Analyse - TD3

Lucie Le Briquer

5 octobre 2017

Exercice 1 - Applications du théorème de Stone-Weierstrass

- 1. Soit K un compact de \mathbb{R}^d . Soit $\mathcal{A} = \{\text{fonctions polynômes à } d \text{ variables}\}$. \mathcal{A} est bien une sous-algèbre unitaire séparante puisque :
 - sev de $\mathcal{C}(K)$
 - stabilité par multiplication
 - contient 1
 - séparante car si $x \neq y$, $\exists i \in [1, d]$ tel que $x_i \neq y_i$. En prenant $P(X_1, ..., X_d) = X_i$, on a bien $P(x) \neq P(y)$

Donc par Stone-Weierstrass, \mathcal{A} est denses dans $\mathcal{C}(K)$.

2. Soit K un espace métrique compact. K est donc séparable. On peut alors considérer une partie dénombrable dense $X=(x_n)_{n\in\mathbb{N}}$. Soit $\theta_n:x\mapsto d(x,x_n)$. Posons :

$$\mathcal{A}_{\mathbb{R}} = \bigcup_{k=1}^{+\infty} \left\{ P(\theta_1, ... \theta_k) \mid P \in \mathbb{R}[X_1, ..., X_k] \right\}$$

$$\mathcal{A}_{\mathbb{Q}} = \bigcup_{k=1}^{+\infty} \left\{ P(\theta_1, ... \theta_k) \mid P \in \mathbb{Q}[X_1, ..., X_k] \right\}$$

On prend les coefficients dans \mathbb{Q} pour avoir la dénombrabilité de $\mathcal{A}_{\mathbb{Q}}$. Montrons que $\mathcal{A}_{\mathbb{R}}$ est dense par Stone-Weierstrass.

Soit $x,y\in K,\ x\neq y,$ donc d=d(x,y)>0. Par densité, on dispose de x_n tel que $\theta_n(x)=d(x,x_n)<\frac{d}{3}.$ On va montrer que $\theta_n(y)>\frac{d}{3}.$

$$d(x,y) \le d(x,x_n) + d(y,y_n) = \theta_n(x) + d(y,y_n) \implies d(y,y_n) \ge d(x,y) - d(x,x_n) > \frac{2d}{3} > \frac{d}{3}$$

Donc $\theta_n(x) \neq \theta_n(y)$. Alors par Stone-Weierstrass, $\mathcal{A}_{\mathbb{R}}$ est dense dans $\mathcal{C}(K)$. Or $\mathcal{A}_{\mathbb{Q}}$ est dense dans $\mathcal{A}_{\mathbb{R}}$ don dans $\mathcal{C}(K)$. Finalement, $\mathcal{A}_{\mathbb{Q}}$ est une partie dénombrable dense de $\mathcal{C}(K)$ donc $\mathcal{C}(K)$ est séparable.

Exercice 2 - Convolution et régularisation

1. $\alpha * f(x) = \int_{\mathbb{R}^d} f(x - y)\alpha(y)dy$

$$\int |f(x-y)||\alpha(y)|dy \le \int ||f||_{\infty}|\alpha(y)|dy < +\infty$$

Donc $\forall x \in \mathbb{R}^d$, $\alpha * f(x)$ est bien définie.

Soit (α_n) une approxmation de l'unité :

$$\begin{cases} \alpha_n \ge 0 \\ \int \alpha_n = 1 \\ \int_{|y| < \delta} \alpha_n(y) dy \xrightarrow[n \longrightarrow +\infty]{} 0 \end{cases}$$

Soit K un compact.

$$|\alpha_n * f(x) - f(x)| = \left| \int_{\mathbb{R}^d} f(x - y) \alpha_n(y) dy \int_{\mathbb{R}^d} f(x) \alpha_n(y) dy \right|$$

$$\leq \int_{\mathbb{R}^d} |f(x - y) - f(x)| \alpha_n(y) dy$$

$$\leq \underbrace{\int_{|y| < \delta} |f(x - y) - f(x)| \alpha_n(y) dy}_{(1)} + \underbrace{\int_{|y| \ge \delta} |f(x - y) - f(x)| \alpha_n(y) dy}_{(2)}$$

- Pour (2), $\leq 2||f||_{\infty} \int_{|y| \geq \delta \alpha_n(y) dy} \xrightarrow[n \to +\infty]{} 0$.
- Pour (1), K compact donc $K_{\delta}\{x \in \mathbb{R}^d \mid d(x,K) \leq \delta\}$ est compact et $\exists R > 0$ tel que $K \subset \mathcal{B}(0,R)$. Donc si $\delta > 0$ suffisamment petit pour que $K_{\delta} \subset \overline{\mathcal{B}(0,R)}$. f uniformément continue sur $\overline{\mathcal{B}(0,R)}$. Donc si $\varepsilon > 0$, $\exists \eta > 0$ associé à l'uniforme continuité.

Soit K compact, $K \subset \overline{\mathcal{B}(0,R)}$, $\varepsilon > 0$, δ associé à l'uniforme continuité de f sur $\mathcal{B}(0,R)$. On reprend la majoration :

$$(1) \le \varepsilon \int_{|y| < \delta} \alpha_n(y) dy \le \varepsilon$$

(indépendamment de $x \in K$) Donc $\alpha_n * f \xrightarrow[n \to +\infty]{} f$ uniformément sur K.

2. $\alpha \in \mathcal{C}^1_c(\mathbb{R}^d)$ (à support compact). Montrons que $\alpha * f \in \mathcal{C}^1(\mathbb{R}^d)$. Soit $x \in \mathbb{R}^d$.

$$\alpha * f(x) = \int_{\mathbb{R}^d} f(x-y)\alpha(y)dy$$
 on pose $z = x-y$

$$= \int_{\mathbb{R}^d} f(z)\alpha(x-z)dz$$
 pas de changement de signe |jacobien|

Comme:

$$-z \mapsto f(z)\alpha(x-z)$$
 mesurable

$$-x \mapsto f(z)\alpha(x-z) \mathcal{C}^1$$

- soit $x \in K$ compact de \mathbb{R}^d , $\exists K'$ compact tel que $\forall x \in K$, $\forall z \in \text{supp}(\alpha)$ $x - z \in K'$. Soit $i \in [1, d]$,

$$|f(z)\partial_i \alpha(x-z)| \leq ||f||_{\infty} ||\partial_i \alpha||_{\infty,K'} \mathbb{1}_{z \in \text{supp}(\alpha)}$$
 intégrable sur \mathbb{R}^d

Donc par théorème de dérivation sous le signe $\int \alpha * \mathcal{C}^1$ et $\partial_i(\alpha * f) = \partial_i \alpha * f$.

Exercice 4 - Preuve du théorème de Cauchy-Peano-Arzela, version autonome

Remarque. (existence de tels (ρ_n)) En prenant $\varphi(x) = \exp\left(\frac{-1}{1-|x|^2}\right)$ sur $\mathcal{B}(0,1)$ et 0 ailleurs. $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}^d)$. En prenant $\rho = \frac{\varphi}{\int \varphi}$ on a bien $\int \rho = 1$. On pose alors $\rho_n(x) = n^d \rho(nx)$.

1. Soit $n \in \mathbb{N}$.

$$\begin{cases} x_n'(t) = (f * \rho_n)(x_n(t)) \\ x_n(0) = x^0 \end{cases}$$
 (1)

Montrons que $f * \rho_n$ est localement lipschitzienne. C'est bien le cas car $f * \rho_n$ est C^{∞} (donc dérivée bornée localement + TAF). Donc par Cauchy-Lipschitz, il existe une unique solution locale à (1).

Pourquoi cette solution est-elle globale?

Si la solution maximale est définie sur $[0,b[,\,b< T]$. Alors le théorème de sortie de tout compact nous assure que $x_n(t) \xrightarrow[t \to b]{} +\infty$.

Montrons que ce cas n'est pas possible en montrant que la dérivée est bornée :

$$(f * \rho_n)(x) = f * \rho_n(x) = \int_{\mathbb{R}^d} f(x - y)\rho_n(y)dy$$

Donc:

$$||f * \rho_n|| \le ||f||_{\infty} ||\rho_n||_1 \le ||f||_{\infty}$$

Par les accroissements finis:

$$|x_n(t) - x_n(0)| \le ||x_n'||_{\infty} t \le ||f||_{\infty} t \xrightarrow[t \to b]{} ||f||_{\infty} b$$

Ce qui contredit le théorème de sortie de tout compact. Alors x_n est bien définie sur [0,T].

- 2. $\forall n \in \mathbb{N}, \ x_n \in \mathcal{C}([0,T], \mathbb{R}^d).$
 - Chaque x_n est lipschitzienne de constante $||f||_{\infty}$. En particulier, $(x_n)_{n\in\mathbb{N}}$ sont uniformément équicontinues.
 - Comme précédemment, on montre que $\forall t \in [0,T], |x_n(t) x_0| \leq ||f||_{\infty} t \leq ||f||_{\infty} T$.

Donc par Ascoli on extrait de (x_n) :

$$x_{\psi(n)} \xrightarrow[n \longrightarrow +\infty]{} x \in \mathcal{C}([0,T], \mathbb{R}^d)$$

- 3. Montrons que x est solution du problème sur [0,T]. Pour l'instant, on sait que :
 - $x_{\psi(n)} \xrightarrow[n \to +\infty]{} x$ uniformément sur [0,T]

– $f*\rho_n \xrightarrow[n \longrightarrow +\infty]{} f$ uniformément sur \mathbb{R}^d

$$\forall t \in [0,T] \left\{ \begin{array}{l} x'(t) = f(x(t)) \\ x(0) = x^0 \end{array} \right. \Leftrightarrow \forall t \in [0,T], \ x(t) = x^0 + \int_0^t f(x(s)) ds$$

(on sait que $\forall t \in [0, T], \ x_{\psi(n)}(t) = x^0 + \int_0^t f * \rho_{\psi(n)}(x_{\psi(n)}(s)) ds$)

On veut donc montrer que $f * \rho_{\psi(n)}(x_{\psi(n)}) \xrightarrow[n \longrightarrow +\infty]{} f(x) \in \mathcal{C}([0,T],\mathbb{R}^d)$ uniformément.

$$||f * \rho_{\psi(n)}(x_{\psi(n)})(x_{\psi(n)} - f(x))||_{\infty} \le ||f * \rho_{\psi(n)}(x_{\psi(n)}) - f(x_{\psi(n)})||_{\infty} + ||f(x_{\psi(n)}) - f(x)||_{\infty}$$

Soit $\varepsilon>0,\,\eta$ associé à l'uniforme continuité de f. À partir d'un certain rang N :

$$\left\{ \begin{array}{l} \|f * \rho_{\psi(n)} - f\|_{\infty} < \varepsilon \\ \|x_{\psi(n)} - x\|_{\infty} < \eta \end{array} \right.$$

Donc $\forall n \geq N$,

$$||f * \rho_{\psi(n)}(x_{\psi(n)})(x_{\psi(n)} - f(x))||_{\infty} \le 2\varepsilon$$

Donc $f * \rho_{\psi(n)}(x_{\psi(n)}) \xrightarrow[n \to +\infty]{} f(x)$. D'où :

$$\forall t \in [0, T], \ x(t) = x^0 + \int_0^t f(x(s))ds$$

Exercice 6 - Critère de compacité dans $\mathcal{C}(K)$

Par exemple, $K_j = \{x \in K, |x| \le j, d(x, \Omega^C) \ge \frac{1}{j}\}.$

- 1.
- 2.
- 3.