Something Something

Fmoc

November 7, 2024

There are something I should have learnt back in my first two years as an undergraduate.

1 Polynomials

1.1 Resultant and Discriminant

Let K be a field. We want to know when are two polynomials $f,g\in K[X]$ coprime.

Proof. If
$$(f,g) \neq 1$$
, then put $u = g/(f,g)$, $v = f/(f,g)$.

If $(f,g) = 1$ and $fu = gv$, then $u \mid g, v \mid f$, so $g/u = f/v$ divides $(f,g) = 1$, meaning $u = g, v = f$.

Now assume fu=gv for some $u,v\in K[X]$ with $\deg u<\deg g,\deg v<\deg f$. Lemma 1.1 shows that, $(f,g)\neq 1$ iff fu=gv has nonzero solution. This is a linear equation in the K-vector space $K\oplus KX\oplus\cdots\oplus KX^{m+n-1}$, and it has a nonzero solution iff and only if the discriminant is zero.

Definition 1. Let A be a commutative ring, $f,g \in A[X]$. We define the **resultant** of $f = \sum_{i=0}^{n} a_i X^i$ and $g = \sum_{i=0}^{m} b_i X^j$ to be¹

a determinant of a $(n+m) \times (n+m)$ -matrix over A.

So we can rephrase Lemma 1.1 into: $f,g\in K[X]$ are coprime if and only if their resultant $\operatorname{res}_X(f,g)\neq 0$. Now assume that both f and g split in K. Then $(f,g)\neq 1\iff f$ and g share at least one same root. This suggests that $\operatorname{res}_X(f,g)$ should be divided by all x-y, where x is a root of f and g is a root of g; multiplicity are considered here.

¹Of course, we require deg f = n and deg g = m.

Theorem 1. If $f = \sum_{i=0}^n a_i X^i = \prod_{i=1}^n (X-x_i)$ and $g = \sum_{j=0}^m b_j X^j = \prod_{j=1}^m (X-y_j)$, are polynomials that splits in K, then

$$\operatorname{res}_X(f,g) = a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (x_i - y_j).$$

In particular, we can study if a polynomial has multiple roots (in its splitting field) using resultant.

Definition 2. Let A be a commutative ring and $f(X) = a_n X^n + \cdots + a_0 \in A[X]$. The **discriminant** of f is

$$\operatorname{disc}(f) := \frac{(-1)^{\frac{1}{2}n(n-1)}}{a_n}\operatorname{res}_X(f,f') \in A,$$

where $f'(X) = na_n X^n + \cdots + a_1$ is the derivative of f.

Note that $\operatorname{res}_X(f,f')$ is a multiple of a_n , because the first column is ${}^t(a_n\ 0\ \cdots\ 0\ na_n\ 0\ \cdots\ 0)$, and we require $a_n\neq 0$. Thus $\operatorname{disc}(f)$ is well-defined.

So f has multiple roots iff disc(f) = 0.

Example 1. (1) If $f(X) = aX^2 + bX + c$, then $disc(f) = -\frac{res_X(f, f')}{a} = b^2 - 4ac$.

(2) If
$$f(X) = X^3 + pX + q$$
, then $disc(f) = -res_X(f, f') = -(4p^3 + 27q^2)$.

Proposition 1.1. Let $f(X) = a_n X^n + \cdots + a_0 \in K[X]$, then

$$\operatorname{disc}(f) = a_n^{2n-2} \prod_{1 \le i < j \le n} (x_i - x_j)^2,$$

where x_1, \ldots, x_n are all the roots of f in a fixed splitting field with multiplicity counted.

Proof. By Theorem 1,

$$\mathsf{res}_X(f,g) = a_n^m \prod_{i=1}^n g(x_i).$$

Use this to compute.