Schema Refinement

R&G Ch 19

OID	Name	Post	Rank	Salary
I	Sheridan	Bab 5	Capt.	200,000
2	Ivanova	Bab 5	Cmdr.	180,000
3	Sinclair	Bab 5	Cmdr.	180,000
4	Keffer	Bab 5	Lt.	120,000
5	Corwin	Bab 5	Lt.	120,000

OID	Name	Post	Rank	Salary
I	Sheridan	Bab 5	Capt.	200,000
2	Ivanova	Bab 5	Cmdr.	180,000
3	Sinclair	Bab 5	Cmdr.	180,000
4	Keffer	Bab 5	Lt.	120,000
5	Corwin	Bab 5	Lt.	120,000

Commanders earn 180,000 credits. Lieutenants earn 120,000 credits.

OID	Name	Post	Rank	Salary
I	Sheridan	Bab 5	Capt.	200,000
2	Ivanova	Bab 5	Cmdr.	180,000
3	Sinclair	Bab 5	Cmdr.	180,000
4	Keffer	Bab 5	Lt.	120,000
5	Corwin	Bab 5	Lt.	120,000

Commanders earn 180,000 credits. Lieutenants earn 120,000 credits.

<Salary> depends on <Rank>

What's wrong with this picture?

- Wasted space: 2 values/officer
- How do we find the salary of new officers?
- What happens if we delete Capt. Sheridan?
- What is involved in changing the default salary for all officers of a given rank?

What's wrong with this picture?

- Wasted space: 2 values/officer
- How do we find the salary of new officers?
- What happens if we delete Capt. Sheridan?
- What is involved in changing the default salary for all officers of a given rank?

Eliminate Redundancy By Splitting Relations (Decomposition)

Decomposition

- Replace R(A,B,C,D) with, for example,
 - RI(A,B), R2(B,C,D) or
 - RI(A,C,D), R2(A,B,D)

- When is it useful to decompose?
 - What are the costs of decomposition?

Functional Dependencies

- A <u>functional dependency</u> $X \to Y$ holds over relation R if for every pair of tuples t_1, t_2 in R, it holds that if $\pi_X t_1 = \pi_X t_2$, then $\pi_Y t_1 = \pi_Y t_2$.
 - X and Y are sets of columns
- A FD isn't just a statement about a particular instance of R, but about application semantics.
 - We can check to see of an FD holds over R, but can't check to see if R has an FD.

Example

- Officers(oid, name, post, rank, salary)
 - Cols abbreviated ONPRS
 - i.e., the set of attributes {O, N, P, R, S}
- Some example FDs on Officers
 - oid is a key: O → ONPRS
 - If X is a key, is $X \to R$ an FD? If $X \to R$, is X a key?
 - rating determines salary: $R \rightarrow S$

Example-Problems

OID	Name	Post	Rank	Salary
	Sheridan	Bab 5	Capt.	200,000
2	Ivanova	Bab 5	Cmdr.	180,000
3	Sinclair	Bab 5	Cmdr.	180,000
4	Keffer	Bab 5	Lt.	120,000
5	Corwin	Bab 5	Lt.	120,000

Update: Can we just update S in row 2 Insert: How do we insert an admiral? Delete: What happens if we delete row 1?

Reasoning about FDs

- Armstrong's Axioms: (Implication rules for FDs)
 - Reflexivity: If X ⊆ Y then Y → X
 - Augmentation: If X → Y then XZ → YZ for any Z
 - Transitivity: If $X \rightarrow Y, Y \rightarrow Z$ then $X \rightarrow Z$
- If F is a set of FDs, then F⁺ is the closure of F, the set of all FDs implied by F.

Reasoning about FDs

- A few additional rules
 - Union: If $X \to Y$ and $X \to Z$ then $X \to YZ$
 - **Decomp.**: If $X \rightarrow YZ$ then $X \rightarrow Y, X \rightarrow Z$
- These rules follow from Armstrong's Axioms.
- AA rules are sound and complete.

Example

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. (1), (2) imply that $JP \rightarrow CSJDPQV$
- 5. (3) implies that $SDJ \rightarrow JP$
- 6. (4), (5) imply that SDJ \rightarrow CSJDPQV

Reasoning about FDs

- Computing the closure of a set of FDs can be expensive (size is exponential in #attr)
 - ... but usually only need if $X \rightarrow Y \in F^+$?
- Instead, compute <u>attribute closure</u> of X (X⁺)
 - Maximal A such that $X \to A \in F^+$.
- How do we compute this?

Example

- Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E \}$ imply that $A \rightarrow E$?
 - ... is $A \rightarrow E \in F^+$?
 - ... is $E \in A^+$?

Decomposition

- Replace R(A,B,C,D) with, for example,
 - RI(A,B), R2(B,C,D) or
 - RI(A,C,D), R2(A,B,D)

- When is it useful to decompose?
 - What are the costs of decomposition?

Normal Forms

Normal Forms

- If a relation is in one of the normal forms (BCNF, 3NF) certain problems are avoided/minimized.
- Decomposition can produce relations in/closer to a normal form.
- FDs help us detect redundancy
 - For R(A,B,C), if $A \rightarrow B$, and several tuples have the same A value, they'll all have the same Bs.

Boyce-Codd Normal Form (BCNF)

- R (with FDs F) is in BCNF if for all $X \rightarrow A \in F^+$:
 - $A \subseteq X$ (the trivial FD), or
 - X contains a key for R
- In other words, R is in BCNF if the only nontrivial FDs that hold over R are key constraints.

BCNF Isn't Always Viable

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer → Crew Role

Keys: {Ship, Crew Role}, {Crew Role, Officer}

BCNF Isn't Always Viable

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer >> Crew Role

Keys: {Ship, Crew Role}, {Crew Role Officer}

3rd Normal Form

- R (with FDs F) is in BCNF if for all $X \rightarrow A \in F^+$:
 - $A \subseteq X$ (the trivial FD), or
 - X contains a key for R, or
 - A is a subset of any key for R
 - Recall that keys are minimal sets of attributes.
- Weaker form of BCNF
 - ...used when BCNF impractical, impossible.

3rd Normal Form

- If 3NF is violated by $X \rightarrow A$ then:
 - X is a subset of some key K
 - Some (X,A)s are being stored redundantly.
 - X is not a proper subset of any key
 - So there exists redundancy: $K \rightarrow X \rightarrow A$
 - But this can still happen in 3NF.

3NF Isn't Always Perfect

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer → Crew Role

Keys: {Ship, Crew Role}, {Crew Role, Officer}

3NF Isn't Always Perfect

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer — Crew Role

Keys: {Ship, Crew Role}, {Crew Role, Officer}

3NF Isn't Always Perfect

- BCNF can't always be decomposed (as in example)
- 3NF is a compromise:
 - Guaranteed to be possible to decompose to 3NF.
 - Not guaranteed to lack redundancy.

Decomposition

- Starting with $R(A_1, ..., A_n)$, a decomposition creates relations $R_1, R_2, ...$ such that
 - $R_i \subset R$ (R_i contains only attributes in R)
 - $R \equiv R_1 \cup R_2 \cup ...$ (each attribute appears at least once in a decomposed rel)
- We store instances of the R_is instead of R.

Example

- Officers(Oid, Name, Post, Rank, Salary)
 - $F = \{O \rightarrow N, P, R, S; R \rightarrow S\}$
 - R → S violates 3NF
- **Store**: Officers'(ONPR), Salaries(RS)
 - Can we just project Officers down to O',S?
 - What problems could occur?

Decomposition Costs

- Queries become more expensive:
 - How much does Sheridan earn? (2 way join)
- May not be possible to reconstruct original relation from instances.
 - R₁(A,B), R₂(B,C), R₃(A,C)
- Checking dependencies may require joining instances of the decomposed relation.