Análisis Discriminante

Objetivo

 Clasificar a una nueva observación en su población correspondiente, habiendo observado previamente muestras de las poblaciones involucradas con su identificador de población.

Algunos métodos

- K vecinos mas cercanos (KNN)
- Método lineal de Fisher (LDA)
- Método cuadrático de Fisher (QDA)
- Regresión logística
- Árboles de clasificación (CART)

Los datos

El problema

K Vecinos Mas Cercanos (KNN)

K vecinos mas cercanos (KNN)

 Dada una nueva observación X₀, la clasifico en aquella población que posee una representación mayoritaria entre los K vecinos mas cercanos a X₀.

Ejemplo gráfico

15-Nearest Neighbors

1-Nearest Neighbor

Elección de K

 Muy simple: El K óptimo es aquel que arroja la menor tasa (global) de mala clasificación (error).

Como calculo la tasa (global) de mala clasificación ?

Matriz de Confusión

Tasa de error global = $(N_{1,2} + N_{2,1}) / N_{...}$

Construcción de la matriz de confusión

- Método ingenuo (naive)
- Partir la muestra (al azar) en dos partes:
 Muestra de entrenamiento y muestra de validación.
- Por validación cruzada.

Ejercicio de construcción de matriz de confusión para k = 3

M

LDA y QDA de Fisher

Idea Fundamental

Definiciones (2 poblaciones)

Principio discriminante (2 poblaciones)

$$P(1/\mathbf{x}_0) = \frac{f_1(\mathbf{x}_0)\pi_1}{f_1(\mathbf{x}_0)\pi_1 + f_2(\mathbf{x}_0)\pi_2}$$

$$P(2|\mathbf{x}_0) = \frac{f_2(\mathbf{x}_0)\pi_2}{f_1(\mathbf{x}_0)\pi_1 + f_2(\mathbf{x}_0)\pi_2}$$

$$\mathbf{x}_0 \in P_2$$

$$P(2|\mathbf{x}_0) > P(1/\mathbf{x}_0) \iff \pi_2 f_2(\mathbf{x}_0) > \pi_1 f_1(\mathbf{x}_0)$$

$$P(2|\mathbf{x}_0) < P(1/\mathbf{x}_0) \iff \pi_2 f_2(\mathbf{x}_0) < \pi_1 f_1(\mathbf{x}_0)$$

Costos de mala clasificación

Clasifico en P₁ si
$$\frac{f_2(\mathbf{x}_0)\pi_2}{c\left(2|1\right)} \leq \frac{f_1(\mathbf{x}_0)\pi_1}{c\left(1|2\right)}.$$

Clasifico en P₂ si
$$\frac{f_2(\mathbf{x}_0)\pi_2}{c\left(2|1\right)} > \frac{f_1(\mathbf{x}_0)\pi_1}{c\left(1|2\right)}.$$

Análisis Discriminante de Fisher

Función disciminante lineal

$$f_i(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}|V|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)'\mathbf{V}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)\right\}$$

$$S(i) = -\mu_i' \mathbf{V}^{-1} \mathbf{x} + \frac{1}{2} \mu_i' \mathbf{V}^{-1} \mu_i - \log \frac{\pi_i}{c(i|j)}$$

Clasifico en P1 si $\frac{f_2(\mathbf{x}_0)\pi_2}{c\left(2|1\right)} < \frac{f_1(\mathbf{x}_0)\pi_1}{c\left(1|2\right)} \Longleftrightarrow \mathsf{S}(\mathsf{1}) < \mathsf{S}(\mathsf{2})$

Clasifico en P2 si
$$\frac{f_2(\mathbf{x}_0)\pi_2}{c\left(2|1\right)} > \frac{f_1(\mathbf{x}_0)\pi_1}{c\left(1|2\right)} \Longrightarrow \mathsf{S(2)} < \mathsf{S(1)}$$

Función disciminante cuadrática

Clasifico en aquella población que satisfaga

$$\min_{j \in (1,\dots,G)} \left[\frac{1}{2} \log |\mathbf{V}_j| + \frac{1}{2} (\mathbf{x}_0 - \boldsymbol{\mu}_j)' \mathbf{V}_j^{-1} (\mathbf{x}_0 - \boldsymbol{\mu}_j) - \ln(C_j \pi_j) \right]$$

Varianza generalizada de la población j Costo de clasidicar mal una observación de j

Lineal Vs. Cuadrático

Recordando la Deviance

 Es una medida de Bondad de Ajuste de un modelo, fijado un conjunto de datos.

Regresión Logística

Regresión Logística

$$y \sim binomial(1, p) \implies y \begin{cases} 1 & p \\ 0 & 1-p \end{cases}$$

Link
$$g(E(y)) = Ln \left(\frac{E(y)}{1 - E(y)} \right)$$

$$g(p) = Ln \left(\frac{p}{1 - p} \right) = \beta_0 + \beta_1 \chi_1 + \dots + \beta_k \chi_k + \varepsilon$$

$$Var(E(y)) = Var(p) = p(1-p)$$

Predicción

Atributos de la nueva observación

Parámetros estimados

$$\hat{p}(x_1...x_k) = \frac{e^{\hat{\beta}_0^+ \hat{\beta}_1^+ x_1^+ ...+ \hat{\beta}_k^+ x_k}}{1 + e^{\hat{\beta}_0^+ \hat{\beta}_1^+ x_1^+ ...+ \hat{\beta}_k^+ x_k}}$$

Probabilidad estimada que la nueva observación sea 1

Ejemplo Regresión Logística:

Prediciendo el Sexo en base al pulso

	Cava	-	Dulas 1	Dulago	Covo	-	Dulas 1	Dulago		
	Sexo	Fumar	Pulso1		Sexo	Fumar	Pulso1			
	1	1	62	126	1	1	70	122		
Mujer	, 2	1	78	154	1	2	80	136		
	1	2	64	128	2	1	76	148		
	2	2	96	155	2	2	78	148		
	1	1	66	128	2	2	76	136		
	2	1	96	165	2	2	80	158		
	1	2	68	120	1	2	68	116		
	2	2	72	138	1	2	70	120		
	2	1	88	160	1	1	68	126		
Hombre	1	1	90	144	1	1	70	144		
	2	2	82	140	2	2	8 <mark>6</mark>	144		
	1	2	74	134	1	2	72	126		-
	2	1	• Pulso	1:	กมใจก	o en	renos	0		
	2	2	•1 ulb	, 1.	1. parso		on repos			
	1	1	•Pulso	2:	Pulso	o tra	s rec	orrer	una	milla.
	1	2								
	1	2	76	158	1	2	74	116		
	2	2	86	146	1	1	90	138		
	2	1	88	156	1	2	66	142		
	1	1	66	132	1	2	70	132		

Boxplots

Ejemplo Regresión Logística:

Prediciendo el Sexo en base al pulso

Ejemplo Regresión Logística:

Prediciendo el Sexo en base al pulso

Tasa de error global = (5 + 4) / 40 = 0.225

CART

C.A.R.T. (Árboles)

- Es una técnica exploratoria supervisada que permite la detección de estructuras en los datos. Permiten:
 - Clasificar observaciones.
 - Establecer reglas de decisión.
 - Resumir grandes bases de datos
 - Seleccionar variables de interés
 - Detectar interacción entre variables
 - Captar efectos no aditivos

C.A.R.T. (Árboles): Mas especificamente

Técnica exploratoria supervisada que busca una partición ortogonal, del espacio de atributos, de modo tal que en cada elemento de la partición se "ajuste" adecuadamente a la variable de interes.

Árboles de Regresión y Clasificación

Numérica

Árbol de regresión

Variable a ser explicada

= Y

Categórica

Árbol de clasificación

Estructura de un árbol de Clasificación

Medidas de desigualdad de un nodo

Regresión: Varianza (a minimizar)

Clasificación: Entropía (a minimizar)

$$Q(L) = -\sum_{k=1}^{K} \hat{p}_{k}^{n_{L}}(L) * Ln(\hat{p}_{k}^{n_{L}}(L))$$

El mejor corte (regresión)

Porque funciona la Entropía

Ejemplo: Prediciendo el Sexo en base a "lo que se tiene en cuenta"

Árbol completo

Classification tree:
 tree(formula = sexo ~ ., data = ENCUENTA, na.action =
 na.tree.replace.all)

Number of terminal nodes: 147

Residual mean deviance: 0.8939 = 1211 / 1355

Misclassification error rate: 0.1964 = 295 / 1502

Una rama del árbol

```
1) root 1502 1725.000 Varón (0.26100 0.7390)
       precio.encuenta:No 197 187.400 Varón (0.18270 0.8173)
          interior.encuenta:No,Sí 185 182.300 Varón (0.19460 0.8054)
         .8) potencia.excuenta:No,Sí 176 178.300 Varón ( 0.20450 0.7955 )
          16) exterior.excuenta:No,Sí 131 118.600 Varón ( 0.16790 0.8321 )
            32) consumo.encuenta:Sí 47 27.360 Varón (0.08511 0.9149)
              64) relprepro encuenta: Sí 30 23.560 Varón (0.13330 0.8667)
               (128) pastventalencuenta:No 9 11.460 Varón (0.33330 0.6667)
                %9) postventa.encuenta:Sí 21 8.041 Varón ( 0.04762 0.9524
                  relprepro.encuenta:No,NA 17 0.000 Varón (0.00000 1.0000
               consumo.encuenta:No,NA 84 87.290 Varón (0.21430 0.7857)
              66) interior.excuenta:No 37 25.350 Varón (0.10810 0.8919)
                                      Deviance
                                  Cantidad de individuos
                                                     Nodos terminales
```

Poda del árbol

Sub-árbol elegido (10 nodos)

Sub-árbol elegido (10 nodos)

```
1) root 1502 1725.000 Varón (0.2610 0.7390)
  2) precio.encuenta:No 197 187.400 Varón (0.1827 0.8173) *
  3) precio.encuenta:Sí,NA 1305 1530.000 Varón (0.2728 0.7272)
    6) relprepro.encuenta:No,Sí 1242 1471.000 Varón ( 0.2794 0.7206 )
     12) seguridad.encuenta:No 337 364.700 Varón (0.2315 0.7685) *
     13) seguridad.encuenta:Sí,NA 905 1101.000 Varón ( 0.2972 0.7028 )
      26) espacio.encuenta:No,Sí 778 926.700 Varón (0.2828 0.7172) *
      27) espacio.encuenta:NA 127 169.400 Varón (0.3858 0.6142)
        54) precio.encuenta:Sí 93 117.000 Varón (0.3226 0.6774)
         108) costorep.encuenta:No 47 48.650 Varón (0.2128 0.7872) *
         109) costorep.encuenta:Sí 46 62.980 Varón (0.4348 0.5652)
          218) consumo.encuenta:No 9 6.279 Mujer (0.8889 0.1111) *
          219) consumo.encuenta:Sí,NA 37 46.630 Varón (0.3243 0.6757) *
        55) precio.encuenta:NA 34 46.660 Mujer ( 0.5588 0.4412 )
         110) exterior.encuenta:No,Sí 27 37.100 Varón (0.4444 0.5556) *
         7) relprepro.encuenta:NA 63 51.670 Varón (0.1429 0.8571)
```

Ejemplo de Arbol de Regresión

1000 datos, modelo real: $Y = (x_1 - 1/2)^2 + (x_2 - 1/2)^2$

Ajuste lineal (erróneo)

Coefficients:

```
Value Std. Error t value Pr(>|t|)
(Intercept) 0.1501 0.0088 17.0944 0.0000
x1 0.0024 0.0112 0.2102 0.8336
x2 0.0261 0.0115 2.2765 0.0230
```

Residual standard error: 0.1029 on 997 degrees of freedom

Multiple R-Squared: 0.005226

F-statistic: 2.619 on 2 and 997 degrees of freedom, the p-value is 0.07341

Curva costo-complejidad

Árbol (9 nodos)

```
1) root 1000 10.61000 0.16460
  2) x2<0.79303 790 7.13900 0.14180
    4) x2<0.225821 200 1.52200 0.23320
       8) x1<0.174377 35 0.14700 0.33190 *
       9) x1>0.174377 165 0.96140 0.21220
       18) x1<0.878404 139 0.37830 0.18790 *
       19) x1>0.878404 26 0.06003 0.34240 *
    5) x2>0.225821 590 3.38100 0.11080
     10) x1<0.137237 72 0.12940 0.21920 *
     11) x1>0.137237 518 2.28900 0.09576
       22) x1<0.811252 405 0.73320 0.06950 *
       23) x1>0.811252 113 0.27510 0.18990 *
   3) x2>0.79303 210 1.50900 0.25050
     6) x1<0.876669 181 1.04000 0.23280
     12) x1<0.200377 44 0.16540 0.31360 *
     13) x1>0.200377 137 0.49450 0.20690 *
     7) x1>0.876669 29 0.06168 0.36050 *
```

Resultado del ajuste: Árbol de 9 nodos

Ejemplo 1: Pulso cardíaco

Sexo	Fumar	Pulso1	Pulso2	Sexo	Fumar	Pulso1	Pulso2
1	1	62	126	1	1	70	122
2	1	78	154	1	2	80	136
1	2	64	128	2	1	76	148
2	2	96	155	2	2	78	148
1	1	66	128	2	2	76	136
2	1	96	165	2	2	80	158
1	2	68	120	1	2	68	116
2	2	72	138	1	2	70	120
2	1	88	160	1	1	68	126
1	1	90	144	1	1	70	144
2	2	82	140	2	2	86	144
1	2	74	134	1	2	72	126
2	1	66	148	2	2	84	136
2	2	68	142	2	2	72	142
1	1	92	134	2	2	80	138
1	2	68	112	1	1	62	132
1	2	76	158	1	2	74	116
2	2	86	146	1	1	90	138
2	1	88	156	1	2	66	142
1	1	66	132	1	2	70	132

El Mejor Arbol

```
pulso2 < 135
   1) root 40 55.05 Hombre ( 0.55 0.45 )
      2) pulso2 < 135 16 0.00 Hombre ( 1.00 0.00 ) *
      3) pulso2 > 135 24 26.99 Mujer ( 0.25 0.75 ) *
        pulso2
140
                                                             Mujer
Hombre
                                 pulso1
```


