Silica having higher density useful for production of dispersions is prepared by hydrophobising pyrogenically produced silica and compacting it

Patent number: DE19961933 Publication date: 2001-07-26

Inventor: MICHAEL GUENTHER (DE); KASACK VOLKER (DE);

NOWACK RUEDIGER (DE)

Applicant: DEGUSSA (DE)

Classification:

- international: C01B33/18; C09C1/30; C01B33/00; C09C1/28; (IPC1-

7): C01B33/18

- european: C01B33/18; C09C1/30D12 Application number: DE19991061933 19991222 Priority number(s): DE19991061933 19991222

Report a data error here

Abstract of DE19961933

Hydorphobic, pyrogenically produced silica having a tamped density of 55 - 200 g/l is produced by hydrophobising pyrogenically produced silica and then compacting it.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND MARKENAMT Offenlegungsschrift

® DE 199 61 933 A 1

(21) Aktenzeichen: 199 61 933.6

2 Anmeldetag: 22. 12. 1999 (8) Offenlegungstag: 26. 7.2001

C 01 B 33/18

(fi) Anmelder:

Degussa AG, 40474 Düsseldorf, DE

(7) Erfinder:

Michael, Günther, Dr., 63791 Karlstein, DE; Kasack, Volker, Dr., 63584 Gründau, DE; Nowack, Rüdiger, 63796 Kahl, DE

(Si) Entgegenhaltungen:

02 80 851 B1 ĒΡ 00 10 655 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- A Hydrophobe Kieselsäure
 - Hydrophobe, pyrogen hergestellte Kieselsäure mit einer Stampfdichte von 60 bis 200 g/l wird hergestellt, indem man pyrogen hergestellte Kieselsäure hydrophobiert und anschließend verdichtet. Sie kann zur Herstellung von Dispersionen verwendet werden.

Beschreibung

Die Erfindung betrifft eine hydrophobe, pyrogen hergestellte Kieselsäure, ein Verfahren zu ihrer Herstellung und ihrer Verwendung.

Es ist bekannt, hydrophile, pyrogen hergestellte Kieselsäure zu verdichten (EP 0 280 854 B1). Nachteiligerweise nimmt mit zunehmender Stampfdichte, beziehungsweise Schüttgewicht die Verdickungswirkung linear ab. Zusätzlich nimmt die Dispergierbarkeit mit zunehmender Dichte ab. Dies zeigt sich durch eine unerwünschte Stippenbildung. Eine hydrophile, pyrogen hergestellte Kieselsäure kann daher nach der Verdichtung nur für eine begrenzte Anzahl von Einsatzzwecken verwendet werden.

Gegenstand der Erfindung ist eine hydrophobe, pyrogen hergestellte Kieselsäure, welche dadurch gekennzeichnet ist, daß sie eine Stampfdichte von 55 bis 200 g/l aufweist

Bevorzugt kann die Stampfdichte 60 bis 200 g/l betragen,

100

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der hydrophoben, pyrogen hergestellten Kieselsäure mit einem Schüttgewicht von 55 bis 200 g/l, welches dadurch gekennzeichnet ist, daß man pyrogen hergestellte 15 Kieselsäure auf bekanntern Wege hydrophobiert und anschließend verdichtet.

Bevorzugt kann die Hydrophobierung mittels halogenfreier Silane erfolgen. Der Chlorid-Gehalt der Kieselsäure kann gleich oder unter 100 ppm, bevorzugt 10 bis 100 ppm betragen.

Die Verdichtung kann mittels eines Walzenverdichters erfolgen, Bevorzugt kann die Verdichtung mittels eines Preßbandfilters gemäß EP 0 280 851 B1 erfolgen.

Als hydrophobe, pyrogen hergestellte Kieselsäure können zum Beispiel die Kieselsäuren:

Aerosil R 812 oder Aerosil R 812S, mit der Gruppierung -O-Si (CH₃)₃
Aerosil R 202, Aerosil MS 202, Aerosil MS 202, Aerosil R 106 oder Aerosil R 104, mit der Gruppierung

Aerosil R 805 mit der Gruppierung

verwendet werden.

Die erfindungsgemäße hydrophobe, pyrogene Kieselsäure mit einem Stampfgewicht von 55 bis 200 g/l weist die folgenden Vorteile auf:

40 Auf Grund der höheren Stampfdichte sind die Transportkosten deutlich niedriger.

Nach der Dispergierung liegt die erfindungsgemäße Kieselsäure in kleineren Aggregaten vor. Das heißt: Die Dispersionen sind feinteiliger, weil die erfindungsgemäße Kieselsäure besser dispergierbar ist.

Die mit der erfindungsgemäßen Kieselsäure hergestellten Dispersionen weisen einen kleineren Grindometerwert auf. Sowohl die Transparenz, gemessen an UV-Transmission, als auch die visuelle Durchsichtigkeit der Dispersionen wer-45 den durch die Verwendung der erfindungsgemäßen Kieselsäure deutlich verbessert.

Die Dispersjonen, die die erfindungsgemäße Kieselsäuren enthalten, zeigen eine deutlich erhöhte Stabilität, weil die Sedimentationsneigung deutlich geringer ist.

Ein weiterer Vorteil der erfindungsgemäßen Kieselsäure ist die reduzierte Staubbildung bei der Einarbeitung und die deutlich herabgesetzte Einarbeitungs- beziehungsweise Benetzungszeit in zum Beispiel flüssige Systemen.

Die Hydrophobie ist bei der erfindungsgemäßen Kieselsäure gegenüber der hydrophoben, pyrogenen Kieselsäure mit niedrigerem Schüttgewicht unverändert. Auch die Verdickungswirkung ist unverändert.

Beispiel 1

Es werden verschiedene hydrophobe, pyrogen hergestellte Kieselsäuren untersucht, wobei verschiedene Verdichtungszustände gegenübergestellt werden. Es bedeuten:

lose = pulverförmige, unveränderte Kieselsäure

CF = mit Carterfilter verdichtete Kieselsäure

60 VV 60 = auf eine Stampfdichte von ca. 60 g/l verdichtete Kieselsäure

VV 90 = auf eine Stampfdichte von ca. 90 g/l verdichtete Kieselsäure Untersucht werden die Aerosil-Typen R 202, US 202, US 204, R 812, R812S und R 805. Die Ergebnisse sind in der Tabelle 1 aufgeführt.

Die Methanolbenetzbarkeit zeigt Fig. 3.

Der Verdichtungsgrad hat praktisch keinen nennenswerten Einfluß auf die Hydrophobie, beurteilt nach der Methanolbenetzbarkeit nach Corning Glass. Auch die Viskosität zeigt keine deutliche systematische Abhängigkeit von der Stampfdichte. Insbesondere bei R 812 wird die Dispergierbarkeit mit steigender Dichte besser. R 812 S. das mehr SiOH-Gruppen enthält als R 812, zeigt obiges Phänomen weniger deutlich.

US 202 und US 204 sind rheologisch gut miteinander vergleichbar und AEROSII, R 202 unterlegen. Die verdichteten Varianten zeigen überraschender Weise insbesondere bei R 812, R 202 und US 2024 eine um bis zur Hälfbe verkürzte Einstrebtungszeit. Fermer zeigen die verdichteten Klesselssturen eine geringene Staubenstwicklung.

	_	_		_	_	_		_	_	_	_	_	_	÷	_	-	_		_	-	_	_		_	_		_	_	_
5																444723	US 204	06/\D	368	50,7				T.	22	02	207	230	QI
10	444711	AE R 812	WEO			2,5	25		90			169	509	8		444722	US 204	WEO	358,4	52,6				.25	16	3	192	522	30
15	444710	AE R812	ь			13,3	102		4		0	185	213	15		444721	US 204	· 6	350,4	4.3				45		0	193	225	10
20	444709	AE 1812	lose			11,7	121		45			166	181	13		444720	US 204	lose	379,2	49,9				**		•	186	223	10
25	444708	AR R805	WBO	178	63				89	8	13	258	288	9		444719	US 202	WEO	380,8	45,3				63	15	36	320	346	3
	444707	AR R805	09/\	185	93				S	32	7	236	2.0	10		444718	US 202	в	377,6	6'57				20	9	7.7	308	327	30
30	444706	AR RBOS	ъ	184	42,7				23	15	36	260	284	झ		444717	US 202	lose	350,4	50,7				39		٥.	320	336	35
35	444705	AE 1805	Jose	961	ğ				ħ		•	235	7.7	10		444716	AB R 81.25	06/0			17	100		75	38	*	509	235	•
40	444704	AB R202	W30	430	52,8				52	18	27	366	295	8		444715	AE R 8125	W60			18,2	110		58		0	187	226	-
45	444703	AB R 202	WEO	362	49,4				51	R		203	226	31		444714	AE R 812S	ъ			17,3	110		20			169	200	8
50	444702	AE R202	ь	456	54,7				20	n	24	274	290	15		444713	AE R 8125	lose			17,3	93		49		۰	168	201	80
55	444701	AE R202	b	459	54,4				45		0	258	280	15		444712	AE R 812	0600			11,1	44		73	22	77	159	225	5
60		Prifmethode		Viskosität Appoid v. Hä	Viskosität Boood n. Hä	Verdickurgswirkurg	Grindonsterwart	Methanolbenetzbankeit	Stampfdichte	Aglomeatfestighait	Stemockstand Hente.	Rffektivität	Effectivität (UT)	Sediment (Effectivität)			Prilimethode		Visionität Bood v. Hi	Visionität Roadd n. Hi	Verdickangswirlang	Grindometerwert	Methanolbenetzbudesit	Stampfdichte	Agiomentfestigesit	Siebrückstund Berdr.	Bffektivität	Rffektivität (UT)	Sediment (Effektivität)
65		á		0330	0335	0340	0410	0420	0701	0260	0830	9250	5960	57.60			á		0330	0335	0340	0410	0420	1070	0250	0830	9960	5960	87.50

.

Beispiel 2

Untersuchung des Einflusses einer höheren Verdichtung auf anwendungstechnische Eigenschaften

		AE R 812,	AE R 812,	AE R 812,	AE R 812	5
-	1	unver-	V-Ware	V-Ware	1	
		dichtet	RHE	RHE	RHE	
	1	UB 3847-1	UB 3847-2	UB 3847~3	Spezifik.	10
			(4)	(5)		-
	l	10-kg-	15-kg-	20-kg-		
		Sack	Sack	Sack		
Stampfdichte (DIN ISO 787/11)	g/l	50	87	106	ca. 50	15
Effektivität, Ethanol (0955)		184	214	209	216 1)	1
Effektivität (UT), Ethanol (0965)		218	260	290	236 1)	
Sediment (Effektivität, Dissolver)	Vol%	10	1	1	1)	20

1. Bestimmt an Standardmuster (UB 3391)

25

55

60

Die Ergebnisse sind in den Fig. 1, 8 und 4 dargestellt Rhlogiische Prüfung: Polymer: Araldit M

Thixmittel: R 202 und R 812

Probe A R 812 10 kg 2-10123

Herstellungsdatum der Probe: 24.02,1994 Spindel:5

Lag. Zeit	5 Upm	50 Upm	TI.
in Tagen	[mPa*s]	[mPa*s]	
0	16600 80-85 μ	4460	3,72

Probe A R 812 15 kg 1,0/8 min

Herstellungsdatum der Probe: 24.02.1994 Spindel:5

	- Homes - opinionio			
Lag. Zeit in Tagen	5 Upm [mPa*s]	50 Upm [mPa*s]	тг.	45
0	15100 50-60 µ	4060	3,72	50
Probe A R 812 20 kg 0 6/1	4 min	•		

Herstellungsdatum der Probe: 24.02.1994 Spindel:5

Lag. Zeit	5 Upm	50 Upm	т1.
in Tagen	[mPa*s]	[mPa*s]	
0	15100 50-60 μ	4020	3,73

Die Verdichtung kann eine Art Vordispergierung darstellen. Entsprechend erhöhen sich mit der Stampfdichte die Effektivitätswerte, das heißt die effektiv vorliegenden Teilchen in der Ethanoldispersion werden kleiner und die verdichteten Proben setzen sich deutlich weniger ab.

Entsprechend ist in Araldit der Grindometerwert der verdichteten Proben günstiger. Da die größeren Teilchen aber maßgeblich die Verdickungswirkung beeinflussen, geht diese mit der Verdichtung geringfügig zurück.

Der Graphik mit den Effektivitisswerten kann man entnehmen, daß die boch verdichtete AEROSIL R 812-Probe zwar noch mit dem Ultra-Turars (1965), aber nicht mehr mit dem Dissolver (1955) aufgeschlossen werden kann, Aufgrund der geringeren Oberfläche von AEROSIL R 202 (und der damit prinzipiell besseren Dispengierbarkeit) uritt dieses Phänomen bei AEROSIL R 202 kunn auf.

Mit steigender Verdichtung werden die effektiv vorliegenden Teilchen in einer Ethanoldispersion also kleiner und die Streuung im 90-Grad-Winkel aufgrund der Rayleigh-Streuung größer. Die Totalstreuung (über alle Winkel) wird aber kleiner die Propen werden für das Ause deutsch transpranger was auch die Tu.V. Versenwissenschaften belein

kleiner, die Proben werden für das Auge deutlich transparenter, was auch die UV-Transmissionsspektren belegen. Die Verdichtung hat keinen Einfluß auf die Hydrophbie, die mit der des Standardmusters jeweils weitgehend übereinstimmt.

10

15

20

25

30

35

40

45

50

55

60

65

Beispiel 3

Untersuchung des Einflusses einer höheren Verdichtung auf anwendungstechnische Eigenschaften

S S S S S S S S S S												
Na	5	202			ifik.				60 3)	1)	1)	
S C C C C C C C C C	10	AE R		RHE	Spez				ca.	334	339	
S C C C C C C C C C	15	202,	ıre		1848-3	.024-		g-Sack				
S S S S S S S S S S	20	AE F	V-Wa	RHE	89	2-01	3	20-k	119	336	373	н
S S S S S S S S S S	25	202,			148-2	124-		-Sack	-			
8 % % % % % % % % % % % % % % % % % % %	30	AE R	V-Waz	RHE	UB 38	2-010	(3)	15-kg	93	334	365	2
8 % % % % % % % % % % % % % % % % % % %	35	AE R 812,	unver-	dichtet	UB 3848-1	2-02024	10-kg-	Sack		319	346	10
8 % % % % % % % % % % % % % % % % % % %	40								9/1			Vol%
Stampfdichte (DIN ISO 787/11) Effektivität (UT), Ethanol (0955) Effektivität (UT), Ethanol (0955) Sediment (Effektivität, Dissolver)	45											
Stampfdichte (DIN 150 78 Effektivität (UT), Ethanol (0) Effektivität (UT), Ethanol (Effektivität)	50								(11/	955)	ol (0965)	
S S S S S S S S S S S S S S S S S S S	55								IN ISO 78	hanol (0)	r), Ethan	Dissolver)
Stampic Effekti Effekti Sedimen (Effekti	60								lichte (D.	vität, Et	vität (U	ivität, I
	65								Stample	Effekti	Effekti	Sedimer (Effekt

1) Bestimmt an Standardmuster (UB 3391)

3) Richtwert

Die verdichteten AEROSIL R 202-Proben verhalten sich analog zu den verdichteten AEROSIL R 812-Proben. Bezüglich der Diskussion wird daher auf Beispiel 2 verwiesen. Die Methanolbenetzbarkeit ist in der Fig. 5 graphisch dargestellt.

Patentansprüche

 Hydrophobe, pyrogen hergestellte Kieselsaure, dadurch gekennzeichnet, daß sie eine Stamptdichte von 55 bis 	
200 g/l aufweist.	
2. Verfahren zur Herstellung der hydrophoben, pyrogen hergestellten Kieselsäure gemäß Anspruch 1, dadurch ge-	
kennzeichnet, daß man pyrogen hergestellte Kieselsäure auf bekanntem Wege hydrophobiert und anschließend ver-	10
dichtet.	

Verwendung der hydrophobe, pyrogen hergestellte Kieselsäure gemäß Anspruch 1 zur Herstellung von Dispersionen.

- Leerseite -