Основы программной инженерии (ПОИТ)

Технологии разработки ПО. Управление требованиями

План лекции:

- понятие требования к ПО;
- виды и уровни требований;
- процесс разработки требований;
- методы сбора и анализа требований;
- документирование требований.

На прошлой лекции:

1. Жизненный цикл разработки программного обеспечения

Определение:

2. Инженерия требований

Цели разработки требований

- обеспечение наиболее полного и точного отражения условий или возможностей, необходимых заказчику для решения его проблем и достижения бизнес-целей;
- снижение затрат на разработку, обслуживание и поддержку сложного программного обеспечения.

Анализ требований к системе:

- определение требований;
- разработка требований;
 - о выявление требований;
 - о анализ требований;
- документирование и организация требований;
- изменение требований;
- планирование и управление требованиями.

Основная сложность:

«Самой сложной задачей при создании программной системы является точное определение того, что требуется создать... Ни одна задача не приносит такого же вреда конечной системе в случае ошибки. И нет ни одной задачи настолько же сложной в исправлении последствий.»

Фредерик Брукс

10 слайо – что хотел клиент.

1 слайд – как он это объяснил.

2 слайд – как понял руководитель проекта.

! Цена ошибки напрямую зависит от этапа, на котором она возникла.

Проблемы определения требований

Проблемы определения требований

- ✓ разработка требований самая сложная часть проектирования ПО;
- ✓ требования постоянно меняются;
- ✓ требования могут быть;
 - неясны;
 - двусмысленны;
 - противоречивы;
- ✓ спецификации могут быть неполны;
- ✓ пользователи, излагающие требования, могут быть непредставительны (некомпитентны).

3. Определение требования

Определение:

Требование -

это утверждение, которое идентифицирует эксплуатационные, функциональные параметры, характеристики или ограничения проектирования продукта или процесса, которое однозначно, проверяемо и измеримо.

Определение (IEEE 1990)

✓ Условие или возможность, необходимые пользователю для решения его задач или достижения цели (1) ✓ Условие или возможность, которым должна отвечать или которыми должна обладать система или ее Требование чтобы компонента, удовлетворить контракт, стандарт, спецификацию или иной формальный документ (2) **√** Документированное представление условия или возможности, указанное в (1) или (2)

Управление требованиями

Управление

требованиями

процесс, включающий:

✓ идентификацию, выявление, документацию, анализ, отслеживание, приоритизацию требований, достижение соглашений по требованиям и затем управление изменениями и уведомление заинтересованных лиц.

Управление требованиями – непрерывный процесс на протяжении всего жизненного цикла продукта.

Свойства требований:

- корректность (correct);
- однозначность (unambiguous);
- полнота (complete);
- непротиворечивость (consistent);
- приоритезация (prioritized);
- проверяемость (verifiable);
- модифицируемость (modifiable);
- отслеживаемость (traceable).

Цели разработки требований

- обеспечение наиболее полного и точного отражения условий или возможностей, необходимых заказчику для решения его проблем и достижения бизнес-целей;
- снижение затрат на разработку, обслуживание и поддержку сложного заказного программного обеспечения.

Классификация требований

Бизнес-требования

 содержат высокоуровневые задачи и цели организации-разработчика или заказчиков системы.

Отвечает на вопрос «Зачем?»

Пример, для приложения «Калькулятор» - «Приложение должно сократить время, необходимое на расчеты для курсового проекта»

Требования пользователей

- требования пользователей описывают цели и задачи, которые пользователям позволит решить система.
- пользовательские требования описание на естественном языке функций, выполняемых системой и ограничений, накладываемых на нее.

Отвечает на вопрос: «КТО и ЧТО?»

Системные требования

- системные требования определяют функциональность и характеристики системы, которую должны построить разработчики, для того чтобы пользователи смогли выполнить свои задачи (в рамках бизнес-требований)
- термином системные требования обозначают высокоуровневые требования к продуктам, которые содержат многие подсистемы (программное обеспечение, оборудование и т.д. Люди — часть системы, поэтому некоторые функции системы могут распространяться и на людей).

Функциональные требования – «Что делает?»

- бизнес-требования
 - о формулируются заказчиками
 - о описывают цели, которые требуется достичь с данной системой
- требования пользователей
 - о какие задачи можно решить с помощью системы
- собственно сами функциональные требования
 - о определяются функциональность, которую необходимо реализовать

Функциональные требования определяют функции, которые выполняет система, и зависят от потребностей пользователей и типа решаемой задачи.

Функциональные пользовательские требования описывают функции в обобщенном виде. Выполняя детализацию этих требований, разработчики формируют более подробное и точное описание сервисов системы — функциональные системные требования.

Нефункциональные требования – «Как делает?»

- требования к характеристикам качества
 - о требования к надежности
 - о требования к совместимости
 - о требования к эффективности
 - о требования к гибкости
 - о требования к эргономике
- ограничения
 - о соответствия стандартам и правилам
 - о бюджет
 - о сроки
 - о предопределенные архитектурные решения
 - о ит.д.

Нефункциональные требования определяют характеристики и ограничения системы и не связаны непосредственно с функциональными требованиями. Они формируются на основе имеющихся атрибутов качества, требований к внешнему интерфейсу и ограничений.

Пример:

Что является функциональными требованиями?

- 1. Работает в режимах: «Обычный», «Инженерный» и «Программист»
- 2. Выполняет арифметические операции
- 3. Совместим с Windows
- 4. Выполняет логические операции
- 5. Вычисляет сложные функции, ...
- 6. Время вычисления тригонометрических функций меньше 1 минуты
- 7. Наличие графического пользовательского интерфейса
- 8. Наличие справки
- 9. Справка выводится в формате Windows
- 10. Память, отводимая на одно число равна ...
- 11. Реализация памяти
- 12.Поддержка скобок

Функциональные требования выделены:

- 1. Работает в режимах: «Обычный», «Инженерный» и «Программист»
- 2. Выполняет арифметические операции
- 3. Совместим с Windows
- 4. Выполняет логические операции
- 5. Вычисляет сложные функции, ...
- 6. Время вычисления тригонометрических функций меньше 1 минуты
- 7. Наличие графического пользовательского интерфейса
- 8. Наличие справки
- 9. Справка выводится в формате Windows
- 10. Память, отводимая на одно число равна ...
- 11. Реализация памяти
- 12.Поддержка скобок

Пример:

Для каких целей?

Способность простой чашки удовлетворять сформулированной цели зависит от

- свойств, которые обусловлены взаимодействием ее компонентов;
- соответствующих интерфейсов;
- ее корректного включения в общую систему чашка удерживается и переносится человеческой рукой;
- внешних условий в условиях невесомости для достижения цели явно потребуется другое решение.

Что не является требованиями:

- Детали архитектуры
- Детали реализации
- Сведения о планировании
- Сведения о тестировании
- Проектная информация:
 - о Инфраструктура разработки
 - о Процесс разработки
 - о Команда разработки

Треугольник ограничений

Мы сделаем проект:

- быстро
- качественно
- недорого

! Выберите 2 из 3-х!

С чего же начать разработку требований? Начинать нужно с цели – для чего вообще нам что-то делать.

Ответить на основные вопросы:

- 1. Зачем? Начинать надо с цели: зачем это делать? Например:
 - процесс заказа товаров/услуг считается автоматизированным, если
 >90% компаний-партнеров делают заказы через систему;
 - разработка приложения «Калькулятор» позволит автоматизировать процесс вычислений.
- 2. Что? Что конкретно мы будем делать, чтобы прийти к цели.
- 3. Как? Как мы это реализуем?
- **4. Когда?** Полезно всю эту информацию документировать и представлять в виде таблиц и диаграмм.

Шаблон полного описания варианта использования:

Название <краткая_фраза_в_виде_глагола_в_неопределенной_форме_ совершенного вида отражающая цель>

Контекст использования <уточнение цели, при необходимости - условия ее нормального завершения>.

Область действия <ссылка на рамки проекта>. Например - подсистема бухгалтерского учета.

Уровень <один из трех: обобщенный, цели пользователя, подфункции>.

Основное действующее лицо <имя роли основного актора или его описание>.

Участники и интересы <список других акторов-участников прецедента с указанием их интересов>.

Предусловие <то, что ожидается, уже имеет место>.

Минимальные гарантии <что гарантируется акторам-участникам>.

Гарантии успеха <что получат акторы-участники в случае успешного достижения цели>.

Триггер <то, что «запускает» вариант использования, обычно - событие во времени>.

Основной сценарий <здесь перечисляются шаги основного сценария, начиная от триггера и вплоть до достижения гарантии успеха>.

Формат описания < Номер шага > < Описание действия >

Расширения <здесь последовательно описываются все альтернативные сценарии>. Каждая из альтернатив привязана к шагу основного сценария.

Формат описания < Номер шага. Номер расширения > < Условие > : < Действие или ссылка на подчиненный вариант использования > .

В случае, если альтернативный сценарий не удается описать одной строкой - применяется следующий формат.

Начиная со строки, следующей после описания расширения, идет описание его действий в формате основного сценария:

< Номер шага. Номер расширения. Номер шага расширения > < Действие >

Список изменений в технологии и данных <что гарантируется акторамучастникам>. Например - в случае неудавшейся транзакции все данные, имевшиеся в системе до ее начала, сохраняются неизменными.

Вспомогательная информация <дополнительная информация, полезная при описании варианта использования>.

Табличные представления варианта использования

Таблица в 2 колонки:			
Актор	Действие		
Пользователь	Формирует запрос на поиск заказов		
Система	Отображает список заказов		
Пользователь	Выбирает требуемый заказ		
Система	Показывает подробную информацию по заказу		

Таблица в 3 колонки:					
№ шага	Пользователь	Система			
1.	Делает запрос на поиск заказов	Отображает список заказов			
2	Выбирает требуемый заказ	Показывает подробную информацию по заказу			

Схема требований (Алистер Коберн. Современные методы описания функциональных требований к системам.)

Приемлемая схема требований

- Раздел 1. Цель и область действия
 - 1а. Что представляют собой общая область действия и цель?
 - 16. Участники (Кого это интересует?)
 - 1с. Что входит в область действия и что нет?
- Раздел 2. Используемые термины/Глоссарий
- Раздел 3. Варианты использования
 - За. Основные действующие лица и их общие цели
 - 3b. Варианты использования для бизнес-процессов
 - 3с. Системные варианты использования
- Раздел 4. Используемая технология
 - 4a. Какие технологические требования предъявляются к данной системе?
 - 4b. С какими системами будет взаимодействовать данная, каковы требования?
- Раздел 5. Другие требования
 - 5а. Процесс разработки
 - Q1. Кто участвует в проекте?
 - Q2. Какие оценки проекта будут отражены (простой, ранний, быстрый или гибкий)?
 - Q3. Какая обратная связь или прозрачность проекта нужна пользователям и организаторам?
 - Q4. Что мы можем купить, что должны построить, с кем конкурируем?
 - Q5. Какие еще существуют технологические требования (тестирование, установка и т.д.)?
 - Q6. От чего зависит развитие проекта?
- 5b. Бизнес-правила
- 5с. Производительность
- 5d. Эксплуатация, безопасность, документация
- 5е. Использование (простота использования)
- 5f. Сопровождение и мобильность
- 5g. Нерешенные или отложенные вопросы
- Раздел 6. Людские резервы, правовые, политические, организационные вопросы
 - Q1. Как влияют людские резервы на функционирование системы?
 - Q2. Какие существуют правовые и политические требования?
 - Q3. Какие последствия для людей будет иметь создание этой системы?
 - Q4. Каковы требования к обучению?
 - Q5. Какое влияние оказывает система на окружающее сообщество?

Классификация атрибутов качества

Варианты формализации требований

Разработка требований

Разработка требований	Результат
выявление требований	 спецификация требований
 анализ требований 	

Источники сбора требований

Prigozousa mpagoagusi	Заинтересованные лица		
Выявление требований	– заказчики		
	– менеджеры		
	пользователи		
	о операторы		
	о менеджеры		
!ВАЖНО:	o		
заказчик ≠ пользователь	– разработчики		
	– служба поддержки		
	– другие лица		
Выявление требований	Планирование:		
Bothoneliae inpecoodituu	 цели выявления требований 		
	 стратегии и процессы выявления требований 		
	 результаты усилий по выявлению требований 		
	 оценки календарного плана и ресурсов 		
	– риски, связанные с выявлением требований		
	Проблемы определения требований: — ожидания пользователей		
	– умение оценить противоречивые требования		
	 недостаточные требования 		
	 умение понять требования пользователей 		
Методы выявления	собеседование (интервьюирование);		
требований:	– анкетирование;		
•	 проведение совещаний («разъясняющие 		
	встречи»);		
	 сессии по выявлению требований (мозговой 		
	штурм);		
	наблюдения ("on-site customer" –		
	"присутствующий заказчик");		
	– раскадровка (storyboard);		
	 создание и демонстрация работающих 		
	прототипов;		
	– ролевые игры.		

Уровень требований	Область	Точка зрения	Цель
Пользовательские требования	Область проблем	Пользователь (представитель заинтересованной стороны)	Определяет - что пользователь желает достичь с помощью создаваемой системы. Следует избегать формулировки конкретных решений.
Системные требования	Область решения	Аналитик	Абстрактно определяет - как система будет удовлетворять пользовательским требованиям. Следует избегать точных описаний реализации предлагаемых решений.
Системные спецификации (архитектура системы)	Область решения	Архитектор	Определяет - <i>как</i> конкретная архитектура системы будет удовлетворять системным требованиям.

ПРОЦЕСС РАЗРАБОТКИ ТРЕБОВАНИЙ

Разработка требований – это первый из основных процессов создания программных систем. Этот процесс состоит из следующих основных этапов

Анализ предметной области:

Детально о требованиях в регламентирующих документах

1. Требования в своде знаний SWEBOK

2. Разработки ІЕЕЕ:

- IEEE 1362 "Concept of Operations Document".
- IEEE 1233 «Guide for Developing System Requirements Specifications».
- IEEE Standard 830-1998, «IEEE Recommended Practice for Software Requirements Specifications»
- IEEE Standard Glossary of Software Engineering Terminology/IEEE Std 610.12-1990
- IEEE Guide to the Software Engineering Body of Knowledge (1) SWEBOK®, 2004.

3. ГОСТы:

- ГОСТ 34.601-90. Информационная технология. Автоматизированные системы. Стадии создания.
- ГОСТ 34.602-89. Информационная технология. Техническое задание на создание автоматизированной системы
- ГОСТ 19.201-78. Единая система программной документации. Техническое задание. Требования к содержанию и оформлению