Regresja liniowa

Dane są zmienne $X_1, X_2, X_3, ...$ oraz Y. Zakładamy zależność:

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \dots$$

gdzie parametry a_0, a_1, a_2, \dots należy oszacować na podstawie danych. W przypadku gdy mamy tylko jedną zmienną X, zależność ta przyjmuje formę:

$$Y = aX + b$$
.

Zauważmy, że w ogólnym przypadku $X_1, X_2, ..., Y$ przyjmują wartości rzeczywiste.

Regresja logistyczna

- W przypadku gdy Y może przyjmować tylko dwie wartości przykładowo 0 i 1 stosowanie regresji liniowej jest nieuzasadnione.
- W tym przypadku definiujemy p = P(Y = 1), q = P(Y = 0).
- Oczywiście p+q=1, zatem q=1-p. Celem regresji logistycznej jest oszacowanie p.
- Zakładamy następującą jego postać:

$$p = \frac{1}{1 + e^{-(a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \dots)}}$$

• Jeżeli p>0.5 to obserwacje klasyfikujemy do grupy 1, w przeciwnym przypadku do grupy 0.

SVM - kernelizacja

Przykład

X1	X2	Υ
0	-1	0
0.4	-2	0
-0.5	-2	0
-0.4	-1	0
4	-2	0
-2	0	0
2.5	2	0
0	2	0
0.5	3	1
1	3	1
3	-1	1
1	-2	1
2	3	1
2	2	1
2	-1	1

Regresja liniowa/SVM

Rozwiązanie z SVM:

Rozwiązanie z regresją logistyczną:

$$p = \frac{1}{1 + e^{-(-0.9011 + 0.5861x_1 + 0.4331x_2)}}$$

Przykładowo dla pierwszej obserwacji (0,-1) jest $p=rac{1}{1+e^{-(-0.9011+0.5861\cdot0+0.4331\cdot(-1))}}=0.21<0.5$, zatem zaliczamy ją do klasy 0.