باسم الله الرحمان الرحيم

B

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية المفتشية العامة للتربية الوطنية يومان دراسيان لفائدة

أساتذة مادة الرياضيات

لولاية جيجل المقاطعة رقم 3

ثانوية احمد فرانسيس بسيدي عبد العزيز

يومي 19 + 26 جانفي 2023

تحت إشراف مفتش التربية الوطنية: بواب نورالدين

جدول أعمال اليومين الدراسيين

- √ الأعداد والحساب في المنهاج
- √ هيكلة محور الأعداد والحساب
- √ التدرجات و محور الأعداد والحساب
 - √ أنشطة متنوعة
- √ بناء تمرين اختبار في محور الأعداد والحساب

الكفاءات المستهدفة لمحور الأعداد والحساب

\mathbb{Z} أولا: القسمة في

- ✓ إثبات أن عددا صحيحا يقسم عددا صحيحا آخر.
 - √ استعمال خواص قابلية القسمة في ∑
- ✓ استعمال خوارزمية إقليدس لتعيين القاسم المشترك الأكبر لعددين طبيعيين.
 - √ استعمال خوارزمية إقليدس لتعيين القواسم المشتركة لعددين طبيعيين.
 - ✓ حل مشكلات بتوظيف خواص القاسم المشترك الأكبر.

ثانيا: الموافقات في 2 والتعداد

- $ightharpoonup \sim 1$ معرفة واستعمال خواص الموافقات في $ightharpoonup \sim 1$
- ax + by = c حل معادلات من الشكل \checkmark
 - ✓ نشر عدد طبيعي وفق أساس .
- . eta الانتقال من نظام أساسه lpha إلى نظام أساسه \checkmark

ثالثًا: المضاعف المشترك الأصغر والأعداد الأولية

- √ استعمال خواص المضاعف المشترك الأصغر.
- √ استعمال العلاقة بين المضاعف المشترك الأصىغر والقاسم المشترك الأكبر
 - √ التعرف على أوّلية عدد طبيعي .
- √ استعمال تحليل عدد طبيعي إلى جداء عوامل أولية لتعيين مضاعفاته وقواسمه .
- √ استعمال تحليل عدد طبيعي إلى جداء عوامل أولية لتعيين القاسم المشترك الأكبر والمضاعف المشترك الأصغر
 - √ استعمال العلاقة بين المضاعف المشترك الأصبغر و القاسم المشترك الأكبر
 - √ استعمال خواص المضاعف المشترك الأصغر مفتش التربية الوطنية: بواب نورالدين

ax + by = c رابعا: مبرهنتا بيزو وغوص والمعادلات من الشكل

- √ استعمال مبرهنة بيزو .
- √ استعمال مبر هنة غوص ونتائجها .
- ax + by = c استعمال مبر هنة غوص لحل المعادلات من الشكل \checkmark

هيكلة محور الأعداد والحساب (الشعبة: رياضيات)

هيكلة محور الأعداد والحساب (الشعبة: تقني رياضي)

أنشطة متنوعة

النشاط 1:

عدد طبيعي غير معدوم . عين قيّم n في كل حالة من الحالات التالية :

8 يقسم
$$(3n+5)$$
 (2 يقسم $(3n-6)$ قاسم للعدد $(3n-6)$

$$\frac{10n-4}{3n+1} \in \mathbb{N}$$
 (4 $(n+1)$ مضاعف لـ $(2n+27)$ (3

$$(2n+27) \equiv 0[3n+1]$$
 (5

روبات القسمة على 7 يقبل القسمة على 7 يقبل
$$n^2-2n$$

$$\frac{3n^2+6n+4}{n+4}\in\mathbb{N}$$
 (6)

$$n^2 - 7n - 1$$
 (8 يقبل القسمة على 11

النشاط 2:

: عيّن جميع الثنائيات (x;y) من الأعداد الطبيعية في كل حالة من الحالات التالية

$$x^2 - 4y^2 = 36 \ (1$$

$$x^2 - 2xy = 15$$
 (2)

$$xy + 3x - 4y - 2034 = 0$$
 (3

النشاط 3:

$$PGCD (1444; 2023) \rightleftharpoons (1$$

$$eta$$
 و $lpha$ باستعمال خوارزمية إقليدس ، جد عددين صحيحين $lpha$

$$2023 \alpha + 1444 \beta = 7$$
 : يحققان المعادلة $\alpha + 1444 \beta = 7$ يحققان المعادلة والدين

: من الأعداد الطبيعية غير المعدومة في كل حالة من الحالات التالية (a;b) من الحالات التالية

$$\begin{cases} a+b=54 \\ PGCD(a;b)=9 \end{cases}$$
 (1)

$$\begin{cases} a^2 - b^2 = 5440 \\ PGCD(a; b) = 8 \end{cases} (2)$$

$$\begin{cases}
PPCM(a;b)-8\times PGCD(a;b)=4 \\
a>b
\end{cases} (3)$$

النشاط 5: n عدد طبيعي.

أثبت أن العددين (2n+1) و (9n+4) أوليان فيما بينهما .

النشاط 6: n عدد طبيعي غير معدوم.

$$PGCD\left(7n+1\;;\;3n-1
ight)$$
 عين القيم المكنة لـ (1 $n+1$

$$PGCD(7n+1; 3n-1)=5:$$
 عيّن قيم n التي من أجلها يكون (2

النشاط 7:

 $A=1954^{2023}+2024^{2973}$: حيث أن العدد A يقبل القسمة على 9 حيث (1 $A=1954^{2023}+2024^{2023}$

- $^{\circ}$ B = 2023 1444 : حيث B حيث أحاد العدد $^{\circ}$ B = 2023 ما هو رقم أحاد العدد
 - 3) ما هو باقي القسمة الإقليدية للعدد C على 9 حيث:

$$\cdot C = 144 \int_{140}^{2021} + \int_{140}^{2021} + \int_{140}^{2022} + 1443^{2023} + 1444^{2024}$$

النشاط 8: حل في مجموعة الأعداد الصحيحة \mathbb{Z} كلا من المعاد لات التالية :

$$7x = 5[22]$$
 (3 $5x = 2[13]$ (2 $3x = 2[7]$ (1

$$4x \equiv 2[10]$$
 (6 $6x \equiv 12[35]$ (5 $5x \equiv 2[124]$ (4

$$x^{2} - 2x - 3 = 0[15]$$
 (9 $x^{2} - 5x = 0[6]$ (8 $3x = 6[24]$ (7

النشاط 9:

. نعتبر المعادلة
$$y$$
 عدان صحيحان x خات المجهول x المجهول x عدان صحيحان x عدان صحيحان

$$(E)$$
 على ، في \mathbb{Z}^2 ، المعادلة ($\mathbf{1}$

$$n\equiv 3$$
 [4] : التي تحقق الجملة n التي تحقق الجملة $n\equiv 6$ [7] التي تحقق الجملة عين الأعداد الطبيعية $n\equiv 6$ [7] مفتش التربية الوطنية بأبواب نورالدين

النشاط 10:

. عدان صحيحان y عدان عدان صحيحان . عدان عتبر المعادلة $(x\,;\,y)$ عدان المجهول $(x\,;\,y)$

$$n\equiv 4$$
 [9] : المعادلة (E) ثم استنتج الأعداد الطبيعية n التي تحقق الجملة (E) المعادلة (E) الم

النشاط 11:

. نعتبر المعادلة
$$(E)$$
: (E) عددان صحيحان (1 خات المجهول $(x;y)$ حيث (E) عددان صحيحان (1

$$\mathbb{Z} imes\mathbb{Z}$$
 أ) جد القاسم المشترك الأكبر للعددين 104 و 16 ، ثم بيّن أن المعادلة (E) تقبل حلولا في

(E) عادلة علول المعادلة
$$(x;y)$$
 علا المعادلة (E) فإن (E) فإن $(X;y)$ علول المعادلة (E) علول المع

له عدد طبيعي يكتب
$$1 \alpha \alpha \beta \beta \gamma$$
 في نظام التعداد الذي أساسه 4 ، ويكتب $1 \alpha \beta 13$ في نظام التعداد الذي أساسه 6 عين الأعداد الطبيعية $1 \alpha \beta \beta \gamma$ و $1 \alpha \beta \gamma \gamma$ و $1 \alpha \beta \gamma \gamma \gamma$ في النظام العشري .

$$m^3 + 11 d^3 = 2025$$
: من الأعداد الطبيعية التي تحقق ($a;b$) من الأعداد الطبيعية التي عين الثنائيات

$$m = PPCM(a;b)$$
 وَ $d = PGCD(a;b)$:

النشاط 12:

- 420x 945y = 525 ...(E) : (x; y) و y = 525 ...(E) : (x; y) و x = 100 و x = 100
- (E) من \mathbb{Z}^2 من \mathbb{Z}^2 حلا للمعادلة (E) فإن (E) ثيبت أنه إذا كانت الثنائية (x;y) من (x;y) من (x;y) من أثيبت أنه إذا كانت الثنائية (x;y)
 - 11 على 11 على 11 أ) ادر س حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 9^n
- $(2022^{x-y}+y+2)$ بحيث يكون (E) بحيث (E) جلول المعادلة بالمعادلة بالثنائيات بالثنائيات بالثنائيات بالمعادلة ب
 - قابلاً للقسمة على 11 b=a حيث a=9n+8 عدد طبيعي وليكن a=9n+8 و a=9n+8 و زيد الأكبر للعددين a=9n+8
 - أ) عيّن القيم الممكنة للعدد d
 - d=5 عين الأعداد الطبيعية n بحيث يكون و
 - $B = 4n^2 + 7n + 3$ و $A = 9n^2 + 17n + 8$: ليكن العددان الطبيعيان (4
 - n+1 على العددين A و B يقبلان القسمة على ا
 - B و A وحسب قيم n القاسم المشترك الأكبر للعددين n و A

النشاط 13:

ا) أ) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 9^n على 11 ، ثم استنتج باقي القسمة الإقليدية للعدد 2022^{2023} على 11

$$n\equiv 2022\,$$
 [5] : عيّن مجموعة قيّم العدد الطبيعي n التي تحقق الجملة $n\equiv 1443\,$ [11] : عيّن مجموعة قيّم العدد الطبيعي n

: ب \mathbb{N} معرفتان على المتتاليتان العدديتان (u_n) و (u_n) معرفتان على (2

$$v_n = 4u_n - 8n + 2$$
 $\begin{cases} u_0 = 0 \\ u_{n+1} = 9u_n - 16n + 6 \end{cases}$

. أ) بيّن أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدّها الأول

$$n$$
 با اکتب کلا من v_n و u_n بدلالة u_n

$$S_n = u_0 + u_1 + \dots + u_n : 2 - x_n$$
 المجموع $S_n = u_0 + u_1 + \dots + u_n : 3$ (1) احسب بدلالة $S_n = u_0 + u_1 + \dots + u_n : 3$

$$16S_n - (4n+1)^2 - 2 \equiv 0$$
 [11] : ب عين قيّم العدد الطبيعي n التي من أجلها يكون n

حلول الأنشطة

حل النشاط 1:

$$b=k imes a$$
 : تذكير وجود عدد صحيح k يعني وجود عدد عدد محيث a تذكير

: (3n-6) تعيين الأعداد الطبيعية n بحيث 6 يقسم (1

3n-6=6k : يقسم k حيث عني وجود عدد طبيعي k حيث (3n-6)

 $k\in\mathbb{N}$: حيث n=2k+2

: 8 عبين الأعداد الطبيعية n بحيث (3n+5) قاسم للعدد (2n+5)

مجموعة القواسم الطبيعية للعدد 8 هي : {8 ; 4 ; 8 }

 $(3n+5) \in \{1;2;4;8\}$ معناه $(3n+5) \mid 8$

 $(3n) \in \{-4; -3; -1; 3\}$:

n=1 وبالقسمة على 3 مع مراعاة أن n عدد طبيعي نستنتج أن

(n+1) عنين الأعداد الطبيعية n بحيث (n+27) مضاعف لـ (n+1) عناه (2n+27) مضاعف لـ (n+1) مضاعف لـ (n+1)

طريقة : حل مسألة من الشكل g(n) ، يؤول إلى حل مسألة من الشكل h(n) حيث λ عدد طبيعي مستقل عن n

 $n\left|PGCD\left(a\;;\;b
ight)$ ، $n\left|\left(a\times b
ight)$ ، $n\left|\left(a-b
ight)$ ، $n\left|\left(a+b
ight)$ قبل $n\left|b
ight|$ وبشكل عام $n\left|\left(\alpha + \beta b\right)$ حيث α و β عددان صحيحان.

طريقة رقم 1:

 ${(n+1)|(2n+27) \choose (n+1)|2(n+1)}$: ومنه ${(n+1)|(2n+27) \choose (n+1)|(n+1)}$ ومنه ${(n+1)|(2n+27) \choose (n+1)|(n+1)}$

نستنتج أن : $(n+1) \begin{vmatrix} 2 \\ (n+1) \end{vmatrix} = (n+1) \end{vmatrix}$

نستنتج أن : $n\in \{4\,;24\}$ مفتش التربية الوطنية : بواب نورالدين

:
$$\frac{10n-4}{2n+1} \in \mathbb{N}$$
 بحيث n بحيث الأعداد الطبيعية n بحيث (4

$$\left\{ ig(3n+1) \, \middle| \, (10n-4) \ (3n+1) \, \middle| \, (3n+1) \, \middle|$$

$$(3n+1)\left|\begin{bmatrix}10(3n+1)-3(10n-4)\end{bmatrix}:$$
نستنتج أن $\left\{ \begin{pmatrix}(3n+1)|3(10n-4)\\(3n+1)|10(3n+1) \end{pmatrix}:$ وعليه فإن $\left\{ (3n+1)|10(3n+1) \right\}$

$$\left\{1;2;11;22\right\}$$
 : هي : $\left(3n+1\right)$ ، مجموعة القواسم الطبيعية للعدد 22 هي : $\left(3n+1\right)$ الدينا : $\left(3n+1\right)$ ومنه : $\left(3n+1\right)$: $\left(3n+1\right)$ فيكون : $\left(3n+1\right)$ الدينا : $\left(3n+1\right)$

$$(5)$$
 تعيين الأعداد الطبيعية n بحيث (5) $(3n+1)$ $(3n+1)$ $(3n+1)$ $(2n+27)$ معناه $(2n+27)$ معناه $(2n+27)$ معناه $(3n+1)$ $(3n+1)$

$$n=26$$
: فيكون $(3n+1)\in\{1;79\}$ ومنه $(3n+1)\mid 79$ فيكون (3n+1)

:
$$\frac{3n^2+6n+4}{n+4} \in \mathbb{N}$$
 بحيث n بحيث n بحيث (6

$$(n+4) | (3n^2+6n+4):$$
 $\frac{3n^2+6n+4}{n+4} \in \mathbb{N}$

$$(n+4)$$
 | 28 : نستنتج أن : $\frac{3n^2+6n+4}{n+4}=3n-6+\frac{28}{n+4}$: نستنتج أن : $n+4$ وبملاحظة أن : $n+4$ الطبيعية للعدد 28 هي : $n+4$ هي : $n+4$ إلى المعدد 28 هي : $n+4$ إلى المعدد 28 هي : $n+4$

$$n \in \{\ 3; 10; 24\}$$
 : فيكون $(n+4) \in \{1; 2; 4; 7; 14; 28\}$: لاينا $(n+4)$

7) تعيين الأعداد الطبيعية
$$n$$
 بحيث (n^2-2n) يقبل القسمة على 7 : طريقة رقم 1 : في القسمة على 7 ، البواقي الممكنة هي : 0 ، 1 ، 2 ، 3 ، 4 ، 5 و 6 وبالتالي : كل عدد طبيعي n يوافق 0 أو 1 أو 2 أو 4 أو 5 أو 6 بترديد 7 ، وباستعمال خواص الموافقات، نشكل الجدول التالي :

	n =	0	1	2	3	4	5	6
تردید 7	$n^2 \equiv$	0	1	4	2	2	4	1
	2 <i>n</i> ≡	0	2	4	6	1	3	5
	$n^2 - 2n \equiv$	0	$1-2=-1\equiv 6$	0	$2-6=-4\equiv 3$	1	1	$2-5=-3\equiv 4$

 $k' \in \mathbb{N}^*$ ومنه n = 7k' مع $k \in \mathbb{N}$ مع n = 7k + 2

 $n(n-2) \equiv 0[7]$ يقبل القسمة على 7) معناه : $(n^2-2n) \equiv 0[7]$ أي : (n^2-2n) أي (n^2-2n)

 $k'\in\mathbb{N}^*$ ومنه : n=7k' أو n=7k' أو يكون : n=7k+2 فيكون : n=7k+2 مغتش التربية الوطنية : بواب نورالدين n=7k' مغ

طريقة 3:

$$n^2-2n+1\equiv 1[7]:$$
 يقبل القسمة على 7) معناه : $\binom{n^2-2n}{0}\equiv 0[7]$) أي : $\binom{n^2-2n}{0}$ يقبل القسمة على 7) معناه : $\binom{n-1}\equiv 6[7]$ أو $\binom{n-1}\equiv 1[7]\equiv 1[7]$ ومناه : $\binom{n-1}\equiv 1[7]\equiv n$ أو $\binom{n-1}\equiv 1[7]\equiv n$ مع $\binom{n-1}\equiv 1[7]$ مع $\binom{n-1}\equiv 1[7]$

: 11 يقبل الأعداد الطبيعية n بحيث n-1-7 يقبل القسمة على n^2-7

$$(n^2 + 4n + 10 = 0[11])$$
 یکافئ $(n^2 - 7n - 1 = 0[11])$

 $n^2 + 4n + 4 \equiv 5[11]$: وهذا يعني

$$(n+2)\equiv 7igl[11igr]$$
 وبالتالي : $(n+2)\equiv 4igl[11igr]$ ، نستنتج أن : $(n+2)\equiv 5igl[11igr]$ أو $n\in\{11k+2\ ;11k+5\ /k\in\mathbb{N}\}$: فيكون : $n\equiv 5igl[11igr]$ أو $n\equiv 2igl[11igr]$

حل النشاط 2:

 $x^2 - 4y^2 = 36$ تعيين جميع الثنائيات (x;y) من الأعداد الطبيعية حيث (1

طريقة: بالنسبة للمسائل المعطاة في شكل جمع ، نحاول تحويلها إلى شكل جُداء من الشكل A × B = C ، حيث أن قواسم C معروفة .

يكافئ (x + 2y) و (x - 2y) و بالتالي فإن (x - 2y) و بالتالي فإن (x - 2y) و يقسمان (x + 2y) يقسمان (x + 2y) و يكافئ (x + 2y) يقسمان (x + 2y) هي:

(36;1) ، (12;3) ، (18;2) ، (9;4) ، (6;6) ، (4;9) ، (3;12) ، (2;18) ، (1;36) ولأن في المجموعة $x-2y \le x+2y$: \mathbb{N} قط هي :

$$\begin{cases} x - 2y = 6 \\ x + 2y = 6 \end{cases} \begin{cases} x - 2y = 4 \\ x + 2y = 9 \end{cases} \begin{cases} x - 2y = 3 \\ x + 2y = 12 \end{cases} \begin{cases} x - 2y = 2 \\ x + 2y = 18 \end{cases} \begin{cases} x - 2y = 1 \\ x + 2y = 36 \end{cases}$$
$$(x ; y) \in \{(10; 4), (6; 0)\} : 0$$

 $x^2 - 2xy = 15$ تعيين جميع الثنائيات (x;y) من الأعداد الطبيعية حيث (2 عبين جميع الثنائيات (

لدينا : x(x-2y)=15 ومنه : x(x-2y)=15 ، نحلل العدد 15 إلى جداء عددين طبيعيين : $x^2-2xy=15$ الدينا : x(x-2y)=15 ومنه : x(x-2y)=15 ولأن في المجموعة $x^2-2xy=15$ ، تبقى حالتين ممكنتين فقط ويكون : $x(x,y)\in\{(5;1),(15;7)\}$

حل النشاط 3:

: PGCD (1444; 2023) إيجاد (1

6	1	40	2	2	1		الحاصل
1_	6	7_	286	579	1444	2023	المقسوم والقاسم
0	1	6	7	286	579		الباقي

إذن: 1 = PGCD (2023; 1444) و بالتالي فإن العددين 2023 و 1444 أوليان فيما بينهما .

: 2023lpha +1444eta = 7 و eta يحققان المعادلة lpha و lpha يجاد عددين صحيحين lpha و lpha

$$a = b q + r \longleftarrow \frac{a \mid b}{r \mid q}$$
 يذكير:

لدينا: 2023 + 1×444 = 2023 ومنه: 4444 – 2023 = 579

ولدينا : 286 = 1444 - 2 × 579 = 1444 - 2 (2023 - 1444) ومنه : 1444 = 579 × 2 + 286

 $286 = -2 \times 2023 + 3 \times 1444$ وبالتالي :

 $7 = 579 - 2 \times 286 = (2023 - 1444) - 2(-2 \times 2023 + 3 \times 1444)$ ولدينا : $579 = 286 \times 2 + 7$

 $7 = 5 \times 2023 - 7 \times 1444$: وبالتالي

 $\beta = -7$ و $\alpha = 5$: نستنتج أن $5 \times 2023 - 7 \times 1444 = 7$ و مؤتش التربية الوطنية : بواب نورالدين $\alpha = 5$ نستنتج أن $\alpha = 5$ و $\alpha = 5$ و المساوتين $\alpha = 5$

حل النشاط 4:

:
$$\begin{cases} a+b=54 \\ PGCD(a\;;\;b)=9 \end{cases}$$
 من الأعداد الطبيعية غير المعدومة حيث $(a\;;b)$ من الأعداد الطبيعية (1

: ينكير: إذا كان
$$a'$$
 أوليان فيما بينهما حيث $PGCD\left(a\;;\;b
ight)=d$ و a' أوليان فيما بينهما حيث $b=d imes b'$ و $a=d imes a'$

عن المساواة : a' أوليان فيما بينهما حيث : a' المساواة : a' أوليان فيما بينهما حيث : a' المساواة : a' المساواة : a' a' المساواة : a'

 $\begin{cases} PPCM(a;b) - 8 \times PGCD(a;b) = 4 \\ a > b \end{cases}$ من الأعداد الطبيعية غير المعدومة حيث (3)

: من \mathbb{N}^2 نستعين الثنائيات (a;b) من التيتين الأتيتين الأتيتين

$$b=d imes b'$$
 و $a=d imes a'$ و $a=d$ اولیان فیما بینهما حیث $a=d$ فإنه یوجد عدان طبیعیان $a=d$ و $a=d$ فإن $a=d$ فإن $a=d$ و $a=d$ و $a=d$ و $a=d$ و $a=d$ فإن $a=d$ فإن $a=d$ فإن $a=d$ و $a=d$ و $a=d$ و $a=d$ و $a=d$ فإن $a=d$

m = da'b' : وبالتالي : $d \times m = da' \times db'$ و منه : $d \times m = a \times b$ وبالتالي : $b = d \times b'$ و $a = d \times a'$ الدينا : $a = d \times a'$ ومنه : $a = d \times a'$ ومنه : $a = d \times a'$ عندئذ المساواة $a = d \times a'$ كما يلي : a = da'b' - 8d = 4 ومنه : a = da'b' ومنه : a = da'b'

d = 1: الحالة الأولى -

a'b'=12 : a'b'-8=4 : كما يلي : d(a'b'-8)=4 أي : d(a'b'-8)=4 تكتب عندئذ المساواة a'b'=12 : a'b'=12 :

a'b'=10 : a'b'-8=2 : كتب عندئذ المساواة a'b'=4 كما يلي : a'b'-8=2 كما يلي : a'b'=4 أي : a'b'=4 ومنه : $a'b\in\{(10;4),(20;2)\}$: نستنج أن : a'b'=4 نستنج a'b'=4 : a'b'=4 : الحالة الثالثة : a'b'=4

a'b'=9 : a'b'-8=1 : كتب عندئذ المساواة a'b'=8=4 كما يلي : a'b'=8=1 كما يلي a'b'=8=1 أي a'b'=9=1 ومنه : a'b'=9=1 نستنج أن : a'b'=9=1 نستنج أن : a'b'=9=1

(a;b) \in $\{(4;3),(12;1),(10;4),(20;2),(36;4)\}$: المطلوبة هي $\{(a;b)\in$ المطلوبة هي الثنائيات $\{(a;b)\in$

حل النشاط 5:

(1) إثبات أن العددين 2+3 و n+3 أوليان فيما بينهما

$$d=1$$
 ونبيّن أن $PGCD(3n+2;5n+3)=d$ ونبيّن أن $PGCD(3n+2;5n+3)=d$

$$\begin{cases} d \mid (5n+3) \\ d \mid (3n+2) \end{cases}$$
 : نستنتج أن $PGCD(3n+2;5n+3)=d$: من المساواة

$$d \mid 1: d \mid [5(3n+2)-3(5n+3)]:$$
 ومنه $\begin{cases} d \mid 3(5n+3) \\ d \mid 5(3n+2) \end{cases}$ وبالتالي $\begin{cases} d \mid 5(3n+2) \\ \end{cases}$

d=1:فیکون

إذن : العددان 2 + 3n و 3n + 2 أوليان فيما بينهما.

طريقة 2: استعمال خوارزمية إقليدس

n	1	1	1	1		الحاصل
1	n	n+1	2n + 1	3n + 2	5n + 3	المقسوم والقاسم
0	1	n	n+1	2n + 1		الباقي

بما أن آخر باق غير معدوم هو 1 فإن 1=(2n+3;3n+2)=1 فيكون 1+n+6 فيكون 1+n+6 أو ليين فيما بينهما .

طريقة 3: استعمال مبر هنة بيزو

نلاحظ أن: 1=(3n+2)+5 (3n+3)+5 وحسب مبر هنة بيزو فإن العددين n+2 و n+3 أوليان فيما بينهما . v عريقة : إثبات أن العددين n+3 و n+3 أوليان فيما بينهما يؤول إلى البحث عن وجود عددين صحيحين n و n+3 بحيث n+3 . n+3 .

5un + 3u + 3vn + 2v = 1: ومنه u(5n+3) + v(3n+2) = 1: لدينا

$$\begin{cases} u=-3 \\ v=5 \end{cases}$$
: وبالتالي : $\begin{cases} 5u+3v=0 \\ 3u+2v=1 \end{cases}$ نستنتج أن : $\begin{cases} 5u+3v=0 \\ 3u+2v=1 \end{cases}$ نستنتج أن : $\begin{cases} 5u+3v=0 \\ 3u+2v=1 \end{cases}$

-3(5n+3)+5(3n+2)=1 بحيث (-3;5) بحيث : توجد ثنائية

وحسب مبر هنة بيزو فإن العددين 2+3 و 3n+3 و 3n+3 أو ليان فيما بينهما.

حل النشاط 6:

: PGCD(7n+1; 3n-1) تعيين القيّم الممكنة لـ (1n+1

$$\left\{ egin{align*} d \mid 3(7n+1) \\ d \mid 7(3n-1) \end{array}
ight.$$
: وبالتالي $\left\{ egin{align*} d \mid (7n+1) \\ d \mid (3n-1) \end{array}
ight.$ ومنه $\left\{ egin{align*} d \mid (7n+1) \\ d \mid (3n-1) \end{array}
ight.$

. $d \mid 10$: أي $d \mid \left[3(7n+1)-7(3n-1) \right]$: نستنتج أن

 $d \in \{1\,;\,2\,;\,5\,;\,10\}$: فيكون ($\{1\,;\,2\,;\,5\,;\,10\}$ هي العدد 10 هي : $\{1\,;\,2\,;\,5\,;\,10\}$

PGCD(7n+1; 3n-1)=5 قيم n التي من أجلها يكون (2

$$\begin{cases} 5 \mid (7n+1) \\ 5 \mid 2(3n-1) \end{cases}$$
 : وبالتالي : $\begin{cases} 5 \mid (7n+1) \\ 5 \mid (3n-1) \end{cases}$ ومنه : $PGCD(7n+1;3n-1)=5$ الدينا :

 $5 \mid (n+3) : [(7n+1)-2(3n-1)] :$ نستنتج أن

يكون العدد n+3=5k مضاعفا للعدد n+3=5k مضاعفا للعدد n+3=5k من أجل n+3=5k معد طبيعي فردي .

PGCD(a;b)=5: من أجل n=5k-3 عدد طبيعي فردي يكون n=5k-3

$$k' \in \mathbb{N}$$
 مع $n = 10k' + 2$ على الشكل : $n = 10k' + 2$ مع $n = 10k' + 2$ مع $n = 10k' + 2$ مع $n = 10k' + 2$ خلاصة : من أجل : $n = 10k' + 2$ مع $n = 10k' + 2$ يكون : $n = 10k' + 2$ خلاصة : من أجل : $n = 10k' + 2$ مع $n = 10k' + 2$ مغتش التربية الوطنية : بواب نورالدين

حل النشاط 7:

تذكير: يقبل عدد طبيعي القسمة على 9 إذا وفقط إذا قبل العدد المؤلف من مجموع أرقامه القسمة على 9

$$a^{np} = (a^p)^n = (a^p)^n$$
 : تذکیر

1) تبيان أن العدد A يقبل القسمة على 9:

$$1954^{2023} \equiv 1[9] : 1954^{2023} \equiv 1^{2023} = 1^{2023} = 1954^{2023} \equiv 1954^{2023} = 1954^{2023}$$

2) تعيين رقم آحاد العدد B

تذكير: تعيين رقم آحاد عدد يؤول إلى تعيين باقي قسمته عل 10

$$1444 = 2 \times 722$$
 : لكن : $2023^{1444} = 3^{1444} [10]$: ومنه : $2023^{1444} = 3^{1444} [10]$: ومنه : $3^{722} = (-1)^{722} [10]$: ومنه : $9^{722} = (-1)^{722} [10]$: ومنه : $9^{722} = 9^{722} = 9^{722}$: $9^{722} = 9^{722} = 9^{722}$

$$1$$
 اي : $[10] = 9^{722}$ ، نستنتج أن : $[10] = 12023^{1444}$ و $[10] = 12023^{1444}$ هو $[10] = 12023^{1444}$ ، نستنتج أن : $[10] = 12023^{1444}$ و $[10] = 12023^{1444}$

طریقة 2: لدینا :
$$[10]$$
 $= 2023$ ومنه : $[10]$ ومنه : $[10]$ $= 3^{1444}$ ومنه : $[10]$ اکن : $[10]$ $= 3^{1444}$ $= 3^{1444}$ $= 3^{1444}$ $= 3^{1444}$ $= 3^{1444}$ $= 3^{1444}$ $= 3^{1444}$ $= 3^{1444}$ ومنه : $[10]$ ومنه : $[10]$

$$49^{722} \equiv (-1)^{722} \equiv 1[10]$$
 : فإن رقم آحاد العدد $2023^{1444} = 7^{1444} = 7^{1444} = 7^{1444} = 7^{1444}$ وعليه فإن رقم آحاد العدد $2023^{1444} = 7^{1444} = 7^{1444} = 7^{1444} = 7^{1444}$ هو 1_{0} مفتش التربية الوطنية : بواب نورالدين

 $^{\circ}$ على 9 على $^{\circ}$ 3 على $^{\circ}$ 1442 ماء $^{\circ}$ 1442 $^{\circ}$ 1442 $^{\circ}$ على 9 على 9 على 9 تعيين باقي القسمة الإقليدية للعدد

$$1442^{2022} \equiv 2^{2022} \equiv (2^3)^{674} \equiv (-1)^{674} \equiv 1[9]$$
 ولدينا : $= 1442^{2022} \equiv 2^{2022} \equiv (2^3)^{674} \equiv (-1)^{674} \equiv 1[9]$

$$1443^{2023} \equiv 3^{2023} \equiv 3 \times 3^{2022} \equiv 3(3^2)^{1011} \equiv 3 \times 9^{1011} \equiv 0[9]$$
 ولدينا : $[9]$ ولدينا : $[9]$

$$1444^{2024} \equiv 4^{2024} \equiv \left(4^4\right)^{506} \equiv 64^{506} \equiv 1^{506} \equiv 1[9]$$
 ولدينا : $\left[9\right]$ ولدينا : $\left[444^{2024} \equiv 4^{2024} \equiv 4^{2024} \equiv 4^{2024} \equiv 64^{2024} \equiv 1^{2024} \equiv 1^{2024$

نستنتج أن :
$$C = 1 + 1 + 0 + 1$$
 أي أن باقي القسمة الإقليدية للعدد C على C هو C

حل النشاط 8:

ملاحظات

- a عدد طبیعی أکبر تماما من a . b و b عددان صحیحان. b عددان محد طبیعی أکبر تماما من a . b و b عددان محیحان.
- في الحالة العامة : a = 0[n] الايستلزم a = 0[n] أو a = 0[n] الايستلزم $c \neq 0$ أعداد صحيحة حيث : $a \neq 0$ عدد طبيعي أكبر تماما من 1 . $a \neq 0$ ، $a \neq 0$ أعداد صحيحة حيث : $a \neq 0$.
- $\left(\begin{array}{c} a\equiv b \ [n] \end{array}\right)$ لا يستلزم $\left(\begin{array}{c} ca\equiv cb \ [n] \end{array}\right)$: في الحالة العامة
 - ومن أجل كل عدد $a \equiv b \; [n]$ ه يستدرم $b \; (a \equiv b \; [n])$ ه يستدرم $a \equiv b \; (a \equiv b \; [n])$ عدد $a \equiv b \; (a \equiv b \; [n])$
- $\left(\begin{array}{c} a\equiv b \ [n] \end{array}
 ight)$ فإن $\left(\begin{array}{c} n \end{array}
 ight)$ صحيح غير معدوم $c = c b \ [n] \end{array}$ و $c = c b \ [n]$ و أولى مع
- PGCD(|a|;n)=d و a=1 عدان صحیحان حیث $a\neq 0$ و $a\neq 0$ عداد طبیعی اکبر تماما من $a\neq 0$

b على المعادلة $ax\equiv b$ علو لا في z إذا وفقط إذا قسم $ax\equiv b$ العدد

$$3x \equiv 2[7]$$
 حل المعادلة $3x \equiv 2[7]$: طل المعادلة $3x \equiv 10[7]$ على المعادلة $3x \equiv 10[7]$ على المعادلة $3x \equiv 2[7]$ على المعادلة المعادلة

وبالتالي :
$$x = 3[7]$$
 فيكون : $x = 7k + 3$ مع $x = 3[7]$

 $5x \equiv 2[13]$ على المعادلة $2x \equiv 2$

7x = 5[22] = 7 على المعادلة $7x = 5[22] = 3 \times 7$ على المعادلة 7x = 5[22] = 21 لدينا : 7x = 5[22] = 7 ومنه : $7x = 5[22] = 3 \times 7$

$$x=7[22]:$$
 وبالتالي: $x=-15[22]:$ وعليه فإن $x=-15[22]:$ أي $x=15[22]:$ فيكون $x=22k+7:$ مع $x=22k+7:$ مفتش التربية الوطنية : بواب نورالدين

$$5x = 2[124]$$
 كل المعادلة $5x = 2[124]$

$$125x \equiv 50[124]$$
 : $25 \times 5x \equiv 25 \times 2[124]$ ومنه : $5x \equiv 2[124]$ وبالتالي : $x \equiv 50[124]$ فيكون : $x \equiv 124k + 50$ مع $x \equiv 50[124]$

6x = 12[35] على المعادلة [35] 5

$$k \in \mathbb{Z}$$
 عمل $x = 35k + 2$ عند $x = 2[35]$ طريقة $x = 2[35]$ عمل $x = 2[35]$ عمل $x = 35k + 2$ عمل $x = 2[35]$ عمل $x = 2[35]$ عمل $x = 2[35]$ عمل $x = 2[35]$ عمل نستنتج أن $x = 2[35]$ غيكون $x = 35k + 2$ عمل $x = 2[35]$

 $4x \equiv 2[10]$ على المعادلة $4x \equiv 2[10]$: $4x \equiv 3[5]$ على المعادلة $4x \equiv 3[5]$: $4x \equiv 2[10]$ الدينا : $4x \equiv 2[10]$ على الدينا : $4x \equiv 3[5]$ على المعادلة $4x \equiv 3[5]$ على الدينا : $4x \equiv 3[5]$ على الدينا : $4x \equiv 3[5]$ على المعادلة $4x \equiv 3[5]$ على المعادلة $4x \equiv 3[5]$ على المعادلة $4x \equiv 3[5]$ على المعادلة المع

$$3x = 6[24]$$
 حل المعادلة (7

ر) کی المعادیہ
$$x = 3x = 6$$
 المعادیہ $x = 3x = 6$ ومنہ : $x = 2[8]$ فیکون : $x = 8k + 2$ مع $x = 8k + 2$ الدینا : $x = 2[8]$ ومنہ : $x = 8k + 2$ فیکون : $x = 8k + 2$ مع

باستعمال خواص الموافقات ، نشكل الجدول التالى:

 $x^2 + x = 0[6]$: ومنه -5 = 1[6] ونعلم أن $x^2 - 5x = 0[6]$ ومنه $x^2 - 5x = 0[6]$

 $S=\left\{6k\;;6k+2\;;6k+3\;;6k+5\;/\;k\in\mathbb{Z}
ight\}$ من هذا الجدول نستنتج أن مجموعة حلول المعادلة (E) هي (E)

هام جدا: احذر من اتباع الطريقة الآتية فهي خاطئة في الحالة العامة لأن الموافقة ليست مساواة ، وإذا قبلناها في بعض

 $x+1 \equiv 0[6]$ الدينا $x \equiv 0[6]$

في القسمة الإقليدية على 6 ، البواقي الممكنة هي 0 ، 1 ، 2 ، 3 ، 4 و 5

الحالات فإننا نقبلها بشروط تحددها المعطيات.

وبالتالي : كل عدد صحيح x يوافق 0 أو 1 أو 2 أو 3 أو 4 أو 5 بترديد 6

 $x^2 - 5x \equiv 0[6]$ على المعادلة (8)

: $x^2 - 5x - 5 \equiv 0$ [11] حل المعادلة [9]

طريقة 1 :

$$x^2+6x+6\equiv 0$$
 [11] : ومنه $-5\equiv 6$ [11] : ونعلم أن : $x^2+6x+6\equiv 0$ [11] : لدينا : $(x+3)^2\equiv 3$ [11] : $=x^2+6x+6$ وبالاستعانة بالشكل النموذجي لكثير الحدود x^2+6x+6 نحصل على : x^2+6x+6 أو [11] $=x+3\equiv 6$ [11] : نستنج أن : $x\equiv 3$ [11] $=x+3\equiv 6$ [11] $=x+3\equiv 6$ [11] فيكون : $x\equiv 3$ [11] $=x+3$ أو $=x+3\equiv 6$ [11] $=x+3$ أو $=x+3\equiv 6$ [11] فيكون : $x\equiv 3$ أو $=x+3\equiv 6$ [11] $=x+3\equiv 6$ [11] فيكون : $x\equiv 3$ أو $=x+3\equiv 6$ [11] أن المنافق ا

مفتش التربية الوطنية : بواب نورالدين

طريقة 2:

<i>X</i> ≡	0	1	2	3	4	5	6	7	8	9	10
$x^2 \equiv$	0	1	4	9	5	3	3	5	9	4	1
6 <i>x</i> ≡	0	6	1	7	2	8	3	9	4	10	5
$x^2 + 6x + 6 \equiv$	6	2	0	0	2	6	1	9	8	9	1

 $S = \{11k+2; 11k+3 \mid k \in \mathbb{Z}\}$: من الجدول السابق نستنتج أن

حل النشاط 9:

y = 4[7] فإن (E) فإن (x; y) حلا للمعادلة (E) فإن (E) فإن (E) 18y = 9[7] باستعمال الموافقة بترديد F ، تكتب المعادلة (E) كما يلي : (E) عما يلي (E) ويعلم أن : (E) (E) (E) (E) (E) المعادلة (E) (E

(E) استنتاج حلول المعادلة: (E)

(E) لدينا $y\equiv 4$ ومنه x=7 ومنه y=7 المعادلة $x\in\mathbb{Z}$ مع x=-18 وبالتعويض في المعادلة x=-18 نجد x=-18

 $\begin{cases} x=-18k-9 \\ y=7k+4 \end{cases}$ ($k\in\mathbb{Z}$) حيث $(x\,;\,y)$ هي الثنائيات $(x\,;\,y)$ حيث (E) هي الثنائيات (E)

$$\begin{cases} n = 6[7] \\ n = 15[18] \end{cases}$$
 حل الجملة (3)

طريقة 1:

$$7\alpha+6=18$$
 $\beta+15$: ومنه $n=7\alpha+6$ ومنه $n=18$ $\beta+15$: ومنه $n=18$ $\beta+15$ $n=15$

$$7x+18y=9$$
 أي . $7\alpha-18\beta=9$ ، هذه المعادلة من نفس شكل المعادلة $7\alpha-18\beta=9$: أي . $\alpha=x=-18k-9$ $\beta=-y=-7k-4$ ($k\in\mathbb{Z}$) : نستنتج أن : $\beta=-y=-7k-4$

فيكون:
$$n=7\alpha+6=7\left(-18k-9\right)+6=-126k-57$$
 مع $S=\left\{-126k-57\ /\ k\in\mathbb{Z}\right\}$ مع $S=\left\{-126k-57\ /\ k\in\mathbb{Z}\right\}$ إذن : مجموعة حلول الجملة المعطاة هي

طريقة 2:

$$\begin{cases} 18n \equiv 108 \begin{bmatrix} 126 \end{bmatrix} \\ 7n \equiv 105 \begin{bmatrix} 126 \end{bmatrix} \end{cases} : \begin{cases} 18n \equiv 18 \times 6 \begin{bmatrix} 18 \times 7 \end{bmatrix} \\ 7n \equiv 7 \times 15 \begin{bmatrix} 7 \times 18 \end{bmatrix} \end{cases} : \begin{cases} n \equiv 6 \begin{bmatrix} 7 \end{bmatrix} \\ n \equiv 15 \begin{bmatrix} 18 \end{bmatrix} \end{cases}$$
 دينا :

: وعليه يكون وعليه يكون $25n \equiv 213 [126]$. أي $18n + 7n \equiv 108 + 105 [126]$ وعليه يكون

$$125 = -1[126]$$
 : نكن $5 \times 25n = 5 \times 213[126]$ ، نكن $5 \times 25n = 5 \times 213[126]$

$$-n \equiv 57[126]$$
 و بالتالي: $[126]$ و $= 57[126]$

$$k' \in \mathbb{Z}$$
 مع $n = 126k' - 57$: فيكون $n = -57[126]$ مع $n = -57[126]$

$$S = \{126k' - 57 \ / \ k' \in \mathbb{Z}\}$$
 إذن : مجموعة حلول الجملة المعطاة هي

ملاحظة : من أجل k' = -k نحصل على نفس شكل حلول الطريقة 1

طريقة

$$\begin{cases} n = 7\lambda + 6 \\ 7\lambda = 9[18] \end{cases} : \begin{cases} n = 7\lambda + 6 \\ 7\lambda + 6 = 15[18] \end{cases} : \begin{cases} n = 6[7] \\ n = 15[18] \end{cases} : \begin{cases} n = 6[7] \\ n = 15[18] \end{cases}$$

وبالتالي :
$$\begin{cases} n = 7\lambda + 6 \\ 6 = 9 \\ 18 \end{cases}$$
 أي :
$$\begin{cases} n = 7\lambda + 6 \\ 35\lambda = 45 \\ 18 \end{cases}$$
 :
$$\begin{cases} n = 7\lambda + 6 \\ 5 \times 7\lambda = 5 \times 9 \\ 18 \end{cases}$$

$$\begin{cases} n = 7\lambda + 6 \\ \lambda = -9[18] \end{cases} : \begin{cases} n = 7\lambda + 6 \\ -\lambda = 9[18] \end{cases}$$

: من العلاقة :
$$[18] = -3$$
 نستنتج أن $[-9] = -3$ ، وبالتعويض في العلاقة $[-3] = -3$ ينتج

$$\lambda' \in \mathbb{Z} \rightleftharpoons n = 7(18\lambda' - 9) + 6 = 126\lambda' - 57$$

$$S = \{126\lambda' - 57 \ / \ \lambda' \in \mathbb{Z}\}$$
 إذن : مجموعة حلول الجملة المعطاة هي

طريقة 4:

$$n\equiv 0$$
 $\left[PPCM\left(a;b
ight)
ight]$ فإن $n\equiv 0$ $\left[b
ight]$ و $n\equiv 0$ $\left[a;b
ight]$ فإن $n\equiv 0$ أعداد طبيعية غير معدومة . إذا كان $n\equiv 0$ و $n\equiv 0$ أعداد طبيعية غير معدومة .

$$\begin{cases} n+57\equiv 0\,[\,7\,] \\ n+57\equiv 0\,[\,18\,] \end{cases} : \begin{cases} n+63\equiv 6\,[\,7\,] \\ n+72\equiv 15\,[\,18\,] \end{cases} : \begin{cases} n=6\,[\,7\,] \\ n=15\,[\,18\,] \end{cases}$$
 ومنه $: [126] = n+57=0$ أي $: [126] = n+57=0$ فيكون $: n+57=0$ حيث $S = \{126p-57 \mid p\in \mathbb{Z}\} :$ إذن : مجموعة حلول الجملة المعطاة هي $: S = \{126p-57 \mid p\in \mathbb{Z}\} :$

ax + by = c المعادلات من الشكل

c و b ، a حيث ax + by = c : (E) المعادلة PGCD(|a|;|b|) = d و PGCD(|a|;|b|) = d أعداد صحيحة غير معدومة ، وليكن

 \mathbb{Z}^2 الحالة الأولى: إذا كان d لا يقسم d فإن المعادلة (E) لا تقبل حلولا في

 \mathbb{Z}^2 الحالة الثانية: إذا كان d بقسم d فإن المعادلة (E) تقبل حلولا في الحالة الثانية الأداكان المعادلة الثانية الأداكان المعادلة الثانية الثانية الأداكان المعادلة الثانية الثانية

بقسمة طرفي المعادلة (E) على العدد d نحصل على معادلة (E') من الشكل :

: حيث (E') عيث (E') عيث (B') ، نقوم بحل المعادلة (B')بإتباع (B')

- طريقة 1: استعمال مبرهنة غوص (في غالب الأحيان، نبدأ بتعيين حل خاص) - طريقة 2: استعمال الموافقة (نختار ترديد a' أو ترديد b')

حل النشاط 10:

(E) حل المعادلة (E) :

طريقة 1: (استعمال المرافقة بترديد7)

 $2 \times 4x \equiv 2 \times 3$ [7] : باستعمال الموافقة بترديد 7 ، تكتب المعادلة (E) كما يلي $x \equiv 1$ ومنه $x \equiv 1$ ومنه $x \equiv 1$

 $k\in\mathbb{Z}$ مع x=7k+6 : فيكون x=6 وبالتالي x=6 وبالتالي x=6 المعادلة y=4k+3 نجد y=4k+3 مع y=4k+3

 $\begin{cases} x=7k+6 \ y=4k+3 \end{cases}$ جيث : حلول المعادلة f(x)=2k+3 هي الثنائيات f(x)=2k+3 جيث : حلول المعادلة و f(x)=2k+3

طريقة 2: (استعمال المرافقة بترديد 4)

-7باستعمال الموافقة بترديد x4 ، تكتب المعادلة x4 كما يلي : x5 كما يلي y6 وبالتالي : x6 فيكون : x7 y8 عy8 مع y8 مع y8 ع التابي : x8 فيكون : x9 ع y9 مع y8 مع y9 ع التابي : x9 فيكون : x9 ع y9 مع y9 مع y9 مع y9 م

 $k\in\mathbb{Z}$ مع y=4k+3 : وبالتعويض في المعادلة (E) نجد

 $\begin{cases} x = 7k + 6 \\ y = 4k + 3 \end{cases}$ حيث (x; y) مفتش التربية الوطنية : بواب نورالدين

طريقة 3: (استعمال مبرهنة غوص دون تعيين حل خاص)

يمكن كتابة العدد 3 كمجموع أو فرق عددين أحدهما مضاعف للعدد 4 والأخر مضاعف للعدد 7 لدينا : 4x + 4 = 7y + 7 ومنه : 4x - 7y = 7 - 4 وبالتالي : 7y = 7 - 4 ومنه : 4x - 7y = 3

$$(*)$$
 ... $4(x+1)=7(y+1)$: فيكون

من المعادلة (*) نستنتج أن 7 يقسم الجداء (x+1) ، وبما أن 7 أولي مع 4 وحسب مبر هنة غوص فإن x=7 يقسم x=7 . ومنه x=7 فيكون x=1 مع x=7 مع x=7

مفتش التربية الوطنية: بواب نورالدين

$$\alpha \in \mathbb{Z}$$
 مع $x = 7\alpha$ ومنه $x + 1 = 7\alpha$ فيكون $x + 1 = 7\alpha$ مع $x + 1$ ومنه ومنه $x + 1 = 7\alpha$ من المعادلة $x + 1$ نستنتج أن 4 يقسم الجداء $x + 1$ ، وبما أن 4 أولي مع 7 وحسب مبر هنة غوص فإن

 $lpha\in\mathbb{Z}$ مع y=7lpha-1 : ومنه y+1=7lpha ومنه y+1=7

$$\begin{cases} x=7lpha-1 \ (lpha\in\mathbb{Z}):$$
 المعادلة (E) هي الثنائيات $(x;y)$ حيث والمعادلة (E)

$$\begin{cases} x = 7k + 6 \\ y = 4k + 3 \end{cases}$$
 نجد $\alpha = k + 1$ نجد : $\alpha = k + 1$

طريقة 4: (استعمال مبرهنة غوص بعد تعيين حل خاص)

واضح أن الثّنائية
$$(E)$$
 وبالتالي: $(x_0; y_0) = (6; 3)$ وبالتالي:

$$4(x-x_0)-7(y-y_0)=0$$
 : وبالطرح طرفا من طرف ينتج
$$\begin{cases} 4x-7y=3\\ 4x_0-7y_0=3 \end{cases}$$
 : لدينا

$$(*)$$
 ··· $4(x - x_0) = 7(y - y_0)$: وبالتالي

من المعادلة (*) نستنتج أن العدد 7 يقسم الجداء $(x-x_0)$ ، وبما أن 7 أولي مع 4 وحسب مبر هنة

$$k\in\mathbb{Z}$$
 عوص فإن 7 يقسم $(x-x_0)$ ومنه $x-x_0=7$: ومنه $x=7$ وبالتالي $x-x_0=7$ مع

من المعادلة (*) نستنتج أن العدد 4 يقسم الجداء $(y-y_0)$ ، وبما أن 4 أولي مع 7 وحسب مبر هنة غوص

$$k \in \mathbb{Z}$$
 مع $y = 4k + y_0 = 4k + 3$ ومنه $y - y_0 = 4k$ ع مع $y = 4k + y_0 = 4k + 3$ فإن 4 يقسم $y = 4k + y_0 = 4k + 3$ ومنه $y = 4k + 3$

 \hat{y} ملاحظة : بعد تعيين \hat{x} ، يمكن التعويض في المعادلة (E) للحصول على

$$\begin{cases} x=7k+6 \\ y=4k+3 \end{cases}$$
 : بواب نوراندین $(x;y)$ حیث $(x;y)$ جیث $(x;y)$ الثنائیات $(x;y)$ جین $(x;y)$ جین $(x;y)$

:
$$\begin{cases} n = 3[4] \\ n = 6[7] \end{cases}$$
 the image of the second states and the second seco

$$4\alpha-7\beta=3$$
 : فرمنه $n=4\alpha+3$ ومنه $n=4\alpha+3$ وبالتالي $n=7\beta+6$. ومنه $n=7\beta+6$. ومنه $n=7\beta+6$

: نلاحظ أن المعادلة الأخيرة من نفس شكل المعادلة (E)، واعتمادا على السؤال (1) نستنتج أن

$$\begin{cases} \alpha = 7k + 6 \\ \beta = 4k + 3 \end{cases} (k \in \mathbb{Z})$$

$$k \in \mathbb{Z}$$
 مع $n = 4\alpha + 3 = 4(7k + 6) + 3 = 28k + 27$: فيكون

التعداد

• تعریف:

. x عدد طبيعي أكبر تماما من x

. x بكن اصغر تماما من a_0 ، a_1 ، a_2 ، ... ، a_{n-1} ، a_n ليكن

: يعني x يعني الأساس $a_n\,a_{n-1}\cdots a_2\,a_1a_0$ يعني N القول أن عدد N

 $N = \overline{a_n a_{n-1} \cdots a_2 a_1 a_0} = a_n \times x^n + a_{n-1} \times x^{n-1} + \dots + a_2 \times x^2 + a_1 \times x + a_0$

• يمثل كل عدد طبيعي أصغر تماما من x برمز وحيد يسمى رقما . • في كل نظام تعداد ذي الأساس x ، الرقمان 0 و 1 يمثلان على الترتيب العددين « صفر » و « واحد » .

مهما يكن الأساس x لدينا $x = 1 \times x + 0$ وعليه فإن العدد x يكتب في النظام

x فكذا x فكذا أx

 $a_n\,a_{n-1}\cdots a_2\,a_1a_0$: عندما يكون الأساس « عشرة » يكتب العدد ${
m N}$ كما يلي ${
m w}$

: eta الانتقال من النظام ذي الأساس lpha إلى النظام ذي الأساس •

• قابلية القسمة على 2 ، 5 و 10:

- يقبل عدد طبيعي القسمة على 2 إذا وفقط إذا قبل رقم آحاده القسمة على 2
- يقبل عدد طبيعي القسمة على 5 إذا وفقط إذا قبل رقم آحاده القسمة على 5
- يقبل عدد طبيعي القسمة على 10 إذا وفقط إذا قبل رقم أحاده القسمة على 10

• قابلية القسمة على 4 و 25:

- يقبل عدد طبيعي القسمة على 4 إذا وفقط إذا قبل العدد المؤلف من رقمي أحاده وعشراته القسمة على 4
- يقبل عدد طبيعي القسمة على 25 إذا وفقط إذا قبل العدد المؤلف من رقمي أحاده وعشراته القسمة على 25

• قابلية القسمة على 3 و 9:

- يقبل عدد طبيعي القسمة على 3 إذا وفقط إذا قبل العدد المؤلف من مجموع أرقامه القسمة على 3

- يقبل عدد طبيعي القسمة على 9 إذا وفقط إذا قبل العدد المؤلف من مجموع أرقامه القسمة على 9

• قابلية القسمة على 11:

- يقبل عدد طبيعي القسمة على 11 إذا وفقط إذا قبل العدد الناتج عن الفرق بين مجموع الأرقام ذات الرتب الورية ومجموع الأرقام ذات الروجية القسمة على 11

حل النشاط 11:

عدد 280 يقسم العدد
$$(E)$$
 يقسم العدد 16) عبيان أن المعادلة (E) تبيان أن المعادلة و (E)

. \mathbb{Z}^2 قبن المعادلة (E) تقبل حلو لا في المجموعة \mathbb{Z}^2 .

(اي 8 يفسم 280) فإن المعادلة (
$$E$$
) نقبل خلولا في المجموعة t

 $y \equiv 2[13]$ فإن (E) غانت الثنائية (x;y) حلا للمعادلة والمعادلة الثنائية (ب 13x-2y=35 : التالية (E') على العدد 8 نحصل على المعادلة (E') التالية

 $-2y \equiv 35[13]$: كما يلي كما يلي المعادلة (E') كما يلي تكتب المعادلة (E') كما يلي

$$11y = 9[13] : وبالتالي $-2 = 11[13]$ لكن $-2 = 11[13]$$$

66y = 54[13] : أي $6 \times 11y = 6 \times 9[13]$ ونعلم أن [13] = 66 و [13] = 54 ومنه: [13] ع علم أن

 $\cdot(E)$ استنتاج حلول المعادلة •

$$x=2k+3$$
 نجد (E') نجد $y=13k+2$ لدينا $y=2k+3$ ومنه $y=2k+3$ وبالتعويض في $y=2k+3$ نجد $y=2k+3$ إذن : حلول المعادلة $y=13k+2$ هي الثنائيات $y=13k+2$ حيث $y=13k+2$

$$(1)... \lambda = \frac{1}{1} \frac{1}{\alpha \alpha \beta \beta \gamma} = \gamma + \beta \times 4^{1} + \beta \times 4^{2} + \alpha \times 4^{3} + \alpha \times 4^{4} + 1 \times 4^{5}$$

$$= 320\alpha + 20\beta + \gamma + 1024$$

$$(2) \lambda = \frac{1}{1} \frac{1}{\alpha \beta 13} = 3 + 1 \times 6^{1} + \beta \times 6^{2} + \alpha \times 6^{3} + 1 \times 6^{4}$$

(2)...
$$\lambda = \overline{1\alpha\beta13}^{6} = 3 + 1 \times 6^{1} + \beta \times 6^{2} + \alpha \times 6^{3} + 1 \times 6^{4}$$

= $216\alpha + 36\beta + 1305$

$$0 \le \gamma \le 3$$
 و $0 \le \beta \le 3$ ، $0 \le \alpha \le 3$ الشروط: $0 \le \gamma \le 3$ و $0 \le \beta \le 3$

ومنه :
$$\gamma = 281 - \gamma$$
 ... $104 \, lpha - 16 \, eta = 281 - \gamma$. هفتش التربية الوطنية : بواب نورالدين

 $320\alpha + 20\beta + \gamma + 1024 = 216\alpha + 36\beta + 1305$: من (1) و (2) ينتج

$$104\,lpha-16\,eta=281$$
: لمّا $\gamma=0$ الحالة $\gamma=0$ لما يلي (3) كما يلي ، $\gamma=0$

$$\mathbb{N}^2$$
 وبما أن الـ $(16\ ;\ 16)$ $PGCD$ لا يقسم 281 فإن المعادلة 281 $\beta=281$ لا تقبل حلو لا في $\gamma=104$ الحالة $\gamma=104$ المعادلة (3) كما يلي $\gamma=1$ المحالة $\gamma=1$ لمّا $\gamma=1$ المحالة $\gamma=1$ المحالة والمحالة والمح

$$\begin{cases} \alpha = x = 2k + 3 \\ \beta = y = 13k + 2 \end{cases}$$
 ($k \in \mathbb{N}$) : نستنتج أن

$$eta=2$$
 لكن $lpha \leq 0$ و $lpha \leq 3$ و عليه يكون : $lpha=3$ و $lpha \leq 3$ و $lpha \leq 3$ الحالة $lpha=1$ ، تكتب عندئذ المعادلة (3) كما يلي : 279 $lpha=16$ الحالة $lpha=16$

 \mathbb{N}^2 وبما أن الـ $(16\ ;\ 16)$ PGCD لا يقسم 279 فإن المعادلة $(30\ ;\ 16)$ لا تقبل حلو لا في $(30\ ;\ 16)$ الحالة $(30\ ;\ 104\$

 \mathbb{N}^2 وبما أن الـ (278 + 3000) و (3) لا يقسم 278 فإن المعادلة (3) (3) (3) لا تقبل حلو لا في (3) و (3)

(3) أ) تحليل العدد 2025 إلى جداء عوامل أولية : $5^2 \times 5^2 = 2025$. استنتاج الأعداد الطبيعية التي مكعب كل منها يقسم 2025 :

من المساواة $5^2 \times 5^2 = 2025$ ، نستنتج أنه يوجد عددان طبيعيان مكعب كل منهما يقسم العدد 2025 هما : 1 و 3

 $m^3 + 11 d^3 = 2025$ ب تعيين الثنائيات (a;b)التي تحقق (ب

: التي تحقق (a;b) التي تحقق (a;b) التي تحقق (a;b) التي تحقق عدد الثنائيات الخاصتين

b=d imes b'و a=d imes a' فيما بينهما حيث a' نستنتج أنه يوجد عدان طبيعيان a' و a' أوليان فيما بينهما حيث a=d imes a

 $d \times m = a \times b$ •

m=da'b': ومنه $d\times m=da'\times db'$ ومنه $d\times m=a\times b$ وبالتالي $d\times m=a\times b$ ومنه $(da'b')^3+11d^3=2025$ عما يلي $d\times m=a\times b$ عما يلي تكتب المساواة $d\times m=a\times b$ عما يلي $d\times m=a\times b$

$$(*)$$
 ... $d^{3}[(a'b')^{3} +11] = 2025$: ومنه

 $d \in \set{1;3}$ نستنتج أن d^3 يقسم 2025 واعتمادا على السؤال السابق نستنتج أن d=1 الحالة d=1 لمّا d=1

$$(a'b')^3 + 11 = 2025$$
: كما يلي $(*)$ كما يلي كما يلي $(*)$ كما يلي $(*)$ كما يلي كما

اي: 2014 \neq N \neq N \neq اي $(a'b')^3 = 2014 = 0$. $(a'b')^3 = 2014$. d=3 الحالة d=3 لمّا d=3

$$d=3$$
 لمّا $\frac{2}{2}$ لمّا $\frac{2}{3}$ المحالة $\frac{2}{3}$ المحالة $\frac{2}{3}$ المحالة $\frac{2}{3}$ المحالة $\frac{2}{3}$ المحالة $\frac{2}{3}$ المحالواة $\frac{2}{3}$

$$(a;b) \in \{(3;12),(12;3)\}$$
: نستنتج أن

حل النشاط 12:

1) إيجاد القاسم المشترك الأكبر للأعداد 420 ، 525 و 945 : PGCD (945 ; 525 ; 420) = 105

 $x \equiv 8 [9]$ فإن (E) فإن (x; y) حلا للمعادلة فإن إذا كانت الثنائية (x; y) حلا للمعادلة

4x-9y=5 : التالية (E') على العدد 105 نحصل على المعادلة (E') التالية

 $7 \times 4x \equiv 7 \times 5$ [9] : باستعمال الموافقة بترديد 9 ، تكتب المعادلة (E') كما يلي (E') كما يلي ومنه

x = 8[9] . کان : [9] = 28 و [9] = 35 فیکون : [9] = 35 فیکون : [9] = 35

استنتاج حلول المعادلة (E):

y = 4k + 3 نجد (E') نجد x = 9k + 8 ومنه x = 9k + 8 وبالتعویض في x = 8 [9] نجد x = 9k + 8 ومنه x = 8 [9] نجد x = 8 [

2) أ) دراسة بواقي القسمة الإقليدية للعدد 9^n على 11 : $9^5 = 1[11]$ ، $9^4 = 5[11]$ ، $9^3 = 3[11]$ ، $9^2 = 4[11]$ ، $9^1 = 9[11]$ ، $9^0 = 1[11]$ من العلاقة : $9^{5k} = 1[11] = 9^{5k}$ نستنج أن : $9^{5k} = 1[11]$ ، $9^{5k+3} = 3[11]$ ، $9^{5k+4} = 5[11]$ ، $9^{5k+3} = 3[11]$ ، $9^{5k+2} = 4[11]$ ، $9^{5k+1} = 9[11]$ نلخص بواقى القسمة الاقليدية للعدد 9^n على 11 في الجدول الأتى :

5	k+4	5k + 3	5k + 2	5k + 1	5 <i>k</i>	n
	5	3	4	9	1	البواقي

 $(k \in \mathbb{N})$ في هذا الجدول (

: 11 على الثنائيات
$$(x;y)$$
 حلول المعادلة (E) بحيث يكون (E) جيث على 11 (2022 $^{x-y}+y+2$) قابلا للقسمة على $(x;y)$ تعيين الثنائيات $(x;y)$ حلول المعادلة $(x;y)$ جلول المعادلة $(2022^{x-y}+y+2)=2022^{(9k+8)-(4k+3)}+(4k+3)+2=2022^{5(k+1)}+4k+5$ وبالتالي $(2022^{x-y}+y+2)=2022^{5k'}+4k+5$ وبالتالي $(2022^{x-y}+y+2)=2022^{5k'}+4k+5$ وبالتالي $(2022^{5k'}=9^{5k'}=1[11])$

$$4k \equiv 5[11]: 4k + 5 \equiv 0[11]$$
 ومنه على 11 يكافئ $2022^{x-y} + y + 2$ ومنه $2022^{x-y} + y + 2$ قابلا للقسمة على 11 يكافئ $k \equiv 44\alpha + 19$ ومنه $k = 11\alpha + 4$ ومنه $k \equiv 4[11]: 3 \times 4k \equiv 3 \times 5[11]:$ وبالتالي $2022^{x-y} + y + 2$

$$y = 44\alpha + 19$$
 ($\alpha \in \mathbb{N}$) : ومنه $k = 11\alpha + 4$ فيكون $k = 4[11]$ ومنه $3 \times 4k = 3 \times 5[11]$ $y = 44\alpha + 19$: $d = 44\alpha + 19$

$$d \in \{1;5\}$$
 : فيكون $d \mid (4a-9b)$ ومنه $d \in \{1;5\}$ فيكون $d \mid (4a-9b)$ فيكون $d \in \{1;5\}$ فيكون $d \mid (4a-9b)$

$$a \in \{1,3\}$$
 . لا المحاد الطبيعية $a \mid (4a - 9b)$. $a \mid (4a - 9b$

 $\begin{cases} 5 \mid (9n+8) \\ 5 \mid 2(4n+3) \end{cases}$: ومنه : $\begin{cases} 5 \mid (9n+8) \\ 5 \mid (4n+3) \end{cases}$: ومنه : $\begin{cases} 5 \mid a \\ 5 \mid b \end{cases}$ ومنه : $\begin{cases} 5 \mid a \\ 5 \mid b \end{cases}$ ومنه : $\begin{cases} 5 \mid a \\ 5 \mid b \end{cases}$ $eta\in\mathbb{N}^*_{rac{8}{68}}$ نستنتج أن : [(n+2)+3)+(9n+8)

(4 + 1) أ) تبيان أن العددين A و B يقبلان القسمة على (4 + 1) العددين (4 + 1) العددين (4 + 1) العددين (4 + 1)

$$B=4n^2+7n+3=(n+1)(4n+3)$$
 و $A=9n^2+17n+8=(n+1)(9n+8)$: لدينا $A=9n^2+17n+8=(n+1)(9n+8)$ نستنتج أن كلا من العددين A و B يقبل القسمة على $(n+1)$

(B) : (B)

 $PGCD\left(A\;;B\;
ight)=(n+1) imes 5=5(n+1):$ ومنه d=5 ومنه $eta\in\mathbb{N}^*$ مع $eta\in\mathbb{N}^*$ بكون d=5 ومنه d=1 ومنه d=1 ومنه $\beta\in\mathbb{N}^*$ مع $\beta\in\mathbb{N}^*$ مع $\beta\in\mathbb{N}^*$ بكون $\beta\in\mathbb{N}^*$ ومنه $\beta\in\mathbb{N}^*$

حل النشاط 13:

11 أ) دراسة بواقي القسمة الإقليدية للعدد 9^n على 11

5k + 4	5k + 3	5k + 2	5k + 1	5 <i>k</i>	n
5	3	4	9	1	البواقي

 $(k \in \mathbb{N})$ في هذا الجدول (

• استنتاج باقى القسمة الإقليدية للعدد 2022 2023 على 11 :

$$2023 = 5k + 3$$
 : ولدينا $2022 = 9^{2023} = 9^{2023}$ [11] : ومنه $2022 = 9$ [11] : لدينا

3 فيكون : [11] 3 على 11 هو 3 أي أن باقي القسمة الإقليدية للعدد 2022^{2023} على 11 هو 3

$$:\begin{cases} n = 1444[5] \\ 3n + 2022^n \end{cases}$$

$$2022^n \equiv 2973[11]$$

$$n = 1444[5]$$
 : $\begin{cases} n = 1444[5] \\ 3n + 2022^n = 2973[11] \end{cases}$ $n = 4[5]$: $n = 4[5]$: $n = 1444[5]$: $n = 14$

$$5k + 4$$
 : eultiles $\begin{cases} n = 5k + 4 \\ 0 = 5k \end{cases}$

$$\begin{cases}
n = 5k + 4 \\
k = 2[11]
\end{cases}$$
: وبالتالي : $\begin{cases}
n = 5k + 4 \\
4k = 8[11]
\end{cases}$ وعليه فإن : $\begin{cases}
n = 5k + 4 \\
3(5k + 4) + 9^{5k + 4} = 3[11]
\end{cases}$

$$k = 2[11]$$
 $4k = 8[11]$

 $k' \in \mathbb{N}$ مع n = 55k' + 14 : فيكون k = 11k' + 2 مع $k \equiv 2[11]$ من العلاقة : $v_0=2$ وحدّها الأول q=9 أي متتالية هندسية أساسها q=9 وحدّها الأول (v_n) (أ

 $u_n = \frac{1}{4}v_n + 2n - \frac{1}{2} = \frac{1}{2} \times 9^n + 2n - \frac{1}{2}$ $v_n = v_0 \times q^n = 2 \times 9^n$ (ب

$$S_n = u_0 + u_1 + \dots + u_n = \frac{1}{16} (9^{n+1} - 1) + \frac{1}{2} (n+1)(2n-1)$$
 (5)

$$= 16S_n - (4n+1)^2 - 5 \equiv 0$$
ب) تعیین قیّم $= n$ التی من أجلها یکون $= 16S_n - (4n+1)^2 - 5 \equiv 0$

$$9^{n+1} \equiv 4[11]$$
 يكافئ $16S_n - (4n+1)^2 - 5 \equiv 0[11]$

$$lpha \in \mathbb{N}$$
 مع $n=5lpha+1$: ويكون

إعداد تمرين اختبار في محور الأعداد والحساب

$$1444 = \overline{113310}^{4} = \overline{21234}^{5} = \overline{12404}^{6} = \overline{4132}^{7} = \overline{2644}^{8} = \overline{1874}^{9}$$

$$1444 = \overline{12404}^{6} = \overline{2644}^{8}$$

$$1444 = \overline{21234}^{5} = \overline{4132}^{7}$$

$$1444 = \overline{12404}^{6} = \overline{2644}^{8}$$

$$\lambda = \overline{1\beta\alpha \, 0\alpha}^{\,6} = \overline{\beta6\alpha\alpha}^{\,8}$$

النشاط 14:

. نعتبر المعادلة
$$(E): 28x-296$$
 خات المجهول $(x;y)$ حيث $(x;y)$ عددان صحيحان (1

 $\mathbb{Z} imes\mathbb{Z}$ و 28 ، ثم بيّن أن المعادلة (E) تقبل حلولا في $\mathbb{Z} imes\mathbb{Z}$

$$(E)$$
 المعادلة علول المعادلة $(x;y)$ حلا للمعادلة (E) فإن (E) فإن $(x;y)$ علول المعادلة المعادلة ((E)

الم عدد طبيعي يكتب $1etalpha\,0\,lpha\,$ في نظام التعداد الذي أساسه $1eta\,\alpha\,\alpha\,$ ويكتب $1eta\,6\,lpha\,\alpha\,\alpha\,$ في نظام التعداد الذي أساسه $1eta\,\alpha\,0\,\alpha\,$

. و كن العددين الطبيعيين lpha و eta ، ثم اكتب eta في النظام العشري .

1444 أ) حلل العدد 1444 إلى جداء عوامل أولية واستنتج الأعداد الطبيعية التي مربع كل منها يقسم 1444 (a;b) عين الثنائيات (a;b)من الأعداد الطبيعية التي تحقق : 1444 = $m^2 + 37d^2 = 1444$

$$m = PPCM(a;b)$$
 وَ $d = PGCD(a;b)$:

مفتش التربية الوطنية : بواب نورالدين

$$1444 = \overline{21234}^5 = \overline{4132}^7$$

$$\lambda = \overline{2\beta\alpha 34} = \overline{4\beta 3\alpha}$$

النشاط 15:

. نعتبر المعادلة y و x : عدان صحيحان دات المجهول x : x و x عدان صحيحان (1) دات المجهول (x ; y)

 $\mathbb{Z} imes \mathbb{Z}$ أ) جد القاسم المشترك الأكبر للعددين 76 و 26 ، ثم بيّن أن المعادلة (E) تقبل حلولا في

(E) بيّن أنه إذا كانت الثنائية (x;y) حلا للمعادلة (E) فإن (E) فإن (x;y) ثم استنج حلول المعادلة

م عدد طبيعي يكتب $\overline{2etalpha\,3\,4}$ في نظام التعداد الذي أساسه 5 ويكتب $\overline{4eta\,3\,\alpha}$ في نظام التعداد الذي أساسه 7 الماسه 7

. و كن العددين الطبيعيين lpha و eta ، ثم اكتب eta في النظام العشري

3) أ) حلل العدد 1444 إلى جداء عوامل أولية واستنتج الأعداد الطبيعية التي مربع كل منها يقسم 1444

 $m^2 + 37d^2 = 1444$: مين الثنائيات (a;b) من الأعداد الطبيعية التي تحقق (a;b) من الأعداد

$$m = PPCM(a;b)$$
 وَ $d = PGCD(a;b)$:

مفتش التربية الوطنية : بواب نورالدين

$$2023 = \overline{133213}^{4} = \overline{31043}^{5} = \overline{13211}^{6} = \overline{5620}^{7} = \overline{3747}^{8} = \overline{2687}^{9}$$

$$2023 = \overline{133213}^{4} = \overline{13211}^{6}$$

$$2023 = \overline{133213}^{4} = \overline{13211}^{6}$$

النشاط 16:

. نعتبر المعادلة (E): 20y =272 (x; y) نعتبر المعادلة (x; y) حيث 104x – 20y =272 (E) عددان صحيحان (1

 $\mathbb{Z} imes \mathbb{Z}$ أ) جد القاسم المشترك الأكبر للعددين 104 و 20 ، ثم بيّن أن المعادلة (E) تقبل حلولا في

(E) المعادلة (x;y) عانت الثنائية (x;y) حلا للمعادلة (E) فإن (E) فإن (E) ما ستنتج حلول المعادلة ((E)

هي يكتب $\frac{1 \alpha \alpha \beta 13}{1 - 100}$ في نظام التعداد الذي أساسه 4 ويكتب $\frac{1 \alpha \beta 11}{1 - 100}$ في نظام التعداد الذي أساسه λ

. و كن العددين الطبيعيين α و β ، ثم اكتب λ في النظام العشري .

2ab-2a-2b-2021=0 : من الأعداد الطبيعية التي تحقق (a;b) من الأعداد الطبيعية التي عيّن جميع الثنائيات

$2023 = \overline{133213}^{4} = \overline{13211}^{6}$

النشاط 17:

. نعتبر المعادلة
$$(E)$$
 عددان صحيحان ($(x;y)$ نعتبر المعادلة ((E) عددان صحيحان (1

 $Z \times Z$ و $Z \times Z$ عقبل حلولا في $Z \times Z$ عبين أن المعادلة (E) تقبل حلولا في $Z \times Z$

(E) عادلة علول المعادلة
$$(x;y)$$
 علا المعادلة (E) فإن (E) عادلة المعادلة علول المعادلة المعادلة (E)

لك عدد طبيعي يكتب
$$1 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$$
 في نظام التعداد الذي أساسه $1 \frac{1}{2} \frac{1}{2}$

$$2ab - 2a - 2b - 2021 = 0$$
 عين جميع الثنائيات $(a;b)$ من الأعداد الطبيعية التي تحقق $(a;b)$ من الأعداد الطبيعية التي تحقق $(a;b)$ عين جميع الثنائيات $(a;b)$ من الأعداد الطبيعية التربية الوطنية : بواب نورالدين