SBML Model Report

Model name: "Tyson2003_Mutual_Activation"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at February tenth 2011 at 2:50 a. m. and last time modified at February 25th 2015 at 11:38 a. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	4
events	0	constraints	0
reactions	5	function definitions	1
global parameters	8	unit definitions	6
rules	2	initial assignments	0

Model Notes

This is an SBML implementation the model of mutual activation (figure 1e) described in the article:

Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.

Tyson JJ, Chen KC, Novak B. Curr Opin Cell Biol. 2003 Apr;15(2):221-31. PubmedID:12648679;

¹EMBL-EBI, lukas@ebi.ac.uk

DOI:10.1016/S0955-0674(03)00017-6;

Abstract:

The physiological responses of cells to external and internal stimuli are governed by genes and proteins interacting in complex networks whose dynamical properties are impossible to understand by intuitive reasoning alone. Recent advances by theoretical biologists have demonstrated that molecular regulatory networks can be accurately modeled in mathematical terms. These models shed light on the design principles of biological control systems and make predictions that have been verified experimentally.

The article has a typo: the expression k2*X*R most likely should be k2*R

Originally created by libAntimony v1.4 (using libSBML 3.4.1)

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of nine unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name s

Definition s

2.2 Unit substance

Name mole

Definition mol

2.3 Unit per_s

Name per_s

Definition s^{-1}

2.4 Unit M_per_s

Name M_per_s

Definition $mol \cdot s^{-1} \cdot l^{-1}$

2.5 Unit M

Name M

Definition $mol \cdot l^{-1}$

2.6 Unit per_M_per_s

Name $per_M_per_s$

Definition $mol^{-1} \cdot l \cdot s^{-1}$

2.7 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.8 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.9 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
env		0000290	3	1	litre	Ø	

3.1 Compartment env

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

4 Species

This model contains four species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

		The section of the se			
Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
R		env	$\text{mol} \cdot l^{-1}$		\Box
S		env	$\text{mol} \cdot 1^{-1}$		
Ep		env	$\text{mol} \cdot 1^{-1}$		\square
E		env	$\text{mol} \cdot l^{-1}$	\Box	\square

5 Parameters

This model contains eight global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
	Traine	550	varue		Constant
k0		0000035	0.40	s^{-1}	
k1		0000035	0.01	s^{-1}	
k2		0000356	1.00	s^{-1}	
k3		0000025	1.00	s^{-1}	$ \overline{\mathcal{L}} $
J3		0000002	0.05	$\text{mol} \cdot l^{-1}$	$ \overline{\mathcal{L}} $
k4		0000186	0.20	$\text{mol} \cdot \text{s}^{-1} \cdot \text{l}^{-1}$	$ \overline{\checkmark} $
J4		0000002	0.05	$\text{mol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$
Et		0000196	1.00	$\text{mol} \cdot l^{-1}$	$\overline{\mathbb{Z}}$

6 Function definition

This is an overview of one function definition.

6.1 Function definition goldbeter_koshland

 $\textbf{Arguments}\ v1,\,v2,\,J1,\,J2$

Mathematical Expression

$$\frac{2 \cdot v1 \cdot J2}{v2 - v1 + J1 \cdot v2 + J2 \cdot v1 + \left(\left(v2 - v1 + J1 \cdot v2 + J2 \cdot v1 \right)^2 - 4 \cdot \left(v2 - v1 \right) \cdot v1 \cdot J2 \right)^{\frac{1}{2}}}$$

7 Rules

This is an overview of two rules.

7.1 Rule Ep

Rule Ep is an assignment rule for species Ep:

$$Ep = goldbeter_koshland(k3 \cdot [R], k4, J3, J4)$$
 (2)

7.2 Rule E

Rule E is an assignment rule for species E:

$$E = Et - [Ep] \tag{3}$$

Derived unit $mol \cdot l^{-1}$

8 Reactions

This model contains five reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	r1		$\emptyset \xrightarrow{Ep} R$	0000176
2	r2		$\emptyset \xrightarrow{S} R$	0000176
3	r3		$R \longrightarrow \emptyset$	0000179
4	r4		$E \xrightarrow{R} Ep$	0000216
5	r5		$Ep \longrightarrow E$	0000330

8.1 Reaction r1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

SBO:0000176 biochemical reaction

Reaction equation

$$\emptyset \xrightarrow{Ep} R \tag{4}$$

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
Ер		0000461

Product

Table 7: Properties of each product.

Id	Name	SBO
R		

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit $s^{-1} \cdot mol$

$$v_1 = \text{vol}(\text{env}) \cdot \text{k0} \cdot [\text{Ep}] \tag{5}$$

8.2 Reaction r2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

SBO:0000176 biochemical reaction

Reaction equation

$$\emptyset \xrightarrow{S} R$$
 (6)

Modifier

Table 8: Properties of each modifier.

Id	Name	SBO
S		0000461

Product

Table 9: Properties of each product.

Id	Name	SBO
R		

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit $s^{-1} \cdot mol$

$$v_2 = \text{vol}(\text{env}) \cdot \text{k1} \cdot [S] \tag{7}$$

8.3 Reaction r3

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$R \longrightarrow \emptyset$$
 (8)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
R		

Kinetic Law

SBO:0000049 mass action rate law for first order irreversible reactions, continuous scheme

Derived unit $s^{-1} \cdot mol$

$$v_3 = \text{vol}(\text{env}) \cdot \text{k2} \cdot [\text{R}] \tag{9}$$

8.4 Reaction r4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

SBO:0000216 phosphorylation

Reaction equation

$$E \xrightarrow{R} Ep$$
 (10)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
E		

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
R		0000460

Product

Table 13: Properties of each product.

Id	Name	SBO
Ер		

Kinetic Law

SBO:0000029 Henri-Michaelis-Menten rate law

Derived unit $s^{-1} \cdot mol$

$$v_4 = \frac{\text{vol}(\text{env}) \cdot \text{k3} \cdot [\text{R}] \cdot [\text{E}]}{\text{J3} + [\text{E}]}$$
(11)

8.5 Reaction r5

This is an irreversible reaction of one reactant forming one product.

SBO:0000330 dephosphorylation

Reaction equation

$$Ep \longrightarrow E$$
 (12)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Ер		

Product

Table 15: Properties of each product.

Id	Name	SBO
E		

Kinetic Law

SBO:0000029 Henri-Michaelis-Menten rate law

Derived unit $mol \cdot s^{-1}$

$$v_5 = \frac{\text{vol}(\text{env}) \cdot \text{k4} \cdot [\text{Ep}]}{\text{J4} + [\text{Ep}]}$$
 (13)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

9.1 Species R

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in r3 and as a product in r1, r2 and as a modifier in r4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = v_1 + v_2 - v_3 \tag{14}$$

9.2 Species S

SBO:0000285 material entity of unspecified nature

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in r2), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{S} = 0\tag{15}$$

9.3 Species Ep

SBO:0000252 polypeptide chain

Involved in rule Ep

This species takes part in three reactions (as a reactant in r5 and as a product in r4 and as a modifier in r1). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

9.4 Species E

SBO:0000252 polypeptide chain

Involved in rule E

This species takes part in two reactions (as a reactant in r4 and as a product in r5). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

A Glossary of Systems Biology Ontology Terms

SBO:0000002 quantitative systems description parameter: A numerical value that defines certain characteristics of systems or system functions. It may be part of a calculation, but its value is not determined by the form of the equation itself, and may be arbitrarily assigned

SBO:0000025 catalytic rate constant: Numerical parameter that quantifies the velocity of an enzymatic reaction

SBO:0000029 Henri-Michaelis-Menten rate law: First general rate equation for reactions involving enzymes, it was presented in "Victor Henri. Lois Gnrales de l'Action des Diastases. Paris, Hermann, 1903". The reaction is assumed to be made of a reversible of the binding of the substrate to the enzyme, followed by the breakdown of the complex generating the product. Ten years after Henri, Michaelis and Menten presented a variant of

- his equation, based on the hypothesis that the dissociation rate of the substrate was much larger than the rate of the product generation. Leonor Michaelis, Maud Menten (1913). Die Kinetik der Invertinwirkung, Biochem. Z. 49:333-369.
- **SBO:0000035 forward unimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:000049** mass action rate law for first order irreversible reactions, continuous scheme:

 Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does not include any reverse process that creates the reactants from the products. The change of a product quantity is proportional to the quantity of one reactant. It is to be used in a reaction modelled using a continuous framework.
- **SBO:0000176 biochemical reaction:** An event involving one or more chemical entities that modifies the electrochemical structure of at least one of the participants.
- **SBO:0000179 degradation:** Complete disappearance of a physical entity
- **SBO:0000186** maximal velocity: Limiting maximal velocity of an enzymatic reaction, reached when the substrate is in large excess and all the enzyme is complexed.
- **SBO:0000196** concentration of an entity pool: The amount of an entity per unit of volume.
- **SBO:0000216 phosphorylation:** Addition of a phosphate group (-H2PO4) to a chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000285 material entity of unspecified nature:** Material entity whose nature is unknown or irrelevant
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000330 dephosphorylation:** Removal of a phosphate group (-H2PO4) from a chemical entity.
- **SBO:0000356 decay constant:** Kinetic constant characterising a mono-exponential decay. It is the inverse of the mean lifetime of the continuant being decayed. Its unit is "per tim".
- **SBO:0000460 enzymatic catalyst:** A substance that accelerates the velocity of a chemical reaction without itself being consumed or transformed, by lowering the free energy of the transition state. The substance acting as a catalyst is an enzyme

SBO:0000461 essential activator: A substance that is absolutely required for occurrence and stimulation of a reaction

SMLZATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany