50.042 FCS Summer 2024 Lectures 7 & 8 – Block Ciphers

Felix LOH
Singapore University of Technology and Design

Recap of basic ciphers

- Simple ciphers:
 - E.g. shift ciphers like Caesar's cipher
 - Problems: Small keyspace; vulnerable to frequency analysis; ciphers are linear
- Stream ciphers:
 - E.g. one-time pad (OTP)
 - Problems: Generation of the key stream can be impractical; low throughput in general

Block ciphers: motivation

- Simple ciphers have a small keyspace and are vulnerable to frequency analysis
- Stream ciphers generally suffer from low throughput and have issues with the key stream generation
- So we need more efficient ciphers/cryptoalgorithms that can encrypt large data sets
 - Parallelize part of the operations of the cipher
 - Leverage the large word width of modern CPUs

Primitive operations for block ciphers

- There are two primitive operations with which strong encryption algorithms can be built
- Confusion: An encryption operation where the relationship between the key and ciphertext is obscured
 - Can be achieved with the substitution operation
- **Diffusion**: An encryption operation where the **influence** of one **plaintext symbol** is **spread over many ciphertext** symbols with the goal of hiding the statistical properties of the plaintext
 - Can be achieved with bit permutation operations
 - Modern block ciphers possess excellent diffusion properties this means that changing one bit of the plaintext results, on average, in the change of half of the bits of the ciphertext

> spread the sufficence of the plaintext by over many cighertext bits

eg.
$$\chi_1 = 00000 | 001 \rightarrow black cipher \rightarrow y_2 = 0| 10| 1000$$
 many difference

 $\chi_2 = 00000 | 10| 1000$

Primitive operations for block ciphers

- Both confusion and diffusion operations are utilized in modern block ciphers
- Several iterations of one diffusion operation followed by a confusion operation
- This is also called a product cipher
 - In other words, all modern block ciphers are product ciphers

Overview of the DES algorithm

- DES: **D**ata **E**ncryption **S**tandard, a popular cipher released in 1977, developed by IBM with the assistance of the NSA
- Encrypts 64-bit blocks of plaintext, using a 56-bit key
 - DES originally had a 128-bit key, but apparently the NSA convinced
 IBM to reduce the key length to 56 bits
 - This made DES more vulnerable to brute-force attacks
- DES is a symmetric cipher, i.e. the same key is used for both encryption and decryption
- DES was the cipher of choice of the US government, until it was replaced by the AES cipher in 1999
 - Variants of DES are still in use, e.g. 3DES is commonly used in smart cards and credit cards

$$y = DES_k(x)$$

Overview of the DES algorithm

- The encryption of each 64-bit block of plaintext is handled in 16 rounds
- Each round performs the same operation
 - A different round key is used in each round; round key k_i is used in Round i e.g. round key k_1 is used for Round 1, and so on
 - All round keys k_i are derived from the main key k (this round key derivation is known as a key schedule)

• Decryption is carried out in a similar manner; round $\ker k_{16}$ is used for Round 1 (a decryption round is the same as an encryption round), round $\ker k_{15}$ is used for Round 2, and so on, with round $\ker k_1$ used for Round 16

- The structure shown on the right is called a Feistel network
 - If designed carefully, Feistel networks can result in strong ciphers
 - One advantage of Feistel networks: encryption and decryption are almost the same process – decryption only requires a reversed key schedule
 - Feistel networks are used in many (but not all) modern block ciphers
- The key k is listed as 64 bits; this is because 8 of those bits are used as parity bits and are not actually key bits – thus the key size is 56 bits

- 1. There is an initial bitwise permutation *IP* of the 64-bit plaintext *x*
- 2. The plaintext is then **split** into **two 32-bit** halves L_0 and R_0 , which are **fed** into the **Feistel network**, which consists of 16 rounds
- 3. The right half R_i is used as an input to the ffunction, whose output is then XOR-ed with
 the left half L_i
- 4. The left and right halves are then swapped

5. Steps 3 and 4 are repeated in the next round, and the operations in each round can be expressed as:

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$, where $i = 1, ..., 16$

- 6. After Round 16, the 32-bit halves L_{16} and R_{16} are swapped again
- 7. There is a final bitwise permutation IP^{-1} of the resulting 64-bit value (IP^{-1} is the inverse of IP); this results in the 64-bit ciphertext output

The DES algorithm: initial and final permutation

	IP												
	42 34 26												
60 52	2 44 36 28	20 12 4											
62 54	46 38 30	22 14 6											
64 56	5 48 40 32	24 16 8											
57 49	41 33 25	17 9 1											
59 51	43 35 27	19 11 3											
61 53	3 45 37 29	21 13 5											
63 55	347 39 31	23 15 7											

IP^{-1}													
40	8	48	16	56	24	64	32						
39	7	47	15	55	23	63	31						
		46											
37	5	45 44	13	53	21	61	29						
36	4	44	12	52	20	60	28						
		43											
34	2	42	10	50	18	58	26						
		41											

- IP: Bit position 1 of plaintext x is mapped to bit position 40; position 58 mapped to 1, etc.
- IP^{-1} : Bit position 40 of z (output of Round 16) is mapped to bit position 1 (inverse of IP)

The DES algorithm: f-function

- 1. The 32-bit R_{i-1} input is expanded to 48 bits
 - 16 of the 32 input bits are copied infametion loss were
 - Some permutation is also done here
- 2. The 48-bit result of the expansion is XORed with the round key k_i , then separated into eight 6-bit blocks
- 3. Each 6-bit block is operated on by a different substitution box (S-box), resulting in a 4-bit value
- 4. The 4-bit blocks are recombined into a 32-bit value and then permuted bitwise using a permutation operation *P*

The DES algorithm: f-function

- The two primitive operations, confusion and diffusion, are realized within the *f*-function
- The S-boxes provide confusion
 - These S-boxes are non-linear, i.e. $S(a) \oplus S(b) \neq S(a \oplus b)$
- The permutation operation P provides diffusion
 - This is because the 4-bit outputs of the S-boxes are permuted such that they affect several different S-boxes in the following round

The DES algorithm: S-box example

- An S-box is basically a lookup table which maps a 6-bit input to a 4-bit output
- E.g. S-box S_1 is as follows:

S_1																
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

- The MSB and LSB of the 6-bit input select the row; the 4 inner bits select the column
 - Suppose we have a 6-bit input 100101_2 to S_1
 - Choose the 4th row (3 $_{10}$) and 3rd column (2₁₀)
 - So the 4-bit output is $08_{10} = 1000_2$

The DES algorithm: key schedule

- The key schedule derives 16 round keys k_i , each consisting of 48 bits from the original 56-bit key
- 1. During the *PC-1* operation, the 64-bit key (including the 8 parity bits) is reduced to 56 bits by discarding every eighth bit (the parity bit) and the remaining bits are permuted
- 2. The resulting 56-bit value is then split into 28-bit halves C_{i-1} and D_{i-1} , and are passed on to the *Transform i* operation, for i = 1, ... 16

The DES algorithm: key schedule

- 3. Next, during the 1st phase of the *Transform i* operation, the two halves are each circular left shifted, by one or two bits depending on the round *i*, resulting in *C_i* and *D_i*
- 4. During the 2^{nd} phase of the *Transform i* operation, the 56 bits from the two halves C_i and D_i are permuted using the *PC-2* operation (also dropping 8 bits), resulting in round key k_i
- 5. Steps 3 and 4 are repeated for the derivation of the next round key, using the two halves C_i and D_i from the 1st phase of *Transform* i

- Decryption is carried out in a similar manner; there is an initial bitwise permutation *IP* of the ciphertext
- Then subkey k_{16} is used for round 1, round key k_{15} is used for round 2, and so on, until round key k_1 is used for round 16
- This effectively reverses the encryption in a roundby-round manner
 - Round 1 of decryption reverses round 16 of encryption, round 2 of decryption reverses round 15 of encryption, and so on until round 16 of decryption reverses round 1 of encryption
- The final bitwise permutation *IP*⁻¹ of decryption reverses the initial bitwise permutation *IP* of encryption; this results in the original plaintext *x*

- Let's show that the decryption process reverses the encryption in a round-by round manner

• Note that the f-function itself is not invertible

Let
$$r = (L_0, R_0) \subset \text{one } bH - bH \text{ black}$$

of $y \cong \text{the cigher text}$

after parameterizar, $(L_0, R_0)^d = |P(y)| = |P(y$

• After the initial permutation IP of the ciphertext y, we have

$$(L_0^d, R_0^d) = IP(y) = IP(IP^{-1}(R_{16}, L_{16})) = (R_{16}, L_{16})$$

So, we have

$$L_0^d = R_{16}$$
 and $R_0^d = L_{16} = R_{15}$

• Now the output (L_1^d, R_1^d) of round 1 of decryption can be expressed as follows:

$$L_{1}^{d} = R_{0}^{d} = R_{15}$$

$$R_{1}^{d} = L_{0}^{d} \bigoplus f(R_{0}^{d}, k_{16})$$

$$= R_{16} \bigoplus f(R_{15}, k_{16})$$

$$= L_{15} \bigoplus f(R_{15}, k_{16}) \bigoplus f(R_{15}, k_{16})$$

$$= L_{15} \bigoplus 0$$

$$= L_{15}$$

- Thus, the output of round 1 of decryption is $(L_1^d, R_1^d) = (R_{15}, L_{15})$
- R_{15} and L_{15} are effectively the input bits to round 16 of encryption; we have shown that round 1 of decryption reverses round 16 of encryption
- So we can express the decryption process iteratively as:

$$L_i^d = R_{16-i}$$

 $R_i^d = L_{16-i}$, where $i = 0, 1,..., 16$

• Particularly, after round 16 of decryption, we have:

$$L_{16}^{\quad d} = R_0$$
$$R_{16}^{\quad d} = L_0$$

• Thus, after the final bitwise permutation *IP*⁻¹, we have

$$IP^{-1}(R_{16}^{d}, L_{16}^{d}) = IP^{-1}(L_{0}, R_{0})$$

= $IP^{-1}(IP(x))$
= x

The DES algorithm: security analysis

- The DES block cipher is now vulnerable to brute-force attacks (i.e. exhaustive key search) due to the small key length of 56 bits
 - Keyspace is too small for today's security requirements
 - Given at least one pair of plaintext-ciphertext (x, y), an attacker can test all possible keys, by checking whether $DES_{k_i}^{-1}(y) = x$, for $i = 0, 1, 2, 3, ..., 2^{56} 1$
- No practical analytical attacks found
- Use the 3DES variant as a replacement for DES

3DES algorithm

- DES is no longer secure, but its variant 3DES is still viable and in current use
- 3DES uses three 56-bit keys k_1 , k_2 , k_3 and computes the 64-bit block of ciphertext y as follows:

$$y = DES_{k_3}(DES^{-1}_{k_2}(DES_{k_1}(x)))$$

• If $k_1 = k_2 = k_3$, then 3DES effectively behaves like DES (allows for backward compatibility with legacy systems)

3DES algorithm

- 3DES is commonly used in credit cards and smart cards, for authentication of transactions
 - The 3DES block cipher is being utilized as a MAC in these situations
- 3DES increases the effective key length to 112 bits (as opposed to the 56-bit key length of DES)
 - Improved security over DES
 - Note: The effective key length of 3DES is **not** increased to 168 bits, because of the meet-in-the-middle attack

Overview of the AES algorithm

- AES: Advanced Encryption Standard, introduced in 2001
 - This cipher is the result of an NIST call for proposals for a new cipher to replace DES
- Encrypts 128-bit blocks of plaintext, with a choice of key lengths of 128, 192 or 256 bits
 - To date, there are no known attacks better than brute-force attacks against AES
- AES is a symmetric cipher, i.e. the same key k is used for both encryption and decryption
 - Unlike DES, AES does not utilize a Feistel network
- AES is the current cipher of choice of the US government
 - Used by US federal agencies to encrypt classified documents
- Also used in protocols like IPsec, TLS, SSH

$$y = AES_k(x)$$

Overview of the AES algorithm

- The encryption of each 128-bit block of plaintext is handled in several rounds; the number of rounds needed, n_r , depends on the key length:
 - 128-bit key length $n_r = 10$
 - 192-bit key length $n_r = 12$
 - 256-bit key length $n_r = 14$
- Each round of AES encrypts all 128 bits of the data
 - By contrast, DES only encrypts 32 bits of the 64-bit data block in each round
- Similar to DES, each round of AES uses a round key k_i which is derived from the key k using a key schedule
- AES encryption consists of *layers*, each of which manipulates all 128 bits of the data path in some manner (the data path is known as the *state*)
- Decryption requires a reversed key schedule, and all layers utilized during the encryption process need to be inverted

- A brief description of the three layers utilized in AES encryption is as follows
- Key Addition layer: A 128-bit round key is XOR-ed to the state
- Byte Substitution layer (S-box): Each element of the state is nonlinearly transformed using lookup tables with special mathematical properties
 - This introduces confusion to the data
- **Diffusion layer**: Provides diffusion over all state bits, and it consists of two sublayers (both sublayers are linear operations)
 - ShiftRows sublayer: Permutes the data on a byte level
 - MixColumn sublayer: A matrix operation which combines blocks of 4 bytes

• Each round of encryption uses all three layers, except the last round n_r , which does not utilize the MixColumn sublayer

The AES algorithm: encryption (single round)

The AES algorithm: encryption (single round)

• It is helpful to visualize the 16 byte data path (i.e. input state matrix) $A = (A_0, A_1, ..., A_{15})$ that is moving through the AES encryption process as a 4 × 4 state matrix, with each of the bytes $A_0, ..., A_{15}$ arranged as

follows: $A_0 A_4 A_8 A_{12}$ $A_1 A_5 A_9 A_{13}$ $A_2 A_6 A_{10} A_{14}$

 AES operates on elements, columns or rows of the current state matrix

The AES algorithm: encryption (single round)

- 1. The 16 byte (i.e. 128 bits) input state matrix $A = (A_0, A_1, ..., A_{15})$ is fed byte-wise into the Byte Substitution layer
- 2. Then, the resulting 16 byte state matrix $B = (B_0, B_1, ..., B_{15})$ is permuted byte-wise in ShiftRows sublayer
- 3. The result of the ShiftRows sublayer is then mixed by combining selected blocks of 4 bytes in the MixColumns sublayer
- 4. Lastly, the output of the ShiftRows sublayer, the state matrix $C = (C_0, C_1, ..., C_{15})$ is XOR-ed with the round key k_i

The AES algorithm: Byte Substitution layer

- This layer is basically a row of 16 parallel S-boxes
 - Each S-box has an 8-bit input and an 8-bit output (i.e. one byte input/output)
 - All 16 S-boxes are identical, unlike DES which uses 8 different S-boxes
- Each S-box substitutes the input byte A_i with another byte B_i
 - So each S-box performs the operation $B_i = S(A_i)$
 - The substitution is a bijective mapping; each of the 2⁸ possible different byte values is one-to-one mapped to another byte value
 - This allows the S-boxes to be inverted/reversed (unlike the S-boxes for DES), which is necessary for decryption
- The S-boxes are the only non-linear elements in AES
 - So ByteSub(A) + ByteSub(B) ≠ ByteSub(A + B) for any two arbitrary state matrices A and B

The AES algorithm: Byte Substitution layer

• S-box substitution values for an input byte (x, y):

```
        0
        1
        2
        3
        4
        5
        6
        7
        8
        9
        A
        B
        C
        D
        E
        F

        63
        7C
        77
        7B
        F2
        6B
        6F
        C5
        30
        01
        67
        2B
        FE
        D7
        AB
        76

        CA
        82
        C9
        7D
        FA
        59
        47
        F0
        AD
        D4
        A2
        AF
        9C
        A4
        72
        C0

        B7
        FD
        93
        26
        36
        3F
        F7
        CC
        34
        A5
        E5
        F1
        71
        D8
        31
        15

        04
        67
        23
        62
        18
        96
        25
        24
        26
        26
        FB
        27
        B2
        75

        04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
        09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
        53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
    6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
       51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
X 8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
    9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
        E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
       E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
       BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
   D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
   E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
    F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
```

• E.g. If $A_0 = 0xF3$, then $B_0 = S(A_0) = S(0xF3) = 0x0D$

The AES algorithm: Byte Substitution layer

- The AES S-box implementation of one-to-one byte mappings is not based on some randomly chosen set of mappings (unlike DES)
- The S-box implementation is actually a two step mathematical transformation (non-linear)
 - The 1st step is a Galois field inversion for the Galois extension field $GF(2^8)$
 - The 2nd step is an affine mapping

• Note: We will discuss Galois fields (which includes extension fields) and operations in these fields (addition, subtraction, multiplication and inversion) during next week's lectures on modular arithmetic

The AES algorithm: ShiftRows sublayer

- The ShiftRows sublayer is part of the Diffusion layer
 - Note: The Diffusion layer is linear, i.e. Diff(A) + Diff(B) = Diff(A + B) for any two arbitrary state matrices A and B

- The ShiftRows sublayer cyclically shifts the rows of the input state matrix to the right
 - First row: no shift
 - Second row: cyclic shift by 3 bytes to the right
 - Third row: cyclic shift by 2 bytes to the right
 - Fourth row: cyclic shift by 1 byte to the right

The AES algorithm: ShiftRows sublayer

 \rightarrow

• In other words, the input state matrix $B = (B_0, B_1, ..., B_{15})$ results in the following output:

B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	B_7	B_{11}	B_{15}

B_0	B_4	B_8	B_{12}
B_5	B_9	B_{13}	\boldsymbol{B}_1
B_{10}	B_{14}	B_2	B_6
B_{15}	B_3	B_7	B_{11}

no shift

→ three positions right shift

→ two positions right shift

→ one position right shift

В

 B_{SR}

The AES algorithm: MixColumn sublayer

- The MixColumn sublayer is a linear transformation which mixes each column of the input state matrix
 - It is also part of the Diffusion layer
 - The MixColumn operation is the major diffusion element in AES, since every input byte influences four output bytes

- The operation performed is $C = MixColumn(B_{SR})$, where B_{SR} is the input state matrix after the ShiftRows operation is executed
- Each 4-byte column of B_{SR} is treated as a vector and multiplied by a fixed constant 4×4 matrix. Multiplication and addition of the coefficients is done in the Galois extension field $GF(2^8)$

The AES algorithm: MixColumn sublayer

• E.g. For the first column of C and B_{SR} respectively:

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

- Each state byte C_i and B_i with i = 0, ..., 15, is an 8-bit value that represents an element from the Galois extension field GF(2⁸)
- Here, column (C_0, C_1, C_2, C_3) is the result of a matrix-vector multiplication of the fixed constant 4×4 matrix with the first column of B_{SR}
 - Additions in the matrix-vector multiplication are $GF(2^8)$ additions (these are basically bitwise XOR operations)
 - Multiplications in the matrix-vector multiplication are GF(28) multiplications

The AES algorithm: Key Addition layer

- The two inputs to this layer are the 16-byte state matrix C and the round key k_i (also 16 bytes), where i is the ith round
- The round keys are derived using the key schedule
- The two inputs are combined using a bitwise XOR operation
 - The is equivalent to addition in the Galois extension field $GF(2^8)$
 - Recall that bitwise XOR operation is also equivalent to addition modulo 2, which means that it is also addition in the Galois field GF(2)

The AES algorithm: key schedule

- The key schedule takes the original input key (128-bit, 192-bit or 256-bit) and derives the round keys k_i for $i = 0, 1, ..., n_r$
 - 128-bit key length $n_r = 10$ (11 round keys)
 - 192-bit key length n_r = 12 (13 round keys)
 - 256-bit key length n_r = 14 (15 round keys)
- The round keys are computed iteratively
 - i.e. round key k_i must first be computed in order to derive round key k_{i+1} , and so on
- Different key schedules for the three different AES key sizes (128-bit, 192-bit or 256-bit)

The AES algorithm: decryption

- AES is not based on a Feistel network, so all layers need to be inverted for the decryption process (and executed in reverse order)
 - Byte Substitution layer becomes Inv Byte Substitution layer
 - ShiftRows sublayer becomes Inv ShiftRows
 - MixColumn sublayer becomes Inv MixColumn
 - Key Addition layer remains unchanged, because the XOR operation is its own inverse
- A reversed key schedule is also required

The AES algorithm: decryption (single round)

Block cipher modes

- So far, we have discussed the DES and AES block ciphers with respect to their operations on <u>one block of the plaintext</u>
 - What about encrypting a long plaintext consisting of multiple blocks?
- It turns out that there are several ways to encrypt a long plaintext with a block cipher
- One obvious way: Apply the block cipher to each block of the plaintext individually (after padding)
 - This is the Electronic Code Book mode (ECB)

Block cipher modes

- Other modes include:
 - Cipher Block Chaining mode (CBC)
 - Cipher Feedback mode (CFB)
 - Output Feedback mode (OFB)
 - Counter mode (CTR)
- ECB and CBC are actual block ciphers
- CFB, OFB and CTR use a block cipher as a building block for a *stream* cipher
 - These modes use the block cipher to generate a key stream s_i
- Let's discuss each of these five modes in more detail

Block cipher modes: ECB

- ECB mode is the most straightforward way to encrypt a message using a block cipher
 - Requires that the length of the plaintext be an exact multiple of the input block size of the block cipher used (so padding is needed)
- Encryption and decryption in ECB mode:

Let e() be a block cipher in ECB mode with block size b and key k, and x_i and y_i be bitstrings of length b

Encryption: $y_i = e_k(x_i)$, for $i \ge 1$

Decryption: $x_i = e_k^{-1}(y_i) = e_k^{-1}(e_k(x_i))$, for $i \ge 1$

Advantages of ECB:

- Can be parallelized, suitable for high-speed implementations
- Block synchronization between the sending and receiving parties is not necessary

Disadvantage of ECB:

 Encrypts in a very deterministic manner; i.e. assuming the key does not change, encrypting a plaintext block always result in the same ciphertext block

- A block cipher in ECB mode encrypts in a very deterministic manner
- As such, it is vulnerable to traffic analysis an attacker can recognize
 if the same plaintext message has been sent twice by simply looking
 at the ciphertext (note: the attacker does not know the contents of
 the plaintext)
- Also, an attacker can reorder the ciphertext blocks transmitted by the sending party, which might lead to a valid (but different) plaintext
- So a block cipher in ECB mode is vulnerable to substitution attacks
 - Attacker manipulates the ciphertext by replacing some ciphertext blocks with other ciphertext blocks that are observed and/or manipulated by the attacker
 - Note that this is **not** an attack that breaks the block cipher itself this is a message *integrity* issue (recall Lectures 3 & 4)

- A block cipher in ECB mode encrypts in a very deterministic manner
 - Identical plaintext values are mapped to the same ciphertext values (on a perblock basis)
- E.g. Encrypting a bitmap image using AES in ECB mode with a 256-bit key:

CRYPTOGRAPHY AND DATA SECURITY

Block cipher modes: CBC

- CBC mode addresses the security issue of the ECB mode
- Encryption is randomized using an initialization vector (IV)
 - The *IV* is typically randomly generated and is used only once (ideally), thus it is also known a *nonce* (i.e. "number only used once")
 - Note that the IV does not need to be kept secret; it can be transmitted over an insecure channel between the sending and receiving parties
 - Choose a new IV each time the message is encrypted
- The ciphertext block y_i depends not only on plaintext block x_i , it also depends on all previous plaintext blocks x_{i-1} , ..., x_1

Block cipher modes: CBC

Encryption and decryption in CBC mode:

Let e() be a block cipher in CBC mode with block size b and key k, and x_i and y_i be bitstrings of length b, and IV be a nonce of length b

Encryption (first block): $y_1 = e_k(x_1 \oplus IV)$

Encryption (subsequent blocks): $y_i = e_k(x_i \oplus y_{i-1})$, for $i \ge 2$

Decryption (first block): $x_1 = e_k^{-1}(y_1) \oplus IV$

Decryption (subsequent blocks): $x_i = e_k^{-1}(y_i) \oplus y_{i-1}$, for $i \ge 2$

- Assuming the IV is changed every time encryption is done, then substitution attacks will no longer work
 - Encrypting the same plaintext twice results in different ciphertexts
- However, the attacker can still cause mischief: he can substitute the original ciphertext blocks with garbage blocks (though he can no longer effectively manipulate the original ciphertext blocks)

- Basic point is that encryption itself is insufficient message integrity also needs to be protected; hence the need for hashes and MACs as mentioned earlier
- On that note, the CBC mode *could* be used to generate a MAC Alice can transmit the <u>last</u> ciphertext block y_n as a MAC (instead of all of the y_i blocks), along with the plaintext message x
 - This is known as CBC-MAC
 - To verify message integrity, Bob repeats the **encryption** process of the block cipher in CBC mode on x to obtain y_n , then compares y_n with the received y_n
 - However, this is not a really secure way to generate a MAC

(BI - OLAC > another except of and greinesse collision.

lets make afterwark onso: x'= (x', x) 1 > 2 block mostage

ICT X=X, -> one block message

X2 = IVO hi & X1

> h! = er(ho⊕zi) = er(IV⊕zi)=hi

hi= ex(ho()xi)

with st, = xr

=e (IVO 7,)

with hi= RE(hi-1 (+) Xr) ho= IV

- Why is the CBC-MAC mode not a secure MAC function?
- Let $x = (x_1, x_2)$ and $h_i = e_k(h_{i-1} \oplus x_i)$, with $h_0 = IV$ So $h_1 = e_k(h_0 \oplus x_1) = e_k(IV \oplus x_1)$, and $h_2 = e_k(h_1 \oplus x_2)$
- Now let's craft an alternate plaintext $x' = (x_1', x_2')$ such that: $x_1' = IV \oplus h_1 \oplus x_2$ and $x_2' = h_2 \oplus h_1 \oplus x_2$
- Then $h_1' = e_k(h_0 \oplus x_1') = e_k(IV \oplus x_1') = e_k(IV \oplus IV \oplus h_1 \oplus x_2) = e_k(h_1 \oplus x_2)$ and $h_2' = e_k(h_1' \oplus x_2') = e_k[e_k(h_1 \oplus x_2) \oplus h_2 \oplus h_1 \oplus x_2]$ $= e_k[e_k(h_1 \oplus x_2) \oplus e_k(h_1 \oplus x_2) \oplus h_1 \oplus x_2] = e_k(h_1 \oplus x_2) = h_2$
- So, we have $x' \neq x$ but $h_2' = h_2$ and we obtain a collision; this MAC function does not meet the second preimage resistance requirement

• A better way to use a block cipher as a hash function (Davies-Meyer):

- This function sequentially utilizes the plaintext blocks x_i as the keys k_i (with a b-to-m mapping function, where m is the key length of the block cipher)
- $h_i = h_{i-1} \oplus e_{x_i}(h_{i-1})$, where $e_{x_i}(t)$ is the encryption function of the block cipher

Block cipher modes: OFB

- OFB mode uses a block cipher as a building block for a stream cipher
 - It uses the block cipher to generate a key stream s_i
 - The key stream is **not** generated bitwise; it is generated in a block-wise manner
- An IV (should be a nonce) is encrypted using the block cipher and the cipher output is the first set of b key stream bits
- The cipher output is also fed back into the block cipher to generate the next block of b key stream bits
- This process is repeated as necessary
- The actual encryption of the plaintext is handled by the XOR function, just like in a regular stream cipher – the plaintext bits are XOR-ed with the key stream bits

Block cipher modes: OFB

Encryption and decryption in OFB mode:

Let e() be a block cipher with block size b and key k, with x_i , y_i and s_i being bitstrings of length b, and let IV be a nonce of length b

Encryption (first block): $s_1 = e_k(IV)$, $y_1 = s_1 \oplus x_1$

Encryption (subsequent blocks): $s_i = e_k(s_{i-1})$, $y_i = s_i \oplus x_i$, for $i \ge 2$

Decryption (first block): $s_1 = e_k(IV)$, $x_1 = s_1 \oplus y_1$

Decryption (subsequent blocks): $s_i = e_k(s_{i-1})$, $x_i = s_i \oplus y_i$, for $i \ge 2$

- Like CBC mode, the encryption in OFB mode is nondeterministic
 - i.e. encrypting the same plaintext twice results in different ciphertexts
- Still need to protect message integrity, as before
- Block cipher computations are independent of the plaintext bits, so several blocks of the key stream bits can be computed in advance

Block cipher modes: CFB

- Like OFB mode, CFB mode also uses a block cipher as a building block for a stream cipher; the key stream is generated block-wise
- An *IV* is encrypted using the block cipher and the cipher output is the first set of *b* key stream bits (just like OFB)
- The difference now is that ciphertext output y_1 (which is the output of the **stream cipher**) is fed back into the block cipher to generate the next block of b key stream bits
- The next ciphertext output y_2 is then fed back into the block cipher to generate the following block of b key stream bits
- This process is repeated as necessary

Block cipher modes: CFB

Encryption and decryption in CFB mode:

Let e() be a block cipher with block size b and key k, with x_i and y_i being bitstrings of length b, and let IV be a nonce of length b

Encryption (first block): $y_1 = e_k(IV) \oplus x_1$

Encryption (subsequent blocks): $y_i = e_k(y_{i-1}) \oplus x_i$, for $i \ge 2$

Decryption (first block): $x_1 = e_k(IV) \oplus y_1$

Decryption (subsequent blocks): $x_i = e_k(y_{i-1}) \oplus y_i$, for $i \ge 2$

- The encryption in CFB mode is nondeterministic, like OFB
 - i.e. encrypting the same plaintext twice results in different ciphertexts
- Still need to protect message integrity, as always

Block cipher modes: CTR

- CTR mode also uses a block cipher as a building block for a stream cipher;
 the key stream is generated block-wise
- The input to the block cipher is a counter whose value changes every time the block cipher computes a new key stream block
- Care needs to be taken with the initialization of the input to the block cipher, to avoid using the same input value twice
 - This can be achieved by concatenating some *IV* (that is a nonce with a length smaller than the block size of the block cipher) with the counter value
 - Length of the IV and counter value is equal to the block size
 - E.g. Assuming AES is used as the block cipher, choose 96 bits for the *IV* and 32 bits for the counter value, for a total of 128 bits
 - Counter value is initialized to zero
 - Each time a block is encrypted, the IV stays the same while the counter is incremented

Block cipher modes: CTR

• Encryption in CTR mode:

Let e() be a block cipher with block size b and key k, with x_i and y_i being bitstrings of length b, and let $IV \mid \mid CTR_i$ denote the concatenation of the initialization value IV with the counter value CTR_i ; this concatenation is a bitstring of length b

Encryption: $y_i = e_k(IV \mid |CTR_i) \oplus x_i$, for $i \ge 1$

Decryption: $x_i = e_k(IV \mid |CTR_i) \oplus y_i$, for $i \ge 1$

- The encryption in CTR mode is nondeterministic, like OFB and CFB
 - i.e. encrypting the same plaintext twice results in different ciphertexts
- Still need to protect message integrity
- CTR mode can be parallelized, unlike OFB and CFB
 - E.g. two block cipher devices running in parallel the first device encrypts with $IV \mid CTR_1$ and the second one encrypts with $IV \mid CTR_2$
 - Then after they are done, the first device encrypts with $IV \mid \mid CTR_3$ and the second one encrypts with $IV \mid \mid CTR_4$, and so on
 - Good for applications with high throughput requirements