Microlocal Analysis with Applications to Non-Elliptic Fredholm Problems

Edmund Lau Supervised by: Dr Jesse Gell-Redman

The University of Melbourne elau1@student.unimelb.edu.au

19 October 2018

A linear partial differential operator of order $k \in \mathbb{N}$ in \mathbb{R}^n :

$$P = P(x, D_x) = \sum_{|\alpha| \leqslant k} c_{\alpha}(x) D_x^{\alpha}, \quad c_{\alpha} \in C_{\infty}^{\infty}(\mathbb{R}^n)$$

A linear partial differential operator of order $k \in \mathbb{N}$ in \mathbb{R}^n :

$$P = P(x, D_x) = \sum_{|\alpha| \leqslant k} c_{\alpha}(x) D_x^{\alpha}, \quad c_{\alpha} \in C_{\infty}^{\infty}(\mathbb{R}^n)$$

where

$$D_{x_i} = -i\partial_{x_i} \implies \mathcal{F}D_x^{\alpha} = \xi^{\alpha}\mathcal{F}$$

A linear partial differential operator of order $k \in \mathbb{N}$ in \mathbb{R}^n :

$$P = P(x, D_x) = \sum_{|\alpha| \leqslant k} c_{\alpha}(x) D_x^{\alpha}, \quad c_{\alpha} \in C_{\infty}^{\infty}(\mathbb{R}^n)$$

where

$$D_{x_i} = -i\partial_{x_i} \implies \mathcal{F}D_x^{\alpha} = \xi^{\alpha}\mathcal{F}$$

Examples:

$$\Delta = D_{x_1}^2 + \dots + D_{x_n}^2$$

$$\Box = D_{x_1}^2 + \dots + D_{x_n}^2 - D_t^2$$

Laplace operator Wave operator

An order $k \in \mathbb{N}$ linear partial differential equation (PDE) :

$$Pu = f$$
, $u, f \in \mathcal{S}'(\mathbb{R}^n)$

An order $k \in \mathbb{N}$ linear partial differential equation (PDE) :

$$Pu = f$$
, $u, f \in \mathcal{S}'(\mathbb{R}^n)$

Weak solution and forcing:

$$u: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$$

 $\varphi \mapsto u(\varphi)$

$$\varphi \in \mathcal{S}(\mathbb{R}^n) \iff \varphi \in C^{\infty} \text{ and } \sup_{x} \left| x^{\beta} D_x^{\alpha} \varphi(x) \right| < \infty$$

Existence For which f can we find solution u?

Existence For which f can we find solution u? Uniqueness If we do find one, is it the only one?

Existence For which f can we find solution u?

Uniqueness If we do find one, is it the only one?

Regularity How does the regularity of f affect regularity of u?

E.g. Does smooth beget smooth?

Existence For which f can we find solution u?

Uniqueness If we do find one, is it the only one?

Regularity How does the regularity of f affect regularity of u?

E.g. Does smooth beget smooth?

Fredholm theory tackles all three simultaneously!

Overview

Tredholm Operators and Regularity

"Elliptic operators are Fredholm"

3 A Non-elliptic Fredholm problem

Fredholm Operators

Definition (Fredholm operators)

A continuous linear operator $T:\mathcal{X}\to\mathcal{Y}$ between Banach spaces \mathcal{X} and \mathcal{Y} is Fredholm, if

- T has closed range, i.e. T(X) is closed in Y,
- $\ker(T) \subset \mathcal{X}$ is finite dimensional,
- $\operatorname{coker}(T) := \mathcal{Y}/T(\mathcal{X})$ is finite dimensional.

Fredholm Operators

Definition (Fredholm operators)

A continuous linear operator $T:\mathcal{X}\to\mathcal{Y}$ between Banach spaces \mathcal{X} and \mathcal{Y} is Fredholm, if

- T has closed range, i.e. T(X) is closed in Y,
- $\ker(T) \subset \mathcal{X}$ is finite dimensional,
- $\operatorname{coker}(T) := \mathcal{Y}/T(\mathcal{X})$ is finite dimensional.

Suppose Tx = y for a given $y \in \mathcal{Y}$.

Existence a solution $x \in \mathcal{X}$ exist if and only if $y \in \operatorname{coker}(T)^{\perp}$.

Uniqueness the solution is unique if and only if ker(T) = 0.

Fredholm Operators

Definition (Fredholm operators)

A continuous linear operator $T:\mathcal{X}\to\mathcal{Y}$ between Banach spaces \mathcal{X} and \mathcal{Y} is Fredholm, if

- T has closed range, i.e. T(X) is closed in Y,
- $\ker(T) \subset \mathcal{X}$ is finite dimensional,
- $\operatorname{coker}(T) := \mathcal{Y}/T(\mathcal{X})$ is finite dimensional.

Suppose Tx = y for a given $y \in \mathcal{Y}$.

Existence a solution $x \in \mathcal{X}$ exist if and only if $y \in \operatorname{coker}(T)^{\perp}$.

Uniqueness the solution is unique if and only if ker(T) = 0.

T Fredholm

→ existence and uniqueness reduce to finite dimensional linear algebra.

Fredholm Estimate

In analysis,topological / algebraic statements → estimates.

Fredholm Estimate

In analysis,topological / algebraic statements → estimates.

Theorem (Fredholm Estimate)

Let X, Y, Z be Banach spaces. If

- $T: \mathcal{X} \to \mathcal{Y}$ is continuous,
- \mathcal{X} is compactly contained in \mathcal{Z} , i.e. $\iota: \mathcal{X} \hookrightarrow \mathcal{Z}$ is compact,
- for all $x \in \mathcal{X}$, there exist C > 0 such that the following estimate hold

$$||x||_{\mathcal{X}} \leqslant C\left(||Tx||_{\mathcal{Y}} + ||x||_{\mathcal{Z}}\right) \tag{1}$$

then T is semi-Fredholm

- ullet the image, $T(\mathcal{X})$ is closed, and
- T has finite dimensional kernel.

Constructing a Fredholm problem

Fredholm Problem

Given a differential operator P, can we construct solution spaces $\mathcal X$ and $\mathcal Y$, so that

$$P: \mathcal{X} \to \mathcal{Y}$$

is Fredholm?

Constructing a Fredholm problem

Fredholm Problem

Given a differential operator P, can we construct solution spaces $\mathcal X$ and $\mathcal Y$, so that

$$P: \mathcal{X} \to \mathcal{Y}$$

is Fredholm?

What's the link to regularity?

Constructing a Fredholm problem

Fredholm Problem

Given a differential operator P, can we construct solution spaces $\mathcal X$ and $\mathcal Y$, so that

$$P: \mathcal{X} \to \mathcal{Y}$$

is Fredholm?

What's the link to regularity? Sobolev Space!

Sobolev Space

Definition

The Sobolev space of order $k \in \mathbb{N}$ on \mathbb{R}^n , $H^k(\mathbb{R}^n) \subset \mathcal{S}'(\mathbb{R}^n)$ is defined by

$$u \in H^k(\mathbb{R}^n) \iff D^{\alpha}u \in L^2(\mathbb{R}^n) \text{ whenever } |\alpha| \leqslant k$$

 $\iff \langle \xi \rangle^k \mathcal{F}u(\xi) \in L^2(\mathbb{R}^n).$

$$\langle \xi \rangle := \left(1 + |\xi|^2 \right)^{1/2} = \left(1 + |\xi_1|^2 + \dots + |\xi_n|^2 \right)^{1/2}$$

Hilbert space structure keeps track of (global) regularity data of u.

$$||u||_{H^k} = \underbrace{||u||_{L^2}}_{\text{global decay}} + \underbrace{\sum_{|\alpha| \leq k} ||D^{\alpha}u||_{L^2}}_{k \text{ times differentiable}}$$

Sobolev Space on Closed Manifold

Let M be a smooth closed n-manifold (compact without boundary), $s \in \mathbb{R}$, $u \in (C^{\infty}(M))'$, then

$$u \in H^s(M) \iff (\chi \cdot u) \circ \Phi^{-1} \in H^s(U)$$

for any chart $\Phi: \widetilde{U} \to U \subset \mathbb{R}^n$ and smooth bump function $\chi \in C^{\infty}(M)$ compactly supported in the chart domain \widetilde{U} .

Sobolev Space on Closed Manifold

Let M be a smooth closed n-manifold (compact without boundary), $s \in \mathbb{R}$, $u \in (C^{\infty}(M))'$, then

$$u \in H^s(M) \iff (\chi \cdot u) \circ \Phi^{-1} \in H^s(U)$$

for any chart $\Phi: \widetilde{U} \to U \subset \mathbb{R}^n$ and smooth bump function $\chi \in C^{\infty}(M)$ compactly supported in the chart domain \widetilde{U} .

Henceforth, M is either \mathbb{R}^n or a closed n-manifold.

General Strategy

Existence, uniqueness, regularity ~~

We want to prove

$$P:H^s(M)\to H^{s'}(M)$$

is semi-Fredholm by proving

$$||u||_{H^s} \leqslant C (||Pu||_{H^{s'}} + ||u||_{H^N})$$

for some Sobolev orders $s, s', N \in \mathbb{R}$. Semi-Fredholm for compact M only!

For elliptic operators:

$$H^{s+m} \rightarrow H^s$$

For **non-elliptic operators**:

$$H^{s+m} \rightarrow H^{s+1}$$

"Elliptic operators are Fredholm"

How do we get such an estimate?

Theorem (Elliptic regularity)

Let P be an order $m \in \mathbb{R}$ elliptic differential operator on an n-manifold, M. Suppose we know a priori that $u \in H^N(M)$ for some $N \in \mathbb{R}$. Then, for any $s \in \mathbb{R}$

$$(f =) Pu \in H^s(M) \implies u \in H^{s+m}(M)$$

and u satisfies the estimates: $\exists C > 0$

$$||u||_{H^{s+m}} \leq C (||Pu||_{H^s} + ||u||_{H^N}).$$

"Elliptic operators are Fredholm"

How do we get such an estimate?

Theorem (Elliptic regularity)

Let P be an order $m \in \mathbb{R}$ elliptic differential operator on an n-manifold, M. Suppose we know a priori that $u \in H^N(M)$ for some $N \in \mathbb{R}$. Then, for any $s \in \mathbb{R}$

$$(f =) Pu \in H^s(M) \implies u \in H^{s+m}(M)$$

and u satisfies the estimates: $\exists C > 0$

$$||u||_{H^{s+m}} \leqslant C(||Pu||_{H^s} + ||u||_{H^N}).$$

Elliptic operators generalise the Laplace operator: Δ

Elliptic operators generalise the Laplace operator: $\Delta + 1$.

Elliptic operators generalise the Laplace operator: $\Delta + 1$. Fourier transform + integration by parts $\implies \mathcal{F}D_x = \xi \mathcal{F}$

$$(\Delta + 1) u = \mathcal{F}^{-1} \mathcal{F}(\Delta + 1) u = \mathcal{F}^{-1} (1 + |\xi|^2) \mathcal{F} u$$

We call $\left(1+\left|\,\xi\,\right|^{2}\right)$ is the **symbol** for $(\Delta+1)$.

Elliptic operators generalise the Laplace operator: $\Delta + 1$. Fourier transform + integration by parts $\implies \mathcal{F}D_x = \xi \mathcal{F}$

$$(\Delta + 1) u = \mathcal{F}^{-1} \mathcal{F}(\Delta + 1) u = \mathcal{F}^{-1} (1 + |\xi|^2) \mathcal{F} u$$

We call $\left(1+\left|\xi\right|^{2}\right)$ is the **symbol** for $(\Delta+1)$. We expect an inverse . . .

$$(\Delta + 1)^{-1} (\Delta + 1) u(x) = \mathcal{F}^{-1} (1 + |\xi|^2)^{-1} (1 + |\xi|^2) \mathcal{F} u = u$$

Question: What is $(\Delta + 1)^{-1}$? Answer: **pseudo**differential operator.

$$P(x,D_x)u = \frac{1}{(2\pi)^n} \int e^{i(x-y)\cdot\xi} p(x,\xi)u(y) dy d\xi$$

Question: What is $(\Delta + 1)^{-1}$? Answer: **pseudo**differential operator.

$$P(x, D_x)u = \frac{1}{(2\pi)^n} \int e^{i(x-y)\cdot\xi} p(x, \xi)u(y) dy d\xi$$

Definition

A smooth function $p(x,\xi) \in C^{\infty}(\mathbb{R}^n;\mathbb{R}^n)$ is a symbol of order $m \in \mathbb{R}$, i.e. $p \in S^m_{\infty}(\mathbb{R}^n;\mathbb{R}^n)$, if

$$\left| D_x^{\alpha} D_{\xi}^{\beta} p(x,\xi) \right| \leqslant C_{\alpha,\beta,\gamma} \left\langle \xi \right\rangle^{m-|\beta|}, \quad C_{\alpha,\beta} > 0$$

for any multi-index $\alpha, \beta \in \mathbb{N}^n$.

If
$$P \in \Psi^m_\infty(M)$$
 for some $m \in \mathbb{R}$, with symbol $p(x,\xi)$, then it is **elliptic** if
$$|p(x,\xi)| \geqslant \epsilon \left\langle \xi \right\rangle^m \qquad \qquad \text{in } |\xi| > 1/\epsilon \text{ for some } \epsilon > 0$$

Ellipticity is a property of the principal symbol.

If $P \in \Psi^m_{\infty}(M)$ for some $m \in \mathbb{R}$, with symbol $p(x,\xi)$, then it is **elliptic** if $|p(x,\xi)| \geqslant \epsilon \langle \xi \rangle^m \qquad \qquad \text{in } |\xi| > 1/\epsilon \text{ for some } \epsilon > 0$

Ellipticity is a property of the principal symbol.

Lemma

- **1** $P: H^s(M) \to H^{s-m}(M)$ is continuous for any $s \in \mathbb{R}$.
- ② If P is elliptic then there exist parametrix $Q \in \Psi^{-m}_{\infty}(M)$ such that

$$QP-1:H^s(M)\to H^{s'}(M)$$

is continuous for any $s, s' \in \mathbb{R}$.

Proof of Elliptic Regularity

P elliptic with parametrix Q.

Proof of Elliptic Regularity

P elliptic with parametrix Q. Given any $u \in H^N(M)$. Write

$$u = QPu - (QP - 1)u$$

.

Proof of Elliptic Regularity

P elliptic with parametrix Q. Given any $u \in H^N(M)$. Write

$$u = QPu - (QP - 1)u$$

.

$$||u||_{H^{s+m}} \leq \underbrace{||QPu||_{H^{s+m}}}_{\leq C||Pu||_{H^s}} + \underbrace{||(QP-1)u||_{H^{s+m}}}_{\leq C||u||_{H^N}}$$

using continuity $Q: H^s \to H^{s+m}$ and $(QP-1): H^N \to H^{s+m}$.

Proof of Elliptic Regularity

P elliptic with parametrix Q. Given any $u \in H^N(M)$. Write

$$u = QPu - (QP - 1)u$$

.

$$||u||_{H^{s+m}} \leq \underbrace{||QPu||_{H^{s+m}}}_{\leq C||Pu||_{H^s}} + \underbrace{||(QP-1)u||_{H^{s+m}}}_{\leq C||u||_{H^N}}$$

using continuity $Q: H^s \to H^{s+m}$ and $(QP-1): H^N \to H^{s+m}.$ We get

$$||u||_{H^{s+m}} \leqslant C ||Pu||_{H^s} + C ||u||_{H^N}.$$

Non-elliptic Fredholm problem

Theorem (Main theorem)

There exist a perturbation Q of the wave operator \square on \mathbb{T}^{1+n} such that the following estimate holds for any $s,N\in\mathbb{R}$

$$||u||_{H^{s+2}} \leqslant C(||(\Box - iQ)u||_{H^{s+1}} + ||u||_{H^N})$$

for some C > 0.

$$\mathbb{T}^{1+n} := \mathbb{S}_t^1 \times \underbrace{\mathbb{S}_{x_1}^1 \times \mathbb{S}_{x_2}^1 \times \cdots \times \mathbb{S}_{x_n}^1}_{n}$$

$$\square := \partial_t^2 - \sum_{i=1}^n \partial_{x_i}^2, \quad p(t, x, \tau, \xi) = |\xi|^2 - \tau^2$$

Global elliptic

$$\iff \left| \left| \xi \right|^2 - \tau^2 \right| \geqslant \epsilon \left\langle (\tau, \xi) \right\rangle^2 \text{ whenever } \left| (\tau, \xi) \right| > 1/\epsilon.$$

Microlocal elliptic at a point
$$(t_0, x_0, \tau_0, \xi_0) \in T^*\mathbb{T}^{1+n} \setminus 0$$
 $\iff ||\xi|^2 - \tau^2| \ge \epsilon \langle (\tau, \xi) \rangle^2 \text{ in}$

Microlocal elliptic at a point $(t_0, x_0, \tau_0, \xi_0) \in T^*\mathbb{T}^{1+n} \setminus 0$ $\iff ||\xi|^2 - \tau^2| \ge \epsilon \langle (\tau, \xi) \rangle^2 \text{ in}$

Microlocal elliptic at a point $(t_0, x_0, \tau_0, \xi_0) \in T^*\mathbb{T}^{1+n} \setminus 0$ $\iff | |\xi|^2 - \tau^2 | \ge \epsilon \langle (\tau, \xi) \rangle^2$ in

$$EII^2 = \{ \text{points in phase space where } p \text{ is elliptic} \} \setminus 0$$

 $\Sigma^2 = EII^m(\Box)^c \setminus 0.$
For \Box : Elliptic \iff not vanishing (outside of $(\tau, \xi) = 0$).

Two Major Ingredients

Theorem (Microlocal elliptic regularity)

Let $P \in \Psi_{\infty}^m(\mathbb{R}^n)$ and $u \in \mathcal{S}'(\mathbb{R}^n)$. If for some $\chi_2 \in \Psi_{\infty}^0(\mathbb{R}^n)$, $\chi_2 Pu \in H^s(\mathbb{R}^n)$, then for any other $\chi_1 \in \Psi_{\infty}^0(\mathbb{R}^n)$ such that $\mathrm{WF}'(\chi_1) \subset \mathit{Ell}^m(P) \cap \mathit{Ell}^0(\chi_2)$ we have $\chi_1 u \in H^{s+m}(\mathbb{R}^n)$ and it satisfies the estimate: $\forall N \in \mathbb{R}, \exists C > 0$

$$\|\chi_1 u\|_{H^{s+m}} \leqslant C (\|\chi_2 P u\|_{H^s} + \|u\|_{H^N}).$$

Two Major Ingredients

Theorem (Propagation of singularities)

Let $P \in \Psi_{\infty}^m(\mathbb{R}^n)$ is a properly supported pseudodifferential operator with polyhomogeneous principal $\sigma_m(P) = p - iq$ with real p,q. If we have $\chi_1, \chi_2, \chi_3 \in \Psi_{\infty}^0(\mathbb{R}^n)$ and $q \geqslant 0$ on $\mathrm{WF}'(\chi_3)$ and every $(x,\xi) \in WF'(P)$ is in the integral curve of H_p originating from $Ell^0(\chi_2)$, then for all $s,N \in \mathbb{R}$ and $u \in C^{\infty}(\mathbb{R}^n)$, there exist C > 0 such that

$$\|\chi_1 u\|_{H^{s+m}} \leqslant C(\|\chi_2 u\|_{H^s} + \|\chi_3 P u\|_{H^{s+1}} + \|u\|_{H^N}).$$

Two Major Ingredients

Theorem (Propagation of singularities)

Let $P \in \Psi^m_\infty(\mathbb{R}^n)$ is a properly supported pseudodifferential operator with polyhomogeneous principal $\sigma_m(P) = p - iq$ with real p,q. If we have $\chi_1, \chi_2, \chi_3 \in \Psi^0_\infty(\mathbb{R}^n)$ and $q \geqslant 0$ on $\mathrm{WF}'(\chi_3)$ and every $(x,\xi) \in WF'(P)$ is in the integral curve of H_p originating from $Ell^0(\chi_2)$, then for all $s,N \in \mathbb{R}$ and $u \in C^\infty(\mathbb{R}^n)$, there exist C > 0 such that

$$\|\chi_1 u\|_{H^{s+m}} \leqslant C (\|\chi_2 u\|_{H^s} + \|\chi_3 P u\|_{H^{s+1}} + \|u\|_{H^N}).$$

Constructions

Main idea : Create larger elliptic set to absorp singuarity! $Q = \chi(t)\partial_t^2$.

Constructions

Main idea : Create larger elliptic set to absorp singuarity! $Q=\chi(t)\partial_t^2$.

Constructions

Main idea : Create larger elliptic set to absorp singuarity! $Q=\chi(t)\partial_t^2$.

Hamilton flow of $\sigma_2(\square)$

Hamiltonian flow: $\exp(sH_p)(t,x,\tau,\xi) = (t+s\tau,x+s\xi,\tau,\xi)$

Propagation of singularity \implies

$$\|u\|_{\mathcal{H}^{s+2}}\leqslant C\underbrace{\|\chi(t)u\|_{\mathcal{H}^{s}}}_{\text{elliptic region!}}+C\,\|(\Box-iQ)u\|_{\mathcal{H}^{s+1}}+C\,\|u\|_{\mathcal{H}^{N}}$$

Propagation of singularity \implies

$$\begin{aligned} \|u\|_{H^{s+2}} &\leqslant C \underbrace{\|\chi(t)u\|_{H^{s}}}_{\text{elliptic region!}} + C \|(\Box - iQ)u\|_{H^{s+1}} + C \|u\|_{H^{N}} \\ \|u\|_{H^{s+2}} &\leqslant C' \|\Box - iQ\|_{H^{s-2}} + C \|(\Box - iQ)u\|_{H^{s+1}} + C' \|u\|_{H^{N}} \end{aligned}$$

Propagation of singularity \Longrightarrow

$$\begin{aligned} \|u\|_{H^{s+2}} &\leqslant C \underbrace{\|\chi(t)u\|_{H^{s}}}_{\text{elliptic region!}} + C \|(\Box - iQ)u\|_{H^{s+1}} + C \|u\|_{H^{N}} \\ \|u\|_{H^{s+2}} &\leqslant C' \|\Box - iQ\|_{H^{s-2}} + C \|(\Box - iQ)u\|_{H^{s+1}} + C' \|u\|_{H^{N}} \\ \|u\|_{H^{s+2}} &\leqslant C'' \left(\|(\Box - iQ)u\|_{H^{s+1}} + \|u\|_{H^{N}}\right) \end{aligned}$$

$$||u||_{H^{s+2}} \leqslant C''(||(\Box - iQ)u||_{H^{s+1}} + ||u||_{H^N})$$

Which suggest the Hilbert space domain that we want is

$$\mathcal{X}^s = \left\{ u \in H^s : (\Box - iQ)u \in H^{s-1} \right\}.$$

And

$$\Box - iQ : \mathcal{X}^{s+2} \to H^{s+1}$$

is Fredholm for any $s \in \mathbb{R}$.

The End

Thank you!