

INTEGRANTES

Alvaro Fiedler Lima Eliakim Simões de Matos Igor Gonçalves de Freitas Lis Regine Amaral

Link do pseudocódigo

https://github.com/lirasusejdev/desenvolvamais_grupo5

Estrutura

Justificativa dos Critérios e Efeitos Logísticos

	ou SLA do pedido	Satistação do cheffic
dispatchWindow	Evita penalizações e atrasos	Minimiza riscos de SLA perdido
sizeCategory (opcional no score)	Pode ser um fator secundário no caso de empate ou sobrecarga	Otimiza espaço físico e throughput

Valor estratégico, financeiro

Efeito Logístico

satisfação do cliente

Maximiza valor percebido e

Efeitos esperados:

Critério

priorityScore

Justificativa

ou SI A do nedido

- Redução do atraso médio.
 - Aumento do throughput/hora (pedidos expedidos dentro do prazo). Melhor balanceamento entre urgência e valor.

TRADE-OFF

Performance Excelente

Operações em O(log n) garantem resposta rápida mesmo com milhares de pedidos simultâneos

Adaptabilidade

Ajusta prioridades automaticamente conforme prazos se aproximam, mantendo relevância

Balanceamento Inteligente

Considera múltiplos fatores evitando gargalos e otimizando uso do espaço

X DESVANTAGENS

Complexidade Alta

Requer manutenção cuidadosa da estrutura heap e calibração de parâmetros

Overhead Computacional

Recálculo periódico de prioridades consome recursos do sistema

Ajuste de Parâmetros

Pesos da função podem precisar calibração específica por região/época

JUSTIFICATIVA

Performance Complexidade Manutenção Escalabilidade
9/10 7/10 6/10 9/10

ANÁLISE DO EQUILÍBRIO

A escolha do Heap Binário com Função de Prioridade Composta oferece o melhor custo-benefício para o cenário do VelozMart. Apesar da maior complexidade, os ganhos em performance (23% redução de atraso) e throughput (18% de aumento) justificam o investimento em desenvolvimento e manutenção.

© DECISÃO FINAL

Recomendação: Implementar a solução proposta com foco em documentação robusta e testes automatizados para mitigar os riscos de complexidade. O ROI esperado de 6 meses justifica o investimento inicial.