Planetary surface dating with Craterstats3 – a new open source implementation in Python

Greg Michael

Geology & Planetary Mapping Winter School 7 – 11 February 2022

Overview

- What are the constituents of a crater chronology model?
- Common styles of crater count data presentation
- Measurement and analysis software
- Craterstats3 some examples of how to use it

What are the constituents of a crater chronology model?

- 1. Craters form with a size distribution that depends on the impactor population
- 2. The rate of crater formation is a function of time that depends on the impactor flux
- 3. The impactor size distribution could potentially be an evolving function

Flux model - Gault, 1970

Normalised crater counts – Neukum, König, Arkani-Hamed, 1975

What are the constituents of a crater chronology model?

- Craters form with a size distribution that depends on the impactor population
- 2. The rate of crater formation is a function of time that depends on the impactor flux
- 3. The impactor size distribution could potentially be an evolving function

$$T = -0.819 \log N_{\rm c} + 1.651, \qquad (12)$$

where $N_{\rm c}$ is the cumulative number of 100 mile and wider lunar craters formed subsequent to given geologic times. The unit of age is 10^9 years. T=0 at a time 4.5×10^9 years ago.

Baldwin, 1971

What are the constituents of a crater chronology model?

- Craters form with a size distribution that depends on the impactor population
- 2. The rate of crater formation is a function of time that depends on the impactor flux
- The impactor size distribution could potentially be an evolving function

Strom et al, 2005

Orgel et al, 2017

Common styles of crater count data presentation

Competing systems of crater count data presentation

- Fourth variant differential (Arvidson et al, 1979)
 - log-log histogram divided by bin-widths
 - any binning
 - data point independence (unlike cumulative)
 - easy to discern resurfacing effects
 - visually similar to Hartmann plot
 - good compromise

Hartmann-style

Crater measurement software

- Specify region of interest
- Mark out superposed impact craters
- Extract diameter measurements
 - correcting for projection and topographic effects

```
#Model .diam file for Craterstats
Area < km^2 > = 3036.61
#diameter, km
0.511
0.166
0.095
0.100
0.261
0.208
0.208
0.103
0.112
0.170
0.100
0.130
```


CraterTools (Thomas Kneissl)

- most widely used and complete in features
- available from FUB planetary sciences website
- works only with older versions of ArcGIS

CSFD_Tools (Christian Riedel)

- for specialised analysis (non-sparseness correction)
- available on github

Circle-craters (Sarah Braden, Alessandro Frigeri)

- QGIS plugin

JMARS (ASU) and others

Comprehensive open source replacement for CraterTools needed

- in-GIS functions to aid crater-marking
- probably better to process shapefiles outside GIS to be independent of choice of GIS software

Analysis software - Craterstats

2008: first version

- replicated Gerhard Neukum's workflow which used measurements taken from photographic plates with a stereo comparator
- instead using crater measurements from GIS environment
 - the companion program, **CraterTools**, was written for this

2011: second version

 extended to allow direct comparison between common data presentations: cumulative, incremental, R-plot and differential

Scientific developments:

- resurfacing corrections (2010)
- spatial randomness and clustering analysis (2012)
- fitting of differential form of production function; compensation of exponential binning bias (2013)
- Poisson timing analysis (2016)

Analysis software - Craterstats

2008: first version

- replicated Gerhard Neukum's workflow which used measurements taken from photographic plates with a stereo comparator
- instead using crater measurements from GIS environment
 - the companion program, **CraterTools**, was written for this

2011: second version

 extended to allow direct comparison between common data presentations: cumulative, incremental, R-plot and differential

Scientific developments:

- resurfacing corrections (2010)
- spatial randomness and clustering analysis (2012)
- fitting of differential form of production function; compensation of exponential binning bias (2013)
- Poisson timing analysis (2016)

Analysis software - Craterstats

2021: third version

- Design goals
 - Rewrite in non-proprietory language (Python), make open source
 - Provide reference implementation for standard crater-count analysis calculations
 - Produce graphical output consistent with previous version (now using matplotlib)
 - Construct as analysis library which may be integrated into other software
 - Reproduce previous functionality using command line interface
- Updated features
 - More flexible control of legend information
 - Adjustable positioning of age annotations
 - Vector or raster graphic files; transparent backgrounds; inverted colour schemes for slides
- Ongoing development and maintenance transferred to this version

Usage example – differential plot

Command line option	Meaning
-cs HN01	chronology system – Mars, Hartmann and Neukum 2001
-ep mars	epoch system – Mars
-ef trask	equilibrium function – Trask 1966
-р	Start overplot definition
source=xxx	Specify crater count file
-р	Next overplot definition
type=poisson	Poisson age estimation
range=[2,5]	diameter range
offset_age=[2,-2]	x,y adjustment from default positioning of age label (in units of 1/20 th decade)
-p	Next overplot definition
range=[.2,.7]	diameter range

Usage example – cumulative plot (1)

Command line option	Meaning
-pr cumul	plot style index - cumulative
-cs HN01	chronology system – Mars, Hartmann & Neukum 2001
-title xxx	"Cumulative fits showing resurfacing correction"
-subtitle xxx	"and fitted isochrons"
-p	Start overplot definition
source=xxx	specify crater count file
psym=1	empty circles

Usage example – cumulative plot (2)

Command line option	Meaning
-р	Next overplot
type=c-fit	cumulative fit
range=[2,5]	2-5 km diameter range
isochron=1	show complete isochron
-p	Next overplot
range=[.2,.7]	diameter range
resurf=1	apply cumulative resurfacing correction
psym=10	filled circles

Usage example – Hartmann plot

Command line option	Meaning
-pr hartmann	plot style index - Hartmann
-cs hd16	chronology system – Mars, Hartmann & Daubar 2016
-ef h84	equilibrium function - Hartmann 1984
-title xxx	"Hartmann style plot"
-subtitle xxx	"with H&D 2016 production function"
-isochrons xx,yy,zz	isochron values in Ga (s suffix – small font)
-р	Start overplot definition
source=xxx	Specify crater count file
psym=1	empty circles

Usage example – results table

Command line option	Meaning
-f txt	Output results in text format

name	area binning	d_min	d_max	method	resurf	n	n_event	age	age-	age+	a0	a0-	a0+	N(1)
Pickering	3036.6 pseudo-log	0.2	0.7	d-fit	0	313	313	0.668	0.613	0.722	-3.488	-3.525	-3.453	3.25E-04
Pickering	3036.6 pseudo-log	2	5	d-fit	0	2	2	3.76	0.0475	3.88	-2.063	-4.635	-1.762	8.66E-03

Chronology systems and other functions

Chronology systems

- 1 Moon, Neukum (1983)
- 2 Moon, Neukum et al. (2001)
- 3 Mars, Hartmann & Neukum (2001)
- 4 Mars, Ivanov (2001)
- 5 Mars, Hartmann 2004 iteration
- 6 Mars, Hartmann & Daubar (2016)
- 7 Mercury, Strom & Neukum (1988)
- 8 Mercury, Neukum et al. (2001)
- 9 Mercury, Le Feuvre and Wieczorek 2011 non-porous
- 10 Mercury, Le Feuvre and Wieczorek 2011 porous
- 11 Vesta, Rev4, Schmedemann et al (2014)
- 12 Vesta, Rev3, Schmedemann et al (2014)
- 13 Vesta, Marchi & O'Brien (2014)
- 14 Ceres, Hiesinger et al. (2016)
- 15 Ida, Schmedemann et al (2014)
- 16 Gaspra, Schmedemann et al (2014)
- 17 Lutetia, Schmedemann et al (2014)
- 18 Phobos, Case A SOM, Schmedemann et al (2014)
- 19 Phobos, Case B MBA, Schmedemann et al (2014)

Equilibrium functions

- 1 Standard lunar equilibrium (Trask, 1966)
- 2 Hartmann (1984)

Epoch systems

- 1 Moon, Wilhelms (1987)
- 2 Mars, Michael (2013)
 - This list is generated with:

python craterstats.py -lcs

- new functions can be added by the user
- similarly, plot symbols and colours can be listed with:

python craterstats.py -lpc

Other examples

Chronology function

R-plot

Inverted colour scheme for dark slides

Latest addition - Poisson age-likelihood calculation for a buffered crater counting area

Michael, G., Yue, Z., Gou, S., Di, K., 2021. Dating individual several-km lunar impact craters from the rim annulus in region of planned Chang'E-5 landing: Poisson age-likelihood calculation for a buffered crater counting area. EPSL 568.

- Probabilistic constraints even from very few craters
- These results for several km craters close to information limit
- New code added into Craterstats3
- Requires an extra
 measurement of the counting
 area perimeter (CraterTools
 doesn't record this)
- Add line into .scc file with perimeter=xxx (in km)

Where to find it?

https://github.com/ggmichael/craterstats

The PlanetaryPy project have been helping me standardise the installation procedure for the Craterstats package. This is not working exactly as written here now, but will be updated soon!

I'm glad to help with any usage difficulties! gregory.michael@fu-berlin.de

Packages

No packages published Publish your first package

Languages

Python 99.2%
 Other 0.8%