Sampling in a Large Network

Xenofon Foukas

Imperial College London

Introduction

- Beneficial to architect networks and overlays as fully decentralized systems
 - Reliable
 - Fault-tolerant
 - No node has control over the whole network
- However computing global properties becomes a challenging task
 - Information distributed amongst nodes
 - Size and topology of the network are unknown and could change often altering the network properties
- Many distributed algorithms exist
 - Gossip
 - Random Walks
 - o Spectral
- Spectral algorithms
 - They provide information about structural properties
 - Derived from the spectrum of the network
 - Information provided are often used for parameterizing other algorithms in P2P networks

Background

Decentralized algorithm by Carzaniga et al. for estimating spectral network properties in low diameter networks, e.g. P2P

- Estimates the most significant eigenvalues of a descriptive matrix closely related to the adjacency matrix of the network graph
- Views the network as a linear dynamic system of the form

$$x(t+1) = Ax(t)+Bu(t)$$

 $y(t) = Cx(t)$

- The system reacts to an input (impulse) and produces an impulse response
- By gathering enough impulse responses we can approximately identify matrices A, B, C of the system by using Kung's realization algorithm
- We are interested in matrix A

Background

Algorithm 1 estimation algorithm executing at node v1: $x_v \leftarrow \text{choose a value from } \{0,1\} \text{ uniformly}$ 2: $h_v(1) \leftarrow x_v$ 3: for $t \leftarrow 2 \dots k$ do for $u \in \text{out-neighbors}(v)$ do send value $x_v a_{uv}$ to uend for 6: collect all values w sent by in-neighbors $x_v \leftarrow \sum w$ $h_v(t) \leftarrow x_v$ 10: end for 11: $\hat{A}_v = \text{Kung's realization with } h_v(1), \dots, h_v(k)$ 12: compute the dominant eigenvalues of \hat{A}_v 13: exchange the eigenvalues with neighbors 14: collect estimates from neighbors 15: adjust estimates to the median of the collected estimates

- High error even with a single failure
- Needs to operate in an asynchronous environment
- Integration with underlying network is challenging
- Portability issues
 - Discovery of in-neighbors
 - In-neighbors might fail

Protocol Design

- Two basic structures
 - Execution: Part of a protocol run performing the tasks of the original algorithm
 - Session: A full protocol run containing at least one but possibly multiple parallel partially overlapping Executions
- Each Execution has three phases
 - o **Initiation**: Send messages in a controlled flooding manner to inform nodes of the new Execution. Discover in-neighbors through the messages received
 - Data Exchange: Exchange impulses and compute impulse responses for a number of rounds. In the final round, estimate eigenvalues
 - Gossip Round: Exchange eigenvalue estimations with out-neighbors. Compute final estimation as the median of all gathered estimations
- A Session terminates once all its Executions terminate
 - The final estimation of the Session is the median of the estimations given by all Executions

Protocol Design

Combining parallel partially overlapping Executions can increase the accuracy of estimations

Software Architecture

Layered architecture

Software Architecture

- The Integration Layer handles network-specific details
 - Currently provided support for Pastry and Chord overlays

Software Architecture

- The control layer is responsible for high level protocol operations
 Handling impulse responses, user interaction etc.
 - Control Layer Storage Algorithms & Analysis **Protocol Core** Communications Integration Layer

Implementation

Asynchronous operation of nodes

Implementation

Protocol tasks are executed concurrently

- PlanetLab deployment
 - Pastry overlay (FreePastry)
 - o 20, 50 and 100 nodes
- Topological information gathered at evaluator node
 - Adjacency matrix constructed
 - Actual network properties computed
- Evaluated properties
 - Spectral gap
 |λ1-λ2| = 1-|λ2|
 - Mixing Time $\tau_{mix} = \log_{\lambda 2} \epsilon$
- Same properties evaluated by Carzaniga et al.
 - Allows verification of correctness in results

Networks without churn

- Error quickly becomes very small
- It does not stabilize to some value
- Mixing time requires a few more rounds than spectral gap

Single failure resistance

- Failure introduced at round 3k/4 to have maximum impact
- Pipelined executions reduce the error

Single addition resistance

- Error relatively low regardless of number of executions
- An execution takes a "snapshot" of the network during initiation
- Addition completely ignored but properties of the new topology are very close to the old ones

- Resistance of protocol in various failure rates
 - Compute average time for a Session to complete
 - o Compute the number of failures to introduce for each failure rate
 - Introduce the failures uniformly in time
- Provides good approximations for low failure rates
- Cannot handle high failure rates

Sampling Application

- Uses Push-Sum to compute average number of files per node
 - Gossip algorithm operating in rounds
 - Each node sends its current estimation to some out-neighbor and collects the estimations of its in-neighbors
 - Algorithm terminates once estimations converge globally additional overhead for distributed convergence

- Complexity of the algorithm is O(logN+t_{mix})
 - Determine number of rounds by using these parameters instead of checking for global convergence
 - \circ t_{mix} given by our protocol
 - size N unknown but in Pastry the size of the routing table is O(logN) use this value instead

Sampling Application

- Estimations accurate to all the nodes
 - The median error and the maximum error are very close
 - Estimation similar to that of global convergence without exchanging any additional messages

Demonstration

Conclusion

- Decentralized protocol for computing spectral network properties
 - Higher tolerance to failures and churn than original approach
 - Allows easy integration to new overlays
 - Can be used to provide higher level information about network

Limitations

- Does not address the problem of malicious nodes
- Relies on the information provided by the overlay implementation

Future Work

- Security concerns
- Experiments into larger testbeds
- Virtual nodes currently not supported, but could be extended
- Create a coordination mechanism for making sampling requests