A Thomas Ware Capstone Project.

Solutions Calculator Club product development

Lesson 1

ELTR-160
Project Management

"Plan For Success."

Solutions Calculator Club Product Development Project Charter

Scope:

Tasked with developing an educational tool to show how a Computational System and Subsystems processes inputs and outputs.

Resources:

A research grant for a development **budget** of \$20,000.

The project **research phase time frame** of 4 months and an **implementation phase time frame** was 4 months.

Stakeholders:

Solutions calculator Club are the *investors*Thomas Ware is the *project developer*Trevor Murray *consultant*UFV potential *client*Ben Eater *8-bit computer kit Supplier*

Risks and assessments:

Scope of the project for a single person, supply chain issues like chip shortages or obsolete components and shipping time if replacements are required. Limitations of the ALU and memory size of registers.

CMNS-125 Communication For Professionals

APA Style
Research Report:
The History of Calculators and the Technological Innovations
Email Correspondence:
Club Proposal to Student Union
Revision of Club Proposal Email
Bad News Email
Club Presentation

Solutions Calculator Club Product Development

CMNS-125 Research:

History and Innovations of the Calculator

History and Innovations of the Calculator

The Abacus

- Binary
- Weighed Sum
- Register

The first calculating device known was the **Abacus**. Invented in China around the **2nd century B.C**. However, Abacus-like devices are first attested from ancient Mesopotamia around **2700 B.C**.

History and Innovations of the Calculator

		8										
	Not		AND		OR							
INPUT	OUTPUT	INPUT A	INPUT B	OUTPUT	INPUT A	INPUT B	OUTPUT					
TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE					
FALSE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE					
	98	FALSE	TRUE	FALSE	FALSE	TRUE	TRUE					
		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE					

ELTR-130 Data Logic

Module 1 The System Clock

Module 2

Registers

A register B register

Instruction Register

Arithmetic unit (ALU)

Module 3

Memory Address Register (MAR) Random access memory (RAM)

Program counter

Module 4

CPU control logic

Output Register (Display 7 Segment)

The Bus communication

Flag Register (Carry bit, Zero)

Module 5 AC adapter for development of project and safety.

ELTR-170 Electronic System Integration

Wiring subsystems

Wire Preparation

Troubleshooting

Interconnections of Modules

ELTR-110
Manufacturing Processes

Project 1

Using MULTISIM Design a 12v Power Supply

ELTR-110
Manufacturing Processes

Project 2

Building The Clock Module

The Clock Module

ELTR-100 Electrical Network Analysis

Analysis Project 1 using Project 2 from ELTR-110

- Cicuit Analysis of 555 Timer
 - Circuit Schematic Designed with Discrete components

Analysis Porject 2 using Project 1 from ELTR-110

- Power Supply Circuit
 - How to safely measure AC Power and the Power Supply Circuit

ELTR-150 Solid State Semiconductor Devices

Use Analysis Project from ELTR-100

Build a 555 Timer from Discrete components

Revision of ELTR-110 Project 1

 Revise Power Supply to work with your Capstone Project for ELTR-190

ELTR-150: 555 Timer from Discrete components

Example: Photo of prototype on Breadboard

ELTR-130 Digital Logic Systems

Use Analysis Project 1 from ELTR-100

Build AND OR NOT Logic from Discrete components

Use LOGISIM to construct Logical Circuits for:

 Comparator, Adders, Latches, Registers, Counters, Encoders, Decoders, Selector/Multiplexers, ALU, 7 Segment Display, Control Logic, and CPU

ADD and Subtraction Operations

ELTR-130 Data logic

How Do Binary Values ADD?

Full Adder (1 of 1)

Logisim ALU RUN Here.

ADD	A and B are summed
ADD with CARRY	A and B and a Carry-In bit are all summed
SUBTRACT	B is subtracted from A (or vice versa)
SUBTRACT with BORROW	B is subtracted from A (or vice versa) with borrow (carry-in)
NEGATE	A is subtracted from zero, flipping its sign (from - to +, or + to -)
INCREMENT	Add 1 to A
DECREMENT	Subtract 1 from A
PASS THROUGH	All bits of A are passed through unmodified

Write to memory Read from memory

Registers are groups of latches, which holds a single number, and the number of bits in a register is called its width.

RAM or Random Access Memory Persistent Memory

Memory, Address Instructions Run Mode And Program Mode

Control Logic

- 2 Bit Counter used in Instruction Step Counter
- 4 Bit Counter used in Program Counter
- 4 Bit Counter used in OUTPUT Display

Figure from LOGISIM File.

Binary To Decimal to 7 Segment Conversion

Ben Eater's 8 Bit Computer Instructions

NAME	11	NSTR	JCTIC	NC		S	TE	Р	HLT	MI	RI	RO	10	II	Al	AO	EO	SU	BI	OI	CE	CO	J	FL
FETCH	X	X	X	X	. 1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	
	Χ	Х	X	Х		0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	
LDA	0	0	0	1		0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1		0	1	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	
	0	0	0	1		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ADD	0	0	1	0		0	1	0	0	4	0	0	4	0	0	0	0	0	0	0	0	0	٥	- 6
ADD	0	0	1	0		-		1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
	0	0	1	0	Ш	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2
OUT	1	1	1	0		0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	
	1	1	1	0		0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Control Logic and Programing

CENTRAL PROCESSING UNIT(CPU)


```
CHNGBASE
                                                VAR NAME:
ØØ1
     C1rHome
ØØ2 Input "DIGITS: ",D
003 Input "NUMBER: ",A
004 Input "IN BASE: ",B
005 Input "TO BASE: ",F
ØØ6 Ø→T
ØØ7 Ø→C
\emptyset \emptyset 8 For (J, \emptyset, D-1)
ØØ9 int(A/(1Ø^(D-1-J)))→C
Ø1Ø C*B^(D-1-J)+T→T
Ø11 A-C*1Ø^(D-1-J)→A
Ø12 End
Ø13 1→P
Ø14 Ø→E
\emptyset15 For(K,\emptyset,15)
Ø16 int(T/(F^(15-K)))→E
Ø17 Output(5,P,E)
                                         EXAMPLE OF ASM PROGRAM
Ø18 T-(E*F^(15-K))→T
                                         On a TI-xxxx
Ø19 P+1→P
020
     End
Ø21
     Disp "
```

ELTR-180 Networking and Data Communications

Project 1 build a 6502 to network with a partner: https://eater.net/6502

Use the 6502 to do practical lessons with error correction: https://eater.net/crc

Ben Eater's 8 Bit Computer Testing and TroubleShooting

Testing:

Run a Functional Module Check. You may Need to hookup the required INPUTS and OUTPUTS to see if the Module is operational.

Running the subsystem checks before networking them together or through the BUS will help isolate for troubleshooting.

ADD another module Test operations if good then add one more and Test. Do this until they Master System is completed.

TroubleShooting:

Problem

Clock has an inverter OUTPUT and only lights if the LED is place in circuit with Cathode to pin 8 of the 74LS08 AND Gate and Anode to VCC.

Solution

Maksure the ICs have VCC and Ground connected

Power distribution Problems

Why does an LED light when the INPUT is 0 v?

Solution

Trace signal on bus by remove each modules connection on by one until you find the one. Sometimes damaged ICS will send random signals,

APA Citation

Eater, B. (n.d.). 8 Bit Computer. Eater.Net. https://eater.net/8bit

8 bit-computer.jpeg image

X,B.(n.d). Using the 555 Timer. *DroneBot Workshop*. https://dronebotworkshop.com/555-timer/

image of 555 timer schematic

Eater,B. [Ben Eater]. (Year, Month Day). Clock logic - 8-bit computer clock - part 4 [Video]. YouTube.

https://www.youtube.com/watch?v=SmQ5K7UQPMM

Anne, C. [Crash Course]. (Year, Month Day). Crash Course- The Central Processing Unit (CPU) Crash Course Computer Science #7 [Video]. YouTube.

https://www.youtube.com/watch?v=FZGugFqdr60&t=548s

10:28 CPU SLIDE

GUIDE TO GETTING STARTED

Thank You