

Artificial Intelligence-2 (CSL 7040)

Lecture 4 : Utility Theory

Utility Function

Function to map lotteries to real number

Agents should follow the axioms

An agent can have any preference

Utility scale

Preference Elicitatoin:

Normalized Utilities:

• Standard Lottery: A choice and a lottery: $[p, u_T, (1-p)u_\bot]$

• Micromort: Chance of death is one in a million

Micromort

• Russian Barrel: Micromort= \$10000

Car pricing: \$50/ micromort

Qualy: Quality adjusted life

The utility of money

 Monotonic preference: More money will be preferred over less money

- Expected Money Value (EVM):
 - 1. \$10000 □ Reject
 - 2. A lottery with equal possibilities of winning \$25000 or nothing \square Accept

EU(Accept)=
$$(U(S_k)+U(S_{k+25000}))/2=9+5/2=6.5$$

EU(Reject) = $U(S_{k+10000})=8$
 $U(S_k)=5$, $U(S_{k+25000})=9$; $U(S_{k+10000})=8$

Value of a lottery

A. \$400 or B. L: 1000\$ or 0 with equiprobabilityEVM(L)=(1000+0)/2=500

Value for the lottery: 500-400=100= EVM(L)-Certainty equivalent ☐ Insurance premium

Expected Utility and Post-Decision Disappointment

• $a^* = argmax_a EU(a|e)$

- Best possible action:
 - EU is calculated correctly w.r.t. probability model
 - Probability model should correctly reflect the underlying stochastic process
 - EU will be correct iff the whole process is repeated many times
- Issues: i) oversimplified models, ii) computing true EU is too difficult
- If estimation is correct : $E\left(\widehat{EU}(a|e) EU(a|e)\right) = 0$

Post Decision Disappointment

gure 16.3 Plot of the error in each of k utility estimates and of the distribution of the aximum of k estimates for k = 3, 10, and 30.

Human judgment & Irrationality

Normative Theory: Describes how agent should act

Descriptive Theory: How human actually act

A: 80% chance of winning \$4000 C: 25% chance of \$4000

B: 100% chance of winning \$3000 D: 30% chance of \$3000

U(3000)>U(4000) U(4000)>U(3000)

Certainty Effect People are strongly attracted to the gains with certainty

Human judgment & Irrationality

1/3: Red balls 2/3: Black or yellow balls

A: \$100 for a red ball C: \$100 a red and a yellow ball

B: \$100 for a black ball D: \$100 a black and yellow

Ambiguity aversion

People prefer known probability than unknown

Human judgment & Irrationality

• Framing effect:

Anchoring Effect: Sale

Multiattribute utility function

■ Decision making in public policy → money+lives

- Multiattribute utility theory
- Attributes: $X = X_1, ..., X_n$: Higher value Higher utility

Dominance

Selection of airport site → attributes: {cost, noise pollution, safety}

• Let there be three choices of sites: S_1 , S_2 and S_3

 If an action is stochastially dominated by all the attributes it can be discarded

Preference structure and multiatribute utility

n no. of d-dimentional attributed > to have a complete utility fn.: dn
 no. of values

•
$$U(x_1, x_2, ..., x_n) = F(f(x_1), ..., f_n(x_n)) \rightarrow \text{Representation theorem}$$

- Preference without uncertainty:
- Cost= 4 billion, noise= 3.7; Safety level 0.12 or 0.03
- {noise, cost and death}→ mutual preference independent (MPI)

Gerard Debru Theorem

• If there are n no. MPI attributes, agent's preference behavior can be described by maximizing the following fn:

•
$$V(x_1, ..., x_n) = \sum_i V_i x_i$$

• $V(noise, cost, death) = -noise \times 10^4 - cost - deaths \times 10^{12} \rightarrow$ additive value function

Decision Networks

- It combines baye's net for action and utility
- Agent's current state, its possible actions, the resultant state, and utility of the state
- ☐ Chance node (oval): Random variables ☐ about which the agent is uncertain ☐ associated with a conditional distribution
- ☐ Decision Node (rectangle)☐ Represents the point where the choice of action is given
- ☐ Utility Node (diamond) ☐ Represents agent's utility fn.

Evaluation of a decision n/w:

- Set evidence variable for the current state
- For each possible value of decision node do:
 - Set decision node to the value
 - Compute posterior probability of parent nodes of utility nodes
 - Compute resulting utility of the action
- Return action with the highest utility