A (hopefully formalization-friendly) Proof of Fodor's Lemma

Theofanis Chatzidiamantis Christoforidis

- **1 Definition.** Let λ be a limit ordinal and $C \subseteq \lambda$ a set.
 - i. C is called **unbounded** in λ if $\sup(C \cap \lambda) = \lambda$.
 - ii. C is called **closed** in λ if for every $\alpha < \lambda$, if $C \cap \alpha \neq \emptyset$, then $\sup(C \cap \alpha) \in C$.
 - iii. C is called **club** in λ if it is closed and unbounded in λ .
- **1.1 Remark.** Equivalently, $C \subseteq \lambda$ is unbounded in λ if for every $\alpha < \lambda$, there is a $\beta \in C$ such that $\alpha < \beta$.
- **2 Definition.** Let λ be a limit ordinal and $S \subseteq \lambda$ a set. S is called **stationary** in λ if for every club set $C \subseteq \lambda$, $S \cap C \neq \emptyset$.

Our goal is to give a self-contained (assuming the contents of Mathlib) proof of the following:

3 Theorem (Fodor's Lemma). [regressive_on_stationary]

Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ a stationary set and let $f: S \to \kappa$ be an ordinal function such that $f(\alpha) < \alpha$ for all $\alpha \in S, \alpha > 0$. Then there is an ordinal $\theta < \kappa$ such that the preimage $f^{-1}(\{\theta\})$ is stationary in κ .

We mostly follow the structure of [1, Chapter 8].

4 Lemma. The intersection of two club sets is club.

Proof. Let $C, D \subseteq \lambda$ be club in λ .

• To show that $C \cap D$ is closed in λ , assume $\alpha < \lambda$ and that $C \cap D \cap \alpha \neq \emptyset$. Let $\beta = \sup(C \cap D \cap \alpha)$. Then $\sup(C \cap \beta) = \sup(C \cap \sup(C \cap D \cap \alpha)) = \sup(C \cap D \cap \alpha) = \beta$, and thus $\beta \in C$ as C is club. Similarly $\sup(D \cap \beta) = \beta$ and $\beta \in D$, meaning $\beta \in C \cap D$.

• We now show that $C \cap D$ is unbounded in λ .

5 Proposition. [int_lt_card_club] Let κ be an uncountable regular cardinal and let $(C_{\alpha})_{\alpha<\lambda}$ be a sequence of subsets of κ where $\lambda < \kappa$. If every C_{α} is club in κ , then the intersection $\cap_{\alpha<\lambda}C_{\alpha}$ is club in κ .

1

Proof.

6 Definition. [diag_int] Let κ be a cardinal and let $(C_{\alpha})_{\alpha < \kappa}$ be a sequence of subsets of κ . The diagonal intersection of $(C_{\alpha})_{\alpha < \kappa}$ is defined to be

$$\Delta_{\alpha < \kappa} C_{\alpha} := \{ \beta < \kappa \mid \beta \in C_{\theta} \ \forall \theta < \beta \}$$

7 Lemma. [diag_int_club] Let κ be a cardinal and let $(C_{\alpha})_{\alpha < \kappa}$ be a sequence of subsets of κ . If every C_{α} is club in κ , then $\Delta_{\alpha < \kappa} C_{\alpha}$ is club in κ .

Proof.

Proof of Fodor's Lemma. Assume, towards a contradiction, that there exists no such θ , i.e.,

$$\{\alpha \in S : f(\alpha) = \beta\}$$

is not stationary for any $\beta < \kappa$. Then, for every $\beta < \kappa$, we can choose a club set C_{β} satisfying $f(\alpha) \neq \beta$ for every $\alpha \in S \cap C_{\beta}$. By (7), $C := \Delta_{\beta < \kappa} C_{\beta}$ is club in κ . Pick an $\alpha \in C \cap S$, which is nonempty since C is club and S is stationary in κ . By definition of the diagonal intersection, this means that $f(\alpha) \neq \beta$ for every $\beta < \alpha$. This implies $f(\alpha) \geq \alpha$, contradicting the assumption that f is regressive on S.

References

- [1] Jech, Thomas. Set Theory: The Third Millennium Edition, Springer, 2003.
- [2] Schimmerling, Ernest. A Course on Set Theory, Cambridge University Press, 2011.