This is a title and this is too

Stefano Coretta¹

The University of Manchester^{a)}

Put your abstract here.

a) stefano.coretta@manchester.ac.uk; other info

2 I. INTRODUCTION

Almost a hundred years of research have consistently shown that consonantal voicing has an effect
on preceding vowel duration: vowels followed by voiced obstruents are longer than when followed
by voiceless ones (Belasco, 1953; Chen, 1970; Durvasula and Luo, 2012; Esposito, 2002; Farnetani
and Kori, 1986; Fowler, 1992; Halle and Stevens, 1967; Heffner, 1937; House and Fairbanks, 1953;
Hussein, 1994; Javkin, 1976; Klatt, 1973; Kluender *et al.*, 1988; Laeufer, 1992; Lampp and Reklis,
2004; Lisker, 1974; Maddieson and Gandour, 1976; Peterson and Lehiste, 1960; Raphael, 1975;
Warren and Jacks, 2005). This so called 'voicing effect' has been found in a considerable variety
of languages, including (but not limited to) English, German, Hindi, Russian, Italian, Arabic, and
Korean (see Maddieson and Gandour 1976 for a more comprehensive, but still not exhaustive list).

Despite of the plethora of evidence in support of the *existence* of the voicing effect, agreement hasn't

Several proposal have been put forward as to where to search for the possible source of the voicing effect (see Sóskuthy, 2013, and Beguš (2017) for an overview). The majority of the proposed accounts place the source of the voicing effect in properties of speech production.¹ A notable production account, which will be the focus of this study, is the compensatory temporal adjustment account (Lehiste, 1970a·b; Lindblom, 1967; Slis and Cohen, 1969a·b). According to this account, the voicing effect derives from the reorganisation of gestures within a unit of speech not affected by stop voicing. The duration of such unit is held constant across voicing contexts, while the duration of voiceless and voiced obstruents differs. It is well known that the closure of voiceless stops is longer than that of voiced stops (Davis and Van Summers, 1989; De Jong, 1991; Lisker, 1957; Van Sum-

mers, 1987). As a consequence, vowels followed by voiceless stops (which have a long closure) are longer than vowels followed by voiced stops (which have a short closure). Advocates of the compensatory account proposed two prosodic units as the scope of the temporal adjustment: the syllable (or, more neutrally, the VC sequence (Lindblom, 1967), and the word (Lehiste, 1970a'b; Slis and Cohen, 1969a'b). However, the compensatory temporal adjustment account has been criticised in subsequent work.

Empirical evidence and logic challenge the proposal that the syllable or the word have a constant duration and hence drive compensation. First, Lindblom's (1967) argument that the duration of the syllable is constant is not supported by findings in Chen (1970) and Jacewicz *et al.* (2009). Chen (1970) rejects a syllable-based compensatory account on the light of the fact that the duration of the syllable is affected by consonant voicing. Jacewicz *et al.* (2009) further shows that the duration of monosyllabic words in American English changes dependent on the voicing of the coda consonant. Second, although the results in Slis and Cohen (1969b) suggest that the duration of disyllabic words in Dutch does not change whether the second consonant is voiceless or voiced, it does not follow from this fact that compensation should necessarily target the vowel preceding the stop. Indeed, it is logically possible that the following unstressed vowel could be the target of the compensation, so differences in preceding vowel duration still call for an explanation.

The compensatory temporal adjustment account has been further challenged on the basis of the so called 'aspiration effect' (Maddieson and Gandour, 1976), by which vowels are longer when followed by aspirated stops than when followed by non-aspirated stops. In Hindi, vowels before voiceless unaspirated stops are the shortest, followed by vowels before voiced unaspirated and voiceless aspirated stops, which have similar duration, followed by vowels before voiced aspirated stops, which are

the longest. Maddieson and Gandour (1976) find no compensatory pattern between vowel and consonant duration: the consonant /t/, which has the shortest duration, is preceded by the shortest vowel, and vowels before /d/ and /th/ have the same duration although the durations of the two consonant are different. Maddieson and Gandour (1976) argue that a compensatory explanation for differences in vowel duration cannot be maintained.

However, an reevaluation of the way consonant duration is measured in Maddieson and Gandour (1976) might actually turn their findings in favour of a compensatory account. Due to difficulties in detecting the release of the consonant of interest, consonant duration in Maddieson and Gandour (1976) is measured from the closure of the relevant consonant to the release of the following consonant, (e.g., in *ab sāth kaho*, the duration of /t^h/ in *sāth* was calculated as the interval between the closure of /t^h/ and the release of /k/). This measure includes the burst and (eventual) aspiration of the consonant following the target vowel. Slis and Cohen (1969a), however, states that the inverse correlation between vowel duration and the following consonant applies to *closure* duration, and not the entire *consonant* duration. If a correlation exists between vowel and closure duration, the inclusion of burst and/or aspiration duration clearly alters this relationship.

Indeed, the study on Hindi voicing and aspiration effects conducted by Durvasula and Luo (2012)
indicates that closure duration, properly measured, decreases according to the hierarchy voiceless
unaspirated > voiced unaspirated > voiceless aspirated > voiced aspirated, which closely resembles
the order of increasing vowel duration in Maddieson and Gandour (1976). Nonetheless, Durvasula
and Luo (2012) do not find a negative correlation between vowel duration and consonant closure
duration, but rather a (small) positive effect. Vowel duration increases with closure duration when
voicing and aspiration are taken into account. However, as noted in Beguš (2017), it is likely that this

- result is a consequence of not controlling for speech rate. A small negative effect of closure duration can turn positive if the effect of speech rate (which is positive) is greater, given the cumulative nature of these effects (Beguš, 2017, 2177).
- More recently, Beguš (2017) investigated the effect of three phonation types on vowel durations
 in Georgian and finds that vowels are short when followed by voiceless aspirated stops, longer before
 ejective stops, and longest when followed by voiced stops. Crucially, stop closure duration follows the
 reversed pattern: Closure duration is short in voiced stops, longer in ejectives, and longest in voiceless
 aspirated stops. Beguš (2017) argues that these findings support a temporal compensation account,
 although not univocally.
- To summarise, a compensatory temporal adjustment account of the voicing effect remains possible after a careful review of the critiques advanced by Chen (1970) and Maddieson and Gandour (1976), and in face of the results in Beguš (2017), although issues about the actual implementation of the compensation still persist. In conclusion, for the compensatory account to gain plausibility, an invariant interval within which compensation is implemented needs to be better defined, on the light of empirical data.

A. The present study

82

This paper reports on results from a broader exploratory study that investigates the relationship between vowel duration and consonant voicing from an articulatory perspective. Synchronised recordings of audio, ultrasound tongue imaging, and electroglottography were carried out to enable a datadriven approach to the analysis of features related to the voicing effect in the context of disyllabic
(CVCV) words in Italian and Polish. The design of the study has been constrained by the use of

- these articulatory techniques (see Section II). Moreover, given the exploratory nature of the study,
 the experimental design was not implemented to directly test the compensatory account. Here, only
 the results from acoustic will be discussed.
- Italian and Polish reportedly differ in the magnitude of the voicing effect. Italian has been unanimously reported as a voicing effect language (Caldognetto *et al.*, 1979; Esposito, 2002; Farnetani
 and Kori, 1986). The mean difference in vowel duration when followed by voiceless vs. voiced consonants ranges between 22 and 24 ms (with longer vowels followed by voiced consonants, Esposito,
 2002; Farnetani and Kori, 1986). On the other hand, the results regarding the presence and magnitude of the effect in Polished are mixed. While Keating (1984) reports no effect of voicing on
 vowel duration in data from 24 speakers, Nowak (2006) finds that vowels followed by voiced stops
 are 4.5 ms longer in the 4 speakers recorded. Moreover, Malisz and Klessa (2008) argue based on
 data from 40 speakers that the magnitude of the voicing effect in Polish is highly idiosyncratic, and
 claim their results to be inconclusive on this matter. The difference in presence or magnitude of the
 voicing effect in Italian vs. Polish should enable us to find an underlying property that differs in the
 two languages and that might indicate a possible source for the voicing effect.
- The acoustic data from the exploratory study reported here reveal that the duration of the interval between the releases of the two consonants in CVCV words (the Release to Release interval) is not affected by the voicing of the second consonant. This finding is compatible with a compensatory temporal adjustment account by which the timing of the stop closure onset within said interval determines the respective durations of the vowel and the stop closure. I further propose that the invariant duration of the Release to Release interval is congruent with current views on gestural timing (Gold-

stein and Pouplier, 2014) and I discuss the insights it provides in relation to our understanding of gestural organisation in speech.

1 II. METHOD

A. Participants

Seventeen subjects in total participated to this exploratory study. Eleven participants were native speakers of Italian (5 female, 6 male), while six were native speakers of Polish (3 female, 3 male).

The Italian speakers were from the North and Centre of Italy (8 speakers from Northern Italy, 3 from Central Italy). The Polish group had 2 speakers from Poznań and 4 speakers from Eastern Poland.

For more information on the speakers, see Appendix B. Ethical clearance was obtained for this study from the University of Manchester (REF 2016-0099-76). The participants signed a written consent and received a monetary compensation of £10.

B. Equipment

120

The acquisition of the audio signal was achieved with the software Articulate Assistant AdvancedTM (AAA, v2.17.2) running on a Hawlett-Packard ProBook 6750b laptop with Microsoft Windows 7, with a sample rate of 22050 MHz (16-bit) in a proprietary format. A FocusRight Scarlett Solo pre-amplifier and a Movo LV4-O2 Lavalier microphone were used for audio recording.

C. Materials

125

The target stimuli were disyllabic words with $C_1V_1C_2V_2$ structure, where $C_1 = /p/$, $V_1 = /a$, o, 126 u/, $C_2 = /t$, d, k, g/, and $V_2 = V_1$ (e.g. /pata/, /pada/, /poto/, etc.). Most are nonce words, although 127 inevitably some combinations lead to real words both in Italian (4 words) and Polish (2 words, see 128 Appendix C). The lexical stress of the target words was placed by speakers of both Italian and Polish 129 on V_1 , as intended. The make-up of the target words was constrained by the design of the experiment, 130 which included ultrasound tongue imaging (UTI). Front vowels are difficult to image with UTI, since 131 their articulation involves tongue positions which are particularly far from the ultrasonic probe, hence 132 reducing the visibility of the tongue contour. For this reason, only central and back vowels were 133 included. Since one of the variables of interest in the exploratory study was the closing gesture of C_2 , only lingual consonants were used. A labial stop was chosen as the first consonant to reduce possible 135 coarticulation with the following vowel (although see Vazquez-Alvarez and Hewlett 2007). The target 136 words were embedded in a frame sentence, Dico X lentamente 'I say X slowly' in Italian (following Hajek and Stevens, 2008), and Mówię X teraz 'I say X now' in Polish, and presented according to the 138 respective writing conventions. These sentences were chosen in order to keep the placement of stress 139 and emphasis similar across languages, so to ensure comparability of results.

D. Procedure

141

The participant was asked to read the sentences with the target words which were sequentially presented on the computer screen. The order of the sentence stimuli was randomised for each participant. Each participant read the list of randomised sentence stimuli 6 times. Due to software

constraints, the order of the list was kept the same across the six repetitions within each participant.

Each speaker read a total of 12 sentences for 6 times (with the exceptions of IT02, who repeated the

12 sentences 5 times, and IT07, with whom words containing /u/ were not recorded due to technical

difficulties relating to the ultrasound data collection). with a grand total of 1224 tokens (792 from

Italian, 432 from Polish). The reading task lasted between 15 and 20 minutes, with optional short

breaks between one repetition and the other.

E. Data processing and measurements

151

The audio recordings were exported from AAA in .wav format for further processing. A forced 152 aligned transcription was accomplished through the SPeech Phonetisation Alignment and Syllabi-153 fication software (SPPAS) (Bigi, 2015). The outcome of the automatic annotation was manually 154 corrected when necessary, according to the criteria in Table I. The releases of C1 and C2 were detected automatically by means of a Praat scripting implementation of the algorithm described in 156 Ananthapadmanabha et al. (2014). The durations in milliseconds of the following intervals were 157 extracted from the annotated acoustic landmarks with Praat scripting: sentence duration, word duration, vowel duration (V1 onset to V1 offset), consonant closure duration (V1 offset to C2 burst), and 159 Release-to-Release duration (RR duration, C1 release to C2 release). Figure 1 shows an example of 160 the segmentation of /pata/ (a) and /pada/ (b) from an Italian speaker. Syllable rate (syllables per second) was used as a proxy to speech rate (Plug and Smith, 2018) for duration normalisation, and was 162 calculated as the number of syllables divided by the duration of the sentence (8 syllables in Italian, 6 163 in Polish). All further data processing and visualisation was done in R v3.5.0 (R Core Team, 2018; 164 Wickham, 2017).

TABLE I. List of measurements as extracted from acoustics.

landmark		criteria
vowel onset	(V1 onset)	appearance of higher formants in the spectrogram
		following the burst of /p/ (C1)
vowel offset	(V1 offset)	disappearance of the higher formants in the
		spectrogram preceding the target consonant (C2)
consonant onset	(C2 onset)	corresponds to V1 offset
closure onset	(C2 closure onset)	corresponds to V1 offset
consonant offset	(C2 offset)	appearance of higher formants of the vowel following
		C2 (V2); corresponds to V2 onset
consonant release	e (C1/C2 release)	automatic detection + manual correction
		(Ananthapadmanabha et al., 2014)

F. Statistical analysis

166

Given the exploratory nature of the study, all statistical analyses reported here are to be considered data-driven/hypothesis-generating rather than confirmatory/hypothesis-driven (Gelman and Loken, 2013; Kerr, 1998; Roettger, 2018). The durational measurements were analysed with linear mixed-effects models using 1me4 v1.1-17 in R (Bates *et al.*, 2015), and model estimates were extracted with the effects package v4.0-2 (Fox, 2003). All factors were coded with treatment contrasts and

FIG. 1. Segmentation example.

the following reference levels: voiceless (vs. voiced), /a/ (vs. /o/, /u/), coronal (vs. velar), Italian (vs. Polish). The estimates in the results section refer to these reference levels unless interactions are discussed. *P*-values for the individual terms were obtained with lmerTest v3.0-1, which uses the Satterthwaite's approximation to degrees of freedom (Kuznetsova *et al.*, 2017; Luke, 2017). A result is considered significant if the *p*-value is below the alpha level ($\alpha = 0.05$).

Bayes factors were used to specifically test the null hypotheses that word and RR duration are not affected by C2 voicing (i.e., the effect of C2 voicing on duration is 0). For each set of null/alternative hypotheses, a full model (with the predictor of interest) and a null model (excluding it) were fitted separately using Maximum Likelihood estimation (Bates *et al.*, 2015, p. 34). The BIC approximation was then used to obtain Bayes factors (Jarosz and Wiley, 2014; Raftery, 1995; 1999; Wagenmakers, 2007). The approximation is calculated according to the equation in 1 (Wagenmakers, 2007, p. 796).

$$BF_{01} \approx exp(\Delta BIC_{10}/2)$$
 (1)

where $\Delta BIC_{10} = BIC_1 - BIC_0$, BIC_1 is the BIC of the full model, and BIC_0 is the BIC of the null model. Values of $BF_{01} > 1$ indicate a preference of H_0 over H_1 . The interpretation of the Bayes factors follows the recommendations in Raftery (1995, p. 139).

The extracted measurements were filtered before statistical analysis. Measures of vowel duration, closure duration, word duration, and RR duration that are 3 standard deviations lower or higher than the respective means were excluded from the final dataset (which generally corresponds to a data loss of around 2.5%). This operation yields a total of 920 tokens of vowel and closure durations, 1176 tokens of word duration, and 848 tokens of RR duration.

191 III. RESULTS

The following sections report the results of the study in relation to the durations of vowels, consonant closure, word, and the Release to Release interval. When discussing the output of statistical
modelling, only the relevant predictors and interactions will be presented. To avoid the cluttering
generated by model parameters and alleviate the reader, the full output of statistical models and
respective *p*-values are included in Appendix A.

A. Vowel duration

197

Figure 2 shows boxplots and the raw data of vowel duration in Italian (on the left) and Polish (on the right) for the three vowels /a, o, u/. Vowel tend to be longer when followed by a voiced stop both in Italian and Polish. The effect appears to be greater in Italian than in Polish, especially for the vowels /a/ and /o/. There is no clear effect of C2 voicing in /u/ in Italian, but the effect is discernible in Polish /u/. In Italian, vowels have a mean duration of 106 ms (sd = 27) before voiceless stops, and

FIG. 2. Vowel duration in Italian and Polish.

a mean duration of 118 ms (sd = 33) before voiced stops. Polish vowels are on average 75 ms long (sd = 16) when followed by a voiceless stop, and 83 ms long (sd = 19) if a voiced stop follows. The difference in vowel duration based on the raw means is 12 ms in Italian and 8 ms in Polish.

A linear mixed-effects model with vowel duration as the outcome variable was fitted with the following predictors: fixed effects for C2 voicing (voiceless, voiced), C2 place of articulation (coronal,
velar), vowel (a, o, u), language (Italian, Polish), and speech rate (as syllables per second); by-speaker
and by-word random intercept with by-speaker random slopes for C2 voicing. All possible interactions between C2 voicing, vowel, and language were included. The following terms are significant
according to *t*-tests with Satterthwaite's approximation to degrees of freedom: C2 voicing, vowel,
language, and speech rate. Only the interaction between C2 voicing and vowel is significant. Vowels

FIG. 3. Stop closure duration in Italian and Polish.

are 19 ms longer (se = 4.4) when followed by a voiced stop (C2 voicing). The effect of C2 voicing is smaller with /u/ (around 5 ms, $\hat{\beta}$ = -14.4 ms, se = 6). Polish has on average shorter vowels than Italian ($\hat{\beta}$ = -28 ms, se = 8), and the effect of voicing is estimated to be about 11 ms (although recall that the interaction between language and C2 voicing is deemed not significant). Speech rate has unsurprisingly a negative effect on vowel duration, such that faster rates correlate with shorter vowel durations ($\hat{\beta}$ = -15 ms, se = 1).

B. Consonant closure duration

219

230

Figure 3 illustrates stop closure durations with boxplots and individual raw data points. A pattern 220 opposite to that with vowel duration can be noticed: Closure duration is shorter for voiced than for 221 voiceless stops. The closure of voiceless stops in Italian is 77 ms long (sd = 20), while the voiced 222 stops have a mean closure duration of 63 ms (sd = 15). In Polish, the closure duration is 69 ms (sd = 223 12) in voiceless stops and 58 ms (sd = 13) in voiced stops. The difference in closure duration based 224 on the raw means is 14 ms in Italian and 11 ms in Polish. The same model specification as with vowel duration has been fitted with consonant closure durations as the outcome variable. C2 voicing, C2 226 place, and speech rate are significant. Stop closure is 16.5 ms shorter (se = 3) if the stop is voiced and 227 3.5 ms longer (se = 1.5) if velar. Finally, faster speech rates correlate with shorter closure durations $(\hat{\beta} = -8.5 \text{ ms, se} = 1 \text{ ms}).$

C. Vowel and closure duration

A model addressing the relationship between vowel and stop closure duration was fitted with the following terms and interactions: vowel duration as the outcome variable; as fixed effects, closure duration, vowel, speech rate; an interaction between closure duration and vowel; by-speaker and by-word random intercepts, and by-speaker random slopes for C2 voicing. Closure duration has a significant effect on vowel duration ($\hat{\beta} = -0.15$ ms, se = 0.06 ms). The effect with /u/ is greater than with /a/ and /o/ ($\hat{\beta} = -0.35$ ms, se = 0.06 ms). In general, closure duration is inversely correlated with vowel duration. However such correlation is quite weak. A 1 ms increase in closure duration corresponds to a 0.2–0.5 ms decrease in vowel duration. Figure 4 shows for each of /a, o, u/ the

FIG. 4. Linear regression of closure and vowel duration per vowel.

individual data points and the regression lines with confidence intervals extracted from the linear model.

D. Word duration

241

Words with a voiceless stop are on average 397 ms long (sd = 81) in Italian and 356 ms long (sd = 39) in Polish. Words with a voiced stop have a mean duration of 396 ms (sd = 72) in Italian and 362 ms (sd = 39) in Polish. The following full and null models were fitted to test for the effect of C2 voicing on word duration. The full model has the following fixed effects: C2 voicing, C2 place, vowel, speech rate, and language. The model also includes by-speaker and by-word random intercepts, and

FIG. 5. Release to Release interval duration.

a by-speaker random slope for C2 voicing. The null model excludes the fixed effect of C2 voicing.

The Bayes factor of the null model against the full model is 24. Thus, the null model (in which the

effect of C2 voicing is 0) is 24 times more likely under the observed data than the full model. This

indicates that there is strong evidence for word duration not being affected by C2 voicing.

E. Release to Release interval duration

251

In Figure 5, boxplots show the durations of the Release to Release interval in words with a voiceless vs. a voiced C2 stop, in Italian (left side) and Polish (right side). It can be seen, also from the single data points, that the distributions and main statistics of the durations in the two conditions do not

differ much within both languages. In Italian, the mean duration of the Release to Release interval is 210 ms (sd = 44) if C2 is voiceless, and 209 ms (sd = 41) if C2 is voiced. In Polish, the means are respectively 173 (sd = 22) and 172 (sd = 21) ms. The models specifications for the Release to Release duration are the same as for word duration. The Bayes factor of the null model against the full model is 23, which means that the null model (without C2 voicing) is 23 times more likely than the full model. The data suggests there is positive evidence that duration of the RR interval is not affected by C2 voicing.

262 IV. DISCUSSION

The data and statistical analyses of this exploratory study suggest that the duration of interval be-263 tween the releases of two consecutive consonants in CVCV words (the Release to Release interval) is insensitive to the phonological voicing of the second consonant (C2) in Italian and Polish. In accor-265 dance with a compensatory temporal adjustment account (Lehiste, 1970b; Slis and Cohen, 1969b), the difference in vowel duration before voiceless vs. voiced stops can be seen as the outcome of dif-267 ferences in stop closure duration. More specifically, the timing of the closure onset of C2 within 268 the invariant Release to Release interval determines the duration of the preceding vowel. An earlier closure onset (like in the case of voiceless stops), relative to the onset of the preceding vowel, causes the vowel to be shorter. On the other hand, a later closure onset (like with voiced stops) produces a 271 longer vowel. Figure 6 illustrates this mechanism. 272

The invariance of the Release to Release interval allows us to refine the logistics of the compensatory account by narrowing the scope of the temporal adjustment action. A limitation of such account, as proposed by Slis and Cohen (1969b) and Lehiste (1970b), is the lack of a precise identi-

FIG. 6. A schematic representation of the voicing effect as a compensatory temporal adjustment phenomenon. The schematic show the gestural unfolding of a $C\acute{V}C$ sequence when C2 is voiceless (top panel), or voiced (bottom panel). Oral cavity aperture (on the *y*-axis, as the inverse of oral constriction) through time (on the *x*-axis) is represented with a changing black line that represents the movement trajectory of an articulator. Lower values represent a more constricted oral tract (a contoid configuration), while higher values indicate a more open oral tract (a vocoid configuration). The black bars below the time axis represent voicing (vocal fold vibration). Various landmarks and intervals are indicated in the schematic.

fication of the word-internal mechanics of compensation. As already discussed in Section I, it is not
clear, for example, why the adjustment should target the preceding stressed vowel, rather then the
following unstressed vowel or any other segment in the word. Since the Release to Release interval
includes just the vowel (broadly defined as a vocoid gesture) and the consonant closure, it follows

FIG. 7. Gestural organisation patterns for onsets (a), codas (b), heterosyllabic onsets (c). See Section IV A for details. Based on Marin and Pouplier (2010).

that differences in closure duration must be reflected in differences in the duration of the preceding vowel.

On the one hand, the voicing effect can be re-interpreted as a by-product of gestural timing, rather
then a consequence of intrinsic features of voicing *per se*, with a constant Release to Release interval
as the explanans. On the other hand, the Release to Release invariance is in turn an explanandum. In
the following section, I offer a gestural organisation account that allows the invariance or such interval
to follow from the relative timing of the articulatory gestures in a CVC sequence.

A. Gestural alignment

287

According to the coupled oscillator model of syllabic structure (Browman and Goldstein, 1988^o 2000; Goldstein *et al.*, 2006; Goldstein and Pouplier, 2014), articulatory gestures can be timed according to two coupling modes: in-phase (synchronous) mode, by which two gestures start in syn-

chrony, or anti-phase (sequential) mode, in which one gesture starts when the preceding one has 291 reached its target. Marin and Pouplier (2010) showed that onset consonants in American English are 292 in-phase with the vowel nucleus and anti-phase with each other. Such phasing pattern establishes a stable relationship between the centre of the consonant or consonant cluster and the following vowel. 294 Independent of the number of onset consonants, the midpoint of the onset, the so-called 'C-centre', 295 is maintained at a fixed distance from the vowel, such that increasing number of consonants in the onset does not change the C-centre/vowel distance (Figure 7(a)). On the other hand, coda consonants 297 are timed anti-phase with the preceding vowel and between themselves. Stability in codas is seen in 298 the lag between the vowel and the left-most edge of the coda, which is not affected by the number 299 of coda consonants (Figure 7(b)). Other studies found further evidence for the synchronous and se-300 quential coupling modes (see extensive review in Marin and Pouplier (2010) and Marin and Pouplier 301 (2014)), although the use of one mode over the other depends on the language and the consonants under study. 303

Consonants can thus be said to follow either a C-centre organisation pattern or a left-edge organisation pattern. In both cases, of course, the pattern is relative to the tautosyllabic vowel (the following vowel for onsets, the preceding vowel for codas). To the best of my knowledge, no study has reported the timing of onset consonants relative to the *preceding* (heterosyllabic) vowel. The results from this acoustic study on Italian and Polish are compatible with a right-edge organisation pattern for onset consonants and preceding stressed vowels Figure 7(c). The release of C2 (which is the onset of the second syllable in CÝCV words)—which can be thought as the acoustic parallel of the articulatory right edge of C2—is invariantly timed relative to V1 (which is the nucleus of the first syllable).

A consequence of a right-edge organisation pattern of C2 relative to V1 in CÝCV words is that differences in C2 closure duration do not affect the lag between V1 and the release of C2, as shown by the results of this study. The invariance of the lag between the release of C1 and that of C2 then can be seen to follow from the invariance in timing between, on the one hand, C1 (which is always /p/ in this study) and V1, and, on the other, between V1 and the right edge of C2.

A right-edge organisation account is compatible with findings from electromyographic, x-ray mi-317 crobeam, and ultrasonic data by, respectively, Raphael (1975), De Jong (1991), and Celata et al. (2018). Celata et al. (2018) show that vowels before tautosyllabic clusters have the same duration 319 as before heterosyllabic clusters. However, vowels followed by geminates are shorter than when fol-320 lowed by singletons, although from a syllabic structure point of view geminates correspond to heterosyllabic clusters and singletons to tautosyllabic clusters (i.e., V-final syllables followed by singletons and tautosyllabic clusters are open, while those followed by geminates and heterosyllabic clusters are 323 closed). Celata et al. (2018) argue that these results corroborate a rhythmic account in which the rel-324 evant unit is the rhythmic syllable, i.e. the VC(C) sequence (independent of the traditional syllabic 325 structure), which is kept constant. Such view reflects a gestural timing view in which the timing of 326 the right edge of the consonant is held constant relative to the vowel.

De Jong (1991) reports that the closing gesture of voiceless stops (following stressed vowels) is

faster than that of voiced stops, and that also it is timed earlier with respect to the opening gesture of

the stressed vowel. According to De Jong (1991), the differences in vowel duration are driven by the

timing of the consonantal closing gesture relative to the vocalic opening gesture (also see Hertrich

and Ackermann 1997). Moreover, the data in De Jong (1991) show that the final portion of the

vocalic opening gesture is prolonged before voiced stops. This finding corresponds to what Raphael

(1975) reported based on electromyographic data. The electromyographic signal corresponding to
the vocalic gesture reaches its plateaux at the same time in the voiceless and voiced context, but the
plateaux is held for longer in the case of vowels followed by voiced stops, indicating that muscular
activation is kept for longer.

These studies taken together, plus the results from this study, bring evidence to the view that
two factors contribute to the difference in vowel duration observed before consonants varying in
their voicing specification. These two factors are: (1) the right-edge alignment of coda consonants
following stressed vowels relative to the latter, and (2) the differential timing of the closing gesture
onset for voiceless vs. voiced stops. These two factors together can be synthesised into a compensatory
temporal adjustment account, in which the fixed interval is generated by factor (1) and the temporal
adjustment is brought about by factor (2).

B. Limitations and future work

345

The generalisations reported in this paper strictly apply to disyllabic words with a stressed vowel in the first syllable. It is possible that the organisation pattern found in this context does not occur in sequences including an unstressed vowel. For example, it is known that the difference in closure duration between voiceless and voiced stops is not stable when the stops precede a stressed vowel, although the vowels preceding the pre-stress stops have different durations (Davis and Van Summers, 1989). According to the gestural interpretation given here, the absence in differences of closure duration should correspond to no difference in vowel duration. Data from different contexts and different languages is thus needed to assess the generality of the claims put forward in this paper.

The constraints on experimental material enforced by the use of ultrasound tongue imaging have
been previously mentioned in Section II C. Given these constraints, temporal information from other
vowels (like front vowels) and places of articulation is a desideratum. Section IV A discusses the
interpretation of the Release to Release invariance in CVCV words as a consequence of the timing
of C2 rather than of a holistic CVC motor plan in which the RR interval is held constant. Although
beyond the scope of this paper, disambiguating between these two interpretations on articulatory
grounds is fundamental for a general understanding of a theory of gestural organisation.

The compensatory temporal adjustment account presented here extends to other durational effects discussed in the literature. In particular, the account bears predictions on the direction of the
durational difference led by phonation types different from voicing, like aspiration and ejection. For
example, the mix of results with regard to the effect of aspiration (Durvasula and Luo, 2012) suggests
that the conditions for a temporal adjustment might differ across the contexts and languages studied.
In light of the results in Beguš (2017), future studies will have to investigate the durational invariance
of speech intervals in relation to a variety of phonation contrasts.

V. CONCLUSION

369 ACKNOWLEDGMENTS

Thanks to...

370

371 APPENDIX A: OUTPUT OF STATISTICAL MODELS

1. Vowel duration

term	estimate	std.error	df	statistic	p.value	conf.low	conf.high
(Intercept)	202.5289	8.6169	134.7948	23.5036	0.0000	185.6400	219.4178
c2_phonationvoiced	18.9669	4.3898	12.7785	4.3207	0.0009	10.3631	27.5707
vowelo	-6.1457	3.9512	8.6900	-1.5554	0.1555	-13.8899	1.5985
vowelu	-26.3039	3.9772	8.9199	-6.6136	0.0001	-34.0991	-18.5087
languagePolish	-24.2194	8.1708	21.7230	-2.9642	0.0072	-40.2338	-8.2050
c2_placevelar	-8.1827	1.6984	10.5938	-4.8178	0.0006	-11.5116	-4.8539
syl_rate	-15.2920	1.2679	775.7483	-12.0608	0.0000	-17.7771	-12.8070
c2_phonationvoiced:vowelo	-2.0453	5.8662	10.5314	-0.3487	0.7342	-13.5428	9.4522
c2_phonationvoiced:vowelu	-14.4536	5.8040	10.0977	-2.4903	0.0318	-25.8292	-3.0780
c2_phonationvoiced:languagePolish	-7.9928	6.4252	14.2528	-1.2440	0.2336	-20.5860	4.6005
vowelo:languagePolish	-3.6121	5.7389	9.6704	-0.6294	0.5437	-14.8601	7.6360
vowelu:languagePolish	1.6149	5.7695	9.8777	0.2799	0.7853	-9.6931	12.9230
c2_phonationvoiced:vowelo:languagePolish	-2.9987	8.3627	10.8862	-0.3586	0.7268	-19.3894	13.3920
c2_phonationvoiced:vowelu:languagePolish	7.9601	8.3077	10.6040	0.9582	0.3593	-8.3227	24.2428

373

372

2. Closure duration

term	estimate	std.error	df	statistic	p.value	conf.low	conf.high
(Intercept)	119.7338	7.2100	128.2742	16.6065	0.0000	105.6023	133.8652
c2_phonationvoiced	-16.5825	4.3129	17.8144	-3.8449	0.0012	-25.0356	-8.1294
vowelo	3.6830	3.4951	9.0918	1.0538	0.3192	-3.1672	10.5333
vowelu	-1.9898	3.5174	9.3243	-0.5657	0.5849	-8.8837	4.9041
languagePolish	-6.9400	6.8688	22.0443	-1.0104	0.3233	-20.4027	6.5226
c2_placevelar	3.4024	1.4976	10.9532	2.2719	0.0443	0.4672	6.3376
syl_rate	-8.4278	1.0550	557.6472	-7.9887	0.0000	-10.4954	-6.3601
c2_phonationvoiced:vowelo	1.1040	5.1738	10.8916	0.2134	0.8350	-9.0364	11.2445
c2_phonationvoiced:vowelu	9.9882	5.1257	10.4981	1.9486	0.0786	-0.0581	20.0344
c2_phonationvoiced:languagePolish	1.6759	6.5019	20.0145	0.2578	0.7992	-11.0675	14.4194
vowelo:languagePolish	-0.2681	5.0672	10.0440	-0.0529	0.9588	-10.1997	9.6635
vowelu:languagePolish	7.1432	5.0932	10.2505	1.4025	0.1903	-2.8393	17.1256
c2_phonationvoiced:vowelo:languagePolish	1.5022	7.3707	11.2269	0.2038	0.8422	-12.9441	15.9485
c2_phonationvoiced:vowelu:languagePolish	-3.2088	7.3279	10.9696	-0.4379	0.6700	-17.5711	11.1536

375

3. Vowel and closure duration

term	estimate	std.error	df	statistic	p.value	conf.low	conf.high
(Intercept)	219.3142	10.4477	123.5512	20.9917	0.0000	198.8371	239.7913
closure_duration	-0.1487	0.0632	50.3807	-2.3532	0.0226	-0.2726	-0.0249
vowelo	-2.0462	5.4702	81.5530	-0.3741	0.7093	-12.7675	8.6751
vowelu	-5.0236	5.5582	86.7938	-0.9038	0.3686	-15.9176	5.8703
syl_rate	-17.5364	1.2855	896.1529	-13.6415	0.0000	-20.0559	-15.0168
closure_duration:vowelo	-0.0973	0.0615	876.5971	-1.5835	0.1137	-0.2178	0.0231
closure_duration:vowelu	-0.3500	0.0619	895.3921	-5.6582	0.0000	-0.4712	-0.2288

TABLE II. Participants' sociolinguistic information.

ID	Age	Sex	Native L	Other Ls	City of birth	Spent most time in	> 6 mo
it01	29	Male	Italian	English, Spanish	Verbania	Verbania	Yes
it02	26	Male	Italian	Friulian, English, Ladin-Venetan	Udine	Tricesimo	Yes
it03	28	Female	Italian	English, German	Verbania	Verbania	No
it04	54	Female	Italian	Calabrese	Verbania	Verbania	No
it05	28	Female	Italian	English	Verbania	Verbania	No
it09	35	Female	Italian	English	Vignola	Vignola	Yes
it11	24	Male	Italian	English	Monza	Monza	Yes
it13	20	Female	Italian	English, French, Arabic, Farsi	Ancona	Chiaravalle	Yes
it14	32	Male	Italian	English, Spanish	Frosinone	Frosinone	Yes
pl02	32	Female	Polish	English, Norwegian, French,	Koło	Poznań	Yes
				German, Dutch			
pl03	26	Male	Polish	Russian, English, French, German	Nowa Sol	Poznań	Yes
pl04	34	Female	Polish	Spanish, English, French	Warsaw	Warsaw	No
pl05	42	Male	Polish	English, French	Przasnysz	Warsaw	No
pl06	33	Male	Polish	English	Zgierz	Zgierz	Yes
pl07	32	Female	Polish	English, Russian	Bielsk Podlaski	Bielsk Podlaski	Yes

TABLE III. Target words.

Italian	l		Polish		
pata	poto*	putu	pata	poto	putu
pada	podo	pudu	pada*	podo	pudu
paca*	poco*	pucu	paka*	poko	puku
paga*	pogo	pugu	paga	pogo	pugu

378 APPENDIX B: SOCIO-LINGUISTIC INFORMATION OF PARTICIPANTS

APPENDIX C: TARGET WORDS

- ¹Two accounts that posit a perceptual cause are the ones by Javkin (1976) and Kluender et al. (1988). To the best of my
- knowledge, Javkin (1976)'s proposal remains to be empirically tested, while see Fowler (1992) for arguments against
- 382 Kluender *et al.* (1988).
- ²These estimates should be taken as a gross approximation. There are several issues: number of speakers, different
- contexts, statistical modelling.
- ³IT01 and IT02 (the first two participants of this study) read also sentences with words starting with /b/, which were later
- excluded from the experimental design. The data from /b/-initial words are not included in the analysis reported in this
- 387 paper.
- ⁴Luke (2017) argues that the common approach of using likelihood ratio tests for statistical inference with mixed models
- leads to inflated Type I error rates. Luke (2017, 1501) also warns that 'results should be interpreted with caution,
- regardless of the method adopted for obtaining p-values'.

- Ananthapadmanabha, T. V., Prathosh, A. P., and Ramakrishnan, A. G. (2014). "Detection of the
- closure-burst transitions of stops and affricates in continuous speech using the plosion index," The
- Journal of the Acoustical Society of America **135**(1), 460–471.
- Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). "Fitting linear mixed-effects models using
- lme4," Journal of Statistical Software **67**(1), 1–48.
- Beguš, G. (2017). "Effects of ejective stops on preceding vowel duration," The Journal of the Acous-
- tical Society of America **142**(4), 2168–2184, doi: 10.1121/1.5007728.
- Belasco, S. (1953). "The influence of force of articulation of consonants on vowel duration," The
- Journal of the Acoustical Society of America **25**(5), 1015–1016.
- Bigi, B. (2015). "SPPAS Multi-lingual approaches to the automatic annotation of speech," The
- Phonetician **111–112**, 54–69.
- ⁴⁰³ Browman, C. P., and Goldstein, L. (1988). "Some notes on syllable structure in articulatory phonol-
- ogy," Phonetica **45**(2-4), 140–155.
- ⁴⁰⁵ Browman, C. P., and Goldstein, L. (2000). "Competing constraints on intergestural coordination and
- self-organization of phonological structures," Bulletin de la communication parlée (5), 25–34.
- Caldognetto, E. M., Ferrero, F., Vagges, K., and Bagno, M. (1979). "Indici acustici e indici percettivi
- nel riconoscimento dei suoni linguistici (con applicazione alle consonanti occlusive dell'italiano),"
- Acta Phoniatrica Latina 2, 219–246.
- ⁴¹⁰ Celata, C., Meluzzi, C., and Bertini, C. (2018). "Stressed vowel durational variations and articulatory
- cohesiveness: Italian data" Poster presented at LabPhon 16, Lisbon.

- ⁴¹² Chen, M. (1970). "Vowel length variation as a function of the voicing of the consonant environment,"
- Phonetica **22**(3), 129–159.
- Davis, S., and Van Summers, W. (1989). "Vowel length and closure duration in word-medial VC
- sequences," The Journal of the Acoustical Society of America 17, 339–353.
- De Jong, K. (1991). "An articulatory study of consonant-induced vowel duration changes in english,"
- Phonetica **48**(1), 1–17.
- Durvasula, K., and Luo, Q. (2012). "Voicing, aspiration, and vowel duration in Hindi," Proceedings
- of Meetings on Acoustics **18**, 1–10.
- Esposito, A. (2002). "On vowel height and consonantal voicing effects: Data from Italian," Phonetica
- **59**(4), 197–231.
- Farnetani, E., and Kori, S. (1986). "Effects of syllable and word structure on segmental durations in
- spoken Italian," Speech communication **5**(1), 17–34.
- Fowler, C. A. (1992). "Vowel duration and closure duration in voiced and unvoiced stops: There are
- no contrast effects here," Journal of Phonetics **20**(1), 143–165.
- Fox, J. (2003). "Effect displays in R for generalised linear models," ournal of Statistical Software
- 8(15), 1–27, doi: 10.18637/jss.v008.i15.
- Gelman, A., and Loken, E. (2013). "The garden of forking paths: Why multiple comparisons can be
- a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis
- was posited ahead of time," Department of Statistics, Columbia University.
- Goldstein, L., Byrd, D., and Saltzman, E. (2006). "The role of vocal tract gestural action units in
- understanding the evolution of phonology," in Action to Language via the Mirror Neuron System,
- edited by M. A. Arbib (Cambridge: Cambridge University Press), pp. 215–249.

- Goldstein, L., and Pouplier, M. (2014). "The temporal organization of speech," in *The Oxford hand-*
- book of language production, edited by V. Ferreira, M. Goldrick, and M. Miozzo (Oxford: Oxford
- University Press).
- Hajek, J., and Stevens, M. (2008). "Vowel duration, compression and lengthening in stressed syllables
- in central and southern varieties of standard italian," ISCA.
- Halle, M., and Stevens, K. (1967). "Mechanism of glottal vibration for vowels and consonants," The
- Journal of the Acoustical Society of America **41**(6), 1613–1613.
- Heffner, R.-M. (1937). "Notes on the length of vowels," American Speech 12, 128–134.
- Hertrich, I., and Ackermann, H. (1997). "Articulatory control of phonological vowel length contrasts:
- Kinematic analysis of labial gestures," The Journal of the Acoustical Society of America 102(1),
- ₄₄₄ 523–536.
- House, A. S., and Fairbanks, G. (1953). "The influence of consonant environment upon the secondary
- acoustical characteristics of vowels," The Journal of the Acoustical Society of America 25(1), 105–
- 447 113.
- Hussein, L. (1994). "Voicing-dependent vowel duration in Standard Arabic and its acquisition by
- adult american students," Ph.D. thesis, The Ohio State University.
- Jacewicz, E., Fox, R. A., and Lyle, S. (2009). "Variation in stop consonant voicing in two regional
- varieties of American English," Journal of the International Phonetic Association 39(3), 313–334,
- doi: 10.1017/S0025100309990156.
- 453 Jarosz, A. F., and Wiley, J. (2014). "What are the odds? a practical guide to computing and reporting
- Bayes factors," The Journal of Problem Solving 7(1), 2–9, doi: 10.7771/1932-6246.1167.

- Javkin, H. R. (1976). "The perceptual basis of vowel duration differences associated with the
- voiced/voiceless distinction," Report of the Phonology Laboratory, UC Berkeley 1, 78–92.
- Keating, P. A. (1984). "Universal phonetics and the organization of grammars," UCLA Working
- Papers in Phonetics **59**.
- Kerr, N. L. (1998). "HARKing: Hypothesizing after the results are known," Personality and Social
- ⁴⁶⁰ Psychology Review **2**(3), 196–217.
- Klatt, D. H. (1973). "Interaction between two factors that influence vowel duration," The Journal of
- the Acoustical Society of America **54**(4), 1102–1104.
- Kluender, K. R., Diehl, R. L., and Wright, B. A. (1988). "Vowel-length differences before voiced
- and voiceless consonants: An auditory explanation.," Journal of Phonetics **16**, 153–169.
- 465 Kuznetsova, A., Bruun Brockhoff, P., and Haubo Bojesen Christensen, R. (2017). "ImerTest
- package: Tests in linear mixed effects models," Journal of Statistical Software 82(13), doi:
- 467 10.18637/jss.v082.i13.
- Laeufer, C. (1992). "Patterns of voicing-conditioned vowel duration in French and English," Journal
- of Phonetics **20**(4), 411–440.
- Lampp, C., and Reklis, H. (2004). "Effects of coda voicing and aspiration on Hindi vowels," The
- Journal of the Acoustical Society of America 115(5), 2540–2540.
- Lehiste, I. (1970a). "Temporal organization of higher-level linguistic units," The Journal of the
- Acoustical Society of America **48**(1A), 111–111.
- Lehiste, I. (1970b). "Temporal organization of spoken language," in Working Papers in Linguistics,
- 475 Vol. 4, pp. 96–114.

- Lindblom, B. (1967). "Vowel duration and a model of lip mandible coordination," Speech Transmis-
- sion Laboratory Quarterly Progress Status Report **4**, 1–29.
- Lisker, L. (1957). "Closure duration and the intervocalic voiced-voiceless distinction in English,"
- 479 Language **33**(1), 42–49.
- Lisker, L. (1974). "On "explaining" vowel duration variation," in *Proceedings of the Linguistic Society*
- of America, pp. 225–232.
- Luke, S. G. (2017). "Evaluating significance in linear mixed-effects models in R," Behavior Research
- Methods **49**(4), 1494–1502, doi: 10.3758/s13428-016-0809-y.
- Maddieson, I., and Gandour, J. (1976). "Vowel length before aspirated consonants," in *UCLA Work-*
- ing papers in Phonetics, Vol. 31, pp. 46–52.
- Malisz, Z., and Klessa, K. (2008). "A preliminary study of temporal adaptation in Polish vc groups,"
- in *Proceedings of Speech Prosody*, pp. 383–386.
- 488 Marin, S., and Pouplier, M. (2010). "Temporal organization of complex onsets and codas in American
- English: Testing the predictions of a gestural coupling model," Motor Control **14**(3), 380–407.
- 490 Marin, S., and Pouplier, M. (2014). "Articulatory synergies in the temporal organization of liquid
- clusters in Romanian," Journal of Phonetics **42**, 24–36.
- Nowak, P. (2006). "Vowel reduction in Polish," Ph.D. thesis, University of California, Berkeley.
- Peterson, G. E., and Lehiste, I. (1960). "Duration of syllable nuclei in english," The Journal of the
- 494 Acoustical Society of America **32**(6), 693–703.
- Plug, L., and Smith, R. (2018). "Segments, syllables and speech tempo perception" Talk presented
- at the 2018 Colloquium of the British Association of Academic Phoneticians (BAAP 2018).

- ⁴⁹⁷ R Core Team (2018). "R: A language and environment for statistical computing" R Foundation for
- Statistical Computing, Vienna, Austria, https://www.R-project.org.
- ⁴⁹⁹ Raftery, A. E. (1995). "Bayesian model selection in social research," Sociological methodology 111–
- 500 163.
- Raftery, A. E. (1999). "Bayes factors and BIC: Comment on "A critique of the Bayesian information
- criterion for model selection"," Sociological Methods & Research 27(3), 411–427.
- Raphael, L. J. (1975). "The physiological control of durational differences between vowels preceding
- voiced and voiceless consonants in English," Journal of Phonetics **3**(1), 25–33.
- Roettger, T. B. (2018). "Researcher degrees of freedom in phonetic sciences" Pre-print available at
- ⁵⁰⁶ PsyArXiv, doi: 10.31234/osf.io/fp4jr.
- 507 Slis, I. H., and Cohen, A. (1969a). "On the complex regulating the voiced-voiceless distinction I,"
- Language and speech **12**(2), 80–102.
- Slis, I. H., and Cohen, A. (1969b). "On the complex regulating the voiced-voiceless distinction II,"
- Language and speech **12**(3), 137–155.
- 511 Sóskuthy, M. (2013). "Phonetic biases and systemic effects in the actuation of sound change," Ph.D.
- thesis, University of Edinburgh.
- Van Summers, W. (1987). "Effects of stress and final-consonant voicing on vowel production: Artic-
- ulatory and acoustic analyses," The Journal of the Acoustical Society of America 82(3), 847–863,
- doi: 10.1121/1.395284.
- Vazquez-Alvarez, Y., and Hewlett, N. (2007). "The 'trough effect': an ultrasound study," Phonetica
- **64**(2-3), 105–121.

- Wagenmakers, E.-J. (2007). "A practical solution to the pervasive problems of p values," Psycho-
- nomic bulletin & review **14**(5), 779–804.
- Warren, W., and Jacks, A. (2005). "Lip and jaw closing gesture durations in syllable final voiced and
- voiceless stops," The Journal of the Acoustical Society of America 117(4), 2618–2618.
- Wickham, H. (2017). "tidyverse: Easily install and load the 'tidyverse" R package version 1.2.1.,
- https://CRAN.R-project.org/package=tidyverse.