Introduction to Number Theory and Algorithms

Christian J. Rudder

August 2024

Contents

Contents		1
1	Asympotic Notation	7
	1.1 Asymptotic Notation	7
	1.2 Evaluating Algorithms	

Prerequisites

Theorem 0.1: Common Derivatives

Power Rule: For $n \neq 0$ $\frac{d}{dx}(x^n) = n \cdot x^{n-1} \text{ . E.g., } \frac{d}{dx}(x^2) = 2x$

Derivative of a Constant: $\frac{d}{dx}(c) = 0 \text{ . E.g., } \frac{d}{dx}(5) = 0$

Derivative of ln: $\frac{d}{dx}(\ln x) = \frac{1}{x}$

Derivative of \log_a : $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$

Derivative of \sqrt{x} : $\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$

Derivative of function f(x): $\frac{d}{dx}(x) = 1 \text{ E.g., } \frac{d}{dx}(5x) = 5$

Derivative of the Exponential Function: $\frac{d}{dx}(e^x) = e^x$

Theorem 0.2: L'Hopital's Rule

Let f(x) and g(x) be two functions. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, or $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, then:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Where f'(x) and g'(x) are the derivatives of f(x) and g(x) respectively.

4 CONTENTS

Theorem 0.3: Exponents Rules

For $a, b, x \in \mathbb{R}$, we have:

$$x^a \cdot x^b = x^{a+b}$$
 and $(x^a)^b = x^{ab}$

$$x^a \cdot y^a = (xy)^a$$
 and $\frac{x^a}{y^a} = \left(\frac{x}{y}\right)^a$

Note: The := symbol is short for "is defined as." For example, x := y means x is defined as y.

Definition 0.1: Logarithm

Let $a, x \in \mathbb{R}, \ a > 0, \ a \neq 1$. Logarithm x base a is denoted as $\log_a(x)$, and is defined as:

$$\log_a(x) = y \iff a^y = x$$

Meaning log is inverse of the exponential function, i.e., $\log_a(x) := (a^y)^{-1}$.

Tip: To remember the order $log_a(x) = a^y$, think, "base a," as a is the base of our log and y.

Theorem 0.4: Logarithm Rules

For $a, b, x \in \mathbb{R}$, we have:

$$\log_a(x) + \log_a(y) = \log_a(xy)$$
 and $\log_a(x) - \log_a(y) = \log_a\left(\frac{x}{y}\right)$

$$\log_a(x^b) = b \log_a(x)$$
 and $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$

CONTENTS 5

Definition 0.2: Permutations

Let n be a positive integer. Then the number of distinct ways to arrange n objects in order is it's permutation. Denoted:

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$$

Definition 0.3: Combinations

Let n and k be positive integers. Where order doesn't matter, the number of distinct ways to choose k objects from n objects is it's *combination*. Denoted:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Where $\binom{n}{k}$ is read as "n choose k.", and (), the binomial coefficient.

Theorem 0.5: Binomial Theorem

Let a and b be real numbers, and n a non-negative integer. The binomial expansion of $(a+b)^n$ is given by:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

which expands explicitly as:

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n$$

where $\binom{n}{k}$ represents the binomial coefficient, defined as:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for $0 \le k \le n$.

6 CONTENTS

Theorem 0.6: Binomial Expansion of 2^n

For any non-negative integer n, the following identity holds:

$$2^{n} = \sum_{i=0}^{n} \binom{n}{i} = (1+1)^{n}.$$

Definition 0.4: Well-Ordering Principle

Every non-empty set of positive integers has a least element.

Definition 0.5: "Without Loss of Generality"

A phrase that indicates that the proceeding logic also applies to the other cases. i.e., For a proposition not to lose the assumption that it works other ways as well.

Theorem 0.7: Pigeon Hole Principle

Let $n, m \in \mathbb{Z}^+$ with n < m. Then if we distribute m pigeons into n pigeonholes, there must be at least one pigeonhole with more than one pigeon.

Theorem 0.8: Growth Rate Comparisons

Let n be a positive integer. The following inequalities show the growth rate of some common functions in increasing order:

$$1 < \log n < n < n \log n < n^2 < n^3 < 2^n < n!$$

These inequalities indicate that as n grows larger, each function on the right-hand side grows faster than the ones to its left.

Asympttic Notation

1.1 Asymptotic Notation

Asymptotic analysis is a method for describing the limiting behavior of functions as inputs grow infinitely.

Definition 1.1: Asymptotic

Let f(n) and g(n) be two functions. As n grows, if f(n) grows closer to g(n) never reaching, we say that "f(n) is **asymptotic** to g(n)."

We call the point where f(n) starts behaving similarly to g(n) the **threshold** n_0 . After this point n_0 , f(n) follows the same general path as g(n).

Definition 1.2: Big-O: (Upper Bound)

Let f and g be functions. f(n) our function of interest, and g(n) our function of comparison.

Then we say f(n) = O(g(n)), "f(n) is big-O of g(n)," if f(n) grows no faster than g(n), up to a constant factor. Let n_0 be our asymptotic threshold. Then, for all $n \ge n_0$,

$$0 \le f(n) \le c \cdot g(n)$$

Represented as the ratio $\frac{f(n)}{g(n)} \le c$ for all $n \ge n_0$. Analytically we write,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

Meaning, as we chase infinity, our numerator grows slower than the denominator, bounded, never reaching infinity.

Examples:

(i.)
$$3n^2 + 2n + 1 = O(n^2)$$

(ii.)
$$n^{100} = O(2^n)$$

(iii.)
$$\log n = O(\sqrt{n})$$

Proof 1.1: $\log n = O(\sqrt{n})$

We setup our ratio:

$$\lim_{n \to \infty} \frac{\log n}{\sqrt{n}}$$

Since $\log n$ and \sqrt{n} grow infinitely without bound, they are of indeterminate form $\frac{\infty}{\infty}$. We apply L'Hopital's Rule, which states that taking derivatives of the numerator and denominator will yield an evaluateable limit:

$$\lim_{n \to \infty} \frac{\log n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{d}{dn} \log n}{\frac{d}{dn} \sqrt{n}}$$

Yielding derivatives, $\log n = \frac{1}{n}$ and $\sqrt{n} = \frac{1}{2\sqrt{n}}$. We substitute these back into our limit:

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{2\sqrt{n}}{n} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$$

Our limit approaches 0, as we have a constant factor in the numerator, and a growing denominator. Thus, $\log n = O(\sqrt{n})$, as $0 < \infty$.

Definition 1.3: Big- Ω : (Lower Bound)

The symbol Ω reads "Omega." Let f and g be functions. Then $f(n) = \Omega(g(n))$ if f(n) grows no slower than g(n), up to a constant factor. I.e., lower bounded by g(n). Let n_0 be our asymptotic threshold. Then, for all $n \geq n_0$,

$$0 \le c \cdot g(n) \le f(n)$$

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Meaning, as we chase infinity, our numerator grows faster than the denominator, approaching 0 asymptotically.

Examples: $n! = \Omega(2^n); \frac{n}{100} = \Omega(n); n^{3/2} = \Omega(\sqrt{n}); \sqrt{n} = \Omega(\log n)$

Definition 1.4: Big Θ : (Tight Bound)

The symbol Θ reads "Theta." Let f and g be functions. Then $f(n) = \Theta(g(n))$ if f(n) grows at the same rate as g(n), up to a constant factor. I.e., f(n) is both upper and lower bounded by g(n). Let n_0 be our asymptotic threshold, and $c_1 > 0, c_2 > 0$ be some constants. Then, for all $n \ge n_0$,

$$0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$
$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

Meaning, as we chase infinity, our numerator grows at the same rate as the denominator.

Examples: $n^2 = \Theta(n^2)$; $2n^3 + 2n = \Theta(n^3)$; $\log n + \sqrt{n} = \Theta(\sqrt{n})$.

Tip: To review:

- **Big-O:** f(n) < g(n) (Upper Bound); f(n) grows no faster than g(n).
- **Big-** Ω : f(n) > g(n) (Lower Bound); f(n) grows no slower than g(n).
- **Big-** Θ : f(n) = g(n) (Tight Bound); f(n) grows at the same rate as g(n).

Theorem 1.1: Types of Asymptotic Behavior

The following are common relationships between different types of functions and their asymptotic growth rates:

- Polynomials. Let $f(n) = a_0 + a_1 n + \dots + a_d n^d$ with $a_d > 0$. Then, $\underline{f(n)}$ is $\underline{\Theta(n^d)}$. E.e., $3n^2 + 2n + 1$ is $\underline{\Theta(n^2)}$.
- Logarithms. $\Theta(\log_a n)$ is $\Theta(\log_b n)$ for any constants a, b > 0. That is, logarithmic functions in different bases have the same growth rate. E.g., $\log_2 n$ is $\Theta(\log_3 n)$.
- Logarithms and Polynomials. For every d > 0, $\log n$ is $O(n^d)$. This indicates that logarithms grow slower than any polynomial. E.g., $\log n$ is $O(n^2)$.
- Exponentials and Polynomials. For every r > 1 and every d > 0, $\underline{n^d \text{ is } O(r^n)}$. This means that exponentials grow faster than any polynomial. E.e., n^2 is $O(2^n)$.

1.2 Evaluating Algorithms

Definition 2.1: Time Complexity

The **time complexity** of an algorithm is the amount of time it takes to run as a function of the input size. We use asymptotic notation to describe the time complexity of an algorithm.

Definition 2.2: Space Complexity

The **space complexity** of an algorithm is the amount of memory it uses to store inputs and subsequent variables during the algorithm's execution. We use asymptotic notation to describe the space complexity of an algorithm.

Below is an example of a function and its time and space complexity analysis.

Function 2.1: Arithmetic Series - Fun1(A)

Computes a result based on a length-n array of integers:

Input: A length-n array of integers.

Output: An integer p computed from the array elements.

```
1 Function Fun1(A):
```

s return p

Time Complexity: For f(n) := Fun1(A), $f(n) = \frac{n^2}{2} = O(n^2)$. This is because the function has a nested loop structure, where the inner for-loop runs n-i times, and the outer for-loop runs n-1 times. Thus, the total number of iterations is $\sum_{i=1}^{n-1} n - i = \frac{n^2}{2}$.

Space Complexity: We yield O(n) for storing an array of length n. The variable p is O(1) (constant), as it is a single integer. Hence, f(n) = n + 1 = O(n).

Additional Example: Let $f(n,m) = n^2m + m^3 + nm^3$. Then, $f(n,m) = O(n^2m + m^3)$. This is because both n and m must be accounted for. Our largest n term is n^2m , and our largest m term is m^3 both dominate the expression. Thus, $f(n,m) = O(n^2m + m^3)$.