

Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 13

05 de Mayo MAT1106 - Introducción al Cálculo

1) Sea
$$s_n = \sum_{k=1}^n k$$
. Pruebe que $s_n \to \infty$.

Demostración. Notar que $s_n \geq n$ para todo $n \in \mathbb{N}$. Sea M > 0. Como $n \to \infty$ existe un n_0 tal que para todo $n \geq n_0, n > M$. Por transitividad esto implica que $s_n > M$, por lo que s_n converge a infinito por definición.

2) Sea
$$x_n = \frac{1}{\sqrt{n^3 + 1} - \sqrt{n^3}}$$
. Pruebe que $x_n \to \infty$.

Demostración. Notar que $n^3 + 1 > n^3 > 0$, por lo que las raíces están bien definidas y además $\sqrt{n^3 + 1} - \sqrt{n^3} > 0$. Luego, x_n está bien definida para todo n. Por otro lado, tenemos que

$$x_n = \frac{1}{\sqrt{n^3 + 1} - \sqrt{n^3}} = \frac{1(\sqrt{n^3 + 1} + \sqrt{n^3})}{(\sqrt{n^3 + 1} - \sqrt{n^3})(\sqrt{n^3 + 1} + \sqrt{n^3})}$$
$$= \sqrt{n^3 + 1} + \sqrt{n^3}$$

Notar que $\sqrt{n^3+1}+\sqrt{n^3} \geq \sqrt{n^3} \geq \sqrt{n}$. Sea M>0. Como $\sqrt{n}\to\infty$, existe un n_0 natural tal que para todo $n\geq n_0, \sqrt{n}>M$. Por transitividad tenemos que $x_n>M$, por lo que $x_n\to\infty$.

3) Sea
$$x_n = \frac{1}{n^2} \binom{n}{3}$$
. Pruebe que $x_n \to \infty$.

Demostración. Sabemos que

$$\binom{n}{3} = \frac{n!}{(n-3)!3!} = \frac{n(n-1)(n-2)}{6}.$$

Luego,

$$x_n = \frac{n(n-1)(n-2)}{6n^2} = \frac{(n-1)(n-2)}{6n} = \frac{n}{6} - \frac{1}{2} + \frac{1}{3n} \ge \frac{n}{6} - \frac{1}{2}.$$

Tomemos M > 0. Notar que como $n \to \infty$, para 6M + 3 > 0, tenemos que existe un n_0 tal que para todo $n \ge n_0$ se cumple que

$$n > 6M + 3 \Rightarrow \frac{n}{6} - \frac{1}{2} > M.$$

Por transitividad esto implica que $x_n > M$, por lo que $x_n \to \infty$.

4) Sea L_n definida como

$$x_n = \begin{cases} 2 & \text{si } n = 1\\ 1 & \text{si } n = 2\\ x_{n-2} + x_{n-1} & \text{si } n > 2 \end{cases}$$

Pruebe que $L_n \to \infty$.

Solución 1. Notar que a partir de $n=3, x_n>n$. Sea M>0. Como $n\to\infty$, existe un n_0 natural tal que para todo $n\geq n_0$ se cumple n>M. Tomando $n_*=\max\{n_0,3\}$ tenemos que $x_n>n>M$, por lo que converge a infinito.

Solución 2. Notemos que a partir de n > 4, x_n es creciente. En efecto, si $n \ge 4$, tenemos que $x_n = x_{n-1} + x_{n-2} > x_{n-1}$. Luego, si n > 4, $x_n = x_{n-2} + x_{n-1} \ge 2x_{n-2}$. Esto implica que $x_{2k} \ge 2^{k-2} \cdot x_4$ (para $k \ge 2$). Como $2^{k-2} \cdot x_4$ converge a infinito, tenemos que existe un n_0 tal que para todo $n \ge n_0$, tenemos que $x_{2n} > M$. Como además x_n es creciente, tenemos que si tomamos $n_1 = \max\{2n_0, 4\}$ tenemos que para todo $n \ge n_1$, tenemos $x_n > x_{n_1}$. Esto implica que x_n converge a infinito.

5) Sea
$$s_n = \sum_{k=1}^n \frac{1}{k}$$
. Pruebe que $s_n \to \infty$.

Demostración. En una ayudantía anterior vimos que

$$s_{2^n} \ge 1 + \frac{n}{2}.$$

Como $\frac{n}{2} \to \infty$, para todo M > 0 existe un n_0 tal que para todo $n \ge n_0$ se cumple $\frac{n}{2} > M$. Ahora, si consideramos $n_1 = 2^{n_0}$ tenemos que para todo $n \ge n_1$ se cumple $x_n \ge x_{n_1} \ge 1 + \frac{n_0}{2} > M$, por lo que s_n converge a infinito.