1 数列の極限の解答例

演習 1.1 (i) $|1 - a_n| < 0.1 \Leftrightarrow \frac{1}{n+1} < 0.1 \Leftrightarrow 10 < n+1 \Leftrightarrow 9 < n$ だから、例えば N = 10 とすればよい. (N は 10 以上の自然数ならば何でも良い.)

- (ii) 上と同様に考えれば, $|1-a_n| < 0.01 \Leftrightarrow 99 < n$ なので、例えば N=100 とすればよい. (N は 100 以上の自然数ならば何でも良い.)
- (iii) 任意に実数 $\varepsilon>0$ をとったとき, $|1-a_n|<\varepsilon\Leftrightarrow \frac{1}{n+1}<\varepsilon\Leftrightarrow \frac{1}{\varepsilon}< n+1\Leftrightarrow \frac{1}{\varepsilon}-1< n$ なので, $\frac{1}{\varepsilon}\leq N$ となる自然数 N をとれば, $n\geq N\Rightarrow |1-a_n|<\varepsilon$ を満たす. $^{\forall}\varepsilon>0$ に対してそのような N がとれたので, $\lim_{n\to\infty}a_n=1$ が証明できた.

演習 1.2 まず、次に注意: $n = 1, 2, 3, \ldots$ に対し、

$$a_n = \frac{n^2}{n+1} = \frac{(n+1)^2 - 2(n+1) + 1}{n+1} = (n+1) - 2 + \frac{1}{n+1} = n-1 + \frac{1}{n+1} > n-1.$$

- (i) N = 101 とすれば, $n \ge N \Rightarrow a_n > n 1 \ge N 1 = 100 = M$ となる.
- (ii) 任意に実数 M>0 をとったとき, $N\geq M+1$ となる自然数 N をとれば, $n\geq N\Rightarrow a_n>n-1\geq N-1\geq M$ となる. 従って, $\lim_{n\to\infty}a_n=+\infty$.

(別解) (i) $a_n > 100 \Leftrightarrow n^2 - 100n - 100 > 0 \Leftrightarrow n < 50 - 10\sqrt{26}$ または $50 + 10\sqrt{26} < n$. $51^2 = 2601$ より $10\sqrt{26} < 51$ すなわち $50 + 10\sqrt{26} < 101$ だから, N = 101 とすればよい.

$$(ii)\ a_n>M\Leftrightarrow n^2-Mn-M>0\Leftrightarrow n<rac{M-\sqrt{M^2+4M}}{2}$$
 または $rac{M+\sqrt{M^2+4M}}{2}< n$ だから, $rac{M+\sqrt{M^2+4M}}{2}< N$ となるように自然数 N をとれば, $n\geq N$ のとき $a_n>M$ となる.したがって, $\lim_{n\to\infty}a_n=+\infty$.

演習 1.3 (i) 例えば $\varepsilon=2$ とすれば, $\forall N\in\mathbb{N}$ に対し, n=2N+1>N をとるとき $|a-a_n|=|1.2-(-1)^{2N+1}|=|1.2-(-1)|=2.2>\varepsilon$ となる. (ε は 2.2 以下の正の実数ならば何でも良い.)

(ii) 例えば $\varepsilon=1$ とすれば, $\forall N\in\mathbb{N}$ に対し, n=2N>N をとるとき $|a-a_n|=|-0.3-(-1)^{2N}|=|-0.3-1|=1.3>\varepsilon$ となる. (ε は 1.3 以下の正の実数ならば何でも良い.)

- (iii) $a \geq 0$ のときは、例えば $\varepsilon = 0.9$ とすれば $^{\forall}N \in \mathbb{N}$ に対し、n = 2N + 1 > N をとるとき $|a a_n| = |a (-1)^{2N+1}| = |a (-1)| = a + 1 \geq 1 > \varepsilon$ となる。 a < 0 のときは、例えば $\varepsilon = 1$ とすれば、 $^{\forall}N \in \mathbb{N}$ に対し、n = 2N > N をとるとき $|a a_n| = |a (-1)^{2N}| = |a 1| = -a + 1 > \varepsilon$ となる.従って、 $\{a_n\}$ はいかなる実数 a にも収束せず、発散する.
- (iv) $\{a_n\}$ が $+\infty$ に発散 \Leftrightarrow " $^{\forall}M>0$, $^{\exists}N\in\mathbb{N}, ^{\forall}n\in\mathbb{N}:n\geq N\Rightarrow a_n>M$ "で、これの否定命題を考えると、
 - $\{a_n\}$ が $+\infty$ に発散しない $\Leftrightarrow {}^\exists M>0, {}^\forall N\in\mathbb{N}, {}^\exists n\in\mathbb{N}: n\geq N$ かつ $a_n\leq M$

となる. まずこの命題を証明すればよい. M=2 とすれば, $a_n=\pm 1$ だから, $a_n\leq M$ は常に成り立つので, $n\geq N$ となる $n\in\mathbb{N}$ を適当にとれば条件を満たす. 従って $\{a_n\}$ は $+\infty$ には発散しない.

上と同様に、「 $\{a_n\}$ が $-\infty$ に発散する」ことの否定命題を作ると、

 $\{a_n\}$ が $-\infty$ に発散しない $\Leftrightarrow \exists M>0, \forall N\in\mathbb{N}, \exists n\in\mathbb{N}: n\geq N$ かつ $a_n\geq -M$

となる. M=2 とすれば、やはり $a_n \geq -M$ は常に成り立つので、 $n \geq N$ となる $n \in \mathbb{N}$ を適当にとれば条件を満たす. 従って $\{a_n\}$ は $-\infty$ にも発散しない.

注意。(iii) で $\varepsilon = |1 - |a||$ とすればよい、としている人がいましたが、 $a = \pm 1$ のときには $\varepsilon = 0$ となってしまってうまくいかないので、そこを直す必要があります。(そこだけ直せば、上のものよりすっきりした良い別解となっています。)

演習 1.4 $\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2\sqrt{n}}$ に注意すると, $^{\forall}\varepsilon>0$ に対し, $\frac{1}{4\varepsilon^2}< N$ となる自然数 N をとれば, $n\geq N$ のとき,

$$a_n < \frac{1}{2\sqrt{n}} \le \frac{1}{2\sqrt{N}} < \varepsilon.$$

よって, $\lim_{n\to\infty} a_n = 0$ が証明できた.