

Model Name: P320HVN02.0

Issue Date: 2015/04/22

()Preliminary Specifications(*)Final Specifications

Customer Signature	Date	AUO	Date	
Approved By		Approval By PM Director		
Note		Reviewed By RD Director Eugene CC Chen	20 11	
		Reviewed By Project Leader Alex HM Chen	东夏	
		Prepared By PM Bryan Chu	巷啤	

Contents

1.	General Description4							
2.	Absolute Maximum Ratings	5						
3.	Electrical Specification	6						
3.1	Electrical Characteristics	6						
	3.1.1 DC Characteristics (Ta = 25 ± 2 °C)	6						
	3.1.2 AC Characteristics (Ta = 25 ± 2 °C)	6						
	3.1.3 Driver Characteristics	7						
	3.1.4 TCON Characteristics	7						
3.2	Interface Connections	. 10						
3.3	Signal Timing Specification	. 13						
3.4	Signal Timing Waveforms	. 14						
3.5	Color Input Data Reference	. 15						
3.6	Power Sequence for LCD	. 16						
3.7	Backlight Specification	. 17						
	3.7.1 Electrical specification (Ta = 25	. 17						
	3.7.2 Input Pin Assignment	. 18						
	3.7.3 Power Sequence for Backlight	. 19						
4.	Optical Specification	. 20						
5.	Mechanical Characteristics	. 23						
5.1	Placement Suggestions	. 23						
6.	Reliability Test Items	. 27						
7.	International Standard	. 28						
7.1	Safety	. 28						
7.2	EMC	. 28						
8.	Packing	. 29						
8.1	Definition of Label	. 29						
8.2	Packing Methods	. 30						
8.3	Pallet and Shipment Information	. 31						
9.	Precautions	. 32						
9.1	Mounting Precautions	. 32						
9.2	Operating Precautions	. 32						
9.3	Operating Condition for Public Information Display	. 33						
9.4	Electrostatic Discharge Control	. 33						
9.5	Precautions for Strong Light Exposure	. 33						
9.6	Storage	. 33						
9.7	Handling Precautions for Protection Film	. 34						

Record of Revision

Version	Date	Page	Description
0.0	2014/04/17		1 st release
4.0	204 4/05/05	6,9,21	Correct the model name to P320HVN02.0
1.0	2014/05/05	23	Modify the 2D drawing (location of LVDS connector)
2.0	2014/09/25		Modify to PID new template
		20	Change optical specification: surface luminance, color coordinates
3.0	2015/03/18	24~26	Update 2D drawing
3.0	2015/03/16	27	Add packing reliability test
		31	Modify Pallet and Shipment Information
4.0	2015/04/14	7	Correct test condition Fv to 60Hz
4.0	2015/04/14	17	Modify backlight electrical specification
		10	LCD connector: FI-RTE51SZ-HF (JAE, LVDS connector) or compatible
		16	t10 & t11 are removed and t8 corrected to 20
5.0	2015/04/22	40	LED driver board connector: Cvilux CI0114M1HRL-NH or equivalent
		18	PDIM value is corrected to 5~100%
		19	Remove "V_IPWM" in diagram
			5

1. General Description

This specification applies to the 31.5 inch Color TFT-LCD Module P320VN02.0. This LCD module has a TFT active matrix type liquid crystal panel 1920x1080 pixels, and diagonal size of 31.5 inch. This module supports 1920x1080 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.

The P320HVN02.0 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle.

* General Information

Items	Specification	Unit	Note
Active Screen Size	31.5	inch	
Display Area	698.4 (H) x 392.85(V)	mm	
Outline Dimension	719.2(H) x 413.7(V) x 24.8(D)	mm	D: Max.
Driver Element	a-Si TFT active matrix	1	
Bezel Opening	703.4(H) x 397.9(V)	mm	
Display Colors	8 bits	Colors	
Number of Pixels	1,920x1,080	Pixel	
Pixel Pitch	0.3637 (H) x 0.3637 (W)	mm	
Pixel Arrangement	RGB vertical stripe		
Display Operation Mode	Normally Black		
Surface Treatment	Anti-Glare, 3H		Haze=2%
Rotate Function	Unachievable		Note 1
Display Orientation	Portrait/Landscape Enabled		Note 2

Note 1: Rotate Function refers to LCD display could be able to rotate. This function does not work in this model.

Note 2: Please refer to 5.1 Placement Suggestions.

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be $39^{\circ}\!\mathbb{C}$ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50° C Dry condition

3. Electrical Specification

The P320HVN02.0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit.

3.1 Electrical Characteristics

3.1.1 DC Characteristics (Ta = 25 \pm 2 °C)

	Parameter	Cymphol		Value			Note
	Parameter	Symbol	Min.	Тур.	Max	Unit	Note
LCD	LCD				· ·	1	
Power Sup	ply Input Voltage	V_{DD}	10.8	12	13.2	V _{DC}	
Power Sup	ply Input Current	I _{DD}		0.39	0.56	А	1
Power Con	sumption	Pc		4.68	7.39	Watt	1
Inrush Cur	rent	I _{RUSH}			5	А	2
Permissible	e Ripple of Power Supply Input Voltage	V_{RP}		、	V _{DD} * 5%	mV _{pk-pk}	3
	Input Differential Voltage	V _{ID}	200	400	600	mV_{DC}	4
LVDS	Differential Input High Threshold Voltage	V_{TH}	+100		+300	mV _{DC}	4
Interface Differential Input L Voltage	Differential Input Low Threshold Voltage	V _{T,L} ×	-300		-100	mV _{DC}	4
	Input Common Mode Voltage	V _{ICM}	1.1	1.25	1.4	V_{DC}	4
CMOS	Input High Threshold Voltage	V _{IH} (High)	2.7		3.3	V_{DC}	5
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0		0.6	V_{DC}	5
Backlight F	Power Consumption	P _{BL}		35.9	38.1	Watt	
Life time (N	/ITTF)		50000			Hour	8, 9

3.1.2 AC Characteristics (Ta = 25 \pm 2 °C)

	Parameter			Value	Unit	Note	
			Min.	Тур.	Max	Offic	INOLE
	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%	1	Fclk +3%	MHz	6
LVDS Interface	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30	I	200	KHz	6
	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5	1 1	0.4 0.5	ns	7

3.1.3 Driver Characteristics

Item	Symbol	Min	Max	Unit	condition
Driver Surface Temperature	DST		100	[℃]	Note

Note : Any point on the driver surface must be less than 100° C under any conditions.

3.1.4 TCON Characteristics

Item	Symbol	Min	Max	Unit	condition
TCON Surface Temperature	TST		85	[°C]	Note

Note: Any point on the TCON surface must be less than 85°C under any conditions.

Note:

- 1. Test Condition:
 - (1) $V_{DD} = 12.0V$
 - (2) Fv = 60Hz
 - (3) Fclk= Max freq.
 - (4) Temperature = 25 °C
 - (5) Typ. Input current: White Pattern

Max. Input current: Heavy loading pattern defined by AUO

>> refer to "Section:3.3 Signal Timing Specification, Typical timing"

2. Measurement condition: Rising time = 400us

- 3. Test Condition:
 - (1) The measure point of V_{RP} is in LCM side after connecting the System Board and LCM.
 - (2) Under Max. Input current spec. condition.
- **4.** $V_{ICM} = 1.25V$

- 5. The measure points of V_{IH} and V_{IL} are in LCM side after connecting the System Board and LCM.
- 6. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures

7. Receiver Data Input Margin

Parameter	arameter Symbol		Rating			
Parameter	Зушьы	Min	Туре	Max	Unit	Note
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk
Input Data Position0	tRIP1	- tRMG	0	[tRMG]	ns	
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns	
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns	
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns	

- **8.** The relative humidity must not exceed 80% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.
- **9.** The lifetime (MTTF) is defined as the time which luminance of LED is 50% compared to its original value. [Operating condition: Continuous operating at Ta = 25±2°C, for single lamp/LED only]

3.2 Interface Connections

• LCD connector: FI-RTE51SZ-HF (JAE, LVDS connector) or compatible

PIN	Symbol	Description
1	N.C.	No connection
2	N.C.	No connection
3	N.C.	No connection
4	N.C.	No connection
5	N.C.	No connection
6	N.C.	No connection
7	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA
8	N.C.	No connection
9	N.C.	No connection
10	N.C.	No connection
11	GND	Ground
12	CH1_Y0-	LVDS Channel 1, Signal 0-
13	CH1_Y0+	LVDS Channel 1, Signal 0+
14	CH1_Y1-	LVDS Channel 1, Signal 1-
15	CH1_Y1+	LVDS Channel 1, Signal 1+
16	CH1_Y2-	LVDS Channel 1, Signal 2-
17	CH1_Y2+	LVDS Channel 1, Signal 2+
18	GND	Ground
19	CH1_CLK-	LVDS Channel 1, Clock -
20	CH1_CLK+	LVDS Channel 1, Clock +
21	GND	Ground
22	CH1_Y3-	LVDS Channel 1, Signal 3-
23	CH1_Y3+	LVDS Channel 1, Signal 3+
24	N.C.	No connection
25	N.C.	No connection
26	GND	Ground
27	GND	Ground
28	CH2_Y0-	LVDS Channel 2, Signal 0-
29	CH2_Y0+	LVDS Channel 2, Signal 0+
30	CH2_Y1-	LVDS Channel 2, Signal 1-
31	CH2_Y1+	LVDS Channel 2, Signal 1+
32	CH2_Y2-	LVDS Channel 2, Signal 2-

P320HVN02.0 Product Specification Rev. 5.0

		NEV. 3.0
33	CH2_Y2+	LVDS Channel 2, Signal 2+
34	GND	Ground
35	CH2_CLK-	LVDS Channel 2, Clock -
36	CH2_CLK+	LVDS Channel 2, Clock +
37	GND	Ground
38	CH2_Y3-	LVDS Channel 2, Signal 3-
39	CH2_Y3+	LVDS Channel 2, Signal 3+
40	N.C.	No connection
41	N.C.+	No connection
42	N.C.	No connection
43	N.C.	No connection
44	GND	Ground
45	GND	Ground
46	GND	Ground
47	N.C.	No connection
48	V_{DD}	Power Supply, +12V DC Regulated
49	V_{DD}	Power Supply, +12V DC Regulated
50	V_{DD}	Power Supply, +12V DC Regulated
51	V_{DD}	Power Supply, +12V DC Regulated
l		1

Note: N.C. : please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).

■ LVDS Option = High/OPEN →NS

Note: x = 1, 2, 3, 4...

■ LVDS Option = Low → JEIDA

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	Tv	1100	1125	1480	Th
Vertical Section	Active	Tdisp (v)		1080		
	Blanking	Tblk (v)	20	45	400	Th
	Period	Th	1030	1100	1325	Tclk
Horizontal Section	Active	Tdisp (h)		960		
	Blanking	Tblk (h)	70	140	365	Tclk
Clock	Frequency	Fclk=1/Tclk	53	74.25	82	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	60	67.5	73	KHz

Notes:

- (1) Display position is specific by the rise of DE signal only.
 Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3)If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.
- (4) The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

3.4 Signal Timing Waveforms

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

											ı	npu	t Cc	olor	Data	а									
	Color				RI	ΞD							GRI	EEN							BL	UE			
	Coloi	MS	В					LS	SB	MS	В					LS	SB	MS	В					LS	SB
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	GO	B7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G																									
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3.6 Power Sequence for LCD

Davagastan		Linit			
Parameter	Min.	Type.	Max.	Unit	
t1	0.4		30	ms	
t2	0.1		50	ms	
t3	450			ms	
t4	0*1			ms	
t5	0			ms	
t6			*2	ms	
,t7	500			ms	
√ t8	20*3		50	ms	
t9	0			ms	

Note:

- (1) t4=0: concern for residual pattern before BLU turn off.
- (2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)
- (3) When CMOS Interface signal is N.C. (no connection), opened in Transmitted end, t8 timing spec can be negligible.

3.7 Backlight Specification

3.7.1 Electrical specification (Ta = 25 \pm 2 °C)

	ltem	Symbol		Condition		Spec		Unit	Note	
	item			Condition	Min	Тур	Max	Unit	Note	
1	Input Voltage	VD	DB	-	22.8	24	25.2	VDC	-	
2	Input Current	I _{DI}	DB	VDDB=24V		1.50	1.59	ADC	1	
3	Input Power	P _D	DB	VDDB=24V		36	38.2	W	1	
4	Inrush Current	I _{RU}	ISH	VDDB=24V			3.5	ADC	2	
5	On/Off control voltage		ON	\/DDD 04\/	2	3.3	5.5	VDC	-	
5	On/Off control voltage	V_{BLON}	VBLON	OFF	VDDB=24V	0	0.8	0.8	VDC	-
6	On/Off control current	I _{BLON}		VDDB=24V	, - ,	- '	1.5	mA	-	
7	External PWM	\/ ED\/\\	MAX	VDDB=24V	2	-	5.5	VDC	-	
'	Control Voltage	V_EPWM	MIN	VDDB=24V	0	-	0.8	VDC	-	
8	External PWM Control Current	I_EP	WM	VDDB=24V	-	-	2	mADC	-	
9	External PWM Duty ratio	D_EF	PWM	VDDB=24V	5	-	100	%	3	
10	External PWM Frequency	F_EPWM		VDDB=24V	90	180	240	Hz	-	
11	DET status signal	DET HI		VDDB=24V	Оре	en Colle	ctor	VDC	4	
	DE I Status signal	DET	, Lo	V DDD=24 V	1	0.8	0.8	VDC	4	
12	Input Impedance	R	Rin		300			Kohm	-	

Note 1 : Dimming ratio= 100% (MAX) (Ta=25 \pm 5 $^{\circ}$ C, Turn on for 45minutes)

Note 2: Measurement condition Rising time = 20ms (VDDB : 10%~90%);

Note 3: Less than 5% dimming control is functional well and no backlight shutdown happened

Note 4: Normal : 0~0.8V ; Abnormal : Open collector

3.7.2 Input Pin Assignment

LED driver board connector: Cvilux ${
m CI0114M1HRL-NH}$ or equivalent

Pin	Symbol	Description
1	VDDB	Operating Voltage Supply, +24V DC regulated
2	VDDB	Operating Voltage Supply, +24V DC regulated
3	VDDB	Operating Voltage Supply, +24V DC regulated
4	VDDB	Operating Voltage Supply, +24V DC regulated
5	VDDB	Operating Voltage Supply, +24V DC regulated
6	BLGND	Ground and Current Return
7	BLGND	Ground and Current Return
8	BLGND	Ground and Current Return
9	BLGND	Ground and Current Return
10	BLGND	Ground and Current Return
11	DET	BLU status detection: Normal : 0~0.8V ; Abnormal : Open collector (Recommend Pull high R > 10K, VDD = 3.3V)
12	VBLON	BLU On-Off control: High/Open (2~5.5V) : BL On ; Low (0~0.8V/GND) : BL Off
13	NC	NC
14	PDIM(*)	External PWM (5%~100% Duty, open for 100%)

PWM Dimming: include Internal and External PWM Dimming

(Note*) IF External PWM function includes 5% dimming ratio. Judge condition as below:

- (1) Backlight module must be lighted ON normally.
- (2) All protection function must work normally.

Uniformity and flicker could NOT be guaranteed

3.7.3 Power Sequence for Backlight

Dip condition

Downwater		Value	Units	
Parameter	Min	Тур	Max	Units
T1	20	-	-	ms
T2	250	-	-	ms
T3.	200			ms
T4	0	-	-	ms
T5	0	-	-	ms
T6		-	1000	ms ^{*1}

Note:1. T6 describes VDDB dip condition and VDDB couldn't lower than 10% VDDB.

4. Optical Specification

Optical characteristics are determined on the back-light of measured unit is 'ON' and stabilized after 45~60 minutes in a dark environment at 25°C. The values are specified at 50cm distance from the LCD surface at a viewing angle of ϕ and θ equal to 0°.

Fig.1 presents additional information concerning the measurement equipment and method.

Damantan	Or was broad		Values		Link	Neter
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
Contrast Ratio	CR	2400	3000			1
Surface Luminance (White)	L _{WH} (2D)	400	500		cd/m ²	2
Luminance Variation	δ _{WHITE(9P)}			1.33		3
Response Time (G to G)	Тү		8	10	ms	4
Color Gamut	NTSC		72		%	
Color Coordinates	*)					
Red	R_X		0.652			
	R_Y		0.332			
Green	G_X		0.300			
	G_Y	Тур0.03	0.623	Тур.+0.03		
Blue	B_X	тур0.03	0.150	тур.+0.03		
	B_Y		0.065			
White	W _X		0.28			
	W_Y		0.29			
Viewing Angle						5
x axis, right(φ=0°)	θ_{r}		89		degree	
x axis, left(φ=180°)	θι		89		degree	
y axis, up(φ=90°)	θ_{u}		89		degree	
y axis, down (φ=270°)	$\theta_{\sf d}$		89		degree	

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Contrast Ratio=
$$\frac{\text{Surface Luminance of L}_{\text{on5}}}{\text{Surface Luminance of L}_{\text{off5}}}$$

- Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. LED current I_F = typical value (without driver board), LED input VDDB =24V, I_{DDB}. = Typical value (with driver board), L_{WH}=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δ WHITE is defined (center of Screen) as: $\delta_{\text{WHITE(9P)}} = \text{Maximum}(L_{on1}, L_{on2}, ..., L_{on9}) / \text{Minimum}(L_{on1}, L_{on2}, ..., L_{on9})$
- 4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_{ν} =60Hz to optimize.

Ме	asured			Target		
Response Time		0%	25%	50%	75%	100%
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%	

 T_{γ} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright)" and "any level of gray(dark)".

FIG. 2 Luminance

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model P320HVN02.0 In addition the figures in the next page are detailed mechanical drawing of the LCD.

It	tem	Dimension	Unit	Note
	Horizontal	719.2	mm	
	Vertical	413.7	mm	
Outline Dimension	Depth (Dmin)	10.8	mm	front bezel to back bezel
	Depth (Dmax)	24.8	mm	to wall mount
Weight	459	91	G	w/ DB

5.1 Placement Suggestions

 Landscape Mode: The default placement is T-Con Side on the lower side and the image is shown upright via viewing from the front.

2. Portrait Mode: The default placement is that T-Con side has to be placed on the left side via viewing from the front.

(Front view)

Front View

Back View

6. Reliability Test Items

Test Item	Q'ty	Condition
High temperature storage test	3	60℃, 300hrs
Low temperature storage test	3	-20℃, 300hrs
High temperature operation test	3	50℃, 300hrs
Low temperature operation test	3	-5℃, 300hrs
		Wave form: random
		Vibration level : 1.0G RMS
		Bandwidth : 10-300Hz
\/;bystian toot (non anaustian)	2	Duration:
Vibration test (non-operation)	3	X axis, Vertical, 10min
		Y axis, Vertical, 10min
		Z axis, Vertical, 10min
		one time each direction
		Shock level
Charletast (non anaration)	2	50G ,20ms ±X,Y,Z axis
Snock test (non-operation)	3	Waveform: half sine wave
		Direction: One time each direction
		Random wave (1.04Grms 2~200Hz)
7 Vibration test (With carton)		Duration: X,Y,Z 20min per axes
,		Height: 30.5 cm (ASTMD4169-I)
Drop test (With carton)	1CTN/7PCS	1 corner, 3 edges, 6 surfaces
,		(refer ASTM D 5276)
	High temperature storage test Low temperature operation test Low temperature operation test Low temperature operation test Vibration test (non-operation) Shock test (non-operation)	High temperature storage test Low temperature storage test High temperature operation test Low temperature operation test 3 Vibration test (non-operation) 3 Vibration test (non-operation) 3 Vibration test (With carton) 1CTN/7PCS

7. International Standard

7.1 Safety

- (1) UL 60950-1; Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1; Standard for Safety of International Electrotechnical Commission
- (3) EN 60950-1; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7.2 EMC

- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

8. Packing

8.1 Definition of Label

A. Panel Label:

Green mark description

- (1) For Pb Free Product, AUO will add for identification.
- (2) For RoHs compatible products, AUO will add RoHS for identification.

Note: The green Mark will be present only when the green documents have been ready by AUO internal green team. (definition of green design follows the AUO green design checklist.)

B. Carton Label:

8.2 Packing Methods

