

Single real number evaluation metric:

Another example

single real number evaluation metric

	2	K	V	V	\int
Algorithm	US	China	India	Other	Average
A	3%	7%	5%	9%	6%
В	5%	6%	5%	10%	6.5%
C	2%	3%	4%	5%	3.5%
D	5%	8%	7%	2%	5.25%
E	4%	5%	2%	4%	3.75%
F	7%	11%	8%	12%	9.5%

Optimizing and satisfying metric:

Train, Dev and Test set splitting:

Old way of splitting data

Size of test set

⇒ Set your test set to be big enough to give high confidence in the overall performance of your system.

When to change Dev/Test set and metric:

Cat dataset examples

Motor + Der : Prefor A But Youlusons : Prefor B.

Metric: classification error

Algorithm A: 3% error

> pornographic

Because model A treats porn and nonporn equally

/ Algorithm B: 5% error

= cror: Man = man

I { ypred + y (i)}

C predent indu (0/1)

that's the sign that we need to change evaluation metric

Cat dataset examples

Motor + Der : Prefor A You/uses : Prefor B.

→ Metric: classification error

Algorithm A: 3% error

>> pornographic

/ Algorithm B: 5% error

Algorithm B:
$$5\%$$
 error

$$\int \underbrace{\text{Error}}_{\text{Ewo}} \underbrace{\text{Maw}}_{\text{Was}} \underbrace{\text{Maw}}_{\text{in}} \underbrace{\text{With}}_{\text{in}} \underbrace{\text{Maw}}_{\text{in}} \underbrace{\text{With}}_{\text{in}} \underbrace{\text{Maw}}_{\text{in}} \underbrace{\text{With}}_{\text{in}} \underbrace{\text{Maw}}_{\text{in}} \underbrace{\text{Maw}}_{$$

Orthogonalization for cat pictures: anti-porn

- → 1. So far we've only discussed how to define a metric to evaluate classifiers. Plue toget
- → 2. Worry separately about how to do well on this metric.

2nd step, define a cost function to shot the target

Human Level Performance:

Comparing to human-level performance

Avoidable Bias:

Cat classification example

Improving Model Performance:

The two fundamental assumptions of supervised learning

→ 1. You can fit the training set pretty well.

n Aroidada bias

2. The training set performance generalizes pretty well to the dev/test set. ~ Vorione

Reducing (avoidable) bias and variance

