Lista nr 6 z matematyki dyskretnej

- 1. Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.
- 2. (D) Rozwiąż następujące zależności rekurencyjne:
 - (a) $a_0 = 0$, $a_1 = 4$, $a_n = 7a_{n-1} 12a_{n-2}$,
 - (b) $b_0 = 1$, $b_1 = 8$, $b_n = b_{n-1} b_{n-2}$.
- 3. (D) Rozwiąż następujące zależności rekurencyjne:

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|, \ a_0 = a_1 = 1,$$

(b)
$$b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, b_0 = 8,$$

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}, c_0 = 0, c_1 = 1.$$

- 4. Rozwiąż zależności rekurencyjne:
 - (a) $c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$
 - (b) $d_0 = 1, d_1 = 2, d_n = d_{n-1}^2 / d_{n-2}$.
- 5. (D) Wykaż, że iloczyn dowolnych kolejnych k liczb naturalnych jest podzielny przez k!.
- 6. Na ile sposobów można ułożyć domina na prostokącie o rozmiarze $2 \times n$?
- 7. (D) Udowodnij lub obal następujące stwierdzenie:

Liczba naturalna n dzieli się przez 3 wtw gdy suma jej cyfr w zapisie dziesiętnym jest podzielna przez 3.

A gdybyśmy mieli do czynienia z zapisem szesnastkowym?

8. Czy dla podzielności przez 11 istnieje reguła podobnego typu do tej z poprzedniego zadania?

Czy ma ona coś wspólnego z regułą sprawdzania podzielności przez 3 liczby zapisanej w systemie dwójkowym?

- 9. (D) Wyprowadź zależność rekurencyjną dla liczby nieporządków: $d_{n+1} = n(d_n + d_{n-1})$. Jakie należy przyjąć warunki początkowe dla tej zależności?
- 10. Ile jest różnych sposobów wejścia po schodach zbudowanych z n stopni, jeśli w każdym kroku można pokonać jeden lub dwa stopnie?
- 11. Rozwiąż zależność rekurencyjną

 $a_n^2=2a_{n-1}^2+1$ z warunkiem początkowym $a_0=2$ i założeniem, że $a_n>0$ dla każdego naturalnego n.

- 12. Znajdź wzór jawny na n-ty wyraz ciągu określonego rekurencyjnie: $a_0=1, a_1=8, a_n=4a_{n-1}-4a_{n-2}$ dla n>1.
- 13. (D) Rozwiąż równanie rekurencyjne $a_n + 5a_{n-1} + 6a_{n-2} = 3n^2$, jeśli $a_0 = 1, a_1 = 4$.
- 14. (D) Niech A(x) będzie funkcją tworzącą ciągu a_n . Pokaż, że funkcją tworząca ciągu b_n postaci $(0,0,\ldots,0,a_0,a_1,a_2,\ldots)$, takiego, że $b_{k+i}=a_i$ oraz $b_0=\ldots=b_{k-1}=0$ jest funkcja $x^kA(x)$.

A jak otrzymać funkcję tworzącą ciągu c_n postaci $(a_k, a_{k+1}, \ldots,)$, czyli takiego, że $c_i = a_{k+i}$?

- 15. (D) Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzących dla następujących ciągów:
 - (a) $b_n = na_n$
 - (b) $c_n = a_n/n$
 - (c) $s_n = a_0 + a_1 + a_2 + \ldots + a_n$.

Wskazówka: Rozważ różniczkowanie i całkowanie funkcji tworzących.

- 16. Wyznacz funkcje tworzące ciągów:
 - (a) $a_n = n^2$
 - (b) $a_n = n^3$
 - (c) $\binom{n+k}{k}$

 $Wskaz \acute{o}wka$: Wszędzie przyda się funkcja tworząca $\frac{1}{1-x}$. W ostatnim podpunkcie będzie to odpowiednia potęga tej funkcji.

- 17. Oblicz funkcje tworzące ciągów:
 - (a) $a_n = n$ dla parzystych n i $a_n = 1/n$ dla nieparzystych n
 - (b) $H_n = 1 + 1/2 + \ldots + 1/n \ (H_0 = 0).$

18. Podaj funkcję tworzącą dla ciągu $(0,0,0,1,3,7,15,31,\ldots).$

 $Katarzyna\ Paluch$