

1^{ère} Année Info 2016-17

Examen d'Algèbre Linéaire Numérique Session 1

(cette partie de l'examen est notée sur 13 points)

Exercice 2 (3 points)

Soit $A \in \mathcal{M}_n(R)$ factorisable sans pivotage par l'algorithme de Gauss. Montrer que, si il existe :

- L_1 matrice triangulaire inférieure à diagonale unité (tous les coefficients de la diagonale principale sont égaux à 1), U_1 matrice triangulaire supérieure inversible telles que $A=L_1$. U_1
- L_2 matrice triangulaire inférieure à diagonale unité, U_2 matrice triangulaire supérieure inversible telles que $A=L_2$. U_2

alors nécessairement $L_1 = L_2$ et $U_1 = U_2$

Solution: $A=L_1$. $U_1=L_2$. U_2 L_1 . U_1 . $U_2^{-1}=L_2$ U_1 . $U_2^{-1}=L_1^{-1}$. $L_2=C$ U_1 . U_2^{-1} est triangulaire supérieure L_1^{-1} . L_2 est triangulaire inférieure à diagonale unité donc C est diagonale à diagonale unité =I U_1 . $U_2^{-1}=I\Rightarrow U_1=U_2$ L_1^{-1} . $L_2=I\Rightarrow L_1=L_2$

Exercice 3 (3 points)

Vous avez eu l'occasion de mettre en œuvre, au cours des TPs, la factorisation de Gauss avec pivotage partiel. C'est-à-dire la construction, à partir de la matrice A initiale, de l'équation P. A = L. U. L'objet mathématique P qui intervient dans cette équation est une matrice de permutation qui reflète les différents pivotages effectués. Sur le plan informatique, il vous était demandé de représenter cette donnée sous forme d'un simple vecteur. Expliquer en quelques lignes quelle algorithmique vous avez utilisée pour construire ce vecteur.

Solution: A l'itération k (pivot courant a_{kk}), on recherche $i \in \{k, ..., n\}$ tel que :

$$|a_{ik}| = \max_{j=k...n} |a_{jk}|$$

puis on échange dans la matrice A les lignes k et i

P est un vecteur de taille n, qui représentera informatiquement la matrice de permutation de même nom. P n'a pas besoin d'être initialisé.

A l'itération k : P(k) = i

N.B.: Lors de l'algorithme de descente:

- $x \leftarrow b$ en préambule
- puis, dans la boucle de descente et avant le calcul de x_i , il faut permuter le second membre i.e. x(i) et x(P(i))

Exercice 4 (3 points)

Soit H une matrice Hessenberg supérieure dont tous les coefficients de la diagonale secondaire inférieurs sont non nuls. Montrer qu'il existe une matrice diagonale D inversible telle que $H' = D^{-1}$. H. D soit une matrice Hessenberg supérieure dont tous les coefficients de la diagonale secondaire inférieure sont égaux à 1.

Solution: Si on raisonne sur un exemple avec $D = diag(d_1)$

Solution: Si on raisonne sur un exemple avec
$$D = diag(d_1, \dots, d_5)$$

$$H = \begin{pmatrix} * & * & * & * & * \\ h_2 & * & * & * & * \\ 0 & h_3 & * & * & * \\ 0 & 0 & h_4 & * & * \\ 0 & 0 & 0 & h_5 & * \end{pmatrix} \xrightarrow{D^{-1}.H.D} \begin{pmatrix} * & * & * & * & * \\ a_2 & * & * & * & * \\ 0 & a_3 & * & * & * \\ 0 & 0 & a_4 & * & * \\ 0 & 0 & 0 & a_5 & * \end{pmatrix}$$
Avec $a_2 = \frac{d_1}{d_2}h_2$ $a_3 = \frac{d_2}{d_3}h_3$ $a_4 = \frac{d_3}{d_4}h_4$ $a_5 = \frac{d_4}{d_5}h_5$

Soit
$$H = \begin{pmatrix} * & * & \cdots & \cdots & * \\ h_2 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & h_{m-1} * \end{pmatrix}$$

On veut
$$i=2,\cdots n$$

$$\frac{h_id_{i-1}}{d_i}=1 \qquad \text{ou} \qquad d_i=h_id_{i-1}$$
 En prenant (par exemple) $d_1=1\neq 0$
$$i=2,\cdots n \qquad d_i=h_id_{i-1}=\prod_{j=2}^i h_j$$

Exercice 5 (4 points, essentiellement sur la 2^{ème} question)

Au polynôme $P(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$, on associe la matrice :

$$A = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & \cdots & 0 & -a_{n-1} \\ 0 & 1 & 0 & \cdots & 0 & -a_{n-2} \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ \vdots & & & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & -a_1 \end{pmatrix}$$

- 1) Montrer que $P(x) = \det(I.x A)$ où I représente la matrice identité de $\mathcal{M}_n(R)$.
- 2) En admettant éventuellement la première question, montrez que les racines (complexes) du polynôme P appartiennent à l'un des deux disques d'équations :

$$|x| \le 1 + \max_{j=2,\dots,n} |a_j|$$
$$|x+a_1| \le 1$$

Solution:

1)
$$x.I - A = \begin{pmatrix} x & 0 & \cdots & \cdots & 0 & a_n \\ -1 & x & \cdots & \cdots & 0 & a_{n-1} \\ 0 & -1 & x & \cdots & 0 & a_{n-2} \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ \vdots & & & \ddots & x & \vdots \\ 0 & \cdots & \cdots & 0 & -1 & x + a_1 \end{pmatrix} = B_n$$

En développant $det(B_n)$ suivant la 1^{ère} ligne :

$$\det(B_n) = x \cdot \det(B_{n-1}) + (-1)^{n-1} a_n \begin{pmatrix} -1 & x & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & x \\ 0 & \cdots & \cdots & 0 & -1 \end{pmatrix} = x \cdot |B_{n-1}| + a_n$$

$$|B_n| = x(x \cdot |B_{n-2}| + a_{n-1}) + a_n = x(x \cdots x(x \cdot |B_2| + a_3) + a_4 \cdots + a_{n-1}) + a_n$$

$$|B_2| = \begin{vmatrix} x & a_2 \\ -1 & x + a_1 \end{vmatrix} = x(x + a_1) + a_2$$

$$|B_n| = x(x \cdots x(x \cdot (x + a_1) + a_2) + a_3) + a_4 \cdots + a_{n-1}) + a_n = P(x)$$

2) Théorème d'Hadamard-Gerchörin : x valeur propre quelconque de A

 $x \in \bigcup_{i=1}^n D_i$ où D_1 est le disque associé à la ligne n, D_2 le disque associé à la ligne $n-1, \ldots, D_n$ le disque associé à la ligne 1

$$\begin{array}{l} D_1 = \{x \in \mathbb{C}/|x + a_1| \leq 1\} \\ i = 2, \cdots, n-1 & D_i = \{x \in \mathbb{C}/|x| \leq 1 + |a_i|\} \\ D_n = \{x \in \mathbb{C}/|x| \leq |a_n|\} \in \{x \in \mathbb{C}/|x| \leq 1 + |a_n|\} \\ \text{D'où } \bigcup_{i=2}^n D_i = \left\{x \in \mathbb{C}/|x| \leq 1 + \max_{i=2, \cdots n} |a_i|\right\} \end{array}$$