Q1:

Consider the following circuit

- a) Construct the truth table for the function Z.
- **b)** Write the function Z in canonical sum of product form (litle m notation).
- c) Simplify the function to the minimum number of literals.

Q2:

a) **Design** a combinational multiplier that has two 2-bit inputs AA_1AA_0 and BB_1BB_0 and 4 bit output $FF_3FF_2FF_1FF_0$. **Construct** the truth table and implement it using 4 to 16 line decoder and gates of your choice.

b) Construct the Truth table and write F in \sum m notation.

Q3:

a) Analyze a sequential circuit with three D flip-flops (A, B, C) defined by the following next state equations

$$DD_{AA} = BB\overline{CC}$$

$$DD_{BB} = CC$$

$$DD_{CC} = \overline{BB} + XX$$

Where A, B and C are the outputs of the flip-flops A, B and C respectively, X is the external input and DD_{AA} , DD_{BB} and DD_{CC} are the input of flip-flops A, B and C respectively. Construct the state table and state diagram of this sequential circuit.

b) Consider a sequence recognizer circuit that has a serial input S and one output Z. The output becomes one when a sequence 1001 is detected and zero otherwise. **Generate** a state diagram only. Circuit implementation is not required.

Q4:

Design a synchronous binary arbitrary counter using T Flip-Flop to produce the sequence 1,4,7,3,1 and repeat.

- a) Construct the state diagram and state table for the required circuit.
- b) Construct the logic diagram of your design using T- flip flops and logic gates.
- c) Include the unused states in the state diagram and explain if this counter has self correction capability.