

Faculty of Engineering and Technology Electrical and Computer Engineering Department ENEE2103

Circuits and Electronics Lab

Experiment No.3 - Pre Lab No.2 First and Second Order Circuits

Student's Name: Lojain Abdalrazaq. ID Number: 1190707.

Instructor's Name: Dr. Ali Abdo.

Teaching assistant: Eng. Ismail Abualia.

Section: 5.

March 25, 2022

Table of Content

1. Part A: RC Circuit	2	
2. Part B: RL Circuit	5	
	10	

1. Part A: RC Circuit

• RC Circuit simulation using PSpice software:

Fig1.1: Circuit simulation using Pspice.

• Plotting the voltage across the capacitor:

The following figure shows the voltage across the capacitor (charging and discharging) and the pulse voltage source:

Fig1.2: The voltage across the capacitor.

• RC Circuit Calculations:

From the previous plot, we can find and measure the value of the **Vmax** and **time constant** using the plotting in PSpice software and theoretically, and results were **too close as shown:**

Fig1.3: Finding Vmax and time constant using the plot in PSpice for the capacitor.

Also, to find the value of the capacitor using PSpice:

Fig1.4: Finding the capacitor value using PSpice results.

2. Part B: RL Circuit

• RL Circuit simulation using PSpice software:

Fig1.5: Circuit simulation using PSpice when f=500Hz.

• Plotting the voltage across the inductor:

The following figure shows the voltage across the inductor when the **f=500Hz** and **Vp-p=10V**.

Fig1.6: The voltage response of the inductor.

✓ From the figure (1.6), which is the voltage response of the inductor, we can find the value of **Vmax** and **time constant**, the results was so close to the theoretical ones as shown in the following:

Fig1.7: Finding Vmax and time constant using the plot of the voltage across the inductor.

• RL Circuit simulation using PSpice software:

Fig1.8: Circuit simulation using PSpice when f=500Hz.

• Plotting the current across the inductor:

The following figure shows the current across the inductor when the **f=500Hz** and **Vp-p=10V**.

Fig1.9: The current response of the inductor.

✓ From the figure (1.9), which is the current response of the inductor, we can find the value of **time constant**, the results was so close to the theoretical ones as shown in the following:

Fig1.10: Time Constant calculations using the plot of the current across the inductor.

- RL circuit after the period changed to $T=2\tau_L$:
- \checkmark T = 2 * L/R = 2*(500m/2.2k) = 0.454 msec.
- ✓ F=1/T = 2.2 KHz.

Which means that:

- ✓ PER=T=0.454m.
- ✓ PW= pulse width=0.5T=0.5*0.454=0.227m.

Fig1.11: changing Pulse Voltage settings.

• Plotting the voltage across the inductor when $T=2\tau L$:

Fig1.12: The voltage response of the inductor when $T=2\tau$ *.*

• Plotting the current across the inductor when $T=2\tau L$:

Fig1.13: The current response of the inductor when $T=2\tau$.

3. Part C: RLC Circuit

• RLC Circuit simulation using PSpice software:

Fig1.14: Circuit simulation using PSpice.

• Plotting the voltage across the capacitor:

Fig1.15: The voltage response of the capacitor.

✓ Calculating R3 to give critically damped response:

Fig1.16: Finding R3 in critically damped case.

✓ Plotting the voltage across the capacitor when R3=4.47k:

Fig1.17: Voltage across the capacitor when R3=4.47k.

✓ Run parametric + transient analysis with varying R3 with 3 values:

✓ Fig1.18: Voltage across the capacitor when R3 varying.

Note:

When **R=4.47k** which is Critical Damping the output voltage is **close** to the input one.

• Response parameters:

Fig 1.19: Response Parameter when R=750.

