P8160 - Breast Cancer Data: To lasso or to not lasso

Amy Pitts, Hun Lee, Jimmy Kelliher, Tucker Morgan, and Waveley Qiu

Motivation

Diagnosing breast cancer is extremely important.

According to NIH there has been an estimated:

- ▶ 281,550 new cases of breast cancer in women in 2021,
- ▶ 43,600 breast cancer in women related deaths in 2021.

American Cancer Society Guideline for Breast Cancer Screening:

- ▶ Women between ages 25-40 should have an annual clinical breast examination.
- ► Women between ages 40-44 should begin annual screening via mammogram
- Women between ages 45-54 should screened annually via mammogram

Goal

With using all the collected imagine data we want to develop an algorithm to predict diagnosis. Since diagnosis is a binary outcome a logistic regression will be utilized.

Methods:

- Newton-Raphson Algorithm (Full Model)
- Logistic LASSO Algorithm (Optimal Model)

Data

- ▶ 569 rows and 31 columns all related to breast tissue images
- Outcome of interest: Diagnosis (B or M)
 - ▶ 357 benign (B) cases and 212 malignant (M) cases
- ► The Covariates include information such as radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension.

Figure 1: Ranked Cross-Correlations

25 most relevant

	0	.25	.5	.75
radius_mean + perimeter_mean				0.998
radius_worst + perimeter_worst				0.994
radius_mean + area_mean				0.987
perimeter_mean + area_mean				0.987
radius_worst + area_worst				0.984
perimeter_worst + area_worst				0.978
radius_se + perimeter_se				0.973
perimeter_mean + perimeter_worst				0.97
radius_mean + radius_worst				0.97
perimeter_mean + radius_worst				0.969
radius_mean + perimeter_worst				0.965
area_mean + radius_worst				0.963
area_mean + area_worst				0.959
area_mean + perimeter_worst				0.959
radius_se + area_se				0.952
perimeter_mean + area_worst				0.942
radius_mean + area_worst				0.941
perimeter_se + area_se				0.938
concavity_mean + concave.points_mean				0.921
texture_mean + texture_worst				0.912
concave.points_mean + concave.points_worst				0.91
compactness_worst + concavity_worst				0.892
concavity_mean + concavity_worst				0.884
compactness_mean + concavity_mean				0.883
compactness_mean + compactness_worst				0.866

Figure 1: Ranked Cross-Correlations

Best Representative radius_worst

Figure 1: Ranked Cross-Correlations

Remaining Variables

	Diagnosis Received			
Variable	B , N = 357 ¹	M , N = 212^{7}	p-value ²	
texture_mean	17.91 (4.00)	21.60 (3.78)	<0.001	
smoothness_mean	0.09 (0.01)	0.10 (0.01)	<0.001	
compactness_mean	0.08 (0.03)	0.15 (0.05)	<0.001	
concave points_mean	0.03 (0.02)	0.09 (0.03)	<0.001	
symmetry_mean	0.17 (0.02)	0.19 (0.03)	<0.001	
fractal_dimension_mean	0.06 (0.01)	0.06 (0.01)	0.5	
radius_se	0.28 (0.11)	0.61 (0.35)	<0.001	
texture_se	1.22 (0.59)	1.21 (0.48)	0.6	
smoothness_se	0.01 (0.00)	0.01 (0.00)	0.2	
compactness_se	0.02 (0.02)	0.03 (0.02)	<0.001	
concavity_se	0.03 (0.03)	0.04 (0.02)	<0.001	
concave points_se	0.01 (0.01)	0.02 (0.01)	<0.001	
symmetry_se	0.02 (0.01)	0.02 (0.01)	0.028	
fractal_dimension_se	0.00 (0.00)	0.00 (0.00)	<0.001	
radius_worst	13.38 (1.98)	21.13 (4.28)	<0.001	
smoothness_worst	0.12 (0.02)	0.14 (0.02)	<0.001	
compactness_worst	0.18 (0.09)	0.37 (0.17)	<0.001	
concavity_worst	0.17 (0.14)	0.45 (0.18)	<0.001	
symmetry_worst	0.27 (0.04)	0.32 (0.07)	<0.001	
fractal_dimension_worst	0.08 (0.01)	0.09 (0.02)	<0.001	

⁷ Statistics presented: Mean (SD)

² Statistical tests performed: Wilcoxon rank-sum test

Full Model (Newton-Raphson)

To impliment the Newton-Raphson Method we need the likelihood, gradiant, and hessian matrix:

$$\pi_i = P(Y_i = 1 | x_{i,1}, \dots x_{i,20}) = \frac{e^{\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j}}}{1 + e^{\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j}}}$$

log-likelihood:

$$I(\mathbf{X}|\vec{\beta}) = \sum_{i=1}^{n} \left[y_i \left(\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j} \right) - \log \left(1 + \exp \left(\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j} \right) \right) \right]$$

The gradient:

$$\nabla I(\mathbf{X}|\vec{\beta}) = \left[\sum_{i=1}^{n} y_i - \pi_i \quad \sum_{i=1}^{n} x_{i,1} (y_i - \pi_i) \quad \dots \quad \sum_{i=1}^{n} x_{i,20} (y_i - \pi_i)\right]_{(1 \times 21)}^{I}$$

The hessian matrix $(p+1 \times p+1)$

$$abla^2 l(\mathbf{X}|ec{eta}) = -\sum_{i=1}^n egin{pmatrix} 1 \ X \end{pmatrix} ig(1 \quad Xig) \, \pi_i (1-\pi_i)$$

Optimal Model (Logistic LASSO)

also going to be some math

Optimal Model (Logistic LASSO)

more math

5-fold Cross Validation

Cross Validation Results

Best λ using AUC

LASSO Coefficients

Best λ using beta plot

Coefficients Comparison

AUC

Discussion

Resources

Cancer Stat Facts: Female Breast Cancer. *National Cancer Institute* - *NIH* https://seer.cancer.gov/statfacts/html/breast.html

American Cancer Society. (2019). Breast cancer facts & figures 2019–2020. Am Cancer Soc, 1-44.