暨 南 大 学 考 试 试 卷

教		2020-	-2021 <u>-</u>	学年度第_	1	学期	课程类别		
师	课程名称:		第-] 选修[]		
填			• •	李毅			.	、 闭卷[√]	
写			200					试卷类别 (A, B, C)	
考	写讽	'山'山: _	202	2020年10月01日		. [A]	共 ?? 页		
 		学》	学院		专业		班(级)		
填写	姓名			号			内招[√	内招[√] 外招[√]	
题	[号	_		三	四	五.	六	总分	
得	分								
得分 评阅人 一、单选题 (共 6 小题,每小题 3 分,共 18 分) 答题须知:本题答案必须写在如下表格中,否则不给分.									
小是	页	1	2	3	4	1	5	6	
答第	E								
1. 在下列等式中,正确的结果是·····(C) (A) $\int f'(x) dx = f(x)$ (B) $\int df(x) = f(x)$ (C) $\frac{d}{dx} \left(\int f(x) dx \right) = f(x)$ (D) $d\left(\int f(x) dx \right) = f(x)$									
2. 假设 $F(x)$ 是连续函数 $f(x)$ 的一个原函数,则必有······(A) $F(x)$ 是偶函数 $\Leftrightarrow f(x)$ 是奇函数 (B) $F(x)$ 是奇函数 $\Leftrightarrow f(x)$ 是偶函数 (C) $F(x)$ 是周期函数 $\Leftrightarrow f(x)$ 是周期函数 (D) $F(x)$ 是单调函数 $\Leftrightarrow f(x)$ 是单调函数									
3. 设矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & x & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 其中两个特征值为 $\lambda_1 = 1$ 和 $\lambda_2 = 2$,则 $x = \cdots$ (B) (C) 0 (D) -1									
(A) 2	» у.С. тій	c	(B) 1				(D) -1		
4. 二次型 $f = 4x_1^2 - 2x_1x_2 + 6x_2^2$ 对应的矩阵等于 · · · · · · · · · · · · · · · · · · ·									

6. 对总体 X 和样本 (X_1, \dots, X_n) 的说法哪个是不正确的 $\dots \dots (D)$

(A) 总体是随机变量

(B) 样本是n 元随机变量

(C) X_1, \dots, X_n 相互独立

(D) $X_1 = X_2 = \dots = X_n$

得分	评阅人	二、均
		(共6

二、填空题

(共6小题,每小题3分,共18分)

答题须知:本题答案必须写在如下表格中,否则不给分.

小题	1	2	3
答案			
小题	4	5	6
答案			

- **1.** 设常数 k > 0,函数 $f(x) = \ln x \frac{x}{e} + k$ 在 $(0, +\infty)$ 内零点的个数为 ______2
- **3.** 已知二阶行列式 $\begin{vmatrix} 1 & 2 \\ -3 & x \end{vmatrix} = 0$,则 $x = \underline{\qquad \qquad -6}$.
- **4.** 向量组 α_1 = (1,1,0), α_2 = (0,1,1), α_3 = (1,0,1),则将向量 β = (4,5,3)表示为 α_1 , α_2 , α_3 的线性组合为 β = _______.
- **5.** 已知随机变量 ξ 的期望和方差各为 $E\xi = 3, D\xi = 2$, 则 $E\xi^2 = ______1$
- **6.** 已知 ξ 和 η 相互独立且 $\xi \sim N(1,4), \eta \sim N(2,5), 则 <math>\xi 2\eta \sim N(-3,24)$.

得分	评阅人	三、计算题		
		(共6小题,每小题8分,共48分)		

1. 求不定积分 $\int e^{2x} (\tan x + 1)^2 dx$ 。

解. 原式 =
$$\int e^{2x} \sec^2 x \, dx + 2 \int e^{2x} \tan x \, dx$$
 2分
= $\int e^{2x} \, d(\tan x) + 2 \int e^{2x} \tan x \, dx$ 4分
= $e^{2x} \tan x - 2 \int e^{2x} \tan x \, dx + 2 \int e^{2x} \tan x \, dx$ 6分
= $e^{2x} \tan x + C$ 8分

2. 求过点 A(1,2,-1), B(2,3,0), C(3,3,2) 的三角形 $\triangle ABC$ 的面积和它们确定的平面方程.

解. 由题设
$$\overrightarrow{AB} = (1,1,1), \overrightarrow{AC} = (2,1,3),$$
 2分 故 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = (2,-1,-1),$ 4分 三角形 $\triangle ABC$ 的面积为 $S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{6}.$ 6分 所求平面的方程为 $2(x-2)-(y-3)-z=0$,即 $2x-y-z-1=0$ 8分

3. 计算四阶行列式
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix}$$
 的值.

#4.
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{bmatrix} = 1 \cdot (-1)^{2+1} \begin{bmatrix} 1 & 2 & 3 \\ -1 & -6 & 1 \\ -6 & -8 & 2 \end{bmatrix} \cdot \dots \cdot \dots \cdot 4$$

$$= - \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & 4 \\ 0 & 4 & 20 \end{vmatrix} = - \begin{vmatrix} -4 & 4 \\ 4 & 20 \end{vmatrix} = -(-4 \cdot 20 - 4 \cdot 4) = 96 \cdot \dots \cdot 8$$

4. 用配方法将二次型 $f=x_1^2+2x_1x_2-6x_1x_3+2x_2^2-12x_2x_3+9x_3^2$ 化为标准形 $f=d_1y_1^2+d_2y_2^2+d_3y_3^2$.

解.
$$f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$$

 $= x_1^2 + 2x_1(x_2 - 3x_3) + (x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3$
 $= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3 \cdots 3$
 $= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 2x_2 \cdot 3x_3 + (3x_3)^2 - 9x_3^2$
 $= (x_1 + x_2 - 3x_3)^2 + (x_2 - 3x_3)^2 - 9x_3^2 \cdots 6$
 $\Rightarrow y_1 = x_1 + x_2 - 3x_3, y_2 = x_2 - 3x_3, y_3 = x_3,$
则 $f = y_1^2 + y_2^2 - 9y_3^2$ 为标准形. 8 分

- (1) 用切贝谢夫不等式估计命中数目 ξ 在 10 发到 30 发之间的概率.
- (2) 用中心极限定理估计命中数目 ξ 在 10 发到 30 发之间的概率.

Proof.
$$E\xi = np = 100 \cdot 0.2 = 20, D\xi = npq = 100 \cdot 0.2 \cdot 0.8 = 16. \dots 2 \text{ }$$

(1)
$$P(10 < \xi < 30) = P(|\xi - E\xi| < 10) \ge 1 - \frac{D\xi}{10^2} = 1 - \frac{16}{100} = 0.84. \dots 4$$

(2)
$$P(10 < \xi < 30) \approx \Phi_0\left(\frac{30-20}{\sqrt{16}}\right) - \Phi_0\left(\frac{10-20}{\sqrt{16}}\right) \cdots \cdots 6$$

6. 从正态总体 $N(\mu, \sigma^2)$ 中抽出样本容量为 16 的样本,算得其平均数为 3160,标准 差为 100. 试检验假设 $H_0: \mu = 3140$ 是否成立 ($\alpha = 0.01$).

解. (1) 待检假设
$$H_0: \mu = 3140. \dots 1$$
 分

得分	评阅人	四、证明题
		(共2小题,每小题8分,共16分)

1. 设数列 $\{x_n\}$ 满足 $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 + x_n}$. 证明数列收敛,并求出极限.

证. (1) 事实上,由于 $x_1 < 2$,且 $x_k < 2$ 时

$$x_{k+1} = \sqrt{2 + x_k} < \sqrt{2 + 2} = 2$$
,

由数学归纳法知对所有 n 都有 $x_n < 2$, 即数列有上界. 又由于

$$\frac{x_{n+1}}{x_n} = \sqrt{\frac{2}{x_n^2} + \frac{1}{x_n}} > \sqrt{\frac{2}{2^2} + \frac{1}{2}} = 1,$$

所以数列单调增加. 由极限存在准则 II,数列必定收敛. · · · · · · · · · · 4 分 (2) 设数列的极限为 A,对递推公式两边同时取极限得到

$$A = \sqrt{2 + A}$$
.

2. 设事件 A 和 B 相互独立,证明 A 和 \bar{B} 相互独立.

附录 一些可能用到的数据

$\Phi_0(0.5) = 0.6915$	$\Phi_0(1) = 0.8413$	$\Phi_0(2) = 0.9773$	$\Phi_0(2.5) = 0.9938$
$t_{0.01}(8) = 3.355$	$t_{0.01}(9) = 3.250$	$t_{0.01}(15) = 2.947$	$t_{0.01}(16) = 2.921$
$\chi^2_{0.005}(8) = 22.0$	$\chi^2_{0.005}(9) = 23.6$	$\chi^2_{0.005}(15) = 32.8$	$\chi^2_{0.005}(16) = 34.3$
$\chi^2_{0.995}(8) = 1.34$	$\chi^2_{0.995}(9) = 1.73$	$\chi^2_{0.995}(15) = 4.60$	$\chi^2_{0.995}(16) = 5.14$