Deep Generative Models

Lecture 5

Roman Isachenko

Moscow Institute of Physics and Technology

2023. Autumn

Jacobian matrix

Let $f: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = f(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of variable theorem (CoV)

Let \mathbf{x} be a random variable with density function $p(\mathbf{x})$ and $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, invertible function (diffeomorphism). If $\mathbf{z} = f(\mathbf{x})$, $\mathbf{x} = f^{-1}(\mathbf{z}) = g(\mathbf{z})$, then

$$p(\mathbf{x}) = p(\mathbf{z})|\det(\mathbf{J}_f)| = p(\mathbf{z})\left|\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)\right| = p(f(\mathbf{x}))\left|\det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right)\right|$$
$$p(\mathbf{z}) = p(\mathbf{x})|\det(\mathbf{J}_g)| = p(\mathbf{x})\left|\det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right)\right| = p(g(\mathbf{z}))\left|\det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right)\right|.$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data \mathbf{x} to the noise \mathbf{z} .

Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f_K \circ \cdots \circ f_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{f_k})|$$

Forward KL for flow model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

Reverse KL for flow model

$$\mathit{KL}(p||\pi) = \mathbb{E}_{p(\mathbf{z})} \left[\log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)| - \log \pi(g(\mathbf{z}, \boldsymbol{\theta})) \right]$$

Flow KL duality

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z}))$$

- \triangleright $p(\mathbf{z})$ is a base distribution; $\pi(\mathbf{x})$ is a data distribution;
- ightharpoonup $z \sim p(z)$, $x = g(z, \theta)$, $x \sim p(x|\theta)$;
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}), \ \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta}).$

Flow log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

The main challenge is a determinant of the Jacobian.

Linear flows

$$z = f(x, \theta) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

► LU-decomposition

$$W = PLU$$
.

QR-decomposition

$$W = QR$$
.

Decomposition should be done only once in the beggining. Next, we fit decomposed matrices (P/L/U or Q/R).

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1×1 Convolutions, 2018

Hoogeboom E., et al. Emerging convolutions for generative normalizing flows, 2019

Consider an autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:i-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:i-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_j(\mathbf{x}_{1:i-1}), \sigma_j^2(\mathbf{x}_{1:i-1})\right).$$

Gaussian autoregressive NF

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- We have an **invertible** and **differentiable** transformation from p(z) to $p(x|\theta)$.
- ▶ Jacobian of such transformation is triangular!

Generation function $g(\mathbf{z}, \theta)$ is **sequential**.

Inference function $f(\mathbf{x}, \theta)$ is **not sequential**.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Gaussian autoregressive NF

$$\mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- Sampling is sequential, density estimation is parallel.
- Forward KI is a natural loss.

Forward transform: $g(\mathbf{z}, \theta)$

$$x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1})$$

Inverse transform:
$$f(\mathbf{x}, \boldsymbol{\theta})$$

 $z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}$

1. RealNVP: coupling layer

2. Normalizing flows as VAE model

3. Discrete data vs continuous model
Discretization of continuous distribution
Dequantization of discrete data

1. RealNVP: coupling layer

2. Normalizing flows as VAE mode

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

RealNVP

Let split x and z in two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}].$$

Coupling layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \sigma(\mathbf{z}_1, \boldsymbol{\theta}) + \mu(\mathbf{z}_1, \boldsymbol{\theta}). \end{cases} \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = (\mathbf{x}_2 - \mu(\mathbf{x}_1, \boldsymbol{\theta})) \odot \frac{1}{\sigma(\mathbf{x}_1, \boldsymbol{\theta})}. \end{cases}$$

$$\left\{egin{aligned} \mathbf{z}_1 = \mathbf{x}_1; \ \mathbf{z}_2 = (\mathbf{x}_2 - \mu(\mathbf{x_1}, heta)) \odot rac{1}{\sigma(\mathbf{x_1}, heta)}. \end{aligned}
ight.$$

Image partitioning

- Checkerboard ordering uses masking.
- Channelwise ordering uses splitting.

RealNVP

Coupling layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}(\mathbf{z}_1, \boldsymbol{\theta}) + \boldsymbol{\mu}(\mathbf{z}_1, \boldsymbol{\theta}). \end{cases} \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}(\mathbf{x}_1, \boldsymbol{\theta})) \odot \frac{1}{\boldsymbol{\sigma}(\mathbf{x}_1, \boldsymbol{\theta})}. \end{cases}$$

Estimating the density takes 1 pass, sampling takes 1 pass!

Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{\partial \mathbf{z}_2}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{j=1}^{m-d} \frac{1}{\sigma_j(\mathbf{x}_1, \boldsymbol{\theta})}.$$

Gaussian AR NF

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad \mathbf{z}_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

How to get RealNVP coupling layer from gaussian AR NF?

Glow samples

Glow model: coupling layer + linear flows (1x1 convs)

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Venn diagram for Normalizing flows

- \triangleright \mathcal{I} invertible functions.
- ► F continuously differentiable functions whose Jacobian is lower triangular.
- $\triangleright \mathcal{M}$ invertible functions from \mathcal{F} .

Song Y., Meng C., Ermon S. Mintnet: Building invertible neural networks with masked convolutions, 2019

1. RealNVP: coupling layer

2. Normalizing flows as VAE model

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

VAE vs Normalizing flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
	stochastic	deterministic $\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta})$
Encoder	$ z \sim q(z x,\phi)$	$q(\mathbf{z} \mathbf{x},\boldsymbol{\theta}) = \delta(\mathbf{z} - f(\mathbf{x},\boldsymbol{\theta}))$
		deterministic
	stochastic	$x = g(z, oldsymbol{ heta})$
Decoder	$\mathbf{x} \sim p(\mathbf{x} \mathbf{z}, oldsymbol{ heta})$	$p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - g(\mathbf{z}, \boldsymbol{\theta}))$
Parameters	$oldsymbol{\phi},oldsymbol{ heta}$	$ heta \equiv \phi$

Theorem

MLE for normalizing flow is equivalent to maximization of ELBO for VAE model with deterministic encoder and decoder:

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \delta(\mathbf{x} - f^{-1}(\mathbf{z},\boldsymbol{\theta})) = \delta(\mathbf{x} - g(\mathbf{z},\boldsymbol{\theta}));$$

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - f(\mathbf{x}, \boldsymbol{\theta})).$$

Nielsen D., et al. SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. 2020

Normalizing flow as VAE

Proof

1. Dirac delta function property

$$\mathbb{E}_{\delta(\mathbf{x}-\mathbf{y})}f(\mathbf{x}) = \int \delta(\mathbf{x}-\mathbf{y})f(\mathbf{x})d\mathbf{x} = f(\mathbf{y}).$$

2. CoV theorem and Bayes theorem:

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z})|\det(\mathbf{J}_f)|;$$

$$p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}) = \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})}{p(\mathbf{x}|\boldsymbol{\theta})}; \quad \Rightarrow \quad p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_f)|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))}{\mathcal{L}(\boldsymbol{\theta})} = \mathcal{L}(\boldsymbol{\theta}).$$

Normalizing flow as VAE

Proof

ELBO objective:

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - \log \frac{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{p(\mathbf{z})} \right]$$
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} + \log p(\mathbf{z}) \right].$$

1. Dirac delta function property:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log p(\mathbf{z}) = \int \delta(\mathbf{z} - f(\mathbf{x},\boldsymbol{\theta})) \log p(\mathbf{z}) d\mathbf{z} = \log p(f(\mathbf{x},\boldsymbol{\theta})).$$

2. CoV theorem and Bayes theorem:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log\frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log\frac{p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_f)|}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} = \log|\det\mathbf{J}_f|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det \mathbf{J}_f|.$$

1. RealNVP: coupling layer

2. Normalizing flows as VAE mode

3. Discrete data vs continuous model
Discretization of continuous distribution
Dequantization of discrete data

Discrete data vs continuous model

Let our data \mathbf{y} comes from discrete distribution $\Pi(\mathbf{y})$ and we have continuous model $p(\mathbf{x}|\theta) = \mathsf{NN}(\mathbf{x},\theta)$.

- ▶ Images (and not only images) are discrete data, pixels lie in the integer domain ({0, 255}).
- By fitting a continuous density model $p(\mathbf{x}|\theta)$ to discrete data $\Pi(\mathbf{y})$, one can produce a degenerate solution with all probability mass on discrete values.

Discrete model

- ▶ Use **discrete** model (e.x. $P(y|\theta) = Cat(\pi(\theta))$).
- ▶ Minimize any suitable divergence measure $D(\Pi, P)$.
- ► NF works only with continuous data **x** (there are discrete NF, see papers below).
- ▶ If pixel value is not presented in the train data, it won't be predicted.

Discrete data vs continuous model

Continuous model

- Use **continuous** model (e.x. $p(\mathbf{x}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{x}), \sigma_{\theta}^2(\mathbf{x}))$), but
 - **discretize** model (make the model outputs discrete): transform $p(\mathbf{x}|\theta)$ to $P(\mathbf{y}|\theta)$;
 - **dequantize** data (make the data continuous): transform $\Pi(y)$ to $\pi(x)$.
- Continuous distribution knows numerical relationships.

CIFAR-10 pixel values distribution

1. RealNVP: coupling layer

2. Normalizing flows as VAE model

3. Discrete data vs continuous model
Discretization of continuous distribution
Dequantization of discrete data

Discretization of continuous distribution

Model discretization through CDF

$$F(\mathbf{x}|\boldsymbol{\theta}) = \int_{-\infty}^{\mathbf{x}} p(\mathbf{x}'|\boldsymbol{\theta}) d\mathbf{x}'; \quad P(\mathbf{y}|\boldsymbol{\theta}) = F(\mathbf{y} + 0.5|\boldsymbol{\theta}) - F(\mathbf{y} - 0.5|\boldsymbol{\theta})$$

Mixture of logistic distributions

$$p(x|\mu,s) = \frac{\exp^{-(x-\mu)/s}}{s(1+\exp^{-(x-\mu)/s})^2}; \quad p(x|\pi,\mu,s) = \sum_{k=1}^K \pi_k p(x|\mu_k,s_k).$$

PixelCNN++

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}); \quad p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p(x|\mu_k,s_k).$$

Here, $\pi_k = \pi_{k,\theta}(\mathbf{x}_{1:j-1}), \ \mu_k = \mu_{k,\theta}(\mathbf{x}_{1:j-1}), \ s_k = s_{k,\theta}(\mathbf{x}_{1:j-1}).$

For the pixel edge cases of 0, replace y-0.5 by $-\infty$, and for 255 replace y+0.5 by $+\infty$.

Salimans T. et al. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications, 2017

1. RealNVP: coupling layer

2. Normalizing flows as VAE model

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

Uniform dequantization

Let dequantize discrete distribution $\Pi(\mathbf{y})$ to continuous distribution $\pi(\mathbf{x})$ in the following way: $\mathbf{x} = \mathbf{y} + \mathbf{u}$, where $\mathbf{u} \sim U[0,1]$.

Theorem

Fitting continuous model $p(\mathbf{x}|\boldsymbol{\theta})$ on uniformly dequantized data is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{y}|\boldsymbol{\theta}) = \int_{U[0.1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

Proof

$$\begin{split} \mathbb{E}_{\pi} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \int \pi(\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x} = \sum \Pi(\mathbf{y}) \int_{U[0,1]} \log p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \leq \\ &\leq \sum \Pi(\mathbf{y}) \log \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} = \\ &= \sum \Pi(\mathbf{y}) \log P(\mathbf{y}|\boldsymbol{\theta}) = \mathbb{E}_{\Pi} \log P(\mathbf{y}|\boldsymbol{\theta}). \end{split}$$

Variational dequantization

- ▶ $p(\mathbf{x}|\boldsymbol{\theta})$ assign uniform density to unit hypercubes $\mathbf{y} + U[0,1]$ (left fig).
- Smooth dequantization is more natural (right fig).
- Neural network density models are smooth function approximators.

Introduce variational dequantization noise distribution $q(\mathbf{u}|\mathbf{y})$, which tells what kind of noise we have to add to our discrete data. Treat it as an approximate posterior as in VAE model.

Variational dequantization

Variational lower bound

$$egin{aligned} \log P(\mathbf{y}|oldsymbol{ heta}) &= \left[\log \int q(\mathbf{u}|\mathbf{y}) rac{p(\mathbf{y}+\mathbf{u}|oldsymbol{ heta})}{q(\mathbf{u}|\mathbf{y})} d\mathbf{u}
ight] \geq \ &\geq \int q(\mathbf{u}|\mathbf{y}) \log rac{p(\mathbf{y}+\mathbf{u}|oldsymbol{ heta})}{q(\mathbf{u}|\mathbf{y})} d\mathbf{u} = \mathcal{L}(q,oldsymbol{ heta}). \end{aligned}$$

Uniform dequantization is a special case of variational dequantization $(q(\mathbf{u}|\mathbf{y}) = U[0,1])$.

Flow++: flow-based variational dequantization

Let $\mathbf{u} = g(\epsilon, \mathbf{y}, \lambda)$ is a flow model with base distribution $\epsilon \sim p(\epsilon)$:

$$q(\mathbf{u}|\mathbf{y}) = p(f(\mathbf{u},\mathbf{y},\boldsymbol{\lambda})) \cdot \left| \det \frac{\partial f(\mathbf{u},\mathbf{y},\boldsymbol{\lambda})}{\partial \mathbf{u}} \right|.$$

$$\log P(\mathbf{y}|oldsymbol{ heta}) \geq \mathcal{L}(oldsymbol{\lambda},oldsymbol{ heta}) = \int p(oldsymbol{\epsilon}) \log \left(rac{p(\mathbf{y}+g(oldsymbol{\epsilon},\mathbf{y},oldsymbol{\lambda})|oldsymbol{ heta})}{p(oldsymbol{\epsilon})\cdot\left|\det\mathbf{J}_{oldsymbol{g}}
ight|^{-1}}
ight) doldsymbol{\epsilon}.$$

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Summary

- ► Gaussian autoregressive flow is an autoregressive model with triangular Jacobian. It has fast inference function and slow generation function. Forward KL is a natural loss function.
- The RealNVP coupling layer is an effective type of flow (special case of AR flows) that has fast inference and generation modes.
- ▶ NF models could be treated as VAE model with deterministic encoder and decoder.
- Lots of data are discrete. We able to discretize the model or to dequantize our data to use continuous model.
- Uniform dequantization is the simplest form of dequantization. Variational dequantization is a more natural type that uses variational inference.