Aufgabe 4.1

Nachrichten $N\in\mathcal{N}$ sollen durch natürliche Zahlen $n\in\mathbb{N}_0$ dargestellt werden, die in jeweils einem Byte durch die Zuordnungsvorschrift

$$\nu: \mathbb{N}_0 \to \mathbb{N}_0 \ \mathrm{mit}(n) := n \mod 2^8$$
 codiert werden.

a. Ist die codierte Nachricht decodierbar? Begründung!

Nein, weil aus dem Rest einer Division nicht auf den Dividenden geschlossen werden kann.

b. Für den Operator **mod** ist ein Algorithmus anzugeben, der auf den ganzzahligen Operationen +, -, * und **div** basiert.

```
Pseudocode:
```

```
funktion mod(a, b)
{
     wenn b = 0 dann Fehler Division durch 0.
     return a - div(a, b) * b
}
```

Aufgabe 5.1

Wandeln Sie die folgenden Darstellungen natürlicher Zahlen in Darstellungen bzgl. der neuen gegebenen Basis um

a.
$$10_{10} = (\ldots)_{16}$$

 $10_{10} = A_{16}$

b.
$$100_8 = (...)_7$$

$$100_8 = 0 * 1 + 0 * 8 + 1 * 64 = 64$$

$$64 / 7 = 9 \text{ Rest } 1$$

$$9 / 7 = 1 \text{ Rest } 2$$

$$1 / 7 = 0 \text{ Rest } 1$$

$$100_8 = 121_7$$

c.
$$20_5 = (...)_2$$

 $20_5 = 0 * 1 + 2 * 5 = 10$
 $10 / 2 = 5 \text{ Rest } 0$
 $5 / 2 = 2 \text{ Rest } 1$
 $2 / 2 = 1 \text{ Rest } 0$
 $1 / 2 = 0 \text{ Rest } 1$
 $20_5 = 1010_2$

d.
$$123_4 = (\ldots)_3$$

$$123_4 = 3 * 1 + 2 * 4 + 1 * 16 = 27$$

$$27 / 3 = 9 \text{ Rest } 0$$

$$9 / 3 = 3 \text{ Rest } 0$$

$$3 / 3 = 1 \text{ Rest } 0$$

$$1 / 3 = 0 \text{ Rest } 1$$

$$123_4 = 1000_3$$

e.
$$1024_{10} = (...)_{16}$$

$$1024 / 16 = 64 \text{ Rest 0}$$

$$64 / 16 = 4 \text{ Rest 0}$$

$$4 / 16 = 0 \text{ Rest 4}$$

$$1024_{10} = 400_{16}$$

Aufgabe 5.2

Wie lauten die hexadezimalen Anfangsadressen für byteweise organisierte Speicherbereiche, die auf den Grenzen 1K, 4K, 1M, 16M, 1G beginnen? Die Adressbreite sei 32 Bit.

	Hexadezimal	32 Bit
1K	400	00 00 04 00
4K	1000	00 00 10 00
1M	10 0000	00 10 00 00
16M	100 0000	01 00 00 00
1G	4000 0000	40 00 00 00