```
In [ ]:
          # Simple Regression Using "MachineHoursCurrentMeter" to Calculate "SalePrice"
In [1]:
          import numpy as np
          import pandas as pd
          import statsmodels.api as sm
          import matplotlib.pyplot as plt
In [ ]:
          data = pd.read_csv('fast iron 100k data.csv')
In [3]:
          data
Out[3]:
                SalesID SalePrice MachineID ModelID datasource auctioneerID YearMade MachineHoursCuri
             0 1139283
                           36000
                                    1052214
                                                            121
                                                                           3
                                                                                  1998
                                                2232
             1 1139299
                            9500
                                    1002713
                                               21442
                                                            121
                                                                           3
                                                                                  2003
             2 1139356
                           53000
                                                            121
                                                                           3
                                                                                  2000
                                    1004127
                                               25458
             3 1139369
                           14000
                                    1050658
                                                1918
                                                            121
                                                                           3
                                                                                  1000
             4 1139390
                            8250
                                    1011114
                                                            121
                                                                           3
                                                                                  1000
                                                7110
         99995 1417929
                           93500
                                      26366
                                                3357
                                                            132
                                                                           6
                                                                                  1990
         99996 1417930
                           47000
                                    1412330
                                                3357
                                                            132
                                                                           9
                                                                                  1990
         99997 1417931
                           47000
                                                                           9
                                                                                  1990
                                    1412330
                                                3357
                                                            132
         99998 1417934
                           48000
                                    1412330
                                                3357
                                                            132
                                                                           9
                                                                                  1990
         99999 1417937
                           92500
                                    1195271
                                                3357
                                                            132
                                                                           1
                                                                                  1990
        100000 rows × 53 columns
In [4]:
          data['MachineHoursCurrentMeter'] = data['MachineHoursCurrentMeter'].replace(np.nan, 0)
In [5]:
          data.describe()
```

```
Out[5]:
                      SalesID
                                   SalePrice
                                               MachinelD
                                                                ModelID
                                                                             datasource
                                                                                          auctioneerID
                                                                                                            Year
                1.000000e+05
                               100000.00000
                                            1.000000e+05 100000.000000
                                                                          100000.000000
                                                                                        100000.000000
                                                                                                       100000.0
          count
          mean
                1.294013e+06
                                32361.55013 1.067671e+06
                                                             5485.211650
                                                                             129.362860
                                                                                              6.502580
                                                                                                          1931.4
            std
                7.910623e+04
                                23797.71391
                                            3.947570e+05
                                                             5078.726263
                                                                               4.696196
                                                                                             15.605157
                                                                                                           237.2
                1.139246e+06
                                 4750.00000
                                            1.300000e+01
                                                               28.000000
                                                                             121.000000
                                                                                              1.000000
                                                                                                          1000.0
           min
           25%
                1.252166e+06
                                15500.00000
                                            1.004246e+06
                                                             3171.000000
                                                                             132.000000
                                                                                              1.000000
                                                                                                          1984.0
           50%
                1.292648e+06
                                24500.00000
                                            1.151534e+06
                                                             3819.000000
                                                                             132.000000
                                                                                              3.000000
                                                                                                          1993.0
           75%
                1.363022e+06
                                41000.00000
                                            1.355657e+06
                                                             6797.000000
                                                                             132.000000
                                                                                              4.000000
                                                                                                          1999.0
                1.417937e+06 142000.00000
                                            1.558285e+06
                                                            37198.000000
                                                                             132.000000
                                                                                             99.000000
                                                                                                          2010.0
In [6]:
          y = data['SalePrice']
          x1 = data['MachineHoursCurrentMeter']
In [7]:
          plt.scatter(x1, y)
          plt.xlabel('SalePrice', fontsize = 20)
          plt.ylabel('MachineHoursCurrentMeter', fontsize = 20)
          plt.show()
```



```
In [8]:     x = sm.add_constant(x1)
     results = sm.OLS(y, x).fit()
     results.summary()
```

Out[8]: OLS Regression Results

Dep. Variable:SalePriceR-squared:0.012Model:OLSAdj. R-squared:0.012Method:Least SquaresF-statistic:1221.

Date: Thu, 21 Dec 2023 **Prob (F-statistic):** 7.90e-266

Time: 10:19:24 **Log-Likelihood:** -1.1490e+06

No. Observations: 100000 **AIC:** 2.298e+06

Df Residuals: 99998 **BIC:** 2.298e+06

Df Model: 1

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 3.15e+04 78.754 399.985 0.000 3.13e+04 3.17e+04

MachineHoursCurrentMeter 0.7231 0.021 34.938 0.000 0.683 0.764

Omnibus: 26748.274 **Durbin-Watson:** 0.815

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 60472.371

Skew: 1.539 **Prob(JB):** 0.00

Kurtosis: 5.245 **Cond. No.** 4.01e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
plt.scatter(x1, y)
    yhat = 0.7231 * x1 + 31500 # Regression Equation
    fig = plt.plot(x1, yhat, lw = 4, c = 'orange', label = 'regression line')
    plt.xlabel('SalePrice', fontsize = 20)
    plt.ylabel('MachineHoursCurrentMeter', fontsize = 20)
    plt.show()
```


In [10]:

print(results.summary()) # Notice the really low R-squared

OLS Regression Results

=======================================	=========	=======			======	
Dep. Variable:	SalePrice	R-squared:		0.012		
Model:	OLS	Adj. R-squared:		0.012		
Method:	Least Squares	F-statistic:		1221.		
Date:	Thu, 21 Dec 2023	<pre>Prob (F-statistic):</pre>		7.90e-266		
Time:	10:19:29	Log-Likelihood:		-1.1490e+06		
No. Observations:	100000	AIC:		2.298e+06		
Df Residuals:	99998	BIC:		2.298e+06		
Df Model:	1					
Covariance Type:	nonrobust					
=======================================	=========	=======			=======	=====
====	coef	std err	t	P> t	[0 025	0.
975]	coei	Stu en	· ·	۲۶۱۲۱	[0.025	0.
const e+04	3.15e+04	78.754	399.985	0.000	3.13e+04	3.17
MachineHoursCurrentMe 0.764	ter 0.7231	0.021	34.938	0.000	0.683	
Omnibus:	======================================	Durbin-Watson: 0.815		0.815		
Prob(Omnibus):	0.000			60472.371		
Skew:	1.539			0.00		
Kurtosis:	5.245	Cond. No.		4.01e+03		
=======================================	=========	=======		=======	======	

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In []: # Multiple Regression Using "MachineHoursCurrentMeter" and "YearMade" to Calculate "Sale

import numpy as np
import pandas as pd

```
import statsmodels.api as sm
 In [ ]:
           data = pd.read csv('fast iron 100k data.csv')
In [13]:
           data.head()
Out[13]:
              SalesID SalePrice MachineID ModeIID datasource auctioneerID YearMade MachineHoursCurrentN
          0 1139283
                         36000
                                                                           3
                                                                                   1998
                                   1052214
                                               2232
                                                            121
             1139299
                          9500
                                   1002713
                                              21442
                                                            121
                                                                           3
                                                                                   2003
          2 1139356
                         53000
                                   1004127
                                              25458
                                                            121
                                                                           3
                                                                                   2000
          3 1139369
                         14000
                                   1050658
                                               1918
                                                            121
                                                                           3
                                                                                   1000
                          8250
                                               7110
                                                                           3
                                                                                   1000
          4 1139390
                                   1011114
                                                            121
          5 rows × 53 columns
In [14]:
           data.describe()
Out[14]:
                                                               ModelID
                       SalesID
                                   SalePrice
                                               MachinelD
                                                                                        auctioneerID
                                                                           datasource
                                                                                                         Year
          count 1.000000e+05 100000.00000 1.000000e+05 100000.000000
                                                                        100000.000000
                                                                                      100000.000000
                                                                                                     100000.0
          mean 1.294013e+06
                                32361.55013 1.067671e+06
                                                            5485.211650
                                                                            129.362860
                                                                                            6.502580
                                                                                                       1931.4
            std 7.910623e+04
                                23797.71391 3.947570e+05
                                                            5078.726263
                                                                             4.696196
                                                                                           15.605157
                                                                                                        237.2
            min 1.139246e+06
                                 4750.00000 1.300000e+01
                                                              28.000000
                                                                            121.000000
                                                                                            1.000000
                                                                                                       1000.0
            25%
                1.252166e+06
                                15500.00000 1.004246e+06
                                                            3171.000000
                                                                            132.000000
                                                                                            1.000000
                                                                                                       1984.0
            50% 1.292648e+06
                                24500.00000 1.151534e+06
                                                            3819.000000
                                                                            132.000000
                                                                                            3.000000
                                                                                                       1993.0
            75% 1.363022e+06
                                41000.00000 1.355657e+06
                                                            6797.000000
                                                                            132.000000
                                                                                            4.000000
                                                                                                       1999.0
            max 1.417937e+06 142000.00000 1.558285e+06
                                                           37198.000000
                                                                            132.000000
                                                                                           99.000000
                                                                                                       2010.0
In [15]:
           data['MachineHoursCurrentMeter'] = data['MachineHoursCurrentMeter'].replace(np.nan, 0)
           data = data[data['YearMade'] != 1000] # Excludes rows in which YearMade has a value of
In [16]:
           data.describe() # Notice how there are now only 93,916 rows
```

import matplotlib.pyplot as plt

```
Out[16]:
                        SalesID
                                      SalePrice
                                                   MachineID
                                                                   ModelID
                                                                               datasource
                                                                                           auctioneerID
                                                                                                             YearMa
           count 9.391600e+04
                                  93916.000000
                                                9.391600e+04
                                                               93916.000000
                                                                             93916.000000
                                                                                           93916.000000
                                                                                                          93916.0000
           mean
                  1.299405e+06
                                  32842.654372
                                                1.068873e+06
                                                                5517.963989
                                                                               129.695664
                                                                                                6.599664
                                                                                                           1991.7818
                                                4.013234e+05
                                                                                                              9.7477
             std
                  7.780581e+04
                                  24016.172084
                                                                5121.838352
                                                                                 4.476376
                                                                                               15.859059
                  1.139246e+06
                                   4750.000000
                                                1.300000e+01
                                                                  28.000000
                                                                               121.000000
                                                                                                1.000000
                                                                                                           1919.0000
             min
            25%
                  1.258933e+06
                                  16000.000000
                                                1.001703e+06
                                                                3171.000000
                                                                               132.000000
                                                                                                1.000000
                                                                                                           1986.0000
            50%
                  1.298802e+06
                                  25000.000000
                                                1.164262e+06
                                                                3819.000000
                                                                               132.000000
                                                                                                3.000000
                                                                                                           1994.0000
            75%
                  1.366180e+06
                                  42000.000000
                                                1.362241e+06
                                                                6805.000000
                                                                               132.000000
                                                                                                4.000000
                                                                                                           1999.0000
                  1.417937e+06 142000.000000
                                                1.558285e+06
                                                               37198.000000
                                                                               132.000000
                                                                                               99.000000
                                                                                                           2010.0000
In [17]:
            y = data['SalePrice']
            x1 = data[['MachineHoursCurrentMeter', 'YearMade']]
In [18]:
            x = sm.add\_constant(x1)
            results = sm.OLS(y, x).fit()
            results.summary()
                                  OLS Regression Results
Out[18]:
               Dep. Variable:
                                     SalePrice
                                                     R-squared:
                                                                        0.054
                     Model:
                                         OLS
                                                 Adj. R-squared:
                                                                        0.054
                    Method:
                                 Least Squares
                                                      F-statistic:
                                                                        2673.
                       Date: Thu, 21 Dec 2023
                                               Prob (F-statistic):
                                                                         0.00
                       Time:
                                      10:19:54
                                                 Log-Likelihood: -1.0779e+06
           No. Observations:
                                                           AIC:
                                                                   2.156e+06
                                       93916
                Df Residuals:
                                                           BIC:
                                                                   2.156e+06
                                       93913
                   Df Model:
                                            2
            Covariance Type:
                                    nonrobust
                                                                                [0.025
                                                                                           0.975]
                                              coef
                                                      std err
                                                                    t P>|t|
                                const -9.593e+05
                                                  1.61e+04 -59.761 0.000
                                                                             -9.91e+05
                                                                                        -9.28e+05
           MachineHoursCurrentMeter
                                            0.6337
                                                       0.028
                                                              22.951 0.000
                                                                                 0.580
                                                                                            0.688
                            YearMade
                                         497.8320
                                                       8.062
                                                              61.747 0.000
                                                                               482.030
                                                                                          513.634
                 Omnibus: 22790.243
                                        Durbin-Watson:
                                                             0.786
           Prob(Omnibus):
                                0.000
                                       Jarque-Bera (JB): 47872.793
                    Skew:
                                1.435
                                              Prob(JB):
                                                              0.00
```

Kurtosis:

5.000

Cond. No.

6.52e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.52e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [19]:

print(results.summary()) # R-squared increased from to what it was in simple regression

OLS Regression Results												
Dep. Variable:	SalePrice	R-squared:		0.054								
Model:	OLS	Adj. R-squared:		0.054								
Method:	Least Squares	F-statistic:		2673.								
Date: Th	u, 21 Dec 2023	<pre>Prob (F-statistic):</pre>			0.00							
Time:	10:19:56		elihood:	-1.0779e+06								
No. Observations:	93916	_		2.156e+06								
Df Residuals:	93913	BIC:		2.156e+06								
Df Model:	2	2201										
Covariance Type:	nonrobust											
=======================================	=========		========	=======								
====												
	coef	std err	t	P> t	[0.025	0.						
975]					-							
const	-9.593e+05	1.61e+04	-59.761	0.000	-9.91e+05	-9.28						
e+05												
MachineHoursCurrentMete	r 0.6337	0.028	22.951	0.000	0.580							
0.688	407 0220	0.063	61 747	0.000	402 020	F4						
YearMade	497.8320	8.062	61.747	0.000	482.030	51						
3.634												
Omnibus:	22790.243	Dunhin	-====================================	======	0.786							
		Durbin-Watson:		47872.793								
Prob(Omnibus):	0.000			4	4/8/2./93 0.00							
Skew:	1.435	` /										
Kurtosis:	5.000	Cond. No.			6.52e+05							
=======================================	=========	=======	========	======	======							

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.52e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In []:

Regression Equation: SalePrice = 0.6337 * MachineHoursCurrentMeter + 497.8320 * YearMo