=> fil reg

FILE 'REGISTRY' ENTERED AT 09:34:40 ON 24 SEP 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ${\tt ZIC/VINITI}$ data file provided by ${\tt InfoChem.}$

STRUCTURE FILE UPDATES: 22 SEP 2008 HIGHEST RN 1051655-89-0 DICTIONARY FILE UPDATES: 22 SEP 2008 HIGHEST RN 1051655-89-0

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH July 5, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> d que stat 124 L13 STR

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
GGCAT IS UNS AT 10
GGCAT IS UNS AT 11
GGCAT IS UNS AT 12
GGCAT IS UNS AT 13
GGCAT IS UNS AT 14
GGCAT IS UNS AT 15
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L14 375 SEA FILE=REGISTRY SSS FUL L13

L15 STR

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM GGCAT IS UNS AT 10 GGCAT IS UNS AT 11 GGCAT IS UNS AΤ 12 GGCAT IS UNS AΤ 13 IS UNS AT GGCAT GGCAT IS UNS AT 15 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L16 (375) SEA FILE=REGISTRY SSS FUL L15 L17 STR

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC 45 34 6 16 10 28 22 NUMBER OF NODES IS 45

STEREO ATTRIBUTES: NONE

L18 185 SEA FILE=REGISTRY SUB=L16 SSS FUL L17

L19 84 SEA FILE=REGISTRY ABB=ON PLU=ON L18 AND NR=7 L20 55 SEA FILE=REGISTRY ABB=ON PLU=ON L19 NOT O/ELS

```
L22
             6 SEA FILE=REGISTRY ABB=ON PLU=ON (104216-55-9/BI OR
               138143-23-4/BI OR 147-14-8/BI OR 185690-41-9/BI OR
               2085-33-8/BI OR 852641-11-3/BI)
L23
             2 SEA FILE=REGISTRY ABB=ON PLU=ON L22 AND L14
            54 SEA FILE=REGISTRY ABB=ON PLU=ON L20 NOT L23
L24
=> d his
     (FILE 'HOME' ENTERED AT 08:57:51 ON 24 SEP 2008)
     FILE 'HCAPLUS' ENTERED AT 08:58:10 ON 24 SEP 2008
               ACT GAR054AN/A
L1
             6) SEA FILE=REGISTRY ABB=ON PLU=ON (104216-55-9/BI OR 1381
L3 (
           375) SEA FILE=REGISTRY SSS FUL L2
L4
               STR
           185) SEA FILE=REGISTRY SUB=L3 SSS FUL L4
L5 (
           180) SEA FILE=REGISTRY ABB=ON PLU=ON L5 NOT M/ELS
L6 (
L7 (
           164) SEA FILE=REGISTRY ABB=ON PLU=ON L6 AND NC=1
            2) SEA FILE=REGISTRY ABB=ON PLU=ON L1 AND L7
L8 (
L9 (
          148) SEA FILE=HCAPLUS ABB=ON PLU=ON L7
           20) SEA FILE=HCAPLUS ABB=ON PLU=ON L8
L10 (
           128 SEA FILE=HCAPLUS ABB=ON PLU=ON L9 NOT L10
L11
              _____
           115 S L11 AND (PY<=2005 OR PRY<=2005 OR AY<=2005)
L12
     FILE 'REGISTRY' ENTERED AT 09:01:45 ON 24 SEP 2008
              ACT GAR052/A
L13
               STR
L14
           375 SEA FILE=REGISTRY SSS FUL L13
               ACT GAR052S1/A
              _____
L15
               STR
L16 (
           375) SEA FILE=REGISTRY SSS FUL L15
L17
               STR
L18
            185 SEA FILE=REGISTRY SUB=L16 SSS FUL L17
L19
            84 S L18 AND NR=7
    FILE 'STNGUIDE' ENTERED AT 09:20:03 ON 24 SEP 2008
     FILE 'STNGUIDE' ENTERED AT 09:28:37 ON 24 SEP 2008
    FILE 'REGISTRY' ENTERED AT 09:29:32 ON 24 SEP 2008
L20
           55 S L19 NOT O/ELS
     FILE 'HCAPLUS' ENTERED AT 09:30:17 ON 24 SEP 2008
               E US20070066848/PN
L21
             1 S E3
               SEL RN
     FILE 'REGISTRY' ENTERED AT 09:30:55 ON 24 SEP 2008
L22
           6 S E1-6
             2 S L22 AND L14
L23
L24
           54 S L20 NOT L23
```

FILE 'HCAPLUS' ENTERED AT 09:31:26 ON 24 SEP 2008

L25 66 S L24

L26 64 S L25 AND (PY<=2005 OR PRY<=2005 OR AY<=2005)

L27 20 S L23

L28 55 S L26 NOT L27

=> fil hcap

FILE 'HCAPLUS' ENTERED AT 09:34:48 ON 24 SEP 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Sep 2008 VOL 149 ISS 13 FILE LAST UPDATED: 23 Sep 2008 (20080923/ED)

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2008.

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d ibib abs hitstr hitind 128 1-55

L28 ANSWER 1 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:1357148 HCAPLUS Full-text

DOCUMENT NUMBER: 146:110888

TITLE: Light-emitting devices with anthracene

derivative-metal oxide composite layers and

electronic appliances using the same

INVENTOR(S): Iwaki, Yuji; Seo, Satoshi; Kawakami, Takahiro;

Ikeda, Hisao; Sakata, Junichiro; Aoyama, Tomoya

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., Japan

SOURCE: U.S. Pat. Appl. Publ., 80 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20060292394	A1	20061228	US 2006-452979	

					15
			<		
JP 2008021665	A	20080131	JP 2006-171076		000606
					200606
			<		21
CN 1885585	А	20061227	CN 2006-10094005		
CIV 1000000	А	20001227	CN 2006-10094005		200606
					22
			<		22
KR 2006134849	Α	20061228	KR 2006-56385		
1000131013	2.5	20001220	1110 2000 30303		200606
					22
			<		
PRIORITY APPLN. INFO.:			JP 2005-181806	Α	
					200506
					22
			<		
			JP 2005-213708	Α	
					200507
					25
			<		
			JP 2006-166291	ΤO	
					200606
					15

Light-emitting devices comprising a first electrode; a second electrode; and a AΒ light-emitting layer formed between the electrodes are described which are provided with a mixed layer, formed between the first electrode and the lightemitting layer, comprising an anthracene derivative and a metal oxide showing an electron accepting property with respect to the anthracene derivative Light-emitting devices are also described which comprise a first electrode; a second electrode; n (n \geq 2) light-emitting layers formed between the first electrode and the second electrode; and a first mixed layer formed between an m-th light-emitting layer ($1 \le m \le n-1$) and an (m+1)-th light-emitting layer; and a second mixed layer formed between the m-th light emiting layer and the (m+1)-th light emitting layer, the first mixed layer being closer to the first electrode than the second electrode and containing a substance having an electron transporting property or a bipolar substance and a substance selected from alkaline earth metals, alkali metal oxides, alkaline earth metal oxides, alkali metal fluorides, and alkaline earth metal fluorides and the second mixed layer contains an an anthracene derivative and a metal oxide showing an electron accepting property with respect to the anthracene derivative The light-emitting devices may further comprise a hole-transporting layer formed between the mixed layer and the light-emitting layer. Electronic appliances comprising the light-emitting devices are also described.

IT 168091-66-5

RL: TEM (Technical or engineered material use); USES (Uses) (hole-transporting material; light-emitting devices with anthracene derivative-metal oxide composite layers and electronic appliances using them)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

INCL 428690000; 428917000; 313504000; 313506000; 257-E51.049

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 76

IT 65181-78-4, 4,4'-Bis[N-(3-methylphenyl)-N-phenylamino]biphenyl 123847-85-8, 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl 139092-78-7, 4,4',4''-Tris(N-carbazolyl)triphenylamine 168091-66-5 787640-67-9 913655-59-1

RL: TEM (Technical or engineered material use); USES (Uses) (hole-transporting material; light-emitting devices with anthracene derivative-metal oxide composite layers and electronic appliances using them)

L28 ANSWER 2 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:1338929 HCAPLUS Full-text

DOCUMENT NUMBER: 146:71614

TITLE: Light-emitting element, light-emitting device,

and electronic device $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}$

INVENTOR(S): Sakata, Junichiro; Ikeda, Hisao; Aoyama, Tomoya;

Kawakami, Takahiro; Iwaki, Yuji; Seo, Satoshi

PATENT ASSIGNEE(S): Japan

SOURCE: U.S. Pat. Appl. Publ., 31pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20060284189	A1	20061221	US 2006-448124	
				200606
				07
			<	
JP 2007019489	A	20070125	JP 2006-159754	
				200606
				08
			<	
PRIORITY APPLN. INFO.:			JP 2005-167620	A
				200506
				08
			<	

AB Light-emitting elements which comprise a light-emitting layer including a green light-emitting substance (e.g., coumarin 6) between a first electrode

and a second electrode, and a mixed layer including a hole-transporting substance and a metal oxide having an electron-accepting property (relative to to the hole-transporting substance) between the first electrode and the second electrode; are described in which the mixed layer is in contact with the first electrode and has a thickness of 120-180 nm, and the light-emitting substance emits light when a voltage is applied between the first electrode and the second electrode such that a potential of the first electrode becomes higher than a potential of the second electrode. Displays with the element as pixels and electronic devices using the displays are also described. The mixed layers allow for simple adjustment of optical path length between the light-emitting layer and an output electrode.

IT 168091-66-5

RL: TEM (Technical or engineered material use); USES (Uses) (electroluminescent devices with mixed metal oxide-hole-transporting material layers and displays using them and electronic devices using the displays)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

INCL 257079000

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 74, 76

IT 1313-27-5, Molybdenum oxide, uses 2085-33-8, Tris(8-hydroxyquinolinato)aluminum 38215-36-0, Coumarin 6 65181-78-4, 4,4'-Bis[N-(3-methylphenyl)-N-phenylamino]biphenyl 123847-85-8, 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl 139092-78-7, 4,4',4''-Tris(N-carbazolyl)triphenylamine 168091-66-5 199121-98-7

RL: TEM (Technical or engineered material use); USES (Uses) (electroluminescent devices with mixed metal oxide-hole-transporting material layers and displays using them and electronic devices using the displays)

L28 ANSWER 3 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:1228232 HCAPLUS Full-text

DOCUMENT NUMBER: 146:16044

TITLE: Light emitting device and electronic appliance

using the same

INVENTOR(S): Ohsawa, Nobuharu; Inoue, Hideko; Seo, Satoshi;

Shitagaki, Satoko

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., Japan

SOURCE: U.S. Pat. Appl. Publ., 49pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE 	APPLICATION NO.	DATE
US 20060263636	A1	20061123	US 2006-431648	200605 09
JP 2006352102	А	20061228	< JP 2006-138952	200605 18
CN 1866576	А	20061122	< CN 2006-10084751	200605 19
PRIORITY APPLN. INFO.:			< JP 2005-148777	A 200505 20
			/	

I

OTHER SOURCE(S): MARPAT 146:16044

GΙ

AB A light emitting device is described comprising a light emitting layer between a first electrode and a second electrode; a hole transporting layer between the first electrode and the light emitting layer wherein the hole transporting layer contacts with the light emitting layer; an electron transporting layer between the second electrode and the light emitting layer wherein the electron transporting layer contacts with the light emitting layer; and a mixed layer between the electron transporting layer and the second electrode wherein the mixed layer includes an electron transporting substance and a substance showing an electron donating property with respect to the electron transporting substance, wherein the light emitting layer includes an organometallic complex represented by the general formula I and a host, wherein R1 and R2 each represent an electron-withdrawing group, R3 and R4 each represent any one of hydrogen or an alkyl group having 1 to 4 carbon atoms, L represents a monoanionic ligand.

IT 168091-66-5

RL: TEM (Technical or engineered material use); USES (Uses) (hole transporting layer; light emitting device using

organometallic complex and electronic appliance using same)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

INCL 428690000; 428917000; 313504000; 313506000; 257-E51.044

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 76, 78

IT 65181-78-4, 4,4'-Bis[N-(3-methylphenyl)-N-phenylamino]biphenyl 139092-78-7, 4,4',4''-Tris(N-carbazolyl) triphenylamine 168091-66-5

RL: TEM (Technical or engineered material use); USES (Uses) (hole transporting layer; light emitting device using organometallic complex and electronic appliance using same)

L28 ANSWER 4 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:1156032 HCAPLUS Full-text

DOCUMENT NUMBER: 145:480151

TITLE: Light emitting element with a mixed layer

including an aromatic hydrocarbon and a metal oxide, light emitting device, and electronic

device

INVENTOR(S): Iwaki, Yuji; Seo, Satoshi; Kawakami, Takahiro;

Ikeda, Hisao; Sakata, Junichiro

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., Japan

SOURCE: PCT Int. Appl., 79pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
WO 2006115232	A1	20061102	WO 2006-JP308481	200604		
N. 35 36 31	7.M 7.H	, , , , , , , , , , , , , , , , , , ,	<	17		

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK,

```
MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
            RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
            UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
             IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR,
            BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
            TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
            ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
                               20061130
                                          JP 2006-113439
    JP 2006324650
                         Α
                                                                  200604
                                                                  17
                                                <--
    KR 2008005441 A
                               20080111
                                           KR 2007-727093
                                                                  200711
                                                                  21
                                                <--
    CN 101203968
                        A
                               20080618
                                           CN 2006-80022551
                                                                  200712
                                                                  21
                                                <--
PRIORITY APPLN. INFO.:
                                           JP 2005-124296
                                                               Α
                                                                  200504
                                                                  21
                                                <--
                                           WO 2006-JP308481
                                                                  200604
                                                                  17
```

One aspect of the present invention is a light emitting element having a layer including an aromatic hydrocarbon and a metal oxide between a pair of electrodes. The kind of aromatic hydrocarbon is not particularly limited; however, an aromatic hydrocarbon having hole mobility of 1 + 10-6 cm2/Vs or more is preferable. Examples of such aromatic hydrocarbons are 2-tert-butyl-9,10-di(2- naphthyl)anthracene, anthracene, 9,10-diphenylanthracene, tetracene, rubrene, perylene, and 2,5,8,11-tetra(tert-butyl)perylene. As the metal oxide, a metal which shows an electron-accepting property to the aromatic hydrocarbon is preferable, with examples such as molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide.

IT 168091-66-5

RL: DEV (Device component use)
(hole-transporting layer; light emitting element with mixed layer including aromatic hydrocarbon and metal oxide, light emitting device, and electronic device)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 74, 76

IT 65181-78-4, 4,4'-Bis[N-(3-methylphenyl)-N-phenylamino]biphenyl 123847-85-8, 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl 139092-78-7, 4,4',4''-Tris(N-carbazolyl)triphenylamine 168091-66-5 787640-67-9 913655-59-1

RL: DEV (Device component use)

(hole-transporting layer; light emitting element with mixed layer including aromatic hydrocarbon and metal oxide, light emitting device, and electronic device)

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L28 ANSWER 5 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:1069986 HCAPLUS Full-text

DOCUMENT NUMBER: 145:429603

TITLE: Display device including a light-emitting element and electronic device using the same

INVENTOR(S): Hayakawa, Masahiko; Yoshitomi, Shuhei; Tokumaru,

Ryo

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., Japan

SOURCE: U.S. Pat. Appl. Publ., 23pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20060228822	A1	20061012	US 2006-389233	200603 27
CN 1849023	А	20061018	< CN 2006-10071996	200604
JP 2006317921	A	20061124	< JP 2006-108185	200604 11

PRIORITY APPLN. INFO.:

JP 2005-113054

200504 11

<--

AB A display device and an electronic device is described in which the display device can accurately correct an elec. potential transmitted to a light-emitting element by using a light-emitting element and a monotoring light-emitting element both of which have the same progress of change with time. The display device uses a first light-emitting element, a second light-emitting element, a constant current source, and an amplifier. Each of the first light-emitting element and the second light-emitting element has a first layer including an organic compound and an inorg. compound and a second layer including a light-emitting substance, which are stacked between a pair of electrodes. The first layer is provided over the second layer. Alternatively, the second layer is provided over the first layer.

IT 168091-66-5

RL: TEM (Technical or engineered material use); USES (Uses) (display device including a light-emitting element and electronic device using the same)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

INCL 438034000

CC 74-13 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

ΙT 147-14-8, Copper phthalocyanine 517-51-1, 5,6,11,12-Tetraphenyl naphthacene 574-93-6, Phthalocyanine 1308-38-9, Chromium oxide, uses 1313-13-9, Manganese oxide, uses 1313-27-5, Molybdenum oxide, uses 1313-96-8, Niobium oxide 1314-23-4, Zirconium oxide, 1314-35-8, Tungsten oxide, uses 1314-61-0, Tantalum oxide 1314-62-1, Vanadium oxide, uses 2085-33-8, Tris(8quinolinolato) aluminum 12055-23-1, Hafnium oxide 12624-27-0, Rhenium oxide 13463-67-7, Titanium oxide, uses 13930-88-6, Vanadyl phthalocyanine 19205-19-7, N,N'-Dimethylquinacridone 38215-36-0 65181-78-4, 4,4'-Bis[N-(3-methylphenyl)-Nphenylamino]biphenyl 105389-36-4, 4,4',4''-Tris(N,Ndiphenylamino) triphenylamine 122648-99-1, 9,10-Di(2naphthyl)anthracene 123847-85-8, 4,4'-Bis[N-(1-naphthyl)-Nphenylamino]biphenyl 124729-98-2, 4,4',4''-Tris[N-(3-methylphenyl)-N-phenylamino|triphenylamine 134008-76-7 139092-78-7 **168091-66-5** 199121-98-7 873793-58-9 873793-75-0 RL: TEM (Technical or engineered material use); USES (Uses) (display device including a light-emitting element and electronic

device using the same)

L28 ANSWER 6 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:437747 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 144:458225

TITLE: Light-emitting element and light emitting device

using the same

INVENTOR(S): Kumaki, Daisuke; Seo, Satoshi

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., Japan

SOURCE: PCT Int. Appl., 90 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.					KIND DATE		APPLICATION NO.						DATE			
	WO 2006049323			A1 20060511								200511 04					
		W:	CH, GB, KN, MK, RO,	CN, GD, KP, MN, RU,	CO, GE, KR, MW, SC,	CR, GH, KZ, MX, SD,	CU, GM, LC, MZ, SE,	AU, CZ, HR, LK, NA, SG,	DE, HU, LR, NG, SK,	DK, ID, LS, NI, SL,	DM, IL, LT, NO, SM,	DZ, IN, LU, NZ, SY,	EC, IS, LV, OM, TJ,	EE, JP, LY, PG,	EG, KE, MA, PH,	ES, KG, MD, PL,	FI, KM, MG, PT,
			AT, IE, BF, TG, ZW,	BE, IS, BJ, BW, AM,	BG, IT, CF, GH, AZ,	CH, LT, CG, GM, BY,	CY, LU, CI, KE, KG,	VC, CZ, LV, CM, LS, KZ,	DE, MC, GA, MW, MD,	DK, NL, GN, MZ, RU,	EE, PL, GQ, NA, TJ,	ES, PT, GW, SD, TM	RO, ML, SL,	SE, MR, SZ,	SI, NE,	SK, SN,	TR, TD,
	JP	2006	1569	97		A		2006	0615		JP 2		3210	41			00511 4
	CN	1010	5309	1		A 20071010			< CN 2005-80037622							00511 4	
	US	2007	0170	847		A1		2007	0726		US 2			33			00606 3
RIOR	TT	Y APP	LN.	INFO	.:						JP 2			95			00411 5
											WO 2			663	,		00511 4
R	Ti	ah+-c	.mi++	ina	alam	ante	cor	mnri	rina	(in	orde	>	fir	ret e	alaat	rode	≥. a f

AB Light-emitting elements comprising (in order) a first electrode, a first layer (or first region), a second layer (or second region), a layer containing a light-emitting material, and a second electrode are described in which the first layers includes an aromatic amine compound and a first substance that can act as an electron acceptor to the aromatic amine compound and the second

layer includes a second substance which is a better electron transporter than a hole transporter, and a third substance showing an electron donating property to the second substance. The third substance may be an alkali metal oxide or an alkaline earth metal oxide. Displays employing the elements (and devices incorporating the displays) are also described.

IT 168091-66-5

RL: DEV (Device component use); USES (Uses) (organic light-emitting device structures using mixed material layers)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)(CA INDEX NAME)

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 76

IT 2085-33-8, Tris(8-quinolinolato)aluminum 123847-85-8, 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl 168091-66-5 787640-67-9

RL: DEV (Device component use); USES (Uses)

(organic light-emitting device structures using mixed material layers)

REFERENCE COUNT: 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE

THE DE BODMAN

IN THE RE FORMAT

L28 ANSWER 7 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:343267 HCAPLUS Full-text

DOCUMENT NUMBER: 144:378761

TITLE: Light-emitting element having composite layers

of organic and inorganic compounds and

electronic devices employing the light-emitting

element

INVENTOR(S): Yamazaki, Shunpei; Ikeda, Hisao; Seo, Satoshi;

Kumaki, Daisuke; Sakata, Junichiro

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., Japan

SOURCE: PCT Int. Appl., 56 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
_____ ____
                              _____
    WO 2006038573
                      A1
                              20060413 WO 2005-JP18225
                                                                200509
                                                                26
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
            CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
            GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM,
            KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK,
            MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
            RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
            UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
            IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR,
            BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
            TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
            ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
                       A 20070912 CN 2005-80033466
    CN 101036246
                                                                200509
                                                                26
                                               <--
                              20060518
    JP 2006128097 A
                                          JP 2005-286201
                                                                200509
                                                                30
                                               <--
PRIORITY APPLN. INFO.:
                                          JP 2004-290678
                                                                200410
                                                                01
                                               <--
                                          WO 2005-JP18225
                                                                200509
                                                                26
                                               <--
```

AB Light-emitting elements are described which comprise at least a first electrode and a second electrode; a first layer between the first electrode and the second electrode, the first layer including a first organic compound and a first inorg. compound that exhibits an electron accepting property to the first organic compound; a second layer between the first layer and the second electrode, the second layer including a second organic compound that is luminescent and a second inorg. compound; and a third layer between a second layer and the second electrode, the third layer including a third organic compound and a third inorg. compound that exhibits an electron donating property to the third organic compound

IT 168091-66-5

RL: DEV (Device component use); PRP (Properties); USES (Uses) (light-emitting element having composite layers of organic and inorg. compds. and electronic devices employing light-emitting element)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

73-11 (Optical, Electron, and Mass Spectroscopy and Other Related CCProperties)

Section cross-reference(s): 74, 76

2085-33-8, Aluminum tris(8-hydroxyquinolinato) 11098-99-0,

Molybdenum oxide 123847-85-8, NPB 168091-66-5

RL: DEV (Device component use); PRP (Properties); USES (Uses) (light-emitting element having composite layers of organic and inorg. compds. and electronic devices employing light-emitting element)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L28 ANSWER 8 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN 2006:193629 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 144:283342

Method of manufacturing electron device and TITLE:

organic electroluminescent display and ink for

organic amorphous film

Yasukawa, Akiko; Uchino, Shoichi; Arai, INVENTOR (S):

Yoshihiro; Tanaka, Masahiro; Ito, Masato;

Yaquchi, Tomio

PATENT ASSIGNEE(S): Japan

SOURCE: U.S. Pat. Appl. Publ., 17 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				-
US 20060045959	A1	20060302	US 2005-207838	200508 22
JP 2006066294	А	20060309	< JP 2004-249050	200408 27
CN 1741693	A	20060301	< CN 2005-10093547	200508 29

17

200408

JP 2004-249050 A

AΒ The present invention provides a method which can form a uniform amorphous film using an organic low mol. weight material which is refined by distillation or sublimation. The viscosity of ink is regulated by mixing two kinds of solvents so as to increase a surface tension of the ink and the solubility of the organic material in a drying step whereby an amorphous film made of an organic material is selectively formed in a recessed region defined by a partition wall layer using an ink jet method.

ΙT 126717-23-5

PRIORITY APPLN. INFO.:

RL: DEV (Device component use); USES (Uses)

(Method of manufacturing electron device and organic electroluminescent display and ink for organic amorphous film)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

INCL 427066000; 252301160

74-13 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

126717-23-5 693794-98-8 ΙT

RL: DEV (Device component use); USES (Uses)

(Method of manufacturing electron device and organic electroluminescent display and ink for organic amorphous film)

L28 ANSWER 9 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN 2006:152776 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 144:222301

TITLE: Multilayered structures for light-emitting

devices

INVENTOR(S): He, Gufeng; Pfeiffer, Martin; Blochwitz-Nimoth,

Jan

PATENT ASSIGNEE(S): Novaled GmbH, Germany; Technische Universitaet

Dresden

PCT Int. Appl., 51 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2006015567	A1	20060216	WO 2005-DE1076	200506 16

<--

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

200506 16

AB Multilayered structures for light-emitting devices, especially phosphorescent organic light-emitting diodes, comprising a hole-injecting contact and an electron-injecting contact, each linked with a light-emitting region are described in which the light-emitting region comprises heterojunction formed from a light-emitting layer comprising an ambipolar (and preferably hole-transporting) material (M1) and another light-emitting layer comprising another ambipolar (and preferably electron-transporting) material (M2) between which a staggered type II interface is formed; M1 and M2 incorporate ≥1 triplet-emitting dopants and the energy barriers to hole transfer from M1 to M2 and to electron transfer from M2 to M1 are each .ltorsim.0.4 eV. Devices possessing the structures are also described.

<--

IT 126717-23-5, 1,3,5-Tris(diphenylamino)benzene

RL: DEV (Device component use)

(multilayered structures for light-emitting devices)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

IC ICM H01L051-50

350042-00-1

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 76

IT81-84-5, 1H,3H-Naphtho[1,8-cd]pyran-1,3-dione 91-19-0, Quinoxaline 91-22-5, Quinoline, uses 110-02-1D, Thiophene, derivs. 273-13-2D, 2,1,3-Benzothiadiazole, derivs. 288-88-0, 1H-1,2,4-Triazole 542-92-7D, Cyclopentadiene, derivs. 629-20-9D. Cyclooctatetraene, derivs. 1662-01-7, Bathophenanthroline 2085-33-8, Tris(8-hydroxyquinolinato)aluminum 2382-08-3 11120-54-0D, Oxadiazole, derivs. 23749-58-8 36118-45-3D, Pyrazoline, derivs. 37275-48-2, Bipyridine 38332-84-2, Poly(p-perfluorophenylene) 65181-78-4, TPD 87433-10-1 105389-36-4, 4,4',4''-Tris(N,N-diphenylamino)triphenylamine 122738-21-0 124729-98-2, m-MTDATA 126717-23-5, 1,3,5-Tris(diphenylamino)benzene 139092-78-7, 4,4',4''-Tris(Ncarbazolyl)triphenylamine 139255-17-7 146162-54-1, BAlq 185690-39-5, 4,4',4''-Tris(N(1-naphthyl)-Nphenylamino) triphenylamine 189363-47-1 192198-85-9, TPBI

RL: DEV (Device component use)

(multilayered structures for light-emitting devices)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L28 ANSWER 10 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:10788 HCAPLUS Full-text

DOCUMENT NUMBER: 144:117899

TITLE: Top-emitting organic electroluminescent devices

showing resistance to water and oxygen

INVENTOR(S):
Kimura, Hiroshi

PATENT ASSIGNEE(S): Fuji Electric Holding Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 17 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2006004721	A	20060105	JP 2004-178792	
				200406
				16
			<	
PRIORITY APPLN. INFO.:			JP 2004-178792	
				200406
				16

AB The device comprises a substrate, a reflection electrode, an organic electroluminescent layer, a transparent electrode, and a trapping agent layer, with the trapping layer containing ≥1 compd(s). contained in the layers forming the device. The trapping layer may be formed by vapor deposition. Also claimed are the said devices including ≥1 trapping agents selected from anthracene, coronene, perylene, rubrene, C6H5XZ (X = C6H4, etc.; Z = Ph, naphthyl, etc), certain complexes of Al, Be, Zn, Mg, Ga, etc., oxadiazoles, triazoles, thiophenes, etc. The organic electroluminescent layers can be protected from water and O.

IT 126717-23-5, p-DPA-TDAB

RL: DEV (Device component use); MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses)

(p-DPA-TDAB, oxygen- and water-trapping agent; top-emitting organic electroluminescent devices equipped with water- and oxygen-trapping layers)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

CC 74-13 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT 126717-23-5, p-DPA-TDAB

RL: DEV (Device component use); MOA (Modifier or additive use); TEM (Technical or engineered material use); USES (Uses) (p-DPA-TDAB, oxygen- and water-trapping agent; top-emitting organic

(p-DPA-TDAB, oxygen- and water-trapping agent; top-emitting organic electroluminescent devices equipped with water- and oxygen-trapping layers)

L28 ANSWER 11 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:1202886 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 144:202662

TITLE: Charge transport in amorphous molecular

materials

AUTHOR(S): Shirota, Yasuhiko; Okumoto, Kenji; Ohishi,

Hitoshi; Tanaka, Masatake; Nakao, Masato; Wayaku, Kenjiro; Nomura, Satoyuki; Kageyama,

Hiroshi

CORPORATE SOURCE: Fukui Univ. of Technology, 3-6-1, Gakuen Fukui

City, Fukui, 910-8505, Japan

SOURCE: Proceedings of SPIE-The International Society

for Optical Engineering (2005),

5937 (Organic Light-Emitting Materials and

Devices IX), 593717/1-593717/10 CODEN: PSISDG; ISSN: 0277-786X

PUBLISHER: SPIE-The International Society for Optical

Engineering

DOCUMENT TYPE: Journal LANGUAGE: English

AB Charge carrier drift mobilities of hole-transporting amorphous mol. materials have been determined by a time-of-flight method. Elec.-field and temperature dependencies of carrier mobilities have been analyzed in terms of the disorder

formalism, and charge transport in amorphous mol. materials is discussed in relation to mol. structures. Hole-transporting amorphous mol. materials with high mobilities of the order of $10-2 \,\mathrm{cm}\,2 \,\mathrm{V}-1 \,\mathrm{s}-1$ have been developed.

IT 142143-88-2, 1,3,5-Tris(2-methylphenylphenylamino)benzene

RL: PRP (Properties)

(charge-carrier drift mobilities of hole-transporting amorphous mol. materials by time-of-flight method)

RN 142143-88-2 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(2-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

CC 76-1 (Electric Phenomena)

IT 65181-78-4, N, N'-Diphenyl-N, N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine 82532-74-9, 4-Diphenylaminobenzaldehyde

methylphenylhydrazone 105389-36-4 142143-88-2,

1,3,5-Tris(2-methylphenylphenylamino)benzene 874946-05-1

RL: PRP (Properties)

(charge-carrier drift mobilities of hole-transporting amorphous

mol. materials by time-of-flight method)

REFERENCE COUNT: 29 THERE ARE 29 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L28 ANSWER 12 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:231570 HCAPLUS Full-text

DOCUMENT NUMBER: 142:306391

TITLE: Electrophotographic photoconductor,

electrophotographic process, electrophotographic

apparatus, and process cartridge

INVENTOR(S): Ikegami, Takaaki; Nohsho, Shinji; Kurimoto,

Eiji; Kami, Hidetoshi; Sugino, Akihiro;

Yamashita, Yasuyuki; Nakamori, Hideo; Takada,

Takeshi

PATENT ASSIGNEE(S): Ricoh Company, Japan SOURCE: Eur. Pat. Appl., 246 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1515192	A1	20050316	EP 2004-21562	
				00010

22

									<	<				
	R:	PT,		SI,					I, IT, I, AL,					
JP	2005	0845	83		A	2005	0331	JP	2003-	3193	62			00309
	4079 2005					2008 2005		JP	2003-		77		2	00309
JP	2005	1074	71		Α	2005	0421	JP	< 2003-		03			9 00312
JP	2006	0307	84		А	2006	0202	JP	< 2004-		46			8 00407
CN	1619	425			А	2005	0525	CN	< 2004-		3887		2	0 0 0 4 0 9
US	2005	0118	518		A1	2005	0602	US	< 2004-		85		1	3
US	7314	693			В2	2008	0101		<					00409
PRIORIT								JP	2003-		62	;		00309
								JP	2003-	3218	14	;		00309
								JP	< 2003-		77	;		00309 9
								JP	< 2003-		03	;		00312
								JP	< 2004-		46	;		00407
									<					

OTHER SOURCE(S): MARPAT 142:306391

AB The present invention relates to an electrophotog. photoconductor comprising a photoconductive layer, a protective layer, and a conductive support, wherein the protective layer is disposed as the outermost layer of the photoconductive layer, and 20 % by volume to 60 % by volume of fine particles of fluorine-contained resin and at least one compound selected from amine aromatic compds. and hydroxy aromatic compds. are incorporated into the protective layer. According to the present invention, high durability may be achieved, image degradation such as lags may be controlled from the increase of residual potential and decrease of charging, and high quality images may be formed

stably even after the prolonged and repeated usage. The present invention also relates to an electrophotog. process, an electrophotog. apparatus and a process cartridge for the electrophotog. apparatus which utilize the electrophotog. photoconductor resp.

IT 847872-27-9

RN

RL: TEM (Technical or engineered material use); USES (Uses) (protective layer of electrophotog. photoconductor, containing) 847872-27-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5-tetrakis[3-(diethylamino)phenyl]-N3,N5-bis(3-methylphenyl)- (CA INDEX NAME)

IC ICM G03G005-147
CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

4483-91-4 7030-63-9 7475-96-9 10004-39-4 88-58-4 26172-18-9 27907-76-2 33906-02-4 42051-93-4 62555-82-2 94939-64-7 96924-07-1 64287-26-9 67707-84-0 85979-45-9 101836-19-5 113318-52-8 119062-22-5 119564-40-8 119629-15-1 139601-36-8 170636-06-3 205327-03-3 501367-56-2 501367-58-4 501367-59-5 501367-60-8 501367-62-0 501367-63-1 501367-64-2 501367-66-4 501367-67-5 501367-69-7 501367-70-0 501367-71-1 501367-72-2 501367-74-4 501367-75-5 501367-76-6 501367-77-7 501367-89-1 501368-02-1 501367-78-8 501367-87-9 501367-98-2 501368-04-3 676125-30-7 676448-98-9 676448-99-0 501368-03-2 676449-01-7 676449-02-8 741707-19-7 741707-21-1 749217-90-1 749217-95-6 749217-97-8 749218-00-6 754200-73-2 757961-43-6 775347-52-9 775347-53-0 775347-54-1 775347-56-3 775350-65-7 775350-66-8 775350-67-9 804565-24-0 847661-62-5 847872-24-6 847872-25-7 847872-26-8 **847872-27-9** 847872-28-0 847872-29-1 847872-30-4 847872-31-5 847872-32-6 847872-33-7 847872-34-8 847872-35-9 847872-36-0 847872-37-1 847872-38-2 847872-39-3 847872-40-6 847872-41-7 847872-42-8 847872-43-9 847872-44-0 847872-45-1 847872-46-2 847872-47-3 847872-48-4 847872-50-8 847872-51-9 847872-52-0 847872-53-1 847872-49-5 847872-54-2

RL: TEM (Technical or engineered material use); USES (Uses)
(protective layer of electrophotog. photoconductor, containing)
REFERENCE COUNT: 16 THERE ARE 16 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L28 ANSWER 13 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:138480 HCAPLUS Full-text DOCUMENT NUMBER: 142:249440

TITLE: Organic electroluminescent elements with

improved brightness, emission efficiency, and durability and lighting apparatus and displays

using them

INVENTOR(S): Oshiyama, Tomohiro; Kato, Eisaku; Suzurizato,

Yoshiyuki; Kita, Hiroshi

PATENT ASSIGNEE(S): Konica Minolta Holdings, Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 57 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005044791	A	20050217	JP 2004-195397	
				200407
				01
			<	
PRIORITY APPLN. INFO.:			JP 2003-193520 A	
				200307 08

<--

OTHER SOURCE(S): MARPAT 142:249440

AB The elements, useful for blue- or white-emitting backlights for LCD, have layers containing triarylamine derivs. bearing electron-withdrawing groups adjacent to light-emitting layers between anodes and cathodes. The layers show good hole-barrier properties.

IT 844665-53-8 844665-54-9

RL: DEV (Device component use); USES (Uses)

(hole-barrier layer; organic EL elements containing electron-withdrawing triarylamines in hole-barrier layers for displays with good

brightness, emission efficiency, and durability)

RN 844665-53-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis[4-(trifluoromethyl)phenyl]- (CA INDEX NAME)

$$F_3C$$

$$F_3C$$

$$CF_3$$

$$CF_3$$

$$CF_3$$

$$CF_3$$

RN 844665-54-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(2,3,4,5,6-pentafluorophenyl)- (CA INDEX NAME)

IC ICM H05B033-22

ICS C07C211-56; C09K011-06; H05B033-14

CC 74-13 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
Section cross-reference(s): 73

IT 1821-41-6 152842-19-8 817638-43-0 817638-44-1 817638-51-0 844665-51-6 844665-52-7 **844665-53-8 844665-54-9**

844665-55-0 844665-56-1 844665-57-2 844665-58-3 844665-59-4

RL: DEV (Device component use); USES (Uses)

(hole-barrier layer; organic EL elements containing electron-withdrawing triarylamines in hole-barrier layers for displays with good brightness, emission efficiency, and durability)

L28 ANSWER 14 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:35085 HCAPLUS Full-text

DOCUMENT NUMBER: 142:102910

TITLE: Organic electroluminescent device, illuminating

device, and display

INVENTOR(S): Oshiyama, Tomohiro; Kita, Hiroshi; Katoh, Eisaku

PATENT ASSIGNEE(S): Konica Minolta Holding, Inc., Japan

SOURCE: PCT Int. Appl., 80 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT	NO.			KIN:	D 1	DATE			APPL	ICAT	ION 1	NO.		D.	ATE
WO 2005	- 0045	49		A1	A1 20050113 WO 2004-JP9391					2	00406				
										<				∠.	5
W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,
	CH,	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,
	GB,	GD,	GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KΡ,
	KR,	KΖ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,
	MX,	MΖ,	NA,	NΙ,	NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,
	SE,	SG,	SK,	SL,	SY,	ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,

```
VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW,
             AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ,
             DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL,
             PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
             GW, ML, MR, NE, SN, TD, TG
     EP 1651013
                          Α1
                                20060426
                                           EP 2004-746860
                                                                    200406
                                                                    25
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
             PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU,
             PL, SK, HR
                                20060809
                                            CN 2004-80019019
     CN 1817066
                          Α
                                                                    200406
                                                                    25
                                                  <--
                                            US 2005-562652
     US 20070099025
                          Α1
                                20070503
                                                                    200512
                                                                    27
                                                  <--
                                20080513
     US 7371469
                          В2
PRIORITY APPLN. INFO.:
                                             JP 2003-193519
                                                                    200307
                                                                    08
                                                  <--
                                             WO 2004-JP9391
                                                                    200406
                                                                    25
                                                  <--
```

AB An organic electroluminescent device comprising at least a light-emitting layer containing a phosphorescent compound between an anode and a cathode is characterized by comprising an adjoining layer so arranged between the light-emitting layer and the cathode as to be adjacent to the light-emitting layer and containing a compound with an electron-withdrawing group having an HOMO at -5.7 eV to -7.0 eV and an LUMO at -1.3 eV to -2.3 eV.

IT 817638-41-8

RL: DEV (Device component use); USES (Uses)

(organic electroluminescent device, illumination apparatus and display)

RN 817638-41-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis[3,5-bis(trifluoromethyl)phenyl]- (CA INDEX NAME)

$$F_{3}C$$

$$F_{3}C$$

$$F_{3}C$$

$$F_{3}C$$

$$CF_{3}$$

$$CF_{3}$$

$$CF_{3}$$

$$CF_{3}$$

$$CF_{3}$$

$$CF_{3}$$

IC ICM H05B033-22

ICS H05B033-14; G02F001-1335

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 74

IT 372956-40-6 **817638-41-8** 817638-42-9 817638-43-0

817638-44-1 817638-45-2 817638-46-3 817638-47-4 817638-48-5 817638-49-6 817638-50-9 817638-51-0 817638-53-2 817638-55-4

817638-56-5

RL: DEV (Device component use); USES (Uses)

(organic electroluminescent device, illumination apparatus and display)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L28 ANSWER 15 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:957380 HCAPLUS Full-text

DOCUMENT NUMBER: 141:396986

TITLE: Organic colorants with metallic gloss and film-forming materials containing them with

excellent dispersion stability

INVENTOR(S): Ogura, Katsuyuki; Kurata, Ryuichiro; Kano,

Fumihisa

PATENT ASSIGNEE(S): Chiba University, Japan; Toyo Ink Mfg. Co., Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 23 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP 2004315545	А	20041111	JP 2003-55065	200303 03
PRIORITY APPLN. INFO.:			< JP 2003-52095 A	200302 28

<--

The colorants, useful for writing and printing inks and coatings, are depicted as A[NRXC(CN):C(CN)2]n [A = (un)substituted aromatic, heterocyclic, condensed, or spirocyclic ring residue, (un)substituted biphenyl, fluorene, or triphenylamine-based dendrimer residue; X = (un)substituted aromatic or heterocyclic ring residue; R = (un)substituted aromatic group, heterocyclic group, alkyl, alkenyl, or cycloalkyl; $n \ge 2$]. Thus, an ink containing N,N'-bis(4-tricyanoethenylphenyl)-N,N'-diphenylbenzidine (prepared from N,N,N',N'-tetraphenylbenzidine and tetracyanoethylene), a rosin-modified phenolic resin, and a petroleum-type solvent showed good gloss and adhesion to paper and metal.

TT 790256-28-9P, 1,3-Bis[[4-(tricyanoethenyl)phenyl]phenylamino
]-5-(diphenylamino)benzene 790256-29-0P,
1,3,5-Tris[[4-(tricyanoethenyl)phenyl]phenylamino]benzene
RL: IMF (Industrial manufacture); TEM (Technical or engineered

material use); PREP (Preparation); USES (Uses)
 (colorant; organic colorants with metallic gloss for inks and
 coatings with good storage stability)

RN 790256-28-9 HCAPLUS

Ethenetricarbonitrile, 2,2'-[[5-(diphenylamino)-1,3phenylene]bis[(phenylimino)-4,1-phenylene]]bis- (9CI) (CA INDEX NAME)

RN 790256-29-0 HCAPLUS

CN Ethenetricarbonitrile, 2,2',2''-[1,3,5-benzenetriyltris[(phenylimino)-4,1-phenylene]]tris- (9CI) (CA INDEX NAME)

126717-23-5, 1,3,5-Tris(diphenylamino)benzene ΙT RL: RCT (Reactant); RACT (Reactant or reagent) (for colorant preparation; organic colorants with metallic gloss for inks and coatings with good storage stability) 126717-23-5 HCAPLUS

RN

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

ICM C09B023-00 ΙC ICS C08L005-00; C08L101-00; C09D007-12; C09D201-00

CC42-12 (Coatings, Inks, and Related Products) Section cross-reference(s): 25, 41

790256-24-5P, N,N'-Bis(4-tricyanoethenylphenyl)-N,N'-ΙT diphenylbenzidine 790256-25-6P, 2,7-Bis[N-phenyl-N-[p-

```
(tricyanoethenyl)phenyl]amino]fluorene 790256-27-8P,
     9-(Dicyanomethylene)-2,7-bis[[N-phenyl-N-(4-
     tricyanophenyl)]amino]fluorene 790256-28-99,
     1,3-Bis[[4-(tricyanoethenyl)phenyl]phenylamino]-5-
     (diphenylamino)benzene 790256-29-09, 1,3,5-Tris[[4-
     (tricyanoethenyl)phenyl]phenylamino]benzene 790256-30-3P,
     Tris[4-[N-[4-(tricyanoethenyl)phenyl]phenylamino]phenyl]amine
     790256-31-4P, 2-(Diphenylamino)-2',7,7'-tris[N-phenyl-[4-
     (tricyanoethenyl)phenyl]amino]-9,9'-spirofluorene 790256-32-5P,
     2,2',7,7'-Tetrakis[N-phenyl-[4-(tricyanoethenyl)phenyl]amino]-9,9'-
                   790256-34-7P, 2,2-Bis[4-[N-phenyl-N-[p-
     spirofluorene
     (tricyanoethenyl)phenyl]amino]phenyl]propane 790256-35-8P,
     1,3-Bis[N-methyl-p-(tricyanoethenyl)anilino]-5-(N-
     methylanilino)benzene
                           790256-36-9P, 1,3,5-Tris[N-methyl-p-
     (tricyanoethenyl)anilino]benzene
     RL: IMF (Industrial manufacture); TEM (Technical or engineered
     material use); PREP (Preparation); USES (Uses)
        (colorant; organic colorants with metallic gloss for inks and
        coatings with good storage stability)
     100-61-8, N-Methylaniline, reactions 122-39-4, Diphenylamine,
     reactions 626-39-1, 1,3,5-Tribromobenzene 670-54-2,
     Tetracyanoethylene, reactions 15546-43-7, N,N,N',N'-
     Tetraphenylbenzidine 105389-36-4
                                        113933-91-8,
     2,7-Bis (diphenylamino) fluorene 126717-23-5,
     1,3,5-Tris(diphenylamino)benzene 128055-74-3, 2,2',7,7'-Tetrabromo-
     9,9'-spirofluorene 790256-26-7, 9-(Dicyanomethylene)-2,7-
     bis (diphenylamino) fluorene
                                 790256-33-6, 2,2-Bis[4-
     (diphenylamino)phenyl]propane
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (for colorant preparation; organic colorants with metallic gloss for inks
        and coatings with good storage stability)
L28 ANSWER 16 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN
                         2004:801715 HCAPLUS Full-text
ACCESSION NUMBER:
DOCUMENT NUMBER:
                         141:304040
TITLE:
                        Organic EL device with high emission efficiency
                         and long service life, its manufacture, and
                         organic EL panel assembled with same
                         Koshiishi, Akira; Nada, Naoshi; Tomioka, Satoshi
INVENTOR(S):
PATENT ASSIGNEE(S):
                         Sony Corp., Japan
                         Jpn. Kokai Tokkyo Koho, 14 pp.
SOURCE:
                         CODEN: JKXXAF
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                         Japanese
```

LANGUAGE: Japan FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND 	DATE	APPLICATION NO.	DATE
 JP 2004273163	A	20040930	JP 2003-59013	200303 05
PRIORITY APPLN. INFO.:			< JP 2003-59013	200303 05
			/	

AB The organic EL device consists of ≥1 layers of organic layers involving lightemitting layers (LEL) between a pair of electrode layers, ≥1 of which are

transparent electrodes, wherein an electron transfer-controlling layer (ETCL) which restricts the flow of electrons to LEL, preferably comprising $\alpha\textsc{-NPD},$ TPD, m-TPD, 1-TNATA, p-PMTDATA, TFATA, TCATA, p-DPA-TDAB, MTDAPB, p-BPD, PFFA or FFD, is provided between the electrode layers, hence only electrons which contribute to light emission are injected to LEL from ETCL, thereby improving emission efficiency, suppressing elec. power consumption, and achieving long service life. Preferably, an electron-transporting layer (ETL) is formed between the electrode layer as a cathode and LEL, ETCL is formed between the ETL and the LEL, and the energy level of LUMO of ETCL is lower than that of ETL. The organic EL panel contains a plurality of the organic EL devices arranged on a substrate.

IT 126717-23-5, 1,3,5-Tris(diphenylamino)benzene

RL: DEV (Device component use); USES (Uses)

(p-DPA-TDAB, electron transfer-controlling layer; manufacture of organic EL device with high emission efficiency for organic EL panel)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

IC ICM H05B033-22

ICS H05B033-10; H05B033-14

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

IT 126717-23-5, 1,3,5-Tris(diphenylamino)benzene

RL: DEV (Device component use); USES (Uses)

(p-DPA-TDAB, electron transfer-controlling layer; manufacture of organic EL device with high emission efficiency for organic EL panel)

L28 ANSWER 17 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:459223 HCAPLUS Full-text

DOCUMENT NUMBER: 141:173778

TITLE: A Bindschedler's Green-Based Arylamine: Its

Polycations with High-Spin Multiplicity

AUTHOR(S): Ito, Akihiro; Ino, Haruhiro; Matsui, Yuki;

Hirao, Yasukazu; Tanaka, Kazuyoshi; Kanemoto,

Katsuichi; Kato, Tatsuhisa

CORPORATE SOURCE: Department of Molecular Engineering, Graduate

School of Engineering, Kyoto University, Kyoto,

615-8510, Japan

SOURCE: Journal of Physical Chemistry A (2004

), 108(26), 5715-5720

CODEN: JPCAFH; ISSN: 1089-5639

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 141:173778

AB Intramol. high-spin correlation in a series of the successively generated polycationic species of Bindschedler's green-based arylamine, N,N,N',N'',N''-hexakis[4-(dimethylamino)phenyl]-1,3,5- benzenetriamine (1), has been investigated by continuous wave (CW) and pulsed EPR spectroscopy. Cyclic voltammetry shows multiredox behavior of 1 that can be reversibly

oxidized from monocation to hexacation. Depending on the quantity of the added oxidant, the characteristic EPR spectra are observed for polycations of 1 in frozen solution Unequivocal determination of the spin state at each oxidation stage of 1 is given by a pulsed EPR technique, i.e., electron spin transient nutation spectroscopy.

IT 733055-08-8P

CN

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); PROC (Process); RACT (Reactant or reagent)

(ESR and cyclic voltammetry study on polycations with high-spin multiplicity from Bindschedler's green-based arylamine)

RN 733055-08-8 HCAPLUS

1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis[4-(dimethylamino)phenyl]- (CA INDEX NAME)

IT 733055-09-9

RL: FMU (Formation, unclassified); PRP (Properties); FORM (Formation, nonpreparative)

(ESR and cyclic voltammetry study on polycations with high-spin multiplicity from Bindschedler's green-based arylamine)

RN 733055-09-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',h''-hexakis[4- (dimethylamino)phenyl]-, radical ion(1+) (9CI) (CA INDEX NAME)

CC 22-8 (Physical Organic Chemistry)
Section cross-reference(s): 77

IT 733055-08-8P

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); PROC (Process); RACT (Reactant or reagent)

(ESR and cyclic voltammetry study on polycations with high-spin multiplicity from Bindschedler's green-based arylamine)

IT 733055-09-9 733055-10-2 733055-11-3 733055-12-4

733055-13-5 733055-14-6

RL: FMU (Formation, unclassified); PRP (Properties); FORM (Formation, nonpreparative)

(ESR and cyclic voltammetry study on polycations with high-spin multiplicity from Bindschedler's green-based arylamine)

REFERENCE COUNT:

THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L28 ANSWER 18 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:252470 HCAPLUS <u>Full-text</u>

36

DOCUMENT NUMBER: 140:287163

TITLE: Process for preparation of arylamines

INVENTOR(S): Kubo, Shinji; Shintou, Taichi; Aoki, Hidenori

PATENT ASSIGNEE(S): Sankio Chemical Co., Ltd., Japan

SOURCE: PCT Int. Appl., 44 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PAT	ENT	NO. 			KIN	_	DATE			APPLICATION NO.			D	ATE		
WO	2004	- 0246	70		A1		2004	0325		WO 2	003-	JP11	510		2	00309 9
	W: RW:	CN, GD, KZ, MZ, SK, YU, GH, BY, EE,	CO, GE, LC, NI, SL, ZA, GM, KG,	CR, GH, LK, NO, SY, ZM, KE, KZ, FI,	CU, GM, LR, NZ, TJ, ZW LS, MD, FR,	CZ, HR, LS, OM, TM, MW, RU, GB,	AU, DE, HU, LT, PG, TN, MZ, TJ, GR, CF,	DK, ID, LU, PH, TR, SD, TM, HU,	DM, IL, LV, PL, TT, SL, AT, IE,	DZ, IN, MA, PT, TZ, SZ, BE, IT,	EC, IS, MD, RO, UA, TZ, BG, LU,	EE, JP, MG, RU, UG, CH, MC,	EG, KE, MK, SC, US, ZM, CY, NL,	ES, KG, MN, SD, UZ, ZW, CZ, PT,	FI, KP, MW, SE, VC, AM, DE, RO,	GB, KR, MX, SG, VN, AZ, DK, SE,
AU	2003	NE,	SN,	TD,	TG									o.,,		00309
GB	2408	979			A		2005	0615		GB 2	< 005-	4952				00309

~ · · · · · · · · · · · · · · · · · · ·					
GB 2408979	В	20060308			
US 20060069287	A1	20060330	US 2005-527064		
					200503
					09
			<		
US 7273953	В2	20070925			
PRIORITY APPLN. INFO.:			JP 2002-264202	A	
					200209
					10
			<		
			WO 2003-JP11510	W	
					200309
					09

<--

OTHER SOURCE(S): CASREACT 140:287163

GI

This invention pertains to a method for producing arylamines, which comprises reacting an aromatic halogen compound with an aromatic amine in the presence of an organic salt selected among specific pyridinium salts, imidazolium salts, and quaternary onium salts, a copper catalyst, and a base. For example, N-(3-methylphenyl)-N-phenylamine was reacted with 4,4''-diodoterphenyl in toluene in the presence of KOH, CuCl, and Bu4PBr to give the amine I (94.0%). By the process, a high-purity arylamine, especially triarylamine or diarylamine, can be produced at low cost.

IT 168091-66-5P

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(preparation of arylamines by coupling reaction)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

IC ICM C07C211-54

ICS C07C209-10

CC 25-4 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds) Section cross-reference(s): 45

IT 1150-62-5P 4316-54-5P 32228-99-2P 78774-91-1P 124729-98-2P 147850-54-2P 154576-20-2P 168091-66-5P 194296-19-0P

675583-36-5P 675583-37-6P 675583-38-7P 675583-39-8P 675583-40-1P 675583-41-2P 675583-42-3P 675583-43-4P

675583-44-5P 675583-45-6P 675583-46-7P

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(preparation of arylamines by coupling reaction)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L28 ANSWER 19 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2003:609758 HCAPLUS Full-text

DOCUMENT NUMBER: 139:171099

TITLE: Organic light-emitting devices employing

phosphorescent material doped into the

electron-transporting layer

INVENTOR(S): Yamazaki, Hiroko; Tokuda, Atsushi; Tsutsui,

Tetsuo

PATENT ASSIGNEE(S): Semiconductor Energy Laboratory Co., Ltd., USA

SOURCE: U.S. Pat. Appl. Publ., 27 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20030146443	A1	20030807	US 2002-304410	200211
			<	26
US 6734457 JP 2003229275	B2 A	20040511 20030815	JP 2002-341774	
				200211 26
			<	
JP 3759925	В2	20060329		

<--

US 2003-737569

Α1

200312

35

Light-emitting devices are described which comprise an anode, an optional AB hole-injection layer in contact with the anode, an organic compound film, an optional electron-injection layer in contact with a cathode, and a cathode, where the organic compound film comprises a hole-transporting layer containing a hole-transporting material; and an electron-transporting layer in contact with the hole-transporting layer and containing an electron-transporting material, where a light-emitting material capable of emitting light from a triplet excited state is added in the electron transporting layer. IT

134257-64-0 168091-66-5 573968-20-4

RL: DEV (Device component use); PRP (Properties); USES (Uses) (hole-transporting layer; organic light-emitting devices employing phosphorescent material doped in electron-transporting layer)

134257-64-0 HCAPLUS RN

1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-CN (CA INDEX NAME)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

RN 573968-20-4 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(2-methylphenyl)-(CA INDEX NAME)

IC ICM H01L027-15

INCL 257080000

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 22, 76, 78

IT 134257-64-0 148044-07-9 163815-23-4 168091-66-5

573968-20-4

RL: DEV (Device component use); PRP (Properties); USES (Uses) (hole-transporting layer; organic light-emitting devices employing

phosphorescent material doped in electron-transporting layer)

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L28 ANSWER 20 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2002:237137 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 136:270534

TITLE: Electrophotographic photoreceptor

INVENTOR(S): Miyamoto, Eiichi; Inagaki, Yoshio; Fukunaga,

Hideaki

PATENT ASSIGNEE(S): Kyocera Mita Industrial Co., Ltd., Japan;

Kyocera Corp.

SOURCE: Jpn. Kokai Tokkyo Koho, 18 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
	JP 2002091033	A	20020327	JP 2000-281052		200009
	US 20020051918	A1	20020502	< US 2001-910916		200107 24
				<		2 1
PRIO	US 6489071 RITY APPLN. INFO.:	В2	20021203	JP 2000-224240	А	200007 25
				< JP 2000-243150	А	200008
				< JP 2000-250409	А	200008
				< JP 2000-281051	А	200009
				< JP 2000-281052	А	200009
				< JP 2000-311421	А	200010
				< JP 2000-355340	А	200011 22
				< JP 2000-366431	А	200012
				< JP 2001-20876	А	200101
				< JP 2001-20877	Α	200101

<--

OTHER SOURCE(S):

MARPAT 136:270534

GΙ

$$(R^{1})$$
 a (R^{2}) b (R^{3}) c (R^{5}) f (R^{4}) d

The invention relates to an electrophotog. photoreceptor which hardly forms cracks during the usage and storage. The electrophotog. photoreceptor comprises an organic photosensitive layer and an inorg. surface protective layer formed on a support, wherein the surface of photosensitive layer contacting the surface protective layer contains a triaminobenzene derivative represented by I (R1-6 = H, halo, alkyl, alkoxy, aryl; and a-f = 1-5). The surface protective layer contains an inorg. substance such as a-SiC, a-SiN, etc.

IT 393586-96-4 393586-97-5

RL: DEV (Device component use); USES (Uses) (electrophotog. photoreceptor triaminobenzene derivative)

RN 393586-96-4 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris[4-(1,1-dimethylethyl)phenyl]-N1,N3,N5-tris(4-methylphenyl)- (CA INDEX NAME)

RN 393586-97-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(2-ethyl-6-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

IC ICM G03G005-06 ICS G03G005-147

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

Section cross-reference(s): 25

IT **393586-96-4 393586-97-5** 393586-98-6

RL: DEV (Device component use); USES (Uses)

(electrophotog. photoreceptor triaminobenzene derivative)

L28 ANSWER 21 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2002:87279 HCAPLUS Full-text

DOCUMENT NUMBER: 136:142582

TITLE: Electrosensitive material

INVENTOR(S): Miyamoto, Eiichi; Fukunaga, Hideaki; Inagaki,

Yoshio

PATENT ASSIGNEE(S): Kyocera Mita Corporation, Japan; Kyocera

Corporation

SOURCE: Eur. Pat. Appl., 246 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1176469	A1	20020130	EP 2001-306364	200107 25
R. AT RE CH	DE DK	FS FR CR	< s, GR, IT, LI, LU, NL,	SE MC
PT, IE, SI, JP 2002040689	LT, LV	, FI, RO		SE, MC,
31 2002040009	Α	20020200	31 2000 224240	200007 25
JP 2002055467	А	20020220	< JP 2000-243150	00000
			<	200008 10
JP 2002062676	А	20020228	JP 2000-250409	200008
			<	22
JP 2002091031	A	20020327	JP 2000-281051	200009
				18

September 24, 2008		10/580,052				
JP 2002123011	A	20020426	JP	< 2000-311421		200010
JP 2002156768	A	20020531	JP	< 2000-355340		200011 22
JP 2002169313	A	20020614	JP	< 2000-366431		200012
JP 2002229233	A	20020814	JP	< 2001-20876		200101
JP 2002229232	A	20020814	JP	< 2001-20877		200101
PRIORITY APPLN. INFO.:			JP	< 2000-224240	Α	200007 25
			JP	< 2000-243150	Α	200008
			JP	< 2000-250409	Α	200008 22
			JP	< 2000-281051	А	200009 18
			JP	< 2000-311421	А	200010 12
			JP	< 2000-355340	А	200011 22
			JP	< 2000-366431	А	200012 01
			JP	< 2001-20876	А	200101
			JP	< 2001-20877	А	200101
OTHER COURCE (C) .	MADDAG	r 136•1/2502		<		

40

The invention disclosed an electrophotosensitive material comprising an organic photosensitive layer and an inorg. surface protective layer, wherein at least the outermost part of the organic photosensitive layer contains a diphenylamine compound I (A is a group which can jointly form a π -electron conjugated system with the two Ph groups in the formula; R1 and R2 each represent an H atom, halogen atom, alkyl group, alkoxy group, etc., and R1 and R2 may form a condensed ring with the Ph group; m, n = 0-5). The electrophotosensitive material has excellent durability because compound I functions as a binder for combining the organic photosensitive layer with the inorg. surface protective layer so that the surface protective layer is less prone to suffer cracks or delamination.

IT 393586-96-4 393586-97-5

RL: TEM (Technical or engineered material use); USES (Uses) (pos.-hole transport compound in electrophotog. material)

RN 393586-96-4 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris[4-(1,1-dimethylethyl)phenyl]-N1,N3,N5-tris(4-methylphenyl)- (CA INDEX NAME)

RN 393586-97-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(2-ethyl-6-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

```
IC
    ICM G03G005-147
    ICS G03G005-06
CC
    74-3 (Radiation Chemistry, Photochemistry, and Photographic and
    Other Reprographic Processes)
                            89505-08-8 105465-13-2
ΙT
    65181-78-4
                 73276-70-7
                                                         106614-59-9
    119344-18-2
                 119586-43-5
                              124591-08-8 132037-07-1
                                                            132571-92-7
    132761-17-2
                  142017-30-9
                                151026-65-2
                                              151259-33-5
                                                            159530-26-4
    167377-13-1
                  167377-38-0
                                168091-65-4
                                              169509-14-2
                                                            170021-51-9
    173923-36-9
                 173923-37-0
                                173923-50-7
                                              177407-52-2
                                                            179063-40-2
                                                            208042-91-5
    179063-41-3 179063-46-8
                              179063-49-1
                                              179550-47-1
    208042-94-8 254897-50-2
                                256660-35-2
                                              393586-77-1
                                                            393586-78-2
    393586-79-3 393586-80-6
                                393586-81-7
                                              393586-82-8
                                                            393586-83-9
    393586-84-0
                 393586-85-1
                                393586-86-2
                                              393586-87-3
                                                            393586-88-4
    393586-89-5
                  393586-90-8
                                393586-91-9
                                                            393586-93-1
                                              393586-92-0
    393586-94-2
                  393586-95-3 393586-96-4 393586-97-5
    393586-98-6
                  393586-99-7
                                393587-00-3
                                              393587-01-4 393587-05-8
    393587-06-9
    RL: TEM (Technical or engineered material use); USES (Uses)
        (pos.-hole transport compound in electrophotog. material)
                              THERE ARE 5 CITED REFERENCES AVAILABLE FOR
REFERENCE COUNT:
                        5
                              THIS RECORD. ALL CITATIONS AVAILABLE IN
```

L28 ANSWER 22 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2002:8812 HCAPLUS Full-text

DOCUMENT NUMBER: 136:191337

TITLE: Durability and characteristics of organic EL

device using amorphous materials as hole

transporting materials

THE RE FORMAT

AUTHOR(S): Oh, Se Young; Lee, Chang Ho; Kim, Seung Wook

CORPORATE SOURCE: Department of Chemical Engineering, Sogang

University, Seoul, 121-742, S. Korea

SOURCE: Molecular Crystals and Liquid Crystals Science

and Technology, Section A: Molecular Crystals

and Liquid Crystals (2001), 371,

423-426

CODEN: MCLCE9; ISSN: 1058-725X

PUBLISHER: Gordon & Breach Science Publishers

DOCUMENT TYPE: Journal LANGUAGE: English

AB Amorphous mol. materials such as 1,3,5-tris(4-chlorophenyl phenylamino)benzene, p-ClTDAB and p-BrTDAB were synthesized and then organic electroluminescent (EL) devices using the amorphous compds. as hole transporting materials were fabricated. ITO/p-XTDAB (X=Cl or Br)/Alq3/Al device emitted green light with the brightness of 1300 cd/m2. Especially, the durability and EL performance were improved by p-XTDAB compared to TDAB.

IT 126717-23-5

RL: DEV (Device component use); PRP (Properties); USES (Uses)

(TDAB; durability and characteristics of organic EL device using amorphous materials as hole transporting materials)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

IT 177659-53-9

RL: DEV (Device component use); PRP (Properties); USES (Uses) (p-BrTDAB; durability and characteristics of organic EL device using amorphous materials as hole transporting materials)

RN 177659-53-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-bromophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

IT 177659-52-8

RL: DEV (Device component use); PRP (Properties); USES (Uses) (p-ClTDAB; durability and characteristics of organic EL device using amorphous materials as hole transporting materials)

RN 177659-52-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-chlorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

IT 126717-23-5

RL: DEV (Device component use); PRP (Properties); USES (Uses) (TDAB; durability and characteristics of organic EL device using amorphous materials as hole transporting materials)

IT 177659-53-9

RL: DEV (Device component use); PRP (Properties); USES (Uses) (p-BrTDAB; durability and characteristics of organic EL device using amorphous materials as hole transporting materials)

IT 177659-52-8

RL: DEV (Device component use); PRP (Properties); USES (Uses) (p-ClTDAB; durability and characteristics of organic EL device using amorphous materials as hole transporting materials)

REFERENCE COUNT:

PUBLISHER:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L28 ANSWER 23 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2001:924914 HCAPLUS <u>Full-text</u>

2

DOCUMENT NUMBER: 136:158432

TITLE: Structural effects of TDAB amorphous hole

transporting materials on performance of organic

EL device

AUTHOR(S): Lee, Chang Ho; Kim, Seung Wook; Oh, Se Young CORPORATE SOURCE: Department of Chemical Engineering, Sogang

University, Seoul, 121-742, S. Korea

SOURCE: Molecular Crystals and Liquid Crystals Science

and Technology, Section A: Molecular Crystals

and Liquid Crystals (2001), 370, 53-56

CODEN: MCLCE9; ISSN: 1058-725X Gordon & Breach Science Publishers

DOCUMENT TYPE: Journal LANGUAGE: English

AB For the fabrication of high stable organic electroluminescent device, amorphous mol. materials such as 1,3,5-tris(diphenylamino)benzene (TDAB), 1,3,5-tris(4-chlorophenyl[phenyl]amino)benzene (p-ClTDAB), p-BrTDAB, and p-MeOTDAB were synthesized as hole transporting materials and studied ITO/p-XTDAB (X = Br, Cl, MeO)/Alq3/Al device emitted green light. Organic EL device consisting of ITO/p-BrTDAB/Alq3/Al showed high EL intensity. The durability and EL performance of organic EL device using the amorphous hole transporting material were studied.

IT 126717-23-5, 1,3,5-Tris(diphenylamino)benzene
177659-52-8, 1,3,5-Tris(4-chlorophenyl[phenyl]amino)benzene
177659-53-9, 1,3,5-Tris(4-bromophenyl[phenyl]amino)benzene
RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (structural effects of amorphous hole transporting material on performance of organic electroluminescent device)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 177659-52-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-chlorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 177659-53-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-bromophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 22, 76

RL: DEV (Device component use); PRP (Properties); USES (Uses) (structural effects of amorphous hole transporting material on performance of organic electroluminescent device)

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L28 ANSWER 24 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2001:403128 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 135:20079

TITLE: Transition metal complex catalysts and trimerization of ethylene using them

INVENTOR(S): Murakita, Shigeyuki; Yamamoto, Toshihide; Okada,

Hisanori; Yoshida, Osamu

PATENT ASSIGNEE(S): Tosoh Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001149788	A	20010605	JP 1999-339889	
				199911 30
			<	30
PRIORITY APPLN. INFO.:			JP 1999-339889	
				199911 30

<--

OTHER SOURCE(S): MARPAT 135:20079

Ethylene is trimerized in the presence of (A) transition metal complexes coordinated with amino-substituted benzene derivative ligands and optionally (B) tertiary aromatic amines and/or N-containing heterocyclic compds. Thus, trimerization of ethylene at 80° for 30 min in the presence of 1,3,5-tris(diphenylamino)benzenechromi um tricarbonyl(0), in which the tris(diphenylamino)benzene ligand is facially coordinated to Cr, under radiation of light to give 1-hexene with selectivity 98.5%.

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

IC ICM B01J031-22

ICS C07B061-00; C07C002-34; C07C011-107; C08F004-69

CC 35-2 (Chemistry of Synthetic High Polymers)

IT 74-85-1, Ethylene, reactions 13007-92-6, Chromium hexacarbonyl 126717-23-5, 1,3,5-Tris(diphenylamino)benzene

RL: RCT (Reactant); RACT (Reactant or reagent)

(transition metal complex catalysts for trimerization of ethylene for preparation of 1-hexene in high selectivity)

L28 ANSWER 25 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2000:462278 HCAPLUS Full-text DOCUMENT NUMBER: 134:116414

TITLE: Electronic structure of starburst molecules and

their interfaces with ITO studied by UV

photoemission

AUTHOR(S): Ishii, Hisao; Imai, Toshiaki; Morikawa, Eizi; Ito, Eisuke; Hasegawa, Shinji; Okudaira, Koji

Kamiya; Ueno, Nobuo; Shirota, Yasuhiko; Seki,

Kazuhiko

CORPORATE SOURCE: Dep. Chem., Graduate School of Science, Nagoya

Univ., Chikusa-ku Nagoya, Japan

SOURCE: Proceedings of SPIE-The International Society

for Optical Engineering (1999),

3797 (Organic Light-Emitting Materials and

Devices III), 375-382

CODEN: PSISDG; ISSN: 0277-786X

PUBLISHER: SPIE-The International Society for Optical

Engineering

DOCUMENT TYPE: Journal LANGUAGE: English

UV photoemission spectroscopy (UPS) was used to study electronic structures of AΒ starburst mols. derived from triphenylamine and their interfaces with indium tin oxide (ITO). The compds. studied were 1,3,5-tris(2methylphenylphenylamino)benzene (o-MTDA), 4,4',4''-tris(3methylphenylphenylamino) triphenylamine (m-MTDATA), 1,3,5-tris[4-(3methylphenylphenylamino)phenyl]benzene (m-MTDAPB), and 1,3,5-tris[N-(4diphenylaminophenyl)phenylamino]benzene (p-DPA-TDAB). These compds. have good thermal stability and hole transport properties due to their amorphous character and are of interest for use in electroluminescent devices. The observed ionization potential is 5.4 plus or minus 0.1 eV, 5.0 plus or minus 0.1 eV, 5.45 plus or minus 0.05 eV, and 5.15 plus or minus 0.05 eV, for o-MTDA, m-MTDATA, m-MTDAPB, and p- DPA-TDAB, resp. The whole valence region of UPS spectra was measured using synchrotron radiation. The bulk electronic structure of these mols. was correlated with MOPAC MO calcns. At ITO interfaces with the starburst triphenylamines, a vacuum level shift was observed, indicating that the traditional model with an assumption of a common vacuum level at organic/metal interfaces is not valid even in the case of ITO electrode. The direction of the shifts was neq., i.e., the vacuum level of the starburst mols. is below that of the ITO electrode. The magnitude of the shift was dependent on the surface cleanliness of the ITO substrate.

IT 142143-88-2, 1,3,5-Tris(2-methylphenylphenylamino)benzene

RL: PRP (Properties)

(electronic structure of triphenylamine starburst mols. and alignment with ITO interface studied by UV photoemission spectroscopy)

RN 142143-88-2 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(2-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

CC 36-5 (Physical Properties of Synthetic High Polymers) Section cross-reference(s): 65, 76

IT 124729-98-2, 4,4',4''-Tris(3-methylphenylphenylamino)triphenylamine 142143-88-2, 1,3,5-Tris(2-methylphenylphenylamino)benzene 153521-90-5, 1,3,5-Tris[N-(4-diphenylaminophenyl)phenylamino]benzene 161581-07-3, 1,3,5-Tris[4-(3-methylphenylphenylamino)phenyl]benzene RL: PRP (Properties)

(electronic structure of triphenylamine starburst mols. and alignment with ITO interface studied by UV photoemission spectroscopy)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L28 ANSWER 26 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2000:129529 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 132:279083

TITLE: Photochemical reaction of 1,3,5-

tris(diphenylamino)benzene

AUTHOR(S): Moriwaki, Kazuyuki; Yoshikawa, Satoru; Kotani,

Yoshiko; Ishida, Akito; Shirota, Yasuhiko Department of Applied Chemistry, Faculty of

CORPORATE SOURCE: Department of Applied Chemistry, Faculty of

Engineering, Osaka University, Suita, 565-0871,

TT

Japan

SOURCE: Journal of Photopolymer Science and Technology (

1999), 12(5), 777-780

CODEN: JSTEEW; ISSN: 0914-9244

PUBLISHER: Technical Association of Photopolymers, Japan

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 132:279083

GΙ

AB Photochem. reaction of a new aromatic amine with dual reaction sites for ring closure, 1,3,5-tris(diphenylamino)benzene I, was investigated to clarify its photochem. reaction course and the effect of oxygen on the photochem. reaction. It was found that I undergoes photocyclization in solution in the absence or presence of oxygen to produce N-phenyl-2,4-bis(diphenylamino)carbazole II. The product anal. and the result of laser flash photolysis indicate that the reaction mechanism for the photocyclization of I is different between the deaerated and oxygen-saturated systems. Photocyclization reaction of I in the absence of oxygen takes place via the electronically excited triplet state of I, followed by the formation of the dihydrocarbazole. In the presence of oxygen, the dihydrocarbazole radical cation is suggested as an intermediate in the photocyclization.

IT 126717-23-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and photocyclization of tris(diphenylamino)benzene to give a bis(diphenylamino)carbazole derivative)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

CC 27-11 (Heterocyclic Compounds (One Hetero Atom))

Section cross-reference(s): 22

IT 126717-23-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and photocyclization of tris(diphenylamino)benzene to give a bis(diphenylamino)carbazole derivative)

REFERENCE COUNT: 11 THERE ARE 11 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L28 ANSWER 27 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1999:638521 HCAPLUS Full-text

DOCUMENT NUMBER: 131:264582

TITLE: Red-emitting organic electroluminescent device

INVENTOR(S): Tanaka, Taizo; Toguchi, Itaru; Mori, Kenji

PATENT ASSIGNEE(S): NEC Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 22 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PAT	ENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP	11273866	А	19991008	JP 1998-92224	199803 23
				<	25
JP	3092584	В2	20000925		
TW	415157	В	20001211	TW 1999-88104485	
					199903 22
				<	
US	6630253	B1	20031007	US 1999-274963	199903
					23
				<	
PRIORITY	APPLN. INFO.:			JP 1998-92224 F	199803 23

<--

OTHER SOURCE(S): MARPAT 131:264582

GΙ

AB The invention relates to a red-emitting organic electroluminescent device, suited for use in making a flat light source and a display device, wherein the light-emitting layer comprises the compound represented by I [R1-8 = H, halo, OH, amino, etc.; two R's selected form R1-8 may be linked to form a ring; X = NH, O, and S].

IT 134257-64-0

RL: DEV (Device component use); USES (Uses) (red-emitting organic electroluminescent device)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

IC ICM H05B033-14

ICS C09K011-06; G09F009-30

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 74

IT 603-34-9 2085-33-8 4432-94-4 6940-30-3 14642-34-3 15546-43-7 24601-13-6 33450-09-8 33450-10-1 33450-11-2

123173-91-1 123847-85-8 **134257-64-0** 146162-54-1

157077-42-4 157077-43-5 194214-31-8 194794-43-9 221453-37-8

245041-47-8

RL: DEV (Device component use); USES (Uses)

(red-emitting organic electroluminescent device)

L28 ANSWER 28 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1999:412898 HCAPLUS Full-text

DOCUMENT NUMBER: 131:108713

TITLE: Organic electroluminescent device elements INVENTOR(S): Suzuki, Toshiyasu; Tanaka, Taizo; Higashiguchi,

Itaru; Oda, Atsushi

PATENT ASSIGNEE(S): NEC Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 23 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11176572	A	19990702	JP 1997-337260	199712
			<	08
JP 3011165	В2	20000221	\	
PRIORITY APPLN. INFO.:			JP 1997-337260	199712
				08

<--

OTHER SOURCE(S): MARPAT 131:108713

GΙ

AB A phosphor of the elements comprises: a 5-cyanopromethane-BF2 complex I; Ar1-3N; Ar1,2NYNAr3,4; (NAr1,2) (NAr3,4) (NAr5,6) Z [Ar1-6 = (substituted) aromatic hydrocarbon, (substituted) aromatic heterocyclic; Z = trivalent (substituted) aromatic hydrocarbon, trivalent (substituted) aromatic heterocyclic; any two of Ar1-6 may form a ring]; II [L1 = (substituted) alkyl, (substituted) alkenyl, (substituted) cycloalkyl, (substituted) aromatic hydrocarbon, (substituted) aromatic heterocyclic; (substituted) aralkyl; n = 1-3; m = 0-2; M = (n+M) valent metal ion]; and/or III [R1-24 = H, halo, OH, (substituted) amino, nitro, cyano, (substituted) alkenyl, (substituted) cycloalkyl, (substituted) alkoxy, (substituted) aromatic hydrocarbon, (substituted) aromatic heterocyclic, (substituted) aralkyl, (substituted) aryloxy, (substituted) alkoxycarbonyl, carboxy; any two of R1-24 may form a ring; L2 =

(substituted) alkylene, (substituted) alkenylene; (substituted) cycloalkylene, (substituted) arylene, (substituted) aralkylene; l = 0, l; s = 1, 2; M = (s + 1) valent metal ion].

IT 134257-64-0

RL: PRP (Properties)

(organic electroluminescent device elements)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

IC ICM H05B033-14 ICS C09K011-06

CC 73-5 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

603-34-9, Triphenylamine 2085-33-8 4432-94-4 ΙT 6940-30-3 14642-34-3 15546-43-7 21658-79-7 24601-13-6 123173-91-1 **134257-64-0** 146162-54-1 157077-42-4 157077-43-5 157410-23-6 194214-31-8 194794-43-9 214341-85-2 221453-37-8

223735-62-4 227013-25-4 227013-26-5 227300-28-9 230956-26-0 230956-27-1 230956-28-2 230956-29-3 230956-30-6 230956-31-7

RL: PRP (Properties)

(organic electroluminescent device elements)

L28 ANSWER 29 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1999:341108 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 131:51819

TITLE: Organic electroluminescent device containing

perylene compound

INVENTOR(S): Higashiguchi, Itaru; Oda, Atsushi; Suzuki,

Toshiyasu; Tanaka, Taizo

PATENT ASSIGNEE(S): NEC Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 26 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11144870	A	19990528	JP 1997-304207	

199711 06

<--

JP 3104223

PRIORITY APPLN. INFO.:

B2 20001030

JP 1997-304207

<--

199711 06

OTHER SOURCE(S):

MARPAT 131:51819

GΙ

The device has a cathode and an anode sandwiching a light-emitting layer-containing organic thin film layer containing a perylene compound I (R1-8 = H, halogen, OH, NH2, NO2, cyano, alkyl, alkenyl, cycloalkyl, alkoxy, aromatic hydrocarbon, aromatic heterocyclic, aralkyl, aryloxy, alkoxycarbonyl, CO2H; R1-R8 may bond to form a ring; X = alkyl, alkenyl, cycloalkyl, aromatic hydrocarbon, aromatic heterocyclic, aralkyl). The device shows high luminance and high color purity.

IT 134257-64-0P

RL: DEV (Device component use); IMF (Industrial manufacture); MOA (Modifier or additive use); PREP (Preparation); USES (Uses) (red-light-emitting electroluminescent device containing perylene compound)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

IC ICM H05B033-14 ICS C09K011-06

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related

```
Properties)
     Section cross-reference(s): 24, 25, 74
ΙT
     603-34-9P 2085-33-8P 4432-94-4P 6940-30-3P 14642-34-3P
     15546-43-7P 24601-13-6P 123173-91-1P 123174-58-3P
     134257-64-0P 146162-54-1P 157077-42-4P 157077-43-5P
     194214-31-8P 194794-43-9P 214341-85-2P 221453-37-8P
     223735-62-4P 227013-18-5P 227013-19-6P 227013-20-9P
     227013-21-0P 227013-22-1P 227013-23-2P 227013-24-3P
     227013-25-4P 227013-26-5P 227300-28-9P
     RL: DEV (Device component use); IMF (Industrial manufacture); MOA
     (Modifier or additive use); PREP (Preparation); USES (Uses)
        (red-light-emitting electroluminescent device containing perylene
        compound)
L28 ANSWER 30 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER:
                        1998:725916 HCAPLUS Full-text
DOCUMENT NUMBER:
                        130:66107
                        Substituent effects on the electrochemical
TITLE:
                        oxidation of N, N', N''-triphenyl-1, 3, 5-
                        triaminobenzenes
AUTHOR(S):
                        Glatzhofer, Daniel T.; Morvant, Mark C.
                        Department of Chemistry and Biochemistry and
CORPORATE SOURCE:
                        Center for Electronic and Photonic Materials and
                        Devices, The University of Oklahoma, Norman, OK,
                        73019, USA
                         Journal of Physical Organic Chemistry (
SOURCE:
                        1998), 11(10), 731-736
                        CODEN: JPOCEE; ISSN: 0894-3230
                        John Wiley & Sons Ltd.
PUBLISHER:
DOCUMENT TYPE:
                        Journal
LANGUAGE:
                        English
     Correlation anal. of the oxidation potentials of N,N',N''-triphenyl- 1,3,5-
AΒ
     triaminobenzenes (TPABs) substituted at the para positions of the outer Ph
     rings shows a linear free energy relation with resonance-enhanced substituent
     parameters (\sigma^+). Reaction parameters (\rho^+) for oxidation of TPABs are -1.53, -
     1.45, and -1.34 (per substituent) in CH2Cl2, MeCN and propylene carbonate
     resp. The resonance enhancement and small magnitude of the \rho+ values are
     related to a significant but weak delocalization of charge onto the outer Ph
     rings in the MOs of radical cations resulting from the oxidation of TPABs.
     Data on the oxidation of p-substituted triphenylamines were treated similarly
     and gave a \rho+ value of -3.27 (per substituent) in MeCN, greater than that for
     TPABs owing to a more significant delocalization of charge onto the Ph rings
     in the MOs of the corresponding radical cations. To demonstrate their
     predictive value, these linear free energy correlations were used to estimate
     the oxidation potentials of similarly substituted N,N,N',N',N'',N''-
     hexaphenyl-1,3,5-triaminobenzenes, which are of interest as building blocks
     for mol. magnetic materials.
     165820-85-9
IΤ
     RL: FMU (Formation, unclassified); PRP (Properties); FORM
     (Formation, nonpreparative)
        (estimated reaction property for application to use in magnetic
       materials; substituent effects on electrochem. oxidation of
       N,N',N''-triphenyl-1,3,5-triaminobenzenes)
     165820-85-9 HCAPLUS
     1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexakis(4-methylphenyl)-,
CN
     radical ion(1+) (9CI) (CA INDEX NAME)
```

IT 134257-64-0

RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)

(estimated reaction property for application to use in magnetic materials; substituent effects on electrochem. oxidation of N, N', N''-triphenyl-1,3,5-triaminobenzenes)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

CC 22-7 (Physical Organic Chemistry)
 Section cross-reference(s): 72, 77

IT 159506-66-8 165820-85-9 217638-12-5D, derivs.

RL: FMU (Formation, unclassified); PRP (Properties); FORM (Formation, nonpreparative)

(estimated reaction property for application to use in magnetic materials; substituent effects on electrochem. oxidation of N,N',N''-triphenyl-1,3,5-triaminobenzenes)

IT 108-72-5D, 1,3,5-Benzenetriamine, derivs. 126738-30-5
134257-64-0

RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)

(estimated reaction property for application to use in magnetic

materials; substituent effects on electrochem. oxidation of

N,N',N''-triphenyl-1,3,5-triaminobenzenes)

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L28 ANSWER 31 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1997:747525 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 128:75007

ORIGINAL REFERENCE NO.: 128:14671a,14674a

TITLE: Models for charged organic high-spin systems;

synthesis and cyclic voltammetry of one- and

two-dimensional diarylaminobenzenes

AUTHOR(S): Yano, Masafumi; Furuichi, Mutsuo; Sato,

Kazunobu; Shiomi, Daisuke; Ichimura, Akio; Abe,

Kyo; Takui, Takeji; Itoh, Koichi

CORPORATE SOURCE: Department Chemistry, Faculty Science, Osaka

City University, Osaka, 558, Japan

SOURCE: Molecular Crystals and Liquid Crystals Science

and Technology, Section A: Molecular Crystals

and Liquid Crystals (1997), 306,

501-506

CODEN: MCLCE9; ISSN: 1058-725X
Gordon & Breach Science Publishers

DOCUMENT TYPE: Journal LANGUAGE: English

PUBLISHER:

OTHER SOURCE(S): CASREACT 128:75007

AB A series of 1,3-bis- (DABs) and 1,3,5-tris(diarylamino)benzenes (TABs) were synthesized as model precursors for polycationic π -conjugated high-spin systems. CV measurements at low temperature showed that the chemical

stability in solution of mono- and polycationic oxidation states of the various DABs and TABs derivs. depend on their structures. Correlation between the chemical stability of these cations and their mol. structure is discussed.

IT 126717-23-5P 126717-25-7P 134257-64-0P 177659-51-7P 177659-52-8P 189764-92-9P

189764-93-0P 189764-95-2P

RL: PRP (Properties); SPN (Synthetic preparation); PREP

(Preparation)

(synthesis and cyclic voltammetry of one- and two-dimensional

diarylaminobenzenes as models for charged organic high-spin systems)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 126717-25-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 134257-64-0 HCAPLUS
CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)(CA INDEX NAME)

RN 177659-51-7 HCAPLUS CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-fluorophenyl)-N1,N3,N5triphenyl- (CA INDEX NAME)

RN 177659-52-8 HCAPLUS
CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-chlorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 189764-92-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-fluorophenyl)-(CA INDEX NAME)

RN 189764-93-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-chlorophenyl)-(CA INDEX NAME)

RN 189764-95-2 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-triphenyl-N1,N3,N5-tris[4-(trifluoromethyl)phenyl]- (CA INDEX NAME)

22-7 (Physical Organic Chemistry)

CC

PUBLISHER:

GΙ

DOCUMENT TYPE: LANGUAGE:

```
92899-33-7P 126717-23-5P 126717-25-7P
ΙT
     126738-30-5P
                   127580-03-4P 134257-64-0P
     177659-51-7P 177659-52-8P
                               186494-37-1P
     186494-38-2P 186494-39-3P 186494-40-6P
                                                 186494-41-7P
     186494-42-8P 189764-91-8P 189764-92-9P
     189764-93-0P 189764-94-1P 189764-95-2P
     200728-88-7P 200728-89-8P
                                 200728-90-1P
                                                  200728-91-2P
     200728-92-3P
                   200728-93-4P
                                  200728-94-5P
                                                  200728-95-6P
     200728-96-7P
                   200728-97-8P
     RL: PRP (Properties); SPN (Synthetic preparation); PREP
     (Preparation)
        (synthesis and cyclic voltammetry of one- and two-dimensional
        diarylaminobenzenes as models for charged organic high-spin systems)
                               THERE ARE 12 CITED REFERENCES AVAILABLE
REFERENCE COUNT:
                        12
                               FOR THIS RECORD. ALL CITATIONS AVAILABLE
                               IN THE RE FORMAT
L28 ANSWER 32 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN
                        1997:249934 HCAPLUS Full-text
ACCESSION NUMBER:
DOCUMENT NUMBER:
                        126:343347
ORIGINAL REFERENCE NO.: 126:66773a,66776a
TITLE:
                        Models for positive charge fluctuation vs. spin
                        polarization in organic systems; synthesis and
                         cyclic voltammetry of 2D and 1D hyperbranched
                         \pi-aryl-based amines
                        Yano, M.; Furuichi, M.; Sato, K.; Shiomi, D.;
AUTHOR(S):
                         Ichimura, A.; Abe, K.; Takui, T.; Itoh, K.
CORPORATE SOURCE:
                        Department of Chemistry, Faculty of Science,
                        Osaka City University, Sumiyoshi-ku, Osaka, 558,
                        Japan
                        Synthetic Metals (1997), 85(1-3),
SOURCE:
                        1665-1666
                        CODEN: SYMEDZ; ISSN: 0379-6779
```

Elsevier Journal

English

^{*} STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB A series of substituted N,N,N',N',N'',N''-hexaphenyl-1,3,5- benzenetriamine (TAB) I (R = H, Cl, F, Me, OMe; R1 = H, Cl, F, Me, OMe, CF3) and N,N,N',N'-tetraphenyl-1,3-benzenediamine (DAB) II (same R; R2 = H, Me) were synthesized as models for pos. charged fluctuation vs. spin polarization in organic systems. CV measurements at low temperature showed that the chemical stability-in-solution of mono and poly-cationic oxidation states of the various HPTABs and TPDABs derivs. depend on their mol. structures and substituents.

60

IT 126717-23-5 126717-25-7 134257-64-0 177659-51-7 177659-52-8 189764-92-9 189764-93-0 189764-95-2

RL: PRP (Properties)

(preparation of phenylbenzenetriamines and phenylbenzenediamines as pos. charge fluctuation and spin polarization models)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 126717-25-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

RN 177659-51-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-fluorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 177659-52-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-chlorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 189764-92-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-fluorophenyl)-(CA INDEX NAME)

RN 189764-93-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexakis(4-chlorophenyl)-(CA INDEX NAME)

RN 189764-95-2 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-triphenyl-N1,N3,N5-tris[4-(trifluoromethyl)phenyl]- (CA INDEX NAME)

CC 25-4 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds) Section cross-reference(s): 22

IT 126717-23-5 126717-25-7 134257-64-0

177659-51-7 177659-52-8 189764-91-8 **189764-92-9 189764-93-0** 189764-94-1

189764-95-2

RL: PRP (Properties)

(preparation of phenylbenzenetriamines and phenylbenzenediamines as

pos. charge fluctuation and spin polarization models)

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L28 ANSWER 33 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1997:12764 HCAPLUS Full-text
DOCUMENT NUMBER: 126.52845

DOCUMENT NUMBER: 126:52845

ORIGINAL REFERENCE NO.: 126:10286h,10287a

Electrophotographic photoconductor using TITLE:

indandione or ninhydrin derivatives as positive

hole-transporting agent

INVENTOR(S): Imanaka, Yukikatsu; Myamoto, Eiichi

Mita Industrial Co Ltd, Japan PATENT ASSIGNEE(S): Jpn. Kokai Tokkyo Koho, 23 pp. SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08278642	А	19961022	JP 1995-84148	199504 10
PRIORITY APPLN. INFO.:			JP 1995-84148	199504 10

<--

OTHER SOURCE(S): MARPAT 126:52845

GΙ

The photoconductor consists of successively laminated a charge-generating AΒ layer and a charge-transporting layer containing indandiones or ninhydrins I [Y = CH2, C(OH)2, CO; R = H, alkyl, aryl, alkoxy, halo; m = 1-4] as pos. holetransporting agent. The charge-generating layer may contain bisazo, perylene, and/or phthalocyanine pigments. The photoconductor showing improved light resistance and stable changeability is applicable in repeating use. 168091-66-5 173436-45-8

RL: TEM (Technical or engineered material use); USES (Uses) (charge-transporting agent; in electrophotog. photoconductor using indandione or ninhydrin derivative as pos. hole-transporting agent)

RN168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

173436-45-8 HCAPLUS RN

1,3,5-Benzenetriamine, N1,N1,N3,N5-tetrakis[3-(1,1-CN dimethylethyl)phenyl]-N3,N5-bis(3-methylphenyl)- (CA INDEX NAME)

ΙC ICM G03G005-05

ICS G03G005-06

CC74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

89114-90-9 105465-13-2 124235-73-0 124591-09-9 ΙT 65181-78-4

132037-07-1 137133-15-4 142017-30-9 167377-22-2

168091-66-5 173436-45-8 173923-39-2

173923-43-8 173923-50-7 184865-77-8 184865-78-9

RL: TEM (Technical or engineered material use); USES (Uses) (charge-transporting agent; in electrophotog. photoconductor using indandione or ninhydrin derivative as pos. hole-transporting agent)

L28 ANSWER 34 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1996:306798 HCAPLUS Full-text

DOCUMENT NUMBER: 125:86058

ORIGINAL REFERENCE NO.: 125:16217a,16220a

TITLE: Magnetic properties of 1,3,5-tris[bis(p-

methoxyphenyl)amino]benzene cation radicals

AUTHOR(S): Yoshizawa, Kazunari; Hatanaka, Masahi; Ago,

Hiroki; Tanaka, Kazuyoshi; Yamabe, Tokio

CORPORATE SOURCE: Sch. Eng., Kyoto Univ., Kyoto, 606-01, Japan SOURCE: Bulletin of the Chemical Society of Japan (

1996), 69(5), 1417-1422

CODEN: BCSJA8; ISSN: 0009-2673

PUBLISHER: Nippon Kagakkai

DOCUMENT TYPE: Journal English LANGUAGE:

In order to pursue the possibility of charge-transfer organic ferromagnets, magnetic properties of the monocationic ClO4- and BF4- salts of 1,3,5tris[bis(p-methoxyphenyl)amino]benzene (TBMAB) were characterized by means of ESR and a Faraday-type magnetic balance. MNDO-PM3 calcns. predicted 1,3,5tris(diphenylamino)benzene (TDAB) dication and trication to be ground-state triplet and quartet, resp. Thus, these triaminobenzenes fulfill the necessary precondition for the appearance of intermol. ferromagnetic coupling based on McConnell's second model. Neg. Weiss consts. (-1 to 0 K) and low spin concns. (7-8%) were observed for TBMAB-ClO4 and TBMAB-BF4, although, according to this rule, intermol. ferromagnetic coupling is expected to occur for these systems.

126717-23-5, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-

hexaphenyl- 140848-82-4, 1,3,5-Benzenetriamine,

N,N,N',N'',N''-hexaphenyl-, radical ion(3+) 158414-88-1

, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical

ion(1+) 178455-26-0 RL: PRP (Properties)

(structure and energy of)

126717-23-5 HCAPLUS RN

1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX CN NAME)

140848-82-4 HCAPLUS RN

1,3,5-Benzenetriamine, N,N,N',N',N'',hexaphenyl-, radical ion(3+) (9CI) (CA INDEX NAME)

158414-88-1 HCAPLUS RN

1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical CN

ion(1+) (9CI) (CA INDEX NAME)

RN 178455-26-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',hexaphenyl-, radical ion(2+) (9CI) (CA INDEX NAME)

CC 22-10 (Physical Organic Chemistry)

Section cross-reference(s): 77
IT 126717-23-5, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-

hexaphenyl- 140848-82-4, 1,3,5-Benzenetriamine,

N,N,N',N',N'',N''-hexaphenyl-, radical ion(3+) 158414~88~1

, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical

ion(1+) 178455-26-0 RL: PRP (Properties)

(structure and energy of)

L28 ANSWER 35 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1996:257410 HCAPLUS Full-text

DOCUMENT NUMBER: 125:19635

ORIGINAL REFERENCE NO.: 125:3819a,3822a

TITLE: Striking effects of halogen substituents on the

glass-forming properties, glass-transition

temperatures and stabilities of the glassy state

of a new family of amorphous molecular

materials, 1,3,5-tris(4-

halogenophenylphenylamino) benzenes

AUTHOR(S): Kageyama, Hiroshi; Itano, Koji; Ishikawa,

Wataru; Shirota, Yasuhiko

CORPORATE SOURCE: Dep. Appl. Chem., Osaka Univ., Osaka, 565, Japan

SOURCE: Journal of Materials Chemistry (1996),

6(4), 675-6

CODEN: JMACEP; ISSN: 0959-9428

PUBLISHER: Royal Society of Chemistry

DOCUMENT TYPE: Journal LANGUAGE: English

AB A new class of π -electron star-burst mols., 1,3,5-tris(4-

halogenophenylphenylamino) benzenes, are synthesized for use as amorphous mol. materials. They readily form amorphous glasses, whereas the parent compound 1,3,5-tris(diphenylamino) benzene instantly crystallizes; the ease of glass formation, glass-transition temperature, and stability of the glassy state are

greatly affected by the type of halogen substituent.

IT 177659-51-7 177659-52-8 177659-53-9

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process)

(glass formation, glass-transition temps. and stabilities of 1,3,5-tris(4-halogenophenylphenylamino)benzene glasses)

RN 177659-51-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-fluorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 177659-52-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-chlorophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 177659-53-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-bromophenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

CC 65-7 (General Physical Chemistry) Section cross-reference(s): 69

IT 177659-51-7 177659-52-8 177659-53-9

RL: PEP (Physical, engineering or chemical process); PRP

(Properties); PROC (Process)

(glass formation, glass-transition temps. and stabilities of 1,3,5-tris(4-halogenophenylphenylamino)benzene glasses)

10/580,052

L28 ANSWER 36 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:1006971 HCAPLUS Full-text

DOCUMENT NUMBER: 124:189451

ORIGINAL REFERENCE NO.: 124:34807a,34810a

TITLE: Laminated electrophotographic photoreceptor containing diphenoquinone derivative and bisazo

pigment

INVENTOR(S): Myamoto, Eiichi; Imanaka, Yukikatsu

PATENT ASSIGNEE(S): Mita Industrial Co Ltd, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 25 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 07271069	A	19951020	JP 1994-64139	
				199403
				31
			<	
PRIORITY APPLN. INFO	0.:		JP 1994-64139	
				199403
				31

<--

OTHER SOURCE(S): MARPAT 124:189451

GΙ

$$R^{1}$$
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{2}
 R^{2}
 R^{2}

The photoreceptor has (A) a charge-transporting layer containing a hole-transporting agent, a diphenoquinone derivative I (R1-4 = H, alkyl, aryl, halo, NO2, CN, heterocycle) and optionally a charge-transporting agent NArlAr2Ar3 [Ar1-3 = (substituted) aryl] and (B) a charge-generating layer containing a bisazo pigment II [A1, A2 = coupler residue; R5 = H, (substituted) alkyl, aryl, heterocycle; n = 0, 1]. The photoreceptor shows improved repeatability.

IT 173723-10-9

RL: DEV (Device component use); USES (Uses) (charge-transporting agent; laminated electrophotog. photoreceptor containing diphenoquinone derivative and bisazo pigment)

RN 173723-10-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris[3-(1,1-dimethylethyl)phenyl]-N1,N3,N5-tris(3-methylphenyl)- (CA INDEX NAME)

IC ICM G03G005-05 ICS G03G005-06

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT 20676-79-3 105465-13-2 106614-54-4 124591-09-9 167377-22-2 167377-26-6 173723-10-9 173723-11-0

RL: DEV (Device component use); USES (Uses)

(charge-transporting agent; laminated electrophotog.

photoreceptor containing diphenoquinone derivative and bisazo pigment)

L28 ANSWER 37 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:1006970 HCAPLUS Full-text

DOCUMENT NUMBER: 124:160318

ORIGINAL REFERENCE NO.: 124:29487a,29490a

TITLE: Laminated electrophotographic photoreceptor

containing hindered amine in charge-transporting

laye

INVENTOR(S): Myamoto, Eiichi; Imanaka, Yukikatsu

PATENT ASSIGNEE(S): Mita Industrial Co Ltd, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 26 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 07271068	A	19951020	JP 1994-64138	199403 31
			<	
PRIORITY APPLN. INFO.:			JP 1994-64138	
				199403 31

OTHER SOURCE(S):

MARPAT 124:160318

GΙ

ΑВ The photoreceptor has (A) a charge-generating layer, preferably containing a bisazo pigment I [A1, A2 = coupler residue; R1 = H, (substituted) alkyl, aryl, heterocycle; m = 0, 1] and (B) a charge-transporting layer containing a hindered amine II (n = 10-20) and optionally a charge-transporting agent NAr1Ar2Ar3 [Ar1-3 = (substituted) aryl]. The photoreceptor shows improved repeatability.

ΙT 173436-45-8

RL: DEV (Device component use); USES (Uses)

(charge-transporting agent; laminated electrophotog.

photoreceptor containing hindered amine in charge-transporting layer)

RN 173436-45-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5-tetrakis[3-(1,1-

dimethylethyl)phenyl]-N3,N5-bis(3-methylphenyl)- (CA INDEX NAME)

- ICM G03G005-05 IC ICS G03G005-06
- CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
- ΙT 20676-79-3 105465-13-2 106614-54-4 124235-73-0 124591-08-8 124591-09-9 167377-22-2 167377-26-6 173436-45-8

RL: DEV (Device component use); USES (Uses)

(charge-transporting agent; laminated electrophotog.

photoreceptor containing hindered amine in charge-transporting layer)

L28 ANSWER 38 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:948472 HCAPLUS Full-text

DOCUMENT NUMBER: 124:145515

ORIGINAL REFERENCE NO.: 124:27061a,27064a

TITLE: Syntheses and redox properties of di-, tri-,

tetra-, and pentaamines

AUTHOR(S): Sasaki, Shigeru; Iyoda, Masahiko

CORPORATE SOURCE: Dep. Chem., Tokyo Metropolitan Univ., Hachioji,

192-03, Japan

SOURCE: Chemistry Letters (1995), (11),

1011-12

CODEN: CMLTAG; ISSN: 0366-7022

PUBLISHER: Nippon Kagakkai

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 124:145515

AB A series of di-, tri-, tetra-, and pentaamines were synthesized as precursors for corresponding di-, tri-, tetra-, and penta(aminium radical-cations) by the aryl-N bond formation reaction between aryl iodides and in situ prepared copper amide in refluxing pyridine. Cyclic voltammograms of meta-connected derivs. consisted of irreversible waves which imply side reactions in addition to oxidation of aminium radical-cations.

IT 165820-83-7P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of)

RN 165820-83-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis[4-(1,1-dimethylethyl)phenyl]- (CA INDEX NAME)

CC 25-4 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds)

IT 13050-56-1P 51545-35-8P 126738-30-5P **165820-83-7P** 173314-10-8P 173314-11-9P 173314-12-0P 173314-13-1P

173314-14-2P

L28 ANSWER 39 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:943391 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 124:145314

ORIGINAL REFERENCE NO.: 124:27021a,27024a

TITLE: High-spin polycations of a triminobenzene AUTHOR(S): Stickley, Kurt R.; Blackstock, Silac C.

CORPORATE SOURCE: Department Chemistry, Vanderbilt University,

Nashville, TN, 37235, USA

SOURCE: Molecular Crystals and Liquid Crystals Science

and Technology, Section A: Molecular Crystals

and Liquid Crystals (1995),

272(Proceedings of the Fourth International Conference on Molecule-Based Magnets, 1994, Pt.

2), 303-7

CODEN: MCLCE9; ISSN: 1058-725X

PUBLISHER: Gordon & Breach

DOCUMENT TYPE: Journal LANGUAGE: English

AB A symposium. Organic poly radical ions are mol. spin units which could be used in the construction of magnetic materials. They possess the feature of redox activation / deactivation, a potential means of reversibly controlling the mol. spin state of the unit, thus imparting a magnetic switch function. Here, we described the prospect of preparing tris(arylamines) suitably structured to yield long-lived cation, dication, and trication states of successively higher spin multiplicity. The preparation and oxidation of N,N,N',N'',N'''-hexa-p-anisyl-1,3,5-triaminobenzene (HATAB) are discussed, along with the ESR spectra of the HATAB higher oxidation states. The HATAB2+ and HATAB3+ ESR signals are assigned to triplet and quartet states resp. which, on the basis of cursory Curie-Weiss data, are tentatively assigned as the ground states of these poly cations, consistent with calculational results (AM1/UHF) on the unsubstituted system, 1,3,5-triaminobenzene dication and trication.

IT 165820-84-8 165820-85-9

RL: FMU (Formation, unclassified); PRP (Properties); FORM (Formation, nonpreparative)

(high-spin polycations of triminobenzene derivative)

RN 165820-84-8 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexakis[4-(1,1-dimethylethyl)phenyl]-, radical ion(1+) (9CI) (CA INDEX NAME)

RN 165820-85-9 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',hexakis(4-methylphenyl)-, radical ion(1+) (9CI) (CA INDEX NAME)

IT 134257-64-0 165820-83-7

RL: RCT (Reactant); RACT (Reactant or reagent) (high-spin polycations of triminobenzene derivative)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

RN 165820-83-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexakis[4-(1,1-dimethylethyl)phenyl]- (CA INDEX NAME)

CC 22-13 (Physical Organic Chemistry)

Section cross-reference(s): 77

IT 159506-66-8 159573-71-4 159573-72-5 165820-84-8

165820-85-9 165820-86-0

RL: FMU (Formation, unclassified); PRP (Properties); FORM

(Formation, nonpreparative)

(high-spin polycations of triminobenzene derivative)

IT 696-62-8, 4-Iodoanisole 35787-71-4 104216-56-0

134257-64-0 165820-81-5 165820-83-7

RL: RCT (Reactant); RACT (Reactant or reagent)

(high-spin polycations of triminobenzene derivative)

L28 ANSWER 40 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:746414 HCAPLUS Full-text

DOCUMENT NUMBER: 123:213115

ORIGINAL REFERENCE NO.: 123:37701a,37704a

TITLE: Electrophotographic photoreceptors containing

bisazo pigment

INVENTOR(S): Myamoto, Eiichi; Sumita, Keisuke; Iwasaki,

Hiroaki; Oki, Tsuneo

PATENT ASSIGNEE(S): Mita Industrial Co Ltd, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 24 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP 07120948	А	19950512	JP 1992-159311	100006
			<	199206 18
JP 3079293 PRIORITY APPLN. INFO.:	B2	20000821	JP 1992-159311	
				199206 18

<--

AB The photoreceptors comprise a conductive substrate coated with a photosensitive layer containing a bisazo pigment I [A = coupler residue; R1 = H, (substituted) alkyl, (substituted) aryl, (substituted) heterocycle; n = 0, 1] as a charge-generating material and a phenylenediamine derivative II [R2-6 = alkyl, alkoxy, halo, (N-substituted) amino, aryl, nitro, cyano; m = 0-5; p = 0-4] as a charge-transporting material. The photoreceptors show improved electrophotog, properties.

IT 168091-66-5

RL: DEV (Device component use); USES (Uses) (electrophotog. photoreceptor charge-transporting agent)

RN 168091-66-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)-(CA INDEX NAME)

IC ICM G03G005-06 ICS G03G005-06

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT 124591-08-8 124591-09-9 132037-07-1 142017-30-9 142017-33-2 156202-96-9 168091-64-3 168091-65-4 168091-65-4 168091-65-6

RL: DEV (Device component use); USES (Uses) (electrophotog. photoreceptor charge-transporting agent)

L28 ANSWER 41 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:636338 HCAPLUS Full-text

DOCUMENT NUMBER: 123:156360

ORIGINAL REFERENCE NO.: 123:27607a,27610a

TITLE: Electophotographic photoreceptors using triamine

compound as charge-transporting agent

INVENTOR(S): Nakamura, Yoichi; Kazama, Toyoki

PATENT ASSIGNEE(S): Fuji Electric Co Ltd, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 07084383	A	19950331	JP 1993-232113	
				199309
				20
			<	
PRIORITY APPLN. INFO.:			JP 1993-232113	
				199309
				20
			<	

GΙ

$$R6$$
 Me
 $R1$
 $R5$
 $R4$
 $R4$
 $R3$

AB The photoreceptors comprise a conductive substrate laminated with a photosensitive layer containing ≥1 triamine compound I (R1-6 = H, alkyl, alkoxy) as a charge-transporting agent. The photoreceptors show high photosensitivity and improved cyclicability. Thus, an Al-evaporated polyester film was coated with a charge-generating layer containing X-type metal-free phthalocyanine and with a charge-transporting layer containing I (R1-6 = H) to give a photoreceptor.

IT 167022-36-8 167022-37-9

RL: DEV (Device component use); PRP (Properties); USES (Uses) (electrophotog. photoreceptors containing benzenetriamines as charge transporters)

RN 167022-36-8 HCAPLUS

CN 1,3,5-Benzenetriamine, 2-methyl-N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 167022-37-9 HCAPLUS

CN 1,3,5-Benzenetriamine, 2-methyl-N1,N1,N3,N3,N5,N5-hexakis(3-methylphenyl)- (CA INDEX NAME)

IC ICM G03G005-06

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT 167022-36-8 167022-37-9

RL: DEV (Device component use); PRP (Properties); USES (Uses) (electrophotog. photoreceptors containing benzenetriamines as charge transporters)

L28 ANSWER 42 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:531024 HCAPLUS Full-text

DOCUMENT NUMBER: 124:29036
ORIGINAL REFERENCE NO.: 124:5579a,5582a

TITLE: Molecular orbital study on cationic states of

triphenylene and 1,3,5-

tris(diphenylamino)benzene as a design of charge-transfer organic ferromagnets

AUTHOR(S): Yoshizawa, Kazunari; Hatanaka, Masashi; Tanaka,

Kazuyoshi; Yamabe, Tokio

CORPORATE SOURCE: Inst. for Fundamental Chemistry, Kyoto, 606,

Japan

SOURCE: Synthetic Metals (1995), 71(1-3),

1829-30

CODEN: SYMEDZ; ISSN: 0379-6779

PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English

AB For the design of charge-transfer organic ferromagnets, the electronic structures of the neutral and mono-, di- and tricationic states of triphenylene and 1,3,5-tris(diphenylamino)benzene (TDAB) are studied by the PM3-MO method. The high-spin states of the di- and trications of TDAB lie below the corresponding low-spin states.

IT 126717-23-5, 1,3,5-Tris(diphenylamino)benzene 158414-88-1 171675-14-2 171746-15-9

78

RL: PRP (Properties)

(electronic structure of)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 158414-88-1 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical ion(1+) (9CI) (CA INDEX NAME)

RN 171675-14-2 HCAPLUS

CN Cyclohexadienediylium, 1,3,5-tris(diphenylamino)- (9CI) (CA INDEX NAME)

RN 171746-15-9 HCAPLUS

CN Cyclohexadienediylium, 1,3,5-tris(diphenylamino)-, radical ion(1+) (9CI) (CA INDEX NAME)

CC 22-2 (Physical Organic Chemistry)
 Section cross-reference(s): 77

Triphenylene dication 158414-88-1 171675-13-1,
Triphenylene trication 171675-14-2 171746-15-9
RL: PRP (Properties)
 (electronic structure of)

L28 ANSWER 43 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:439876 HCAPLUS Full-text

DOCUMENT NUMBER: 123:111466

ORIGINAL REFERENCE NO.: 123:19901a,19904a

TITLE: Cation radicals of 1,3,5-

tris(diarylamino)benzenes

AUTHOR(S): Stickley, Kurt R.; Blackstock, Silas C. CORPORATE SOURCE: Department of Chemistry, Vanderbilt Univ.,

Nashville, TN, 37235, USA

SOURCE: Tetrahedron Letters (1995), 36(10),

1585-8

CODEN: TELEAY; ISSN: 0040-4039

PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English

AB Cyclic voltammetry and ESR reveal the nature of the cation radicals of some 1,3,5-tris(diarylamino)benzenes. Results show effectively delocalized radical cations with long solution lifetimes in cold media but with much less kinetic stability at ambient temperature than their monomeric triarylaminium cation radical counterparts. Intramel ortho counting perhaps via

radical counterparts. Intramol. ortho coupling, perhaps via disproportionation, is a postulated cation radical decay mode.

IT 126717-23-59, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-

hexaphenyl 134257-64-09, 1,3,5-Benzenetriamine,

N, N, N', N'', N''-hexakis(4-methylphenyl) 165820-82-62

165820-83-7P 165820-84-8P 165820-85-9P

165905-29-3P 165967-01-1P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)

(preparation and properties of aryl-1,3,5-benzenetriamine radical cations)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

RN 165820-82-6 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-methylphenyl)-N1,N3,N5-tris(2,4,6-trimethylphenyl)- (CA INDEX NAME)

RN 165820-83-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexakis[4-(1,1-dimethylethyl)phenyl]- (CA INDEX NAME)

RN 165820-84-8 HCAPLUS
CN 1,3,5-Benzenetriamine, N,N,N',N',N'',h''-hexakis[4-(1,1-dimethylethyl)phenyl]-, radical ion(1+) (9CI) (CA INDEX NAME)

RN 165820-85-9 HCAPLUS
CN 1,3,5-Benzenetriamine, N,N,N',N',N'',hexakis(4-methylphenyl)-,
 radical ion(1+) (9CI) (CA INDEX NAME)

RN 165905-29-3 HCAPLUS
CN Cyclohexadienediylium, 1,3,5-tris[bis[4-(1,1-dimethylethyl)phenyl]amino]- (9CI) (CA INDEX NAME)

RN 165967-01-1 HCAPLUS
CN Cyclohexadienediylium, 1,3,5-tris[bis(4-methylphenyl)amino]- (9CI)
(CA INDEX NAME)

CC 22-10 (Physical Organic Chemistry) Section cross-reference(s): 25, 72 126717-23-5P, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''hexaphenyl 126738-30-5P, 1,3,5-Benzenetriamine, N, N, N', N', N'', N''-hexakis(4-methoxyphenyl) 134257-64-09, 1,3,5-Benzenetriamine, N,N,N',N',N'',hexakis(4-methylphenyl) 159506-66-8P, 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexakis(4methoxyphenyl), radical ion(1+) 159573-71-4P 165820-81-5P 165820-82-6P 165820-83-7P 165820-84-8P 165820-85-9P 165820-86-0P 165905-29-3P 165967-01-1P RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation and properties of aryl-1,3,5-benzenetriamine radical cations)

L28 ANSWER 44 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:198957 HCAPLUS Full-text DOCUMENT NUMBER: 122:30837

ORIGINAL REFERENCE NO.: 122:6091a,6094a

TITLE: Triplet Dication and Quartet Trication of a

Triaminobenzene

AUTHOR(S): Stickley, Kurt R.; Blackstock, Silas C.

CORPORATE SOURCE: Department of Chemistry, Vanderbilt University,

Nashville, TN, 37235, USA

SOURCE: Journal of the American Chemical Society (

1994), 116(25), 11576-7

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

AB 1,3,5-Tris(di-p-anisylamino)benzene is shown to possess solution-stable cation, dication, and trication oxidation states at low temperature The diand trication structures are ground-state triplet and quartet mols., resp.

IT 159506-65-7P

RL: PNU (Preparation, unclassified); PRP (Properties); PREP (Preparation)

rieparation)

(formation and ESR of)

RN 159506-65-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',hexaphenyl-, radical ion(1+), dimer (9CI) (CA INDEX NAME)

CM 1

CRN 158414-88-1 CMF C42 H33 N3

CCI RIS

CC 22-7 (Physical Organic Chemistry)

IT 159506-65-7P 159506-66-8P, 1,3,5-Tris(di-p-

anisylamino) benzene cation radical

RL: PNU (Preparation, unclassified); PRP (Properties); PREP

(Preparation)

(formation and ESR of)

L28 ANSWER 45 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1994:700714 HCAPLUS Full-text

DOCUMENT NUMBER: 121:300714

ORIGINAL REFERENCE NO.: 121:55045a,55048a

TITLE: Photocyclization reaction of 1,3,5-tris(diphenylamino)benzene

AUTHOR(S): Yoshikawa, Satoru; Kotani, Yoshiko; Shirota,

Yasuhiko

CORPORATE SOURCE: Faculty of Engineering, Osaka University, Suita,

565, Japan

SOURCE: Journal of Photopolymer Science and Technology (

1994), 7(1), 83-4

CODEN: JSTEEW; ISSN: 0914-9244

DOCUMENT TYPE: Journal LANGUAGE: English

Direct irradiation of a C6H6 solution of the title compound with light of AΒ wavelength >313 nm for 20 h under constant bubbling of O2 gave 70% 2,4bis(diphenylamino)-N-phenylcarbazole. The reaction proceeded via the excited triplet state of the starting compound

126717-23-5P, 1,3,5-Tris(diphenylamino)benzene ΙΤ

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(photocyclization reaction of tris(diphenylamino)benzene)

126717-23-5 HCAPLUS RN

1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX CN NAME)

27-11 (Heterocyclic Compounds (One Hetero Atom)) CC

Section cross-reference(s): 22

126717-23-5P, 1,3,5-Tris(diphenylamino)benzene

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(photocyclization reaction of tris(diphenylamino)benzene)

L28 ANSWER 46 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1994:640557 HCAPLUS Full-text

DOCUMENT NUMBER: 121:240557

ORIGINAL REFERENCE NO.: 121:43685a,43688a

Electrochemical oxidation of TITLE:

1,3,5-tris(diphenylamino)benzene (TDAB) for

polyradical material

Yoshizawa, Kazunari; Ito, Akihiro; Tanaka, AUTHOR(S):

Kazuyoshi; Yamabe, Tokio

Division of Molecular Engineering, Faculty of CORPORATE SOURCE:

Engineering, Kyoto University, Sakyo-ku, Kyoto,

606-01, Japan

SOURCE: Synthetic Metals (1994), 66(1), 81-3

CODEN: SYMEDZ; ISSN: 0379-6779

DOCUMENT TYPE: Journal LANGUAGE: English

Electrochem. coupling of 1,3,5-tris(diphenylamino)benzene (TDAB) occurs in dichloromethane or trichloroethane solution in the presence of tetrabutylammonium tetrafluoroborate or perchlorate. The obtained material contains radical cations, the spin concentration of which is of the order 1019 q-1. An anodic reaction pathway of TDAB is proposed from the dimerization mechanism of the triphenylaminium radical cation.

158414-89-29, 1,3,5-Tris(diphenylamino)benzene radical

ion(1+) tetrafluoroborate(1-)

RL: PEP (Physical, engineering or chemical process); PNU

(Preparation, unclassified); PRP (Properties); RCT (Reactant); PREP

(Preparation); PROC (Process); RACT (Reactant or reagent)

(electrochem. formation and IR spectrum and spin concns. of)

RN 158414-89-2 HCAPLUS

1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical

ion(1+), tetrafluoroborate(1-) (9CI) (CA INDEX NAME)

CRN 158414-88-1 CMF C42 H33 N3 CCI RIS

CM 2

CRN 14874-70-5 CMF B F4

CCI CCS

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

CC 72-2 (Electrochemistry)

Section cross-reference(s): 22, 35

IT 126717-23-5, 1,3,5-Tris(diphenylamino)benzene

RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)

(electrochem. oxidation for polyradical material)

L28 ANSWER 47 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1994:30300 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 120:30300
ORIGINAL REFERENCE NO.: 120:5709a,5712a

TITLE: Molecular orbital study on quartet molecules

with trigonal axis of symmetry

AUTHOR(S): Yoshizawa, Kazunari; Hatanaka, Masashi; Ito,

Akihiro; Tanaka, Kazuyoshi; Yamabe, Tokio Fac. Eng., Kyoto Univ., Kyoto, 606-01, Japan

CORPORATE SOURCE: Fac. Eng., Kyoto Univ., Kyoto, 606-01, Japan Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals

and Liquid Crystals (1993), 232,

323-32

CODEN: MCLCE9; ISSN: 1058-725X

DOCUMENT TYPE: Journal LANGUAGE: English

The ESR spectrum of the randomly oriented cationic triradical of 1,3,5-tris(diphenylamino)benzene (TDAB) is shown to agree well with the theor. prediction of a quartet (S = 32) mol. The electronic structures of non-Kekule-type isoelectronic mols. 1,3,5-trimethylenebenzene (TMB) and 1,3,5-triaminobenzene trication (TAB3+) are discussed by means of the ab initio MO (MO) method in the UHF scheme. In TMB the quartet state with planar D3h also lies 16.9 kcal/mol below the lowest doublet state with an orthogonal geometry where one of the amino groups is twisted out of the mol. plane. These quartet ground states result from the nearly threefold-degenerate orbitals consisting the nonbonding MOs. In addition, the quartet-doublet splitting energy of TDAB is investigated using the semiempirical AM1 method.

IT 140848-82-4, 1,3,5-Tris(diphenylamino)benzene triradical

trication

RL: PRP (Properties)

(ESR and quartet ground state structure and conformation of, MO calcn. of)

RN 140848-82-4 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical ion(3+) (9CI) (CA INDEX NAME)

CC 22-3 (Physical Organic Chemistry)
 Section cross-reference(s): 77

IT 140848-82-4, 1,3,5-Tris(diphenylamino)benzene triradical

trication

RL: PRP (Properties)

(ESR and quartet ground state structure and conformation of, MO calcn. of)

L28 ANSWER 48 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1993:682630 HCAPLUS Full-text

DOCUMENT NUMBER: 119:282630

ORIGINAL REFERENCE NO.: 119:50375a,50378a

TITLE: Polymorphism of starburst molecules:

methyl-substituted derivatives of
1,3,5-tris(diphenylamino)benzene

87

AUTHOR(S): Ishikawa, Wataru; Inada, Hiroshi; Nakano,

Hideyuki; Shirota, Yasuhiko

CORPORATE SOURCE: Fac. Eng., Osaka Univ., Suita, 565, Japan SOURCE: Journal of Physics D: Applied Physics (

1993), 26(8B), B94-B99

CODEN: JPAPBE; ISSN: 0022-3727

DOCUMENT TYPE: Journal LANGUAGE: English

AB Starburst mols. based on π -electron systems for making amorphous mol. materials, 1,3,5-tris(2-methylphenylphenylamino) benzene and 1,3,5-tris(4-methylphenylphenylamino) benzene, show polymorphism depending upon the history of heat treatment which involves crystallization via amorphous glasses as characterized by differential scanning calorimetry, x-ray diffraction, and polarizing microscopy.

(polymorphism of starburst mols.)

RN 126717-25-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

RN 142143-88-2 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(2-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

CC 75-7 (Crystallography and Liquid Crystals)

IT 126717-25-7, 1,3,5-Tris(4-methylphenylphenylamino)benzene 142143-88-2, 1,3,5-Tris(2-methylphenylphenylamino)benzene RL: PROC (Process)

(polymorphism of starburst mols.)

L28 ANSWER 49 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1992:601533 HCAPLUS Full-text

DOCUMENT NUMBER: 117:201533

ORIGINAL REFERENCE NO.: 117:34613a,34616a

TITLE: Organic thin-film electroluminescent element INVENTOR(S): Takahara, Shigeru; Fukuda, Nobuhiro; Ohashi,

Yutaka

PATENT ASSIGNEE(S): Mitsui Toatsu Chemicals, Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE 	APPLICATION NO.	DATE
 JP 04126790	А	19920427	JP 1990-247161	199009
			<	19
PRIORITY APPLN. INFO.:			JP 1990-247161	199009 19

<--

OTHER SOURCE(S): MARPAT 117:201533

GΙ

AB The element comprises a pair of transparent electrode layers (1) sandwiching a laminate of a hole-transport (2) and a phosphor (3) layer, wherein (2) contains a m-phenylenediamine derivative I {R1-5=H, (un)substituted-alkyl, -alkoxyl, -halo; M = H, alkyl, alkoxyl, halo, [R6(C6H4)][R7(C6H4)]N; R6,7 = H, (un)substituted-alkyl, -alkoxyl, -halo}. The element provides a stable long-life backlight for liquid display devices.

IT 134257-64-0

RL: USES (Uses)

(organic thin-film electroluminescent elements from, as hole transporter) $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac$

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

IC ICM C09K011-06

ICS H01L033-00; H05B033-14

CC 73-10 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 25

IT 92899-33-7 134257-64-0

RL: USES (Uses)

(organic thin-film electroluminescent elements from, as hole transporter)

L28 ANSWER 50 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1992:447799 HCAPLUS Full-text

DOCUMENT NUMBER: 117:47799
ORIGINAL REFERENCE NO.: 117:8503a,8506a

TITLE: ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene

AUTHOR(S): Yoshizawa, Kazunari; Chano, Akihisa; Ito,

Akihiro; Tanaka, Kazuyoshi; Yamabe, Tokio; Fujita, Hideo; Yamauchi, Jun; Shiro, Motoo CORPORATE SOURCE: Fac. Eng., Kyoto Univ., Kyoto, 606-01, Japan

SOURCE: Journal of the American Chemical Society (

1992), 114(15), 5994-8

CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE: Journal LANGUAGE: English

AB The ESR spectrum of the title species is discussed. The tricationic state was observed by cyclic voltammetry. The orange cationic triradical was prepared by oxidation with trifluoroacetic anhydride in the presence of tetrabutylammonium tetrafluoroborate in CH2Cl2. The ESR spectrum of the randomly oriented radicals in CH2Cl2 glass agrees well with the theor. prediction of a quartet (S = 3/2) spin state with a zero-field splitting parameter D' of 13.1 G (0.0012 cm-1). This is the first observation of a high spin state of a cationic radical.

IT 140848-82-4P

RL: PRP (Properties); FORM (Formation, nonpreparative); PREP (Preparation)

(formation and ESR of)

RN 140848-82-4 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical ion(3+) (9CI) (CA INDEX NAME)

IT 126717-23-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation, x-ray anal., and cyclic voltammetry of)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

CC 22-10 (Physical Organic Chemistry)

IT 140848-82-4P

RL: PRP (Properties); FORM (Formation, nonpreparative); PREP (Preparation)

(formation and ESR of)

IT 126717-23-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation, x-ray anal., and cyclic voltammetry of)

L28 ANSWER 51 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1992:417249 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 117:17249
ORIGINAL REFERENCE NO.: 117:3019a,3022a

TITLE: Phenylenediamine derivative charge-transporting

agent for electrophotographic photoreceptor

INVENTOR(S): Miyamoto, Eiichi; Muto, Nariaki; Maeda, Tatsuo;

Sumida, Keisuke; Kimura, Tadao

PATENT ASSIGNEE(S): Mita Industrial Co., Ltd., Japan

SOURCE: Eur. Pat. Appl., 60 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 455247	A2	19911106	EP 1991-107132	199105
				02
			<	
EP 455247	А3	19920513		
EP 455247	B1	19950913		
R: DE, FR, GB,	ΙT			
JP 04013775	A	19920117	JP 1990-116132	100005
				199005

September 24, 2008		10/580,052			
					02
TD 00000577	_	10060121	<		
JP 08009577 JP 04013776	B A	19960131 19920117	JP 1990-116133		
JP 04013776	A	19920117	JP 1990-110133		199005
					02
			<		-
JP 08009578	В	19960131			
JP 04013777	A	19920117	JP 1990-116134		
					199005
					02
TD 00000570	_	10060121	<		
JP 08009579 JP 04013778	B A	19960131 19920117	JP 1990-116135		
UP 04013776	A	19920117	JP 1990-110133		199005
					02
			<		-
JP 07059673	В	19950628			
PRIORITY APPLN. INFO.:			JP 1990-116132	Α	
					199005
					02
			< JP 1990-116133	A	
			JP 1990-116133	А	199005
					02
			<		Ŭ -
			JP 1990-116134	А	
					199005
					02
			<		
			JP 1990-116135	А	100005
					199005 02
			<		UZ
			`		

91

OTHER SOURCE(S): MARPAT 117:17249

GΙ

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and use of, as charge-transporting agent for electrophotog. photoreceptors)

^{*} STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB A m-phenylenediamine derivative having the general formula I, II, or III [R1-4 = alkyl, alkoxy, halogen, or (N-substituted) amino; R5, R6, R8 = alkyl, alkoxy, halogen, (N-substituted) amino, alkenyl, or aryl; R1 = alkyl, alkoxy, halogen, (N-substituted) amino, alkenyl, aryl, or an electron-attracting group selected from nitro, sulfo, cyano, COR9 (R9 = H, alkyl, or amino), carboxyl, or esterified carboxyl; l, m, o, p = an integer of 0-5; q, r = 0 or but q + r \geq1; S = an integer of 0-4] is used as a charge-transporting agent in an electrophotog, photoreceptor.

IT 134257-64-0P

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

```
ΙC
    ICM C07C211-54
    ICS C07C217-92; G03G005-06
CC
    74-3 (Radiation Chemistry, Photochemistry, and Photographic and
    Other Reprographic Processes)
ΙΤ
    124591-09-9P 134257-64-0P 142017-16-1P 142017-17-2P
    142017-18-3P
                  142017-19-4P
                                142017-20-7P
                                              142017-21-8P
    142017-22-9P
                 142017-23-0P 142017-24-1P
                                              142017-25-2P
    142017-26-3P 142017-27-4P 142017-28-5P
                                              142017-29-6P
    142017-30-9P
                 142017-31-0P
                                142017-32-1P
                                               142017-33-2P
    142017-34-3P
                 142017-35-4P
                                142017-36-5P
                                              142017-37-6P
    RL: SPN (Synthetic preparation); PREP (Preparation)
        (preparation and use of, as charge-transporting agent for
       electrophotog. photoreceptors)
```

L28 ANSWER 52 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1992:193607 HCAPLUS Full-text

DOCUMENT NUMBER: 116:193607

ORIGINAL REFERENCE NO.: 116:32789a,32792a

TITLE: Electron spin resonance of the quartet state of

1,3,5-tris(diphenylamino)benzene

AUTHOR(S): Yoshizawa, Kazunari; Chano, Akihisa; Ito,

Akihiro; Tanaka, Kazuyoshi; Yamabe, Tokio;

Fujita, Hideo; Yamauchi, Jun

CORPORATE SOURCE: Fac. Eng., Kyoto Univ., Kyoto, 606, Japan

SOURCE: Chemistry Letters (1992), (3), 369-72

CODEN: CMLTAG; ISSN: 0366-7022

DOCUMENT TYPE: Journal LANGUAGE: English

AB The ESR of the quartet state of 1,3,5-tris(diphenylamino)benzene (TDAB) trication is reported. The orange-colored cation radical is prepared by oxidation of TDAB with trifluoroacetic anhydride in a tetrabutylammonium tetrafluoroborate-CH2Cl2 solution The ESR spectrum reveals that the cation radical shows a typical quartet signal and that it is extremely stable at room temperature

140848-83-59

ΙT

RL: PRP (Properties); SPN (Synthetic preparation); PREP

(Preparation)

(preparation and ESR of)

RN 140848-83-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',N''-hexaphenyl-, radical ion(3+), tris[tetrafluoroborate(1-)] (9CI) (CA INDEX NAME)

CM 1

CRN 140848-82-4 CMF C42 H33 N3 CCI RIS

CM 2

CRN 14874-70-5

CMF B F4

IT 126717-23-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and oxidation of, with trifluoroacetic anhydride in tetrabutylammonium tetrafluoroborate-methylene chloride)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

CC 22-10 (Physical Organic Chemistry)

Section cross-reference(s): 77

IT 140848-83-5P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)

(preparation and ESR of)

IT 126717-23-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and oxidation of, with trifluoroacetic anhydride in tetrabutylammonium tetrafluoroborate-methylene chloride)

L28 ANSWER 53 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1991:256810 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 114:256810

ORIGINAL REFERENCE NO.: 114:43179a,43182a

TITLE: Molecular design for better charge transporting

organic materials. (II). Hole drift mobility and chemical structure of arylamine derivatives

AUTHOR(S): Tanaka, Hiroaki; Yamaguchi, Yasuhiro; Yokoyama,

Masaaki

CORPORATE SOURCE: Fac. Eng., Osaka Univ., Suita, 565, Japan

SOURCE: Denshi Shashin Gakkaishi (1990),

29(4), 366-72

CODEN: DSHGDD; ISSN: 0387-916X

DOCUMENT TYPE: Journal LANGUAGE: Japanese

AB Arylamine derivs. containing only N-Ph units, which can be taken as a structural min. unit for hole carrier, were synthesized, and their hole-drift mobilities in polymer dispersions were studied in relation to their chemical structure. The results validitated the previously proposed concept for developing better charge-transporting carriers and the dependence of their mobility on the chemical structure was thus observed for the first time, is related to the position of the N-Ph substituent on benzene. The dependence was interpreted by the more concrete concept of polyfunctionality and intramol.-mobility based on MO calcns. Among the compds. investigated, a new arylamine derivative, N,N,N',N'-tetrakis (3-methylphenyl)-m-phenylenediamine (m-PDA), showed a high-hole mobility.

IT 134257-64-0

RL: USES (Uses)

(hole-drift mobility in, as charge-transport material for electrophotog.)

RN 134257-64-0 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis(4-methylphenyl)-(CA INDEX NAME)

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT 4316-54-5 80223-29-6 92899-33-7 124591-08-8 124591-09-9 134257-63-9 **134257-64-0**

RL: USES (Uses)

(hole-drift mobility in, as charge-transport material for electrophotog.)

L28 ANSWER 54 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1990:188985 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 112:188985

ORIGINAL REFERENCE NO.: 112:31769a,31772a

TITLE: Electrophotographic photoreceptors containing a

triaminobenzene charge-transporting substance Ogata, Michiko; Watanuki, Tsuneo; Kamisaka, Tomosumi; Tsukamoto, Koji; Saruwatari, Norio

PATENT ASSIGNEE(S): Fujitsu Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

INVENTOR(S):

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 01219838	A	19890901	JP 1988-46501	
				198802
				29
			<	
PRIORITY APPLN. INFO.:			JP 1988-46501	
				198802
				29

<--

OTHER SOURCE(S): MARPAT 112:188985

GΙ

- AB Electrophotog. photoreceptors have a photoconductive layer containing a triaminobenzene derivative I [R, R1-5 = lower alkyl, lower alkoxy, (substituted) aryl, aralkyl] as a charge-transporting substance on an elec. conductive support. The photoreceptors exhibit high sensitivity, low residual potential, and good cyclicability. Thus, an Al-deposited polyester film was coated with a composition containing AlCl3 phthalocyanine and polyester resin and overcoated with a composition containing I (R = R1-5 = Ph) and polycarbonate resin to give a photoreceptor showing good sensitivity and cyclicability.
- IT 126717-23-5 126717-25-7

RL: USES (Uses)

(charge-transporting agent, for electrophotog. photoconductor, for repeated use)

RN 126717-23-5 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexaphenyl- (CA INDEX NAME)

RN 126717-25-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris(4-methylphenyl)-N1,N3,N5-triphenyl- (CA INDEX NAME)

IC ICM G03G005-06

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

IT 126717-23-5 126717-24-6 126717-25-7

126717-26-8 126738-30-5

RL: USES (Uses)

(charge-transporting agent, for electrophotog. photoconductor, for repeated use)

L28 ANSWER 55 OF 55 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1988:21113 HCAPLUS Full-text

DOCUMENT NUMBER: 108:21113

ORIGINAL REFERENCE NO.: 108:3571a,3574a

TITLE: Ab initio and semiempirical MO calculations of

intermolecular effective exchange integrals between organic radicals. Designing of organic

ferromagnet, ferrimagnet and ferromagnetic

conductors

AUTHOR(S): Yamaguchi, Kizashi; Toyoda, Yasuyuki; Nakano,

Masayoshi; Fueno, Takayuki

CORPORATE SOURCE: Fac. Eng. Sci., Osaka Univ., Toyonaka, 560,

Japan

SOURCE: Synthetic Metals (1987), 19(1-3),

87-92

CODEN: SYMEDZ; ISSN: 0379-6779

DOCUMENT TYPE: Journal LANGUAGE: English

AB The intermol. effective exchange integrals (IEEI) for sandwich dimers and trimers of organic radicals were calculated by the ab initio GMO method. The sign of the IEEI-values was variable, depending on the syn- and anticonformations of these clusters. The stereochem. selection rules obtained are applicable to designing liquid crystals, Langmuir-Blodgett (LB) membranes and organic solids, which conceivably exhibit (I) ferromagnetism and (II) ferrimagnetism. Several organic magnetic materials are proposed in relation

to the preceding and present theor. results of the high spin mols. and polymers.

IT 111830-46-7

RL: PRP (Properties)
 (spin d. and spin d. product for)

RN 111830-46-7 HCAPLUS

CN 1,3,5-Benzenetriamine, N,N,N',N',N'',hexakis(3,5-dimethylphenyl)-, radical ion(3+) (9CI) (CA INDEX NAME)

