BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHÓ HÒ CHÍ MINH

CÔNG TRÌNH NGHIÊN CỬU KHOA HỌC CẮP TRƯỜNG

NGHIÊN CỬU CHẾ TẠO MÁY BO GÓC GIẤY SỬ DỤNG KHÍ NÉN

MÃ SỐ: T2013 - 189

Tp. Hồ Chí Minh, 2013

NHỮNG THÀNH VIÊN THAM GIA NGHIÊN CỨU ĐỀ TÀI							
TT	Họ và tên	Đơn vị công tác và lĩnh vực chuyên môn	Nội dung nghiên cứu cụ thể được giao				
1	Nguyễn Minh Nhật-Kỹ sư công nghệ in	Khoa In & Truyền Thông	 -Lập phương án. Lựa chọn thiết kế - Gia công chi tiết và lắp ráp thiết bị. -Vận hành thử nghiệm 				

MỤC LỤC

Danh mục bản biểuTrang	g 5-7
Thông tin kết quả nghiên cứu Trang	g 8-9
PHẦN MỞ ĐẦUTrang 1	0,11
PHẦN NỘI DUNG Trang 12	2- 49
CHƯƠNG I: CƠ SỞ LÝ LUẬN Trang 1	3-20
1. Khái niệm chung về giấy	14
2. Một số tính chất về độ bền của giấy	15
3. Nguyên lý cắt vật liệu	17
CHƯƠNG II: LỰA CHỌN GIẢI PHÁP THIẾT KẾ, CHẾ TẠO Trang 2	1- 44
1. Phân tích các mẫu thiết kế và nguyên lý hoạt động của các thiết bị hiện có	22
2. Lựa chọn giải pháp thiết kế	26
3.Tính toán lực cắt	29
4. Thông số kỹ thuật và tổng quan cấu tạo thiết bị	35
CHƯƠNG III: THỰC NGHIỆM Trang 4	6- 49
1. Thử nghiệm với nhiều loại giấy khác nhau theo thông số thiết kế	46
2. Thử nghiệm ngoài thông số dự kiến	48
PHẦN KẾT LUẬNTrang 50	0- 51
1. Kết luận	51
2. Kiến nghị đề xuất	51
Tài liệu tham khảo Tran	ng 52
Phụ lục	

DANH MỤC BẢN BIỂU

Meterial	Shear Strength, psi
Curbon Stools:	
SA3 1(10 HR	21,500
SAE 1020 HR	32,000
SAT IMS OF	55,000
SAS 1645 A	
	44,300
5A3 1095 QT	000,000
SAE 1095 A	63.500
SAR LILT HR	32,300
Alby Steels:	
SA2 4130 M	12,500
SAE 4480 T (150,000)	90,300
SA3 4140 N	66,500
SAE 3120 ET-D (\$00°D)	95.300
SAE 3140 ET-D (800°F)	1.30,000
SAS \$250 ET-D (S90°E)	188,000
Stainless Steels	
AlSI MI	52,700
AISI MI	50.100
A1SI 302	41,)00
AEI 90	56,300
A151 810	42.750
A1SI 316	
	38,350
ABSI 951	39,250
Cold rolled S/S strip (full hard)	
ABI 300 Series	815,000
Stainles Steels Asnealed	Sept Strong
Alst 410	33.750
AISI 416	33,750
AET 440C	49,500
AISI 430	33,150
Mosci Metal:	
70.900 Jus	42,900
110,000 UTS	
	65,600
K Manel:	
185,500 UTS	99,600
Nierol:	
68,000 UTS	62,100
121,900 UT5	75,400
Incomel Allova:	
00,490 UTG	59,400
100,000 UTS	66,400
1.000,000 U.15	
150,000 UTS	80,100
175,000 UTV	87,400

Bảng tra cứu ứng suất biến dạng trượt của vật liệu kim loại và phi kim- Trích từ sách:

Handbook of Machinning and Metalworking Calculations- Ron A-Walsh

NXB Mc GRAW HILL

Copper and Alloys:	
CA 110 (ETP 110)	22,000:48,000
CA 210 (Guilding)	26.000-37.000
CA 220 (Bronne)	28.000-38.000
CA 230 (Red bress)	31.000-42.000
CA 260 (Cartridge brase)	33,000-44,000
CA 268 (Yellow brass)	33,000-43,000
Beryllium copper: Strip & sheet:	
C 17200 (25)	34,200-54,000
C 17000 (165)	34,200.94,500
C 17510 (3)	24,750,67,500
C 17500 (10)	24,750-67,500
C 17410 (174) HT	58.500
Beryllium Nickel:	and the s
UNS-N033 HT	123,750
DNO-1900 III	120,180
Al	
Aluminum and Alloys:	
1100-O	9,000
1100-H18	13,000
2014-O	18,000
2014-T4, T451	38,000
2014-T6, T651	42,000
2024-O	18,000
2024-T3, T4, T351	41,000
3003-O	11,000
3003-H14	14,000
3003-H18	16,000
5052-0	18,000
5052-H32, H38	80.000-77.000
6061-O	
	12,000
6061-Td, T451	24,000
6061-T6, T651	30,000
7075-0	22,000
7075-T6, T651	48,000
7178-0	23,000
7178/T6, T651	53,300
	,
Magnesium Alloys:	
Soft (supealed)	19.000
Hardened	28.500 max.
THE OTHER	and the second second
984 1 8 - 4 11	
Titsmium & Alloys:	AR A.A. 40 PAA
Pure	27,000-49,500
Typical alloys	45,000-77,000
Noumetallics:	
Polyester-glass (GPO-1, 2 & 3)	12,000-17,000
Polycarbonate (Lexan)	6,000-10,000
Cycolae	4,400-7,400
ABS (Acrylunitrila Butadena Styrene)	1,500-4,000
Acetal (Delrin)	3,000-6,000
Acetate (Celliclose)	2,000-4,000
Epoxy-glass	
	4,000-10,000
Nylon	3,000-12,000

Bảng tra cứu ứng suất biến dạng trượt của vật liệu kim loại và phi kim (tiếp theo)

- Trích từ sách: Handbook of Machinning and Metalworking Calculations - Ron A.Walsh
NXB Mc GRAW HILL

1. Phân tích các mẫu thiết kế & nguyên lý hoạt động của các thiết bi hiện có

1.1 Đồ dùng văn phòng:

Đây là dụng cụ cắt góc bằng tay, được thiết kế đơn giản dễ sử dụng cho các ứng dụng văn phòng cần cắt nhanh, đa dang về kích thước đường tròn góc, mỗi lần cắt chỉ được vài tờ giấy, lực cắt phụ thuộc nhiều vào lực của

ngón tay.

Hình II.1: dụng cụ cắt góc

1.2 Dạng máy thủ công

Dạng thiết bị sử dụng sức người là chính, quá trình cắt diễn ra theo nguyên lý shear cut hoặc knife cut, lực cắt phụ thuộc vào lực kéo của tay người vận hành, chiều cao chồng vật liệu cắt không vươt quá 2.5cm. Một số biến thể khác sử dung lực đạp chân cho phép lực cắt lớn hơn, đồng nghĩa với chiều cao cắt của thiết bị lớn hơn. tối đa đat được 5cm.

Thiết bị ứng dụng nguyên lý knife cut cho chất lương nhát cắt không đồng đều vì lưỡi dao cắt sẽ cắt sâu xuống vật liêu lót phía dưới sau một thời gian sử dung. Lúc này mép của vật liệu cần cắt có xu hướng bị bẻ cong hoặc không sắc cạnh, có dấu hiệu răng cưa. Hiện tượng này dễ xảy ra khi cắt với lực cắt lớn hơn mức cần thiết. Chỉ sử dung cho sản phẩm đơn lẻ.

Một số nhà sản xuất cũng đưa ra thiết bị hoạt động

b. Máy bo góc hai dao cắt dang kéo tay không có bàn ép

Hình II.2: một số máy cắt góc

