Student Seminar #9 (2018/06/26)

Bayesian Data Analysis CHAPTER 17:

Metric Predicted Variable with One Metric Predictor

Contents

Overview of Chapter17	1
17.1 Simple Linear Regression	2-3
17.2 Robust Linear Regression	4-9
17.3 Hierarchical Regression on Individuals Within Groups	10-12
17.4 Quadratic Trend and Weighted Data	13-16
17.5 Procedure and Perils for Expanding a Model	17-19

Overview of Chapter 17

- Purpose
- ✓ Predict one metric variable from one metric predictor

y x

ex.) weight height

Outline
Specific Model

Expanding a Model

17.1 Simple Linear Regression

■ Step

- ✓ Generate any random x
- ✓ Compute the mean predicted value of y by $\mu = 60 + 61x$
- \checkmark Generate random variable for datum y from a normal distribution (μ: mean, σ: standard deviation)

Figure

Generate x from Left:

a uniform distribution Right :

a bimodal distribution

Both shows data from the same model

17.1 Simple Linear Regression

Assumption

✓ Homogeneity of variance
 At every value of x, the variance of y is the same

■ Note

✓ Simple Linear Regression describes tendencies, not causality

Figure

Both assumes Homogeneity of variance

But hard to see it on **the right figure** because there is an area which x is sparse

- Object
- ✓ Data which have outliers
- Assumption
- ✓ The datum y_i is a **t-distributed** random value around the central tendency $\mu_i = 60 + 61x_i$
- Diagram

Goal

✓ Determine what combinations of *β₀, β₁, σ, ν* are credible, given the data The answer (from Bayes' rule) :

$$p(\beta_0, \beta_1, \sigma, \nu | D) = \frac{p(D|\beta_0, \beta_1, \sigma, \nu) p(\beta_0, \beta_1, \sigma, \nu)}{\iiint d\beta_0 d\beta_1 d\sigma d\nu p(D|\beta_0, \beta_1, \sigma, \nu) p(\beta_0, \beta_1, \sigma, \nu)}$$

→ Complicated...

Use JAGS or Stan!

What we have to do

- ✓ Specify sensible priors
- ✓ Make sure that the MCMC process generates a trustworthy sample that is converged and well mixed
 - → Talk about it later

■ Figure

N = 300

Problem with using raw data

- ✓ Parameter-correlation problem
 The credible slopes and intercepts trade off
 When the slope is small, the intercept is big
 When the slope is big, the intercept is small
 - → MCMC sampling is difficult
 Two parameter values change slowly

Ways to make the sampling more efficient

- ✓ Change the sampling algorithm → Stan : HMC
- ✓ Transform the data → JAGS : Standardization

Mean centering

- ✓ Slide the axis so that zero falls under the mean
 - → The Slope changes without any big changes on the intercept
 - → Solve parameter-correlation problem(???)

Standardize data

- \checkmark Re-scaling the data relative to their mean(M) and standard deviation(SD): $z_x = \frac{(x - M_x)}{SD_x}$ and $z_y = \frac{(y - M_y)}{SD_x}$
- ✓ Linear Regression using standardized data

$$z_{y} = \frac{\left(y - M_{y}\right)}{\mathrm{SD}_{y}}$$

 ζo : the slope with the data

ζ1: the intercept with the data

Interpreting the posterior distribution

- ✓ Compare N=30 regression and N=300 one
- ✓ The slope, intercept and scale are about the same.
- ✓ The certainty of the estimate for N=300 is tighter than for N=30
- ✓ The normality parameter for N=300 is bigger than for N=30

Object

✓ Data that each individual contributes multiple observations
 ex.) Reading-ability scores of children across several years
 Family income for different size of the family, for different regions

Assumption

- ✓ Each individual is representative of the group
 - → Every individual informs the estimate of the group slope and intercept Get sharing of information across individuals

■ Goal

- ✓ describe each individual with a linear regression
- ✓ Estimate the typical slope and intercept of the group overall

17. 3 Hierarchical Regression on Individuals Within Groups

■ The model and implementation in JAGS

normal

✓ Diagram

 μ_0 : typical slope of the individuals

uniform

σ₀: variability of those individual slopes

normal

 μ_1 : typical intercepts of the individuals

uniform

σ₁: variability of those individual intercepts

17. 3 Hierarchical Regression on Individuals Within Groups

■ The posterior distribution : Shrinkage and prediction

- ✓ Overall : Clearly positive by integrating each individual slope
- ✓ Individual: Notable shrinkage of the estimates of the individuals
- ✓ The estimates are tightly constrained by each data

Object

 \checkmark Data that y appears to have a **nonlinear** trend as x increases

Example

✓ Family size and family income for each state in the U.S.

■ Model

- $\checkmark \quad \mu_i = b_0 + b_1 x + b_2 x^2$
- ✓ If $b_2 = 0$ → linear model
- √ If |b₂| is big
 - → nonlinear model is reasonable

Nonlinear Regression using standardized data

$$z_{\hat{y}} = \zeta_0 + \zeta_1 z_x + \zeta_2 z_x^2 \qquad \text{by definition of the model}$$

$$\frac{(\hat{y} - M_y)}{\text{SD}_y} = \zeta_0 + \zeta_1 \frac{(x - M_x)}{\text{SD}_x} + \zeta_2 \frac{(x - M_x)^2}{\text{SD}_x^2} \qquad \text{from Equation 17.1}$$

$$\hat{y} = \underline{\zeta_0 \text{SD}_y + M_y - \zeta_1 M_x \text{SD}_y / \text{SD}_x + \zeta_2 M_x^2 \text{SD}_y / \text{SD}_x^2}}$$

$$+ \underline{(\zeta_1 \text{SD}_y / \text{SD}_x - 2\zeta_2 M_x \text{SD}_y / \text{SD}_x^2)} \quad x + \underline{\zeta_2 \text{SD}_y / \text{SD}_x^2} \quad x^2 \qquad (17.3)$$

Weighting data

- ✓ The data report the median income based on different numbers of families at each size
 - → every median has a different amount of sampling noise
- ✓ Consider "margin of error"
 If margin of error is high, noise parameter should be increased
 If margin of error is small, noise parameter should be decreased

Results and interpretation

- ✓ The quadratic coefficient is -2200 ~ -1700
 - → Nonlinear model is reasonable
- ✓ Hawaii (the amount of data is not big)
 - → The trend is **upward**, but the curve is **downward curvature**
 - → Shrinkage from the group
- ✓ California
 - → a narrow spread at family size 2
 a large spread at family size 7
 - → the most of the data for large family sizes have
 large standard errors

■ Further extensions

	An example of family income and family size	Extensions
Trend	linear quadratic	higher-order polynomial Sinusoidal exponential
Noise distribution	a single lying noise for all individuals	vary among individuals
Distribution for parameters	normal distribution	t distribution
Considering Covariation	No	Use a multivariate normal prior on the intercept and slope

17. 5 Procedure and Perils for Expanding a Model

Posterior predictive check

- ✓ Visualize the data and the posterior predictions
 - → If the prediction doesn't seem to fit the data, change the model
 - → New model should be both meaningful and computationally tractable
- ✓ Create a posterior predictive sampling distribution
 - → measure of discrepancy between the predictions and the data

Ways to extend a model

✓ Add a parameter

ex.)
$$\mu i = 60 + 61X \rightarrow \mu i = 60 + 61X + 62X^2$$

You can check the validity of the model by considering 62

- ✓ Try a completely different model
 - → Compare models by **Bayesian model comparison**
- ✓ "double dipping": data are used to change the prior distribution

17. 5 Procedure and Perils for Expanding a Model

Steps to extend a JAGS or Stan model

- ✓ Carefully specify the model with its new parameters
 - → Draw a diagram
- ✓ Be sure all the new parameters have sensible priors
- ✓ Define initial values for all the new parameters
 - → You can let JAGS initialize parameters automatically
- ✓ Tell JAGS to track the new parameters
 - → Stan automatically tracks
- ✓ Modify the summary and graphics output to properly display the extended model
 - → You should write **R code** because graphics are displayed by R

17. 5 Procedure and Perils for Expanding a Model

Perils of adding parameters

- ✓ Increase in uncertainty of a parameter estimate
 - → The curvature and slope trade-off strongly
 - → Even if curvature is 0, the certainty of slope decreases
- ✓ The one of the ways to solve the problem is standardizing the data

Quadratic trend

Linear trend