## CMB dark matter constraints

Bouke Jung, Iris de Ruiter, Paul Hofland

University of Amsterdam

GRAPPA Seminar, 19-6-2018

#### Outline

Introduction

Cosmic Microwave Background

Ionization fraction: dark matter annihilation

Cosmological Constraints Methodology Parameter constraints

Comparison with data

CMB telescopes

#### Introduction

- ► CMB power spectrum well-known
- ▶ Use this precision to constrain dark matter parameters
- ▶ Add a dark matter annihilation to reionization and compare

# Cosmic Microwave Background

- ▶ Big Bang
- Recombination and decoupling
- Dark Ages
- ▶ Reionization



Figure: Copyright ESA and the Planck Collaboration

# CMB power spectrum - ESA Movie



Figure: Planck collaboration 2015

### Dark matter annihilation



Figure: N. Padmanabhan and D. P. Finkbeiner 2005

$$\frac{dx_{\rm e}}{dz} = \frac{1}{(1+z)H(z)} \left[ R_{\rm s}(z) - I_{\rm s}(z) - I_{\chi}(z) \right] \tag{1}$$

## Relation to dark matter parameters

$$\frac{dE(z)}{dVdt} = \rho_c^2 c^2 \Omega_{DM}^2 (1+z)^6 f \frac{\langle \sigma v \rangle}{m_\chi}$$
 (2)

$$\frac{dx_{\rm e}}{dz} \propto I_{\chi}(z) \propto \frac{dE(z)}{dVdt} \tag{3}$$

We have related the interesting DM properties  $<\sigma v>$  and  $m_\chi$  to  $\frac{dx_e}{dz}$  that we can compare to our measurements of the CMB power spectrum.

### Outline

Introduction

Cosmic Microwave Background

Ionization fraction: dark matter annihilation

Cosmological Constraints Methodology

Parameter constraints

Comparison with data

CMB telescopes

# The DM annihilation parameter

- Potential footprints of DM annihiliation?
- A crucial parameter:

$$p_{ann} = f \frac{\langle \sigma v \rangle}{m_{\chi}}$$

- ► The *RECFAST* package<sup>1</sup>
  - Compute recombination of H, Hel and Hell
  - Analyze ionization history for arbitrary cosmology



### The free electron fraction



# The angular power spectrum

- ▶ What can we expect?

# The angular power spectrum

- What can we expect?
- x<sub>e</sub> has increased, so optical depth goes up
- Important consequences:
  - Amplitudes go down
  - Small-scale anisotropies are seemingly erased
  - Enhanced Thomson scattering
    - → Induces polarization anisotropies on large scales

## The angular power spectrum



Hütsi et al. (2011)

### Outline

Introduction

Cosmic Microwave Background

Ionization fraction: dark matter annihilation

Cosmological Constraints

Methodology

Parameter constraints

Comparison with data

CMB telescopes

# Including data

- ▶ So which DM model (which p<sub>ann</sub>) holds the most merit?
- ► Confer with observational data (WMAP, PLANCK, etc.)
- Parameters of interest:

$$\{\Omega_{b,0}h^2,\Omega_{DM,0}h^2,\Theta_s,z_{reio},\textit{n}_s,\ln\left[10^{10}\textit{A}_s\right],<\sigma\textit{v}>,\textit{m}_\chi\}$$

- ► The CosmoMC package<sup>2</sup>
  - MCMC exploration of cosmological parameter space
- Maximum likelihood fits

# Primordial density fluctations spectrum amplitude



Madhavacheril et al. (2013)

## Matter densities and scalar spectral index



## IGM temperature



Laura Lopez-Honorez (2013)

## Annihilation cross-section



Silvia Gali et al. (2009)

#### Sommerfeld enhancement solution

$$SE(\beta) = \frac{\alpha\pi}{\beta} \Big( 1 - e^{-\alpha\pi/\beta} \Big)$$
 (4)

Solution to Schrodinger equation. Saturated for low velocity at  $\beta \sim \frac{m_\phi}{m_\chi}$ . Implies resonating form.

## Annihilation cross-section



Silvia Gali et al. (2009)

## WMAP5

$$\sigma v_{z_r}^{max} = 71.2 \cdot 10^{-26} \left( \frac{p_{ann}^{max}}{2.0 \cdot 10^{-6} \, m^3 s^{-1} kg^{-1}} \right) \left( \frac{m_{\chi}}{100 \, GeV} \right) \left( \frac{0.5}{f} \right)$$
(5)

Upper limit self annihilating corss-section.

In terms of  $p_{ann} = f \frac{\langle \sigma v \rangle}{m_{\chi}}$ .

Dark matter mass  $m_{\chi}$ .

Coupling factor f.

## Annihilation cross-section



Silvia Gali et al. (2009)

#### **WMAP**

Successor of COBE.

Launched in 2001 into L2 orbit by NASA.

Frequency range: 23 - 94 GHz over 5 bands.

Amplitude power spectrum  $A_{ps} = 0.0011 \pm 0.001 \mu K^2 sr$ 

Summary of the cosmological parameters of ACDM model and the corresponding 68% intervals

| Class   | Parameter            | $WMAP$ 5-year ${\rm ML}^a$ | WMAP + BAO + SN ML    | $WMAP$ 5-year Mean $^b$               | WMAP + BAO + SN Mean               |
|---------|----------------------|----------------------------|-----------------------|---------------------------------------|------------------------------------|
| Primary | $100\Omega_b h^2$    | 2.268                      | 2.262                 | $2.273 \pm 0.062$                     | $2.267^{+0.058}_{-0.059}$          |
|         | $\Omega_c h^2$       | 0.1081                     | 0.1138                | $0.1099 \pm 0.0062$                   | $0.1131 \pm 0.0034$                |
|         | $\Omega_{\Lambda}$   | 0.751                      | 0.723                 | $0.742 \pm 0.030$                     | $0.726 \pm 0.015$                  |
|         | $n_s$                | 0.961                      | 0.962                 | $0.963^{+0.014}_{-0.015}$             | $0.960 \pm 0.013$                  |
|         | $\tau$               | 0.089                      | 0.088                 | $0.087 \pm 0.017$                     | $0.084 \pm 0.016$                  |
|         | $\Delta_R^2 (k_0^e)$ | $2.41 \times 10^{-9}$      | $2.46 \times 10^{-9}$ | $(2.41 \pm 0.11) \times 10^{-9}$      | $(2.445 \pm 0.096) \times 10^{-9}$ |
| Derived | $\sigma_8$           | 0.787                      | 0.817                 | $0.796 \pm 0.036$                     | $0.812 \pm 0.026$                  |
|         | $H_0$                | 72.4  km/s/Mpc             | 70.2  km/s/Mpc        | $71.9^{+2.6}_{-2.7} \text{ km/s/Mpc}$ | $70.5 \pm 1.3 \; \text{km/s/Mpc}$  |
|         | $\Omega_b$           | 0.0432                     | 0.0459                | $0.0441 \pm 0.0030$                   | $0.0456 \pm 0.0015$                |
|         | $\Omega_c$           | 0.206                      | 0.231                 | $0.214 \pm 0.027$                     | $0.228 \pm 0.013$                  |
|         | $\Omega_m h^2$       | 0.1308                     | 0.1364                | $0.1326 \pm 0.0063$                   | $0.1358^{+0.0037}_{-0.0036}$       |
|         | $z_{\text{reion}}^f$ | 11.2                       | 11.3                  | $11.0 \pm 1.4$                        | $10.9 \pm 1.4$                     |
|         | $t_0{}^g$            | 13.69 Gyr                  | 13.72 Gyr             | $13.69 \pm 0.13 \text{ Gyr}$          | $13.72 \pm 0.12 \text{ Gyr}$       |

<sup>&</sup>lt;sup>a</sup>Dunkley et al. (2008). "ML" refers to the Maximum Likelihood parameters

<sup>&</sup>lt;sup>b</sup>Dunkley et al. (2008). "Mean" refers to the mean of the posterior distribution of each parameter

<sup>&</sup>lt;sup>c</sup>Dunkley et al. (2008). "ML" refers to the Maximum Likelihood parameters

<sup>&</sup>lt;sup>d</sup>Dunkley et al. (2008). "Mean" refers to the mean of the posterior distribution of each parameter

 $<sup>^{</sup>e}k_{0} = 0.002 \text{ Mpc}^{-1}$ .  $\Delta_{\mathcal{R}}^{2}(k) = k^{3}P_{\mathcal{R}}(k)/(2\pi^{2})$  (Eq. [15])

f "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at

greion

gThe present-day age of the universe

### Planck

Successor of WMAP

Launched in 2009 into L2 orbit by ESA.

Frequency range: 30 - 857 GHz over 9 bands.

In agreement with WMAP. 2 - 3 Orders of magnitude improvement on uncertainties.

|                          | PlanckTT+lowP         | PlanckTT, TE, EE+lowP |
|--------------------------|-----------------------|-----------------------|
| Parameter                | 68% limits            | 68% limits            |
| $\Omega_{\rm b}h^2$      | $0.02222 \pm 0.00023$ | $0.02225 \pm 0.00016$ |
| $\Omega_{\rm c}h^2$      | $0.1197 \pm 0.0022$   | $0.1198 \pm 0.0015$   |
| $100\theta_{MC}$         | $1.04085 \pm 0.00047$ | $1.04077 \pm 0.00032$ |
| $\tau$                   | $0.078 \pm 0.019$     | $0.079 \pm 0.017$     |
| $ln(10^{10}A_{\rm s})$   | $3.089 \pm 0.036$     | $3.094 \pm 0.034$     |
| $n_{\rm s}$              | $0.9655 \pm 0.0062$   | $0.9645 \pm 0.0049$   |
| $H_0$                    | $67.31 \pm 0.96$      | $67.27 \pm 0.66$      |
| $\Omega_{\Lambda}$       | $0.685 \pm 0.013$     | $0.6844 \pm 0.0091$   |
| $\Omega_m \ldots \ldots$ | $0.315 \pm 0.013$     | $0.3156 \pm 0.0091$   |

N. Aghanim et al. (2016)



### WMAP and Planck orbit

Lunar assisted trajectory to orbit around L2.





## annihilation cross-section by Planck



Stefano Profuma et al. (2017)