(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 March 2001 (22.03.2001)

PCT

(10) International Publication Number WO 01/19946 A1

(51) International Patent Classification⁷: 1/90, 3/37, 3/22, A61K 7/50

C11D 1/86,

(21) International Application Number: PCT/EP00/08265

(22) International Filing Date: 23 August 2000 (23.08.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/153,355

10 September 1999 (10.09.1999) U

- (71) Applicant (for AE, AG, AU, BB, BZ, CA, CY, GB, GD, GH, GM, IE, IL, KE, LC, LK, LS, MN, MW, NZ, SD, SG, SL, SZ, TT, TZ, UG, ZA, ZW only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BQ (GB).
- (71) Applicant (for all designated States except AE, AG, AU, BB, BZ, CA, CY, GB, GD, GH, GM, IE, IL, IN, KE, LC, LK, LS, MN, MW, NZ, SD, SG, SL, SZ, TT, TZ, UG, ZA, ZW): UNILEVER NV [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).
- (71) Applicant (for IN only): HINDUSTAN LEVER LIM-ITED [IN/IN]; Hindustan Lever House, 165/166 Backbay Reclamation, Maharashtra, Mumbai 400 020 (IN).
- (72) Inventors: MARGOSIAK, Marion, Louise; Unilever Home & Personal Care USA, 40 Merritt Boulevard, Trumbull, CT 06611 (US). RAHN, Michael, Alan; Unilever

Home & Personal Care USA, 40 Merritt Boulevard, Trumbull, CT 06611 (US). PAREDES, Rosa, Mercedes; Unilever Home & Personal Care USA, 40 Merritt Boulevard, Trumbull, CT 06611 (US).

- (74) Agents: ROTS, Maria, Johanna, Francisca et al.; Unilever PLC, Patent Department, Colworth House, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SUSPENDING CLEAR CLEANSING FORMULATION

(57) Abstract: A shower gel formulation having a clear appearance is described which suspends insoluble particles, water insoluble liquids or bubbles and contains an acrylate copolymer, an anionic surfactant, a cationic polymer and, optionally, an amphoteric surfactant. The method of use of the clear shower gel is also described.

- 1 -

SUSPENDING CLEAR CLEANSING FORMULATION

This application claims the benefit of U.S. Provisional Application No. 60/153,355 filed September 10, 1999.

5

10

15

The invention relates to a shower gel formulation.

Shower gel formulations which are mild to the skin are well known in the art. Such a formulation may optionally contain skin feel agents, such as cationic polymers. However, when one desires to suspend particulates and/or beads in the formulation, frequently substantial quantities of anionic surfactants have been incorporated, and provide clear solutions. Unfortunately, the addition of such anionic surfactants diminishes the mildness of the shower gel formulation.

U.S. Patent No. 5,656,257 (Fealy et al., issued on August 12, 1997), which is here incorporated by reference,
20 discloses an anionic shampoo and conditioning composition comprising an oily conditioning agent, a shampooing agent, and an acrylate copolymer, a cationic conditioning agent and water. In this formulation, the acrylate copolymer is used to suspend the anionic shampooing and cationic conditioning agent and prevent it then from inactivating one another.
U.S. Patent No. 5,656,257 does not, however, disclose a clear, mild cleansing composition containing a combination of surfactant types, which is capable of suspending beads or other insoluble particulates or gas bubbles.

WO 01/19946 PCT/EP00/08265

- 2 - '

U.S. Patent No. 4,552,685 (Kernstock et al., issued November 12, 1985), which is here incorporated by reference, discloses examples of useful acrylate polymers and copolymers capable of thickening mild cleansing agents containing amphoteric surfactants and betaines. However, there is no teaching in that patent regarding the compatability of cationic polymer conditioning agents in the formulation, nor the suspending power of the solution for insoluble beads, particulates or gaseous bubbles.

10

- U.S. Patent No. 3,759,861 (Shimokawa, issued September 18, 1973), which is here incorporated by reference, discloses a clear polymer adhesive complex of an acrylate containing polymer and surfactant used to produce a flocculant.
- However, there is no disclosure of a shower gel or other cleansing composition containing a cationic conditioning agent or complex which can suspend particulates or gas bubbles.
- The present invention comprises a shower gel formulation having a clear appearance and which suspends beads (e.g. agar/TiO2/sunflower oil beads), insoluble particles and gas. bubbles while having one or more acrylate copolymers, a betaine or other amphoteric surfactant and a cationic polymer (e.g. guar) present in the formulation.

It is known that anionic acrylates (i.e. Aculyn type acrylates (available from ISP)), being anionic polymers are generally considered to be incompatible with cationic charged ingredients. It is further known that polymeric cationics, as well as some large, bulky quaternary

10

15

- 3 -

materials, can possibly be incorporated in formulations containing such acrylates. The optimum order of addition in these instances generally requires the acrylate to be neutralised with a base prior to the addition of any cationics.

The applicants have discovered that a clear or transparent product can be produced by either partially neutralising such acrylates prior to cationic addition or after cationic addition. Clarity or transparency is herein defined as having a turbidity less than or equal to 105 NTU (Nephelometric Turbidity Units).

The applicants have further discovered that amphoteric surfactants, such as betaine (which is also cationic in nature and not a true amphoteric), may be optionally added to the inventive formulation in the range of 0.01 - 15 weight percent, preferably 1-10 weight percent to increase mildness without creating noticeable haziness. Prior art shower gels that suspend beads or particulate matter are 20 primarily composed of anionic surfactant and structurant which in most cases are harsher than the inventive formula.

In one embodiment, the present invention provides an aqueous, clear shower gel which is capable of suspension, comprising:

About 10-20 weight percent of at least one anionic surfactant;

30

About 2-15 weight percent of at least one betaine or other amphoteric surfactant;

About 2-15 weight percent of at least one acrylate copolymer;

About 0.05 - 2 weight percent of at least one cationic polymer;

10 About 0.1 - 5 weight percent of beads or particulates;

About 0.1-5 weight percent of a benefit agent such as a water soluble or dispersible silicone polymer;

15 About 0.1-2 weight percent of a preservative such as a biocide;

In another embodiment, the present invention provides an aqueous, clear cleansing gel that is capable of suspending insoluble material or gas bubbles, comprising:

- a. about 5 to 30, preferably 8 to 20 weight percent of at least one anionic surfactant;
- b. about 2 to 15, preferably 2 to 10 weight percent of at least one amphoteric surfactant;
- c. about 0.1 to 10, preferably 0.5 to 5 weight percent of at least one acrylate copolymer;
- d. about 0.01 to 5, preferably 0.1 to 2 weight percent of at least one cationic polymer;
- e. about 0.01 to 5, preferably 0.05 to 3 weight percent of at least one insoluble component

10

15

25

selected from the group consisting of beads, particulates, water insoluble liquids and gas bubbles;

- f. about 50 to 85 weight percent of water
- g. about 1.9:1 to 15:1, preferably 1.9:1 to 10:1 weight percent ratio range of anionic surfactant to amphoteric surfactant;
- h. about 0.1:1 to 15:1, preferably 0.3:1 to 10:1, weight percent ratio range of the sum of cationic polymer and amphoteric surfactant to acrylate copolymer; and

wherein the concentration of acrylate copolymer is sufficient to suspend said at least one insoluble component, preferably wherein the viscosity range is between 6,000 and 20,000 cps, and the pH is in the range of 5.5 to 7.0.

In a further embodiment, the present invention provides an aqueous, clear cleansing gel which is capable of suspending insoluble material or gas bubbles, comprising:

- a. about 5 to 30, preferably 8 to 20 weight percent of at least one anionic surfactant;
- b. about 0.1 to 10, preferably 0.5 to 5 weight percent of at least one acrylate copolymer;
- c. about 0.01 to 5, preferably 0.1 to 2 weight percent of at least one cationic polymer;
- d. about 0.01 to 5, preferably 0.05 to 3 weight percent of at least one insoluble component selected from the group consisting of beads,

WO 01/19946 PCT/EP00/08265

- 6 -

particulates, water insoluble liquids and gas bubbles;

- e. about 50 to 85 weight percent of water; and
- wherein the concentration of acrylate copolymer is sufficient to suspend said at least one insoluble component, preferably wherein the viscosity range is between 6,000 and 20,000 cps, and the pH is in the rangeof 5.5 to 7.0.
- Amonic surfactants, foam boosters, amphoteric and zwitterionic surfactants, which are useful in the present invention, are described in U.S. Patent No. 5,221,530, issued to Janchitraponvej et al. on June 22, 1993, which is herein incorporated by reference.

15 Acrylate polymers and copolymers which are useful in the invention include one or more copolymers containing at least one monomer selected from the group consisting of methacrylic acid, acrylic acid, amino acrylic acid, an acrylic acid ester of a C8 -30 alkyl, alkylaryl, aryl, 20 heterocyclic, alkoxyl, alkoxyl alkyl ester of a C8-30 alkyl or alkenyl; either substituted or unsubstituted; a methacrylic acid ester of a C8 -C30 alkyl, alkylaryl, aryl, heterocyclic, alkoxyl, alkoxyl alkyl ester of a C8-30 alkyl, or alkenyl; either substituted or unsubstituted; a C1-4 25 alkyl acrylate, and a C1-4 methacrylate; either substituted or unsubstituted, and the like. Other useful acrylate polymers and copolymers are disclosed in U.S. Patent No. 5,656,257.

- 7 -

Preferred acrylate polymers include the following INCI named materials: acrylates/c12-24 pareth-25 acrylate copolymer, obtainable as Synthalen® W2000 from 3V Inc. (Wehawken, NJ); acrylates/steareth-20 methacrylate copolymer obtainable as Aculyn® 22 from International Specialty Products Corp. (Lombard, IL); and acrylates copolymer obtainable as either Aculyn® 33 from International Specialty Products Corp. or as Polymer EX-518® from BF Goodrich Corp. (Brecksville, OH); acrylates/steareth-20 itaconate copolymer, obtainable as Structure 2001®; acrylates/ceteth-20 itaconate copolymer, obtainable as Structure 3001®; and acrylates/aminoacrylates/C10-30 alkyl PEG-20 itaconate copolymer, obtainable as Structure Plus® all from National Starch & Chemical, Inc. (Bridgewater, NJ), and the like.

15

20

25

The inventive compositions may be used for the cleansing of the user's skin and hair and is applied to a surface (e.g. a skin surface) via topical applications to release or deposit an effective amount of the transparent composition to perform the desired cleansing function. The frequency of topical application can vary widely, depending on the user's need. With respect to personal application to the skin, such application can range from about once per day to about four times per day, preferably from about twice a day to about three times a day.

The following examples are intended to illustrate the invention and not limit the invention in any way.

30 Several inventive transparent shower gels with suspended insoluble particles were prepared and compared to comparative shower gels that did not display clarity. The compositions of these shower gels are summarised in Tables 1 and 2. The processing methods used to prepare these compositions listed in Table 1 are provided below:

	1		c	2	, 5	7 44	Ex 7	EX. 8	Ex. 9	Ex.	EX.	Ex.	Ex.	Ex.
Ingredients	EX. I	EX.	EX.3	EX : 4	% ta /	%wt/	%wt/	%wt/	%wt/	10	11	12	13	14
	*WE/	6W L/	3W L/	7 A C /	1 to 1) ; ; ;	¥ 4	W	¥	%¥t	%wt	%wt	%wt	%wt
	¥ L	ب ≽.	د 3	د د	ر \$) :)	1		/wt	/wt	/wt	/wt	/wt
Sodium Laureth	11.0	13.0	11.0	10.0	11.0	11.0	7.0	11.0	11.0	20.0	11.0	11.0	11.0	11.
Sulfate						,	,	6	0	0	6	0	0	0 9
Cocamidopropyl	0.9		3.0	2.1	3.0	3.0	0.	o .	3.0	o. o))	? 1))
betaine							,		0	<			200	1.8
Acrylates	1.8	2.0	1.5		3.0		8.		0.7)) •
Copolymer								,						
Acrylates/C12-				3.0				1.75						
24 Pareth-25							_							
Acrylate								_						
Copolymer							,		,	-			C	 -
Acrylates/	1.25	0.5			0.5		0.1		ر د.	o . T) -)
Steareth-20							-							
Methacrylate														
copolymer											C	-		
Acrylates/											o. n			
Steareth-20														
Itaconate							-							
Coplymer												r.		
Acrylates/												· ·		
Ceteth-20														
Itaconate												• -		
Copolymer						,								
Acrylates/Amino						2.18								
-acrylates					_									
Copolymer							_							

									_	. 1	10	_																
15					0.2											1.0		0.22							0.5			0.05
0.25							0.2									2.7				000.0	м				0.4			0.05
0 15)						-		0.1							1		0.22							0.5			0.5
0.15	 								0.1							5.0		0.22	•						0.5			0.5
0.15				0.86					0.1		•	•				1.5		0.22							1.0			0.5
0.15				98.0					0.1					0.25		0.5				0.00	03			_	1.0			0.05
0.15				0.86					0.2					1.5		1.0				00.0	03				0.5			0.05
0.15		=			0.2						-							0.22							0.5			0.5
0.15									0.1							0.5		0.22									0.5	0.5
0.15	-								0.1							1.0				0.00.0	4				1.0			0.05
																		0.22							0.75			0.5
0.15				0.86					0.2					9.0		0.5				00.0	03		• = •		0.25			0.05
0.25		, .		98.0		i			0.2							0.5				0.000	m				0.5			0.05
0.15									0.1							2.0		0.22							0.5			0.5
Disodium	Dimethicone	Copolyol	Sulfosuccinate	Fragrance	Polyquaternium	-22	Polyquaternium	-10	Hydroxypropyl	Guar	Hydroxypropyl	Trimonium	Chloride	Ammonium	Sulfate	Propylene	Glycol	DMDM Hydantoin	+ IPBC	Methylchlorois	othiazolinone	(and)	Methylisothiaz	olinone	Sodium	Hydroxide	Citric Acid	Insoluble components

0.02 0.5	0.02 0.2 0.5 0.5 q.s. q.s. 9	q.s. d.s.	q.s. q.s. to to 100 100	q.s. q.s. to to 100 100	q.s. q.s. to to 100 100	q.s. q.s. to to 100 100	q.s. to 100 100	q.s. to 100 10	q.s. to 100 100 10
 	0.02 0.2 0.5 0.5				 	 	4.8 to 10 9		
05	1 1 1		,	0 0 0 7 1	9. 0 0. 10 T.	0.2 0.5 q.s. to 100	0.2 0.5 q.s. to 100 3 3	0.2 0.5 q.s. to 100 3 3	0.2 0.5 q.s. to 100 3 3
0		0.05 9. q.s.	0.05 q.s. to	0.05 q.s. to	0.05 q.s. to 100	0.05 q.s. to 100	0.05 q.s. to 100	0.05 q.s. to 100 1 1	0.05 q.s. to 100 1 1
			q.s. q.s. to to 100 100						
0 C	0 0.2	0.5 q.s.	0.2 q.s. to	0.2 0.5 q.s. to	0.2 q.s. to 100	0.5 d.s. to 100	0.2 q.s. to 100 5	0.2 0.5 q.s. to 100 5 5	0.2 0.5 d.s. to 100 5 5
			-						
	-+-			- - 			- - - - - - - - - - 		
						n USP			
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	q.s. q.s. q.s. q.s. q.s.	q.s. q.s. q.s. q.s. q.s. to to to to to to to 100 100	q.s. q.s. q.s. q.s. q.s. q.s. to to to to to to 100 100 100 100 100 100	q.s. q.s. q.s. q.s. q.s. to to to to to to 100 100 100	q.s. q.s. q.s. q.s. q.s. q.s. to to to to to to 100 100 100 100 100 100 6 8 1 4 5 2	q.s. q.s. q.s. q.s. q.s. to to to to to 100 100 100 100 100 6 8 1 4 5 2	q.s. q.s. q.s. q.s. q.s. q.s. to to to to to to to 100 100 100 100 100 100 100 6 8 1 4 5 2 FAIL PASS PASS PASS PASS PASS	q.s. q.s. q.s. q.s. q.s. to to to to to to 100 100 100 100 100 100 6 8 1 4 5 2 FAIL PASS PASS PASS PASS PASS

Note: I is inventive and C is comparative

METHOD 1:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to 73.8°C (165°F). The temperature was maintained at 73.8° C (165°F). Agitation of the center turbine was increased as was the wall sweep so that there was a slight vortex. Acrylate copolymer was added to the tank and mixed. The anionic surfactants were then added to the tank and mixed, and then the amphoteric surfactant was added and mixed. The cationic polymer was premixed with propylene glycol if the cationic polymer was a solid, and was mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. Then the glycerin was added. Agitation was decreased, and mixing was continued for 30 minutes at 73.8°C (165°F) and then cooled to 35°C (95°F). During the cooling process, the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.5 to 7.0.

20

25

10

15

At 46.1°C (115°F), the preservative was added and at 40.6°C (105°F) the fragrance was added and mixed well. The mixture was then cooled to 35°C (95°F). At 35°C (95°F), the viscosity was measured and adjusted with ammonium sulfate to the desired viscosity. The insoluble components were added and mixed gently. The mixture was then cooled to room temperature.

METHOD 2:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.3° C (165° F). The agitation of the center 5 turbine and the wall sweep was increased so that there was a slight vortex. Tetrasodium EDTA was added to the tank and mixed. The cationic polymer was premixed with propylene glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was 10 added straight to the tank. The anionic surfactants were added and mixed. Next the amphoteric surfactants were added and mixed, and then the acrylate copolymer was added and mixed. The composition was then mixed for 30 minutes at 73.8°C (165°F), and was then cooled to 35°C (95°F). At 15 46.1°C (115°F), the preservative was added and mixed well. At 35°C (95 °F), the pH was measured and adjusted with citric acid to clarity within a target pH range of 5.5 to 7.0. At 35°C (95 °F), the viscosity was measured and adjusted if necessary to the desired viscosity. The insoluble 20 components were then added and mixed, and the composition cooled to room temperature.

METHOD 3:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8°C (165°F). Agitation of the center turbine and the wall sweep was increased so that there was a slight The acrylate copolymer was added to the tank and vortex. The anionic surfactant was added and mixed. Agitation was decreased and the amphoteric surfactant added and mixed. The cationic polymer was premixed with propylene 10 glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. The remaining acrylate copolymer was premixed with water to a dilution of 4.5 to 1 and added to the tank and mixed with gentle agitation. The batch was 15 mixed for 30 minutes at 73.8°C (165°F) and was started to be cooled to 35°C (95 °F). At 48.9°C (120 °F), the glycerin was added, at 46.1°C (115°F), the preservative and then the UV inhibitor were added. At 43.3°C (110 $^{\circ}\text{F}$), the EDTA and the EHDP were added and at 40.6°C (105 $^{\circ}\text{F}$), the fragrance was 20 added and mixed. At 35°C (95 $^{\circ}\text{F}$), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.9 to 7.0. At 35° C (95 $^{\circ}$ F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were then 25 added and mixed gently, and the composition cooled to room temperature.

METHOD 4:

10

15

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 46.1°C (115°F). Agitation of the center turbine and the wall sweep was increased so that there was a slight vortex. Preservative was added to the tank and mixed. The acrylate copolymer was added to the tank slowly and mixed for 5 minutes. The anionic surfactants were added, then the amphoteric surfactants and mixed. The batch was cooled to 35°C (95°F). At 35°C (95°F), the pH was measured and adjusted with an alkaline pH adjuster to a target pH range of 5.5 to 7.0. At 35°C (95°F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were added and mixed, and the composition cooled to room temperature.

METHOD 5:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8° C (165° F). Agitation of the center 5 turbine and the wall sweep was increased so that there was a The acrylate copolymer was added to the tank slight vortex. and mixed. The anionic surfactant was then added and mixed. Agitation was decreased, and the amphoteric surfactant added and mixed. The cationic polymer was premixed with propylene 10 glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. The remaining acrylate copolymer was premixed with water to a dilution of 4.5 to 1, added to the tank and mixed with gentle agitation. The batch was 15 mixed for 30 minutes at 73.8°C (165°F), and then started to cool to 35°C (95 °F). At 48.9°C (120 °F), the glycerin was added, at 46.1°C (115 °F) the preservative and then the UV inhibitor were added. At 43.3°C (110 $^{\circ}\text{F}$), the EDTA and the EHDP were added and mixed. At 35°C (95 $^{\circ}\text{F}$), the pH was 20 measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.9 to 7.0., At 35° C (95 °F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were then added and mixed gently, and the composition cooled 25 to room temperature.

METHOD 6:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8°C (165°F). Agitation of the center turbine 5 and the wall sweep was increased so that there was a slight vortex. Tetrasodium EDTA was added to the tank. cationic polymer was premixed with propylene glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight 10 to the tank. Agitation was decreased, and the acrylate copolymer(s) added and mixed. The anionic surfactants were added to the tank and mixed. The amphoteric surfactant was added next and mixed. This was mixed for 30 minutes at 73.8°C (165°F) and then cooled to 35°C (95°F). At 46.1°C 15 (115 $^{\circ}\text{F}$), the preservative was added and mixed well. At 35 $^{\circ}\text{C}$ (95 $^{\circ}F$), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.5 to 7.0. At 35°C (95°F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble 20 components were added and mixed, and the composition cooled to room temperature.

METHOD 7:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8°C (165°F). Agitation of the center turbine and the wall sweep was increased so that there was a slight Tetrasodium EDTA was added to the tank and then subsequently the acrylate copolymer(s). The anionic surfactants were then added to the tank and mixed. amphoteric surfactant was added next and mixed. cationic polymer was premixed with propylene glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. Agitation was decreased and the composition was mixed for 30 minutes at 73.8°C (165°F) and then was cooled to 15 35°C (95 °F). At 46.1°C (115 °F), the preservative were added and mixed well. At 35°C (95 °F), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.5 to 7.0. At 35°C (95 °F), the viscosity was measured and adjusted with propylene glycol to the 20 desired viscosity. The insoluble components were added and mixed, and the composition cooled to room temperature.

-19-

METHOD 8:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8°C (165°F). Agitation of the center turbine and the wall sweep was increased so that there was a slight vortex. The acrylate copolymer was added to the tank and The anionic surfactant was added and mixed. Agitation was decreased and the amphoteric surfactant added and mixed. The cationic polymer was premixed with propylene 10 glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. The remaining acrylate copolymer was premixed with water to a dilution of 4.5 to 1 and added to the tank and mixed with gentle agitation. The batch was 15 mixed for 30 minutes at 73.8°C (165°F) and cooled to 35°C (95 °F). At 48.9°C (120 °F) the glycerin was added, and at 46.1°C (115 °F) the preservative and then the UV inhibitor were added. At 43.3°C (110 °F), the EDTA and the EHDP were added and mix. At 40.5°C (105°F) the fragrance was added and 20 mixed well. At 35° C (95 $^{\circ}$ F), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.9 to 7.0. At 35° C (95 $^{\circ}$ F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were added 25 and mix, and the composition cooled to room temperature.

WO 01/19946 PCT/EP00/08265

-20-

METHOD 9:

5

10

15

20

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8° C (165° F). Agitation of the center turbine and the wall sweep was increased so that there is a The acrylate copolymer was added to the tank slight vortex. The anionic surfactant was added and mixed. Agitation was decreased, and the amphoteric surfactant added and mix. The cationic polymer was premixed with propylene glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. The remaining acrylate copolymer was premixed with water to a dilution of 4.5 to 1 and added to the tank and mixed with gentle agitation. batch was mixed for 30 minutes at 73.8°C (165°F) and was then cooled to 35°C (95 °F). At 46.1°C (115 °F) the preservative was added, and at 40.6°C (105 $^{\circ}\text{F}$) the fragrance was added and mixed. At 35° C (95 °F), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.9 to 7.0. At 35° C (95 $^{\circ}$ F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were added and mixed gently, and the composition cooled to room temperature.

METHOD 10:

5

10

15

20

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8°C (165°F). Agitation of the center turbine and the wall sweep was increased so that there was a slight vortex. EDTA was added to the tank and mixed. The cationic polymer was premixed with propylene glycol if the cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. The anionic surfactant was added and mixed. The amphoteric surfactant was added and mixed. The acrylate copolymer was added to the tank and mixed. The agitation was decreased and the batch mixed for 30 minutes at 73.8°C (165°F) and then cooled to 35°C (95°F). At 46.1°C (115°F), the preservative was added and mixed. At 35°C (95 °F), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.9 to 7.0. At 35°C (95 °F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were added and mixed, and the composition cooled to room temperature.

METHOD 11:

The initial distilled water charge was added to a center turbine tank with wall scrape agitation and heated to and maintained at 73.8° C (165° F). Agitation of the center turbine and the wall sweep was increased so that there was a slight vortex. EDTA and then the acrylate copolymers were added to the tank and mixed. The anionic surfactant was added and mixed. The amphoteric surfactant was added and mixed. The cationic polymer was premixed with propylene glycol if the 10 cationic polymer was a solid, and mixed well with no lumps. If the cationic polymer was a liquid, it was added straight to the tank. The agitation was decreased and the batch mixed for 30 minutes at 73.8°C (165°F), and then cooled to 35°C (95 $^{\circ}F)$. At 46.1 $^{\circ}C$ (115 $^{\circ}F)$, the preservative was and mixed. 15 35°C (95 °F), the pH was measured and adjusted with an alkaline pH adjuster to clarity within a target pH range of 5.9 to 7.0. At 35°C (95 °F), the viscosity was measured and adjusted with propylene glycol to the desired viscosity. The insoluble components were added and mixed, and the 20 composition cooled to room temperature.

Example 15

The following is another example of the invention.

Ingredient	% by weight
Anionic surfactant (e.g. Sodium Laureth Sulfate (3EO)	About 10-20
Betaine (e.g. Cocoamidopropyl betaine)	About 2-15
Acrylate Copolymer (e.g. Aculyn 33 and 22)	About 2 - 15
Silicone (e.g. Dimethicone Copolyol Sulfosuccinate	About 0.1 - 5
Fragrance	About 0 - 1.0
Cationic surfactant (e.g. Hydroxypropyl Guar Hydroxypropyl Trimonium Chloride)	About .05 - 5
Propylene Glycol	About 0.1 - 2.0
Preservative	About 0.1 - 2.0
Sodium Hydroxide	to adjust pH to 6.0 to 7.0
Beads (e.g. Agar/ Titanium Dioxide/Sunflower Oil	About 0.1 - 2.0
Beads	
Water	q.s. to 100

-24-

METHODS

Viscosity

5 For the purposes of this invention, viscosity is measured using conventional techniques with a Brookfield viscometer, Model HBDVII+ CP, spindle No. 41 at 0.5 rpm at 25°C.

Turbidity

10

For the purposes of this invention, the acceptability of formulation clarity was measured qualitatively and quantitively using a visual method of turbidity determination and a turbidimeter respectively. Briefly, the visual method involves looking through a determined path 15 length of the formulation to a visual target and determining if the visual target is legible or recognizable. target may be a straight line, a set of parallel lines, or a number or letter printed on white paper. To assess turbidity, the test formulation was placed in a glass beaker 20 such that the height from the bottom of the beaker to the top surface of the formulation was 10.16 cm (four inches). The formulation is made free of air bubbles. A piece of paper with the visual target is placed under the beaker. The assessor the looked through the top surface of the 25 formulation to the visual target. If the visual target appeared similar to the original, the formulation is of acceptable clarity and receives a 'pass' rating. visual target appeared significantly hazy, or is out of focus compared to the original target, the formulation is of 30 unacceptable clarity and receives a 'fail' rating.

Turbidity was quantitatively determined by a Turbidimeter, Model DRT-100D, manufactured by Shaban Manufacturing Inc, H. F. Instruments Division using a sample cuvette of 28 mm diameter by 91 mm in length with a flat bottom. Samples that had received a 'pass' rating from the visual method were found to have a turbidity measurement of less than or equal to 105 NTU's (Nephelometric Turbidity Units). Samples that had received a 'fail' rating from the visual method were found to have a turbidity measurement of greater than 105 NTU's.

The foregoing description and examples illustrate selected embodiments of the present invention. In light thereof, variations and modifications will be suggested to one skilled in the art, all of which are written the scope and spirit of this invention.

5

10

Claims

10

15

- 1. A transparent cleansing composition, comprising:
- 5 a. 5 to 30 weight percent of at least one anionic surfactant;
 - b. 2 to 15 weight percent of at least one amphoteric surfactant;
 - c. 0.1 to 10 weight percent of at least one acrylate copolymer;
 - d. 0.01 to 5 weight percent of at least one cationic polymer;
 - e. 0.01 to 5 weight percent of at least one insoluble component selected from beads, particulates, water insoluble liquids and gas bubbles, and mixtures thereof;
 - f. 50 to 85 weight percent of water;
 - g. wherein there is a weight percentage ratio range of anionic surfactant to amphoteric surfactant of 1.9:1 to 15:1;
 - h. wherein there is a weight percent ratio range of the sum of cationic polymer and amphoteric surfactant to acrylate copolymer of 0.1:1 to 15:1; and
- wherein the concentration of acrylate copolymer is sufficient to suspend said at least one insoluble component.

- 2. The cleansing composition of claim 1, comprising:
 - a. 8 to 20 weight percent of at least one anionic surfactant;
 - b. 2 to 10 weight percent of at least one amphoteric surfactant;
 - c. 0.5 to 5 weight percent of at least one acrylate copolymer;
- d. 0.1 to 2 weight percent of at least one cationic polymer;
 - e. 0.05 to 3 weight percent of at least one insoluble component selected from the group consisting of beads, particulates, water insoluble liquids and gas bubbles;
 - f. 50 to 85 weight percent of water;
 - g. wherein there is a weight percent ratio range of anionic surfactant to amphoteric surfactant of 1.9:1 to 10:1;
- 20 h. wherein there is a weight percent ratio range of the sum of cationic polymer and amphoteric surfactant to acrylate opolyer of 0.3:1 to 10:1; and
- wherein the viscosity range is between 6000 and 20000 cps, and the pH is in the range of 5.5 to 7.0.

10

- 3. The cleansing composition of claim 1 or claim 2 wherein the anionic surfactant is selected from alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylbenzene sulfonates, alkyl succinates, alkyl sulfosuccinates, alkyl olefin sulfonates, alkyl sarcosinates, octoxynol phosphates nonoxynol phosphates, alkyl taurates, polyoxyethylene sulfates, polyoxyethylene isethionates, alkyl carboxylates and alkyl ether carboxylates, and mixtures thereof.
- 4. The cleansing composition of any of the preceding claims wherein the amphoteric surfactant is selected from alkyl betaines, alkyl amino betaines, hydroxysultaines, alkyl amphoacetates and alkylampho carboxyglycinates, and mixtures thereof.
- The cleansing composition of any of the preceding 5. claims wherein the at least one acrylate copolymer includes one or more copolymers containing at least one 20 monomer selected from methacrylic acid, acrylic acid, amino acrylic acid, an acrylic acid ester of a C8 -30 alkyl, alkylaryl, aryl, heterocyclic, alkoxyl, alkoxyl alkyl ester of a C8-30 alkyl or alkenyl; either substituted or unsubstituted; a methacrylic acid ester 25 of a C8 -C30 alkyl, alkylaryl, aryl, heterocyclic, alkoxyl, alkoxyl alkyl ester of a C8-30 alkyl, or alkenyl; either substituted or unsubstituted; a C1-4 alkyl acrylate, and a C1-4 methacrylate; either substituted or unsubstituted. 30

10

- 6. The cleansing composition of any of the preceding claims wherein the cationic polymer is selected from quaternized guar gums, quaternized phosphate esters, quaternized polysaccharides or their derivatives, quaternized polyamides, quaternized polymeric derivatives of acrylates, methacrylates, acrylamides, methacrylamides or copolymers thereof, and quaternized polymeric derivatives of substituted allyl or vinyl compounds.
- 7. The cleansing composition of any of the preceding claims wherein the at least one insoluble component is selected from glass beads, plastic beads, macaroni food products, organic materials, inorganic materials, crystalline solids, oil droplets, vegetable and fruit purees, water insoluble dimethicones, air and gas bubbles, and mixtures thereof.
- 20 8. A transparent cleansing composition, comprising:
 - a. 5 to 30 weight percent or at least one anionic surfactant;
 - b. 0.1 to 10 weight percent of at least one acrylate copolymer;
 - c. 0.01 to 5 weight percent of at least one cationic polymer;
- d. 0.01 to 5 weight percent of at least one insoluble component selected from the group consisting of beads, particulates, water insoluble liquids and gas bubbles;

- e. 50 to 85 weight percent of water; and
- wherein the concentration of acrylate copolymer is sufficient to suspend said at least one insoluble component.
 - 9. The cleansing composition of claim 8, comprising:
- 10 a. 8 to 20 weight percent of at least one anionic surfactant;
 - b. 0.5 to 5 weight percent of at least one acrylate copolymer;
 - c. 0.1 to 2 weight percent of at least one cationic polymer;
 - d. 0.05 to 3 weight percent of at least one insoluble component selected from the group consisting of beads, particulates, water insoluble liquids and gas bubbles;
- e. 50 to 85 weight percent of water; and

wherein the viscosity range is between 6000 and 20,000 cps, and the pH is in the range of 5.5 to 7.0.

The cleansing composition of claim 8 or claim 9 wherein the anionic surfactant is selected from alkyl sulfates, alkyl ether sulfates, alkyl sulfonates alkylbenzene sulfonates, alkyl succinates, alkybenzene succinates, alkylbenzene sulfosuccinates, alkyl olefin sulfonates, alkyl sarcosinates, alkyl sulfosuccinates, octoxynol phosphates, nonoxynol phosphates, alkyl taurates,

polyoxyethylene sulfates, polyoxyethylene, isethionates, alkyl carboxylates and alkyl ether carboxylates, and mixtures thereof.

- The cleansing composition of any of claims 8-10 wherein 5 11. the at least one acrylate copolymer includes one or more copolymers containing at least one monomer selected from methacrylic acid, acrylic acid, amino acrylic acid, an acrylic acid ester of a C8 -30 alkyl, alkylaryl, aryl, heterocyclic, alkoxyl, alkoxyl alkyl 10 ester of a C8-30 alkyl or alkenyl; either substituted or unsubstituted; a methacrylic acid ester of a C8 -C30 alkyl, alkylaryl, aryl, heterocyclic, alkoxyl, alkoxyl alkyl ester of a C8-30 alkyl, or alkenyl; either substituted or unsubstituted; a C1-4 alkyl acrylate, 15 and a C1-4 methacrylate; either substituted or unsubstituted.
- 12. The cleansing composition of any of claims 8-11 wherein the cationic polymer is selected from quaternized guar gums, quaternized phosphate esters, quaternized polysaccharides or polysaccharide Carivatives, quaternized polyamides, quaternized polymeric derivatives of acrylates, methacrylates, acrylamides, methacrylamides or copolymers, quaternized polymeric derivatives of substituted allyl or vinyl compounds.

- 13. The cleansing composition of any of claims 8-12 wherein the at least one insoluble component is selected from glass beads, plastic beads, macaroni food products, organic materials, inorganic materials, crystalline solids, oil droplets, vegetable and fruit purees, water insoluble dimethicones, air and gas bubbles and mixtures thereof.
- 10 14. A method of cleaning the skin or hair with a transparent cleansing product comprising:
 - a. 5 to 30 weight percent of at least one anionic surfactant;
- b. 2 to 15 weight percent of at least one amphoteric surfactant;
 - c. 0.1 to 10 weight percent of at least one acrylate copolymer;
 - d. 0.01 to 5 weight percent of at least one cationic polymer;
 - e. 0.01 to 5 weight percent of at least one insoluble component selected from beads, particulates, water insoluble liquids and gas bubbles;
 - f. 50 to 85 weight percent of water;
- g. wherein the weight percent ratio range of anionic surfactant to amphoteric surfactant is 1.9:1 to 15:1;

h. wherein the weight percent ratio range of the sum of cationic polymer and amphoteric surfactant to acrylate copolymer is 0.1:1 to 15:1; and

5

15

20

25

wherein the concentration of acrylate copolymer is sufficient to suspend said at least one insoluble component.

- 15. A method of cleansing the skin or hair with a transparent cleansing product comprising:
 - a. 5 to 30 weight percent of at least one anionic surfactant;
 - b. 0.1 to 10 weight percent of at least one acrylate copolymer;
 - c. 0.01 to 5 weight percent of at least one cationic polymer;
 - d. 0.01 to 5 weight percent of at least one insoluble component selected from the group consisting of beads, particulates, water insoluble liquids and gas bubbles;
 - e. 50 to 85 weight percent of water; and

wherein the concentration of acrylate copolymer is sufficient to suspend said at least one insoluble component.

INTERNATIONAL SEARCH REPORT

International Application No: PCT/EP 00/08265

A. CLASSIFICATION OF SUBJECT MATTER C11D1/86,C11D1/90,C11D3/37,C11D3/22,A61K7/50

According to International Patent Classification (IPC) or to both national classification and IPC7

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C11D,A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	WO 99/36054 A1 (RHODIA CHIMIE) 22 July 1999, abstract, page 9, lines 11-17, claims.	1-15
"A	GB 2283754 A (THE PROCTER & GAMBLE COMPANY) 17 May 1995, claims 1,5,6,7,9.	1,2,5, 6,8,9, 11-15
A	US 5656257 A (FEALY et al.) 12 August 1997, the whole document. (cited in the appliction)	1-3, 6-9, 11-15
A	WO 98/13022 A1	1,2,8,

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
Date of the actual completion of the international search	Date of mailing of the international search report
04 December 2000	0 1 02 2001
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	SEIRAFI

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No.

- 2 -

	ion) DOCUMENTS CONSIDERED TO BE RELEVANT	l pr
ategory *	Citation of document, with indication, where appropriate, of the relevant passages (UNILEVER N.V.) 02 April 1998, claims 1,5.	Relevant to claim No.
		
·		

ANHANG

Zum internationalen Recherchenbericht über die internationale Patentanmeldung Nr.

ANG

To the International Search Report to the international Patent Application No.

ANNEX

PCT/EP 00/08265 SAE 301789

ANNEXE

Au rapport de recherche international relativ à la demande de brevet international n°

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur

Unterrichtung und erfolgen ohne Gewähr.

This annex lists the patent family members relating to the patent documents cited in the above-mentioned search report. The European Patent Office is in no way liable for these particulars which are merely

given for the purpose of information.

La presente annexe indique les membres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche international visée ci-dessus. Les renseignements fournis sont donnes à titre indicatif et n'engagent pas la responsibilité de l'Office.

ang D	eführte Patent o in se ocume	herchenbericht Patentdokumente doument cited earch report nt de brevet cité port de recherche	Datum der Veröffentlichung Publication date Date de publication		Pate Pate mer Membr	ed(er) der ntfamilie nt family mber(s) re(s) de la de brevets	Datum der Veröffentlichung Publication date Date de publication
WO	Al	9936054	22-07-1999	AU	A1	20586/99	02-08-1999
				ĒΡ	A1	1049456	08-11-2000
		,		FR	A1	2773710	23-07-1999
				FR	B1	2773710	28-04-2000
GB	A1	2283754	17-05-1995	EP	A1	794766	17-09-1997
GB	В2	2283754	28-01-1998	EP	A4	794766	10-05-2000
				JP	T2	10512254	24-11-1998
				WO	A1	9621425	18-07-1996
				GB	A0	9323283	05-01-1994
				CA	AA	2212245	18-07-1996
บร	Α	5656257	12-08-1997			none	
WO	A1	9813022	02-04-1998	AU	A1	43839/97	29-05-1998
	•			BR	A	9711299	17-08-1999
			•	CZ	A3	9901042	15-09-1999
				EP	Al	928186	14-07-1999
			1	HU	AB	00000094	28-05-2000
				\mathtt{PL}	A1	332377	13-09-1999
				US	А	5962395	05-10-1999
_				ZA	A	9708189	11-03-1999