Lab05-Numbering Programs

CS363-Computability Theory, Xiaofeng Gao, Spring 2015

- * Please upload your assignment to FTP or submit a paper version on the next class.

 * Name:______ StudentId: _____ Email: _____
- 1. Show that there is a total computable function k such that for each n,
 - (a) k(n) is an index of the function $|\sqrt[n]{x}|$.
 - (b) $W_{k(n)}^{(m)} = \{(y_1, \dots, y_m) : y_1 + y_2 + \dots + y_m = n\} \ (m \ge 1).$
 - (c) $E_{k(n)} = W_n$.
- 2. (a) Find P_{2057} . Distinguish what are $\phi_{2057}(x)$ and $\phi_{2057}^{(n)}(x_1, \dots, x_n)$ and their corresponding $W_{2057}(x)$, $E_{2057}(x)$ and $W_{2057}^{(n)}(x)$, $E_{2057}^{(n)}(x)$;
 - (b) Let P be the program J(1,2,4), Z(1), S(1). Calculate $\gamma(P)$.
- 3. Use Cantor's Diagonal Method to complete the following tasks:
 - (a) Let $f_0, f_1, ...$ be an enumeration of partial functions from \mathbb{N} to \mathbb{N} . Construct a function g from \mathbb{N} to \mathbb{N} such that $Dom(g) \neq Dom(f_i)$ for each i.
 - (b) f is a partial function from \mathbb{N} to \mathbb{N} . Construct a non-computable function g such that $g(x) \simeq f(x)$ for $x \leq m$, here $m \in \mathbb{N}$.
- 4. (a) Show that the functions s_n^m defined in s-m-n theorem are all primitive recursive.
 - (b) Show that for each $m \in \mathbb{N}$ there is a total (m+1)-ary computable function s^m such that for all n, $\phi_e^{(m+n)}(\mathbf{x}, \mathbf{y}) \simeq \phi_{s^m(e,\mathbf{x})}^{(n)}(\mathbf{y})$, where \mathbf{x}, \mathbf{y} are m- and n-tuples respectively. (*Hint*. Consider the definition of $s_n^m(e,\mathbf{x})$ given in the proof of s-m-n Theorem. The only way in which n was used was in determining how many of the r_1, r_2, \ldots to transfer to R_{m+1}, R_{m+2}, \ldots Now recall that the effect of P_e depends only on the original contents of $R_1, \ldots, R_{\rho(P_e)}$, where ρ is the function defined as the smallest register number such that none of the registers larger than $\rho(P_e)$ will be affected during the computation of P_e ; $\rho(P_e)$ is independent of n.)
- 5. Alternative Selection of π

The π function where $\pi(x,y)=2^x(2y+1)-1$ can enumerate linearly all pairs of natural numbers $(x,y)\in\mathbb{N}\times\mathbb{N}$. However, it does not generate a completely diagonal-zigzag trace in the first quadrant of the plane. Correspondingly, instead of applying this π function, we can define an alternative bijection π' , such that $\pi':\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ and it grows diagonally according to the right figure. Thus we have:

$$\pi'(0,0) = 0, \ \pi'(1,0) = 1, \ \pi'(0,1) = 2,$$

 $\pi'(2,0) = 0, \ \pi'(1,1) = 4, \ \pi'(0,2) = 5, \ \text{etc.}$

Now please develop a mathematical formula for π' , (like the notation of original π), and prove the correctness of your design.

Hint:

- (a) For the pairs in the diagonal we have the property that x + y is a constant.
- (b) The diagonal given by x + y = n consists of n + 1 pairs.
- (c) You can count the elements occurring before the pair (x_0, y_0) .