Calculus on Manifolds

Nutan Nepal

January 31, 2019

1 1-30

1. Let $f:[a,b]\to \mathbf{R}$ be an increasing function. If $x_1,...,x_n\in[a,b]$ are distinct, show that

$$\sum_{i=1}^{n} o(f, x_i) \le f(b) - f(a).$$

Solution: Let order be defined in $\{x_1, ..., x_n\}$ such that $x_1 < ... < x_n$, then since f is an increasing function, we get $f(x_1) \le ... \le f(x_n)$. We have

$$o(f, x_i) = \lim_{\delta \to 0} \left(M(x_i, f, \delta) - m(x_i, f, \delta) \right)$$

where,

$$M(x_i, f, \delta) = \sup \{ f(x) : x \in [a, b] \text{ and } ||x - x_i|| < \delta \},$$

$$m(x_i, f, \delta) = \inf \{ f(x) : x \in [a, b] \text{ and } ||x - x_i|| < \delta \}.$$

If we denote a δ -neighborhood of some $x_i \in [a, b]$ by $N_{\delta}(x_i)$, then since $\delta \to 0$, we can choose a sufficiently small $\delta > 0$ such that

$$\bigcap_{i=1}^{n} N_{\delta}(x_i) = \phi.$$

Then for all such δ we have,

$$f(x_{i+1}) \ge M(x_i, f, \delta) \ge f(x_{i-1})$$
, and $f(x_{i+1}) \ge m(x_i, f, \delta) \ge f(x_{i-1})$.

We simplify the given summation as

$$\sum_{i=1}^{n} o(f, x_i) = \lim_{\delta \to 0} \sum_{i=1}^{n} (M(x_i, f, \delta) - m(x_i, f, \delta))$$

$$\leq \lim_{\delta \to 0} \sum_{i=1}^{n} (f(x_{i+1}) - f(x_{i-1}))$$

$$= f(x_{n+1}) - f(x_0),$$

$$\leq f(b) - f(a).$$

where the last statement follows from the fact that the max and min f(x) can get is f(b) and f(a).

2 1-25

1. Prove that a linear transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ is continuous.

Solution:

Proof. We need to show that $T: \mathbf{R}^n \to \mathbf{R}^m$ is continuous at all $a \in \mathbf{R}^n$. That is, for every $\varepsilon > 0$ we can find a $\delta > 0$ such that $0 < ||x - a|| < \delta \implies ||T(x) - T(a)|| < \varepsilon$, where $x \in \mathbf{R}^n$. But we have,

$$||T(x) - T(a)|| = ||T(x - a)|| \le M||x - a||$$

for some $M \in \mathbf{R}$. So for any given $\varepsilon > 0$, we can choose $\delta = \varepsilon/M$. Then certainly, if $0 < ||x - a|| < \delta$, then

$$||T(x) - T(a)|| \le M||x - a|| < M\delta = \varepsilon.$$

So it follows that the linear transformation is continuous.

3 1-29

1. If A is compact, prove that every continuous function $f: A \to \mathbf{R}$ takes on a maximum and a minimum value.

Solution:

Proof. Since A is compact and f is continuous, we know that the image of A under f is compact in \mathbf{R} . Hence, it follows from 3.1, that f takes on a maximum and a minimum value.

Lemma 3.1. A compact set in R has a maximum and a minimum value.

Proof. We know that a compact set is closed and bounded and in \mathbf{R} , a compact set is in the form [a,b]. And since $a,b \in [a,b]$, all we need to show is that a and b are infimum and supremum, respectively, of the given interval.

4 2-4

Let g be a continuous real-valued function on the unit circle $x \in \mathbf{R}^2$: ||x|| = 1 such that g(0,1) = g(1,0) = 0 and g(-x) = -g(x). Define $f: \mathbf{R}^2 \to \mathbf{R}$ by

$$f(x) = \begin{cases} \|x\| \cdot g\left(\frac{x}{\|x\|}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

1. If $x \in \mathbb{R}^2$ and $h : \mathbb{R} \to \mathbb{R}$ is defined by h(t) = f(tx), show that h is differentiable.

Solution: We need to show that for every $a \in \mathbf{R}$, there exists a $\lambda : \mathbf{R} \to \mathbf{R}$ such that

$$\lim_{t \to 0} \frac{h(a+t) - h(a) - \lambda(t)}{t} = 0.$$
 (1)

We see that

$$h(a+t) = f(ax+tx) = \begin{cases} \|(a+t)x\| \cdot g\left(\frac{x}{\|x\|}\right) & (a+t)x \neq 0, \\ 0 & (a+t)x = 0. \end{cases}$$

This follows from the fact that $g\left(\frac{(a+t)x}{\|(a+t)x\|}\right)=g\left(\frac{\pm x}{\|x\|}\right)=g\left(\frac{x}{\|x\|}\right)$. We have,

$$\frac{h(a+t) - h(a) - \lambda(t)}{t} = \frac{\|(a+t)x\| \cdot g(\hat{x}) - \|a\|g(\hat{x}) - \lambda(t)}{t}$$

=

5

Theorem 5.1 (Heine-Borel Theorem). The closed interval [a, b] is compact.

Proof. If \mathscr{O} is an open cover of [a,b], let

 $A = \{x: a \leq x \leq b \text{ and } [a,x] \text{ is covered by some finite number of open sets in } \mathscr{O} \}$

6 2-1

1. Prove that if $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $a \in \mathbf{R}^n$, then it is continuous at a.

Solution: Hi.