Geoffrey Parker - grp352 HW 13: 3.1-3.3 M328K March 6th, 2012

3.1 Exercise. Show that 41 divides $2^{20} - 1$ by following these steps. Explain why each step is true.

1.
$$2^5 \equiv -9 \pmod{41}$$
.

2.
$$(2^5)^4 \equiv (-9)^4 \pmod{41}$$
.

3.
$$2^{20} \equiv 81^2 \pmod{41} \equiv (-1)^2 \pmod{41}$$
.

4.
$$2^{20} - 1 \equiv 0 \pmod{41}$$
.

Solution.

1.
$$2^5 \equiv -9 \pmod{41}$$
. Because $2^5 - (-9) = 41$ and $41 \mid 41$.

2.
$$(2^5)^4 \equiv (-9)^4 \pmod{41}$$
. By step 1 and thm 1.18.

3.
$$2^{20} \equiv 81^2 \pmod{41} \equiv (-1)^2 \pmod{41}$$
. By step 2 and thm 1.11.

4.
$$2^{20} - 1 \equiv 0 \pmod{41}$$
. Because $1 \equiv 1 \pmod{41}$ and thm 1.12.

3.2 Question. In your head, can you find the natural number k, $0 \le k \le 11$, such that $k \equiv 37^{453} \pmod{12}$?

Solution.

$$1 \equiv 37 \pmod{12}$$
$$1^k \equiv 37^k \pmod{12}$$
$$1 \equiv 37^{453} \pmod{12}$$

3.3 Question. In your head or using paper and pencil, but no calculator, can you find the natural number k, $0 \le k \le 6$, such that $2^{50} \equiv k \pmod{7}$.

Solution. Well,
$$50 \equiv 2 \pmod{3}$$
, so $2^{50} \equiv 4 \pmod{7}$.