STOCK-MARKET ANALYSIS

- HERE WE ARE ANALYZING THE STOCK PRICES FOR MNC'S SUCH AS:
- AMAZON, MICROSOFT, GOOGLE, APPLE.
- HERE WE HAVE A DATA FRAME FROM KAGGLE https://www.kaggle.com/datasets/darshanprabhu09/stock-prices-for
- WE ARE GOING TO CALCULATE INTRA DAY PROFITS AND SOME TRENDS.
- We will explore this dataset with Python Numpy/Pandas and visualize the results using Matplotlib/Seaborn/Plotly.
- THIS ANALYSIS WOULD HELP FOR TRADER AND SOME INVESTORS TO LOOK INTO THE HISTORY OF AMAZON, APPLE, GOOGLE, MICROSOFT STOCKS.

To load the dataset into a Pandas dataframe, we first need to import the necessary libraries:

```
!pip install jovian opendatasets --upgrade --quiet import pandas as pd #IMPORTING PANDAS
```

```
# URL FOR THE DATASET
dataset_url = 'https://www.kaggle.com/datasets/darshanprabhu09/stock-prices-for'
```

```
google_path = '/kaggle/input/stock-prices-for/GOOG_data.csv' #DECLARING DIRECTORY
microsoft = '/kaggle/input/stock-prices-for/MSFT_data.csv' #DECLARING DIRECTORY
# downloading the data file
import opendatasets as od
od.download(dataset_url)
Skipping, found downloaded files in "./stock-prices-for" (use force=True to force
download)
# DIRECTORY FOR THE DATASET
data_dir = './stock-prices-for'
import os
os.listdir(data_dir)
['AAPL_data.csv', 'AMZN_data.csv', 'GOOG_data.csv', 'MSFT_data.csv']
#CREATING A LIST FOR CSV FILES
company_list=['AAPL_data.csv', 'AMZN_data.csv', 'GOOG_data.csv', 'MSFT_data.csv']
#HERE WE ARE MERGING ALL DATA IN A SINGLE CSV FILE
all_data = pd.DataFrame()
for file in company_list:
    current_df = pd.read_csv(data_dir+"/"+file)
    all_data = pd.concat([all_data, current_df])
# DECLARING PROJECT NAME
project_name = "stock-market-analysis"
!pip install jovian --upgrade -q
import jovian
jovian.commit(project=project_name)
[jovian] Updating notebook "varunshiyam/stock-market-analysis" on https://jovian.com
```

[jovian] Committed successfully! https://jovian.com/varunshiyam/stock-market-analysis

Data Preparation and Cleaning:

'https://jovian.com/varunshiyam/stock-market-analysis'

Here we are Loading the dataset into a data frame using Pandas and Exploring the number of rows & columns, ranges of values etc.

Here we need to Handle missing, incorrect and invalid data.

```
import numpy as np  # linear algebra
import pandas as pd  # data processing

# data visualization

import matplotlib.pyplot as plt
import seaborn as sns
import jovian
```

all_data #HERE WE ARE DISPLAYING ALL THE FOUR DATAS INTO ONE DATASET

	date	open	high	low	close	volume	Name
0	2013-02-08	67.7142	68.4014	66.8928	67.8542	158168416	AAPL
1	2013-02-11	68.0714	69.2771	67.6071	68.5614	129029425	AAPL
2	2013-02-12	68.5014	68.9114	66.8205	66.8428	151829363	AAPL
3	2013-02-13	66.7442	67.6628	66.1742	66.7156	118721995	AAPL
4	2013-02-14	66.3599	67.3771	66.2885	66.6556	88809154	AAPL
•••							
1254	2018-02-01	94.7900	96.0700	93.5813	94.2600	47227882	MSFT
1255	2018-02-02	93.6400	93.9700	91.5000	91.7800	47867753	MSFT
1256	2018-02-05	90.5600	93.2400	88.0000	88.0000	51031465	MSFT
1257	2018-02-06	86.8900	91.4750	85.2500	91.3300	67998564	MSFT
1258	2018-02-07	90.4900	91.7700	89.2000	89.6100	41107592	MSFT

4752 rows × 7 columns

```
all_data.shape
```

(4752, 7)

```
# HERE WE DELARED SEPARATE VARIABLES FOR EACH DATA SETS

sp_amazon=pd.read_csv(data_dir+"/AMZN_data.csv")
sp_apple=pd.read_csv(data_dir+"/AAPL_data.csv")
sp_mcrf=pd.read_csv(data_dir+'/MSFT_data.csv')
sp_google=pd.read_csv(data_dir+'/GOOG_data.csv')
```

```
sp_amazon
```

date	open	nign	Iow	close	volume	Name
0 2013-02-08	261.40	265.25	260.555	261.95	3879078	AMZN

	date	open	high	low	close	volume	Name
1	2013-02-11	263.20	263.25	256.600	257.21	3403403	AMZN
2	2013-02-12	259.19	260.16	257.000	258.70	2938660	AMZN
3	2013-02-13	261.53	269.96	260.300	269.47	5292996	AMZN
4	2013-02-14	267.37	270.65	265.400	269.24	3462780	AMZN
•••							
1254	2018-02-01	1445.00	1459.88	1385.140	1390.00	9113808	AMZN
1255	2018-02-02	1477.39	1498.00	1414.000	1429.95	11125722	AMZN
1256	2018-02-05	1402.62	1458.98	1320.720	1390.00	11494985	AMZN
1257	2018-02-06	1361.46	1443.99	1351.790	1442.84	11066819	AMZN
1258	2018-02-07	1449.00	1460.99	1415.150	1416.78	7162741	AMZN

1259 rows × 7 columns

HERE WE ARE ADDING TWO NEW COLUMNS NAMELY:

- UP TREND
- DOWN TREND
- INTRA DAY PROFIT

TO CHECK THE TREND AND PROFIT FOR EVERY DAY.

```
sp_amazon['Intra day profit']= sp_amazon.close - sp_amazon.open
sp_apple['Intra day profit']= sp_apple.close - sp_apple.open
sp_google['Intra day profit']= sp_google.close - sp_google.open
sp_mcrf['Intra day profit']= sp_mcrf.close- sp_mcrf.open
```

```
# TRENDS ARE ONLY APPROXIMATE VALUE
# THIS IS STOCK MARKET, WE ARE NOT SURE ABOUT TRENDS UNLESS THEY PROVIDE THE GRAPH IN TH
value = (sp_amazon.open < sp_amazon.close) # COMPARING THE VALUES FOR UP TREND</pre>
sp_amazon['TREND']=''
i=0
while (len(sp_amazon)-1) >= i :
    if value[i] == True : # CHECKS WHETHER UP TREND OR NOT
        sp_amazon['TREND'][i]='UP TREND'
        i = i + 1
    else :
        i = i + 1
value2 = (sp_amazon.open > sp_amazon.close) # COMPARING THE VALUES FOR DOWN TREND
k=0
while (len(sp_amazon)-1) >= k :
    if value2[k] == True : # CHECKS WHETHER DOWN TREND OR NOT
        sp_amazon['TREND'][k]='DOWN TREND'
        k = k + 1
    else :
        k = k + 1
```

```
value3 = (sp_amazon.open == sp_amazon.close) # COMPARING THE VALUE FOR SIDE WISE EXPANS
v=0
while (len(sp_amazon)-1) >= v :
    if value3[v] == True : # CHECKS WHETHER SIDE WISE OR NOT
        sp_amazon['TREND'][v]='SIDE WISE'
        v= v + 1
    else :
        v= v + 1
sp_amazon
```

/tmp/ipykernel_146/3556405131.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_amazon['TREND'][i]='UP TREND'
/tmp/ipykernel_146/3556405131.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_amazon['TREND'][k]='DOWN TREND'
/tmp/ipykernel_146/3556405131.py:26: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_amazon['TREND'][v]='SIDE WISE'

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2013-02-08	261.40	265.25	260.555	261.95	3879078	AMZN	0.55	UP TREND
1	2013-02-11	263.20	263.25	256.600	257.21	3403403	AMZN	-5.99	DOWN TREND
2	2013-02-12	259.19	260.16	257.000	258.70	2938660	AMZN	-0.49	DOWN TREND
3	2013-02-13	261.53	269.96	260.300	269.47	5292996	AMZN	7.94	UP TREND
4	2013-02-14	267.37	270.65	265.400	269.24	3462780	AMZN	1.87	UP TREND
•••						•••			
1254	2018-02-01	1445.00	1459.88	1385.140	1390.00	9113808	AMZN	-55.00	DOWN TREND
1255	2018-02-02	1477.39	1498.00	1414.000	1429.95	11125722	AMZN	-47.44	DOWN TREND
1256	2018-02-05	1402.62	1458.98	1320.720	1390.00	11494985	AMZN	-12.62	DOWN TREND
1257	2018-02-06	1361.46	1443.99	1351.790	1442.84	11066819	AMZN	81.38	UP TREND
1258	2018-02-07	1449.00	1460.99	1415.150	1416.78	7162741	AMZN	-32.22	DOWN TREND

```
# TRENDS ARE ONLY APPROXIMATE VALUE
# THIS IS STOCK MARKET, WE ARE NOT SURE ABOUT TRENDS UNLESS THEY PROVIDE THE GRAPH IN TH
value = (sp_apple.open < sp_apple.close) # COMPARING THE VALUES FOR UP TREND
sp_apple['TREND']=''
i=0
while (len(sp_apple)-1)>= i :
    if value[i] == True : # CHECKS WHETHER UP TREND OR NOT
        sp_apple['TREND'][i]='UP TREND'
        i = i + 1
    else :
        i = i + 1
value2 = (sp_apple.open > sp_apple.close) # COMPARING THE VALUES FOR DOWN TREND
k=0
while (len(sp_apple)-1) >= k :
    if value2[k] == True :# CHECKS WHETHER DOWN TREND OR NOT
        sp_apple['TREND'][k]='DOWN TREND'
        k = k + 1
    else :
        k = k + 1
value3 = (sp_apple.open == sp_apple.close) # COMPARING THE VALUE FOR SIDE WISE EXPANSION
v=0
while (len(sp_apple)-1) >= v :
    if value3[v] == True : # CHECKS WHETHER SIDE WISE OR NOT
        sp_apple['TREND'][v]='SIDE WISE'
        v = v + 1
    else :
        v = v + 1
sp_apple
/tmp/ipykernel_146/3293690585.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  sp_apple['TREND'][i]='UP TREND'
/tmp/ipykernel_146/3293690585.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  sp_apple['TREND'][k]='DOWN TREND'
/tmp/ipykernel_146/3293690585.py:26: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_apple['TREND'][v]='SIDE WISE'

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2013-02-08	67.7142	68.4014	66.8928	67.8542	158168416	AAPL	0.1400	UP TREND
1	2013-02-11	68.0714	69.2771	67.6071	68.5614	129029425	AAPL	0.4900	UP TREND
2	2013-02-12	68.5014	68.9114	66.8205	66.8428	151829363	AAPL	-1.6586	DOWN TREND
3	2013-02-13	66.7442	67.6628	66.1742	66.7156	118721995	AAPL	-0.0286	DOWN TREND
4	2013-02-14	66.3599	67.3771	66.2885	66.6556	88809154	AAPL	0.2957	UP TREND
•••						•••			
1254	2018-02-01	167.1650	168.6200	166.7600	167.7800	47230787	AAPL	0.6150	UP TREND
1255	2018-02-02	166.0000	166.8000	160.1000	160.5000	86593825	AAPL	-5.5000	DOWN TREND
1256	2018-02-05	159.1000	163.8800	156.0000	156.4900	72738522	AAPL	-2.6100	DOWN TREND
1257	2018-02-06	154.8300	163.7200	154.0000	163.0300	68243838	AAPL	8.2000	UP TREND
1258	2018-02-07	163.0850	163.4000	159.0685	159.5400	51608580	AAPL	-3.5450	DOWN TREND

1259 rows × 9 columns

```
# TRENDS ARE ONLY APPROXIMATE VALUE
# THIS IS STOCK MARKET, WE ARE NOT SURE ABOUT TRENDS UNLESS THEY PROVIDE THE GRAPH IN TH
value = (sp_google.open < sp_google.close) # COMPARING THE VALUES FOR UP TREND</pre>
sp_google['TREND']=''
i=0
while (len(sp_google)-1) >= i :
    if value[i] == True : # CHECKS WHETHER UP TREND OR NOT
        sp_google['TREND'][i]='UP TREND'
        i = i + 1
    else :
        i = i + 1
value2 = (sp_google.open > sp_google.close) # COMPARING THE VALUES FOR DOWN TREND
k=0
while (len(sp_google)-1) >= k :
    if value2[k] == True :# CHECKS WHETHER DOWN TREND OR NOT
        sp_google['TREND'][k]='DOWN TREND'
        k = k + 1
    else :
        k = k + 1
value3 = (sp_google.open == sp_google.close) # COMPARING THE VALUE FOR SIDE WISE EXPANS
v=0
while (len(sp_google)-1) >= v :
    if value3[v] == True : # CHECKS WHETHER SIDE WISE OR NOT
        sp_google['TREND'][v]='SIDE WISE'
        v = v + 1
    else :
```

```
v= v + 1
sp_google
```

/tmp/ipykernel_146/2854750493.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_google['TREND'][i]='UP TREND'
/tmp/ipykernel_146/2854750493.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_google['TREND'][k]='DOWN TREND'

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2014-03-27	568.000	568.00	552.92	558.46	13052	GOOG	-9.540	DOWN TREND
1	2014-03-28	561.200	566.43	558.67	559.99	41003	GOOG	-1.210	DOWN TREND
2	2014-03-31	566.890	567.00	556.93	556.97	10772	GOOG	-9.920	DOWN TREND
3	2014-04-01	558.710	568.45	558.71	567.16	7932	GOOG	8.450	UP TREND
4	2014-04-02	565.106	604.83	562.19	567.00	146697	GOOG	1.894	UP TREND
	•••								
970	2018-02-01	1162.610	1174.00	1157.52	1167.70	2412114	GOOG	5.090	UP TREND
971	2018-02-02	1122.000	1123.07	1107.28	1111.90	4857943	GOOG	-10.100	DOWN TREND
972	2018-02-05	1090.600	1110.00	1052.03	1055.80	3798301	GOOG	-34.800	DOWN TREND
973	2018-02-06	1027.180	1081.71	1023.14	1080.60	3447956	GOOG	53.420	UP TREND
974	2018-02-07	1081.540	1081.78	1048.26	1048.58	2369232	GOOG	-32.960	DOWN TREND

975 rows × 9 columns

```
# TRENDS ARE ONLY APPROXIMATE VALUE
# THIS IS STOCK MARKET, WE ARE NOT SURE ABOUT TRENDS UNLESS THEY PROVIDE THE GRAPH IN THE
value = (sp_mcrf.open < sp_mcrf.close) # COMPARING THE VALUES FOR UP TREND
sp_mcrf['TREND']=''
i=0
while (len(sp_mcrf)-1) >= i :
    if value[i] == True : # CHECKS WHETHER UP TREND OR NOT
        sp_mcrf['TREND'][i]='UP TREND'
    i= i + 1
else :
    i= i + 1

value2 = (sp_mcrf.open > sp_mcrf.close) # COMPARING THE VALUES FOR DOWN TREND
k=0
while (len(sp_mcrf)-1) >= k :
    if value2[k] == True : # CHECKS WHETHER DOWN TREND OR NOT
```

/tmp/ipykernel_146/1517831954.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_mcrf['TREND'][i]='UP TREND'
/tmp/ipykernel_146/1517831954.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_mcrf['TREND'][k]='DOWN TREND'
/tmp/ipykernel_146/1517831954.py:26: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandasdocs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sp_mcrf['TREND'][v]='SIDE WISE'

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2013-02-08	27.35	27.710	27.3100	27.55	33318306	MSFT	0.20	UP TREND
1	2013-02-11	27.65	27.920	27.5000	27.86	32247549	MSFT	0.21	UP TREND
2	2013-02-12	27.88	28.000	27.7500	27.88	35990829	MSFT	0.00	SIDE WISE
3	2013-02-13	27.93	28.110	27.8800	28.03	41715530	MSFT	0.10	UP TREND
4	2013-02-14	27.92	28.060	27.8700	28.04	32663174	MSFT	0.12	UP TREND
1254	2018-02-01	94.79	96.070	93.5813	94.26	47227882	MSFT	-0.53	DOWN TREND
1255	2018-02-02	93.64	93.970	91.5000	91.78	47867753	MSFT	-1.86	DOWN TREND
1256	2018-02-05	90.56	93.240	88.0000	88.00	51031465	MSFT	-2.56	DOWN TREND
1257	2018-02-06	86.89	91.475	85.2500	91.33	67998564	MSFT	4.44	UP TREND
1258	2018-02-07	90.49	91.770	89.2000	89.61	41107592	MSFT	-0.88	DOWN TREND

```
# HERE WE ARE FINDING THE MISSING VALUES
is_any_missing_value_amazon=sp_amazon.isna().sum()
is_any_missing_value_google=sp_google.isna().sum()
is_any_missing_value_microsoft=sp_mcrf.isna().sum()
is_any_missing_value_apple=sp_apple.isna().sum()
```

HERE WE ARE CHECKING FOR ANY NULL VALUE (OR) ANY MISSING VALUES INSIDE OUR DATASET is_any_missing_value_amazon

0 date 0 open 0 high low 0 close 0 volume 0 Name 0 Intra day profit 0 **TREND** 0 dtype: int64

is_any_missing_value_apple

date 0 0 open 0 high low 0 0 close 0 volume Name 0 Intra day profit 0 **TREND** 0 dtype: int64

is_any_missing_value_google

0 date 0 open 0 high low 0 0 close volume 0 Name 0 Intra day profit 0 **TREND** 0

dtype: int64

date	0
open	0
high	0
low	0
close	0
volume	0
Name	0
Intra day profit	0
TREND	0

dtype: int64

HERE WE ARE LOOKING INTO THE DATASET BY USING THE .describe() FUNCTION TO KNOW ABOUT THE

• HIGH

• MEAN

• LOW

• AND SOME OTHER STATICAL VALUES

des_of_amz = sp_amazon.describe()
des_of_amz

	open	high	low	close	volume	Intra day profit
count	1259.000000	1259.000000	1259.000000	1259.000000	1.259000e+03	1259.000000
mean	576.867264	582.017221	571.113517	576.880041	3.730465e+06	0.012777
std	282.500019	284.417123	280.215237	282.500395	2.166506e+06	8.311859
min	248.940000	252.930000	245.750000	248.230000	1.092970e+06	-55.000000
25%	325.870000	329.485000	322.185000	325.800000	2.511165e+06	-3.615000
50%	506.000000	512.330000	495.640000	503.820000	3.144719e+06	-0.010000
75%	777.620000	781.845000	770.720000	777.420000	4.220246e+06	4.080000
max	1477.390000	1498.000000	1450.040000	1450.890000	2.385606e+07	81.380000

des_of_apple=sp_apple.describe()
des_of_apple

	open	high	low	close	volume	Intra day profit
count	1259.000000	1259.000000	1259.000000	1259.000000	1.259000e+03	1259.000000
mean	109.055429	109.951118	108.141589	109.066698	5.404790e+07	0.011270
std	30.549220	30.686186	30.376224	30.556812	3.346835e+07	1.283588
min	55.424200	57.085700	55.014200	55.789900	1.147592e+07	-7.370000
25%	84.647800	85.334950	84.250650	84.830650	2.969438e+07	-0.686700
50%	108.970000	110.030000	108.050000	109.010000	4.566893e+07	0.040000
75%	127.335000	128.100000	126.290000	127.120000	6.870872e+07	0.745000
max	179.370000	180.100000	178.250000	179.260000	2.668336e+08	8.250000

```
des_of_google=sp_google.describe()
des_of_google
```

	open	high	low	close	volume	Intra day profit
count	975.000000	975.000000	975.000000	975.000000	9.750000e+02	975.000000
mean	725.364168	730.822248	719.456843	725.403353	1.808414e+06	0.039185
std	165.996590	166.847404	165.526487	166.420529	9.479685e+05	7.770445
min	494.650000	495.976000	487.560000	492.550000	7.932000e+03	-43.270000
25%	565.113000	570.380000	559.055000	564.785000	1.261927e+06	-3.920000
50%	722.710000	727.000000	716.430000	720.640000	1.576830e+06	0.160000
75%	822.035000	826.185000	818.725000	823.330000	2.052652e+06	4.645000
max	1177.330000	1186.890000	1171.980000	1175.840000	1.116494e+07	53.420000

```
des_of_mcrf=sp_mcrf.describe()
des_of_mcrf
```

	open	high	low	close	volume	Intra day profit
count	1259.000000	1259.000000	1259.000000	1259.000000	1.259000e+03	1259.000000
mean	51.026394	51.436007	50.630397	51.063081	3.386946e+07	0.036686
std	14.859387	14.930144	14.774630	14.852117	1.958979e+07	0.537886
min	27.350000	27.600000	27.230000	27.370000	7.425603e+06	-3.340000
25%	40.305000	40.637500	39.870000	40.310000	2.254879e+07	-0.240000
50%	47.440000	47.810000	47.005000	47.520000	2.938758e+07	0.030000
75%	59.955000	60.435000	59.275000	59.730000	3.842024e+07	0.330000
max	95.140000	96.070000	93.720000	95.010000	2.483542e+08	4.440000

```
amzn=pd.read_csv(data_dir+"/AMZN_data.csv")
aapl=pd.read_csv(data_dir+"/AAPL_data.csv")
msft=pd.read_csv(data_dir+'/MSFT_data.csv')
goog=pd.read_csv(data_dir+'/GOOG_data.csv')

# DECLARING NEW VARIABLES TO STORE THE DATA SET
aapl = aapl.values
amzn = amzn.values
goog = goog.values
msft = msft.values

concat = np.vstack((aapl,amzn,goog,msft)) # HERE WE ARE CONCATING THE DATASET
cols = ['date', 'open', 'high', 'low', 'close', 'volume','Name']

dt = pd.DataFrame(concat, columns=cols)
```

```
# HERE WE ARE GOING TO CONVERT THE DATES TO YEAR WISE.
sp_amazon['date'] = pd.to_datetime(sp_amazon['date'])
sp_apple['date'] = pd.to_datetime(sp_apple['date'])
```

```
sp_google['date'] = pd.to_datetime(sp_google['date'])
sp_mcrf['date'] = pd.to_datetime(sp_mcrf['date'])
sp_amazon
```

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2013-02-08	261.40	265.25	260.555	261.95	3879078	AMZN	0.55	UP TREND
1	2013-02-11	263.20	263.25	256.600	257.21	3403403	AMZN	-5.99	DOWN TREND
2	2013-02-12	259.19	260.16	257.000	258.70	2938660	AMZN	-0.49	DOWN TREND
3	2013-02-13	261.53	269.96	260.300	269.47	5292996	AMZN	7.94	UP TREND
4	2013-02-14	267.37	270.65	265.400	269.24	3462780	AMZN	1.87	UP TREND
1254	2018-02-01	1445.00	1459.88	1385.140	1390.00	9113808	AMZN	-55.00	DOWN TREND
1255	2018-02-02	1477.39	1498.00	1414.000	1429.95	11125722	AMZN	-47.44	DOWN TREND
1256	2018-02-05	1402.62	1458.98	1320.720	1390.00	11494985	AMZN	-12.62	DOWN TREND
1257	2018-02-06	1361.46	1443.99	1351.790	1442.84	11066819	AMZN	81.38	UP TREND
1258	2018-02-07	1449.00	1460.99	1415.150	1416.78	7162741	AMZN	-32.22	DOWN TREND

1259 rows × 9 columns

```
import jovian
```

```
jovian.commit()
```

[jovian] Updating notebook "varunshiyam/stock-market-analysis" on https://jovian.com [jovian] Committed successfully! https://jovian.com/varunshiyam/stock-market-analysis

Exploratory Analysis and Visualization

HERE WE ARE EXPRESSING OUR ANALYSIS GRAPHICALLY

```
# IMPORTING LIBRARIES REQUIRED FOR VISUALIZATION.
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

sns.set_style('darkgrid')
matplotlib.rcParams['font.size'] = 14
```

```
fig, axes = plt.subplots(2,2,figsize=(12,9))
plt.tight_layout(pad=4);
# ploting the stocks:
```

^{&#}x27;https://jovian.com/varunshiyam/stock-market-analysis'

```
axes[0,0].plot(des_of_amz)
axes[0,0].set_title('STOCK PRICE OF AMAZON')
axes[0,1].plot(des_of_apple)
axes[0,1].set_title('STOCK PRICE OF APPLE')
axes[1,0].plot(des_of_google)
axes[1,0].set_title('STOCK PRICE OF GOOGLE')
axes[1,1].plot(des_of_mcrf)
axes[1,1].set_title('STOCK PRICE OF MICROSOFT');
```


plt.suptitle("BARPLOT OF {}'s MEAN VALUES AND DATA DISTRIBUTION GROUPED BY NAME".fc
plt.tight_layout()
plt.show()

nums = ['open', 'high', 'low', 'close', 'volume'] # HERE WE ARE PROVIDING INPUT FOR THE
for i in nums:
 plots(dt, i)

BARPLOT OF open's MEAN VALUES AND DATA DISTRIBUTION GROUPED BY NAME

BARPLOT OF high's MEAN VALUES AND DATA DISTRIBUTION GROUPED BY NAME

BARPLOT OF low's MEAN VALUES AND DATA DISTRIBUTION GROUPED BY NAME

BARPLOT OF close'S MEAN VALUES AND DATA DISTRIBUTION GROUPED BY NAME

BARPLOT OF volume's MEAN VALUES AND DATA DISTRIBUTION GROUPED BY NAME

INSIGHT FROM THE GRAPH:

PLOT 1:

- IN THE FIRST SPACE WE PLOTTED HISTOGRAM WHICH CONTAIN THE "OPEN PRICE " FOR ALL THE FOUR STOCKS.
- IN SECOND SPACE WE PLOTTED BAR GRAPH WHICH CONTAINS THE MEAN FOR THE "OPEN PRICE "FOR EACH STOCKS.
- AND IN THE THIRD SPACE WE PLOTTED A PIE CHART WHICH CONTAINS THE PERCENTAGE FOR THE MEAN VALUE OF "OPEN PRICE" OF ALL STOCKS.
- PIE CHART PROVES US THAT THE AMAZON STOCKS, THE MICROSOFT STOCKS AND THE APPLE STOCKS HAS NEARLY THE SAME PERCENTAGE OF COMPOSITION.
- THE BAR GRAPH PROVES US THAT THE MEAN VALUE FOR THE OPEN PRICE IS HIGHER FOR THE STOCKS
 OF GOOGLE.

PLOT 2:

- IN THE FIRST SPACE WE PLOTTED HISTOGRAM WHICH CONTAIN THE "HIGH PRICE" FOR ALL THE FOUR STOCKS.
- IN SECOND SPACE WE PLOTTED BAR GRAPH WHICH CONTAINS THE MEAN FOR THE "HIGH PRICE "FOR EACH STOCKS.
- AND IN THE THIRD SPACE WE PLOTTED A PIE CHART WHICH CONTAINS THE PERCENTAGE FOR THE MEAN VALUE OF "HIGH PRICE" OF ALL STOCKS.
- PIE CHART PROVES US THAT THE AMAZON STOCKS, THE MICROSOFT STOCKS AND THE APPLE STOCKS HAS NEARLY THE SAME PERCENTAGE OF COMPOSITION.
- THE BAR GRAPH PROVES US THAT THE MEAN VALUE FOR THE "HIGH PRICE" IS HIGHER FOR THE STOCKS OF GOOGLE.

PLOT 3:

- IN THE FIRST SPACE WE PLOTTED HISTOGRAM WHICH CONTAIN THE "LOW PRICE" FOR ALL THE FOUR STOCKS.
- IN SECOND SPACE WE PLOTTED BAR GRAPH WHICH CONTAINS THE MEAN FOR THE "LOW PRICE "FOR EACH STOCKS.
- AND IN THE THIRD SPACE WE PLOTTED A PIE CHART WHICH CONTAINS THE PERCENTAGE FOR THE MEAN VALUE OF "LOW PRICE" OF ALL STOCKS.
- PIE CHART PROVES US THAT THE AMAZON STOCKS, THE MICROSOFT STOCKS AND THE APPLE STOCKS HAS NEARLY THE SAME PERCENTAGE OF COMPOSITION.
- THE BAR GRAPH PROVES US THAT THE MEAN VALUE FOR THE "LOW PRICE" IS HIGHER FOR THE STOCKS OF GOOGLE.

PLOT 4:

• IN THE FIRST SPACE WE PLOTTED HISTOGRAM WHICH CONTAIN THE "CLOSE PRICE " FOR ALL THE FOUR STOCKS.

- IN SECOND SPACE WE PLOTTED BAR GRAPH WHICH CONTAINS THE MEAN FOR THE "CLOSE PRICE "FOR EACH STOCKS.
- AND IN THE THIRD SPACE WE PLOTTED A PIE CHART WHICH CONTAINS THE PERCENTAGE FOR THE MEAN VALUE OF "CLOSE PRICE" OF ALL STOCKS.
- PIE CHART PROVES US THAT THE AMAZON STOCKS, THE MICROSOFT STOCKS AND THE APPLE STOCKS HAS NEARLY THE SAME PERCENTAGE OF COMPOSITION.
- THE BAR GRAPH PROVES US THAT THE MEAN VALUE FOR THE "CLOSE PRICE" IS HIGHER FOR THE STOCKS OF GOOGLE.

PLOT 5:

- IN THE FIRST SPACE WE PLOTTED HISTOGRAM WHICH CONTAIN THE "VOLUME "FOR ALL THE FOUR STOCKS
- IN SECOND SPACE WE PLOTTED BAR GRAPH WHICH CONTAINS THE MEAN FOR THE "VOLUME " FOR EACH STOCKS
- AND IN THE THIRD SPACE WE PLOTTED A PIE CHART WHICH CONTAINS THE PERCENTAGE FOR THE MEAN VALUE OF "VOLUME" OF ALL STOCKS
- PIE CHART PROVES US THAT THE AMAZON STOCKS, THE MICROSOFT STOCKS AND THE APPLE STOCKS HAS NEARLY THE SAME PERCENTAGE OF COMPOSITION.
- THE BAR GRAPH PROVES US THAT THE MEAN VALUE FOR THE "VOLUME" IS HIGHER FOR THE STOCKS OF APPLE.

GRAPH FOR THE HIGHEST PRICE AND THE LOWEST PRICE OF THE STOCKS

PLOT 1: HERE THIS LINE CHART COMPARES THE ALL TIME HIGH OF EACH YEARS WITH ALL TIME LOW OF EACH YEARS.

AMAZON TIME LINE GRAPH [SCALE] -- [YEARLY]

```
plt.figure(figsize=(18,8))
plt.plot('date', "high", data=sp_amazon)
plt.plot('date', "low", data=sp_amazon)
plt.legend(["HIGH", "LOW"])
plt.title(' PLOT 1 : HIGH_PRICE vs LOW_PRICE [AMAZON] ');
```


GRAPH ANALYSIS:

- FROM YEAR 2014 2015 --> AMAZON STOCK SHOWS A DOWN TREND.
- FROM YEAR 2015 2016 --> AMAZON STOCKS SHOWS A UP TREND.
- IN **EARLY 2016** --> THE STOCKS SHOWS A FINANCIAL CRISIS BUT IN **LATER 2016** THE STOCKS RETAIN TO HIGH.
- AND IN THE YEAR 2018 --> IT REACHES THE ALL TIME HIGH.

THIS GRAPH PROVES US THAT THE STOCK OF AMAZON GROWS YEARLY AND HAS UPTREND.

PLOT 2: HERE THIS LINE CHART COMPARES THE ALL TIME HIGH OF EACH YEARS WITH ALL TIME LOW OF EACH YEARS.

APPLE TIME LINE GRAPH [SCALE] -- [YEARLY]

```
plt.figure(figsize=(18,8))
plt.plot("date",'high',data=sp_apple)
plt.plot("date",'low',data=sp_apple)
plt.legend(["HIGH","LOW"])
plt.title('PLOT 2 : HIGH_PRICE vs LOW_PRICE [APPLE]');
```

PLOT 2: HIGH PRICE vs LOW PRICE [APPLE]

GRAPH ANALYSIS:

- FROM YEAR 2013 2014 --> THE GRAPH EXPANDS ONLY SIDE WISE NOT SHOWING A MASSIVE HIGH .
- FROM YEAR 2014 2015 --> THE GRAPH SHOWS A MASSIVE UP TREND.
- IN MID OF 2015 --> THE STOCKS OF APPLE FACES A FINANCIAL CRISES, SO THE PRICE FELLS DOWN AND MARK A DOWN TREND UPTO LATE 2015
- FROM YEAR 2016 2017 --> THE GRAPH SHOWS A SIDE WISE EXPANSION LIKE SAME AS THE YEAR OF 2013- 2014. THIS SHOWS US THAT "THE HISTORY REPEATS".
- FROM YEAR 2017 2018 --> THE GRAPH CLEARLY SHOWS US THE UP TREND.

THIS GRAPH PROVES US THAT THE STOCK OF APPLE GROWS YEARLY AND HAS UPTREND.

PLOT 3: HERE THIS LINE CHART COMPARES THE ALL TIME HIGH OF EACH YEARS WITH ALL TIME LOW OF EACH YEARS.

GOOGLE TIME LINE GRAPH [SCALE] -- [YEARLY]

```
plt.figure(figsize=(18,8))
plt.plot("date",'high',data=sp_google)
plt.plot("date",'low',data=sp_google)
plt.legend(["HIGH","LOW"])
plt.title('PLOT 3 : HIGH_PRICE vs LOW_PRICE [GOOGLE] ');
```

GRAPH ANALYSIS:

2014-07

 FROM YEAR 2014 - 2015 --> THE GRAPH EXPANDS SIDE WISE AND AT EARLY 2015 IT MARKS A DOWN TREND

2016-01

2016-07

2017-01

2017-07

2018-01

• IN THE MONTH JULY 2015 --> THE STOCK GIVES A MASSIVE HIGH

2015-01

• FROM 2016 - 2018 --> THE STOCK STARTS MOVING IN AN UP TREND

2015-07

THIS GRAPH PROVES US THAT THE STOCK OF GOOGLE GROWS YEARLY AND HAS UPTREND.

PLOT 4: HERE THIS LINE CHART COMPARES THE ALL TIME HIGH OF EACH YEARS WITH ALL TIME LOW OF EACH YEARS.

MICROSOFT TIME LINE GRAPH [SCALE] -- [YEARLY]

```
plt.figure(figsize=(18,8))
plt.plot("date",'high',data=sp_mcrf)
plt.plot("date",'low',data=sp_mcrf)
plt.legend(["HIGH","LOW"])
plt.title('HIGH_PRICE vs LOW_PRICE [MICROSOFT] ');
```


GRAPH ANALYSIS:

- THIS GRAPH SHOWS US A SLOW RISE IN PRICE
- MORE OVER THE GRAPHS EXPANDS SIDE WISE
- FROM THE YEAR 2015 2016 --> STOCKS OF MICROSOFT FACES MANY ECONOMIC CRISES.
- FROM THE MID OF 2016 --> THE STOCKS OF MICROSOFT SHOW AN UP TREND

THIS GRAPH PROVES US THAT THE STOCK OF MICROSOFT GROWS YEARLY AND HAS UPTREND.

DISPLAYING HISTOGRAM FOR OPEN PRICE AND CLOSE PRICE

```
plt.hist('open',data=sp_amazon,alpha=0.4) #HERE WE ARE PLOTTING A HISTOGRAM
plt.hist('close',data=sp_amazon,alpha=0.2)
plt.legend(['open','close']);
plt.title('OPEN_PRICE vs CLOSE_PRICE [AMAZON]')
plt.xlabel('stock prices');
```


• IN AMAZON STOCKS IT SHOWS A HUGE DIFFERENCE BETWEEN THE OPEN PRICE AND THE CLOSED PRICE

```
plt.hist('open',data=sp_apple,alpha=0.4)
plt.hist('close',data=sp_apple,alpha=0.2)
plt.legend(['open','close']);
plt.title('OPEN_PRICE vs CLOSE_PRICE [APPLE]')
plt.xlabel('stock prices');
```


• IN APPLE STOCK THERE IS NO LARGE DIFFERENCE BETWEEN THE OPEN PRICE AND THE CLOSED PRICE, BUT THERE IS A LITTLE DIFFERENCE.

```
plt.hist('open',data=sp_google,alpha=0.4)
plt.hist('close',data=sp_google,alpha=0.2)
plt.legend(['open','close']);
plt.title('OPEN_PRICE vs CLOSE_PRICE [GOOGLE]')
plt.xlabel('stock prices');
```


• IN THE GOOGLE STOCKS THERE IS LITTLE DIFFERENCE BETWEEN THE OPENING PRICE AND THE CLOSING PRICE

```
plt.hist('open',data=sp_mcrf,alpha=0.4)
plt.hist('close',data=sp_mcrf,alpha=0.2)
plt.legend(['open','close']);
plt.title('OPEN_PRICE vs CLOSE_PRICE [MICROSOFT]')
plt.xlabel('stock prices');
```


• IN THE STOCKS OF MICROSOFT THERE IS LITERALLY NO DIFFERENCE BETWEEN THE OPEN PRICE AND THE CLOSED PRICE.

import jovian

jovian.commit()

[jovian] Updating notebook "varunshiyam/stock-market-analysis" on https://jovian.com
[jovian] Committed successfully! https://jovian.com/varunshiyam/stock-market-analysis

Asking and Answering Questions

• HERE ARE SOME REAL WORLD PROBLEM WHICH WE ARE FACING IN STOCK MARKET

What Could Be The Average Daily Return For Amazon Stock?

ANALYSIS:

sp_amazon

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2013-02-08	261.40	265.25	260.555	261.95	3879078	AMZN	0.55	UP TREND
1	2013-02-11	263.20	263.25	256.600	257.21	3403403	AMZN	-5.99	DOWN TREND
2	2013-02-12	259.19	260.16	257.000	258.70	2938660	AMZN	-0.49	DOWN TREND

^{&#}x27;https://jovian.com/varunshiyam/stock-market-analysis'

	date	open	high	low	close	volume	Name	Intra day profit	TREND
3	2013-02-13	261.53	269.96	260.300	269.47	5292996	AMZN	7.94	UP TREND
4	2013-02-14	267.37	270.65	265.400	269.24	3462780	AMZN	1.87	UP TREND
•••									
1254	2018-02-01	1445.00	1459.88	1385.140	1390.00	9113808	AMZN	-55.00	DOWN TREND
1255	2018-02-02	1477.39	1498.00	1414.000	1429.95	11125722	AMZN	-47.44	DOWN TREND
1256	2018-02-05	1402.62	1458.98	1320.720	1390.00	11494985	AMZN	-12.62	DOWN TREND
1257	2018-02-06	1361.46	1443.99	1351.790	1442.84	11066819	AMZN	81.38	UP TREND
1258	2018-02-07	1449.00	1460.99	1415.150	1416.78	7162741	AMZN	-32.22	DOWN TREND

1259 rows × 9 columns

describe=sp_amazon.describe()
describe

	open	high	low	close	volume	Intra day profit
count	1259.000000	1259.000000	1259.000000	1259.000000	1.259000e+03	1259.000000
mean	576.867264	582.017221	571.113517	576.880041	3.730465e+06	0.012777
std	282.500019	284.417123	280.215237	282.500395	2.166506e+06	8.311859
min	248.940000	252.930000	245.750000	248.230000	1.092970e+06	-55.000000
25%	325.870000	329.485000	322.185000	325.800000	2.511165e+06	-3.615000
50%	506.000000	512.330000	495.640000	503.820000	3.144719e+06	-0.010000
75%	777.620000	781.845000	770.720000	777.420000	4.220246e+06	4.080000
max	1477.390000	1498.000000	1450.040000	1450.890000	2.385606e+07	81.380000

list=(describe['Intra day profit'].values)# HERE WE ARE STORING INTRADAY PROFIT VALUES
list[1]

0.012776727561556912

```
plt.figure(figsize=(18,8))
plt.plot("date",'Intra day profit',data=sp_amazon)
plt.legend(["Intra day RETURNS"])
plt.title('INTRA DAY RETURNS');
```

INTRA DAY RETURNS

EXPLANATION:

- THE AVERAGE DAILY RETURN FOR AMAZON STOCKS WAS 0.012776727561556912 WHICH IS NEARLY 1% POSITIVE.
- THIS GRAPH SHOWS THE VOLATILITY OF THE INTRA-DAY RETURNS.
- NEARLY WITHIN 5 YEARS THE STOCKS OF AMAZON GROWTH WERE NEARLY 800% HIGH.

CONCLUSION:

• HERE WE CONCLUDED THAT THE DAILY AVERAGE RETURN IS NEARLY 1%.

What Could Be The Correct Day For Profit Booking And Getting The Assets Back From Stock Of Microsoft?

z=sp_mcrf.nlargest(10,['high']) # LISTING OUT TOP 10 HIGH VALUES
z

	date	open	high	low	close	volume	Name	Intra day profit	TREND
1254	2018-02-01	94.790	96.07	93.5813	94.26	47227882	MSFT	-0.530	DOWN TREND
1251	2018-01-29	95.140	95.45	93.7200	93.92	31569940	MSFT	-1.220	DOWN TREND
1253	2018-01-31	93.750	95.40	93.5100	95.01	48756338	MSFT	1.260	UP TREND
1250	2018-01-26	93.120	94.06	92.5800	94.06	29172167	MSFT	0.940	UP TREND
1255	2018-02-02	93.640	93.97	91.5000	91.78	47867753	MSFT	-1.860	DOWN TREND
1252	2018-01-30	93.300	93.66	92.1000	92.74	38635053	MSFT	-0.560	DOWN TREND
1248	2018-01-24	92.550	93.43	91.5800	91.82	33277483	MSFT	-0.730	DOWN TREND
1249	2018-01-25	92.465	93.24	91.9300	92.33	26383238	MSFT	-0.135	DOWN TREND
1256	2018-02-05	90.560	93.24	88.0000	88.00	51031465	MSFT	-2.560	DOWN TREND
1247	2018-01-23	91.900	92.30	91.5400	91.90	23412841	MSFT	0.000	SIDE WISE

```
plt.figure(figsize=(12,6))
plt.title('MAXIMUM PROFITS OF MICROSOFT STOCKS')
sns.barplot(x='high',y='date',data=z)
plt.xticks(rotation=75);
```


print('{} THIS WAS THE CORRECT DATE TO BOOK THEIR PROFIT , BECAUSE THE WAS IN ALL TIMES

2018-02-01 00:00:00 THIS WAS THE CORRECT DATE TO BOOK THEIR PROFIT , BECAUSE THE WAS IN ALL TIMES HIGH .

GRAPH ANALYSIS:

- THIS GRAPH IS PLOTTED BETWEEN THE HIGH VALUES AND DATE
- THIS GRAPH SHOWS US THE DATE AT WHICH THE STOCK PRICES REACHES HIGHEST VALUE

EXPLANATION:

- STEP-1 HERE WE USED A FUNCTION CALLED ".nlargest " TO SHORT LIST OUT THE TOP 10 ALL TIME HIGH VALUES
- STEP-2 WE PLOTTED A BAR GRAPH FOR THE SORTED DATA FOR OUR VISUAL.
- STEP-3 WITH THE HELP OF THE SORTED VALUE WE CONFORM THE ALL TIME HIGH VALUE DATE.

CONCLUSION:

 WE CONCLUDED THAT THIS (2018-02-01) WAS THE CORRECT DATE TO BOOK THEIR PROFIT AND GET THEIR ASSETS BACK.

When Does The Stocks Of Google Faces Financial Crises? Why?

	date	open	high	low	close	volume	Name	Intra day profit	TREND
0	2014-03-27	568.000	568.00	552.92	558.46	13052	GOOG	-9.540	DOWN TREND
1	2014-03-28	561.200	566.43	558.67	559.99	41003	GOOG	-1.210	DOWN TREND
2	2014-03-31	566.890	567.00	556.93	556.97	10772	GOOG	-9.920	DOWN TREND
3	2014-04-01	558.710	568.45	558.71	567.16	7932	GOOG	8.450	UP TREND
4	2014-04-02	565.106	604.83	562.19	567.00	146697	GOOG	1.894	UP TREND
•••									
970	2018-02-01	1162.610	1174.00	1157.52	1167.70	2412114	GOOG	5.090	UP TREND
971	2018-02-02	1122.000	1123.07	1107.28	1111.90	4857943	GOOG	-10.100	DOWN TREND
972	2018-02-05	1090.600	1110.00	1052.03	1055.80	3798301	GOOG	-34.800	DOWN TREND
973	2018-02-06	1027.180	1081.71	1023.14	1080.60	3447956	GOOG	53.420	UP TREND
974	2018-02-07	1081.540	1081.78	1048.26	1048.58	2369232	GOOG	-32.960	DOWN TREND

975 rows × 9 columns

y=sp_google.sort_values('close').head(10) # LISTING OUT THE TOP ALL TIMES LOW VALUE
y

	date	open	high	low	close	volume	Name	Intra day profit	TREND
200	2015-01-12	494.94	495.976	487.56	492.55	2320446	GOOG	-2.39	DOWN TREND
183	2014-12-16	511.56	513.050	489.00	495.39	3953371	GOOG	-16.17	DOWN TREND
199	2015-01-09	504.76	504.920	494.79	496.17	2065715	GOOG	-8.59	DOWN TREND
201	2015-01-13	498.84	502.980	492.39	496.18	2365687	GOOG	-2.66	DOWN TREND
202	2015-01-14	494.65	503.230	493.00	500.87	2229638	GOOG	6.22	UP TREND
197	2015-01-07	507.00	507.244	499.65	501.10	2059366	GOOG	-5.90	DOWN TREND
203	2015-01-15	505.57	505.680	497.76	501.79	2711355	GOOG	-3.78	DOWN TREND
196	2015-01-06	515.00	516.175	501.05	501.96	2891950	GOOG	-13.04	DOWN TREND
198	2015-01-08	497.99	503.480	491.00	502.68	3344395	GOOG	4.69	UP TREND
184	2014-12-17	497.00	507.000	496.81	504.89	2875281	GOOG	7.89	UP TREND

```
plt.figure(figsize=(12,6))
plt.title('LOWEST PRICES OF GOOGLE')
sns.barplot(x='low',y='date',data=y)# PLOTTING A BAR GRAPH
plt.xticks(rotation=75);
```

LOWEST PRICES OF GOOGLE

print('GOOGLE STOCKS FACED THE FINANCIAL CRISES AT {}'.format(sp_google['date'][200]))

GOOGLE STOCKS FACED THE FINANCIAL CRISES AT 2015-01-12 00:00:00

GRAPH ANALYSIS:

- THIS GRAPH SHOWS US THE LOWER PRICES OF STOCKS WERE AT THE YEAR BETWEEN THE 2015 TO 2010.
- AND THE LOWEST PRICE WAS 487.5 AT 2015-01-12.

EXPLANATION:

- STEP-1 HERE WE USED A FUNCTION CALLED '.sort_values' TO SHORT LIST OUT THE TOP 10 ALL TIME LOW VALUES
- STEP-2 WE PLOTTED A BAR GRAPH FOR THE SORTED DATA FOR OUR VISUAL.
- STEP-3 WITH THE HELP OF THE SORTED VALUE WE CONFORM THE DATE OF FINANCIAL CRISES FOR GOOGLE STOCKS.

CONCLUSION:

0 2013-02-08

67.7142

68.4014

- WE CONCLUDED THAT THE ALL TIME LOW VALUE OF GOOGLE STOCKS WAS AT 2015-01-12.
- GOOGLE PERFORMANCE WAS AFFECTED BY VARIOUS FACTORS, INCLUDING CHANGES IN THE TECHNOLOGY INDUSTRY, SHIFTS IN CONSUMER BEHAVIOR AND MACROECONOMIC TRENDS

What Could Be The Volatility Of The Market For The Daily Returns Of Apple Stock?

66.8928

sp_apple									
	date	open	high	low	close	volume	Name	Intra day profit	TREND

67.8542 158168416 AAPL

0.1400

UP TREND

	date	open	high	low	close	volume	Name	Intra day profit	TREND
1	2013-02-11	68.0714	69.2771	67.6071	68.5614	129029425	AAPL	0.4900	UP TREND
2	2013-02-12	68.5014	68.9114	66.8205	66.8428	151829363	AAPL	-1.6586	DOWN TREND
3	2013-02-13	66.7442	67.6628	66.1742	66.7156	118721995	AAPL	-0.0286	DOWN TREND
4	2013-02-14	66.3599	67.3771	66.2885	66.6556	88809154	AAPL	0.2957	UP TREND
•••									
1254	2018-02-01	167.1650	168.6200	166.7600	167.7800	47230787	AAPL	0.6150	UP TREND
1255	2018-02-02	166.0000	166.8000	160.1000	160.5000	86593825	AAPL	-5.5000	DOWN TREND
1256	2018-02-05	159.1000	163.8800	156.0000	156.4900	72738522	AAPL	-2.6100	DOWN TREND
1257	2018-02-06	154.8300	163.7200	154.0000	163.0300	68243838	AAPL	8.2000	UP TREND
1258	2018-02-07	163.0850	163.4000	159.0685	159.5400	51608580	AAPL	-3.5450	DOWN TREND

1259 rows × 9 columns

```
type(sp_apple)
```

pandas.core.frame.DataFrame

```
# converting "pandas.core.frame.DataFrame" Data Type TO "numpy.ndarray"

closing_prices_of_apple = (sp_apple.close).values
print(closing_prices_of_apple)
```

```
[ 67.8542 68.5614 66.8428 ... 156.49 163.03 159.54 ]
```

```
type(closing_prices_of_apple)
```

numpy.ndarray

```
# Calculate the daily returns
daily_returns = np.diff(closing_prices_of_apple) / closing_prices_of_apple[:-1]
```

```
# Calculate the daily return volatility (standard deviation of daily returns)
daily_return_volatility = np.std(daily_returns)
```

```
print("Daily Return Volatility for APPLE Stock:", daily_return_volatility)
```

Daily Return Volatility for APPLE Stock: 0.014587211012196448

EXPLANATION:

- First we converted "pandas.core.frame.DataFrame" Data Type TO "numpy.ndarray" using '.values'.
- Then We Calculated The Volatility Using NUMPY Library "np.std" Function Which is used to calculate the standard deviation of apple stocks, which is a measure of how much the values in the array vary from the

mean (average).

import jovian

jovian.commit()

[jovian] Updating notebook "varunshiyam/stock-market-analysis" on https://jovian.com [jovian] Committed successfully! https://jovian.com/varunshiyam/stock-market-analysis

'https://jovian.com/varunshiyam/stock-market-analysis'

SUMMARIZATION:

- In this project, we analyzed a real-world dataset of STOCK PRICES BETWEEN 2014-2018. We started by performing data preparation and cleaning, which involved checking for missing, incorrect, and invalid data, and handling them appropriately.
- We then moved on to exploratory analysis and visualization, where we computed INTRA DAY PROFITS, explored distributions of OPEN PRICE vs CLOSED PRICE using histograms, and explored the relationship between 'open', 'high', 'low', 'close', 'volume' using bar charts,pie chart. We answered several interesting questions about the dataset using Pandas and Matplotlib.
- Some of the key insights we gained from our analysis include:
- TRENDS OF EACH MARKETS FOR EVERY SINGLE DAY.
- INTRADAY PROFITS FOR EACH MARKETS.
- VISUALIZING THE 4 YEARS ACHIEVEMENTS IN A TIME LINE GRAPH FOR EACH MARKET.
 - WE USED HISTOGRAMS TO PLOT THE OPENING AND CLOSING VALUES OF EACH STOCKS.
 - WE USED PIE CHART TO DESCRIBE THE TOTAL PERCENTAGES OWN BY THEIR RESPECTIVE STOCKS.
 - WE USED LINE GRAPH TO DESCRIBE THE TIME LINE OF RESPECTIVE STOCKS.
- These Analysis might be valuable for the trader to visualize the history of the leading top multinational corporation stocks.

CONCLUSION / INFERENCE:

- From the years 2014 to 2018, the stocks of Amazon, Apple, Microsoft, and Google experienced significant growth and demonstrated their position as leading tech companies in the stock market.
- During this period, Amazon's stock showed remarkable performance, with its price increasing more than
 fourfold. The company capitalized on its expanding e-commerce business, successful ventures into cloud
 computing with Amazon Web Services (AWS), and investments in innovative technologies like voice-activated
 smart devices (Amazon Echo) and streaming services (Amazon Prime Video). This strong growth trajectory
 positioned Amazon as a dominant player in the global retail and tech sectors.
- Apple's stock also demonstrated steady growth during this period. The company benefited from the success
 of its flagship products, such as the iPhone and iPad, as well as the introduction of new product categories
 like the Apple Watch. Apple's stock price more than doubled, reflecting investors' confidence in the company's
 ability to consistently innovate and generate significant revenue.

- Microsoft experienced a notable transformation during this timeframe. Under the leadership of CEO Satya
 Nadella, the company shifted its focus towards cloud computing and software services. This strategic pivot
 paid off, as Microsoft's stock price more than tripled. The success of its Azure cloud platform, Office 365
 subscription model, and acquisition of LinkedIn contributed to its impressive growth, solidifying Microsoft's
 position as a technology powerhouse.
- Similarly, Google (now Alphabet Inc.) witnessed substantial growth in its stock value. The company's
 dominance in the search engine market, along with successful forays into mobile technology with the Android
 operating system and digital advertising, fueled its success. Additionally, Google's investments in emerging
 technologies like artificial intelligence and self-driving cars showcased its commitment to innovation. Over the
 period from 2014 to 2018, Google's stock price nearly doubled, reflecting investors' optimism about its diverse
 revenue streams and its potential for continued growth.
- In conclusion, from 2014 to 2018, the stocks of Amazon, Apple, Microsoft, and Google experienced impressive growth, driven by their technological advancements, strategic acquisitions, and successful product launches.
 These companies demonstrated their ability to adapt to changing market trends, innovate consistently, and generate substantial returns for their investors.

References

- https://matplotlib.org/ FOR VISUALIZATION
- https://pandas.pydata.org/ TO EXPLORE THE LIBRARY FUNCTIONS
- https://stackoverflow.com/ FOR CODING
- https://www.kaggle.com/ FOR DATA FRAMES

Datasets Source

• kaggle - https://www.kaggle.com/datasets/darshanprabhu09/stock-prices-for

FUTURE PROJECT IDEAS:

- Develop predictive models: Build machine learning models that can predict stock market trends, stock prices, or market volatility based on historical data, financial indicators, news sentiment analysis, and other relevant factors.
- Sentiment analysis on social media: Explore the use of natural language processing techniques to analyze social media data and identify patterns in public sentiment towards specific stocks or companies. This can help investors gauge market sentiment and make informed trading decisions.
- Sector analysis: Conduct an in-depth analysis of different sectors within the stock market to identify emerging trends, growth opportunities, and potential risks. This analysis can help investors allocate their portfolios strategically and capitalize on sector-specific opportunities.
- Risk management strategies: Develop advanced risk management techniques and strategies to help investors
 mitigate risks associated with stock market investments. This could involve developing models to assess
 portfolio risk, diversification strategies, or implementing stop-loss mechanisms.

<pre>jovian.commit()</pre>
[jovian] Updating notebook "varunshiyam/stock-market-analysis" on https://jovian.com [jovian] Committed successfully! https://jovian.com/varunshiyam/stock-market-analysis
'https://jovian.com/varunshiyam/stock-market-analysis'