Basic Concepts in Matrix Algebra

ullet An column array of p elements is called a vector of dimension p and is written as

$$\mathbf{x}_{p \times 1} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

ullet The transpose of the column vector $\mathbf{x}_{p imes 1}$ is row vector

$$\mathbf{x}' = [x_1 \ x_2 \ \dots \ x_p]$$

A vector can be represented in p-space as a directed line with components along the p axes.

Basic Matrix Concepts (cont'd)

 Two vectors can be added if they have the same dimension. Addition is carried out elementwise.

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_p + y_p \end{bmatrix}$$

A vector can be contracted or expanded if multiplied by a constant c.
 Multiplication is also elementwise.

$$c\mathbf{x} = c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_p \end{bmatrix}$$

Examples

$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} \text{ and } \mathbf{x}' = \begin{bmatrix} 2 & 1 & -4 \end{bmatrix}$$

$$6 \times \mathbf{x} = 6 \times \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} = \begin{bmatrix} 6 \times 2 \\ 6 \times 1 \\ 6 \times (-4) \end{bmatrix} = \begin{bmatrix} 12 \\ 6 \\ -24 \end{bmatrix}$$

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2+5 \\ 1-2 \\ -4+0 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$$

Basic Matrix Concepts (cont'd)

• Multiplication by c>0 does not change the direction of ${\bf x}$. Direction is reversed if c<0.

Basic Matrix Concepts (cont'd)

The length of a vector x is the Euclidean distance from the origin

$$L_x = \sqrt{\sum_{j=1}^p x_j^2}$$

• Multiplication of a vector x by a constant c changes the length:

$$L_{cx} = \sqrt{\sum_{j=1}^{p} c^2 x_j^2} = |c| \sqrt{\sum_{j=1}^{p} x_j^2} = |c| L_x$$

• If $c = L_x^{-1}$, then $c\mathbf{x}$ is a vector of unit length.

Examples

The length of
$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -4 \\ -2 \end{bmatrix}$$
 is

$$L_x = \sqrt{(2)^2 + (1)^2 + (-4)^2 + (-2)^2} = \sqrt{25} = 5$$

Then

$$\mathbf{z} = \frac{1}{5} \times \begin{bmatrix} 2 \\ 1 \\ -4 \\ -2 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.2 \\ -0.8 \\ -0.4 \end{bmatrix}$$

is a vector of unit length.

Angle Between Vectors

• Consider two vectors \mathbf{x} and \mathbf{y} in two dimensions. If θ_1 is the angle between \mathbf{x} and the horizontal axis and $\theta_2 > \theta_1$ is the angle between \mathbf{y} and the horizontal axis, then

$$\cos(\theta_1) = \frac{x_1}{L_x} \qquad \cos(\theta_2) = \frac{y_1}{L_y}$$
$$\sin(\theta_1) = \frac{x_2}{L_x} \qquad \sin(\theta_2) = \frac{y_2}{L_y},$$

If θ is the angle between x and y, then

$$\cos(\theta) = \cos(\theta_2 - \theta_1) = \cos(\theta_2)\cos(\theta_1) + \sin(\theta_2)\sin(\theta_1).$$

Then

$$\cos(\theta) = \frac{x_1y_1 + x_2y_2}{L_xL_y}.$$

Angle Between Vectors (cont'd)

Inner Product

ullet The inner product between two vectors x and y is

$$\mathbf{x}'\mathbf{y} = \sum_{j=1}^{p} x_j y_j.$$

• Then $L_x = \sqrt{\mathbf{x}'\mathbf{x}}$, $L_y = \sqrt{\mathbf{y}'\mathbf{y}}$ and

$$\cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{\sqrt{(\mathbf{x}'\mathbf{x})}\sqrt{(\mathbf{y}'\mathbf{y})}}$$

• Since $cos(\theta) = 0$ when x'y = 0 and $cos(\theta) = 0$ for $\theta = 90$ or $\theta = 270$, then the vectors are perpendicular (orthogonal) when x'y = 0.

Linear Dependence

• Two vectors, x and y, are *linearly dependent* if there exist two constants c_1 and c_2 , not both zero, such that

$$c_1\mathbf{x} + c_2\mathbf{y} = 0$$

 If two vectors are linearly dependent, then one can be written as a linear combination of the other. From above:

$$\mathbf{x} = (c_2/c_1)\mathbf{y}$$

• k vectors, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$, are linearly dependent if there exist constants (c_1, c_2, \dots, c_k) not all zero such that

$$\sum_{j=1}^{k} c_j \mathbf{x}_j = 0$$

 Vectors of the same dimension that are not linearly dependent are said to be linearly independent

Linear Independence-example

Let

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Then
$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + c_3\mathbf{x}_3 = 0$$
 if
$$c_1 + c_2 + c_3 = 0$$

$$2c_1 + 0 - 2c_3 = 0$$

$$c_1 - c_2 + c_3 = 0$$

The unique solution is $c_1 = c_2 = c_3 = 0$, so the vectors are linearly independent.

Projections

• The projection of x on y is defined by

Projection of x on
$$y = \frac{x'y}{y'y}y = \frac{x'y}{L_y}\frac{1}{L_y}y$$
.

The length of the projection is

Length of projection =
$$\frac{|\mathbf{x}'\mathbf{y}|}{L_y} = L_x \frac{|\mathbf{x}'\mathbf{y}|}{L_x L_y} = L_x |\cos(\theta)|$$
,

where θ is the angle between x and y.

Matrices

A matrix A is an array of elements a_{ij} with n rows and p columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix}$$

The transpose A' has p rows and n columns. The j-th row of A' is the j-th column of A

$$A' = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{bmatrix}$$

Matrix Algebra

ullet Multiplication of A by a constant c is carried out element by element.

$$cA = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1p} \\ ca_{21} & ca_{22} & \cdots & ca_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{n1} & ca_{n2} & \cdots & ca_{np} \end{bmatrix}$$

Matrix Addition

Two matrices $A_{n\times p}=\{a_{ij}\}$ and $B_{n\times p}=\{b_{ij}\}$ of the same dimensions can be added element by element. The resulting matrix is $C_{n\times p}=\{c_{ij}\}=\{a_{ij}+b_{ij}\}$

$$C = A + B$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1p} + b_{1p} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2p} + b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{np} + b_{np} \end{bmatrix}$$

Examples

$$\left[\begin{array}{ccc} 2 & 1 & -4 \\ 5 & 7 & 0 \end{array}\right]' = \left[\begin{array}{ccc} 2 & 5 \\ 1 & 7 \\ -4 & 0 \end{array}\right]$$

$$6 \times \begin{bmatrix} 2 & 1 & -4 \\ 5 & 7 & 0 \end{bmatrix} = \begin{bmatrix} 12 & 6 & -24 \\ 30 & 42 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 5 & 10 \end{bmatrix}$$

Matrix Multiplication

- Multiplication of two matrices $A_{n \times p}$ and $B_{m \times q}$ can be carried out only if the matrices are *compatible for multiplication*:
 - $A_{n \times p} \times B_{m \times q}$: compatible if p = m.
 - $B_{m \times q} \times A_{n \times p}$: compatible if q = n.

The element in the *i*-th row and the *j*-th column of $A \times B$ is the inner product of the *i*-th row of A with the *j*-th column of B.

Multiplication Examples

$$\begin{bmatrix} 2 & 0 & 1 \\ 5 & 1 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ -1 & 3 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 10 \\ 4 & 29 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 11 \\ 2 & 29 \end{bmatrix}$$

$$\left[\begin{array}{cc} 1 & 4 \\ -1 & 3 \end{array}\right] \times \left[\begin{array}{cc} 2 & 1 \\ 5 & 3 \end{array}\right] = \left[\begin{array}{cc} 22 & 13 \\ 13 & 8 \end{array}\right]$$

Identity Matrix

• An *identity matrix*, denoted by I, is a square matrix with 1's along the main diagonal and 0's everywhere else. For example,

$$I_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } I_{3\times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- If A is a square matrix, then AI = IA = A.
- $I_{n \times n} A_{n \times p} = A_{n \times p}$ but $A_{n \times p} I_{n \times n}$ is not defined for $p \neq n$.

Symmetric Matrices

- A square matrix is *symmetric* if A = A'.
- If a square matrix A has elements $\{a_{ij}\}$, then A is symmetric if $a_{ij}=a_{ji}$.
- Examples

$$\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \qquad \begin{bmatrix} 5 & 1 & -3 \\ 1 & 12 & -5 \\ -3 & -5 & 9 \end{bmatrix}$$

Inverse Matrix

• Consider two square matrices $A_{k \times k}$ and $B_{k \times k}$. If

$$AB = BA = I$$

then B is the *inverse* of A, denoted A^{-1} .

- The inverse of A exists only if the columns of A are linearly independent.
- If $A = \text{diag}\{a_{ij}\}\$ then $A^{-1} = \text{diag}\{1/a_{ij}\}.$

Inverse Matrix

• For a 2×2 matrix A, the inverse is

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix},$$

where $det(A) = (a_{11} \times a_{22}) - (a_{12} \times a_{21})$ denotes the *determinant* of A.

Orthogonal Matrices

A square matrix Q is orthogonal if

or $Q' = Q^{-1}$.

$$QQ' = Q'Q = I,$$

• If Q is orthogonal, its rows and columns have unit length $(\mathbf{q}'_j\mathbf{q}_j=1)$ and are mutually perpendicular $(\mathbf{q}'_j\mathbf{q}_k=0)$ for any $j\neq k$.

Eigenvalues and Eigenvectors

• A square matrix A has an eigenvalue λ with corresponding eigenvector $\mathbf{z} \neq \mathbf{0}$ if

$$A\mathbf{z} = \lambda \mathbf{z}$$

- The eigenvalues of A are the solution to $|A \lambda I| = 0$.
- A normalized eigenvector (of unit length) is denoted by e.
- A $k \times k$ matrix A has k pairs of eigenvalues and eigenvectors

$$\lambda_1, \mathbf{e}_1 \quad \lambda_2, \mathbf{e}_2 \quad \dots \quad \lambda_k, \mathbf{e}_k$$

where $e'_i e_i = 1$, $e'_i e_j = 0$ and the eigenvectors are unique up to a change in sign unless two or more eigenvalues are equal.

Spectral Decomposition

- Eigenvalues and eigenvectors will play an important role in this course.
 For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices.
- The *spectral decomposition* of a $k \times k$ symmetric matrix A is

$$A = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_k \mathbf{e}_k \mathbf{e}_k'$$

$$= [\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_k] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix} [\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_k]'$$

$$= D A D'$$

Determinant and Trace

- The *trace* of a $k \times k$ matrix A is the sum of the diagonal elements, i.e., $trace(A) = \sum_{i=1}^{k} a_{ii}$
- The trace of a square, symmetric matrix A is the sum of the eigenvalues, i.e., $trace(A) = \sum_{i=1}^{k} a_{ii} = \sum_{i=1}^{k} \lambda_i$
- The determinant of a square, symmetric matrix A is the product of the eigenvalues, i.e., $|A| = \prod_{i=1}^k \lambda_i$

Rank of a Matrix

- ullet The rank of a square matrix A is
 - The number of linearly independent rows
 - The number of linearly independent columns
 - The number of non-zero eigenvalues
- The inverse of a $k \times k$ matrix A exists, if and only if

$$rank(A) = k$$

i.e., there are no zero eigenvalues

Positive Definite Matrix

- For a $k \times k$ symmetric matrix A and a vector $\mathbf{x} = [x_1, x_2, ..., x_k]'$ the quantity $\mathbf{x}'A\mathbf{x}$ is called a *quadratic form*
- Note that $\mathbf{x}'A\mathbf{x} = \sum_{i=1}^k \sum_{j=1}^k a_{ij}x_ix_j$
- If $x'Ax \ge 0$ for any vector x, both A and the quadratic form are said to be *non-negative definite*.
- If x'Ax > 0 for any vector $x \neq 0$, both A and the quadratic form are said to be *positive definite*.

Example 2.11

• Show that the matrix of the quadratic form $3x_1^2 + 2x_2^2 - 2\sqrt{2}x_1x_2$ is positive definite.

For

$$A = \left[\begin{array}{cc} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{array} \right],$$

the eigenvalues are $\lambda_1=4, \lambda_2=1$. Then $A=4{\rm e}_1{\rm e}_1'+{\rm e}_2{\rm e}_2'$. Write

$$x'Ax = 4x'e_1e'_1x + x'e_2e'_2x$$

= $4y_1^2 + y_2^2 \ge 0$,

and is zero only for $y_1 = y_2 = 0$.

Example 2.11 (cont'd)

• y_1, y_2 cannot be zero because

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1' \\ \mathbf{e}_2' \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = P_{2 \times 2}' \mathbf{x}_{2 \times 1}$$

with P' orthonormal so that $(P')^{-1} = P$. Then $\mathbf{x} = P\mathbf{y}$ and since $\mathbf{x} \neq 0$ it follows that $\mathbf{y} \neq 0$.

- Using the spectral decomposition, we can show that:
 - A is positive definite if all of its eigenvalues are positive.
 - A is non-negative definite if all of its eigenvalues are ≥ 0 .

Distance and Quadratic Forms

• For $\mathbf{x} = [x_1, x_2, ..., x_p]'$ and a $p \times p$ positive definite matrix A,

$$d^2 = \mathbf{x}' A \mathbf{x} > 0$$

when $x \neq 0$. Thus, a positive definite quadratic form can be interpreted as a squared distance of x from the origin and vice versa.

ullet The squared distance from ${f x}$ to a fixed point μ is given by the quadratic form

$$(x-\mu)'A(x-\mu).$$

Distance and Quadratic Forms (cont'd)

 We can interpret distance in terms of eigenvalues and eigenvectors of A as well. Any point x at constant distance c from the origin satisfies

$$\mathbf{x}' A \mathbf{x} = \mathbf{x}' \left(\sum_{j=1}^{p} \lambda_j \mathbf{e}_j \mathbf{e}_j' \right) \mathbf{x} = \sum_{j=1}^{p} \lambda_j (\mathbf{x}' \mathbf{e}_j)^2 = c^2,$$

the expression for an ellipsoid in p dimensions.

• Note that the point $\mathbf{x} = c\lambda_1^{-1/2}\mathbf{e}_1$ is at a distance c (in the direction of \mathbf{e}_1) from the origin because it satisfies $\mathbf{x}'A\mathbf{x} = c^2$. The same is true for points $\mathbf{x} = c\lambda_j^{-1/2}\mathbf{e}_j$, j = 1,...,p. Thus, all points at distance c lie on an ellipsoid with axes in the directions of the eigenvectors and with lengths proportional to $\lambda_j^{-1/2}$.

Distance and Quadratic Forms (cont'd)

Square-Root Matrices

Spectral decomposition of a positive definite matrix A yields

$$A = \sum_{j=1}^{p} \lambda_j \mathbf{e}_j \mathbf{e}_j' = P \wedge P,$$

with $\Lambda_{k\times k}=\operatorname{diag}\{\lambda_j\}$, all $\lambda_j>0$, and $P_{k\times k}=[\mathbf{e}_1\ \mathbf{e}_2\ \dots\ \mathbf{e}_p]$ an orthonormal matrix of eigenvectors. Then

$$A^{-1} = P \Lambda^{-1} P' = \sum_{j=1}^{p} \frac{1}{\lambda_j} e_j e'_j$$

• With $\Lambda^{1/2} = \text{diag}\{\lambda_j^{1/2}\}$, a square-root matrix is

$$A^{1/2} = P \Lambda^{1/2} P' = \sum_{j=1}^{p} \sqrt{\lambda_j} \mathbf{e}_j \mathbf{e}'_j$$

Square-Root Matrices

The square root of a positive definite matrix \boldsymbol{A} has the following properties:

- 1. Symmetry: $(A^{1/2})' = A^{1/2}$
- 2. $A^{1/2}A^{1/2} = A$
- 3. $A^{-1/2} = \sum_{j=1}^{p} \lambda_j^{-1/2} e_j e_j' = PLambda^{-1/2} P'$
- 4. $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$
- 5. $A^{-1/2}A^{-1/2} = A^{-1}$

Note that there are other ways of defining the square root of a positive definite matrix: in the Cholesky decomposition A = LL', with L a matrix of lower triangular form, L is also called a square root of A.

Random Vectors and Matrices

- A random matrix (vector) is a matrix (vector) whose elements are random variables.
- If $X_{n \times p}$ is a random matrix, the *expected value of* X is the $n \times p$ matrix

$$E(X) = \begin{bmatrix} E(X_{11}) & E(X_{12}) & \cdots & E(X_{1p}) \\ E(X_{21}) & E(X_{22}) & \cdots & E(X_{2p}) \\ \vdots & \vdots & \cdots & \vdots \\ E(X_{n1}) & E(X_{n2}) & \cdots & E(X_{np}) \end{bmatrix},$$

where

$$E(X_{ij}) = \int_{\infty}^{\infty} x_{ij} f_{ij}(x_{ij}) dx_{ij}$$

with $f_{ij}(x_{ij})$ the density function of the continuous random variable X_{ij} . If X is a discrete random variable, we compute its expectation as a sum rather than an integral.

Linear Combinations

 The usual rules for expectations apply. If X and Y are two random matrices and A and B are two constant matrices of the appropriate dimensions, then

$$E(X + Y) = E(X) + E(Y)$$

$$E(AX) = AE(X)$$

$$E(AXB) = AE(X)B$$

$$E(AX + BY) = AE(X) + BE(Y)$$

Further, if c is a scalar-valued constant then

$$E(cX) = cE(X).$$

Mean Vectors and Covariance Matrices

- Suppose that X is $p \times 1$ (continuous) random vector drawn from some p-dimensional distribution.
- Each element of X, say X_j has its own marginal distribution with marginal mean μ_j and variance σ_{jj} defined in the usual way:

$$\mu_j = \int_{-\infty}^{\infty} x_j f_j(x_j) dx_j$$

$$\sigma_{jj} = \int_{-\infty}^{\infty} (x_j - \mu_j)^2 f_j(x_j) dx_j$$

- To examine association between a pair of random variables we need to consider their joint distribution.
- A measure of the linear association between pairs of variables is given by the covariance

$$\sigma_{jk} = E\left[(X_j - \mu_j)(X_k - \mu_k) \right]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_j - \mu_j)(x_k - \mu_k) f_{jk}(x_j, x_k) dx_j dx_k.$$

• If the joint density function $f_{jk}(x_j, x_k)$ can be written as the product of the two marginal densities, e.g.,

$$f_{jk}(x_j, x_k) = f_j(x_j) f_k(x_k),$$

then X_j and X_k are independent.

- More generally, the p-dimensional random vector X has mutually independent elements if the p-dimensional joint density function can be written as the product of the p-univariate marginal densities.
- If two random variables X_j and X_k are independent, then their covariance is equal to 0. [Converse is not always true.]

• We use μ to denote the $p \times 1$ vector of marginal population means and use Σ to denote the $p \times p$ population variance-covariance matrix:

$$\Sigma = E\left[(X - \mu)(X - \mu)' \right].$$

• If we carry out the multiplication (outer product)then Σ is equal to:

$$E\begin{bmatrix} (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) & \cdots & (X_1 - \mu_1)(X_p - \mu_p) \\ (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 & \cdots & (X_2 - \mu_2)(X_p - \mu_p) \\ \vdots & \vdots & \ddots & \vdots \\ (X_p - \mu_p)(X_1 - \mu_1) & (X_p - \mu_p)(X_2 - \mu_2) & \cdots & (X_p - \mu_p)^2 \end{bmatrix}.$$

By taking expectations element-wise we find that

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}.$$

- Since $\sigma_{jk} = \sigma_{kj}$ for all $j \neq k$ we note that Σ is symmetric.
- ∑ is also non-negative definite

Correlation Matrix

• The population correlation matrix is the $p \times p$ matrix with off-diagonal elements equal to ρ_{jk} and diagonal elements equal to 1.

$$\begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{21} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ \rho_{p1} & \rho_{p2} & \cdots & 1 \end{bmatrix}.$$

- Since $\rho_{ij} = \rho_{ji}$ the correlation matrix is symmetric
- The correlation matrix is also non-negative definite

Correlation Matrix (cont'd)

• The $p \times p$ population standard deviation matrix $V^{1/2}$ is a diagonal matrix with $\sqrt{\sigma_{jj}}$ along the diagonal and zeros in all off-diagonal positions. Then

$$\Sigma = V^{1/2} P V^{1/2}$$

and the population correlation matrix is

$$(V^{1/2})^{-1}\Sigma(V^{1/2})^{-1}$$

• Given Σ , we can easily obtain the correlation matrix

Partitioning Random vectors

- If we partition the random $p \times 1$ vector X into two components X_1, X_2 of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly.
- Partitioned mean vector:

$$E(X) = E \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Partitioned variance-covariance matrix:

$$\Sigma = \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) \\ Cov(X_2, X_1) & Var(X_2) \end{bmatrix} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma'_{12} & \Sigma_{22} \end{bmatrix},$$

where Σ_{11} is $q \times q$, Σ_{12} is $q \times (p-q)$ and Σ_{22} is $(p-q) \times (p-q)$.

Partitioning Covariance Matrices (cont'd)

- Σ_{11} , Σ_{22} are the variance-covariance matrices of the sub-vectors X_1 , X_2 , respectively. The off-diagonal elements in those two matrices reflect linear associations among elements *within* each sub-vector.
- There are no variances in Σ_{12} , only covariances. These covariancs reflect linear associations between elements in the two different sub-vectors.

Linear Combinations of Random variables

• Let X be a $p \times 1$ vector with mean μ and variance covariance matrix Σ , and let c be a $p \times 1$ vector of constants. Then the linear combination c'X has mean and variance:

$$E(\mathbf{c}'X) = \mathbf{c}'\mu$$
, and $Var(\mathbf{c}'X) = \mathbf{c}'\Sigma\mathbf{c}$

• In general, the mean and variance of a $q \times 1$ vector of linear combinations $Z = C_{q \times p} X_{p \times 1}$ are

$$\mu_Z = C\mu_X$$
 and $\Sigma_Z = C\Sigma_X C'$.

Cauchy-Schwarz Inequality

 We will need some of the results below to derive some maximization results later in the course.

Cauchy-Schwarz inequality Let b and d be any two $p \times 1$ vectors. Then,

$$(b'd)^2 \le (b'b)(d'd)$$

with equality only if $\mathbf{b} = c\mathbf{d}$ for some scalar constant c.

Proof: The equality is obvious for b=0 or d=0. For other cases, consider b-cd for any constant $c\neq 0$. Then if $b-cd\neq 0$, we have

$$0 < (b - cd)'(b - cd) = b'b - 2c(b'd) + c^2d'd,$$

since $\mathbf{b} - c\mathbf{d}$ must have positive length.

Cauchy-Schwarz Inequality

We can add and subtract $(b'd)^2/(d'd)$ to obtain

$$0 < b'b - 2c(b'd) + c^2d'd - \frac{(b'd)^2}{d'd} + \frac{(b'd)^2}{d'd} = b'b - \frac{(b'd)^2}{d'd} + (d'd)\left(c - \frac{b'd}{d'd}\right)^2$$

Since c can be anything, we can choose $c = \mathbf{b}'\mathbf{d}/\mathbf{d}'\mathbf{d}$. Then,

$$0 < \mathbf{b'b} - \frac{(\mathbf{b'd})^2}{\mathbf{d'd}} \quad \Rightarrow \quad (\mathbf{b'd})^2 < (\mathbf{b'b})(\mathbf{d'd})$$

for $\mathbf{b} \neq c\mathbf{d}$ (otherwise, we have equality).

Extended Cauchy-Schwarz Inequality

If b and d are any two $p \times 1$ vectors and B is a $p \times p$ positive definite matrix, then

$$(b'd)^2 \le (b'Bb)(d'B^{-1}d)$$

with equality if and only if $\mathbf{b} = cB^{-1}\mathbf{d}$ or $\mathbf{d} = cB\mathbf{b}$ for some constant c.

Proof: Consider $B^{1/2} = \sum_{i=1}^p \sqrt{\lambda_i} e_i e_i'$, and $B^{-1/2} = \sum_{i=1}^p \frac{1}{(\sqrt{\lambda_i})} e_i e_i'$. Then we can write

$$b'd = b'Id = b'B^{1/2}B^{-1/2}d = (B^{1/2}b)'(B^{-1/2}d) = b^{*'}d^*.$$

To complete the proof, simply apply the Cauchy-Schwarz inequality to the vectors \mathbf{b}^* and \mathbf{d}^* .

Optimization

Let B be positive definite and let d be any $p \times 1$ vector. Then

$$\max_{\mathbf{x} \neq 0} \frac{(\mathbf{x}'\mathbf{d})^2}{\mathbf{x}'B\mathbf{x}} = \mathbf{d}'B^{-1}\mathbf{d}$$

is attained when $\mathbf{x} = cB^{-1}\mathbf{d}$ for any constant $c \neq 0$.

Proof: By the extended Cauchy-Schwartz inequality: $(\mathbf{x}'\mathbf{d})^2 \leq (\mathbf{x}'B\mathbf{x})(\mathbf{d}'B^{-1}\mathbf{d})$. Since $\mathbf{x} \neq \mathbf{0}$ and B is positive definite, $\mathbf{x}'B\mathbf{x} > \mathbf{0}$ and we can divide both sides by $\mathbf{x}'B\mathbf{x}$ to get an upper bound

$$\frac{(\mathbf{x}'\mathbf{d})^2}{\mathbf{x}'B\mathbf{x}} \le \mathbf{d}'B^{-1}\mathbf{d}.$$

Differentiating the left side with respect to x shows that maximum is attained at $x = cB^{-1}d$.

Maximization of a Quadratic Form on a Unit Sphere

• B is positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ and associated eigenvectors (normalized) e_1, e_2, \cdots, e_p . Then

$$\max_{\mathbf{x} \neq 0} \frac{\mathbf{x}' B \mathbf{x}}{\mathbf{x}' \mathbf{x}} = \lambda_1, \quad \text{attained when } \mathbf{x} = \mathbf{e}_1$$

$$\min_{\mathbf{x} \neq 0} \frac{\mathbf{x}' B \mathbf{x}}{\mathbf{x}' \mathbf{x}} = \lambda_p, \quad \text{attained when } \mathbf{x} = \mathbf{e}_p.$$

• Furthermore, for $k = 1, 2, \dots, p-1$,

$$\max_{\mathbf{x}\perp\mathbf{e}_1,\mathbf{e}_2,\cdots,\mathbf{e}_k}\frac{\mathbf{x}'B\mathbf{x}}{\mathbf{x}'\mathbf{x}}=\lambda_{k+1}\quad\text{is attained when }\mathbf{x}=\mathbf{e}_{k+1}.$$

See proof at end of chapter 2 in the textbook (pages 80-81).