Grupo Disciplinar de Controlo (ADEEA) **ER – EXAME de Recurso**Controlo de Sistemas

Ref.^a: LRER02

Data: 10-setembro-2020

ENUNCIADO

(3,0) 1 - Considere que foi aplicado num sistema de 2ª ordem, $\frac{Y(s)}{R(s)} = \frac{1}{s^2 + 2s + 1}$, um sinal tipo rampa, tendo sido obtida a seguinte resposta temporal (Figura 1)

Com base na resposta temporal apresentada na Figura 1, escolha qual das seguintes opções está correta (uma única opção), em relação à expressão temporal do erro e(t)=r(t)-y(t).

a)
$$e(t) = -(2+t)e^{-t} + 2$$

b)
$$e(t) = 2$$

c)
$$e(t) = (2+t)e^{-t} - 2$$

d)
$$e(t) = -2(1+t)e^{-t} + 2$$

Grupo Disciplinar de Controlo (ADEEEA) ER - EXAME de Recurso

Controlo de Sistemas

Data: 10-setembro-2020

Ref.a: LRER02

(3,0)2 – Determine qual das seguintes opções (escolher somente uma resposta) corresponde aos parâmetros do controlador PID de modo a ter um coeficiente de amortecimento $\xi = \frac{\sqrt{2}}{2}$

Figura 2

- a) $K_C=40$; $\tau_{C1}=1/2$; $\tau_{C2}=0.25$
- b) K_C =40; τ_{C1} =0.1; τ_{C2} =0.25
- c) $K_C=20$; $\tau_{C1}=1/4$; $\tau_{C2}=0.5$ d) $K_C=20$; $\tau_{C1}=2$; $\tau_{C2}=4$

3 – Considere o seguinte sistema mecânico em que as variáveis de saída do sistema são X₁ e X₂ e as variáveis de entrada são U₁ e U₂

Figura 3

- (3,0)3a – Obtenha o Modelo de Estado do Sistema Mecânico da Figura
- (3,0)3b – Desenhe o diagrama de blocos de estado do Sistema Mecânico.

Grupo Disciplinar de Controlo (ADEEEA) **ER – EXAME de Recurso**

Controlo de Sistemas

Data: 10-setembro-2020

Ref.a: LRER02

(3,0) 4 – Considere o seguinte Diagrama de blocos,

Figura 4

Determine o erro forçado do sistema para uma entrada do tipo escalão de posição, utilizando os coeficientes de erro dinâmico (K_1 , K_2 e K_3).

(5,0) 5 – Analise a estabilidade do sistema do seguinte diagrama de blocos (Figura 5), a partir do critério de estabilidade de Nyquist.

Figura 5

NOTAS FINAIS - Para a resolução da prova atenda às seguintes notas:

- 1 Nas respostas para as questões 1 e 2 basta indicar a opção correta na sua resposta (resposta errada desconta 1 valor);
- 2 Nas respostas para as questões **3, 4 e 5** as respostas devem ser devidamente <u>justificadas</u>