Modélisation Probabiliste et Apprentissage par Renforcement

Benoît Delahaye

Nantes Université, LS2N UMR 6004

Chapitre 2 : Vérification Probabiliste

Outline

Vérification formelle de propriétés Propriétés linéaires Logiques LTL et CTL

Model-Checking Probabiliste
PCTL pour les DTMC / MDP
CSL (transitoire) pour les CTMC / PTA
Outils

Model-Checking statistique SMC Quantitatif SMC Qualitatif Outils

Outline

Vérification formelle de propriétés Propriétés linéaires

Logiques LTL et CTL

Model-Checking Probabiliste

PCTL pour les DTMC / MDP CSL (transitoire) pour les CTMC / PTA Outils

Model-Checking statistique

SMC Quantitatif SMC Qualitatif Outils

Rappels (?)

Système de transitions

Un Système de transitions est un tuple M = (S, I(Act), T, AP, L) avec

- \triangleright S un ensemble d'états, et $I \subseteq S$ des états initiaux,
- Act un ensemble d'actions,
- ▶ $T \subseteq S(\times Act) \times S$ une relation de transition,
- AP un ensemble de labels,
- ▶ $L: S \mapsto 2^{AP}$ une fonction d'étiquetage.

Chemins, Traces

(Fragment de) Chemin

Un chemin est une succession infinie d'états $\pi = s_0, s_1, \ldots$ telle que pour tout $i, (s_i, s_{i+1}) \in \mathcal{T}$.

Un fragment de chemin est un chemin fini.

Les traces sont les projections des chemins sur les étiquetages.

Trace

La trace correspondant à un (fragment de) chemin $\pi = s_0 s_1 s_2 \dots$ est $trace(\pi) = L(s_0)L(s_1)L(s_2)\dots$

Les traces d'un ST C sont donc l'ensemble des traces correspondant à tous ses chemins.

Exercice

Exercice 1

- 1. Donner un chemin de l'automate ci-contre
- 2. Pouvez-vous caractériser l'ensemble des chemins ?
- 3. Donner une trace
- 4. Caractériser l'ensemble des traces
- 5. En général, y a-t-il plus de traces que de chemins?

Propriétés linéaires

Les propriétés les plus simples à vérifier pour un ST sont donc celles qui caractérisent son ensemble de traces.

Propriété Linéaire

Une propriété linéaire φ sur l'ensemble de propositions atomiques AP est un sous-ensemble de $(2^{AP})^{\omega}$.

 $\Rightarrow \varphi$ est un ensemble de mots infinis sur l'alphabet 2^{AP} .

Satisfaction

Un ST C satisfait une propriété φ ($C \models \varphi$) ssi. toutes les traces de C sont dans φ .

Exercice 2

Donner une propriété linéaire pour le ST précédent. Le ST la satisfait-il?

Sûreté

Les propriétés de **sûreté** (**safety**) sont du type *rien de mauvais ne doit* arriver.

- Un bon exemple est l'absence de blocages.
- Un contre-exemple est toujours basé sur une trace finie.

Exercice 3

Pour le ST précédent, donner des traces satisfaisant et ne satisfaisant pas les propriétés de sûreté suivantes :

- 1. Le système ne passe jamais par un état étiqueté "lose"
- 2. Il n'y a jamais plus de 3 roll entre 2 win

Sûreté et Invariants

Un exemple de propriété de sûreté est l'invariance linéaire.

Invariant

Une propriété linéaire φ est un *invariant* s'il existe une formule propositionnelle (vérifiable sur un élément de 2^{Prop}) θ telle que

$$\varphi = \{E_0 E_1 E_2 \ldots \in (2^{AP})^{\omega} \mid \forall i, E_i \models \theta\}$$

On dit que θ est l'invariant d'état associé à φ .

Exercice 4

Identifier l'invariant d'état associé à la propriété 1 de l'exercice précédent. Proposer un algorithme pour vérifier les propriétés d'invariance linéaire pour un système de transitions quelconque.

Algorithme de vérification d'invariant (Largeur)

Algorithme naïf: vérifier que tous les états atteignables vérifient l'invariant d'état.

```
AV := I: V := \emptyset: ok := True
tant que AV \neq \emptyset et ok faire
      soit s \in AV
     AV := AV \setminus \{s\}

V := V \cup \{s\}

si s \models \theta alors
       pour tous les s' tel que s \longrightarrow s' faire
\begin{vmatrix}
si & s' \notin V \cup AV \text{ alors} \\
AV & := AV \cup \{s'\}
\end{vmatrix}
         | ok := False
       fin
fin
Return ok
```

Algorithme de vérification d'invariant (Profondeur)

```
\begin{split} &V := \emptyset; \  \, \text{Pile} \,\, P := \varepsilon \\ &ok := \text{True} \\ &\textbf{tant que} \,\, I \setminus V \neq \emptyset \wedge ok \,\, \textbf{faire} \\ &\mid \, \text{soit} \,\, s \in I \setminus V \\ &\mid \, \text{visiter}(s,P,V,ok) \,\, \textbf{fin} \\ &\textbf{si} \,\, ok \,\, \textbf{alors} \\ &\mid \, \text{return}(\text{Ok}\,!) \,\, \textbf{sinon} \\ &\mid \, \text{return}(\text{nOk},\,\, \text{reverse}(\text{P})) \,\, \textbf{fin} \end{split}
```

```
procédure visiter(s, P, V, ok)
     push(s, P); V := V \cup \{s\}
     répéter
          s' := top(P)
          si \ s' \not\models \theta \ alors
          lock := False
          sinon
              si Post(s') \subseteq V alors
                 pop(P)
                   soit s'' \in \mathsf{Post}(s') \backslash V
                  V := V \cup \{s''\}
     jusqu'à (P = \varepsilon) \lor \neg ok;
fin
```

Autres propriétés de sûreté

Toutes les propriétés de sûreté ne sont pas des invariants.

Exemple: Il n'y a jamais plus de 3 roll entre 2 win.

Les contre-exemples sont bien tous issus de traces finies, mais cette propriété ne peut pas être exprimée en tant qu'invariant.

Sûreté

Une propriété linéaire φ est une propriété de **sûreté** si et seulement si, pour toute trace $\sigma \in ((2^{AP})^{\omega} \setminus \varphi$, il existe un préfixe fini $\widehat{\sigma}$ tel que

$$\varphi \cap \{\sigma' \in (2^{AP})^{\omega} \mid \widehat{\sigma} < \sigma'\} = \emptyset$$

Etant donnée φ , on note $bad(\varphi)$ l'ensemble des préfixes finis $\widehat{\sigma}$ de ses contre-exemples.

Exercice

Exercice 5

- 1. Prouver formellement que toute propriété d'invariance linéaire est une propriété de sûreté.
- 2. Soit φ une propriété de sûreté qui n'est pas un invariant. En supposant qu'il existe un automate $\mathcal A$ tel que $\mathcal L(\mathcal A)=bad(\varphi)$, proposer un algorithme permettant de vérifier si un ST donné satisfait φ .

Vivacité

Il est facile de satisfaire une propriété de sûreté : il suffit de ne rien faire.

⇒ On a besoin d'autre chose.

Les propriétés de **vivacité** (**liveness**) sont du type *quelque chose de bien* va finir par se passer.

- Un bon exemple est la terminaison d'un programme.
- Un contre-exemple est toujours une trace infinie.

Exemple

- On finit toujours par obtenir un win.
- On obtient une infinité de win et une infinité de lose.

Q : Comment vérifier qu'une telle propriété est satisfaite de manière automatique?

Caractérisation de la vivacité

Vivacité

Une propriété linaire φ est une propriété de *vivacité* si et seulement si préfixes $(\varphi)=(2^{AP})^*$.

 \Rightarrow Tout mot fini peut être prolongé en un mot satisfaisant φ .

Exercice 6

Donner des traces satisfaisant et ne satisfaisant pas les propriétés précédentes :

- 1. On finit toujours par obtenir un win.
- 2. On obtient une infinité de win et une infinité de lose.

Sûreté VS Vivacité

- La seule propriété qui est à la fois une propriété de vivacité et une propriété de sûreté est la propriété triviale (2^{AP})^ω. (Exercice 7 : Prouver ce résultat)
- ▶ Toute propriété linéaire peut être exprimée comme la conjonction d'une propriété de sûreté et d'une propriété de vivacité. (Exercice 8 à la maison : Prouver ce résultat)

Outline

Vérification formelle de propriétés

Propriétés linéaires

Logiques LTL et CTL

Model-Checking Probabiliste

PCTL pour les DTMC / MDP CSL (transitoire) pour les CTMC / PTA Outils

Model-Checking statistique

SMC Quantitatif SMC Qualitatif Outils

Linear Temporal Logic

Soient AP un ensemble de propositions atomiques, L une fonction d'étiquetage et $a \in AP$. Les formules LTL sont construites comme suit :

$$\varphi ::= \mathsf{true} \; \big| \; \mathsf{a} \; \big| \; \varphi_1 \land \varphi_2 \; \big| \; \neg \varphi \; \big| \; \bigcirc \varphi \; \big| \; \varphi_1 \, \mathsf{U} \, \varphi_2$$

On utilise aussi les notations suivantes (raccourcis syntaxiques) :

$$\begin{array}{lll} \varphi_1 \vee \varphi_2 & ::= \neg (\neg \varphi_1 \wedge \neg \varphi_2) \\ \varphi_1 \Rightarrow \varphi_2 & ::= \varphi_2 \vee \neg \varphi_1 \\ \Diamond \varphi & ::= \mathsf{true} \, \mathsf{U} \, \varphi & \mathsf{Eventually} \\ \Box \varphi & ::= \neg \Diamond \neg \varphi & \mathsf{Always} \\ \dots & ::= \end{array}$$

Sémantique (graphique)

Que signifient les formules suivantes? Proposez une trace les satisfaisant.

- 1.1 $\varphi_1 ::= \Box \Diamond a$
- 1.2 $\varphi_2 ::= \Diamond \Box a$
- 1.3 $\varphi_3 ::= \Box (a \Rightarrow \neg \bigcirc b)$
- 1.4 $\varphi_4 ::= \Box(a \Rightarrow \bigcirc(a \cup (b \land \bigcirc(b \cup c))))$
- 2. Traduire les propriétés suivantes en formules de LTL pour

$$AP = \{a, b, c\}$$
:

- P_1 : Lorsque a est toujours vraie, b est infiniment souvent vraie.
- P_2 : Lorsque a est vraie dans un état, b ne peut pas être vraie dans le suivant.
- P_3 : c ne peut pas être vraie dans deux états successifs.
- P_4 : On ne peut jamais se trouver dans une configuration où a est vraie et b est fausse.

Computation Tree Logic

- Interprétée sur des arbres d'exécution plutôt que des traces
- Quantificateurs de chemins :
 - Sur tous les chemins : ∀, A
 - ► Sur au moins un chemin : ∃, E

Formule d'état :
$$\Psi$$
 ::= true $\mid a \mid \Psi_1 \wedge \Psi_2 \mid \neg \Psi \mid \exists \varphi \mid \forall \varphi$

Formule de chemin : $\varphi ::= \bigcup \Psi \mid \Psi_1 \cup \Psi_2 \mid$

Exercice 10

Quels sont les états de l'automate ci-dessus satisfaisant les formules suivantes?

- ▶ ∃ () a
- > ∃□a
- $ightharpoonup \exists \Diamond (\exists \Box a)$
- $ightharpoonup \exists (a \cup (\neg a \wedge \forall (\neg a \cup b)))$

- ▶ ∀ () a
- ▶ ∀□a
- $\triangleright \forall (a \cup b)$

Outline

Vérification formelle de propriétés Propriétés linéaires Logiques LTL et CTL

Model-Checking Probabiliste
PCTL pour les DTMC / MDP
CSL (transitoire) pour les CTMC / PTA
Outils

Model-Checking statistique SMC Quantitatif SMC Qualitatif Outils

Vérification Probabiliste

Comme la vérification standard,

- Basé sur les traces
- Propriétés d'états / de chemins
- Exhaustif
- Basé sur l'exploration

Mais

- Mesure sur les ensembles de chemins
- ▶ Quantification → Mesure
- Propriétés Qualitatives
 - ightharpoonup \forall \rightarrow $\mathbb{P}_{=1}$
 - ightharpoonup $\exists \to \mathbb{P}_{>0}$
- Propriétés Quantitatives
 - $ightharpoonup \mathbb{P}_{\sim b}, \ b \neq 0, 1$

Outline

Vérification formelle de propriétés

Model-Checking Probabiliste PCTL pour les DTMC / MDP

Model-Checking statistique

Probabilistic Computation Tree Logic

Definition (PCTL [Hansson and Jonsson, 1994])

Formules d'états :

$$\Psi ::= \mathsf{true} \mid a \mid \Psi_1 \wedge \Psi_2 \mid \neg \Psi \mid \mathbb{P}_J(\varphi),$$

avec $a \in AP$, φ formule de chemins et $J \subseteq [0,1]$ un intervalle à bornes rationnelles.

Formules de chemins :

$$\varphi ::= \bigcirc \Psi \mid \Psi_1 \cup \Psi_2 \mid \Psi_1 \cup \Psi_2,$$

avec Ψ , Ψ_1 et Ψ_2 des formules d'états, et $n \in \mathbb{N}$.

References I

Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P. (2003). Model-checking algorithms for continuous-time markov chains. *IEEE Transactions on software engineering*, 29(6):524–541.

Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P. (2000). Model checking continuous-time markov chains by transient analysis. In *CAV*, volume 1855, pages 358–372. Springer.

Baier, C. and Katoen, J.-P. (2008). *Principles of Model Checking*.

The MIT Press.

Ballarini, P., Barbot, B., Duflot, M., Haddad, S., and Pekergin, N. (2015).

 $\mbox{HASL}:\mbox{A new approach for performance evaluation and model checking from concepts to experimentation.}$

Performance Evaluation, 90:53-77.

Boyer, B., Corre, K., Legay, A., and Sedwards, S. (2013).

Plasma-lab: A flexible, distributable statistical model checking library. In *International Conference on Quantitative Evaluation of Systems*, pages 160–164. Springer.

References II

Hansson, H. and Jonsson, B. (1994).

A logic for reasoning about time and reliability.

Formal aspects of computing, 6(5).

Hoeffding, W. (1963).

Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13–30.

Holzmann, G. J. (1997).

The model checker spin.

IEEE Transactions on software engineering, 23(5):279–295.

Katoen, J.-P., Khattri, M., and Zapreevt, I. (2005).

A markov reward model checker

In Quantitative Evaluation of Systems, 2005. Second International Conference on the, pages 243-244. IEEE.

Katoen, J.-P., Kwiatkowska, M., Norman, G., and Parker, D. (2001).

Faster and symbolic CTMC model checking.

In Process Algebra and Probabilistic Methods. Performance Modelling and Verification. Springer.

References III

Kwiatkowska, M., Norman, G., and Parker, D. (2011). Prism 4.0: Verification of probabilistic real-time systems. In *Computer aided verification*, pages 585–591. Springer.

Kwiatkowska, M., Norman, G., Segala, R., and Sproston, J. (2002). Automatic verification of real-time systems with discrete probability distributions. *Theoretical Computer Science*, 282(1):101–150.

Larsen, K. G., Pettersson, P., and Yi, W. (1997).

Uppaal in a nutshell.

International Journal on Software Tools for Technology Transfer (STTT), 1(1):134–152.

Legay, A., Delahaye, B., and Bensalem, S. (2010).

Statistical model checking: An overview.

In Proc. Runtime Verification - First International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, volume 6418 of Lecture Notes in Computer Science, pages 122–135. Springer.

Robert, C. P. (2004).

Monte carlo methods.

Wiley Online Library.

References IV

Sen, K., Viswanathan, M., and Agha, G. (2005).

Vesta: A statistical model-checker and analyzer for probabilistic systems.

In Quantitative Evaluation of Systems, 2005. Second International Conference on the, pages 251-252. IEEE.

Wald, A. (1945).

Sequential tests of statistical hypotheses.

The Annals of Mathematical Statistics, 16(2):117–186.

Younes, H. L. (2005a).

Verification and planning for stochastic processes with asynchronous events.

Technical report. Ph.D. thesis. Carnegie Mellon.

Younes, H. L. (2005b).

Ymer · A statistical model checker

In CAV, volume 3576, pages 429-433. Springer.

Younes, H. L. and Simmons, R. G. (2002).

Probabilistic verification of discrete event systems using acceptance sampling.

In CAV, volume 2, pages 223-235. Springer.