The U-net Model

A Fully Convolutional Neural Network Model

Roberto Souza Assistant Professor Electrical and Computer Engineering Schulich School of Engineering

W2024

Outline

Learning Goals

The U-net Model

Summary

Learning Goals

Understand the U-net architecture and its building blocks

Discuss potential applications of the U-net model

The U-net Model

- The U-net is a fully convolutional neural network (i.e., no fully connected layers)
- Initially proposed for biomedical image segmentation problems
- It maps an input of size N into an output also of size N (if the convolutions are padded)

The U-net Model


```
For one layer:
```

```
# params =
weights + biases =
```

[input maps x filter size x output maps] + output maps

Layer 1 params:

$$1 \times (3 \times 3) \times 32 + 32 = 320$$

Layer 2 params:

$$32 \times (3 \times 3) \times 32 + 32 = 9248$$

Total: 9568

Layer 1 params:

$$32 \times (3 \times 3) \times 64 + 64 = 18,496$$

Layer 2 params:

$$64 \times (3 \times 3) \times 64 + 64 = 36,928$$

Total: 55,424

Layer 1 params:

768 x (3 x 3) x 256 + 256 = 1,769,728

Layer 2 params:

 $256 \times (3 \times 3) \times 256 + 256 = 590,080$

Total: 2,359,808

Grand total: ~7.8 million

Upsampling

Upsampling

- Opposite effect of max-pooling
- Many ways to do it
 - Transpose convolution
 - Nearest neighbor interpolation
 - Linear interpolation

• ...

Output: 4x4

Max pooling

Maxpooling

- U-net uses 2D max pooling
- What happens when we have
 - Odd image dimensions?

Maxpooling

- U-net uses 2D max pooling
- What happens when we have
 - Odd image dimensions?
 - Other even image dimensions?
- Solution: pad input to nearest dimension divisible by 2 # max pool layers

Skip connections

Skip connections

- Propagate multi-scale information
- Improved spatial information

1	4	1	1
1	2	4	1
1	1	1	1
3	1	1	4

4	4	4	4
4	4	4	4
3	3	4	4
3	3	4	4

1x1 Convolution

1x1 Convolution

Batch normalization

Batch normalization

 Normalizes your batch of data in between layers

$$y = \frac{x - E[x]}{\sqrt{\text{Var}[x] + \epsilon}} * \gamma + \beta$$
Computed parameters

Learnable parameters

Batch normalization

- Each feature/feature map is normalized!
- During training, running mean and variance computed for use during inference

$$E[x]_{run} = \alpha E[x]_{run} + (1 - \alpha)E[x]$$

$$Var[x]_{run} = \alpha Var[x]_{run} + (1 - \alpha)Var[x]$$
Momentum

U-net - Segmentation

Segmentation = pixel-wise or voxel-wise segmentation

U-net – 2D Regression

U-net – 1D Regression

Metrics

- For regression:
 - Mean squared error
 - Mean absolute error
 - •
- For segmentation:
 - Dice coefficient
 - Jaccard coefficient
 - •

	-		
3	4	4	
2	3	4	
1	2	3	

3

3

Summary

 The U-net is a very powerful deep learning model that maps inputs to outputs of the same size

The model works across different scales of the input signal/image

It is a fully convolutional model that is independent of the input size

Thank you!

