Greek Characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
epsilon	ϵ or ϵ	angle, constant
theta	θ or θ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle

Named Sets

empty set	Ø
real numbers	R
ordered pairs	\mathbf{R}^2
integers	Z
positive integers	$\mathbf{Z}_{>0}$
positive real numbers	$\mathbf{R}_{>0}$

Set Symbols

Meaning	Symbol
is a member	€
subset	C
intersection	Λ
union	U
set minus	١

Intervals

For numbers *a* and *b*, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

$$(-\infty, a) = \{x \mid x < a\}$$

$$(-\infty, a] = \{x \mid x \le a\}$$

$$(a, \infty) = \{x \mid a < x\}$$

$$[a,\infty)=\{x\mid a\leq x\}$$

Logic Symbols

Meaning	Symbol
negation	٦
and	^
or	V
implies	\Rightarrow
equivalent	≡
for all	A
there exists	3

Exponents

For a, b > 0 and m, n real:

$$a^n a^m = a^{n+m}$$

$$a^n/a^m = a^{n-m}$$

$$(a^n)^m = a^{n \cdot m}$$

$$a^{-m} = 1/a^m$$

$$(a/b)^m = a^m/b^m$$

Trigonometric identities

$$\sin(x)^2 + \cos(x)^2 = 1$$

$$\cos(x)^2 = \frac{1}{2} (1 + \cos(2x))$$

$$\sin(x)^2 = \frac{1}{2} (1 - \cos(2x))$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Famous Triangles

The 30-60-90 triangle

The 45-45-90 triangle

Laws of Cosine & Sine

Law of cosine

$$C^2 = A^2 + B^2 - 2AB\cos(\gamma)$$

Law of sines

$$\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$$

Areas and volumes

Area =
$$\frac{1}{2}hB = \frac{1}{2}AB\sin(\gamma)$$

Volumes

Right Circular Cylinder

Volume

$$V = \pi r^2 h$$

Area, not including areas of circular ends

$$A = 2\pi rh$$

Cone

Volume

$$V = \frac{1}{3}\pi r^2 h$$

Area, not including area of circular base:

$$A = \pi r \left(r + \sqrt{r^2 + h^2} \right)$$

Solution of equations

Algebraic

$$(ab = 0) \equiv (a = 0 \lor b = 0)$$

$$(a^2 = b^2) \equiv (a = b \lor a = -b)$$

$$\left(\frac{a}{b} = 0\right) \equiv (a = 0 \land b \neq 0)$$

$$\left(\frac{a}{b} = \frac{c}{d}\right) \equiv (ad = bc \land b \neq 0 \land d \neq 0)$$

$$(|a| = |b|) \equiv (a = b \lor a = -b)$$

$$\left(\sqrt{a} = b\right) \equiv \left(a = b^2 \land b \geq 0\right)$$

Trig

$$(\cos(a) = 0) \equiv (a = (k - 1/2)\pi, k \in \mathbf{Z})$$
$$(\sin(a) = 0) \equiv (a = k\pi, k \in \mathbf{Z})$$
$$(\tan(a) = 0) \equiv (a = k\pi, k \in \mathbf{Z})$$

