penagoal riman memory (Paris): on current use one kept so they can be apply b) secondary Memory CHIDD/SSD): Long term, Including the O.s, apply & files. Cache Memory: - A small sized type of videtile computer memor that provides high speed data access to the processor & stores frequently used computer programe, applications and data ol) Untual Memory: + An extension of primary memory that provides an "illusion" of a very large mass memory by using secondary storage. e) Regulers: * Small amounts of fast storage within CPU tha Store Instructions and data Turrently being Need for memory allocation a) Efficient memory utilization · Ensures that memory recued effectertly by allocating is deallocating memory as needed

- Projects each process from interfer - Projects each process from interfer - memory space of another process.	wing with the
- Protects each process Troites.	-
memory space of another process.	
- DMultidaskewa:	emultaneoust.
- Allows multiple processes to run s	de allocation
- Allows multiple processes to runs by managing memory allocation?	
- Final has the execution of processes	11 avaslable
- Dirtual Memory: - Frables the execution of processes - more memory than what is physica	Ty and work.
- Jean S	n M·M
- (0.3) Configuous & Dynamic Allocation is	
Acontiquous Allocation.	
- Definition:	technique
- Definition: · contiguous allocation is a M.M. where each process is allocated as	rugle contravou
- where each process is accounted	7
- block of memory need memory need	de are
- The entire process's memory need	from of
gatisties within one common	
- physical memory.	Harry Marie
-> How 1+works?:	F11000000
11. Hon a mocess is to be loaded in	o memory,
The Are consched for a corriguous D	DCE OF Those
memory that is large enough to a	acomodate
the process.	
· Once found, the entire process le	loaded into
this block.	
	114111111

- Pros: · simplicity: Accessing memory is straight forward because the entire process & stored in a single, continuous block. · Efficient Memory Access: Since the entire process Restored contiquously-there are fewer over heads related to memory access, resulting in tactor accels times. - Cons: · External fragmentation: - over-time, as processes are allocated & deallocate memory can be come frequented making it difficult to find a large enough contiguous block for a new process. · Memory Wartage: - Even of there is enough total free memory of may not be in a single contiquous block leading to inefficient memory we. · Fred partitioning: - In systems that we fixed sized partitions, a process ingot be allocated more memory than et needs, leading to internal fragmentation. divided into blocks of 200MB each. It a process requires 300MB of memory 9+ will not be able to fit into any of these blocks even though there is enough total free mensory. as the blocks are not contiquous.

B) Dynamic Allocation:
- Defenstion:
· Dynamic memory allocation allows proces
- the most a so will and the most
- Single continous block of memory
- How It works !:
· Memory Ps allocated Phemall chanks that co
be scattered across different locations in
Sharel and board of
The O's keeps track of these chunks & provider
the necessary marpings believe the
logical address space to the physica memory
locations
Types of Dynamic Allocation:
· Paggua:
- Driedes the process's memory into fixed size
pages and maps them to frames in physical men
- Segmentation:
- Divides the process memory Puto segments
based on logical divisions like code, stack kds
titlese segments can be located anywhere in
physical memory.
Pros:
oftexible memoryme:
- By allowing non contiguous allocation
dyname allocation makes better we of.

available memory, reducing both interval & . Effectant use of mamory: - Memory can be allocated & deallocated as needed, leading to more efficient use of eyeter resource. + con's : · complexely: - Dynamic allocation requires the operating system to manage mappings between logical & physical memory, Increasing complexes · Overhead! keeping track of scattered memory allocation & ensuring efficient access can introduce overhead Frample: -If a process requires BOOMB of memory & the system has three non-configuous block cof 1001913 each available, the process can still be allocated the required memory by dynamically allocating these non-configuous blocks. · Companison: A Contiquous allocation BI Dynamic allocation Descripte 25 fact) More complex (2) Reduces fragmentation 2) prone to tragmentation 3) less flexple 3) More frexible Scanned with CamScanner

Consoayett
Tresc are memory allocation state for places Processes into memory
Allocates the first block of memory that is large of - for the process - Proi: Roduces warted apace - Cons: contedad to fragmentation.
- Allocates the smallest blocket memory that Is large enough for the process - Pro: Reduces wasted space. - Con: Con lead to ext - fragmentation Melower
* Elklorit fit: - Allocates the largest block of memory • Pro! Leanes larger chunks of memory for future allocation. • Con: Conlead to sneffscient memory wage & fragmentation
O.D compaction: DIT is a technique used to eliminate ext Fragmentation by moving all allocated memory blocks to one end of the memory space, combining all free memory into one large block 10 Dis: It is time comming process and is not feasible in all Dis, especially those reasoning real - time performance.

(0.6) Internal > Ext fragmentation. A Internal trag -> Occurs when fixed sized mennory block is allocated & the process does not weall of the allocated memory. - The unused space worthin the block is would B Ext. Frag - Occurs obton free memory & scattered in small blacks throughout the system, waking it difficult to allocate large contiquous memory spaces even if suffreent total memory is avaitable Q7 Segmentation + segmentation is memory management scheme that supports the wer view of memory. · A program is divided into segments, each of different length. * Hardware Tray! - Reajustice a segment table that many logical addresses to physical addresses. Each table entry has a base address & limit * Segmentation Table: - contains the base address starting address of - the limit [Ismit of the segment

Mono
Ore Paging
Draging is a memory movagement scheme 1 Draging is a memory movagement scheme that elemenates the need for contiguous
TEAT STRINGTED THE
allocation by) to fixed size page is
19) It avoids ext trag
remory
* Hardware requered :
Page tables are used to keep track of whom
pages are stored in physical memory.
+ translation loo tassde buffers
A cooks used to reduce the time taken to
access the page table, speeding up memory
access an a paging system.
(Deal Deal Let
(0-a) Derty but - + It is a but associated with block of
memory that endecates whether the block
has been modified
If dirty but 90 set, the block needs to be
worther back to storage (disk) betwee H
can be replaced or removed.
D.10) Shared pages
- Allows multiple to share the same physical
The mention of ten (less ton a)
19 brances or coole segments.

