DIFFERENTIAL GEOMETRY LECTURE 2

JEFFREY JIANG

1. Vector Fields

Recall that given a smooth n dimensional manifold M, we get the *tangent bundle* TM, which is a 2n dimensional smooth manifold, equipped with a map $\pi:TM\to M$, where the fiber $\pi^{-1}(p)$ over a point $p\in M$ is the tangent space T_pM . Also recall that a *section* of a π is a map $\sigma:U\to TM$ such that $\pi\circ\sigma=\mathrm{id}_U$. If U=M, we call σ a global section.

Definition 1.1. A *vector field* on a smooth manifold is a global section $X : M \to TM$. The set of vector fields on M is denoted $\mathfrak{X}(M)$.

If you unwrap the definitions, we see that a section is exactly the data we want – for every point $p \in M$, we are assigning to it a vector in T_pM . We will often denote the vector X(p) at p by X_p .

If we fix a chart *U* with coordinates x^i , we get the *coordinate vector fields* $\partial/\partial x^i$, where

$$\left(\frac{\partial}{\partial x^i}\right)_p = \frac{\partial}{\partial x^i}\bigg|_p$$

Then given an arbitrary smooth vector field X, we have that X_p is a linear combination of the coordinate vector fields. Smoothness of X then tells us that we can write X locally as

$$X = X^i \frac{\partial}{\partial x^i}$$

for smooth functions $X^i: U \to \mathbb{R}$. We also note that $\mathfrak{X}(M)$ admits more structure than that of a set.

Proposition 1.2.

- (1) Let $X, Y \in \mathfrak{X}(M)$. Then fX + gY defined a smooth vector field, for $f, g \in C^{\infty}(M)$.
- (2) $\mathfrak{X}(M)$ is a $C^{\infty}(M)$ module.

In more sheafy language, this tells us that the sheaf of vector fields on M is a sheaf of modules over the sheaf of smooth functions. In fact, we can say even more about the algebraic structure of vector fields. Given a chart U with coordinates x^i , we know we can write any vector field as $X^i \partial_i$. This tells us that the ∂_i form a basis for the local vector fields $\mathfrak{X}(U)$ as a $C^{\infty}(U)$ module, i.e. locally, the vector fields form a free module over $C^{\infty}(U)$. Note that this might not hold globally though.

Definition 1.3. A *local frame* for M is an collection of smooth vector fields E_i defined on an open set $U \subset M$ such that for each $p \in U$, we have that the $E_i|_p$ form a basis for T_pM . If U = M, we say that the E_i form a *global frame*.

We've already seen a local frame, the coordinate vector fields ∂_i .

Recall that a vector $v \in T_pM$ acts on functions $f \in C^{\infty}(M)$ – it takes as an input a smooth function, and produces a real number. We see then that vector fields act on smooth functions as well, where we define the action pointwise to produce a new function. Explicity, given $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$, we have

$$(Xf)(p) = X_p f$$

In this way, we see that a vector field X determines a linear map $C^{\infty}(M) \to C^{\infty}(M)$. In fact, it defines a *derivation*, i.e.

$$X(fg) = fXg + gXf$$

since each vector X_p is a derivation at p.

2 JEFFREY JIANG

Proposition 1.4. *Vector fields on M are in bijection with derivations* $D : C^{\infty}(M) \to C^{\infty}(M)$ *, where the mapping is given by* $X \mapsto D_X$ *where* $D_X f = X f$.

Given a vector field $X \in \mathfrak{X}(M)$ and a smooth map $F : M \to N$, we can apply the differential dF_p pointwise to X, but the result may not be well defined. For example, if F is not injective, there will exists at least two points p,q such that F(p) = F(q) = y. Then if we want to use F and X to define a vector field on Y, we have a conundrum – what vector should we assign to y? Should it be $dF_p(X_p)$ or $dF_q(X_q)$? Therefore in order for X to push forward to a vector field on Y, we must impose the condition on each fiber $F^{-1}(y)$ that for all $p \in F^{-1}(y)$, we have $dF_p(X_p)$ is the same.

Definition 1.5. Given smooth manifolds M and N, a smooth map $F: M \to N$, and vector fields $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$. We say that X and Y are F-related if for all $q \in N$ and all $p \in F^{-1}(q)$, we have $dF_p(X_p) = Y_q$.

Given an arbitrary vector field X and a smooth map $F: M \to N$, it's not true in general that an F-related vector field exists in $\mathfrak{X}(N)$, however, in the case that F is a diffeomorphism, a unique F-related vector field exists, called the pushforward F_*X . In order for a vector field to be F-related to X, we see that it must be define by

$$(F_*X)_p = dF_{F^{-1}(p)}(X_{F^{-1}(p)})$$

which is well defined since *F* is invertible.