- 1. Клетчатый прямоугольник \mathcal{R} разбили на несколько меньших клетчатых прямоугольников. Докажите, что по крайней мере у одного из прямоугольников разбиения расстояния од всех сторон прямоугольника \mathcal{R} имеют одинаковую чётность.
- 2. Доска 21×21 покрыта плитками размера 1×3 и 3×1 без наложений и выхода за границы. Каждую клетку, которая покрыта средней клеткой плитки, покрасили красным цветом, после чего все плитки убрали с доски. Можно ли глядя только на красные клетки однозначно восстановить положение всех плиток?
- 3. Клетки таблицы 100×100 заполнены плюсами и минусами. За одну операцию можно выбрать строку и столбец и поменять на противоположные знаки, стоящие во всех их 199 клетках.
 - (а) Докажите, что из любой первоначальной расстановки знаков за несколько операций можно добиться того, что во всех клетках будут стоять плюсы.
 - (b) Для каждой расстановки знаков нашли наименьшее количество операций, которое необходимо сделать, чтобы получить таблицу, заполненную только плюсами. Найдите наибольшее из найденных чисел.
- 4. Дана клетчатая таблица размера 100×100 . Paccmoshuem между двумя её клетками назовём наименьшее количество ходов, которые понадобятся шахматному королю, чтобы добраться из одной клетки в другую. Какое наибольшее количество клеток можно закрасить в этой таблице так, чтобы не нашлось двух на расстоянии 15?
- 5. Из клетчатой доски размера 2018×2018 удалили две клетки, располагавшиеся в одной строке. Докажите, что оставшуюся доску нельзя разбить на necentu, состоящие из 6 и 10 клеток (диаграммы Юнга размера (3,2,1) и (4,3,2,1)).
- 6. Шахматную доску разбили на доминошки. Две доминошки назовём соседними, если шахматный конь за один ход может перейти из клетки одной доминошки в клетку другой. В какое наименьшее количество цветов гарантированно можно покрасить все доминошки так, чтобы любые две соседние доминошки были покрашены в разные цвета?
- 7. Каждую клетку таблицы 100×100 покрасили в один из двух цветов: белый и красный. Оказалось, что в во всех столбцах стойт одно и то же количество красных клеток, но ни в каких двух строках не стоит одинаковое количество красных клеток. Найдите наибольшее возможное количество пар соседних по стороне клеток разного цвета.
- 8. Из клетчатой таблицы размера $(2n+1) \times (2n+1)$ вырезали n клеток. На какое наименьшее количество прямоугольников наверняка можно разрезать оставшуюся часть таблицы, делая разрезы по линиям таблицы (разрезы не обязательно проходят от края до края таблицы)?
- 9. Для каждого натурального числа $n \geqslant 2$ решёткой размера n назовём таблицу $n \times n$, из которой удалены n клеток, причём в каждой строке и в каждом столбце удалена ровно одна клетка. Множество всех решёток размера n обозначим через \mathcal{A}_n . Плиткой будем называть любой прямоугольник размера $1 \times k$ или $k \times 1$, где k произвольное натуральное число. Для произвольной решётки A через m(A) обозначим минимальное количество плиток достаточное для её замощения. Для каждого натурального $n \geqslant 2$ найдите множество $\{m(A) : A \in \mathcal{A}_n\}$.
- 10. Фигура *мамонт* может ходить как шахматный слон, но только в фиксированных трёх направлениях (своих для каждого мамонта). Какое наибольшее количество мамонтов можно разместить на шахматной доске так, чтобы ни один из них не угрожал другому?

- 11. Плиткой назовём лесенку, составленную из 12 кубиков (лесенка имеет три ступеньки высотой 1 и шириной 2). Можно ли разбить кубик размера $2022 \times 2022 \times 2022$ на такие плитки?
- 12. Дано натуральное число $n \ge 2018$. Доска размера $3n \times 3n$ разбита на прямоугольные плитки размера 1×3 и 3×1 . Докажите, что все клетки таблицы можно покрасить в три цвета так, что будут выполнены все три условия:
 - клеток всех трёх цветов одинаковое количество;
 - никакие две клетки одинакового цвета не имеют общей стороны;
 - никакая плитка не покрывает клетки всех трёх цветов.
- 13. На клетчатую доску размера 99×99 разместили без наложений 2500 плиток размера 1×3 и 3×1 . Докажите, что найдутся две плитки, у которых есть общая граница длиной 2 или 3.
- 14. Из кирпичей $1 \times 1 \times 2$ сложили прямоугольный параллелепипед $2022 \times 2023 \times 2023$. Могло ли при этом оказаться, что в каждом из трёх возможных направлений было расположено одинаковое количество кирпичей?
- 15. Дана клетчатая доска $n \times n$. Главной диагональю доски назовём n клеток, идущих вдоль диагонали, соединяющей левый верхний угол доски с правым нижним. На доску выкладывают уголки, состоящие из трёх клеток так, чтобы уголки не пересекались между собой, не накрывали ни одной клетки главной диагонали и покрывали все остальные клетки. Найдите все $n \geqslant 2$, при которых это возможно.
- 16. Дана таблица $n \times m$. Введём обозначения: 1) две клетки назовём cocedhumu, если у них есть общая сторона; 2) nymb это последовательность клеток, в которой любые две подряд идущие клетки соседние; и 3) два пути ne nepecekaromcs, если у них нет общих клеток. Рассмотрим все раскраски клеток этой таблицы в два цвета: белый и красный (каждая клетка окрашена в один цвет). Пусть N количество раскрасок, в которых найдётся путь из красных клеток, начинающийся в крайнем левом столбце и оканчивающийся в крайнем правом столбце; а M количество раскрасок, в которых найдутся хотя бы два непересекающихся таких пути. Докажите, что $N^2 \geqslant M \cdot 2^{mn}$.
- 17. Каждую клетку доски $n \times n$ окрасили в один из двух цветов: белый или красный. Через a_i обозначим количество красных клеток в i-й строке, а через b_i их количество в i-ом столбце. Найдите наибольшее возможное значение суммы $\sum_{i=1}^{n} a_i b_i$.
- 18. Дано нечётное натуральное число n. Некоторые клетки квадратной доски $n \times n$ покрашены в красный цвет. Оказалось, что шахматный король может пройти из любой красной клетки в любую другую красную клетку, перемещаясь только по красным клеткам. Докажите, что он сможет это сделать за не более, чем $\frac{n^2-1}{2}$ ходов.