Homework 1 of Stochastic Process

姓名: 林奇峰 学号: 19110977 2019年10月27日

Prove (1.2)-(1.12) in the textbook and describe the relationship among these formulae.

The three fundamental probability axioms are defined as follows:

- 1. $Pr{\Omega} = 1$.
- 2. For every event A, $Pr\{A\} \ge 0$.
- 3. The probability of the union of any sequence A_1, A_2, \ldots of disjoint events is given by

$$\Pr\{\cup_{n=1}^{\infty} A_n\} = \sum_{n=1}^{\infty} \Pr\{A_n\},\tag{1}$$

where $\sum_{n=1}^{\infty} \Pr\{A_n\}$ is shorthand for $\lim_{m\to\infty} \sum_{n=1}^{m} \Pr\{A_n\}$.

Prove the following axioms.

$$\Pr\{\emptyset\} = 0. \tag{2}$$

$$\Pr\{\bigcup_{n=1}^{m} A_n\} = \sum_{n=1}^{m} \Pr\{A_n\} \qquad \text{for } A_1, \dots, A_m \text{ disjoint.}$$
 (3)

$$\Pr\{A^c\} = 1 - \Pr\{A\} \qquad \text{for all } A. \tag{4}$$

$$\Pr\{A\} \le \Pr\{B\}$$
 for all $A \subseteq B$. (5)

$$\Pr\{A\} \le 1$$
 for all A . (6)

$$\sum_{n} \Pr\{A_n\} \le 1 \qquad \text{for } A_1, A_2, \dots \text{ disjoint.}$$
 (7)

$$\Pr\left\{ \cup_{n=1}^{\infty} A_n \right\} = \lim_{m \to \infty} \Pr\left\{ \cup_{n=1}^{m} A_n \right\} \tag{8}$$

$$\Pr\{\bigcup_{n=1}^{\infty} A_n\} = \lim_{n \to \infty} \Pr\{A_n\} \qquad \text{for } A_1 \subseteq A_2 \subseteq \dots$$
 (9)

$$\Pr\{\bigcap_{n=1}^{\infty} A_n\} = \lim_{n \to \infty} \Pr\{A_n\} \qquad \text{for } A_1 \supseteq A_2 \supseteq \dots$$
 (10)

$$\Pr\{\bigcap_{n=1}^{\infty} A_n\} = \lim_{n \to \infty} \Pr\{A_n\} \qquad \text{for } A_1 \supseteq A_2 \supseteq \dots$$

$$\Pr\{\bigcup_{n=1}^{m} A_n\} = \sum_{n=1}^{m} \Pr\{B_n\} \qquad B_1 = A_1, \text{ for each } n > 1, B_n = A_n - \bigcup_{m=1}^{n-1} A_m$$
 (11)

$$\Pr\{\cup_n A_n\} \le \sum_n \Pr\{A_n\} \tag{12}$$

Solutions:

2. To verify formula (2), consider the sequence of events $\{A_1, A_2, \ldots, A_n\}$ where $A_i = \emptyset, \forall_i$. These events has no common outcome since each event has no outcome and ae therefore disjoint. According to (1),

$$\Pr\{\bigcup_{n=1}^{\infty} A_n\} = \Pr\{\emptyset\} = \lim_{m \to \infty} \sum_{n=1}^{m} \Pr\{A_n\} = \lim_{m \to \infty} m \Pr\{\emptyset\}$$

 $\Pr\{\emptyset\} = \lim_{m \to \infty} m \Pr\{\emptyset\}$. If $\Pr\{\emptyset\} \neq 0$, the the right side will diverge and the equation does not hold. Therefore, (2) is proved.

3. To verify (3), consider the sequence of events $\{A_1, \ldots, A_m, \emptyset, \ldots\}$. These events are disjoint since A_1, \ldots, A_m are disjoint and \emptyset has no common outcome with other events. Then, according to (1) and (2)

$$\Pr\{\bigcup_{n=1}^{\infty} A_n\} = \Pr\{\bigcup_{n=1}^{m} A_n\} = \sum_{n=1}^{m} \Pr\{A_n\} + \sum_{n=m+1}^{\infty} \Pr\{\emptyset\} = \sum_{n=1}^{m} \Pr\{A_n\}$$

- (3) is proved.
- 4. To verify (4), since $\Omega = A \cup A^c$, according to (3)

$$\Pr{\Omega} = \Pr{A \cup A^c} = \Pr{A} + \Pr{A^c} = 1$$

Therefore, $Pr\{A^c\} = 1 - Pr\{A\}$ and (4) is proved.

5. To verify (5), since $A \subseteq B$, it can be rewritten as $B = A \cup (B - A)$. According to (3)

$$\Pr\{B\} = \Pr\{A \cup (B - A)\} = \Pr\{A\} + \Pr\{(B - A)\}$$

Since (B-A) is also an event and thus $\Pr\{B-A\} \ge 0$, (5) is proved.

6. To verify (6), since each event A is a subset of Ω , that is $A \subseteq \Omega$. According to (5)

$$Pr{A} < Pr{\Omega} = 1$$

- (6) is proved
- 7. To verify (7), according to (3)

$$\sum_{n} \Pr\{A_n\} = \Pr\{\cup A_n\} \le 1$$

since $\cup A_n$ is also a subset of Ω . (7) is proved.

8. For two arbitrary events A_1 and A_2 , we can obtain the following formula:

$$A_1 \cup A_2 = A_1 \cup (A_2 - A_1)$$
 where $A_2 - A_1 = A_2 \cap A_1^c$

 A_1 and $A_2 \cap A_1^c$ are disjoint. Suppose that there exists an event e inside A_1 , which means that e is outside A_1^c . If A_1 and $A_2 \cap A_1^c$ are not disjoint, it means that there exists an e inside A_1^c and A_1 at the same time, which is impossible.

Defining $B_n = A_n - \bigcup_{m=1}^{n-1} A_m$ and $B_1 = A_1$, we can obtain that $\bigcup_{m=1}^n B_m = \bigcup_{m=1}^n A_m$ and B_1, B_2, \ldots are disjoint. We can use induction to prove the result.

Firstly, it is obvious that $\bigcup_{m=1}^2 A_m = A_1 \cup A_2 = A_1 \cup (A_2 - A_1) = B_1 \cup B_2 = \bigcup_{m=1}^2 B_m$. Therefore, it holds for 2. Suppose that it also holds for n-1 and $n \geq 3$, then $\bigcup_{m=1}^n A_m = (\bigcup_{m=1}^{n-1} A_m) \cup A_n = (\bigcup_{m=1}^{n-1} A_m) \cup (A_n - (\bigcup_{m=1}^{n-1} A_m)) = (\bigcup_{m=1}^{n-1} B_m) \cup B_n = \bigcup_m B_m$. If $n = \infty$, the equation is also holds. Because if $e \in \bigcup_{m=1}^{\infty} A_n$, it means that for some n, e is inside A_n and therefore inside $\bigcup_{m=1}^n B_m$ and also inside $\bigcup_{m=1}^{\infty} B_n$.

Secondly, $(\bigcup_{m=1}^{n-1} A_m)$ and $(A_n - (\bigcup_{m=1}^{n-1} A_m))$ are disjoint, which means $\bigcup_{m=1}^{n-1} B_m$ and B_n are disjoint. Therefore, B_n is disjoint from $B_1, B_2, \ldots, B_{n-1}$. For any n it holds.

Then, since B_1, B_2, \ldots are disjoint, according to (1) and (3)

$$\Pr\{\bigcup_{n=1}^{\infty} A_n\} = \Pr\{\bigcup_{n=1}^{\infty} B_n\} = \lim_{m \to \infty} \sum_{n=1}^{m} \Pr\{B_n\} = \lim_{m \to \infty} \Pr\{\bigcup_{n=1}^{m} B_n\} = \lim_{m \to \infty} \Pr\{\bigcup_{n=1}^{m} A_n\}$$

- (8) is proved
- 9. To verify (9), since $A_1 \supseteq A_2 \dots$, it results in $\bigcup_{n=1}^m A_n = A_m$ and according to (8):

$$\Pr\left\{\bigcup_{n=1}^{\infty} A_n\right\} = \lim_{m \to \infty} \Pr\left\{\bigcup_{n=1}^{m} A_n\right\} = \lim_{m \to \infty} \Pr\left\{A_m\right\}$$

- (9) is proved.
- 10. Since $A_1 \supseteq A_2 \supseteq \ldots$, according to De Morgan's euqulities, we can obtain that

$$\bigcap_{n=1}^{\infty} A_n = \left[\bigcup_{n=1}^{\infty} A_n^c \right]^c$$

where A_n^c is the corresponding complementary set of A_n and $A_1^c \subseteq A_2^c \subseteq ...$ Then, in terms of (8),

$$\Pr\{\bigcap_{n}^{\infty} A_{n}\} = \Pr\{\left[\bigcup_{n}^{\infty} A_{n}^{c}\right]^{c}\}$$

$$= \lim_{m \to \infty} \Pr\{\left[\bigcup_{n=1}^{m} A_{n}^{c}\right]^{c}\}$$

$$= \lim_{m \to \infty} \Pr\{\left[A_{m}^{c}\right]^{c}\}$$

$$= \lim_{m \to \infty} \Pr\{A_{m}\}$$

- (10) is proved.
- 11. To verify (11), from example 9 we can know that B_1, B_n, \ldots are disjoint and $\bigcup_{n=1}^m A_n = \bigcup_{n=1}^m B_n$. According to (3),

$$\Pr\{\bigcup_{n=1}^{m} A_n\} = \Pr\{\bigcup_{n=1}^{m} B_n\} = \sum_{n=1}^{m} \Pr\{B_n\}$$

(11) is proved.

12. To verify (12), from example 9, we can know that B_1, B_n, \ldots are disjoint and $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$. Since $B_n = A_n - \bigcup_{m=1}^{n-1} A_m$ which means $B_n \subseteq A_n$ and then according to (5), $\Pr\{B_n\} \leq \Pr\{A_n\}$. Therefore, in terms of (1) and (5)

$$\Pr\{\cup_n A_n\} = \Pr\{\cup_n B_n\} = \sum_n \Pr\{B_n\} \le \sum_n \Pr\{A_n\}$$

The relationship among these formulae can be showed as follow:

2 Verify the means, variances and MGFs of the rv.s given in Table 1.1 and Table 1.2 according to their PDFs/PMFs.

表 1: The PDF, mean, variance and MGF for some common continuous rv s

Name	PDF $f_X(x)$	Mean	Variance	MGF $g_X(r)$
Exponjential:	$\lambda \exp(-\lambda x); x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - r}$; for $r < \lambda$
Erlang:	$\frac{\lambda^n x^{n-1} \exp(-\lambda x)}{(n-1)!}; x \ge 0$	$rac{n}{\lambda}$	$\frac{n}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - r}\right)^n$; for $r < \lambda$
Gaussian:	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(\frac{-(x-a)^2}{2\sigma^2}\right)$	a	σ^2	$\exp(ra + r^2\sigma^2/2)$
Uniform	$\frac{1}{a}$; $0 \le x \le a$	$\frac{a}{2}$	$\frac{a^2}{12}$	$\frac{\exp(ra)-1}{ra}$

Solutions:

1. Exponential

$$\begin{split} E[X] &= \int_0^\infty \frac{\lambda x}{e^{\lambda x}} dx \\ &= \frac{1}{\lambda} \int_0^\infty \frac{t}{e^t} dt, \quad \text{with } t = \lambda x \\ &= \frac{-1}{\lambda} \int_0^\infty t d(\frac{1}{e^t}) \\ &= \frac{-1}{\lambda} \left(\frac{t}{e^t} \bigg|_0^\infty - \int_0^\infty \frac{1}{e^t} dt \right) \\ &= \frac{-1}{\lambda} [(0-0)-1] \\ &= \frac{1}{\lambda} \end{split}$$

$$\begin{split} E[X^2] &= \frac{1}{\lambda^2} \int_0^\infty \frac{t^2}{e^t} dt, \quad \text{with } t = \lambda x \\ &= \frac{-1}{\lambda^2} \int_0^\infty t^2 d(\frac{1}{e^t}) \\ &= \frac{-1}{\lambda^2} \left(\frac{t^2}{e^t} \Big|_0^\infty - 2 \int_0^\infty \frac{t}{e^t} dt \right) \\ &= \frac{-1}{\lambda^2} [(0-0)-2] \quad \text{from equations above} \\ &= \frac{2}{\lambda^2} \end{split}$$

Therefore,

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \frac{1}{\lambda^2}$$

$$\begin{split} g_X(r) &= \lambda \int_0^\infty e^{(r-\lambda)x} dx \\ &= \frac{\lambda}{r-\lambda} e^{(r-\lambda)x} \Big|_0^\infty \\ &= \frac{\lambda}{r-\lambda} (0-1), \quad \text{with } r < \lambda, \text{ otherwise } \lim_{x \to \infty} e^{(r-\lambda)x} = \infty \\ &= \frac{\lambda}{\lambda-r}, \quad \text{with } r < \lambda \end{split}$$

The mean, varaince and MGF of the exponential distribution function has been derived.

2. Erlang

$$\begin{split} E[X] &= \int_0^\infty \frac{(\lambda x)^n}{(n-1)! e^{\lambda x}} dx \\ &= \frac{1}{(n-1)! \lambda} \int_0^\infty \frac{t^n}{e^t} dt, \quad \text{with } t = \lambda x \\ &= \frac{-1}{(n-1)! \lambda} \int_0^\infty t^n d(\frac{1}{e^t}) \\ &= \frac{-1}{(n-1)! \lambda} \left[\frac{t^n}{e^t} \Big|_0^\infty - n \int_0^\infty \frac{t^{n-1}}{e^t} dt \right] \\ &= \frac{-1}{(n-1)! \lambda} \left[(0-0) - n \int_0^\infty \frac{t^{n-1}}{e^t} dt \right] \\ &= \frac{n}{(n-1)! \lambda} \int_0^\infty \frac{t^{n-1}}{e^t} dt \\ &= \vdots \quad \text{from the third equation above} \\ &= \frac{n}{\lambda} \end{split}$$

$$E[X^2] = \int_0^\infty \frac{\lambda^n x^{n+1}}{(n-1)! e^{\lambda x}} dx$$

$$= \frac{1}{(n-1)! \lambda^2} \int_0^\infty \frac{t^{n+1}}{e^t} dt$$

$$= \frac{1}{(n-1)! \lambda^2} \cdot (n+1)!$$

$$= \frac{n^2 + n}{\lambda^2}$$

Therefore,

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \frac{n^2 + n}{\lambda^2} - \frac{n^2}{\lambda^2} = \frac{n}{\lambda^2}$$

$$\begin{split} g_X(r) &= \int_0^\infty \frac{\lambda^n x^{n-1} e^{rx}}{(n-1)! e^{\lambda x}} dx \\ &= \frac{\lambda^n}{(n-1)!} \int_0^\infty x^{n-1} e^{(r-\lambda)x} dx \\ &= \frac{\lambda^n}{(n-1)!} \cdot \frac{1}{r-\lambda} \cdot \int_0^\infty x^{n-1} de^{(r-\lambda)x} \\ &= \frac{\lambda^n}{(n-1)!} \cdot \frac{1}{r-\lambda} \cdot \left[x^{n-1} e^{(r-\lambda)x} \right]_0^\infty - \int_0^\infty e^{(r-\lambda)x} d(x^{n-1}) \right] \\ &= \frac{\lambda^n}{(n-1)!} \cdot \frac{1}{r-\lambda} \cdot \left[(0-0) - (n-1) \int_0^\infty x^{n-2} e^{(r-\lambda)x} dx \right] \\ &\qquad \qquad \text{with } r < \lambda, \text{ otherwise } \lim_{x \to \infty} x^{n-1} e^{(r-\lambda)x} = \infty \\ &= \frac{\lambda^n}{\lambda - r} \cdot \frac{1}{(n-2)!} \cdot \int_0^\infty x^{n-2} e^{(r-\lambda)x} dx \\ &= \vdots, \quad \text{from the third equation above} \\ &= \left(\frac{\lambda}{\lambda - r} \right)^n, \quad \text{with } r < \lambda \end{split}$$

The mean, varaince and MGF of the Erlang distribution function has been derived.

3. Gaussian

$$E[X] = \int_{-\infty}^{\infty} \frac{x}{\sigma\sqrt{2\pi}} e^{\frac{-(x-a)^2}{2\sigma^2}} dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-(\frac{x-a}{\sqrt{2}\sigma})^2} dx$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\sqrt{2}\sigma t + a}{e^{t^2}} dt, \quad \text{with } t = \frac{x-a}{\sqrt{2}\sigma}$$

$$= \frac{1}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} \frac{\sqrt{2}\sigma t}{e^{t^2}} dt + \int_{-\infty}^{\infty} \frac{a}{e^{t^2}} dt \right]$$

$$= \frac{a}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{e^{t^2}} dt, \quad \text{since } f(t) = \frac{\sqrt{2}\sigma t}{e^{t^2}} \text{ is an odd function}$$

$$= \frac{2a}{\sqrt{\pi}} \int_{0}^{\infty} \frac{1}{e^{t^2}} dt, \quad \text{since } f(t) = \frac{1}{e^{t^2}} \text{ is an even function}$$

$$= \frac{2a}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2}$$

$$= a$$

Note:

$$\left(\int_{0}^{\infty} e^{-x^{2}} dx\right)^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \int_{0}^{\infty} e^{-y^{2}} dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$$

let $x = r \cos \theta$ and $y = r \sin \theta$, then

$$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy = \int_0^{\frac{\pi}{2}} d\theta \int_0^\infty e^{-r^2} r dr = \int_0^{\frac{\pi}{2}} \frac{1}{2} d\theta = \frac{\pi}{4}$$

Therefore, $\left(\int_0^\infty e^{-x^2} dx\right)^2 = \frac{\pi}{4}$ and $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

$$\begin{split} E[X^2] &= \int_{-\infty}^{\infty} \frac{x^2}{\sigma \sqrt{2\pi}} e^{\frac{-(x-a)^2}{2\sigma^2}} dx \\ &= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-(\frac{x-a}{\sqrt{2}\sigma})^2} dx \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{2\sigma^2 t^2 + 2\sqrt{2}\sigma at + a^2}{e^{t^2}} dt \\ &= \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{t^2}{e^{t^2}} dt + \frac{2\sqrt{2}\sigma a}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{t}{e^{t^2}} dt + \frac{a^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{e^{t^2}} dt \\ &= \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{t^2}{e^{t^2}} dt + 0 + a^2, \quad \text{since } f(t) = \frac{t}{e^{t^2}} \text{ is an odd function and use the fact before} \\ &= \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{t^2}{e^{t^2}} dt + a^2 \end{split}$$

Then,

$$\begin{split} \int_{\infty}^{\infty} \frac{t^2}{e^{t^2}} dt &= 2 \int_{0}^{\infty} \frac{t^2}{e^{t^2}} dt, \quad \text{since } f(t) = \frac{t^2}{e^{t^2}} \text{ is an even function} \\ &= \int_{0}^{\infty} u^{\frac{1}{2}} e^{-u} du, \quad \text{with } u = t^2 \\ &= \int_{0}^{\infty} u^{\frac{3}{2} - 1} e^{-u} du \\ &= \Gamma(\frac{3}{2}) = \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2} \end{split}$$

$$E(X^2) = \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{t^2}{e^{t^2}} dt + a^2$$
$$= \frac{2\sigma^2}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2} + a^2$$
$$= \sigma^2 + a^2$$

And

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \sigma^2 + a^2 - a^2 = \sigma^2$$

$$\begin{split} g_X(r) &= \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{rx} e^{\frac{-(x-a)^2}{2\sigma^2}} dx \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{rx - (\frac{x-a}{\sqrt{2}\sigma})^2} dx \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t^2 - \sqrt{2}r\sigma t - ra)} dt, \quad \text{with } t = \frac{x-a}{\sqrt{2}\sigma} \\ &= \frac{e^{ra}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t^2 - \sqrt{2}r\sigma t + \frac{r^2\sigma^2}{2}) + \frac{r^2\sigma^2}{2}} dt \\ &= \frac{e^{ra + \frac{r^2\sigma^2}{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(t - \frac{\sqrt{2}}{2}r\sigma)^2} dt \\ &= \frac{e^{ra + \frac{r^2\sigma^2}{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^2} du, \quad \text{with } u = t - \frac{\sqrt{2}}{2}r\sigma \\ &= \frac{e^{ra + \frac{r^2\sigma^2}{2}}}{\sqrt{\pi}} \cdot \sqrt{\pi}, \quad \text{use the fact before} \\ &= e^{ra + \frac{r^2\sigma^2}{2}} \end{split}$$

Therefore, the mean, varaince and MGF of the Gaussian distribution function has been derived.

4. Uniform

$$E[X] = \int_0^a \frac{x}{a} dx$$
$$= \frac{1}{2a} \cdot x^2 \Big|_0^a$$
$$= \frac{a}{2}$$

$$E[X^2] = \int_0^a \frac{x^2}{a} dx$$
$$= \frac{1}{3a} \cdot x^3 \Big|_0^a$$
$$= \frac{a^2}{3}$$

Therefore,

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \frac{a^2}{3} - \frac{a^2}{4} = \frac{a^2}{12}$$

$$g_X(r) = \int_0^a \frac{e^{rx}}{a} dx$$
$$= \frac{1}{ra} \cdot e^{rx} \Big|_0^a$$
$$= \frac{e^{ra} - 1}{ra}$$

The mean, varaince and MGF of the uniform distribution function has been derived.

表 2: The PMF, mean, variance and MGF for some common discrete rv s

Name	PMF $p_M(m)$	Mean	Variance	MGF $g_M(r)$
Binary:	$\mathbf{p}_M(1) = p; \mathbf{p}_M(0) = 1 - p$	p	p(1 - p)	$1 - p + pe^r$
Binomial	$\binom{n}{m}p^m(1-p)^{n-m}; 0 \le m \le n$	np	np(1-p)	$[1 - p + pe^r]^n$
Geometric	$p(1-p)^{m-1}; m \ge 1$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^r}{1 - (1 - p)e^r}$; for $r < \ln \frac{1}{1 - p}$
Poisson:	$\frac{\lambda \exp(-\lambda)}{n!}; n \ge 0$	λ	λ	$\exp[\lambda(e^r-1)]$

Solutions:

1. Binary

$$E[X] = 1 \cdot p + 0 \cdot (1 - p)$$

$$= p$$

$$E[X^{2}] = 1^{2} \cdot p + 0^{2} \cdot (1 - p)$$

$$= p$$

Then,

$$\sigma_X^2 = E[X^2] - (E[X])^2 = p(1-p)$$

$$g_X(r) = e^{r \cdot 1} * p + e^{r \cdot 0} (1 - p)$$

= 1 - p + pe^r

2. Binomial

$$\begin{split} E[X] &= \sum_{k=0}^{n} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k} \\ &= \sum_{k=1}^{n} k \cdot \frac{n!}{(n-k)!k!} p^{k} (1-p)^{n-k} \\ &= np \sum_{k=1}^{n} \frac{(n-1)!}{(n-k)!(k-1)!} p^{k-1} (1-p)^{n-k} \\ &= np \sum_{k=1}^{n} \frac{(n-1)!}{[(n-1)-(k-1)]!(k-1)!} p^{k-1} (1-p)^{[(n-1)-(k-1)]} \\ &= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{[(n-1)-(k-1)]} \\ &= np \sum_{v=0}^{n-1} \binom{n-1}{v} p^{v} (1-p)^{(n-1)-v}, \quad \text{with } v = k-1 \\ &= np \sum_{v=0}^{u} \binom{u}{v} p^{v} (1-p)^{u-v}, \quad \text{with } u = n-1 \\ &= np (p+1-p)^{u}, \quad \text{according to the binomial theorem} \\ &= np \end{split}$$

$$\begin{split} E[X^2] &= \sum_{k=0}^n k^2 \cdot \binom{n}{k} p^k (1-p)^{n-k} \\ &= \sum_{k=1}^n k^2 \cdot \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k} \\ &= np \sum_{k=1}^n k \cdot \frac{(n-1)!}{(n-k!)(k-1)!} p^{k-1} (1-p)^{n-k} \\ &= np \sum_{k=1}^n k \cdot \frac{(n-1)!}{[(n-1)-(k-1)]!(k-1)!} p^{k-1} (1-p)^{(n-1)-(k-1)} \\ &= np \sum_{k=1}^n k \cdot \binom{n-1}{k-1} p^k - 1 (1-p)^{(n-1)-(k-1)} \\ &= np \sum_{v=0}^u (v+1) \binom{u}{v} p^v (1-p)^{u-v}, \quad \text{with } u = n-1, v = k-1 \\ &= np \left[\sum_{v=0}^u v \binom{u}{v} p^v (1-p)^{u-v} + \sum_{v=0}^u \binom{u}{v} p^v (1-p)^{u-v} \right] \\ &= np (up + (p+1-p)^u), \quad \text{use the facts before} \\ &= np [(n-1)p+1] \\ &= n^2 p^2 + np (1-p) \end{split}$$

Then,

$$\sigma_X^2 = E[X^2] - (E[X])^2 = n^2p^2 + np(1-p) - n^2p^2 = np(1-p)$$

$$g_X(r) = \sum_{k=0}^n e^{rk} \cdot \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (pe^r)^k (1-p)^{n-k}$$

$$= (1-p+pe^r)^n, \quad \text{according to the binomial theorem}$$

3. Geometric let q = 1 - p, then

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1}$$

$$= p \sum_{k=1}^{\infty} kq^{k-1}$$

$$= p \frac{d(\sum_{k=1}^{\infty} q^k)}{dq}$$

$$= p \frac{d(\sum_{t=0}^{\infty} q^t)}{dq}$$

$$= p \frac{d}{dq} (\frac{1}{1-q})$$

$$= p \frac{1}{(1-q)^2}$$

$$= \frac{1}{p}$$

$$\begin{split} E[X^2] &= \sum_{k=1}^{\infty} k^2 p q^{k-1} \\ &= p \bigg[\sum_{k=1}^{\infty} k(k-1) q^{k-1} + \sum_{k=1}^{\infty} k q^{k-1} \bigg] \\ &= p \bigg[\sum_{k=1}^{\infty} k(k-1) q^{k-1} + \frac{1}{p^2} \bigg], \quad \text{from the fact before} \end{split}$$

Since,

$$\sum_{k=1}^{\infty} k(k-1)q^{k-1} = q \sum_{k=1}^{\infty} k(k-1)q^{k-2}$$
$$= q \frac{d^2}{dq^2} \sum_{k=0}^{\infty} q^k$$
$$= \frac{2q}{p^3}$$

Therefore,

$$\begin{split} E[X^2] &= p(\frac{2q}{p^3} + \frac{1}{p^2}) \\ &= \frac{2q}{p^2} + \frac{1}{p} \\ &= \frac{2-p}{p^2} \end{split}$$

And

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \frac{2-p}{p} - \frac{1}{p^2} = \frac{1-p}{p^2}$$

$$g_M(r) = \sum_{k=1}^{\infty} p e^{rk} (1-p)^{k-1}$$

$$= \frac{p}{1-p} \sum_{k=1}^{\infty} e^{rk} (1-p)^k$$

$$= \frac{p}{1-p} \sum_{k=1}^{\infty} [(1-p)e^r]^k$$

$$= \frac{p}{1-p} \cdot \lim_{n \to \infty} \frac{(1-p)e^r \left(1 - [(1-p)e^r)\right)^n}{1-1-(1-p)e^r}$$

$$= \frac{p}{1-p} \frac{(1-p)e^r}{1-(1-p)e^r}, \quad \text{with } (1-p)e^r < 1 \text{ to be convergent}$$

$$= \frac{pe^r}{1-(1-p)e^r}, \quad \text{with } r < \ln \frac{1}{1-p}$$

4. Poisson

$$E[X] = \sum_{k=0}^{\infty} \frac{k\lambda^k}{k!e^{\lambda}}$$

$$= \frac{1}{e^{\lambda}} \sum_{k=1}^{\infty} \frac{k\lambda^k}{k!}$$

$$= \frac{\lambda}{e^{\lambda}} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \frac{\lambda}{e^{\lambda}} \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}$$

$$= \frac{\lambda}{e^{\lambda}} \cdot e^{\lambda}$$

$$= \lambda$$

$$\begin{split} E[X^2] &= \sum_{k=0}^{\infty} \frac{k^2 \lambda^k}{k! e^{\lambda}} \\ &= \frac{1}{e^{\lambda}} \sum_{k=1}^{\infty} \frac{k^2 \lambda^k}{k!} \\ &= \frac{\lambda}{e^{\lambda}} \sum_{k=1}^{\infty} \frac{k \lambda^k}{(k-1)!} \\ &= \frac{\lambda}{e^{\lambda}} \sum_{n=0}^{\infty} \frac{(n+1)\lambda^n}{n!} \\ &= \frac{\lambda}{e^{\lambda}} \left[\sum_{n=0}^{\infty} \frac{n\lambda^n}{n!} + \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \right] \\ &= \frac{\lambda}{e^{\lambda}} [\lambda e^{\lambda} + e^{\lambda}], \quad \text{use the facts before} \\ &= \lambda^2 + \lambda \end{split}$$

Then,

$$\sigma_X^2 = E[X^2] - (E[X])^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

$$g_X(r) = \sum_{k=0}^{\infty} \frac{\lambda^k e^{rk}}{k! e^{\lambda}}$$
$$= \frac{1}{e^{\lambda}} \sum_{k=0}^{\infty} \frac{(\lambda e^r)^k}{k!}$$
$$= \frac{1}{e^{\lambda}} \cdot e^{\lambda e^r}$$
$$= \exp[\lambda(e^r - 1)]$$