МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Параллельные алгоритмы»

ТЕМА: Параллельное умножение матриц

Студентка гр. 0381	Ионина К.С.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

2022

Цель работы.

Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации. Реализовать параллельный алгоритм «быстрого» умножения матриц Штрассена.

Задание.

- 4.1 Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации.
- 4.2 Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации). Проверить, что результаты вычислений реализаций 4.1 и 4.2 совпадают.

Сравнить производительность с реализацией 4.1 на больших размерностях данных (порядка $10^4 - 10^6$)

Выполнение работы.

Было реализовано параллельное умножение матриц.

Для реализации алгоритма Штрассена была написана функция, которая:

- 1) Если размер матрицы меньше 128, то происходит обычное умножение матриц. (Выбрано 128, т.к. после такой размерности алгоритм Штрассена не эффективен)
- 2) Если глубина рекурсии выше, чем задал пользователь при запуске программы, то функция вызывается рекурсивно без создания нового потока.
- 3) Если предыдущие условия не выполняются, то функция вызывается рекурсивно в новом потоке.

Внутренняя функция реализует алгоритм Штрассена. Схема представлена на рис.1

Рисунок 1 – алгоритм Штрассена

На рис.2 и рис3. показано, что результаты вычислений реализаций 4.1 и 4.2 совпадают.

Рисунок 2 – Демонстрация работы программы

Рисунок 3 – Демонстрация работы программы

В таблице 1 представлено сравнение времени работы алгоритма в зависимости от размера входных данных. Количество поток для параллельного умножения — 3. Максимальная глубина рекурсии для алгоритма Штрассена — 3.

Размер данных	Время работы	Время работы алгоритма
	алгоритма умножения	Штрассена
32*32	289ms	510ms
256*256	59171ms	53711ms
2024*2024	31990920ms	19387273ms

Заметим, что с увеличением размера матрицы алгоритм Штрассена работает быстрее.

Выводы.

В ходе выполнения лабораторной работы была написана программа на языке программирования С++ для параллельного умножения матриц. Также был реализован алгоритм Штрассена.