PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

PC1 WORLD INTELL	Interna	tional Bureau
INTERNATIONAL APPLICATION PUBLISI	HED U	INDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/61124
A61K 31/00	A2	(43) International Publication Date: 19 October 2000 (19.10.00)
(21) International Application Number: PCT/EP (22) International Filing Date: 11 April 2000 ((30) Priority Data: 99106206.8 12 April 1999 (12.04.99) 99107474.1 29 April 1999 (29.04.99) (71)(72) Applicants and Inventors: EISENBRAND, [DE/DE]; Gustav Kirchhoffstrasse 3, D-69120 H (DE). FIEBIG, Heinz, Herbert [DE/DE]; Ins. Experimentelle Onkologie, Am Flughafen 8-10, Freiburg (DE). (74) Agent: PERREY, Ralf; Müller-Boré & Partner, Strasse 2, D-81671 München (DE).	11.04.0 Gerha leidelbe stitut i D-791	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished
(54) Title: USE OF CELL MEMBRANE PENETRATIN (57) Abstract	IG IND	IGOID BISINDOLE DERIVATIVES
The present invention relates to the use of cell medicament for the treatment of human solid cancers.	nembra	ne penetrating indigoid bisindole derivatives for the manufacture of

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

"Use of cell membrane penetrating Indigoid bisindole derivatives"

5

10

15

20

25

Description

The present invention relates to the use of cell membrane penetrating indigoid bisindole derivatives for the manufacture of a medicament for the treatment of human solid cancers.

Indigoid bisindoles comprise a spectrum of natural dye stuffs. Many of these can be obtained from plants. Accordingly, indirubin, indigo and isoindigo are natural products which can be obtained from different plants: namely, Baphicacanthus cusia (Acanthaceae), Indigofera suffruticosa (Fabaceae), Isatis indigotica (Brassicaceae) and others. Indican, a glycoside which is found in plants, gives glucose and 3-hydroxyindole due to acidic or enzymatic hydrolysis. 3-Hydroxyindole is converted by air-oxidation into indigo and its isomers. Indigo naturalis (Chinese: quingdai) is the natural blue dye obtained from plant material, e.g. Isatis indigotica (Brassicaceae). Indirubin, an isomer of indigo, can be found in Indigo naturalis in an amount of up to 60% (Falbe J. & Regitz M., Römpp Chemie Lexikon (1992), 9. Aufl., Stuttgart, Georg Thieme Verlag). It occurs also in Isatis tinctoria in an amount of up to 5% which is indigenous to Central Europe (Gelius R., Z. Chem., 20, (1980), 340-341). Derivatives of indirubin are known for a long time as dyes of low persistence.

Indigo naturalis is reported to be used in traditional Chinese medicine as a haemostatic, anti-pyretic, anti-inflammatory and sedative agent in the treatment of bacterial and viral infections. Antileukemic effects of Indigo naturalis have also been reported, with indirubin being the effective principle (Ji X. et al., Acta Pharm. Sin., 16, (1981), 146-148; Gan W. J. et al., J. Hematol., 6, (1985), 611-613). In spite of its anti-leukaemic activity, however, indirubin dissolves only poorly in water and is therefore not readily resorbed. Recently, the antileukemic activity of some better soluble indirubin derivatives has been

reported (Ch. Li et a., Bull. Chem. Soc. Jpn. 69, 1621-1627 (1996)).

However, indigoid bisindole or its derivatives have never been investigated with respect to solid tumors, in particular human solid tumors, and furthermore, the problem of the poor solubility resulting in a poor resorption has not been sufficiently solved yet.

Thus, the technical problem underlying the present invention is to provide new active substances which can be used in the treatment of human solid tumors and metastasis thereof. Furthermore, the resorption of said substances should be improved in order to improve their *in vivo* anti-tumor activity.

The solution to the above technical problem is achieved by the embodiments characterized in the claims.

In particular, the present invention relates to the use of cell membrane penetrating indigoid bisindole derivatives for the manufacture of a medicament for the treatment of human solid tumors and metastasis thereof wherein the indigoid derivatives are selected from indigo, bis(3-phenylindol-2-yl), isoindigo and indirubin derivatives, the latter represented by the following formula (I):

25

30

5

10

15

20

wherein, when X represents an oxygen atom, R^1 represents a hydrogen atom, a halogen atom, a -NO₂ group, a methyl group, a sulfonamide group or SO₂-NH-CH₂CH₂-OH; and

wherein, when X represents NOH, R¹ represents a hydrogen atom or an iodine atom.

The above indigoid bisindole derivatives can also be employed in the form of their physiologically acceptable salts. Furthermore, the indigoid bisindole WO 00/61124

5

10

15

20

25

30

derivatives according to the present invention may also be chemically coupled to masking agents as described e.g. in German patent application DE-A-38 27 488 which function to carry the anti-tumor active substances to the tumor.

PCT/EP00/03210

In the following, the indigoid derivatives selected from indigo, isoindigo and indirubin derivatives according to the present invention are also addressed to as "anti-tumor active compounds according to the present invention".

According to the present invention the terms "cell membrane penetrating" and "cell resorbable" mean the ability of the indigoid bisindole derivatives to be taken up by the tumor cell through the cellular membrane.

The term "human solid tumors" according to the present invention preferably includes carcinomas, melanomas, adenomas, sarcomas, lymphomas, neuroblastomas, teratomas, astrocytomas, glioblastomas and mesotheliomas. Specific examples are mammary carcinoma, large-cell lung carcinoma, small-cell lung carcinoma, lung epidermoid and adenocarcinoma, colorectal carcinoma, bladder carcinoma, ovarian carcinoma, pancreatic carcinoma, renal carcinoma, prostatic carcinoma, head and neck carcinomas, melanomas, cervical carcinomas, osteosarcoma and the like.

The above identified indigoid bisindole derivatives of the present invention can be formulated into pharmaceutical compositions which contain optionally a pharmaceutically acceptable carrier and/or diluent. Said pharmaceutical compositions can be applied e.g. orally, topically, intravenously, intraperitoneally, subcutaneously and rectally in pharmaceutically effective amounts.

One general problem in the field of pharmacology is the formulation of pharmaceutically active substances in pharmaceutical compositions which can be applied to a human body. Since most physiological fluids are waterbased, the pharmaceutically active substances should be soluble in water and/or a water mixable solvent wherein the latter of course has to be physiologically acceptable

4

in small concentrations, such as ethanol. Furthermore, pharmaceutically active substances which are taken orally have to be resorbed into surface of the human body - including the gastrointestinal mucous membrane- or, in case of an application via syringe, e.g. intraperitoneal or intravasal, have to be resorbed through the cellular membranes of the of destination cells, specifically into the tumor cells.

According to the present invention it has been found that in case of the indigoid bisindole derivatives according to the present invention, a good solubility is not the only prerequisite guaranteeing a good anti-tumor activity *in vivo* as it will become apparent by the Examples and Comparative Examples shown below. An important factor for the anti-tumor activity of indigoid bisindole derivatives is their ability to penetrate the cellular membranes of the tumor cells. Cellular membranes are composed of lipids and compose a rather non-polar medium. Therefore, substitution with extremely polar groups such as the sulfonate group on the one hand improves the water solubility of a compound but on the other hand hinders or even prohibits the resorption of anti-tumor active substances into a tumor cell. Thus, anti-tumor active substances which show good anti-tumor activities under certain *in vitro* conditions, have to be rejected because of not showing any activity when tested using intact cells or *in vivo*.

Therefore, in the following Examples the testing of the anti-tumor active substances are tested by *in vitro* tests using intact tumor cells and, additionally, *in vivo* tests. Furthermore, a comparison of the activity test results and the tests evaluating the ability to penetrate cellular membranes shows that indigoid bisindole compounds which exhibit a good cell-penetrating ability also show good to excellent anti-tumor activity.

The Figures show:

30

5

10

15

20

25

Fig. 1 is a graph which shows the development of the relative tumor volume with time during chemotherapy of LXFL 529/17 with indigoid bisindole derivatives according to the present invention (compounds according to Examples 1,

5

4 and 6). The anti-tumor active substances according to the present invention were applied intraperitoneally to nude mice in doses and according to the schedule as described below in Table 4. Compared to the vehicle control, all compounds significantly inhibited the tumor growth.

5

Fig. 2 is a graph which shows the relative body weight change of the tested nude mice with time during chemotherapy of LXFL 529/17. 5-Methylindirubin (Example 6) at a dosage of 100 mg/kg up to 300 mg/kg showed very high antitumor activity (Fig. 1 and Fig. 3) without any significant reduction of body weight (Fig. 2 and Fig. 4) thus demonstrating high anti-tumor activity without significant toxicity.

15

10

Fig. 3, Fig. 5 and Fig. 7 are graphs which show the relative tumor volume versus the time during the chemotherapy of LXFL 529/17 with other indigoid bisindole derivatives according to the present invention (compounds according to Examples 8, 9, 10 and 14).

20

Fig. 4, Fig. 6 and Fig. 8 are graphs which show the relative body weight change of the tested nude mice with time during chemotherapy of LXFL 529/17 using said other indigoid bisindole derivatives according to the present invention.

The present invention is explained in detail by the following examples and comparative examples by which also further advantages of the present invention will become apparent.

25

30

1. Synthesis of the indigoid bisindole derivatives

Example 1 (Indirubin)

To a solution of 0.42 g (2.4 mmol) of indoxyl acetate in 20 ml methanol under argon 0.35 g (2.4 mmol) of isatin and 0.55 g (5.2 mmol) of sodium carbonate are added. The mixture is stirred for 30 min at ambient temperature. After 24 h standing at ambient temperature, the reaction mixture is filtered off. The precipitate is washed with little methanol and water until the filtrate shows a neutral

pH. Residual water is removed by storage in an evacuated exsiccator over potassium hydroxide. Recrystallisation from ethanol or pyridine gives deep purple crystals (Russell G.A., Kaupp G. (1969), J. Am. Chem. Soc., <u>91</u>, 3851-9, modified).

5 Yield: 0.51 g (81%), fine, deep-purple needles, Fp: 341-343°C

CHN-analysis: $(C_{16}H_{10}N_2O_2)$; MW: 262.26 g/mol;

calc.: 73.3% C, 3.8% H, 10.7% N;

found: 73.2% C, 4.0% H, 10.6% N

mass spectrum: m/z = 262: $(M^+, 100\%), 234$: (43%), 205 (25%), 158 (3%),

10 131 (4%), 103 (7%), 76 (3%)

¹H-NMR and ¹³C-NMR-spectrum are in accordance with the proposed structure.

IR-spectrum: 3340 cm⁻¹: v (N-H), 1710 cm⁻¹: v (3'-C=O), 1650 cm⁻¹: v (2-C=O), 1590 cm⁻¹: v (C=C, aryl), 1450 cm⁻¹: v (C=C, aryl), 745 cm⁻¹: v (aryl

with four neighbouring H-atoms).

15 UV/Vis-spectrum (DMSO): 290 nm, 363 nm, 383 nm (shoulder), 551nm

Essentially the same synthetic procedure was applied for the following Examples 2 to 9, 12, 13 and Comparative Examples 1 and 2:

20 Example 2 (5-lodoindirubine)

Yield: 80%, fine, deep-purple needles, Fp: 334-335°C (decomposition);

CHN-analysis ($C_{16}H_9IN_2O_2$); MG = 388.16 g/mol;

calc.: 49.5% C, 2.3% H, 7.2% N;

found.: 49.7% C, 2.5% H, 7.1% N;

25 Mass spectrum: 388 (M⁺, 100%), 360 (3%), 269 (9%), 261 (6%), 233 (16%),

205 (16%), 128 (1%);

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

UV/Vis-spectrum (DMSO): 370 nm, 386 nm (shoulder), 555 nm.

30 Example 3 (5-Bromoindirubin)

Yield: 70%, fine, deep-purple needles;

CHN-analysis ($C_{16}H_9BrN_2O_2$); MG = 341.16 g/mol,

calc.: 56.3% C, 2.7% H, 8.2% N;

found 56.4% C, 2.7% H, 8.2% N;

Mass spectrum: 342(M⁺, 100%), 340 (M⁺, 99%), 314 (18%), 262 (64%), 233 (34%), 205 (81%), 177 (10%);

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

5

Example 4 (5-Chloroindirubin)

Yield: 95%, fine, deep-purple needles;

CHN-analysis ($C_{16}H_9CIN_2O_2$); MG = 296.70 g/mol;

calc.: 49.5% C, 2.3% H, 7.2% N;

10 found: 49.7% C, 2.5% H, 7.1% N;

Mass spectrum: $m/z = 296 (M^+, 100\%), 268 (39\%), 239 (8\%), 233 (35\%), 205 (50\%), 177 (7%), 153 (6%), 137 (7%), 77 (7%), 120 (4%), 102 (6%), 77 (7%).$

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

15

Example 5 (5-Fluoroindirubin)

Yield: 92%, fine, deep-purple needles;

CHN-analysis ($C_{16}H_9FN_2O_2$), MG = 280.25 g/mol,

calc.: 68.6% C, 3.2% H, 9.9% N;

20 found: 68.0%C, 3.2% H, 9.9% N;

Mass spectrum: $m/z = 281 (M^+ + H^+, 19\%), 280 (M^+, 100\%), 252 (73\%), 223 (32%), 176 (6%), 140 (7%), 121 (13%), 94 (4%), 76 (12%), 77 (7%), 57 (4%), 44(15%).$

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

25

Example 6 (5-Methylindirubin)

Yield: 92%, fine, deep-purple needles;

CHN-analysis $(C_{17}H_{12}N_2O_2)$, MG = 276.28 g/mol,

calc.: 73.9% C, 4.4% H, 10.1% N;

30 found: 73.8%C, 4.3% H, 10.2% N;

Mass spectrum: $m/z = 276 (M^+, 100\%), 261 (10\%), 248 (47\%), 247 (53\%), 220 (6\%), 219 (18\%), 205 (7\%), 171 (4%), 165 (10%), 138 (4%), 133 (15%), 104 (7%), 77 (7%);$

8

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Example 7 (5-Nitroindirubin)

Yield: 88%, fine, deep-purple needles;

5 CHN-analysis $(C_{16}H_9N_3O_4)$, MG = 307.26 g/mol;

calc.: 62.5% C, 3.0% H, 13.7% N;

found: 62.4%C, 3.0% H, 13.3% N;

Mass spectrum: $m/z = 307 (M^+, 5\%), 276 (10\%), 262 (100\%), 234 (23\%),$

205 (22%), 158 (6%), 131 (10), 104 (19%), 76 (12%), 50 (6%).

10 ¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Example 8 (Indirubin-3'-oxime)

Indirubin-3'-oxime was synthesized by reaction of indirubin with hydroxylamine hydrochloride in a pyridine solution (Farbwerke vorm. Meister Lucius & Brüning in Hoechst a.M., Patentschrift des Reichspatentamtes Nr. 283726 (1913)). 13 C-NMR-spectroscopy revealed the location of the hydroxylimino residue in 3'-Position (δ (C2) = 171.05 ppm; δ (C3') = 145.42 ppm; DMSO-d₆, RT)

Yield: 90 %, red crystals;

15

CHN-analysis ($C_{16}H_{11}N_3O_2$), MG = 277.30 g/mol;

20 calc.: 69.3% C, 4.0% H, 15.2 % N;

found: 69.0% C, 4.0% H, 14.9% N;

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Example 9 (5-lodoindirubine-3'-oxime)

Indirubin-3'-oxime was synthesized by reaction of 5-lodoindirubine with hydroxylamine hydrochloride in a pyridine solution. 13 C-NMR-spectroscopy revealed the location of the hydroxylimino residue in 3'-Position (δ (C2) = 170.25 ppm; δ (C3') = 151.52 ppm; DMSO-d₆, RT)

Yield: 90 %, red crystals;

30 CHN-analysis $(C_{16}H_{10}IN_3O_2)$, MG = 403,20 g/mol;

calc.: 47,7%C, 2,5% H, 10,4% N;

found: 47,1% C, 2,5% H, 10,1% N;

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Example 10 (Isoindigo)

Isoindigo was synthesized by reaction of oxindole with isatin in acetic acid with addition of hydrochloric acid (Wahl A., Bayard P., Comptes Rendues Hebdomadaires des Seances de L'Academie des Sciences, 148, (1909), 716-719).

Yield: 84%, crystalline, brown substance;

CHN-analysis ($C_{16}H_{10}N_2O_2$), MG = 262.26 g/mol;

calc.: 73.3% C, 3.8% H, 10,7% N;

10 found: 73.0% C, 3.8% H, 10.9% N;

Mass spectrum: $m/z = 262 (M^+, 100\%), 234 (85\%), 220 (5\%), 205 (18\%), 190 (4\%), 177 (5\%), 151 (5\%), 132 (17\%), 103 (6\%), 76 (4\%), 32 (26\%).$

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

15

5

Example 11 (Indigo)

Chemical grade indigo was purchased by Fluka Chemie AG.

20

Example 12 (Indirubin-5-sulfonamide)

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Example 13 (Indirubin-5-sulfone(2-hydroxyethyl)amide

25 ¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

10

25

Example 14 (Bis(3-phenylindol-2-yl))

To a cooled solution of 2-aminobenzophenone in dichloromethane and pyridine under inert gas, a solution of oxalyl chloride in dichloromethane is dropped. After completion of the reaction, 0.5 n hydrochloric acid is added, the formed precipitate is filtrated off and washed subsequently

with 0.5 n hydrochloric acid, a solution of sodium hydrogencarbonate and water. The obtained product (N,N'-bis(2-benzoylphenyl)-oxamide), zinc dust and titanium(III)chloride are suspended in dimethoxyethane and heated to reflux. After heating for 3 h, the mixture is cooled to ambient temperature and the precipitate is filtrated off and washed with ethyl acetate. The crude product is purified using column chromatography (silica gel), then dissolved in ethyl acetate and precipitated in form of white crystals by adding petrol ether.

15 CHN-analysis $(C_{28}H_{20}N_2)$, MG = 384.48 g/mol;

calc.: 87.5%C, 5.2% H, 7.3% N;

found: 87.3% C, 5.3% H, 7.3% N;

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

20 Comparative Example 1 (Indirubin-5-sulfonic acid)

Yield: 76%, crystalline, deep-purple substance;

Mass spectrum: 388 (M⁺, 100%), 360 (3%), 269 (9%), 261 (6%), 233 (16%), 205 (16%), 128 (1%).

¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Comparative Example 2 (Indirubin-3'-oxime-5-sulfonic acid)

Yield: 76%, crystalline, deep-purple substance;

Mass spectrum: 388 (M⁺, 100%), 360 (3%), 269 (9%), 261 (6%), 233 (16%), 205 (16%), 128 (1%).

30 ¹H-NMR- and ¹³C-NMR-spectrum are in accordance with the proposed structure.

Table 2 summarizes the structures of the indirubin compounds of Examples 1 to 9 and Comparative Examples 1 and 2.

Table 1

Example	compound	R¹	Х
1	Indirubin	Н	0
2	5-lodoindirubin	l	0
3	5-Bromoindirubin	Br	0
4	5-Chloroindirubin	CI	0
5	5-Fluoroindirubin	F	0
6	5-Methylindirubin	CH ₃	0
7	5-Nitroindirubin	NO ₂	0
8	Indirubin-3'-oxime	Н	NOH
9	5-lodoindirubine-3'-oxime		NOH
10	Isoindigo		
11	Indigo		
12	Indirubin-5-sulfonamide	SO ₂ -NH ₂	0
13	Indirubin-5-sulfone(2-hydroxyethyl)amide	SO ₂ -NH-CH ₂ CH ₂ OH	0
14	Bis(3-phenylindol-2-yl)		
Comparative Examples			
1	Indirubin-5-sulfonic acid	SO₃H	0
2	Indirubin-3'-oxime-5-sulfonic acid	SO₃H	NOH

2. Cellular uptake into LXFL 529L cells

The compounds of Examples 1, 6 and 8 and Comparative Examples 1 and 2 were investigated with respect to their ability to penetrate LXFL 529L cells having the passage numbers P23 to P39. The results are shown in Table 2. The amounts of the substances taken up by the cells are given depending on the concentration of the substance within the incubation medium. The time of incubation was 2 hours in all of the experiments. Furthermore, the distribution of the substance which was taken up by the cells in the cytosol and the cellular organelles (particular) was estimated and is given in the intermediate column of Table 2. Tumor cell growth inhibition was determined by the sulfo-rhodamine B assay (SRB assay) according to Skehan et al., *J. Natl. Cancer Institute* 82, pages

10

15

20

25

30

1107 - 1112 (1990). Incubation was conducted for three days in serum containing medium. Tumor cell lines tested were a large-cell lung carcinoma xenograft line LXFL 529 L and the mammary carcinoma line MCF-7. Results are given as IC_{50} [μ M] corresponding to the concentration of compounds inducing 50 % growth inhibition, compared to vehicle treated control.

Table 2

substance	concentra- tion of incubation	amount of substance within the cells	distribution	distribution [%]		Tumor cell growth inhibition (SRB-assay) IC ₅₀ [µM]	
	[µM]	[µm/mg protein]	cytosol	cellular organelles	LXFL529L	MCF7	
Example 1	10	0.15±0.08	7±5.7	93±5.7	9.9±0.1	4.0 ± 2.0	
	20	0.20±0.08	6±1.4	94±1.4			
Example 6	10	0.52±0.1	13±0.7	87±0.7	7.5 ± 0.5	4.8 ± 0.5	
	20	0.86±0.22	6±2.8	94±2.8			
Example 8	10	0.16±0.01	43±14.1	57±14.1	3.0±0.5	3.3±0.4	
	20	0.23±0.03	44±15.6	56±15.6	,		
Comparative	10	< 0.02	-	-	> 100	> 100	
Example 1	20	< 0.02	-	-			
Comparative	10	< 0.05	-	-	> 100	> 100	
Example 2	20	< 0.05	-	-			

The compounds according to the Examples 1, 6 and 8 were all taken up by the tumor cells. The ability of the compound according to Example 6 to penetrate the cellular membrane is substantially improved compared to that of the parent compound indirubin (Example 1). The uptake of the compound according to Example 8 is also slightly improved compared to the non-substituted indirubin (Example 1).

The compounds of Comparative Examples 1 and 2 were essentially not taken up by the cells although these compound are well soluble in physiological solutions. Obviously, the sulfonate group hinders the penetration through the cellular membrane. Furthermore, referring to Comparative Example 2, this detrimental

WO 00/61124

13

PCT/EP00/03210

effect cannot be compensated by the introduction of an oxime group.

3. Evaluation of the anti-tumor activity

The anti-tumor activity of the compounds was evaluated via a colony-forming-assay as described e.g. by D. P. Berger et al. in *Annals of Oncology* 1, pages 333-341 (1990), "The clonongenic assay with human tumor xenografts, evaluation, predictive values and application for drug screening".

The experiments were conducted using various tumor cell lines, in particular mammary carcinoma (MAXF), lung adenocarcinoma (LXFA), large-cell lung carcinoma (LXFL), small-cell lung carcinoma (LXFS), colon carcinoma (CXF), melanoma (MEXF), pancreatic carcinoma (PAXF), renal carcinoma (RXF), ovarian carcinoma (OVXF) and bladder carcinoma (BXF).

15

20

The IC₇₀-values and IC₅₀-values, respectively, define the concentration of a pharmaceutically active compound causing 70 % and 50 %, respectively, reduction of colony formation compared to the untreated control. Therefore, IC₇₀- and IC₅₀-values serve to demonstrate the anti-tumor activity of a pharmaceutically active compound wherein low IC₇₀- and/or IC₅₀-values demonstrate a superior anti-tumor activity. According to the present invention, the IC₇₀-value preferably is 20 μ M or lower, more preferably 10 μ M or lower.

25

Table 3 shows the anti-tumor activity of the compounds according to the Examples and Comparative Example 1. The compounds according to the inventive Examples show good to excellent anti-tumor activity against various types of tumor cell lines. The compound according to Comparative Example 1 does not exhibit an anti-tumor activity against any of the tumor lines. This behaviour is in accordance with the lacking ability of this substance to penetrate cellular membranes as demonstrated in Table 2, above.

30

Surprisingly, small variations in the substitution pattern result in remarkable changes in the anti-tumor activity profile. However, almost all compounds

14

according to the Examples exhibit good anti-tumor activity against mammary carcinoma.

Table 3

Example	ICso	15,0	tumor xenograft	nograft
	[M//]	[MI]	type	xenograft
1 (indirubin)	25.3 2.0 12.3 5.4	35.6 6.0 > 30 > 30	lung large-cell mammary ovarian pancreatic	LXFL529 MCF7X OVXF1353 PAXF736
2 (5-iodo-indirubin)	6.3 8.0 13.7 <1.0	>30 23 24.5 2.5 >30	colon lung adeno carcinoma lung small-cell mammary	HT29X LXFA526 LXFS650 MCF7X PAXF546
3 (5-bromo-indirubin)	<1.0 2.3 <1.0 3.4 13.2	17.3 14.4 <1.0 8.0 >30	colon lung adenocarcinoma mammary melanoma pancreatic	HT29X LXFA526 MCF7X MEXF514 HT29X
04 (5-chloro-indirubin)	<1.0 17.1 3.2 11.2 4,6 <1	<1.0 26.0 8.0 24.7 >30 17.3	mammary melanoma pancreatic renal pancreatic	MCF7X MEXF514 PAXF736 1220 PAXF546 HT29X
5 (5-fluoro-indirubin)	<1.0 <1.0 <1.0	<1.0 6.1 1.1	mammary ovarian pancreatic	MCF7X OVXF1353 PAXF736
6 (5-methyl-indirubin)	<1.0 <1.0 19.2 15.4 1.0	14.4 1.2 27.8 27.5 >30	colon mammary melanoma pancreatic ovarian	HT29X MCF7X MEXF514 PAXF736 OVXF1352

Table 3 (continued)

		ומחום כן (כסוותוותכת)		
Example	IC ₆₀	IC ₇₀	tumor xenograft	enograft
	[W//]	[<i>Md</i>]	type	xenograft
7 (5-nitro-indirubin)	< 1.0 4.9	15.1 >10.0	mammary melanoma	MCF7X MEXF514
8 (indirubin-3'-oxime)	10.6 8.0 0.9 7.7 1.0 2.8	16.1 12.6 3.4 9.2 2.6 5.7	bladder colon lung adenocarcinoma mammary melanoma	BXF1301 CXF280 LXFA289 MX1 MEXF989 MEXF989
9 (5-iodo-3'-oxime-indirubin)	4.0 10.7 0.05 2.4 2.6	5.8 16.3 0.7 10.4 4.9	bladder colon lung adenocarcinoma mammary melanoma	BXF1301 CXF280 LXFA289 MCF7X MEXF515LX
10 (isoindigo)	6.0 2.6 2.6 6.1.0 6.1.0 6.1.0 6.1.0 6.1.0 6.1.0	8.2 < 1.0 4.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	bladder colon lung large-cell lung small cell mammary mammary melanoma ovarian pancreatic colon	BXF1301 CXF280 LXFL529 LXFS650 MX1 MCF7X MEXF989 OVXF1355 PAXF546 PAXF736 HT29X

Table 3 (continued)

Example	IC ₅₀	IC ₇₀	tumor xenograft	snograft
	[M/I]	[M//]	туре	xenograft
11 (indigo)	3.5	26.1 12.3 16.7	colon Iung adenocarcinoma ovarian	HT29X LXFA289 OVXF1353
13 (5-SO ₂ -NH-CH ₂ -CH ₂ -OH-indirubin) 14 (Bis(3-phenylindol-2-yl))	12.0 1.1 3.4 0.6 <0.1 0.3 2.7 <1.0 1.5 4.7	17.3 2.6 5.9 2.1 0.4 0.4 7.2 3.4 6.7 4.8	colon lung adenocarcinoma lung large-cell mammary melanoma ovarian bladder colon colon lung small-cell	CXF280 LXFA289 LXFL529 MCF7X MEXF515LX OVXF899 CXF280 HT29X LXFS650 MX1
Comp. 1	>30.0	>30.0	(all)	

10

15

20

25

4. In vivo experiments

Compounds of Examples 1, 4, 6, 8, 9 and 10 were subjected to *in vivo* testing in nude mice bearing subcutaneously growing human tumor xenograft LXFL 529. The indigoid bisindole derivatives were applied intraperitoneally to the animals in doses and according to the schedule as described in Table 4.

Table 4

	doses [mg/kg/day]	schedule of application [day(s)]	activity rating	Graph shown in Figure
Ex. 1	100 200	1-5,8-9 1-5,8-9	+ + +	Fig. 1 and 2 Fig. 1 and 2
Ex. 4	100 300	1-5 1-5	++++	Fig. 1 and 2 Fig. 1 and 2
Ex. 6	100 300	1-5,8-12,15,17,19,22 1,4,8,11,15,18,22	++++	Fig. 1 and 2 Fig. 3 and 4
Ex. 8	100 300	1,4,8,11,15,18,22 1,4,8,11,15,18,22	-	Fig. 3 and 4 Fig. 3 and 4
Ex. 9	100 300	1,4,8,11,15,18,22 1,4,8,11,15,18,22	+	Fig. 3 and 4 Fig. 3 and 4
Ex. 10	30 100 300	1-5 1-5 1-5	 - +	Fig. 5 and 6 Fig. 5 and 6 Fig. 5 and 6
Ex. 14	10 100 300	1-5, 8-12 1-5, 8-12 1-5, 8-12	- + +	Fig. 7 and 8 Fig. 7 and 8 Fig. 7 and 8

The experiments were run for 21 or 28 days. Anti-tumor activity was evaluated comparing the median tumor volume relative to control, expressed as %T/C, wherein T is the test group and C the vehicle control group. In Table 4, anti-tumor activity is given according to an activity rate scale.

Activity rating:

- inactive T/C > 50 %

+ tumor inhibition T/C > 25 - 50 %

+ + tumor stasis $T/C \le 25 \%$

The results are further demonstrated by Figures 1 to 8.

19

A reduction of the body weight of the tested mice of more then 20 % by weight in general is interpreted as a toxic dose.

Claims

10

1. Use of cell membrane penetrating indigoid bisindole derivatives for the manufacture of a medicament for the treatment of human solid tumors and metastasis thereof wherein the indigoid derivatives are selected from indigo, bis(3-phenylindol-2-yl), isoindigo and indirubin derivatives the latter being represented by the following formula (I):

15

20

wherein, when X represents an oxygen atom, R¹ represents a hydrogen atom, a halogen atom, a -NO₂ group, a methyl group, a sulfonamide group or SO₂-NH-CH₂CH₂-OH; and wherein, when X represents NOH, R¹ represents a hydrogen atom or an iodine atom.

25

 Use according to claim 1, wherein the solid tumors are selected from mammary carcinoma, melanoma, large-cell lung carcinoma, small-cell lung carcinoma, lung adenocarcinoma, colon carcinoma, bladder carcinoma, ovarian carcinoma, pancreatic carcinoma, renal carcinoma and prostatic carcinoma.

30

 Use according to claim 1 or 2, wherein the indigoid bisindole derivative is in the form of a physiologically acceptable salt.

