- (54) CATALYST USED FOR PRODUCTION OF KETONE FROM OLEFIN AND METHOD FOR PREPARING THE SAME
- (11) JP-B-47-8046
- (43) Publication Date: March 8, 1972
- (19) JP
- (21) Appln. No. 43-73071
- (22) Filing Date: October 7, 1968
- (71) Applicants: STAMICARBON NAHMNOHZEY FENNOTESHAP (Phonetic translation)
- (72) Inventors: Jiron Wilhelm Jeuse (Phonetic translation)

[Claim 1]

A catalyst used for producing a ketone from an olefin using oxygen and steam, characterized in that the catalyst comprising a molybdenum oxide and a tin oxide and particles of the catalyst are uniformly dispersed on a support material, the diameter of the particles of the tin oxide being 50 angstrom or less.

௵Int.Cl⋅

図日本分類

日本国特許庁

印特 許 出 願 公告

昭47-8046

B 01 j O 07 c 13 (9) G 113 16 A 5 16 B 541.1

⑩特 許 公

昭和47年(1972) 3月8 日 44公告

発明の数 2

(全10頁)

1

図オレフインからケトンを製するための触媒とそ の触媒の製法

0)特 願 昭43-73071

23出 顧 昭43(1968)10月7日

優先権主張 321967年10月7日 93オラン ダ国到6713663

፡፡ 1968年2月10日፡፡ オラン

罗国306801921

彻発 オランダ国シッタード・リークス ウエグ・ゼット158

切出 願 人 スタミカーボン・ナームローゼエ・ フェンノートシヤップ

ル・メーゼンストラート2 代 理 人 弁理士 飯田治躬 外1名

発明の詳細な説明

この発明はオレフインからケトンを製するため 20 の触媒と、その触媒の製造法と、オレフインから その触媒を用いてケトンを製する方法に関する。

アルデヒド、ケトンおよび酸を形成する触媒を 用いることによつてオレフインを酸化することが 出来るととは周知である。触媒が低温に於ても活 25 性であれば、蒸気があると平衡がケトンの形成に 都合よくなる。

触媒の活動度はその触媒の化学組成によつての みきまるものではなくして、その触媒の表面の性 質によつてもきまるものであり、この発明は後に 30 説明するような特性の特種の触媒を使用しようと するものである。

この発明は酸素と蒸気とを用いてオレフインか らケトンを製造するための触媒に関するものであ つて、その触媒はモリプデンの酸化物とメズの酸 35 との混合気中のプロピレンを数多の温度で触媒上 化物とから成るもので、前記スズの酸化物は直径 50 ★以下の粒子または大部分がそのよりな直径 のものとして支持物質上に均等に分布されるので

ある。

この発明による触媒はスズ・イオンを含有する 水溶液に微細に分割された熱安定触媒支持物質と 前記溶液中で水酸基イオンを得ることのできる物 質とを懸濁し、水酸基イオンを溶液中で得る速度 を沈殿処理中を通じて低速に制御し、沈殿物が特 定の担体上に形成されて溶液中に形成することの ないようにし、攪拌を制御して水酸基イオンの濃 度を溶液全体について均等にし、次いで負荷支持 明 者 ジロン・ウイルヘルム・ジュウス 10 物質のサスペンションにモリブデンの塩を加え、 最終負荷触媒支持物質を液体から分離し、分離し た触媒を乾燥しカ焼するととから成る方法によつ て製する。

前記溶液中に水酸基イオンを均等にしかも徐々 オランダ国へ-ルレン・パン・デ 15 に形成させるには、たとえば熱安定触媒支持物質 のサスペンションに尿素を添加し、次で所望酸化 物が所望量支持物質に均等に分布して付着するま でその溶液をはげしくかきませながら加熱してお となり。

> 尿素を用いずに水酸基イオンを形成し、酸化物 を徐々に沈降するには、亜硝酸ナトリウムまたは ヘキサメチレンジアミンのように水酸基イオンを ゆつくりと放出する任意の化合物を使用すること ができる。

> との発明による方法を次のものを製する場合に ついて説明する。すなわち

- I アセトン (プロパノン)をプロペンから製す る場合で、比較例としてこの発明によつて製し た触媒をも含めて、 5種類の異なつた触媒の選 択性を示す。
- メチルエチルケトン(プタノン)を比較例を 挙げてプテンから製する場合
- I プロペンからアセトンの製造

との発明の利益を説明するために、空気と蒸気 を通した。かくして得た反応生成物を分析して得 たアセトンの収量を調べた。

A、B、C、D、Eとして示した触媒を下記の

2

よりにして製した。

触媒AないしCでは、二酸化スズの大粒子を用 いた。二酸化スズの小粒子をつけそれを安定させ る不活性支持物質は不要である。不活性支持体に て触媒が希釈するのを回避するために、これら触 5 媒では担体を用いなかつた。

触媒DとEとにおいては、二酸化ススの小粒子 を用いたので、表面積の広い支持体をとの発明に よつて使用した。

- A 3平方メートル毎グラム比表面積の二酸化ス 10 ズ5gを100mlの水に2.5gのMoOa と共 に懸濁させた。 そのサスペンションを濾過し、 洗浄し450℃にて乾燥した。それから後、触 媒を475℃にて反応器内で蒸気16時間処理 した。二酸化スズの粒子の平均直径は 2×105 点ユニットであつた。
- B 3平方メートル毎グラムの比表面積の二酸化 スズ5 gを 4 5 0 C の温度 で 4 5 時間かけて MoO₂ (OH)₂ と共に蒸気を通して反応器 中でMoO₂ (OH)₂ に支持した。
- 粒状スズを硝酸を用いて処理して25平方メ ートル毎グラムの比表面積の二酸化スズを得た。 これを乾燥し、最後に500℃にて加熱した。 電子顕微鏡で調べたととろ二酸化スズの平均直 スズを反応器内にMoO₂ (OH)₂ と共に 450℃の温度で40時間通してMoO₂(OH)₂ に付着させた。
- D 75gの「エーロシル(Aerosil) 商標 名、西独デブサ社の製品で、四塩化珪素をフレ 30 果は表 I に示す。 ーム加水分解して製した二酸化珪素|を

SnO14・5 H₂ O の 1·1.4 gにて溶液に浸透さ せた。アンモニアを用いてそのpH価を?にし た。そしてMoO₃を20g添加した。次でサ スペンションを濾過し、乾燥して、450℃の 温度でカ焼した。その生成物を分析したところ SnO₂ 4.2 %; MoO₃ 20.4 %; SiO₂ 75.4%であつた。二酸化スズ粒子ははげしく 混晶され、混晶体の大きさは100 Åユニット 以上であつた。混晶体はモリプデン化合物の単 分子層でなおわれていた。

E 水1リットル中SnCl4 ·5 H2 Oを11.4 g とした溶液中に「エーロシル」75gを懸濁さ せて、この発明による触媒を製した。19.4 g の尿素を添加し、次でそのサスペンションをは げしくかくはんしながら沸とりしてpH価が7 になるようにした。サスペンションがすつかり 冷却してから、20gのMoOa をかきませな がら添加した。次でサスペンションを濾過して 500元の水を用いて洗浄した。洗浄した物質 を550℃の怪度でカ焼した。

電子顕微鏡にて調べたところ酸化スメが平均 10☆ユニットの大きさの粒子として支持物質に 均等に付着しているととが判つた。これらの粒子 ILS n O2 4 %; M o O3 2 0 %; S i O2 7 5 径は250Åユニットであつた。ついで二酸化 25%の組成のモリプデン化合物の単分子層でおおわ れていた。

> 触媒A、BおよびEを用いてプロピレンの転化 率が低く触媒の温度を高くして酸素と蒸気との存 - 在中でプロピレンからアセトンを製した。その結

表

触 媒	A	В	E
触媒表面の平均温度で	3 4 8	3 4 2	8 5 0
プロピレンの転化率 %	5.2	4.5	1.1
選 択 度 %			
COとOO2 への分解	7	10	
アセトン	4 3	3 0	6 5
酢 酸	87.	4 9	9.7
アクロレイン	6	2.5	1 4
・アクリル酸	1	1.5	_
マレイン酸	2	4	_
アセトアルデヒド	4	3	1 1

触媒Eの高活動度にかんがみて、触媒AとBに *触媒による転化率は4乃至5倍低いものであると て得られる転化率に匹敵する低転化率を得るため には、触媒AとBとに用いた接触時間の約10の

かつた。このように接触時間を短くすれば、この*

とが判る。

プロピレンの転化率が低く触媒温度を低くした 関数だけ接触時間を極めて短くしなければならな 25 状態で触媒 C と E とを用いて行つた類似の実験の 結果を表Ⅱに示す。

表

触媒	C	E
触媒表面の平均温度 ℃	272	275
プロピレンの転化率 %	5.0	4.8
選 択 度 %		-
COとQО₂ への分解	1 9	9.1
アセトン	4 7	8 1
酢 酸	2 4	4.6
アクロレイン	0.2	_
アクリル酸	0.6	0.5
マレイン酸	4	. —
アセトアルデヒド	5	5 ·
1		<u> </u>

8

プロピレンの転化率を高くし触媒温度を高くし * に示す。 て触媒DとEとを用いて行つた実験の結果を表 II *

> 表 Ħ

触 媒	D	E
触媒表面の平均温度で	8 4 0	3 4 0
ブロピレンの転化率 %	8 5	9 7
選 択 度 %		
COとCO₂への分解	2 9.5	2 1,8
アセトン	4.7	21.4
酢 酸	4 9.5	4 2.5
アクロレイン	2.4	8.7
アクリル酸	1.2	0.2
マレイン酸	9.4	6.1
アセトアルデヒド	3, 5	4.6

- 以上の実験から次のことが判る。すなわち、

- 1 SnO2を酸化モリプデンに支持させた場合に は結果になんの影響もおよぼさない。したがつ 25 て触媒Aは表Iでは触媒Bに比較する。
- 2 化学組成が全く同一の触媒でも同一の結果を まねくものではない。すなわち、「エーロジル」 に浸漬した表Ⅲの触媒Dは、SnO2を「エーロ ジル」支持物質に平均直径10Åユニットの粒 30 の収量の調査に注意を拡つた。 子として付した触媒Eに比較する。
- 8 表Ⅲに示すように、転化率が触媒E(97%) の方が触媒 D (85%) より相当に高いのにア セトンの生成率は約4倍である。
- への分解と酢酸の形成率は他の触媒より触媒 E を用いた買合の方が可成り低い。とくに転化率 の低い場合は、それがより顕著である。
- 5 プロピレンの転化率に従つて、アセトンの形 して転化率の低い場合も、また高い場合も、共 に触媒 Eの方が他の触媒よりすぐれている。そ れは表ⅠとⅡとを表Ⅲと比較してみれば判る。
- 6 とくに低温度において触媒 Eの選択度は表 I で判るように、とくにすぐれている。

■ プテンからメチルエチルケトン(プタノン) の製造

これらの実験においては、空気と蒸気と共にプ テンを反応器中にある触媒上に通した。その実験 によつて変えた反応条件は後に詳述する。できた 反応生成物を分析し、とくにプタノン、アセトア ルデヒド、酸の収量および燃焼生成物COとCO。

・触媒はこの発明に従つてつくつた。使用した触 媒中の一種は次のようにして製した。すなわち、 74gの「エーロジル」を水11につき15.0g のSnCl₄ 5 a q の溶液中に懸濁した。次で、 4 プロピレンの転化率に従つて、COとCO。 35 25 gの尿素を添加し、それから後、サスペンシ ョンをはげしくかきまわしてpH価がりになるま で沸とりした。サスペンションが冷えてから、か きまわしながら20gのMoO。を添加した。サ スペンションをフィルタに通し500mィ. の水で 成についての選択度ははなはだしく異なる。そ 40 洗浄した。最後に、水洗した物質を4 5 0 ℃にて カ焼した。電子顕微鏡にて調べたところ、酸化ス スは平均直径10 A ユニットの粒子状をなして 「エーロジル」に均等に分布していた。450℃ の温度で16時間触媒に蒸気を通すととによつて 45 前記粒子はモリプデン化合物の単分子量層でおお

9

10

われた。とれらの状態において、酸化モリプデン *%がMo O₃ ,77.8%がSiO₂ 。 は揮発し、酸化スズに付着する。分析の結果は次 類似の方法にて実験に用いた他の触媒を製した。 の通りである。すなわち7.4%がSnO₂ ,15.3 * 実験の結果は表A乃至Eに示す。

表 A

実 験 番 号	5 2	8 0
プテン	1	2
プテン:空気:蒸気	1:14:9	1:16:11
触媒温度 (℃)	228	224
触媒についてのSnO2 (%)	7.4	7.4
表面速度(時間 -1)	2 2 0 0	2390
転化率 (%)	4.5	7.4
選択度 (%)		
C O + C O ₂	1 8.7	1 1.8
プタノン	4 7.0	5 2.8
アセトアルデヒド	8.9	1 1.1
酢 酸	1 3.0	1 5.1
・アセトン	2.8	2.2
メタクロレイン	1.3	0.7
マレイン酸	8.7	5.1
ギー酸	0.2	1.2

_
表
444

東駿番号	7.0	6.9	8 9	7.1	7.5	7.4	. 73	7 6	
ブルン									11
ブテン:空気:蒸気	1:15:12	1:17:13	1:15:11+	1:15:12	1:144:22	1:144:11	1:154:11	1:164:114	
衛類にひなんの8n02(%)	7.4	7.4	7.4	7.4	7.4	7.7	4.7	7.4	
触媒温度 (で)	153	154	154	152	154	153	154	153	
表面速度(時間-1.)	650	1370	2560	3900	650	1270	2390	3810	
転化率 (%)	1.9	0.8 7	0.51	0.42	2.15	1.08	0.89	0.84	
選択度 (%)	·								
00+00	19.0	1	1	1	4.95	8.2	9.1	6.2	
ブタノン	7 1.5	8 7.5	8 2.5	8 9.0	8 2.4	7 6.3	9.9 L	8 4.0	
アセトアルデヒド	2.2	2.1	1.6	1.7	7.7	8.2.5	7.6	5.8	
日本	6.89	6.1	1 0.2	5.5	3.0	4.9	4.4	2.6	
アホトン	1	ŀ	ı	I	7.0	0.55	0.5	6.0	12
メタクロレイン	2.2	2.5	2.4	2.4	ı	ı	1	1	
レフムン骸	1.0	1.4	2.6	1.4	1.0	1.5	1.4	0.8	
*	0.2	6.0	L*0 ·	0.3	0.8	0.4	6. 0	0.2	

	43	4.5	4.7	4 8	4.9	7.7	7.8	7.9	· 08	8.1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1	1	1	1	2	2	87	8	83
プテン:望気:凝気	1:14:6	1:14:6	1:14:6	1:14:6	1:14:6	1:15:94	1:15:94	1:15:94	1:15:94	1:15:94
密棋についてのSnO₂(%)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
触媒温度(こ)	155	208	233	254	268	157	179	197	224	269
表面速度 (時間 -1)	2000	2000	2000	2000	2390	2390	2390	2390	2390	2390
板化廠 (%)	0.48	1.42	2.75	6.6	6.4	9.1	3.5	4.1	9.6	11.4
選択度 (%)										
00+00	0.0	28.9	29.6	34.4	89.1	0.0	11.4	1 0.0	35.6	31.0
ブタノン	74.0	49.3	40.4	33.6	29.2	86.5	72.5	68.1	39.6	26.8
アセトアルデヒド	2.7	6.3	8.6	18.8	14.1	8.6	8.25	9.05	8.3	10.0
日本	14.3	8.7	10.9	9.2	8.0	2.9	4.4	7.4	10.2	20.2
ソイカト	0.7	1.7	2.9	3.4	3.5	. 6.0	1.25	1.75	1.7	2.2
メタクロレイン	2.0	1.8	2.0	2.0	3.0	0.1	0.5	0.5	0.5	1.4
トアムン観	5.2	2.6	3.4	2.9	2.5	6.0	1.5	2.4	3.4	6.7
# &	1.3	9.0	8.0	7.0	9.0	0.2	0.4	9.0	0.8	1.7

O

İ

:

4

表 D

寒 験 番号	77	1 2 8	118
プテン	2	. 2	2
ブテン:空気:蒸気	1:15:9 1	1:15:10 ½	1:16:11 1
触媒についてのSnO2 (%)	7.4	18.0	43.8
触媒温度 (で)	167	163	158
表面速度 (時間 -1)	2390	2320	2220
転化率 (%)	1.6	4.6	3.05
選択度 (%)			
C O + C O ₂	0.0	9.0	13.4
プタノン .	86.5	69.5	76.1
アセトアルデヒド	8.6	7.1	5.6
酢 酸	2.9	9.8	2.9
アセトン	0.9	0.7	0.8
メタクロレイン	0.1	_	_
マレイン酸	0.9	3.2	1.2
ギ 酸.	0.2	0.8	0.2

水質曲の	9 9	6.5	6 4	2 9	128	183	138
ント		pod.	-	1	2	7	2
プテン:空気:蒸気	1:30:22	1:154:12	1:8,7:7	1:3.6:3.3	1:144:104	1:144:2.4	1:144:0.7
触媒にひなんの8 n O ₂ (%)	7.4	7.4	7.4	7.4	18.0	1 8.0	18.0
触媒温度(こ)	246	249	2 5 2	255	163	163	130
表面速度 (時間 -1)	1310	1320	1380	1620	2320	1560	1470
ღ化)	1 6.0	1 0.8	7.9	3.54	4.6	6.9	1.2
選択共 (%)	4			-			
C O+C O ₂	2 9.4	2 7.2	2 9.6	2 0.9	0.6	6.5	
ブタノン	2 6.1	3 2.6	362	5 2.3	6.9.5	0.99	8 0.5
アセトアルデヒド	8.8	9.4	& 2	6.6	7.1	1 3.5	14.4
1 一	2 2.9	2 1.9	1 7.6	1 1.4	8.6	9.8	83.2
アセトン	2.2	2.0	2.0	2.4	0.7	2.1	0.6
メタクロレイン	1.2	1.3	1.3	2.4	ı	ı	I
レフムン製	6.4	ю ъ	4.9	ı	3.2	2.7	1.0
ギ酸	3.3	0.1	1.2	1.0	0.8	0.7	0.2

嵌

æ

表AとBとにおいては、プテンー1とプテンー 2から出発した実験の結果が比較される。プテン -2の反応性はプテンー1の反応性よりも大きい。 転化率はプテンー2についての実験の方がはるか に高率であるが、二種の基本物質はプタノンの収 5 量に関するかぎり大した差を示していない。

それゆえ、この発明による方法によりプタノン を製するにはプテンー2から出発することが望ま しい。

方についての空間速度の影響が示してある。空間 速度が低いと転化率が増す。プテンー 2 の場合で は、転化率に伴つてCOとCO。の形成は顕著に 増加していない。しかしプテンー1の場合では、 前記COとCO。との形成がはつきりと増してい 15 る方法を産業に応用すれば生成物の生産を再循環

表のは数多の実験についての触媒温度の影響を 示している。プテンー1 とプテンー2 との双方と も、温度の増加に伴つて転化率が増している。と のことはプタノンの収量の低下とCOとCO。の 20 として支持体物質に均等に分布させたことを特徴 収量の増加を伴つている。高温度にては、プテン -1はアセトアルデヒドを多量に生ずるが、プテ ン-2の場合では、酢酸の収量が増す。この発明 によれば、プテンからプタノンおよびアセトアル デヒトの双方またはその一方を製するには125 25 イオンを得ることのできる物質とを懸濁し、水酸 乃至300℃の間に触媒表面の平均温度をすれば 良い効果が得られる。ブタノンを主生成物にしよ うとするときには、温度範囲を125乃至200 ℃とすることが望ましい。生成物としてアセトア ルデヒドを得よりとするときには、200℃以上 30 て均等にし、次いで負荷支持物質のサスペンショ の温度とすることが望ましい。

表Dは触媒中の二酸化スズ含量の影響を示すも のである。触媒中に二酸化スズを18.0万至 4 3.8%含有する場合は、二酸化スズの含量が 7.4%の触媒の場合よりもその転化率がはるかに 35

高い。二酸化スズを18.0%含有する触媒を用い て転化率を幾らか高くするには反応温度を幾分か 髙くする。との場合には触媒中二酸化スズの含量 が 4 3.8 %の場合 1 5 8 ℃ とするのに対して163 てとする。他の実験におけるように、転化率が増 すとプタノン収量がやや低下する。

表Eはプテン対空気対蒸気の比の影響を示す。 プテンー1の場合には、蒸気の使用量が増すに従 つて転化率が増す。しかし酢酸の収量はブタノン 表Bにおいては、プテンー1とプテンー2の双 10 の収量を犠性にして増している。使用蒸気量の関 数としてのプテンー2の転化率は蒸気量が少いと きに最大値である。反応温度が低くければ、使用 蒸気量は供給するプテン量より少く、プタノンの 形成についての高選択度を呈する。この発明によ して熱損失を抑制することができる。

特許 請求の範囲

l モリプデンの酸化物とスズの酸化物とから成 り、前記スズの酸化物の直径を50歳以下の粒子 とする 酸素と蒸気を用いてオレフインからケトン を製するための触媒。

2 スズ、イオンを含有する水溶液に微細に分割 された熱安定触媒支持物質と前記溶液中で水酸基 基イオンを溶液中で得る速度を沈殿処理中を通じ て低速に制御し、沈殿物が特定の担体上に形成さ れて溶液中に形成することのないようにし、攪拌 を制御して水酸基イオンの濃度を溶液全体につい ンにモリブデンの塩を加え、最終負荷触媒支持物 質を液体から分離、分離した触媒を乾燥し、カ焼 することから成る前記第1番目の発明に記載の触 媒の製法。