- RA. 1217 H.F. COMMUNICATIONS RECEIVER

VOLUME 2 MAINTENANCE MANUAL

RACAL-BCC LIMITED

WESTERN ROAD . BRACKNELL . BERKS RG12 1RG ENGLAND

Prepared by Group Publicity and Technical Services Wokingham . Berks

Ref. 274

Issue 2 - 4.70.100

DANGER LETHAL VOLTAGES

Although every reasonable precaution has been observed in design to safeguard operating personnel this warning is · · ·

VITAL!

ADJUSTMENTS

EXERCISE GREAT CARE

DO NOT ADJUST ALONE

If possible, when making adjustments, ensure the presence of another person capable of rendering aid.

SWITCH OFF

DO NOT TAMPER
WITH INTERLOCKS

Only authorised personnel should be allowed to remove or neutralise the effect of interlocks. Do not rely on interlock switches for protection.

DO NOT SERVICE ALONE

If possible, when servicing, ensure the presence of another person capable of rendering aid.

SEE OVER FOR RESUSCITATION INSTRUCTIONS

FIRST AID

in case of Electric Shock

- 1. Lay victim on his back.
- 2. Clear victim's mouth and throat.
- 3. Tilt victim's head back as far as possible and raise his head.

- 4. Pinch victim's nostrils.
- 5. Take a deep breath.
- 6. Cover the victim's mouth with yours and blow, watching his chest rise. Note:Blow forcefully into adults, but gently into children.
- 7. Move your face away to allow victim to breathe out, watching his chest fall.
- 8. Repeat first five to ten breaths at a rapid rate; thereafter, take one breath every three to five seconds.
- 9. Keep victim's head back as far as possible all the time.

Have someone else send for a Doctor

Keep patient warm and loosen his clothing

HANDBOOK CHANGE INFORMATION

The Racal policy is one of continuous improvement. Due to printing and despatch requirements it may not be possible to incorporate immediately circuit and component changes into the printed handbooks. Consequently your handbook may contain change information which will be included at the back of the books.

On receiving this handbook the user should check whether change information is included and make any necessary hand-corrections or additions to the handbook as requested in the change sheets.

Change sheet numbers run consecutively through all issues of the handbook. Whenever change information is incorporated in a handbook during reprinting, the earlier change sheet numbers may no longer be relevant and these change sheets will not be included in the book.

NOTES

		,			· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·			
	_						
					***********	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·					
	•		 				
	·						
· .							

RA.1217 Transistorised H.F. Communications Receiver

RA. 1217 MAINTENANCE MANUAL

CONTENTS

		Page.
	TECHNICAL SPECIFICATION	
	PREFACE	
CHAPTER 1	DETAILED CIRCUIT DESCRIPTION	
	MODULE ASSEMBLIES	. 1 - 1
	MAIN CHASSIS GENERAL DETAILS	1 - 3
	R. F. MODULE	1 - 5
	FIRST MIXER	1 - 8
	FIRST V.F.O.	1 - 9
	37.5 MHZ GENERATOR MODULE	1 - 9
	1 MHZ OSCILLATOR AMPLIFIER AND	
	CALIBRATOR	1 - 9
	HARMONIC GENERATOR AND MIXER	1 - 11
	SECOND MIXER	1 - 12
	THIRD MIXER	1 - 12
	IST I.F. AMPLIFIER UNIT	1 - 14
	SECOND V. F. O.	1 - 14
	B. F. O. ASSEMBLY	1 - 16
	I.F. MODULE	1 - 18
	AUDIO AMPLIFIER BOARD	1 - 24
	POWER SUPPLY MODULES	1 - 26
CHAPTER 2	TEST AND MAINTENANCE EQUIPMENT	
CHAPTER 3	PERFORMANCE CHECKS	
	MECHANICAL INSPECTION	3 - 1
	POWER CHECK	3 - 2
	SYSTEM CHECK	3 - 2
	Crystal Frequency Check	3 - 5
	Auxiliary Inputs and Outputs	3 - 5
	KHz Tuning (2nd VFO) Calibration Check	3 - 6
	MHz Tuning (1st VFO) Calibration Check	3 - 7
	B. F. O. Calibration	3 - 8
	Overall Receiver Sensitivity Check	3 - 9
	Single Signal Selectivity	3 - 10
	Signal-to-Noise Ratio	3 - 11
	Gain/Frequency Characteristic	3 - 12
	AGC Characteristic Check	3 - 13

		Page
CHAPTER 3 (Continued)	Noise Factor Check First Mixer Balance Check Spurious Response to Internal Signals Spurious Response to External Signals	3 - 14 3 - 14 3 - 15 3 - 16
CHAPTER 4	ALIGNMENT PROCEDURES	
	PROCEDURES AUDIO AMPLIFIER BOARD I. F. MODULE B. F. O. CHECK 3RD MIXER 2ND MIXER 37.5 MHZ GENERATOR MODULE I MHZ AMP, OSCILLATOR AND CALIBRATOR HARMONIC GENERATOR MIXER AND 37.5 MHZ AMPLIFIER IST MIXER FILTERS 2ND V. F. O. IST V. F. O. R. F. MODULE	4 - 1 4 - 2 4 - 3 4 - 5 4 - 6 4 - 8 4 - 10 4 - 10 4 - 11 4 - 13 4 - 13 4 - 14 4 - 15
CHAPTER 5	FAULT LOCATION PRELIMINARY CHECKS INITIAL FAULT LOCATION PROCEDURE POWER CHECK GENERAL FAULT LOCATION	5 - 1 5 - 1 5 - 2 5 - 3
CHAPTER 6	ROUTINE MAINTENANCE GENERAL LUBRICATION	6 - 1 6 - 1
CHAPTER 7	DISMANTLING AND RE-ASSEMBLY FRONT PANEL POWER UNIT I. F. MODULE R. F. MODULE 37.5 MHz GENERATOR 1 MHz OSCILLATOR AND CALIBRATOR LST MIXER AND 40 MHz FILTER	7 - 2 7 - 2 7 - 2 7 - 3 7 - 4 7 - 4

		\mathbf{P}^{z}		Page		
CHAPTER 7	2ND MIXER	7	_	5		
(Continued)	3RD MIXER	7	-	6		
	37.5 MHz BANDPASS FILTER	7	-	6		
	IST V. F. O.	7	-	6		
	2ND V. F. O.	7	-	7		
	1ST I.F. UNIT	7	-	9		
	B. F. O. ASSEMBLY	7	-	9		
	METER CONTROL BOARD	7	-	10		
	H.T. FILTER BOARD	7	-	10		
	AUDIO AMPLIFIER BOARD	7	-	11		
	B. F. O. AND BANDWIDTH ASSEMBLY	7	-	12		
CHAPTER 8	LIST OF COMPONENTS					
	Refer to Contents List at the beginning of Chapter	8.				

Illustrations (See next Page)

ILLUSTRATIONS

Frontispiece.	H.F. Communications Receiver RA.1217 (At Front of Book)
Fig. No.	(At rear of Book)
1	Wadley System - Block Diagram
2	Electronic Band Selection: Explanatory Block Diagram
3	Block Diagram: RA.1217
L-4	Component Layout: R.F. Module
4	Circuit: R.F. Module
L-5	Component Layout: 1st V.F.O.
5	Circuit: 1st V.F.O.
L-6	Component Layout: 1 MHz Amp. Oscillator and Calibrator
6	Circuit: 1 MHz Amplifier Oscillator and Calibrator
L-7	Component Layout: 37.5 MHz Generator, and 37.5 MHz Filter
7	Circuit: Harmonic Generator, Mixer and 37.5 MHz Filter
L-8	Component Layout: 1st Mixer and 40 MHz Filter
8	Circuit: 1st Mixer and 40 MHz Filter
L-9	Component Layout: 2nd Mixer
9	Circuit: 2nd Mixer
L-10	Component Layout: 2nd V.F.O.
10	Circuit: 2nd V.F.O.
L-11	Component Layout: 3rd Mixer and 1st I.F. Amplifier Unit
11	Circuit: 3rd Mixer and 1st I.F. Amplifier Unit
L-12	Component Layout: I.F. Module
12	Circuit: I.F. Module
L-13	Component Layout: B.F.O.
13	Circuit: B.F.O. Unit
L-14a	Component Layout: Audio Amplifier (10 mW)
14a	Circuit: Audio Amplifier (10 mW)
L-14b	Component Layout: Audio Amplifier (one-watt)
14 b	Circuit: Audio Amplifier (one-watt)
L-15a	Layout: Power Unit Type PU.1153
15a	Circuit: Power Unit Type PU.1153
16	Interconnections: RA.1217
17	Interconnections Diagram: 16 Volts Supplies RA.1217
18	Chassis Layout: RA.1217
19	Rear Panel: RA.1217

TECHNICAL SPECIFICATION

Frequency Range:

1 to 30 MHz.

Modes of Reception:

SSB (USB OR LSB) DSB, MCW, CW.

Tuning:

Digital presentation in kilohertz with interpolation calibration at 200 Hz.

intervals.

Calibration Accuracy:

Better than ± 1 kHz referred to nearest

100 kHz calibration point.

Calibration:

A 100 kHz signal, derived from a 1 MHz crystal oscillator provides check points at

100 kHz intervals.

Frequency Stability:

After 2 hours from switch-on:

± 50 Hz. over an eight hour period at

constant ambient temperature and humidity.

Antenna Input:

Nominal 75 ohms impedances unbalanced into a wideband circuit, or tuned in five bands.

- (i) 1 to 2 MHz.
- (ii) 2 to 4 MHz.
- (iii) 4 to 8 MHz.
- (iv) 8 to 16 MHz.
- (v) 16 to 30 MHz.

Sensitivity:

With tuned antenna input, and measured in a 3 kHz bandwidth, sensitivity figures are typically

CW/SSB.

1 microvolt (e.m.f.) for 15dB

signal-to-noise ratio.

MCW/DSB.

(30% modulated at 400 Hz).

3 microvolts (e.m.f.) for 15dB

signal-to-noise ratio.

Selectivity:

Three I.F. filters are fitted as standard but two additional filters may be fitted at customer's

option. Nominal bandwidths are:

Selectivity (Cont'd):

Filters: (3dB Bandwidth)

Standard Filters: Additional Filters Available:

8 kHz. 13 kHz 3 kHz. 6.5 kHz 200 Hz. 1.2 kHz 500 Hz.

Cross Modulation: (Tuned Input Mode) For a wanted signal level up to 1 mV and with appropriate use of the antenna attenuator, an interfering signal, 20 kHz removed and modulated 30%, at a level of 45dB above that of the wanted signal will in general produce cross modulation of less than 3%

Intermodulation: (Tuned Input Mode)

To produce an equivalent 1 μV input, the level of two equal unwanted signals greater than 10% removed from the wanted frequency must be at least 80 dB above 1 μV in the tuned input mode.

Blocking: (Tuned Input Mode)

For levels of wanted signal up to 1 mV, and with appropriate use of the antenna attenuator, an interfering signal 20 kHz removed, will be 56dB above the level of the wanted signal to reduce its output by 3dB. The ratio of wanted to unwanted signal level is improved at the rate of approximately 2dB/1% up to 10% off tune in the tuned input mode.

Spurious Response to External Signals: (Tuned Input Mode) To produce a response equivalent to 1 μV signal, an external signal less than 10% off tune must in general, be greater than 60dB above 1 μV .

Spurious Responses Internally Generated:

Not greater than 3dB above noise level in a 3 kHz bandwidth.

Noise factor:

Typically 10dB in tuned input mode.

I.F. Outputs:

- (a) 1.6 MHz: 100 mV (nominal) at high impedance (10 k Ω).
- (b) 100 kHz: 270 mV (nominal) across 75Ω .

or

(c) 455 kHz: 220 mV (nominal) across 50Ω .

Automatic Gain Control:

(a) Time constants (nominal):

	Charge	Discharge
Short	10 mS	20 mS
Medium	50 mS	250 mS
Long	50 mS	4 S

(b) Output change:

An increase in input of 85dB above 2 microvolts will produce a change in output level of less than 4 dB.

B. F. O:

- (a) Variable: ± 3 kHz centred on +6, +3, 0,
 -3 and -6kHz with respect to i.f. centre frequency.
- (b) Fixed: ± 1.5 kHz (USB/LSB) crystal controlled.

A. F. Output:

- (a) Headphone jack on front panel: 10 m W nominal in 600Ω .
- (b) 10 m W in 600Ω at rear terminals. An alternative version providing one watt into 15 ohms for an external loudspeaker is available to special order.
- (c) 1 m W in 600Ω 'line' outlet. The preset level is independent of the A.F. Gain control setting.

Overall A.F. Distortion:

Less than 5%.

Overall A.F. Response:

With a selectivity handpass of 13 kHz the audio frequency output level from 100 Hz to 6000 Hz. will not very more than 4dB from peak response.

Meter Indication:

- (a) R. F. Levels.
- (b) A.F. level to line.

Controls:

- (a) Meter Switch (AF level/R.F. level)
- (b) Frequency Readout In-line Digital
- (c) 'Megahertz' Tuning
- (d) 'Kilohertz, Tuning
- (e) System Switch
- (f) DET/B.F.O. Mode
- (g) B.F.O. Tuning
- (h) R.F./I.F. Gain
- (i) A.F. Gain
- (j) A.F. Line Level
- (k) R.F. Tune
- (1) R.F. Bandswitch
- (m) Tuning Locks
- (n) Dimmer (scale illumination)
- (o) Calibrate Fine Tune
- (p) Bandwidth Switch
- (q) R.F. Attenuator
- (r) 2nd V.F.O. INT/EXT switch

External Connections:

- (a) Antenna Input
- (b) I.F. Outputs
- (c) A.F. Line Output
- (d) External L.S. Output
- (e) 2nd V.F.O. Output
- (f) 2nd F. V.O. Input
- (g) 1 MHz Output
- (h) 1 MHz Input
- (i) 1.7 MHz input/output
- (j) L.F. Adaptor Input
- (k) Panoramic Adaptor Output
- (1) A.C. Supply input

- (m) 16 volts output
- (n) Diversity A.G.C.
- (o) Muting Contact
- (p) L.F. Adaptor h.t.
- (q) L.F. Adaptor a.g.c.

Power Supplies:

Alternative power supplies may be used as follows:

- (a) 100-125 or 200-250V, 45-400 Hz, a.c. single phase; or 21-27V d.c. positive earth.
- (b) 9-15V or 18-30V d.c. positive or negative earth.

Power Consumption:

40VA approx. with one-watt audio amplifier or with ancillary units

Dimensions:

Height		Width		Depth	
3.5 in.	x	19 in.	×	$16\frac{1}{2}$ in.	
(8.9 cm)		(48.25 c	:m)	(41.9 cm)	

Weight:

31 lb. (14.2 kg) approximately.

Environmental Conditions:

The equipment is, designed to meet certain of the requirements of specification DEF 133 L2, operating within the ambient temperature range of:

Storage -40° C to $+70^{\circ}$ C Operation -5° C to $+55^{\circ}$ C

Construction:

The unit is of modular construction.

PREFACE

CAUTION

The RA 1217 receiver is designed to operate with a selection of ancillary units such as the I.S.B. Adaptor RA. 298C & D, F.S.K. Converter RA. 316C etc. It must be noted that due to power supply limitations, the 1-watt version of the RA 1217 cannot provide the -16 volt power supply required by such ancillary units.

It must be noted, that if the receiver is fitted with the one-watt amplifier, the pin E of the 12-way outlet SKT11 at the rear of the receiver should not be used for the supply of power to external equipments.

The above restriction does not apply to those RA. 1217 receivers which are fitted with the 10 mW audio amplifier board.

Receivers which have serial numbers of 826 or lower, will in general, be fitted with the one-watt audio amplifier and receivers having serial numbers of 826 and higher will generally be fitted with the 10 mW amplifier, but random serial numbers may be equipped or converted to one-watt by special order, the refore the serial number is not a reliable guide.

If in doubt the audio amplifier section on the underside of the receiver should be inspected. The one-watt amplifier can be identified by the transistors VT4 and VT5 which are mounted separately from the board. (Fig. 18). Also by the components such as transformer ITI, capacitors 1C12, 1C15 and 1C17, and the resistor 1R8, which are fitted only with the one-watt amplifier.

RA. 1217 MAINTENANCE MANUAL

PREFACE

Handbook Guide

This Volume contains detailed information for maintenance purposes. It is assumed that the user also has a copy of the RA.1217 Operators Manual, to which reference should be made for general information concerning installation, operation, and technical principles.

Variants

Chapters 1 to 8 of this Volume refer to the basic RA. 1217 receiver. Details of any variant models will be given in appendices, which will be inserted immediately prior to the illustrations at the rear of the handbook.

RA. 1217 Volume 2

CHAPTER 1

DETAILED CIRCUIT DESCRIPTION

INTRODUCTION

The RA. 1217 is constructed on a modular system, the separate modules themselves being composed of smaller assembly units. This type of construction lends itself to a servicing system based on replacement units and simplifies the incorporation of improved designs or special facilities. Many of the board assemblies contain further coil or transformers sub-assemblies etc., but it is strongly recommended that the user should regard the printed circuit board assembly as the smallest item suitable for unit replacement. In accordance with this principle the receiver can be dismantled into the following main items. Each principal heading indicates a module, with the printed circuit boards contained in that module listed beneath.

MODULE ASSEMBLIES

2.	Units and Sub-Assemblies		Racal Part Number
R. F	. Module Assembly	Fig. 4	CA.38538/A
3.	Aerial Filter R.F. Range Coil and Switch Assembly R.F. Amplifier Board H.T. Filter (not located in the R.F. Module)		AA. 28188/A CA.38539/A BA. 28155/B AA. 28179/B
lst	Mixer and 40 MHz Filter Assembly	Fig. 8	BA. 28211/A
	1st Mixer Board 40 MHz Filter		BA. 28215 AA.28197
2nd	Mixer Assembly	Fig. 9	CA.30959/A
1.	Mixer Board		BA. 28177
3rd	Mixer Assembly	Fig. 11	CA. 35970/A
1.	Mixer and Filter Board		BA. 35966
lst	V.F.O. Assembly	Fig. 5	CA. 28120/A
1. 2. 3.	Oscillator Board Buffer Amp (to 1st Mixer) Buffer Amp (to Harmonic Mixer)		BA. 35195 BA. 28128 BA. 32535

Units and Sub-As	Racal Part <u>Number</u>		
2nd V.F.O. Assembly	Fig. 10	CA.28101/A	
 Oscillator Board Buffer Amplifiers 		BA.35808 BA.35807	
1 MHz Amps, Osc. and Calibrator	Fig. 6	(Part of CA.28276/B)	
 l MHz Amplifier Calibrator Board 		BA. 32858 BA. 41745))
37.5 MHz Generator	Fig. 7	(Part of CA.28276 B)) **)
 H.T. Filter Harmonic Generator Board 		BA.28284/B BA.32854) }
3.) 4.) Harmonic Filter		BA.35836)
5. Harmonic Mixer6. 37.5 MHz Buffer Amp.		BA.37984 BA.32850)
** The overall module (CA.28276/B) is us Generator' module although it also cont			
37.5 MHz Band-Pass Filter	Fig. 7	BA.28192/A	
I.F. Module Assembly (455 kHz i.f.) (100 kHz i.f.)	Fig. 12	DA.38580/A DA.38580/B	
 I.F. Amplifier Board Detector Board A.G.C. Board Converter Oscillator Board (455 kHz (100 kHz) Converter Amplifier Board (455 kHz) (100 kHz) 	.))	BA.30533 BA.28236 BA.31466/B BA.38568/A BA.38568/B BA.34783/A BA.34783/B	
B.F.O.	Fig. 13		
 600 kHz Oscillator Board Buffer Amplifier Board 		BA.30540 BA.30542	
Power Unit PU.1153 (a.c./d.c.)	Fig. 15a		
 Complete Assembly (with Component Component Board Assembly 	board)	CA.38640/A BA.37549	

MAIN CHASSIS GENERAL DETAILS

3. Before commencing a detailed description of each module a few points concerning the main chassis may be noted. The most suitable illustrations to refer to are the Interconnections diagrams Fig. 16 and 17. The location of modules in the main chassis is shown in Fig. 18.

H.T. DISTRIBUTION

- The -16V h.t. supply from the Power Unit is supplied, without switching, to the 3rd Mixer, 1 MHz Oscillator, I.F. Module, B.F.O. and 2nd V.F.O. It is also fed, via the 3rd Mixer, to the Audio Amplifier and to 1SKT11-E providing an h.t. supply for ancillary units. The -16V supply to those stages prior to the 3rd Mixer, which are the R.F. Module, 1st Mixer, 2nd Mixer, 1st V.F.O. and 37.5 MHz Generator Circuit, is controlled by the System switch. The switched h.t. to these units is routed via the microswitch 1SB and the terminal block TB1 on the I.F. Module (Fig. 12) which enables the switched h.t. to be connected to an external 1.f. adaptor unit, if required.
- 5. The microswitch 1SB connects h.t. to the terminal H.T.R.F.in all settings of the MHz tuning control except '00'. When the MHz control is turned to display '00' on the scale, a cam moves the microswitch to the opposite contact, thereby transferring the h.t. to the terminal H.T.L.F. on TB1. For operation below a frequency of 1 MHz the terminals H.T.L.F. and H.T.R.F. can be linked. This link should be removed when the Racal 1.f. adaptor is connected.

System Switch 1SE

Fig. 16.

- 6. In the OFF position the external supply to the power unit is disconnected by the opening of the switch contacts ISC1 and ISC2 which are mounted on an extension of the shaft of the System switch ISE. The function of each wafer of switch ISE is described in the following paragraphs.
- 7. Wafer SE2R: This wafer controls the distribution of -16V h.t. to certain circuits as follows: In positions CHECK B.F.O. and CAL, -16V is supplied to the calibrator circuit and disconnected from the units prior to the 2nd Mixer. In the MAN and A.G.C. positions of the switch the -16V is connected to the circuits prior to the 2nd Mixer, and disconnected from the calibrator circuit.
- 8. Wafer SElR: In all settings except MAN, this wafer connects the a.g.c. line to the a.g.c. amplifiers in the i.f. module. In MAN, the a.g.c. line is connected to the slider of the R.F. Gain control.
- 9. Wafer SE3F: This wafer provides an earth connection to the b.f.o. switch (SB1F). In the CAL position the earth is disconnected in order to disable the b.f.o. during the calibration procedure.

Main Chassis (Continued)

10. Wafer SEIF: An earth is provided only in the three a.g.c. positions of the System switch, thus completing the charge path of the appropriate time-constant capacitor in the I.F. Module. The contact 'a.g.c. short' is connected to the Bandwidth switch, in order to prevent the use of short time-constant a.g.c. whenever the Bandwidth switch is set to bandwidths of 1.2 kHz, or less.

Meter Switch

11. In the R.F. position the positive terminal of the meter is connected to the a.g.c. output from the I.F. Module and the negative terminal to earth via, 3R3 and the slider of the set-zero potentiometer 3RV4. With nil signal input and with the R.F. GAIN control set fully clockwise the a.g.c. line is at approximately 4 volts negative to earth and the meter can be set to zero by adjusting 3RV4. Any subsequent a.g.c. output then provides a meter indication of signal strength. In the A.F. position the meter is connected across the output of the rectifier bridge 3D1-3D4 and indicates the level of the 1 mW 600Ω audio line, the bridge being connected across the audio amplifier output.

Meter Zero Setting

12. The set zero potentiometer 3RV4 is mounted on a small component board located on the left hand side of the receiver. (Fig. 18). The setting procedure requires the injection of a l $_{\mu}$ V e.m.f. at the antenna socket, with the System switch at AGC Med. and the Meter switch at R.F. The potentiometer is then adjusted to give an 'S' Meter reading of exactly 1 microvolt.

MHz Tuning Control

- 13. This control rotates the variable capacitor of the 1st v.f.o. thus providing the electronic band selection described in the Operators Manual.
- 14. A further function of the MHz control is that when set to indicate '00' a pair of microswitches (ISA and ISB on Fig. 16) are actuated, which disconnect the a.g.c. and h.t. from the r.f. unit, first mixer, second mixer, first v.f.o. and 37.5 MHz generator and transfers these voltages to alternative terminals on the rear panel marked H.T.L.F. and A.G.C. L.F. from which they may be connected to an l.f. adaptor unit.

KHz Tuning Control

15. This control rotates the variable capacitor of the 2nd v.f.o. and has no auxiliary functions.

R.F. Gain A.F. Gain, Line Level

16. These controls are described in the paragraphs headed 'I.F. MODULE'. The circuit connections are illustrated in Fig. 12 and Fig. 16.

1 - 4

RA.1217 Volume 2

Main Chassis (Continued)

Cal-Fine Tune Control 1RV3

17. Refer to the paragraphs headed '2nd V. F. O. ' and Fig. 10.

2nd V.F.O. Switch

18. Refer to the paragraph headed '2nd V. F. O. ' and Fig. 10. (Page 1.14)

Plugs and Sockets

19. Several of the modules are connected to the chassis wiring via Cannon connectors which contain both d.c. and r.f. connections. The part of the connector attached to the module is fitted with d.c. pins and coaxial sockets and is described as the plug (PL1). The mating socket (SKT) is attached to the chassis wiring and carries d.c. sockets and coaxial pins. Diagrams of these connectors are shown in Fig. 16 Interconnections.

Wiring Identification

20. In the main chassis cableform, interconnections can be traced by reference to marker sleeves for coaxial and screened wiring, and colour coding for d.c. wiring. The wire numbering for the Crystal Filter Unit is Shown in Fig. 18.

R. F. MODULE

- 21. The R. F. Module provides filtering, pre-tuning and amplification of the r.f. signal, with delayed a.g.c. The module consists of three assemblies through which the signal passes in sequence, referring to Fig. 4 they are:-
 - (a) From the Antenna input via the Muting relay contact RLA1 to the 0 to 30 MHz low-pass filter.
 - (b) Antenna attenuation and pre-tuning stage.
 - (c) The r.f. amplifier board with a.g.c.

Wiring Connections

22. Wiring connections to the module are made via pins on the side.

In later versions of the module these connections are made
via a 5-way connector at the forward end, with only the r.f. outlet to the
1st Mixer remaining on the side.

R. F. Module (Continued)

Antenna Input and Filter

The antenna is connected to the rear panel socket R. F. INPUT, thence via RLA1 and a 500 mA fuse to the antenna filter circuit. A discharge path is provided to protect the antenna circuit against excessive accumulation of static charges, and the 500 mA fuse is a protection against a heavy surge such as might occur if the receiver is inadvertently tuned through the carrier frequency of an adjacent high-powered transmitter. The muting relay RLA can be wired, via a pin on the 12-way outlet on the rear panel, to open the antenna circuit when an associated transmitter is keyed. The filter circuit 1L1, 1L2, 1L3 and 1C1 to 1C5 has a passband of 0 to 30 MHz which is designed to prevent any break-through at the 40 MHz intermediate frequency (1st i. f.) or at the image frequency (80 MHz). The filter also prevents radiation of the first v.f. o. frequency from the antenna.

Attenuator_Circuit

The switch SB which is operated by the front panel control marked AE ATT introduces attenuation into the signal path in approximately 10 dB steps. In the minimum attenuation position of SB the switch is fully clockwise and the signal passes from 1L3 via SB2F to the switch 2SA without attenuation. As the switch is moved anti-clockwise the resistor network R4, R5 and R6 is connected, giving 10 dB attenuation. Subsequent switch settings introduce more resistance into the signal path, thereby providing attenuation levels of -20 dE, -30 dB and -40 dB. To maintain specification for measurements such as cross-modulation, intermodulation etc. at levels above 10 microvolts it is essential to use the AE ATT control.

R. F. Tuning and Range Selection

- 25. This circuit comprises the following:-
 - (a) R. F. TUNE ganged variable capacitors 2C6a and 2C6b
 - (b) The switched r.f. range filters 2L1 to 2L5
 - (c) The range switch 2SA which selects either the required range filter or the wideband (WB) path.
- Range Selection The range selection is in octave steps, 1 to 2 MHz, 2 to 4, 4 to 8, 8 to 16 and 16 to 32 MHz. Wafer 2SA4F selects the primary and 2SA1F the secondary of the filter. Wafers 2SA3B and 2SA2B short circuit all the filters except the one in use. The signal path from the r.f. tuning selection is via 2SA1F to transistor 3VT2 on the r.f. amplifier board.
- 27. R.F. Tune and W.B. The ganged variable capacitors 2C6a and 2C6b provide tuning of the selected r.f. filter (2L1 to 2L5) under the control of the R.F. TUNE control on the front panel. In the WB setting of the Range switch the input signal by-passes the range

R.F. Module (Continued)

selection and r.f. tuning circuits and is fed via a 20 dB resistive attenuating network 2Rl, 2R2 & 2R3 into the base of transistor 3VT2. The diodes 3Dl1 and 3Dl2 provide overload protection against excessive r.f. voltages. (up to 15 volts e.m.f.)

R. F. Amplifier Board

- 28. The r.f. amplifier consists of two similar stages 3VT2 and 3VT3 each feeding into a low-pass filter. Considerable attention has been given to filtering and the amplifiers follow conventional practice, except for the method of applying automatic gain control which will be described in detail.
- A.G.C. Action Consider the amplifier 3VT2. The gain of the amplifier can be varied according to the amount of capacitive by pass applied to the emitter resistor 3R9. The emitter by-pass is via capacitor 3C4 the junction of diodes 3D3 and 3D4 and capacitors 3C2 and 3C3 to earth.
- 30. The by-pass impedance is determined by the conductivity of the diodes 3D3 and 3D4 and this in turn can be controlled by the amount of d.c. bias applied by the emitter level of the control stage 3VT1. The current through 3VT1 and hence the emitter voltage, is controlled by the a.g.c. voltage applied to the base of 3VT1.
- 31. Under conditions of minimum a.g.c. action (maximum amplifier gain) the voltage on the a.g.c. line is -4V. This is applied to the base of 3VTl via 3R3. This causes 3VTl to conduct heavily and draw the maximum current through the emitter path formed by the chain of diodes 3Dl to 3D4. Under these conditions the impedance of the by-pass from the emitter of 3VT2 is a minimum and amplifier gain is therefore at a maximum. It is essential that the diode chain has a low forward resistance. A high resistance diode could cause a reduction in the maximum gain of the amplifier.
- 32. Increasing signal strength may cause the a.g. c. voltage applied to the base of 3VT1 to become less negative, as a result the current in 3VT1 decreases and the impedance of the diode path increases, thereby reducing the gain of 3VT2. Under conditions of maximum a.g. c. the level at the emitter of 3VT1 may reach 0 volts but the diodes 3D5 and 3D6 (with 3R5) will ensure that the junction of 3D5 and 3D4 remains at approximately 1.5 volts negative, thus ensuring that the diode chain 3D1 to 3D4 is completely cut off, thereby interrupting the emitter by-pass circuit of 3VT2 and reducing the amplifier gain to a minimum.
- 33. Temperature Compensation. The thermistor 3THl in parallel with 3R2 provides temperature compensation. With rising temperature the current in 3VTl tends to increase. This is counteracted by a decrease in the resistance of 3THl which has the effect of taking the

R. F. Module (Continued)

bias on 3VT1 towards a more positive level, thereby checking the increase in emitter current due to temperature rise.

- 34. Setting-Up 4RV1. The potentiometer 4RV1 which is mounted on the H. T. Filter board on the underside of the receiver (Fig. 18) is provided to allow for variations in diode characteristics, thus avoiding the necessity for selection or matching of components. Adjustment should be necessary only when putting a new amplifier board into service or following component changes. The setting is quite critical and adjustment should be made strictly according to the procedure given in the alignment chapter. The general principles of the adjustment procedure are as follows:
- 35. The system switch is set to Manual and the R.F. GAIN control is set to the maximum gain position, thereby causing the a.g.c. line to acquire a level of -4 volts to chassis. A d.c. voltmeter (AVO 8) is connected to the collector of 3VT1 (-ve) on the r.f. amplifier board.
- 36. Potentiometer 4RV1, should be adjusted so that the collector voltage of 3VT1 decreases (becomes less negative) as the transistor is brought towards saturation. The correct setting is the exact point where the collector voltage just ceases to change, indicating that the transistor has 'bottomed'. The actual reading on the voltmeter at which this occurs will probably be between 3 and 4V negative. A 'bottom' reading greater than -4 volts indicates that the diode chain has a high forward resistance which will be detrimental to amplifier gain. The forward resistance of any diode in the chain should not exceed 25Ω when measured on the 'ohms 4 100' range of the AVO Model 8 test meter. (Diodes type HD1812)

FIRST MIXER

FIRST MIXER (BA. 28211)

Fig. 8

- A balanced mixer circuit is used to reduce the possibility of the second harmonic of a 40 MHz signal entering the 40 MHz filter. The incoming signal from the r.f. unit is fed into transformer T1 and drives the emitters of VT1 and VT2 in push-pull. The first v.f.o. frequency is applied via PL3 and C4 to the bases of VT1 and VT2. The circuit is balanced by the potentiometer RV1.
- 38. The mixer output appears in the inductor L1 which is mounted in a sub-assembly with the remaining inductors of the 40 MHz filter, L2 to L8. Each coil has an adjustable core which combined with the critical spacing of the coils determines the response of the filter which has a passband 650 kHz either side of 40 MHz. It is essential that the filter should have a sharp cut-off, particularly on the high frequency side, to prevent the first v.f.o. frequency entering the filter when the v.f.o. is operating at the lower end of its frequency range.

- 39. The first v.f.o. consists of three sub-circuits mounted on individual boards. The oscillator is a conventional Hartley circuit tuned by the Megahertz tuning capacitor C1 which is not mounted on the board. The oscillator frequency range is 40.5 MHz to 69.5 MHz. Normally the lowest frequency used is 41.5 MHz when the Megahertz tuning control is set to 01. The oscillator output is taken from a tapping near the earthy end of inductor L1 and fed to two buffer amplifiers in parallel.
- difference being that one feeds out via plug PL2 to the first mixer stage and the other via PL1 to the harmonic mixer (37.5 MHz generator). A cascode circuit is employed to obtain adequate buffering, and the circuits are entirely conventional. When removing the 1st V. F. O. module from the chassis the h.t. lead (violet) must be disconnected from the small terminal block beside the module. Some earlier receivers do not have this terminal block, in which case the violet wire must be unsoldered from the H. T. Filter board on the underside of the receiver. (Fig. 18).

37.5 MHZ GENERATOR MODULE

NOTE: This module contains the following two main assemblies:-

- (a) The 1 MHz Oscillator, Amplifier and Calibrator
- (b) The 37.5 MHz generator assembly consisting of a harmonic generator mixer and amplifier. Refer to instructions in Chapter 7 for obtaining access to this assembly.

The 1 MHz oscillator and the calibrator assembly will be described first.

1 MHZ OSCILLATOR AMPLIFIER AND CALIBRATOR Fig. 6

tains the 1 MHz crystal oscillator and calibrator circuit, the other board contains the amplifier stages which provide buffering in the 1 MHz input and output circuits. The boards are mounted side-by-side on the upper (hinged) deck of the 37.5 MHz Generator Module. The calibrator is easily identified by the 1 MHz crystal mounted on the board.

1 MHz Oscillator and Calibrator

42. Transistor VT1 is contained in a conventional Pierce type of crystal-controlled circuit. The output is taken from the emitter via the capacitive divider C4 and C5 to provide the correct level at the base

circuits of transistors VT2 and VT3 on the amplifier board. The 1 MHz crystal XL1 is contained in a holder amd must be removed if an external 1 MHz reference source (synthesizer) is connected to the receiver.

- 43. The calibrator circuit is a 'divide by ten' integrated circuit which receives an input at 1 MHz from the amplifier VT2 on the amplifier board and supplies 100 kHz with harmonics via connector A2 to the 3rd mixer board.
- 44. The 1 MHz input is applied via pin 4 and R8 to the integrated circuit 1Cl. The integrated circuit provides a 100 kHz output which is taken via diode Dl and connector A2 to the third mixer module where the required range of harmonics is injected for calibration of the receiver kHz scale.

l MHz Amplifier

- by the 1 MHz oscillator or they can be supplied with 1 MHz (via VT1) from an external source such as a synthesizer. The output from VT2 is fed from the junction of R9 and R10 to the connector A3, thence to the rear panel socket '1 MHz OUT'. The 1 MHz from VT2 also goes to the Detector board in the i.f. module to mix with the 600 kHz b.f.o. frequency.
- Amplifier VT3 has a collector circuit which is modified by R15, C12 and R17 in order to pre-shape the output waveform to obtain a suitable drive for the harmonic generator. The effect of the pre-shaping is to convert one half-cycle of the sine wave to a peaked waveform capable of generating a wide range of harmonics. (see Chapter 4, paragraph 18). Amplifier VT1 buffers the 1 MHz input whenever a synthesizer or external frequency source is connected.
- 47. The calibrator circuit functions only when the system switch (SE2R Fig. 16) is set to CAL or CHECK B.F.O. In other switch positions the h.t. supply to the calibrator is disconnected. When the calibrator is switched off it is essential that there shall be no leakage of 1 MHz into the third mixer stage. The leakage is prevented by diode DI in the amplifier board which is reverse-biased in all settings of the System switch except CAL and CHECK B.F.O. In the two latter settings of the System switch the -ve voltage forward-biases DI which allows I MHz to pass to the calibrator.

HARMONIC GENERATOR AND MIXER (37.5 MHZ GENERATOR) Fig. 7

48. This section consists of five small sub assemblies which are numbered 1 to 5 the same numbering also being shown on the circuit diagram. The section is contained in the same module as the 1 MHz amplifier and calibrator. The combined module is commonly referred to as the '37.5 MHz Generator'.

Harmonic Generator (Board 1)

of 1 MHz, which it does by virtue of the pre-shaped 1 MHz input and the special characteristics of the diode D1. The capacitive property of the diode has the effect of producing a very fast edge possessing a high harmonic content which is applied to the base of VT1. The entire range of harmonics (up to at least the 32nd) must be amplified by VT1 without discrimination in favour of any particular frequency. The pre-set capacitor C1 can be adjusted to provide a constant amplitude over the harmonic range, measured at the output (pin 4). The diode D2 is provided as a safeguard against excessive base voltages. A similar diode connection is seen in the 37.5 MHz amplifier (D1 and D2).

Harmonic Filter (Boards 2 and 3)

50. This is a low-pass filter designed to pass all harmonic frequencies between 3 and 32 MHz but with a sharp cut-off immediately above 32 MHz. The output of the filter is applied to the base of VTl on the harmonic mixer board.

Harmonic Mixer (Board 4)

A balanced type of mixer circuit is used so that the harmonic spectrum and the input from the first v.f.o. will tend to cancel each other at the output. The harmonic spectrum input is supplied via pin 2 to the base of VT1. The 1st v.f.o. output is supplied via pin 4 to the base of VT2. Mixing takes place in the common collector circuit L1, C7, C8 which is tuned to 37.5 MHz. The output via pin 5 is fed to the cascode amplifier board. The circuit is balanced by potentiometer RV1 by which the bias on each transistor can be adjusted so that the emitter currents are equal. This adjustment is described in Chapter 3.

37.5 MHz Amplifier (Board 5)

This is a buffer stage in a cascode circuit mounted on board number 5. A cascode circuit is used to provide adequate buffering with a low noise figure. The capacitor C7 provides neutralizing feedback. The collector circuit of VT2 (T1, C4) is tuned to 37.5 MHz and the secondary of T1, is connected to socket SKT1, which mates with plug PL1, on the 37.5 MHz filter unit.

37.5 MHz Filter Unit

53. This is a separate unit mounted on the receiver chassis which is connected to the output from the 37.5 MHz amplifier. The filter is designed and set-up to provide a passband of plus or minus 150 kHz centred on 37.5 MHz. The correct alignment of this filter is vital to the satisfactory functioning of the Wadley system. The user is advised not to attempt any adjustment of the filter alignment.

SECOND MIXER

Fig. 9

- 54. The second mixer produces the 2nd i.f. by mixing the 40 MHz i.f. spectrum with the 37.5 MHz injection, and selecting the 2 to 3 MHz difference frequency. The stage VTl and VT2 is a cascode buffer amplifier similar to the buffer circuits in the 37.5 MHz generator module. The 37.5 MHz is supplied via connector A2 and pin 1; the test point TPl is provided to check the injection level. The stage is neutralized by capacitor C19 and the collector circuit Tl and C3 is tuned to 37.5 MHz. The secondary of Tl forms part of the emitter circuit of the mixer stage VT3. The capacitor C3 is wired to the rear of the printed circuit board.
- The 40 MHz i.f. is supplied via A3 to the base of VT3. The resistor 1R4 terminates the 40 MHz filter. Test points TP3 and TP2 are provided to check the signal and injection levels, respectively. The collector circuit L1 and C8 form part of the 2-3 MHz band-pass filter and is tuned to the difference frequency, which is in fact a spectrum of signals extending from 2 MHz to 3 MHz. The output is coupled via C9 to the remainder of the 2-3 MHz band-pass filter. Signals via an 1.f. adaptor unit, which have been translated to the 2 to 3 MHz band, can be fed in via the LF socket on the receiver rear panel via connector A1 and pin 5 to the input of the 2-3 MHz band-pass filter. A panoramic adaptor can be connected to the rear panel socket PAN. This unit examines the spectrum of signals at the collector of VT2. The band-pass filter is terminated by a 39Ω resistor in the 3rd mixer stage.

THIRD MIXER

THIRD MIXER (BA. 35970)

Fig. 11

56. In the third mixer the 1 MHz spectrum of signal frequencies from the 2nd mixer (2-3 MHz) is mixed with a frequency (3.6-4.6 MHz from the second v.f.o. The difference frequency contains the required signal intelligence at a frequency of 1.6 MHz. A 100 kHz input from the calibrator which is supplied via the connector A3 provides harmonics to which the 2nd v.f.o. (kHz) tuning scale can be aligned.

Signal Input

- 57. The preceding 2 to 3 MHz band-pass filter (Fig. 9) is connected via socket A4 to the low-pass filter, formed by 1L1 1C1 and 1C2, which has a cut-off at approximately 5 MHz. The function of the filter is to give additional protection against 6 MHz and 37.5 MHz.
- 58. The filtered signal spectrum is fed via 1C3 and 1L2 to pin 1 on the mixer board thence via the blocking capacitor C1 to transformer T1 of the diode mixer circuit.

Calibrator Input

59. Also applied to Tl is the harmonic input from the calibrator, via A3 and the diode 1D1. This input is switched off except when the System switch is at CAL or CHECK BFO but in order to ensure that there shall be no leakage of the fundamental 1 MHz, even though the calibrator is switched off, a suitable negative voltage is developed at the junction of R1 and R2. This reverse biases the diode in the calibrator output.

Input From Second V. F. O.

- 60. The variable 3.6 to 4.6 MHz from the second v.f.o. is supplied via the coaxial connector A2 to the band-pass filter formed by L7, L6, L4 and L2 and associated capacitors. Termination is provided by R7 in parallel with the primary of T2. The filter pass-band should extend from 3.6 MHz to 4.6 MHz with a fairly sharp cut-off above and below these limits. The filter is inserted to meet the following requirements:
 - (a) The second v.f.o. is a wideband source and it is necessary to exclude the noise generated at the signal frequencies between 2 and 3 MHz, at 1.6 MHz, and also at the image frequencies of 5.2 MHz and 6.2 MHz.
 - (b) If two receivers are connected in a master-slave relationship using a common 2nd v.f.o., the filter will prevent cross-talk arising from coupling between the respective 2 to 3 MHz circuits which could occur via the 2nd v.f.o.
- 61. The input from the second v.f.o. is applied via T2 to the bases of the balanced amplifier stage VT1 and VT2. Note the test point TP2. The collectors of VT1 and VT2 are connected via R6 and R9 to the transformers T1 and T3 respectively in the diode mixer circuit.

Mixer Circuit

- 62. The mixer circuit consists of the diode ring Dl to D4 together with transformers Tl and T3. This type of mixer is selected for its linearity which cancels the 'odd order' mixing which tends to occur where the input spectrum has a fairly wide bandwidth (in this instance 2-3 MHz) and the i.f. output (1.6 MHz) almost comes within the input spectrum.
- The sum and difference frequencies from the mixer are fed via T3 into the filter formed by L3 and L5 with C3, C5 and C6. This is a wideband filter centred on 1.6 MHz. Note the test point TP1 at the input to the filter. Associated with this test point is provision for connecting a 68Ω resistor for test purposes only. The 68Ω resistor is connected when aligning the filter to ensure that the coupling factor between L3 and L5 is less than unity. This alignment is done at the factory and should not normally be attempted by the user.
- 64. The amplifier VT3 provides the output required to drive the i.f. unit. The 1.6 MHz output from the collector is taken via C12 and the coaxial connector A1 to the bandpass filter FL1, thence to the 1st i.f. amplifier unit. The resistor R14 matches the input impedance of the filter.

1ST I.F. AMPLIFIER UNIT

IST I.F. AMPLIFIER UNIT

Fig. 11

65. This is a small unit containing a single stage serving as a buffer between the crystal bandpass filter FL1 and the subsequent crystal bandpass filter selected by the bandwidth switch. The circuit is illustrated on the right hand side of Fig. 11. The wideband tuned inductor L1 is tapped to provide separate outputs having impedances of 100Ω and 1 k Ω respectively. The 1 k Ω output feeds the subsequent filters (Fig. 16) and the 100Ω output is used for reception in the widest setting of the I.F. BW switch without further filtering. The core of L1 is adjustable via a hole in the side of the container.

SECOND V.F.O.

General Fig. 10

two wideband buffer stages. The oscillator can be tuned over the range 3.6 to 4.6 MHz by the KHz tuning control of the receiver, also, fine variations of tuning can be made by the FINE TUNE control. Two outputs are provided, one to the 3rd mixer and the other for external use. (2nd V. F. O. OUT). The oscillator stage can be switched off by setting the front panel 2nd V. F. O. switch to EXT which permits the receiver kilohertz tuning to be determined externally by either a synthesizer or the 2nd v. f. o. of a master receiver.

Oscillator Stage

- The oscillator VT1 works into a tuned collector circuit comprising the inductor L2, and the KHz tuning capacitor C1 with its associated preset trimming capacitor. These tuning components are mounted on a separate sub-assembly. The oscillator tuning can also be shifted by the variable capacitance diodes D1 and D2. The junction of the diodes is connected via PL1 pin 1 to the CAL-FINE TUNE potentiometer 1RV3, which provides a variable -ve voltage which can shift the 2nd v.f.o. frequency by approximately 8 kHz over the full range of the control.
- 68. The remainder of the oscillator circuit is conventional. The diodes D1-D4 provide d. c. stabilization against possible variations in h.t. voltage arising from extreme temperature changes affecting the power unit. The oscillator output is taken from the junction of the coupling network R7 and R8 which minimizes any loading effects on the oscillator tuned circuit.
- 69. The oscillator h.t. supply is connected to pin 5 via the 2nd V.F.O. switch which is mounted on the front panel of the receiver. When this switch is set to INT the 2nd v.f.o. is in operation and an output is available for external use if required. When the switch is set to EXT the oscillator h.t. supply is disconnected and the 2nd v.f.o. frequency for the receiver must be fed in from an external source, such as a synthesizer or master receiver. The external frequency is switched by the gating diodes on the buffer amplifier board.

Buffer Amplifier Board

- 70. The diodes D2 and D3 enable the user to switch from internal 2nd v.f.o. to an external source, and vice versa, without the changing or removal of cable connections.
- 71. When the oscillator stage is running, the diode D2 on the amplifier board is forward-biased by the negative supply which is connected through the 2nd V.F.O. switch (INT position) thence via pin 5 on PL1 and R2 to the diode. This allows the oscillator output to pass via D2 to the amplifier VT1. At the same time the diode D3 is reverse-biased, thus isolating the external input.
- 72. When the 2nd V.F.O. switch is set to EXT the negative supply is disconnected from pin 5 and connected instead to pin 4 of PLI whence it is applied via R4 as a forward bias to diode D3. The external input can now pass via A1, C2 and D3 to the amplifier VT1. The resistor R6 (75Ω) terminates the input connector. In this condition diode D2 is reverse-biased thus isolating the oscillator circuit from the amplifier board.
- 73. The transistors VT1, VT2 and VT3 are wideband buffer stages which provide suitable output levels from the collector circuits. The output from the collector of VT2 is connected via C6 and socket A2 to the 3rd mixer, the resistor R18 provides the required $1 \text{ k}\Omega$ source impedance

to the bandpass filter on the mixer board. The external output is taken via C9 from the collector of VT3, the resistor R22 providing the required 75 ohm source impedance for the connector.

B.F.O. ASSEMBLY

Fig. 13

74. The B.F.O. assembly consists of the DET - B.F.O. switch assembly and variable tuning capacitor, together with a 600 kHz oscillator board and a buffer amplifier. The b.f.o. frequency can be adjusted in fixed steps by the positions +6 to -6 of the DET-B.F.O. switch SB and varied by the fine tune capacitor C2 which is controlled by the central knob of the B.F.O. TUNE control. Switch SB has certain other functions which are described in a later paragraph.

600 kHz Oscillator Board

- The oscillator VTl is tuned by the inductor L1 and the variable capacitor C2. In parallel with C2 are four preset capacitors C2, C3, C5 and C6 which are connected in the +3, 0, -3 and -6 positions respectively of switch SB2F, each one providing a progressive reduction of oscillator frequency in 3 kHz steps. The oscillator is initially set-up with the DET B. F. O. switch set to position '+6' and the variable control C2 set to its mid-travel position. The core of L1 is then adjusted to provide an output at 606 kHz. In each of the subsequent switch positions (+3, 0, -3, and -6) the appropriate capacitor C2, C3, C5 or C6 is adjusted to give the required frequency. The oscillator output is taken from the junction of R1 and R2 which provides a low-level input to the buffer amplifier.
- 76. The negative h.t. supply to the amplifier and oscillator is permanently connected, but the positive (earth) side of the supply to the 600 kHz oscillator stage is connected via pin 5 and the +6 to -6 positions of switch wafer SB1F thence via a wafer on the System switch to earth. In the switch positions LSB, USB and A.M. the earth is disconnected from the b.f.o. thus switching off the 600 kHz oscillator.

DET B. F. O. Switch SB

- 77. The function of each wafer will be described briefly.
- 78. SB1F: The wiper contact (tag 9) is connected to earth in all positions of the system switch except CAL. (Thus ensuring that the b.f.o. is switched off during the calibration procedure). The LSB and USB positions of SB1F connect the earth to the detector board (i.f. module) where it serves to connect the appropriate crystal for the s.s.b. off-set oscillator.
- 79. SB1R: In the A. M. position of the DET B. F. O. switch an earth is made to pin 2 of the Detector board (i.f. module) in order to connect the a.m. detector.

- 80. <u>SB2F</u>: Contacts I to 5 which correspond to switch settings +3 to -6 connect the preset capacitors C2, C3, C5 and C6 respectively across the b.f.o. tuned circuit.
- 81. SB2R: In every switch position except A. M. an earth is made to pin 3 of the Detector board (i.f. module) in order to connect the product detector circuit.

B. F. O. Buffer Amplifier Board

82. This amplifier is designed mainly to buffer the b.f.o. from the Detector board circuits. The output is taken from the secondary winding of T1 which provides the low impedance required by the mixer in the Detector board. The adjustable core of T1 together with C2 tunes the output, and R5 ensures sufficient bandwidth to accept the plus or minus 8 kHz variation of b.f.o. frequency. Note that the screen of the cable from T1 secondary, which feeds the 600 kHz b.f.o. frequency to the i.f. module must not be earthed, because it constitutes a part of the base-emitter circuit of transistor VT5 in the Detector board.

I. F. BANDWIDTH SWITCHING

83. Provision is made for the fitting of five crystal bandpass filters, FL1 to FL5. The actual number and specification of the filters fitted is stated in the Technical Specification at the front of this Manual. The filter switching is illustrated in Fig. 16. The widest i.f. bandwidth is determined by FL1. The standard receiver also incorporates FL3 and FL4: the additional filters FL2 and FL5 can be incorporated at customers option. The bandwidths are switched by the I.F. B.W. control which operates the switch SA1F to SA4R illustrated in Fig. 16. This switch also selects the a.g.c. time constants to suit the bandwidth selected.

Bandwidth Switch

Fig. 16

- 84. The input to the 1st I. F. Amplifier is filtered to the widest available bandwidth by the filter FL1. (Fig. 11). Two outputs are taken from the 1st I. F. amplifier. The 100 ohm output via 2R1 (Fig. 16) goes to switch wafer SA3F without further filtering. The 1000 ohm output goes via SA1F and SA1R to the selected filter, FL2 to FL5, then to the wafers SA3F and SA3R. The filters are terminated by resistor 2R4. The 1.6 MHz output is fed via plug 1PL3 to the socket SKT4 on the main I. F. Module (Fig. 12).
- 85. A.G.C. Over-ride. It is the function of the wafer SA2 (Bandwidth switch Fig. 16) to ensure that the short time-constant a.g.c. cannot be used whenever the I.F. B.W. control is set to select the filters FL1 or FL2. If the System switch is set to 'A.G.C. Sh' the Bandwidth switch over-rides this setting and substitutes "medium time-constant', as follows:

of an earth to the appropriate time-constant capacitor in the a.g.c. board of the i.f. module. This earth connection is made by contacts on the System switch wafer SEIF. The short time-constant path is connected to the System switch (tag 2) via the wafer SA2R of the Bandwidth switch. When the filters FL1 or FL2 are selected, the "a.g.c. short" earth line is connected via SA2F tags 1 or 2, to the medium time-constant capacitor in the a.g.c. board. In the remaining positions of the Bandwidth switch the the 'a.g.c. short' connections are normal. To sum up; 'long' and 'medium' a.g.c. is available in all settings of the I.F. B. W. control, but a.g.c. short is confined to the settings 3 kHz and above.

NOTE: The above description refers to the standard bandwidths. Any modification to suit a customers special requirements will be described in an Appendix to the handbook.

I, F. MODULE

- 87. The I.F. Module contains the following printed circuit boards, illustrated in Fig. 12.
 - (a) I. F. Amplifier Board.
 - (b) Detector Board.
 - (c) A.G.C. Board.
 - (d) I. F. Converter Oscillator Board.
 - (e) I. F. Converter Amplifier Board.

CONNECTIONS

88. The 1.6 MHz i.f. from the bandwidth switch is fed into the i.f. module via the coaxial connector SKT4 at the forward end of the module. All other connections to the receiver are via the 37-way connector 1SKT1. Details of the 37-way connections are shown in Fig. 16. External connections are made via the coaxial sockets, SKT1, SKT2 and SKT3 and the terminal block TB1 mounted on the module and accessible at the rear of the receiver. These outlets are shown in Fig. 12.

I. F. AMPLIFIER BOARD

Fig. 12

89. The three amplifiers VT1, VT3 and VT4 employ conventional pretuned collector circuits with damping resistors R4, R16 and R20 respectively, to ensure a wide bandwidth. A moderate amount of stabilizing feedback is applied to each stage by an un-bypassed resistor in each emitter circuit. The transistor VT2 together with the diode D1 and associated components form part of the a.g.c. system and will be described in more detail.

I.F. MODULE (Continued)

- 90. The transistor VT2 is connected in the emitter circuit of VT3 and is in effect a variable feedback device which determines the gain of VT3 under the control of the a.g.c. voltage. The a.g.c. voltage is fed in at pin 3 and via R9 to the base of VT2. Consider first the state when the signal is weak. The a.g.c. line will be at its maximum negative level. This causes VT2 to saturate and offer a low impedance, thus reducing the amount of un-bypassed resistance in the emitter circuit of VT3, resulting in higher gain.
- 91. Increasing signal strength causes the a.g.c. level to become less negative, and VT2 conducts less heavily, thus increasing the resistance in the emitter circuit of VT3 which results in lower gain. The combined effect of D1 with R7, R8 and R9 is to modify the characteristic of VT3 so that the curve of amplifier gain plotted against change of a.g.c. volts is less abrupt, thus improving the stability of the circuit.
- 92. The 1.6 MHz output from VT3 is taken from two tappings on L2.

 One output is taken via C11 to the buffer amplifier VT4. This stage is similar to the preceding amplifiers but is provided with an additional hum-filtering capacitor C14. The other output from L2 goes to a 1.6 MHz amplifier on the A.G.C. Board. The circuit description will continue by tracing the signal path as it leaves the i.f. amplifier via C16 and pin 5 enroute to the Detector Board.

DETECTOR BOARD

93. The Detector board contains the a.m. and product detectors, also the offset crystal oscillator for s.s.b. reception. The a.m. detector operates only in the A.M. position of the DET-B.F.O. switch and the product detector operates in all the remaining positions. The switching of these circuits depends upon the biasing of various diodes.

A. M. Detector

- 94. In the A.M. position of the DET-B.F.O. switch +ve h.t. (earth) is applied via pin 2 and R8 to resistor R3 and diode D2. This forward biases the diode thus completing the collector circuit of VT2. At the same time the current through R3 saturates VT1 thus completing the emitter circuit of VT2, via R6, VT1 and R5. The diode D1 is reverse biased by the negative rail connection via the path R4, R11, R19 and R18. Hence VT2 acts as a conventional 1.6 MHz amplifier with the collector circuit tuned by the inductance of T1 with capacitor C1.
- The 1.6 MHz signal appears in the secondary windings of T1.

 The signal across pins 1 and 6 of T1 is detected by the diode D4 the load being formed by R11, R19 and R18. The detected signal is filtered by C6, L2 and C8, and passed via C9 to the audio emitter-follower VT3.

 Thence via C7, pin 8 and PL1 pin 7 to the A. F. GAIN potentiometer. A detector output is taken from pin 8 on the Detector board to pin 5 of the

terminal block TB1 at the rear of the receiver to drive a loudspeaker amplifier or tone converter etc.

96. It will be noted that the output circuit of the b.f.o. amplifier VT4 is connected to the emitter circuit of VT2. Whenever the a.m. detector is in operation, a contact on the DET-B.F.O. switch cuts off VT4 to ensure that the signal-to-noise ratio is not degraded by noise injected from this source.

Product Detector

The product detector utilizes the circuit of VT1 and VT2 but with certain changes achieved by diode biasing. Due to the setting of the DET-B. F. O. switch (all positions except A. M.), pin I is open circuited and pin 3 is connected to earth. A -ve voltage is applied via R9 and R8 which cuts off VT1 via R3, and reverse biases D2. Thus, with VT1 cut off, the emitter path of VT2 is through R5, the secondary winding of T2, R7 and R6. The earth on pin 3 supplies h.t. + through R11, R4 and D1 to complete the supply to VT2, at the same time it disables the a.m. detector by a reverse bias on D4. The output from the b.f.o. amplifier VT4 via the secondary of T2 is supplied to the emitter circuit of VT2, and the 1.6 MHz signal from the i.f. amplifier board is supplied to the base of VT2. The product detector output is taken from the junction of R4 and R11. This audio output then follows the path described for the a.m. detector.

S. S. B. Offset Oscillator

- 98. Transistor VT6 on the Detector board is a crystal oscillator stage which operates in the L.S.B. and U.S.B. positions of the DET-B.F.O. switch, provided the system switch is not set to CAL. (In the CAL position all b.f.o. circuits are disabled to prevent interference with the calibration procedure).
- 99. The oscillator frequency is determined by the crystal XL1 (DET-B.F.O. switch set to L.S.B.) or by XL2 (DET-B.F.O. switch set to U.S.B.) according to whether the oscillator is to run 1.5 kHz above or 1.5 kHz below, the 1.6 MHz i.f. Each crystal has a preset capacitor in parallel (C21 and C22) for alignment purposes.
- when the DET-B. F. O. switch is set to U. S. B. and the System switch is set to any position except CAL, +ve h.t. is connected via plug PL1 to pin 15 on the Detector Board and through R32 to the diode D7. This forward biases D7 which conducts, thereby completing the crystal circuit for VT6 which oscillates at the frequency of XL2. Crystal XL1 remains open circuited by the reverse bias on diode D6 due to the negative rail connection. In the L. S. B. position of the DET-B. F. O. switch the forward bias is removed from D7 and applied to D6 via R33, thus connecting XL1. Diode D7 reverts to the reverse biased condition. The oscillator output is taken from the emitter of VT6 and fed from the capacitive divider C18 and C19 which via R24 provides the correct impedance into the base of the mixer VT5.

- 101. This stage operates as an amplifier when the DET-B. F. O. switch is set to the L.S.B. and U.S.B. positions, and as a mixer in all positions from +6 to -6. The function of the mixer is to combine the 1 MHz from the receiver crystal source with the variable 600 kHz from the b.f.o.
- Mixer Action. The emitter of VT5 is connected via plug PL1 to the output winding of the 600 kHz transformer in the b.f.o.

 assembly. Thus, whenever the DET-B.F.O. switch is set to any of the positions from +6 to -6, the b.f.o. frequency is supplied to VT5. It should be noted that the screen of this connection is the return path of the emitter-to-base circuit of VT5 and must not be earthed. The base of VT5 is connected via C17 and plug PL1 to the receiver 1 MHz crystal source. The output from VT5, which is 1.6 MHz plus or minus any variation applied by the B.F.O. fine tuning control is taken via the tapping on L3 to the amplifier VT4.
- 103. Amplifier Action. When the DET-B. F. O. switch is set to L. S. B. or U. S. B. the 600 kHz b. f. o. frequency is removed and VT5 amplifies the crystal frequency 1601. 50 or 1598. 50 kHz fed in from VT6 and passes it via L3 to VT4.

Amplifier VT4

104. This is a conventional amplifier with stabilizing feedback provided by R16. The collector circuit is tuned by T2 and C12, and damped by R17 to ensure sufficient bandwidth. The output from T2 secondary is connected to the emitter circuit of VT2. When the DET-B.F.O. switch is set to A.M. it is necessary to cut off VT4 to prevent noise reaching the emitter circuit of VT2; this is done by disconnecting R19 from earth at the b.f.o. switch SB2R (Fig. 13)

A.G.C. BOARD

105. The a.g.c. board contains two amplifiers operating at 1.6 MHz, followed by the a.g.c. detector and d.c. amplifier feeding into the time-constant circuits. The remainder of the board is concerned with providing d.c. amplification and manual gain control facilities etc. Provision is made for connecting the a.g.c. circuit to a companion receiver in dual diversity operation.

Amplifier VT1

This is a 1.6 MHz amplifier tuned by L1 in the collector circuit. The input at 1.6 MHz is applied via C1 to the base of VT1 and separate outputs are taken from tappings on L1. The output via C5 is at a level of 100 mV for external use and is connected, via pin 3 to the 1.6 MHz OUT socket at the rear panel of the receiver. The output via C4 is fed to the base of VT2 and also to the converter board via pin 4. It is reduced in level by the capacitive divider formed by C4 with C3. This arrangement is necessitated by the requirement to obtain two different levels from the one output circuit.

Amplifier VT2

107. Transistor VT2 is a 1.6 MHz amplifier with a collector circuit tuned by L2 with C9. The inductor L2 is connected as a step-up transformer so that the stage presents a high impedance to the a.g.c. detector.

A.G.C. Detector

108. The amplified 1.6 MHz from VT2 is coupled to the a.g.c. detector D1 via C10. The components R13, R14, C12 and C13 form an r.f. filter between D1 and the emitter-follower VT3.

A.G.C. Output

- 109. Under weak signal conditions current flows in VT3, causing a voltage drop across R15 which reverse-biases the diodes D2, and D3 via the time-constant network C14, C15, C16, R16, R17 and RV1. The a.g. c. output voltage at pins 14, 15 and 16 will be at its maximum negative level.
- An increase in signal strength will cause the voltage at the base of VT3 to become more negative and less current will flow in R15. The diodes D2 and D3 become forward-biased, leading to a fall in current through VT4, therefore the voltage across R21 will be less negative. This causes a change of current in VT5. The output of VT5 is coupled to the emitter-follower VT6 via the System switch wafer SE1R (all settings except MAN). In the MAN setting of the System switch the a.g. c. level from VT5 is disconnected, and a variable -ve voltage, obtained via the R.F. Gain potentiometer 2RV2, is used to manually bias the a.g. c. line which controls the i.f. and r.f. amplifier stages.
- 111. The final a.g.c. output is taken via three parallel paths from the emitter of VT6. The output at pin 15 is used within the i.f. unit to control the 1.6 MHz amplifier. The output from pin 14 goes via PL1/1SKT1 pin 34, to the microswitch ISA (Fig. 16) and from pin 16 the output is fed via the Meter switch (R. F. setting) to the 'S' meter on the receiver front panel.
- 112. The a.g. c. line voltage from an associated dual-diversity receiver or i.s.b. adaptor can be connected to the junction of diodes D2 and D3 via, pin H on the 12-way socket at the rear of the receiver, thence to pin 6 on the board.

I.F. Converter

113. Although the i.f. converter circuitry is mounted on two separate boards it should be regarded functionally as one circuit. Two types of converter are available but only one is fitted to a particular receiver, one produces a 455 kHz output and the other a 100 kHz output. The circuit differences are confined to the oscillator crystal frequency, coils L1 and L2 on the oscillator board and the values of components R12 and C9. Resistor

R10 on the amplifier is not fitted to the 455 kHz version. Refer to NOTE 1 on Fig. 12.

- 114. The output of the crystal oscillator VT1 on the Converter board is fed via C3 and pin 3 to the amplifier VT1 on the amplifier board. The output from the amplifier returns via pin 4 to the emitter of the mixer stage VT2. The signal input at 1.6 MHz is applied via pin 5 to the base of VT2. The circuit L1, C8, C9, C10 and L2 provides filtering at the required i.f. Resistor R12 and capacitor C9 determine the passband, the values shown are for the 100 kHz version.
- 115. The mixer output is taken from a tap on L2, and via pin 7 to the amplifier board where it feeds into the base of VT2 which is part of the d.c. coupled two-stage amplifier VT2 and VT3. The direct coupled amplifier has overall feedback via R9 which gives a very low impedance at the input to V2 and contributes to the excellent thermal stability. The amplifier also has good linearity which minimises problems which might otherwise arise from intermodulation products.
- 116. The output circuit of VT3 (L1 and C8) is pre-tuned to the appropriate i.f. (455 kHz or 100 kHz). The resistor R10 is inserted only on the 100 kHz converter in order to off-set the higher 'Q' of L1 at the lower frequency. From a tap on L1 the output goes to the coaxial socket SKT2 on the rear panel. This socket will be engraved either 455 kHz or 100 kHz, according to the type of converter board which is fitted to the i.f. unit. It should be noted that the required termination is 50Ω for the 455 kHz and 75Ω for the 100 kHz converter.
- 117. If the RA. 1217 is connected to a suitable frequency synthesizer, channel oscillator or master receiver, the production of the final i.f. can be locked to the external source by a frequency injected in lieu of the crystal XL1. When an external source is connected, the crystal XL1 must be removed from its socket. For the 100 kHz i.f. a frequency of 1.7 MHz may be supplied to the 1.7 MHz IN/OUT socket.
- 118. The RA. 1217 may be used in a master-slave relationship with another receiver. For this purpose the crystal oscillator frequency is fed to the slave receiver via the socket 1.7 MHz IN/OUT (455 kHz IN/OUT).

AUDIO AMPLIFIER BOARDS

Alternatives

119. The standard RA. 1217 receiver is fitted with a 10 mW audio amplifier board, but a one-watt board is available at customers option. It should be noted that there are restrictions on the amount of -16 volt power available from the power unit for external use when the one-watt board is fitted.

10 mW Audio Amplifier Board

Fig. 14a

- 120. The amplifier board contains two separate amplifiers. The circuits are conventional and will therefore be described only briefly. The a.f. output at the Detector board is taken via the slider of the A.F. GAIN control to the base of the driver transistor VT1. Input capacitors C2 and C3 are in parallel so that 1.f. attenuation can be provided by the removal of C3, if desired. Negative feedback is provided by R3. The pushpullstage VT2 and VT3 operates in class A in order to eliminate the need for any setting-up adjustments; negative feedback is applied by R9 and R10. The 10 mW 600 ohm output is supplied to the PHONES jack socket on the front panel and also to the outlets at the rear panel.
- 121. The line amplifier VT4 is supplied with an a.f. signal via the slider of the A.F. Level pre-set control. The additional input capacitor C10 may be removed if attenuation of the a.f. input is required. The 1 mW output is taken from the secondary winding of transformer T3 to the meter diodes and to a pair of pins at the rear panel outlet.

One-Watt Amplifier Board

Fig. 14b

- 122. The one-watt board contains two separate amplifiers:
 - (a) A one-watt push-pull section comprising transistors VT1 to VT5 suitable for driving an external 15 ohm loudspeaker.
 - (b) A low powered section (VT6 to VT8) which provides 1 mW into the transformer 1T1 for connection to an external 600 ohm line.
- 123. The one-watt amplifier is a transformerless push-pull circuit employing the principle of "complementary symmetry". The audio input from the signal detector is applied via the A.F. Gain potentiometer to the base of transistor VT1, which serves as a driver to the transistors VT2 and VT3. The bases of VT2 and VT3 are directly coupled to the collector circuit of VT1 and current variations in the circuit RV2, D1, D2, R1 and R2 will vary the base potentials of VT3 and VT2.

- 124. Transistor VT2 is an n.p.n. transistor which functions as an emitter-follower for positive-going inputs, while at the same time VT3 is cut off. On a negative-going input VT2 will cut off and the p.n.p. transistor VT3 will conduct, thus giving push-pull operation. The output transistors VT5 and VT4 are d.c. coupled to VT3 and VT2 respectively. It should be noted that transistors VT4 and VT5 are mounted in holders adjacent to the board and must be carefully released when removing the board from the chassis.
- 125. In the static condition the junction of R7 and R8 is at a potential which is half the supply voltage (i.e. at -8V). A variation in the current in VT4 and VT5 will produce a varying voltage at this junction, which via capacitor 1C12 drives the loudspeaker. Under static conditions the amplifier is balanced by means of potentiometer RV1 which permits accurate adjustment of the half-supply voltage at the juntion of R7 and R8 (pin 5).
- 126. A.F. negative feedback is provided by capacitor C1 and to limit the frequency response a low value capacitor C3 is connected between collector and base of VT1. The diodes D1 and D2 provide temperature compensation to balance the effects of temperature change on the base-emitter junctions of VT2 and VT3. The potentiometer RV2 permits adjustment of the quiescent bias conditions of VT2 and VT3.
- 127. Adjustments. With no audio input connect a d.c. voltmeter to pin 5 (-ve) and chassis (+ve). Adjust RV1 for a reading of -8 volts. To adjust RV2 the -16V (violet) wire must be unsoldered from pin 6 and a milliammeter connected in series. RV2 is then adjusted for a reading of 55 milliamps. Re-connect the -16V lead and then re-check the -8 volt reading at pin 5. Re-adjust RV1 if necessary.

l mW Amplifier

128. The 1 mW section follows conventional practice. The input from the signal detector is applied via the A.F. Level potentiometer and pin 7 to amplifier VT6 which is coupled via an emitter-follower VT7 to the output transistor VT8. The capacitor C7 is inserted to limit the frequency response.

POWER SUPPLY MODULES

129. The standard type of power module is the PU.1153. The unit consists of a main assembly to which is attached a printed circuit board containing the stabilizer circuitry. Referring to Fig. 15a, the components mounted on the assembly are prefixed 'l'. Those references without a prefix are located on the printed circuit board.

INPUTS

130. The PU.1153 can operate from the following supplies:

100-125 volt a.c. 45-400 Hz single phase 200-250 volt a.c. 45-400 Hz single phase 21- 27 volt d.c. with positive earth

OUTPUTS

131.

-16 volt (regulated) 400 milliamps -20 volt (unregulated) 200 milliamps. Generally, this level will be approximately 24 volts.

SWITCHES

AC/DC Switch

132. A locking plate desplays the type of power input, either 'A. C.' or 'D. C.' If the indication is not correct, remove the locking plate (one screw) set the switch in the alternative position and replace the locking plate in the reversed position so that the correct indication is displayed. This switch must be correctly set before switching on the receiver.

Voltage Selector Switch

133. This switch is in use when the A. C. /D. C. switch is set to A. C. It should display the correct a.c. supply voltage range, either 115 or 225. If the setting is not correct remove the locking plate, reset the switch and replace the locking plate in the reversed position so that the correct voltage range is indicated.

POWER SUPPLY MODULES (Continued)

FUSELINKS

134. Two fuse links are provided. The MAINS fuse is in circuit whenever the A. C. / D. C. switch is set to A. C. The H. T. fuse is in circuit on both A. C. and D. C. supplies. Replacement fuses must be of the anti-surge type. When on 100-125V a. c. supply the MAINS fuse must be rated at 500 mA.

Replacement Fuselinks

135.	MAINS	250 mA (225V)	Beswick	TDC 134
		500 mA (115V)	Beswick	TDC 134
	H. T.	l amp	Beswick	TDC134

POWER CONNECTIONS

136. The external power supply is connected via a 3-core power cable to which a suitable 3-pin connector should be fitted: for an a.c. supply connect the red lead to line; black to neutral and green to the earth (ground) pin. For a d.c. supply connect the red lead to +ve and the black lead to -ve. The free socket for connecting the power cable to the receiver plug is a Plessey MK. 4 2CZ83283/5 with accessory set 508/1/03008/205.

ADJUSTMENTS

-16 Volt Output

137. The potentiometer 1RV1 on the power unit should be adjusted to provide an output of -16 volts relative to chassis. A suitable measuring point is the terminal H.T. R.F. on the rear panel of the receiver.

Dimmer Resistance: Dial Lamps

138. The setting of the dimmer potentiometer 1RV2, which is accessible at the front panel of the receiver may be set by the user to provide a suitable level of illumination.

CIRCUIT DESCRIPTION PU.1153

- 139. The external power supply which enters the module via the 3-pin connector is routed via the receiver ON/OFF switch and returns to the module via pins 15 and 13 of the 15-way connector ISKT1.
- 140. In the A.C. setting of switch ISB, the a.c. power is fed to the primary windings of transformer IT1. The switch ISA connects the windings in parallel for 100-125 volt input, or in series for 200-250 volt input. In the D.C. setting of switch ISB the +ve d.c. input is connected to the 0 volt output, and the -ve input to the regulator transistor and to the unregulated -20 volt output.

RA. 1217 Volume 2

POWER SUPPLY MODULE (Continued)

- 141 The fuse IFS1 (Mains) protects the input to the transformer, the other fuse 1FS2 (H.T.) is common to both a.c. and d.c. inputs to the bridge rectifiers D1 and D2. The rectified output from D1 is fed to the stabilizer board and the output from D2, which is normally in the range 20 to 24 volts, is fed without stabilization to a pin on the 12-way outlet at the rear of the receiver.
- 142. The capacitors 1Cl and 1C2 serve as an r.f. filter. The resistor 1Rl is provided to discharge the capacitors when the power is switched off.

Stabilized D. C. Circuit

- 143. The output from the bridge rectifier Dl is fed to the filter capacitor 1C3. The transistor 1VT1 completes the connection to the -16 volt output line, and stabilizes the output by acting as a series regulator under the control of the d.c. amplifiers VT1 and VT2. The output can be set to -16 volts by adjustment of the potentiometer 1RV1.
- 144. The emitter of VT2 is held at a constant voltage by the zener diode D3. The level at the base of VT2 is determined by the setting of 1RV1 and also by any change of voltage occurring in the chain R4, 1RV1 and R5 due to a change in output load. For example, if an increase in output loading causes the voltage at 1RV1 to go less negative and the collector current in VT2 decreases. This causes a change in the base current of the beta multiplier VT1 which in turn increases the output of 1VT1 so as to maintain a constant output voltage.
- 145. To allow the stabilizer to operate from a wide range of input voltages the network R1, R2 and R3 together with the zener diode D4 provide input regulation. The diode D4 holds the junction of R1 and R2 at a constant 4.7 volts, thus clamping the base of VT1 at a constant level despite changes in input voltage. The electrolytic capacitor C1 eliminates ripple.

CHAPTER 2

TEST AND MAINTENANCE EQUIPMENT

1. The following items of test equipment are required for the procedures in Chapter 3 and 4.

R. F. Signal Generator

NOTE: A good quality signal generator, with a frequency range up to 8 MHz and a source impedance of 75 ohms is suitable for many of the tests, but to meet all requirements two signal generators of the following specification are required:

Frequency Range

10 kHz to 70 MHz

Output Impedance

75 ohms

A. M. Modulation distortion less than 10%

Example: Marconi TF. 144H, with 50 to 75 ohms adaptor and 20 dB pad for each instrument.

Multimeter AC/DC

Sensitivity Range Accuracy Example

20 000 ohms/volt 0 to 300 volts 2% of full scale AVO Model 8

Electronic Voltmeter (RF Voltmeter)

Input impedance Range (0 dB = 0.775 volts)

Frequency Range Example

Not less than 1 megohm Minus 50 dB to plus 10 dB

Up to 70 MHz Airmec Type 301

Electronic Voltmeter (L. F.)

Input Impedance

Range (0 dB = 0.775 volts)

Example

Not less than I megohm Minus 50 dB to plus 10 dB Advance Advac VM77

Digital Frequency Meter (Counter)

Frequency Range

Accuracy

1 Hz to 70 MHz

Internal reference frequency l part in 10⁶ plus or minus

I count.

Example Racal Type SA. 550 with probe

for high input impedance.

Output Power Meter

100 Hz to 6000 Hz Frequency Range Input Impedance Example

15 ohms and 600 ohms Marconi TF. 893A

Noise Generator

Output impedance 75 ohms

Marconi TF. 1106 Example

Oscilloscope

Frequency Range 1 to 30 MHz with dual

trace.

Tektronix 545A Example

Waveform Analyzer

100 Hz to 10 kHz; capable Frequency Range

of measuring to 40 dB minimum.

Example Wayne Kerr A321

Audio Signal Generator

Frequency Range 100 Hz to 8000 Hz Example Advance Type J2

Telephone Headset

600 ohm impedance

Tools

Spanners: $\frac{1}{4}$ inch AF (6.5 mm) and 10/32 UNF Hex.

Screwdrivers: Various

Hexagonal wrench (Allen keys): various sizes

Soldering iron.

Terminating Resistors

100 ohms \frac{1}{4} watt $\frac{1}{4}$ watt 75 ohms $\frac{1}{4}$ watt $\frac{1}{4}$ watt 330 ohms 27 ohms

Heat Shunt

Required when soldering certain coil assemblies to the printed circuit board. Refer to the next page for details.

REPAIR DATA

IMPORTANT NOTICE

- 1. When soldering certain types of coil assembly to the printed circuit board, the heat can cause serious distortion of the coil former. The types of coil most liable to this distortion are those wound on a "Neosid" former, and the following precautions must be observed with these particular coils. The procedure is recommended for all coil soldering.
 - (1) Remove the adjustable core from the replacement coil assembly.
 - (2) Insert a brass 'dummy core' which acts as a heat shunt during the soldering operation.
 - (3) When soldering is completed, remove the brass heat shunt and insert the normal core.

HEAT SHUNT

2. The illustration below, shows the data required to make a suitable heat shunt for the above operation (4mm core).

Material: Brass

CHAPTER 3

PERFORMANCE CHECKS

INTRODUCTION

- 1. The instructions in this chapter provide a series of checks on receiver performance suitable for use subsequent to an overhaul, or in the event of adverse reports on receiver performance. Suitable test equipment is listed in Chapter 2. The tests should be performed in the order given. A satisfactory result must be obtained from the test being made before continuing with the next.
- 2. The performance requirements which are stated for each test refer to a newly-manufactured factory-aligned receiver, and should not be applied too rigidly to a receiver which has been in use for a considerable time. Furthermore, the user should assess the accuracy of his own test equipment when evaluating test results. Do not attempt to improve the receiver performance by adjusting any preset trimmer or core etc. other than in an approved test procedure.

NOTE: Signal generator levels are given as e.m.f. unless stated otherwise R.F. output voltages are r.m.s. unless otherwise stated.

CAUTION: While making test connections to the 12-way outlet on the rear panel, the receiver should be switched off to avoid an accidental short-circuit on the 1 watt output which might damage transistors.

MECHANICAL INSPECTION

- 3. (1) Check that all modules are inserted and made secure, with covers in position.
 - (2) Check all plug and socket connections.
 - (3) Check correct setting of the following switches at the rear of the receiver.
 - (a) A.C./D.C. selector switch as appropriate
 - (b) Mains Voltage Selector (225 or 115 as appropriate).
 - (4) The 2nd V. F. O. switch on the front panel should be set to INT.
 - (5) Check that fuses are of correct value and secure in their holders.
 - (6) Set the LOCK controls to OFF.
 - (7) Check all controls for smooth operation.
 - (8) Connect power supply to receiver.

POWER CHECK

- 4. (1) Connect the d.c. voltmeter -ve lead, (25 volt range) to the terminal H.T. R.F. on terminal block TB1 (Fig. 19).
 - (2) Remove the receiver cover.
 - (3) Set the System switch to MAN.
 - (4) Check that the voltmeter indicates -16 volts relative to chassis. If necessary, adjust potentiometer RVI on the power module. (Fig. 18).
 - (5) Adjust the DIMMER potentiometer for a suitable level of dial illumination.
 - (6) Remove the test equipment.

SYSTEM CHECK

- 5. (1) Connect high impedance headphones to PHONES socket.
 - (2) Connect the signal generator (impedance 75 ohms) to the R. F. INPUT (Antenna) socket.
 - (3) Set the signal generator to 3.5 MHz at 15 microvolts e.m.f. 30% modulation at 400 Hz.
 - (4) Set the receiver controls as follows:
 - (a) MHz control to 03.
 - (b) KHz control to 500.
 - (c) R. F. RANGE to WB.
 - (d) AE ATT to MIN.
 - (e) I. F. BW KHz to 3.
 - (f) R. F. GAIN fully clockwise (maximum gain).
 - (g) A. F. GAIN mid-position.
 - (h) CAL-FINE TUNE control to mid-position.
 - (j) DET-B. F. O. switch to A. M.
 - (5) Set the System switch to CAL.
 - (6) Adjust KHz tuning control around the 500 kHz indication and ensure that a beat note is heard in the phones.

- (7) Set the System switch to CHECK B. F. O. Alter the KHz tuning by approximately 10 kHz. Switch the B. F. O. TUNE control through positions +6 to -6. Note that correct change of beat note occurs at each change of setting.
- (8) Set System switch to MAN.
- (9) Reset KHz control to indicate 500.
- (10) If necessary, adjust signal generator frequency to the frequency of the receiver tuning.
- (11) Set the RA. 1217 meter switch to A. F. position.
- (12) Adjust the preset A. F. LEVEL control (on front panel) and note that the meter indication changes with variation in setting.
- (13) Connect the -ve lead of a d.c. voltmeter, set to the 10 volt range, to the terminal A.G.C. R.F. on the rear panel.
- (14) Set the RA. 1217 meter switch to R. F.
- (15) Switch off the signal generator.
- (16) Set the System switch to the A.G.C. positions Lg. Med and Sh. in turn. Check that -ve 4 volts is indicated on the d.c. voltmeter in each position.
- (17) Switch on the signal generator and adjust the e.m.f. to $1 \mu V$.
- (18) Set the R. F. RANGE to 2-4 and adjust R. F. TUNE for maximum signal.
- (19) Set the System switch to A. G. C. Med, then adjust the 'Meter Set Zero' preset control (see Fig. 18), so that l μV is indicated on the RA. 1217 meter.
- (20) Note that the d.c. voltmeter indicates approximately -ve 4 volts (not less than 3.8v) at the terminal 'A.G.C. R.F.'
- (21) Increase signal generator output in 10 dB steps up to +80 dB, check that the a.g.c. level as shown by the d.c. voltmeter becomes less negative at each 10dB step. Also check that the RA. 1217 meter indicates approximately the appropriate 'S' level at each 10 dB step. At the 12-way rear panel outlet (SKT11) briefly earth pin G (Antenna Muting) and note that the 'S' Meter indication changes from 80 dB down to less than 10 dB when the earth is applied.
- (22) Reduce the signal generator output level until the indication on the receiver front panel meter is $1 \mu V$.

- (23) Set the MHz tuning control to '00'. Note that the d.c. voltmeter a g.c. reading is removed.
- (24) Transfer the d.c. voltmeter -ve lead to the terminal H.T. R.F. Turn the MHz control clockwise. Note a reading of -16 volts. Reset the MHz control to '00' and check that the voltmeter reading is removed.
- (25) Set the MHz control to 03 and the System switch to OFF.
- (26) Transfer the -ve lead of the d.c. voltmeter to pin H (A.G.C. DIV) of the 12 way outlet SKT11.
- (27) Check that the signal generator is set to 3.5 MHz: 1μV e.m. f; 30% modulation: 400 Hz.
- (28) Set the System switch to A.G.C. Med. The d.c. voltmeter should indicate 9.5V plus or minus 1 volt.
- (29) Connect an 1.f. electronic voltmeter to the terminal DET on TB1; a reading of 200 mV should be obtained.
- (30) Set the System switch to OFF.
- (31) Transfer the electronic voltmeter to the coaxial socket '1.6 MHz OUT'.
- (32) Transfer the signal generator output to the coaxial socket 'L. F.'
- (33) Set the signal generator to 2.5 MHz and an e.m.f. of $200 \mu V$.
- (34) Set the System switch to A.G.C. Med and check that the electronic voltmeter indicates not less than 60 mV.
- (35) Set the System switch to OFF.
- (36) Connect an electronic voltmeter to the socket 2nd V. F. O. OUT at the rear of the receiver. (unterminated)
- (37) Set the System switch to MAN.
- (38) Set the 2nd V. F. O. switch to INT. The electronic voltmeter should indicate 100 mV, approximately.
- (39) Set the 2nd V. F. O. switch to EXT. Check that the indication noted in (38) has been removed.
- (40) Reset the 2nd V. F. O. switch to INT. Remove all test equipment.

Crystal Frequency Check

- NOTE 1: Receivers supplying a 100 kHz i.f. output are fitted with a 1.7 MHz crystal; if the i.f. output is 455 kHz the corresponding crystal frequency is 1.145 MHz.
- NOTE 2: It will be necessary to remove the covers from the 37.5 MHz Generator Module and the I.F. module to make the adjustments.
- 6. (1) Connect a digital counter to the rear panel socket 1.7 MHz (or 1.145 MHz)
 - (2) Set the System switch to MAN.
 - (3) Check that the digital counter indicates 1.7 MHz (or 1.145 MHz) ±2 Hz.
 - (4) If necessary adjust the trimmer capacitor C4 in the Converter board of the I.F. Unit to achieve the 1.7 MHz indication. (See Fig. L12).
 - (5) Transfer the digital counter to the rear panel socket 1 MHz OUT.
 - (6) Adjust the trimmer C7 located on the 1 MHz board in the 37.5 MHz Generator Module (See Fig. L6, C7 is beside the crystal base).
 - (7) The digital counter should indicate 1 MHz ±2 Hz.

Auxiliary Inputs and Outputs.

Socket

NOTE: The receiver will have either a 1.7 MHz crystal (100 kHz i.f.) or a 1.145 MHz crystal (455 kHz i.f.).

7. (1) Terminate with 75 ohms each of the following sockets in turn and connect an electronic voltmeter to the terminated outlet. Set the System switch to MAN. The outputs should be as follows:

TABLE 1

Bocket		Required Output
(a)	1. MHz OUT	50 mV in 75 ohms
(b)	1.7 MHz OUT	30 mV in 75 ohms
	or 1.145 MHz OUT	30 mV in 75 ohms
(c)	2nd V.F.O. OUT	50 mV in 75 ohms.

Peguired Output

- (2) Set the System switch to OFF.
- (3) Disconnect the power from the receiver.
- (4) Remove the 1 MHz crystal from the 37.5 MHz Generator Module.
- (5) Set the 2nd V. F. O. INT/EXT switch to EXT.
- (6) Re-connect the power to the receiver. Set the System switch to MAN.
- (7) Connect a signal generator sequentially to the sockets listed in Table 2 below. The signal generator output to be as stated in each case. Connect an electronic voltmeter and measure the output at the sockets listed in the right hand column of Table 2. The output in each is to be not less than 50 mV into 75 ohms.

TABLE 2

Connect Sig. Gen to these Sockets	Sig. Gen. Frequency	Sig. Gen. Output (75Ω Source)	Measure Output at the Sockets
1 MHz IN	l MHz	100 mV e.m.f.	1 MHz OUT
2nd V. F. O. IN	4 MHz	100 mV e.m.f.	2nd V.F.O. OUT

(10) Set the System switch to OFF. Replace the 1 MHz crystal Replace the module covers.

KHz Tuning (2nd V. F. O.) Calibration Check

- 8. (1) Set the kHz tuning to '000' and the System switch to CAL.
 - (2) Adjust the CAL FINE TUNE control for an audio null in the phones.
 - (3) Set the kHz tuning initially to 100 and carefully tune with KHz control to obtain an audio null, which should occur within plus or minus 500 Hz of the 100 kHz calibration point.
 - (4) Set the kHz scale to exactly 100.
 - (5) Adjust the CAL-FINE TUNE control for an audio null.
 - (6) Measure the error at 000 kHz by tuning to the audio null in the vicinity of 000 kHz. The null should be within 500 Hz of the 000 kHz scale setting.
 - (7) Set the KHz tuning to exactly 200 kHz and adjust the CAL-FINE TUNE control for an audio null.
 - (8) Tune to the null and measure the error at the adjacent 100 kHz and 300 kHz points which should be within 500 Hz of the scale settings.

- (9) Repeat this procedure at each 100 kHz point on the kHz scale.
- (10) Calibrate the kHz tuning at the '500' setting. Then check the kHz re-setting accuracy by de-tuning and re-setting to this check point, first from a lower frequency then from a higher. The re-setting accuracy should be within plus or minus 200 Hz.
- (11) Set the kHz scale to 500. Set the CAL-FINE TUNE control full clockwise and tune the kHz control for an audio null.

 Note the scale reading.
- (12) Set the CAL-FINE TUNE control fully anti-clockwise and tune the KHz control for an audio null. Note the scale reading.
- (13) The difference between the two scale readings of (11) and (12) should be not less than 7 kHz. This is the range of the CAL-FINE TUNE control.

MHz Tuning (1st V. F. O.) Calibration Check

- 9. (1) Connect a digital counter to either of the free coaxial plugs of the 1st V. F. O. module. These are located on a bracket on the underside of the receiver. (Fig. 18).
 - (2) Set the System switch to MAN.
 - (3) Set the MHz tuning scale to indicate 01.
 - (4) The digital counter should display a frequency of 41.5 MHz plus or minus 20 kHz. If necessary make a careful adjustment of the MHz control setting to obtain this reading.
 - (5) Adjust the MHz tuning control over its full range of free movement <u>but</u> without changing the scale indication. The digital counter should indicate a variation of plus or minus 0.12 MHz approximately.
 - (6) Set the MHz tuning control to 29 and adjust carefully.
 - (7) The digital counter should display 69.5 MHz plus or minus 20 kHz.
 - (8) Set the MHz tuning successively in steps of 1 MHz from 01 to 20 on the scale. The digital counter should display 41.5 MHz at 01 increasing by 1 MHz at each step. All

frequencies should be plus or minus 20 kHz. At each MHz point, free movement of the MHz control should produce a frequency variation of approximately plus or minus 0.12 MHz on the digital counter display.

(9) Remove all test equipment. Re-connect the 1st V. F. O. coaxial plug to its chassis socket.

B. F. O. Calibration

- 10. (1) Remove the cover from the I. F. Module.
 - (2) Connect a digital counter to test point TP1 on the detector board in the i.f. module. (On the collector of VT1, Fig. 12).
 - (3) Set the System switch to CHECK B. F. O. and adjust the B. F. O. TUNE control for an audio null.
 - (4) Operate the DET-B. F. O. control through all positions. Check that the digital counter indicates the frequency in accordance with Table 3.

TABLE 3

B. F. O. CHECK

Det - B. F. O. Control Setting	Measured Frequency a TP1 on Detector Board	
L.S.B.	1 601 500 Hz ±2 Hz	
U.S.B.	1 598 500 Hz ±2 Hz	
+6	1 606 000 Hz nominal	
+3	1 603 000 Hz nominal	
-3	1 597 000 Hz nominal	
-6	1 594 000 Hz nominal	

- (5) In the '0' position of the DET-B. F. O. switch check that the B. F. O. TUNE control gives a frequency shift of not less than plus or minus 3 kHz.
- (6) Remove the test equipment. Replace the cover on the module.

CAUTION: This chapter refers to audio power meter measurements on both the 10 mW 600Ω and the 1-watt 15Ω versions of the RA.1217. The user must ensure that the correct termination is used for the particular version of the receiver under test. If in doubt, refer to the Preface at the beginning of Chapter 1 for advice on audio amplifier identification.

Overall Receiver Sensitivity Check

NOTE: The audio power meter must be terminated in 15 ohms for a 1-watt receiver or in 600 ohms for a 10 mW receiver.

- 11. (1) Terminate the power meter in 600 ohms (10 mW output) or 15 ohms (1-watt output) and connect it to the audio output at pin D and pin C (screen) of the 12-way outlet 1SKT11.
 - (2) Connect the H.F. electronic voltmeter to the unterminated 1.6 MHz OUT socket. The length of cable between socket and voltmeter must not exceed 12 inches. (30 cms).
 - (3) Connect the Signal generator to the R.F. INPUT (Antenna) socket. Set the generator to 3.5 MHz modulated 30% at 400 Hz. Output level 1 μ V e.m.f. from 75 Ω source.
 - (4) Set the receiver controls as follows:-
 - (a) AE ATT to MIN.
 - (b) R.F. RANGE to 2-4 MHz.
 - (c) R.F. TUNE tuned to 3.5 MHz.
 - (d) DET B.F.O. switch to A.M.
 - (e) R.F. GAIN fully clockwise (maximum gain).
 - (f) I.F. B.W. switch to 3.
 - (g) System switch to MAN.
 - (5) Tune receiver MHz and KHz controls to 3.5 MHz and make fine adjustments to obtain maximum output on the electronic voltmeter. Peak the R.F. TUNE control.
 - (6) Set the System switch to A.G.C. Med.
 - (7) Observe the maximum level indicated on the electronic voltmeter which should be not less than 60 mV.
 - (8) Adjust the A.F. GAIN control for maximum output on the power meter. Note the indicated level which should be not less than 10 mW into 600Ω or 1 watt into 15Ω .
 - (9) Transfer the electronic voltmeter to the 100 kHz OUT socket on the rear panel, the output to be terminated in 75 ohms. Note the output level as follows:-
 - (a) For 100 kHz output not less than 230 mV.

(10) Set the System switch to MAN.

Single-Signal Selectivity

- 12. (1) Set the RA. 1217 controls as follows:-
 - (a) AE ATT to MIN.
 - (b) R.F. RANGE to 2-4 MHz.
 - (c) R.F. TUNE tuned to 3.5 MHz.
 - (d) I.F. B.W. switch to .2 (200 Hz).
 - (e) R.F. GAIN fully clockwise (maximum gain).
 - (f) DET-B.F.O. to A.M.
 - (g) System switch to MAN.
 - (2) Set the signal generator to 3.5 MHz, c.w. $1 \mu V$ e.m.f.
 - (3) Connect the digital frequency meter directly to the signal generator output and accurately tune the generator to 3.5 MHz. Remove the digital frequency meter and connect the signal generator to the receiver R.F. INPUT (Antenna) socket.
 - (4) Connect the H.F. electronic voltmeter to the 1.6 MHz OUT socket of the receiver.
 - (5) Connect the digital frequency meter in parallel with the electronic voltmeter using a sensitive probe.
 - (6) Tune the receiver to obtain the maximum indication of the electronic voltmeter. Note the output level obtained, as a reference.
 - (7) Decrease the frequency of the signal generator until the indication of the electronic voltmeter is 3 dB down relative to the reference level noted in (6). Note the frequency on the digital frequency meter.
 - (8) Increase the frequency of the signal generator above 3.5 MHz until the electronic voltmeter again indicates 3 dB down relative to the reference level noted in (6). Note the frequency on the digital frequency meter.
 - (9) Calculate the bandwidth by subtracting the frequency noted in (7) from that noted in (8). This shall be 200 Hz plus or minus 50 Hz.

(10) Repeat the procedure outlined in operations (2) to (9) for each setting of the I.F. BW. switch, setting the signal generator frequency accordingly. The limits shall be as specified below.

I.F. BW Setting	Minus 3 dB Bandwidth	
3 kHz	3 kHz ±300 Hz	
8 kHz	$8 \text{ kHz} \pm 800 \text{ Hz}$	
1.2 kHz)	$1.2 \text{ kHz} \pm 120 \text{ Hz}$	
6.0 kHz) if fitted	$6.0 \text{ kHz} \pm 600 \text{ Hz}$	
13 kHz)	$13 \text{ kHz} \pm 1300 \text{ Hz}$	

(11) Disconnect the electronic voltmeter and digital frequency meter.

Signal-to-Noise Ration (C. W. and S.S. B.)

- 13. (1) Connect the power meter (terminated in 600Ω for 10 mW or 15Ω for 1-watt) to the audio output (ISKT11 pins D and C).
 - (2) Connect the signal generator to the R.F. INPUT (Antenna) socket. Set the output to 1 μ V e.m.f. and the frequency to 3.5 MHz.
 - (3) Set the receiver controls as follows:-
 - (a) R.F. RANGE to 2-4 MHz.
 - (b) AE ATT to MIN.
 - (c) I.F. BW to 3 kHz.
 - (d) DET-B.F.O. to USB.
 - (e) R.F. GAIN fully clockwise (max. gain).
 - (f) A.F. GAIN fully clockwise (max. gain).
 - (g) Set the System switch to MAN.
 - (4) Tune the receiver (including the R.F. TUNE) to obtain maximum a.f. output on the power meter.
 - (5) Set the System switch to A.G.C. "Med" and adjust the A.F. GAIN control until the power meter indicates a reference level of 10 mW into 600Ω or 1 watt into 15Ω according to the type of audio board fitted.
 - (6) Set the System switch to MAN and adjust the R.F. GAIN control to restore the power meter reading to the reference level noted in (5).
 - (7) Set the signal generator to CARRIER OFF.
 - (8) Note the power meter reading which should be not less than 15 dB below the reference level noted in (5).

- (9) Set the R.F. RANGE switch to WB.
- (10) Set the signal generator to CARRIER ON and increase the generator output to $15 \mu V$.
- (11) Repeat the procedures (6) to (9) inclusive.

Signal-to-Noise Ratio (M.C.W.)

- 14. On completion of the C. W. Signal-to-Noise check continue as follows:-
 - (1) Set the 'DET-B.F.O. switch to A.M.
 - (2) Set the System switch to MAN.
 - (3) Set the signal generator output to 30% modulation at 400 Hz at an e.m.f. of $3 \mu V$.
 - (4) Set the R.F. RANGE to 2-4 and tune for a maximum output on the power meter.
 - (5) Set the System switch to A. G. C. "Med" and adjust the A. F. GAIN control until the power meter indicates a reference level of 10 mW into 600Ω or 1 watt into 15Ω according to the type of audio board fitted.
 - (6) Switch off the modulation at the signal generator. Note the power meter reading which should be at least 15 dB below the reference level noted in (5).
 - (7) Disconnect the power meter.

Gain/Frequency Characteristic

- 15. (1) Connect a signal generator to the R.F. INPUT (Antenna) socket. Set the signal generator to 1 MHz at 1 μV e.m.f. C.W. Maintain the generator e.m.f. at 1 μV throughout the tests.
 - (2) Connect the H.F. electronic voltmeter to the 1.6 MHz OUT socket using short leads.
 - (3) Set the receiver controls as follows:-
 - (a) AE ATT to MIN.
 - (b) R.F. RANGE to 1-2 MHz.
 - (c) R.F. GAIN fully clockwise (maximum gain).
 - (d) I.F. BW to 3.
 - (e) DET-B.F.O. to L.S.B.
 - (f) System switch to MAN.
 - (g) Meter switch to R.F.

- (4) Tune the receiver (including R.F. TUNE) for a maximum output on the electronic voltmeter of not less than 60 mV. Note the actual reading obtained.
- (5) Set the signal generator successively to the following frequencies (at 1 μV) and repeat operation (4). Record the readings obtained: 1.5 MHz 2.0 MHz 3.0 MHz 4.0 MHz 6.0 MHz 12.0 MHz
 16.0 MHz 24.0 MHz and 29.999 MHz.
 Each output should be within a 12 dB range over the frequency band 1-30 MHz. The minimum level shall be not less than 35 mV and the maximum level not greater than 250 mV.

A.G.C. Characteristic Check

- 16. (1) Connect the signal generator to the R.F. INPUT (Antenna) socket.
 - (2) Set the signal generator to 10.5 MHz, modulation 30% at 400 Hz, e.m.f. $2 \mu V$.
 - (3) Connect the power meter (terminated in 600Ω for 10 mW or 15Ω for 1 watt) to the audio output (1SKT11 pins D and C).
 - (4) Set the receiver controls as follows:-
 - (a) R.F. RANGE to 8-16 MHz.
 - (b) AE ATT to MIN.
 - (c) I.F. BW to 3.
 - (d) DET-B.F.O. to A.M.
 - (e) R.F. GAIN fully clockwise (maximum gain).
 - (f) System switch to MAN.
 - (5) Tune the receiver (including R.F. TUNE) to 10.5 MHz and adjust for maximum output on the power meter.
 - (6) Set the System switch to AGC Med.
 - (7) Adjust the A.F. GAIN control to provide a reference reading on the power meter of either 1 mW into 600Ω or 10 mW into 15Ω .
 - (8) Increase the signal generator output to plus 85 dB relative to $2 \mu V$. Check that the power meter indication does not increase by more than +4 dB.
 - (9) Reset the signal generator to 2 μV and then repeat operation
 (8) in the AGC 'sh' and AGC 'lg' settings of the System switch.
 - (10) The power meter should remain connected for the Noise Factor check.

Noise Factor Check

- 17. (1) Connect the noise generator $(75\Omega \text{ source})$ to the R.F. INPUT (Antenna) socket. Do not switch on the noise generator.
 - (2) Connect the power meter (terminated in 600Ω for 10 mW or 15Ω for 1 watt) to the audio output (1SKT11 pins D and C).
 - (3) Set the receiver controls as follows:-
 - (a) AE ATT to MIN.
 - (b) System switch to MAN.
 - (c) DET-B.F.O. to U.S.B.
 - (d) I.F. BW to 3.
 - (e) R.F. GAIN fully clockwise (maximum).
 - (f) The R.F. RANGE and R.F. TUNE should be set to the appropriate settings for peak tuning at each test.
 - (4) Check that the noise generator is switched off. Set R.F. RANGE to 1-2 and tune the receiver (including R.F. TUNE) to 01.000 MHz. Carefully adjust the MHz control for maximum indication on the power meter and peak the R.F. TUNE control.
 - (5) Adjust the A.F. GAIN control for a powermeter reading of either lm W (10mW receiver) or 100mW (one-watt receiver).
 - (6) Switch on the noise generator and increase its output until the power meter reading is increased by +3 dB. The increase in noise generator output (noise factor) to achieve this increase should not exceed 10 dB.
 - (7) Repeat operations (4), (5) and (6) at the following frequencies:
 1.5 MHz 2.0 MHz 3.0 MHz 4.0 MHz 6.0 MHz 12.0 MHz, tuning the receiver to the appropriate range in each case.
 - (8) With the R.F. RANGE switch set to '16-32' repeat the procedures of (4), (5) and (6) checking that the noise factor does not exceed 12 dB at 16.0, 24.0 and 29.999 MHz.
 - (9) Disconnect the Noise Generator.

First Mixer Balance Check

- 18. CAUTION: Do not remove the cover from the 1st mixer and 40 MHz filter module. A suitable alignment hole is in the cover.
 - (1) Connect the signal generator to the R.F. INPUT (Antenna).
 - (2) Set the signal generator to 3.5 MHz, C. W., e.m.f. $15 \mu V$.

3 - 14

Volume 3

- (3) Connect the power meter (terminated in 600Ω for 10 mW or 15Ω for 1 watt) to the audio output (1SKT11 pins D and C).
- (4) Connect the electronic voltmeter to the socket 1.6 MHz OUT.
- (5) Set the receiver controls as follows:-
 - (a) AE ATT to MIN.
 - (b) R.F. RANGE to WB.
 - (c) DET-B.F.O. to U.S.B.
 - (d) I.F. BW to 3.
 - (e) R.F. GAIN fully clockwise (maximum gain).
 - (f) MHz tuning to 3 and KHz tuning to 500.
 - (g) Meter switch to A.F.
 - (h) System switch to MAN.
- (6) Tune the receiver to a maximum reading on the power meter and adjust the A.F. CAIN control to obtain a reference level of 1mW (10mW receiver) or 100mW (one-watt receiver).
- (7) Set the signal generator frequency to 20 MHz.
- (8) Increase the signal generator output by plus 60 dB relative to $15 \mu V$.
- (9) Vary the signal generator tuning around the 20 MHz point until a maximum reading is obtained on the power meter.
- (10) Balance the mixer by adjusting the potentiometer RV1 on the 1st Mixer board (Fig. L8) to obtain a minimum output on the power meter. Check that this minimum reading is not less than 60 dB down relative to the reference level noted in (6).
- (11) Remove the signal generator.

Spurious Response to Internal Signals

CAUTION: Spurious responses can occur if module securing screws are slack or if covers are loose.

- 19. (1) Ensure that all module covers are secure also the top and bottom covers of the receiver.
 - (2) Connect the power meter (terminated in 600Ω for 10 mW or 15Ω for 1 watt) to the audio output (ISKT11 pins D and C).
 - (3) Disconnect and switch off the signal generator and terminate the R.F. INPUT (Antenna) socket with 75 ohms.

3 - 15

RA. 1217 Volume 2

- (4) Set the Receiver controls as follows:-
 - (a) AE ATT to MIN.
 - (b) R.F. RANGE to WB.
 - (c) DET-B.F.O. to U.S.B.
 - (d) R.F. GAIN fully clockwise (Maximum).
 - (e) I.F. BW to 3 kHz.
 - (f) System switch to MAN.
 - (g) Set the MHz and KHz tuning to 01.000 initially.
- (5) Adjust the MHz tuning carefully for maximum noise level on the power meter.
- (6) Adjust the A.F. GAIN control to obtain a noise level on the power meter of 1 mW into 600Ω or 100 mW into 15Ω .
- (7) Turn the KHz tuning control slowly and carefully through its range from 000 to 999. When a spurious response is heard in the phones, offset the KHz tuning until the response is no longer audible and then adjust the A.F. GAIN control to restore the reference level noted in (6).
- (8) Retune the Khz tuning to the spurious response and carefully tune to obtain a peak reading on the power meter.
- (9) Note the increase in the power meter reading relative to the reference level obtained in (7). This increase should not exceed 3 dB.
- (10) Repeat operations (5) to (9) at each setting of the MHz control from 02 up to 29.
- (11) Repeat operations (5) to (9), with the R.F. RANGE set to the appropriate range, and the R.F. TUNE control adjusted to maximum noise setting at each MHz setting from 02 up to 29.
- (12) On completion remove the 75Ω termination from the R.F. INPUT socket.

Spurious Response to External Signals

- 20. (1) Connect the signal generator to the R.F. INPUT (Antenna) socket.
 - (2) Set the signal generator to 3.5 MHz, C. W. 1 μ V e.m.f.
 - (3) Connect the power meter (terminated in 600Ω for 10 mW or 15Ω for 1 watt) to the audio output (1SKT11 pins D and C).

- (4) Set the receiver controls as follows:-
 - (a) AE ATT to MIN.
 - (b) R.F. RANGE to 2-4 MHz.
 - (c) DET-B.F.O. to L.S.B.
 - (d) R.F. GAIN fully clockwise.
 - (e) I.F. BW to 3 kHz.
 - (f) System Switch to MAN.
- (5) Tune the receiver (including R.F. TUNE) to the signal generator frequency for a maximum power output.
- (6) Adjust the A.F. GAIN control to obtain a reference reading on the power meter of either 1 mW for the 10 mW receiver or 100 mW for the 1 watt receiver.
- (7) Set the signal generator to 3.55 MHz and increase the signal generator output level to +70 dB. Make a very fine adjustment of the MHz control until a spurious frequency is heard. Lock the tuning controls at this point. (If locks are fitted).
- (8) Tune the signal generator carefully from 3 MHz up to 4 MHz. If a spurious frequency is found, adjust the signal generator output to restore the appropriate reference level noted in (6). Check that such generator level settings are not less than 60 dB above 1 μV to provide the appropriate reference level.
- (9) If a spurious response is located, which results in a signal generator level of less than 60 dB for the reference level reading on the power meter, proceed as follows:-
 - (i) Remove the cover from the 37.5 MHz Generator module.
 - (ii) Make a small adjustment of the potentiometer RV1 on the Harmonic Mixer board (Fig. L-7) to reduce the spurious response, as shown by a fall in the power meter reading.
 - NOTE: For access to the Harmonic Mixer board remove the cover from the 37.5 MHz Generator module.
 - (iii) Adjust the signal generator output level to obtain the reference level on the power meter (either 1 mW or 100 mW as appropriate). The signal generator level should be not less than 60 dB, in accordance with operation (8). If necessary make a further small adjustment of RV1 and repeat the test.

- (iv) Replace the cover on the 37.5 MHz Generator module and the receiver cover.
- (v) Repeat operation (8).
- (10) Disconnect the signal generator and power meter.

CHAPTER 4

ALIGNMENT PROCEDURES

INTRODUCTION

1. The purpose of this chapter is to enable the modules of a receiver to be tested to a serviceable standard. The tests are designed to be as independent as is practicable, so that the checks on a particular module rely as little as possible on the correct functioning of another module, thereby providing a useful aid to the fault location chapter. If the user wishes to check the overall performance of the receiver, reference should be made to Chapter 3.

NOTE: Throughout this chapter the signal generator output level in each test is given as e.m.f. unless otherwise stated. All r.f. voltages are r.m.s. unless otherwise stated.

CAUTION: Under normal conditions the receiver will maintain the factory alignment over a long period of time, consequently any other causes of trouble should be eliminated before re-alignment is undertaken. If it becomes necessary to re-align any part of the receiver, only small angular adjustments of any trimmers or tuning slugs should be necessary. When replacing access covers, module shields, etc., ensure that all screws are firmly secured to prevent any spurious signals from affecting the receiver, but do not overtighten, to the extent that screw-hole threads become damaged.

PROCE	EDURES	Page
2.	Audio Amplifier Board	4 - 2
	I.F. Module (including B.F.O. check)	4 - 3
	Third Mixer	4 - 6
	Second Mixer	4 - 8
	1 MHz and 37.5 MHz Module	4 - 10
	First Mixer	4 - 13
	Filters	4 - 13
	Second VFO	4 - 14
	First VFO	4 - 14
	R.F. Module	4 - 15

AUDIO AMPLIFIER BOARD

(1 watt Version)

Test Equipment

3. Multimeter: 20 000 ohms/volt. (AVO 8). Soldering Iron.

Initial Control Settings

4. R.F. GAIN and A.F. GAIN fully anti-clockwise (minimum).

Setting Procedure

- 5. (1) Remove the metal panel from the underside of the receiver.
 - (2) Set the multimeter to the 25 volt d.c. range:

 Connect the -ve lead to pin 5 on the audio amplifier board and the +ve lead to chassis.
 - (3) Set the System switch to MAN.
 - (4) Adjust the potentiometer RV1 on the audio board for a reading of -8 volts on the multimeter.
 - (5) Set the System switch to OFF and unsolder the h.t. (violet) lead from pin 6 of the board.
 - (6) Set the multimeter to the 100 mA d.c. range and connect in series with pin 6 and the disconnected h.t. lead. (+ve lead to pin 6).
 - (7) Set the System switch to MAN and adjust potentiometer RV2 on the board for a reading of 55 mA on the multimeter.
 - (8) Set the System switch to OFF.
 - (9) Remove the multimeter and re-solder the h.t. lead to pin 6.
 - (10) Repeat operations (2), (3) and (4), adjusting RV1 if necessary.
 - (11) Remove the test equipment and replace the metal panel.

AUDIO AMPLIFIER BOARD

(10 mW Version)

There are no adjustments in the 10 mW audio amplifier board.

Refer to Chapter 3 paragraph 11 for a check procedure. If the
10 mW level cannot be obtained in operation (8) of that paragraph it will be
necessary to employ basic servicing methods to find the cause of low output.

I.F. MODULE

Test Equipment

6. Signal Voltmeter.

D. C. Voltmeter.

Electronic Voltmeter.

Digital Frequency Meter.

Power Meter: $(600\Omega \text{ for } 10 \text{ mW or } 15\Omega \text{ for } 1 \text{ watt measurements}).$

0.1 µF Capacitor 30V rating.

Initial Control Settings

7. R.F. GAIN - Fully clockwise.

A. F. GAIN - Fully clockwise.

System switch - MAN.

DET - B.F.O. switch - A.M.

BANDWIDTH - 3 kHz.

Alignment Procedure

Fig. L-12 Fig. 12 Fig. 18

CAUTION 1: Coaxial Test connections to the 1.6 MHz OUT socket at the

rear panel must be short. (Not longer than 12 inches, 30 cm).

CAUTION 2: Note the alternative terminations for the 10 mW (600 Ω) and

l watt (15Ω) audio outputs. The user must determine which one is appropriate for the particular receiver under test.

NOTE: To make tests and adjustments within the I.F. Module the module cover and the receiver sideplate must be removed. Refer to

Chapter 7 page 7-2 for removal instructions.

- 8. (1) Disconnect the coaxial input lead from the socket SKT4 at the forward end of the i.f. module.
 - (2) Connect the electronic voltmeter to the rear panel socket 1.6 MHz OUT using a short lead.
 - (3) Connect the D. C. voltmeter (10 V range) to pin 3 on the I. F. Amplifier board (-ve lead).
 - (4) Adjust potentiometer RV1 on the A.G.C. board to produce a reading of -4 volts on the voltmeter.
 - (5) Set the signal generator to 1.6 MHz ±10 Hz at an e.m.f. of 40 microvolts. Connect the generator to the i.f. input, SKT4 at the forward end of the I.F. Module.
 - (6) Note the 1.6 MHz output level on the electronic voltmeter which should be between 80 and 150 mV. If below 80 mV, align the coils in the following order for maximum output on the electronic voltmeter.

L1 on the A.G.C. board. L2 and L1 on the I.F. Amplifier board.

I.F. Module (Continued)

- (7) Terminate the audio output (SKT11 pins D and C) in 600Ω (10 mV) or 15Ω (1 watt) and connect the power meter.
- (8) Set the signal generator to 1.6 MHz modulated 30% at 1000 Hz, and check that the audio output is not less than 10 mW (or 1 watt). (A.F. GAIN fully clockwise).
- (9) If the 10 mW (or the 1 watt) indication is not obtained, adjust the cores L3 on I.F. Amplifier board and T1 on the Detector board to obtain such an indication on the Power meter.
- (10) Switch off the modulation and set the DET B. F. O. switch to L. S. B. and U. S. B. in turn. Note that the Power meter reads at least 10 mW (or 1 watt) in each setting.
- (11) Set the DET B. F. O. switch successively to the positions +6 through to -6 and note that the 10 mW (or 1 watt) output is obtained in each setting.
- (12) Set the DET B.F.O. switch to A.M. and the System switch to A.G.C. 'Sh'.
- (13) Increase the signal generator output level by +36 dB.

 Observe the change of reading on the electronic voltmeter which should not exceed +3 dB. If the indication is satisfactory, omit the next operation.
- (14) If, in operations (13) the electronic voltmeter reading showed an increase of more than 3 dB adjust L2 in the A.G.C. board to produce a minimum level in the electronic voltmeter reading.
- (15) Re-set the signal generator output according to operation (5).
- (16) Terminate the 100 kHz OUT socket in 75 ohms. Connect the electronic voltmeter across the termination. For a 1.6 MHz 40 microvolt input to the i.f. unit the output should be not less than 230 mV into 75 ohms at 100 kHz. If the output is low adjust L1 on the converter amplifier board. If necessary adjust L2 and L1 on the converter oscillator board.

CAUTION: Peaking of the converter board inductors can adversely affect the selectivity characteristics. Set the I.F. BW switch to the widest bandwidth and tune the signal generator through the receiver passband; note that the response is symmetrical.

RA, 1217 Volume 2

I.F. Module (Continued)

- (18) Connect the digital counter to the 1.7 MHz IN/OUT socket (1.145 MHz OUT). Check the appropriate frequency. If necessary adjust C4 on the oscillator board to obtain the required frequency ±2 Hz.
- (19) Remove the counter and connect the electronic voltmeter in its place. A reading of not less than 100 mV should be obtained.

B.F.O. Check

NOTE: Refer to Chapter 3 page 3-8 para. 10 for calibration check. If necessary align as follows:-

- 9. (1) Connect a digital counter to test point TP1 on the detector board in the I.F. Module via a 0.1 µF capacitor.
 - (2) Set the System switch to MAN.
 - (3) Set the B. F. O. TUNE control to the mid-point of its movement. (Capacitor vanes at half-mesh).
 - (4) Set the B. F. O. KHz switch to L. S. B. The counter should read 1601.50 kHz ±2 Hz. If necessary adjust the Trimmer capacitor C21 on the Detector board to obtain the correct frequency.
 - (5) Set the DET B. F. O. switch to U. S. B. The counter should read 1598.50 kHz ±2 Hz. If necessary adjust Trimmer capacitor C22 on the Detector board to obtain this frequency.
 - (6) Set the DET B. F. O. switch to +6. Refer to Fig. L-13 and Fig. 18 to identify B. F. O. board. Adjust coil L1 in the B. F. O. board for a frequency of 1.606 000 Hz, plus or minus 100 Hz.
 - (7) Set the DET B. F. O. switch and adjust the appropriate capacitor on the 600 kHz B. F. O. board, to an accuracy of ±100 Hz as follows:

B. F. O. Switch Setting	Capacitor to Adjust	Frequency (Hz)
+3	C2	1 603 000
Q	C3	1 600 000
-3	C5	1 597 000
-6	C6	1 594 000

- (8) Remove all test equipment.
- (9) Leave the coaxial input lead to the i.f. unit (PL3) disconnected for the 3rd Mixer check which follows.

3RD MIXER

Test Equipment

10. Two Signal Generators with frequency ranges up to 6 MHz and 4 MHz respectively.

Electronic Voltmeter.

Initial Control Settings

11. System Switch - MAN
2nd V. F. O. Switch - EXT
MHz Tuning - set to 00 MHz
CAL-FINE TUNE Control - Mid-position of its travel

Alignment Procedure

Fig. L-11, Fig. 11

- 12. (1) Connect the signal generator to the 2nd V. F. O. IN socket on the rear panel.
 - (2) Connect the electronic voltmeter to test point TP2 on the 3rd Mixer board.
 - (3) Set the Signal Generator to 5.6 MHz and set the attenuator on the generator for a convenient reading on the electronic voltmeter (50 mV).
 - (4) Tune coil L4 for a minimum on the electronic voltmeter.
 - (5) Set the generator to 3 MHz and tune L6 for minimum on the electronic voltmeter.
 - (6) Set the generator to 3.6 MHz and tune L7 for maximum on the R.F. voltmeter.
 - (7) Set the generator to 4.6 MHz and tune L2 for maximum on the electronic voltmeter.
 - (8) Repeat the above procedures until the response is flat within 3 dB from 3.6 to 4.6 MHz.
 - (9) Transfer the signal generator to the socket L.F. on the rear panel.
 - (10) Connect the electronic voltmeter to pin 1 on the 3rd Mixer board.
 - (11) Set the generator to 3 MHz and set the generator output for a 50 mV reading on the electronic voltmeter.
 - (12) Tune coil 1L1 on the 3rd Mixer for maximum reading on the electronic voltmeter.
 - (13) Tune the generator from 2 MHz to 3 MHz and check that the output remains constant within 3 dB.

3rd Mixer (Continued)

- (14) Transfer the signal generator from the L. F. socket to pin 3 on the 2nd MIXER board. Set the generator accurately to 2.4 MHz ±10 Hz. Adjust the generator output level to a p.d. of 10 mV measured at pin 3 on the 2nd Mixer board.
- (15) Connect a second signal generator to the 2nd V. F. O. IN socket on the rear panel. Set this generator accurately to 4 MHz ±10 c/s and an e.m.f. of 100 mV.
- (16) With the input lead at the forward end of the I.F. Unit (PL3) disconnected, terminate the lead in 100 ohms.

 Connect the electronic voltmeter across the termination.
- (17) On the 3rd Mixer board tune coils L5 and L3 for maximum reading on the electronic voltmeter.
- (18) Check that a stage gain of not less than unity is obtained (calculated from the p.d. at pin 3 on the 2nd Mixer to the p.d. at the 100 ohm termination). Normally the gain is approximately + 20dB.
- (19) Remove the test equipment. Reset the 2nd V. F. O. switch to INT.

2ND MIXER

Test Equipment

10. Two Signal Generators, each with a frequency range up to 40 MHz. Electronic Voltmeter.

Initial Control Settings

11. System switch - MAN.

MHz tuning - Set to indicate 00 MHz, to disable 1st V.F.O. etc.

Alignment Procedure

Fig. L-9 Fig. 9

- 12. (1) Remove the 1 MHz crystal from the 1 MHz module. (Fig. L-7). Connect the electronic voltmeter to TP2 on the 2nd Mixer board. Connect the signal generator to pin 1.
 - (2) Set the signal generator to 37.5 MHz and an e.m.f. of 10 mV.
 - (3) Tune coil T1 for maximum on voltmeter. The electronic voltmeter should indicate approximately 100 mV.
 - (4) Connect the electronic voltmeter to pin 3.
 - (5) Transfer the signal generator to the socket LF on the rear panel.
 - (6) Set the signal generator to 2.5 MHz and adjust the generator output level for a convenient reference level (say 30 millivolts) on the electronic voltmeter.
 - (7) Carefully sweep the signal generator through the range 2 MHz to 3 MHz, at the same time noting the electronic voltmeter readings. Check that the response obtained is flat within 3 dB. The following filter data will assist adjustment should this be necessary.

<u>CAUTION</u>: Do not attempt to re-align the 2nd Mixer filters unless absolutely essential.

FILTER FREQUENCIES

L1 . . 2 to 3 MHz L4 . . 2 to 3 MHz

L2 .. 3.66 MHz (rejection) L5 .. 4.5 MHz (rejection)

L3 .. 1.6 MHz (rejection) L6 .. 1.3 MHz (rejection)

T1 .. 2 to 3 MHz

(8) Disconnect the signal generator.

2nd Mixer Check

- (9) Two signal generators are required for the following Mixer test. Connect signal generator No. 1 to pin 1 of the 2nd Mixer board. Set the generator to 37.5 MHz at an e.m.f. of 10 mV.
- (10) Set signal generator No. 2 to 40 MHz and connect to pin 6 of the 2nd Mixer board. Adjust this generator for a p.d. of 10 mV measured at pin 6.
- (11) Connect the electronic voltmeter to pin 3 (output) of the mixer board and check that a reading of 10 mV ± 3 dB is obtained.
- (12) Disconnect all test equipment.
- (13) Re-fit the 1 MHz crystal to the 1 MHz module.

37.5 MHz GENERATOR MODULE

1 MHz AMP, OSCILLATOR AND CALIBRATOR SECTION

Test Equipment

16. Signal Generator with a frequency range at least to 37.5 MHz.

Electronic Voltmeter

Digital Frequency Meter (Counter)

Oscilloscope

Initial Control Settings

17. System Switch - MAN

Alignment Procedure

Fig. L-6 Fig. 6

NOTE: The 1 MHz and Calibrator Section is on the upper deck of the module. Refer to the illustration in Fig. L-7.

- 18. (1) Check that the 1 MHz crystal is secure in its holder on the oscillator board.
 - (2) Connect the electronic voltmeter to the rear panel socket 'l MHz OUT' and check for a reading of approximately 100 mV.
 - (3) Connect the counter to the '1 MHz OUT' socket. The frequency should be 1 MHz ±2 Hz. If necessary adjust capacitor C7 on the oscillator board to achieve the required frequency.
 - (4) Connect the oscilloscope to the junction of C12 and R17 on the amplifier board.
 - (5) Adjust the coil L1 on the amplifier board for maximum amplitude which should be approximately 17 volts. The approximate waveform is shown below

- (6) Remove the 1 MHz Crystal from its holder on the oscillator board.
- (7) Connect the signal generator to the '1 MHz IN' socket. Set the signal generator to 1 MHz and 100 mV e.m.f.

- (8) Transfer the electronic voltmeter to the junction of C4 and C5 on the oscillator board and check for a reading of approximately 100 mV.
- (9) Replace the crystal. Disconnect the signal generator and electronic voltmeter.
- (10) Connect the oscilloscope to the -ve side of diode Dl (pin A2). The output waveform display should be as shown below.

(11) Remove the test equipment and proceed with a check of the lower deck of the module. Switch off the receiver.

HARMONIC GENERATOR, MIXER AND 37.5 MHz AMPLIFIER

- 19. Refer to Fig. L-7 and to Chapter 7 for access instructions.
 - (1) Disconnect the Harmonic Filter from the Harmonic Generator by unsoldering the lead from pin 1 on the Harmonic Filter.
 - (2) Connect the electronic voltmeter to pin 2 on the Harmonic Mixer board.
 - (3) Connect a signal generator, source impedance 390 ohms to pin 1 of the Harmonic Filter. See diagram below.

- (4) Set the signal generator output to 2 volts e.m.f. Explore the passband of the Harmonic Filter from 1 MHz to 32 MHz. The ripple should not exceed 3 dB. If necessary adjust capacitors C2, C4, C6 and C8 in the Harmonic Filter for minimum ripple.
- (5) Set the signal generator to 33 MHz and check that the output is dB down relative to the level at 32 MHz.
- (6) Disconnect the signal generator and electronic voltmeter.

 Reconnect the lead unsoldered in (1). Switch on the receiver.
- (7) Connect the oscilloscope to pin 1 of the Harmonic Generator board. The waveform and amplitude should be as measured in para. 18 operation (5) (approx. 17V p-p).
- (8) Transfer the oscilloscope to pin 2 of the Harmonic Mixer board. The amplitude should be approx. 1.2V peak-to-peak.
- (9) Transfer the electronic voltmeter to pin 5 on the Harmonic Mixer board.
- (10) Connect the signal generator to pin 4 on the Harmonic Mixer board.
- (11) Set the signal generator to 37.5 MHz at 2 mV e.m.f.
- (12) Tune coil L1 in the Mixer to a maximum reading on the electronic voltmeter which should indicate approximately 10 mV.
- (13) Transfer the electronic voltmeter to pin 4 on the 37.5 MHz Amplifier and adjust T1 on the amplifier for maximum indication. A level of approximately 100 mV should be obtained.
- (14) At the bracket on the underside of the receiver disconnect the lead which goes to the 37.5 MHz Generator module (Fig. 18). Connect the signal generator output to this lead and inject 37.5 MHz at an e.m.f. of 20 mV.
- (15) Connect the electronic voltmeter to pin 5 on the Harmonic Mixer board. Adjust RV1 on the Mixer board for a minimum reading on the electronic voltmeter.

1ST MIXER

Test Equipment

20. Two Signal Generators 3.5 MHz and 43.5 MHz Electronic Voltmeter.

Initial Control Setting

21. MHz Tuning - 03.

Alignment Procedure

- 22. (1) Disconnect the two free coaxial leads which feed the lst Mixer from their connections to the R. F. Module and lst V. F. O. (lst V. F. O. connection is at a bracket on the underside of the receiver, see Fig. 18)
 - (2) Connect signal generator No. 1 to PL1 on the 1st Mixer lead normally fed from the R.F. Unit. Set this generator to 3.5 MHz at a p.d. of 10 mV, measured at pin 2 on the 1st Mixer board.
 - (3) Connect signal generator No. 2 to PL3 on the 1st Mixer lead which is normally fed from the 1st V. F. O. (underside of the receiver). Set this generator to 43.5 MHz at an e.m. f. of 200 mV.
 - (4) Connect the electronic voltmeter to pin 6 on the 2nd Mixer board.
 - (5) Set the System switch to MAN and check that the electronic voltmeter reads 10 mV ±3 dB.

FILTERS

23. No information is given on the alignment of the 40 MHz or the 37.5 MHz Bandpass Filters because it is considered that the equipment and specialized skill required for satisfactory alignment of these filters is outside the scope of the average service department. A factory aligned unit should be fitted in the unlikely event of a defect in either of these units.

<u>2ND V. F. O.</u>

Test Equipment

24. Digital Frequency Meter (Counter)

Electronic Voltmeter

Procedure

NOTE: The 2nd VFO cover need not be removed.

- 25. (1) Refer to Chapter 3 page 3-6 and perform the KHz Tuning Calibration Check in paragraph 8. If the frequencies are not correct make fine adjustment of C4, accessible through a hole in the module cover.
 - (2) Connect the electronic voltmeter to the '2nd VFO OUT' socket on the rear panel across a 75 ohm termination.

 A level of 50 mV should be obtained.
 - (3) Transfer the electronic voltmeter to the test point TP2 in the 3rd Mixer module (Fig. 11). A level of not less than 50 mV should be obtained.

1ST V. F. O.

Test Equipment

26. Digital Frequency Meter (Counter)
Electronic Voltmeter

Initial Control Settings

27. MHz Tuning - not set to '00'

Procedure

- 28. (1) Refer to Chapter 3 and perform the MHz Tuning Calibration Check in paragraph 9.
 - (2) The 1st V.F.O. output check is described in Chapter 5 page 5-4 operation (5).

R.F. MODULE

Test Equipment

29. Electronic Voltmeter

Signal Generator (75 ohms source)

DC Voltmeter

Coil Trimmer Tool (supplied with the receiver)

Initial Control Settings

30. System Switch - MAN

MHz Tuning - not on 00 MHz

RF RANGE - Wideband (WB)

AE ATT - Minimum (MIN)

RF Gain Control - Maximum (fully clockwise)

Antenna Filter Alignment

31. The filter alignment is unlikely to need attention. The procedure is described in para. 36 for use if needed as part of a major overhaul.

Aerial Attenuator (AE ATT) Check

Fig. 4 Fig. L-4

- 32. (1) Set the receiver controls according to para. 30 above.
 - (2) Check that approximately -4 volts is present on the a.g.c. line. (measure at microswitch 1SA).
 - (3) Disconnect the 1st Mixer lead from the outlet (SKT2) on the R. F. Module.
 - (4) Connect the electronic voltmeter across the outlet SKT2.
 - (5) Set the signal generator to 3.5 MHz and connect the out put to the R.F. INPUT (Antenna) socket.
 - (6) With the receiver AE ATT control set to MIN, adjust the signal generator output for a suitable dB reference on the electronic voltmeter. Note the signal generator and voltmeter levels.
 - (7) Set the AE ATT control one step towards MAX.
 - (8) Increase the signal generator output to restore the reference level established in (6).
 - (9) Note the increase in signal generator output, which should be 10 dB ±2 dB.
 - (10) Repeat operations (6), (7) and (8). The increase in attenuation obtained at each setting of the AE ATT control should be as follows:

R. F. Module (Continued)

AE ATT Switch Setting			Change in Attenuation		
	5	MIN	0 dB	(Reference)	
	4		-10 dB	±2 dB	
	3		-20 dB	±2 dB	
	2		-30 dB	±2 dB	
	1	MAX	-40 dB	±2 dB	

Coil and Capacitor Assembly Alignment

- NOTE 1: The cores of coils 2L1 to 2L5 and capacitors 2C1 to 2C5 can be adjusted via holes in the receiver rear panel. Remove the plate marked "R. F. INPUT" to obtain access.
- NOTE 2: A special double-ended plastic trimming tool is supplied with the receiver for the adjustment of 2L1 to 2L5. Note that the longer and thinner end of the tool must be used for this adjustment.
- 33. (1) Remove the cover from the R.F. Module.
 - (2) Using the plastic trimming tool set all coil cores, 2Ll to 2L5, to the extreme ends of the coil formers.
 - (3) Set the trimmer capacitors 2C1 to 2C5 to the fully with-drawn position (minimum capacitance).
 - (4) Connect the signal generator (75 Ω source) to the R.F. INPUT (Antenna) socket.
 - (5) Connect an electronic voltmeter to the R. F. Module output. (SKT2 on the side of the unit). Set the voltmeter initially to the 10 mV range.
 - (6) Set the R.F. TUNE control fully anti-clockwise and then turn clockwise about 45 degrees so that the knifing slot of the first segment of the vanes is aligned with the edge of the static vanes. (see illustration opposite) The dot on the R.F. TUNE control should coincide with the 1 MHz engraving on the scale.

- (7) Set the signal generator to a frequency of 1.0 MHz at an e.m.f. of 3 mV.
- (8) Set the receiver controls as follows:

System switch - MAN

R. F. RANGE - '1-2'

R. F. GAIN - maximum clockwise

AE ATT - MIN

MHz tuning - not on '00'.

- (9) Check that approximately -4 volts is present on the a.g.c. line.
- (10) Re-fit the cover to the R.F. Module.
- (11) Insert the trimming tool into the core aperture of 2L1.

 Engage the secondary core which is at the end nearer to the rear of the receiver. Check that the core is fully anti-clockwise, then screw the core slowly clockwise for a maximum indication on the electronic voltmeter. The core must be set to the first tuning point obtained. Adjust the voltmeter range as necessary.
- (12) Push the trimming tool right through to the further end to engage the primary core. Check that the core is fully clockwise, then slowly screw the core inwards (anti-clockwise) to obtain a maximum voltmeter reading at the first tuning point. The primary tuning is fairly insensitive and close attention is required to observe the resonant point.
- (13) Set the signal generator to 2.0 MHz.
- (14) Adjust the R. F. TUNE control for a maximum indication on the electronic voltmeter and adjust the trimmer capacitor 2Cl for a maximum voltmeter reading. Note this maximum reading as a reference.

- (15) Tune the signal generator as follows and note the output readings obtained.
 - (a) 1.8 MHz
 - (b) 2.2 MHz

The voltage ratio at resonance (operation 14) relative to the off-tune readings in (a) or (b) should be not less than 6 to 1.

- (16) Set the signal generator to 1.5 MHz.
- (17) Adjust the R. F. TUNE control for a maximum indication on the electronic voltmeter and note this reading as a reference. Check that the R. F. TUNE control cursor lies within the scale calibration marks.
- (18) Set the signal generator as follows and note the output readings obtained.
 - (a) 1.65 MHz
 - (b) 1.35 MHz

The voltage ratio at resonance (operation 17) relative to the off-tune readings in (a) and (b) should be not less than 6 to 1.

- (19) Set the signal generator to 1.0 MHz and repeat the procedure of (17).
- (20) Repeat the procedure of (18) at signal generator frequencies of 900 kHz and 1.1 MHz.
- Align the remaining circuits, that is the 2-4 MHz, 4-8 MHz, 8-16 MHz and 16-30 MHz ranges, as described in operations (6) to (20) but using the frequencies specified in the following alignment table. Set the R. F. RANGE control as stated in the left hand column. The right hand column is available for the tester to insert the readings obtained. The voltage ratio of the resonance reading relative to the 'off-tune' readings must in all cases be not less than 6:1

Refer to the alignment table on the next page

ALIGNMENT TABLE

Coil and Capacitor Assembly

R.F. Range Setting	Signal Generator Setting	Adjust	Output Readings Obtained
2 - 4 MHz	2.0 MHz	2L2	
11	4.0 MHz	2C2	
**	3.6 MHz and 4.4 MHz		
**	3.0 MHz		
	2.7 MHz and 3.3 MHz		
11	2.0 MHz		
11	1.8 MHz and 2.2 MHz		
4 - 8 MHz	4.0 MHz	2L3	
11	8.0 MHz	2C3	
11	7.2 MHz and 8.8 MHz		
11	6.0 MHz		
11	5.4 MHz and 6.6 MHz		
11	4.0 MHz		
11	3.6 MHz and 4.4 MHz		
8 - 16 MHz	8.0 MHz	2 <u>L4</u>	
11	16.0 MHz	2C4	
11	14.4 MHz and 17.6 MHz		
11	12.0 MHz		
11	10.8 MHz and 13.2 MHz		
11	8.0 MHz		
11	7.2 MHz and 8.8 MHz		
16 - 30 MHz	16.0 MHz	2L5	
11	30.0 MHz	2C5	
11	27.0 MHz and 33.0 MHz		
11	24.0 MHz		
11	21.6 MHz and 26.4 MHz		
11	16.0 MHz		
11	14.4 MHz and 17.6 MHz		

R. F. Amplifier Alignment

- 34. (1) Refer to paragraph 32 and set up the receiver and test equipment according to operations (1) to (4). The signal generator level should be set to 3 mV.
 - (2) Sweep the signal generator across the 1 to 30 MHz passband, note the electronic voltmeter readings and check that the response does not vary by more than 6 dB. If necessary adjust coils 3L1, 3L2, 3L3 and 3L4 on the amplifier board for minimum undulation in the passband.

R. F. Amplifier A. G. C. Adjustment

- 35. (1) The signal generator and electronic voltmeter should be connected as in paragraph 32. Set the signal generator to 5.5 MHz, c.w., 10 mV e.m.f.
 - (2) Check that the System switch is at A.G.C. Med.
 - (3) Connect a d.c. voltmeter -ve lead to the collector of 3VT1 (Fig. L-4).
 - (4) Adjust potentiometer 4RV1 (which is on the Filter component board mounted on the underside of the receiver) until the collector voltage of 3VT1 just 'bottoms'. A reference to the electronic voltmeter reading should show that the bottoming point of 3VT1 coincides with maximum r.f. gain. Refer to Chapter 1 paragraph 34 for a description of the procedure.
 - (5) Disconnect the signal generator and electronic voltmeter. Reconnect the 1st Mixer lead to the R.F. Module.

Antenna (0-30) MHz Filter Alignment

NOTE: This alignment should not normally be required and should be considered only as part of a major overhaul.

- 36. (1) Connect the electronic voltmeter to the output lead of the 0-30 MHz filter.
 - (2) Connect the signal generator (75Ω source) to the R. F. INPUT (Antenna) socket. Set the generator to 40 MHz and an e.m. f. of 1 volt.
 - (3) Adjust the coil 1L1 for a minimum reading on the electronic voltmeter.
 - (4) Set the signal generator to 56 MHz and adjust coil 1L2 for a minimum reading on the electronic voltmeter.
 - (5) Set the signal generator to 43 MHz and adjust coil 1L3 for a minimum reading on the electronic voltmeter.
 - (6) Sweep the signal generator frequency from 1 to 30 MHz. Observe the electronic voltmeter readings and check that the response does not vary by more than $l^{\frac{1}{2}}$ dB.
 - (7) Remove the test equipment.

CHAPTER 5

FAULT LOCATION

INTRODUCTION

1. This chapter provides fault location advice at two levels.

Paragraphs 2 to 11 assume that the only test equipment available is a universal test meter (Multimeter). The object being to locate an elementary fault. Paragraphs 12 to 16 assume the use of additional test equipment, and will direct the user to the appropriate paragraphs in Chapter 4 (Alignment).

PRELIMINARY CHECKS

- 2. If the receiver is newly installed check the following items:
 - (a) AC/DC selector switch correctly set. (rear panel).
 - (b) 2nd V. F. O. switch set to INT (front panel).
 - (c) MHz tuning control not set to '00'.
 - (d) Power connection: Note that the polarity of a d.c. supply must be correct. (Refer to Chapter 2).
 - (e) Antenna connected.

INITIAL FAULT LOCATION PROCEDURE

Controls

- 3. Set the receiver as follows and check for signal or noise.
 - (1) System switch to MAN.
 - (2) DET B. F. O. switch to A. M.
 - (3) Meter switch to R. F.
 - (4) A. F. GAIN to maximum (clockwise)
 - (5) R. F. GAIN to maximum (clockwise)

- (6) I. F. BW Switch to 3 kHz
- (7) AE ATT control to the MINIMUM position (MIN)
- (8) R. F. RANGE switch to "WB"
- (9) Ensure that the MHz tuning control is not set to '00'.

Basic Diagnosis

The most useful indication in elementary fault diagnosis is receiver noise, or 'mush'. The controls should be set as listed in paragraph 3 and the receiver tuned over a suitable portion of the h.f. band. At each step of the MHz tuning control make a fine adjustment and listen for a rise in receiver noise level. If no noise can be heard, check that the phones are serviceable and, if possible, listen at an alternative audio outlet as well as at the phones jack socket. Note the receiver meter reading. If a reading is obtained, reduce the R.F. GAIN and the meter should deflect to the right. This indicates that the h.t. supply and a.g. c. line are normal.

POWER CHECK

- 5. If the receiver appears dead (no noise or meter reading) and the dial lights are not illuminated, check the H.T. fuse and then measure the -16 volts h.t. at one of the following points:
 - (a) On the terminal block TB3 at the pin adjacent to the Fine Tune potentiometer (Fig. 18).
 - (b) At the centre tag of the 2nd V. F. O. EXT/INT switch.
 - (c) At the microswitch 1 SB. The centre tag is the h.t. feed to the receiver front end. The reading should be present in all settings of the MHz control except '00'. When '00' is selected the reading appears on the top tag. It should be present on the bottom tag in all modes of operation.
 - (d) The rear panel terminal H.T. R.F. should give a -16 volt reading except when the MHz control is set to '00'.

GENERAL CHECK

- 6. (1) Set the receiver controls according to paragraph 3.
 - (2) Set the System switch to CHECK B.F.O. and rotate the DET B.F.O. MODE switch through all settings. Select +6 to -6 and rotate the B.F.O. variable control. Listen for the b.f.o. heterodyne whistle and observe the receiver meter indications. These indications can be used for diagnosis as indicated in the following Table.

TABLE 1

"CHECK B. F. O. " INDICATIONS

Meter Indication Observed		B.F.O. Whistle Audible	Diagnosis	
(a)	Yes	Yes	Mixe	iver is serviceable from 3rd r input through to audio output. 1 MHz is functioning.
(b)	Yes	No	I.F.	probably in detector board of Module (Fig. 12) or audio ifier board or connections.
(c)	No	No	Possible areas of fault are:-	
			(a)	1 MHz reference (Fig. 6)
			(b)	1st i.f. amplifier unit (Fig. 11)
			(c)	Main i.f. amplifier board of I.F. Module (Fig. 12).
			(d)	Transistor stage VT3 in 3rd Mixer (Fig. 11).

^{7.} If both whistle and meter reading are obtained in CHECK B. F. O. set the System switch to CAL. If no calibration whistles are obtained as the kHz tuning is rotated, it suggests a fault in the 2nd V. F. O. or the mixer stage of the 3rd Mixer.

8. If the CHECK B.F.O. and CAL tests are satisfactory, set the controls as listed in paragraph 3 and make a front end check as follows:-

FRONT END CHECK

- 9. Set the DET B. F. O. switch to A. M. Listen intently and slowly rotate the MHz tuning control. If a very slight rise in noise level can be heard as the MHz tuning passes through each resonant point it suggests that the 37.5 MHz loop is functioning and therefore the fault is more likely to be in the antenna circuit, R. F. Module or 1st Mixer. Make the check in the WB setting of the R. F. RANGE switch as well as in the tuned antenna condition (adjust R. F. TUNE control). Thoroughly check all front end connections as follows:
 - (1) Check Antenna
 - (2) Check continuity through the 500 mA fuselink in the R. F. Module.
 - (3) Ensure that the muting relay is not energized. Touching an earth to pin G of the 12-way socket on the rear panel should cause the relay to operate. At the same time listen for any change of noise level.
 - (4) Check the connections between the R.F. Module and 1st Mixer (on the side of the R.F. Module).
- 10. If, when tuning the MHz control as described in the previous paragraph, no noise can be heard, the 1st V.F.O. or its connections may be faulty. Check connections from 1st V.F.O. to 1st Mixer and 37.5 MHz Generator respectively at the bracket on the underside of the main chassis. Ensure that they are not reversed.

R. F. H. T. Check

11. On the terminal block TB1 at the rear of the receiver connect the terminal H. T. R. F. to the terminal H. T. L. F. If the receiver then functions correctly the microswitch ISB (Fig. 16, Fig. 18) should be checked. Make a voltage check at the microswitch (centre tag).

1 MHz Check

12. Set the System switch to CAL and tune the KHz control to the 100 kHz calibration check frequencies. If the calibration whistle is heard at each point it indicates that the 1 MHz reference is functioning. If no calibration whistles are heard, turn the System switch to CHECK B. F. O. and set the DET - B. F. O. switch to +6, +3, -3 and -6 kHz in turn. If, again.

no heterodyne whistles are heard, it indicates a faulty 1 MHz crystal oscillator. Check that the crystal is correctly fitted in the upper deck of the 37.5 MHz Generator Module. If test equipment is available check with an electronic voltmeter for an e.m.f. of 100 mV at the rear panel socket "1 MHz OUT".

A.G.C. FAULT

- 13. If the receiver operates satisfactorily with manual r.f. gain control (System switch to MAN) but overloads on strong signals in the a.g. c. settings of the System Switch check as follows:
 - (1) Tune the receiver to a strong signal. Set the System switch to A.G.C. Med and the Meter switch to R.F. If the meter indicates a reading appreciably greater than 1 microvolt the a.g.c. board in the I.F. Module is serviceable. If no reading is obtained the fault is probably in the I.F. Module.
 - (2) If the meter reading is satisfactory, connect the test meter negative lead to the terminal A.G.C. R.F. on the rear panel (positive lead to chassis). As the receiver is tuned through a powerful signal the a.g.c. level should change from -4V (no signal) to approximately 0 volts (strong signal). If no reading is obtained check the microswitch ISA adjacent to the MHz tuning shaft. (Fig. 16 Fig. 18). The bottom tag of the microswitch should show the a.g.c. level in all operating modes; the centre tag in all settings of the MHz control except '00' and the top tag only in the '00' setting of the MHz tuning control.

NOTE: The levels quoted in para. 13 cannot be given exactly because the level of a strong signal is not defined.

DETAILED CHECK

- 14. (1) Connect a signal generator, 75 ohm source to the antenna socket and set to 3.6 MHz at 10 mV p.d. (20 mV e.m.f.)
 - (2) Disconnect the coaxial lead from the front end of the I.F. Module. Terminate the free lead in 100 ohms.
 - (3) Connect the electronic voltmeter across the 100 ohm termination.
 - (4) Set R. F. RANGE to WB
 AE ATT to MIN
 System Switch to MAN
 R. F. GAIN fully clockwise.

(5) Carefully tune the MHz and kHz tuning controls to 03.500 At the resonant point the electronic voltmeter reading should rise to 100 mV approx. If no reading, or very low reading is obtained proceed as described in next paragraph.

Fault Prior to I.F. Unit

- 15. (1) Refer to para. 12 and check that 1 MHz oscillator is functioning. If no whistles are heard check the 1 MHz module as described in Chapter 4 para. 18.
 - (2) Move the 2nd V.F.O. switch between the INT and EXT positions and listen for a change of noise level. If noise level does not change, the 3rd Mixer may be faulty.

 Make sure that the 2nd V.F.O. switch is returned to the INT position. Refer to Chapter 4 for further tests.
 - (3) If the 3rd Mixer check is satisfactory, but a fine adjustment of the MHz tuning control fails to produce any rise in noise level, proceed as follows:
 - On the 2nd Mixer connect an electronic voltmeter to test point TP2. Rotate the MHz tuning control slowly, and note the voltmeter reading as a frequency is selected. The reading should rise to approximately 80 mV at each resonant point.
 - (5) If approximately 80 mV is not obtained in (4) check the 1st V.F.O. outputs. Disconnect the free coaxial leads from their respective bulkhead sockets on the (underside of the main chassis. (Fig. 18). Terminate the lead which feeds the 1st Mixer in 47Ω and check for approx. 100 mV with the electronic voltmeter. Terminate the lead which feeds the 37.5 MHz Generator in 27Ω, and check for approx. 100 mV with the electronic voltmeter.
 - (6) If the 1st V. F. O. outputs are satisfactory the 37.5 MHz Generator module must be checked in accordance with Chapter 4 paragraph 19.
 - (7) If the 37.5 MHz checks are satisfactory check the R.F. Module as follows:

- (8) Disconnect the r.f. output lead from the side of the module (SKT2) and connect an electronic Voltmeter to the socket.
- (9) Connect a signal generator (75Ω source) to the R.F. INPUT (antenna) socket. Set the signal generator to the levels indicated in Table 2, according to whether the receiver is in the R.F. TUNE or the WB mode, and check the electronic voltmeter readings. The System switch should be at MAN, AE ATT to MIN and RF GAIN to maximum.

TABLE 2

	Output from 1	R.F. Module
Signal Generator	In Tuned	In WB
Level (e.m.f.)	Mode	Mode
3 m V	18 mV	-
10 mV	-	10 mV

- (10) A low output from the R.F. Module may indicate an a.g.c. fault. With the System switch to MAN, and the R.F. GAIN to maximum, the d.c. reading on the a.g.c. line should be -4 volts. A suitable measuring point is at the rear panel terminal A.G.C. R.F., or if the cover is removed at the centre contact of the microswitch ISA (Fig. 18). If this a.g.c. level is not obtained a fault in the i.f. unit is probable. If the -4V level is satisfactory the r.f. amplifier gain may be tested with the a.g.c. removed, as follows:-
- (11) On the r.f. amplifier board connect two 0.1 μ F capacitors between the -16V line and the junction of diodes 3Dl and 3D2, and 3D3 and 3D4, respectively, thereby removing the gain control from 3VT2 and 3VT3. Note the resulting increase in output. If the increase in gain is significantly greater than 4 dB the a.g.c. circuit should be investigated. The forward resistance of the diodes 3Dl to 3D4 should be checked. When measured on the 'ohms + 100' range of the AVO 8 test meter the forward resistance of any one of the diodes should not exceed 25Ω .

Fault in the I.F. Unit

16. A systematic check on the I.F. Unit is described in Chapter 4.

CHAPTER 6

ROUTINE MAINTENANCE

GENERAL

1. The RA. 1217 receiver should require no mechanical maintenance until a considerable period of service has elapsed, provided that the receiver has been treated with reasonable care. It is important that modules should be carefully but firmly replaced following removal and that all covers should be clean and secure, to maintain the high standard of screening which is necessary. Make sure that no cover-screws have suffered stripped threads due to overtightening. Whenever a module has been removed ensure that on replacement it is clean and free from grease or corrosion to ensure good electrical bonding. Ensure that retaining screws are made tight.

LUBRICATION

2. No lubrication is needed for at least the first year of service.

Fast moving shafts are carried in sealed races which require
no lubrication. Certain slow moving surfaces are carried in 'oilite' bearings
which after appreciable service may each be given a single drop of thin
molybdenised oil at intervals of approximately six months. A drop or two
of oil may be given to the stop-collars of the MHz and KHz tuning system.
Remove any surplus lubricant to prevent the accumulation of dirt.

CHAPTER 7

DISMANTLING AND RE-ASSEMBLY

WARNING: BEFORE DISMANTLING ANY PART OF THE RECEIVER
DISCONNECT THE MAIN POWER SUPPLY AT ITS SOURCE.

INTRODUCTION

- 1. This chapter describes how to remove the modular units of the receiver. Detailed re-assembly instructions are not given in those cases where it is feasible to interpret the dismantling procedures in the reverse order. Detailed instructions are given however, for re-assembly of the R. F. Unit, 1st V. F. O. and 2nd V. F. O. due to the requirement for accurate setting of variable controls in these modules. Reference to figure 18 will assist identification of the required module.
- CAUTION: (1) When refitting a module which requires the mating of a fixed plug and socket. Take care that the plug and socket are correctly aligned before applying pressure to the module. Otherwise pin damage may result.
 - (2) It is important that all module retaining screws should be firmly tightened to ensure good electrical bonding throughout the receiver. Loose screws can cause spurious frequencies to develop. When tightening screws, do not apply such force that screw threads might become stripped.

RECEIVER TOP COVER

2. The top cover of the rack mounted receiver is retained by 15 screws. Note the securing screw near to the centre which locates in the 1 MHz unit. All the cover screws must be tight during normal operation to ensure satisfactory screening. This cover must be removed as a first step in any dismantling operation except for removal of the power unit.

UNDERSIDE SCREWS

3. Those screws on the underside of the receiver which secure the various modules are marked with a circle of paint.

RECEIVER BOTTOM COVER

4. A small cover on the underside of the receiver is held by 8 screws. This cover may be removed for access to the audio board, the H. T. Filter board and the connectors of the 2nd and 3rd Mixer modules.

FRONT PANEL

- 5. The removal of the panel is normally of no benefit in servicing, but it is necessary if the B. F. O. assembly is to be removed.
- 6. Tools: Hexagonal keys
 Screwdriver
 Spanner.

Front Panel Removal

- 7. (1) Using a suitable hexagonal key slacken the grub-screws and remove all control knobs.
 - (2) The panel is held by four chromium plated screws.

 Remove these nuts and screws.
 - (3) Remove the two chromium screws in the centre of the panel adjacent to the meter.
 - (4) The panel can now be withdrawn.

POWER UNIT

8. Removal

(1) Release the four captive retaining screws from the unit on the rear panel and ease the unit gently towards the rear.

9. Re-assembly

(1) Insert the unit squarely and apply gentle pressure, evenly, to ensure correct mating of the plug and socket, and replace the four retaining screws.

I.F. MODULE

10. Tools: Medium and large screw drivers: Spanner . 25 inch A. F.

11. Removal

- (1) Remove the chassis side plate (6 screws).
- (2) Using the spanner; undo the external coaxial connector from the socket at the forward end of the module.
- (3) Remove two screws from the underside.
- (4) Remove two screws from the right-hand side (viewed from the rear) of the rear connector panel.
- (5) Withdraw the module towards the rear, releasing the 37-way connector at the front end while doing so.

R.F. MODULE

12. Tools: Hexagonal Key
Screwdrivers
Spanner . 25 inch A. F.

13. Removal

- (1) Remove the chassis side plate (6 screws)
- (2) At the rear of the front panel release the grub screws in the boss of the R. F. Range calibrated scale.
- (3) Slacken the grub screws in the control knob and remove.
- (4) Within the receiver behind the front panel, on the side, remove the two screws which hold the shaft bearing bracket.
- (5) Slacken the grub screws in the control shaft flexible coupler. Pull the control shaft forward a short distance out of the coupler.
- (6) Release the five retaining screws on the underside of the chassis.
- (7) Remove the coaxial connector from the side of the module adjacent to the 1st Mixer.
- (8) Release the connector plug from the forward end.

 Earlier modules have soldered connections on the side; these must be unsoldered after noting the pins and colour coding of the wiring.
- (9) Draw the module forward a short distance and then lift upwards.

R. F. Module Refitting

- 14. (1) Remove the cover from the R. F. Module.
 - (2) Place the module approximately into its position in the chassis and solder the connections to the pins on the side.

 (In latter versions of the module these soldered connections are not fitted, connections are made by a plug and socket at the front end).
 - (3) Connect the coaxial lead from the 1st Mixer to the socket on the side of the R. F. Module.
 - (4) Place the module in position and screw-up the five retaining screws on the receiver underside.

- (5) Insert the connector plug at the forward end (only on later versions of the module).
- (6) Turn the Range switch shaft by hand to its fully anti-clockwise setting (viewed from the front).
- (7) Insert the control shaft into the coupler. (Ensure that the R. F. Range calibrated scale is mounted on the shaft).
- (8) Tighten the grub screws in the shaft coupler.
- (9) Set the R. F. Range scale so that 'WB' is displayed in the window and then tighten the grub screws in the boss of the Range scale.
- (10) Put the R. F. Range control knob on to the shaft and tighten the grub screws. Rotate the control and check that the Range figures are correctly positioned in the window.
- (11) In the R. F. Module set the variable capacitor so that one segment of vanes is clear (see illustration in Chapter 4).
- (12) Put the knob on the control shaft so that the white spot is in line with the panel markings 1 to 16 and tighten the grub screws.
- (13) Replace the module cover and chassis side plate.

37.5 MHz GENERATOR 1 MHz OSCILLATOR AND CALIBRATOR

15. These two units are contained in separate sections mounted in a single module. Following removal of the module the two units can be separated, if necessary, but this involves delicate work with a low-wattage soldering iron.

Tools: Screwdrivers.

16. Removal

- (1) On the underside remove the cover plate and disconnect the 37.5 MHz Generator coaxial lead from the connector bracket (Fig. 18).
- (2) Release the four screws on the underside of the receiver.
- (3) Unplug the multi-way connector from the module.
- (4) Lift out the module.

17. Sub-Unit Separation

(1) The upper deck is the 1 MHz and calibrator unit, the lower unit contains the harmonic generator, harmonic mixer and 37.5 MHz circuit.

- (2) Remove the cover from the upper unit (three screws).
- (3) Release the four captive screws in the base of the upper unit. The upper unit can now be hinged upwards.
- (4) Remove the cover from the lower unit to obtain access for adjustment and servicing.
- (5) To completely remove a unit it is first necessary to unsolder two wires from the lower unit, using a low-wattage soldering iron, as follows:
- (6) Unsolder the violet-coloured wire from the base of the lower unit.
- (7) The blue coaxial lead can be unsoldered from the underside of the small transverse board on the lower unit.
 Undo the screws holding the board and lift upwards to
 give access to the unsoldering point. Use the minimum
 heat necessary to free the joint.

1st MIXER and 40 MHz FILTER

18. Tools: Screwdriver
Spanner .25 inch AF

19. Removal

- (1) Disconnect the coaxial lead from the side of the R. F. Module.
- (2) On the receiver underside remove the cover plate and disconnect the 1st Mixer lead from the connector bracket.
- (3) On the underside, adjacent to the H.T. Filter Board release the screw which is located in a tubular shroud. (The one further from the rear panel).
- (4) On the upperside release one screw at each end of the 1st Mixer and 40 MHz unit.
- (5) Pull the unit upwards taking care not to trap the free coaxial leads which are attached.

2nd MIXER

20. Tools: Screwdriver

21. Removal

- (1) Remove the cover plate from the underside of the receiver.
- (2) On the underside remove two of the four retaining screws. (from diagonally opposite corners).

- (3) Slacken off the two remaining screws and push them upwards, thereby partly easing the module out of its connector. Then completely remove these screws.
- (4) On the upperside grip the module and pull upwards. If sufficient grip cannot be obtained, remove the module cover and carefully pull on the pillars.

3rd MIXER

22. Follow the same procedure as for the 2nd Mixer in the previous paragraphs.

37.5 MHz BANDPASS FILTER

23. Tools: Screwdriver.

24. Removal

- (1) On the receiver underside remove the cover plate and release the retaining screw which is located in a tubular shroud adjacent to the H.T. Filter board. (The screw nearer the rear of the receiver).
- (2) On the upper chassis release the two end screws from the 37.5 MHz Filter Unit.
- (3) Ease the unit upwards, keeping it level to avoid distortion of the fixed coaxial connectors.

1st V. F. O.

25. Tools: Screwdriver

Hexagonal key Spanner .25 AF

Soldering iron (earlier receivers only)

NOTE: Instructions for refitting are given in paragraph 27.

26. Removal

- (1) Disconnect the violet h.t. lead from the small terminal block adjacent to the 1st V.F.O. If this terminal block is not fitted refer to operation (2).
- (2) On earlier receivers it is necessary to unsolder the violet h.t. lead from the H.T. Filter board on the underside of the receiver. (Remove the cover plate).
- (3) Slacken the grub-screws in the coupler on the 1st v.f.o. tuning shaft.
- (4) On the receiver underside remove the cover plate and disconnect the two 1st v.f.o. coaxial leads from the connector bracket.

- (5) Hold the 1st v.f.o. firmly in position with one hand. With the other release the four retaining screws on the underside of the receiver.
- (6) When the retaining screws are free the 1st v.f.o. can be drawn free of the shaft coupler and lifted out.

1st V. F. O. Refitting

NOTE: It is assumed that all other parts of the receiver are installed and are serviceable. A digital counter to read up to 70 MHz is required.

- 27. (1) Place the 1st v.f.o. module into its correct position on the chassis and slide the tuning shaft into the shaft coupler.

 Do not tighten the grub screws. Check that the coaxial leads are fed through to the underside of the receiver.
 - (2) Hold the 1st v.f.o. module with one hand and make it secure with the four retaining screws on the underside.
 - (3) Connect up the h.t. lead at terminal block TB2 (or resolder the violet lead if this was disconnected in operation (2).
 - (4) Attach a digital counter to one of the 1st v.f.o. coaxial output leads.
 - (5) Set the MHz control to 01'
 - (6) Connect power to the receiver and set the System switch to MAN.
 - (7) Move the 1st v.f.o. section of the tuning shaft by hand (not the MHz control) until the digital counter reads 41.5 MHz ±10 kHz.
 - (8) Check that the MHz control is at '01' and tighten the grub-screws in the shaft coupler. On completion the digital counter must read 41.5 MHz ±20 kHz.
 - (9) Refer to Chapter 3 paragraph 9 and perform the MHz calibration check.
 - (10) On completion connect both the 1st v.f.o. output coaxial leads to their correct sockets at the bracket on the underside of the receiver.

2nd V.F.O.

28. Tools: Spanner 10/32 U.N.F. Hex Hexagonal key

NOTE: Instructions for refitting are given in paragraph 30.

29. Removal

- (1) Using the hexagonal key slacken the grub screws in the shaft coupling.
- (2) Detach the connector which carries the chassis wiring.
- (3) Completely remove the three bolts which hold the module to the cast lugs of the chassis.
- (4) Draw the module away so that the tuning shaft slips out of the shaft coupler.

2nd V. F. O. Refitting

NOTE: A digital frequency meter (counter) is required.

- 30. (1) Rotate the kHz tuning control fully <u>anti-clockwise</u> against its stop, then turn clockwise and set the readout to indicate '.000'. This ensures that the correct end of the scale is selected.
 - (2) Lock the kHz control at .000.
 - (3) Set the CAL-FINE TUNE control to the mid-point of its rotation.
 - (4) Remove the cover from the 2nd V. F. O. module and set the capacitor vanes by hand to the minimum capacitance position (moving vanes fully out of mesh and straight edges parallel).
 - (5) Place the 2nd V. F. O. module into position on the chassis and enter the shaft into the flexible coupler on the control mechanism.
 - (6) Make the module secure by inserting the three retaining bolts and tightening up.
 - (7) Insert the connector plug into the module socket.
 - (8) Connect the digital counter to the rear socket '2nd V. F. O. OUT'. Check that the 2nd V. F. O. switch is at INT.
 - (9) Connect the power supply to the receiver and set the System switch to MAN.
 - (10) By hand make a fine adjustment of the capacitor shaft to obtain a reading on the digital counter of 4.6 MHz plus or minus 50 Hz.
 - (11) Tighten one grub screw in the shaft coupler and ensure that the counter reading has not changed while tightening.
 - (12) Put the cover on the module and make tight the screws.

- (13) Set the System switch to CAL.
- (14) Refer to Chapter 3 paragraph 8 and perform the 2nd V. F. O. calibration check.
- (15) If results are satisfactory tighten both grub screws in the shaft coupler and check that the module cover is firmly screwed down. If the calibration check is outside the limits of ±500 Hz refer to (16) below.
- (16) The trimmer capacitor C2, which is accessible via a hole in the cover of the 2nd V.F.O. module (the upper of the two holes) may be adjusted to correct a calibration error of up to one kilohertz. Before making any adjustment of C2 ensure that the hand-setting of the capacitor vanes in operation (10) has been done as accurately as possible.

1st I.F. UNIT

- 31. This small unit is part of a large assembly which includes the i.f. bandwidth filters together with the Bandwidth switch and B.F.O. controls.
- 32. Tools: Screwdriver
 Spanner . 25 inch AF
 Soldering iron
- 33. Removal of 1st I. F. Unit
 - (1) Remove the main I. F. Module (Refer to paragraph 11) and unplug the 2nd Mixer module.
 - (2) On the underside of the receiver remove the five screws which retain the bandpass filter assembly.
 - On the upper side remove the two screws which secure the lst I.F. Unit to the Bandpass filter assembly.
 - (4) Move the bandpass filter assembly sideways. This gives access for the unsoldering of the wires from the 1st I. F. Unit. Ensure that the coaxial leads to the 1000Ω and 100Ω output pins are identified for correct re-connection.
 - (5) Push the 1st I. F. Unit out of its mounting and lift out.
 - NOTE: The coaxial connection to the 3rd mixer (wire number 8) may have to be unsoldered if it restricts the movement of the filter assembly.

B. F. O. Assembly

34. The B.F.O. oscillator and amplifier boards are part of a larger assembly including the B.F.O. controls, Bandwidth switch, i.f. bandpass filters and 1st I.F. Unit. The removal of this entire assembly

involves the unsoldering of a complex cable harness and should not normally be necessary. To remove the B. F. O. boards proceed as follows.

- 35. Tools: Screwdriver
 Soldering iron
 - Spanner . 25 inch AF

36. Removal of B. F. O. Boards

- (1) Remove the main I. F. Module (Refer to paragraph 11).
- (2) On the underside of the receiver remove the five screws which retain the bandpass filter assembly.
- (3) Move the filter assembly sideways and unsolder all connections from the 1st I.F. Unit and the crystal filters.
- (4) Lift out the bandpass filter assembly.
- (5) The B. F. O. boards are now accessible. Unsolder the connections from the board to be removed. Remove the four retaining screws and lift out the board.

METER CONTROL BOARD

37. Tools: Screwdriver
Spanner 4BA
Soldering iron.

Removal

- (1) Remove the side plate from the receiver (Six screws)
- (2) Remove the four screws which secure the pillars of the control board to the side member of the receiver.
- (3) Unsolder the connecting wires and lift out the board.
- (4) When re-connecting identify the leads as follows. Also refer to Fig. 18.

R1	Wire 34) Twin	D1/D2	Red/Blue
D2/D4	Wire 34	screened	D3/D4	Blue/Orange
R2	Violet		R3	Blue/White

H. T. FILTER BOARD

38. Tools: Soldering iron
4BA Spanner
Screwdriver

39. Removal

- (1) Remove the small cover from the underside of the receiver
- (2) Unsolder the connecting wires from the H. T. Filter board.

- (3) Remove the two nuts and lift up the board sufficiently to unsolder the remaining connections.
- (4)Lift out the board.

AUDIO AMPLIFIER BOARD

40. Tools: Soldering iron Screwdriver

Removal of One-Watt Audio Board

- Remove the small cover from the underside of the receiver. (1)
- (2) Unsolder the connecting leads from pins 2, 3, 4, 5, 6, 7, 8, 9, of the audio board.
- (3) Remove the four retaining screws.
- (4)Carefully ease the transistors VT4 and VT5 out of their holders at the same time as the board is lifted out.
- (5) When re-assembling identify the connecting wires as follows:
 - Pin 2: To audio transformer Pin 6: Violet (Red sleeve) (Red/Orange) V To control board 3D2/3D4 (Blue) Violet (White sleeve) Pin2:

Sleeve 32

Pin 3: To capacitor 1C15 Pin 7: Pin 3: To 3R1 control board (Red).

Pin 8: Earth, (Black)

Pin 4: Sleeve 31

Pin 9: To capacitor 1C17.

Pin 5: To capacitor 1C12 (Red/White)

41. 10 mW Audio Board Connections

- Pin 1. Sleeved lead number 31 to slider of A. F. Gain potentiometer.
- Pin 2 (Orange/grey wire to ISKT 11 pin A. Blue wire of sleeve number 34 to meter diodes 3D2/3D4 (Fig.16).
- Pin 3 (Orange/brown lead to ISKT11 pin B. (Red lead of sleeve number 34 to resistor 3R1 (Fig. 16).
- To screen of lead number 33.
- Pin 5 (Wire of lead number 33 to Phones jack JKl. Wire of screened lead (or orange/white on some receivers) to ISKT 11 pin D.
- Pin 6 Violet (two leads) 16V.
- Pin 7 Wire of lead number 32 to slider of A. F. Level potentiometer.
- Pin 8 Earthing wire to chassis tag.

42. B. F. O. and Bandwidth Assembly

The following items are mounted on an assembly which can be removed as a single unit, but such removal should not normally be attempted due to the numerous connections which have to be unsoldered.

- (a) B. F. O. oscillator and amplifier boards.
- (b) lst I.F. Amplifier unit.
- (c) DET B. F. O. Mode Switch.
- (d) Bandwidth (I. F. BW) switch.
- (e) R.F. Gain potentiometer.
- (f) A. F. Gain potentiometer.
- (g) Crystal bandwidth filters.

Tools: Screwdrivers
Soldering Iron

Assembly Removal

- (1) Remove all the control knobs from the front panel.
- (2) Remove the four chromium screws from the front panel and remove the panel.
- (3) Remove the main I.F. Module.
- (4) On the underside of the receiver remove the five screws which secure the B.F.O. and Bandwidth Assembly.
- (5) At the front, above the B.F.O. controls, remove two screws. The assembly is now free to move, subject to the wiring connections which must be unsoldered.

CHAPTER 8

LIST OF COMPONENTS

CONTENTS

	Pag≞
REPLACEMENT MODULES	8 - 1
SUB-ASSEMBLIES	8 - 2
MAIN CHASSIS ITEMS	8 - 3
AUDIO AMPLIFIER	8 - 6
R. F. MODULE	8 - 8
FIRST MIXER AND 40 MHZ FILTER	8 - 12
SECOND MIXER	8 - 14
THIRD MIXER	8 - 16
FIRST V. F. O.	8 - 18
SECOND V. F. O.	8 - 20
37.5 MHZ GENERATOR	8 - 23
1 MHZ AMP, OSC. AND CALIBRATOR	8 - 26
B. F. O.	8 - 29
1ST I.F. AMPLIFIER UNIT	8 - 31
MAIN I.F. MODULE	8 - 32
POWER UNITS	
TYPE PU. 1153	8 - 40

NOTE: Component values are quoted as follows:

Resistors	Capac	citors
Suffix 'k' = k		ffix = microfarads 'p' = picofarads

ORDERS FOR SPARE PARTS

In order to expedite handling of spare part orders, please quote:-

- (1) Type and serial number of equipment.
- (2) Circuit reference, description, Racal part number, and manufacturer of part required.
- (3) Quantity required.

NOTE: If the equipment is designed on a modular basis, please include the type and description of the module for which the replacement part is required.

NOTES ON COMPONENT CHANGES AND ADDITIONS

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part No.	Manufacturer

<u> </u>			1			
			 			
						
			<u> </u>			
	 			<u> </u>		
			ļ			
•						
·····						
			 			
			1			
						
			 			
			 			
<i>y</i>			 			
			<u> </u>			

REPLACEMENT MODULES AND ASSEMBLIES

- NOTES. 1. Table 1, below, lists the "plug-in" modules which can be quickly fitted in the receiver and are therefore essential to a rapid service procedure. Table 2 on the next page lists the principal component board assemblies likely to be required in servicing the various modules.
 - 2. When ordering a replacement module please state the module title and the part number. When ordering circuit board or subassembly please state the module in which the part is fitted, as well as the name of the item and the part number, as listed in Table 2.
 - 3. Always quote the receiver title (RA.1217A, RA.1217B etc) and the serial number.

TABLE 1

Module Assemblies

Name	Part Number
R.F. Unit (see NOTE 2 below)	CA.38538/A or B
lst Mixer and 40 MHz Filter	BA.28211/A
2nd Mixer	CA.30959/A
	CA.35970/A
lst VFO	CA.28120/A
2nd VFO	CA.28101/A
37.5 MHz Generator with 1 MHz Oscillator	• .
Amp and Calibrator	CA.28276/B
37.5 MHz Band-Pass Filter Unit	BA .28192/A
I.F. Module (455 kHz output)	DA .38580/A
	DA.38580/B
Power Unit PU.1153	CA.38640/A

NOTE 1: Replacement printed circuit boards are listed in Table 2 on the following page. Note that two types of i.f. converter boards are available (100 kHz and 455 kHz) and two types of audio amplifier board (10mw and 1-watt). Ensure that the correct type is ordered as fitted to the receiver being serviced.

NOTE 2: R.F. Units
R.F. Unit type CA.38538/A has soldered connections via pins on the side of the unit. R.F Unit type CA.38538/B is fitted with a Cannon multi-way connector. Type CA.38538/A is fitted in earlier versions of the RA.1217.

TABLE 2

	Sub-Circuit	Assemblies	
R.F. Unit	Part No.	lst. Mixer	Part No.
0-30 MHz Filter	AA.28188/A	Mixer Board	BA.28215
R.F. Range Coil & Switch Assy. R.F. Amp Board Attenuator Switch Assy.	CA.38539/A BA.28155/B AA.34081	40 MHz Filter	AA.28197
2nd Mixer		3rd Mixer	
Mixer Board	BA.28177	Mixer Board	BA.35966
lst_VFO		2nd VFO	
Oscillator Board Amplifier Board Amplifier Board	BA.35195 BA.32535 BA.28128	Oscillator Board Amplifier Board Component Board	BA.35808 BA.35807 AA.39599/A
1 MHz Amp and Calibrator		Power Unit Type PU.11	53 (AC/DC)
Complete Assembly 1 MHz Amplifiers Calibrator Board	BA.28285/B BA.32858 BA.41745	Component Board	BA.37549
37.5 MHz Generator			
Complete Sub-Assembly Harmonic Gen. Board Harmonic Filter Assembly	BA.28284/B BA.32854 BA.35836	Audio Amp. Board 10 mW or	BA.31462
Harmonic Mixer Board 37.5 MHz Amp. Board	BA.37894 BA.32850	1 watt	BA.39442
		Control Board	BA.38883
BFO (600 kHz)		H.T. Filter Board	AA.28179/B
Oscillator Board Amplifier Board	BA.30540 BA.30542	lst I.F. Amp. Unit Circuit Board	BA.28203 BA.31474
I.F. Module			
I.F. Amp. Board H.T. Supply Filter Detector Board A.G.C. Board	BA.30533 AA.30535 BA.28236 BA.31466/B	Converter: 455 kHz Osc. Board (455 kHz) Amp. Board (455 kHz) Converter: 100 kHz Osc. Board (100 kHz) Amp. Board (100 kHz)	BA.38568/A BA.34783/A BA.38568/B BA.34783/B

Cct. Value Description Rat. Tol. Racal Manufacturer Ref. % Part No.

MAIN CHASSIS TTEMS

(Fig. 16)

- NOTES 1: Components prefixed 'l' are located in various parts of the chassis, but are not in any module.
 - 2: Components prefixed '2' are located in the Bandwidth and BFO switch assembly.
 - 3: Components prefixed '3' are located on the Meter Control Board.
 - 4: Components prefixed '4' are located on the H.T. Filter board. (chassis underside)

1R1 1R2 1R3 1R4 1R5 1R6 1R7 1R8 1R9	0hms 1.2k 680 560 100 100	Resistors not used not used not used Metal Oxide		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	906346 910113 907496 908276 907491 908153	Electrosil TR5 Electrosil TR4 Electrosil TR5 Electrosil TR4 Electrosil TR5 Electrosil TR5
2R1 2R2	3 90	Composition not used	0.1	10	902503	Erie 15
2R3 2R4 2R5 2R6	100	not used Metal Oxide not used not used		5	908276	Electrosil TR4
2R7	3.3k	Metal Oxide		5	900991	Electrosil TR4
3R1 3R2 3R3 4R1	3.9k 22k 5.6k 68	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Potentiometers		5 5 5 5	906029 906553 906032 907494	Electrosil TR5 Electrosil TR5 Electrosil TR5 Electrosil TR5
1RV1 1RV2 1RV3	lk 500	not used Dimmer: preset Cal-Fine Tune:	variabl	e	ASW35811 BSW41601	
2RV1 2RV2 2RV3	lOk lk lOk	A.F. Level: pre R.F. Gain) A.F. Gain)			900615 BSW38716 BSW38716	Plessey MP
3RV4	47k	'S' Meter Setti	ing: Line prese		908635	Plessey MP
4RV1	2.2k	AGC Set: Linear	-	<i>-</i> 5	909836	Plessey MP
lCl	.001	Capacitors Ceramic NOTE: 1R8 use	volts 350 d only o	20 on lW vers	902122	Lemco 310K

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer				
	MAIN CHASSIS ITEMS (continued)									
	(Fig. 16)									
1C2 1C3 1C4 1C5	4-20p 0.1 0.22 0.1	Capacitors (conversable B.F. Polyester Ceramic Polyester	volts	20 -20+50 10	AD38584 909428 908338 909847	Mullard C28OAE/PlOOK T.C.C. CMLlO Mullard C28OAE/AlOOK				
106 107 108 109 1010	0.1 0.1 0.1	not used not used Polyester Polyester Polyester	250 250 250	20 20 20	909428 909428 909428	Mullard C280AE/Plook Mullard C280AE/Plook Mullard C280AE/Plook				
1011 1012 1013 1014 1015 1016 1017 1022	0.1 500 10 .0022 .033 0.1 500	Polyester Electrolytic Electrolytic Ceramic Polyester Polyester Electrolytic Polyester	250 25 20 350 150 250 25	20 -20+50 20 20 5 20 -20+50 20	909428 900748 905399 902126 908114 909428 900748 909428	Mullard C280AE/Plook Hunts MEF37T S.T.C. 472/LWA/401GA Lemco 310K Wima Tropyfol M. Mullard C280AE/Plook Hunts MEF37T Mullard C280 AE/Plook				
NOTE:	1012, 10	15 and 1017 are	e used or	aly with t	he 1 watt	amplifier - refer to Fig.14b.				
201 202 203	O.l Refer to	Polyester 102 in B.F.O. Electrolytic	250 Assembly 40	10 7. Page 8 -10+100	909847 - 29. 910952	Mullard C280AE/A100K Mullard C426 AS/G1				
4C1	0.1	Polyester	250	10	909847	Mullard C280AE/A100K				
4c2 4c3	50	not used Electrolytic	25	-10+50	908798	Mullard C426AR/F50				
1171		Transformers Audio output	transfori	ner	CT39257					
1SA 1SB 1SC/1 1SC/2		Microswitch a Microswitch h)Power switch)of System sw	.t. ing: part itch lSE		911132 911132 BSW38691	Unimax DPST Type USMF				
1SD 1SE 1SF 2SA 2SB		System switch Meter switch: Bandwidth swi DET-B.F.O. Moo	before me break be tch de	ake	BSW38719 BSW38585	E.M.I. S5				

Plug free: 12-way 906612 Plessey Mk½ 2CZ83302/5 2008cets	Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part No.	Manufacturer
Connectors	·		MAIN	CHASSIS	ITEMS (con	tinued)	
Plugs (Free)				<u>(Fi</u>	g. 16)		
Chassis wiring to Power module: 15 way 908598	Plugs (Free)	Connectors				
15 way 908598 Cannon DAML5P						905034	Transradio BN 1/7
Plug free: 12-way 908370 Belling Lee Ll403/RFP/Plug free: 12-way plug 908612 Plessey Mx4 20283302/5 Plessey Mx4 20283302/5 Plessey Mx4 20283302/5 Plessey 508/1/03013/20 Plessey Mx4 20283302/5 Plessey Mx4 20283302/5 Plessey Mx4 20283302/5 Plessey Mx4 202833302/5					15 way	908598	Cannon DAM15P
I.F. connector: free: 37-way 908603 Cannon DCM37S	Plug fr		ay	-			Belling Lee L1403/RFP/Ag Plessey Mk4 2CZ83302/5 Plessey 508/1/03013/205
Double ended bulkhead adaptor 908405 Belling Lee L1403/BS/A ISKT3 Double ended bulkhead adaptor 908405 Belling Lee L1403/BS/A ISKT4 lst Mixer: insert 908600 Cannon DM53743-5001 ISKT5 HT to lst Mixer 908604 Sealectro 5BC ISKT6 37.5 MHz Filter: insert 908600 Cannon DM53743-5001 ISKT7 2nd Mixer connector - multiway 911160 Cannon DBMF9W4S ISKT8 3rd Mixer connector - multiway 911160 Cannon DBMF9W4S ISKT9 37.5 MHz Gen. connector-multiway 908602 Cannon DBMF9W4S ISKT9 2nd VFO connector-multiway 908599 Cannon DBM5W3S NOTE: The coaxial inserts in the Cannon connectors SKT7, SKT8, SKT9 and SKT10 can be renewed separately, using coaxial insert DM53745-5001: Part No. 908600. ISKT11 12-way outlet: fixed. 906607 Plessey Mk4 CZ63979/5 NOTE: The free coaxial plugs for connection to the rear panel sockets ISKT12 to ISKT17 are RNC 75Ω Part number 905034 ISKT12 2nd VFO IN: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT13 2nd VFO OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT14 L.F. fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT15 PAN fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT16 1 MHz IN fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT16 1 MHz OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT17 1 MHz OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 ISKT18 Connector 5-way, free (not fitted to earlier receivers) 91785 Cannon DEM5W1S Coaxial insert to SKT18 907076 Cannon 53742-5001 JK1 Phone jack socket 901509 Igranic P71						0.4	
18KT7	1SKT2 1SKT3 1SKT4		Double ended louble ended lat Mixer: ins	bulkhead bulkhead sert	adaptor	908405 908405 908600	Belling Lee L1403/BS/Ag Belling Lee L1403/BS/Ag Cannon DM53743-5001
12-way outlet: fixed. 906607 Plessey Mk4 CZ63979/5 NOTE: The free coaxial plugs for connection to the rear panel sockets 1SKT12 to 1SKT17 are BNC 75Ω Part number 905034 1SKT12 2nd VFO IN: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT13 2nd VFO OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT14 L.F. fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT15 PAN fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT16 1 MHz IN fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT17 1 MHz OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT18 Connector 5-way, free (not fitted to earlier receivers) 911785 Cannon DEM5W1S Coaxial insert to SKT18 907076 Cannon 53742-5001 JK1 Phone jack socket 901509 Igranic P71	1SKT7 1SKT8 1SKT9 1SKT10	NOTE:	2nd Mixer cond 3rd Mixer cond 37.5 MHz Gen. 2nd VFO connect The coaxial in SKT9 and SKT10	nector - nector - connect ctor-mul nserts i	multiway multiway or-multiway tiway n the Cann renewed se	911160 911160 908602 908599 on connectaparately	Cannon DBMF9W4S Cannon DBMF9W4S Cannon DBM9W4S Cannon DBM13W3S tors SKT7, SKT8,
sockets 1SKT12 to 1SKT17 are BNC 75 \(\Omega \) Part number 90503\(\text{4} \) 1SKT12 2nd VFO IN: fixed, 75 \(\Omega \) Coaxial 907\(\text{457} \) Transradio BN 12/7 1SKT13 2nd VFO OUT: fixed, 75 \(\Omega \) Coaxial 907\(\text{457} \) Transradio BN 12/7 1SKT14 L.F. fixed, 75 \(\Omega \) Coaxial 907\(\text{457} \) Transradio BN 12/7 1SKT15 PAN fixed, 75 \(\Omega \) Coaxial 907\(\text{457} \) Transradio BN 12/7 1SKT16 1 MHz IN fixed, 75 \(\Omega \) Coaxial 907\(\text{457} \) Transradio BN 12/7 1SKT17 1 MHz OUT: fixed, 75 \(\Omega \) Coaxial 907\(\text{457} \) Transradio BN 12/7 1SKT18 Connector 5-way, free (not fitted to earlier receivers) 911785 Cannon DEM5W1S Coaxial insert to SKT18 907076 Cannon 537\(\text{42-5001} \) JK1 Phone jack socket 901509 Igranic P71		NOTE:	12-way outlet	: fixed.		906607	
1SKT13 2nd VFO OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT14 L.F. fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT15 PAN fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT16 1 MHz IN fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT17 1 MHz OUT: fixed, 75Ω Coaxial 907457 Transradio BN 12/7 1SKT18 Connector 5-way, free (not fitted to earlier receivers) 911785 Cannon DEM5W1S Coaxial insert to SKT18 907076 Cannon 53742-5001 JK1 Phone jack socket 901509 Igranic P71		1,011.	sockets 1SKT12	2 to 1SK	T17 are BN	C 75Ω Par	t number 905034
Connector 5-way, free (not fitted to earlier receivers) 911785 Cannon DEM5W1S Coaxial insert to SKT18 907076 Cannon 53742-5001 JK1 Phone jack socket 901509 Igranic P71	18KT13 18KT14 18KT15 18KT16		2nd VFO OUT: : L.F. f: PAN f: 1 MHz IN f:	fixed, 7 ixed, 75 ixed, 75 ixed, 75	5Ω Coaxial Ω Coaxial Ω Coaxial Ω	907457 907457 907457 907457	Transradio BN 12/7 Transradio BN 12/7 Transradio BN 12/7 Transradio BN 12/7
		insert	fitted to ear.				
THOHOD JOAN DAME (TICO) OF THE SITE NOTICE NOTICE TO THE TOTAL TOT		jack plu				901509 901557	Igranic P71 Igranic P50
Terminal Blocks		_	Terminal Bloc	ks			

TB1 TB2 TB3	6-way. Refer to I.F. Module de lst V.F.O. h.t. connection (in fine tune circuit)		(not fitted on early receivers) Wingrove & Rogers TS8-04
	Meter		
Ml	'S'. Meter	BD35519	
	Dial Lamps		
llpl-llp3		908605	Vitality 14v690
Lampholders fo	r ILP1-ILP3		Bulgin Type LVS64

Iampholders for ILP1-ILP3

Bulgin Type LVS64
8 - 5

RA.1217

Vol. 2

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
	, , , , , , , , , , , , , , , , , , , 	N	AIN CHASSI	[S ITEMS (co	ontinued)	
1D5 to 13		Diodes Meter rectif	iers		905 3 95 900071	Mullard OAZ 243 Mullard OA91
		Crystal Band	lpass Filte	ers		
	13 kHz 8 kHz 6.5 kHz 6.0 kHz		995467 995028 996029 995943	3 kHz 1.2 kHz 500 Hz 200 Hz	BD38733/C BD38733/D BD38733/F BD38733/E	995 02 9 9955 03
		<u> </u>	O mW AUDIO	AMPLIFIER	(BC.31462) - Fig. 14a
R1 R2 R3 R4 R5	ohms 5.6k 2.2k 5.6k 330 2.2k	Metal Oxide		5 5 5 5 5	908273 908270 908273 908268 908270	Electrosil TR ⁴
R6 R7 R8 R9 R10	15k 5.6k 22k 150k 150k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	908280 908273 908269 908277 908277	Electrosil TR ¹ 4
R11 R12 R13 R14 R15	470 470 1k 150k 10k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	900992 900992 908267 908277 900986	Electrosil TR ⁴ Electrosil TR ⁴ Electrosil TR ⁴ Electrosil TR ⁴ Electrosil TR ⁴
R16 R17 R18	68k 2.2k 68	Metal Oxide Metal Oxide Metal Oxide		5 5 5	908279 908270 908278	Electrosil TR ¹ Electrosil TR ¹ Electrosil TR ¹
C1 C2 C3 C4 C5	80 .022 2.5 80 2.2	Capacitors Electrolytic Polyester Electrolytic Electrolytic Tantalum	250 : 16	-10+50 20 -10+50 -10+50 20	908810 900982 908808 908810 908316	Mullard C426 AR/E80 Mullard C280 AE/P22K Mullard C426 AS/E2.5 Mullard C426 AR/E80 U.Carbide K2R2J20S
C6 C7 C8 C9 C10 C11	80 80 .001 80 10 0.1	Electrolytic Electrolytic Ceramic Electrolytic Electrolytic Polyester Electrolytic	80 350 16 16 250	-10+50 -10+50 20 -10+50 -10+50 10 -10+50	908810 908810 902122 908810 900068 909847 908798	Mullard C426 AR/E80 Mullard C426 AR/E80 Lemco 310K Mullard C426 AR/E80 Mullard C426 AR/E10 Mullard C280 AE/A100K Mullard C426 AR/F50
T1 T2 T3		Transformers Transformer Transformer Transformer	assembly assembly		CT 31476/ CT 31478/ CT 31477/	A
VTl		Transistors p-n-p			911928	Mullard BCY 71
VT2,VT3,	VT4	n-p-n			909017	Texas 2N929
						8 - 6
RA. 1217						Vol. 2.

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer				
	ONE WATT-AUDIO AMPLIFIER BOARD									
			(BC	.39442) -	Fig.14b					
5 0.7	ohms	Resistors	watts		0.000.0					
R1 R2 R3 R4 R5	4.7k 1.5k 12k 1k 390	Composition Composition Composition Composition Composition	0.1 0.1 0.1 0.1	10 10 10 10	902516 902510 902521 902508 902503	Erie 15 Erie 15 Erie 15 Erie 15 Erie 15				
R6 R7 R8 R9 R10	1k 1 1 15 33k	Composition Wirewound Wirewound Composition Composition	0.1 1.5 1.5 0.1	10 10 10 10	902508 911767 911767 902486 902526	Erie 15 Welwyn W21 Welwyn W21 Erie 15 Erie 15				
R11 R12 R13 R14 R15	3.9k 120 3.3k 22k 100	Composition Composition Composition Composition Composition	0.1 0.1 0.1 0.1	10 10 10 10	902515 902497 902514 902524 902496	Erie 15 Erie 15 Erie 15 Erie 15				
R16 R17 R18 R19	390 1k 470 10	Composition Composition Composition Composition	0.1 0.1 0.1 1/4	10 10 10 10	902503 902508 902504 902411	Erie 15 Erie 15 Erie 15 Erie 16				
RV1 RV2	200 k 2k	Potentiometers	•		914155 914154	Beckman Helitrim 62P2OOK Beckman Helitrim 62P2K				
C1 C2 C3 C4 C5 C6 C7 C8	32 1 10p 80 0.1 1 470p	Capacitors Electrolytic Electrolytic Polystyrene Electrolytic Polyester Tantalum Polystyrene Tantalum	volts 10 40 125 16 250 25 125	-10+50 -10+100 lpF -10+50 20 20 5	911764 910952 906840 908810 909428 912994 905362 911763	Mullard C426AR/D32 Mullard C426AS/G1 Salford PF Mullard C426AR/E80 Mullard C280AE/P100K S.T.C. TAG 1.0/25 Salford PF S.T.C. TAG10/15				
		Transistors								
VT1 VT2 VT3 VT4 VT5 VT6, V	77, VT8	n-p-n n-p-n p-n-p n-p-n n-p-n			911929 911929 911928 908753 908753 909927	Mullard BC107 Mullard BC107 Mullard BCY71 Mullard BFY51 Mullard BFY51 Texas 2N3711				
D 1	. 700	<u>Diodes</u>			006003	Marca 20170				
Dl and	בע ג	Semi-conductor			906001	Texas 1S130				

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
			<u>R. F.</u>	MODULE	- Fig. 4	
		Resistors				
Coil 1		Capacitor Assen				
ODI	ohms	M-4-1 0-41-	watts	%	0000617	Electronia mpl
2R1 2R2	l kΩ 100	Metal Oxide Metal Oxide		2	908267 9082 7 6	Electrosil TR4 Electrosil TR4
2R3	100	Metal Oxide		5 5 5	908276	Electrosil TR4
Ae. A	tenuator	Switch Assembly	<u>r</u>			
Rl	56	Carbon Hi. Sta	ıb.	5	906559	Erie N6
R2	15	Carbon Hi. Sta		5 5 5 5	908300	Erie N6
R3	56	Carbon Hi. Sta		5	906559	Erie N6
R4	33	Carbon Hi. Sta		5	908301	Erie N6
R5	47	Carbon Hi. Sta	ıb.	5	905320	Erie N6
R6	33	Carbon Hi. Sta	ıb.	5	908301	Erie N6
R7	15	Carbon Hi. Sta	ıb.	5	908300	Erie N6
R8	56	Carbon Hi. Sta	ıb.	5 5 5 5	906559	Erie N6
R9	56	Carbon Hi. Sta	ıb.	5	906559	Erie N6
B.F. /	Amplifier	Board (BC.28155	5)			
3Rl	8.2k	Metal Oxide		5	908275	Electrosil TR4
3R2	820	Metal Oxide		5	908282	Electrosil TR4
3R3	560	Metal Oxide		5 5 5 5	909841	Electrosil TR4
3R4	1.5k	Metal Oxide		5	908296 908272	Electrosil TR4
3R5	18k	Metal Oxide		2	900212	Electrosil TR4
3R6	18k	Metal Oxide		5	908272	Electrosil TR4
3 R7	lOk	Metal Oxide		5 5 5	900986	Electrosil TR4
3R8	390	Metal Oxide		5	908472	Electrosil TR4
3R9	3.3k	Metal Oxide		5	900991	Electrosil TR4
3R10	33	Metal Oxide		5	908690	Electrosil TR4
3R11		not used				
3R12		not used				
3R13		not used				
3R14	18k	Metal Oxide		5	908272	Electrosil TR4
3R15	lOk	Metal Oxide		5	900986	Electrosil TR4
3R16	390	Metal Oxide		5	908472	Electrosil TR4
3R17	3.3k	Metal Oxide		5	900991	Electrosil TR4
3R18	33	Metal Oxide		5 5 5 5	908690	Electrosil TR4
3R19	22	Metal Oxide		5	911495	Electrosil TR4
		Thermistor				
3TH1					909839	Mullard VA1038
J±11.±					Jugus	11110/V

Cct. Value Description Rat. Tol. Racal Manufacturer Ref. % Part No.

R.F. MODULE (continued)

		Capacitors				
Module	•		volts			
C2	0.1	not used Polyester	250	10	909847	Mullard C280AE/A100K
0 - 30	MHz Filt	er (AC.28188/A)	_			
101 102 103 104 105	68p 82p 18p 82p 68p	Polystyrene Polystyrene Polystyrene Polystyrene Polystyrene	30 30 30 30 30	2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	908321 908322 907171 908322 908321	Suflex HS7/A Suflex HS7/A Suflex HS7/A Suflex HS7/A
Coil a	nd Capaci	tor Assembly				
201 202 203 204 205	бр бр бр бр бр	trimmer: tubu trimmer: tubu trimmer: tubu trimmer: tubu trimmer: tubu	ılar ılar ılar		901987 901987 901987 901987 901987	Mullard COO4EA/6E Mullard COO4AE/6E Mullard COO4AE/6E Mullard COO4AE/6E Mullard COO4AE/6E
206a 206b 207		Le: R.F. TUNE. M L57 pF each sect		3.5 pF)	BD38556 BD38556	Wingrove & Rogers C78-22/57
2010 2010 2011	4.7 p 680p 680p 6.8p	Ceramic Silver Mica Silver Mica Ceramic	750 300 300 750	전 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3	902007 902254 902254 902009	Lemco 310P100 J & M C12S J & M C12S Lemco 310P 100
R.F. A	mplifier	Board (BC.28155)			
301 302 303 304 305	0.1 0.1 0.1 0.1	Ceramic Ceramic Ceramic Ceramic Ceramic	30 30 30 30 30	-25+50 -25+50 -25+50 -25+50 -25+50	906675 906675 906675 906675 906675	Erie 811T/30 Erie 811T/30 Erie 811T/30 Erie 811T/30
306 307 308 309 3010	0.1 68p 100p 27p 220p	Ceramic Polystyrene Polystyrene Polystyrene Polystyrene	30 30 30 30 30	-25+50 212 212 ±1p 212	906675 908321 908241 907172 908320	Erie 811T/30 Suflex HS7/A Suflex HS7/A Suflex HS7/A Suflex HS7/A
3011 3012 3013 3014 3015	33p 150p 0.1 0.1 100p	Polystyrene Polystyrene Ceramic Ceramic Polystyrene	30 30 30 30 30	±1p 2½ -25+50 -25+50 2½	906497 908331 906675 906675 908241	Suflex HS7/A Suflex HS7/A Erie 8llT/30 Erie 8llT/30 Suflex HS7/A

Cct. Val	lue Desc	ription R	at.	Tol.	Racal Part No.	Manufacturer				
	R.F. MODULE (continued)									
3016 185 3017 220 3018 335 3019 825 3020 005	Op Poly: p Poly: p Poly:	styrene 3 styrene 3 styrene 3	60 60	±lp 2½ ±lp 2½ -25+50	907171 908320 906497 908322 906675	Suflex HS7/A Suflex HS7/A Suflex HS7/A Suflex HS7/A Erie 811T/30				
3021 68 ₁	p Poly	styrene 3	0	2 1	908321	Suflex HS7/A				
	Indu	ctors and Tr	ansform	ers						
0 - 30 MH:	z Filter									
11.1 1 1.2 11.3	Aeria	al Filter Co al Filter Co al filter Co	il		CT.32963/ CT.32964/ CT.32963/	/ A				
Coil and S	Switch Asser	mbly								
2L1 2L3 2L4 2L5	Coil Coil Coil	Assembly Assembly Assembly Assembly			CT .32934/ CT .32933/ CT .32932/ CT .32931/ CT .32930/	/B /B /B				
R.F. Ampl:	ifier Board									
3L1 3L2 3L3 3L4	Coil Coil	Assembly: Assembly: Assembly:	L.P. Fi L.P. Fi	lter lter	CT.28154/ CT.28152/ CT.28154/ CT.28152/	'A 'A				
3T1 3T2		sformer Asse sformer Asse			CT.28149/ CT.28149/					
	Swite	ches								
2SA SB Switch SB		RANGE Switc FT (R.F. Att			BSW38550 BSW28141 AA 34081					
	Trans	sistors								
R.F. Ampli	fier Board									
3VT1 3VT2 3VT3						Texas 28303 RCA 2N3478 RCA 2N3478				
	Diode	es								
R.F. Ampli	fier Board									
3D1 to 3D4 3D5 and 3I	_	-conductor d -conductor d			914144 908343	Emihus HD 1812 Texas 18920				

Cct.	Value	Description	Ret.	Tol.	Racal	Manufacturer
Ref.				%	Part No.	

R.F. MODULE (continued)

3Dll and 3Dl2 Semi-conductor diodes 909837 Hughes HS 9003

NOTE: Earlier versions had diodes 3D7 to 3DlO in parallel with 3Dl to 3D4,
and the diodes were then Part No.911796 Hughes HPS 1672/B.

Plugs and Sockets

R.F. INPUT Antenna: socket 750 fixed Transradio BN12/7
PL1 Connector fixed, 5-way Cannon DEM5W1P
Coaxial insert to PL1 Cannon DM53740-5001

Fuse

1FS1 500 mA Aerial protection 906850 Belling Lee L562 Fuseholder for 1FS1 908352 Belling Lee L1383

Miscellaneous Items

X1 Ferrite Bead 907488 Mullard FX1242 3X1 Ferrite Bead on 3VT3 907488 Mullard FX 1242

Voltage Surge Arrester (Spark Gap)

Siemens America Inc.
Type Bl-A230

Relay, Muting 3400 17.6V 911478 C.P. Clare Type F F.L. 7631

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer			
	FIRST MIXER AND 40 MHz FILTER								
			(BC	.28211) -	Fig.8.				
		Resistors							
lst.	Mixer Boa	rd (BC.28215)							
	ohms								
Rl	56	Metal Oxide		5	908289	Electrosil TR4			
R2	15k	Metal Oxide		5	908280	Electrosil TR4			
R3 R4	12k 2.7k	Metal Oxide Metal Oxide		2 5	908274 908294	Electrosil TR4 Electrosil TR4			
R5	2.7k	Metal Oxide		5 5 5 5 5	908294	Electrosil TR4			
40 MH	z Filter	(AC.28197)							
Rl	lk	Metal Oxide		5	908267	Electrosil TR4			
		Potentiometer	3_						
lst. 1	Mixer Boa	<u>rd</u>							
RVl	2.2k				909838	Ancillary Dev. Type T.O.5.			
		Capacitors							
lst.	Mixer Boa	rd (BC.28215)							
Cl	0.1	Ceramic	30	-25+50	906675	Erie 8111/30			
C2	0.1	Ceramic	30	- 25 + 50	906675	Erie 811T/30			
C3	0.1	Ceramic	<u>3</u> 0	-25+50	906675	Erie 8111/30			
C4 C5	0.1 39p	Ceramic Polystyrene	30 30	-25+50 lp	906675 905374	Erie 811T/30 Suflex HS7/A			
c 6	39p	Polystyrene	30	lp	905374	Suflex HS7/A			
00	J) E	20-0000	70	-1	70771.	242 2011 110 1/11			
40 MH:	z Filter	(AC.281 <u>97)</u>							
Cl	47p	Polystyrene	30	2 1	908318	Suflex HS7/A			
C2	47p	Polystyrene	30	2 2	908318	Suflex HS7/A			
C3 C4	47p 47p	Polystyrene Polystyrene	30 30	5 <u>5</u>	908318 908318	Suflex HS7/A Suflex HS7/A			
C5	47p	Polystyrene	30	~	908318	Suflex HS7/A			
c6	47p	Polystyrene	30	2]	908318	Suflex HS7/A			
C7	56p	Polystyrene	30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	908319	Suflex HS7/A			
c8	470p	Polystyrene	30	2출	908317	Suflex HS7/A			
		Inductors							
lst. 1	Mixer Boa	rd							
Tl		Transformer			CI 58515	/A			

Cct. Value Ref.	Description Rat. Tol. %	Racal Manufacturer Part No.
	FIRST MIXER AND 40 MHz FILTE	R (continued)
40 MHz Filter		
L1 12 L3 L4 L5	Coil Assembly Coil Assembly Coil Assembly Coil Assembly Coil Assembly	CT 31031/A CT 31030/A CT 31030/A CT 31030/A CT 31030/A
16 L7 L8	Coil Assembly Coil Assembly Coil Assembly	CT 31030/A CT 31030/A CT 31030/A
	Transistors	
VT1 VT2		906517 Texas 2N918 906517 Texas 2N918
	Plugs and Sockets	
PL1 PL2 PL3	From R.F. Unit -16V supply Connects to bulkhead adaptor	906391 Belling Lee L1403/FP/Ag. 908340 Sealectro FT-M-4
PL4	SKT2 To 2nd. mixer	908370 Belling Lee L1403 RFP/Ag. 908341 Cannon insert DM 53740-5001

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer			
	SECOND MIXER								
			(BC	.30959)	Fig.9				
		Resistors							
Module	e Chassis								
House	ohms	•							
lRl	270	Metal Oxide			908284	Electrosil TR4			
1R2 +		not used		r	000105	Electrosil ED			
1R4	180	Metal Oxide		5	909125	Electrosil TR4			
Circu	it Board	(BC.28177)							
Rl	47k	Metal Oxide		5	908391	Electrosil TR4			
R2	4.7k	Metal Oxide		5	900989	Electrosil TR4			
R3	12k	Metal Oxide		5	908274	Electrosil TR4			
\mathbb{R}^{1}	680	Metal Oxide		5 5 5 5	908390	Electrosil TR4			
R5	8.2k	Metal Oxide		5	908275	Electrosil TR4			
R 6	2.2k	Metal Oxide		5	908270	Electrosil TR4			
R7	3.3k	Metal Oxide		5 5 5 5	900991	Electrosil TR4			
R8	10k	Metal Oxide		5	900986	Electrosil TR4			
R9	3.9k	Metal Oxide		5	900990	Electrosil TR4			
RlO	470	Metal Oxide		5	900992	Electrosil TR4			
Rll		not used							
R12	56	Metal Oxide		5	908289	Electrosil TR4			
		Capacitors							
	-1-		volts	0.0	000005	14.77			
Cl	.047	Polyester	250	20	909227 909227	Mullard C280 AE/P47K Mullard C280 AE/P47K			
C2 C3	.047 68p	Polyester Polystyrene	250 30	20 2 1	909221	Suflex HS7/A			
C4	0.1	Polyester	250	10	909847	Mullard C280 AE/Alook			
C5	0.1	Polyester	250	10	909847	Mullard C280 AE/Alook			
c6	.01	Polyester	250	20	910485	Mullard C280 AE/PlOK			
C7	.01	Polyester	250		910485	Mullard C280 AE/Plok			
c8	150p	Polystyrene	30	20 2 1 2	908331	Suflex HS7/A			
C9	.01	Polyester	250	20	910485	Mullard C280 AE/PlOK			
ClO	.047	Polyester	250	20	909227	Mullard C280 AE/P47K			
Cll	47p	Polystyrene	30	2 1	908318	Suflex HS7/A			
C12	0.1	Polyester	250	21/2 10 21/2 21/2 21/2	909847	Mullard C280 AE/A100K			
C13	100p	Polystyrene	30	2 1	908241	Suflex HS7/A			
C14	300p	Polystyrene	30	2 2	908335	Suflex HS7/A			
C15	0.1	Polyester	250	10	909847	Mullard C280 AE/Alook			
C16	15p	Polystyrene	30	lp	908336	Suflex HS7/A			
C17	56p	Polystyrene	30	2]	908319	Suflex HS7/A			
c18	150p	Polystyrene	30	1p 2 1 212 25 5	908331	Suflex HS7/A			
C19	15 p	Ceramic	750	5	902047	Lemco 310NPO			

Cet. Ref.	Value	Description	Rat.	Tol. %	Racal Part No.	Manufacturer
		SE	COND MIX	ER (contir	nued)	
		Transformers	and Indu	ctors		
T1 T2		37.5 MHz coup 2-3 MHz outpu	_		CT 28317 CT 28316	
L1 12 13 14 15		Mixer load Filter coil as Filter coil as Filter coil as Filter coil as	ssembly ssembly		CT 28310 CT 28311 CT 28312 CT 28314	L/A 2/A 3/A
16		Filter coil as	ssembly		CT 28315	5/A
		Transistors				
VT1 VT2 VT3					909414 909414 910866	Mullard 2N3323 Mullard 2N3323 Texas GM290A
		Plugs and Soci	kets			
PLl		9-way Coaxial inser	ts A l t	0 A 4	90 83 88 90 83 41	Cannon DBM9W4P Cannon DM53740-5001
1 X 1 1X2		Ferrite Bead Ferrite Bead Ferrite Bead	Assembly		AA40269 907488	Mullard FX1242

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer		
			THIRD	MIXER				
	(BC.35970) - Fig.11							
		Resistors						
Module	Chassis							
	ohms		watts	%				
lRl	39	Composition		10	902491	Erie 15		
Circui	t Board	(BC.35966)						
Rl	18k	Metal Oxide		5	908272	Electrosil TR4		
R2	82k	Metal Oxide		5	908691	Electrosil TR4		
R3 R4	3.9k 2.2k	Metal Oxide Metal Oxide) 5	9009 <u>9</u> 0 90 8 270	Electrosil TR4 Electrosil TR4		
R5	470	Metal Oxide		5 5 5 5	900270	Electrosil TR4		
117	110	110007 011700			, , , , , , ,			
R6	33	Metal Oxide		5	908690	Electrosil TR ¹ 4		
R7	82	Metal Oxide		5 .	908290	Electrosil TR4		
r8	680	Metal Oxide		5 5 5 5	908390	Electrosil TR4		
R9	33	Metal Oxide		5	908690	Electrosil TR4		
R1O	5.6k	Metal Oxide		5	908273	Electrosil TR4		
Rll	18k	Metal Oxide		5	908272	Electrosil TR4		
Rl2	lk	Metal Oxide		5 5	908267	Electrosil TR4		
R13	22	Composition	0.1	10	902488	Erie 15		
R14	lk	Metal Oxide		5 5	908267	Electrosil TR4		
R15	330	Metal Oxide		5	908268	Electrosil TR4		
R16	68	Metal Oxide		5	910487	Welwyn F25		
		Capacitors						
Module	Chassis		- 4					
			volts					
1C1	82 0 p	Polystyrene	30	2 <u>년</u> 2 <u>년</u>	908389	Suflex HS7/A		
1C2	820p	Polystyrene	30	2 2	908389	Suflex HS7/A		
103	.0033	Silvered Mica	200	2	902204	JMC CX22S/200		
1C4 1C5	50 0.1	Electrolytic Polyester	25 250	-10+50 20	908798 909428	Mullard C426/AR/F50 Mullard C280 AE/P100K		
1C6	470p	Polystyrene	30	5	908396	Suflex HS7/A		
	t Board	(BC.35966)	-			•		
Cl	0.1		volts	20	909428	Mullard C280 AE/Plook		
C2	0.1	Polyester Polyester	250 250	20	909428	Mullard C280 AE/Plook Mullard C280 AE/Plook		
C3	680p	Silver Mica	300	2	902254	J.M.C. C12S		
C4	150p	Polystyrene	30	2	908331	Suflex HS7/A		
C5	.015	Silver Mica	125	1	910928	S.T.C. 454-LWA-75		

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part No	Manufacturer		
THIRD MIXER (continued)								
c6 c7 c8 c9 c1o	680p 39p 0.1 0.1 68p	Silver Mica Polystyrene Polyester Polyester Polystyrene	300 30 250 250 30	2 1p 20 20 2 1 2	902254 905374 909428 909428 908321	J.M.C. C12S Suflex HS7/A Mullard C280 AE/P100K Mullard C280 AE/P100K Suflex HS7/A		
C11 C12 C13	150p 0.1 0.1	Polystyrene Polyester Polyester	30 250 250	2½ 20 20	908331 909428 909428	Suflex HS7/A Mullard C280 AE/Plook Mullard C280 AE/Plook		
		Transformers a	nd Induc	ctors				
Module 1L1 1L2	c Chassis	Coil Assembly			CT 31026 AA 38847			
Circui	Circuit Board							
T1 T2 T3		Transformer Transformer Transformer			CT 35968 CT 35968 CT 35968	8/A		
L1 12 L3 L4 L5		Coil Assembly Coil Assembly Coil Assembly Coil Assembly			CT 35969 CT 31023 CT 35971 CT 31022 CT 34745	5/A L/A L/A		
16 17		Coil Assembly Coil Assembly			CT 31021			
VT1 VT2 VT3		n.p.n. n.p.n. n.p.n.			900 8 93 900893 909111	S.T.C. BSY27 S.T.C. BSY27 Texas 2N3478		
1D1 D1-D4		<u>Diodes</u> (mounted on th Diode Quad on		•	908349 909846	Hughes HD1871 Cosem A505GE		
PLl		Plugs and Sock (Plug Shell (Plug coaxial		(4)	908388 908341	Cannon DBM9W4P Cannon DM53740-5001		

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part No.	Manufacturer
		Resistors		28120) -	Fig.5	
Oscill	lator Boar	d (lst. V.F.O.) (AC.3	5195)		
	ohms		watts			
R1 R2 R3 R4 R5	100 10 4.7k 6.8k 68	Metal Oxide Composition Metal Oxide Metal Oxide Metal Oxide	0.1	5 10 5 5 5	908276 902484 900989 900987 9082 7 8	Electrosil TR4 Morganite XL Electrosil TR4 Electrosil TR4 Electrosil TR4
R6	lOk	Metal Oxide		5	900986	Electrosil TR4
Amplif	ier Board	(lst V.F.O.)	(AC.325	35)		
R1 R2 R3 R4 R5	68 1.5k 8.2k 5.6k 10k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	908278 908296 908275 908273 900986	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R6 R7 R8 R9 R10 R11	4.7k 56 330 220 680 100	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide Composition	0.1	5 5 5 5 5 10	900989 908289 908268 900988 908390 902496	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Erie 15
Amplif	ier Board	(1st V.F.O.)	(Ac.28)	28)		
R1 R2 R3 R4 R5	68 1.5k 8.2k 5.6k 10k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	908278 908296 908275 908273 900986	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R6 R7 R8 R9 R10	4.7k 56 330 68 680	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	900989 908289 908268 908278 908390	Electrosil TR4
Module	Assembly	Capacitors Megahertz tuni Ceramic	volts .ng 200	%	CA .27752 908722	
	•					

Cct. Ref.	Value	Description	Rat.	Tol %	Racal Part No.	Manufacturer			
11021									
Oscilla	Oscillator Board (AC.35195) FIRST V.F.O. (Continued)								
Cl	6.8p	Ceramic	750	<u>1</u> 2p	902075	Erie N750A			
C2	8.5p	Trimmer	17.	2.5	908732	Erie 562-013			
C3	.047	Polyester	250	20	909227	Mullard C280 AE/P47K			
C4	390p	Polystyrene	30	5	906710	Suflex HS7/A			
C5	.047	Polyester	250	20	909227	Mullard C280 AE/P47K			
c6	.0015	Ceramic	350	20	902124	Lemco 310K			
Amplif:	ier Board	(AC.32535)							
Cl	.047	Polyester	250	20	909227	Mullard C280 AE/P47K			
C2	470p	Polystyrene	30	5	908396	Suflex HS7/A			
C3	.0033	Ceramic Hi k	350	20	902128	Lemco 310K			
C1	.047	Polyester	250	20	909227	Mullard C280 AE/P47K			
C5	6.8p	Ceramic	750	$\frac{1}{2}$ P	902075	Lemco 310N750			
c 6	47p	Polystyrene	30	2 <u>1</u> p	908318	Suflex HS7/A			
C7	.001	Disc Ceramicon	500	-20+80	908832	Erie K7004/861			
c8	.002	Disc Ceramicon	500	-20+80	915099	Erie K800011/861			
C 9	82p	Polystyrene	30	2 1 /2	908322	Suflex HS7/A			
Amplif:	ier Board	(AC.28128)							
NOTE: -	Canacito	rs Cl-C7 are identic	eal to	the Amo	lifier boar	d AC-32535 above.			
c8	.001	Disc Ceramicon	500	-20+80		Erie K7004/861			
C 9	82p	Polystyrene	30	$2\frac{1}{2}$	908322	Suflex HS7/A			
CĺO	.001	Disc Ceramicon	500	- 20+80	908832	Erie K7004/861			
		Transformers and	Induct	ors					
Ll		Oscillator coil as	ssembl	У	CT 28220/A				
		<u>Transistors</u>							
Oscilla	ator Board	<u>1</u>							
VTl		p.n.p.			910866	Texas GM 290A			
Amplif:	ler Board	(AC.32535)							
VTl		p.n.p.			914137	Texas GM 290A-R2044			
VT2		p.n.p.			91 5512	Texas GM 290A-R2125			
Amplif	ier Board	(AC 28128)				,			
VTl		20 20 20			91 5512	Texas GM 290A-R2125			
VI2		p.n.p.			914137	Texas GM 290A-R2044			
V 1 2		p.n.p.)+++)	Texas di 290x-1/2044			
		Plugs and Sockets							
PL1 PL2		Cable and connector		-	AA 33091/9 AA 33091/6				
LTIC		Cable and connecto	T. SPR	≃шотЛ	WW 22021/0				
		Ferrite Beads			000				
FX1 (AC.32535 & AC.28128)					907488	Mullard FX 1242			

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
	.,,		SECONI	V.F.O.		
			(CC.2	28101/B) -	Fig.10.	
		Resistors				
Fine T	une Board	1				
	ohms		watts	% 5		
2Rl	47k	Metal Oxide		5	908391	Electrosil TR4
Oscil	lator Boar	ed (BC.35808)				
Rl	100	Metal Oxide		5	908276	Electrosil TR4
R2	390	Metal Oxide		5	908472	Electrosil TR4
R3 R4	2.2k	Metal Oxide Metal Oxide		2	908270 9082 9 5	Electrosil TR4 Electrosil TR4
R5	27k 390	Metal Oxide		5 5 5 5	908472	Electrosil TR4
				·		
R6	270	Metal Oxide		5	908284	Electrosil TR4
R7 R8	390 150	Metal Oxide Metal Oxide		5 5 5	908472 909121	Electrosil TR4 Electrosil TR4
NO	170	Medal Oxide			909121	ETECOLORIT IN-
Amplif	ier Board	(BC35807)				
Rl	150k	Metal Oxide		5 5	908277	Electrosil TR4
R2	1.8k	Metal Oxide		5	908283	Electrosil TR4
R3 R4	1.8k	not used Metal Oxide		5	908283	Electrosil TR4
R5	150k	Metal Oxide		5 5	908277	Electrosil TR4
R6	75	Metal Oxide		5 5 5 5	908288	Electrosil TR4
R7 R8	6.8k lk	Metal Ocide Metal Oxide		2	900987 908267	Electrosil TR4 Electrosil TR4
R9	lk	Metal Oxide		5	908267	Electrosil TR4
RlO	470	Metal Oxide		5	900992	Electrosil TR4
בנת	90	Mahal Onda		F	009000	Til a attack at 2 mm/s
Rll Rl2	82 18	Metal Oxide Composition	0.1	5 10	908290 902487	Electrosil TR4 Erie 15
R13	68	Metal Oxide	0.1	5	902407	Electrosil TR4
R14	lOk	Metal Oxide			900986	Electrosil TR4
R15	27k	Metal Oxide			908295	Electrosil TR4
R16	220	Metal Oxide			900988	Electrosil TR4
R17	22	Composition	0.1	10	902488	Erie 15
R18	lk	Metal Oxide			908267	Electrosil TR4
R19	4.7k	Metal Oxide		5 5 5	900989	Electrosil TR4
R20	27k	Metal Oxide		5	908295	Electrosil TR4
R21	100	Metal Oxide		5	908276	Electrosil TR4
R22	75	Metal Oxide		5 5	908288	Electrosil TR4

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part No.	Manufacturer		
		SEC	OND V.F.C	. (contin	nued)			
		Capacitors						
Module	Assemb.	<u>ly</u>	volts					
lC1 lC2	8.5p	kHz tuning kHz tuning tr	immer		CA 309 48 908732	/A Erie 562-013		
Fine Tune Board								
201	0.1	Polyester	250	20	909428	Mullard C280AE/P100K		
Oscill	ator Bos	ard (BC.35808)						
C1 C2 C3 C4 C5	.01 .047 47p 22p	Ceramicon Ceramicon Polyester Ceramicon Ceramicon	100 100 250 750 750	-20+80 -20+80 20 21/2 22/2		Erie K800011/CD801 Mullard C280 AE/P47K Erie N150 Style B Erie NPO		
	NOTE: C5 is selected by test for suitable temperature coefficient. The standard component (NPO) has zero coefficient. The type actually fitted may be in the Erie range PlOO (+ve t.c.) or NO80 to N750 (-ve t.c.)							
Amplif	ier Boar	rd						
C1 C2 C3 C4 C5	1 .01 1 .047 .01	Tantalum Polyester Tantalum Polyester Polyester	35 250 35 250 250	20 20 20 2 0 20	909123 910485 909123 909227 910485	U. Carbide KIJ35S Mullard C280 AE/PlOK U. Carbide KIJ35S Mullard C280 AE/P47K Mullard C280 AE/P10K		
C6 C7 C8 C9 C10	.01 .047 .01 .01	Polyester Polyester Polyester Polyester Polyester	250 250 250 250 250	20 20 20 20 20	910485 909227 910485 910485 909227	Mullard C280 AE/PlOK Mullard C280 AE/P47K Mullard C280 AE/PlOK Mullard C280 AE/PlOK Mullard C280 AE/PlOK		
		Inductors						
NOTE:	L2 is a	not mounted on a	a board.					
L2 L1		not fitted Oscillator co:	il		CT 3 58 0 9)/A		
		Transistors						
Oscill VTl	ator	n.p.n.			906517	Texas 2N918		
Amplif	ier Boar	<u>rd</u>						
VT1 VT2 VT3		n.p.n. n.p.n. n.p.n.			906517 90651 7 906517	Texas 2N918 Texas 2N918 Texas 2N918		

8 - 21

RA.1217

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer			
	SECOND V.F.O. (continued)								
	Diodes								
Fine T	Tune Board	<u> </u>							
2Dl a r	nd 2D2	Variable capaci	Ltance		911 878	Motorola MV830			
Oscil	lator Boar	<u>·d</u>		(15pF)					
D1 D2 D3 D4		Zener 7.5V ±5% Zener 7.5V ±5% Zener 6.2V ±5% Zener 6.2V ±5%			900897 900897 905395 905395	Mullard OAZ245 Mullard OAZ245 Mullard OAZ243 Mullard OAZ243			
Amplii Dl D2 and	fier Board	not used			908343	Texas 1S920			
PLl		Plugs and Socke Multi-way conne Coaxial inserts	ector	PL1(3 off)	908716 908341	Cannon DBM13W3P Cannon DM53740-5001			
	Fine Tune Component Board Assembly containing 2Rl, 2Cl, 2Dl and 2D2 AA39599/A								

Cct.	Value	Description	Rat.	Tol.	Racal	Manufacturer
Ref.				%	Part No.	•

37.5 MHz GENERATOR

(BC.28284/B) - Fig.7

			(20.22.4		
		Resistors			
Har	monic Genera	ator (AC.32854	<u>:)</u>		
	ohms				
Rl	1.8k	Metal Oxide	5	908283	Electrosil TR4
R2	1.2k	Metal Oxide	5	908285	Electrosil TR4
R3	820	Metal Oxide	5 5 5 5	908282	Electrosil TR4
R^{4}	390	Metal Oxide	5	908472	Electrosil TR4
R5	390	Metal Oxide	5	908472	Electrosil TR4
Har	monic Mixer	(AC.37894)			
Rl	270	Metal Oxide	5	908284	Electrosil TR4
R2	56	Metal Oxide	5 5 5 5	908289	Electrosil TR4
R3	15k	Metal Oxide	5	908280	Electrosil TR4
R4	5.6k	Metal Oxide	5	908273	Electrosil TR4
R5	120	Metal Oxide	5	908286	Electrosil TR4
-17				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
R6	6.8k	Metal Oxide	5	900987	Electrosil TR4
R7	5.6k	Metal Oxide	5	908273	Electrosil TR4
R8	15k	Metal Oxide	5 5 5 5	908280	Electrosil TR4
R9	120	Metal Oxide	5	908286	Electrosil TR4
RlO	820	Metal Oxide	5	908282	Electrosil TR4
<u>37.</u>	5 MHz Ampli:	fier (AC.32850	<u>)</u>		
Rl	4.7k	Metal Oxide	5	900989	Electrosil TR4
R2	4.7k	Metal Oxide	5	900989	Electrosil TR4
R3	47k	Metal Oxide	5	908391	Electrosil TR4
R4	680	Metal Oxide	5	908390	Electrosil TR4
R5	12k	Metal Oxide	5 5 5 5 5	908274	Electrosil TR4
/			•		
R6	8.2k	Metal Oxide	5	908275	Electrosil TR4
		Potentiometer	•		
RVl	2.2k	Mixer Balance	e adjustment	909838	Ancillary Developments Type TO.5
		Capacitors			
1C1	0.1	Polyester	250 10	909847	Mullard C280 AE/Alook
101		Polyester	250 10	909847	Mullard C280 AE/AlooK
<u>ـ برح</u>	U • 4	TOMOCROCI		2020-1	

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
		<u>37.5 N</u>	Hz GENE	RATOR (com	ntinued)	
Harmo	nic Genera	tor (AC.32854)				
			volts			
Cl	4.5/15p	Trimmer			908796	Steatite Triko
C2 C3 C4 C5	.047 .047 .01 100p	Polyester Polyester Polyester Polystyrene	250 250 250 30	20 20 20 21 21	909227 909227 910485 908797	7SOZ N750 Mullard C280 AE/P47K Mullard C280 AE/P47K Mullard C280 AE/P10K Suflex HS7/A
Harmo	nic Filter	(AC.32862 and	AC.325	48)		
C1 C2 C3 C4 C5	22p 2.5-6p 27p 7-35p 27p	Polystyrene Pre-set Cerami Polystyrene Pre-set Cerami Polystyrene	c sub-m	±lp icro ±lp	906703 907886 908325 908806 908325	Suflex HS7/A Steatite Triko 7SONO33 Suflex HS7/A Steatite Triko 7SO2N1500 Suflex HS7/A
c6 c7 c8 c9	2.5-6p 27p 7-35p 18p	Pre-set Cerami Polystyrene Pre-set Cerami Polystyrene		±lp	907886 908325 908806 907171	Steatite Triko 7S02N033 Suflex HS7/A Steatite Triko 7S02N1500 Suflex HS7/A
Harmo	nic Mixer	(AC.37894)				
C1 C2 C3 C4 C5	0.1 0.1 .01 .01	Polyester Polyester Ceramic Ceramic	250 250 100 100 100	10 10 -20+80 -20+80 -20+80	909428 909428 909102 909102 909102	Mullard C280 AE/Plook Mullard C280 AE/Plook Erie K800011 CD801 Erie K800011 CD801 Erie K800011 CD801
c 6	.01	Ceramic	100	-20+80	909102	Erie K800011 CD801
37.5	MHz Amplif	ier (AC.32850)	١			
C1 C2 C3 C4 C5	0.1 0.1 .047 68p 0.1	Polyester Polyester Polyester Polystyrene Polyester	250 250 250 250 30 250	10 10 20 2½ 10	909847 909847 909227 908321 909847	Mullard C280 AE/AlOOK Mullard C280 AE/AlOOK Mullard C280 AE/P47K Suflex HS7/A Mullard C280 AE/PlooK
c6 c7	.047 15p	Polyester Ceramic	250 750	20 5	909227 902047	Mullard C280 AE/P47K Lemco 310NPO
		Transformers a	ın d Indu	ctors		
Harmo	nic Filter	(AC.32862 and	AC.325	48)		
14 13 15 17		Coil Assembly Coil Assembly Coil Assembly			CT 32956 CT 32954 CT 32956 CT 32954	A/A A/A

Cct. Value Ref.	Description Rat.	Tol.	Racal Part No.	Manufacturer
	37.5 MHz GENERA	ATOR (con	tinued)	
Harmonic Mixe				
Ll	Coil Assembly inc. C7 8	& C8	CT 32957	7/A
37.5 MHz Ampl:	ifier (AC.32850)			
Tl	Coil assembly inc. cape	acitor C4	CT 28317	7/A
	Transistors			
Harmonic Gener	rator			
VTl	p.n.p.		910866	Texas GM290A
Harmonic Mixer	<u>c</u>			
VTl and VT2	p.n.p.		910866	Texas GM290A
37.5 MHz Ampl	ifier			
VTl	p.n.p.		910866	Texas GM290A
VT2	p.n.p.		910866	Texas GM290A
	Diodes			
Harmonic Gener	rator			
D1 D2			908347 908347	Hughes HG 5085 Hughes HG 5085
			7007+1	nughes he jooj
37.5 MHz Ampl	ifier		- 0 1 -	0-
Dl and D2			908347	Hughes HG 5085
	Plugs and Sockets			
PLl	Connects to bulkhead ad	_	908370	Belling Lee L1403/RFP/Ag
SKTl	Connects to PLl on 37.5 Filter (907076	Cannon insert DM53742-5001
	Ferrite Beads			
FBl	On H.T. Filter		900461	Mullard FX 1115
	37.5 MHz Filter			
	unit is faulty a replace Department quoting Part			tained from the Racal
	Plugs (fixed)			
PL1 PL2	Coaxial insert		908341	Cannon DM 53740-5001 Cannon DM 53740-5001
ŁTK:	OCANTAL THECT'S		700744	Camion 93/40=3001

1 MHz AMP. OSC. & CALIBRATOR

(CC 28285/B - Fig.6)

Note: This assembly is contained in the 37.5 MHz Generator Module.

Dag	3 -4	
nes	LSI	ors

IRI IR2	ohms 56 22k	Metal Oxide Metal Oxide	watts	5 5	910545 908289	Welwyn F25 Electrosil TR4
1MHz Am	plifier B	Soard (BC.32858)				
R1 R2 R3 R4 R5	22k 6.8k 1k 820 10	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Composition		5 5 5 10	908269 900987 908267 908282 9 0 2484	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Erie 15
R6 R7 R8 R9 R10	1k 8.2k 6.8k 33 560	Metal Oxide Metal Oxide Metal Oxide Composition Metal Oxide	0.1	5 5 5 10 5	90 8 267 908275 900987 902490 909841	Electrosil TR4 Electrosil TR4 Electrosil TR4 Erie 15 Electrosil TR4
R11 R12 R13 R14 R15	33 1k 18k 5.6k 1.5k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5 5	908690 908267 900994 908273 908296	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R16 R17 R18 R19	1.2k 39k 82 68	Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5	908285 90 82 92 908290 908278	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
Calibra	tor Board	(BC 41745)				
R1 R2 R3 R4 R5	33k 10k 2.2k 100 6.8k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	908291 900986 908270 908276 900987	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R6 R7 R8 R9 R10	2.2k 68 1.2k 27k 4.7k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5 5	908270 908278 908285 908295 900989	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
		1 MHz AMP.	OSC. & C	AL. (continued)	
	ohms		watts			
R11 R12 R13 R14	330 39k 150k 2•2k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5	908153 908292 908277 908270	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
		Capacitors	volts			
101 10 2	0.22 0.1		250	10	908338 909847	TCC CML10 Mullard C280AE/A100K
lMHz Ar	mplifier :	Board (BC.32858)				
C1 C2 C3 C4 C5	· 047 · 047 · 047 · 047 · 047	Polyester Polyester Polyester Polyester Polyester	250 250 250 250 250	20 20 20 20 20	909227 909227 909227 909227 909227	Mullard C280 AE/P47K Mullard C280 AE/P47K Mullard C280 AE/P47K Mullard C280 AE/P47K Mullard C280 AE/P47K
C6 C7 C8 C9 C10 *	0.1 .047 .001 .047 680p 0.1	Polyester Polyester Ceramic Hi-K Polyester Polystyrene Polyester	250 250 350 250 30 250	20 20 20 21 20 20	909428 909227 902122 909227 908455 909428	Mullard C280 AE/P100K Mullard C280 AE/P47K Lemco 310K Mullard C280 AE/P47K Suflex HS7/A (See Note) Mullard C280 AE/P100K
* NOTE:	- In la	ter production if \	MT3 is ty	pe 2N	1396 then C	10 becomes 0.1µF
C11 C12 C13 C14	150p .0015 .047 0.1	Polystyrene Ceramic Hi-K Polyester Polyester	30 350 250 250	2½ 20 20 10	908331 902124 909227 909847	Suflex HS7/A Lenco 310K Mullard C280 AE/P47K Mullard C280 AE/A100K
Calibra	tor Board	d (BC.41745)				
C1 C2 C3 C4 C5	.047 .047 220 p .001 .001	Polyester Polyestyrene Polystyrene Polystyrene Polystyrene	250 250 30 30 30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	909227 909227 908320 908583 908583	Mullard C280 AE/P47K Mullard C280 AE/P47K Suflex HS7/A Suflex HS7/A Suflex HS7/A
c6 c7	22p 7 - 35p	Polystyrene Pre-set: Steatite		lp	906703	Suflex HS7/A
C8 C9 C10	0.1 0.1 0.1	Sub-Mica Polyester Polyester Polyester	75 250 250 250 250	10 10 10	908806 909428 909428 909428	Triko 02 N1500 Mullard C280 AE/P100K Mullard C280 AE/P100K Mullard C280 AE/P100K
011 012 013	2.5 0.1 1200p	Electrolytic Polyester Polystyrene	250 30	10 2 ¹ / ₂	908808 909428 910645	Mullard C426A5/E2-5 Mullard C280AE/P100K Suflex HS7/B

Value Racal Manufacturer Cct. Description Rat. Tol Ref. % Part No. 1 MHz AMP. OSC. & CAL. (continued) Transformers and Inductors lMHz Amplifier Board (BC 32858) Ll CT 32955/A Coil Assembly Transistors 1 MHz Amplifier Board (BC 32858) VTl 909414 Motorola 2N3323 p.n.p. VT2 909414 Motorola 2N3323 p.n.p. p.n.p.(earlier versions only) 909414 VT3 Motorola 2N3323 VT3 p.n.p. (fitted in later versions) 915244 Amperex 2N1396 Calibrator Board (BC 41745) VII p.n.p. 909414 Motorola 2N3323 Diodes 1 MHz Amplifier Board (BC 32858) Dl Semi-conductor 900620 Mullard OA200 Board (BC 41745) Calibrator Dl Semi-conductor 900652 Mullard AAZ13 Integrated Circuits Calibrator Board (BC 41745) ICl 915471 S.C.S.Cul 9958 Plugs and Sockets PLL (Plug shell 908388 Cannon DBM9W4P (Plug inserts (2) 907080 Cannon DM53741-5001 Crystals

1 MHz crystal Style D

Crystal Holder

CD 38871/1

900397

X2/UG

TIX

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
			В	.F.O F	ig.13	
		Resistors				
600 kH	Iz Oscilla	ator Board (BC	<u>.30540)</u>			
	ohms				•	
Rl	220	Metal Oxide		5	900988	Electrosil TR4
R2	5.6k	Metal Oxide		5	908273	Electrosil TR4
R3 R4	5.6k 5.6k	Metal Oxide Metal Oxide		2	90827 3 90827 3	Electrosil TR4 Electrosil TR4
R5	lOk	Metal Oxide		5 5 5 5	900215	Electrosil TR4
					,,,,,,,,,	
	ier Board					
Rl	5.6k	Metal Oxide		5 5 5	908273	Electrosil TR4
R2	15k	Metal Oxide		5	908280	Electrosil TR4
R3 R4	1k 180	Metal Oxide Metal Oxide		2 5	908267 909125	Electrosil TR4 Electrosil TR4
R5	4.7k	(part of CT 3	5217/A)	10	909127	Nutec RKL10
117		(100.0000000000000000000000000000000000)(/11/	20	7002.0	2100000 23222000
		Capacitors				
B.F.O.	Assembly	Ž.	volts			
101	0.1	Polyester	250	10	909847	Mullard C280 AE/Alook
1C2	4-20p	B.F.O. Variab			AD 38584	
Coo 17			705101			
		ator Board (BC	30540)			
Cl	0.1	Polyester	250	10	909428	Mullard C280 AE/Plook
C2	7 -3 5p	pre-set			908806	Steatite 7S Triko 02/N1500
C3 C4	7-35p	pre-set not used			908806	Steatite 7S Triko 02/N1500
C5	7 - 35p	pre-set			908806	Steatite 7S Triko 02/N1500
					-	
c6	7-35p	pre-set		,	908806	Steatite 7S Triko 02/N1500
C7	390p	Polystyrene	30	2 ½	908243	Suflex HS7/A
c8	82p	Ceramic	750 050	2	902099	Erie N750B Mullard C280 AE/Pl00K
C9 C10	0.1 .01	Polyester Polyester	250 250	20 20	909428 910485	Mullard C280 AE/Plok
						•
Cll	.047	Polyester	250	20	909227	Mullard C280 AE/P47K
Amplif	ier Board	d (BC.30542)	volts			
Cl	.047	Polyester	250	20	909227	Mullard C280 AE/P47K
C2*	180p	Polystyrene	30	2 2	907884	Suflex HS7/A
C3	0.1	Polyester	250	10	909847	Mullard C280 AE/A100K
	s part of	f transformer a	ssembly	CT 35216/		

Cct. Value Description Rat. Tol. Racal Manufacturer Ref. Part No.

B.F.O. (continued)

Transformers and Inductors

600 kHz Oscillator Board

Ll Oscillator coil CT 35217/A

Amplifier Board

Tl 600 kHz output transformer CT 35216/A

Switches

SB DET-B.F.O. Mode switch BSW 38585

Transistors

600 kHz Oscillator Board

VT1 n.p.n. 906433 S.T.C. BSY95A

Amplifier Board

VT1 n.p.n. 906433 S.T.C. BSY95A

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No	Manufacturer				
	1st I.F. AMPLIFIER UNIT									
			(BC	31474)						
	NOTE:	This unit is a to the crystal The circuit is	l bandwid	lth filter	s (Fig. 1					
		Resistors								
R1 R2 R3 R4 R5	ohms 18k 100 4.7k 3.9k 1k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		% 5 5 5 5 5 5	908272 908276 900989 900990 908267	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4				
R6 R7	470 10	Metal Oxide Composition	0.1	5 10	900992 902484	Electrosil TR4 Erie 15				
K/	10	Capacitors	volts	10	902404	FLIC TO				
C1 C2 C3* C4 C5*	0.1 .047 180p .047 .01	Polyester Polyester Polystyrene Polyester Silver Mica	250 250 30 250 500	20 20 20 20	909847 909227 907884 909227 908245	Mullard C280 AE/Alook Mullaed C280 AE/P47K Suflex HS7/A Mullard C280 AE/P47K Erie Microcap				
c6*	.01	Silver Mica	500	20	908245	Erie Microcap				
* Co	ontained i	in Ll assembly								
Ll		Inductors Coil Assembly Transistor			CT 31472	2/A				
VTl		p.n.p.			909414	Motorola 2N3323				

Cct. Ref.	Value	Description	Rat.		ol. %	Racal Part No.	Manufacturer
			MAIN	I.F.	MODULE	- Fig.12	
		Resistors					
2R1 2R2	ohms 1k	Metal Oxide		% 5		908267	Electrosil TR4
2R3	120	Metal Oxide		5		908286	Electrosil TR4
NOTE:	2Rl and	2R3 are not mou	nted o	on a	board.		
H.T. S	upply Fil	ter (AC 30535)					
Rl	100	Metal Oxide		5		908276	Electrosil TR4
I.F. A	mplifier	Board (BC.3053)	3)				
Rl	18k	Metal Oxide		5		908272	Electrosil TR4
R2	3.9k	Metal Oxide		5		900990	Electrosil TR4
R3	330	Metal Oxide		5		908268	Electrosil TR4
\mathbb{R}^{1}	4.7k	Carbon Film		1	0	908246	Nutec RKL10
R5	33	Metal Oxide		5		908690	Electrosil TR4
R6	lk	Metal Oxide		5 5 5 5 5		908267	Electrosil TR4
R7	22k	Metal Oxide		5		908269	Electrosil TR4
r8	4.7k	Metal Oxide		5		900989	Electrosil TR4
R9	2.2k	Metal Oxide		5		908270	Electrosil TR4
RlO	5.6k	Metal Oxide		5		908273	Electrosil TR4
Rll	4.7k	Metal Oxide		5		900989	Electrosil TR4
R12	3.9k	Metal Oxide		5		900990	Electrosil TR4
R13	lok	Metal Oxide		5		900986	Electrosil TR4
R14	220	Metal Oxide		5 5 5 5 5		900988	Electrosil TR4
R15	8.2k	Metal Oxide		5		908275	Electrosil TR4
R16	4.7k	Carbon film		10	0	908246	Nutec RKL10
R17	3.9k	Metal Oxide		5 5		900990	Electrosil TR4
R18	12k	Metal Oxide				908274	Electrosil TR4
R19	330	Metal Oxide		5		908268	Electrosil TR4
R20	4.7k	Carbon Film		1	0	908246	Nutec RKL10
R21	47	Metal Oxide		5 5		908298	Welwyn F25
R22	lk	Metal Oxide		5		908267	Electrosil TR4
Detect	or Board	(cc.28236)					
Rl	3.9k	Metal Oxide		5		900990	Electrosil TR4
R2	33k	Metal Oxide		5		908291	Electrosil TR4
R3	39k	Metal Oxide		5		908292	Electrosil TR4
R ¹ 4	5.6k	Metal Oxide		5 5 5 5 5		908273	Electrosil TR4
R5	56	Metal Oxide		5		908289	Electrosil TR4

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
		I.F	• MODULE	(continu	ed)	
RÓ R7 R8 R9 R10	100 2.2k 330 10k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Not used		5 5 5 5	908276 908270 908268 900986	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R11 R12 R13 R14 R15	4.7k 820 100k 4.7k 1k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	900989 908282 908293 900989 908267	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R16 R17 R18 R19 R20	33 6.8k 2.7k 15k 100	Composition Carbon Film Metal Oxide Metal Oxide Metal Oxide	0.1	10 10 5 5 5	902490 908247 908294 908280 908276	Erie 15 Nutec RKL10 Electrosil TR4 Electrosil TR4 Electrosil TR4
R21 R22 R23 R24 R25	2.2k 5.6k 33k 3.9k 15k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	908270 908273 908291 900990 908280	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
R26 R27 R28 R29 R30	1.2k 6.8k 22k	Metal Oxide Metal Oxide Metal Oxide Not used Not used		5 5 5	908285 900987 908269	Electrosil TR4 Electrosil TR4 Electrosil TR4
R31 R32 R33	82 5.6k 5.6k	Metal Oxide Metal Oxide Metal Oxide		5 5 5	908290 908273 908273	Electrosil TR4 Electrosil TR4 Electrosil TR4
AGC Bo	ard (BC.	<u>31466/B)</u>				
R1 R2 R3 R4 R5	15k 3.9k 330 5.6k 22	Metal Oxide Metal Oxide Metal Oxide Carbon Film Composition	0.1	5 5 10 10	908280 900990 908268 910488 902488	Electrosil TR4 Electrosil TR4 Electrosil TR4 Nutec RKL10 Erie 15
R6 R7 R8 R9 R10	1k 18k 12k 1k 18	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Composition	0.1	5 5 5 5 10	908267 908272 908274 908267 902487	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Erie 15

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer		
		<u>I.</u>	F. MODULE	(continu	ied)			
A.G.C Rll	. Board lOk	Carbon Film		10	908249	Nutec RKL10		
R12	150k	Metal Oxide			908277	Electrosil TR4		
R13	120k	Metal Oxide		2	908281	Electrosil TR4		
R14	120k	Metal Oxide		2	900201	Electrosil TR4		
R15	lok			5 5 5 5	900986	Electrosil TR4		
KT3	TOK	Metal Oxide)	900900	Liectrosii TR4		
R16	120k	Metal Oxide		5	908281	Electrosil TR4		
R17	68k	Metal Oxide		5	908279	Electrosil TR4		
R18	820k	Composition	0.1	10	902543	Erie 15		
R19	lk	Metal Oxide	•		908267	Electrosil TR4		
R20	2.2k	Metal Oxide		5 5	908270	Electrosil TR4		
1.00						manda or odmin "Ti"		
R21	6.8k	Metal Oxide		5	900987	Electrosil TR4		
R22	15k	Metal Oxide		5 5 5 5 5	908280	Electrosil TR4		
R23	820	Metal Oxide		5	908282	Electrosil TR4		
R24	3.3k	Metal Oxide		5	900991	Electrosil TR4		
R25	470	Metal Oxide		5	900992	Electrosil TR4		
Conve	Converter Amplifier Board (BC 34783/VAR) (Top Board)							
Rl	6.8k	Metal Oxide			900987	Electrosil TR4		
	1.8k			5 5 5 5 5	900907			
R2		Metal Oxide		2		Electrosil TR4		
R3	100	Metal Oxide		2	908276	Electrosil TR4		
R ¹ 4	270	Metal Oxide		2	908284	Electrosil TR4		
R5	lk	Metal Oxide		2	908267	Electrosil TR4		
R6	100	Metal Oxide		5	908276	Electrosil TR4		
R7	15k	Metal Oxide		5	908280	Electrosil TR4		
R8	100	Metal Oxide		5	908276	Electrosil TR4		
R9	1.2k	Metal Oxide		5	908285	Electrosil TR4		
R10*	56k	Metal Oxide		5 5 5 5 5	908287	Electrosil TR4		
Rll	120	Metal Oxide		5	908286	Electrosil TR4		
		220 000)00 <u>1</u> 00			
* RI	lO is fit	ted only to the	100 kHz 1	board BC	34783/B			
Conver	rter Osci	llator Board (BC 38568/1	VAR) (Bot	ttom Board	1)		
NOTE:		for R12, resiste		s are ide	entical in	the 100 kHz (B)		
	ohms							
Rl	100	Metal Oxide		5	908276	Electrosil TR4		
R2	68k	Metal Oxide		5		Electrosil TR4		
				7	2002 (3	Electrosil TR4		
R3	390	Metal Oxide		7	900472	Erecorosit TK4		
R ¹ 4	4.7k	Metal Oxide		5 5 5 5	900989	Electrosil TR4		
R5	22k	Metal Oxide		フ	900209	Electrosil TR4		

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
I.F. MODULE (continued)						
R6 R7 R8 R9 R10	1k 3.3k 18k 100 1k	Metal Oxide Metal Oxide Metal Oxide Metal Oxide Metal Oxide		5 5 5 5 5	908267 900991 908272 908276 908267	Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4 Electrosil TR4
		Metal Oxide Metal Oxide Metal Oxide is 39k (100kHz) Potentiometer	or 82k	5 5 (455 kHz)	908690 908292 908691	Electrosil TR4 Electrosil TR4 Electrosil TR4
AGC B					009765	73
RVl	2.2M	Capacitors			908365	Plessey Type MP
Modul	_	Capacitoris	volts			
2C1	0.22	C erami c C erami c	50 50	-20+50 -20+50	908338 908338	T.C.C. CML10 T.C.C. CML10
H.T. Supply Filter (AC.30535)						
C2 C1	.047 .047	Polyester Polyester	250 250	20 20	909227 90922 7	Mullard C280 AE/P47K Mullard C280 AE/P47K
I.F. Amplifier Board (BC.30533)						
C1 C2 C3 C4 C5	0.1 .047 10 180p 0.1	Polyester Polyester Electrolytic Polystyrene Polyester	250 250 16 30 250	10 20 -10+50 2 ¹ / ₂ 10	909847 909227 900068 907884 909847	Mullard C280 AE/A100K Mullard C280 AE/P47K Mullard C426 AR/E10 Suflex HS7/A Mullard C280 AE/A100K
C6 C7 C8 C9 C10	.047 0.1 180p 0.1 0.1	Polyester Polyester Polystyrene Polyester Polyester	250 250 30 250 250	20 10 2 1 10 10	909227 909847 907884 909847 909847	Mullard C280 AE/P47K Mullard C280 AE/A100K Suflex HS7/A Mullard C280 AE/A100K Mullard C280 AE/A100K
C11 C12 C13 C14 C15 C16 C17	.047 0.1 180p 50 .047 .047 100p	Polyester Polyester Polystyrene Electrolytic Polyester Polyester Polyester	250 250 3 0 16 250 250 30	20 10 2½ -10+50 20 20 2½	909227 909847 907884 908798 909227 909227 908241	Mullard C280 AE/P47K Mullard C280 AE/AlooK Suflex HS7/A Mullard C426 ARF50 Mullard C280 AE/P47K Mullard C280 AE/P47K Suflex HS7/A
Detector Board (CC.28236)						
C1 C2 C3 C4 C5	180p .047 10 120p 10	Polystyrene Polyester Electrolytic Polystyrene Electrolytic	30 250 16 30 16	$2\frac{1}{2}$ 20 -10+50 $2\frac{1}{2}$ -10+50	907884 909227 900068 908332 900068	Suflex HS7/A Mullard C280 AE/P47K Mullard C426 AR/E10 Suflex HS7/A Mullard C426 AR/E10

Cct. Value Ref.		Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer
	Detect	or Board	I.F	. MODULE	(continu	ed)	
	C6 C7 C8 C9 C10	120p 10 120p .047 0.1	Polystyrene Electrolytic Polystyrene Polyester Ceramic	30 16 30 250 30	2½ -10+50 2½ 20 -25+50	908332 900068 908332 909227 906675	Suflex HS7/A Mullard C426 AR/E10 Suflex HS7/A Mullard C280 AE/P47K Erie 811T/30
	C11 C12 C13 C14 C15	0.1 100p .047 180p 0.1	Ceramic Polystyrene Polyester Polystyrene Ceramic	30 30 250 30 30	-25+50 2½ 20 2½ -25+50	906675 908241 909227 907884 906675	Erie 811T/30 Suflex HS7/A Mullard C280 AE/P47K Suflex HS7/A Erie 811T/30
	C16 C17 C18 C19 C20	0.1 .047 330p .01 .0022	Ceramic Polyester Silver Mica Ceramic Ceramic	30 250 350 100 350	-25+50 20 2 -20+80 20	906675 909227 902173 900067 902126	Erie 811T/30 Mullard C280 AE/P47K J.M.C. CX22S/350 Erie CD801 Lemco 310K
	C21 C22 C23 C24 C25	7-35p 7-35p 0.1 0.1 10p	Variable Variable Ceramic Ceramic Polystyrene	30 30 30	-25+50 -25+50 2½	908806 908806 906675 906675 908324	Steatite Triko 02/N1500 Steatite Triko 02/N1500 Erie 811T/30 Erie 811T/30 Suflex HS7/A
	C26	10p	Polystyrene	30	2 1 /2	908324	Suflex HS7/A
	AGC Bo	ard (BC	31466/B)				
	C1 C2 C3 C4 C5	.047 0.1 .0086 330p .047	Polyester Polyester Silver Mica Polystyrene Polyester	250 2 5 0 125 30 250	20 10 2 2 1 20	909227 909847 908337 908242 909227	Mullard C280 AE/P47K Mullard C280 AE/A100K S.T.C. 454LWA-74 Suflex HS7/A Mullard AE/P47K
	C6 C7 C8 C9 C10	.047 33p .047 180p 390p	Polyester Polystyrene Polyester Polystyrene Polystyrene	250 30 250 30 30	20 1p 20 2 1 2 22	909227 906497 909227 907884 908243	Mullard C280 AE/P47K Suflex HS7/A Mullard C280 AE/P47K Suflex HS7/A Suflex HS7/A
	C11 C12 C13 C14 C15	0.1 0.22 0.1 6.4 0.64	Polyester Ceramic Polyester Electrolytic Electrolytic	250 50 250 25 64	10 -10+50 10 -10+50 -10+50	909847 908338 909847 905371 909311	Mullard C280 AE/A100K T.C.C. CML10 Mullard C280 AE/A100K Mullard C426 AR/F6.4 Mullard C426 AS/H0.64
	C16 C17	0.1 50	Polyester Electrolytic	250 25	10 -10+50	909847 908798	Mullard C280 AE/A100K Mullard C426 AR/F50

Cct. Ref.	Value	Description	Rat.	Tol. %	Racal Part No.	Manufacturer				
I.F. MODULE (continued)										
Conve	rter Ampl	ifier Board (BC	34783/	VAR) (Top	Board)					
Cl	.0033	Ceramic	100	10	912634	Erie 8003 W5R				
C2	330p	Polystyrene	30 50	2 1	908242	Suflex HS7/A				
C3 C4	82p 0.1	Ceramic Polyester	50 250	10 10	912637 909847	Erie 831 N2200 Mullard C280 AE/Alook				
C5	470p	Ceramic	100	10	912635	Erie 8003 W5R				
	_		0.00	:						
C6	0.1	Polyester	250	10 10	909847 9 0 9847	Mullard C280 AE/Alook Mullard C280 AE/Alook				
C7 C8	470p	Polyester Polystyrene	250 3 0	2 1 /2	909047	Suflex HS7/A				
C9	2.2	Tantalum	20	20	908316	U. Carbide K2R2J2OS				
Conve			sc 38568,		ttom Board					
NOTE:		for C9 the capac Ez versions.	itor det	tails are	identical	for the 100 kHz and				
Cl	.047	Polyester	250	20	909227	Mullard C280 AE/P47K				
C2	6.8p	Ceramic	750	12p 21/2	902041	Lemco 310NPO				
C3	150p	Polystyrene	30	2 2	908331	Suflex HS7/A				
C4	7-35p	Variable	70	01	908806	Steatite 7S Triko 02				
C5	470p	Polystyrene	30	2 1 /2	908317	Suflex HS7/A				
c6	0.64	Electrolytic	64	-10+50	909311	Mullard C426 AS/HO.64				
C7	0.1	Polyester	250	10	909847	Mullard C280 AE/Alook				
c8	470p	Polystyrene	30	2 1	908317	Suflex HS7/A				
C9	18p	Polystyrene	30	Tp	907171	Suflex HS7/A				
C9°	100p 470p	Polystyrene Polystyrene	30 30	1p 21/2 21/2	908241 908317	Suflex HS7/A Suflex HS7/A				
Not	ce: C9 is	18p (455kHz) or	100p (100kHz)	900)11	Durier HD(/A				
I.F. A	mplifier	Board (BC 3053	3)							
Ll		Coil Assembly			CT 33004	/A				
I\$		Coil Assembly			CT 33005	/A				
L3		Coil Assembly			OT 33006	/A				
	or Board					/.				
Tl		Transformer As			CT 32961 CT 33002					
T2		Transformer As	sembry		OT 55002	/#				
Ll		Not used				1.				
12		Coil Assembly			CT 31473					
L3		Coil Assembly			CT 32962	/A				
A.G.C.	Board									
Ll		Coil Assembly			CT 33008					
12		Coil Assembly			CT 33007/A					

Cct. Ref.	Value	Description	Rat.	Tol.	Racal Part No.	Manufacturer					
I.F. MODULE (continued)											
Converter Amplifier Board											
Ll Ll		Coil Assembly			CT 32958 CT 34763						
Converter Oscillator Board											
Ll		Coil Assembly		*	CT 32959						
Ll		Coil Assembly			CT 34764						
15 15		Coil Assembly			CT 32960 CT 34765						
		Transistors									
I.F. A	mplifier	Board									
VTl		p.n.p.			909414	Motorola 2N3323					
VT2		p.n.p.			906370	Texas 2N2412					
VT3		p.n.p.			909414	Motorola 2N3323					
ΔL_{7}		p.n.p			909414	Motorola 2N3323					
Detect	or Board										
VTl		n.p.n.			906433	S.T.C. BSY95A					
VT2		n.p.n.			900656	Texas 2S733					
VT3		n.p.n.			906433	S.T.C. BSY95A					
VT4		n.p.n.			906433	S.T.C. BSY95A					
VT5		n.p.n.			906433	S.T.C. BSY95A					
VT6		n.p.n.			906433	S.T.C. BSY95A					
AGC Bo	ard										
VTl		p.n.p.			909414	Motorola 2N3323					
VT2		n.p n.			906433	S.T.C. BSY95A					
VT3		n.p.n.			910839	Texas 2N3707					
VT4		n.p.n.			909413	S.T.C. 2N930					
VT5		p.n.p.			909414	Motorola 2N3323					
VT6		n.p n.			908361	Texas 2N1304					
Conver	ter Ampli	fier Board									
VTl		n.p.n.			906433	S.T.C. BSY95A					
VT2		n.p.n.			911929	Mullard BC107					
VT3		n.p.n.			511 929	Mullard BC107					
Conver	ter Oscil	lator Board									
VTl		p.n.p.			909414	Motorola 2N3323					
VI2		n.p.n.			906433	S.T.C. BSY95A					

Cct. Ref.	Value	Description Rat.	Tol.		Racal Part No.	Manufacturer					
		I.F. MOD	ULE (conti	lnu	ed)						
		Diodes									
Main I	.F. Ampli	fier									
Dl					908343	Texas 1S920					
Detect	or Board										
Dl					908343	Texas 18920					
D2 D3		Not used		1	908343 900652	Texas 1S920 Mullard AAZ13 or					
D_{7}				(908349	Hughes HD1871					
D5		Zener			968344	International MZ13T5					
D6 D7					908343 908343	Texas 18920					
					900545	Texas 1S920					
AGC Bos	ard				006700	Marray 7 Mills					
D1 D2					906720 908343	Texas 1S44 Texas 1S920					
D3		_			908343	Texas 1S920					
D ¹ 4		Zener			908344	International MZ13T5					
	Plugs and Sockets										
I.F. U	nit Modul	e Connectors									
SKT4		Coax. Fixed I.F. In			906878	Belling Lee L1403/CS/Ag					
PL3 PL1		Plug, free, to mate Main 37-way connect			908370 908674	Belling Lee L1403/RFP/Ag Cannon DCF37P					
lskTl		Free 37-way connect	, ,		908603	Cannon DCM37S					
I.F. Co	onverter :	Panel									
SKTl		Coaxial: fixed			906878	Belling Lee L1403CS/Ag					
SKT2 SKT3		Coaxial: fixed Coaxial: fixed			906878 906878	Belling Lee L1403CS/Ag Belling Lee L1403CS/Ag					
Detecto	or Board	Crystals									
XLl	71 DOGIC	1601.50 kHz			CD38871/1	0					
XIS		1598.50 kHz			CD38871/0						
Convert	er Oscili	lator Board (8)			·						
XLl		1145 kHz in 455 kHz	Converter		CD38871/I	These crystals are not fitted in the					
LIX		1700 kHz in 100 kHz			CD38871/1						
Termina	l Strip										
TBl		5-way - rear panel.			909928	Carr. Fastener					
						44-79-593-5M					

Cct. Value Description Rat. Tol. Racal Manufacturer Ref. % Part No.

POWER UNIT TYPE PU.1153 (AC/DC SUPPLY) - Fig.15a (BC 38640)

Component Board Assembly

BA37549

Components

NOTE: Components pre-fixed 'l' are located on the chassis assembly. Those without prefix are on the component board.

		Resistors				
1R1 R1 R2 R3 R4 R5 R6	100k 1k 1.8k 2.2k 2.7k 2.7k 1.2k	Metal Oxide		5 5 5 5 5 5 5 5 5 5 5 5	907866 906031 906026 906020 906347 906346	Electrosil TR5
lRVl	1.5k	Potentiometers			908689	Colvern 1106/9S
1C1 1C2 1C3 1C4 1C5 C1	μF .02 .02 500 500 100 100	Capacitors Paper Paper Electrolytic Electrolytic Electrolytic Electrolytic Polyester	volts 350 350 64 64 50 6.4 250	20 20 -10+50 -10+50 -10+50 20	902279 902279 906759 906759 900506 911691 909428	Dubilier Minicap Gl5 Dubilier Minicap Gl5 Mullard C431 BR/H500 Mullard C431 BR/H500 Hunts MEFC43AT Mullard C426 AR/C100 Mullard C280 AE/P100K
1T1		Transformer Mains power tr	ansforme	r		USA. D - 01650
lVT1 VT1 VT2		Transistors High current: p.n.p. p.n.p.	n.p.n.		906 37 1 911565 911565	RCA 2N3055 Mullard BCY40 Mullard BCY40
1D1 D1 D2 D3		Diodes Zener: 18 volt Encapsulated r Encapsulated r Zener: 6.8v	ectifier		911123 909020 909020 908348	Mullard OAZ234 Motorola MDA 920/3 Motorola MDA 920/3 Hughes HS2068 or
D4		Zener: 4.7V		5	914064 909717	Mullard BZY88C6V8 Mullard OAZ240

Cct. Value Ref.	Description R	at. Tol.	Racal Part No.	Manufacturer
	PU.115	3 (Continue	ed)	
	Switches			
lsa lsb	Slider: panel Slider: panel		912063 912063	E.M.I. Type S5 E.M.I. Type S5
	Connectors			
1SKT1	Socket: sub-miniature	e 15-way	908683	Cannon DAMF. 15.S
PLI	Plug: fixed 3-pin, b	rass	900011	Plessey Mk4 CZ63953/5
Socket, free, f	or power connection to	PLI	905151	Plessey Mk4 20Z83283/5
Outlet Accessor	y Set for free socket		905154	Plessey 508/1/03008/205
	Fuselinks			
1FS1 1FS1	MAINS 250mA anti-sur MAINS 500mA anti-sur		911700 911834	Beswick TDC 134 Beswick TDC 134
NOTE:	500mA fuse used when	operating	on 100/125V	a.c. supply.
1FS2	H.T. 1 amp anti-surge	9	912052	Beswick TDC 134
Fuseholders			900412	Belling Lee 1575

281/3

Block Diagram: RA. 1217

Diagram: RA. 1217

281/3

Block Diagram: RA. 1217

Fig.3

Wadley System - Block Diagram

Fig.1

Electronic Band Selection — Explanatory Block Diagram

Fig. L-4

Component Layout: R.F. Module.

Fig. L-4 Component Layout: R.F. Module.

0C38536 281/4 2 4 5 6 7 10

Circuit: R.F. Module

Fig.4

DC38538 281/4 2 4 5 6 7 10 Circuit: R.F. Module Fig.4

NOTE: THIS BO

NOTE: THIS BOARD IS CONTAINED IN THE RECTANGULAR BOX

BUFFER AMPLIFIER (BA 32535)

NOTE: THIS BOARD III ATTACHED TO THE UP OF THE 1st. VFO CHASSIS

BUFFER AMPLIFIER (BA 28128)

THE

IER

NOTE: THIS BOARD IS ATTACHED TO THE UNDERSIDE OF THE 1st. VFO CHASSIS

BUFFER AMPLIFIER (BA 28128)

R8 R3 VT2 VT1 C5 C5 C5 C6 R2 R10 C7 C9 R1

NOTE: THIS BOARD IS CONTAINED IN THE RECTANGULAR BOX

NOTE: THIS BOARD IS ATTACHED TO THE UNDERSIDE OF THE 1st. VFO CHASSIS

BUFFER AMPLIFIER (BA 28128)

BC28120						2	81/		
4	7	R	a	10	11	12	13	15	16

Circuit: lst. V. F. O

lst. V. F. 0 Fig. 5

BC28120 | 281/5 | 4 7 8 9 10 11 12 13 15 16

Circuit: Ist. V. F. 0 Fig. 5

Q 63 Q 213 Q 718 Q

Fig. L-6

(FRONT OF BOARD) 1 MHz AMPLIFIERS (BA 32858)

NOTE. 1. IN THE RA.1218 AND RA.1219

RECEIVERS THE OSCILLATOR

SECTION IS NOT USED AND

THE CRYSTAL XLI IS REMOVED

NOTE. 2. ON EARLIER VERSIONS CALIBRATOR BOARD BA32860 WAS FITTED

Layout: 1MHz Amplifier Oscillator and Calibrator

(FRONT OF BOARD) 1 MHz AMPLIFIERS (BA 32858)

TOR AND CALIBRATOR

NOTE. 1. IN THE RA.1218 AND RA.1219
RECEIVERS THE OSCILLATOR
SECTION IS NOT USED AND
THE CRYSTAL XLI IS REMOVED

NOTE. 2. ON EARLIER VERSIONS CALIBRATOR BOARD BA32860 WAS FITTED

NOTE 1: THE ABOVE BOARDS ARE MOUNTED

NOTE 4: IN LATER VERSIONS OF MODILE OF MAND MODULE AS HAMONIC
GENERATOR ETC. (FIG. 7)
NOTE 2: PLUG PLI MATES WITH SOCKET SKT 9
NOTE 3: IRI AND ICI ARE NOT MOUNTED ON A BOARD
NOTE 4: IN LATER VERSIONS VT3 IS ZNI396 AND CIO

NOTE 5: ON EARLIER VERSIONS CALIBRATOR BOARD BC 32860 WAS FITTED.

BC 32858

#G28285/B 281/6

Circuit : 1MHz A

<u>(1)</u>

Circuit: 1MHz Amplifiers,Oscillator and Calibrator

scillator and Calibrator

Fig. 6

\$G28285/B 281/6

Circuit: 1MHz Amplifiers,Oscillator and Calibrator

Fig. L-7

Component Layouts: 37.5 MHz Generator and 37.5 MHz Filter Unit

BC2	8284/8	281/7
1 2 3		
		,

AC28192 3 4 5

Circuits: Harmonic Gen

:: Harmonic Generator Mixer and 37.5 MHz Filter (37.5 MHz Generator)

xer and 37.5MHz Filter nerator)

Circuits: Harmonic Generator Mixer and 37.5 MHz Filter (37.5 MHz Generator)

ist MIXER (BA.28215)

40 MHz FILTER (BA.28197)

Fig. L-8 Component Layout: 1st Mixer and 40 MHz Filter

281/L-8

	- [3 C	28	2	II	2	8	ī	/ 8
2	4	7	Τ				_		

Circuit:

Circuit: 1st Mixer and 40MHz. Filter

BC282II | 281/8 2 4 7

Circuit: 1st Mixer and 40MHz. Filter

Fig. L-9 Component Layout: 2nd Mixer

NOTE L . PLI ON THIS CIRCUIT MATES WITH SKT7

- 2. COMPONENTS PREFIXED I ARE NOT MOUNTED ON THE CIRCUIT BOARD
- 3. ALL COIL CANS TO BE EARTHED

Circuit: 2nd Mixer

d Mixer

BC30959 281/9 6 9 11 12 14

Circuit: 2nd Mixer

OSCILLATOR BOARD (BA.35808)

AMPLIFIER BOARD (BA.35807)

Component Layouts: 2 nd V.F.O

Circuit: 2nd V.F.O.

F.O.

Fig.10

Circuit: 2nd V.F.O.

Fig.10

2 O

> 3rd MIXER MODULE (BA 35,966)

TO PIN I -

5 O

7

Fig. L-11

3 O

Component Layout: 3rd Mixer

Ist I.F. AM

t: 3rd Mixer Module and 1st 1.F. Amplifier Unit

Ist I.F. AMPLIFIER UNIT
(BA 31474)

Ist I.F. AMPLIFIER UNIT
(BA 31474)

Fig. L-11

Component Layout: 3rd Mixer Module and 1st I.F. Amplifier Unit

NOTE: COMPONENTS PREFIXED 'I' ARE MOUNTED ON THE MODULE BUT NOT ON THE CIRCUIT BOARD

2 ALL COIL CANS TO BE EARTHED

3rd Mixer Module

Circuit: 3rd Mixer

8C35970 281/11

AND

Module

lst I.F. Amplifier (

suit: 3rd Mixer Module and 1st I.F. Amplifier Unit

DC38450/ABCE 281/11

Ist L.F. Amplifier Unit

Ist I.F. Amplifier Unit

DC58450/ABCE 281/11 1 3 6

Fig. II

3rd Mixer Module lst LF. Amplifier Unit

Circuit: 3rd Mixer Module and 1st I.F. Amplifier Unit

DC38450/ABCE 281/11 1 3 6

Fig. 11

I.F. MODULE KEY DIAGRAM

RI C2 C3 L1

DETECTOR BOARD

BA 28236

MAIN I.F. AMPLIFIER BOARD

BA 30533

A.G.C. BOARD

BA 31466/B

NOTE: THE 455kHz BOARD IS IDENTITION THAT RIO IS OMITTED.

100kHz CONVERTER:A

BA 34783

CONVERTER: OSCILLA

BA 3856

Component Layout: I.F. Module

LIFIER BOARD

30533

NOTE: THE 455kHz BOARD IS IDENTICAL EXCEPT THAT RIO IS OMITTED.

100kHz CONVERTER: AMPLIFIER

BA 34783

DARD

166/B

CONVERTER: OSCILLATOR AND MIXER

BA 38568

I.F. MODULE KEY DIAGRAM

MAIN I.F. AMPLIFIER BOARD

BA 30533

NOTE: THE 455kHz BOARD IS IDENTICAL EXCEPT THAT RIO IS OMITTED.

100 kHz CONVERTER: AMPLIFIER
BA 34783

BA 28236

A.G.C. BOARDBA 31466/B

CONVERTER: OSCILLATOR AND MIXER
BA 38568

Circuit : I.F. Module

odule

Fig. 12

Circuit: I.F. Module Fig. 12

B.F.O. Amplifier (B.A.30542)

600 KHz Oscillator (BA30540)

Fig.L-13 Component Layout B.F.O.

,° °

DC38450 / ABCE 281/13

2. REFER TO FIG. 16 AND FIG.12

3. ICI AND IC2 ARE NOT MOUNTED DI THE COMPONENT BOARDS.

ISKTI.

FOR DETAILS OF CONNECTIONS TO

Circuit: B.F.O. Unit

F.O. Unit

DC38450 / ABCE 281/13

Fig.13

BA 31462

DC38450/ABCE 281/14a
6 7

Fig. 14a

Fig. L-14 b

NOTE: COMPONENTS PREFIXED 1 ARE NOT MOUNTED ON THE BOARD

Circuit: Audio Amplifier Board (1 Watt)

ifier Board

0C38450/FG 281/14b

Circuit: Audio Amplifier Board (1 Watt)

Fig. L-15a Layo

Layout: Power Unit Type PU.1153

TRANSFORMER CONNECTIONS

WIRING CODE							
RMINAL	COLOUR						
2	RED / GREEN						
3	RED/WHITE			_		_	
7	BLUE/WHITE	- 1		2		3	
8	RED/BLACK	- 1		0		0	
9	BLACK	1	7				
13	RED/BLUE		6		Ö		ő
14	RED/BLUE						
		i		13		14	
		- 1		0		0	
		i					
		- (
		•					•
		ITI	TRAN	SFO	RME	R	TER

BC 38640 | 281/15q

Circuit:

NOTES

I. WHEN OPERATING FROM 100 - 125V SUPPLY
THE RATING OF FUSE IFSI MUST BE 500ma

2. COMPONENTS PREFIXED I ARE NOT MOUNTED ON THE PRINTED CIRCUIT BOARD

Circuit: Power Unit Type PU.1153

IOM IOO - 125V SUPPLY SE IFSI MUST BE 500mA EXED I ARE NOT PRINTED CIRCUIT BOARD

it Type PU.1153

DC. 38450/ABCE 281/16

Interconnections : RA. 1217

FOR IWATT A

R A. 1217

Fig. 16

Fig. 16

DE-COUPLING CAPACITORS ARE NOT SHOWN ON THIS ILLUSTRATION: REFER TO FIG. 16.

2. REFER TO FIG. 16 FOR RESISTOR VALUES.

RECEIVER CHASSIS (UNDER (WITH ONE-WATT AMPLIFIER)

VIEW ON ARROW A

IO FL4 IN TO SAIRS

Chassis Layouts: RA1217

ıts: RA 1217 Fig. 18

RECEIVER CHASSIS (UNDERSIDE)
(WITH ONE-WATT AMPLIFIER)

CABLE CONNECTIONS

1 FLS OUT TO SASF4

2 FLS III TO SAIR4

3 FLZ OUT TO SASF1

4 FLZ IN TO SAIR1

9 FL4 OUT TO SASF3

1000 a 100 a

HIT.

PL3 TO LF.

MODULE

PL3 TO LF.

MODULE

PL3 TO LF.

MODULE

PL3/SKT4

11 Ist LF. 100 a TO SASF5

12 Ist LF. 1000 a TO SASF5

15 FLI OUT TO IST LF. IMPUT

10 FL4 IN TO SAIR3

VIEW ON ARROW 'A'

Rear Panel. RA1217

NOTE MAIN FUSE RATING 100-125V 500 mA 200-250V 250mA

