CS315: DATABASE SYSTEMS RELATIONAL ALGEBRA

Arnab Bhattacharya

arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs315/

2nd semester, 2018-19 Mon 12:00-13:15, Tue 9:00-10:15

Relational Algebra

- Procedural language to specify database queries
- Operators are functions from one or two input relations to an output relation
 - \bigcirc Select: σ
 - Project: Π
 - Onion: ∪
 - Set Difference: –
 - Cartesian Product: ×
 - **1** Rename: ρ

Relational Algebra

- Procedural language to specify database queries
- Operators are functions from one or two input relations to an output relation
 - \bullet Select: σ
 - Project: П
 - Output
 Union: ∪
 - Set Difference: –
 - Cartesian Product: ×
 - Rename: ρ
- Uses propositional calculus consisting of expressions connected by
 - and: ^
 - ② or: ∨
 - not: ¬
- Each term is of the form

```
<attr/const> comparator <attr/const> where comparator is one of =, \neq, >, \geq, <, \leq
```

Select

- $\sigma_p(r) = \{t | t \in r \text{ and } p(t)\}$
- p is called the selection predicate
- Select all tuples from r that satisfies the predicate p
- Schema is

Select

- $\sigma_p(r) = \{t | t \in r \text{ and } p(t)\}$
- p is called the selection predicate
- Select all tuples from r that satisfies the predicate p
- Schema is not changed
- Applying $\sigma_{A=B \land D>5}$ on

Α	В	С	D
1	1	2	7
1	2	5	7
2	2	9	3
2	2	8	6

returns

Select

- $\sigma_p(r) = \{t | t \in r \text{ and } p(t)\}$
- *p* is called the selection predicate
- Select all tuples from r that satisfies the predicate p
- Schema is not changed
- Applying $\sigma_{A=B \land D>5}$ on

	Α	В	С	D	
	1	1	2	7	
	1	2	5	7	
	2	2	9	3	
	2	2	8	6	
		Α	В	С	D
returr	าร	1	1	2	7
		2	2	8	6

- $\bullet \Pi_{A_1,...,A_k}(r)$
- A_i, etc. are attributes of r
- Select only the specified attributes $A_1, ..., A_k$ from all tuples of r
- Duplicate rows are removed, since relations are sets

- $\bullet \Pi_{A_1,...,A_k}(r)$
- A_i, etc. are attributes of r
- Select only the specified attributes A_1, \ldots, A_k from all tuples of r
- Duplicate rows are removed, since relations are sets
- Schema is

- $\bullet \Pi_{A_1,...,A_k}(r)$
- A_i, etc. are attributes of r
- Select only the specified attributes $A_1, ..., A_k$ from all tuples of r
- Duplicate rows are removed, since relations are sets
- Schema is changed
- Applying $\Pi_{A,C}$ on

Α	В	С
1	1	5
1	2	5
2	3	5
2	4	8

returns

- $\bullet \ \Pi_{A_1,...,A_k}(r)$
- A_i, etc. are attributes of r
- Select only the specified attributes A_1, \ldots, A_k from all tuples of r
- Duplicate rows are removed, since relations are sets
- Schema is changed
- Applying $\Pi_{A,C}$ on

	Α	E	3	C)	
	1	-	1	5	5	
	1	2	2	5	5	
	2	3	3	5	5	
	2	4	1	8	3	
			A	4	С	
eturns		-	1	5		
		5	2	2	5	
			2	2	8	

Set Union

- $r \cup s = \{t | t \in r \text{ or } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same *type* of attribute in each column as well, i.e., attribute domains must be *compatible*
- If attribute names are not same, renaming should be used
- Schema is

Set Union

- $r \cup s = \{t | t \in r \text{ or } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- $\bullet \ \, \text{Applying} \cup \text{on} \\$

returns

Set Union

- $r \cup s = \{t | t \in r \text{ or } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- $\bullet \ \, \text{Applying} \cup \text{on} \\$

	Α	В
	1	1
returns	1	2
	2	1
	2	3

Set Difference

- $r s = \{t | t \in r \text{ and } t \notin s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is

Set Difference

- $r s = \{t | t \in r \text{ and } t \notin s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- Applying on

returns

Set Difference

- $r s = \{t | t \in r \text{ and } t \notin s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- Applying on

Cartesian Product

- $r \times s = \{t \ q | t \in r \text{ and } q \in s\}$
- Attributes of relations r and s should be disjoint
- If attributes are not disjoint, renaming should be used
- Schema is

Cartesian Product

- $r \times s = \{t \ q | t \in r \text{ and } q \in s\}$
- Attributes of relations r and s should be disjoint
- If attributes are not disjoint, renaming should be used
- Schema is changed
- Applying × on

returns

Cartesian Product

- $r \times s = \{t \ q | t \in r \text{ and } q \in s\}$
- Attributes of relations r and s should be disjoint
- If attributes are not disjoint, renaming should be used
- Schema is changed
- Applying × on

АВ			С	D	E
		nd -	1	2	7
1 1		iu	2	6	8
2 2			5	7	9
	Α	В	С	D	Ε
-	1	1	1	2	7
	1	1	2	6	8
returns	1	1	5	7	9
	2	2	1	2	7
	2	2	2	6	8
	2	2	5	7	9

Rename

- $\rho_N(E)$ returns E, but under the new name N
- For *n*-ary relations, $\rho_{N(A_1,...,A_n)}(E)$ returns the result of expression E, but under the new name N and the attributes renamed to A_1 , etc.
- Schema is

Rename

- $\rho_N(E)$ returns E, but under the new name N
- For *n*-ary relations, $\rho_{N(A_1,...,A_n)}(E)$ returns the result of expression E, but under the new name N and the attributes renamed to A_1 , etc.
- Schema is changed although its meaning is not
- Applying $\rho_{s(C,D)}$ on r(A,B)

Α	В
1	1
1	2
2	3
2	4

returns

Rename

- $\rho_N(E)$ returns E, but under the new name N
- For *n*-ary relations, $\rho_{N(A_1,...,A_n)}(E)$ returns the result of expression E, but under the new name N and the attributes renamed to A_1 , etc.
- Schema is changed although its meaning is not
- Applying $\rho_{s(C,D)}$ on r(A,B)

Α	В	
1	1	-
1	2	
2	3	
2	4	
	С	D
	1	1
returns	1	2
	2	3
	2	4

Additional Operations

- Additional operators have been defined
 - Set Intersection: ∩
 - ② Join: ⋈
 - Oivision: ÷
 - 4 Assignment: ←
- These do not add any power to the basic relational algebra
 - They can be defined using the six basic operators
- However, they simplify queries

- $r \cap s = \{t | t \in r \text{ and } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same *type* of attribute in each column as well, i.e., attribute domains must be *compatible*
- If attribute names are not same, renaming should be used
- Schema is

- $r \cap s = \{t | t \in r \text{ and } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- Applying ∩ on

returns

- $r \cap s = \{t | t \in r \text{ and } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- Applying ∩ on

returns
$$\frac{A}{1}$$
 $\frac{B}{2}$

- $r \cap s = \{t | t \in r \text{ and } t \in s\}$
- Relations r and s must have the same arity (i.e., number of attributes)
- They must have same type of attribute in each column as well, i.e., attribute domains must be compatible
- If attribute names are not same, renaming should be used
- Schema is not changed
- Applying ∩ on

returns
$$\frac{A}{1}$$
 $\frac{B}{2}$

 $r \cap s = r - (r - s)$

- $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
- Join is too common a query to not have its own operator
- Schema is

- $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
- Join is too common a query to not have its own operator
- Schema is same as $r \times s$ but (potentially) less number of tuples
- The above form is the most general, called the theta join

- $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
- Join is too common a query to not have its own operator
- Schema is same as $r \times s$ but (potentially) less number of tuples
- The above form is the most general, called the theta join
- Equality join: When the join condition only contains equality
 - $r \bowtie_{B=C} s$

- $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
- Join is too common a query to not have its own operator
- Schema is same as $r \times s$ but (potentially) less number of tuples
- The above form is the most general, called the theta join
- Equality join: When the join condition only contains equality
 - $r\bowtie_{B=C} s$
- Natural join: If two relations share an attribute (also its name), equality join on that common attribute
 - Denoted by * or simply ⋈ without any predicate
 - Changes schema by retaining only one copy of common attribute
 - $r * s = r \bowtie s = r \bowtie_{r.A=s.A} s$
- Applying ⋈ on

	Α	В		Δ	\sim	
•	1	1	_	$\overline{}$	O	_
	•	•	and	1	2	returns
	1	2	una	•	_	rotarrio
	•	_		2	3	
	2	1		_	•	

- $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$
- Join is too common a query to not have its own operator
- Schema is same as $r \times s$ but (potentially) less number of tuples
- The above form is the most general, called the theta join
- Equality join: When the join condition only contains equality
 - $r\bowtie_{B=C} s$
- Natural join: If two relations share an attribute (also its name), equality join on that common attribute
 - Denoted by * or simply ⋈ without any predicate
 - Changes schema by retaining only one copy of common attribute
 - $r * s = r \bowtie s = r \bowtie_{r.A=s.A} s$
- Applying ⋈ on

Α	В		Δ	С		Α	В	С
1	1	- ond	_	0	- roturno	1	1	2
1	2	anu			returns	1	2	2
2	1		2	3		2	1	3

- $r \div s = \{t | t \in \Pi_{R-S}(r) \text{ and } \forall u \in s(tu \in r)\}$
- $q = r \div s$ is the largest relation satisfying $q \times s \subseteq r$

- $r \div s = \{t | t \in \Pi_{R-S}(r) \text{ and } \forall u \in s(tu \in r)\}$
- $q = r \div s$ is the largest relation satisfying $q \times s \subseteq r$
- Relation r must have a schema that is a proper superset of the schema of s, i.e., $S \subset R$
- Used for queries of the form "for all"
- Schema is

- $r \div s = \{t | t \in \Pi_{R-S}(r) \text{ and } \forall u \in s(tu \in r)\}$
- $q = r \div s$ is the largest relation satisfying $q \times s \subseteq r$
- Relation r must have a schema that is a proper superset of the schema of s, i.e., $S \subset R$
- Used for queries of the form "for all"
- Schema is changed to R S
- Applying ÷ on

Α	В			
1	5	-		
1	6			
1	7		В	
2	5	and	5	returns
2	6		6	
3	5			
3	7			
4	5			

- $r \div s = \{t | t \in \Pi_{R-S}(r) \text{ and } \forall u \in s(tu \in r)\}$
- $q = r \div s$ is the largest relation satisfying $q \times s \subseteq r$
- Relation r must have a schema that is a proper superset of the schema of s, i.e., $S \subset R$
- Used for queries of the form "for all"
- Schema is changed to R S
- Applying ÷ on

Α	В				
1	5	-			
1	6				
1	7		В		Α
2	5	and	5	returns	1
2	6		6		2
3	5				
3	7				
4	5				

Division (contd.)

Applying ÷ on

Α	В	С	D				
1	5	2	7	_			
1	5	3	7				
1	6	3	7		С	D	
2	6	2	7	and	2	7	returns
2	6	3	7		3	7	
3	6	2	7				
3	6	3	7				
3	5	3	7				

Division (contd.)

Applying ÷ on

Division (contd.)

Applying ÷ on

•
$$r \div s = \Pi_{R-S}(r) - \Pi_{R-S}((\Pi_{R-s}(r) \times s) - \Pi_{R-S,S}(r))$$

Assignment

- $s \leftarrow E(r)$ assigns the relation resulting from applying E on r to s
- Useful in complex queries to hold intermediate values
 - Can be used sequentially
- Schema is

Assignment

- $s \leftarrow E(r)$ assigns the relation resulting from applying E on r to s
- Useful in complex queries to hold intermediate values
 - Can be used sequentially
- Schema is not changed
- $\rho_{(A=B)}(\Pi_{A,B}(r))$ can be broken into $s \leftarrow \Pi_{A,B}(r)$ and $\rho_{(A=B)}(s)$

	r	
Α	В	С
1	1	7
2	2	8
5	7	9

Assignment

- $s \leftarrow E(r)$ assigns the relation resulting from applying E on r to s
- Useful in complex queries to hold intermediate values
 - Can be used sequentially
- Schema is not changed
- $\rho_{(A=B)}(\Pi_{A,B}(r))$ can be broken into $s \leftarrow \Pi_{A,B}(r)$ and $\rho_{(A=B)}(s)$

Composition of Operators

- Expressions can be built using multiple operators
- Applying $\sigma_{A=C}(r \times s)$ on

Precedence and Associativity

Precedence is generally assumed to be

Operators
σ, Π, ρ
\bowtie , \bowtie_{θ} , \times
∪, ∩, −

- Associativity is assumed to be left-to-right
- Not part of definition
- Therefore, best to use explicit brackets

Example Schema

- course (<u>code</u>, title, *ctype*, webpage)
- coursetype (ctype, dept)
- faculty (<u>fid</u>, name, dept, designation)
- department (deptid, name)
- semester (yr, half)
- offering (coursecode, yr, half, instructor)
- student (<u>roll</u>, name, <u>dept</u>)
- program (roll, ptype)
- registration (coursecode, roll, yr, half, grade)

• Find all courses offered in the year 2018

• Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018

- Find all courses offered in the year 2018 $\sigma_{
 m yr=2018}({
 m offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{vr}=2018}(\text{offering}))$
- Find the course codes for all the courses offered in either of the years 2017 and 2018

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$
- Find the course codes for all the courses offered in either of the years 2017 and 2018

```
\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) \cup \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))
```

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$
- Find the course codes for all the courses offered in either of the years 2017 and 2018

$$\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) \cup \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$$

 Find the course codes for all the courses offered in the year 2017 but not in 2018

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$
- Find the course codes for all the courses offered in either of the years 2017 and 2018

$$\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) \cup \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$$

 Find the course codes for all the courses offered in the year 2017 but not in 2018

```
\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) - \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))
```

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{vr}=2018}(\text{offering}))$
- Find the course codes for all the courses offered in either of the years 2017 and 2018

$$\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) \cup \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$$

 Find the course codes for all the courses offered in the year 2017 but not in 2018

```
\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) - \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))
```

 Find the course codes for all the courses offered in both the years 2017 and 2018

- Find all courses offered in the year 2018 $\sigma_{\rm yr=2018}({\rm offering})$
- Find the course codes for all courses offered in the year 2018 $\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$
- Find the course codes for all the courses offered in either of the years 2017 and 2018

$$\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) \cup \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$$

 Find the course codes for all the courses offered in the year 2017 but not in 2018

```
\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) - \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))
```

 Find the course codes for all the courses offered in both the years 2017 and 2018

$$\Pi_{\text{coursecode}}(\sigma_{\text{yr}=2017}(\text{offering})) \cap \Pi_{\text{coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}))$$

• Find the titles of all courses offered in the year 2018

Find the titles of all courses offered in the year 2018

 $\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\text{offering}\times\text{courses})))$

Find the titles of all courses offered in the year 2018

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\text{offering}\times\text{courses})))$$

 $\Pi_{\text{title}}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\sigma_{\text{yr}=2018}(\text{offering}) \times \text{courses}))$

Find the titles of all courses offered in the year 2018

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\text{offering}\times\text{courses})))$$

$$\Pi_{\text{title}}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\sigma_{\text{yr}=\text{2018}}(\text{offering}) \times \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering} \bowtie \text{courses}))$$

Find the titles of all courses offered in the year 2018

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\text{offering}\times\text{courses})))$$

$$\Pi_{\text{title}}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\sigma_{\text{yr}=\text{2018}}(\text{offering}) \times \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering} \bowtie \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering}) \bowtie \text{courses})$$

Find the titles of all courses offered in the year 2018

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\text{offering}\times\text{courses})))$$

$$\Pi_{\text{title}}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\sigma_{\text{yr}=\text{2018}}(\text{offering}) \times \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering} \bowtie \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering}) \bowtie \text{courses})$$

Find the years when all the courses of type 5 were offered

Find the titles of all courses offered in the year 2018

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\text{offering}\times\text{courses})))$$

$$\Pi_{\text{title}}(\sigma_{\text{offering.coursecode}=\text{courses.coursecode}}(\sigma_{\text{yr}=\text{2018}}(\text{offering}) \times \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering} \bowtie \text{courses}))$$

$$\Pi_{\text{title}}(\sigma_{\text{yr}=2018}(\text{offering}) \bowtie \text{courses})$$

Find the years when all the courses of type 5 were offered

$$\begin{split} \operatorname{ct} \leftarrow & \rho_{\operatorname{coursecode}}(\Pi_{\operatorname{code}}(\sigma_{\operatorname{ctype}=5}(\operatorname{course}))) \\ & (\Pi_{\operatorname{coursecode}, \operatorname{yr}}(\operatorname{offering})) \div \operatorname{ct} \end{split}$$

Extended Relational Algebra

- The power of relational algebra can be enhanced by
 - Generalized Projection
 - Grouping and Aggregate operations
 - Outer Join

Generalized Projection

- Extends project operator by allowing arbitrary arithmetic functions in attribute list
- $\bullet \ \Pi_{F_1,\ldots,F_k}(E)$
- F_i, etc. are arithmetic expressions involving constants and attributes in schema of E
- Applying $\Pi_{B-A,2C}$ on r

Α	В	С
1	1	5
1	2	5
2	3	5
2	4	8

returns

Generalized Projection

- Extends project operator by allowing arbitrary arithmetic functions in attribute list
- $\bullet \ \Pi_{F_1,\ldots,F_k}(E)$
- F_i, etc. are arithmetic expressions involving constants and attributes in schema of E
- Applying $\Pi_{B-A,2C}$ on r

	Α	В	С	
	1	1	5	
	1	2	5	
	2	3	5	
	2	4	8	
		B-	Α	2C
rotu	ırns	0		10
Tetu		1		10
		2		16

- Aggregate functions that can be used are avg, min, max, sum, count
- Can be applied on groups of tuples as well
- Aggregate operation is of the form $G_1,...,G_k$ $G_{F_1(A_1),...,F_n(A_n)}(E)$ where
 - G_1, \ldots, G_k is the list of attributes on which to group (may be empty)
 - Each F_i is an aggregate function that operates on the attribute A_i
- Applying $G_{sum(C)}$ on r

Α	В	С	
1	1	5	_
1	2	5	returns
2	3	5	
2	4	8	

- Aggregate functions that can be used are avg, min, max, sum, count
- Can be applied on groups of tuples as well
- Aggregate operation is of the form $G_1,...,G_k$ $G_{F_1(A_1),...,F_n(A_n)}(E)$ where
 - G_1, \ldots, G_k is the list of attributes on which to group (may be empty)
 - Each F_i is an aggregate function that operates on the attribute A_i
- Applying $G_{sum(C)}$ on r

Α	В	С		
1	1	5	-	cum(C)
1	2	5	returns	sum(C) 23
2	3	5		23
2	4	8		

- First, the tuples are grouped according to G_1, \ldots, G_k
- Then, aggregate functions $F_1(A_1), ..., F_n(A_n)$ are applied on each group
- Schema changes to $(G_1, \ldots, G_k, F_1(A_1), \ldots, F_n(A_n))$
- Applying ${}_{A}G_{sum(C)}$ on r

Α	В	С	
1	1	5	-
1	2	5	roturno
2	3	5	returns
2	4	8	
3	4	8	

- First, the tuples are grouped according to G_1, \ldots, G_k
- Then, aggregate functions $F_1(A_1), ..., F_n(A_n)$ are applied on each group
- Schema changes to $(G_1, \ldots, G_k, F_1(A_1), \ldots, F_n(A_n))$
- Applying ${}_{A}G_{sum(C)}$ on r

Α	В	С			
1	1	5	-	Α	sum(C)
1	2	5	returns	1	10
2	3	5	returns	2	13
2	4	8		3	8
3	4	8			

- First, the tuples are grouped according to G_1, \ldots, G_k
- Then, aggregate functions $F_1(A_1), \ldots, F_n(A_n)$ are applied on each group
- Schema changes to $(G_1, \ldots, G_k, F_1(A_1), \ldots, F_n(A_n))$
- Applying ${}_{A}G_{sum(C)}$ on r

• Applying $_{A,B}G_{sum(C)}$ on r

Α	В	С	
1	1	5	returns
1	2	5	returns
1	2	4	

- First, the tuples are grouped according to G_1, \ldots, G_k
- Then, aggregate functions $F_1(A_1), ..., F_n(A_n)$ are applied on each group
- Schema changes to $(G_1, \ldots, G_k, F_1(A_1), \ldots, F_n(A_n))$
- Applying ${}_{A}G_{sum(C)}$ on r

• Applying $_{A,B}G_{sum(C)}$ on r

Α	В	С		Δ	R	sum(C)
1	1	5	-			30111(0)
		_	returns	1	1	5
1	2	5		4	0	0
1	2	4		1	2	Э

Outer Join

- Extension of the join to retain more information
- Computes join and then adds tuples to result that do not match
- Requires use of *null* values
- Left outer join $r \bowtie_{\theta} s$ retains *every* tuple from left or first relation
 - If no matching tuple is found in right or second relation, values are padded with *null*
- Right outer join $r \bowtie_{\theta} s$ is defined analogously
- Full outer join $r \Rightarrow \neg_{\theta} s$ retains all tuples from both relations
 - Non-matching fields are filled with null values

Outer Join

- Extension of the join to retain more information
- Computes join and then adds tuples to result that do not match
- Requires use of null values
- Left outer join $r \bowtie_{\theta} s$ retains *every* tuple from left or first relation
 - If no matching tuple is found in right or second relation, values are padded with *null*
- Right outer join $r \bowtie_{\theta} s$ is defined analogously
- Full outer join $r \Rightarrow \neg_{\theta} s$ retains all tuples from both relations
 - Non-matching fields are filled with null values
- Consequently, ordinary join is sometimes called inner join
- "Outer" word is sometimes dropped from join yielding left join, right join and full join

Outer Join

- Extension of the join to retain more information
- Computes join and then adds tuples to result that do not match
- Requires use of *null* values
- Left outer join $r \bowtie_{\theta} s$ retains *every* tuple from left or first relation
 - If no matching tuple is found in right or second relation, values are padded with null
- Right outer join $r \bowtie_{\theta} s$ is defined analogously
- Full outer join $r \Rightarrow \neg_{\theta} s$ retains all tuples from both relations
 - Non-matching fields are filled with null values
- Consequently, ordinary join is sometimes called inner join
- "Outer" word is sometimes dropped from join yielding left join, right join and full join
- When no θ condition is specified, it is natural outer join

$$\begin{array}{c|ccccc}
A & B \\
\hline
1 & 5 \\
2 & 6 \\
3 & 7
\end{array}
\Rightarrow
\begin{array}{c|ccccc}
A & C \\
\hline
1 & 7 \\
2 & 8 \\
4 & 9
\end{array}
=$$

$$\frac{A \quad B}{1 \quad 5} \bowtie \frac{A \quad C}{2 \quad 8} = \frac{A \quad B \quad C}{1 \quad 5 \quad 7}$$

$$\frac{A \quad B}{3 \quad 7} \bowtie \frac{A \quad C}{4 \quad 9} = \frac{A \quad B \quad C}{1 \quad 5 \quad 7}$$

$$\frac{A \quad B}{2 \quad 6 \quad 3 \quad 7} \bowtie \frac{A \quad C}{2 \quad 8 \quad 4 \quad 9} = \frac{A \quad B \quad C}{1 \quad 5 \quad 7}$$

$$\frac{A \quad B}{2 \quad 6 \quad 8 \quad 3 \quad 7 \quad null}$$

$$\frac{A \quad B}{1 \quad 5} \bowtie \frac{A \quad C}{2 \quad 8 \quad 4 \quad 9} = \frac{A \quad B \quad C}{1 \quad 5 \quad 7}$$

$$\frac{A \quad B \quad C}{1 \quad 5 \quad 7}$$

$$\frac{A \quad B \quad C}{2 \quad 6 \quad 8}$$

$$\frac{A \quad C}{1 \quad 7}$$

$$\frac{A \quad B \quad C}{2 \quad 6 \quad 8}$$

$$\frac{A \quad C}{3 \quad 7 \quad null}$$

• Find the total number of courses offered in the year 2018

Find the total number of courses offered in the year 2018

$$G_{count(coursecode)}(\sigma_{yr=2018}(offering))$$

Find the total number of courses offered in the year 2018

$$G_{count(coursecode)}(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her in the year 2018

Find the total number of courses offered in the year 2018

$$G_{count(coursecode)}(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her in the year 2018

$$_{ ext{instructor}}\mathcal{G}_{ ext{count}(ext{coursecode})}(\sigma_{ ext{yr}=2018}(ext{offering}))$$

Find the total number of courses offered in the year 2018

$$G_{count(coursecode)}(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her in the year 2018

$$instructor \mathcal{G}_{count}(coursecode)(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her per year

Find the total number of courses offered in the year 2018

$$G_{count(coursecode)}(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her in the year 2018

$$instructor \mathcal{G}_{count}(coursecode)(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her per year

$$instructor, yr G_{count(coursecode)}(offering)$$

Find the total number of courses offered in the year 2018

$$G_{count(coursecode)}(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her in the year 2018

$$instructor \mathcal{G}_{count}(coursecode)(\sigma_{yr=2018}(offering))$$

 For each instructor, find the total number of courses offered by her per year

$$instructor, yr G_{count(coursecode)}(offering)$$

For each course, indicate the most recent year it was offered

Find the total number of courses offered in the year 2018

$$\mathcal{G}_{\textit{count}(coursecode)}(\sigma_{\textit{yr}=2018}(\textit{offering}))$$

 For each instructor, find the total number of courses offered by her in the year 2018

$$_{\text{instructor}}\mathcal{G}_{count(\text{coursecode})}(\sigma_{\text{yr}=2018}(\text{offering}))$$

 For each instructor, find the total number of courses offered by her per year

$$_{ ext{instructor,yr}}\mathcal{G}_{count(ext{coursecode})}(ext{offering})$$

For each course, indicate the most recent year it was offered

course-offering
$$\leftarrow_{\text{coursecode}} \mathcal{G}_{max(yr)}(\text{offering})$$

course-year $\leftarrow \rho_{(\text{code},yr)}(\Pi_{\text{coursecode},max(yr)}(\text{course-offering}))$
course \Rightarrow course-year

Null Values

- Null denotes an unknown or missing value
- Arithmetic expressions involving null evaluate to null
- Aggregate functions ignore null
- Duplicate elimination and grouping treats null as any other value, i.e., two null values are same
 - null = null evaluates to true

Truth Tables with Null Values

- Comparison with null otherwise returns unknown, not false
- If false is used, consider two expressions not(A < 5) and $A \ge 5$ and when attribute contains null
 - They will not be the same
- Three-valued logic with unknown
 - Or
 - unknown or true = true
 - unknown or false = unknown
 - unknown or unknown = unknown
 - And
 - unknown and true = unknown
 - unknown and false = false
 - unknown and unknown = unknown
 - Not
 - not unknown = unknown
- Select operation treats unknown as false

Database Modification

- Contents of a database may be modified by
 - Deletion
 - Insertion
 - Updating
- Assignment operator is used to express these operations

Deletion

- r ← r E deletes tuples in the result set of the query E from the relation r
- Only whole tuples can be deleted, not some attributes
- Applying $r \leftarrow r \sigma_{A=1}(r)$ on

Α	В	С	
1	1	5	-
1	2	5	returns
2	3	5	
2	4	8	

Deletion

- r ← r E deletes tuples in the result set of the query E from the relation r
- Only whole tuples can be deleted, not some attributes
- Applying $r \leftarrow r \sigma_{A=1}(r)$ on

Α	В	С				
1	1	5	-	Α	В	С
1	2	5	returns	2	3	5
2	3	5		2	4	8
2	4	8				

Insertion

- r ← r ∪ E inserts tuples in the result set of the query E into the relation r
- Only whole tuples can be inserted, not some attributes
- If a specific tuple needs to be inserted, E is specified as a relation containing only that tuple
- Applying $r \leftarrow r \cup \{(1, 2, 5)\}$ on

Α	В	С	
1	1	5	roturno
2	3	5	returns
2	4	8	

Insertion

- r ← r ∪ E inserts tuples in the result set of the query E into the relation r
- Only whole tuples can be inserted, not some attributes
- If a specific tuple needs to be inserted, E is specified as a relation containing only that tuple
- Applying $r \leftarrow r \cup \{(1, 2, 5)\}$ on

Α	В	С		Α	В	С
			-	1	1	5
1	1	5	roturno	0	2	_
2	3	5	returns	2	3	5
_	٠			2	4	8
2	4	8		4	0	_
				- 1	2	5

Updation

- Updates allow values of only some attributes to change
- $r \leftarrow \Pi_{F_1,...,F_n}(r)$ where each F_i is
 - Either the *i*th attribute of *r* if it is not to be changed
 - Or the result of the expression F_i involving constants and attributes resulting in the new value of the ith attribute
- Applying $r \leftarrow \Pi_{A,2*B,C}(r)$ on

	С	В	Α
roturno	5	2	1
returns	5	1	1
	8	4	2

Updation

- Updates allow values of only some attributes to change
- $r \leftarrow \Pi_{F_1,...,F_n}(r)$ where each F_i is
 - Either the *i*th attribute of *r* if it is not to be changed
 - Or the result of the expression F_i involving constants and attributes resulting in the new value of the ith attribute
- Applying $r \leftarrow \Pi_{A,2*B,C}(r)$ on

• Applying $r \leftarrow \Pi_{A,2*B,C}(\sigma_{A=1}(r))$ on

Α	В	С	
1	2	5	roturno
1	1	5	returns
2	4	8	

Updation

- Updates allow values of only some attributes to change
- $r \leftarrow \Pi_{F_1,...,F_n}(r)$ where each F_i is
 - Either the *i*th attribute of *r* if it is not to be changed
 - Or the result of the expression F_i involving constants and attributes resulting in the new value of the ith attribute
- Applying $r \leftarrow \Pi_{A,2*B,C}(r)$ on

• Applying $r \leftarrow \Pi_{A,2*B,C}(\sigma_{A=1}(r))$ on

Α	В	С		Δ	В	С
1	2	5		$\overline{}$		
•	_	_	returns	1	4	5
1	1	5	retarrio	•		_
-	-	_		1	2	5
2	4	8				_

• Create a new department "Astronomy" with id 18

Create a new department "Astronomy" with id 18

department ← department ∪ {18, "Astronomy"}

Create a new department "Astronomy" with id 18
 department ← department ∪ {18, "Astronomy"}

Delete the course whose code is "CS200"

Create a new department "Astronomy" with id 18

Delete the course whose code is "CS200"

course
$$\leftarrow$$
 course $-\sigma_{code="CS200"}(course)$

Create a new department "Astronomy" with id 18

Delete the course whose code is "CS200"

course
$$\leftarrow$$
 course $-\sigma_{\text{code}=\text{``CS200''}}(\text{course})$

Update the title of the course "DBMS" to "Database Systems"

Create a new department "Astronomy" with id 18

Delete the course whose code is "CS200"

course
$$\leftarrow$$
 course $-\sigma_{\text{code}=\text{``CS200''}}(\text{course})$

Update the title of the course "DBMS" to "Database Systems"

old-course
$$\leftarrow \sigma_{\text{title}=\text{"DBMS"}}(\text{course})$$

updated-course
$$\leftarrow \Pi_{\text{code},\text{"Database Systems"},\text{ctype},\text{webpage}}(\text{old-course})$$

course $\leftarrow (\text{course} \cup \text{updated-course}) - \text{old-course}$

Deletion may violate

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate
 - Referential integrity: If a foreign key is inserted, the corresponding primary referenced key must be present
 - Should be restricted

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate
 - Referential integrity: If a foreign key is inserted, the corresponding primary referenced key must be present
 - Should be restricted
 - Domain constraint: Value is outside the domain
 - Should be restricted or domain updated

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate
 - Referential integrity: If a foreign key is inserted, the corresponding primary referenced key must be present
 - Should be restricted
 - Domain constraint: Value is outside the domain
 - Should be restricted or domain updated
 - Key constraint: If an insertion violates the property of being a key
 - Should be restricted or design modified

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate
 - Referential integrity: If a foreign key is inserted, the corresponding primary referenced key must be present
 - Should be restricted
 - Domain constraint: Value is outside the domain
 - Should be restricted or domain updated
 - Key constraint: If an insertion violates the property of being a key
 - Should be restricted or design modified
 - Entity integrity: If the primary key of the inserted tuple is null
 - Should be restricted
- Updation may violate

- Deletion may violate
 - Referential integrity: If a primary key is deleted, the corresponding foreign referencing key becomes orphan
 - Should be restricted (rejected) or cascaded or set to null
- Insertion may violate
 - Referential integrity: If a foreign key is inserted, the corresponding primary referenced key must be present
 - Should be restricted
 - Domain constraint: Value is outside the domain
 - Should be restricted or domain updated
 - Key constraint: If an insertion violates the property of being a key
 - Should be restricted or design modified
 - Entity integrity: If the primary key of the inserted tuple is null
 - Should be restricted
- Updation may violate
 - Referential integrity
 - Domain constraint
 - Key constraint
 - Entity integrity

Drawbacks of Relational Algebra

Drawbacks of Relational Algebra

- First-order propositional logic
- Do not support recursive closure operations
 - Find supervisors of A at all levels
- Needs specifying multiple queries, each solving only one level at a time

Multiset Variant

- Relations are multisets or bags of tuples
 - Duplicate tuples are allowed
 - Select, project, set operations change

Multiset Variant

- Relations are multisets or bags of tuples
 - Duplicate tuples are allowed
 - Select, project, set operations change
- Distinct or duplicate elimination operator: δ
 - Removes duplicate tuples
 - Reduces relation to sets