Sound Velocity Worksheet

Your Name:	Tievor N.	Si	Signature: Trus N,		
Lab partner(s)	: Katheri	ne		Total Line	
Course & Secti	ion: PHY	5 2 - 18 Station # _	Date:	4/04/224	
Distance d with	uncertainty a	and units: $d = [53.3] \pm$	0.1 cm		
What is the unc	ertainty in yo	our measurements of time?	2500.0		
	Trial	Time (s)	Velocity (M/S)	1 - 2d	
	1	0.0089 8	34.4.49	V=21	
	2	0.0087	35 241		
	3	0.0088.	348.41	•	
	4	0.0088	34.8.41		
	5	0.0088	34 8.4 1		
	6	0.0088	34 841		
	7	0.0089	34 449		
	8	0.0089	74 B.4 9		
	9	0.0087	35241		
	10	0.0087	35 241		
Mean velocity =	= 348.	Standard dev. = 3.24 S	t.error of mean = \ \ .		
Calculated unce Show your work	rtainty in vel k on the back	ocity for one typical run. $\delta_{\nu} = 0$ of this page.	17.7 ≈ 18.		
How does this u multiple trials?	ncertainty co Do your resu	ompare to your results for Star Its make sense? It is significantly more	ndard Deviation and St. error of the while	the mean for your Set. This is expected	
$B = \frac{\text{(I.S)}}{\text{Attach a printout}}$	$\pm \frac{0.2}{\text{nt of one of ye}}$	Show your work on the bour Logger Pro plots.	ack of this page.	of samples, and our error also estimated on the sa side.	
GRADE: GRADED BY (out of 15 points) (TA's initials)					

Show your work for the calculation of the uncertainty in velocity for one typical run and for your calculation of the bulk modulus of air and its uncertainty:

$$S_{v} = \sqrt{((\frac{8d}{d})^{2} + (\frac{8s^{2}}{s})^{2})}$$

$$= 27.7 \text{ m/s}$$

$$J = \sqrt{B1\rho}$$
 $\beta = J^{2}\rho$
 $\rho = 1.204 \frac{kg}{m^{2}}$
 $8B = 44 B^{28v}$
 $B = (1.5 \pm 0.2) \times 10^{5} \frac{kg}{st}$

Standing Waves on a String Worksheet

Your Name: Trevol N. Signature: Two.
Lab partner(s): Katherine
Course & Section: 121-118 PHYS Station # 14 Date: 24/04/2014
String mass $M_{\text{string}} = \frac{8.3}{4.3} \pm \frac{0.1}{4.3} \pm \frac{0.1}{4.3}$
String length $L = \frac{20.5 \cdot 5}{20.5} \pm \frac{0.5}{20.5} = \frac{0.5}{20.5}$ Discussion of reasoning for appropriate length for finding μ and measurement techniques:
Discussion of reasoning for appropriate length for finding μ and measurement techniques: $ u = \frac{\pi}{L} $ we whighed and measured the stretched strike above, and can now culculate the most density with $\frac{\pi}{L}$. $ u = \frac{\pi}{L} $ $ u =$
Linear density $\mu = 0.00404 \pm 0.0005$ $\mu = 0.0005$
Mass of hanging mass $M_{\text{mass}} = 0.2$ (we can assume negligible uncertainty)
Enter into the table on the reverse side of this worksheet the frequencies, periods and wavelengths of each arrangement of standing waves that you observe. Include uncertainties.
Measured velocity of wave propagation $V_M = 23.7 \pm 0.1 \text{ m/s}$ Predicted value $V_P = 23.7 \pm 1. \text{ m/s}$ $V_P = V_P = V_P$
Compare your measured and predicted values of the wave velocity. Comment on their consistency. Justify your conclusions. They are very close and predicted values of the wave velocity. Comment on their consistency. Justify your conclusions.
fairly conseventive additional error could be due to inconsistences on the huma measurement and estimation of HZ

Attach a printout of your Origin graph and linear fit, with fit parameters.

Number of Loops n	Frequency f(Hz)	Period T(s)	Length D of n loops	Wavelength λ (m)
1	9	0.111	1.32 m	2.64
2	18	0.056	1.27 m	1.27
3	27	6.037	1.275 m	0.85
4	36.5	0.027	1.25 m	0,625
5	45.22	0.022	1.25 m	2.0
6	54.1	0.0(8	1.25 m	F12.0
7	63.5	0.0 16	1.24 m	0.354
8	73.5	0.014	1.24 m	0.310
9	82.6	0.012	1.23m	0-273
10	91.8	0.011	1.24 m	0.248
11	101.	0.010	1.23 m	0.224
12	111.4	0.00 9	1.22m	0.203
13	121.5	8 60.0	1.23 m	0.189
14	129.6	8 00.0	1.23 m	0.176
10000000000000000000000000000000000000				

GRADE:			
(0)	t of 15 point	te)	

GRADED BY ____

(TA's initials)