Supplementary Information

1 Table S1. List of species analyzed	\mathbf{List}	of Tables	
	1	Table S1. List of species analyzed	3
List of Figures	T iat	of Figures	

Appendix S1. Methods for reconstruction of DBH

DBH can be reconstructed outside-in (based on recent DBH, subtracting growth recorded in tree rings) or inside-out (summing Δr from the inside out). We generally gave precedence to the outside-in approach. Specifically, when DBH was taken at the time of coring,

At some of our sites where DBH was not taken at the time of coring (SCBI,), DBH measurements taken before or slightly after the time of coring could be used. (see issue #19 in ForestGEO_dendro) If before, ... If after... For all outside-in reconstructions, if a negative DBH was predicted...

In either case we need bark thickness-ideally allometries. This is especially critical for thick-barked species

Table S1. List of species analyzed

Site	Code	Species	leaf type	n trees	n cores	bark
SCBI	LITU	Liriodendron tulipifera	BD	NA	NA	NA

** Table S2- allometric equations for bark thickness **