Linear Algebra

Semester 1, 2021

 $Dr\ Ravindra\ Pethiyagoda$

TARANG JANAWALKAR

Linear Algebra CONTENTS

Contents

C	Contents 1						
1	Euclidean Vector Spaces						
	1.1	Vectors	3				
	1.2	Position and Displacement Vectors	3				
	1.3	Vector Addition	4				
	1.4	Scalar Multiplication	4				
	1.5	Norm of a Vector	4				
	1.6	The Unit Vector	4				
	1.7	The Dot Product	4				
	1.8	The Cross Product	4				
2	Vec	tor Identities	5				
3	Line	ear System of Equations	6				
	3.1	Linear Equations	6				
	3.2	Homogeneous Linear Equations	6				
	3.3	Linear Systems	6				
	3.4	Coefficient Matrices	6				
	3.5	Augmented Matrices	6				
	3.6	Elementary Row Operations	7				
	3.7	Pivots	7				
	3.8	Gaussian Elimination	7				
	3.9	Row-Echelon Form	7				
		Gauss-Jordan Elimination	7				
	3.11	Solutions to Linear Systems	8				
4	Mat	crices	8				
	4.1	Matrix Addition	8				
	4.2	Scalar Multiplication	8				
	4.3	Matrix Multiplication	8				
	4.4	The Identity Matrix	9				
	4.5	The Inverse Matrix	9				
	4.6	The Diagonal Matrix	9				
	4.7	Matrix Transpose	9				
	4.8	Matrix Trace	9				
5	General Vector Spaces 10						
	5.1	-	$\frac{10}{10}$				
	5.2		11				
	5.3	•	12				
	5.4		12				
	5.5	•	12				
	5.6		12				

Linear Algebra CONTENTS

6	Fun 6.1	±	13 13			
	6.2	1	13			
	6.3	v -	14			
	6.4		14			
	6.5		14			
_	O 11					
7		0 1	14			
	7.1	O I	14			
	7.2	0 1	15			
	7.3	J	15			
	7.4	v i	16			
	7.5	Least Squares	16			
8	Line		17			
	8.1	Matrix Transformations	17			
	8.2	General Linear Transformations	17			
	8.3	Subspaces of Linear Transformations	18			
	8.4	Constructing a Transformation Matrix	19			
9	Determinants 19					
•	9.1		19			
	9.2	•	19			
	9.3		20			
	9.4		20			
	9.5		$\frac{20}{20}$			
	9.6		$\frac{20}{20}$			
	9.7	• 0	20			
10			•			
10			20			
			21			
		—-OP	21			
		8	21			
	10.4	Properties of Eigenvalues	21			
11			22			
	11.1	Similarity Transformations	22			
	11.2	Matrix Diagonalisation	22			
	11.3	Powers of a Matrix	23			
12	Syst	tem of Differential Equations	23			
	•	<u>•</u>	2 3			
			$\frac{23}{23}$			
		· -	$\frac{23}{24}$			
			$\frac{24}{24}$			
			$\frac{24}{25}$			

1 Euclidean Vector Spaces

1.1 Vectors

Definition 1.1. An n-dimensional **vector** is an ordered list of n numbers.

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

Theorem 1.1.1. \mathbb{R}^n is the set of all ordered n-tuples of real numbers.

$$\mathbb{R}^{\,n} = \big\{ (v_1, \, v_2, \, \ldots, \, v_n) : v_1, \, v_2, \, \ldots, \, v_n \in \mathbb{R} : n \in \mathbb{N} \big\}$$

Notation:

- 1. Component form: $\mathbf{v}=\langle v_1,\ v_2\rangle=(v_1,\ v_2)=\begin{pmatrix} v_1\\v_2\end{pmatrix}=\begin{bmatrix} v_1\\v_2 \end{bmatrix}$
- 2. Unit vector form: $\mathbf{v} = v_1 \hat{\mathbf{i}} + v_2 \hat{\mathbf{j}}$, where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are basis vectors along the x and y axes respectively.
- 3. Denotation: $\mathbf{v} = \underset{\sim}{v} = \vec{v}$

1.2 Position and Displacement Vectors

Definition 1.2. The displacement vector \overrightarrow{AB} from **a** to **b** can be defined as **b** – **a**.

Figure 1: Displacement vector between two points.

1.3 Vector Addition

Definition 1.3. Vector addition is performed by adding the corresponding components of two vectors of the same dimension.

$$\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix}$$

1.4 Scalar Multiplication

Definition 1.4. Scalar multiplication is performed by multiplying each element of the vector by the scalar.

$$a\mathbf{v} = \begin{bmatrix} av_1 \\ \vdots \\ av_n \end{bmatrix}$$

1.5 Norm of a Vector

Definition 1.5. The **norm** of a vector \mathbf{v} , denoted by $\|\mathbf{v}\|$, is the *length* or *magnitude* of \mathbf{v} .

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

1.6 The Unit Vector

Definition 1.6. A unit vector is a vector, denoted $\hat{\mathbf{v}}$, that has a length of 1 in the direction of \mathbf{v} .

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

1.7 The Dot Product

Definition 1.7. The **dot product** is a function that associates each pair of vectors \mathbf{v} , $\mathbf{w} \in \mathbb{R}^n$ a real number $\mathbf{v} \cdot \mathbf{w}$.

$$\begin{aligned} \mathbf{v} \cdot \mathbf{w} &= v_1 w_1 + v_2 w_2 + \dots + v_n w_n \\ &= \|\mathbf{v}\| \|\mathbf{w}\| \cos \left(\theta\right) \end{aligned}$$

where θ is the angle between \mathbf{v} and \mathbf{w} .

Theorem 1.7.1. If $\mathbf{v} \cdot \mathbf{w} = 0$ then \mathbf{v} and \mathbf{w} are orthogonal.

1.8 The Cross Product

Definition 1.8. The **cross product** is a function that associates each ordered pair of vectors \mathbf{v} , $\mathbf{w} \in \mathbb{R}^3$ a vector $\mathbf{v} \times \mathbf{w} \in \mathbb{R}^3$.

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{\mathbf{k}} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
$$= \|\mathbf{v}\| \|\mathbf{w}\| \sin(\theta) \hat{\mathbf{n}}$$

where $\hat{\mathbf{n}}$ is the normal vector given by the right-hand rule.

2 Vector Identities

Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$ with $r \in \mathbb{R}$.

Theorem 2.0.1. Commutativity of vector addition.

$$a + b = b + a$$

Theorem 2.0.2.

$$\mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2$$

Theorem 2.0.3. Commutativity of dot products.

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

Theorem 2.0.4. Distributivity of dot products over vector addition.

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

Theorem 2.0.5. Associativity of dot products over scalar multiplication.

$$(r\mathbf{a}) \cdot \mathbf{b} = r(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (r\mathbf{b})$$

Theorem 2.0.6. Bilinearity of dot products.

$$\mathbf{a} \cdot (r\mathbf{b} + \mathbf{c}) = r(\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})$$

Theorem 2.0.7.

$$\mathbf{a} \times \mathbf{a} = \mathbf{0}$$

Theorem 2.0.8. Anti-commutativity of cross products.

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

Theorem 2.0.9. Distributivity of cross products over vector addition.

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

Theorem 2.0.10. Associativity of cross products over scalar multiplication.

$$(r\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (r\mathbf{b}) = r(\mathbf{a} \times \mathbf{b})$$

Theorem 2.0.11.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

Theorem 2.0.12.

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{b})$$

3 Linear System of Equations

3.1 Linear Equations

Definition 3.1. A linear equation in n variables $x_1, x_2, ..., x_n$ can be expressed in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where the *coefficients* a_1, a_2, \dots, a_n and the *constant term* b are constants.

3.2 Homogeneous Linear Equations

Definition 3.2. In the special case where b = 0, the linear equation is called a **homogeneous** linear equation.

3.3 Linear Systems

Definition 3.3. A linear system of equations is a set of linear equations, where the variables x_i are called *unknowns*. The general linear system of m equations with n unknowns can be written as

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

A solution to the system is an *n*-tuple $\langle x_1, x_2, ..., x_n \rangle$ that satisfies each equation.

3.4 Coefficient Matrices

Definition 3.4. The coefficients of the variables in each equation can be placed inside the system's **coefficient matrix**.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

3.5 Augmented Matrices

Definition 3.5. The information of a system can be contained in its **augmented matrix**.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Definition 3.6. An array having m rows and n columns, is an $m \times n$ matrix. This matrix may be denoted as a_{ij} , where a_{ij} is the entry in ith row and jth column of the matrix \mathbf{A} .

$$m \text{ rows} \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \right.$$

3.6 Elementary Row Operations

Definition 3.7. A linear system can be solved using the following **elementary row operations**:

- 1. scalar multiplication: multiplying any row by a constant
- 2. row addition: adding a multiple of one row to another
- 3. row exchange: exchanging any two rows

3.7 Pivots

Definition 3.8. The first non-zero entry of the row in a matrix is called the **pivot** of the row.

Theorem 3.7.1. If a row apart from the first has a pivot, then this pivot must be to the right of the pivot in the preceding row.

3.8 Gaussian Elimination

Definition 3.9. Gaussian elimination is a method for solving linear systems. These systems can be solved by composing the augmented matrix of a system, and performing elementary row operations, to put the matrix in the form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{mn} \end{bmatrix}$$

3.9 Row-Echelon Form

Definition 3.10. A matrix that has undergone Gaussian elimination is in **row-echelon form** if the pivots of the augmented matrix are all 1.

$$\begin{bmatrix} 1 & a_{12} & \cdots & a_{1n} \\ & 1 & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & 1 \end{bmatrix}$$

3.10 Gauss-Jordan Elimination

Definition 3.11. Gauss-Jordan elimination extends Gaussian elimination so that the entries in a column containing a pivot are zeros, and the pivots are all 1. This new augmented matrix is then in **reduced row-echelon form**.

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

Linear Algebra 4 MATRICES

3.11 Solutions to Linear Systems

Definition 3.12. A **consistent system** of equations has at least one solution, and an **inconsistent system** has no solution.

4 Matrices

Definition 4.1. A **matrix** is an array of numbers arranged into *rows* and *columns*, and can be used to represent a linear transformation.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

4.1 Matrix Addition

Definition 4.2. Matrix addition is performed by adding the corresponding components of two matrices of the same dimension.

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

4.2 Scalar Multiplication

Definition 4.3. Scalar multiplication is performed by multiplying each element of a matrix by a scalar.

$$c\mathbf{A} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \end{bmatrix}$$

4.3 Matrix Multiplication

Definition 4.4. Matrix multiplication is performed by multiplying each row in the first matrix by the columns of the second matrix.

$$\begin{aligned} \mathbf{A}\mathbf{B} &= \mathbf{C} \\ \begin{bmatrix} - & \mathbf{a}_1 & - \\ - & \mathbf{a}_2 & - \\ & \vdots & \\ - & \mathbf{a}_n & - \end{bmatrix} \begin{bmatrix} \begin{vmatrix} & & & & \\ \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \\ & & & \end{vmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1\mathbf{b}_1 & \mathbf{a}_1\mathbf{b}_2 & \cdots & \mathbf{a}_1\mathbf{b}_n \\ \mathbf{a}_2\mathbf{b}_1 & \mathbf{a}_2\mathbf{b}_2 & \cdots & \mathbf{a}_2\mathbf{b}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{a}_m\mathbf{b}_1 & \mathbf{a}_m\mathbf{b}_2 & \cdots & \mathbf{a}_m\mathbf{b}_n \end{bmatrix}$$

Theorem 4.3.1. A matrix product is defined if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix.

Linear Algebra 4 MATRICES

4.4 The Identity Matrix

Definition 4.5. The **identity matrix** is the simplest nontrivial **diagonal matrix**, denoted **I**, such that

$$IA = A$$

written explicitly as

$$\mathbf{I} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

4.5 The Inverse Matrix

Definition 4.6. The inverse of a square matrix is a matrix A^{-1} , such that

$$A A^{-1} = I$$

Theorem 4.5.1. The inverse of a 2×2 matrix is given by

$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Theorem 4.5.2. The inverse of an $n \times n$ matrix can be determined by solving $[A \mid I]$.

4.6 The Diagonal Matrix

Definition 4.7. A diagonal matrix, denoted diag $(d_{11}, d_{22}, ..., d_{nn})$, is an $n \times n$ matrix **D** in which entries outside the main diagonal are all zero.

$$\mathbf{D} = \operatorname{diag}\left(d_{11}, d_{22}, \dots, d_{nn}\right) = \begin{bmatrix} d_{11} & & \\ & d_{22} & \\ & & \ddots & \\ & & & d_{nn} \end{bmatrix}$$

4.7 Matrix Transpose

Definition 4.8. The **transpose** of a matrix, denoted by \mathbf{A}^{\top} , is obtained by replacing all a_{ij} elements with a_{ji} , so that the matrix \mathbf{A} is flipped over its main diagonal.

4.8 Matrix Trace

Definition 4.9. The trace of an $n \times n$ matrix **A**, denoted $Tr(\mathbf{A})$, is defined as

$$\operatorname{Tr}\left(\mathbf{A}\right) = \sum_{i=1}^{n} a_{ii}$$

5 General Vector Spaces

5.1 Real Vector Spaces

Definition 5.1. A **vector space** is a set that is closed under vector addition and scalar multiplication.

Theorem 5.1.1. If the following axioms are satisfied by all objects \mathbf{u} , \mathbf{v} , $\mathbf{w} \in V$, and all scalars k and m, then V is a **vector space**, and the objects in V are vectors.

Axiom 1 (Closure under addition).

$$\mathbf{u} + \mathbf{v} \in V$$

Axiom 2 (Commutativity of vector addition).

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

Axiom 3 (Associativity of vector addition).

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

Axiom 4 (Additive identity).

$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$

Axiom 5 (Additive inverse).

$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

Axiom 6 (Closure under scalar multiplication).

$$k\mathbf{u} \in V$$

Axiom 7 (Distributivity of vector addition).

$$k\left(\mathbf{u} + \mathbf{v}\right) = k\mathbf{u} + k\mathbf{v}$$

Axiom 8 (Distributivity of scalar addition).

$$(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$$

Axiom 9 (Associativity of scalar multiplication).

$$k(m\mathbf{u}) = (km)\mathbf{u}$$

Axiom 10 (Scalar multiplication identity).

$$1\mathbf{u} = \mathbf{u}$$

To identify that a set with two operations is a vector space:

- 1. Identify the set V of objects that will become vectors.
- 2. Identify the addition and scalar multiplication operations on V.

- 3. Verify Axioms 1 and 6.
- 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Theorem 5.1.2. Let V be a vector space. If $\mathbf{v} \in V$, and k is a scalar.

- 1. $0\mathbf{v} = \mathbf{0}$
- 2. k0 = 0
- 3. $(-1) \mathbf{v} = -\mathbf{v}$
- 4. If $k\mathbf{v} = \mathbf{0}$, then k = 0 or $\mathbf{v} = \mathbf{0}$

5.2 Subspaces

Definition 5.2. A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and scalar multiplication operations defined on V.

Theorem 5.2.1. Let W be a subspace of the vector space V, then the following axioms must be satisfied.

- 1. Axiom 1: Closure under addition
- 2. Axiom 6: Closure under scalar multiplication

Theorem 5.2.2. Every vector space has at least two subspaces, itself and its zero subspace.

Theorem 5.2.3. Subspaces of \mathbb{R}^2 .

- *1.* {**0**}
- 2. Lines through the origin
- $3. \mathbb{R}^2$

Theorem 5.2.4. Subspaces of \mathbb{R}^3 .

- *1.* {**0**}
- 2. Lines through the origin
- 3. Planes through the origin
- 4. \mathbb{R}^3

Theorem 5.2.5. Subspaces of \mathbf{M}_{nn} .

- 1. Upper triangular matrices
- 2. Lower triangular matrices
- ${\it 3. \ Diagonal \ matrices}$
- $4. \mathbf{M}_{nn}$

5.3 Spanning Sets

Definition 5.3. If the vector \mathbf{w} is in a vector space V, then \mathbf{w} is a **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$, if \mathbf{w} can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_n \mathbf{v}_n$$

Theorem 5.3.1. If $S = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is a nonempty set of vectors in a vector space V, then the set W of all possible linear combinations of the vectors in S is a subspace of V. The subspace W is called the subspace of V spanned by S and the vectors in S span W. If a vector in S can be expressed as the linear combination of any vectors in S then the set is linearly dependent.

5.4 Linear Independence

Definition 5.4. If S is a set of two or more vectors in a vector space V, then S is **linearly independent** if no vector in S can be expressed as a linear combination of the others.

Theorem 5.4.1. A set S is linearly independent if and only if there is one solution to the equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\cdots+k_n\mathbf{v}_n=\mathbf{0}$$

where the coefficients satisfying this equation are $k_1 = 0, k_2 = 0, \dots, k_n = 0$.

5.5 Basis Vectors

Definition 5.5. If S is a set of vectors in a vector space V, then S is called a **basis** for V if

- 1. S spans V.
- 2. S is linearly independent.

5.6 Dimension

Definition 5.6. The **dimension** of a finite-dimensional vector space V, denoted dim (V), is the number of vectors in a basis for V.

Theorem 5.6.1. The zero vector space is defined to have dimension zero.

6 Fundamental Subspaces

Figure 2: The Four Fundamental Subspaces of a Matrix.

6.1 The Four Fundamental Subspaces of a Matrix

Definition 6.1. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an $m \times n$ matrix, then:

- 1. The subspace spanned by the *column vectors* of \mathbf{A} , is the **column space** of \mathbf{A} , denoted $\mathcal{C}(\mathbf{A})$.
- 2. The subspace spanned by the row vectors of **A**, is the row space of **A**, denoted $\mathcal{C}(\mathbf{A}^{\top})$.
- 3. The subspace spanned by the *solution space* of the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$, is the **null space** of \mathbf{A} , denoted $\mathcal{N}(\mathbf{A})$.
- 4. The subspace spanned by the *solution space* of the equation $\mathbf{A}^{\top}\mathbf{y} = \mathbf{0}$ (or $\mathbf{y}^{\top}\mathbf{A} = \mathbf{0}$), is the **left null space** of \mathbf{A} , denoted $\mathcal{N}(\mathbf{A}^{\top})$.

6.2 The General Solution of a System of Equations

Theorem 6.2.1. The general solution to a matrix equation $A\mathbf{x} = \mathbf{b}$, can be given by adding the particular and homogeneous solutions, where the particular solution is the solution to $A\mathbf{x} = \mathbf{b}$, or

 $C(\mathbf{A}^{\top})$, and the homogeneous solution is the solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$, or $\mathcal{N}(\mathbf{A})$.

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$$

6.3 Row Equivalence

Definition 6.2. Two matrices are **row equivalent** if each can be obtained from the other by elementary row operations. These matrices have the same row space and null space.

6.4 Rank

Definition 6.3. The rank of a matrix, denoted by rank (A), is given by dim (C(A)).

Theorem 6.4.1. The column space and row space have the same dimension so that

$$\operatorname{rank}\left(\mathbf{A}\right) = \dim\left(\mathcal{C}\left(\mathbf{A}\right)\right) = \dim\left(\mathcal{C}\left(\mathbf{A}^{\top}\right)\right)$$

6.5 Nullity

Definition 6.4. The nullity of a matrix, denoted by null (A), is given by dim $(\mathcal{N}(A))$.

7 Orthogonality

Definition 7.1. Two vectors are **orthogonal** if the following holds.

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \mathbf{v}^{\mathsf{T}} \mathbf{w} = 0$$

Theorem 7.0.1. 0 is orthogonal to every vector in V.

Theorem 7.0.2. 0 *is the only vector in* V, *that is orthogonal to itself.*

Theorem 7.0.3.

$$\|\mathbf{v}\|^2 = \mathbf{v}^\top \mathbf{v}$$

Theorem 7.0.4.

$$\|\mathbf{v}\| = \sqrt{\mathbf{v}^{\top}\mathbf{v}}$$

7.1 Orthogonal Subspaces

Definition 7.2. Two subspaces U and W of a vector space V, are **orthogonal subspaces** iff every vector in U is orthogonal to every vector in W.

$$\forall \mathbf{u} \in U : \forall \mathbf{w} \in W : \mathbf{u}^{\top} \mathbf{w} = 0$$

7.2 Orthogonal Complements

Definition 7.3. If U is a subspace of V, then the **orthogonal complement** of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U.

$$U^{\perp} = \left\{ \forall \mathbf{u} \in U : \mathbf{v} \in V : \mathbf{v}^{\top} \mathbf{u} = 0 \right\}$$

Theorem 7.2.1.

$$(U^{\perp})^{\perp} = U$$

Theorem 7.2.2.

$$\dim U + \dim U^{\perp} = \dim V$$

7.3 Vector Projections

Figure 3: Vector Projection of **b** onto **a**.

Definition 7.4. Let the **vector projection** of **b** onto **a**, denoted as $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$, be the *orthogonal projection* of **b** in the direction of **a**, that minimises the error vector: $\mathbf{e} = \mathbf{b} - \mathbf{p}$.

Theorem 7.3.1. The projection of **b** onto **a** is given by

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \mathbf{a} x = \mathbf{a} (\mathbf{a}^{\top} \mathbf{a})^{-1} \mathbf{a}^{\top} \mathbf{b}$$

alternatively

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \mathbf{a} x = \mathbf{a} \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} = \mathbf{a} \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$$

Proof. As **p** lies on the line through **a**, $\mathbf{p} = \mathbf{a}x$, so that $\mathbf{e} = \mathbf{b} - \mathbf{a}x$. As **e** is orthogonal to **a**, we can construct the following relationship.

$$\mathbf{a}^{\top}\mathbf{e} = 0$$

$$\mathbf{a}^{\top}(\mathbf{b} - \mathbf{a}x) = 0$$

$$\mathbf{a}^{\top}\mathbf{b} - \mathbf{a}^{\top}\mathbf{a}x = 0$$

$$\mathbf{a}^{\top}\mathbf{a}x = \mathbf{a}^{\top}\mathbf{b}$$

$$x = (\mathbf{a}^{\top}\mathbf{a})^{-1}\mathbf{a}^{\top}\mathbf{b} = \frac{\mathbf{a}^{\top}\mathbf{b}}{\mathbf{a}^{\top}\mathbf{a}}$$

7.4 Projection onto a Subspace

Theorem 7.4.1. Let W be a subspace of the vector space V such that if $\mathbf{b} \in V$, then $\mathbf{p} = \operatorname{proj}_W \mathbf{b}$ is the **best approximation** of \mathbf{b} on W, so that

$$\|\mathbf{b} - \mathbf{p}\| < \|\mathbf{b} - \mathbf{w}\|$$

for all $\mathbf{w} \in W$, where $\mathbf{w} \neq \mathbf{p}$.

Theorem 7.4.2. The projection of **b** onto the vector space W is given by

$$\operatorname{proj}_W \mathbf{b} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{A} \left(\mathbf{A}^{\top} \mathbf{A} \right)^{-1} \mathbf{A}^{\top} \mathbf{b}$$

Proof. As $\mathbf{p} \in W$, \mathbf{p} can be represented as the linear combination of the basis vectors \mathbf{a}_i that span W.

$$\begin{split} \mathbf{p} &= \hat{x}_1 \mathbf{a}_1 + \hat{x}_2 \mathbf{a}_2 + \dots + \hat{x}_n \mathbf{a}_n \\ &= \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & | \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \dots \\ \hat{x}_n \end{bmatrix} \\ &= \mathbf{A} \hat{\mathbf{x}} \end{split}$$

Consider the error vector $\mathbf{e} = \mathbf{b} - \mathbf{p}$. As \mathbf{e} is orthogonal to W, it will also be orthogonal to the vectors that span W. Therefore,

$$\begin{cases} \mathbf{a}_1^\top \left(\mathbf{b} - \mathbf{A} \hat{\mathbf{x}} \right) = 0 \\ \mathbf{a}_2^\top \left(\mathbf{b} - \mathbf{A} \hat{\mathbf{x}} \right) = 0 \\ \vdots \\ \mathbf{a}_n^\top \left(\mathbf{b} - \mathbf{A} \hat{\mathbf{x}} \right) = 0 \end{cases}$$

which gives the following equation

$$\mathbf{A}^{\top} \left(\mathbf{b} - \mathbf{A} \hat{\mathbf{x}} \right) = \mathbf{0}$$

where we solve for $\hat{\mathbf{x}}$

$$\begin{aligned} \mathbf{A}^{\top}\mathbf{b} - \mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}} &= \mathbf{0} \\ \mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}} &= \mathbf{A}^{\top}\mathbf{b} \\ \hat{\mathbf{x}} &= \left(\mathbf{A}^{\top}\mathbf{A}\right)^{-1}\mathbf{A}^{\top}\mathbf{b} \end{aligned}$$

7.5 Least Squares

Theorem 7.5.1. Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ is an <u>inconsistent</u> linear system. The **least squares** solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by the orthogonal projection $\operatorname{proj}_{\mathcal{C}(\mathbf{A})} \mathbf{b}$.

Linear Algebra 8 LINEAR MAPS

8 Linear Maps

8.1 Matrix Transformations

Definition 8.1. A matrix transformation $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^m$ is a mapping of the form

$$T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$. As this transformation is linear, the following linearity properties hold.

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

2.
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

8.2 General Linear Transformations

Theorem 8.2.1. If $T: V \to W$ is a mapping between two vector spaces V and W, then T is the linear transformation from V to W, and the following properties hold.

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

2.
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

Theorem 8.2.2. When V = W, the linear map is called a **linear operator**.

Linear Algebra 8 LINEAR MAPS

8.3 Subspaces of Linear Transformations

Figure 4: Subspaces of a Linear Transformation.

Definition 8.2. If $T:V\to W$ is a linear transformation between two vector spaces V and W, then:

- 1. The vector space V is the **domain** of T.
- 2. The vector space W is the **codomain** of T.
- 3. The **image** (or **range**) of T is the set of vectors the linear transformation maps to.

$$\operatorname{im}\left(T\right)=T\left(V\right)=\left\{ T\left(\mathbf{v}\right):\mathbf{v}\in V\right\} \subset W$$

4. The **kernel** of T is the set of vectors that map to the zero vector.

$$\ker\left(T\right) = \left\{\mathbf{v} \in V : T\left(\mathbf{v}\right) = \mathbf{0}\right\}$$

Linear Algebra 9 DETERMINANTS

8.4 Constructing a Transformation Matrix

Theorem 8.4.1. The standard matrix for a linear transformation is given by the formula:

$$\mathbf{A} = \begin{bmatrix} & & & & & \\ T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right) \\ & & & & & \end{bmatrix}$$

where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \, \dots, \, \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

are the standard basis vectors for \mathbb{R}^n .

9 Determinants

9.1 Properties of Determinants

- 1. $\det(\mathbf{I}) = 1$.
- 2. Exchanging two rows of a matrix reverses the sign of its determinant.
- 3. Determinants are multilinear, so that

(a)
$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

(b)
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

- 4. If **A** has two equal rows, then $\det(\mathbf{A}) = 0$.
- 5. Adding a scalar multiple of one row to another does not change the determinant of a matrix.
- 6. If **A** has a row of zeros, then $\det(\mathbf{A}) = 0$.
- 7. If **A** is triangular, then det (**A**) = $\prod_{i=1}^{n} a_{ii}$.
- 8. If **A** is singular, then $\det(\mathbf{A}) = 0$.
- 9. $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$.
- 10. $\det (\mathbf{A}^{\top}) = \det (\mathbf{A}).$

9.2 Matrix Minors

Definition 9.1. The **minor** of a_{ij} in **A**, denoted \mathbf{M}_{ij} , is the determinant of the sub-matrix formed by deleting the *i*th row and *j*th column of **A**.

9.3 Matrix Cofactors

Definition 9.2. The **cofactor** of a_{ij} in **A** is defined as

$$\mathbf{C}_{ij} = \left(-1\right)^{i+j} \mathbf{M}_{ij}$$

9.4 The Determinant of a Matrix

Theorem 9.4.1. The determinant of an $n \times n$ matrix **A** is given by

$$\det\left(\mathbf{A}\right) = \sum_{j=1}^{n} a_{ij} \mathbf{C}_{ij} = \sum_{i=1}^{n} a_{ij} \mathbf{C}_{ij}$$

where a_{ij} is the entry in the ith row and jth column of **A**.

9.5 The Cofactor Matrix

Definition 9.3. The **cofactor matrix** of an $n \times n$ matrix **A**, denoted **C**, is defined as the matrix of the cofactors of **A**.

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

9.6 The Adjugate of a Matrix

Definition 9.4. The **adjugate** (or *classical adjoint*) of a square matrix \mathbf{A} , denoted adj (\mathbf{A}) , is the transpose of its cofactor matrix.

$$\operatorname{adj}\left(\mathbf{A}\right) = \mathbf{C}^{\top}$$

9.7 The Inverse of a Matrix

Theorem 9.7.1. The inverse of a non-singular matrix **A** is given by

$$\mathbf{A}^{-1} = \frac{1}{\det{(\mathbf{A})}} \operatorname{adj}{(\mathbf{A})}$$

10 Invariant Subspaces

Definition 10.1. Consider the subspace \mathcal{V} of the linear mapping $T:V\to V$ from a vector space V to itself, then \mathcal{V} is an **invariant subspace** of T if

$$T(\mathcal{V}) \subset \mathcal{V}$$

Theorem 10.0.1. If V is an invariant subspace of a linear mapping $T: V \to V$ from a vector space V to itself, then

$$\forall \mathbf{v} \in \mathcal{V} \implies T(\mathbf{v}) \in \mathcal{V}$$

10.1 Trivial Invariant Subspaces

- 1. V.
- 2. {**0**}.
- 3. $\ker(T)$.
- 4. im(T).
- 5. Any linear combination of invariant subspaces.

10.2 Eigenspaces

Definition 10.2. If an invariant subspace is one-dimensional, then the subspace is called an **eigenspace** of the linear transformation.

Theorem 10.2.1. If V is an eigenspace of the linear mapping $T: V \to V$, then

$$\mathcal{V} = \{ \forall \mathbf{v} \in \mathcal{V} : \exists \lambda \in \mathbb{C} : T(\mathbf{v}) = \lambda \mathbf{v} \}$$

where λ is the eigenvalue associated with the eigenvector \mathbf{v} .

10.3 The Eigenvalue Problem

Theorem 10.3.1. The eigenvalues λ of an invertible square matrix \mathbf{A} , are the solutions to

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = \mathbf{0}$$

Theorem 10.3.2. The eigenvectors associated with each eigenvalue, of an invertible square matrix **A**, are the solutions to

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$$

Proof. The eigenvalues and associated eigenvectors of a square matrix \mathbf{A} , are the solutions to $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$.

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
$$\mathbf{A}\mathbf{v} - \lambda\mathbf{v} = \mathbf{0}$$
$$(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$$

The linear system $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$ has a nontrivial solution iff $\mathbf{A} - \lambda \mathbf{I}$ is singular.

10.4 Properties of Eigenvalues

Theorem 10.4.1.

$$\operatorname{Tr}\left(\mathbf{A}\right) = \sum_{i=1}^{n} \lambda_{i}$$

Theorem 10.4.2.

$$\det\left(\mathbf{A}\right) = \prod_{i=1}^{n} \lambda_i$$

11 Eigen Decomposition

11.1 Similarity Transformations

Definition 11.1. A similarity transformation is a linear mapping of the form

$$\mathbf{A} \to \mathbf{V}^{-1} \mathbf{A} \mathbf{V}$$

in which the matrices **A** and **V** are $n \times n$ invertible matrices. Here we say, "**A** is similar to $\mathbf{V}^{-1}\mathbf{A}\mathbf{V}$ ".

11.2 Matrix Diagonalisation

Definition 11.2. The matrix A is a diagonalisable matrix if it is similar to a diagonal matrix. That is, there exists an invertible matrix V, and diagonal matrix D, such that

$$\mathbf{D} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V}$$

Theorem 11.2.1. Let **A** be an $n \times n$ matrix with n linearly independent eigenvectors, then **A** is diagonalisable if $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and **V** is a matrix composed of the eigenvectors of **A**. Explicitly,

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \quad and \quad \mathbf{V} = \begin{bmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & & | \end{bmatrix}$$

where $\mathbf{v}_1, \, \mathbf{v}_2, \, \dots, \, \mathbf{v}_n$ are the eigenvectors of \mathbf{A} .

Proof. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be linearly independent eigenvectors of \mathbf{A} , and $\lambda_1, \lambda_2, \dots, \lambda_n$, the associated eigenvalues. By definition of an eigenspace, we have

$$\begin{cases} \mathbf{A}\mathbf{v}_1 = \lambda_1\mathbf{v}_1 \\ \mathbf{A}\mathbf{v}_2 = \lambda_2\mathbf{v}_2 \\ \vdots & \vdots \\ \mathbf{A}\mathbf{v}_n = \lambda_n\mathbf{v}_n \end{cases}$$

which we can rewrite as

$$\mathbf{AV} = \mathbf{VD}$$

$$\mathbf{D} = \mathbf{V}^{-1}\mathbf{AV}$$
(1)

by rearranging Equation 1, we have \mathbf{A} in terms of its eigenvalues and eigenvectors.

$$A = VDV^{-1}$$

11.3 Powers of a Matrix

Theorem 11.3.1. Let **A** be a diagonalisable matrix, then for all $k \in \mathbb{N}_0$

$$\mathbf{A}^k = \mathbf{V}\mathbf{D}^k\mathbf{V}^{-1}$$

Proof.

$$\begin{split} \mathbf{A}^k &= \left(\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\right)^k \\ &= \underbrace{\left(\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\right)\left(\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\right)\cdots\left(\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\right)}_{k \text{ times}} \\ &= \underbrace{\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\cdots\mathbf{V}\mathbf{D}\mathbf{V}^{-1}}_{k \text{ times}} \\ &= \underbrace{\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\cdots\mathbf{V}\mathbf{D}\mathbf{V}^{-1}}_{k \text{ times}} \\ &= \mathbf{V}\underbrace{\mathbf{D}\mathbf{D}\cdots\mathbf{D}}_{k \text{ times}} \mathbf{V}^{-1} \\ &= \mathbf{V}\mathbf{D}^k\mathbf{V}^{-1} \end{split}$$

Theorem 11.3.2. The eigenvalues of \mathbf{A}^k , $\forall k \in \mathbb{N}$ are λ_1^k , λ_2^k , ..., λ_n^k .

Theorem 11.3.3. The eigenvectors of \mathbf{A} are equal to the eigenvectors of \mathbf{A}^k .

12 System of Differential Equations

12.1 First-Order Differential Equations

Definition 12.1. A first-order differential equation is a differential equation where the highest derivative is of order one.

$$x' = ax$$

Theorem 12.1.1. The general solution to a first-order linear differential equation is of the form

$$x\left(t\right) = c_1 e^{at}$$

where c_1 is an arbitrary constant.

12.2 First-Order System of Differential Equations

Definition 12.2. A first-order system of differential equations is of the form

where $x_1=x_1\left(t\right)$, $x_2=x_2\left(t\right)$, ..., $x_n=x_n\left(t\right)$ are the functions to be determined. In matrix form, the system can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$

12.3 Solution using Diagonalisation

Theorem 12.3.1. The first-order system of differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ can be solved using the following substitution

$$\mathbf{x} = \mathbf{V}\mathbf{u}$$

where \mathbf{u} is a vector to be determined, and \mathbf{V} is the matrix that diagonalises \mathbf{A} . \mathbf{u} is determined by solving

$$\mathbf{u}' = \mathbf{D}\mathbf{u}$$

where \mathbf{D} is the diagonal similarity transformation of \mathbf{A} . This substitution uncouples the system of differential equations so that each equation can be solved as a first-order differential equation.

Proof.

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$
 $(\mathbf{V}\mathbf{u})' = (\mathbf{V}\mathbf{D}\mathbf{V}^{-1})(\mathbf{V}\mathbf{u})$
 $\mathbf{V}\mathbf{u}' = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{V}\mathbf{u}$
 $\mathbf{Y}\mathbf{u}' = \mathbf{Y}\mathbf{D}\mathbf{V}^{-1}\mathbf{V}\mathbf{u}$
 $\mathbf{u}' = \mathbf{D}\mathbf{u}$

Theorem 12.3.2. If **A** is a diagonalisable matrix, then the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ can be expressed as

$$\mathbf{x}\left(t\right)=c_{1}e^{\lambda_{1}t}\mathbf{v}_{1}+c_{2}e^{\lambda_{2}t}\mathbf{v}_{2}+\cdots+c_{n}e^{\lambda_{n}t}\mathbf{v}_{n}$$

12.4 Principle of Superposition

Theorem 12.4.1. If x_1 and x_2 are two solutions to a linear differential equation, then

$$x = c_1 x_1 + c_2 x_2 \\$$

is also a solution to the differential equation.

12.5 Higher-Order Differential Equations

Theorem 12.5.1. A higher-order linear differential equation can be solved by first converting it to a first-order linear system. Consider the nth-order differential equation

$$x^{(n)} + a_1 x^{(n-1)} + \dots + a_{n-1} x' + a_n x = 0$$

We then define

$$\begin{split} x_1 &= x \\ x_2 &= x' \\ &\vdots \\ x_n &= x^{(n-1)} \end{split}$$

Let $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^\top$. Then the first-order linear system of differential equations can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$