SC531 FINAL EXAMINATION

INSTRUCTIONS

Form a three digit number from the digits A, C and D of your ID number, as shown below:

Say your student ID number is 2021A1BCD.

Then the three digit number ACD is obtained by concatenating the digits A, C and D. Example: From ID number $2021\underline{2}13\underline{45}$, we get the three digit number ACD = 245.

From the three digit number ACD, calculate the two numbers M and N as shown:

$$M = mod(ACD, 3) + 2 = remainder(ACD/3) + 2$$

 $N = mod(ACD, 4) + 5 = remainder(ACD/4) + 5$

SUBSTITUTE THE VALUES OF M AND N IN CALCULATING THE NUMERICAL ANSWERS.

ANSWERS GIVEN IN TERMS OF M AND N WILL GET ZERO MARKS.

KEEP YOUR CAMERA ON UNTIL YOU UPLOAD THE ANSWERS IN GOOGLE FORM.

SC531 PROBABILITY & RANDOM VARIABLES FINAL EXAMINATION

Each question carries 3 marks. Time allowed: 80 minutes.

Use the values of M & N you have calculated earlier.

Q-1. You have 5 bowls containing, respectively, 10, 10, 20, 20 and 20 balls. Some balls in each bowl are white; the rest are black. The number of white balls in the bowls are, respectively, M, 10-M, 11, 4 and 15. A bowl is selected at random, and a single ball is drawn from that bowl at random. It is found that the ball drawn is **black**. Find the probability that the drawn **black** ball came from bowl #2.

From the given data, we get the total number of <u>BLACK</u> balls in the five bowls = 40.

P(bowl-2 | black-drawn)

- = P(bowl-2 & black-drawn) / P(black-drawn)
- = P(black-drawn | bowl-2) * P(bowl-2) / P(black-drawn)
- = [M/10 * 1/5] / [40/80] = M/25
- Q-2. A fair coin is tossed 10 times. Find the probability that it turns up HEAD either N-1 or N times.

Answer = $[_{10}C_{N-1} + _{10}C_{N}]/1024$

Q-1	M=2
	White bulls: 2, 8, 11, 4, 15
	Black bulk: 8,2, 9, 16, 5
	PCBio= 1 -> PCBw=1
	5 5
	P (B/B2) = 2
	10
	PCB2/B) = PCB/B2D. PCB2
	PCB) 2 710 * 1/5 = 2 70 1/5 = 2
	(3+2+9+16+5) <u>H\$</u> 25
	00 20
0 -	
9-2	N-1 02 N times = (1)10 (10 (N-1 + CN)
	N-1 02 N pmes = (2) (N-1 T N)

Q-3. Given the probability density function shown in the diagram above, find $Prob[M \le X \le 2*N]$.

Q-3	
	X=0 X=2 X=8 X=10 X=20
	X=0 X=8 X=20
	PCM <= X <= 2 * N) = 9. M=2, N=S
	PC2 = X = 10) = ?
	Total asea = 1
	triungle cored + rectangle cross = 2
	toingle cocce + sectingle cocce = 1 L x h x l + hxl = 1 Z
	h [3 + (20-8)]=1
	-: $h=1$ m. for triangle = $\frac{1}{8-0} = \frac{1}{28}$
	16
	Rectangle ased = hxl
	Rectangle ased = $h \times l$ = $\frac{1}{16} \times \frac{2}{8} = 0.125$
	Toinnée useu = 3 mx. dx
	2 (4-4 6.2343
	$\frac{2}{128} \left[\frac{\alpha^2}{2} \right]^8 = \frac{64-4}{256} \cdot \frac{6.2343}{256}$
	Total cosed = 0,125 + 6.2343
	= 0, 359375

Q-4. At a router, the number of packets arriving per millisecond, denoted by P, follows Poisson distribution, with mean rate of 2 packets per millisecond. Find Prob[$M \le P \le M+3$]. Refer to the table below.

Four entries in the table must be added, for count = M, M+1, M+2, M+3

```
Poisson
distributi
on, rate =
2
  count, x
               p(x)
            0.1353
        0
             0.2707
        1
        2
             0.2707
        3
             0.1804
        4
            0.0902
        5
            0.0361
        6
            0.0120
        7
             0.0034
             0.0009
        8
        9
             0.0002
       10
            0.0000
```

9-4	µ=2, M=2
	PCM = P = M+3) = P (2 = P = 5) =
	$= e^{-2} 2^{\alpha}$
	a!
	$= e^{-2} \left(\frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} \right)$
	L 21 3! 4! S!
	= 0.577 h

Q-5. The average working life of a certain power supply is claimed to be 10000 hours, with standard deviation of 400*M hours. We test a sample of size 25 of the power supplies, and calculate the sample mean. Find the probability that the sample mean is between 9600 and 10400 hours.

Answer: 400*M/5 = 80*M standard deviation of sample mean So number of standard deviations on either side = 400/(80*M) = 5/M

So answer = $\frac{2*F(5/M) - 1}{1}$, where F(z) is the standard normal cdf

Q-5.	$M = 10000$, $\sigma = 400 \times 24$ (for $M = 4)$ $M = 25$ $X_1 = 8600$, $X_2 = 10400$
	PCX12X2X2)
	$\frac{2}{1} = \frac{1}{1} - \frac{1}{1} = \frac{9600 - 10000}{400 \times 24} = \frac{-5}{4}$
	$\frac{7}{7} = \frac{10400 - 10000}{4} = \frac{15}{725}$
	PC-SZZZZS) = P-C-25ZZZS) 4 PC-1.25ZZZIS)
	= P(1.25) - P(-1.25) = 0.3844-0.1056 = 0.7888
	0.7008

Standard normal distribution -- cumulative

Index	<u>z</u>	<u>F(z)</u>	<u>Index</u>	<u>Z</u>	<u>F(z)</u>
1	0.00	0.5000	11	1.00	0.84 13
2	0.10	0.5398	12	1.10	0.86 43
3	0.20	0.5793	13	1.20	45 0.88
4	0.20	0.6170	1.4	1 20	49
4	0.30	0.6179	14	1.30	0.90 32
5	0.40	0.6554	15	1.40	0.91
6	0.50	0.6915	16	1.50	92 0.93
J	0.50	0.0313	10	1.50	32

7	0.60	0.7257	17	1.60	0.94 52
8	0.70	0.7580	18	1.70	0.95 54
9	0.80	0.7881	19	1.80	0.96 41
10	0.90	0.8159	20	1.90	0.97 13
			21	2.00	0.97 72

Q-6. Five pairs of values of random variables X and Y are tabulated below. Find the COVARIANCE of X & Y.

Х	1	2	3	4	5
Υ	-3M	-4M	0	3M	4M

Sum of $\Delta X^*\Delta Y$ product = 21M \odot answer = 21M/5 = 4.2*M

Covex,
$$y_2 = 150xy_2 - 1$$

Q-7. Trucks arrive at a toll booth at the average rate of 12 arrivals per hour, and the arrivals define a Poisson process. What is the probability that the time interval T between two successive arrivals, measured in minutes, satisfies $M \le T \le N$?

Answer: $e^{-M/5} - e^{-N/5}$, since the rate of arrivals is 1/5 per minute.

9-7	$\mu = 12, M = 2, N = 5.$
	per hom => M= 12 => M= 1
	60 mins
	PC2=T=SD= PCT=SD-PCT=2D
	$= 1 - e^{-\lambda t} - c1 - e^{-\lambda t}$
	$=e^{-\lambda 2}-e^{-\lambda 2}$
	= 0.670 - G.3678
	= 0.3024

Q-8. Recall the Markov process defined as "random walk with reflecting barriers". The four states of the process are 1, 2, 3 and 4. The transition probability matrix is as given below, with $\alpha = M/10$. The initial probability distribution over states is (1/4, 1/4, 1/4). What is the probability that the process is in state 1 <u>after two</u> time steps?

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ \alpha & 0 & \beta & 0 \\ 0 & \alpha & 0 & \beta \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

<u>Pre-multiply</u> TWICE above matrix with the probability matrix. After one pre-multiplication, probability distribution = (a/4 (1+a)/4 (1+b)/4 b/4). After the second round, only the first element of the row is needed, so only one column multiplication is needed.

So answer = $\alpha(1+\alpha)/4 = (M/10)*(1+M/10)/4 = M*(M+10)/400$

Q-8	p° = []]]
	$\frac{70}{10} = \frac{0}{2} = \frac{0}{10} $
	P' = p°. Tpm = []
	- [0.05 0.3 0.45 0.2]
	$p^2 = p^1 Tpm$ = $\frac{1}{2} \left(\frac{1}{6 \cdot 2} + \frac{1}{2} \cdot \frac{1}{6 \cdot 2} + \frac{1}{2} \cdot$
	shute 1 => 0.3 + 0.2 Stalle 1.