Analysis of presence-type data

SSA 200

Presence only vs. Presence-absence data

Example 1: A National Park office often gets reports from people who have seen wolverines in the park. They keep track of the locations and dates of these sightings.

Presence only

Example 2: A researcher conducts point counts for birds in the same forest plot every month from May – July each year. During point counts they make an effort to detect and record every species within the survey window.

Presenceabsence

Example 3: A natural history museum has plant specimens that contain information about the location and date of collection.

Presence only

Example 4: iNaturalist has over 29,000 recorded observations of Monarch butterflies from across their range dating back to 2009.

Presence only

Presence only data

Example data sources

- Information about where/when a species was detected but NOT where/when it was looked for but not found
 - Opportunistic reporting by the public
 - Some eBird checklists (*complete checklists = presence-absence data)
 - Historical records (e.g. museum specimens, field notes)
 - Others?

Example questions

- Where is this species found? (historic and current condition)
- What ecological factors best predict its occurrence? (ecological needs)

Common analysis approaches

- Species Distribution Modeling
- Paired points

Species distribution modeling

- Habitat suitability models
- When your data covers a broad spatial scale/most of known range

Presence data models

Method(s)	Model/software name	Data type		
Climatic envelope	BIOCLIM	Presence-only		
Gower Metric	DOMAIN	Presence-only		
Ecological Niche Factor Analysis (ENFA)	BIOMAPPER	Presence/background		
Maximum Entropy	MAXENT	Presence/background		
Genetic algorithm	GARP	Presence/pseudo- absence		
Regression: Generalized linear model (GLM) and Generalized additive model (GAM)	GRASP	Presence/absence		
Artificial Neural Network (ANN)	SPECIES	Presence/absence		
Classification and regression trees (CART), GLM, GAM and ANN	BIOMOD	Presence/absence		
Boosted decision trees	(implemented in R)	Presence/absence		
Multivariate adaptive regression splines (MARS)	(implemented in R)	Presence/absence		

Common analysis approaches

- Species Distribution Modeling
- Paired points when you have a more limited spatial coverage of observations
 - Randomly select nearby points as "pseudo-absences" places where the species could have been reported, but wasn't

Generating "pseudo-absences"

- Several methods to generate "pseudo-absences"
 - Entire range/study area
 - Within some specified distance of each observation
 - Constrained by environmental variables
- Place random points from the background around your observations
 - Points similar based on the climatic/biological datasets, but where no observation occurred
- Different methods of generating background points or pseudo-absences have different assumptions
- Generates a dataset of 0s and 1s use logistic regression to estimate effects of environmental covariates

Logistic regression

- A type of generalized linear model where the y variable is drawn from the Binomial distribution
 - Response variable consists of 1s and 0s ("successes" and "failures")
- Forms the basis for many more complex models
 - Occupancy analysis
 - Survival analysis
 - Resource selection
- Assumes perfect detection of the species where it occurs

Logistic regression

Some caveats about presence-only models*

- Temptation for overfitting
- Potential observation bias
- Be careful with extrapolation (both spatial and temporal)
- Omission & commission errors

Some caveats about presence-only models

- Temptation for overfitting
 - The number of terms in the model should not exceed the number of observations
 - Consider ecologically-relevant environmental variables to include

Overfitting

Some caveats about presence-only models

- Temptation for overfitting
- Potential observation bias

Observation bias

Some caveats about presence-only models

- Temptation for overfitting
- Potential observation bias
- Qualify any extrapolation you make
 - Potential translocation site, historic records from that area, etc.

Extrapolation

Extrapolation

MY HOBBY: EXTRAPOLATING

Some caveats about presence-only models

- Temptation for overfitting
- Potential observation bias
- Qualify extrapolation
- Omission & commission errors

Omission and commission errors

Assessing SDM performance

Withhold a subset of occurrence records from modeling and use them to test model performance (cross-validation)

- Fit model with training points
- Test model with test/validation points

Calculate performance metrics:

- True positive rate
- False positive rate
- True negative rate
- False negative rate

Model predicted probability of occurrence

Depend on user-defined thresholds

Beechy's ground squirrel

Assessing SDM performance – AUC

- Plot receiver operator curve
- AUC = Area Under the Curve
- Measure of model performance

Presence-absence data

Example data sources

- Information about where/when a species was detected AND where/when it was looked for but not found
 - Transect surveys
 - Point counts
 - Any other systematic survey effort
 - Complete eBird checklists
 - Others?

Example research questions

- What habitat characteristics are associated with species presence and absence? (ecological needs, stressors)
- What is the distribution of a species in a given area? (Representation, Redundancy)
 - How has that distribution shifted over time? (e.g. due to habitat loss, invasive species, etc.)
- What is the extent of the species range?
- To what extent does this species co-occur with other species?
 - Species interactions, exclusion, etc.
- How many species are found in this area?

Common analysis approaches

- Logistic regression
 - Assumes perfect detection

Common analysis approaches

- Logistic regression
- Site-occupancy models

When is occupancy analysis appropriate?

- Presence/absence data
- Multiple sites (to estimate effects of ecological covariates)
- Repeated visits in a closed period (to estimate detection probability)
 - Assume that true occupancy of a given site does not change between visits
 - Need to be collected within a short enough time-frame for this to be reasonable—depends on species of interest

Sampling

- Replication is key
 - Spatial multiple, randomly selected sites or sampling units within the area of interest
 - Temporal repeated visits to each site

Example occupancy data set

Site	Date	Species detected?
А	6/27/2006	Yes
В	6/28/2006	Yes
С	6/25/2006	No
А	7/3/2006	No
В	7/5/2006	Yes
С	7/2/2006	No
А	7/12/2006	Yes
В	7/11/2006	Yes
С	7/13/2006	Yes

Site	Visit 1	Visit 2	Visit 3	
A 1		0	1	
В	1	1	1	
С	0	0	1	

Site is **closed** during this time True presence/absence of the species does not change

Each site visited three times, species detected twice at each site

Site	Visit 1	Visit 2	Visit 3	
Α	1	0	1	
В	1	1	0	
С	0	1	1	
D	0	0	0	

Probability the species is not detected if present:

$$1 - 0.67 = 0.33$$

Probability the species is not detected **three times** if present:

$$0.33 * 0.33 * 0.33 = 0.04$$

Detection probability

- Generally considered a "nuisance parameter", not of ecological interest
- Analyses that also estimate detection probability produce estimates of the ecologically-interesting parameter (e.g. occupancy) that are adjusted for detection
- Detection process and covariates that could influence detection (e.g. weather, visibility) important to consider in designing an analysis

Assumptions of occupancy models

- Sites are closed to changes in occupancy between sampling occasions
 - Appropriate duration between surveys
- Detection process is independent at each site
 - Appropriate distance between sites
- Both detection probability and occupancy probability are constant across all sites OR explained by covariates
 - For example, if we think rainfall influences our ability to detect the species,
 then rainfall should be included in the model

Model parameters

 ψ_i = probability that site *i* is occupied

 $p_{i,t}$ = probability of detecting the species in site i at time t, given that the species is present

 β_k = effect of covariate k on occupancy (or detection) probability

- Positive or negative?
- "significant" effect? does the confidence interval contain 0?
- Importance of covariates often assessed by comparing models using AIC

^{*} Check text and captions for notation definitions within each paper – not always consistent!

What influences occupancy probability?

- Potential stressors and threats included as covariates
 - Site characteristics (e.g. land cover, vegetation)
 - Weather (rainfall, temperature)
 - Distance to other occupied sites
 - o ... etc. ...

Parameter(predictor variables)

Relative support for each model (Relative to the model with the lowest AIC)

If Δ AIC > 2 then top model has the most support

Model weight – another way to assess relative support

Model	AIC	ΔΑΙC	Np	W _i
S(time) p(.)	684	0	5	0.98
S(.) p(.)	693	9	2	0.01
S(time) p(time)	698	14	10	0.01
S(time + sex) p(time)	710	26	12	0

Usually listed in decreasing order

Number of parameters (sometimes called *k*)

AIC is a *relative* measure of support only!

One model will always have the lowest AIC

Doesn't necessarily mean it is a good model!

model (Table 2). Consistent with our predictions, this model indicated that per-visit detection probabilities were higher for conspecific surveys (p = 0.66, SE = 0.03, 95% CI = 0.61-0.71) than for spotted owl surveys (p = 0.48, SE = 0.04, 95% CI = 0.39-0.56) and that occupancy was positively influenced by the amount of public ownership in the sampling unit $(\beta = 4.67, SE = 1.69, 95\% CI = 1.36$ 8.00). Using single-visit estimates of detection probability from the best-supported model, the overall probability of

Table 2. Ranking of single-season occupancy models used to examine variation in the probability of detection (p) as owls in western Oregon, USA, 2009.

Modela	No. parameters	AIC, b	ΔAIC_c^b	
$\{\psi(\text{ownership}) \ p(\text{survey type})\}$	4	776.28	0.00	
$\{\psi(.) \ p(\text{survey type})\}$	3	782.48	6.20	
$\{\psi(.)\ p(\text{stage} + \text{survey type})\}$	4	783.70	7.42	
$\{\psi(\text{ownership}) \ p(.)\}$	3	787.86	11.58	
$\{\psi(.) \ p(\text{stage} \times \text{survey type})\}$	14	788.86	12.42	
$\{\psi(.)\ p(t + \text{survey type})\}$	8	789.03	12.75	
$\{\psi(.)\ p(.)\}$	2	793.14	16.86	
$\{\psi(.)\ p(t \times \text{survey type})\}$	13	794.03	17.75	
$\{\psi(.)\ p(\text{stage})\}$	3	794.86	18.58	
$\{\psi(.) \ p(t + \text{stage})\}$	8 7	797.70	21.42	
$\{\psi(.) p(t)\}$	7	799.72	23.44	

Common analysis approaches

- Logistic regression
- Site-occupancy models
- Dynamic occupancy models

Dynamic occupancy models

Estimate change in occupancy over time (colonization and extinction)

Dynamic occupancy models

closed

closed

closed

	Year 1			Year 2			Year 3		
Site	Visit 1	Visit 2	Visit 3	Visit 1	Visit 2	Visit 3	Visit 1	Visit 2	Visit 3
Α	1	0	1	0	0	0	0	1	0
В	1	1	0	0	1	1	1	0	1
С	0	1	1	1	0	1	0	0	0
D	0	0	0	0	1	0	1	1	0

Common analysis approaches

- Logistic regression lacking spatial and/or temporal replication
 - Site-occupancy models *single year, several sites*
- \Dynamic occupancy models *several years, several sites*

Account for imperfect detection

Assume detection is perfect

