Part 2: Atomic theory from 400 BC to 1913

Today's Lecture

 Pre-quantum Atomic Models (from Democritus 433 A.D. to Bohr 1913)

Atomic Spectra (unique signatures of the elements)

Democritus

John Dalton

- Democritus: c. 400 BC
 - All matter composed of indivisible "atoms".
 (No experimental evidence to support this)
- John Dalton: c. 1800
 - All matter is composed of atoms.
 - There are a limited number of "types" of atoms - called elements - which have differing mass.
 - Atoms corresponding to the same element are identical.
 - Evidence: mass ratios in chemical reactions.

John Dalton

- "Law of multiple proportions"
- Ratio of masses in chemical reactions always very close to small integers.
- E.g. Carbon Monoxide
 - 100g Carbon + **133g** Oxygen -> 233g CO
 - Carbon Dioxide
 - 100g Carbon + **266g** Oxygen -> 366g CO2
- Many other examples across Chemistry.
- Dalton's explanation
 - 1 or 2 Carbon Atoms + 1 Oxygen Atom

Dimitri Mendeleyev

- 1869: Periodic Table of elements developed (Mendeleyev, Meyer).
- No notion of internal atomic structure was known at this time.

Reiben	Gruppo I. R*0	Gruppo II. — RO	Gruppe III. — R*0°	Gruppe 1V. RH ⁴ RO ²	Groppe V. RH ¹ R ² 0 ⁵	Grappe VI. RH ³ RO ³	Gruppe VII. RH R*0'	Gruppo VIII. — RO*
1	II=1							
2	Li=7	Be=9,4	B=11	C=12	N=14	O==16	F=19	
8	Na=23	Mg == 24	Al=27,3	Si=28	P=31	8=32	Cl=35,5	
4	K≕39	Ca=40	-=44	Ti=48	V=51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn=65	-=68	-=72	As=75	So=78	Br=80	
6	Rb==85	Sr=87	?Yt=88	Zr== 90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag=108)	Cd=112	In=113	Sn==118	Sb=122	Te==125	J=127	
8	Cs== 133	Ba=137	?Di=138	?Co=140	_	_	_	
9	(-)	_	_	_	_		_	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	flg=200	T1== 204	Pb=207	Bi==208	-		
12	-	_	-	Th=231	-	U==240	_	

- J. J. Thomson:
 - **1897**: Discovery of the **electron** as a particle.
 - "Cathode ray" a stream of electrons.
 In 1890s a puzzle!

J.J. Thomson

Figure: J.J. Thompson, Philosophical Magazine, 1897.

Cathode "ray" deflected by electric field.

Same behaviour as predicted by **electromagnetic theory** for **negatively charged particles** with **mass to charge ratio** m_e / e.

- J. J. Thomson:
 - Proposal for an atomic model:
 - The plum pudding model

J.J. Thomson

Figure: J.J. Thompson, Philosophical Magazine, 1897.

- The plum pudding atomic model:
 - Atoms **neutrally charged**, but can release negative **electrons**.
 - So atoms are a "plum pudding" structure of electrons surrounded by positively charged "liquid".

Ernest Rutherford

- Rutherford: 1907
 - Geiger–Marsden experiment
 - Alpha particles (He²⁺ ions) scattered from Gold foil.

```
alpha particles
```


Ernest Rutherford

- Rutherford: 1907
 - Geiger–Marsden experiment
 - Alpha particles (He²⁺ ions) scattered from Gold foil.

alpha particles

Prediction of **plum pudding** model:

Positive charge "smeared out" Little deflection

Ernest Rutherford

- Rutherford: 1907
 - Geiger–Marsden experiment
 - Alpha particles (He²⁺ ions) scattered from Gold foil.

Observation:

Small number of particles reflected back!

Ernest Rutherford

- Rutherford: 1907
 - Alpha particles (He²⁺ ions) scattered from Gold foil.

- Atomic model: "Planetary Model"
 - Atom: a tiny positively charged nucleus orbited by electrons.

QUIZ

- The planetary model had some aspects which contradicted the known Physics of the time (1907).
- What were they?

Problems with the planetary model

- Stability of Matter
 - Orbiting electrons must be constantly accelerating (centripetal acceleration).
 - But electromagnetic theory (Maxwell's equations) predict that accelerating charges always create electromagnetic radiation.
 - Electrons should lose energy as they radiate and spiral into the nucleus.
- Atomic spectrometry
 - Elements known to have unique signatures of emitted light.
 - These spectra not explained at all by this model..

A quick tour of Atomic spectra

- Prisms split light into its component frequencies. Key component of a spectroscope.
- Two main types of spectra:
 absorption spectra and emission spectra.

Black Body Emission Spectrum

- Recall the Black Body spectrum.
- Light emitted over all wavelengths (Planck Law).

MALIKIIIMAMA SÄRKKIIMIII

Absorption spectra

Black body

Spectroscope

Absorption Spectrum

- A black body radiates the over full spectrum.
- A cold gas placed in front of the light will absorb light, but only absorb certain frequencies.
- Viewed beyond the cold gas, the spectrum exhibits dark lines at these frequencies.
- For different gases we see a different signature of lines.

 Lines first observed in solar radiation (Frauenhofer 1814).

Atomic spectra

Emission Spectra

- In emission spectroscopy, we heat the gas and look at light emitted by the gas itself.
- This spectrum is not a continuous black body spectrum.

- Light is only emitted at certain frequencies.
- These are the same frequencies absorbed by the gas in absorption spectroscopy.

Atomic spectra

- We call the frequencies at which a gas absorbs and emits light its spectrum.
- The spectrum differs from element to element, from molecule to molecule.
- It is a unique signature which helps us, for example, study the chemical composition of distant stars.

The emission spectra (in visible range) for Hydrogen, Mercury and Neon (from Jewett / Serway, p. 1253).

- Hydrogen was found to have the simplest spectrum, with just 4 lines in the visible spectrum.
- It therefore became the focus of the first theoretical studies.

Planetary Model of Hydrogen

 Hydrogen is indeed the simplest element, consisting of a nucleus (we now know is a single proton) and a single electron.

Balmer series

 In 1885, Jacob Balmer realised a remarkably simple formula can predict the spectrum of Hydrogen.

Jacob Balmer

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$
 for $n = 3,4,5,...,$

where $R_H=1.1 imes 10^7 \mathrm{m}^{-1} \; (2 \; \mathrm{s.f.})$ is now called the **Rydberg constant**.

n	λ (nm)	
3	656	
4	486	
5	434	
6	410	
7	396	

- Balmer's formula predicts further (Ultraviolet) lines outside the visible region.
- These were later confirmed in experiment.
- These spectral lines are now called the Balmer series.

Balmer Formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$
 for $n = 3,4,5,...,$

for
$$n = 3,4,5,...$$

Johannes Rydberg

Rydberg Formula

In 1888, **Rydberg** proposed a generalisation of Balmer's formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 for $m = 1,2,3,4,5,...,$ and $n = m+1,m+2,...,$

- The **Balmer series** corresponded to the m=2 case.
- Rydberg's formula predicts many (infinitely!) more spectral lines but none in the visible spectrum, all are ultraviolet or infrared.
- **None** of the non-visible spectral lines predicted had been observed prior to 1888.
- But **all** were subsequently confirmed.

Rydberg Formula

Different values of m lead to different families of spectral lines.

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 for $m = 1,2,3,4,5,...,$ and $n = m+1,m+2,...,$

• In most cases, the families (series) of spectral lines (for each value of m) are given names after the lead scientist who verified their existence.

m	Series name	year observed	spectral region
1	Lyman	1914	UV
2	Balmer	1814	visible / UV
3	Paschen	1908	IR / microwave
4	Brackett	1922	microwave
5	Pfund	1924	microwave

The challenge of the Rydberg formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 for $m = 1,2,3,4,5,...,$ and $n = m+1,m+2,...,$

- The Rydberg formula presents a simple test of any atomic model. Can the model derive this formula?
- Rutherford's planetary model resolutely fails!

 According to classical electromagnetism, orbiting electrons should absorb and emit at all frequencies, spiralling in and out as they do so.

The challenge of the Rydberg formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 for $m = 1,2,3,4,5,...$ and $n = m+1,m+2,...$

- If we take Planck / Einstein's quantization of light on board, this helps us unlock the implications of the Rydberg formula.
- The energy of a photon is

$$E = hf = \frac{hc}{\lambda}$$

- The specific frequencies of spectral lines correspond to emission and absorption of photons with a specific energy.
- We can understand this if the energy levels of the atom are quantised, i.e. just like light, the atom is only allowed to take certain energy values.
- Each spectral line corresponds to a "jump in energy" from one "energy state" to another.

Understanding the Rydberg formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 for $m = 1,2,3,4,5,...$ and $n = m+1,m+2,...$

$$E = hf = \frac{hc}{\lambda}$$

Each **spectral line** corresponds to a "jump" from one "energy state" to another.

Understanding the Rydberg formula

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$
 for $m = 1,2,3,4,5,...$ $E = hf = \frac{hc}{\lambda}$

 The Rydberg formula is therefore consistent with the Hydrogen atom possessing "energy states" with energies

$$E_k = -hc\frac{R_H}{k^2}$$

where k is an integer from 1 to infinity.

 Each Rydberg line represents a transition from energy state k=n to state k=m or vice versa.

The origin of the different series can be clearly seen:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

for
$$m = 1,2,3,4,5,...$$

and $n = m+1,m+2,...$

The Bohr Atom

- 1907 Rutherford's planetary model
 - Best yet model of atomic structure,but:
 - Not a stable model (electrons should radiate and spiral in).
 - Does not predict the Rydberg equation, or even the existence of spectral lines.

Ernest Rutherford

- 1913 Niels Bohr
 - A new atomic model (the Bohr model).
 - A stepping stone between Rutherford's model and quantum mechanics.

Niels Bohr

The Bohr Atom

- Starting point: Rutherford's planetary model for **Hydrogen**
 - Single electron has a circular orbit around the nucleus.

Ernest Rutherford

Niels Bohr

The Bohr Atom

- Starting point: Rutherford's planetary model for **Hydrogen**
 - Single electron has a circular orbit around the nucleus.
- But some extra rules:
 - Electron orbits are quantised.
 - Only orbits of specific radius allowed.
 - Bohr devised a quantisation rule based on angular momentum.

Ernest Rutherford

Niels Bohr

Straw poll

 Have you studied the electrostatic Coulomb potential before?

Straw poll

 Have you studied circular motion before?

- 1. Electrons travel in **stable** circular orbits.
- 2. Orbits are quantised. The only allowed orbits satisfy an angular momentum rule:

$$l = mvr = \hbar n = \frac{h}{2\pi}n$$

where n = 1, 2, 3, ...

- 3. Electrons in an orbit do not emit light due to their acceleration, and their orbit does not decay.
- 4. Electrons may change orbits by absorbing or emitting a photon of equal energy to the energy difference between the orbits.

First let's consider the **radius** of orbits **r** in Bohr's Model.

Hand-written Calculations

Bohr mode r: radius of orbit Angular nomentum: 1= mvr Balance borces: Contomb Force - centripetal bore. Contail borce F = - k 9, 92 = - 1 9,92

T2 4T1 % T2 $mv^2 = \frac{1}{4\pi\epsilon} \frac{ee}{rX} \rightarrow v^2 = \frac{1}{4\pi\epsilon} \frac{e^2}{mr} \frac{1}{r}$ Behris gumbischin me (= thn n=1, 2,3.... $V = \frac{tn}{mr}$ $\rightarrow V^2 = \frac{t^2n^2}{m^2r^2}$ Equale * und ** r= (t2 (4115) n2 = 0.0 n² 0.0 = 5.3 × 10 m 0 = 10 A = 10 m. ao: radius of nel orbit

Now let's consider the **energy** of the orbits in Bohr's Model.

Energy = Kretic energy + Potential Energy.
=
$$\frac{1}{2}mv^2 + \left(-\frac{1}{4\pi\epsilon_0}\frac{e^2}{r}\right)$$

$$F = \frac{1}{2} m \left(\frac{1}{4\pi \xi_0} \right) \frac{e^2}{r} \left(\frac{1}{4r} \right) - \frac{1}{4\pi \xi_0} \frac{e^2}{r}$$

$$= -\frac{1}{2} \left(\frac{1}{4\pi \xi_0} \right) \frac{e^2}{r} \qquad \text{Use: } r = \alpha_0 n^2$$

$$= -\frac{1}{2} \left(\frac{1}{4\pi \xi_0} \right) \frac{e^2}{r} \qquad \text{Use: } r = \alpha_0 n^2$$

$$= \frac{-1}{2} \left(\frac{1}{4\pi \xi_0} \right) \frac{e^2}{a_0} \frac{1}{n^2}$$

Hand-written Calculations

$$l = mvr = \hbar n = \frac{h}{2\pi}n$$

where n = 1, 2, 3, ...

- Using this angular momentum quantisation rule together with the classical mechanics of a charged particle in a circular orbit, we derived:
- Orbital radius:

$$r_n = a_0 n^2$$

• where a₀ is the **Bohr radius**

$$a_0 = \frac{\hbar^2 (4\pi\epsilon_0)}{me^2}$$

- which depends only on constants of nature:
 - hbar (Planck's constant), epsilon₀ (permittivity of free-space), m
 (electron mass) and e (electron charge).

$$l = mvr = \hbar n = \frac{h}{2\pi}n$$

where n = 1, 2, 3, ...

We also used it to derive an **energy** for each allowed orbit (i.e. each value of n).

$$E_n = -\left(\frac{1}{2} \frac{1}{4\pi\epsilon_0} \frac{e^2}{a_0}\right) \frac{1}{n^2}$$

$$= -\frac{2.2 \times 10^{-18}}{n^2} \text{ Joules}$$

$$= -\frac{13.6}{n^2} \text{ eV}$$

 which precisely coincides with the predictions of Rydberg's formula plus Planck's photon energy:

$$E_n = -\frac{hcR_H}{n^2} \approx -\frac{2.2 \times 10^{-18}}{n^2} \text{ Joules}$$

- Successes of the Bohr Model
 - Atoms are stable (stable orbits built in to the model).
 - The Rydberg formula for spectral lines can be fully derived.
 - And the Rydberg constant expressed in terms of fundamental constants.
 - **Bohr radius** gives a "size scale" to atoms (which is a useful order of magnitude approximation).
 - Bohr model gives an "intuition" to our quantum atomic models.

- Failures of the Bohr Model
 - Only works for Hydrogen. Generalised (with some but limited success) by Sommerfeld.
 - Model is adhoc not based on any underlying theory. No explanation or justification for axioms.
 - Important point Bohr model is not quantum mechanics!
 - Experiments show that some predictions of Bohr model are incorrect.
 - e.g. finer features of atomic spectra (e.g. line splittings) seen in modern experiments.
 - angular momentum of Hydrogen ground state is zero, not hbar.
 - Electron is **not** a **classical particle**!

- Beyond the Bohr Model
 - The Bohr model is a **hybrid**, a **stepping stone**.
 - It is built on classical physics, but with some quantum elements (e.g. energy quantisation).
 - To find a better atomic model, we need to leave behind classical physics altogether.
 - We need a new theory quantum mechanics!

Summary of Part 2

- We saw how the development of the pre-quantum models of the atom, from **Democritus** to **Bohr**.
- Atomic spectroscopy provided the key test. No models prior to Bohr could derive Rydberg's formula.
- Bohr model could do so but it had many failings.
- To do better than Bohr,
 - to develop a modern theory of the atom compatible with all spectroscopic predictions and other experiments
 - we need a new theory quantum mechanics.

