Содержание

1	Экз	Экзамен		
	1.1	Базы данных и системы управления базами данных. Определения, основные функции и		
		классификация	2	
	1.2	Семантическое моделирование данных	4	
	1.3	Реляционная модель данных: структурная, целостная, манипуляционная части. Реляци-		
		онная алгебра. Исчисление кортежей	4	
	1.4	Теория проектирования реляционных баз данных: функциональные зависимости, нор-		
		мальные формы	4	
	1.5	Теория проектирования хранилищ данных. Основные принципы построения. ETL и ELT		
		процессы	4	
	1.6	Транзакции. Определение, свойства и уровни изоляции транзакций. Неблагоприятные		
		эффекты, вызванные параллельным выполнением транзакци, и способы их устранения.		
		Управление транзакциями и способы обработки ошибок	4	
	1.7	Блокировки. Определение, свойства, иерархии, гранулярность и взаимоблокировки, ал-		
		горитмы обнаружения взаимоблокировок	4	
	1.8	Журнализация. Операции журнала транзакций и его логическая и физическая архитек-		
		туры. Модели восстановления. Метаданные	4	
	1.9	Безопасность и Аудит. Ключевые понятия и участники системы безопасности. Модели		
		управления доступом	4	
	1.10	МРР системы. Распределенное и колоночное хранение. Распределенные вычисления, мо-		
		дель MapReduce. Обеспечение отказоустойчивости	4	
	1.11	In-Метогу базы данных. Преимущества и недостатки. Примеры использования	4	
	1.12	Инструкции языка описания данных, инструкции языка обработки данных, инструкции		
		безопасности, инструкции управления транзакциями	5	
	1.13	Объекты базы данных: функции, процедуры, триггеры и курсоры	5	
	1.14	Оптимизация запроса: индексы, партиционирование, сегментирование	5	
	1.15	План запроса. Этапы выполнения запроса	5	

1 Экзамен

1.1 Базы данных и системы управления базами данных. Определения, основные функции и классификация

База данных — совокупность хранимых операционных данных, используемых прикладными системами некоторого предприятия.

Операционные данные — быстрые данные (чтобы их можно было быстро прочитать).

Можно читать, писать, обновлять

Данные делятся на две большие категории

- 1) Читать быстро.
- 2) Быстро писать.

OLAP — online analtyc processing (операционые данные).

OLTP — online transaction processing (перманентые данные).

Таблица 1

OLAP	OLTP
чтение	вставка, удаление, обновление
минимальное время отклика	минимальное время вставки, удаление, обновление

Транзакции — либо все действия, либо никакие действия.

База данных — это самодокументирования собрание интегрированных записей.

- 1) Самодументированное из нее понятно, что в ней хранится. Понятно какие объекты и принципы действий. -> журналы.
- 2) Запись это события которые надо где-то хранить.
- 3) Интегрированных записи которые имеют некоторую структуру и имеют некоторую структуру.

Любая бд хранит:

- 1) метаданные;
- 2) файлы данных,
- 3) Индексы (indexes), которые представляют связи между данными, а также служат для повышения производительности приложений базы данных.
- 4) Может содержать метаданные приложений (application metadata).

Основные храктеристики, требования

- 1) **Неизбыточность данных** каждое данное присутствует в БД в единственном экземпляре.
- 2) Совместное использование данных многими пользователями.
- 3) **Эффективность доступа** к БД высокое быстродействие, т. е. малое время отклика на запрос.
- 4) **Целостность данных** соответствие имеющейся в БД информации её внутренней логике, структуре и всем явно заданным правилам.
- 5) **Безопасность данных** защита данных от преднамеренного или непреднамеренного искажения или разрушения данных.
- 6) Восстановление данных после программных и аппаратных сбоев.
- 7) Независимость данных от прикладных программ.

Система управления базами данных (СУБД) — приложение, обеспечивающее создание, хранение, обновление и поиск информации в базах данных.

Зачем СУБД

- 1) Управление данными во внешней памяти.
- 2) Управление буферами оперативной памяти.
- 3) Управление транзакциями.
- 4) Журнализация.
- 5) Поддержка языка или языкового пакета (-ов).

Классификация СУБД

- 1) Дореляционные
 - Инвертированные списки (файлы) (Как дерево)
 - Иерархичекие (что-то похожее на хэш)
 - Сетевые
- 2) Реляционные
- 3) Постреляционные

Архитектура хранения данных

- 1) Локальные.
- 2) Распределенные.
- 3) По способу обращения к данным.
 - Файл серверные.
 - Клиент серверные (PostGress, MSSQL, Oracle, MySQL, Mongo).
 - Встраиваемые (SQLlite).
 - Сервисно-ориентированные (KafcaBD).

- Прочее time series.
- 1.2 Семантическое моделирование данных

Определение: Дискретная

1.3 Реляционная модель данных: структурная, целостная, манипуляционная части. Реляционная алгебра. Исчисление кортежей

Свойства

1.4 Теория проектирования реляционных баз данных: функциональные зависимости, нормальные формы

Пусть

1.5 Теория проектирования хранилищ данных. Основные принципы построения. ETL и ELT процессы

Определение

 Транзакции. Определение, свойства и уровни изоляции транзакций. Неблагоприятные эффекты, вызванные параллельным выполнением транзакци , и способы их устранения. Управление транзакциями и способы обработки ошибок

 \mathbf{C} войства для n=2

1.7 Блокировки. Определение, свойства, иерархии, гранулярность и взаимоблокировки, алгоритмы обнаружения взаимоблокировок

Определение

1.8 Журнализация. Операции журнала транзакций и его логическая и физическая архитектуры. Модели восстановления. Метаданные

Нет вопроса

1.9 Безопасность и Аудит. Ключевые понятия и участники системы безопасности. Модели управления доступом

Этого вопроса нет

1.10 MPP системы. Распределенное и колоночное хранение. Распределенные вычисления, модель MapReduce. Обеспечение отказоустойчивости.

Пусть

1.11 In-Memory базы данных. Преимущества и недостатки. Примеры использования

Учитывая равенство $P\{Y < y\} = F_Y(y)$, приходим к формуле ??.

1.12 Инструкции языка описания данных, инструкции языка обработки данных, инструкции безопасности, инструкции управления транзакциями

Когда X_1, X_2 являются независимыми случайными величинами, то есть их двумерная плотность распределения

- 1.13 Объекты базы данных: функции, процедуры, триггеры и курсоры
- 1.14 Оптимизация запроса: индексы, партиционирование, сегментирование Дисперсией случайной величины X называют число
- 1.15 План запроса. Этапы выполнения запроса

Пусть X — случайная величина.