EE20021 UMH

EE20021 HighRisc processor instruction set definition

Uriel Martinez-Hernandez

Introduction

This document describes the instruction set architecture (ISA) of the HighRisc processor that you are developing for your coursework.

Instruction formats

The ISA has three instruction formats (R-type, J-type and I-type) shown in the following tables.

Table 1. R-type instruction format

	Opcode			Destination (Dest)						Source (Src) / Immediate						
Section																
Value	1 to 15				0 to 63							0 to	63			
Bit	15			12	11					6	5					0

Table 2. J-type instruction format

Section	Opcode			Co	Condition Offset										
Value	0				See Flags						-25	6 to 2	255		
Bit	15			12	11		9	8							0

Table 3. I-type instruction format

						100	<u> </u>		01	•••							
Opcode	Imm[5]				Dest												
LIU	1		Im	m[4	:0]		Unchanged										
LIU	0	5	Sign	Ex	tenc	1		Imm[4:0]				Unchanged					
LIL	X		Sign F				Exten	d						In	ım		
	Bit	15				11	10				6	5					0

Registers

The system has 62 general purpose registers (R0 to R61). Each is 16 bits in size. There are also two special registers as described below.

Special register: Flags

Register 62 is the Flags register (FL). This is a 5 bit register containing the ALU result flags described in table 2. Three conditions are also described in the table that are derived from the flags but not stored in the register.

Table 4. Flags and conditions

			1 able 4. Flags and conditions	
Bit	Condition	Code	Description	Essential
0	Carry	C	Set when an arithmetic function produces a carry (or	Yes
			borrow). Also used as an extra register bit in rotate	
			operations	
1	Zero	Z	Set when the result of an ALU operation is zero	Yes
2	Negative	N	Set when the result of an ALU operation is negative	Yes
3	Parity	P	Set when the number of 1 bits in the result of an ALU	Yes
			operation is even (including when no bits are set to 1)	

EE20021 UMH

4	Overflow	V	Set when an ALU addition or subtraction operation	Yes
			overflows. The conditions in which this is deemed to	
			have occurred are shown in table 5	
-	No carry	NC	Set when an arithmetic function doesn't produce a	
			carry (or borrow). Rotate operations affect this flag	
-	Not zero	NZ	Set when the result of an ALU operation is not zero	
-	Always	A	Always set	

Table 5. Overflow flag conditions based on the most significant bit (MSB) of each or the ALU

inputs and outputs

inputs and	r outputs		
	Add	ition	
Dest	Src	Result	
MSB	MSB	MSB	V flag
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

	Subtraction								
Dest	Src	Result							
MSB	MSB	MSB	V flag						
0	0	0	0						
0	0	1	0						
0	1	0	0						
0	1	1	1						
1	0	0	1						
1	0	1	0						
1	1	0	0						
1	1	1	0						

Special register: Program Counter

Register 63 is the Program Counter (PC) which stores the address of the currently executing instruction.

Instructions

The list of instructions that can be executed by the HighRisc processor are shown in Table 6.

Table 6. Instructions of the HighRisc processor

Opcode Value	Name	Description	Flags Affected	ALU operation?
0	JR	Changes the PC by the <i>offset</i> if the <i>condition</i> flag is set		No
1	LOAD	Loads register <i>Dest</i> with the value at the address in		No
		data memory given by register Src.		
2	STORE	Copies the value in register <i>Src</i> to the address in data memory given by register <i>Dest</i> .		No
3	MOVE	Copies the content of register <i>Src</i> to register <i>Dest</i> .		Yes
4	NAND	Sets register <i>Dest</i> to the bitwise logical NAND of the		Yes
		contents of registers <i>Dest</i> and <i>Src</i> .		
5	NOR	Sets register <i>Dest</i> to the bitwise logical NOR of the		Yes
		contents of registers <i>Dest</i> and <i>Src</i> .		

EE20021 UMH

Yes
1
1
Yes
Yes
Yes
1
Yes
Yes
Yes
1
Yes
Yes
1
Yes
1