Phylogenetic thinking

Emily Jane McTavish

Life and Environmental Sciences University of California, Merced ejmctavish@ucmerced.edu, twitter:snacktavish

(With thanks to Mark Holder, Paul Lewis, Joe Felsenstein, and David Hillis for slides)

Phylogenies describe shared ancestry and inform our understanding of evolutionary processes

lat. offset = degrees north of the 49th parallel.

species	lat. offset	mass
L1	3.1	5.9
L2	5.4	4.3
L3	5.1	3.1
L4	1.8	3.6
H1	13.5	15.2
H2	14.6	13.5
H3	13.6	12.4
H4	10.8	13.7

(cue cartoon videos)

See http://phylo.bio.ku.edu/slides/no-correl-anim.mov

and http://phylo.bio.ku.edu/slides/correl-anim2.mov

No (or little) evidence for correlation

Evidence for correlation

Do desert green algae use xanthophyll to protect against excessive light intensities?

Species	Habitat	Photoprotection
1	terrestrial	xanthophyll
2	terrestrial	xanthophyll
3	terrestrial	xanthophyll
4	terrestrial	xanthophyll
5	terrestrial	xanthophyll
6	aquatic	none
7	aquatic	none
8	aquatic	none
9	aquatic	none
10	aquatic	none

Phylogeny reveals the events that generate the pattern

Inferring Process from Pattern

Hypothesis:

Gregariousness should arise more frequently in unpalatable organisms than in tasty ones (Sillén-Tullberg, 1988)

Inferring Process from Pattern

Sillén-Tullberg (1988), Dyer and Gentry (2002), Hill (2001)

One possible outcome:

No clear evidence of associations between traits

Cartoon of the real results (Sillén-Tullberg, 1988)
Aposematic species are more likely to evolve gregarious larvae

Importance of phylogeny

The previous slides had identical patterns of traits if the phylogeny is ignored.

Without knowledge of the tree, no conclusion would be reached.

Epidemiology

https://nextstrain.org/ncov/gisaid/global (deep dive next week)

Phylogenies can reveal suprising patterns

Phylogenies can reveal suprising patterns

Figure by Mathieu Joron: http://xyala.cap.ed.ac.uk/joron/

What evolutionary processes can drive these patterns?

- ► Convergence
- Horizontal gene transfer
- ► Incomplete lineage sorting
- •

What evolutionary processes can drive these patterns?

- Convergence
- ► Horizontal gene transfer
- Incomplete lineage sorting

We will discuss how to recognize and (try to) differentiate these processes.

The challenge of phylogenetics:

The tree is real. There is some true past history that happened!

The challenge of phylogenetics:

The tree is real. There is some true past history that happened!

How do we find out what that history was?

Estimating a tree from character data

Tree construction:

- strictly algorithmic approaches use a "recipe" to construct a tree
- ▶ optimality based approaches choose a way to "score" a trees and then search for the tree that has the best score.

Expressing support for aspects of the tree:

- bootstrapping,
- testing competing trees against each other,
- posterior probabilities (in Bayesian approaches).

Different data can drive different conclusions

Species relationships between echolocating and nonecholocating bats (after Teeling 2009). Left: inferences from DNA sequence data.

Right: traditional species relationships inferred from morphological characters (and limited sequence data). (Hahn and Nakhleh, 2016)

Hahn, M. W. and Nakhleh, L. (2016). Irrational exuberance for resolved species trees. *Evolution*, 70(1):7–17.

Joron, M., Frezal, L., Jones, R. T., Chamberlain, N. L., Lee, S. F., Haag, C. R., Whibley, A., Becuwe, M., Baxter, S. W., Ferguson, L., Wilkinson, P. A., Salazar, C., Davidson, C., Clark, R., Quail, M. A., Beasley, H., Glithero, R., Lloyd, C., Sims, S., Jones, M. C., Rogers, J., Jiggins, C. D., and ffrench Constant, R. H. (2011). Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. *Nature*, 477(7363):203–206.