Shadi Jiha #40131284

25/01/2020

Winter 2020

Assignment 2

COMP 233 Assignment 2 Solution

Question 1 if E(X) = 2 and $E(X^2) = 8$. Calculate the following:

a)
$$E((2+4X)^2)$$

$$E(2^2 + 16X^2) = 4 + 16E(X^2) = 4 + 16 \cdot 8 = 132$$

b)
$$E(X^2 + (X+1)^2)$$

$$E(X^2) + E((X+1)^2) = 8 + E(X^2+1) = 8 + 8 = 16$$

Question 2:

a) Find the marginal probability:

$X_1 \setminus X_2$	1	2	Total
0	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{3}{16}$
1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{2}{16}$
2	$\frac{3}{16}$	$\frac{1}{8}$	$\frac{5}{16}$
3	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$
Total	$\frac{1}{2}$	$\frac{1}{2}$	1

b) Find:

a.
$$E(X_1)$$

$$= \sum_{x \in X} x f(x) = 0 \cdot \frac{3}{16} + 1 \cdot \frac{2}{16} + 2 \cdot \frac{5}{16} + 3 \cdot \frac{6}{16} = \frac{15}{8}$$

b.
$$E(X_2)$$

$$= \sum_{x_2 \in X_2} x_2 f(x_2) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{3}{2}$$

c.
$$Var(X_1)$$

$$Var(X_1) = E(X_1^2) - \left(E(X_1)\right)^2 = \left(\sum_{x \in X} x^2 f(x)\right) - \left(\frac{15}{8}\right)^2 = \left(0^2 \cdot \frac{3}{16} + 1^2 \cdot \frac{2}{16} + 2^2 \cdot \frac{5}{16} + 3^2 \cdot \frac{6}{16}\right) - \left(\frac{15}{8}\right)^2 = \frac{79}{64}$$

d.
$$Var(X_2)$$

$$= Var(X_2) = E(X_2^2) - (E(X_2))^2 = \left(\sum_{x_2 \in X_2} x_2^2 f(x_2)\right) - \left(\frac{3}{2}\right)^2 =$$

$$= \left(1^2 \cdot \frac{1}{2} + 2^2 \cdot \frac{1}{2}\right) - \frac{9}{4} = \frac{1}{4}$$
e. $Cov(X_1, X_2)$

$$Cov(X_1, X_2) = E(X_1 X_2) = E(X_1)E(X_2) = \frac{15}{8} \cdot \frac{3}{2} = \frac{45}{16}$$

a)
$$P(X \ge a) \le \frac{E(X)}{a} = P(X \ge 85) \le \frac{75}{85} \to 0.8823$$

b)
$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2} = \frac{25}{(85 - 65)^2} = \frac{0.0625}{10.0625}$$

c)
$$P(|X - 75| \le 5) \ge 0.9 \rightarrow X \le 80$$
 Students

Question 4:

a) $P\{X = 4\} = C_4^n p^4 (1-p)^{n-4}$, However, we know that E(X) = np = 7 and Var(X) = np(1-p) = 2.1. Hence:

$$n = \frac{7}{p}$$

$$2.1 = \frac{7}{p}p(1-p) \to 2.1 = 7 - 7p$$

$$p = \frac{7}{10}$$

$$n = \frac{7}{\frac{7}{10}} = 10$$

$$P\{X = 4\} = \frac{10!}{(10-4)! \cdot 4!} \cdot \left(\frac{7}{10}\right)^4 \cdot \left(\frac{3}{10}\right)^{10-4}$$

$$P\{X = 4\} = 210 \cdot 0.2401 \cdot 0.00073 = \frac{0.03681}{0.03681}$$

b)
$$P{X > 12} = 1 - P(X \le 12)$$
:

$$P(X \le 12) = \sum_{x \le 12} C_x^n p^x (1 - p)^{n - x} = 1.00716$$
$$P\{X > 12\} = 1 - 1.00716 = 0$$

Question 5:

$$P\{N_{\lambda} = k\} = e^{-\lambda} \frac{\lambda^k}{k!}$$

The chance to get 0 cold per year with $\lambda = 3$:

$$e^{-3}$$

The chance to get 0 cold per year with $\lambda = 2$:

$$e^{-2}$$

Let D denote "Drug is beneficial" and N "has 0 cold in the year":

$$P(D|N) = \frac{P(DN)}{P(N)} = \frac{e^{-3}}{e^{-2}} = 0.36787$$

Question 6:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, E(X) = \mu, \ Var(X) = \sigma^2$$

We have $\mu = 1000$, $\sigma = 200$

a)
$$P(X < 1100) = \int_{-\infty}^{1100} \frac{1}{\sqrt{2\pi}200} e^{-\frac{(X-1000)^2}{2(200)^2}}$$

 $z = \frac{1100 - 1000}{200} = 0.5 \rightarrow Implies \ \phi(0.5)$
 $= 0.6915 \ for \ 1 \ week$

To get the probability for 2 weeks:

$$0.6915^2 = 0.4782$$

b)
$$P(X>2200)$$
, Where $X_{total}=X_{Week1}+X_{week2}$
$$\mu=2(1000)=2000$$

$$\sigma=\sqrt{n\sigma_i^2}=\sqrt{2\cdot(200)^2}=200\sqrt{2}$$

Now we have:

$$P(X > 2200) = 1 - P(X \le 2200)$$

 $P(X \le 2200)$ follows a $\phi(z)$ where $z = \frac{2200 - 2000}{200\sqrt{2}} = 0.70710$
 $\phi(0.70710) = 0.7611$

Which means that P(X > 2200) = 1 - 0.7611 = 0.2389

Question 7:

Percentage of bolt no meeting requirement: $1 - P\{1.19 \le X \le 1.21\}$

$$z_a = \frac{a - 1.20}{0.005} = \frac{1.19 - 1.20}{0.005} = -2$$

$$z_b = \frac{b - 1.20}{0.005} = \frac{1.21 - 1.20}{0.005} = 2$$

$$P\{-2 \le Z \le 2\} = P\{Z \le 2\} - P\{Z \le -2\}$$

$$\phi(2) - [1 - \phi(2)]$$

$$P\{-2 \le Z \le 2\} = 0.9772 - (1 - 0.9772) = 0.9544$$

Now we can find $1 - P\{-2 \le Z \le 2\}$ which is equal to 0.0456

Question 8:

$$P(L \le t) = 1 - e^{-\lambda t}$$

$$P(L > 10) = 1 - P(L \le 10)$$

$$P(L \le 10) = 1 - e^{-\frac{1}{8} \cdot 10} = 0.7135$$

$$P(L > 10) = 1 - 0.7135 = 0.2865$$