

Designnotat			
Tittel:			
Forfattere: Peter Pham			
Versjon: 1.0	Dato:		

Innhold

1	Problembeskrivelse	2
2	prinsipiell løsning 2.1 Spesifikasjon 2.2 Type filter 2.3 Nødvendig orden 2.4 Systemfunksjonen	3 3 4 5
3	Realisering og test	7
4	Konklusjon	8
5	Referanser	9

1 Problembeskrivelse

Signalbehandling i elektroniske system foregår som regel digitalt. Inngangssignalene til systemet er oftest analoge, og en digitalisering av disse før signalbehandlingen er derfor nødvendig. For å unngå alvorlige aliasing-feil, er det nødvendig å begrense båndbredden til signalene som skal digitaliseres. Dersom punktprøvingsfrekvensen er f_s , må, ifølge punktprøvingsteoremet, signalet være båndbegrenset til $B = \frac{f_s}{2}$. I praksis er en fullstendig båndbegrensing (der alle frekenskomponenter over $\frac{f_s}{2}$ er satt til null) ikke mulig. Det er heller ikke nødvendig. Det er tilstrekkelig at frekvenskomponenter over $\frac{f_s}{2}$ blir dempet med en viss faktor avhengig av applikasjonen. Slik demping kan oppnåes ved å sette et anti-alias-filter umiddelbart foran A/D-omformeren som vist i figur 1. Videre er det ønskelig at anti-alias-filteret påvirker frekvenskomponentene under $\frac{f_s}{2}$ minstmulig. Det kan sikres ved å kreve at knekkfrekvensen til filteret ligger over en viss verdi.

Figur 1: 01Anti-alias-filter.

Dermed skal designes et anti-alias-filter til bruk ved en gitt punktprøvingsfrekvens f_s . Filteret skal ha en demping på minst 10 dB ved frekvensen $\frac{f_s}{2}$, og knekkfrekvensen f_c til filteret skal oppfylle $f_c \geq 0.75 \frac{f_s}{2}$. Knekkfrekvensen definerer vi som frekvensen hvor amplituderesponsen har sunket med 3 dB fra sitt høyeste nivå.

2 prinsipiell løsning

Ved filterdesign kan det være lurt å ha en fornuftig arbeidsgang:

- 1. Start med spesifikasjon
- 2. Velg type filter
- 3. Finn nødvendig orden N
- 4. Finn systemfunksjonen H(s)
- 5. Realisert H(s) med tilgjenteliug teknologi

2.1 Spesifikasjon

Fra problembeskrivelsen i seksjon 1 blir det opplyst at dersom punktprøvingsfrekvensen er f_s , må båndbegrensingen være $B = \frac{f_s}{2}$ og knekkfrekvensen være $f_c \geq \frac{3}{8}f_s$. Amplituderesponsen vil da ha en form tilsvarende figur 2.

Figur 2: Ønsket amplituderespons på system.

2.2 Type filter

For å få en amplituderespons som likner mest på figur 2 kan et Butterworth filter benyttes da den ifølge siden [3] er et analog filter som produserer den flateste amplituderesponsen, men da på bekostning av en relativt lang overgangsbånd mellom båndpass og båndstop som illustrert i figur 3.

For å få en slik filter karakteristikk kan man ta i bruk et 2. ordens Sallen-Key topologi som illustrert i figur 4.

Figur 3: Plot av frekvensresponsen til en Butterworth lavpassfilter.

Figur 4: Lavpassfilter med Sallen-Key topologi.

2.3 Nødvendig orden

Fra siden [1] blir det oppgitt at formelen for demping $A(\omega)$ for en nte-ordens Butterworth lavpasslfilter er gitt ved systemfunksjonen H(s) som

$$A(\omega) = |H(j2\pi f)| = \frac{1}{1 + (\frac{f}{f_c})^{2n}}$$
 (1)

Formel 1 kan videre skrives om til

$$n = \frac{1}{2} \frac{\ln(A^{-2} - 1)}{\ln(\frac{f}{f_c})} \tag{2}$$

Der dempingen A er amplitudeforholdet, dette får man ved å bruke formelen

$$A = 10^{\frac{A[dB]}{20}} \tag{3}$$

Tabell 1: Dempningsfaktor ζ .

	Polpar i		
n	1	2	3
1	1		
2	0.70711		
3	1	0.5	
4	0.92388	0.38268	
5	1	0.80902	0.30902
6	0.96593	0.70711	0.25882

Som man kan se på figur 5 tatt fra Wikipedia [1] kan man se at man får et mye brattere jo høyere orden det er i filteret, men ettervert som man kommer i en høyere orden så vil også graden den blir brattere minkes.

Figur 5: Plot med demping for et Butterworth lavpassfilter fra 1. til 5. orden med knekkfrekvens $\omega = 1$.

2.4 Systemfunksjonen

Når man ved hjelp av formelen 2 kan man bruke tabellen 1 til å finne ut dempningsfaktoren ζ .

Fra videoen [2] blir det oppgitt at at tidskontstantene τ er gitt ved:

$$\tau_{n1} = \frac{1}{\omega_0 \zeta_n}$$
(4) $\tau_{n2} = \frac{1}{\omega_0^2 \tau_{n1}}$

Kondensatorverdiene blir da gitt ved

$$C_{n1} = \frac{\tau_{n1}}{R}$$
 (6) $C_{n2} = \frac{\tau_{n2}}{R}$

3 Realisering og test

Punktprøvingsfrekvensen f_s er satt til 6,4 kHz. Dermed blir spesifikasjonene som plottet i tabell 2.

Tabell 2: Filterspesifikasjoner

Spesifikasjon	Formel	Verdi
f_s		6400Hz
В	$\frac{f_s}{2}$	3200Hz
f_c	$\geq \frac{3}{8}f_s$	≥2400Hz

Ved å ta i bruk formlene gitt i seksjon 2 blir beregninene som vist i tabell

Tabell 3: Beregninger.

Størrelse	Formel	Måltall og enhet
A	$10^{\frac{A[dB]}{20}}$	≈ 0.3162
n	$\frac{1}{2} \frac{\ln(A^{-2} - 1)}{\ln(\frac{f}{f_c})}$	$\approx 3.81 \rightarrow 4$
R		$1k\Omega$
ζ_1	tatt fra tabel 1	0.92388
ζ_2	tatt fra tabel 1	0.38268
ω_0	$2\pi f_c$	$15079.64 \frac{rad}{s}$
$ au_{11}$	$\frac{1}{\omega_0 \zeta_1}$	$71.77 \mu s$
$ au_{12}$	$\begin{array}{c c} \frac{1}{\omega_0^2 \tau_{11}} \\ 1 \end{array}$	$61.27\mu s$
$ au_{21}$	$\begin{array}{c} \frac{1}{\omega_0 \zeta_2} \\ 1 \end{array}$	$173.29 \mu s$
$ au_{22}$	$\frac{1}{\omega_0^2 au_{21}}$	$25.38\mu s$
C_{11}	$\frac{\tau_{11}}{R}$	71.77nf
C_{12}	$\frac{\overline{\tau_{12}}}{R}$	61.27nf
C_{21}	$\frac{\tau_{21}}{R}$	173.29nf
C_{22}	$\frac{\tau_{22}}{R}$	25.38nf

Den realiserte er illustrert i figur 6. Merk at verdiene ikke er det samme som på tabell 3 da det er små avvik i kondensatorene, men til tross for det så er avviket relativt lavt.

 ${\bf Figur~6:~Realisert~krets~med~verdier}.$

4 Konklusjon

5 Referanser

Referanser

- [1] Wikipedia Contributors. *Butterworth filter*. Wikipedia, aug. 2022. URL: https://en.wikipedia.org/wiki/Butterworth_filter (sjekket 28.09.2022).
- [2] Lars Lundheim. Et konkret filterdesigneksempel. https://ntnu.cloud.panopto.eu/, 2022. URL: https://ntnu.blackboard.com/ultra/courses/_38144_1/cl/outline (sjekket 01.10.2022).
- [3] Wayne Storr. Butterworth Filter Design and Low Pass Butterworth Filters. Basic Electronics Tutorials, aug. 2013. URL: https://www.electronics-tutorials.ws/filter/filter_8.html (sjekket 29.09.2022).