Techniques and tools for measuring energy efficiency of scientific software applications

1. Why is energy efficiency important on High Throughput Computing (HTC) ?

2. Measuring power consumption

Where is energy used?

External measurements

Chip monitors

Software based measurements

3. Study case

External measurements

Chip monitors

IgProf for energy measurements

Results: ARM vs Intel comparison

4. Conclusions

1. Why is energy efficiency important on HTC?

2.1. Where is the energy used?

HTC systems are **complex**

Several components

Different granularities

CPU can be optimised more control than other components

next: external

2.2. Where is energy used ? > External measurements

Account for the **whole system**

Power consumed without breaking down the system in components

Accuracy: around ± 3% for clamps **Resolution** order of seconds (*Hz*)

http://www.racksandpower.com

4 next: internal

2.2. Where is energy used ? > Chip monitors

Monitor chips on the motherboard that measure energy consumed by different components of CPU

There is no standard solution.

Accuracy: *high (ex:* 0.5% gain error) **Resolution** order of microseconds (*kHz*)

Texas Instrument (TI) INA 231 monitoring chip on ODROID XU+E

http://hardkernel.com

2.2. Where is energy used ? > Chip monitors > RAPL

Running Average Power Limiting (RAPL) by Intel

Provides a platform for power monitoring and power limiting of SoC.

Different sampling domains

package (PKG), DRAM, core

Low level measurements package, cores, dram

Resolution according to Intel, sampling frequency up to ~1 kHz

Power capping is also supported by RAPL

Accuracy high (according to *Intel*)

2.2. Where is energy used ? > Chip monitors > RAPL

Example of RAPL

System with 4 sockets
Sockets #0 and #1 working
Sockets #2 and #3 idle

Possible to understand how packages, cores & dram consume energy

2.2. Where is energy used?

Recap

Energy consumption in HTC is an issue

HTC systems are complex

Different tools for different granularities and components:

External measurements

Chip monitors

2.2. Where is energy drained ? > Software-based> IgProf

IgProf

application profiler developed at CERN by the CMS software team

general purpose. open source. not experiment specific measures performance (time spent in functions) and memory usage at *runtime*

allows developer to understand:

bottlenecks

where code needs to be optimised

cross platform: recently ported to 64-bit ARM, also supports 32-bit ARM, Intel x86 and x86-64

2.2. Where is energy drained ? > Software-based> IgProf

IgProf & energy profiling

Uses RAPL and PAPI to measure energy consumed.

Map functions and low level operations with energy consumption

more info (strategies, results, examples)

paper and http://igprof.org/

3. Study case

Comparison ARMv7 vs Intel XEON

32bit ARMv7 is used on smartphones. comparison with Intel XEON

measurements	Internal
	RAPL for Intel
	cross platform chip monitor integrated (TI INA 231) for ARMv7
	External

Multithreaded

ParFullCMS

Geant4 benchmark application

Uses the CMS geometry

10

workload

next: specs

3. Study case

ARMv7 Exynos5 Octa Cortex™
4x A15 @ 1.6Ghz and/or A7 cores (big.LITTLE technology)
2 GB RAM
ARMv7/32bit
development board

Intel 32x Intel™ Xeon™ CPU E5-2650 @ 2.00GHz 252 GB RAM system on a rack

3. Study case

What to expect

ARMv7 performs better (energy efficiency perspective)

Both ARM and Intel do not perform better when overcommitted (more threads than number cores)

Power consumed ratio external/internal is bigger on Intel (rack vs dev. board)

Chip monitors and external measurement techniques in action

3. Study case > Chip monitors

3. Study case > External measurements

15

next: ratio

3. Study case > External measurements

Number events/core (nr cores)

Intel ratio *CPU+mem* vs overall

Number events/core (nr cores)

16 next: conclusions

3. Study case > Comparison ARM vs Intel

32bit ARMv7 with interesting results.

Different system's components → different tools for measurement

External, *chip monitors* and **software-based** measurements give good picture of the system's energy consumption at different levels.

4. Wrapping up

Energy efficiency is a major concern of HTC

Important to be aware of where and how energy is consumed on a HTC system

There are tools and techniques that account for the different system's components

Recently, **IgProf** was ported for ARM 64 bit and got power profiling capabilities.

ARM keeps showing potential for efficient HTC

