并行接口

7.2 可编程并行接口8255A

- 1. 并行接口最基本的特点是在多根据数据线上以数据字节 (字) 为单位与I/O设备或被控对象传送信息 (打印机接口、A/D和D/A转换器接口、IEEE-488接口 (GPIB) 、开关量接口、控制设备接口)
- 接口与外设之间采用互锁异步握手方式(查询方式)进行通信:并行数据线、握手(联络)信号线

并行传送

7.2 可编程并行接口8255A

- 3. 在并行接口中,8位或16位一起工作(外设交换数据时,即使是只用到其中的一位,也是一次输入/输出8位或16位)
- 4. 并行传送信息,不要求固定的格式(与串行传送的数据格式的要求不同) 对于各种型号的CPU都有与其配套的并行接口芯片,例如,Intel公司8255A(PPI),Zilog公司Z80PIO,MC6820(PIO)等,它们的功能虽有差异,但工作原理基本相同

8255A引脚

7.2 可编程并行接口8255A

- 一、8255A的外部特性和内部结构
- 1. 8255A的基本特性
 - 具有两个8位 (A口和B口) 和两个4位 (C口高/低4位) 并行I/O端口的接口芯片
 - 适应CPU与I/O接口之间多种数据传送方式
 - 可执行功能强,3种工作方式,命令字内容丰富(方式字和控制字)
 灵活方便的编程环境,用户可根据外界条件使用8255A构成多种接口电路,组成微机应用系统(I/O设备需要哪些信号线以及它能提供哪些状态线)

7.2 可编程并行接口8255A

- PC口的使用比较特殊,除作数据口外,当工作在1方式和2方式时,它的大部分引脚被分配作专用联络信号; PC口可以进行按位控制; 在CPU读取8255A状态时,PC口又作1,2方式的状态口用
- 8255芯片内部主要由控制寄存器、状态寄存器和数据寄器组成

7.2 可编程并行接口8255A

2. 8255A的外部引线

8255A是一个单+5V电源供电,40个引脚的双列直插式组件。

- 外部引脚
- ①与系统总线的连接信号

面向数据总线:

D_{0.7} 双向数据线,用于CPU向8255A发送命令/数据, 9255A分CPU回送排本/数据

据;8255A向CPU回送状态/数据

面向地址总线: A1, A0, /CS

7.2 可编程并行接口8255A

面向控制的:

/RD: 读信号,低电平有效 /WR: 写信号,低电平有效 RESET: 复位信号,高电平有效

- 清除控制寄存器并将8255A的A、B、C三个端
- 口均置为输入方式
- 輸入寄存器和状态寄存器被复位
- 屏蔽中断请求
- 24条面向外设信号线呈现高阻悬浮状态

7.2 可编程并行接口8255A

②与外部设备的连接信号 PAn对端口A的输入/输出线 PBoz端口B的输入/输出线 PCn7端口C的输入/输出线 24根信号线均可用来连接I/O设备和传送信息

- A口和B口只作输入/输出的数据口 尽管有时也利用它们从I/O设备读取一些状态 信号,如打印机的"忙" (BUSY) 状态信号、 A/D转换器的"转换结束" (EOC) 状态信 号,但对A口和B口来说,都是作为8255A的 数据口读入,而不是作为8255A的状态口读入

7.2 可编程并行接口8255A

- C口的作用与8255A的工作方式有关、它除了 作数据口以外,还有其他用途
- · 数据口、PC47与A口一起组成A组、PCa3与 B口一起组成B组
- 状态口,区别于A口和B口不能作8255A本 身的状态口
- 专用(固定)联络(握手)信号线
- · 按位控制用, C口的8个引脚可以单独从1个 引脚输出高电平

7.2 可编程并行接口8255A

- 3. 8255A的内部结构
 - ① 数据总线缓冲器:三态双向8位缓冲器、8255A 与CPU系统数据总线的接口
 - ② 读/写控制逻辑: 读/写控制逻辑由读信号RD、 写信号WR、片选信号CS以及端口选择信号A,A。 等组成.
 - ③ 输入/输出端口A/B/C: 3个8位输入输出端口 (port),每个端口都有一个数据输入寄存器和 一个数据输出寄存器
 - ④ A组和B组控制电路:控制A、B和C三个端口的 工作方式

8255A基本操作与端口地址

CS	A ₁	A_0	RD	WR	操作	内容	PC系统
0	0	0	0	1	PA → 数据总线 → CPU	数据	60H
0	0	1	0	1	PB → 数据总线 → CPU	数据	61H
0	1	0	0	1	PC → 数据总线 → CPU	数据	62H
0	0	0	1	0	PA ← 数据总线 ← CPU	数据	60H
0	0	1	1	0	PB ← 数据总线 ← CPU	数据	61H
0	1	0	1	0	PC ← 数据总线 ← CPU	数据	62H
0	1	1	1	0	控制寄存器 ← 数据总线 ← CPU	控制字	63H
1	×	×	×	×	高阻态		
0	×	×	1	1	高阻态		
0	1	1	0	1	控制口不能读		63H

7.2 可编程并行接口8255A

二、8255A的编程命令

- 1. 方式命令
 - 指定8255A的工作方式及其方式下3个并行端 口 (PA、PB、PC) 的功能、是作输入还是作 输出
 - 最高位是特征位、必须写1

D_6 D₅ D_4 D_3 D_2 D_1 D_0 特征位 A組方式 01 方式1 1 输入 1 输入 10 方式2 B組方式 PA 11 无效 0 方式 0 0 輸出 0 輸出 1 方式1 1 輸入 1 輸入

7.2 可编程并行接口8255A

例1 指定A口1方式、输入、C口上半部为输出;指定 B口0方式、输出、C口下半部定为输入、则工作 方式命令代码是: 10110001B或B1H。

初始化的程序段为:

MOV DX, 303H ; 8255A命令口地址 MOV AL, 0B1H ; 初始化命令 OUT DX, AL : 送到命今口

将此命令代码写到8255A的命令寄存器、即实现 8255A工作方式及端口功能的指定、完成了对

8255A的初始化

7.2 可编程并行接口8255A

- 二、8255A的编程命令
- 2. 按位置位/复位命令
 - 指定PC口的某一位(某一个引脚)输出高平 或低电平
 - 最高位是特征位、必须写0

工作方式命令格式

按位置位/复位命令

7.2 可编程并行接口8255A

- 3. 关于两个命令的讨论
 - ① 方式命令指定8255A的3个端口的工作方式及功能,初始化工作在使用8255A之前进行
 - ② 按位置位/复位命令只是对PC口的输出进行 控制,不改变已经建立的3种工作方式,在初始 化程序以后的任何时刻进行
 - ③两个命令的最高位 D_7 作为特征位,标识两个不同的命令;
 - ④ 按位置位/复位的命令代码只能写入命令口

7.2 可编程并行接口8255A

例2 若要把C口的 PC_2 引脚置成高电平输出,则命令字应该为 00000101B或05H

将该命令的代码写入8255A的命令寄存器,使得PC口PC₂引脚輸出高电平,其程序段为

MOV DX, 303H ;8255A命令口地址

MOV AL, 05H ; 使PC₂=1的命令字00000101

OUT DX, AL ;送到命令口 若使引脚PC₂輸出低电位,则程序段为 MOV DX, 303H ;8255A命令口地址

MOV AL, 04H ; 使PC2=0的命令字00000100

OUT DX, AL ;送到命令口

7.2 可编程并行接口8255A

利用C口的按位控制特性还可以产生、负脉冲或方波输出,对外设进行控制

例3 利用8255A的PC7产生负脉冲,作打印机接口电路的数据 选通信号,其程序段为:

MOV DX, 303H ; 8255A命令ロ MOV AL, 00001110B ; 置PC,=0

OUT DX. AL

NOP ;维持低电平

NOP

MOV AL,00001111B ;置PC7=1

OUT DX, AL

7.2 可编程并行接口8255A

- 4. A口/B口也可以按位输出高/低电平
 - A口/B口的按位輸出: 以送数据到A口、B口来 实现 (8255A的輸出有锁存能力)
 - C口按位輸出: C口按位置位/复位命令以命令 的形式送到命令寄存器执行

A/B口按位输出

7.2 可编程并行接口8255A

例 若要使PAz位输出高/低电平

则用下列程序段:使PA₇输出高电平

MOV DX, 300H IN AL, DX ;PA数据口地址

MOV AH, AL

; 读入A口原输出内容 : 保存原输出内容

OR AL, 80H OUT DX, AL ; 使PA₇=1 ; 输出PA₇

•••

MOV AL, AH

;恢复原输出内容

OUT DX, AL

7.2 可编程并行接口8255A

使PA-输出低电平

MOV DX, 300H ; A口地址

IN AL, DX ; 读入端口原輸出值 MOV AH, AL ;保存原輸出值 AND AL, 7FH ;使PA₇=0 OUT DX, AL ;输出PA₇

•••

MOV AL, AH ; 恢复原输出内容

OUT DX, AL

7.2 可编程并行接口8255A

三、8255A的工作方式

8255A的工作方式与端口有关

- PA口有三种方式 (0方式、1方式、2方式)
- PB口和PC口只有两种方式(0方式、1方式)

7.3 8255A的0方式及其应用

一、特点

- 0方式是一种基本輸入/輸出工作方式,通常不用 联络信号,或不使用固定的联络信号 基本I/O方式采用查询方式(包括无条件传送) 不能采用中断方式
- 2. 彼此独立的两个8位和两个4位并行口,都能被指 定作为输入或者输出,共有16种不同的使用状态

7.3 8255A的0方式及其应用

- 不设置专用联络信号线,需要联络时,由用户任意指定C口中的连线完成某种联络功能,不同于1方式、2方式下设置固定的专用联络信号线
 - 端口与I/O设备之间无固定的时序关系
 - 没有设置固定的状态字
- 4. 一次初始化只能指定端口PA/PB/PC作輸入或輸出,不能同时既作輸入又作輸出(单向I/O)

7.3 8255A的0方式及其应用

二、并行打印机接口设计

- 1. 要求: 为某应用系统配置一个并行打印机接口, CPU采用查询方式把存放在BUF缓冲区的256个字(ASCII码)送去打印
- 2. 分析: 打印接口直接面向的对象是打印机接口标准, 而不是打印机本身, 要按照接口标准的要求进行设计(打印机接口标准Centronics信号线定义和时序)

7.3 8255A的0方式及其应用

采用查询方式时, 打印机与CPU之间传送数据的 过程

- ① 首先查询BUSY, 若BUSY=1, 打印机忙,则等待; 若BUSY=0, 打印机不忙,则送数据;
- ② 通过并行接口把数据送给标准插座DATA BIT_{1.8}数据线上,此时数据并未送入打印机;
- ③ 再送出一个数据选通信号/DATA STROBE (负脉冲) 给标准插座的1号引脚,把数据线上 的数据打入到打印机的内部缓冲器;

7.3 8255A的0方式及其应用

- ④ 打印机在收到数据后,通过插座的11号引脚发出"忙" (BUSY=1) 信号,表明打印机正在处理输入的数据;
- ⑤ 最后在10号引脚上送出一个回答信号/ACK给 主机,表示上一个字符已经处理完毕

打印机并行接口时序

7.3 8255A的0方式及其应用

3. 设计

接口电路的设计包括硬件接口电路和软件驱动程序两部分。

打印机接口电路的设计思路:按照Centronics标准对打印机接口信号线的定义,最基本的信号线需要8根数据线 (DATABIT_{1.8}) , 1根控制线 (STB) , 1根状态线 (BUSY) 和1根地线选用8255A的PA口作数据口输出8位打印数据,工作方式为0方式,打印机接口电路原理框图

打印机并行接口框图

7.3 8255A的0方式及其应用

CODE SEGMENT

ASSUME CS: CODE, DS: CODE

ORG 100H START:

MOV AX, CODE

MOV CS, AX

MOV DS, AX

;8255A命令口 MOV DX, 303H MOV AL, 10000001B :工作方式字

OUT DX, AL

;A组0方式、输出、 ;B组0方式,输出,

; C₄~C₇输出, C₀~C₃输入

7.3 8255A的0方式及其应用

MOV AL, 00001111B ;PC/位置高,使/STB=1

OUT DX, AL

MOV SI, OFFSET BUF ; 打印字符内存首地址

MOV CX, OFFH ; 打印字符个数 MOV DX, 302H ;PC口地址

IN AL, DX ; 查BUSY=0? (PC₂=0)

AND AL, 04H :00000100B ;忙,则等待;不忙,则向A口送数 INZ L

MOV DX, 300H ; PA口地址 MOV AL, [SI] ;从内存取数 OUT DX, AL ;送数据到A口 MOV AL, 303H ;8255A命令口

MOV AL, 00001110B ; 置/STB信号为低 (PC,=0)

7.3 8255A的0方式及其应用

OUT DX, AL

NOP

NOP

;负脉冲宽度(延时) ;置/STB为高 (PC₇=1)

MOV AL, 00001111B OUT DX, AL

INC SI ;内存地址加1 DEC CX : 字符数减1 JNZ L ;未完、继续 MOV AX, 4C00H ;已完,退出

INT 21H

BUF DB 256个ASCII字符代码

CODE ENDS END START

7.3 8255A的0方式及其应用

三、步进电机控制接口设计

1. 步进电机控制原理

步进电机是将电脉冲信号转换成角位移的一种 机电式数模转换器, 步进电机旋转的角位移、 转速以及方向均受输入脉冲的控制 角位移与输入脉冲的个数据成正比 转速与输入脉冲的频率成正比 转动方向号输入脉冲对绕组加电的顺序相关

7.3 8255A的0方式及其应用

2. 运行方式与方向的控制 (循环查表法) 步进电机的运行方式是指各相绕组循环轮流通电 的方式,例如,四相步进电机

步进电机运行方式

单四拍	双四排	单双八拍	双八拍
A	AB	AB	AB
В	BC	В	ABC
С	CD	BC	BC
D	DA	С	BCD
A	AB	CD	CD
В	BC	D	CDA
С	CD	DA	DA
D	DA	A	DAB

相序表

	\$	克纽上	多数表	居线的	勺连衫	ŧ		运行	相序表		方向	
	D		С		В		Α	双八拍	加电代码	地址单元	正向	反向
D_7	D_6	D_5	$\mathrm{D_4}$	D_3	D_2	D_1	\mathbf{D}_0	从八相	加电代码	地址平九	正问	从问
0	0	0	0	0	1	0	1	AB	05H	400H	1	1
0	0	0	1	0	1	0	1	ABC	15H	401H	↓	1
0	0	0	1	0	1	0	0	BC	14H	402H	↓	1
0	1	0	1	0	1	0	0	BCD	54H	403H	↓	1
0	1	0	1	0	0	0	0	CD	50H	404H	1	1
0	1	0	1	0	0	0	1	CDA	51H	405H	↓	1
0	1	0	0	0	0	0	1	DA	41H	406H	1	1
0	1	0	0	0	1	0	1	DAB	45H	407H	1	1

D	С	В	A	双八拍
D_6	D_4	D_2	\mathbf{D}_0	
0	0	1	1	AB
0	1	1	1	ABC
0	1	1	0	BC
1	1	1	0	BCD
1	1	0	0	CD
1	1	0	1	CDA
1	0	0	1	DA
1	0	1	1	DAB

步进电机原理

7.3 8255A的0方式及其应用

- 为了实现对各绕组按一定方式轮流加电、需 要一个脉冲循环分配器、可用硬件电路实现 (控制字), 也可用软件实现(循环查表法)
- 循环查表法,将各绕组加电顺序的控制代码 制成一张步进电机相序表、存放在内存区、 再设置一个地址指针
- 相序表的建立、要考虑两个因素: 步进电机 运行方式的要求、各相绕组与数据线连接的 对应关系

7.3 8255A的0方式及其应用

- 3. 步进电机运行速度的控制(软件延时法) 控制步进电机速度有两个途径:硬件改变输入 脉冲的频率,通过对定时器(例如8253)定时常 数的设定,使其升频、降频或恒频;软件延时, 或调用延时子程序
- 4. 步进电机的驱动

步进电机在系统中是一种执行元件 (带负载), 需要功率驱动,在电子仪器和设备中,一般所 需功率较小,常采用达林顿复合管作功率驱动

步进电机驱动原理

7.3 8255A的0方式及其应用

5. 硬件电路与软件编程

步进电机接口的硬件部分主要是提供输送相序 代码的并行数据线(8根),以及保护电机绕组 的器件

软件设计

p149-150/p120-121

7.4 8255A的1方式及其应用

一、特点

- ① 1方式是一种选通输入/输出方式,即应答方式,需设置专用的联络信号线或应答信号线,对I/O设备和CPU两侧进行联络,通常用于查询(条件)传送或中断传送,数据的输入/输出都有锁存功能;
- ② PA和PB为数据口, PC口的大部分引脚分配作 专用(固定) 联络信号的引脚, 用户不能再指 定作其他作用;
- ③ 各联络信号线之间有固定时序关系, 传送数据时, 严格按照时序进行

7.4 8255A的1方式及其应用

- ④ 输入/输出操作过程中,产生固定状态字,作为查询或中断请求之用,状态字从PC口读取
- ⑤ 单向传送,一次初始化只能设置在一个方向 上传送,不能同时作两个方向的传送

7.4 8255A的1方式及其应用

二、1方式下联络信号线的定义及其时序

1. 输入联络信号线定义及时序

輸入是从I/O设备向8255A送数据进来: I/O设备应先把数据准备好,并送到8255A,然后CPU从8255A读取数据当A口和B口为输入时,各指定了C口的3根线作为8255A与外设及CPU之间应答信号:

/STB 外设给8255A的"输入选通"信号,低电平有效 IBF 8255A给外设的回答信号"输入缓冲器满",高电平 有效

INTR 8255A给CPU的"中断请求"信号,高电平有效

1方式输入信号线

7.4 8255A的1方式及其应用

- ① 数据输入时,外设处于主动地位,当外设准备好数据并放到数据线上后,首先发/STB信号,由它把数据输入到8255A;
- ② 在/STB的下降沿约300ns, 数据已锁存到8255A的缓冲器后, 引起IBF变高, 表示8255A的"输入缓冲器满", 禁止输入新数据;
- ③ 在/STB上升沿约300ns后,在中断允许(INTE=1)的情况下IBF的高电平产生中断请求,使INTR上升变高,通知CPU,接口中已有数据,请求CPU读取;
- ④ CPU得知INTR信号有效之后,执行读操作时,/RD 信号的下降沿使INTR复位,撤消中断请求,为下一 次中断请求作好准备

1方式输入工作时序表

符号	参数	82.	单位	
		MIN	MAX	
t_{ST}	/STB脉冲宽度	500		ns
t_{SIB}	/STB=0 <u>₹</u> IBF=1		300	ns
t _{SIT}	/STB=1 <u>₹</u> INTR=1		300	ns
t_{RIB}	/RD=1 <u>₹</u> IBF=0		300	ns
t _{RIT}	/RD=0至INTR=0		400	ns
t_{PS}	数据提前/STB无效的时间	0		ns
$t_{\rm PH}$	数据保持时间	180		ns

8255方式1輸入

1方式輸入时序

1方式输出时序

7.4 8255A的1方式及其应用

二、1方式下联络信号线的定义及其时序

2. 输出联络信号线定义及时序

輸出是8255A送数据到I/O设备: CPU先把数据准备好, 并送到8255A, 然后8255A把数据输出去

当A口和B口为輸出时,各指定了C口的3根线作为8255A与外设及CPU之间应答信号:

/OBF 8255A给外设的回答信号"输出缓冲器满", 低电平有效

/ACK 外设给8255A的"回答"信号,低电平有效,外设已经从8255A的端口接收到了数据

INTR 8255A给CPU的"中断请求"信号、高电平有效

1方式输出信号线

7.4 8255A的1方式及其应用

- ① 数据输出时,CPU应先准备好数据,并把数据写到 8255A输出数据寄存器,当CPU向8255A写完一个数 据后,/WR下降沿使中断请求INTR变低,复位中 断请求,/WR的上升沿使/OBF有效,表示8255A的 输出缓冲器已满、通知外设读取数据;
- ② 外设得到/OBF有效的通知后,开始读数,当外设读 取数据后,用/ACK回答8255A,表示数据已收到;
- ③ /ACK的下降沿将/OBF置高,使OBF无效,表示输出缓冲器变空,为下一次输出作准备,在中断允许(INTE=1)的情况下ACK上升沿使INTR变高,产生中断请求,CPU响应中断后,在中断服务程序中,执行OUT指令、向8255A写下一个数据

/WR //OBF INTR /ACK CPU 输出统物

/WR /OBF

CPU 8255 I/O被各

8255方式1輸出

7.4 8255A的1方式及其应用

三、1方式的状态字

1. 状态字的作用

在1方式下8255A有固定的状态字,为查询方式提供 了状态标志位IBF和OBF;

当8255A采用中断方式: CPU可以通过读状态字来确定中断源,实现查询中断(例如单片机系统);也可以采用中断控制器来确定中断源,实现向量中断(例如PC系统)

2. 状态字的格式 A 如业本

分A和B两组, A组状态位占高5位, B组状位占低3 位、输入和输出时的状态字不相同

1方式状态字

7.4 8255A的1方式及其应用

- 3. 使用状态字时要注意的几个问题
- ① 状态字在8255A输入/输出操作过程中由内部产生、 从C口读取的、与C口的外部引脚无关
- ② 状态字中供CPU查询的状态位有: IBF位和INTR位 (输入时); OBF位和INTR位(输出时) 在1方式下采用查询方式时, 一般查询状态字中的 INTR位
- ③ 状态字中的INTE是控制标志位,控制8255A能否提 出中断请求,不是I/O操作过程中自动产生的状态, 由程序通过按位置位/复位命令设置或清除

7.4 8255A的1方式及其应用

例1 若允许PA口输入时,产生中断请求,则必须设 置INTE₄=1, 即置PC₄=1; 若禁止它产生中断请 求,则置 $INTE_A=0$,即置 $PC_4=0$,其程序段为

MOV DX, 303H ; 8255A命令口

MOV AL, 00001001B; 置PC4=1, 允许中断请求

OUT DX, AL

MOV AL, 00001000B; 置PC4=0, 禁止中断请求

OUT DX, AL

7.4 8255A的1方式及其应用

四、1方式的接口设计方法

- 首先根据实际情况确定A、B两口是输入还是 输出、然后把C口分配作联络的专用应答线与 外设相应的状态线和控制线相连
- 注意当使用中断方式和查询方式时、INTR的 连接
 - 中断方式: INTR接微处理器或中断控制器
 - · 查询方式: INTR不连接, 查状态字中的 INTR状态位

7.4 8255A的1方式及其应用

五、两种方式并行传送接口设计

在甲乙两台徽机之间并行传送1K字节数据,甲 机发送、乙机接收、甲机一侧的8255A采用1方 式工作, 乙机一侧的8255A采用0方式工作, 两 机的CPU与接口之间都采用查询方式交换数据

双机均采用可编程并行接口芯片8255A构成接口 电路、但是8255A的工作方式不同、双方的 8255A把对方视为I/O设备

0/1方式并行传送

7.4 8255A的1方式及其应用

接口驱动程序包含发送与接收两个程序 程序流程图 p158/p128 甲机发送程序段:

MOV DX, 303H ; 8255A命令口 MOV AL, 10100000B ;初始化工作方式字

OUT DX, AL

MOV AL, 0DH ; 置发送中断允许INTE₄=1

OUT DX, AL ; PC₆=1

MOV SI, OFFSET BUFS ; 设置发送数据区的指针

MOV CX, 3FFH ;发送字节数

7.4 8255A的1方式及其应用

MOV DX, 300H ;向A口写第一个数、产生第一个/OBF信号 MOV AL, [SI]

;送给乙方,以获取乙方的/ACK信号

OUT DX, AL INC SI

DEC CX

; 内存地址加1 ; 传送字节数减1 : 8255A状态口

L: MOV DX, 302H IN AL, DX ; 查发送中断请求INTR₄=1?

AND AL, 08H ; PC₂=1? IZ L

; 若无中断请求、则等待;

;若有中断请求,则向A口写数

7.4 8255A的1方式及其应用

MOV DX, 300H ; 8255A的PA口地址

MOV AL, [SI] ; 从内存取数

OUT DX, AL ; 通过A口向乙机发送第二个数据

INC SI ; 内存地址加1

DEC CX : 字节数减1 INZ L ; 字节未完、继续 MOV AX, 4C00H ; 已完, 退出

INT 21H ; 返回 BUFS DB 1024个数据 乙机接收程序段: (略)

7.5 8255A的2方式及其应用

一、特点

- ① PA口为双向选通输入/输出或叫双向应答式输入 /输出:一次初始化可指定PA口既作输入口又作 输出口
- ② 设置专用的联络信号线和中断请求号信线,可 采用中断方式和查询方式与CPU交换数据
- ③ 各联络线的定义及其时序关系和状态基本上是 在1方式下输入和输出两种操作的组合

7.5 8255A的2方式及其应用

二、2方式下联络信号线的定义及其时序

1. 联络信号线的定义

2方式是一种双向选通输入输出方式,将A口作为双向输入/输出口,将C口的5根线作为专用应答线PC3.7

8255A只有A口才有2方式

- 2. 引脚定义
- 3. 工作时序

2方式状态字

2方式信号线

7.5 8255A的2方式及其应用

三、2方式的状态字

2方式的状态字的含义是在1方式下输入和输出 状态位的组合

7.5 8255A的2方式及其应用

四、中断方式的双向并行接口设计

- 例 主从两个微机进行并行传送,共传送256个字节; 主机一侧的8255A采用2方式并且用中断方式传 送数据;从机一侧8255A工作在0方式,采用查 询方式传送数据
 - (1) 硬件设计

主机一侧的8255A的PA口作双向传送,既输出又输入,它的中断请示线接到8259A的 IR_2 上;从机一侧的8255A的PA和PB口是单向传送,分别作输出和输入

(2) 软件设计 p163/p132

2方式接口电路