Лекция 12 по курсу «Цифровая обработка сигналов» 21 апреля 2025 г.

7.3. Субдискретизация полосовых радиосигналов.

- Перенос спектра между зонами Найквиста при субдискретизации.
- Случай целочисленных полос.
- Случай нецелочисленных полос.

7.3. Субдискретизация полосовых радиосигналов.

Рассмотрим действительный полосовой сигнал со спектром, изображенным на рисунке.

- Компонента $X_+(f)$ носит название прямого спектра, а компонента $X_-(f)$ инверсного.
- Для узкополосных радиосигналов ($f_0 \gg f_e$) существуют методы дискретизации с частотой $f_{_{\rm I\! I}} < 2 (f_0 + f_e)$, позволяющие сохранить информацию, необходимую для восстановления исходного сигнала.

• Одним из таких методов является субдискретизация (англ. undersampling). Субдискретизация заключается в том, что частота дискретизации f_{π} выбирается такой, периодическое повторение копий прямого и инверсного спектра исходного сигнала происходит без их перекрытия. При этом эффект наложения не приводит к искажению информации о спектре исходного сигнала.

Пример. Полосовой радиосигнал $f_0=35\,\mathrm{k}\Gamma$ ц, $f_0\gg 2f_e$, $2f_e=9,5\,\mathrm{k}\Gamma$ ц. может быть дискретизован с частотой дискретизации $f_{\mathrm{д}}=20\,\mathrm{k}\Gamma$ ц без перекрытия отдельных копий спектра.

По теореме отсчетов требуется $f_{\pi} \ge 2(f_0 + f_e) = 79,5 \text{ к} \Gamma \text{ц}.$

Перенос спектра между зонами Найквиста при субдискретизации

При правильной субдискретизации на частотных диапазонах от $-f_{\rm д}/2$ до 0 и от $f_{\rm g}/2$ до 0 будут находится копии прямого и инверсного спектра в порядке, зависящем от зоны Найквиста.

На рис. А представлен случай, когда полоса подлежащего дискретизации сигнала ограничена первой зоной Найквиста, а в остальных зонах имеются боковые (отражённые) частотные компоненты (периодическое повторение спектра, вызванное дискретизацией). Это соответствует дискретизации в соответствии с теоремой отсчетов.

На рис. Б представлен случай, когда полоса подлежащего дискретизации сигнала полностью находится во второй зоне Найквиста. Его изображение будет появляться в первой зоне Найквиста, потому что перенос спектра всегда сопутствует процессу дискретизации. Следует отметить, что смещенная полоса в первую зону Найквиста содержит всю информацию о спектре исходного сигнала, только порядок частотных компонентов в спектре обратный.

На рис. В показан вариант подлежащего дискретизации сигнала, ограниченного третьей зоной Найквиста. Здесь отражение в первую зону происходит без обращения частот. Фактически полосы подлежащих дискретизации сигналов могут лежать в любой зоне Найквиста, а отражения в первую зону является точным представлением спектра сигнала (за исключением обращения частот, которое происходит, когда спектры сигналов распложены в четных зонах).

Случай целочисленных полос

Рассмотрим для субдискретизации ограничения на выбор частоты $f_{\scriptscriptstyle \Pi}$. Если граничные частоты спектра f_0-f_e и f_0+f_e кратны его ширине $2f_{\rm g}$, т. е. если

$$f_0 - f_{\ell} = m(2f_{\ell}), \quad m = 0, 1, 2, ...,$$
 (1)

то минимальную частоту дискретизации можно взять равной $f_{\pi \min} = 4f_{e}$.

Число m показывает, сколько переносов прямого спектра нужно совершить, чтобы точка $f_0 - f_e$ попала в начало координат.

Такая плотная упаковка отображений спектров $X_{+}(f)$ и $X_{-}(f)$ практически может быть использована при условии, что компоненты $X_{+}\big(f\big)$ и $X_{-}(f)$ строго финитные функции. В этом случае эффект наложения частичных спектров друг на друга будет отсутствовать. Этот метод дискретизации Цифровая обработка сигналов, МФТИ, 2024-2025 учебный год

называется ещё полосовой дискретизацией с недостаточной выборкой для целочисленных полос. **Пример.** На рисунке *а)* показано устройство предварительной обработки данных приёмника многоканальной системы связи. $2f_e = f_{\pi}/2 = 50 \ \mathrm{k}\Gamma\mathrm{ц}$.

Спектр принимаемого сигнала показан на рисунке б) с указанием номеров каналов. Для выделения сигнала в нужном канале перед дискретизацией с наименьшей возможной частотой служит полосовой фильтр. АЧХ идеального фильтра представлена на рисунке ниже.

Случай нецелочисленных полос

- Плотная упаковка отображений спектров $X_+(f)$ и $X_-(f)$ возможна, если компоненты $X_+(f)$ и $X_-(f)$ строго финитные функции и выполняется условие (1) для целочисленных полос.
- В общем случае компоненты $X_+(f)$ и $X_-(f)$ имеют «хвосты» и нецелочисленные полосы.

Для нахождения частоты дискретизации $f_{\rm д}$ необходимо использовать условие, что m и m+1 переносов $X_{-}(f)$ не дают пересечений с $X_{+}(f)$:

$$-f_{0} + f_{\varepsilon} + m f_{\pi} \le f_{0} - f_{\varepsilon},$$

$$-f_{0} - f_{\varepsilon} + (m+1) f_{\pi} \ge f_{0} + f_{\varepsilon}.$$
(2)

Из (2) получаем

$$mf_{\pi} \le 2(f_0 - f_e), \qquad (m+1)f_{\pi} \ge 2(f_0 + f_e)$$
 (3)

или

$$\frac{2(f_0 + f_e)}{m+1} \le f_{\pi} \le \frac{2(f_0 - f_e)}{m}.$$
 (4)

Из (4) субдискретизация возможна, если

$$\frac{\left(f_0+f_{\scriptscriptstyle \theta}\right)}{m+1} \le \frac{f_0-f_{\scriptscriptstyle \theta}}{m},$$

т. е.

$$m \le \frac{f_0 - f_{\mathcal{B}}}{2f_{\mathcal{B}}}.\tag{5}$$

Число m называется порядком субдискретизации. Поскольку общая протяженность спектра $X_-(f)$ и $X_+(f)$ равна $4f_{\it e}$, то при отсутствии перекрытий должно быть выполнено неравенство

$$f_{\pi} \ge 4f_{\varepsilon}. \tag{6}$$

Запишем формулу (4) в виде

$$\frac{f_0}{f_e} + 1 < \frac{f_{\pi}}{2f_e} < \frac{f_0}{f_e} - 1$$

$$(7)$$

В соответствии с (7) допустимый диапазон выбора $f_{\scriptscriptstyle
m I}$ на

графике с осями $\frac{f_0}{f_e}$ и $\frac{f_{\rm I\!I}}{2f_e}$ будет находиться справа от

прямой
$$\frac{f_{\mathrm{II}}}{2f_{\mathrm{e}}} = \frac{1}{m+1} \left(\frac{f_0}{f_{\mathrm{e}}} + 1 \right)$$
 и слева от $\frac{f_{\mathrm{II}}}{2f_{\mathrm{e}}} = \frac{1}{m} \left(\frac{f_0}{f_{\mathrm{e}}} - 1 \right)$.

Примечание. Если выбрать частоту дискретизации равной $f_{\rm L} = \frac{4f_0}{2m+1}$, то эти значения отвечают биссектрисам зон

$$\frac{f_{\mathrm{I}}}{2f_{\mathrm{B}}} = \frac{f_0}{f_{\mathrm{B}}} \cdot \frac{2}{2m+1} .$$

Если $X_+(f)$ и $X_-(f)$ имеют симметричную форму, то при этих частотах дискретизации эффект наложения частичных спектров будет минимальным, т.е. обеспечивается центрирование спектра сигнала в полосе Найквиста.

Диапазоны выбора частоты дискретизации

Простой способ построения данной диаграммы заключается в следующем. Отмечаются точки с координатами (1; 2), (3; 2), (5; 2), (7; 2) и т.д. Эти точки соединяются прямыми с точками (0; -1) и (0; 1). Между этими прямыми и будут находиться зоны для выбора частоты дискретизации при различных f_0 и m.

Пример. Рассмотрим полосовой радиосигнал с прямоугольным спектром, у которого $2f_e=4.8~\mathrm{kTu}$ и $f_0=102,44~\mathrm{kTu}$. Минимальная частота дискретизации, выбираемая по теореме отсчетов, должна быть

$$f_{\text{л}} = 2(f_0 + f_e) = 209,680 \text{ к}$$
Гц

Из условия

$$m \le \frac{f_0 - f_{\theta}}{2f_{\theta}}.$$

находим для порядка субдискретизации: m < 20,84. Выберем m = 20, тогда

$$rac{2(f_0 + f_{\scriptscriptstyle B})}{m+1} \le f_{\scriptscriptstyle \Pi} \le rac{2(f_0 - f_{\scriptscriptstyle B})}{m},$$
9984,76 Гц < $f_{\scriptscriptstyle \Pi}$ < 10004 кГц.

Частота дискретизации может быть взята равной, например, $f_{\rm д}=10~{\rm k}\Gamma{\rm ц},\,$ что на порядок меньше требуемой по теореме отсчетов. Одинаковые зазоры между копиями спектра (центрирование в зоне Найквиста) будут при выборе

$$f_{\mathrm{II}} = \frac{4f_0}{2m+1} = 9994,14$$
 Гц.

а) Спектр полосового сигнала, б) спектр после дискретизации в соответствии с теоремой отсчетов, в) спектр после субдискретизации.

Пример. Спектр X(f) некоторого полосового сигнала x(t) изображен на рисунке ниже, f_0 — несущая частота, $f_0\gg 2f_e$, $2f_e=9,5$ к Γ ц.

Изобразить спектр сигнала после субдискретизации с наименьшей возможной частотой f_{π} , обеспечивающей центрирование субдискретизуемого сигнала в полосе Найквиста для случаев: а) $f_0 = 45 \ \mathrm{k}\Gamma\mathrm{L}$, б) $f_0 = 35 \ \mathrm{k}\Gamma\mathrm{L}$.

Решение для случая a) $f_0=45~\mathrm{k}\Gamma\mathrm{ц}$.

Границы выбора частоты дискретизации определяются неравенством

$$\frac{2(f_0 + f_g)}{m+1} < f_{\pi} < \frac{2(f_0 - f_g)}{m}.$$

где m — порядок субдискретизации.

 $f_{\scriptscriptstyle
m I}$ может быть выбрана в соответствии с этим неравенством при условии

$$m < \frac{f_0 - f_{\theta}}{2f_{\theta}},$$

откуда m < 4,24.

Порядок субдискретизации является натуральным числом, а значит максимально возможный порядок субдискретизации равен m=4.

Для этого порядка субдискретизации условия выбора $f_{_{\rm I\! I}}$ 19,9 к Γ ц < $f_{_{
m I\! I}}$ < 20,125 к Γ ц.

Отметим, что при дискретизации в соответствии с теоремой отсчетов потребовалось бы выбрать

$$f_{_{\rm I\!I}} \ge 2(f_0 + f_{_{\theta}}) = 99,5 \,\mathrm{к}\Gamma$$
ц

Область допустимых значений $f_{\scriptscriptstyle
m I}$

$$\frac{2(f_0 + f_e)}{m+1} < f_{\pi} < \frac{2(f_0 - f_e)}{m}.$$

для каждого порядка m может быть описана диаграммой, где случай центрирования субдискретизуемого сигнала в полосе Найквиста отвечает попаданием на биссектрису зоны выбора f_π :

$$f_{\text{д}} = \frac{4f_0}{2m+1} = 20 \text{ к}\Gamma$$
ц.

Цвета на диаграмме соответствуют разным значениям m.

Построим график спектра сигнала после его дискретизации с частотой $f_\pi = 20 \ \mathrm{k}\Gamma$ ц.

Правильный выбор частоты субдискретизации позволяет избежать (для реального сигнала — минимизировать) перекрытия отдельных копий спектра.

Порядок субдискретизации m=4 означает, что прямой спектр сигнала и его несущая частота находятся в пятой зоне Найквиста (на рисунке обозначен как канал 4).

На частотах от 0 до $f_{\rm д}$ / 2 находится копия прямого спектра $X_+(f)$.

При $f_{\rm д} = 20~{\rm к}\Gamma{\rm ц}$ копии прямого и инверсного спектра оказываются центрованным в полосе Найквиста (между копиями одинаковые зазоры), что позволяет для реального сигнала минимизировать перекрытие неизбежно возникающих хвостов спектра вблизи границы полосы.

Решение для случая б) $f_0 = 35 \ {\rm K} \Gamma {\rm H}$.

В соответствии с условием

$$m < \frac{f_0 - f_{\theta}}{2f_{\theta}},$$

находим, что m < 3,19.

Наибольший возможный порядок субдискретизации m=3.

Наименьшая частота дискретизации, обеспечивающая центрирование субдискретизуемого сигнала в полосе Найквиста, равна

$$f_{\text{д}} = \frac{4f_0}{2m+1} = 20 \text{ к}\Gamma$$
ц.

То, что порядок субдискретизации m=3 является нечетным, означает, что частотах от 0 до $f_{_{\rm I\! I}}/2$ находится копия инверсного спектра $X_-(f)$, а на частотах от $-f_{_{\rm I\! I}}/2$ до 0 — копия прямого спектра $X_+(f)$.

Отметим, что при дискретизации в соответствии с теоремой отсчетов потребовалось бы выбрать

$$f_{_{\rm I\!I}} \ge 2(f_0 + f_{_{\it G}}) = 79,5 \,$$
к Γ ц.

Задачи для самостоятельного решения

Nº1. Для полосового сигнала FM-радио с шириной полосы $2f_{\rm g}=20~{
m M}\Gamma_{
m II}$ и несущей частотой $f_0=98~{
m M}\Gamma_{
m II}$, определить: а) минимальную частоту дискретизации в соответствии с теоремой отсчетов,

- б) максимально возможный порядок субдискретизации mи границы для выбора частоты дискретизации для него.
- **№2.** На рисунке изображён модуль спектральной плотности узкополосного сигнала. Пусть полоса $B = f_2 f_1 = 10$ кГц и сигнал дискретизуется с частотой $f_\pi = 2B$. $f_3 = (f_1 + f_2)/2$.

Изобразить, когда это возможно, модуль спектральной плотности дискретизованного сигнала в диапазоне $[-f_2;f_2]$ для случая: a) f_2 / B = 3, б) f_2 / B = 4, в) f_2 / B = 4,5. Обосновать результаты.

№3. На рисунке изображен модуль спектральной плотности непрерывного полосового сигнала, $2f_e = 5~{
m M}\Gamma$ ц, $f_0 = 20~{
m M}\Gamma$ ц.

Изобразить, когда это возможно, модуль спектральной плотности дискретизованного сигнала для значений частоты дискретизации $f_{\scriptscriptstyle \Pi}$:

$$f_{\rm д1}$$
=22,5 МГц; $f_{\rm д2}$ =17,5 МГц; $f_{\rm д3}$ =15 МГц; $f_{\rm д4}$ =11,25 МГц; $f_{\rm д5}$ =7,5 МГц .

Обосновать выбор минимальной частоты дискретизации, при которой нет перекрытия отдельных копий прямого и инверсного спектра.

Nº4. Спектр X(f) некоторого полосового радиосигнала x(t) изображен на рисунке ниже, f_0 — несущая частота, $f_0\gg 2f_{\rm g}$, $2f_{\rm g}=4.5~{\rm k}\Gamma{\rm II}$, $f_0=32.5~{\rm k}\Gamma{\rm II}$.

Изобразить по модулю спектр сигнала после субдискретизации с наименьшей возможной частотой $f_{\scriptscriptstyle \rm I\!\! I}$, обеспечивающей центрирование спектра субдискретизуемого сигнала в полосе Найквиста.

№5. Показать, что спектр действительного цифрового сигнала x[k] можно инвертировать

$$Y(v) = X(v - 0.5)$$

путем изменения знака каждого второго отсчета сигнала $\mathit{x}[\mathit{k}\,]$

$$y[k] = (-1)^k x[k], k = 0,1,2,...$$

Примечание. На рисунке ниже представлен пример инверсии спектра для последовательности $x[k] = \cos(2\pi v_0 k), v_0 = 1/8, 0 \le k < 16.$

Перечень контрольных вопросов по разделу 7 «Методы преобразования узкополосных радиосигналов из аналоговой формы в цифровую» для подготовки к экзамену.

- 1. За счет чего при квадратурной дискретизации узкополосного радиосигнала требуемая частота дискретизации существенно ниже, чем необходимая по теореме отсчетов?
- 2. Как связаны спектр полосового радиосигнала и спектр аналитического сигнала?
- 3. Какое условие на выбор частоты дискретизации должно быть выполнено, чтобы дискретизация аналитического сигнала для полосового радиосигнала происходила без перекрытия отдельных копий спектра?
- 4. В чем заключается субдискретизация полосового радиосигнала?
- 5. Получите условия на выбор частоты дискретизации для реализации субдискретизации.

Список литературы

- [1] Романюк Ю.А. Основы цифровой обработки сигналов. Учебное пособие. Часть 1. М.: МФТИ, 2007.
 - 2.8 «Дискретизация полосовых радиосигналов».
- [2] Кестер У. Проектирование систем цифровой и смешанной обработки сигналов. М.: Техносфера. 2010.
- [3] Макс Ж. и др. Методы и техника обработки сигналов при физических измерениях: В 2-х т.: Пер. с фр. Мир, 1983. Т. 1. С. 312.

(см. 7.8 «Субдискретизация. Обобщение теоремы Шеннона», материал изложен на основе работы «Fauque J. M. et al. Analyse spectrale par correlation. — 1969.)

[4] Д.Ю. Бобров, А.П. Доброжанский, Г.В. Зайцев и др. Цифровая обработка сигналов в многофункциональных РЛС // Цифровая обработка сигналов. №4 2001, №1 2002, № 2 2002.

см. http://www.dspa.ru/articlies/allart.php#artdev2

Информация о контрольной работе №4

28 апреля 2025 г. в часы лекции в 115 КПМ будет письменная контрольная работа №4 по материалам лекций блока 4 "Многоскоростная обработка сигналов, методы преобразования узкополосных радиосигналов из аналоговой формы в цифровую" (лекции с 31 марта 2025 г. по 21 апреля 2025 г.).

Примерное содержание варианта контрольной работы.

Задача №1.	Многоскоростная обработка сигналов.
Задача №2.	Дискретизация аналитического сигнала.
	Квадратурная дискретизация.
Задача №3.	Субдискретизация полосовых радиосигналов.

- На контрольной работе запрещается:
 - а) общаться, в т.ч. онлайн, включать мессенджер (даже на соседней вкладке),
 - б) фотографировать (вариант, решение),
 - в) использовать фотографии решений,
 - г) передавать однокурсникам вариант, или что-либо, касающееся решений и доп. материалов,

При нарушении этих правил контрольная работа оценивается в 1 балл из 10 (явка).

- При опоздании на контрольную работу дополнительное время не добавляется.
- Необходимо подписать вариант и все листы решения.
- Правило оценки: каждая задача оценивается от 0 до 3 баллов. Дополнительный балл выставляется при условиях, что к оформлению работы отсутствуют какиелибо замечания, и минимум две задачи оценены в полный балл. Контрольная работа оценивается от 1 до 10 баллов.
- Основные требования к оформлению графиков.
 - о Все оси графиков должны быть подписаны.
 - о На графиках должна присутствовать шкала.
 - Для размерных численных значений (частоты, времени) должна быть указана единица измерений.
 - Не допускается указывать для дельта-функции «значение в точке» вместо веса.