

Data Structures and Algorithms

Academic Year 2023-24

Course name : Data Structures and Algorithms

Quarter : Q1

Credits : 2

Instructor : Sudipta Roy

Instructor Email : sudipta1.roy@jioinstitute.edu.in

Teaching assistant : Snehashis (snehashis1.c@jioinstitute.edu.in)

Textbook:

- Debasis Samanta, Classic Data Structures, Prentice Hall India Learning Private Limited, Edition 2nd
- T Cormen, C Leiserson, R Rivest, C Stein, Introduction to Algorithms, 3Ed. MIT Press

Reference book:

- Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures And Algorithmic Puzzles, Made Easy, 1 January 2016.
- Anany Levitin, Introduction to the Design and Analysis of Algorithms, Pearson Education, EDs 3rd, 26 February 2017
- Kleinberg, Algorithm Design, Pearson Education India, Eds 1st, 1 January 2013
- Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python" WILEY

Course Structure and Evaluation:

The grade distribution for this course is as follows:

- Class participation/attendance: 10
- Quizzes (top n-1): 10
- Lab exercises (20 marks) and home assignments (10): 30 (Viva and/ or Code
- writing examination for programs will be taken and considered as a performance for LAB. Home assignment marks will be average of n assignments.)
- **Final examination: 50** (Different types of questions will be included such as MCQ, problem solving, long answers and writing fragments of code etc.)

Data structure and Algorithm

Data

• Data is a collection of facts and figures or a set of values or values of a specific format that refers to a single set of item values.

Data structure

• A data structure is an organization, management, and storage format of data that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.

Algorithm

 An algorithm is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing.

Classification of Data Structures

Abstract Data type (ADT)

- Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined by a set of values and a set of operations.
- The definition of ADT only mentions what operations are to be performed but not how these operations will be implemented.
- It does not specify how data will be organized in memory and what algorithms will be used for implementing the operations. It is called "abstract" because it gives an implementation-independent view.

Features of ADT:

- **Abstraction:** The user does not need to know the implementation of the data structure only essentials are provided.
- Better Conceptualization: ADT gives us a better conceptualization of the real world.
- **Robust:** The program is robust and has the ability to catch errors.

MEMORY BLOCK

ArrayPolynomial and Sparse Metrics

Polynomials using Arrays

Arrays:

- Basic data structure
- May store any type of elements

Polynomials: defined by a list of **coefficients** and **exponents**- *degree* of polynomial = **the largest exponent in a polynomial**

$$p(x) = a_1 x^{e_1} + \dots + a_n x^{e_n}$$

$$2x^3 - 6x^2 + 2x - 1$$

Python

```
# 2x3 - 6x2 + 2x - 1  for x = 3
poly = [2, -6, 2, -1]
x = 3
n = len(poly)
# Declaring the result
result = 0
# Running a for loop to traverse through the
list
for i in range(n):
      # Declaring the variable Sum
    Sum = poly[i]
      # Running a for loop to multiply x (n-i-1)
    # times to the current coefficient
    for j in range(n - i - 1):
        Sum = Sum * x
      # Adding the sum to the result
    result = result + Sum
 # Printing the result
print(result)
```

User input

```
a=[]
n=int(input("Number of elements in array:"))
for i in range(0,n):
l=int(input())
a.append(l)
print(a)
```

What is the problem?

$$2x^{30} - 6x^2 + 2x - 1$$

Polynomial

Use one global array to store all polynomials

This also helps in addition

2D Array or two array

You can also use Structure for this

Sudipta Roy, Jio Institute

2D Array matrix

0,0	0,1	0,2
1,0	1,1	1,2
2,0	2,1	2,2

2D Array

Sparse Matrices

			col3			
row0	T15	0	0	22	0	-15 0 0 0 0 0
row1	0	11	3	0	0	0
row2	0	0	0	-6	0	0
row3	0	0	0	0	0	0
row4	91	0	0	0	0	0
row5	$\begin{bmatrix} 0 \end{bmatrix}$	0	28	0	0	$0 \rfloor$

- An n x n matrix may be stored as an n x n array.
- This takes O(n²) space.
- The example structured sparse matrices may be mapped into a 1D array so that a mapping function can be used to locate an element quickly; the space required by the 1D array is less than that required by an n x n array.

Sparse Matrices

0

0

0

row3

row4

row5

0

0

28

()

0

0

Count -- row and column and non-zero element in the matrix

row col value
6 6 8
0 0 15
0 3 22
0 5 -15
1 1 11
1 2 3
2 3 -6

91

28

0

a[o]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

sparse matrix

0

0

0

Sparse Matrix Operations

- Transpose of a sparse matrix.
- What is the transpose of a matrix?

Row←-> column and then sort based on 1st column

Sparse matrix in C

```
// number of columns in compactMatrix (counter) must be equal to
//number of non - zero elements in sparseMatrix
  int compactMatrix[3][counter];
  // Making of new matrix
  int k = 0;
 for (int i = 0; i < m; i++)
    for (int j = 0; j < n; j++)
      if (sparseMatrix[i][j] != 0)
         compactMatrix[0][k] = i;
         compactMatrix[1][k] = j;
         compactMatrix[2][k] = sparseMatrix[i][j];
         k++;
 for (int i=0; i<3; i++)
    for (int j=0; j< counter; j++)
      printf("%d ", compactMatrix[i][j]);
     printf("\n");
  return 0;
                                                           Sudipta Roy, Jio Institute
```

```
#include <stdio.h>
void main ()
  static int array[10][10];
  int i, j, m, n;
  int counter = 0;
   printf("Enter the order of the matix \n");
  printf("Enter the number of rows in array: ");
  scanf("%d", &m);
  printf("Enter the number of columns in array: ");
  scanf("%d", &n);
  printf("Enter the co-efficients of the matix: \n");
  for (i = 0; i < m; ++i)
    for (j = 0; j < n; ++j)
      scanf("%d", &array[i][j]);
      if (array[i][j] == 0)
         ++counter;
  if (counter > ((m * n) / 2))
    printf("The given matrix is sparse matrix \n");
  else
    printf("The given matrix is not a sparse matrix \n");
  printf("There are %d number of zeros", counter);
                                                            20
```

```
import numpy as np
input_matrix = np.array([[16, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 5], [0, 0, 0, 0]])
print("The input matrix is:")
print(input matrix)
sparse matrix = []
                                               What wrong in this code?
rows, cols = input_matrix.shape
for i in range(rows):
       for j in range(cols):
               if input matrix[i][j] != 0:
                       triplet = [i, j, input_matrix[i][j]]
                       sparse matrix.append(triplet)
print("The sparse matrix is:")
print(sparse matrix)
```

Asymptotic Notations

An analogy

Say we go through a drive-thru. We drive-in. We order. We pay. We receive our food. We drive out. **The drive-thru is the function.**

If a drive-thru serves 1,000 cars in a day, it returns 1,000 cars. Every car goes through the same three steps: order, pay, and food.

Why do some cars get through the drive-thru faster than others?

As:

- A car can hold N amount of people.
- The time it takes a car to get through the drive-thru is dependent on how many people are in the car.
 Think of the car as an array of objects.

Asymptotic Complexity

- Describes behavior of function in the limit.
- Running time of an algorithm as a function of input size *n* for large *n*.
- Expressed using only the **highest-order term** in the expression for the exact running time.
- Written using *Asymptotic Notation*. Asymptotic notations are mathematical tools to represent the time complexity of algorithms for asymptotic analysis.
- Asymptotic analysis is to have a measure of the efficiency of algorithms that don't depend on machine-specific constants.

Asymptotic Notation

Θ , O, Ω , o, ω

- Defined for functions over the natural numbers.
 - Ex: $f(n) = \Theta(n^2)$.
 - Describes how f(n) grows in comparison to n^2 .
- Define a set of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_{0},$$

such that $\forall n \geq n_{0},$
we have $0 \leq f(n) \leq cg(n) \}$

Intuitively: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

g(n) is an asymptotic upper bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$

 $\Theta(g(n)) \subset O(g(n)).$

Big-O notation represents the upper bound of the running time of an algorithm. Therefore, it gives the worst-case complexity of an algorithm.

Let's have an example

N	N!	2^N
1		
2		
3		
4		
5		

$$N_0 = ?$$

$$C = ?$$

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq f(n) \leq cg(n) \}$

Consider the following f(n) and g(n)...

$$f(n) = 3n + 2, g(n) = n$$

If we want to represent f(n) as O(g(n)) then it must satisfy $f(n) \le C g(n)$ for all values of C > 0 and $n_0 > 1$

$$f(n) \le C g(n) \Rightarrow 3n + 2 \le C n$$

Above condition is always TRUE for all values of **C** = **4** and **n** >= **2**.

By using Big - Oh notation we can represent the time complexity as follows... 3n + 2 = O(n)

- Any linear function an + b is in $O(n^2)/O(n)$.
- Show that $3n^3 = O(n^4)$ for appropriate c and n_0 .

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$

 \exists positive constants c and n_{0} , such that $\forall n \geq n_{0}$, we have $0 \leq cg(n) \leq f(n)\}$

Intuitively: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

 $\Theta(g(n)) \subset \Omega(g(n)).$

Omega notation represents the lower bound of the running time of an algorithm. Thus, it provides the best-case complexity of an algorithm.

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}$

Consider the following f(n) and g(n)...

$$f(n) = 3n + 2, g(n) = n$$

If we want to represent f(n) as $\Omega(g(n))$ then it must satisfy $f(n) \ge C g(n)$ for all values of $C \ge 0$ and $n_0 \ge 1$

$$f(n) \ge C g(n) \Rightarrow 3n + 2 \ge C n$$

Above condition is always TRUE for all values of $\mathbf{C} = \mathbf{1}$ and $\mathbf{n} >= \mathbf{1}$.

By using Big - Omega notation we can represent the time complexity as follows... $3n + 2 = \Omega(n)$

• $\sqrt{n} = \Omega(\lg n)$. Choose *c* and n_0 .

O-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

$$\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,} \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$$

Intuitively: Set of all functions that have the same *rate of* growth as g(n).

g(n) is an asymptotically tight bound for f(n).

f(n) and g(n) are nonnegative, for large n.

Technically, $f(n) \in \Theta(g(n))$. Older usage, $f(n) = \Theta(g(n))$. I'll accept either...

$$\Theta(g(n)) = \{ f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$$

Consider the following f(n) and g(n)...

$$f(n) = 3n + 2, g(n) = n$$

If we want to represent f(n) as $\Theta(g(n))$ then it must satisfy $C_1 g(n) \le C_2 g(n)$ for all values of $C_1 > 0$, $C_2 > 0$ and $C_1 > 0$, and $C_2 > 0$ and $C_2 > 0$ and $C_3 > 0$.

$$C_1 g(n) \le f(n) \le C_2 g(n) \Rightarrow C_1 n \le 3n + 2 \le C_2 n$$

Above condition is always TRUE for all values of $C_1 = 1$, $C_2 = 4$ and $n \ge 2$.

By using Big - Theta notation we can represent the time compexity as follows...

$$3n + 2 = \Theta(n)$$

```
\Theta(g(n)) = \{ f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```

- $10n^2 3n = \Theta(n^2)$
 - What constants for n_0 , c_1 , and c_2 will work?
 - Make c_1 a little smaller than the leading coefficient, and c_2 a little bigger.

Homework

```
\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, 
such that \forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)\}
```

- Is $3n^3 \in \Theta(n^4)$??
- How about $2^{2n} \in \Theta(2^n)$??

Relations Between O, Θ , Ω

```
Theorem: For any two functions g(n) and f(n), f(n) = \Theta(g(n)) iff f(n) = O(g(n)) and f(n) = \Omega(g(n)).
```

- I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

$$4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$$

= $4n^3 + \Theta(n^2) = \Theta(n^3)$. How to interpret?

- In equations, $\Theta(f(n))$ always stands for an *anonymous function* $g(n) \in \Theta(f(n))$
 - In the example above, $\Theta(n^2)$ stands for $3n^2 + 2n + 1$.

o-notation (Little o)

For a given function g(n), the set little-o:

```
o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \ge n_0,
we have 0 \le f(n) < cg(n)\}.
```

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

g(n) is an **upper bound** for f(n) that is not asymptotically tight.

Observe the difference in this definition from previous ones.

ω -notation (ω)

For a given function g(n), the set little-omega:

$$\mathcal{O}(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \ge n_0,$$

we have $0 \le cg(n) < f(n)\}.$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} \left[f(n) / g(n) \right] = \infty.$$

g(n) is a **lower bound** for f(n) that is not asymptotically tight.

Comparison of Functions [Summary]

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

 $f(n) = \Omega(g(n)) \approx a \geq b$
 $f(n) = \Theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Properties

Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

 $f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
 $f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$
 $f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$

Reflexivity

$$f(n) = \Theta(f(n))$$
$$f(n) = O(f(n))$$
$$f(n) = \Omega(f(n))$$

Symmetry

$$f(n) = \Theta(g(n))$$
 iff $g(n) = \Theta(f(n))$

Complementarity

$$f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n))$$
$$f(n) = o(g(n)) \text{ iff } g(n) = \omega((f(n)))$$

- *f*(*n*) is
 - monotonically increasing if $m \le n \Rightarrow f(m) \le f(n)$.
 - monotonically decreasing if $m \ge n \Rightarrow f(m) \ge f(n)$.
 - strictly increasing if $m < n \Rightarrow f(m) < f(n)$.
 - strictly decreasing if $m > n \Rightarrow f(m) > f(n)$.

Exercise

Express functions in A in asymptotic notation using functions in B.

A B
$$5n^{2} + 100n \qquad 3n^{2} + 2 \qquad A \in \Theta(B)$$

$$A \in \Theta(n^{2}), n^{2} \in \Theta(B) \Rightarrow A \in \Theta(B)$$

$$\log_{3}(n^{2}) \qquad \log_{2}(n^{3}) \qquad A \in \Theta(B)$$

$$\log_{b}a = \log_{c}a / \log_{c}b; A = 2\lg n / \lg 3, B = 3\lg n, A/B = 2/(3\lg 3)$$

$$n^{\lg 4} \qquad 3^{\lg n} \qquad A \in \omega(B)$$

$$a^{\log b} = b^{\log a}; B = 3^{\lg n} = n^{\lg 3}; A/B = n^{\lg(4/3)} \to \infty \text{ as } n \to \infty$$

$$\lg^{2}n \qquad n^{1/2} \qquad A \in o(B)$$

$$\lim_{n \to \infty} (\lg^{a}n / n^{b}) = 0 \text{ (here } a = 2 \text{ and } b = 1/2) \Rightarrow A \in o(B)$$

What Next?