03 – Modelo Relacional (MR)

Baseado nos slides dos professores Paulo Trigo e Porfírio Filipe Todas as alterações são da responsabilidade do professor António Teófilo

Modelo Relacional

- Introduzido por Codd em 1970.
- Tem um sólido fundamento teórico.
- Baseia-se na utilização de conceitos abstractos tais como a noção matemática de Relação.
- Representa a informação como uma colecção de Relações e Restrições sobre essas Relações.
- Define operações para manipulação das Relações.
- Deste modo a estrutura de conceitos adquire um nível de abstracção suficientemente distante do nível físico permitindo:
 - Atinge um elevado nível de Independência Física.

Elementos da Estrutura de Dados

- Os elementos principais da estrutura de dados da abordagem Relacional são os de:
 - Esquema de Relação
 - Relação
 - Atributo
 - Domínio
- Para exemplificar a apresentação destes conceitos, considere-se a seguinte informação sobre cada "Empregado" (representada em forma de uma tabela):

EMPREGADO

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	3
35561	João Lopes	Armazém	5
27734	Pedro Nunes	Publicidade	1

BD - 03

3

Domínio

- Um atributo descreve uma característica e contém um valor.
 Esse valor deve ser atómico ou seja singular, e ter um domínio.
- Designa-se por Domínio um conjunto de valores "atómicos".
- Por "atómico" entende-se que cada valor do Domínio é indivisível (na perspectiva do Modelo Relacional).
- Exemplos de Domínios:
 - conjunto de 5 dígitos, para os números de empregado
 - conjunto dos cadeias até 120 caracteres, com os nomes de todos os empregados
 - conjunto dos nomes de todos os departamentos
 - categorias dos empregados valores entre 1 e 5 (inclusive)

Esquema de Relação e Atributo

- Um Esquema de Relação R (A₁, A₂, ..., A_n) é constituído pelo:
 - nome do Esquema de Relação: R
 - uma lista ordenada de Atributos: A₁, A₂, ..., A_n
- Cada Atributo A_i é:
 - o nome do papel representado por um determinado Domínio no Esquema de Relação R.
- Exemplo:
 - EMPREGADO (numero, nome, departamento, categoria) é um Esquema de Relação onde:
 - o nome do Esquema de Relação é: EMPREGADO
 - a lista de Atributos é: "numero", "nome", "departamento", "categoria"
- Um Esquema de Relação pode descrever uma Entidade, ou uma associação, do Modelo Entidade-Associação
- O Esquema de Relação é utilizado para "descrever" (ou representar) uma Relação

Relação

- Uma Relação r de um Esquema de Relação R (A₁, A₂, ..., A_n), é denotada por r(R) e consiste no:
 - **conjunto de tuplos** $r = \{t_1, t_2, ..., t_n\}$, onde
 - cada tuplo t_i é uma lista ordenada <v₁, v₂, ..., v_n>
 - onde, para cada v_i: 1 ≤ i ≤ n,
 - $v_i \in D_i$, (Domínio do Atributo i) ou $v_i = NULL$
- NULL representa a ausência de valor para determinado atributo em algum tuplo :
 - por não ser conhecido, ou
 - por realmente n\u00e3o existir
- A Relação r(EMPREGADO) consiste no conjunto:

```
{ <31445, António Silva, Contabilidade, 5>,
  <30442, Isabel Sousa, Armazém, 2>,
  <27710, Mário Gomes, Vendas, 3>,
  <35561, João Lopes, Armazém, 5>,
  <27734, Pedro Nunes, Publicidade, 1> }
```

Grau e Cardinalidade

- Designa-se por <u>Grau</u> o número de Atributos do <u>Esquema de</u> <u>Relação</u>
- Designa-se por <u>Cardinalidade</u> o número de tuplos da <u>Relação</u>
- O Esquema de Relação:
 - EMPREGADO (numero, nome, departamento, categoria)
 - tem Grau 4

A Relação:

```
r (EMPREGADO) =

{ <31445, António Silva, Contabilidade, 5>,
  <30442, Isabel Sousa, Armazém, 2>,
  <27710, Mário Gomes, Vendas, 3>,
  <35561, João Lopes, Armazém, 5>,
  <27734, Pedro Nunes, Publicidade, 1> }
```

tem Cardinalidade 5

BD - 03

7

Apresentação da Relação

- A Relação é geralmente apresentada como uma Tabela, onde:
 - cada tuplo corresponde a uma linha e
 - cada cabeçalho de coluna indica o papel dos valores nessa coluna

BD - 03

8

As Linhas da Tabela

- A ordem pela qual aparecem as Linhas (tuplos) na Tabela (Relação) não é importante
 - pode ser alterada sem que isso mude o significado da Relação
 - Porque o modelo relacional opera com conjuntos
- Exemplos da mesma Relação:

EMPREGADO

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	3
35561	João Lopes	Armazém	5
27734	Pedro Nunes	Publicidade	1

EMPREGADO

numero	nome	departamento	categoria
35561	João Lopes	Armazém	5
27710	Mário Gomes	Vendas	3
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	2
27734	Pedro Nunes	Publicidade	1

Esquema Relacional e Base de Dados

Esquema Relacional

 Conjunto de Esquemas de Relação que representam determinado sistema

Base de Dados

 Conjunto de Relações de determinado Esquema Relacional

Instância da Base de Dados

Base de Dados num determinado instante no tempo

Os "valores atómicos" dos Domínios

- Considere-se o Esquema de Relação:
 - DISCIPLINA_DO_ALUNO (numeroAluno, disciplina)
- Considerem-se as Relações,

DISCIPLINA_DO_ALUNO

Incorrecta:

numeroAluno	disciplina
1234567	Inglês, Português, Matemática
8901234	Química, Física, Matemática
5678901	Química, Desenho

DISCIPLINA_DO_ALUNO

Correcta:

numeroAluno	disciplina
1234567	Inglês
1234567	Português
1234567	Matemática
8901234	Química
8901234	Física
8901234	Matemática
5678901	Química
5678901	Desenho

Chave – chave candidata

- Uma chave (candidata) é um conjunto de atributos, de um esquema de relação, que permite a identificação unívoca dos seus tuplos. Esse conjunto deve ter o mínimo de atributos necessário.
 - Num Esquema de Relação pode existir vários conjuntos de atributos que permitem uma identificação unívoca (chave primária) dos seus tuplos
- Designa-se por Chave Candidata cada uma das possíveis Chaves de um Esquema de Relação.
- Considerando o Esquema de Relação:
 - AUTOMOVEL (numeroMatricula, numeroMotor, modelo, ano)
 - e admitindo que cada automóvel só pode ter um motor, e que o número de motor é único no mundo
- As chaves candidatas são:
 - numeroMatricula
 - numeroMotor

Chave - reforço

- Uma Relação é um conjunto de tuplos.
- Todos os elementos de um conjunto têm que ser distintos entre si.
- Assim, todos os tuplos de uma Relação <u>têm que ser distintos</u> entre si
 - ou seja, não podem existir dois tuplos com a mesma combinação de valores para todos os seus atributos.
- Designa-se por chave o conjunto de Atributos para os quais nunca existem dois tuplos com os mesmos valores.
 - Os valores dos Atributos de uma chave permitem identificar univocamente todos os tuplos de uma Relação
 - Um exemplo de chave de qualquer Esquema de Relação é o conjunto de todos os seus Atributos
 - Uma chave é composta pelo número mínimo de atributos necessário:
 - Numa chave, a remoção de um qualquer atributo K resulta um conjunto que já não é uma chave primária

Chaves Candidatas e Chave Primária

- A Chave Primária consiste numa Chave Candidata que é elegida (escolhida) para identificar os tuplos da Relação
- Quando um Esquema de Relação tem várias Chaves Candidatas, a escolha da Chave Primária pode ser (em teoria) arbitrária.
- No entanto, na prática, é usual escolher a Chave Candidata que:
 - tiver um maior significado no sistema em questão, ou
 - que tiver o menor número de Atributos
- No exemplo do AUTOMOVEL, se o sistema em questão fosse o da gestão de um parque de estacionamento faria mais sentido eleger:
 - Chave Primária: numeroMatricula

Exemplo de Chave Primária

- Considerando os Esquemas de Relação:
 - EMPREGADO (numero, nome, departamento, categoria)
 - DISCIPLINA_DO_ALUNO (numeroAluno, disciplina, dataInscricao)
- Considerando que,
 - EMPREGADO:numero é um atributo cujos valores são únicos na empresa
 - Um aluno só pode estar inscrito uma vez numa disciplina
- Temos as seguintes chaves primárias:
 - Chave primária de EMPREGADO = {numero}
 - Chave primária de DISCIPLINA_DO_ALUNO = {numeroAluno, disciplina}
- Exercício:
 - Caso os alunos pudessem inscrever-se mais do que uma vez numa disciplina, qual deveria ser a nova chave primária:

Convenção

- Iremos usar a convenção de <u>sublinhar</u> os Atributos que constituem a Chave Primária de um Esquema de Relação.
- No exemplo do AUTOMOVEL teríamos:
 - AUTOMOVEL (<u>numeroMatricula</u>, numeroMotor, modelo, ano)
- No exemplo do EMPREGADO teríamos:
 - EMPREGADO (<u>numero</u>, nome, departamento, categoria)
- No exemplo da DISCIPLINA_DO_ALUNO teríamos:
 - DISCIPLINA_DO_ALUNO (<u>numero, disciplina</u>, dataInscrição)
- As outras chaves candidatas são descritas textualmente em anexo

Esquemas de Relação com referências para outros Esquemas de Relação

- Considerando os Esquemas de Relação:
 - EMPREGADO (<u>numero</u>, nome, departamento, categoria)
 - CATEGORIA (<u>codigo</u>, designacao, ordenado)
- Em que o atributo "categoria" de EMPREGADO referencia o atributo "codigo" de CATEGORIA, então:
- Neste caso, cada tuplo da Relação Empregado está "ligado" a um tuplo da relação CATEGORIA

EMPREGADO

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	3
35561	João Lopes	Armazém	5
27734	Pedro Nunes	Publicidade	1

CATEGORIA

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140
3	Responsável do Grupo	200
4	Chefe de Projecto	250
5	Director do Departamento	300

Restrições de Integridade

- Uma Restrição de Integridade:
 - consiste numa condição imposta ao Esquema Relacional
 - restringe os dados que podem existir nas instâncias da Base de Dados
- As Restrições de Integridade:
 - São especificadas quando o Esquema Relacional é definido
 - São verificadas sempre que qualquer Relação é modificada
- As Restrições de Integridade a considerar serão:
 - Integridade de Entidades
 - Integridade Referencial
 - Integridade de Domínio
 - Integridade de Colunas
 - Integridade Aplicacional

Integridade de Entidades

- A condição imposta pela Restrição de Integridade de Entidades é:
 - os valores da Chave Primária não podem ser NULL
 - a chave Primária no seu todo tem de ser única para cada entidade
- Se algum atributo da chave primária for NULL
 - a Chave Primária poderia não identificar univocamente os tuplos que contivessem o valor NULL
 - O que invalidaria o conjunto de atributos como chave primária
 - Caso, a chave primária continuasse a identificar univocamente todos os tuplos, isso indicaria que a chave estava mal construída.

Integridade Referencial

- Se um dos tuplos de CATEGORIA for apagado o que acontece ao tuplo, ou tuplos, correspondentes em EMPREGADO ? EMPREGADO (<u>numero</u>, nome, departamento, categoria) CATEGORIA (<u>codigo</u>, designacao, ordenado)
- A Restrição de Integridade Referencial é imposta:
 - entre duas Relações
 - é usada para manter a consistência entre os tuplos das duas Relações
- Informalmente, a condição imposta pela Restrição de Integridade de Referencial é:
 - um tuplo numa Relação apenas pode referir outro tuplo que realmente exista noutra Relação

Integridade Referencial (Cont.)

- Considerando os Esquemas de Relação:
 - EMPREGADO (<u>numero</u>, nome, departamento, categoria)
 - CATEGORIA (<u>codigo</u>, designacao, ordenado)

EMPREGADO

numero	nome	departamento	categor	ia	
31445	António Silva	Contabilidade 7	5		
30442	Isabel Sousa	Armazém /	2		
27710	Mário Gomes	Vendas //	3		
35561	João Lopes	Armazém / / 2	5		
27734	Pedro Nunes	Publicidade / //	1		
			CATEG codigo	ORIA designacao	ordenado
			1	Estagiário	100
		////7	2	Técnico	140
		// 7	3	Responsável do Grupo	200
			4	Chefe de Projecto	250
		3	5	Director do Departamento	300

Integridade Referencial e Chave Estrangeira

- A definição mais formal da Restrição de Integridade Referencial leva ao conceito de Chave Estrangeira (Foreign Key - FK).
- Um conjunto de Atributos FK num Esquema de Relação R1 é Chave Estrangeira de R1, se
 - Os Atributos em FK têm o mesmo Domínio que os da Chave Primária* PK de um outro Esquema de Relação R2
 - O valor de FK num tuplo t1 de R1, ou ocorre como valor de PK para algum tuplo t2, ou é NULL (em R1)
 - (os Atributos FK dizem-se referências para o Esquema de Relação R2)
- Note-se que uma Chave Estrangeira pode referir o seu próprio Esquema de Relação.
- As Restrições de Integridade Referencial derivam normalmente das Associações existentes entre Entidades representadas pelos Esquemas de Relação.

^{*} Também se pode declarar chaves estrangeiras para chaves candidatas que não sejam a chave principal. Mas por agora iremos apenas considerar o caso mais simples

Integridade de Domínio

- A condição imposta pela Restrição de Integridade de Domínio é:
 - o valor de cada Atributo tem que ser <u>um valor atómico</u> retirado do Domínio desse Atributo
- Os tipos de dados (data types) relativos a Domínios, serão:
 - numéricos integer, decimal
 - cadeia de caracteres char(n),
 - booleano boolean
 - data d/m/a date
 - hora h/m/s time
 - data com hora dateAndTime

Integridade de Coluna

- A Integridade de Coluna consiste um refinamento da Integridade de Domínio
- Considerando os Esquemas de Relação:
 - EMPREGADO (numero, nome, departamento, categoria)
 - Os Atributos,
 - numero
 - categoria
 - tem como Domínio o conjunto dos valores numéricos
 - e como Restrições de Integridade de Coluna,
 - "numero" deve ser: valor positivo
 - "categoria" deve pertencer ao conjunto {1, 2, 3, 4, 5}

Integridade Aplicacional

- A Integridade Aplicacional consiste em qualquer outra regra a que as ocorrências de um determinado conjunto de Esquema de Relações deverá obedecer e que não é abrangida pelas restrições atrás mencionadas
- Estas restrições são geralmente implementadas aplicacionalmente

Por exemplo:

- Um empregado nunca poderá baixar de categoria
- Não poderá existir nenhum ordenado mais alto do que o correspondente ao da categoria de "Director de Departamento" do departamento de "Direcção"
- O presidente do departamento tem de ser um professor desse mesmo departamento

Verificação das Restrições

- Se um dos tuplos de CATEGORIA for apagado o que acontece ao tuplo, ou tuplos, correspondentes em EMPREGADO ?
- Existem três possibilidades:
 - Apagar automaticamente os tuplos correspondentes em EMPREGADO (on delete cascade, apagar dependências)
 - Inserir NULL nos campos correspondentes à Chave Estrangeira das ocorrências de EMPREGADO correspondentes ao tuplo apagado em CATEGORIA (FK permite NULL, on delete set null)
 - Não permitir apagar qualquer tuplo de CATEGORIA enquanto os tuplos correspondentes em EMPREGADO não forem apagados (on delete restrict)

Verificação das Restrições (Cont.)

- A cada operação efectuada na Base de Dados, o SGBD* deve garantir sempre a Integridade de Entidade
 - Sempre que, por exemplo, é acrescentado um novo tuplo, o SGBD deve verificar se o(s) valor(es) presente(s) no(s) campo(s) correspondente(s) a cada chave não geram repetições.
 - Que os valores estão dentro do domínio declarado, etc
 - Na caso de erro, por exemplo os valores não serem unívocos ou serem nulos, deve ser gerada uma mensagem de erro e anulada a operação

^{*} SGBD – Sistema de Gestão de Base de Dados

Exemplo: Arquivo de filmes

- Pretende-se a definição do Modelo Relacional de um arquivo com cassetes de vídeo, tendo em conta os seguintes requisitos:
 - "Existem Filmes, gravados em várias cassetes. Cada filme contém: um código único; o título e o ano em que foi lançado. Cada cassete é descrita por um código único; uma indicação de qual o filme que nela está gravado e o estado em que a cassete se encontra (disponível, perdido ou estragado)"

Exemplo Entidades, Atributos e Associações

Entidades:

- FILME
- CASSETE

Atributos:

- código do filme, titulo, ano de lançamento
- código da cassete, estado

Associações:

- Saber quais as cassetes de cada filme, implica associar,
- FILME e CASSETE

Exemplo: Modelo Entidade-Associação

Não existe uma forma clara de ler as associações, a não ser que se atribua um papel a cada entidade. Mas como isso requer mais anotações...

A associação tem uma designação, que é uma ação, e que será escrita tipicamente no infinitivo. A entidade executora dessa ação será a entidade da esquerda ou de cima, caso a designação seja precedida de um traço. A outra entidade é a entidade sobre a qual a ação é executada. Caso a entidade executora seja a da esquerda ou a de baixo o traço será colocado depois da

No diagrama lê-se então:

designação.

Um filme está gravado em pelo menos uma (várias) cassete Uma cassete contém só um filme

Exemplo: Modelo Relacional

- Esquemas de Relação:
 - FILME (<u>codigoFilme</u>, titulo, anoLancamento)
 - CASSETE (<u>codigoCassete</u>, estado, codigoFilme)
- Restrições:
 - Esquema de Relação CASSETE
 - FK_CASSETE sobre codigoFilme é REFERÊNCIA para a Chave Primária de FILME (codigoFilme)

Exemplo: Definição dos domínios e refinamentos

- Atributos e seu domínio
 - Filme codigoFilme: char (6)
 - Filme titulo: char (255)
 - Filme anoLancamento: integer
 - Cassete codigoCassete: char (6)
 - Cassete estado: char (10)

Refinamentos

- O Atributo estado apenas pode ter os seguintes valores:
 - 'disponível', 'perdido', 'estragado'
- O Atributo anoLancamento apenas ter tomar valores superiores a 1900 (por exemplo)

Exemplo v2: Fornecedores de Filmes de Vídeo

- Pretende-se agora que o modelo inclua os seguintes requisitos:
 - "Pretende-se também ter a informação acerca dos fornecedores dos filmes, tendo em conta que cada um é caracterizado por: um número de fornecedor único; um nome e um número de contribuinte. Um fornecedor pode fornecer vários filmes. Um filme pode ser fornecido por mais do que um fornecedor."

Exemplo v2: Entidades, Associações e Atributos

- Novas entidades:
 - FORNECEDOR
- Associações:
 - Saber quais os filmes fornecidos por cada fornecedor, implica associar,
 - FORNECEDOR e FILME
- Atributos:
 - numero do fornecedor, numero de contribuinte, nome

Exemplo v2: Modelo Entidade - Associação

Exemplo (2^a parte): Esquemas de Relação

- Esquema de Relação FORNECEDOR
 - FORNECEDOR (<u>numeroFornecedor</u>, numeroContribuinte, nome)
 - numeroFornecedor e numeroContribuinte são Chaves Candidatas
- A associação Fornecer tem de se modelada por um novo esquema de relação – este assunto será abordado no próximo módulo
- Esquema de Relação FORNECEDOR_FILME
 - FORNECEDOR_FILME (<u>numeroFornecedor, codigoFilme</u>)

Chave Primária composta

Exemplo v2: Restrições e domínios

Restrições:

- Esquema de Relação FORNECEDOR_FILME,
 - FK1_ FORNECEDOR_FILME sobre numeroFornecedor é REFERÊNCIA para a Chave Primária de FORNECEDOR (numeroFornecedor)
 - FK2_ FORNECEDOR_FILME sobre codigoFilme é REFERÊNCIA para a Chave Primária de FILME (codigoFilme)

Atributos e domínio

- Fornecedor numeroFornecedor: integer
- Fornecedor numeroContribuinte: integer (9)
- Fornecedor nome: char (100)

Exercício:

Considere o seguinte Esquema Relacional:

```
R1 (<u>a, b, c, d</u>, e, d1)
R2 (<u>b, c</u>, h, f)
R3 (<u>c</u>, m, d)
R4 (<u>d</u>, i, p)
```

- Considere que os Atributos, com o mesmo nome em Esquemas de Relação diferentes, representam Chaves Estrangeiras.
- Elabore o modelo entidade-associação.
- Indique todos os testes a realizar de forma a verificar a integridade nas relações deste esquema.

Outro exercício

- Considere o Esquema relacional em baixo apresentado
 - Elabore o seu modelo entidade–associação
 - 2. As Relações apresentadas são válidas no esquema relacional? Justifique.

b	С	d
2	3	4
2	3	1
3	2	4
2	3	4
	2 2 3	2 3 2 3 3 2

R2			
a	b	h	f
1	2	6	7
5	2	2	1
	'	'	l

 D_{Ω}