Question	Mark Scheme		Mar	ks
1. (a)	$\Sigma \text{ m} = 150 \; ; \Sigma \text{ m}^2 = 5500$			
	$\Sigma t = 71.6 ; \Sigma t^2 = 930 ; \Sigma mt = 2147$	5500 & 2147 seen	B1	
	$S_{mt} = 2147 - \frac{150 \times 71.6}{6} = \underline{357}$	Accept $\frac{357}{60} = 59.5$	M1 A1	
	$S_{mm} = 5500 - \frac{150^2}{6} = \frac{1750}{6}$ No working shown SR: B1 B1 only	Accept 291. 6	A1	(4)
(b)	$b = \frac{357}{1750} = \underline{0.204}$		M1	
	$a = \frac{71.6}{6} - 0.204 \times \frac{150}{6} = \underline{6.83}$		M1	
	:. $t = 6.83 + 0.204$ m No working seen SR: $t = 6.83 + 0.204$ m B1 only	(Accept $6.8\frac{1}{3}$, 6.83 , $6\frac{5}{6}\%$)	A1	(3)
(c)	$7.35 \Rightarrow m = 35$			
	$\therefore t = 6.83 + 0.204 \times 35 = 13.973$	14.0 AWRT	M1 A1	(2)
(d) (i)	$9.00 \Rightarrow m = 120$			
	No; outside range of data (after 7.50 am)		B1; B1	
(ii)	No; No evidence model will apply one month later		B1; B1	(4)

Question	Mark Scheme		Marks	
2. (a)	Symmetrical (about the mean μ)			
	Mode = mean = median			
	Horizontal axis asymptotic to curve		B1;B1;B1	(3)
	Distribution is 'bell shaped' – accept sketch		Any 3 sensible	
	95% of data lies within 2 sd's of the mean		properties	
(b)	$X \sim N(27, 10^2)$			
	$\therefore P(26 < x < 28) = P\left(\frac{26-27}{10} < Z < \frac{28-27}{10}\right)$	Standardising with $\mu = 27$, $\sigma = 10 \text{ or } \sqrt{10}$ One correct (seen)	M1 A1	
	= $P(-0.1 < Z < 0.1)$	-0.1 or 0.1	A1	
	= Φ (0.1) - $\{1 - \Phi$ (0.1) $\}$ or 2 x $\{\Phi$ (0.1) - 0.5 $\}$			
	= 0.0796	0.0796 or 0.0797	A1	(4)

Data is continuous	B0
Area under curve = 1	B0
Limits are -∞ & ∞	B0
IQR contains 50% of data	B0
68% between $\mu \pm \sigma$	B1
Most of data within 3 s.d of mean	B1
No +ve or –ve skew	B1
Never touches axes at either side (ie asymptotic)	B1

Question	Mark Scheme		Mark	
3. (a)	$P(1 < X \le 3) = P(X = 2) + P(X = 3)$		M1	
	$= \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6}$	$\frac{2}{12}; \frac{1}{6}; 0.167; \\ 0.166; 0.16$	A1 ((2)
(b)	$F(2.6) = P(X \le 2) = 1 - P(X = 3) = 1 - \frac{1}{12} = \frac{11}{12}$	$\frac{11}{12}$; 0.917; 0.916	B1 ((1)
	(or: $P(X \le 2) = \frac{1}{3} + \frac{1}{2} + \frac{1}{12} = \frac{11}{12}$)			
(c)	E (X) = $\left(0 \times \frac{1}{3}\right) + \dots + \left(3 \times \frac{1}{12}\right) = \frac{11}{12}$	Use of $\sum xP(X = x)$ $\frac{11}{12}$; AWRT 0.917	M1 A1	(2)
(d)	E(2X-3) = 2E(X)-3	Use of E (ax + b)	M1	
	$= 2 \times \frac{11}{12} - 3 = -\frac{14}{12} = -\frac{7}{6}$	$-\frac{7}{6}$; $-1\frac{1}{6}$; AWRT -1.17	A1 (2)
(e)	Var (X) = $1^2 \times \frac{1}{2} + + 3^2 \times \frac{1}{12} - \left(\frac{11}{12}\right)^2$	Use of $E(X^2) - \{E(X)\}^2$ Correct substitution	M1 A1	
	$=\frac{107}{144}$	107 144; AWRT 0.743	√ A1 ((3)

Question	Mark Scheme	Marks
4. (a) (i)	$P(A \cap B') = P(A/B') P(B') = \frac{4}{5} \times \frac{1}{2} = \frac{4}{10} = \frac{2}{\underline{5}} \text{Use of} \\ P(A/B') P(B')$	M1 A1
(ii)	$P(A \cap B) = P(A) - P(A \cap B')$	M1
	$=\frac{2}{5}-\frac{2}{5}$	
	$= \overline{0}$	A1
(iii)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1
	$= \frac{2}{5} + \frac{1}{2} - 0$	
	$=\frac{9}{10}$	A1
(iv)	$P(A/B) = P\frac{(A \cap B)}{P(B)} = 0$	B1 (7)
(b) (i)	since $P(A \cap B) = 0$ seen A and B are mutually exclusive	B1 B1 (2)
(ii)	Since P (A/B) ≠ P (A) or equivalent A and B are NOT independent	B1 B1 (2)

Question	Mark Scheme				Marks			
5. (a)	Sales 1-200 201-400 401-700 701-1000 1001-1500	No. of days 166 100 59 30 5	Class width 200 200 300 300 500	0.83 0.50 0.19 0.10	30 00 97 00	Graph	Frequency densities	M1 A1
(b)	$Q_2 = 20$ $Q_1 = 0.5$	$0.5 + \frac{(180 - 1)}{100} \times (180 + \frac{90}{166}) \times 200$	an be scored on $\frac{66}{} \times 200 = \underline{22}$ = $\underline{108.933}$	28.5	228/229/23 109 AWRT		M1 A1	
	(n = 270.7	$75 \Rightarrow Q_3 = 42$	266) × 300 = 4. 4.6525) 08.933 = 311		AWRT 421	/425 √	A1 B1	(5)
(c)			$fx^2 = 5810589$		Attempt at Σ fx or Σ fy Attempt at	·	M1	
	_	48;Σ fy² = 3 08.2777	943.5 where <i>y</i>	$r = \frac{x - 100.5}{100}$	$\Sigma \text{ fx}^2 \text{ or } \Sigma \text{ fy}$ 308 AWRT		M1 A1	
		57.6238 ng shown: SR	. B1 B1 only for	-μ,σ.	258 AWRT		M1 A1	(6)

Question	Mark Scheme	Marks
(d)	Median & IQR	B1
	Sensible reason e.g. Assuming other years are skewed.	B1 dep (2)

Question	Mark Scheme		Marks	
6. (a) -2/3 -5/3	1/ ₂ K 3/ ₄ - K 1/ ₂ K 1/ ₄ K - 1/ ₄ K - 1/ ₂ K 3/ ₄ - K 3/ ₄ - K 1/ ₂ K - 1/ ₂ K - 1/ ₄ K K - 1/ ₂ K - 1/ ₄ K	Tree with correct number of branches $ \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \dots, \frac{3}{4} $	M1 A1 A1	(4)
(b)	P (All 3 Keys) = $\frac{2}{3} \times \frac{1}{2} \times \frac{1}{4} = \frac{2}{24} = \frac{1}{12}$	$\frac{1}{12}$; 0.08 $\frac{1}{3}$; 0.0833	M1 A1	(2)
(c)	P (exactly 1 key) = $\left(\frac{2}{3} \times \frac{1}{2} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{3}{2} \times \frac{3}{4}\right)$	$\left(\frac{1}{2} \times \frac{1}{4}\right)$ 3 triples added	M1	
	$=\frac{10}{24}=\frac{5}{12}$	Each correct $\frac{10}{24}$; $\frac{5}{12}$; 0.416 ; 0.417	A1 A1 A1 A1	(5)
(d)	P (Keys not collected on at least 2 successive stages)			
	$= \left(\frac{2}{3} \times \frac{1}{2} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{3}{4}\right)$	3 triples added Each correct	M1 A1 A1 A1	
	$= \frac{10}{24} = \frac{5}{12}$	$\frac{10}{24}; \frac{5}{12}; 0.416$ $; 0.417$	A1	(5)

Question	Mark Scheme		
6. (d)	Alternative:		
	1 – P (Keys collected on at least 2 successive stages)	M1	
	$= 1 - \left\{ \left(\frac{2}{3} \times \frac{1}{2} \times \frac{1}{4} \right) + \left(\frac{2}{3} \times \frac{1}{2} \times \frac{3}{4} \right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{4} \right) \right\}$	A1 A1 A1	
	$=\frac{5}{8}$	A1	(5)