Sample Questions

Information Technology

Subject Name: Automata Theory Course Code: ITC404

Semester: IV

Multiple Choice Questions

	Choose the correct option for following questions. All the Questions carry equal marks
1.	Which of the following is not a regular expression?
Option A:	(0+1)*. (00+11)*
Option B:	(0+1)-(01+01)*(0+1)*
Option C:	(01+11+10)*
Option D:	(1+2+0)*(1+2)*
2.	which language is represented by Regular expressions?
Option A:	Recursive language
Option B:	Regular language
Option C:	Context free language
Option D:	Ambiguous Language
3.	The set of all strings over $\sum =\{\}$ in which a single 0 is followed by any number of 1's or a single 1 followed by any number of 0's is
Option A:	01* + 10*
Option B:	01*10*
Option C:	0*1 + 1*0
Option D:	0*
4.	The language accepted by this DFA is

	q _D b q _l b
Option A:	ababaabaa
Option B:	abbbaa
Option C:	abbbaabb
Option D:	abbaabbaa
5.	Moore Machine is an application of:
Option A:	Finite automata without input
Option B:	Finite automata with output
Option C:	Non- Finite automata with output
Option D:	Non- Finite automata without output
6.	In regular expressions, the operator '*' stands for
Option A:	Concatenation
Option B:	Addition
Option C:	Selection
Option D:	Iteration
7.	The number of elements present in the ε -closure(B) in the given diagram.

	$\begin{array}{c c} & & & \\ & & & \\ \hline \\ A & & \\ \hline \\ 0 & & \\ \hline \\ 0 & & \\ \end{array}$
Option A:	0
Option B:	1
Option C:	2
Option D:	3
8.	Grammar is called ambiguous if
Option A:	Two or more productions have the same non-terminal on the left-hand side
Option B:	Derivation tree has more than one associated sentence
Option C:	There is a sentence with more than one derivation tree corresponding to it
Option D:	Brackets are not present in the grammar
9.	S -> aSa S->bSb S->a S->b The language generated by the above grammar over the alphabet {a,b} is the set of
Option A:	All Palindromes
Option B:	All Odd length Palindromes
Option C:	All even length palindromes
Option D:	String with null value
10.	Unrestricted grammar is also called Grammar

Option A:	Type 3
Option B:	Type 2
Option C:	Type 1
Option D:	Type 0
11.	The Trees which represent derivations in CFG are called
Option A:	Parse tree
Option B:	Derivation Tree
Option C:	Both A and B
Option D:	Binary Tree
12.	A Multitape Turing machine is powerful than a single tape Turing machine.
Option A:	More
Option B:	Less
Option C:	Equal
Option D:	Not equal
13.	At Pushdown automata is if there is at most one transition applicable to each configuration.
Option A:	Deterministic
Option B:	Non-Deterministic
Option C:	Finite
Option D:	Non-Finite
14.	Select value of n, if Push down automata is defined using n-tuples:
Option A:	7
Option B:	5

Option C:	6
Option D:	3
15.	In pushdown automata notation, what does the symbol Z ₀ represents?
Option A:	An element of G
Option B:	Initial stack symbol
Option C:	Top stack alphabet
Option D:	Head
16.	The language recognized by Turing machine is:
Option A:	Context free language
Option B:	Context sensitive language
Option C:	Recursively enumerable language
Option D:	Regular language
17.	In Multi Tape Turing machine there are
Option A:	Having more stack
Option B:	More than one input tapes of Turing machine
Option C:	Similar to the basic model of Turing machine
Option D:	More than one head going in only one direction
18.	Which of the following statement is false for a Turing machine?
Option A:	There exists an equivalent deterministic Turing machine for every non-deterministic Turing machine
Option B:	Turing decidable languages are closed under intersection and complementation
Option C:	Turing recognizable languages are closed under union and intersection
Option D:	Turing recognizable languages are closed under union and complementation

19.	Which of the following is the most general phase structured grammar?
Option A:	Regular
Option B:	Context-sensitive
Option C:	Context free
Option D:	Recursive
20.	The concept of FSA is much used in this part of the compiler
Option A:	Lexical analysis
Option B:	Parser
Option C:	Code Generation
Option D:	Code Optimization
21.	Which symbol is used to represent a Transition Function of Finite Automata?
Option A:	β
Option B:	δ
Option C:	Σ
Option D:	ε
22.	What is the language of Finite Automata?
Option A:	Recursive Language
Option B:	Context-Sensitive Language
Option C:	Regular Language
Option D:	Context-Free Language
23.	Number of states in NFA are
Option A:	Less than or equal to equivalent DFA

Option B:	Less than equivalent DFA
Option C:	Greater than equivalent DFA
Option D:	Greater than or equal to equivalent DFA
24.	What is the correct form of productions in Chomsky Normal Form?
Option A:	A →aB
Option B:	A →BC
Option C:	$A \rightarrow B$
Option D:	A →Ba
25.	The language WW ^R is accepted by-
Option A:	Deterministic Pushdown Automata
Option B:	Non-Deterministic Finite Automata
Option C:	Deterministic Finite Automata
Option D:	Non-Deterministic Pushdown Automata
26.	The transition δ (q1,a,a) = (q _r , ϵ) of PDA is -
Option A:	Performing delete and pop operation
Option B:	Performing delete operation only
Option C:	Performing pop operation only
Option D:	Performing push operation
27.	What is the language of the Turing machine?
Option A:	Regular language
Option B:	Context free language
Option C:	Recursive enumerable language
Option D:	Context sensitive language

28.	What is the limitation of regular grammar?
Option A:	Can generate simple strings
Option B:	Can only describe regular language
Option C:	Can't generate long strings
Option D:	Too difficult to understand
29.	DFA designed to accept strings with no more than 2 a's can accept:
Option A:	a b a b
Option B:	a b a a
Option C:	b a a a
Option D:	a b a b a b a b
30.	The length of Moore machine compared to Mealy machine is:
Option A:	Equal to Mealy machine for given input
Option B:	Smaller than Mealy machine for given input
Option C:	One smaller than Mealy machine for given input
Option D:	One longer than Mealy machine for given input
31.	Derivation process is one which-
Option A:	Parses given string
Option B:	Generates new string
Option C:	Convert string to right linear grammar
Option D:	Convert string to left linear grammar
32.	Language of PDA is:
Option A:	Recursively Enumerable language

Option B:	Regular Language
Option C:	Context sensitive language
Option D:	Context free language
33.	The tuple Σ in Turing machine represents-
Option A:	Tape symbol
Option B:	Output symbol
Option C:	Tape alphabet
Option D:	Input alphabet
34.	A Turing Machine can compute problems which are-
Option A:	Complex
Option B:	Simple
Option C:	Unsolvable
Option D:	Computable
35.	Which of the following languages are most suitable for implementing context free languages?
Option A:	С
Option B:	Perl
Option C:	Assembly Language
Option D:	Compiler language
36.	With reference to the process of conversion of a context free grammar to CNF, the number of variables to be introduced for the terminals are: $S\rightarrow AB0$ $A\rightarrow 001$ $B\rightarrow A1$
Option A:	3
Option B:	4

Option C:	2
Option D:	5
37.	Next move function δ of a Turing machine M = (Q, Σ , Γ , δ , q0, B, F) is a mapping
Option A:	$\delta: Q \times \Sigma \to Q \times \Gamma$
Option B:	$\delta: Q \times \Gamma \to Q \times \Sigma \times \{L, R\}$
Option C:	$\delta: Q \times \Sigma \to Q \times \Gamma \times \{L, R\}$
Option D:	$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
38.	1. Which of the following grammars are in Chomsky Normal Form:
Option A:	$S \rightarrow AB BC CD, A \rightarrow AB B \rightarrow CD, C \rightarrow 2, D \rightarrow 3$
Option B:	$S \rightarrow AB, S \rightarrow BCA 0 1 2 3$
Option C:	$S \rightarrow ABa, A \rightarrow aab, B \rightarrow Ac$
Option D:	$S \rightarrow ABa, A \rightarrow AAB, B \rightarrow Ac$
39.	0. The lexical analysis for a high level language needs the power of which one of the following machine models?
Option A:	Turing Machine
Option B:	Deterministic pushdown automata
Option C:	Finite state automata
Option D:	Non-Deterministic pushdown automata
40.	Which of the following relates to Chomsky hierarchy?
Option A:	Regular <cfl<csl<unrestricted< td=""></cfl<csl<unrestricted<>
Option B:	CFL <csl<unrestricted<regular< td=""></csl<unrestricted<regular<>
Option C:	CSL <unrestricted<cf<regular< td=""></unrestricted<cf<regular<>
Option D:	CSL <unrestricted< regular<cf<="" td=""></unrestricted<>

41.	(r+s)* is equivalent to:
Option A:	s*r*
Option B:	(r*s*)*
Option C:	r*s*
Option D:	rs
42.	$X \rightarrow Y \mid \alpha$ is the production rule for
Option A:	Regular Grammar
Option B:	Context Free Grammar
Option C:	Right Linear Grammar
Option D:	Left Linear Grammar
43	Let L={ab,aa,baa},then which of the following does not belong to the L*?
Option A:	ε
Option B:	abab
Option C:	abba
Option D:	aaabbaa
44.	Epsilon-closure of a state is a combination of self state and
Option A:	Initial state
Option B:	Final state
Option C:	Non-epsilon reachable state
Option D:	ε reachable state
45.	Number of states required to accept the string that ends with 10.
Option A:	1

Option B:	2
Option C:	3
Option D:	4
46.	The finite automata is called NFA when there exists for a specific input from current state to next state.
Option A:	More than one paths
Option B:	Single path
Option C:	No path
Option D:	Infinite paths
47.	Which of the following is FALSE:
Option A:	Any given mealy machine has an equivalent moore machine.
Option B:	Any given moore machine has an equivalent mealy machine.
Option C:	Mealy and moore machines are FSM with output capability.
Option D:	Moore machine does not have an equivalent mealy machine.
48.	The transition function of deterministic finite automata is and non-deterministic finite automata is
Option A:	$\delta: Q \times \Sigma \rightarrow Q$ $\delta: Q \times \Sigma \rightarrow 2^{\circ}$
Option B:	$\delta: Q \times \Sigma \rightarrow Q$ $\delta: Q \times \Sigma \rightarrow Q^2$
Option C:	$\delta: Q \times \Sigma \rightarrow \{Q,\Sigma\}$ $\delta: Q \times \Sigma \rightarrow 2^{\circ}$
Option D:	$\delta: Q \times \Sigma \longrightarrow \{Q, \Sigma\}$ $\delta: Q \times \Sigma \longrightarrow Q$
49.	Generation of a language using specific rule is called
Option A:	Optimization
Option B:	Derivation
Option C:	Analysis

Option D:	Transition		
50.	In a production rule, if one non-terminal derives another non-terminal then it is called as		
Option A:	ε-Production		
Option B:	Null Production		
Option C:	Useless Symbol		
Option D:	Unit Production		
51.	Which of following does not belong to 4-tuples of CFG?		
Option A:	Start Symbol		
Option B:	Terminal Symbol		
Option C:	Non-terminal symbol		
Option D:	End symbol		
52.	In simplification of grammar, the variable which produces an epsilon is called		
Option A:	terminal		
Option B:	nullable		
Option C:	Empty variable		
Option D:	Useless symbol		
53.	Which of the following productions are not accepted by Chomsky Grammar?		
Option A:	A→ABC		
Option B:	A→BC		
Option C:	A→a		
Option D:	$A \rightarrow \varepsilon$		

54.	is accepted by Non-deterministic PDA but not by deterministic PDA.			
Option A:	Even Palindromes			
Option B:	Odd Palindromes			
Option C:	Equal no of a's and b's			
Option D:	String ending with a particular terminal			
55.	The language, $\{a^nb^n \mid n \ge 1\}$ is generated by the CFG:			
Option A:	$S \rightarrow aSb \mid ab \mid \epsilon$			
Option B:	$S\rightarrow aaSbb \mid \epsilon$			
Option C:	$S \rightarrow aaSbb \mid aabb$			
Option D:	S→aSb ab			
56.	Transition function of Turing machine is given by:			
Option A:	$Q \times \Sigma \to Q \times \Sigma \times \{L,R\}$			
Option B:	$Q^* \times \Sigma \to Q \times \Sigma \times \{L,R\}$			
Option C:	$Q \times \Sigma * \rightarrow Q \times \Sigma \times \{L,R\}$			
Option D:	$Q \times \Sigma \to Q^* \times \Sigma^* \times \{L,R\}$			
57.	According to Chomsky hierarchy, Recursively Enumerable language come under			
Option A:	Type 0			
Option B:	Type 1			
Option C:	Type 2			
Option D:	Type 3			
58.	Which of the following can accept even palindrome over {a,b}?			
Option A:	Deterministic Push down Automata			

Option B:	Turing machine
Option C:	NDFA
Option D:	DFA
59.	If L and L ' are recursively enumerable, then L is
Option A:	regular
Option B:	Context sensitive
Option C:	Context free
Option D:	recursive
60.	In a compiler, keywords of a language are recognized during:
Option A:	Parsing of the program
Option B:	Code generation
Option C:	Lexical analysis of the program.
Option D:	Data flow analysis

Descriptive Questions

10 marks each

- 1. Explain the concepts, acceptance by final state and acceptance by empty stack of a Pushdown automata. Construct a PDA for the language, $L=\{a^{2n}b^n \mid n \ge 1\}$
- 2. Give a formal definition of Turing Machine (TM). Design a TM that performs the addition of two unary numbers. (transition table and diagram both are expected)
- 3. Write a short note on Chomsky hierarchy. Convert the following grammar to Chomsky Normal Form:

 $S \rightarrow ABA$

$$A \rightarrow aA \mid \varepsilon$$

 $B \rightarrow bB \mid \varepsilon$

- 4. Construct a Mealy machine and Moore machine for the following: For input from, Σ^* , where $\Sigma^=$ (0,1), if the input ends in '101', the output should be 'x'; if the input ends in '110', output should be 'y' otherwise output should be 'z'. (transition table and diagram both are expected)
- 5. Convert the given grammar G to CNF. G: S \rightarrow a | aA | B |C , A \rightarrow aB | ϵ , B \rightarrow Aa, C \rightarrow aCD | a, D \rightarrow ddd.
- 6. Design a Turing Machine for 2's Complement of a binary number
- 7. Design PDA for odd length palindrome let $\Sigma = \{0, 1\}, L = \{wcw^R\}$ where $w \in \Sigma^*$
- 8. Construct DFA for given regular expression (a+b)* aba (a+b)*
- 9. Design Turing Machine to accept language L={ $a^nb^nc^n \mid n \ge 1$ }
- 10. Consider the following grammar

$$S \rightarrow aB \mid bA$$

$$A \rightarrow a \mid aS \mid bAA$$

$$B \rightarrow b \mid bS \mid aBB$$

with S as start symbol, find Left most derivation, Right most derivation and parse tree for the string 'bbaaabbaba'.

11. Construct Turing Machine accepting palindromes over $\Sigma = \{a,b\}$

5 marks each

1. Give formal definition of NFA. Construct a DFA equivalent to the NFA: $\{p, q, r, s\}, \{0,1\}, \delta, p, \{q,s\}\}$, where ' δ ' is given by:

Q Σ	0	1
→p	q,r	q
q*	r	q,r
r	S	p
s*		p

2. Consider the following CFG:

$$G = \{ (S, A), (a, b), P, S \},\$$

where P consists of:

 $S \rightarrow aAS \mid a$

 $A \rightarrow SbA \mid SS \mid ba$

Derive the string 'aabbaa' using leftmost derivation and rightmost derivation.

- 3. Give regular expression for
- a. All strings containing an even number of 0's over the alphabet $\{0,1\}$
- b. All strings that do not end with 'ab' over the alphabet {a,b}
- 4. Construct a DFA that reads a strings made up of {0,1} and accepts only those strings which end in either '00' or '11'. (transition table and diagram both are expected)
- 5. Briefly explain the types of Turing Machine.
- 6. Construct a Context-free grammar equivalent to the following Push Down Automata (described with the help of the given set of equations):

```
\delta(q_0, b, Z_0) = \{(q_0, ZZ_0)\}
```

- $\delta(q_0, \varepsilon, Z_0) = \{(q_0, \varepsilon)\}$
- $\delta(q_0, b, Z) = \{(q_0, ZZ)\}$
- $\delta(q_0, a, Z) = \{(q_1, Z)\}$
- $\delta(q_1, b, Z) = \{(q_0, \epsilon)\}$
- $\delta(q_1, a, Z_0) = \{(q_0, Z_0)\}$
- 7. Construct DFA to accept strings that ends with substring 110 for $\Sigma = \{0,1\}$
- 8. Design a Moore machine which counts the occurrence of substring bab in an input string for $\Sigma = \{a, b\}$.
- 9. Give Regular Expressions for
 - i) For all strings over a,b which contains exactly 3 occurrence of b over $\Sigma = \{a,b\}$
 - ii) For all strings over 0,1 that starts with 10 and ends with 01
- 10. Let G be the grammar having the following set of production.

 $S \rightarrow ABA$,

 $A \rightarrow aA \mid bA \mid$

B→bbb

Find LMD and RMD for string "ababbbba"

- 11. Write Short Note on Chomsky Hierarchy
- 12. Compare and Contrast between FA, PDA and TM
- 13. Give Regular Expression for a language over the alphabet $\Sigma = \{a,b\}$ containing at most two a's
- 14. Convert Following CFG grammar into CNF

Sa→AbB

 $A \rightarrow Aa|a$

 $B \rightarrow bB|b$

- 15. Design PDA to check well formedness of parenthesis.
- 16. Design a Moore Machine for binary adder
- 17. State and explain closure properties of regular languages
- 18. Differentiate between Moore and Mealy machine