

Modelos de Regresión y Series de Tiempo (MRST) 2025 - 02

Descomposición de la variabilidad de y en sumas cuadráticas Varianza de los errores del modelo

Docente: Natalia Jaramillo Quiceno

Escuela de Ingenierías

natalia.jaramilloq@upb.edu.co

Paso a paso muy simplificado

- Análisis **descriptivo** de lo datos
 - Gráfico de dispersión, coeficiente de correlación de Pearson (R)

- Es necesario evaluar la calidad del ajuste que presenta el modelo:
 - Coeficiente de determinación r² o R²: cuánta variabilidad de los datos explica el modelo lineal
- Se debe comprobar que el modelo cumple unos supuestos:
 - Validación de supuestos sobre los residuos (errores): normalidad, varianza constante

Descomposición de la variabilidad en sumas cuadráticas

Recordemos la siguiente idea...

Cada dato (y_i) es el resultado de:

valor ajustado (\hat{y}_i) + error aleatorio (ϵ_i)

Así, de manera análoga, podemos plantear lo siguiente...

La variabilidad de *y* es el resultado de:

Variabilidad explicada por el modelo + variabilidad explicada por el error aleatorio

Descomposición de la variabilidad en sumas cuadráticas

La variabilidad de *y* es el resultado de:

Variabilidad explicada por el modelo + variabilidad explicada por el error aleatorio

¿Cómo estimamos estas variabilidades?

Nos vamos a apoyar de las sumas cuadráticas...

Estimación de la variabilidad de y

Primer paso - Hallar suma de cuadrados totales

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = SST$$

Clave: recordar cómo se calcula la varianza muestral S^2

Descomposición de la variabilidad en sumas cuadráticas

La variabilidad de *y* es el resultado de:

Variabilidad explicada por el modelo + variabilidad explicada por el error aleatorio

Estimación de la variabilidad explicada por el modelo

Primer paso - Hallar suma de cuadrados debida a la regresión

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = SSR$$

Estimación de la variabilidad explicada por el error aleatorio

(lo que el modelo no pudo describir)

Primer paso - Hallar suma de cuadrados debido al error

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \varepsilon_i^2 = SSE$$

Descomposición de la variabilidad en sumas cuadráticas

La variabilidad de *y* es el resultado de:

Variabilidad <u>explicada</u> por el modelo + variabilidad <u>explicada</u> por el error aleatorio (error del modelo)

Varianza asociada a los errores del modelo

Varianza de los errores del modelo == σ^2

Desviación típica o estándar de los errores del modelo $== \sigma$

Estimación de σ^2 y σ

El estimador de σ^2 se puede hallar a partir del modelo ajustado, partiendo de la **suma de cuadrados de** error (SSE):

$$SS_E = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Se puede demostrar que el valor esperado de SSE es $\rightarrow E(SS_E) = (n-2)\sigma^2$

Por lo tanto, un **estimador insesgado de** σ^2 es: $\sigma^2 = \frac{SS_E}{r}$

Cuadrado medio de los errores **MSE**

Regresión lineal simple - Seguimiento

Estimación de σ^2 y σ

x	y
2	20
3	25
5	34
4	30
11	40

31

La varianza estimada de los errores del modelo es:

Por lo tanto, la **desviación estándar estimada** de los errores del modelo es:

Regresión lineal simple Ejemplo ganancias en R

```
> summary(modelo) ———
                            Comando en R para generar resumen del modelo
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.0000 \leftarrow \hat{\beta}_0 2.6458 7.559 0.00164 **
inv 2.0000 \leftarrow \hat{\mathbf{g}}_1 0.4583 4.364 0.01202 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.24 on 4 degrees of freedom
Multiple R-squared: 0.8264, Adjusted R-squared: 0.7831
F-statistic: 19.05 on 1 and 4 DF, p-value: 0.01202
```

MUCHAS GRACIAS

Natalia Jaramillo Quiceno

e-mail: natalia.jaramilloq@upb.edu.co