Question 2

(a) Give a linear-programming formulation of the maximum bipartite matching problem.

 $\max \sum x \text{ where } x \text{ is a vector representing the edges with } 1 \text{ being selected, and } 0 \text{ being not selected.}$

Sum of all adjacent edges is less than 1.

$$x_{uv} + x_{vw} \le 1$$
 for all $(u, v), (v, w) \in E$.

(b) Now dualize the linear program from part (a). What do the dual variables represent? What does the objective function represent?

Primal problem

Maximize $c^T x$ subject to $Ax \leq b, x \geq 0$.

 $c = [11 \dots 1]$ for all values in x.

A is the $n \times n$ matrix formed by $[\dots, x_{uv}, \dots, x_{vw}, \dots]$ for all $(u, v), (v, w) \in E$.

$$b = [11 \dots 1].$$

Dual problem

Minimize b^Ty subject to $A^Ty \geq c$, $y \geq 0$.

Two edges are an adjacency pair if they are connected by a vertex.

 A_{ij}^T is 1 for each adjacency pair j that edge i is in.

 A^Ty computes the number of times an adjacency pair is picked for every edge. Since $A^Ty \geq c$, that means that every edge has to be selected as part of an adjacency pair at least once. Minimizing b^Ty , minimizes the number of pairs that are selected.