Boolean Model

Hongning Wang CS@UVa

Abstraction of search engine architecture

CS@UVa

Search with Boolean query

- Boolean query
 - E.g., "obama" AND "healthcare" NOT "news"
- Procedures
 - Lookup query term in the dictionary
 - Retrieve the posting lists
 - Operation
 - AND: intersect the posting lists
 - OR: union the posting list
 - NOT: diff the posting list

Search with Boolean query

Example: AND operation

Trick for speed-up: when performing multi-way join, starts from lowest frequency term to highest frequency ones

Deficiency of Boolean model

- The query is unlikely precise
 - "Over-constrained" query (terms are too specific): no relevant documents can be found
 - "Under-constrained" query (terms are too general): over delivery
 - It is hard to find the right position between these two extremes (hard for users to specify constraints)
- Even if it is accurate
 - Not all users would like to use such queries
 - All relevant documents are not equally relevant
 - No one would go through all the matched results
- Relevance is a matter of degree!

Document Selection vs. Ranking

Ranking is often preferred

- Relevance is a matter of degree
 - Easier for users to find appropriate queries
- A user can stop browsing anywhere, so the boundary is controlled by the user
 - Users prefer coverage would view more items
 - Users prefer precision would view only a few
- Theoretical justification: Probability Ranking Principle

Retrieval procedure in modern IR

- Boolean model provides <u>all</u> the ranking candidates
 - Locate documents satisfying Boolean condition
 - E.g., "obama healthcare" -> "obama" OR "healthcare"
- Rank candidates by relevance
 - Important: the notation of relevance
- Efficiency consideration
 - Top-k retrieval (Google)

Notion of relevance

Intuitive understanding of relevance

 Fill in magic numbers to describe the relation between documents and words

	information	retrieval	retrieved	is	helpful	for	you	everyone
Doc1	1	1	0	1	1	1	0	1
Doc2	1	0	1	1	1	1	1	0

E.g., 0/1 for Boolean models, probabilities for probabilistic models

Some notations

- Vocabulary V={w₁, w₂, ..., w_N} of language
- Query q = t₁,...,t_m, where t_i ∈ V
- Document $d_i = t_{i1},...,t_{in}$, where $t_{ij} \in V$
- Collection C= {d₁, ..., d_k}
- Rel(q,d): relevance of doc d to query q
- Rep(d): representation of document d
- Rep(q): representation of query q

Vector Space Model

Hongning Wang CS@UVa

Relevance = Similarity

- Assumptions
 - Query and documents are represented in the same form
 - A query can be regarded as a "document"
 - Relevance(d,q) ∞ similarity(d,q)
- $R(q) = \{d \in C \mid rel(d,q) > \theta\}, rel(q,d) = \Delta(Rep(q), Rep(d))$
- Key issues
 - How to represent query/document?
 - How to define the similarity measure $\Delta(x,y)$?

Vector space model

- Represent both doc and query by <u>concept</u> vectors
 - Each concept defines one dimension
 - K concepts define a high-dimensional space
 - Element of vector corresponds to concept weight
 - E.g., d=(x₁,...,x_k), x_i is "importance" of concept i
- Measure relevance
 - Distance between the query vector and document vector in this concept space

VS Model: an illustration

Which document is closer to the query?

CS@UVa

15

What the VS model doesn't say

- How to define/select the "basic concept"
 - Concepts are assumed to be <u>orthogonal</u>
- How to assign weights
 - Weight in query indicates importance of the concept
 - Weight in doc indicates how well the concept characterizes the doc
- How to define the similarity/distance measure

What is a good "basic concept"?

- Orthogonal
 - Linearly independent basis vectors
 - "Non-overlapping" in meaning
 - No ambiguity
- Weights can be assigned automatically and accurately
- Existing solutions
 - Terms or N-grams, i.e., bag-of-words

How to assign weights?

- Important!
- Why?
 - Query side: not all terms are equally important
 - Doc side: some terms carry more information about the content
- How?
 - Two basic <u>heuristics</u>
 - TF (Term Frequency) = Within-doc-frequency
 - IDF (Inverse Document Frequency)

TF weighting

- Idea: a term is more important if it occurs more frequently in a document
- TF Formulas
 - Let f(t,d) be the frequency count of term t in doc d
 - Raw TF: tf(t,d) = f(t,d)

19

- Query: *iphone 6s*
 - D1: iPhone 6s receives pre-orders on September
 12
 - D2: iPhone 6 has three color options.
 - D3: iPhone 6 has three color options. iPhone 6 has three color options. iPhone 6 has three color options.

- Two views of document length
 - A doc is long because it is verbose
 - A doc is long because it has more content
- Raw TF is inaccurate
 - Document length variation
 - "Repeated occurrences" are less informative than the "first occurrence"
 - Relevance does not increase proportionally with number of term occurrence
- Generally penalize long doc, but avoid overpenalizing
 - Pivoted length normalization

Sublinear TF scaling

$$-tf(t,d) = \begin{cases} 1 + \log f(t,d), & \text{if } f(t,d) > 0\\ 0, & \text{otherwise} \end{cases}$$

CS@UVa CS 4501: Information Retrieval 22

Maximum TF scaling

$$-tf(t,d) = \alpha + (1-\alpha) \frac{f(t,d)}{\max_{t} f(t,d)}$$

Normalize by the most frequent word in this doc

CS 4501: Information Retrieval

Document frequency

 Idea: a term is more discriminative if it occurs only in fewer documents

IDF weighting

- Solution
 - Assign higher weights to the rare terms
 - Formula

Non-linear scaling

Total number of docs in collection • $IDF(t) = 1 + \log(\frac{N}{df(t)})$

Number of docs containing term t

- A corpus-specific property
 - Independent of a single document

Why document frequency

How about total term frequency?

$$-ttf(t) = \sum_{d} f(t, d)$$

Table 1. Example total term frequency v.s. document frequency in Reuters-RCV1 collection.

Word	ttf	df
try	10422	8760
insurance	10440	3997

 Cannot recognize words frequently occurring in a subset of documents

TF-IDF weighting

- Combining TF and IDF
 - Common in doc \rightarrow high tf \rightarrow high weight
 - Rare in collection → high idf → high weight
 - $-w(t,d) = TF(t,d) \times IDF(t)$
- Most well-known document representation schema in IR! (G Salton et al. 1983)

"Salton was perhaps the leading computer scientist working in the field of information retrieval during his time." - wikipedia

Gerard Salton Award

highest achievement award in IR

How to define a good similarity measure?

Euclidean distance?

CS@UVa

28

How to define a good similarity measure?

Euclidean distance

$$-dist(q,d) = \sqrt{\sum_{t \in V} [tf(t,q)idf(t) - tf(t,d)idf(t)]^2}$$

- Longer documents will be penalized by the extra words
- We care more about how these two vectors are overlapped

From distance to angle

- Angle: how vectors are overlapped
 - Cosine similarity projection of one vector onto another

Cosine similarity

Angle between two vectors

TF-IDF vector

$$-cosine(V_q, V_d) = \frac{V_q \times V_d}{|V_q|_2 \times |V_d|_2} = \frac{|V_q|_2}{|V_q|_2} \times \frac{|V_d|_2}{|V_d|_2}$$

- Document length normalized

Unit vector

Fast computation of cosine in retrieval

•
$$cosine(V_q, V_d) = V_q \times \frac{V_d}{|V_d|_2}$$

- $-|V_q|_2$ would be the same for all candidate docs
- Normalization of V_d can be done in indexing time
- − Only count $t \in q \cap d$
- Score accumulator for each query term when intersecting postings from inverted index

Fast computation of cosine in retrieval

 Maintain a score accumulator for each doc when scanning the postings

```
Query = "info security" S(d,q)=g(t_1)+...+g(t_n) [\underline{sum\ of\ TF}\ of\ matched\ terms] Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5) Can be easily applied to Security: (d2, 3), (d4, 1), (d5, 3) TF-IDF weighting!
```

-	Accumulators:			d3	d4	d5
	(d1,3) => (d2,4) => (d3,1) => (d4,5) =>	3	0	0	0	0
info	(d2,4) =>	3	4	0	0	0
11110	(d3,1) =>	3	4	1	0	0
	(d4,5) =>	3	4	1	5	0
	(d2,3) =>	3	7	1	5 📈	0
security	<pre></pre>	3	7	1	6	0
	(d5,3) =>	3	7	1	6	3

Keep only the most promising accumulators for top *K* retrieval

CS@UVa CS 4501: Information Retrieval 33

Advantages of VS Model

- Empirically effective! (Top TREC performance)
- Intuitive
- Easy to implement
- Well-studied/Mostly evaluated
- The Smart system
 - Developed at Cornell: 1960-1999
 - Still widely used
- Warning: Many variants of TF-IDF!

Disadvantages of VS Model

- Assume term independence
- Assume query and document to be the same
- Lack of "predictive adequacy"
 - Arbitrary term weighting
 - Arbitrary similarity measure
- Lots of parameter tuning!

What you should know

- Document ranking v.s. selection
- Basic idea of vector space model
- Two important heuristics in VS model
 - **—** TF
 - IDF
- Similarity measure for VS model

Today's reading

- Chapter 1: Boolean retrieval
 - 1.3 Processing Boolean queries
 - 1.4 The extended Boolean model versus ranked retrieval
- Chapter 6: Scoring, term weighting and the vector space model
 - 6.2 Term frequency and weighting
 - 6.3 The vector space model for scoring
 - 6.4 Variant tf-idf functions