Sistemas Complexos — Exercícios # 3

Os exercícios a seguir são sobre o modelo do votante e o cj de slides correspondente.

1. Verifique a afirmação no alto do Slide 12.

Sugestão: Basta mostrar que para $A \subset \mathbb{Z}^d$ finito arbitrário

$$\nu_t(\eta_A|\tilde{\mathcal{X}}) \to \nu_\infty(\eta_A|\tilde{\mathcal{X}}),$$

onde para $\eta \in \mathbb{Z}^d$ e $A \subset \mathbb{Z}^d$, $\eta_A = \prod_{x \in A} \eta(x)$.

2. Uma probabilidade invariante por translações μ em $\Omega = \{0,1\}^{\mathbb{Z}^d}$ é dita misturadora se, dados $A, B \subset \Omega$ cilíndricos arbitrários, então

$$\mu(A \cap B_z) \to \mu(A)\mu(B)$$

quando $|z| \to \infty$, onde $B_z = B + z = \{\omega + z : \omega \in B\}$, e, dados $\omega \in \Omega$ e $z \in \mathbb{Z}^d$, $\omega + z \in \Omega$ tq $(\omega + z)_x = \omega_{x+z}$, $x \in \mathbb{Z}^d$.

É fácil ver que μ_{α} definida no enunciado do Teorema 1 (vide Slide 12) é invariante por translações.

- (a) Mostre que μ_{α} é misturadora se $d \geq 3$. (Obviamente, isto não vale se d = 1 ou 2 e $\alpha \in (0, 1)$.)
- (b) Suponha que $d \geq 3$ e μ em Ω seja misturadora. Mostre que se μ for a distribuição inicial de $(\eta_t, t \geq 0)$, então

$$\eta_t \Rightarrow \mu_\alpha$$
 quando $t \to \infty$,

onde $\alpha = \mu(\eta(0) = 1)$.

Sugestão: Condicione em $\tilde{\mathcal{X}}$ como para ν_{α} ; comece com a distribuição dos estados de dois pontos; mostre que quando não coalescem, as trajetórias de $\tilde{\mathcal{X}}$ iniciadas nos dois pontos divergem uma da outra qdo $t \to \infty$.