УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 125

> Студент Пчелкин Илья Игоревич P3106

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $8 \le |x_5x_2x_4 - 1x_1x_3| < 12$ и неопределенное значение при $x_5x_2x_4 = 7$.

Таблица истинности

No॒	x_1	x_2	x_3	x_4	x_5	$x_5 x_2 x_4$	$1x_1x_3$	$x_5 x_2 x_4$	f
0	0	0	0	0	0	0	4	0	0
1	0	0	0	0	1	4	4	4	1
2	0	0	0	1	0	1	4	1	0
3	0	0	0	1	1	5	4	5	1
4	0	0	1	0	0	0	5	0	0
5	0	0	1	0	1	4	5	4	1
6	0	0	1	1	0	1	5	1	0
7	0	0	1	1	1	5	5	5	1
8	0	1	0	0	0	2	4	2	0
9	0	1	0	0	1	6	4	6	1
10	0	1	0	1	0	3	4	3	0
11	0	1	0	1	1	7	4	7	d
12	0	1	1	0	0	2	5	2	0
13	0	1	1	0	1	6	5	6	1
14	0	1	1	1	0	3	5	3	1
15	0	1	1	1	1	7	5	7	d
16	1	0	0	0	0	0	6	0	0
17	1	0	0	0	1	4	6	4	1
18	1	0	0	1	0	1	6	1	0
19	1	0	0	1	1	5	6	5	1
20	1	0	1	0	0	0	7	0	0
21	1	0	1	0	1	4	7	4	1
22	1	0	1	1	0	1	7	1	1
23	1	0	1	1	1	5	7	5	0
24	1	1	0	0	0	2	6	2	1
25	1	1	0	0	1	6	6	6	0
26	1	1	0	1	0	3	6	3	1
27	1	1	0	1	1	7	6	7	d
28	1	1	1	0	0	2	7	2	1
29	1	1	1	0	1	6	7	6	0
30	1	1	1	1	0	3	7	3	1
31	1	1	1	1	1	7	7	7	d

Аналитический вид

Каноническая ДНФ:

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$ $(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5)$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$f^1(f)$		$K^2(f)$						
m_1	00001	√	m_1 - m_3	000X1	√	m_1 - m_3 - m_5 - m_7	00XX1	√				
m_3	00011	√	m_1 - m_5	00X01	✓	m_1 - m_3 - m_9 - m_{11}	0X0X1	\checkmark				
m_5	00101	\checkmark	m_1 - m_9	0X001	\checkmark	m_1 - m_5 - m_9 - m_{13}	0XX01	\checkmark				
m_9	01001	\checkmark	m_1 - m_{17}	X0001	✓	m_1 - m_3 - m_{17} - m_{19}	X00X1					
m_{17}	10001	\checkmark	m_5 - m_7	001X1	√	m_1 - m_5 - m_{17} - m_{21}	X0X01					
m_{24}	11000	\checkmark	m_3 - m_7	00X11	✓	m_9 - m_{11} - m_{13} - m_{15}	01XX1	√				
m_7	00111	√	m_9 - m_{11}	010X1	✓	m_5 - m_7 - m_{13} - m_{15}	0X1X1	\checkmark				
m_{13}	01101	\checkmark	m_9 - m_{13}	01X01	\checkmark	m_3 - m_7 - m_{11} - m_{15}	0XX11	\checkmark				
m_{14}	01110	✓	m_3 - m_{11}	0X011	\checkmark	m_{24} - m_{26} - m_{28} - m_{3}	$_{60}$ 11XX0					
m_{19}	10011	✓	m_5 - m_{13}	0X101	\checkmark	m_3 - m_{11} - m_{19} - m_{27}	XX011					
m_{21}	10101	✓	m_{17} - m_{19}	100X1	\checkmark	m_{26} - m_{27} - m_{30} - m_{3}	11X1X					
m_{22}	10110	\checkmark	m_{17} - m_{21}	10X01	\checkmark	m_{14} - m_{15} - m_{30} - m_{3}	x111X					
m_{26}	11010	\checkmark	m_{24} - m_{26}	110X0	✓	m_{11} - m_{15} - m_{27} - m_{3}	x1X11					
m_{28}	11100	✓	m_{24} - m_{28}	11X00	√							
m_{11}	01011	✓	m_3 - m_{19}	X0011	√							
m_{30}	11110	✓	m_5 - m_{21}	X0101	√							
m_{15}	01111	\checkmark	m_{14} - m_{15}	0111X	\checkmark							
m_{27}	11011	√	m_{13} - m_{15}	011X1	\checkmark							
m_{31}	11111	✓	m_{11} - m_{15}	01X11	√							
			m_7 - m_{15}	0X111	√							
			m_{26} - m_{27}	1101X	√							
			m_{28} - m_{30}	111X0	√							
			m_{26} - m_{30}	11X10	\checkmark							
			m_{19} - m_{27}	1X011	\checkmark							
			m_{22} - m_{30}	1X110								
			m_{11} - m_{27}	X1011	√							
			m_{14} - m_{30}	X1110	√							
			m_{30} - m_{31}	1111X	√							
			m_{27} - m_{31}	11X11	√							
			m_{15} - m_{31}	X1111	√							
				$K^3(f)$			(f)					
	m	$_{1}$ - m_{3} -	$-m_5$ - m_7 - m_9 -	m_{11} - m_{13} -	m_{15}		110					
							0X1					
							X01					
							XX0					
							[011]					
							X1X					
							11X					
							X11					
						0X.	XX1					

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

									0-ку	/бы						
Простые импликанты		0	0	0	0	0	0 1	0	1 0	1 0	1 0	0	1	1	1	1 1
		0	0			0		1	0	0		1	0	0		1 1
			1	ľ	$\frac{1}{1}$	Ĭ	ĺĺ	\downarrow	ľ	1	ĺ	0	0	0	0	\downarrow
		1	3	5	7	9	13	14	17	19	21	22	24	26	28	30
	1X110											X				X
A	X00X1	X	X						Х	X						
	X0X01	X		X					X		X					\blacksquare
	11XX0												X	X	X	X
В	XX011		Х							X						
	11X1X													X		X
	X111X							X								X
	X1X11															
	0XXX1	X	X	X	X	X	X									

Ядро покрытия:

$$T = \begin{cases} 0XXX1\\ X0X01\\ X111X\\ 1X110\\ 11XX0 \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы		
		1		
		0		
Пр	остые импликанты	0		
		1		
		1		
		19		
A	X00X1	X		
В	XX011	X		

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} 0XXX1 \\ X0X01 \\ X111X \\ 1X110 \\ 11XX0 \\ X00X1 \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} 0XXX1 \\ X0X01 \\ X111X \\ 1X110 \\ 11XX0 \\ XX011 \end{Bmatrix}$$

$$S_{1}^{a} = 18$$

$$S_{1}^{a} = 18$$

$$S_{1}^{b} = 24$$

$$S_{2}^{a} = 18$$

$$S_{2}^{b} = 24$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0XXX1 \\ X0X01 \\ X111X \\ 1X110 \\ 11XX0 \\ X00X1 \end{cases}$$
$$S^{a} = 18$$
$$S^{b} = 24$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, x_5 \vee \overline{x_2} \, \overline{x_4} \, x_5 \vee x_2 \, x_3 \, x_4 \vee x_1 \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_5} \vee \overline{x_2} \, \overline{x_3} \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, x_5 \vee \overline{x_2} \, \overline{x_4} \, x_5 \vee x_2 \, x_3 \, x_4 \vee x_1 \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_5} \vee \overline{x_2} \, \overline{x_3} \, x_5$$

Определение МКНФ

$$f = (x_1 \lor x_2 \lor x_5) \ (x_2 \lor x_3 \lor x_5) \ (x_1 \lor x_4 \lor x_5) \ (x_2 \lor x_4 \lor x_5) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_5}) \ (x_1 \lor x_3 \lor x_5) \ (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$\begin{split} f &= \overline{x_1} \, x_5 \vee \overline{x_2} \, \overline{x_4} \, x_5 \vee x_2 \, x_3 \, x_4 \vee x_1 \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_5} \vee \overline{x_2} \, \overline{x_3} \, x_5 & S_Q = 24 \quad \tau = 2 \\ f &= x_5 \, \left(\overline{x_1} \vee \overline{x_2} \, \left(\overline{x_3} \vee \overline{x_4} \right) \right) \vee x_1 \, \overline{x_5} \, \left(x_2 \vee x_3 \, x_4 \right) \vee x_2 \, x_3 \, x_4 & S_Q = 21 \quad \tau = 5 \\ \varphi &= x_1 \, \left(x_2 \vee x_3 \, x_4 \right) \\ \overline{\varphi} &= \overline{x_1} \vee \overline{x_2} \, \left(\overline{x_3} \vee \overline{x_4} \right) \\ f &= x_5 \, \overline{\varphi} \vee \varphi \, \overline{x_5} \vee x_2 \, x_3 \, x_4 & S_Q = 17 \quad \tau = 6 \end{split}$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_2 \lor x_5) \ (x_2 \lor x_3 \lor x_5) \ (x_1 \lor x_4 \lor x_5) \ (x_2 \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor \overline{x_2} \lor \overline{x_5}) \ (x_1 \lor x_3 \lor x_5) \ (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

$$S_Q = 29 \quad \tau = 2$$

$$f = (x_5 \lor x_1 x_2 \lor x_3 x_4) \ (\overline{x_1} \lor \overline{x_5} \lor \overline{x_2} \ (\overline{x_3} \lor \overline{x_4})) \ (x_1 \lor x_2 \lor x_5)$$

$$S_Q = 20 \quad \tau = 4$$

$$\varphi = \overline{x_3} \lor \overline{x_4}$$

$$\overline{\varphi} = x_3 x_4$$

$$f = (x_5 \lor x_1 x_2 \lor \overline{\varphi}) \ (\overline{x_1} \lor \overline{x_5} \lor \overline{x_2} \varphi) \ (x_1 \lor x_2 \lor x_5)$$

$$S_Q = 19 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_5 \overline{\varphi} \vee \varphi \overline{x_5} \vee x_2 x_3 x_4 \quad (S_Q = 17, \tau = 6)$$
$$\varphi = x_1 (x_2 \vee x_3 x_4)$$

Схема по упрощенной МКНФ:

$$f = (x_5 \lor x_1 x_2 \lor \overline{\varphi}) (\overline{x_1} \lor \overline{x_5} \lor \overline{x_2} \varphi) (x_1 \lor x_2 \lor x_5) \quad (S_Q = 19, \tau = 4)$$
$$\varphi = \overline{x_3} \lor \overline{x_4}$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_5 \, \overline{\varphi}} \, \overline{\varphi \, \overline{x_5}} \, \overline{x_2 \, x_3 \, x_4}} \quad (S_Q = 23, \tau = 10)$$
$$\varphi = x_1 \, \overline{\overline{x_2} \, \overline{x_3 \, x_4}}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_5} \, \overline{x_1} \, \overline{x_2} \, \overline{\varphi} \, \overline{x_1} \, \overline{x_5} \, \overline{\overline{x_2} \, \varphi} \, \overline{x_1} \, \overline{x_2} \, \overline{x_5} \quad (S_Q = 24, \tau = 7)$$

$$\varphi = x_3 \, x_4$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_5 \, \varphi}} \, \overline{\overline{\overline{\varphi} \, \overline{x_5}}} \, \overline{\overline{x_2} \, \overline{\overline{x_3} \, \overline{x_4}}} \quad (S_Q = 24, \tau = 8)$$

$$\varphi = \overline{x_1 \, \overline{\overline{x_2} \, \overline{x_3} \, \overline{x_4}}}$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_5}} \overline{\overline{\overline{x_1}} \overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_4}}} \overline{\overline{\overline{x_1}} \overline{\overline{x_2}}} \overline{\overline{\overline{x_5}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_4}}} \quad (S_Q = 26, \tau = 7)$$

