北京科技大学 2016--2017 学年 第 二 学期 高等数学 AII 期末试卷(模拟)

院(系)

试卷卷面成绩												占课程 考核成		课程考核成绩
题号	_	=	三	四	五.	六	七	八	九	+	小计	绩 %	占 %	12/4/25
得分														

一、填空题 (每题 4 分, 共 36 分)

- 1、设 $\vec{a} = 3\vec{i} \vec{j} 2\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} \vec{k}$,则 $\vec{a} \cdot \vec{b} =$ _____, $\vec{a} \times \vec{b} =$ ____
- 3、设 f 具有二阶连续偏导数,u = f(x+y+z, xyz),则 $\frac{\partial^2 u}{\partial x \partial y} =$
- 4、已知三向量 $\vec{a}, \vec{b}, \vec{c}$,其中 $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$, $\vec{a} = \vec{b}$ 夹角为 $\frac{\pi}{6}$,且 $|\vec{a}| = 6$, $|\vec{b}| = |\vec{c}| = 3$,则 $(\vec{a} \times \vec{b}) \cdot \vec{c}$
- 5、通过 $\begin{cases} x+y+z=0\\ 2x-y+3z=0 \end{cases}$ 且平行于直线 x=2y=3z 的平面方程为_
- 6、 Ω 是球面 $x^2+y^2+z^2=4$ 与抛物面 $x^2+y^2=3z$ 所围成的形体,求三次积分 $\iiint z dx dy dz=$

$$B(1,1)$$
的曲线 $y = \sin \frac{\pi}{2} x$ 。

- 8、函数 $u = x^2 + 2y^2 + 3z^2 + 3x 2y$ 在点(1,1,2)处的梯度为
- 9、 微分方程 $(x^2 y^2 2y)dx + (x^2 + 2x y^2)dy = 0$ 的通解为

二、选择题 (每题 3 分, 共 21 分)

- 10、如果 f(x, y) 在 (0,0) 处连续,则下列命题正确的是()
- (A) 若极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|}$ 存在,则 f(x,y) 在 (0,0) 处可微
- (B) 若极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}$ 存在,则 f(x,y) 在 (0,0) 处可微
- (C) 若f(x,y)在(0,0)处可微,则极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|}$ 存在
- (D) 若 f(x,y) 在 (0,0) 处可微,则极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{r^2+v^2}$ 存在
- 11、设f(u) 是关于u 的奇函数,D 是由x=1, $y=-x^3$,y=1所围成的平面区域。则 $\iiint \left[x^3 + f(x, y) \right] dx dy = ()$

- (B) $\frac{1}{4}$ (C) $\frac{2}{7}$ (D) $\iint_{\mathbb{R}} f(x, y) dx dy$

12、已知直线 L_1 过点 $M_1(0,0,-1)$,且平行于 x 轴, L_2 过点 $M_2(0,0,1)$ 且垂直于 xoz 平面,则到两直线 的距离点的轨迹方程为()

(A)
$$x^2 + y^2 = 4$$

$$(B) zx^2 - y^2 = 2z$$

(C)
$$x^2 - y^2 = z$$

(D)
$$x^2 - y^2 = 4z$$

13、设曲面 Σ 是上半球面: $x^2 + y^2 + z^2 = R^2(z \ge 0)$, 曲面 Σ , 是曲面 Σ 在第一卦限的部分, 下列结论正 确的是()

(A)
$$\iint_{\Sigma} x dS = 4 \iint_{\Sigma_{1}} x dS$$
 (B)
$$\iint_{\Sigma} y dS = 4 \iint_{\Sigma_{1}} y dS$$

(B)
$$\iint_{\Sigma} y dS = 4 \iint_{\Sigma} y dS$$

(C)
$$\iint_{\Sigma} z dS = 4 \iint_{\Sigma_{1}} z dS$$

(D)
$$\iint_{\Sigma} xyzdS = 4\iint_{\Sigma} xyzdS$$

14、微分方程 $y''-2y'^2$ tan y=0,满足条件 $y|_{y=0}=0$, $y'|_{y=0}=1$ 的解是(

$$(A) \quad x = \frac{y}{2} + \frac{1}{4}\sin 2y$$

$$(B) \quad x = y - \frac{1}{4}\sin 2y$$

(C)
$$x = \frac{y}{2} - \frac{1}{4} \sin 2y$$

$$(D) \quad x = y + \frac{1}{4}\sin 2y$$

15、设 z = z(x, y) 由方程 F(x - az, y - bz) = 0 确定,其中 F(x, y) 可微,(a, b 为常数),则(())

(A)
$$a \frac{\partial z}{\partial x} - b \frac{\partial z}{\partial y} = 1$$

(B)
$$a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = 1$$

(C)
$$a\frac{\partial z}{\partial x} - b\frac{\partial z}{\partial y} = 0$$

(D)
$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 0$$

16、设区域 $D = \{(x, y) | x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, f(x) 为 D 上的正值连续函数, A, B 为常数, 则

$$\iint_{D} \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = ()$$

(B) $\frac{ab\pi}{2}$ (C) $(a+b)\pi$ (D) $\frac{(a+b)\pi}{2}$

三、计算题 (共25分)

17、求旋转抛物面 $z = x^2 + y^2$ 与平面 x + y - 2z = 2 之间的最短距离。(6分)

18、求过直线
$$L$$
: $\begin{cases} x+5y+z=0 \\ x-z+4=0 \end{cases}$ 且与平面 $x-4y-8z+12=0$ 成 $\frac{\pi}{4}$ 的平面方程(6 分)

19、计算二重积分(1)
$$I = \iint_D \text{sgn}(y - x^2) dx dy$$
, 其中 $D: -1 \le x \le 1, 0 \le y \le 1$ 。

(2)
$$I = \iint_{D} (\sqrt{x^2 + y^2 - 2xy} + 2) dx dy$$
, 其中 D 为圆域 $x^2 + y^2 \le 1$ 在第一象限内的部分(6分)

20、设L是平面x+y+z=2与柱面|x|+|y|=1的交线,从z轴正向看过去,L为逆时针方向,计算 $I = \oint_{I} (y^2 - z^2) dx + (2z^2 - x^2) dy + (3x^2 - y^2) dz \quad (7 \%)$

得 分

四、证明题 (共18分)

21、已知函数 z = z(x, y),满足 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$,设 $u = x, v = \frac{1}{y} - \frac{1}{x}, \psi = \frac{1}{z} - \frac{1}{x}$,对函数 $\psi = \psi(u, v)$,

证明:
$$\frac{\partial \psi}{\partial u} = 0$$
 。 (8分)

22、设函数 f(x,y) 在区域 $D: x^2 + y^2 \le 1$ 上有连续二阶偏导数,且满足 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = e^{-(x^2+y^2)}$,证明:

$$\iint_{D} x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} dx dy = \frac{\pi}{2e} \cdot (10 \, \text{fr})$$

北京科技大学 2016--2017 学年 第 二 学期 高等数学 AII 期末试卷(模拟)

1001テト	ᇳ	쌀 ㅁ	14 H	
院(系)	班级	字号	姓名	

试卷卷面成绩											占课程 考核成	平时成绩	课程考核成绩	
题号			三	四	五.	六	七	八	九	+	小计	绩 %	占 %	127250
得分														

得 分

一、填空题(每题4分,共36分)

- 3、设f具有二阶连续偏导数,u = f(x + y + z, xyz),则 $\frac{\partial^2 u}{\partial x \partial y} =$ _______。
- 4、已知三向量 \vec{a} , \vec{b} , \vec{c} ,其中 \vec{c} $\perp \vec{a}$, \vec{c} $\perp \vec{b}$, \vec{a} 与 \vec{b} 夹角为 $\frac{\pi}{6}$,且 $|\vec{a}|$ = 6, $|\vec{b}|$ = $|\vec{c}|$ = 3,则(\vec{a} × \vec{b})• \vec{c}
- 5、通过 $\begin{cases} x+y+z=0 \\ 2x-y+3z=0 \end{cases}$ 且平行于直线 x=2y=3z 的平面方程为______
- 6、 Ω 是球面 $x^2 + y^2 + z^2 = 4$ 与抛物面 $x^2 + y^2 = 3z$ 所围成的形体,求三次积分 $\iint_{\Omega} z dx dy dz =$

- 8、函数 $u = x^2 + 2y^2 + 3z^2 + 3x 2y$ 在点 (1,1,2) 处的梯度为_____。
- 9、 微分方程 $(x^2 y^2 2y)dx + (x^2 + 2x y^2)dy = 0$ 的通解为______。

得 分

二、选择题(每题3分,共21分)

10、如果 f(x, y) 在 (0,0) 处连续,则下列命题正确的是()

- (A) 若极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|}$ 存在,则 f(x,y) 在 (0,0) 处可微
- (B) 若极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}$ 存在,则 f(x,y) 在 (0,0) 处可微
- (C) 若 f(x,y) 在 (0,0) 处可微,则极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|}$ 存在
- (D) 若 f(x,y) 在 (0,0) 处可微,则极限 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}$ 存在

11、设 f(u) 是关于 u 的奇函数, D 是由 x=1 , $y=-x^3$, y=1 所围成的平面区域。则 $\iint_D \left[x^3 + f(x,y) \right] dx dy = ($

- (A) **0**
- (B) $\frac{1}{4}$

- (C) $\frac{2}{7}$
- (D) $\iint_{D} f(x, y) dx dy$

12、已知直线 L_1 过点 $M_1(0,0,-1)$,且平行于 x 轴, L_2 过点 $M_2(0,0,1)$ 且垂直于 xoz 平面,则到两直线的距离点的轨迹方程为(

(A) $x^2 + y^2 = 4$

(B) $zx^2 - y^2 = 2z$

 $(C) \quad x^2 - y^2 = z$

(D) $x^2 - y^2 = 4z$

13、设曲面 Σ 是上半球面: $x^2+y^2+z^2=R^2(z\geq 0)$,曲面 Σ_1 是曲面 Σ 在第一卦限的部分,下列结论正确的是()

(A)
$$\iint_{\Sigma} x dS = 4 \iint_{\Sigma_{1}} x dS$$

(B)
$$\iint_{\Sigma} y dS = 4 \iint_{\Sigma_{1}} y dS$$

弊

(C)
$$\iint_{\Sigma} z dS = 4 \iint_{\Sigma_{1}} z dS$$

(D)
$$\iint_{\Sigma} xyzdS = 4\iint_{\Sigma_{1}} xyzdS$$

14、微分方程 y "-2y ' 2 tan y=0 ,满足条件 $y|_{x=0}=0$, y ' $|_{x=0}=1$ 的解是()

(A)
$$x = \frac{y}{2} + \frac{1}{4}\sin 2y$$

(B)
$$x = y - \frac{1}{4}\sin 2y$$

(C)
$$x = \frac{y}{2} - \frac{1}{4} \sin 2y$$

(D)
$$x = y + \frac{1}{4}\sin 2y$$

15、设z = z(x, y)由方程F(x - az, y - bz) = 0确定,其中F(x, y)可微,(a, b为常数),则()

(A)
$$a\frac{\partial z}{\partial x} - b\frac{\partial z}{\partial y} = 1$$

(B)
$$a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = 1$$

(C)
$$a \frac{\partial z}{\partial x} - b \frac{\partial z}{\partial y} = 0$$

(D)
$$a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = 0$$

16、设区域 $D = \{(x, y) | x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, f(x) 为 D 上的正值连续函数, A, B 为常数,则

$$\iint_{D} \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma = ($$

(A)
$$ab\pi$$

(B)
$$\frac{ab\pi}{2}$$

(C)
$$(a+b)\pi$$

(D)
$$\frac{(a+b)\pi}{2}$$

得 分

三、计算题(共25分)

17、求旋转抛物面 $z = x^2 + y^2$ 与平面 x + y - 2z = 2之间的最短距离。(6分)

18、求过直线
$$L$$
: $\begin{cases} x+5y+z=0 \\ x-z+4=0 \end{cases}$ 且与平面 $x-4y-8z+12=0$ 成 $\frac{\pi}{4}$ 的平面方程(6 分)

19、计算二重积分 (1)
$$I = \iint_D \operatorname{sgn}(y - x^2) dx dy$$
,其中 $D: -1 \le x \le 1, 0 \le y \le 1$ 。
(2) $I = \iint_D (\sqrt{x^2 + y^2 - 2xy} + 2) dx dy$,其中 D 为圆域 $x^2 + y^2 \le 1$ 在第一象限内的部分(6 分)

20、设 L 是平面 x+y+z=2 与柱面 $\left|x\right|+\left|y\right|=1$ 的交线,从 z 轴正向看过去, L 为逆时针方向,计算 $I=\oint_L(y^2-z^2)\mathrm{d}x+(2z^2-x^2)\mathrm{d}y+(3x^2-y^2)\mathrm{d}z \ \ (7\ \beta)$

得 分

四、证明题(共18分)

21、已知函数 z = z(x, y),满足 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$,设 $u = x, v = \frac{1}{y} - \frac{1}{x}, \psi = \frac{1}{z} - \frac{1}{x}$,对函数 $\psi = \psi(u, v)$,

证明:
$$\frac{\partial \psi}{\partial u} = 0$$
。(8分)

$$\iint_{D} x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} dx dy = \frac{\pi}{2e} \cdot (10 \%)$$

北京科技大学 2016-2017 学年第二学期

高等数学 AII 模拟试卷参考答案

- 一. 填空题 (每题 4 分, 共 36 分)

- 1. 3, $5\vec{i} + \vec{j} + 7\vec{k}$ 2. 4 3. $zf_2' + f_{11}'' + (x+y)zf_{12}'' + xyz^2f_{22}''$ 4. ± 27

- 5. 7x 26y + 18z = 0 6. $\frac{13}{4}\lambda$ 7. $\frac{23}{15}$ 8. $5\vec{i} + 2\vec{j} + 12\vec{k}$ 9. $\frac{x+y}{x-y}e^{x+y} = C$

- 二. 选择题(每题3分,共21分)
- 10.B 11.C 12.D 13.C 14.A 15.B 16.D
- 三. 计算题
- 17. (6 %) $d_{\min} = \frac{7}{4\sqrt{6}}$.
- **18.** (6 \cancel{f}) x+20y+7z=12, x-z+4=0
- 19. (6 %) $(1)I = \frac{2}{3}$, $(2)I = \frac{2}{3}(\sqrt{2}-1) + \frac{\pi}{2}$
- 20. (7 %) $I = -\frac{2}{\sqrt{3}} \iint_{\Sigma} (4x + 2y + 3z) dS = -24$
- 四. 证明题
- 21. (8分)略
- 22. (10分)略