Optimización Numérica de Funciones en Varias Variables

Ingeniería en Computadores Instituto Tecnológico de Costa Rica

CE-3102: Análisis Numéricos para Ingeniería

Juan Pablo Soto Quirós jusoto@tec.ac.cr

- Introducción
- Problema de Optimización para una Función Multivariable
- Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

- Introducción
- 2 Problema de Optimización para una Función Multivariable
- Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- 4 Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

- Esta presentación explica algunos aspectos matemáticos y computacionales sobre dos métodos iterativos para resolver problemas de minimización para funciones en varias variables.
- En especial, daremos énfasis en los siguientes dos métodos:
 - Método de Descenso Coordinado
 - Método del Gradiente Conjugado

- Introducción
- Problema de Optimización para una Función Multivariable
 - Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- 4 Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

Función multivariable

Una función escalar de n variables $f: \mathbb{R}^n \to \mathbb{R}$, asigna a cada punto $(x_1,...,x_n) \in \mathbb{R}^n$, un único número real denotado con $f(x_1,...,x_n) \in \mathbb{R}$.

Problema

Sea $\mathbf{x}=(x_1,...,x_n)$. El objetivo de esta presentación es explicar un conjunto de métodos iterativos que permitirán dar una solución al problema de minimización

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}).$$

En resumen, los pasos para resolver el problema

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

en un curso de cáluclo en varias variables son los siguientes:

- Calcular los puntos críticos (Gradiente).
- 2 Calcular el Hessiano Orlado (Hessiano Orlado).
- Evaluar puntos críticos en el Hessiano Orlado.
- Calcular determinantes de las submatrices principales.
- Interpretar resultado.

- ullet La solución del problema $\min_{\mathbf{x} \in \mathbb{D}^n} f(\mathbf{x})$ se realizará a través de métodos iterativos.
- Es decir, dado un valor inicial $\mathbf{x}^{(0)} \in \mathbb{R}^n$, cada método iterativo generará una sucesión de puntos

$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(k)}, ...\},\$$

donde $\mathbf{x}^{(j)} \in \mathbb{R}^n$, para todo j = 1, 2, ...

- La sucesión de puntos puede tener tres criterios de convergencia:
 - La sucesión converge a la solución del problema.
 - La sucesión converge a a un punto que no es solución del problema.
 - La sucesión no converge.

- Introducción
- 2 Problema de Optimización para una Función Multivariable
- Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- 4 Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

- El método de descenso coordinado (DC) actualiza solo una de las variables mientras las otras variables son "fijadas".
- Existen varias reglas para seleccionar cual variable es actualizadas. Las tres reglas más utilizadas son:
 - Regla de Jacobian: en cada iteración k, las n variables son actualizadas, utilizando exactamente los valores de la iteración anterior k-1.

$$x_j^{(k)} \in \arg\min_{x_j \in \mathbb{R}} f\left(x_1^{(k-1)}, \dots, x_{j-1}^{(k-1)}, x_j, x_{j+1}^{(k-1)}, \dots, x_n^{(k-1)}\right),$$

para $j=1,\ldots,p$. Esta actualización se puede hacer en paralelo.

Qualification Reglas de Gauss-Seidel: en cada iteración k, las n variables son actualizadas, utilizando exactamente los valores de la iteración anterior k-1, y los valores de la iteración k calculados anteriormente.

$$x_j^{(k)} \in \arg\min_{x_j \in \mathbb{R}} f\left(x_1^{(k)}, \dots, x_{j-1}^{(k)}, x_j, x_{j+1}^{(k-1)}, \dots, x_n^{(k-1)}\right),$$

para $j=1,\ldots,n$.

Reglas Aleatorizada: es una variación de la regla de Gauss-Seidel, pero la selección de la variable se hace de manera aleatoria, sin seguir un orden establecido.

Observación: De las 3 reglas mencionadas, la regla de Gauss-Seidel es la más utilizada.

Algorithm 1 Método de Optimización Alternada

```
Requires: \mathbf{x}^{(0)} = (x_1^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}^n

Returns: \mathbf{x}^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)}) \in \mathbb{R}^n

1: for k = 1, 2, \dots do

2: for j = 1, \dots, n do

3: x_j^{(k)} = \text{Usando la regla de Jacobi o Gauss-Seidel}

4: end

5: if el criterio de parada se cumple then

6: return x^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)})

7: end

8: end
```

Ejemplo 1

Considere la función $f(x,y)=(x-2)^2+(y+3)^2+xy$. Aplique el método DC con la regla de Gauss-Seidel y $\mathbf{x}^{(0)}=(1,1)^t$, utilizando 9 iteraciones.

Solución:

- Iteración 1: Calcular vector $\mathbf{x}^{(1)} = (x^{(1)}, y^{(1)})^t$
 - ullet Calcular $x^{(1)}$. Para esto, se resuelve el problema

$$x^{(1)} = \arg\min_{x \in \mathbb{R}} \ f(x, y^{(0)}) = \arg\min_{x \in \mathbb{R}} \ f(x, 1) = \arg\min_{x \in \mathbb{R}} \ (x^2 - 3x + 20) = 1.5$$

• Calcular $y^{(1)}$. Para esto, se resuelve el problema

$$y^{(1)} = \arg\min_{y \in \mathbb{R}} \ f(x^{(1)}, y) = \arg\min_{y \in \mathbb{R}} \ f(1.5, y) = \arg\min_{x \in \mathbb{R}} \ \frac{4y^2 + 30y + 37}{4} = -3.75.$$

Por lo tanto, $\mathbf{x}^{(1)} = (1.5, -3.75)^t$.

Solución (Continuación):

- Iteración 2: Calcular vector $\mathbf{x}^{(2)} = (x^{(2)}, y^{(2)})^t$
 - ullet Calcular $x^{(2)}$. Para esto, se resuelve el problema

$$x^{(2)} = \arg\min_{x \in \mathbb{R}} \ f(x, y^{(1)}) = \arg\min_{x \in \mathbb{R}} \ \frac{16x^2 - 124x + 73}{16} = 3.875.$$

• Calcular $y^{(2)}$. Para esto, se resuelve el problema

$$y^{(2)} = \arg\min_{y \in \mathbb{R}} \ f(x^{(2)}, y) = \arg\min_{y \in \mathbb{R}} \ \frac{8y^2 + 79y + 87}{8} = -4.9375.$$

Por lo tanto, $\mathbf{x}^{(2)} = (3.875, -4.9375)^t$.

Solución (Continuación):

Repitiendo el proceso varias veces, obtenemos los siguientes resultados:

k	$\mathbf{x}^{(k)}$	$f(\mathbf{x}^{(k)})$
0	(1, 1)	18
1	(1.5, -3.75)	-4.8125
2	(3.875, -4.9375)	-11.8633
3	(4.4688, -5.2344)	-12.3040
:	:	÷
9	(4.666, -5.333)	-12.3333

Ejemplo 2

Considere la función $f(x,y,z)=x^3+y^3+z^3-2xy-2xz-2yz$. Aplicando el método OA con la regla de Gauss-Seidel y $\mathbf{x}^{(0)}=(1,1,1)^t$, obtenemos los siguientes resultados.

Solución:

k	$\mathbf{x}^{(k)}$	$f(\mathbf{x}^{(k)})$
0	(1, 1, 1)	3
1	(1.1547, 1.1985, 1.2525)	3.4366
2	(1.2641, 1.2953, 1.3062)	3.5392
:	:	:
8	(1.333, 1.333, 1.333)	3.5556

Criterio de Parada

Dado una tolerancia tol>0, dos criterios de parada para el método DC es considerar las siguientes expresiones booleanas:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_2 < tol$$
 ó $\|\nabla f(\mathbf{x}^{(k+1)})\|_2 < tol$

donde $\mathbf{x}^{(k)} \in \mathbb{R}^n$ es la k-esima iteración generada por el método DC y $\|\cdot\|_2$

es la norma euclideana definida por
$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
.

- Introducción
- 2 Problema de Optimización para una Función Multivariable
- Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- 4 Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

Algunas definiciones

Sea $f: \mathbb{R}^n \to \mathbb{R}$.

ullet El **epigrafo** de f se define como el conjunto

$$\operatorname{epi}(f) = \{(\mathbf{x}, \gamma) : f(\mathbf{x}) \leqslant \gamma, \forall \mathbf{x} \in \mathbb{R}^n, \gamma \in \mathbb{R}\}.$$

• Una función f es **cerrada** si su epigrafo es cerrado.

Algunas definiciones (continuación)

• Un punto $\mathbf{x}^* \in \mathbb{R}^n$ se llama **mínimo coordenado** si

$$f(\mathbf{x}^*) \leq f(\mathbf{x}^* + \alpha \cdot \mathbf{e}_j),$$

para j=1,...,n y $\alpha\in\mathbb{R}.$ Aquí, $\{\mathbf{e}_1,...,\mathbf{e}_n\}$ es la base canónica en $\mathbb{R}^n.$

Figura: Gráfica de la función f(x,y) = |x-2y| + |3x+4y|.

 ITCR
 Presentación 3
 21 / 38

Algunas definiciones (continuación)

• Una función $f: \mathbb{R}^n \to \mathbb{R}$ se llama convexa si cualesquiera dos puntos $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, y para cada $\alpha \in [0, 1]$, se cumple que

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

• Una función $f: \mathbb{R}^n \to \mathbb{R}$ es una función **apropiada** si no existe ningún punto x tal que $f(x) = -\infty$ y cuyo dominio no es vacío.

Teorema de Convergencia del Método DC

Sea $f:\mathbb{R}^n \to \mathbb{R}$ una función apropiada y cerrada, la cual es continua en su dominio. Si se cumple que

- el problema $\min_{x_j \in \mathbb{R}} f\left(x_1^{(k)}, \dots, x_{j-1}^{(k)}, x_j, x_{j+1}^{(k-1)}, \dots, x_n^{(k-1)}\right)$ tiene una solución única, para todo $j=1,\dots,n$
- ② para cualquier $\mathbf{x}^{(0)}$, el conjunto $\{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \leqslant f(\mathbf{x}^{(0)})\}$ es un conjunto acotado

entonces la sucesión generada por el método DC converge a un mínimo coordenado.

Nota: Si $f(\mathbf{x}) = g(\mathbf{x}) + \sum\limits_{i=1}^n h_i(x_i)$, donde g es una función convexa y diferenciable, y cada h_i es convexa (no necesariamente diferenciable), entonces un mínimo coordenado de f es también un mínimo global de f.

- Introducción
- 2 Problema de Optimización para una Función Multivariable
- Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- 4 Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

Ejercicios

Considere la función

$$f(x,y,z) = (x-2)^2 + (y+3)^2 + (x+y+z)^2.$$

Aplique el método DC con un valor inicial $\mathbf{x}^{(0)} = (1, 1, 1)^t$, con una tolerancia de 10^{-3} .

② Considere la matriz $X=\begin{pmatrix}2&1\\1&2\end{pmatrix}$ y el vector $\mathbf{y}=(-2,3)^t$. Usando el método DC, resuelva el problema de optimización

$$\min_{\mathbf{z} \in \mathbb{R}^2} \frac{1}{2} \|\mathbf{y} - X\mathbf{z}\|_2^2,$$

con un valor inicial $\mathbf{z}^{(0)} = (0.5, 0.5)^t$, con una tolerancia de 10^{-3} .

- Introducción
- Problema de Optimización para una Función Multivariable
 - 3 Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

 El método del gradiente conjugado no lineal (GCNL) es un algoritmo para resolver numéricamente el problema de optimización

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}),$$

donde f es una función continuamente diferenciable.

- Dado un valor inicial $\mathbf{x}^{(0)} \in \mathbb{R}^n$, el objetivo del método GCNL es crear una sucesión de puntos $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(k)}, ...\}$.
- Esta sucesión se genera mediante la siguiente fórmula

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

donde

- $\alpha_k > 0$ es un tamaño de paso obtenido por una búsqueda lineal
- $\mathbf{d}^{(k)} \in \mathbb{R}^n$ es una dirección de descenso en $\mathbf{x}^{(k)}$ de f

Selección de la dirección $\mathbf{d}^{(k)}$

• La dirección $\mathbf{d}^{(k)}$ is generada por la regla

$$\mathbf{d}^{(0)} = -\mathbf{g}^{(0)}, \qquad \mathbf{d}^{(k+1)} = -\mathbf{g}^{(k+1)} + \frac{\beta_k}{\beta_k} \mathbf{d}^{(k)},$$

donde $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})^t$ es el gradiente de f representado como un vector columna.

- La constante $\beta_k > 0$ es un parámetro de actualización del método GCNL.
- Diferentes métodos GCNL corresponden a diferentes elecciones para el escalar β_k .

$$\beta_k^{HS} = \frac{\mathbf{g}_{k+1}^\mathsf{T} \mathbf{y}_k}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k} \qquad (1952) \quad \text{in the original (linear) CG paper} \\ \beta_k^{FR} = \frac{\|\mathbf{g}_{k+1}\|^2}{\|\mathbf{g}_k\|^2} \qquad (1964) \quad \text{first nonlinear CG method, proposed} \\ \beta_k^{FR} = \frac{\mathbf{g}_{k+1}^\mathsf{T} \mathbf{v}^2 f(\mathbf{x}_k) \mathbf{d}_k}{\|\mathbf{g}_k\|^2} \qquad (1967) \quad \text{proposed by Daniel [39], requires} \\ \beta_k^{PRP} = \frac{\mathbf{g}_{k+1}^\mathsf{T} \mathbf{y}_k}{\|\mathbf{g}_k\|^2} \qquad (1969) \quad \text{proposed by Polak and Ribière [84]} \\ \beta_k^{CD} = \frac{\|\mathbf{g}_{k+1}\|^2}{-\mathbf{d}_k^\mathsf{T} \mathbf{g}_k} \qquad (1987) \quad \text{proposed by Fletcher [44], CD} \\ \beta_k^{LS} = \frac{\mathbf{g}_{k+1}^\mathsf{T} \mathbf{y}_k}{-\mathbf{d}_k^\mathsf{T} \mathbf{g}_k} \qquad (1991) \quad \text{proposed by Dai and Yuan [27]} \\ \beta_k^{D} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k} \qquad (1999) \quad \text{proposed by Hager and Zhang [53]} \\ \beta_k^{N} = \left(\mathbf{y}_k - 2\mathbf{d}_k \frac{\|\mathbf{y}_k\|^2}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k}\right)^\mathsf{T} \frac{\mathbf{g}_{k+1}}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k} \qquad (2005) \quad \text{proposed by Hager and Zhang [53]}$$

Figura: Posibles elecciones para el parámetro β_k . (Nota: $\mathbf{y}_k = \mathbf{g}_{k+1} - \mathbf{g}_k$)

Selección del tamaño de paso α_k

• En cada iteración del método GCNL, el paso α_k se escoge de resolver el siguiente problema de optimización:

$$\min_{\alpha \geqslant 0} f(\mathbf{x}^k + \alpha \mathbf{d}^k).$$

• En la práctica, uno no resuelve este problema. Una alternativa es encontrar la constante α_k que satisface la siguiente desigualdad

$$f(\mathbf{x}^k + \alpha_k \mathbf{d}^k) - f(\mathbf{x}^k) \le \delta \alpha_k (\mathbf{g}^{(k)})^t \mathbf{d}^k, \tag{1}$$

donde $\delta \in]0,1[$, el cual se elige de manera aleatoria.

• Dado $\alpha_k = 1$, se prueba α_k en la desigualdad (1). Si la desigualdad no se cumple, entonces se divide α_k por un número entero positivo (por ejemplo 2). El proceso se repite hasta que la desigualdad sea verdadera.

Algoritmo del método GCNL

REQUIRE: $\mathbf{x}^{(0)} \in \mathbb{R}^n$. **ENSURE:** $\mathbf{x}^{(k+1)} \in \mathbb{R}^n$

$$\mathbf{g}^{(0)} = \nabla f(\mathbf{x}^{(0)})^t$$
; $\mathbf{d}^{(0)} = -\mathbf{g}^{(0)}$

for k = 0, 1, 2, ... do

$$\begin{array}{l} \alpha_k = 1; \quad \delta \in]0,1[\\ \text{while } \neg [f(\mathbf{x}^k + \alpha_k \mathbf{d}^k) - f(\mathbf{x}^k) \leqslant \delta \alpha_k (\mathbf{g}^{(k)})^t \mathbf{d}^k] \text{ do} \\ \mid \quad \alpha_k = \alpha_k/2 \\ \text{end} \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)} \end{array}$$

if stopping criterion is satisfied then

Return
$$\mathbf{x}^{(k+1)}$$

end

$$\mathbf{g}^{(k+1)} = \nabla f(\mathbf{x}^{(k+1)})^t$$
; Choose β_k rule $\mathbf{d}^{(k+1)} = -\mathbf{g}^{(k+1)} + \beta_k \mathbf{d}^{(k)}$

end

Ejemplo 3

Considere la función $f(x,y)=(x-2)^4+(x-2y)^2$. Aplique el método GCNL con $\mathbf{x}^{(0)}=(0,3)^t$, utilizando 13 iteraciones, y usando la regla de de Fletche y Reeves $\beta_k=\frac{\|\mathbf{g}^{(k+1)}\|^2}{\|\mathbf{g}^{(k)}\|^2}$.

Solución: Sea $\nabla f(\mathbf{x}) = (4x^3 - 24x^2 + 50x - 4y - 32, -4x + 8y)$. Luego, se define $\mathbf{g}^{(0)} = \nabla f(\mathbf{x}^{(0)})^t = (-44, 24)^t$ y $\mathbf{d}^{(0)} = -\mathbf{g}^{(0)}$

- Iteración 1:
 - Usando $\delta=0.5$, buscamos el α_0 que cumple la condición (1) (Ver bloque azul en Algoritmo GCNL). En este caso, $\alpha_0=0.0625$.
 - Se aproxima la primera iteración

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \alpha_0 \mathbf{d}^{(0)} = (1.375, 2.25)^t$$

- Se calcula $\mathbf{g}^{(1)} = \nabla f(\mathbf{x}^{(1)})^t = (-7.2265625, 12.5)^t$
- Se obtiene $\beta_0 = \frac{\|\mathbf{g}^{(1)}\|^2}{\|\mathbf{g}^{(0)}\|^2} = 0.082991$
- Se calcula $\mathbf{d}^{(1)} = -\mathbf{g}^{(1)} + \beta_0 \mathbf{d}^{(0)} = (10.878163, -14.491782)^t$

Solución: (Continuación)

- Iteración 2:
 - Usando $\delta=0.5$, buscamos el α_1 que cumple la condición (1) (Ver bloque azul en Algoritmo GCNL). En este caso, $\alpha_1=0.0625$.
 - Se aproxima la segunda iteración

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \alpha_1 \mathbf{d}^{(1)} = (2.054885, 1.344264)^t$$

- Se calcula $\mathbf{g}^{(2)} = \nabla f(\mathbf{x}^{(2)})^t = (-4.889568, 2.534572)^t$
- Se obtiene $\beta_2 = \frac{\|\mathbf{g}^{(2)}\|^2}{\|\mathbf{g}^{(1)}\|^2} = 0.038510$
- Se calcula $\mathbf{d}^{(2)} = -\mathbf{g}^{(2)} + \beta_1 \mathbf{d}^{(1)} = (1.685541, -3.092645)^t$

Solución: (Continuación)

La siguiente tabla representa el cálculo de las siguientes iteraciones

k	$\mathbf{x}^{(k)}$	$\ \nabla f(\mathbf{x}^{(k)})\ $
0	$(0,3)^t$	50.12
1	$(1.375, 2.25)^t$	14.4386
2	$(2.0549, 1.3443)^t$	2.8334
3	$(2.1602, 1.1510)^t$	0.62659
4	$(2.1821, 1.1061)^t$	0.12575
5	$(2.1852, 1.0968)^t$	0.034372
6	$(2.1849, 1.0940)^t$	0.022743
:	:	:
13	$(2.0555, 1.0278)^t$	0.00062670

- Introducción
- Problema de Optimización para una Función Multivariable
 - Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

Convergencia del Método CGNL

Sea $f:\mathbb{R}^n \to \mathbb{R}$ una función apropiada, la cual es continua en su dominio. Si se cumple que

- para cualquier $\mathbf{x}^{(0)}$, el conjunto $\{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \leq f(\mathbf{x}^{(0)})\}$ es un conjunto acotado
- Existe $A \subseteq \mathbb{R}^n$, tal que para todo $\mathbf{x}, \mathbf{y} \in A$, existe L > 0 tal que

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|.$$

 \bullet La constante δ del Método CGNL esta en el intervalo]0,0.5[. entonces la sucesión generada por el método CGNL satisface

$$\lim_{k \to \infty} \|\nabla f(\mathbf{x}^{(k)})\| = 0.$$

- Introducción
- 2 Problema de Optimización para una Función Multivariable
 - Método de Descenso Coordinado
 - Convergencia
 - Ejercicios
- Método del Gradiente Conjugado No Lineal
 - Convergencia
 - Ejercicios

Ejercicios

Considere la función

$$f(x_1, x_2) = xe^{-x^2 - y^2}.$$

Aplique el método GCNL con un valor inicial $\mathbf{x}^{(0)} = (-0.5, -0.5)^t$, con una tolerancia de 10^{-2} .

② Considere la matriz $X=\begin{pmatrix}2&1\\1&3\end{pmatrix}$ y el vector $\mathbf{b}=(4,7)^t$. Usando el método CGNL, resuelva el problema de optimización

$$\min_{\mathbf{x} \in \mathbb{R}^2} \left(\frac{1}{2} \mathbf{x}^t A \mathbf{x} - \mathbf{b}^t \mathbf{x} \right),$$

38 / 38

con un valor inicial $\mathbf{x}^{(0)} = (0.5, 0.5)^t$, con una tolerancia de 10^{-3} .