

Introduzione al Data Processing

Corso di Big Data

a.a. 2021/2022

Prof. Roberto Pirrone

Sommario

- Pipeline di data processing
- Tipologie generali di analisi dei dati
- Principali tipi di dati

Data collection

- I dati possono essere estratti da sorgenti eterogenee: sensori, log internet, corpora documentali, dati biomedici ...
- Problematiche di gestione di dati strutturati o parzialmente strutturati
- Volume e velocità dei dati
- Database, datawarehouse, data lake, HDFS e database NoSQL

- Feature extraction e data cleaning
 - Trasformazione dei dati grezzi in formati compatibili con gli algoritmi di analisi:
 - Vettori multidimensionali
 - Serie temporali
 - Dati binari o categorici
 - ...
 - Feature: una qualunque proprietà valorizzabile del dato (es. i campi di un record)

- Feature extraction e data cleaning
 - Scegliere le feature più significative per il problema!!
 - Data cleaning: gestione dei dati mancanti o erronei
 - Stima dei dati mancanti
 - Correzione degli errori
 - Dipende dalla conoscenza sul problema!!
 - I dati «curati» (feature significative, gestione degli errori e selezione del formato) sono di nuovo conservati in un database (non necessariamente relazionale)

- Analisi dei dati
 - Si considerino i dati organizzati in un «database» \mathcal{D} con n record e d attributi che può essere rappresentato da da una matrice di dati X composta da n vettori riga $\mathbf{x} \in \mathbb{R}^d$
 - In senso molto generale possiamo ricercare:
 - Strutture ricorrenti tra le feature *all'interno di ogni singolo dato* che lo correlano con un'ulteriore feature che è l'obiettivo dell'analisi e che può non essere nota nel problema reale (relazioni tra le colonne di *X*)
 - Similarità *tra diverse istanze dei dati* che li rendono *più simili tra loro rispetto agli altri* secondo qualche criterio di analisi (relazioni tra le righe di X)

Classificazione

- Predizione di una etichetta (label) discreta da associare a ciascun dato per categorizzarlo in una classe di appartenenza
- Supervisionato: le etichette sono <u>note</u> per il data set disponibile per l'analisi, ma lo scopo dell'analisi è *predire* le etichette per nuovi dati in arrivo

Clustering

- Ricerca di similarità tra i dati per l'individuazione di *gruppi* (cluster) tra di essi
- *Non supervisionato*: i gruppi sono <u>non noti</u> sia per numero sia per struttura nel data set disponibile per l'analisi

- Outlier analysis
 - Il clustering può essere utilizzato in forma duale per individuare degli elementi anomali o outlier che non si armonizzano con i dati analizzati
 - Outlier: «Un'osservazione che devia così tanto dalle altre da sollevare il sospetto sia stata generata da un meccanismo differente»
 - Intrusion detection
 - Rilevamento di frodi finanziarie o su carte di credito
 - Pattern anomali da rilevamento di sensori (prevenzione guasti)
 - Pattern inusuali nel medical imaging (malattie)
 - Previsioni meteo e ambientali

- Frequent pattern mining (Association pattern mining)
 - Si assuma che i dati siano binari che X sia molto sparsa
 - Database delle transazioni commerciali ottenuti dagli scontrini
 - Ogni record è un acquisto: solo gli item acquistati valgono 1
 - Supporto supp(P) di un pattern P (insieme di item o itemset) frequenza relativa del pattern in X
 - Association pattern mining: non si usa la frequenza del pattern, ma altre misure di significatività statistica come il χ^2

- Association pattern mining (Frequent pattern mining)
 - Regola di associazione A ⇒ B: associazione tra pattern frequenti che ha una certa confidenza:
 - Frazione delle righe contenenti A, che contiene anche B $\operatorname{conf}(A\Rightarrow B)=\frac{\sup(A\cup B)}{\sup(A)}$
 - Mining di regole di associazione con supporto minimo *s* e confidenza *c*:

$$supp(A) \geqslant s$$

$$conf(A \Rightarrow B) \geqslant c$$

Principali tipi di dati

- Dati interdipendenti e non interdipendenti
 - L'interdipendenza è legata alla natura del fenomeno descritto dai dati per cui le singole istanze dipendono tra di loro
 - Dipendenze *implicite* ed *esplicite*
 - Serie temporali (letture successive di sensori, parole in un testo ...)
 - Grafi (social network analysis, database molecolari ...)
 - Dati geospaziali
 - Dati non interdipendenti:
 - Dati multidimensionali conservati in un database

Dati multidimensionali

$$\mathcal{D} = \{ \bar{X}_i, \ i = 1, \dots, n : \bar{X}_i = (x_i^1, \dots, x_i^d) \}$$

Name	Age	Gender	Race	ZIP code
John S.	45	M	African American	05139
Manyona L.	31	F	Native American	10598
Sayani A.	11	F	East Indian	10547
Jack M.	56	M	Caucasian	10562
Wei L.	63	M	Asian	90210

• Dati multidimensionali

$$\mathcal{D} = \{ \bar{X}_i, \ i = 1, \dots, n : \bar{X}_i = (x_i^1, \dots, x_i^d) \}$$

- X_i
 - Data point
 - Istanza
 - Esempio
 - Tupla
 - Oggetto
 - Record
 - Transazione

- X_i^k
 - Campo
 - Attributo
 - Dimensione
 - Feature

- Dati numerici
- Dati categorici: assumono un insieme discreto e non ordinato di valori
- Dati misti: numerici e categorici
- Binari: dati categorici a due valori o dati di appartenenza ad un insieme
- Dati testuali
 - Vector Space Representation: creazione di uno spazio euclideo in cui parole/frasi/documenti possano essere giudicati simili attraverso misure di distanza
 - Latent Semantic Analysis (LSA)
 - Embedding

- Serie temporali
 - Attributi contestuali: descrivono l'implicita interdipendenza tra i dati
 - Time stamp
 - Indice di posizione
 - Attributi comportamentali: descrivono l'effettivo contenuto informativo della serie
 - In genere si tratta di dati multivariati continui o discreti
 - Sequenze discrete: stringhe, sequenze proteiche, dati di log ...

$$(t_1; \bar{Y}_1), (t_2; \bar{Y}_2), \dots, (t_n; \bar{Y}_n)$$

$$\bar{Y}_i = (y_i^1 \dots y_i^d)$$

- Dati spaziali
 - Simili alle serie temporali: la marca è una geolocalizzazione L_i

$$(L_1; \bar{X}_1), (L_2; \bar{X}_2), \dots, (L_n; \bar{X}_n)$$

 $\bar{X}_i = (x_i^1 \dots x_i^d)$

• Si possono cercare regolarità su dati legati a marche spaziali adiacenti

- Dati spazio-temporali
 - Spazio e tempo sono entrambi attributi contestuali
 - Variazioni di parametri atmosferici/ambientali
 - Il tempo è un attributo contestuale, ma lo spazio è un attributo comportamentale
 - Analisi di traiettorie
 - Una «traiettoria» più in generale può essere una correlazione tra due attributi comportamentali di una serie temporale multivariata che vengono accoppiati ad ogni time stamp

- Dati di rete e grafi
 - I dati sono esplicitamente organizzati secondo un grafo

$$G = (V, E)$$

$$\forall v_i \in V, \ v_i \mapsto \bar{X}_i$$

$$\forall e_{i,j} \in E, \ e_{i,j} \mapsto \bar{Y}_{i,j}$$

