- **1.** Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = 2n^2 4n + 2$. Calculer u_7 .
- 2. Soit (v_n) une suite définie par $v_0=4$ et pour tout entier $n\in \mathbb{N}$ par $v_{n+1}=-2v_n+3$. Calculer v_3 .

Corrigé 1

- **1.** Dans l'expression de u_n on remplace n par 7, on obtient : $u_7 = 2 \times 7^2 4 \times 7 + 2 = 72$.
- 2. On calcule successivent les termes jusqu'à obtenir v_3 :

$$v_1 = -2 \times v_0 + 3 = -2 \times 4 + 3 = -5$$

$$v_2 = -2 \times v_1 + 3 = -2 \times (-5) + 3 = 13$$

$$v_3 = -2 \times v_2 + 3 = -2 \times 13 + 3 = -23$$

Automatisme 2

- **1.** Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = \frac{-5n-2}{2n+1}$. Calculer u_4 .
- **2.** Soit (v_n) une suite définie par $v_0=-4$ et pour tout entier $n\in \mathbb{N}$ par $v_{n+1}=-4-v_n^2$. Calculer v_2 .

Corrigé 2

- **1.** Dans l'expression de u_n on remplace n par 4, on obtient : $u_4 = \frac{-5 \times 4 2}{2 \times 4 + 1} = \frac{-22}{9}$.
- 2. On calcule successivent les termes jusqu'à obtenir v_2 :

$$v_1 = -4 - (v_0)^2 = -4 - (-4)^2 = -20$$

$$v_2 = -4 - (v_1)^2 = -4 - (-20)^2 = -404$$

Automatisme 3

- 1. Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = -3n^2 + 2$. Calculer u_8 .
- 2. Soit (v_n) une suite définie par $v_0=2$ et pour tout entier $n\in \mathbb{N}$ par $v_{n+1}=-4v_n+4$. Calculer v_4 .

Corrigé 3

1. Dans l'expression de u_n on remplace n par 8, on obtient : $u_8 = -3 \times 8^2 + 2 = -190$.

2. On calcule successivent les termes jusqu'à obtenir v_4 :

$$v_1 = -4 \times v_0 + 4 = -4 \times 2 + 4 = -4$$

$$v_2 = -4 \times v_1 + 4 = -4 \times (-4) + 4 = 20$$

$$v_3 = -4 \times \mathbf{v_2} + 4 = -4 \times \mathbf{20} + 4 = -76$$

$$v_4 = -4 \times v_3 + 4 = -4 \times (-76) + 4 = 308$$

Automatisme 4

1. Soit v la suite arithmétique de premier terme $v_0 = 1$ et de raison 10.

a. Pour $n \in \mathbb{N}$, donner v_n , le terme général de la suite v.

b. Calculer $S_{40} = v_0 + v_1 + ... + v_{40}$.

2. Soit u la suite géométrique de premier terme $u_0=4$ et de raison 0,2.

a. Pour $n \in \mathbf{N}$, donner u_n , le terme général de la suite u.

b. Calculer $S_{15} = u_0 + u_1 + ... + u_{15}$.

Corrigé 4

1. a. Soit
$$n \in \mathbb{N}$$
. $v_n = v_0 + n \times 10$
= $1 + 10n$

b.
$$S_{40} = v_0 + v_1 + \dots + v_{40}$$

 $= 41 \times \frac{v_0 + v_{40}}{2}$
 $= 41 \times \frac{1 + (1 + 10 \times 40)}{2}$
 $= 41 \times \frac{1 + 401}{2}$
 $= 41 \times \frac{402}{2}$
 $= 41 \times 201$

2. a. Soit
$$n \in \mathbb{N}$$
. $u_n = u_0 \times 0, 2^n$
= $4 \times 0, 2^n$

b.
$$S_{15} = u_0 + u_1 + \dots + u_{15}$$

$$= u_0 \times \frac{1 - 0, 2^{16}}{1 - 0, 2}$$

$$= 4 \times \frac{1 - 0, 2^{16}}{1 - 0, 2}$$

$$\approx 4 \times 1, 25$$

$$\approx 5$$

Automatisme 5

= 8241

1. w la suite arithmétique de premier terme $w_0=7$ et de raison 4.

a. Pour $n \in \mathbf{N}$, donner w_n , le terme général de la suite w.

b. Calculer $S_{30} = w_0 + w_1 + ... + w_{30}$.

2. Soit v la suite géométrique de premier terme $v_1=7$ et de raison 0.6.

a. Pour $n \in \mathbf{N}$, donner v_n , le terme général de la suite v.

b. Calculer $S_{10} = v_1 + v_2 + ... + v_{10}$. Donner un arrondi au millième près.

2

Corrigé 5

1. a. Soit
$$n \in \mathbb{N}$$
. $w_n = w_0 + n \times 4$
$$= 7 + 4n$$

b.
$$S_{30} = w_0 + w_1 + ... + w_{30}$$

 $= 31 \times \frac{w_0 + w_{30}}{2}$
 $= 31 \times \frac{7 + (7 + 4 \times 30)}{2}$
 $= 31 \times \frac{7 + 127}{2}$
 $= 31 \times \frac{134}{2}$
 $= 31 \times 67$
 $= 2077$

2. a. Soit
$$n \in \mathbb{N}^*$$
. $v_n = v_1 \times 0, 6^{n-1}$
= $7 \times 0, 6^{n-1}$

b.
$$S_{10} = v_1 + v_2 + \dots + v_{10}$$

 $= v_1 \times \frac{1 - 0, 6^{10}}{1 - 0, 6}$
 $= 7 \times \frac{1 - 0, 6^{10}}{1 - 0, 6}$
 $\approx 7 \times 2, 4849$
 $\approx 17, 394$

Automatisme 6

1. Soit v la suite arithmétique de premier terme $v_1 = 3$ et de raison 10.

a. Pour $n \in \mathbb{N}^*$, donner v_n , le terme général de la suite v.

b. Calculer $S_{20} = v_1 + v_2 + ... + v_{20}$.

2. Soit u la suite géométrique de premier terme $u_1=8$ et de raison 0,3.

a. Pour $n \in \mathbb{N}^*$, donner u_n , le terme général de la suite u.

b. Calculer $S_{12} = u_1 + u_2 + ... + u_{12}$.

Corrigé 6

1. a. Soit
$$n \in \mathbf{N}^*$$
. $v_n = v_1 + (n-1) \times 10$
$$= 3 + 10(n-1)$$

$$= 3 + 10n - 10$$

$$= -7 + 10n$$

b.
$$S_{20} = v_1 + v_2 + ... + v_{20}$$

 $= 20 \times \frac{v_1 + v_{20}}{2}$
 $= 20 \times \frac{3 + (-7 + 10 \times 20)}{2}$
 $= 20 \times \frac{3 + 193}{2}$
 $= 20 \times \frac{196}{2}$
 $= 20 \times 98$
 $= 1960$

2. a. Soit
$$n \in \mathbf{N}^*$$
. $u_n = u_1 \times 0, 3^{n-1}$
= $8 \times 0, 3^{n-1}$

b.
$$S_{12} = u_1 + u_2 + \dots + u_{12}$$

$$= u_1 \times \frac{1 - 0, 3^{12}}{1 - 0, 3}$$

$$= 8 \times \frac{1 - 0, 3^{12}}{1 - 0, 3}$$

$$\approx 8 \times 1, 4286$$

$$\approx 11, 429$$

1. Soit v la suite arithmétique de premier terme $v_1=-3$ et de raison 5.

a. Pour $n \in \mathbf{N}^*$, donner v_n , le terme général de la suite v.

b. Calculer $S_{20} = v_1 + v_2 + ... + v_{20}$.

2. Soit u la suite géométrique de premier terme $u_1=4$ et de raison 3.

a. Pour $n \in \mathbb{N}^*$, donner u_n , le terme général de la suite u.

b. Calculer $S_{12} = u_1 + u_2 + ... + u_{12}$.

Corrigé 7

1. a. Soit $n \in \mathbf{N}^*$. $v_n = v_1 + (n-1) \times 10$ = -3 + 5(n-1) = -3 + 5n - 5 = -8 + 5n

b.
$$S_{20} = v_1 + v_2 + ... + v_{20}$$

 $= 20 \times \frac{v_1 + v_{20}}{2}$
 $= 20 \times \frac{-3 + (-8 + 5 \times 20)}{2}$
 $= 20 \times \frac{-3 + 92}{2}$
 $= 20 \times \frac{89}{2}$
 $= 890$

2. a. Soit
$$n \in \mathbb{N}^*$$
. $u_n = u_1 \times 3^{n-1}$
$$= 4 \times 3^{n-1}$$

b.
$$S_{12} = u_1 + u_2 + \dots + u_{12}$$

 $= u_1 \times \frac{1 - 3^{12}}{1 - 3}$
 $= 4 \times \frac{1 - 3^{12}}{1 - 3}$
 $= 4 \times 265720$
 $= 1062880$

Automatisme 8

1. Déterminer la limite de la suite (u_n) définie pour tout entier n, strictement positif, par :

$$u_n = \left(7 - \frac{3}{n}\right) \left(\frac{9}{n^4} + 4\right)$$

2. Déterminer la limite de la suite (v_n) définie pour tout entier strictement positif n par :

$$v_n = \frac{4 - 7n}{n}$$

4

Corrigé 8

1. On sait que $\lim_{n\to\infty} 7-\frac{3}{n}=7$ et $\lim_{n\to\infty} \frac{9}{n^4}+4=4.$

Ainsi, d'après les propriétés des limites d'un produit, $\lim_{n\to\infty} \left(7-\frac{3}{n}\right) \left(\frac{9}{n^4}+4\right) = 28$.

2. Pour tout entier n strictement positif, on a : $\frac{4-7n}{n} = \frac{4}{n} - 7$.

$$\lim_{n \to \infty} \frac{4}{n} = 0 \text{ et } \lim_{n \to \infty} -7 = -7.$$

Ainsi, d'après les propriétés des limites d'une somme, $\lim_{n\to\infty}\frac{4-7n}{n}=-7$.

1. Déterminer la limite de la suite (u_n) définie pour tout entier positif ou nul n par :

$$u_n = n^8 + \sqrt{n}$$

2. Déterminer la limite de la suite (v_n) définie pour tout entier n, strictement positif, par :

$$v_n = \frac{6 + n^9}{n^5}$$

Corrigé 9

- 1. On sait que $\lim_{n\to\infty}n^8=+\infty$ et $\lim_{n\to\infty}\sqrt{n}=+\infty$. Ainsi, d'après les propriétés des limites de la somme, $\lim_{n\to\infty}n^8+\sqrt{n}=+\infty$.
- 2. On sait que $\lim_{n \to \infty} 6 + n^9 = +\infty$ et $\lim_{n \to \infty} n^5 = +\infty$. Nous avons donc une forme indeterminée du type « $\frac{\infty}{\infty}$ », donc nous allons factoriser le numérateur par son terme de plus haut degré n^9 :

$$\begin{split} \frac{6+n^9}{n^5} &= \frac{n^9\left(\frac{6}{n^9}+1\right)}{n^5} \\ &= \frac{n^5\times n^4\left(\frac{6}{n^9}+1\right)}{n^5} \\ &= n^4\left(\frac{6}{n^9}+1\right) \quad \text{en simplifiant par } n^5. \end{split}$$

$$\mathrm{Or}\lim_{n\to\infty}n^4=+\infty \ \mathrm{et}\lim_{n\to\infty}\frac{6}{n^9}+1=1.$$

Ainsi, d'après les propriétés des limites d'un produit, $\lim_{n\to\infty}\frac{6+n^9}{n^5}=+\infty$.

Automatisme 10

1. Déterminer la limite de la suite (u_n) définie pour tout entier n strictement positif, par :

$$u_n = \frac{-3 - \frac{5}{n}}{\frac{2}{n^8}}$$

2. Déterminer la limite de la suite (v_n) définie pour tout entier n strictement positif, par :

$$v_n = \frac{2 + n^4}{n^4}$$

5

Corrigé 10

1. On sait que $\lim_{n\to\infty} -3 - \frac{5}{n} = -3$ et $\lim_{n\to\infty} \frac{2}{n^8} = 0$.

Ainsi, d'après les propriétés des limites d'un quotient, $\lim_{n\to\infty}\frac{-3-\frac{5}{n}}{\frac{2}{n^8}}=-\infty$.

2. On sait que $\lim_{n \to \infty} 2 + n^4 = +\infty$ et $\lim_{n \to \infty} n^4 = +\infty$. Nous obtenons une forme indeterminée du type « $\frac{\infty}{\infty}$ », nous allons donc factoriser le numérateur

$$\frac{2+n^4}{n^4}=\frac{n^4(\frac{2}{n^4}+1)}{n^4}$$

$$=\frac{2}{n^4}+1 \text{ en simplifiant par } n^4.$$

Or,
$$\lim_{n\to\infty}\frac{2}{n^4}=0.$$
 Donc, $\lim_{n\to\infty}\frac{2+n^4}{n^4}=\mathbf{1}.$

Automatisme 11

1. Déterminer la limite de la suite (u_n) définie pour tout entier n, , par :

$$u_n = \frac{1 - 4^n}{1 + \left(\frac{1}{4}\right)^n}$$

2. Déterminer la limite de la suite (v_n) définie pour tout entier positif n par :

$$v_n = 2^n - 3^n$$

Corrigé 11

$$\begin{array}{ll} \textbf{1.} \ 4>1 \ \mathrm{donc} \lim_{n \to \infty} 4^n = +\infty & \mathrm{et} \lim_{n \to \infty} 1 - 4^n = -\infty. \\ 0<\frac{1}{4}<1 \ \mathrm{donc} \lim_{n \to \infty} \left(\frac{1}{4}\right)^n = 0 & \mathrm{et} \lim_{n \to \infty} 1 + \left(\frac{1}{4}\right)^n = 1. \end{array}$$

Ainsi, d'après les propriétés des limites d'un quotient, $\lim_{n\to\infty}\frac{1-4^n}{1+\left(\frac{1}{4}\right)^n}=-\infty$.

2. On sait que $\lim_{n\to\infty} 2^n = +\infty$ et $\lim_{n\to\infty} 3^n = +\infty$.

Nous obtenons une forme indeterminée du type « $+\infty - \infty$ », nous allons donc factoriser l'expression par le terme le plus « grand » (3^n) :

6

$$2^{n} - 3^{n} = 3^{n} \times \frac{2^{n}}{3^{n}} - 3^{n} \times 1$$
$$= 3^{n} \times \left(\frac{2^{n}}{3^{n}} - 1\right)$$
$$= 3^{n} \times \left(\left(\frac{2}{3}\right)^{n} - 1\right)$$

$$0<\frac{2}{3}<1,\,\mathrm{donc}\lim_{n\to\infty}\left(\frac{2}{3}\right)^n=0\quad\text{ et }\quad\lim_{n\to\infty}\left(\frac{2}{3}\right)^n-1=-1.$$

$$3 > 1$$
, donc $\lim_{n \to \infty} 3^n = +\infty$.

Donc, d'après les propriétés des limites d'un produit, $\lim_{n\to\infty} 2^n - 3^n = -\infty$.

1. Déterminer la limite de la suite (u_n) définie pour tout entier n strictement positif par :

$$u_n = \frac{5 + \frac{2}{n}}{\frac{7}{n^8}}$$

2. Déterminer la limite de la suite (v_n) définie pour tout entier positif n par :

$$v_n = 10^n - 5^n$$

Corrigé 12

1. On sait que $\lim_{n\to\infty} 5 + \frac{2}{n} = 5$ et $\lim_{n\to\infty} \frac{7}{n^8} = 0$.

Ainsi, d'après les règles des limites d'un quotient, $\lim_{n\to\infty}\frac{5+\frac{2}{n}}{\frac{7}{n^8}}=+\infty$.

2. On sait que $\lim_{n\to\infty}10^n=+\infty$ et $\lim_{n\to\infty}5^n=+\infty$.

Nous obtenons une forme indeterminée du type « $+\infty - \infty$ », nous allons donc factoriser l'expression par le terme le plus « grand » (10^n) :

$$10^{n} - 5^{n} = 10^{n} \times 1 - 10^{n} \times \frac{5^{n}}{10^{n}}$$
$$= 10^{n} \times \left(1 - \frac{5^{n}}{10^{n}}\right)$$
$$= 10^{n} \times \left(1 - \left(\frac{5}{10}\right)^{n}\right)$$
$$= 10^{n} \times \left(1 - \left(\frac{1}{2}\right)^{n}\right)$$

$$0<\frac{1}{2}<1,\,\mathrm{donc}\lim_{n\to\infty}\left(\frac{1}{2}\right)^n=0\quad\text{ et }\quad\lim_{n\to\infty}1-\left(\frac{1}{2}\right)^n=1.$$

$$10 > 1$$
, donc $\lim_{n \to \infty} 10^n = +\infty$.

Donc, d'après les propriétés des limites d'un produit, $\lim_{n\to\infty}10^n-5^n=+\infty$.

7