Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June 19, 2010 T

1. (3p) Integrate the following differential equations

(a)
$$y' = \frac{-x - x^3}{1 - x^3}$$

(a)
$$y' = \frac{-x - x^3}{y}$$

(b) $y' = \frac{-x - y^2}{y}$

and than find a first integral of each of it.

- 2. (2p) Let $\varphi:(-\varepsilon,\varepsilon)\to\mathbb{R}$ be some solution of the differential equation $y'=\frac{y-2}{1-x^2-y^2}$ (the unknown is the function denoted y of independent variable x, while $\varepsilon > 0$ is a positive constant). Decide whether or not the following situations are possible:
 - (a) $\varphi(0) = -2$ and φ is a strictly increasing function;
 - (b) $\varphi(0) = 2$ and φ is a strictly increasing function;
 - (c) $\varphi_1(0) = -2$ and $\varphi'_1(0) = 0$.
 - 3. (1.5p) Find the flow of the planar linear differential system:

$$\dot{x} = x + y, \quad \dot{y} = -2x + 4y.$$