$$U_p(4) \times U_q(4)$$

 ${\rm Jamil}~{\rm KR}$

 $March\ 17,\ 2021$

Contents

1	Mo	dules	Ę
	1.1	Math Functions Module \rightarrow MOD_matfun.f90	Ę
	1.2	$U_p(4) \; \mathrm{Module} \to \mathtt{MOD_Up4.f90} \;\; \ldots \;\; \ldots \;\; \ldots \;\; \ldots \;\; \ldots$	(
	1.3	$U_q(4) \; \mathrm{Module} o \mathtt{MOD_Uq4.f90} \ldots \ldots \ldots \ldots \ldots$	(
	1.4	$U_p(4) imes U_q(4) ext{ Module} o ext{MOD_Up_x_Uq.f90} \dots \dots \dots$	(
		1.4.1 Building the basis	8
2	Pro	ograms	13
	2.1	BuckProgram_fit	13
	2.2	IntProgram_fit	13
		2.2.1 Input File	13
		2.2.2 Definitions	1:

Chapter 1

Modules

1.1 Math Functions Module \rightarrow MOD_matfun.f90

• Functions:

$$- \ {\tt p_symbol}({\bf a}, {\bf b}) = \ (a)_s \ = \ a(a+1)...(a+s-1)$$

- factorial(n) =
$$n!$$

- delta_function $(a,b,c) = \Delta(abc)$

$$- \ \mathtt{wigner_6j}(j_1, j_2, j_3, l_1, l_2, l_3) \ = \ \begin{cases} j_1 & j_2 & j_3 \\ l_1 & l_2 & l_3 \end{cases} \}^{\ 1}$$

$$- \ \mathtt{wigner_9j}(j_1, j_2, j_3, l_1, l_2, l_3, k_1, k_2, k_3) \ = \ \begin{cases} j_1 & j_2 & j_3 \\ l_1 & l_2 & l_3 \\ k_1 & k_2 & k_3 \end{cases} \ = \ \begin{cases} j_1 & j_2 & j_{12} \\ j_3 & j_4 & j_{34} \\ j_{13} & j_{24} & J \end{cases} \}^2$$

 $^{^{1}\}mathrm{Definition}$ of the book $Nuclear\ Shell\ Theory$ of Amos de-Shalit and Igal Talmi

 $^{^2}$ Integers only

1.2 $U_p(4)$ Module \rightarrow MOD_Up4.f90

Hamiltonian:

$$\hat{H}_{U_{p}(4)} = \beta \,\,\hat{\mathcal{C}}_{2} \left[so_{p}(4) \right] + \gamma \,\,\hat{\mathcal{C}}_{2} \left[so_{p}(3) \right] + \gamma_{2} \,\, \left[\hat{\mathcal{C}}_{2} \left[so_{p}(3) \right] \right]^{2} + \kappa \,\,\hat{\mathcal{C}}_{2} \left[so_{p}(4) \right] \hat{\mathcal{C}}_{2} \left[so_{p}(4) \right]$$

$$(1.1)$$

- Global definitions:
 - Npval: U(4) Totally symmetric representation.
- Functions:
 - Function: RME_Casimir_SOp4
 - Function: RME_Casimir_SOp3
 - Function: RME_Qp2
 - Function: RME_np

1.3 $U_q(4)$ Module \rightarrow MOD_Uq4.f90

Hamiltonian:

$$\hat{H}_{U_q(4)} = a \, \hat{\mathcal{C}}_1 \left[u_q(3) \right] + b \, \hat{\mathcal{C}}_2 \left[u_q(3) \right] + c \, \hat{\mathcal{C}}_2 \left[so_q(3) \right] + d \, \hat{\mathcal{C}}_2 \left[so_q(4) \right] \tag{1.2}$$

- Global definitions:
 - Nqval: U(4) Totally symmetric representation.
- Functions:
 - Function: RME_Casimir_Uq3
 - Function: RME_Casimir_SOq3
 - Function: RME_Casimir_SOq4
 - Function: RME_Qq2
 - Function: RME_Dq_prima

1.4 $U_p(4) \times U_q(4)$ Module \rightarrow MOD_Up_x_Uq.f90

- Global definitions:
 - basis_para(1:5, no of para-states): Integers. Para-states
 - basis_ortho(1:5, no of ortho-states): Integers. Ortho-states
 - dim_para(1: Λ_{max}): Integers. Para-dim blocks

- dim_ortho(1: Λ_{max}): Integers. Ortho-dim blocks
- $ijk_{para}(1:\Lambda_{max})$: Integers. Pseudo-pointer
- ijk_ortho(1: Λ_{max}): Integers. Pseudo-pointer
- lambda_max: Integer. Maximum value of Λ
- Type exp_point: exp_point%ist, exp_point%i_pos,exp_point%fst,exp_point%f_pos, exp_point%energy and exp_point%intensity
- total_exp: Integer. Number of experimental data.
- exp_data: Type(exp_point)
- Type matrix: $matrix(\Lambda)\%[SYM]$
- Ham(1: Λ_{max}): Type(matrix). Hamiltonian para/ortho matrices
- SOq4(1: Λ_{max}): Type(matrix). $\hat{C}_2[SO_q(4)]$ para/ortho matrices
- QpQq(1: Λ_{max}): Type(matrix). $\left[\hat{Q}_p^{(2)} \times \hat{Q}_q^{(2)}\right]^{(0)}$ para/ortho matrices
- QpQqW(1: Λ_{max}): Type(matrix). $\left[\hat{Q}_p^{(2)} \times \hat{Q}_q^{(2)}\right]^{(0)} \hat{\mathcal{C}}_2\left[SO_p(4)\right] + c.c.$ para/ortho matrices
- EnergiesPara(Prtho)(1:sum(dims)). Where energies will be stored.
- intop(no Exp data, 1:3): To save the expected values of the transitions operators in the EigenBasis.
- Temp: Reduced temperature

• Functions:

- Subroutine: dimension_po
- Subroutine: build_basis_po
- Subroutine: initialize_position_index
- Function: RME_Qp_x_Qq_0
- Function: RME_Ip_x_S0q4
- Function: RME_QpQqS0p4
- Subroutine: build_Up_x_Uq_matrix
- Function: pretty_braket
- Subroutine: read_expdat
- Function: exp_lines
- Subroutine: build_ham
- Function: find_pos
- Subroutine: eigensystem
- Function: assig_state
- Function: chi2

- Function: FCN

- Function: RME_np_x_Dq_1 (Dipolar operator)

- Function: RME_Qp2_x_Dq_1 (Dipolar operator)

- Function: RMS_Qp2_x_nq_2 (Quadrupolar operator)

- Subroutine: StoreEigenMatel

- Subroutine: EigenExpected $(<\psi_1|\hat{T}|\psi_2>)$

- Function: chi2_int (Chi2 to fit intensities)

- Function: compute_ProbTrans

- Function: compute_transition

- Subroutine: FCN_int

- Subroutine: Save_energies

1.4.1 Building the basis

We have a block-diagonalizable system dividing the problem in para (mod(J, 2) = 0) and ortho (mod(J, 2) = 1) cases, and separating by different Λ . The states will be stored in the same array sorted by Λ . The dimension of each block will be saved in dim_[SYM] $(\Lambda = 0)$, ..., dim_[SYM] $(\Lambda = \Lambda_{\text{max}})$.

$$\begin{bmatrix} \left| \psi_1^{\Lambda=0} \right\rangle \\ \vdots \\ \left| \psi_{\text{dim_[SYM]}(\Lambda=0)}^{\Lambda=0} \right\rangle \end{bmatrix} \right\} \rightarrow 1: \text{dim_[SYM]}(\Lambda=0)$$

$$\vdots \qquad (1.3)$$

$$\begin{bmatrix} \left| \psi_1^{\Lambda=\Lambda_{\text{max}}} \right\rangle \\ \vdots \\ \left| \psi_{\text{dim_[SYM]}(\Lambda=\Lambda_{\text{max}})}^{\Lambda=\Lambda_{\text{max}}} \right\rangle \end{bmatrix} \right\} \rightarrow 1: \text{dim_[SYM]}(\Lambda=\Lambda_{\text{max}})$$

Therefore, the basis array is as follow:

$$\mathtt{basis_[SYM]} = \left[\left| \psi_1^{\Lambda=0} \right\rangle, ..., \psi_{\mathtt{dim_[SYM]}(\Lambda=0)}^{\Lambda=0}, ..., \left| \psi_1^{\Lambda=\Lambda_{\max}} \right\rangle, ..., \psi_{\mathtt{dim_[SYM]}(\Lambda=\Lambda_{\max})}^{\Lambda=\Lambda_{\max}} \right] \tag{1.4}$$

Each element of the the basis must cotain information about quantum numbers:

$$\left|\psi_{i}^{\Lambda}\right\rangle = \left(w\;J;\;n\;L;\;\Lambda\in\left[\left|J-L\right|,J+L\right]\right) \tag{1.5}$$

Dimension: dimension_po

Fortran 90 subroutine. Inputs:

- Npval. Integer
- Nqval. Integer
- $\Lambda_{\rm max}$. Integer

Outputs:

- dim_para. Integer, dimension $(0:\Lambda_{max})$
- dim_ortho. Integer, dimension $(0:\Lambda_{max})$

Basis: build_basis_po

Inputs:

- Npval. Integer
- Nqval. Integer
- $\Lambda_{\rm max}$. Integer
- total_para. Integer, total dimension of para basis
- total_ortho. Integer, total dimension of ortho basis
- dim_para. Integer, dimension $(0:\Lambda_{max})$
- dim_ortho. Integer, dimension(0: Λ_{max})

Outputs:

- basis_para. Integer, dimension $\left(1:5,\ 1:\sum_{\Lambda=0}^{\Lambda_{\max}} \mathtt{dim_para}(\Lambda)\right)$
- $\bullet \ \ basis_ortho. \ \ Integer, \ dimension \bigg(1:5, \ 1: \sum_{\Lambda=0}^{\Lambda_{\max}} \texttt{dim}_ortho(\Lambda) \bigg)$
 - basis_[SYM](1,:) $\longrightarrow w$
 - basis_[SYM](2,:) $\longrightarrow J$
 - basis_[SYM](3,:) $\longrightarrow n$
 - basis_[SYM](4,:) $\longrightarrow L$
 - basis_[SYM](5,:) $\longrightarrow \Lambda$

Para-states

```
\begin{split} \text{LOOP: } J &= 0, 2, ..., N_p - \operatorname{mod}(N_p, 2) \\ \text{LOOP: } L &= 0, 1, ..., N_q \\ \text{CONDITIONAL: } |J - L| \leq \Lambda_{max} \text{ to continue, else go to next } L \\ \text{LOOP: } \Lambda &= |J - L|, |J - L| + 1, ..., \min(\Lambda_{max}, J + L) \\ \text{LOOP: } w &= N_p - \operatorname{mod}(N_p, 2), N_p - \operatorname{mod}(N_p, 2) - 2, ..., J \\ \text{LOOP: } n &= L, L + 2, ..., Nq \\ \text{basis\_para}\left(1, \operatorname{dim\_para}\left(\Lambda\right)\right) &= w \\ \text{basis\_para}\left(2, \operatorname{dim\_para}\left(\Lambda\right)\right) &= J \\ \text{basis\_para}\left(3, \operatorname{dim\_para}\left(\Lambda\right)\right) &= L \\ \text{basis\_para}\left(5, \operatorname{dim\_para}\left(\Lambda\right)\right) &= L \\ \text{basis\_para}\left(5, \operatorname{dim\_para}\left(\Lambda\right)\right) &= \Lambda \end{split}
```

Ortho-states

```
\begin{split} \text{LOOP: } J &= 1, 3, ..., N_p - (1 - \operatorname{mod}(N_p, 2)) \\ \text{LOOP: } L &= 0, 1, ..., N_q \\ \text{CONDITIONAL: } |J - L| &\leq \Lambda_{max} \text{ to continue, else go to next } L \\ \text{LOOP: } \Lambda &= |J - L|, |J - L| + 1, ..., \min(\Lambda_{max}, J + L) \\ \text{LOOP: } w &= N_p - (1 - \operatorname{mod}(N_p, 2)), N_p - (1 - \operatorname{mod}(N_p, 2)) - 2, ..., J \\ \text{LOOP: } n &= L, L + 2, ..., Nq \\ \text{basis\_ortho} (1, \operatorname{dim\_ortho}(\Lambda)) &= w \\ \text{basis\_ortho} (2, \operatorname{dim\_ortho}(\Lambda)) &= J \\ \text{basis\_ortho} (3, \operatorname{dim\_ortho}(\Lambda)) &= L \\ \text{basis\_ortho} (5, \operatorname{dim\_ortho}(\Lambda)) &= L \\ \text{basis\_ortho} (5, \operatorname{dim\_ortho}(\Lambda)) &= \Lambda \end{split}
```

${\bf Pseudo-pointer:\ initialize_position_index}$

```
subroutine initialize_position_index(ijk,partial_dim,lambda_max)
!
! Inputs:
! o) partial_dim: Integer array dimension 0:lambda_max
! o) lambda_max
!
! Output:
! o) ijk: Integer array dimension 0:lambda_max
!
! This functions initializes the initial integer "pointer" ijk(0:lambda_max),
! so that
! ijk(0) = 1
! ijk(1) = position where lambda=1 block starts
! ...
! ijk(lambda_max) = position where lambda=lambda_max block stats
!
! This function is going to be of vital importance during the program's development
!
```

Building all matrices: build_Up_x_Uq_matrix

```
This subroutine builds the matrices for the operators of U_p(4) \times U_q(4) using para/ortho basis without mixing different \Lambda.

subroutine\ build\_Up\_x\_Uq\_matrix(basis,matrix,RME\_fun,iprint)
!
! This function build the para / ortho matrices using the given basis.
! This procedure can be used to build Up4 x Uq4 operators' matrices.
!
! INPUTs:
! o) basis: para/ortho basis
! o) matrix: square matriz len(basis) x len(basis)
! o) RME\_fun: function with w1,j1,n1,l1,lam1,w2,j2,n2,l2,lam2 dependences.
! o) iprint: printing control
!
! OUTPUT:
! o) matrix
! All position corresponding to lam1 /= lam2 will be ZERO!
```

The function RME_fun must deppend on $(\omega_1, J_1, n_1, L_1, \Lambda_1, \omega_2, J_2, n_2, L_2, \Lambda_2)$.

Braket notation output: pretty_braket

```
Useless gadget ... but very nice.
    function pretty_braket(w,j,n,l,lam,bk,Np,Nq)
!
! INPUTs:
! o) Np(opt), Nq(opt), w, j, n, l, lam: Quantum numbers
! o) bk: one character = b (bra) or k (ket)
!
! OUTPUT:
! o) pretty_braket: character type
!
```

Chapter 2

Programs

${\bf 2.1}\quad BuckProgram_fit$

See $BuckProgram_fit.f90$ file and BPfit.inp input in scr/ folder.

- ${\bf 2.2} \quad Int Program_fit$
- 2.2.1 Input File
- 2.2.2 Definitions

•