1 Basic Properties

- 1. $E(X) = \sum xp(x)$
- 2. $Var(X) = \sum (x \mu)^2 f(x)$
- 3. X is around E(X), give or take SD(X)

 $\tilde{E}(\chi_n^2) = n, Var(\chi_n^2) = 2n$

 $f(t) = \frac{\Gamma([(n+1)/2])}{\sqrt{n}\pi\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$

1. t is symmetric about 0

3.6 F-distribution

(1,n) d.f, with $w \geq 0$:

For n > 2, $E(W) = \frac{n}{n-2}$

Let $X_1, X_2, ..., X_n$ be IID $\mathcal{N}(\mu, \sigma^2)$.

sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

4.2 Simple Random Sampling (SRS)

Assume n random draws are made without re-

• For $i \neq j$, $Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$: Lemma B

Let $X_1, X_2, ..., X_n$ be random draws with re-

placement. Then \overline{X} is an estimator of μ . and

sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

4.1 Properties of \overline{X} and S^2

4.2.1 Summary of Lemmas

 $\bullet P(X_i = \xi_i) = \frac{n_j}{N}$: Lemma A

4.2.2 Estimation Problem

1. \overline{X} and S^2 are independent

2. $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

3. $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$

4. $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$

later).

2. $t_n \xrightarrow{\infty} \mathcal{Z}$

Let $\mathcal{Z} \sim \mathcal{N}(0,1)$, $\mathcal{U}_n \sim \chi_n^2$ be independent,

 $t_n = \frac{\mathcal{Z}}{\sqrt{U_n/n}}$ has a t-distribution with n d.f.

 $\frac{U/m}{V/n}$ has an F distribution with (m,n) d.f.

If $X \sim t_n$, $X^2 = \frac{Z/1}{U_n/n}$ is an F distribution with

 $f(w) = \frac{\Gamma([(n+1)/2])}{\Gamma(m/2)\Gamma(n/2)} \frac{m}{n} \frac{m}{2} w^{\frac{m}{2} - 1} \left(1 + \frac{m}{n} w\right)^{-\frac{m+n}{2}}$

 $M(t) = (1-2t)^{-\frac{n}{2}}$

3.5 t-distribution

- 4. E(aX + bY) = aE(X) + bE(Y)
- 5. $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$
- 6. $Var(X) = E(X^2) [E(X)]^2$
- 7. $Cov(X_1, X_2) = E(X_1X_2) E(X_1)E(X_2)$
- 8. if X, Y are independent:
- - (a) $M_{X+Y}(t) = M_X(t)M_Y(t)$
 - (b) E(XY) = E(X)E(Y), converse is true if X and Y are bivariate normal, extends to multivariate normal

2 Approximations

2.1 Law of Large Numbers

Let $X_1, X_2, ..., X_n$ be IID, with expectation μ and variance σ^2 . $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\infty} \mu$. Let $x_1, x_2, ..., x_n$ be realisations of the random variable $X_1, X_2, ..., X_n$, then $\overline{x_n} = \frac{1}{n} \sum_{i=1}^n x_i \xrightarrow{\infty}$

2.2 Central Limit Theorem

Let $S_n = \sum_{i=1}^n X_i$ where $X_1, X_2, ..., X_n$ IID. 4 Sampling $\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{\infty} \mathcal{N}(0,1)$

3 Distributions

3.1 Poisson(λ)

 $Pr(X = k) = \frac{\lambda^{k} e^{-\lambda}}{k!}, k = 0, 1, ...$ $E(X) = Var(X) = \lambda$

3.2 Normal $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty$$

- 1. When $\mu = 0$, f(x) is an even function, and $E(X^k) = 0$ where k is odd
- 2. $Y = \frac{X E(X)}{SD(X)}$ is the standard normal

3.3 Gamma Γ

$$g(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\lambda t}, t \ge 0$$
$$\mu_1 = \frac{\alpha}{\lambda}, \mu_2 = \frac{\alpha(\alpha + 1)}{\lambda^2}$$

3.4 χ^2 Distribution

Let $\mathcal{Z} \sim \mathcal{N}(0,1)$, $\mathcal{U} = \mathcal{Z}^2$ has a χ^2 distribution with 1 d.f.

$$f_{\mathcal{U}}(u) = \frac{1}{\sqrt{2\pi}} u^{-\frac{1}{2}} e^{-\frac{u}{2}}, u \ge 0$$
$$\chi_1^2 \sim \Gamma(\alpha = \frac{1}{2}, \lambda = \frac{1}{2})$$

Let $U_1, U_2, ..., U_n$ be χ_1^2 IID, then $V = \sum_{i=1}^n U_i | \mathbf{4.2.3}$ Standard Error (SE)

is χ_n^2 with n degree freedom, $V \sim \Gamma(\alpha = \frac{n}{2}, \lambda = | \text{SE of an } \overline{X} \text{ is defined to be } SD(\overline{X}).$

$\begin{array}{c} \text{param} \\ \mu \end{array}$	$\frac{\text{est}}{X}$	$\frac{\sigma}{\sqrt{n}}$	Est. SE $\frac{s}{\sqrt{n}}$
p	\hat{p}	$\sqrt[n]{\frac{p(1-p)}{n}}$	$\sqrt[n]{\frac{\hat{p}(1-\hat{p})}{n-1}}$

4.2.4 Without Replacement

SE is multiplied by $\frac{N-n}{N-1}$, because s^2 is biased large.

4.2.5 Confidence Interval

Let $U \sim \chi_m^2, V \sim \chi_n^2$ be independent, W = An approximate $1 - \alpha$ CI for μ is $\left| (\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}) \right|$

4.3 Biased Measurements

Let $X = \mu + \epsilon$, where $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$ Suppose X is used to measure an unknown cor stant a, $a \neq \mu$. $X = a + (\mu - a) + \epsilon$, where μ is the bias.

 $|\sigma^2 + (\mu - a)^2|$ with n IID measurements, $\overline{x} = \mu + \overline{\epsilon}$ $E((x-a)^2) = \frac{\sigma^2}{n} + (\mu - a)^2$

 $MSE = SE^2 + bias^2$, hence \sqrt{MSE} is a good 6 measure of the accuracy of the estimate \overline{x} of a.

4.4 Estimation of a Ratio

Consider a population of N members and two characteristics are recorded $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n), r = \frac{\mu_y}{\mu_x}$

An obvious estimator of r is $R = \frac{Y}{Y}$ $Cov(\overline{X}, \overline{Y}) = \frac{\sigma_{xy}}{n}$, where

placement. (Not SRS, will be corrected for $\sigma_{xy} := \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(x_i - \mu_y)$ is the population covariance

4.4.1 Properties

 $Var(R) \approx \frac{1}{\mu_{x}^{2}} \left(r^{2} \sigma_{\overline{X}}^{2} + \sigma_{\overline{Y}}^{2} - 2r \sigma_{\overline{XY}} \right)$ Population coefficient $\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$ $E(R) \approx r + \frac{1}{n} \left(\frac{N-n}{N-1} \right) \frac{1}{\mu^2} \left(r \sigma_x^2 - \rho \sigma_x \sigma_y \right)$ the observed value of \overline{X} , \overline{x} is an estimate of μ . $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})$

4.4.2 Ratio Estimates

 $|\overline{Y}_R = \frac{\mu_x}{\overline{Y}}\overline{Y} = \mu_x R$

 $E(\overline{Y}_R) - \mu_y \approx \frac{1}{n} \frac{N-n}{N-1} \frac{1}{\mu_x} \left(r \sigma_x^2 - \rho \sigma_x \sigma_y \right)$ The bias is of order $\frac{1}{n}$, small compared to its standard error.

 $Var(\overline{Y}_R) \approx \frac{1}{n} \frac{N-n}{N-1} (r^2 \sigma_x^2 + \sigma_y^2 - 2r \rho \sigma_x \sigma_y)$

 \overline{Y}_R is better than \overline{Y} , having smaller variance, when $\rho > \frac{1}{2} \left(\frac{C_x}{C_{ii}} \right)$, where $C_i = \sigma_i / \mu_i$

Variance of \overline{Y}_R can be estimated by $s_{\overline{Y}_{R}}^{2} = \frac{1}{n} \frac{N-n}{N-1} \left(R^{2} s_{x}^{2} + s_{y}^{2} - 2R s_{xy} \right)$ for σ^2 : $E(\frac{N-1}{N}s^2) = \overline{\sigma^2}$, but N is normally An approximate $1 - \alpha$ C.I. for μ_y is $\overline{Y}_R \pm \overline{Y}_R$ $z_{\alpha/2} s_{\overline{Y}_{P}}$

Method of Moments

To estimate θ , express it as a function of moments $g(\hat{\mu}_1, \hat{\mu}_2, ...)$

5.1 Monte Carlo

Monte Carlo is used to generate many realisations of random variable.

 $\overline{X} \xrightarrow[n]{\infty} \alpha/\lambda, \hat{\sigma}^2 \xrightarrow[n]{\infty} \alpha/\lambda^2$, MOM estimators are consistent (asymptotically unbiased).

Mean square error (MSE) is $E((X-a)^2) = |\operatorname{Poisson}(\lambda)|$: bias $= 0, SE \approx \sqrt{\frac{\overline{x}}{n}}$ $N(\mu, \sigma^2)$: $\mu = \mu_1, \ \sigma^2 = \mu_2 - \mu_1^2$ $\Gamma(\lambda,\alpha): \hat{\lambda} = \frac{\hat{\mu}_1}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{X}}{\hat{\sigma}^2}, \hat{\alpha} = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{X}^2}{\hat{\sigma}^2}$

Maximum Likelihood Estimator (MLE)

6.1 Poisson Case

 $L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda \sum_{i=1}^{n} x_i e^{-n\lambda}}{\prod_{i=1}^{n} x_i!}$ $l(\lambda) = \sum_{i=1}^{n} x_i \log \lambda - n\lambda - \sum_{i=1}^{n} \log x_i!$ ML estimate of λ_0 is \overline{x} . ML estimator is $\hat{\lambda}_0 = \overline{X}$

6.2 Normal case

 $l(\mu, \sigma) = -n \log \sigma - \frac{n \log 2\pi}{2} - \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{2\sigma^2}$ $\frac{\partial l}{\partial \mu} = \frac{\sum (X_i - \mu)}{\sigma^2} \implies \hat{\mu} = \overline{x}$ $\begin{vmatrix} \frac{\partial \mu}{\partial \sigma} & \frac{\sigma^{2}}{\sigma^{3}} \\ \frac{\partial \sigma}{\partial \sigma} & = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma^{3}} - \frac{n}{\sigma} \\ \Rightarrow \hat{\sigma^{2}} & = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \end{vmatrix}$

6.3 Gamma case

 $l(\theta) = n\alpha \log \lambda + (\alpha - 1) \sum_{i=1}^{n} \log X_i \lambda \sum_{i=1}^{n} X_i - n \log \Gamma(\alpha)$ $\frac{\partial l}{\partial \alpha} = n \log \alpha + \sum_{i=1}^{n} \log X_i - \sum_{i=1}^{n} X_i - \sum_{i=1}^{$

$$\frac{\partial l}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} X_i$$
$$\hat{\lambda} = \frac{\hat{\alpha}}{\hat{x}}$$

6.4 Multinomial Case

$$f(x_1, ..., x_r) = \binom{n}{x_1, x_2, ... x_r} \prod_{i=1}^n p_i^{X_i}$$
 where X_i is the number of times the value occurs, and not the number of trials. and $x_1, x_2, ... x_r$ are non-negative integers summing to n . $\forall i$:
$$E(X_i) = np_i, Var(X_i) = np_i(1 - p_i)$$

$$Cov(X_i, X_j) = -np_i p_j, \forall i \neq j$$

$$l(p) = + \sum_{i=1}^{r-1} x_i \log p_i + x_r \log(1 - p_1 - \dots - p_{r-1})$$

$$\frac{\partial l}{\partial p_i} = \frac{x_i}{p_i} - \frac{x_r}{p_r} = 0 \text{ assuming MLE exists}$$

$$\frac{x_i^i}{\hat{p}_i} = \frac{x_r}{\hat{p}_r} \Longrightarrow \hat{p}_i = \frac{x_i}{c}, c = \frac{x_r}{\hat{p}_r}$$

$$\sum_{i=1}^r \hat{p}_i = \sum_{i=1}^r \frac{x_i}{c} = 1$$

$$\Longrightarrow c = \sum_{i=1}^r x_i = n \Longrightarrow \hat{p}_i = \frac{\overline{x}_i}{n}$$
same as MOM estimator.

6.5 CIs in MLE

$\frac{\hat{X}-\mu}{s/\sqrt{n}} \sim$	t_{n-1}						
Given	the	realisations	\overline{x}	and	s,	\overline{x}	\pm
$t_{n-1,\alpha/2}$	$2\frac{s}{\sqrt{n}}, \overline{s}$	$\overline{x} + t_{n-1,\alpha/2}$	$\frac{s}{\sqrt{n}}$ is	the e	xact	1 –	α
CI for		v					
$\frac{n\hat{\sigma}^2}{2}$ \sim	ν ,	$n\hat{\sigma}^2$	$n\hat{\sigma}^2$	— is	the	exa	act

$\chi_{n-1}^{2}, \chi_{n-1,\alpha/2}^{2}, \chi_{n-1,1-\alpha/2}^{2}$ $1 - \alpha$ CI for σ .

7 Fisher Information

$$I(\theta) = -E\left(\frac{\partial}{\partial \theta^2} \log f(x|\theta)\right)$$

Distribution	MLE	Variance
$Po(\lambda)$	X	λ
Be(p)	X	p(1-p)
Bin(n,p)	$\frac{X}{n}$	$\frac{p(1-p)}{n}$
HWE tri	$\frac{n}{X_2+2X_3}$	$\frac{\theta(1-\theta)}{\theta(1-\theta)}$

General trinomial: $\left(\frac{X_1}{n}, \frac{X_2}{n}\right)$

$$\begin{bmatrix} p_1(1-p_1) & -p_1p_2 \\ -p_1p_2 & p_2(1-p_2) \end{bmatrix} \frac{1}{n}$$

In all the above cases, $var(\hat{\theta}) = I(\theta)^{-1}$.

8 Asymptotic Normality of MLE

As $n \to \infty$, $\sqrt{nI(\theta)}(\hat{\theta} - \theta) \to N(0,1)$ in distri bution, and hence $\hat{\theta} \sim N\left(\theta, \frac{I(\theta)^{-1}}{n}\right)$

As $\hat{\theta} \xrightarrow{\infty} \theta$, MLE is consistent.

SE of an estimate of θ is the SD of the estimator $\hat{\theta}$, hence $SE = SD(\hat{\theta}) = \sqrt{\frac{I(\theta)^{-1}}{n}} \approx \sqrt{\frac{I(\hat{\theta})^{-1}}{n}}$ $1 - \alpha \text{ CI } \approx \hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{I(\theta)^{-1}}{n}}$

Efficiency

 $\forall \theta \in \Theta$, $var(\hat{\theta}) \geq I(\hat{\theta})^{-1}/n$, if = then $\hat{\theta}$ is known variance, approx. in others. efficient.

efficient.
$$eff(\hat{\theta}) = \frac{I(\hat{\theta})^{-1}/n}{var(\hat{\theta})} < 1$$

Sufficiency

10.1 Characterisation

values of T.

T is sufficient for θ if $\exists q()$ s.t. $\forall x \in H_0$. $S_t, f_{\theta}(X|T=t) = q(x).$

10.2 Factorisation Theorem

T is sufficient for θ iff $\exists g(t,\theta), h(x)$ s.t. $\forall \theta \in$ $\Theta, f_{\theta}(x) = g(T(x), \theta)h(x) \forall x$

10.3 Rao-Blackwell Theorem

Let $\hat{\theta}$ be an estimator of θ with finite variance, The sufficient for θ . Let $\tilde{\theta} = E[\hat{\theta}|T]$. Then for where $k = \dim(\Omega) - \dim(\omega_0)$. every $\theta \in \Theta$, $E(\hat{\theta} - \theta)^2 \le E(\hat{\theta} - \theta)^2$. Equal- Normal (C): $p = P(\chi_1^2 > \frac{(\bar{x} - \mu_0)^2}{\sigma^2/n})$ ity holds iff $\hat{\theta}$ is a function of T.

10.4 Random Conditional Expectation

- 1. E(X) = E(E(X|T))
- 2. var(X) = var(E(X|T)) + E(var(X|T))
- $|3. var(Y|X) = E(Y^2|X) E(Y|X)^2$
- 4. E(Y) = Y, var(Y) = 0 iff Y is a constant

11 Hypothesis Testing

the distibution of the data.

Let $X_1...X_n$ be IID with density $f(x|\theta)$. null $H_0: \theta = \theta_0, H - 1: \theta = \theta_1$. Critical region is R_n . $size = P_0(X \in R)$ and $power = P_1(X \in R)$ R). $\Lambda(x) = \frac{f_0(x_1)...f_0(x_n)}{f_1(x_1)...f_1(x_n)}$ Critical region $x: \Lambda(x) < c_{\alpha}$, and among all tests with this size, it has the maximum power (Neyman-Pearson Lemma).

the power is a function of μ , and this is uniformly the most powerful test for size $\leq \alpha$. $|H_1: \mu \neq \mu_0$: Critical region $\{|\bar{x} - \mu_0| > c\}, c =$ $z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$, but not uniformly most powerful.

 $H_1: \mu > \mu_0$: Critical region $\{\bar{x} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}\}$

The $(1 - \alpha)$ CI for μ consists of precisely the values μ_0 for which $H_0: \mu = \mu_0$ is not rejected Cramer-Rao Inequality: if θ is unbiased, then against $H_1: \mu \neq \mu_0$. Exact for normal with

11.1 p-value

the probability under H_0 that the test statis tic is more extreme than the realisation. (A B): $p = p_0(\bar{X} > \bar{x}) = P(Z > \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}})$. (C) Let $S_t = x : T(x) = t$. The sample space of $X, |p = P_0(|\bar{X} - \mu_0| > |\bar{x} - \mu_0|)$. The smaller the p- $|\mathbf{13.1.3}|$ CI S is the disjoint union of S_t across all possible value, the more suspicious one should be about H_0 . If size is smaller than p-value, do not reject

Generalized Likelihood Ratio

 $\frac{\max_{\theta \in \omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$, $\Omega = \omega_0 \cup \omega_1$. The closer Λ is $Z := \frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\int_{\sigma_{-\infty}^2 - \sigma_{-\infty}^2} d\sigma_{-\infty}^2}$ to 0, the stronger the evidence for H_1 .

12.1 Large-sample null distribution of Λ Under H_0 , when n is large, $-2 \log \Lambda = \chi_k^2$

Multinomial:
$$\Lambda = \prod_{i=1}^{r} \left(\frac{E_i}{X_i}\right)^{\Lambda_i}$$
 where $E_i = np_i(\hat{\theta})$ is the expected frequency of the ith event under H_0 . $-2\log\Lambda \approx \sum_{i=1}^{r} \frac{(X_i - E_i)^2}{E_i}$, which is the Pearson chi-square statistic, written as X^2 .

12.2 Poisson Dispersion Test

For i = 1...n let $X_i \sim Poisson(\lambda_i)$ are inde pendent.

$$w_0 = {\tilde{\lambda} | \lambda_1 = \lambda_2 = \dots = \lambda_n}$$

$$w_1 = {\tilde{\lambda} | \lambda_i \neq \lambda_i \text{ for some } i, j}$$

 $-2\log\Lambda \approx rac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\bar{X}}$. For large n, the nul distribution of $-2\log\Lambda$ is approximately χ_{n-1}^2

13 Comparing 2 samples

13.1 Normal Theory: Same Variance

A hypothesis is simple if it completely specifies $X_1,...,X_n$ be i.i.d $N(\mu_X,\sigma^2)$ and $Y_1,...,Y_m$ be i.i.d $N(\mu_Y, \sigma^2)$, independent. $H_0: \mu_X - \mu_Y = d$

, 13.1.1 Known Variance

 $Z := \frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sigma \sqrt{1 + 1}}$ and reject H_0 when |Z| > 1

13.1.2 Unknown Variance

 $s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{m+n-2}$ where $\$s_X^2 = 1 \frac{1}{n-1\sum_{i=1}^n} (X_{i-1})^2$. s_p^2 is an unbiased estimator of σ^2 . s_X within factor of 2 from s_Y . $t := \frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$ follows a t distribution with

If two-sided: reject H_0 when $|t| > t_{n+m-2,\alpha/2}$. If one-sided, e.g $H_1: \mu_X > \mu_Y$, reject H_0 when $|t>t_{n+m-2,\alpha}.$

 $\frac{\bar{X}-\bar{Y}}{\pm}z_{\alpha/2} \cdot \sigma\sqrt{\frac{1}{n}+\frac{1}{m}}$ if σ is known, or $\frac{\bar{X}-\bar{Y}}{+}t_{m+n-2,\alpha/2}\cdot s_p\sqrt{\frac{1}{n}+\frac{1}{m}}$ if σ is unknown.

13.1.4 Unequal Variance

$$t := \frac{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}, \text{ with } df = \frac{(a+b)^2}{\frac{a^2}{n-1} + \frac{b^2}{m-1}} \text{ where } df = \frac{s_X^2}{n} \text{ and } b = \frac{s_X^2}{n}$$

13.2 Mann-Whitney Test

We take the smaller sample of size n_1 , and sum the ranks in that sample. $R' = n_1(m+n+1)$ R, and R* = min(R', R), we reject $H_0: F = G$ if R* is too small. Test works for all distributions, and is robust to outliers.

13.3 Paired Samples

 (X_i, Y_i) are paired and related to the same individual. (X_i, Y_i) is independent from (X_i, Y_i) . Compute $D_i = Y_i - X_i$, To test $H_0: \mu_D = d$, $1 - \alpha \text{ CI: } D \pm t_{n-1,\alpha/2} S_D / \sqrt{n}$

13.4 Ranked Test

 W_{+} is the sum of ranks among all positive D_i and W_i is the sum of ranks among all negative D_i . We want to reject H_0 if W = $min(W_+, W_-)$ is too large.