Regresión Lineal Multiple

```
In [ ]: #Librerías
         import statsmodels.api as sm
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LinearRegression
In [ ]: #Carqa de archivos
         inmu = pd.read_csv("Clusters.csv")
         inmu.info()
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 657 entries, 0 to 656
       Data columns (total 27 columns):
            Column
                                    Non-Null Count Dtype
        ___
                                  657 non-null int64
         0 Unnamed: 0
                                  657 non-null object
            Alcaldia
         2 Colonia
                                  657 non-null object
                                   657 non-null float64
                                   657 non-null float64
            X2
                                   657 non-null float64
         5
            Х3
                                  657 non-null float64
            Х4
                                  657 non-null float64
         7
            X5
                                  657 non-null float64
            X6
            X7
                                   657 non-null float64
                                  657 non-null float64
         10 X8
         11 X9
                                  657 non-null float64
         12 X10
                                  657 non-null float64
        13 Cocina_equip 657 non-null int64
14 Gimnasio 657 non-null int64
15 Amueblado 657 non-null int64
16 Alberca 657 non-null int64
17 Terraza 657 non-null int64
18 Elevador 657 non-null int64
19 m2_construido 657 non-null float64
20 Baños 657 non-null float64
                                   657 non-null float64
         20 Baños
         21 Recamaras
                                  657 non-null int64
                                 657 non-null int64
         22 Lugares_estac23 Precio_m2
                                  657 non-null float64
        24 Cluster Labels 657 non-null int64
25 Conglomerados 657 non-null object
                                                      object
         26 NivelSocioEconomico 657 non-null
                                                      object
       dtypes: float64(13), int64(10), object(4)
       memory usage: 138.7+ KB
```

Modelo 1 (Todas las variables)

```
In [ ]: model = LinearRegression()
        type(model)
        x = inmu[["X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Cocina_equi
        y = inmu["Precio_m2"]
        model.fit(X = x, y = y)
        model.__dict__
        #Coeficiente de determinación
        determinacion = model.score(x, y)
        correlacion = np.sqrt(determinacion)
        print("Determinacion:", determinacion)
        print("Correlación: ", correlacion)
        # Agrega una constante al conjunto de datos (intercepto)
        x_with_intercept = sm.add_constant(x)
        # Ajusta el modelo
        model = sm.OLS(y, x_with_intercept).fit()
        # Imprime un resumen del modelo que incluye valores p
        print(model.summary())
```

Determinacion: 0.7480588775333463 Correlación: 0.8649039701223173

OLS Regression Results

Dep. Variable:	Precio_m2	R-squared:	0.748				
Model:	OLS	Adj. R-squared:	0.741				
Method:	Least Squares	F-statistic:	99.55				
Date:	Mon, 27 Nov 2023	<pre>Prob (F-statistic):</pre>	3.17e-176				
Time:	19:57:38	Log-Likelihood:	-6075.7				
No. Observations:	657	AIC:	1.219e+04				
Df Residuals:	637	BIC:	1.228e+04				

Df Model: 19 Covariance Type: nonrobust

covariance Typ							
	coef	std err	t	P> t	[0.025	0.975]	
const	-1437.4161	2183.934	-0.658	0.511	-5725.997	2851.164	
X1	2867.3888	2593.414	1.106	0.269	-2225.286	7960.064	
X2	-2781.2602	525.398	-5.294	0.000	-3812.982	-1749.538	
X3	1093.0076	139.017	7.862	0.000	820.021	1365.994	
X4	52.3560	234.869	0.223	0.824	-408.855	513.567	
X5	-477.5905	70.134	-6.810	0.000	-615.312	-339.869	
X6	-1534.3042	832.801	-1.842	0.066	-3169.672	101.063	
X7	-24.1865	101.479	-0.238	0.812	-223.460	175.087	
X8	2.27e+04	5124.160	4.430	0.000	1.26e+04	3.28e+04	
X9	151.5963	459.414	0.330	0.742	-750.552	1053.745	
X10	-549.5713	145.992	-3.764	0.000	-836.255	-262.888	
Cocina_equip	4.0252	468.688	0.009	0.993	-916.334	924.385	
Gimnasio	-387.9065	355.493	-1.091	0.276	-1085.987	310.174	
Amueblado	935.2883	704.469	1.328	0.185	-448.075	2318.651	
Alberca	1371.2545	384.326	3.568	0.000	616.555	2125.954	
Terraza	-30.3337	338.209	-0.090	0.929	-694.472	633.805	
Elevador	233.7522	297.517	0.786	0.432	-350.481	817.985	
Baños	1729.5269	210.258	8.226	0.000	1316.645	2142.409	
Recamaras	573.7772	227.433	2.523	0.012	127.168	1020.387	
Lugares_estac	1297.8213	200.525	6.472	0.000	904.051	1691.591	
Omnibus: 51		========= 514.300	 Durbin-Watson:		1.987		
		0.000	Jarque-Bera (JB):		19	9519.111	
Skew:		3.102	Prob(JB)		0.00		
Kurtosis:		28.972	Cond. No		3.63e+03		
==========	:=======	=========	========			======	

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 3.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Modelo 2 (Con significantes)

```
In [ ]: #Modelo 2 (Con significantes)
model = LinearRegression()
type(model)
```

```
x = inmu[["X2", "X3", "X5","X8", "X10", "Alberca", "Baños", "Recamaras", "Lugares_e
y = inmu["Precio_m2"]

model.fit(X = x, y = y)
model.__dict__
#Coeficiente de determinación
determinacion = model.score(x, y)
correlacion = np.sqrt(determinacion)
print("Determinacion:", determinacion)
print("Correlación: ", correlacion)

# Agrega una constante al conjunto de datos (intercepto)
x_with_intercept = sm.add_constant(x)

# Ajusta el modelo
model = sm.OLS(y, x_with_intercept).fit()

# Imprime un resumen del modelo que incluye valores p
print(model.summary())
```

Determinacion: 0.7367105913396992 Correlación: 0.858318467318337

OLS Regression Results

0L5 Regression Results							
Dep. Variable: Precio_m2		R-squared:		0.737			
Model:	· —		Adj. R-sq	Adj. R-squared:		0.733	
Method:	L	east Squares	F-statist	F-statistic:		201.2	
Date:	Mon,	27 Nov 2023	Prob (F-s	tatistic):	5.98e-181		
Time:		19:57:38	Log-Likel	ihood:	-6090.2		
No. Observation	ons:	657	AIC:		1.220e+04		
Df Residuals:		647	BIC:		1.	1.225e+04	
Df Model:		9					
Covariance Typ	oe:	nonrobust					
==========		=========		========	========	=======	
	coef	std err	t 	P> t	[0.025	0.975]	
const	-1522.5496	1732.780	-0.879	0.380	-4925.101	1880.002	
X2	-1034.2976	268.884	-3.847	0.000	-1562.288	-506.307	
X3	729.6193	79.917	9.130	0.000	572.692	886.547	
X5	-465.8834	56.872	-8.192	0.000	-577.560	-354.207	
X8	1.941e+04	3930.629	4.939	0.000	1.17e+04	2.71e+04	
X10	-390.5308	40.148	-9.727	0.000	-469.368	-311.694	
Alberca	1251.9295	321.454	3.895	0.000	620.711	1883.148	
Baños	1662.8778	204.103	8.147	0.000	1262.093	2063.662	
Recamaras	781.3415	224.378	3.482	0.001	340.745	1221.938	
Lugares_estac	1346.4962	195.842	6.875	0.000	961.934	1731.058	
Omnibus:		516.252	Durbin-Wa			2.028	
Prob(Omnibus)	•	0.000	` ,				
Skew:		3.086	` '		0.00		
Kurtosis:		30.240	Cond. No.		2	.63e+03	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 2.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Modelo 3 (Con correlaciones más altas)

```
In []: #Modelo 3 (Con correlaciones más altas)
    # data_selected = inmu[["Precio_m2", "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8"

# # Calcula la matriz de correlación
    # correlation_matrix = data_selected.corr()

# # Crea el heatmap con seaborn
# plt.figure(figsize=(10, 8))
# sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidth
# plt.title("Heatmap de Correlación entre Variables Seleccionadas")
# plt.show()

model = LinearRegression()
type(model)
```

```
x = inmu[["Gimnasio", "Alberca", "Terraza", "Elevador", "Baños", "Recamaras", "Luga
y = inmu["Precio_m2"]

model.fit(X = x, y = y)
model.__dict__
#Coeficiente de determinación
determinacion = model.score(x, y)
correlacion = np.sqrt(determinacion)
print("Determinacion:", determinacion)
print("Correlación: ", correlacion)

# Agrega una constante al conjunto de datos (intercepto)
x_with_intercept = sm.add_constant(x)

# Ajusta el modelo
model = sm.OLS(y, x_with_intercept).fit()

# Imprime un resumen del modelo que incluye valores p
print(model.summary())
```

Determinacion: 0.6483537987961022 Correlación: 0.8052041969563387

OLS Regression Results

 Dep. Variable:
 Precio_m2
 R-squared:
 0.648

 Model:
 OLS
 Adj. R-squared:
 0.645

 Method:
 Least Squares
 F-statistic:
 170.9

 Date:
 Mon, 27 Nov 2023
 Prob (F-statistic):
 1.01e-142

 Time:
 19:57:38
 Log-Likelihood:
 -6185.2

 No. Observations:
 657
 AIC:
 1.239e+04

 Df Residuals:
 649
 BIC:
 1.242e+04

Df Model: 7
Covariance Type: nonrobust

covar farree Type:						
	coef	std err	t	P> t	[0.025	0.975]
const	-3983.4077	493.184	-8.077	0.000	-4951.836	-3014.979
Gimnasio Alberca	-788.7465 1938.8306	384.514 412.111	-2.051 4.705	0.041 0.000	-1543.788 1129.599	-33.705 2748.062
Terraza Elevador	1226.8637 147.8290	336.896 298.111	3.642 0.496	0.000 0.620	565.326 -437.550	1888.402 733.208
Baños	2375.8266	234.258	10.142	0.000	1915.831	2835.822
Recamaras Lugares estac	246.4787 1935.9446	252.463 222.752	0.976 8.691	0.329 0.000	-249.264 1498.543	742.222 2373.346
=========	=========	=========	=======		=========	======
Omnibus: Prob(Omnibus): Skew:		454.628 0.000 2.642	Jarque-Bera (JB): 13589.1		2.062 589.184 0.00	

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

24.645 Cond. No.

16.9

Modelo 4 (Con significantes de la anterior)

```
In [ ]: #Modelo 4 (Con significantes de la anterior)
        model = LinearRegression()
        type(model)
        x = inmu[["Gimnasio", "Alberca", "Terraza", "Baños", "Lugares_estac"]]
        y = inmu["Precio_m2"]
        model.fit(X = x, y = y)
        model.__dict__
        #Coeficiente de determinación
        determinacion = model.score(x, y)
        correlacion = np.sqrt(determinacion)
        print("Determinacion:", determinacion)
        print("Correlación: ", correlacion)
        # Agrega una constante al conjunto de datos (intercepto)
        x_with_intercept = sm.add_constant(x)
        # Ajusta el modelo
        model = sm.OLS(y, x_with_intercept).fit()
        # Imprime un resumen del modelo que incluye valores p
        print(model.summary())
```

Determinacion: 0.6477140502689188 Correlación: 0.8048068403467498

OLS Regression Results

Dep. Variable:			Precio_m2	R-squared:		0.648	
Model:			OLS	Adj. R-sq	uared:	0.645	
Method:		L	east Squares	F-statist	ic:	239.4	
Date:		Mon,	27 Nov 2023	Prob (F-s	tatistic):	7.59e-145	
Time:			19:57:38	Log-Likel	ihood:	-6185.8	
No. Observatio	ns:		657	AIC:		1.238e+04	
Df Residuals:			651	BIC:		1.241e+04	
Df Model:			5				
Covariance Typ	e:		nonrobust				
=========	=====	=====	========	=======	=======	========	
		coef	std err	t	P> t	[0.025	0.975]
	2565		276 410	12 000	0.000	4100 400	2022 002
	-3565.			-12.900		-4108.408	
Gimnasio	-773.		383.135		0.044	-1525.352	
Alberca	1930.		408.522	4.725	0.000		
Terraza	1233.		311.408	3.960		621.786	1844.758
Baños	2474.	0428	215.768	11.466	0.000	2050.357	2897.729
Lugares_estac	1980.	0743	217.340	9.111	0.000	1553.303	2406.845
=========	=====		========	=======	=======		======
Omnibus:			454.458	Durbin-Watson:			2.065
Prob(Omnibus):			0.000	Jarque-Bera (JB): 13630.45		3630.454	
Skew:			2.639	Prob(JB):			0.00
Kurtosis:			24.681	Cond. No.			11.1

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.