Задачи к лекции 5

- **1.** Пусть R кольцо главных идеалов и $a, b, c \in R$. Докажите, что
 - (a) если c делит ab и (b, c) = 1, то c делит a;
 - (б) если b делит a, c делит a и (b,c) = 1, то bc делит a.
- **2.** Пусть $\mathbb{Z}[\sqrt{-5}]$ подкольцо в \mathbb{C} , состоящее из всех элементов вида $a+b\sqrt{-5}$, где $a,b\in\mathbb{Z}$.
 - (a) Найдите все обратимые элементы в $\mathbb{Z}[\sqrt{-5}]$.
- (б) Докажите, что всякий ненулевой необратимый элемент в $\mathbb{Z}[\sqrt{-5}]$ разлагается в произведение конечного числа простых.
- (в) Докажите, что все элементы, участвующие в равенстве $2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$, просты и попарно не ассоциированы. Таким образом, кольцо $\mathbb{Z}[\sqrt{-5}]$ не факториально.
- **3.** Найдите наибольший общий делитель многочленов f(x) и g(x) (над \mathbb{R}), а также его линейное выражение через f(x) и g(x):
 - (a) $f(x) = x^4 + 2x^3 x^2 4x 2$, $g(x) = x^4 + x^3 x^2 2x 2$;
 - (6) $f(x) = 3x^3 2x^2 + x + 2$, $g(x) = x^2 x + 1$.
- **4.** Разложите в произведение неприводимых над полем $\mathbb C$ и над полем $\mathbb R$ следующие многочлены:
 - (a) $x^4 4$; (b) $x^4 + 4$.
- 5. Разложите в произведение неприводимых следующие многочлены:
 - (a) $x^4 + x^3 + x + 1$ в $\mathbb{Z}_2[x]$;
 - (6) $x^4 + 2x^3 + x^2 + 2x + 2$ B $\mathbb{Z}_3[x]$.
- **6.** Перечислите все неприводимые многочлены степеней не выше 4 над полем \mathbb{Z}_2 и докажите, что существует ровно 6 неприводимых многочленов степени 5.
- 7. Пусть R коммутативное кольцо без делителей нуля. Докажите, что
 - (a) в кольце R[x] нет делителей нуля;
 - (б) в кольце $R[x_1,\ldots,x_n]$ нет делителей нуля.
- 8. Предположим, что многочлен с целыми коэффициентами имеет кратный комплексный корень. Может ли такой многочлен быть неприводимым над полем \mathbb{Q} ?
- **9.** Найдите все делители нуля и нильпотенты в кольце $\mathbb{Z}_{4}[x].$

Домашнее задание

1. Найдите наибольший общий делитель многочленов $f(x), g(x) \in \mathbb{R}[x]$, а также его линейное выражение через f(x) и g(x), где

$$f(x) = x^5 + x^4 - x^3 - 2x - 1$$
, $g(x) = 3x^4 - 2x^3 + x^2 - 2x - 2$.

- **2.** Выясните, является ли число $4 + \sqrt{-5}$ простым элементом кольца $\mathbb{Z}[\sqrt{-5}]$.
- **3.** Разложите многочлен $x^5 + 3x^4 + x^3 + x^2 + 3$ в произведение неприводимых в кольце $\mathbb{Z}_5[x]$.
- **4.** Пусть R факториальное кольцо и $p \in R$ ненулевой необратимый элемент. Докажите, что p является простым тогда и только тогда, когда в факторкольце R/(p) нет делителей нуля.