Sistemi di produzione discreti

- Sistemi manifatturieri
- Sistemi di trasporto
- Sistemi di movimentazione
- Robot industriali

I sistemi manifatturieri

I sistemi manifatturieri

I sistemi manifatturieri sono impianti dedicati alla lavorazione e trasformazione di materie prime per l'ottenimento di prodotti finiti.

Tipicamente, si intende sistemi manifatturieri *discreti*, in cui i prodotti hanno dimensioni prefissate.

Principali attività

Impianti manifatturieri svolgono tipicamente:

- Lavorazioni
 operazioni di trasformazione del prodotto
- Trasporto
 prodotti, pallet, strumenti di lavoro
- Immagazzinamento
 prodotti (grezzi, semilavorati e finiti), strumenti di lavoro

L'automazione riguarda tutte tali attività!

Lavorazioni

- Rappresentano l'attività principale per cui un impianto viene costruito
- Ve ne sono di tipi molto diversi, e cambiano con il cambiare della tecnologia
- Lavorazioni: principali ed ausiliarie

Lavorazioni principali

- Meccaniche (con asportazione di truciolo)
- Per deformazione plastica
 - laminazione, trafilatura, stampaggio
- Assemblaggio
- Disassemblaggio
 - riciclaggio e recupero di componenti (schede elettroniche, apparecchi elettrici, ...)
- Fusione
- Saldatura, colorazione, verniciatura,...

Lavorazioni ausiliarie

- Immatricolazione
- Controllo qualità
- Pulitura, lavaggio, lucidatura
- Etichettatura
- Imballaggio e confezionamento

Trasporto

Ogni impianto manifatturiero è dotato di sistemi di trasporto (automatico o manuale) dei prodotti:

- dal magazzino dei prodotti grezzi al primo centro di lavoro
- da un centro di lavoro al successivo
- dall'ultimo centro di lavoro al magazzino dei prodotti finiti

Trasporto

Mezzi di trasporto automatico dei prodotti:

- nastri e rulliere
- ascensori
- carrelli a guida automatica
 - su binari o piste magnetiche
- manipolatori robotici
 - fissi o mobili
- "carri-ponte"

Trasporto

All'interno dell'impianto vengono anche movimentati:

- pallet (vassoi che portano il prodotto)
 - tipicamente, ricircolano nell'impianto
- utensili
 - dal magazzino degli utensili alla macchina
 - da una macchina ad un'altra (utensili condivisi)

Immagazzinamento

- Magazzini servono per:
 - accumulo prodotti grezzi/finiti/semilavorati
 - accumulo pallet
 - accumulo utensili
 - code in ingresso ad una macchina operatrice
 - per assorbire diverse velocità di lavorazione

Esempio: sistema manifatturiero con due centri di lavoro

I sistemi di trasporto

I sistemi di trasporto

Nel presente modulo vediamo i dispositivi usati per la movimentazione dei prodotti che sono tra i più comuni negli impianti di produzione automatizzati.

Scopo: imparare a comprendere le dinamiche principali, la tecnologia di base, e gli eventuali vincoli imposti al progetto dell'automazione.

II pallet

- Dispositivo (vassoio) che porta il prodotto
- Forma: dipende dal prodotto trasportato!
- Materiale: Legno/Metallo/Plastica
- Dispositivi di bloccaggio prodotto:
 - presenti, se il pallet entra in macchina per lavorazione
 - assenti, se fa solo trasporto
- Con informazioni sul tipo di prodotto
 - memorizzate su pastiglie magnetiche

Esempio di pallet

I principali dispositivi

- Nastri e rulli
- Sensori di presenza
- Il blocco
- Il singolarizzatore
- Il sollevatore

Catene e rulliere

Sensori di presenza

- Contatti (switch):
 - Occorre assicurarsi che il prodotti "tocchi" sempre il sensore
- Magnetici
 - Non c'è contatto con il prodotto, ma devo sapere a quale distanza massima il prodotto si troverà rispetto al sensore e sono più lenti (fenomeni magnetici)
- A traguardo
 - Non c'è contatto e il prodotto può essere di forme anche molto diverse
- Ottici
 - fotocellule, fotodiodi, fototransistori, telecamere

Blocco pallet

- Se la linea di lavorazione ha molte stazioni di lavoro che non caricano il prodotto, ma lo lasciano sul sistema di trasporto, ho necessità di allineare contamporaneamente più prodotti e stazioni.
- Non potendo fermare la linea, posso "bloccare" i pallet.

Blocco pallet

Singolarizzatore

- In alcuni punti della linea, è opportuno formare un accumulo di pallet (*coda*), per disaccoppiare parti di impianto con velocità di lavorazione diverse
- E' quindi necessario, a valle della coda, separare i pallet per permetterne la lavorazione o il trasporto individuale

Esempio di linea di lavoro

Esempio di linea di lavoro

Sistemi di movimentazione

Sistemi di movimentazione

Permettono l'esecuzione di movimenti complessi come la rotazione o la traslazione di un pallet, anche in presenza di bivi o di convergenze

Girola

Traslatore

Ascensore

Ascensore

Ascensore

Il centratore

prima del centraggio

Il centratore

al termine del centraggio

Vista dall'alto Sensori Catene di trasporto

Divergenza

Girola doppia per divergenza

Esempio di linea di lavoro

Il robot industriale

Il robot industriale

Sistema la cui struttura meccanica è costituita da sequenze di elementi meccanici rigidi (*bracci*), connessi da *giunti*, per permetterne il moto relativo.

I giunti sono *rotatori* (movimento relativo rotatorio) o *prismatici* (movimento relativo traslatorio)

Il robot industriale

Inoltre, è costituito da:

- attuatori, per imprimere movimento
 - elettrici, idraulici, pneumatici
- sensori, per rilevare lo stato del robot o dell'ambiente esterno
- unità di governo, per impostare (programmare)
 e controllare i movimenti e permetterne la ripetibilità

I principali utilizzi

- Trasporto e manipolazione (il prodotto non cambia le proprie caratteristiche fisiche)
 - palletizzazione e depalletizzazione
 - carico e scarico di macchine e magazzini
 - confezionamento
- Assemblaggio (il prodotto perde identità)

I principali utilizzi

- Lavorazione (il prodotto cambia le proprie caratteristiche fisiche, e il robot manipola utensili)
 - verniciatura
 - saldatura
 - taglio laser o con getti di acqua
- Misura
 - collaudo dimensionale
 - rilevamento di profili

Gradi libertà

- I gradi di libertà di un corpo rigido nello spazio sono 6, corrispondenti ad altrettante possibilità di movimento (3 traslazioni e 3 rotazioni)
- I gradi di libertà di un robot sono pari al numero dei giunti della sua struttura
 - ⇒ coincidono con il numero di parametri necessari per definire la posizione assunta

Gradi libertà

- Un robot a 7 gradi di libertà è ridondante, ma tipicamente nel conto vengono incluse l'apertura/chiusura delle pinze e lo spostamento della base mobile.
- Tuttavia, non accade mai che base e pinze non vengono utilizzate in contemporanea con gli altri assi, e non servono a definire la posizione della struttura.

La struttura meccanica

- Struttura portante
 - si occupa di posizionare un oggetto nello spazio
 - si realizza con giunti rotatori o prismatici
- polso
 - si occupa di orientare un oggetto nello spazio
 - si realizza solo con giunti rotatori
- organo terminale
 - esegue la lavorazione tipica del robot

La struttura portante

- I movimenti della struttura portante definiscono lo spazio di lavoro
 - bastano 3 giunti (giunti principali)!
- A seconda della tipologia dei suoi giunti principali si possono classificare i robot industriali in 5 tipi fondamentali

(di seguito indicati a partire dalla base; P=giunto Prismatico; R=giunto Rotatorio)

Classificazione dei robot

• Cartesiano: PPP (3 giunti prismatici)

Classificazione dei robot

- Cilindrico: PRP
 - lo spazio di lavoro è un cilindro
- Sferico: RRP
 - assi di rotazione perpendicolari
 - lo spazio di lavoro è una sfera
- Scara: RRP
 - gli assi moto sono paralleli

scara

Classificazione dei robot

- Antropomorfi (RRR)
 - asse di rotazione del giunto di base ortogonale agli altri due, paralleli tra loro

Il controllo

- Pianificazione della traiettoria: generazione delle leggi di moto delle variabili di posizione dei giunti, a partire da una descrizione sintetica del moto desiderato.
- Controllo di moto: determinazione delle forze e coppie ai giunti necessarie per l'esecuzione delle traiettorie scelte

L'automazione

- Organizzazione delle funzioni svolte dal robot (architettura funzionale) e loro coordinamento con quelle di altri dispositivi
- L'architettura funzionale prevede tipicamente 3 livelli gerarchici:
 - azioni (apri pinza, vai alla posizione X)
 - compiti (afferra, rilascia, spostati)
 - missione (deposita oggetto nell'armadio)

Problematiche di automazione

- Definizione dei compiti del robot
- Coordinamento con altri componenti di impianto (macchine operatrici)
- Cooperazione con altri robot
 - "passamano" di prodotti
 - lavorazioni a più robot

Esempio di manipolatori

Esempio di manipolatori

