任务 23: 看门狗

课程名称: 嵌入式	实验类型: 综合
实验项目名称:	任务 23: 看门狗
学生姓名: 刘婉颐	专业: <u>计科 1201</u> 学号: <u>3120100485</u>
同组学生姓名:	
实验地点: 寝室	实验日期: 2015 年 3 月 28 日

看门狗

配置内核中的硬件看门狗,使得一定时间内不喂狗就重启 Acadia 或 RPi 或 WRTnode,写一个程序或脚本保持一定频率的喂狗,当关闭这 个程序或脚本时形成重启。实验报告要记录和表现出重启。

实现目的

- 1. 掌握看门狗的概念;
- 2. 掌握 Acadia 或 RPi 或 WRTnode 上编写看门狗程序的方法。

实验器材

硬件

- Acadia 或 RPi 或 WRTnode 板一块;
- 5V/1A 电源一个;
- microUSB 线一根;
- USB-TTL 串口线一根(FT232RL 芯片或 PL2303 芯片)。

以下为自备(可选)器材:

- PC (Windows/Mac OS/Linux) 一台;
- 以太网线一根(可能还需要路由器等)。

软件

- PC 上的 USB-TTL 串口线配套的驱动程序;
- PC 上的串口终端软件,如 minicom、picocom、putty等;
- PC 上的 SSH 软件,如 putty 等。

实验步骤

1. 了解看门狗:

看门狗是一个定时器电路,一般有一个输入,一个输出到 MCU 的 RST 端,MCU 正常工作的时候,每隔一段时间输出一个信号到喂狗端,给 WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就会给出一个复位信号到 MCU,使 MCU 复位. 防止 MCU 死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。

查看/dev 目录,看到里面的 watchdog 即为字符设备。

<u> </u>	D > 1 H P 4		. 1 / 4 4 1	1 2/4 El a		
ptmx	ptyqd	ptyxc	tty37	ttyed	ttyva	video17
pts	ptyqe	ptyxd	tty38	ttyee	ttyvb	video18
ptya0	ptyqf	ptyxe	tty39	ttyef	ttyvc	video19
ptya1	ptyr0	ptyxf	tty4	ttymxc0	ttyvd	video20
ptya2	ptyr1	ptyy0	tty40	ttymxc2	ttyve	watchdog
ptya3	ptyr2	ptyy1	tty41	ttyp0	ttyvf	zero
ptya4	ptyr3	ptyy2	tty42	ttyp1	ttyw0	
ptya5	ptyr4	ptyy3	tty43	ttyp2	ttyw1	
ptya6	ptyr5	ptyy4	tty44	ttyp3	ttyw2	

可以重新启动 watchdog:

```
root@Acadia:~# /etc/init.d/watchdog stop

* Stopping watchdog daemon... [ OK ]

* Starting watchdog keepalive daemon... [ OK ]

root@Acadia:~# /etc/init.d/watchdog start

* Stopping watchdog keepalive daemon... [ OK ]

* Starting watchdog daemon... [ OK ]

root@Acadia:~# [
```

2. 编辑喂狗脚本:

root@Acadia:~/dog# nano feed_dog.c 程序内容如下:

```
include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(void)
int fd=open("/dev/watchdog",O WRONLY);
int ret=0;
if(fd==-1)
perror("open error");
exit(EXIT_FAILURE);
while(1)
printf("feed dog\n");
ret=write(fd, "1", 1);
if(ret!=1)
ret=-1;
break;
//ret=fsync(fd);
```

```
//ret=fsync(fd);
//if(ret)
// break;
sleep(10);
}
close(fd);
return ret;
}
```

3. 编译运行喂狗程序:

```
root@Acadia:~/dog# gcc -o feed_dog feed_dog.c
root@Acadia:~/dog# ./feed_dog
I'm feeding the dog!!!
root@Acadia:~/dog#
```

4. Ctrl+C 中断程序后等待一分钟, pcDuino 进行重启:

```
I'm feeding the dog!!!
I'm feeding the dog!!!
^Cimx2-wdt imx2-wdt.0: Unexpected close: Expect reboot!

root@Acadia:~/dog# 
U-Boot 2009.08 (Dec 25 2014 - 21:37:33)

CPU: Freescale i.MX6 family TO1.2 at 792 MHz
Thermal sensor with ratio = 170
Temperature: 35 C, calibration data 0x5334ad69
mx6q pll1: 792MHz
mx6q pll2: 528MHz
mx6q pll3: 480MHz
mx6q pll8: 50MHz
ipg clock : 66000000Hz
ipg per clock : 66000000Hz
uart clock : 80000000Hz
cspi clock : 60000000Hz
```

5. 验证结果:

喂狗程序可以启动看门狗,监测喂狗程序是否正常执行,如果超过一段时间没有喂狗,就自动重启系统。