

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 20 DEC 2004
WIPO POT
with Section 74(1) and

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 16 November 2004

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Request for grant of a patent
(See the notes on the back of this form. You can also get explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road
Newport
Gwent NP9 1RH

Your reference

IP/P7207

Patent application number
(The Patent Office will fill in this part)

0326993.3

20 NOV 2003

Full name, address and postcode of the or of each applicant (*underline all surnames*)

QINETIQ LIMITED

Registered Office 85 Buckingham Gate
London SW1B 6PD
United Kingdom

830743100 (

GB

Patents ADP number (*if you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

Title of the invention

STRAINED SEMICONDUCTOR DEVICES

Name of your agent (*if you have one*)

Philip Davies et al

Address for service" in the United Kingdom
 in which all correspondence should be sent
including the postcode)

QINETIQ LIMITED
 IP Formalities
 A4 Bldg
 Cody Technology Park
 Ively Road
 Farnborough
 Hants GU14 0LX United Kingdom

Patents ADP number (*if you know it*)

818387 3001

5. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

Country

Priority application number
*(if you know it)*Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number or earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right if to grant of a patent required in support of this request? (Answer 'Yes' if:

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d))

YES (b)

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form	0
Description	6
Claim(s)	2
Abstract	1
Drawing(s)	3 X 27

(Signature)

-
10. If you are also filing any of the following, state how many against each item.

Priority documents	0
Translations of priority documents	0
Statement of inventorship and right to grant of a patent (<i>Patents Form 7/77</i>)	3
Request for preliminary examination and search (<i>Patents Form 9/77</i>)	1
Request for substantive examination (<i>Patents Form 10/77</i>)	0
Any other documents (please specify)	0

-
11. I / We request the grant of a patent on the basis of this application.

Signature

P Davies

Date
18 Nov 2003

-
12. Name and daytime telephone number of person to contact in the United Kingdom Linda Bruckshaw 01252 392722

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent of the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- i) If you need help to fill in this form or have any questions, please contact the Patent Office on 0645 500505.
- j) Write your answers in capital letters using black ink or you may type them.
- k) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- l) If you have attached 'Yes' Patents Form 7/77 will need to be filed.
- m) Once you have filled in the form you must remember to sign and date it.
- n) For details of the fee and ways to pay please contact the Patent Office.

DUPPLICATE

Strained Semiconductor Devices

The present invention relates to semiconductor devices in which a narrow bandgap semiconducting region is subject to strain.

- Narrow bandgap semiconductors such as indium antimonide InSb have useful properties such as very low electron effective mass, very high electron mobility and high saturation velocity. These are potentially of great interest for ultra high-speed transistor applications. InSb in particular is a promising material for fast very low power dissipation transistors, because its electron mobility μ_e at low electric fields is nine times higher than that of GaAs, and its saturation velocity v_{sat} is more than five times higher, despite GaAs having better properties than silicon in these respects.
- InSb is also predicted to have a large ballistic mean free path of over 0.5 microns. This suggests that InSb would be very suitable for high-speed low voltage operation, and the consequent low power consumption would make it ideal for portable and high device-density applications.
- The application of strain to a semiconductor is an established way of altering its characteristics. While it has chiefly been applied to electro-optic devices such as lasers and photodetectors, US 5,382,814 discloses a MISFET which includes an $Al_xIn_{1-x}Sb$ layer which contains 15% Al. This layer is expansively strained because the addition of the Al atoms into the lattice reduces the lattice constant relative to the adjacent material. However, in this prior art $p^+p^+(wide\ gap)p^-n^+$ structure the $Al_xIn_{1-x}Sb$ wide gap layer is intended to act as a barrier in the conduction band to prevent electrons from moving from the p^+ contact region into the p^- active region. It does not act as a layer in and along which carrier transport occurs, and the presence of strain therein is not fundamental to operation of the device.
- It is now appreciated that it is possible to construct transistors with a compressively strained region or layer where the presence of the strain usefully affects the transistor properties.

Accordingly the present invention provides a transistor including at least one narrow bandgap region or layer that is doped p-type or contains an excess of holes and is subject to compressive mechanical strain.

Preferably the narrow bandgap is no more than 1.0 eV, preferably no more than 0.75 eV, and most preferably no more than 0.5 eV. In materials with such narrow bandgaps the strain effect on the bands is most likely to be large enough to be useful.

The compressive mechanical strain may be imposed upon the narrow bandgap region by being adjacent at least one further layer or region having a different lattice constant. Preferably there is at least one further layer or region on each of two opposed sides of the narrow bandgap layer or region.

In devices according to the invention the majority carriers in the strained region will be holes. Commonly, the strained region or layer will be one permitting carrier transport in use and often will be the one in which the main carrier transport occurs, e.g. in and along such a layer.

15 The invention may be applied inter alia to FETs, for example p-channel quantum well effect FETs, and also to bipolar transistors, e.g. n-p-n transistors.

Our International Patent Application No. PCT/GB03/01148 discloses and claims a quantum well field effect transistor wherein the quantum well is provided by a primary conduction channel and at least one secondary conduction channel 20 immediately adjacent and in contact with the primary channel, the secondary channel having an effective bandgap greater than the effective bandgap E_g (effective) of the primary channel, wherein the modulus of the difference between the effective impact ionisation threshold IIT (effective) and the effective conduction band offset ΔE_C (effective) between the primary and secondary channels being no more than 0.5 E_g (effective). It also discloses and claims a quantum well field effect transistor wherein 25 the quantum well is provided by a primary conduction channel and at least one secondary conduction channel immediately adjacent and in contact with the primary channel, the secondary channel having an effective bandgap greater than the effective bandgap E_g (effective) of the primary channel, wherein the modulus of the difference

between the effective impact ionisation threshold IIT (effective) and the effective conduction band offset ΔE_C (effective) between the primary and secondary channels being no more than 0.4 eV.

Our earlier UK Patent Application Serial No. 2 362 506 discloses and claims an extracting transistor characterised in that (a) it is a field effect transistor incorporating a conducting region consisting at least partly of a quantum well; (b) the quantum well is in an at least partly intrinsic conduction regime when the transistor is unbiased and at a normal operating temperature; and (c) it includes at least one junction which is biasable to reduce the intrinsic conduction in the quantum well and confine charge carriers predominantly to one type only corresponding to an extrinsic saturated regime.

Our International Patent Application No. PCT/GB02/05904 discloses and claims a bipolar transistor with a vertical geometry having a base region provided with a base contact, emitter and collector regions arranged to extract minority carriers from the base region, and a structure for counteracting entry of minority carriers into the base region via the base contact, wherein the base region has a bandgap of greater than 0.5 eV and a doping level greater than 10^{17} cm^{-3} . In a structure of this type the base can be compressively strained to allow light hole transport as is necessary in an efficient n-p-n device.

In addition, our International Patent Application No. PCT/GB01/02284 discloses and claims a bipolar transistor having emitter and collector regions arranged to extract minority carriers from the base region, a structure for counteracting entry of minority carriers into the base region via the base contact, the base region having a band gap less than 0.5 eV and wherein the base region has a doping level greater than 10^{17} cm^{-3} .

While the present invention is not limited to these prior art constructions, such quantum well FETs and bipolar transistors may be based inter alia on InSb. In such a case the presence of an $\text{Al}_x\text{In}_{1-x}\text{Sb}$ layer or layers having a significantly lower lattice constant will introduce a strongly compressive strain into the quantum well or base region respectively. The strain effect in the InSb material is very strong and in

principle allows the energies of the light and heavy holes to be split by an amount much greater than kT . As the mobility of the light holes in InSb (in a lower energy band than the heavy holes) is almost as great as that of the electrons (and much greater than the mobility of the heavy holes which normally predominate transport in unstrained InSb), this gives rise to the possibility of making high performance hole-based devices. When the latter devices are used in conjunction with the corresponding but more conventional electron-based ones, this permits the design of very high-speed low power complementary logic circuits having good circuit performance and low quiescent power consumption.

- 5 10 The strain effect is strong in InSb and accordingly a preferred material for the compressively strained narrow band-gap region is InSb. However, it is possible to use other materials such as InAs in a similar manner in transistors according to the invention.

15 Further features and advantage of the invention will become clear upon a perusal of the appended claims, to which the reader is directed, and upon consideration of the following more detailed description of embodiments of the invention, made with reference to the accompanying drawings, in which:

- Figure 1 shows in diagrammatic cross-section a quantum well FET according to the invention;
- 20 Figure 2 illustrates pictorially the effect of compressive strain on a quantum well layer of the type illustrated in the transistor of Figure 1;

Figure 3 shows calculated dispersions for a quantum well transistor of the type illustrated in Figure 1; and

- 25 Figure 4 shows in diagrammatic cross-section a bipolar transistor according to the invention.

In Figure 1 an optional highly n-type doped back contact layer 2 for carrier extraction lies directly upon an insulating substrate 1, for example of GaAs. A layer 5 of InSb which is modulation doped or directly doped with p-type dopants forms a quantum

well between layers 4 and 6 of $\text{In}_{1-x}\text{Al}_x\text{Sb}$. If used, modulation doping is provided by sheets of dopant between layers 6 and 7, or between layers 3 and 4, or between both. A further layer 3 of $\text{In}_{1-x}\text{Al}_x\text{Sb}$ lies between layer 4 and the back contact 2, and another layer 7 of $\text{In}_{1-x}\text{Al}_x\text{Sb}$ overlies the layer 6. Connections to each end of the p-type conduction channel are provided p-type contacts 8, 9 and overlying metallic contacts 10, 11 respectively, and a Schottky gate (or an oxide based gate) 12 is provided to control channel conduction.

The value of x in the layers 4 and 6 is high enough to induce sufficient strain in the layer 5 that the light and heavy holes are separated by an amount much greater than kT .

Typical values of layer thickness and x are as follows:

Layer 2:	0.5-3 μm thick;	$x = 0.15-0.30$
Layer 3:	0.5-0.75 μm thick;	$x = 0.15-0.30$
Layer 4:	3-10 nm thick;	$x = 0.15-0.30$
Layer 5:	5-20 nm thick;	
Layer 6:	3-10 nm thick;	$x = 0.15-0.30$
Layer 7:	10-20 nm thick;	$x = 0.15-0.30$

Figure 2 illustrates pictorially the effect of compressive strain on band structure, for example in a quantum well transistor of the general construction of Figure 1, and the crossing of the heavy and light hole bands in-plane is to be noted, whereas the two bands separate orthogonal to the plane.

Figure 3 shows the calculated in-plane sub-band dispersions for a quantum well transistor of the general construction of Figure 1, with an InSb quantum well between barriers of $\text{In}_{0.81}\text{Al}_{0.19}\text{Sb}$ in cases where the well is 5nm thick (Figures 2(a) and 2(b)), and 10 nm thick (Figures 2(c) and 2(d)). The plots provide good evidence for the existence of "heavy" and "light" holes. Initial calculations suggest that a sheet hole density in the 10^{11} to 10^{12} cm^{-2} range is achievable with the holes having a mobility comparable to the electron mobility, giving the potential for a good matching of device characteristics in complementary device circuitry.

Figure 4 shows an n-p-n bipolar transistor in which the base region 19 is of p-type doped InSb. The base also comprises the base contact metal 13 upon a p⁺ layer 14. A further p⁺ layer 15 lies between and in contact with the region 19 and the layer 14. The emitter comprises the emitter contact metal 16 upon an n⁺ layer 17. A further n⁺ layer 18 lies between and in contact with the layer 17 and the base region 19. The collector comprises an n⁺ layer 22 between and in contact with a semi-insulating substrate 23 and the n collector layer 20. There is an ohmic contact metal layer 21 upon layer 22, and the layer 20 lies between and in contact with the layer 22 and the base region 19. Each of layers 15, 18, 20 and 22 are of wider bandgap (and smaller lattice constant) Al_xIn_{1-x}Sb, the presence of which imparts a compressive strain to the narrower bandgap base layer 19. The construction should allow the base layer 20 to be strained, thereby affording light hole transport and permitting faster device speed with lower base access resistance for improved power gain.

Typical values of layer thickness and x are as follows:

- | | |
|----|---|
| 15 | Layer 14: 5-20 nm thick |
| | Layer 15: 5-20 nm thick x = 0.15-0.30 |
| | Layer 17: 5-20 nm thick |
| | Layer 18: 5-20 nm thick x = 0.15-0.30 |
| | Layer 19: 5-20 nm thick |
| 20 | Layer 20: 0.3-2 μm thick x = 0.15-0.30 |
| | Layer 22: 0.5-5 μm thick x = 0.15-0.30 |

CLAIMS

1. A transistor including at least one narrow bandgap region or layer that is doped p-type or contains an excess of holes and is subject to compressive mechanical strain.
- 5 2. A transistor according to claim 1 wherein said narrow bandgap region or layer is arranged for majority carrier transport.
- 10 3. A transistor according to claim 1 or claim 2 wherein said narrow bandgap region or layer is in contact with at least one further region or layer having a different lattice constant whereby said narrow bandgap region or layer is subject to said compressive mechanical strain.
4. A transistor according to any preceding claim wherein there are at least two said further layers, one on each side of said narrow bandgap region or layer.
- 15 5. A transistor according to any preceding claim wherein said narrow bandgap region or layer comprises InSb or InAs.
6. A transistor according to any preceding claim wherein the transistor is a quantum-well FET.
- 20 7. A transistor according to claim 6 wherein the quantum well is provided by a primary conduction channel and at least one secondary conduction channel immediately adjacent and in contact with the primary channel, the secondary channel having an effective bandgap greater than the effective bandgap E_g (effective) of the primary channel, wherein the modulus of the difference between the effective impact ionisation threshold I_{IT} (effective) and the effective conduction band offset ΔE_c (effective) between the primary and secondary channels being no more than 0.5 E_g (effective).
- 25 8. A transistor according to claim 7 wherein the quantum well is provided by a primary conduction channel and at least one secondary conduction channel immediately adjacent and in contact with the primary channel, the secondary channel

having an effective bandgap greater than the effective bandgap E_g (effective) of the primary channel, wherein the modulus of the difference between the effective impact ionisation threshold I_{IT} (effective) and the effective conduction band offset ΔE_C (effective) between the primary and secondary channels being no more than 0.4 eV.

- 5 9. A transistor according to claim 6 in the form of an extracting transistor characterised in that (a) it is a field effect transistor incorporating a conducting region consisting at least partly of a quantum well; (b) the quantum well is in an at least partly intrinsic conduction regime when the transistor is unbiased and at a normal operating temperature; and (c) it includes at least one junction which is biasable to
10 reduce the intrinsic conduction in the quantum well and confine charge carriers predominantly to one type only corresponding to an extrinsic saturated regime.
10. A transistor according to any one of claims 1 to 5 wherein the transistor is an n-p-n bipolar transistor.
11. A transistor according to claim 10 with a vertical geometry having a base
15 region provided with a base contact, emitter and collector regions arranged to extract minority carriers from the base region, and a structure for counteracting entry of minority carriers into the base region via the base contact, wherein the base region has a bandgap of greater than 0.5 eV and a doping level greater than 10^{17} cm^{-3} .
12. A transistor according to any preceding claim wherein the narrow bandgap is
20 no more than 1.0 eV.
13. Complementary logic circuitry comprising a transistor according to any preceding claim.
14. An integrated circuit comprising a transistor according to any one of claims 1 to 12 or complementary logic circuitry according to claim 13.
- 25 15. A transistor substantially as hereinbefore described with reference to Figure 1 or Figure 4 of the accompanying drawings.

ABSTRACT

In a transistor in which the majority carriers are holes, at least one narrow bandgap region or layer is doped p-type or contains an excess of holes and is subject to compressive mechanical strain, whereby hole mobility may be significantly increased.

- 5 In a p-channel quantum well FET, the quantum well InSb well p-type layer 5 (modulation or directly doped) lies between $\text{In}_{1-x}\text{Al}_x\text{Sb}$ layers 4, 6 where x is of a value sufficient to induce strain in layer 5 to an extent that light and heavy holes are separated by much more than kT . Transistors falling within the invention, including bipolar pnp devices, may be used with their more conventional electron majority carriers counterparts in complementary logic circuitry.
- 10

(Figure 1 should accompany the abstract)

1/3

Figure 1

Figure 4

Dope

Effect of Compressive Strain on Band Structure

For example, InSb QW in AlInSb barrier

page

Figure 2

3/3

Figure 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.