2025 年全國智慧製造大數據分析競賽初賽題目說明

以溫度及變位資訊建立車床熱變位預測模型

1. 競賽說明

本競賽旨在透過模型預測熱變位造成的誤差,使車床能即時反向回補,進而提升加工精度。NC (Numerical Control) 車床在工作時,會因內部機件或外在環境因素使加工精度下降,其中約 40%~70%由熱變位所致。熱變位的問題主要是透過車床各部件因加工過程的切削生熱,使部件熱膨脹,進而影響工件的加工精度。因此,分析車床整機溫度與熱變位的相關性將有助於加工精度的提升。公司為此在車床的關鍵點位設置溫度感測元件與位移計,收集機台工作時、各點位置溫度與變位量的變化趨勢,參賽者需建立預測模型,根據關鍵溫度點資訊預測車床熱變位的變化。

2. 資料集介紹

本資料集之原始資料是根據不同環境設定(例如:轉速、進給量與環境溫度)來收集, 並以不同檔案保存,總檔案數為56個。本資料集數量統計參見表一。

資料集	檔案數量	資料總筆數
訓練集	43	29,795 (77.03%)
測試集	13	8,883 (22.97%)

表一、資料集統計表

本資料集提供模型 25 種特徵,如表二所示,以及各檔案數據在量測時的環境設定,如表三所示。其中轉速與進給量的單位為 rpm、mm/min,會根據時間(以小時為單位)進行三個階段的調整,而環境溫度則會依不同控溫模式變化,包含恆溫及多種變溫方式,希望模型透過這些特徵輸出該時間點之變位量。目標預測的變位量有兩個,分別為 X 軸變位量、Z 軸的變位量(Disp.X、Disp.Z)。

表二、特徵說明

特徵	數量	單位		
時間(Time)	1	min		
佈點位置之溫度	21	$^{\circ}\mathrm{C}$		
(PT01-PT13, TC01-TC08)	21	C		
控制器擷取溫度	2	°C		
(Spindle Motor, X Motor, Z Motor)	3			

表三、各檔案的環境設定(範例)

日期	第一階段		第二階段		第三階段			for SW		
	轉速	進給	時間	轉速	進給	時間	轉速	進給	時間	- 控溫
20200615	2000	5000	5	-	-	-	-	-	-	恆溫
20200616	1000	5000	5	-	-	-	-	-	-	恆溫
20200617	1000	5000	2.5	2000	5000	2.5	-	-	-	恆溫
:	:	÷	÷	÷	÷	÷	÷	÷	÷	÷
20200715	1800	1000	2.5	0	0	1	1200	5000	2.5	變溫
:	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷

3. 模型評估方式

在評估過程中,測試集的各檔案將釋出前 100 筆正確的變位量,之後的變位量則不提供,讓參賽團隊進行預測。模型預測結果以變位量的預測值跟正確值之間的 RMSE 為判斷依據。RMSE 公式定義如下:

$$RMSE = \sqrt{\frac{1}{2(N - 100 \cdot |D|)} \sum_{d_i \in D} \sum_{j=101}^{|d_i|} \left(\left(\hat{x}_{ij} - x_{ij} \right)^2 + \left(\hat{z}_{ij} - z_{ij} \right)^2 \right)}$$

其中D為測試檔案集, d_i 為第i個檔案的測試資料,N為所有測試資料的總筆數, \hat{x}_{ij} 與 \hat{z}_{ij} 分別為第i個檔案第j筆的X軸與Z軸變位量預測值, x_{ij} 與 z_{ij} 分別為X軸與Z軸變

位量正確值。

4. 輸出檔案的格式規定

參賽團隊的輸出檔案為 13 個已填滿變位量的 CSV 檔,並須符合所有格式規定,<u>若</u> 因檔案格式不符規定導致 RMSE 計算錯誤,參賽者須自行承擔後果。格式規定如下:

- a. 輸出檔名需與測試集對應的檔名相同,不得隨意修改。
- b. 輸出檔案須為 CSV 檔,並包含檔頭 (欄位名稱)、移除索引值 (index)。
- c. 輸出檔案之欄位名稱、順序必須與測試集中對應的檔案完全一致 (請注意每行是否有多餘的逗號,避免出現空白欄位)。
- d. 輸出檔案的變位量筆數須與測試集對應的檔案相同。

建議:在輸出檔案時,可直接以測試集的原檔案修改,將缺漏的變位量填上即可。