班次 ______ 学号 _____ 姓名 _____

2003(春) 代数与几何 (2) 试题 (B 卷)

说明: 题中 R 表示实数域; C 表示复数域.

第一部分: 填充题 (48分).

2. 设 $W_1 = \{\begin{pmatrix} a & 0 & c \\ a & 0 & 0 \\ 0 & b & d \end{pmatrix} | a, b, c, d \in R \}, W_2 = \{\begin{pmatrix} x & 0 & 0 \\ 0 & 0 & 0 \\ 0 & y & z \end{pmatrix} | x, y, z \in R \}, 则 \dim_R(W_1 \cap W_2) = _____; \dim_R(W_1 + W_2) = _____; \dim_R(W_1 + W_2) = _____;$

属于 ______ 等价类.

5. 5. 设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是三维向量空间 $(V, F, +, \cdot)$ 的一组基,线性变换 σ 在 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 $\begin{pmatrix} 2 & 1 & 3 \\ -2 & 1 & -2 \\ 2 & -1 & 2 \end{pmatrix}$, 则 σ 在基 $\eta_1 = 3\varepsilon_1 - \varepsilon_2 - \varepsilon_3, \eta_2 = \varepsilon_2 + \varepsilon_3, \eta_3 = 2\varepsilon_3$ 下的矩阵为 =______; $\dim_F \mathrm{Ker} \sigma =$

7. 设 α, β 是欧氏空间 V 中两向量, $(\alpha, \alpha) = 1, (\beta, \beta) = 4, (\alpha, \beta) = 2.$ 则 $\dim_R L(\alpha, \beta) =$ _______; 若向量 γ 与 α 垂直,问 γ 与 β 垂直吗?答

第二部分: 计算, 证明题 (共52分).

- 8. 设 W_1, W_2 分别是实系数方程组 $x_1 + x_2 + \cdots + x_n = 0$ 与 $x_1 = x_2 = \cdots = x_n$ 的解空间。证明: $W_2 = W_1^{\perp}$ 。
- 9. 给定矩阵 $A=\begin{pmatrix}0&3&3\\-1&8&6\\2&-14&-10\end{pmatrix}$ 。求 A 的若当标准形 J ,及可逆矩阵 P ,使 $P^{-1}AP=J$ 。
- 10. 设 $F_n[x]$ 是数域 F 上次数小于 n 的多项式和零多项式所组成的向量空间。令映射 $\phi: F_n[x] \to F_n[x], f(x) \mapsto f(0)x$ 。问 ϕ 是否是线性变换 (说明理由)? 求 $Ker(\phi)$ 的一组基及维数。
- 11. 设 $\alpha_1, \alpha_2, \dots \alpha_t$; $\beta_1, \beta_2, \dots, \beta_t$ 是欧氏空间 V 的两个线性无关组; 证明: 存在 V 的正交变换 σ 使 $\sigma(\alpha_i) = \beta_i, \forall i$ 当且仅当 $(\alpha_i, \alpha_j) = (\beta_i, \beta_j), \forall i, j$ 。