Regression

Bernice Feng

bf1318@nyu.edu

Advised by Prof. Avi Giloni & Prof. Jeffrey Simonoff

Introduction

The least squares estimator minimizes

$$\sum_{i=1}^{n} (y_i - [\beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}])^2$$
 (1)

The LAD estimator minimizes

$$\sum_{i=1}^{n} |y_i - [\beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}]|$$
 (2)

The LASSO estimator minimizes

$$\sum_{i=1}^{n} (y_i - [\beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}])^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (3)

The LAD-LASSO estimator minimizes

$$\sum_{i=1}^{n} |y_i - [\beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi}]| + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (4)

LAD-LASSO as LP

LAD as LP:

min
$$\mathbf{e}_{n}^{T}\mathbf{r}^{+} + \mathbf{e}_{n}^{T}\mathbf{r}^{-}$$

s.t. $\mathbf{X}\boldsymbol{\beta} + \mathbf{r}^{+} - \mathbf{r}^{-} = \mathbf{y}$
 $\boldsymbol{\beta}$ free, $\mathbf{r}^{+} > \mathbf{0}$, $\mathbf{r}^{-} > \mathbf{0}$ (5)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{p1} \\ \vdots & & & \vdots \\ 1 & x_{1n} & \dots & x_{pn} \end{pmatrix} = \begin{pmatrix} \mathbf{x}^1 \\ \vdots \\ \mathbf{x}^n \end{pmatrix}$$
(6)

LAD-LASSO as LP with design matrix X* and response vector y*

$$\mathbf{y}^{*} = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{X}^{*} = \begin{pmatrix} 1 & x_{11} & \dots & \dots & x_{\rho 1} \\ \vdots & & & & \vdots \\ 1 & x_{1n} & \dots & \dots & x_{\rho n} \\ 0 & -\lambda & 0 & \dots & 0 \\ 0 & 0 & -\lambda & & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 0 & -\lambda \end{pmatrix} = \begin{pmatrix} \mathbf{x}^{*1} \\ \vdots \\ \mathbf{x}^{*n+\rho} \end{pmatrix}$$
(7)

Conditional Breakdown

The conditional breakdown value of LAD regression is

$$a(\mathbf{y}|\mathbf{X}) = \min_{1 \le m < n} \left\{ m : b(m, \mathbf{y}|\mathbf{X}) \text{ is infinite} \right\}$$
(8)

where

$$b(m, \mathbf{y}|\mathbf{X}) = \sup_{\tilde{y}} \|\beta^{LAD}(\mathbf{X}, \tilde{\mathbf{y}}) - \beta^{LAD}\|$$
 (9)

Here we contaminate m ($1 \le m < n$) values of the response vector \mathbf{y} so that row i is replaced by $(\mathbf{x}^i, \tilde{\mathbf{y}}_i)$, and we obtain new data $(\mathbf{X}, \tilde{\mathbf{y}})$

$$\min \quad \sum_{i=1}^{n} u_i + l_i = a(\mathbf{y}|\mathbf{X})$$
 (10a)

s.t.
$$\mathbf{x}^{i}\boldsymbol{\xi} + \eta^{+} - \eta^{-} + s_{i} - t_{i} = 0$$
 for $i = 1, ..., n$, (10b)

$$s_i - Mu_i \le 0, \quad t_i - Ml_i \le 0 \quad \text{for } i = 1, \dots, n,$$
 (10c)

$$\eta_i^+ + \eta_i^- + Mu_i + MI_i \le M$$
 for $i = 1, ..., n$, (10d)

$$u_i + l_i \le 1 \qquad \text{for } i = 1, \dots, n, \tag{10e}$$

$$\sum_{i=1}^n \eta_i^+ + \eta_i^- - s_i - t_i \leq 0, \quad \sum_{i=1}^n s_i + t_i \geq \varepsilon, \tag{10f}$$

$$\xi \text{ free, } \eta^+ \ge 0, \ \eta^- \ge 0, \ s \ge 0, \ t \ge 0,$$
 (10g)

$$u_i, l_i \in \{0, 1\} \text{ for } i = 1, \dots, n$$
 (10h)

 $a(\mathbf{y}|\mathbf{X}) = |E|$ where |E| is the smallest integer such that

$$\max \frac{\sum_{i \in E} |\mathbf{x}^{i} \boldsymbol{\xi}|}{\sum_{i \in \mathbb{N}} |\mathbf{x}^{i} \boldsymbol{\xi}|} \ge \frac{1}{2}, \tag{11}$$

where

$$\boldsymbol{\xi} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{X}_B \end{pmatrix}^{-1} \begin{pmatrix} \gamma \\ \mathbf{0} \end{pmatrix}, \tag{12}$$

Note that the algorithm enumerates through all $(p) \times (p+1)$ submatrices X_B of X.

Data Processing

- direct LAD-LASSO with no scaling
- @ direct LAD-LASSO with predictors scaled by SD's:

$$\sqrt{\frac{1}{n}\sum_{i=1}^n \left(x_j^i - \mu(\mathbf{x}_j)\right)^2}$$
, where $\mu(\mathbf{x}_j) = \frac{1}{n}\sum_{i=1}^n x_j^i$

- ① direct LAD-LASSO with predictors scaled by MAD's: $\frac{1}{n}\sum_{i=1}^{n}|x_{i}^{i}-\mathsf{Median}(\mathbf{x}_{j})|$
- center the variables with mean, no scaling of predictors: $\frac{1}{n} \sum_{i=1}^{n} y_i$, $\frac{1}{n} \sum_{i=1}^{n} x_i^i$
- center the variables with median, no scaling of predictors:
 Median(y), Median(x_i)
- o center the variables with mean, scale predictors with SD's
- center the variables with median, scale predictors with MAD's

Table

lambda	beta	active variable	LP objective	CB for LAD	CB for LAD-LASSO	CB for relaxed LAD-LASSO
0	[14.212097, 0.739684, -0.111747, -0.457656]	3	24.416163	4	4	4
3	[12.887341, 0.721444, -0.018468, -0.404982]	3	28.073166	4	4	4
6	[12.955865, 0.720236, 0.0, -0.408271]	2	31.486949	4	5	4
9	[12.955865, 0.720236, 0.0, -0.408271]	2	34.872471	4	4	4
12	[12.929997, 0.71308, 0.0, -0.405993]	2	38.24543	4	4	4
15	[12.929997, 0.71308, 0.0, -0.405993]	2	41.602652	4	4	4
18	[11.094048, 0.741692, 0.0, -0.337113]	2	44.901918	4	3	4
21	[11.094048, 0.741692, 0.0, -0.337113]	2	48.138332	4	3	4
24	[7.805414, 0.729168, 0.0, -0.202704]	2	51.084108	4	2	4
27	[4.801362, 0.635543, 0.0, -0.027241]	2	53.402418	4	2	4
30	[4.801362, 0.635543, 0.0, -0.027241]	2	55.390768	4	2	4
33	[4.76056, 0.618195, 0.0, -0.020626]	2	57.331264	4	2	4
36	[4.76056, 0.618195, 0.0, -0.020626]	2	59.247727	4	2	4
39	[4.76056, 0.618195, 0.0, -0.020626]	2	61.16419	4	2	4
42	[5.638474, 0.555051, 0.0, -0.027241]	2	63.060168	4	2	4
45	[5.022222, 0.555556, 0.0, 0.0]	1	64.733333	4	1	6
48	[5.792593, 0.481481, 0.0, 0.0]	1	66.333333	4	1	6
51	[5.792593, 0.481481, 0.0, 0.0]	1	67.777778	4	1	6
54	[8.451613, 0.225806, 0.0, 0.0]	1	68.83871	4	1	6
57	[8.451613, 0.225806, 0.0, 0.0]	1	69.516129	4	1	6
60	[10.8, 0.0, 0.0, 0.0]	0	69.9	4	1	14

Figure 1: Breakdown values for aircraft data

Figure 2: Breakdown values for aircraft data

S.M. Ajeel and H.A. Hashem.

Comparison some robust regularization methods in linear regression via simulation study.

Academic Journal of Nawroz University, 9(2):244–252, 2020. https://doi.org/10.25007/ajnu.v9n2a818.

O. Arslan.

Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression.

Computational Statistics and Data Analysis, 56:1952–1965, 2012.

S.D. Cahya, B. Sartono, Indahwati, and E. Purnaningrum.

Performance of LAD-LASSO and WLAD-LASSO on high dimensional regression in handling data containing outliers.

Jurnal Teori dan Aplikasi Matematika, 6:844-856, 2022. https://journal.ummat.ac.id/index.php/jtam/article/view/8968.

X. Chen, Z. Wang, and M. McKeown.

Asymptotic analysis of robust LASSOs in the presence of noise with large variance.

IEEE Transactions on Information Theory, 56:5131–5149, 2010.

X. Gao and Y. Feng.

Penalized weighted least absolute deviation regression.

Statistics and Its Interface, 11:79–89, 2018.

X. Gao and J. Huang.

Asymptotic analysis of high-dimensional LAD regression with LASSO.

Statistica Sinica, 20:1485-1506, 2010.

A. Giloni and M. Padberg.

Alternative methods of linear regression.

Mathematical and Computer Modelling, 35:361–374, 2002.

A. Giloni and M. Padberg.

The finite sample breakdown point of ℓ_1 -regression.

SIAM Journal of Optimization, 14:1028-1042, 2004.

A. Giloni, B. Sengupta, and J.S. Simonoff.

A mathematical programming approach for improving the robustness of least sum of absolute deviations regression.

Naval Research Logistics, 53:261–271, 2006.

A. Giloni, J.S. Simonoff, and B. Sengupta.

Robust weighted LAD regression.

Computational Statistics and Data Analysis, 50:3124-3140, 2006.

Y. Jiang, Y. Wang, J. Zhang, B. Xie, J. Liao, and W. Liao.

Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method.

Journal of Applied Statistics, 48:234–246, 2021.

H. Li, X. Xu, Y. Lu, X. Yu, T. Zhao, and R. Zhang.

Robust variable selection based on relaxed lad lasso.

Symmetry, 14:2161, 2022.

https://doi.org/10.3390/sym14102161.

I Mizera and C H Müller

Breakdown points and variation exponents of robust m-estimators in linear models.

Annals of Statistics, 27:1164–1177, 1999.

I. Mizera and C. H. Müller.

The influence of the design of ℓ_1 -type m-estimators.

In P. Hackl A. Atkinson and C.H. Müller, editors, MODA6 - Advances in Model-Oriented Design and Analysis, pages 193-200. Physica-Verlag, Heidelberg, 2001.

S. Rahardiantoro and A. Kurnia.

LAD-LASSO: Simulation study of robust regression in high dimensional data.

Indonesian Journal of Statistics, 18:105–107, 2015.

https:

//journal.ipb.ac.id/index.php/statistika/article/view/16775.

R. Tibshirani.

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society, Series B, 58:267–288, 1996.

H. Wang, G. Li, and G. Jiang.

Robust regression shrinkage and consistent variable selection through the I AD-Lasso.

Journal of Business and Economic Statistics, 25:347–355, 2007.

L. Wang.

The L_1 penalized LAD estimator for high dimensional linear regression. Journal of Multivariate Analysis, 120:135–151, 2013.

J. Xu and Z. Ying.

Simultaneous estimation and variable selection in median regression using Lasso-type penalty.

Annals of the Institute of Statistical Mathematics, 62:487–514, 2010.