3.003 Principles of Engineering Practice

Light
Materials
AR Coatings
Solar Cells

Light is an Electromagnetic Wave

Courtesy of the Opensource Handbook of Nanoscience and Nanotechnology.

Electromagnetic Field

- voltage, $\vec{E}(\vec{r},t)$
- current, $\vec{H}(\vec{r},t)$

Photonic Materials

- dielectric constant, $\varepsilon/\varepsilon_0$
- index of refraction, n
- absorption, α

- wavelength, λ
- group velocity, $v_q = c_o/N$; N = group index
- power, P

Tool Box (1): Wave Equation

dielectric constant and index of refraction

Wave equation

$$\nabla^2 u - \frac{1}{c_0^2} \frac{\partial^2 u}{\partial t^2} = 0$$

time and spatial variation

n = index of refraction
=
$$c_0/c = 1$$
 (vacuum)
= $(\epsilon/\epsilon_0)^{1/2}$ (in a material)

$$C_0 = (\epsilon_0 \mu_0)^{-\frac{1}{2}} = 3 \times 10^8 m/s$$

$$\epsilon_0$$
 = permittivity of free space
= $\frac{1}{36\pi} \times 10^{-9} Fm^{-1}$ (MKS)

$$\mu_0$$
 = magnetic permittivity of free space
= $4\pi \times 10^{-7} Hm^{-1}$ (MKS)

$$\epsilon_0 \mu_0 C_0^2 = 1$$

Harmonic Oscillator

$$F = -kx$$

$$E = \frac{1}{2} k x^2$$

$$\omega = (k/m)^{1/2}$$

Tool Box (2): Harmonic Oscillator

absorption and dispersion

Dynamic Relation (time dependent) between P(t) and E(t)

$$\vec{E}(t) = a_1 \frac{d^2 \vec{P}}{dt^2} + a_2 \frac{d \vec{P}}{dt} + a_3 \vec{P}$$

accel vel x

Polarizability, Dielectric Constant, Refractive Index

Dielectric Constant

	$\varepsilon/\varepsilon_0$ (static)
Si	11.7
Ge	16
LiNbO ₃	43
BaTiO ₃	3600

- Absolute Magnitude
- Materials Trend
- Frequency
- Applications

Refractive index, $(\varepsilon/\varepsilon_0)^{1/2}$

	$\varepsilon/\varepsilon_0$ (static)	n _r (ဎ)
Si	11.7	3.5
Ge	16	4
LiNbO ₃	43	2.27
BaTiO ₃	3600	2.46

'The Chemical Bond' (Pauling)

Image by MIT OpenCourseWare.

IIIA	IVA	VA	VIA
10.811 2075 4000 2.31 2.04 8.298 [He]2s ² p ¹ Boron	12.011 4492 ^{TP} 3825 ^{SP} 2, ± 4 2.25 2.55 11.260 [He]2s ² p ² Carbon	14.00674 -210.00 -195.79 2, ± 3,4,5 1.25046 3.04 14.534 [He]2s ² p ³ Nitrogen	15.9994 -218.79 -182.95 1.429 3.44 13.618 [He]2s ² p ⁴ Oxygen
$\begin{array}{c} 26.981539 \\ 660.32 \\ 2519 \\ 2.702 \\ \hline 1.61 \\ 5.986 \\ [Ne]3s^2p^1 \\ Aluminum \\ \end{array}$	28.0855 1414 3265 2.33 1.90 8.151 [Ne]3s ² p ² Silicon	$\begin{array}{c} 30.973762 \\ 44.15 \\ 277 \\ 1.82 \\ \hline 2.19 \\ 10.486 \\ [Ne]3s^2p^3 \\ Phosphorus \\ \end{array} \qquad \begin{array}{c} 15 \\ 23,4,5 \\ \hline P \\ \end{array}$	32.066 115.21 444.60 2.07 2.58 10.360 [Ne]3s ² p ⁴ Sulfur
69.723 31 29.76 3 2204 3 6.095 Ga [Ar]3d ¹⁰ 4s ² p ¹ Gallium	72.61 938.25 2833 5.35 2.01 7.899 [Ar]3d ¹⁰ 4s ² p ² Germanium	$\begin{array}{c} 74.92159 \\ 817^{\mathrm{TP}} \\ 61489 \\ \underline{5.72725^{\circ}}^{\circ} \\ \underline{0.18} \\ 9.81 \\ Arsenic \end{array} \begin{array}{c} 33 \\ 35 \\ \mathbf{5.72725^{\circ}}^{\circ} \\ \mathbf{AS} \\ \mathbf{5.72725^{\circ}}^{\circ} \\ \mathbf{5.72725^{\circ}} \\ \mathbf{5.72725^{\circ}}^{\circ} \\ \mathbf{5.72725^{\circ}}^{\circ} \\ \mathbf{5.72725^{\circ}} \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
114.818 156.60 2072 7.30 1.78 5.786 [Kr]4d ¹⁰ 5s ² p ¹ Indium	118.710 231.93 2602 7.28 1.96 7.344 [Kr]4d ¹⁰ 5s ² p ² Tin	121.757 630.63 1587 6.68425°C 2.05 8.641 [Kr]4d ¹⁰ 5s ² p ³ Antimony	127.60 449.51 988 6.25 2.1 9.009 [Kr]4d ¹⁰ 5s ² p ⁴ Tellurium

Lattice parameter

- lattice parameterbond stiffness
- coefficient of thermal expansion

Anti-Reflection Coating Design

Reflection (one surface)

$$R_1 = (n_0 - n_1)^2/(n_0 + n_1)^2$$

Reflection (two surfaces: interference)

phase difference = $(2\pi n_1/\lambda)$ 2t cosθ

$$R_2 = (n_1^2 - n_0^2)/(n_0^2 + n_1^2)$$

Anti-Reflection Coating Design

Set R=0

$$n_1 = (n_0 n_2)^{1/2}$$

(index of middle layer is geometric mean of other two indices)

Sensitivity analysis: f(λ,t,n)

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.