Introduction to Inverse Laplace Transform

08 July 2023 16:10

Definition: If $L|f(t)| = \emptyset(s) = \int_0^\infty e^{-st} f(t) dt$ then f(t) is called the inverse Laplace transform of $\emptyset(s)$ and can be denoted as $L^{-1}|\emptyset(s)| = f(t)$

1. Table of Inverse Laplace Transforms:

$L(1) = \frac{1}{s}$	$L^{-1}\left(\frac{1}{s}\right) = 1$
$L(e^{-at}) = \frac{1}{s+a}$	$L^{-1}\left(\frac{1}{s+a}\right) = e^{-at}$
$L(e^{at}) = \frac{1}{s-a}$	$L^{-1}\left(\frac{1}{s-a}\right) = e^{at}$
$L(t^{n-1}) = \frac{ n }{s^n}$	$L^{-1}\left(\frac{1}{s^n}\right) = \frac{t^{n-1}}{ n }$
$L(t^{n-1}) = \frac{(n-1)!}{s^n}$	$L^{-1}\left(\frac{1}{s^n}\right) = \frac{t^{n-1}}{(n-1)!}$
$L(\sin at) = \frac{a}{s^2 + a^2}$	$L^{-1}\left(\frac{1}{s^2+a^2}\right) = \frac{1}{a}\sin at$
$L(\cos at) = \frac{s}{s^2 + a^2}$	$L^{-1}\left(\frac{s}{s^2+a^2}\right) = \cos at$
$L(\sin h \ at) = \frac{a}{s^2 - a^2}$	$L^{-1}\left(\frac{1}{s^2 - a^2}\right) = \frac{1}{a}\sin h \ at$
$L(\cos h \ at) = \frac{s}{s^2 - a^2}$	$L^{-1}\left(\frac{s}{s^2 - a^2}\right) = \cos h \ at$

2. <u>Using shifting theorem</u>:

We know that, If
$$L|f(t)|=\emptyset(s)$$
, then $L|e^{-at}f(t)|=\emptyset(s+a)$ This means if $f(t)=L^{-1}|\emptyset(s)|$ then $L^{-1}|\emptyset(s+a)|=e^{-at}f(t)$ i.e. $L^{-1}|\emptyset(s+a)|=e^{-at}L^{-1}|\emptyset(s)|$

3. Method of partial fractions:

Whenever possible we express the given function $\emptyset(s)$ into the sum of linear or quadratic partial fractions as $\emptyset(s) = \frac{A}{(s+a)^r} + \frac{Bs+C}{(s^2+a^2)^r}$ and then use the standard results given above to find L^{-1}

(i) distinct linear factor $\frac{px+q}{(x-a)(x-b)}$	Express: $\frac{px+q}{(x-a)(x-b)} = \frac{A}{(x-a)} + \frac{B}{(x-b)}$
(ii) distinct linear factor $\frac{px^2+qx+r}{(x-a)(x-b)(x-c)}$	Express: $\frac{px^2+qx+r}{(x-a)(x-b)(x-c)} = \frac{A}{(x-a)} + \frac{B}{(x-b)} +$
(iii) repetitive linear factor $\frac{px+q}{(x-a)^2}$	Express: $\frac{px+q}{(x-a)^2} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2}$
(iv) repetitive linear factor $\frac{px^2+qx+r}{(x-a)^3}$	Express: $\frac{px^2+qx+r}{(x-a)^3} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}$
(v) repetitive linear factor $\frac{px^2+qx+r}{(x-a)^2(x-b)}$	Express: $\frac{px^2+qx+r}{(x-a)^2(x-b)} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$
(vi) Linear & quadratic factor $\frac{px^2+qx+r}{(x-a)(x^2+bx+c)}$	Express: $\frac{px^2+qx+r}{(x-a)(x^2+bx+c)} = \frac{A}{(x-a)} + \frac{Bx+C}{(x^2+bx+c)}$