What We Have Learned

- Predicting a label:
 - K-nearest Neighbors (KNN)
 - Decision Trees
 - Support Vector Machine (SVM)
 - Naive Bayes
 - Logistic Regression
- How about predicting a continuous, numerical value?

Regression

- Regression is a method of modeling a target value base on independent predictors:
 - The target value is also called: dependent variable, in convention, Y.
 - The predictors is also called: independent variable, in convention, X.
- A method is mostly used for forecasting and finding out cause and effect relationship between variables.
- Regression techniques differ based on:
 - Number of predictors, or independent variables.
 - Type of relationship between X and Y.

Linear Regression

- Assumptions:
 - The true relationship is linear
 - Errors are normally distributed
 - Homoscedasticity of errors (or, equal variance around the line).
 - Independence of the observations
- Don't ignore these assumptions. They are real.

Simple Linear Regression

- Simple Linear regression is a type of regression where:
 - Number of independent variables is 1
 - The relationship between X and Y is linear.
- Also called: best fit straight line.
- Linear equation such as:

$$y = a_0 + a_1 x$$

Error Measurement

- What is the error?
 - The difference between prediction and actual value.
 - $e_i = \hat{y}_i y_i$, where \hat{y} is the prediction

Cost Measurement

- What is the cost?
 - The sum of squared errors, or SSE

$$\sum_{1}^{n} e_i^2 = \sum_{1}^{n} (\hat{y}_i - y_i)^2$$

The mean of squared errors, or MSE

$$\frac{1}{n} \sum_{i=1}^{n} e_i^2 = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Optimization

- Optimization goal?
 - Minimize the cost. Which cost?
 - Minimize SE, LSSE: Least Sum of Squared Error, also called Ordinary Least Squared (OLS)

$$\min(\sum_{1}^{n} (\hat{y}_i - y_i)^2)$$

• Minimize MSE, MMSE: Minimal Mean of Squared Error

$$min(\frac{1}{n}\sum_{1}^{n}(\hat{y}_{i}-y_{i})^{2})$$

• Why MSE is better for evaluation than SSE?

How to Reduce Cost?

- Gradient Descent
 - Updating the coefficients of the line to reduce the cost
 - Use the knowledge of partial derivatives to know the direction to change
 - Decide how much to change
 - Learning rate: Big or Small?

Gradient Descent

- Problems:
 - Local VS Global
 - Plateau
- Scale of attribute:
 - All features must have similar scales
 - Normalization
 - StandardScaler from Scikit-Learn
- SGD:
 - Training data must be independent and identically distributed

Examples

- Diabetes dataset from Scikit-learn.
 - A toy dataset with 442 patients
 - 10 numerical independent variables to be used
 - 1 dependent numerical variable to be predicted
- Page: <u>Diabetes Dataset</u>

7.1.3. Diabetes dataset

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.

Data Set Characteristics:

Number of Instances:	442
Number of Attributes:	First 10 columns are numeric predictive values
Target:	Column 11 is a quantitative measure of disease progression one year after baseline
Attribute Information:	 age age in years sex bmi body mass index bp average blood pressure s1 tc, total serum cholesterol s2 ldl, low-density lipoproteins s3 hdl, high-density lipoproteins s4 tch, total cholesterol / HDL s5 ltg, possibly log of serum triglycerides level s6 glu, blood sugar level