Master MVA Dynamic Programming & Reinforcement Learning TP2 - 27/11/2016 ACHARI BERRADA YOUSSEF

1 Q-Learning:

Q1: The exploration policy is the ϵ -greedy policy. I choose $\epsilon = 0.4$ so that we explore all the action-states. With probability $1 - \epsilon$, we choose $a_t = \operatorname{argmax} Q(x_t, a)$, and with probability ϵ , we choose a random action. This exploration policy allows us to explore a large set of state-actions in order to satisfy the stochastic approximation requirement. I choose the learning rate to be:

$$\alpha(x,a) = \frac{1}{N(x,a)}$$

Performance evolution over T = 1000 episodes:

Figure 1: Performance of the Q-Learning algorithm.

2 Stochastic Multi-Armed Bandits on simulated Data

Q2: