Vorlesung 4

Bsp. 3.11:

$$b_n = \frac{1}{n + \sqrt{n+5}}, n \in \mathbb{N}$$
 $0 \le b_n \le \frac{1}{n}, n \to \infty$

Einschließungsregel $\Rightarrow \lim_{n\to\infty} b_n = 0$

Def. 3.12:

 $(a_n)_{n\in\mathbb{N}}$ heit monoton wachsend falls $a_n \leq a_{n+1} \ \forall n$ fallend falls $a_n \geq a_{n+1} \ \forall n$

Gilt sogar $a_n < a_{n+1} \ \forall n$, so heit die Folge streng monoton wachsend. Gilt sogar $a_n > a_{n+1} \ \forall n$, so heit die Folge streng monoton fallend.

Satz 3.13:

Für jede monoton wachsende/fallende Folge $(a_n)_{n\in\mathbb{N}}$ gilt:

 $\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n, \inf_{n\in\mathbb{N}} a_n$

Insbesondere ist jede beschränkte monotone Folge konvergent und jede unbeschränkte monotone Folge ist uneigentlich konvergent gegen $\pm \infty$.

Beweis fr monoton wachsende Folgen

Fall $(a_n)_{n\in\mathbb{N}}$ ist beschränkt: Dann existiert $s=\sup_{n\in\mathbb{N}}a_n\in\mathbb{R}$

Sei $\epsilon > 0$. Da s die kleinste obere Schranke der a_n ist, $\exists n_0 \in \mathbb{N}$ mit $a_{n_0} > s - \epsilon$

(Falls es so ein n_0 nicht g
be, wre $a_n \leq a - \epsilon \forall n$. Dann wre $s - \epsilon$ eine kleinere obere Schranke.)

Wegen der Monotomie gilt: $s - \epsilon < a_{n_0} \le a_{n_0+1} \le a_{n_0+2} \le \dots \le s$

$$\Rightarrow \forall n \geq n_0 \quad |a_n - s| < \epsilon \quad \Rightarrow \lim_{n \to \infty} a_n = s.$$

Fall $(a_n)_{n\in\mathbb{N}}$ ist unbeschränkt: $a_1\leq a_2\leq a_3\leq\dots$ \Rightarrow Die Folge ist nach oben unbeschränkt $\Rightarrow sup_{n\in\mathbb{N}}a_n=\infty$ $\Rightarrow \forall K \quad \exists n_o\in\mathbb{N} \text{ mit } a_{n_0}>K$ Monotonie $\Rightarrow \forall n\geq n_0 \quad a_n\geq a_{n_0}>K$

Anwendung: Satz 3.14:

 $\Rightarrow lim_{n\to\infty}a_n = \infty = sup_{n\in\mathbb{N}}a_n.$

Der Grenzwert der Folge $a_n = (1 + \frac{1}{n})^n, n \in \mathbb{N}$ existiert

$$e:=\lim_{n\to\infty}(1+\frac{1}{n})^n=\sup_{n\in\mathbb{N}}(1+\frac{1}{n})^2$$
heißt Eulerische Zahl (Euler,1728) $epprox 2,718...$

Beh: (an) neps ist monoton wachsand $\frac{2n \cdot 2n \cdot 2n}{2n \cdot 2n} = \frac{2n}{2n-1} \cdot \frac{2n}{$

Beweis:

$$\Rightarrow \frac{\alpha_n}{\alpha_{n-1}} = \left(1 - \frac{1}{n^2} \right)^n \frac{n}{n-1}$$

Bernoullische Ungleichung: $(1+x)^n > 1+nx \quad \forall n \in \mathbb{N}_0 \quad \forall x > -1$ Anwenden nich $x = -\frac{1}{h^2} > -1 \quad \forall n > 2$ ließet:

$$\frac{\frac{\alpha_n}{\alpha_{n-1}}}{=\frac{1}{n}} > \frac{(1-n)\frac{1}{n^2}}{n^2} > \frac{n}{n-1} = \frac{n-1}{n} \cdot \frac{n}{n-1} = 1$$

Beh; (an)n∈IN ist nach doen beschränku, d.h. Fc Yn an≤c

Binomische Formel:

$$\forall a, b \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad {\binom{(a+b)^n = \sum_{k=0}^n n}{ka^kb^{n-k}}}$$

Anwenden:

$$a_n(1+\frac{1}{n})^n = \binom{\sum_{k=0}^n n}{k\frac{1}{-k}}$$

Es gilt:
$$\binom{n}{k \frac{1}{n^k}} = \frac{n!}{k!(n-k)!} \frac{1}{n^k} = \frac{1}{l!} \frac{n(n-1)...n(n-k+1)}{n^k} = \frac{1}{k!} \frac{n}{n} \frac{n-1}{n} ... \frac{n-k+1}{n} \frac{1}{k!}$$

Weiter gilt
$$\forall K \geq 1$$
 $K! = 1 \cdot 2 \cdot 3 \cdot ... K \geq 2^{k-1}$ $\Rightarrow \frac{1}{K!} \leq \frac{1}{2^k - 1} \quad \forall K \geq 1$

Einsetzen liefert:
$$a_n \leq \sum_{k=0}^n \frac{1}{K!} \leq 1 + \sum_{k=1}^n \frac{1}{2^{k-1}}$$
 Setze i=k-1 $\Rightarrow a_n \leq 1 + \sum_{i=0}^{n-1} \frac{1}{2^i}$

Formel für die geometrische Summe: $\forall q \neq 1 \quad \forall n \in \mathbb{N}_0$ $\sum_{i=0}^{n} q^i = \sum_{i=0}^{n} (q^i - q^{i+1}) = (q^0 - q^1) + (q^1 - q^2) + (q^2 - q^3) + \dots + (q^n - q^{n+1})$ $= q^0 - q^{n+1} = 1 - q^{n+1} \quad \square$ Teleskopsumme

Ansending:
$$a_n \leq 1 + \sum_{i=0}^{n-1} \frac{1}{2^i} = 1 + \frac{1-(\frac{1}{2})^n}{1-\frac{1}{2}} \leq 1 + \frac{1}{\frac{1}{2}} = 3 \quad \forall n$$

$$\Rightarrow (a_n) \text{ ist beschränze und monoton wachsend, also konvergent.} \qquad 7$$

Numerische Berechnungen ergeben a₁₀₀ = 2.70481 Mandonie und unser dere Schranke lieken: a₁₀₀ < an < 3 Yn > 100

Sate 3.10
$$\Rightarrow$$
 e=lin an $\in [a_{100}, 3] \Rightarrow e \in [2.7, 3]$

Bsp.3.15: Harmonische Zahlen

Bsp 3/5: Harmonische Zahlen

$$H_{n} = \frac{1}{2} \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{4}$$
, $n \in \mathbb{N}$.

 $C_n = \frac{1}{2} \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{4}$, $n \in \mathbb{N}$.

 $C_n = \frac{1}{2} \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1$

Da $(H_n)_n$ monoton wächst, $H_n \ge 1 + \frac{\lfloor \log_2 n \rfloor}{2} \quad \forall n \in \mathbb{N}$, wobei $\lfloor x \rfloor$ =größte ganze Zahl \le x, z.B. $\lfloor 1, 3 \rfloor = 1$

 $(H_n)_{n\in\mathbb{N}}$ ist monoton wachsend und wegen (*) unbeschränkt. Satz 3.13 liefert $\lim_{n\to\infty}H_n=\infty$

Die Divergenz ist sehr langsam. Man kann zeigen $minn: H_n \geq 100 \approx 1.5 \cdot 10^43$