

Section 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

Md. Shafqat Talukder Rakin Lecturer, Department of CSE,

United International University

Email id: shafqat@cse.uiu.ac.bd

Courtesy: Rifat Bin Rashid

Lecture Outline:

Series and parallel Resistance

Current And voltage division

Equivalent resistance

Resistance

The flow of electricity

Series Resistors and Voltage Division

$$R_{\rm eq} = R_1 + R_2$$

The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances.

$$v_1 = \frac{R_1}{R_1 + R_2} v, \qquad v_2 = \frac{R_2}{R_1 + R_2} v$$

Parallel Resistors and Current Division

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{\rm eq}} = \frac{R_1 + R_2}{R_1 R_2}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

The equivalent resistance of two parallel resistors is equal to the product of their resistances divided by their sum.

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2}$$

By combining the resistors in Fig. 2.36, find $R_{\rm eq}$.

Answer: 10Ω .

Figure 2.36

For Practice Prob. 2.9.

Ans: $R_{eq} = 10 \Omega$

Solution of Practice problem 2.9

Find R_{eq} for the circuit shown in Fig.

Ans: $R_{eq} = 14.4 \Omega$

Find $R_{\rm eq}$ for the circuit shown in Fig. 2.34.

Solution:

To get R_{eq} , we combine resistors in series and in parallel. The 6- Ω and 3- Ω resistors are in parallel, so their equivalent resistance is

$$6\Omega \parallel 3\Omega = \frac{6\times 3}{6+3} = 2\Omega$$

(The symbol \parallel is used to indicate a parallel combination.) Also, the 1- Ω and 5- Ω resistors are in series; hence their equivalent resistance is

$$1 \Omega + 5 \Omega = 6 \Omega$$

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig. 2.35(a), we notice that the two 2- Ω resistors are in series, so the equivalent resistance is

$$2\Omega + 2\Omega = 4\Omega$$

Example 2.9

Figure 2.34 For Example 2.9.

48

Figure 2.35
Equivalent circuits for Example 2.9.

Chapter 9 Basic Laws

This 4- Ω resistor is now in parallel with the 6- Ω resistor in Fig. 2.35(a); their equivalent resistance is

$$4 \Omega \| 6 \Omega = \frac{4 \times 6}{4 + 6} = 2.4 \Omega$$

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In Fig. 2.35(b), the three resistors are in series. Hence, the equivalent resistance for the circuit is

$$R_{\rm eq} = 4 \Omega + 2.4 \Omega + 8 \Omega = 14.4 \Omega$$

Find R_{eq} for the circuit shown in Fig.

Ans: R_{eq} = 11.2 Ω

Calculate the equivalent resistance R_{ab} in the circuit in Fig. 2.37.

Figure 2.37 For Example 2.10.

Solution:

The 3- Ω and 6- Ω resistors are in parallel because they are connected to the same two nodes c and b. Their combined resistance is

$$3 \Omega \parallel 6 \Omega = \frac{3 \times 6}{3 + 6} = 2 \Omega$$
 (2.10.1)

Similarly, the 12- Ω and 4- Ω resistors are in parallel since they are connected to the same two nodes d and b. Hence

$$12 \Omega \| 4 \Omega = \frac{12 \times 4}{12 + 4} = 3 \Omega$$
 (2.10.2)

Also the 1- Ω and 5- Ω resistors are in series; hence, their equivalent resistance is

$$1\Omega + 5\Omega = 6\Omega \tag{2.10.3}$$

With these three combinations, we can replace the circuit in Fig. 2.37 with that in Fig. 2.38(a). In Fig. 2.38(a), $3-\Omega$ in parallel with $6-\Omega$ gives $2-\Omega$, as calculated in Eq. (2.10.1). This $2-\Omega$ equivalent resistance is now in series with the $1-\Omega$ resistance to give a combined resistance of $1 \Omega + 2 \Omega = 3 \Omega$. Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In Fig. 2.38(b), we combine the $2-\Omega$ and $3-\Omega$ resistors in parallel to get

$$2 \Omega \parallel 3 \Omega = \frac{2 \times 3}{2 + 3} = 1.2 \Omega$$

This 1.2- Ω resistor is in series with the 10- Ω resistor, so that

$$R_{ab} = 10 + 1.2 = 11.2 \,\Omega$$

Figure 2.38 Equivalent circuits for Example 2.10.

Find R_{eq} for the circuit shown in Fig.

Ans: $R_{eq} = 19 \Omega$

Solution of Practice problem 2.9

Find v_1 and v_2 in the circuit shown in Fig. 2.43. Also calculate i_1 and i_2 and the power dissipated in the 12- Ω and 40- Ω resistors.

Answer: $v_1 = 10 \text{ V}$, $i_1 = 833.3 \text{ mA}$, $p_1 = 8.333 \text{ W}$, $v_2 = 20 \text{ V}$, $i_2 = 500 \text{ mA}$, $p_2 = 10 \text{ W}$.

Solution of Practice problem 2.12

For the circuit shown in Fig. 2.45, find: (a) v_1 and v_2 , (b) the power dissipated in the 3-k Ω and 20-k Ω resistors, and (c) the power supplied by the current source.

Answer: (a) 45 V, 60 V, (b) 675 mW, 180 mW, (c) 1.8 W.

Solution of Practice problem 2.13

2.26 For the circuit in Fig. 2.90, $i_o = 3$ A. Calculate i_x and the total power absorbed by the entire circuit.

Figure 2.90 For Prob. 2.26.

Solution of 2.26:

Step 2 of 5

Consider the following data

The current I = 3A

By using Ohm's law, the voltage across the 16 ? resistor is,

Since the 8 ?, 4 ? and 2 ? resistors are connected in parallel; the voltage across them is same as the 16 ? resistor (48 V).

By using the Ohm's law, the current flowing through the 8 ? resistor is,

$$l_{10} = \frac{v}{R}$$

$$= \frac{48}{8}$$

By using the Ohm's law, the current flowing through the 4 ? resistor is

$$l_{4\Omega} = \frac{v}{R}$$
$$= \frac{48}{4}$$
$$= 12 A$$

By using the Ohm's law, the current flowing through the 2 ? resistor is

$$i_{2\Omega} = \frac{v}{R}$$
$$= \frac{48}{2}$$
$$= 24 \text{ A}$$

The total current i is the sum of the branch currents

The total current i is the sum of the branch currents.

$$i_x = i_{4\Omega} + i_{4\Omega} + i_{2\Omega} + i_{\alpha}$$

= 6+12+24+3
= 45 A

Therefore, the current i, is 45A.

Step 3 of 5

The 8 ? and 2 ? resistors are in parallel. Their combined resistance is,

$$8\Omega \| 2\Omega = \frac{8 \times 2}{8 + 2}$$
$$= 1.66$$

The 4? and 16? resistors are in parallel. Their combined resistance is

$$4\Omega || 16\Omega = \frac{4 \times 16}{4 + 16}$$
$$= 3.2\Omega$$

Step 4 of 5

Then the circuit in Figure 1 is reduced to the circuit in Figure 2.

Step 5 of 5

These 1.6? and 3.2? resistors are in parallel. Their combined resistance is,

$$1.6\Omega \parallel 3.2\Omega = \frac{1.6 \times 3.3}{1.6 + 3.3} = 1\Omega$$

This 1? and 10? resistors are in series. Their combined resistance is,

$$1\Omega + 10\Omega = 11\Omega$$

The power absorbed by the entire circuit can be calculated as follows.

$$p = l_x^2 R$$

= $(45)^2 (11)$
= 22.275 kW

Therefore, the power absorbed by the entire circuit is 22,275kW

2.30 Find R_{eq} for the circuit in Fig. 2.94.

Figure 2.94

For Prob. 2.30.

Solution of 2.30:

Reference: Sadiku Exercise Problem 2.30

2.31 For the circuit in Fig. 2.95, determine i_1 to i_5 .

Figure 2.95

For Prob. 2.31.

Solution of 2.31:

Step 4 of 9 The 0.66 ? and 4 ? resistors are in parallet. Their combined resistance is, $0.66\Omega \parallel 4\Omega = \frac{0.66 \times 4}{0.66 + 4}$ Step 5 of 9 Then the reduced circuit is shown in Figure 3. $0.57\,\Omega$ Figure 3 The 0.57 ? and 3 ? resistors are in series. Their combined resistance is $0.57\Omega + 3\Omega = 3.57\Omega$ By using Ohms law, the current & can be calculated as follows. $=\frac{200}{3.57}$ Therefore, the current 4 is 56 A

Step 7 of 9

By using current division, the current t_2 can be calculated as follows.

$$i_2 = \frac{0.66}{0.66 + 4}i_1$$

$$= \frac{0.66}{0.66 + 4}(56)$$

$$= 8A$$

Therefore, the current & is 8A

Applying Kirchhoff's current law, the sum of currents entering any node is equal to the sum of currents leaving from that node. The current \underline{I}_{i} can be calculated as follows.

$$i_1 = i_2 + i_3$$

 $56 = 8 + i_3$
 $i_1 = 48 A$

Therefore, the current i, is 48A

Step 8 of 9

By using current division, the current 1, can be calculated as follows.

$$i_4 = \frac{2}{2+1}(i_5)$$
$$= \frac{2}{2+1}(48)$$
$$= 32 \text{ A}$$

Therefore, the current 4 is 32 A

Step 8 of 9

Applying Kirchhoff's current law, the sum of currents entering any node is equal to the sum of currents leaving from that node. The current ξ can be calculated as follows.

$$i_3 = i_4 + i_5$$

 $48 = 32 + i_5$
 $i_5 = 16 \text{ A}$

Therefore, the current i, is 16 A

2.35 Calculate V_o and I_o in the circuit of Fig. 2.99.

Figure 2.99 For Prob. 2.35.

Solution of 2.35:

Chapter 2, Problem 35.

Calculate V_0 and I_0 in the circuit of Fig. 2.99.

Chapter 2, Solution 35

Combining the versions in parallel,

$$70||30 = \frac{70x30}{100} = 21\Omega$$
, $20||5 = \frac{20x5}{25} = 4\Omega$

$$i = \frac{50}{21 + 4} = 2 A$$

$$v_i = 21i = 42 \text{ V}, v_0 = 4i = 8 \text{ V}$$

$$i_1 = \frac{v_1}{70} = 0.6 \text{ A}, i_2 = \frac{v_2}{20} = 0.4 \text{ A}$$

At node a, KCL must be satisfied

$$i_1 = i_2 + I_0 \longrightarrow 0.6 = 0.4 + I_0 \longrightarrow I_0 = 0.2 \text{ A}$$

Hence $v_0 = 8 V$ and $I_0 = 0.2A$

2.36 Find i and V_o in the circuit of Fig. 2.100.

Figure 2.100

For Prob. 2.36.

Solution of 2.36:

Step 2 of 6

The 50 ? and 30 ? resistors are in series. Their combined resistance is,

$50\Omega + 30\Omega = 80\Omega$

The 20? and 60? resistors are in parallel. Their combined resistance is,

$$20\Omega \parallel 60\Omega = \frac{20 \times 60}{20 + 60}$$
$$= 15\Omega$$

Step 3 of 6

Then the reduced circuit is shown in Figure 2.

Step 4 of 6

The 15 ? and 25 ? resistors are in series. Their combined resistance is,

$15\Omega + 25\Omega = 40\Omega$

The 20 ? and 80 ? resistors are in parallel. Their combined resistance is,

$$20\Omega || 80\Omega = \frac{20 \times 80}{20 + 80} = 16\Omega$$

Step 5 of 6

Then the reduced circuit is shown in Figure 3.

Figure 3

Step 6 of 6

The 16 ? and 24 ? resistors are in series. Their combined resistance is,

$16\Omega + 24\Omega = 40\Omega$

This 40 ? and 40 ? resistors are in parallel. Their combined resistance is,

$$40\Omega || 40\Omega = \frac{40 \times 40}{40 + 40} = 20\Omega$$

This 20 ? and 80 ? resistors are in series. Their combined resistance is,

 $20\Omega + 80\Omega = 100\Omega$

By using Ohms law, the current I can be calculated as follows.

$$i = \frac{v}{R}$$

$$= \frac{20}{100}$$

$$= 200 \,\text{mA}$$

Therefore, the value of current i is 200 mA

Since the two branch resistances are equal 40 ? and 40 ?, the current is divided equally. Hence the current through the 24 ? resistor is 100mA.

Apply current division rule, the current passing through 30? resistor is:

$$i_{200} = \frac{20}{20 + 80} i_{240}$$
$$= \frac{20}{20 + 80} (100 \text{mA})$$
$$= 20 \text{mA}$$

By using Ohms law, the current Y_a can be calculated as follows.

$$V_a = i_{MQ}R$$

= (20mA)(30)
= 0.6 V

Therefore, the value of voltage, V is 0.6 V

2.38 Find R_{eq} and i_o in the circuit of Fig. 2.102.

Figure 2.102

For Prob. 2.38.

Solution of 2.38:

Figure 1

Step 2 of 7

To get the R_{\bullet} , we combine the resistors in series and in parallel.

The 12 ? and 6 ? resistors are in parallel. Their combined resistance is,

$$12\Omega \parallel 6\Omega = \frac{12 \times 6}{12 + 6}$$
$$= 4\Omega$$

The 20 ? and 80 ? resistors are in parallel. Their combined resistance is,

$$20\Omega \parallel 80\Omega = \frac{20 \times 80}{20 + 80}$$
$$= 16\Omega$$

Step 3 of 7

Then the reduced circuit is shown in Figure 2.

Figure 2

Step 4 of 7

The 4? and 16? resistors are in series. Their combined resistance is,

$4\Omega + 16\Omega = 20\Omega$

This 20 ? and 60 ? resistors are in parallel. Their combined resistance is,

$$20\Omega \parallel 60\Omega = \frac{20 \times 60}{20 + 60}$$

= 15 Ω

Figure 3

Step 6 of

The 15 ? and 15 ? resistors are in parallel. Their combined resistance is

$$15\Omega || 15\Omega = \frac{15 \times 15}{15 + 15}$$

= 7.5\Omega

This 7.5 ? and 2.5 ? resistors are in series. Their combined resistance is.

$$R_{eq} = 7.5\Omega + 2.5\Omega$$
$$= 10\Omega$$

-1044

Step 7 of 7

By using Ohms law, the current i can be calculated as follows.

$$I_a = \frac{v}{R}$$
$$= \frac{35}{10}$$

= 10

=3.5A

Therefore, the value of current i is 3.5 A

Math to Practice from the Book for Exam

Chapter 2

- Example:
 - 2.3, 2.5, 2.6, 2.7, 2.9, 2.10, 2.12, 2.16
- Practice Problem:
 - 2.3, 2.5, 2.6, 2.7, 2.9, 2.10, 2.12
- Problem:
 - 2.15, 2.16, 2.18, 2.22, 2.23, 2.26, 2.30, 2.31, 2.32, 2.35, 2.36, 2.37, 2.38, 2.39, 2.40, 2.41(**), 2.42, 2.43, 2.44(**), 2.45, 2.46, 2.47(**)
- N:B: Please note that the Wye-Delta concept is not in the present syllabus!

Thank You