1 Indirect Utility function

$$\max_{(x,y)\in\mathbb{R}^2_+} u(x,y)$$
s.t. $p_x x + p_y y \le M$

Solving the above probelm gives us the demand functions,

$$x^{d}(p_x, p_y, M)$$
$$y^{d}(p_x, p_y, M)$$

The indirect utility function is defined as

$$V(p_x, p_y, M) = u(x^d(p_x, p_y, M), y^d(p_x, p_y, M))$$

It gives us the optimal utility level at the price-income vector (p_x, p_y, M)

1.1 Properties of Indirect Utility function

- Indirect utility function is homogenous of degree 0 because demand is homogenous of degree 0.
- Indirect utility function is non-decreasing in income M and non-increasing in prices p_x, p_y because for m' > m'',

$$\mathcal{B}(p_x, p_y, M'') \subset \mathcal{B}(p_x, p_y, M')$$

and

$$v(p_x, p_y, M') \ge v(p_x, p_y, M'')$$

• Indirect utility function is quasi-convex.

we want to prove that $\{(p_x, p_y, M) \mid v(p_x, p_y, M) \leq \bar{v}\}$ is a convex set for all \bar{v}

Proof

Consider arbitrary \bar{v} and consider arbitrary $(p'_x, p'_y, M') \in A_{\bar{v}}$ and $(p''_x, p''_y, M'') \in A_{\bar{v}}$ and arbitrary $\lambda \in [0, 1]$ then we want to show

$$\lambda(p_x',p_y',M')+(1-\lambda)(p_x'',p_y'',M'')\in A_{\bar{v}}$$

In other words we want to show that

$$v(\lambda p'_x + (1-\lambda)p''_x, \ \lambda p'_y + (1-\lambda)p''_y, \ \lambda M' + (1-\lambda)M'') \le \bar{v}$$

we know that $v(p'_x, p'_y, M') \leq \bar{v}$ and $v(p''_x, p''_y, M'') \leq \bar{v}$

 $\mathcal{B}(\lambda p_x' + (1-\lambda)p_x'', \ \lambda p_y' + (1-\lambda)p_y'', \ \lambda M' + (1-\lambda)M'') \leq \bar{v} \text{ is our budget set.}$

and we know that this inequality holds,

$$(\lambda p'_x + (1 - \lambda)p''_x)x + (\lambda p'_y + (1 - \lambda)p''_y)y \le \lambda M' + (1 - \lambda)M''$$

This tells us that any choice from out budget set \mathcal{B} that satisfy the above inequality also satisfies either

$$p'_x x + p'_y y \le M'$$
 or $p''_x x + p''_y y \le M''$

this implies that

$$v(\lambda p'_x + (1 - \lambda)p''_x, \ \lambda p'_y + (1 - \lambda)p''_y, \ \lambda M' + (1 - \lambda)M'') \le \max(v(p'_x, p'_y, M'), v(p''_x, p''_y, M'')) \le \bar{v}$$

2 Expenditure Function

$$\min_{(x,y)\in\mathbb{R}_+^2} p_x x + p_y y$$

s.t. $u(x,y) \ge \bar{u}$

Solving the above expenditure minimization problem gives us the Hicksian demands,

$$x^h(p_x, p_y, \bar{u})$$
$$y^h(p_x, p_y, \bar{u})$$

and the expenditure function is defined as follows

$$e(p_x,p_y,\bar{u}) = p_x x^h(p_x,p_y,\bar{u}) + p_y y^h(p_x,p_y,\bar{u})$$

2.1 Properties of the Expenditure function

• The expenditure function is homogeneous of degree 1 in prices,

$$e(\lambda p_x, \lambda p_y, \mu) = \lambda e(p_x, p_y, \mu)$$

Note that the Hicksian demands are homogenous of degree 0 in prices because multiplying the objective in our expenditure minimization problem by λ , (where $\lambda > 0$) does not change the solution.

• The expenditure function is non-decreasing in μ and it is also non-decreasing in prices p_x, p_y .

we know that our expenditure minimization problem is

$$\min_{(x,y)\in\mathbb{R}_+^2} p_x x + p_y y$$
s.t. $u(x,y) \ge \bar{\mu}'$

Now consider another satisfaction level μ'' such that $\mu' > \mu''$

• The expenditure function is concave in prices.

2.1.1 Kuhn-Tucker Optimization Problems

$$\max_{(x,y)\in\mathbb{R}_{+}^{2}} \quad \sqrt{x} + \sqrt{y}$$

$$s.t. \quad p_{x}x + p_{y}y \leq M$$

$$x \geq 1$$

$$y \geq 1$$

Assume that $p_x + p_y < M$

$$\mathcal{L}(x,y) = \sqrt{x} + \sqrt{y} - \lambda(p_x x + p_y y - M) + \mu_x(x-1) + \mu_y(y-1)$$

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{1}{2\sqrt{x}} - \lambda p_x + \mu_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{1}{2\sqrt{y}} - \lambda p_y + \mu_y = 0$$

$$\lambda \ge 0, \quad p_x x + p_y y \le M, \quad \lambda(p_x x + p_y y - M) = 0$$

$$\mu_x \ge 0, \quad x \ge 1, \quad \mu_x(x-1) = 0$$

$$\mu_y \ge 0, \quad y \ge 1, \quad \mu_y(y-1) = 0$$

Now if $p_x x + p_y y < M$ then $\lambda = 0$ and $\mu_x < 0$ as well as $\mu_y < 0$ this rules out four of the eight possible cases.

Now we only check for the cases $p_x x + p_y y = M$

x = 1	x = 1	x > 1	x > 1
y=1	y > 1	y=1	y > 1
NP	$\mu_y = 0$		
	$y = \frac{\dot{M} - p_x}{p_y} > 1$		