Math 300.2 Homework 3

Paul Hacking

February 7, 2012

Reading: Gilbert and Vanstone, Chapter 4.

- (1) Prove that $n! \geq 2^n$ for $n \geq 4$.
- (2) We showed in class that $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$ and we showed on the last homework that $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$. Deduce a formula for $\sum_{r=1}^{n} r^2$. Simplify your answer.
- (3) Consider a $2^n \times 2^n$ checkerboard. [For example, a standard checkerboard is $8 \times 8 = 2^3 \times 2^3$.] Suppose one of the squares is covered by a single square tile. Show that the remaining squares can be covered by a collection of L-shaped tiles (each covering 3 squares). [Hint: Use induction. The board for n+1 can be divided into 4 copies of the board for n.]
- (4) Define a sequence of integers a_0, a_1, a_2, \ldots by $a_0 = 3, a_1 = 5$, and

$$a_{n+2} = 2a_{n+1} + 3a_n$$

for each $n \geq 0$. Show that

$$a_n = (-1)^n + 2 \cdot 3^n$$

for all $n \geq 0$.

(5) Let n be an integer such that $n \ge 18$. Show that there are nonnegative integers x and y such that 4x + 7y = n. [Hint: We discussed a similar problem in class phrased in terms of postage stamps. Give a careful proof using (strong) induction.]

- (6) Expand the following expressions using the binomial theorem. Simplify your answer as much as possible.
 - (a) $(1+x)^6$
 - (b) $(2x+3y)^3$
 - (c) $(x^2-1)^4$
 - (d) $(2xy z^2)^5$
- (7) A coin is tossed 7 times. What is the probability of getting exactly 3 heads?
- (8) Prove the following identities

(a)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

(b)
$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \dots + (-1)^n \cdot \binom{n}{n} = 0.$$