Yeni Tanı Hipertansiyon Hastalarında Tiyol Disülfid Dengesi

İhsan Ateş¹, <u>Nihal Özkayar</u>²,Bayram İnan¹, F. Meriç Yılmaz³, Canan Topçuoğlu³, Özcan Erel⁴, Fatih Dede², Nisbet Yılmaz¹

¹Ankara Numune Eğitim Araştırma Hastanesi, İç Hastalıkları Kliniği

²Ankara Numune Eğitim Araştırma Hastanesi, Nefroloji Kliniği

³Ankara Numune Eğitim Araştırma Hastanesi, Biyokimya Bölümü

⁴Yıldırım Beyazıt Üniversitesi, Biyokimya Bölümü

- Hipertansiyon etyopatogenezinde üzerinde sıklıkla durulan mekanizmalardan biride oksidatif strestir.
- Oksidatif; serbest radikal veya reaktif oksijen türlerinin üretimi ile antioksidan sistem arasındaki dengenin kaybolması sonucu moleküler ve hücresel fonksiyonlarda bozulma olarak tanımlanır
- Reaktif oksijen türleri (ROT); fizyolojik düzeylerin üzerine çıktığında oksidatif hasara neden olan primer moleküllerdir

 ROT'un zararlı etkilerine karşı organizmayı korumak için devreye enzimatik ya da non-enzimatik antioksidan mekanizmalar girer.

Tiyol; hücrelerde herhangi bir oksidatif stres durumunun oluşumunu önlemede kritik bir role sahip **sülfidril (-SH)** grubu içeren **organik bir bileşiktir.**

- Proteinlerdeki sülfür içeren aminoasitlerin (sistein, metyonin..) tiyol grupları ROT'un primer hedef noktasıdır.
- ROT ile ortamda bulunan tiyol grupları oksitlenerek reversible disülfid bağlarına dönüşür.
- Bu dönüşüm radikal aracılı protein oksidasyonun en erken belirtisidir.

Tiyol ve Disülfidlerin Biyolojik Önemi;

- Proteinlerin yapılarının stabilizasyonu
- Proteinlerin fonksiyonlarının regülasyonu
- Enzim fonksiyonlarının regülasyonu
- Reseptörlerde,
- Taşıyıcılarda,
- Na-K kanalında,
- Transkripsiyonda rolleri vardır.

Dinamik tiyol/disülfid denge durumu

antioksidan savunma, detoksifikasyon apoptozis, enzim aktivitelerinin düzenlenmesi, transkripsiyon ve hücresel sinyal iletimi mekanizmalarında kritik rollere sahiptir.

- Plazma tiyol havuzunun çok büyük bir kısmı temel olarak albümin ve diğer proteinlerden oluşurken,
- küçük bir kısmı da
 sistein, sisteinil glisin, glutatyon, homosistein ve
 γ-glutamil sistein gibi düşük molekül ağırlıklı tiyollerden
 oluşmaktadır.

- Proteinlerin tiyol grupları
- düşük molekül ağırlıklı bileşiklerin tiyol grupları
- sistein rezidüleri ve diğer tiyol grupları
 - ortamda bulunan oksidan moleküller tarafından oksitlenerek tersinir disülfid bağ yapılarına dönüşürler.
- Oluşan disülfid bağ yapıları tekrar tiyol gruplarına
 redüklenebilir ve böylece tiyol disülfid dengesi sürdürülür.

Anormal tiyol/ disülfid denge düzeyleri;

- Diabetes mellitus
- Kardiyovasküler hastalıklar
- Malignite
- Romatoid artrit
- Kronik Böbrek Yetmezliği
- Parkinson, Alzheimer
- Multiple sklerozis ve
- Karaciğer hastalıkları gibi çeşitli hastalıkların patogenezinde yer almaktadır.

Tiyol disülfit denge ölçümleri;

- Native Tiyol [-SH],
- Dinamik Disülfid [-S-S-],
- Toplam Tiyol [(-SH)+(-S-S-)] düzeylerinin
- Dinamik "-SH/-S-S-" Homeostazisinin değerlendirillmesinde kullanılır

- Tiyol-disülfid dengesi yaşamsal bir öneme sahiptir.
- Bu çift taraflı dengenin 1979 yılından beri ancak tek tarafı ölçülebilriken, Erel & Neşelioğlu'nun geliştirdiği yeni yöntemle her iki değişken düzeyi de ayrı ayrı ve toplamsal olarak ölçülebilmekte ve hem bireysel hem de bütünsel olarak değerlendirilebilmekteir.

Materyal-Metod

- Kasım 2014 Ocak 2015
- Ankara Numune Eğitim ve Araştırma Hastanesi
- İç hastalıkları ve Nefroloji Klinikleri
- Çalışmaya 18 yaşından büyük, 90 kişi dahil edildi.
- 45 hasta -yeni tanı almış ve henüz tedavi verilmemiş primer HT tanısı olan
- 45 sağlıklı gönüllü- bilinen herhangi bir hastalığı olmayan

Materyal-Metod

Dışlama Kriterleri:

- Diabetes mellitus
- Kardiyovasküler hastalık, Serebrovasküler hastalık
- Akut-kronik böbrek hastalığı, Karaciğer hastalığı
- Nefrotik düzeyde proteinüri
- Akut-kronik enfeksiyon
- Kollojen doku hastalığı, Malignite
- Antioksidan ilaç, vitamin takviyesi , lipid düşürücü ilaç kullanımı
- Sigara, alkol kullanımı

Materyal-Metod

- 24 saatlik ambulatuar kan basıncı ölçümü yapıldı.
- Biyokimyasal parametreler ve tiyol / disülfid hemostaz testleri için sekiz saat açlıktan sonra biyokimya tüpüne kan örneği alındı.
- Örnekler hızlı bir şekilde 1500 devirde 10 dakika santrifüj edildikten sonra plazma ve serum ayrıştırılarak serum örnekleri -80° C de saklandı.
- DTNB (5,5'-dithiobis-(2-nitrobenzoic acid).
- Disülfid düzeyi ise (serum total tiyol serum native tiyol)/2 formülü ile hesaplandı

Tablo 1: Tüm Popülasyonun Demografik ve Labaratuvar Bulguları

	Hipertansiyon (n=45)	Kontrol (n=45)	P
Cinsiyet erkek, n (%)	12 (26,7)	12 (26,7)	0,999
Yaş (yıl)	49,5±10,6	48,4±9,2	0,6
VKI (kg/m²)	29,1±4,7	28,0±3,8	0,202
24 sa Sistolik KB (mmHg)	159,7±11,3	111,8±6,9	<0,001*
24 sa Diastolik KB (mmHg)	97,0±8,7	72,9±6,6	<0,001*
Albumin (gL)	4,4±0,4	4,4±0,3	0,92
Total Protein (gL)	7,7±0,5	7,7±0,4	0,624
Total kolesterol (mg/dL)	225±43,2	207,6±44,9	0,063
LDL (mg/dL)	143,1±35,5	130,6±36	0,101
Log 24 sa idrar albumin (mg/gün)	1,3±0,4	0,9±0,2	<0,001*
Log 24 sa idrar protein (mg/gün)	2,1±0,2	1,9±0,3	0,010*

Tablo 2: Tüm Popülasyonun Labaratuvar Bulguları

	Hipertansiyon (n=45)	Kontrol (n=45)	р
Native tiyol (µmol/L)	324,7±45,5	354,0±34,6	0,001*
Total tiyol (µmol/L)	353,5±46,4	378,7±37,6	0,006*
Disülfid (µmol/L)	14,4±5	12,4±3,2	0,023*
Disülfid / Native tiyol (%)	4,5±1,7	3,5±0,8	0,001*
Disülfid / Total tiyol (%)	4,1±1,4	3,2±0,7	0,001*
Native tiyol / Total tiyol(%)	91,5±2,9	93,5±1,5	0,001*

Tablo 3. Korelasyon tablosu

	Native r	tiyol p	Total r	tiyol p	Disülfi r	d p	Disülf Native r	id/ e Tiyol p	Disülfid Total ti r		Native / Total r	_
Yaş	-0,288	0,006*	-0,246	0,019*	0,179	0,091	0,287	0,006*	0,277	0,008*	-0,277	0,008*
SKB	-0,330	0,001*	-0,276	0,008*	0,237	0,024*	0,355	0,001*	0,348	0,001*	-0,348	0,001*
DKB	-0,303	0,004*	-0,254	0,016*	0,213	0,044*	0,310	0,003*	0,308	0,003*	-0,308	0,003*
Total Protein	0,190	0,073	0,253	0,016*	0,342	0,001*	0,243	0,021*	0,250	0,018*	-0,250	0,018*
Albumi n	0,341	0,001*	0,384	<0,001*	0,260	0,013*	0,119	0,262	0,121	0,255	-0,121	0,255
24 sa idrar albumi n	-0,297	0,007*	-0,258	0,020*	0,165	0,142	0,280	0,011*	0,272	0,014*	-0,272	0,014*
24 sa idrar Protein	-0,150	0,183	-0,125	0,266	0,107	0,342	0,172	0,126	0,168	0,133	-0,168	0,133

Sonuçlar

Tablo 3. Multivariate regresyon analizi

	B±SE -	95%	n value		
	D±SL	Lower Upper		— p value	
Diastolik kan basıncı‡					
24-sa SKB	0,508±0,033	0,442	0,573	0,001*	
Log(24-sa idrar albumin)	1,118±0,510	0,162	2,200	0,024*	
Disülfid/nativ tiyol	3,056±0,998	1,074	5,039	0,003*	
Native tiyol/total tiyol	-1,802±0,594	-2,982	-0,622	0,003*	
	R ² = 0.773, p<0.00)1			
Sistolik kan basıncı‡					
24-sa DKB	1,450±0,095	1,261	1,640	0,001*	
Log(24-sa idrar albumin)	1,630±0,450	0,740	2,530	0,001*	
Disülfid/nativ tiyol	6,287±1,768	2,774	9,801	0,001*	
Native tiyol/total tiyol	-3,668±1,054	-5,762	-1,573	0,001*	
	R ² = 0.784, p<0.00)1			

Tartışma

Çalışmamızda yeni tanı primer HT hastalarında sağlıklı kontrol grubuna kıyasla

- native tiyol, total tiyol düzeyleri ve native tiyol/total tiyol oranı daha düşük,
- disülfid düzeyi, disülfid/native tiyol ve disülfid/total tiyol oranları ise daha yüksek saptandı.
- Stepwise multiple lineer regresyon modeline göre disülfid/native tiyol oranı ve log24- sa idrar albümin düzeyindeki artışın ve native tiyol/total tiyol oranındaki azalışın 24-sa SKB ve 24- sa DKB için bağımsız prediktörler olduğu saptandı.
- Primer HT hastalarında dinamik tiyol/disülfid homeostasisini inceleyen ilk çalışmadır.

Tartışma

- Primer HT hastalarında tiyol/disülfid dengesinin sağlıklı kontrol grubuna kıyasla zayıflamış olduğu ve dengenin disülfid formasyonuna doğru kaydığı saptandı.
- Anormal tiyol/disülfid dengesinin HT için bağımsız bir risk faktörü olarak saptanması
- ve yapılmış çalışmalarla NAC'ın kan basıncı üzerinde olumlu etkilerinin olması;
- HT etyopatogenezinde oksidatif stresin major etkilerinin olduğunu göstermektedir.

Tartışma

- Dinamik tiyol/disülfid homeostasisini saptamak için kullandığımız bu yeni analiz yöntemi ile; tiyole tekrar redüklenebilen disülfid bağlarını saptadık.
- Bu durumda bu geri dönebilen oksidasyonu düzeltmek için diyetle ya da ilaçla sistein (N-asetilsitein, metyonin..) takviyesi göz önünde bulundurulabilir.
- Bu moleküllerle oksidatif stresin kan basıncı üzerine olan olumsuz etkisinin azaltılması söz konusu olabilir.

