(a) Determine the equations of all asymptotes of the graph of y = f(x) when

(i)
$$f(x) = \frac{1+2x^2}{x(1-3x)}$$
. (2 marks)

(ii)
$$f(x) = \frac{x^2 + 4}{x - 5}$$
. (2 marks)

(b) The graph of y = g(x) is shown in the diagram, together with its three asymptotes.

The defining rule is given by

$$g(x) = \frac{ax(x+b)}{(2x+c)(x-d)}$$

where a, b, c and d are positive integer constants.

Determine, with brief reasons, the value of a, b, c and d.

(4 marks)

(2 marks)

Determine the equations of all asymptotes of the graph of y = f(x) when (a)

(i)
$$f(x) = \frac{1 + 2x^2}{x(1 - 3x)}.$$

Solution $f(x) = \frac{2x^2 + 1}{-3x^2 + x}, \quad \lim_{x \to \pm \infty} f(x) = -\frac{2}{3}$

Asymptotes: x = 0, x = 1/3, y = -2/3.

Specific behaviours

- √ horizontal asymptote
- √ all asymptotes

(ii)
$$f(x) = \frac{x^2 + 4}{x - 5}.$$

(2 marks)

Solution
$$f(x) = \frac{x^2 + 4}{x - 5} = x + 5 + \frac{29}{x - 5}$$

Asymptotes: x = 5, y = x + 5.

Specific behaviours

- √ oblique asymptote
- √ all asymptotes
- The graph of y = g(x) is shown (b) in the diagram, together with its three asymptotes.

The defining rule is given by

$$g(x) = \frac{ax(x+b)}{(2x+c)(x-d)}$$

where a, b, c and d are positive integer constants.

Determine, with brief reasons, the value of a, b, c and d.

(4 marks)

Solution
Asymptote $y = 1.5 \rightarrow a/2 = 1.5 \rightarrow a = 3$.

Root at $(-2,0) \to b = 2$.

Asymptote $x = -2.5 \rightarrow c = 5$.

Asymptote $x = 1 \rightarrow d = 1$.

Specific behaviours

✓✓✓✓ each value with appropriate reason

Question 14 (9 marks)

The graph of y = f(x) is shown on the left-hand axes in the diagram below.

(a) Sketch the graph of $y = \frac{1}{f(x)}$ on the right-hand axes in the diagram. (5 marks)

(b) Solve the following equations.

(i)
$$f(|x|) = 1$$
. (1 mark)

(ii)
$$\left| \frac{1}{f(x)} \right| = 1$$
. (1 mark)

(iii)
$$|f(x)| + f(x) = 0$$
. (2 marks)

Question 14 (9 marks)

The graph of y = f(x) is shown on the left-hand axes in the diagram below.

- (a) Sketch the graph of $y = \frac{1}{f(x)}$ on the right-hand axes in the diagram. (5 marks)
- (b) Solve the following equations.

(i)
$$f(|x|) = 1$$
.

Solution	1 mark)
For $x \ge 0$, $f(x) = 1 \Rightarrow x = 3$, $\therefore x = \pm 3$.	

√ correct solution set

(ii)
$$\left| \frac{1}{f(x)} \right| = 1$$
.

Solution
$$\left| \frac{1}{f(x)} \right| = 1 \Rightarrow f(x) = \pm 1 \Rightarrow x = -2.5, -1.5, -0.5, 3$$

Specific behaviours

Specific behaviours

✓ correct solution set

(iii)
$$|f(x)| + f(x) = 0$$
.

Solution marks)

1 mark)

Roots and intervals where $f(x) \le 0$:

$$(x = -3) \cup (-1 \le x \le 2).$$

- ✓ includes 3 roots
- ✓ correct solution set

- (a) Determine all solutions to the equation $z^3 8i = 0$ in exact polar form.
- (3 marks)

- (b) Consider the ninth roots of unity expressed in polar form $r \operatorname{cis} \theta$.
 - (i) Determine the roots for which $0 < \theta < \frac{\pi}{2}$.

(2 marks)

(ii) Use all nine roots to show that $\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) = 0$.

(3 marks)

Question 19 (8 marks)

Let f(x) = |ax + b| + |cx + d| where a, b, c and d are constants such that $a \ge c \ge 0$.

The graph of y = f(x) is shown below and passes through the points (0,3), (5,5) and (10,9).

(a) The equation f(x) = kx + 1 has an infinite number of solutions. State the value of the constant k. (1 mark)

(b) Determine the value of a, b, c and d.

(5 marks)

(c) Determine the minimum value of f(x).

(2 marks)

Question 19 (8 marks)

Let f(x) = |ax + b| + |cx + d| where a, b, c and d are constants such that $a \ge c \ge 0$.

The graph of y = f(x) is shown below and passes through the points (0,3),(5,5) and (10,9).

(a) The equation f(x) = kx + 1 has an infinite number of solutions. State the value of the constant k. (1 mark)

Solution k is slope of RH part of f. $k = \frac{4}{5} = 0.8$.

Specific behaviours

✓ correct value

(b) Determine the value of a, b, c and d.

(5 marks)

Solution

Equation of RH part of f is y = 0.8x + 1 and since $a \ge c \ge 0$ then

$$(a + c)x + (b + d) = 0.8x + 1 \Rightarrow a + c = 0.8, b + d = 1$$

Equation of central part of f is y = 0.4x + 3 and so either

$$(a-c)x + (b-d) = 0.4x + 3$$
 or $(c-a)x + (d-b) = 0.4x + 3$.

If c - a = 0.4 then c = a + 0.4 but this is impossible given that $a \ge c$.

Solving a + c = 0.8 and a - c = 0.4 gives a = 0.6, c = 0.2.

Solving b + d = 1 and b - d = 3 gives b = 2 and d = -1.

Values:
$$a = 0.6$$
, $b = 2$, $c = 0.2$, $d = -1$.

- ✓ uses RH part to form equations for a + c and b + d
- ✓ uses central part to form equations for a c and b d
- ✓ repeats for c a and d b and eliminates impossible pair of equations
- ✓ correct values for a and c
- \checkmark correct values for b and d

$$-0.8x - 1 = 0.4x + 3 \Rightarrow x = -\frac{10}{3} \Rightarrow f\left(-\frac{10}{3}\right) = \frac{5}{3}$$

- Specific behaviours

 ✓ indicates correct method to obtain *x*-coordinate
- ✓ correct minimum

Question 9 (8 marks)

The graph of y = f(x) is shown below, where f(x) = a - |bx + c| and a, b and c are all positive constants.

(a) Determine the value of each of the constants a, b and c. (3 marks)

(b) Using the graph, or otherwise, solve

(i)
$$f(x) = 2$$
. (1 mark)

(ii)
$$f(x) = |x| - 2$$
. (2 marks)

(iii)
$$2f(x) = |x - 5|$$
. (2 marks)

The graph of y = f(x) is shown below, where f(x) = a - |bx + c| and a, b and c are all positive constants.

(a) Determine the value of each of the constants a, b and c. (3 marks)

	Solution	
a = 4,	$b=\frac{1}{2},$	$c = \frac{3}{2}$

Specific behaviours

✓ value of a, ✓ value of b, ✓ value of c

Using the graph, or otherwise, solve (b)

> f(x) = 2. (i)

Solution	
y = 2 intersects $f(x)$ when $x = -7, x = 1$.	

Specific behaviours

✓ correct solution

(ii)
$$f(x) = |x| - 2$$
.

(2 marks)

(1 mark)

Solution	
y = x - 2 intersects $f(x)$ when $x = -5$, $x = -5$	3.
y = x - 2 intersects $f(x)$ when $x = -5, x =$: 3

Specific behaviours

✓ indicates y = |x| - 3 on graph

✓ correct solution

(iii)
$$2f(x) = |x - 5|$$
.

(2 marks)

Solution
$$y = \frac{1}{2}|x - 5|$$
 intersects $f(x)$ when $-3 \le x \le 5$.

Specific behaviours \checkmark indicates $y = \frac{1}{3}|x - 3|$ on graph

✓ correct range of solutions

Question 12 (8 marks)

In each part of this question, the dotted curve shown is the graph of y = f(x).

(a) Sketch the graph of y = |f(x)|. (2 marks)

(b) Sketch the graph of $y = \frac{1}{f(x)}$. (4 marks)

Question 12 (8 marks)

In each part of this question, the dotted curve shown is the graph of y = f(x).

(a) Sketch the graph of y = |f(x)|. (2 marks)

(b) Sketch the graph of $y = \frac{1}{f(x)}$. (4 marks)

(c) Sketch the graph of y = f(-|x|).

(2 marks)

Question 16

(8 marks)

The graphs of y = f(x) and y = g(x) are shown at right.

The functions are defined by

$$f(x) = \frac{12 - x}{x + 2}, \qquad -1 \le x \le 12$$

and

$$g(x) = -x^2 + 8x - 7, \qquad 1 \le x \le 7.$$

(a) Explain why the inverse of g is not a function.

(1 mark)

(b) Determine the definition for the inverse of f.

(3 marks)

(c) Determine $g \circ f(0)$.

(1 mark)

(d) Determine the domain for the function $g \circ f(x)$.

(3 marks)

Question 16 (8 marks)

The graphs of y = f(x) and y = g(x) are shown at right.

The functions are defined by

$$f(x) = \frac{12 - x}{x + 2}, \qquad -1 \le x \le 12$$

and

$$g(x) = -x^2 + 8x - 7, \qquad 1 \le x \le 7.$$

(a) Explain why the inverse of g is not a function.

(1 mark)

Solution

g is not a one-to-one function / g fails horizontal line test / etc.

Specific behaviours

√ states valid reason

(b) Determine the definition for the inverse of f.

(3 marks)

$$x = \frac{12 - y}{y + 2}$$

$$xy + 2x + y = 12$$

$$y(x + 1) = 12 - 2x$$

$$y = \frac{12 - 2x}{x + 1}, \quad 0 \le x \le 13.$$

Specific behaviours

- \checkmark interchanges x and y, cross multiplies and expands
- √ factors and obtains correct inverse
- ✓ limits domain to range of f

(c) Determine $g \circ f(0)$.

(1 mark)

$$g \circ f(0) = g(6) = 5$$

Specific behaviours

√ correct value

(d) Determine the domain for the function $g \circ f(x)$.

(3 marks)

Solution

$$1 \le R_f \le 7$$

$$\frac{12 - x}{x + 2} \ge 1 \Rightarrow x \le 5, \qquad \frac{12 - x}{x + 2} \le 7 \Rightarrow x \ge -\frac{1}{4}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R}, -\frac{1}{4} \le x \le 5 \right\}$$

- ✓ indicates restriction on range of *f*
- √ indicates one correct bound of range
- √ correct range

Question 10 (8 marks)

The graph of y = f(x) is shown below over the domain $-2 \le x \le 6$.

(a) Sketch the graph of y = f(|x|) over the domain $-3 \le x \le 3$ on the axes below. (2 marks)

(b) Sketch the graph of $y = \frac{1}{f(x)}$ on the axes below over the domain $0 \le x \le 5$. (4 marks)

(c) List the equations of all asymptotes of the graph of $y=\frac{1}{f(|x|)}$ when drawn over the domain $-6 \le x \le 6$. (2 marks)

Question 10 (8 marks)

The graph of y = f(x) is shown below over the domain $-2 \le x \le 6$.

(a) Sketch the graph of y = f(|x|) over the domain $-3 \le x \le 3$ on the axes below. (2 marks)

Solution
See graph
Specific behaviours
✓ cusp and curvature −1 < x < 1
✓ endpoints and symmetrical curve

(b) Sketch the graph of $y = \frac{1}{f(x)}$ on the axes below over the domain $0 \le x \le 5$. (4 marks)

(c) List the equations of all asymptotes of the graph of $y = \frac{1}{f(|x|)}$ when drawn over the domain $-6 \le x \le 6$. (2 marks)

Solution

Zeroes of f(x) for $0 \le x \le 6$ at x = 1, 4, 6

Hence six asymptotes:

$$x = \pm 1$$
, $x = \pm 4$, $x = \pm 6$

- √ four or more correct asymptotes
- ✓ lists exactly six asymptotes, all correct

Question 12 (7 marks)

The graph of f(x) = |ax + b| + c is shown below.

(a) Determine all possible values of the constants a, b and c. (3 marks)

(b) Using the graph, or otherwise, solve

(i)
$$f(x) = 5$$
. (1 mark)

(ii)
$$f(x) = x$$
. (1 mark)

(iii)
$$f(x) + 2x = 3$$
. (2 marks)

Question 12 (7 marks)

The graph of f(x) = |ax + b| + c is shown below.

(a) Determine all possible values of the constants a, b and c.

(3 marks)

(1 mark)

(1 mark)

(2 marks)

Sol	ution
c =	= -2
Either $\{a=2,b=-$	-5) or $\{a = -2, b = 5\}$
Specific	behaviours
✓ value of c	
✓ one correct set for a	a, b
√ both correct sets fo	ra,b

(b) Using the graph, or otherwise, solve

(i)
$$f(x) = 5$$
.

Solution	
$x = -1, \qquad x = 6$	
Spacific hobavioure	
Specific behaviours correct values	

(ii)
$$f(x) = x$$
.

ı	Solution
	$x=1, \qquad x=7$
	Specific behaviours
	✓ correct values

(iii)
$$f(x) + 2x = 3$$
.

	Solution
	f(x) = 3 - 2x
	$x \leq 2.5$
	Specific behaviours
✓ inc	dicates sketch of line
√ co	rrect inequality

Question 14 (7 marks)

$$\operatorname{Let} f(x) = \left| \frac{x+2}{x-1} \right|.$$

(a) Sketch the graph of y = f(x) on the axes below. (3 marks)

(b) State the range of f(x).

(1 mark)

(c) The domain of f is restricted to $-2 \le x < b$ so that f^{-1} is a function. State the value of the constant b so that the domain of f is as large as possible and determine the domain and range for f^{-1} . (3 marks)

Question 14 (7 marks)

Let
$$f(x) = \left| \frac{x+2}{x-1} \right|$$
.

(a) Sketch the graph of y = f(x) on the axes below. (3 marks)

(b) State the range of f(x). (1 mark)

Solution
$$R_f = \{y \in \mathbb{R}, y \ge 0\}$$
Specific behaviours \checkmark states $y \ge 0$

$$\begin{array}{c} \textbf{Solution} \\ b=1 \\ \\ D_{f^{-1}}=R_f=\{x\in\mathbb{R},x\geq 0\} \\ \\ R_{f^{-1}}=D_f=\{y\in\mathbb{R},-2\leq y<1\} \\ \\ \hline \textbf{Specific behaviours} \\ \checkmark \text{ value of } b \\ \checkmark \text{ domain} \\ \checkmark \text{ range} \end{array}$$

Question 16

(9 marks)

(a) Let
$$f(x) = \frac{x^2 - 4x - 2}{x - 1}$$
.

(i) Briefly describe the feature of the rule for f(x) that indicates the graph of y = f(x) will have an oblique (slanted) asymptote. (1 mark)

(ii) Determine the equations of all asymptotes of the graph of y = f(x). (3 marks)

Question 16

(9 marks)

- (a) Let $f(x) = \frac{x^2 4x 2}{x 1}$.
 - Briefly describe the feature of the rule for f(x) that indicates the graph of y = f(x) will have an oblique (slanted) asymptote.

Solution

The degree of the polynomial in the numerator is one higher than that of the polynomial in the denominator.

Specific behaviours

√ reasonable explanation

(ii) Determine the equations of all asymptotes of the graph of y = f(x). (3 marks)

Solution

Vertical: x = 1

Oblique:

$$f(x) = \frac{x^2 - x}{x - 1} + \frac{-3x + 3}{x - 1} + \frac{-5}{x - 1}$$
$$= x - 3 - \frac{5}{x - 1}$$

Hence asymptotes are x = 1 and y = x - 3.

- √ vertical asymptote
- \checkmark expresses f(x) to expose oblique asymptote
- √ oblique asymptote

- (b) Let $g(x) = \frac{(x-2)(x+3)}{x^2+1}$.
 - (i) State the equation of the horizontal asymptote of the graph of y = g(x). (1 mark)
 - (ii) State the values of g(6), g(7) and g(8). (1 mark)

(iii) Use your previous two answers to explain why the graph of y = g(x) must have a local maximum to the right of x = 7. (3 marks)

(b) Let
$$g(x) = \frac{(x-2)(x+3)}{x^2+1}$$
.

(i) State the equation of the horizontal asymptote of the graph of y = g(x). (1 mark)

	Solution
	y = 1
	•
	Specific behaviours
✓	asymptote

(ii) State the values of g(6), g(7) and g(8).

(1 mark)

	Solution	
$g(6) = \frac{36}{37} \approx 0.97,$	g(7) = 1,	$g(8) = \frac{66}{65} \approx 1.02$
Spe	cific behavio	urs
√ correct values		·

(iii) Use your previous two answers to explain why the graph of y = g(x) must have a local maximum to the right of x = 7. (3 marks)

Solution

As g(x) increases through x=7, y is increasing and the curve cuts the horizontal asymptote y=1.

However, as $x \to \infty$, $y \to 1$ and since g is continuous for all x (has no vertical asymptotes) then at some point where x > 7 the curve must start to decrease to return to the asymptote and so a local maximum must exist.

NB Students may also use a sketch as part of their response, so long as it specifically uses the results from (i) and (ii).

- \checkmark indicates g increases through asymptote
- √ states g is continuous throughout
- ✓ explains why g must then decrease

Question 11

(6 marks)

(a) Explain why the function $f(x) = \sin x$, where $x \in \mathbb{R}$, is not one-to-one.

(1 mark)

(b) The graph of y = g(x) is shown below. Sketch the graph of $y = g^{-1}(x)$ on the same axes. (2 marks)

(c) The inverse function of h is defined as $h^{-1}(x) = x^2 + 10x + 22$ for $x \le -5$. Determine the defining rule for h(x) and state its domain. (3 marks)

Question 11 (6 marks)

(a) Explain why the function $f(x) = \sin x$, where $x \in \mathbb{R}$, is not one-to-one. (1 mark)

Solution
Graph of $f(x)$ fails horizontal line test, etc
Specific behaviours
✓ valid explanation

(b) The graph of y = g(x) is shown below. Sketch the graph of $y = g^{-1}(x)$ on the same axes. (2 marks)

(c) The inverse function of h is defined as $h^{-1}(x) = x^2 + 10x + 22$ for $x \le -5$. Determine the defining rule for h(x) and state its domain. (3 marks)

Solution $x = (y+5)^2 - 3 \Rightarrow y = \pm \sqrt{x+3} - 5 \text{ (CAS)}$ $D_{h^{-1}} = R_h \Rightarrow y \le -5 \Rightarrow h(x) = -\sqrt{x+3} - 5$ $D_h = \{x : x \in \mathbb{R}, x \ge -3\}$

- ✓ using CAS or otherwise obtains two possible functions
- ✓ uses range of h to determine h(x)
- ✓ states that $x \ge -3$

Question 16

(8 marks)

Let
$$f(x) = \sqrt{x-2}$$
, $g(x) = \frac{6}{x}$ and $h(x) = f \circ g(x)$.

(a) Determine an expression for h(x) and show that the domain of h(x) is $0 < x \le 3$. (3 marks)

- (b) Determine an expression for $h^{-1}(x)$, the inverse of h(x). (1 mark)
- (c) Sketch the graphs of y = h(x) and $y = h^{-1}(x)$ on the axes below. (3 marks)

(d) Solve $h(x) = h^{-1}(x)$, correct to 0.01 where necessary. (1 mark)

Question 16 (8 marks)

(3 marks)

(1 mark)

(3 marks)

(1 mark)

Let $f(x) = \sqrt{x-2}$, $g(x) = \frac{6}{x}$ and $h(x) = f \circ g(x)$.

(a) Determine an expression for h(x) and show that the domain of h(x) is $0 < x \le 3$.

Solution				
h(x) =	$\sqrt{\frac{6}{x}-2}$			

 D_h : (i) require x > 0 so that $\frac{6}{x} - 2 > 0$ and (ii) $\frac{6}{x} \ge 2 \Rightarrow x \le 3$

Hence D_h : $\{x \in \mathbb{R}: 0 < x \le 3\}$

Specific behaviours

- $\checkmark h(x)$
- ✓ explains why x > 0
- ✓ explains why $x \le 3$

(b) Determine an expression for h⁻¹(x), the inverse of h(x).

Solution
$$h^{-1}(x) = \frac{6}{x^2 + 2} \quad (CAS)$$
Specific behaviours
 \checkmark correct expression

(c) Sketch the graphs of y = h(x) and $y = h^{-1}(x)$ on the axes below.

(d) Solve $h(x) = h^{-1}(x)$, correct to 0.01 where necessary.

Solution					
x = 1,	x=2	$x \approx 1.46$	(CAS)		
Specific behaviours					
✓ correct solutions					
✓ correct	solutions				

Question 19

Let f(x) = 3 - |2x - 6|.

(a) Sketch the graph of y = f(x) on the axes below.

(2 marks)

(8 marks)

(b) Sketch the graph of y = f(|x|) and hence solve f(|x|) - 3 = 0. (3 marks)

(c) The equation f(x) = a|x + b| + c is true only for $0 \le x \le 3$. Determine the value of each of the constants a, b and c. (3 marks)

Question 19 (8 marks)

Let f(x) = 3 - |2x - 6|.

(a) Sketch the graph of y = f(x) on the axes below.

(2 marks)

(b) Sketch the graph of y = f(|x|) and hence solve f(|x|) - 3 = 0.

(3 marks)

(c) The equation f(x) = a|x + b| + c is true only for $0 \le x \le 3$. Determine the value of each of the constants a, b and c.

Question 11 (7 marks)

The graph of y = f(x) is shown below, where f(x) = a|x + b| + c, where a, b and c are constants.

- (a) Add the graph of y = g(x) to the axes above, where g(x) = 2|x-3|-7. (2 marks)
- (b) Determine the values of a, b and c. (3 marks)

(c) Using your graph, or otherwise, solve f(x) + g(x) = 0. (2 marks)

Question 11 (7 marks)

The graph of y = f(x) is shown below, where f(x) = a|x + b| + c, where a, b and c are constants.

- (a) Add the graph of y = g(x) to the axes above, where g(x) = 2|x 3| 7. (2 marks)
- (b) Determine the values of a, b and c. (3 marks)

Solution
Slopes: $m \pm 1 \Rightarrow a = -1$ From cusp: b = -1 and c = 6

Specific behaviours

- ✓ correct value of a
- ✓ correct value of b
- ✓ correct value of c
- (c) Using your graph, or otherwise, solve f(x) + g(x) = 0.

(x) = 0. (2 marks)

Solution Using reflection of y = f(x) in y = 0, graphs intersect when x = 2, x = 6.

- ✓ reflects f(x)
- ✓ both solutions

Question 14 (8 marks)

The graph of y = f(x) is shown below.

(a) Sketch the graph of y = f(|x|) on the axes below. (2 marks)

(b) Sketch the graph of $y = \frac{1}{f(x)}$ on the axes below. (4 marks)

(c) Sketch the graph of y = |f(|x|)| on the axes below. (2 marks)

Question 14 (8 marks)

The graph of y = f(x) is shown below.

(a) Sketch the graph of y = f(|x|) on the axes below. (2 marks)

(b) Sketch the graph of $y = \frac{1}{f(x)}$ on the axes below.

(4 marks)

See graph

Specific behaviours

- ✓ indicates vertical asymptotes at x = -1, 2 and 5
- ✓ indicates $y \to 0$ for $|x| \to \infty$
- √ indicates turning points close to (3.7, -0.5) and (0.3, 0.5)
- ✓ indicates correct curvature between asymptotes
- (c) Sketch the graph of y = |f(|x|)| on the axes below.

(2 marks)

Functions f and g are defined as $f(x) = x^2 + ax - 10a$ and $g(x) = \frac{x}{x+b}$, where a and b are constants.

- (a) Let a = 2 and b = 5.
 - (i) State, with reasons, whether the composition f(g(x)) is a one-to-one function over its natural domain. (2 marks)

(ii) Determine any domain restrictions required so that the composition g(f(x)) is defined. (3 marks)

(b) Determine the relationship between a and b so that the composition g(f(x)) is always defined for $x \in \mathbb{R}$. (3 marks)

Functions f and g are defined as $f(x) = x^2 + ax - 10a$ and $g(x) = \frac{x}{x+b}$, where a and b are constants.

- (a) Let a = 2 and b = 5.
 - State, with reasons, whether the composition f(g(x)) is a one-to-one function over its natural domain.

Solution

No because
- composite function has two roots at *x* ≈ −6.9, −4.2
- horizontal line cuts graph twice (with sketch from CAS)
- etc

Specific behaviours

✓ reason
✓ support for reason

(ii) Determine any domain restrictions required so that the composition g(f(x)) is defined. (3 marks

Solution
$$g(f(x)) = \frac{x^2 + 2x - 20}{x^2 + 2x - 15}$$

$$x^2 + 2x - 15 = (x+5)(x-3) \neq 0$$

$$x \neq -5, \qquad x \neq 3$$

Specific behaviours

- √ indicates composite function
- √ indicates denominator non-zero
- √ domain restrictions

√ states relationship

(b) Determine the relationship between a and b so that the composition g(f(x)) is always defined for x ∈ R. (3 marks)

Solution
$$g(f(x)) = \frac{x^2 + ax - 10a}{x^2 + ax - 10a + b}$$

$$x^2 + ax - 10a + b \neq 0$$

$$a^2 - 4(-10a + b) < 0$$

$$b > \frac{1}{4}a^2 + 10a$$
Specific behaviours
✓ indicates composite function denominator non-zero
✓ uses quadratic formula to create inequality