Mitschrift zum **Basiskurs Mathematik**

bei Prof. Kreuzer im WS 16/17

author last change github Maximilian Reif <reifmaxi@fim.uni-passau.de>

March 4, 2017, version 0.6.0 www.github.com/lordreif

Contents

1	\mathbf{Rec}	hnen mit ganzen Zahlen 4
	1.1	Zahlensysteme
	1.2	Beispiele
	1.3	Division mit Rest
	1.4	Beispiele
	1.5	Vielfaches, Teiler, Primzahl
	1.6	Beispiele
	1.7	Fundamentalsatz der Arithmetik
	1.8	Beispiele
	1.9	ggT, kgV
	1.10	ggT/kgV durch Primfaktorenzerlegung 6
	1.11	Beispiele
	1.12	Teilbarkeitsregeln
	1.13	Beispiele
		Geschicktes Rechnen
	1.15	Rekursive Definition von ggT und kgV
	1.16	Unendlichkeitssatz der Primzahlen
2	Rec	hnen mit Brüchen und Reellen Zahlen 9
	2.1	Rechenregeln für Brüche
	2.2	Beispiele
	2.3	Potenzen
	2.4	Beispiele
	2.5	Rechenregeln für Potenzen
	2.6	Wurzeln
	2.7	Beispiele
	2.8	Irrationalitätsbeweis von $\sqrt{2}$ nach Euklid
3	\mathbf{Rec}	hnen mit Buchstaben 12
	3.1	Definition Term/Koeffizient/Monom/Polynom
	3.2	Rechenregeln für Polynome
	3.3	Beispiele und Formeln
	3.4	Rechenregeln für symbolische Berechnungen
	3.5	Der Grad
	3.6	Beispiele
	3.7	Rationale Funktion
	3.8	Bemerkung
	3.9	Beispiele
4	Line	eare und Quadratische Gleichungen 15
	4.1	Lineare Gleichungen
	4.2	Bemerkung

	4.3	Quadratische Gleichungen	15
	4.4	·	15
	4.5	<u>.</u> .	16
	4.6		16
	4.7	1	16
	4.8		16
	4.9	0 0	17
	4.10		- · L7
			18
5	Ung	leichungen 1	.9
	5.1	Definition	19
	5.2	Beispiele	19
	5.3	Rechenregeln für Ungleichungen	20
	5.4	Beispiel	20
	5.5	Bemerkung	20
	5.6	Beispiele	21
	5.7	Beispiel	21
	5.8	Betrag	21
	5.9	Beispiel	22
	5.10	Betragsungleichungen	22
	5.11	Dreiecksungleichung	22
			23
	5.13	Beispiel	23
6	Ebe	ne Geometrie 2	24
12	Kon	abinatorik 2	25
	12.1	Definition	25
	12.2	Satz: Die Gruppe S_n hat $n!$ Elemente	25
	12.3	Beispiel	25
	12.4		25
	12.5	Formel für die Binomialkoeffizienten	26
	12.6	Das Pascalsche Dreieck	26

1 Rechnen mit ganzen Zahlen

 $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ Menge der **natürlichen Zahlen** $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}$ Menge der **ganzen Zahlen**

1.1 Satz (Zahlensysteme)

Sei $b \in \mathbb{N}$ mit $b \geq 2$. (Die Zahl b heißt **Basis** des Zahlensystems) Dann gibt es zu jeder natürlichen Zahl $n \in \mathbb{N}$ eindeutig bestimmte Elemente $a_0, a_1, \ldots, a_k \in \{0, 1, \ldots, b-1\}$ sodass gilt:

$$n = a_0 + a_1 \cdot b + a_2 \cdot b^2 + \dots + a_k \cdot b^k$$
.

Die Zahlen a_0, \ldots, a_k heißen **Ziffern** von n in der Darstellung zur Basis b. Schreibweise: $n_{[b]} = a_k a_{k-1} \ldots a_1 a_0$ (fehlt [b] so ist [10] gemeint)

1.2 Beispiele

- Binärsystem, b=2 $5_{[10]}=101_{[2]}$ $101_{[10]}=64_{[10]}+32_{[10]}+4_{[10]}+1_{[10]}=1100101_{[2]}$
- Hexadezimal system, b=16 Notation: $10_{[10]}=A_{[16]},11_{[10]}=B_{[16]},\dots,15_{[10]}=F_{[16]}$ $101_{[10]}=5\cdot 16+5=55_{[16]}$ $1B3_{[16]}=256_{[10]}+11_{[10]}\cdot 16_{[10]}+3_{[10]}=435_{[10]}$

1.3 Satz (Division mit Rest)

Sei $n \in \mathbb{Z}$ und $m \in \mathbb{N}_+$.

Dann gibt es eine eindeutige Darstellung $n = q \cdot m + r$ mit $q \in \mathbb{Z}$ (genannt **Quotient**) und $r \in \{0, 1, \dots, m-1\}$ (genannt **Rest**).

$$\underline{\text{Schreibweise:}} \ n \equiv r \pmod{m}$$
 "ist kongruent"

1.4 Beispiele

• Die Zahl n = 87 soll durch m = 5 geteilt werden:

$$n = q \cdot m + r = 17 \cdot 5 + 2$$

• Die möglichen Reste bei der Division einer Quadratzahl durch 12 sind:

1.5 Definition (Vielfaches, Teiler, Primzahl)

- 1. Ist der Rest bei der Division von n durch m gleich Null, so heißt n ein **Vielfaches** von m und m ein **Teiler** von n.
- 2. Eine Zahl $n \geq 2$ heißt eine **Primzahl**, wenn sie nur zwei positive Teiler 1 und n besitzt.

1.6 Beispiele

- Die Teiler von 12 sind 1, 2, 3, 4, 6, 12.
- Die ersten Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19, ...

1.7 Satz (Fundamentalsatz der Arithmetik)

Sei $n \in \mathbb{N}_+$. Dann gibt es eine (bis auf die Reihenfolge) eindeutige Darstellung

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_n^{\alpha_n}$$

mit paarweise verschiedenen Primzahlen p_1, \ldots, p_k und $\alpha_i \in \mathbb{N}_+$. Diese Darstellung heißt **Primfaktorzerlegung** von n.

1.8 Beispiele

- $24 = 2^3 \cdot 3$
- $111 = 3 \cdot 37$

- $1011 = 7 \cdot 11 \cdot 13$
- $1024 = 2^10$
- $729 = 3^6$
- $625 = 5^4$

1.9 Definition (ggT, kgV)

Seien $a, b \in \mathbb{N}_+$.

- 1. Die größte positive ganze Zahl $g \in \mathbb{N}_+$ mit g|a und g|b heißt der **größte** gemeinsame Teiler (ggT) von a und b.
- 2. Die kleinste positive ganze Zahl $k \in \mathbb{N}_+$ mit a|k und b|k heißt das kleinste gemeinsame Vielfache (kgV) von a und b.

1.10 Satz (ggT/kgV durch Primfaktorenzerlegung)

Sei $a, b \in \mathbb{N}_+$ mit Primfaktorzerlegungen $a = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}$ und $b = p_1^{\beta_1} \cdot \ldots \cdot p_k^{\beta_k}$ mit $\alpha_i, \beta_i \geq 0$. Dann gilt:

- 1. $ggT(a,b) = p_1^{\gamma_1} \cdot p_2^{\gamma_2} \cdot \ldots \cdot p_k^{\gamma_k} \text{ mit } \gamma_i = min\{\alpha_i, \beta_i\}$
- 2. $kgV(a,b) = p_1^{\delta_1} \cdot p_2^{\delta_2} \cdot \ldots \cdot p_k^{\delta_k}$ mit $\delta_i = max\{\alpha_i, \beta_i\}$

1.11 Beispiele

- $ggT(30,75) = 2^0 \cdot 3^1 \cdot 5^1 = 15$, denn $30 = 2 \cdot 3 \cdot 5$ und $75 = 3 \cdot 5^2$
- ggT(64, 81) = 1, denn $64 = 2^6, 81 = 3^4$

1.12 Bemerkung (Teilbarkeitsregeln)

- 1. 2|n genau dann, wenn die Endziffer von n in $\{0, 2, 4, 6, 8\}$ ist.
- 2. 3|n genau dann, wenn die Quersumme(Qs) von n durch 3 Teilbar ist.
- 3. 4|n genau dann, wenn $4|(10a_1 + a_0)$.
- 4. 5|n genau dann, wenn $a_0 \in \{0,5\}$ gilt.
- 5. 6|n genau dann, wenn 2|n und 3|n.

- 6. 8|n genau dann, wenn $8|(100a_2 + 10a_1 + a_0)$.
- 7. 9|n genau dann, wenn 9|Qs(n).
- 8. 10|n genau dann, wenn $a_0 = 0$ gilt.
- 9. 11|n genau dann, wenn $11|(a_0 a_1 + a_2 + \cdots \pm a_k)$.
- 10. 12|n genau dann, wenn 3|n und 4|n.

1.13 Beispiele

- 9|123453
- 11|1232

1.14 Bemerkung (Geschicktes Rechnen)

- 1. Dritte binomische Formel: $(x-y)(x+y) = x^2 y^2$ plus Quadratzahlen
 - $13 \cdot 17 = 15^2 2^2 = 225 4 = 221$
 - $23 \cdot 25 = 576 1 = 575$
 - $27 \cdot 33 = 900 9 = 891$
- 2. Multiplikation durch Umsortierung der Primfaktoren
 - $8 \cdot 375 = 8 \cdot 3 \cdot 125 = 10^3 \cdot 3 = 3000$
 - $40 \cdot 75 = 4 \cdot 10 \cdot 3 \cdot 25 = 3000$
- 3. Quadrieren mittels erster binomischer Formel: $(x+y)^2 = x^2 + 2xy + y^2$
 - $43^2 = 40^2 + 2 \cdot 3 \cdot 40 + 9 = 1600 + 240 + 9 = 1849$
 - $98^2 \cdot (100 2)^2 = 10000 400 + 4 = 9604$

1.15 Definition (Rekursive Definition von ggT und kgV)

Für $n \geq 2$ und $a_0, \ldots, a_n \in \mathbb{N}_+$ gilt:

- $ggT(a_1, a_2, \dots, a_n) = ggT(ggT(a_1, a_2, \dots, a_{n-1}), a_n)$
- $kgV(a_1, a_2, \dots, a_n) = kgV(kgV(a_1, a_2, \dots, a_{n-1}), a_n)$

1.16 Satz: Es gibt unendlich viele Primzahlen

BEWEIS. Angenommen es gibt nur endlich viele Primzahlen p_1, p_2, \ldots, p_k . Dann betrachte die Primfaktorenzerlegung von $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1$. Die Zahlen p_1, p_2, \ldots, p_k teilen n nicht, sondern lassen den Rest 1. Also sind p_1, p_2, \ldots, p_k nicht alle Primzahlen.

blitz, qed

2 Rechnen mit Brüchen und Reellen Zahlen

 $\mathbb{Q}=\left\{\frac{a}{b}|a\in\mathbb{Z},b\in\mathbb{N}_{+}\right\}$ Menge der rationalen Zahlen

2.1 Bemerkung (Rechenregeln für Brüche)

Für alle $a, c \in \mathbb{Z}$ und $b, c \in \mathbb{N}_+$ gilt:

1. (Gleichheit von Brüchen)

$$\frac{a}{b} = \frac{c}{d}$$
 genau dann wenn $ad = bc$

Beispiel: $\frac{3}{6} = \frac{1}{2}$

Kürzen von Brüchen:

$$\frac{a \cdot n}{b \cdot n} = \frac{a}{b} \text{ für alle } n \in \mathbb{N}_+$$

2. (Addition/Subtraktion von Brüchen)

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = \frac{a \cdot \tilde{b} + c \cdot \tilde{d}}{kgV(b,d)}$$

mit $\tilde{b} = \frac{kgV(b,d)}{b}$ und $\tilde{d} = \frac{kgV(b,d)}{d}$.

Beispiele:
$$\frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}, \frac{7}{30} + \frac{11}{45} = \frac{22}{90} + \frac{22}{90} = \frac{43}{90}$$

3. (Multiplikation von Brüchen)

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

4. (Division von Brüchen/Doppelbrüche) Sei nun $c \neq 0$. Dann gilt:

$$\frac{\frac{a}{b}}{\frac{c}{a}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

5. (Kehrwert eines Bruchs)

$$\left(\frac{a}{b}\right)^{-1} = \frac{1}{\frac{a}{b}} = \frac{b}{a} \text{ falls } a \in \mathbb{Z} \backslash \{0\}$$

2.2 Beispiele

1. Für $n \ge 1$ gilt

$$\frac{1}{m} - \frac{1}{m-1} = \frac{m+1}{m(m+1)} - \frac{m}{m(m+1)} = \frac{1}{m(m+1)},$$

also zB $\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$.

- 2. $\frac{1}{2} + \frac{1}{4} = \frac{3}{4}$
 - $\bullet \ \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$
 - $\bullet \ \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}$
 - $\bullet \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n 1}{2^n}$

2.3 Definition (Potenzen)

1. Sei $a \in \mathbb{R}$. Dann definiere $a^0 = 1, a^1 = a, a^2 = a^1 \cdot a = a \cdot a$ etc. Für $n \ge 1$ sei also $a^n = a^{n-1} \cdot a = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-mal}$.

Die Zahl a^n heißt die n-te Potenz von a.

2. Sei $a \in \mathbb{R}$ mit $a \neq 0$. Für n = -k mit $k \geq 1$ setze $a^n = a^{-k} = \frac{1}{a^k}$.

2.4 Beispiele

- $343 = 7^3 x$
- $2^{-3} = \frac{1}{2^3} = \frac{1}{8} = 0,125$
- $\bullet \ a^{-2} = \frac{1}{a^2}$
- $3^6 = 9^3 = 729$

2.5 Bemerkung (Rechenregeln für Potenzen)

Für $a, b \in \mathbb{R}$ und $k, l \in \mathbb{Z}$ gilt:

- $1. \ a^k \cdot b^k = (ab)^k$
- $2. \ a^k \cdot a^l = a^{k+l}$
- $3. \left(a^k\right)^l = a^{kl}$
- 4. $\frac{a^k}{a^l} = a^{k-l}$ falls $a \neq 0$

5.
$$\left(\frac{a}{b}\right)^k = \frac{a^k}{b^k}$$
 falls $b \neq 0$

2.6 Definition (Wurzeln)

- 1. Sei $a \in \mathbb{R}_+ = \{a \in \mathbb{R} | a > 0\}$ und $k \in \mathbb{N}_+$. Dann gibt es genau ein $b \in \mathbb{R}_+$ mit $b^k = a$. Diese Zahl b heißt die k-te Wurzel von a und wird mit $b = \sqrt[k]{a}$ bezeichnet. Im Fall k = 2 schreiben wir auch einfach $b = \sqrt{a}$. ("Quadratwurzel")
- 2. Für $a \in \mathbb{R}_+$ und $m, n \in \mathbb{N}_+$ setzen wir $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Insbesondere sei also $a^{\frac{1}{m}} = \sqrt[m]{a}$. Mit dieser Definition gelten die Rechenregeln für Potenzen auch für rationale Exponenten. Insbesondere sei $a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}}$.

2.7 Beispiele

- $\sqrt[3]{24} = \sqrt{2^3 \cdot 3} = \sqrt[3]{2^3} \cdot \sqrt[3]{3} = 2 \cdot \sqrt[3]{3}$
- $\sqrt[3]{216} = 6$
- $\sqrt{484} = 22$
- $\sqrt{\frac{36}{121}} = \frac{6}{11}$
- $\sqrt{6} \cdot \sqrt{3} = \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{3} = 3\sqrt{2}$

2.8 Satz (Euklid)

Behauptung. $\sqrt{2}$ ist keine rationale Zahl.

Beweis. Angenommen $\sqrt{2}$ wäre rational.

Dann gäbe es $a, b \in \mathbb{N}_+$ mit $\sqrt{2} = \frac{a}{b}$.

Durch Kürzen können wir annehmen, dass ggT(a,b) = 1 g Blitz, qed

Durch Quaddrieren folgt $2 = \frac{a^2}{b^2}$, also $2b^2 = a^2$.

Da a^2 gerade ist, muss auch a gerade sein, das heißt $\exists c \in \mathbb{N}_+$ mit a = 2c.

Einsetzen liefert $2b^2 = (2c)^2 \Leftrightarrow b^2 = 2c^2$.

Somit muss auch b gerade sein. BLITZ zu ggT(a,b)=1.

3 Rechnen mit Buchstaben

Seien a, b, c, \ldots Buchstabensymbole.

FRAGE. Was ist $(x-a) \cdot (x-b) \cdot (x-c) \cdot \cdots \cdot (x-z)$?

HINWEIS. Betrachte den 24. Faktor!

3.1 Definition

1. Ein Produkt der Form $(a^{n_a} \cdot b^{n_b} \cdot c^{n_c} \dots)$ mit $n_a, n_b, n_c, \dots \in \mathbb{N}$ heißt **Term**.

Beachte: $a^2bc = caba = acab$ etc. (Kommutativgesetz)

- 2. Ein Ausdruck der Form $c \cdot t$ mit einem **Koeffizienten** $c \in \mathbb{R}$ und einem Term t heißt **Monom**.
- 3. Eine entliche Summe von Monomen heißt Polynom.

3.2 Bemerkung (Rechenregeln für Polynome)

Seien f, g, h, \ldots Polynome.

1. Distributivgesetze:

$$f \cdot (g+h) = f \cdot g + f \cdot h$$
 (bedeutet $(f \cdot g) + (f \cdot h)$ "Punkt vor Strich") $(f+g) \cdot h = f \cdot h + g \cdot h$

2. Kommutativgesetz:

$$f \cdot g = g \cdot f, \quad f + g = g + f$$

3. Assoziativgesetz:

$$(f \cdot g) \cdot h = f \cdot (g \cdot h), \quad (f+g) + h = f + (g+h)$$

Die Klammern können auch ganz weggelassen werden.

4. Prioritätsregel: Exponent vor Punkt vor Strich!

$$f^2q + h = ((f \cdot f) \cdot q) + h$$

Gänsefüßchen

3.3 Beispiele

1. (Erste binomische Formel)

$$(a+b)^2 = a^2 + 2ab + b^2$$

2. (Zweite binomische Formel)

$$(a-b)^2 = a^2 - 2ab + b^2$$

3. (Dritte binomische Formel)

$$(a+b) \cdot (a-b) = a^2 - b^2$$

4. (Teleskopsumme)

$$1 - a^{n+1} = (1 + a + a^2 + a^3 + \dots + a^n) \cdot (1 - a)$$

5.
$$1+a^n = (1-a+a^2-a^3+\cdots+a^{n-3}-a^{n-2}+a^{n-1})\cdot(1+a)$$
 falls n ungerade

6.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

7.
$$a^n + b^n = (a+b) \cdot (a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \cdots + b^{n-1})$$
 falls n ungerade

8.
$$a^3 + b^3 = (a+b) \cdot (a^2 - ab + b^2)$$

3.4 Bemerkung (Rechenregeln für symbolische Berechnungen)

1.

$$(-1)(-1) = 1$$

 $(-1)(+1) = -1$
 $(-x)(-y) = xy$

2. (Ausklammern)

Man kann die Distributivgesetze oft "andersherum" anwenden:

$$ab + a + b + 1 = a \cdot (b+1) + (b+1) = (a+1)(b+1)$$

 $x^2 + 3x + 2 = (x+1)(x+2)$ (Vieta)

Gänsefüsche Link to

3.5 Definition

- 1. Ist $t = x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}$ ein Term, so heißt $deg(t) = \alpha_1 + \ldots + \alpha_n$ der **Grad** von t.
- 2. Ist $f = c_1t_1 + \ldots + c_st_s$ ein Polynom mit $c_1 \neq 0, \ldots, c_s \neq 0$ so heißt $deg(f) = max\{deg(t_1), \ldots, deg(t_s)\}$ der **Grad** von f.
- 3. Ist $f = c_1t_1 + \ldots + c_st_s$ ein Polynom mit $c_1 \neq 0, \ldots, c_s \neq 0$ und gilt $deg(t_1) = \ldots = deg(t_s)$, so heißt f ein homogenes Polynom.

3.6 Beispiele

- Das Polynom $f = x^3 + y^3$ ist homogen vom Grad 3.
- Das Polynom $p = x^4 + 4y^4$ ist homogen vom Grad 4.

3.7 Definition

Seien f, g Polynome mit $g \neq 0$. Dann heißt $\frac{f}{g}$ eine **rationale Funktion**.

3.8 Bemerkung

Man kann mit rationalen Funktionen entsprechend der Bruchregeln rechnen.

3.9 Beispiele

- $\frac{1}{x-1} \frac{1}{x+1} = \frac{(x+1)-(x-1)}{x^2-1} = \frac{2}{x^2-1}$
- $\bullet \ \frac{x}{y} \frac{y}{x} = \frac{x^2 y^2}{xy}$
- $\frac{x^2 y^2}{x + y} = \frac{(x y)(x + y)}{x + y} = x y$

4 Lineare und Quadratische Gleichungen

4.1 Definition

Eine Gleichung der Form ax + b = 0 mit Zahlen a, b und $a \neq 0$ heißt eine **lineare Gleichung** mit einer Unbestimmten.

4.2 Bemerkung

Die Lösung einer Gleichung ax + b = 0 ist $x_1 = -\frac{b}{a}$ (falls $a \neq 0$). Die Menge $L = \{-\frac{b}{a}\}$ heißt die **Lösungsmenge** der Gleichung. (Wenn $\frac{1}{a}$ nicht definiert ist, so gilt $L = \emptyset$.)

4.3 Definition

Seien a, b, c Zahlen mit $a \neq 0$. Dann heißt $ax^2 + bx + c = 0$ eine **quadratische** Gleichung mit einer Unbestimmten.

4.4 Bemerkung (Lösen einer quadratischen Gleichung über \mathbb{R}/\mathbb{C})

R/Q fett

1. Schritt: Wegen $a \neq 0$ kann man durch a teilen und erhält: $x^2 + px + q = 0 \text{ mit } p = \frac{b}{a}, q = \frac{c}{a}$

2. Schritt: (quadratische Ergänzung) $\left(x+\tfrac{p}{2}\right)^2 - \tfrac{p^2}{4} + q = 0$

3. Schritt: (Wurzel ziehen) $(x+\frac{p}{2})^2 = \frac{p^2}{4} - q = \frac{p^2-4q}{4}$ Ist $p^2-4q<0$, so gibt es in $\mathbb R$ keine Lösung. Ansonsten: $x+\frac{p}{2}=\pm\frac{1}{2}\sqrt{p^2-4q}$

Die Lösungen sind also $x_1 = -\frac{p}{2} + \frac{1}{2}\sqrt{p^2 - 4q}$ und $x_1 = -\frac{p}{2} - \frac{1}{2}\sqrt{p^2 - 4q}$

15

Die Zahl $\Delta=p^2-4q$ heißt die **Diskriminante** der Gleichung.

4.5 Satz (Vieta)

Seien $x_1.x_2$ die Lösungen einer quadratischen Gleichung $x^2 + px + q = 0$. Dann gilt: $x_1 + x_2 = -p$ und $x_1 \cdot x_2 = q$.

BEWEIS. Sind x_1, x_2 die Lösungen, so gilt:

$$(x - x_1)(x - x_1) = 0$$
 und somit $x^2 - x_1x - x_2x + x_1x_2 = 0$,
also $x^2 - (x_1 + x_2)x + (x_1x_2) = 0$.

ANWENDUNG: Um $x^2 + px + q = 0$ zu lösen, finde zwei Zahlen mit Summe -p und Produkt q.

centering,

4.6 Beispiele

- $x^2 3x + 2 = 0$ hat die Lösungen $x_1 = 1$ und $x_2 = 2$.
- $x^2 4x + 3, L = \{1, 3\}$
- $x^2 + 3x + 2, L = \{-1, -2\}$
- $x^2 + x 2, L = \{1, -2\}$

4.7 Bemerkung (Substitution)

Manchmal kann man eine Gleichung durch eine geschickte **Substitution** lösen.

- Löse $x^4 7x^2 + 10$ in \mathbb{R} . Setze $y = x^2$. Erhalte $y^2 - 7y + 12 = 0$ mit $L = \{3, 4\}$ und somit $x_{1/2} = \pm \sqrt{3}, x_{3/4} = \pm 2$.
- Löse $x 18\sqrt{x} + 17 = 0$ in \mathbb{R} . Setze $y = \sqrt{x}$. Erhalte $y^2 - 18y + 17 = 0$ mit $L = \{1, 17\}$, also $\sqrt{x} = 1$ und $\sqrt{x} = 17$. Somit sind $x_1 = 1$ und $x_2 = 289$.

4.8 Bemerkung (Lineares Gleichungssystem)

Gegeben seien Zahlen $a_1, a_2, b_1, b_2, c_1, c_2$ mit $a_1b_1 - a_2b_2 \neq 0$. Dann heißt $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$ ein **lineares Gleichungssystem** mit zwei Unbestimmten x, y. 1. Lösungsmethode "Einsetzen" Ist $a_1 \neq 0$, so wird $x = -\frac{b_1}{a_1}y - \frac{c_1}{a_1}$. Setze dies in die zweite Gleichung ein und erhalte $a_2\left(-\frac{b_1}{a_1}y - \frac{c_1}{a_1}\right) + b_2y + c = 0$. Löse diese lineare Gleichung und erhalte y_1 . Dann gilt $x_1 = -\frac{b_1}{a_2}y_1 - \frac{c_1}{a_1}$. $L = \{(x_1, y_1)\}$.

Sonderfall: y hebt sich in der ersetzten Gleichung auf: $a_2 \cdot \left(-\frac{b_1}{a_1}\right) + b_2 = 0$, also $\frac{-a_2b_1 + a_1b_2}{a_1} = 0$ und somit $a_1b_2 - a_2c_1 = 0$.

In diesem Fall lautet die ersetzte Gleichung: $a_2\left(-\frac{c_1}{a_1}\right) + c_2 = 0$, also $\frac{-a_2c_1 + a_1c_1}{a_1} = 0$ und somit $a_1c_2 - a_2c_1 = 0$

Es gibt zwei Möglichkeiten:

- (a) $a_1c_2 a_2c_1 \neq 0 \Rightarrow L = \emptyset$
- (b) $a_1c_2 a_2c_1 = 0 \Rightarrow y$ beliebig, $x = -\frac{b_1}{a_1}y \frac{c_1}{a_1}$ Somit gilt: $L = \left\{ \left(-\frac{b_1}{a_1} \cdot \lambda - \frac{c_1}{a_1}, \lambda \right) \middle| \lambda \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$
- 2. Lösungsmethode "Inderreduzieren", "Gauß-Verfahren"

 <u>Ziel:</u> Bilde Linearkombinationen der beiden Gleichungen, in denen nur eine der beiden Unbestimmten vorkommt.

Gänsefüßchen

4.9 Beispiel

$$\text{L\"{o}se} \left\{ \begin{array}{ll} 2x + 5y = 9 & \text{(I)} \\ 3x - 4y = 2 & \text{(II)} \end{array} \right.$$

 $3\cdot(I)-2\cdot(II)$: 15y+8y=27-4 liefert y=1. Einsetzen von y=1 in (II) ergibt $3x=6\Leftrightarrow x=2\Rightarrow L=\{(2,1)\}$.

4.10 Beispiel (Schnittpunkt von zwei Kreisen)

 $x^2 + y^2 - 4x - 4y = 0 K_2$

Gleichung $K_1 - K_2$: 6x - 2y + 6 = 0, also y = 3x + 3. Setze dies in K_1 (oder K_2) ein: $x^2 + (3x + 3)^2 + 2x - 6 \cdot (3x + 1) + 1 = 0$.

Liefert:
$$x_1 = -1$$
, $x_2 = \frac{4}{5}$, also $y_1 = 0$, $y_2 = \frac{27}{5} \Rightarrow L = \{(-1,0), (\frac{4}{5}, \frac{27}{5})\}$

4.11 Aufgabe (Aus einem alten chinesischem Rechenbuch)

In einem Stall sind Hühner und Schweine. Es sind 40 Tiere. Zusammen haben sie 70 Füße.

Wie viele Tiere von jeder Sorte sind es?

5 Ungleichungen

Seien f, g Polynome in Unbestimmten x_1, x_2, \ldots, x_n (oder x, y, z) mit Koeffizienten aus \mathbb{R} .

5.1 Definition

Es gibt 5 Typen von Ungleichungen:

- 1. $f \leq g$
- $2. f \geq g$
- 3. f < g
- 4. f > g
- 5. $f \neq g$

Interpretation: $f \leq g$ bedeutet, dass die Ungleichung gelten soll, wenn man für x_1, \ldots, x_n Zahlen (aus einem Definitionsbereich $D \subseteq \mathbb{R}^n$) einsetzt.

5.2 Beispiele

- Für $x \in \mathbb{R}$ gilt: $x^2 \ge 0$.
- Für $x, y \in \mathbb{R}$ gilt: $x^2 + y^2 \ge 2xy$

Beweis.

$$(x - y)^{2} \ge 0$$

$$\Leftrightarrow x^{2} - 2xy + y^{2} \ge 0$$

$$\Leftrightarrow x^{2} + y^{2} \ge 2xy$$

FOLGERUNG: Für $x, y \ge 0$ gilt: \sqrt{xy} $\le \sqrt{\frac{x^2 + y^2}{2}}$ geometrisches Mittel

• Arithmetisches Mittel: $\frac{x+y}{2} \le \sqrt{xy}$

5.3 Bemerkung (Rechenregeln für Ungleichungen)

- 1. $f \leq g$ ist äquivalent mit $g \geq f$
 - f < g ist äquivalent mit g > f
 - $f \leq g$ ist äquivalent mit [f < g oder f = g]
 - $f \neq g$ ist äquivalent mit [f < g oder f > g]
- 2. Sei h ein weiteres Polynom. Dann ist $f \leq g$ äquivalent mit $f + h \leq g + h$.
- 3. $f \leq g$ ist äquivalent mit $-f \geq -g$
- 4. Gilt $f \leq g$ und $h \geq 0$ so folgt $f \cdot h \leq g \cdot h$ Gilt $f \leq g$ und $h \leq 0$ so folgt $f \cdot h \geq g \cdot h$
- 5. Für $0 < f \le g$ gilt $0 < \frac{1}{g} \le \frac{1}{f}$

Eine Ungleichung zu lösen bedeutet, alle $(x_1, \ldots, x_n) \in \mathbb{R}^n$ zu finden, für die die Ungleichung gilt.

5.4 Beispiel

$$\text{L\"{o}se } \left\{ \begin{array}{l} 3x - 4y \le 1 & \text{(I)} \\ x + y \ge 2 & \text{(II)} \end{array} \right..$$

Skizze:

$$\frac{\text{(II)':} \quad -x - y \ge -2}{\text{(I)+3(II)':} \quad -7y \le 5 \Rightarrow y \ge \frac{5}{7}} \\
\frac{\text{aus (II):} \quad x \ge 2 - y}{\text{aus (I):} \quad y \le \frac{1}{3} + \frac{4}{3}y}$$
Es folgt: $L = \{(x,y) \in \mathbb{R}^2 | y \ge \frac{5}{7} \land 2 - y \le x \le \frac{1}{3} + \frac{4}{3}y\}$

5.5 Bemerkung

Ist $h : \mathbb{R} \to \mathbb{R}$ monoton steigend, (das heißt aus $x \leq y$ folgt $h(x) \leq h(y)$,) so gilt:

$$\text{Aus } f \leq g \text{ folgt } h \circ f \leq h \circ g. \\ \overset{\uparrow}{\underset{\text{Komposition}}{\text{Komposition}}}$$

5.6 Beispiele

- Die Funktion $h: \mathbb{R}_0^+ \to \mathbb{R}_0^+, x \mapsto \sqrt{x}$ ist monoton steigend. Somit folgt aus $0 \le f \le g$ die Ungleichung $0 \le \sqrt{f} \le \sqrt{g}$.
- Die Abbildung $\ln : \mathbb{R}_+ \to \mathbb{R}, x \mapsto \ln(x)$ ist monoton steigend. Aus $0 \le f \le g$ die Ungleichung $0 \le \ln(f) \le \ln(g)$.

5.7 Beispiel

Löse die Ungleichung $x^2 - \frac{1}{2}x - \frac{1}{2} \ge 0$ in \mathbb{R} .

Quadratische Ergänzung:

$$\left(x - \frac{1}{4}\right)^2 \ge \frac{1}{2} + \frac{1}{16} = \frac{9}{16}$$

Fallunterscheidung!

1. Fall: $x - \frac{1}{4} \ge 0$: Wurzelziehen ist erlaubt. ...und liefert: $x - \frac{1}{4}$, also $x \ge 1$.

Die Lösungsmenge im 1. Fall ist also: $L_1 = \{x \in \mathbb{R} | x \geq \frac{1}{4} \land x \geq 1\} = \{x \in \mathbb{R} | x \geq 1\}$

2. Fall: $x-\frac14<0$, also $\frac14-x>0$ Die Ungleichung $(\frac14-x)^2\geq\frac9{16}$ liefert $\frac14-x\geq\frac34$, also $x\leq-\frac12$

Anmerkung des Autors: in der Klammer wurde -1 ausgeklammert, da diese beim Quadrieren belanglos ist. Eine (einfachere) Alternative ist 5.9.

Dies zeigt $L_2 = \{x \in \mathbb{R} | x < \frac{1}{4} \land x \le -\frac{1}{2}\} = \{x \in \mathbb{R} | x \le -\frac{1}{2}\}$

Insgesamt ergibt sich die Lösungsmenge $L = L_1 \cup L_2 = \{x \in \mathbb{R} | x \ge 1 \lor x \le -\frac{1}{2}\}.$

5.8 Definition

Für jedes $x \in \mathbb{R}$ heißt

 $|x|\begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$ der (Absolut-)Betrag von x.

5.9 Beispiel

Im letzten Beispiel folgt aus $\left(x-\frac{1}{4}\right)^2$ die Ungleichung $|x-\frac{1}{4}|\geq \frac{3}{4}$

5.10 Beispiel

Löse die Ungleichung $|x+1| + |x-1| \le 2$.

Fallunterscheidung!

- 1. Fall: x < -1Die Ungleichung lautet $-(x+1) - (x-1) \le 2$ und somit $x \ge -1$. Dies liefert $L_1 = \emptyset$
- 2. Fall: $-1 \le x < 1$ Die Ungleichung lautet $(x+1) - (x-1) \le 2$ und somit $2 \le 2$. Somit folgt $L_2 = \{x \in \mathbb{R} | -1 \le x \le 1\}$
- 3. Fall: $x \ge 1$ Die Ungleichung lautet $(x+1)+(x-1) \le 2$ und somit $x \le 1$. Dies zeigt $L_3 = \{1\}$.

Insgesamt erhalten wir $L = L_1 \cup L_2 \cup L_3 = \{x \in \mathbb{R} | -1 \le x \le 1\}.$

5.11 Dreiecksungleichung

- 1. Für $x, y \in \mathbb{R}$ gilt: $|x + y| \le |x| + |y|$ (**Dreiecksungleichung**)
- 2. Es gilt für alle $x, y \in \mathbb{R}$ die umgekehrte Dreiecksungleichung: $||x| |y|| \le |x + y|$

BEWEIS.

- 1. Aus $xy \le |x| \cdot |y| = |xy|$ folgt $x^2 + 2xy + y^2 \le |x|^2 + 2|x||y| + |y|^2$, also $(x+y)^2 \le (|x|+|y|)^2$. Da |x+y|, |x| und |y| nicht negativ sind, ist Wurzelziehen erlaubt.
- 2. Nach 1. gilt $|x| \le |x+y| + |-y| = |(x+y)-y|$ und somit $|x+y| \ge |x| |y|$.

 Andererseits gilt, ebenfalls nach 1., die Ungleichung $|x+y-x| = |y| \le |x+y| + |-x| = |x+y| + |x|$ und somit $|x+y| \ge |y| |x|$.

Kombiniert man beide Erkenntnisse, so folgt $|x+y| \ge ||x|-|y||$.

qed

5.12 Beispiel

Löse
$$\sqrt{2x-1} < x+1$$
 für $x \in \mathbb{R}$.

Damit die Wurzel definiert ist, muss gelten $2x - 1 \ge 0$, also $x \ge \frac{1}{2}$. Dann ist die rechte Seite positiv und Quadrieren erlaubt.

Es folgt:
$$2x - 1 < x^2 + 2x + 1$$
, also $x^2 > -2$.

Insgesamt erhalten wir: $L = \{x \in \mathbb{R} | x \ge 0, 5\}.$

5.13 Beispiel

Löse
$$\sqrt{x^2+1} > x+1$$
 in \mathbb{R} .

- 1. Fall: x + 1 < 0. In diesem Fall gilt $\sqrt{x^2 + 1} > 0 > x + 1$, also $L_1 = \{x \in \mathbb{R} | x < -1\}$.
- 2. Fall: $x+1 \ge 0$.

 Jetzt ist Quadrieren eine Äquivalenzumformung und es folgt $x^2+1 > x^2+2x+1$, also x<0.

 Dies liefert $L_2=\{x\in\mathbb{R}|-1\ge x<0\}$.

Insegeamt folgt: $L = L_1 \cup L_2 = \{x \in \mathbb{R} | x < 0\}.$

6 Ebene Geometrie

12 Kombinatorik

Kombinatorik ist die Kunst des Zählens.

12.1 Definition

Seien a_1, \ldots, a_n paarweise verschiedene Objekte $(n \ge 1)$.

1. Eine Anordnung $(a_{i_1}, a_{i_2}, \dots, a_{i_n})$ mit $\{i_i, \dots, i_n\} = \{1, \dots, n\}$ heißt auch **Permutation** von a_1, \dots, a_n .

Schreibweisen:

$$\sigma = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_{i_1} & a_{i_2} & \dots & a_{i_n} \end{pmatrix} \text{ oder einfach } \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}.$$

Ohne Einschränkung betrachten wir also meißt die Permutationen der Menge $\{1, \ldots, n\}$.

2. Die Menge aller Permutationen von n Objekten heißt die **symmetrische** Gruppe S_n .

12.2 Satz: Die Gruppe S_n hat n! Elemente.

BEWEIS. Halte ein Element, zB a_n fest. Für die Bilder $\sigma(a_1)$ unter $\sigma \in S_n$ gibt es n Möglichkeiten, für $\sigma(a_2)$ gibt es dann noch n-1 Möglichkeiten usw.

Am Ende gibt es für $\sigma(a_n)$ nur noch 1 Auswahl. Insgesamt gibt es $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 = n!$ Permutationen.

qec

12.3 Beispiel: Wir ordnen Permutationen

Dieser Punkt wurde während der Ausführung gestrichen, da der Kentnissstand der Studierenden in Lineare Algebra nicht ausreichend war.

12.4 Definition

Gegeben seien n paarweise verschiedene Objekte a_1, \ldots, a_n .

1. Sei $0 \le m \le n$. Eine Teilmenge von $\{a_1, \ldots, a_n\}$ bestehend aus m Elementen heißt auch **Auswahl** von m Elementen.

2. Die Anzahl der Auswahlen von m Elementen aus $\{a_1, \ldots, a_n\}$ heißt der **Binomialkoeffizient** $\binom{n}{m}$.

12.5 Satz (Formel für die Binomialkoeffizienten)

Für
$$n \ge 1$$
 und $0 \le m \le n$ gilt: $\binom{n}{m} = \frac{n(n-1)(n-2)...(n-(m+n))}{1 \cdot 2 \cdot ... \cdot m} = \frac{n!}{m!(n-m)!}$ (mit $0! = 1$).

12.6 Bemerkung (Das Pascalsche Dreieck)

1. Die Binomialkoeffizienten erfüllen die Formel

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \text{ für } m \ge 1, n \ge 2.$$

2. Die Biomialkoeffizienten sind gegeben durch das Pascalsche Dreieck: