MATH H113: Honors Introduction to Abstract Algebra

2016-02-01

• Dihedral groups

	e	r	r^2	s	sr	sr^2
\overline{e}	e	r	r^2	s	sr	sr^2
r	r	r^2	e	sr^2	s	sr
r^2	r^2	e	r	sr	sr^2	s
s	s	sr	sr^2	e	r	r^2
sr	sr	sr^2	s	r^2	e	r
sr^2	sr^2	s	sr	r	r^2	e

Loose Ends

- 1. On homework, you can use the results of earlier problems in the book without proving them.
- 2. If A and B are groups, then $A \times B = \{(a, b) : a \in A, b \in B\}$ is also a group, with $(a_1, b_1)(a_2, b_2) = (a_1 a_2, b_1 b_2)$. Note that $(a, b)^n = (a^n, b^n)$ for all $a \in A, b \in B, n \in \mathbb{Z}$ (prove by induction for n > 0, etc.).
- 3. Let G be a group, let $x \in G$, and assume that x has finite order n. Then (for $m \in \mathbb{Z}$), $x^m = 1 \iff n \mid m$.

Proof

- " \Longrightarrow ": If $n\mid m$ then nq=m for some $q\in\mathbb{Z}$, and $\therefore x^m=x^{nq}=(x^n)^q=1^q=1$.
- " \Leftarrow ": Assume $x^m = 1$. Write m = nq + r with $q, r \in \mathbb{Z}, 0 \le r < n$. Then $x^{nq+r} = 1$, so $1 = x^{nq}x^r = (x^n)^q x^r = 1^q x^r = x^r$, and that implies r = 0 (if $r \ne 0$ then $x^r = 1$ with 0 < r < n, contradicting the definition of order of x). Then m = nq, so $n \mid m$.
- 4. When I refer to $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ or $\mathbb{Z}/n\mathbb{Z}$ as groups, the operation is *addition*. When I refer to $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$, or $(\mathbb{Z}/n\mathbb{Z})^*$ as groups, the operation is *multiplication*.

r= rotation clockwise by $\frac{2\pi}{8}$ radians s= flip about the line through vertex position 1 and the center

\overline{n}	1	2	3	4	5	6	7	8
r(n)	2	3	4	5	6	7	8	1
s(n)	1	8	7	6	5	4	3	2
rs	8	7	6	5	4	3	2	1
sr^{-1}	8	7	6	5	4	3	2	1

$$\begin{array}{l} \therefore rs = sr^{-1}. \\ \text{Also } r^2s = r(rs) = r(sr^{-1}) = (rs)r^{-1} = sr^{-1}r^{-1} = sr^{-2} \\ \text{Generally, } r^{n+1}s = rr^ns = rsr^{-n} = sr^{-1}r^{-n} = sr^{-(n+1)} \\ \therefore \text{ by induction, } r^is = sr^{-i} \text{ for all } i \in \mathbb{Z}. \end{array}$$

 $r^n = 1 \text{ and } s^2 = 1.$

We have $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$, and these expressions all give different elements of D_{2n} .

Here r and s generate D_{2n} .

Definition: A subset S of a group G generates G if every element of G can be written as a (finite) product of (positive or negative) integer powers of elements of S. If S generates G, then we also say that S is a generating set for G.

Examples:

- $\{r, s\}$ generates $D_{2n} \ \forall n$
- For any group G, G generates itself.
- $S = \emptyset$ generates the trivial group (1 = empty product)

Then D_{2n} can be fully described by:

- i. elements r and s generate D_{2n} , and
- ii. for any two expressions in r and s, those two expressions give the same element of D_{2n} if and only if this equality can be deduced from the equalities $r^n = 1, s^2 = 1, rs = sr^{-1}$ (these are called *relations*).
- (i) and (ii) (collectively) are an example of a presentation of a group.

Definition: A presentation of a group G is an expression $G = \langle S | R_1, R_2, \dots, R_m \rangle$, where S is a generating set for G, and each R_i is an equation in the elements of $S \cup \{1\}$ such that any (true) equation from the elements of S can be deduced from R_1, \ldots, R_m .

Example:

- $\mathbb{Q}^{\times} = \langle \{2, 3, \dots, -1\} | (-1)^2 = 1, pq = qp \ \forall p, q \in S \rangle$
- trivial group = $\langle \emptyset | \rangle$

The R_i are called *relations*, and the presentation of G is also called a *description* of G using generators and relations.

Elements of S are called *generators*.

Caution: Referring to an element of G as a generator is only valid if it is understood what the set S is.

How do you work with these?

To check whether a given group is described by a given presentation $\langle S|R_1,\ldots,R_m\rangle$:

- 1. Check that S generates G and that R_1, \ldots, R_m are true in G.
- 2. Check that you have enough relations; in other words, that every equation in the elements of $S \cup \{1\}$ can be deduced from R_1, \ldots, R_m (to do this it may help to find, for each element of G an expression in the elements of S that equals that element and then show that all other such expressions are equal to one of the chosen expressions).

Example: $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}$ (using $rs = sr^{-1}$).