

Linear Regression Inference

Brenda Gunderson

Regression of CWDistance on Height

Predicted CWDist = 7.5518 + 1.1076(height)

Is there a significant (positive) linear relationship between CW Distance and Height?

Is there a significant (positive) linear relationship between CW Distance and Height?

• Think about it:

What would a slope = 0 imply?

X or IV

Is there a significant (positive) linear relationship between CW Distance and Height?

- Think about it:
 - What would a slope = 0 imply?
 - knowing x does not help to predict y

Our slope b₁ = I.I ~ only an estimated slope

X or IV

Is there a significant (positive) linear relationship between CW Distance and Height?

• Imagine: have population data on CW Distance and Height of all adults

Is there a significant (positive) linear relationship between CW Distance and Height?

- Imagine: have population data
 on CW Distance and Height of all adults
- So there is an underlying true slope b₁
 want to assess if the true slope is 0 or not
 (in our case is it positive > 0)

	coef	std err	t	P> t	[0.025	0.975]
const	7.5518	45.412	0.166	0.869	-86.391	101.494
Height	1.1076	0.670	1.653	0.112	-0.278	2.493

	coef	std err	t	P> t	[0.025	0.975]
const	7.5518	45.412	0.166	0.869	-86.391	101.494
Height	1.1076	0.670	1.653	0.112	-0.278	2.493

	coef	std err	t	P> t	[0.025	0.975]
const	7.5518	45.412	0.166	0.869	-86.391	101.494
Height	1.1076	0.670	1.653	0.112	-0.278	2.493

Test H_0 : True slope $(\beta_1) = 0$

	coef	std err	t	P> t	[0.025	0.975]
const	7.5518	45.412	0.166	0.869	-86.391	101.494
Height	1.1076	0.670	1.653	0.112	-0.278	2.493

Two-sided p-value of 0.112 is for testing H_a : True slope $(\beta_1) \neq 0$ For significant positive association test H_a : True slope $(\beta_1) > 0$ p-value would be 0.112/2 = 0.056 (marginally significant)

95% Confidence Interval for True slope (β_1)

	coef	std err	t	P> t	[0.025	0.975]
const	7.5518	45.412	0.166	0.869	-86.391	101.494
Height	1.1076	0.670	1.653	0.112	-0.278	2.493

With 95% confidence, the population mean change in cartwheel distance for one inch increase in height

is estimated to be anywhere from 0.2 inches shorter to 2.5 inches longer.

Used our regression line to estimate mean cartwheel distance for all adults who are 64 inches tall to be 78.4 inches

Used our regression line to estimate mean cartwheel distance for all adults who are 64 inches tall to be 78.4 inches

95% Confidence Interval Bands for Mean CW Distance based on Height

Used our regression line to estimate mean cartwheel distance for all adults who are 64 inches tall to be 78.4 inches

95% Confidence Interval Bands for Mean CW Distance based on Height

Notes:

1. Intervals are narrower for values closer to sample mean height of 67.6 inches

Used our regression line to estimate mean cartwheel distance for all adults who are 64 inches tall to be 78.4 inches

95% Confidence Interval Bands for Mean CW Distance based on Height

Notes:

- 1. Intervals are narrower for values closer to sample mean height of 67.6 inches
- 2. Prediction Interval for Individual Response (wider than corresponding CI for mean)

Underlying Assumptions

Fit (population) regression model: regressed cart wheel distance on height

CWDist =
$$b_0 + b_1$$
 (height) + e, where e ~ N(0, σ^2)

b₀ and b₁ are two parameterse = random error

Errors are normally distributed

Checking Assumptions

True errors e $\sim N(0, \sigma^2)$

See if residuals (realized values of e):

appear to be normally distributed

Checking Assumptions

True errors e $\sim N(0, \sigma^2)$

See if residuals (realized values of e):

- appear to be normally distributed
- are symmetrically distributed around zero with constant variance
- Estimate of $\sigma = 14.5$ inches

Checking Assumptions

True errors e $\sim N(0, \sigma^2)$

See if residuals (realized values of e):

- appear to be normally distributed
- are symmetrically distributed around **zero** with **constant variance**
- Estimate of $\sigma = 14.5$ inches

Model fit looks fine ... can we do better?

Adding a second variable

Does knowing if they actually *completed* the cartwheel make a difference in terms of cartwheel distance?

	ID	Age	Gender	GenderGroup	Glasses	GlassesGroup	Height	Wingspar	CWDistance	Complete	CompleteGroup	Score
0	1	56	F	1	Υ	1	62.0	61.0	79	Υ	1	7
1	2	26	F	1	Υ	1	62.0	60.0	70	Υ	1	8
2	3	33	F	1	Υ	1	66.0	64.0	85	Υ	1	7
3	4	39	F	1	N	0	64.0	63.0	87	Υ	1	10
4	5	27	M	2	N	0	73.0	75.0	72	N	0	4

Regression Results

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

OLS Regression Results

Dep. Variabl	le:	CWDistan	ce R-squa	red:		0.135
Model:		0	LS Adj. R	-squared:		0.056
Method:		Least Squar	es F-stat	istic:		1.712
Date:	Mor	n, 26 Nov 20	18 Prob (F-statisti	c):	0.204
Time:		05:06:	55 Log-Li	kelihood:		-100.95
No. Observat	tions:		25 AIC:			207.9
Df Residuals	3:		22 BIC:			211.6
Df Model:			2			
Covariance ?	Type:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
	-7.0457	48.805	-0.144	0.887	-108.261	94.170
Intercept				0 005	-0.188	2.699
Intercept Height	1.2557	0.696	1.804	0.085	-0.100	2.099
		0.696 7.077	1.804 0.851	0.404	-8.657	20.695
Height	1.2557	7.077		0.404		20.695
Height Complete	1.2557 6.0190	7.077	0.851 ======= 86 Durbin	0.404	-8.657 	
Height Complete Omnibus:	1.2557 6.0190	7.077 1.7	0.851 ======= 86 Durbin 09 Jarque	0.404 	-8.657 	20.695 1.876

Regression Results: Interpreting Coefficients

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

Two adults with same completion status whose height differ by I inch tend to have cart wheel distances differing by 1.26 inches.

Regression Results: Interpreting Coefficients

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

Two adults with same completion status whose height differ by I inch tend to have cart wheel distances differing by 1.26 inches.

Comparing adult who completed cartwheel with one of same height who did not: completer will on average have a CW Distance of 6 inches longer.

Regression Results: Interpreting Coefficients

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

Two adults with same completion status whose height differ by I inch tend to have cart wheel distances differing by 1.26 inches.

Comparing adult who completed cartwheel with one of same height who did not: completer will on average have a CW Distance of 6 inches longer.

Height coefficient of 1.26 is only meaningful when comparing two adults of the same completion status.

Complete coefficient of 6 is only meaningful when comparing two adults of the same height.

Visualizing Regression Results

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

Visualizing Regression Results

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

Regression Results

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

	coef	std err	t	P> t
Intercept	-7.0457	48.805	-0.144	0.887
Height	1.2557	0.696	1.804	0.085
Complete	6.0190	7.077	0.851	0.404

After adjusting for completion status, does there appear to be a significant positive linear relationship between CW Distance and Height?

PAUSE HERE to provide time for IVQ

Regression Results

Predicted CWDist = -7.0457 + 1.2557(Height) + 6.0190(Complete)

	coef	std err	t	P> t
Intercept	-7.0457	48.805	-0.144	0.887
Height	1.2557	0.696	1.804	0.085
Complete	6.0190	7.077	0.851	0.404

After adjusting for completion status,

Estimate of Height coefficient = 1.26 (SE = 0.7)

p-value for assessing significant positive association = 0.085/2 = 0.0425

Estimate of $\sigma = 14.6$ inches

Summary

- Regression for predicting a quantitative response (DV) based on one or more explanatory variables (IV) (quantitative or categorical)
- Inference side: Confidence Intervals and Hypothesis Tests
- Assumptions for Inference
- Coming up next:
 Regression models when the response (DV) is binary called Logistic Regression