Quine McCluskey Method

By: W.V Quine & Edward J McCluskey

Some facts about Quine McCluskey

- Developed in 1956
- Also known as Tabulation Method
- Used for Minimization of Boolean Functions
- Where Karnaugh Map could solve for upto 5 bits, Quine McClusky can solve for more than 5 bits.
- ► Has easy algorithm than Karnaugh, so it is efficient and can be easily implemented in computer algorithms.

Steps

- Four main Steps:
- 1. Generate Prime Implicants
- 2. Construct Prime Implicants Table
- 3. Reduce Prime Implicants
- 4. Solve Prime Implicants table

Example Problem

Σ (0,4,5,7,10,12,13,14,15)

Step-1: Listing the Binary codes of each number.

No	Binary
0	0000
4	0100
5	0101
7	0111
10	1010
12	1100
13	1101
14	1110
15	1111

Table:1

- ▶ Step-2: Listing Binary Numbers according to their number of 1's as in Table.2
- Step-3: Making Table of Duals from Table:2

Step:2

	ABCD	
0	0000	Χ
4	0100	Χ
5 10 12	0101 1010 1100	X X X
7 13 14 15	0111 1101 1110 1111	X X X

Table:2

Step:3

	ABCD
0.4	0 – 0 0
4.5 4.12	010-
5.7 5.13 10.14 12.13 12.14	01-0 -101 1-10 110- 11-0
7.15 13.15 14.15	- 1 1 1 1 1 - 1 1 1 1 -

Table:3

► Step-4: Generating table of Quads from Table.3

	ABCD	
0.4	0 - 0 0	PI
4.5	010-	X
4.12	-100	X
5.7	01-0	X
5.13	-101	X
10.14	1-10	PI
12.13	110-	X
12.14	11-0	X
7.15	- 1 1 1	X
13.15	1 1 - 1	X
14.15	1 1 1 -	X

Table:3

	ABCD	
4.5-12.13 4.12-5.13	-10- -10-	ΡI
5.13-7.15 5.7-13.15	-1-1 } -1-1	PΙ
12.13-14.15 12.14-13.15	11}	ΡI

Table:4

► Step-5: Making table of Prime Implicants

0.4 + 10.14 + 5.13 - 7.15 + 4.5 - 12.13

► Step-6: Generating SOP from Prime Implicants

$$0.4 + 10.14 + 5.13 - 7.15 + 4.5 - 12.13$$

Now Since

PI	ABCD
0.4	0 - 0 0
10.14	1 - 10
5.13-7.15	- 1 - 1
4.5-12.13	- 10 -

So the minimized SOP is: A'C'D' + ACD' + BD + BC'

This was all about Quine McCluskey Method

Thank You for your time

Questions are very much Welcomed ©