```
In [1]: import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
```

In [2]: df=pd.read_csv(r"C:\Users\SASIDHAR ROYAL\Downloads\Income.csv")
 df

Out[2]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

In [3]: df.head()

Out[3]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17

In [4]: df.tail()

Out[4]:

	Gender	Age	Income(\$)
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

```
In [5]: plt.scatter(df["Age"],df["Income($)"])
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[5]: Text(0, 0.5, 'Income(\$)')

6, 6])

Out[8]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	2
1	Male	21	15	2
2	Female	20	16	2
3	Female	23	16	2
4	Female	31	17	2

```
In [9]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[9]: Text(0, 0.5, 'Income(\$)')


```
In [10]: from sklearn.preprocessing import MinMaxScaler
          scaler=MinMaxScaler()
          scaler.fit(df[["Income($)"]])
         df["Income($)"]=scaler.transform(df[["Income($)"]])
         df.head()
Out[10]:
             Gender Age Income($) cluster
                      19
                          0.000000
                                       2
               Male
               Male
                      21
                          0.000000
                                       2
                      20
                          0.008197
                                       2
             Female
             Female
                      23
                          0.008197
                                       2
                      31 0.016393
                                       2
             Female
In [11]: scaler.fit(df[["Age"]])
         df["Age"]=scaler.transform(df[["Age"]])
         df.head()
Out[11]:
             Gender
                        Age Income($) cluster
               Male 0.019231
                                           2
                              0.000000
               Male 0.057692
                              0.000000
                                           2
             Female 0.038462
                              0.008197
                                           2
             Female 0.096154
                              0.008197
                                           2
                                           2
             Female 0.250000
                              0.016393
In [12]: km=KMeans()
```

```
In [13]: y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
Colleges SASIDUAR ROYAL Applicable seed Programs (Puther) Buther 211) Lib) site programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the programs (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (subsect of the programs) and seed to the program (
```

C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster_kmeans.py:870: Fu
tureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitl
y to suppress the warning
warnings.warn(

In [14]: df["New Cluster"]=y_predicted df.head()

Out[14]:

	Gender	Age	Income(\$)	cluster	New Cluster
0	Male	0.019231	0.000000	2	2
1	Male	0.057692	0.000000	2	2
2	Female	0.038462	0.008197	2	2
3	Female	0.096154	0.008197	2	2
4	Female	0.250000	0.016393	2	7

```
In [15]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[15]: Text(0, 0.5, 'Income(\$)')


```
In [17]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[17]: Text(0, 0.5, 'Income(\$)')

In [18]: k_rng=range(1,10)
sse=[]

```
In [19]: for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["Age","Income($)"]])
    sse.append(km.inertia_)
    #km.inertia_ will give you the value of sum of square error
    print(sse)
    plt.plot(k_rng,sse)
    plt.xlabel("K")
    plt.ylabel("Sum of Squared Error")
```

```
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
y to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
v to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
y to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
v to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
y to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
v to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
v to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
y to suppress the warning
  warnings.warn(
C:\Users\SASIDHAR ROYAL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster\ kmeans.py:870: Fu
tureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` explicitl
y to suppress the warning
  warnings.warn(
[23.583906150363603, 13.028938428018286, 7.492107868586012, 6.055824667599623, 4.733776701093291, 3.863742438928555
5, 3.054717436369358, 2.6468018962474797, 2.314503013230135]
```

Out[19]: Text(0, 0.5, 'Sum of Squared Error')

In []: