MATH 7343 Applied Statistics

Prof. (Aidong) Adam Ding

Review

• Last time, we finished Module 9 the inference methods for populations proportions, and started on the χ^2 -test.

• Today we cover Chapter 15, and use the χ^2 -test on the contingency tables.

- The χ^2 -test for data in finite many K categories (cells):
- (1) Under null hypothesis H_0 : find the best estimated frequencies E_i ;

(2)
$$\chi_{obs}^2 = \sum_{i=1}^K \frac{(o_i - E_i)^2}{E_i}$$

(3) df= number of cells - number of estimated parameters -1

Reject
$$H_0$$
 if $\chi_{obs}^2 > \chi_{\alpha,df}^2$

• The χ^2 -test is an approximate test. As a rule of thumb, we may use it when each cell has ≥ 5 observations.

 Pigeons Example: Do pigeons know their way to home when released? H_0 : $p_1 = p_2 = p_3 = p_4 = 1/4$.

$$\chi^2_{Obs} = 7.20$$
,

$$d.f. = 4-0-1=3$$

Use R: 1-pchisq(7.2, df=3) to get p-value=0.06578905Fail to reject H_0 at $\alpha = 0.05$ level.

Conclusion: Pigeons do not know their direction when released.

Example: Flying bomb hits in London. (R.D. Clarke)

Divide London into 576 districts with ¼ square kilometers area each. Count the number of bombs falling into each district.

k=# of hits	0	1	2	3	4	≥5	Total
# of districts with k hits	229	211	93	35	7	1	576

• Model (H_0): X = # of hits in a district \sim Poisson(λ)

Bomb hits Example:

Model (H_0): X = # of hits in a district \sim Poisson(λ)

Under what is the best fit?

estimate $\hat{\lambda} = \frac{0(229) + 1(\lambda)}{2}$	(229)+1(211)+2(93)+3(95)+4(7)+5(1)					$=\frac{537}{}=0.9323$		
	576				576	576		
k=# of hits	0	1	2	3	4	≥5	Total	
# of districts with k hits	229	211	93	35	<mark>7</mark>	<mark>1</mark>	576	
Expected under H ₀ is n*P(X=k) for Poisson(0.9323)	226.7	211.4	98.5	30.6	<mark>7.1</mark>	<mark>1.6</mark>		

0(220) + 1(211) + 2(02) + 2(05) + 1(7) + 5(1)

• Bomb hits Example: Merge last two cells since too few counts (<5).

k=# of hits	0	1	2	3	≥4	Total
# of districts with k hits	229	211	93	35	8	576
Expected n*P(X=k)	226.7	211.4	98.5	30.6	<mark>8.7</mark>	

$$\chi_{Obs}^2 = \frac{(226.7 - 229)^2}{226.7} + \frac{(211.4 - 211)^2}{211.4} + \frac{(98.5 - 93)^2}{98.5} + \frac{(30.6 - 35)^2}{30.6} + \frac{(8.7 - 8)^2}{8.7} = 1.02$$

d.f. = # of cells - # of est. para -1 = 5-1-1=3. p-value>0.10 (Table A.8).

Use R: 1-pchisq(1.02, df=3) to get p-value=0.7964

- Fail to reject H_0 at $\alpha = 0.05$ level.
- Conclusion: The bomb hits are random in space.

- •Now we apply the χ^2 -test on contingency tables. Particularly, applying the χ^2 -test on 2 by 2 table reproduces the two proportions comparison tests.
- Recall: for two proportions comparison, we have tests for paired samples and two independence samples. We will do the two independence samples first.

- •(1) Two independence population proportions.
- Example: Bicycle helmet safety effectiveness.

Data (p342)

	Wearing		
Head Injury	Yes	No	Total
Yes	17	218	235
No	130	428	558
Total	147	646	793

Apply the χ^2 -test to this table, what do we get?

• (1) Two independence population proportions.

Observed	n ₁₁	n ₁₂	n_1 .	Frequency	p ₁₁	p ₁₂	p ₁ .
	n ₂₁	n ₂₂	n ₂ .		p ₂₁	p ₂₂	p ₂ .
	n. ₁	n. ₂	n		p. ₁	p. ₂	1

- What is the expected counts under H_0 ?
- Bicycle Helmet Example. H_0 : Head injury rates are the same whether wearing helmet or not. That is, head injury and

wearing helmet are independent. So
$$\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{21}} \iff p_{11} = p_1$$
. p_{11}

• Generally for testing marginal independence

$$\mathbf{H_0}$$
: $p_{ij} = p_i$. $p_{\cdot j}$ for all i and j.

$$\hat{p}_{i} = \frac{n_{i}}{n}$$
, $\hat{p}_{j} = \frac{n_{j}}{n}$ and the expected count for the (i,j)-th

cell under
$$\mathbf{H_0}$$
 is $n\hat{p}_i.\hat{p}_{.j} = \frac{n_i.n_{.j}}{n}$.

Observed

n ₁₁	n ₁₂	n ₁ .
n ₂₁	n ₂₂	n ₂ .
n. ₁	n. ₂	n

- (1) Two independence population proportions.
- Bicycle Helmet Example.

Expected under
$$H_0$$
 $\frac{147 \cdot 235}{793} = 43.6$ $\frac{646 \cdot 235}{793} = 191.4$ Observed 17 218 235 $\frac{147 \cdot 558}{793} = 103.4$ $\frac{646 \cdot 558}{793} = 454.6$ 147 646 793

$$\chi_{obs}^2 = \frac{(43.6 - 17)^2}{43.6} + \frac{(103.4 - 130)^2}{103.4} + \frac{(191.4 - 218)^2}{191.4} + \frac{(454.6 - 428)^2}{454.6}$$
$$= 16.23 + 6.84 + 3.70 + 1.56 = 28.33$$

- (1) Two independence population proportions.
- Bicycle Helmet Example. $\chi_{obs}^2 = 28.33$,

d.f. = # of cells - # of est. para -1 = 4-2-1 = 1. (est \hat{p}_{1} , \hat{p}_{1})

 $\chi^2_{1.0.001}$ = 10.83 (Table A.8). Hence p-value<0.001

Reject H_0 at $\alpha = 0.05$ level.

Conclusion: Head injuries are associated with wearing helmets.

χ^2 -test for marginal independence

• How does the χ^2 -test for marginal independence on a 2x2 table compare to the independent population proportion comparison test we covered in the last chapter?

 χ^2 -test \Leftrightarrow 2-sided z-test (last chapter)

• Bicycle Helmet Example. $\chi_{Obs}^2 = 28.33$,

$$Z_{obs} = \left| \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}} \right| = \left| \frac{\frac{17}{147} - \frac{218}{646}}{\sqrt{\frac{235}{793}(1 - \frac{235}{793})(\frac{1}{147} + \frac{1}{646})}} \right| = \left| -5.316 \right|$$

$$(Z_{obs})^2 = (5.316)^2 = 28.3 = \chi_{obs}^2$$

χ^2 -test for marginal independence

• Notice that the χ^2 -distribution for a *continuous* random variable but the entries in a 2x2 table is *discrete* (count).

• Continuity correction:
$$\chi_{obs}^2 = \sum_{i=1}^K \frac{(|o_i - E_i| - 0.5)^2}{E_i}$$

• Bicycle Helmet Example.

$$\chi_{Obs}^2 = \frac{(|43.6^{-17}|-0.5)^2}{43.6} + ... + \frac{(|454.6^{-428}|-0.5)^2}{454.6} = 27.27$$

Still p-value<0.001. Same inference as the one w/o correction.

• In practice, we should use the χ^2 -test with continuity correction. (so not exact match with the z-test.)

χ^2 -test for marginal independence

• The χ^2 -test can be easily used on RxC table to test

 $\mathbf{H_0}$: $p_{ij} = p_i$. p_{ij} for all i and j.

Observed

n ₁₁	n ₁₂	• • •	n_{1C}	n ₁ .
n ₂₁	n ₂₂	•••	n _{1C} n _{2C} n _{RC}	n ₂ .
•••	•••	• • •	•••	•••
n_{R1}	n_{R2}	• • •	n_{RC}	n _R .
n. ₁	n. ₂	• • •	n. _C	n

•
$$\chi_{obs}^2 = \sum_{i=1}^K \frac{(|o_i - E_i| - 0.5)^2}{E_i}$$

so d.f. = (R-1)(C-1)

χ²-test for marginal independence

• The χ^2 -test can be easily used on RxC table to test H_0 : $p_{ij} = p_i$. $p_{\cdot j}$ for all i and j.

•
$$\chi^2_{obs} = \sum_{i=1}^K \frac{(|o_i - E_i| - 0.5)^2}{E_i}$$
 compare with $\chi^2_{\alpha,df}$ where d.f. = # of cells - # of est. para -1 = RC - [(R-1) + (C-1)] -1 = RC - (R-1) - (C-1) -1 = R(C-1) - (C-1)

• (2) Paired two proportions. Recall last lecture

• What is the expected counts under H_0 ?

•
$$\mathbf{H_0}$$
: $p_1 = p_2 = \mathbf{p} \iff p_{TF} = p_{FT}$; Expected under $\mathbf{H_0}$: $\hat{p}_{ij} = \frac{n_{ij}}{n}$.

Pool
$$\hat{p}_{TF} = \hat{p}_{FT} = \frac{n_{TF}/n + n_{FT}/n}{2}$$

$$n_{TT}$$
 $n_{FT} + n_{TF}$ 2 n_{FF} 2

• (2) Paired two proportions. Recall MI example

	N			
MI	Diabetes	No Diabetes	Total	
Diabetes	9	37	46	
No Diabetes	16	82	98	
Total	25	119	144	

$$\chi_{Obs}^2 = \frac{(26.5-16)^2}{26.5} + \frac{(26.5-37)^2}{26.5} = 8.32.$$
 d.f. = 4-2-1 =1. (est \hat{p}_{TT} , $\hat{p}_{TF} = \hat{p}_{FT}$)

Use R: 1-pchisq(8.32, df=1) to get p-value=0.0039

- Reject H_0 at $\alpha = 0.05$ level.
- Conclusion: MI and Diabetes are associated.

χ^2 -test for paired proportion comparison

• χ^2 -test \Leftrightarrow 2-sided paired z-test (last lecture)

• Recall
$$Z_{obs} = \frac{\hat{p}_{TF} - \hat{p}_{FT}}{\sqrt{\frac{\hat{p}_{TF} + \hat{p}_{FT}}{n}}} \sim N(0,1)$$
, thus $Z_{obs}^2 = \frac{(\hat{p}_{TF} - \hat{p}_{FT})^2}{\frac{\hat{p}_{TF} + \hat{p}_{FT}}{n}} \sim \chi_1^2$.

In contrast,

$$\chi_{Obs}^{2} = \frac{(n_{FT} - \frac{n_{FT} + n_{TF}}{2})^{2}}{\frac{n_{FT} + n_{TF}}{2}} + \frac{(n_{TF} - \frac{n_{FT} + n_{TF}}{2})^{2}}{\frac{n_{FT} + n_{TF}}{2}} = 2\frac{(\frac{n_{FT} - n_{TF}}{2})^{2}}{\frac{n_{FT} + n_{TF}}{2}}$$

$$= \frac{(n_{FT} - n_{TF})^{2}}{n_{FT} + n_{TF}} = \frac{(n_{FT} - n_{TF})^{2}/n^{2}}{(n_{FT} + n_{TF})/n^{2}} = \frac{(\hat{p}_{TF} - \hat{p}_{FT})^{2}}{\frac{\hat{p}_{TF} + \hat{p}_{FT}}{n}} = Z_{Obs}^{2}$$

χ²-test for paired proportion comparison

• The McNemar's test in textbook is the χ^2 -test for paired proportion comparison with **continuity correction**:

$$\chi_{Obs}^2 = \frac{(|n_{FT} - n_{TF}| - 1)^2}{n_{FT} + n_{TF}}$$
 instead of
$$\frac{(n_{FT} - n_{TF})^2}{n_{FT} + n_{TF}}$$

• MI example
$$\chi_{obs}^2 = \frac{(|37-16|-1)^2}{37+16} = 7.547$$
 instead of 8.32.

So p-value=0.006 instead of 0.0039.

Qualitatively the conclusion is the same as what we got earlier w/o correction.

χ²-test on 2 by 2 contingency Tables

• (1) Two independence population proportions.

		Sam		
		Α	В	
Factor	TRUE	p ₁₁	p ₁₂	p ₁ .
	FALSE	p ₂₁	p ₂₂	p ₂ .
		p. ₁	p. ₂	1

- H_0 : The TRUE proportions are same in A and $B \Leftrightarrow p_{11} = p_1 \cdot p_{11}$
- The *unpaired* two proportions z-test is equivalent to the χ^2 -test on this table *w/o continuity correction*.
- Better test: χ^2 -test with *continuity correction*.

χ²-test on 2 by 2 contingency Tables

• (2) Two paired population proportions.

		Factor in	Factor in Sample A				
		TRUE	FALSE				
Factor in	TRUE	p_{TT}	p_{FT}	p ₂			
Sample B	FALSE	p_{TF}	p _{FF}	1-p ₂			
		p_1	1-p ₁	1			

- H_0 : The TRUE proportions are same in A and $B \Leftrightarrow p_{TF} = p_{FT}$
- The *paired* two proportions z-test is equivalent to the χ^2 -test on this table w/o continuity correction.
- Better test: McNemar test (χ^2 -test with *continuity correction*.)

χ^2 -tests on 2 by 2 contingency Tables

• Which table to use? Recall the MI example

(1)		N	11		(2)	N	o MI	
(1)		Yes	No		(2)	Diabetes	No Diabetes	
Diabetes	Yes	46	25	71	MI Diabetes	9	37	46
	No	98	119	217	No Diabetes	16	82	98
		144	144	288			<u> </u>	
				=00		25	119	114

- MI and Diabetes are not associated
- ⇔Diabetes proportions in MI and No MI groups are the same.
- In table (1) H_0 : $\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{12}}$. In table (2) H_0 : $p_{TF} = p_{FT}$.

Which table to use?

(1)		N	/ II	(2)			N		
		Yes	No		(2)			No Diabetes	
Diabetes	Yes	46	25	71	MI	Diabetes	9	37	46
	No	98	119	217		No Diabetes	16	82	98
		144	144						
							25	119	114

- In table (1) H_0 : $\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{12}}$. In table (2) H_0 : $p_{TF} = p_{FT}$.
- Mathematically both answers the same question.
- Which one is correct? Can we use both χ^2 -tests?
- Answer: Can only use the χ^2 -test on table (2) H_0 : $p_{TF} = p_{FT}$.

Which table to use?

(1)		MI		(2)		No MI			
		Yes	No		(2)		Diabetes	No Diabetes	
Diabetes	Yes	46	25	71 217 288 —	MI	II Diabetes No Diabetes	9	37	46
	No	98	119				16	82	98
		144	144					<u> </u>	76
				230			25	119	114

- Can only use the χ^2 -test on table (2) H_0 : $p_{TF} = p_{FT}$.
- Model assumes that entries fall into the four cells i.i.d.
- In table (2) the 144 pairs do fall into the 4 cells i.i.d.
- In table (1), 144 pairs, within each pair one in the left 2 cells and one in the right 2 cells. Hence **NOT i.i.d**.

χ²-tests on 2 by 2 contingency Tables

• MI and Diabetes are not associated \Leftrightarrow Table (1) H_0 : $\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{22}}$.

$$\Leftrightarrow$$
 Table (2) $H_0: p_{TF} = p_{FT}$.

- Can we use χ^2 -test on Table (2) H_0 : $\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{12}}$?
- Yes, but it is answering <u>a different question</u>!

χ²-tests on 2 by 2 contingency Tables

- Table (2) H_0 : $\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{12}} \Leftrightarrow$ Diabetes in the "No MI" group is independent of diabetes status of its paired person in "MI" group. ⇔ Pairing has no effect (thus not needed).
- χ^2 -test on Table (2) H_0 : $\frac{p_{11}}{p_{11}} = \frac{p_{12}}{p_{12}}$ test if pairing has no effect on Diabetes/MI. Not whether MI and Diabetes are associated.

Summary

Today, we finished Module 10 contingency tables

- χ^2 -test is a general goodness-of-fit test.
- Using χ^2 -test on 2 by 2 tables can compare two populations proportions: paired or unpaired. They are equivalent to the z-tests in last lecture.
- Better to use the χ^2 -tests with continuity correction.
- Be careful about how tables are presented. The entries needs to be i.i.d. for usage of χ^2 -test.
- Homework 7 due in one week