How good is your model?

SUPERVISED LEARNING WITH SCIKIT-LEARN

Andreas Müller
Core developer, scikit-learn

Classification metrics

- Measuring model performance with accuracy:
 - Fraction of correctly classified samples
 - Not always a useful metric

Class imbalance example: Emails

- Spam classification
 - 99% of emails are real; 1% of emails are spam
- Could build a classifier that predicts ALL emails as real
 - 99% accurate!
 - But horrible at actually classifying spam
 - Fails at its original purpose
- Need more nuanced metrics

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Confusion matrix

Actual: Spam Email

Actual: Real Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

Accuracy:

$$\frac{tp+tn}{tp+tn+fp+fn}$$

Metrics from the confusion matrix

- Precision $\frac{tp}{tp+fp}$
- Recall $\frac{tp}{tp+fn}$
- ullet F1score: $2 \cdot rac{precision*recall}{precision+recall}$
- High precision: Not many real emails predicted as spam
- High recall: Predicted most spam emails correctly

Confusion matrix in scikit-learn

```
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
knn = KNeighborsClassifier(n_neighbors=8)
X_train, X_test, y_train, y_test = train_test_split(X, y,
    test_size=0.4, random_state=42)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
```


Confusion matrix in scikit-learn

```
print(confusion_matrix(y_test, y_pred))
```

```
[[52 7]
[ 3 112]]
```

```
print(classification_report(y_test, y_pred))
```

```
precision recall f1-score support
0 0.95 0.88 0.91 59
1 0.94 0.97 0.96 115
avg / total 0.94 0.94 0.94 174
```


Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Logistic regression and the ROC curve

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo Bowne-AndersonData Scientist, DataCamp

Logistic regression for binary classification

- Logistic regression outputs probabilities
- If the probability 'p' is greater than 0.5:
 - The data is labeled '1'
- If the probability 'p' is less than 0.5:
- The data is labeled '0'

Linear decision boundary

LogisticRegression

Logistic regression in scikit-learn

Probability thresholds

- By default, logistic regression threshold = 0.5
- Not specific to logistic regression
 - k-NN classifiers also have thresholds
- What happens if we vary the threshold?

Plotting the ROC curve

```
from sklearn.metrics import roc_curve
y_pred_prob = logreg.predict_proba(X_test)[:,1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Logistic Regression')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve')
plt.show();
```

Plotting the ROC curve

logreg.predict_proba(X_test)[:,1]

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Area under the ROC curve

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo Bowne-AndersonData Scientist, DataCamp

• Larger area under the ROC curve = better model

Larger area under the ROC curve = better model

Larger area under the ROC curve = better model

• Larger area under the ROC curve = better model

AUC in scikit-learn

```
from sklearn.metrics import roc_auc_score
logreg = LogisticRegression()
X_train, X_test, y_train, y_test = train_test_split(X, y,
    test_size=0.4, random_state=42)
logreg.fit(X_train, y_train)
y_pred_prob = logreg.predict_proba(X_test)[:,1]
roc_auc_score(y_test, y_pred_prob)
```

0.997466216216

AUC using cross-validation

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hyperparameter tuning

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo Bowne-AndersonData Scientist, DataCamp

Hyperparameter tuning

- Linear regression: Choosing parameters
- Ridge/lasso regression: Choosing alpha
- k-Nearest Neighbors: Choosing n_neighbors
- Parameters like alpha and k: Hyperparameters
- Hyperparameters cannot be learned by fitting the model

Choosing the correct hyperparameter

- Try a bunch of different hyperparameter values
- Fit all of them separately
- See how well each performs
- Choose the best performing one
- It is essential to use cross-validation

Grid search cross-validation

Alpha

Grid search cross-validation

	0.5	0.701	0.703	0.697	0.696
	0.4	0.699	0.702	0.698	0.702
	0.3	0.721	0.726	0.713	0.703
	0.2	0.706	0.705	0.704	0.701
С	0.1	0.698	0.692	0.688	0.675
		0.1	0.2	0.3	0.4

Alpha

Grid search cross-validation

	0.5	0.701	0.703	0.697	0.696
С	0.4	0.699	0.702	0.698	0.702
	0.3	0.721	0.726	0.713	0.703
	0.2	0.706	0.705	0.704	0.701
	0.1	0.698	0.692	0.688	0.675
		0.1	0.2	0.3	0.4

Alpha

GridSearchCV in scikit-learn

```
from sklearn.model_selection import GridSearchCV
param_grid = {'n_neighbors': np.arange(1, 50)}
knn = KNeighborsClassifier()
knn_cv = GridSearchCV(knn, param_grid, cv=5)
knn_cv.fit(X, y)
knn_cv.best_params_
```

```
{'n_neighbors': 12}
```

```
knn_cv.best_score_
```

0.933216168717

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hold-out set for final evaluation

SUPERVISED LEARNING WITH SCIKIT-LEARN

Hugo Bowne-AndersonData Scientist, DataCamp

Hold-out set reasoning

- How well can the model perform on never before seen data?
- Using ALL data for cross-validation is not ideal
- Split data into training and hold-out set at the beginning
- Perform grid search cross-validation on training set
- Choose best hyperparameters and evaluate on hold-out set

Let's practice!

SUPERVISED LEARNING WITH SCIKIT-LEARN

