

计量经济学(Econometrics)

第5章:一元回归:模型形式扩展

- 5.1 过原点回归
- 5.2 尺度与测量单位
- 5.3 标准化变量回归

- 5.4 对数线性模型
 - 5.5 半对数模型
 - 5.6 倒数模型
- 5.7 函数模型的选择

5.1过原点回归

过原点回归的模型形式

过原点回归 (regression through the origin): 没有截距项的线性模型 在实践中, 双变量PRM过原点回归采取如下的形式:

$$Y_i = eta_2 X_i + u_i$$

适用于这种模型的例子:

- 弗里德曼的持久收入假说(permanent income hypothesis);
- 资本资产定价模型(the capital Asset Pricing Model, CAPM)等。

资本资产定价模型(the capital Asset Pricing Model, CAPM):

$$ig(ER_i-r_fig)=eta_iig(ER_m-r_fig)$$

其中:

- ER_i 证券 i的期望回报率;
- ER_m 市场证券组合的期望回报率(如标准普尔S&P500综合股票指数);
- r_f 为无风险回报率(90天国债回报率)。
- β_i 为系数,表明第 i种证券回报率与市场互动程度的度量。(注:不要把这个 β_i 和双变量回归的斜率系数 β_2 混同起来。)

一个大于1的 β_i 意味着证券i是一种易波动或进攻型证券;一个小于1的 β_i 意味着证券i是一种防御型证券。

$$egin{aligned} R_i - r_f &= eta_i \left(R_m - r_f
ight) + u_i \ R_i - r_f &= lpha_i + eta_i \left(R_m - r_f
ight) + u_i \end{aligned}$$

- 如果CAPM成立,则预期 α_i 为0。
- 这样的模型如何估计呢?

这类模型的SRM可以写成:

$$Y_i = \hat{eta}_2 X_i + \mathrm{e}_i$$

OLS方法下求解回归系数:

$$egin{aligned} \sum \mathrm{e}_i^2 &= \sum \left(Y_i - \hat{eta}_2 X_i
ight)^2 \ rac{\partial \sum \mathrm{e}_i^2}{\partial \hat{eta}_2} &= 2 \sum \left(Y_i - \hat{eta}_2 X_i
ight) (-X_i) = 0 \ \hat{eta}_2 &= rac{\sum X_i Y_i}{\sum X_i^2} = rac{\sum X_i \left(eta_2 X_i + u_i
ight)}{\sum X_i^2} = eta_2 + rac{\sum X_i u_i}{\sum X_i^2} \ E\left(\hat{eta}_2
ight) &= eta_2 \end{aligned}$$

OLS方法下求解得到的方差:

$$egin{align} Var\left(\hat{eta}_2
ight) &= E\Big(\hat{eta}_2 - eta_2\Big)^2 \ &= Eigg[rac{\sum X_i u_i}{\sum X_i^2}igg]^2 \ &= rac{\sigma^2}{\sum X_i^2} \ \hat{\sigma}^2 &= rac{\sum e_i^2}{n-1}; \quad \operatorname{E}\left(\hat{\sigma}^2
ight) = \sigma^2 \ \end{cases}$$

OLS估计量对比: 无截距和有截距的差异:

$$Y_i = \hat{eta}_2 X_i + \mathrm{e}_i \ \hat{eta}_2 = rac{\sum X_i Y_i}{\sum X_i^2} \ Var\left(\hat{eta}_2
ight) = rac{\sigma^2}{\sum X_i^2} \ \hat{\sigma}^2 = rac{\sum \mathrm{e}_i^2}{n-1}$$

$$egin{align} Y_i &= \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i \ \hat{eta}_2 &= rac{\sum x_i y_i}{\sum x_i^2} \ Var\left(\hat{eta}_2
ight) &= rac{\sigma^2}{\sum x_i^2} \ \hat{\sigma}^2 &= rac{\sum \mathrm{e}_i^2}{n-2} \ \end{aligned}$$

第一,对有截距项的模型来说,总有 $\sum e_i = 0$;对无截距项的模型来说, $\sum e_i = 0$ 不一定成立,只有 $\sum e_i X_i = 0$ 成立。 第二,对有截距项的模型,判定系数 $r^2 \geq 0$;但是,对无截距模型来说, r^2 时可能出现负值。

过原点回归的判定系数 r^2 的计算公式如下:

$$egin{align} TSS &= \sum y_i^2 = \sum Y_i^2 - n \overline{Y}^2 \ RSS &= \sum e_i^2 = \sum Y_i^2 - \hat{eta}_2^2 \sum X_i^2 \ r^2 &= 1 - rac{RSS}{TSS} > 0; \quad r^2 = 1 - rac{RSS}{TSS} < 0; \end{aligned}$$

因此,对于无截距模型,我们给出拟合优度指标为毛判定系数 (Raw r^2):

$$Raw \quad r^2 = rac{\sum \left(X_i Y_i
ight)^2}{\sum X_i^2 \sum Y_i^2}$$

启示:

- 第一,尽管模型含有截距项,但若该项的出现是统计上不显著的(即统计上等于零),则从任何实际方面考虑,都可认为这个结果是一个过原点回归模型。
- 第二,如果在模型中确实有截距,而我们却执意拟合一个过原点回归,我们就犯了设定错误。

1980.01-1999.12年间104 种股票构成的一个指数的超额回报率 $Y_t(\%)$ 和英国总体股票指数的超额回报率 $X_t(\%)$ 的月度数据共n=240个月观测。其中超额回报率指的是超过无风险资产回报率的部分。

		-1/1/	
year	month	X *	Y *
1980	1	7.2634	6.0802
1980	2	6.3399	-0.9242
1980	3	-9.2852	-3.2862
1980	4	0.7933	5.2120
1980	5	-2.9024	-16.1642
1980	6	8.6132	-1.0547
1980	7	3.9821	11.1724
1980	8	-1.1502	-11.0633

Showing 1 to 8 of 240 entries

Previous

2 3 4

0 N

. .

资本资产定价模型 (CAPM): 散点图

下面先直接给出二者的散点图:

资本资产定价模型 (CAPM):回归结果

两类模型回归结果对比:

无截距模型:

$$Y_i = \hat{eta}_2 X_i + \mathrm{e}_i$$

$$\widehat{Y} = +1.16X$$

- (t) (15.5320)
- (se) (0.0744)

$$({
m fitness})R^2=0.5023; ar{R^2}=0.5003 \ F^*=241.24; p=0.0000$$

有截距模型:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i$$

$$\widehat{Y} = -0.45 + 1.17X$$

(t)
$$(-1.2329)$$
 (15.5350)

$$(se) \qquad (0.3629) \qquad (0.0754)$$

$$({
m fitness})R^2=0.5035; ar{R^2}=0.5014 \ F^*=241.34; p=0.0000$$

5.2尺度与测量单位

案例数据

回归分析中,因变量Y和解释变量X的测量单位不同会造成回归结果的差异吗?

Year •	GPDIB *	GPDIM *	GDPB \$	GDPM \$	GPDIB_std \$	GDPB_std \$
1990	886.6	886600	7112.5	7112500	-1.2942	-1.3459
1991	829.1	829100	7100.5	7100500	-1.4624	-1.3550
1992	878.3	878300	7336.6	7336600	-1.3185	-1.1768
1993	953.5	953500	7532.7	7532700	-1.0986	-1.0287
1994	1042.3	1042300	7835.5	7835500	-0.8389	-0.8002
nowing 1 to 5 of 1	6 entries		A HOR.		Previous 1	2 3 4 Next

>

- GPDIB = 以2000年**10亿**(Billions)美元计国内私人总投资; GPDIM = 以2000 年**百万**(millions)美元计国内私人总投资;
- GDPB = 以2000年10亿(Billions)美元计GDP总值; GDPM = 以2000年百万

16 / 63

尺度变换

把某一测量单位下的回归模型,变换为另一测量单位的回归模型:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i \ Y_i^* = \hat{eta}_1^* + \hat{eta}_2^* X_i + \mathrm{e}_i^*$$

尺度因子: $\omega_1; \omega_2$ 分别表示为Y和X的尺度因子。

$$Y_i^* = \omega_1 Y_i \quad X_i^* = \omega_2 X_i$$

如果 $(Y_i; X_i)$ 都是以**10亿**(billion)美元计量的,我们把它们改为用**百万**(million)美元去度量,就会有:

$$Y_i^* = 1000 Y_i; \quad X_i^* = 1000 X_i; \quad \omega_1 = \omega_2 = 1000$$

OLS估计

进行数据转换,新模型的OLS估计量如下:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i \ Y_i^* = \hat{eta}_1^* + \hat{eta}_2^* X_i + \mathrm{e}_i^* \ Y_i^* = \omega_1 Y_i; \quad X_i^* = \omega_2 X_i; \quad e_i^* = \omega_1 e_i \ \hat{eta}_2^* = rac{\sum x_i^* y_i^*}{\sum x_i^{*2}} \qquad \qquad \Leftarrow \mathrm{var} \Big(\hat{eta}_2^* \Big) = rac{\sigma^{*2}}{\sum x_i^{*2}} \ \hat{eta}_1^* = \overline{Y}^* - \hat{eta}_2^* \overline{X}^* \qquad \qquad \Leftarrow \mathrm{var} \Big(\hat{eta}_1^* \Big) = rac{\sum X_i^{*2}}{n \sum x_i^{*2}} \cdot \sigma^{*2} \ \hat{\sigma}^{*2} = rac{\sum e_i^{*2}}{n-2} \$$

OLS估计

进行数据转换,两个模型下OLS估计量有如下关系:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i \ Y_i^* = \hat{eta}_1^* + \hat{eta}_2^* X_i + \mathrm{e}_i^* \ Y_i^* = \omega_1 Y_i; \quad X_i^* = \omega_2 X_i; \quad e_i^* = \omega_1 e_i \ \hat{eta}_1^* = (\omega_1) \, \hat{eta}_1; \qquad \hat{eta}_2^* = \left(\frac{\omega_1}{\omega_2}\right) \hat{eta}_2 \ \mathrm{var}ig(\hat{eta}_2^*ig) = \left(\frac{\omega_1}{\omega_2}\right)^2 \mathrm{var}ig(\hat{eta}_2ig); \qquad \mathrm{var}ig(\hat{eta}_1^*ig) = \omega_1^2 \mathrm{var}ig(\hat{eta}_1ig) \ \hat{\sigma}^{*2} = \omega_1^2 \hat{\sigma}^2 \ r_{xy}^2 = r_{x*y*}^2 \ \end{cases}$$

相关结论

$$egin{aligned} Y_i &= \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i \ Y_i^* &= \hat{eta}_1^* + \hat{eta}_2^* X_i + \mathrm{e}_i^* \ Y_i^* &= \omega_1 Y_i; \quad X_i^* = \omega_2 X_i; \quad e_i^* = \omega_1 e_i \end{aligned}$$

模型对比, 得出如下主要结论:

- $\omega_1 = \omega_2$,即尺度因子相等时,**斜率系数**及其标准误不受尺度从(Y_i, X_i)到(Y_i^*, X_i^*)的影响。**截距**及其标准误却放大或缩小至 ω_1 倍。
- X_i 尺度不变 $\omega_2 = 1$, Y_i 尺度因子 ω_1 变化,那么,斜率和截距系数以及它们各自的标准误都要乘以同样的因子 ω_1 。
- Y_i 尺度不变 $\omega_1 = 1$,而 X_i 尺度因子 ω_2 变化,那么,斜率系数及其标准误都要乘以因子 $1/\omega_1$,而截距系数及其标准误不变。

案例分析结果

GPDI和GDP都以十亿美元计算:

$$\widehat{GPDIB} = -926.09 + 0.25 GDPB$$
(t) (-7.9590) (19.5824)
(se) (116.3577) (0.0129)
(fitness) $R^2 = 0.9648; \bar{R}^2 = 0.9623$

 $F^* = 383.47; p = 0.0000$

GPDI和GDP都以百万美元计算:

$$egin{aligned} \widehat{GPDIM} &= -926090.39 &+ 0.25GDPM \ (t) & (-7.9590) & (19.5824) \ (se) & (116357.6965)(0.0129) \ (fitness) & R^2 &= 0.9648; \ ar{R}^2 &= 0.9623 \ F^* &= 383.47; \ p &= 0.0000 \end{aligned}$$

GPDI以十亿美元,而GDP以百万美元:

$$egin{aligned} \widehat{GPDIB} = -926.09 & +0.00GDPM \ (t) & (-7.9590) & (19.5824) \ (se) & (116.3577) & (0.0000) \ (fitness) & R^2 = 0.9648; ar{R}^2 = 0.9623 \ F^* = 383.47; p = 0.0000 \end{aligned}$$

GPDI以百万美元而GDP 以十亿美元:

$$\widehat{GPDIM} = -926090.39 + 253.52GDPB$$
(t) (-7.9590) (19.5824)
(se) $(116357.6965)(12.9465)$
(fitness) $R^2 = 0.9648; \; \bar{R^2} = 0.9623$

5.3标准化变量回归

标准化变量回归

假设如下双变量回归:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + \mathrm{e}_i$$

对Y和X作如下标准化变换,得到相应的标准化变量:

$$Y_i^* = rac{Y_i - \overline{Y}}{S_Y}; \quad X_i^* = rac{X_i - \overline{X}}{S_X}$$

• 标准化变量的特征是: 其均值总是0 和标准差总是1。

标准化变量回归

得到如下新的双变量回归模型:

$$egin{align} Y_i^* &= {\hat eta}_1^* + {\hat eta}_2^* X_i + e_i^* \ &= {\hat eta}_2^* X_i + e_i^* \ \end{pmatrix}$$

- 对标准化的回归子和回归元做回归, 截距项总是零!
- 实际上变成了过原点回归模型!

标准化变量回归

模型比较与结论:

- 第一,由于标准化回归本质上是一个过原点回归,而我们在已经指出通常过原点回归的不能使用 r^2 ,所以我们就没有给出其 r^2 值。
- 第二,传统模型的系数与这里的系数之间存在一种有趣的关系。在双变量情形中,这种关系如下(证明过程略:自学练习题!):

$${\hat{eta}}_2^* = rac{\mathrm{S}_X}{\mathrm{S}_Y}{\hat{eta}}_2$$

• 第三,在多元回归中,变量标准化可以去除多个自变量之间数量尺度(量纲)的差别,因而具有一定的优点!

标准化数据变换

下面我们对以十亿美元计的GPDIB和GDPB进行标准化数据变换:

Year •	GPDIB \$	GDPB •	GPDIB_std	GDPB_std •
1990	886.6	7112.5	-1.2942	-1.3459
1991	829.1	7100.5	-1.4624	-1.3550
1992	878.3	7336.6	-1.3185	-1.1768
1993	953.5	7532.7	-1.0986	-1.0287
1994	1042.3	7835.5	-0.8389	-0.8002
1995	1109.6	8031.7	-0.6421	-0.6521
1996	1209.2	8328.9	-0.3508	-0.4277
1997	1320.6	8703.5	-0.0250	-0.1450
				7, 8

Showing 1 to 8 of 16 entries

Previous

2

Next

OLS比较

GPDI和GDP都以十亿美元计算:

$$egin{aligned} \widehat{GPDIB} &= -926.09 & +0.25GDPB \ (\mathrm{t}) & (-7.9590) & (19.5824) \ (\mathrm{se}) & (116.3577) & (0.0129) \ (\mathrm{fitness}) & R^2 &= 0.9648; \bar{R}^2 &= 0.9623 \ F^* &= 383.47; p &= 0.0000 \end{aligned}$$

标准化变量后的模型估计:

$$egin{aligned} \widehat{GPDIB}_std = &+ 0.98GDPB_{std} \ (ext{t}) & (20.2697) \ (ext{se}) & (0.0485) \ (ext{fitness}) & R^2 = 0.9648; & ar{R}^2 = 0.9624 \ F^* = 410.86; & p = 0.0000 \end{aligned}$$

回归模型的函数形式

对数线性模型

半对数模型

倒数模型

5.4 对数线性模型

对数线性模型的形式

指数回归模型 (exponential regression model)

$$Y_i=eta_1 X_i^{eta_2} e^{u_i}$$

可化为:

$$egin{aligned} \ln Y_i &= \ln eta_1 + eta_2 \ln X_i + u_i \ \ln Y_i &= lpha + eta_2 \ln X_i + u_i \end{aligned} \quad \Leftarrow lpha = \ln eta_1 \end{aligned}$$

这种模型被称为对数-对数(log-log), 双对数(double-log)或对数一线性(log-linear)模型。进而有:

$$Y_i^* = lpha + eta_2 X_i^* + u_i \qquad \Leftarrow egin{bmatrix} Y_i^* = \ln Y_i; & X_i^* = \ln X_i \end{bmatrix}$$

从而可用OLS方法可以得到BLUE估计量:

$$Y_i^* = \hat{lpha} + \hat{eta}_2 X_i^* + \mathrm{e}_i$$

对数线性模型:学会如何测度弹性

双数线性模型:

$$egin{align} & \ln Y_i = lpha + eta_2 \ln X_i + u_i \ & Y_i^* = \hat{lpha} + \hat{eta}_2 X_i^* + \mathrm{e}_i & \Leftarrow \hat{lpha} = \ln \hat{eta}_1 \ & eta_2 = rac{d(\ln Y)}{d(\ln X)} = rac{rac{1}{Y}dY}{rac{1}{Y}dX} = rac{dY/Y}{dX/X} \ \end{aligned}$$

斜率就是Y对X的弹性!如果Y代表商品需求量Q,X代表商品价格P,则就表示该商品的需求价格弹性。

学会如何测度弹性

双数线性模型有如下性质:

- Y对X的弹性在整个研究范围内是常数,一直为 β_2 ,因此这种模型也称为不变弹性模型(constant elasticity model)。
- 虽然 $\hat{\alpha}$ 和 $\hat{\beta}_2$ 是无偏估计量,但是进入原始模型的参数 β_1 的估计值 $\hat{\beta}_1$ 却是有偏估计,而且 $\beta_1 = antilog\hat{\alpha}$ 。

耐用品支出与个人消费总支出的关系:

obs \$	EXPDUR \$	PCEXP *	ln_expdur •	ln_pcexp •
2003-I	971.4	7184.9	6.8787	8.8797
2003-II	1009.8	7249.3	6.9175	8.8887
2003-III	1049.6	7352.9	6.9562	8.9029
2003-IV	1051.4	7394.3	6.9579	8.9085
2004-I	1067	7479.8	6.9726	8.9200
		30 60		

Showing 1 to 5 of 15 entries

其中: PCEXP=个人消费支出, EXPDUR=耐用品消费支出, 单位10亿美元(按2000年价格计)

Previous

Next

假设我们想求出耐用品支出对个人消费总支出的斜率。 将耐用品支出相对于个人消费总支出做散点图:

假设我们想求出耐用品支出对个人消费总支出的弹性。

将耐用品支出的对数相对于个人消费总支出的对数做散点图:

耐用品消费案例中, 我们可以实证得到如下的双对数模型:

$$egin{aligned} \widehat{log(EXPDUR)} &= -7.54 & +1.63log(PCEXP) \ (t) & (-10.5309) & (20.3152) \ (se) & (0.7161) & (0.0801) \ (fitness) & R^2 &= 0.9695; ar{R}^2 &= 0.9671 \ F^* &= 412.71; p &= 0.0000 \end{aligned}$$

5.5 半对数模型

线性到对数模型

怎样测量增长率?经济学家、企业人员与政府常常对于求出某些经济变量的增长 率感兴趣,如人口、GNP、货币供给、就业、生产力、贸易赤字等。

$$Y_t = Y_0 (1+r)^t$$

 Y_t =时期t的劳务实际支出; Y_0 =劳务实际支出的初始值(为2002年第四季度末的 值); r是Y的复合增长率。

劳务支出数据

obs	† t †	EXPSERVICES	\$ ln_expservices	\$
2003-I	1	4143.3	8.3292	
2003-II	2	4161.3	8.3336	
2003-III	3	4190.7	8.3406	
2003-IV	4	4220.2	8.3476	

Showing 1 to 4 of 15 entries

Previous

Next

线性到对数模型

半对数模型(semilog models):

- 线性到对数模型(log-lin model): 只有回归子Y取对数
- 对数到线性模型(lin-log model): 只有回归元X取对数

线性到对数模型

半对数模型的形式:

$$egin{aligned} Y_t &= Y_0 (1+r)^t \ \ln Y_t &= \ln Y_0 + t \ln (1+r) \ \ln Y_t &= eta_1 + eta_2 t \ \ln Y_t &= eta_1 + eta_2 t + u_t \end{aligned} & \Leftarrow [eta_1 = \ln Y_0; \quad eta_2 = \ln (1+r)]$$

斜率 β_2 的经济学含义:

$$eta_2 = rac{d \ln Y}{dt} = rac{dY/Y}{dt}$$

恒定相对增长率模型:上述模型描述了因变量Y的恒定相对增长率

- 恒定相对增长模型: $\beta_2 > 0$
- 恒定相对衰减模型: $\beta_2 < 0$

散点图1

散点图2

OUS估计

半对数模型:线性到对数模型

$$\ln Y_t = eta_1 + eta_2 t + u_t \qquad \Leftarrow [eta_1 = \ln Y_0; \quad eta_2 = \ln(1+r)] \ log(EXP\widehat{SERVICES}) = +8.32 \qquad +0.01t \ (t) \qquad (5186.2999) \quad (39.9648) \ (se) \qquad (0.0016) \qquad (0.0002) \ (fitness) \qquad R^2 = 0.9919; \; ar{R}^2 = 0.9913 \ F^* = 1597.18; p = 0.0000$$

$$egin{aligned} \hat{eta}_2 &= \ln(1+r) = 0.00705 \\ r &= \operatorname{antilog}\!\left(\hat{eta}_2
ight) - 1 \\ &= \operatorname{antilog}\!\left(0.00705
ight) - 1 \\ &= 0.00708 \end{aligned}$$

- $\hat{eta}_2 = 0.00705$ 表示瞬时增长率
- r = 0.00708表示复合增长率

回归结果比较

下面做一个对比模型。线性趋势模型: Y直接对时间t回归:

$$Y_t = \beta_1 + \beta_2 t + u_t$$

$$EXPS\widehat{ERVICES} = +\ 4111.54 + 30.67t$$
(t) $(655.5628) (44.4671)$
(se) $(6.2718) (0.6898)$
(fitness) $R^2 = 0.9935; \ \bar{R}^2 = 0.9930$
 $F^* = 1977.32; p = 0.0000$

解释如下:在2003年第1季度至2006年第3季度期间,劳务支出以每季度约300亿美元的绝对速度(注意不是相对速度)增加,即劳务支出有上涨的趋势。

对数到线性模型(lin-log model)

如果我们的目的是测量X的一个百分比变化时,Y的绝对变化量,则要用对数到线性模型(lin-log model)。

$$Y_t = eta_1 + eta_2 \ln X_i + u_i$$
 $eta_2 = rac{dY}{d \ln X} = rac{dY}{dX/X} = rac{\Delta Y}{\Delta X/X}$ $\Delta Y = eta_2 rac{\Delta X}{X}$

例如: 恩格尔支出(Engel expenditure) 模型:

• "用于食物的总支出以算术级数增加, 而总支出以几何级数增加。"

食物支出 (foodexp) 与家庭总支出 (totalexp) 的关系:

obs 💠	foodexp		totalexp		\Rightarrow]	ln_t	otalexp)	
1	217	382	5.9454								
2	196		388					5.9610			
3	303		391 5.9687								
4	270		415		6.0283						
5		456			6.1225						
ing 1 to 5 of 55 entries		28	HORI	Previous	1	2	3	4	5	11	Next

原始数据作散点图:

对家庭总支出取对数ln(totalexp),再做散点图:

构建如下对数到线性模型:

$$Y_t = eta_1 + eta_2 \ln X_i + u_i$$

家庭食物支出案例的OLS估计结果如下:

$$\widehat{foodexp} = -1283.91 + 257.27 log(totalexp)$$

- (t) (-4.3848) (5.6625)
- (se) (292.8105) (45.4341)

$$({
m fitness}) \quad R^2 = 0.3769; ar{R^2} = 0.3652 \ F^* = 32.06; \; p = 0.0000$$

对比构建如下经典线性模型及其OLS 估计结果:

$$Y_t = \beta_1 + \beta_2 X_i + u_i$$

$$\widehat{foodexp} = +\ 94.21 \ +\ 0.44 totalexp$$

- $(t) \qquad (1.8524) \qquad (5.5770)$
- $(se) \qquad (50.8563) \qquad (0.0783)$

(fitness)
$$R^2 = 0.3698; \bar{R^2} = 0.3579$$

 $F^* = 31.10; \ p = 0.0000$

5.6 倒数模型

倒数模型

形式:

$$Y_i = eta_1 + eta_2\left(rac{1}{X_i}
ight) + u_i \,.$$

特征: 总有一条内在的渐近线!

- a.平均固定成本(AFC)曲线
- b.菲利普斯曲线 (Phillips curve)
- c. 恩格尔曲线(the Engel expenditure curve)

$$X o\infty; \quad eta_2\left(rac{1}{X}
ight) o 0; \quad Y oeta_1$$

儿童死亡率(CM, 千分数)与人均GNP(PGNP, 1980年的人均GNP)的关系:

obs	≜	CM	*	PGNP	\$			re	p_F	PGN	P		<u>A</u>
1		128		1870					0.0	005			
2		204		130					0.0	077			
3		202		310					0.0	032			
4		197		570					0.0	018			
5		96		2050					0.0	005			
howing 1 to 5 of 64 entries	es			AL NORTH	Previous	1	2	3	4	5		13	Next

huhuaping@ 第5章: 一元回归: 模型形式扩展

5.6 倒数模型

原始数据作散点图:

把PGNP取倒数 1/PGNP再作散点图:

构建如下倒数模型:

$$Y_i = eta_1 + eta_2\left(rac{1}{X_i}
ight) + u_i$$

儿童死亡率案例倒数模型的OLS估计 结果如下:

$$egin{aligned} \widehat{CM} &= +81.79 & +27273.17 rep_{PGNP} \ (ext{t}) & (7.5511) & (7.2535) \ (ext{se}) & (10.8321) & (3759.9992) \ (ext{fitness}) R^2 &= 0.4591; ar{R}^2 &= 0.4503 \ F^* &= 52.61; \ p &= 0.0000 \end{aligned}$$

对比构建如下经典线性模型:

$$Y_t = \beta_1 + \beta_2 X_i + u_i$$

其OLS估计结果如下:

$$egin{aligned} \widehat{CM} &= \ +157.42 & -0.01 PGNP \ (\mathrm{t}) & (15.9893) & (-3.5157) \ (\mathrm{se}) & (9.8456) & (0.0032) \ (\mathrm{fitness}) R^2 &= 0.1662; ar{R}^2 &= 0.1528 \ F^* &= 12.36; \ p &= 0.0008 \end{aligned}$$

通货膨胀率(infrate, %)与失业率(unrate, %)的关系:

year •	infrate	• unrat	e \$	rep_unrate	\$		
1960	1.7182	5.5	0.1818				
1961	1.0135	6.7		0.1493			
1962	1.0033	5.5		0.1818			
1963	1.3245	5.7		0.1754			
1964	1.3072	5.2		0.1923			
ving 1 to 5 of 47 entries		St. Moti.	Previous 1	2 3 4 5 10	Next		

huhuaping@ 第5章: 一元回归: 模型形式扩展

原始数据作散点图:

把失业率unrate取倒数 1/unrate再作散点图:

构建如下倒数模型:

$$Y_i = eta_1 + eta_2\left(rac{1}{X_i}
ight) + u_i$$

菲利普斯曲线案例倒数模型的OLS估计结果如下:

$$egin{array}{ll} \widehat{infrate} = + \ 7.37 & -17.37 rep_{unrate} \ (ext{t}) & (4.1723) & (-1.8212) \ (ext{se}) & (1.7670) & (9.5364) \ (ext{fitness}) & R^2 = 0.0686; ar{R}^2 = 0.0479 \ F^* = 3.32; & p = 0.0752 \end{array}$$

对比构建如下经典线性模型及其OLS 估计结果:

$$Y_t = \beta_1 + \beta_2 X_i + u_i$$

$$\widehat{infrate} = +\ 0.81 + 0.59 unrate$$

$$(t) \qquad (0.4642) \qquad (2.0377)$$

$$(se) \qquad (1.7347) \qquad (0.2874)$$

(fitness)
$$R^2 = 0.0845; \bar{R^2} = 0.0641$$

 $F^* = 4.15; \quad p = 0.0475$

5.7函数形式的选择

技巧和经验

选择适当模型时,需要一些技巧和经验:

- 1. 模型背后的理论(如菲利普斯曲线)可能给出了一个特定的函数形式。
- 2. 最好能求出回归子相对回归元的变化率〈即斜率〉和回归子对回归元的弹性(见下页ppt)。
- 3. 所选模型的系数应该满足一定的先验预期。
- 4. 有时多个模型都能相当不错地拟合一个给定的数据集。
- 5. 通常不应该过分强调这个指标
- 6. 在有些情形中,确定一个特定的函数形式不是那么容易,此时我们或许可以使用所谓的博克斯-考克斯变换(Box-Cox transformations)

计算表一览

模型	方程	斜率	点弹性	平均弹性
models	eq	$\frac{dY}{dX}$	$rac{dY}{dX} \cdot rac{X_i}{Y_i}$	$\frac{dY}{dX} \cdot \frac{ar{X}}{ar{Y}}$
M_1 线性模型	$Y_i = \beta_1 + \beta_2 X_i + u_i$	eta_2	$\beta_2 X_i/Y_i$	$eta_2ar{X}/ar{Y}$
M_2 过原点模型	$Y_i = eta_2 X_i + u_i$	eta_2	$eta_2 X_i/Y_i$	$eta_2ar{X}/ar{Y}$
M_3 双对数模型	$ln(Y_i) = eta_1 + eta_2 ln(X_i) + u_i$	$eta_2 Y_i/X_i$	eta_2	eta_2
M_4 线性到对数模型	$ln(Y_i) = eta_1 + eta_2 X_i + u_i$	$\beta_2 Y_i$	$\beta_2 X_i$	$\beta_2 \bar{X}$
M_5 对数到线性模型	$Y_i = \beta_1 + \beta_2 ln(X_i) + u_i$	eta_2/X_i	β_2/Y_i	β_2/\bar{Y}
M_6 倒数模型	$Y_i = \beta_1 + \beta_2/X_i + u_i$	$-\beta_2/X_i^2$	$-\beta_2/(X_iY_i)$	$-eta_2/(ar{X}ar{Y})$
M_7 对数倒数模型	$ln(Y_i) = \beta_1 - \beta_2/X_i + u_i$	$\beta_2 Y_i/X_i^2$	eta_2/X_i	$eta_2/ar{X}$

本章结束

