9. KONSTRUKCE A NÁVRH SCHODIŠTĚ

Názvosloví

Schodišťové rameno

- ze schodišťových stupňů
- spojuje dvě různé výškové úrovně
- zahrnuje i nosnou konstrukci
- může být NÁSTUPNÍ nebo VÝSTUPNÍ

Podesta

- ukončuje schodišťové rameno
- může být HLAVNÍ (v úrovni patra) nebo VEDLEJŠÍ

Mezipodesta

• spojuje ramena

Schodišťová zeď

- omezuje prostor schodiště
- často slouží jako nosná konstrukce

Schodišťové stupně

- prvky schodišťového ramene
- skládají se z:
 - o STUPNICE horní plocha
 - o PODSTUPNICE přední svislá plocha
 - o ČELO STUPNĚ boční svislá plocha
- JALOVÝ STUPEŇ zabudovaný do podesty
- UKONČOVACÍ STUPEŇ poslední výstupní stupeň

Schodnice

• šikmý nosník podporující schodišť. rameno nebo stupně

Zrcadlo

• prostor vzniklý mezi schodišťovými rameny

Výstupní čára

• čára spojující přední hrany stupňů v ose výstupu

Rozdělení

Podle konstrukce

S plně podporovanými stupni

PAŽENÁ

- o na terénu
- venkovní

PODEZDĚNÁ

- o většinou venkovní s malým počtem stupňů
- o jsou plně podezděny

DESKOVÁ

- železobetonová montovaná a monolitická schodiště
- o nosnou konstrukci tvoří deska
- o jsou buďto vetknutá do podesty, nebo spojitě zalomená a podestu podepírají

S oboustranně podporovanými stupni

SCHODNICOVÁ

- o nejčastěji u dřevěných a kovových schodišť
- o nosnou část tvoří schodnice jedna nebo více

VŘETENOVÁ

o jsou v místě zrcadla podepřena stěnou (vřetenovou zdí)

VISUTÁ

- o stupně jsou jednostranně vetknuté do stěn nebo schodnic
- o jsou velmi pracná, a během výstavby nepraktická

ZAVĚŠENÁ

- o stupně jsou zavěšeny na ocelových táhlech
- o musí se překrývat o 8 až 10 cm

- o bývají bez podstupnic
- KONZOLOVITĚ VETKNUTÁ

Podle materiálu

- KAMENNÉ
- CIHELNÉ
- SKLENĚNÉ
- DŘEVĚNÉ
- BETONOVÉ
- OCELOVÉ
- KOMBINOVANÉ
- JINÉ MATERIÁLY

Návrh a výpočet

POSTUP VÝPOČTU SCHODIŠTĚ

- 1. Zjistíme výšku k překonání
- 2. Navrhneme výšku stupně 150 180mm
- 3. Výšku schodiště vydělíme výškou stupně a zaokrouhlíme na celé číslo (u dvouramenného schodiště by měl počet být sudý)
- 4. Výšku vydělíme zvoleným číslem a dostaneme tak výšku stupně v
- 5. S pomocí Lehmanova vzorce vypočítáme šířku stupně \check{s}
- 6. Vypočítáme sklon $tanlpha=rac{v}{\check{s}}$
- 7. Vypočteme délku schodišťového ramene L=(n-1)*b kde n je počet schodišťových stupňů
- 8. Spočítáme a zkontrolujeme jestli vyhovuje podchodná a průchodná výška
- šířka ramene je dána typem budovy a požárními předpisy
- šířka podest se musí rovnat minimálně šířce ramen
- u dvouramenného schodiště je šířka zrcadla minimálně 100 mm

Návrh rozměrů schodišťového stupně

LEHMANŮV VZOREC

 $2*v+\check{s}=630mm$

v - výška stupně

 \check{s} - šířka stupně

630 mm - průměrná délka kroku

Podchodná výška

VZOREC

$$h_p = 1500 + rac{750}{coslpha}$$

 h_p = podchodná výška svisle od přední hrany stupně v mm

 α = sklon schodišťového ramene

minimální podchodná výška je 2100 mm

Průchodná výška

VZOREC

$$h_{pr} = 750 + 1500 \times cos\alpha$$

 h_{pr} - průchodná výška

lpha – sklon schodišťového ramene

• minimální průchodná výška je 1900 mm

