11849060 谭树杰

Lab 10 -k Nearest Neighbor

and Parzen Window

Class Project 8

sample	ω_1			ω_2			ω_3		
	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	0.28	1.31	-6.2	0.011	1.03	-0.21	1.36	2.17	0.14
2	0.07	0.58	-0.78	1.27	1.28	0.08	1.41	1.45	-0.38
3	1.54	2.01	-1.63	0.13	3.12	0.16	1.22	0.99	0.69
4	-0.44	1.18	-4.32	-0.21	1.23	-0.11	2.46	2.19	1.31
5	-0.81	0.21	5.73	-2.18	1.39	-0.19	0.68	0.79	0.87
6	1.52	3.16	2.77	0.34	1.96	-0.16	2.51	3.22	1.35
7	2.20	2.42	-0.19	-1.38	0.94	0.45	0.60	2.44	0.92
8	0.91	1.94	6.21	-0.12	0.82	0.17	0.64	0.13	0.97
9	0.65	1.93	4.38	-1.44	2.31	0.14	0.85	0.58	0.99
10	-0.26	0.82	-0.96	0.26	1.94	0.08	0.66	0.51	0.88

Use the right table as the training samples.

Let your window function be a spherical Gaussian, i.e.,

$$\varphi((\mathbf{x} - \mathbf{x}_i)/h) \propto \text{Exp}[-(\mathbf{x} - \mathbf{x}_i)^t(\mathbf{x} - \mathbf{x}_i)/(2h^2)].$$

- (a) Write a program to classify an arbitrary test point \mathbf{x} based on the Parzen window estimates. Train your classifier using the three-dimensional data from your three categories in the table above. Set h=1 and classify the following three points: $(0.50, 1.0, 0.0)^t$, $(0.31, 1.51, -0.50)^t$ and $(-0.3, 0.44, -0.1)^t$.
- (b) Repeat with h = 0.1.

We first plot the datasets below, class ω_1 is marked red triangle, class ω_2 is marked read circle, class ω_3 is marked blue star:

10

For a particular number n (= number of total points), we use a fixed number k (number of points that fall inside the region or volume) and adjust the volume accordingly.

$$V_n = 1/\sqrt{n}$$

Define the kernel function as Guassian:

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$
$$\varphi\left(\frac{x - x_i}{h}\right) \propto \exp(-(x - x_i)^t (x - x_i)/2h^2)$$

Then $p_n(x)$ is the average:

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x_i})$$

We implement it in python, the result is shown below:

The probabilities of point [0.5 1. 0.] belong to three class is [0.02139395 0.0634711 0.03613364] thus, the point [0.02139395 0.0634711 0.03613364] is class 2

The probabilities of point [$0.31\ 1.51\ -0.5$] belong to three class is [$0.02074741\ 0.04829757\ 0.0316407$] thus, the point [$0.02074741\ 0.04829757\ 0.0316407$] is class 2

The probabilities of point $[-0.3 \quad 0.44 \ -0.1]$ belong to three class is $[0.03038367 \ 0.03413827 \ 0.0032046]$ thus, the point $[0.03038367 \ 0.03413827 \ 0.0032046]$ is class 2

For h = 0.1:

The probabilities of point [0.5 1. 0.] belong to three class is [4.34399337e-43 2.69960946e-07 2.45366375e-47] thus, the point [4.34399337e-43 2.69960946e-07 2.45366375e-47] is class 2

The probabilities of point $[\ 0.31\ 1.51\ -0.5\]$ belong to three class is $[1.91818447e-44\ 6.76567745e-10\ 2.02834556e-43]$ thus, the point $[1.91818447e-44\ 6.76567745e-10\ 2.02834556e-43]$ is class 2

The probabilities of point [-0.3 0.44 -0.1] belong to three class is [7.46344916e-028 4.77525554e-011 3.33465184e-127] thus, the point [7.46344916e-028 4.77525554e-011 3.33465184e-127] is class 2