An automorphism on product measures

Introduction. The results is expose material from the article [Beurling]. Before the measure theoretic study starts we insert comments from [Beurling] about the significance of the main theorem in 0.§§ below.

Schrödinger equations. The article Théorie relativiste de l'electron et l'interprétation de la mécanique quantique was published 1932. Here Schrödinger raised a new and unorthodox question concerning Brownian motions leading to new mathematical problems of considerable interest. More precisely, consider a Brownian motion which takes place in a bounded region Ω of some euclidian space \mathbb{R}^d for some $d \geq 2$. At time t = 0 the densities of particles under observation is given by some non-negative function $f_0(x)$ defined on Ω . Classically the density at a later time t > 0 is equal to a function $x \mapsto u(x,t)$ where u(x,t) solves the heat equation

$$\frac{\partial u}{\partial t} = \Delta(u)$$

with boundary conditions

(1)
$$u(x,0) = f_0(x)$$
 and $\frac{\partial u}{\partial \mathbf{n}}(x,t) = 0$ when $x \in \partial \Omega$ and $t > 0$

Schrödinger took into the account the reality of quantum physics which means that in an actual experiment the observed density of particles at a time $t_1 > 0$ does not coincide with $u(x,t_1)$. He posed the problem to find the most probable development during the time interval $[0,t_1)$ which leads to the state at time t_1 . He concluded that the trequested density function which substitutes the heat-solution u(x,t) should belong to a non-linear class of functions formed by products

(*)
$$w(x,t) = u_0(x,t) \cdot u_1(x,t)$$

where u_0 is a solution to (1) while $u_1(x,t)$ is a solution to an adjoint equation

(2)
$$\frac{\partial u_1}{\partial t} = -\Delta(u) : \frac{\partial u_1}{\partial \mathbf{n}}(x, t) = 0 \text{ on } \partial\Omega$$

defined when $t < t_1$. This leads to a new type of Cauchy problems where one asks if there exists a w-function given by (*) satisfying

$$w(x,0) = f_0(x)$$
 : $w(x,t_1) = f_1(x)$

where f_0, f_1 are non-negative functions such that

$$\int_{\Omega} f_0 \cdot dx = \int_{\Omega} f_1 \cdot dx$$

The solvability of this non-linear boundary value problem was left open by Schrödinger and the search for solutions has remained as an active field in mathematical physics. When Ω is a bounded set and has a smooth boundary one can use the Poisson-Greens function for the classical equation (*) and rewrite Schrödinger's equation to a system of non-linear integral equations. The interested reader should consult the talk by I.N. Bernstein a the IMU-congress at Zürich 1932 for a first account about mathematical solutions to Schrödinger equations. Examples occur already on the product of two copies of the real line where Schrödinger's equations lead to certain non-linear equation for measures which goes as follows: Consider the Gaussian density function

$$g(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$$

Next, consider the family \mathcal{S}_q^* of all non-negative product measures $\gamma_1 \times \gamma_2$ for which

(i)
$$\iint g(x_1 - x_2) \cdot d\gamma_1(x_1) \cdot d\gamma_2(x_2) = 1$$

The product measure gives another product measure

$$\mathcal{T}_q(\gamma_1 \times \gamma_2) = \mu_1 \times \mu_2$$

where

$$\mu_1(E_1) \cdot \mu_2(E_2) = \iint_{E_1 \times E_2} g(x_1 - x_2) \cdot d\gamma_1(x_1) \cdot d\gamma_2(x_2)$$

hold for all pairs of bounded Borel sets. Notice that $\mu_1 \times \mu_2$ becomes a probability measure since (i) above holds. With these notations one has

0.1 Theorem. For every product measure $\mu_1 \times \mu_2$ which in addition is a probability measure there exists a unique $\gamma_1 \times \gamma_2$ in S_q^* such that

$$\mathcal{T}_q(\gamma_1 \times \gamma_2) = \mu_1 \times \mu_2$$

In [Beurling] a more general result is established where the g-function can be replaced by an arbitrary non-negative and bounded function $k(x_1, x_2)$ such that

$$\iint_{\mathbf{R}^2} \log k \cdot dx_1 dx_2 > -\infty$$

1. The \mathcal{T} -operator and product measures

Let $n \geq 2$ and consider an *n*-tuple of sample spaces $\{X_{\nu} = (\Omega_{\nu}, \mathcal{B}_{\nu})\}$. We get the product space

$$Y = \prod X_{\nu}$$

whose sample space is the set-theoretic product $\prod \Omega_{\nu}$ and Boolean σ -algebra \mathcal{B} generated by $\{\mathcal{B}_{\nu}\}$.

0.1 Product measures. Let $\{\gamma_{\nu}\}$ be an *n*-tuple of signed measures on X_1, \ldots, X_n where each γ_{ν} has a finite total variation. There exists a unique measure γ^* on Y such that

$$\gamma^*(E_1 \times \ldots \times E_n) = \prod \gamma_{\nu}(E_{\nu})$$

hold for every *n*-tuple of $\{\mathcal{B}_{\nu}\}$ -measurable sets. We refer to γ^* as the product measure. It is uniquely determined because \mathcal{B} is generated by product sets $E_1 \times \ldots \times E_n$) with each $E_{\nu} \in \mathcal{B}_{\nu}$. When no confusion is possible we put

$$\gamma^* = \prod \, \gamma_{\nu}$$

The family of all such product measures is denoted by $\operatorname{prod}(\mathcal{M}_B)$.

- **0.2 Remark.** The set of product measures is a proper non-linear subset of the space \mathcal{M}_B of all signed measures on Y. This is already seen when n=2 with two discrete sample spaces, i.e. X_1 and X_2 consists of N points for some integer N. A Every $N \times n$ -matrix with non-negative elements $\{a_{jk}\}$ give a probability measure μ on $X_1 \times X_2$ when the double sum $\sum \sum a_{jk} = 1$ The condition that μ is a product measure is that there exist N-tuples $\{\alpha_j \text{ and } \{\beta_k\} \text{ such that } \sum \alpha_{\nu} = \sum \beta_k = 1 \text{ and } a_{jk} = \alpha_j \cdot \beta_k$.
- **0.3** The space \mathcal{A} . We have the linear space of functions on Y whose elements are of the form

$$(i) a = g_1^* + \ldots + g_n^*$$

where $\{g_{\nu}\}$ are functions on the separate product factors $\{X_{\nu}\}$. It is clear that a pair of product measures γ and μ on Y are equal if and only if

$$\int_{Y} a \cdot d\gamma = \int_{Y} a \cdot d\mu$$

hold for every $a \in \mathcal{A}$.

0.4 The measure $e^a \cdot \gamma^*$ Let $a = \sum g_{\nu}^*$ be as above. Then we get the exponential function

$$e^a = \prod e^{g_{\nu}^*}$$

If $\gamma^* = \prod \gamma_{\nu}$ is some product measure we get a new product measure defined by

$$e^a \cdot \gamma_* = \prod e^{g_\nu} \cdot \gamma_\nu$$

0.5 The \mathcal{T} -operators. To every bounded \mathcal{B} -measurable function k we shall construct a map \mathcal{T}_k from the space of product measures into itself. First, let $1 \leq \nu \leq n$ be given and g_{ν} is some \mathcal{B}_{ν} -measurable function. Then there exists the function g_{ν}^* on the product space Y defined by

$$g_{\nu}^*(x_1,\ldots,x_n)=g_{\nu}(x_{\nu})$$

Let us now consider a product measure γ . If $1 \le \nu \le n$ we find a unique measure on X_{ν} denoted by $(k \cdot \gamma)_{\nu}$ such that

$$\int_Y g_{\nu}^* \cdot k \cdot d\gamma = \int_{X_{\nu}} g_{\nu} \cdot d(k \cdot \gamma)_{\nu}$$

hold for every bounded \mathcal{B}_{ν} -measurable function g_{ν} on X_{ν} . Now we get the product measure

$$\mathcal{T}_k(\gamma) = \prod (k\gamma)_{\nu}$$

Remark. In the the case when

$$k(x_1,\ldots,x_n)=g_1^*\cdots g_n^*$$

we see that

$$\mathcal{T}_k(\gamma) = \prod g_{\nu} \cdot \gamma \nu$$

Exercise. Consider the case n=2 where X_1 and X_2 both consist of two points, say a_1, a_2 and b_1, b_2 respectively. A measure $\gamma \in S_1^*$ is given by $\gamma_1 \times \gamma_2$ and we can identify this product measure by a 2×2 -matrix

where $\alpha_i \cdot \beta_{\nu}$ is the mass of γ at the point (a_i, b_{ν}) . Next, let k be a positive function on the product space which means that we assign four positive numbers

$$k_{i,\nu} = k(a_i, b_{\nu})$$

Find the measure $\mathcal{T}_k(\gamma)$ and express it as above by a 2 × 2-matrix.

Now we are prepared to announce the main result in this section. Consider a positive \mathcal{B} -measurable function k such that k and k^{-1} both are bounded functions. Denote by \mathcal{S}_k^* the family of nonnegative product measures γ on Y such that

$$\int_{V} k \cdot d\gamma = 1$$

We have also the set \mathcal{S}_1^* of product measures μ which are non-negative and have total mass one, i.e.

$$\int_{Y} d\mu = 1$$

It is easily seen that \mathcal{T}_k yields an injective map from S_k^* into S_1^* . It turns out that the map also is surjective, i.e. the following hold:

Main Theorem. \mathcal{T}_k yields a homeomorphism between S_k^* and S_1^* .

0.6 Remark. Above we refer to the norm topology on the space of measure, i.e. if γ_1 and γ_2 are two measures on Y then the norm $||\gamma_1 - \gamma_2||$ is the total variation of the signed measure $\gamma_1 - \gamma_2$. The reader may verify that S_k^* and S_1^* both appear as closed subsets in the normed space of all signed measures on Y. Recall also from XX that the space of measures on Y is complete under

this norm. In particular, let $\{\mu_{\nu}\}$ be a Cauchy sequence with respect to the norm where each $\mu_{\nu} \in \mathcal{S}_{1}^{*}$. Then there exists a strong limit μ^{*} where μ^{*} again belongs to \mathcal{S}_{1}^{*} and

$$||\mu_{\nu} - \mu^*|| \to 0$$

This completeness property will be used in the subsequent proof. We shall also need some inequalities which are announced below.

0.7 Some useful inequalities. Let γ_1 and γ_2 be a pair of product measures such that

$$\left| \int_{Y} g_{\nu}^{*} \cdot d\gamma_{1} - \int_{Y} g_{\nu}^{*} \cdot d\gamma_{2} \right| \leq \epsilon \quad : \quad 1 \leq \nu \leq n$$

hold for some $\epsilon > 0$ and every function g_{ν} on X_{ν} with maximum norm ≤ 1 . Then the norm

$$(i) ||\gamma_1 - \gamma_2|| \le n \cdot \epsilon$$

The proof of (i) is left to the reader where the hint is to make repeated use of Fubini's theorem. More generally, let k be a bounded measurable function on Y and γ, μ is a pair of product measures. Denote by \mathcal{A}_* the set of \mathcal{A} -functions a with maximum norm ≤ 1 . Then there exists a constant C which only depends on k and n such that

(*)
$$||\mathcal{T}_k(\mu) - \gamma|| \le \max_{a \in A_*} \left| \int_Y a(kd\mu - d\gamma) \right|$$

Again we leave the proof as an exercise.

0.8 A variational problem. Since we already have observed that \mathcal{T}_k is injective there remains to prove surjectivity. For this we shall study a a variational problem which we begin to describe before the proof is finished in 0.§§ X below. We are given the function k on Y where both k and k^{-1} are bounded and the space \mathcal{A} was defined in 0.3. For every pair $\gamma \in \mathcal{S}_1^*$ and $a \in \mathcal{A}$ we set

$$W(a,\gamma) = \int_{Y} (e^{a}k - a) \cdot d\gamma$$
 and $W_{*}(\gamma) = \min_{a \in \mathcal{A}} W(a,\gamma)$

0.9 Proposition. Let $\{a_{\nu}\}$ be a sequence in \mathcal{A} such that

$$\lim W(a_{\nu}, \gamma) = W_*(\gamma)$$

Then the sequence $\{e^{a_{\nu}}\cdot\gamma\}$ converges to a measure $\mu\in S_1^*$ such that $\mathcal{T}_k(\gamma)=\mu$.

Before we enter the proof we insert a preliminary result which will be used later on.

0.10. Lemma. Let $\epsilon > 0$ and $a \in \mathcal{A}$ be such that $W(a) \leq W_*(\gamma) + \epsilon$. Then it follows that

$$\int e^a \cdot k \cdot \gamma \le \frac{1+\epsilon}{1-e^{-1}}$$

Proof. For every real number s the function a-s again belongs to \mathcal{A} and by the hypothesis $W(a-s) \geq W(a) - \epsilon$. This entails that

$$\int e^{a}k \cdot d\gamma \le \int_{Y} e^{a-s} \cdot kd\gamma + s \int k \cdot d\gamma + \epsilon \implies$$
$$\int (1 - e^{-s}) \cdot e^{a} \cdot kd\gamma \le s + \epsilon$$

Lemma 0.10 follows if we take s = 1.

Proof of Proposition 0.9 Keeping γ fixed we set $W(a) = W(a, \gamma)$. Let $0 < \epsilon < 1$ and consider a pair a, b in \mathcal{A} such that W(a) and W(b) both are $\leq W_*(\gamma) + \epsilon$. Since $\frac{1}{2}(a+b)$ belongs to \mathcal{A} we get

(i)
$$2 \cdot W(\frac{1}{2}(a+b)) \ge 2 \cdot W_*(\gamma) \ge W(a) + W(b) - 2\epsilon$$

Notice that

(ii)
$$W(a) + W(b) - 2 \cdot W(\frac{1}{2}(a+b)) = \int_{V} \left[e^{a} + e^{b} - 2 \cdot e^{\frac{1}{2}(a+b)} \right] \cdot k d\gamma$$

Next, we have the algebraic identity

$$e^{a} + e^{b} - 2 \cdot e^{\frac{1}{2}(a+b)}] = (e^{a/2} - e^{b/2})^{2}$$

It follows from (i-ii) that

(iii)
$$\int_{Y} (e^{a/2} - e^{b/2})^2 \cdot k \cdot d\gamma \le 2\epsilon$$

Next, the identity $|e^a-e^b|=(e^{a/2}+e^{b/2})\cdot |e^{a/2}-e^{b/2}|$ and the Cauchy-Schwarz inequality give:

(iv)
$$\left[\int_{V} |e^{a} - e^{b}| \cdot k \cdot d\gamma \right]^{2} \le 2\epsilon \cdot \int_{V} (e^{a/2} + e^{b/2}) \cdot k \cdot d\gamma$$

By Lemma 0.6 the last factor is bounded by a fixed constant and hence (iv) gives a constant C such that

$$\int_{V} |e^{a} - e^{b}| \cdot k \cdot d\gamma \le C \cdot \sqrt{\epsilon}$$

Next, let k_* be the minimum value taken by k on Y which by assumption is positive since k^{-1} is bounded. Replacing C by C/k_* where we get

$$\int_{Y} |e^{a} - e^{b}| \cdot d\gamma \le C \cdot \sqrt{\epsilon}$$

Now (v) applies to pairs in the sequence $\{a_{\nu}\}$ and shows that $\{e^a \cdot d\gamma\}$ is a Cauchy sequence with respect to the norm of measures on Y. So from Remark 0.6 there exists a non-negative measure μ such that

(vii)
$$\lim_{\nu \to \infty} ||e^{a_{\nu}} \cdot \gamma - \mu|| = 0$$

The equality $\mathcal{T}_k(\mu) = \gamma$. Consider the a-functions in the minimizing sequence. If $\rho \in \mathcal{A}$ is arbitrary we have

$$W(a_{\nu} + \rho) \ge W(a_{\nu}) - \epsilon_{\nu}$$

where $\epsilon_{\nu} \to 0$. This gives

(1)
$$\int_{Y} \left[k e^{a_{\nu}} (1 - e^{\rho}) + \rho \right] \cdot d\gamma \le \epsilon_{\nu}$$

When the maximum norm $|\rho|_Y \leq 1$ we can write

(2)
$$e^{\rho} = 1 + \rho + \rho_1 \quad \text{where} \quad 0 \le \rho_1 \le \rho^2$$

Then we see that (1) gives

(3)
$$\int_{Y} (\rho - ke^{a_{\nu}} \cdot \rho) \cdot d\gamma \le \epsilon_{\nu} + \int \rho_{1} \cdot \gamma \le \epsilon + ||\rho||_{Y}^{2}$$

where the last inequality follows since γ is a probability measure and the inequality in (2) above. The same inequality holds with ρ replaced by $-\rho$ which entails that

$$\left| \int_{Y} \left(k e^{a_{\nu}} - 1 \right) \cdot \rho \cdot d\gamma \right| \le \epsilon_{\nu} + ||\rho||_{Y}^{2}$$

Notice that Lemma 0.10 entails that the sequence of functions $\{ke^{a_{\nu}}\}$ are uniformly bounded. Now we apply the inequality (*) from 0.7 while we use ρ -functions in \mathcal{A} of norm $\leq \sqrt{\epsilon_{\nu}}$. It follows that there exists a constant C which is independent of ν such that the following inequality for the total variation:

$$||\mathcal{T}_k(e^{a_{\nu}}\cdot\gamma)-\gamma|| \leq C\cdot n\cdot\frac{1}{\sqrt{\epsilon}}\cdot(\epsilon_{\nu}+\epsilon_{\nu}) = 2\cdot Cn\cdot\sqrt{\epsilon_{\nu}}$$

Passing to the limit it follows from (vii) that we have the equality

$$\mathcal{T}_k(\mu) = \gamma$$

Since $\gamma \in S_1^*$ was arbitrary we have proved that the \mathcal{T}_k yields a surjective map from S_k^* to S_1^* which finishes the proof of the Main Theorem.

0.11 The singular case.

We restrict to the case n=2 where $k(x_1,x_2)$ is a bounded and strictly positive continuous function on $Y=X_1\times X_2$. Let $\gamma\in S_1^*$ satisfy:

$$(1) \qquad \int_{Y} \log k \cdot d\gamma > -\infty$$

Under this integrability condition the following hold:

2. Theorem. There exists a unique non-negative product measure μ on Y such that $\mathcal{T}_k(\mu) = \gamma$. Remark. In general the measure μ need not have finite mass but the proof shows that k belongs to $L^1(\mu)$, i.e.

$$\int_{Y} k \cdot d\mu < \infty$$

As pointed out by Beurling Theorem 0.12 can be applied to the case $X_1 = X_2 = \mathbf{R}$ both are copies of the real line and

$$k(x_1, x_2) = g(x_1 - x_2)$$

where g is the density of a Gaussian distribution which after a normalisation of the variance is taken to be

$$\frac{1}{\sqrt{2\pi}} \cdot e^{-t^2/2}$$

So the integrability condition for μ becomes

$$\iint (x_1 - x_2)^2 \cdot d\mu(x_1, x_2) < \infty$$

A proof of Theorem 0.12 is given on page 218-220 in [loc.cit] and relies upon similar but technically more involved methods as in the Main Theorem. Concerning higher dimensional cases, i.e. singular versions of the Main Theorem when $n \geq 3$, Beurling gives the following comments at the end of [ibid] where the citation below has changed numbering of the theorems as compared to [ibid]:

The proof of the Main Theorem relies heavily on the condition that $k \geq a$ for some a > 0. If this lower bound condition is dropped the individual equation $K(\gamma) = \mu$ may still be meaningful, but serious complications will arise concerning the global uniqueness if $n \geq 3$ and the proof of Theorem 0.12 for the case $n \geq 3$ cannot be duplicated.