IN THE CLAIMS

29. (Currently amended) A laminated chip element comprising a plurality of unit elements, comprising:

at least two sheets laminated on each other, each of the sheets having a desired property;

a plurality of first internal electrodes formed on at least one of the sheets <u>a first sheet</u> and a second sheet, <u>wherein</u> each of the first internal electrodes being <u>is</u> arranged in each <u>a respective one</u> of the unit elements;

a second internal electrode formed on at least another of the sheets to extend over across the unit elements;

a plurality of element patterns including resistors or inductors formed on the sheets, wherein each of the element patterns being is arranged with within a respective one each of the unit elements:

a plurality of first and second external terminals, which are input and output terminals connected to the plurality of the first internal electrodes and to the plurality of the element patterns, respectively;

a third external terminal, which is a common terminal connected to the second internal electrode; and

a protective insulation layer formed on the uppermost one of the laminated sheets so such that a portion of both ends of each of the element patterns is exposed,

wherein the both ends each end of each of the element patterns are is directly connected to a respective one of the first and second external terminals, respectively

wherein the plurality of first external terminals are arranged on a first side of the unit elements, and wherein the plurality of second external terminals are arranged on a second, opposite side of the unit elements;

wherein said first internal electrode includes a plurality of first conductive patterns
formed on the first sheet having a direction arranged from the first side of the unit element
towards the second side of the unit element, each of the first conductive patterns being arranged
in each of the unit elements, and a plurality of second conductive patterns formed on the second
sheet in a direction arranged from the second side of the unit elements towards the first side, each
of the second conductive patterns being arranged in a respective one of the unit elements; and

wherein ends of the first conductive patterns are connected to the first external terminals on the first side of the unit elements and ends of the second conductive patterns are connected to the second external terminals on the second side of the unit elements.

- 30. (Withdrawn) The laminated chip element according to claim 29, wherein said first internal electrode includes a plurality of pairs of first and second conductive patterns formed on one of the sheets, each pair of the first and second conductive patterns being spaced apart from each other and formed at both ends of the one sheet and arranged in each of the unit elements, one ends of the first and second conductive patterns being connected to the first and second external terminals, respectively; and said second internal electrode includes a third conductive pattern formed on the other of the sheets to extend over the unit elements in a transverse direction of both the ends of the one sheet.
- 31. (Withdrawn) The laminated chip element according to claim 29, further comprising a fourth external terminal, which is a common terminal, wherein said first internal electrode includes a plurality of pairs of first and second conductive patterns on one of the sheets, each pair of the first and second conductive patterns being spaced apart from each other and formed at both ends of the one sheet and arranged in each of the unit elements, one ends of the first and second conductive patterns being connected to the first and second external terminals, respectively; said second internal electrode includes a third conductive pattern consisting of first and second portions which are formed on the other of the sheets to be spaced apart from each other and to extend over the unit elements in a transverse direction of both the ends of the one sheet; and both opposite ends of the first and second portions of the third conductive pattern are connected to the third and fourth external terminals, respectively.
- 32. (Currently amended) The laminated chip element according to claim 29, wherein the at least one of the sheets includes a first sheet and a second sheet; said first internal electrode includes a plurality of first conductive patterns formed on the first sheet in a direction of both ends of the first sheet, each of the first conductive patterns being arranged in each of the unit elements, and a plurality of second conductive patterns formed on

the second sheet in the same direction as the first conductive patterns, each of the second conductive patterns being arranged in each of the unit elements;

both opposite ends of the first and second conductive patterns are connected to the first and second external terminals, respectively;

said second internal electrode includes a third conductive pattern formed on another one of the sheets to extend over the unit elements in a transverse direction of both the ends of another one of the sheets; and

the third conductive pattern is interposed between the first and second conductive patterns.

- 33. (Withdrawn) The laminated chip element according to claim 29, further comprising a fourth external terminal, which is a common terminal, wherein said first internal electrode includes a plurality of first conductive patterns formed on one of the sheets in a direction of both ends of the one sheet, each of the first conductive patterns being arranged in each of the unit elements, and a plurality of second conductive patterns formed on another of the sheets in the same direction as the first conductive patterns, each of the second conductive patterns being arranged in each of the unit elements; both opposite ends of the first and second conductive patterns are connected to the first and second external terminals, respectively; said second internal electrode includes a third conductive pattern formed on a third of the sheets to extend over the unit elements in a transverse direction of both the ends of the one sheet and a fourth conductive pattern formed on the other of the sheets to extend over the unit elements in the transverse direction of both the ends of the one sheet; both opposite ends of the third and fourth conductive patterns are connected to the third and fourth external terminals, respectively; and the third and fourth conductive patterns are interposed between the first and second conductive patterns.
- 34. (Withdrawn) The laminated chip element according to claim 29, wherein said first internal electrode includes a plurality of first conductive patterns formed on one of the sheets in a direction of both ends of the one sheet, each of the first conductive patterns being arranged in each of the unit elements, and a plurality of second conductive patterns formed on another of the sheets in the same direction as the first conductive patterns, each of the second

conductive patterns being arranged in each of the unit elements; both opposite ends of the first and second conductive patterns are connected to the first and second external terminals, respectively; said second internal electrode includes a third conductive pattern comprising a plurality of first portions formed on the other of the sheets in the same direction as the first conductive patterns and a second portion connected to one ends of the first portions, each of the first portions being arranged in each of the unit elements, the second portion being formed to extend over the unit elements in a transverse direction of both the ends of the one sheet; one end of the second portion of the third conductive pattern is connected to the third external terminal; and the third conductive pattern is interposed between the first and second conductive patterns.

- 35. (Withdrawn) The laminated chip element according to claim 29, wherein a plurality of first conductive patterns are formed one of the sheets, each of the first conductive patterns consisting of first to third portions, the first and second portions being spaced apart from each other and formed at both ends of the one sheet, each pair of the first and second portions arranged in each of the unit elements, the third portion being spaced apart from the first and second portions and formed to extend over the unit elements in a transverse direction of both the ends of the one sheet; a plurality of second conductive patterns are formed the other of the sheets, each of the second conductive patterns consisting of fourth and fifth portions spaced from each other, the fourth portion partially overlapping with the first and third portions, the fifth portion partially overlapping with the second and third portions, each of the second conductive patterns being arranged in each of the unit elements; said first internal electrodes comprise the first and second portions of the first conductive patterns and the second conductive patterns; said second internal electrodes comprise the third portions of the first conductive patterns; one ends of the first and second portions are connected to the first and second external terminals, respectively; one end of the third portion is connected to the third external terminal.
- 36. (Withdrawn) The laminated chip element according to any one of claim 29, wherein areas of overlapping portions between the internal electrodes differ from each other.

- 37. (Currently amended) The laminated chip element according to any one of claim 29, wherein metal pads are formed to be spaced apart from each other, and the element pattern is formed to connect the metal pads to with each other.
- 38. (Currently amended) The laminated chip element according to any one of claim 29, wherein the protective insulation layer includes epoxy or glass.
- 39. (Withdrawn) The laminated chip element according to any one of claim 29, wherein the element patterns include inductive patterns, some of the inductive patterns of the unit elements are formed on an upper surface of the laminated chip element, and the other of the inductive patterns of the unit elements are formed on a lower surface of the laminated chip element.
- 40. (Withdrawn) The laminated chip element according to any one of claim 29, wherein the element pattern includes an inductive pattern, the inductive pattern is spiral, an insulated bridge is formed in a radial direction across the spiral inductive pattern, and a bridge pattern for extending a central end of the inductive pattern to an outside thereof is formed on the insulated bridge.
- 41. (Withdrawn) The laminated chip element according to any one of claim 29, wherein the element pattern includes an inductive pattern, a ferrite layer is form on the laminated chip element, and the inductive pattern is formed on the ferrite layer.
- 42. (Currently amended) The laminated chip element according to any one of claim 29, wherein the element pattern includes a resistive material including Ni-Cr or RuO₂.
- 43. (Withdrawn) The laminated chip element according to any one of claim 29, wherein the element patterns include inductive patterns, a plurality of inductor sheets are further laminated, at least one of the inductive patterns are formed on each of the inductor sheets, and both ends of the respective inductive patterns are connected to the corresponding first and second external terminals.

44. (Withdrawn) The laminated chip element according to any one of claim 29, wherein the element patterns include inductive patterns, a plurality of inductor sheets are further laminated, an inductive pattern is formed on each of the inductor sheets, the inductive patterns are connected to each other in series through through-holes formed in the inductor sheets, both ends of the connected inductive patterns are connected to the first and second external terminals, respectively.