Лабораторна робота № 4

АЛГОРИТМИ СОРТУВАННЯ

Мета – розроблення програми для реалізації та аналізу алгоритмів сортування та порівняння їх часової складності.

Теоретичні відомості

Допоміжні конструкції:

- для генерування випадкових чисел використовується вбудований клас **Random**:
- оголошення класу:

```
Random <назва змінної> = new Random()
```

- генерування числа з інтервалу:

```
<назва змінної>. Next (<нижня межа>, <верхня межа>)
```

• для визначення часу виконання алгоритму сортування:

```
System.Diagnostics.Stopwatch sw = System.Diagnostics.Stopwatch.StartNew();
```

long elapsed;

// код алгоритму сортування

elapsed = sw.ElapsedTicks;

Console.WriteLine("Час виконання алгоритму: {0}", elapsed);

Для скидання часу: sw.Restart();

Алгоритми сортування (впорядкування) елементів одновимірного масиву

І. Представимо роботу алгоритму впорядкування за зростанням елементів масиву *методом обміну* (*метод* ''бульбашки'') наступним прикладом, що записаний на псевдокоді (узагальнена мова, що відображає порядок команд для реалізації алгоритму, проте не є достатнім кодом програми):

```
for (i=0; i<n; i++)

for (j=n-2; j>=i; j--)

if (arr[j] > arr[j+1])

swap(arr[j], arr[j+1]) // процедура обміну елементів

// (необхідно реалізувати самостійно!!!)
```

Таблиця 1. Приклад покрокової реалізації алгоритму сортування методом обміну

Ітерація	Опис	Значення елементів масиву				
	Елементи масиву		arr[1]	arr[2]	arr[3]	arr[4]
	Початкові значення	10	5	6	1	3
1	Порівнюються arr[3] і arr[4]	10	5	6	1	3
	Порівнюються arr[2] і arr[3]	10	5	1	6	3
	Порівнюються arr[1] і arr[2]	10	1	5	6	3
	Порівнюються arr[0] і arr[1]	1	10	5	6	3
2	Порівнюються arr[3] і arr[4]	1	10	5	3	6
	Порівнюються arr[2] і arr[3]	1	10	3	5	6
	Порівнюються arr[1] і arr[2]	1	3	10	5	6
3	Порівнюються arr[3] і arr[4]	1	3	10	5	6
	Порівнюються arr[2] і arr[3]	1	3	5	10	6
4	Порівнюються arr[3] і arr[4]	1	3	5	6	10

II. Приклад алгоритму впорядкування за зростанням елементів масиву **методом вибору**, що записаний на псевдокоді

```
}
swap(a[i], a[index]); // процедура обміну елементів
// (необхідно реалізувати самостійно!!!)
}
```

III. Приклад алгоритму впорядкування за зростанням елементів масиву **методом вставок**, що записаний на псевдокоді

```
for (i = 1; i < n; i++)
{
         key = a[i];
         j = i-1;
         while ((j >= 0) && (a[j]>key))
         {
             a[j+1] = a[j];
             j--;
         }
         a[j+1] = key;
}
```

IV. Приклад алгоритму впорядкування за зростанням елементів масиву **методом швидкого сортування**, що записаний на псевдокоді

```
void QuickSorting (int[] arr, int first, int last)
  p = arr[(last - first) / 2 + first];
  temp;
  i = first, j = last;
  while (i \le j)
  {
     while (arr[i] \le p \&\& i \le last) ++i;
     while (arr[j] > p \&\& j >= first) --j;
     if (i \le j)
     {
        temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;
        i++; i--;
     }
  if (j > first) рекурсивний_виклик (arr, first, j);
  if (i < last) рекурсивний виклик (arr, i, last);
}
```

ЗАГАЛЬНА ПОСТАНОВКА ЗАВДАННЯ

Створити класи для реалізації методів сортування *МЕТОД_1* та *МЕТОД_2*, з можливістю порівняння їх швидкодії на числових вибірках випадкових чисел різної розмірності:

- для вибірки розмірністю N елементів (N = 50...500) згенерувати масив чисел в межах від 100 до 1000; згенерований масив вивести на екран; після реалізації методів сортування обидві відсортовані вибірки також вивести на екран; вивести на екран швидкість виконання кожного методу сортування в мілісекундах;
- для вибірки розмірністю М елементів (М = 1000...10000) згенерувати масив чисел в межах від 100 до 1000; вивести на екран швидкість виконання кожного методу сортування в мілісекундах.

Користувач вводить розмірності N та M з клавіатури.

Розробити два класи: основний клас (з функцією Main()) для роботи з одновимірним масивом та клас з методами для реалізації сортування.

В класі сортування розробити методи:

- сортування елементів одновимірного масиву методом $METOД_1$ ($3\Gamma IДНО$ BAPIAHTY);
- сортування елементів одновимірного масиву методом $METOД_2$ ($3\Gamma IДHO$ BAPIAHTY);

В основному класі розробити методи:

- генерування одновимірного масиву цілих чисел з інтервалу від 100 до 1000;
- виведення елементів одновимірного масиву на екран.

В методі Main():

- 1) оголосити та створити 2 цілочисельних масиви (заданої розмірності);
- 2) за допомогою методу згенерувати значення масивів;
- 3) оголосити та створити об'єкт класу сортування;
- 4) викликати відповідні методи з класу сортування (масиви передаються як параметри);
- 5) для вибірки розмірності N відсортовані елементи та час виконання алгоритмів сортування (окремо для обох методів) вивести на екран;
- 6) для вибірки розмірності М вивести на екран тільки час виконання алгоритмів сортування (окремо для обох методів).

Приклад візуалізації результатів виконання програми:

QuickSort vs RadixSort

Кількість чисел — 50										
180 181 121 113 122	129 146 188 194 101	125 154 107 166 194	194 140 137 159 117	196 188 148 171 101	104 123 122 141 144	101 184 153 122 188	142 185 100 180 141	183 161 110 148 106	182 144 163 152 124	
ШВИДК 100 121	E COPT91 101 122	ВАННЯ: 101 122	101 122	104 123	106 124	107 125	110 129	113 137	117 140	
141 154 183	141 159 184	142 161 185	144 163 188	144 166 188	146 171 188	148 180 194	148 180 194	152 181 194	153 182 196	
пороз	РЯДНЕ СО	емтидолкь :RHHABUT90								
100 121 141 154	101 122 141 159	101 122 142 161	101 122 144 163	104 123 144 166	106 124 146 171	107 125 148 180	110 129 148 180	113 137 152 181	117 140 153 182	
183 Час ви —	184 конання	185 алгоритму	188 пороз	188 рядного	188 сортуван	194 ня в мілі	194 ісекундах	x: 17393	196	+

Кількість чисел — 3000 ШВИДКЕ СОРТУВАННЯ: Час виконання алгоритму швидкого сортування в мілісекундах: 12713 ПОРОЗРЯДНЕ СОРТУВАННЯ: Час виконання алгоритму порозрядного сортування в мілісекундах 155001

ІНДИВІДУАЛЬНІ ЗАВДАННЯ

Варіант 1

Сортування за зростанням значень елементів

- 1) Метод сортування вибором
- 2) Метод швидкого сортування

Варіант 2

Сортування за спаданням значень елементів

- 1) Метод сортування бульбашкою
- 2) Метод порозрядного сортування

Варіант 3

Сортування за зростанням значень елементів

- 1) Метод сортування підрахунком
- 2) Метод сортування злиттям

Варіант 4

Сортування за спаданням значень елементів

- 1) Метод сортування вибором
- 2) Метод порозрядного сортування

Варіант 5

Сортування за зростанням значень елементів

- 1) Метод порозрядного сортування
- 2) Метод сортування злиттям

Варіант 6

Сортування за спаданням значень елементів

- 1) Метод сортування бульбашкою (обміном)
- 2) Метод швидкого сортування

Варіант 7

Сортування за зростанням значень елементів

- 1) Метод сортування включенням
- 2) Метод порозрядного сортування

Варіант 8

Сортування за спаданням значень елементів

- 1) Метод сортування вибором
- 2) Метод сортування злиттям

Варіант 9

Сортування за зростанням значень елементів

- 1) Метод сортування злиттям
- 2) Метод порозрядного сортування

Варіант 10

Сортування за спаданням значень елементів

- 1) Метод пірамідального сортування
- 2) Метод сортування Шелла

Варіант 11

Сортування за зростанням значень елементів

- 1) Метод сортування вибором
- 2) Метод швидкого сортування

Варіант 12

Сортування за зростанням значень елементів

- 1) Метод швидкого сортування
- 2) Метод сортування включенням

Варіант 13

Сортування за спаданням значень елементів

- 1) Метод сортування підрахунком
- 2) Метод порозрядного сортування

Варіант 14

Сортування за спаданням значень елементів

- 1) Метод сортування вибором
- 2) Метод порозрядного сортування

Варіант 15

Сортування за зростанням значень елементів

- 1) Метод порозрядного сортування
- 2) Метод сортування злиттям

Варіант 16

Сортування за спаданням значень елементів

- 1) Метод швидкого сортування
- 2) Метод порозрядного сортування

Варіант 17

Сортування за зростанням значень елементів

- 1) Метод порозрядного сортування
- 2) Метод сортування включенням