traffic types

our goal

Test two Linux systems running OPC UA TSN under

- Realistic functional load (all traffic types & realistic CPU load)
- Periodic robustness test loads

Our definition of test loads:

- No Load no network load other than PTP and no CPU load other than cyclictest to establish max latencies
- Functional Load Data in 8 identified traffic types + reasonable CPU load (say 30 to 40%)
- Robustness Load Max functional data in 8 identified traffic types + above average CPU load (say 80%)
- Knock-out Load Load system using tools like stress-ng and flood pings, etc to crash the system and identify precautions to be taken in case of an automation system – for e.g. IO status

Future scope:

- Introduce switches, more nodes and more network topologies
- Introduce more hardware platforms

24x7x365 test setup

Oscilloscope connected to parallel ports of each system

T1 – UDP packet publish timestamp

T2 – tcpdump outgoing packet timestamp (not taken into account because it is not reliable)

T3 – tcpdump incoming packet timestamp

T4 – UDP packet subscribe timestamp

T5 – UDP loopback packet publish timestamp

T6 – tcpdump looped-back outgoing packet timestamp (not taken into account because it is not reliable)

T7 – tcpdump looped-back incoming packet timestamp

T8 – UDP loopback packet subscriber timestamp

4 traces to cross-check PTP

4 traces from Application on top of OPC UA Stack 2 TCP Dumps only capturing received packets

traces collected from test setup

- Oscilloscope in persistent mode
 - Helps us visually ensure that PTP & PHC2SYS are working in nano-sec accuracy
 - Helps us visually ensure that time-sync accuracy in user space (is about ± 20us today)
 - Helps us cross check the T4-T1 visually
- PTP
 - ptp4l logs on both systems (will not be available in master)
 - phc2sys logs on both systems
- Qbv
 - T3 (only Rx) 8 individual graphs + 1 graph showing all traffic
 - T7 (only Rx) 8 individual graphs + 1 graph showing all traffic
- Kernel & User Space
 - Long term jitter and max latency for each software/hardware interrupt (high precision timers, Rx, etc).
 - Log memory & CPU utilization
- Jitter on Rx
 - Long term 3d plots & gaussian plots on T3 & T7
- Latency on Rx
 - Long term 3d plots & gaussian plots on T4-T1 (end to end one way)
 - T3-T1 (needed until XDP eXpress Data Path comes in place)
 - T4-T3 (XDP)
 - T8-T1 (end to end round trip)

Jitter measurement in PTP using PTP logs (master offset) - 0 Outliers Removed

- The test was performed for 8 hours
- Jitter was observed to be between -320ns and +400ns

phc2sys on master

Jitter measurement in phc2sys in master side - 0 Outliers Removed

- The test was performed for 8 hours
- Jitter was observed to be between -1.1us and 1us

phc2sys on slave

Jitter measurement in phc2sys in slave side - 0 Outliers Removed

- The test was performed for 4 hours
- Jitter was observed to be between -560ns and +300ns

time synced user space applications

First priority: Achieve stable ±20us Second priority: Reduce from ±20us (PTP time sync is in itself in ±1us range)

jitter graphs that show tbs

standard normal distribution jitter in isochronous and cyclic publish

mean - 2500000(ns) sd - 133(ns)

Qbv graph

Number of frames: 100000

T3 - T1:

Max latency: 92.16us Job number: 299

T4 - T3:

Max latency: 114.4us Job number: 296

T4 – T1:

Max latency: 222.20us Job number: 290

OPC UA Subscribe latency

T4-T3 (Rx to Linux User)

All traces shown are taken using currently available Open Source implementations of OPC UA TSN

Global Open Source Eco-system

We are pioneering the creation of global OPC UA TSN open source eco-system to reduce entry barrier for customers and to reduce time-to-market for products

OPC UA

German Government stated Industry 4.0 initiative in 2014 and recommended OPC UA as the only standard for communication system in 2015

TSN

IEEE standards for Ethernet got their first major revision in 40 years, becoming time aware to enable new use-cases that aren't possible yet open62541 is maintained by

fortiss

Commercial support partners of open62541

Hardware and project participants of first project phase

Project participants of first project phase

thought leadership in industry 4.0

Open Source Eco-system for OPC UA TSN

Embedded World, Nuremberg 2018

IIC TSN Testbed 2018

Hannover Messe 2018

