

Nesta aula

- ☐ Introdução ao numpy.
- ☐ O que são numpy arrays?

Introdução à Análise de Dados

AULA 1.1. APRESENTAÇÃO DA DISCIPLINA

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Motivação.
- ☐ Tópicos abordados.

Most Popular Technologies

Programming, Scripting, and Markup Languages

Fonte: https://insights.stackoverflow.com/survey/2019#most-popular-technologies

Open source.

- Open source.
- Comunidade ativa.

iGTi

- Open source.
- Comunidade ativa.
- Diversas bibliotecas (também open source) para análise/ciência de dados:

NumPy

```
# cria um array de 2 dimensões: matrix 3x3
a = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
print("Array criado:\n", a)
print("shape:", a.shape)

Array criado:
  [[1 2 3]
  [2 3 4]
  [3 4 5]]
shape: (3, 3)
```



```
# leitura dos dados
df = pd.read_csv("https://pycourse.s3.amazonaws.com/temperature.csv")
```

visualizando as primeiras 3 linhas
df.head(3)

	date	temperatura	classification
0	2020-01-01	29.1	quente
1	2020-02-01	31.2	muito quente
2	2020-03-01	28.5	quente

Conclusão

All you need is Python. Python is all you need.

Fonte: https://towardsdatascience.com/top-9-languages-for-data-science-in-2020-824239f930c

Na próxima aula

☐ Introdução à análise de dados.

Introdução à Análise de Dados

AULA 1.2. INTRODUÇÃO À ANÁLISE DE DADOS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ O que é a análise de dados?
- ☐ Análise de dados vs Ciência de dados.

Definição do problema

- Qual a dor?
- Definição do escopo

Visualização

- Visualização
- Story telling

Coleta de dados

 Etapa crucial: quanto mais dados, melhor!

Análise de dados

 Interpretação dos resultados

Tratamento dos dados

- Limpeza dos dados
- Gerar dataset para análise

- Cargos de um analista de dados:
 - Business analyst.

iGTi

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.
- Ferramentas recentes:
 - Python.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.
- Ferramentas recentes:
 - Python.
 - o Pandas.

- Cargos de um analista de dados:
 - Business analyst;
 - Business intelligence analyst (analista de BI)
- Ferramentas tradicionais:
 - SQL;
 - Excel;
 - Tableau;
 - Power Bl.
- Ferramentas recentes:
 - Python;
 - Pandas;

Análise de dados vs Ciência de Dados

Fonte: https://www.dasca.org/world-of-big-data/article/analysts-vs-scientists-the-big-data-puzzle

Conclusão

- O analista de dados organiza e analisa os dados existentes para agregar conhecimento à tomada de decisão;
- O cientista de dados automatiza o processo de análise e cria modelos matemáticos capazes de extrapolar.

Na próxima aula

■ Numpy para análise de dados.

Introdução à Análise de Dados

AULA 1.1. APRESENTAÇÃO DA DISCIPLINA

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Motivação.
- ☐ Tópicos abordados.

Most Popular Technologies

Programming, Scripting, and Markup Languages

Fonte: https://insights.stackoverflow.com/survey/2019#most-popular-technologies

Open source.

- Open source.
- Comunidade ativa.

iGTi

- Open source.
- Comunidade ativa.
- Diversas bibliotecas (também open source) para análise/ciência de dados:

NumPy

```
# cria um array de 2 dimensões: matrix 3x3
a = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
print("Array criado:\n", a)
print("shape:", a.shape)

Array criado:
[[1 2 3]
[2 3 4]
[3 4 5]]
shape: (3, 3)
```



```
# leitura dos dados
df = pd.read_csv("https://pycourse.s3.amazonaws.com/temperature.csv")
```

visualizando as primeiras 3 linhas
df.head(3)

	date	temperatura	classification
0	2020-01-01	29.1	quente
1	2020-02-01	31.2	muito quente
2	2020-03-01	28.5	quente

Neste módulo

Conclusão

All you need is Python. Python is all you need.

Fonte: https://towardsdatascience.com/top-9-languages-for-data-science-in-2020-824239f930c

Na próxima aula

☐ Introdução à análise de dados.

Introdução à Análise de Dados

AULA 1.2. INTRODUÇÃO À ANÁLISE DE DADOS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ O que é a análise de dados?
- ☐ Análise de dados vs Ciência de dados.

Definição do problema

- Qual a dor?
- Definição do escopo

Visualização

- Visualização
- Story telling

Coleta de dados

 Etapa crucial: quanto mais dados, melhor!

Análise de dados

 Interpretação dos resultados

Tratamento dos dados

- Limpeza dos dados
- Gerar dataset para análise

- Cargos de um analista de dados:
 - Business analyst.

iGTi

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.
- Ferramentas recentes:
 - Python.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.
- Ferramentas recentes:
 - Python.
 - Pandas.

- Cargos de um analista de dados:
 - Business analyst.
 - Business intelligence analyst (analista de BI).
- Ferramentas tradicionais:
 - o SQL.
 - Excel.
 - Tableau.
 - Power BI.
- Ferramentas recentes:
 - Python.
 - Pandas.
 - Computação em nuvem;
 - Etc.

Análise de dados vs Ciência de Dados

Fonte: https://www.dasca.org/world-of-big-data/article/analysts-vs-scientists-the-big-data-puzzle

Conclusão

- ✓ O analista de dados organiza e analisa os dados existentes para agregar conhecimento à tomada de decisão.
- ✓ O cientista de dados automatiza o processo de análise e cria modelos matemáticos capazes de extrapolar.

Próxima aula

■ Numpy para análise de dados.

Introdução à Análise de Dados

AULA 2.1. INTRODUÇÃO AOS ARRAYS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Introdução ao numpy.
- ☐ O que são numpy arrays?

Introdução ao numpy

- O <u>numpy</u> é uma das principais bibliotecas para computação científica em Python.
- Disponibiliza um objeto de array multidimensional de alta performance e diversas ferramentas para se trabalhar com esses objetos.
- Instalação:
 - pip install numpy;
 - o conda install numpy.

• O que são numpy arrays?

• Estrutura de dados para manipulação e álgebra matricial:

Index:	0	1	2	3	4
Value:	88	19	46	74	94

• O que são numpy arrays?

• Estrutura de dados para manipulação e álgebra matricial.

• Possibilita trabalhar com estruta pærdæ

dados n-dimensionais.

Fonte: https://fgnt.github.io/python_crashkurs_doc/include/numpy.html

• Numpy – axis

3D array

Caso 1D: direção ao longo das linhas.

• Numpy – axis

3D array

Caso 2D: direção ao longo das linhas e colunas.

• Numpy – axis

Caso 3D: direção ao longo das eixos x, y e z. Exemplo: imagens.

Numpy – shape

3D array

Quantidade de elementos em cada eixo.

Numpy performance

 Comparativo do tempo de execução de um algoritmo de machine learning implementado com Python puro e implementado com o

Implementation	Elapsed Time		
Pure Python with list comprehensions	18.65s		
NumPy	0.32s		

Conclusão

- ✓ Arrays são estruturas para manipulação de dados numéricos em forma de vetores e matrizes.
- ✓ Numpy possui alta performance.

Referências

- □ A quick introduction to the numpy array. Disponível em:
 - https://www.sharpsightlabs.com/blog/numpy-array-python/
- Numpy/Scipy Python documentation. Disponível em:
 - https://fgnt.github.io/python_crashkurs_doc/include/numpy.html
- □ Pure Python vs NumPy vs TensorFlow Performance Comparison. Disponível em:
 - https://realpython.com/numpy-tensorflow-performance/
- NumPy. Disponível em: https://numpy.org

Próxima aula

☐ Criação de arrays — Prática.

Introdução à Análise de Dados

AULA 2.2. CRIAÇÃO DE ARRAYS – PRÁTICA

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Criação de arrays no numpy.

Conclusão

✓ Aprendemos a criar arrays no numpy.

Na próxima aula

☐ Indexação de arrays.

Introdução à Análise de Dados

AULA 2.3. INDEXAÇÃO DE ARRAYS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Indexação de arrays:
 - > Acessando elementos.
 - > Slicing.

Numpy array

- Relembrando:
 - Os índices ao longo de uma dimensão variam de 0 a n-1,
 onde n é o número de elementos da dimensão.

 Acessando o valor do elemento no índice 1 (segundo elemento do array):

- Acessando o último elemento de A:
 - o A[-1] -> 94
 - o A[4] -> 94

 Índices negativos significam que o array será acessado de trás para frente:

```
o A[-1] -> 94;
```

o etc.

Acessando elementos em um array 2D (matriz
 B):

	0	1	2	3	4
0	88	19	46	74	94
1	69	79	26	7	29
2	21	45	12	80	72
3	28	53	65	26	64
4	71	96	34	61	52

Acessando elementos em um array 2D (matriz B):

Slicing

Acessando mais de um elemento em um array:

Slicing

Acessando elementos em um array 2D (matriz B):

		0	1	2	3	4
	0	88	19	46	74	94
	1	69	79	26	7	29
B =	2	21	45	12	80	72
	3	28	53	65	26	64
	4	71	96	34	61	52

Slicing

Acessando elementos em um array 2D (matriz B):

ATENÇÃO: os índices **k** e **l** não entram no slicing, o slicing incluirá até **k-1** e **l-1**, respectivamente.

Conclusão

- ✓ Indexação.
- ✓ Slicing.

Referências

☐ A quick introduction to the numpy array. Disponível em:

https://www.sharpsightlabs.com/blog/numpy-array-python/

Próxima aula

☐ Prática de indexação de arrays.

Introdução à Análise de Dados

AULA 2.4. INDEXAÇÃO DE ARRAYS - PRÁTICA

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Indexação de arrays:
 - > Acessando elementos.
 - > Slicing.

Conclusão

- ✓ Indexação.
- ✓ Slicing.

Próxima aula

☐ Operações aritméticas.

Introdução à Análise de Dados

AULA 2.5. OPERAÇÕES ARITMÉTICAS

PROF. MATHEUS MENDONÇA

Nesta aula

- Operações aritméticas:
 - Operações elemento a elemento.
 - > Broadcasting.
 - Operações matriciais.

Operações elemento a elemento

Operações aritméticas elemento a elemento:

- Soma:
 - Sobrecarga de operador "+";
 - o np.add.
- Subtração
 - Sobrecarga de operador "-";
 - o np.subtract.
- Divisão
 - Sobrecarga de operador "/";
 - np.divide
- Multiplicação
 - Sobrecarga de operador "*";
 - np.multiply

Operações elemento a elemento

$$u = \begin{bmatrix} 1 \\ 0 \end{bmatrix} v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$u+v=\left[\begin{bmatrix} 1+0\\0+1 \end{bmatrix} \right] = \left[\begin{bmatrix} 1\\1 \end{bmatrix} \right]$$

Fonte: https://cognitiveclass.ai/blog/nested-lists-multidimensional-numpy-arrays

Operações elemento a elemento

$$X = \begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \end{bmatrix}$$

$$\boldsymbol{X} \circ \boldsymbol{Y} = \begin{bmatrix} \begin{smallmatrix} (0)2 & (0)1 \\ \hline (0)1 & (1)2 \end{bmatrix} = \begin{bmatrix} \begin{smallmatrix} 2 & 0 \\ \hline 0 & 2 \end{bmatrix}$$

Fonte: https://cognitiveclass.ai/blog/nested-lists-multidimensional-numpy-arrays

Broadcasting

$$y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$2\boldsymbol{y} = \begin{bmatrix} \frac{2(1)}{2(2)} \end{bmatrix} = \begin{bmatrix} \frac{2}{4} \end{bmatrix}$$

Fonte: https://cognitiveclass.ai/blog/nested-lists-multidimensional-numpy-arrays

Broadcasting

Fonte: https://cognitiveclass.ai/blog/nested-lists-multidimensional-numpy-arrays

Operações matriciais

Multiplicação de matrizes:

- Python puro: A @ B
- Numpy:
 - o np.dot(A, B)
 - A.dot(B)

Operações matriciais

Multiplicação de matrizes:

- Python puro: A @ B
- Numpy:
 - np.dot(A, B)
 - A.dot(B)

Fonte: https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.2-Multiplying-Matrices-and-Vectors/

Conclusão

- ✓ Operações elemento a elemento.
- ✓ Broadcasting.
- ✓ Operações matriciais.

Referências

- ☐ From Python Nested Lists to Multidimensional numpy Arrays.
 - Disponível em: https://cognitiveclass.ai/blog/nested-lists-
 - multidimensional-numpy-arrays
- Introduction to Multiplying Matrices and Vectors using
 - Python/Numpy examples and drawings. Disponível em:
 - https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.2-
 - Multiplying-Matrices-and-Vectors/

Próxima aula

☐ Prática de operações aritméticas com arrays.

Introdução à Análise de Dados

AULA 2.6. OPERAÇÕES ARITMÉTICAS: OPERAÇÕES ELEMENTO A ELEMENTO (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Operações aritméticas:
 - Operações elemento a elemento.
 - Broadcasting.

Conclusão

- ✓ Operações aritméticas elemento a elemento.
- ✓ Broadcasting.

Próxima aula

☐ Prática de operações aritméticas com arrays.

Introdução à Análise de Dados

AULA 2.7. OPERAÇÕES ARITMÉTICAS: OPERAÇÕES MATRICIAIS (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Operações aritméticas:
 - Operações matriciais.

Conclusão

✓ Operações matriciais.

Próxima aula

☐ Comparações e indexação booleana.

Introdução à Análise de Dados

AULA 2.8. COMPARAÇÕES E INDEXAÇÃO BOOLEANA

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Comparações.
- ☐ Indexação booleana.

Comparações

Comparação menor/menor ou igual:

```
# comparações booleanas
A = np.array([1, 2, 3])
B = np.array([2, 0, 2])
s = 3
# menor
print("Comparação menor:")
print(A < B)
print(A < s)
# menor ou iqual
print("Comparação menor ou igual:")
print(A <= B)</pre>
print(A <= s)</pre>
Comparação menor:
[ True False False]
[ True True False]
Comparação menor ou igual:
[ True False False]
[ True True True]
```

Comparações

Comparação maior/maior ou igual:

```
# comparações booleanas
A = np.array([1, 2, 3])
B = np.array([2, 0, 2])
s = 3
# maior
print("Comparação maior:")
print(A > B)
print(A > s)
# maior ou igual
print("Comparação maior ou igual:")
print(A >= B)
print(A >= s)
Comparação maior:
[False True True]
[False False False]
Comparação maior ou igual:
[False True True]
[False False True]
```

Comparações

• Igualdade:

```
# comparações booleanas
A = np.array([1, 2, 3])
B = np.array([2, 0, 2])
s = 3

# igual
print("Comparação de igualdade:")
print(A == B)
print(A == s)

Comparação de igualdade:
[False False False]
[False False True]
```

Indexação booleana

Operação de filtro:

```
# indexação booleana: um novo subarray contendo uma
# cópia dos elementos em que a condição de verificação se aplica
cond = A <= 2
D = A[cond]
print("A:", A)
print("condição:", cond)
print("D:", D)

A: [1 2 3]
condição: [ True True False]
D: [1 2]</pre>
```

Conclusão

- ✓ Comparaçõe são operações elemento a elemento.
- ✓ Indexação boolena: filtro.

Próxima aula

☐ Prática de comparações e indexação booleana.

Introdução à Análise de Dados

AULA 2.9. COMPARAÇÕES E INDEXAÇÃO BOOLEANA (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Comparações.
- ☐ Indexação booleana.

Conclusão

- ✓ Comparaçõe são operações elemento a elemento.
- ✓ Indexação boolena: filtro.

Próxima aula

☐ Dicas de numpy.

Introdução à Análise de Dados

AULA 2.10. OPERAÇÕES ÚTEIS NO NUMPY (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Dicas gerais de numpy.

Conclusão

✓ Dicas de numpy.

Próxima aula

☐ Regressão linear.

Introdução à Análise de Dados

AULA 2.11. REGRESSÃO LINEAR NO NUMPY: CONCEITOS BÁSICOS

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Conceitos básicos de regressão linear.

Problema: dado um conjunto de pontos, queremos achar qual a função que melhor descreve esses pontos.

Diversas possíveis soluções... qual função escolher?

Diversas possíveis soluções... qual função escolher?

Diversas possíveis soluções... qual função escolher?

- A escolha da melhor função deve ser baseada em um critério.
- Um critério comumente utilizada é o erro quadrático, que queremos minimizar:

- A escolha da melhor função deve ser baseada em um critério.
- Um critério comumente utilizada é o erro quadrático, que queremos minimizar.
- Com o critério definido e, sabendo que a função linea potásti i=oax + b seguinte formato:

• O problema de regressão resumese à determinação dos

Matricialmente:

• A solução fechada deste problema é dada por:

$$(X^TX)^{-1}X^Ty$$

Conclusão

✓ Conceitos de regressão linear.

Referências

Próxima aula

☐ Regressão linear no numpy (Prática).

Introdução à Análise de Dados

AULA 2.12. REGRESSÃO LINEAR NO NUMPY (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Conceitos básicos de regressão linear.
- ☐ Regressão linear no numpy.

Conclusão

- ✓ Conceitos de regressão linear.
- ✓ Regressão linear no numpy.

Próxima aula

☐ Pandas.

Introdução à Análise de Dados

AULA 3.1. INTRODUÇÃO AO PANDAS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Introdução ao Pandas.
- ☐ Dtypes e tipos de objetos.
- ☐ Leitura de dados.

Introdução ao Pandas

- Pandas é um pacote em Python desenvolvido para disponibilizar estruturas de dados rápidas e flexíveis para se trabalhar com dados "relacionais" ou "rotulados". Ele é adequado para diversos tipos de dados:
 - Dados tabulares com colunas de tipos heterogêneos, como por exemplo em tabelas SQL ou planilhas Excel.
 - Dados de séries temporais ordenados ou não ordenados.
 - Dados matriciais arbitrários, com linhas e

• Introdução ao Pandas

• Flexível:

- Escrito em cima do numpy.
- Possui métodos do matplotlib.
- Usado em conjunto com outras bibliotecas de ciência de dados (scipy, scikit-learn etc.).

Instalação:

- pip install pandas.
- o conda install pandas.

Introdução ao Pandas

Fonte: https://www.geeksforgeeks.org/python-pandas-dataframe/

• Tipos de dados (dtypes)

Pandas dtype	Python type	Uso	
object	str ou mixed	Texto ou valores mistos numéricos e não-numéricos.	
int64	int	Números inteiros.	
float64	float	Números ponto flutuantes.	
bool	bool	Valores True/False.	
datetime64	NA	Valores em formato de data e hora.	
timedelta[ns]	NA	Diferença de dois datetimes.	
category	NA	Lista finita de texto.	

• DataFrames e Series

Fonte: https://www.learndatasci.com/tutorials/python-pandas-tutorial-complete-introduction-for-beginners/

Leitura de dados

- Para leitura dos dados existem diversas funções, a depender do formato do dado de entrada. Algumas das mais usadas estão listadas abaixo:
 - read_csv: leitura de arquivos CSV.
 - read_json: leitura de arquivos JSON.
 - read_excel: leitura de arquivos Excel.
 - Etc.

Aplicações

- Algumas das tarefas que o Pandas faz com eficiência, são:
 - Tratamento de dados faltantes (representados por NaN).
 - Tamanhos mutáveis: colunas podem ser inseridas e excluidas de *DataFrames* com facilidade.
 - Grupo de funcionalidades poderoso e flexível para agregar e transformar conjuntos de dados.
 - Ferramentas de IO robustas para leitura

Conclusão

- ✓ Introdução ao Pandas.
- ✓ Tipos de dados.

Referências

- □ Python Pandas Tutorial: A Complete Introduction for Beginners. Disponível em:
 - https://www.learndatasci.com/tutorials/python-pandastutorial-complete-introduction-for-beginners/
- □ Pandas. Disponível em: https://pandas.pydata.org/

Próxima aula

☐ Introdução ao Pandas – Prática.

Introdução à Análise de Dados

AULA 3.2. INTRODUÇÃO AO PANDAS (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Introdução ao Pandas.

Conclusão

✓ Introdução ao Pandas.

Próxima aula

☐ Indexação.

Introdução à Análise de Dados

AULA 3.3. INDEXAÇÃO NO PANDAS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Indexação no pandas:
 - Método iloc().
 - Método loc().
- ☐ Indexação booleana.

Indexação direta

✓ data_frame['temperatura']

n	classification	temperatura	date	
е	quente	29.1	2020-01-01	0
е	muito quente	31.2	2020-02-01	1
е	quente	28.5	2020-03-01	2

Indexação direta

√ data_frame[['temperatura', 'classification']]

	date	temperatura	classification
0 20	20-01-01	29.1	quente
1 20	20-02-01	31.2	muito quente
2 20	20-03-01	28.5	quente

Método iloc()

✓ Similar à indexação no numpy:

Nome do DataFrame indice da coluna (int) data_frame.iloc[i_linha, j_coluna]

Índice da linha (int)

Método iloc()

✓ Similar à indexação no numpy:

Indexação de múltiplas linhas

Método loc()

Indexação pelo **nome** da linha ou coluna:

Nome do DataFrame

data frame.loc[nome linha, nome coluna]

Nome da coluna (str ou list)

Nome da linha (str ou list)

Indexação booleana

√ df[df['classification']=='quente']

	date	temperatura	classification
0	2020-01-01	29.1	quente
1	2020-02-01	31.2	muito quente
2	2020-03-01	28.5	quente

Indexação booleana

df.loc[df['classification']=='quente', 'temperatura']

	date	tem	peratura	c]	assification
0	2020-01-01		29.1		quente
1	2020-02-01		31.2		muito quente
2	2020-03-01		28.5		quente

Conclusão

- ✓ Indexação no Pandas:
 - ✓ Método iloc.
 - ✓ Método loc.
- ✓ Indexação booleana.

Próxima aula

☐ Indexação — Prática.

Introdução à Análise de Dados

AULA 3.4. INDEXAÇÃO NO PANDAS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Indexação no Pandas:
 - Método iloc().
 - Método loc().

Conclusão

- ✓ Indexação no Pandas:
 - ✓ Método iloc.
 - ✓ Método loc.

Próxima aula

☐ Indexação booleana (Prática).

Introdução à Análise de Dados

AULA 3.5. INDEXAÇÃO BOOLEANA NO PANDAS

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Indexação booleana.

Conclusão

✓ Indexação booleana.

Próxima aula

☐ Ordenação.

Introdução à Análise de Dados

AULA 3.6. ORDENAÇÃO NO PANDAS

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Ordenação no Pandas:
 - Método sort_values.

df.sort_values(by=['col1'])

	col1	col2	col3
0	Α	2	0
1	Α	1	1
2	В	9	9
3	NaN	8	4
4	D	7	2
5	С	4	3

df.sort_values(by=['col1'])

	col1	col2	col3
0	Α	2	0
1	Α	1	1
2	В	9	9
3	NaN	8	4
4	D	7	2
5	С	4	3

df.sort_values(by='col1', ascending=False)

	col1	col2	col3
0	Α	2	0
1	Α	1	1
2	В	9	9
3	NaN	8	4
4	D	7	2
5	С	4	3

	col1	col2	col3
4	D	7	2
5	С	4	3
2	В	9	9
0	Α	2	0
1	Α	1	1
3	NaN	8	4

df.sort_values(by=['col1', 'col2']).

	col1	col2	col3
0	Α	2	0
1	Α	1	1
2	В	9	9
3	NaN	8	4
4	D	7	2
5	С	4	3

df.sort_values(by='col1', na_position='first').

	col1	col2	col3
0	Α	2	0
1	Α	1	1
2	В	9	9
3	NaN	8	4
4	D	7	2
5	С	4	3

	col1	col2	col3
3	NaN	8	4
0	Α	2	0
1	Α	1	1
2	В	9	9
5	С	4	3
4	D	7	2

Conclusão

✓ Ordenação no Pandas.

Próxima aula

☐ Ordenação — Prática.

Introdução à Análise de Dados

AULA 3.7. ORDENAÇÃO NO PANDAS (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Ordenação no Pandas:
 - Método sort_values.
 - Método sort_index.

Conclusão

- ✓ Ordenação no Pandas:
 - ✓ Método sort_values;
 - ✓ Método sort_index.

Próxima aula

☐ Visualização de dados no Pandas (Prática).

Introdução à Análise de Dados

AULA 3.8. VISUALIZAÇÃO DE DADOS NO PANDAS (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

- ☐ Introdução à visualização de dados no Pandas:
 - Plot de linhas.
 - Plot de barras.
 - Plot de "pizza".

Conclusão

√ Visualização de dados no Pandas.

Próxima aula

☐ Dicas gerais no Pandas (Prática).

Introdução à Análise de Dados

AULA 3.9. DICAS GERAIS SOBRE O PANDAS (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Dicas gerais sobre o Pandas.

Conclusão

✓ Dicas:

- ✓ Método groupby.
- ✓ Operações inplace.
- ✓ Compartilhamento de memória em cópias.

Próxima aula

☐ Introdução ao aprendizado de máquinas.

Introdução à Análise de Dados

AULA 4.1. INTRODUÇÃO AO APRENDIZADO DE MÁQUINAS

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Introdução ao aprendizado de máquinas.

Aprendizado de máquinas

iGTi

 Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

- Aprendizado de máquinas
- O aprendizado de máquinas utiliza um conjunto de ferramentas para modelagem e análise de dados denominado Aprendizado Estatístico.
- Abordagem estatística para o problema de Aprendizado de Máquina:
 - Desenvolvimento de modelos capazes de aprender a partir de dados.

 Abordagem simbólica para a classificação de dígitos:

 Abordagem simbólica para a classificação de dígitos:

Suponha que exista um algoritmo capaz de contar o número de retas e curvas em uma imagem de um dígito:

SE DÍGITO É COMPOSTO POR UMA RETA ENTÃO "UM" SE DÍGITO É COMPOSTO POR UMA OU MAIS CURVAS ENTÃO "DOIS"

- Conhecimento do problema é representado por meio de regras (if/else).
- Facilidade de entender o mecanismo de inferência que gerou o resultado.
- Facilidade de alteração do conhecimento

```
SE DÍGITO É COMPOSTO POR UMA RETA ENTÃO "UM"
SE DÍGITO É COMPOSTO POR UMA OU MAIS CURVAS ENTÃO "DOIS"
SE DÍGITO É COMPOSTO POR TRÊS RETAS ENTÃO "QUATRO"
```


 Dificuldade de modelagem de todo o problema.

Dificuldada da lidar com incortazas

Aprendizado estatístico

- Aprendizado a partir de dados.
- Inferências a partir de experiências passadas.

"Seu modelo é tão bom quanto forem os dados que o alimentam..."

Reconhecimento de dígitos escritos a mão:

• Reconhecimento de dígitos escritos a mão:

Detecção facial:

Fonte: https://www.aimlmarketplace.com/technology/image-recognition?start=5

• Geração automática de legendas de fotos:

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Fonte: https://arxiv.org/abs/1502.03044

Pipeline

Fonte: https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

Conclusão

- ✓ Aprendizado de máquinas:
 - ✓ Diferença entre abordagem simbólica e o apredizado estatístico.
 - ✓ Resultados recentes.
 - ✓ Pipeline de um projeto de dados.

Referências

- □ An Introduction to Statistical Learning: With Applications in R: 103, por Gareth James. Disponível em: http://www-bcf.usc.edu/~gareth/ISL/
- ☐ The Hundred-Page Machine Learning Book, por Andriy Burkov.

 Disponível em: http://themlbook.com/wiki/doku.php
- □ PAIM, André. Introdução à inteligência computacional: Apresentação da Disciplina. 01 jan. 2017, 01 jun. 2017. Notas de Aula.

Próxima aula

Introdução à Análise de Dados

AULA 4.2. INTRODUÇÃO AO SCIKIT-LEARN

PROF. MATHEUS MENDONÇA

Nesta aula

O <u>scikit-learn</u> é um dos mais utilizados frameworks de aprendizado de máquinas em Python:

Classification Identifying which category an object belongs to. Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms:** SVR, nearest neighbors, random forest, and more...

O <u>scikit-learn</u> é um dos mais utilizados frameworks de aprendizado de máquinas em Python:

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency **Algorithms:** k-Means, feature selection, nonnegative matrix factorization, and more...

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

O <u>scikit-learn</u> é um dos mais utilizados frameworks de aprendizado de máquinas em Python:

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift, and more...

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms. **Algorithms:** preprocessing, feature extraction, and more...

• Open-source.

- Open-source.
- Desenvolvido baseado no numpy, scipy e matplotlib.

- Open-source.
- Desenvolvido baseado no numpy, scipy e matplotlib.
- Interface alto-nível de modelos complexos.

- Open-source.
- Desenvolvido baseado no numpy, scipy e matplotlib.
- Interface alto-nível de modelos complexos.
- Instalação:
 - pip install scikit-learn.
 - conda install scikit-learn.

- Open-source.
- Desenvolvido baseado no numpy, scipy e matplotlib.
- Interface alto-nível de modelos complexos.
- Instalação:
 - pip install scikit-learn.
 - conda install scikit-learn.

```
    # pré-processamento
    USO: from sklearn.preprocessing import LabelEncoder
```

```
# modelo
from sklearn.linear model import LogisticRegression
```


Possui diversos datasets disponíveis.

Dataset examples 1

Examples concerning the sklearn.datasets module.

The Digit Dataset

The Iris Dataset

Plot randomly generated classification dataset

Plot randomly generated multilabel dataset

Execução de um modelo complexo em poucas linhas:

Conclusão

√ Visão geral do scikit-learn.

Referências

☐ Scikit-learn. Disponível em: < https://scikit-

<u>learn.org/stable/</u>>. Acesso em: 14 de jul. de 2020.

Próxima aula

☐ Classificação: conceitos básicos.

Introdução à Análise de Dados

AULA 4.3. CLASSIFICAÇÃO DE PADRÕES: CONCEITOS BÁSICOS

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Classificação de padrões: conceitos básicos.

Classificação

Classificação

Classificação

Um classificador binário se resume a:

Fronteira de decisão

Fronteira de decisão

Conclusão

- ✓ Classificação de padrões:
 - ✓ Conceitos básicos.

Referências

- □ An Introduction to Statistical Learning: With Applications in R: 103, por Gareth James. Disponível em: http://www-bcf.usc.edu/~gareth/ISL/
- ☐ The Hundred-Page Machine Learning Book, por Andriy Burkov.

 Disponível em: http://themlbook.com/wiki/doku.php
- □ PAIM, André. Introdução à inteligência computacional: Apresentação da Disciplina. 01 jan. 2017, 01 jun. 2017. Notas de Aula.

Próxima aula

☐ Classificação no scikit-learn — Prática.

Introdução à Análise de Dados

AULA 4.4. CLASSIFICAÇÃO NO SCIKIT-LEARN (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Classificação de padrões no scikit-learn.

Conclusão

✓ Classificação de padrões no scikit-learn.

Referências

- □ An Introduction to Statistical Learning: With Applications in R: 103, por Gareth James. Disponível em: http://www-bcf.usc.edu/~gareth/ISL/
- ☐ The Hundred-Page Machine Learning Book, por Andriy Burkov.

 Disponível em: http://themlbook.com/wiki/doku.php
- □ PAIM, André. Introdução à inteligência computacional: Apresentação da Disciplina. 01 jan. 2017, 01 jun. 2017. Notas de Aula.

Próxima aula

☐ Regressão linear no scikit-learn I (Prática).

Introdução à Análise de Dados

AULA 4.5. REGRESSÃO LINEAR NO SCIKIT-LEARN I (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Regressão linear no scikit-learn I.

Conclusão

✓ Regressão linear no scikit-learn.

Referências

- □ An Introduction to Statistical Learning: With Applications in R: 103, por Gareth James. Disponível em: http://www-bcf.usc.edu/~gareth/ISL/
- ☐ The Hundred-Page Machine Learning Book, por Andriy Burkov.

 Disponível em: http://themlbook.com/wiki/doku.php
- □ PAIM, André. Introdução à inteligência computacional: Apresentação da Disciplina. 01 jan. 2017, 01 jun. 2017. Notas de Aula.

Próxima aula

☐ Regressão linear no scikit-learn II (Prática).

Introdução à Análise de Dados

AULA 4.6. REGRESSÃO LINEAR NO SCIKIT-LEARN II (PRÁTICA)

PROF. MATHEUS MENDONÇA

Nesta aula

☐ Regressão linear no scikit-learn.

Conclusão

- ✓ Regressão linear no scikit-learn:
 - ✓ Métricas de avaliação.

Referências

- ☐ An Introduction to Statistical Learning: With Applications in R: 103, por
 - Gareth James. Disponível em: http://www-bcf.usc.edu/~gareth/ISL/
- ☐ The Hundred-Page Machine Learning Book, por Andriy Burkov.
 - Disponível em: http://themlbook.com/wiki/doku.php
- ☐ PAIM, André. Introdução à inteligência computacional: Apresentação
 - da Disciplina. 01 jan. 2017, 01 jun. 2017. Notas de Aula.

Próxima aula

☐ Fim!