Proposition Let (W, T, g) be a Stein mfd. Then (W, α) with $\alpha = -d(dg \circ T)$ is a Weinstein infd and for every regular value c of g the symplectic mfd $(g^{-1}(-\infty, c)^{-1}, \alpha)$ is a Weinstein filling of it's boundary.

Proof w non degenerate: $g(-,-)=\omega(-,J-)$ is Rimamian metric, so $\omega(v,Jv)>0$ tv. V Hence ω is a symplectic form.

whas Liouville form $-dg\circ J$, so there is a Liouville VI- Y given by $i_{Y}\omega=-dg\circ J$.

g is an exhausting function. Is Y gradient like for g^2 $\mathcal{L}_{Y}g=dg(Y)=i_{Y}\omega\circ J(Y)=\omega(Y,JY)>0.V$ Is g Morse ? Writing things out in coordinates, one checks Hesse inestable in witical points.

Yh g'c since $dg\neq 0$ on g'c and $Y(g)>0. \Rightarrow Y$ outward pointing on $g''(-\infty,C)$.