1. Let function f be defined by the polynomial below:

$$f(x) = -7x^5 + 2x^4 + 5x^3 - 9x^2 - 3x - 8$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(-x)	$7x^5 - 2x^4 - 5x^3 + 9x^2 + 3x + 8$
- f(x) ●	$-7x^5 - 2x^4 + 5x^3 + 9x^2 - 3x + 8$
f(−x) •	$7x^5 + 2x^4 - 5x^3 - 9x^2 + 3x - 8$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x)	h(x)
1	8	2	4
2	2	7	5
3	7	4	2
4	6	5	9
5	3	6	1
6	9	1	6
7	4	9	3
8	5	3	7
9	1	8	8

3. Evaluate g(5).

$$g(5) = 6$$

4. Evaluate $h^{-1}(4)$.

$$h^{-1}(4) = 1$$

5. Assuming h is an **odd** function, evaluate h(-9).

If function h is odd, then

$$h(-9) = -8$$

6. Assuming f is an **even** function, evaluate f(-3).

If function f is even, then

$$f(-3) = 7$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^2 - x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^2 - (-x)$$

 $p(-x) = x^2 + x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^2 + x)$$
$$-p(-x) = -x^2 - x$$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 8(x+9)$$

a. Evaluate f(2).

step 1: add 9

step 2: multiply by 8

$$f(2) = 8((2) + 9)$$
$$f(2) = 88$$

b. Evaluate $f^{-1}(96)$.

step 1: divide by 8

step 2: subtract 9

$$f^{-1}(x) = \frac{x}{8} - 9$$

$$f^{-1}(96) = \frac{(96)}{8} - 9$$

$$f^{-1}(96) = 3$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(5).

$$b(5) = 4$$

b. Evaluate $b^{-1}(6)$.

$$b^{-1}(6) = 2$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	7	-7	7	-7
-1	-6	6	-6	6
0	0	0	0	0
1	-6	6	-6	6
2	7	-7	7	-7

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.