PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07D 209/30, 209/42, 405/14 C07D 409/14, 401/14, 471/04 A61K 31/40, 31/44

(11) International Publication Number:

WO 94/03427

(43) International Publication Date:

17 February 1994 (17.02.94)

(21) International Application Number:

PCT/US93/07272

A1

(22) International Filing Date:

2 August 1993 (02.08.93)

(74) Agents: ATKINS, Michael, J.; Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105

(US) et al.

(30) Priority data:

926,015

6 August 1992 (06.08.92)

US

(81) Designated States: AU, CA, CZ, FI, HU, JP, KR, NO, NZ, RU, SK, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Applicant: WARNER-LAMBERT COMPANY [US/US]; 2800 Plymouth Road, Ann Arbor, MI 48105 (US).

(72) Inventors: DOBRUSIN, Ellen, Myra; 2205 Winchell Drive, Ann Arbor, MI 48104 (US). SHOWALTER, Howard, Daniel, Hollis; 3578 Lamplighter Drive, Ann Arbor, MI 48103 (US). DENNY, William, Alexander; 165 Gossamer Drive, Pakuranga, Auckland 2000 (NZ). PALMER, Brian, Desmond; 1/27 Butterworth Drive, Glendene, Auckland 2000 (NZ). REWCASTLE, Gordon, William; 107 Grande Vue Road, Manurewa, Auckland 2000 (NZ). TERCEL, Moana; 67 Becroft Drive, Forrest Hill, Auckland 2000 (NZ). THOMPSON, Andrew, Mark; 2/13 Raihiri Road, Mount Eden, Auckland 2000 (NZ).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 2-THIOINDOLES (SELENOINDOLES) AND RELATED DISULFIDES (SELENIDES) WHICH INHIBIT PROTEIN TYROSINE KINASES AND WHICH HAVE ANTITUMOR PROPERTIES

(57) Abstract

2-Thioindoles (2-selenoindoles) and analogous 2-indolinethione (2-indolineselenone) and polysulfide (selenide) compounds, salts thereof, methods of production, intermediates in their production, pharmaceutical compositions containing said compounds, and methods for inhibiting protein kinase dependent disease in a mammal or treating aberrant cell growth in a mammal, using said compositions, are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gaboa	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BP	Burkina Faso	GR	Grecce	NO	Norway
BG	Bulgaria	AU	Hungary	NZ	New Zealand
B.J	Benin	IE	Ireland	PL.	Poland
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	` JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CP	Central African Republic		of Korea	SD	Sudan
CC	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	Si	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	w	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TC	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Vict Nam
FI	Finland		•		

-1-

2-THIOINDOLES (SELENOINDOLES) AND RELATED DISULFIDES (SELENIDES) WHICH INHIBIT PROTEIN TYROSINE KINASES AND WHICH HAVE ANTITUMOR PROPERTIES

5

10

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of co-pending application U.S. Serial Number 926,015, filed August 6, 1992.

FIELD OF INVENTION

The present invention relates to substituted
2-thioindoles (selenoindoles) and other related
compounds, which we have unexpectedly found to be
potent inhibitors of the epidermal growth factor
receptor tyrosine kinase (EGF-TK) and other protein
tyrosine kinases, and which show antitumor activity.
The invention also relates to use of the compounds as
inhibitors of protein tyrosine kinases and as antitumor
agents.

25

30

35

BACKGROUND OF THE INVENTION

Protein phosphorylation is a critical mechanism for regulating protein function in the signal transduction pathway in normal and transformed cells. Protein tyrosine kinases (PTK) are an important class of phosphorylating enzymes which mediate this signalling and thereby regulate cell growth and proliferation. PTKs catalyze the transfer of the terminal phosphate from ATP to the phenol of tyrosine in substrate proteins. Some growth factor receptors.

-2-

protooncogenes and oncogene products possess PTK activity. The overexpression or inappropriate expression of normal or mutant kinases can result in the loss of growth control and the unregulated cell proliferation associated with malignancy. Small molecules which selectively inhibit these enzymes are, therefore, of therapeutic interest as mediators of cell growth and as antitumor agents.

5

10

15

20

25

30

35

In some growth factor dependent tumors, the growth factor signal transduction pathway employs the intrinsic tyrosine kinase activity of the growth factor receptor for autophosphorylation and the phosphorylation of specific cellular proteins involved in mitogenesis and cell proliferation. Specific inhibitors of PTKs have been identified previously. It has been previously demonstrated that by uncoupling the PTK from the signal transduction pathway, inhibitors of the growth factor receptor tyrosine kinases result therapeutically in antitumor activity. This antitumor activity has been demonstrated both in vitro and in vivo. Most known tyrosine kinase inhibitors are styrene-like small molecules in which the aromatic ring is hydroxylated, resembling tyrosine itself.

For example, the EGF-TK inhibitor erbstatin is reported to inhibit the growth of human epidermoid carcinoma A431 cells with an $IC_{50} = 3.6 \ \mu g/mL$ (J. Antibiot. 1986;39:170). Erbstatin also inhibits the growth of the human mammary carcinoma MCF-7 and some esophageal tumors in nude mice in a dose-dependent manner (Eur. J. Cancer 1990;26(6):722 and Japanese Patent 03,109,323). Another class of PTK inhibitor called the tyrphostins also potently inhibited the EGF-dependent growth of A431 cells in vitro (J. Med. Chem. 1989;32:2344; J. Med. Chem. 1991;34:1896). The antitumor activity of two tyrphostins has been verified in vivo in nude mice bearing human squamous cell

-3-

carcinoma MH-85 (<u>Cancer Res.</u> 1991;51:4430). In vitro and in vivo antitumor activity against A431 tumors has also been reported for a series of sulfonylbenzoyl nitrostyrenes (<u>J. Med. Chem.</u> 1991;34:2328) as TK inhibitors (<u>J. Med. Chem.</u> 1991;34:2328 and <u>Helv. Chim.</u> Acta 1992;75:696).

SUMMARY AND DETAILED DESCRIPTION

10

15

20

5

In one aspect, the invention relates to 2-thioindole (selenoindoles) and other related compounds that are potent inhibitors of epidermal growth factor receptor tyrosine kinase and other protein tyrosine kinases, and which have antitumor activity. Thus, the compounds are useful in dosage form as inhibitors of protein tyrosine kinases and as antitumor agents.

More particularly, the invention comprises
2-thioindole, 2-indolinethione, polysulfide,
2-selenoindole, 2-indolineselenone, and selenide
compounds represented by the general Formulas I, IV,
and XXXII

30

35 ·

and pharmaceutically acceptable salts thereof, wherein R_1 is a member selected from H, halogen, R, OH, OCOR, OR, CF_3 , NO_2 , NH_2 , NHR, COOH, CONHR, $(CH_2)_nOH$, $(CH_2)_nOR$, $(CH_2)_nNH_2$, $(CH_2)_nNHR$, and $(CH_2)_nNRR$, and further represents replacement in the ring of 1 or 2 ring methine (-CH=) atoms with aza(-N=) atoms:

```
R<sub>2</sub> is a member selected from
                            C_{2-4} alkyl,
                            (CH<sub>2</sub>)<sub>n</sub>COOH,
                            (CH<sub>2</sub>)<sub>n</sub>COOR,
  5
                            (CH<sub>2</sub>)<sub>n</sub>COR,
                            (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>R,
                            (CH<sub>2</sub>) nSO<sub>2</sub>NRR,
                            (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NHR,
                           CH=CHCOOH,
                            (CH<sub>2</sub>)<sub>n</sub>CH-COOH,
10
                                    ÒН
                            (CH<sub>2</sub>)<sub>n</sub>CH-COOH,
15
                                    NH2
                            (CH<sub>2</sub>)<sub>n</sub>CONH<sub>2</sub>,
                            (CH<sub>2</sub>) nCONHR,
                            (CH<sub>2</sub>) CONRR,
                            (CH<sub>2</sub>) CONHCH<sub>2</sub>Ph,
20
                           CONHR,
                           CONRR,
                           CONHPh,
                           COY,
                           COPhCOOH,
25
                           COPhCOOR,
                           (CH<sub>2</sub>) CONHPh,
                           (CH<sub>2</sub>) CONHPhR,
                           SO2Y;
                  n is an integer from 1 to 4;
                  R is lower alkyl, preferably C_{1-4} alkyl;
30
                  R_3 is a member selected from H, lower alkyl, and
          benzyl;
                  Y represents a benzene, pyridine, thiophene,
          furan, thiazole, or imidazole ring optionally
          substituted with a lower alkyl, COOH, OH, OCOR, NH2,
35
          CONHR, CONRR, OR, or NHR group; and
                  R<sub>4</sub> represents SH, S<sub>o</sub>X, S<sub>o</sub>Q, SeH, Se<sub>o</sub>X, and Se<sub>o</sub>Q,
          where o is 1, 2, or 3, X is a member selected from H,
```

-5-

lower alkyl, benzyl, and benzene, pyridine, thiophene, furan, thiazole, and imidazole rings, and Q is another 2-thioindolyl or 2-selenoindolyl moiety of Formula I provided that the group does not comprise compounds having the names

5

10

15

20

25

30

35

2-(2-thioxo-3-indolinyl)acetic acid,
2-(1-methyl-2-thioxo-3-indolinyl)acetic acid,
methyl 2-(2-thioxo-3-indolinyl)acetate,
ethyl 2-(1-methyl-2-thioxo-3-indolinyl)acetate,
bis[methylindolinyl-3-acetate-(2)]disulfide,
bis[indolyl-3-acetic acid-(2)]disulfide,
bis[methylindolyl-3-acetate-(2)]trisulfide, and
bis[1-methylindolyl-3-acetic acid-(2)]disulfide.

In another aspect, the invention relates to indolinethione compounds of the above Formula IV which exist as tautomers of compounds of Formula I wherein R4 represents SH or indolineselenone compounds of the above Formula XXXII which exist as tautomers of compounds of Formula I wherein R4 represents SeH. The invention comprises the thione or selenone compounds in their racemic and optical isomer forms. The thione or selenone compounds produced in the (±) form can be resolved as their (+) and (-) enantiomorphic optical isomers by per se art-recognized conventional means such as fractional crystallization of salts formed from optically active acids, separation of the isomers by chiral chromatography, or the chiral catalytic reduction of precursors.

In another aspect, the invention relates to pharmaceutical compositions useful for inhibition of protein tyrosine kinases and for antitumor activity containing as an active agent in a pharmaceutically acceptable carrier a therapeutically effective amount of a compound selected from 2-thioindole, 2-indolinethione, polysulfide, 2-selenoindole,

```
2-indolineselenone or selenide compounds represented by
           the above Formulas I, IV, and XXXII and
          pharmaceutically acceptable salts thereof, wherein
                  R<sub>1</sub> is a member selected from H, halogen, R, OH,
          OCOR, OR, CF3, NO2, NH2, NHR, COOH, CONHR, (CH2)nOH,
 5
           (CH_2)_nOR, (CH_2)_nNH_2, (CH_2)_nNHR, and (CH_2)_nNRR, and
          further represents replacement in the ring of 1 or
          2 ring methine (-CH=) atoms with aza(-N=) atoms;
                  R<sub>2</sub> is a member selected from
10
                          lower alkyl, preferably C<sub>1-4</sub> alkyl,
                          (CH<sub>2</sub>)<sub>n</sub>COOH,
                          (CH<sub>2</sub>)<sub>n</sub>COOR,
                          (CH<sub>2</sub>) nCOR,
                          (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>R,
15
                          (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NRR,
                          (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NHR,
                          CH=CHCOOH,
                          (CH<sub>2</sub>)<sub>n</sub>CH-COOH,
                                  ÒН
20
                          (CH_2)_nCH-COOH,
                                  NH2
                          (CH<sub>2</sub>)<sub>n</sub>CONH<sub>2</sub>,
25
                          (CH<sub>2</sub>) CONHR,
                          (CH<sub>2</sub>)<sub>n</sub>CONRR,
                          (CH<sub>2</sub>)<sub>n</sub>CONHCH<sub>2</sub>Ph,
                          CONHR,
                          CONRR,
30
                          CONHPh,
                          COY,
                          COPhCOOH,
                          COPhCOOR,
                          (CH<sub>2</sub>)<sub>n</sub>CONHPh,
                          (CH<sub>2</sub>) CONHPhR,
35
                          SO2Y;
                  n is an integer from 1 to 4;
                  R is lower alkyl, preferably C<sub>1-4</sub> alkyl;
```

-7-

 R_3 is a member selected from H, lower alkyl and benzyl;

Y represents a benzene, pyridine, thiophene, furan, thiazole, or imidazole ring optionally substituted with a lower alkyl, COOH, OH, OCOR, NH₂, CONHR, CONRR, OR, or NHR group; and

5

10

15

20

25

 R_4 represents SH, S_0X , S_0Q , SeH, Se_0X , and Se_0Q , where o is 1, 2, or 3, X is a member selected from H, lower alkyl, benzyl, and benzene, pyridine, thiophene, furan, thiazole, and imidazole rings, and Q is another 2-thioindolyl or 2-selenoindolyl moiety of Formula I.

The invention comprises salt compounds formed by the basic or acidic thioindole compounds of the invention which form pharmaceutically acceptable salts with both organic and inorganic acids and/or organic and inorganic bases. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic, isethionic, and the like. Examples of suitable bases for salt formation are sodium and potassium carbonate, sodium and potassium hydroxide, ammonia, triethylamine, triethanolamine, and the like.

The compounds of Formulas I, IV, and XXXII can be prepared by the processes described in the following Reaction Schemes 1-11.

-8-

SCHEME 1

20

25

30

In Scheme 1, R_1 - R_3 are as designated for Formula I. Oxidation of 3-substituted indoles II in DMSO/HCl gives good yields of 3-substituted indolin-2-ones III which are thiated (preferably with P_2S_5 and NaHCO₃ or Na₂CO₃) to yield 3-substituted 2-indolinethiones IV. These compounds can be converted to the corresponding disulfides V by treatment with mild oxidizing agents (e.g., FeCl₃), and also undergo spontaneous oxidation to V in solution in air.

-9-

SCHEME 2

10

R₁

R₂ S_2Cl_2 R₁ R_2 R_3 R_3

20

25

In Scheme 2, R_1 - R_3 are as designated for Formula I. Treatment of 3-substituted indoles II with S_2Cl_2 gives mixtures of dimeric sulfides VI, where n=1-3. These can be separated by chromatography, or more conveniently reduced to 2-indolinethiones IV with a mild reducing agent (preferably $NaBH_4$).

IV

-10-

SCHEME 3

20

25

30

In Scheme 3, R_1 - R_3 are as designated for Formula I, and R represents $(CH_2)_nCOOH$, $(CH_2)_nCOOX$, $(CH_2)_nCONHX$, $(CH_2)_nSO_2X$, or $(CH_2)_nSO_2NX$, where n is from 0 to 4, and X is as designated for Formula I. Treatment of 2-indolinones VII with diesters gives moderate yields of the isatylidene compounds VIII, which can be hydrogenated under acidic conditions to the 3-substituted indolin-2-ones III. Treatment of these as in Scheme 1 gives the desired compounds.

-11-

SCHEME 4

25

30

35

-12-

In Scheme 4, R₁-R₄, R and X are as designated for Formula I (except that X is not H). The ringsubstituted oxindoles can be prepared by lithiation of the appropriately substituted ortho-toluidine 5 derivatives, using CO2 as both the N-protecting group and electrophile (Katritzky, Fan, Akutagawa, Wang, Heterocycles 1990;30:407). 2-Indolinones VII are thiated (preferably with P2S5 and NaHCO3 or Na2CO3) to yield 2-indolinethiones IX. These compounds are 10 deprotonated (typically with NaH in THF), and treated with an isocyanate to give 3-substituted 2-indolinethiones IV (where $R_2 = CONHX$). compounds can be converted to the corresponding disulfides V as described in Scheme 1. 15 3-substituted 2-indolinethiones IV can also react with alkylating agents (typically alkyl halides R-halogen) to give (X: where $R_4 = X$). Reaction of V with XSH

gives mixed disulfides (XI: where $R_4 = SSX$).

-13-

SCHEME 5

SO₂Y

$$R_1$$
 CH_2SO_2Y
 NHR_3
 R_1
 CS_2 , H^+
 R_3
 R_3

20

25

30

In Scheme 5, R_1 and R_3 are as designated for Formula I and Y represents lower alkyl or a benzene, pyridine, thiophene, furan, thiazole, or imidazole ring, optionally substituted with a lower alkyl, COOH, OH, NH₂, CONHR, OR, O, or NHR group. 2-Sulfonylmethyl anilines XII are treated sequentially with n-butyllithium and CS_2 , to give the disulfides XIII, which can be reduced to 2-indolinethiones XIV with a mild reducing agent (preferably NaBH₄).

-14-

SCHEME 6

10 R_1 R_1 R_2 R_3 R_4 R_5 R_5 R_5 R_7 R_7

20

25

30

In Scheme 6, R_1 and R_3 are as designated for Formula I. Deprotonation of substituted 2-indolinethiones IX (typically with NaH in THF), followed by treatment with an acyl azide, gives 3-acyl-substituted 2-indolinethiones XV, where R_5 represents H, lower alkyl, benzyl, or a benzene, pyridine, thiophene, furan, thiazole, or imidazole ring optionally substituted with a COOH, OH, NH₂, CONHR, OR, NHR, or NRR group. Compounds XV can be converted into the disulfides XVI on mild oxidation (typically by treatment with I_2 or H_2O_2).

-15-

SCHEME 7

In Scheme 7, R is as designated for Formula I.

Substituted aromatic and heteroaromatic acids (e.g.,

XVII) are converted to the corresponding acid chlorides

(preferably with SOCl₂), and then to the corresponding

acyl azides (e.g., XVIII) with NaN₃. Rearrangement to

give the isocyanates (e.g., XIX) is carried out in an

inert solvent (preferably toluene or xylene). These

isocyanates (e.g., XIX) are converted to the disulfides

(XX) by reaction with the sodium salt of 1-methyl
2-indolinethiones as outlined in Scheme 4. In suitable

cases, hydrolysis of esters (XX; R = COOMe) with a mild

base (preferably K₂CO₃) gives the corresponding acids

(XX; R = COOH).

25

30

35

-16-

SCHEME 8

$$R_{1} \longrightarrow COC1_{2} \longrightarrow R_{1} \longrightarrow COC1$$

$$R_{1} \longrightarrow COMR_{6}R_{7}$$

$$Me \longrightarrow KXI \longrightarrow KXII$$

$$KXII \longrightarrow KXII$$

$$R_{1} \longrightarrow COMR_{6}R_{7}$$

$$Me \longrightarrow KXII \longrightarrow KXII$$

$$R_{1} \longrightarrow COMR_{6}R_{7}$$

$$Me \longrightarrow KXII \longrightarrow KXII$$

$$R_{1} \longrightarrow COMR_{6}R_{7}$$

$$Me \longrightarrow KXII \longrightarrow KXII$$

$$R_{1} \longrightarrow COMR_{6}R_{7}$$

$$R_{2} \longrightarrow R_{1} \longrightarrow R_{2}$$

$$R_{3} \longrightarrow R_{2} \longrightarrow R_{1} \longrightarrow R_{2}$$

$$R_{4} \longrightarrow R_{2} \longrightarrow R_{1} \longrightarrow R_{2}$$

$$R_{1} \longrightarrow COMR_{6}R_{7}$$

$$R_{2} \longrightarrow R_{1} \longrightarrow R_{2} \longrightarrow R_{2} \longrightarrow R_{2}$$

$$R_{3} \longrightarrow R_{2} \longrightarrow R_{1} \longrightarrow R_{2} \longrightarrow$$

In Scheme 8, R_1 and R_2 are as designated for Formula I, and R_6 and R_7 are individually H, lower alkyl, benzyl, or a benzene ring optionally substituted with up to two of the groups COOH, OH, NH₂, CONHR, OR, NHR, or NRR. 2-Chloro-1-methylindole-3-carbonyl chloride, prepared either from indolin-2-one and COCl₂ or from 2-chloro-1-methylindole-3-carboxylic acid (XXI) and SOCl₂, is reacted with amines HNR_6R_7 or their salts, in an inert solvent (preferably 1,2-dichloro-ethane or CH_2Cl_2) and a base, if necessary, to give the amides (XXII). These compounds are heated with MeSLi in polar aprotic solvents (preferably dimethyl-acetamide) in an inert atmosphere to give intermediate thiol carboxamides, which are oxidized, (preferably with H_2O_2) to give the desired disulfides (V).

25

30

35

-17-

SCHEME 9

20

25

30

35

In Scheme 9, R₁, R₂, R₃, and R are as designated for Formula I. Reaction of acid chloride (XXIII) with amines gives amides (XXIV), where Rg represents H, lower alkyl, benzyl, or a benzene ring optionally substituted with up to two of the groups COOH, OH, NH2, CONHR, OR, NHR, or NRR. Compounds (XXIV) can be converted to 2-thioindoles (XXV) by lithiation and quenching with methyl sulfide, followed by base hydrolysis (preferably with K2CO3). The 2-thioindoles (XXV) can be converted to the desired disulfides (V) by dealkylation (preferably with lithium thiomethoxide) and mild oxidation (preferably with I_2 or H_2O_2). Compounds (XXV) can also be alkylated with an alkyl halide (e.g., R₉Cl), where R₉ represents lower alkyl, benzyl, or benzyl optionally substituted with up to two of the groups COOH, OH, NH2, CONHR, OR, NHR, or NRR, and a base (preferably K_2CO_3).

35 ·

-18-

SCHEME 10

5

10

15

20

25

-19-

In Scheme 10, R1 is as designated for Formula I and R_6 and R_7 are individually H_1 lower alkyl, benzyl, or a benzene ring optionally substituted with up to two of the groups COOH, OH, NH2, CONHR, OR, NHR, or NRR. R_2 is H or lower alkyl, and X = any halogen, preferably bromine or chlorine. Substituted 2-halo-3-indole carboxylic acids XXVII, prepared by oxidation of corresponding substituted 3-carboxaldehydes, are reacted with amines HNR6R7 or their salts in an inert solvent (preferably 1,2-dichloroethane or CH,Cl2) and a base, if necessary, to give the amides XXX. compounds are reacted with MeSeLi in polar aprotic solvents (preferably dimethylacetamide) to give intermediate selenol carboxamides, which are oxidized with $\mathrm{H}_2\mathrm{O}_2$ or NaBO_4 to give the desired diselenides XXIX. Alternatively, intermediate XXX, where $R_3 = H$, can be reacted with a haloalkyl amine, or its salt, where Q = Cl, Br, I (preferably Cl) and R_8 , R_9 are as defined in Formula I, but preferably Rg and Rg are H, alkyl, cycloalkyl, and n = 1-4 in a polar solvent (preferably acetone) and anhydrous metal carbonate (preferably cesium carbonate) to give intermediate XXXI which is converted to diselenide XXIX as described above for intermediate XXX. Additionally, intermediate acid XXVII can be converted to the substituted 2-halo-3-indole carboxylic acid tertiary butyl ester XXVIII, which can be further reacted with MeSeLi as described above for intermediate XXX to give the target substituted diselenide XXIX where $R_2 = COO$ -tertiarybutyl.

-20-

SCHEME 11

5

10
$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
Se_2Cl_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_3
\end{array}$$

15

20

In Scheme 11, R_1-R_3 are as designated for Formula I. Treatment of 3-substituted indoles II with Se₂Cl₂ gives the diselenide XXIX.

-21-

As indicated, the compounds of this invention that are basic can form acidic salts and those that are acidic can form basic salts. All such salts are within the scope of this invention and they can be prepared by conventional methods. For example, they can be prepared simply be contacting the acidic and basic entities, usually in a stoichiometric ratio, in either an aqueous, nonaqueous or partially aqueous medium, as appropriate. The salts are recovered either by filtration, by precipitation followed by filtration, by evaporation of the solvent, or in the case of aqueous solutions, by lyophilization, as appropriate.

5

10

15

20

25

30

35

The compounds of this invention are readily adapted to therapeutic use for the control of tyrosine kinase dependent diseases in mammals. Tyrosine kinase dependent diseases comprise hyperproliferative disorders which are initiated and/or maintained by aberrant tyrosine kinase enzyme activity. Tyrosine kinase inhibitors can therefore have beneficial therapeutic effects against aberrant cell growth disorders such as various cancers, atherosclerosis, angiogenesis (tumor growth/metastasis, diabetic retinopathy, for example), viral diseases (HIV infections, for example), and the like.

Tyrosine kinase dependent diseases further comprise cardiovascular diseases which are related to aberrant tyrosine kinase enzyme activity. Tyrosine kinase inhibitors can therefore have beneficial therapeutic effects against such cardiovascular diseases as restenosis. It should be understood that restenosis is an example of a cardiovascular disease which is dependent upon tyrosine kinase; one skilled in the art, however, will be aware of other examples of cardiovascular diseases which are dependent upon tyrosine kinase.

-22-

The compounds are administered either orally or parenterally, or topically as eye drops, in dosages ranging from about 0.1 to 10 mg/kg of body weight per day in single or divided doses. Of course, in particular situations, at the discretion of the attending physician, doses outside of this range will be used.

5

10

15

20

25

30

35

The compounds of this invention can be administered in a side variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, elixirs, syrups, injectable or eye drop solution, and the like. Such carriers include solid diluents or fillers, sterile aqueous media, and various nontoxic organic solvents.

For purposes of oral administration, tablets containing various excipients such as sodium citrate. calcium carbonate, and calcium phosphate are employed along with various disintegrants such as starch and preferably potato or tapioca starch, alginic acid, and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin, and Additionally, lubrication agents such as magnesium stearate, sodium lauryl sulfate, and talc are often very useful for tableting purposes. compositions of similar type are also employed as fillers in soft- and hard-filled gelatin capsules: preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration, the essential active ingredient therein can be combined with various sweetening agents, flavoring agents. coloring agents, emulsifying agents, and/or suspending agents as well as such diluents as water, ethanol,

-23-

propylene glycol, glycerin, and various like combinations thereof.

For purposes of parenteral administration, solutions in sesame or peanut oil or in aqueous propylene glycol can be employed, as well as sterile aqueous solutions of the corresponding water soluble, alkali metal, or alkaline earth metal salts previously enumerated. Such aqueous solution should be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are suitable for intravenous, intramuscular, subcutaneous and intraperitoneal injection purposes. In this connection, the sterile aqueous media employed are all readily obtainable by standard techniques well known to those skilled in the art.

For purposes of topical administration, dilute sterile, aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, are prepared in containers suitable for dropwise administration to the eye.

In a pharmaceutical composition comprising a compound of Formula I, or a pharmaceutically acceptable salt thereof, the weight ratio of carrier to active ingredient will normally be in the range from 1:4 to 4:1, and preferably 1:2 to 2:1. However, in any given case, the ratio chosen will depend on such factors as the solubility of the active component, the dosage contemplated and the precise route of administration.

The following Table 1 sets out physical data for 137 compounds within the general Formula I, representative of it, and preparable by the processes of the invention.

5

10

15

20

25

30

					TABLE 1			
							CH ₂ Ph	
ហ				R ₁	R ₁	R ₁	R ₂	
			•	N N N N N N N N N N N N N N N N N N N		-s-x	×	
10				A R ₃			R ₃	
	No.	Formula	K	Z	. X	(D) CM	Molecular Formula	Analvaia
	-	4	×	сн2соон	н	166-168	C ₁₀ H ₉ NO ₂ S	knownd
12	(4	A	×	снусоон	Ме	150-153	C11H1NO2S	known ^d
	m	4	×	СН ₂ СООМе	**	150-152	C11H11NO2S	C, H, N, S
	▼	4	×	СН2СООМе	Me H	68-70	C12H13NO2S	C, H, N, S
	.	4	×	CH2COORt	Же	47-48	C13H15NO2S	C, H, N, S.
	Ψ	A	Ħ	CH2CONHCH2Ph	X	193-195	C17H10N2OS	C,H,N,S
20								
	7	4	×	(CH ₂) ₂ COOH	*	170-173	C11H11NO2S	C, H, N
	œ	4	×	$(CH_2)_2COOH$	Же	126-128.5	C12H13NO2S · 0 . 25H2O	C, H, N, S
	0	A	×	$(CH_2)_2COOMe$	×	95.5-98	C12H13NO28	C, H, N, S

No. Formula R ₁ R ₂ R ₃ R ₄ R ₄	1									
10 A H (CH ₂) ₂ COORE H H O11 ^b C ₁₃ H ₁ NO ₂ S 11 A H (CH ₂) ₂ COORE Me H 71-73 C ₁₄ H ₁ NO ₂ S 12 A H (CH ₂) ₂ COORE Me H 149-5-151 C ₁₄ H ₁ NO ₂ S 13 A H (CH ₂) ₂ COORICA ₂ Ph H H 149-5-151 C ₁₄ H ₁ NO ₂ S 14 A H (CH ₂) ₃ COORH H H 149-5-151 C ₁₄ H ₁ NO ₂ S 15 A H (CH ₂) ₃ COORH H H 149-15-15 C ₁₄ H ₁ NO ₂ S 16 A H (CH ₂) ₃ COORH H H 122-134 C ₁₇ H ₁ H ₂ O ₂ S 17 A H (CH ₂) ₃ COORH H H 122-134 C ₁₇ H ₁ H ₂ O ₂ S 18 A H (CH ₂) ₃ COORH H H 109-110 C ₁₇ H ₁ H ₂ O ₂ S 19 A 7-aaa COORHP Me H 109-110 C ₁₇ H ₁ H ₂ O ₂ S 20 A 7-aaa COORHP Me H 109-110 C ₁₇ H ₁ H ₂ O ₂ S 21 A H COORHP Me H 122-134 C ₁₇ H ₁ H ₂ O ₂ S 22 A H COORHP Me H 122-134 C ₁₇ H ₁ H ₂ O ₂ S 23 A H COORHP Me H 122-134 C ₁₇ H ₁ H ₂ O ₂ S 24 A A H COORHP Me H 122-134 C ₁₇ H ₁ H ₂ O ₂ S 25 A H COORHP Me CH ₂ COOH Me T14-146 C ₁₇ H ₁ H ₂ O ₂ S 26 A H COORHP Me T14-146 C ₁₇ H ₁ H ₂ O ₂ S 27 A H COORHP Me H 131-32 28 B H CH ₂ COOM Me H 131-32 29 B H CH ₂ COOM Me CH ₂ D H 134-135 29 B H CH ₂ COOM Me CH ₂ D H 134-132 29 B H CH ₂ COOM Me CH ₂ D H 134-132 29 C ₂₇ H ₂ M ₂ O ₂ O ₂ S 20 B H CH ₂ COOM H Me CH ₂ COOM H CH ₂ COOM H CH ₂ CH H 131-32 29 C ₂₇ H ₂ M ₂ O ₂ O ₂ S 20 C ₂₇ H ₂ M ₂ O ₂ O ₂ S 21 D H CH ₂ COOM H Me CH ₂ COOM H CH ₂ COOM H CH ₂ COOM H CH ₂ COOM H H 134-32 21 D H CH ₂ COOM H H 134-32 22 C ₂₇ H ₂ M ₂ O ₂ O ₂ S 23 D H CH ₂ COOM H CH ₂		Zo.	Formula	R,	R ₂	R3	×		Molecular Formula	Analysis
11 A H (CH2)_2COOME Me H 71-73 Cj4HjNO28 13 A H (CH2)_2COOME Me H 61-63 Cj4HjNO28 13 A H (CH2)_2CONHCT_Ph H H 149-5-151 Cj4HjNO28 14 A H (CH2)_2CONHCT_Ph H H 149-5-151 Cj4HjNO28 15 A H (CH2)_2CONH H H 144-166.5 Cj4HjNO28 16 A H (CH2)_3COOMH Me H 144-166.5 Cj4HjNO28 19 A H (CH2)_3COOMH Me H 144-166.5 Cj4HjNO28 19 A H (CH2)_3COOMH Me H 144-166.5 Cj4HjNO29 19 A T-aza CONHPh Me H 144-166.5 Cj4HjNO29 20 A T CONHPh Me H 144-166.5 Cj4HjNO29 21 A		10	A	×	(CH ₂) ₂ COORt	H	H	oilb	C ₁₃ H ₁₅ NO ₂ S	C,H,N,S
12 A H CH2/2 COORE Me H 61-63 C [44]/70Q3 13 A H (CH2/2 COONECH2Ph) H H 149.5-151 C [44]/70Q3 14 A H (CH2/2 COONH2 H H 140-151 C [14]/19C9 15 A H (CH2/2 COONH2 H H 144-146.5 C [14]/19C9 16 A H (CH2/2 GOONH2 H H 144-146.5 C [14]/19C9 19 A H (CH2/2 GOONH2 H H 144-146.5 C [14]/19C9 19 A H (CH2/2 GOONH2 H H 144-146.5 C [14]/19C9 20 A H (CH2/2 GOONH2 H H 144-146.5 C [14]/19C9 21 A H (CH2/2 GOONH2 H H 144-146.5 C [14]/19C9 22 A H COONHP Me H 144-146.5 C [14]/19C9 24		11	4	×	(CH ₂) ₂ COOMe	Me	æ	71-73	C ₁₃ H ₁₅ NO ₂ S	C,H,N,S
13 A H (CH2)_2CONHCH2Ph H H 149.5-151 C ₁₈ H ₁₈ NO ₂ S·0.5H ₂ O 14 A H (CH2)_2CONH2 H H 160-163 C ₁₈ H ₁₈ NO ₂ S·0.5H ₂ O 15 A H (CH2)_3CONH H H 144.146.5 C ₁₈ H ₁₈ NO ₂ S·H ₂ O 16 A H (CH2)_3CONH H H 144.146.5 C ₁₈ H ₁₈ NO ₂ S·H ₂ O 19 A H (CH2)_3CONH H H 109-110 C ₁₈ H ₁₈ H ₂ O ₂ S·H ₂ O 19 A H (CH2)_3CONH H H 109-110 C ₁₈ H ₁₈ H ₂ O ₂ S·H ₂ O 19 A H (CH2)_3CONH H H 103-106 C ₁₈ H ₁₈ H ₂ O ₂ S·H ₂ O 20 A F CONHPh Me H 144-146 C ₁₈ H ₁₈ H ₂ O ₂ S 21 A H CONHPh Me H 144-146 C ₁₈ H ₁₈ H ₂ O ₂ S 22 A H CONHPh Me H 144-146<	വ	12	4	=	(CH ₂) ₂ COORt	We	×	61-63	Cl4H17NO2S	C,H,N,S
14 A H (CH2)2CONF2 H H 160-163 C ₁ IH ₁ N ₂ OS 15 A H (CH2)3COOH H H 144-146.5 C ₁ IH ₁ N ₂ OS 16 A H (CH2)3COOH Me H 144-146.5 C ₁ IH ₁ N ₂ OS·H ₂ O 17 A H (CH ₂)3COOH Me H 144-146.5 C ₁ IH ₁ N ₂ OS·H ₂ O 18 A H (CH ₂)3COOH Me H 169-110 C ₁ IH ₁ N ₂ OS·S·H ₂ O 19 A H (CH ₂)3COOH Me H 162-116 C ₁ IH ₁ N ₂ OS·S·H ₂ O 19 A H (CH ₂)A H 162-116 C ₁ IH ₁ N ₂ OS·S·H ₂ O 20 A S-C1 CONHPh Me H 144-146 C ₁ H ₁ N ₂ OS·S·H ₂ O 21 A H CONHPh Me H 144-146 C ₁ H ₁ H ₂ N ₂ OS·S·H ₂ O 22 A H CONHPh Me H 144-146 C ₁ H ₁ H ₂ N ₂ OS·S·		13	4	=	(CH ₂) ₂ CONHCH ₂ Ph	×	×	149.5-151	C18H18NO2S · 0 . 5H2O	C,H,N,S
15 A H (CH2) 3COOH H H 132-134 C ₁₂ H ₁₃ NO ₂ 8 16 A H (CH2) 3COOH Me H 144-146.5 C ₁₃ H ₁₃ NO ₂ 8-H ₂ O 17 A H (CH2) 3COOH Me H 109-110 C ₁₃ H ₁₃ NO ₂ 8-H ₂ O 19 A H (CH2) 3COOM Me H 109-110 C ₁₄ H ₁ NO ₂ 8-H ₂ O 19 A H (CH2) 3COOM Me H 109-110 C ₁₄ H ₁ NO ₂ 8-CH ₃ OH 20 A H (CH2) 3COOM Me H 162-164 C ₁₄ H ₁ NO ₂ 8-CH ₃ OH 21 A H CONHPh Me H 149-151 C ₁₆ H ₁₃ NO ₂ 9-S-CH ₃ OH 22 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ NO ₂ 9-S-CH ₃ OH 24 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ NO ₃ 9-S-CH ₃ OH 25 A H COPH Me H 282 (dec)		14	4	Ħ	$(CH_2)_2CONH_2$	Ħ	Ħ	160-163	C11H12N2OS	C,H,N,S
16 A H (CH2) JCOOH Me H 144-146.5 C ₁₃ H ₁ NO ₂ S·H ₂ O 17 A H (CH2) JCOOMe H H 109-110 C ₁₃ H ₁ SNO ₂ S·H ₂ O 18 A H (CH2) JCOOMe Me H 109-110 C ₁₄ H ₁ NO ₂ S 19 A H (CH2) JCOOMe Me H 162-164 C ₁₄ H ₁ NO ₂ S 20 A F CONHPh Me H 162-164 C ₁₄ H ₁ NO ₂ S 21 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ ClN ₂ S 22 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ ClN ₂ S 23 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ ClN ₂ S 24 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ NO ₂ S 25 A H CONHPh Me H 144-146 C ₁₆ H ₁₃ NO ₂ S <t< td=""><td></td><td>15</td><td>4</td><td>Ħ</td><td>(CH₂)₃COOH</td><td>Ħ</td><td>×</td><td>132-134</td><td>C₁₂H₁₃NO₂8</td><td>C, H, N, S</td></t<>		15	4	Ħ	(CH ₂) ₃ COOH	Ħ	×	132-134	C ₁₂ H ₁₃ NO ₂ 8	C, H, N, S
17 A H (CH2)3COOMe H H 109-110 C13H15NO2S 18 A H (CH2)3COOMe Me H 103-106 C14H17NO2S 19 A T-aza CONHPh Me H 162-164 C14H17NO2S 20 A T- CONHPh Me H 149-151 C16H14NO2S-CH3OH 21 A H CONHPh Me H 149-151 C16H14NO2S-CH3OH 22 A H CONHPh Me H 144-146 C16H14NOS 24 A H CONHPh Me H 130-132 C16H14NOS 24 A H CONHPh Me H 130-132 C16H14NOS 24 A H CONHPh Me H 144-146 C17H14NOS 25 A H CONHPh Me H 144-146 C17H14NOS 25 A H COPHDCOOME Me<	2	16	4	×	(СН ₂) ₃ СООН	Me	×	144-146.5	C13H15NO2S·H2O	C,H,N,S
18 A H (CH ₂) ₃ COOMe Me H 103-106 C ₁₄ H ₁ NO ₂ S 19 A 7-aza CONHPh Me H 162-164 C ₁₅ H ₁ NO ₂ S · CH ₃ OH 20 A 5-C1 CONHPh Me H 149-151 C ₁₆ H ₁ NO ₂ S · CH ₃ OH 21 A H CONHPh Me H 149-151 C ₁₆ H ₁ NO ₂ S · CH ₃ OH 22 A H CONHPh Me H 144-146 C ₁₆ H ₁ NO ₂ S · CH ₃ OH 24 A H CONHPh Me H 144-146 C ₁₆ H ₁ NO ₂ S · CH ₃ OH 24 A H CONHPh Me H 130-132 C ₁₆ H ₁ NO ₃ S · CS ·		17	4 .	×	(CH ₂) ₃ COOMe	Ħ	Ħ	109-110	C ₁₃ H ₁₅ NO ₂ S	C,H,N,S
19 A 7-aza CONHPh Me H 162-164 C ₁₅ H ₁₃ N ₃ O ₂ S·CH ₃ OH 20 A 5-C1 CONHPh Me H 149-151 C ₁₆ H ₁₃ ClN ₂ OS 21 A H CONHPh Me H 149-151 C ₁₆ H ₁₄ N ₂ OS 22 A H CONHPh Me H 144-146 C ₂₇ H ₂₀ N ₂ OS ₂ 24 A H CONHPh Me H 130-132 C ₁₆ H ₁₃ NOS 24 A H COPH Me H 130-132 C ₁₆ H ₁₃ NOS 25 A H COPH Me H 130-132 C ₁₆ H ₁₃ NOS 26 A H COPH Me H 130-132 C ₁₇ H ₁₃ NOS 26 A H COPH Me H 164-166 C ₁₇ H ₁₃ NOS 26 A H COPH Me H 164-166 C ₁₇ H ₁₃ NOS 27 B H <		18	4	#	(CH ₂) ₃ COOMe	Me	æ	103-106	C14H17NO2S	C,H,N,O
20 A 5-C1 CONHPh Me H 312-320 C ₁₆ H ₁₃ C1N ₂ OS 21 A H CONHPh Me H 149-151 C ₁₆ H ₁₄ N ₂ OS 22 A H CONHPh Me H 144-146 C ₂₇ H ₂₀ N ₄ OS 24 A H COPh Me H 282 (dec) C ₁₆ H ₁₃ NO ₃ S 25 A H COPh Me H 282 (dec) C ₁₇ H ₁₃ NO ₃ S 26 A H COPh Me H 164-166 C ₁₇ H ₁₃ NO ₃ S 25 A H COPh Me H 164-166 C ₁₇ H ₁₃ NO ₃ S 26 A H COPh Me H 164-166 C ₁₇ H ₁₃ NO ₃ S 27 B H Chycoome Me H 164-166 C ₂₂ H ₂₀ N ₂ O ₃ S 28 B H CH ₂ COOMe H - 196-199 C ₂₂ H ₂ O ₂ N ₂ O ₂ S 30		13	A	7-aza	CONHPh	Me	æ	162-164	C15H13N3O28 · CH3OH	C, H, N, S
21 A H CONHPh Me H 149-151 C ₁₆ H ₁₄ N ₂ OS 22 A H CONHPh Me Me 116-118 C ₁₇ H ₁₆ N ₂ OS 24 A H CONHPh Me H 130-132 C ₁₆ H ₁₃ NOS 25 A H COPh Me H 242 (dec) C ₁₇ H ₁₃ NOS 25 A H COPh Me H 242 (dec) C ₁₆ H ₁₃ NOS 26 A H COPh Me H 164-166 C ₁₇ H ₁₃ NOS 27 B H COPh Me H 164-166 C ₁₇ H ₁₃ NOS 27 B H COPh Me H 164-166 C ₁₇ H ₁₃ NOS 27 B H CH ₂ COOMe Me H 164-166 C ₁₇ H ₂ M ₂ O ₄ S ₂ 28 B H CH ₂ COOMe H - 196-199 C ₂₂ H ₂ D ₄ D ₄ O ₂ S ₃ 31 B	ī	20	4	5-C1	CONHPh	Me	#	312-320	CI6H13CIN2OS	HRMS
21 A H CONHPh Me H 149-151 C ₁₆ H ₁₄ N ₂ OS 22 A H CONHPh Me Me 116-118 C ₁₇ H ₁₆ N ₂ OS 24 A H CONHPh Me H 130-132 C ₁₆ H ₁₃ NO ₃ S 25 A H COPH ₂ COOH Me H 24.46 C ₁₆ H ₁₃ NO ₃ S 25 A H COPH ₂ COOH Me H 24.46 C ₁₆ H ₁₃ NO ₃ S 26 A H COPH ₂ COOM Me H 164-166 C ₁₆ H ₁₃ NO ₃ S 0.25H ₂ O 27 B H CH ₂ COOM Me - 160-162 C ₂₄ H ₂₄ H ₂ O ₄ S ₂ 28 B H CH ₂ COOM H - 196-199 C ₂₄ H ₂₄ H ₂ O ₄ S ₂ 29 B H CH ₂ COOM H - 196-199 C ₂₄ H ₂₄ H ₂ O ₄ S ₃ 30 B H CH ₂ COOM H S 130-132 C ₂₄ H ₂₀ H ₂ O ₄ S	۲ <u>.</u>	i	í	;					•	
22 A H CONHPh Me Me 116-118 C ₁₇ H ₁₆ N ₂ OS 23 A H CONHPh Me H 130-132 C ₁₇ H ₁₉ N ₂ S 24 A H COPh Me H 130-132 C ₁₆ H ₁₃ NOS 25 A H COPhgCOOH Me H 164-166 C ₁₇ H ₁₃ NO ₃ S·0.25H ₂ O 26 A H COPhgCOOMe Me H 164-166 C ₁₈ H ₁₅ NO ₃ S·0.25H ₂ O 27 B H CH ₂ COOMe H - 160-162 C ₂₄ H ₂ NN ₂ O ₄ S ₂ 28 B H CH ₂ COOMe Me - 130-132.5 C ₂₄ H ₂ NN ₂ O ₄ S ₂ 29 B H CH ₂ COOMe H S 196-199 C ₂₀ H ₁₆ N ₂ O ₄ S ₃ 31 B H CH ₂ COOMe H S 130-132 C ₂₂ H ₂ O ₂ O ₂ O ₃ O ₂ O ₂ C		71	4	×	CONHPh	Me	æ	149-151	C16H14N2OS	C, H, N, S
23 A H CONHPh Me CH2Ph 144-146 C23H20N2S2 24 A H COPh Me H 130-132 C ₁₆ H ₁₃ NOS 25 A H COPHDCOOH Me H 282 (dec) C ₁₇ H ₁₃ NO ₃ S · 0.25H ₂ O 26 A H COPHDCOOH Me H 164-166 C ₁₈ H ₁₅ NO ₃ S · 0.25H ₂ O 27 B H CH ₂ COOMe Me - 160-162 C ₂₄ H ₂₄ N ₂ O ₄ S ₂ 29 B H CH ₂ COOMe Me - 196-199 C ₂₄ H ₂₄ N ₂ O ₄ S ₂ 30 B H CH ₂ COOMe H S 130-132.5 C ₂₄ H ₂₄ N ₂ O ₄ S ₂ 31 B H CH ₂ COOMe H S 130-132 C ₂₄ H ₂₄ N ₂ O ₄ S ₃ 32 B H CH ₂ COOMe H S 130-132 C ₂₄ H ₂₄ N ₂ O ₄ S ₃ 32 B H CH ₂ COOMe H C ₂₄ H ₂ O ₂ O ₂ S ₃ C ₂₄ H ₂ O ₂ O		22	4	×	CONHPh	Me	Me	116-118	C17H16N2OS	C, H, N, S
24 A H COPh Me H 130-132 CIGHI3NOS 25 A H COPHDCOOH Me H 282 (dec) CIGHI3NOS 0.25H2O 26 A H COPHDCOOM Me H 164-166 CIGHISNOS 27 B H CH2COOM Me - 130-132.5 C22H20N2O4S2 29 B H CH2COOH H - 196-199 C20H16N2O4S2 30 B H CH2COOH H S 139-202 C22H2ON2O4S3 31 B H CH2COOH H S 130-132.5 C22H2ON2O4S3 32 B H CH2COOH H S 130-132.5 C22H2ON2O4S3 32 B H CH2COOH H S 130-132.5 C22H2ON2O4S3 32 B H CH2COOH H C190-192.5 C22H2ON2O4S3		23	A	×	CONHPh	Me	CH2Ph		C23H20M2OS2	C, H, N, S
25 A H COPhpCOOH Me H 282 (dec) C ₁₇ H ₁₃ NO ₃ S·0.25H ₂ O 26 A H COPhpCOOMe Me H 164-166 C ₁₈ H ₁₅ NO ₃ S·0.25H ₂ O 27 B H CH ₂ COOMe Me - 160-162 C ₂₂ H ₂₀ N ₂ O ₄ S ₂ 29 B H CH ₂ COOMe H - 196-199 C ₂₀ H ₁₆ N ₂ O ₄ S ₂ 30 B H CH ₂ COOMe H S 130-132.5 C ₂₀ H ₁₆ N ₂ O ₄ S ₃ 31 B H CH ₂ COOMe H S 130-132.5 C ₂₂ H ₂ O _N O ₄ S ₃ 32 B H CH ₂ COOMe H S 130-132.5 C ₂₂ H ₂ O _N O ₄ S ₃ 32 B H CH ₂ COOMe H - 190-192.5 C ₂₂ H ₂ O _N O ₂ S ₃		54	4	×	COPh	Me	æ	130-132	CleH13NOS	C, H, N, S
26 A H COPhDCOOMe Me H 164-166 C ₁₈ H ₁₅ NO ₃ 8 27 B H CH ₂ COOMe Me - 130-132.5 C ₂ H ₂ N ₂ O ₄ S ₂ 5 29 B H CH ₂ COOMe H - 196-199 C ₂ O ₄ H ₆ N ₂ O ₄ S ₂ 30 B H CH ₂ COOM H S 199-202 C ₂ O ₄ H ₆ N ₂ O ₄ S ₃ 31 B H CH ₂ COOMe H S 130-132 C ₂ O ₂ H ₁₆ N ₂ O ₄ S ₃ 32 B H CH ₂ COOMe H S 130-132 C ₂ O ₂ H ₁₆ N ₂ O ₄ S ₃ 32 B H CH ₂ COOM Me - 190-192.5 C ₂ O ₂ H ₂ N ₂ O ₄ S ₃	2	25	4	Ħ	совидсоон	Me	#	282 (dec)	C17H13NO38 · 0 . 25H20	C, H, N
27 B H CH2COOMe H - 160-162 C22H20N20482 28 B H CH2COOMe Me - 130-132.5 C24H2AN20482 5 29 B H CH2COOH H - 196-199 C20H16N20482 30 B H CH2COOH H S 139-202 C20H16N20483 31 B H CH2COOH H S 130-132 C22H20N20483 32 B H CH2COOH Me - 190-192.5 C22H20N20483		5 8	4	Ħ	COPhocome	Же	æ	164-166	C ₁₈ H ₁₅ NO ₃ 8	C,H,N,S
28 B H CH ₂ COOMe Me - 130-132.5 C ₂ H ₂ M ₂ O ₄ S ₂ 5 29 B H CH ₂ COOH H - 196-199 C ₂₀ H ₁₆ N ₂ O ₄ S ₂ 30 B H CH ₂ COOH H S 199-202 C ₂₀ H ₁₆ N ₂ O ₄ S ₃ 31 B H CH ₂ COOMe H S C ₂₂ H ₂ O _N O ₄ S ₃ 32 B H CH ₂ COOH Me - 190-192.5 C ₂₂ H ₂ N ₃ O ₄ S ₃		27	A	×	СНУСООМО	×	•	160-162	C22H20N2O482	C, H, N, Sf
5 29 B H CH2COOH H - 196-199 C20H16N204S2 30 B H CH2COOH H S 199-202 C20H16N204S3 31 B H CH2COOH H S 130-132 C22H2ON204S3 32 B H CH2COOH Me - 190-192.5 C22H2ANDO,S3		78	M)	×	СН2СООМе	Me	•	•	C24H24N2O4S2	C,H,N,S
В Н Chycooh Н S 199-202 Сон (N204S3) В Н СС22H20N204S3 СС22H20N204S3 СС22H20N204S3 СС22H20N204S3 В Н СН2COOH Me - 190-192.5 Сол H2NAO, S3	22	53	æ,	Ħ	снусоон	×	•	196-199	C20H16N2O4S2	knownd
H CH ₂ COOMe H S 130-132 C ₂₂ H ₂₀ N ₂ O ₄ 8 ₃ H CH ₂ COOH Me - 190-192.5 C ₂₁ H ₂ N ₁ O ₂ S ₂		30	Ø	Ħ	снусоон	×	တ	199-202	C20H16N2O4S3	C, H, N, S
CH2COOH Me - 190-192.5 Chhan, O.S.		31	M	×	СН2СООМВ	×	တ	130-132	C22H20N2O483	C, H, N, S
		32	Ø	Ħ	сн, соон	Me	•	190-192.5	C,14,0N,0,S,	known

B H CH ₂ COOBE B H CH ₂ COONHCH ₂ Ph B H CH ₂ COOH B H (CH ₂) ₂ COOH B C-Me (CH ₂) ₂ COOH B S-Me (CH ₂) ₂ COOH B G-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ CONH CH ₂) ₂ CONH B H (CH ₂) ₂ CONH CH ₂) ₂ CONH B H (CH ₂) ₂ CONH CH ₂		200							
33 B H CH ₂ COORE 34 B H CH ₂ CONHCH ₂ Ph 35 B H CH ₂) ₂ COOH 37 B H (CH ₂) ₂ COOH 40 B H (CH ₂) ₂ COOM 41 B 5-Me (CH ₂) ₂ COOM 42 B C-Me (CH ₂) ₂ COOM 43 B 6-Me (CH ₂) ₂ COOH 44 B 6-Me (CH ₂) ₂ COOH 45 B 7-Me (CH ₂) ₂ COOH 46 B 7-Me (CH ₂) ₂ COOH 47 B H (CH ₂) ₂ COOH 48 B H (CH ₂) ₂ COOH 49 B H (CH ₂) ₂ CONHCH ₂ Ph 49 B H (CH ₂) ₂ CONHCH ₂ Ph 50 B H (CH ₂) ₂ CONHCM ₂ 51 B H (CH ₂) ₂ CONHOM 52 B H (CH ₂) ₂ CONHOM 53 B H (CH ₂) ₂ CONHOM 54 B H (CH ₂) ₂ CONHOM 55 B H (CH ₂) ₂ CONHOM 56 B H (CH ₂) ₂ CONHOM 57 CONHOM	9	FORMITA	Z.	K2	Rg	×	(O.) đu	Molecular Formula	Analysis"
B H CH ₂ CONHCH ₂ Ph B H (CH ₂) ₂ COOH B CH ₂) ₂ COOH B S-Me (CH ₂) ₂ COOH B G-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ CONH CH ₂	33	Ø	×	CH2COORE	Me		117-119	C26H2RN2O4S2	C,H,N,S
B H (CH ₂) ₂ COOH B H (CH ₂) ₂ COOH B H (CH ₂) ₂ COOH B H (CH ₂) ₂ COOMe B H (CH ₂) ₂ COOMe B S-Me (CH ₂) ₂ COOMe B S-Me (CH ₂) ₂ COOMe B S-Me (CH ₂) ₂ COOH B S-Me (CH	34	Д	Ħ	CH2CONHCH2Ph	×	•	200.5-203.5	C34H30N4O2S2	C,H,N,S
B H (CH ₂) ₂ COOH B H (CH ₂) ₂ COOH B H (CH ₂) ₂ COOBC B H (CH ₂) ₂ COOMC B CH ₂) ₂ COOMC B S-Me (CH ₂) ₂ COOMC B S-Me (CH ₂) ₂ COOH B S-Me (CH ₂) ₂ COOH B S-Me (CH ₂) ₂ COOH B G-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ CONHCH ₂ Ph CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CONHMe CH ₂) ₂ CONHMe CH ₂) ₂ CONHMe CH ₂) ₂ CONH (CH ₂) ₂ Ph	35	Ø	æ	CH ₂ CN	Ħ	•	168.5-169.5	C20H14N482 (lit ref) ^g C,H,N,S	C,H,N,S
B H (CH ₂) ₂ COOH B H (CH ₂) ₂ COORt B H (CH ₂) ₂ COOMe B CH ₂) ₂ COOMe B 5-Me (CH ₂) ₂ COOH B 5-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ CONHCM ₂ B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONH(CH ₂) ₂ Ph	36	ф	Ħ	(CH ₂) ₂ COOH	×	•	118-120.5	C22H30N2O482 . H2O	C, H, N, S
B H (CH ₂) ₂ COORt B H (CH ₂) ₂ COOMe B S-Me (CH ₂) ₂ COOMe B 5-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ COOH CH ₂ COONH (CH ₂) ₂ Ph	37	Ø	Ħ	(CH ₂) ₂ COOH	Me	•	158.5-160	C24H24N2O482	C,H,N,S
B H (CH ₂) ₂ COOMe B 5-Me (CH ₂) ₂ COOMe B 5-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH B	38	Ф	×	(CH ₂) ₂ COORt	×	•	137-139	C26H28N2O482	C,H,N,S
B H (CH ₂) ₂ COOMe B 5-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHOME	33	æ	=	(CH ₂) ₂ COOMe	×	•	162.5-164	C24H24N2O482	C,H,N,S
B 5-Me (CH ₂) ₂ COOH B 5-Me (CH ₂) ₂ COOBt B 6-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH	40	m	×	$(CH_2)_2COOMe$	Me	•	139-141.5	C26H2RN2O482	C,H,N,S
B 5-Me (CH ₂) ₂ COORt B 6-Me (CH ₂) ₂ COORt B 7-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ CONHCH ₂ Ph CH ₂) ₂ CONHCH ₂ Ph CH ₂) ₂ CONHCH ₂ Ph B 7-Me (CH ₂) ₂ CONHCH CH ₂) ₂ CONH	41	M	5-Me	(CH ₂) ₂ COOH	Ħ	•	91.5-95	C24H24N2O482	HRMS°
B 6-Me (CH ₂) ₂ COOH B 6-Me (CH ₂) ₂ COOBt B 7-Me (CH ₂) ₂ COOBt B 7-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COOH CH ₂ B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CONHMe CH ₂) ₂ CONHMe CH ₂) ₂ CONH (CH ₂) ₂ Ph	42	M	5-Me	(CH ₂) ₂ COOBt	×	٠	138.5-139	C28H32N2O4S2 · 0 · 5C6H6	C, H, N, S
B 6-Me (CH ₂) ₂ COORt B 7-Me (CH ₂) ₂ COORt B 7-Me (CH ₂) ₂ COOH B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHOME	43	æ	6-Me	(СН ₂) 2СООН	×	1	126-128	C24H24N2O482 · 0 . 5H2O	C, H, N, S
B 7-Me (CH ₂) ₂ COOH B 7-Me (CH ₂) ₂ COORt B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CN B H (CH ₂) ₂ CN B H (CH ₂) ₂ CONH B H (CH ₂) ₂ CONHOM	44	m	6-Me	(CH ₂) ₂ COOBt	×	•	122-123.5	C28H32N2O4S2	C, H, N, S
B 7-Me (CH ₂) ₂ COORt B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CN B H (CH ₂) ₂ CN B H (CH ₂) ₂ CONH ₂ B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHOMe B H (CH ₂) ₂ CONHOMe	45	Ø	7 - Me	(СН ₂) 2СООН	×	•	172.5-175	C24H24N2O4S2	C, H, N
B H (CH ₂) ₂ CONHCH ₂ Ph B H (CH ₂) ₂ CN B H (CH ₂) ₂ CN B H (CH ₂) ₂ CONHM ₂ B H (CH ₂) ₂ CONHOM ₂ B H (CH ₂) ₂ CONH (CH ₂) ₂ Ph	46	M	7-Me	(CH ₂) ₂ COORt	æ	•	120-122.5	C28H32N2O492	C, H, N, S
B H (CH ₂) ₂ CN B H (CH ₂) ₂ NO ₂ B H (CH ₂) ₂ CONH ₂ B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHMe CH ₂) ₂ CONH (CH ₂) ₂ Ph	47	m	×	(CH ₂) 2CONHCH ₂ Ph	æ	•	141-144	C36H34N4O2S2	C, H, N, S
B H (CH ₂) ₂ NO ₂ B H (CH ₂) ₂ CONH ₂ B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHOMe B H (CH ₂) ₂ CONHOMe B H (CH ₂) ₂ CONHOMe CH ₂) ₂ CONHOMe	48	Ø	×	$(CH_2)_2CN$	æ	•	167-169	C,HKN,S, (lit ref)	-
B H (CH ₂) ₂ CONH ₂ B H (CH ₂) ₂ CONHMe B H (CH ₂) ₂ CONHOMe B H (CH ₂) ₂ CONHOMe B H (CH ₂) ₂ CONH (CH ₂) ₂ Ph	49	Ø	×	(CH ₂) ₂ NO ₂	æ	•	153-154	C20H18N4O482 · 0 . 5H2O	C,H,N,S
1 B H (CH ₂) ₂ CONHMe 2 B H (CH ₂) ₂ CONHOMe 3 B H (CH ₂) ₂ CONMe ₂ 4 B H (CH ₂) ₂ CONM (CH ₂) ₂ Ph	20	Ø	×	(CH ₂) ₂ CONH ₂	×	•	101 (dec)	C22H22N40283 · 0 . 5H20	C,H,N,S
2 B H (CH ₂) ₂ CONHOMe 3 B H (CH ₂) ₂ CONMe ₂ 4 B H (CH ₂) ₂ CONH (CH ₂) ₂ Ph	51	æ	Ħ	(CH ₂) ₂ CONHMe	×	t	162.5-164	C24H26N4O282	C, H, N, S
	52	Ø	ĸ	(CH ₂) ₂ CONHOMe	×	•	176-178	C24H26N4O4S2	C, H, N, 9
(-3,000	53	Ø	×	(CH ₂) ₂ CONMe ₂	Ħ	•	179-180	C26H30N4O2S2	C, H, N, S
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	54	M	Ħ	$(CH_2)_2CONH(CH_2)_2Ph$	×	•	otl	C38H38N4O2S2	HRFABMS
55 B n (CA2/2CONDCA2/4-COGB) H	55	Ø	×	$(CH_2)_2CONHCH_2Ph\{4-COOMe\}$ H	Me H	•	151-153	C40H1RN4OKS,	C,H,N,S

9	For	R	ŀ	R ₃ X	(၁ _e) địu	Molecular Pormula	Analysis*
26	Ø	Ħ	$(CH2)2CONHCH2Ph{4-COOH}$		135.5-138.5 (dec)	C38H34N4O652 · H2O	C,H,N,S
57	Ø	Ħ	$(CH_2)_2CONHCH_2Ph\{3-OH, 1$		183-185	C40H38N4O8S2	C,H,N,S
53	m	×	(CH ₂) ₂ CONHCH ₂ Ph {3-OH, 4-COOH}		$160 \cdot 163.5 \text{ (dec) } C_{38}H_{34}N_4O_8S_2 \cdot H_2O_8$	C38H34N4O8S2·H2O	C,H,N,S
53	ď	×	(CH ₂) ₂ CONHPh	·.	114 (dec)	C34H30N4Q2S2 · 0 . 5H2O	C, H, N, S
9	B 1	×	NHAC		140-144" (dec)	C40H40N6O4S2 · 0 . 5H2O	C,H,N,S
				•	154.5-157.5" (dec) C40H40N6O482	C40H40N6O4S2	C, H, N, S
61	B1	×	NHCOCF ₃		160-164 (dec)	C40H34F6N6O482 · 0 . 5H,O	C, H, N, S
62	B 1	x	NH ₂		147-150 (dec)	C36H36N6O2S2 · 0 . 5H2O	C,H,N,S
63	B1	×	OAC		120-124 (dec)	C40H34N4O6S2	C,H,N,S
64	B 1	Ħ	OH.	·	120-125	C36H34N4O4S2	C,H,N,S
65	m	×	(СН ₂) 3СООН		141-143.5	C24H24N2O482 · 0 . 5H2O	C,H,N,S
99	Ø	×	(СН ₂) ₃ СООН		106.5-109.5	C26H28N2O4S3 · 2ACOH	C, H, N, S
67	Ø	æ			91-93	C26H28N2O482	C, H, N, S
68	Д	I	(CH ₂) ₃ COOMe	Me .	112-113	C28H32N2O4S2	C, H, N, S
69	Д	×	(CH ₂) 3CONHCH ₂ Ph		98.5-101	C38H38N4O282	C,H,N,S
70	മ .	×	CONHPh	We	187-188	C,,H, KN,O,S,	C.H.N.S
71	Ø	×	СОМНРН	Bt -	200-202	C34H30N4O2S2	C,H,N,S
72	m	4 -C1	CONHPh	Me .	225-228	C32H24C12N4O282	C, H, N, Cl
73	m	5-C1	CONHPh	Me	214-216	C32H24C12N4O282	C, H, N, S
74	m	1-C1	CONHPh	Me .	232-234	C32H24C12N4O2S2	C, H, N, Cl
75	m	4 - Me	CONHPh		237-239	C34H30N4O2S2	C,H,N,S
76	m	5 - Me	CONHPh	Me -	231-234	C, H, N, O, S,	2 2 2

Š.	Formula	<u>۳</u>	ሚ	R3	×	(၁°) đị	Molecular Formula	Analysis*
77	М	6-Me	CONHPh	Me		192-195	C14H10N4O,S,	C.H.N.S
78	М	7-Me	CONHPh	Me	•	221-223	C14H10N4O353	C.H.N.S
79	Ø	4 - OMe	CONHPh	Me	•	225-228	C14H10NAO.S1	O. H. D.
90	Ø	5-0Me	CONHPh	Me	•	161-164	Cadhaola O.S.	S. M. H. C
81	m	6-0Me	CONHPh	Me	•	197-200	C24H20NAO-82	
82	ø,	7-0Me	CONHPh	Me	•	205-206	C24H20NAO-82	
83	m	7-aza	CONHPh	Me	•	197-198	C26H2/N, O.S.	
							20-74-9-7-2	C (11 (11 ()
84	£	5-CF3	COMHPh	Me	•	214-216	C, H, F, N, O, S,	2 2 1
92	m	6 -C1	_	Me	•	243-245	C32H24CI,NAO,S,	C.H.N.S
98	Д	5-NO ₂	CONHPh	Me	•	236-240	C32H74N6O683 · 2H,O	C.H.N
. 87	Ø	5-1	CONHPh	Me	•	205-207	C32H24F2N4O353	C, H, N, S
88	m	S-CN	CONHPh	Me	•	221-224	C34H24NcO357.0.5H2O	C,H,N,S
83	ф	5-Br	CONHPh	Me	•	219-221	C32H24Br2N4O,8,	C, H, N, S
90	Ø	4-0Ac	CONHPh	Me	•	194	C36H30N4OKS	HRFABMS
91	œ	5-0Ac	CONHPh	Me	•	147-150	C36H30N4O683 · 0 . 5H,O	C.H.N.S
92	Ø	5-0H	CONHPh	Me	•	185-187	C32H74N4O487 · H,O	C.H.Z
93	Ø	6-0Ac	CONHPh	Ме	•	219-222	C36H30N4O6S2	C,H,N,S
46	Ø	но-9	CONHPh	Me	•	185-187	C32H26N4O482	HRMS
95	Ø	7-0Ac	CONHPh	Me	•	212-214	C36H30N4O6S7 · 0 · 5H,O	C,H,N,S
96	Ø	7-0H	соинрь	Me	•	206-207	C32H26N4O482	C,H,N,S
97	œ	I	CONHMe	Me	•	162-165	C2H22NAO,8,	HRMS°
98	M	×	CONHCH2Ph	Me	•	145-147	CarHanNAO, 93	C.H.N.S
66	Ø	=	SO ₂ Php-Me	H	•	230-233	C30H24N2O484	C.H.N.S
100	Ø	×	COPh	Me	•	199-202	C21H2/N-S2O	7 X

				The state of the s				
No.	Formula	R ₁	R	R3	×	(၁°) địm	Molecular Formula	Analysis*
101	æ	Ħ	соврасоон	Me		241-246	C34H24N2S2O6 · 1 . 5H2O	C,H
102	Ø	×	COPhacoome	Me	•	200-203	C ₃₆ H ₂₈ N ₂ O ₆ S ₂	C,H,N,S
103	æ	Ħ	Ме	Me	•	113-115	C20H20N282	C,H,N,S
104	m	×	CONHPh {4-COOMe}	Me	ı	184-186	C36H30N4O6S2 · H2O	O,H,N,S
105	, W	×	CONHPh (4 - COOH)	Me	•	221	C34H26N4O682 · 0 . 5H2O	C,H,N,S
106	æ	Ħ	CONHPh(3-COOMe)	Me	•	193-195	C ₃₆ H ₃₀ N ₄ O ₆ S ₂	C,H,N,S
101	æ	I	CONHPh (3-COOH)	Me	•	219-220	C34H26N4O682	C,H,N,S
108	m	×	CONHPh (2 - COOMe)	Me	•	179-181	C36H30N4O6S2	C,H,N,S
109	m	X	CONHPh (2-COOH)	Me	•	184-186	C34H26N4O6S2	C,H,N,B
110	m	×	CONHCH ₂ Ph{4-COOMe}	Me	1	178-180	C38H34N4O6S2	C,H,N,S
111	æ	×	CONHCH ₂ Ph(4-COOH)	Me O	•	178-180	C36H30N4O6S2.1.5H2O	C,H,N,S
112	M	Ħ	CONHCH2COOH	Me	•	196-198	C24H22N4O682	C, H, N, S
113	M	Ħ	CON (Me) Ph	Me	•	158-163	C34H31N4S2O2	C, H, N, S
114	M	Ħ	CONHCH2CH (OH) CH2OH	Me	•	198	C26H30N4O6S2	C, H, N, S
115	Ø	X	CONHCH2CH2NMe2	Me	•	163.5-165	C28H36N6Q2S2	C, H, N, S
116	Ø	Ħ	CONH-4-pyridyl	Me	•	226-229	C30H24N6O2S2	C,H,N,S
117	m	Ħ	CONH-3-pyridyl	Me	•	257-260	C30H24N6O2S2	C, H, N, S
118	Ø	Ħ	CONH2	Me	•	186-188	C20H18N4O2S2 · 0 . 5H2O	C, H, N, S
119	Ø	E	CONMe ₂	Me	•	96-102	C24H26N4O282 · 0 . 5H2O	C,H,N
120	æ	Ħ	CN	Me	•	205-207	C20H14N4S2	C, H, N, S
121	m	Ħ	СОМе	Me	•	178.5-179.5	C22H20N2O2S2·0.5H2O	C,H,N,S
122	m	Ħ	CONH-2-pyridyl	Me	•	270-272	C30H24N6O2S2 · 0 . 25H2O	C,H,N,S
123	Ø	×	CONH-furyl	Me	•	175-176	C28H20N2O4S2	
124	Ø	×	CONH-thienyl	Me	•	183 (DEC)	C, KH, NAO. 8, · 0 . 5H, O	C.H.N

					TABLE 1 (cont'd)	(cont'	d)		
	No.	Formula	R ₁	R2	R3	×	(၁°) du	Molecular Formula	Analysis*
	125	Ø	H	CONHCH ₂ Ph	×		203-205	Cr.H, M, O, S,	C,H,N,S
	126	Ø	×	CONHPh	Ħ	•	220-222.5	Cachtan N.O.S.	C.H.N.S
Ŋ	127	W	×	CONHMO	m	•	232-236	C20H18N4O2S2	C,H,N,S
	128	Ø	×	СОИНРЬ	(CH ₂) ₃ NMe ₂	•	165	C ₂₈ H ₃₆ N ₆ O ₂ S ₂	C,H,N,S
10							O NHCH ₂ Ph	H₂Ph	
15					R ₂	Z /	Se x		
20				, 	. В.	لسي	R ₃		
	129	D	×	COOt-Bu	æ	•	187-189	C28H12N7O4Se2 · 0 . 2H,O	C, H, N
	130	Ω	×	НООЭ	CH ₃	•	174 (dec)	ConH14N,O48e, · 0 . 1H,O	C,H,N
25	131	Ω	×	CONHIME	້ອ	•	225-230 (dec)	C2H27N4O3803.0.9H2O	Z.H.D
	132	Ω	×	CONH (CH ₂) ₂ NBt ₂	CH ₃	•	160-164	C32H4N6O2Se2.2.0HCl.	

					TABLE 1 (cont'd)	cont'	d)		
	No.	Formula	a.	R	R3	×	(De) din	Molecular Formula Analysis'	Analysis'
	133	ρ	×	СОИНСН3	æ		272-275	C20H18N4O2Se2. 0.9H2O	C, H, N
	134	Ω	I	Conh (CH ₂) ₂ nbe ₂	æ	•	257-259 (dec)	C ₃₀ H ₄₀ N ₆ O ₂ Se ₂ · 2.0HC1·H ₂ O	C, H, N
Ŋ	135	Q	Ħ	CONHCH3	(CH ₂) ₂ NBt ₂	•	156-157	C32H44N6O2Se2.0.5H2O C,H,N	C, H, N
	136	10	×	NH ₂ [R- (R*, R*)]	H	•	172-174	C36H36N6O28e2.1.5H2O C, H, N	C, H, N
	137	10	×	NH2 [S-(R*,R*)]	H	•	171 (dec)		
	100	21.01							

Analyses for all listed elements within ±0.4% b Noncrystalline # Diastereomers

10

e High-resolution mass spectrum molecular ion

Wieland T, Wieburg O, Fischer E, Korlein G, Annalen 1954;587:146

Takase S, Uchida I, Tanaka H, Aoki H, Tetrahedron 1986;42:5879

f Palmisano G, Brenna B, Danieli B, Lesma G, Vodopivec B, Fiori G, Tet. Lett. 1990;31:7229
Piotrowska H, Serafin B, Wejroch-Matacz K, Rocz. Chem. 1975;49:635-638.

15

-32-

EXAMPLES

The invention and the best mode for practicing the same are illustrated by the following Examples A-K.

5

25

30

EXAMPLE A

Preparation of Compounds 15, 17, 65, and 46 of Table 1 by the Method Outlined in Scheme 1

Concentrated HCl (16.6 mL) was added dropwise with 10 stirring, over 10 minutes, to a solution of 4-(3-indoly1) butanoic acid [II: $R_1 = R_2 = H$, $R_2 = (CH_2)_3 COOH$ (2.00 g) in DMSO (7.0 mL) at room temperature (method of Savige WE, Fontana A, J. Chem. Soc. Chem. Commun. 1976:599). After 15 minutes 15 reaction, the mixture was diluted with water (80 mL) and extracted with EtOAc (4 x 100 mL). Removal of the solvent gave crude 4-(2-oxo-3-indolinyl)butanoic acid [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOH$] (2.07 g, 96%) as a green-brown solid; mp (water) 169-171°C (Hinman RL, 20 Bauman CP, <u>J. Org. Chem.</u> 1964;29:1206 record mp 170-171°C).

Acetyl chloride (10 mL) was added dropwise with stirring to an ice-cooled solution of the above crude acid [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOH$] (2.05 g) in dry MeOH (50 mL), and the mixture stirred at 20°C for 18 hours. The solvent was removed, and repeated evaporation from MeOH yielded a brown oil, which was dissolved in $CHCl_3$ (100 mL) and washed with water (2 x 100 mL). Removal of the solvent gave crude methyl 4-(2-oxo-3-indolinyl) butanoate [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COCMe$] (2.20 g) as an oil. A pure sample was obtained by chromatography on silica gel and elution with EtOAc/light petroleum (1:2) as a pale yellow oil.

-33-

¹H NMR (CDCl₃): δ 8.82 (1H, s, NH), 7.24 (1H, d, J = 7.7 Hz, ArH), 7.21 (1H, t, J = 7.8 Hz, ArH), 7.03 (1H, td, J = 7.6, 0.8 Hz, ArH), 6.91 (1H, d, $J = 7.7 \text{ Hz}, \text{ArH}), 3.65 (3H, s, COOCH_3), 3.49 (1H, t,$ J = 6.0 Hz, H-3), 2.34 (2H, t, J = 7.5 Hz, CH₂CO),5 2.00, 1.72 (4H, 2xm, 3-CH₂CH₂). ¹³C NMR (CDCl³): δ 180.23 (s, CONH), 173.57 (s, COOCH₃), 141.54, 129.24 (2xs, Ar), 127.97, 124.11, 122.37, 109.80 (4xd, Ar), 51.53 (q, COO_{CH_3}), 45.74 (d, C3), 33.83, 29.79, 21.18 (3xt, $(CH_3)_2$ CO). 10 Analysis calculated for $C_{13}H_{15}NO_3 \cdot H_2O$ requires: C, 6.45; H, 6.7; N, 5.6%. Found: C, 64.4; H, 6.5; N, 5.7%. A solution of the above crude ester [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOMe$] (0.48 g) in dry dioxane 15 (10 mL) was treated with P₂S₅ (0.26 g) and NaHCO₃ (0.36 g), then the mixture was stirred under nitrogen at 95°C for 1 hour. The resulting solution was concentrated under reduced pressure, and the residue 20 was diluted with CH2Cl2 (100 mL) and filtered. The filtrate was washed with water, solvent was removed, and the residue (0.55 g) was chromatographed on silica gel (elution with CH2Cl2) to give crude methyl 4-(2-thioxo-3-indolinyl) butanoate [IV: $R_1 = R_2 = H$, 25 $R_2 = (CH_2)_3COOMe$ (17) (0.18 g, 35%); mp (benzene-light petroleum) 109-110°C. ¹N NMR (CDCl₃): δ 10.59 (1H, s, NH), 7.31 (1H, d, J = 7.4 Hz, ArH), 7.27 (1H, td, J = 7.7, 0.9 Hz, ArH), 7.14 (1H, td, J = 7.5, 0.9 Hz, ArH), 7.02 (1H, d, J = 7.7 Hz, ArH), 3.85 (1H, t, J = 5.5 Hz, H-3), 3.64 30 $(3H, s, COOCH_3)$, 2.32 $(2H, t, J = 7.5 Hz, CH_2CO)$, 2.26, 2.15, 1.67, 1.46 (4H, 4xm, 3-CH₂CH₂). ¹³C NMR (CDCl₃): δ 207.80 (s, CSNH), 173.69 (s,

COOCH₃), 143.27, 133.85 (2xs, ArH), 128.19, 124.17,

-34-

124.02, 110.12 (4xd, ArH), 57.36 (d, C-3), 51.61 (q, $COO\underline{CH_3}$), 33.92, 32.76, 20.41 (3xt, $(\underline{CH_2})_3CO$). Analysis calculated for $C_{13}N_{15}NO_2S$ requires:

C, 62.6; H, 6.1; N, 5.6; S, 12.9%.

5 Found: C, 62.8; H, 5.9; N, 5.7; S, 12.9%.

A solution of 17 (0.39 g) in MeOH was exposed to air for 13 days, then the solvent was removed. Chromatography of the residue on silica gel (elution with CH_2Cl_2) yielded bis[methylindolyl-3-butanoate-

- 10 (2)]-disulfide [V: R₁ = R₃ = H, R₂ = (CH₂)₃COOMe] (67) (0.31 g, 80%); mp (MeOH-dilute HCl) 91-93°C.

 ¹N NMR (CDCl₃): δ 8.19 (1H, s, NH), 7.57 (1H, d, J = 7.9 Hz, ArH), 7.28 (1H, d, J = 8.0 Hz, ArH), 7.24 (1H, ddd, J = 8.2, 7.1, 1.1 Hz, ArH), 7.12 (1H, ddd, J = 8.0, 6.9, 1.4 Hz, ArH), 3.56 (3H, s, COOCH₃), 2.67,
- 2.18 (2x2H, 2xt, J = 7.4 Hz, $C\underline{H}_2C\underline{H}_2C\underline{H}_2CO$), 1.85 (2H, quin, J = 7.4 Hz, $C\underline{H}_2C\underline{H}_2CO$).

¹³C NMR (CDCl₃): δ 174.02 (s, <u>C</u>OOCH₃), 137.29, 127.49, 125.99 (3xs, ArH), 124.21 (d, ArH), 123.70 (s, ArH),

20 119.95, 119.88, 111.08 (3xd, ArH), 51.42 (q, COOCH₃), 33.45, 25.67, 23.95 (3xt, (CH₂)₃CO).

Analysis calculated for $C_{26}H_{28}N_2O_4S_2$ requires:

C, 62.9; H, 5.7; N, 5.7; S, 12.9%.

Found: C, 62.6; H, 6.0; N, 5.5; S, 13.1%.

- A mixture of 17 (0.26 g) in MeOH (10 mL) and $\rm K_2CO_3$ (0.55 g) in water (3 mL) was stirred at room temperature for 2 days. NaBH₄ (100 mg) was then added, and the mixture stirred for 25 minutes, then diluted with water (100 mL) and extracted with $\rm CH_2Cl_2$
- 30 (2 x 100 mL). The aqueous portion was acidified (to pH 3) with dilute HCl and extracted with EtOAc (3 x 100 mL). This extract was concentrated under reduced pressure, and the residue was crystallized from CH₂Cl₂-light petroleum to give 4-(2-thioxo-

-35-

3-indolinyl) butanoic acid [IV: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOH$] (15) (30 mg, 12%); mp 132-134°C.

¹H NMR (CD₃OD): δ 7.34 (1H, d, J = 7.4 Hz, ArH), 7.26 (1H, td, J = 7.7, 1.1 Hz, ArH), 7.12 (1H, td, J = 7.5, 0.8 Hz, ArH), 7.00 (1H, d, J = 7.8 Hz, ArH), 2.25 (2H, t, J = 7.5 Hz, CH_2COOH), 2.24, 2.10, 1.55, 1.33 (4H, 4xm, 3-CH₂CH).

Analysis calculated for C12H13NO2S requires:

C, 61.3; H, 5.6; N, 6.0; S, 13.6%

10 Found: C, 61.1; H, 6.2; N, 6.1; S, 13.5%.

5

Similar hydrolysis of 67 (at 30°C for 6 hours, then 20°C for 1 day) gave bis[indolyl-3-butanoic acid-(2)]disulfide [V: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOH$] (65) (30 mg, 20%); mp (aqueous MeOH) 141-143.5°C.

- 20 $J = 7.5 \text{ Hz}, CH_2CH_2CH_2CO).$ $^{13}C \text{ NMR} (CD_3OD): \delta 177.52 (s, COOH), 139.31, 128.69, 126.69, 124.84 (4xs, ArH), 124.67, 120.48, 120.27, 112.34 (4xd, ArH), 34.39, 27.24, 24.82 (3xt, <math>(\underline{CH}_2)_3COOH).$
- 25 Analysis calculated for C₂₄H₂₄N₂O₄S₂·H₂O requires: C, 60.4; H, 5.2; N, 5.9; S, 13.4%. Found: C, 60.4; H, 5.4; N, 5.9; S, 13.6%.

Compounds 7. 9. 36 and 39 of Table 1

Similar treatment of methyl 3-(3-indolinyl)propanoic [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (0.93 g)
with DMSO/HCl, followed by esterification with
diazomethane and chromatography on silica gel, gave
methyl 3-(2-oxo-3-indolyl)propanoate [III: $R_1-R_3 = H$,

-36-

 $R_2 = (CH_2)_2 COOMe]$ (0.89 g, 89%) as a yellow oil (Julian PL, Printy HC, <u>J. Am. Chem. Soc.</u> 1953;75:5301-5305 report mp 79-80°C).

¹H NMR (CDCl₃): δ 8.75 (1H, s, NH), 7.22 (2H, m, ArH), 7.03 (1H, ddd, J = 7.8, 7.1, 1.1 Hz, ArH), 6.91 (1H, dd, J = 7.3, 1.3 Hz, ArH), 3.63 (3H, s, OCH₃), 3.54 (1H, t, J = 5.8 Hz, H-3), 2.61-2.20 (4H, m, 3-CH₂CH₂). Analysis calculated for $C_{12}H_{13}NO_3$ requires: M+ 219.0895.

10 HREIMS m/z Found: M+ 219.0898.

Treatment of this ester [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOMe$] (0.89 g) with P_2S_5 as above, followed by chromatography on silica gel, eluting with EtOAc/light petroleum (3:1), gave an oil (0.44 g).

- 15 Crystallization from MeOH gave 2,2'-dithiobis[methyl 3-(3-indolyl)propanoate [V: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOMe$] (39) (61 mg, 6%); mp 162.5-164°C.

 ¹H NMR (CDCl₃): δ 8.21 (1H, s, NH), 7.55 (1H, dd, J = 8.0, 0.7 Hz, ArH), 7.25 (2H, m, ArH), 7.12 (1H,
- 20 ddd, J = 8.0, 5.4, 2.6 Hz, ArH), 3.56 (3H, s, OCH₃), 2.98, 2.47 (2x2H, 2xt, J = 7.9 Hz, 3-CH₂CH₂). ¹³C NMR (CDCl₃): δ 173.38 (s, COOCH₃), 137.25, 127.21, 125.80 (3xs, Ar), 124.30 (d, Ar), 122.79 (s, Ar), 120.10, 119.59, 111.21 (3xd, Ar), 51.56 (q, OCH₃),
- 25 34.97 (t, CH_2CO), 20.27 (t, 3- CH_2). Analysis calculated for $C_{24}H_{24}N_2O_4S_2$ requires: C, 61.5; H, 5.2; N, 6.0; S, 13.7%.

Found: C, 61.4; H, 5.3; N, 6.1; S, 13.7%.

Crystallization of the mother liquor residue from benzene/light petroleum gave methyl 3-(2-thioxo-3-indolinyl)propanoate [IV: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOMe$] (9) (0.24 g, 25%); mp (CH₂Cl₂/light petroleum) 96-98°C.

-37-

¹H NMR (CDCl₃): δ 9.83 (1H, s, NH), 7.29 (2H, m, ArH), 7.16 (1H, td, J = 7.5, 0.9 Hz, ArH), 6.99 (1H, d, J = 7.8 Hz, ArH), 3.91 (1H, t, J = 5.4 Hz, H-3), 3.60 (3H, s, OCH₃), 2.52 (2H, m, 3-CH₂), 2.42, 2.11 (2x1H, 2xm, CH₂CO).

¹³C NMR (CDCl₃): δ 207.26 (s, CSNH), 173.37 (s, COOCH₃), 143.24, 133.08 (2xs, Ar), 128.43, 124.35,

¹³C NMR (CDCl₃): δ 207.26 (s, CSNH), 173.37 (s, COOCH₃), 143.24, 133.08 (2xs, Ar), 128.43, 124.35, 124.09, 110.01 (4xd, Ar), 56.45 (d, C-3), 51.68 (q, OCH₃), 29.33, 28.19 (2xt, 3-CH₂CH₂).

10 Analysis calculated for C₁₂H₁₃NO₂S requires: C, 61.3; H, 5.6; N, 6.0; S, 13.6%. Found: C, 61.4; H, 5.5; N, 6.0; S, 13.7%.

5

15

Hydrolysis of 9 with $K_2CO_3/MeOH/H_2O$ as described above, followed by chromatography on silica gel, reduction with $NaBH_4$ and crystallization from $CH_2Cl_2/isopropyl$ ether/light petroleum gave 3-(2-thioxo-3-indolinyl)propanoic acid [IV: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (7) (25 mg, 22%); mp 170-173°C.

¹H NMR (CD_3COCD_3): δ 11.48 (1H, s, NH), 7.43 (1H, d, J = 7.4 Hz, ArH), 7.30 (1H, t, J = 7.7 Hz, ArH), 7.15 (1H, t, J = 7.4 Hz, ArH), 7.11 (1H, d, J = 7.8 Hz, ArH), 3.90 (1H, t, J = 5.3 Hz, H-3), 2.49 (1H, m, CH_2CH_2CO), 2.37 (2H, m, CH_2CH_2CO), 2.11 (1H, m,

25 CH₂CH₂CO).

¹³C NMR (CD₃COCD₃): δ 208.48 (s, CSNH), 174.14 (s, COOH), 145.18, 134.55 (2xs, Ar), 129.05, 125.08, 124.30, 110.87 (4xd, Ar), 57.18 (d, C-3), 29,86, 29.25 (2xt, CH₂CH₂COOH).

30 Analysis calculated for C₁₁H₁₁NO₂S requires: C, 59.71; H, 5.01; N, 6.33%. Found: C, 59.49; H, 4.97; N, 6.15%.

Aerial oxidation of 7 in MeOH at 20°C for 12 days, followed by dilution with water, gave

-38-

bis[indolyl-3-propanoic acid-(2)]disulfide [V: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (36) (30 mg, 30%); mp (aqueous MeOH) 118-120.5°C.

¹H NMR (CD₃OD): δ 7.47 (1H, dt, J = 8.0, 0.8 Hz, ArH), 7.30 (1H, dt, J = 8.1, 0.8 Hz, ArH), 7.15 (1H, ddd, J = 8.1, 7.1, 1.0 Hz, ArH), 7.00 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 2.74, 2.2 (2x2H, 2xt, J = 8.0 Hz, (CH₂)₂COOH).

¹³C NMR (CD₃OD): δ 176.95 (s, COOH), 139.26, 128.26 126.65 (3xs, Ar), 124.69 (d, Ar), 123.66 (s, Ar), 120.36, 120.20, 112.41 (3xd, Ar), 36.29, 21.22 (2xt, (CH₂)₂COOH).

Analysis calculated for $C_{22}H_{20}N_2O_4S_2\cdot H_2O$ requires:

C, 57.6; H, 4.8; N, 6.1; S, 14.0%.

15 Found: C, 57.6; H, 5.0; N, 6.1; S, 13.9%.

Compounds 3 and 27 of Table 1

Similar reaction of methyl 2-(2-oxo-3-indolinyl)-acetate [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3$ COOMe: Takase S, Uchida I, Tanaka H, Aoki H, Tetrahedron 1986;42:5879] (0.13 g) with P_2S_5 gave methyl 2-(2-thioxo-3-indolinyl)acetate [IV: $R_1 = R_3 = H$, $R_2 = (CH_2)_3$ COOMe] (3) (50 mg, 36%); mp (MeOH) 150-152°C.

\[\begin{align*} \text{NNMR} (CDCl_3): \delta 10.36 (1H, s, NH), 7.29 (1H, d, J = 7.6 Hz, ArH), 7.27 (1H, t, J = 7.8 Hz, ArH), 7.11 (1H, t, J = 7.6 Hz, ArH), 7.00 (1H, d, J = 7.8 Hz, ArH), 4.14 (1H, dd, J = 8.4, 4.2 Hz, H-3), 3.72 (3H, s, COOCH_3), 3.35 (1H, dd, J = 17.0, 4.2 Hz, CH_2CO), 2.88 (1H, dd, J = 17.0, 8.5 Hz, CH_2CO).

\[\begin{align*} \text{Similar NMR} (CDCl_3): \delta 206.59 (s, CSNH), 171.53 (s, decomposite of the context of the c

30 ¹³C NMR (CDCl₃): δ 206.59 (s, CSNH), 171.53 (s, COOCH₃), 143.10, 133.53 (2xs, ArH), 128.45, 124.20, 124.12, 110.07 (4xd, ArH), 53.53 (d, C3), 52.02 (q, COOCH₃), 37.94 (t, CH₂).

-39-

Analysis calculated for C11H11NO2S requires:

C, 59.7; H, 5.0; N, 6.3; S, 14.5%.

Found: C, 59.9; H, 5.3; N, 6.4; S, 14.4%.

A solution of 3 (0.10 g) in benzene-light

petroleum (1:1, 30 mL) exposed to air for 2 days gave a
quantitative yield of bis[methylindolyl-3-acetate-(2)]disulfide [V: R₁ = R₃ = H, R₂ = (CH₂)₃COOMe] (Compound
27 of Table I); mp (benzene/light petroleum) 160-162°C.

- ¹N NMR (CDCl₃): δ 8.69 (1H, s, NH), 7.52 (1H, dd, J = 8.2, 0.6 Hz, ArH), 7.21 (1H, ddd, J = 8.2, 6.6, 1.1 Hz, ArH), 7.12 (2H, m, ArH), 3.83 (2H, s, CH₂CO), 3.71 (3H, s, COOCH₃).
- 13C NMR (CDCl₃): δ 172.54 (s, COOCH₃), 137.20, 127.19,
 127.03 (3xs, ArH), 124.26, 120.31, 119.45 (3xd, ArH),
 116.23 (s, ArH), 111.41 (d, ArH), 52.25 (q, OCH₃),
 30.51 (t, CH₂CO).

Analysis calculated for $C_{22}H_{20}N_2O_4S_2$ requires:

C, 60.0; H, 4.6; N, 6.4; S, 14.6%.

20 Found: C, 60.0; H, 4.8; N, 6.3; S, 14.4%.

Additional amounts of 27 were also obtained from the mother liquors of the P_2S_5 reaction.

Compounds 8, 11, 37, and 40 of Table 1

A solution of 18-crown-6 (0.44 g), potassium t-butoxide (2.20 g) and methyl 3-(3-indolyl)propanoate [II: $R_1 = R_3 = H$; $R_2 = (CH_2)_2COOMe$] (3.24 g) in dry benzene (20 mL) was stirred at 20°C for 15 minutes, then cooled in ice. A solution of CH_3I (3.42 g) in benzene (10 mL) was added, then the flask was sealed and the mixture stirred at 20°C for 1 day (method of Guida WC, Mathre DJ, <u>J. Org. Chem.</u> 1980;45:3172). The resulting solution was filtered to remove salts, washing with CH_2Cl_2 , then the combined filtrates washed

-40-

with water and the solvents removed. Chromatography on silica gel, eluting with $CH_2Cl_2/light$ petroleum (1:1), gave methyl 3-(1-methyl-3-indolyl) propanoate [II: R_1 = H; R_3 = Me; R_2 = $(CH_2)_2COOMe$] (1.90 g, 52%) as a colorless oil (Snyder HR, Eliel EL, <u>J. Am. Chem. Soc. 1949;71:663-669</u> report oil, bp_{0.25} 180-190°C). ¹H NMR (CDCl₃): δ 7.58 (1H, dt, J = 7.7, 0.9 Hz, ArH), 7.28 (1H, dt, J = 7.9, 1.3 Hz, ArH), 7.21 (1H, ddd, J = 8.1, 6.7, 1.3 Hz, ArH), 7.10 (1H, ddd, J = 7.9, 6.5, 1.5 Hz, ArH), 6.86 (1H, s, H-2), 3.73, 3.67 (2x3H, 2xs, NCH₃, OCH₃), 3.09, 2.70 (2x2H, 2xt, J = 7.6 Hz, 3-CH₂CH₂).

Analysis calculated for $C_{13}H_{15}NO_2$ requires: M+ 217.1103.

15 HREIMS m/z Found: M+ 217.1101.

5

10

20

Oxidation of the ester [II: $R_1 = H$; $R_3 = Me$; $R_2 = (CH_2)_2COOMe$] (1.85 g) with DMSO/HCl as above for 3 hours gave crude 3-(1-methyl-2-oxo-3-indolinyl)-propanoic acid [III: $R_1 = H$; $R_2 = Me$; $R_3 = (CH_2)_2COOH$]

- (2.08 g) as a colorless oil. ¹H NMR (CD₃OD): δ 7.31 (2H, m, ArH), 7.09 (1H, td, J = 8.0, 1.0 Hz, ArH), 6.98 (1H, d, J = 7.6 Hz, ArH), 3.56 (1H, t, J = 6.1 Hz, H-3), 3.20 (3H, s, NCH₃), 2.41-2.15 (4H, m, 3-CH₂CH₂).
- 25 ¹³C NMR (CD₃OD): δ 179.64 (s, COOH), 176.55 (s, CONCH₃), 145.52, 129.73 (2xs, Ar), 129.39, 125.00, 123.93, 109.64 (4xd, Ar), 45.79 (d, C-3), 31.01, 26.91 (2xt, 3-CH₂CH₂), 26.44 (q, NCH₃).

Analysis calculated for $C_{12}H_{13}NO_3$ requires: 30 M+ 219.0895.

HREIMS m/z Found: M+ 219.0897.

This was esterified with diazomethane as above, then the product chromatographed on silica gel.

Elution with EtOAc/light petroleum (1:2) gave methyl

-41-

3-(1-methyl-2-oxo-3-indolinyl)propanoate [III: $R_1 = H$; $R_2 = Me$; $R_3 = (CH_2)_2COOMe$] (1.40 g, 70%) as a colorless oil.

10 Ar), 123.92, 122.48, 108.06 (3xd, Ar), 51.64 (q, OCH₃), 44.36 (d, C-3), 30.12 (t, CH₂OCO), 26.14 (q, NCH₃), 25.64 (t, 3-CH₂).

Analysis calculated for $C_{13}H_{15}NO_3$ requires: M+ 233.1052.

15 HREIMS m/z Found: M+ 233.1055.

Treatment of this ester [III: $R_1 = H$; $R_2 = Me$; $R_3 = (CH_2)_2 COOMe$] (1.38 g) with $P_2 S_5$ as above followed by chromatography on silica gel, eluting with $CH_2 CH_2 / light$ petroleum (3:2), gave methyl 3-(1-methyl-

20 2-thioxo-3-indolinyl)propanoate [IV: $R_1 = H$; $R_3 = Me$; $R_2 = (CH_2)_2COOMe$] (11) (1.40 g, 95%); mp (benzene/light petroleum) 71-73°C.

¹H NMR (CDCl₃): δ 7.35 (2H, m, ArH), 7.19 (1H, td, J = 7.5, 0.9 Hz, ArH), 7.00 (1H, d, J = 7.7 Hz, ArH),

25 3.92 (1H, t, J = 5.4 Hz, H-3), 3.63, 3.58 (2x3H, 2xs, NCH₃, OCH₃), 2.53 (2H, m, 3-CH₂), 2.34, 2.03 (2x1H, 2xm, CH₂CO).

¹³C NMR (CDCl₃): δ 204.77 (s, CSNCH₃), 173.32 (s, COOCH₃), 145.89, 132.37 (2xs, Ar), 128.40, 124.31,

30 123.99, 109.51 (4xd, Ar), 56.26 (d, C-3), 51.61 (q, OCH₃), 31.35 (q, NCH₃), 29.31, 28.46 (2xt, 3-CH₂CH₂). Analysis calculated for $C_{13}H_{15}NO_2S$ requires:

C, 62.6; H, 6.1; N, 5.6; S, 12.9%. Found: C, 62.7; H, 6.3; N, 5.7; S, 13.0%.

-42-

Oxidation of (11) (0.70 g) with FeCl₃ (0.70 g) in $EtOAc/CH_2Cl_2$, chromatography of the product on silica gel, and elution with CH_2Cl_2 gave 2,2'-dithiobis[methyl 3-(1-methyl-3-indolyl)propanoate] [V: R_1 = H; R_2 = Me; R_2 = (CH_2)₂COOMe] (40) (0.38 g, 54%); mp (CH_2Cl_2 /MeOH) 139-141.5°C.

¹H NMR ($CDCl_3$): δ 7.49 (1H, d, J = 8.0 Hz, ArH), 7.27 (1H, ddd, J = 8.3, 6.1, 0.9 Hz, ArH), 7.25 (1H, d, J = 8.1 Hz, ArH), 7.09 (1H, ddd, J = 8.0, 6.1, 1.9 Hz, ArH), 3.59, 3.53 (2x3H, 2xs, NCH₃, OCH₃), 2.76, 2.21 (2x2H, 2xt, J = 7.8 Hz, 3- CH_2CH_2).

¹³C NMR ($CDCl_3$): δ 173.17 (s, $COOCH_3$), 138.49, 127.00, 126.09 (3xs, Ar), 124.14 (d, Ar), 123.77 (s, Ar), 119.68, 119.65, 109.87 (3xd, Ar), 51.39 (q, OCH_3), 35.09 (t, CH_2CO), 29.86 (q, NCH_3), 20.50 (t, 3- CH_2).

5

10

15

20

25

30

C, 62.9; H, 5.7; N, 5.7; S, 12.9%. Found: C, 62.6; H, 5.6; N, 5.5; S, 13.0%.

Analysis calculated for C26H28N2O4S2 requires:

A solution of (11) (0.53 g) in EtOH (10 mL) and 2N aqueous NaOH (3 mL) was stirred at 20°C for 80 minutes. The mixture was then diluted with water (100 mL) and extracted with CH_2Cl_2 (100 mL). The aqueous portion was adjusted to pH 2 with dilute HCl and extracted with EtOAc (3 \times 120 mL). The EtOAc extracts were washed with water (150 mL) and the solvent removed under reduced pressure to give a yellow oil (0.48 g). was redissolved in MeOH (7 mL) and 2 M aqueous NaOH (1 mL) and treated with NaBH (150 mg) for 5 minutes at The mixture was then quenched with water and worked up as before to give a pale brown oil (0.46 g). Crystallization from CH/light petroleum gave 3-(1-methyl-2-thioxo-3-indolinyl) propanoic acid $[R_1 = H; R_2 = Me; R_3 = (CH_2)_2COOH]$ (8) (0.32 g, 60%); mp 126-128.5°C.

¹H NMR (CDCl₃): δ 7.35 (2H, m, ArH), 7.18 (1H, td, J = 7.5, 0.9 Hz, ArH), 7.00 (1H, d, J = 7.8 Hz, ArH), 3.93 (1H, t, J = 5.3 Hz, H-3), 3.63 (3H, s, NCH₃), 2.51 (2H, m, 3-CH₂), 2.38 (1H, ddd, J = 16.1, 9.3, 6.7 Hz, CHCO), 2.06 (1H, ddd, J = 16.0, 9.8, 6.1 Hz, CHCO). ¹³C NMR (CDCl₃): δ 204.61 (s, CSNCH₃), 178.41 (COOH), 145.88, 132.24 (2xs, Ar), 128.50, 124.38, 123.96, 109.57 (4xd, Ar), 56.05 (d, C-3), 31.37 (q, NCH₃), 29.16, 28.16 (2xt, 3-CH₂CH₂).

Analysis calculated for $C_{12}H_{13}NO_2S \cdot 0.25H_2O$ requires: C, 60.1; H, 5.6; N, 5.8; S, 13.4%.

Found: C, 60.0; H, 5.6; N, 5.9; S, 13.4%.

WO 94/03427

5

10

15

20

Similar hydrolysis of 40 (0.37 g) in EtOH/2 M aqueous NaOH for 3 hours at 20°C gave, after workup, a yellow oil (0.30 g). Crystallization from AcOH gave 2,2'-dithiobis[3-(1-methyl-3-indolyl)propanoic acid] [V: $R_1 = H$; $R_2 = (CH_2)_2COOH$; $R_3 = Me$] (37) (73 mg, 20%); mp 158.5-160°C.

¹H NMR ((CD₃)₂CO): δ 7.59 (1H, d, J = 8.1 Hz, ArH), 7.39 (1H, d, J = 8.0 Hz, ArH), 7.27 (1H, ddd, J = 8.2, 7.1, 0.9 Hz, ArH), 7.07 (1H, ddd, J = 8.1, 7.1, 0.8 Hz, ArH), 3.60 (3H, s, NCH₃), 2.79, 2.31 (2x2H, 2xt, J = 7.9 Hz, 3-CH₂CH₂).

 13 C NMR ((CD₃)₂CO): δ 173.75 (s, COOH), 139.61, 127.54, 127.06 (3xs, Ar), 125.08 (d, Ar), 125.02 (s, Ar), 120.55, 120.53, 110.03 (3xd, Ar), 35.56 (t, CH₂CO), 30.13 (q, NCH₃), 21.32 (t, 3-CH₂). Analysis calculated for $C_{24}H_{24}N_{2}O_{4}S_{2}$ requires:

C, 61.5; H, 5.2; N, 6.0; S, 13.7%.

30 Found: C, 61.5; H, 5.2; N, 6.1; S, 13.6%.

Chromatography of the mother liquors on silica gel, then treatment with NaBH₄ as above and crystallization of the products from CH₂Cl₂/light

-44-

petroleum also gave 3-(1-methyl-2-thioxo-3-indolinyl)-propanoic acid (8) (0.12 g, 32%).

Compounds 16, 18, 66, and 68 of Table 1

N-Alkylation of methyl 4-(3-indolyl) butanoate [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_3$ COOMe] (2.14 g), with 18-crown-6 (0.26 g), potassium <u>t</u>-butoxide/CH₃I as above gave methyl 4-(1-methyl-3-indolyl) butanoate

[II: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOMe$, $R_3 = Me$] (0.92 g,

10 40%) as a brown oil, which was used directly.

1H NMR (CDCl₃): \$\delta\$ 7.58 (1H, dt, J = 7.9, 0.9 Hz, ArH),

7.28 (1H, d, J = 8.2 Hz, ArH), 7.21 (1H, ddd, J = 8.1,

7.0. 1.1 Hz, ArH), 7.09 (1H, ddd, J = 8.0, 7.0, 1.0 Hz,

ArH), 6.84 (1H, s, ArH), 3.74 (3H, s, NCH₃), 3.66 (3H,

15 s, $COOCH_3$), 2.79, 2.38 (2x2H, 2xt, J = 7.4 Hz, $CH_2CH_2CH_2CO$), 2.03 (2H, quin, J = 7.4 Hz, $CH_2CH_2CH_2CO$).

13C NMR (CDCl₃): δ 174.21 (s, COOCH₃), 137.08, 127.84 (2xs, ArH), 126.34, 121.50, 118.98, 118.62 (4xd, ArH), 114.07 (s, ArH), 109.13 (d, ArH), 51.44 (q, $COOCH_3$),

33.68 (t, $\underline{C}H_2CO$), 32.55 (q, NCH_3), 25.58, 24.41 (2xt, 3- CH_2CH_2).

HREIMS m/z Found: M+ 231.1259.

25

30

4-(3-Indolyl) butanoic acid (1.04 g, 52%) was recovered by dissolving the filtered precipitates from the above reaction in water and acidifying; mp 124-126°C (Jackson RW, Manske RH, <u>J. Am. Chem. Soc. 1930;52:5029 record mp 124°C)</u>.

Reaction of the ester [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_3$ COOMe, $R_3 = Me$] with DMSO/HCl as above gave crude 4-(1-methyl-2-oxo-3-indolinyl)butanoic acid [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3$ COOMe, $R_3 = Me$] (0.84 g, 91% yield) as a brown oil.

¹H NMR (CDCl₃): δ 7.28 (1H, td, J = 7.7, 0.9 Hz, ArH), 7.25 (1H, d, J = 7.7 Hz, ArH), 7.06 (1H, td, J = 7.5,

-45-

0.9 Hz, ArH), 6.83 (1H, d, J = 7.8 Hz, ArH), 3.47 (1H, t, J = 5.9 Hz, H-3), 3.21 (3H, s, NCH₃), 2.37 (2H, t, J = 7.4 Hz, CH_2CO), 2.00, 1.69 (2x2H, 2xm, 3- CH_2CH_2).

An ice-cooled solution of the above crude oxoacid

[III: R₁ = R₃ = H, R₂ = (CH₂)₃COOMe, R₃ = Me] (0.84 g)
in ether (10 mL) was treated, dropwise with stirring,
with an ethereal solution of diazomethane (from
N-nitrosomethylurea, 1.2 g). After 30 minutes at 20°C,
the solvent was removed under reduced pressure, and the
residue was chromatographed on silica gel (elution with
EtOAc/light petroleum (1:2)) to give methyl
4-(1-methyl-2-oxo-3-indolinyl)butanoate [III:
R₁ = R₃ = H, R₂ = (CH₂)₃COOMe, R₃ = Me] (0.64 g, 72%);
mp (EtOAc/light petroleum) 69-71°C.

¹³C NMR (CDCl₃): δ 177.52 (s, CONCH₃), 173.59 (s, COOCH₃), 144.38, 128.71 (2xs, ArH), 128.00, 123.84, 122.40, 108.02 (4xd, ArH), 51.54 (q, COOCH₃), 45.26 (d, C-3), 33.89, 29.98 (2xt, CH₂CH₂CO), 26.15 (q, NCH₃), 21.30 (t, 3-CH₂CH₂).

Analysis calculated for $C_{14}H_{17}NO_3$ requires:

C, 68.0; H, 6.9; N, 5.7%.

Found: C, 67.9; H, 6.7; N, 5.7%.

25

The above oxoester [III: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOMe$, $R_3 = Me$] (0.90 g) was treated with P_2S_5 as above, followed by workup and chromatography on silica gel. Elution with $CH_2Cl_2/light$ petroleum (3:2) gave methyl 4-(1-methyl-2-thioxo-3-indolyl) butanoate

-46-

[IV: $R_1 = H$, $R_2 = (CH_2)_3$ COOMe, $R_3 = Me$] (18) (1.07 g, 79%); mp (benzene-light petroleum) 103-106°C.

¹H NMR (CDCl₃): δ 7.34 (2H, m, ArH), 7.19 (1H, td, J = 8.0, 0.9 Hz, ArH), 7.00 (dd, J = 8.0. 2.3).

5 Analysis calculated for C₁₄H₁₇NO2S requires: C, 63.9; H, 6.5; N, 5.3; S, 12.2%.

10

30

Found: C, 64.0; H, 6.4; N, 5.3; S, 12.3%.

A solution of 18 (0.47 g) in EtOAc (7 mL) was stirred with FeCl₃ (0.43 g) for 1 hour at 20°C, then worked up and chromatographed on silica gel. Elution with CH_2Cl_2 gave bis[methyl 1-methylindolyl-3-butanoate-(2)]disulfide [V: R_1 = H, R_2 = (CH_2)₃COOMe, R_3 = Me] (68) (0.40 g, 85%); mp (CH_2Cl_2 /MeOH) 112-113°C.

- 20 $J = 7.4 \text{ Hz}, CH_2CH_2CO).$ $^{13}\text{C NMR} (CDCl_3): \delta 173.82 \text{ (s, } \underline{\text{COOCH}}_3), 138.47, 127.23,$ 126.43, 124.74 (4xs, ArH), 124.05, 119.90, 119.49, $109.72 \text{ (4xd, ArH), } 51.35 \text{ (q, } \underline{\text{COOCH}}_3), 33.40 \text{ (t, } \underline{\text{CH}}_3CO),$ $29.82 \text{ (q, } \underline{\text{NCH}}_3), 25.83, 24.17 \text{ (2xt, } 3-CH_2CH_2).$
- 25 Analysis calculated for C₂₈H₃₂N₂O₄S₂ requires: C, 64.1; H, 6.1; N, 5.3; S, 12.2%. Found: C, 63.9; H, 6.4; N, 5.3; S, 12.1%.

Hydrolysis of 18 with EtOH/H₂O/NaOH, followed by treatment with NaBH₄ and crystallization from CH_2Cl_2 /light petroleum, as above, gave 4-(1-methyl-2-thioxo-3-indolyl)butanoic acid [IV: $R_1 = H$, $R_2 = (CH_2)_3COOH$, $R_3 = Me$] (16) (0.18 g, 44%); mp 144-146.5°C.

-47-

¹H NMR (CDCl₃): δ 7.34 (2H, m, ArH), 7.18 (1H, t, J = 7.6 Hz, ArH), 7.00 (1H, d, J = 7.7 Hz, ArH), 3.85(1H, t, J = 5.5 Hz, H-3), 3.63 (3H, s, NCH₃), 2.34,2.07 (2H, t, J = 7.6 Hz, CH_2CO), 2.28 2.18, 1.59, 1.40 5 (4x1H, 4xm, 3-CH₂CH₂).¹³C NMR (CDCl₃): δ 205.31 (s, CSNCH₃), 178.62 (s, COOH), 145.81, 133.06 (2xs, Ar), 128.20, 124.30, 123.86, 109.54 (4xd, Ar), 57.14 (d, C-3), 33.77, 33.01 (2xt, 3-CH₂CH₂CH₂), 31.42 (q, NCH₃), 20.11 (t,10 3-CH₂CH₂). Analysis calculated for C₁₃H₁₅NO₂OS·H₂O requires: C, 61.6; H, 6.7; N, 5.5; S, 12.7%. Found: C, 61.9; H, 6.3; N, 5.6; S, 12.8%. Similar hydrolysis of 68 (0.40 g) gave, after 15 workup, a yellow oil (0.37 g). Chromatography on silica gel, eluting with EtOAc/light petroleum (1:2) containing 1% AcOH, gave an oil (0.25 g). Crystallization from AcOH then gave 2,2'-dithiobis[4-(1-methyl-3-indolyl) butanoic acid] [V: R₁ = H, 20 $R_2 = (CH_2)_3COOH$, $R_3 = Me$] (66) (0.17 g, 42%); mp 106.5-109.5°C. ¹H NMR (CDCl₃): δ 7.51 (1H, d, J = 8.0 Hz, ArH), 7.27 (2H, m, ArH), 7.08 (1H, ddd, J = 8.0, 6.0, 2.0 Hz, ArH), 3.55 (3H, s, NCH3), 2.44 2.12 (2x2H, 2xt, 25 $J = 7.4 \text{ Hz}, 3-CH_2CH_2CH_2CO), 1.68 (2H, quintet,$ $J = 7.4 \text{ Hz}, 3-\text{CH}_2\text{CH}_2\text{CH}_2$). ¹³C NMR (CDCl₂): δ 179.32 (s, COOH), 138.49, 127.49, 126.43, 124.56 (4xs, Ar), 124.14, 119,86, 119.62, 109.79 (4xd, Ar), 33.37 9t, CH₂CO), 29.86 (q, NCH₃) 25.59, 24.13 (2xt, 3-CH₂CH₂). 30 Analysis calculated for $C_{26}H_{28}N_2O_4S_2 \cdot 2CH_3COOH$ requires: C, 58.4; H, 5.9; N, 4.5; S, 10.4%.

Found: C, 58.4; H, 5.9; N, 4.5; S, 10.6%.

-48-

EXAMPLE B

Preparation of Compounds 1, 29, 30, and 31 of Table 1 by the Method Outlined in Scheme 2

A solution of purified S2Cl2 (0.50 mL) in THF (20 mL) was added dropwise to a stirred, ice-cooled solution of 3-indolylacetic acid [II: $R_1 = R_2 = H$, $R_2 = CH_2COOH$] (2.20 g) in dry THF (30 mL) (method of Wieland T, Wieburg O, Fischer E, Korlein G, Annalen 1954;587:146). After 30 minutes at 20°C the solvent was removed, and the residue was crystallized from aqueous acetic acid to give a yellow solid (1.00 g). Recrystallization of this solid from aqueous MeOH, followed by further crystallization from BtOAc-benzene gave bis[indolyl-3-acetic acid-(2)]trisulfide [VI: $R_1 = R_3 = H$, $R_2 = CH_2COOH$, n = 3] (30) as a yellow powder (80 mg, 3%); mp 199-202°C. ¹H NMR (CD₃COCD₃): δ 10.18 (1H, s, NH), 7.59 (1H, m, ArH), 7.06 (2H, m, ArH), 6.82 (1H, m, ArH), 3.99 (2H,

s, CH₂CO).

¹³C NMR (CD_3COCD_3): δ 173.30 (s, COOH), 138.82, 20 128.26, 127.03 (3xs, ArH), 124.76, 120.60, 120.33 (3xd, ArH), 116.97 (s, ArH), 112.16 (d, ArH), 30.89 (t, $\underline{CH}_2CO)$.

Analysis calculated for C20H16N2O4S3 requires:

25 C, 54.1; H, 3.6; N, 6.3; S, 21.6%. Found: C, 54.1; H, 3.8; N, 6.0; S, 21.2%.

5

10

15

30

The mother liquors from the above aqueous methanol crystallization were evaporated, and the resulting solid was recrystallized from CH2Cl2 to give bis[indolyl-3-acetic acid-(2)]disulfide [[VI:

 $R_1 = R_3 = H$, $R_2 = CH_2COOH$, n = 2] (29) as a yellow solid (0.19 g, 7%); mp 196-199°C (Wieland T, Wieburg O, Fischer E, Korlein G, Annalen 1954;587:146 record mp 208°C).

-49-

¹H NMR (CD₃COCD₃): δ 10.62 (1H, s, NH), 7.58 (1H, dd, J = 8.1, 0.6 Hz, ArH), 7.42 (1H, dt, J = 8.2. 0.8 Hz, ArH), 7.23 (1H, ddd, J = 8.2, 7.1, 0.9 Hz, ArH), 7.09 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 3.55 (2H, s, CH₂CO).

¹³C NMR (CD_3COCD_3): δ 172.67 (s, COOH), 138.78, 128.33, 127.86 (3xs, ArH), 124.79, 120.72, 120.56 (3xd, ArH), 117.78 (s, ArH), 112.41 (d, ArH), 30.67 (t, CH_2CO).

10 Analysis calculated for $C_{20}H_{16}N_2O_4S_2$ requires: C, 58.2; H, 3.9; N, 6.8; S, 15.5%.

5

Found: C, 57.6; H, 4.4; N, 6.6; S, 15.3%.

Methylation of crude 30 with diazomethane as described above, followed by chromatography on silica.

- gel, gave bis [methylindolyl-3-acetate-(2)] trisulfide [VI: $R_1 = R_3 = H$, $R_2 = CH_2COOMe$, n = 3] (31) (0.16 g, 47%); mp (CH_2Cl_2 -light petroleum) 130-132°C.

 ¹H NMR ($CDCl_3$): δ 8.76 (1H, s, NH), 7.40 (1H, d, J = 8.0 Hz, ArH), 6.99 (1H, ddd, J = 8.0, 7.1, 0.9 Hz,
- 20 ArH), 6.88 (1H, ddd, J = 8.2, 7.1, 0.9 Hz, ArH), 6.41 (1H, d, J = 8.2 Hz, ArH), 3.93 (2H, s, CH₂CO), 3.78 (3H, s, COOCH₃).

¹³C NMR (CDCl₃): δ 172.93 (s, COOCH₃), 137.66, 127.02, 125.80 (3xs, ArH), 124.29, 120.06, 118.46 (3xd, ArH),

25 114.61 (s, ArH), 111.15 (d, ArH), 52.40 (q, COO_{CH_3}), 30.30 (t, CH_2CO).

Analysis calculated for $C_{22}H_{20}N_2O_4S_3$ requires:

C, 55.9; H, 4.2; N, 5.9; S, 20.3%.

Found: C, 55.6; H, 4.4; N, 5.8; S, 19.9%.

Reduction of 29 with NaBH₄/ K_2 CO₃/MeOH as above gave 2-(2-thioxo-3-indolinyl)acetic acid [IV: $R_1 = R_3 = H$; $R_2 = CH_2$ COOH] (1) (58 mg, 34%); mp (EtOAc/light petroleum) 166-168°C (Wieland T,

-50-

Wieburg O, Fischer E, Korlein G, <u>Annalen</u> 1954;587:146 record mp 170-171°C).

¹H NMR ((CD₃)₂CO): δ 11.51 (1H, s, NH), 7.39 (1H, d, J = 7.9 Hz, ArH), 7.29 (1H, td, J = 7.7, 0.8 Hz, ArH), 7.11 (2H, m, ArH), 4.02 (1H, dd, J = 3.9, 8.4 Hz, H-3), 3.36 (1H, dd, J = 17.2, 3.9 Hz, 3-CH), 2.83 (1H, dd, J = 17.2, 8.4 Hz, 3-CH).

Compounds 4 and 28 of Table 1

5

- Methyl 2-(1-methyl-3-indolyl)acetate [II: $R_1 = H$; $R_2 = CH_2COOMe$; $R_3 = Me$] (Guida WC, Mathre DJ, <u>J. Org. Chem.</u> 1980;45:3172-3176) (1.18 g) was treated with S_2Cl_2 (0.25 mL) as above and the product then chromatographed on silica gel. Elution with
- CH₂Cl₂/light petroleum (2:1) and CH₂Cl₂ gave a yellow oil, from which crystallization with EtOAc/light petroleum gave 2,2'-monothiobis[methyl 2-(1-methyl-3-indolyl)acetate] [VI: $R_1 = H$, $R_2 = CH_2COOMe$; $R_3 = Me$; n = 1] (0.17 g, 13%); mp 155-156°C.
- ¹H NMR (CDCl₃): 7.54 (1H, d, J = 8.0 Hz, ArH), 7.22 (2H, m, ArH), 7.11 (1H, ddd, J = 8.0, 4.9, 3.0 Hz, ArH), 3.96 (2H, s, 3-CH₂), 3.61 (3H, s, OCH₃), 3.48 (3H, s, NCH₃).
- 13C NMR (CDCl₃): 171.54 (s, COOCH₃), 137.80, 126.80, 126.24 (3xs, Ar), 123.03, 119.92, 118.96 (3xd, Ar), 112.95 (s, Ar), 109.37 (d, Ar), 51.85 (q, OCH₃), 31.04

Analysis calculated for $C_{24}H_{24}N_2O_4S$ requires:

(t, 3-CH₂), 30.38 (q, NCH₃).

C, 66.1; H, 5.5; N, 6.4; S, 7.3%. Found: C, 65.9; H, 5.6; N, 6.4; S, 7.4%.

Found: C, 65.9; H, 5.6; N, 6.4; S, 7.4%.

Further crystallization of mother liquor fractions from benzene/light petroleum gave 2,2'-dithiobis[methyl

2-(1-methyl-3-indolyl)acetate] [VI: $R_1 = H$,

-51-

 $R_2 = CH_2COOMe; R_3 = Me; n = 2]$ (28) (0.16 g, 13%); mp 130-132.5°C. ¹H NMR (CDCl₃): 7.51 (1H, dt, J = 8.0, 0.8 Hz, ArH), 7.29 (2H, m, ArH), 7.12 (1H, ddd, J = 8.0, 6.0, 2.0 Hz, ArH), 3.57 (3H, s, OCH₃), 3.48 (3H, s, NCH₃), 3.33 (2H, 5 s, 3-CH₂). ¹³C NMR (CDCl₃): 171.44 (s, COOCH₃), 138.42, 128.13, 126.38 (3xs, Ar), 124.37, 120.13, 120.08 (3xd, Ar), 117.48 (s, Ar), 109.94 (d, Ar), 51.79 (q, OCH₃), 30.57 10 (q, NCH₃), 29.96 (t, 3-CH₂).Analysis calculated for C24H24N2O4S2 requires: C, 61.5; H, 5.1; N, 6.0; S, 13.7%. Found: C, 61.4; H, 5.2; N, 6.0; S, 13.8%. The remaining mother liquor was treated successively with NaBH, and FeCl, as above, to give an 15 additional 0.36 g (26%) of 28. Reduction of 28 with NaBH, as above gave methyl 2-(1-methyl-2-thioxo-3-indolinyl)acetate [IV: R, = H; $R_2 = CH_2COOMe; R_3 = Me]$ (4) (61%); mp (benzene/light 20 petroleum) 68-70°C. ¹H NMR (CDCl₃): 7.34 (2H, m, ArH), 7.16 (1H, td, J = 7.5, 0.9 Hz, ArH), 7.01 (1H, d, J = 7.8 Hz, ArH),

4.15 (1H, dd, J = 8.7, 4.1 Hz, H-3), 3.71 (3H, s, OCH_3), 3.65 (3H, s, NCH_3), 3.40 (1H, dd, J = 17.0, 4.1 Hz, 3-CH), 2.83 (1H, dd, J = 17.0, 8.7 Hz, 3-CH).

25 ¹³C NMR (CDCl₃): 204.24 (s, CSNCH₃), 171.68 (s, COOCH₃), 145.74, 132.95 (2xs, Ar), 128.47, 124.40, 123.96, 109.54 (4xd, Ar), 53.41 (d, C-3), 51.96 (q, OCH_3), 38.46 (t, 3-CH₂), 31.57 (q, NCH₃).

Analysis calculated for C₁₂H₁₃NO₂S requires: 30 C, 61.3; H, 5.6; N, 6.0; S, 13.6%. Found: C, 61.5; H, 5.8; N, 6.2; S, 13.9%.

-52-

Compounds 2 and 32 of Table 1

Similar treatment of 1-methyl-3-indolylacetic acid [II: $R_1 = H$, $R_2 = CH_2COOH$, $R_3 = Me$] (Guida WC, Mathre DJ, J. Org. Chem. 1980;45:3172; Kaestle KL, 5 Anwer MK, Audhya TK, Goldstein G, Tetrahedron Lett. 1991;32:327) with S2Cl2 followed by chromatography on silica gel gave bis[1-methylindolyl-3-acetic acid-(2)]disulfide [VI: $R_1 = R_2 = H$, $R_2 = CH_2COOH$, n = 2] (32) (0.10 g, 8%); mp (Me₂CO/light petroleum) 190-192.5°C (Wieland T, Wieburg O, Fischer E, Korlein G, Annalen 10 1954;587:146 record mp 190-191°C). ¹H NMR (CD₃COCD₃): δ 7.56 (1H, dt, J = 8.1, 0.9 Hz, ArH), 7.44 (1H, d, J = 8.3 Hz, ArH), 7.31 (1H, ddd, J = 8.2, 7.0, 1.2 Hz, ArH), 7.11 (1H, ddd, J = 8.0, 15 7.0, 0.9 Hz, ArH), 3.65 (3H, s, NCH₃), 3.23 (2H, s, CH2CO). ¹³C NMR (CD_3COCD_3): δ 172.21 (s, COOH), 139.52, 128.56, 127.45 (3xs, ArH), 125.21, 120.91, 120.74 (3xd, ArH), 119.38 (s, ArH), 111.04 (d, ArH), 30.81 (t, 20 $\underline{CH}_2CO)$, 30.31 (q, NCH₃). Analysis calculated for C₂₂H₂₀N₂O₂S₂ requires:

C, 60.0; H, 4.6; N, 6.4; S, 14.5%.

Found: C, 59.4; H, 4.9; N, 6.4; S, 15.0%.

Reduction of 32 with NaBH₄/ K_2 CO₃/MeOH as above gave 2-(1-methyl-2-thioxo-3-indolinyl)acetic acid [IV: $R_1 = H$; $R_2 = CH_2$ COOH; $R_3 = Me$] (2) (62 mg, 60%); mp (CH_2 Cl₂/light petroleum) 150-153°C (Wieland T, Wieburg O, Fischer E, Korlein G, <u>Annalen</u> 1954;587:146 record mp 149-150°C).

-53-

 13 C NMR (CDCl₃): δ 203.88 (s, CSNCH₃), 176.31 (s, COOH), 145.67, 132.64 (2xs, Ar), 128.57, 124.52, 124.00, 109.59 (4xd, Ar), 53.07 (d, C-3), 38.33 (t, $3-CH_2$), 31.59 (q, NCH_3).

5

Compounds 6 and 34 of Table 1

N-Benzyl 3-indolylacetamide [II: $R_1 = R_3 = H$, $R_2 = CH_2CONHCH_2Ph$] (Katritzky AR, <u>J. Chem. Soc.</u> 1955:2581) (1.48 g) was treated with S_2Cl_2 as above, 10 and the product mixture was treated with NaBH, (ca. 0.7 g) in EtOH (10 mL) for 30 minutes at 20°C, then diluted with water (100 mL), acidified with dilute HCl and extracted in CH,Cl, (2 x 100 mL) and EtOAc (100 mL). A sample from evaporation of the combined 15 extracts was crystallized from EtOAc-light petroleum to give N-benzyl (2-thioxo-3-indolinyl)acetamide [IV: $R_1 = R_3 = H$, $R_2 = CH_2CONHCH_2Ph$] (6) (0.12 g, 7%); mp 193-195°C. ¹H NMR (CD₃SOCD₃): δ 12.64 (1H, s, NH), 8.50 (1H, t, $J = 5.9 \text{ Hz}, NHCH_2), 7.32 (2H, t, J = 7.3 Hz, ArH), 7.25$ 20 (3H, m, ArH), 7.11 (1H, d, J = 7.3 Hz, ArH), 7.00 (1H, d, J = 7.3 Hz, ArH)t, J = 8.0 Hz, ArH), 6.53 (1H, m, ArH), 4.34, 4.28(2x1H, 2xdd, J = 15.3, 5.9 Hz, NHCH₂), 4.04 (1H, dd,J = 9.5, 4.2 Hz, H-3), 3.10 (1H, dd, J = 15.3, 4.2 Hz, $CH_2CO)$, 2.47 (1H, dd, J = 15.3, 9.5 Hz, $CH_2CO)$. 25 ¹³C NMR (CD_3SOCD_3): δ 206.62 (s, CSNH), 169.41 (s, CONH), 143.97, 139.24, 134.36 (3xs, ArH), 128.22 (2xd, ArH), 127.95 (d, ArH), 127.36 (2xd, ArH), 126.77, 123.91, 123.09, 110.10 (4xd, ArH), 53.94 (d, C-3), 42.27, t, NHCH₂), 39.19 (t, CH₂CO). 30 Analysis calculated for C17H10N2OS requires:

C, 68.9; H, 5.4; N, 9.5; S, 10.8%. Found: C, 68.8; H, 5.8; N, 9.5; S, 10.7%.

-54-

The remaining product mixture (1.60 g) was treated with FeCl, as above then chromatographed on silica gel to give a yellow oil (1.40 g). Crystallization from EtOAc/light petroleum then EtOAc gave 2,2'-dithiobis[N-benzyl 2-(3-indolyl)acetamide] [VI: $R_1 = R_3 = H$; $R_2 = CH_2CONHCH_2Ph$] (34) (0.36 g, 22%); mp 200.5-203.5°C. ¹H NMR (CD₃)₂SO): δ 11.57 (1H, s, CSNH), 8.45 (1H, t, J = 5.9 Hz, $NHCH_2$), 7.53 (1H, d, J = 8.0 Hz, ArH), 7.30 (1H, d, J = 8.2 Hz, ArH), 7.29-7.14 (6H, m, ArH), 7.01(1H, t, J = 7.5 Hz, ArH), 4.19 (2H, d, J = 5.9 Hz, $NHCH_2$), 3.44 (2H, s, 3-CH₂). ¹³C NMR (CD₃)₂SO): δ 170.08 (9s, CONH), 139.36, 137.42 (2xs, Ar), 128.12, 127.13 (4xd, Ar), 127.12, 126.82 (2xs, Ar), 126.63, 123.41, 119.67, 119.09 (4xd, Ar), 116.83 (s, Ar), 111.43 (d, Ar), 42.25 (t, NHCH₂), 31.73 $(t, 3-CH_2)$. Analysis calculated for C34H30N4O2S2 requires:

C, 62.6; H, 6.1; N, 5.6; S, 12.9%.

Found: C, 62.7; H, 6.3; N, 5.7; S, 13.0%.

Compounds 13 and 47 of Table 1

5

10

15

20

25

30

Esterification of 3-(3-indolyl) propanoic acid [II: $R_1 = R_2 = H$, $R_3 = (CH_2)_2COOH$] (1.50 g) with diazomethane as above gave methyl 3-(3-indolyl)-propanoate [II: $R_1 = R_2 = H$, $R_3 = (CH_2)_2COOMe$] (1.62 g, 100%) as a light brown oil. This was stirred with benzylamine (5 mL) at 140°C for 4 hours (Katritzky AR, J. Chem. Soc. 1955:2581-2586) to give, after workup and chromatography on silica gel, N-benzyl 3-(3-indolyl)-propanamide [II: $R_1 = R_2 = H$; $R_3 = (CH_2)_2CONHCH_2Ph$] (1.81 g, 88%); mp (EtOAc/light petroleum) 125-126.5°C. ¹H NMR (CDCl₃): 8.05 (1H, s, NH), 7.59 (1H, d, J = 7.8 Hz, ArH), 7.34 (1H, d, J = 7.9 Hz, ArH), 7.24

5

10

(3H, m, ArH), 7.18 (1H, dd, J = 7.9, 7.2 Hz, ArH), 7.10 (1H, dd, J = 7.9, 7.2 Hz, ArH), 7.07 (2H, m, ArH), 6.93 (1H, d, J = 1.9 Hz, H-2), 5.64 (1H, t, J = 5.7 Hz, NHCH₂), 4.35 (2H, d, J = 5.7 Hz, 2 H, NHCH₂), 3.13, 2.59 (2x2H, 2xt, J = 7.3 Hz, 3-CH₂CH₂). ¹³C NMR (CDCl₃): 172.54 (s, CONH), 138.20, 136.35 (2xs, Ar), 128.58, 127.66 (4xd, Ar), 127.35 (d, Ar), 127.08 (s, Ar), 122.04, 121.88, 119.35, 118.68 (4xd, Ar), 113.79 (s, Ar), 111.21 (d, Ar), 43.51 (t, NHCH₂), 37.42 (t, CH_2CO), 21.38 (t, 3-CH₂).

Analysis calculated for $C_{18}H_{18}N_2O$ requires:

C, 77.7; H, 6.6; N, 10.1%.

Found: C; 77.4; H, 6.5; N, 10.3%.

The above amide [II: $R_1 = R_2 = H$,

- 15 $R_3 = (CH_2)_2CONHCH_2Ph]$ (1.74 g) was treated with S_2Cl_2 , and the product mixture was treated successively with NaBH₄ and FeCl₃ as above, then chromatographed on silica gel. Blution with BtOAc/light petroleum (2:1) gave 2,2'-monothiobis[N-benzyl 3-(3-indolyl)-
- 20 propanamide] [VI: $R_1 = R_2 = H$; $R_3 = (CH_2)_2CONHCH_2Ph$; n = 1] (0.10 g, 6%); mp ($CH_2Cl_2/light petroleum$) 218-219°C.

¹H NMR (CD₃)₂SO): 11.01 (1H, s, CSNH), 8.38 (1H, t, J = 5.7 Hz, NHCH₂), 7.56 (1H, d, J = 7.9 Hz, ArH),

25 7.26-7.03 (7H, 2xm, ArH), 6.97 (1H, t, J = 7.5 Hz, ArH), 4.26 (2H, d, J = 5.5 Hz, NHC H_2), 3.22, 2.55 (2x2H, 2xt, J = 7.6 Hz, 3-CH₂CH₂).

Analysis calculated for C36H34N4O2S·H2O requires:

C, 72.6; H, 5.9; N, 9.4; S, 5.4%.

30 Found: C, 72.7; H, 5.9; N, 9.6; S, 5.7%.

Further elution with EtOAc/light petroleum (1:1) gave a yellow oil (1.10 g) from which crystallization with benzene/CH₂Cl₂/light petroleum gave 2,2'-dithiobis[N-benzyl 3-(3-indolyl)propanamide]

-56-

[VI: $R_1 = R_2 = H$, $R_3 = (CH_2)_2 CONHCH_2 Ph$; n = 2] (47) (0.73 g, 38%); mp (CH₂Cl₂/light petroleum) 141-144°C. 1 H NMR (CDCl₃): 8.47 (1H, s, CSNH), 7.51 (1H, d, J = 7.9 Hz, ArH, 7.27-7.20 (4H, m, ArH), 7.13 (1H,ddd, J = 8.2, 7.1, 1.1 Hz, ArH), 7.00 (3H, m, ArH), 5 5.01 (1H, t, J = 5.7 Hz, NHCH₂), 4.16 (2H, d, t, $J = 5.7 \text{ Hz}, \text{ NHCH}_2$, 2.88, 1.87 (2x2H, 2xt, J = 7.7 Hz, $3-CH_2CH_2$). ¹³C NMR (CDCl₃): 171.93 (s, CONH), 138.30, 137.27 10 (2xs, Ar), 128.51, 127.78 (4xd, Ar), 127.30 (d, Ar), 127.07, 125.66 (2xs, Ar), 124.43 (d, Ar), 123.93 (s, Ar), 120.18, 119.94, 111.23 (3xd, Ar), 43.39 (t, $NHCH_2$), 37.09 (t, CH_2CO), 20.56 (t, 3- CH_2). Analysis calculated for C36H34N4O2S2 requires: C, 69.9; H, 5.5; N, 9.1; S, 10.3%. 15 Found: C, 69.7; H, 5.6; N, 9.1; S, 10.5%. Reduction of 47 with NaBH4 as above gave a quantitative yield of N-benzyl 3-(2-thioxo-3-indolinyl) propanamide [IV: $R_1 = R_3 = H$, $R_2 = (CH_2)_2 CONHCH_2 Ph]$ (13); mp (CH₂Cl₂) 149.5-151°C. 20 ¹H NMR ((CD_3)₂CO): 11.46 (1H, s, CSNH), 7.45 (1H, t, $J = 6.0 \text{ Hz}, \text{ NHCH}_2), 7.42 (1H, d, <math>J = 7.9 \text{ Hz}, \text{ ArH}),$ 7.32-7.16 (6H, m, ArH), 7.13 (1H, td, J = 7.5, 0.9 Hz, ArH), 7.09 (1H, d, J = 7.8 Hz, ArH), 4.37, 4.33 (2x1H, 2xdd, J = 15.0, 6.0 Hz, $NHCH_2$), 3.87 (1H, t, 25 J = 5.4 Hz, H-3, 2.56, 2.34, 2.04 (4H, 3xm, 3-CH₂CH₂). 13 C NMR ((CD₃)₂CO): 208.79 (s, CSNH), 172.23 (s, CONH), 145.20, 140.69, 134.88 (3xs, Ar), 129.14 (d, 2e, Ar), 128.93 (d, Ar), 128.33 (d, 2e, Ar), 127.62, 30 125.27, 124.22, 110.78 (4xd, Ar), 57.57 (d, C-3), 43.46 (t, NHCH₂), 31.87, 30.09 (2xt, 3-CH₂CH₂). Analysis calculated for C18H18N2OS requires: C, 67.7; H, 6.0; N, 8.8; S, 10.0%.

C, 67.3; H, 5.9; N, 8.9; S, 10.5%.

Found:

-57-

Compound 69 of Table 1

3-(3-Indoly1)butanoic acid [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_3COOH$] (1.10 g) was esterified with excess ethereal diazomethane to give methyl

- 5 4-(3-indolyl) butanoate [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_3$ COOMe] (1.17 g, 100%); mp 73-75°C (Jackson RW, Manske RH, <u>J. Am. Chem. Soc.</u> 1930;52:5029 record mp 73-74°C). This was stirred with benzylamine (5 mL) at 150°C for 4 hours to give, after
- chromatography on silica gel (eluting with 1:4 EtOAc: CH_2Cl_2), N-benzyl-4-(3-indolyl)butanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_3CONHCH_2Ph$] (1.43 g, 90%); mp (CH_2Cl_2 /light petroleum) 123-124°C.

 ¹H NMR (CDCl₃): δ 8.05 (1H, br s, NH), 7.58 (1H, d,
- 15 $J = 7.9 \text{ Hz}, \text{ ArH}), 7.37-7.23 \text{ (6H, m, ArH)}, 7.18 \text{ (1H, ddd, } J = 8.1, 7.1, 1.0 \text{ Hz, ArH}), 7.10 \text{ (1H, ddd, } J = 8.0, 7.0, 0.9 \text{ Hz, ArH}), 6.95 \text{ (1H, d, } J = 1.7 \text{ Hz, } \text{H-2}), 5.68 \text{ (1H, br t, } J = 5.7 \text{ Hz, } \text{NHCH}_2), 4.42 \text{ (1H, d, } J = 5.7 \text{ Hz, } \text{NHCH}_2), 2.82 \text{ (2H, t, } J = 7.3 \text{ Hz, } 3-\text{CH}_2), }$
- 20 2.27 (2H, t, J = 7.5 Hz, CH_2CO), 2.09 (2H, pentet, J = 7.3 Hz, $3-CHC\underline{H}_2$).

¹³C NMR (CDCl₃): δ 172.79 (s, CONH), 138.35, 136.33 (2xs, Ar), 128.69, 127.84 (2d, 2x2C, Ar), 127.49 (d, Ar), 127.46 (s, Ar), 121.91, 121.50, 119.83, 118.3

25 (4xd, Ar), 115.57 (s, Ar), 111.10 (d, Ar), 43.58 (t, NCH₂), 36.15 (t, $\underline{\text{CH}}_2\text{CO}$), 26.06, 24.48 (2xt, 3-CH₂CH₂). Analysis calculated for $C_{19}\text{H}_{20}\text{N}_2\text{O}$ requires:

C, 78.1; H, 6.9; N, 9.6%. Found: C, 77.8; H, 6.8; N, 9.7%.

30 The above amide (1.38 g) was treated with $\rm S_2Cl_2$ as above, then the product mixture obtained after workup was treated with NaBH₄ as described above. The resulting oil was oxidized with 35% $\rm H_2O_2$ (0.50 mL) in MeOH (10 mL) at 20°C for 20 minutes. Dilution with

25

water, extraction in CH2Cl2, and evaporation gave an oil which was chromatographed on silica gel. Elution with BtOAc/light petroleum (3:5) gave

2,2'-thiobis[N-benzyl-4-(3-indolyl)butanamide]

- n = 1; $R_1 = R_3 = H$, $R_2 = (CH_2)_3 CONHCH_2 Ph] (0.14 g,$ 5 10%); mp (CH₂Cl₂/light petroleum) 105.5-108°C (dec). ¹H NMR (CDCl₃): δ 10.25 (1H, s, NH), 7.49 (1H, d, J = 8.0 Hz, ArH), 7.35-7.25 (6H, m, ArH), 7.11 (1H,ddd, J = 8.2, 7.0, 1.2 Hz, ArH), 7.01 (1H, ddd,
- J = 7.9, 7.0, 0.9 Hz, ArH), 5.75 (1H, t, J = 5.6 Hz, 10 $N_{H}CH_{2}$), 4.38 (2H, d, J = 5.7 Hz, $N_{H}CH_{2}$), 3.07 (2H, t, $J = 7.8 \text{ Hz}, 3-\text{CH}_2$), 2.38 (2H, t, $J = 6.3 \text{ Hz}, \text{CH}_2\text{CO}$), 2.13 (2H, m, 3-CH₂CH₂).
- ¹³C NMR (CDCl₃): δ 173.49 (s, CONH), 138.12, 136.97 15 (2xs, Ar), 128.73, 127.93 (2xd, 2x2C, Ar), 127.56 (d, Ar), 127.48, 124.00 (2xs, Ar), 122.53 (d, Ar), 119.79 (s, Ar), 119.07, 118.60, 111.52 (3xd, Ar), 43.79 (t, NCH₂), 35.66 (t, CH₂CO), 25.77, 24.38 (2xt, 3-CH₂CH₂). Analysis calculated for C38H38N4O2S requires:
- 20 C, 74.3; H, 6.2; N, 9.1; S, 5.2%. Found: C, 74.2; H, 6.1; N, 9.1; S, 5.0%.

Elution with BtOAc:light petroleum (1:1) gave 2,2'-dithiobis[N-benzyl-4-(3-indolyl)butanamide] (69) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_3 CONHCH_2 Ph$] (0.55 g, 36%); mp ($CH_2Cl_2/benzene$) 98.5-101°C (dec).

- ¹H NMR ((CD₃)₂CO): δ 10.48 (1H, s, NH), 7.58 (1H, d, J = 8.0 Hz, ArH), 7.38 (1H, d, <math>J = 8.2 Hz, ArH), 7.37(1H, m, NHCH₂), 7.30-7.15 (6H, m, ArH), 7.03 (1H, ddd,J = 7.9, 7.3, 0.7 Hz, ArH), 4.30 (2H, d, <math>J = 6.0 Hz,
- 30 $NHCH_2$), 2.67 (2H, t, J = 7.6 Hz, 3-CH₂), 2.09 (2H, t, $J = 7.5 \text{ Hz}, \text{ CH}_2\text{CO}), 1.84 \text{ (2H, pentet, } J = 7.5 \text{ Hz},$ $3-CH_2CH_2$).
 - ¹³C NMR ((CD_3)₂CO): δ 172.93 (s, CONH), 140.80, 138.83 (2xs, Ar), 129.12 (d, 2C, Ar), 128.46 (s, Ar), 128.35

-59-

(d, 2C, Ar), 127.58 (d, Ar), 126.71, 124.54, (2xs, Ar), 124.46, 120.60, 120.13, 112.36 (4xd, Ar), 43.43 (t, NCH₂), 36.34 (t, $\underline{\text{CH}}_2\text{CO}$), 27.75, 24.95 (2xt, 3-CH₂CH₂). Analysis calculated for $C_{38}H_{38}N_4O_2S_2$ requires:

C, 70.6; H, 5.9; N,8.7; S, 9.9%.

Found: C, 70.4; H, 6.0; N, 8.8; S, 9.8%.

Compound 35 of Table 1

5

30

3-Indolylacetonitrile [II: $R_1 = R_3 = H$,

10 $R_2 = CH_2CN$] (1.00 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated with NaBH₄ as described above. Crystallization of the resulting oil from CH_2Cl_2 gave

2,2'-thiobis[3-indolylacetonitrile] [VI: n = 1;

15 $R_1 = R_3 = H$, $R_2 = CH_2CN$] (0.11 g, 10%); mp 237-240°C (Piotrowska H, Serafin B, Wejroch-Matacz K, Rocz. Chem. 1975;49:635 record mp 242-244°C).

¹H NMR ((CD₃)₂SO): δ 11.61 (1H, s, NH), 7.65 (1H, d, J = 8.0 Hz, ArH), 7.37 (1H, d, J = 8.2 Hz, ArH), 7.20

20 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 7.10 (1H, ddd, J = 8.0, 7.1, 0.8 Hz, ArH), 4.26 (2H, s, 3-CH₂).

¹³C NMR: δ 136.52, 125.99, 123.92 (3xs, Ar), 123.25, 119.78 (2xd, Ar), 118.67 (s, Ar), 118.48, 111.60 (2xd, Ar), 108.78 (s, 3-CH₂CN), 12.98 (t, 3-CH₂).

25 Analysis calculated for C₂₀H₁₄N₄S·0.5H₂O requires: C, 68.4; H, 4.3; N, 16.0; S, 9.2%.

Found: C, 68.4; H,4.2; N, 16.2; S, 9.1%.

The mother liquor was oxidized with H_2O_2 in MeOH as above, then the resulting solid was chromatographed on silica gel, eluting with CH_2Cl_2 , to give 2,2'-dithiobis[3-indolylacetonitrile] (35) [VI: n=2; $R_1=R_3=H$, $R_2=CH_2CN$] (0.62 g, 52%); mp ($CH_2Cl_2/MeOH$) 168.5-169.5°C (Piotrowska H, Serafin B,

-60-

Wejroch-Matacz K, Rocz. Chem. 1975;49:635 record mp 169-170°C).

¹H NMR ((CD₃)₂SO): δ 11.90 (1H, s, NH), 7.67 (1H, d, J = 8.1 Hz, ArH), 7.42 (1H, d, J = 8.2 Hz, ArH), 7.28 (1H, ddd, J = 8.1, 7.1, 1.0 Hz, ArH), 7.14, (1H, ddd, J = 8.0, 7.1, 0.8 Hz, ArH), 3.69 (2H, s, 3-CH₂).

¹³C NMR: δ 137.28, 126.36, 125.82 (3xs, Ar), 124.26, 120.03, 119.11, (3xd, Ar), 118.10 (s, Ar), 112.03 (d, Ar), 111.66 (s, 3-CH₂CN), 12.56 (t, 3-CH₂).

10 Analysis calculated for C₂₀H₁₄N₄S₂ requires: C, 64.2; H, 3.7; N, 15.0; S, 17.1%. Found: C, 64.1; H, 3.9; N, 15.1; S, 17.0%.

Compound 48 of Table 1

5

3-Indolylpropionitrile [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2CN$] (Reppe W, Ufer H, German patent 698,273) (1.00 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with NaBH₄, then H_2O_2 as described above.

The resulting oil was chromatographed on silica gel, eluting with CH_2Cl_2 , to give 2,2'-thiobis[3-indolyl-propionitrile] [VI: n=1; $R_1=R_3=H$, $R_2=(CH_2)_2CN$] (43 mg, 4%); mp (CH_2Cl_2 /light petroleum) 204.5-207°C (Piotrowska H, Serafin B, Wejroch-Matacz K, Rocz. Chem.

25 1975;49:635 record mp 198-200°C). ¹H NMR ((CD₃)₂SO): δ 11.25 (1H, s, NH), 7.61 (1H, d, J = 7.9 Hz, ArH), 7.31 (1H, d, J = 7.8 Hz, ArH), 7.13 (1H, dd, J = 8.0, 7.1 Hz, ArH), 7.02 (1H, dd, J = 7.9, 7.1 Hz, ArH), 3.23, 2.71 (2x2H, 2xt, J = 7.2 Hz,

PCT/US93/07272

Further elution with CH2Cl2 gave 2,2'-dithiobis[3-indolylpropionitrile] (48) [VI: n = 2; $R_1 = R_2 = H$, $R_2 = (CH_2)_2CN$] (0.82 g, 69%); mp (CH2Cl2) 167-169°C (Piotrowska H, Serafin B, Wejroch-Matacz K, Rocz. Chem. 1975;49:635 record 5 mp 165-167°C). ¹H NMR ((CD₃)₂SO): δ 11.71 (1H, s, NH), 7.59 (1H, d, J = 8.0 Hz, ArH), 7.38 (1H, dt, J = 8.2, 0.8 Hz, ArH), 7.22 (1H, ddd, J = 8.2, 7.1, 1.1 Hz, ArH), 7.04 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 2.57, 2.37 (2x2H, 2xt, 10 $J = 7.2 \text{ Hz}, 3-\text{CH}_2\text{CH}_2$). ¹³C NMR: δ 137.48, 126.16, 125.59 (3xs, Ar), 123.88 (d, Ar), 120.39, 119.87 (2xs, Ar,CN), 119.45, 111.64 (2xd, Ar), 19.80, 17.97 (2xt, 3-CH₂CH₂).

15

Compound 49 of Table 1

A solution of gramine (8.4 g) and methyl nitroacetate (11.5 g) in xylene (50 mL) was stirred under nitrogen at 90-100°C for 5 hours (method of Lyttle DA, Weisblat DI, J. Am. Chem. Soc. 20 1947;69:2118). Evaporation gave an oil which was chromatographed on silica gel, eluting with CH₂Cl₂:light petroleum (1:1), to give 3-(2-nitroethyl) indole [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2NO_2$] (4.44 g, 48%); mp (benzene/light 25 petroleum) 57-59.5°C (Somei M, Karasawa Y, Kaneko C, Heterocycles 1981;16:941 record mp (MeOH) 54-55°C). ¹H NMR (CDCl₃): δ 8.05 (1H, br s, NH), 7.57 (1H, d, J = 7.9 Hz, ArH), 7.37 (1H, dt, <math>J = 8.2, 0.8 Hz, ArH),30 7.22 (1H, ddd, J = 8.1, 7.0, 1.1 Hz, ArH), 7.16 (1H, ddd, J = 7.9, 7.1, 0.9 Hz, ArH), 7.04 (1H, d, J = 2.4 Hz, H-2, 4.66 (2H, t, J = 7.3 Hz, 3-CH₂CH₂),3.49 (2H, td, J = 7.3, 0.6 Hz, 3-CH₂).

-62-

¹³C NMR: δ 136.25, 126.67 (2xs, Ar), 122.56, 122.54, 119.91, 118.13, 111.45 (5xd, Ar), 110.05 (s, Ar), 75.73 (t, 3-CH₂CH₂), 23.63 (t, 3-CH₂).

The above nitroethyl compound (1.50 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with $NaBH_4$ then H_2O_2 as described above. The resulting oil was chromatographed on silica gel, eluting with CH_2Cl_2 :light petroleum (4:3), to give

10 2,2'-thiobis[3-(2-nitroethyl)indole] [VI: n = 1; $R_1 = R_3 = H$, $R_2 = (CH_2)_2NO_2$] (49 mg, 3%); mp (CH_2Cl_2 /light petroleum) 134.5-136°C.

¹H NMR ((CD_3)₂SO): δ 11.26 (1H, s, NH), 7.59 (1H, d, J = 7.9 Hz, ArH), 7.30 (1H, d, J = 8.1 Hz, ArH), 7.13

15 (1H, ddd, J = 8.1, 7.1, 0.9 Hz, ArH), 7.02 (1H, ddd, J = 7.9, 7.1, 0.8 Hz, ArH), 4.71 (2H, t, J = 7.3 Hz, 3-CH₂CH₂), 3.57 (2H, t, J = 7.3 Hz, 3-CH₂).

13C NMR: δ 136.59, 126.60, 124.20 (3xs, Ar), 122.56, 119.27, 118.43 (3xd, Ar), 113.37 (s, Ar), 111.24 (d,

20 Ar), 75.11 (t, 3- CH_2CH_2 , 22.69 (t, 3- CH_2). Analysis calculated for $\text{C}_{20}\text{H}_{18}\text{N}_4\text{O}_4\text{S}$ requires: C, 58.5; H, 4.4; N, 13.7; S, 7.8%.

Found: C, 58.3; H, 4.7; N, 13.6; S, 8.0%.

 $3-CH_2CH_2$), 2.97 (2H, t, J = 7.2 Hz, $3-CH_2$).

Further elution as above gave

25 2,2'-dithiobis[3-(2-nitroethyl)indole] (49) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2NO_2$] (1.28 g, 73%); mp (CH_2Cl_2 /light petroleum) 153-154°C.

¹H NMR ((CD_3)₂SO): δ 11.68 (1H, s, NH), 7.57 (1H, d, J = 8.0 Hz, ArH), 7.36 (1H, d, J = 8.2 Hz, ArH), 7.21 (1H, ddd, J = 8.1, 7.1, 0.9 Hz, ArH), 7.04 (1H, ddd, J = 7.9, 7.1, 0.8 Hz, ArH), 4.41 (2H, t, J = 7.2 Hz,

-63-

¹³C NMR: δ 137.37, 126.18, 125.95 (3xs, Ar), 123.76, 119.50, 119.08 (3xd, Ar), 117.39 (s, Ar), 111.59 (d, Ar), 75.05 (t, 3-CH₂CH₂), 22.06 (t, 3-CH₂). Analysis calculated for $C_{20}H_{18}N_4O_4S_2 \cdot 0.5H_2O$ requires: C, 53.2; H, 4.2; N, 12.4; S, 14.2%. Found: C, 53.4; H, 4.2; N, 12.6; S, 14.0%.

Compounds 14 and 50 of Table 1

5

DEPC (98%, 1.28 mL) was added to a stirred solution of 3-(3-indolyl)propanoic acid 10 $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (1.30 g) and triethylamine (1.15 mL) in THF (15 mL) at 0°C. After 5 minutes the solution was saturated with ammonia gas, then the mixture was stirred at 20°C for 16 hours. 15 reaction was then quenched with water and extracted with EtOAc. Evaporation gave a solid, which was purified by chromatography on silica gel, eluting with EtOAc, to give 3-(3-indoly1)propanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONH_2$] (1.09 g, 84%); mp (MeOH/water) 134-136°C (Crosby DG, Boyd JB, 20 Johnson HE, J. Org. Chem. 1960;25:1826 record mp 131.5-133°C). ¹H NMR ((CD_3)₂CO): δ 9.95 (1H, s, NH), 7.58 (1H, dt, J = 8.2, 0.7 Hz, ArH), 7.36 (1H, dt, J = 8.1, 0.8 Hz, 25 ArH), 7.13 (1H, m, H-2), 7.08 (1H, ddd, J = 8.1, 7.0, 1.1 Hz, ArH), 7.00 (1H, ddd, J = 8.0, 7.0, 1.0 Hz, ArH), 6.75, 6.12 (2xH, 2xbr s, CONH₂), 3.04 (2H, m, $3-CH_2$), 2.05 (2H, m, $3-CH_2CH_2$). ¹³C NMR: δ 174.87 (s, CONH₂), 137.75, 128.44 (2xs, 30 Ar), 122.80, 122.02 (2xd, Ar), 119.30 (2xd, Ar), 115.67 (s, Ar), 112.08 (d, Ar), 37.05 $(t, 3-CH_2CH_2)$, 21.87 $(t, 3-CH_2CH_2)$ $3-CH_2)$.

The above amide (1.03 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup

-64-

was treated successively with NaBH $_4$ then $\rm H_2O_2$ as described above. The resulting oil was chromatographed on silica gel, eluting with EtOAc:light petroleum (3:1), to give firstly 2,2'-thiobis[3-(3-indolyl)-

propanamide] [VI: n = 1; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONH_2$] (0.16 g, 14%); mp (EtOAc/light petroleum) 196.5-197.5°C.

¹H NMR ((CD₃)₂SO): δ 11.02 (1H, s, NH), 7.55 (1H, d, J = 8.0 Hz, ArH), 7.38 (1H, s, NH), 7.26 (1H, d,

10 J = 8.1 Hz, ArH), 7.08 (1H, ddd, J = 8.0, 7.1, 0.8 Hz, ArH), 6.98 (1H, dd, J = 7.8, 7.1 Hz, ArH), 6.85 (1H, s, NH), 3.16, 2.46 (2x2H, 2xt, J = 7.7 Hz, 3-CH₂CH₂.

13C NMR: δ 174.26 (s, CONH₂), 136.77, 126.82, 123.29 (3xs, Ar), 122.09, 118.82, 118.68 (3xd, Ar), 118.43 (s,

15 Ar), 111.12 (d, Ar), 35.94 (t, 3- CH_2CH_2), 20.58 (t, 3- CH_2).

Analysis calculated for $C_{22}H_{22}N_4O_2S$ requires:

C, 65.0; H, 5.4; N, 13.8; S, 7.9%.

Found: C, 64.8; H, 5.7; N, 13.6; S, 7.7%.

Further elution with EtOAc and EtOAc:EtOH (9:1) gave 2,2'-dithiobis[3-(3-indolyl)propanamide] (50)

[VI: n = 2; R₁ = R₃ = H, R₂ = (CH₂)₂CONH₂] (0.90 g, 75%) as a yellow oil. A subsample crystallized from MeOH/dilute HCl as a solid which decomposed above 101°C.

¹H NMR (CD₃)₂SO): δ 11.37 (1H, s, NH), 7.55 (1H, d, J = 8.0 Hz, ArH), 7.32 (1H, d, J = 8.2 Hz, ArH), 7.16 (1H, t, J = 7.6 Hz, ArH), 7.00 (1H, t, J = 7.5 Hz, ArH), 6.94, 6.64 (2x1H, 2xs, CONH₂), 2.72, 2.14 (2x2H,

30 2xm, 3-CH₂CH₂).

¹³C NMR: δ 173.48 (s, CONH₂), 137.42, 126.58, 125.09 (3xs, Ar), 123.29 (d, Ar), 122.65 (s, Ar), 119.53, 118.91, 111.46 (3xd, Ar), 36.48 (t, 3-CH₂CH₂), 20.26 (t, 3-CH₂).

-65-

Analysis calculated for $C_{22}H_{22}N_4O_2S_2\cdot 0.5H_2O$ requires: C, 59.1; H, 5.2; N, 12.5; S, 14.3%. Found: C, 59.1; H, 5.4; N, 12.2; S, 14.0%.

Reduction of (50) with NaBH₄ as above gave a quantitative yield of 3-(2-thioxo-3-indolinyl)- propanamide (14) [IV: $R_1 = R_2 = H$, $R_3 = (CH_2)_2CONH_2$]; mp (EtOAc) 160-163°C.

J = 7.3 Hz, ArH), 7.27 (1H, t, <math>J = 7.6 Hz, ArH), 7.22 (1H, s, NH), 7.12 (1H, t, $J = 7.5 \text{ Hz}, \text{ ArH}), 7.00 (1H, d, <math>J = 7.7 \text{ Hz}, \text{ ArH}), 6.70 (1H, s, NH), 3.84 (1H, t, <math>J = 5.4 \text{ Hz}, \text{ H}-3), 2.38 (1H, m, 3-\text{CH}_2\text{CH}_2), 2.16-1.96 (2H, m, 3-\text{CH}_2\text{CH}_2), 1.77 (1H, ddd, <math>J = 14.6, 10.3,$

¹H NMR ((CD₂)₂SO): δ 12.63 (1H, s, NH), 7.38 (1H, d,

4.2 Hz, 3-CH₂CH₂).

¹³C NMR: δ 206.83 (s, CSNH), 173.37 (CONH₂), 144.11,

133.81 (2xs, Ar), 127.95, 124.11, 123.21, 110.03 (4xd, Ar), 56.35 (d, C-3), 30.12, 28.32 (2xt, 3-CH₂CH₂).

Analysis calculated for $C_{11}H_{12}N_2OS$ requires:

C, 60.0; H, 5.5; N, 12.7; S, 14.6%.
Found: C, 60.0; H, 5.5; N, 12.8; S, 14.3%.

Compound 51 of Table 1

10 -

15

DEPC (98%, 1.08 mL) was added to a stirred solution of 3-(3-indoly1)propanoic acid

- [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (1.10 g), triethylamine (1.94 mL) and methylamine hydrochloride (0.47 g) in THF (20 mL) at 0°C, then the mixture was stirred at 20°C for 20 hours. The reaction was then quenched with water and extracted with EtOAc.
- Bvaporation gave an oil which was purified by chromatography on silica gel. Elution with EtOAc gave firstly foreruns, then N-methyl-3-(3-indolyl)-propanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHMe$] (0.81 g, 69%); mp (CH₂Cl₂/light petroleum) 97.5-99°C

-66-

(Kononova VV, Vereshchagin AL, Polyachenka VM, Semenov AA, Khim.-Farm. Zh. 1978;12:30 record mp 97-99°C).

1H NMR ((CD₃)₂CO): δ 9.97 (1H, s, NH), 7.56 (1H, dd,

J = 8.0, 0.8 Hz, ArH), 7.36 (1H, dt, J = 8.1, 0.8 Hz,
ArH), 7.11 (1H, m, H-2), 7.08 (1H, ddd, J = 8.1, 7.0,
1.1 Hz, ArH), 6.99 (1H, ddd, J = 7.8, 7.0, 1.0 Hz,
ArH), 6.99 (1H, br s, NHCH₃), 3.04 (2H, td, J = 7.7,
0.9 Hz, 3-CH₂), 2.68 (3H, d, J = 4.7 Hz, NHCH₃), 2.51

(2H, t, J = 7.7 Hz, 3-CH₂CH₂).

(2H, t, J = 7.7 Hz, $3 - \text{CH}_2\text{C}\underline{\text{H}}_2$). ¹³C NMR: δ 173.30 (s, CONH), 137.73, 128.42 (2xs, Ar), 122.80, 122.01, 119.31 (3xd, Ar), 115.62 (s, Ar), 112.08 (d, Ar), 37.67 (t, $3 - \text{CH}_2\text{C}\underline{\text{H}}_2$), 26.06 (q, NCH₃), 22.08 (t, $3 - \text{CH}_2$).

The above N-methylpropanamide (0.75 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with $NaBH_4$ then H_2O_2 as described above. The resulting oil was chromatographed on silica gel, eluting with EtOAc, to

give firstly 2,2'-thiobis[N-methyl-3-(3-indolyl)-propanamide] [VI: n = 1; $R_1 = R_3 = H$, $R_2 = (CH_2)_2$ CONHMe] (0.13 g, 16%); mp (EtOAc/benzene/light petroleum) 120-123°C.

1H NMR (CDCl₃): δ 10.50 (1H, s, NH), 7.54 (1H, d,

J = 7.9 Hz, ArH), 7.31 (1H, d, J = 8.1 Hz, ArH), 7.14
(1H, ddd, J = 8.1, 7.1, 1.0 Hz, ArH), 7.04 (1H, ddd,

J = 7.9, 7.0, 0.9 Hz, ArH), 5.31 (1H, br d, J = 4.9 Hz,

NHCH₃), 3.47 (2H, m, 3-CH₂), 2.80 (2H, m, 3-CH₂CH₂),

2.60 (3H, d, J = 4.9 Hz, NHCH₃).

30 ¹³C NMR: δ 174.25 (s, CONH), 137.17, 126.67, 125.39 (3xs, Ar), 122.51, 118.88, 118.58 (3xd, Ar), 117.62 (s, Ar), 111.43 (d, Ar), 36.01 (t, 3-CH₂CH₂), 26.27 (q, NCH₃), 21.02 (t, 3-CH₂).

-67-

Analysis calculated for $C_{24}H_{26}N_4O_2S\cdot C_6H_6$ requires:

C, 70.3; H, 6.3; N, 10.9; S, 6.3%.

Found: C, 70.1; H, 6.2; N, 11.0; S, 6.0%.

Further elution with EtOAc gave

2,2'-dithiobis[N-methyl-3-(3-indolyl)propanamide] (51) 5 n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2$ CONHMe] (0.29 g, 34%); mp (EtOAc/benzene/light petroleum) 162.5-164°C. ¹H NIMR (CD₃CD): δ 7.50 (1H, dt, J = 8.1, 0.8 Hz, ArH),

7.33 (1H, dt, J = 8.2, 0.8 Hz, ArH), 7.18 (1H, ddd,

10 J = 8.1, 7.0, 1.0 Hz, ArH), 7.02 (1H, ddd, <math>J = 8.0,7.1, 0.8 Hz, ArH), 2.71 (2H, m, 3-CH₂), 2.49 (3H, s, NCH_3), 2.02 (2H, m, 3- CH_2CH_2).

> ¹³C NMR: δ 175.76 (s, CONH), 139.27, 128.33, 127.01 (3xs, Ar), 124.80, (d, Ar), 123.92 (s, Ar), 120.48,

15 120.44, 112.48 (3xd, Ar), 38.44 (t, 3-CH₂CH₂), 26.32 (q, NCH₃), 21.95 (t, 3-CH₂).

Analysis calculated for C24H26N4O2S2 requires:

C, 61.8; H, 5.6; N, 12.0; S, 13.7%.

Found: C, 61.7; H, 5.7; N, 12.2; S, 13.7%.

20

30

Compound 52 of Table 1

A solution of 3-(3-indoly1) propanoic acid [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (0.70 g), triethylamine (5 mL) and methoxyamine hydrochloride (0.90 g) in THF (20 mL) was stirred at 20°C for 3 hours, then cooled to 25 0°C. DEPC (98%, 0.70 mL) was added, then the mixture was stirred at 20°C for 18 hours. The reaction was then quenched with water and extracted with EtOAc. Evaporation gave an oil which was purified by chromatography on silica gel. Elution with EtOAc:light petroleum (1:1) gave foreruns, then elution with EtOAc:light petroleum (3:1) gave N-methoxy-3-(3-indolyl) propanamide [II: $R_1 = R_2 = H$, $R_2 = (CH_2)_2 CONHOMe$ (0.50 g, 62%); mp (CH₂Cl₂/light

-68-

petroleum) 116-118°C (Kononova VV, Vereshchagin AL, Polyachenka VM, Semenov AA, <u>Khim.-Farm. Zh.</u> 1978;12:30 record mp 114-115°C).

¹H NMR ((CD₃)₂SO): δ 10.97, 10.77 (2x1H, 2xs, 2xNH), 7.51 (1H, d, J = 7.8 Hz, ArH), 7.32 (1H, d, J = 8.1 Hz, ArH), 7.09 (1H, s, H-2), 7.06 (1H, td, J = 8.0, 1.0 Hz, ArH), 6.97 (1H, td, J = 8.0, 0.9 Hz, ArH), 3.55 (3H, s, NHOCH₃), 2.91, 2.30 (2x2H, 2xt, J = 7.6 Hz, 3-CH₂CH₂). ¹³C NMR: δ 168.72 (s, CONH), 136.13, 126.87 (2xs, Ar), 122.14, 120.83, 118.21, 118.09 (4xd, Ar), 113.30 (s.

5

10

15

122.14, 120.83, 118.21, 118.09 (4xd, Ar), 113.30 (s, Ar), 111.23 (d, Ar), 63.00 (q, OCH₃), 33.20 (t, 3-CH₂CH₂), 20.53 (t, 3-CH₂).

The above N-methoxypropanamide (1.00 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with NaBH₄ then H_2O_2 as described above. The resulting oil was chromatographed on silica gel, eluting with EtOAc:light petroleum (3:2), to give firstly 2,2'-thiobis[N-methoxy-3-(3-indolyl)propanamide]

[VI: n = 1; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHOMe$] (0.12 g, 11%); mp (EtOAc/light petroleum) 157.5-158.5°C.

¹H NMR ((CD₃)₂SO): δ 11.02, 10.95 (2x1H, 2xs, 2xNH), 7.53 (1H, d, J = 7.9 Hz, ArH), 7.25 (1H, d, J = 8.1 Hz, ArH), 7.09 (1H, t, J = 7.5 Hz, ArH), 6.99 (1H, t,

25 J = 7.4 Hz, ArH), 3.52 (3H, s, NHOCH₃), 3.17, 2.31 (2x2H, 2xt, J = 7.5 Hz, 3-CH₂CH₂).

¹³C NMR: δ 168.73 (s, CONH), 136.75, 126.79, 123.29 (3xs, Ar), 122.23 (d, Ar), 118.78 (d, 2C, Ar), 118.00 (s, Ar), 111.08 (d, Ar), 63.04 (q, OCH₃), 33.43 (t,

30 3-CH₂CH₂), 20.46 (t, 3-CH₂). Analysis calculated for $C_{24}H_{26}N_4O_4S$ requires:

C, 61.8; H, 5.6; N, 12.0; S, 6.9%.

Found: C, 61.6; H, 5.8; N, 12.2; S, 6.9%.

Elution with EtOAc gave 2,2'-dithiobis[N-methoxy-3-(3-indoly1) propanamide] (52) [VI: n=2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2 CONHOMe$] (0.35 g, 31%); mp (EtOAc/light petroleum) 176-178°C. ¹H NMR ((CD_3)₂SO): δ 11.39, 10.73 (2x1H, 2xs, 2xNH), 5 7.51 (1H, d, J = 8.0 Hz, ArH), 7.32 (1H, d, J = 8.2 Hz, ArH), 7.16 (1H, t, J = 7.7 Hz, ArH), 7.00 (1H, t, J = 7.5 Hz, ArH), 3.41 (3H, s, NHOCH₃), 2.65, 2.01(2x2H, 2xt, J = 7.4 Hz, 3-CH₂CH₂).¹³C NMR: δ 168.21 (s, CONH), 137.42, 126.52, 125.16 10 (3xs, Ar), 123.37 (d, Ar), 122.20 (s, Ar), 119.48, 118.96, 111.48 (3xd, Ar), 62.91 (q, OCH₃), 33.79 (t, $3-CH_2CH_2$), 20.09 (t, $3-CH_2$). Analysis calculated for C24H26N4O4S2 requires: C, 57.8; H, 5.2; N, 11.2; S, 12.9%. 15 Found: C, 57.6; H, 5.4; N, 11.3; S, 12.7%.

Compound 53 of Table 1

DEPC (98%, 1.28 mL) was added to a stirred 20 solution of 3-(3-indoly1) propanoic acid [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (1.04 g) and triethylamine (1.15 mL) in THF (15 mL) at 0°C. After 5 minutes the solution was saturated with dimethylamine gas, then the mixture was stirred at 20°C for 16 hours. Workup as above and chromatography on silica gel, 25 eluting with EtOAc, gave N, N-dimethyl 3-(3-indolyl) propanamide [II: $R_1 = R_2 = H$, $R_2 = (CH_2)_2 CONMe_2$ (0.90 g, 76%); mp (CH₂Cl₂/light petroleum) 141-142°C (Avramenko VG, Suvorov NN, 30 Mashkovskii MD, Mushulov PI, Eryshev BYa, Fedorova VS, Orlova IA, Trubitsyna TK, Khim.-Farm. Zh. 1970;4:10 record mp 139-140.5°C). ¹H NMR (CD₃OD): δ 7.53 (1H, dt; J = 7.9, 0.9 Hz, ArH),

7.32 (1H, dt, J = 8.1, 0.8 Hz, ArH) 7.07 (1H, ddd,

-70-

J = 8.1, 7.0, 1.1 Hz, ArH), 7.04 (s, H-2), 6.99 (1H, ddd, J = 7.9, 7.0, 0.9 Hz, ArH), 3.05 (2H, m, 3-CH₂), 2.88, 2.86 (2x3H, 2xs, N(CH₃)₂, 2.73 (2H, m, 3-CH₂CH₂). ¹³C NMR: δ 175.75 (s, CON(CH₃)₂), 138.20, 128.59 (2xs, Ar), 123.11, 122.36, 119.61, 119.24 (4xd, Ar), 115.16 (s, Ar), 112.26 (d, Ar), 37.89, 35.82 (2xq, N(CH₃)₂), 35.30 (t, 3-CH₂CH₂), 22.32 (t, 3-CH₂).

5

10

The above dimethylpropanamide (0.82 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with $NaBH_4$ then H_2O_2 as described above. The resulting oil was chromatographed on silica gel, eluting with EtOAc: light petroleum (3:2), to give firstly 2,2'-thiobis-[N,N-dimethyl-3-(3-indolyl)] propanamide [VI: n=1;

15 $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHMe_2$] (0.12 g, 14%); mp (EtOAc/light petroleum) 189-190°C. ¹H NMR (CDCl₃): δ 10.72 (br s, 1 H, NH), 7.55 (1H, d, J = 7.9 Hz, ArH), 7.24 (1H, d, J = 8.1 Hz, ArH), 7.10 (ddd, J = 8.0, 7.1, 0.9 Hz, 1 H, ArH), 7.02 (dd,

20 J = 7.9, 7.1 Hz, 1 H, ArH), 3.47, 2.97 (2x2H, 2xm, 3-CH₂CH₂), 2.95, 2.91 (2x3H, 2xs, N(CH₃)₂). ¹³C NMR: δ 173.36 (s, CON(CH₃)₂), 137.15, 126.92, 125.55 (3xs, Ar), 122.26, 118.68, 118.58 (3xd, Ar), 118.02 (s, Ar), 111.35 (d, Ar), 37.49, 35.74 (2xq,

25 $N(CH_3)_2$, 32.14 (t, 3- CH_2CH_2), 20.54 (t,3- CH_2). Analysis calculated for $C_{26}H_{30}N_4O_2S$ requires:

C, 67.5; H, 6.5; N, 12.1; S, 6.9%.

Found: C, 67.4; H, 6.6; N, 12.0; S, 7.2%.

Elution with EtOAc gave 2,2'-dithiobis-

30 [N,N-dimethyl-3-(3-indolyl)propanamide] (53) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONMe_2$] (0.49 g, 52%); mp (EtOAc) 179-180°C. ¹H NMR (CD₃OD): δ 7.45 (1H, dt, J = 8.0, 0.8 Hz, ArH),

7.32 (1H, dt, J = 8.2, 0.8 Hz, ArH), 7.17 (1H, ddd,

-71-

J = 8.2, 7.1, 1.1 Hz, ArH), 7.01 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 2.72 (2H, m, 3-CH₂CH₂), 2.71, 2.44 (2x3H, 2xs, N(CH₃)₂), 2.09 (2H, m, 3-CH₂CH₂).

¹³C NMR: δ 174.68 (s, CON(CH₃)₂), 139.43, 128.26, 126.61 (3xs, Ar), 124.85 (d, Ar), 123.84 (s, Ar), 120.55, 120.28, 112.51 (3xd, Ar), 37.57 (q, NCH₃), 35.69 (t, 3-CH₂CH₂), 35.60 (q, NCH₃), 21.49 (t, 3-CH₂). Analysis calculated for C₂₆H₃₀N₄O₂S₂ requires: C, 63.2; H, 6.1; N, 11.3; S, 13.0%.

10 Found: C, 63.2; H, 6.2; N, 11.3; S, 13.1%.

Compound 54 of Table 1

DEPC (98%, 0.69 mL) was added to a stirred solution of 3-(3-indolyl)-propanoic acid

- [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (0.70 g) and phenethylamine (1.1 mL) in THF (15 mL) at 0°C, then the mixture was stirred at 20°C for 3 hours. Workup and chromatography on silica gel, eluting with EtOAc/light petroleum (1:1) gave N-(2-phenylethyl)-3-(3-indolyl)-
- propanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONH(CH_2)_2Ph$] (0.58 g, 54%); mp (EtOAc/light petroleum) 88-89°C.

 ¹H NMR (CDCl₃): δ 8.02 (1H, br s, NH), 7.58 (1H, d, J = 7.9 Hz, ArH), 7.36 (1H, d, J = 8.1 Hz, ArH), 7.24-7.15 (4H, m, ArH), 7.12 (1H, ddd, J = 7.9, 7.0,
- 25 0.8 Hz, ArH), 6.99 (2H, dd, J = 7.4, 1.7 Hz, ArH), 6.95 (1H, d, J = 2.2 Hz, H-2), 5.34 (1H, br t, J = 6.0 Hz, NHCH₂), 3.44 (2H, q, J = 6.6 Hz, NHCH₂), 3.09 (2H, t, J = 7.3 Hz, 3-CH₂), 2.66 (2H, t, J = 6.9 Hz, NHCH₂CH₂), 2.52 (2H, t, J = 7.3 Hz, 3-CHCH₂).
- 30 ¹³C NMR: δ 172.64 (s, CONH), 138.90, 136.38 (2xs, Ar), 128.71, 128.58 (2xd, 2x2C, Ar), 127.13 (s, Ar), 126.41, 122.10, 121.77, 119.37, 118.72 (5xd, Ar), 114.95 (s, Ar), 111.23 (d, Ar), 40.48, 37.42, 35.62 (3xt, 3-CH₂CH₂CONH(CH₂)₂), 21.35 (t, 3-CH₂).

-72-

Analysis calculated for C19H20N2O requires:

C, 78.1; H, 6.9; N, 9.6%.

Found: C, 77.9; H, 7.0; N, 9.6%.

5

The above phenylethylpropanamide (0.53 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with NaBH₄ then H_2O_2 as described above. The resulting oil was chromatographed on silica gel, eluting with EtOAc:light petroleum (1:2), to give firstly

2,2'-thiobis[N-(2-phenylethyl)-3-(3-indolyl)propanamide] [VI: n = 1; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONH(CH_2)_2Ph] (0.13 g, 23%); mp (EtOAc/light petroleum) 120-121.5°C.$

¹H NMR (CDCl₃): δ 10.69 (1H, s, NH), 7.55 (1H, d,

- 15 J = 7.9 Hz, ArH), 7.35 (1H, d, J = 8.2 Hz, ArH), 7.17 (1H, ddd, J = 8.1, 7.1, 1.0 Hz, ArH), 7.08 (1H, ddd, J = 8.0, 0.9 Hz, ArH), 7.02 (1H, t, J = 7.4 Hz, ArH), 6.93 (2H, t, J = 7.4 Hz, ArH), 6.33 (2H, d, J = 7.2 Hz, ArH), 5.26 (1H, t, J = 5.9 Hz, NHCH₂), 3.51 (2H, m,
- 20 3-CH₂), 3.14 (2H, q, J = 6.6 Hz, NHCH₂), 2.77 (2H, m, 3-CH₂CH₂), 1.92 (2H, t, J = 6.8 Hz, NHCH₂CH₂).

 ¹³C NMR: δ 173.62 (s, CONH), 138.20, 137.33 (2xs, Ar), 128.40, 128.36 (2xd, 2x2C, Ar), 126.76 (s, Ar), 126.16 (d, Ar), 125.51 (s, Ar), 122.78, 119.17, 118.70 (3xd,
- 25 Ar), 117.57 (s, Ar), 111.70 (d, Ar), 40.49, 36.43, 35.46 (3xt, 3- $\text{CH}_2\text{CH}_2\text{CONH}(\underline{\text{CH}}_2)_2$), 21.35 (t, 3- CH_2). Analysis calculated for $\text{C}_{38}\text{H}_{38}\text{N}_4\text{O}_2\text{S}$ requires:

C, 74.2; H, 6.2; N, 9.1; S, 5.2%.

Found: C, 74.4; H, 6.4; N, 9.0; S, 5.2.%

30 Elution with EtOAc:light petroleum (2:3) gave 2,2'-dithiobis[N-(2-phenylethyl)-3-(3-indolyl)-propanamide] (54) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONH(CH_2)_2Ph$] (0.36 g, 61%) as an oil.

PCT/US93/07272

¹H NMR (CDCl₃): δ 8.42 (1H, s, NH), 7.51 (1H, d, J = 8.0 Hz, ArH), 7.32-7.16 (5H, m, ArH), 7.04 (3H, m, ArH), 4.63 (1H, t, J = 5.9 Hz, NHCH₂), 3.23 (2H, q, J = 6.7 Hz, NHCH₂, 2.85 (t, J = 7.8 Hz, 3-CH₂), 2.59 (2H, t, J = 7.0 Hz, NHCH₂CH₂), 1.81 (2H, t, J = 7.8 Hz, 3-CH₂CH₂).

¹³C NMR: δ 171.95 (s, CONH), 139.15, 137.23 (2xs, Ar), 128.87, 128.55 (2xd, 2x2C, Ar), 127.02 (s, Ar), 126.39 (d, Ar), 125.50 (s, Ar), 124.33 (d, Ar), 123.98 (s, Ar), 120.11, 119.88, 111.17 (3xd, Ar), 40.62, 37.37, 35.58 (3xt, 3-CH₂H₂CONH(CH₂)₂), 20.64 (t, 3-CH₂). HRFABMS m/z calculated for $C_{38}H_{39}N_4O_2S_2$: 647.2514 (MH⁺)

Found: 647.2471.

15

Compounds 55 and 56 of Table 1

A solution of 3-(3-indolyl)propanoic acid [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (0.80 g), triethylamine (10 mL) and methyl 4-(aminomethyl)benzoate hydrochloride (Nair MG, Baugh CM, J. Org. Chem. 20 1973;38:2185) (1.29 g) in THF (20 mL) was stirred at 20°C for 15 minutes, then cooled to 0°C. DEPC (98%, 1.00 mL) was added, then the mixture was stirred at 20°C for 18 hours. Workup and chromatography on silica 25 gel, eluting with EtOAc:light petroleum (5:3) gave N-(4-methoxycarbonylbenzyl)-3-(3-indolyl)propanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2 CONHCH_2 Ph {4-COOMe}]$ (1.10 g, 77%); mp (CH₂Cl₂/light petroleum) 130-132°C. ¹H NMR (CDCl₃): δ 8.08 (1H, s, NH), 7.88 (2H, d, 30 J = 8.2 Hz, ArH), 7.60 (1H, d, J = 7.8 Hz, ArH), 7.36(1H, d, J = 8.1 Hz, ArH), 7.19 (1H, ddd, J = 8.1, 7.1,0.9 Hz, ArH), 7.11 (1H, ddd, J = 7.9, 7.2, 0.7 Hz, ArH), 7.06 (2H, d, J = 8.2 Hz, ArH), 6.94 (1H, d, $J = 2.3 \text{ Hz}, \text{ H-2}, 5.74 (1H, br t, } J = 5.9 \text{ Hz}, \text{ NHCH}_2),$

-74-

4.38 (2H, d, J = 5.9 Hz, NHCH₂), 3.90 (3H, s, OCH₃), 3.15, 2.63 (2x2H, 2xt, J = 7.2 Hz, 3-CH₂CH₂). ¹³C NMR: δ 172.68 (s, CONH), 166.87 (s, COOCH₃), 143.50, 136.37 (2xs, Ar), 129.80 (2xd, Ar), 129.10 (s, Ar), 127.28 (2xd, Ar), 127.03 (s, Ar), 122.11, 121.92, 119.41, 118.64 (4xd, Ar), 114.66 (s, Ar), 111.27 (d, Ar), 52.09 (q, OCH₃), 43.05 (t, NHCH₂), 37.37 (t, 3-CH₂CH₂), 21.39 (t, 3-CH₂). Analysis calculated for C₂₀H₂₀N₂O₃ requires: C, 71.4; H, 6.0; N, 8.3%.

Found: C, 71.1; H, 5.7; N, 8.4%.

5

10

The above methoxycarbonylbenzylpropanamide (1.08 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated 15 successively with NaBH4 then H2O2 as described above. The resulting oil was chromatographed on silica gel, eluting with EtOAc:light petroleum (2:3), to give firstly 2,2'-thiobis[N-(4-methoxycarbonylbenzyl)-3-(3-indoly1) propanamide] [VI: n = 1; $R_1 = R_3 = H$, 20 $R_2 = (CH_2)_2 CONHCH_2 Ph \{4 - COOMe\} \} (0.18 g, 16\%);$ mp (MeOH/dilute HCl) 101-104.5°C (dec). ¹H NMR (CDCl₃): δ 10.28 (1H, s, NH), 7.47 (1H, d, J = 7.7 Hz, ArH), 7.45 (2H, d, <math>J = 8.4 Hz, ArH), 7.05(1H, d, J = 8.0 Hz, ArH), 6.97 (1H, ddd, J = 8.0, 6.9,25 1.1 Hz, ArH), 6.91 (1H, ddd, J = 7.9, 6.8, 1.1 Hz, ArH), 6.61 (2H, d, J = 8.3 Hz, ArH), 6.34 (1H, br t, $J = 5.8 \text{ Hz}, N_{\underline{H}}CH_2), 4.40 (2H, d, J = 5.9 \text{ Hz}, N_{\underline{H}}CH_2),$ 3.79 (3H, s, OCH₃) 3.54, 2.97 (2x2H, 2xm, 3-CH₂CH₂). δ 174.37 (s, CONH), 166.75 (s, COOCH₃), 142.31, 137.15 (2xs, Ar), 129.35 (d, 2C, Ar), 128.39, 30 126.52 (2xs, Ar), 126.24 (d, 2C, Ar), 125.30 (s, Ar), 122.65, 118.87, 118.49 (3xd, Ar), 117.92 (s, Ar), 111.31 (d, Ar), 51.95 (q, OCH₃), 43.22 (t, NHCH₂),

36.34 (t, 3- CH_2CH_2), 21.17 (t, 3- CH_2).

-75-

Analysis calculated for $C_{40}H_{38}N_4O_6S \cdot 0.5H_2O$ requires:

C, 67.5; H, 5.5; N, 7.9%.

Found: C, 67.4; H, 5.4; N, 8.1%.

Elution with EtOAc:light petroleum (1:1) gave $2,2'-\text{dithiobis}[N-(4-\text{methoxycarbonylbenzyl})-3-\\ (3-\text{indolyl})\text{propanamide}] (55) [VI: n = 2; R_1 = R_3 = H, \\ R_2 = (CH_2)_2\text{CONHCH}_2\text{Ph}\{4-\text{COOMe}\}] (0.50 \text{ g}, 42\%); \\ \text{mp (EtOAc/light petroleum) 151-153°C.}$

¹H NMR (($(CD_3)_2SO$): δ 11.42 (1H, s, NH), 8.06 (1H, t,

10 $J = 5.7 \text{ Hz}, \text{ NHCH}_2), 7.81 (2H, d, J = 8.2 \text{ Hz}, \text{ArH}), 7.55 (1H, d, J = 8.0 \text{ Hz}, \text{ArH}), 7.34 (1H, d, J = 8.2 \text{ Hz}, \text{ArH}), 7.17 (1H, t, J = 7.6 \text{ Hz}, \text{ArH}), 7.11 (2H, d, J = 8.1 \text{ Hz}, \text{ArH}), 6.99 (1H, t, J = 7.5 \text{ Hz}, \text{ArH}), 4.19 (2H, d, J = 5.8 \text{ Hz}, \text{NHCH}_2), 3.84 (3H, s, OCH}_3), 2.73,$

15 2.24 (2x2H, 2xt, J = 7.5 Hz, 3-CH₂CH₂). ¹³C NMR: δ 171.48 (s, CONH), 166.00 (s, COOCH₃), 145.01, 137.37 (2xs, Ar), 128.98 (d, 2C, Ar), 127.84 (s, Ar), 127.01 (d, 2C, Ar), 126.53, 125.21 (2xs, Ar), 123.24 (d, Ar), 122.39 (s, Ar), 119.57, 118.86, 111.38

20 (3xd, Ar), 51.93 (q, OCH₃), 41.62 (t, NHCH₂), 36.65 (t, $3\text{-CH}_2\text{CH}_2$), 20.38 (t, 3-CH_2).

Analysis calculated for $C_{40}H_{38}N_4O_6S_2$ requires:

C, 65.4; H, 5.2; N, 7.6; S, 8.7%.

Found: C, 65.5; H, 5.5; N, 7.3; S, 8.8%.

25 Hydrolysis of 55 (0.24 g) with K₂CO₃ in MeOH/water at 30°C for 1 day, then 50°C for 1 hour, under nitrogen as above gave an oil. Chromatography on silica gel, eluting with EtOAc:light petroleum (1:1) containing 1% AcOH, gave 2,2'-dithiobis[N-(4-carboxybenzyl)-

30 3-(3-indolyl)propanamide] (56) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHCH_2Ph\{4-COOH\}\}$ (60 mg, 26%); mp (MeOH/dilute HCl) 135.5-138.5°C (decomposed).

¹H NMR (CD₃)₂SO): δ 11.41 (1H, s, NH), 8.03 (1H, t, J = 5.8 Hz, $N\underline{H}CH_2$), 7.79 (2H, d, J = 8.2 Hz, ArH), 7.55

-76-

(1H, d, J = 8.0 Hz, ArH), 7.33 (1H, d, J = 8.2 Hz, ArH), 7.16 (1H, t, J = 7.6 Hz, ArH), 7.09 (2H, d, J = 8.1 Hz, ArH), 6.99 (1H, t, J = 7.5 Hz, ArH), 4.18 (2H, d, J = 5.8 Hz, NHCH₂), 2.73, 2.23 (2x2H, 2xt, J = 7.5 Hz, 3-CH₂CH₂).

13C NMR: δ 171.44 (s, CONH), 167.10 (s, COOH), 144.46, 137.37 (2xs, Ar), 129.14 (d, 2C, Ar), 129.05 (s, Ar), 126.87 (d, 2C, Ar), 126.53, 125.18 (2xs, Ar), 123.23 (d, Ar), 122.40 (s, Ar), 119.58, 118.85, 111.37 (3xd, Ar), 41.65 (t, NHCH₂), 36.42 (t, 3-CH_CH₂), 20.37 (t, 3-CH₂).

Analysis calculated for $C_{38}H_{34}N_4O_6S_2 \cdot H_2O$ requires: C, 63.0; H, 5.0; N, 7.7; S, 8.8%.

15 Found: C, 62.5; H, 5.2; N, 8.2; S, 8.8%.

Compounds 57 and 58 of Table 1

5

10

A stirred solution of methyl 2-acetoxy-4-bromomethylbenzoate (Regnier G, Canevari R, Le Douarec J-C, Bull. Soc. Chim. Fr. 1966:2821) 20 (10.7 g) and hexamethylenetetramine (17.1 g) in CHCl₃ (150 mL) was refluxed for 5 hours, then the solvent was removed (method of Meindl W, v Angerer E, Ruckdeschel G, Schonenberger H, Arch. Pharm. (Weinheim) 25 1982;315:941). The residue was stirred with MeOH (60 mL) and concentrated HCl (30 mL) at 20°C for 10 minutes, then the solvent removed. Treatment of the solid residue twice more with HCl/MeOH and evaporation gave a solid, which was washed with CH2Cl2, then 30 treated with saturated KHCO3 solution. The base was extracted with EtOAc and CH2Cl2, then the solvents removed. The crude hydrochloride salt (5.30 q, 70% pure) was precipitated from an ethereal solution of the base upon the addition of HCl gas. A subsample of the

-77-

above crude base was purified by chromatography on silica gel, eluting with EtOAc/light petroleum (1:2). Acidification of a solution of the purified base gave pure methyl 4-(aminomethyl)-2-hydroxybenzoate hydrochloride; mp (CH₂Cl₂/light petroleum) 225-227°C.

¹H NMR (CD₃)₂SO): δ 10.56 (1H, s, OH), 8.58 (3H, br s, NH₃⁺), 7.78 (1H, d, J = 8.1 Hz, H-6), 7.14 (1H, s, H-3), 7.05 (1H, d, J = 8.1 Hz, H-5), 4.01 (2H, br s, 4-CH₂), 3.88 (3H, s, OCH₃).

10 13 C NMR: δ 168.81 (s, COOCH₃), 159.80 (s, C-2), 141.84 (s, C-4), 130.25 (d, C-6), 119.61 (d, C-5), 117.48 (d, C-3), 112.90 (s, C-1), 52.53 (q, OCH₃), 41.63 (t, 4-CH₂).

Analysis calculated for $C_9H_{11}NO_3 \cdot HC1 \cdot 0.5H_2O$ requires: C, 47.7; H, 5.8; N, 6.2; Cl, 15.7%.

Found: C, 47.9; H, 5.8; N, 6.3; Cl, 15.9%.

5

15

A solution of 3-(3-indolyl)propanoic acid [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (1.50 g), triethylamine (10 mL) and crude methyl 4-(aminomethyl)-

- 20 2-hydroxybenzoate hydrochloride (3.46 g) in DMF (20 mL) was stirred at 20°C for 10 minutes, then cooled to 0°C. DEPC (98%, 1.47 mL) was added, then the mixture was stirred at 20°C for 17 hours. Workup and chromatography on silica gel, eluting with EtOAc:light
- petroleum (1:1) gave N-(3-hydroxy-4-methoxycarbonyl-benzyl)-3-(3-indolyl)propanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHCH_2Ph{3-OH, 4-COOMe}]$ (1.40 g, 50%); mp (EtOAc/light petroleum) 132-133°C.

¹H NMR ((CD₃)₂SO): δ 10.76 (1H, br s, NH), 10.50 (1H, s, OH), 8.41 (1H, t, J = 5.8 Hz, NHCH₂), 7.70 (1H, d, J = 8.1 Hz, ArH), 7.54 (1H, d, J = 7.8 Hz, ArH), 7.33 (1H, d, J = 8.1 Hz, ArH), 7.10 (1H, d, J = 2.2 Hz, H-2), 7.06 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 6.97 (1H, ddd, J = 7.8, 7.0, 0.8 Hz, ArH), 6.83 (1H, d,

-78-

J = 1.4 Hz, ArH), 6.74 (1H, dd, <math>J = 8.2, 1.4 Hz, ArH), $4.27 (2H, d, J = 6.0 \text{ Hz}, \text{NHCH}_2), 3.88 (3H, s, \text{OCH}_3),$ $2.96, 2.54 (2x2H, 2xt, J = 7.7 \text{ Hz}, 3-\text{CH}_2\text{CH}_2).$ $^{13}\text{C NMR}$: δ 172.05 (s, CONH), 169.14 (s, COOCH₃), 160.10, 148.27, 136.22 (3xs, Ar), 129.92 (d, Ar), 126.98 (s, Ar), 122.14, 120.84, 118.30, 118.12, 118.09, 115.41 (6xd, Ar), 113.68 (s, Ar), 111.27 (d, Ar), $111.20 (s, \text{Ar}), 52.34 (q, \text{OCH}_3), 41.67 (t, \text{NHCH}_2),$ $36.23 (t, 3-\text{CH}_2\text{CH}_2), 21.00 (t, 3-\text{CH}_2).$ Analysis calculated for $\text{C}_{20}\text{H}_{20}\text{N}_2\text{O}_4$ requires: C, 68.2; H, 5.7; N, 8.0%.

Found: C, 68.3; H, 5.9; N, 8.0%.

A solution of acetyl chloride (0.42 mL) in THF (5 mL) was added to a stirred solution of the above propanamide (1.22 g) and triethylamine (1.00 mL) in THF 15 (15 mL) at 0°C, then the mixture was stirred at 20°C for 18 hours. The reaction was then quenched with water (100 mL) and extracted with EtOAc (3 x 100 mL). Evaporation and chromatography on silica gel, eluting 20 with EtOAc:light petroleum (2:1) gave N-(3-acetoxy-4-methoxycarbonylbenzyl)-3-(3-indolyl)propanamide [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHCH_2Ph{3-OAc, 4-COOMe}$] (1.28 g, 94%) as an oil. ¹H NMR (CDCl₃): δ 8.18 (1H, br s, NH), 7.87 (1H, d, J = 8.1 Hz, ArH), 7.57 (1H, d, J = 8.0 Hz, ArH), 7.3125 (1H, dt, J = 8.1, 0.8 Hz, ArH), 7.17 (1H, ddd, J = 8.1,7.0, 1.1 Hz, ArH), 7.09 (1H, ddd, J = 7.9, 7.0, 0.9 Hz, ArH), 6.97 (1H, dd, J = 8.1, 1.6 Hz, ArH), 6.84 (1H, d, J = 1.5 Hz, ArH), 6.77 (1H, d, <math>J = 2.3 Hz, H-2), 5.6730 (1H, br t, J = 5.8 Hz, $NHCH_2$), 4.31 (2H, d, J = 6.0 Hz, $NHCH_2$), 3.87 (3H, s, COOCH₃), 3.11, 2.58 (2x2H, 2xt, $J = 6.9 \text{ Hz}, 3-\text{CH}_2\text{CH}_2$, 2.36 (3H, s, OCOCH₃). ¹³C NMR: δ 172.84 (s, CONH), 170.14 (s, OCOCH₃), 164.64 (s, COOCH₃), 150.82, 145.26, 136.33 (3xs, Ar),

-79-

132.04 (d, Ar), 126.85 (s, Ar), 125.42, 122.93, 122.31, 121.95 (4xd, Ar), 121.87 (s, Ar), 119.28, 118.52 (2xd, Ar), 114.08 (s, Ar), 111.36 (d, Ar), 52.23 (q, OCH₃), 42.62 (t, NHCH₂), 37.32 (t, 3-CH₂CH₂), 21.46 (t, 3-CH₂), 21.06 (q, OCOCH₃). HREIMS m/z calculated for $C_{22}H_{22}N_2O_5$:

HREIMS m/z calculated for $C_{22}H_{22}N_2O_5$: 394.1529 (M⁺).

Found: 394.1526.

5

The above O-acetate (1.47 g) was treated with S,Cl, as above, then the product mixture obtained after 10 workup was treated successively with NaBH, then H2O2 as described above. Hydrolysis of the resulting oil with excess KHCO3 in MeOH/water at 20°C for 1 hour (to remove the acetate group) gave an oil which was 15 purified by chromatography on silica gel. Elution with EtOAc:light petroleum (1:2) gave firstly 2,2'-thiobis[N-(3-hydroxy-4-methoxycarbonylbenzyl)-3-(3-indolyl)propanamide] [VI: n = 1; $R_1 = R_2 = H$, $R_2 = (CH_2)_2 CONHCH_2 Ph \{3-OAc, 4-COOMe\}\} (0.12 g, 9%);$ mp (MeOH/dilute HCl) 109-112°C (decomposed). 20 ¹H NMR (CDCl₃): δ 10.50 (1H, s, OH), 10.17 (1H, s, NH), 7.49 (1H, d, J = 7.9 Hz, ArH), 7.31 (1H, d, J = 8.2 Hz, ArH), 7.19 (1H, d, <math>J = 8.1 Hz, ArH), 7.07(1H, ddd, J = 8.0, 7.1, 0.8 Hz, ArH), 6.97 (1H, ddd,25 J = 7.8, 7.2, 0.6 Hz, ArH), 6.32 (1H, d, <math>J = 1.1 Hz,ArH), 5.98 (1H, dd, J = 8.2, 1.5 Hz, ArH), 5.72 (1H, t, $J = 5.7 \text{ Hz}, N_{H}CH_{2}), 4.22 (2H, d, J = 5.7 \text{ Hz}, N_{H}CH_{2}),$ 3.86 (3H, s, OCH₃), 3.50, 2.88 (2x2H, 2xm, 3-CH₂CH₂). ¹³C NMR: δ 173.77 (s, CONH), 170.06 (s, COOCH₃), 30 161.36, 145.57, 137.16 (3xs, Ar), 130.02 (d, Ar), 126.62, 125.16 (2xs, Ar), 122.69, 119.13, 118.43 (3xd, Ar), 117.65 (s, Ar), 117.40, 115.51, 111.53 (3xd, Ar), 111.07 (s, Ar), 52.18 (q, OCH_3), 43.19 (t, $NHCH_2$),

36.32 (t, 3- CH_2CH_2), 21.22 (t, 3- CH_2).

-80-

Analysis calculated for C40H38N4O8S requires:

C, 65.4; H, 5.2; N, 7.6; S, 4.4%.

Found: C, 65.2; H, 5.1; N, 7.4; S, 4.4%.

10

25

Elution with EtOAc:light petroleum (2:3) gave 2,2'-dithiobis[N-(3-hydroxy-4-methoxycarbonylbenzyl)-3-(3-indolyl)propanamide] (57) [V: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2CONHCH_2Ph{3-OH, 4-COOMe}]$ (0.38 g, 27%); mp (MeOH) 183-185°C.

¹H NMR (CDCl₃): δ 10.80 (1H, s, OH), 8.65 (1H, s, NH), 7.67 (1H, d, J = 8.1 Hz, ArH), 7.52 (1H, d, J = 8.0 Hz, ArH), 7.27 (1H, d, J = 7.7 Hz, ArH), 7.15 (1H, ddd, J = 8.1, 7.2, 0.9 Hz, ArH), 7.01 (1H, ddd, J = 7.9, 7.2, 0.7 Hz, ArH), 6.55 (1H, d, J = 1.5 Hz, ArH), 6.52 (1H, dd, J = 8.2, 1.5 Hz, ArH), 5.10 (1H, t,

15 $J = 5.9 \text{ Hz}, N\underline{\text{H}}\text{CH}_2), 4.13 (2H, d, J = 6.0 \text{ Hz}, N\underline{\text{H}}\text{C}\underline{\text{H}}_2),$ 3.94 (3H, s, OCH₃), 2.88, 1.94 (2x2H, 2xt, J = 7.7 Hz,3-CH₂CH₂).

¹³C NMR: δ 172.12 (s, CONH), 170.39 (s, COOCH₃), 161.55, 146.95, 137.29 (3xs, Ar), 130.09 (d, Ar),

20 127.01, 125.87 (2xs, Ar), 124.39 (d, Ar), 123.79 (s, Ar), 120.16, 119.86, 118.34, 115.69, 111.37 (5xd, Ar), 111.20 (s, Ar), 52.31 (q, OCH₃), 42.82 (t, NHCH₂), 37.09 (t, 3-CH₂CH₂), 20.54 (t, 3-CH₂).

Analysis calculated for $C_{40}H_{38}N_4O_8S_2$ requires:

C, 62.7; H, 5.0; N, 7.3; S, 8.4%.

Found: C, 62.5; H, 4.9; N, 7.3; S, 8.4%.

Hydrolysis of 57 (0.28 g) with $\rm K_2CO_3$ in MeOH/water at 50°C for 5 hours, under nitrogen as above, gave an oil. Chromatography on silica gel, eluting with

EtOAc:light petroleum (1:1) containing 1% AcOH, gave 2,2'-dithiobis[N-(4-carboxy-3-hydroxybenzyl) - 3-(3-indolyl)propanamide] (58) [VI: n=2; $R_1=R_3=H$, $R_2=(CH_2)_2CONHCH_2Ph{3-OH, 4-COOH}$] (72 mg, 27%); mp (MeOH/dilute HCl) 160-163.5°C (dec).

-81-

¹H NIMR (CD₃)₂SO): δ 11.39 (1H, s, NH), 8.03 (1H, t, $J = 5.9 \text{ Hz}, N_{H}CH_{2}), 7.65 (1H, d, J = 8.1 \text{ Hz}, ArH), 7.54$ (1H, d, J = 8.0 Hz, ArH), 7.32 (1H, d, J = 8.2 Hz,ArH), 7.16 (1H, ddd, J = 8.1, 7.1, 1.0 Hz, ArH), 6.99 (1H, ddd, J = 7.8, 7.1, 0.7 Hz, ArH), 6.72 (1H, d,5 J = 1.3 Hz, ArH), 6.57 (1H, dd, <math>J = 8.2, 1.4 Hz, ArH),4.13 (2H, d, J = 5.9 Hz, NHCH₂), 2.75, 2.24 (2x2H, 2xt, $J = 7.8 \text{ Hz}, 3-\text{CH}_2\text{CH}_2$). ¹³C NMR: δ 171.70 (s, CONH), 171.47 (s, COOH), 161.04, 147.83, 137.37 (3xs, Ar), 130.08 (d, Ar), 126.51, 10 125.11 (2xs, Ar), 123.25 (d, Ar), 122.42 (s, Ar), 119.49, 118.86, 117.73, 115.09, 111.41 (5xd, Ar), 111.21 (s, Ar), 41.67 (t, NHCH₂), 36.63 (t, 3-CH₂CH₂), 20.41 (t, 3-CH₂). Analysis calculated for C38H34N4O8S2·H2O requires: 15 C, 60.3; H, 4.8; N, 7.4; S, 8.5%. Found: C, 60.2; H, 4.9; N, 7.1; S, 8.5%.

Compound 59 of Table 1

20 3-(3-Indoly1) propanoic acid [II: $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOH$] (0.95 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with $NaBH_4$ then H_2O_2 as described above, to give crude 2,2'-dithiobis[3-25 (3-indoly1) propanoic acid] [VI: n = 2; $R_1 = R_2 = H$, $R_2 = (CH_2)_2COOH$] (1.12 g) as an oil. DEPC (98%, 1.00 mL) was added to a stirred solution of this oil, triethylamine (0.84 mL) and aniline (1.55 mL) in THF (15 mL) at 0°C, then the mixture was stirred at 20°C 30 for 1 day. Dilute KOH (0.1 M, 100 mL) was added and the mixture stirred for 30 minutes (in an attempt to cleave the DEPC adduct and reform the disulfide), then the mixture extracted with CH_2Cl_2 (3 x 100 mL). Evaporation gave an oil which was partly purified by

-82-

chromatography on silica gel, eluting with EtOAc/light petroleum (2:1). The yellow disulfide was further purified by chromatography on fresh silica gel, eluting with CH₂Cl₂, then CHCl₃:EtOH (99:1), to give 2,2'-dithiobis[N-phenyl-3-(3-indolyl)propanamide] (59) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = (CH_2)_2 CONHPh$] (0.23 q. 16% overall); mp (CH₂Cl₂/benzene) 181-182.5°C (an analytical sample recrystallized from CH2Cl2/light petroleum decomposed above 114°C). ¹H NMR ((CD_3)₂CO): δ 10.52 (1H, s, NH), 8.88 (1H, s, NHPh), 7.64 (1H, d, J = 8.0 Hz, ArH), 7.56 (2H, dd, J = 7.5, 0.9 Hz, ArH), 7.37 (1H, d, J = 8.2 Hz, ArH), 7.24 (2H, dd, J = 8.4, 7.5 Hz, ArH(Ph)), 7.16 (1H, ddd, J = 8.1, 7.1, 1.1 Hz, ArH), 7.02 (2H, m, ArH), 3.04,2.54 (2x2H, 2xm, 3-CH₂CH₂). ¹³C NMR: δ 171.48 (s, CONH), 140.24, 138.80 (2xs, Ar), 129.37 (2xd, Ar), 128.17, 126.81 (2xs, Ar) 124.57, 124.02 (2xd, Ar), 123.86 (s, Ar), 120.62, 120.36 (2xd, Ar), 120.23 (2xbr d, Ar), 112.38 (d, Ar), 38.97 $(t, 3-CH_2CH_2)$ 21.39 $(t, 3-CH_2)$.

20 (t,3-CH₂CH₂) 21.39 (t, 3-CH₂).

Analysis calculated for C₃₄H₃₀N₄O₂S₂·0.5H₂O requires:

C, 68.1; H, 5.2; N, 9.4; S, 10.7%.

Found: C, 68.3; H, 5.1; N, 9.3; S, 10.9%.

25 <u>Compound 60 of Table 1</u>

5

10

15

30

DEPC (98%, 0.72 mL) was added to a stirred solution of DL-N-acetyltryptophan (1.00 g) and benzylamine (2.0 mL) in DMF (10 mL) at 0°C, then the mixture was stirred at 20°C for 16 hours. The reaction was then quenched with water and extracted with EtOAc. Evaporation gave an oil which was chromatographed on silica gel. Elution with CH_2Cl_2 and EtOAc gave firstly foreruns, then DL- α -acetylamino-N-benzyl-3-(3-indolyl)-propanamide [II: $R_1 = R_3 = H$,

-83-

 $R_2 = CH_2CH(NHAc)CONHCH_2Ph] (0.82 g, 60%);$ mp (CH₂Cl₂/light petroleum) 169-170°C. ¹H NMR ((CD_3)₂SO): δ 10.80 (1H, s, NH), 8.47 (1H, br t, J = 5.8 Hz, $N_{H}CH_{2}$), 8.08 (1H, d, J = 8.1 Hz, CHNH), 7.61 (1H, d, J = 7.8 Hz, ArH), 7.33 (1H, d, 5 J = 8.1 Hz, ArH), 7.26 (2H, dt, <math>J = 7.1, 1.5 Hz, ArH),7.20 (1H, dt, J = 7.2, 1.5 Hz, ArH), 7.13 (1H, m, H-2), 7.12 (2H, d, J = 7.2 Hz, ArH), 7.06 (1H, ddd, J = 7.9, 7.1, 0.9 Hz, ArH), 6.97 (1H, ddd, J = 7.9, 7.0, 0.9 Hz, 10 ArH), 4.57 (1H, td, J = 8.3, 5.7 Hz, 3-CH₂CH), 4.28, 4.24 (2x1H, 2xdd, J = 15.9, 5.9 Hz, NHCH₂), 3.13 (1H, dd, J = 14.4, 5.6 Hz, 3-CH), 2.93 (1H, dd, J = 14.4, 8.6 Hz, 3-CH), 1.80 (3H, s, COCH₃). ¹³C NMR: δ 171.59 (s, COCH₃), 169.02 (s, CONH), 139.18, 135.99 (2xs, Ar), 128.06 (d, 2C, Ar), 127.21 15 (s, Ar), 126.87 (d, 2C, Ar), 126.49, 123.47, 120.75, 118.39, 118.10, 111.17 (6xd, Ar), 110.11 (s, Ar), 53.53 (d, CH), 41.91 (t, NHCH₂), 27.92 (t, 3-CH₂), 22.50 (q, CH₃).

20 Analysis calculated for $C_{20}H_{21}N_3O_2$ requires: C, 71.6; H, 6.3; N, 12.5%.

Found: C, 71.5; H, 6.4; N, 12.6%.

25

30

Acidification of the aqueous portion with dilute HCl, extraction with BtOAc and evaporation gave N-acetyltryptophan (0.30 g, 30%); mp (EtOAc/light petroleum) 204-206°C.

The above α -acetamide (1.25 g) was treated with S_2Cl_2 as above, then the product mixture obtained after workup was treated successively with NaBH₄ then H_2O_2 as described above. The resulting oil was chromatographed on silica gel, eluting with CH_2Cl_2 :EtOAc (2:1) to give firstly 2,2'-thiobis[α -acetylamino-N-benzyl-3-(3-indolyl)propanamide] [VI: n=1; $R_1=R_3=H$, $R_2=CH_2CH(NHAC)CONHCH_2Ph]$ (0.30 g, 23%) as a mixture

-84-

of diastereoisomers; mp (EtOAc/light petroleum) 190-194°C.

5

20

¹H NMR ((CD₃)₂SO): δ 10.97, 10.94 (2x1H, 2xs, NH), 8.50, 8.48 (2x1H, 2xbr t, J = 5.8 Hz, NHCH₂), 8.17, 8.15 (2x1H, d, J = 8.4 Hz, CHNH), 7.63 (2x1H, d, J = 7.7 Hz, ArH), 7.3-6.9 (2x8H, m, ArH), 4.75 (2x1H, m, 3-CH₂CH), 4.27, 4.19 (4x1H, 2xdd, J = 16.1, 5.7 Hz, NHCH₂), 3.44 (2x1H, m, 3-CH), 3.18 (2x1H, m, 3-CH), 1.79 (2x3H, 2xs, COCH₂).

15 119.02, 118.98 (2xd, Ar), 118.66 (d, 2C, Ar), 115.01, 114.94 (2xs, Ar), 110.79 (d, 2C, Ar), 53.66, 53.59 (2xd, 3-CH₂CH), 42.13 (t, 2C, NHCH₂), 28.14, 28.07 (2xt, 3-CH₂), 22.52 (q, 2C, CH₃).

Analysis calculated for $C_{40}H_{40}N_6O_4S\cdot 0.5H_2O$ requires: C, 67.7; H, 5.8; N, 11.9; S, 4.5%.

Found: C, 67.7; H, 5.8; N, 11.9; S, 5.1%.

Elution with CH_2Cl_2 :EtOAc (1:2) gave 2,2'-dithiobis [α -acetylamino-N-benzyl-3-(3-indolyl)-propanamide] (60) [VI: n=2; $R_1=R_3=H$,

R₂ = $CH_2CH(NHAc)CONHCH_2Ph]$ (0.84 g, 62%) as a yellow oil (a mixture of diastereoisomers). Crystallizations from $CH_2Cl_2/light$ petroleum gave a single pair of diastereoisomers; mp 140-144°C (dec).

¹H NMR (CDCl₃): δ 9.16 (1H, s, NH), 7.51 (1H, d, J = 8.1 Hz, ArH), 7.2-7.0 (6H, m, ArH), 6.89 (2H, m, ArH), 6.76 (1H, d, J = 7.2 Hz, CHNH), 6.16 (1H, t, J = 5.8 Hz, NHCH₂), 4.64 (1H, q, J = 7.2 Hz, 3-CH₂CH), 4.20, 4.12 (2x1H, 2xdd, J = 14.8, 5.9 Hz, NHCH₂), 3.13

-85-

(1H, dd, J = 14.0, 7.1 Hz, 3-CH), 2.96 (1H, dd, J = 14.0, 7.3 Hz, 3-CH), 1.84 (3H, s, COCH₃). Analysis calculated for $C_{40}H_{40}N_6O_4S_2\cdot 0.5H_2O$ requires: C, 64.8; H, 5.5; N, 11.3; S, 8.6 %.

5 Found: C, 65.0; H, 5.4; N, 11.3; S, 8.8%.

Crystallizations from EtOAc/light petroleum gave the other pair of diastereoisomers of 60; mp 154.5-157.5°C (dec).

¹H NMR (CDCl₃): δ 9.27 (1H, s, NH), 7.42 (1H, d, J = 8.0 Hz, ArH), 7.28-7.12 (6H, m, ArH), 7.04 (1H, dd, J = 7.8, 7.0 Hz, ArH), 6.75 (2H, m, ArH), 6.45 (1H, br d, J = 7.1 Hz, CHNH), 5.90 (1H, br s, NHCH₂), 4.41 (1H, q, J = 7.4 Hz, 3-CH₂CH), 4.17 (1H, dd, J = 14.8, 6.0 Hz, NHCH), 4.08 (1H, dd, J = 14.8, 5.0 Hz, NHCH),

15 2.99 (1H, dd, J = 14.0, 6.9 Hz, 3-CH), 2.93 (1H, dd, J = 13.9, 7.6 Hz, 3-CH), 1.82 (3H, s, COCH₃).

13C NMR: δ 170.74 (s, COCH₃), 169.92 (s, CONH), 137.42, 137.28 (2xs, Ar), 128.58 (d, 2C, Ar), 127.59 (s, Ar), 127.51 (d, 2C, Ar), 127.40 (d, Ar), 126.26 (s,

20 Ar), 124.39, 120.37, 119.51 (3xd, Ar), 118.96 (s, Ar), 111.51 (d, Ar), 54.63 (d, 3-CH₂CH), 43.70 (t, NHCH₂), 28.87 (t, 3-CH₂), 23.23 (q, CH₃).

Analysis calculated for C40H40N6O4S2 requires:

C, 65.6; H, 5.5; N, 11.5; S, 8.7%.

25 Found: C, 65.4; H, 5.6; N, 11.5; S, 8.7%.

In DMSO solution, both pure diastereomers reverted to a 1:1 mixture of diastereoisomers by disulfide exchange within 3 minutes.

30 Compounds 61 and 62 of Table 1

Ethyl trifluoroacetate (1.7 mL) was added to a stirred solution of DL-tryptophan (2.3 g) and triethylamine (1.6 mL) in DMF (5 mL), then the flask was sealed and purged with nitrogen, and the mixture

-86-

stirred at 20°C for 1 day (method of Curphey TJ, <u>J. Org. Chem.</u> 1979;44:2805). Excess reagents were removed under vacuum, then triethylamine (1.9 mL) and DMF (10 mL) were added, and the mixture cooled to 0°C. 5 DEPC (98%, 2.0 mL) was added, followed by benzylamine (1.72 mL), then the mixture was stirred under nitrogen at 20°C for 1 day. The resulting solution was diluted with water (100 mL) and extracted with BtOAc (3 x 100 mL). Evaporation gave an oil which was purified by chromatography on silica gel, eluting with 10 EtOAc:light petroleum (1:1), to give DL-N-benzylα-trifluoroacetylamino-3-(3-indolyl)propanamide [II: $R_1 = R_2 = H$, $R_2 = CH_2CH(NHCOCF_2)CONHCH_2Ph$ (2.21 q, 50%); mp (EtOAc/light petroleum) 181-183°C. 15 ¹H NMR ((CD_3)₂SO): δ 10.84 (1H, s, NH), 9.65 (1H, br s, CHNH), 8.79 (1H, t, J = 5.5 Hz, NHCH₂), 7.67 (1H, d, J = 7.8 Hz, ArH), 7.34 (1H, d, J = 8.0 Hz, ArH),7.30 (2H, t, J = 7.2 Hz, ArH), 7.23 (1H, t, J = 7.3 Hz, ArH), 7.18 (2H, d, J = 7.5 Hz, ArH), 7.15 (1H, d, $J = 2.2 \text{ Hz}, \text{ H-2}, 7.07 (1H, ddd, } J = 8.0, 7.1, 0.9 \text{ Hz},$ 20 ArH), 6.98 (1H, dd, J = 7.8, 7.0 Hz, ArH), 4.63 (1H, br m, 3-CH₂CH₁, 4.32 (2H, d, J = 5.8 Hz, NHCH₂), 3.25 (1H, dd, J = 14.5, 5.0 Hz, 3-CH), 3.12 (1H, dd,J = 14.5, 9.9 Hz, 3-CH). 25 ¹³C NMR: δ 169.89 (s, CONH), 156.14, (q, $J_{CF} = 36.5 \text{ Hz}, \ \underline{C}OCF_3), \ 138.92, \ 135.97 \ (2xs, Ar),$ 128.17, 126.95 (2xd, 2x2C, Ar), 126.95 (s, Ar) 126.68, 123.77, 120.86, 118.36, 118.17 (5xd, Ar), 115.69 (q, $J_{CF} = 288 \text{ Hz}, CF_3$, 111.24 (d, Ar), 109.41 (s, Ar), 30 54.24 (d, 3-CH₂CH), 42.11 (t, NHCH₂), 27.08 (t, 3-CH₂). Analysis calculated for C₂₀H₁₈F₃N₃O₂ requires:

Found: C, 61.9; H, 4.9; N, 10.9%.

C, 61.7; H, 4.6; N, 10.8%.

-87-

Acidification of the aqueous portion with dilute HCl, then extraction with BtOAc (3 x 100 mL) and evaporation gave DL-α-trifluoroacetylamino-3-(3-indoly1) propanoic acid [II: $R_1 = R_3 = H$, $R_2 = CH_2CH(NHCOCF_3)COOH]$ (0.72 g, 21%); mp (water) 5 155-157°C (Weygand F, Geiger R, Chem. Ber. 1956;89:647 record mp 162-163°C). ¹H NMR ((CD_3)₂SO): δ 10.86 (1H, br s, NH), 9.75 (1H, br d, J = 8.0 Hz, CHNH), 7.55 (1H, d, J = 7.8 Hz, ArH), 7.34 (1H, d, J = 8.1 Hz, ArH), 7.14 (1H, d, J = 2.3 Hz, 10 H-2), 7.07 (1H, ddd, J = 8.0, 7.1, 0.9 Hz, ArH), 6.99 (1H, ddd, J = 7.9, 7.0, 0.9 Hz, ArH), 4.51 (1H, ddd,J = 10.2, 8.0, 4.2 Hz, 3-CH₂CH), 3.32 (1H, dd, J = 14.8, 4.3 Hz, 3-CH), 3.17 (1H, dd, J = 14.8, 15 10.3 Hz, 3-CH). ¹³C NMR: δ 171.64 (s, COOH), 156.23 (q, $J_{CF} = 36.5 \text{ Hz}$, COCF3), 136.01, 126.85 (2xs, Ar), 123.45, 120.93, 118.35, 117.90 (4xd, Ar), 117.09, 115.66 (g, $J_{CF} = 288 \text{ Hz}, CF_3$), 111.36 (d, Ar), 109.56 (s, Ar), 20 53.58 (d, 3- CH_2CH), 25.88 (t, 3- CH_2). The above α -trifluoroacetamide (2.15 g) was treated with S2Cl2 as above, then the product mixture obtained after workup was chromatographed directly on silica gel. Elution with CH2Cl2 and CH2Cl2:EtOAc 25 (19:1) gave foreruns, including mono- and trisulfides, then 2,2'-dithiobis[N-benzyl-α-trifluoroacetylamino-3-(3-indoly1)propanamide] (61) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = CH_2CH(NHCOCF_3)CONHCH_2Ph] (1.01 g, 44%)$ as a yellow oil (a mixture of diastereoisomers). A 30 subsample crystallized from EtOH was a single pair of diastereoisomers; mp 160-164°C (decomposed). ¹H NMR (CDCl₃): δ 8.76 (1H, s, NH), 7.57 (1H, d, $J = 8.0 \text{ Hz}, \text{ CHN}\underline{H}), 7.43 (1H, d, J = 7.9 \text{ Hz}, \text{ ArH}),$ 7.3-7.0 (6H, m, ArH), 6.75 (2H, m, ArH), 5.49 (1H, t,

-88-

 $J = 5.2 \text{ Hz}, NHCH_2$, 4.26 (1H, td, J = 7.9, 6.4 Hz, $3-CH_2CH)$, 4.14 (1H, dd, J = 14.8, 5.8 Hz, NHCH₂), 4.00 (1H, dd, J = 14.5, 4.9 Hz, NHCH₂) 2.99 (1H, dd, J = 14.0, 8.4 Hz, 3-CH), 2.77 (1H, dd, J = 14.0, 5 5.9 Hz, 3-CH). ¹³C NMR: δ 168.87 (s, CONH), 156.81 (q, $J_{CF} = 36.5 \text{ Hz}$, COCF3), 137.25, 136.61 (2xs, Ar), 128.73 (d, 2C, Ar), 127.71 (d, 3C, Ar), 126.96, 126.11 (2xs, Ar), 124.97, 120.95, 119.25 (3xd, Ar), 118.14 (s, Ar), 115.62 (q, $J_{CF} = 288 \text{ Hz}, CF_3), 111.49 (d, Ar), 54.67 (d, 3-CH₂CH),$ 10 44.02 (t, NHCH₂), 28.22 (t, 3-CH₂). Analysis calculated for C40H34F6N6O4S2.0.5H2O requires: C, 56.5; H, 4.1; N, 9.9; S, 7.5%. Found: C, 56.6; H, 4.3; N, 9.8; S, 7.6%. The trifluoroacetamide disulfide (61) (0.80 g) was 15 treated with excess NaBH4 at 20°C as above, then the resulting oil was chromatographed on alumina. with CHCl3:EtOH (99:1) gave foreruns, then elution with $CHCl_3: EtOH (98:2)$ gave 2,2'-dithiobis[α -amino-N-benzyl-20 3-(3-indoly1)propanamide] (62) [VI: n = 2; $R_1 = R_3 = H$, $R_2 = CH_2CH(NH_2)CONHCH_2Ph$] (0.14 g, 22%); mp (CH₂Cl₂/light petroleum) 147-150°C (decomposed). ¹H NMR ((CD_3)₂SO): δ 11.56 (1H, s, NH), 8.18 (1H, t, $J = 5.8 \text{ Hz}, \text{ NHCH}_2), 7.61 (1H, d, <math>J = 7.8 \text{ Hz}, \text{ArH}), 7.36$ 25 (1H, d, J = 8.1 Hz, ArH), 7.33-6.95 (7H, m, ArH), 4.23,4.13 (2x1H, 2xdd, J = 15.2, 5.8 Hz, NHCH₂), 3.41 (1H, br m, 3-CH₂CH), 2.93 (1H, dd, J = 13.7, 4.9 Hz, 3-CH), 2.64 (1H, br m, 3-CH), 1.7 (2H, br s, NH₂). ¹³C NMR: δ 174.12 (s, CONH), 139.13, 137.38 (2xs, Ar), 30 128.06, 127.02 (2xd, 2x2C, Ar), 126.95, 126.71 (2xs, Ar), 126.51, 123.19, 119.62 (3xd, Ar), 119.18 (s, Ar), 118.87, 111.39 (2xd, Ar), 55.57 (d, 3-CH₂CH), 41.90 (t,

 $NHCH_2$), 30.58 (t, 3- CH_2).

-89-

Analysis calculated for $C_{36}H_{36}N_6O_2S_2 \cdot 0.5H_2O$ requires: C, 65.8; H, 5.6; N, 12.8%. Found: C, 65.8; H, 5.8; N, 12.6%.

5 <u>Compound 63 of Table 1</u>

10

15

20

25

Acetyl chloride (0.50 mL, 7.0 mmol) was added to a stirred solution of DL-3-(3-indolyl)lactic acid (1.00 g, 14.3 mmol) and Et₃N (2 mL, 14.3 mmol) in THF (5 mL) at 0°C. The mixture was stirred at 0°C for 7 hours, then at 20°C for 15 hours, quenched with water (100 mL), acidified with dilute HCl (to pH 2), then extracted with EtOAc (3 x 100 mL). Evaporation gave crude (ca. 90% pure) DL-α-acetoxy-3-(3-indoly1)propanoic acid [II: $R_1 = R_3 = H$, $R_2 = CH_2CH(OAc)COOH$] (1.30 g) as an oil which was used directly. ¹H NMR ((CD_3)₂SO): δ 10.88 (1H, s, NH), 7.54 (1H, d, J = 7.8 Hz, ArH), 7.33 (1H, d, <math>J = 8.0 Hz, ArH), 7.17(1H, br s, H-2), 7.06 (1H, dd, J = 8.0, 7.1 Hz, ArH),6.99 (1H, t, J = 7.4 Hz, ArH), 5.06 (1H, dd, J = 7.3, 4.9 Hz, 3-CH₂CH₂), 3.22 (1H, dd, J = 15.1, 4.5 Hz, 3-CH), 3.16 (1H, dd, J = 15.0, 7.7 Hz, 3-CH), 2.00 (3H, s, COCH₃). ¹³C NMR: δ 170.87, 169.96 (2xs, COOH, OCOCH₃), 136.04, 127.28 (2xs, Ar), 123.84, 120.94, 118.43, 118.33, 111.39 (5xd, Ar), 108.90 (s, Ar), 72.70 (d, 3-CH₂CH), 26.75 (t, 3-CH₂), 20.54 (q, CH₃).

Found: 247.0848.

The above α-O-acetate (1.30 g of 90%, 4.4 mmol) and Et₃N (0.88 mL, 6.3 mmol) in DMF (10 mL) at 0°C was treated sequentially with DEPC (0.91 mL of 98%, 5.9 mmol) and benzylamine (0.69 mL, 6.3 mmol), and the mixture was stirred under nitrogen at 20°C for

HREIMS m/z calculated for $C_{13}H_{13}NO_4$:

247.0845 (M⁺).

-90-

18 hours. Workup and chromatography on silica gel, eluting with EtOAc/light petroleum (1:2 then 1:1) gave DL- α -acetoxy-N-benzyl-3-(3-indolyl)propanamide [II: $R_1=R_3=H,\ R_2=CH_2CH(OAc)CONHCH_2Ph]$ (0.29 g, 18%) as an oil.

¹H NMR (CDCl₃): δ 8.05 (1H, s, NH), 7.60 (1H, d, J = 7.9 Hz, ArH), 7.37 (1H, dt, J = 8.1, 0.9 Hz, ArH), 7.26-7.21 (3H, m, ArH), 7.20 (1H, ddd, J = 8.1, 7.0, 1.1 Hz, ArH), 7.12 (1H, ddd, J = 8.0, 7.0, 1.0 Hz,

- 10 ArH), 6.97 (1H, d, J = 2.4 Hz, H-2), 6.94 (2H, m, ArH), 6.07 (1H, t, J = 5.8 Hz, $N\underline{H}CH_2$), 5.47 (1H, t, J = 5.4 Hz, 3- $CH_2C\underline{H}$), 4.38 (1H, dd, J = 14.9, 6.1 Hz, $NHC\underline{H}$), 4.29 (1H, dd, J = 14.9, 5.5 Hz, $NHC\underline{H}$), 3.41 (2H, d, J = 5.5 Hz, 3- CH_2), 2.06 (3H, s, $COCH_3$).

HREIMS m/z calculated for $C_{20}H_{20}N_2O_3$: 336.1474 (M⁺).

Found: 336.1471.

5

Unreacted α-acetoxy-3-(3-indoly1)propanoic acid (0.68 g, 52%) was also recovered.

Alternative Preparation of Above Acetoxypropanamide

A solution of SnCl₄ (5.4 mL, 46 mmol) in CCl₄ (50 mL) was added dropwise to a stirred solution of indole (5.4 g, 46 mmol) and N-benzyl-2,3-epoxypropanamide (Dolzani L, Tamaro M, Monti-Bragadin C, Cavicchionz G, Vecchiati G, D'Angeli F, <u>Mutation Res.</u> 1986;172:37) (14 g of 85%, 67 mmol) in CCl₄ (100 mL) at -5°C (method of

5

10

15

20

25

30

Entzeroth M, Kunczik T, Jaenicke L, Liebig's Ann. Chim. 1983:226). The mixture was stirred at 20°C for 16 hours, then diluted with CHCl3 (100 mL) and 10% NaHCO3 (250 mL) and stirred vigorously for 4 hours. The aqueous portion was separated and extracted with $\mathrm{CH_{2}Cl_{2}}$ (2 x 100 mL), and the combined organic extracts were washed with water, dried, and the solvents removed. The resulting oil was chromatographed on silica gel, eluting with CH₂Cl₂/light petroleum (1:1) to yield unreacted indole (1.27 g, 24%). Elution with CH₂Cl₂ gave mixtures, then CH₂Cl₂/EtOAc (4:1) gave a crude product. This was crystallized successively from CH₂Cl₂/light petroleum, then CH₂Cl₂/benzene/light petroleum to give DL-N-benzyl- α -hydroxy-3-(3-indolyl)propanamide [II: $R_1 = R_3 = H$, $R_2 = CH_2CH(OH)CONHCH_2Ph$] (0.70 g, 5%); mp 127-128.5°C. ¹H NMR ((CD₃)₂SO): δ 10.79 (1H, s, NH), 8.20 (1H, t, $J = 6.2 \text{ Hz}, NHCH_2), 7.56 (1H, d, J = 7.8 \text{ Hz}, ArH), 7.34$ (1H, d, J = 8.1 Hz, ArH), 7.24 (2H, m, ArH), 7.19 (1H,m, ArH), 7.12 (1H, d, J = 2.3 Hz, H-2), 7.10 (1H, m, ArH), 7.05 (1H, ddd, J = 8.0, 7.0, 1.0 Hz, ArH), 6.96 (1H, ddd, J = 7.9, 7.0, 0.9 Hz, ArH), 5.54 (1H, d, J = 5.7 Hz, OH), 4.26 (2H, d, J = 6.2 Hz, NHCH₂), 4.19 (1H, ddd, J = 7.5, 5.7, 4.3 Hz, 3-CH₂CH), 3.14 (1H, dd, J = 14.5, 4.1 Hz, 3-CH), 2.91 (1H, dd, J = 14.5, 7.6 Hz, 3-CH). ¹³C NMR: δ 173.59 (s, CONH), 139.40, 135.93 (2xs, Ar), 128.00 (d, 2C, Ar), 127.60 (s, Ar), 126.95 (d, 2C, Ar), 126.42, 123.58, 120.56, 118.60, 117.97, 111.05 (6xd, Ar), 110.53 (s, Ar), 71.86 (d, 3- CH_2CH), 41.60 (t, $NHCH_2$), 30.33 (t, 3- CH_2).

Analysis calculated for $C_{18}H_{18}N_2O_2 \cdot 0.25H_2O$ requires:

Found: C, 72.4; H, 6.0; N, 9.3%.

C, 72.4; H, 6.2; N, 9.4%.

-92-

This α -hydroxypropanamide (0.62 g, 2.1 mmol) was stirred with pyridine (1.5 mL, 18.5 mmol) and Ac_2O (1.7 mL, 18.0 mmol) at 20°C for 17 hours. The mixture was partitioned between water and CH_2Cl_2 , and worked up to give a quantitative yield of $DL-\alpha$ -acetoxy-N-benzyl-3-(3-indolyl)propanamide [II: $R_1=R_3=H$, $R_2=CH_2CH(OAc)CONHCH_2Ph]$.

5

 $R_2 = CH_2CH(OAc)CONHCH_2Ph]$. This compound (1.07 g) was treated with S_2Cl_2 as above, and the resulting product mixture 10 chromatographed on silica gel, eluting with CH₂Cl₂/EtOAc (19:1), to give firstly 2,2'-thiobis-[α-acetoxy-N-benzyl-3-(3-indolyl)propanamide] [VI: n = 1, $R_1 = R_3 = H$, $R_2 = CH_2CH(OAc)CONHCH_2Ph$] (0.19 g, 17%) as a mixture of diastereoisomers; 15 mp (MeOH/dilute HCl) 105-109°C. ¹H NMR (CDCl₃): δ 10.09, 10.06 (2x1H, 2xs, NH), 7.61, 7.60 (2x1H, 2xd, J = 7.9 Hz, ArH), 7.24 (2x1H, d, J = 8.2 Hz, ArH), 7.14-7.00 (2x5H, m, ArH), 6.78, 6.70(2x2H, 2xm, ArH), 6.27, 6.26 (2x1H, 2xt, J = 5.8 Hz,20 $NHCH_2$), 5.72 (1H, dd, J = 7.0, 6.0 Hz, 3-CH₂CH), 5.69 (1H, t, J = 6.1 Hz, 3-CH₂CH), 4.30, 4.27 (2x1H, 2xdd, J = 15.0, 5.8 Hz, NHCH), 4.23, 4.21 (2x1H, 2xdd, $J = 15.0, 5.4 \text{ Hz}, \text{ NHC}_{\underline{H}}), 3.67 \text{ (1H, dd, } J = 14.5,$ 7.0 Hz, 3-CH), 3.65 (1H, dd, J = 14.7, 5.8 Hz, 3-CH), 3.60 (1H, dd, J = 14.7, 6.3 Hz, 3-CH), 3.53 (1H, dd, 25 J = 14.5, 6.0 Hz, 3-CH) 2.12, 2.11 (2x3H, 2xs, COCH₃). ¹³C NMR (CDCl₃): δ 169.87, 169.73 (2xs, 2x2C, COCH₃, CONH), 137.09, 137.03, 136.70, 136.65 (4xs, Ar),

128.60, 128.56 (2xd, 2x2C, Ar), 127.48, 127.44 (2xd, Ar), 127.43, 127.39 (2xs, Ar), 127.31, 127.28 (2xd, 2x2C, Ar), 125.47, 125.40 (2xs, Ar), 122.95, 122.93 (2xd, Ar), 119.64 (d, 2C, Ar), 119.07, 118.88 (2xd, Ar), 113.92, 113.70 (2xs, Ar), 111.32 (d, 2C, Ar),

-93-

73.99, 73.77 (2xd, 3-CH₂CH), 43.31 (t, 2C, NHCH₂), 28.00 (t, 2C, 3-CH₂), 21.19, 21.13 (2xq, CH₃). Analysis calculated for C₄₀H₃₈N₄O₂S) requires: C, 68.4; H, 5.4; N, 8.0; S, 4.6%. 5 Found: C, 68.2; H, 5.6; N, 8.0; S, 4.8%. Elution with CH₂Cl₂/EtOAc (9:1) gave 2,2'-dithiobis $[\alpha$ -acetoxy-N-benzyl-3-(3-indolyl)propanamide] (63) [VI: n = 2, $R_1 = R_3 = H$, $R_2 = CH_2CH(OAc)CONHCH_2Ph$] (0.76 g, 65%) as a yellow oil 10 (mixture of diastereoisomers). A subsample crystallized from CH2Cl2/dilute HCl as a single pair of diastereoisomers; mp 120-124°C (dec). ¹H NMR (CDCl₃): δ 8.64 (1H, s, NH), 7.60 (1H, d, J = 7.9 Hz, ArH), 7.27-7.15 (4H, m, ArH), 7.12, 7.1115 (2x1H, 2xt, J = 8.1 Hz, ArH), 6.91 (2H, m, ArH), 6.12(1H, t, J = 5.6 Hz, $NHCH_2$), 5.41 (1H, t, J = 6.2 Hz, $3-CH_2CH_2$, 4.30, 4.24 (2x1H, 2xdd, J = 14.8, 5.71 Hz, $NHCH_2$), 3.31 (1H, dd, J = 14.5, 5.8 Hz, 3-CH), 3.17 (1H, dd, J = 14.5, 6.6 Hz, 3-CH), 1.99 (3H, s, COCH₃).¹³C NMR (CDCl₃): δ 169.65, 168.96 (2xs, CONH, COCH₃), 20 137.50, 137.05 (2xs, Ar), 128.63 (d, 2C, Ar), 127.81 (s, Ar), 127.68 (d, 2C, Ar), 127.49 (d, Ar), 126.85 (s, Ar), 124.30, 120.30, 120.03 (3xd, Ar), 117.87 (s, Ar), 111.33 (d, Ar), 74.06 (d, 3- CH_2CH), 43.30 (t, NHCH₂), 25 27.45 (t, 3-CH₂), 21.18 (q, CH₂).

30 <u>Compound 64 of Table 1</u>

Hydrolysis of 63 with excess KHCO₃ in aqueous MeOH at 20°C for 2 hours gave 2,2'-dithiobis[α -hydroxy-N-(phenylmethyl)-1H-indole-3-propanamide] (64) [II: $R_1 = R_3 = H$, $R_2 = Ch_2CH(OH)COOH$] as an oil

Analysis calculated for C40H38N4O2S2 requires:

Found: C, 65.2; H, 5.2, N, 7.8; S, 8.8%.

C, 65.4; H, 5.2; N, 7.6; S, 8.7%.

-94-

(mixture of diastereomers) in essentially quantitative yield. Crystallization from CH₂Cl₂/light petroleum gave a single pair of diastereomers (66% yield); mp 120-125°C.

- 1 H NMR (CDCl₃): δ 7.61 (1H, d, J = 8.0 Hz, ArH),
 7.33-7.17 (5H, m, ArH), 7.12 (2H, dd, J = 7.8, 1.5 Hz,
 ArH), 7.09 (1H, ddd, J = 8.1, 5.4, 2.7 Hz, ArH), 6.80
 (1H, t, J = 5.8 Hz, NHCH₂), 4.33, 4.27 (2x1H, 2xdd,
 J = 14.8, 5.9 Hz, NHCH₂), 3.78 (1H, ddd, J = 9.5, 5.4,
- 10 3.4 Hz, 3-CH₂CH), 3.30 (1H, d, J = 5.4 Hz, OH), 3.24 (1H, dd, J = 14.4, 3.4 Hz, 3-CH), 2.88 (1H, dd, J = 14.3, 9.5 Hz, 3-CH).

Analysis calculated for $C_{36}H_{34}N_4O_4S_2$ requires:

C, 66.1; H, 5.3; N, 8.6; S, 9.6%.

15 Found: C, 66.5; H, 5.2; N, 8.6; S, 9.8%

EXAMPLE C

Preparation of Compounds 5 and 33 of Table 1 by the Method Outlined in Scheme 3

1-Methyl-2-indolinone [VII: $R_1 = H$, $R_3 = Me$] was 20 condensed with diethyl oxalate in NaOEt/EtOH, to give ethyl 1-methyl isatylidenehydroxyacetate $R_1 = H$, $R_3 = Me$, R = COOEt] (82% yield); mp 62-64°C (according to the method of Porter JC, 25 Robinson R, Wyler M, J. Chem. Soc. 1941:620, who report mp 81°C). The above acetate [VIII: $R_1 = H$, $R_3 = Me$, R = COOEt] (2.30 g) was hydrogenated in glacial AcOH (150 mL) containing concentrated H₂SO₄ (1 mL) and 5% Pd/C catalyst (5 g) for 1 day. The reaction mixture 30 was filtered onto NaOAc (4 g) and the solvent removed under reduced pressure. The residue was partitioned between CH2Cl2 and water, then the aqueous phase re-extracted with CH2Cl2. The CH2Cl2 extracts were

combined, washed with water, the solvent removed, and

the residue was chromatographed on silica gel. Elution with CH_2Cl_2 gave ethyl 2-(1-methyl-2-oxo-3-indolinyl)-acetate [III: $R_1 = H$, $R_2 = CH_2COOEt$, $R_3 = Me$] as an oil (1.23 g, 57%).

- 10 J = 16.8, 4.4 Hz, $CH_2CO)$, 2.78 (1H, dd, J = 16.8, 8.1 Hz, $CH_2CO)$, 1.20 (3H, t, J = 7.1 Hz, OCH_2CH_3).

 13C NMR ($CDCl_3$): δ 176.72 (s, $CONCH_3$), 171.02 ($COOCH_2$)

 144.35 (s, ArH), 128.27 (d, ArH), 128.18 (s, ArH), 123.80, 122.45, 108.01 (3xd, ArH), 60.85 (t, OCH₂),
- 15 41.83 (d, C-3), 34.94 (t, $\underline{C}H_2CO$), 26.28 (q, $\underline{N}CH_3$), 14.05 (q, $\underline{O}CH_2\underline{C}H_3$).

The above oxoacetate [III: $R_1 = H$, $R_2 = CH_2COORt$, $R_3 = Me$] was treated with P_2S_5 as described in Example A, then chromatographed on silica gel, with

- CH₂Cl₂/light petroleum (3:2) eluting ethyl 2-(1-methyl-2-thioxo-3-indolinyl)acetate [IV: R_1 = H, R_2 = CH₂COOEt, R_3 = Me] (5) (90% yield); mp (benzene/light petroleum) 47-48°C.

 ¹H NMR (CDCl₃): δ 7.35 (2H, m, ArH), 7.16 (1H, td,
- J = 7.5, 0.8 Hz, ArH), 7.01 (1H, dd, J = 7.7, 1.0 Hz, ArH), 4.15 (2H, q, J = 7.1 Hz, COOCH₂), 4.14 (1H, m, H-3), 3.65 (3H, s, NCH₃), 3.39 (1H, dd, J = 17.0, 4.1 Hz, CH₂CO), 2.83 (1H, dd, J = 17.0, 8.6 Hz, CH₂CO), 1.22 (3H, t, J = 7.1 Hz, OCH₂CH₃).
- 30 ¹³C NMR (CDCl₃): δ 204.35 (s, <u>C</u>SNCH₃), 171.11 (s, <u>C</u>OOCH₂), 145.73, 133.01 (2xs, ArH), 128.39, 124.34, 123.94, 109.46 (4xd, ArH), 60.85 (t, OCH₂), 53.44 (d, C-3), 38.66 (t, <u>C</u>H₂CO), 31.52 (q, NCH₃), 14.13 (q, OCH₂CH₃).

-96-

Analysis calculated for C13H15NO2S requires:

C, 62.7; H, 6.0; N, 5.6; S, 12.9%.

Found: C, 62.5; H, 6.2; N, 5.6; S, 12.8%.

A solution of crude 5 in EtOH was exposed to air for 2 weeks, during which time bis[ethyl 1-methylindolyl-3-acetate-(2)]disulfide [V: R_1 = H, R_2 = CH₂COOEt, R_3 = Me] (33) slowly separated as yellow needles (0.18 g, 26%); mp 117-119°C.

¹H NMR (CDCl₃): δ 7.53 (1H, dt, J = 8.0, 0.8 Hz, ArH), 7.30 (1H, ddd, J = 8.3, 6.3, 1.1 Hz, ArH), 7.27 (1H, ddd, J = 8.1, 1.6, 0.7 Hz, ArH), 7.12 (1H, ddd, J = 8.0, 6.2, 1.8 Hz, ArH), 3.96 (2H, q, J = 7.1 Hz, COOCH₂), 3.54 (3H, s, NCH₃), 3.38 (2H, s, CH₂CO), 1.14

(3H, t, J = 7.1 Hz, OCH_2CH_3). 15 ^{13}C NMR ($CDCl_3$): δ 171.06 (s, $COOCH_2$), 138.45, 128.42, 126.47 (3xs, ArH), 124.33, 120.20, 120.07 (3xd, ArH), 117.59 (s, ArH), 109.93 (d, ArH), 60.70 (t, OCH_2), 30.99 (t, CH_2CO), 29.97 (q, NCH_3), 14.13 (q, OCH_2CH_3).

Analysis calculated for C26H28N2O4S2 requires:

C, 62.9; H, 5.7; N, 5.7; S, 12.9%. Found: C, 62.7; H, 5.6; N, 5.6; S, 13.0%.

Compounds 10 and 38 of Table 1

10

20

Similar reactions on 2-indolinone [VII:

R₁ = R₃ = H], using diethyl malonate, gave ethyl
3-(2-oxo-3-indolinyl)propanoate [III: R₁ = R₃ = H,
R₂ = (CH₂)₂COOE] (Julian PL, Printy HC, <u>J. Am. Chem.</u>
Soc. 1953;75:5301). Reaction of this with P₂S₅ as described in Example A, followed by chromatography on silica gel, elution with CH₂Cl₂, and crystallization from benzene/light petroleum over 2 days, gave bis[ethyl indolyl-3-propanoate-(2)]disulfide
[V: R₁ = R₃ = H, R₂ = (CH₂)₂COOEt] (38) (18% yield); mp 137-139°C.

-97-

5

10

Treatment of the mother liquors with NaBH₄ gave ethyl 3-(2-thioxo-3-indolinyl) propanoate [IV:

- 15 $R_1 = R_3 = H$, $R_2 = (CH_2)_2COOEt$] (10) (56% yield) as an oil.
 - ¹H NMR (CDCl₃): δ 10.40 (1H, s, NH), 7.31 (1H, d, J = 7.4 Hz, ArH), 7.27 (1H, td, J = 7.8, 0.7 Hz, ArH), 7.14 (1H, td, J = 7.5, 0.7 Hz, ArH), 7.01 (1H, d,
- J = 7.8 Hz, ArH), 4.07, 4.03 (2x1H, 2xdq, J = 10.8, 7.1 Hz, COOCH₂), 3.91 (1H, t, J = 5.4 Hz, H-3), 2.52 (2H, m, CH_2CH_2CO), 2.41 (1H, ddd, J = 15.8, 9.9, 5.9 Hz, CH_2CO), 2.10 (1H, ddd, J = 15.8, 9.1, 6.7 Hz, CH_2CO), 1.20 (3H, t, J = 7.1 Hz, OCH_2CH_3).
- 25 ¹³C NMR (CDCl₃): δ 207.31 (s, CSNH), 172.96 (s, COOCH₂), 143.31, 133.15 (2xs, ArH), 128.40, 124.34, 124.07, 110.04 (4xd, ArH), 60.55 (t, OCH₂), 56.44 (d, C-3), 29.56, 28.16 (2xt, (CH₂)₂CO), 14.15 (q, OCH₂CH₃). Analysis calculated for C₁₃H₁₅NO₂S requires:
- 30 C, 62.6; H, 6.1; N, 5.6; S, 12.9%. Found: C, 62.3; H, 5.9; N, 5.6; S, 12.6%.

-98-

Compounds 12 of Table 1

Similar treatment of 1-methyl-2-indolinone, using diethyl malonate, and subsequent thiation, gave ethyl 3-(1-methyl-2-thioxo-3-indolinyl)propanoate [IV:

- 5 $R_1 = H$, $R_2 = (CH_2)_2COOEt$, $R_3 = Me$] (12); mp (benzene/light petroleum) 61-63°C. ¹H NMR (CDCl₃): δ 7.35 (2H, m, ArH), 7.20 (1H, t, J = 7.5 Hz, ArH), 7.00 (1H, d, J = 7.8 Hz, ArH), 4.05, 4.02 (2x1H, 2xdq, J = 10.8, 7.1 Hz, COOCH₂), 3.92 (1H,
- 10 t, J = 5.4 Hz, H-3), 3.63 (3H, s, NCH₃), 2.53 (2H, td, J = 8.0, 5.4 Hz, $C\underline{H}_2CH_2CO$), 2.32, 2.01 (2x1H, 2xtd, J = 16.0, 8.0 Hz, $C\underline{H}_2C\underline{H}_2CO$), 1.19 (3H, t, J = 7.1 Hz, $C\underline{H}_2C\underline{H}_3$).

13C NMR (CDCl₃): δ 204.85 (s, <u>C</u>SNCH₃), 172.87 (s, <u>C</u>OOCH₂), 145.89, 132.44 (2xs, ArH), 128.37, 124.30, 124.00, 109.49 (4xd, ArH), 60.43 (t, OCH₂), 56.29 (d, C3), 31.35 (q, NCH₃), 29.53, 28.46 (2xt, CH₃CH₂CO), 14.15 (q, OCH₂CH₃).

Analysis calculated for C14H17NO2S requires:

20 C, 63.9; H, 6.5; N, 5.3; S, 12.2%. Found: C, 64.1; H, 6.7; N, 5.4; S, 12.0%.

Compounds 41 and 42 of Table 1

Similar treatment of 5-methyl-2-indolinone

[VII: R₁ = 5-Me, R₃ = H] gave bis[ethyl
5-methylindolyl-3-propanoate-(2)]disulfide [V:
R₁ = 5-Me, R₂ = (CH₂)₂COORt, R₃ = H] (42) as a yellow solid; mp (benzene/petroleum ether) 138.5-139°C.

1H NMR (CDCl₃): 8.10 (1H, s, NH), 7.32 (1H, d,

J = 0.6 Hz, H-4), 7.15 (1H, d, J = 8.3 Hz, H-7), 7.06 (1H, dd, J = 8.3, 1.4 Hz, H-6), 4.03 (2H, q,
J = 7.2 Hz, CH₂CH₃), 3.02-2.85 (2H, m, CH₂CH₂CO₂),

2.51-2.36 (2H, m, CH₂CH₂CO₂), 2.43 (3H, s, ArCH₃), 1.18 (3H, t, J = 7.2 Hz, CH₂CH₃).

-99-

13C NMR (CDCl₃): δ 173.1 (CO₂Et), 135.6, 129.3, 127.4, 125.9, 122.3 (C-2,3,5,8,9), 126.0, 119.1, 110.9 (C-4,6,7), 60.4 (OCH₂CH₃), 35.2 (CH₂CH₂CO₂), 21.5 (ArCH₃), 20.3 (CH₂CH₂CO₂), 14.1 (OCH₂CH₃).

Analysis calculated for C₂₈H₃₂N₂O₄S₂·0.5C₆H₆ requires: C, 66.1; H, 6.3; N, 5.0; S, 11.4%.

Found: C, 66.2; H, 6.4; N, 5.0; S, 11.7%.

Ester hydrolysis of 42 as above gave bis[5-methylindolyl-3-propanoic acid-(2)]disulfide [V: R₁ = 5-Me, R₂ = (CH)₂CO₂H, R₃ = H] (41) as orange-brown prisms; mp (CH₂Cl₂/petroleum ether) 91.5-95°C.

¹H NMR (CDCl₃): δ 7.98 (1H, s, NH), 7.33 (1H, s, H-4), 7.14 (1H, d, J = 8.4 Hz, H-7), 7.07 (1H, dd, J = 8.4,

1.3 Hz, H-6), 2.98 (2H, t, J = 7.5 Hz, $CH_2CH_2CO_2$), 2.56 (2H, t, J = 7.5 Hz, $CH_2CH_2CO_2$), 2.43 (3H, s, ArCH₃). HREIMS m/z calculated for $C_{24}H_{24}N_2O_4S_2$ requires: 235.06670.

Found: m/z 235.06639.

20

5

10

Compounds 43 and 44 of Table 1

Similar treatment of 6-methyl-2-indolinone [VII: $R_1 = 6$ -Me, $R_3 = H$] gave bis[ethyl 6-methylindolyl-3-propanoate-(2)]disulfide [V:

25 $R_1 = 6$ -Me, $R_2 = (CH_2)_2 COOEt$, $R_3 = H$ (44) as a yellow solid; mp 122-123.5°C.

¹H NMR (CDCl₃): δ 8.06 (1H, s, NH), 7.43 (1H, d, J = 8.2 Hz, H-4), 7.03-7.00 (1H, m, H-7), 6.97-6.92

(1H, m, H-5), 4.02 (2H, q, J = 7.2 Hz, CH₂CH₃),

30 2.98-2.91 (2H, m, CH_2CH_2CO), 2.48-2.42 (2H, m, CH_2CH_2CO), 2.44 (3H, s, ArHMe), 1.17 (3H, t, J = 7.2 Hz, CH_2CH_3).

¹³C NMR (CDCl₃): δ 173.0 (CO₂Et), 137.7, 134.3, 125.2, 125.0, 122.9 (C-2,3,6,8,9), 121.9, 119.3 (C-4,5,7),

-100-

60.3 (OCH₂CH₃), 35.2 (CH₂CH₂CO₂), 21.8 (ArCH₃), 20.3 (CH₂CH₂CO₂), 14.1 (OCH₂CH₃).

Analysis calculated for $C_{28}H_{32}N_2O_4S_2$ requires:

C, 64.1; H, 6.2; N, 5.3; S, 12.2%.

5 Found: C, 64.1; H, 6.2; N, 5.4; S, 12.0%.

Ester hydrolysis of the above as above gave bis[methylindolyl-3-propanoate-(2)]disulfide [V: $R_1 = 6$ -Me, $R_2 = (CH_2)_2COOEt$, $R_3 = H$] (43) as yellow microcrystals; mp (CH_2Cl_2 /petroleum ether) 126-128°C.

15 C, 60.4; H, 5.9; N, 5.9%.

Found: C, 60.2; H, 5.3; N, 5.9%.

Compounds 45 and 46 of Table 1

Similar treatment of 7-methyl-2-indolinone [VII: $R_1 = 7$ -Me, $R_3 = H$] gave bis[ethyl 7-methylindolyl-3-propanoate-(2)]disulfide [V: $R_1 = 7$ -Me, $R_2 = (CH_2)_2 COORt$, $R_3 = H$] (46) as a yellow solid; mp (benzene/petroleum ether) 120-122.5°C.

¹H NMR (CDCl₃): δ 8.23 (1H, s, NH), 7.38 (1H, d,

- 25 J = 7.4 Hz, ArH), 7.00 (1H, t, J = 7.3 Hz, H-5), 6.94 (1H, d, J = 6.3 Hz, ArH), 4.02 (2H, q, J = 7.2 Hz, CH₂CH₃), 3.16 (2H, t, J = 7.5 Hz, CH₂CH₂CO₂), 2.71 (2H, t, J = 7.5 Hz, CH₂CH₂CO₂), 1.96 (3H, s, ArCH₃), 1.23 (3H, t, J = 7.2 Hz, CH₂CH₃).
- ¹³C NMR (CDCl₃): δ 173.6 (CO₂Et), 136.9, 127.0, 124.8, 122.9, 121.0 (C-2,3,7,8,9), 124.3, 120.0, 117.0 (C-4,5,6), 60.6 (OCH₂CH₃), 35.3 (CH₂CH₂CO₂), 20.9 (CH₂CH₂CO₂), 16.0 (ArCH₃), 14.1 (OCH₂CH₃).

-101-

Analysis calculated for C28H32N2O4S2 requires:

C, 64.1; H, 6.2; N, 5.3; S, 12.2%.

Found: C, 64.2; H, 6.4; N, 5.4; S, 12.0%.

Ester hydrolysis of 46 as above gave bis[7-methylindolyl-3-propanoic acid-(2)]disulfide [V: R_1 = 7-Me, R_2 = $(CH_2)_2CO2H$, R_3 = H] (45) as green needles; mp (AcOH/petroleum ether) 172.5-175°C.

¹H NMR ((CD3)_2CO): δ 10.37 (1H, br s, NH), 7.45 (1H, d, J = 7.0 Hz, ArH), 7.03-6.95 (2H, m, ArH), 3.01-2.94 (2H, m, CH₂CH₂CO₂), 2.50-2.42 (2H, m, CH₂CH₂CO₂), 2.49 (3H, s, ArCH₃).

Analysis calculated for C24H24N2O4S2 requires:

C, 61.5; H, 5.2; N, 6.0%.

Found: C, 61.3; H, 5.1; N, 6.0%.

15

10

5

EXAMPLE D

<u>Preparation of Compounds 21-23 and 70 of Table 1 by the Method Outlined in Scheme 4</u>

Powdered Na_2CO_3 (0.70 g, 6.61 mmol) was added to a suspension of P_2S_5 (2.93 g, 6.61 mmol) in THF (40 mL) and the mixture was stirred vigorously at 20°C until homogeneous, and gas evolution had ceased (15 minutes). A solution of 1-methyl-2-indolinone [VII: $R_1 = R_3 = Me$] (0.80 g, 5.50 mmol) in THF (10 mL) was added and stirring was continued for 18 hours. After pouring into brine, the mixture was extracted into EtOAc, worked up, and chromatographed on silica. Elution with EtOAc/petroleum ether (1:4) gave 1-methyl-2-indolinethione [IX: $R_1 = R_3 = Me$] (0.71 g,

30 87%); mp 108-109°C (Hino T, Tsuneoka K, Nakagawa M, Akaboshi S, <u>Chem. Pharm. Bull.</u> 1969;17:550 record 109-111°C).

A solution of the above 1-methyl-2-indolinethione. (4.1 g) in THF (150 mL) was treated dropwise over

-102-

15 minutes with an ice-cooled suspension of NaH (57%, 1.4 g) in THF (100 mL). The mixture was stirred for 30 minutes, then a solution of phenyl isocyanate (3.5 g) in THF (50 mL) was added, and stirring continued for 3 hours at 20°C. The solvent was removed 5 under vacuum, then the residue decomposed with ice-HCl, and extracted in CH2Cl2. Removal of the solvent gave an oil (6.0 g), which crystallized from ether. recrystallizations from THF-ether gave N-phenyl 10 (1-methyl-2-thioxo-3-indolinyl) carboxamide [IV: $R_1 = H$, $R_2 = CONHPh$, $R_3 = Me$] (21) (2.8 g, 39%) as a pale yellow solid; mp 149-151°C. ¹H NMR (CDCl₂): δ 10.36 (1H, s, NH), 7.87 (1H, d, J = 7.4 Hz, ArH), 7.60 (2H, d, J = 7.9 Hz, ArH), 7.41 (2H, t, J = 7.5 Hz, ArH), 7.31 (2H, m, ArH), 7.11 (1H,15 t, J = 7.3 Hz, ArH), 7.03 (1H, d, J = 7.8 Hz, ArH),3.73 (3H, s, NCH₃).

Analysis calculated for C16H14N2OS requires:

C, 68.1; H, 5.1; N, 9.9; S, 11.4%.

20 Found: C, 67.8; H, 5.1; N, 9.8; S, 11.4%.

25

30

A solution of 21 (200 mg) in $CH_2Cl_2/MeOH$ (2:1) (30 mL) was stirred at 20°C for 5 days, then the solvents were removed under reduced pressure. Chromatography on silica gel, eluting with CH2Cl2 then CHCl3/EtOH (99:1), gave bis[N-phenyl 1-methylindolyl-3-carboxamide-(2)] disulfide [V: $R_1 = H$, $R_2 = CONHPh$, $R_3 = Me$ (70) (0.19 g, 95%); mp (benzene) 187-188°C. ¹H NMR (CDCl₃): δ 8.21 (1H, s, NH), 8.01 (1H, d, J = 8.1 Hz, ArH), 7.19 (1H, ddd, J = 8.1, 7.1, 0.9 Hz,ArH), 7.13 (4H, d, J = 4.3 Hz, Ph), 7.09 (1H, ddd, J = 8.1, 7.1, 0.9 Hz, ArH), 7.05 (1H, d, J = 6.1 Hz, ArH), 6.98 (1H, quin, J = 4.3 Hz, Ph), 3.77 (3H, s, NCH₃).

-103-

¹³C NMR (CDCl₃): δ 161.57 (CO), 138.55, 137.95 (2xs), 128.64 (d), 127.41, 126.07 (2xs), 125.55, 122.28, 122.00 (4xd), 119.76 (s), 119.27, 110.14 (2xd), 30.33 (NCH₃).

Analysis calculated for $C_{32}H_{26}N_4O_2S_2$ requires: C, 68.3; H, 4.6; N, 10.0; S, 11.4%.

10

15

20

25

Found: C, 68.9; H, 4.9; N, 9.6; S, 11.1%.

A solution of 21 (200 mg) in Me_2CO (20 mL) was treated with K_2CO_3 (0.12 g) and methyl iodide (0.14 g) and the mixture stirred at 20°C for 1 hour. CH_2Cl_2 (100 mL) was added, then the solution filtered and the solvents removed, to yield a brown oil (0.26 g). Chromatography on silica gel, eluting with CH_2Cl_2 , gave N-phenyl (1-methyl-2-methylthio-3-indolyl) carboxamide as an oil [X: R_1 = H, R_2 = CONHPh, R_3 = Me, R_4 = SMe] (22) (200 mg, 95%), which crystallized from MeOH/ CH_2Cl_2 as a white solid; mp 116-118°C.

¹H NMR (CDCl₃): δ 9.99 (1H, s, NH), 8.58 (1H, d, J = 8.0 Hz, ArH), 7.75 (2H, d, J = 7.6 Hz, ArH), 7.38 (4H, m, ArH), 7.29 (1H, quin, J = 4.3 Hz, ArH), 7.12 (1H, t, J = 7.4 Hz, ArH), 3.95 (3H, s, NCH₃), 2.47 (3H, s, SCH₃).

¹³C NMR (CDCl₃): δ 162.59 (s, CONH), 138.80, 137.46, 131.43 (3xs, ArH), 129.03 (2xd, ArH), 127.35 (s, ArH), 124.14, 123.67, 123.02, 122.24 (4xd, ArH), 119.86 (2xd, ArH), 114.04 (s, ArH), 109.69 (d, ArH), 30.23 (q,

Analysis calculated for $C_{17}H_{16}N_2OS$ requires:

C, 68.9; H, 5.4; N, 9.5; S, 10.8%.

30 Found: C, 68.6; H, 5.5; N, 9.4; S, 10.8%.

 NCH_3), 20.50 (q, SCH_3).

Benzyl mercaptan (0.02 mL, 0.178 mmol) was added to a suspension of 70 (50 mg, 89 mmol) and BF3-etherate (1 drop) in CH_2Cl_2 (1 mL). After stirring at 20°C for 3 hours, the homogeneous mixture was poured into

-104-

saturated aqueous NaHCO3, diluted with CH2Cl2 and worked up, and the residue was chromatographed on silica gel. Elution with CH₂Cl₂/petroleum ether (1:1) gave foreruns, and elution with CH2Cl2 elute benzyl [N-phenyl 1-methylindolyl-3-carboxamide-(2)]disulfide 5 [XI: $R_1 = H$, $R_2 = CONHPh$, $R_3 = Me$, $R4 = S_2CH_2Ph$] (23) (39 mg, 54%); mp (CHCl₃/petroleum ether) 146-148°C. ¹H NMR: δ 8.95 (1H, br s, CONH), 8.47 (1H, dd, J = 7.7, 1.3 Hz, ArH-4, 7.66 (2H, dd, J = 7.5, 1.2 Hz,Ph), 7.40-7.07 (11H, m, ArH-5,-6,-7 and Ph), 3.90 (3H, 10 s, NMe). 13C NMR: δ 162.31 (CONHPh), 138.31 (s), 138.04 (s), 135.13 (s), 130.00 (s), 129.15, 129.06, 128.69, 127.83, 126.83 (s), 124.79, 123.94, 122.80, 122.36, 119.90, 15 109.92, 42.51 (CH2Ph), 30.73 (NCH3). Analysis calculated for C23H20N2S2O requires: C, 68.3; H, 5.0; N, 6.9; S, 15.9%. Found: C, 68.4; H, 5.1; N, 6.9; S, 16.0%

20 <u>Compound 71 of Table 1</u>

Similarly was prepared, from

1-ethyl-2-indolinethione (Kendall JD, Ficken GE,
British Patent 829,584, Chem. Abstr. 1960;54:12847h)

and phenyl isocyanate, bis[N-phenyl 1-ethylindolyl
3-carboxamide-(2)]disulfide [V: R₁ = H, R₂ = CONHPh,
R₃ = Et] (71) (25% yield); mp 200-202°C.

¹H NMR (CDCl₃): δ 8.22 (1H, br, CONH), 7.98 (1H, d,
J = 8.1 Hz, H-4), 7.18 (1H, t, J = 8.0 Hz, H-6),
7.11-7.04 (6H, m, H-5 and Ph), 6.95 (1H, dd, J = 8.0,

1.0 Hz, H-7), 4.32 (2H, q, J = 7.0 Hz, NCH₂CH₃), 1.36
(3H, t, J = 7.0 Hz, NCH₂CH₃).

¹³C NMR: δ 161.73 (CONH), 137.91 (s), 137.44 (s),
128.55, 128.55, 128.35 (2s), 126.33 (s), 125.41,

-105-

123.47, 122.12, 122.07, 119.37, 110.19 (C-7), 38.86 $(N_{CH_2CH_3})$, 15.23 $(N_{CH_2CH_3})$.

Analysis calculated for C34H30N4S2O2 requires:

C, 69.1; H, 5.1; N, 9.5; S, 10.8%.

5 Found: C, 68.9; H, 5.4; N, 9.5; S, 10.4%.

Compound 72 of Table 1

Similarly was prepared 4-chloro-1-methyl-2-indolinethione [IX: $R_1 = 4$ -Cl, $R_3 = Me$] (92% yield); mp 147.5-149.5°C.

10 mp 147.5-149.5°C. ¹H NMR (CDCl₃): δ 7.29 (1H, t, J = 8.0 Hz, H-6), 7.13 (1H, d, J = 8.0 Hz, H-5), 6.86 (1H, d, J = 8.0 Hz, H-7), 4.09 (2H, s, H-3), 3.60 (3H, s, NCH₃).

¹³C NMR: δ 200.75 (C-2), 147.65 (s), 130.04 (s),

15 129.52, 127.44 (s), 124.34, 107.81 (C-7), 48.42 (C-3), 31.55 (NCH₃).

Analysis calculated for C9HgClNS requires:

C, 54.7; H, 4.1; N, 7.1; S, 16.2%.

Found: C, 54.5; H, 4.3; N, 7.1; S, 16.0%.

Reaction of this with phenyl isocyanate as above gave bis [N-phenyl 4-chloro-1-methylindolyl-3-carboxamide-(2)] disulfide [V: $R_1 = 4$ -Cl, $R_2 = CONHPh$, $R_3 = Me$] (72) (21% yield); mp 225-228°C.

¹H NMR (CDCl₃): δ 8.38 (1H, br, NH), 7.49 (1H, dd,

25 J = 7.9, 1.5 Hz, H-5), 7.12 (1H, t, J = 7.9 Hz, H-6), 7.08-7.05 (4H, m, CONHPh), 6.98 (1H, dd, J = 7.9, 1.5 Hz, H-7), 6.96 (1H, m, CONHPh), 3.77 (3H, S, N-CH₃).

Analysis calculated for $C_{32}H_{24}Cl_2N_4O_2S_2$ requires:

30 C, 60.8; H, 3.8; N, 8.9; Cl, 11.2%.

Found: C, 60.7; H, 4.1; N, 8.7; Cl, 11.8%.

-106-

Compound 73 of Table 1

Similarly was prepared, from 5-chloro-1-methyl-2-indolinethione [IX: $R_1 = 5-C1$, $R_2 = Me$]; mp 163-165°C (Baudin J-B, Julia SA, Lorne R, Bull. Soc. Chim. Fr. 1987:181-188 records mp 153-155°C) and phenyl 5 isocyanate, bis [N-phenyl 5-chloro-1-methylindolyl-3-carboxamide-(2)]disulfide [V: $R_1 = 5-C1$, $R_2 = CONHPh$, $R_3 = Me$] (73) (27% yield); mp 214-216°C. ¹H NMR (CDCl₃): δ 8.14 (1H, br, CONH), 7.94 (1H, d, 10 J = 1.8 Hz, H-4), 7.12 (4H, br, ArH), 7.07 (1H, d, J = 8.4 Hz, ArH), 7.01 (1H, m, ArH), 6.90 (1H, d, J = 8.9 Hz, ArH), 3.76 (3H, s, NCH₃). δ 161.06 (CONH), 137.72 (s), 136.81 (s), 128.73, 128.44 (s), 128.25 (s), 126.58 (s), 126.11, 15 123.76, 121.27, 119.71 (s), 118.80, 111.16 (C-7), 30.53 (NCH₃). Analysis calculated for $C_{32}H_{24}Cl_2N_4O_2S_2$ requires:

Analysis calculated for $C_{32}H_{24}Cl_2N_4O_2S_2$ requires: C, 60.8; H, 3.8; N, 8.9; S, 10.2%.

Found: C, 60.6; H, 4.0; N, 8.9; S, 10.2%.

- NaBH₄ (14 mg, 0.38 mmol) was added to a stirred suspension of the above compound (0.12 g, 0.19 mmol) in MeOH (5 mL). After 15 minutes, the solution was concentrated to dryness and the residue was partitioned between RtOAc and water. The organic solution was worked up to give a solid which was recrystallized from degassed CHCl₃/benzene at -5°C to give N-phenyl 5-chloro-1-methyl-2-thioxoindole-3-carboxamide (20) [IV: R₁ = 5-Cl, R₂ = CONHPh, R₃ = Me] as coarse needles (86% yield); mp 312-320°C (dec).

-107-

¹³C NMR: δ 164.73 (CONH), 140.81 (s), 135.17 (s), 130.29 (s), 128.55 (d), 123.93 (s), 121.01 (d), 118.20 (d), 117.65 (d), 117.30 (d), 107.97 (d), 104.40 (s), 29.18 (N-CH₃).

5 Analysis calculated for C₁₆H₁₃ClN₂OS requires: M+ 318.0408, 316.0437.

Found: M+ (mass spectrum) 318.0414, 316.0431.

Compound 74 of Table 1

Similarly was prepared, from 7-chloro-1-methyl-2-indolinethione [IX: R₁ = 7-Cl, R₃ = Me];
mp 126-128°C (Inoue S, Uematsu T, Kato T, Ueda K,

Pestic. Sci. 1985;16:589-598 records mp 125-127°C) and
phenyl isocyanate, bis[N-phenyl-7-chloro-

15 l-methylindolyl-3-carboxamide-(2)]disulfide [V: $R_1 = 7$ -Cl, $R_2 = CONHPh$, $R_3 = Me$] (74) (27% yield); mp 232-234°C.

¹H NMR (CDCl₃): δ 8.15 (1H, br, CONH), 7.85 (1H, d, J = 8.0 Hz, H-4), 7.19-7.05 (5H, m, ArH), 7.00 (1H, t,

20 J = 6.6 Hz, ArH), 6.90 (1H, t, J = 7.8 Hz, ArH), 4.25 (3H, s, N-CH₃).

Analysis calculated for $C_{32}H_{24}Cl_2N_4O_2S_2$ requires:

C, 60.8; H, 3.8; N, 8.9%.

Found: C, 60.4; H, 4.0; N, 8.8%.

Compound 75 of Table 1

25

1,4-Dimethyl-2-indolinethione [IX: $R_1 = 4$ -Me, $R_3 = Me$] (81%); mp 160-162°C.

Analysis calculated for $C_{10}H_{11}NS$ requires:

30 C, 67.8; H, 6.3; N, 7.9; S, 18.1% Found: C, 68.0; H, 6.4; N, 8.0; S, 18.3% was prepared by the method given for Compound 77 (below).

-108-

Reaction of this with phenyl isocyanate gave bis[N-phenyl 1,4-dimethylindolyl-3-carboxamide-(2) disulfide [V: $R_1 = 4-CH_3$, $R_2 = CONHPh$, $R_3 = Me$] (75); mp 237-239°C.

¹H NMR (CDCl₃): δ 8.30 (1H, br s, CONH), 7.14 (1H, 5 dd, J = 7.3, 7.3 hz, H-6), 7.04-6.86 (7H, m, H-5,7 and $CONH\underline{Ph}$), 3.69 (3H, s, NCH_3), 2,47 (3H, s, 4- CH_3). ¹³C NMR (CDCl₂): δ 164.57 (<u>C</u>ONHPh), 138.59, 137.62, 131.51 (3xs), 128.62 (d), 127.23 (s), 125.11 (d),

10 124.15 (s), 123.94, 122.62 (2xd), 122.10 (s), 119.61, 107.91 (2xs), 30.26 (NCH₃), 19.66 (4-CH₃). Analysis calculated for C34H30N4O2S2 requires: C, 69.1; H, 5.1; N, 9.5; S, 10.9%.

Found: C, 69.1; H, 5.1; N, 9.7; S, 11.0%.

15

Compound 76 of Table 1

1,5-Dimethyl-2-indolinethione [IX: $R_1 = 5-Me$, $R_2 = Me]; mp 143-145°C (<u>Bull. Fr.</u> 1987:181 reports$ mp 132-133°C) was prepared by the method given for 20 Compound 77 (below). Reaction of this with phenyl isocyanate gave bis[N-phenyl 1,5-dimethylindolyl-3-carboxamide-(2)] disulfide [V: $R_1 = 5-CH_3$, $R_2 = CONHPh$, $R_3 = Me$] (76); mp 231-234°C. ¹H NMR (CDCl₃): δ 8.24 (1H, br s, CONH), 7.78 (1H, br, 25 H-4), 7.19-7.13 (4H, m, CONHPh), 7.05-6.90 (3H, m, H-6,7 and CONHPh), 3.71 (3H, s, NCH_3), 2.36 (3H, s, 5-CH₃). ¹³C NMR (CDCl₃): δ 161.75 (CONH), 138.00, 137.10,

131.77, 129.01 (4xs), 128.53, 127.37 (2xd), 126.35 (s), 123.40, 121.33, 119.85, 109.85 (4xd), 30.32 (NCH₃),

30 21.57 (5-CH₂).

Analysis calculated for $C_{34}H_{30}N_4O_2S_2$ requires:

C, 69.1; H, 5.1; N, 9.5; S, 10.9%.

Found: C, 69.4; H, 5.2; N, 9.6; S, 11.2%.

-109-

Compound 77 of Table 1

5

15

20

25

A mixture of 2,5-dimethylaniline (27.4 g, 0.2 mol) and benzotriazole (23.8 g, 0.2 mol) in BtOH (300 mL) was stirred at 20°C as 37% aqueous formaldehyde (16.1 g, 0.2 mol) was added gradually. After 30 minutes, the white solid which precipitated was collected and washed with BtOH to give N-(1-benzotriazolylmethyl)-2,5-dimethylaniline (33.9 g, 67% yield); mp (BtOH) 147-149°C.

Analysis calculated for C₁₅H₁₆N₄ requires:

C, 70.6; H, 5.9; N, 23.5%.

Found: C, 71.5; H, 6.3; N, 22.1%.

A suspension of this compound (33 g, 0.13 mol) and NaBH₄ (5 g) in dioxane (400 mL) was heated under reflux for 5 hours, and the solution was concentrated. After cooling, water was added and the resulting mixture was extracted with EtOAc. The organic layer was washed twice with aqueous K_2CO_3 and water, and dried (Na_2SO_4) . Removal of the solvent gave N,2,5-trimethylaniline (17.6 g, 99% yield) as an oil, which was used directly. ¹H NMR (CDCl₃): δ 6.93 (1H, d, J = 7.4 Hz, H-3), 6.49 (1H, d, J = 7.6 Hz, H-4), 6.44 (1H, s, H-6), 3.72, (1H, s, NH), 2.88 (3H, s, NCH₃), 2.31 (3H, s, CH₃), and 2.09 (3H, s, CH₃).

A solution of 2,4,6-trimethylaniline (6.86 g, 5 mmol) in dry THF (100 mL) under an atmosphere of N₂ was cooled to -78°C and n-butyllithium (21 mL, 2.5 M solution in hexanes) was added dropwise. The mixture was allowed to warm to 0°C, and dry CO₂ gas was bubbled in for 2-3 minutes. The excess CO₂ was removed under

-110-

vacuum, and after the addition of further THF to replace that lost by evaporation, the solution was recooled to -78°C. n-Butyllithium (22 mL, 2.5 M solution in hexanes) was again added dropwise, and the temperature was then allowed to rise slowly to -10°C 5 where a deep red colored solution was obtained. a further 30 minutes at that temperature, the mixture was again recooled to -78°C and CO2 gas was bubbled in until the red color disappeared. The reaction mixture 10 was allowed to warm to 20°C, and after removal of the solvent, 0.1 M HCL (50 mL) was added to initiate both deprotection of the nitrogen and ring-closure. resulting mixture was extracted with EtOAc, and this was then washed successively with 0.1 M HCl, water, and dilute aqueous Na₂CO₂. After drying (Na₂SO₄), the 15 solvent was removed under vacuum, to leave an oil which was purified by chromatography on Al₂O₃ to give 1,6-dimethyl-2-indolinone (3.37 g, 42% yield) [VII: $R_1 = 6$ -Me; $R_3 = Me$]; mp (hexane) 94.5-96°C. ¹H NMR (CDCl₃): δ 7.11 (2H, d, J = 7.5 Hz, H-4), 6.85 20 (2H, d, J = 7.5 Hz, H-5), 6.65 (1H, s, H-7), 3.47 (2H,s, CH_2), 3.19 (3H, s, 1- CH_3), and 2.38 (3H, s, 6- CH_3). Analysis calculated for C₁₀H₁₁NO requires:

C, 74.5; H, 6.9; N, 8.7%.

25 Found: C, 74.5; H, 6.6; N, 8.7%.

30

Thiation of this with P_2S_5 as above gave 1,6-dimethyl-2-indolinethione [IX: $R_1 = 6$ -Me, $R_3 = Me$]; mp 141-143°C.

Analysis calculated for $C_{10}H_{11}NS$ requires:

C, 67.8; H, 6.3; N, 7.9; S, 18.1%.

Found: C, 67.6; H, 6.5; N, 8.2; S, 18.0%.

-111-

This was reacted with phenyl isocyanate as above to give bis [N-phenyl 1,6-dimethylindolyl-3-carboxamide-(2)] disulfide [V: $R_1 = 6-CH_3$, $R_2 = CONHPh$, $R_3 = Me$] (77); mp 192-195°C.

- ¹H NMR (CDCl₃): δ 8.16 (1H, br s, CONH), 7.85 (1H, d, J = 8.3 Hz, H-4), 7.10 (4H, br, CONH<u>Ph</u>, 6.98 (1H, m, CONH<u>Ph</u>), 6.87 (1H, d, J = 8.3 Hz, H-5), 6.73 (1H, br, H-7), 3.71 (3H, s, NCH₃), 2.35 (3H, s, 6-CH₃).

 ¹³C NMR (CDCl₃): δ 161.49 (CONH), 139.05, 137.98,
- 10 135.63 (3xs), 128.44 (d), 126.10 (s), 124.28 (d), 124.06 (s), 123.17, 121.61, 119.21, 109.85 (4xd), 30.17 (NCH₃), 21.98 (6-CH₃).

Analysis calculated for $C_{34}H_{30}N_4O_2S_2$ requires: C, 69.1; H, 5.1; N, 9.5; S, 10.9%.

15 Found: C, 68.9; H, 5.2; N, 9.6; S, 11.0%.

Compound 78 of Table 1

20

Similarly was prepared 1,7-dimethyl-2-indolinethione [IX: $R_1 = 7$ -Me, $R_3 = Me$]; mp 138-9°C. Analysis calculated for $C_{10}H_{11}NS$ requires:

C, 67.8; H. 6.3; N, 7.9; S, 18.1%.

Found: C, 67.6; H, 6.2; N, 8.0; S, 18.1%.

Reaction of this with phenyl isocyanate gave bis[N-phenyl 1,7-dimethylindolyl-3-carboxamide-(2)]-

- 25 disulfide [V: $R_1 = 7-CH_3$, $R_2 = CONHPh$, $R_3 = Me$] (78); mp 221-223°C.
 - ¹H NMR (CDCl₃): δ 8.11 (1H, br s, CONH), 7.83 (1H, J = 8.1 Hz, H-4), 7.15-7.07 (4H, m, CONH<u>Ph</u>), 6.99 (1H, m, CONH<u>Ph</u>), 6.94 (1H, dd, J = 8.1, 8.1 Hz, H-5), 6.85
- 30 (1H, d, J = 8.1 Hz, H-6), 4.07 (3H, s, NCH₃), 2.44 (3H, s, 7-CH₃).
 - ¹³C NMR (CDCl₃): δ 161.67 (CONH), 137.95, 137.86 (2xs), 128.55, 128.31 (2xd), 126.85 (s), 123.57, 122.10

-112-

(2xd), 121.77 (s), 119.72, 119.21 (2xd), 33.36 (NCH_3) , 20.23 $(7-CH_3)$.

Analysis calculated for $C_{34}H_{30}N_4O_2S_2$ requires:

C, 69.1; H, 5.1; N, 9.5; S, 10.9%.

5 Found: C, 69.1; H, 5.2; N, 9.7; S, 11.0%.

Compound 79 of Table 1

Similarly was prepared, from 4-methoxy-1-methyl-2-indolinethione [IX: $R_1 = 4$ -OMe, $R_3 = Me$];

- mp 141-144°C (US Patent 5,030,646 records mp 126-128°C)
 and phenyl isocyanate, bis[N-phenyl 4-methoxy1-methylindolyl-3-carboxamide-(2)]disulfide
 [V: R₁ = 4-OCH₃, R₂ = CONHPh, R₃ = Me] (79);
 mp 225-228°C.
- 20 138.73, 130.20 (4xs), 128.54, 125.39, 123.08 (3xs), 130.20 (s), 128.54, 125.39, 123.08 (3xd), 19.96 (s), 119.19 (d), 114.66 (s), 103.67, 101.55 (2xd), 22.58 (OCH₃), 30.48 (NCH₃).

Analysis calculated for $C_{34}H_{30}N_4O_4S_2$ requires:

25 C, 65.6; H, 4.9; N, 9.0; S, 10.3%. Found: C, 65.7; H, 4.9; N, 9.2; S, 10.2%.

Compound 80 of Table 1

Similarly was prepared, from 5-methoxy-1-methyl
2-indolinethione [IX: R₁ = 5-OMe, R₃ = Me];

mp 148-150°C (US Patent 5,030,646 records mp 142-144°C)

and phenyl isocyanate, bis[N-phenyl 5-methoxy1-methylindolyl-3-carboxamide-(2)]disulfide

-113-

[V: R₁ = 5-OCH₃, R₂ = CONHPh, R₃ = Me] (80); mp 161-164°C. ¹H NMR (CDCl₃): δ 8.41 (1H, br s, CONH), 7.55 (d, J = 1.8 Hz, H-4), 7.18 (4H, m, CONH<u>Ph</u>), 7.00 (2H, m, H-6 and CONH<u>Ph</u>), 6.89 (1H, d, J = 7.4 Hz, H-7), 3.82 (3H, s, OCH₃), 3.68 (3H, s, NCH₃). ¹³C NMR (CDCl₃): δ 161.80 (CONH), 155.94, 137.87, 134.07 (3xs), 128.71, 123.68, 119.50, 117.48, 111.10, 102.29 (6xd), 55.63 (OCH₃), 30.47 (NCH₃). Analysis calculated for C₃₄H₃₀N₄O₄S₂ requires: C, 65.6; H, 4.9; N, 9.0; S, 10.3%. Found: C, 65.3; H, 5.1; N, 9.2; S, 10.4%.

Compound 81 of Table 1

- Similarly was prepared, from 6-methoxy-1-methyl2-indolinethione [IX: R₁ = 6-OMe, R₃ = Me];
 mp 133-136°C (US Patent 5,030,646 records mp 135-136°C)
 and phenyl isocyanate, bis[N-phenyl 6-methoxy1-methylindolyl-3-carboxamide-(2)]disulfide
 [V: R₁ = 6-OCH₃, R₂ = CONHPh, R₃ = Me] (81);
 mp 197-200°C.
 - ¹H NMR (CDCl₃): δ 8.19 (1H, br s, CONH), 7.91 (1H, d, J = 8.9 Hz, H-4), 7.12 (4H, br, CONHPh), 6.97 (1H, m, CONHPh), 6.71 (1H, d, J = 8.9 Hz, H-5), 6.25 (1H, br,
- 25 H-7), 3.74 (3H, s, OCH₃), 3.70 (3H, s, NCH₃).

 ¹³C NMR (CDCl₃): δ 161.37 (CONH), 158.75, 139.82,

 138.04, 128.65 (4xs), 128.50, 123.30, 123.12, (3xd),

 120.64, 120.26 (2xs), 119.10, 113.22, 98.02 (3xd),

 55.26 (OCH₃), 30.21 (NCH₃).
- Analysis calculated for $C_{34}H_{30}N_4O_4S_2$ requires: C, 65.6; H, 4.9; N, 9.0; S, 10.3%. Found: C, 65.5; H, 4.8; N, 9.2; S, 10.4%.

-114-

Compound 82 of Table 1

Similarly was prepared, from 7-methoxy-1-methyl-2-indolinethione [IX: $R_1 = 7$ -OMe, $R_3 = Me$]; mp 124-126°C (US Patent 5,030,646 records mp 114-116°C) and phenyl isocyanate, bis[N-phenyl 7-methoxy-5 1-methylindolyl-3-carboxamide-(2)]disulfide [V: $R_1 = 7 - OCH_3$, $R_2 = CONHPh$, $R_3 = Me$] (82); mp 205-208°C. ¹H NMR (CDCl₃): δ 8.14 (1H, br s, CONH), 7.57 (1H, d, J = 8.2 Hz, H-4), 7.13 (4H, m, CONHPh), 6.96 (1H, m,10 CPNHPh), 6.93 (1H, dd, J = 8.2, 8.2 Hz, H-5), 6.48 (1H, d, J = 8.2 Hz, H-6), 4.12 (3H, s, OCH₃), 3.73 (3H, s, NCH₃). ¹³C NMR (CDCl₃): δ 161.72 (CONH), 147.12, 137.99, 129.08 (3xs), 128.45 (d), 128.01 (s), 123.27, 122.35, 15 119.33, 114.13, 105.35 (5xd), 55.22 (OCH₃), 33.73 (NCH₃). Analysis calculated for C34H30N4O4S2 requires:

Analysis calculated for $C_{34}H_{30}N_4O_4S_2$ requires: C, 65.6; H, 4.9; N, 9.0; S, 10.3%.

20 Found: C, 64.9; H, 5.0; N, 9.0; S, 10.4%.

Compound 84 of Table 1

25

30

A solution of 3-(methylthio)-5-(trifluoromethyl)oxindole (Gassman PG, Cue BW, Luh T-Y, J. Org. Chem.
1977;42:1344-1348) (10 g, 40 mmol) in AcOH (100 mL) was
heated under reflux with Zn dust (13.3 g, 0.2 mol) for
1 hour. The mixture was cooled and filtered, and the
precipitate was washed with AcOH. The combined
filtrates were evaporated under reduced pressure, and
the residue was diluted with 1 M aqueous ammonia to
give 5-trifluoromethyloxindole [VII: R₁ = 5-CF₃,
R₃ = H] (7.22 g, 90%); mp (aqueous EtOH) 188.5-191°C
(lit. [Hardtmann GE, USP 4,160,032; Chem. Abstr.
1979;91:P107890w]; mp 188-189°C).

-115-

¹H NMR (CDCl₃): δ 8.74 (1H, s, NH), 7.52 (1H, d, J = 8.2 Hz, H-6), 7.49 (1H, s, H-4), 6,97 (1H, d, J = 8.2 Hz, H-7), 3.61 (2H, s, CH₂).

A suspension of the above oxindole (5.03 g, 25 mmol) in water (100 mL) containing NaOH (1.5 g) was treated with Me₂SO₄ (4.7 g, 37 mmol). The mixture was warmed to 100°C for 10 minutes, cooled, a further portion of Me₂SO₄ and NaOH added, and warmed again briefly. After thorough cooling, the solid was

collected and chromatographed on alumina. Elution with $CH_2Cl_2/hexane$ (7:3) gave 1-methyl-5-(trifluoromethyl)-oxindole [VII: $R_1 = 5-CF_3$, $R_3 = Me$] (3.5 g, 65%); mp (hexane) 127.5-129°C.

¹H NMR (CDCl₃): δ 7.58 (1H, d, J = 8.2 Hz, H-6), 7.50 (1H, s, H-4), 6.89 (1H, d, J = 8.2 Hz, H-7), 3.58 (2H, s, CH₂), 3.25 (3H, s, CH₃).

Analysis calculated for C₁₀H₈F₃NO requires:

C, 55.8; H, 3.8; N. 6.5%.

Found: C, 55.5; H, 3.8; N, 6.5%.

15

Reaction of this compound with P_2S_5 as above gave 1-methyl-5-(trifluoromethyl)-2-indolinethione [IX: $R_1 = 5$ -CF₃, $R_3 = Me$] (96% yield); mp 124.5-126°C.

¹H NMR (CDCl₃): δ 7.63 (1H, dd, J = 8.3, 0.8 Hz, H-6), 7.54 (1H, d, J = 0.8 Hz, H-4), 7.03 (1H, d, J = 8.3 Hz, H-7), 4.15 (2H, s. C-3), 3.64 (3H, s. N-CH₂)

H-7), 4.15 (2H, s, C-3), 3.64 (3H, s, N-CH₃). 13 C NMR: δ 202.28 (C-2), 149.34 (s), 129.60 (s), 126.54 (J = 32.5 Hz, C-5), 125.9 (J = 4.0 Hz), 124.21 (J = 271.9 Hz) (CF₃), 121.00 (J = 3.8 Hz), 109.28 (d), 48.75 (C-3), 31.35 (N-CH₃).

30 Analysis calculated for (C₁₀H₈F₃NS) requires: C, 51.9; H, 3.5; N, 6.3; S, 14.1%. Found: C, 52.0; H, 3.7; N, 6.3; S, 14.1%.

Reaction of this with phenyl isocyanate as above gave 2,2-dithiobis[N-phenyl-1-methyl-5-(trifluoro-

methyl)indolyl-3-carboxamide] (84) [V: $R_1 = 5$ -CF₃, $R_2 = CONHPh$, $R_3 = Me$] (71% yield); mp 214-216°C.

¹H NMR ((CD₃)₂SO): δ 9.53 (1H, s, CONH), 8.14 (1H, br s, H-4), 7.59 (1H, d, J = 8.8 Hz, H-7), 7.53 (1H, dd, J = 8.8, 1.5 Hz, H-6), 7.12-7.09 (4H, m, ArH), 6.97 (1H, m, ArH), 3.76 (3H, s, N-CH₃).

¹³C NMR: δ 160.49 (CONH), 138.93 (s), 138.21 (s), 131.76 (s), 128.19 (d), 124.96 (J = 271.6 Hz, CF₃), 124.60 (d), 119.21 (s), 119.09 (d), 118.57

(J = 4.1 Hz), 30.46 (N-CH₃).

Analysis calculated for $C_{34}H_{24}F_6N_4O_2S_2$ requires:

C, 58.4; H, 3.5; N, 8.0; S, 9.2%.

Found: C, 58.5; H, 3.8; N, 7.9; S, 9.3%.

15 <u>Compound 85 of Table 1</u>

Methylation of 6-chlorooxindole [VII: $R_1 = 6-Cl$, $R_3 = H$] (Quallich GJ, Morrissey PM, Synthesis 1993:51-53) with Me₂SO₄/NaOH as above gave 6-chloro-1-methyloxindole [VII: $R_1 = 6-Cl$, $R_3 = CH_3$];

- 20 mp (aqueous EtOH) 119.5-122°C. ${}^{1}\text{H NMR (CDCl}_{3}): \quad \delta \text{ 7.15 (1H, d, } J = 7.8 \text{ Hz, H-4), 7.01}$ (1H, dd, J = 7.8, 1.8 Hz, H-5), 6.82 (1H, d, $J = 1.7 \text{ Hz, H-7), } 3.49 \text{ (2H, s, CH}_{2}), \text{ 3.19 (3H, s, CH}_{3}).$ Analysis calculated for $\text{C}_{9}\text{H}_{8}\text{ClNO}$ requires:
- 25 C, 59.5; H, 4.4; N, 7.7%. Found: C, 59.6; H, 4.6; N, 7.6%.

Reaction of this with P_2S_5 as above gave 6-chloro-1-methyl-2-indolinethione [IX: $R_1 = 6$ -Cl, $R_3 = Me$] (87% yield); mp (EtOAc/petroleum ether) 162-165°C.

-117-

¹³C NMR: δ 202.00 (C-2), 147.76 (s), 133.98 (s), 127.35 (s), 124.64 (d), 124.06 (d), 110.20 (d), 48.59 (C-3), 31.29 (N-CH₃).

Analysis calculated for C9H8ClN2SO requires:

C, 54.7; H, 4.1; N, 7.1; S, 16.2%.

Found: C, 54.8; H, 4.1; N, 7.0; S, 16.3%.

Reaction of this with phenyl isocyanate as above gave bis [N-phenyl 6-chloro-1-methylindolyl-3-carboxamide-(2)] disulfide (85) [V: $R_1 = 6$ -Cl,

- 10 $R_2 = CONHPh$, $R_3 = Me$] (61% yield); mp 243-245°C. ¹H NMR ((CD₃)₂SO): δ 9.43 (1H, br, CONH), 7.77 (1H, d, J = 8.6 Hz, H-4), 7.46 (1H, d, J = 1.4 Hz, H-7), 7.19-7.09 (5H, m, ArH), 7.01 (1H, m, ArH), 3.67 (3H, s, N-CH₃).

Analysis calculated for $C_{32}H_{24}Cl_2N_4O_2S_2$ requires:

20 C, 60.9; H, 3.8; N, 8.9; S, 10.2%. Found: C, 60.9; H, 4.0; N, 8.7; S, 10.2%.

Compound 86 of Table 1

5

Similarly was prepared, from 1-methyl-5-nitro2-oxindole (Robinson R, Wyler M, J. Chem. Soc.
1941:620-624), 1-methyl-5-nitro-2-indolinethione
[IX: $R_1 = 5-NO_2$, $R_3 = Me$] (68% yield); mp (EtOAc/light petroleum) >330°C.

¹H NMR ((CD_3)₂SO): δ 8.28 (1H, dd, J = 8.7, 1.7 Hz,

H-6), 8.17 (1H, d, J = 1.7 Hz, H-4), 7.41 (1H, d, J = 8.7 Hz, H-7), 4.26 (2H, s, H-3), 3.60 (3H, s, N-CH₃).

-118-

¹³C NMR: δ 203.48 (C-2), 151.49 (g), 143.81 (g), 130.53 (g), 124.80 (d), 119.00 (d), 110.24 (d), 48.45 (C-3), 31.34 (N-CH₃).

Analysis calculated for $C_9H_8N_2SO_2$ requires:

5 M+ 208.0306.

Found: M+ 208.0311 (mass spectrum).

Reaction of this with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl-1-methyl-5-nitroindolyl-3-carboxamide] (86) [V: $R_1 = 5-NO_2$, $R_2 = CONHPh$,

10 $R_3 = Me$] (52% yield); mp 236-240°C (dec). ¹H NMR ((CD₃)₂CO): δ 9.68 (1H, br, CONH), 8.64 (1H, d, J = 1.6 Hz, H, H-4), 8.07 (1H, dd, J = 8.8, 1.6 Hz, H-6), 7.56 (1H, d, J = 8.8 Hz, H-7), 7.18-7.08 (4H, m, ArH), 6.98 (1H, t, J = 6.8 Hz, ArH), 3.79 (3H, s,

15 N-CH₃).

13C NMR: δ 160.04 (CONH) 141.96 (s), 140.17 (s),
138.22 (s), 128.24 (d), 124.35 (s), 123.09 (d), 120.25 (s), 118.90 (d), 117.76 (d), 111.64 (d), 30.70 (N-CH₃).
Analysis calculated for $C_{32}H_{24}N_6O_6S_2\cdot 0.2H_2O$ requires:

20 C, 55.8; H, 4.1; N, 12.2%.

Found: C, 55.5; H, 3.9; N, 12.0%.

Analysis calculated for $C_{32}H_{25}N_6S_2O_6$ requires:

 $[M + H]^+$ 653.1277.

Found: $[M + H]^+$ 653.1275 (FAB mass spectrum).

25

30

Compound 87 of Table 1

Similarly was prepared, from 5-fluoro-1-methyloxindole (Wiseman EH, Chiaini J, McManus JM, J. Med. Chem. 1973;16:131-134), 5-fluoro-1-methyl-2-indolinethione [IX: $R_1 = 5$ -F, $R_3 = Me$] (93% yield); mp 155-157°C.

¹H NMR (CDCl₃): δ 7.11-6.99 (2H, m, H-4,6), 6.88 (1H, dd, J = 9.3, 4.2 Hz, H-7), 4.09 (2H, s, H-3), 3.61 (3H, s, N-CH₃).

-119-

¹³C NMR: δ 200.61 (C-2), 160.49 (J = 243.6 Hz, C-5), 142.76 (s), 130.80 (J = 8.6 Hz, C-3a), 114.48 (J = 24.1 Hz), 112.13 (J = 25.1 Hz), 109.94 (J = 8.6 Hz), 48.96 (J = 1.8 Hz, C-3), 31.38 (N-CH₃).

5 Analysis calculated for C₉H₈FNS requires:

C, 59.7; H, 4,5; N, 7.7; S, 17.7%.

Found: C, 59.7; H, 4.6; N, 7.8; S, 17.4%.

Reaction of this with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl-5-fluoro-

- 10 1-methylindolyl-3-carboxamide] (87) [V: $R_1 = 5$ -F, $R_2 = \text{CONHPh}$, $R_3 = \text{Me}$]) (74% yield); mp 205-207°C.

 ¹H NMR (CDCl₃): δ 8.17 (1H, br, CONH), 7.64 (1H, dd, J = 9.4, 2.0 Hz, H-4), 7.17 (4H, br d, ArH), 7.00 (1H, m, ArH), 6.95-6.88 (2H, m, ArH), 3.78 (3H, s, N-CH₃).
- 15 13 C NMR: δ 161.17 (CONH), 158.97 (J = 239.4 Hz, C-5), 138.02 (s), 135.71 (s), 128.69 (d), 123.69 (d), 118.87 (d), 114.66 (J = 27.1 Hz), 111.14 (J = 10.0 Hz), 106.92 (J = 25.5 Hz), 30.61 (N-CH₃).

Analysis calculated for $C_{32}H_{24}F_2N_4O_2S_2$ requires:

20 C, 64.2; H, 4.0; N, 9.4; S, 10.7%. Found: C, 63.9; H, 4.2; N, 9.3; S, 10.7%.

Compound 88 of Table 1

Reduction of 5-cyano-3-methylthiooxindole

(Gassman PG, Cue BW, Luh T-Y, <u>J. Org. Chem.</u>

1977;42:1344-1348) with Zn/AcOH as above gave

5-cyanooxindole [VII: R₁ = 5-CN; R₃ = H] (89% yield);

mp (aqueous EtOH) 249°C (dec) (lit. [Gassman PG,

Gilbert DP, Luh T-Y, <u>JOC</u> 1977;42:1340-1344];

mp 249-251°C). Methylation of this with Me₂SO₄/NaOH as

mp 249-251°C). Methylation of this with $Me_2SO_4/NaOH$ as above gave 5-cyano-1-methyloxindole [VII: $R_1 = 5-CN$, $R_3 = H$] (53% yield); mp (hexane) 201-203°C.

-120-

¹H NMR (CDCl₃): δ 7.63 (1H, dd, J = 8.1, 1.1 Hz, H-6), 7.51 (1H, d, J = 1.1 Hz, H-4), 6.90 (1H, d, J = 8.1 Hz, H-7), 3.57 (2H, s, CH₂), 3.25 (3H, s, CH₃). Analysis calculated for $C_{10}H_8N_2O$ requires:

C, 69.8; H, 4.7; N, 16.3%.

5

Found: C, 70.2; H, 4.64; N, 16.7%.

Reaction of the above compound with P_2S_5 gave 5-cyano-1-methyl-2-indolinethione [IX: $R_1 = 5$ -CN, $R_3 = Me$] (41% yield); mp 185-187°C.

¹H NMR ((CD₃)₂SO): δ 7.87 (1H, br d, J = 8.3 Hz, H-6), 7.76 (1H, br s, H-4), 7.41 (1H, d, J = 8.3 Hz, H-7), 4.22 (2H, s, H-3), 3.58 (3H, s, N-CH₃).

¹³C NMR: δ 202.34 (C-2), 149.78 (s), 133.05 (d), 130.42 (s), 126.92 (d), 119.05 (s), 110.98 (d), 48.20 (C-3), 31.11 (N-CH₃).

Analysis calculated for $C_{10}H_8N_2S \cdot 0.5H_2O$ requires: C, 60.7; H, 4.6; N, 14.2%.

Found: C, 61.3; H, 4.1; N, 14.4%.

Reaction of this with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl-5-cyano-1-methylindolyl-3-carboxamide] (88) [V: R_1 = 5-CN, R_2 = CONHPh, R_3 = Me] (47% yield); mp 221-224°C.

¹H NMR ((CD₃)₂SO): δ 9.51 (1H, s, CONH), 8.18 (1H, br s, H-4), 7.60-7.48 (2H, m, H-6,7), 7.20-7.06 (4H, m, ArH), 7.00 (1H, br s, ArH), 3.75 (3H, s, N-CH₃).

¹³C NMR: δ 160.21 (CONH), 138.97 (s), 138.26 (s), 132.74 (C-5), 128.77 (s), 128.27 (d), 126.52 (d), 124.72 (s), 123.14 (d), 119.80 (s), 119.11 (d), 118.87 (s), 112.29 (d), 103.53 (CN), 30.46 (N-CH₃).

Analysis calculated for C₃₄H₂₄N₆O₂S₂·0.5H₂O requires: C, 65.7; H, 4.1; N, 13.5; S, 10.3%. Found: C, 65.6; H, 4.0; N, 13.5; S, 10.6%.

-121-

Compound 89 of Table 1

Similarly was prepared, from 5-bromo-1-methyl-2-indolinethione [IX: R₁ = 5-Br, R₃ = Me]; mp 137-139°C, (Baudin J-B, Julia SA, Lorne R, <u>Bull. Soc. Chim. France</u> 1987:181 records mp 126-127°C) and phenyl isocyanate as above, 2,2'-dithiobis[N-phenyl-5-bromo-1-methylindolyl-3-carboxamide] (89)
[V: R₁ = 5-Br, R₂ = CONHPh, R₃ = Me] (68% yield); mp 219-221°C.

¹³C NMR: δ 161.04 (CONH), 137.68 (s), 137.00 (s), 128.75 (d), 128.60 (d) 127.13 (s), 124.29 (d), 123.78 (d), 118.82 (d), 115.92 (s), 111.46 (d), 30.48 (N-CH₃). Analysis calculated for $C_{32}H_{24}Br_2N_4O_2S_2$ requires:

C, 53.3; H, 3.4; N, 7.8; S, 8.9%.

Found: C, 53.1; H, 3.5; N, 7.7; S, 8.9%.

20

25

30

15

5

Compound 90 of Table 1

A solution of 4-methoxy-1-methyl-2-oxindole [VII: $R_1 = 4$ -OMe, $R_3 = Me$] (1.20 g, 6.77 mmol) in 48% HBr/glacial AcOH (40 mL) was heated under reflux for 6 hours, then poured into water. The precipitate of crude phenol was filtered off, washed well with water and dried, then acetylated with $Ac_2O/pyridine$ for 1 hour at 20°C. Solvents were removed under reduced pressure, and the residue was partitioned between EtOAc and 3N HCl. Chromatography of the organic residue on silica gel, eluting with EtOAc/petroleum ether gave 4-acetoxy-1-methyl-2-oxindole [VII: $R_1 = 4$ -OAc, $R_3 = Me$] (75% yield); mp 109-111°C.

-122-

¹H NMR (CDCl₃): δ 7.30 (1H, dd, J = 8.2, 7.7 Hz, H-6), 6.78 (1H, d, J = 8.2 Hz, H-7), 6.71 (1H, d, J = 7.7 Hz, H-5), 3.41 (2H, s, H-3), 3.22 (3H, s, N-CH₃), 2.32 (3H, s, OCOCH₃).

5 13C NMR: δ 174.26 (C-2), 168.30 (OCOCH₃), 164.71 (s), 146.58 (s), 129.12, 116.62 (s), 115.83 (d), 105.90 (d), 33.74 (C-3), 26.51 (N-CH₃), 20.83 (COOCH₃). Analysis calculated for C₁₁H₁₁NO₃ requires:

C, 64.4; H, 5.4; N, 6.8%.

10 Found: C, 64.3; H, 5.4; N, 7.0%.

Reaction of this with P_2S_5 as above gave 4-acetoxy-1-methyl-2-indolinethione [IX: $R_1 = 4$ -OAc, $R_3 = Me$] (94% yield); mp 156°C.

¹H NMR (CDCl₃): δ 7.35 (1H, dd, J = 8.2, 7.9 Hz, H-6),

15 6.90 (1H, d, J = 8.2 Hz, H-7), 6.86 (1H, d, J = 7.9 Hz, H-5), 4.00 (2H, s, H-3), 3.61 (3H, s, N-CH₃), 2.32 (3H, s, OCOCH₃).

¹³C NMR: δ 200.75 (C-2), 168.14 (OCOCH₃), 148.30 (s), 146.27 (s), 129.44 (d), 121.18 (s), 117.69 (d), 107.32

20 (d), 47.09 (C-3), 31.57 (N-CH₃), 20.81 (COO \underline{C} H₃). Analysis calculated for C₁₁H₁₁NO₂S requires:

C, 59.7; H, 5.0; N, 6.3; S, 14.5%.

Found: C, 59.4; H, 5.2; N, 6.6; S, 14.5%.

Reaction with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl 4-acetoxy-1-methylindolyl-3-carboxamide] (90) [V: $R_1 = 4$ -OAc, $R_2 = CONHPh$, $R_3 = Me$] (31%); mp 194°C.

¹H NMR ((CD₃)₂SO): δ 9.92 (1H, s, CONH), 7.34-7.27 (4H, m, H-5,7,2',6'), 7.14 (2H, dd, J = 7.8, 7.6 Hz,

30 H-3',5'), 6.98 (1H, t, J = 7.8 Hz, H-5'), 6.89 (1H, dd, J = 8.0, 7.8 Hz, H-5), 3.66 (3H, s, NCH₃), 1.95 (3H, s, OCH₃).

¹³C NMR: δ 168.57 (CONHPh), 162.09 (OCOCH₃), 142.91 (s), 139.20 (s), 138.75 (s), 129.01 (s), 128.38 (d),

-123-

124.56 (d), 123.14 (d), 119.23 (s), 118.38 (d), 117.70 (s), 113.94 (d), 108.70 (d), 30.39 (N-CH₃), 20.32 (COOCH₃).

Analysis calculated for $C_{36}H_{30}N_4O_6S_2$ requires: 679.1685.

Found: $[M + H]^+$ 679.1705 (FABMS).

Compound 91 of Table 1

5

Similar demethylation/acetylation of 5-methoxy1-methyl-2-oxindole [VII: $R_1 = 5$ -OMe, $R_3 = Me$] gave
5-acetoxy-1-methyl-2-oxindole [VII: $R_1 = 5$ -OAc, $R_3 = Me$] (70% yield); mp (EtOAc/petroleum ether)
104-106°C.

¹H NMR (CDCl₃): δ 7.01 (1H, br s, H-4), 7.00 (1H, dd, J = 9.1, 2.4 Hz, H-6), 3.53 (2H, s, H-3), 3.20 (3H, s, N-CH₃), 2.30 (3H, s, OCOCH₃).

¹³C NMR: δ 174.79 (C-2), 169.96 (OCOCH₃), 146.08 (s), 142.96 (s), 125.50 (s), 120.84 (d), 118.54 (d), 108.25 (d), 35.89 (C-3), 26.30 (N-CH₃), 21.04 (OCOCH₃).

20 Analysis calculated for C₁₁H₁₁NO₃ requires:

C, 64.4; H, 5.4; N, 6.8%.

Found: C, 64.4; H, 5.4; N, 6.8%.

Reaction of this with P_2S_5 as above gave 5-acetoxy-1-methyl-2-indolinethione [IX: $R_1 = 5$ -OAc, $R_3 = Me$] (86% yield); mp 134-135.5°C.

25 $R_3 = Me$] (86% yield); mp 134-135.5°C. ¹H NMR (CDCl₃): δ 7.06 (2H, br s, H-4,6), 6.93 (1H, d, J = 8.6 Hz, H-7), 4.08 (2H, s, H-3), 3.60 (3H, s, N-CH₃), 2.31 (3H, s, OCOCH₃).

¹³C NMR: δ 200.86 (C-2), 169.62 (OCOCH₃) 147.62 (s),

30 144.14 (s), 130.10 (s), 120.97 (d), 117.99 (d), 109.62 (d), 48.79 (C-3), 31.24 (N-CH₃), 20.94 (OCO<u>C</u>H₃).

Analysis calculated for C₁₁H₁₁NO₂S requires:

C, 59.7; H, 5.0; N, 6.3; S, 14.5%.

Found: C, 59.6; H, 5.2; N, 6.2; S, 14.6%.

-124-

Reaction with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl-5-acetoxy-1-methylindolyl-3-carboxamide] (91) [V: $R_1 = 5$ -OAc, $R_2 = CONHPh$, $R_3 = Me$], (45% yield); mp 147-150°C.

- ¹H NMR ((CD₃)₂SO): δ 9.60 (1H, br, CONH), 7.54 (1H, d, J = 1.9 Hz, H-4), 7.42 (1H, d, J = 8.9 Hz, H-7), 7.23 (2H, d, J = 7.8 Hz, H-2',6'), 7.17 (2H, dd, J = 7.8, 7.1 Hz, H-3',5'), 7.06 (1H, dd, J = 8.9, 1.9 Hz, H-6), 6.98 (1H, t, J = 7.1 Hz, H-4), 3.66 (3H, s, NCH₃), 2.29 (3H, s, OCOCH₃).
- 10 (3H, s, OCOCH₃).

 ¹³H NMR: δ 169.52 (CONH), 161.18 (OCOCH₃), 145.27 (s),
 138.49 (s), 135.41 (s), 128.31 (d), 125.46 (s), 122.94
 (d), 119.15 (d), 112.82 (d), 111.43 (d), 30.26,
 (N-CH₃), 20.80 (OCOCH₃).
- 15 Analysis calculated for $C_{36}H_{30}N_4O_6S_2 \cdot 0.5H_2O$ requires: C, 62.9; H, 4.5; N, 8.2; S, 9.3%. Found: C, 63.1; H, 4.6; N, 8.2; S, 9.5%.

Compound 92 of Table 1

A stirred suspension of the 5-acetoxydisulfide 20 (91) (0.25 g, 0.37 mmol) in MeOH (15 mL) was treated with NaBH, (0.05 g, 1.32 mmol) at 20°C for 10 minutes. Aqueous 3N KOH (2 mL) was then added, and after a further 15 minutes the solution was diluted with water and extracted with CH2Cl2. The resulting oil was 25 immediately dissolved in MeOH (3 mL) and mixed with H_2O_2 (0.10 mL of 35%). The solution was chilled at -30°C for 48 hours and then filtered to yield 2,2'-dithiobis (N-phenyl-5-hydroxy-1-methylindole-3-carboxamide) (92) [V: $R_1 = 5-OH$, $R_2 = CONHPh$, 30 $R_3 = Me$] (41 mg, 19%); mp 185-187°C. ¹H NMR ((CD₃)₂SO): δ 9.50 (1H, s, CONH), 9.15 (1H, br, OH), 7.32 (2H, d, J = 7.8 Hz, H-2',6'), 7.27 (1H, d,

J = 8.9 Hz, H-7, 7.19 (1H, d, <math>J = 2.3 Hz, H-4, 7.18

-125-

(2H, dd, J = 7.8, 7.4 Hz, H-3',5'), 6.99 (1H, t, J = 7.4 Hz, H-4'), 6.83 (1H, dd, J = 8.9, 2.3 Hz, H-6), 3.51 (3H, s, N-CH₃).

Analysis calculated for $C_{32}H_{26}N_4O_4S_2\cdot H_2O$ requires:

C, 64.6; H, 4.4; N, 9.4%.

Found: C, 62.7; H, 4.6; N, 9.1%.

Compound 93 of Table 1

5

Similar demethylation/acetylation of 6-methoxy1-methyl-2-oxindole [VII: $R_1 = 6$ -OMe, $R_3 = Me$] gave 6-acetoxy-1-methyl-2-oxindole [VII: $R_1 = 6$ -OAc, $R_3 = Me$] (81% yield); mp 119-121°C.

1H NMR (CDCl₃): δ 7.22 (1H, d, J = 7.9 Hz, H-4), 6.74 (1H, dd, J = 7.9, 2.1 Hz, H-5), 6.59 (1H, d,

- 15 J = 2.1 Hz, H--7, 3.49 (2H, s, H-3), 3.18 (3H, s, N-CH₃), 2.31 (3H, s, OCOCH₃). $13C NMR: <math>\delta$ 175.28 (C-2), 169.57 (OCOCH₃), 150.74 (s), 146.23 (s), 124.83 (d), 121.81 (s), 115.00 (d), 102.68 (d), 35.33 (C-3), 26.27 (N-CH₃), 21.09 (OCOCH₃).
- 20 Analysis calculated for $C_{11}H_{11}NO_3$ requires: C, 64.4; H, 5.4; N, 6.8%.

Found: C, 64.5; H, 5.5; N, 6.9%.

Reaction of this with P_2S_5 as above gave 6-acetoxy-1-methyl-2-indolinethione [IX: $R_1 = 6\text{-OAc}$,

- 25 $R_3 = Me$] (91% yield); mp 131-133°C.

 ¹H NMR: δ (CDCl₃) 7.27 (1H, d, J = 8.0 Hz, H-4), 6.87 (1H, dd, J = 8.0, 1.9 Hz, H-5), 6.75 (1H, d, J = 1.9 Hz, H-7), 4.08 (2H, s, H-3), 3.58 (s, N-CH₃), 2.33 (3H, s, OCOCH₃).
- 30 13 C NMR: δ 202.18 (C-2), 169.44 (OCOCH₃), 150.80 (s), 147.57 (s), 126.38 (s), 124.32 (d), 117.05 (d), 104.06 (d), 48.62 (C-3), 31.33 (N-CH₃), 21.09 (OCOCH₃).

-126-

Analysis calculated for C₁₁H₁₁NO₂S requires:

C, 59.7; H, 5.0; N, 6.3; S, 14.5%.

Found: C, 59.4; H, 5.2; N, 6.1; S, 14.3%.

Reaction with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl-6-acetoxy-1-methylindolyl-3-carboxamide] (93) [V: $R_1 = 6$ -OAc, $R_2 = CONHPh$, $R_3 = Me$] (53%); mp 219-222°C.

¹H NMR ((CD₃)₂SO): δ 9.71 (1H, br s, CONH), 7.78 (1H, d, J = 8.7 Hz, H-4), 7.27 (3H, m, H-2',6'), 7.18 (2H,

10 dd, J = 8.2, 7.3 Hz, H-3',5'), 6.99 (1H, t, J = 7.3 Hz, H-4'), 6.95 (1H, dd, J = 8.7, 1.8 Hz, H-5), 3.60 (3H, s, NCH₃), 2.32 (3H, s, OCOCH₃).

¹³C NMR: δ 169.31 (CONHPh), 161.23 (OCOCH₃), 147.99 (s), 138.54 (s), 137.66 (s), 128.29 (d), 123.13 (s),

15 122.98 (d), 121.48 (d), 119.38 (d), 118.73 (s), 116.34 (d), 103.76 (d), 30.17 (N-CH₃), 20.81 (OCO<u>C</u>H₃). Analysis calculated for $C_{36}H_{30}N_4O_6S_2$ requires:

C, 63.7; H. 4.5; N, 8.3; S, 9.4%.

Found: C, 63.7; H, 4.4; N, 8.2; S, 9.8%.

20

Compound 94 of Table 1

Similar treatment of the 6-acetoxydisulfide (93) gave 2,2'-dithiobis(6-hydroxy-1-methyl-N-phenyl-1H-indole-3-carboxamide) (94) [V: $R_1 = 6$ -OH,

25 $R_2 = CONHPh$, $R_3 = Me$]; mp 185-187°C (dec). ¹H NMR ((CD₃)₂SO): δ 10.01, 9.43 (2H, 2s, OH and CONH), 7.76 (1H, d, J = 7.9 Hz, H-4), 7.35 (2H, d, J = 7.6 Hz, H-2',6'), 7.31 (1H, d, J = 2.2 Hz, H-7), 7.10 (2H, dd, J = 7.6, 7.4 Hz, H-3',5'), 6.95 (1H, t,

30 J = 7.4 Hz, H-4', 6.71 (1H, dd, J = 7.9, 2.2 Hz, H-5), 3.58 (3H, s, NCH₃).

Analysis calculated for $C_{32}H_{26}N_4O_4S_2$ requires: 595.1474.

Found: $[M + H]^+$ 595.1483 (FABMS).

-127-

Compound 95 of Table 1

Similar demethylation/acetylation of 7-methoxy-1-methyl-2-oxindole [VII: $R_1 = 7\text{-OMe}$, $R_3 = \text{Me}$] gave 7-acetoxy-1-methyl-2-oxindole

- 5 [VII: $R_1 = 7\text{-OAc}$, $R_3 = Me$] (68% yield); mp 95-97°C.

 ¹H NMR (CDCl₃): δ 7.12 (1H, dd, J = 7.1, 1.0 Hz, H-6),

 7.01 (1H, dd, J = 8.4, 7.1 Hz, H-5), 6.96 (1H, dd, J = 8.4, 1.0 Hz, H-4), 3.54 (2H, s, H-3), 3.34 (3H, s,

 N-CH₃), 2.35 (3H, s, OCOCH₃).
- 10 13 C NMR: δ 174.88 (C-2), 169.57 (OCOCH₃), 136.11 (s), 134.24 (s), 126.73 (s), 123.02 (d), 122.60 (d), 122.18 (d), 35.68 (C-3), 28.17 (N-CH₃), 20.89 (OCOCH₃). Analysis is calculated for $C_{11}H_{11}NO_3$ requires:

C, 64.4; H, 5.4; N, 6.8%.

15 Found: C, 64.5; H, 5.5; N, 6.7%.

Reaction of this with P_2S_5 as above gave 7-acetoxy-1-methyl-2-indolinethione [IX: $R_1 = 7\text{-}OAc$, $R_3 = Me$] (85% yield); mp 133-135°C.

¹H NMR (CDCl₃): δ 7.17 (1H, d, J = 7.9 Hz, H-6), 7.14

20 (1H, dd, J = 8.0, 7.9 Hz, H-5), 7.01 (1H, d, J = 8.0 Hz, H-4), 4.13 (2H, s, H-3), 3.78 (3H, s, N-CH₃), 2.39 (3H, s, OCOCH₃).

¹³C NMR: δ 202.00 (C-2), 169.22 (OCOCH₃), 137.53 (s), 134.33 (s), 131.42 (s), 124.78 (d), 123.23 (d), 121.69

d, J = 7.8 Hz, H-4), 7.44 (2H, d, J = 7.8 Hz, H-2',6'),

25 (d), 49.20 (C-3), 33.67 (N-CH₃), 20.97 (OCO_{CH_3}). Analysis calculated for $C_{11}H_{11}NO_2S$ requires:

C, 59.7; H, 5.0; N, 6.3; S, 14.5%.

Found: C, 59.4; H, 5.2; N, 6.2; S, 14.2%.

Reaction with phenyl isocyanate as above gave 2,2'-dithiobis[N-phenyl-7-acetoxy-1-methylindolyl-3-carboxamide] (95) [V: R_1 = 7-OAc, R_2 = CONHPh, R_3 = Me]; mp 212-214.5°C.

1H NMR ((CD₃)₂SO): δ 10.28 (1H, br, CONH), 7.72 (1H,

-128-

7.23 (2H, dd, J = 8.1, 7.8 Hz, H-3',5'), 7.11 (1H, dd, J = 7.8, 7.7 Hz, H-5), 7.01 (2H, m, H-6, H-4'), 3.68 (3H, s, N-CH₃), 2.35 (3H, s, OCOCH₃).

¹³C NMR: δ 169.49 (CONHPh), 161.36 (OCOCH₃), 138.75 (s), 135.92 (s), 129.43 (s), 128.80 (s), 128.43 (d), 128.0 (s), 123.13 (d), 121.21 (d), 119.35 (d), 118.50 (d), 118.16 (d), 31.84 (OCOCH₃), 20.68 (N-CH₃).

Analysis calculated for $C_{36}H_{30}N_4O_6S_2 \cdot 0.5H_2O$ requires: C, 62.9; H, 4.5; N, 8.2; S, 9.3%.

Found: C, 62.9; H, 4.5; N, 7.8; S, 9.6%.

Compound 96 of Table 1

5

10

Reaction of **96** as above with NaBH₄ followed by 3N KOH gave, after reoxidation, 2,2'-dithiobis(N-phenyl-

7-hydroxy-1-methylindole-3-carboxamide) (96) [V: $R_1 = 7$ -OH, $R_2 = CONHPh$, $R_3 = Me$] (81% yield); mp 207°C (dec).

¹H NMR ((CD₃)₂SO): δ 9.94, 9.63 (each 1H, 2s, CONH and ArOH), 7.33 (1H, d, J = 8.0 Hz, H-2',6'), 7.23 (1H, d,

20 $J = 8.0 \text{ Hz}, \text{ H-4}, 7.18 \text{ (2H, dd, } J = 8.0, 8.0 \text{ Hz}, \\ \text{H-3',5'}, 6.99 \text{ (1H, t, } J = 8.0 \text{ Hz, H-4'}, 6.91 \text{ (1H, dd, } J = 8.0, 7.5 \text{ Hz, H-5}), 6.65 \text{ (1H, d, } J = 7.5 \text{ Hz, H-6}), \\ 3.89 \text{ (3H, s, N-CH₃)}.$

¹³C NMR: δ 161.89 (CONH), 144.46 (s), 138.72 (s),

25 128.30 (d), 127.74 (s), 127.57 (s), 122.98 (d), 121.76 (d), 119.46 (d), 119.36 (s), 119.32 (s), 111.57 (d), 108.85 (d), 32.84 (N-CH₃).

Analysis calculated for $C_{32}H_{26}N_4O_4S_2$ requires:

C, 64.3; H, 4.4; N, 9.4; S, 10.8%.

30 Found: C, 64.2; H, 4.4; N, 9.3; S, 10.9%.

-129-

Compound 97 of Table 1

Similarly was prepared, from

1-methyl-2-indolinethione and methyl isocyanate,
bis[N-methyl 1-methylindolyl-3-carboxamide-(2)]
5 disulfide [V: R₁ = H, R₂ = CONHMe, R₃ = Me] (97) (18% yield); mp 162-165°C.

¹H NMR (CDCl₃): δ 8.07 (1H, d, J = 8.0 Hz, H-4),
7.40-7.20 (3H, m, H-5, H-6, H-7), 6.31 (1H, br, CONH),
3.82 (3H, s, NCH₃), 2.13 (3H, d, J = 5.0 Hz, CONHCH₃).

10 ¹³C NMR (CDCl₃): δ 173.29 (CONH), 128.34 (s), 125.28,
122.31, 122.02, 120.0 (s), 116.5 (s), 113.2 (s),
110.06, 30.26 (N-CH₃), 25.68 (CONHCH₃).

Alternate Preparation of Compound 97 of Table 1

A mixture of 20 g (136 mmol) of 1-methyl-15 2-indolinone and 250 mL of dichloroethane was sealed in a 500 mL stainless steel autoclave. The reactor was cooled to less than -10°C and 60 g of phosgene was distilled into the vessel. The reactor was sealed and 20 heated to 80°C while rocking. After 1 hour, the reactor was cooled to room temperature, vented, and purged with nitrogen. The reactor was opened and the solution was rinsed out with fresh dichloromethane. The dichloroethane solution from the rinsed reactor was 25 concentrated to a purple solid. The solid was dissolved into 300 mL of dichloromethane and the solution was cooled in an ice bath. Into the cold solution was bubbled anhydrated methylamine at a moderate rate over a 50-minute period. The mixture was 30 washed with water (2 x 300 mL) and brine, dried (Na₂SO₄), and concentrated to ca. 150 mL. The solution was purified by flash silica gel chromatography (7.5 x 13 cm bed) eluting with 1.6 L dichloromethane, 2 L 2%, then 2 L 5% acetone/dichloromethane, with

-130-

500 mL fractions collected. Impure early product fractions were combined, concentrated, and recrystallized from 40 mL ethanol/12 mL pet ether to give 3.04 g of 2-chloro-1-methylindole-3-N-methylcarboxamide [XXII: R₆ = H, R₇ = CH₃]; mp 148-151°C. Pure product fractions were combined and concentrated to give 16.41 g of additional product as a pale yellow solid; mp 150-151°C. Total yield = 19.45 g (64%).

5

10 Reaction of 9.30 g (41.8 mmol) of the above carboxamide was carried out with 129.5 mmol of MeSLi in 36 mL of DMA. After heating at 60°C for 7 hours, the clear amber solution was cooled in an ice bath and treated slowly with 150 mL of 5% aqueous HCl. 15 resultant suspension was diluted with ca. 150 mL of dichloromethane, and the mixture was stirred for 1 hour. The layers were separated, and the aqueous phase was extracted twice more. The combined organic extracts were washed with water (3 x 200 mL), then 20 brine, dried MgSO4, and concentrated to a residue that was pumped at 0.05 mm for 1 hour to leave 12.5 g of an orange solid. The solid was suspended into 100 mL of HOAc and 50 mL of water, and with vigorous stirring the suspension was treated with 12.85 g of sodium 25 perborate. The thick suspension was stirred for ca. 30 minutes, then filtered using 10% methanol in water to aid in the transfer. The solids were washed well with water, then with ether, and air dried. Further drying at 200 mm/65°C/overnight over P2O5 afforded 30 6.38 g (70%) of pure bis[N-methyl 1-methylindolyl-3-carboxamide-(2)]disulfide (97) [V: $R_2 = CONHCH_3$]; mp 186-187°C.

-131-

Compound 98 of Table 1

Similarly was prepared, from 1-methyl2-indolinethione and benzyl isocyanate, bis[N-benzyl
1-methylindolyl-3-carboxamide-(2)]disulfide [V:

- 5 $R_1 = H$, $R_2 = CONHCH_2Ph$, $R_3 = Me$] (98) (0.12 g, 22%); mp 145-147°C.
 - ¹H NMR (CDCl₃): δ 8.13 (1H, d, J = 8.1 Hz, H-4), 7.38 (1H, t, J = 7.4 Hz, H-6), 7.31-7.20 (6H, m, H-5 and CH₂Ph), 7.11 (1H, d, J = 7.4 Hz, H-7), 6.60 (1H, br,
- 10 CONH), 3.75 (2H, br, $COC_{H_2}Ph$), 3.64 (3H, s, N-CH₃).

 ¹³C NMR (CDCl₃): δ 163.42 (CONH), 138.37 (s), 128.59,
 128.54 (s), 127.63 (s), 127.52, 127.40 (s), 127.20,
 126.40 (s), 125.39, 122.52, 122.32, 110.30 (C-7), 42.94 (CH₂Ph), 30.24 (N-CH₃).
- 15 Analysis calculated for C₃₄H₃₀N₄O₂S₂ requires: C, 69.1; H, 5.2; N, 9.5; S, 10.8%. Found: C, 68.6; H, 5.3; N, 9.5; S, 10.6%.

25

EXAMPLE E

A mixture of 2-amino-3-methylpyridine (43.28 g,

20 <u>Preparation of Compounds 19 and 83 of Table 1 by the Method of Scheme 4</u>

0.4 mol) and benzotriazole (47.65 g, 0.4 mol) in EtOH (500 mL) was treated over 5 minutes with formaldehyde (32.2 g of 37% solution, 0.4 mol). The mixture was stirred at 20°C overnight, then cooled and filtered to give 2-[(1-benzotriazolyl)methyl]-3-methyl pyridine (30 g, 31%). A sample was crystallized from EtOH; mp 175-177°C.

-132-

J = 7 Hz, CH_2), 5.38 (1H, t, J = 7 Hz, NH), 2.07 (3H, s, CH_3).

Crude 2-[(1-benzotriazolyl)methyl]-3-methylpyridine (30 g, 125 mmol) was suspended in dioxan (400 mL) and treated with NaBH4 (5 g, 130 mmol). mixture was heated under reflux for 8 hours, then the majority of the solvent was removed under reduced pressure. The residue was partitioned between toluene and water, and the organic layer was washed successively with dilute NaOH solution and water, and dried. Removal of the solvent gave 2-methylamino-3-methylpyridine as an oil (12.8 q, 84%). ¹H NMR (CDCl₂): δ 8.04 (1H, d, J = 5.1 Hz,H, H-6), 7.19 (1H, d, J = 7.1 Hz, H-4), 6.50 (1H, dd, J = 7.1, 5.1 Hz, 5-H), 4.15 (1H, m, NH), 3.03 (3H, d, J = 4.5 Hz, CH_3N), 2.06 (3H, s, CH_3). ¹³C NMR (CDCl₃): δ 157.3 (C-2), 145.0 (C-8), 136.1 (C-4), 116.4 (C-3), 111.9 (C-5), 28.3 (CH₂) and 16.5 (CH₂).

5

10

15

20

25

30

A solution of the above pyridine (6.1 g, 50 mmol) in dry THF (150 mL) was cooled to $-78\,^{\circ}\text{C}$ under dry N₂, and n-BuLi (19.6 mL of a 2.5 M solution in hexanes, 50 mmol) was added dropwise, followed by t-BuLi (32 mL of a 1.7 M in pentane, 55 mmol). The resulting mixture was allowed to warm to $-20\,^{\circ}\text{C}$ and maintained at that temperature for 30 minutes before being recooled to $-78\,^{\circ}\text{C}$ and treated with dry CO₂ gas until the mixture was decolorized. After warming to 20 $\,^{\circ}\text{C}$, the mixture was acidified with dilute HCl, and the solvent was removed under reduced pressure. The residue was dissolved in RtOH (100 mL) containing p-TsOH (100 mg), heated under reflux for 3 hours to effect ring closure, and neutralized with aqueous ammonia. Solvent was then removed, and the residue was worked up in EtOAc to give

an oil, which was extracted with hot hexane, charcoaled, and filtered through celite. Concentration of the solution and cooled, gave 1-methyl-7-aza-2-indolinone(1,3-dihydro-1-methyl-2H-pyrrolo-

5 (2,3-bipyridin-2-one) [VII: R₁ = 7-aza, R₃ = Me] (1.2 g, 15%); mp (hexane) 94-96°C. ¹H NMR (CDCl₃): δ 8.15 (1H, d, J = 5.3 Hz, H-8), 7.48 (1H, d, J = 7.2 Hz, H-4), 8.94 (1H, dd, J = 7.2, 5.3 Hz, H-5), 3.53 (2H, s, CH₂), 3.29 (3H, s, CH₃).

10 13 C NMR (CDCl₃): δ 174.1 (C-2), 158.1 (C-7a), 146.6 (C-8), 131.3 (C-4), 119.0 (C-3a), 117.8 (C-5), 34.6 (CH₂), 25.1 (CH₃).

 P_2S_5 (3.80 g, 8.10 mmol) was added to a vigorously stirred suspension of Na_2CO_3 (0.88 g, 8.10 mmol) in THF (30 mL). After the mixture had become homogeneous (ca. 15 minutes), a solution of 1-methyl-7-aza-2-indolinone [VII: $R_1 = 7$ -aza, $R_3 = Me$] (1.00 g) in THF (10 mL) was added and stirring was continued for 18 hours at 20°C. Solvent was removed under reduced pressure, and the residue was partitioned between EtOAc

pressure, and the residue was partitioned between BtOAc and water. Workup of the organic layer, and chromatography of the residue on silica gel (elution with EtOAc/petroleum ether (1:5)) gave 1-methyl-7-aza-2-indolinethione [IX: R₁ = 7-aza, R₃ = Me] (0.81 g,

25 73%); mp (EtOAc/petroleum ether) 130-133°C.

¹H NMR (CDCl₃): δ 8.28 (1H, dd, J = 5.2, 0.6 Hz, H-6),

7.57 (1H, dd, J = 7.3, 0.6 Hz, H-4), 7.07 (1H, dd, J = 7.3, 5.2 Hz, H-5), 4.06 (2H, s, H-3), 3.66 (3H, s, N-CH₃).

30 13 C NMR: δ 201.70 (C-2), 159.21 (s), 147.22 (d), 131.39 (d), 123.20 (s), 119.34 (d), 46.98 (C-3), 30.02 (N-CH₃).

-134-

Analysis calculated for CgHgN2S requires:

C, 58.5; H, 4.9; N, 17.1; S, 19.5%.

Found: C, 58.3; H, 4.9; N, 17.0; S, 19.8%.

A solution of the above thione (0.70 g, 4.26 mmol) in THF (5 mL) was added dropwise over 5 minutes under 5 N₂ to an ice-cooled suspension of NaH (0.2 g of a 60% w/w dispersion in oil, 6.11 mmol). After gas evolution had ceased (5 minutes), phenyl isocyanate (0.47 mL, 4.25 mmol) was added, and stirring was continued for 10 1 hour at 20°C. Aqueous 1N HCl was then added, and the mixture was extracted with EtOAc. The organic layer was worked up, and the residue was chromatographed on silica gel. Elution with EtOAc/petroleum ether (1:1) and EtOAc gave foreruns, while elution with EtOAc/MeOH (10:1) gave N-phenyl (1-methyl-7-aza-2-thioxo-3-indolinyl)carboxamide (19) [IV: $R_1 = 7$ -aza, R_2 = CONHPh, R_3 = Me] as a fluorescent green solid (0.67 g, 55% yield); mp (after trituration with MeOH)

20 ¹H NMR (($(CD_3)_2SO$): δ 12.46 (1H, s, CONH), 8.68 (1H, dd, J = 7.7, 1.0 Hz, H-6), 8.02 (1H, d, J = 6.0 Hz, H-4), 7.72 (2H, d, J=8.4 Hz, ArH), 7.36-7.29 (4H, m, ArH), 7.01 (1H, t, J = 7.3 Hz, ArH), 3.80 (3H, s, $N-CH_2$).

15

30

162-164°C (dec).

¹³C NMR: δ 66.96 (C-2), 163.59 (CONH), 140.77 (s), 25 139.81 (s), 129.29 (d), 128.85 (d), 127.21 (s), 126.84 (d), 122.16 (d), 118.65 (d), 115.92 (d), 48.57 (C-3), 29.18 (N-CH₃).

Analysis calculated for C₁₅H₁₃N₃O₂S·CH₃OH requires:

C, 60.9; H, 5.4; N, 13.3; S, 10.2%.

Found: C, 60.6; H, 5.4; N, 13.4; S, 10.3%.

A solution of sodium perborate (0.50 g, 5.00 mmol) in water (25 mL) was added to a vigorously stirred suspension of the above 7-aza compound (19) (0.50 g,

-135-

176 mmol) in glacial AcOH (50 mL). After 1 hour the solid was filtered off, washed sequentially with water and Et_2O , and dried to give 2,2'-dithiobis[N-phenyl-1-methyl-7-azaindolyl-3-carboxamide] [V: R_1 = 7-aza, R_2 = CONHPh, R_3 = Me] (83) (100%); mp 197-198°C.

¹H NMR ((CD₃)₂SO): δ 9.49 (1H, s, CONH), 8.36 (1H, dd, J = 4.5, 1.5 Hz, H-6), 8.14 (1H, dd, J = 7.9, 1.5 Hz, H-4), 7.19 (1H, dd, J = 7.9, 4.5 Hz, H-5), 7.16-7.09 (4H, m, ArH), 6.98 (1H, m, ArH), 3.75 (3H, s, N-CH₃).

¹³C NMR: δ 160.42 (CONH), 147.58 (s), 145.99 (d), 138.29 (s), 129.86 (s), 129.62 (d), 128.25 (d), 123.05 (d), 119.23 (d), 118.09 (s), 117.76 (d), 117.57 (s), 28.61 (N-CH₃).

Analysis calculated for $C_{30}H_{24}N_6O_2S_2 \cdot 2.5H_2O$ requires:

5

10

15

20

25

30

Analysis calculated for $C_{30}H_{24}N_6O_2S_2 \cdot 2.5H_2O$ requires: C, 59.1; H, 4.8; N, 13.8; S, 10.5%. Found: C, 59.1; H, 4.2; N, 13.8; S, 10.5%.

EXAMPLE F

Preparation of Compound 99 of Table 1 by the Method Outlined in Scheme 5

A solution of 2-[(4-methylphenylsulfonyl)methyl]-aniline [XII: R_1 = H, R_2 = Me, X = 4-methylphenyl] (Le Corre M, Hercouet A, Le Stanc Y, Le Baron H, Tetrahedron 1985;22:5313) in dry THF (60 mL), under N_2 , was cooled to -78°C and n-butyllithium (9.6 mL, 2.5 M solution in hexanes) was added dropwise. The mixture was allowed to warm to -10°C to give a deep red colored solution which was recooled to -78°C after 30 minutes. CS_2 (3 mL, 5 mmol) was added rapidly, and the mixture was allowed to warm slowly to 20°C. The solvent was removed under vacuum and the residue was diluted with water, and acidified with 2 M HCl. After stirring at 20°C for 3 hours, the solution was extracted with BtOAc and dried (Na_2SO_4) . The solvent was removed, and

-136-

chromatography of the residue on SiO_2 (CH₂Cl/EtOAc, 9:1) gave bis[3-(4-methylphenylsulfonyl)-2-indolyl]-disulfide [XIII: $R_1 = H$, $R_2 = Me$, X = 4-methylphenyl] (99) (0.2 g, 7% yield); mp (benzene) 230-233°C.

1 H NMR (CDCl₃): δ 8.06 (1H, m, NH), 7.91 (3H, m, H-4, H-2, and H-4'), 7.45 (1H, m, H-6), 7.21 (4H, m, H-5, H-7, H-3', and H-5'), 2.33 (3H, s, CH₃).

13 C NMR (CDCl₃): δ 144.1, 140.0, 136.6, 134.0, 129.9 (CH), 126.4 (CH), 125.4, 124.5 (CH), 122.8 (CH), 119.1 (CH), 115.1, 112.2 (CH), and 21.5 (CH₃).

Analysis calculated for $C_{30}H_{24}N_{2}O_{4}S_{4} \cdot 0.2$ ($C_{6}H_{6}$) requires: C, 60.4; H, 4.1; N, 5.5; S, 20.7%.

Found: C, 60.7; H, 4.4; N, 4.9; S, 21.1%.

15 EXAMPLE G

20

25

30

Preparation of Compounds 24 and 100 of Table 1 by the Method Outlined in Scheme 6

A stirred solution of benzoyl chloride (from benzoic acid, 0.45 g, 3.68 mmol) in Me₂CO (20 mL) was treated dropwise at 0°C with a solution of NaN₃ (0.26 g, 3.98 mmol) in water (2 mL). After 15 minutes the solution was partitioned between water and benzene, and the organic layer was washed well with NaHCO₃ and worked up to give crude phenacyl azide, which was used directly.

A solution of 1-methyl-2-indolinethione (0.50 g, 3.06 mmol) in dry THF (3 mL) was added dropwise at 20°C under N_2 to a stirred suspension of NaH (0.13 g of a 60% w/w suspension in mineral oil, 3.37 mmol) in THF (2 mL). After gas evolution had ceased (5 minutes), a solution of the above phenacyl azide in THF (2 mL) was added dropwise, and the mixture was stirred at 20°C for 1 hour, then poured into 6N HCl and extracted with EtOAc. The residue from the organic layer was

-137-

chromatographed on silica gel. Elution with CH_2Cl_2 /petroleum ether (3:7) gave foreruns, and elution with CH_2Cl_2 /petroleum ether (2:3) gave 3-benzoyl-1-methyl-2-indolinethione [XV: R_1 = H, R_3 = Me,

- $R_5 = C6H5$] (24) (0.31 g, 38%); mp (trituration from MeOH) 132-134°C.
 - ¹H NMR (CDCl₃): δ 15.83 (1H, s, SH), 7.68-7.53 (5H, m, COPh), 7.21 (1H, dd, J = 8.1,7.3 Hz, H-5), 7.11 (1H, d, J = 8.1 Hz, H-4), 6.90 (1H, dd, J = 8.0, 7.3 Hz, H-6),
- 10 6.76 (1H, d, J = 8.0 Hz, H-7), 3.74 (3H, s, NCH₃). ¹³C NMR (CDCl₃): δ 181.71 (COPh), 175.09 (C-2), 141.42 (s), 134.87 (s), 131.29, 128.85, 128.37, 125.64 (4xd), 125.22 (s), 122.81, 120.31 (2xd), 111.77 (s), 109.129 (d), 29.57 (NCH₃).
- 15 Analysis calculated for C₁₆H₁₃NOS requires: C, 71.9; H, 4.9; N, 5.2; S, 12.0%. Found: C; 71.6; H, 5.1; N, 6.2; S, 13.9%.

A solution of 24 (0.10 g, 0.37 mmol) in CH₂Cl₂ (20 mL) was treated dropwise at 20°C with a solution of I₂ (0.50 g) in CH₂Cl₂ (5 mL), until TLC indicated complete conversion (ca. 2 hours). The solution was concentrated to ca. 1 mL and chromatographed directly on silica gel. Elution with CH₂Cl₂ gave traces of I₂ and starting material, and further elution with

- 25 $CH_2Cl_2/MeOH$ (19:1) gave bis[3-benzoyl-1-methylindole-(2)]disulfide [XVI: $R_1 = H$, $R_3 = Me$, $R_5 = C_6H_5$] (100) (0.06 g, 61%); mp (CHCl₃/petroleum ether) 199-202°C.

 ¹H NMR (CD₃SOCD₃): δ 7.56 (1H, d, J = 8.4 Hz, H-4), 7.50 (1H, d, J = 8.1 Hz, H-7), 7.46 (dd, J = 8.1,
- 30 7.4 Hz, H-6), 7.35 (1H, dd, J = 8.4, 7.4 Hz, H-5), 7.19 (3H, m, H-2',4',6'), 6.92 (2H, d, J = 7.1 Hz, H-3',5'), 3.48 (3H, s, NCH₃).

¹³C NMR (CD₃SOCD₃): δ 190.20 (<u>C</u>OPh), 140.05, 138.03, 132.75 (3xs), 131.60, 128.48, 127.88 (3xd), 126.00 (s),

-138-

124,78, 122.27 (2xd), 122.03 (s), 121.03, 111.20 (2xd), 30.37 (NCH₃).

Analysis calculated for $C_{32}H_{24}N_2O_2S_2$ requires:

C, 69.8; H, 4.8; N, 5.1; S, 11.6%.

5 Found: C, 70.3; H, 4.7; N, 5.2; S, 11.3%.

10

15

20

Compounds 25, 26, 101, and 102 of Table 1

Similar treatment of 1-methyl-2-indolinethione with 4-carbomethoxybenzoyl azide gave 3-(4'-carbomethoxybenzoyl)-1-methyl-2-indolinethione [XV: R_1 = H, R_3 = Me, R_5 = 4-MeOOCC₆H₄] (26) (68%); mp 164-166°C. ¹H NMR (CDCl₃): δ 15.85 (1H, s, SH), 8.23 (2H, d, J = 8.3 Hz, H-3',5'), 7.76 (2H, d, J = 8.3 Hz, H-2',6'), 7.23 (1H, dd, J = 8.0, 7.6 Hz, H-5'), 7.12 (1H, d, J = 7.6 Hz, H-4), 6.90 (1H, dd, J = 8.0, 7.9 Hz, H-6), 6.69 (1H, d, J = 7.9 Hz, H-7), 3.99 (3H, s, COOCH₃), 3.74 (3H, s, NCH₃). ¹³C NMR (CDCl₃): δ 182.07 (COAr), 173.27 (C-2), 166.31 (COOCH₃), 141.59, 138.92, 132.51 (3xs), 130.11, 128.54,

126.04 (3xd), 124.76 (s), 123.00, 120.26 (2xd), 119.95 (s), 109.28 (d), 52.50 (COO_{CH_3}), 29.61 (NCH_3). Analysis calculated for $C_{18}H_{15}NO_3S$ requires:

C, 66.4; H, 4.7; N, 4.3; S, 9.8%.

Found: C, 66.5; H, 4.7; N, 4.6; S, 9.8%.

Oxidation of 26 with I₂/CH₂Cl₂ as above gave bis[3-(4'-carbomethoxybenzoyl)-1-methylindole-(2)]-disulfide [XVI: R₁ = H, R₃ = Me, R₅ = 4-MeOOCC₆H₄] (102); mp (CHCl₃/petroleum ether) 200-203°C.

¹H NMR (CD₃SOCD₃): δ 7.74 (2H, d, J = 8.4 Hz,

H-3',5'), 7.67 (1H, d, J = 8.0 Hz, H-4), 7.64 (1H, d, J = 8.4 Hz, H-7), 7.44 (1H, dd, J = 8.4, 8.0 Hz, H-6), 7.27 (1H, dd, J = 8.0, 8.0 Hz, H-5), 6.99 (2H, d, J = 8.4 Hz, H-2',6'), 3.91 (3H, s, COOCH₃), 3.51 (3H, s, NCH₃).

-139-

¹³C NMR (CD₃SOCD₃): δ 189.31 (COAr), 165.56 (COOCH₃), 143.77, 137.98, 133.31, 131.61 (4xs), 128.50, 128.33 (2xd), 125.87 (s), 124.99, 122.62 (2xd), 121.27 (s), 121.09, 111.22 (2xd), 52.34 (COOCH₃), 30.33 (NCH₃). Analysis calculated for $C_{36}H_{28}N_{2}O_{6}S_{2}$ requires:

C, 66.6; H, 4.4; N, 4.3; S, 9.9%.

Found: C, 66.2; H, 4.8; N, 4.4; S, 9.9%.

. 5

10

A suspension of 26 (0.1 g, 0.31 mmol) in MeOH (5 mL) containing 3N NaOH (2 mL) was stirred at 20°C for 3 hours, then concentrated to dryness. The residue was dissolved in water and acidified (concentrated HCl) to give 3-(4'-carboxybenzoyl)-1-methyl-2-indolinethione [XV: R₁ = H, R₃ = Me, R₅ = 4-HOOCC₆H₄] (25) (100%); mp 282°C (dec).

20 H-6), 6.68 (1H, d, J = 7.5 Hz, H-7), 3.77 (3H, B, NCH₃).

¹³C NMR CD_3SOCD_3/CD_3COCD_3): δ 167.57, 167.50 (COAr and COOH), 142.40, 135.64, 134.55 (3xs), 130.86, 130.18, 129.13, 126.93 (4xd), 125.17 (s), 123.81, 120.68 (2xd),

25 112.39 (s), 110.82 (d), 29.94 (NCH₃).

Analysis calculated for $C_{17}H_{13}NSO_3 \cdot H_2O$ requires:

C, 64.6; H, 4.3; N, 4.4; S, 10.1%.

Found: C, 64.6; H, 4.4; N, 4.0; S, 9.6%.

Similar hydrolysis of 102 gave bis[3-

-140-

7.58 (3H, m, H-6 and H-2',6'), 7.36 (1H, m, H-5), 3.66 (3H, s, NCH_3).

Analysis calculated for $C_{34}H_{24}N_2O_6S_2 \cdot 0.5 \cdot H_2O$ requires:

C, 63.1; H, 4.2%.

5 Found: C, 63.1; H, 5.3%.

30

EXAMPLE H

Preparation of Compounds 104 and 105 of Table 1 by the Method Outlined in Scheme 7

10 A solution of monomethyl terephthalate [XVII: 4-COOMe] (1.32 g, 7.33 mmol) and DMF (1 drop) in SOCl₂ (30 mL) was heated under reflux for 45 minutes, before concentration to dryness under reduced pressure. The residue was dissolved in benzene 15 and evaporated to dryness again. The crude acid chloride was dissolved in dry Me₂CO (20 mL), cooled to 0°C, and treated with a solution of NaN3 (0.52 g, 8.00 mmol) in water (3 mL). After 20 minutes the solution was diluted with water, extracted with CH2Cl2, 20 and worked up to give the crude acyl azide [XVIII: 4-COOMe], which was immediately dissolved in dry toluene (25 mL) and heated under reflux under No. for 2 hours. Concentration to dryness under reduced pressure afforded the isocyanate [XIX: 4-COOMe] which 25 was used directly.

A solution of 1-methyl-2-indolinethione [IV: $R_1,R_2=H$, $R_3=CH_3$] (1.00 g, 6.13 mmol) in THF (2 mL) was added under N_2 to a suspension of NaH (0.26 g of 60% w/w dispersion in mineral oil, 6.50 mmol) in THF (15 mL). After gas evolution had ceased (5 minutes), a solution of the above crude isocyanate in THF (10 mL) was added, and the solution was stirred at 20°C for a further 1 hour. The mixture was acidified with 3N HCl, extracted with EtOAc and

-141-

worked up to give an oily solid. Chromatography on silica gel, eluting with EtOAc, afforded a greenish solid. This was dissolved in MeOH and treated with 30% $\rm H_2O_2$ (0.20 mL), and the resulting yellow precipitate was filtered off and washed well with MeOH to give 2,2'-dithiobis[N-(4'-carbomethoxy)phenyl-1-methylindolyl-3-carboxamide] (104) [XX: R = 4-COOMe] (0.74 g, 35%); mp 184-186°C.

1H NMR ((CD₃)₂SO): δ 9.87 (1H, br, CONH), 7.80 (1H, d,

10 J = 8.0 Hz, H-4), 7.74 (2H, d, J = 8.7 Hz, H-2',6'), 7.37 (1H, d, J = 8.3 Hz, H-7), 7.32 (2H, d, J = 8.7 Hz, H-3',5'), 7.26 (1H, dd, J = 8.3, 7.6 Hz, H-6), 7.15 $\text{(1H, dd, } J = 8.0, 7.6 \text{ Hz}, \text{ H-5}), 3.84 \text{ (3H, s, CO}_2\text{CH}_3),$ $3.66 \text{ (3H, s, N-CH}_3).$

5

20

25

30

15 13 C NMR: δ 165.79 (COOCH₃), 161.56 (CONH), 143.01 (s), 137.68 (s), 129.79 (d), 125.41 (s), 124.35 (d), 123.37 (s), 121.40 (d), 120.82 (d), 119.90 (s), 118.33 (d), 117.93 (s), 110.74 (d), 51.74 (COOCH₃), 30.04 (N-CH₃). Analysis calculated for $C_{36}H_{30}N_{4}O_{6}S_{2}\cdot H_{2}O$ requires:

C, 62.1; H, 4.6; N, 8,1; S, 9.2%. Found: C, 62.2; H, 4.6; N, 8.0; S, 9.2%.

A suspension of (104) (0.23 g, 0.34 mmol) in MeOH (40 mL) was treated with 3N KOH (15 mL) and stirred at 20°C for 90 minutes. The resulting solution was filtered, acidified, and the resulting precipitate collected and re-dissolved in CH_2Cl_2 (10 mL) containing MeOH (1 mL). H_2O_2 (0.20 mL of 30%) was added, and after 1 hour the solvents were removed under reduced pressure. The residue was triturated with MeOH to give 2,2'-dithiobis[N-(4'-carboxy)phenyl-1-methylindolyl-3-carboxamide] (105) [XX: R = 4-COOH] (100% yield); mp 221°C (dec).

¹H NMR ((CD₃)₂SO): δ 12.63 (1H; br, COOH), 9.78 (1H, s, CONH), 7.80 (1H, d, J = 8.0 Hz, H-4), 7.72 (2H, d,

-142-

J = 8.7 Hz, H-3',5', 7.39 (1H, d, <math>J = 8.4 Hz, H-7),7.30 (2H, d, J = 8.7 Hz, H-2',6'), 7.28 (t, <math>J = 8.4,7.7 Hz, H-6), 7.16 (1H, t, J = 8.0, 7.7 Hz, H-5), 3.66 (3H, s, N-CH₃).

5 13 C NMR: δ 166.95 (COOH), 161.58 (CONH), 142.67 (s), 137.78 (s), 129.99 (d), 129.81 (s), 125.41 (s), 124.72 (s), 124.54 (d), 121.50 (d), 120.93 (d), 118.39 (d), 110.89 (d), 30.12 (N-CH₃).

Analysis calculated for $C_{34}H_{26}N_4O_6S_2 \cdot 0.5H_2O$ requires: C, 61.9; H, 4.1; N, 8.5; S, 9.7%.

Found: C, 61.6; H, 4.2; N, 8.4; S, 9.9%.

Compounds 106 and 107 of Table 1

10

Similar treatment of 1-methyl-2-indolinethione

[IV: R₁,R₂ = H, R₃ = CH₃] with the isocyanate

[XIX: 3-COOMe] derived from monomethyl isophthalate

gave 2,2'-dithiobis[N-(3'-carbomethoxy)phenyl1-methylindolyl-3-carboxamide] (106) [XX: R = 3-COOMe]

(57% yield); mp 193-195°C.

- 7.10 (1H, dd, J = 8.0, 7.7 Hz, H-5), 3.88 (3H, s, COOCH₃), 3.66 (3H, s, N-CH₃).

 13C NMR: δ 166.04 (COOCH₃), 161.48 (CONH), 138.89 (s), 137.63 (s), 129.77 (s), 129.54 (s), 128.62 (d), 125.21 (s), 124.39 (d), 123.51 (s), 121.28 (d), 120.83 (d),
- 30 119.50 (d), 118.31 (s), 110.64 (d), 51.99 (COO_{CH_3}), 30.02 (N-CH₃).

Analysis calculated for C₃₆H₃₀N₄O₆S₂ requires:

C, 63.7; H, 4.5; N, 8.3; S, 9.5%.

Found: C, 63.9; H, 4.6; N, 8.4; S, 9.6%.

-143-

Hydrolysis of the ester (106) as above, followed by re-oxidation with $\rm H_2O_2/MeOH$, gave 2,2'-dithiobis[N-(3-carboxy)phenyl-1-methylindolyl-3-carboxamide] (107) [XX: R = 3-COOH] (97% yield); mp 219-220°C.

- 10 7.7 Hz, H-5), 3.66 (3H, s, N-CH₃).

 13C NMR: δ 167.10 (COOH), 161.53 (CONH), 138.77 (s),
 137.62 (s), 130.92 (s), 129.47 (s), 128.44 (d), 125.18
 (s), 124.45 (d), 123.75 (d), 123.31 (d), 121.32 (d),
 120.81 (d), 119.91 (d), 118.51 (s), 110.67 (d), 30.01
 (N-CH₂).

Analysis calculated for C₃₄H₂₆N₄O₆S₂·0.5H₂O requires: C, 61.9; H, 4.1; N, 8.5; S, 9.7%. Found: C, 61.7; H, 4.3; N, 8.8; S, 9.7%.

20 <u>Compounds 108 & 109 of Table 1</u>

Similar treatment of 1-methyl-2-indolinethione [IV: $R_1, R_2 = H$, $R_3 = CH_3$] with the isocyanate [XIX: 2-COOMe] derived from monomethyl phthalate gave 2,2'-dithiobis [N-(2-carbomethoxy) phenyl-1-methyl-

- 25 indolyl-3-carboxamide] (108) [XX: R = 2-COOMe] (61% yield); mp 179-181°C.
 - ¹H NMR ((CD₃)₂SO): δ 10.82 (1H, s, CONH), 7.89 (2H, 2xd, J = 8.3, 8.0 Hz, H-3',6'), 7.74 (1H, d, J = 8.3 Hz, H-4), 7.32 (2H, m, H-7,4'), 7.20 (1H, dd,
- 30 J = 8.1, 7.5 Hz, H-6), 7.12 (1H, dd, J = 8.3, 7.5 Hz, H-5), 6.97 (1H, m, H-5'), 3.84 (3H, s, COOCH₃), 3.68 (3H, s, N-CH₃).

-144-

Analysis calculated for $C_{36}H_{30}N_4O_6S_2\cdot 0.5H_2O$ requires: C, 62.9; H, 4.5; N, 8.2; S, 9.3%.

Found: C, 62.8; H, 4.5; N, 8.1; S, 9.3%.

Hydrolysis of the ester (108) as above, followed by re-oxidation with $H_2O_2/MeOH$, gave 2,2'-dithiobis[N-5 (2'-carboxy) phenyl-1-methylindolyl-3-carboxamide] (109) [XX: R = 2-COOH] (91% yield); mp 184-186°C. ¹H NMR ((CD₃)₂SO): δ 13.33 (1H, br, COOH), 11.31 (1H, s, CONH), 7.95 (1H, d, J = 8.1 Hz, H-6'), 7.90 (1H, d, 10 J = 7.9 Hz, H-3', 7.83 (1H, d, <math>J = 8.3 Hz, H-4), 7.30(2H, m, H-7,4'), 7.19 (1H, dd, J = 8.0, 7.5 Hz, H-6), 7.08 (1H, dd, J = 8.3, 7.5 Hz, H-5), 7.02 (1H, dd, J = 8.1, 7.8 Hz, H-5'), 3.67 (3H, s, N-CH₃). ¹³C NMR: δ 169.16 (COOH), 160.71 (CONH), 140.55 (8), 137.78 (s), 133.31 (d), 130.50 (d), 129.30 (s), 125.01 15 (s), 124.50 (d), 121.79 (d), 121.47 (d), 121.05 (d), 120.28 (d), 118.21 (s), 115.91 (s), 110.68 (d), 29.93 (N-CH₂). Analysis calculated for C34H26N4O6S2·2H2O requires:

20 C, 59.5; H, 4.4; N, 8.2; S, 9.3%.

Found: C, 59.3; H, 4.3; N, 8.3; S, 9.6%.

Compound 110 of Table 1

Similar treatment of 1-methyl-2-indolinethione [IV: $R_1, R_2 = H$, $R_3 = CH_3$] with the isocyanate derived from 4-(carbomethoxy)phenylacetic acid gave 2,2'-dithiobis[N-(4'-carbomethoxy)benzyl 1-methylindolyl-3-carboxamide] (110) [V: $R_1 = H$, $R_2 = CONHCH_2Ph\{4-COOMe\}$, $R_3 = Me$] (38% yield); 30 mp 178-180°C.

¹H NMR ((CD₃)₂SO): δ 8.18 (1H, br, CONH), 7.88 (1H, d, J = 8.1 Hz, H-4), 7.82 (2H, d, J = 7.9 Hz, C-2',6'), 7.55 (1H, d, J = 8.3 Hz, H-7), 7.35 (1H, dd, J = 8.3,

7.7 Hz, H-6), 7.28 (2H, d, J = 7.9 Hz, C-3',5'), 7.20

-145-

(1H, dd, J = 8.1, 7.7 Hz, H-5), 4.06 (2H, d, $J = 5.1 \text{ Hz}, \text{ CONHCH}_2$), 3.83 (3H, s, COOCH₃), 3.61 (3H, $s, N-CH_3).$

¹³C NMR: δ 165.98 (COOCH₃), 163.17 (CONH), 145.10 (s), 137.61 (s), 129.06 (d), 129.00 (s), 127.85 (s), 126.95 (d), 125.37 (s), 124.31 (d), 121.22 (d), 121.09 (d), 117.89 (s), 110.78 (d), 51.89 ($COOCH_3$), 41.90 (CH_2Ar), 29.94 (N-CH₃).

Analysis calculated for C38H34N4O6S2.0.5H2O requires: C, 63.8; H, 4.9; N, 7.8; S, 8.9%.

Found: C, 63.7; H, 4.8; N, 7.8; S, 9.1%.

5

10

15

25

EXAMPLE I

Preparation of Compound 111 of Table 1 by the Method Outlined in Scheme 8.

A solution of 2-chloro-1-methylindole-3-carboxylic acid [XXI] (Marchetti L, Andreani A, Ann. Chim. (Rome) 1973;63:681) (0.95 g, 4.52 mmol) and SOCl₂ (0.99 mL, 13 mmol) in 1,2-dichloroethane (100 mL) containing DMF 20 (1 drop) was heated under reflux under N2 for 2 hours, then concentrated to dryness. The residue was dissolved in CH2Cl2 (50 mL) and treated with a slurry of methyl 4-(aminomethyl)benzoate hydrochloride (Nair MG, Baugh CM, <u>J. Org. Chem.</u> 1973;38:2185) (1.00 g, 4.98 mmol) and Et_3N (1.58 mL, 11 mmol) in CH₂Cl₂ (50 mL). After vigorous stirring at 20°C for 24 hours, the mixture was washed with water and the organic portion worked up to give N-(4'-carbomethoxy)benzyl 2-chloro-1-methylindole-3-carboxamide [XXII:

30 $R_6 = H$, $R_7 = CH_2Ph\{4-COOMe\}\}$ (1.40 g, 86%) which crystallized from aqueous acetone; mp 108-110°C. NMR ((CD₃)₂SO): δ 8.38 (1H, t, J = 5.8 Hz, CONHCH₂), 7.95 (2H, d, J = 7.9 Hz, H-2',6'), 7.91 (1H, d, J = 7.8 Hz, H-4, 7.56 (1H, d, <math>J = 7.9 Hz, H-7), 7.52

-146-

(2H, d, J = 7.9 Hz, H-3',5'), 7.29 (1H, dd, J = 7.9, 7.1 Hz, H-6), 7.19 (1H, dd, J = 7.8, 7.1 Hz, H-5), 4.60 (2H, d, J = 5.8 Hz, CONHCH₂), 3.84 (3H, s, COOCH₃), 3.79 (3H, s, N-CH₃).

- 5 13C NMR: δ 166.09 (COOCH₃), 162.77 (CONH), 145.65 (s), 135.00 (s), 129.18 (d), 129.14 (d), 127.94 (s), 127.34 (d), 127.25 (d), 126.34 (s), 124.77 (s), 122.57 (d), 121.19 (d), 119.97 (d), 110.21 (s), 107.11 (d), 51.95 (COOCH₃), 42.15 (CH₂), 29.97 (N-CH₃).
- 10 Analysis calculated for C₁₉H₁₇ClN₂O₃ requires: C, 64.0; H, 4.8; N, 7.9; Cl, 9.9%. Found: C, 64.0; H, 4.8; N, 7.6; Cl, 9.8%.

A solution of the above carboxamide (1.00 g, 2.80 mmol) in DMA (10 mL) was added under N₂ to a stirred suspension of MeSLi (1.06 g, 19 mmol) in DMA (25 mL). After warming at 80°C for 6 hours, the mixture was acidified with 3N HCl, extracted with CH₂Cl₂, and worked up to give a yellow oil. Traces of DMA were removed under high vacuum, and the residue was dissolved in MeOH (20 mL) and treated dropwise with

- dissolved in MeOH (20 mL) and treated dropwise wit ${\rm H_2O_2}$ (0.60 mL of 30% solution). After chilling at -30°C overnight, the precipitate was filtered off, washed well with MeOH, and dried to give 2,2'-dithiobis[N-(4'-carboxy)benzyl 1-methylindol-
- 25 3-carboxamide] (111) [V: $R_1 = H$, $R_2 = CONHCH_2Ph\{4-COOH\}$, $R_3 = Me$] (0.68 g, 72%); mp 178-180°C.

¹H NMR ((CD₃)₂SO): δ 12.86 (1H, br, COOH), 8.13 (1H, t, J = 5.8 Hz, CONHCH₂), 7.92-7.80 (3H, m, H-4,2',6'), 7.56 (1H, d, J = 8.3 Hz, H-7), 7.37 (1H, t, J = 8.3

30 7.56 (1H, d, J = 8.3 Hz, H-7), 7.37 (1H, t, J = 8.3, 7.8 Hz, H-6), 7.27 (2H, d, J = 6.3 Hz, H-3',5'), 7.20 (1H, dd, J = 8.1, 7.8 Hz, H-5), 4.02 (2H, d, J = 5.8 Hz, CONHCH₂), 3.62 (3H, s, N-CH₃).

-147-

¹³C NMR: δ 167.08 (COOH), 163.08 (CONH), 144.51 (g), 137.64 (g), 130.35 (g), 129.25 (d), 129.04 (g), 126.85 (d), 125.25 (g), 124.44 (d), 121.23 (d), 121.10 (d), 118.33 (g), 110.87 (d), 41.92 (CH₂), 29.94 (N-CH₃). Analysis calculated for $C_{36}H_{30}N_4O_6S2 \cdot 1.5H_2O$ requires: C, 61.3; H, 4.7; N, 7.9; S, 9.1%. Found: C, 61.1; H, 4.8; N, 8.3; S, 9.0%.

Compound 112 of Table 1

5

25

30

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with SOCl₂ and glycine methyl ester hydrochloride gave N-carbomethoxymethyl 2-chloro-1-methylindole-3-carboxamide [XXII: $R_6 = H$, $R_7 = CH_2COOMe$] (78% yield); mp (CHCl₃/light petroleum) 102.5-104°C. ¹H NMR (CDCl₃): δ 8.26 (1H, d, J = 8.1 Hz, H-4),

7.30-7.23 (3H, m, H-5,6,7), 6.96 (1H, br, CONH), 4.32 (2H, d, J = 5.0 Hz, CH_2NHCO), 3.81 (3H, s, COOCH₃), 3.75 (3H, s, N-CH₃).

13C NMR: δ 170.91 (COOCH₃), 163.48 (CONH), 135.45 (s), 126.90 (s), 125.93 (s), 123.24 (d), 122.25 (d), 121.30 (d), 109.26 (d), 106.32 (s), 52.41 (COOCH₃), 41.38 (CH₂COOMe), 30.11 (N-CH₃).

Analysis calculated for $C_{13}H_{13}ClN_2O_3$ requires:

C, 55.6; H, 4.7; N, 10.0%.

Found: C, 55.3; H, 4.8; N, 10.2%.

Treatment of this with MeSLi as above gave 2,2'-dithiobis [N-carboxymethyl 1-methylindolyl-3-carboxamide] (112) [V: R₁ = H, R₂ = CONHCH₂COOH, R₃ = Me] (56% yield); mp 197°C (dec).

¹H NMR ((CD₃)₂SO): δ 7.98 (1H, d, J = 8.1 Hz, H-4), 7.59 (1H, br, CONH), 7.55 (1H, d, J = 8.4 Hz, H-7), 7.35 (1H, dd, J = 8.4, 7.5 Hz, H-6), 7.20 (1H, dd,

-148-

 $J=8.1, 7.5 \text{ Hz}, H-5), 3.68 (3H, s, N-CH_3), 3.20 (2H, d, <math>J=5.2 \text{ Hz}, \text{CH}_2\text{COOH}).$ $^{13}\text{C NMR}: \quad \delta \quad 171.02 \quad (\text{COOH}), \quad 162.57 \quad (\text{CONH}), \quad 137.60 \quad (\text{s}), \\ 125.36 \quad (\text{s}), \quad 124.30 \quad (\text{d}), \quad 121.27 \quad (\text{d}), \quad 121.11 \quad (\text{d}), \quad 117.69 \\ \text{(s)}, \quad 110.65 \quad (\text{d}), \quad 40.35 \quad (\text{CH}_2), \quad 29.87 \quad (\text{N-CH}_3). \\ \text{Analysis calculated for } \text{C}_{24}\text{H}_{22}\text{N}_4\text{O}_6\text{S}_2\cdot\text{H}_2\text{O} \text{ requires}:} \\ \text{C}, \quad 52.9; \quad \text{H}, \quad 4.4; \quad \text{N}, \quad 10.3; \quad \text{S}, \quad 11.8 \text{L}. \\ \text{Found:} \quad \text{C}, \quad 52.5; \quad \text{H}, \quad 4.5; \quad \text{N}, \quad 10.0; \quad \text{S}, \quad 11.2 \text{L}. \\ \end{cases}$

10 <u>Compound 113 of Table 1</u>

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with SOCl₂ and N-methylaniline gave N-methyl-N-phenyl 2-chloro-1-methylindole-3-carboxamide [XXII: $R_6 = Me$; $R_7 = Ph$] (67% yield); mp (Me₂CO/water) 163°C.

¹H NMR ((CD₃)₂SO): δ 7.47 (1H, d, J = 7.6 Hz, H-4), 7.41 (1H, d, J = 8.3 Hz, H-7), 7.22-7.00 (7H, m, ArH), 3.63 (3H, s, N-CH₃), 3.42 (3H, s, N-CH₃).

¹³C NMR: δ 164. 33 (CONMePh), 143.88 (s), 134.69 (s), 128.50 (d), 125.90 (d), 125.70 (d), 124.86 (s), 124.21 (s), 122.24 (d), 120.71 (d), 118.94 (d), 110.06 (d), 108.80(s), 37.40 (N-CH₃), 29.77 (N-CH₃). Analysis calculated for C₁₇H₁₅ClN₂O requires:

C, 68.3; H, 5.1; N, 9.4; Cl, 11.9%.

Found: C, 68.4; H, 5.1; N, 9.3; Cl, 12.1%.

Treatment of this with MeSLi as above gave

2,2'-dithiobis[N-methyl-N-phenyl-1-methylindolyl3-carboxamide] (113) [V: R₁ = H, R₂ = CON(Me)Ph,
R₃ = Me] (53% yield), mp 158-163°C.

¹H NMR ((CD₃)₂SO): δ 7.80 (1H, d, J = 7.5 Hz, H-4), 7.57 (1H, d, J = 7.8 Hz, H-7), 7.33-6.99 (7H, m, ArH), 3.86 (3H, s, N-CH₃), 3.33 (3H, s, N-CH₃).

¹³C NMR: δ 164.14 (CONMePh), 137.59 (s), 129.94 (s), 124.21 (s), 123.73 (s), 123.24 (d), 122.34 (d), 120.25

-149-

(d), 119.56 (d), 118.79 (d), 115.43 (s), 110.27 (d), 39.68 (N-CH₃), 30.99 (N-CH₃). Analysis calculated for $C_{34}H_{31}N_{4}S_{2}O_{2}$ requires:

 $[M + H]^+ 591.3447.$

10 <u>Compound 114 of Table 1</u>

25

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with $SOCl_2$ and 3-aminopropane-1,2-diol gave N-(2,3-dihydroxypropyl)-2-chloro-1-methylindole-3-carboxamide [XXII: R_6 = H;,

- 15 $R_7 = CH_2CH(OH)CH_2OH]$ (46%) as an oil. ¹H NMR ((CD₃)₂SO/D₂O): δ 7.94 (1H, d, J = 7.0 Hz, H-4), 7.53 (1H, d, J = 7.2 Hz, H-7), 7.38-7.19 (2H, m, H-5,6), 3.78 (3H, s, N-CH₃), 3.68-3.26 (5H, m, $CH_2CHOHCH_2OH)$.
- 20 ¹³C NMR: δ 162.72 (CONH), 134.94 (s), 125.94 (s), 124.79 (s), 122.52 (d), 121.15 (d), 120.05 (d), 110.17 (d), 107.09 (d), 70.17 (CHOH), 63.90 (CH₂OH), 42.34 (CONH<u>C</u>H₂), 29.97 (N-CH₃).

Analysis calculated for $C_{13}H_{15}ClN_2O_3$ requires: M⁺ 284.0742, 282.0771.

Found: M⁺ 284.0744, 282.0763 (mass spectrum). Treatment of this with MeSLi as above gave 2,2'-dithiobis[N-(2,3-dihydroxypropyl)-1-methylindolyl-3-carboxamide] (114) [V: $R_1 = H$,

30 $R_2 = CONHCH_2CH(OH)CH_2OH$, $R_3 = Me$] (71% yield) as a yellow foam; mp 198°C (dec).

¹H NMR ((CD₃)₂SO/D₂O): δ 7.89 (1H, d, J = 8.1 Hz, H-4), 7.56 (1H, d, J = 8.4 Hz, H-7), 7.42 (1H, dd, J = 8.4, 7.3 Hz, H-6), 7.27 (1H, dd, J = 8.1, 7.3 Hz,

-150-

H-5), 3.75 (3H, s, N-CH₃), 3.40-3.20 (5H, m, $C_{H_2}C_{HOHCH_2}O_{HO}$).

¹³C NMR: δ 162.61 (CONH), 137.70 (s), 125.21 (s), 124.40 (d), 121.34 (d), 121.27 (d), 120.81 (s), 117.85 (s), 110.88 (d), 70.17 (CHOH), 63.75 (CH₂OH), 41.96 (CONH_CH₂), 29.95 (N-CH₃).

Analysis calculated for $C_{26}H_{30}N_4O_6S_2$ requires:

C, 55.9; H, 5.4; N, 10.0; S, 11.5%.

Found: C, 55.4; H, 5.4; N, 9.7; S, 11.5%.

10

15

5

Compound 115 of Table 1

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with $SOCl_2$ and N,N-dimethylethylenediamine, followed by extraction into 3N HCl, neutralization with aqueous NH_3 and extraction with RtOAc gave N,N-dimethylaminoethyl-2-chloro-1-methylindole-3-carboxamide [XXII: $R_6 = H$, $R_7 = CH_2CH_2NMe_2$] as an oil (74% yield), which eventually solidified; mp 63°C.

- ¹H NMR (CDCl₃): δ 8.20 (1H, dd, J = 8.1, 1.7 Hz, H-4), 7.26-7.20 (3H, m, H-5,6,7), 7.01 (1H, br, CONH), 3.69 (3H, s, N-CH₃), 3.58 (2H, dt, J = 6.1, 5.1 Hz, CONHCH₂), 2.55 (2H, t, J = 6.1 Hz, CH₂N(CH₃)₂, 2.30 (6H, s, N(CH₃)).
- 25 13 C NMR: δ 163.62 (CONH), 135.31 (s), 126.43 (s), 125.79 (s), 122.90 (d), 121.83 (d), 121.06 (d), 109.17 (d), 107.07 (s), 57.84 (CONHCH₂), 45.14 (N(CH₃)₂), 36.80 CH₂N(CH₃)₂), 29.96 (N-CH₃).

Analysis calculated for $C_{14}H_{18}ClN_3O$ requires:

30 M⁺ 281.1109, 279.1138.

Found: M+ 281.1106, 279.1118 (mass spectrum).

Following treatment of this with MeSLi as above, the reaction mixture was partitioned between $\mathrm{CH_2Cl_2}$ and water. The organic portion was extracted with 3N HCl,

-151-

and the extract was neutralized with aqueous NH2, extracted with CH2Cl2, and worked up to give an oil which was dissolved in MeOH and allowed to stand at 20°C for 48 hours. The product was adsorbed directly 5 onto silica and chromatographed. Elution with MeOH/EtOAc (1:19) containing a trace of concentrated NH4_oH gave 2,2'-dithiobis[N-(N,N-dimethylaminoethyl) 1-methylindolyl-3-carboxamide] (115) [V: $R_1 = H$, $R_2 = CONHCH_2CH_2NMe_2$, $R_3 = Me$] (54% yield); 10 mp (CH₂Cl₂/light petroleum) 163.5-165°C. ¹H NMR (CDCl₃): δ 8.24 (1H, d, J = 8.1 Hz, H-7), 7.36 (1H, dd, J = 8.2, 7.8 Hz, H-6), 7.30 (1H, d, $J = 8.2 \text{ Hz}, \text{ H-7}, 7.25 (1H, dd, } J = 8.1, 7.8 \text{ Hz}, \text{ H-5}),$ 7.10 (1H, br, CONH), 3.60 (3H, s, N-CH₃), 2.99 (2H, dt, 15 J = 6.3, 5.5 Hz, CONHCH₂), 2.26 (2H, t, J = 6.3 Hz, $C_{H_2}N(CH_3)_2$, 2.21 (6H, s, $N(CH_3)_2$). ¹³C NMR: δ 163.71 (CONH), 138.27 (s), 126.64 (s), 125.20 (d), 122.70 (d), 122.11 (d), 118.46 (s), 110.08 (d), 57.72 (CONHCH₂), 45.19 (N(CH₃)₂), 36.81 20 $(\underline{CH}_2N(CH_3)_2)$, 30.15 $(N-CH_3)$. Analysis calculated for C28H36N6O2S2 requires: C, 60.8; H, 6.6; N, 15.2; S, 11.6%.

25 <u>Compound 116 of Table 1</u>

30

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with SOCl₂ and 4-aminopyridine gave N-(4-pyridyl)-2-chloro-1-methylindole-3-carboxamide [XXII: $R_6 = H$, $R_7 = 4$ -pyridyl] (61% yield); mp (CHCl₃/light petroleum) 220-223°C.

¹H NMR ((CD₃)₂SO): δ 10.28 (1H, br, CONH), 8.47 (2H, d, J = 6.1 Hz, H-2',6'), 7.82 (1H, d, J = 7.5 Hz, H-4), 7.72 (2H, d, J = 6.1 Hz, H-3',5'), 7.63 (1H, d, J = 8.0 Hz, H-7), 7.33 (1H, dd, J = 8.0, 7.6 Hz, H-6),

Found: C, 60.7; H, 6.8; N, 14.9; S, 11.4%.

-152-

7.25 (1H, dd, J = 7.6, 7.5 Hz, H-5), 3.84 (3H, s, N-CH₃).

¹³C NMR: δ 162.03 (CONH), 150.16 (d), 145.81 (s), 134.98 (s), 127.50 (s), 124.49 (s), 122.81 (d), 121.54

5 (d), 119.59 (d), 113.50 (d), 110.47 (d), 107.60 (s), 30.11 (N-CH₃).

Analysis calculated for C₁₅H₁₂ClN₃O requires:

C, 63.1; H, 4.2; N, 14.7%.

Found: C, 62.8; H, 3.9; N, 14.6%.

Reaction of this with MeSLi as above gave 2,2'-dithiobis[N-(4-pyridyl)-1-methylindolyl-3-carboxamide] (116) [V: $R_1 = H$, $R_2 = CONH-4$ -pyridyl, $R_3 = Me$] (53% yield); mp 226-229°C (dec).

1H NMR ((CD₃)₂SO): δ 14.46 (1H, s, CONH), 8.51 (2H, d,

15 $J = 7.0 \text{ Hz}, \text{ H-2',6'}, 8.13 (2H, d, <math>J = 7.0 \text{ Hz}, \text{H-3',5'}, 8.05 (1H, d, <math>J = 7.9 \text{ Hz}, \text{H-4}, 7.16 (1H, d, \\ J = 8.1 \text{ Hz}, \text{H-7}, 7.00 (2H, m, H-5,6), 3.68 (3H, s, N-CH₃).$

¹³C NMR: δ 165.13 (s), 164.33 (CONH), 153.80 (s),

20 141.35 (d), 137.26 (s), 128.35 (s), 120.30 (d), 119.97 (d), 118.52 (d), 112.83 (d), 107.66 (d), 104.06 (s), 29.37 (N-CH₃).

Analysis calculated for $C_{30}H_{24}N_6O_2S_2$ requires:

C, 62.8; H, 4.4; N, 14.6; S, 11.2%.

25 Found: C, 62.4; H, 4.9; N, 14.5; S, 11.4%.

Compound 117 of Table 1

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with $SOCl_2$ and 3-aminopyridine gave N-(3-pyridyl)-2-chloro-1-methylindole-3-carboxamide [XXII: $R_7 = H$, $R_8 = 3$ -pyridyl] (86% yield); mp (EtOAc/light petroleum) 175-177°C.

¹H NMR ((CD_3)₂SO): δ 10.13 (1H, s, CONH), 8.90 (1H, d, J = 2.4 Hz, H-2'), 8.30 (1H, dd, J = 4.7, 1.4 Hz,

H-6'), 8.18 (1H, ddd, J = 4.5, 2.4, 1.4 Hz, H-4'), 7.84 (1H, d, J = 7.9 Hz, H-4), 7.63 (1H, d, J = 8.2 Hz,H-7), 7.40 (1H, dd, J=4.7, 4.5 Hz, H-5'), 7.32 (1H, dd, J = 8.2, 7.7 Hz, H-6), 7.25 (1H, dd, J = 7.9, 7.7 Hz, H-5), 3.84 (3H, s, N-CH₂). 5 ¹³C NMR: δ 161.71 (CONH), 144.11 (d), 141.38 (d), 135.85 (s), 134.98 (s), 127.15 (s), 126.62 (d), 124.51 (s), 123.46 (d), 122.74 (d), 121.43 (d), 119.70 (d), 110.43 (d), 107.69 (s), 30.09 (N-CH₃). Analysis calculated for C₁₅H₁₂ClN₃O requires: 10 C, 63.1; H, 4.1; N, 14.3; Cl, 13.6%. Found: C, 63.2; H, 4.2; N, 14.9; Cl, 12.4%. Treatment of this with MeSLi as above gave 2,2'-dithiobis[N-(3-pyridyl) 1-methylindolyl-3-carboxamide] (117) [V: $R_1 = H$, $R_2 = CONH-3$ -pyridyl, 15 $R_3 = Me$] (71% yield); mp 257-260°C. ¹H NMR ((CD_3)₂SO): δ 13.82 (1H, s, CONH), 9.53 (1H, d, J = 1.6 Hz, H-2', 8.44 (2H, m, H-4',6'), 8.05 (1H, d, $J = 8.0 \text{ Hz}, \text{ H-4}, 7.91 (1H, dd, } J = 4.6, 4.5 \text{ Hz}, \text{ H-5}'),$ 7.14 (1H, d, J = 8.1 Hz, H-7), 6.96 (2H, m, H-5',6'), 20 3.67 (3H, s, N-CH₃). ¹³C NMR: δ 164.76 (CONH), 162.70 (s), 140.01 (s), 136.97 (g), 134.17 (d), 132.51 (d), 131.06 (d), 128.44 (s), 127.08 (d), 119.90 (d), 119.45 (d), 118.39 (d), 107.50 (d), 103.89 (s), 29.25. (N-CH₃). 25 Analysis calculated for C30H24N6O2S2 requires:

30 Compound 118 of Table 1

Treatment of 2-chloro-1-methylindole-3-carboxamide [XXII: $R_7 = R_8 = H$] (Andreani A, Rambaldi M, <u>J. Het.</u> Chem. 1988;25:1519-1523) with MeSLi as above gave 2,2'-dithiobis[1-methylindolyl-3-carboxamide] (118)

C, 63.8; H, 4.3; N, 14.9; S, 11.4%.

Found: C, 63.5; H, 4.9; N, 14.8; S, 11.1%.

-154-

[V: $R_1 = H$, $R_2 = CONH_2$, $R_3 = Me$] (71% yield); mp 186-188°C.

¹H NMR (($(CD_3)_2SO$): δ 7.99 (1H, d, J = 7.9 Hz, H-4), 7.52 (1H, d, J = 8.3 Hz, H-7), 7.33 (1H, dd, J = 8.3,

5 7.2 Hz, H-6), 7.25-7.11 (3H, m, H-5 and $CONH_2$), 3.48 (3H, s, N-CH₃).

¹³C NMR: δ 164.76 (CONH₂), 137.56 (s), 129.35 (s), 125.51 (s), 124.37 (d), 121.58 (d), 121.23 (d), 117.77 (s), 110.74 (d), 29.82 (N-CH₂).

10 Analysis calculated for $C_{20}H_{18}N_4O_2S_2 \cdot 0.5H_2O$ requires: C, 57.3; H, 4.6; N, 13.4; S, 15.3%.

Found: C, 57.7; H, 4.5; N, 13.5; S, 15.4%.

Compound 119 of Table 1

- Treatment of N,N-dimethyl 2-chloro-1-methylindole-3-carboxamide [XXII: $R_7 = R_8 = Me$] (Bergman J, Carlsson R, Sjöberg B, <u>J. Het. Chem.</u> 1977;14:1123-1134) with MeSLi as above gave 2,2'-dithiobis[N,N-dimethyl-1-methylindolyl-3-carboxamide] (119) [V: $R_1 = H$,
- R₂ = CONMe₂, R₃ = Me]. Chromatography on silica gel, eluting with EtOAc, followed by crystallization from EtOAc/light petroleum gave pure material (54% yield); mp 96-102°C.
- ¹H NMR (CDCl₃): δ 7.43 (1H, d, J = 8.0 Hz, H-4), 7.31 (2H, m, H-6,7), 7.15 (1H, m, H-5), 3.64 (3H, s, N-CH₃), 2.91, 2.62 (2x3H, 2xbr, N(CH₃)₂).

¹³C NMR: δ 165.89 (CONMe₂), 138.06 (s), 128.51 (s), 125.04 (s), 124.47 (d), 121.15 (d), 120.59 (d), 120.19 (s), 110.19 (d), 38.65 (N(CH₃)₂), 34.84 (N(CH₃)₂),

30 30.23 (N-CH₃).

Analysis calculated for $C_{24}H_{26}N_4O_2S_2 \cdot 0.5H_2O$ requires: C, 60.6; H, 5.7; N, 11.7%.

Found: C, 60.3; H, 5.8; N, 11.2%.

-155-

Analysis calculated for $C_{24}H_{27}N_4S_2O_2$ requires:

 $[M + H]^+ 467.1575.$

Found: $[M + H]^+$ 467.1559 (FAB mass spectrum).

5 <u>Compound 120 of Table 1</u>

A mixture of 2-chloroindole-3-carboxaldehyde (7.0 g, 36 mmol) was reacted with a slight excess of hydroxylamine hydrochloride and pyridine in refluxing EtOH for 1 hour, to give the crude oxime (Latrell R,

- Bartmann W, Musif J, Granzer E, German Patent 2,707,268, 31 Aug 1978, <u>Chem. Abstr.</u> 1978;89:179858y).

 A solution of this in Ac₂O (100 mL) was heated under reflux for 1 hour, cooled, and stirred with water (700 mL). The precipitated solid was collected, washed
- with water, and crystallized from aqueous MeOH to give 2-chloro-1H-indole-3-carbonitrile (3.7 g, 58%); mp 177-180°C.

¹H NMR ((CD₃)₂SO): δ 13.23 (1H, s, NH), 7.60 (1H, d, J = 7.5 Hz, ArH), 7.50 (1H, d, J = 7.9 Hz, ArH), 7.34

20 (1H, t, J = 7.5 H, ArH), 7.29 (1H, t, J = 7.3 Hz, ArH). ¹³C NMR: δ 134.0, 131.5, 126.2, 114.1 (C), 123.8, 122.3, 117.9, 112.3 (CH), 83.8 (CN).

Analysis calculated for $C_9H_5ClN_2$ requires:

C, 61.2; H, 2.9; N, 15.9%.

25 Found: C, 61.2; H, 2.7; N, 15.9%.

A solution of the above nitrile (2.5 g, 14 mmol) in Me_2CO was treated with a slight excess of MeI and K_2CO_3 under reflux for 1 hour. Crystallization of the crude product from hexane gave 2-chloro-1-methylindole-

- 30 3-carbonitrile (1.88 g, 70%); mp 112-114°C.
 - ¹H NMR (CDCl₃): δ 7.61-7.55 (1H, m, ArH), 7.34-7.21 (3H, m, ArH), 3.74 (3H, s, CH₃).
 - ¹³C NMR: δ 135.0, 133.4, 126.0, 114.1 (C), 123.9, 122.7, 118.8, 110.1 (CH), 85.2 (CN).

-156-

Analysis calculated for C₁₀H₇ClN₂ requires:

C, 63.0; H, 3.7; N, 14.7%.

Found: C, 63.0; H, 3.6; N, 14.7%.

Treatment of this with MeSLi as above gave 2,2'
dithiobis(2-chloro-1-methylindole-3-carbonitrile) (120)

[V: $R_1 = H$, $R_2 = CN$, $R_3 = Me$] (53% yield);

mp 205-207°C.

¹H NIMR ((CD₃)₂SO): δ 7.69 (1H, d, J = 8.3 Hz, H-4), 7.51 (1H, d, J = 8.0 Hz, H-7), 7.42 (1H, dd, J = 8.0,

7.3 Hz, H-6), 7.28 (1H, dd, J = 8.3, 7.3 Hz, H-5), 3.82 (3H, s, N-CH₃).

Analysis calculated for $C_{20}H_{14}N_4S_2$ requires:

C, 64.2; H, 3.8; N, 15.0; S, 17.1%.

Found: C, 64.2; H, 3.8; N, 15.1; S, 17.7%.

15

Compound 121 of Table 1

3-Acetyl-2-chloro-1-methylindole was prepared by the reported method (Coppola GM, Hardtmann GE, <u>J. Het.</u> Chem. 1977;14:117-1118). This was reacted with MeSLi

20 as above gave 3-acetyl-1-methyl-2-indolinethione [XV: $R_5 = Me$] (66% yield); mp 180°C.

¹H NMR ((CD₃)₂SO): δ 15.60 (1H, br, SH), 7.64 (1H, d,

J = 6.5 Hz, H-4), 7.39 (1H, d, <math>J = 7.6 Hz, H-7), 7.32 (1H, dd, J = 7.6, 7.3 Hz, H-6), 7.24 (1H, dd, <math>J = 7.3,

25 6.5 Hz, H-5), 3.65 (3H, s, N-CH₃), 2.66 (3H, s, COCH₃). 13 C NMR: δ 178.29 (COCH₃), 140.56 (s), 125.21 (d), 124.67 (s), 123.27 (d), 120.60 (d), 111.31 (s), 109.99 (d), 29.31 (N-CH₃), 22.44 (COCH₃).

Analysis calculated for C9H5ClN2 requires:

30 C, 61.2; H, 2.9; N, 15.9%.

Found: C, 61.2; H, 2.7; N, 15.9%.

A solution of the above thione (0.10 g, 0.49 mmol) in MeOH/EtOAc (1:9) (10 mL) was stirred vigorously with 30% $\rm H_2O_2$ (0.20 mL) for 4 hours. The solution was

-157-

concentrated to a volume of 0.5 mL, and the orange precipitate was filtered off and washed well with MeOH to give 2,2'-dithiobis(3-acetyl-1-methylindole) (121) [V: $R_1 = H$, $R_2 = COMe$, $R_3 = Me$] (100% yield);

- 5 mp 178.5-179.5°C.

 ¹H NMR ((CD₃)₂SO): δ 8.14 (1H, d, J = 8.1 Hz, H-4),

 7.62 (1H, d, J = 8.3 Hz, H-7), 7.39 (1H, dd, J = 8.3,

 7.3 Hz, H-6), 7.27 (1H, dd, J = 8.1, 7.3 Hz, H-5), 3.75 (3H, s, N-CH₃), 2.00 (3H, s, COCH₃).
- 15 Found: C, 63.7; H, 4.7; N, 6.8%.

Compound 122 of Table 1

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXI] with $SOCl_2$ and 2-aminopyridine gave N-(2'-pyridyl)-2-chloro-1-methylindole-3-carboxamide [XXII: $R_6 = H$, $R_7 = 2$ -pyridyl] (42% yield); mp (light petroleum) 123°C.

¹H NMR (CDCl₃): δ 8.85 (1H, s, CONH), 8.41 (1H, d, J = 8.4 Hz, H-4), 8.30 (2H, m), 7.72 (1H, m), 7.28 (3H,

25 m), 7.02 (1H, dd, J = 7.2, 4.9 Hz), 3.74 (3H, s, N-CH₃).

¹³C NMR: δ 161.58 (CONH), 151.85 (s), 147.92 (d), 138.27 (d), 135.46 (s), 127.22 (s), 125.84 (s), 123.45 (d), 122.48 (d), 121.16 (d), 119.47 (d), 114.25 (d),

30 109.44 (d), 106.59 (s), 30.21 (N-CH₃). Analysis calculated for $C_{15}H_{12}ClN_3O$ requires:

C, 63.1; H, 4.2; N, 14.7%.

Found: C, 62.9; H, 4.2; N, 14.4%.

-158-

Treatment of this with MeSLi as above gave 2,2'-dithiobis[N-(2'-pyridyl)-1-methylindole-3-carboxamide] (122) [V: $R_1 = H$, $R_2 = CONH-2$ -pyridyl, $R_3 = Me$] (68% yield); mp 270-272°C (dec). ¹H NMR ((CD₃)₂SO): δ 14.93 (1H, br, CONH), 8.32 (1H, 5 d, J = 6.0 Hz, 8.25 (1H, dd, J = 8.3, 7.7 Hz), 8.02 (1H, dd, J = 7.4, 3.7 Hz), 7.57 (1H, d, J = 8.7 Hz), 7.35 (1H, t, J = 6.6 Hz), 7.21 (1H, dd, J = 5.1. 3.0 Hz), 7.04 (2H, m), 3.69 (3H, s, N-CH₃). 13 C NMR: δ 166.48 (s), 165.41 (CONH), 149.16 (s), 10 145.34 (d), 137.66 (s), 137.49 (s), 127.89 (s), 120.66 (d), 120.44 (d), 118.32 (d), 117.55 (d), 115.32 (d), 107.96 (d), 102.69 (s), 29.40 (N-CH₂). Analysis calculated for $C_{30}H_{24}N_6O_2S_2 \cdot 0.25H_2O$ requires: 15 C, 63.3; H, 4.3; N, 14.8; S, 11.3%. Found: C, 63.2; H, 4.5; N, 14.8; S, 11.7%.

Compound 123 of Table 1

Similar treatment of 1-methyl-2-indolinethione 20 [IV: $R_1, R_2 = H$, $R_3 = CH_3$] with the acyl azide derived from 2-furoic acid gave 3-(2-furoyl)-1-methyl-2-indolinethione [IV: $R_1 = H$, $R_2 = CO(2-furyl)$; $R_3 = Me$] (85% yield); mp 113.5°C. ¹H NMR ((CD_3)₂SO): δ 15.90 (1H, br, SH), 8.28 (1H, d, 25 J = 1.6 Hz, H-5', 7.97 (1H, d, <math>J = 8.0 Hz, H-4), 7.56(1H, d, J = 3.6 Hz, H-3'), 7.46 (1H, d, J = 8.0 Hz,H-7), 7.37 (1H, dd, J = 8.0, 7.4 Hz, H-6), 7.21 (1H, dd, J = 8.0, 7.4 Hz, H-5), 6.94 (1H, dd, J = 3.6, 1.6 Hz, H-4'), 3.72 (3H, s, N-CH₃). 30 ¹³C NMR: δ 180.09 (CS), 160.65 (CO), 147.95 (d), 147.27 (s), 140.92 (s), 126.05 (d), 123.26 (s), 123.12 (d), 121.04 (d), 119.19 (d), 113.22 (d), 110.11 (d), 109.64 (s), 29.79 (N-CH₃).

-159-

¹³C NMR: δ 177.09 (CO), 152.55 (s), 145.91 (d), 138.18, 131.32, 125.80 (3xs), 124.72 (d), 123.60 (s), 121.73, 121.12, 119.16, 111.91, 110.06 (5xd), 30.54 (NCH₃).

Analysis calculated for $C_{28}H_{20}N_2O_4S_2 \cdot 0.5H_2O$ requires: Found: C, 64.4; H, 4.1; N, 5.4; S, 12.3%. C, 64.7; H, 4.1; N, 5.6; S, 12.4%.

Compound 124 of Table 1

5

10

15

20

Similar treatment of 1-methyl-2-indolinethione
[IV: R₁,R₂ = H, R₃ = CH₃] with the isocyanate derived
from thiophene-2-carboxylic acid gave 2,2'-dithiobis[N-(2-thienyl)-1-methylindole-3-carboxamide] (124)
[V: R₁ = H, R₂ = CONHfuryl, R₃ = Me] (21% yield;
mp 183°C (dec).

1H NMR ((CD₃)₂SO): δ 11.26 (1H, s, CONH), 7.93 (1H, d,
J = 8.0 Hz, H-4), 7.62 (1H, d, J = 8.3 Hz, H-7), 7.34
(1H, dd, J = 8.3, 7.4 Hz, H-6), 7.24 (1H, dd, J = 8.0,
7.4 Hz, H-5), 7.05 (1H, dd, J = 5.3, 3.6 Hz, H-4'),
6.94 (1H, d, J = 5.3 Hz, H-5'), 6.41 (1H, d,
J = 3.6 Hz, H-3'), 3.95 (3H, s, NCH₃).

-160-

¹³C NMR: δ 160.10 (CONH), 139.86 (s), 137.81 (s), 136.86 (s), 125.19 (s), 123.96 (d), 123.69 (d), 121.28 (d), 120.54 (d), 116.85 (d), 114.73 (s), 111.20 (d), 110.77 (d), 30.54 (N-CH₃).

Analysis calculated for $C_{28}H_{22}N_4O_2S_4\cdot H_2O$ requires: C, 57.6; H, 4.0; N, 9.6%.

Found: C, 57.6; H, 4.1; N, 10.0%.

EXAMPLE J

Preparation of Compound 125 of Table 1 by the Method Outlined in Scheme 9

Reaction of 3-chlorocarbonyl-1-(phenylsulfonyl)-indole [XXIII] (Ketcha DM, Gribble GW, <u>J. Org. Chem.</u> 1985;50:5451-5457) with an excess of benzylamine in

- CH₂Cl₂) (method of Ketcha and Gribble) gave

 N-benzyl-1-(phenylsulfonyl)indole-3-carboxamide [XXIV:

 R₈ = CH₂Ph]; mp (MeOH) 188-189°C.
- ¹H NMR (CDCl₃): δ 8.05 (1H, s, H-2), 8.03-7.86 (4H, m, ArH), 7.56-7.26 (10H, m, ArH), 6.43 (1H, m, NH), 4.64
 (2H, d, J = 5.7 Hz, CH₂).
 - Analysis calculated for C22H18N2O3S requires:

C, 67.7; H, 4.5; N, 7.2; S, 8.2%.

Found: C, 67.4; H, 4.8; N, 7.1; S, 8.2%.

A solution of the above N-benzyl-1-(phenyl-sulfonyl)indole-3-carboxamide [XXIV: R₈ = CH₂Ph] (4.2 g, 11 mmol) in dry THF (200 mL) was treated at -78°C with a solution of 2.5 M n-BuLi in hexanes (9.1 mL, 23 mmol), and the stirred mixture was allowed to warm to -20°C for 15 minutes, before being recooled to -78°C, when it was treated with methyldisulfide (2.5 mL, 28 mmol). The mixture was allowed to warm to 20°C, then quenched with water (25 mL). Volatiles were removed under reduced pressure, and the residue was extracted with EtOAc. Workup of the organic layer gave

-161-

a crude product. This was dissolved in MeOH (300 mL), mixed with a solution of K2CO2 (6.9 g, 50 mmol) in water (125 mL), and heated under gentle reflux under N_2 for 2 hours to ensure complete hydrolysis of the phenylsulfonyl group (J. Org. Chem. 1985;50:5451-5457). MeOH was removed under reduced pressure, and the residue was diluted with water and extracted with CH2Cl2. Chromatography of the resulting oil on Al2O3 (eluting with CH2Cl2) gave N-benzyl-2-(methylthio)indole-3-carboxamide [XXV: $R_8 = CH_2Ph$] (2.8 g, 88% yield) as an oil. ¹H NMR (CDCl₂): δ 10.65 (1H, s, H-1), 8.29 (d, J = 5.1 Hz, H-4), 7.87 (1H, t, J = 5.6 Hz, CONH), 7.34-7.08 (8H, m, ArH), 4.73 (2H, d, J = 5.6 Hz, CH_2), 2.33 (3H, s, SMe). ¹³C NMR (CDCl₃): δ 165.6 (C=0), 138.5, 136.4, 133.1 and 110.8 (C), 128.5, 127.2, 127.1, 122.9, 121.4, 126.8 and 111.2 (CH), 43.2 (CH₂), 18.5 (CH₃). HREIMS calculated for C₁₇H₁₆N₂OS:

296.0983.

5

10

15

20

25

30

Found: 296.0985.

A solution of the above N-benzyl-2-(methylthio)-indole-3-carboxamide [XXV: $R = CH_2Ph$] (0.85 g, 2.87 mmol) in DMA (5 mL) was added under N_2 to a stirred suspension of MeSLi (0.93 g, 17.2 mmol) in DMA (10 mL). After warming at 80°C for 6 hours, the mixture was acidified with 3N HCl, extracted with CH_2Cl_2 , and worked up. Traces of DMA were removed under high vacuum, and the residue was dissolved in MeOH (15 mL) and treated dropwise with H_2O_2 (0.5 mL of 30% solution). After chilling at -30°C overnight, the precipitate was filtered off to give 2,2'-dithiobis[N-benzylindolyl-3-carboxamide] (125) [V: $R_1 = R_3 = H$, $R_2 = CONHCH_2Ph$], (74%); mp 203-205°C.

-162-

¹H NMR ((CD₃)₂SO): δ 12.97 (1H, s, NH), 8.48 (1H, t, J = 5.7 Hz, CONHCH₂), 7.86 (1H, d, J = 8.2 Hz, H-4), 7.40 (2H, d, J = 8.3 Hz, H-2',6'), 7.34 (3H, dd, J = 8.3, 8.2 Hz, H-7,3',5'), 7.25 (1H, t, J = 8.2 Hz, H-4'), 7.20-7.10 (2H, m, H-5,6), 4.56 (2H, d, J = 5.7 Hz, CONHCH₂).

¹³C NMR: δ 164.71 (CONH), 139.77 (s), 136.69 (s), 135.30 (s), 128.16 (d), 127.15 (d), 126.56 (d), 124.44 (s), 122.63 (d), 120.78 (d), 119.25 (d), 111.60 (d), 110.54 (s), 42.62 (CONHCH₂).

Analysis calculated for $C_{32}N_{26}N_{4}O_{2}S_{2}$ requires: C, 68.3; H, 4.7; N, 10.0; S, 11.4%.

Found: C, 68.0; H, 4.8; N, 9.9; S, 11.2%.

15 <u>Compound 126 of Table 1</u>

Reaction of 3-chlorocarbonyl-1-(phenylsulfonyl)-indole [XXIII] with an excess of aniline as above gave N-phenyl-1-(phenylsulfonyl)indole-3-carboxamide [XXIV: $R_8 = Ph$]; mp (MeOH) 220-222.5°C.

- ¹H NMR: δ (CDCl₃) 8.18 (1H, s, H-2), 8.12 (1H, d, J = 7.8 Hz, H-4), 7.99 (1H, d, J = 8.3 Hz, H-7), 7.91 (2H, d, J = 7.9 Hz, ArH), 7.90 (1H, m, NH), 7.65 (2H, d, J = 8.4 Hz, ArH), 7.57 (1H, t, J = 7.8 Hz, ArH), 7.45 (2H, t, J = 7.8 Hz, ArH), 7.41-7.33 (4H, m, ArH),
- 25 7.15 (1H, t, J = 7.4 Hz, H-5).

Analysis calculated for $C_{21}H_{18}N_2O_3S$ requires:

C, 67.0; H, 4.3; N, 7.4; S, 8.5%.

Found: C, 66.9; H, 4.4; N, 7.3; S, 8.5%.

Treatment of this with n-BuLi/methyldisulfide as above gave 2-(methylthio)-N-phenylindole-3-carboxamide [XXV: $R_8 = Ph$] (81%) as an oil.

¹H NMR (CDCl₃): δ 10.19 (1H, s, H-1), 9.59 (1H, s, CONH), 8.47 (1H, d, J = 6.8 Hz, H-4), 7.80 (2H, d,

-163-

J = 8.5 Hz, ArH), 7.43-7.35 (3H, m, ArH), 7.28-7.16 (3H, m, ArH), 2.51 (3H, s, SCH₃). ¹³C NMR (CDCl₃): δ 163.5 (CO), 138.2, 136.1, 132.5, 127.3, 111.2 (CH), 19.1 (CH₃).

5 HREIMS calculated for C₁₆H₁₄N₂OS:

282.0827

Found: 282.0827.

Treatment of this with MeSLi as above gave 2,2'-dithiobis[N-phenylindolyl-3-carboxamide] (126) [V: $R_1 = R_3 = H$, $R_2 = CONHPh$], (67%); mp 220-223°C.

¹H NMR ((CD_3)₂SO): δ 12.73 (1H, s, NH), 9.88 (1H, s, CONH), 7.81 (1H, d, J = 7.9 Hz, H-4), 7.69 (2H, d, J = 8.4 Hz, H-2',6'), 7.46 (1H, d, J = 7.7 Hz, H-7), 7.34 (2H, dd, J = 8.4, 8.3 Hz, H-3',5'), 7.24 (1H, dd, J = 7.7, 7.7 Hz, H-6), 7.17 (1H, dd, J = 7.9, 7.7 Hz, H-5), 7.10 (1H, dd, J = 8.3 Hz, H-4').

¹³C NMR: δ 163.27 (CONH), 138.89 (s), 136.73 (s), 133.94 (s), 128.53 (d), 125.12 (s), 123.49 (d), 123.17 (d), 120.99 (d), 120.32 (d), 119.97 (d), 112.89 (s),

111.67 (d). Analysis calculated for $C_{30}H_{22}N_4O_2S_2$ requires: C, 67.4; H, 4.2; N, 10.5; S, 12.0%.

Found: C, 67.1; H, 4.3; N, 10.6; S, 12.0%.

25 <u>Compound 127 of Table 1</u>

20

Reaction of 3-chlorocarbonyl-1-(phenylsulfonyl)-indole [XXIII] with an excess of methylamine as above gave N-methyl-1-(phenylsulfonyl)indole-3-carboxamide [XXIV: $R_8 = Me$]; mp (MeOH) 192.5-195°C.

30 ¹H NMR (CDCl₃): δ 8.06 (1H, s, H-2), 8.03-7.84 (4H, m, ArH) 7.53-7.26 (5H, m, ArH), 6.37 (1H, m, NH), 2.99 (d, J = 4.9 Hz, CH₃).

-164-

Analysis calculated for C16H14N2O3S requires:

C, 61.1, H, 4.5; N, 8.9; S, 10.2%.

Found: C, 61.1; H, 4.7; N, 8.9; S, 10.0%.

Treatment of this with n-BuLi/methyldisulfide as above gave N-methyl-2-(methylthio)indole-3-carboxamide [XXV: R₈ = Me] (95%); mp (hexane-CH₂Cl₂) 138.5-139.5°C.

¹H NMR (CDCl₃): δ 10.31 (1H, s, H-1), 8.35-8.26 (1H, m, H-4), 7.44 (1H, t, J = 4.8 Hz, NH), 7.38-7.30 (1H,

- 10 m, ArH), 7.19-7.11 (2H, m, ArH), 3.06 (3H, d, J = 4.8 Hz, CH₃), 2.49 (3H, s, SCH₃).

 ¹³C NMR (CDCl₃): δ 166.4 (CO), 136.4, 132.4, 127.4 and 111.7 (C), 123.1, 121.5, 121.2, 111.1 (CH), 26.3 and 18.9 (CH₃).
- 15 Analysis calculated for C₁₁H₁₂N₂OS requires: C, 60.0; H, 5.5; N, 12.7; S, 14.6%. Found: C, 59.8; H, 5.7; N, 12.7; S, 14.5%.

Treatment of this with MeSLi as above gave 2,2'-dithiobis[N-methylindolinyl-3-carboxamide] (127)

20 [V: $R_1 = R_3 = H$, $R_2 = CONHMe$], (57% yield); mp 232-236°C (dec). ¹H NMR ((CD₃)₂SO): δ 12.94 (1H, s, NH), 7.85 (1H, br,

CONH), 7.81 (1H, d, J = 8.0 Hz, H-4), 7.46 (1H, d, J = 8.0 Hz, H-7), 7.20 (1H, dd, J = 8.0, 7.7 Hz, H-6),

25 7.14 (1H, dd, J = 8.0, 7.7 Hz, H-5), 2.88 (3H, d, J = 4.5 Hz, CONHCH₃).

¹³H NMR: δ 165.20 (CONH), 136.70 (s), 134.76 (s), 124.47 (s), 122.61 (d), 120.71 (d), 119.55 (d), 111.55 (d), 111.02 (s), 26.22 (CONHCH₃).

30 Analysis calculated for C₂₀H₁₈N₄O₂S₂ requires: C, 58.5; H, 4.4; N, 13.7; S, 15.6%. Found: C, 58.4; H, 4.7; N, 13.6; S, 15.4%.

-165-

Compound 128 of Table 1

A solution of 2-(methylthio)-N-phenyl-1H-indole-3-carboxamide [XXV: $R_8 = H$] (1.8 g, 6.4 mmol) in EtOH (400 mL) was treated with 3-(dimethylamino) propyl chloride hydrochloride (10.0 g, 64 mmol) and K2CO2 5 (13 g, 96 mmol) and heated under reflux for 3 hours. A further 10 equivalents of the reagents were then added, and the mixture was heated under reflux for a further 48 hours. EtOH was removed under reduced pressure, and the residue was diluted with water to give crude 10 product. This was chromatographed on alumina, eluting with CH2Cl2 containing 0.2% MeOH, to give 1-[3-(dimethylamino)propyl]-2-(methylthio)-N-phenyl-1H-indole-3-carboxamide [XXVI: $R_8 = H$, $R_9 = (CH_2)_3NMe_2$] 15 (0.49 g, 21%) as an oil. ¹H NMR (CDCl₃): δ 9.93 (1H, s, NH), 8.54 (1H, d, J = 7.8 Hz, H-4, 7.74 (2H, d, <math>J = 8.6 Hz, H-2', 6'),7.42-7.24 (5H, m, ArH), 7.11 (1H, t, J = 7.4 Hz, ArH), 4.46 (2H, t, J = 7.4 Hz, 1-CH₂), 2.47 (3H, s, SCH₂), 20 2.37 (2H, t, J = 6.9 Hz, CH_2N), 2.27 (6H, s, $N(CH_3)_2$), 1.97 (2H, dxt, J = 7.4, 6.9 Hz, $CH_2CH_2CH_2$). ¹³C NMR: δ 162.6 (CO), 138.8, 136.7, 131.4, 127.5, 114.1 (C), 129.0, 124.1, 123.7, 122.8, 122.1, 119.8, 110.0 (CH), 56.5, 42.0, 28.3 (CH₂), 45.3 (N(CH₃)₂), 25 21.1 (SCH₃). Analysis calculated for C21H25N3O8 requires: $[M + H^{+}] = 368.1797.$

HRFABMS Found: $[M + H^{+}] = 368.1812$.

30

This was treated with MeSLi at 80°C for 8 hours as above. Water was added, the mixture was washed with CH_2Cl_2 , and the aqueous portion was carefully neutralized with 3N HCl and extracted with CH_2Cl_2 . This extract was worked up to give an oil which was dissolved in MeOH and treated dropwise at room

-166-

temperature with a saturated solution of I_2 in CH_2Cl_2 until no starting material was evident on TLC analysis. The reaction mixture was absorbed directly onto silica and chromatographed. MeOH/EtOAc (1:9) eluted foreruns, while MeOH/EtOAc (1:9) containing a trace of concentrated NH_4OH gave 2,2'-dithiobis[1-{3-(dimethylamino)}propyl)-N-phenyl-1H-indole-3-carboxamide] (128) [V: R_1 = H, R_2 = CONHPh, R_3 = $(CH_2)_3NMe_2$] (10% yield) as a yellow foam.

- ¹H NMR (CD₃OD): δ 8.19 (1H, d, J = 7.3 Hz, H-4), 7.64 (1H, d, J = 7.5 Hz, H-7), 7.30-7.20 (3H, m, ArH), 7.10-6.95 (4H, m, ArH), 4.41 (2H, t, J = 6.2 Hz, CH₂N), 2.74 (2H, t, J = 6.7 Hz, CH₂NMe₂), 2.64 (6H, s, N(CH₃)₂), 2.09 (2H, m, CH₂CH₂CH₂).
- Analysis calculated for $C_{40}H_{45}N_6O_2S_2$ requires: $[M + H^+] = 705.3045$.

HRFABMS found: $[M + H^{+}] = 705.3035$.

5

25

30

EXAMPLE K

20 <u>Preparation of Compound 129 of Table 1 by the Method</u>
Outlined in Scheme 10

To a stirred 25°C solution of 41 mL (558 mmol) of DMF and 75 mL of dichloromethane was added dropwise a solution of 133.5 g (465 mmol) of POBr $_3$ in 100 mL of dichloromethane at such a rate to maintain a gentle reflux via the exothermic reaction (ca. 1 hour). The resulting thick tan suspension was stirred vigorously for 10 minutes, then treated dropwise over 20 minutes with a solution of 27.38 g (186 mmol) of 1-methyl-2-indolinone [VII: $R_1 = H$, $R_3 = CH_3$) in 55 mL of dichloromethane. The mixture was heated at reflux for 3.5 hours, cooled to 25°C, and the supernatant was decanted and concentrated to a thick reddish brown oil. This was combined with the solids above and treated

-167-

very cautiously with portionwise addition of ca. 20 g of ice, then with 112 g of 50% (w/w) aqueous NaOH, all the while keeping the temperature between 30-40°C (pH = 3). An additional 20 g of 50% NaOH, then 100 mL of ice water were added, and the precipitate was collected by filtration. The solids were washed well with water, then dried over P_2O_5 to leave 42.6 g of crude bromoaldehyde; mp 92-97°C. The solids were dissolved in ca. 65 mL of dichloromethane and the solution filtered over 165 g of flash silica gel placed in a 600 mL sintered glass funnel. The frit was washed with dichloromethane until all the product had eluted. The combined product fractions were concentrated to leave 34.66 g (78%) of nearly pure 2-bromo-1-methylindole-3-carboxaldehyde [XXVI: $R_1 = H$, $R_3 = CH_3$, X = Br; mp 110-112° which was used directly in the next reaction.

5

10

15

25

30

To a vigorously stirred solution of 2.38 g (10 mmol) of 2-bromo-1-methylindole-3-carboxaldehyde 20 [XXVI: $R_1 = H$, $R_3 = CH_3$, X = Br], 10 mL of 2-methyl-2-butene, and 40 mL of p-dioxane at 25°C was added dropwise over ca. 15 minutes a solution of 5 g (55 mmol) of sodium chlorite and 5 g (36 mmol) of $NaH_2PO_4 \cdot H_2O$ in 25 mL of water. The solution was maintained at 25°C. After 3.5 hours, the mixture was treated with an additional 2.5 g each of the chlorite and phosphate. After a total reaction time of 24 hours, the mixture was extracted 3 times with dichloromethane, then the aqueous phase was acidified to pH 2 with aqueous HCl, and extracted once more. combined organic extracts were washed with water, dried, and evaporated to leave a solid residue that was boiled in 2-propanol. After cooling, the solids were collected by filtration, washed with a little

-168-

2-propanol, and dried to leave 2.21 g (87%) of 2-bromo-1-methylindole-3-carboxylic acid [XXVII: $R_1 = H$, $R_3 = CH_3$, X = Br] as a beige solid; mp ca. 198°C (dec), in 2 crops.

5

A suspension of 2.54 g (10 mmol) of 2-bromo-1-methylindole-3-carboxylic acid [XXVII: $R_1 = H$, $R_3 = CH_3$, X = Br], 2.54 g (10 mmol) of bis(2-oxo-3-oxazolidinyl)phosphinic chloride, 2.78 mL (20 mmol) of triethylamine, and 25 mL of

1,2-dichloroothane was heated at reflux for 1.5 hours. The mixture was cooled and poured into 150 mL 5% aqueous sodium bicarbonate solution and stirred for 30 minutes. The mixture was extracted with dichloromethane (3 times), the combined organic phase

washed with water, brine, dried (MgSO₄), and concentrated to leave a red oil. The oil was triturated in ethyl acetate:hexanes and the solids were collected by filtration to give 0.95 g of a side product; mp 227-228°C (dec). The filtrate was

concentrated to a viscous oil that was dissolved into chloroform and adsorbed into 9 g of flash SiO₂. This was introduced onto a column containing flash SiO₂ and the column was eluted with hexanes:ethyl acetate (95:5). Product fractions were pooled, concentrated,

and triturated from isooctane to give 1.96 g (63%) of 2-bromo-1-methylindole-3-carboxylic acid, t-butyl ester [XXVIII: $R_1 = H$, $R_2 = COO-t-butyl$, $R_3 = CH_3$] as a white solid; mp 87-88°C.

Analysis calculated for $C_{14}H_{16}BrNO_2$ requires:

30 C, 54.21; H, 5.20; N, 4.52; Br, 25.76%.

Found: C, 54.28; H, 5.20; N, 4.49, Br, 25.83%.

An ice-cold suspension of 119 mg (1.5 mmol) of elemental selenium in 2 mL of THF under N_2 was treated dropwise with 1.1 mL of methyl lithium:lithium bromide

-169-

complex (1.5 M in ether). The flask was opened to the air and with a brisk stream of N2, the resultant white suspension was warmed to ca. 85°C to distill off the ether and most of the THF. The residual semi-solid was 5 cooled in an ice bath and diluted with 1.5 mL of DMA followed by 155 mg (0.5 mmol) of 2-bromo-1-methylindole-3-carboxylic acid, t-butyl ester. resultant solution was stirred at room temperature for 24 hours, cooled to 0°C, then treated with 2 mL of 10 dilute acetic acid. The mixture was diluted with water and extracted with chloroform $(3 \times 10 \text{ mL})$. combined extracts were washed with water (4 times), dried (Na₂SO₄), and concentrated to leave a golden solid. The solid was suspended in 2.3 mL of 2:1 v/v HOAc:H2O and the suspension was treated with 154 mg of 15 NaBO3·4H₂O, then stirred at 25°C for 30 minutes. solids were collected by filtration, washed with water, and dried to leave 119 mg (77 %) of 2,2'-diselenobis [1-methyl-1H-indole-3-carboxylic acid, t-butyl ester] 20 (129) [XXIX: $R_1 = H$, $R_2 = COO-t-butyl$, $R_3 = CH_3$]; mp 187-189°C. ¹H NMR (CDCl₃): ∂ 8.13 (1H, dd, J = 0.7, 7.9 Hz, H-4), 7.31-7.19 (3H, m, ArH), 3.63 (3H, s, NCH₃), 1.44 (9H, s, C(CH₃)₃).Analysis calculated for C28H32N2O4Se2.0.2H2O requires: C, 54.06; H, 5.25; N, 4.50%.

25

Found: C, 54.40; H, 5.48; N, 4.11%.

Compound 130 of Table 1

To an ice-cold solution of 4 mL of trifluoroacetic 30 acid under nitrogen was added 420 mg (0.68 mmol) of 2,2'-diselenobis[1-methyl-1H-indole-3-carboxylic acid, t-butyl ester] (101) [XXIX: $R_1 = H$, $R_2 = COO-t-butyl$, $R_3 = CH_3$]. The suspension was maintained at 0°C for

-170-

3 hours, then poured into ice water. The solids were collected by filtration, washed well with water, and dried to leave 361 mg of product; mp 165°C (dec). The solids were suspended into 80 mL 10% aqueous NH₄OH and the insolubles were removed by filtration. The filtrate was adjusted to pH 3 with 6N aqueous HCl, and the precipitated solids were collected by filtration, washed with water, and dried to leave 268 mg (78%) of 2,2'-diselenobis[1-methyl-1H-indole-3-carboxylic acid] (130) [XXIX: $R_1 = H$, $R_2 = COOH$, $R_3 = CH_3$]; mp 174°C (dec) as an orange solid.

¹H NMR ((CD₃)₂SO): ∂ 12.35 (1H, s, CO₂H), 8.04 (1H,

¹H NMR ((CD₃)₂SO): ∂ 12.35 (1H, s, CO₂H), 8.04 (1H d, J = 7.9 Hz, H-4), 7.56 (1H, d, J = 8.4 Hz, H-7), 7.31-7.20 (2H, m, ArH), 3.63 (3H, s, NCH₃).

Analysis calculated for $C_{20}H_{16}N_2O_4Se_2 \cdot 0.1H_2O$ requires: C, 47.28; H, 3.21; N, 5.51%.

Found: C, 47.20; H, 3.20; N, 5.12%.

Compound 131 of Table 1

5

10

20 A 25°C suspension of 2.79 g (11 mmol) of 2-bromo-1-methylindole-3-carboxylic acid [XXVII: $R_1 = H$, $R_3 = CH_3$, X = Br] in 13 mL of 1,2-dichloroethane was treated dropwise with 2.41 mL (33 mmol) of thionyl chloride. The mixture was heated at 75°C for 2 hours. The solution was concentrated to a solid 25 which was co-evaporated once with dichloromethane. solid was ice-cooled and treated rapidly with 26 mL of 40% aqueous methylamine. The bath was removed and the suspension was stirred at 25°C for 2 hours. The solids 30 were collected by filtration, washed well with water, and dried at 200 mm/70°C/12 hours over P_2O_5 to leave 2.2 g (75%) of product; mp 154-157°C. Recrystallization from MeOH provided 1.91 g of pure 2-bromo-1-methylindole-3-N-methylcarboxamide

-171-

[XXX: $R_1 = H$, $R_3 = CH_3$, $R_7 = H$, $R_8 = CH_3$] as a beige solid; mp 159-160°C in three crops.

An ice-cold solution of lithium methyl selenide in 2 mL of DMA, made up as previously described from 237 mg (3 mmol) of elemental Se and 2.2 mL of methyllithium (1.5 M in ether) in 3 mL of THF, was treated with 267 mg (1.0 mmol) of 2-bromo-1-methylindole-3-N-methylcarboxamide [XXX: $R_1 = H$, $R_3 = CH_3$, $R_7 = H$, $R_8 = CH_3$]. The resultant solution was stirred at room temperature for 3.5 hours, cooled to 0°C, then treated with 5% aqueous HCl. The mixture was extracted with dichloromethane (2 x 10 mL), the combined extracts washed with water (2 times), then concentrated in vacuo to leave an oil that was dissolved in methanol. The solution was ice-cooled and treated with 113 μ L of 30% aqueous H_2O_2 . After stirring for 10 minutes, the resultant suspension was filtered, and the solids were washed with 2-propanol and dried to leave 183 mg (67%) of 2,2'-diselenobis [N,1-dimethyl-1H-indole-3-carboxamide] (131) [XXIX: $R_1 = H$, $R_2 = CONHCH_3$, $R_3 = CH_3$] as a yellow solid; mp 225-230°C (dec). ¹H NMR (CDCl₃ + (CD₃)₂SO): ∂ 7.97 (1H, d, J = 7.9 Hz, H-4), 7.39-7.18 (3H, m, ArH), 6.84 (1H, s, $N_{H}CH_{3}$), 3.85 (3H, s, indole NCH₃), 2.12 (3H, d, J = 4.5 Hz, NHC $\underline{\text{H}}_3$). Analysis calculated for $C_{22}H_{22}N_4O_2Se_2\cdot 0.9H_2O$ requires: C, 48.17; H, 4.37; N, 10.21%.

30 <u>Compound 132 of Table 1</u>

5

10

15

20

25

Similar reaction of 2-chloro-1-methylindole-3-carboxylic acid [XXVII: $R_1 = H$, $R_3 = CH_3$, X = Cl] with $SOCl_2$ as described in Example I and reaction of this with 3 equivalents of N,N-diethylethylenediamine

Found: C, 48.20; H, 4.22; N, 10.28%.

-172-

in dichloromethane at 0°C followed by workup gave 2-chloro-1-methylindole-3-N-(2-(diethylamino)ethyl)-carboxamide [XXX: $R_1 = H$, $R_6 = H$, $R_7 = (CH_2)_2NEt_2$, X = Cl] as a soft solid in 68% yield, used without further purification.

Treatment of this with lithium methyl selenide as described above gave 2,2'-diselenobis[N-[2-(diethyl-amino)ethyl]-1-methyl-1H-indole-3-carboxamide] (132) [XXIX: $R_1 = H$, $R_2 = CONH(CH_2)_2NEt_2$, $R_3 = CH_3$] (68% yield); mp 128-130°C. Reaction of the free base with excess hydrogen chloride in 2-propanol followed by concentration to an oil and crystallization at 25°C gave the compound as a dihydrochloride salt (18% yield); mp 160-164°C.

C, 47.67; H, 6.18; N, 10.42; Cl⁻, 8.79%. Found: C, 47.71; H, 6.12; N, 10.35; Cl⁻, 8.97%.

Compound 133 of Table 1

5

10

25

30

A mechanically stirred suspension of 15 g (83.5 mmol) of 2-chloroindole-3-carboxaldehyde [XXVI: $R_1 = R_3 = H$, X = Cl] (Schule, et al., Arch. Pharm. [Weinheim] 1972;305:523-533), 84 mL of 2-methyl-2-butene, and 200 mL of p-dioxane in an ice bath was treated with a solution of 40 g each of sodium chlorite and sodium dihydrogen phosphate monohydrate in 200 mL of water. The biphasic mixture was then stirred

-173-

vigorously at 25°C for 3.5 hours. An additional 16 g each of solid sodium chlorite and sodium dihydrogen phosphate monohydrate was added and the mixture was stirred for another 3.5 hours. The mixture was diluted with 350 mL of ethyl acetate and 200 mL of water. layers were separated and the aqueous phase was extracted with 300 mL of ethyl acetate. The combined organic extracts were extracted with cold 2% aqueous NaOH (3 x 200 mL). The basic extracts were combined and acidified to pH 4 with 6N aqueous HCl. precipitated solids were collected by filtration, washed well with water, and air dried overnight. solids were dissolved in 150 mL of hot acetone and the solution was treated with 65 mL of hexane. After storage at 3°C for 20 hours, the solids were collected by filtration, washed with cold acetone, and dried to leave 7.71 g of pure 2-chloroindole-3-carboxylic acid [XXVII: $R_1 = R_3 = H$, X = Cl] as an off-white solid; mp 181.5°C (dec). Further processing of the filtrate as above afforded 2.41 g of a second crop; mp 179.5°C (dec). Total yield 10.12 q (62%).

5

10

15

20

25

30

The acid chloride of 2-chloroindole-3-carboxylic acid [XXVII: $R_1 = R_3 = H$, X = Cl] was made via $SOCl_2$ as described above. Reaction of this with a saturated solution of anhydrous methylamine in THF at 0°C gave 2-chloroindole-3-N-methylcarboxamide [XXX: $R_1 = R_3 = H$, $R_6 = H$, $R_7 = CH_3$, X = Cl]; mp 234-236°C, in 51% yield.

Reaction of this with lithium methyl selenide as described above gave 2,2'-diselenobis[N-methyl-1H-indole-3-carboxamide] (133) [XXIX: $R_1 = R_3 = H$, $R_3 = CONHCH_3$] (20% yield), mp 272-275°C (decomp).

¹H NMR ((CD₃)₂SO): ∂ 12.36 (1H, s, indole NH), 7.83 (1H, d, J = 7.7 Hz, H-4), 7.79 (1H, d, J = 4.1, NHCH₃),

-174-

7.48 (1H, d, J = 7.7 Hz, H-7), 7.16-7.07 (2H, m, ArH), 2.90 (3H, d, J = 4.1 Hz, $NHC\underline{H}_3$).

Analysis calculated for $C_{20}H_{18}N_4O_2Se_2\cdot 0.9H_2O$ requires: C, 46.15; H, 3.83; N, 10.76%.

5 Found: C, 46.08; H, 3.44; N, 10.45%.

Compound 134 of Table 1

The acid chloride of 2-chloroindole-3-carboxylic acid [XXVII: $R_1 = R_2 = H$, X = Cl] was made via SOCl₂ as described above. Reaction of this with 10 3 equivalents of N,N-diethylethylenediamine in ether as described above followed by workup gave 2-chloroindole-3-N-(2-(diethylamino)ethyl)carboxamide [XXX: $R_1 = R_3 = R_6 = H$, $R_7 = (CH_2)NEt_2$, X = C1; mp 99-108°C in 38% yield. 15 ¹H NMR (CDCl₃): ∂ 11.50 (1H, s, indole NH), 8.19 (1H, d, J = 6.5 Hz, H-4), 7.33 (1H, d, J = 8.4 Hz, H-7),7.21-7.15 (3H, m, ArH and CONH), 3.54 (2H, q, J = 5.3 Hz, $CONHCH_2$), 2.69 (2H, t, J = 6.0 Hz, 20 $CONHCH_2CH_2$), 2.59 (4H, q, J = 7.2 Hz, $N(CH_2CH_3)_2$), 1.05

> (6H, t, J = 7.2 Hz, $N(CH_2CH_3)_2$). Reaction of this with lithium methyl selenide as

described above gave 2,2'-diselenobis[N-[2-(diethyl-amino)ethyl]-1H-indole-3-carboxamide] (134) [XXIX:

- 25 $R_1 = R_3 = H$, $R_2 = CONH(CH_2)_2NEt_2$] (44% yield); mp 225-226°C (dec). Salt formation as above gave the compound as the dihydrochloride salt (85% yield); mp 257-259°C (dec).
- ¹H NMR ((CD₃)₂SO): ∂ 12.75 (1H, s, indole NH), 10.08 (1H, s, ${}^{+}N\underline{H}$ (CH₂CH₃)₂), 8.09 (1H, t, J = 5.7 Hz, CON<u>H</u>), 7.93 (1H, d, J = 8.9 Hz, H-4), 7.51 (1H, d, J = 6.8 Hz, H-7), 7.19-7.12 (2H, m, ArH), 3.78-3.73 (2H, m, CONHC<u>H</u>₂), 3.32 (2H, t, J = 6.5 Hz, CONHCH₂C<u>H</u>₂),

-175-

3.29-3.20 (4H, m, $N(CH_2CH_3)_2$), 1.26 (6H, t, J = 7.2 Hz, $N(CH_2CH_3)_2$).

Analysis calculated for $C_{30}H_{40}N_6O_2Se_2 \cdot 2.0HCl \cdot 1.0H_2O$ requires:

C, 47.07; H, 5.79; N, 10.98; Cl⁻, 9.26%. Found: C, 47.01; H, 5.70; N, 10.56; Cl⁻, 8.87%.

Compound 135 of Table 1

5

A mixture of 2.09 g (10 mmol) of 2-chloroindole-3-N-methylcarboxamide [XXX: $R_1 = R_3 = R_6 = H$, $R_7 = CH_3$, 10 X = Cl], 1.72 g (10 mmol) of 2-diethylaminoethyl chloride hydrochloride (n = 2, Q = Cl, $R_g = R_Q = Rt$), 7.5 g (23 mmol) of anhydrous cesium carbonate, 3 g of activated 3A molecular sieves, and 20 mL of acetone was stirred under nitrogen at 25°C for 16 hours. 15 mixture was filtered over celite and the filtrate was concentrated to a solid that was partitioned between chloroform and water. The organic phase was dried (Na₂SO₄) and concentrated to a residue that was 20 crystallized from ethyl acetate:hexanes (5:8). solids were collected and dried to leave 1.43 g of 2-chloro-1-[2-(diethylamino)ethyl]-N-methyl-1H-indole-3-carboxamide [XXX: $R_1 = R_6 = H$, $R_3 = (CH_2)_2 NEt_2$, $R_7 = CH_3$, X = Cl]; mp 103-104°C, in 46% yield. ¹H NMR (CDCl₃): ∂ 8.24 (1H, d, J = 8.0 Hz, H-4), 25 7.33-7.21 (3H, m, ArH), 6.35 (1H, s, $CONHCH_3$), 4.27 (2H, t, J = 7.6 Hz, 1-NCH₂), 3.06 (3H, d, J = 4.8 Hz, $CONHCH_3$), 2.73 (2H, t, J = 7.5 Hz, 1-NHCH₂CH₂), 2.62-2.55 (4H, m, $N(C_{H_2}CH_3)_2$), 1.02 (6H, t, J = 7.0 Hz, $N(CH_2CH_3)_2$. 30

Reaction of this with lithium methyl selenide as described above gave 2,2'-diselenobis[1-[2-(diethyl-amino)ethyl]-N-methyl-1H-indole-3-carboxamide] (135)

-176-

[XXIX: $R_1 = H$, $R_2 = CONHCH_3$, $R_3 = (CH_2)_2NEt_2$] (63% yield); mp 156-157°C.

Analysis calculated for $C_{32}H_{44}N_6O_2Se_2 \cdot 0.5H_2O$ requires:

C, 54.01; H, 6.37; N, 11.81%.

Found: C, 54.14; H, 6.23; N, 11.54%.

5

EXAMPLE L

Preparation of Compound 136 of Table 1 by the method outlined in Scheme 11.

10 An ice-cold solution of 15 g (50 mmol) of the N-trifluoroacetamide of D-tryptophan, synthesized by methods previously outlined (J. Org. Chem. 1979;44:2805-2807) in 50 mL of THF under N_2 was treated sequentially with 7.1 g (52.5 mmol) of 1-hydroxybenzo-15 triazole then 10.83 g (52.5 mmol) of 1,3-dicyclohexylcarbodiimide. After 15 minutes, the solution was treated with 5.74 mL (52.6 mmol) of benzylamine. The solution was maintained at 0-5°C for 1 hour, then let warm to 25°C overnight. The mixture was filtered and 20 the collected solids were washed with ethyl acetate. The filtrate was concentrated to an oil that was dissolved in 250 mL of ethyl acetate. The solution was washed sequentially with 250 mL portions of 10% aqueous acetic acid, water, 5% aqueous sodium hydrogen 25 carbonate, water and brine, then dried (NaSO4), and concentrated to a solid. Crystallization from 170 mL of 65:35 2-propanol:petroleum ether afforded 12.81 g (66%) of (R)-N-(phenylmethyl)- α -[(trifluoroacetyl)amino]-1H-indole-3-propanamide [II: $R_1 = H$, $R_2 =$ 30 $CH_2CH(NHCOCF_3)CONHCH_2Ph$, $R_3 = H$ as an off-white solid which was used directly in the next reaction; mp 186-188°C.

To an ice-cold solution of 10 g (25.7 mmol) of (R)-N-(phenylmethyl)- α -[(trifluoroacetyl)amino]-

5

10

15

20

25

30

-177-

1H-indole-3-propanamide [XXIX: $R_1 = H$, $R_2 =$ $CH_2CH(NHCOCF_3)CONHCH_2Ph$, $R_3 = H$] in 70 mL of THF was added dropwise Se₂Cl₂. The resultant deep red suspension was stirred at 0-5°C for 4 hours, then quenched with 300 mL of water. The solids were collected by filtration, washed well with water, and air dried to leave 12 g of impure product as an orange solid. A portion of this material (10.7 g) was dissolved in 100 mL of methanol and the solution under N₂ was cooled in an ice bath. Sodium borohydride (ca 1 g) was added portionwise until there was no more color discharge. The mixture was poured immediately into a N, purged separatory funnel containing 200 mL of ether. The mixture was diluted with 200 mL of water, the mixture shaken, and the phases separated. aqueous layer was treated with a small portion of additional sodium borohydride, extracted again with ether, ice-cooled, then acidified to pH 1 with concentrated HCl. The aqueous phase was extracted twice with ethyl acetate, then the combined extracts were dried (MgSO₄) and filtered through a pad of flash silica gel. The filtrate was concentrated to leave 5.91 g of a foam that was dissolved in ca 40 mL of absolute ethanol. The solution was kept at 25°C for several hours to initiate crystallization, then stored The solids were collected by filtration, washed with 2-propanol, and dried to leave 4.23 g of pure [R-(R*,R*)]-2,2'-diselenobis[N-(phenylmethyl)α-[(trifluoroacetyl)amino]-1H-indole-3-propanamide] [XXIX: $R_1 = H$, $R_2 = CH_2CH (NHCOCF_3) CONHCH_2Ph$, $R_3 = H$], as a yellow powdery solid; mp 181-185°C. Analysis calculated for C40H34N6O4F6Se2·H2O requires:

C, 50.43; H, 3.81; N, 8.82%.

Found: C, 50.47; H, 3.57; N, 8.71%.

-178-

Further processing of the filtrate by chromatography over flash SiO₂, eluting first with dichloromethane then 7% ethyl acetate in dichloromethane, provided an additional 671 mg of product following crystallization; mp 180-183°C.

5

10

15

20

25

30

A suspension of 233.5 mg (0.25 mmol) of this diselenide in 4.5 mL of dry absolute ethanol was treated with 95 mg (2.5 mmol) of sodium borohydride. The mixture was heated at reflux for 15 minutes, then treated with 95 mg of additional borohydride. mixture was refluxed for 1.25 hours, then treated with a third 95 mg portion of borohydride. After refluxing for 30 minutes, the mixture was cooled to 25°C, diluted with methanol, and poured into an ice-cold stirring mixture of 6N HCl and ethyl acetate. The resultant mixture was stirred vigorously for 15 minutes, filtered, the phases separated, and the aqueous layer extracted once more with ethyl acetate. The combined ethyl acetate phases were then back extracted with 5% aq HCl (five times). The acidic aqueous layers were combined and diluted with an equal volume of ethyl acetate. While carefully monitoring the pH, the stirred solution was treated carefully with 10% aqueous NaOH until pH = 9.5. The resultant yellow precipitate was collected by filtration, washed well with water, and dried to leave 90 mg of [R-(R*,R*)]-2,2'-diselenobis [α -amino-N- (phenylmethyl) -1H-indole-3-propanamide] (136) [XXIX: $R_1 = H$, $R_2 =$ $CH_2CH(NH_2)CONHCH_2Ph$, $R_3 = H$], as a yellow powder; mp 172-174°C.

¹H NMR ((CD₃)₂SO): δ 11.62 (1H, s, NH), 8.23 (1H, t, J = 5.1 Hz, NHCH₂), 7.61 (1H, d, J = 8.0 Hz, ArH), 7.38 (1H, d, J = 8.2 Hz, ArH), 7.35-6.95 (7H, m, ArH), 4.20, 4.17 (2x1H, 2xdd, J = 15.2, 5.8 Hz, NHCH₂), 3.46-3.40

-179-

(1H, br m, Ar-CH₂CH), 3.04-2.98 (1H, br m, Ar-CH), 2.75-2.68 (1H, br m, Ar-CH), 1.70 (2H, br s, NH₂). Analysis calculated for $C_{36}H_{36}N_6O_2Se_2\cdot 1.5H_2O$ requires: C, 56.18; H, 5.11; N, 10.68%.

Found: C, 55.91; H, 4.72; N, 10.68%.

Processing of the ethyl acetate layer from the base treatment provided 15 mg of additional product; mp 165-171°C. Total yield = 105 mg (57%).

10 <u>Compound 137 of Table 1</u>

Starting from the N-trifluroracetamide of L-tryptophan (J. Org. Chem. 1979;44:2805-2807) and following the same procedures as outlined for the synthesis of compound 136 of Table 1, there was obtained $[S-(R^*,R^*)]-2,2'$ -diselenobis $[\alpha$ -amino-N-(phenylmethyl)-1H-indole-3-propanamide] (137) [XXIX: $R_1 = H$, $R_2 = CH_2CH(NH_2)CONHCH_2Ph$, $R_3 = H$] as a yellow powder; mp 171°C (dec).

20

30

15

5

BIOLOGICAL AND BIOCHEMICAL EFFECTS

Tyrosine Kinase Inhibition Assay and Growth Inhibition Effects on Cells in Tissue Culture

Table 2 provides representative data on inhibition of the epidermal growth factor receptor tyrosine kinase, and on cell growth inhibition.

In Table 2: No. is the compound number as recorded in Table 1.

IC50 (EGFR TK) is the concentration of drug necessary to reduce incorporation of P³² in GAT by 50%.

 ${\rm IC}_{50}$ (PDGFR TK) is the concentration of drug necessary to reduce incorporation of ${\rm P}^{32}$ in Glu-Tyr by 50%.

-180-

IC50 growth Inhibition is (cell growth inhibition) is the concentration of drug necessary to reduce the cellular growth rate by 50%.

5

TABLE 2. IC₅₀ Data for EGRF-R and PDGF-R Inhibition and Cell Growth Inhibition for Selected Compounds of Table 1

10	No.	% Inhi	IC ₅₀ (μM) or % Inhibition at 100 μM	
		EGRF-R	PDGF-R	Inhibition
	1	14.9		
	2	26%		
	3	43%	8.6%	
	4	27%		
15	5	48	• •	
	6	25	8.5%	
	7	1.3		94
	8	8.5		
	9	52%		16
20	10	10%		34

-181-

TABL	.ロ つ	1con	+1,	41
IADL	LD 24	LUII	_ 1	

No. $\frac{IC_{S0}}{4 \text{ Inhibition}} (\mu M) cor at 100 μ M Growth Inhibition at 100 μ M Growth Inhibition at 100 μ M 11 24% 12 3% 14 22 15 6.8 16 23 17 12.5% 20 9 21 1.0 64 22 21 1.0 64 22 21 1.0 64 22 24 19% 25 8.7 2.3 20 28 33 25-100 30 9.3 8 31 35.5 1 32 34.5 4.7% 3.6 25 33 $			TABLE	2 (cont'd)	
No. at 100 \(\mu\) Inhibition			IC ₅₀ (μM) or	
Table Tabl		No			Growth
11 24% 12 3% 13 43% 14 22 15 6.8 16 23 17 12.5% 19 10% 20 9 21 1.0 64 22 24 19% 24 19% 25 8.7 26 23% 5% 27 17.8 2.3 20 28 33 25-100 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% - 30 38		NO.			Inhibition
5 13 43% 14 22 15 6.8 16 23 17 12.5% 10 18 2% 9% 19 10% 20 9 21 1.0 64 22 24 19% 25 8.7 26 23% 5% 26 23% 5% 27 17.8 2.3 20 28 33 2.3 20 28 33 2.3 20 28 33 2.3 20 28 33 2.3 30 9.3 1.0 30 9.3 1.0 31 35.5 1 32 34.5 4.7% <th></th> <th></th> <th>EGRF-R</th> <th>PDGF-R</th> <th></th>			EGRF-R	PDGF-R	
5 13 43% 14 22 15 6.8 16 23 17 12.5% 19 10% 20 9 21 1.0 64 22 24 19% 26 23% 5% 26 23% 5% 27 17.8 2.3 20 28 33 25-100 30 9.3 8 27 17.8 2.3 20 28 33 25-100 30 9.3 8 29 8.3 25-100 30 9.3 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38	•	11	24%		
14 22 15 6.8 16 23 17 12.5% 19 10% 20 9 21 1.0 64 22 24 19% 25 8.7 2.3 26 23% 5% 2.7 20 28 33 2.3 20 28 33 2.3 20 28 33 2.5-100 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 36 36 4.8 59 37 3.3 1.6 39		12	3%		
15 6.8 16 23 17 12.5\frac{1}{2} 10 18 2\frac{1}{2} 9\frac{1}{2} 19 10\frac{1}{2} 20 9 21 1.0 21 1.0 22 15 23 24 19\frac{1}{2} 25 8.7 26 23\frac{1}{2} 5\frac{1}{2} 27 17.8 26 23\frac{1}{2} 5\frac{1}{2} 27 17.8 29 8.3 29 8.3 29 8.3 29 8.3 29 8.3 3 29 8.3 3 29 8.3 3 29 8.3 3 25 10.5 33 39 16.7\frac{1}{2} 31 35.5 1 32 34.5 4.7\frac{1}{2} 36 38 12.8\frac{1}{2} 2.7 35 16.5 33.9\frac{1}{2} 36 4.8 37 3.3 30 38 36.5\frac{1}{2} 36 4.8 37 3.3 30 38 36.5\frac{1}{2} 40 16.3\frac{1}{2} 41 8.4 40 16.3\frac{1}{2} 42 26\frac{1}{2} 41 8.4 42 26\frac{1}{2} 42 26\frac{1}{2} 43 2.9 44 16.6\frac{1}{2} 45 1.6 46 11.4\frac{1}{2} 47 0.85 6	5	13	43%		
16 23 17 12.5% 19 10% 20 9 21 1.0 64 22 24 19% 25 8.7 26 23% 5% 27 17.8 2.3 20 28 33 25-100 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 36 36 4.8 59 37 3.3 1.6 39 20.6 7.4 40 16.3% >25 42 26% 35 43 <td></td> <td>14</td> <td>22</td> <td>• •</td> <td></td>		14	22	• •	
17		15	6.8		
10		16	23		
19 10% 20 9 21 1.0 21 1.0 22 23 24 19% 25 8.7 26 23% 5% 27 17.8 26 23% 5% 27 17.8 29 8.3 29 8.3 29 8.3 31 35.5 1 32 34.5 4.7% 36 31 35.5 1 32 34.5 4.7% 36 35 16.5 33.9% 36 4.8 35 16.5 33.9% 36 4.8 37 3.3 30 38 36.5% 31 6.3% 32 41 8.4 35 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 46 11.4% 46 11.4% 46 11.4% 46 11.4% 47 0.85 6		17 .	12.5%	-, -	
20 9 21 1.0 22 15 23 24 19% 25 8.7 26 23% 5% 27 17.8 26 23 33 29 8.3 29 8.3 30 9.3 31 35.5 1 32 34.5 4.7% 36 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 36 4.8 35 37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 59 37 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 525 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6	10	18	28	9%	
21 1.0 64 22 15 23 24 19% 25 8.7 26 23% 5% 27 17.8 2.3 20 28 33 29 8.3 29 8.3 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 36 4.8 59 37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		19	10%		
15		20	9		
15		21	1.0		64
24 19% 25 8.7 26 23% 5% 27 17.8 2.3 20 28 33 2.5 29 8.3 25-100 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 2.7 36 4.8 59 37 3.3 59 37 3.3 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 2.7 <		22			
25 8.7 26 23% 5% 27 17.8 20 28 33 29 8.3 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 36 4.8 12.8% 2.7 35 16.5 33.9% 36 4.8 37 3.3 30 38 36.5% 1.6 39 20.6 40 16.3% 5.2 41 8.4 552 42 26% 35 43 2.9 46 11.4% 6 11.4% 6 6	15	23			
26		24	19%		•
27 17.8 2.3 29 8.3 25-100 30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 3.9 36 4.8 59 37 3.3 59 37 3.3 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 325 42 26% 2.4 45 1.6 4.6 45 1.6 4.6 46 11.4% 2.7 47 0.85 6		. 25	8.7		
20		26	23%	5%	
29 8.3 25-100 30 9.3 8 31 35.5 1 32 34.5 4.7\$ 36 25 33 39 16.7\$ 3.0 34 38 12.8\$ 2.7 35 16.5 33.9\$ 36 4.8 59 37 3.3 59 37 3.3 1.6 39 20.6 7.4 40 16.3\$ 5.2 41 8.4 >25 42 26\$ 3 35 43 2.9 44 45 1.6 45 46 11.4\$ 2.7 47 0.85 6		27	17.8		2.3
30 9.3 8 31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 3.9% 36 4.8 59 37 3.3 39 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 32 35 43 2.9 44 16.6% 5% 2.4 45 1.6 2.7 46 11.4% 2.7 47 0.85 6	20	28	33	• •	
31 35.5 1 32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 36 4.8 59 37 3.3 59 37 3.3 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 3 35 43 2.9 44 45 1.6 45 46 11.4% 2.7 47 0.85 6		29	8.3		25-100
32 34.5 4.7% 36 25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 36 36 4.8 59 37 3.3 39 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		30	9.3	••	8
25 33 39 16.7% 3.0 34 38 12.8% 2.7 35 16.5 33.9% 59 36 4.8 59 37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		31	35.5		1
34 38 12.8% 2.7 35 16.5 33.9% 36 4.8 59 37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		32	34.5	4.7%	36
35 16.5 33.9% 36 4.8 59 37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6	25	33	3 9 .	16.7%	3.0
36 4.8 59 37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		34	38	12.8%	2.7
37 3.3 30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		35	16.5	33.9%	
30 38 36.5% 1.6 39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		36	4.8		59
39 20.6 7.4 40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		37	3.3		•
40 16.3% 5.2 41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6	30	38	36.5%		1.6
41 8.4 >25 42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		39	20.6		7.4
42 26% 35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		40	16.3%		5.2
35 43 2.9 44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		41	8.4		>25
44 16.6% 5% 2.4 45 1.6 46 11.4% 2.7 47 0.85 6		42	26%		
45 1.6 46 11.4% 2.7 47 0.85 6	35	43	2.9		
46 11.4% 2.7 47 0.85 6		44	16.6%	5%	2.4
46 11.4% 2.7 47 0.85 6		45	1.6		
47 0.85 6		46	11.4%		2.7
·				 .	
	40	48			

-182-

		TABLE 2 (cont'd)		
	No.	IC ₅₀ (, % Inhi at 10	μM) or bition	Growth Inhibition
	•	EGRF-R	PDGF-R	Indibition
	49	84.1		
	50	16.0	62.6%	
5	51	7.0		
	52	68.2	18.3%	
	53	4.2		•
	54	29	20.6%	
	55	44		
10	56	7.3	44.5%	
	57	46%	14.5%	
	58	68%		
	59	30.5	11.4%	
	60	53%		
15	61	37%	11%	
	62	6.0	718	5.3
•	63	60		
	64	29		•
	65	17.8		•
20	66	8.3		
	67	18%	28	
	68	14%		1.8
	69	55.6%	8.9%	
	70	8.6	1%	12
25	71	20%	5%	52
	72	47%	22%	
	73	4.3	21%	9.3
	74	23%		
	75	6%	3%	4
30	76	7%	19%	22
	77	98	18	
	78	27%	7₹	
	79	11%	20%	1.9
	80	0%	16%	
35	81	3.6	2*	17
	82	6.5		24
	83 .	22.3	57%	10
•	84	35%	22*	
	85	88	7%	•
40	86	4.9	5₺	

-183-

		TABLE 2 (cont'd)				
•	No.		μM) or bition 00 μM	Growth Inhibition		
		EGRF-R	PDGF-R	Initiation		
	87	34%	448			
	88	54	51%			
5	89	11.4	3%			
	90	26	36.5	~		
	91	5.2				
	92					
	93	30%				
10	94					
	95	9.4				
	96					
	97	10.1	28.1	1.8		
	98	1.5	9%	5-12		
15	99	40	19%	2.8		
	100	18%	23%			
	101	5.5				
	102	6.1				
	103	7%		3.8		
20	104	20%				
	105	16.9	33%			
	106	34%				
	107	12.0				
	108	20%				
25	109	47	88			
	110	13				
	111	5.3	76%			
	112	10.0	69%	•		
	113	5%	29%			
30	114	42.9	7.0			
	115	26	19.7	>50		
	116	48	7.9			
	117	25%	4.2			
	118	4.7	78%			
35	119	21.2	73%			
	120	6.9				
	121	5.6				
	122	51%				
•	123	••				
40	124					

-184-

TABLE 2 (cont'd)

	No.	% Inhi	IC ₅₀ (μM) or % Inhibition at 100 μM	
		EGRF-R	PDGF-R	
	125	78%	• •	·
	126	60%		
5	127	6.8		
	128		• •	
	129	31%		
	130	3.5		
	131	5.8		5.5
10	132	4.7		20
	133	13.0		<5
	134 ·	4.6	••	8
	135	6.9		
	136			
15	137			

EGF Receptor Tyrosine Kinase Assay

20 Membrane vesicles were prepared by the method described in Cohen S, Ushiro H, Stoscheck C, and Chinkers M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles, J. Biol. Chem. 1982;257:1523-1531, and kept 25 frozen at -90°C until use. At the time of assay, membranes were solubilized in 4% Triton X-100 and 10% glycerol. The reaction is carried out in wells of a 96-well microtiter plate in a total volume of 125 L. Buffer containing 20 mM Hepes (pH 7.4), 15 mM MgCl₂, 30 4 mM MnCl2, and 0.02% BSA followed by 5 to 20 mg of membrane protein and 150 ng of epidermal growth factor. The plates are incubated for 10 minutes at room temperature to activate the receptor kinase. of GAT (random polymer of glycine, alanine, and tyrosine) and 0.2 mCi of α -[P³²] ATP plus or minus 35

-185-

compound are added and incubated 10 minutes at room temperature. The reaction is stopped by addition of 125 mL of 30% TCA, precipitate washed twice with 200 mL of 15% TCA on 0.65 micron filters, and the filters counted by scintillation spectrometry.

PDGF Receptor Tyrosine Kinase Inhibition Assay

Recombinant baculovirus containing human PDGF β receptor intracellular tyrosine kinase domain was used to infect SF9 cells to overexpress the protein, and cell lysates were used for the assay. The ability of the tyrosine kinase to phosphorylate glutamate - tyrosine substrate in the presence of P³²-ATP and inhibitor was measured by counting the incorporation of P³² in Glu-Tyr in TCA precipitable material.

Table 2 provides representative data on inhibition of the PDGF receptor tyrosine kinase. In Table 2, No. refers to the compound number as recorded in Table 1.

20

25

30

5

10

15

DETAILED STUDIES ON THE BIOLOGICAL EFFECTS OF COMPOUNDS 21 AND 70

Effects on Cells in Tissue Culture

Swiss 3T3 fibroblasts, that were growth arrested in serum-free media for 24 hours, were exposed to various concentrations of compound for 2 hours. The cells were then exposed to individual growth factors for 5 minutes and proteins that were phosphorylated on tyrosine in response to the mitogens and were detected by Western blotting techniques using phosphotryosine antibodies. Similar techniques were used for tumor cell lines except the time in serum-free media was increased.

-186-

At concentrations of 10 to 50 mM, Compound 21 suppressed: (1) EGF mediated phosphorylation of a variety of endogenous proteins; (2) PDGF mediated autophosphorylation of the PDGF receptor as well as PDGF mediated tyrosine phosphorylation of other endogenous proteins and; (3) bFGF mediated tyrosine phosphorylation. 70 was more selective and inhibited only bFGF mediated tyrosine phosphorylation and at concentrations as low as 2 mM.

10

15

20

5

Effects on Growth Factor Mediated Mitogenesis

Swiss 3T3 fibroblasts, that were growth arrested in serum-free media for 24 hours, were exposed to various concentrations of compound for 2 hours. The cells were then exposed to individual growth factors for 24 hours and mitogenesis assessed by measuring tritiated thymidine incorporation into DNA.

The concentration of 21 and 70 required to inhibit growth factor mediated mitogenesis by 50% for the following growth factors was as follows:

	Growth Factor	IC_{50} (μ M) for 21	IC_{50} (μM) for 70
	EGF	2	3
25	PDGF	8	4
	bFGF	13	3
	serum	19	3

30

35

Growth Inhibition Assay

Swiss 3T3 mouse fibroblasts were maintained in dMEM/F12 media containing 10% fetal calf serum. Two mL of cells at a density of 1 x 104/mL were placed in 24-well plates plus or minus various concentrations of

-187-

the inhibitor. The cells were grown at 37°C under 5% CO₂ for 72 hours and then counted by Coulter counter. The data were expressed as the concentration of inhibitor necessary to decrease the growth rate by 50%.

Compound 21 was growth inhibitory for a variety of human tumor cell lines as well as the Swiss 3T3 fibroblasts. The concentration of 21 necessary to inhibit cell growth by 50% is shown below:

10

5

Cell Line	IC ₅₀ (μM)
MDA 468 breast	43
A431 epidermoid	62
A549 lung	30
MDV-7 breast	39
MDA-231 breast	15
Swiss 3T3 fibroblasts	64
HT-29 colon	55

20

25

30

35

15

Although the carboxyl containing structures are among the most active enzyme inhibitors, they are poorly transported into the cell, whereas the less active esters are transported efficiently and once in the cytoplasm rendered highly active by esterases. Esters may, therefore, be more favorable than carboxylic acids in this invention.

The data of Table 2 show that the 2-thioindoles of general Formula I listed in Table 1 include compounds which are active as potent inhibitors of protein tyrosine kinases and as cytotoxic agents.

The invention is not limited to the particular embodiments shown and described herein, since various changes and modifications may be made without departing

-188-

from the spirit and scope of the invention as defined by the following claims.

WO 94/03427

10

15

20

25

30

-189-

CLAIMS

 2-Thioindole, 2-indolinethione and polysulfide compounds of the group represented by the general Formulas I and IV

$$R_1 \xrightarrow[R_3]{R_2} I \qquad R_1 \xrightarrow[R_3]{R_2} S \quad IV$$

and pharmaceutically acceptable salts thereof, wherein

 R_1 is a member selected from H, halogen, R, OH, OCOR, OR, CF_3 , NO_2 , NH_2 , NHR, COOH, CONHR, $(CH_2)_nOH$, $(CH_2)_nOR$, $(CH_2)_nNH_2$, $(CH_2)_nNHR$, and $(CH_2)_nNRR$, and further represents replacement in the ring of 1 or 2 ring methine (-CH=) atoms with aza(-N=) atoms;

R₂ is a member selected from

(CH₂) nCONHR,

-190-

35	(CH ₂) _n CONRR,
	(CH ₂) _n CONHCH ₂ Ph,
	CONHR,
	CONRR,
	CONHPh,
40	COY,
	COPhCOOH,
	COPhCOOR,
	(CH ₂) _n CONHPh,
•	(CH ₂) _n CONHPhR,
45	SO ₂ Y;
	n is an integer from 1 to 4;
	R is lower alkyl;
	R_3 is a member selected from H, lower alkyl,
	and benzyl;
50	Y represents a benzene, pyridine, thiophene,
	furan, thiazole, or imidazole ring optionally
	substituted with a lower alkyl, COOH, OH, OCOR,
	NH2, CONHR, CONRR, OR, or NHR group; and
	R_4 represents SH, S_0X , and S_0Q where o is
5 5	1, 2, or 3, X is a member selected from H, lower
	alkyl, benzyl, and benzene, pyridine, thiophene,
	furan, thiazole, and imidazole rings, and Q is
	another 2-thioindolyl moiety of Formula I provided
	that the group does not comprise compounds having
60	the names
•	<pre>2-(2-thioxo-3-indolinyl)acetic acid,</pre>
	2-(1-methyl-2-thioxo-3-indolinyl)acetic acid,
	<pre>methyl 2-(2-thioxo-3-indolinyl)acetate,</pre>
	ethyl 2-(1-methyl-2-thioxo-3-indolinyl)-
65	acetate,
	<pre>bis(methylindolinyl-3-acetate-(2))disulfide,</pre>
	bis[indolyl-3-acetic acid-(2)]disulfide,

-191-

bis [methylindolyl-3-acetate-(2)] trisulfide,

70 bis[1-methylindolyl-3-acetic acid-(2)]disulfide. A thioindole compound according to Claim 1 2. selected from methyl 2-(1-methyl-2-thioxo-3-indolinyl)acetate, 5 N-benzyl (2-thioxo-3-indolinyl) acetamide, 3-(2-thioxo-3-indolinyl)propanoic acid, 3-(1-methyl-2-thioxo-3-indolinyl)propanoic acid. methyl 3-(2-thioxo-3-indolinyl) propanoate, ethyl 3-(2-thioxo-3-indolinyl)propanoate, 10 3-(1-methyl-2-thioxo-3-indolinyl)propanoate, ethyl 3-(1-methyl-2-thioxo-3-indolinyl)propanoate, N-benzyl 3-(2-thioxo-3-indolinyl) propanamide, 15 4-(2-thioxo-3-indolinyl)butanoic acid, 4-(1-methyl-2-thioxo-3-indolinyl)butanoic acid. methyl 4-(2-thioxo-3-indolinyl)butanoate, methyl 4-(1-methyl-2-thioxo-3-indolinyl)-20 butanoate, N-phenyl (1-methyl-2-thioxo-3-indolinyl)carboxamide, N-phenyl (1-methyl-2-methylthio-3-indolinyl) carboxamide, 25 3-benzoyl-1-methyl-2-indolinethione, 3-(4'-carboxybenzoyl)-1-methyl-2-indolinethione,

-192-

		3-(4'-carbomethoxybenzoyl)-1-methyl-
		2-indolinethione,
30		and pharmaceutically acceptable salts thereof.
	3.	A polysulfide compound according to Claim 1 selected from
		2,2'-dithiobis[methyl 2-(1-methyl-
		3-indolyl)acetate],
5		<pre>bis[indolyl-3-acetic acid-(2)]trisulfide,</pre>
		<pre>bis[ethyl 1-methylindolyl-3-acetate-(2)]-</pre>
		<pre>2,2'-dithiobis[N-benzyl-2-(3-indolyl)-</pre>
10	·	<pre>bis[indoly1-3-propanoic acid-(2)]disulfide, 2,2'-dithiobis[3-(1-methyl-3-indolyl)- propanoic acid],</pre>
	,	<pre>bis[ethylindolyl-3-propanoate-(2)]disulfide,</pre>
15		2,2'-dithiobis[methyl-3-(3-indolyl)- propanoate],
		2,2'-dithiobis[methyl-3-(1-methyl-3-indolyl) propanoate],
		<pre>bis[5-methylindolyl-3-propanoic acid-(2)]- disulfide,</pre>
20		<pre>bis[ethyl-5-methylindolyl-3-propanoate-(2)]- disulfide,</pre>
		<pre>bis[6-methylindolyl-3-propanoic acid-(2)]- disulfide,</pre>
		<pre>bis[ethyl-6-methylindolyl-3-propanoate-(2)]-</pre>
25		disulfide,
		<pre>bis[7-methylindolyl-3-propanoic acid-(2)]-</pre>
		disulfide,
		<pre>bis[ethyl-7-methylindolyl-3-propanoate-(2)]-</pre>
		disulfide, '

-193-

30	2,2'-dithiobis[N-benzyl-3-(3-indolyl)-
	propanamide],
	<pre>bis[indolyl-3-butanoic acid-(2)]disulfide,</pre>
	2,2'-dithiobis[4-(1-methyl-3-indolyl butanoic
	acid],
35	<pre>bis[methyl indolyl-3-butanoate-(2)]disulfide,</pre>
	<pre>bis[methyl 1-methylindolyl-3-butanoate-(2)]-</pre>
	disulfide,
	bis[N-phenyl 1-methylindolyl-3-carboxamide-
	(2)]disulfide,
40	bis[N-phenyl 1-ethylindolyl-3-carboxamide-
	(2)]disulfide,
	bis[N-phenyl 4-chloro-1-methylindolyl-
	3-carboxamide-(2)]disulfide,
	bis[N-phenyl 5-chloro-1-methylindolyl-
45	3-carboxamide-(2)]disulfide,
	bis[N-phenyl 7-chloro-1-methylindolyl-
	3-carboxamide-(2)]disulfide,
	bis[N-phenyl 1-methyl-7-azaindolyl-
	<pre>3-carboxamide-(2)]disulfide,</pre>
50	bis[N-phenyl 1,4-dimethylindolyl-
	<pre>3-carboxamide-(2)]disulfide,</pre>
	bis[N-phenyl 1,5-dimethylindolyl-
	3-carboxamide-(2)]disulfide,
	bis[N-phenyl 1,6-dimethylindolyl-
55	3-carboxamide-(2)]disulfide,
	bis[N-phenyl 1,7-dimethylindolyl-
	3-carboxamide-(2)]disulfide,
	bis[N-phenyl 4-methoxy-1-methylindolyl-
	3-carboxamide-(2)]disulfide,
60	bis[N-phenyl 5-methoxy-1-methylindolyl-
	<pre>3-carboxamide-(2)]disulfide,</pre>
	bis[N-phenyl 6-methoxy-1-methylindolyl-
	<pre>3-carboxamide-(2)]disulfide,</pre>

65

70

75

5

10

15

-194-

4. A pharmaceutical composition useful for inhibition of protein tyrosine kinase dependent disease in a mammal, containing in a pharmaceutically acceptable carrier a therapeutically effective amount of a compound selected from 2-thioindole, 2-indolinethione, and polysulfide compounds represented by the general Formulas I and IV

$$R_1 \xrightarrow{R_2} R_2 \qquad I \qquad R_1 \xrightarrow{R_1} S \qquad IV$$

and pharmaceutically acceptable salts thereof, wherein

 R_1 is a member selected from H, halogen, R, OH, OR, CF_3 , NO_2 , NH_2 , NHR, COOH, CONHR, $(CH_2)_nOH$, $(CH_2)_nOR$, $(CH_2)_nNH_2$, $(CH_2)_nNHR$, and $(CH_2)_nNRR$, and

-195-

```
further represents replacement in the ring of 1 or
                    2 ring methine (-CH=) atoms with aza(-N=) atoms;
 20
                             R<sub>2</sub> is a member selected from
                                     C_{2-4} alkyl,
                                      (CH<sub>2</sub>)<sub>n</sub>COOH,
                                      (CH<sub>2</sub>)<sub>n</sub>COOR,
 25
                                      (CH<sub>2</sub>) COR,
                                      (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>R,
                                      (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NRR,
                                      (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NHR,
                                     CH=CHCOOH,
30
                                      (CH<sub>2</sub>) nCH-COOH,
                                              ÒН
                                     (CH_2)_nCH-COOH,
35
                                              NH<sub>2</sub>
                                    (CH<sub>2</sub>)<sub>n</sub>CONH<sub>2</sub>,
                                     (CH<sub>2</sub>)<sub>n</sub>CONHR,
                                     (CH<sub>2</sub>)<sub>n</sub>CONRR,
                                     (CH<sub>2</sub>) nCONHCH<sub>2</sub>Ph,
40
                                     CONHR,
                                     CONRR,
                                     CONHPh,
                                    COY,
                                    COPhCOOH,
45
                                    COPhCOOR,
                                     (CH<sub>2</sub>) nCONHPh,
                                     (CH<sub>2</sub>)<sub>n</sub>CONHPhR,
                                    SO2Y;
                            n is an integer from 1 to 4;
50
                            R is lower alkyl;
                            R<sub>2</sub> is a member selected from H, lower alkyl,
                   and benzyl;
                            Y represents a benzene, pyridine, thiophene,
                   furan, thiazole, or imidazole ring optionally
```

55

60

5

substituted with a lower alkyl, COOH, OH, OCOR, NH₂, CONHR, CONRR, OR, or NHR group; and

 R_4 represents SH, S_0X , and S_0Q where o is 1, 2, or 3, X is a member selected from H, lower alkyl, benzyl, and benzene, pyridine, thiophene, furan, thiazole, and imidazole rings, and Q is another 2-thioindolyl moiety of Formula I.

5. A pharmaceutical composition useful for treating aberrant cell growth in a mammal containing in a pharmaceutically acceptable carrier a therapeutically effective amount of a compound selected from 2-thioindole, 2-indolinethione, and polysulfide compounds represented by the general Formulas I and IV

10
$$R_1$$
 R_2 R_3 R_4 R_4 R_5 R_5 R_7

and pharmaceutically acceptable salts thereof, wherein

 R_1 is a member selected from H, halogen, R, OH, OR, CF_3 , NO_2 , NH_2 , NHR, COOH, CONHR, $(CH_2)_nOH$, $(CH_2)_nOR$, $(CH_2)_nNH_2$, $(CH_2)_nNHR$, and $(CH_2)_nNRR$, and further represents replacement in the ring of 1 or 2 ring methine (-CH=) atoms with aza(-N=) atoms;

R₂ is a member selected from

 C_{2-4} alkyl, $(CH_2)_nCOOH$, $(CH_2)_nCOOR$, $(CH_2)_nCOR$, $(CH_2)_nSO_2R$,

20

15

25

-197-

```
(CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NRR,
                              (CH<sub>2</sub>) ,SO<sub>2</sub>NHR,
                              CH=CHCOOH,
30
                              (CH<sub>2</sub>) "CH-COOH,
                                      ÒН
                              (CH_2)_nCH-COOH,
35
                                     NH2
                              (CH<sub>2</sub>) CONH<sub>2</sub>,
                              (CH<sub>2</sub>) CONHR,
                              (CH<sub>2</sub>) CONRR,
                              (CH<sub>2</sub>) nCONHCH<sub>2</sub>Ph,
40
                              CONHR,
                              CONHPh,
                              COY,
                              COPhCOOH,
                              COPhCOOR,
45
                              (CH<sub>2</sub>) CONHPh,
                              (CH<sub>2</sub>)<sub>n</sub>CONHPhR,
                              SO,Y;
                       n is an integer from 1 to 4;
                       R is lower alkyl;
50
                       R<sub>3</sub> is a member selected from H, lower alkyl,
                and benzyl;
                       Y represents a benzene, pyridine, thiophene,
                furan, thiazole, or imidazole ring optionally
                substituted with a lower alkyl, COOH, OH, OCOR,
55
                NH2, CONHR, CONRR, OR, or NHR group; and
                       R<sub>4</sub> represents SH, S<sub>o</sub>X, and S<sub>o</sub>Q where o is
                1, 2, or 3, X is a member selected from H, lower
                alkyl, benzyl, and benzene, pyridine, thiophene,
                furan, thiazole, and imidazole rings, and Q is
60
               another 2-thioindolyl moiety of Formula I.
```

-198-

- 6. The compound of Claim 1 having the name 3-(2-thioxo-3-indolinyl) propanoic acid.
- 7. The compound of Claim 1 having the name 4-(2-thioxo-3-indolinyl) butanoic acid and pharmaceutically acceptable salts thereof.
- 8. The compound of Claim 1 having the name benzyl[N-phenyl 1-methylindolyl-3-carboxamide(2)]disulfide.
- 9. The compound of Claim 1 having the name bis[indolyl-3-acetic acid-(2)]trisulfide.
- 10. The compound of Claim 1 having the name N-benzyl(2-thioxo-3-indolinyl)acetamide and pharmaceutically acceptable salts thereof.
- 11. The compound of Claim 1 having the name bis[indolyl-3-propanoic acid-(2)]disulfide and pharmaceutically acceptable salts thereof.
- 12. The compound of Claim 1 having the name 2,2'-dithiobis[3-(1-methyl-3-indolyl)propanoic acid] and pharmaceutically acceptable salts thereof.
- 13. The compound of Claim 1 having the name bis[ethylindolyl-3-propanoate-(2)]disulfide.
- 14. The compound of Claim 1 having the name 2,2'-dithiobis[methyl-3-(1-methyl-3-indolyl)-propanoate].

-199-

- 15. The compound of Claim 1 having the name bis[6-methylindolyl-3-propanoic acid-(2)]disulfide and pharmaceutically acceptable salts thereof.
- 16. The compound of Claim 1 having the name bis[ethyl-6-methylindolyl-3-propanoate(2)]disulfide.
- 17. The compound of Claim 1 having the name bis[7-methylindolyl-3-propanoic acid-(2)]disulfide and pharmaceutically acceptable salts thereof.
- 18. The compound of Claim 1 having the name 2,2'-dithiobis[N-benzyl-3-(3-indolyl)propanamide].
- 19. The compound of Claim 1 having the name 2,2'-dithiobis[4-(1-methyl-3-indolyl)butanoic acid] and pharmaceutically acceptable salts thereof.
- 20. The compound of Claim 1 having the name bis [methyl 1-methylindolyl-3-butanoate-(2)] disulfide.
- 21. The compound of Claim 1 having the name bis[N-phenyl 1-methylindolyl-3-carboxamide(2)]disulfide.
- 22. The compound of Claim 1 having the name bis[N-phenyl 5-chloro-1-methylindolyl-3-carboxamide-(2)]disulfide.
- 23. The compound of Claim 1 having the name bis[N-phenyl 6-methoxy-1-methylindolyl-3-carboxamide-(2)]disulfide.

-200-

- 24. The compound of Claim 1 having the name bis[N-phenyl 7-methoxy-1-methylindolyl-3-carboxamide-(2)]disulfide.
- 25. The compound of Claim 1 having the name bis[N-methyl 1-methylindolyl-3-carboxamide(2)]disulfide.
- 26. The compound of Claim 1 having the name bis[N-benzyl 1-methylindolyl-3-carboxamide(2)]disulfide.
- 27. The compound of Claim 1 having the name bis [N-methylphenylsulfonyl) 2-indolyl] disulfide.
- 28. The compound of Claim 1 having the name bis[3-(4'-carboxybenzoyl)-1-methylindole-(2)]disulfide.
- 29. The compound of Claim 1 having the name bis[3-(4'-carbomethoxybenzoyl)-1-methylindole-(2)]disulfide.
- 30. The compound of Claim 1 having the name methyl 3-(1-methyl-2-thioxo-3-indolinyl)propanoate.
- 31. The compound of Claim 1 having the name ethyl 3-(1-methyl-2-thioxo-3-indolinyl)propanoate.
- 32. The compound of Claim 1 having the name N-benzyl 3-(2-thioxo-3-indolinyl) propanamide.
- 33. A method for inhibiting protein tyrosine kinase dependent disease in a mammal, comprising

-201-

administering to said mammal a pharmaceutical composition according to Claim 4.

- 34. A method for treating aberrant cell growth in a mammal, comprising administering to said mammal a pharmaceutical composition according to Claim 5.
- 35. 2-Selenoindole, 2-indolineselenone and selenide compounds of the group represented by the general Formulas I and XXXII

$$R_1$$
 R_2
 R_4
 R_4
 R_3
 R_4
 R_3
 R_3
 R_3

and pharmaceutically acceptable salts thereof, wherein

 R_1 is a member selected from H, halogen, R, OH, OCOR, OR, CF_3 , NO_2 , NH_2 , NHR, COOH, CONHR, $(CH_2)_nOH$, $(CH_2)_nOR$, $(CH_2)_nNH_2$, $(CH_2)_nNHR$, and $(CH_2)_nNRR$, and further represents replacement in the ring of 1 or 2 ring methine (-CH=) atoms with aza(-N=) atoms;

R₂ is a member selected from

 C_{2-4} alkyl, $(CH_2)_nCOOH$, $(CH_2)_nCOOR$, $(CH_2)_nCOR$, $(CH_2)_nSO_2R$, $(CH_2)_nSO_2NRR$, $(CH_2)_nSO_2NHR$,

CH=CHCOOH,

25

15

20

-202-

·
(CH ₂) _n CH-COOH,
OH I
(CH ₂) _n CH-COOH,
NH ₂
(CH ₂) _n CONH ₂ ,
(CH ₂) _n CONHR,
(CH ₂) _n CONRR,
(CH ₂) _n CONHCH ₂ Ph,
CONHR,
CONRR,
CONHPh,
40 COY,
COPhCOOH,
COPhCOOR,
(CH ₂) _n CONHPh,
(CH ₂) _n CONHPhR,
45 SO ₂ Y;
n is an integer from 1 to 4;
R is lower alkyl;
R_3 is a member selected from H, lower alkyl,
and benzyl;
Y represents a benzene, pyridine, thiophene
furan, thiazole, or imidazole ring optionally
substituted with a lower alkyl, COOH, OH, OCOR,
NH2, CONHR, CONRR, OR, or NHR group; and
R ₄ represents SeH, Se ₂ X, and Se ₂ Q where o is
1, 2, or 3, X is a member selected from H, lower
alkyl, benzyl, and benzene, pyridine, thiophene,
furan, thiazole, and imidazole rings, and Q is
another 2-selenoindolyl moiety of Pormula I.
-

36. A selenide compound according to Claim 35 selected from

-203-

2,2'-diselenobis[1-methyl-1H-indole-

3-carboxylic acid, t-butyl ester],

2,2'-diselenobis[1-methyl-1H-indole-

3-carboxylic acid],

2,2'-diselenobis[N,1-dimethyl-1H-indole-

3-carboxamide],

5

10

15

20

5

2,2'-diselenobis[N-[2-(diethylamino)ethyl]-

1-methyl-1H-indole-3-carboxamide],

2,2'-diselenobis[N-methyl-1H-indole-

3-carboxamide],

2,2'-diselenobis[N-[2-(diethylamino)ethyl]-

1H-indole-3-carboxamide],

2,2'-diselenobis[N-[2-(diethylamino)ethyl]-

N-methyl-1H-indole-3-carboxamide],

2,2'-diselenobis[1-[2-(diethylamino)ethyl]-

N-methyl-1H-indole-3-carboxamide],

 $[R-(R^*,R^*)]-2,2'$ -diselenobis [q-amino-

N-(phenylmethyl)-1H-indole-3-propanamide], or

 $[S-(R^*,R^*)]-2,2'$ -diselenobis $[\alpha$ -amino-

N-(phenylmethyl)-1H-indole-3-propanamide]

and pharmaceutically acceptable salts thereof.

37. A pharmaceutical composition useful for inhibition of protein tyrosine kinase dependent disease in a mammal, containing in a pharmaceutically acceptable carrier a therapeutically effective amount of a compound selected from 2-selenoindole, 2-indolineselenone, and selenide compounds represented by the general Formulas I and XXXII

10
$$R_1$$
 R_2 R_3 R_4 R_4 R_5 R_2 R_4 R_5 R_5

-204-

and pharmaceutically acceptable salts thereof, wherein

```
15
                              R<sub>1</sub> is a member selected from H, halogen, R,
                      OH, OR, CF<sub>3</sub>, NO<sub>2</sub>, NH<sub>2</sub>, NHR, COOH, CONHR, (CH<sub>2</sub>) OH,
                      (CH_2)_nOR, (CH_2)_nNH_2, (CH_2)_nNHR, and (CH_2)_nNRR, and
                      further represents replacement in the ring of 1 or
                      2 ring methine (-CH=) atoms with aza(-N=) atoms;
20
                              R<sub>2</sub> is a member selected from
                                       C_{2-4} alkyl,
                                        (CH<sub>2</sub>)<sub>n</sub>COOH,
                                        (CH<sub>2</sub>) COOR,
                                        (CH<sub>2</sub>) nCOR,
25
                                        (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>R,
                                        (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NRR,
                                        (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NHR,
                                        CH=CHCOOH,
                                        (CH<sub>2</sub>)<sub>n</sub>CH-COOH,
30
                                                  ÓН
                                        (CH<sub>2</sub>)<sub>n</sub>CH-COOH,
                                                  ŃН<sub>2</sub>
35
                                        (CH<sub>2</sub>),CONH<sub>2</sub>,
                                        (CH2) CONHR,
                                        (CH<sub>2</sub>)<sub>n</sub>CONRR,
                                        (CH<sub>2</sub>)<sub>n</sub>CONHCH<sub>2</sub>Ph,
                                       CONHR,
40
                                       CONRR,
                                       CONHPh,
                                       COY,
                                       COPhCOOH,
                                       COPhCOOR,
45
                                        (CH<sub>2</sub>)<sub>n</sub>CONHPh,
                                        (CH<sub>2</sub>) CONHPhR,
```

n is an integer from 1 to 4;

SO2Y;

-205-

R is lower alkyl;

55

60

5

10

15

20

R₃ is a member selected from H, lower alkyl, and benzyl;

Y represents a benzene, pyridine, thiophene, furan, thiazole, or imidazole ring optionally substituted with a lower alkyl, COOH, OH, OCOR, NH₂, CONHR, CONRR, OR, or NHR group; and

 R_4 represents SeH, Se_OX, and Se_OQ where o is 1, 2, or 3, X is a member selected from H, lower alkyl, benzyl, and benzene, pyridine, thiophene, furan, thiazole, and imidazole rings, and Q is another 2-selenoindolyl moiety of Formula I.

38. A pharmaceutical composition useful for treating aberrant cell growth in a mammal containing in a pharmaceutically acceptable carrier a therapeutically effective amount of a compound selected from 2-selenoindole, 2-indolineselenone, and selenide compounds represented by the general Formulas I and XXXII

$$R_1$$
 R_2
 R_4
 R_4
 R_3
 R_3
 R_3
 R_3

and pharmaceutically acceptable salts thereof, wherein

 R_1 is a member selected from H, halogen, R, OH, OR, CF_3 , NO_2 , NH_2 , NHR, COOH, CONHR, $(CH_2)_nOH$, $(CH_2)_nOR$, $(CH_2)_nNH_2$, $(CH_2)_nNHR$, and $(CH_2)_nNRR$, and further represents replacement in the ring of 1 or 2 ring methine (-CH=) atoms with aza(-N=) atoms;

 R_2 is a member selected from

```
C_{2-4} alkyl,
                                    (CH<sub>2</sub>) nCOOH,
                                    (CH<sub>2</sub>) nCOOR,
25
                                    (CH<sub>2</sub>) COR,
                                    (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>R,
                                    (CH<sub>2</sub>) ,SO<sub>2</sub>NRR,
                                    (CH<sub>2</sub>)<sub>n</sub>SO<sub>2</sub>NHR,
                                    CH=CHCOOH,
30
                                    (CH<sub>2</sub>) CH-COOH,
                                             ÒН
                                    (CH_2)_nCH-COOH,
35
                                            NH<sub>2</sub>
                                    (CH<sub>2</sub>)<sub>n</sub>CONH<sub>2</sub>,
                                    (CH<sub>2</sub>)<sub>n</sub>CONHR,
                                    (CH<sub>2</sub>) CONRR,
                                    (CH<sub>2</sub>)<sub>n</sub>CONHCH<sub>2</sub>Ph,
40
                                   CONHR,
                                   CONHPh,
                                   COY,
                                   COPhCOOH,
                                   COPhCOOR,
45
                                    (CH<sub>2</sub>)<sub>n</sub>CONHPh,
                                    (CH<sub>2</sub>)<sub>n</sub>CONHPhR,
                                   SO2Y;
                           n is an integer from 1 to 4;
                           R is lower alkyl;
50
                           R<sub>3</sub> is a member selected from H, lower alkyl,
                   and benzyl;
                           Y represents a benzene, pyridine, thiophene,
                   furan, thiazole, or imidazole ring optionally
                   substituted with a lower alkyl, COOH, OH, OCOR,
55
                  NH2, CONHR, CONRR, OR, or NHR group; and
                        R<sub>4</sub> represents SeH, Se<sub>o</sub>X, and Se<sub>o</sub>Q where o is
                   1, 2, or 3, X is a member selected from H, lower
```

-207-

alkyl, benzyl, and benzene, pyridine, thiophene, furan, thiazole, and imidazole rings, and Q is another 2-selenoindolyl moiety of Formula I.

60

- 39. The compound of Claim 35 having the name [R-(R*,R*)]-2,2'-diselenobis[α-amino-N-(phenyl-methyl)-1H-indole-3-propanamide].
- 40. The compound of Claim 35 having the name [S-(R*,R*)]-2,2'-diselenobis[α-amino-N-(phenyl-methyl)-1H-indole-3-propanamide].
- 41. The compound of Claim 35 having the name 2,2'-diselenobis[1-methyl-1H-indole-3-carboxylic acid, t-butyl ester].
- 42. The compound of Claim 35 having the name 2,2'-diselenobis[1-methyl-1H-indole-3-carboxylic acid].
- 43. The compound of Claim 35 having the name 2,2'-diselenobis[N,1-dimethyl-1H-indole-3-carboxamide].
- 44. The compound of Claim 35 having the name 2,2'-diselenobis[N-[2-(diethylamino)ethyl]-1-methyl-1H-indole-3-carboxamide].
- 45. The compound of Claim 35 having the name 2,2'-diselenobis[N-1-methyl-1H-indole-3-carboxamide].

-208-

- 46. The compound of Claim 35 having the name 2,2'-diselenobis[N-[2-(diethylamino)ethyl]-1H-indole-3-carboxamide].
- 47. The compound of Claim 35 having the name 2,2'-diselenobis[N-[2-(diethylamino)ethyl]-N-methyl-1H-indole-3-carboxamide].
- 48. The compound of Claim 35 having the name 2,2'-diselenobis[1-[2-(diethylamino)ethyl]-N-methyl-1H-indole-3-carboxamide].
- 49. A method for inhibiting protein tyrosine kinase dependent disease in a mammal comprising administering to said mammal a pharmaceutical composition according to Claim 37.
- 50. A method for treating aberrant cell growth in a mammal, comprising administering to said mammal a pharmaceutical composition according to Claim 38.

	ATION OF SUBJE		if several classification s				
_			C) or to both National C				
Int.Cl.	5 CO7D209/3 CO7D401/	,	CO7D209/42; CO7D471/04;		C07D405/14; A61K31/40;		7D409/14 1K31/44
II. FIELDS SE	ARCHED					··· · · · · · · · · · · · · · · · ·	
			Minimum Docume	entation S	earched ⁷		
Classification	System			Classifica	tion Symbols		
Int.Cl. !							
		Docum to the Exter	entation Searched other at that such Documents	r than Min are Includ	inum Documentation ed in the Fields Search	hel [‡]	
III. DOCUME	NTS CONSIDERE						
Category °	Citation of Do	cument, !! with in	idication, where appropri	iate, of the	relevant passages 12		Relevant to Claim No.13
X	BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE vol. 1, 1987, pages 181 - 188 'A new preparation of N-aryl-1-alkyynesulphenamides and their thermal rearrangements into indoline-2-thiones' *see compounds of examples 29,30 and 32*						1
X	TETRAHEI voi. 42, pages 58 debromo- synthes cited in *see con	1					
						-/	
"Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "V. CERTIFICATION "T" later document published after the international file and the cited to enderstand the priority date and not in conflict with the cited to enderstand the principle or theory invention. "X" document of particular relevance; the claim cannot be considered novel or cannot be considered novel or cannot be considered to involve an invention focument is combined with one or more or ments, such combination being obvious to in the art. "A" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed TO in the formation of particular relevance; the claim cannot be considered to involve an inventive step to comment is combined to involve an inventive step to comment is combined with one or more or ments, such combination being obvious to in the art. "A" document of particular relevance; the claim cannot be considered to involve an inventive step to comment is combined with the principle or theory invention. "A" document of particular relevance; the claim cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step to comment is combined to involve an inventive step to comment is combined to involve an inventive step to comment is combined to involve an inventive step to comment is combined to involve an inventive step to comment is combined to involve an inventive						e application but vanderlying the med invention considered to med invention we step when the ther such docu- a person skilled	
	nual Completion of t	he International S	eurch	Da	te of Malling of this b	nternational Sean	ch Report
29 NOVEMBER 1993					- 9. 12.	93	
and below the second se					pature of Authorized (SCRUTON-E)		•

į

	International Application No							
III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)								
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.						
A	TETRAHEDRON LETTERS vol. 31, 1990, pages 7229 - 7232 'Selectivity in the Thiocyanation of 3.alkylindoles: An unexpectedly easy access to 2-isothiocyano derivatives' cited in the application	1-32						
т	JOURNAL OF MEDICINAL CHEMISTRY vol. 36, 1993, pages 2459 - 2469 'Tyrosine kinase inhibitors'	1-32, 35-48						
A	WO,A,9 113 055 (FARMITALIA CARLO ERBA S.R.L) 5 September 1991	1-32, 35-48						
P,A	US,A,5 196 446 (YISSUM RESEARCH DEVELOPMENT CO. OF THE HEBREW UNIVERSITY OF JERUSALEM) 23 March 1993	1-32						

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9307272 SA 78016

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in ne way liable for these particulars which are merely given for the purpose of information.

29/11/93

Patent document cited in search report	Publication date	Pater mes	Publication date		
WO-A-9113055	05-09-91	AU-A- EP-A- JP-T-	7241291 0470221 4506081	18-09-91 12-02-92 22-10-92	
US-A-5196446	23-03-93	AU-A- EP-A- WO-A-	7756891 0527181 9116305	11-11-91 17-02-93 31-10-91	

)