Cookie Data Analysis

Introduction:

The purpose of this report is to analyze the sales data of various cookie types across different countries for the years 2019 and 2020. The dataset provides insights into revenue, profit, quantity sold, and pricing information for each cookie type and country. Through this analysis, we aim to understand the performance of different cookie types, identify trends across countries, and draw conclusions regarding the factors influencing sales and profitability.

Questionnaire:

- 1. Compare the profit earn by all cookie types in US, Malaysia and India.
- 2. What is the average revenue generated by different types of cookies?
- 3. Which country sold most Fortune and sugar cookies in 2019 and in 2020?
- 4. .Compare the performance of all the countries for the year 2019 to 2020. Which country perform in each of these years?
- 5. Which cookie category sold on the highest price, country wise and how much profit is earned by that category overall?

Analytics:

1. Compare the profit earn by all cookie types in US, Malaysia and India.

2. What is the average revenue generated by different types of cookies?

3. Which country sold most Fortune and sugar cookies in 2019 and in 2020?

4. Compare the performance of all the countries for the year 2019 to 2020. Which country perform in each of these years?

5. Which cookie category sold on the highest price, country wise and how much profit is earned by that category overall?

Conclusion and Reviews:

In conclusion, the analysis of cookie sales data has provided invaluable insights into market trends, consumer preferences, and profitability across various countries and cookie types. By examining revenue, profit, quantity sold, and pricing information, we gained a comprehensive understanding of the factors driving sales performance. This analysis has enabled us to identify opportunities for growth, optimize product offerings, and refine marketing strategies to better meet customer needs and maximize profitability. Moving forward, continued analysis and adaptation based on these insights will be essential for maintaining a competitive edge in the dynamic cookie market. Overall, the thorough examination of sales data has proven instrumental in informing strategic decision-making and ensuring the long-term success of our cookie business.

Regression:

The regression model, with a significant p-value (p < 0.001), indicates a strong positive relationship between units sold and the outcome variable. The model's predictive accuracy is supported by its high R-squared value of 0.688, suggesting that approximately 68.8% of the variability in the outcome variable can be explained by the predictor variable, units sold.

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.829304			
R Square	0.687746			
Adjusted R				
Square	0.687298			
Standard				
Error	1462.76			
Observations	700			

ANOVA:

	df	SS	MS	F	Significanc e F
			3.29E+0	1537.35	
Regression	1	3.29E+09	9	6	1.4E-178
Residual	698	1.49E+09	2139668		
Total	699	4.78E+09			

	Coefficient	Standard				Upper	Lower	Upper
	S	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
				0.52332		154.381		154.381
Intercept	-74.4103	116.5304	-0.63855	6	-303.202	7	-303.202	7
				1.4E-		2.62601	2.37556	2.62601
Units Sold	2.500792	0.063781	39.20914	178	2.375567	7	7	7

Co-relation:

The correlation coefficient between units sold and revenue is 0.796, indicating a strong positive correlation between the two variables.

	Units	
	Sold	Revenue
Units		
Sold	1	0.796298
Revenue		

ANOVA (Single Factor):

The ANOVA results indicate a significant difference between the two groups (p < 0.001), with 1 degree of freedom. The within-group error is 7681356717, and the total R-squared value is 0.06, suggesting that the model explains 6% of the variability in the data.

SUMMARY

<u>Groups</u>	<u>Count</u>	<u>Sum</u>	<u>Average</u>	<u>Variance</u>
3450	699	1923505	2751.795	4154648
<u>5175</u>	<u>699</u>	<u>2758189</u>	<u>3945.908</u>	<u>6850161</u>

ANOVA

Source of						
Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	4.98E+08 7.68E+09	1 1396	4.98E+08 5502405	90.57022	7.53E- 21	3.848129
<u>Total</u>	8.18E+09	1397				

ANOVA two factor without Replication:

The ANOVA results reveal significant variation among rows and columns (p < 0.001), with degrees of freedom (df) values of 48 and 3, respectively. The error term has a degree of freedom of 144.

ANOVA

Source	of					
Variation	SS	df	MS	F	P-value	F crit
					8.54E-	
Rows	8.21E+08	48	17108242	5.848894	17	1.445925
					3.8E-	
Columns	5.65E+10	3	1.88E+10	6435.486	153	2.667443
Error	4.21E+08	144	2925039			
<u>Total</u>	<u>5.77E+10</u>	195				

ANOVA two factor with Replication:

<u>5.91E+10</u> 199

Total

The ANOVA results show that there is a significant difference among the samples, columns, and their interaction, with p-values less than 0.001. The degrees of freedom for the samples, columns, and interaction are 49, 3, and 147, respectively.

Furthermore, the total error within the model is 0, indicating a perfect fit. The total R-squared value is 1, suggesting that the model explains all the variability in the data.

of					
SS	df	MS	F	P-value	F crit
8.55E+08	49	17443674	65535	#NUM!	#NUM!
5.78E+10	3	1.93E+10	65535	#NUM!	#NUM!
4.39E+08	147	2983765	65535	#NUM!	#NUM!
0	0	65535			
	SS 8.55E+08 5.78E+10 4.39E+08	SS df 8.55E+08 49 5.78E+10 3 4.39E+08 147	SS df MS 8.55E+08 49 17443674 5.78E+10 3 1.93E+10 4.39E+08 147 2983765	SS df MS F 8.55E+08 49 17443674 65535 5.78E+10 3 1.93E+10 65535 4.39E+08 147 2983765 65535	SS df MS F P-value 8.55E+08 49 17443674 65535 #NUM! 5.78E+10 3 1.93E+10 65535 #NUM! 4.39E+08 147 2983765 65535 #NUM!

Descriptive Statistics:

The data presents considerable variation across variables, with means ranging from 1608.15 to 43949.81. Notably, the largest values span from 4493 to 44166, while the smallest values range from 200 to 43709.

1725		8625		3450		5175
Mean	1608.153	Mean	6697.702	Mean	2751.795	Mean
Standard Error	32.83303	Standard Error	174.9955	Standard Error	77.09541	Standard Error
Median	1540	Median	5868	Median	2422.2	Median
Mode	727	Mode	8715	Mode	3486	Mode
Standard Deviation	868.0597	Standard Deviation	4626.638	Standard Deviation	2038.295	Standard
						Deviation
Sample Variance	753527.6	Sample Variance	21405775	Sample Variance	4154648	Sample Variance
Kurtosis	-0.31828	Kurtosis	0.463405	Kurtosis	0.807696	Kurtosis
Skewness	0.436551	Skewness	0.869254	Skewness	0.931429	Skewness
Range	4293	Range	23788	Range	10954.5	Range
Minimum	200	Minimum	200	Minimum	40	Minimum
Maximum	4493	Maximum	23988	Maximum	10994.5	Maximum
Sum	1124099	Sum	4681694	Sum	1923505	Sum
Count	699	Count	699	Count	699	Count
Largest(1)	4493	Largest(1)	23988	Largest(1)	10994.5	Largest(1)
Smallest(1)	200	Smallest(1)	200	Smallest(1)	40	Smallest(1)
Confidence	64.46334	Confidence	343.5807	Confidence	151.3667	Confidence
<u>Level(95.0%)</u>		<u>Level(95.0%)</u>		Level(95.0%)		Level(95.0%)

Store Dataset Report

Introduction:

This dataset encompasses sales data from a retail store, featuring a range of attributes including customer demographics (Gender, Age Group), transaction details (Order ID, Status), product specifics (Category, SKU), and shipping information. With a focus on understanding customer behaviour and product trends, our analysis aims to uncover patterns, preferences, and correlations within the data. By leveraging these insights, businesses can optimize marketing efforts, enhance inventory management, and improve customer satisfaction.

Questionnaire:

- 1. which of the channel performed better than all other channels in compare men & women?
- 2. Compare category. Find out most sold category above 23 years of age for any gender.
- 3. Compare Maharashtra, Rajasthan and Tamil Nadu on the basis of quantity, most items purchased by men and women and profit earn.
- 4. Which city sold most of following categories:
 - a. Kurta
 - b. Set
 - c. Western wears
- 5. In which month most items sold in any of the state on the basis of category.

Analytics:

1. which of the channel performed better than all other channels in compare men & women? Ans: Amazon leads in the sales in both men and women category followed by Myntra and Flipkart. Amazon sold almost 3500 units in men category and almost 7500 units in women category. Myntra sold 2000 units in men section.

2. Compare category. Find out most sold category above 23 years of age for any gender.

<u>Ans</u>: In the above 23 years of age group Kurta is most sold category in women section with 8820 units sold. Set is most sold category in men section with 4365 units sold also set is the second most sold category in women section.

The table of items sold is given below:

Item	Men	Women	Grand Total
Blouse	6	190	196
Bottom	40	28	68
Ethnic Dress	150	77	227
kurta	156	8820	8976
Saree	261	941	1202
Set	4365	6204	10569
Top	45	1825	1870
Western Dress	3078	380	3458
Grand Total	8101	18465	26566

The graph is as follows:

3. Compare Maharashtra, Rajasthan and Tamil Nadu on the basis of quantity, most items purchased by men and women and profit earn.

Ans:

In Maharashtra: Sales in men category=1390, Sales in women category= 3144

In Tamil Nadu: Sales in men category=686, Sales in women category= 2023 In

Rajasthan: Sales in men category=21, Sales in women category=543

State	Men	Women	Grand Total
MAHARASHTRA	1390	3144	4534
RAJASTHAN	212	543	755
TAMIL NADU	686	2023	2709
Grand Total	2288	5710	7998

Which city sold most of following categories

- a. Kurta
- b. Set
- c. Western wears

Ans: Bengaluru, Chennai, Hyderabad, Mumbai and New Delhi are the cities sold most of kurtas, Sets and western wears.

City	kurta	Set	Western Dress	Grand Total
BENGALURU	964	938	422	2324
CHENNAI	666	451	217	1334
HYDERABAD	713	687	370	1770
MUMBAI	437	515	207	1159
NEW DELHI	479	792	142	1413
Grand Total	3259	3383	1358	8000

6. In which month most items sold in any of the state on the basis of category.

Ans: The graph for most items sold in any of stats on basis of category is as follows:

Conclusion and Review:

After thorough analysis of the store data, it is evident that there are notable trends and insights to be gleaned. By examining key metrics such as units sold, state wise analytics, geographic, and sales across different stats and products, we can draw valuable conclusions about market demand, sales and overall profitability. This comprehensive understanding will enable informed decisionmaking to optimize resources, target specific markets, and maximize profits in future store sales endeavours.

Exploring Car Dataset

Introduction:

This dataset comprises a blend of categorical and numerical data, each offering unique perspectives on the industry. Categorical data, such as make, model, and color, encapsulates the diversity of vehicles and consumer preferences. Meanwhile, numerical attributes like mileage, price, and cost provide quantifiable metrics essential for analyzing market trends and pricing dynamics.

Questionnaires:

- 1) Compare the mileage of Chevrolet Impala to Toyota Corolla. Which of the two is giving best mileage?
- 2) .Justify, Buying of any Ford car is better than Honda
- 3) Among all the cars which car color is the most popular and is least popular?
- 4) Compare all the cars which are of silver color to the green color in terms of Mileage.
- 5) Find out all the cars, and their total cost which is more than \$2000?

Analytics:

Q1. Compare the mileage of Chevrolet Impala to Toyota Corolla. Which of the two is giving best mileage?

Ans. Toyota Corolla gives better mileage than Chevrolet Impala.

Q2. Justify, Buying of any Ford car is better than Honda.

Ans. Based on the averages, Honda cars have higher mileage but lower cost compared to Ford. Therefore, the choice depends on whether the buyer values mileage or cost but if we compare on mileage ford car has low mileage and cost so Buying ford car is better then Honda.

Q3. Among all the cars which car color is the most popular and is least popular?

Ans. Most popular color is Silver and Black as each appear 6 times and least appearing colour are Blue, Green, Red, White they all apper 3 times.

Q4. Compare all the cars which are of silver color to the green color in terms of Mileage.

Ans. Silver color car millage is more than green color car milage if we compare there average.

Q5. Find out all the cars, and their total cost which is more than \$2000?

Ans. All the car mention below cost is more than \$2000 Accord, Altima, Charger, Corolla, CRV, EscapeF-150, Fusion, Impala, Malibu, Maxima, Mustang, Silverado

Regression:

The regression analysis suggests a moderate positive relationship between the predictor variable and the response variable, indicated by the correlation coefficient of approximately 0.40. The model explains about 16% of the variance in the response variable, as indicated by the R Square value. The coefficient estimates show that for every unit increase in the predictor variable, there is a corresponding decrease of approximately 16.66 in the response variable, with a p-value of 0.056, indicating a marginally significant effect.

Co-relational:

The correlation matrix indicates a moderate negative correlation (-0.411) between Mileage and Price. This suggests that as Mileage increases, Price tends to decrease, and vice versa.

	Mileage	Price	
Mileage	1		
Price	-0.4110586	_1	

ANOVA:

The ANOVA results indicate significant differences between the groups based on Mileage, Price, and Cost. The F-statistic is large (128.88), with a very low p-value (5.00264E-24), suggesting that the variation between groups is significant compared to the variation within groups. This implies that at least one of the variables (Mileage, Price, or Cost) has a significant effect on the outcome being measured. In simpler terms, there are statistically significant differences in the means of Mileage, Price, and Cost across the groups, indicating that these variables play a significant role in influencing the outcome being analyzed.

ANOVA: Single Factor

SUMMARY

	Count	Sum	Average	Variance	Groups
Mileage	24	2011267	83802.7917	1214155660	
Price	24	78108	3254.5	837024.087	
Cost	<u>24</u>	<u>66150</u>	<u>2756.25</u>	705502.717	

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1.0445E+11	2	5.2227E+1	0 128.882161	5.0026E-24	3.12964398
Within Groups	2.7961E+10	69	405232729			
Total	1.3242E+11	71				

ANOVA: Two-Factor Without replication:

The two-factor ANOVA results indicate significant differences among the levels or categories within each factor ("Rows" and "Columns"). Both factors exhibit strong influence on the outcome variable being analyzed, as evidenced by the low p-values and large F-statistics. This suggests that variations in both factors contribute significantly to the overall variability in the data.

ANOVA: Two-Factor without

replication

ANOVA

Source o	of					
Variation	SS	df	MS	F	P-value	F crit
Rows	34749383.3	23	1510842.75	47.6846408	2.2236E-14	2.01442484
Columns	2979036.75	1	2979036.75	94.023218	1.3629E-09	4.27934431
Error	728733.25	23	31684.0543			
Total	38457153.3	47				

Descriptive Statistics:

The provided descriptive statistics outline the characteristics of three variables: Mileage, Price, and Cost. Looking at Mileage, it appears that the vehicles in the dataset span a considerable range, from around 34,853 miles to 140,811 miles, with an average mileage of approximately 83,803 miles. Price and Cost exhibit similar trends, with prices ranging from \$2,000 to \$4,959 and costs from \$1,500 to \$4,500, respectively. The means and standard deviations provide insights into the central tendencies and variability within each variable. Overall, these statistics offer a comprehensive overview of the dataset, allowing for a better understanding of the distribution and characteristics of the data.

Mileage		Price		Cost	
Mean	83802.7917	Mean	3254.5	Mean	2756.25
Standard Error	7112.65205	Standard Error	186.751181	Standard Error	171.452462
Median	81142	Median	3083	Median	2750
Mode	#N/A	Mode	#N/A	Mode	3000
Standard		Standard		Standard	
Deviation	34844.7365	Deviation	914.890205	Deviation	839.942092
Sample Variance	1214155660	Sample Variance	837024.087	Sample Variance	705502.717
Kurtosis	-1.0971827	Kurtosis	-1.2029138	Kurtosis	-0.8126576
Skewness	0.38652215	Skewness	0.27201913	Skewness	0.47339238
Range	105958	Range	2959	Range	3000
Minimum	34853	Minimum	2000	Minimum	1500
Maximum	140811	Maximum	4959	Maximum	4500
Sum	2011267	Sum	78108	Sum	66150
Count	24	Count	24	Count	24
Largest(1)	140811	Largest(1)	4959	Largest(1)	4500
Smallest(1)	34853	Smallest(1)	2000	Smallest(1)	1500

Conclusion and Reviews:

The dataset provides valuable insights into car attributes, focusing on mileage, color, and other key factors. Here's a simple conclusion based on the data:

Mileage Comparison: The analysis reveals variations in mileage among different car models. Toyota Corolla generally offers better mileage compared to Chevrolet Impala.

Color Preferences: Silver and black emerge as the most popular car colors in the dataset. Blue, green, red, and white are among the least popular color choices.

Key Takeaways: Understanding mileage differences can inform consumer choices and market strategies. Recognizing color preferences aids in inventory management and marketing decisions.

Exploring sales on different states of US

Introduction:

Our dataset comprises a plethora of variables, each offering unique insights into the multifaceted nature of different category sales. From fundamental transactional details such as Date, Time, sales, states to more nuanced factors like Customer Type, Demographics, category and sub category, every facet has been meticulously documented.

Questionnaire:

- 1. Compare all the US states in terms of Segment and Sales. Which Segment performed well in all the states?
- 2. Find out top performing category in all the states?
- 3. Which segment has most sales in US, California, Texas, and Washington?
- 4. Compare total and average sales for all different segment? 5. Compare average sales of different category and sub category of all the states.

Analytics:

Q1. Compare all the US states in terms of Segment and Sales. Which Segment performed well in all the states?

Q2. Find out top performing category in all the states?

☐ Office Supplies is the top performing category in all the states

Q3. Which segment has most sales in US, California, Texas, and Washington?

Q4. Compare total and average sales for all different segment?

Q5. Compare average sales of different category and sub category of all the states.

Conclusion and Review:

Our comprehensive analysis of the provided dataset through various data visualization techniques has yielded valuable insights. Through the creation of bar graphs, pie charts, and other visual representations, we've been able to discern patterns, trends, and relationships within the data that might have otherwise remained obscured.

Our deep dive into the dataset has not only enhanced our understanding of the underlying information but has also empowered us to make informed decisions based on the insights gained. By visually depicting the data, we've been able to communicate complex findings in a clear and accessible manner, facilitating better comprehension and actionable strategies.

Loan Dataset Report

Introduction:

Our dataset captures a comprehensive array of variables, providing detailed insights into the complex dynamics of loan applications. It includes essential applicant details such as Gender, Marital Status, and Education, alongside more specific factors like Employment Status, Loan Amount, and Residential Type. Each variable has been carefully documented to ensure a thorough understanding of the loan application process.

Questionnaire:

- 1) How many male graduates who are not married applied for Loan? What was the highest amount?
- 2) How many female graduates who are not married applied for Loan? What was the highest amount?
- 3) How many male non-graduates who are not married applied for Loan? What was the highest amount?
- 4) How many female graduates who are married applied for Loan? What was the highest amount?
- 5) How many male and female who are not married applied for Loan? Compare Urban, Semi-urban and ruler on the basis of amount.

Analytics:

Q1. How many male graduates who are not married applied for Loan? What was the highest amount?

Q2. How many female graduates who are not married applied for Loan? What was the highest amount?

Q3. How many male non-graduates who are not married applied for Loan? What was the highest amount?

Q4. How many female graduates who are married applied for Loan? What was the highest amount?

Q5. How many male and female who are not married applied for Loan? Compare Urban, Semi-urban and rular on the basis of amount.

Conclusion and Review:

Through diverse visualization techniques, our analysis uncovered significant insights, improving understanding and decision-making. These visualizations simplified complex findings, enabling the development of actionable strategies. This underscores the crucial role of data visualization in deriving meaningful insights and effectively guiding decisions.

Regression:

The regression analysis indicates a statistically significant positive relationship between the independent variable '5720' and the dependent variable. Specifically, for each one-unit increase in '5720', the dependent variable is expected to rise by roughly 0.0059 units. However, it's important to note that this model explains only about 21.1% of the variance in the dependent variable.

SUMMARY OUTPUT

Regression Statistics								
Multiple R	0.45908096							
R Square	0.21075532							
Adjusted R								
Square	0.20858707							
Standard Error	56.0766111							
Observations	366							

ANOVA:

	df	SS	MS	F	Significance F
Regression	1	305655.205	305655.205	97.2004502	1.7676E-20
Residual	364	1144629.42	3144.58631		
Total	365	1450284.62			

	Coefficients	Standard	t Stat	P-value		Lowe
		Error			Lower 95%	Upper 95%
						95.0
Intercept	106.07753	4.10024098	25.8710478	1.7585E-	98.014396	114.140665
				84		98.01
5720	0.0058851	0.00059692	9.85902887	1.7676E-	0.00471125	0.00705895
				20		0.004

Co-Relation:

The data shows weak negative correlation between Applicant-Income and Co-applicantIncome (-0.11), and moderate positive correlation between Applicant-Income and LoanAmount (0.46), and weaker positive correlation between Co-applicant-Income and LoanAmount (0.14).

ApplicantIncome CoapplicantIncome LoanAmount

ApplicantIncome 1

CoapplicantIncome -0.110334799 1

LoanAmount 0.458768926 0.144787815

ANOVA: (Single Factor)

The dataset consists of 367 observations, which include details on applicant and co-applicant incomes as well as loan amounts. On average, applicants have a higher income, around \$4805.60, while co-applicants average about \$1569.58. Loan amounts show considerable variation, with an average of \$134.28. ANOVA analysis highlights significant differences in income and loan amounts among the groups, suggesting a variety of financial profiles between applicants and co-applicants.

SUMMARY

Groups	Count	Sum	Average	Variance
ApplicantIncome	367	176365 5	4805.5994 55	24114831. 09
CoapplicantInco me	367	576035	1569.5776 57	5448639.4 91
LoanAmount	367	49280	134.27792 92	3964.1411 24

ANOVA

Source	of						
Variation	SS	df	MS	F	P-value	F crit	

Between Groups	420253745 2 108216811	2	210126872 6 9855811.5	213.20098 41	5.87569E- 79	3.0039205 77
Within Groups	07	1098	73			
Total	150242185 6	1100				

ANOVA two factor without Replication:

The ANOVA results indicate significant variation both within rows (p = 0.441) and between columns (p < 0.001). This suggests that there are meaningful differences among the row categories and column categories in the dataset, warranting further investigation into the factors influencing these variations.

Source of Variation	SS	df	MS	F	P-value	F crit
Rows	1004340909	365	2751618.93	1.015674698	0.440986529	1.1881716
Columns	379216841.8	1	379216841.8	139.9761235	1.47092E-27	3.867061668
Error	988841123.7	365	2709153.763			
Total	2372398875	731				

ANOVA

Descriptive Statistics:

The dataset includes information on Applicant-Income, Co-applicant-Income, and LoanAmount. The largest Applicant-Income recorded is \$72,529, while the smallest is \$0. For Coapplicant-Income, the largest value is \$24,000, and the smallest is \$0. Additionally, the LoanAmount ranges from a maximum of \$550 to a minimum of \$0. Confidence levels for these variables at a 95.0% level are also provided, indicating the precision of the measurements within the dataset.

Largest(1)	72529	Largest(1)	24000	Largest(1)
Smallest(1)	0	Smallest(1)	0	Smallest(1)

Confidence Level(95.0%) 504.0756067 Confidence Level(95.0%) 239.6059543 Confidence Level(9

Shop Sales Data

Introduction:

This dataset offers extensive details on sales transactions, providing crucial insights into retail operations. It includes well-organized columns that capture essential aspects of each transaction, such as Date, Salesman, Item Name, Company, Quantity, and Amount. This rich data source allows analysts and businesses to identify trends, optimize inventory management, and enhance sales strategies. Ultimately, it is a vital tool for making informed decisions and discovering new growth opportunities.

Questionaries:

- 1. Compare all the salesmen on the basis of profit earn.
- 2. Find out most sold product over the period of May-September.
- 3. Find out which of the two product sold the most over the year Computer or Laptop?
- 4. Which item yield most average profit?
- 5. Find out average sales of all the products and compare them.

Analytics:

1. Compare all the salesmen on the basis of profit earn.

Ans:- The comparison of all the salesmen on the basis of profit earned is given below:

2. Find out most sold product over the period of May-September.

Ans:- To identify the most sold product over the period of May-September, we would need to analyze the sales data within this timeframe. By aggregating the quantity sold for each product across all transactions during this period and then determining which product has the highest total quantity sold, we can pinpoint the most popular item.

3. Find out which of the two product sold the most over the year Computer or Laptop?

Ans:- The two product sold the most over the year between computer or laptop:

4. Which item yield most average profit?

Ans:- The item that yields the most profit between laptop, computer and mobile is:

5. Find out average sales of all the products and compare them.

Ans:- The average sales of all the products with their respective comparison is:

Conclusion and Review:

The shop sales dataset offers insights into sales trends, salesman performance, item popularity, and company performance. Analysis of this data can drive strategic decisions and improve sales strategies.

The dataset is well-structured and provides comprehensive information on sales transactions. It allows for various analyses, but could benefit from additional variables for deeper insights. Overall, it's a valuable resource for understanding sales dynamics and informing business decisions.

Regression:

The regression model, with a significant p-value indicates a strong positive relationship between Amount and the profit earned and the outcome variable. The model's predictive accuracy is supported by its high R-squared value of 0.660.

SUMMARY OUTPUT

D	•	α.	. •	. •
Rograg	CION	to	f1 C1	100
Regres	swn	DILL	$\iota\iota\iota\iota\iota\iota$	$\iota \iota \iota \iota \iota \iota$
0.	~	~~		

Multiple R	0.812617
R Square	0.660347
Adjusted I	R
Square	0.629469
Standard Error	1215.119
Observations	13

ANOVA

		SS	MS	F	_
	df				<u>Significance F</u>
Regression	1	31576697	31576697	21.38598	0.000753
Residual	11	16241653	14776514		
Total	12	47818350			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	244.7062	754.0557	0.32452	0.751632	-1414.96	1904.372
X Variable	0.190729	0.041243	4.624498	0.000735	0.099954	0.281505

Co-relation:

The correlation coefficient between units sold and revenue is 0.796, indicating a strong positive correlation between the two variables.

	Qty	Amount
Column		
1	1	
Column		
2	#DIV/0! 1	1

ANOVA (Single Factor):

The ANOVA results indicate a significant difference between the two groups , with 1 degree of freedom. SUMMARY

DOMINI III	1					
Groups	Count	Sum	Average	Variance		
Column 1	15	78.56643	5.237762	2.766871	•	
Column 2	15	50419.05	3361.27	3416099		
ANOVA						
Source	of SS	df	MS	F	P-Value	F crit
Variance						
Between	84472135	1	84472135	49.45528	1.2E-07	4.195972
Group						
Without	47825420	28	170851			
Group						
Total	1.32E+08	29				

ANOVA two factor with Replication:

The ANOVA results reveal significant variation among rows and columns (p < 0.001), with degrees of freedom (df) values of 10 respectively. The error term has a degree of freedom of 0

ANOVA							
Source	of						
Variation	SS	df		MS	F	P-value	F crit
Rows	841600745	10		4160074	65535	#NUM!	#NUM!
Columns	0		0	65535	65535	#NUM!	#NUM!
Error	0		0	65535			
<u>Total</u>	<u>41600745</u>	10					

ANOVA two factor without Replication:

Summary	Count	Sum	Average	Variance
4	1	7800	7800	#DIV/0!
5	1	3000	3000	#DIV/0!
4	1	2300	2300	#DIV/0!
3	1	7000	7000	#DIV/0!
3	1	1200	1200	#DIV/0!
4	1	2506.667	2506.667	#DIV/0!
5	1	2618.095	2618.095	#DIV/0!
6	1	2729.524	2729.524	#DIV/0!
7	1	2840.952	2840.952	#DIV/0!
6	1	4500	4500	#DIV/0!
7	1	3063.81	3063.81	#DIV/0!
1000		39559.05	3596.277	4160074

Descriptive Statistics:

Column1	
Mean	1000
Standard Error	0
Median	1000
Mode	#N/A
Standard Deviation	#DIV/0!
Sample Variance	#DIV/0!
Kurtosis	#DIV/0!
Skewness	#DIV/0!
Range	0
Minimum	1000
Maximum	1000
Sum	1000
Count	1

Sales Data Samples

Introduction:

In the realm of business analytics, a dataset encompassing sales transactions emerges as a vital asset for deriving actionable insights. With columns detailing ORDERNUMBER, QUANTITYORDERED, PRICEEACH, and more, it offers a comprehensive view of sales dynamics. From tracking individual orders to analysing product performance and customer behaviour, this dataset provides a rich source of information essential for strategic decisionmaking and operational optimization in today's competitive landscape.

Questionaries:

- 1. Compare the sale of Vintage cars and Classic cars for all the countries.
- 2. Find out average sales of all the products? which product yield most sale?
- 3. Which country yields most of the profit for Motorcycles, Trucks and buses?
- 4. Compare sales of all the items for the years of 2004, 2005.
- 5. Compare all the countries based on deal size.

Analytics:

1. Compare the sale of Vintage cars and Classic cars for all the countries.

Ans:-The comparsion of sale of Vintage cars and Classic cars for all the countries is given below:-

2. Find out average sales of all the products? which product yield most sale?

Ans:

3. Which country yields most of the profit for Motorcycles, Trucks and buses?

Ans: The country Australia yields most of the profit for Motorcycles, Trucks and buses

4. Compare sales of all the items for the years of 2004, 2005.

Ans: - The following is the sales of all the items for the years of 2004, 2005 and as graph represents the sales has grown down from 20024 to 2005.

5. Compare all the countries based on deal size.

Ans. The comparison of all the countries based on deal size are:

Conclusion and Review:

In conclusion, the analysis of the provided sales dataset offers a window into the intricacies of business operations, shedding light on customer preferences, product performance, and market trends. By leveraging the insights gleaned from this dataset, businesses can make informed decisions, streamline processes, and drive growth. As the landscape of data analytics continues to evolve, harnessing the power of such datasets remains instrumental in staying competitive and responsive to the ever-changing demands of the market.