PCT/US 97 / 03 31	PCT/L	397	103	31	3
-------------------	-------	-----	-----	----	---

AA CODE U				U.S	U.S. PATENT APPLICATION								
	-			FLRE DATE	GAS	SHOUP ANT WHIT							
	020,003 VISIONA	·		06/22/96									
		PACELLA, RHAM, MC.	raleigh,	NC; EANDRA L.	VOLRATH, DURHAM	, MC; ERIC A.	•						
	CONTIN VERIFIE	UING DATA D		**********									
•	• # 4 4 4 4 4	- #/PCT APPL	ications	+++++++++++	REC	0 15 AFK							
	VERIFIE	P .											
	VERIFIE	-	_		f 50 ft 10 10 10								
	VERIFIE	P. -	_		/ 200U)	ENT							
-		- -	P	Hotur	/ 200U)	ENT							
		PILING LIC	P:	07/22/96		ENT							
PY ATE ON CASTRY	CREIGN	PILING LIC	P:	NTED 07/22/96	PLUNG PEE RECEMED	ATTOMICT DOCKET HIS							
PY ATE OR RANTRY	OREIGN NC	PILING LIC	P:	07/22/96									
Printer on Contrary	OREIGN NC MICRAEL CIBA-GE 520 MHI	PILING LIC DESTS DEATH O W GLYHN	ENSE GRA	07/22/96	PLUNG PEE RECEMED	ATTOMICT DOCKET HIS							
TATE OR COMMITTEE	OREIGN NC NICRAEL CIBA-GE 520 MHI TARRYTO	PILING LIC SMETT DRAMMS O W GLYHN IGY CORPOR TE PLAINS WM HY 105	ENSE GRA	DATENT DEPT O BOX 2005	PLUNG PEE RECEMED	ATTOMICT DOCKET HIS							
POTATE OR RESTRICT	OREIGN HICRAEL GESAGE 520 WHI TARRYTO	PILING LIC DESTI DEMANDS O W GLYNN IGY CORPOR TE PLAINS WIN MY 105 RS FROM PL	ENSE GRATION A ROAD P 91-9005	PATENT DEPT O BOX 2005	PART TRE MESSED STATE ST	ATTOMIN 000-EF NA. PH/5-20755/P							
PO TANE OF TAN	ORRIGH HICHARL CIBA-GE 520 WHI TARRYTO PROMOTE I to certifi	PILING LIC DESTI DIAMPIC O W GLYNN IGY CORPOR TE PLAINS HIN W 105 RS FROM PL	ENSE GRATION A ROAD P 91-9005	PATENT DEPT O BOX 2005	PLUTO PEE PESSATE \$150.00	ATTOMIN 000-EF NA. PH/5-20755/P							
PO TANE OF TAN	ORRIGH HICRAEL CIBA-GE 520 WHI TARRYTO PROMOTE to cartific and Train professor or our	PILING LIC SEETS O W GLYNN IGY CORPOR TO PLAINS WH HY 105 AS FROM PL Ty that annexis Semark Office Bett ann Assessment of the control of the contr	ENSE GRATION A ROAD P 91-9005	PATENT DEPT O BOX 2005	PART TRE MESSED STATE ST	ATTOMIN 000-EF NA. PH/5-20755/P							
Thir is	ORRIGH HICRAEL CIBA-GE 520 WHI TARRYTO PROMOTE to cartific and Train professor or our	PILING LIC DESTI DIAMPIC O W GLYNN IGY CORPOR TE PLAINS HIN W 105 RS FROM PL	ENSE GRATION A ROAD P 91-9005	PATENT DEPT O BOX 2005	PART TRE MESSED STATE ST	ATTOMIN 000-EF NA. PH/5-20755/P							
Thir is	ORRIGH HICRAEL CIBA-GE 520 WHI TARRYTO PROMOTE to cartific and Train professor or our	PILING LIC SEETS O W GLYNN IGY CORPOR TO PLAINS WH HY 105 AS FROM PL Ty that annexis Semark Office Bett ann Assessment of the control of the contr	ENSE GRATION A ROAD P 91-9005	PATENT DEPT O BOX 2005	PART TRE MESSED STATE ST	ATTOMIN 000-EF NA. PH/5-20755/P	F						
Thir is	ORRIGH HICRAEL CIBA-GE 520 WHI TARRYTO PROMOTE to cartific and Train professor or our	PILING LIC SEETS O W GLYNN IGY CORPOR TO PLAINS WH HY 105 AS FROM PL Ty that annexis Semark Office Bett ann Assessment of the control of the contr	ENSE GRATION A ROAD P 91-9005	PATENT DEPT O BOX 2005	PART TRE MESSED STATE ST	ATTOMIN 000-EF NA. PH/5-20755/P							

PATENT APPLICATION SERIAL NO.

EU. 020003

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARY OFFICE SEE RIJORD SHEET

> 2e0 fC 07-6590 07/03/9e A002/003 2e018 114 150.00CH FM 3/20/2e/F

PTO-1556 (5/87)

i) 1 4時5 8分 統: B S	Ω		NATURA MENTE	センター (株)		R: 624 P.
A COOL						10V.
21 a	Chadded Mu	PE			846/PROV2	'02 0003
1995	CERTE	CATE OF MAIL P	AO HY YEAR	Eso Mer		
	T inding member			Oge at		
ersty denty that the paper (at ervor "Express Mail Post Office Pavents and Trademants, Was	AMORON, D.C. 20231	120 as being start by 37 GFR 1,10 e	ned or encore	nd of training day	present with the United States F nd is addressed to the Commis	Contail Lorder
Priscilla Tar:	leton Person making apparance	i	1	No cultur	Tacliton	Ì
Sax: Provisional Patient Acq Assistant Commescenic of Washington, D.C. 20221	olcanore					
= III a request for Strip & PROY	ASIONAL APPLICATION	or papers under 37	7 CPR 1-53 @)(2).		
LAST NAME	-	NVENTORILYAPE ST NAME	MIDDLE (RESIDE	CE JOTY AND ETHER STA	1504
	1		HITTAL		POREIGN COUNTRY)	- 1
Pacella Volrath Ward	Maria Sandra Eric		<u>-</u> ;	TOTAL	gh, Morth Carolin m, Morth Carolin m, Morth Carolin	1 KIU-
			1 1			I
Promotera from Pla mani W. Gynn - Geng Coponsion and Department		RESPONDENCE				=
Whee Plans Road N	EW YORK	Zp Cope 19391-9005			Carry U.S.A.	
). Box 2005	EN TONK	10301-9025	-	1	U.S.A.	1
	ENCLOSED APP	LICATION PARTY				==
55 pages of Spacehoseon (and sety claims)		Į	회 ㅗ;;	an ol Atsyracy	(page 55)	ſ
sheets of Drawing(s)		- [Other (%)	many)		l
		ETHOD OF PAY	MENT			
Commetoner is mirely suffic is request to Deposi Account h	priced to charge land less number 07-0500	tre additional	PROVISION	al fung fe	E AMOUNT (5)150 00	
U.S. Government agency and o States Government or under a	contract Author		(if the Government	-	as made by an agency of the Li	nted
				pectury wom	ened	
™ (919) S&1-861			1/2	- h.l.	A SCOLL ELBER	
™ (919) 541-861¢			AFT	CRNEYIAGE	NT	
June 21, 1990						
June 21, 1990	named on separately have					
	named on separately num	oned hand with			<i>i</i> -	
	named on separately hum	ower hant die			<i>i</i> -	
	named on separately num					
	nàMed on seperately num	over man, and			100 11/66	

II. 020003 TOTERS FROM PLANT PROTOPORPHYBINGGEN OXIDASE GENES

CROSS-REFERENCE TO RELATED PROVISIONAL

This provisional application is related to U.S. provisional application serial no. 60/013,612 filed February 28, 1996.

FIELD OF THE INVENTION

This invention relates to novel DNA sequences which function as promoters of transcription of associated DNA sequences in plants. More specifically, this invention relates to novel promoters which are naturally associated with plant protoporphyrinogen oxidase (protox) coding sequences.

BACKGROUND OF THE INVENTION

The Protox Enzyme and its Involvement in the Chlorophyll/Heme Biosynthetic
 Pathway

The biosynthetic pathways which lead to the production of chlorophyll and heme share a number of common steps. Chlorophyll is a light harvesting pigment present in all green photosynthetic organisms. Heme is a cofactor of hemoglobin, cytochromes, P450 miseo-function oxygenases, peroxidases, and catalases (see, e.g. Lehninger, <u>Biochemistry</u>. Worth Publishers, New York (1975)), and is therefore a necessary component for all aerobic organisms.

The last common step in chlorophyll and heme biosynthesis is the oxidation of protoporphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase (referred to herein as "protox") is the enzyme which catalyzes this last oxidation step (Matringe et al., Blochem. J. 260: 231 (1989)).

The protoa enzyme has been purified either partially or completely from a number of organisms including the yeast Saccharomyces cereviae (Labbe-Bois and Labbe, In Biosynthesis of Heme and Chlorophyll, E.H. Dailey, ed. McGraw Hill: New York, pp. 235-285 (1990)), barley etioplasts (Jacobs and Jacobs, Biochem. J. 244: 219 (1987)), and mouse liver (Dailey and Karr, Biochem. 26: 2697 (1987)). Cense encoding protos have been is-lated from two prokaryotic

organisms, Escherichia coli (Sasarman et al., Can. J. Microbiol. 39: 1155 (1993)) and Bacillus subtilit (Dailey et al., J. Biol. Chem. 269: 813 (1994)). These genes share no sequence similarity; neither do their predicted protein products share any amino acid sequence identity. The E. coli protein is approximately 21 kDa, and associates with the cell membrane. The B. subtilit protein is 51 kDs, and is a soluble, sytoplasmic activity.

Protox encoding cDNAs have now also been isolated from humans (see Nishimura et al., ...

J. Biol. Chem. 270(14): 8076-8080 (1995) and plants (International application no.

PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659).

II. The Protox Gene as a Herbickle Target

The use of herbicides to control undesirable vegetation such as weeds or plants in crops has become almost a universal practice. The relevant market exceeds a billion dollars annually. Despite this extensive use, weed control remains a significant and costly problem for farmers.

Effective use of herbicides requires sound management. For instance, time and method of application and stage of weed plant development are critical to getting good weed control with herbicides. Since various weed species are resistant to herbicides, the production of effective herbicides becomes increasingly important.

Unfortunately, herbicides that exhibit greater potency, broader weed spectrum and more rapid degradation in soil can also have greater crop physotoxicity. One solution applied to this problem has been to develop crops which are resistant or tolerant to herbicides. Crop hybrids or varieties resistant to the herbicides allow for the use of the herbicides without attendant risk of damage to the crop. Development of resistance can allow application of a herbicide to a crop where its use was previously precluded or limited (e.g. to pre-emergence use) due to sensitivity of the crop to the herbicide. For example, U.S. Patient No. 4,761,373 to Anderson et al. is directed to plants resistant to various imidazolitone or sulfonamide herbicides. The resistance is conferred by an altered acetohydroxyacid synthase (AHAS) enzyme. U.S. Patient No. 4,975,374 to Goordman et al. relates to plant cells and plants containing a gene encours a mutant glutamine synthetase (GS) resistant to inhibition by herbicides that were known to inhibit GS, e.g.

phosphinochricin and methaenine sulfozimine. U.S. Patent No. 5,013,659 to Bedbrook et al. is directed to plants that express a mutent acetolactate synthase which renders the plants resistant to inhibition by sulfonylorea heracides. U.S. Patent No. 5,162,602 to Somers et al. discloses plants tolerant to inhibition by cyclohexanedione and aryloxyphenoxypropanoic acid herbicides. The tolerance is conferred by an altered acetyl coenzyme A carboxylase(ACCase).

The protox enzyme serves as the target for a variety of horbicidal compounds. The herbicides that inhibit protox include many different structural classes of molecules (Duta et al., Weed Sci. 39: 465 (1991); Nandihalll et al., Pesticide Biochem. Physiol. 43: 193 (1992);
Matringe et al., FEBS Lett. 245: 35 (1989); Yanase and Andoh, Pesticide Biochem. Physiol. 35:
10 70 (1989)). These herbicidal compounds include the diphenylethers (e.g. acifluorfen, 3-clchloro-4-ttrifluoromethylylphenoxyl-2-nitroberacia acid. its methyl ester; or oxyfluorfen, 3-chloro1-(3-ethoxy-4-nitrophenoxy)-4-(trifluorobenzane)], oxidizzolos, (e.g. oxidizzon, 3-{2,4-dichloro5-(1-methylethoxy)phenyl)-5-(1,1-dimethylethyl-1,3,4-oxediszol-2-(4ff)-one), cyclic imides (e.g. S-23142, N-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3,4,5-ternhydrophthalimide;
15 chlorophthalim, N-(4-chlorophenyl)-3,4,5-ternhydrophthalimide), phenyl pyrazoles (e.g. TNPPethyl, ethyl 2-{1-(2,3,4-trichlorophenyl)-4-nitropyrazolyl-5-oxylpropionate: M&B 39279),
pyridine derivaures (e.g. LS 82-556), and phenopylaze and its O-phenylpyrrolidino- and
pipcridinocarbamate analogs. Many of these compounds competitively inhibit the normal reaction
cauxiyeed by the enzyme, apparently acting as substrate analogs.

Typically, the inhibitory effect on protox is determined by measuring fluorescence at about 622 to 635 nM, after excitation at about 395 to 410 nM (see, e.g. Jacobs and Jacobs, Enyome 28: 206 (1982); Sherman et al., Plant Physiol. 97: 280 (1991)). This assay is based on the fact that protoporphyrin IX is a fluorescent pigment, and protoporphyrinogen IX is nonfluorescent.

The predicted mode of action of protox-inhibiting herbicides involves the accumulation of protoporphyrinogen IX in the chloroplast. This accumulation is thought to lead to leakage of protoporphyrinogen IX into the cytosol where it is oxidized by a peroxidase activity to protoporphyrin IX. When exposed to light, protoporphyrin IX can easise formation of singlet oxygen in the cytosol. This singlet oxygen can in turn lead to the formation of other reactive oxygen species, which can cause lipid peroxidation and membrane disruption leading to rapid cell death (Luc et al., Plant Physiol. 102: 881 (1993)).

Not all protox enzymes are sensitive to herbicides which inhibit plant protox enzymes.

Both of the protox enzymes encoded by genes isolated from Escherichia coli (Sasarman et al.,

5 Can. J. Microbiol. 39: 1155 (1993)) and Bacillus subilis (Dailey et al., J. Biol. Chem. 269: 813
(1994)) are resistant to these herbicidal inhibitors. In addition, mutants of the unicellular alga.

Chlamydomonas reinhardtii resistant to the phenylimide herbicide S-23142 have been reported
(Kataoka et al., J. Pesticide Sci. 15: 449 (1990); Shibata et al., In Research in Photographesis.

Vol. III, N. Murata, ed. Kluwer:Netherlands, pp. 567-570 (1992)). At least one of these mutants
appears to have an altered protox activity that is resistant not only to the herbicidal inhibitor on
which the mutant was aclected, but also to other classes of protox inhibitors (Othio et al., Z.

Naunforsch. 48c: 339 (1993); Sato et al., In ACS Symposium on Porphyric Pasticides, S. Duke,
ed. ACS Press: Washington, D.C. (1994)). A mutant tobacco cell line has also been reported that
is resistant to the inhibitor S-21432 (Che et al., Z. Naturforsch. 48c: 350 (1993). In addition,
modified, inhibitor-resistant forms of plant protox coding sequences have been described in
international application no. PCT/IB95/00452 filed June 8. 1995, published Dec. 21, 1995 as WO
95/34659.

20 III. Regulation of Protox Gene Expression

The bulk of the research related to the protox gene which has been conducted that far has focused upon the coding sequence and modifications to this enzyme which may render it resistant to protox inhibitors. No information is available in the art with regard to the regulatory elements which control and promote the expression of protox coding sequences in plants.

SUMMARY OF THE INVENTION

The present invention is based on the discovery that the promoter regions naturally associated with the plant protoporphyrinogen oxidase (protox) coding sequences, referred to herein generally as the "protox promoter", are useful for promoting expression of a heterologous 5 coding sequence in a plant.

In accordance with this discovery, the present invention provides an isolated DNA molecule comprising a plant protox promoter. The present invention further provides a chimeric gene comprising a plant protox promoter operably linked to a heterologous coding sequence. Plant tissue and plants containing such a chimeric gene are also provided.

In one aspect of the invention the protox promoter is used to express herbicide resistant forms of herbicide target proteins in a plant to confer tolerance to the herbicide. According to this aspect, the protox promoter may be operably linked to a coding sequence for a herbicideresistant plant protox protein which is resistant to inhibitors of unmodified plant protox protein.

DESCRIPTION OF THE SEQUENCE LISTING

SEO ID No. 1:	DNA coding sequence for an Arabidopsis thaliana protox-1 protein.
3EU ID NO. 1:	DNA coding sequence for an Artificial pitti thatland protox-1 protein.

SEQ ID No. 2: Arabidopsis thaliana protox-1 amino acid sequence encoded by SEQ ID No.

DNA coding sequence for an Arabidopsis thaliana protox-2 protein.

- 10. SEQ ID No. 4: Arubidopsis thaliana protox-2 amino acid sequence encoded by SEQ ID
 No.3
 - SEQ ID No. 5: DNA coding sequence for a maize protox-1 protein.
 - SEQ ID No. 6: Maize protox-1 amino acid sequence encoded by SEQ ID No. 5
 - SEQ ID No. 7: DNA coding sequence for a maize protox-2 protein.
- 15 SEQ ID No. 8: Maize protox-2 amino acid sequence encoded by SEQ ID No. 7
- SEO ID No. 9: DNA coding sequence for a wheat protox-1 protein.
 - SEQ ID No. 10: Wheat protox-1 amino acid sequence encoded by SEQ ID No. 9.
 - SEQ ID No. 11: DNA coding sequence for a soybean protox-1 protein.
- SEQ ID No. 12: Soybean protox-1 protein encoded by SEQ ID No. 11.
- 20 SEQ ID NO. 13: Promoter sequence from Arabidopsis thaliana protox-1 gene.
 - SEO ID NO. 14: Promoter sequence from Zea mays (maize) protox-1 gens.

DEFINITIONS

As used herein a "plant protox promoter" is used to refer to the regulatory region which naturally occurs immediately spatream of a protoporphyrinogen exidase (protox) coding sequence in a plant and is responsible, in its naturally occurring state, for regulating the transcription of the associated protox coding sequence. The plant protox promoter includes the DNA region directly involved in binding of RNA polymerase to initiate transcription and additional upstream regulatory cis-elements which influence the transcription of an operably linked coding sequence.

As used herein a "gene" is used to refer to a DNA molecule which includes (1) a coding sequence and (2) associated regulatory regions which promote and regulate the trans-cription of the coding sequence in a suitable host cell. The coding sequence may encode a useful transacript (e.g. antisense RNA) or polyp-cptide produced by translation of the encoded transcript. A gene includes at a minimum, in 5-3 orientation, a promoter region, a coding sequence and a transcription termi. stor. A gene may also include additional regulatory regions which can occur as part of the minimal elements (e.g. leaders or signal peptides within the coding sequence) or as discrete elements (e.g. introns).

As used herein a "chimeric gene" refers to a gene which does not naturally occur wherein at least one component part is heterologous with respect to another component part. As used herein to describe the present invention a "chimeric gene" refers to a gene which includes the promoter of the invention operably linked to a heterologous coding sequence.

As used herein with reference to the relationship between a promoter and a coding sequence, the term "heserologous" is used to refer to a relationship which does not naturally occur. For instance, a coding sequence is considered heterologous with respect to a promoter sequence if it is different from the coding sequence that naturally occur in association with the promoter sequence. This includes modified forms of coding sequences which are naturally associated with a subject promoter. Accordingly, a modified, inhibitor-resistant protox coding sequence is considered to be heterologous with respect to the promoter that is naturally associated with the unmodified, inhibitor-sensitive form of this coding sequence.

As used herein, the term "substantial sequence homology" is used to indicate that a nucleotide sequence (in the case of DNA or RNA) or an armino acid sequence (in the case of a protein or polypeptide) exhibits substantial structural and functional equivalence with another nucleotide or armino acid sequence. Any functional or structural differences between sequences having substantial sequence homology will be de minimis; that is they will not affect the ability of the sequence to function as indicated in the present application. For example, a sequence which has substantial sequence homology with a DNA sequence disclosed to be a plant protox promoter will be able to direct the same level and pattern of expression of an associated DNA sequence as the plant protox promoter. Sequences that have substantial sequence bornology with the sequences disclosed herein are usually variants of the disclosed sequence, such as mutations, but may also be synthetic sequences. Structural differences are considered de minimis if there is a significant amount of sequence overlap or similarity between two or more different sequences or if the different sequences exhibit similar physical characteristics. Such characteristics can include, for example, immunological reactivity, enzyme activity, structural protein integrity, etc.

Two nucleotide sequences may have substantial sequence homology if the sequences have at least 70 percent, more preferably 80 percent and most preferably 90 percent sequence similarity between them. Two amino acid sequences have substantial sequence homology if they have at least 50 percent, preferably 70 percent, and most preferably 90 percent similarity between the artive portions of the polypeptides. In the case of promoter DNA sequences, "substantial sequence homology" also refers to those (regments of a promoter DNA sequence that are able to operate to promote the expression of associated DNA sequences. Such operable fragments of a promoter DNA sequence that are able to operate to promoter DNA sequence may be derived from the promoter DNA sequence, for example, by cleaving the promoter DNA sequence using restriction enzymes, synthesizing in accordance with the sequence of the promoter DNA sequence or may be obtained through the use of PCR technology. Multis et al., Meth. Eurymol., 155:335-350 (1987); Erich (ed.), PCR Technology. Stockton Press (New York 1989).

A promosur DNA sequence is said to be "operably linked" to a second DNA sequence if the two are situated such that the promoter DNA sequence influences the transcription or translation of the second DNA sequence. For example, if the second DNA sequence codes for

.

RESERVED RESPONDE FOLLOWING TO IT.

the production of a protein, the prumoter DNA sequence would be operably linked to the second DNA sequence if the promoter DNA sequence affects the expression of the protein product from the second DNA sequence. For example, in a DNA sequence comprising a promoser DNA sequence physically attached to a coding DNA sequence in the same chimeric construct, the two sequences are likely to be operably linked.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to promoter DNA sequences which are naturally associated with coding sequences for plant protoporphyrinogen oxidase (referred to herein as 10 "protox"; see international application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659 and co-pending provisional application entitled * DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutan's Thereof" filed on the same day as the instant application). These protox promoter sequences have been found to be useful for the expression of a heterologous coding sequence in a plant.

The promoter sequence for the Arabidopsis shaliana protox-1 coding sequence (SEQ · ID No. 1) is provided as SEQ ID No. 13. Isolation of this promoter from a genomic library using the associated coding sequence as a probe is described in Example 1. The promoter sequence for the maize protox-1 coding sequence (SEQ ID No. 5) is provided as SEQ ID No. 14. Isolation of this promoter from a genomic library using the associated coding sequence as a probe is described ın Example 4.

The approach used to isolate the Arabidopsis and maize protox-1 promoters can be used to isolate the premoter sequence from any plant protox gene. Any protox coding sequence which shares sufficient homology to hybridize to the protox coding sequence associated with the promoter of interest may be used as a probe in this approach. Since the respective protox-1 and 25 protox-2 coding sequences from all plants are contemplated to share this requisite degree of homology, the choice of which protox coding sequence is used as a probe is not considered entical. However, for optimal hybridization results it is preferable to use the most closely related protox coding sequence. Most preferably, the coding sequence used as a probe is from the same

KACKSCOCK PARTY CAN VE TOO IN

plant species as the protox promoter of interest and is the coding sequence naturally associated with the promoter.

The plant protox promoter of the present invention includes the Arabidopsis protox-1 promoter sequence set forth in SEQ Id No. 13 as well as corresponding protox-1 promoter sequences available from other plant species as indicated above. The present invention also includes functional fragments of these DNA sequences which retain the ability to regulate expression of an operably linked coding sequence in the same manner as the exemplified protox promoter sequence. Such functional fragments may be identified through deletion snalyses or other standard techniques used in the art to identify protox promoter activity (see. e.g. pages 546-10 549 of "Genes IV", ed. by Lewin, Oxford Univ. Press (1990)). The present invention also includes DNA sequences having substantial sequence homology with the protox promoters available from plant genes which confer an equivalent level and pattern of expression upon an operably linked sequence. Such promoter sequence; may be obtained through modification of the protox promoters isolated from plant genes and are considered functionally equivalent derivatives of the plant protox promoters.

As illustrated in the examples below, the DNA sequences, vectors and transgenic plants of the present invention comprise a promoter sequence derived from a plant protox gene. The protox promoter DNA sequences are preferably inked operably to a coding DNA sequence, for example a DNA sequence which is transcribed into a useful RNA transcript such as an antisense transcript, or a coding sequence which is ultimately expressed in the production of a useful protein product.

In a preferred embodiment, the protox promoter is used to direct the expression of a modified herbicide target enzyme which is resistant to herbicides at levels that inhibit the romaponding unmodified version of the enzyme. Such modified herbicide-resistant enzymes include herbicide-resistant forms of imidazoleglycerol phosphate dehymuse (IGPD; see WO 9426909 published Nov. 24, 1994), EPSP rynthase (see U.S. Pat. Nos. 4,535,060; 4,769,061; 4,940,835 and EP 550,633), glutamine symhetase (GS; see U.S. Patent Nos. 4,975,374), nettyl coenzyme A carboxylaset ACCase; see U.S. Patent No. 5,162,6021, and actiolactate synthase (see U.S. Patent Nos. 4,761,373; 5,304,732; 5,331,107; 5,013,659; 5,141,870; and 5,378,824).

In a most preferred embodiment, the protox promoter is used to direct the expression of a modified protos enzyme which is resistant to protox inhibitors as illustrated in Examples 2-3 (see also International application no. PCT/IB95/00452 filed June 8, 1995, published Dec. 21, 1995 as WO 95/34659 whose relevant parts are herein incorporated by reference; see also co-pending application entitled * DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof* filed on the same day as the 'estant application).

The transgenic plants of the present invention may be transformed by any method of transformation known in the art. These methods include, for instance, transformation by airect infection or co-cultivation of plants, plant tissue or cells with Agrobacterium tume/facient, Horsch 10. et al., Science, 225: 1229 (1985); Marton, "Cell Culture and Sorn Lie Cell Genetic of Plants", vol., pp. 514-521 (1984); direct gene transfer into protoplasts; Paszkowski et al., EMBO J. 12: 2717 (1984); Locre et al., Mol. Gen. & Genet. 1199:178 (1985); Fromme et al., Nature 319-719 (1986); microprojectile bombardment, Klein et al., Bio/Technology, 6:559-563 (1988); injection in.n. protoplasts cultured cells and tissues, Reich et al., Bio/Technology, 6:1001-1004 (1986); or injection into menistematic tissues of seedlings and plants as described by De La Pena et al., Nature, 325:274-276 (1987); Hooykaas-Van Slogteren et al., Nature, 311:763-764 (1984);

Grimsley et al., Bio/Technology, 6:185 (1988); and Grimsley et al., Nature, 325:177 (1988).
The invention is illustrated in more detail by the following examples, without implying any restriction to what is described therein.

EXAMPLES

EXAMPLE 1: Isolation of the Arabidopsis thaliana Protox-1 promoter sequence

A Lambda Zap II genomic DNA library prepared from Arabidopsis thaliana (Columbia,

5 whole plant) was purchased from Stratagene. Approximately 125,000 phage were plated at a
density of 25,000 pfu (plaque forming units) per 15 cm Petri dish and duplicase lifts were made
onto Colony/Plaque Screen membranes (NEN Dupont). The plaque lifts were probed with the
Arabidopsis Protox-1 cDNA (SEQ ID No. 1 labeled with 32P-dCTP by the random priming
method (Life Technologies). Hybridization and wash conditions were at 65° C as described in

10 Church and Gilbert, Proc. Natl. Acad. Sci. USA 81: 1991-1995 (1984). Positively hybridizing
plaques were purified and in vivo excised into pBluescript plasmids. Sequence from the genomic
DNA inserts was determined by the chain termination method using didoxy terminators labeled
with fluorescent dyes (Applied Biosystems, Inc.). One clone, AraPTIPro, was determined to
contain 580 bp of Arabidopsis sequence upstream from the initiating methonine (ATG) of the

15 Protox-I protein coding sequence. This clone also contains coding sequence and introns that
extend to bp 1241 of the Protox-I cDNA sequence. The 580 bp 5 noncoding fragment is the
putative Arabidopsis Protox-I promoter, and the sequence is set forth in SEQ ID No. 13.

AraPTIPro was deposited December 14, 1995, as pWDC-11 (NRRL #82-21515)

EXAMPLE 2: Construction of plant transformation vectors expressing altered Protox-1 genes behind the native Arabidopsis Protox-1 promoter

A full-length cDNA of the appropriate altered Arabidopsis Protox-1 cDNA is isolated as
25 an EcoRI-Xhol partial digest fragment and cloned into the plant expression vector
pCGN1761ENX (see Example 9 of International application no. PCT/IB95/00452 filed June 8,
1995, published Dec. 21, 1995 as WO 95/34659). This plasmid is digested with Neol and BamHI
to produce a fragment comprised of the complete Protox-1 cDNA plus a transcription terminator
from the 3' untranslated sequence of the tril gene of Agrobacterium tumefaciens. The
20 AraPT [Pro plasmid described above is digested with Neol and BamHI to produce a fragment
comprised of pBluescript and the 580 bp putative Arabidopsis Protox-1 promoter. Ligation of
these two fragments produces a fusion of the litered protox cDNA to the native private promoter.

The expression easests containing the Protox-1 promoter/Protox-1 eDNA/tml terminator fusion is excised by digestion with Kpnl and cloned into the binary vector pCIB200. The binary plasmid is transformed by electroporation into Agrobacterium and then into Arabidopsis using the vacuum infiltration method (Bechtold et al. C.R. Acad. Sci. Paris 316: 1194-1199 (1993)).

Transformants expressing altered protox genes are selected on kanamycin or on various concentrations of protox inhibiting herbicide.

EXAMPLE 3: Production of herbicide tolerant plants by expression of a native Protox-1 promoter/altered Protox-1 fusion

Using the procedure described above, an Arabidopsis Protox-1 cDNA containing a TAC to ATG (Tyrosine to Methionine) change at nucleotides (306-1308 in the Protox-I sequence (SEO ID No.1) was fused to the native Protox-1 promoter fragment and transformed into 15 Arabidoosis thaliana. This altered Protox-1 enzyme (AraC-2Met) has been shown to be >10 fold more tolerant to various protox-inhibiting herbicides than the naturally occurring enzyme when tested in a bacterial expression system (see Example 5 of copending U.S. application entitled " DNA Molecules Encoding Plant Protoporphyrinogen Oxidase and Inhibitor Resistant Mutants Thereof filed on the same day as the instant application). Seed from the vacuum ir filtrated plants was collected and plated on a range (10.0nM-1.0uM) of a protox inhibitory aryluracil herbicide of formula XVII. Multiple experiments with wild type Arabidopsis have shown that a 10.0nM concentration of this compound is sufficient to prevent normal seedling germination. Transgenic seeds expressing the AraC-2Met altered enzyme fused to the native Protox-1 promoter produced normal Arabidopsis seedlings at herbicide concentrations up to 500nM, indicating at least 50-fold higher herbicide tolerance when compared to wild-type Arabidopsis. This promoter/altered protox enzyme fusion therefore functions as an effective selectable marker for plant transformation. Several of the plants that germinated on 100.0nM of protox-inhibiting herbicide were transplanted to soil, grown 2-3 weeks, and tested in a spray assay with various concentrations of the protox-inhibiting herbicide. When compared to empty vector control transformants, the AraPT1Pro/AraC-2Met transgenies were >10fold more tolerant to the herbicide spray.

AMPLE 4: Isolation of a Maine Protox-1 promoter sequence

A Zea Mays (Missouri 17 inbred, eti lated seedlings) genomic DNA library in the Lambda FDX II vector was purchased from Stratagene. Approximately 250,000 pfu of the iPrary was plated at a density of 50,000 phage per 15 cm plate and duplicate lifts were made onto 5 Colony/Plaque screen membranes (NEN Dupont). The plaque lifts were probed with the maize Protox-1 cDNA labeled with 32P-dCTP by the random priming method (Life Technologies). Hybridization and wash conditions were at 65o C as described in Church and Gilbert, Proc. Natl. Acad. Sci. USA 81: 1991-1995 (1984). Lambda phage DNA was isolated from three positively hybridizing phage using the Wizard Lambda Preps DNA Purification System (Promega).

10 Analysis by restriction digest, hybridization patterns, and DNA sequence analysis identified a lambda clone containing approximately 3.5 kt of maize genomic DNA located 5' to the maize Protox-1 coding sequence previously isolated as a cDNA clone. This fragment is contemplated to include the maize Protox-1 promoter. The sequence of this fragment is set forth in SEQ ID NO 14. From nucleotide 1 to 3532, this sequence is comprised of 5' noncoding sequence. From nucleotide 1 to 3532 this sequence is comprised of 5' noncoding sequence. From nucleotide 1 to 3532 this sequence is comprised of 5' noncoding sequence. From

A plasmid containing the sequence of SEQ ID NO. 14 fused to the remainder of the mainte Protox-I coding sequence was deposited March 19, 1996 as pWDC-14 (NRRL 8B-21546).

EXAMPLE 5: Construction of Plant Transformation Vectors

Numerous transformation vectors are available for plant transformation, and the promoters and chimeric genes of this invention can be used in conjunction with any such vectors. The selection of vector for use will depend upon the preferred transformation technique and the target species for transformation. For certain target species, different antibiotic or herbicide selection markers may be preferred. Selection markers used routinely in transformation include the aptil gene which confers resistance to kanamycin and related antibiotics (Messing & Vierra, Gene 19: 259-268 (1982); Bevan et al., Nature 304:184-187 (1983)), the bar gene which confers resistance to the herbicide phosphinothricin (White et al., Nucl Acids Res 18: 1062 (1990).

Spencer et al., Theor Appl Genet 79: 625-631(1990)), the Aph gene which confers resistance to

the antibiotic hygromycin (Blochinger & Diggelmann, Mol Cell Biol 4: 2929-2931), and the dhifgene, which confers resistance to methorrexaue (Bouroulis et al., EMBO J. 2(7): 1099-1104 (1983)).

5 (1) Construction of Vectors Suitable for Agrobacterium Transformation
Many vectors are available for transformation using Agrobacterium nonefaciens. These typically
carry at least one T-DNA border sequence and include vectors such as pBIN19 (Bevan, Nucl.
Acids Res. (1984)) and pXYZ. Below the construction of two typical vectors is described.

10 Construction of pCTB200 and pCTB2001

The binary vectors pCIB200 and pCIB2001 are used for the construction of recombinant vectors for use with Agrobacterium and was constructed in the following manner. pTIS75kan was created by Narl digestion of pTJS75 (Schmidhauser & Helinski, J Bacteriol. 164: 446-455 (1985)) allowing excision of the tetracycline-resistance gene, followed by insertion of an Acci fragment from pUC4K carrying an NPTII (Messing & Vierra, Gene 19: 259-268 (1982); Bevan et al., Nature 304; 184-137 (1983); McBride et al., Plant Molecular Biology 14: 266-276 (1990)). Xhol linkers were ligated to the EcoRV fragment of pCIB7 which contains the left and right T-DNA borders, a plant selectable nos/nptll chimeric gene and the pUC polylinker (Rothstein et al., Gene 53: 153-161 (1987)), and the Xhol-digested fragment was cloned into Sall-digested pTJS75kan to create pCIB200 (see also EP 0 332 104, example 19 [1338]). pCIB200 contains the following unique polylinker restriction sites: EcoRl, Sstl, Kpnl, Bglll, Xbal, and Sall. pCIB2001 is a derivative of pCIB200 which created by the insertion into the polylinker of additional restriction sites. Unique restriction sites in the polylinker of pCIB2001 are EcoRI, Sstl, Konl. Belll. Xbal. Sall. Miul, Bell, Avril, Apal, Hpal, and Stul. pCIB2001, in addition to 25 containing these unique restriction sites also has plant and bacterial kanamycin selection, left and right T-DNA borders for Agrabacterium-mediated transformation, the RK2-derived trfA function

25

for mobilization between E. coli and other hosts, and the OriT and OriV functions also from RK2. The pCIB2001 polylinker is suitable for the cloning of plant expression casacttes containing their own regulatory signals.

Construction of oCIB 10 and Hygromycin Selection Derivatives thereof

The binary vector pCIB10 contains a gene encoding kanamyoin resistance for selection in plants, T-DNA right and left border sequences and incorporates sequences from the wide hostrange plasmid pRK252 allowing it to replicate in both E. coli and Agrobacterium. Its construction is described by Rothstein et al., Gene 53: 153-161 (1987). Various derivatives of pCIB10 have been constructed which incorporate the gene for hygromycin B phosphotransferase described by Gritz et al., Gene 25: 179-188 (1983)). These derivatives enable selection of transgenic plant cells on hygromycin only (pCIB743), or hygromycin and kanamycin (pCIB715, pCTB717).

(2) Construction of Vectors Suitable for non-Agrobacterium Transformation.

Transformation without the use of Agrobacterium tumefaciens circumvents the requirement for T-DNA sequences in the chosen transformation vector and consequently vectors lacking these sequence: can be utilized in addition to vectors such as the ones described above which contain T-DNA sequences. Transformation techniques which do not rely on Aprobacterium include transformation via particle bombardment, protopiast uptake (e.e. PEG and 20 electroporation) and microinjection. The choice of vector depends largely on the preferred selection for the species being transformed. Below, the construction of some typical vectors is described.

Construction of pCIB3064

pCIB3064 is a pUC-derived vector suitable for direct gene transfer techniques in combination with selection by the herbicide basta (or phosphinothricin). The plasmid pCIB246 comprises the CaMV 35S promoter in operational fusion to the E. c. II GUS gene and the CaMV 35S transcriptional terminator and is described in the PCT published application WO 93/07278. The 35S promoter of this vector contains two ATG sequences 5' of the start site. These sites were mutated using standard PCR techniques in such a way as to remove the ATGs and generate 5 the restriction sites Stpl and Pvall. The new restriction sites were 96 and 37 bp away from the unique Sall site and 101 and 42 bp away from the actual start site. The resultant derivative of pCIB246 was designated pCIB3025. The GUS gene was then excised from pCIB3025 by digestion with Sall and Sacl, the termini rendered blunt and religated to generate plasmid pCIB3060. The plasmid pJIT82 was obtained from the John Innes Centre, Norwich and the 400 bp Small fragment containing the bar gene from Streptomyces viridochromogenes was excisted and inserted into the Hpal site of pCIB3060 (Thompson et al. EMBO J 5: 2519-2523 (1987)). This generated pCIB3064 which comprises the bar gene under the control of the CaMV 35S promoter and terminator for herbicide selection, a gene fro ampicillin resistance (for selection in E. coli) and a polylinker with the unique sites Sphl. Pstl. HindIII, and BamHI. This vector is untable for the cloning of plant expression eassettes containing their own regulatory signals.

Construction of pSOG19 and pSOG35

pSOG35 is a transformation vector which utilizes the *E. coli* gene dihydrofolate reductate.

(DHFR) as a selectable marker conferring resistance to methortraate. PCR was used to amplify
20 the 35S promoter (-800 bp), intron 6 from the maize Adh1 gene (-550 bp) and 18 bp of the GUS
untranslated leader sequence from pSOG10. A 250 bp fragment encoding the *E. coli*dihydrofolate reductate type II gene was also amplified by PCR and these two PCR fragments
were assembled with a Saci-PssI fragment from pBI221 (Clontech) which comprised the pUC19
vector backbone and the nopaline synthase terminator. Assembly of these fragments generated
pSOG19 which contains the 35S promoter in fusion with the intron 6 sequence, the GUS leader,
the DHFR gene and the nopaline synthase terminator. Replacement of the GUS leader in

pSOG19 with the leader sequence from Maize Chlorotic Mottle Virus (MCMV) generated the vector pSOG35. pSOG19 and pSOG35 carry the pUC gene for ampicillin resistance and have HindIII, Sphl, Pstl and EcoR' sites available for the cloning of foreign sequences such as chimeric gene sequences containing a plant protox promoter.

EXAMPLE 6: Construction of Chimeric Genes/Plant Expression Camettes

Coding sequences intended for expression in transgenie plants under the control of a plant protox promoter may be assembled in expression cassenes behind a suitable protox promoter and upstream of a suitable transcription terminator. The resulting chimeric genes can then be easily transferred to the plant transformation vectors described above in Example 19.

Protox Promoter Selection

In accordance with the present invention, the chimeric gene will contain a plant protox promoter. The selection of the specific protox promoter used in the chimeric gene is primarily up to the individual researcher, although generally it will be preferable to use a protox promoter from a plant species closely related to, or most preferably identical, to the species intended to contain the resulting chimeric gene. For example, if the chimeric gene is intended to be contained in a maize plant it would be preferable to use a protox promoter from a monocotyledenous plant and most preferable to use a maize protox promoter.

Transcriptional Terminators

A variety of transcriptional terminators are available for use in expression cassettes. These are responsible for the termination of transcription beyond the transgene and its correct polyadenylation. Appropriate transcriptional terminators are those which are known to function in plants and include the CaMV 35S terminator, the *tml* terminator, the nopaline synthase terminator, the pea *rbc5* E9 terminator, as well as terminators naturally associated with the plant protos gene (i.e. "protox terminators"). These can be used in both monocotyledons and dicotyledons.

Servences for the Enhancement or Regulation of Expression

Numerous sequences have been found to enhance gene expression from within the transcriptional unit and these sequences can be used in conjunction with the genes of this invention to increase their expression in transgenic plants.

Various intron sequences have been shown to enhance expression, particularly in monocotyledonous cells. For example, the introns of the maize Adh! gene have been found to significantly enhance the expression of the wild-type gene under its cognete promoter when introduced into maize cells. Intron I was found to be particularly effective and enhanced expression in fusion constructs with the chlorumphenical acetyltransferase gene (Callis et al., Genes Develop. 1: 1183-1200 (1987)). In the same experimental system, the introd from the maize bronze I gene had a similar effect in enhancing expression (Callis et al., supra). Intron sequences have been routinely incorporated into plant transformation vectors, typically within the non-translated leader.

A number of non-translated leader sequences derived from viruses are also known to 15 enhance expression, and these are particularly effective in dicotyledonous cells. Specifically, leader sequences from Tobaccu Mosaic Virus (TMV, the "W-sequence"), Maize Chlorotic Mottle Virus (MCMV), and Alfalfa Mosaic Virus (AMV) have been shown to be effective in enhancing expression (e.g. Callie et al. Nucl. Acids Res. 15: 8693-8711 (1987); Skuzeski et al. Plant Molec. Biol. 15: 65-79 (1990))

Targeting of the Gene Product Within the Cell

Various mechanisms for targeting gene products are known to exist in plants and the sequences controlling the functioning of these mechanisms have been characterized in some detail. For example, the targeting of gene products to the chloroplast is controlled by a signal sequence 25 found at the amino terminal end of various proteins and which is cleaved during chloroplast import yielding the mature protein (e.g. Comai et al. I. Biol. Chem. 263: 15104-15109 (1988)). These signal sequences can be fused to heterologous gene products to effect the import of heterologous products into the chloroplast (van den Broeck et al, Nature 313: 358-363 (1985)). DNA encoding for appropriate signal sequences can be isolated from the 5' end of the cDNAs

encoding the RUBISCO protein, the CAB protein, the EPSP synthase enzyme, the GS2 protein and many other proteins which are known to be chloroplast localized.

Other gene products are localized to other organelles such as the mitochondrion and the peroxisome (e.g. Unger et al. Plans Molec. Biol. 13: 411-418 (1989)). The cDNAs encoding 5 these products can also be manipulated to effect the targeting of heterologous gene products to these organelies. Examples of such sequences are the nuclear-encoded ATPases and specific asparate amino transferase isoforms for mitochondria. Targeting to cellular protein bodies has been described by Rogers et al., Proc. Natl. Acad. Sci. USA 82: 6512-6516 (1985)).

In addition sequences have been characterized which cause the targeting of gene products to other cell compartments. Amino terminal sequences are responsible for targeting to the ER, the apoptast, and extracellular secretion from alcurone cells (Koehler & Ho, Plant Cell 2: 769-783 (1990)). Additionally, amino terminal sequences in conjunction with carboxy terminal sequences are responsible for vacuolar targeting of gene products (Shinshi et al., Plant Molec. Biol. 14: 357-368 (1990)).

By the fusion of the appropriate targeting sequences described above to transgene sequences of interest it is possible to direct the transgene product to any organelle or cell compartment. For chloroplast targeting, for example, the chloroplast signal sequence from the RUBISCO gene, the CAB gene, the EPSP synthate gene, or the GS2 gene is fused in frame to the amino terminal ATG of the transgene. The signal sequence selected should include the known cleavage site and the fusion constructed should take into account any amino acids after the cleavage site which are required for cleavage. In some cases this requirement may be fulfilled by the addition of a small number of amino acids between the cleavage site and the transgent ATO or alternatively replacement of some amino acids within the transgene sequence. Fusions constructed for chloroplast import can be tested for efficacy of chloroplast uptake by in vitro 25 translation of in vitro transcribed constructions followed by in vitro chloroplast uptake using techniques described by (Bartlett et al. In: Edelmann et al. (Eds.) Methods in Chloroplass Molecular Biology, Elsevier, pp 1081-1091 (1982); Wasmann et al. Mol. Gen. Genet. 205: 446-453 (1986)). These construction techniques are well known in the art and are equally applicable to mitochondria and peroxisomes. The choice of targeting which may be required for expression

If the transgenes will depend on the cellular localization of the precursor required as the starting point for a given pathway. This will usually be cytosolic or chloroplastic, although it may is some cases be mitochondrial or peroxisomal. The products of transgene expression will not normally require targeting to the ER, the apoplast or the vacuole.

The above described mechanisms for cellular targeting can be utilized in conjunction with plant protox promoters so as to effect a specific cell targeting goal under the transcriptional regulation of a promoter which has an expression pottern different to that of the promoter from which the targeting signal derives.

10 EXAMPLE 7: Transformation of Dicotyledous

Transformation techniques for dicotyledons are well known in the art and include Agrobacterium-based techniques and techniques which do not require Agrobacterium. Non-Agrobacterium techniques involve the uptake of exogenous genetic material directly by protoplasts or cells. This can be accomplished by PEO or electroporation mediated uptake, particle bombardment-mediated delivery, or microinjection. Examples of these techniques are described by Pastkowski et al., EMBO J 3: 2717-2722 (1984), Potrykus et al., Mol. Gen. Gene. 199: 169-177 (1985). Reich et al., Biotechnology 4: 1001-1004 (1986), and Klein et al., Nature 327: 70-73 (1987). In each case the transformed cells are regenerated to whole plants using standard techniques known in the art.

Agrobacterium-mediated transformation is a preferred technique for transformation of deoxyledons because of its high efficiency of transformation and its broad utility with many different species. The many crop species which are routinely transformable by Agrobacterium include tobacco, tomato, sunflower, cotton, oilseed rape, potato, soybean, alfalfa and poplar (EP 0 317 511 (cotton), EP 0 249 432 (tomato, to Calgene), WO 87/07299 (Brassica, to Calgene), US 4.798.855 (coolar).

Transformation of the target plant species by recombinant Agrobacterium usually involves co-cultivation of the Agrobacterium with explants from the plant and follows protocols well known in the art. Transformed tissue is regenerated on selectable medium carrying the antibiotic or herbicide resistance marker present between the binary plasmid T-DNA borders.

EXAMPLE 8: Transformation of Monocotyledons

Transformation of most monocotyledon species has now also become routine. Preferred techniques include direct gene transfer into protoplasts using PEG or electroporation techniques, and particle bombardment into callus tissue. Transformations can be undertaken with a single 5 DNA species or multiple DNA species (i.e. co-transformation and both these techniques are suitable for use with this invention. Co-transformation may have the advantage of avoiding complex vector construction and of generating transgenic plants with unlinked loc. I for the gene of interest and the selectable marker, enabling the removal of the selectable marker in subsequent generations, should this be regarded desirable. However, a disadvantage of the use of co-transformation is the less than 100% frequency with which separate DNA species are integrated into the genome (Schocher et al. Biotechnology 4: 1093-1096 (1986)).

Patent Applications EP 0 292 435 (to Ciba-Geigy), EP 0 392 225 (to Ciba-Geigy), WO 93/07278 (to Ciba-Geigy) and U.S. Patent No. 5,350,689 (to Ciba-Geigy) describe techniques for the preparation of callus and protoplasts from an elite inbred line of maize, transformation of 15 protoplasts using PEG or electroporation, and the regeneration of maize plants from transformed protoplasts. Gordon-Kamm et al., Plant Cell 2: 603-618 (1990)) and Fromm et al., Biotechnology 8: 833-839 (1990)) have published techniques for transformation of A188-derived maize line using particle bombardment. Furthermore, application WO 93/07278 (to Ciba-Geigy) and Koziel et al., Biotechnology 11: 194-200 (1993)) describe techniques for the transformation of clitte inbred lines of maize by particle bombardment. This technique utilizes immature maize embryos of 1.5-2.5 mm length excised from a maize ear 14-15 days after pollination and a PDS-1000He Biolistics device for bombardment.

Transformation of rice can also be undertaken by direct gene transfer techniques utilizing protoplasts or particle bomnardment. Protoplast-mediated transformation has been described for 25 Japonica-types and Indica-types (Zhang et al., Plant Cell Rep 2: 379-384 (1988); Shimamoto et al. Nature 338: 274-277 (1989); Datta et al. Biotechnology 8: 735-740 (1990)). Both types are also routinely transformable using particle bombardment (Christou et al. Biotechnology 9: 957-962 (1991)).

Patent Application EP 0 332 581 (to Ciba-Geigy) describes techniques for the generation, transformation and regeneration of Pooldeac protoplasts. These techniques allow the transformation of Dactylis and wheat. Furthermore, wheat in asformation was been described by Vasil et al., Biosechnology 10: 667-674 (1992)) using particle bombardment into cells of type C 5 long-term regenerable callus, and also by Vasil et al., Biotechnology 11: 1553-1558 (1993)) and Weeks et al., Plant Physiol. 102: 1077-1084 (1993) using particle bombardment of immanare embryos and immature embryo-derived callus. A preferred technique for wheat transformation, however, involves the transformation of wheat by particle bombardment of immature embryos and includes either a high sucrose or a high maltose step prior to gene delivery. Prior to bombardment, any number of embryos (0.75-1 mm in length) are plated onto MS medium with 3% sucrose (Murashige & Skoog, Physiologia Plantarian 15: 473-497 (1962)) and 3 mg/l 2.4-D for induction of somatic embryos which is allowed to proceed in the dark. On the chosen day of bombardment, embryos are removed from the induction medium and placed onto the osmoticum (i.e. induction medium with sucrose or maltose added at the desired concentration, typically 15%). The embryos are allowed to plasmolyze for 2-3 h and are then bombarded. Twenty embryus per target plate is typical, although not critical. An appropriate gene-carrying plasmid (such as pCIB3064 or pSG35) is precipitated onto micrometer size gold particles using standard procedures. Each plate of embryos is shot with the DuPont Biolistics: helium device using a burst pressure of -1000 psi using a standard 80 mesh screen. After bombardment, the embryos are placed back into the dark to recover for about 24 h (still on osmoticum). After 24 hrs, the embryos are removed from the osmoticum and placed back onto induction medium where they stay for about a month before regeneration. Approximately one month later the embryo explants with out eloping embryogenic callus are transferred to regeneration medium (MS + 1 mg/liter NAA, 5 mg/liter GA), further containing the appropriate selection agent (10 mg/l basta in the case 25 of pCIB3064 and 2 mg/l methotresate in the case of pSOG35). After approximately one month, developed shoots are transferred to larger sterile containers known as "GA7s" which contained half-strength MS, 2% sucrose, and the same concentration of selection agent. Patent application 08/147,161 describes methods for wheat transformation and is hereby incorporated by reference.

55

While the present invention has been described with reference to specif smbodiments thereof, it will be appreciated that numerous variations, modifications, and encodiments are possible, and accordingly, all such variations, modifications and embodiments are to be regarded as being within the spirit and scope of the present invention.

SECTIONCE LISTING

```
(1) GENERAL INFORMATION:
             (i) APPLICANT: Ward, Eric R
Volrath, Sandra
            (ii) TITLE OF INVENTION: PROMOTERS FROM PLANT PROTOPORPHYRINGGEN OXIDASE GENES
15
           (iii) NUMBER OF SEQUENCES: 14
            (iv) CORRESPONDENCE ADDRESS:
                     (A) ADDRESSEE: Cibe-Gaigy Corporation / Patent Dept.
(B) STREET: 540 White Plains Rd.
                     (C) CITY: TEFTYLOWN
                     (D) STATE: NY
                     (E) COUNTRY: USA
                     (P) ZIP: 10591-9005
             (V) COMPUTER READABLE FORM:
                     (A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: ISM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
70
                     (D) SOFTWARE: Patentin Release $1.0, Version $1.25
            (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US THA

(B) FILING DATE:
35
                     (C) CLASSIFICATION:
           (vii) PRIOR APPLICATION DATA
                     (A) APPLICATION NUMBER: US 08/261,198
(B) FILING DATE: 16-JUN-94
          (viii) ATTORNEY/AGENT INFORMATION:
                     (A) NAME: Elmer, James Scott
(B) REGISTRATION NUMBER: 36,129
(C) REFERENCE/DOCKET NUMBER: CGC 1846/prov2
```

(2) INFORMATION FOR SEQ ID NO:1: (1) SEQUENCE CHARACTERISTICS.

(a) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 919-541-8616 (B) TELEPAX: 919-541-8689

(A) LENGTH: 1719 Dage pairs

```
(B) TYPE: nucleic acid
(C) STRANDELNESS: single
(D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: chall
        (iii) HYPOTHETICAL: NO
         (1V) ANTI-SENSE: NO
        (ix) PEATURE:
                    (A) NAME/KEY: CDS
(B) LOCATION: 31..1644
                     (D) OTHER INFORMATION: /note= "Arabidopsis protox=1 cDMA: sequence from pMDC-2"
          (mi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
  TGACAAAATT CEGAATTCTC TGCGATTTCC ATG GAG TTA TCT CTT CTC CGT CCG
Het Glu Leu Ser Leu Leu Arg Pro
  ACG ACT CAA TCG CTT CTT CCG TCG TTT TCG AAG CCC AAT CTC CGA TTA
Thr Thr Gln Ser Leu Leu Pro Ser Phe Ser Lys Pro Asn Leu Arg Leu
15
  AMT OTT TAT AME CUT CTT AGA CTC CGT TUT TCA GTG GCC GGT GGA CCA
Amn Val Tyr Lys Pro Leu Arg Leu Arg Cys Ser Val Als Gly Gly Pro
25 30 35 40
  ACC GTC GGA TCT TCA AAA ATC GAA GGC GGA GGC ACC ACC ATC ACC TTC Val Gly Ser Ser Lys Ile Glu Gly Gly Gly Gly Thr Thr Ile Thr
  ACC GAT TGT GTG ATT GTC GGC GGA GGT ATT AGT GGT CTT TGC ATC GCT Thr Amp Cys Vel Ile Val Gly Gly Ile Ser Gly Leu Cys Ile Ale  
  CAG GCG CTT GCT ACT AAG CAT CCT GAT GCT GCT GCG AAT TTA ATT GTG
Gln Als Leu Als Thr Lys His Pro Amp Als Als Pro Am Leu Ile Val
75
  ACC GAG GCT AAG GAT CGT GTT GGA GGC AAG ATT ATC ACT GGT GAA GGG
Thr Glu Ale Lye Aep Arp Vel Gly Gly Aen Ile Ile Thr Arg Glu Glu
90
AAT GGT THE CTC TGG GAA GAA GGT CCC AAT AGT THE CAA GUG TCT GAT
Ann Gly Phe Leu Trp Glu Glu Gly Pro Aan Ser Phe Gln Pro Ser App
105 115 126
  CCT FIG CTC ACT ATC GTG GTA GAT ACT GCT TTG AAG GAT GAT TTG GTG
Pro Not Leu Thr Het Val Val Asp Ser Gly Leu Lys Asp Asp Leu Vel
125
                                                                                                                                    438
  THE GGA GAT CCT ACT GGG CCA AGG TTT GTG TT. TGG AAT GGG AAA TTG
Leu Gly Aap Pro Thr Ale Pro Arg Phe Val Leu TTP Amm Gly Lys Leu
140 140 145
  AGG CCG GTT CCA TCC AAG CTA ACA GAC TTA CCG TTC TTT GAT TTG ATG
Arg Pro Val Pro Ser Lym Leu Thr Amp Leu Pro Phe Phe Amp Leu Hec
155
```

5	Ser	ATT 11e 170	67A 664	GGC Cly	lys	ATT Ile	AGA AFT 175	GCT Ala	GIY	TTT Phe	GIY	GCA Ala 180	CTT Lou	Gly Gly	ATT 11e	CGA Arg	582
,	ccc	TCA Ser	Pro	CCA PTO	ejà egi	CGT Arg 190	GAA Glu	€Ju	TCT Ser	UTC Val	GAG Glu 195	GJ/I	TTT	OTA Val	CGG Arg	Arg 200	630
10	AAC	CTC Leu	Gly	CAT App	GAG Glu 205	GTT Val	TT! Phe	Glu	AFG	CTG Lau 210	ATT Ile	GAA Glu	Pro	Phe	Cya Cya 215	TCA Ser	678
15	GCT	GPT Val	TAT Tyr	GCT Ala 220	Gly	gat Asp	CCT Pro	TCA Ser	AAA Lys 325	CTG	AGC Ser	ATG Het	AAA Lyw	QCA Ala 230	GCG Ale	TTT Phe	726
20	CIY	AAG Lys	GTT Val 235	TEP	ara Lys	CTA Leu	GAG Glu	ς G 24	AAT Aan	eja Ges	GLY	AGC Ser	ATA 11e 245	ATA Ile	Gly	GCT Gly	774
	ACT The	TTT Phe 250	AAG Lys	GCA Ala	ATT	CAG Gln	GAG Glu 255	agg Azg	AAA Lye	Yan Yan	GCT Ala	CCC P×o 260	AAC Lys	GCA Ala	G) u	CGA ATY	822
25	GAC Asp 265	PTO	Arg	ETG Lesu	CCA PTO	AAA Lys 270	Pro	CAG Gln	GCC	G) n	AEA Thr 275	Val	CJ A COL	TCT Ser	TTC Phe	AGG Arg 280	870
30 ;	AAG Lys	CJA CCY	Lau	CGA Arg	ATG Nec 285	TTG Leu	CCA PTO	GAA Glu	YT# CCY	ATA Ile 250	TCT Ser	GCA Ala	YLA	Leu	GC7 Gly 295	AGC Ser	918
35	AAA Lys	GTT VAl	AAG Lye	TTG Leu 300	TCT Ser	TGG TEP	AAG Lys	CTC Leu	TCA Ser 305	CJA CCL	ATC 11e	ACT Thr	AAG Lys	CTG Leu 310	GAG G1u	AGC Ser	966
40	GGA G1y	GGA Gly	TAC TYT 315	AAC ABN	TTA Leu	ACA Thr	TAT Tyr	GAG Glu 320	ACT Thr	CCA PFO	gat Asp	GCT Gly	TTA Lou 325	GTT Val	TCC Ser	Val	1014
	CAG Gln	AGC Ser 330	lys	AGT Ser	GTT Val	GTA Val	ATG Met 335	ACG Thr	GTG Val	CCA Pro	TCT Ser	CAT Hi= 340	GIT Val	GCA Ala	ACT Ser	G) y	1062
45	CTC Leu 345	TIG Leu	Arg	CCT Pro	CTT Leu	Ser 350	GAA	TCT Ser	GCT Ala	ery ecy	AAT Aen 355	CCA Ala	CTC Leu	TCA Ser	Lys	CTA Leu 360	1110
50 ,	TAT	TAC Tyr	CCA Pro	CCA Pro	GTT Val 365	GCA Ala	GCA Ala	CTA VA1	TCT Ser	ATC Ile 370	TCG Ser	TAC Tyr	PY0	Lys	GAA Glu 375	GCA Ala	1158
55	ATC 11e	CGA ATG	ACA Thr	GAA Glu 380	TGT Cys	TTG Leu	ATA Ile	GAT Amp	GGT G1y 385	C) n CYY	CTA Leu	Lys	Gly	711 Phe 390	GJA GGC	Gln Gln	1306
60	Leu	CAT His	CCA Pro 195	VLA CCC	ACG Thr	G) n	GLY	GPT Val 400	GAA Glu	AÇA Thr	TTA Lau	GJ A GGY	ACT Thr 405	ATC Ile	TAC Tyr	AGC Ser	1254
	TCC	TCA	cre	777	CCA	AAT	CGC	GCA	ccs	ccc	GGA	AGA	ATT	TIG	CTG	TTG	1302

	1												•				
		410					415					420					
5	AAC Amn 425	TAC Tyt	ATT Ile	e7A GGC	27. 23.0	TCT Ser 430	ACA The	AAC Aan	ACC The	gly gly	ATT Ile 435	Lau	TCC Ser	AAG Lys	TCT Ser	GAA G) u 440	1350
	CIY	ejn eye	TTA Lau	GTG V41	GAA G1u 445	W) W	Val	GAC Asp	AGA ATG	GAT ASD 450	TTG	AGG Arg	AAA Lys	ATG Met	CTA Leu 455	ATT Ile	1398
10	AAG Lye	CCT Pro	AAT Aan	TCG Ser 460	Thr	GAT Asp	CCA PTO	CTT Lev	AAA Lym 465	TTA Leu	01Å GCY	Val	ADG Arg	GTA Val 470	TGG Trp	CCT Pro	1446
15	Gln	GCC Ala	ATT Ile 475	CCT Pro	Gln	TIT Phe	CTA Leu	GTT Val 480	Gly	CAC	Pho	GAT Asp	ATC 11e 485	CTT Leu	GAC Amp	ACG Thr	1494
20	OCT ALA	AAA Lys 490	TCA Ser	TÇT Ser	CTA Leu	ACG Thr	Ser 495	TCG Ser	ggc Gly	TAC Tyr	GAA Glu	GGG Gly 500	CTA Leu	Phe	TTO Lan	Cly	1542
25	G1y 505	Asn	TAC Tyr	OTC Val	OCT ALL	007 Gly 510	GTA Val	V7* GCC	TTA Leu	GCC Gly	Arg 515	Cys Cys	OTA Val	Glu Glu	C1A CCC	GCA Ala 520	1590
	TAT	GAA Glu	ACC The	GCG Ala	ATT Ile 525	GAG Clu	GTC Val	A40	ARD	Phe 530	ATG Mee	TCA Ser	ÇGG Arg	TAC Tyr	0C1 A1a 535	TAC	1638
30	AAG Lys		AȚGT.		ACAT	TAAA	יר זי	CCCA	GCTN	s ec	TGAG		ATT.	AAAT	ATT		1691
35	:10	AGAT	ATC	-	w	XX X		***									1719
	(2)	THP	ORNA	TION	FOR	SEQ	ו מנ	NO:2	:								
40			(1)	(A) LE	NGTH PE:	: 53 min	ZRIS 7 AR 0 sc line	ino i	ecid	•						
45		ι	111	MOLE	CULE	TYP	B: p	rote	in								
		t	xi)	SEQU	ENCE	DES	CRIP	TION	; SE	Q ID	NO:	2:					
50	1				5					10				Leu	15		
	Phe	Ser	Lys	Pro 20	Asn	Leu	Arg	Leu	Asn 25	Val	Tyr	Lys	Pro	Leu 30	Arg	Leu	
55	Arg	Cys	Ser 35	Val	Ale	Gly	Gly	Pro 40	Thr	Val	Gly	Ser	Ser 45	Lys	Ile	Clu	
		Gly 50		@JA	Thr	Thr	11e	Thr	Thr	Asp	Cye	Va1	Ile	Val	Gly	GIA	
60	G1y	Ile	Ser	Gly	Leu	Cya 70	110	Ale	Gln	Νı	Lau 75	Ala	Thr	Lya	His	Pro	_
										_	_						-

Map Ala Ala Pro Amn Leu Ila Val Thr Glu Ala Lye Amp arg Val Gly Gly Amn Ile The Ary Clu Clu Amn Cly Pho Lau Trp Clu Glu Gly 100 105 Pro Asn Ser Phe Gln Pro Ser Asp Pro Het Lau Thr Met Val Val Asp Ser Gly Lou Lys Asp Asp Leu Val Leu Gly Asp Pro Thr Ale Pro Arg Phe Val Leu Trp Asm Gly Lys Leu Arg Pro Val Pro Ser Lys Leu Thr 145 150 156 Amp Leu Pro Phe Phe Amp Leu Net Ser Ile Gly Gly Lys Ile Arg Ale 165 170 175 Gly Phe Gly Ale Leu Gly Ile Arg Pro Ser Pro Pro Gly Arg Glu Glu 185 190 Ser Val Glu Glu Phe Val Arg Arg Ash Leu Gly Asp Glu Val Phe Glu 195 209 205 25 Arg Leu Ile Glu Pro Phe Cys Ser Gly Vel Tyr Ale Gly Amp Pro Ser Lys Lau Ser Met Lys Ala Als Phe C __ys Val Txp Lys Lau Glu Glu Gln 225 230 240 Asm Gly Gly Ser Ile Ile Gly Gly Thr Phe Lys Ala Ile Gln Glu Ary Lys Ash Als Pro Lys Ala Glu Arg Asp Pro Arg Leu Pro Lys Pro Gln 35 260 270 Gly Gln Thr Val Gly Ser Phe Arg Lys Gly Leu Arg Het Leu Pro Glu Als Tie Ser Ale Arg Leu Gly Ser Lys Val Lys Leu Ser Trp Lys Leu Ser Gly Ile Thr Lys Leu Glu Ser Gly Gly Tyr Amn Leu Thr Tyx Glu Thr Pro Asp Gly Lau Vel Ser Vel Gln Ser Lye Ser Vel Vel Met Thr 325 330 375 Val Pro Ser Him Val Alm Ser Gly Leu Leu Arg Pro Leu Ser Glu Ser 340 345 Ala Ala Asn Ale Leu Ser Lys Leu Tyr Tyr Pro Pro Val Ala Ala Val 355 360 365 Ser Ile Ser Tyr Pro Lye Glu Ale Ile Arg Thr Glu Cys Leu Ile Asp 370 380 Gly Glu Leu Lys Gly Phe Gly Gln Leu Him Pro Arg Thr Gln Gly Val

Giu Thr Leu Gly Thr Ile Tyr Ser Ser Ser Leu Phe Pro Asn Arg Ala

· Pro Gly Ary Ile Leu Leu Leu Ann Tyr Ile Gly Gly Ser Thr Ann A20 425 430 Thr Gly Ile Lau Ser Lye Ser Glu Gly Glu Leu Val Glu Ala Val Asp 435 440 445 Arg Asp Leu Arg Lys Met Leu 11e Lys Pro Asn Ser Thr Asp Pro Leu 450 455 460 Lys Leu Gly Val Arg Val Tro Pro Gln Ale Ile Pro Gln Phe Leu Val Cly His Phe Asp Ile Leu Asp Thr Ale Lye Ser Ser Leu Thr Ser Ser 485 Gly Tyr Glu Gly Leu Phe Lou Gly Gly Asn Tyr Val Ala Gly Val Ala 500 505 510 Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu Thr Ala Ile Glu Val Asm 515 520 Asn Phe Net Ser Arg Tyr Ala Tyr Lys (2) INFORMATION FOR SEQ ID NO:3: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1738 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPGLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 70..1596 (D) OTHER INFORMATION: /note= "Arabidopsis protox=2 cDNA; sequence from pNDC-1" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: TITTITACIT ATTICCUTCA CIGCITICGA CIGGICAGAG ATTITGACIC TGAATIGTIG CAGATAGCA ATG GCG TCT GGA GCA GTA GCA GAT CAT CAA ATT GAA GCG Het Ale Ser Gly Ale Val Ale App His Gln Ile Glu Ale 10 108 GTT TCA GGA AMA AGA GTC GCA GTC GTA GGT GCA GGT GTA AGT GGA CTT Vel Ser Gly Lye Arg Vel Ale Vel Gly Ale Gly Vel Ser Gly Leu GCG GCG GCT TAC AAG TTG AAA TCG AGG GGT TTG AAT GTG ACT GTG TTT Ale Ale Ale Tyr Lys Leu Lye Ser Arg Gly Leu Aen Val Thr Val Phe 35 204

VA GCT GAT GGA AGA GTA GGT GGG AAG TTG AGA AGT GTT ATG CAA AAT LU Ala Aep Gly Arg Val Gly Gly Lyu Leu Arg Ser Val Net Gln Aem GGT TTG ATT TOG GAT GAA GGA OCA AAC ACC ATG ACT GAG GCT GAG CCA Gly Leu Ile fip Amp Glu Gly Ale Amn Thr Het Thr Glu Ale Glu Pro GAN STT GOG ACT TTA CTT GAT GAT CTT GOG CTT COT GAG ANA CAN CAN
10 Glu Val Gly Ser Leu Leu Amp Amp Leu Gly Leu Arg Glu Lym Gln Gln
85 TTT CCA ATT TCA CAG AAA AAG CGG TAT ATT GTG CGG AAT GGT GTA CCT Phe Pro lie Ser Cin Lye Lye Arg Tyr Ile Vel Arg Amn Gly Vel Pro GTG ATG CTA CCT ACC AAT CCC ATA GAG CTG GTC ACA AGT AGT GTG CTC Val Het Leu Pro Thr Asn Pro Ile Glu Leu Vel Thr Ser Ser Vel Leu 110 125 TOT ACC CAA TOT AAG TIT CAA ATC TIG GAA CCA TIT ITA TOG AAG Ser Thr Gln Ser Lye Phe Gln Ile Leu Glu Pro Pha Leu Tip Lye 130 145 AAA AAG TCC TCA AAA GTC TCA GAT GCA GCT GCT GAA GAA AGT GTA AGC Lym Lym Ser Ser Lym Val Ser Amp Ala Ser Ala Glu Glu Ser Val Ser 145 GAG TTC TIT CAA CGC CAT TIT GGA CAA GAG GTT GTT GAC TAT CTC ATC Glu Phe Phe Gln Arg His Phe Gly Gln Glu Val Val App TyT Leu Ile 160 CAC CCT TIT GTT GGT GGA AGA AGT GCT GCG GAC CCT GAT TCC CTT TCA Amp Pro Phe Vel Gly 31y Thr Ser Ale Ale Amp Pro Amp Ser Leu Ser 175 ATG AAG CAT TCT TTC CCA GAT CTC TGG AAT GTA GAG AAA AGT TTT GGC Met Lys His Ser Phe Pro Asp Leu Trp Asm Val Glu Lys Ser Phe Gly 190 200 TOT ATT ATA GTC GGT GGA ATC AGA AGA AGA TTT GCT GGT AAA GGT GGT Ser Ile Ile Val Gly Ala Ile Arg Thr Lys Phe Ala Ala Lys Gly Gly 210 AAA AGT AGA GAC ACA AAG AGT TCT CCT GGC ACA AAA AAG GGT TCG CGT Lys Ser Arg Aap Thr Lys Ser Ser Pro Gly Thr Lys Lys Gly Ser Arg 235 GGG TCA TTC TCT TTT AAG GGG GGA ATG CAG ATT CTT CCT GAT ACC TTG Gly Ser Phe Ser Phe Lys Gly Gly Met Gla Fle Leu Pro Asp Thr Leu 240 240 TGC AAA AGT CTC TCA CAT GAT GAG ATC AAT TTA GAC TCC AAG GTA CTC Cym Lym Ser Leu Ser His Amp Glu lle Aan Leu Aap Ser Lym Val Leu 255 TCT TTG TCT TAC AAT TCT GGA TCA AGA CAG GAG AAC TGG TCA TTA TCT Ser Leu Ser Tyr Asn Ser Gly Ser Arg Gln Glu Asn Trp Ser Leu Ser 270 TOT GTT TOG CAT MAT GAA ACG CAG AGA CAA AAC CCC CAT TAT GAT GCT Cys Val Ser His Amn Glu Thr Gln Arg Gln Ann Pro His Tyr Asp Ala 290

30

	Val	ATT Ile	ATG Not	ACG Thr 305	OCT ALL	CCT Pro	Leu CTG	Cys	AAT Aun 310	Vel GTG	AAG Lys	GNG Glu	ATG Met	AAG Lys 315	GTT Val	ATG Nat	1020	
5	AAA Lys	GCA Gly	GGA GLy 320	CAA Gln	CCC Pro	TTT Phe	Gln Gln	CTA Leu 325	AAC Aan	TTT Phe	CTC Lau	Pro	GAG Glu GAG	ATT 11e	AAT Amn	TAC Tyt	1068	
10	ATG Mec	CCC Pro 335	CIC	TCG Ser	קיים Vel	TTA Lau	ATC Ile 340	ACC Thr	ACA Ttur	TTC Phe	ACA The	AAG Lyw 345	eja GYG	Lye	GTA Vel	AAC Lye	1116	
15	AGA Arg 350	CCT Pro	Leu	G) u	GGC Gly	TTT Phe 355	GGG Gly	Val	ren Cic	ATT Ile	PTO 360	Ser	AAG Lys	OJ n OPC	G) II	AAG Lys 365	1164	
20	His	Gly	Phe	Lys	Thr 370	Leu	Gly	Thr	Leu	Phe 375	Ser	Ser	Het	Het	380		1212	
25	GAT Asp	CST Arg	TCC Ser	Pro 385	AGT Ser	CAC Amp	GTT Val	CAT His	CTA Lau 390	TAT Tyr	ACA The	ACT Thr	TIT Phe	ATT Ile 395	ely eet	Gly	1360	
-	AGT Ser	ACG Arg	ABD 400	CAG Gln	GAA Glu	CTA Leu	V) v	134 134 105	ALA	TCC Ser	Thr	GAC Asp	GIU GIU GIU	TTA Løu	Lys	CYV CYV	1308	
30.	Vel	Val 415	Thr	TCT Ser	Asp	Leu	Gln 420	YLG	Leu	Leu	Gly	Va1 425	€}n	Gly	Glu	Pro	1356	
35	Val 430	Ser	Val	AAC Asn	His	TY1 435	Тут	TIP	Arg	Lys	A12 440	Phe	Pro	Leu	Tyr	445	1404	
40	Ser	Ser	Tyr	GAC Asp	5er 450	Val	Het	Ċ1n	Ala	11e 455	Asp	Lys	Het	Ģlu	460	Yab	1452	
45	CTA Leu	Pro	ely	Phe 465	TTC Phe	TAT Tyr	GCA Ala	Gly	AA7 A83 470	CAT Ris	CGA Arg	GOG	GCG GCG	Leu 475	TCT Ser	Val	1500	
	Gly	Lys	Ser 480	Ile	Ala	5er	Gly	485	Lys	Ala	¥7=	Asp	490	Val	Ile.		1548	
50	TAC	CTC Leu 495	Glu	TCT Ser	TGC Cys	TCA Ser	AAT Aan 500	Yab GYC	Ly#	Lys	CCA PTO	AAT ABR 505	GAC Asp	AGC Ser	TTA Leu	TAACATTG		1603
55																CAATAA	1663	
	ACT	ATTT	ATG :	:wu	۸.												1738	
60																		

(2) INFORMATION FOR SEQ ID NO: 4:

(1) SEQUENCE CHARACTERISTICS:

(A) LEMSTM: 508 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(mi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Het Ala Ser Gly Ala Val Ala Asp His Gln Ile Glu Ala Val Ser Gly Lys Arg Val Ala Val Val Gly Ala Gly Val Ser Gly Leu Ala Ala Ala 20 25 30 Tyr Lys Leu Lys Ser Arg Gly Leu Asn Val Thr Val Phe Glu Ala Asp Gly Arg Val Gly Gly Lye Leu Arg Ser Val Met Gln Aan Gly Leu Ile 50 55 Trp Amp Glu Gly Alm Amn Thr Mat Thr Glu Als Glu Pro Glu Val Gly 65 70 75 80 Ser Leu Leu Asp Amp Leu Gly Leu Ary Glu Lym Gln Gln Fhe Pro Ile 25 90 95 Ser Gln Lys Lys Arg Tyr Ile Val Arg Asn Gly Val Pro Val Net Leu 100 105 110 Pro Thr Asm Pro Ile Glu Leu Val Thr Ser Ser Val Leu Ser Thr Gln 115 120 125 Ser Lys Phe Gin Ile Leu Leu Glu Pro Phe Leu Trp Lys Lys Ser Ser Lys Val Ser Amp Ala Ser Ala Glu Glu Ser Val Ser Glu Phm Phe 145 150 155 160 Gln Arg His Phe Gly Gln Glu Val Val Asp Tyr Leu Ile Asp Pro Phe 165 170 175 Val Cly Cly Thr Ser Ala Ala Asp Pro Asp Ser Leu Ser Het Lys His Ser Phe Pro Asp Leu Trp Asn Val Glu Lys Ser Phe Gly Ser Ile Ile 195 200 205 Val Cly Ala Ile Arg Thr Lys Pha Ala Ala Lys Gly Gly Lys Ser Arg Asp Thr Lys Ser Ser Pro Gly Thr Lys Lys Gly Ser Arg Gly Ser Phe 225 230 135 240 Ser Phe Lys Cly Gly Net Gln Ile Leu Pro Asp Thr Leu Cys Lys Ser 245 250 255 Leu Ser His Amp Glu Ile Amn Leu Amp Ser Lys Val Leu Ser Leu Ser Tyr Amn Ser Gly Ser Arg Gln Glu Amn Trp Ser Lau Ser Cym Vel Ser 275 280 285

Him Amn Glu Thr Gln Arg Gln Amn Pro Him Tyr Amp Ala Val Ile Net 32

```
290
     The Ala Pro Leu Cys Asn Val Lys Glu Het Lys Val Het Lys Gly Gly 305 310
     Glm Pro Phe Glm Leu Asm Phe Leu Pro Glu Ile Asm Tyr Met Pro Leu
325 330 135
     Ser Val Leu 11s Thr Thr Phe Thr Lys Glu Lys Val Lys Arg Pro Leu 340 355
     Glu Gly Phe Gly Val Leu Ile Pro Ser Lys Glu Gln Lys Ris Gly Phe
     Lys Thr Lau Gly Thr Lau Phe Ser Ser Met Met Phe Pro Amp Arg Ser 370 380
    Pro Ser Asp Val His Leu Tyr Thr Thr Phe Ile Gly Gly Ser Arg Asn
385 390 395
     Gln Glu Leu Ala Lys Ala Ser Thr Asp Glu Leu Lys Gln Val Val Thr
405 410 415
     Ser Asp Leu Gln Arg Leu Leu Gly Val Glu Gly Glu Pro Val Sar Val 425 430
     Amn His Tyr Tyr Trp Arm Lys Ala Phe Pro Leu Tyr Amp Ser Ser Tyr
435 446
     Amp Ser Val Met Glu Ala Ile Amp Lys Het Glu Amn Amp Leu Pro Gly 450 450
     Phe Phe Tyr Ala Gly Asn His Arg Gly Gly Lau Ser Val Gly Lys Ser
465 470 480
35
     The Ale Ser Gly Cys Lys Ale Ale Amp Leu Val Ilm Ser Tyr Lau Glu
     Ser Cys Ser Asn Asp Lys Lys Pro Asn Asp Ser Leu
     (2) INFORMATION FOR SEQ ID NO:5:
           (1) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 1691 bese pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: cDNA
         (111) HYPOTHETICAL: NO
```

(ix) FEATURE:

(iv) ANTI-SENSE: NO

55

(A) NAME/KEY: CDS (B) LOCATION: 1..1443

(D) OTHER INFORMATION: /note= "Meize protox=1 cDMA inot full=length); sequence from pROC-4; first move nucleotides removed vs. first provisional*

lectides removed vs. first provisions

		(xi	SEC	UEW	E PI	escru	PIL	3N: 3	220 3	ID IK	1:5:							
5	GCG Ala	GAC Amp	TGC Cys	GTC Val	GTC Val	Val GTG	GIY GGC	GIY	GD'A GGC	11e 10	AGT Ser	GJA GGC	CTC	Cys Cys	ACC Thr 15	GCG Ala		48
10	CAG Gla	Ala Ala	CTG Leu	GCC Ala 20	ACG The	CGG Arg	CAC His	Gly	Val 25	GOG	GAC Asp	GTG Val	CTT	Val 30	ACG Thr	GAG Glu		96
15	GCC Ala	YL.A CCC	000 Ala 35	yr4 coc	Pro	CJA CCC	@J.A GGC	AAC Aun 40	ATT Ile	ACC	ACC	GTC Val	GAG G1u 45	Arg	CCC Pro	GN:		144
20	GAA Glu	GOC Gly 50	tac Tyt	CTC CTC	TTP	GLU	GAG G1u \$5	GIY	PEO	ANC	AGC Ser	Phe 60	CAG Gln	Pro	TCC Ser	gac Asp		192
μ.	Pro 65	OTT Val	CTC Leu	Thr	DTA 39M	ALA 70	CTG Val	ymb Gyr.	ACC Ser	gjy gga	CTG Leu 75	ang Lys	gat Asp	GAC Allp	TIG Law	GTT Val 80		240
25	TTT Phe	G1 y	GAC Asp	CCA Pro	AAC Asn 85	Y) P	CCG Pro	CGT Arg	Phe	Val 90	CTG CTG	TEP	Glu	ela GGC	AAG Lyw 95	CTG Latu		288
30	AGG Arg	PT0	orc V-	CCA Pro 100	TCC Ser	Lys Lys	ecc Pro	GCC Ala	GAC Asp 105	CTC Leu	ccs Pro	TTC Phe	TTC Phe	GAT Amp 110	CTC Lou	ATG Het		336
35	AGC Ser	ATC Ile	CCA Pro 115	G17 GGG	A4G Lys	CTC Leu	ACG ATG	GCC Ala 120	Gly	CTA Leu	66C 61y	AL A	CTT Leu 125	GC Gly	Ile	CGC		384
40	CCG PTO	CCT Pro 130	CCT Pro	CCA Pro	GLY	Arg	GAA Glu 135	Glu	TCA Ser	GTC Val	GAG Glu	GAG Glu 140	Phe	GTG Val	CGC AFQ	ogc Arg		432
•0	AAC Aan 145	Leni	C1A CCI	GCT Ala	GAG Glu	GTC VA1 150	TTT Phe	GAG G1 u	CGC Arg	CTC Leu	ATT 110 155	GAG Glu	Pro	Phe	TGC Cys	Ser 160		480
45	GCT	GTC Val	TAT Tyt	GCT Ala	GCT Gly 165	ASD	Pro	TCT Ser	Lys	CTC Lau 170	ADC Ser	ATG Mec	Lys	OCT Ala	GCA Alm 175	Phe		528
50	GCG	AAG Lys	GTT Val	TGG TIP 180	Arg	TTG Leu	CJ n CAA	GAA Glu	ACT Thr 185	GCA	GLY	AGT Ser	ATT	ATT 11e 190	GIY	gga Gly		576
55	ACC Thr	ATC Ile	AAG Lym 195	ACA Thr	I]e	Gln	GAG Glu	AGG Arg 200	Ser	Lys	AAT Aan	Pro	ار 1205 205	Pro	Pro	AGG Arg		624
	GAT Asp	A18 210	Arq	Leu	CCG Pro	AAG Lys	CCA Pro 215	Lys	e7A GCC	GAG Gln	ACA Thr	G17 Val 220	Ala	TCT Ser	Phe	AGG AFG		672
60	Lys 225	Cly	CTT Lau	GCC Ala	ATG Het	Leu 230	CCA Pro	AAT ASD	GCC Ala	ATT Ile	ACA Thr 235	TCC Ser	AGC Ser	TTC Lou	GCT	AGT Ser 240	-	720

34

1	.yr	7.c	AAA Lys	CTA Leu	TCA Ser 245	TOG Tup	AAA Lys	GTC T-GU	WC.C.	AGC Ser 250	ATT Ile	ACA Thr	LYS	TÇA Set	GAT Asp 255	GAC Asp	7
,	ys Ys	GJA GCY	TAT Tyr	GIT Val 260	Len	GAG Glu	TAT Tyr	GAA Glu	ACG Thr 265	CCA Pro	esn Gyy	ejy œc	GIT Val	Val 270	TCG Ser	GTG Val	8
ć	in Sin	GCT Ala	AAA Lys 275	AGT Ser	GTT Val	ATC Ile	ATG Het	ACT Thr 250	ATT Ile	CCA PTO	TCA Set	TAT Tyr	GTT Val 285	GCT Ala	AGC Ser	ASTI ASTI	8
: :	(le	TTG 144 290	AFG	CCA PTO	Lou	TCA Ser	AGC Ser 295	AIP	CCT ALa	AL a	gat And	GCT Ala 300	CTA Leu	TCA Ser	YLA	TTC Phe	9
	PAT PYT BOS	TAT Tyr	CCA PTO	CCC PTO	GTT Val	GCT Ala 310	GCT Ala	GTA V41	ACT The	GTT Val	TCG Ser 315	TAT Tyr	CCA PTO	AAG Lys	21 n	OCA Ala 320	9
	110	AZA ATU	Lys	eyn GYY	700 Cys 325	TTA Leu	ATT Ile	GAT Amp	ory GGC	all Glu Cyv	CTC Leu	CAG Gln	G1A GGC	Phe	332 673 000	eju Cr3	10
;	-PC	CAT His	CCA PTO	CGT AFG 340	Ser	CAA Gln	CJ A CCY	Vel	GAG Glu 345	ACA Thr	TTA Leu	GLY	ACA Thr	ATA 11e 350	TAC Tyr	AGT Set	10
, ;	rcc	TCA Ser	CTC Leu 355	Phe	CCA Pro	AAT Aan	CCT AFG	760 VIV	Pro	GAC Amp	GLY	ACC	CTC Val 365	TTA	CTT Leu	CTA	11
, ;	A.C. Asm	TAC Tyr 370	Ile	GGA	GIY	GCT Ala	ACA Thr 375	Asn	ACA Thir	GIY	ATT Ile	380	TCC Ser	Lys	Thr	G1u GAA	11
	NGT Ser 385	C) n	CTG	CTC Val	GAA Glu	GCA Ala 390	GTT Val	GAC Asp	CCT Arg	GAC Asp	CTC Leu 195	CGA Arg	Lys	ATG Met	Lou	ATA Ile 400	73
	AAT	TCT Ser	ACA Thr	GCA GCA	GTG VAI 405	GAC Asp	CCT PTO	TTA Leu	CTC Val	Leu 410	GCT Gly	CTT Val	CCA Arg	Vel	TEP 615	CCA Pro	12
5	CAA Gln	GCC Ala	ATA 11e	Pro 420	CAG Gln	TTC Phe	CTG Leu	GTA V41	GGA Gly 425	CAT	Leu	GAT Asp	Leu	Leu 430	GAA	GCC	12
	GCA Ale	Lys	GCT Ala 435	W/w GCC	CTG Leu	GAC Amp	CGA AFG	GIT GLY 440	CIA	TAC TYF	GAT Asp	GCC G1y	CTG Leu 445	Ph+	CTA Lau	C()A	13
,	ccc 51y	AAC Aan 450	Tyr	GTT Val	GCA Ala	GCA	GTT VAI 455	Ala	CTG Leu	GLY	AGA	TCC Cys 460	VAI	Glu	CJA OCC	GCG Ala	13
	TAT TYE	Glu	AGT Ser	GCC Ala	1CG Ser	CAA Gin 470	ATA 110	ser	GAC Asp	TTC Pho	Eeu 675	ACC	AAG Lys	TAT	GCC Ala	TAC Tyr 480	14
	Lye	TGA	TGAA	AGA .	ACTO	GAGO	CC T	ACTT	CTTA	A 10		ATGT	TOC	ATAG	ATG		_14

	æ	OCC.	rec 0	2000	w	u n	MCT.	CAA!	AGT	ATT	TTT	ATT	TTAT	TT 1	WID	ATTG	•
5	ATT	CIG	nc 1	111	TCT		GTA	LTTA	TT	TAT	TTA	arr	707/	VGC 2	CATT	GTTC	r
	GTT.	ACT	200	יחי	ww	×	ATTT.	ATT	170	:ATT	,,,,,	TATO	NGA	CT (, GC	ACTT	
10	AAA	ww	WA 2	w	WAA.												
	(2)	INT	RMAT	LION	FOR	SEQ	7D 1	RO : 6 :									
15 .			(1) 5	(B)	TY	E: a	: 48: Waips	RIST Ami aci	ino e	cid	•						
		(:	ii) 1	COLEX	ULE	TYPI	E: p	cote	in								
20		(1	£() !	EQUI	G-ICE	DESC	NIP	TON	SE(ID	WO:	5:					
	Ala 1	ASD	cys	Val	Val	Val	Gly	Gly	Gly	110	5er	Gly	Leu	CYs	Thr 15	Ma	
25	Ģln	ALA	Leu	Ala 20	Thr	Arg	His	G) Y	Va1 25	Gly	Asp	Val	Leu	Val 30	The	Glu	
30	Ala	Ary	Ala 35	Arg	Pro	Cly	CJA	Asn 40	Ile	The	Thr	Val	Glu 45	Arg	Pro	Glu	
	Glu	Gly 50	тут	Leu	тър	Glu	Glu 55	G) A	Pro	Asn	Ser	Phe 60	G) n	Pro	Ser	Assp	
35	Pro 65	Val	Lau	Thr	Met	Ala 70	Val	Aup	Ser	Gly	Leu 75	Lys	Asp	Asp	Leu	Val 80	
	Phe	CJY	Asp	Pro	A an 85	Ala	PTO	Arg	Pive	Val 90	Leu	Trp	Glu	Gly	195 95	Leu	
4 0 ·	Arg	Pro	Val	Pro 100	Ser	Lys	Pro	Ala	105	Leu	Pro	Phe	Phe	Asp 110	[.eu	Net	
45 .	Ser	Ile	Pro 115	61y	Lys	Leu	Arg	120	Gly	[:eu	Gly	Ala	Leu 125	Gly	Ile	Arg	
	Pro	Pro 130	Pro	Pro	Gly	Arg	Glu 135	Glu	Ser	Val	Glu	51u 140	Phe	Va'	krg	Arg	
50	Asn 145	Leu	Çly	Ala	Glu	Val 150	Phe	Glu	Arg	Leu	11e	Glu	Pro	Phe	Cys	Ser 160	
	Cly	Val	Tyr	Ala	61y 165	Asp	Pro	Ser	Lys	Leu 170	Ser	Hec	Lys	Ala	Ala 175	Phe	

Gly Lys Val Try Arg Lem file Glu Thr Gly Gly Ser Ile Ile Gly Gly 180 185 196

Live Gly Lou Ala Not Lou Pro Asn Ala Ile Thr Ser Ser Leu Gly Ser 230 235 5 Livs Val Lys Leu Ser Trp Lys Leu Thr Ser Ile Thr Lys Ser Amp Amp Amp 245 255 Lys Gly Tyr Val Leu Glu Tyr Glu Thr Pro Glu Gly Val Val Ser Val $260 \hspace{0.25cm} 265 \hspace{0.25cm} 270 \hspace{0.25cm}$ Gln Ale Lys Ser Vai Ile Net Thr fle Pro Ser Tyr Val Ale Ser Ash 275 280 285 The Leu Arg Pro Leu Ser Ser Amp Ala Ala Amp Ala Leu Ser Arg Phe 290 295 300 Tyr Tyr Pro Pro Vel Ale Ale Val Thr Val Ser Tyr Pro Lys Glu Ale 305 310 320 Ile Arg Lys Glu Cys Leu Ile Asp Gly Glu Leu Gln Gly Phe Gly Gln 325 336 Leu His Pro Arg Ser Glm Gly Val Glu Thr Lau Gly Thr Ile Tyr Scr 345 350 Ser Ser Leu Phe Pro Amn Arg Ale Pro Amp Gly Arg Val Leu Leu Leu 355 Agn Tyr Ile Gly Gly Ala Thr Agn Thr Gly Ile Val Ser Lys Thr Glu Ser Glu Leu Val Glu Ale Val Asp Arg Asp Leu Arg Lys Her Leu Ile 385 395 400 Ash Ser Thr Ala Val Asp Pro Leu Val Leu Gly Val Arg Val Trp Pro 405 415 Cln Als Ile Pro Gln Phe Leu Val Gly Kis Leu Amp Leu Leu Glu Als Ala Lys Ala Ala Leu Amp Arg Gly Gly Tyr Amp Gly Leu Phe Leu Gly 435 445 Gly Asn Tyr Val Ala Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala 450 $\,$ Tyr Glu Ser Ala Ser Gln Ile Ser Asp Phe Leu Thr Lys Tyr Ala Tyr 465 470 480

- (2) INFORMATION FOR SEQ ID NO:7:
 - (1) SEQUENCE CHARACTERISTICS:
 (A) LEMOTH: 2061 base pairs
 (B) TYPE: nucleic scid
 (C) STRANDEDNESS: mingle
 - (D) TOPOLOGY: lines:
- (11) HOLECULE TYPE: cD:A

37

```
(111) HYPOTHETICAL: NO
       (iv) ARTI-SENSE: NO
       (ix) PEATURE:
                  (A) NAME/KEY: CDS
(B) LOCATION: 64,.1698
                              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
CTCTCCTACC TCCACCTCCA CGACAACAAG CAAATCCCCA TCCAGTTCCA AACCCTAACT
CAA ATG CTC GCT TTG ACT GCC TCA GCC TCA TCC GCT TCG TCC CAT CCT
Her Leu Ale Leu Thr Ale Ser Ale Ser Ser Ale Ser Ser His Pro
5 10
                                                                                                                             106
TAT COC CAC GCC TCC GCG CAC ACT CGT CGC CCC CGC CTA CGT GCG GTC
TYT Arg His Ala Ser Als His Thr Arg Arg Pro Arg Leu Arg Ala Val
25
30
CTC GCG ATG GCG GGC TCC GAC GAC CCC GCT GCA GCG CCC GCC AGA TCG Leu Ala Het Ala Gly Ser Amp Amp Pro Arg Ala Ala Pro Ala Arg Sei
GTC GCC GTC GCC GCC GCC GCG GTC AGC GGG GTC GCG GCG GCG GCG TAC AGG
Val Ala Val Gly Ala Gly Val Sar Gly Lau Ala Ala Ala Tyr Arg
                                                                                                                             252
CTC AGA CAG AGC GGC GTG AAC GTA ACG GTG TTC GAA GCG GCC GAC AGG
Leu Arg Gln Ser Gly Val Aen Vel Thr Vel Phe Glu Ala Ala Asp Arg
65
GCG GGA AGA AAA ATA CGG ACC AAT TCC GAO GGC GGC TTT GTC TGG GAT
Ala Gly Gly Lys Ile Arg Thr Asn Ser Glu Gly Gly Phe Val Try Asp
AC 85 90
GAA GGA GCT AAC ACC ATG ACA GAA GGT GAA TGG GAG GCC AGT AGA CTG
Glu Gly Ala Asn Thr Het Thr Glu Gly Glu Try Glu Ala Ser Ary Leu
100
ATT GAT GAT CTT GGT CTA CAA GAC AAA CAG CAG TAT CCT AAC TCC CAA
Ile Amp Amp Leu Gly Leu Glm Amp Lym Glm Glm Tyr Pro Amm Ser Glm
115
CAC AAG COT TAC ATT GTC AUA UAT OGA GCA CCA GCA CTG ATT CCT TCG
His Lys Arg Tyr Ile Val Lys Asp Cly Ala Pro Ala Leu Ile Pro Ser
110
CAT CCC ATT TCG CTA ATG AAA AGC AGT GTT CTT TCG ACA AAA TCA AAG
Amp Pro Ile Ser Leu Het Lys Ser Ser Val Leu Ser Thr Lys Ser Lys
145
ATT GCG TTA TIT TTT GAA CCA TTT CTC TAC AAG AAA GCT AAC ACA ACA
Ile Ala Leu Phe Phe Glu "To Phe Leu Tyr Lys Lys Ala Asn Thr Ard
160 170 175
```

AAC TOT GGA AAA GTG TOT GAG GAG CAC TTG AGT GAG AGT GTT CGG AGC ABN Ser Gly Lys Val Ser Glu Glu His Leu Ser Glu Ser Val Gly Ser 185

5	Ŧ.	TGT Cys	GAA Glu	CGC Arg 195	CAC His	TTT Pha	GGA Gly	AGA Arg	GAA Glu 200	Val	Val	(CAC)	TAT Tyr	TTT Phe 205	VA1	CAT May		684
,	CCA Pro	TIT Phe	GTA Val 210	AL &	GJA GCY	ACA T?ur	AGT Set	GCA Ala 215	eja egy	gat Asp	CCA Pro	G) n G) n	TCA Ser 230	CTA Lou	TCT Ser	Ile Ile		732
10	CGT Arg	CAT His 225	GCA Ale	TTC Phe	CCA Pro	YT# CCY	TTG Leu 230	TGG TTP	TAA DBA	TTG Leu	GAA Glu	AGA Arg 235	AAG Lys	TAT Tyr	Gly	TCA Sez		780
15	GT: Val 240	11-	GTT Val	ejà eej	GCC Alm	ATC Ile 245	TTG Leu	TCT Ser	AAG Lys	CTA Leu	GCA Ala 250	GCT Als	AAA Lys	GJA GC1	GAT Asp	CCA Pro 255		828
20	GTA Val	AAG Lys	ACA Thr	AGA	CAT Him 260	GAT Asp	TCA Ser	TCA Ser	ejà ccc	AAA Lya 265	AGA Arg	AÇG ATG	AAT Astr	ytå YEY	CGA Arg 270	GTG Val		876
	TCG Ser	TTT Phe	TCA Ser	TTT Phe 275	CAT His	GCT Gly	GGA Gly	ATG Het	CAG Gln 280	TCA Ser	CTA Lau	ATA Ile	AAT Aan	GCA Ala 285	CTT Lau	CAC Ris		924
25	AAT Asn	GAA Glu	VAI 290	Cly	GAT Asp	GAT Asp	AAT Aan	GTG Val 295	AAG Lys	CTT	GCT Gly	ACA Tar	GAA Glu 300	GTG Val	TTC Leu	TCA Ser		972
30	TTG Leu	GCA Ala 305	CA	ACA Thr	TTT Phe	GAT AND	GGA Gly 310	GTT Val	CCT Pro	GCA Ala	CTA Lev	GGC Gly 315	agg Arg	700 710	TCA Ser	ATT 11e		1020
35	TCT Ser 320	Val	GAT ASP	TCG Ser	aag Lys	GAT Amp 325	AGC Ser	GLY	GAC Asp	AAG Lys	GAC ASP 330	CTT Leu	GCT Ala	agt Set	AAC Asn	GAA Gla 335		1068
40	ACC Thr	Phe	GAT Asp	GÇT Ala	GTT Val 340	ATA Ile	ATG Nec	AÇA Thr	GCT Ala	CCA PTO 345	TTG Leu	TCA Ser	AAT ABD	GTC Val	cgG Arg 350	AGG Arg		1116
	ATG Het	AAG Lys	TTC Phe	ACC Thr 355	AAA Lys	GGT Gly	GÇA Gly	GCT Ala	CCG Pro 360	GTT Val	GTT Val	CTT Leu	GAC Asp	TTT Phe 365	Lou	CCT Pro		1164
45	AAG Lys	ATG Het	CAT Asp 370	TYF	CTA Leu	CCA Pro	CTA Leu	TCT Ser 375	CTC	ATG Het	GTG Val	ACT Thr	ALA 380	TTT	Lys	AAG Lys		1212
S 0	GAT Asp	GAT ASP 385	VAl	AAG Lys	AAA Lys	CCT Pro	CTG Lau 390	GAA Glu	GGA Gly	TTT Phe	GOC Gly	GTC Val 395	TTA Leu	ATA Ile	CCT Pro	TAC Tyr		1260
55	AAG Lys	Glu	CAG Gln	ÇAA Gln	AAA Lys	CAT His 405	GGT Gly	CTG Leu	AAA Lys	ACC Thr	CTT Leu 410	GGG Gly	ACT	CIC	TTT Phe	TCC Ser 415		1308
60	TCA Ser	ATG	ATG Net	TTC	CCA Pro 423	CD F	CGA Arg	OCT Ale	CCT Pro	GAT Asp 425	CAC Asp	GJU CYY	TAT Tyr	TTA	TAT TYP 430	ACA Thr		1356
	ACA Thr	TT Phe	GTT Val	GLY	Sly	AGC Ser	C-C	AAT Aan	AGA Arg	CAT	CTT	GCT GCT	CJA CCY	GCT Ala	CEA Pro	ACG Thr	_	1404

	435 440 445	
5	TCT ATT CTG AAA CAA CTT GTG ACC TCT GAC CTT AAA AAA CTC TTG GGC Ser lie Leu Lys Gin Leu Val Thr Ser Asp Leu Lys Lys Leu Leu Gly 450	1452
	OTA GAG GOO CAA CCA ACT TIT GTC AAG CAT CTA TAC TOG GGA AAT GCT Val Glu Gly Gln Pro Thr Phe Val Lye His Val Tyr Trp Gly Asn Ala 465	1500
10	TIT CCT TTG TAT GGC CAT GAT TAT AGT TCT GTA TTG GAA GCT ATA GAA Phe Pro Leu Tyr Gly His App Tyr Ser Ser Val Leu Glu Als Tle Glu 485 485 495	1548
15	ANG ATG GAG AAA AAC CTT CCA GGG TTC TTC TAC GCA GGA AAT AAC AAG Lys Het Glu Lys Aen Leu Pro G.y Phe Tyr Ala Gly Aen Ber Lys 500 510	1596
20	CAT COC CTT GCT GCT AGT GCT ATA GCT TCA GGA AGC ANG GCT GCT Amp Gly Leu Ala Val Gly Ser Val Ila Ala Ser Gly Ser Lys Ala Ala 515	1644
25	GAC CTT OCA AND THE TAT CTT GAS TOT CAC AND CAT ANT TOA Amp Leu Ale Ile Ser Tyr Leu Glu Ser His Thr Lym His Amn Amn Ser 530	1692
	CAT TOANGESTE TRACCIATEC TOTAGONGTT GTOGRAMAT TECTOCAGTT NAS 545	1745
30	CATCHACAGT AGAAACCGAT GCGFTGCAGT TTCAGAACAT CTTCACTFCT TCAGATATTA	1805
	ACCOTTOUT GAACATCCAC CAGARAGGTA GTCACATGTG TARGTGGGAA AATGAGGTTA	1865
35	AAAACTATTA TGGCGGCCGA AATGTTCCTT TTTGTTTTCC TCACAAGTGG CCTACGACAC	1925
	TIGATOTIOG ARATACATIT ARATTIGITG ARTIGITICA GARCACATGC GIGACUTGIA	1985
40	ATATTTGCCT ATTGTGATTT TAGGAGTAST CITGGCCAGA TTATGCTTTA CGCCTTTAAA	2045
40	AMAMAMA AMAMA	2061

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1811 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - - (ii) HOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (ix) FRATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: J..1589
 (D) OTHER INFORMATION: /product= "wheat protox-1 cDMA"
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	~	GCA Ala 1	ACA Thr	ATG Mac	GCC Ala	ACC :	AZ S	ACC !	OTC	GCG Ale	Ala 10	GCG ALA	rec Ser	PEO	CTC Letu	CGC Arg 15	47
5	GCC	AGG	GTC Val	ACC	GGG Gly 20	Arg	PTO	CAC H18	CGC Arg	Val 25	Arg	PTO	yt.d CQ.	CAR	AL 30	ACC The	99
10	GCG Ala	AGC Ser	AGC Ser	AL AL 35	Thr	Glu	ACT The	SE0 CCC	GCG Ala 40	GCG	PTO	GCC	Val	CGC Art 45	CTG	TCC Ser	141
15	GCG	CYY CYY	TGC Cys 50	Val	ATT	GTG Val	C)A	GCC Ala 55	Gly	Ile	AGC Ser	ej A GOC	Fen Cuc	TOC Cys	ACC	AL A	191
20	CAG Gln	GCG Ala 65	Leu	GCC Ala	ACC	CGA Arg	TAC TYE 70	GD:	GTC Val	AGC	GAC	CTG Leu 75	Leu	GTC Val	ACG Thr	G]n CAC	235
	GCC Ala 80	YLA	GAC Astp	Arg	CCG Pro	GGC Gly 85	C17	AAC Aan	ile	TAT	The 90	GTC Val	Glu	cgt Arg	Pro	GAC Aap 95	261
건	Clu	Gly	TAC Tyr	CTG LAU	TOO TIP 100	Glu	GAG Glu	CCA Gly	CCC PTO	AST 105	AGC Ser	Phe	Gla	PTC CCC	Ser 110	GAC Amp	335
30	Pro	GTC Val	CTC Leu	ACC Thr 115	Met	GCC	GTG Val	GAC Asp	AGC Ser 120	Gly	Leu	LYS	CAT Asp	GAC Auto 125	I GU	GTG Val	383
35	Phe	GCG	230	Pro	AAC	VT 9	ecc Pro	CGG Arg 135	Phe	Val	CTG	TCG TTP	Glu 140	GCG Gly	Lys	CTG Levu	433
40			Val								Pro					ATG Mec	475
	Ser 160	ile	CC:	GGG	Lys	CTC Leu 165	AFG	SCC Ala	GLY	Lev	6GC 61y 170	Ala	Lev	GLY	ATT 11e	CGC Arg 175	927
45	PTO	Pro	Pro	CCA Pro	GIY 185	A.F.Q	GAG Glu	GAG Glu	TCC Ser	Val 189	Glu	ÇAG Glu	Phe	GTG Val	Arg 190	AZG	575
50	AAC AAC	CTC	617 617	GCC A · a 195	G1:	GTC 741	Phe	GAG Giu	CCC Arg	Lou	ATC Ile	GAG	Pro	Phe 205	TGC Cys	TCA Ser	623
55	Giy	GTA Val	7A7	GC.	GLY GLY	GAT ASD	CCT Pro	TCG Ser 215	NAG Lya	CTT Lav	AGT	ATC Met	Lys 220	GC.	GCA ALA	Phe	673
60	G1y	Lys 125	Va:	305 417	YCC	TTG	GAG G1:: 236	GAG Glu	ATT Ile	GCA Gly	CCT	Ser 235	Ile	À.	CLY	GCA Gly	719
	àcc	ATC	AAG	ccc	A**	240	CA:	***	GCG	446	MC	ccc	***	ccc	CCA	AGG	763

	340					245					250					255		
5	"T Aup	CCC Pro	CGA Arg	Leu	Pro 260	are CCV	PTO	lys Lys	GGA Gly	CAG Gln 265	ACC Thr	VA1	Y] # OCY	TCT Ser	Phe 270	AGG	81.5	•
	AAG Lys	CCT Cly	CTA Leu	GCC Ala 275	ATG Met	CTC	CCG Pro	AAT Aun	GCC Ale 280	ATC Ile	GCA Ala	TCT Sez	AGG ATG	CTG Leu 285	GGT Gly	NCT SOT	863	
10	AAA Lys	GTC Val	AAG Lys 290	CTG Leu	TCA Ser	TGG TCD	AAG Lys	C17 Leu 295	ACC Thr	AGC Ser	ATT	ACA The	Lye 300	GCG Ala	GAC Asp	AAC Am	911	
15	G) n	GGA Gly 305	TAT Tyr	GTA Val	TTA Leu	GLY	TAT TYE 310	Glu	ACA Thir	CCA Pro	GAA Glu	GGA Gly 315	CTT Leu	Val	TCA Ser	Vel GTG	959	
20	Gyu Cyu Cyc	GCT Ala	Lys Lys	AGT Ser	Val	ATC Ile 325	ATG Met	ACC The	Ile Ile	CCG PTO	TCA Ser 330	TAT Tyt	GTT Val	Y7e OC.1	AUT Ser	GAT Asp 335	1007	
25	ATC 11e	TTG Leu	AF¶ CGC	CCA Pro	CTT Leu 340	TCA Ser	Ile	GAT Asp	GCA Ala	GCA Ala 345	gat Asp	A) E	CTC Leu	TCA Set	AAA Lye 350	Phe	1055	
30	TAT Tyt	TAT Tyr	CCG PTO	CCA PTO 355	GTT Val	CCT Ala	GCT Ala	GTA V41	ACT Thr 360	GTT Val	TCA Set	TAT Tyr	CCA PTO	Lys 165	Glu Glu	OCT Ala	1103	
	ATT Ile	AGA Arg	Lys 370	Glu Glu	TGC Cys	TTA Lou	ATT Ile	GAT Asp 375	Gly	€)ri GYC	Leu	G) u	GCT Gly 380	TIC Phe	ey A GGC	Gln	1151	
35	TTG Leu	CAT His 385	CCA Pro	Arg	AGC Ser	CAA Gln	GGA Gly 140	GTC Val	GAG Glu	ACT	TTA Leu	395 61y 600	ACA Thr	ATA Ile	TAT TyT	AGC Ser	1199	1
40	TCT Ser 400	TCT Ser	CTC Lou	TTT Phe	Pro	AAT Amn 405	CGT Arg	GCT Ala	CCT Pro	GCT Alla	GGA Gly 410	aga	CTG Val	TTA Leu	CTT	Leu 415	1247	
45	AAC A#n	TAT Tyr	ATC 1le	e17 ecc	.3T Gly 430	TCT Ser	ACA Thr	AAT Aan	ACA Thr	GCG Gly 425	ATC Ile	GTC Val	TCC Ser	Lys	ACT Thr 430	CYC CYC	1295	
50	AGT Ser	CIAC Asp	TTA Leu	GTA Val 435	GGA Gly	YIF	GTT Val	GAC ABD	CGT Arg 440	GAC Asp	CTC Leu	AGA Arg	Lys	ATG Mot 445	TTG Leu	ATA Ile	1343	
30	AAC Aan	CCT Pro	AGA Arg 450	A) a GCA	GCA Ala	GAĈ ASP	CCT Pro	TTA Leu 455	CCA Ala	TTA Leu	GLy GLy	Val	CGA Arg 460	Val	TEP	CCA Pro	1391	
55	CAA Gln	GCA Ala 465	ATA Ile	CCA Pro	CAG Gln	TTT Phe	TTG Leu 470	Ile	Gly	CAC His	CTT Lou	GAT ASP 475	Arg	CTT	ALA	ALA	1439	ı
60	Ala 460	AAA Lya	TCT Ser	GCA Ala	CTG Leu	GGC Gly 485	ÇAA Gln	Gly	GLY	TAC Tyr	GAC Asp 490	Gly	TTG Leu	TTC Phe	CTA	61y 495	1487	ı
	GGA	AAC	TAC	GTC	GCA	GCA	CTT	GCC	TTG	GGC	CCA	TOC	ATC	GAG	GGT	ecc	1535	i

	Cly Aem Tyr Vel Ale Cly Vel Ale Leu Cly Arg Cye Ile Glu Gly Ale 500 505	
5	AMC GAG AGT GCC TCA CAA GTA TCT GAC TTC TTG ACC AAG TAT GCC TAC Tyr Glu ser Ale Ser Gln Val Ser Amp Phe Leu Thr Lye Tyr Ale Tyr 515 525	1583
10	AND TOU TOGARGINGT GCATCTCTTC ATTITUTION ATATACGAGG TOAGGCTAGG	1639
	ATCOCTABLE CATCATCAGE TECTOTAGES TETCTTEANT TORRESPONDE ANTITACTO	1699
	ATGCARTATO TOCTOTTTCC TOTAGTTCCA GCATGTACAT COUTATGGGA TARAGTAGAA	1759
15	TANGCTATTC TGCANAGCA OTGATTTTTT TTGANAMAA AAAAAAAAAA AA	1511
	(2) INFORMATION FOR SEQ ID NO:10:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LEMCHH: 529 mulno meids (B) TYPE: mulno meids (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
30	Ale Thr Net Ale Thr Ale Thr Vel Ale Ale Ale Ser Pro Leu Arg Gly 15	
	Arg Val Thr Gly Arg Pro His Arg Val Arg Pro Arg Cys Ala Thr Ala	
35	Ser Ser Ala Thr Giu Thr Pro Ala Ala Pro Gly Val Arg Leu Ser Ala	
40	Glu Cys Val Ile Val Gly Als Gly Ile Sar Gly Lau Cys Thr Als Gls 50	
	Ale Leu Ala Thr Arg Tyr Gly Val Ser Amp Leu Leu Val Thr Glu Ala 65 70 80	
45	Arg Amp Arg Pro Gly Gly Amn Ile Thr Thr Val Glu Arg Pro Amp Glu 95	
50	Gly Tyr Leu Trp Glu Glu Gly Pro Asn Ser Phe Gln Pro Ser Asp Pro 100 105	
~	Val Leu Thr Met Als Val Asp Ser Gly Leu Lys Asp Asp Leu Val Phe 115 125	
55	Gly Asp Pro Amn Ala Pro Arg Phe Val Leu Trp Glu Gly Lys Lau Arg 135	
	Pro Val Pro Ser Lys Pio Gly Asp Leu Pro Phe Phe Ser Leu Het Ser 145 150 150	
60	Tie Pro Gly Lys Leu Arg Ale Gly Leu Gly Ale Leu Gly Yle Arg Pro 165 170	
	Pro Pro Pro Gly Arg Glu Glu Ser Val Glu Glu Phe Val Arg Arg Am 43	

Leu Gly Alm Glu Val Phe Glu Arg Leu Ile Glu Pro Phe Cys Ser Gly Val Tyr Ale Gly Amp Pro Ser Lys Leu Ser Het Lys Ale Ale Phe Gly 210 215 220 Lys Val Trp Arg Leu Glu Glu Ile Gly Gly Ser Ile Ile Gly Gly Thr The Lys Als The Gln Amp Lys Gly Lys Amn Pro Lys Pro Pro Arg Amp 15 Pro Arg Leu Pro Ala Pro Lys Gly Gln Thr Val Ala Ser Phe Arg Lys 260 265 270 Gly Leu Ala Met Leu Pro Amn Ala Ile Ala Ser Arg Leu Gly Ser Lys 275 280 285 Val Lys Leu Ser Trp Lys Leu Thr Ser Ile Thr Lys Ale Asp Asn Gln 290 295 300 Gly Tyr Val Leu Gly Tyr Glu Thr Pro Glu Gly Leu Val Ser Val Gln 25 305 310 316 Ala Lys Ser Val Ile Het Thr Ils Pro Ser Tyr Val Ala Ser Asp Ile 325 330 135 30 Leu Arg Pro Leu Ser Ile Asp Ala Ala Asp Ala Leu Ser Lys Pha Tyr Tyr Pro Pro Val Ala Ala Val Thr Val Ser Tyr Pro Lym Glu Ala Ile 355 360 365 Arg Lys Glu Cys Leu Ile Asp Gly Glu Leu Gln Gly Phe Gly Gln Leu His Pro Arg Ser Gln Gly Val Glu Thr Leu Gly Thr Ile Tyr Ser Ser 40 185 199 400 Ser Leu Phe Pro Asn Arg Ala Pro Ala Gly Arg Val Leu Leu Leu Asn 45 Tyr Ile Gly Gly Ser Thr Aen Thr Gly Ile Val Ser Lye Thr Glu Ser Asp Leu Val Gly Ale Val Asp Arg Asp Leu Arg Lys Net Leu Ile Asn 445 Pro Arg Ale Ale Asp Pro Leu Ale Leu Gly Val Arg Val Trp Pro Gln
450 455 Ala Ile Pro Gln Phe Leu Ile Gly His Leu Amp Arg Leu Ala Ala Ala 475 480 Lys Ser Ale Leu Cly Cln Gly Gly Tyr Asp Gly Leu Phe Leu Gly Gly Asn Tyr Val Als Gly Val Als Leu Gly Arg Cys Ile Glu Gly Als Tyr Glu Ser Ala Ser Gin Val Ser Asp Phe Leu Thr Lys Tyr Ala Tyr Lys

520 (2) IMPORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1847 base pairs
(B) TYPE: mucleic acid
(C) STRANDENESS: single
(D) TOPOLOGY: linear (11) MOLECULE TYPE: CONA

(iii) RYPOTHETICAL: NO

(ix) FEATURE:

(A) MAME/KEY: CDS (B) LOCATION: 55..1683 (D) OTHER IMPORMATION: /product= *soybean protox-1 cDMA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: CTTTAGCACA GTGTTGAAGA TAACGAACGA ATAGTGCCAT TACTGTAACC AACL ATG

GTT TCC GTC TTC AAC GAG ATC CTA TTC CCG CCG AAC CAA ACC CTT CTT Val Ser Val Phe Ann Glu Ile Leu Phe Pto Pto Ann Gln Thr Leu Leu 370 35

GAG GAA TCC ACC GCG TCT CCG CCC AAA ACC AGA GAE TCC GCC CCC GTG Glu Glu Ser Thr Ala Ser Pro Pro Lys Thr Arg Amp Ser Ala Pro Val 405

CAC TOC OTC OTC OTC OCC OGA OGC OTC AGC OGC CTC TOC ATC OCC CAG Amp Cym Val Val Val Oly Oly Oly Val Ser Oly Leu Cym Ilm Ala Clin 420

CGA GAC CGC GTC GGC GGC AAC ATC ACC ACG ATG GAG AGG GAC GGA TAC Arg Amp Arg Val Gly Amn Ile Thr Thr Her Glu Arg Amp Gly Tyr 455 CTC TOG GAA GAA GGC CCC AAC AGC TTC CAG CCT TCT GAT CCA ATG CTC Leu TFP Glu Glu Gly Pro Aan Ser Phe Gln Pro Ser Aap Pro Net Leu 475

ACC ATG CTG CTC CAC ACT GCT TTA AAG GAT GAG CTT GTT TTG GGG GAT Thr Het Val Val Amp Ser Gly Leu Lys Amp Glu Leu Val Leu Gly Amp

P. 93

	Pro 500	GAT Amp	77 ∞7	CCT PTO	COG	777 Phe 505	GTG Val	TTG Leu	TCG Ttp	AAC Am	AGG Arg 510	TÀR YYO	Leu	AGG Arş	PT0	GTG Val S15	537	
,	CCC Pro	Gly GOO	Lys	CTG Leu	ACT The 520	gat As p	TTO	SEO CCI	TIC Phe	TTT Phe 525	GAC MIP	TTG Leu	ATG Met	AGC 847	ATT 11- 530	Gly	585	
10	GC Gly	AAA Lys	114	AGG Arg 535	GCT Ala	ejà ooc	Phe	GLY	OCG Ala 540	CTT Leu	GCA	LTT Ile	Arg	CCT PTO 545	Pro	PTO	613	
15	ÇCA Pro	GGT Gly	CAT His 550	G) u GAG	GAA Glu	TCG Ser	GTT Val	GAA Glu 555	G1u GAQ	TTT Phe	GTT Val	Arg	CGG Arg 560	ᄹ	CTT Less	Gly	681	
20	gat Asp	GAG Glu 565	GTT Val	TTT Phe	GAA Glu	CGG	11G Lau 570	ATA Ile	97 n 696	CCT Pro	TTT Phe	TGT Cyp 575	TCA Ser	GLY	GTC Val	TAT	729	
	6CA Ala 580	Gly	gat Asp	CCT Pro	TCA Ser	AAA Lyw 505	Leu	AGT Sef	ATG Net	aaa Lys	GCA Ala 590	GCA Als	TTC Phe	G17 GGC	lys Lys	GTT Val 595	777	
25	TEP	AAC Lys	CTG Lev	GAA GAA	AAA Lys 600	AAT Asn	GGT Gly	GGT Gly	AGC Sur	ATT Ile 605	ATT Ile	GLY	GCA Gly	ACT The	Pho 610	Lys	825	
30	GCA Ala	ATA Ile	Gln Gln	GAG Glu 615	aga Arg	AAT Asn	GIY	ALA	TCA Ser 620	Lys	CCA Pro	Pro	Arg	GAT Asp 625	Pro	Arg	873	
35	CTG Leu	CCA Pro	Lys 630	Pro	AAA Lys	Gly	GAG Gln	ACT Thr 635	GTT Val	ejà Gyy	TCT Ser	TTC Phe	CGG Arg 640	Lys	67A GGY	CTT Leu	921	
40	ACC	ATG Net 645	TTG Leu	Pro	gat As p	AL &	ATT 11e 650	fCT Ser	V) a CCC	YLO	CTA Leu	655 655	AAC A4n	Lys	GTA Val	Lys	969	
	TTA Leu 660	Ser	TGG Trp	ANG Lya	CTT Leu	TCA Ser 665	AGT Ser	ATT Ile	AGT Ser	iye	CTG Leu 670	GAT AND	Mi.	C) Y	GAG Glu	TAC Tyr 675	1017	
45	AGT Ser	TTG Leu	ACA Thr	TAT Tyr	GRA Glu 680	ACA Thr	CCA Pro	67Y	GJ A GCY	GTG V&1 685	CTT V41	TCT Ser	TTG Lou	CTU CYC	TGC Cys 690	AAA Lys	1365	
50	ACT Thr	Val	Val	CTG Lau 695	ACC	ATT	Pro	TCC Ser	TAT Tyr 700	مبري Va:	Ala GCT	AGT Ser	ACA The	Lau 705	Leu	CGT Arg	1113	
55	Pro	CTG Leu	Ser 710	GCT Ala	GCT Ala	GCT Ale	YT*	GAT Aud 715	A) a	Leu	TCA Ser	AAG Lys	711 Phe 720	TAT	TAC	Pro	1161	
60	CCA Pro	GTT Val 725	GCT Ala	CCA Ala	GTT Val	tec Ser	ATA 11e 730	TCC Ser	TAT Tyr	CCA Pro	Lys	GAA Glu 735	GCT Als	ATT Ile	aga atu	TCA	1209	
	GLA	TOC	TTG	ATA	GAT	GCT	GAG	TTG	AAG Lare	GOG	TT:	COT	CAA G\n	TTG	CAT	Pro	1257	

WESTERN MARKET THE STREET RESERVED BROWN MARKET

PER ROW ROLL STREET STREET

7 - 1
7
T. T.
45.5
-
9.5
5.5
5->
خدد
70.
-
-
• :
-
-
1.0
100
3.A.
3.0
-
-
•;1
÷.
~~.
- :
-
7.5

4.4
~
7.5
7
,
·
-
47.4
2-
يعثين
SAME TO SAME AND THE SAME SAME SAME SAME SAME SAME SAME SAM
•
3
-
~
3-2
~
-
.
i.:
2.0
2.
~~~

	7						745					750					755	
	OGT Arg	Se:		CAA Gln	OCA Gly	GTG V&1 760	GAA Glu	NCA Thr	TTA Lau	ej A Ocy	ACT The 765	ATA Ile	TAC Tyr	AGC Ser	TCA Ser	TCA Ser 770	CTA Leu	1305
	TTC Phe	Pr		AAC Aun	CCA Arg 775	GCA Ale	CCA PTO	CCT Pro	G17 GCY	AGG Arg 780	GTT Val	CTA Leu	CTC Leu	TTG Leu	AAT Asn 785	ta: Tyr	ATT Ile	1353
,	CTA CCY	GC:	, ,	ZCA Ala 790	ACT Thr	AAT Aan	ACT Thr	GCA Gly	ATT Ile 795	TTA Leu	TCG 5er	aag Lys	ACC The	GAC Asp 800	AGT Ser	GPY CYY	CTT Leu	1401
5	GTG Val	GA G1:		ACA Thr	GTT Val	GAT Asp	CGA ATU	GAT Asp 810	TTG Leu	agg Arg	AAA Lye	ATC Ile	CTT Leu 815	ATA Ile	MC Van	CCA Pro	aat asn	1449
)	Ala 820	Gl	5 6	GAT R#P	CCA PTO	TIT Phe	GTA Val 825	OTG Val	27A 600	GTG Val	AGA AGA	CTG Leu 830	TGC TTP	CCT PTO	G) n	GCT Ale	ATT Ile 835	1497
5	Pro	ÇA Ç1	0 1	r TC Phe	TTA Lau	GTT Val 840	Gly	CAT His	CTT	CAT Asp	CTT Leu 645	CTA Lau	GAT Asp	GTT Val	AL:	AAA Lym 850	CCT Ala	1545
	TCT Ser	AT.		AGA Arg	AAT Aan 855	ACT The	GGC Gly	TTT Phe	Glu Glu	GOG Gly 860	CTĊ Leu	TIC Phe	CTT Leu	GQG Gly	GGT Gly 865	AAT Aan	TAT Tyr	1593
3	GIG Val	TC Se		GIY 870	GTT Val	GCC Ala	TTG Leu	ej A GC/	CGA AFG 875	TCC Cys	GTT Val	G)u	G1y	880 600 600	TAT Tyt	GAG Glu	CTA Val	1641
5	GCA Ale	Al 88		GAA Glu	GTA Vel	AAC Aan	GAT Asp	TTI Phe 85	cTC Le.	PCA Thr	aat asn	AGA	GTG Val 895	TAC Tyr	aaa Lys			1683
																	TTGAAT TTGCTC	1743 1803
												w						1847
;	(2)	IN							10:1									
)			1.	į) :	(A	LE:	NGTH PE:	: 54 Marin	ERIS 3 em 5 ec line	ino i		•						
			( i	£) 1	HOLE	CULE	TYP	E: p	rote	in								
•					_				TION									
	Het 1	VA	1	Ser	Val	Phe 5	Aan	Glu	110	Leu	Phe 10	Pro	Pro	Asn	Gin	Thr 15	Leu	
											Ser	Dh-	Phe	The	Ser	Pro	The	
)	Leu	Ar	9	Pro	Ser 20	Leu	His	Ser	710	25		F1,0			30			

Ala Glu Glu Ser Thr Als Ser Pro Pro Lys Thr Arg Asp Ser Als Pro Val Amp Cym Val Val Val Gly Gly Gly Val Ser Gly Leu Cym Ile Ala 65 70 75 80 Gin Ala Leu Ala Thr Lys His Ala Asn Ala Asn Val Val Val Thr Glu 85 90 95 Ala Arg Amp Arg Val Gly Gly Amn Ile Thr Thr Het Glu Arg Amp Gly 15 Tyr Leu Trr Glu Glu Gly Pro Aun Ser Phe Gln Pro Ser Amp Pro Met Lou Thr Het Val Val Asp Ser Gly Lau Lys Asp Glu Leu Val Lau Gly 130 135 140 Asp Pro Asp Ala Pro Arg Phe Val Leu Trp Asm Arg Lys Leu Arg Pro 145 150 150 Val Pro Gly Lys Leu Thr Asp Leu Pro Phe Phe Asp Leu Het Ser Ile Gly Gly Ly: 11e Arg Ala Gly Phe Gly Ala Leu Gly Ile Arg Pro Pro 180 185 Pro Pro Gly Kis Glu Glu Ser Val Glu Glu Phe Val Arg Arg Asn Leu 195 200 205 Gly Asp Glu Val Phe Clu Arg Leu Ile Glu Pro Phe Cye Ser Gly Val Tyr Ala G'y Amp Pro Ser Lys Leu Ser Het Lys Ala Ala Phe Gly Lys 225 230 230 Val Trp Lys Lau Glu Lys Asn Gly Gly Ser ile I'e Gly Gly Thr Phe 245 250 255 Lys Als Ile Gln Glu Arg Asn Gly Als Ser Lys Pro Pro Arg Asp Pro 260 265 270 45 Arg Leu Pro Lys Pro Lys Gly Gln Thr Val Gly Ser Pha Arg Lys Gly 275 280 285 Leu Thr Het Leu Pro Asp Ale Ile Ser Ale Arg Leu Gly Asn Lys Val Lys Leu Ser Trp Lys Leu Ser Ser Ile Sor Lys Leu Asp Ser Gly Glu 305 310 320 The Ser Leu Thr Tyr Glu Thr Pro Glu Gly Val Val Ser Leu Gln Cys Lya Thr Val Val Leu Thr Ile Pro Ser Tyr Val Ala Ser Thr Leu Leu 340 345 350 arg Pro Leu Ser Ala Ala Ala Ala Asp Ala Lau Ser Lys Phe Tyr Tyr

Pro Pro Val Ala Ala Val Ser Ile Ser Tyr Pro Lys Glu Ala Ile Arg

		370					375					380						
	Ser 385	Glu	Сув	Lau	Ile	390	G) Y	G) u	Leu	Lys	G1y 395	Phe	Ģly	Gln	LeL	400		
5	Pro	Arg	Ser	Gln	Cly 405	Val	Glu	Thr	Leu	Gly 410	Thr	Ile	tyr	Ser	Ser 415	Ser		
10	Leu	Phe	PTO	Asn 420	Arg	Ala	Pro	Pro	Gly 425	Arg	Val.	Letu	Lau	140 430	Asn	Tyr		
	Ile	Gly	Gly 435	Ale	Thr	<b>A</b> gen	Thr	Gly 440	Ile	Leu	5er	Lys	Thr 445	Asp	Ser	G) n		
15	Leu	Val 450	Glu	Thr	Val	ASP	Arg 455	Asp	Lou	Arg	Lys	11e 460	Leu	176	AST.	Pro		
	Aan 465	Ala	Gln	Asp	PTO	Phe 470	Val	Val	Gly	Val	Arg 475	Leu	Trp	Pro	Gln	Alm 480		
20	Ile	PTO	Çla	Phe	Leu 485	Val	Gly	His	Leu	ASD 490	Leu	Leu	Asp	Val	ala 495	Lys		
25	Ale	Ser	Ile	Arg 500	Amn	Thr	Gly	Phe	Glu 505	ĠĵĄ	Leu	Pho	Leu	Gly 510	Gly	Am		
	TYT	Val	Ser 515	Gly	Val	Y) a	Leu	230 234	Arg	Cys	Val	Glu	01y 525	Ala	1yx	Glu		
30	Va1	λla 530	Ma	Glu	Val	Asn	Авр 535	Phe	Leu	Thr	Asn	Arg 540	Val	Tyr	Lye			
	(2)	INF	ORNA	TION	FOR	SEQ	ID :	NO : 1	3:									
35		ı		A) L	ENGT	HARA R: 5	83 P		pair	•								
						NCSO:			gle									
40		(ii	) HO						nomi	e)								
		(iii	) HY	POTH	ETIC	AL:	NO											
45		(ix	ı re	A) N	ANE/	KEY:	pro	mote 581	r									
50		romo	(	ם (פ	THER	INP	ORMA	TION	: /t	met	ion•	*87	abid	opsi	s pr	OLOX-	1	
		(zi	1 SE	QUEZN	CE D	ESCR	IPTI	ON:	5£Q	ID N	0:13							
55	GA)	TTCC	CAT	CCAN	TTAT	AT A	ATTA	TCAT		TTG	AATA	AGC	ATG:	TCC ·	crit	TATTA	A	J
	AGA	OCTT	TAA	TAAA	0777	0G T	AATA	ATGG	а ст	TIGA	CTTC	**	cree	ATT .	CTCA	TGTAL	T	12
	TAJ	TTAR	TAT	TTAC	ATCA		TTTG	GTCA	C TA	ATAT	TACC	***	TTAA	TAT	ACTA	DTAAA	t	16
60	TA	TTCC	CAA	ATAA	AACA	CT A	ATTC	cuu	T AA	AGGG	TCAT	TAT	GATA	aac	ACGI	ATTGA	A	24
	c T	CATA	ALG	CAAA	GCAA		TAAT	GGCT	7 70	AAGG	TTTG	CCT	TATA	TAT	GACA	****	A	30

	·	
	WARACCTT TOGTTATATA TCTATTCCCC CTATACCAT CTTATACCAA TTTCCCCCTA	3
5.	ACTAMATAN TARANTANAC GTRATEGECC PETETATATE TOGGECARAC CONSCICTAR	4
3.	ACCUARACCA RAGRARANCE ATROCOTROS OTROROROS TERTOCICOS TOTORITOCA	4
	GOTGAMIATT TETEGTEGTE TTETECTTTE TTETGAMGAA GATTMETENA TETGAMAAA	5
10	ACCAMGAGE TOACAMATT COGMATTETC TOCCATTTCC ATG	5
	(2) INFORMATION FOR SEQ ID NO:14:	
15	(1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1848 base pairs  (8) TYPE: nucleic acid  (C) STRANDERMESS: single  (D) TOPOLOGY: linear	
20	(ii) HOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
30	TOGATOTITO TAGGOTGATO COMMATOTT COTOGGAMES COCTOGGGGO TOTOGCCCTT	
	OGRECTORIC OCCIGNARGA SCITTOCTOT TOCCCCGRAG RITGIGAGGT RINITGIGAC	1
	CTCTGAGACT GACTTCCTTT GTCGTCACTT TGAGTGGAGT TATGGATTGA CCTGACGTGC	1
35	CTCAGATGGA TYCTTCCTCC GRAGGCCCCTG GTCATTTCGC AGAATCTGTA ATCTTATTCC	2
	CTTUTTOGC GARACTUTE CASCITISCAT GIACTUATUS ATCTTUTGAA GUAGUTTUTC	3
40	CAGACTETOT GGAGGCTTCC TGGCGAAATA TTGGGCTGTA GGTCCTGGAC GAAGACCCTT	3
	GATCATGGCC TCAATGAGAA TCTCATTCGG CACCGTAGGC GCTTGTGCCC TCAATCGCAA	4
	GAACCTICGT ACATATOCCT GAAGGTATIC TICGICATCT IGIGICANT GGAACAGAGC	4
45	CTGAGCTOTC ACCGACTTCG TITGAAAGCC TTGGAAGCTA GTAACCAACA TGTGCTTAAG	5
	CTTCTGCCAE GACGTGATAG TCCCTGGCCG AAGAGAAGAA TACCATGTTT GGGCTACATT	6
50	COGGACTOCC ATGACGAAGG ACTTCGCCAT GACTACAGTG TTGACCCCAT ACGAAGATAT	6
	ACTIFICATION TAGGITEATEA GAAACTIGCTT TIGGATETIGAG TIGGCCCATEAT ACATEGOGAG	7
	CTGAGGTGGC TTGTATGATG GGGAGCATGG GGTAGCCTGC AGTTCTGCTG CCAAGGJAGA	7
55	ASCATCATCA AMASTAMASS CATCATCATT AMATCATCA TACCATCCAT CCTCSTTGAA	8
	TARGETTET TEACHASET CECTOTOTTE GOSCETTORA TETTOTTEAT CTTGAACAAG	9
	ATGREGERET TETTERETES CITEGTESAT ETTTETTTSS AGRICAGEER STESCACERT	9
60	ATMACOCACT TOTTCACTOR CITEGRATIC CONTINUO NAMEDIACON GIAGOSTA	
60	CITCHCOTTC TETCTITGTA CETGFE'ATG GATGATCTCC ATGTCCCTAA TGTCTTGGTC	10

	CAACTCCTCC	TOTTGGAGTG	TCAGACTGGT	COCTTTCCTC	TTCTGGCTTC	CAGCCTCTCG	1080
	GAGAAAGA	OTTICTICAT	TTGGGTCCAG	COGCTGCAGT	GCAGTGGTCC	CTOUTGCTGA	1140
<b>5</b> ·	ACCTTICTIC	OCTOCCATGA	CANAGGICAG	TGCTTGCCGA	AGGTGGTCGA	AAAGGGTTCA	1200
	CTAGAGGTGG	GAGCCAATGT	TGGGGACTTC	TCAAGTGCTA	TGAGTTAAGA	ACAAGGCAAC	1260
10	ACAAAATGTT	AAATATTAAT	ACCIPITICATO	TTTCGAAGCA	TTATTTCCCT	TTGGGTATAA	1230
	TGATCTTCAG	ACGARAGES:	CCTTCATCAT	TGCGATATAT	GTTAATAGAA	GGAGGAGCAT	1380
	atgaratuta	AGAGACAACA	TGAACAATCG	TGTAGCATTG	TTAATTCATC	ATCATTTAT	1440
15	TATTATGGAA	MATAGAMAÇ	AATATTGAAT	TACAPATGTA	CCTTTOGCTT	GACAGAAGAT	1500
	AAAAGTACAA	GCTTGACGCA	CGAGCAAGTA	CANOTCAGTG	TGAACAGTAC	GGGGGTACTG	1560
	TTCATCTATT	TATAGGCACA	GGACACAGCC	TGTGAGAAAT	TACACTCATG	CCCTTTACAT	1620
20	TTACTATTGA	CTTATAGAAA	APTCTATCAG	GACTGGATAG	ccrrrrcccc	TTTANGTOGG	1680
	TOCCTTTTTC	COCGATTAAG	CCGAATCTCC	CTTGCGCATA	GCTTCGGAGC	ATCOGCANCO	1740
25	TTCCTCACGA	TCATGCCCTT	CTCATTGTGT	ATGCTTTTAA	TOOTGAATTC	CAAGGTACCT	1800
	GTCCATAAAC	CATACTTOGA	AGACATIGTT	AAATTATGTT	TTTGAGGACC	TICGGAGGAC	1860
30	CAAGGCCCCC	AACAGTCGTG	TTTTTGAGGA	CCTTCCGAAG	ATGRAGGCCC	CCAACAACAC	1920
30	CTATCCATAA	AACCAACCTA	TOCACAAAAC	CGACCCCATT	CACCCTTCAT	TEGCCTCACC	1980
	AACAACCCTA	attaccitct	TOGTTTAAAT	TTTTTAGGGT	CAATTTGGTC	ATCACCATCC	2040
35	ACTUTCACTO	CACAMACTCA	J-ATCMATAA	ACAGACTCAA	TCACCCAAAC	TGACCATACC	2100
	CATAAAACCG	CCCCACCCTT	CTAGCGCCTC	GCCAGAAACC	AGAAACCCTG	ATTCAGAGTT	2160
40	CAAACTTAAA	ACCACCATAA	CTTICACCTT	GGAACTCGAA	TCAGGTGCAT	TTTTTTCCAA	2220
***	ATCACACAAA	ATTAAATTTC	GCATCCGATA	ATCAAGCCAT	CTCTTCACTA	TOGTTTTAAG	2380
	TOTTGCTCAC	actagratat	TTATGGACTA	ATCACCTGTG	TATCTCATAC	AATAACATAT	2340
45	CAGTACATCT	AAGTTGTTAC	TCAATTACCA	ANACCGAATT	ATAGECTTEG	AAAAGGTTA	2400
	TCGACTAGTC	ACTCAATTAC	CALACTALA .	CTTTAGACTT	TCATGTATGA	CATCCAACAT	2460
50	GACACTOTAC	TOGACTARAD	CACCTITICAA	GCTACACAAG	GAGCAAAAAT	AACTAAL. IT	2520
30	CCTACTTCTA	GGAGCTAAAG	TATATOTCCA	CAACAATAGT	TAAGGGAAGC	CCCCAAGGAC	2580
	TAAAAATTCC	TTTTACCTCT	TGAAACTTTT (	<b>GTCGTGGTCT</b>	ACTITITOAC	TTTAMETTE	2640
55	AAAATTTGAC	ATTTTATCAC	CCCTTAACTC '	TTAAAACCAT	TTANATTACA	TTCTTACTAG	2700
	ATTATAGATG	ATTTTTTTT	GAAAAGTTTT 1	TAAGACATGT	TTACACATTG	ATTAAAATCA	2760
60	TTTGTTCAAT	TTCCTAGAGT	TAAATCTAAT I	AAAATTATT	CTATTA/VAGA	TACTTTCACG	2820
	AGCTCTAAAT	ATTTTTATTT	TTTCATTATG	GAATTTTGTT	AGAATTCTTA	TAGACCTTTT	2880
	THE COLUMN	****	~				2010

DOMESTIC DESCRIPTION OF THE PROPERTY OF THE PR

	TITOMAKE	CUCTICION	CCONTINUEN	W111W1111A			
5	AAATCAACTT	ATGAAATTGT	CTTGGAAACT	ACCTCTAACC	CONTRIGANTO	AATTTGAATG	3060
	AAAATTAAAC	CAACTTACGG	AATCGCCCAA	CATATGTCGA	TTAXACTOCA	TATOGATACA	3120
	TATGAAGAAG	CCCTAGAGAT	AATCTAAATG	GTTTCAGAAT	TGAGGGTTAT	TTTTTCAAGT	3180
10	TTGATGGGAA	GATAAGACCA	TAACGGTAGT	TCACAGAGAT	AAAAGGGTTA	TTTTTTCAG	3240
	AAATATTTGT	GCTGCAATTG	ATCCTGTGCC	TCAAATTCAG	CCTGCAACCA	AGGCCAGGTT	3300
15	CTAGAGCGAA	CANOGECEAC	GTCACCCUTG	GCCCGTCAGG	CCAAGCAGCT	CTTGTGCAGA	3360
	CTTTGAGAGG	GATTGGATAT	CAACGGAACC	AATCACGCAC	GGCAATGCGA	TTOCCAGCCC	3420
	ACCTGTAACG	TTCCAGTGGG	CCATCCTTAA	CTCCAAGCCC	AACOGCCCTA	CCCCATCTCG	3480
20	TOGTGTCATC	CACTOOCCC	CACAGGGGGT	CAGCTOCOCA	ACGCCGCCGG	AAATGGTCGC	3540
	CGCCACAGCC	ACCCCCATGG	CEACCGCTGC	ATCUCCUCTA	CTCAACGGGA	CCCGAATACC	3600
25	TOCOCHICTO	CGCCATCGAG	GACTCAGCGT	GCGCTGCGCT	GCTGTGGCGG	GCGGCGCGGC	3660
	CGAGGCACCG	GEATCCACCG	GCGCGCGGCT	GTCCGCGGAC	TOCCTTOTOG	TOGGCOGAGG	3720
	CATCAGTGGC	CTCTGCACCG	COCAGGCGCT	GGCCACGCGG	CACGGGGTCG	GGGACGTGCT	3780
30	TOTCACGGAG	accesesece	accccacac	CAACATTACC	ACCGTCGAGC	GCCCCGAGGA	384*
	ACCUSTACE						3848

he invention as described herein is contemplated to include the following enumerated embodiments:

- A recombinant DNA molecule comprising a plant protoporphyrinogen exidase (protox) promoter or a functionally equivalent derivative thereof.
- A chimeric gene comprising a plant protox promoter operably linked to a heterologous DNA coding sequence.
- The chimeric gene of claim 2 wherein said plant protox promoter is from a protox-I
  gene.
- The chimeric gene of claim 2 wherein said plant protox promoter is from a protox-2 gene.
- 5. The chimeric gene of claim 2 wherein said protox promoter is from a plant selected from the group consisting of Arabidopsis, soybean, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye, oats, turf grass and rice.
- The chimeric gene of claim 5 wherein said promoter is from a plant selected from the group consisting of Arabidopsis and maize.
- The chimeric gene of claim 6 wherein said promoter is at least 300 nucleotides in
   length.
  - The chimeric gene of claim 7 wherein said promoter is at least 500 nucleotides in length.

- The chimeric gene of claim 8 wherein said promoter is from Arabidopsis and has the equence set forth in SEQ ID No. 13.
- The chimeric gene of claim 8 wherein said promoter is from maize and has the
   sequence set forth in SEQ ID No. 14.
  - 11. The chimeric gene of claim 2 wherein said heterologous coding acquence encodes a modified, herbicide-resistant form of a plant enzyme.
- 12. The chimeric gene of claim 11 wherein said plant enzyme is selected from the group consisting of imidazoleglycerol phosphase dehymatase (IGPD), EPSP synthase, glutemine synthetase (GS), acetyl coenzyme A carboxylase, acetolactase synthase, and protoporphyrinogen oxidase (protox).
  - 13. The chimeric gene of claim 12 wherein said plant enzyme is protox.
    - 14. A recombinant DNA vector comprising the recombinant DNA molecule of claim 1.
    - 15. Plant tissue comprising the chimeric gene of claim 2.
    - 16. A plant comprising the chimeric gene of claim 2.
- The plant of claim 16 wherein said plant is selected from the group consisting of
   Arabidopsis, soybean, cotton, tobacco, sugar beet, oilseed rape, maize, wheat, sorghum, rye,
   25 oats, turf grass and rice.

ALACESSE NAMESANE DANAMANE I ALA ANTE E PARTICIPAL ESPACIALES EN CORRESPONDENT PARTICIPAL

## ABSTRACT OF DISCLOSURE

Promoters naturally associated with plant protoporphyrinogen oxidase (protox) coding sequences, and derivatives thereof, are provided. These promoters can be used to control the expression of an operably linked heterologous coding sequence in a plant cell. These promoters are particularly useful for expressing modified forms of herbicide target enzymes, particularly modified forms of protox, to achieve tolerance to herbicides which inhibit the corresponding unmodified enzymes. Recombinant DNA molecules and chimeric genes comprising these promoters are proviued, as well as plant issue and plants containing such chimeric genes.