E+03
c2h5oh+h	=	sc2h4oh+h2	8.95E+04	2.53	3.42E+03	2.21E+02	2.97	1.28E+04
c2h5oh+h	=	c2h5o+h2	5.36E+04	2.53	4.41E+03	2.47E+03	2.74	4.19E+03
c2h5oh+ho2	=	pc2h4oh+h2o2	2.38E+04	2.55	1.65E+04	2.88E+03	2.48	2.83E+03
c2h5oh+ho2	=	sc2h4oh+h2o2	6.00E+12	0	1.60E+04	8.59E+12	-0.26	9.42E+03
c2h5oh+ho2	=	c2h5o+h2o2	2.50E+12	0	2.40E+04	6.66E+13	-0.48	7.78E+03

Develop chemical kinetic model

- Identify relevant species
- Obtain thermodynamic properties
- Obtain transport properties
- Identify relevant reactions
- Obtain rate constants

Approach: establish N₂O subset

- Start with N₂O
- List possible N₂O reactions (dissociation, reaction with O/H radicals) and identify novel N-intermediates

$$- N_2O(+M) = N_2+O(+M)$$

$$-N_2O+H=N_2+OH$$

$$-N_2O+H = NH+NO$$

$$-N_2O+O = N_2+O_2$$

$$-N_2O+O = NO+NO$$

$$-N_2O+OH=N_2+HO_2$$

$$-N_2O+OH = HNO+NO$$

- List possible NH reactions (dissociation, reaction with O/H radicals) and identify novel N-intermediates
- List possible NO reactions (dissociation, reaction with O/H radicals) and identify novel N-intermediates
- And so on

Thermochemistry in Chemkin format

$$\frac{C_p^o k}{R} = a_{1k} + a_{2k}T + a_{3k}T^2 + a_{4k}T^3 + a_{5k}T^4$$

$$\frac{H_k^o}{RT} = a_{1k} + \frac{a_{2k}}{2}T + \frac{a_{3k}}{3}T^2 + \frac{a_{4k}}{4}T^3 + \frac{a_{5k}}{5}T^4 + \frac{a_{6k}}{T}$$

$$\frac{S_k^o}{R} = a_{1k}lnT + a_{2k}T + \frac{a_{3k}}{2}T^2 + \frac{a_{4k}}{3}T^3 + \frac{a_{5k}}{4}T^4 + a_{7k}$$

Other thermodynamics properties are easily given in terms of C_p^o , H^o , and S^o

NASA polynomials

```
THERMO
300., 1000., 5000.

C6H5O 3/20/89 THERMC 6H 50 1 0G 300.000 5000.000 1404.000 01

1.57324764E+01 1.54394760E-02-5.31383756E-06 8.28591116E-10-4.82238305E-14 2

-1.76799222E+03-6.20052317E+01-3.73072513E+00 6.71840729E-02-5.88121307E-05 3

2.61335718E-08-4.61968583E-12 4.31827564E+03 4.02213334E+01 4

CH3OCH3 3/20/89 THERMC 2H 60 1 0G 300.000 5000.000 1364.000 21

8.43631162E+00 1.30235626E-02-4.45885307E-06 6.93233262E-10-4.02757540E-14 2

-2.62777965E+04-2.24530764E+01 1.53263200E+00 2.37669572E-02-8.14177550E-06 3

-5.29451929E-10 5.96605679E-13-2.32831259E+04 1.66340885E+01 4
```

column numbers:

```
1 10 20 30 40 50 60 70 80 | 23456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123456789 | 123
```

Thermochemical databases

Tables

JANAF Thermochemical Tables 3rd ed., vols. 1-2, M.W. Chase, American Chemical Society, 1986, SELREF/QD516.D695 1986

Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds: Chapman & Hall, London, 1986.

Tables TRC (Thermodynamics Research Center) Thermodynamic Tables - Hydrocarbons - Department of Chemistry, Texas A&M University

On-line databases

NIST Webbook : http://webbook.nist.gov

Computational Chemistry Comparison and Benchmark Data Base http://srdata.nist.gov/cccbdb/

Active Thermochemical Tables (Branco Ruscic Argonne National Lab.) http://atct.anl.gov/Thermochemical%20Data/version%20Alpha%201.110/index.html

Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion (Burcat): http://garfield.chem.elte.hu/Burcat/burcat.html

Rate constants

- High accuracy
 - Experimental
 - High level theory
- Lower accuracy
 - Lower levels of theory
 - Analogy
 - Estimate

Kinetic experiments

- Microscopic
 - Characterization of elementary reaction
 - -Determine rate coefficients
 - -Identify products
- Macroscopic
 - Characterization of <u>process</u>
 - -Identify mechanism
 - -Validate model

Characterization of elementary reactions

REACTOR TYPE:

Batch reactor

Flow reactor

Which reactor type is best suited?
How are the radicals generated?
What reactor/excitation techniques will function?

Regions of the electromagnetic spectrum:

Types of excitation

Characterization of elementary reactions

REACTOR TYPE:

Batch reactor Flow reactor

(initial separation)

EXCITATION

Selective Non-Selective

Photolysis Discharge Radiolysis

Thermal

Shock tube: thermal activation

DTU Chemical Er

Rate constants

- Large number of reactions in a combustion mechanism
- ➤ Direct experimental determination often difficult for elementary reactions over a wide range of temperature and pressure
- > Few experimental data, limited to light species
- Estimation methods:
 - Collision theory (kinetic theory gas) pre-exponential A, radical combination
 - correlations between structure and reactivity
 - LFER (Linear Free Energy Relationships) ex: Evans-Polanyi
 - methods based on the Transition State Theory (estimation of the TS)
 - quantum calculation and TST

Rate constant databases

On-line databases

NIST Chemical Kinetics Database, Standard Reference Database 17 http://kinetics.nist.gov/kinetics/index.jsp

- Reviews
 - Baulch et al., Phys. Chem. Ref. Data, 34, 757 (2005)
 - Tsang and Hampson, J. Phys. Chem. Ref. Data 15:3 (1986)
 - Tsang, J. Phys. Chem. Ref. Data 20:221 (1991)
- On-line mechanisms:
 - Estimated rate constants for most reactions, to handle and mix carefully
 - GRI-mech, LLNL, Leeds, Konnov, NUIG, POLIMI, Jet-Surf, UCSD...
- **➢ Good website for general links:** <u>http://c3.nuigalway.ie/links.html</u>