Transfer learning per selezionare gli informative-frame in una laringoscopia usando learned features

Tesi di Laurea in Ingegneria Informatica

Laureando: Bortolin Simone Relatore: Nanni Loris

A.A. 2020/2021

1 Transfer Learning

- 2 Preprocessing
- 3 Data augmentation
- 4 Risultati

Transfer Learning

Figura: Architettura della CNN AlexNet

Figura: Architettura della rete neurale AlexNet adeguata alla classificazione del dataset oggetto di studio

Transfer Learning

Two Round turing

Figura: Schema dei due approcci: In giallo il One round turing (1R), in verde il Two round tuning. Le frecce piene denotano l'input per l'addestramento, le frecce tratteggiate denotano i flussi di output (modelli addestrati).

Preprocessing

Data augmentation

Data augmentation

Discrete cousene transform

Risultati

	1R		2R	
	(1)	(2)	(1)	(2)
Semplice DA	95.4%	100%	97.5%	100%
Filtro Contrasto Semplice	96.2%	100%	96.2%	100%
Filtro Contrasto con media e STD	89.6%	91.7%	92.9%	100%
CLAHE	63.7%	45.8%		
Correzione Gamma	95.0%	100%		
Correzione Gamma e CLAHE	46.0%	0%		
Noise	96.7%	100%	95.4%	95.0%
DCT e Noise	94.6%	100%	93.8%	100%

Tabella: Specchio riassuntivo delle performance singole dei vari metodi analizzati, (1): Divisione corretta nelle 4 classi, (2): Riconoscimento dei frame Informative

