Also sprach Marc Schaul

Mathe für alle und keinen

Table des matières

Formalisme et raisonnement			1 1 1
Entiers, principe de récurrence et suites			
Structures algébriques			
Polyn	ômes		1 1 1 2 2 2 3 y
Arith	métiqu	ie	1
Const	ructio	n de $\mathbb R$ et de $\mathbb C$	2
1	Motivation et suites de Cauchy		2
	1.1	Pourquoi \mathbb{R} ?	2
	1.2	Quelques propriétés des suites de Cauchy	3
2	Une construction de \mathbb{R} par les suites de Cauchy		3
	2.1	Les réels	3
	2.2	Leur structure algébrique	4
3	Une autre construction de \mathbb{R}		4
	3.1	Les réels, version 2	4
	3.2	Leur structure algébrique	4
	3.3	Ces deux constructions se valent : isomorphisme	4
4	Les propriétés fondamentales de $\mathbb R$		5
	4.1	$\mathbb R$ n'est pas dénombrable	5
	4.2	La propriété de la borne supérieure	5
	4.3	La complétude	5
	4.4	Caractérisations diverses et variées	5

Formalisme et raisonnement

Un peu de théorie des ensembles

Entiers, principe de récurrence et suites

Encore de la logique et de la théorie des ensembles

Structures algébriques

Groupes, anneaux, corps, corps de fractions

Polynômes

Construction et propriétés de $\mathbb{K}[X]$, de $\mathbb{K}[X,Y]$

Arithmétique

Arithmétique dans \mathbb{Z} et dans $\mathbb{K}[X]$

Construction de \mathbb{R} et de \mathbb{C}

Suites de Cauchy, coupures de Dedekind, théorèmes fondamentaux pour l'analyse

Motivation et suites de Cauchy

1.1 Pourquoi \mathbb{R} ?

Qu'est ce que l'ensemble des réels? Intuitivement, c'est l'ensemble des nombres rationnels dont on a "rempli les trous". Mais que sont donc ces trous? Par exemple, une solution de $x^2 = 2$:

Une preuve de l'irrationnalité de $\sqrt{2}$

On suppose qu'il existe deux entiers p, q premiers entre eux tels que $\left(\frac{p}{q}\right)^2 = 2$.

Alors $p^2 = 2q^2$, donc p^2 est pair. Mais tout entier ayant la même parité que son carré, p est également pair. Avec p=2k, il vient $4k^2=2q^2$, d'où $2k^2=q^2$, et rebelote : q est pair.

On avait supposé la fraction irréductible, et pourtant $PGCD(p,q) \geq 2...$ C'est impossible, donc $\sqrt{2}$ est irrationnel.

Comment faire sens alors d'une telle solution?

Peut être d'une façon approchée : par exemple, en construisant une suite de rationnels dont le carré converge vers 2.

Exercice 1 (Méthode de Héron pour l'approximation de $\sqrt{2}$)

On définit par récurrence la suite rationnelle suivante :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2}(u_n + \frac{2}{u_n}) \end{cases}$$

- 1. Montrer que $u_n^2 > 2$.
- 2. Montrer (sans utiliser le théorème de la limite monotone, puisqu'il n'est pas valable pour des suites rationelles) que la suite définie par $v_0 = 2$ et
- $v_{n+1} = (\frac{v_n}{2})^2$ tend vers 0. 3. Montrer que $u_n^2 \to 2$, en procédant par majoration de $u_n^2 2$ par v_n .

Les termes de cette suite sont successivement, en valeur approchée, [...]. Ils semblent être de plus en plus proches les uns des autres. On peut formaliser cette notion.

Définition 1

On dit qu'une suite (u_n) est de Cauchy quand :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, (m \ge N \text{ et } n \ge N) \implies |u_n - u_m| < \varepsilon$$

Intuitivement, cela veut dire que les termes sont de plus en plus proches deux à deux.

On notera $\mathcal{C}_{\mathbb{Q}}$ l'ensemble des suites de Cauchy rationnelles.

Propriété 1

Toute suite convergente est de Cauchy.

On rappelle que $u_n \to l$ quand :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N \implies |u_n - l| < \varepsilon$$

Soit $u_n \to l$ et $\varepsilon > 0$.

$$\exists N \in \mathbb{N}, n \geq N \implies l - \varepsilon/2 < u_n < l + \varepsilon/2$$

Alors si $n \ge N$ et $m \ge N$:

$$l - \varepsilon/2 < u_n < l + \varepsilon/2$$

$$l - \varepsilon/2 < u_m < l + \varepsilon/2$$

D'où:

$$-\varepsilon < u_n - u_m < \varepsilon$$

Autrement dit, $|u_n - u_m| < \varepsilon$ et donc (u_n) est de Cauchy.

On va immédiatemment montrer que la réciproque est fausse dans Q.

Exercice 2

La suite (u_n) est celle définie précédemment.

- 1. En se souvenant que $u_n^2 > 2$, montrer que (u_n) décroit. 2. En se souvenant que $u_n^2 \to 2$, déduire que $\forall p, \lim_{n \to +\infty} |u_{n+p} u_n| = 0$.
- 3. En conclure que (u_n) est de Cauchy.

Vue depuis le monde rationnel, cette suite n'est pourtant pas convergente, puisque $\sqrt{2}$ est irrationelle. Ceci nous fournit un contre-exemple à la réciproque de la propriété 1. Pourtant, les termes semblent bien se rapprocher "de quelque chose" : ce quelque chose, c'est le nombre réel $\sqrt{2}$, qu'il reste encore à définir.

1.2 Quelques propriétés des suites de Cauchy

Avant d'attaquer la construction, on montre ici quelques propriétés qu'il sera utile d'avoir en tête :

Propriété 2

Toute suite de Cauchy est bornée.

Soit $\varepsilon > 0$. Il existe un rang N tel que si $n, m \ge N$ alors $|u_n - u_m| < \epsilon$. En particulier, $|u_N - u_n| < \varepsilon$, c'est à dire $u_n \in [u_N - \varepsilon, u_N + \varepsilon]$. Mais alors $\forall n \in \mathbb{N}, u_n \le \max(\{u_k | k < N\} \cup \{u_N + \varepsilon\})$, et de même $u_n \ge \min(\{u_k | k < N\} \cup \{u_N - \varepsilon\})$. Finalement, (u_n) est majorée et minorée, donc bornée.

Propriété 3

Toute suite de Cauchy ne convergeant pas vers 0 est non nulle à partir d'un certain rang.

Supposons l'inverse : pour tout $N \in \mathbb{N}$ aussi grand soit-il, il existe un $n \geq N$ tel que $u_n = 0$. Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que si m > N et p > N, $|u_m - u_p| < \varepsilon$. Soit n > N avec $u_n = 0$: alors $\forall m \geq N$, $|u_m - u_n| < \varepsilon$ soit $|u_m| < \varepsilon$. D'où $u_n \to 0$.

Théorème 1 (Analogue au théorème de la limite monotone)

Toute suite rationnelle monotone bornée est de Cauchy.

On fait une démonstration par dichotomie dans le cas croissante et majorée. Soit $(u_n) \in \mathbb{Q}^{\mathbb{N}}$ croissante et majorée par un rationnel M. Pour tout n,

 $u_0 \le u_n \le M$. On pose $a_0 = u_0$ et $b_0 = M$.

On va construire par récurrence deux suites :

- Si $[a_n, \frac{a_n+b_n}{2}]$ contient une infinité de termes de la suite, alors $\left[\frac{a_n+b_n}{2}, b_n\right]$ n'en contient aucun. On pose $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n+b_n}{2}$.
- Sinon, $\left[\frac{a_n+b_n}{2},b_n\right]$ contient tous les termes de la suite à partir d'un certain rang. On pose $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=b_n$.

On a $|a_n - b_n| = \frac{1}{2^n}$.

De plus, par construction, pour tout n il existe un rang N_n à partir duquel tous les termes de la suite sont dans $[a_n, b_n]$. Pour tout $m, p > N_n$ on a donc $|u_m - u_p| < \frac{1}{2^n}$.

Soit maintenant $\varepsilon > 0$. Soit n le plus petit entier tel que $2^n > \frac{1}{\varepsilon}$. Il existe un rang N à partir duquel $|u_m - u_p| < \frac{1}{2^n}$. Mais par définition, $\frac{1}{2^n} < \varepsilon$. D'où finalement, (u_n) est de Cauchy.

Exercice 3

Reprendre la démonstration ci dessus dans le cas décroissante et minorée, et ainsi achever la démonstration du théorème 1.

2 Une construction de \mathbb{R} par les suites de Cauchy

2.1 Les réels

On rappelle les notions suivantes :

Définition 2

Une relation d'équivalence sur E est une relation binaire \sim sur E :

- réfléxive $(\forall x \in E, x \sim x)$;
- transitive $((x \sim y \land y \sim z) \implies x \sim z)$;
- symétrique $(x \sim y \iff y \sim x)$

On appelle classe d'équivalence de x l'ensemble noté $[x] = \{y \in E | y \sim x\}$. Remarquons que si $x \sim y$, [x] = [y].

Propriété 4

L'ensemble des classes d'équivalence est une partition de E. On l'appelle ensemble quotient de E par \sim , noté E/\sim .

L'idée est de définir une relation d'équivalence R sur les suites rationnelles :

$$(a_n)R(b_n) \iff a_n - b_n \to 0$$

On vérifie bien que c'est une relation d'équivalence :

- $-a_n a_n = 0 \to 0$,
- si $a_n b_n \to 0$, alors $b_n a_n = -(a_n b_n) \to -0 = 0$,
- si $a_n b_n \to 0$ et $b_n c_n \to 0$, alors $a_n b_n + b_n c_n = a_n c_n \to 0$.

On peut donc partitionner $\mathcal{C}_{\mathbb{Q}}$: cette partition est \mathbb{R} . Chaque classe d'équivalence est alors un réel, représenté par toutes les suites rationnelles qui l'approximent.

En identifiant tout rationnel q à la classe d'équivalence de la suite stationnaire dont tous les termes sont égaux à q, $\mathbb{Q} \subset \mathbb{R}$.

2.2 Leur structure algébrique

On peut ensuite définir les opérations usuelles sur \mathbb{R} :

Définition 3

1. $[(a_n)] + [(b_n)] = [(a_n + b_n)]$ 2. $[(a_n)] \times [(b_n)] = [(a_n b_n)]$

Il faut ici vérifier que quelque soit la suite rationelle qu'on a choisi pour représenter un réel, l'addition et la multiplication donnera le même résultat. Autrement dit:

- 1. Si $(a_n)R(a'_n)$, $[(a_n+b_n)] = [(a'_n+b_n)]$. 2. Si $(a_n)R(a'_n)$, $[(a_nb_n)] = [(a'_nb_n)]$.

En effet comme attendu:

- 1. $a_n a'_n = (a_n + b_n) (a'_n + b_n)$, donc si $a_n a'_n \to 0$, $(a_n + b_n)R(a'_n + b_n)$ soit $[(a_n + b_n)] = [(a'_n + b_n)].$
- 2. Si $a_n a'_n \to 0$, comme (b_n) est de Cauchy donc bornée, $b_n(a_n a'_n) \to 0$. D'où $(a_n b_n) R(a'_n b_n)$ soit $[(a_n b_n)] = [(a'_n b_n)].$

On définit de plus une relation d'ordre sur \mathbb{R} :

Définition 4

Soit $x = [(a_n)] \in \mathbb{R}$. x est positif si $x \neq 0$ et si il existe un rang N tel que $\forall n \geq N, a_n > 0.$

Il faut encore vérifier que cette définition a un sens, c'est à dire que si $a_n - b_n \to 0$ et (a_n) ne tend pas vers 0, si (a_n) finit par n'avoir que des termes positifs, alors (b_n) aussi.

Supposons que $\forall N, \exists n \geq N, b_n \leq 0.$ $a_n - b_n \rightarrow 0$ c'est à dire $\forall \varepsilon > 0, \exists N, n \geq 0$ $N \implies |a_n - b_n| < \varepsilon.$

Soit $\varepsilon > 0$. $\exists N, n \geq N \implies |a_n - b_n| < \frac{\varepsilon}{2}$. De plus, comme (a_n) est de Cauchy, $\exists N', n, p \ge N' \implies |a_n - a_p| < \frac{\varepsilon}{2}.$

Enfin, $\exists m \geq \max(N, N'), b_m \leq \tilde{0}$. Mais alors comme $b_m - \frac{\varepsilon}{2} < a_m < b_m + \frac{\varepsilon}{2}$, $\forall n \geq \max(N, N'), |a_n - a_m| < \frac{\varepsilon}{2}, b_m - \varepsilon < a_n < b_m + \varepsilon \text{ d'où } 0 < a_n \leq \varepsilon.$ D'où $a_n \to 0$.

On achève maintenant la définition de la relation d'ordre :

Définition 5

Soit $(x,y) \in \mathbb{R}^2$. On dit que x > y si x - y est positif ou si x = y.

C'est bien une relation d'ordre :

- -x = x donc x > x
- antisymétrie
- transitivité

On peut maintenant montrer que \mathbb{R} est un corps ordonné.

- Une autre construction de \mathbb{R}
- Les réels, version 2
- Leur structure algébrique
- Ces deux constructions se valent : isomorphisme

En fait, même si les objets sous-jacents ne sont pas les mêmes - d'une part, des ensembles de suites, d'autre part, des parties de Q - ce qui importe ici, c'est la structure.

- 4 Les propriétés fondamentales de $\mathbb R$
- 4.1 \mathbb{R} n'est pas dénombrable
- 4.2 La propriété de la borne supérieure
- 4.3 La complétude
- *Généralisation aux espaces métriques*

4.4 Caractérisations diverses et variées

- *Théorème des segments emboités* - *Théorème de la limite monotone*

Théorème 2

Toute suite bornée et monotone converge.

Une première démonstration est donnée directement par son analogue rationnel et la complétude de \mathbb{R} . Une deuxième démonstration, plus classique, à partir du principe de la borne supérieure est la suivante :

- *Théorème de Bolzano-Weierstrass* - *Équivalences entre ces résultats* - *Unicité de \mathbb{R}^*

En conclusion:

Théorème 3 (Existence et unicité de \mathbb{R})

Il existe un corps totalement ordonné vérifiant la propriété de la borne supérieure, unique à isomorphisme près.