

AMATH 460: Mathematical Methods for Quantitative Finance

2. Integrals

Kjell Konis
Acting Assistant Professor, Applied Mathematics
University of Washington

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- 3 Applications
- 4 Integration by Parts
- Integration by Substitution
- **6** Completing the Square
- Differentiating Definite Integrals
- 8 Improper Integrals
- Improper Integrals II
- Differentiating Improper Integrals

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- Integration by Substitution
- 6 Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- 9 Improper Integrals I
- Differentiating Improper Integrals

The Area Problem

Want to find the area of the region S under f(x) between a and b f(x) continuous on [a,b]

The Area Problem

- Create a partition P_n of the interval [a, b]
- ullet Use rectangles to compute upper and lower bounds for the area of S
- Consider $\lim_{n\to\infty} L(P_n, f(x))$ and $\lim_{n\to\infty} U(P_n, f(x))$

The Definite Integral

• If $\lim_{n\to\infty} L(P_n, f(x)) = \lim_{n\to\infty} U(P_n, f(x))$ then the <u>definite integral</u> of f(x) from a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(P_n, f(x)) = A$$

- A is interpretable as the area of the region S
- f(x) is integrable

Properties:

$$\int_b^a f(x) dx = -\int_a^b f(x) dx$$

Properties (continued)

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx \qquad (c \text{ a real-valued constant})$$

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx \qquad (a < c < b)$$

$$f(x) \ge 0, x \in [a, b] \implies \int_a^b f(x) \, dx \ge 0$$

Example

• Evaluate $\int_0^4 \sqrt{4x - x^2} \, dx = \int_0^4 \sqrt{-(x^2 - 4x)} \, dx$ = $\int_0^4 \sqrt{4 - (x^2 - 4x + 4)} \, dx$

$$= \int_0^4 \sqrt{4 - (x^2 - 4x + 4)} \ dx$$

$$\int_{0}^{4} \sqrt{4x - x^2} = 2\pi$$

Equation of circle: $(x - x_0)^2 + (y - y_0)^2 = r^2$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- Integration by Substitution
- Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- 9 Improper Integrals II
- Differentiating Improper Integrals

Fundamental Theorem of Calculus

• Let $f : \mathbb{R} \to \mathbb{R}$ be an integrable function. The <u>antiderivative</u> of f(x) is a function F(x) satisfying

$$F(x) = \int f(x) dx \iff F'(x) = f(x)$$

Antiderivative not unique: [F(x) + c]' = f(x)

 Can use the <u>Fundamental Theorem of Calculus</u> to evaluate definite integrals (when a closed form of the antiderivative exists)

FToC: Let f(x) be a continuous function on the interval [a, b] and let F(x) be the antiderivative of f(x). Then,

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Example

- Suppose $F(x) = \frac{1}{2}x^2$
- Then f(x) = F'(x) = x
- **FToC** says area under the curve f(x) = x from 0 to b is

$$\int_0^b f(x) \, dx = F(b) - F(0) = \frac{1}{2}b^2 - \frac{1}{2}0^2 = \frac{1}{2}b^2$$

Area of a triangle

$$A = \frac{1}{2}$$
 base \times height

• $\int_0^b f(x) dx = \frac{1}{2}b^2$

Evaluating Definite Integrals

- Evaluating definite integrals boils down to finding antiderivatives
- Not as straight-forward as differentiation

• Anti-Power Rule:
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c$$

• Dictionary method:

f(x)	F(x)	f(x)	F(x)
0	0	С	CX
sin(x)	$-\cos(x)$	cos(x)	sin(x)
e ^x	e^{x}	$\frac{1}{x}$	log(x)
:	•	:	:

Examples

•
$$\int_0^{\pi} 2\sin(x) dx = 2 \int_0^{\pi} \sin(x) dx$$

$$= 2 \left[-\cos(x) \right]_0^{\pi}$$

$$= -2 \left[\cos(\pi) - \cos(0) \right]$$

$$= -2 \left[-1 - 1 \right] = 4$$

Examples

•
$$\int_{-1}^{1} e^{x} dx = e^{x} \Big|_{-1}^{1}$$

= $e^{1} - e^{-1}$
= $e - \frac{1}{e} \approx 2.350402$

$$\int_{1}^{4} \frac{dx}{x} = \int_{1}^{4} \frac{1}{x} dx$$

$$= \log(x) \Big|_{1}^{4}$$

$$= \log(4) - \log(1)$$

$$= \log(4) \approx 1.386294$$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- 3 Applications
- 4 Integration by Parts
- Integration by Substitution
- 6 Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- 9 Improper Integrals II
- Differentiating Improper Integrals

The Distance Formula

 $distance = rate \times time$

The Distance Formula

Works well for distances.

100 miles = 50 mph
$$\times$$
 2 hours

• Intuition for many problems. What are we really doing?

The Job Problem

- If Lenny can do a job in 6 hours and Carl can do the same job in 4 hours how long does the job take if they work together?
- It's the rates that are additive
 - Lenny can do $\frac{1}{6}$ of the job per hour
 - Carl can do $\frac{1}{4}$ of the job per hour
 - Together, they can do $\frac{1}{6} + \frac{1}{4} = \frac{5}{12}$ of the job per hour
- Here, the job is distance, so have to solve for time

time =
$$\frac{\text{distance}}{\text{rate}} = \frac{1}{\frac{5}{12}} = \frac{12}{5} = 2 \text{ hours } 24 \text{ minutes}$$

The Job Problem (continued)

- Solution assumes that Lenny and Carl work at a constant rate.
- Suppose instead that
 - Lenny works at a rate L(x)
 - Carl works at a rate C(x)
- Expressed as definite integrals

$$\int_0^6 L(x) \, dx = 1$$
 and $\int_0^4 C(x) \, dx = 1$

The problem is to find T such that

$$\int_0^T [L(x) + C(x)] dx = 1$$

The Job Problem (continued)

- Suppose $L(x) = \frac{12 x}{54}$ and $C(x) = \frac{8 x}{24}$
- How long does the job take if Lenny and Carl work together?
- Want to find T such that

$$\int_0^T \left[L(x) + C(x) \right] dx = 1$$

$$216 \cdot \int_0^T \left[\frac{12 - x}{54} + \frac{8 - x}{24} \right] dx = 216 \cdot 1$$

$$\int_0^T \left[(48 - 4x) + (72 - 9x) \right] dx = 216$$

$$\int_0^T \left[120 - 13x \right] dx = 216$$

The Job Problem (continued)

$$(120x - \frac{13}{2}x^2) \Big|_0^T = 216$$

$$(120T - \frac{13}{2}T^2) - (120 \cdot 0 - \frac{13}{2} \cdot 0^2) = 216$$

$$13T^2 - 240T + 432 = 0$$

Solve using quadratic formula: just under 2 hours and 2 minutes

Probability Density Functions

• Let $f_X(x)$ be the <u>probability density function</u> of a continuous random variable X, then

$$P(X \in [a,b]) = \int_a^b f(x) \, dx$$

- The <u>support</u> of a random variable is the set of points S such that $f_X(x) > 0$ for $x \in S$
- Properties: if $f_X(x)$ is a pdf then
 - (i) $f_X(x) \ge 0$ for all $x \in \mathbb{R}$
 - (ii) $\int_{S} f_X(x) dx = 1$

Example

The pdf of a Beta(2, 2) distribution is

$$f_X(x) = \begin{cases} 6x(1-x) & x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

- Verify $f_X(x) \ge 0$
- Verify that the definite integral of f(x) over its support is 1

$$\int_{S} f_{X}(x) dx = \int_{0}^{1} 6x(1-x)x dx = 6 \int_{0}^{1} [x-x^{2}] dx$$

$$= 6 \left[\frac{1}{2}x^{2} - \frac{1}{3}x^{3} \right]_{0}^{1}$$

$$= 6 \left[\left(\frac{1}{2} - \frac{1}{3} \right) - (0-0) \right]$$

$$= 6 \cdot \frac{1}{6} = 1$$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- Integration by Substitution
- 6 Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- 9 Improper Integrals II
- Differentiating Improper Integrals

Integration by Parts

- Compute an antiderivative using the product rule backwards
- Let f(x) and g(x) be continuous, integrable functions

$$\frac{d}{dx}[F(x) G(x)] = f(x) G(x) dx + F(x) g(x) dx$$

$$F(x) G(x) = \int f(x) G(x) dx + \int F(x) g(x) dx$$

Rearrange terms to get integration by parts formula:

$$\int F(x) g(x) dx = F(x) G(x) - \int f(x) G(x) dx$$

• Idea: choose F(x) and g(x) so that $\int f(x)G(X) dx$ is easy to compute.

Integration by Parts: Example 1

• Let
$$F(x) = \log(1+x)$$
, $G(x) = (1+x)$, and $g(x) = 1$

$$\int F(x) g(x) dx = F(x) G(x) - \int f(x) G(x) dx$$

$$\int \log(1+x) dx = (1+x) \log(1+x) - \int \frac{(1+x)}{(1+x)} dx$$

$$= (1+x) \log(1+x) - \int dx$$

$$= (1+x) \log(1+x) - x + C$$

Integration by Parts: Example 2

- Let $F(x) = \log(x)$, $G(x) = \frac{1}{3}x^3$, and $g(x) = x^2$

$$\int F(x) g(x) dx = F(x) G(x) - \int f(x) G(x) dx$$

$$\int x^2 \log(x) dx = \frac{1}{3} x^3 \log(x) - \int \frac{1}{x} \frac{1}{3} x^3 dx$$

$$= \frac{1}{3} x^3 \log(x) - \int \frac{1}{3} x^2 dx$$

$$= \frac{1}{3} x^3 \log(x) - \frac{1}{9} x^3 + C$$

Integration by Parts: Definite Integrals

For definite integrals

$$\int_{a}^{b} (f(x) G(x) + F(x) g(x)) dx = \int_{a}^{b} \frac{d}{dx} [F(x) G(x)]$$

$$= [F(x) G(x)] \Big|_{a}^{b}$$

$$= F(b) G(b) - F(a) G(a)$$

Rearrange terms to obtain

$$\int_{a}^{b} f(x) G(x) dx = F(b) G(b) - F(a) G(a) - \int_{a}^{b} F(x) g(x) dx$$

Integration by Parts: Example 3

• Let
$$F(x) = x$$
, $G(x) = e^x$, and $g(x) = e^x$

$$\int_{1}^{3} F(x) g(x) dx = F(x) G(x) \Big|_{1}^{3} - \int_{1}^{3} f(x) G(x) dx$$

$$\int_{1}^{3} x e^{x} dx = x e^{x} \Big|_{1}^{3} - \int_{1}^{3} e^{x} dx$$

$$= x e^{x} \Big|_{1}^{3} - e^{x} \Big|_{1}^{3}$$

$$= 3e^{3} - e - [e^{3} - e]$$

$$= 2e^{3}$$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- 5 Integration by Substitution
- 6 Completing the Square
- Differentiating Definite Integrals
- 8 Improper Integrals
- Improper Integrals II
- Differentiating Improper Integrals

Integration by Substitution

- Integration by parts = product rule backward
- Integration by substitution = chain rule backward
- Let $F(x) = \int f(x) dx$ and x = g(u). By the chain rule $\frac{d}{du} [F(g(u))] = F'(g(u)) g'(u) = f(g(u)) g'(u)$
- Integrate both sides with respect to *u*

$$F(g(u)) = \int f(g(u)) g'(u) du$$

• Integration by substitution Let f(x) be integrable and g(x) invertible and continuously differentiable. The substitution x = g(u) changes the integration variable from x to u as follows:

$$\int f(x) dx = \int f(g(u)) g'(u) du$$

Integration by Substitution: Example 1

• Let $u = \sqrt{x}$, then $x = u^2$ and dx = 2u du

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int \frac{e^u}{u} 2u du$$

$$= 2 \int e^u du$$

$$= 2 e^u + C$$

$$= 2 e^{\sqrt{x}} + C$$

(x > 0 assumed)

Integration by Substitution: Example 2

• Let $u = e^{x} - e^{-x}$, then $du = (e^{x} + e^{-x}) dx$

$$\int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx = \int \frac{1}{(e^x - e^{-x})} (e^x + e^{-x}) dx$$
$$= \int \frac{1}{u} du$$
$$= \log(u) + C$$
$$= \log(e^x - e^{-x}) + C$$

Integration by Substitution: Definite Integrals

Using the Fundamental Theorem of Calculus:

$$\int_{x=a}^{x=b} f(x) dx = \int_{u=g^{-1}(a)}^{u=g^{-1}(b)} f(g(u)) g'(u) du$$

$$= \int_{u=g^{-1}(a)}^{u=g^{-1}(b)} \frac{d}{du} [F(g(u))] du$$

$$= F(g(u)) \Big|_{u=g^{-1}(a)}^{u=g^{-1}(b)}$$

$$= F(g(g^{-1}(b))) - F(g(g^{-1}(a)))$$

$$= F(b) - F(a)$$

Definite integral by substitution rule:

$$\int_{x=a}^{x=b} f(x) dx = \int_{u=g^{-1}(a)}^{u=g^{-1}(b)} f(g(u)) g'(u) du$$

Integration by Substitution: Example 3

• Let $u = x^3 - 1$, then $du = 3x^2 dx$

$$\int_{-1}^{0} x^{2}(x^{3} - 1)^{4} dx = \frac{1}{3} \int_{-1}^{0} (x^{3} - 1)^{4} 3x^{2} dx$$

$$= \frac{1}{3} \int_{u=-2}^{u=-1} u^{4} du$$

$$= \frac{1}{3} \cdot \frac{1}{5} u^{5} \Big|_{u=-2}^{u=-1}$$

$$= \frac{1}{15} (-1)^{5} - \frac{1}{15} (-2)^{5}$$

$$= \frac{31}{15}$$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- 5 Integration by Substitution
- **6** Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- Improper Integrals II
- Differentiating Improper Integrals

Quadratic Formula

A quadratic function has the form

$$f(x) = ax^2 + bx + c$$

where a, b and c are real-valued constants and $a \neq 0$

• The well-known quadratic formula tells us the solutions to $f(x) \stackrel{\text{set}}{=} 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 Derivation of the quadratic formula relies on a technique called completing the square

Quadratic Formula (continued)

$$ax^2 + bx + c \stackrel{\text{set}}{=} 0$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

$$x^2 + 2\frac{b}{2a}x + \underline{\qquad} + \frac{c}{a} - \underline{\qquad} = 0$$

$$\left(x + \frac{b}{2a}\right)^2 = x^2 + 2\frac{b}{2a}x + \frac{b^2}{4a^2}$$

$$x^{2} + 2\frac{b}{2a}x + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{4ac}{a^{2}}$$

Quadratic Formula (continued)

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x = \frac{-b}{2a} \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Completing the Square

- Compute $\int_0^\infty e^{-\frac{(\log(y)-\mu)^2}{2\sigma^2}} dy$ μ , σ real-valued constants
- Let $u = \log(y) \mu$, then $y = e^{u+\mu} = e^u e^{\mu}$, and dy = y du

$$\int_0^\infty e^{-\frac{(\log(y)-\mu)^2}{2\sigma^2}} dy = \int_{u=-\infty}^{u=\infty} y e^{-\frac{u^2}{2\sigma^2}} du$$

$$= \int_{-\infty}^\infty e^u e^\mu e^{-\frac{u^2}{2\sigma^2}} du$$

$$= e^\mu \int_{-\infty}^\infty e^{-\frac{u^2}{2\sigma^2}} e^u du$$

Completing the Square (continued)

Take a closer look at the integrand:

$$e^{-u^{2}/2\sigma^{2}}e^{u} = e^{\frac{-u^{2}+2\sigma^{2}u}{2\sigma^{2}}} = e^{\frac{-u^{2}+2\sigma^{2}u-\sigma^{4}+\sigma^{4}}{2\sigma^{2}}}$$

$$= e^{\frac{-(u^{2}-2\sigma^{2}u+\sigma^{4})+\sigma^{4}}{2\sigma^{2}}} = e^{\frac{-(u-\sigma^{2})^{2}+\sigma^{4}}{2\sigma^{2}}} = e^{\frac{-(u-\sigma^{2})^{2}}{2\sigma^{2}}} e^{\frac{\sigma^{2}}{2}}$$

$$\int_{0}^{\infty} e^{-\frac{(\log(y)-\mu)^{2}}{2\sigma^{2}}} dy = e^{\mu} \int_{-\infty}^{\infty} e^{\frac{-(u-\sigma^{2})^{2}}{2\sigma^{2}}} e^{\frac{\sigma^{2}}{2}} du$$

$$= e^{\mu} e^{\frac{\sigma^{2}}{2}} \int_{-\infty}^{\infty} e^{\frac{-(u-\sigma^{2})^{2}}{2\sigma^{2}}} du$$

Hint:
$$\int_{-\infty}^{\infty} e^{\frac{-(u-\sigma^2)^2}{2\sigma^2}} du = \sqrt{2\pi}\sigma$$

$$=\sqrt{2\pi}\sigma\,e^{\mu+\frac{\sigma^2}{2}}$$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- Integration by Substitution
- 6 Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- Improper Integrals I
- Differentiating Improper Integrals

Differentiating Definite Integrals

- The definite integral $\int_a^b f(x) dx$ is a real number
- If the limits are functions of another variable (say t) then the result is a function of t

$$g(t) = \int_{a(t)}^{b(t)} f(x) \, dx$$

• More generally, the integrand may be a function of x and t

$$g(t) = \int_{a(t)}^{b(t)} f(x, t) dx$$

(more on this in lesson 3)

• How to calculate $\frac{d}{dt} \left[\int_{a(t)}^{b(t)} f(x) dx \right]$

Differentiating Definite Integrals

• Let $F(x) = \int f(x) dx$ and

$$g(t) = \int_{a(t)}^{b(t)} f(x) \, dx$$

By the Fundamental Theorem of Calculus

$$g(t) = F(b(t)) - F(a(t))$$

• By the chain rule

$$g'(t) = F'(b(t)) b'(t) - F'(a(t)) a'(t) = f(b(t)) b'(t) - f(a(t)) a'(t)$$

• Result: let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then

$$\frac{d}{dt}\left[\int_{a(t)}^{b(t)}f(x)\,dx\right]=f(b(t))\,b'(t)-f(a(t))\,a'(t)$$

where a(t) and b(t) are differentiable functions

Example

Let

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_0^{b(x)} e^{-\frac{t^2}{2}} dt$$

$$b(x) = 5 \left(\log(x) + 0.04 + \frac{(0.20)^2}{2} \right) = 5 (\log(x) + 0.06)$$
Compute $g'(x)$

- Recall: $\frac{d}{dt} \left[\int_{a(t)}^{b(t)} f(x) dx \right] = f(b(t)) b'(t) f(a(t)) a'(t)$
- Since a = 0: $\frac{d}{dt} \left[\int_0^{b(t)} f(x) dx \right] = f(b(t)) b'(t)$

Putting things together:

$$g'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{25(\log(x)+0.06)^2}{2}} b'(x)$$

• Need to compute b'(x)

$$b(x) = 5(\log(x) + 0.06)$$
$$b'(x) = \frac{5}{x}$$

• The derivative of g(x) is

$$g'(x) = \frac{5}{x\sqrt{2\pi}}e^{-\frac{25(\log(x) + 0.06)^2}{2}}$$

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- Integration by Substitution
- 6 Completing the Square
- Differentiating Definite Integrals
- 8 Improper Integrals
- 9 Improper Integrals I
- Differentiating Improper Integrals

- Two types: infinite intervals and unbounded functions
- First type: integrate a function f(x) over either $(-\infty, b]$ or $[a, \infty)$
- The improper integral of f(x) over $[a, \infty)$ exists iff

$$\lim_{t\to\infty}\int_a^t f(x)\,dx$$

exists and is finite

• Similarly, the improper integral of f(x) over $[a, \infty)$ exists iff

$$\lim_{t \to -\infty} \int_{t}^{b} f(x) \, dx$$

exists and is finite

• When the limits exist and are finite

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$
 and
$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

Adding and Subtracting Improper Integrals

• Let $f: \mathbb{R} \to \mathbb{R}$ be an integrable function over the interval $[a, \infty)$. If b > a, then f(x) is integrable over the interval $[b, \infty)$ and

$$\int_{a}^{\infty} f(x) dx - \int_{b}^{\infty} f(x) dx = \int_{a}^{b} f(x) dx$$

Let f(x) be an integrable function over the interval $(-\infty, b)$. If a < b, then f(x) is integrable over the interval $(-\infty, a]$ and

$$\int_{-\infty}^{b} f(x) dx - \int_{-\infty}^{a} f(x) dx = \int_{a}^{b} f(x) dx$$

• The integral $\int_{-\infty}^{\infty} f(x) dx$ exists iff there is a point a such that both

$$\int_{-\infty}^{a} f(x) dx \quad \text{and} \quad \int_{a}^{\infty} f(x) dx$$

exist

• If $\int_{-\infty}^{\infty} f(x) dx$ exists

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$
$$= \lim_{t \to -\infty} \int_{t}^{a} f(x) dx + \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

• Why not $\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{-t}^{t} f(x) dx ?$

Since

$$\int_{-t}^{t} x \, dx = \frac{x^{2}}{2} \Big|_{-t}^{t} = \frac{1}{2} [t^{2} - (-t)^{2}] = 0, \quad \forall t > 0$$

Thus

$$\lim_{t\to\infty}\int_{-t}^t x\,dx=0$$

• Does not have the property that

$$\int_{-\infty}^{a} x \, dx + \int_{a}^{\infty} x \, dx = \int_{-\infty}^{\infty} x \, dx$$

• Taking a = 0 gives $-\infty + \infty$ which is not defined

• However, if we already know that $\int_{-\infty}^{\infty} f(x) dx$ exists, then

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{-t}^{t} f(x) dx$$

Formula can be used to evaluate improper integrals

Example

• Show that for integer $\alpha \geq 0$,

$$\int_0^\infty x^\alpha e^{-x^2} dx$$

exists

Need to show that

$$\lim_{t\to\infty}\int_0^t x^\alpha e^{-x^2}\,dx<\infty$$

• Recall that $\lim_{x \to \infty} \frac{P(x)}{e^x} = 0$, in particular, $\lim_{x \to \infty} \frac{x^{\alpha+2}}{e^{x^2}} = 0$

• Since $\lim_{x\to\infty} \frac{x^{\alpha+2}}{e^{x^2}} = 0$ there is M > 0 such that

$$x^{\alpha+2}e^{-x^2} < 1 \iff x^{\alpha}e^{-x^2} < \frac{1}{x^2} \qquad \forall \ x \ge M$$

• For t > M

$$\int_0^t x^{\alpha} e^{-x^2} dx = \int_0^M x^{\alpha} e^{-x^2} dx + \int_M^t x^{\alpha} e^{-x^2} dx$$

$$< c + \int_M^t \frac{dx}{x^2}$$

$$< c - \frac{1}{x} \Big|_M^t$$

$$< c - \left[\frac{1}{t} - \frac{1}{M} \right]$$

$$\int_0^t x^{\alpha} e^{-x^2} dx < c - \left[\frac{1}{t} - \frac{1}{M}\right]$$

$$< c + \frac{1}{M} - \frac{1}{t}$$

$$< c + \frac{1}{M}$$

- Thus $\lim_{t\to\infty}\int_0^t x^{\alpha}e^{-x^2}dx < c+\frac{1}{M} < \infty$
- Finally, $\int_0^\infty x^\alpha e^{-x^2} dx$ exists

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- 5 Integration by Substitution
- Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- 9 Improper Integrals II
- Differentiating Improper Integrals

• Second type: the integrand f(x) is unbounded at either a or b, i.e.,

$$\lim_{x \searrow a} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \nearrow b} f(x) = \pm \infty$$

• $\int_a^b f(x) dx$ exists iff

$$\lim_{t \searrow a} \int_{t}^{b} f(x) dx \qquad \text{or} \qquad \lim_{t \nearrow b} \int_{a}^{t} f(x) dx$$

exists and is finite

• If both $\lim_{x\searrow a} f(x) = \pm \infty$ and $\lim_{x\nearrow b} f(x) = \pm \infty$, choose $c\in (a,b)$ such that $f(c)<\infty$ and use above results

Example

$$\int_0^1 \frac{dx}{\sqrt{x}} = \lim_{t \searrow 0} \int_t^1 x^{-\frac{1}{2}} dx$$

$$= \lim_{t \searrow 0} \left[2x^{\frac{1}{2}} \Big|_t^1 \right]$$

$$= \lim_{t \searrow 0} \left[2 - 2\sqrt{t} \right]$$

$$= 2$$

Example

- Can combine both types of improper integrals:
- Compute $\int_0^\infty \frac{dx}{\sqrt{|x-1|}}$

$$\begin{split} \int_0^\infty \frac{dx}{\sqrt{|x-1|}} &= & \lim_{t \nearrow 1} \int_0^t \frac{dx}{\sqrt{1-x}} + \lim_{t \searrow 1} \int_t^2 \frac{dx}{\sqrt{x-1}} \\ &+ \lim_{t \to \infty} \int_2^t \frac{dx}{\sqrt{x-1}} \end{split}$$

$$\lim_{t \nearrow 1} \int_0^t \frac{dx}{\sqrt{1-x}} = \lim_{t \nearrow 1} \left[-2\sqrt{1-x} \Big|_0^t \right] = \lim_{t \nearrow 1} \left[-2\sqrt{1-t} + 2 \right] = 2$$

$$\lim_{t \searrow 1} \int_t^2 \frac{dx}{\sqrt{x-1}} = \lim_{t \searrow 1} \left[2\sqrt{x-1} \Big|_t^2 \right] = \lim_{t \searrow 1} \left[2 - 2\sqrt{t-1} \right] = 2$$

$$\lim_{t \to \infty} \int_2^t \frac{dx}{\sqrt{x-1}} = \lim_{t \to \infty} \left[2\sqrt{x-1} \Big|_2^t \right] = \lim_{t \to \infty} \left[2\sqrt{t-1} - 2 \right] = \infty$$

Conclusion:

$$\int_0^\infty \frac{dx}{\sqrt{|x-1|}}$$

does not exist because

$$\lim_{t \to \infty} \int_2^t \frac{dx}{\sqrt{x-1}}$$

is not finite

Outline

- Integration
- 2 Fundamental Theorem of Calculus
- Applications
- 4 Integration by Parts
- Integration by Substitution
- Completing the Square
- Differentiating Definite Integrals
- Improper Integrals
- 9 Improper Integrals I
- Differentiating Improper Integrals

Differentiating Improper Integrals

- Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and suppose that $\int_{-\infty}^{\infty} f(x) \, dx$ exists
- Let b(t) be a differentiable function and define

$$g(t) = \int_{-\infty}^{b(t)} f(x) \, dx$$

• To compute g'(t), rewrite as

$$g(t) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{b(t)} f(x) dx$$

• Since the first term is a constant, its derivative wrt to t is 0, thus

$$\frac{d}{dt}\left[g(t)\right] = \frac{d}{dt}\left[\int_{-\infty}^{0} f(x) dx + \int_{0}^{b(t)} f(x) dx\right] = \frac{d}{dt}\left[\int_{0}^{b(t)} f(x) dx\right]$$

Differentiating Improper Integrals

•
$$g'(t) = \frac{d}{dt} [F(b(t)) - F(0)] = f(b(t)) b'(t)$$

• Similarly, let a(t) be a differentiable function and define

$$h(t) = \int_{a(t)}^{\infty} f(x) \, dx$$

By the same argument,

$$\frac{d}{dt}\left[h(t)\right] = \frac{d}{dt}\left[\int_{a(t)}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx\right] = \frac{d}{dt}\left[\int_{a(t)}^{0} f(x) dx\right]$$

•
$$h'(t) = \frac{d}{dt} [F(0) - F(a(t))] = -f(a(t)) a'(t)$$

Example: Delta of a European Call Option

- Suppose the risk-free rate is 0.04
- The Black-Scholes price for a European call option on a non-dividend paying asset with strike price of 1, volatility of 20%, and 3 months to maturity is

$$C(S) = S\Phi(d_1) - e^{-0.01}\Phi(d_2)$$

where

$$d_1(S) = 10[\log(S) + 0.015]$$

$$d_2(S) = d_1(S) - 0.1$$

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

• Want to compute $\Delta(C) = \frac{d}{dS}C(S)$

Derivative of the first term:

$$\frac{d}{dS} \left[S \Phi(d_1(S)) \right] = \Phi(d_1(S)) + S \frac{d}{dS} \left[\int_{-\infty}^{d_1(S)} \phi(x) dx \right]$$
$$= \Phi(d_1(S)) + S \phi(d_1(S)) \frac{d}{dS} \left[d_1(S) \right]$$

Recall:
$$d_1(S) = 10[\log(S) + 0.015]$$
 so $\frac{d}{dS}[d_1(S)] = \frac{10}{S}$

$$= \Phi(d_1(S)) + S \phi(d_1(S)) \frac{10}{S}$$
$$= \Phi(d_1(S)) + 10 \phi(d_1(S))$$

Derivative of the second term:

$$\frac{d}{dS} \left[e^{-0.01} \Phi(d_2(S)) \right] = e^{-0.01} \frac{d}{dS} \left[\int_{-\infty}^{d_2(S)} \phi(x) \, dx \right]$$
$$= e^{-0.01} \phi(d_2(S)) \frac{d}{dS} \left[d_2(S) \right]$$

Recall:
$$d_2(S) = d_1(S) - 0.1$$
 so $\frac{d}{dS}[d_2(S)] = \frac{d}{dS}[d_1(S)] = \frac{10}{S}$

$$= e^{-0.01}\phi(d_2(S))\frac{10}{S}$$

Example (simplification)

Putting the two terms together:

$$\Delta(C) = \Phi(d_1) + 10 \, \phi(d_1(S)) - \frac{10}{S} \, e^{-0.01} \phi(d_2(S))$$

- But we're not finished yet
- Recall: $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$
- Write third term in terms of $d_1(S)$:

$$\frac{10}{S} e^{-0.01} \phi(d_2(S)) = \frac{10}{S} e^{-0.01} \frac{1}{\sqrt{2\pi}} e^{-\frac{d_2^2(S)}{2}}$$
$$= \frac{10}{S} e^{-0.01} \frac{1}{\sqrt{2\pi}} e^{-\frac{(d_1(S) - 0.1)^2}{2}}$$

Example (simplification)

$$= \frac{10}{S} e^{-0.01} \frac{1}{\sqrt{2\pi}} e^{-\frac{d_1^2(S) - 0.2d_1(S) + 0.01}{2}}$$

$$= \frac{10}{S} e^{-0.01} \frac{1}{\sqrt{2\pi}} e^{-\frac{d_1^2(S) - 0.2d_1(S) + 0.01}{2}}$$

$$= \frac{10}{S} e^{-0.015} \frac{1}{\sqrt{2\pi}} e^{-\frac{d_1^2(S)}{2}} e^{0.1d_1(S)}$$

$$= \frac{10}{S} e^{-0.015} \phi(d_1(S)) e^{0.1d_1(S)}$$

$$= \frac{10}{S} e^{-0.015} \phi(d_1(S)) e^{\log(S) + 0.015}$$

$$= 10 \phi(d_1(S))$$

Example (simplification)

• Putting it all together:

$$\Delta(C) = \Phi(d_1) + 10 \phi(d_1(S)) - \frac{10}{S} e^{-0.01} \phi(d_2(S))$$

$$= \Phi(d_1) + 10 \phi(d_1(S)) - 10 \phi(d_1(S))$$

$$= \Phi(d_1)$$

http://computational-finance.uw.edu