

MSP430F6638, MSP430F6637, MSP430F6636, MSP430F6635 MSP430F6634, MSP430F6633, MSP430F6632, MSP430F6631, MSP430F6630

SLAS566E -JUNE 2010-REVISED DECEMBER 2015

MSP430F663x Mixed-Signal Microcontrollers

1 Device Overview

1.1 Features

- Low Supply Voltage Range: 1.8 V to 3.6 V
- Ultra-Low Power Consumption
 - Active Mode (AM):
 All System Clocks Active:
 270 μA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical)
 - Standby Mode (LPM3):
 Watchdog With Crystal and Supply Supervisor
 Operational, Full RAM Retention, Fast Wakeup:
 1.8 μA at 2.2 V, 2.1 μA at 3.0 V (Typical)
 - Shutdown Real-Time Clock (RTC) Mode (LPM3.5):
 Shutdown Mode, Active RTC With Crystal: 1.1 μA at 3.0 V (Typical)
 - Shutdown Mode (LPM4.5):0.3 μA at 3.0 V (Typical)
- Wake up From Standby Mode in 3 µs (Typical)
- 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock
- Flexible Power-Management System
 - Fully Integrated LDO With Programmable Regulated Core Supply Voltage
 - Supply Voltage Supervision, Monitoring, and Brownout
- Unified Clock System
 - FLL Control Loop for Frequency Stabilization
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - Low-Frequency Trimmed Internal Reference Source (REFO)
 - 32-kHz Crystals (XT1)
 - High-Frequency Crystals up to 32 MHz (XT2)

- Four 16-Bit Timers With 3, 5, or 7 Capture/Compare Registers
- Two Universal Serial Communication Interfaces (USCIs)
 - USCI_A0 and USCI_A1 Each Support:
 - Enhanced UART Supports Automatic Baud-Rate Detection
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - USCI_B0 and USCI_B1 Each Support:
 - I²C
 - Synchronous SPI
- Full-Speed Universal Serial Bus (USB)
 - Integrated USB-PHY
 - Integrated 3.3-V and 1.8-V USB Power System
 - Integrated USB-PLL
 - Eight Input and Eight Output Endpoints
- 12-Bit Analog-to-Digital Converter (ADC) With Internal Shared Reference, Sample-and-Hold, and Autoscan Feature
- Dual 12-Bit Digital-to-Analog Converters (DACs)
 With Synchronization
- Voltage Comparator
- Integrated Liquid Crystal Display (LCD) Driver With Contrast Control for up to 160 Segments
- Hardware Multiplier Supports 32-Bit Operations
- Serial Onboard Programming, No External Programming Voltage Needed
- · Six-Channel Internal DMA
- RTC Module With Supply Voltage Backup Switch
- Table 3-1 Summarizes the Available Family Members
- For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208)

- 1.2 Applications
- Analog and Digital Sensor Systems
- Digital Motor Control
- Remote Controls

- Thermostats
- Digital Timers
- Hand-Held Meters

1.3 Description

The TI MSP430[™] family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3 µs (typical).

The MSP430F663x devices are microcontrollers with a high-performance 12-bit ADC, a comparator, two USCIs, USB 2.0, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver, and up to 74 I/O pins.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (2)
MSP430F6638IPZ	LQFP (100)	14 mm × 14 mm
MSP430F6638IZQW	BGA (113)	7 mm × 7 mm

⁽¹⁾ For the most current device, package, and ordering information, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8.

1.4 Functional Block Diagrams

Figure 1-1 shows the functional block diagram for the MSP430F6638, MSP430F6637, and MSP430F6636 devices.

Figure 1-1. Functional Block Diagram - MSP430F6638, MSP430F6637, MSP430F6636

Figure 1-2 shows the functional block diagram for the MSP430F6635, MSP430F6634, and MSP430F6633 devices.

Figure 1-2. Functional Block Diagram - MSP430F6635, MSP430F6634, MSP430F6633

Figure 1-3 shows the functional block diagram for the MSP430F6632, MSP430F6631, and MSP430F6630 devices.

Figure 1-3. Functional Block Diagram - MSP430F6632, MSP430F6631, MSP430F6630

Table of Contents

1	Devi	ce Overview	1		5.27	Wake-up Times From Low-Power Modes and	
	1.1	Features	1			Reset	
	1.2	Applications	. 1		5.28	Timer_A, Timers TA0, TA1, and TA2	35
	1.3	Description	2		5.29	Timer_B, Timer TB0	35
	1.4	Functional Block Diagrams	_		5.30	Battery Backup	<u>35</u>
2	Revi	sion History	_		5.31	USCI (UART Mode)	36
3		ce Comparison			5.32	USCI (SPI Master Mode)	<u>36</u>
4		ninal Configuration and Functions	_		5.33	USCI (SPI Slave Mode)	38
-	4.1	Pin Designation – MSP430F6638IPZ,	_		5.34	USCI (I ² C Mode)	40
		MSP430F6637IPZ, MSP430F6636IPZ	8		5.35	LCD_B, Recommended Operating Conditions	41
	4.2	Pin Designation – MSP430F6635IPZ,			5.36	LCD_B, Electrical Characteristics	42
		MSP430F6634IPZ, MSP430F6633IPZ	<u>9</u>		5.37	12-Bit ADC, Power Supply and Input Range	
	4.3	Pin Designation – MSP430F6632IPZ,	40			Conditions	
	4.4	MSP430F6631IPZ, MSP430F6630IPZ	<u>10</u>		5.38	12-Bit ADC, Timing Parameters	
	4.4	Pin Designation – MSP430F6638IZQW, MSP430F6637IZQW, MSP430F6636IZQW,			5.39	12-Bit ADC, Linearity Parameters Using an External	
		MSP430F6635IZQW, MSP430F6634IZQW,				Reference Voltage	44
		MSP430F6633IZQW, MSP430F6632IZQW,			5.40	12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage	44
		MSP430F6631IZQW, MSP430F6630IZQW			5.41	12-Bit ADC, Linearity Parameters Using the Internal	
_	4.5	Signal Descriptions	_		3.41	Reference Voltage	
5	-	cifications			5.42	12-Bit ADC, Temperature Sensor and Built-In V _{MID}	
	5.1	Absolute Maximum Ratings			5.43	REF, External Reference	
	5.2	ESD Ratings			5.44	REF, Built-In Reference	_
	5.3	Recommended Operating Conditions	<u>19</u>		5.45	12-Bit DAC, Supply Specifications	
	5.4	Active Mode Supply Current Into V _{CC} Excluding External Current	24		5.46	12-Bit DAC, Linearity Specifications	
	5.5	Low-Power Mode Supply Currents (Into V _{CC})	<u>21</u>		5.47	12-Bit DAC, Output Specifications	
	5.5	Excluding External Current	21		5.48	12-Bit DAC, Reference Input Specifications	
	5.6	Low-Power Mode With LCD Supply Currents (Into	_		5.49	12-Bit DAC, Dynamic Specifications	
		V _{CC}) Excluding External Current	22		5.50	12-Bit DAC, Dynamic Specifications (Continued)	
	5.7	Thermal Resistance Characteristics	23		5.51	Comparator_B	
	5.8	Schmitt-Trigger Inputs – General-Purpose I/O	24		5.52	Ports PU.0 and PU.1	
	5.9	Inputs – Ports P1, P2, P3, and P4	24		5.53	USB Output Ports DP and DM	_
	5.10	Leakage Current – General-Purpose I/O	24		5.54		
	5.11	Outputs – General-Purpose I/O (Full Drive				USB Input Ports DP and DM	
		Strength)	<u>24</u>		5.55	USB-PWR (USB Power System)	
	5.12	Outputs – General-Purpose I/O (Reduced Drive			5.56	USB-PLL (USB Phase-Locked Loop)	
		Strength)	<u>25</u>		5.57	Flash Memory	
		Output Frequency – Ports P1, P2, and P3	<u>25</u>	•	5.58	1,7	
	5.14	Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)	26	6		iled Description	
	5.15	Typical Characteristics – Outputs, Full Drive	<u>26</u>		6.1	Overview	
	5.15	Strength (PxDS.y = 1)	27		6.2	CPU	
	5.16	Crystal Oscillator, XT1, Low-Frequency Mode			6.3	Instruction Set	
	5.17	Crystal Oscillator, XT2			6.4	Operating Modes	
	5.18	Internal Very-Low-Power Low-Frequency Oscillator	==		6.5	Interrupt Vector Addresses,	
		(VLO)	30		6.6	Memory	<u>61</u>
	5.19	Internal Reference, Low-Frequency Oscillator			6.7	Bootloader (BSL)	62
		(REFO)	<u>30</u>		6.8	JTAG Operation	
	5.20	DCO Frequency	<u>31</u>		6.9	Flash Memory (Link to User's Guide)	63
	5.21	PMM, Brownout Reset (BOR)	<u>32</u>		6.10	RAM (Link to User's Guide)	64
	5.22	PMM, Core Voltage	<u>32</u>		6.11	Backup RAM	64
	5.23	PMM, SVS High Side	<u>33</u>		6.12	Peripherals	64
	5.24	PMM, SVM High Side	<u>33</u>		6.13	Input/Output Schematics	87
	5.25	PMM, SVS Low Side	<u>34</u>		6.14	Device Descriptors	111
	5.26	PMM, SVM Low Side	<u>34</u>	7	Devi	ce and Documentation Support	112

7.1	Device Support	<u>112</u>		7.6	Electrostatic Discharge Caution	<u>116</u>
7.2	Documentation Support	<u>115</u>		7.7	Export Control Notice	116
7.3	Related Links	<u>115</u>		7.8	Glossary	116
7.4	Community Resources	<u>116</u>	8	Mec	hanical, Packaging, and Orderable	
7.5	Trademarks	<u>116</u>		Info	rmation	116

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Chang	ges from August 5, 2013 to December 8, 2015	Page
	Document format and organization changes throughout, including addition of section numbering. Moved all functional block diagrams to Section 1.4, Functional Block Diagrams. Added USB column to Table 3-1, Family Members. Added Section 3, Device Comparison, and moved Table 3-1, Family Members to it. Added "Port U is supplied by the LDOO rail" to the PU.0 and PU.1 descriptions in Table 4-1, Signal Descriptions Moved all electrical specifications to Section 5. Added Section 5.2, ESD Ratings. Added note to C_{VCORE} . Added note to R_{Pull} . Changed TYP value of $C_{L,eff}$ with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF. In V_{BAT3} parameter description, changed from " $V_{BAT3} \neq V_{BAT}/3$ " to " $V_{BAT3} = V_{BAT}/3$ ". Changed from f_{DAC12_0OUT} to f_{DAC12_1OUT} in the first row of the Test Conditions for the "Channel-to-channel crosstalk" parameter. Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from f_{Toggle} to $1/f_{Toggle}$ in	3 7 7 17 19 19 24 28
•	Figure 5-22, Crosstalk Test Conditions Added note to R _{PUR}	54
•	Corrected the spelling of the MRG bits in the f _{MCLK,MRG} parameter	<u>59</u>
•	Corrected names of interrupt events PMMSWBOR (BOR) and PMMSWPOR (POR) in Table 6-11, System Module Interrupt Vector Registers	<u>67</u> <u>67</u> <u>85</u>
•	Changed P7SEL.2 and X12BYPASS inputs with AND and OR gates in Figure 6-10, Port P7 (P7.3) Schematic Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows	. <u>100</u>

3 Device Comparison

Table 3-1 summarizes the available family members.

Table 3-1. Family Members (1)(2)

					US	SCI						
DEVICE	FLASH (KB)	SRAM (KB) ⁽³⁾	Timer_A ⁽⁴⁾	Timer_B ⁽⁵⁾	CHANNEL A: UART, IrDA, SPI	CHANNEL B: SPI, I ² C	ADC12_A (Ch)	DAC12_A (Ch)	Comp_B (Ch)	USB	I/O	PACKAGE
MSP430F6638	256	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	2	12	Yes	74	100 PZ, 113 ZQW
MSP430F6637	192	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	2	12	Yes	74	100 PZ, 113 ZQW
MSP430F6636	128	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	2	12	Yes	74	100 PZ, 113 ZQW
MSP430F6635	256	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6634	192	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6633	128	16 + 2	5, 3, 3	7	2	2	12 ext, 4 int	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6632	256	16 + 2	5, 3, 3	7	2	2	-	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6631	192	16 + 2	5, 3, 3	7	2	2	-	-	12	Yes	74	100 PZ, 113 ZQW
MSP430F6630	128	16 + 2	5, 3, 3	7	2	2	-	-	12	Yes	74	100 PZ, 113 ZQW

⁽¹⁾ For the most current package and ordering information, see the *Package Option Addendum* in Section 8, or see the TI website at www.ti.com.

⁽²⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.

⁽³⁾ The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.

⁽⁴⁾ Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

⁽⁵⁾ Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.

4 Terminal Configuration and Functions

4.1 Pin Designation – MSP430F6638IPZ, MSP430F6637IPZ, MSP430F6636IPZ

Figure 4-1 shows the pinout for the MSP430F6638, MSP430F6637, and MSP430F6636 devices in the PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-1. 100-Pin PZ Package (Top View) - MSP430F6638, MSP430F6637, MSP430F6636

4.2 Pin Designation – MSP430F6635IPZ, MSP430F6634IPZ, MSP430F6633IPZ

Figure 4-2 shows the pinout for the MSP430F6635, MSP430F6634, and MSP430F6633 devices in the PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-2. 100-Pin PZ Package (Top View) - MSP430F6635, MSP430F6634, MSP430F6633

4.3 Pin Designation – MSP430F6632IPZ, MSP430F6631IPZ, MSP430F6630IPZ

Figure 4-3 shows the pinout for the MSP430F6632, MSP430F6631, and MSP430F6630 devices in the PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-3, 100-Pin PZ Package (Top View) - MSP430F6632, MSP430F6631, MSP430F6630

4.4 Pin Designation – MSP430F6638IZQW, MSP430F6637IZQW, MSP430F6636IZQW, MSP430F6635IZQW, MSP430F6634IZQW, MSP430F6633IZQW, MSP430F6631IZQW, MSP430F6630IZQW

Figure 4-4 shows the pin diagram for all devices in the ZQW package. See Section 4.5 for pin assignments and descriptions.

ZQW PACKAGE (TOP VIEW)

NOTE: For terminal assignments, see Table 4-1

Figure 4-4. 113-Pin ZQW Package (Top View) – MSP430F6638, MSP430F6637, MSP430F6636, MSP430F6635, MSP430F6634, MSP430F6633, MSP430F6632, MSP430F6631, MSP430F6630

4.5 Signal Descriptions

Table 4-1 describes the signals for all device variants and packages.

Table 4-1. Signal Descriptions

TERMINAL		Tabi	· ·		
	N	0.	I/O ⁽¹⁾	DESCRIPTION	
NAME	PZ	ZQW			
				General-purpose digital I/O	
P6.4/CB4/A4	1	A1	I/O	Comparator_B input CB4	
				Analog input A4 – ADC (not available on F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
P6.5/CB5/A5	2	B2	I/O	Comparator_B input CB5	
				Analog input A5 – ADC (not available on F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
				Comparator_B input CB6	
P6.6/CB6/A6/DAC0	3	B1	I/O	Analog input A6 – ADC (not available on F6632, F6631, and F6630 devices)	
				DAC12.0 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
				Comparator_B input CB7	
P6.7/CB7/A7/DAC1	4	C2	I/O	Analog input A7 – ADC (not available on F6632, F6631, and F6630 devices)	
				DAC12.1 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
P7.4/CB8/A12	5	C1	I/O	Comparator_B input CB8	
				Analog input A12 –ADC (not available on F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
P7.5/CB9/A13	6	C3	I/O	Comparator_B input CB9	
				Analog input A13 – ADC (not available on F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
				Comparator_B input CB10	
P7.6/CB10/A14/DAC0	7	D2	I/O	Analog input A14 – ADC (not available on F6632, F6631, and F6630 devices)	
				DAC12.0 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
				Comparator_B input CB11	
P7.7/CB11/A15/DAC1	8	D1	I/O	Analog input A15 – ADC (not available on F6632, F6631, and F6630 devices)	
				DAC12.1 output (not available on F6635, F6634, F6633, F6632, F6631, and F6630 devices)	
				General-purpose digital I/O	
P5.0/VREF+/VeREF+	9	D4	I/O	Output of reference voltage to the ADC	
				Input for an external reference voltage to the ADC	
				General-purpose digital I/O	
P5.1/VREF-/VeREF-	10	E4	I/O	Negative terminal for the reference voltage of the ADC for both sources, the internal reference voltage, or an external applied reference voltage	
AVCC1	11	E1, E2		Analog power supply	

⁽¹⁾ I = input, O = output, N/A = not available on this package offering

TERMINAL				
	NO.		I/O ⁽¹⁾	DESCRIPTION
NAME	PZ	ZQW		
AVSS1	12	F2		Analog ground supply
XIN	13	F1	I	Input terminal for crystal oscillator XT1
XOUT	14	G1	0	Output terminal of crystal oscillator XT1
AVSS2	15	G2		Analog ground supply
				General-purpose digital I/O
P5.6/ADC12CLK/DMAE0	16	H1	I/O	Conversion clock output ADC (not available on F6632, F6631, and F6630 devices)
				DMA external trigger input
DO O/DOMA DO	47	0.4	1/0	General-purpose digital I/O with port interrupt and mappable secondary function
P2.0/P2MAP0	17	G4	I/O	Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.1/P2MAP1	18	H2	I/O	Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I ² C data
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.2/P2MAP2	19	J1	I/O	Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I ² C clock
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.3/P2MAP3	20	H4	I/O	Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.4/P2MAP4	21	J2	I/O	Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.5/P2MAP5	22	K1	I/O	Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.6/P2MAP6/R03	23	K2	I/O	Default mapping: no secondary function
1 2.5/1 2WAI 5/105	20	112		Input/output port of lowest analog LCD voltage (V5)
				General-purpose digital I/O with port interrupt and mappable secondary function
P2.7/P2MAP7/LCDREF/R13	24	L2	I/O	Default mapping: no secondary function
				External reference voltage input for regulated LCD voltage
				Input/output port of third most positive analog LCD voltage (V3 or V4)
DVCC1	25	L1		Digital power supply
DVSS1	26	M1		Digital ground supply
VCORE ⁽²⁾	27	M2		Regulated core power supply (internal use only, no external current loading)
P5.2/R23	28	L3	I/O	General-purpose digital I/O
				Input/output port of second most positive analog LCD voltage (V2)
				LCD capacitor connection
LCDCAP/R33	29	МЗ	I/O	Input/output port of most positive analog LCD voltage (V1)
				CAUTION: LCDCAP/R33 must be connected to DV _{SS} if not used.
COM0	30	J4	0	LCD common output COM0 for LCD backplane
				General-purpose digital I/O
P5.3/COM1/S42	31	L4	I/O	LCD common output COM1 for LCD backplane
				LCD segment output S42
				General-purpose digital I/O
P5.4/COM2/S41	32	M4	I/O	LCD common output COM2 for LCD backplane
				LCD segment output S41

⁽²⁾ VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, C_{VCORE}.

TERMINAL					
NAME	NO.		I/O ⁽¹⁾	DESCRIPTION	
NAME	PZ	ZQW			
				General-purpose digital I/O	
P5.5/COM3/S40	33	J5	I/O	LCD common output COM3 for LCD backplane	
				LCD segment output S40	
				General-purpose digital I/O with port interrupt	
P1.0/TA0CLK/ACLK/S39	34	L5	I/O	Timer TA0 clock signal TACLK input	
PT.U/TAUCLN/ACLN/339	34	LS	1/0	ACLK output (divided by 1, 2, 4, 8, 16, or 32)	
				LCD segment output S39	
				General-purpose digital I/O with port interrupt	
D4.4/TA0.0/C00	25	N 4 5	1/0	Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output	
P1.1/TA0.0/S38	35	M5	I/O	BSL transmit output	
				LCD segment output S38	
				General-purpose digital I/O with port interrupt	
D4 0/T40 4/007	0.0	10		Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output	
P1.2/TA0.1/S37	36	J6	I/O	BSL receive input	
				LCD segment output S37	
				General-purpose digital I/O with port interrupt	
P1.3/TA0.2/S36	37	H6	I/O	Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output	
				LCD segment output S36	
				General-purpose digital I/O with port interrupt	
P1.4/TA0.3/S35	38	M6	I/O	Timer TA0 CCR3 capture: CCl3A input compare: Out3 output	
				LCD segment output S35	
				General-purpose digital I/O with port interrupt	
P1.5/TA0.4/S34	39	L6	I/O	Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output	
				LCD segment output S34	
				General-purpose digital I/O with port interrupt	
P1.6/TA0.1/S33	40	J7	I/O	Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output	
				LCD segment output S33	
				General-purpose digital I/O with port interrupt	
P1.7/TA0.2/S32	41	M7	I/O	Timer TA0 CCR2 capture: CCl2B input, compare: Out2 output	
				LCD segment output S32	
				General-purpose digital I/O with port interrupt	
DO O/TAAOLIV/ODOLIT/COA	40	1.7	1/0	Timer TA1 clock input	
P3.0/TA1CLK/CBOUT/S31	42	L7	I/O	Comparator_B output	
				LCD segment output S31	
				General-purpose digital I/O with port interrupt	
P3.1/TA1.0/S30	43	H7	I/O	Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output	
				LCD segment output S30	
				General-purpose digital I/O with port interrupt	
P3.2/TA1.1/S29	44	M8	I/O	Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output	
				LCD segment output S29	

TERMINAL					
NAME	NO.		I/O ⁽¹⁾	DESCRIPTION	
NAME	PZ	ZQW			
				General-purpose digital I/O with port interrupt	
P3.3/TA1.2/S28	45	L8	I/O	Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output	
				LCD segment output S28	
				General-purpose digital I/O with port interrupt	
P3.4/TA2CLK/SMCLK/S27	46	J8	I/O	Timer TA2 clock input	
1 O.4/ 17/2 OLIV OWOLIV OZI	40	00	1,0	SMCLK output	
				LCD segment output S27	
				General-purpose digital I/O with port interrupt	
P3.5/TA2.0/S26	47	M9	I/O	Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output	
				LCD segment output S26	
				General-purpose digital I/O with port interrupt	
P3.6/TA2.1/S25	48	L9	I/O	Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output	
				LCD segment output S25	
				General-purpose digital I/O with port interrupt	
P3.7/TA2.2/S24	49	M10	I/O	Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output	
				LCD segment output S24	
				General-purpose digital I/O with port interrupt	
P4.0/TB0.0/S23	50	J9	I/O	Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output	
				LCD segment output S23	
				General-purpose digital I/O with port interrupt	
P4.1/TB0.1/S22	51	M11	I/O	Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output	
				LCD segment output S22	
				General-purpose digital I/O with port interrupt	
P4.2/TB0.2/S21	52	L10	I/O	Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output	
				LCD segment output S21	
				General-purpose digital I/O with port interrupt	
P4.3/TB0.3/S20	53	M12	I/O	Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output	
				LCD segment output S20	
				General-purpose digital I/O with port interrupt	
P4.4/TB0.4/S19	54	L12	I/O	Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output	
				LCD segment output S19	
				General-purpose digital I/O with port interrupt	
P4.5/TB0.5/S18	55	L11	I/O	Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output	
				LCD segment output S18	
				General-purpose digital I/O with port interrupt	
P4.6/TB0.6/S17	56	K11	I/O	Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output	
				LCD segment output S17	
				General-purpose digital I/O with port interrupt	
				Timer TB0: Switch all PWM outputs high impedance	
P4.7/TB0OUTH/SVMOUT/S16	57	K12	I/O	SVM output	
				LCD segment output S16	
	l	l	L		

TERMINAL	TERMINAL				
	N	NO.		DESCRIPTION	
NAME	PZ	ZQW			
				General-purpose digital I/O	
P8.0/TB0CLK/S15	58	J11	I/O	Timer TB0 clock input	
				LCD segment output S15	
				General-purpose digital I/O	
P8.1/UCB1STE/UCA1CLK/S14	59	J12	I/O	USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output	
				LCD segment output S14	
				General-purpose digital I/O	
P8.2/UCA1TXD/UCA1SIMO/S13	60	H11	I/O	USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out	
				LCD segment output S13	
P8.3/UCA1RXD/UCA1SOMI/S12	61	H12	I/O	General-purpose digital I/O	
F8.3/UCATRAD/UCATSOIVII/S12	61	ПІ	1/0	USCI_A1 UART receive data; USCI_A1 SPI slave out/master in	
				LCD segment output S12	
				General-purpose digital I/O	
P8.4/UCB1CLK/UCA1STE/S11	62	G11	I/O	USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable	
				LCD segment output S11	
DVSS2	63	G12		Digital ground supply	
DVCC2	64	F12		Digital power supply	
				General-purpose digital I/O	
P8.5/UCB1SIMO/UCB1SDA/S10	65	F11	I/O	USCI_B1 SPI slave in/master out; USCI_B1 I ² C data	
				LCD segment output S10	
				General-purpose digital I/O	
P8.6/UCB1SOMI/UCB1SCL/S9	66	G9	I/O	USCI_B1 SPI slave out/master in; USCI_B1 I ² C clock	
				LCD segment output S9	
P8.7/S8	67	E12	I/O	General-purpose digital I/O	
1 0.1700	0.		., 0	LCD segment output S8	
P9.0/S7	68	E11	I/O	General-purpose digital I/O	
1 0.0/01			., 0	LCD segment output S7	
P9.1/S6	69	F9	I/O	General-purpose digital I/O	
1 0.1700		. 0	., 0	LCD segment output S6	
P9.2/S5	70	D12	I/O	General-purpose digital I/O	
1 0.2/00		0.12	., 0	LCD segment output S5	
DO 2/04	74	D44	1/0	General-purpose digital I/O	
P9.3/S4	71	D11	I/O	LCD segment output S4	
				General-purpose digital I/O	
P9.4/S3	72	E9	I/O	LCD segment output S3	
				General-purpose digital I/O	
P9.5/S2	73	C12	I/O	LCD segment output S2	
				General-purpose digital I/O	
P9.6/S1	74	C11	I/O	LCD segment output S1	
				General-purpose digital I/O	
P9.7/S0	75	D9	I/O	LCD segment output S0	
ļ		L	L		

TERMINAL				
	NO.		I/O ⁽¹⁾	DESCRIPTION
NAME	PZ	ZQW		
VSSU	76	B11, B12		USB PHY ground supply
PU.0/DP	77	A12	I/O	General-purpose digital I/O, controlled by USB control register. Port U is supplied by the LDOO rail.
				USB data terminal DP
PUR	78	B10	I/O	USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to invoke the default USB BSL. TI recommends a 1-M Ω resistor to ground. See Section 6.7.1 for more information.
PU.1/DM	79	A11	I/O	General-purpose digital I/O, controlled by USB control register. Port U is supplied by the LDOO rail.
				USB data terminal DM
VBUS	80	A10		USB LDO input (connect to USB power source)
VUSB	81	A9		USB LDO output
V18	82	B9		USB regulated power (internal use only, no external current loading)
AVSS3	83	A8		Analog ground supply
P7.2/XT2IN	84	B8	I/O	General-purpose digital I/O
			., 0	Input terminal for crystal oscillator XT2
P7.3/XT2OUT	85	B7	I/O	General-purpose digital I/O
17.3/X12001	0.5	Di	1/0	Output terminal of crystal oscillator XT2
VBAK	86	A7		Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see C_{BAK} in Recommended Operating Conditions.
VBAT	87	D8		Backup or secondary supply voltage. If backup voltage is not supplied, connect to DVCC externally.
P5.7/RTCCLK	88	D7	I/O	General-purpose digital I/O RTCCLK output
DVCC3	89	A6		Digital power supply
DVSS3	90	A5		Digital ground supply
2.000	- 00	710		Test mode pin; selects digital I/O on JTAG pins
TEST/SBWTCK	91	B6	I	Spy-Bi-Wire input clock
				General-purpose digital I/O
PJ.0/TDO	92	B5	I/O	
				Test data output port
PJ.1/TDI/TCLK	93	A4	I/O	General-purpose digital I/O
				Test data input or test clock input
PJ.2/TMS	94	E7	I/O	General-purpose digital I/O
				Test mode select
PJ.3/TCK	95	D6	I/O	General-purpose digital I/O
			,, -	Test clock
RST/NMI/SBWTDIO 96			Reset input (active low) ⁽³⁾	
	96 A3	I/O	Nonmaskable interrupt input	
				Spy-Bi-Wire data input/output
				General-purpose digital I/O
P6.0/CB0/A0	97	B4	I/O	Comparator_B input CB0
				Analog input A0 – ADC (not available on F6632, F6631, and F6630 devices)
		1		

(3) When this pin is configured as reset, the internal pullup resistor is enabled by default.

TERMINAL						
NAME	NO.		I/O ⁽¹⁾	DESCRIPTION		
NAME	PZ	ZQW				
!				General-purpose digital I/O		
P6.1/CB1/A1	98	В3	I/O	Comparator_B input CB1		
				Analog input A1 – ADC (not available on F6632, F6631, and F6630 devices)		
				General-purpose digital I/O		
P6.2/CB2/A2	99	A2	I/O	Comparator_B input CB2		
				Analog input A2 – ADC (not available on F6632, F6631, and F6630 devices)		
				General-purpose digital I/O		
P6.3/CB3/A3	100	D5	I/O	Comparator_B input CB3		
				Analog input A3 – ADC (not available on F6632, F6631, and F6630 devices)		
Reserved	N/A	E5, E6, E8, F4, F5, G5, G8, H5, H8,		Reserved. TI recommends connecting to ground (DVSS, AVSS).		

5 Specifications

5.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}	-0.3	4.1	V
Voltage applied to any pin (excluding VCORE, VBUS, V18) ⁽²⁾	-0.3	V _{CC} + 0.3	V
Diode current at any device pin		±2	mA
Maximum junction temperature, T _J		95	°C
Storage temperature, T _{stg} ⁽³⁾	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
V	Floatrootatia diaabaraa	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
		PMMCOREVx = 0	1.8		3.6	
M	Supply voltage during program execution and flash	PMMCOREVx = 0, 1	2.0		3.6	V
V _{CC}	programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 = $DV_{CC} = V_{CC}$) ⁽¹⁾⁽²⁾	PMMCOREVx = 0, 1, 2	2.2		3.6	V
		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	
		PMMCOREVx = 0	1.8		3.6	
	Supply voltage during USB operation, USB PLL disabled	PMMCOREVx = 0, 1	2.0		3.6	
M	$(USB_EN = 1, UPLLEN = 0)$	PMMCOREVx = 0, 1, 2	2.2		3.6	V
$V_{CC,USB}$		PMMCOREVx = 0, 1, 2, 3	2.4		3.6	V
	Supply voltage during USB operation, USB PLL enabled ⁽³⁾	PMMCOREVx = 2	2.2		3.6	
	(USB_EN = 1, UPLLEN = 1)	PMMCOREVx = 2, 3	2.4		3.6	
V _{SS}	Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = V_{SS})			0		V
M	Declare complements of the DTC or continued	$T_A = 0$ °C to 85°C	1.55		3.6	V
$V_{BAT,RTC}$	Backup-supply voltage with RTC operational	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.70		3.6	V
V _{BAT,MEM}	Backup-supply voltage with backup memory retained	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.20		3.6	V
T _A	Operating free-air temperature	I version	-40		85	°C
T_{J}	Operating junction temperature	I version	-40		85	°C
C _{BAK}	Capacitance at pin VBAK		1	4.7	10	nF
C _{VCORE}	Capacitor at VCORE (4)			470		nF

⁽¹⁾ TI recommends powering AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.

⁽²⁾ All voltages referenced to V_{SS}. VCORE is for internal device use only. No external DC loading or voltage should be applied.

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽²⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 5.23 for the exact values and further details.

³⁾ USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation.

⁽⁴⁾ A capacitor tolerance of ±20% or better is required.

Recommended Operating Conditions (continued)

			MIN	NOM N	MAX	UNIT
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10			
		PMMCOREVx = 0, 1.8 V \leq V _{CC} \leq 3.6 V (default condition)	0		8.0	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency) (5) (6)	PMMCOREVx = 1, 2 V ≤ V _{CC} ≤ 3.6 V	0		12.0	MHz
	(see Figure 5-1)	PMMCOREVx = 2, 2.2 V \leq V _{CC} \leq 3.6 V	0		16.0	
		PMMCOREVx = 3, 2.4 V \leq V _{CC} \leq 3.6 V	0	;	20.0	
f _{SYSTEM_USB}	Minimum processor frequency for USB operation		1.5			MHz
USB_wait	Wait state cycles during USB operation			16		cycles

⁽⁵⁾ The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.

⁽⁶⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

The numbers within the fields denote the supported PMMCOREVx settings.

Figure 5-1. Frequency vs Supply Voltage

5.4 Active Mode Supply Current Into V_{cc} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)

					FF	REQUEN	CY (f _{DCC}	o = f _{MCLK}	= f _{SMCL}	к)					
PARAMETER	EXECUTION MEMORY	V _{CC}	CC PMMCOREVx	1 MHz		8 MHz		12 MHz		20 MHz		UNIT			
	III CIKI						TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
			0	0.32	0.36	2.1	2.4								
	Flash	3 V	1	0.36		2.4		3.6	4.0			A			
I _{AM} , Flash	Flasii	3 V	2	0.37		2.5		3.8				mA			
			3	0.39		2.7		4.0		6.6					
			0	0.18	0.21	1.0	1.2								
	RAM	3 V	1	0.20		1.2		1.7	1.9			A			
I _{AM} , RAM	RAIVI	3 V	2	0.22		1.3		2.0				mA			
			3	0.23		1.4		2.1		3.6					

⁽¹⁾ All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

5.5 Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

	PARAMETER	V	PMMCOREVx	-40)°C	25	°C	60	°C	85°	Č	UNIT	
	PARAMETER	V _{CC}	TIMMOORLVX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT	
	Low nover made 0(3)(4)	2.2 V	0	71		75	87	81		85	99		
ILPM0,1MHz	Low-power mode 0 ⁽³⁾⁽⁴⁾	3 V	3	78		83	98	89		94	108	μA	
	Low-power mode 2 ⁽⁵⁾⁽⁴⁾	2.2 V	0	6.3		6.7	9.9	9.0		11	16		
ILPM2	Low-power mode 2 (4) (4)	3 V	3	6.6		7.0	11	10		12	18	μA	
			0	1.6		1.8	2.4	4.7		6.5	10.5		
		2.2 V	1	1.6		1.9		4.8		6.6			
			2	1.7		2.0		4.9		6.7			
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode (6)(4)		0	1.9		2.1	2.7	5.0		6.8	10.8	μΑ	
	oryotal modo	2.1/	1	1.9		2.1		5.1		7.0			
		3 V	2	2.0		2.2		5.2		7.1			
				3	2.0		2.2	2.9	5.4		7.3	12.6	

⁽²⁾ The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF.

⁽³⁾ Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0). $f_{ACLK} = 32786$ Hz, $f_{DCO} = f_{MCLK} = f_{SMCLK}$ at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.

⁽¹⁾ All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

⁽²⁾ The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.

⁽³⁾ Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).

⁽⁴⁾ Current for brownout included. Low-side supervisor and monitors disabled (SVS_L, SVM_L). High-side supervisor and monitor disabled (SVS_H, SVM_H). RAM retention enabled.

⁽⁵⁾ Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled.
USB disabled (VUSBEN = 0, SLDOEN = 0).

⁽⁶⁾ Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).

Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)

	DADAMETED	.,	DMM00DEV/	-40	°C	25	°C	60	°C	85	°C	
	PARAMETER	V _{CC}	PMMCOREVx	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
			0	0.9		1.2	1.9	4.0		5.9	10.3	
I _{LPM3} ,	Low-power mode 3, VLO mode, Watchdog	3 V	1	0.9		1.2		4.1		6.0		
VLO,WDT	enabled (7)(4)	3 V	2	1.0		1.3		4.2		6.1		μA
			3	1.0		1.3	2.2	4.3		6.3	11.3	
			0	0.9		1.1	1.8	3.9		5.8	10	
	Low-power mode 4 ⁽⁸⁾⁽⁴⁾	3 V	1	0.9		1.1		4.0		5.9		
I _{LPM4} Low-power mode 4 (6)(4)	3 V	2	1.0		1.2		4.1		6.1		μA	
		3	1.0		1.2	2.1	4.2		6.2	11		
I _{LPM3.5} , RTC,VCC	Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DV _{CC} ⁽⁹⁾	3 V				0.5				0.8	1.4	μΑ
I _{LPM3.5} , RTC,VBAT	Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT ⁽¹⁰⁾	3 V				0.6				0.8	1.4	μΑ
I _{LPM3.5} , RTC,TOT	Total low-power mode 3.5 (LPM3.5) current with active RTC ⁽¹¹⁾	3 V		1.0		1.1		1.3		1.6	2.8	μΑ
I _{LPM4.5}	Low-power mode 4.5 (LPM4.5) ⁽¹²⁾	3 V		0.2		0.3	0.6	0.7		0.9	1.4	μΑ

- (7) Current for watchdog timer clocked by VLO included. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fDCO = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0).
- (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), $f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0$ MHz USB disabled (VUSBEN = 0, SLDOEN = 0).
- (9) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active (10) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
- (11) $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0$ MHz, $f_{ACLK} = 32768$ Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
- (12) Internal regulator disabled. No data retention.
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz

5.6 Low-Power Mode With LCD Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

				TEMPERATURE (T _A)								
	PARAMETER	V _{CC}	PMMCOREVx	-40)°C	25	°C	60	°C	85	°C	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low nower made 2		0	2.3		2.7	3.1	5.4		7.4	11.5	
I _{LPM3,} LCD,	Low-power mode 3 (LPM3) current, LCD 4-	2.1/	1	2.3		2.7		5.6		7.5		
ext. bias	mux mode, external biasing (3) (4)	3 V	2	2.4		2.8		5.8		7.7		μA
	biasing		3	2.4		2.8	3.5	5.9		7.9	13.2	

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz

Current for brownout included. Low-side supervisor and monitors disabled (SVS_L, SVM_L). High-side supervisor and monitor disabled (SVS_H, SVM_H). RAM retention enabled.

LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz) Current through external resistors not included (voltage levels are supplied by test equipment). Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

Low-Power Mode With LCD Supply Currents (Into V_{cc}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

	-			-		TE	MPERA	TURE (T	A)			
	PARAMETER	V _{CC}	PMMCOREVx	-40	°C	25	°C	60	°C	85	°C	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 3		0	2.7		3.2	3.8	5.9		7.9	12.2	
I _{LPM3} ,	(LPM3) current, LCD 4- mux mode, internal	3 V	1	2.7		3.2		6.1		8.1		
LCD, int. bias		3 V	2	2.8		3.3		6.2		8.3		μA
	biasing, charge pump disabled ⁽³⁾⁽⁵⁾		3	2.8		3.3	4.9	6.4		8.4	13.7	
			0			3.8						
		2.2 V	1			3.9						μA
	Low-power mode 3 (LPM3) current, LCD 4-		2			4.0						
I _{LPM3} LCD,CP	mux mode, internal		0			4.0						
202,01	biasing, charge pump enabled ⁽³⁾⁽⁶⁾	2 \/	1			4.1						
enabled (5)(5)	3 V	2			4.2						μA	
			3			4.2						

⁽⁵⁾ LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz)

Even segments S0, S2 = 0, odd segments S1, S3 = 1, No LCD page load

5.7 Thermal Resistance Characteristics

	PARAMETER		VALUE	UNIT
0	lunction to embient thermal registeres atill sir(1)	QFP (PZ)	122	°C/M
θ_{JA}	Junction-to-ambient thermal resistance, still air ⁽¹⁾	BGA (ZQW)	108	°C/W
	lunction to cook (ton) the small registeres (2)	QFP (PZ)	83	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (2)	BGA (ZQW)	72	10/00
Δ	lungtion to be and the armal resistance (3)	QFP (PZ)	98	90/1/
θ_{JB}	Junction-to-board thermal resistance (3)	BGA (ZQW)	76	°C/W

⁽¹⁾ The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

(6) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (V_{LCD} = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

⁽²⁾ The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

⁽³⁾ The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

5.8 Schmitt-Trigger Inputs – General-Purpose I/O⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Positive going input threshold voltage		1.8 V	0.80		1.40	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.50		2.10	V
V	Negative going input throughold voltage		1.8 V	0.45		1.00	V
V_{IT-}	Negative-going input threshold voltage		3 V	0.75		1.65	V
V	Input valtage bystereeig (// //)		1.8 V	0.3		0.8	V
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.4		1.0	V
R _{Pull}	Pullup or pulldown resistor ⁽²⁾	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}		·	5		pF

⁽¹⁾ Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).

5.9 Inputs – Ports P1, P2, P3, and P4⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
t ₍	(int) External interrupt timing (2)	Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag	2.2 V, 3 V	20		ns

⁽¹⁾ Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

5.10 Leakage Current – General-Purpose I/O

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
I _{lkg(Px.x)}	High-impedance leakage current	(1)(2)	1.8 V, 3 V	±50	nA

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

5.11 Outputs – General-Purpose I/O (Full Drive Strength)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.8 V	V _{CC} - 0.25	V_{CC}	-
V _{OH}	High lovel output voltage	$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.0 V	$V_{CC} - 0.60$	V_{CC}	
	High-level output voltage	$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	V _{CC} - 0.25	V_{CC}	V	
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	3 V	$V_{CC} - 0.60$	V_{CC}	
		$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	4.0.1/	V_{SS}	$V_{SS} + 0.25$	
V	Low level output voltage	$I_{(O1 \text{ max})} = 10 \text{ mA}^{(2)}$	V_{SS}	$V_{SS} + 0.60$	V	
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	3 V	V _{SS}	$V_{SS} + 0.25$	
		$I_{(OLmax)} = 15 \text{ mA}^{(2)}$	3 V	V _{SS}	$V_{SS} + 0.60$	

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified

⁽²⁾ Also applies to RST pin when pullup or pulldown resistor is enabled.

⁽²⁾ An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

⁽²⁾ The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

5.12 Outputs – General-Purpose I/O (Reduced Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V _{CC}	
V _{OH} High-	High-level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.0 V	V _{CC} - 0.60	V_{CC}	V
	I ₍	$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.25	V_{CC}	
		$I_{(OHmax)} = -6 \text{ mA}^{(3)}$		V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(2)}$	1.8 V	V _{SS}	$V_{SS} + 0.25$	
\/	Low lovel output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.0 V	V _{SS}	$V_{SS} + 0.60$	V
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 2 \text{ mA}^{(2)}$	3 V	V _{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 6 \text{ mA}^{(3)}$	3 V	V _{SS}	V _{SS} + 0.60	

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

5.13 Output Frequency - Ports P1, P2, and P3

	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
f _{Px.y}	Port output frequency	P3.4/TA2CLK/SMCLK/S27,	V _{CC} = 1.8 V, PMMCOREVx = 0		8	MHz
	(with load)	$C_L = 20 \text{ pF}, R_L = 1 \text{ k}\Omega^{(1)} \text{ or } 3.2 \text{ k}\Omega^{(2)(3)}$	V _{CC} = 3 V, PMMCOREVx = 3		20	IVII
	Clock output from your	P1.0/TA0CLK/ACLK/S39, P3.4/TA2CLK/SMCLK/S27,	V _{CC} = 1.8 V, PMMCOREVx = 0	8		MHz
†Port_CLK	Clock output frequency	$P2.0/P2MAP0 (P2MAP0 = PM_MCLK),$ $C_L = 20 pF^{(3)}$	V _{CC} = 3 V, PMMCOREVx = 3		20	IVII

Full drive strength of port: A resistive divider with 2 x 0.5 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ Reduced drive strength of port: A resistive divider with 2 x 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽³⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

5.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

5.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

5.16 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, T_A = 25°C			0.075		
$\Delta I_{DVCC,LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{ XT1DRIVEx} = 2, \\ &T_{A} = 25^{\circ}\text{C} \end{aligned} $	3 V		0.170		μA
		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{ XT1DRIVEx} = 3, \\ &T_{A} = 25^{\circ}\text{C} \end{aligned} $			0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10	32.768	50	kHz
ΟΔ. –	Oscillation allowance for	$ \begin{array}{l} XTS = 0, \\ XT1BYPASS = 0, XT1DRIVEx = 0, \\ f_{XT1,LF} = \; 32768 \; Hz, C_{L,eff} = \; 6 \; pF \end{array} $			kΩ		
OA _{LF}	LF crystals ⁽⁴⁾	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			300		K22
		$XTS = 0$, $XCAPx = 0^{(6)}$			1		
C _{L.eff}	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF
OL,eff	capacitance, LF mode ⁽⁵⁾	XTS = 0, $XCAPx = 2$			8.5		рі
		XTS = 0, $XCAPx = 3$			12.0		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, $f_{XT1,LF} = 32768 \text{ Hz}$		30%		70%	
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	$XTS = 0^{(8)}$		10		10000	Hz
.	Start-up time, LF mode	$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C}, \\ &C_{L,\text{eff}} = 6 \text{ pF} \end{aligned} $	- 3 V		1000		mc
t _{START,LF}		$ \begin{aligned} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{ XT1DRIVEx} = 3, \\ &T_A = 25^{\circ}\text{C}, \\ &C_{L,eff} = 12 \text{ pF} \end{aligned} $	3 v		500		ms

- (1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- (2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application:

 - For XT1DRIVEx = 0, $C_{L,eff} \le 6 \text{ pF}$. For XT1DRIVEx = 1, $6 \text{ pF} \le C_{L,eff} \le 9 \text{ pF}$. For XT1DRIVEx = 2, $6 \text{ pF} \le C_{L,eff} \le 10 \text{ pF}$. For XT1DRIVEx = 3, $C_{L,eff} \ge 6 \text{ pF}$.
- (5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
 - Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

5.17 Crystal Oscillator, XT2

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		f_{OSC} = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, T_A = 25°C			200		
1	XT2 oscillator crystal current consumption	$\begin{aligned} &f_{OSC} = 12 \text{ MHz, } XT2OFF = 0, \\ &XT2BYPASS = 0, XT2DRIVEx = 1, \\ &T_A = 25^{\circ}C \end{aligned}$	3 V		260		μA
I _{DVCC,XT2}		$ \begin{aligned} &f_{OSC} = 20 \text{ MHz, } \text{XT2OFF} = 0, \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 2, \\ &T_{A} = 25^{\circ}\text{C} \end{aligned} $	3 V		325		μα
		f_{OSC} = 32 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, T_A = 25°C			450		
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, XT2BYPASS = 0 ⁽³⁾		4		8	MHz
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 ⁽³⁾		8		16	MHz
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 ⁽³⁾		16		24	MHz
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 ⁽³⁾		24		32	MHz
f _{XT2,HF,SW}	XT2 oscillator logic-level square- wave input frequency	XT2BYPASS = 1 (4) (3)		0.7		32	MHz
		$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450		
04	Oscillation allowance for	$XT2DRIVEx = 1$, $XT2BYPASS = 0$, $f_{XT2,HF1} = 12$ MHz, $C_{L,eff} = 15$ pF			320		1 _
OA _{HF}	HF crystals ⁽⁵⁾	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		Ω
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200		
	Ctart up time	$ \begin{aligned} &f_{OSC} = 6 \text{ MHz} \\ &\text{XT2BYPASS} = 0, \text{ XT2DRIVEx} = 0, \\ &T_A = 25^{\circ}\text{C}, \text{ C}_{\text{L,eff}} = 15 \text{ pF} \end{aligned} $	2.1/		0.5		
^t START,HF	Start-up time	f_{OSC} = 20 MHz XT2BYPASS = 0, XT2DRIVEx = 3, T_A = 25°C, $C_{L,eff}$ = 15 pF	3 V		0.3		ms
$C_{L,eff}$	Integrated effective load capacitance, HF mode (6) (1)				1		pF
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40%	50%	60%	
f _{Fault,HF}	Oscillator fault frequency ⁽⁷⁾	XT2BYPASS = 1 (8)		30		300	kHz

- (1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- (2) To improve EMI on the XT2 oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
 - Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- (3) Maximum frequency of operation of the entire device cannot be exceeded.
- (4) When XT2BYPASS is set, the XT2 circuit is automatically powered down.
- (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.
- (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- 8) Measured with logic-level input frequency but also applies to operation with crystals.

5.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	

⁽¹⁾ Calculated using the box method: (MAX(-40°C to +85°C) – MIN(-40°C to +85°C)) / MIN(-40°C to +85°C) / (85°C – (-40°C))

5.19 Internal Reference, Low-Frequency Oscillator (REFO)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	3		μA
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	32768		Hz
f _{REFO}	REFO absolute tolerance calibrated	Full temperature range	1.8 V to 3.6 V		±3.5%	ı
		T _A = 25°C	3 V		±1.5%	İ
df_{REFO}/d_{T}	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V	0.01		%/°C
df _{REFO} /dV _{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V	1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40% 50%	60%	
t _{START}	REFO start-up time	40%/60% duty cycle	1.8 V to 3.6 V	25		μs

 $^{(1) \}quad \text{Calculated using the box method: } \\ \left(\text{MAX}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MIN}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MIN}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MIN}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MIN}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) - \text{MS}(-40^{\circ}\text{C to } +85^{\circ}\text{C}) \right) \\ \left(\text{MS}(-40^{\circ}\text{C to } +85^{\circ$

⁽²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

⁽²⁾ Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

5.20 DCO Frequency

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{DCO(0,0)}	DCO frequency (0, 0)	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07		0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31)	DCORSELx = 0, $DCOx = 31$, $MODx = 0$	0.70		1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0)	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15		0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31)	DCORSELx = 1, $DCOx = 31$, $MODx = 0$	1.47		3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0)	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32		0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31)	DCORSELx = 2, $DCOx = 31$, $MODx = 0$	3.17		7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0)	DCORSELx = 3, $DCOx = 0$, $MODx = 0$	0.64		1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31)	DCORSELx = 3, $DCOx = 31$, $MODx = 0$	6.07		14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0)	DCORSELx = 4, $DCOx = 0$, $MODx = 0$	1.3		3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31)	DCORSELx = 4, DCOx = 31, MODx = 0	12.3		28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0)	DCORSELx = 5, $DCOx = 0$, $MODx = 0$	2.5		6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31)	DCORSELx = 5, $DCOx = 31$, $MODx = 0$	23.7		54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0)	DCORSELx = 6, $DCOx = 0$, $MODx = 0$	4.6		10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31)	DCORSELx = 6, DCOx = 31, MODx = 0	39.0		0.88	MHz
f _{DCO(7,0)}	DCO frequency (7, 0)	DCORSELx = 7, $DCOx = 0$, $MODx = 0$	8.5		19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31)	DCORSELx = 7, DCOx = 31, MODx = 0	60		135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2		2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40%	50%	60%	
df _{DCO} /dT	DCO frequency temperature drift	f _{DCO} = 1 MHz		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift	f _{DCO} = 1 MHz		1.9		%/V

Figure 5-10. Typical DCO frequency

5.21 PMM, Brownout Reset (BOR)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(DV _{CC} _BOR_IT-)	BOR _H on voltage, DV _{CC} falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.45	V
V(DV _{CC} _BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$	0.80	1.30	1.50	V
V(DV _{CC} _BOR_hys)	BOR _H hysteresis		60		250	mV
t _{RESET}	Pulse length required at RST/NMI pin to accept a reset		2			μs

5.22 PMM, Core Voltage

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	$2.4 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{\text{CORE}}) \le 21 \text{ mA}$	1.90		V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	$2.2 \text{ V} \le \text{DV}_{\text{CC}} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{\text{CORE}}) \le 21 \text{ mA}$	1.80		V
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	$2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}, 0 \text{ mA} \leq \text{I}(\text{V}_{\text{CORE}}) \leq 17 \text{ mA}$	1.60		V
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V \leq DV _{CC} \leq 3.6 V, 0 mA \leq I(V _{CORE}) \leq 13 mA	1.40		V
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	2.4 V \leq DV _{CC} \leq 3.6 V, 0 μA \leq I(V _{CORE}) \leq 30 μA	1.94		V
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	2.2 V \leq DV _{CC} \leq 3.6 V, 0 μA \leq I(V _{CORE}) \leq 30 μA	1.84		V
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ I(V _{CORE}) ≤ 30 μA	1.64		V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V, 0 μ A ≤ I(V _{CORE}) ≤ 30 μ A	1.44		V

5.23 PMM, SVS High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		SVSHE = 0, DV _{CC} = 3.6 V		0		^	
I _(SVSH)	SVS current consumption	SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 0		200		nA	
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		2.0		μA	
		SVSHE = 1, SVSHRVL = 0	1.59	1.64	1.69		
Vieveu it v	SVC an indiana laval(1)	SVSHE = 1, SVSHRVL = 1	1.79	1.84	1.91	V	
V(SVSH_IT-)	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 2	1.98	2.04	2.11	V	
		SVSHE = 1, SVSHRVL = 3	2.10	2.16	2.23		
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.81		
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.01	•	
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.21		
V		SVSHE = 1, SVSMHRRL = 3	2.20	2.26	2.33	V	
V(SVSH_IT+)		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.48		
		SVSHE = 1, SVSMHRRL = 5	2.56	2.70	2.84		
		SVSHE = 1, SVSMHRRL = 6	2.85	3.00	3.15		
		SVSHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	•	
	CVC	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1		2.5			
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs	
	CVC are as off dalay time	SVSHE = 0→1, SVSHFP = 1		12.5		μs	
t _(SVSH)	SVS _H on or off delay time	SVSHE = 0→1, SVSHFP = 0		100			
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s	

⁽¹⁾ The SVS_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) on recommended settings and usage.

5.24 PMM, SVM High Side

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		SVMHE = 0, DVCC = 3.6 V		0		~ Λ	
I _(SVMH)	SVM _H current consumption	SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0		200		nA	
		SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1		2.0		μΑ	
		SVMHE = 1, SVSMHRRL = 0	1.65	1.74	1.86		
		SVMHE = 1, SVSMHRRL = 1	1.85	1.94	2.02		
	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 2	2.02	2.14	2.22		
		SVMHE = 1, SVSMHRRL = 3	2.18	2.26	2.35	V	
V _(SVMH)		SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.48		
		SVMHE = 1, SVSMHRRL = 5	2.56	2.70	2.84		
		SVMHE = 1, SVSMHRRL = 6	2.85	3.00	3.15		
		SVMHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	•	
		SVMHE = 1, SVMHOVPE = 1		3.75			
	CV/M propagation delect	SVMHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVMHFP = 1	2.5				
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVMHFP = 0		20		μs	
	SV/M on or off dolay time	SVMHE = 0→1, SVSMFP = 1		12.5			
t _(SVMH)	SVM _H on or off delay time	SVMHE = 0→1, SVMHFP = 0		100		μs	

¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREVx) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) on recommended settings and usage.

5.25 PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _(SVSL)		SVSLE = 0, PMMCOREV = 2		0		nA
	SVS _L current consumption	SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		IIA
		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		2.0		μΑ
t _{pd(SVSL)}	SVS _L propagation delay	SVSLE = 1, dV _{CORE} /dt = 10 mV/µs, SVSLFP = 1		2.5		
		SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		20		μs
t _(SVSL)	SVS _L on/off delay time	SVSLE = 0→1, SVSLFP = 1		12.5		0
		SVSLE = 0→1, SVSLFP = 0		100		μs

5.26 PMM, SVM Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
I _(SVML)	SVM _L current consumption	SVMLE = 0, PMMCOREV = 2	0		~ ^	
		SVMLE = 1, PMMCOREV = 2, SVMLFP = 0		200		nA
		SVMLE = 1, PMMCOREV = 2, SVMLFP = 1		2.0		μΑ
t _{pd(SVML)}	SVM _L propagation delay	SVMLE = 1, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, $SVMLFP = 1$		2.5		0
		SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, $SVMLFP = 0$		20		μs
t _(SVML)	SVM _L on or off delay time	SVMLE = 0→1, SVMLFP = 1		12.5		
		SVMLE = 0→1, SVMLFP = 0		100		μs

5.27 Wake-up Times From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4 MHz		3	6.5	
twake-up-fast LPM3, or LPM4 to active (where n = 0, 1, 2, or 3),	1 MHz < f _{MCLK} < 4 MHz		4	8.0	μs		
twake-up-slow	Wake-up time from LPM2, LPM3 or LPM4 to active mode ⁽²⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
twake-up-lpm5	Wake-up time from LPM3.5 or LPM4.5 to active mode (3)				2	3	ms
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (3)				2	3	ms

⁽¹⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). Fastest wake-up times are possible with SVS_L and SVM_L in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVS_L and SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx* and *MSP430x6xx Family User's Guide* (SLAU208).

(3) This value represents the time from the wake-up event to the reset vector execution.

⁽²⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). In this case, the SVS_L and SVM_L are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVS_L and SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208).

5.28 Timer_A, Timers TA0, TA1, and TA2

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
f _{TA}	Timer_A input clock frequency	Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ±10%	1.8 V, 3 V	20	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20	ns

5.29 Timer_B, Timer TB0

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ±10%	1.8 V, 3 V	20	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20	ns

5.30 Battery Backup

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	V _{cc}	MIN	TYP	MAX	UNIT
			$T_A = -40$ °C			0.43		
		VBAT = 1.7 V,	T _A = 25°C			0.52		
		DVCC not connected, RTC running	T _A = 60°C			0.58		
		, and the second	T _A = 85°C			0.64		
			T _A = -40°C			0.50		
	Current into VBAT terminal if no	VBAT = 2.2 V,	$T_A = 25^{\circ}C$			0.59		
I_{VBAT}	primary battery is connected	DVCC not connected, RTC running	$T_A = 60^{\circ}C$			0.64		μA
		, and the second	$T_A = 85^{\circ}C$			0.71		
			T _A = -40°C			0.68		
		VBAT = 3 V,	$T_A = 25^{\circ}C$			0.75		
		DVCC not connected, RTC running	$T_A = 60^{\circ}C$			0.79		
			$T_A = 85^{\circ}C$			0.86		
	Switch-over level (V _{CC} to VBAT)	C _{VCC} = 4.7 μF	General			V _{SVSH_IT} -		
			SVSHRL = 0		1.59		1.69	
V_{SWITCH}			SVSHRL = 1		1.79		1.91	V
			SVSHRL = 2		1.98		2.11	
			SVSHRL = 3		2.10		2.23	
R _{ON_VBAT}	ON-resistance of switch between VBAT and VBAK	V _{BAT} = 1.8 V		0 V		0.35	1	kΩ
				1.8 V		0.6	±5%	
V_{BAT3}	VBAT to ADC input channel 12: V_{BAT} divided, $V_{BAT3} = V_{BAT}/3$			3 V		1.0	±5%	V
	VBAT GIVIGOO, VBAT3 — VBAT70			3.6 V		1.2	±5%	
t _{Sample,} VBAT3	VBAT to ADC: Sampling time required if VBAT3 selected	ADC12ON = 1, Error of conversion resu	ılt ≤ 1 LSB		1000			ns
V_{CHVx}	Charger end voltage	CHVx = 2			2.65	2.7	2.9	V
		CHCx = 1					5	
R _{CHARGE}	Charge limiting resistor	CHCx = 2					10	kΩ
		CHCx = 3					20	

5.31 USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
fusci	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)				1	MHz
t _T l	LIART receive dealitch time (1)		2.2 V	50	600	
	UART receive deglitch time (1)		3 V	50	600	ns

⁽¹⁾ Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time.

5.32 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-11 and Figure 5-12)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, ACLK, Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
		PMMCOREV = 0	1.8 V	55		
	SOMI input data actus timo	PIVIVICORE V = 0	3 V	38		20
t _{SU,MI}	SOMI input data setup time	PMMCOREV = 3	2.4 V	30		ns
		PIVIVICORE V = 3	3 V	25		
	SOMI input data hold time	DMMCODEV 0	1.8 V	0		ns
		PMMCOREV = 0	3 V	0		
t _{HD,MI}		DMMCODEV 2	2.4 V	0		
		PMMCOREV = 3	3 V	0		
	SIMO output data valid time ⁽²⁾	UCLK edge to SIMO valid,	1.8 V		20	
t _{VALID.MO}		$C_L = 20 \text{ pF},$ PMMCOREV = 0	3 V		18	
VALID,MO	Civio culput data valia timo	UCLK edge to SIMO valid,	2.4 V		16	113
		C _L = 20 pF, PMMCOREV = 3	3 V		15	
		C 20 TE DMMCODEV 0	1.8 V	-10		ns
	CIMO autout data hald time (3)	$C_L = 20 \text{ pF}, \text{PMMCOREV} = 0$	3 V	-8		
t _{HD,MO}	SIMO output data hold time (3)	O CONTENTANCOREVA O	2.4 V	-10		
		$C_L = 20 \text{ pF}, \text{PMMCOREV} = 3$	3 V	-8		

 ⁽¹⁾ f_{UCxCLK} = 1/2t_{LO/HI} with t_{LO/HI} ≥ max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)}).
 For the slave parameters t_{SU,SI(Slave)} and t_{VALID,SO(Slave)}, see the SPI parameters of the attached slave.
 (2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 5-11 and Figure 5-12.

⁽³⁾ Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-11 and Figure 5-12.

Figure 5-11. SPI Master Mode, CKPH = 0

Figure 5-12. SPI Master Mode, CKPH = 1

5.33 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 5-13 and Figure 5-14)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		DIMINOCES V. C	1.8 V	11		
	0.751 1.11 0.751 1.11	PMMCOREV = 0	3 V	8		
t _{STE,LEAD}	STE lead time, STE low to clock	DIMINOCES V. C	2.4 V	7		ns
		PMMCOREV = 3	3 V	6		
		PMMOODEV 0	1.8 V	3		
	0.751	PMMCOREV = 0	3 V	3		
t _{STE,LAG}	STE lag time, Last clock to STE high	DIMINOCES V. C	2.4 V	3		ns
		PMMCOREV = 3	3 V	3		
		DIMINOCES V. C	1.8 V		66	
	0.75	PMMCOREV = 0	3 V		50	
t _{STE,ACC}	STE access time, STE low to SOMI data out		2.4 V		36	ns
		PMMCOREV = 3	3 V		30	
		DIMINOCES V. C	1.8 V		30	
	STE disable time, STE high to SOMI high	PMMCOREV = 0	3 V		23	ne
t _{STE,DIS}	impedance	DIMINOCES V. C	2.4 V		16	ns
		PMMCOREV = 3	3 V		13	
			1.8 V	5		
	0010	PMMCOREV = 0	3 V	5		ns
t _{SU,SI}	SIMO input data setup time		2.4 V	2		
		PMMCOREV = 3	3 V	2		
			1.8 V	5		
	0040	PMMCOREV = 0	3 V	5		
t _{HD,SI}	SIMO input data hold time	DIMIOODEN O	2.4 V	5		ns
		PMMCOREV = 3	3 V	5		
		UCLK edge to SOMI valid,	1.8 V		76	
	SOMI output data valid time ⁽²⁾	$C_L = 20 \text{ pF},$ PMMCOREV = 0	3 V		60	no
t _{VALID,SO}	Solvii output data valid time	UCLK edge to SOMI valid,	2.4 V		44	ns
		$C_L = 20 \text{ pF},$ PMMCOREV = 3	3 V		40	
		C _L = 20 pF,	1.8 V	18		
	SOMI output data hold time (3)	PMMCOREV = 0	3 V	12		ns
t _{HD,SO}	SOIVII output data fiold time	$C_L = 20 \text{ pF},$	2.4 V	10		115
		PMMCOREV = 3	3 V	8		

 $f_{UCxCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq \max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)}).$ For the master parameters $t_{SU,MI(Master)}$ and $t_{VALID,MO(Master)}$, see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

Figure 5-13. SPI Slave Mode, CKPH = 0

Figure 5-14. SPI Slave Mode, CKPH = 1

5.34 USCI (I²C Mode)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0	400	kHz
	Lold time (repeated) CTART	f _{SCL} ≤ 100 kHz	227/27/	4.0		
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Catura time for a repeated CTART	f _{SCL} ≤ 100 kHz	221/21/	4.7		
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250		ns
	Catura tima a fara CTOD	f _{SCL} ≤ 100 kHz	227/27/	4.0		
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Pulse duration of spikes suppressed by		2.2 V	50	600	20
t _{SP}	input filter		3 V	50	600	ns

Figure 5-15. I²C Mode Timing

5.35 LCD_B, Recommended Operating Conditions

	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
V _{CC,LCD_B} , CP en,3.6	Supply voltage range, charge pump enabled, $V_{LCD} \le 3.6 \text{ V}$	LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, V _{LCD} ≤ 3.6 V)	2.2		3.6	٧
V _{CC,LCD_B} , CP en,3.3	Supply voltage range, charge pump enabled, $V_{LCD} \le 3.3 \text{ V}$	LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, V _{LCD} ≤ 3.3 V)	2.0		3.6	>
$V_{CC,LCD_B,\ int.\ bias}$	Supply voltage range, internal biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	٧
V _{CC,LCD_B} , ext. bias	Supply voltage range, external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	٧
V _{CC,LCD_B,} vlcdext	Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.0		3.6	٧
V _{LCDCAP/R33}	External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.4		3.6	٧
C _{LCDCAP}	Capacitor on LCDCAP when charge pump enabled	LCDCPEN = 1, VLCDx > 0000 (charge pump enabled)	4.7	4.7	10	μF
f _{Frame}	LCD frame frequency range	$f_{LCD} = 2 \times mux \times f_{FRAME}$ (mux = 1 (static), 2, 3, 4)	0		100	Hz
f _{ACLK,in}	ACLK input frequency range		30	32	40	kHz
C _{Panel}	Panel capacitance	100-Hz frame frequency			10000	pF
V _{R33}	Analog input voltage at R33	LCDCPEN = 0, VLCDEXT = 1	2.4		V _{CC} + 0.2	V
V _{R23,1/3bias}	Analog input voltage at R23	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V _{R13}	V _{R03} + 2/3 × (V _{R33} -V _{R03})	V _{R33}	V
V _{R13,1/3bias}	Analog input voltage at R13 with 1/3 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V _{R03}	V _{R03} + 1/3 × (V _{R33} -V _{R03})	V _{R23}	V
V _{R13,1/2bias}	Analog input voltage at R13 with 1/2 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1	V_{R03}	$V_{R03} + 1/2 \times (V_{R33} - V_{R03})$	V_{R33}	V
V_{R03}	Analog input voltage at R03	R0EXT = 1	V_{SS}			٧
V _{LCD} -V _{R03}	Voltage difference between V _{LCD} and R03	LCDCPEN = 0, R0EXT = 1	2.4		V _{CC} +0 .2	V
V _{LCDREF/R13}	External LCD reference voltage applied at LCDREF/R13	VLCDREFx = 01	0.8	1.2	1.5	V

5.36 LCD_B, Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		VLCDx = 0000, VLCDEXT = 0	2.4 V to 3.6 V		V_{CC}		
		LCDCPEN = 1, VLCDx = 0001	2 V to 3.6 V		2.60		
		LCDCPEN = 1, VLCDx = 0001	2.66				
		LCDCPEN = 1, VLCDx = 0011	2 V to 3.6 V		2.72		
		LCDCPEN = 1, VLCDx = 0100	2 V to 3.6 V		2.79		
		LCDCPEN = 1, VLCDx = 0101	2 V to 3.6 V		2.85		
		LCDCPEN = 1, VLCDx = 0110	2 V to 3.6 V		2.92		
M	I CD voltogo	LCDCPEN = 1, VLCDx = 0111	2 V to 3.6 V		2.98		V
V_{LCD}	LCD voltage	LCDCPEN = 1, VLCDx = 1000	2 V to 3.6 V		3.05		V
		LCDCPEN = 1, VLCDx = 1001	2 V to 3.6 V		3.10		
		LCDCPEN = 1, VLCDx = 1010	2 V to 3.6 V		3.17		
		LCDCPEN = 1, VLCDx = 1011	2 V to 3.6 V		3.24		
		LCDCPEN = 1, VLCDx = 1100	2 V to 3.6 V		3.30		
		LCDCPEN = 1, VLCDx = 1101	2.2 V to 3.6 V		3.36		
		LCDCPEN = 1, VLCDx = 1110	2.2 V to 3.6 V		3.42		
		LCDCPEN = 1, VLCDx = 1111	2.2 V to 3.6 V		3.48	3.6	
I _{CC,Peak,CP}	Peak supply currents due to charge pump activities	LCDCPEN = 1, VLCDx = 1111	2.2 V		400		μΑ
t _{LCD,CP,on}	Time to charge C _{LCD} when discharged		2.2 V		100	500	ms
I _{CP,Load}	Maximum charge pump load current	LCDCPEN = 1, VLCDx = 1111	2.2 V	50			μΑ
R _{LCD,Seg}	LCD driver output impedance, segment lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 µA	2.2 V			10	kΩ
R _{LCD,COM}	LCD driver output impedance, common lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 µA	2.2 V			10	kΩ

5.37 12-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V		2.2		3.6	V
$V_{(Ax)}$	Analog input voltage range (2)	All ADC12 analog input pins Ax		0		AV_CC	V
	Operating supply current into	5 MI I- (4)	2.2 V		150	200	
IADC12_A	AV _{CC} terminal (3)	f _{ADC12CLK} = 5 MHz ⁽⁴⁾	3 V		150	250	μA
Cı	Input capacitance	Only one terminal Ax can be selected at one time	2.2 V		20	25	pF
R _I	Input MUX ON resistance	0 V ≤ VIN ≤ V(AVCC)		10	200	1900	Ω

⁽¹⁾ The leakage current is specified by the digital I/O input leakage.

5.38 12-Bit ADC, Timing Parameters

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference ⁽¹⁾		0.45	4.8	5.0	
f _{ADC12CLK}	ADC conversion clock	For specified performance of ADC12 linearity parameters using the internal reference (2)	2.2 V, 3 V	0.45	2.4	4.0	MHz
		For specified performance of ADC12 linearity parameters using the internal reference (3)		0.45	2.4	2.7	
f _{ADC12OSC}	Internal ADC12 oscillator ⁽⁴⁾	ADC12DIV = 0, f _{ADC12CLK} = f _{ADC12OSC}	2.2 V, 3 V	4.2	4.8	5.4	MHz
	Conversion time	REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock	2.2 V, 3 V	2.4		3.1	
tCONVERT	Conversion time	External f _{ADC12CLK} from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0			(5)		μs
t _{Sample}	Sampling time	$R_S = 400 \Omega$, $R_I = 200 \Omega$, $C_I = 20 pF$, $T = [R_S + R_I] \times C_I^{(6)}$	2.2 V, 3 V	1000			ns

⁽¹⁾ REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with f_{ADC12CLK} maximum of 5 MHz.

⁽²⁾ The analog input voltage range must be within the selected reference voltage range V_{R+} to V_R for valid conversion results. If the reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are required. See Section 5.43 and Section 5.44.

⁽³⁾ The internal reference supply current is not included in current consumption parameter IADC12.

⁽⁴⁾ ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0

⁽²⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1

⁽³⁾ SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2.

⁽⁴⁾ The ADC12OSC is sourced directly from MODOSC inside the UCS.

⁽⁵⁾ $13 \times ADC12DIV \times 1/f_{ADC12CLK}$

⁽⁶⁾ Approximately 10 Tau (t) are needed to get an error of less than ±0.5 LSB:
t_{Sample} = ln(2ⁿ⁺¹) x (R_S + R_I) x C_I + 800 ns, where n = ADC resolution = 12, R_S = external source resistance

5.39 12-Bit ADC, Linearity Parameters Using an External Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
_	Integral	$1.4 \text{ V} \le \text{dVREF} \le 1.6 \text{ V}^{(2)}$	2.2 V, 3 V		±2	LSB
Eı	linearity error ⁽¹⁾	1.6 V < dVREF ⁽²⁾	2.2 V, 3 V		±1.7	LOD
E _D	Differential linearity error ⁽¹⁾	(2)	2.2 V, 3 V		±1	LSB
_	Offset error ⁽³⁾	$dVREF \le 2.2 \ V^{(2)}$	2.2 V, 3 V	±3	±5.6	LSB
Eo	Offset effor 17	$dVREF > 2.2 V^{(2)}$	2.2 V, 3 V	±1.5	±3.5	LOD
E_G	Gain error ⁽³⁾	(2)	2.2 V, 3 V	±1	±2.5	LSB
_	Total unadjusted	$dVREF \le 2.2 \ V^{(2)}$	2.2 V, 3 V	±3.5	±7.1	LSB
E _T	error	$dVREF > 2.2 V^{(2)}$	2.2 V, 3 V	±2	±5	LOD

⁽¹⁾ Parameters are derived using the histogram method.

5.40 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
EI	Integral linearity error ⁽¹⁾	See (2)	2.2 V, 3 V			±1.7	LSB
E _D	Differential linearity error ⁽¹⁾	See (2)	2.2 V, 3 V			±1	LSB
Eo	Offset error (3)	See (2)	2.2 V, 3 V		±1	±2	LSB
E _G	Gain error ⁽³⁾	See (2)	2.2 V, 3 V		±2	±4	LSB
E _T	Total unadjusted error	See (2)	2.2 V, 3 V		±2	±5	LSB

¹⁾ Parameters are derived using the histogram method.

5.41 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage

	PARAMETER	TEST CONDITI	ONS ⁽¹⁾	V _{CC}	MIN	TYP	MAX	UNIT
_	Integral	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V			±1.7	LSB
Eı	linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±2.5	LSB
		ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz		-1		+1.5	
E _D	Differential linearity error ⁽²⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1	LSB
	inidanty direi	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz		-1		+2.5	
г	Offset error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V, 3 V		±2	±4	LSB
Eo	Offset effor	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V		±2	±4	LSB
_	Gain error ⁽³⁾	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V. 3 V		±1	±2.5	LSB
E _G	Gain enors	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1% ⁽⁴⁾	VREF
_	Total unadjusted	ADC12SR = 0, REFOUT = 1	f _{ADC12CLK} ≤ 4.0 MHz	2.2 V. 3 V		±2	±5	LSB
E _T	error	ADC12SR = 0, REFOUT = 0	f _{ADC12CLK} ≤ 2.7 MHz	2.2 V, 3 V			±1% ⁽⁴⁾	VREF

⁽¹⁾ The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. $dVREF = V_{R+} - V_{R-}$

⁽²⁾ The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = V_{R+} - V_{R+} V_{R+} < AVCC. V_{R-} > AVSS. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the MSP430F5xx and MSP430F6xx Family User's Guide (SLAU208).</p>

⁽³⁾ Parameters are derived using a best fit curve.

⁽²⁾ AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.

⁽³⁾ Parameters are derived using a best fit curve.

⁽²⁾ Parameters are derived using the histogram method.

⁽³⁾ Parameters are derived using a best fit curve.

⁽⁴⁾ The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode the reference voltage used by the ADC12_A is not available on a pin.

5.42 12-Bit ADC, Temperature Sensor and Built-In V_{MID}

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	See ⁽¹⁾	ADC12ON = 1, INCH = 0Ah,	2.2 V		680		mV
V _{SENSOR}	See V	$T_A = 0$ °C	3 V		680		IIIV
TC	Tomporature coefficient of copper	ADC12ON = 1, INCH = 0Ah	2.2 V		2.25		mV/°C
TC _{SENSOR}	Temperature coefficient of sensor	ADC12ON = 1, INCH = 0AII	3 V		2.25		IIIV/°C
	Sample time required if	ADC12ON = 1, INCH = 0Ah,	2.2 V	100			
tSENSOR(sample)	channel 10 is selected (2)(3)	Error of conversion result ≤ 1 LSB	3 V	100			μs
V	AV _{CC} divider at channel 11	ADC12ON = 1, INCH = 0Bh,	2.2 V	1.06	1.1	1.14	V
V_{MID}	AV _{CC} divider at charmer 11	V_{MID} is approximately 0.5 × V_{AVCC}	3 V	1.46	1.5	1.54	
t _{VMID(sample)}	Sample time required if channel 11 is selected ⁽⁴⁾	ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB	2.2 V, 3 V	1000			ns

- (1) The temperature sensor is provided by the REF module. See the REF module parametric, I_{REF+}, regarding the current consumption of the temperature sensor.
- (2) The temperature sensor offset can be significant. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSE} = TC_{SENSOR} × (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's Guide (SLAU208).
- (3) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.
- (4) The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

Figure 5-16. Typical Temperature Sensor Voltage

5.43 REF, External Reference

ı	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
V _{eREF+}	Positive external reference voltage input	V _{eREF+} > V _{REF} \(\sqrt{V_{eREF-}} \) (2)		1.4	AV_CC	V
V _{REF-} /V _{eREF-}	Negative external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (3)		0	1.2	٧
V _{eREF+} - V _{REF-} /V _{eREF-}	Differential external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (4)		1.4	AV_{CC}	٧
I _{VeREF+} , I _{VREF-}	VREF- Static input current	$ \begin{array}{l} 1.4 \text{ V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}} \text{ , V}_{\text{eREF-}} = 0 \text{ V,} \\ \text{f}_{\text{ADC12CLK}} = 5 \text{ MHz, ADC12SHTx} = 1 \text{h,} \\ \text{Conversion rate 200 ksps} \end{array} $	2.2 V, 3 V	-26	26	
/VeREF-		$ \begin{array}{l} 1.4~\text{V} \leq \text{V}_{\text{eREF+}} \leq \text{V}_{\text{AVCC}}~,~\text{V}_{\text{eREF-}} = 0~\text{V},\\ \text{f}_{\text{ADC12CLK}} = 5~\text{MHZ},~\text{ADC12SHTx} = 8\text{h},\\ \text{Conversion rate 20 ksps} \end{array} $	2.2 V, 3 V	-1.2	+1.2	μA
C _{VREF+/-}	Capacitance at VREF+ or VREF- terminal (5)			10		μF

⁽¹⁾ The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, C_i, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to let the charge settle for 12-bit accuracy.

⁽²⁾ The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

⁽³⁾ The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

⁽⁴⁾ The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

⁽⁵⁾ Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208).

5.44 REF, Built-In Reference

	PARAMETER	TEST CONDITION	NS	V _{cc}	MIN	TYP	MAX	UNIT
		REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1 , I _{VREF+} = 0 A		3 V		2.5	±1%	
V_{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 2 V, REFON = REFOUT = 1, I _{VREF+} = 0 A		3 V		2.0	±1%	V
		REFVSEL = {0} for 1.5 V, REFON = REFOUT = 1, I _{VREF+} = 0 A		2.2 V, 3 V		1.5	±1%	
	AVCC minimum voltage,	REFVSEL = {0} for 1.5 V			2.2			
$AV_{CC(min)}$	Positive built-in reference	REFVSEL = {1} for 2 V			2.3			V
	active	REFVSEL = {2} for 2.5 V			2.8			
		ADC12SR = $1^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 0,			70	100	μA
	Operating supply current	ADC12SR = $1^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 1,	2.1/		0.45	0.75	mA
I _{REF+}	into AVCC terminal (2) (3)	ADC12SR = $0^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 0,	3 V		210	310	μA
		ADC12SR = $0^{(4)}$, REFON = 1, RE REFBURST = 0	FOUT = 1,			0.95	1.7	mA
I _{L(VREF+)}	Load-current regulation, VREF+ terminal ⁽⁵⁾		VSEL = {0, 1, 2}			1500	2500	μV/mA
C _{VREF+}	Capacitance at VREF+ terminal	REFON = REFOUT = 1, $^{(6)}$ 0 mA \leq $I_{VREF+} \leq$ I_{VREF+} (max)		2.2 V, 3 V	20		100	pF
TC _{REF+}	Temperature coefficient of built-in reference (7)	I _{VREF+} is a constant in the range of 0 mA ≤ I _{VREF+} ≤ −1 mA	REFOUT = 0	2.2 V, 3 V		20		ppm/ °C
TC _{REF+}	Temperature coefficient of built-in reference (7)	I _{VREF+} is a constant in the range of 0 mA ≤ I _{VREF+} ≤ −1 mA	REFOUT = 1	2.2 V, 3 V		20	50	ppm/ °C
PSRR_DC	Power supply rejection ratio (DC)	$\begin{array}{l} \text{AV}_{\text{CC}} = \text{AV}_{\text{CC(min)}} \text{ through AV}_{\text{CC(max)}} \\ \text{T}_{\text{A}} = 25^{\circ}\text{C}, \text{REFVSEL} = \{0,1,2\}, \text{REFOUT} = 0 \text{or} 1 \end{array}$	REFON = 1,			120	300	μV/V
PSRR_AC	Power supply rejection ratio (AC)	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \text{ through } AV_{CC(max)} \\ T_A = 25^{\circ}C, \ REFVSEL = \{0, 1, 2\}, \ REFOUT = 0 \text{ or } 1 \end{array}$	REFON = 1,			1		mV/V
	Sottling time of reference	$AV_{CC} = AV_{CC(min)}$ through $AV_{CC(min)}$ REFVSEL = {0, 1, 2}, REFOUT = 0 REFON = 0 \rightarrow 1	0,			75		
t _{SETTLE}	Settling time of reference voltage (8)	$\begin{array}{l} AV_{CC} = AV_{CC(min)} \ through \ AV_{CC(max)}, \\ C_{VREF} = C_{VREF}(max), \\ REFVSEL = \{0, \ 1, \ 2\}, \ REFOUT = \\ REFON = 0 \rightarrow 1 \end{array}$,			75		μs

- (1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the V_{REF+} terminal. When REFOUT = 1, the reference is available at the V_{REF+} terminal, as well as, used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and uses the smaller buffer.
- (2) The internal reference current is supplied by the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load.
- (3) The temperature sensor is provided by the REF module. Its current is supplied by terminal AVCC and is equivalent to I_{REF+} with REFON = 1 and REFOUT = 0.
- (4) For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.
- (5) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other external factors.
- (6) Connect two decoupling capacitors, 10 μF and 100 nF, to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).
- (7) Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } +85^{\circ}C) MIN(-40^{\circ}C \text{ to } +85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } +85^{\circ}C)/(85^{\circ}C (-40^{\circ}C))$.
- (8) The condition is that the error in a conversion started after t_{REFON} is less than ±0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1.

5.45 12-Bit DAC, Supply Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV_{CC}	Analog supply voltage	$AV_{CC} = DV_{CC}$, $AV_{SS} = DV_{SS} = 0 V$		2.20		3.60	V
		DAC12AMPx = 2, DAC12IR = 0, DAC12OG = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = 1.5 V	3 V		65	110	
I _{DD}		DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}			125	165	μA
-55		DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}	2.2 V, 3 V		250	350	
		DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AV _{CC}			750	1100	
	Power supply rejection ratio ⁽³⁾ (4)	DAC12_xDAT = 800h, VeREF+ = 1.5 V, ΔAV _{CC} = 100 mV	2.2 V		70		
PSRR		DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V, ΔΑV _{CC} = 100 mV	3 V		70		dB

- (1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
- (2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.
- (3) PSRR = 20 log ($\Delta AV_{CC} / \Delta V_{DAC12_xOUT}$)
- The internal reference is not used.

5.46 12-Bit DAC, Linearity Specifications

	PARAMETER	TEST CONI	DITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	Resolution	12-bit monotonic			12			bits
INL	Integral	VeREF+ = 1.5 V, DAC12AMP	x = 7, DAC12IR = 1	2.2 V		±2	±4 ⁽²⁾	LSB
IINL	nonlinearity ⁽¹⁾	VeREF+ = 2.5 V, DAC12AMP	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1			±2	±4	
DNL	Differential	VeREF+ = 1.5 V, DAC12AMP	x = 7, DAC12IR = 1	2.2 V		±0.4	±1 ⁽²⁾	LSB
DINL	nonlinearity ⁽¹⁾	VeREF+ = 2.5 V, DAC12AMP	x = 7, DAC12IR = 1	3 V		±0.4	±1	LSB
	Offset voltage	Without calibration ⁽¹⁾ (3)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V			±21 ⁽²⁾	
_		without cambration (4)	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V			±21	mV
E _O		With calibration ⁽¹⁾ (3)	VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V			±1.5 ⁽²⁾	mv
		With Cambration (1979)	VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	3 V			±1.5	
d _{E(O)} /d _T	Offset error temperature coefficient ⁽¹⁾	With calibration	With calibration			±10		μV/°C
Е	Coin orror	VeREF+ = 1.5 V		2.2 V			±2.5	%FSR
E _G	Gain error	VeREF+ = 2.5 V	VeREF+ = 2.5 V				±2.5	%F3K

⁽¹⁾ Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. $V_{DAC12_xOUT} = E_O + (1 + E_G) \times (VeREF + / 4095) \times DAC12_xDAT$, DAC12IR = 1.

⁽²⁾ This parameter is not production tested.

⁽³⁾ The offset calibration works on the output operational amplifier. Offset calibration is triggered by setting the DAC12CALON bit.

12-Bit DAC, Linearity Specifications (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)

P	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
d _{E(G)} /d _T	Gain temperature coefficient (1)		2.2 V, 3 V		10		ppm of FSR/ °C
		DAC12AMPx = 2				165	
toffset_Cal calibration (4)	DAC12AMPx = 3, 5	2.2 V, 3 V			66	ms	
	canbration	DAC12AMPx = 4, 6, 7				16.5	

(4) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may effect accuracy and is not recommended.

Figure 5-17. Linearity Test Load Conditions and Gain/Offset Definition

5.47 12-Bit DAC, Output Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PAF	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		No load, VeREF+ = AV _{CC} , DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7		0		0.005	
Vo	Output voltage	No load, VeREF+ = AV _{CC} , DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7	227.27	AV _{CC} - 0.05		AV_{CC}	V
	range ⁽¹⁾ (see Figure 5-18)	$R_{Load} = 3 k\Omega$, $VeREF+ = AV_{CC}$, $DAC12_xDAT = 0h$, $DAC12IR = 1$, $DAC12AMPx = 7$	2.2 V, 3 V	0		0.1	V
		$R_{Load} = 3 k\Omega$, $VeREF+ = AV_{CC}$, $DAC12_xDAT = 0FFFh$, $DAC12IR = 1$, $DAC12AMPx = 7$		AV _{CC} - 0.13		AV_{CC}	
C _{L(DAC12)}	Maximum DAC12 load capacitance		2.2 V, 3 V			100	pF
1	Maximum DAC12	$\begin{aligned} &DAC12AMPx = 2, DAC12_xDAT = 0FFFh, \\ &V_{O/P(DAC12)} > AV_{CC} - 0.3 \end{aligned}$	2.2 V, 3 V	-1			mA
I _{L(DAC12)}	load current	$\begin{aligned} &DAC12AMPx = 2, DAC12_xDAT = 0h, \\ &V_{O/P(DAC12)} < 0.3 V \end{aligned}$	2.2 V, 3 V			1	ША
		$R_{Load} = 3 \text{ k}\Omega, \text{ VO/P(DAC12)} < 0.3 \text{ V}, \\ DAC12AMPx = 2, DAC12_xDAT = 0h$			150	250	
R _{O/P(DAC12)}	Output resistance (see Figure 5-18)	$R_{Load} = 3 \text{ k}\Omega, V_{O/P(DAC12)} > AV_{CC} - 0.3 \text{ V},$ DAC12_xDAT = 0FFFh	2.2 V, 3 V		150	250	Ω
		$R_{Load} = 3 \text{ k}\Omega,$ 0.3 V \le V_{O/P(DAC12)} \le AV_{CC} - 0.3 V				6	

(1) Data is valid after the offset calibration of the output amplifier.

Figure 5-18. DAC12_x Output Resistance Tests

5.48 12-Bit DAC, Reference Input Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
VeREF+	Reference input voltage range	DAC12IR = $0^{(1)}$ (2)	2.2 V, 3 V		AV_{CC} / 3	AV _{CC} + 0.2	V
		DAC12IR = 1 ⁽³⁾ (4)			AV_{CC}	AV _{CC} + 0.2	
		DAC12_0 IR = DAC12_1 IR = 0		20			МΩ
D:		DAC12_0 IR = 1, DAC12_1 IR = 0			48		
Ri _(VREF+) , Ri _(VeREF+)	Reference input resistance (5)	DAC12_0 IR = 0, DAC12_1 IR = 1	2.2 V, 3 V		48		kΩ
		DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx ⁽⁶⁾			24		

- (1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
- (2) The maximum voltage applied at reference input voltage terminal VeREF+ = $(AV_{CC} V_{E(O)}) / (3 \times (1 + E_G))$.
- (3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
- (4) The maximum voltage applied at reference input voltage terminal VeREF+ = $(AV_{CC} V_{E(O)}) / (1 + E_G)$.
- (5) This impedance depends on tradeoff in power savings. Current devices have 48 kΩ for each channel when divide is enabled. Can be increased if performance can be maintained.
- (6) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.

5.49 12-Bit DAC, Dynamic Specifications

 $V_{REF} = V_{CC}$, DAC12IR = 1 (see Figure 5-19 and Figure 5-20), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		DAC12_xDAT = 800h,	DAC12AMPx = $0 \rightarrow \{2, 3, 4\}$			60	120	
t _{ON}	DAC12 on time	Error _{V(O)} < ±0.5 LSB ⁽¹⁾ (see Figure 5-19)	$DAC12AMPx = 0 \to \{5, 6\}$	2.2 V, 3 V		15	30	μs
			$DAC12AMPx = 0 \to 7$			6	12	
			DAC12AMPx = 2	2.2 V, 3 V		100	200	
t _{S(FS)}	$t_{S(FS)}$ Settling time, full scale	DAC12_xDAT = $80h \rightarrow F7Fh \rightarrow 80h$	DAC12AMPx = 3, 5			40	80	+ '
		0011 7 1 1 1 1 7 0011	DAC12AMPx = 4, 6, 7			15	30	
		DAC12_xDAT = 3F8h → 408h → 3F8h, BF8h → C08h → BF8h	DAC12AMPx = 2	2.2 V, 3 V		5		μs
t _{S(C-C)}	Settling time, code to code		DAC12AMPx = $3, 5$			2		
	code		DAC12AMPx = 4, 6, 7			1		
			DAC12AMPx = 2		0.05	0.35		V/µs
SR	Slew rate	DAC12_xDAT = $80h \rightarrow F7Fh \rightarrow 80h^{(2)}$	DAC12AMPx = $3, 5$	2.2 V, 3 V	0.35	1.10		
		0011 → 1 71 11 → 0011 ···	DAC12AMPx = 4, 6, 7	1	1.50	5.20		
	Glitch energy	DAC12_xDAT = 800h → 7FFh → 800h	DAC12AMPx = 7	2.2 V, 3 V		35		nV-s

- (1) R_{Load} and C_{Load} connected to AV_{SS} (not $AV_{CC}/2$) in Figure 5-19.
- (2) Slew rate applies to output voltage steps ≥ 200 mV.

Figure 5-19. Settling Time and Glitch Energy Testing

Figure 5-20. Slew Rate Testing

5.50 12-Bit DAC, Dynamic Specifications (Continued)

over recommended ranges of supply voltage and T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
BW _{-3dB}	3-dB bandwidth, V _{DC} = 1.5 V, V _{AC} = 0.1 V _{PP} (see Figure 5-21) DAC12IR = 1, DAC1 DAC12AMPx = {5, 6} DAC12IR = 1, DAC1 DAC12AMPx = 7, DAC1	DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		40			
		DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2 V, 3 V	180			kHz
		DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		550			
	Channel-to-channel	DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , f _{DAC12_1OUT} = 10 kHz at 50/50 duty cycle	2.2 V. 3 V		-80		dB
	crosstalk ⁽¹⁾ (see Figure 5-22)	DAC12_0DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , DAC12_1DAT = 800h, No load, f _{DAC12_0OUT} = 10 kHz at 50/50 duty cycle	2.2 V, 3 V		-80		αв

(1) $R_{Load} = 3 k\Omega$, $C_{Load} = 100 pF$

Figure 5-21. Test Conditions for 3-dB Bandwidth Specification

Figure 5-22. Crosstalk Test Conditions

5.51 Comparator_B

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			40	
	Comparator operating	CBPWRMD = 00	2.2 V		30	50	
I _{AVCC_COMP}	supply current into AVCC terminal, Excludes		3 V		40	65	μΑ
	reference resistor ladder	CBPWRMD = 01	2.2 V, 3 V		10	30	
		CBPWRMD = 10	2.2 V, 3 V		0.1	0.5	
I _{AVCC_REF}	Quiescent current of local reference voltage amplifier into AVCC terminal	CBREFACC = 1, CBREFLx = 01				22	μΑ
V _{IC}	Common-mode input range			0		V _{CC} - 1	V
1/	land offert veltage	CBPWRMD = 00				±20	\/
V _{OFFSET}	Input offset voltage	CBPWRMD = 01, 10				±10	mV
C _{IN}	Input capacitance				5		pF
R _{SIN}	Series input resistance	ON (switch closed)			3	4	kΩ
		OFF (switch open)		50			ΜΩ
	Propagation delay, response time	CBPWRMD = 00, CBF = 0				450	ns
t_{PD}		CBPWRMD = 01, CBF = 0				600	115
		CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.0	
	Propagation delay with	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	
t _{PD,filter}	filter active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	
t _{EN_CMP}	Comparator enable time, settling time	CBON = 0 to CBON = 1 CBPWRMD = 00, 01, 10			1	2	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 to CBON = 1			0.3	1.5	μs
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN x (n + 0.5) / 32	VIN × (n + 1) / 32	VIN x (n + 1.5) / 32	V

5.52 Ports PU.0 and PU.1

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V_{OH}	High-level output voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%, I_{OH} = -25 \text{ mA}$	2.4		V
V_{OL}	Low-level output voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%, I_{OL} = 25 \text{ mA}$		0.4	V
V _{IH}	High-level input voltage	V _{USB} = 3.3 V ±10%	2.0		V
V_{IL}	Low-level input voltage	V _{USB} = 3.3 V ±10%		0.8	V

5.53 USB Output Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{OH}	D+, D- single ended	USB 2.0 load conditions	2.8	3.6	V
V_{OL}	D+, D- single ended	USB 2.0 load conditions	0	0.3	V
Z _(DRV)	D+, D- impedance	Including external series resistor of 27 Ω	28	44	Ω
t _{RISE}	Rise time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns
t _{FALL}	Fall time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns

5.54 USB Input Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
V _(CM)	Differential input common-mode range	0.8	2.5	V
$Z_{(IN)}$	Input impedance	300		kΩ
V_{CRS}	Crossover voltage	1.3	2.0	V
V _{IL}	Static SE input logic low level		0.8	V
V _{IH}	Static SE input logic high level	2.0		V
VDI	Differential input voltage		0.2	V

5.55 USB-PWR (USB Power System)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{LAUNCH}	V _{BUS} detection threshold				3.75	V
V _{BUS}	USB bus voltage	Normal operation	3.76		5.5	V
V_{USB}	USB LDO output voltage			3.3	±9%	V
V ₁₈	Internal USB voltage ⁽¹⁾			1.8		V
I _{USB_EXT}	Maximum external current from VUSB terminal (2)	USB LDO is on			12	mA
I _{DET}	USB LDO current overload detection (3)		60		100	mΑ
I _{SUSPEND}	Operating supply current into VBUS terminal. (4)	USB LDO is on, USB PLL disabled			250	μΑ
C _{BUS}	VBUS terminal recommended capacitance			4.7		μF
C _{USB}	VUSB terminal recommended capacitance			220		nF
C ₁₈	V18 terminal recommended capacitance			220		nF
t _{ENABLE}	Settling time V _{USB} and V ₁₈	Within 2%, recommended capacitances			2	ms
R _{PUR}	Pullup resistance of PUR terminal (5)		70	110	150	Ω

⁽¹⁾ This voltage is for internal use only. No external DC loading should be applied.

⁽²⁾ This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB operation.

⁽³⁾ A current overload is detected when the total current supplied from the USB LDO, including I_{USB_EXT}, exceeds this value.

Does not include current contribution of R_{pu} and R_{pd} as outlined in the USB specification.

⁽⁵⁾ This value, in series with an external resistor between PUR and D+, produces the R_{pu} as outlined in the USB specification.

5.56 USB-PLL (USB Phase-Locked Loop)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{PLL}	Operating supply current					7	mΑ
f_{PLL}	PLL frequency				48		MHz
f _{UPD}	PLL reference frequency			1.5		3	MHz
t _{LOCK}	PLL lock time					2	ms
t _{Jitter}	PLL jitter				1000		ps

5.57 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	V
I _{PGM}	Average supply current from DVCC during program			3	5	mA
I _{ERASE}	Average supply current from DVCC during erase			6	11	mA
I _{MERASE} , I _{BANK}	Average supply current from DVCC during mass erase or bank erase			6	11	mA
t _{CPT}	Cumulative program time	See (1)			16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C	100			years
t _{Word}	Word or byte program time	See (2)	64		85	μs
t _{Block, 0}	Block program time for first byte or word	See (2)	49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or word	See ⁽²⁾	37		49	μs
t _{Block, N}	Block program time for last byte or word	See (2)	55		73	μs
t _{Seg Erase}	Erase time for segment, mass erase, and bank erase when available	See ⁽²⁾	23		32	ms
f _{MCLK,MRG}	MCLK frequency in marginal read mode (FCTL4.MRG0 = 1 or FCTL4.MRG1 = 1)		0		1	MHz

⁽¹⁾ The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes.

5.58 JTAG and Spy-Bi-Wire Interface

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
4	TCK input fraguency (4 wire ITAC)(2)	2.2 V	0		5	MHz
f _{TCK}	TCK input frequency (4-wire JTAG) ⁽²⁾	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

⁽¹⁾ Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

⁽²⁾ These values are hardwired into the flash controller state machine.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

6 Detailed Description

6.1 Overview

The MSP430F663x devices include a high-performance 12-bit ADC, comparator, two USCIs, USB 2.0, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver, and up to 74 I/O pins.

6.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1).

Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions.

Figure 6-1. CPU Registers

6.3 Instruction Set

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 shows examples of the three types of instruction formats; Table 6-2 shows the address modes.

Table 6-1. Instruction Word Formats

INSTRUCTION WORD FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5 → R5
Single operands, destination only	CALL R8	$PC \rightarrow (TOS), R8 \rightarrow PC$
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

Table 6-2. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	+	+	MOV Rs,Rd	MOV R10,R11	R10 → R11
Indexed	+	+	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	$M(2+R5) \rightarrow M(6+R6)$
Symbolic (PC relative)	+	+	MOV EDE,TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	+	+	MOV &MEM, &TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	+		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	$M(R10) \rightarrow M(Tab+R6)$
Indirect auto-increment	+		MOV @Rn+,Rm	MOV @R10+,R11	M(R10) → R11 R10 + 2 → R10
Immediate	+		MOV #X,TONI	MOV #45,TONI	#45 → M(TONI)

⁽¹⁾ S = source, D = destination

6.4 Operating Modes

These devices have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

Software can configure the following operating modes:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DC generator of the DCO is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 3.5 (LPM3.5)
 - Internal regulator disabled
 - No data retention
 - RTC enabled and clocked by low-frequency oscillator
 - Wake-up signal from RST/NMI, RTC B, P1, P2, P3, and P4
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wake-up signal from RST/NMI, P1, P2, P3, and P4

6.5 **Interrupt Vector Addresses**

The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence (see Table 6-3).

Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430F663x Configurations

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, External Reset Watchdog Time-out, Key Violation Flash Memory Key Violation	WDTIFG, KEYV (SYSRSTIV) ⁽¹⁾⁽²⁾	Reset	0FFFEh	63, highest
System NMI PMM Vacant Memory Access JTAG Mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator Fault Flash Memory Access Violation	NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) ⁽¹⁾⁽²⁾	(Non)maskable	0FFFAh	61
Comp_B	Comparator B interrupt flags (CBIV) ⁽¹⁾⁽³⁾	Maskable	0FFF8h	60
Timer TB0	TB0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFF6h	59
Timer TB0	TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TBIV) ⁽¹⁾ (3)	Maskable	0FFF4h	58
Watchdog Interval Timer Mode	WDTIFG	Maskable	0FFF2h	57
USCI_A0 Receive or Transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)(3)	Maskable	0FFF0h	56
USCI_B0 Receive or Transmit	UCB0RXIFG, UCB0TXIFG (UCB0IV)(1)(3)	Maskable	0FFEEh	55
ADC12_A ⁽⁴⁾	ADC12IFG0 to ADC12IFG15 (ADC12IV) ⁽¹⁾⁽³⁾	Maskable	0FFECh	54
Timer TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFEAh	53
Timer TA0	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) ⁽¹⁾⁽³⁾	Maskable	0FFE8h	52
USB_UBM	USB interrupts (USBIV) (1)(3)	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV) ⁽¹⁾⁽³⁾	Maskable	0FFE4h	50
Timer TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE2h	49
Timer TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾⁽³⁾	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ⁽¹⁾ (3)	Maskable	0FFDEh	47
USCI_A1 Receive or Transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV)(1)(3)	Maskable	0FFDCh	46
USCI_B1 Receive or Transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV)(1)(3)	Maskable	0FFDAh	45
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ^{(1) (3)}	Maskable	0FFD8h	44
LCD_B	LCD_B Interrupt Flags (LCDBIV) ⁽¹⁾	Maskable	0FFD6h	43
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) ⁽¹⁾⁽³⁾	Maskable	0FFD4h	42
DAC12_A ⁽⁵⁾	DAC12_0IFG, DAC12_1IFG ⁽¹⁾⁽³⁾	Maskable	0FFD2h	41
Timer TA2	TA2CCR0 CCIFG0 ⁽³⁾	Maskable	0FFD0h	40
Timer TA2	TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) ⁽¹⁾⁽³⁾	Maskable	0FFCEh	39
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽¹⁾⁽³⁾	Maskable	0FFCCh	38
I/O Port P4	P4IFG.0 to P4IFG.7 (P4IV) ⁽¹⁾⁽³⁾	Maskable	0FFCAh	37

⁽¹⁾ Multiple source flags

A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

Interrupt flags are located in the module.

Only on devices with peripheral module ADC12_A, otherwise reserved.

⁽⁵⁾ Only on devices with peripheral module DAC12_A, otherwise reserved.

Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430F663x Configurations (continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
			0FFC8h	36
Reserved	Reserved ⁽⁶⁾		:	:
			0FF80h	0, lowest

⁽⁶⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations.

6.6 Memory

Table 6-4 shows the memory organization for all device variants.

Table 6-4. Memory Organization (1)(2)

		MSP430F6636 MSP430F6633 MSP430F6630	MSP430F6637 MSP430F6634 MSP430F6631	MSP430F6638 MSP430F6635 MSP430F6632
Memory (flash) Main: interrupt vector	Total Size	128KB 00FFFFh-00FF80h	192KB 00FFFFh-00FF80h	256KB 00FFFFh-00FF80h
	Bank 3	N/A	N/A	64KB 047FFFh-038000h
Main: code memory	Bank 2	N/A	64KB 037FFFh-028000h	64KB 037FFFh-028000h
iviain. code memory	Bank 1	64KB 027FFFh-018000h	64KB 027FFFh-018000h	64KB 027FFFh-018000h
	Bank 0	64KB 017FFFh-008000h	64KB 017FFFh-008000h	64KB 017FFFh-008000h
	Sector 3	4KB 0063FFh-005400h	4KB 0063FFh-005400h	4KB 0063FFh-005400h
DAM	Sector 2	4KB 0053FFh-004400h	4KB 0053FFh-004400h	4KB 0053FFh-004400h
RAM	Sector 1	4KB 0043FFh-003400h	4KB 0043FFh-003400h	4KB 0043FFh-003400h
	Sector 0	4KB 0033FFh-002400h	4KB 0033FFh-002400h	4KB 0033FFh-002400h
USB RAM ⁽³⁾	Size RAM	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h
	Info A	128 B 0019FFh-001980h	128 B 0019FFh-001980h	128 B 0019FFh-001980h
Information memory	Info B	128 B 00197Fh-001900h	128 B 00197Fh-001900h	128 B 00197Fh-001900h
(flash)	Info C	128 B 0018FFh-001880h	128 B 0018FFh-001880h	128 B 0018FFh-001880h
	Info D	128 B 00187Fh-001800h	128 B 00187Fh-001800h	128 B 00187Fh-001800h
	BSL 3	512 B 0017FFh-001600h	512 B 0017FFh-001600h	512 B 0017FFh-001600h
Bootloader (BSL)	BSL 2	512 B 0015FFh-001400h	512 B 0015FFh-001400h	512 B 0015FFh-001400h
memory (flash)	BSL 1	512 B 0013FFh-001200h	512 B 0013FFh-001200h	512 B 0013FFh-001200h
	BSL 0	512 B 0011FFh-001000h	512 B 0011FFh-001000h	512 B 0011FFh-001000h
Peripherals	Size	4KB 000FFFh-000000h	4KB 000FFFh-000000h	4KB 000FFFh-000000h

⁽¹⁾ N/A = Not available.

⁽²⁾ Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

³⁾ USB RAM can be used as general-purpose RAM when not used for USB operation.

6.7 Bootloader (BSL)

The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory by the BSL is protected by an user-defined password. For complete description of the features of the BSL and its implementation, see *MSP430 Programming With the Bootloader (BSL)* (SLAU319).

6.7.1 USB BSL

All devices come preprogrammed with the USB BSL. Use of the USB BSL requires external access to six pins (see Table 6-5). In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT or proper decoupling.

Table 6-5. USB BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
PU.0/DP	USB data terminal DP
PU.1/DM	USB data terminal DM
PUR	USB pullup resistor terminal
VBUS	USB bus power supply
VSSU	USB ground supply

NOTE

The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If the PUR pin is pulled high externally, the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends applying a $1-M\Omega$ resistor to ground.

6.7.2 UART BSL

A UART BSL is also available that can be programmed by the user into the BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires external access to six pins (see Table 6-6).

Table 6-6. UART BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
TEST/SBWTCK	Entry sequence signal
P1.1	Data transmit
P1.2	Data receive
VCC	Power supply
VSS	Ground supply

6.8 JTAG Operation

6.8.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-7 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430TM Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input OUT PJ.0/TDO JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply

Table 6-7. JTAG Pin Requirements and Functions

6.8.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-8 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide* (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming Via the JTAG Interface* (SLAU320).

 DEVICE SIGNAL
 DIRECTION
 FUNCTION

 TEST/SBWTCK
 IN
 Spy-Bi-Wire clock input

 RST/NMI/SBWTDIO
 IN, OUT
 Spy-Bi-Wire data input/output

 VCC
 Power supply

 VSS
 Ground supply

Table 6-8. Spy-Bi-Wire Pin Requirements and Functions

6.9 Flash Memory (Link to User's Guide)

The flash memory can be programmed by the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
- Segment A can be locked separately.

6.10 RAM (Link to User's Guide)

The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM include:

- RAM has n sectors. The size of a sector can be found in Memory Organization.
- Each sector 0 to n can be complete disabled; however, data retention is lost.
- Each sector 0 to n automatically enters low power retention mode when possible.
- For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.

6.11 Backup RAM

The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the Battery Backup System module is implemented.

There are 8 bytes of backup RAM available on MSP430F663x. It can be wordwise accessed by the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

6.12 Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

6.12.1 Digital I/O (Link to User's Guide)

Up to nine 8-bit I/O ports are implemented: P1 through P6, P8, and P9 are complete, P7 contains six individual I/O ports, and PJ contains four individual I/O ports.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- · Programmable drive strength on all ports.
- Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.
- Read and write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).

6.12.2 Port Mapping Controller (Link to User's Guide)

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. Table 6-9 lists the mnemonic for each function that can be assigned.

Table 6-9. Port Mapping Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION
0	0 PM_NONE None		DV_{SS}
1	PM_CBOUT	-	Comparator_B output
l	PM_TB0CLK	Timer TB0 clock input	-
2	PM_ADC12CLK	-	ADC12CLK
2	PM_DMAE0	DMAE0 Input	-
	PM_SVMOUT	-	SVM output
3	PM_TB0OUTH	Timer TB0 high impedance input TB0OUTH	-
4	PM_TB0CCR0B	Timer TB0 CCR0 capture input CCI0B	Timer TB0: TB0.0 compare output Out0
5	PM_TB0CCR1B	Timer TB0 CCR1 capture input CCI1B	Timer TB0: TB0.1 compare output Out1
6	PM_TB0CCR2B	Timer TB0 CCR2 capture input CCI2B	Timer TB0: TB0.2 compare output Out2

Table 6-9. Port Mapping Mnemonics and Functions (continued)

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION	
7	PM_TB0CCR3B	Timer TB0 CCR3 capture input CCl3B	Timer TB0: TB0.3 compare output Out3	
8	PM_TB0CCR4B	Timer TB0 CCR4 capture input CCI4B	Timer TB0: TB0.4 compare output Out4	
9	PM_TB0CCR5B	Timer TB0 CCR5 capture input CCI5B	Timer TB0: TB0.5 compare output Out5	
10	PM_TB0CCR6B	Timer TB0 CCR6 capture input CCI6B	Timer TB0: TB0.6 compare output Out6	
11	PM_UCA0RXD	USCI_A0 UART RXD (Dire	ction controlled by USCI – input)	
11	PM_UCA0SOMI	USCI_A0 SPI slave out mast	er in (direction controlled by USCI)	
12	PM_UCA0TXD	USCI_A0 UART TXD (Direct	ction controlled by USCI – output)	
12	PM_UCA0SIMO	USCI_A0 SPI slave in maste	r out (direction controlled by USCI)	
13	PM_UCA0CLK	USCI_A0 clock input/output	ut (direction controlled by USCI)	
13	PM_UCB0STE	USCI_B0 SPI slave transmit enab	le (direction controlled by USCI – input)	
14	PM_UCB0SOMI	USCI_B0 SPI slave out mast	er in (direction controlled by USCI)	
14	PM_UCB0SCL	USCI_B0 I ² C clock (open dra	in and direction controlled by USCI)	
15	PM_UCB0SIMO	USCI_B0 SPI slave in maste	r out (direction controlled by USCI)	
15	PM_UCB0SDA	USCI_B0 I ² C data (open drai	n and direction controlled by USCI)	
16	PM_UCB0CLK	USCI_B0 clock input/output	ut (direction controlled by USCI)	
16	PM_UCA0STE	USCI_A0 SPI slave transmit enab	le (direction controlled by USCI – input)	
17	PM_MCLK	-	MCLK	
18	Reserved	Reserved for test purposes. Do not use this setting.		
19	Reserved	Reserved for test purposes. Do not use this setting.		
20-30	Reserved	None DVSS		
31 (0FFh) ⁽¹⁾	PM_ANALOG	Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals.		

⁽¹⁾ The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide and the upper bits are ignored, which results in a maximum value of 31.

Table 6-10 lists the default port mapping for all supported pins.

Table 6-10. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION			
P2.0/P2MAP0	PM_UCB0STE, PM_UCA0CLK	USCI_B0 SPI slave transmit enable (direction controlled by USCI – input) USCI_A0 clock input/output (direction controlled by USCI)				
P2.1/P2MAP1	PM_UCB0SIMO, PM_UCB0SDA	USCI_B0 SPI slave in master out (direction controlled by USCI), USCI_B0 I ² C data (open drain and direction controlled by USCI)				
P2.2/P2MAP2	PM_UCB0SOMI, PM_UCB0SCL	USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 I ² C clock (open drain and direction controlled by USCI)				
P2.3/P2MAP3	PM_UCB0CLK, PM_UCA0STE	USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 SPI slave transmit enable (direction controlled by USCI – inp				
P2.4/P2MAP4	PM_UCA0TXD, PM_UCA0SIMO		n controlled by USCI – output), ut (direction controlled by USCI)			
P2.5/P2MAP5	PM_UCA0RXD, PM_UCA0SOMI					
P2.6/P2MAP6/R03	PM_NONE	-	DVSS			
P2.7/P2MAP7/LCDREF/R13	PM_NONE	- DVSS				

6.12.3 Oscillator and System Clock (Link to User's Guide)

The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-controlled oscillator DCO.
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

6.12.4 Power-Management Module (PMM) (Link to User's Guide)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.

6.12.5 Hardware Multiplier (MPY) (Link to User's Guide)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

6.12.6 Real-Time Clock (RTC_B) (Link to User's Guide)

The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply.

The application report *Using the MSP430 RTC_B Module With Battery Backup Supply* (SLAA665) describes how to use the RTC_B with battery backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, and how to perform correct reinitialization when the main power supply is restored.

6.12.7 Watchdog Timer (WDT_A) (Link to User's Guide)

The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

6.12.8 System Module (SYS) (Link to User's Guide)

The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.

Table 6-11 lists the SYS interrupt vector registers.

Table 6-11. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	INTERRUPT EVENT	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	Brownout (BOR)		02h	Highest
	RST/NMI (BOR)		04h	
	PMMSWBOR (BOR)		06h	
	LPM3.5 or LPM4.5 wakeup (BOR)		08h	
	Security violation (BOR)		0Ah	
	SVSL (POR)		0Ch	
	SVSH (POR)		0Eh	
CVCDCTIV Custom Doort	SVML_OVP (POR)	019Eh	10h	
SYSRSTIV, System Reset	SVMH_OVP (POR)	019En	12h	
	PMMSWPOR (POR)		14h	
	WDT time-out (PUC)		16h	
	WDT key violation (PUC)		18h	
	KEYV flash key violation (PUC)		1Ah	
	Reserved		1Ch	
	Peripheral area fetch (PUC)		1Eh	
	PMM key violation (PUC)		20h	
	Reserved	eserved		Lowest
	No interrupt pending		00h	
	SVMLIFG		02h	Highest
	SVMHIFG		04h	
	DLYLIFG		06h	
	DLYHIFG		08h	
SYSSNIV, System NMI	VMAIFG	019Ch	0Ah	
	JMBINIFG		0Ch	
	JMBOUTIFG		0Eh	
	SVMLVLRIFG		10h	
	SVMHVLRIFG		12h	
	Reserved		14h to 1Eh	Lowest
	No interrupt pending		00h	
	NMIIFG		02h	Highest
	OFIFG		04h	
SYSUNIV, User NMI	ACCVIFG	019Ah	06h	
	BUSIFG		08h	
	Reserved		0Ah to 1Eh	Lowest
	No interrupt pending		00h	
SYSBERRIV, Bus Error	USB wait state time-out	0198h	02h	Highest
	Reserved		04h to 1Eh	Lowest

6.12.9 DMA Controller (Link to User's Guide)

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-12 lists the trigger assignments for each DMA channel.

The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments (see Table 6-12).

Table 6-12. DMA Trigger Assignments⁽¹⁾

TRICOER	CHANNEL												
TRIGGER	0	1	2	3	4	5							
0	DMAREQ												
1	TA0CCR0 CCIFG												
2	TA0CCR2 CCIFG												
3	TA1CCR0 CCIFG												
4		TA1CCR2 CCIFG											
5			TA2CC	R0 CCIFG									
6			TA2CC	R2 CCIFG									
7			TBCC	R0 CCIFG									
8			TBCC	R2 CCIFG									
9			Re	served									
10			Re	served									
11			Re	served									
12			Re	served									
13			Re	served									
14			Re	served									
15			Re	served									
16			UCA	0RXIFG									
17			UCA	0TXIFG									
18			UCB	0RXIFG									
19			UCE	0TXIFG									
20			UCA	1RXIFG									
21			UCA	1TXIFG									
22			UCB	1RXIFG									
23			UCE	31TXIFG									
24			ADC,	12IFGx ⁽²⁾									
25			DAC1	2_0IFG ⁽³⁾									
26			DAC1	2_1IFG ⁽³⁾									
27			USB	FNRXD									
28	USB ready												
29			MP'	Y ready									
30	DMA5IFG	DMA0IFG	DMA1IFG	DMA2IFG	DMA3IFG	DMA4IFG							
31			DI	MAE0									

⁽¹⁾ Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not cause any DMA trigger event when selected.

⁽²⁾ Only on devices with peripheral module ADC12_A. Reserved on devices without ADC.

⁽³⁾ Only on devices with peripheral module DAC12_A. Reserved on devices without DAC.

6.12.10 Universal Serial Communication Interface (USCI) (Links to User's Guide: UART Mode, SPI Mode, FC Mode)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I²C.

The MSP430F663x series includes two complete USCI modules (n = 0 to 1).

6.12.11 Timer TA0 (Link to User's Guide)

Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers (see Table 6-13). TA0 can support multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

Table 6-13. Timer TA0 Signal Connections

INPUT PIN	INPUT PIN NUMBER		MODULE	MODULE	MODULE	DEVICE	OUTPUT P	N NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
34-P1.0	L5-P1.0	TA0CLK	TACLK					
		ACLK	ACLK	T:	NA	NIA		
		SMCLK	SMCLK	Timer	NA	NA		
34-P1.0	L5-P1.0	TA0CLK	TACLK					
35-P1.1	M5-P1.1	TA0.0	CCI0A				35-P1.1	M5-P1.1
		DV _{SS}	CCI0B	CCR0	TA0	TA0.0		
		DV _{SS}	GND	CCRU	TAU	1A0.0		
		DV _{CC}	V _{CC}					
36-P1.2	J6-P1.2	TA0.1	CCI1A				36-P1.2	J6-P1.2
40-P1.6	J7-P1.6	TA0.1	CCI1B				40-P1.6	J7-P1.6
		DV _{SS}	GND	CCR1 TA1	TA0.1	ADC12_A (internal) $^{(1)}$ ADC12SHSx = {1}		
		DV _{CC}	V _{CC}					
37-P1.3	H6-P1.3	TA0.2	CCI2A			TA0.2	37-P1.3	H6-P1.3
41-P1.7	M7-P1.7	TA0.2	CCI2B	0000	TA2		41-P1.7	M7-P1.7
		DV _{SS}	GND	CCR2	1A2	1AU.2		
		DV _{CC}	V _{CC}					
38-P1.4	M6-P1.4	TA0.3	CCI3A				38-P1.4	M6-P1.4
		DV _{SS}	CCI3B	CCR3	TA3	TA0.3		
		DV _{SS}	GND	CCRS	IAS	1A0.5		
		DV _{CC}	V _{CC}					
39-P1.5	L6-P1.5	TA0.4	TA0.4 CCI4A				39-P1.5	L6-P1.5
		DV _{SS} CCI4B	CCR4	TA4	TAO 4			
		DV _{SS}	GND	CCR4	174	TA0.4		
		DV _{CC}	V _{CC}]				

⁽¹⁾ Only on devices with peripheral module ADC12_A.

6.12.12 Timer TA1 (Link to User's Guide)

Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers(see Table 6-14). TA1 supports multiple capture/compares, PWM outputs, and interval timing. TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

Table 6-14. Timer TA1 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
42-P3.0	L7-P3.0	TA1CLK	TACLK	- Timer NA				
		ACLK	ACLK			NIA		
		SMCLK	SMCLK		INA	NA		
42-P3.0	L7-P3.0	TA1CLK	TACLK					
43-P3.1	H7-P3.1	TA1.0	CCI0A	CCR0			43-P3.1	H7-P3.1
		DV _{SS}	CCI0B		TA0	TA4.0		
		DV _{SS}	GND		TA0	TA1.0		
		DV _{CC}	V _{CC}					
44-P3.2	M8-P3.2	TA1.1	CCI1A				44-P3.2	M8-P3.2
		CBOUT (internal)	CCI1B	CCR1	TA1	TA1.1	DAC12_A ⁽¹⁾ DAC12_0, DAC12_1 (internal)	
		DV _{SS}	GND					
		DV _{CC}	V _{cc}					
45-P3.3	L8-P3.3	TA1.2	CCI2A				45-P3.3	L8-P3.3
		ACLK (internal)	CCI2B	CCR2	TA2	TA1.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

⁽¹⁾ Only on devices with peripheral module DAC12_A.

6.12.13 Timer TA2 (Link to User's Guide)

Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers(see Table 6-15). TA2 supports multiple capture/compares, PWM outputs, and interval timing. TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

Table 6-15. Timer TA2 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
46-P3.4	J8-P3.4	TA2CLK	TACLK					
		ACLK	ACLK	<u> </u>	NA	NIA		
		SMCLK	SMCLK	Timer		NA		
46-P3.4	J8-P3.4	TA2CLK	TACLK	1				
47-P3.5	M9-P3.5	TA2.0	CCI0A		TA0		47-P3.5	M9-P3.5
		DV _{SS}	CCI0B	0000				
		DV _{SS}	GND	CCR0		TA2.0		
		DV _{CC}	V _{CC}					
48-P3.6	L9-P3.6	TA2.1	CCI1A				48-P3.6	L9-P3.6
		CBOUT (internal)	CCI1B	CCR1	TA1	TA2.1		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
49-P3.7	M10-P3.7	TA2.2	CCI2A				49-P3.7	M10-P3.7
		ACLK (internal)	CCI2B	CCR2	TA2	TA2.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

6.12.14 Timer TB0 (Link to User's Guide)

Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers(see Table 6-16). TB0 supports multiple capture/compares, PWM outputs, and interval timing. TB0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register.

Table 6-16. Timer TB0 Signal Connections

INPUT PIN	INPUT PIN NUMBER		MODULE	MODULE	MODULE	DEVICE	OUTPUT PIN NUMBER		
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW	
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK						
		ACLK	ACLK	Timer	NA	NA			
		SMCLK	SMCLK	rimer	INA	INA			
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK						
50-P4.0	J9-P4.0	TB0.0	CCI0A				50-P4.0	J9-P4.0	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.0	CCI0B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_{SS}	GND	CCR0	TB0	TB0.0		nternal) ⁽²⁾ HSx = {2}	
		DV_CC	V _{CC}						
51-P4.1	M11-P4.1	TB0.1	CCI1A				51-P4.1	M11-P4.1	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.1	CCI1B				P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR1	TB1	TB0.1	ADC12 (internal) (2) ADC12SHSx = {3}		
		DV_CC	V _{CC}						
52-P4.2	L10-P4.2	TB0.2	CCI2A				52-P4.2	L10-P4.2	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.2	CCI2B	CCR2	TB2	TB0.2	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND				DAC12_A ⁽³⁾ DAC12_0, DAC12_1 (internal)		
		DV _{CC}	V _{CC}						
53-P4.3	M12-P4.3	TB0.3	CCI3A				53-P4.3	M12-P4.3	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.3	CCI3B	CCDA	TDO	TDOO	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV _{SS}	GND	CCR3	TB3	TB0.3			
		DV_CC	V _{CC}						
54-P4.4	L12-P4.4	TB0.4	CCI4A				54-P4.4	L12-P4.4	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.4	CCI4B	CCR4	TB4	TB0.4	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCR4	104				
		DV_CC	V _{CC}						
55-P4.5	L11-P4.5	TB0.5	CCI5A				55-P4.5	L11-P4.5	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.5	CCI5B	CCR5	TB5	TB0.5	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV_SS	GND	CCRS	163	160.5			
		DV_CC	V _{CC}						
56-P4.6	K11-P4.6	TB0.6	CCI6A				56-P4.6	K11-P4.6	
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.6	CCI6B	CCR6	TB6	TRO 6	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	
		DV _{SS}	GND	CCKO	100	TB0.6			
		DV_CC	V _{CC}						

⁽¹⁾ Timer functions selectable by the port mapping controller.

⁽²⁾ Only on devices with peripheral module ADC12_A.

⁽³⁾ Only on devices with peripheral module DAC12_A.

6.12.15 Comparator B (Link to User's Guide)

The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

6.12.16 ADC12_A (Link to User's Guide)

The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

6.12.17 DAC12_A (Link to User's Guide)

The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit mode, and may be used with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation.

6.12.18 CRC16 (Link to User's Guide)

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.12.19 Voltage Reference (REF) Module (Link to User's Guide)

The REF module generates all of the critical reference voltages that can be used by the various analog peripherals in the device.

6.12.20 LCD_B (Link to User's Guide)

The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an automatic blinking capability for individual segments.

6.12.21 USB Universal Serial Bus (Link to User's Guide)

The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM, when not used for USB communication, can be used by the system.

6.12.22 Embedded Emulation Module (EEM) (Link to User's Guide)

The EEM supports real-time in-system debugging. The L version of the EEM has the following features:

- · Eight hardware triggers or breakpoints on memory access
- Two hardware triggers or breakpoints on CPU register write access
- Up to 10 hardware triggers can be combined to form complex triggers or breakpoints
- Two cycle counters
- Sequencer
- State storage
- Clock control on module level

6.12.23 Peripheral File Map

Table 6-17 lists the register base address for all of the available peripheral modules.

Table 6-17. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE ⁽¹⁾
Special Functions (see Table 6-18)	0100h	000h-01Fh
PMM (see Table 6-19)	0120h	000h-010h
Flash Control (see Table 6-20)	0140h	000h-00Fh
CRC16 (see Table 6-21)	0150h	000h-007h
RAM Control (see Table 6-22)	0158h	000h-001h
Watchdog (see Table 6-23)	015Ch	000h-001h
UCS (see Table 6-24)	0160h	000h-01Fh
SYS (see Table 6-25)	0180h	000h-01Fh
Shared Reference (see Table 6-26)	01B0h	000h-001h
Port Mapping Control (see Table 6-27)	01C0h	000h-003h
Port Mapping Port P2 (see Table 6-27)	01D0h	000h-007h
Port P1, P2 (see Table 6-28)	0200h	000h-01Fh
Port P3, P4 (see Table 6-29)	0220h	000h-01Fh
Port P5, P6 (see Table 6-30)	0240h	000h-00Bh
Port P7, P8 (see Table 6-31)	0260h	000h-00Bh
Port P9 (see Table 6-32)	0280h	000h-00Bh
Port PJ (see Table 6-33)	0320h	000h-01Fh
Timer TA0 (see Table 6-34)	0340h	000h-02Eh
Timer TA1 (see Table 6-35)	0380h	000h-02Eh
Timer TB0 (see Table 6-36)	03C0h	000h-02Eh
Timer TA2 (see Table 6-37)	0400h	000h-02Eh
Battery Backup (see Table 6-38)	0480h	000h-01Fh
RTC_B (see Table 6-39)	04A0h	000h-01Fh
32-bit Hardware Multiplier (see Table 6-40)	04C0h	000h-02Fh
DMA General Control (see Table 6-41)	0500h	000h-00Fh
DMA Channel 0 (see Table 6-41)	0510h	000h-00Ah
DMA Channel 1 (see Table 6-41)	0520h	000h-00Ah
DMA Channel 2 (see Table 6-41)	0530h	000h-00Ah
DMA Channel 3 (see Table 6-41)	0540h	000h-00Ah
DMA Channel 4 (see Table 6-41)	0550h	000h-00Ah
DMA Channel 5 (see Table 6-41)	0560h	000h-00Ah
USCI_A0 (see Table 6-42)	05C0h	000h-01Fh
USCI_B0 (see Table 6-43)	05E0h	000h-01Fh
USCI_A1 (see Table 6-44)	0600h	000h-01Fh
USCI B1 (see Table 6-45)	0620h	000h-01Fh
ADC12_A (see Table 6-46)	0700h	000h-03Fh
DAC12_A (see Table 6-47)	0780h	000h-01Fh
Comparator_B (see Table 6-48)	08C0h	000h-00Fh
USB configuration (see Table 6-49)	0900h	000h-014h
USB control (see Table 6-50)	0920h	000h-01Fh
LCD_B control (see Table 6-51)	0A00h	000h-05Fh

For a detailed description of the individual control register offset addresses, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Table 6-18. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-19. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high-side control	SVSMHCTL	04h
SVS low-side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

Table 6-20. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 6-21. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC result	CRC16INIRES	04h

Table 6-22. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RAM control 0	RCCTL0	00h

Table 6-23. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-24. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h

Table 6-25. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootloader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 6-26. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 6-27. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port mapping password	PMAPPWD	00h
Port mapping control	PMAPCTL	02h
Port P2.0 mapping	P2MAP0	00h
Port P2.1 mapping	P2MAP1	01h
Port P2.2 mapping	P2MAP2	02h
Port P2.3 mapping	P2MAP3	03h
Port P2.4 mapping	P2MAP4	04h
Port P2.5 mapping	P2MAP5	05h
Port P2.6 mapping	P2MAP6	06h
Port P2.7 mapping	P2MAP7	07h

Table 6-28. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 drive strength	P1DS	08h
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h

Table 6-28. Port P1, P2 Registers (Base Address: 0200h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-29. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P3 interrupt vector word	P3IV	0Eh
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 6-30. Port P5, P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 pullup/pulldown enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 pullup/pulldown enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh

Table 6-31. Port P7, P8 Registers (Base Address: 0260h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P7 input	P7IN	00h
Port P7 output	P7OUT	02h
Port P7 direction	P7DIR	04h
Port P7 pullup/pulldown enable	P7REN	06h
Port P7 drive strength	P7DS	08h
Port P7 selection	P7SEL	0Ah
Port P8 input	P8IN	01h
Port P8 output	P8OUT	03h
Port P8 direction	P8DIR	05h
Port P8 pullup/pulldown enable	P8REN	07h
Port P8 drive strength	P8DS	09h
Port P8 selection	P8SEL	0Bh

Table 6-32. Port P9 Register (Base Address: 0280h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P9 input	P9IN	00h
Port P9 output	P9OUT	02h
Port P9 direction	P9DIR	04h
Port P9 pullup/pulldown enable	P9REN	06h
Port P9 drive strength	P9DS	08h
Port P9 selection	P9SEL	0Ah

Table 6-33. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 6-34. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter	TA0R	10h
Capture/compare 0	TA0CCR0	12h
Capture/compare 1	TA0CCR1	14h
Capture/compare 2	TA0CCR2	16h
Capture/compare 3	TA0CCR3	18h
Capture/compare 4	TA0CCR4	1Ah
TA0 expansion 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 6-35. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter	TA1R	10h
Capture/compare 0	TA1CCR0	12h
Capture/compare 1	TA1CCR1	14h
Capture/compare 2	TA1CCR2	16h
TA1 expansion 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 6-36. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 counter	TBOR	10h
Capture/compare 0	TB0CCR0	12h
Capture/compare 1	TB0CCR1	14h
Capture/compare 2	TB0CCR2	16h
Capture/compare 3	TB0CCR3	18h
Capture/compare 4	TB0CCR4	1Ah
Capture/compare 5	TB0CCR5	1Ch
Capture/compare 6	TB0CCR6	1Eh
TB0 expansion 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 6-37. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
Capture/compare control 2	TA2CCTL2	06h
TA2 counter	TA2R	10h
Capture/compare 0	TA2CCR0	12h
Capture/compare 1	TA2CCR1	14h
Capture/compare 2	TA2CCR2	16h
TA2 expansion 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

Table 6-38. Battery Backup Registers (Base Address: 0480h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Battery backup memory 0	BAKMEM0	00h
Battery backup memory 1	BAKMEM1	02h
Battery backup memory 2	BAKMEM2	04h
Battery backup memory 3	BAKMEM3	06h
Battery backup control	BAKCTL	1Ch
Battery charger control	BAKCHCTL	1Eh

Table 6-39. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control 0	RTCCTL0	00h
RTC control 1	RTCCTL1	01h
RTC control 2	RTCCTL2	02h
RTC control 3	RTCCTL3	03h
RTC prescaler 0 control	RTCPS0CTL	08h
RTC prescaler 1 control	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds	RTCSEC	10h
RTC minutes	RTCMIN	11h
RTC hours	RTCHOUR	12h
RTC day of week	RTCDOW	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion	BIN2BCD	1Ch
BCD-to-binary conversion	BCD2BIN	1Eh

Table 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h

Table 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 x 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 x 32 result 3 – most significant word	RES3	2Ah
MPY32 control 0	MPY32CTL0	2Ch

Table 6-41. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA general control: DMA module control 0	DMACTL0	00h
DMA general control: DMA module control 1	DMACTL1	02h
DMA general control: DMA module control 2	DMACTL2	04h
DMA general control: DMA module control 3	DMACTL3	06h
DMA general control: DMA module control 4	DMACTL4	08h
DMA general control: DMA interrupt vector	DMAIV	0Ah
DMA channel 0 control	DMA0CTL	00h
DMA channel 0 source address low	DMA0SAL	02h
DMA channel 0 source address high	DMA0SAH	04h
DMA channel 0 destination address low	DMA0DAL	06h
DMA channel 0 destination address high	DMA0DAH	08h
DMA channel 0 transfer size	DMA0SZ	0Ah
DMA channel 1 control	DMA1CTL	00h
DMA channel 1 source address low	DMA1SAL	02h
DMA channel 1 source address high	DMA1SAH	04h
DMA channel 1 destination address low	DMA1DAL	06h
DMA channel 1 destination address high	DMA1DAH	08h
DMA channel 1 transfer size	DMA1SZ	0Ah
DMA channel 2 control	DMA2CTL	00h
DMA channel 2 source address low	DMA2SAL	02h
DMA channel 2 source address high	DMA2SAH	04h
DMA channel 2 destination address low	DMA2DAL	06h
DMA channel 2 destination address high	DMA2DAH	08h
DMA channel 2 transfer size	DMA2SZ	0Ah
DMA channel 3 control	DMA3CTL	00h
DMA channel 3 source address low	DMA3SAL	02h
DMA channel 3 source address high	DMA3SAH	04h
DMA channel 3 destination address low	DMA3DAL	06h
DMA channel 3 destination address high	DMA3DAH	08h
DMA channel 3 transfer size	DMA3SZ	0Ah
DMA channel 4 control	DMA4CTL	00h

Table 6-41. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA channel 4 source address low	DMA4SAL	02h
DMA channel 4 source address high	DMA4SAH	04h
DMA channel 4 destination address low	DMA4DAL	06h
DMA channel 4 destination address high	DMA4DAH	08h
DMA channel 4 transfer size	DMA4SZ	0Ah
DMA channel 5 control	DMA5CTL	00h
DMA channel 5 source address low	DMA5SAL	02h
DMA channel 5 source address high	DMA5SAH	04h
DMA channel 5 destination address low	DMA5DAL	06h
DMA channel 5 destination address high	DMA5DAH	08h
DMA channel 5 transfer size	DMA5SZ	0Ah

Table 6-42. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA0CTL0	00h
USCI control 1	UCA0CTL1	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 6-43. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB0CTL0	00h
USCI synchronous control 1	UCB0CTL1	01h
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

Table 6-44. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA1CTL0	00h
USCI control 1	UCA1CTL1	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

Table 6-45. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB1CTL0	00h
USCI synchronous control 1	UCB1CTL1	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

Table 6-46. ADC12_A Registers (Base Address: 0700h)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC12 control 0	ADC12CTL0	00h
ADC12 control 1	ADC12CTL1	02h
ADC12 control 2	ADC12CTL2	04h
Interrupt flag	ADC12IFG	0Ah
Interrupt enable	ADC12IE	0Ch
Interrupt vector word	ADC12IV	0Eh
ADC memory control 0	ADC12MCTL0	10h
ADC memory control 1	ADC12MCTL1	11h
ADC memory control 2	ADC12MCTL2	12h
ADC memory control 3	ADC12MCTL3	13h
ADC memory control 4	ADC12MCTL4	14h
ADC memory control 5	ADC12MCTL5	15h
ADC memory control 6	ADC12MCTL6	16h
ADC memory control 7	ADC12MCTL7	17h
ADC memory control 8	ADC12MCTL8	18h

Table 6-46. ADC12_A Registers (Base Address: 0700h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
ADC memory control 9	ADC12MCTL9	19h
ADC memory control 10	ADC12MCTL10	1Ah
ADC memory control 11	ADC12MCTL11	1Bh
ADC memory control 12	ADC12MCTL12	1Ch
ADC memory control 13	ADC12MCTL13	1Dh
ADC memory control 14	ADC12MCTL14	1Eh
ADC memory control 15	ADC12MCTL15	1Fh
Conversion memory 0	ADC12MEM0	20h
Conversion memory 1	ADC12MEM1	22h
Conversion memory 2	ADC12MEM2	24h
Conversion memory 3	ADC12MEM3	26h
Conversion memory 4	ADC12MEM4	28h
Conversion memory 5	ADC12MEM5	2Ah
Conversion memory 6	ADC12MEM6	2Ch
Conversion memory 7	ADC12MEM7	2Eh
Conversion memory 8	ADC12MEM8	30h
Conversion memory 9	ADC12MEM9	32h
Conversion memory 10	ADC12MEM10	34h
Conversion memory 11	ADC12MEM11	36h
Conversion memory 12	ADC12MEM12	38h
Conversion memory 13	ADC12MEM13	3Ah
Conversion memory 14	ADC12MEM14	3Ch
Conversion memory 15	ADC12MEM15	3Eh

Table 6-47. DAC12_A Registers (Base Address: 0780h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DAC12_A channel 0 control 0	DAC12_0CTL0	00h
DAC12_A channel 0 control 1	DAC12_0CTL1	02h
DAC12_A channel 0 data	DAC12_0DAT	04h
DAC12_A channel 0 calibration control	DAC12_0CALCTL	06h
DAC12_A channel 0 calibration data	DAC12_0CALDAT	08h
DAC12_A channel 1 control 0	DAC12_1CTL0	10h
DAC12_A channel 1 control 1	DAC12_1CTL1	12h
DAC12_A channel 1 data	DAC12_1DAT	14h
DAC12_A channel 1 calibration control	DAC12_1CALCTL	16h
DAC12_A channel 1 calibration data	DAC12_1CALDAT	18h
DAC12_A interrupt vector word	DAC12IV	1Eh

Table 6-48. Comparator_B Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comp_B control 0	CBCTL0	00h
Comp_B control 1	CBCTL1	02h
Comp_B control 2	CBCTL2	04h
Comp_B control 3	CBCTL3	06h
Comp_B interrupt	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

Table 6-49. USB Configuration Registers (Base Address: 0900h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USB key/ID	USBKEYID	00h
USB module configuration	USBCNF	02h
USB PHY control	USBPHYCTL	04h
USB power control	USBPWRCTL	08h
USB power voltage setting	USBPWRVSR	0Ah
USB PLL control	USBPLLCTL	10h
USB PLL divider	USBPLLDIV	12h
USB PLL interrupts	USBPLLIR	14h

Table 6-50. USB Control Registers (Base Address: 0920h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Input endpoint_0 configuration	USBIEPCNF_0	00h
Input endpoint_0 byte count	USBIEPCNT_0	01h
Output endpoint_0 configuration	USBOEPCNF_0	02h
Output endpoint_0 byte count	USBOEPCNT_0	03h
Input endpoint interrupt enables	USBIEPIE	0Eh
Output endpoint interrupt enables	USBOEPIE	0Fh
Input endpoint interrupt flags	USBIEPIFG	10h
Output endpoint interrupt flags	USBOEPIFG	11h
USB interrupt vector	USBIV	12h
USB maintenance	USBMAINT	16h
Time stamp	USBTSREG	18h
USB frame number	USBFN	1Ah
USB control	USBCTL	1Ch
USB interrupt enables	USBIE	1Dh
USB interrupt flags	USBIFG	1Eh
Function address	USBFUNADR	1Fh

Table 6-51. LCD_B Registers (Base Address: 0A00h)

REGISTER DESCRIPTION	REGISTER	OFFSET
LCD_B control 0	LCDBCTL0	000h
LCD_B control 1	LCDBCTL1	002h
LCD_B blinking control	LCDBBLKCTL	004h
LCD_B memory control	LCDBMEMCTL	006h
LCD_B voltage control	LCDBVCTL	008h
LCD_B port control 0	LCDBPCTL0	00Ah
LCD_B port control 1	LCDBPCTL1	00Ch
LCD_B port control 2	LCDBPCTL2	00Eh
LCD_B charge pump control	LCDBCTL0	012h
LCD_B interrupt vector word	LCDBIV	01Eh
LCD_B memory 1	LCDM1	020h
LCD_B memory 2	LCDM2	021h
:	<u>:</u>	:
LCD_B memory 22	LCDM22	035h
LCD_B blinking memory 1	LCDBM1	040h
LCD_B blinking memory 2	LCDBM2	041h
:	:	:

SLAS566E - JUNE 2010-REVISED DECEMBER 2015 www.ti.com

Table 6-51. LCD_B Registers (Base Address: 0A00h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
LCD_B blinking memory 22	LCDBM22	055h

6.13 Input/Output Schematics

6.13.1 Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger

Figure 6-2. Port P1 (P1.0 to P1.7) Schematic

Table 6-52. Port P1 (P1.0 to P1.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	LCDS3239		
P1.0/TA0CLK/ACLK/	0	P1.0 (I/O)	I: 0; O: 1	0	0		
S39		Timer TA0.TA0CLK	0	1	0		
		ACLK	1	1	0		
		S39	X	Х	1		
P1.1/TA0.0/S38	1	P1.1 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI0A capture input	0	1	0		
		Timer TA0.0 output	1	1	0		
		S38	X	Х	1		
P1.2/TA0.1/S37	2	P1.2 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI1A capture input	0	1	0		
		Timer TA0.1 output	1	1	0		
		S37	X	Х	1		
P1.3/TA0.2/S36	3	P1.3 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI2A capture input	0	1	0		
		Timer TA0.2 output	1	1	0		
		S36	X	Х	1		
P1.4/TA0.3/S35	4	P1.4 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI3A capture input	0	1	0		
		Timer TA0.3 output	1	1	0		
		S35	X	Х	1		
P1.5/TA0.4/S34	5	P1.5 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI4A capture input	0	1	0		
		Timer TA0.4 output	1	1	0		
		S34	X	Х	1		
P1.6/TA0.1/S33	6	P1.6 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI1B capture input	0	1	0		
		Timer TA0.1 output	1	1	0		
		S33	X	Х	1		
P1.7/TA0.2/S32	7	P1.7 (I/O)	I: 0; O: 1	0	0		
		Timer TA0.CCI2B capture input	0	1	0		
		Timer TA0.2 output	1	1	0		
		S32	X	Х	1		

⁽¹⁾ X = Don't care

6.13.2 Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger

Figure 6-3. Port P2 (P2.0 to P2.7) Schematic

Table 6-53. Port P2 (P2.0 to P2.7) Pin Functions

DIN NAME (DO)		FUNCTION	CONTROL BITS OR SIGNAL		
PIN NAME (P2.x)	X	FUNCTION	P2DIR.x	P2SEL.x	P2MAPx
P2.0/P2MAP0	0	P2.0 (I/O)	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
P2.1/P2MAP1	1	P2.1 (I/O)	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
P2.2/P2MAP2	2	P2.2 (I/O)	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
P2.3/P2MAP3	3	P2.3 (I/O)	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
P2.4/P2MAP4	4	P2.4 (I/O)	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
P2.5/P2MAP5	5	P2.5 (I/O	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
P2.6/P2MAP6/R03	6	P2.6 (I/O)	I: 0; O: 1	0	
		Mapped secondary digital function	Х	1	≤ 19
		R03	Х	1	= 31
P2.7/P2MAP7/	7	P2.7 (I/O)	I: 0; O: 1	0	
LCDREF/R13		Mapped secondary digital function	Х	1	≤ 19
		LCDREF/R13	Х	1	= 31

⁽¹⁾ X = Don't care

6.13.3 Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger

Figure 6-4. Port P3 (P3.0 to P3.7) Schematic

Table 6-54. Port P3 (P3.0 to P3.7) Pin Functions

DIN NAME (DO)		FUNCTION	CONTI	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P3.x)	X		P3DIR.x	P3SEL.x	LCDS2431		
P3.0/TA1CLK/CBOUT/	0	P3.0 (I/O)	I: 0; O: 1	0	0		
S31		Timer TA1.TA1CLK	0	1	0		
		CBOUT	1	1	0		
		S31	X	Χ	1		
P3.1/TA1.0/S30	1	P3.1 (I/O)	I: 0; O: 1	0	0		
		Timer TA1.CCI0A capture input	0	1	0		
		Timer TA1.0 output	1	1	0		
		S30	X	Χ	1		
P3.2/TA1.1/S29	2	P3.2 (I/O)	I: 0; O: 1	0	0		
		Timer TA1.CCI1A capture input	0	1	0		
		Timer TA1.1 output	1	1	0		
		S29	X	Х	1		
P3.3/TA1.2/S28	3	P3.3 (I/O)	I: 0; O: 1	0	0		
		Timer TA1.CCI2A capture input	0	1	0		
		Timer TA1.2 output	1	1	0		
		S28	X	Х	1		
P3.4/TA2CLK/SMCLK/	4	P3.4 (I/O)	I: 0; O: 1	0	0		
S27		Timer TA2.TA2CLK	0	1	0		
		SMCLK	1	1	0		
		S27	Х	Х	1		
P3.5/TA2.0/S26	5	P3.5 (I/O)	I: 0; O: 1	0	0		
		Timer TA2.CCI0A capture input	0	1	0		
		Timer TA2.0 output	1	1	0		
		S26	Х	Х	1		
P3.6/TA2.1/S25	6	P3.6 (I/O)	I: 0; O: 1	0	0		
		Timer TA2.CCI1A capture input	0	1	0		
		Timer TA2.1 output	1	1	1		
		S25	X	Х	1		
P3.7/TA2.2/S24	7	P3.7 (I/O)	I: 0; O: 1	0	0		
		Timer TA2.CCI2A capture input	0	1	0		
		Timer TA2.2 output	1	1	0		
		S24	X	Х	1		

⁽¹⁾ X = Don't care

6.13.4 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger

Figure 6-5. Port P4 (P4.0 to P4.7) Schematic

Table 6-55. Port P4 (P4.0 to P4.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x	P4SEL.x	LCDS1623		
P4.0/TB0.0/S23	0	P4.0 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI0A capture input	0	1	0		
		Timer TB0.0 output ⁽²⁾	1	1	0		
		S23	Х	Х	1		
P4.1/TB0.1/S22	1	P4.1 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI1A capture input	0	1	0		
		Timer TB0.1 output ⁽²⁾	1	1	0		
		S22	Х	Х	1		
P4.2/TB0.2/S21	2	P4.2 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI2A capture input	0	1	0		
		Timer TB0.2 output ⁽²⁾	1	1	0		
		S21	Х	Х	1		
P4.3/TB0.3/S20	3	P4.3 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI3A capture input	0	1	0		
		Timer TB0.3 output ⁽²⁾	1	1	0		
		S20	Х	Х	1		
P4.4/TB0.4/S19	4	P4.4 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI4A capture input	0	1	0		
		Timer TB0.4 output ⁽²⁾	1	1	0		
		S19	Х	Х	1		
P4.5/TB0.5/S18	5	P4.5 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI5A capture input	0	1	0		
		Timer TB0.5 output ⁽²⁾	1	1	0		
		S18	Х	Х	1		
P4.6/TB0.6/S17	6	P4.6 (I/O)	I: 0; O: 1	0	0		
		Timer TB0.CCI6A capture input	0	1	0		
		Timer TB0.6 output ⁽²⁾	1	1	0		
		S17	Х	Х	1		
P4.7/TB0OUTH/	7	P4.7 (I/O)	I: 0; O: 1	0	0		
SVMOUT/S16		Timer TB0.TB0OUTH	0	1	0		
		SVMOUT	1	1	0		
		S16	Х	Х	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.

6.13.5 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger

Figure 6-6. Port P5 (P5.0 and P5.1) Schematic

Table 6-56. Port P5 (P5.0 and P5.1) Pin Functions

DIN NAME (DE v)	Ų	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)	X		P5DIR.x	P5SEL.x	REFOUT	
P5.0/VREF+/VeREF+	0	P5.0 (I/O) ⁽²⁾	I: 0; O: 1	0	X	
		VeREF+ ⁽³⁾	Х	1	0	
		VREF+ ⁽⁴⁾	X	1	1	
P5.1/VREF-/VeREF-	1	P5.1 (I/O) ⁽²⁾	I: 0; O: 1	0	X	
		VeREF- ⁽⁵⁾	X	1	0	
		VREF- ⁽⁶⁾	X	1	1	

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.

⁽⁴⁾ Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF+ reference is available at the pin.

⁽⁵⁾ Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.

⁽⁶⁾ Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF- reference is available at the pin.

6.13.6 Port P5, P5.2 to P5.7, Input/Output With Schmitt Trigger

Figure 6-7. Port P5 (P5.2 to P5.7) Schematic

Table 6-57. Port P5 (P5.2 to P5.7) Pin Functions

DIN NAME (DE v)		FUNCTION	CONT	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P5.x)	X	FUNCTION	P5DIR.x	P5SEL.x	LCDS4042		
P5.2/R23	2	P5.2 (I/O)	I: 0; O: 1	0	na		
		R23	X	1	na		
P5.3/COM1/S42	3	P5.3 (I/O)	I: 0; O: 1	0	0		
		COM1	X	1	X		
		S42	X	0	1		
P5.4/COM2/S41	4	P5.4 (I/O)	I: 0; O: 1	0	0		
		COM2	X	1	X		
		S41	X	0	1		
P5.5/COM3/S40	5	P5.5 (I/O)	I: 0; O: 1	0	0		
		COM3	X	1	X		
		S40	X	0	1		
P5.6/ADC12CLK/DMAE0	6	P5.6 (I/O)	I: 0; O: 1	0	na		
		ADC12CLK	1	1	na		
		DMAE0	0	1	na		
P5.7/RTCCLK	7	P5.7 (I/O)	I: 0; O: 1	0	na		
		RTCCLK	1	1	na		

(1) X = Don't care

6.13.7 Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger

Figure 6-8. Port P6 (P6.0 to P6.7) Schematic

MSP430F6632 MSP430F6631 MSP430F6630

Table 6-58. Port P6 (P6.0 to P6.7) Pin Functions

DINI NIAME (DO)		FUNCTION		CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x	CBPD.x	DAC12OPS	DAC12AMPx	
P6.0/CB0/A0	0	P6.0 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		CB0	Х	Х	1	n/a	n/a	
		A0 ⁽²⁾ (3)	Х	1	Х	n/a	n/a	
P6.1/CB1/A1	1	P6.1 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		CB1	Х	Χ	1	n/a	n/a	
		A1 ⁽²⁾ (3)	Х	1	Х	n/a	n/a	
P6.2/CB2/A2	2	P6.2 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		CB2	Х	Х	1	n/a	n/a	
		A2 ⁽²⁾ (3)	Х	1	Х	n/a	n/a	
P6.3/CB3/A3	3	P6.3 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		CB3	Х	Х	1	n/a	n/a	
		A3 ⁽²⁾ (3)	Х	1	Х	n/a	n/a	
P6.4/CB4/A4	4	P6.4 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		CB4	Х	Х	1	n/a	n/a	
		A4 ⁽²⁾ (3)	Х	1	Х	n/a	n/a	
P6.5/CB5/A5	5	P6.5 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		CB5	Х	Х	1	n/a	n/a	
		A5 ^{(2) (3)}	Х	1	Х	n/a	n/a	
P6.6/CB6/A6/DAC0	6	P6.6 (I/O)	I: 0; O: 1	0	0	Х	0	
		CB6	Х	Х	1	Х	0	
		A6 ⁽²⁾ (3)	Х	1	Х	Х	0	
		DAC0	Х	Х	Х	0	>1	
P6.7/CB7/A7/DAC1	7	P6.7 (I/O)	I: 0; O: 1	0	0	Х	0	
		CB7	Х	Х	1	Х	0	
		A7 ^{(2) (3)}	Х	1	Х	Х	0	
		DAC1	Х	Х	Х	0	>1	

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC12_A channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.13.8 Port P7, P7.2, Input/Output With Schmitt Trigger

Figure 6-9. Port P7 (P7.2) Schematic

6.13.9 Port P7, P7.3, Input/Output With Schmitt Trigger

Figure 6-10. Port P7 (P7.3) Schematic

Table 6-59. Port P7 (P7.2 and P7.3) Pin Functions

DIN NAME (DE V)	,		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P5.x)	Х	FUNCTION	P7DIR.x	P7SEL.2	P7SEL.3	XT2BYPASS		
P7.2/XT2IN	2	P7.2 (I/O)	I: 0; O: 1	0	Χ	X		
		XT2IN crystal mode ⁽²⁾	Х	1	Х	0		
		XT2IN bypass mode ⁽²⁾	Х	1	Х	1		
P7.3/XT2OUT	3	P7.3 (I/O)	I: 0; O: 1	0	0	X		
		XT2OUT crystal mode (3)	X	1	X	0		
		P7.3 (I/O) ⁽³⁾	Х	1	0	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O.

6.13.10 Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger

Figure 6-11. Port P7 (P7.4 to P7.7) Schematic

Table 6-60. Port P7 (P7.4 to P7.7) Pin Functions

DIN NAME (DZ)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾					
PIN NAME (P7.x)	Х	FUNCTION	P7DIR.x	P7SEL.x	CBPD.x	DAC12OPS	DAC12AMPx	
P7.4/CB8/A12	4	P7.4 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		Comparator_B input CB8	X	Х	1	n/a	n/a	
		A12 ^{(2) (3)}	X	1	Х	n/a	n/a	
P7.5/CB9/A13	5	P7.5 (I/O)	I: 0; O: 1	0	0	n/a	n/a	
		Comparator_B input CB9	X	Х	1	n/a	n/a	
		A13 ⁽²⁾ (3)	X	1	Х	n/a	n/a	
P7.6/CB10/A14/DAC0	6	P7.6 (I/O)	I: 0; O: 1	0	0	Х	0	
		Comparator_B input CB10	X	Х	1	Х	0	
		A14 ⁽²⁾ (3)	Х	1	Х	Х	0	
		DAC12_A output DAC0	Х	Х	Х	1	>1	
P7.7/CB11/A15/DAC1	7	P7.7 (I/O)	I: 0; O: 1	0	0	Х	0	
		Comparator_B input CB11	X	Х	1	Х	0	
		A15 ⁽²⁾ (3)	X	1	Х	Х	0	
		DAC12_A output DAC1	Х	Х	Х	1	>1	

X = Don't care

Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog (2) signals.

The ADC12_A channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.13.11 Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger

Figure 6-12. Port P8 (P8.0 to P8.7) Schematic

Table 6-61. Port P8 (P8.0 to P8.7) Pin Functions

DINI NIAME (DO)	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P9.x)		FUNCTION	P8DIR.x	P8SEL.x	LCDS816	
P8.0/TB0CLK/S15	0	P8.0 (I/O)	I: 0; O: 1	0	0	
		Timer TB0.TB0CLK clock input	0	1	0	
		S15	Х	Х	1	
P8.1/UCB1STE/UCA1CLK/S14	1	P8.1 (I/O)	I: 0; O: 1	0	0	
		UCB1STE/UCA1CLK	X	1	0	
		S14	Х	X	1	
P8.2/UCA1TXD/UCA1SIMO/S13	2	P8.2 (I/O)	I: 0; O: 1	0	0	
		UCA1TXD/UCA1SIMO	X	1	0	
		S13	X	Х	1	
P8.3/UCA1RXD/UCA1SOMI/S12	3	P8.3 (I/O)	I: 0; O: 1	0	0	
		UCA1RXD/UCA1SOMI	Х	1	0	
		S12	Х	Х	1	
P8.4/UCB1CLK/UCA1STE/S11	4	P8.4 (I/O)	I: 0; O: 1	0	0	
		UCB1CLK/UCA1STE	X	1	0	
		S11	X	X	1	
P8.5/UCB1SIMO/UCB1SDA/S10	5	P8.5 (I/O)	I: 0; O: 1	0	0	
		UCB1SIMO/UCB1SDA	Х	1	0	
		S10	X	X	1	
P8.6/UCB1SOMI/UCB1SCL/S9	6	P8.6 (I/O)	I: 0; O: 1	0	0	
		UCB1SOMI/UCB1SCL	X	1	0	
		S9	Х	Х	1	
P8.7/S8	7	P8.7 (I/O)	I: 0; O: 1	0	0	
		S8	Х	X	1	

⁽¹⁾ X = Don't care

6.13.12 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger

Figure 6-13. Port P9 (P9.0 to P9.7) Schematic

Table 6-62. Port P9 (P9.0 to P9.7) Pin Functions

DINI NAME (DO)		FUNCTION	CONTR	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P9.x)	X	FUNCTION	P9DIR.x	P9SEL.x	LCDS07		
P9.0/S7	0	P9.0 (I/O)	I: 0; O: 1	0	0		
		S7	X	Х	1		
P9.1/S6	1	P9.1 (I/O)	I: 0; O: 1	0	0		
		S6	X	Х	1		
P9.2/S5	2	P9.2 (I/O)	I: 0; O: 1	0	0		
		S5	Х	Х	1		
P9.3/S4	3	P9.3 (I/O)	I: 0; O: 1	0	0		
		S4	X	Х	1		
P9.4/S3	4	P9.4 (I/O)	I: 0; O: 1	0	0		
		S3	X	Х	1		
P9.5/S2	5	P9.5 (I/O)	I: 0; O: 1	0	0		
		S2	X	Х	1		
P9.6/S1	6	P9.6 (I/O)	I: 0; O: 1	0	0		
		S1	X	Х	1		

Table 6-62. Port P9 (P9.0 to P9.7) Pin Functions (continued)

DIN NAME (DO v)	,	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P9.x)	X	FUNCTION	P9DIR.x	P9SEL.x	LCDS07	
P9.7/S0	7	P9.7 (I/O)	I: 0; O: 1	0	0	
		S0	Х	Х	1	

6.13.13 Port PU.0/DP, PU.1/DM, PUR USB Ports

Figure 6-14. Port U (PU.0 and PU.1) Schematic

Table 6-63. Port PU.0/DP and PU.1/DM Output Functions

	CONTR	OL BITS		PIN NAME		FUNCTION	
PUSEL	PUDIR	PUOUT1	PUOUT0	PU.1/DM	PU.0/DP	FUNCTION	
0	0	X	X	Hi-Z	Hi-Z	Outputs off	
0	1	0	0	0	0	Outputs enabled	
0	1	0	1	0	1	Outputs enabled	
0	1	1	0	1	0	Outputs enabled	
0	1	1	1	1	1	Outputs enabled	
1	X	X	X	DM	DP	Direction set by USB module	

Table 6-64. Port PUR Input Functions

CONTR	OL BITS	FUNCTION	
PUSEL	PUREN	FUNCTION	
0	0	Input disabled Pullup disabled	
0	1	Input disabled Pullup enabled	
1	0	Input enabled Pullup disabled	
1	1	Input enabled Pullup enabled	

6.13.14 Port J, J.0 JTAG Pin TDO, Input/Output With Schmitt Trigger or Output

Figure 6-15. Port J (PJ.0) Schematic

6.13.15 Port J, J.1 to J.3 JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Figure 6-16. Port PJ (PJ.1 to PJ.3) Schematic

Table 6-65. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾
` ,			PJDIR.x
PJ.0/TDO	0	PJ.0 (I/O) ⁽²⁾	I: 0; O: 1
		TDO ⁽³⁾	X
PJ.1/TDI/TCLK	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
		TDI/TCLK ⁽³⁾ (4)	X
PJ.2/TMS	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
		TMS ⁽³⁾ (4)	X
PJ.3/TCK	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
		TCK ⁽³⁾ (4)	X

⁽¹⁾ X = Don't care

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

6.14 Device Descriptors

Table 6-66 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.

Table 6-66. MSP430F663x Device Descriptor Table (1)

	FOODIDTION	4000500	SIZE					VALUE				
L	DESCRIPTION	ADDRESS	(bytes)	F6638	F6637	F6636	F6635	F6634	F6633	F6632	F6631	F6630
	Info length	01A00h	1	06h								
	CRC length	01A01h	1	06h								
Info Block	CRC value	01A02h	2	per unit								
INTO BIOCK	Device ID	01A04h	2	801Ch	801Ah	8018h	8016h	804Eh	804Ch	804Ah	8048h	8046h
	Hardware revision	01A06h	1	per unit								
	Firmware revision	01A07h	1	per unit								
	Die record tag	01A08h	1	08h								
	Die record length	01A09h	1	0Ah								
Die Desert	Lot/wafer ID	01A0Ah	4	per unit								
Die Record	Die X position	01A0Eh	2	per unit								
	Die Y position	01A10h	2	per unit								
	Test results	01A12h	2	per unit								
	ADC12 calibration tag	01A14h	1	11h	11h	11h	11h	11h	11h	05h	05h	05h
	ADC12 calibration length	01A15h	1	10h								
	ADC gain factor	01A16h	2	per unit	N/A	N/A	N/A					
	ADC offset	01A18h	2	per unit	N/A	N/A	N/A					
	ADC 1.5-V reference temp. sensor 30°C	01A1Ah	2	per unit	N/A	N/A	N/A					
ADC12	ADC 1.5-V reference temp. sensor 85°C	01A1Ch	2	per unit	N/A	N/A	N/A					
Calibration	ADC 2.0-V reference temp. sensor 30°C	01A1Eh	2	per unit	N/A	N/A	N/A					
	ADC 2.0-V reference temp. sensor 85°C	01A20h	2	per unit	N/A	N/A	N/A					
	ADC 2.5-V reference temp. sensor 30°C	01A22h	2	per unit	N/A	N/A	N/A					
	ADC 2.5-V reference temp. sensor 85°C	01A24h	2	per unit	N/A	N/A	N/A					

⁽¹⁾ NA = Not applicable

7 Device and Documentation Support

7.1 Device Support

7.1.1 Development Support

7.1.1.1 Getting Started and Next Steps

For more information on the MSP430[™] family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page.

7.1.1.2 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

7.1.1.2.1 Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.

MSP430 ARCHITECTURE	4-WIRE JTAG	2-WIRE JTAG	BREAK- POINTS (N)	RANGE BREAK- POINTS	CLOCK CONTROL	STATE SEQUENCER	TRACE BUFFER	LPMx.5 DEBUGGING SUPPORT
MSP430Xv2	Yes	Yes	8	Yes	Yes	Yes	Yes	Yes

7.1.1.2.2 Recommended Hardware Options

7.1.1.2.2.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

PACKAGE	TARGET BOARD AND PROGRAMMER BUNDLE	TARGET BOARD ONLY
100-pin LQFP (PZ)	MSP-FET430U100USB	MSP-TS430PZ100USB

7.1.1.2.2.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

7.1.1.2.2.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

7.1.1.2.2.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

PART NUMBER	PC PORT	FEATURES	PROVIDER
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with a PC or as a stand-alone package.	Texas Instruments

7.1.1.2.3 Recommended Software Options

7.1.1.2.3.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open source solutions are also available.

This device is supported by Code Composer Studio™ IDE (CCS).

7.1.1.2.3.2 MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a stand-alone package.

7.1.1.2.3.3 TI-RTOS

TI-RTOS is a complete real-time operating system for the MSP430 microcontrollers. It combines a real-time multitasking kernel SYS/BIOS with additional middleware components. TI-RTOS is available free of charge and provided with full source code.

7.1.1.2.3.4 MSP430 USB Developer's Package

MSP430 USB Developer's Package is an easy-to-use USB stack implementation for the MSP430 microcontrollers.

7.1.1.2.3.5 Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE.

7.1.2 Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5438A). TI recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the electrical specifications for the final device

PMS – Final silicon die that conforms to the electrical specifications for the device but has not completed quality and reliability verification

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX - Development-support product that has not yet completed Tl's internal qualification testing.

MSP – Fully-qualified development-support product

XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 7-1 provides a legend for reading the complete device name for any family member.

Figure 7-1. Device Nomenclature

7.2 Documentation Support

The following documents describe the MSP430F663x devices. Copies of these documents are available on the Internet at www.ti.com.

on the intern	mot at www.ti.com.	
SLAU208	MSP430x5xx and MSP430x6xx Family User's Guide and peripherals available in this device family.	e. Detailed information on the modules
SLAZ336	MSP430F6638 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ335	MSP430F6637 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ334	MSP430F6636 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ333	MSP430F6635 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ332	MSP430F6634 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ331	MSP430F6633 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ330	MSP430F6632 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ329	MSP430F6631 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional
SLAZ328	MSP430F6630 Device Erratasheet. Describes the specifications for this device.	known exceptions to the functional

7.3 Related Links

Table 7-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 7-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430F6638	Click here	Click here	Click here	Click here	Click here
MSP430F6637	Click here	Click here	Click here	Click here	Click here
MSP430F6636	Click here	Click here	Click here	Click here	Click here
MSP430F6635	Click here	Click here	Click here	Click here	Click here
MSP430F6634	Click here	Click here	Click here	Click here	Click here
MSP430F6633	Click here	Click here	Click here	Click here	Click here
MSP430F6632	Click here	Click here	Click here	Click here	Click here
MSP430F6631	Click here	Click here	Click here	Click here	Click here
MSP430F6630	Click here	Click here	Click here	Click here	Click here

7.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

7.5 Trademarks

MSP430, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

7.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.7 Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

7.8 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F6630IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6630	Samples
MSP430F6630IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6630	Samples
MSP430F6630IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6630	Samples
MSP430F6631IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6631	Samples
MSP430F6631IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6631	Samples
MSP430F6631IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6631	Samples
MSP430F6632IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6632	Sample
MSP430F6632IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6632	Sample
MSP430F6632IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6632	Sample
MSP430F6633IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6633	Sample
MSP430F6633IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6633	Sample
MSP430F6633IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6633	Sample
MSP430F6633IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6633	Sample
MSP430F6634IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6634	Sample
MSP430F6634IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6634	Sample

www.ti.com

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MSP430F6634IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6634	Sample
MSP430F6635IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6635	Sample
MSP430F6635IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6635	Sample
MSP430F6635IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6635	Sample
MSP430F6636IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6636	Sample
MSP430F6636IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6636	Sample
MSP430F6636IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6636	Sample
MSP430F6637IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6637	Sample
MSP430F6637IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6637	Sample
MSP430F6637IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6637	Sample
MSP430F6638IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6638	Sample
MSP430F6638IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	M430F6638	Sample
MSP430F6638IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6638	Sample
MSP430F6638IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	M430F6638	Sample

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

PACKAGE OPTION ADDENDUM

15-Apr-2017

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Feb-2016

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430F6630IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6630IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6631IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6631IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6632IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6632IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6633IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6633IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6633IZQWT	BGA MI CROSTA	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Feb-2016

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	R JUNI OR											
MSP430F6634IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6635IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6635IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6636IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6637IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6637IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6638IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430F6638IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430F6638IZQWT	BGA MI CROSTA R JUNI OR	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

www.ti.com 1-Feb-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430F6630IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6630IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6631IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6631IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6632IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6632IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6633IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6633IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6633IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0
MSP430F6634IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6635IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6635IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6636IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6637IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6637IZQWR	BGA MICROSTAR	ZQW	113	2500	336.6	336.6	28.6

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Feb-2016

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	JUNIOR						
MSP430F6638IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430F6638IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430F6638IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

PZ (S-PQFP-G100)

PLASTIC QUAD FLAT PACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

ZQW (S-PBGA-N113)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.