Exercise 1: Lexing

Question 1.1

Circle all of the regular expressions whose language is **disjoint** from the language of $(a|b)^+c^*$:

- A. a*b*c*
- B. c⁺
- C. $(b|c)^{+}$
- D. $(a|b)^+c^+a^+$

Question 1.2

Consider the lexical analyzer with token classes defined by following regular expressions:

$$\langle \text{ IMP } := =>, \\ \text{LessEq } := <=, \\ \text{Less } := <, \\ \text{Greater } := > \rangle$$

Circle all the correct statements amongst the ones below, assuming the longest match rule is applied:

- A. <=> will be tokenized to Less, Imp.
- B. <=< will be tokenized to LessEq, Less.
- C. <==> will be tokenized to LessEq, Imp.
- D. <> will be tokenized to Greater, Less.

Exercise 1: Regular Languages

Consider the alphabet $A = \{a, b, c\}$.

Question 1.1

Which of the following regular expressions exactly describe the language of all words that contain an a immediately followed by b, and contain exactly one c. Circle letters next to all correct options.

- A. (ab)c(a|b)*
- B. a*b*(ca*b*ab)*a*b*
- C. (a|b|c)*ab(a|b|c)*
- D. (a|b)*((ab(a|b)*c(a|b)*)|(c(a|b)*ab(a|b)*))
- E. (a|b)*(ab|c)(a|b)*(ab|c)(a|b)*
- F. ((a|b)*ab(a|b)*c(a|b)*)|((a|b)*c(a|b)*ab(a|b)*)