

Big Data analytics for knowledge transfer among organisms while reconstructing Gene Regulatory Networks

Paolo Mignone (1,2), Gianvito Pio (1,2) Domenica D'Elia (3), Michelangelo Ceci (1,2,4)

- 1 Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy
- 2 National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy
- 3 CNR Institute for Biomedical Technologies, Bari 70126, Italy
- 4 Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana 1000, Slovenia

Reconstruction of Gene Regulatory Networks

- A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact
 with each other and with other substances in the cell to govern the gene expression levels of mRNA
 and proteins
- When some control mechanisms are compromised, cells undergo a series of modifications that can bring to their transformation in cancerous cells

Motivations

- Support biologists in the identification of new gene interactions for the better understanding of diseases related to gene network functions
- Existing methods suffer the limited number of labelled examples (i.e., validated interactions) and the absence of negative examples (i.e., confirmed absent interactions)

Goal

 Reconstructing the Human Gene Network using information from the Mouse Gene Network (via transfer learning)

The problem from a data mining perspective

- Nodes: genes
- Edges: gene interactions
- Task: gene network reconstruction via link prediction
- Binary classification:
- the link exists POSITIVE LABEL
- ★ the link does not exist NEGATIVE LABEL
- Training set:
- √ known existing links (ground truth)
- ? no information about non-existing links
 - positive-unlabelled learning setting

Proposed Method

Gene Network Reconstruction solved as a

Link Prediction Task supported by

Transfer Learning

in a

Positive-Unlabelled Learning Setting

Stage 1 – Clustering

 Clustering algorithm on positive (i.e., validated) interactions on both the domains, separately, to obtain n and m clusters respectively

Stage 1 – Why clustering?

- 1) to distinguish the possible various concepts underlying the notion of positive interaction
- 2) to summarize the concept of positive interactions to simplify the weighting phase
 - computational effort reduced when computing distances between unlabelled instances and centroids w.r.t. to compare them to all the positive examples

Stage 2 – Weighting

 Weighting of unlabelled interactions of the source domain S and the target domain T according to their distance with respect to the centroids

Stage 3 – Training

 Training of a classifier (SVM-based) that is able to exploit weights on the instances: Weighted SVM (WSVM)

Stage 3 – Training

- Training of two different WSVM classifiers for the source and the target domains separately
- WSVM source domain model
- WSVM target domain model

Stage 4 – Model Combination

KDDE

- Compute the bisector hyperplane
- Perform a hyperplane combination based on data driven coefficient substitutions
- · Input:
 - source coefficients
 - target coefficients
 - bisector coefficients
- Output:
 - o new combined hyperplane

Gene interactions dataset

	Positive*	Unlabelled**
Mouse (source)	14613	235706
Human (target)	235706	235706

*BIOGRID - https://thebiogrid.org/

** Gene Expression Omnibus - https://www.ncbi.nlm.nih.gov/geo/

Gene representation

Features: average gene expression levels measured for specific tissues in **control samples**

$$e_i \in [0,1]$$

Gene interaction representation

We compared our method, indicated as **BioSfer** in the results, with two baselines:

- no_transfer: WSVM with Platt scaling, learned only from the target network (i.e., from the human gene network). Allows us to evaluate the contribution of the source domain
- union: WSVM with Platt scaling, learned from a single dataset consisting of the union of the instances coming from both mouse and human. Allows us to evaluate the effect of our weighting strategy

Transfer Learning Competitors

- JGSA hang, J., Li, W., and Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
- BDA Wang, J., Chen, Y., Hao, S., Feng, W., and Shen, Z. (2017). Balanced distribution adaptation for transfer learning. In ICDM 2017
- TJM Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S. (2014). Transfer joint matching for unsupervised domain adaptation. In CVPR 2014

Gene Regulatory Network Reconstruction Competitor

 GENIE3 Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, Pierre Geurts. Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. In PLOS ONE September 28, 2010, https://doi.org/10.1371/journal.pone.0012776

Experimental Setting

- Evaluation measures:
 - Recall@k
 - —Area Under Recall@K curve (AUR@K)
 - Area Under ROC curve (AUROC)
 - —Area Under Precision Recall curve (AUPR)
- Clustering setting: k_s , $k_t \in \{2, 3, 4\}$
- 10 fold cross-validation

Results

Results

Comparison between BioSfer and competitors with the best configuration

Qualitative Analysis

- Top-1 Ranked Predicted Interaction: NBPF8P ND4, score: 0.948
- Top-2 Ranked Predicted Interaction: LINC00657 RPL39, score: 0.945
- Not identified by g:Profiler (<u>https://biit.cs.ut.ee/gprofiler/gost</u>)

NBPF8P - ND4

Since the correlation between the **impaired mitochondrial respiratory chain** function and the pathogenesis of several **neurological diseases** is well-known [A], the prediction provided by BioSfer is **biologically reasonable**

LINC00657 - RPL3

The relationship between these two genes is plausible because of the recent discovery of the existence of ribosome-associated non-coding RNAs (rancRNAs). Ribosomes can be the target for numerous small and long non-coding RNAs in various organisms [B]

[A] R. K. Chaturvedi and M. F. Beal. *Mitochondrial diseases of the brain.* Free Radical Biology and Medicine, 63:1–29, oct 2013.
[B] A. Pircher, J. Gebetsberger, and N. Polacek. *Ribosome-associated ncRNAs: An emerging class of translation regulators.* RNA Biology, 11(11):1335–1339, nov 2014.

Conclusion

- The knowledge about the mouse gene network is helpful to better reconstruct the human gene network
- BioSfer is able to exploit the information of unlabelled gene pairs in order to better identify a set of existing gene interactions

Future Works

 Multiple source networks for the reconstruction of the target network

Thanks for your attention