عنوان: استفاده از EF در اپلیکیشن های N-Tier : قسمت چهارم

نویسنده: آرمین ضیاء

تاریخ: ۸:۴۰ ۱۳۹۲/۱۱/۰۹ www.dotnettips.info

گروهها: Firstity framework, Tips, ASP.NET Web API, N-Layer Architecture, Entity Framework 6, ASP.NET Web API 2

در <u>قسمت قبل</u> تشخیص تغییرات توسط Web API را بررسی کردیم. در این قسمت نگاهی به پیاده سازی Change-tracking در سمت کلاینت خواهیم داشت.

ردیابی تغییرات در سمت کلاینت توسط Web API

فرض کنید میخواهیم از سرویسهای REST-based برای انجام عملیات CRUD روی یک Object graph استفاده کنیم. همچنین میخواهیم رویکردی در سمت کلاینت برای بروز رسانی کلاس موجودیتها پیاده سازی کنیم که قابل استفاده مجدد (reusable) باشد. علاوه بر این دسترسی دادهها توسط مدل Code-First انجام میشود.

در مثال جاری یک اپلیکیشن کلاینت (برنامه کنسول) خواهیم داشت که سرویسهای ارائه شده توسط پروژه Web API را فراخوانی میکند. هر یروژه در یک Solution مجزا قرار دارد، با این کار یک محیط n-Tier را شبیه سازی میکنیم.

مدل زیر را در نظر بگیرید.

همانطور که میبینید مدل مثال جاری مشتریان و شماره تماس آنها را ارائه میکند. میخواهیم مدلها و کد دسترسی به دادهها را در یک سرویس Web API پیاده سازی کنیم تا هر کلاینتی که به HTTP دسترسی دارد بتواند از آن استفاده کند. برای ساخت سرویس مذکور مراحل زیر را دنبال کنید.

در ویژوال استودیو پروژه جدیدی از نوع ASP.NET Web Application بسازید و قالب پروژه را Web API انتخاب کنید. نام پروژه را به Recipe4.Service تغییر دهید.

کنترلر جدیدی با نام CustomerController به پروژه اضافه کنید.

کلاسی با نام BaseEntity ایجاد کنید و کد آن را مطابق لیست زیر تغییر دهید. تمام موجودیتها از این کلاس پایه مشتق خواهند

شد که خاصیتی بنام TrackingState را به آنها اضافه میکند. کلاینتها هنگام ویرایش آبجکت موجودیتها باید این فیلد را مقدار دهی کنند. همانطور که میبینید این خاصیت از نوع TrackingState enum مشتق میشود. توجه داشته باشید که این خاصیت در دیتابیس ذخیره نخواهد شد. با پیاده سازی enum وضعیت ردیابی موجودیتها بدین روش، وابستگیهای EF را برای کلاینت از بین میبریم. اگر قرار بود وضعیت ردیابی را مستقیما از EF به کلاینت پاس دهیم وابستگیهای بخصوصی معرفی میشدند. کلاس میبریم. اگر قرار بود وضعیت ردیابی را مستقیما از EF به کلاینت پاس دهیم وابستگیهای بخصوصی معرفی میشدند. کلاس میبریم. اگر تر متد OnModelCreating به EF دستور میدهد که خاصیت TrackingState را به جدول موجودیت نگاشت نکند.

```
public abstract class BaseEntity
{
    protected BaseEntity()
    {
        TrackingState = TrackingState.Nochange;
    }
    public TrackingState TrackingState { get; set; }
}

public enum TrackingState
{
    Nochange,
    Add,
    Update,
    Remove,
}
```

کلاسهای موجودیت Customer و PhoneNumber را ایجاد کنید و کد آنها را مطابق لیست زیر تغییر دهید.

```
public class Customer : BaseEntity
{
   public int CustomerId { get; set; }
   public string Name { get; set; }
   public string Company { get; set; }
   public virtual ICollection<Phone> Phones { get; set; }
}

public class Phone : BaseEntity
{
   public int PhoneId { get; set; }
   public string Number { get; set; }
   public string PhoneType { get; set; }
   public int CustomerId { get; set; }
   public virtual Customer Customer { get; set; }
}
```

با استفاده از NuGet Package Manager کتابخانه Entity Framework 6 را به پروژه اضافه کنید. کلاسی با نام Recipe4Context ایجاد کنید و کد آن را مطابق لیست زیر تغییر دهید. در این کلاس از یکی از قابلیتهای جدید 6 EF بنام "Configuring Unmapped Base Types" استفاده کرده ایم. با استفاده از این قابلیت جدید هر موجودیت را طوری پیکربندی میکنیم که خاصیت TrackingState را نادیده بگیرند. برای اطلاعات بیشتر درباره این قابلیت 6 PE به این لینک مراجعه کنید.

```
public class Recipe4Context : DbContext
{
    public Recipe4Context() : base("Recipe4ConnectionString") { }
    public DbSet<Customer> Customers { get; set; }
    public DbSet<Phone> Phones { get; set; }

    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        // Do not persist TrackingState property to data store
        // This property is used internally to track state of
        // disconnected entities across service boundaries.
        // Leverage the Custom Code First Conventions features from Entity Framework 6.
        // Define a convention that performs a configuration for every entity
        // that derives from a base entity class.
        modelBuilder.Types<BaseEntity>().Configure(x => x.Ignore(y => y.TrackingState));
        modelBuilder.Entity<Customer>().ToTable("Customers");
        modelBuilder.Entity<Phone>().ToTable("Phones");
}
```

فایل Web.config پروژه را باز کنید و رشته اتصال زیر را به قسمت ConnectionStrings اضافه نمایید.

```
<connectionStrings>
  <add name="Recipe4ConnectionString"
    connectionString="Data Source=.;
    Initial Catalog=EFRecipes;
    Integrated Security=True;
    MultipleActiveResultSets=True"
    providerName="System.Data.SqlClient" />
</connectionStrings>
```

فایل Global.asax را باز کنید و کد زیر را به متد Application_Start اضافه نمایید. این کد بررسی Entity Framework Model Compatibility را غیرفعال میکند و به JSON serializer دستور میدهد که self-referencing loop خواص پیمایشی را نادیده بگیرد. این حلقه بدلیل رابطه bidirectional بین موجودیتهای PhoneNumber وجود میآید.

کلاسی با نام EntityStateFactory بسازید و کد آن را مطابق لیست زیر تغییر دهید. این کلاس مقدار خاصیت TrackingState به کلاینتها ارائه میشود را به مقادیر متناظر کامپوننتهای ردیابی EF تبدیل میکند.

```
public static EntityState Set(TrackingState trackingState)
{
    switch (trackingState.Add:
        return EntityState.Added;
        case TrackingState.Update:
            return EntityState.Modified;
        case TrackingState.Remove:
            return EntityState.Deleted;
        default:
            return EntityState.Unchanged;
}
```

در آخر کد کنترلر CustomerController را مطابق لیست زیر بروز رسانی کنید.

```
}
    [ActionName("Update")]
    public HttpResponseMessage UpdateCustomer(Customer customer)
         using (var context = new Recipe4Context())
             // Add object graph to context setting default state of 'Added'.
              // Adding parent to context automatically attaches entire graph
             // (parent and child entities) to context and sets state to 'Added'
             // for all entities.
             context.Customers.Add(customer);
             foreach (var entry in context.ChangeTracker.Entries<BaseEntity>())
                  entry.State = EntityStateFactory.Set(entry.Entity.TrackingState);
                  if (entry.State == EntityState.Modified)
                       // For entity updates, we fetch a current copy of the entity
                       // from the database and assign the values to the orginal values
                       // property from the Entry object. OriginalValues wrap a dictionary
                      // that represents the values of the entity before applying changes.
// The Entity Framework change tracker will detect
                       // differences between the current and original values and mark
                      // each property and the entity as modified. Start by setting
// the state for the entity as 'Unchanged'.
                      entry.State = EntityState.Unchanged;
                      var databaseValues = entry.GetDatabaseValues();
                      entry.OriginalValues.SetValues(databaseValues);
         context.SaveChanges();
    }
    return Request.CreateResponse(HttpStatusCode.OK, customer);
}
    [HttpDelete]
[ActionName("Cleanup")]
    public HttpResponseMessage Cleanup()
         using (var context = new Recipe4Context())
             context.Database.ExecuteSqlCommand("delete from phones");
context.Database.ExecuteSqlCommand("delete from customers");
             return Request.CreateResponse(HttpStatusCode.OK);
         }
    }
}
```

حال اپلیکیشن کلاینت (برنامه کنسول) را میسازیم که از این سرویس استفاده میکند.

در ویژوال استودیو پروژه جدیدی از نوع Console Application بسازید و نام آن را به Recipe4.Client تغییر دهید. فایل program.cs را باز کنید و کد آن را مطابق لیست زیر تغییر دهید.

```
internal class Program
{
    private HttpClient client;
    private Customer _bush, _obama;
private Phone _whiteHousePhone,
                                       _bushMobilePhone, _obamaMobilePhone;
    private HttpResponseMessage _response;
    private static void Main()
        Task t = Run();
        t.Wait();
        Console.WriteLine("\nPress <enter> to continue...");
        Console.ReadLine();
    private static async Task Run()
        var program = new Program();
        program.ServiceSetup(
         // do not proceed until clean-up completes
        await program.CleanupAsync();
```

```
program.CreateFirstCustomer();
         // do not proceed until customer is added
         await program.AddCustomerAsync();
         program.CreateSecondCustomer();
         // do not proceed until customer is added
         await program.AddSecondCustomerAsync();
         // do not proceed until customer is removed
         await program.RemoveFirstCustomerAsync();
         // do not proceed until customers are fetched
         await program.FetchCustomersAsync();
    private void ServiceSetup()
         // set up infrastructure for Web API call
          client = new HttpClient { BaseAddress = new Uri("http://localhost:62799/") };
         7/ add Accept Header to request Web API content negotiation to return resource in JSON format
           client.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue
         ("application/json"));
    private async Task CleanupAsync()
         // call the cleanup method from the service
         _response = await _client.DeleteAsync("api/customer/cleanup/");
    private void CreateFirstCustomer()
         // create customer #1 and two phone numbers
          _bush = new Customer
              Name = "George Bush"
              Company = "Ex President",
// set tracking state to 'Add' to generate a SQL Insert statement
              TrackingState = TrackingState.Add,
         };
          whiteHousePhone = new Phone
              Number = "212 222-2222",
PhoneType = "White House Red Phone",
// set tracking state to 'Add' to generate a SQL Insert statement
TrackingState = TrackingState.Add,
         };
          _bushMobilePhone = new Phone
              Number = "212 333-3333"
              PhoneType = "Bush Mobile Phone",
// set tracking state to 'Add' to generate a SQL Insert statement
              TrackingState = TrackingState.Add,
         _bush.Phones.Add(_whiteHousePhone);
_bush.Phones.Add(_bushMobilePhone);
    private async Task AddCustomerAsync()
         // construct call to invoke UpdateCustomer action method in Web API service
          response = await _client.PostAsync("api/customer/updatecustomer/", _bush, new_
JsonMediaTypeFormatter());
            (_response.IsSuccessStatusCode)
              // capture newly created customer entity from service, which will include
              // database-generated Ids for all entities
               _bush = await _response.Content.ReadAsAsync<Customer>();
              __bush = __bush.CustomerId);
_whiteHousePhone = __bush.Phones.FirstOrDefault(x => x.CustomerId == __bush.CustomerId);
_bushMobilePhone = __bush.Phones.FirstOrDefault(x => x.CustomerId == __bush.CustomerId);
Console.WriteLine("Successfully created Customer {0} and {1} Phone Numbers(s)",
               _bush.Name, _bush.Phones.Count);
              foreach (var phoneType in bush.Phones)
                   Console.WriteLine("Added Phone Type: {0}", phoneType.PhoneType);
              Console.WriteLine("{0} ({1})", (int)_response.StatusCode, _response.ReasonPhrase);
    }
    private void CreateSecondCustomer()
         // create customer #2 and phone numbers
         _obama = new Customer
```

```
{
               Name = "Barack Obama",
              Company = "President",
// set tracking state to 'Add' to generate a SQL Insert statement
               TrackingState = TrackingState.Add,
          };
           obamaMobilePhone = new Phone
              Number = "212 444-4444",
PhoneType = "Obama Mobile Phone",
// set tracking state to 'Add' to generate a SQL Insert statement
               TrackingState = TrackingState.Add,
          };
// set tracking state to 'Modifed' to generate a SQL Update statement
          _whiteHousePhone.TrackingState = TrackingState.Update;
          _obama.Phones.Add(_obamaMobilePhone);
          _obama.Phones.Add(_whiteHousePhone);
     private async Task AddSecondCustomerAsync()
          // construct call to invoke UpdateCustomer action method in Web API service
           response = await _client.PostAsync("api/customer/updatecustomer/", _obama, new
JsonMediaTypeFormatter());
             (_response.IsSuccessStatusCode)
               // capture newly created customer entity from service, which will include
               // database-generated Ids for all entities
_obama = await _response.Content.ReadAsAsync<Customer>();
              _whiteHousePhone = _bush.Phones.FirstOrDefault(x => x.CustomerId == _obama.CustomerId);
_bushMobilePhone = _bush.Phones.FirstOrDefault(x => x.CustomerId == _obama.CustomerId);
Console.WriteLine("Successfully created Customer {0} and {1} Phone Numbers(s)",
               _obama.Name, _obama.Phones.Count);
foreach (var phoneType in _obama.Phones)
               {
                    Console.WriteLine("Added Phone Type: {0}", phoneType.PhoneType);
               }
          else
               Console.WriteLine("{0} ({1})", (int)_response.StatusCode, _response.ReasonPhrase);
     }
     private async Task RemoveFirstCustomerAsync()
          // remove George Bush from underlying data store.
          // first, fetch George Bush entity, demonstrating a call to the
// get action method on the service while passing a parameter
          var query = "api/customer/" + _bush.CustomerId;
_response = _client.GetAsync(query).Result;
          if ( response.IsSuccessStatusCode)
               _bush = await _response.Content.ReadAsAsync<Customer>();
// set tracking state to 'Remove' to generate a SQL Delete statement
               _bush.TrackingState = TrackingState.Remove;
// must also remove bush's mobile number -- must delete child before removing parent
               foreach (var phoneType in _bush.Phones)
                      set tracking state to 'Remove' to generate a SQL Delete statement
                    phoneType.TrackingState = TrackingState.Remove;
               // construct call to remove Bush from underlying database table
                response = await client.PostAsync("api/customer/updatecustomer/", bush, new
JsonMediaTypeFormatter());
               if (_response.IsSuccessStatusCode)
                    Console.WriteLine("Removed {0} from database", _bush.Name);
                    foreach (var phoneType in bush.Phones)
                    {
                         Console.WriteLine("Remove {0} from data store", phoneType.PhoneType);
                    Console.WriteLine("{0} ({1})", (int) response.StatusCode, response.ReasonPhrase);
          }
          else
          {
               Console.WriteLine("{0} ({1})", (int)_response.StatusCode, _response.ReasonPhrase);
          }
    }
```

در آخر کلاسهای Customer, Phone و BaseEntity را به پروژه کلاینت اضافه کنید. چنین کدهایی بهتر است در لایه مجزایی قرار گیرند و بین لایههای مختلف اپلیکیشن به اشتراک گذاشته شوند.

اگر اپلیکیشن کلاینت را اجرا کنید با خروجی زیر مواجه خواهید شد.

Successfully created Customer Geroge Bush and 2 Phone Numbers(s)

Added Phone Type: White House Red Phone

Added Phone Type: Bush Mobile Phone

Successfully created Customer Barrack Obama and 2 Phone Numbers(s)

Added Phone Type: Obama Mobile Phone Added Phone Type: White House Red Phone

Removed Geroge Bush from database

Remove Bush Mobile Phone from data store

Customer Barrack Obama has 2 Phone Numbers(s)

Phone Type: White House Red Phone Phone Type: Obama Mobile Phone

شرح مثال جارى

با اجرای اپلیکیشن Web API شروع کنید. این اپلیکیشن یک MVC Web Controller دارد که پس از اجرا شما را به صفحه خانه هدایت میکند. در این مرحله سایت در حال اجرا است و سرویسها قابل دسترسی هستند.

سپس اپلیکیشن کنسول را باز کنید و روی خط اول کد فایل program.cs یک breakpoint قرار داده و آن را اجرا کنید. ابتدا آدرس سرویس را نگاشت میکنیم و از سرویس درخواست میکنیم که اطلاعات را با فرمت JSON بازگرداند.

سپس توسط متد DeleteAsync که روی آبجکت HttpClient تعریف شده است اکشن متد Cleanup را روی سرویس فراخوانی میکنیم. این فراخوانی تمام دادههای پیشین را حذف میکند.

در قدم بعدی یک مشتری بهمراه دو شماره تماس میسازیم. توجه کنید که برای هر موجودیت مشخصا خاصیت TrackingState

را مقدار دهی میکنیم تا کامیوننتهای Change-tracking در EF عملیات لازم SQL برای هر موجودیت را تولید کنند.

سپس توسط متد PostAsync که روی آبجکت HttpClient تعریف شده اکشن متد UpdateCustomer را روی سرویس فراخوانی می کند می کنیم. اگر به این اکشن متد یک breakpoint اضافه کنید خواهید دید که موجودیت مشتری را بعنوان یک پارامتر دریافت می کند و آن را به context جاری اضافه مینماید. با اضافه کردن موجودیت به کانتکست جاری کل object graph اضافه می شود و EF شروع به ردیابی تغییرات آن می کند. دقت کنید که آبجکت موجودیت باید Add شود و نه Attach.

قدم بعدی جالب است، هنگامی که از خاصیت EntityType استفاده میکنیم. این خاصیت روی آبجکت EntityType تریف شده و یک <EntityType را با نام Entries ارائه میکند. در اینجا بسادگی نوع پایه EntityType را تنظیم میکنیم. این الله علی که از نوع EntityType هستند پیمایش کنیم. اگر بیاد داشته باشید این کلاس، کار به ما اجازه میدهد که در تمام موجودیت هایی که از نوع BaseEntity هستند پیمایش کنیم. اگر بیاد داشته باشید این کلاس، کلاس پایه تمام موجودیتها است. در هر مرحله از پیمایش (iteration) با استفاده از کلاس TrackingState مقدار خاصیت استم ردیابی EF تبدیل میکنیم. اگر کلاینت مقدار این فیلد را به Modified تنظیم کرده باشد پردازش بیشتری انجام میشود. ابتدا وضعیت موجودیت را از Wondified به Unchanged تغییر میدهیم. سپس مقادیر اصلی را با فراخوانی متد مقادیر موجود در دیتابیس با فراخوانی متد مقادیر موجود در دیتابیس را برای موجودیت جاری دریافت میکند. سپس مقادیر بدست آمده را به کلکسیون OriginalValues اختصاص میدهیم. پشت پرده، کامپوننتهای و CoriginalValue با بوضعیت EF Change-tracking علادهایی که در سمت فیلدهای مربوطه را با وضعیت Modified علامت گذاری میکنند. فراخوانیهای بعدی متد SaveChanges تنها فیلدهایی که در سمت کلاینت تغییر کرده اند را بروز رسانی خواهد کرد و نه تمام خواص موجودیت را.

در اپلیکیشن کلاینت عملیات افزودن، بروز رسانی و حذف موجودیتها توسط مقداردهی خاصیت TrackingState را نمایش داده ایم.

متد UpdateCustomer در سرویس ما مقادیر TrackingState را به مقادیر متناظر EF تبدیل میکند و آبجکتها را به موتور -change tracking ارسال میکند که نهایتا منجر به تولید دستورات لازم SQL میشود.

نکته: در اپلیکیشنهای واقعی بهتر است کد دسترسی دادهها و مدلهای دامنه را به لایه مجزایی منتقل کنید. همچنین پیاده سازی فعلی change-tracking در سمت کلاینت میتواند توسعه داده شود تا با انواع جنریک کار کند. در این صورت از نوشتن مقادیر زیادی کد تکراری جلوگیری خواهید کرد و از یک پیاده سازی میتوانید برای تمام موجودیتها استفاده کنید.

نظرات خوانندگان

نویسنده: امیرحسین

تاریخ: ۱۳۹۲/۱۱/۱۰ ۴:۰

میشه در مورد async کمی توضیح بدین که چرا و به چه دلیلی استفاده شده ؟

نویسنده: آرمین ضیاء

تاریخ: ۱:۲۵ ۱۳۹۲/۱۱/۱۰

الزامی به استفاده از قابلیتهای async نیست، اما توصیه میشه در مواقعی که امکانش هست و مناسب است از این قابلیت استفاده کنید. لزوما کارایی (performance) بهتری بدست نمیارید ولی مسلما تجربه کاربری بهتری خواهید داشت. عملیاتی که بصورت async اجرا میشن ریسمان جاری (current thread) رو قفل نمیکنند، بنابراین اجرای اپلیکیشن ادامه پیدا میکنه و پاسخگویی بهتری بدست میارید. برای مطالعه بیشتر به این لینک مراجعه کنید.

مطالعه بيشتر

Using Asynchronous Methods in ASP.NET 4.5

Async and Await