

National Taiwan Normal University Department of Computer Science and Information Engineering CSU0007 - Basic Electronics

Homework 2

Seven questions. 100 points total. Due on 10PM, Tuesday, 3/31/2020. Submit your answer via Moodle Clearly state each step of your calculation to receive full score.

1. (20 points) Find the node voltages e₁ and e₂ and the branch voltages v₁ and v₂. 5 points each.

Using KVL we see that v;= vz, and it must be, since the two circuits are the same (grounding point is just an artificial way to aid our analysis).

KVL: 0.5-6+5-V, =0 & V, = -0.5 V V=-V,

e, = 0 - V, = 0.5 V Via either node A or node B we may see $e_2 = 5.5 \text{ V}$. For example, node voltage at A is 0+6=6 V2. (10 points) Find the equivalent resistance from the viewpoint of A-B and from that of C-D. 5 points each.

3. (10 points) Find the current i₃.

Way @ current divider: Way @ node method:

13 = 2 × Rz = 2Rz A KCL at node A = 1, = 2A

Rz+R3 = Rz+R3 Rz+R3 Kc1 since 2A flows through R1 = 1, =1, +12

 $\Rightarrow 2 = \frac{e_1 - o}{R_2} + \frac{e_1 - o}{R_2} \Rightarrow e_1 = \frac{2R_1R_3}{R_0 + R_2} \Rightarrow A_3 = -\frac{1}{R_1}$

For Vo, and Voz:

4. (10 points) Find the voltage v_0 . -Use suposition. Vo=Vo, + Voz+Voz+Vo4

we see Vo, = Voz if V, = Vz, and Voz = Vax if Vz = Vu

For Voy and Voz:

Using voltage divider, $V_{04} = V_{44} \times \frac{3}{2+1} = \frac{3}{8}V_{4} \Rightarrow V_{03} = \frac{3}{8}V_{3}$

apply voltage divider twice $R \stackrel{?}{=} R \stackrel{?}{=} \stackrel{?}{=} \stackrel{?}{=} R \stackrel{?}{=} \stackrel{?}{=} \stackrel{?}{=} \stackrel{?}{=} V,$

=> Vo = = (V1+V2) + 3 (V3+V4)

$$\Rightarrow$$
 3e, -e_z = -4
3e, -5e_z = -24

$$\bar{\Lambda} = \frac{0 - \ell_2}{3} = \frac{-5}{3} A$$

for
$$\vec{a_1}$$
, using current divider $\vec{a_1} = -4 \times \frac{(1+2)}{(1+2)+3} = -2$

for
$$A_2$$
, using current divider
$$A_2 = 2 \times \frac{1}{1+(2+2)} = \frac{1}{3}$$

then
$$i = i_1 + i_2 = -2 + \frac{1}{3} = \frac{-5}{3} A$$

6. (10 points) Find the current i.

Let's use superposition in a bit fancy way:

using voltage divider and element law $\lambda_1 = (1 \times \frac{\frac{1\times3}{1+3}}{2+\frac{1\times3}{1+3}}) \times 1^{-1}$ = 3

use node method here then

KCL at A: e1-0+ 1+ e1-62 = 0

$$\Rightarrow \begin{cases} 4e_1 - e_2 = -1 \\ e_1 - 3e_2 = -3 \end{cases} \Rightarrow \begin{cases} 12e_1 - 3e_2 = -3 \\ e_1 - 3e_2 = -3 \end{cases} \Rightarrow e_3 = \frac{3}{11}$$

Alternatively, we can directly use the node method kCL at
$$e_3:\frac{1-e_3}{2}+\frac{0-e_3}{1}+\frac{e_4-e_3}{2}+\frac{1}{2}$$
 kCL at $e_4:\frac{e_3-e_4}{2}+\frac{1}{2}+\frac{o-e_4}{1}+1=0$

$$= \begin{cases} -4e_3 + e_4 = 0 \\ e_3 - 3e_4 = -3 \end{cases}$$

$$\Rightarrow i = \frac{e_3 - o}{1} = \frac{3}{11}A$$

7c. (10 points) In the following circuit, find the current i. (Hint: study Example 3.22 in the textbook)

Besides textbooks method. We may consider one single equivalent circuit:

 2Ω

₹3Ω

