MATH10111 Questions from Lecture Notes

Available at JTANG.DEV/RESOURCES

D: Definition

P: Proof

Number theory I

D: Prime Number

P: Let $a, b \in \mathbb{Z}$ with $a \geq 2$, then $a \nmid b$ or $a \nmid (b+1)$.

P: Let a and b be natural numbers and let p be a prime number. If p|ab, then p|a or p|b.

P: $\sqrt{2}$ is not a rational number.

P: Every natural number greater than one has a prime divisor.

P: There are infinitely many prime numbers.

Sets

D : Subset	$\mathbf{D}:A\cap B$	$\mathbf{D}: A^c$
\mathbf{D} : $A = B$	$\mathbf{D}: A \cup B$	\mathbf{D} : $\mathcal{P}(A)$
D: Empty Set	$\mathbf{D}: A \setminus B$	$\mathbf{D}: A \times B$

P: For any set A, we have $\emptyset \subseteq A$.

P: The empty set is unique.

P: If A has precisely n elements, then $\mathcal{P}(A)$ has 2^n elements.

Functions

 \mathbf{D} : f = gD: Injective **D**: f^{-1} D: Constant Function D: Surjective **D**: Permutation **D**: Identity Function **D**: Bijective \mathbf{D} : $f|_X$ **D**: $g \circ f$

P: Let $f:A\to B$ and $g:B\to C$ be functions. If f and g are both 1-1, then $g\circ f$ is 1-1.

P: Let $f: A \to B$ and $g: B \to C$ be functions. If f and g are both onto, then $g \circ f$ is onto.

P: Let $f: A \to B$, $g: B \to C$ and $h: C \to D$ be functions, then $h \circ (g \circ f) = (h \circ g) \circ f$.

P: Let $f: A \to B$ be a bijection, then $f^{-1}: B \to A$ is a bijection.

P: Let $f: A \to B$ be a bijection, then $(f^{-1})^{-1} = f$.

P: Let $f: A \to B$ be a bijection, then $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.

P: Let f, g, h be permutations of set A, then $g \circ f$ is a permutation of A.

P: Let f, g, h be permutations of set A, then $h \circ (g \circ f) = (h \circ g) \circ f$.

P: Let f, g, h be permutations of set A, then f^{-1} is a permutation of A, and $f^{-1} \circ f = f \circ f^{-1} = i_A$

Cardinality

 $\mathbf{D}: \, \mathcal{P}_k(A) \\ \mathbf{D}: \, \binom{n}{k}$ \mathbf{D} : A has cardinality n \mathbf{D} : A is countable \mathbf{D} : A is finite or infinite \mathbf{D} : A k-subset of A

P: Let $m, n \in \mathbb{N}$. If there is a 1-1 function $f: \mathbb{N}_m \to \mathbb{N}_n$, then $m \leq n$.

P: Let A be a set. Suppose that $m, n \in \mathbb{N}$ and that there are bijections $f : \mathbb{N}_m \to A$ and $g : \mathbb{N}_n \to B$, then m = n.

P: Let A and B be finite sets and let $f: A \to B$ be a 1-1 function, then $|A| \le |B|$. If f is a bijection, then |A| = |B|.

P: Let A and B be non-empty finite sets and let $f: A \to B$. If |A| > |B|, then $\exists x_1, x_2 \in A, x_1 \neq x_2$ and $f(x_1) = f(x_2)$.

P: Let X and Y be finite sets such that $X \cap Y = \emptyset$, then $|X \cup Y| = |X| + |Y|$.

P: If X_1, \dots, X_n are pairwise disjoint finite sets, then $X_1 \cup \dots \cup X_n = \bigcup_{i=1}^n X_i$ is a finite set and $|\bigcup_{i=1}^n X_i| = \sum_{i=1}^n |X_i|$.

 $\mathbf{P} \colon \mathrm{Let} \ X \ \mathrm{and} \ Y \ \mathrm{be \ finite \ sets, \ then} \ |X \cup Y| = |X| + |Y| - |X \cap Y|.$

P: Let X and Y be finite sets, with |X| = m and |Y| = n, then $X \times Y$ is a finite set and $|X \times Y| = mn$.

P: Let X_1, \dots, X_m be finite sets, where $|X_i| = n_i$ for each i, then $|X_1 \times \dots \times X_m| = n_1 n_2 \cdots n_m$.

P: Let X and Y be non-empty finite sets, where |X| = m and |Y| = n, then the number of functions $X \to Y$ is nm.

P: Let A and B be finite sets with |A| = |B| = n, then there are precisely n! bijections $A \to B$.

P: Let $n, k \in \mathbb{N} \cup \{0\}$, then $\binom{n}{k} = 0$ if k > n. **P**: Let $n, k \in \mathbb{N} \cup \{0\}$, $\binom{n}{0} = \binom{n}{n} = 1$ and $\binom{n}{1} = n$. **P**: Let $n, k \in \mathbb{N} \cup \{0\}$, $\binom{n}{k} = \binom{n}{n-k}$.

P: Let $n, k \in \mathbb{N} \cup \{0\}$, if $0 < k \le n$, then $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. **P**: Let $n, k \in \mathbb{N} \cup \{0\}$ with $k \le n$, then $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Euclidean Algorithm

 \mathbf{D} : gcd(a,b)

P: Let A be a non-empty finite set of real numbers, then A has a minimum and a maximum element.

P: Let $a, b \in \mathbb{Z}$ with b > 0, then there are unique integers q and r such that a = bq + r and $0 \le r < b$.

P: Let $a, b \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$. Suppose $q, r \in \mathbb{Z}$ with a = qb + r, then gcd(a, b) = gcd(b, r).

P: Let $a, b \in \mathbb{Z}$ with a, b > 0, then $\exists s, t \in \mathbb{Z}$ such that gcd(a, b) = sa + tb.

P: Let p be a prime, then $\forall a, b \in \mathbb{N}, p|ab \Rightarrow p|a \text{ or } p|b$.

Congruence of integers

 $\mathbf{D} \colon a \equiv b \bmod n$

D: Linear congruence

P: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, then $a \equiv b \mod n \Leftrightarrow a$ and b have the same remainder after division by n.

P: Let $a, b, c, d, \lambda \in \mathbb{Z}$ and $n, k \in \mathbb{N}$. Suppose that $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.

P: Let $a, b, c, d, \lambda \in \mathbb{Z}$ and $n, k \in \mathbb{N}$. Suppose that $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$.

P: Let $a, b, c, d, \lambda \in \mathbb{Z}$ and $n, k \in \mathbb{N}$. Suppose that $a \equiv b \mod n$ and $c \equiv d \mod n$, then $\lambda a \equiv \lambda b \mod n$.

P: Let $a, b, c, d, \lambda \in \mathbb{Z}$ and $n, k \in \mathbb{N}$. Suppose that $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a^k \equiv b^k \mod n$.

P: Let $c \in \mathbb{Z}$ and $n \in \mathbb{N}$. Suppose $\gcd(c, n) = 1$, then $\exists s \in \mathbb{Z}$ such that $sc \equiv 1 \mod n$.

P: Let $d, n \in \mathbb{N}$ with d|n and let $b_1, b_2 \in \mathbb{Z}$, then $db_1 \equiv db_2 \mod n \Leftrightarrow b_1 \equiv b_2 \mod \frac{n}{d}$.

P: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. $ax \equiv b \mod n$ has a solution $\Leftrightarrow d|b$, where $d = \gcd(a, n)$.

P: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Write $d = \gcd(a,n)$. Suppose d|b. Let $x \in \mathbb{Z}$ be a solution to $ax \equiv b \mod n$, then $\forall k \in \mathbb{Z}, x+kn$ is also a solution. Instead suppose that d = 1. Then $ax \equiv b \mod n$ has a unique solution in $\{0, 1, ..., n-1\}$.

Relations

D: Relation R on AD: Equivalence relationD: Addition \oplus D: Reflexive relationD: Equivalence classD: Multiplication \odot

 $\begin{array}{ll} \mathbf{D} \colon \mathrm{Symmetric\ relation} & \quad \mathbf{D} \colon \mathrm{Partition} \\ \mathbf{D} \colon \mathrm{Transitive\ relation} & \quad \mathbf{D} \colon \mathrm{The\ set} \ \mathbb{Q} \\ \end{array}$

P: Let R be an equivalence relation on a set non-empty A. Let $a, b \in \mathbb{A}$. If aRb, then $R_a = R_b$.

P: Let R be an equivalence relation on a set non-empty A. If $a \not R b$, then $R_a \cap R_b = \emptyset$.

P: Let R be an equivalence relation on a non-empty set A. Then $\{R_a : a \in A\}$ is a partition of A.

P: Let A be a non-empty set and let $\{A_i : i \in I\}$ be a partition of A. Define a relation R on A by $aRb \Leftrightarrow \{a,b\} \subseteq A_i$ for some $i \in I$. Then R is an equivalence relation, with equivalence classes A_i for $i \in I$.

Number theory II

D: Fermat's little theorem

P: Let p be a prime, and let $a_1, \dots, a_n \in \mathbb{Z}$. If $p|a_1 \dots a_n$, then p divides at least one of a_1, \dots, a_n .

P: Let $n \in \mathbb{N}$ with $n \geq 2$, then $n = p_1 \cdots p_r$, where each p_i is prime and any two such expressions for n differ only in the order of writing.

P: Let $p \in \mathbb{N}$ be prime, and let $a \in \mathbb{N}$. If $p \nmid a$, then $a^{p-1} \equiv 1 \mod p$.

P: Let $p \in \mathbb{N}$ be prime and $a \in \mathbb{Z}_p \setminus \{0\}$, then the map $f : \mathbb{Z}_p \setminus \{0\} \to \mathbb{Z}_p \setminus \{0\}$ defined by $f(x) = a \odot x$ is a permutation.

Binary Operations

 $\begin{array}{lll} \mathbf{D}: * \text{ on a set } S & \mathbf{D}: \text{ Identity element w.r.t } S & \mathbf{D}: \text{ Symmetric group} \\ \mathbf{D}: * \text{ is commutative} & \mathbf{D}: \text{ Group} & \mathbf{D}: \text{ Cyclic group} \end{array}$

D: * on associative **D**: Commutative group **D**: Field

P: Let * be a binary operation on a set S. Let $e, f \in \mathbb{S}$ be identity elements for S with respect to *, then e = f.