超大规模集成电路基础 Fundamental of VLSI

第三章 制造工艺

- 互补金属氧化物半导体 CMOS (Complementary Metal Oxide Semiconductor)
 - 由一对互补的MOS管(NMOS和PMOS)构成的MOS集成电路制造工艺

• 双阱CMOS工艺

• 工艺步骤在芯片上的作用

(a) Si基础材料

(b) 氧化及淀积负光刻胶后

(c) 光刻机曝光

(d) 显影后和刻蚀

(f) 去除光刻胶后

• 定义有源区刻蚀及在绝缘沟槽中填充氧化物

(c) 采用有源区掩膜互补区进行等离子刻蚀绝缘沟槽后

• 阱区离子注入

(e) n阱和 $V_{\tau p}$ 调整的离子注入

(f) p阱和 V_{Tn} 调整的离子注入

• 淀积及形成多晶硅层图形

• 源区和漏区及衬底接触的离子注入

(h) *n*+源/漏及*p*+源/漏注入后

• 形成接触和通孔窗口淀积及形成金属层图形

(k) SiO₂绝缘层淀积、通孔刻蚀及第二层AI淀积和图形形成后

芯片分层结构

CMOS放大截图

• 设计者和工艺工程师之间的桥梁

- 可缩放设计规则
 - 所有尺寸按线性缩放
 - 工艺参数λ,所有尺寸均为λ的整数倍
 - 使设计很容易移植到工业界的典型生产工艺上
 - 缺点:
 - 对于较大的尺寸,不同工艺间的关系变化是非线性的
 - 由于考虑工艺的最坏情况,影响设计效率
- 绝对尺寸设计规则(微米规则)
 - 可以提高设计效率
 - 移植性差

- 工艺层表示
- 工艺层:
 - 衬底/阱
 - 扩散区
 - 多晶硅层
 - 金属互联层
 - 接触孔和通孔

Layer Description	Representation				
metal	m1	m2	000000000000000000000000000000000000000	m4	m5
well	nw				
polysilicon	poly				
contacts & vias	ct	v12,v23,v34,v45	nwc	pwc	
active area and FETs	ndif	pdif	nfet	pfet	
select	nplus	pplus	prb		

• 层内限制规则

• 层间限制规则

• 反相器版图

(b) 剖面图

- IC封装对元件的工作和性能起着极为重要的作用
 - 提供信号及电源线进出硅芯片的界面
 - 提供机械支持
 - 散热
 - 防潮
- 封装对微处理器或信号处理器的性能及功耗也有重要影响
 - 高性能计算机的大部分延时来自封装

- 封装材料
 - 散热性
 - 膨胀系数
 - 电气特性
 - 机械特性
 - 成本

- 芯片至封装衬底的封装技术
 - 导线压焊
 - 导线连接时间长
 - 压焊线密集易短路
 - 压焊线间寄生参数难预测

- 芯片至封装衬底的封装技术
 - 载带自动压焊

(a) 聚合物载带及印制的连线样式

- 芯片至封装衬底的封装技术
 - 倒装焊

• 封装衬底至印刷板的封装技术

(a) 穿孔安装

(b) 表面安装

• 封装类型

