Lecture Notes (in Progress)

STATS214 / CS229M: Machine Learning Theory (Winter 2021)

@ Stanford University

Tianyu Du

January 14, 2021

Note: CS229M is different from CS229: Machine Learning

1 Preliminary

______ Lecture 1. Jan. 11, 2021 _____

1.1 Formulation and Asymptotics

For components of standard supervised learning problems, we use the following notations.

- Input space: \mathcal{X} .
- Output space: \mathcal{Y} .
- Joint probability distribution P over $\mathcal{X} \times \mathcal{Y}$.
- Training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \stackrel{i.i.d.}{\sim} P$.
- Predictors/model/hypothesis $h: \mathcal{X} \to \mathcal{Y}$.
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, typically we assume $\ell(\hat{y}, y) \geq 0$ for all $\hat{y}, y \in \mathcal{Y}$.
- The expected/population risk/loss $L(h) \stackrel{\triangle}{=} \mathbb{E}_{(x,y)\sim P}\ell(h(x),y)$], the goal of supervised learning problems is to minimize the population risk.
- Hypothesis class/family \mathcal{H} is the set of all functions from \mathcal{X} to \mathcal{Y} .
- Excess risk (w.r.t. \mathcal{H}) of a particular $h \in \mathcal{H}$ is defined as $L(h) \inf_{g \in \mathcal{H}} L(g)$, the excess risk is always non-negative.

Example 1.1. For regression problems, $\mathcal{Y} = \mathbb{R}$ and typically $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$. For k-class classification problems, $\mathcal{Y} = \{1, 2, ..., k\}$ and $\ell_{0-1}(\hat{y}, y) = \mathbb{1}\{\hat{y} \neq y\}$.

1.2 Empirical Risk Minimization (ERM)

The training loss / empirical loss / empirical risk associated a particular dataset $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$ is defined as

$$\hat{L} \stackrel{\triangle}{=} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x^{(i)}), y^{(i)}) \tag{1}$$

The ERM estimator is

$$\hat{h} \stackrel{\triangle}{=} \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{L}(h) \tag{2}$$

Because $(x^{(i)}, y^{(i)}) \sim P$, for every $h \in \mathcal{H}$,

$$\mathbb{E}_{\{(x^{(i)}, y^{(i)})\}_{i=1}^n} \overset{i.i.d.}{\sim} P[\hat{L}(h)] = L(h) \tag{3}$$

1.3 Parameterization

Consider the family of hypothesis parameterized by θ : $\mathcal{H} = \{h_{\theta} \mid \theta \in \Theta\}$. For instance, with $\Theta = \mathbb{R}^d$ and $h_{\theta}(x) = \theta^T x$, \mathcal{H} becomes the family of linear models. The ERM for parameterized family is

$$\hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_{\theta}(x^{(i)}), y^{(i)})$$
(4)

$$\hat{\theta} = \hat{\theta}_{ERM} = \operatorname*{argmin}_{\theta \in \Theta} \hat{L}(\theta) \tag{5}$$

Sometimes we use the alternative notion $\ell((x^{(i)}, y^{(i)}), \theta)$ for $\ell(h_{\theta}(x^{(i)}), y^{(i)})$.

Goal: bound the excess risk of $\hat{\theta}$.

1.4 Asymptotic Analysis

Let $n \to \infty$, we wish to obtain a bound with form

$$L(\hat{\theta}) - \operatorname{argmin} L(\theta) \le \frac{c}{n} + o(\frac{1}{n})$$
 (6)

where c depends on the problem.

From now on,

$$\Theta = \mathbb{R}^p \tag{7}$$

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^p} \hat{L}(\theta) \tag{8}$$

$$\theta^* = \operatorname*{argmin}_{\theta \in \mathbb{R}^p} L(\theta) \tag{9}$$

excess risk =
$$L(\hat{\theta}) - L(\theta^*)$$
 (10)

Theorem 1.1. Assume the consistency of $\hat{\theta}$,

$$\hat{\theta} \stackrel{p}{\to} \theta^* \text{ as } n \to \infty$$
 (11)

Further, suppose $\nabla^2 L(\theta^*)$ has full-rank, and mild regularity conditions, there exists absolute constants $c_0, c_1 \in \mathbb{R}_+$ such that

- 1. $\sqrt{n}||\hat{\theta} \theta^*|| \stackrel{p}{\to} c_0$
- 2. $n[L(\hat{\theta}) L(\theta^*)] \stackrel{p}{\rightarrow} c_1$.
- 3. $\sqrt{n}(\hat{\theta} \theta^*) \stackrel{d}{\to} \mathcal{N}(0, \nabla^2 L(\theta^*)^{-1} \text{cov}(\nabla \ell((x, y), \theta^*)) \nabla^2 L(\theta^*)^{-1}),$
- 4. Let $S \sim \mathcal{N}(0, \underbrace{\nabla^2 L(\theta^*)^{-1/2} \text{cov}(\nabla \ell((x,y),\theta)) \nabla^2 L(\theta^*)^{-1/2}}_{W})$, then

$$n(L(\hat{\theta}) - L(\theta^*)) \stackrel{d}{\to} \frac{1}{2}||S||_2^2$$

and

$$\lim_{n\to\infty}\mathbb{E}\left[n(L(\hat{\theta})-L(\theta^*))\right]=\frac{1}{2}\mathrm{tr}(\nabla^2L(\theta^*)^{-1}\mathrm{cov}(\nabla\ell((x,y),\theta)))$$

Proof. Together with the optimality of $\hat{\theta}$ with respect to \hat{L} , the Taylor expansion of \hat{L} around θ^* indicates

$$0 = \nabla \hat{L}(\hat{\theta}) = \nabla \hat{L}(\theta^*) + \nabla^2 \hat{L}(\theta^*)(\hat{\theta} - \theta^*) + \mathcal{O}(||\hat{\theta} - \theta^*||_2^2)$$
(12)

$$\implies \hat{\theta} - \theta^* = -\nabla^2 \hat{L}(\theta^*)^{-1} \nabla \hat{L}(\theta^*) + \mathcal{O}(||\hat{\theta} - \theta^*||_2^2)$$
(13)

Let $\ell_i(\theta) = \ell((x^{(i)}, y^{(i)}), \theta)$ denote the individual loss, then the following holds

- $\nabla \hat{L}(\theta^*) = \frac{1}{n} \sum_{i=1}^n \nabla \ell_i(\theta^*).$
- $\nabla^2 \hat{L}(\theta^*) = \frac{1}{n} \sum_{i=1}^n \nabla^2 \ell_i(\theta^*)$

Moreover, by law of large numbers (LLN),

- $\nabla \hat{L}(\theta^*) \stackrel{p}{\to} \nabla L(\theta^*) = 0$ and $\mathbb{E}\left[\nabla \hat{L}(\theta^*)\right] = \nabla L(\theta^*)$.
- $\nabla^2 \hat{L}(\theta^*) \stackrel{p}{\to} \nabla^2 L(\theta^*) \neq 0$ and $\mathbb{E}\left[\nabla^2 \hat{L}(\theta^*)\right] = \nabla^2 L(\theta^*)$

Theorem 1.2 (Central Limit Theorem). Let X_1, \ldots, X_n be n i.i.d. random variables, let $\Sigma = \text{cov}(X_i)$. As $n \to \infty$, define $\hat{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

- $\hat{X} \stackrel{p}{\to} \mathbb{E}[\hat{X}],$ $\sqrt{n}(\hat{X} \mathbb{E}[\hat{X}]) \stackrel{d}{\to} \mathcal{N}(0, \Sigma).$

Since $\nabla \hat{L}(\theta^*)$ is the mean of n i.i.d. random variables $\ell_i(\theta^*)$, by the central limit theorem (CLT),

$$\sqrt{n}(\nabla \hat{L}(\theta^*) - \nabla L(\theta^*)) \to \mathcal{N}(0, \text{cov}(\nabla \ell_i))$$
(14)

$$\sqrt{n}\nabla\hat{L}(\theta^*) \to \mathcal{N}(0, \text{cov}(\nabla\ell_i))$$
 (15)

where $\Sigma = \text{cov}(\ell_i)$.

$$\hat{\theta} - \theta^* = -\nabla^2 \hat{L}(\theta^*)^{-1} \frac{1}{n} \sum_{i=1}^n \nabla \ell_i(\theta^*) + \mathcal{O}(||\hat{\theta} - \theta^*||_2^2)$$
(16)

$$= -\left(\nabla^2 L(\theta^*) + \mathcal{O}(\frac{1}{\sqrt{n}})\right)^{-1} \mathcal{O}(\frac{1}{\sqrt{n}}) + \mathcal{O}(||\hat{\theta} - \theta^*||_2^2)$$
 (17)

$$= \nabla^2 L(\theta^*) \mathcal{O}(\frac{1}{\sqrt{n}}) \approx \frac{1}{\sqrt{n}}$$
 (18)

More precisely,

$$\sqrt{n}(\hat{\theta} - \theta^*) = -\underbrace{\nabla^2 \hat{L}(\theta^*)^{-1}}_{\approx \nabla^2 L(\theta^*)^{-1}} \underbrace{\sqrt{n} \left[\nabla \hat{L}(\theta^*) - \nabla L(\theta^*)\right]}_{\mathcal{N}(0,\Sigma)} + \mathcal{O}(||\hat{\theta} - \theta^*||_2^2)$$
(19)

$$= \nabla^2 L(\theta^*)^{-1} Z \text{ where } Z \sim \mathcal{N}(0, \text{cov}(\nabla \ell_i))$$
 (20)

$$\stackrel{d}{=} \mathcal{N}(0, \nabla^2 L(\theta^*)^{-1} \text{cov}(\nabla \ell_i) \nabla^2 L(\theta^*)^{-1})$$
(21)

______ Lecture 2. Jan. 13, 2021 _____

The Taylor's expansion of L around θ^* implies

$$L(\hat{\theta}) - L(\theta^*) = \langle \nabla L(\theta^*), \hat{\theta} - \theta^* \rangle + \frac{1}{2} \langle \hat{\theta} - \theta^*, \nabla^2 L(\theta^*)(\hat{\theta} - \theta^*) \rangle + \mathcal{O}(||\hat{\theta} - \theta^*||_2^2)$$
 (22)

Since $\theta^* \equiv \operatorname{argmin}_{\theta \in \Theta} L(\theta)$, $\nabla L(\theta^*) = 0$. Multiply both sides by n,

$$n[L(\hat{\theta}) - L(\theta^*)] = \frac{1}{2} \langle \sqrt{n}(\hat{\theta} - \theta^*), \nabla^2 L(\theta^*) \sqrt{n}(\hat{\theta} - \theta^*) \rangle + \text{higher order terms}$$
 (23)

Note that $\langle v, Av \rangle = ||A^{1/2}v||_2^2$,

$$(23) = \frac{1}{2} ||\nabla^2 L(\theta^*)^{1/2} \sqrt{n} (\hat{\theta} - \theta^*)||_2^2 + \text{higher order terms}$$
 (24)

By result (3) and property of Gaussian distribution,

$$\nabla^{2}L(\theta^{*})^{1/2}\sqrt{n}(\hat{\theta}-\theta^{*}) \sim \mathcal{N}(0, \nabla^{2}L(\theta^{*})^{1/2}\nabla^{2}L(\theta^{*})^{-1}\operatorname{cov}(\nabla\ell((x,y),\theta))\nabla^{2}L(\theta^{*})^{-1}\nabla^{2}L(\theta^{*})^{1/2})$$
(25)

$$= \mathcal{N}(0, \nabla^2 L(\theta^*)^{-1/2} \operatorname{cov}(\nabla \ell((x, y), \theta)) \nabla^2 L(\theta^*)^{-1/2}) \stackrel{d}{=} S$$
 (26)

Consequently,

$$(24) \stackrel{d}{=} \frac{1}{2}||S||_2^2 + \text{higher order terms}$$
 (27)

The first moment of $n[L(\hat{\theta}) - L(\theta^*)]$ converges as well, and because $\mathbb{E}\left[||v||_2^2\right] = \mathbb{E}\left[\operatorname{tr}(vv^T)\right] = \operatorname{tr}(\mathbb{E}\left[vv^T\right])$,

$$\mathbb{E}\left[n[L(\hat{\theta}) - L(\theta^*)]\right] \xrightarrow{p} \frac{1}{2} \mathbb{E}\left[||S||_2^2\right]$$
(28)

$$= \frac{1}{2} \operatorname{tr}(\nabla^2 L(\theta^*)^{-1/2} \operatorname{cov}(\nabla \ell) \nabla^2 L(\theta^*)^{-1/2})$$
(29)

$$= \frac{1}{2} \operatorname{tr}(\nabla^2 L(\theta^*)^{-1} \operatorname{cov}(\nabla \ell))$$
(30)

1.5 Well-Specified Case

Theorem 1.3 (Well-Specification). In addition to assumptions in Theorem 1.1, suppose there exists some probabilistic model $P(y|x;\theta)$ parameterized by θ , that is,

$$\exists \theta_* \text{ s.t. } y^{(i)} | x^{(i)} \sim P(y|x; \theta_*) \ \forall i \in [n]$$
(31)

take the loss function to be the negative log likelihood

$$\ell((x^{(i)}, y^{(i)}); \theta) = -\log P(y^{(i)}|x^{(i)}; \theta)$$
(32)

then,

- (1) The excess risk minimizer equals the ground truth: $\theta^* \equiv \operatorname{argmin}_{\theta} L(\theta) = \theta_*$.
- (2) $\mathbb{E}\left[\nabla \ell((x,y),\theta^*)\right] = 0.$
- (3) $\operatorname{cov}(\nabla \ell((x, y), \theta^*)) = \nabla^2 L(\theta^*).$
- (4) $\sqrt{n}(\hat{\theta} \theta^*) \xrightarrow{d} \mathcal{N}(0, \nabla^2 L(\theta^*)^{-1})$, suppose $S \sim \mathcal{N}(0, 1)$,

$$n(L(\hat{\theta}) - L(\theta^*)) \stackrel{d}{\to} \frac{1}{2} ||S||_2^2 \sim \chi^2(p)$$
 (33)

So that

$$\mathbb{E}\left[L(\hat{\theta}) - L(\theta^*)\right] \approx \frac{p}{2n} \tag{34}$$

1.6 Limitation of Asymptotic Analysis

Asymptotic analysis hides dependencies on p, for instance, both $\frac{p}{2n} + \frac{1}{n^2}$ and $\frac{p}{2n} + \frac{p^{100}}{n^2}$ are classified into $\frac{p}{2n} + o(1/n)$ by asymptotic analysis.

In contrast, non-asymptotic analysis only hides absolute constants and we can bound model performance with form $L(\hat{\theta}) - L(\theta^*) \leq \mathcal{O}(f(p,n)) \ \forall p,n \geq 1$.

In the following non-asymptotic analysis, every occurrence of $\mathcal{O}(x)$ is a placeholder for some function $f \in \mathcal{O}(x)$.

For all $a, b \ge 0, \ a \lesssim b \iff \exists$ absolute constant $c \ge 0$ s.t. $a \le cb$.

1.7 Uniform Convergence

Key Idea For every $\theta \in \Theta$, $\hat{L}(\theta)$ is an empirical estimate of $L(\theta)$, so $\hat{L}(\theta) \approx L(\theta)$ (we still need to prove this). If we can bound

$$\left| \hat{L}(\theta^*) - L(\theta^*) \right| \le \alpha \tag{35}$$

$$L(\hat{\theta}) - \hat{L}(\hat{\theta}) \le \alpha \tag{36}$$

Recall that we wanted to bound the excess risk of $\hat{\theta}$, which is

$$L(\hat{\theta}) - L(\theta^*) = [L(\hat{\theta}) - \hat{L}(\hat{\theta})] + [\hat{L}(\hat{\theta}) - \hat{L}(\theta^*)] + [\hat{L}(\theta^*) - L(\theta^*)]$$
(37)

$$\leq \alpha + 0 + \alpha = 2\alpha \tag{38}$$

1.8 Contraction Inequality (to show $L(\theta) \approx \hat{L}(\theta)$)

Theorem 1.4 (Hoeffding's Inequality). Let X_1, \ldots, X_n be i.i.d. real-valued random variables, assume $a_i \leq x_i \leq b_i$ for all i almost surely. Let $\mu = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$, then

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \leq \varepsilon\right] \geq 1-2\exp\left(\frac{-2n^{2}\varepsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$
(39)

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \varepsilon\right] \leq 2\exp\left(\frac{-2n^{2}\varepsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$
(40)

To use this theorem, consider

$$\sigma^2 = \frac{1}{n^2} \sum_{i=1}^n (b_i - a_i)^2 \tag{41}$$

as a proxy for the variance of $\frac{1}{n} \sum_{i=1}^{n} X_i$:

$$Var(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i}) \le \frac{1}{n^{2}} \le \frac{1}{n^{2}}\sum_{i=1}^{n}(b_{i}-a_{i})^{2}$$
(42)

Take $\varepsilon = \mathcal{O}(\sqrt{\sigma^2 \log(n)}) = \mathcal{O}(\sqrt{c\sigma^2 \log(n)})$, where c is a large constant.

$$\Pr\left[\left|\frac{1}{n}\sum X_i - \mu\right| \le \sqrt{c\sigma^2 \log n}\right] \ge 1 - 2\exp\left(\frac{-2n^2c\sigma^2 \log n}{n^2\sigma^2}\right) \tag{43}$$

$$=1-2\exp\left(-2c\log n\right)\tag{44}$$

$$=1-2\exp\left(\log n^{-2c}\right)\tag{45}$$

$$=1-2n^{-2c}\approx 1\tag{46}$$

Moreover, if $a_i = -\mathcal{O}(1)$ and $b_i = \mathcal{O}(1)$, then $\sigma^2 = \frac{1}{n}$. With high probability,

$$\left| \frac{1}{n} \sum X_i - \mu \right| \le \mathcal{O}(\sqrt{\sigma^2 \log n}) = \mathcal{O}(\sqrt{\frac{\log n}{n}}) = \tilde{\mathcal{O}}(\frac{1}{\sqrt{n}}) \tag{47}$$

1.9 Back to Learning Theory

Take $X_i = \ell((x^{(i)}, y^{(i)}); \theta)$, assume $\ell((x, y); \theta) \in [0, 1]$ (such as 0-1 loss).

Lemma 1.1. For any θ , with high probability,

$$\left| \hat{L}(\theta) - L(\theta) \right| \le \tilde{\mathcal{O}}(\frac{1}{\sqrt{n}}) \tag{48}$$

In particular, $\left| \hat{L}(\theta^*) - L(\theta^*) \right| \leq \tilde{\mathcal{O}}(\frac{1}{\sqrt{n}}).$

Still need t

1.10 Uniform Convergence

 $\hat{L} \to L$ uniformly on Θ if

$$\Pr\left[\forall \theta \in \Theta, \left| \hat{L}(\theta) - L(\theta) \right| \le \varepsilon' \right] \ge 1 - \delta' \tag{49}$$

$$\Pr\left[\exists \theta \in \Theta, \left| \hat{L}(\theta) - L(\theta) \right| \ge \varepsilon' \right] \le \sum_{\theta \in \Theta} \Pr\left[\left| \hat{L}(\theta) - L(\theta) \right| \ge \varepsilon' \right]$$
(50)

$$\Pr\left[\forall \theta \in \Theta, \left| \hat{L}(\theta) - L(\theta) \right| \ge \varepsilon' \right] = 1 - \Pr\left[\forall \theta \in \Theta, \left| \hat{L}(\theta) - L(\theta) \right| \le \varepsilon' \right]$$
(51)