- 1. $\mathbb{R}^{m \times n}$ is the space we denoted by $M_{m \times n}(\mathbb{R})$.
- 2. $M_n(\mathbb{R})$ is used for what we would write as $M_{n\times n}(\mathbb{R})$.
- 3. $U^{2\times 2}$ is used for the vector space of 2×2 upper triangular matrices.
- 4. $C^n(\mathbb{R})$ is the vector space of all real-valued functions defined on \mathbb{R} which have continuous n-th derivatives; $C^n(I)$ is used for the same kind of functions, but defined on I = [0, 1] rather than \mathbb{R} .
- 5. $C^0[0,1]$ is the same space as the one we denoted by C([0,1]).
- 6. In some questions P_n , \mathbb{P}_n or $P_n(x)$ is used to denote the set of polynomials of degree less than n. When this is done, the question will make it clear. If nothing is said, P_n , \mathbb{P}_n or $P_n(x)$ means the set of polynomials of degree less than or equal to n, as usual.
- 7. The coordinate vector of an element of a vector space with respect to a basis for the vector space is sometimes referred to as the coordinates of the element.
- 8. A linear transformation is sometimes also called an operator. If T is a linear transformation from a finite-dimensional vector space V with basis B into itself, the matrix representing T with respect to the basis B in both the domain and codomain of T is sometimes denoted by $[T]_B^B$ or simply $[T]_B$, and is called the matrix of T relative to B.
- 9. The standard basis for \mathbb{R}^n is sometimes denoted by E.
- 10. The image of a linear transformation is what we called the range of the linear transformation.
- 11. $\exp(2t)$ is another way of writing e^{2t} .