	一、填空题(每小题 2 分, 共 20 分)					
	1、(48.75)10 = ()2 = ()8					
	2、(39) ₁₀ =() _{8421BCD} = () _{余3码} 。					
	3、已知二进制数 $X_1 = +1100101$ 、 $X_2 = -1101100$,则 X_1 的补码 $[X_1]_{{\scriptscriptstyle A}} =$,					
	X ₂ 的补码[X ₂] _补 =。					
	4、 $Y = A\overline{B} + B\overline{C} + \overline{AC}$ 的最小项表达式= å m (),其最大项表达式					
	$=\tilde{\mathbf{O}}M$ () \circ					
	5 、已知 $F = \overline{A + BC + C} \times D$,根据反演规则写出其反函数 $\overline{F} = \underline{\hspace{1cm}}$,					
	根据对偶规则写出其对偶函数 F ϕ $=$ 。					
*	6、一片 ROM 有 10 根地址线, 8 根数据输出线, 该 ROM 能存储个二进制数码。					
	7、欲将 D 触发器连接成计数触发器, 应令 D=; 欲将 JK 触发器连接成计数触					
層	发器,最简单的方法是令 J=K=。					
2 K ~	8、任何时刻只允许一位有效信号输入的编码器称为,任何时刻可允许多位					
姓内	有效信号同时输入的编码器称为。					
裁	9、用 3 片 74LS194 可实现最大模值为的环形计数器,可实现最大模值为的扭					
444	环形计数器。					
I级	10、FPGA 掉电后编程数据丢失,CPLD 掉电后编程数据丢失。					
	二、单项选择题(每小题 2 分, 共 10 分)					
174	以下每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题					
	后的括号内。错选、多选或未选均无分。					
	1、同步时序电路和异步时序电路相比,其差异在于后者()。					
院 !	A. 没有稳定状态 B. 没有统一的时钟脉冲控制					
孙	C. 没有触发器 D. 输出只与内部状态有关					
	2、以下 VHDL 语句中,属于顺序语句的是()。					
	A. 选择信号赋值语句 B. 进程语句					
	C. IF 语句 D. 条件信号赋值语句					
1	3、以下属于组合逻辑电路的是()。					

- A. 计数器和译码器
- B. 寄存器和比较器
- C. 全加器和比较器 D. 计数器和寄存器
- 4、由4个触发器构成的十进制计数器,它们有()个无效状态。
 - A. 8

- B. 6 C. 10 D. 16
- 5、已知某二变量输入逻辑门的输入 A、B 及输出 Y 的波形如下,则该逻辑门为(
 - A. 与非门 B. 或非门
- C. 与门 D. 异或门

三、化简逻辑函数(每小题6分,共12分)

1、用公式法将下面的逻辑函数化简为最简与或式。(6分)

$$F = AC + BD + BC\overline{D} + A\overline{B}\overline{C}$$

2、用卡诺图化简法将逻辑函数 F 化简为最简与或式。(6分)

$$F(A,B,C,D) = \mathring{\mathbf{a}} m(3,6,8,9,11,12,13) + \mathring{\mathbf{a}} d(0,1,2,14,15)$$

1、分析下图 74LS138 所构成的组合电路,写出输出 S 和 Co 的逻辑函数表达式,列出真值表,分析并说明该电路的功能。(10分)

2、用一片 8 选 1 数据选择器 74LS151 和门电路设计如下的逻辑函数 Y,写出设计过程并画出实现的电路图。(12 分)

$$Y = A\overline{C}D + \overline{A} \times \overline{B}CD + BC + B\overline{C} \times \overline{D}$$

名______学号_ 不答题 -------

 $\overline{\mathbb{X}}$

五、 画出下列各触发器 0 端的波形 (每小题 5 分, 共 10 分)

1、已知 JK 触发器输入信号 J 、K 和时钟脉冲 CP 的波形如下图所示,试画出触发器输出端 Q 的波形,设初始状态为 0。

2、下图为边沿触发的 D 触发器所构成电路,设其初始状态为 0。输入信号 $\overline{R_D}$ 和 $\overline{S_D}$ 如图 所示,试画出 Q 端的输出波形。

六、时序逻辑电路分析与设计(共26分)

- 1、试分析下图中所示时序逻辑电路(14分)
 - 要求: (1) 写出电路的输出方程、驱动方程、状态方程:
 - (2) 列出状态转换真值表;
 - (3) 画出完整状态转移图;
 - (4) 说明电路的逻辑功能及自启动特性。

2、74LS161 功能表如下表所示, 试用两片 74LS161 和必要的门电路设计一个 68 进制同步计数器。 (12 分)

要求: (1) 采用反馈清零法实现;

- (2) 写出反馈状态代码及反馈清零函数;
- (3) 画出设计的电路图。

	输			入				输 出
$\overline{C}R$	$\overline{L}D$	$CT_{\!\!P}$	$CT_{\!$	CP	D_3 D_2	Q	D_0	Q_{3} Q Q Q_{0}
0	X	×	×	×	××	×	×	0 0 0 0
1	0	×	\times	1	$d_3 d_2$	d_1	d_0	d_3 d_2 d_1 d_0
1	1	1	1	1	\times \times	\times	\times	计 数
1	1	0	\times	×	\times \times	X	X	保 持
1	1	X	0	X	××	×	×	保 持

