ESERCIZIO 1

Il raggio atomico del rame è 0.128 nm (1.28Å), esso possiede una struttura cristallina efe e il suo peso atomico è 63.5 g/mole. Si calcoli il valore della densità e si confronti il risultato ottenuto con il valore della densità misurata.

ESERCIZIO 2

Calcolare il raggio atomico del Palladio sapendo che ha una struttura CFC. Il peso molecolare del Palladio è di 106,4 g/mol e una densità di 12g/cm³.

ESERCIZIO 3

Determinare la densità planare del Nichel (CFC) in (100) (raggio atomico nichel = 1.245Å).

ESERCIZIO 4

Il Niobio ha struttura CCC, per il piano (2 1 1) l'angolo di diffrazione è 2ϑ = 75,99°. Dal momento che λ = 0,1659 nm e n=1, calcolare:

- Distanza interplanare
- Raggio atomico del niobio

ESERCIZIO 5

Su di un metallo puro viene eseguita una misura di diffrazione ai raggi X con λ =0.15406 nm ed n=1. I dati del diffrattogramma vengono riportati qui sotto in relazione ai propri indici di miller. Sapendo che il materiale ha densità ρ = 21.45 g/cm³:

Indici	2 0	
111	36,113	
200	41,659	
220	68,080	
311	82.091	

Metallo	Struttura Cristallina	Raggio atomico (nm)
Molibdeno	CCC	0,136
Platino	CFC	0,152
Palladio	CFC	0,135
Argento	CFC	0,145
Tantalio	CCC	0,143
Zinco	EC	0,133
Oro	CFC	0,144

- a) Dimostrare attraverso due differenti metodologie che tipo di struttura cristallina presenta il metallo in questione.
- b) Calcolare il fattore di compattazione atomico.
- c) Determinare il peso atomico e individuare di che elemento si tratta.
- d) Calcolare la distanza interplanare in relazione al piano (311)

ESERCIZIO 6

La seguente figura mostra un diffrattogramma del ferro α usando una radiazione X monocromatica avente una lunghezza d'onda di 0,1542 nm; ogni picco di diffrazione sul modello è stato indicizzato. Calcola lo spazio interplanare per ogni serie di piani indicizzati; determinare anche la costante reticolare di Fe per ciascuno dei picchi.

ESERCIZIO 7

La Figura 3.25 mostra i primi quattro picchi del modello di diffrazione dei raggi X per il rame, che ha una struttura cristallina FCC; Sono state utilizzate radiazioni X monocromatiche con una lunghezza d'onda di 0,1542 nm.

- (a) Indice (ovvero, dare indici h, k e l) per ciascuno di questi picchi
- (b) Determinare la spaziatura interplanare per ciascuno dei picchi
- (c) Per ciascun picco, determinare il raggio atomico per Cu

