數位邏輯實驗

期末專題 題目一 簡易『算術邏輯運算單元』(ALU)

組員:109206532 王昱達/108601205 王佑恩

組別:32

ー、 ALU 功能

A = A3 A2 A1 A0 = 0010 = 王昱達的學號末一碼 2

B=B3 B2 B1 B0=0101= 王佑恩的學號末一碼 5

OPERATOR	OPERATIONS
000	Y = A + B(OR)
001	$Y = A \bullet B(AND)$
010	Y=A+B(加法)
011	Y=A-B(減法)
100	Y=A>>1(右移一位元)
101	Y=A<<1(左移一位元)
110	Y=ACMPB(A 與 B 比較數
110	值,數值較大即為輸出值)
111	Y=ROLA(將A向左移一位
111	元,最高位元則到最低位元)

ALU為一種可對二進位整數執行算術運算的組合邏輯數位電路,當輸入變化時,其輸出也將隨之變化。一個ALU具有各種輸入和輸出網路,它們用於在ALU和外部電路之間傳送數位訊號。當ALU工作時,外部電路在ALU的輸入端輸入信號,而ALU將產生運算結果,並將信號通過其輸出端輸出至外部電路。

二、 各運算單元

1. OPERATOR 000 OPERATIONS Y = A + B(OR)

圖一 Y = A + B(OR) Quartus 模擬電路圖

圖二 Y = A + B(OR) Quartus 子元件

-		, ,,,,	-
Operator000		Y = A + B(OR)	
	A	В	Y
0	0	1	1
1	1	0	1

0

0

0

表一 Y = A + B(OR) 真值表

	Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160 _. 0 ns
<u>n</u>	Α0	В 0			
<u>n</u>	A1	B 1			
<u></u>	A2	B 0			
<u>n</u> _	A3	B 0			
<u>n</u> _	В0	B 1			
<u>n</u>	B1	В 0			
n_	B2	B 1			
<u>n</u> _	В3	B 0			
out	Y00	B 1			
ut	Y01	B 1			
ut	Y02	B 1			
ut	Y03	В 0			

說明:

 $A \times B$ 每雨輸入相對應的位元做 OR 的邏輯運算,如圖三所示,Y = A + B(OR) = 0111 。

2. OPERATOR 001 OPERATIONS $Y = A \cdot B(AND)$

圖四 Y=A·B(AND) Quartus 模擬電路圖

圖五 Y=A·B(AND) Quartus 子元件

		, ,,,,	
Operator001		$Y = A \cdot B(AND)$	
	A	В	Y
0	0	1	0
1	1	0	0
2	0	1	0
2	0	0	0

表二 Y=A·B(AND)真值表

	Name	Value at	0 ps 0 ps	80.0 ns	160 _. 0 ns
	,	0 ps	∪ ps		
-	A0	B 0			
	A1	B 1			
	A2	B 0			
	А3	B 0			
	В0	B 1			
	B1	B 0			
	B2	B 1			
	В3	B 0			
	Y10	B 0			
	Y11	B 0			
	Y12	В 0			
	Y13	В 0			

說明:

 $A \times B$ 每兩輸入相對應的位元做 OR 的邏輯運算,如圖六所示, $Y = A \cdot B(AND) = 0000$ 。

3. 四位元二進位加/減法器

圖七 全加法器 Quartus 模擬電路圖

圖八 四位元二進位加/減法器 Quartus 模擬電路圖

圖九 四位元二進位加/減法器 Quartus 子元件

表三 Y=A+B(加法)真值表

Operator010		Y = A + B(加法)	
	A	В	Y
0	0	1	1
1	1	0	1
2	0	1	1
3	0	0	0

表四 Y=A-B(減法)真值表

Operator011		Y = A - B(減法)	
	A	В	Y
0	0	1	1
1	1	0	0
2	0	1	1
3	0	0	1

圖十 四位元二進位加/減法器 Quartus 模擬波形圖

(1) OPERATOR 010 OPERATIONS Y = A + B(m 法)

當 Cin = 0 時,此邏輯電路為四位元二進位加法器。

如圖十所示,設 A=0010、B=0101,當 Cin=0 時,Y=0111,其真值表如表 三所示。

(2) OPERATOR 011 OPERATIONS Y = A - B(減法)

當 Cin=1 時,則為四位元二進位減法器。

如圖十所示,設 A=0010、B=0101,當 Cin=1 時,Y=1101,其真值表如表四所示。

4. 移位電路

圖十一 移位電路 Quartus 模擬電路圖

Shift

A0 Y0

A1 Y1

A2 Y2

A3 Y3

EN

inst

圖十三 移位電路 Quartus 子元件

(1) OPERATOR 100 OPERATIONS $Y = A \gg 1$ (右移一位元)

	Name	Value at 0 ps	0 ps	80.0 ns
in_	A0	В 0		
<u>n</u>	A1	B 1		
<u>n</u>	A2	В 0		
<u>n</u>	A3	В 0		
<u>n</u>	EN	B 1		
out	Y0	B 1		
out	Y1	В 0		
out	Y2	В 0		
out	Y3	B 0		

表五 右移位電路真值表

Operat	or100	Y=A>>1(右移一位元)
	A	Y
0	0	1
1	1	0
2	0	0
3	0	0

圖十四 右移位電路 Quartus 模擬波形圖

說明:

如圖十二所示,當 EN=1 時,圖十一電路為右移電路,且最高位元補 0。 如圖十四所示,當 EN=1 時,Y=0001,其真值表如表五所示。

(2) OPERATOR 101 OPERATIONS $Y = A \ll 1$ (左移一位元)

	Name	Value at 0 ps	0 ps	80.0 n
in_	A0	В 0		
in_	A1	B 1		
in_	A2	В 0		
in_	A3	B 0		
in_	EN	В 0		
out -	Y0	B 0		
out -	Y1	В 0		
out -	Y2	B 1		
out	Y3	B 0		

表六 左移位電路真值表

Opera	tor101	Y=A << 1(左移一位元)
	A	Y
0	0	0
1	1	0
2	0	1
3	0	0

圖十五 左移位電路 Quartus 模擬波形圖

說明:

如圖十二所示,當 EN=0 時,圖十一電路為左移電路,且最低位元補 0。 如圖十五所示,當 EN=0 時,Y=0100,其真值表如表六所示。

OPERATOR 110 OPERATIONS Y = A CMP B (A 與 B 比較數值,數值較大即為輸出值)

圖十六 Y=ACMPB Quartus 模擬電路圖

表七 比較器真值表

Operator110		Y = A CMP B	
	A	В	Y
0	0	1	1
1	1	0	0
2	0	1	1
3	0	0	0

圖十七 Y=A CMP B Quartus 子元件

說明:

如圖十六所示,此電路為一個比較器 (左邊紅框)和四個 2to1 多工器(右邊紅框)組成。當 A>B 時,比較器輸出 1,經過多工器選擇後,輸出為 A;當 A<B 時,比較器輸出為 0,經過多工器選擇後,輸出為 Y=B=0101,波形如圖十八

圖十八 Y=A CMP B Quartus 模擬波形圖

所示。

6. OPERATOR 111 OPERATIONS Y = ROL A (將 A 向左移一位元, 最高

位元則到最低位元)

圖十九 Y=ROL A Quartus 模擬電路圖

表八 循環左移位電路真值表

Operate	or111	Y = ROL A	
	A	Y	
0	0	0	
1	1	0	
2	0	1	
3	0	0	

圖二十 Y=ROL A Quartus 子元件

說明:

當操作於 EN=1、D= any 及 C=1 時,可以實現最高位元補至最低位元的循環 左移。圖二十一之波形先設 A= A3 A2 A1 A0=1010,比較好觀察 Y 是否為循 環左移還是單純左移候補 O(如 OPERATOR 101)。

Y=ROL A Quartus 模擬波形圖

可以看出 Y = Y3 Y2 Y1 Y0 = 0101, 為 A 循環左移後的結果,與 OPERATOR 101 運作方式不同。

組合 ALU 三、

8 to 1 多工器

8 to 1 多工器 Quartus 模擬電路圖

圖二十三 8 to 1 多工器 Quartus 子元件

, -		00 / 12	- , -
S0	S1	S2	Y
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

表八 8 to 1 多工器真值表

	Name	Value at 0 ps	0 ps 0 ps	80.0 ns	160 _, 0 ns	240,0 ns	320 ₁ 0 ns	400,0
in_	D0	B 1						
in_	D1	B 0						
in	D2	B 1						
in	D3	B 0						
in	D4	B 1						
in_	D5	B 0						
in_	D6	B 1						
in_	D7	B 0						
in	S0	B 0						
in_	S1	B 0					Ш	
in_	S2	B 0						
out	Y	B 1						

- (1) 說明:由基本邏輯閘組合 8 to 1 多工器,由於 8=2ⁿ=2³,n=3 所以需要 3 條 選擇線分別是 SO、S1 及 S2 如圖二十二所示,其波形如圖二十四所示,而 其真值表如表八所示。
- (2) Logic equation:

$$Y = D0*(\sim S0)*(\sim S1)*(\sim S2) + D1*(\sim S0)*(\sim S1)*S2 + D2*(\sim S0)*S1*(\sim S2) + D3*(\sim S0)*S1*S2 + D4*S0*(\sim S1)*(\sim S2) + D5*S0*(\sim S1)*S2 + D6*S0*S1*(\sim S2) + D7*S0*S1*S2$$

2. ALU

圖二十五 ALU Quartus 模擬電路圖

圖二十六 Quartus 模擬波形圖

說明:

我們依照題目要求的操作功能來繪製不同功能的電路,再將各個電路圖製作出具有各自的子元件,另外,因為輸出為四位元且有八個不同的操作模式,因此我們在後面接上四個 8 to 1 多工器,以 S0、S1、S2 當作 operator 進行操作模式的選擇,來完成此 ALU。

如圖二十六波形所示: (S=S2 S1 S0)

四、 參考資料

- 1. 邏輯簡化 https://www.cyut.edu.tw/~yfahuang/chap04.pdf
- 2. Shifter Circuits http://www.mathcs.emory.edu/~jallen/Courses/355/Syllabus/1-circuits/shifter.html