

AUTOMATIC ABSTRACT GENERATION USING LSTMs

GROUP No.: 11

PROJECT MENTOR

Mayank Singh

TEAM MEMBERS

Ashish Sharma | 13CS30043

Jatin Arora | 13CS10057

Prabhat Agarwal | 13CS10060

Pritam Khan | 13CS10036

Sumit Agarwal | 13CS10061

INTRODUCTION

Abstract

- Summarizes major aspects of a research article

Objective of the research problem(s) investigated

Methodolgy employed to solve the problem

Results & their interpretations

Objective: Assist Authors by generating automatic abstract given a scientific article

WHY USE LSTM?

Scientific Articles have Long-Term Dependencies

Additionally, as described in Section 5 we apply a MERT tuning step after training using the DUC-

Summarization using LSTMs shown to work better than other summarizing methods

Model	ROUGE-1	DUC-2004 ROUGE-2	ROUGE-L
Model	KOUGE-1	KOUGE-2	KOUGE-L
IR	11.06	1.67	9.67
PREFIX	22.43	6.49	19.65
COMPRESS	19.77	4.02	17.30
W&L	22	6	17
TOPIARY	25.12	6.46	20.12
Moses+	26.50	8.13	22.85
ABS	26.55	7.06	22.05
ABS+	28.18	8.49	23.81
REFERENCE	29.21	8.38	24.46

Model	Encoder	Perplexity
KN-Smoothed 5-Gram	none	183.2
Feed-Forward NNLM	none	145.9
Bag-of-Word	enc_1	43.6
Convolutional (TDNN)	enc_2	35.9
Attention-Based (ABS)	enc_3	27.1

3

Summarizing long documents using LSTMs unexplored

CHALLENGES INVOLVED

- Scientific Articles are too long to be processed for current GPUs using LSTMs
- Each scientific article contains **new ideas, approaches and results**
- Good quality, large-scale datasets required
- 4 Unique structure of Scientific Articles needs a different modelling

DATASET

- arXiV.org
- Online repository of e-prints of scientific articles
- Crawled LaTeX Sources of articles in following fields:
- Information Retrieval (cs.IR)
- Computation and Language (cs.CL)
- Machine Learning (cs.LG)
- Artificial Intelligence (cs.AI)

❖ Size of the Dataset: 16,780 articles

GENERAL APPROACH

PREPROCESSING

- pylatexenc
- Python library for parsing LaTeX to generate text
- Modifications
- Sections and Subsections of article were identified and marked
- Figures, Tables and Mathematical Equations were replaced by representative tokens
- Obtained Structure was converted to LSTM input format

Sequence to Sequence Model

- Consists of two recurrent neural networks (RNNs):
- **Encoder**: Processes the input -> Sentences in the article or its Representation
- **Decoder:** Generates the output -> Abstract

ATTENTION MECHANISM

Condition the RNN by a convolutional attention-based encoder

Output of encoder module as an additional conditioning input to Decoder

Advantage:

- Informs the decoder which part of the input sentence it should focus on to generate the next word
- Both Decoder and Encoder are jointly trained on the data set.

TAKE 1: Using Extractive Summary

- Reduce length using Extractive Summarization :
- Lex-Rank
- C-Lex-Rank
- Text-Rank
- LSA

VARIATIONS IN TAKE 1

- **❖** No. of Words in Extractive Summary:
- Computationally expensive to use large number of words (2000)

- Instead use a small extractive summary (250 words)

EXAMPLE OUTPUTS 1

Actual Abstract

the machine learning community adopted the use of null hypothesis significance testing (nhst) in order to ensure the statistical validity of results. many scientific fields however realized the shortcomings of frequentist reasoning and in the most radical cases even banned its use in publications. we should do the same: just as we have embraced the bayesian paradigm in the development of new machine learning methods, so we should also use it in the analysis of our own results.

- ROUGE-1: 0.334 - ROUGE-2: 0.076 - ROUGE-L: 0.204

LSTM Generated

boltzmann media (resnets) have recently achieved places on challenging computer vision tasks. we introduce resnet in resnet (rir): a deep architecture that generalizes resnets and standard cnns and is easily implemented with no computational overhead. rir consistently improves performance over resnets, outperforms architectures with similar amounts of augmentation on cifar-##, and establishes a new state-of-the-art on cifar-###.

- **Drawback:** Small Extractive summary **misses out a lot of information**

TAKE 2: Paragraph Embeddings

Para2Vec:

 Unsupervised Learning of continuous representations for larger blocks of text, such as sentences, paragraphs or entire documents

Paragraph Embeddings Status

EXAMPLE OUTPUTS 2

Actual Abstract

we describe a question answering model that applies to both images and structured knowledge bases. the model uses natural language strings to automatically assemble neural networks from a collection of composable modules. parameters for these modules are learned jointly with network assembly parameters via reinforcement learning, with only (world, question, answer) triples as supervision. our approach, which we term a dynamic neural module network.....

ROUGE-1: 0.475
ROUGE-2: 0.158
ROUGE-L: 0.307

LSTM Generated

visual question answering (vqa) is a challenging task for natural language processing. in this paper, we propose a novel approach to learn a neural neural network (<UNK>) model . the model learns a sequence of a sequence of sentences that learns a sequence of a sequence of sentences, and the answers of the task are predicted. our results show that the proposed model outperforms the state-of-the-art performance of our model.

TAKE 3: Multiple Timestamp Gated Recurrent Unit

- Temporal Hierarchies to Sequence to Sequence Model:
- Apply a timescale constant at the end of a GRU
- Adds another constant gating unit which modulates the mixture of past and current hidden states.

MT-GRU Unit

MT-GRU Summarization Approach

Kim, Minsoo, Moirangthem Dennis Singh, and Minho Lee. "Towards Abstraction from Extraction: Multiple Timescale Gated Recurrent Unit for Summarization." *arXiv* preprint arXiv:1607.00718 (2016).

Conclusion

- Novel attempt to summarize long scientific articles using LSTMs
- Proposed 2 abstractive summarization approaches:
 - Extractive Summarization followed by Seq2Seq Model
 - Utilizing Paragraph Embeddings
- LSTMs have potential to work for long documents but require more computational power

Future Work

- Use a larger and richer dataset for the problem
- Utilize better computational resources
- Make changes to the proposed models to make it more robust

THANK YOU!

"Ms. Jones, there are a number of big questions here to see you. They say they won't leave until they have some answers."