

LISTA DE EJERCICIOS - ÁLGEBRA GEM - 2021

Caleb - Michaell

Pregunta 1. Sea p un número primo, pruebe que (\mathbb{Z}_p,\cdot) es un grupo.

Pregunta 2. Pruebe que:

$$D_{2n} = \langle a, b \mid a^2 = b^2 = (ab)^n = 1 \rangle$$

donde a = s y b = sr.

Pregunta 3. Pruebe que el grupo $GL_2(\mathbb{Z}_2)$ no es abeliano y que tiene orden 6.

Daniel - Cristopher

Pregunta 1. Consideremos $\mathbb Q$ el conjunto de números racionales.

a) Considere la relación en $\mathbb Q$ definida por:

$$a \sim b \Leftrightarrow a - b \in \mathbb{Z}$$

Pruebe que \sim es una relación de equivalencia.

b) Pruebe que $\left(\frac{\mathbb{Q}}{\sim},+\right)$ es un grupo abeliano con la operación:

$$\left[\frac{a}{b}\right] + \left[\frac{c}{d}\right] = \left\lceil \frac{ad + bc}{bd} \right\rceil$$

¿Es finito?

c) Considere p primo, pruebe que el conjunto:

$$\mathbb{Z}(p^{\infty}) = \left\{ \left[\frac{a}{b} \right] \in \frac{\mathbb{Q}}{\sim} : b = p^i, i \ge 0 \right\}$$

es un subgrupo de $\frac{\mathbb{Q}}{\sim}$.

Pregunta 2. Dado $m \le n$ pruebe que el número de ciclos de longitud m es:

$$\frac{n(n-1)\dots(n-m+1)}{m}$$

Pregunta 3. Para cada n definimos el conjunto:

$$U_n = \{ z \in \mathbb{C}^* : z^n = 1 \}$$

- a) $U_n \subseteq U_m$ si y solo si n|m.
- b) $U_n \cap U_m = U_d$ donde d = (m, n).
- c) Sea H un subgrupo finito de (\mathbb{C}^*,\cdot) , pruebe que existen tal que $H=U_n$.

Guido - Jhonatan

Pregunta 1. Sea G un grupo, pruebe lo siguiente:

- a) Si $x^2 = 1$ para todo $x \in G$, entonces G es abeliano.
- b) Si G es abeliano pruebe que $(ab)^n = a^n b^n$ para cualquier $n \in \mathbb{Z}$ y $a, b \in G$. De un ejemplo de grupo no abeliano que no satisfaga lo anterior.

Pregunta 2. Sea $n \ge 2$ y $m \in \{1, ..., n\}$, pruebe que:

$$H = \{ \sigma \in S_n : \sigma(m) = m \}$$

es un subgrupo de S_n .

Pregunta 3. Un grupo H es finitamente generado si existe un conjunto finito S tal que $H = \langle S \rangle$. Pruebe que:

- a) Todo grupo finito es finitamente generado.
- b) \mathbb{Z} es finitamente generado.
- c) Todo subgrupo de $(\mathbb{Q}, +)$ que es finitamente generado es cíclico.

Juan Paucar - Marco

Pregunta 1. Consideremos G un grupo:

- a) Sea $x \in G$ con |x| = n, pruebe que $\{1, x, \dots, x^{n-1}\}$ son diferentes.
- b) Considere D_{2n} , halle el orden de $\langle r \rangle$.

Pregunta 2. Considere el grupo S_5 :

a) Exprese

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

como producto de ciclos disjuntos. Indique la longitud de cada uno de estos.

b) Halle el orden de σ .

Pregunta 3. Pruebe que:

$$H(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

es un grupo llamado el grupo de Heisenberg.

Miller

Pregunta 1. Sea G un grupo, pruebe lo siguiente:

- a) Si $(ab)^2 = a^2b^2$ para todo $a, b \in G$ pruebe que G es abeliano.
- b) Si $(ab)^i = a^i b^i$ para todo $a, b \in G$ y tres enteros consecutivos i, pruebe que G es abeliano.

Pregunta 2. Numere los vértices de un polígono regular de n lados (P_n) por $\{1, \ldots, n\}$ (mantenga fija esta numeración). Para una simetría de P_n asocie una permutación $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$ definida por:

$$\sigma(i) = j \Leftrightarrow s$$
 pone el vértice i en el lugar del vértice j

Denotamos por D_{2n} el conjunto de las permutaciones asociadas a cada simetría.

- a) D_{2n} es un grupo con la composición usual de funciones, además tiene orden 2n. (Sugerencia: para encontrar el número total de simetrías debe hallar el número de formas que tiene de asignar los vértices 1 y 2 mediante estas. Para esto, dado i encuentre una simetría que envíe 1 a i, utilize la posición de los vértices para verificar que fijando este valor i existen dos simetrías más.)
- b) Sea r la permutación asociada a la rotación de $2\pi/n$ y s la reflexión que deja el vértice 1 fijo. Pruebe que:

3

$$D_{2n} = \{1, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}$$

(Sugerencia: pruebe que $r^n = s^2 = 1$, $s \neq r^i$ y que $sr^i \neq sr^j$).

c) Del item a) concluya que D_{2n} es un subgrupo de S_n .

Pregunta 3. Pruebe que:

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R}, a \neq 0, c \neq 0 \right\}$$

es un subgrupo de $\mathrm{GL}_2(\mathbb{R}).$