Grundlagen der Matrizenrechnung

$$5 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 & 5 \cdot 2 \\ 5 \cdot 3 & 5 \cdot 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$$

$$\lambda * (A + B) = \lambda * A + \lambda * B$$

und

$$(\lambda + \mu) * A = \lambda * A + \mu * A$$

Assoziativ-Gesetz:

$$(\lambda * A) * B = \lambda * (A * B) = A * (\lambda * B)$$

Multiplikation:

Spaltenanzahl von A muss gleich Zeilenanzahl von B sein.

Assoziativ-Gesetz:

$$A * (B * C) = (A * B) * C$$

Distributiv-Gesetz:

$$A*(B+C) = A*B + A*C$$

und

$$(A + B) * C = A * C + B * C$$

$$A \qquad B \qquad = C$$

$$m \text{ Zeilen} \left\{ \bigcup_{\substack{n \text{ Spalten}}}^{n} n \text{ Spalten} \right\} \left\{ \bigcup_{\substack{k \text{ Spalten}}}^{m} \text{ Zeilen} \left\{ \bigcup_{\substack{k \text{ Spalten}}}^{n} n \text{ Spalten} \right\} \right\}$$

Transponieren:

Eine $m \times n$ Matrix wird zu einer $n \times m$ Matrix.

Spezial:

$$(A*B)^T = A^T * B^T$$

Lineare Gleichungssysteme (LGS)

Jedes LGS entspricht einer Matrizengleichung:

Die Koeffizienten Matrix von A und \vec{c} :

$$(A \mid \vec{c}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & c_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & c_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & c_m \end{pmatrix}$$

Zeilenstufenform

Beispiel $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & -2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix}$ 1 führende Einsen führende Unbekannte: x_1, x_3 freie Unbekannte: x_2, x_4

- freie Unbekannten erhalten ein Parameter: $\lambda, \mu, ... \in \mathbb{R}$
- jede Zeile entspricht einer Gleichung:

$$> x_1 - 2\lambda + 3\mu = 5$$
 $x_1 = 5 + 2\lambda - 3\mu$

$$x_3 + \mu = 3$$
 $x_3 = 3 - \mu$

Beispiel Parameterdarstellung

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 + 2\lambda - 3\mu \\ \lambda \\ 3 - \mu \\ \mu \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Lösbarkeit LGS

Der Rang einer Matrix A = rg(A) wird so bestimmt:

- 1. Wir bringen A in die Zeilenstufenform.
- 2. Dann ist rg(A) = GesamtanzahlZeilen – Anzahl Nullzeilen.
- 3. $\operatorname{rg}(A) \leq \min(m, n)$

Vektorgeometrie

Kollinear

<u>Zwei</u> Vektoren \vec{a} , \vec{b} sind kollinear, wenn $\vec{a} = \lambda * \vec{b}$ oder

$$\vec{b} = \lambda * \vec{a}$$
 gilt.

Komplanar

<u>Drei</u> Vektoren \vec{a} , \vec{b} , \vec{c} sind komplanar, wenn \vec{a} und \vec{b} nicht kollinear sind und $\vec{c} = \lambda * \vec{a} + \mu * \vec{b}$ gilt.

Einheitsvektor

 $\vec{a} * \frac{1}{|\vec{a}|} = \vec{e}_a$ (zeigt in Richtung von a)

Addition

$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$
 Gegenvektor

Skalare Multiplikation

$$\lambda * \vec{a} = \begin{pmatrix} \lambda * a_1 \\ \lambda * a_2 \\ \lambda * a_3 \end{pmatrix}$$

$$-\vec{a} = \begin{pmatrix} -a_1 \\ -a_2 \\ -a_3 \end{pmatrix}$$

Verbindungsvektor P_1 , P_2

$$\overrightarrow{P_1 P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Betrag eines ebenen Vektors

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$

Betrag eines räumlichen Vektor

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Skalarprodukt in der Ebene

$$\vec{a} * \vec{b} = |\vec{a}| * |\vec{b}| * \cos(\varphi)$$
$$\binom{a_1}{a_2} * \binom{b_1}{b_2} = a_1 b_1 + a_2 b_2$$

Skalarprodukt im Raum

$$\vec{a} * \vec{b} = |\vec{a}| * |\vec{b}| * \cos(\varphi)$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} * \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Zwischenwinkel zweier Vektoren

$$\varphi = \cos^{-1}\left(\frac{\vec{a} * \vec{b}}{|\vec{a}| * |\vec{b}|}\right)$$

Zwischenwinkel $\varphi = 90^{\circ}$, wenn

$$\vec{a} * \vec{b} = 0$$

Rechenregel des Skalarprodukts

Kommutativ-Gesetz:

$$\vec{a} * \vec{b} = \vec{b} * \vec{a}$$

Distributiv-Gesetz:

$$\vec{a} * (\vec{b} + \vec{c}) = \vec{a} * \vec{b} + \vec{a} * \vec{c}$$

und

$$(\vec{a} + \vec{b}) * \vec{c} = \vec{a} * \vec{c} + \vec{a} * \vec{c}$$

Gem. Assoziativ-Gesetz:

$$\lambda * (\vec{a} * \vec{b}) = (\lambda * \vec{a}) * \vec{b} = \vec{a} * (\lambda * \vec{b})$$

Projektion

$$\vec{b}_a = \frac{\vec{a} * \vec{b}}{|\vec{a}|^2} * \vec{a}$$

$$|\vec{b}_a| = \frac{|\vec{a} * \vec{b}|}{|\vec{a}|}$$

Vektorprodukt

Berechnung des Vektorprodukts

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_1 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Eigenschaften des Vektorprodukt

- Wenn $\vec{a} \times \vec{b} = \vec{0}$, dann sind \vec{a} und \vec{b} kollinear.
- $\vec{a} \times \vec{a} = \vec{0}$
- Die Fläche eines Parallelogramms ist gleich $|\vec{a} \times \vec{b}|$

Rechenregel des Vektorprodukts

Antikommutativ-Gesetz:

$$\vec{a} \times \vec{b} = -(\vec{a} \times \vec{b})$$

Distributiv-Gesetz:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

und

$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

Gem. Assoziativ-Gesetz:

$$\lambda*\left(\vec{a}\times\vec{b}\right)=(\lambda*\vec{a})\times\vec{b}=\vec{a}\times\left(\lambda*\vec{b}\right)$$

Geraden und Ebenen

	Gerade	Ebene	
	$g: \vec{r}(P) + \lambda * \overrightarrow{PQ}$	$E: \vec{r}(P) + \lambda * \overrightarrow{PQ} + \mu * \overrightarrow{PR}$	
Parameterdarstellung	$\vec{r}(P)$ $\vec{r}(A)$ $\vec{r}(A)$	Q Q Q	
Param	$P:$ Aufpunkt, $\overrightarrow{PQ}:$ Richtungsvektor	$P:$ Aufpunkt, $\overrightarrow{PQ}, \overrightarrow{PR}:$ Richtungsvektoren	
	Ein Punkt A liegt auf g , wenn	Ein Punkt A liegt auf E , wenn $\vec{r}(A) = \vec{r}(P) + \lambda_A * \overrightarrow{PQ} + \mu_A * \overrightarrow{PR} \text{ gilt.}$	
	$\vec{r}(A) = \vec{r}(P) + \lambda_A * \overrightarrow{PQ}$ gilt.		
<u>∞</u>	g: ax + by + c = 0 (nur in der Ebene!)	E: ax + by + cz + d = 0	
Koordinatendarstellung	Normalenvektor: $\vec{n} = \binom{a}{b}$ Abstand zum Ursprung: $\frac{c}{ \vec{n} }$ Ein Punkt $P = (x_P, y_P)$ liegt auf g ,	Normalenvektor: $\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ Abstand zum Ursprung: $\frac{d}{ \vec{n} }$	
Koordii	wenn $ax_P + by_P + c = 0$.	Ein Punkt $P=(x_P,y_P,z_P)$ liegt auf E , wenn $ax_P+by_P+cz_P+d=0$.	
Abstände	Abstand von Punkt A zur Gerade g : $l = \frac{\left \overrightarrow{PA} \times \overrightarrow{PQ}\right }{\left \overrightarrow{PQ}\right }$	Abstand von Punkt A zur Ebene E : $l = \frac{ ax_A + by_A + cz_A + d }{ \vec{n} }$	

Umrechnung Parameter- / Koordinatendarstellung

für Gerade gvon Parameter → Koordinaten

Punkt A liegt auf q, dann gilt:

$$\vec{r}(A) = {\chi \choose y} = \vec{r}(P) + \lambda * \vec{a}$$

x-Gleichung nach λ auflösen.

x-Gleichung in y-Gleichung setzten, nach 0 auflösen.

Das Vektorprodukt \vec{n} von $\vec{a} \times \vec{b}$ liefert die ersten drei Komponente der Koordinatendarstellung.

für Ebene E

Aufpunkt P wird in die Koordinatengleichung gesetzt und nach d aufgelöst.

von Koordinaten → Parameter

Zwei Punkte P, Q welche ax+by+c=0 lösen, können wir in der Parameterdarstellung darstellen:

$$g: \vec{r}(P) + \lambda * \overrightarrow{PQ}$$

Drei Punkte P,Q,R welche ax+by+cz+d=0 lösen, können wir in der Parameterdarstellung darstellen:

$$E: \overrightarrow{r}(P) + \lambda * \overrightarrow{PQ} + \mu * \overrightarrow{PR}$$

Schnittpunkte & Schnittgeraden im Raum

Schneidet eine Gerade eine Ebene, dann gilt:

$$g = E$$

Schnittpunkt S

 $\vec{r}(P) + \lambda * \overrightarrow{PQ} = \vec{r}(M) + \mu * \overrightarrow{MN} + \nu * \overrightarrow{MO}$ Nun setzt man für λ oder μ, ν den errechneten Wert ein und erhält den Schnittpunkt S.

oder

Wenn E in der Koordinatendarstellung und g in der Parameterdarstellung liegt, kann man g direkt in E einsetzten:

$$a(x_g + \lambda x_\lambda) + b(y_g + \lambda y_\lambda) + c(z_g + \lambda z_\lambda) + d = 0$$
 und setzt den Wert für λ in g ein.

Schnittgerade

Schneiden sich zwei Ebenen dann gilt:

$$E_1 = E_2$$

 $a_1x+b_1y+c_1z+d_1=a_2x+b_2y+c_2z+d_2$ daraus ergibt sich folgendes LGS:

$$\begin{pmatrix} a_1 & b_1 & c_1 & | -d_1 \\ a_2 & b_2 & c_2 & | -d_2 \end{pmatrix}$$

es gibt dann eine freie Unbekannte, diese ist das μ in der Parameterdarstellung.

Gegenseitige Lage von Geraden

		Gibt es einen gemeinsamen Punkt?	
		ja	nein
Sind die Diehtungevolderen kellinger?	ja	identisch	echt parallel
Sind die Richtungsvektoren kollinear?	nein	schneidend	windschief (nur im Raum)

- Ob zwei Richtungsvektoren kollinear sind erfährt man, wenn $\vec{a} = \lambda * \vec{b}$ oder $\vec{a} \times \vec{b} = 0$ gilt.
- Ob ein gemeinsamer Punkt existiert, setzt man beide Geraden gleich. Also das LGS ist lösbar.

Gegenseitige Lage von Ebenen

Wir betrachten zwei Ebenen E_1 : $a_1x + b_1y + c_1z + d_1 = 0$ und E_2 : $a_2x + b_2y + c_2z + d_2 = 0$. Die Ebenen sind:

identisch, wenn es einen Faktor λ gibt, bei dem gilt: $a_1 = \lambda * a_2$, $b_1 = \lambda * b_2$, $c_1 = \lambda * c_2$, $d_1 = \lambda * d_2$

parallel, wenn es einen Faktor λ gibt, bei dem gilt: $a_1 = \lambda * a_2$, $b_1 = \lambda * b_2$, $c_1 = \lambda * c_2$

schneidend, wenn die Ebenen weder identisch noch parallel sind. Die Schnittmenge ist eine Schnittgerade

Quadratische Matrizen

Diagonalmatrix	Einheitsmatrix	untere Dreiecksmatrix	untere Dreiecksmatrix	symmetrische Matrix
$ \begin{pmatrix} 7 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix} $	$ \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) $	$\begin{pmatrix} 4 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 9 \end{pmatrix}$	$\begin{pmatrix} 4 & 0 & 0 \\ 2 & -5 & 0 \\ 2 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 0 & 3 \\ 0 & 1 & 6 \\ 3 & 6 & -1 \end{pmatrix}$

Inverse Matrizen

Die Inverse einer quadratischen Matrix A ist eine Matrix A^{-1} , für die gilt: $A * A^{-1} = E$.

Inverse einer 2x2 Matrix:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} * \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Inverse einer $n \times n$ Matrix, n > 2: Dafür wenden wir das <u>Gauss-Jordan-Verfahren</u> auf die Matrix (A|E) an. Wenn A invertierbar ist, führt dieses auf die Matrix $(E|A^{-1})$.

Beispiel: Gleichungen mit Matrizen

$$2B - X * A = A^T \Longrightarrow 2B - A^T = X * A \Longrightarrow (2B - A^T) * A^{-1} = X * E \Longrightarrow (2B - A^T) * A^{-1} = X$$

Determinante

Die Formel für eine 2×2 Matrix:

$$a*d-c*b=\det$$

Die Formel für eine 3×3 Matrix:

Berechnung der Determinante einer $n \times n$ Matrix

Um die Determinante zu bestimmen, wählen wir eine feste Zeile *i* **oder** eine feste Spalte *j*. Um den Rechenaufwand zu minimieren wählen wir eine Spalte oder Zeile mit **den meisten Nullen**. Dann «entwickeln» wir die Determinante gemäss der folgende Formel:

Entwicklung nach der i-ten Zeile

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} * a_{ij} * \det(A_{ij})$$

Entwicklung nach der j-ten Spalte

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} * a_{ij} * \det(A_{ij})$$

Die Matrix A_{ij} erhält man, wenn man bei A die Zeile i und Spalte j weglässt.

Geometrische Interpretation der Determinante

Der Betrag einer 2×2 Matrix ist gleich dem Flächeninhalt des Parallelogramms das von den **Spalten** der Matrix aufgespannt wird.

Der Betrag einer 3×3 Matrix ist gleich dem Volumeninhalt des Spats das von den **Spalten** der Matrix aufgespannt wird.

Eigenschaften der Determinante

- 1. Für die Einheitsmatrix *E* gilt:
- 2. Für eine $n \times n$ Dreiecksmatrix U gilt:
- 3. Für jede quadratische Matrix A gilt:
- 4. Für alle $n \times n$ Matrizen A und B gilt:
- 5. Für jede invertierbare Matrix *A* gilt:
- 6. Für jede $n \times n$ Matrix A und jedes $\lambda \in \mathbb{R}$ gilt:

- det(E) = 1
- $\det(U) = u_{11} * u_{22} * \dots * u_{nn}$
- $\det(A^T) = \det(A)$
- $\det(A*B) = \det(A)*\det(B)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$
- $\det(\lambda * A) = \lambda^n * \det(A)$

Äquivalente Aussagen zur Determinante

- 1. $det(A) \neq 0$
- 2. Die Spalten von A sind linear unabhängig.
- 3. Die Zeilen von A sind linear unabhängig.
- 4. rg(A) = n
- 5. A ist invertierbar.
- 6. Das lineare Gleichungssystem $A * \vec{x} = \vec{c}$ hat eine eindeutige Lösung.

Vektorräume

Definition Reeller Vektorraum

Ein reeller Vektorraum ist eine Menge $V \neq \emptyset$ mit zwei Verknüpfungen:

Addition: $V \times V \rightarrow V : (\vec{a}; \vec{b}) \mapsto \vec{a} + \vec{b}$ Multiplikation (skalar): $\mathbb{R} \times V \rightarrow V : (\lambda; \vec{a}) \mapsto \lambda * \vec{a}$

Damit eine Menge V mit einer Addition und einer skalaren Multiplikation ein Vektorraum ist muss also gelten:

- 1. Wenn ich zwei beliebige Elemente aus V addiere, liegt das Ergebnis wieder in V.
- 2. Wenn ich ein beliebiges Element aus V mit λ multipliziere, liegt das Ergebnis wieder in V.
- 3. {nicht erwähnte Rechenegel} (1) bis (8) werden eingehalten.

Beispiel

 $\begin{array}{ll} \mathbb{P}_n[x] & \text{ Der Vektorraum der Polynome vom Grad} \leq n. \\ \mathbb{R}^{m \times n} & \text{ Der Vektorraum der reellen } m \times n \text{ Matrizen.} \end{array}$

 \mathbb{R}^n Der Vektorraum der Vektoren mit n reellen Komponente.

Unterräume

U ist ein Unterraum von V, wenn U selbst ein Vektorraum ist. Folgende Kriterien gelten:

- $\vec{0} \notin U$, dann ist U kein Unterraum von V
- $\vec{a}, \vec{b} \in U$ gilt auch $\vec{a} + \vec{b} \in U$
- für ein Skalar $\lambda \in \mathbb{R}$, gilt auch $\lambda * \vec{a} \in U$

Gegeben ist ein reeller Vektorraum V sowie Vektoren $\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n \in V$. Die Menge aller Linearkombinationen:

$$\begin{aligned} & \operatorname{span}(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n) \\ &= \left\{ \lambda_1 * \vec{b}_1 + \lambda_2 * \vec{b}_2 + \dots + \lambda_n * \vec{b}_n \middle| \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R} \right\} \\ & \operatorname{heisst} \textit{linearer Spann} \operatorname{der} \operatorname{Vektoren} \vec{b}_1, \vec{b}_2, \dots, \vec{b}_n. \end{aligned}$$

- $\{\vec{0}\}$ ist ein Unterraum von jedem Vektorraum V.
- $\mathbb{P}_2[x]$ ist ein Unterraum von $\mathbb{P}_4[x]$.
- Alle symmetrischen 2×2 Matrizen $S^{2\times 2}$ ist ein Unterraum von $\mathbb{R}^{2\times 2}$.
- Eine Gerade ist genau dann ein Unterraum von \mathbb{R}^2 bzw. \mathbb{R}^3 , wenn sie durch den **Ursprung** geht.
- Eine Ebene ist genau dann ein Unterraum von \mathbb{R}^3 , wenn sie durch den **Ursprung** geht.
- Der lineare Spann von Vektoren $\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n \in V$ ist ein Unterraum von V & Erzeugendensystem von V.

Basis und Dimension

Eine Matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U$ kann umgeschrieben werden zu:

$$A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

(beweist auch \mathcal{B} ist ein Erzeugendensystem von U.)

Dann wäre folgendes eine mögliche Basis von U:

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Wichtig: Die Matrizen / Vektoren in \mathcal{B} müssen linear unabhängig sein.

Es gilt auch $\dim(U)$ = Anzahl Matrizen in \mathcal{B}

z.B.
$$\dim(\mathbb{R}^{2\times 2})=4$$
, da mögliche Wert für $\dim(U)\in\mathbb{R}^{2\times 2}$ sind $0,1,2,3,4$.

Eine Menge \mathcal{B} von Vektoren / Matrizen $\in V$ heisst Basis von V, wenn gilt:

- 1. $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ ist ein Erzeugendensystem von V.
- 2. Die Vektoren $\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n$ sind linear unabhängig.

Äquivalente Aussagen zu Basen:

- 1. Die Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ bilden eine Basis von \mathbb{R}^n .
- 2. rg(B) = n
- 3. $det(B) \neq 0$
- 4. *B* ist invertierbar.
- 5. Das LGS $B * \vec{x} = \vec{c}$ hat eine eindeutige Lösung.

Komponentendarstellung bezüglich beliebiger Basen

Lineare Abbildung

Definition lineare Abbildung

Gegeben sind zwei reelle Vektor V und W (V und W können auch gleich sein). Eine Abbildung $f:V\to W$ heisst lineare Abbildung, wenn für alle Vektoren $\vec{x}, \vec{y}\in V$ und jeden Skalar $\lambda\in\mathbb{R}$ gilt:

1.
$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

2.
$$f(\lambda * \vec{x}) = \lambda * f(\vec{x})$$

Der Vektor $f(\vec{x}) \in W$, der herauskommt, wenn man f auf einen Vektor $\vec{x} \in V$ anwendet, heisst Bild von \vec{x} .

Die Abbildungsmatrix einer linearen Abbildung

Die Vektorräume \mathbb{R}^m und \mathbb{R}^n , versehen mit den jeweiligen Standardbasen. Dann lässt sich die lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ durch eine $m \times n$ Matrix A darstellen: $f(\vec{x}) = A * \vec{x}$

$$A = \begin{pmatrix} | & | & | \\ f(\vec{e}_1) & f(\vec{e}_2) & \dots & f(\vec{e}_n) \\ | & | & | \end{pmatrix}$$

Wir betrachten zwei Vektorräume V mit Basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ und W mit Basis $\mathcal{C} = \{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_m\}$. Dann lässt sich jede lineare Abbildung $f: V \to W$ durch eine $m \times n$ Matrix ${}_{\mathcal{C}}A_{\mathcal{B}}$ darstellen: $\left(f(\vec{x})\right)_{\mathcal{C}} = {}_{\mathcal{C}}A_{\mathcal{B}} * \vec{x}_{\mathcal{B}}$

$$_{\mathcal{C}}A_{\mathcal{B}} = \begin{pmatrix} \begin{pmatrix} & & & & \\ \left(f(\vec{b}_{1})\right)_{\mathcal{C}} & \left(f(\vec{b}_{2})\right)_{\mathcal{C}} & \dots & \left(f(\vec{b}_{n})\right)_{\mathcal{C}} \\ & & & & \end{pmatrix}_{\mathcal{B}}$$

Beispiele linearen Abbildungen in der Ebene

Die Geraden müssen **normiert** sein! Wenn nicht dann $g: \frac{a}{|\vec{n}_g|}x + \frac{b}{|\vec{n}_g|}y$ anwenden. $\vec{n}_g =$ Normalvektor

Streckung	Projektion	Spiegelung	Rotation	Scherung
um λ_1 in x	auf die Gerade	an der Geraden	um den Ursprung	in x – Richtung
um λ_2 in y	g:ax+by=0	g:ax+by=0	und Winkel $arphi$	mit Faktor m
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1 - 2a^2 & -2ab \\ -2ab & 1 - 2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

Seite 7 von 10

Beispiel von linearen Abbildungen im Raum

Die Ebenen müssen **normiert** sein! Wenn nicht dann $E: \frac{a}{|\vec{n}_E|}x + \frac{b}{|\vec{n}_E|}y + \frac{c}{|\vec{n}_E|}z$ anwenden. $\vec{n}_E =$ Normalvektor

Zentrische Streckung	Orthogonale Projektion	Spiegelung an der Ebene	
mit dem Faktor λ	auf die Ebene	E : ax + by + cz = 0 mit $a^2 + b^2 + c^2 = 1$	
	E : ax + by + cz = 0 mit $a^2 + b^2 + c^2 = 1$	$\lim u + v + t = 1$	
$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$	$P = \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix}$ oder $P = E - (\vec{n} * \vec{n}^T)$	$S = \begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}$ oder $S = E - (2\vec{n} * \vec{n}^T)$	

Rotation um den Winkel $arphi$ um die	Rotation um den Winkel $arphi$ um die	Rotation um den Winkel $arphi$ um die	
x-Achse	<i>y</i> -Achse	z-Achse	
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} $	

Rotation um den Winkel φ um die Achse durch den Ursprung, deren Richtung durch den normierten Vektor \vec{a} festgelegt ist

$$\begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) & a_1 a_2(1 - \cos(\varphi)) - a_3 \sin(\varphi) & a_1 a_3(1 - \cos(\varphi)) + a_2 \sin(\varphi) \\ a_1 a_2(1 - \cos(\varphi)) + a_3 \sin(\varphi) & \cos(\varphi) + a_2^2(1 - \cos(\varphi)) & a_2 a_3(1 - \cos(\varphi)) - a_1 \sin(\varphi) \\ a_1 a_3(1 - \cos(\varphi)) - a_2 \sin(\varphi) & a_2 a_3(1 - \cos(\varphi)) + a_1 \sin(\varphi) & \cos(\varphi) + a_3^2(1 - \cos(\varphi)) \end{pmatrix}$$

Kern und Bild einer Abbildungsmatrix

Definition Kern einer Matrix

Der Kern $\ker(A)$ einer $m \times n$ -Matrix A ist die Lösungsmenge des homogenen linearen Gleichungssystem

$$A * \vec{x} = \vec{0} \rightarrow \text{Beispiel: } \vec{x} = \lambda * \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} + \mu * \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}$$

Die Basis des Kerns sind die Vektoren aus der Parameterdarstellung von der Lösung von $A*\vec{x}=\vec{0}.$

Definition Bild einer Matrix

Das Bild $\operatorname{im}(A)$ einer $m \times n$ -Matrix A ist der Unterraum des m-dimensionalen Vektorraum W, der von den Spalten $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ der Matrix aufgespannt wird:

$$\operatorname{im}(A) = \operatorname{span}(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n) \to \operatorname{Beispiel: im}(A) = \lambda * \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} + \mu * \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}$$

Die Basis des Bilds sind linear unabhängige Spalten von der A Matrix. Wie viele Spalten es sind, ist gemäss Dimension von $\operatorname{im}(A)$ definiert.

Für jede $m \times n$ -Matrix A gilt:

$$\dim(\operatorname{im}(A)) = \operatorname{rg}(A)$$
 und $\dim(\ker(A)) + \dim(\operatorname{im}(A)) = n$

Verknüpfungen von linearen Abbildungen

Wir betrachten eine lineare Abbildung $f:U\to V$ mit der Abbildungsmatrix A sowie eine lineare Abbildung $g:V\to W$ mit der Abbildungsmatrix B.

Die Verknüpfung $g \circ f : U \to W$ ergibt wieder eine lineare Abbildung mit der Abbildungsmatrix B * A. Bei $g \circ f$ wird zuerst f ausgeführt und dann $g \to g(f(x))$.

Die Inverse einer linearen Abbildung

Die Inverse einer linearen Abbildung f mit der Abbildungsmatrix A, dann ist die Inverse A^{-1} die Abbildungsmatrix für die inverse Abbildung f^{-1} .

Basiswechsel

Die Abbildungsmatrix $_{\mathcal{S}}T_{\mathcal{B}}$ steht für den Basiswechsel von \mathcal{B} nach \mathcal{S} . Die Spalten von $_{\mathcal{S}}T_{\mathcal{B}}$ sind die Vektoren aus \mathcal{B} in der Komponentendarstellung bezüglich \mathcal{S} :

$$_{\mathcal{S}}T_{\mathcal{B}} = \begin{pmatrix} | & | \\ (\vec{b}_{1})_{\mathcal{S}} & (\vec{b}_{2})_{\mathcal{S}} \\ | & | \end{pmatrix}_{\mathcal{B}}$$

Die Abbildungsmatrix $_{\mathcal{B}}T_{\mathcal{S}}$ steht für den Basiswechsel von \mathcal{S} nach \mathcal{B} . Die Matrix $_{\mathcal{B}}T_{\mathcal{S}}$ ist die Inverse von $_{\mathcal{S}}T_{\mathcal{B}}$:

$$_{\mathcal{S}}T_{\mathcal{B}}: _{\mathcal{B}}T_{\mathcal{S}} = _{\mathcal{S}}T_{\mathcal{B}}^{-1}$$

Homogene Koordinaten

Wir erweitern jeden Vektor um eine Komponente:

- Ortsvektor (am Ursprung angeheftet): die zusätzliche Komponente wird 1 gesetzt.
- Freie Vektoren (parallel verschiebbar): die zusätzliche Komponente wird 0 gesetzt.

Beispiel Erweiterung

$$\vec{r}(P) = \binom{2}{2} \rightarrow \text{ an Ursprung ansetzten} \rightarrow \vec{r}(P^*) = \binom{2}{2}$$
 $\vec{a} = \binom{2}{-1} \rightarrow \text{ freier Vektor} \rightarrow \vec{a}^* = \binom{2}{-1}$

Erweiterung Abbildungsmatrizen

Abbildungsmatrizen werden mit einer zusätzlichen Spalten und Zeile ergänzt. Nun können wir auch Translationen durch Matrizen darstellen:

Rotation $\mathbb{R}^2 o \mathbb{R}^2$ um $arphi$ um den Ursprung	Translation $\mathbb{R}^2 o \mathbb{R}^2$ um den Vektor $ec{a} = inom{a_1}{a_2}$	Rotation und Translation in einem
$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & a_1 \\ \sin(\varphi) & \cos(\varphi) & a_2 \\ 0 & 0 & 1 \end{pmatrix} $

Beispiele / Erweiterungen

Spiegel -achse/-matrix gesucht!

Punkte P = (2; 1) & P' = (-1; 2) sind gegeben. An welcher Gerade g: ax + by = 0 muss gespiegelt werden damit P auf P' landet? Und wie sieht die Abbildungsmatrix aus?

- 1. Normalenvektor gesuchten Geraden $\vec{n} = \overrightarrow{PP'} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$
- 2. Einheitsvektor bestimmen $\vec{e}_n = \frac{1}{|\vec{n}|} * \vec{n} = \frac{1}{\sqrt{10}} {\binom{-3}{1}},$ es gilt $\binom{a}{b} = \frac{1}{\sqrt{10}} {\binom{-3}{1}}$
- 3. Werte a & b in Spiegelmatrix $\begin{pmatrix} 1 2a^2 & -2ab \\ -2ab & 1 2b^2 \end{pmatrix}$ einsetzten: $\begin{pmatrix} 1 2*\left(\frac{-3}{\sqrt{10}}\right)^2 & 2*\frac{3}{10} \\ 2*\frac{3}{10} & 1 2*\left(\frac{1}{\sqrt{10}}\right)^2 \end{pmatrix}$

Seite 9 von 10

Nino Frei

Zusammenfassung LA

Abbildungsmatrix einer Spiegelung

Es ist die Spiegelachse g: 2x - y = 0 geben, wie lautet die Spiegelmatrix von g?

1. Spiegelachse g normieren (mit $\frac{1}{|\vec{n}|}$ multiplizieren): $\frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}y = 0$ 2. Werte a & b in die Spiegelmatrix setzten: $\begin{pmatrix} 1 - 2 * \left(\frac{2}{\sqrt{5}}\right)^2 & 2 * \frac{2}{5} \\ 2 * \frac{2}{5} & 1 - 2 * \left(\frac{-1}{\sqrt{5}}\right)^2 \end{pmatrix}$

Erweiterung Abbildungsmatrizen in der Ebene

	Spiegelung x-Achse	Spiegelung y-Achse	Punktspiegelung am Ursprung
$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$		$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
	Orthogonale Projektion (x)	Orthogonale Projektion (y)	
	$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	

Erweiterung Abbildungsmatrizen im Raum

Orthogonale Projektion auf die x/y-Ebene	Spiegelung an der x/y-Ebene	Orthogonale Projektion auf die x-Achse	Spiegelung an der x-Achse
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Orthogonale Projektion auf die x/z-Ebene	Spiegelung an der x/z-Ebene	Orthogonale Projektion auf die y-Achse	Spiegelung an der y-Achse
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Orthogonale Projektion auf die y/z-Ebene	Spiegelung an der y/z-Ebene	Orthogonale Projektion auf die z-Achse	Spiegelung an der z-Achse
$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$