Given a set of data (x_i, f_i) i = 0,1,...n. To construct a cubic spline which fits the data.

To find $y = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$ for each subinterval $[x_i, x_{i+1}]$.

We should find a_i , b_i , c_i , d_i for $i = 0, 1, \dots, n-1$.

Choosing the second derivatives, S_i , at the data points as auxiliary unknowns.

Writing a_i , b_i , c_i , d_i for $i=0,1,\dots,n-1$ in terms of S_i .

In

$$y = a_t(x - x_t)^2 + b_t(x - x_t)^2 + c_t(x - x_t) + d_t.$$

Let $x = x_t$ then $f_t = d_t$.

Let
$$x=x_{i+1}$$
 then $f_{i+1}=a_ih_i^2+b_ih_i^2+c_ih_i+f_i$.

Denote
$$s = y'' = 6a_i(x - x_i) + 2b_i$$
.

Then at
$$x = x_i$$
 $S_i = 2b_i \Rightarrow b_i = \frac{S_i}{2}$ and at $x = x_{i+1} \Rightarrow$

$$S_{i+1} = 6a_ih_i + S_i \Rightarrow a_i = (S_{i+1} - S_i)/6h_i$$

Upon substitution we obtain c_i in terms of S_i and S_{i+1} .

$$C_i = \frac{f_{\ell+1} - f_{\ell}}{h_{\ell}} - \frac{2h_{\ell}S_{\ell} + h_{\ell}S_{\ell+1}}{6}$$

Now to calculate all S_i 's we use the continuity of the slope at x_i ,that is

$$y'(left) = y'(right)$$
 at x_i .

For the interval $[x_i, x_{i+1}] : y' = 3a_i(x - x_i)^2 + 2b_i(x - x_i) + c_i$.

For the interval $[x_{i-1}, x_i] : y' =$

$$3a_{i-1}(x-x_{i-1})^2+2b_{i-1}(x-x_{i-1})+c_{i-1}$$

When $x = x_i$ in both left and right slopes yields:

$$3a_{i-1}h_{i-1}^2 + b_{i-1}h_{i-1} + c_{i-1} = c_i$$

Upon substitution of \mathcal{S}_{ι} 's and rearrangements, we'll have

$$h_{i-1}S_{i-1} + (2h_{i-1} + 2h_i)S_i + h_iS_{i+1} = 6\left(\frac{f_{\ell+1} - f_{\ell}}{h_{\ell}} - \frac{f_{\ell} - f_{\ell-1}}{h_{\ell-1}}\right)$$

Here i=1,...,n-1 and the unknowns are $\mathcal{S}_0,\mathcal{S}_1,...,\mathcal{S}_n$.

For the extra two unknowns we consider the end point conditions.

1. Take $S_0 = 0$ and $S_n = 0$. This condition is called *Natural Spline* or *Free Spline* .

2. If $f'(x_0) = A$ and $f'(x_n) = B$ are given then

$$2h_0S_0 + h_0S_1 = 6\left[\frac{f_1 - f_0}{h_0} - A\right]$$
 and

$$h_{n-1}S_{n-1} + 2h_{n-1}S_n = 6\left[B - \frac{f_n - f_{n-1}}{h_{n-1}}\right]$$

Are two extra equations. This condition is called Clamped Spline.

3. Take
$$S_0 = S_1$$
 and $S_n = S_{n-1}$.