Logic(s) for computer science - Week 13 Normal forms for First Order Logic - Part II Tutorialr

1. Show that the following formulae in CSNF are unsatisfiable using binary resolution:

(a)
$$\forall x. \forall y. \forall z. \Big((\neg P(x,z) \lor R(x,x,z)) \land (\neg R(e,x,e)) \land (P(e,y)) \Big);$$

(b)
$$\forall x. \forall y. \Big(\big(\neg P(x,y) \lor Q(x) \lor Q(y) \big) \land \big(\neg Q(i(i(e))) \big) \land \big(P(i(x),i(x)) \big) \Big).$$

2. Establish using the binary resolution that the following formulae are valid:

(a)
$$(\forall x. \forall y. \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z))) \land P(x,y) \land P(y,x)) \rightarrow P(x,x);$$

- (b) $(\forall x.Q(x)) \rightarrow (\exists x.Q(x));$
- (c) $(\neg \forall x. Q(x)) \leftrightarrow (\exists x. \neg Q(x));$
- (d) $(\neg \exists x. Q(x)) \leftrightarrow (\forall x. \neg Q(x));$
- (e) $(\exists y. \forall x. P(x,y)) \rightarrow (\forall x. \exists y. P(x,y));$
- (f) $(\forall x.(P(x,x)\leftrightarrow Q(x)))\rightarrow (P(e,e)\to Q(e)).$