Announcement

Programming 2 due 11:59pm today!

Programming 3

Due: April 12, 11:59pm

Homework 3

■ Due: April 7, 11:59pm

Bayes Nets: Exact Inference

AIMA Chapter 14.4, PRML Chapter 8.4

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

P(J|A)

0.9

0.1

0.05

0.95

+j

+a

+a

-a

-a

E	P(E)	
+e	0.002	
-е	0.998	

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a

В

Е	P(E)	
+e	0.002	
-е	0.998	

	Α	M	P(M A)
-	+a	+m	0.7
-	+a	-m	0.3
	-a	+m	0.01
	-a	-m	0.99

P(+b, -e, +a, -j, +m) =
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Probabilistic Inference

- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)

Inference

 Inference: calculating some useful quantity from a probability model (joint probability distribution)

Examples:

- Posterior marginal probability
 - $P(Q|e_1,...,e_k)$
 - E.g., what disease might I have?
- Most likely explanation:
 - $\operatorname{argmax}_{q} P(Q=q | e_1,...,e_k)$
 - E.g., what did he say?

Inference by Enumeration

General case:

Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query variable: Q Hidden variables: $H_1 \dots H_r$

We want:

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes Net

- The joint distribution can be computed from a BN by multiplying the conditional distributions
- Then we can do inference by enumeration

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

Problem: sums of *exponentially many* products!

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration in Bayes Net

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$= P(B)P(+e)P(+a|B,+e)\frac{P(+j|+a)P(+m|+a)}{P(B)P(-e)P(-a|B,+e)} + P(B)P(+e)P(-a|B,+e)\frac{P(+j|-a)P(+m|-a)}{P(B)P(-e)P(+a|B,-e)\frac{P(+j|+a)P(+m|+a)}{P(+j|+a)P(+m|+a)}} + P(B)P(-e)P(-a|B,-e)\frac{P(+j|-a)P(+m|-a)}{P(+j|-a)P(+m|-a)}$$

Lots of repeated subexpressions!

Can we do better?

- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 - 16 multiplies, 7 adds
 - Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds

Can we do better?

- $= P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(\neg e)P(a|B,\neg e)P(j|a)P(m|a)$
 - + $P(B)P(e)P(\neg a | B,e)P(j | \neg a)P(m | \neg a) + P(B)P(\neg e)P(\neg a | B, \neg e)P(j | \neg a)P(m | \neg a)$

Lots of repeated subexpressions!

Variable elimination: The basic ideas

- Move summations inwards as far as possible
 - $P(B | j, m) = \alpha \sum_{e,a} P(B) P(e) P(a | B,e) P(j | a) P(m | a)$
 - $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$
- Do the calculation from the inside out
 - I.e., sum over *a* first, the sum over *e*
 - Problem: P(a|B,e) isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: use arrays of numbers (of various dimensions)
 with appropriate operations on them; these are called factors

Operations on Factors

Factors

- A factor is a multi-dimensional array to represent $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - If a variable is assigned (represented with lower-case), its dimension is missing (selected) from the array
 - Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

D	T	T.	XZ`	١
1	(1	, <i>v</i>	V	j

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factors

- A factor is a multi-dimensional array to represent $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - If a variable is assigned (represented with lower-case), its dimension is missing (selected) from the array
 - Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W	col	d

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Т	W	Р	
hot	sun	0.8	$\bigcap_{D(W L,A)}$
hot	rain	0.2	$\Big \int P(W hot)$
cold	sun	0.4	
cold	rain	0.6	$\left \int P(W cold) ight $

Factors

- A factor is a multi-dimensional array to represent $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - If a variable is assigned (represented with lower-case), its dimension is missing (selected) from the array
 - Specified family: P(y | X)
 - Entries P(y | x) for fixed y,but for all x
 - Sums to ... who knows!

Т	W	Р	
hot	rain	0.2	$\mid P(rain hot) \mid$
cold	rain	0.6	$\left igred P(rain cold) ight $

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

■ L: Late for class!

P	(F	?	

+r	0.1
-r	0.9

P(T|R)

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	- -	0.9

Running Example: Traffic Domain

Initial factors are local CPTs (one per node)

+r	0.1
-r	0.9

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(R)$$
 $P(T|R)$ $P(L|T)$

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

+r	0.1
-r	0.9

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(T|R)$$
 $P(+\ell|T)$

+t	+	0.3
-t	+	0.1

Operation 1: Join Factors

- First basic operation: joining factors
 - Just like a database join
 - Given multiple factors, build a new factor over the union of the variables involved
 - Each entry is computed by pointwise products

Example:

Operation 2: Eliminate

- Second basic operation: eliminating a variable
 - Take a factor and sum out (marginalize) a variable
- Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

 $\operatorname{sum} R$

P(T)

+t	0.17
-t	0.83

Inference by Enumeration in BN = Multiple Join + Multiple Eliminate

Computing P(L): Multiple Joins

+r	0.1
-r	0.9

P(T|R)

Join

$\iota\iota$,	1	J			

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

+t	+	0.3
+t	- -	0.7
-t	+	0.1
-t	-	0.9

R, T, L

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

P(L|T)

+t	+	0.3
+t	-	0.7
-t	7	0.1
-t	-	0.9

Computing P(L): Multiple Elimination

A factor of exponential size!

Variable Elimination

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and elimination!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$i \times \mathbf{r} = \mathbf{r} \times \frac{1}{Z}$$

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

$$= \sum_t \sum_r P(L|t) P(r) P(t|r)$$
 Join on t Eliminate t

Variable Elimination

Variable Elimination

+t

-t

Join R

P	R	T
1	$(\bot \iota)$	<i>- 1</i>

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
		0.01

Sum out R

Join T

Sum out T

P(T|R)

+r

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

+t	7	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

0.9

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

D	(T	T	1
$\boldsymbol{\varGamma}$	(L)	1	J

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

0.17

0.83

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

D	T	7	T	1
I	(I)	,	L	,

+t	+	0.051
+t	-	0.119
-t	+	0.083
-t	-	0.747

(I)
(L)

P(L)

+	0.134
-	0.866

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)	
+r	0.1
-r	0.9

$$P(L|T)$$

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

• Computing P(L|+r) the initial factors become:

$$P(+r)$$

$$P(T | + r)$$
+r +t 0.8
+r -t 0.2

$$P(+r)$$
 $P(T|+r)$ $P(L|T)$

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	7	0.9

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

P(L	+	r
-----	---	---

+	0.26
-	0.74

- To get our answer, just normalize this!
- That 's it!

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(m|A)

P(j,m|B,E)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(j,m|B,E)

P(j,m|B)

Finish with B

P(B|j,m)

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$

P(E) P(A|B,E)

P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

$$= P(B)f_2(B,j,m)$$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f₁

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f₂

Variable Elimination Ordering

- Query: $P(X_n | y_1,...,y_n)$
- Two different orderings: Z, X_1 , ..., X_{n-1} and X_1 , ..., X_{n-1} , Z.
- What is the size of the maximum factor generated for each of the orderings?

Variable Elimination Ordering

Z, X₁, ..., X_{n-1}

Variable Elimination Ordering

■ X₁, ..., X_{n-1}, Z

VE: Computational Complexity

- The size of the largest factor determines the time and space complexity of VE
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ⁺¹ vs. 2²
- Does there always exist an ordering that only results in small factors?
 - No!

Reduction from 3SAT

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6$

$$P(X_{i} = 0) = P(X_{i} = 1) = 0.5$$

$$Y_{1} = X_{1} \lor X_{2} \lor \neg X_{3}$$

$$\vdots$$

$$Y_{8} = \neg X_{5} \lor X_{6} \lor X_{7}$$

$$Y_{1,2} = Y_{1} \land Y_{2}$$

$$\vdots$$

$$Y_{7,8} = Y_{7} \land Y_{8}$$

$$Y_{1,2,3,4} = Y_{1,2} \land Y_{3,4}$$

$$Y_{1,2,3,4} = Y_{1,2} \land Y_{3,4}$$

$$Y_{2,3,4} = Y_{1,2,3,4} \land Y_{2,6,7,8}$$

$$Z = Y_{1,2,3,4} \land Y_{2,6,7,8}$$

$$Z = Y_{1,2,3,4} \land Y_{2,6,7,8}$$

$$Z = Y_{1,2,3,4} \land Y_{2,6,7,8}$$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

 A polytree is a directed graph with no undirected cycles

Variable Elimination on Polytrees

- For poly-tree BNs, the complexity of VE is *linear in the BN size* (number of CPT entries) with the following elimination ordering:
 - Convert to a factor graph
 - Take Q as the root
 - Eliminate from the leaves towards the root

Bayesian Network

Factor Graph

Variable Elimination on Polytrees

- VE for poly-tree BNs is equivalent to
 - Sum-product message passing algorithm or belief propagation algorithm

(i.e., passing messages/beliefs from leaf nodes to the root node)

Message Passing on General Graphs

- Exact inference: Junction Tree
 Algorithm
 - Group individual nodes to form cluster nodes in such a way that the resulting network is a polytree (called a junction tree or join tree)
 - Run a sum-product-like algorithm on the junction tree.
 - *Intractable* on graphs with large cliques (i.e., large tree-width).

Message Passing on General Graphs

- Approximate inference: Loopy Belief Propagation
 - Simply pass the messages on the general graph
 - Will not terminate with loops
 - Run until convergence (not guaranteed!)
 - Approximate but tractable for large graphs.
 - Sometime works well, sometimes not at all.

Summary

- Exact inference of Bayesian networks
 - Enumeration
 - exponential complexity
 - Variable Eliminating
 - worst-case exponential complexity, often better
 - VE on polytrees
 - linear complexity
 - = message passing
 - Message passing on general graphs
 - Junction Tree Algorithm
 - Loopy Belief Propagation: no longer exact