





# Fuxxy Topology

#### MAT514

Prof. Dr Shamsun Naher Begum Shahjalal University of Science and Technology

> EDITED BY MEHEDI HASAN







#### Preface

This is a compilation of lecture notes with some books and my own thoughts. If there are any mistake/typing error or, for any query mail me at mehedi12@student.sust.edu.

# Contents

| Ι | Sheet                                                | 1  |
|---|------------------------------------------------------|----|
| 1 | Fuzzy Sets1.1 Fuzzy Set Operations1.2 Fuzzy Relation |    |
| 2 | Fuzzy Topology                                       | 8  |
| 3 | Separation Axioms                                    | 13 |
| 4 | Connected Fuzzy Topological Space                    | 16 |
| 5 | Compactness                                          | 18 |
| 6 | Fuzzy Mapping                                        | 21 |

Part I Sheet

## Fuzzy Sets

**Definition 1** (Characteristic function). Let X be a universal set and  $A \subseteq X$ . Then the function<sup>1</sup>

$$\chi_A(x) = \begin{cases} 1; & x \in A \\ 0; & x \notin A \end{cases}$$

is characteristic function of A in X.

**Definition 2** (Fuzzy Set). A fuzzy set<sup>2</sup>  $A \subseteq X$  is a mapping  $A: X \to [0,1]$ , where,  $A(x) = y \in [0,1]$  is called the membership function or, grade of membership of x in A. The collection of all fuzzy sets of X is denoted by  $\mathcal{F}(X)$ .

**Definition 3** (Fuzzy subset). A fuzzy set A is called a fuzzy subset of another fuzzy set B if  $A(x) \leq B(x)$   $\forall x \in X$ . We denote it by  $A \leq B$ .

**Definition 4** (Empty fuzzy set). A fuzzy set A is called empty fuzzy set if  $\forall x \in X \ A(x) = 0$ . The empty fuzzy set is denoted by  $\underline{0}$ . Thus,  $\underline{0}(x) = 0 \ \forall x \in X$ .

**Definition 5** (Total fuzzy set). The total fuzzy set  $\underline{1}$  is defined by  $\underline{1}(x) = 1 \ \forall x \in X$ .

**Definition 6** (Equality of two fuzzy sets). Two fuzzy sets A and B of X is said to be equal iff  $A \leq B$  and  $B \leq A$ .

**Example** (Empty and Total fuzzy set). Suppose,  $A: X \to [0,1]$  where X = [20,90]. Then,

$$\underline{0}(x) = \begin{cases} 0 & \text{if } 15 < x < 90 \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \underline{1}(x) = \begin{cases} 1 & \text{if } 20 \le x < 90 \\ 0 & \text{otherwise} \end{cases}$$

**Example** (Fuzzy subset). Suppose,  $A: X \to [0,1]$  where, X = [0,100] defined by

$$A(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{75}; & \text{if } 40 \le x < 75\\ 1; & \text{if } 75 \le x \le 100 \end{cases}$$

and  $B: X = [0, 100] \to [0, 1]$  defined by

$$B(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{95}; & \text{if } 40 \le x < 95\\ 1; & \text{if } 95 \le x \le 100 \end{cases}$$

Then, B(x) is a subset of A(x). Since,  $B(x) \le A(x) \ \forall x \in X$ .

<sup>&</sup>lt;sup>1</sup>Some authors use  $\mu$  as characteristic function.

<sup>&</sup>lt;sup>2</sup>Sometimes fuzzy set is denoted by A.

#### 1.1 Fuzzy Set Operations

**Definition 7** (Union of Fuzzy Sets). Let  $A, B \in \mathcal{F}(X)$ . Then the union of A and B is denoted and defined by,  $(A \vee B)(x) = \max\{A(x), B(x)\}$ ,  $\forall x \in X$ .

**Definition 8** (Intersection of Fuzzy Sets). Let  $A, B \in \mathcal{F}(X)$ . Then the intersection of A and B is denoted and defined by,  $(A \wedge B)(x) = \min \{A(x), B(x)\}, \forall x \in X$ .

**Definition 9** (Complement of Fuzzy Set). Let A be a fuzzy set of X. Then, the complement of A is denoted by  $A^c$  and defined by  $A^c(x) = 1 - A(x)$ ,  $\forall x \in X$ .

Example. Given,

$$A_1 = \begin{cases} 1; & \text{if } 40 \le x < 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x < 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases} \quad \text{and} \quad A_2 = \begin{cases} 0; & \text{if } 40 \le x < 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x < 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \\ 0; & \text{if } 70 \le x \le 100 \end{cases}$$

- 1. Find the complement of  $A_1$  and  $A_2$ .
- 2. Find  $(A_1 \wedge A_2)(x)$  and  $(A_1 \vee A_2)(x)$

#### Solution:

1. Complement of  $A_1$ ,

$$A_1{}^c = \begin{cases} 0; & \text{if } 40 \le x < 50\\ \frac{x - 50}{10}; & \text{if } 50 \le x < 60\\ 1; & \text{if } 60 \le x \le 100 \end{cases}$$

Complement of  $A_2$ ,

$$A_2{}^c = \begin{cases} 1; & \text{if } 40 \le x < 50 \\ \frac{60 - x}{10}; & \text{if } 50 \le x < 60 \\ \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \\ 1; & \text{if } 70 \le x \le 100 \end{cases}$$

2.

$$(A_1 \wedge A_2)(x) = \begin{cases} 0; & \text{if } 40 \le x < 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ 1 - \frac{x - 50}{10}; & \text{if } 55 \le x \le 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases}$$

$$(A_1 \vee A_2)(x) = \begin{cases} 1; & \text{if } 40 \le x \le 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ \frac{x - 50}{10}; & \text{if } 55 \le x < 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \end{cases}$$

$$0; & \text{if } 70 \le x \le 100$$

**Definition 10** (Level Set). Let  $A: X \to [0,1]$  be a fuzzy set. The  $\alpha$  level set of A is denoted and defined by,  $A_{\alpha}$  or  $\alpha_A = \{x \in X \mid A(x) \geq \alpha\}$  where,  $0 < \alpha \leq 1$ .

Remark.  $A_{\alpha}$  is a classical set not a fuzzy set.

**Definition 11** (Core level of a fuzzy set). When  $\alpha = 1$ , then  $A_1 = \{x \in X \mid A(x) = 1\}$  is called the core level of A.

**Definition 12** (Support of a fuzzy set). Support of a fuzzy set A is denoted and defined by,  $S_A = \{x \in X \mid A(x) > 0\}$ .

Example. Given,

$$A = \begin{cases} 0; & \text{if } x \le 20 \text{ or, } x \ge 60\\ \frac{x - 20}{15}; & \text{if } 20 < x < 35\\ \frac{60 - x}{15}; & \text{if } 45 < x < 60\\ 1; & \text{if } 35 < x < 45 \end{cases} \quad \text{and} \quad B = \begin{cases} 0; & \text{if } x \le 45\\ \frac{x - 45}{15}; & \text{if } 45 < x < 60\\ 1; & \text{if } x \ge 60 \end{cases}$$

- 1. (a) Core level of A?
  - (b) Support of A?
  - (c) Half level of A?
  - (d)  $\frac{3}{4}$  level of A?
- 2. (a) Core level of B?
  - (b) Support of B?
  - (c) Half level of B?

#### Solution.

- 1. (a) Core level of A is  $A_1 = \{x \in X \mid 35 \le x \le 45\}.$ 
  - (b) Support level of *A* is  $S_A = \{x \in X \mid 20 < x < 60\}.$
  - (c) Half level of A is  $A_{\frac{1}{2}} = \{x \in X \mid 27.5 \le x \le 52.5\}.$
  - (d)  $\frac{3}{4}$  level of A is  $A_{\frac{3}{4}} = \{x \in X \mid 31.25 \le x \le 48.75\}.$
- 2. (a) Core level of B is  $B_1 = \{x \in X \mid x \ge 60\}$ .
  - (b) Support level of B is  $S_B = \{x \in X \mid x > 45\}.$
  - (c) Half level of B is  $B_{\frac{1}{2}} = \{x \in X \mid x \ge 52.5\}.$

**Example.**  $A: X \to [0,1]$  defined by

$$A(x) = \begin{cases} 1; & \text{if } x \le 20\\ \frac{35 - x}{20}; & \text{if } 20 \le x < 35\\ 0; & \text{if } x > 35 \end{cases}$$

Then find  $\frac{1}{2}$  level of A.

Solution.

$$A_{\frac{1}{2}} = \{x \in X \mid x \le 25\}$$

**Problem 1.1.** Consider, the two fuzzy sets  $A, B: X = [0, 100] \rightarrow [0, 1]$  defined by

$$A(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{75}; & \text{if } 40 \le x < 75\\ 1; & \text{if } 75 \le x < 100 \end{cases} \quad \text{and} \quad B(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{95}; & \text{if } 40 \le x < 95\\ 1; & \text{if } 95 \le x \le 100 \end{cases}$$

Then find  $(A \wedge B)(x)$  and  $(A \vee B)(x)$ .

Solution.

$$(A \land B)(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{95}; & \text{if } 40 \le x < 95\\ 1; & \text{if } 95 \le x \le 100 \end{cases} \quad \text{and} \quad (A \lor B)(x) = \begin{cases} 0; & \text{if } 0 \le x \le 40\\ \frac{x}{75}; & \text{if } 40 \le x < 75\\ 1; & \text{if } 75 \le x \le 100 \end{cases}$$

# Suppose,  $X = \mathbb{R}$  and the fuzzy set of real numbers much greater than 5 in X, that could be defined by,

$$A(x) = \begin{cases} 0; & \text{if } x \le 5\\ \frac{x-5}{50}; & \text{if } 5 < x \le 55\\ 1; & \text{if } x \ge 55 \end{cases}$$

**Example.** Consider, the two fuzzy sets A and B of  $\mathcal{F}(X)$ , where X = [0, 100]

$$A(x) = \begin{cases} 1; & \text{if } 40 \le x \le 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x \le 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases} \quad \text{and} \quad B(x) = \begin{cases} 0; & \text{if } 40 \le x \le 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x \le 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x \le 70 \\ 0; & \text{if } 70 \le x \le 100 \end{cases}$$

Draw  $(A \vee B)(x)$ ,  $(A \wedge B)(x)$ , A', B'.

Solution. Here,

$$(A \lor B)(x) = \begin{cases} 1; & \text{if } 40 \le x \le 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ \frac{x - 50}{10}; & \text{if } 55 \le x \le 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x \le 70 \\ 0; & \text{if } 70 \le x \le 100 \end{cases} \quad \text{and} \quad (A \land B)(x) = \begin{cases} 0; & \text{if } 40 \le x \le 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ 1 - \frac{x - 50}{10}; & \text{if } 55 \le x \le 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases}$$

$$A^{c}(x) = \begin{cases} 0; & \text{if } 40 \le x \le 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x \le 60 \\ 1; & \text{if } 60 \le x \le 100 \end{cases} \quad \text{and} \quad B^{c}(x) = \begin{cases} 1; & \text{if } 40 \le x \le 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x \le 60 \\ \frac{x - 60}{10}; & \text{if } 60 \le x \le 70 \\ 1; & \text{if } 70 \le x \le 100 \end{cases}$$



#### 1.2 Fuzzy Relation

**Definition 13** (Fuzzy Relation). Let X and Y be two non-empty classical(Fuzzy) sets. Then a fuzzy relation R on  $X \times Y$  is a mapping,  $R: X \times Y \to [0,1]$  where, the number  $R(x,y) \in [0,1]$  is called the degree of relationship between x and y.

**Example.** Let  $X = \{a, b, c\}$ ,  $Y = \{c, d\}$ . Then  $X \times Y = \{(a, c), (a, d), (b, c), (b, d), (c, c), (c, d)\}$  where R(a, c) = R(a, d) = 0, R(b, c) = R(b, d) = R(c, c) = 1 and R(c, d) = 0.8. For the fuzzy relation:

- 1. Core of R?
- 2. Support of R?
- 3. 0.7 of R?

#### Solution.

- 1. Core of  $R = \{(b, c), (b, d), (c, c)\}$  Since, R(x, y) = 1 for  $x \in X$  and  $y \in Y$ .
- 2. Support of  $R = \{(b, c), (b, d), (c, c), (c, d)\}$  Since, R(x, y) > 0 for  $x \in X$  and  $y \in Y$ .
- 3. 0.7 of  $R = \{(b, c), (b, d), (c, c), (c, d)\}$  Since, R(x, y) > 0.7 for  $x \in X$  and  $y \in Y$ .

**Definition 14** (Domain). If R(x,y) is a fuzzy relation, its domain is the fuzzy set  $dom\ R(x,y)$  whose membership function is

$$\chi_{dom}R(x) = \max \chi_R(x, y) \forall x \in X$$

**Definition 15** (Range). If R(x, y) is a fuzzy relation, its range is the fuzzy set ran R(x, y) whose membership function is

$$\chi_{ran}R(y) = \max \chi_R(x, y) \forall y \in y$$

**Example.** Consider  $X = \{x_1, x_2, x_3, x_4\}$  and

$$R(x,x) = \begin{pmatrix} 0.2 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.3 & 0.7 & 0.8 \\ 0.1 & 0.0 & 0.4 & 0.0 \\ 0.0 & 0.6 & 0.0 & 0.1 \end{pmatrix}$$

Then the domain is  $dom R = \{0.5, 0.8, 0.4, 0.6\}$  and the range is  $ran R = \{0.2, 0.6, 0.7, 0.8\}$ .

**Definition 16** (Max-min and Min-max Composition). Let R be a fuzzy relation on  $X \times Y$  i.e.,  $R \in \mathcal{F}(X \times Y)$  and S be a fuzzy relation on  $Y \times Z$  i.e.,  $S \in \mathcal{F}(Y \times Z)$ . Then  $R \circ S \in \mathcal{F}(X \times Z)$  defined by

$$(R \circ S)(x, z) = \bigvee_{y \in Y} R(x, y) \land S(y, z)$$

is called the Max-Min composition of R and S on  $X \times Z$ . And

$$(R \circ S)(x, z) = \bigwedge_{y \in Y} R(x, y) \vee S(y, z)$$

is called the Min-Max composition of R and S on  $X \times Z$ 

**Problem 1.2.** Consider,  $X = \{a, b\}, Y = \{c, d, e\} \text{ and } Z = \{u, v\} \text{ where,}$ 

$$R(x,y) = \begin{pmatrix} 0.3 & 0.7 & 0.2 \\ 1.0 & 0.0 & 0.9 \end{pmatrix}$$
 and  $S(y,z) = \begin{pmatrix} 0.8 & 0.3 \\ 0.1 & 0.0 \\ 0.5 & 0.6 \end{pmatrix}$ 

then find the max-min and min-max composition of R and S.

**Solution.** Max-min composition of R and S

$$(R \circ S)(x, z) = \bigvee_{y \in Y} R(x, y) \land S(y, z) = \begin{pmatrix} 0.3 & 0.3 \\ 0.8 & 0.6 \end{pmatrix}$$

Min-max composition of R and S

$$(R \circ S)(x,z) = \bigwedge_{y \in Y} R(x,y) \lor S(y,z) = \begin{pmatrix} 0.5 & 0.3 \\ 0.1 & 0.0 \end{pmatrix}$$

**Definition 17** (Reflexive). Let R be a fuzzy relation in  $X \times X$ . R is called reflexive if

$$\chi_R(x,x) = 1 \quad \forall x \in X$$

**Definition 18** (Symmetric). Let R be a fuzzy relation in  $X \times X$ . R is called symmetric if

$$R(x,y) = R(y,x) \quad \forall x,y \in X$$

**Example.** The following relation is a symmetric relation:

$$R(x,y) = \begin{pmatrix} 0.0 & 0.1 & 0.0 & 0.1 \\ 0.1 & 1.0 & 0.2 & 0.2 \\ 0.0 & 0.2 & 0.8 & 0.8 \\ 0.1 & 0.3 & 0.8 & 1.0 \end{pmatrix}$$

**Definition 19** (Antisymmetric). Let R be a fuzzy relation in  $X \times X$ . R is called antisymmetric if for

$$x \neq y$$
 either  $\chi_R(x, y) \neq \chi_R(y, x)$   
or  $\chi_R(x, y) = \chi_R(y, x) = 0$   $\forall x, y, \in X$ 

**Example.** The following relation is an antisymmetric relation:

$$R(x,y) = \begin{pmatrix} 0.4 & 0.0 & 0.1 & 0.8 \\ 0.8 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.6 & 0.7 & 0.0 \\ 0.0 & 0.2 & 0.0 & 0.0 \end{pmatrix}$$

**Definition 20.** A fuzzy relation R is called (max-min) transitive if

$$R \circ R \subseteq R$$

Example. The fuzzy relation

$$R = \begin{pmatrix} 0.4 & 0.2 \\ 0.7 & 0.3 \end{pmatrix}$$

is a transitive relation.

Here using a max-min composition,

$$R \circ R = \begin{pmatrix} 0.4 & 0.2 \\ 0.7 & 0.3 \end{pmatrix} \circ \begin{pmatrix} 0.4 & 0.2 \\ 0.7 & 0.3 \end{pmatrix} = \begin{pmatrix} 0.4 & 0.2 \\ 0.4 & 0.3 \end{pmatrix}$$

 $\therefore$  7;  $R \circ R \subseteq R$ . Hence, R is a transitive relation.

**Definition 21.** The max-min composition is called associative if

$$R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3$$

### Fuzzy Topology

**Definition 22** (Fuzzy Topology). Let X be a non-empty set. A collection  $\delta$  of fuzzy sets on X is called the fuzzy topology on X if it satisfies the following conditions:

- (i)  $\underline{0}, \underline{1} \in \delta$ .
- (ii) If  $A, B \in \delta$ , then  $A \wedge B \in \delta$ .
- (iii) If  $A_i \in \delta$ , then  $\forall_{i \in I} A_i \in \delta$ .

If  $\delta$  is a topology on X then,  $\langle \mathcal{F}(X), \delta \rangle$  is called a fuzzy topological space.

**Example.** Let  $X = \{a, b\}$  and A be a fuzzy set defined by A(a) = 0.5 and A(b) = 0.4. Then  $\delta = \{\underline{0}, \underline{1}, A\}$  be a fuzzy topology and  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space.

**Example.** Let A, B be a fuzzy sets of I = [0, 1] defined as

$$A(x) = \begin{cases} 0; & \text{if } 0 \le x \le \frac{1}{2} \\ 2x - 1; & \text{if } \frac{1}{2} \le x \le 1 \end{cases} \quad \text{and} \quad B(x) = \begin{cases} 1; & \text{if } 0 \le x \le \frac{1}{4} \\ -4x + 2; & \text{if } \frac{1}{4} \le x \le \frac{1}{2} \\ 0; & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Then  $\delta = \{\underline{0}, \underline{1}, A, B, A \vee B\}$  is a fuzzy topology on I.

**Definition 23** (Open and Closed Fuzzy Sets). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then, the member of  $\delta$  i.e., each  $A \in \delta$  is called the fuzzy open set. A fuzzy set B is called a fuzzy closed set if  $B^c \in \delta$ .

**Example.** Let  $X = \{a, b\}$ ,  $B : X \to [0, 1]$  such that B(a) = 0.5, B(b) = 0.6. Then,  $B^c(a) = 0.5$ ,  $B^c(b) = 0.4$ ,  $\delta = \{\underline{0}, \underline{1}, A\}$ , A(a) = 0.5, A(b) = 0.4.

∴ B is closed under  $\delta/\delta$ -closed. i.e.,  $B^c$  is open.

<u>Difference between classical and fuzzy sets:</u> Classical set contains elements that satisfy precise properties of membership while fuzzy set contains elements that satisfy imprecise properties of membership.

**Definition 24** (Interior and Closure of fuzzy sets). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and A be a non-empty subset of X.

The interior of A is denoted by  $A^{\circ}$  and defined as the union of all open sets contained in A. i.e.,  $A^{\circ} = \bigcup \{G \in \delta \mid G \leq A\}$ . (Largest open set contained in A).

The closure of A is denoted by  $\bar{A}$  and defined as the intersection of all closed sets containing A. i.e.,  $\bar{A} = \bigcap \{F \mid F^c \in \delta \text{ and } A \leq F\}$ . (Smallest closed set containing A).

**Example.** Consider,  $X = \{a, b, c\}$  and

$$A: a \mapsto 0.2, b \mapsto 0.4, c \mapsto 0.8$$
  
 $B: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8$   
 $C: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 1.0$ 

Then,  $\delta = \{\underline{0}, \underline{1}, A, B, C\}$  be a fuzzy topology on X. Here  $U: X \to [0, 1]$  and  $U: a \mapsto 0.8, b \mapsto 0.7, c \mapsto 0.8$ . Find  $U^{\circ}$  and  $\bar{U}$ .

**Solution.** 1. We know that,  $U^{\circ} = \bigcup \{G \in \delta : g \leq U\} = \bigcup \{\underline{0}, A, B\} = B$ . Since,  $\underline{0} \leq A \leq B$ .

2. At first,  $A^c: a \mapsto 0.8, b \mapsto 0.6, c \mapsto 0.2$   $B^c: a \mapsto 0.6, b \mapsto 0.4, c \mapsto 0.2$   $C^c: a \mapsto 0.4, b \mapsto 0.2, c \mapsto 0.0$  $0^c = 1$  and  $1^c = 0$ 

We know that  $\bar{U} = \bigcap \{F \mid F^c \in \delta \text{ and } U \leq F\} = \underline{1}$ .

Theorem 2.0.1. Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then, the following conditions hold:

- (i)  $\underline{0}^{\circ} = \underline{0}$  and  $\underline{1}^{\circ} = \underline{1}$
- (ii)  $\forall A \in \mathcal{F}(X), A^{\circ} \leq A$
- (iii)  $\forall A \in \mathcal{F}(X), A^{\circ \circ} = A^{\circ}$
- (iv) for  $A, B \in \mathcal{F}(X)$  with  $A \leq B$  implies  $A^{\circ} \leq B^{\circ}$
- (v) for  $A, B \in \mathcal{F}(X)$ ,  $(A \wedge B)^{\circ} = A^{\circ} \wedge B^{\circ}$

Proof.

- (i) By definition,  $\underline{0}^{\circ} = \bigcup \{G \in \delta \mid G \leq \underline{0}\} = \underline{0} \text{ and } \underline{1}^{\circ} = \bigcup \{G \in \delta \mid G \leq \underline{1}\} = \underline{1}$
- (ii) By definition,  $A^{\circ} = \bigcup \{G \in \delta \mid G \leq A\}$ . Since, the arbitrary union of open sets is open,  $A^{\circ}$  is the open set of  $\mathcal{F}(X)$  and also,  $A^{\circ}$  is the largest open set contained in A.  $A^{\circ} \leq A$ .
- (iii) From (ii),  $A^{\circ} \leq A \Rightarrow A^{\circ \circ} \leq A^{\circ}$ . But  $A^{\circ}$  is the largest open set contained in A. So,  $A^{\circ} \leq A^{\circ \circ}$ . Hence,  $A^{\circ \circ} = A^{\circ}$ .
- (iv) Let  $A, B \in \mathcal{F}(X)$  such that  $A \leq B$ . Now, since  $A^{\circ} \leq A$ , hence  $A^{\circ} \leq B$ . But  $B^{\circ}$  is the set of all open sets contained in B. So,  $B^{\circ} \leq B$ . Therefore,  $A^{\circ} \leq B^{\circ}$ .
- (v) Let  $A, B \in \mathcal{F}(X)$ . Then,

$$A^{\circ} \leq A, \ B^{\circ} \leq B$$
  

$$\Rightarrow A^{\circ} \wedge B^{\circ} \leq A \wedge B$$
  

$$\Rightarrow (A^{\circ} \wedge B^{\circ})^{\circ} \leq (A \wedge B)^{\circ}$$
(2.1)

Here,  $A^{\circ}$  is the largest open set contained in A and  $B^{\circ}$  is the largest open set contained in B. Hence,  $A^{\circ} \wedge B^{\circ}$  is also an open set of X. So,  $(A^{\circ} \wedge B^{\circ})^{\circ} \leq (A \wedge B)^{\circ}$ . From (2.1),

$$A^{\circ} \wedge B^{\circ} \le (A \wedge B)^{\circ} \tag{2.2}$$

Again, Since,

$$A \wedge B \leq A, B$$
  

$$\Rightarrow (A \wedge B)^{\circ} \leq A^{\circ}, B^{\circ}$$
  

$$\Rightarrow (A \wedge B)^{\circ} \leq A^{\circ} \wedge B^{\circ}$$
(2.3)

From, (2.2) and (2.3),  $A^{\circ} \wedge B^{\circ} = (A \wedge B)^{\circ}$ .

Note. If A be a fuzzy open set of the topological space  $\langle X, \delta \rangle$ , then  $A^{\circ} = A$ ,  $\bar{A} = A$  iff A is closed.

**Definition 25** (Fuzzy Point). A fuzzy set  $x_a$  on X is called a fuzzy point on X if  $\forall y \in X$ ,

$$x_a(y) = \begin{cases} a; & \text{if } x = y \\ 0; & \text{if } x \neq y \end{cases}; \quad \text{where, } 0 < a \le 1$$

The set of all fuzzy points on X is denoted by P(X). The fuzzy points  $x_{1-a}$  is called the dual point of the fuzzy points  $x_a$ .

**Example.** X = [0, 1], where  $X = \{x, y, z\}$ . We need to find  $x_a(y)$  where  $y \in X$ .

$$x_a: x \to a$$
  $y_a: x \to 0$   $z_a: x \to 0$  dual of  $x_a, x_{1-a}: x \to (1-a)$   
 $y \to 0$   $y \to a$   $y \to 0$   $y \to 0$   $y \to 0$   
 $z \to 0$   $z \to 0$   $z \to a$   $z \to 0$ 

**Definition 26** (Neighborhood of a fuzzy point). Let  $\langle X, \delta \rangle$  be a fuzzy topological space and  $x_a \in P(X)$ . Then  $U \in \delta$  is called a fuzzy neighborhood of  $x_a$  if  $x_a \in U$ .

The set of all fuzzy neighborhood of  $x_a$  is denoted by  $\mathcal{N}_{\delta}(x_a)$ .

**Example.** 
$$X = \{a, b, c\}, \ \delta = \{\underline{0}, \underline{1}, A, B\}, \ A : a \to 0.0, \ B : a \to 0.2.$$
 Find the neighborhood of  $a_{0.4}, b_{0.7}, c_{0.8}$ .  $b \to 0.2$   $b \to 0.4$   $c \to 0.7$   $c \to 0.8$ 

#### Solution.

- 1.  $a_{0.4}: a \to 0.4$ ; Fuzzy neighborhood of  $a_{0.4}: \{\underline{1}\}$ .  $b \to 0.0$   $c \to 0.0$
- 2.  $b_{0.7}: a \to 0.0$ ; Fuzzy neighborhood of  $b_{0.7}: \{\underline{1}\}$ .  $b \to 0.7$   $c \to 0.0$
- 3.  $c_{0.8}: a \to 0.0$ ; Fuzzy neighborhood of  $c_{0.8}: \{B,\underline{1}\}.$   $b \to 0.0$   $c \to 0.8$

Theorem 2.0.2. Let  $\langle X, \delta \rangle$  be a fuzzy topological space and  $A \subseteq X$ . Then a fuzzy point  $x_a \in A^{\circ} \Leftrightarrow x_a$  has a neighborhood U such that  $U \subseteq A$ .

*Proof.* Suppose,  $x_a \in A^{\circ}$ . By the definition of  $A^{\circ}$ ,  $A^{\circ} = \bigcup \{G \in \delta \mid G \subseteq A\}$ .  $\therefore x_a \in \bigcup \{G \in \delta \mid G \subseteq A\}$ . Thus we have  $x_a \in U$  for some  $U \in \delta \ni U \subseteq A$ .  $\therefore$  There exists a neighborhood U of  $x_a$  such that  $U \subseteq A$ .

Conversely, suppose, U be a neighborhood of a fuzzy point  $x_a \ni U \subseteq A$ . This implies,  $x_a \in U \subseteq A$ . Now, since  $A^{\circ}$  is the largest open set contained in A, we have  $U \subseteq A^{\circ}$ . Thus,  $x_a \in A^{\circ}$ .

**Definition 27** (Quasi-Coincident of a fuzzy point). Let  $\langle X, \delta \rangle$  be a fuzzy topological space. A fuzzy point  $x_a$  is called quasi-coincident of a fuzzy set A denoted by  $x_a \propto A$  iff  $x_a \not\leq A^c$  i.e.,  $a > A^c(x) \Rightarrow a + A(x) > 1$ ,

**Definition 28** (Quasi-Coincident of a fuzzy set). A fuzzy set A is said to be quasi-coincident with a fuzzy set B iff there exists an  $x \in X$  such that  $A(x) > B^c(x)$  i.e., A(x) + B(x) > 1 for some  $x \in X$ .

**Definition 29** (Quasi-neighborhood). An open set  $U \in \delta$  is called a quasi-neighborhood of a fuzzy point  $x_a$  if  $x_a$  is a quasi-coincident of U. The set of all quasi-coincident of  $x_a$  is denoted by  $\mathcal{Q}_{\delta}(x_a)$ .

**Example.** Consider,  $X = \{a, b, c\}, \delta = \{\underline{0}, \underline{1}, A, B\},$ 

$$\begin{array}{c} A: \ a \mapsto 0.0, \ b \mapsto 0.2, \ c \mapsto 0.7 \\ B: \ a \mapsto 0.6, \ b \mapsto 0.4, \ c \mapsto 0.8 \\ \text{Given, } P: \ a \mapsto 0.0, \ b \mapsto 0.4, \ c \mapsto 0.9 \end{array}$$

Find the quasi-neighborhood of  $x_a$  at a = 0.4.

**Solution.** Here,  $B^c$ :  $a \mapsto 0.4$ ,  $b \mapsto 0.6$ ,  $c \mapsto 0.2$ . Since,  $a = 0.4 \ge B^c(a) = 0.4$  so,  $x_{0.4}$  is a quasi-coincident of B and  $\mathcal{Q}_{\delta}(x_a) = \{\underline{1}, B\}$ .

Theorem 2.0.3. A quasi-neighborhood of  $x_a$  is exactly a neighborhood of  $x_{1-a}$ .

*Proof.* Let  $\langle X, \delta \rangle$  be a fuzzy topological space and  $U \in \delta$  be a quasi-neighborhood of  $x_a$ . By the definition of quasi-neighborhood of  $x_a$ ,

$$a > U^c(x)$$
, for some  $x \in X$ ,  
 $\Leftrightarrow a > 1 - U(x)$ , for some  $x \in X$ ,  
 $\Leftrightarrow a + U(x) > 1$ , for some  $x \in X$ ,  
 $\Leftrightarrow 1 - a < U(x)$ , for some  $x \in X$ ,  
 $\Leftrightarrow x_{1-a} \in U$ ,  
 $\Leftrightarrow U$  is a neighborhood of  $x_{1-a}$ 

Proposition 1. Let,  $\langle X, \delta \rangle$  be a fuzzy topological space and  $A, B \subseteq X$ . Then  $A \leq B$  iff A and  $B^c$  are not quasi-coincident.

Proof. Suppose,  $A \leq B$ , then,  $A(x) \leq B(x)$ , for all  $x \in X$ . Now,  $A(x) + B^c(x) = A(x) + 1 - B(x) \leq 1$ , for all  $x \in X$  [Since,  $A(x) \leq B(x)$ ]

Hence, A and  $B^c$  are not quasi-coincident.

Conversely, suppose A(x) and  $B^{c}(x)$  are not quasi-coincident. Then,

$$A(x) + B^{c}(x) \le 1$$

$$\Rightarrow A(x) + 1 - B(x) \le 1$$

$$\Rightarrow A(x) - B(x) \le 0$$

$$\Rightarrow A(x) \le B(x)$$

Theorem 2.0.4. Let  $\langle X, \delta \rangle$  be a fuzzy topological space and  $A \in \mathcal{F}(X)$ . Then, the following conditions hold:

- 1.  $x_a \in A^{\circ}$  iff  $x_{1-a} \notin \bar{A}^c$ .
- 2.  $x_a \in \bar{A}$  iff each neighborhood of its dual point  $x_{1-a}$  is quasi-coincident with A.

Proof.

1. Let  $x_a \in A^{\circ}$ . Then by definition of  $A^{\circ}$ , there exists  $B \in \delta$  such that  $x_a \in B \subseteq A$  i.e., B is a neighborhood of  $x_a$  and hence B is a quasi-neighborhood of  $x_{1-a}$ . Hence  $x_{1-a} \not\leq B^c$  i.e.,  $x_{1-a} \not\in B^c$ . Since,  $B \subseteq A$  and  $\bar{A}$  is the smallest closed set containing A, we have,  $B \subseteq A \subseteq \bar{A}$  implies  $\bar{A}^c \subseteq B^c$ . Hence we can show that  $x_{1-a} \not\in \bar{A}^c$ .

Conversely, suppose  $x_{1-a} \notin \bar{A}^c$ . Then there is a neighborhood B of  $x_a$  which is not quasi-coincident with  $A^c$ . Thus,

$$B(x) + A^{c}(x) \le 1 \quad \forall x \in X$$
  
$$\Rightarrow B(x) \le A(x) \quad \forall x \in X$$

- $\therefore B^c \subseteq A \text{ and so } x_a \in B \subseteq A \text{ i.e., } x_a \in A^\circ.$
- 2. Let N be the neighborhood of  $x_{1-a}$ . Now, N is a quasi-coincident with A implies

$$N(x) + A(x) > 1, \ \forall x \in X$$
  
 $\Rightarrow N \text{ and } A \text{ intersect at } x$   
 $\Rightarrow x_a \in \bar{A}$ 

Conversely, suppose  $x_a \in \bar{A}$ . Then, N and A intersect at x. This implies,

$$N(x) + A(x) > 1$$
,  $\forall x \in X$   
 $\Rightarrow N$  is a quasi-coincident with  $A$  at  $x$   
 $\Rightarrow$  each neighborhood  $N$  of  $x_{1-a}$  is quasi-coincident with  $A$ 

**Definition 30** (Subspace). Let  $\langle X, \delta \rangle$  be a fuzzy topological space and let Y be a nonempty set  $(Y \neq \emptyset)$  such that  $Y \subseteq X$ . Define  $\delta_{\upharpoonright_Y} = \{U_{\upharpoonright_Y} \mid U \in \delta\}$  [where,  $U_{\upharpoonright_Y} = U \cap Y = U$  restricted in Y]. Then  $\delta_{\upharpoonright_Y}$  is a fuzzy topology on Y. The fuzzy topological space  $\langle Y, \delta_{\upharpoonright_Y} \rangle$  is called a subspace of  $\langle X, \delta \rangle$ .

**Example.** Let,  $X = \{a, b, c\}$  and  $Y = \{b, c\}$ . Let  $\delta = \{\underline{0}, \underline{1}, A, B\}$  where

$$A: a \mapsto 0.2, b \mapsto 0.4, c \mapsto 1.0$$
  
 $B: a \mapsto 0.1, b \mapsto 0.4, c \mapsto 0.8$ 

Then  $\delta_{\uparrow_Y} = \{\underline{0}_{\uparrow_Y}, \underline{1}_{\uparrow_Y}, A_{\uparrow_Y}, B_{\uparrow_Y}\}$  where,

$$A_{\uparrow_Y}: b \mapsto 0.4, c \mapsto 1.0$$
  
 $B_{\downarrow_Y}: b \mapsto 0.4, c \mapsto 0.8$ 

is a fuzzy topology on Y and hence  $\langle Y, \delta_{\upharpoonright_{V}} \rangle$  is a fuzzy subspace of  $\langle X, \delta \rangle$ .

**Example.** Let  $X = \{1, 2, 3, 4\}$  and  $Y = \{1, 3, 4\}$ . Find a non-trivial fuzzy topology on X and hence, find a fuzzy subspace of  $\langle X, \delta \rangle$ .

**Solution.** Let  $\delta = \{\underline{0}, \underline{1}, A, B\}$  be a fuzzy topology on X where,

$$A: 1 \mapsto 0.3, 2 \mapsto 0.1, 3 \mapsto 0.6, 4 \mapsto 0.2$$
  
 $B: 1 \mapsto 0.7, 2 \mapsto 0.4, 3 \mapsto 0.1, 4 \mapsto 0.2$ 

Then  $\delta_{\uparrow_Y} = \{\underline{0}_{\uparrow_Y}, \underline{1}_{\uparrow_Y}, A_{\uparrow_Y}, B_{\uparrow_Y}\}$  where,

$$A_{|Y|}: 1 \mapsto 0.3, 3 \mapsto 0.6, 4 \mapsto 0.2$$
  
 $B_{|Y|}: 1 \mapsto 0.7, 3 \mapsto 0.1, 4 \mapsto 0.2$ 

is a fuzzy topology on Y and hence  $\langle Y, \delta_{\upharpoonright Y} \rangle$  is a fuzzy subspace of  $\langle X, \delta \rangle$ .

Remark. Let  $\langle X, \tau \rangle$  be a fuzzy topological space. The two fuzzy sets A and B in X are said to be intersecting  $\Leftrightarrow$  there exists a point  $x \in X$  such that  $(A \wedge B)(x) \neq 0$ .

For such a case, we say that, A and B intersect at x.

Again, if A and B are quasi-coincident at x, then, A(x) + B(x) > 1 i.e., both A(x) and B(x) are not zero and here A and B intersect at x.

- $x_a \to \text{quasi-coincident of } A \text{ if } a > A^c(y) \text{ for some } y \in X.$
- $U \in \delta \to \text{quasi-neighborhood if } x_a \text{ is a quasi-coincident of } U.$

**Definition 31** (Adherent point). A fuzzy point  $x_a$  is called an adherent point of a fuzzy set A iff every quasi-neighborhood of  $x_a$  is a quasi-coincident with A.

**Problem 2.1.** Give an example of an adherent point.

**Definition 32** (Accumulation Point). A fuzzy point  $x_a$  is called an accumulation point of a fuzzy set A iff  $x_a$  is an adherent point of A and every quasi-neighborhood of  $x_a$  and A are quasi-coincident at some point different from sup  $x_a$ , whenever,  $x_a \in A$ .

**Definition 33** (Base). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then  $\mathcal{B}$  is a base for  $\delta$  iff every open set  $G \in \delta$  is the union of members of  $\mathcal{B}$  i.e.,  $G = \bigcup B_i, \forall B_i \in \mathcal{B}$ .

**Definition 34** (Subbase). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then  $\mathcal{S} \in X$  is called a subbase iff finite intersection of member of  $\mathcal{S}$  form a base for  $\delta$ .

### Separation Axioms

**Definition 35** (Quasi  $T_0$ -space). Let,  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then,  $\langle \mathcal{F}(X), \delta \rangle$  is called a quasi  $T_0$ -space, if for every two distinct fuzzy points  $x_a$  and  $x_b$  with same support point x, there exists  $U \in Q_{\delta}(x_a)$  such that  $x_b \not\propto U$  or, there exists  $V \in Q_{\delta}(x_b)$  such that  $x_a \not\propto V$ .

**Definition 36** (Sub  $T_0$ -space). Let,  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then,  $\langle \mathcal{F}(X), \delta \rangle$  is called a sub  $T_0$ -space, if for every two distinct  $x, y \in X$ , there exists  $a \in [0, 1]$  such that either  $\exists U \in Q_{\delta}(x_a)$  with  $y_a \not\propto U$  or,  $\exists V \in Q_{\delta}(y_a)$  with  $x_a \not\propto V$ .

**Definition 37** ( $T_0$ -space). Let,  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then,  $\langle \mathcal{F}(X), \delta \rangle$  is called a  $T_0$ -space, if for every two distinct fuzzy points  $x_a$  and  $y_b$ ,  $\exists U \in Q_\delta(x_a)$  such that  $y_b \not\propto U$  or,  $\exists V \in Q_\delta(y_b)$  with  $x_a \not\propto V$ .

**Definition 38**  $(T_1$ —space). Let,  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then,  $\langle \mathcal{F}(X), \delta \rangle$  is called a  $T_1$ —space, if for every two distinct fuzzy points  $x_a$  and  $y_b$  such that  $x_a \not\leq y_b$  then there exists  $U \in Q_{\delta}(x_a)$  such that  $y_b \not\propto U$  and,  $\exists V \in Q_{\delta}(y_b)$  such that  $x_a \not\propto V$ .

**Definition 39** ( $T_2$ -space). Let,  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then,  $\langle \mathcal{F}(X), \delta \rangle$  is called a  $T_2$ -space, if for every two distinct fuzzy points  $x_a$  and  $y_b$  (i.e.,  $x_a \neq y_b$ ) then there exists  $U \in Q_\delta(x_a)$  and,  $V \in Q_\delta(y_b)$  such that  $U \wedge V = 0$ .

Theorem 3.0.1. Quasi  $T_0$  property is heriditary. or, Every subspace of a Quasi  $T_0$  space is Quasi  $T_0$  space.

*Proof.* Suppose,  $\langle X, \delta \rangle$  be a fuzzy topological space which is Quasi  $T_0$ -space. Let  $\langle Y, \mu \rangle$  be the subspace of  $\langle X, \delta \rangle$ . We have to prove that,  $\langle Y, \mu \rangle$  be a Q- $T_0$ -space.

Now, since,  $Y \subseteq X$  so every  $V \in \mu$ ,  $V = U_{|Y}$  for some  $U \in \delta$ . Let  $y_a$  and  $y_b$  be two distinct fuzzy points in Y such that,  $y_a \neq y_b$ . Then as  $Y \subseteq X$ , we have  $y_a$  and  $y_b$  are in X with  $y_a \neq y_b$ .

Again, since  $\langle X, \delta \rangle$  is a Quasi  $T_0$ -space there exist  $U \in Q_{\delta}(y_a)$  such that  $y_b \not\propto U$  or, there exist  $V \in Q_{\delta}(y_b)$  such that  $y_a \not\propto V$ . This implies, there is  $U_{|y|} \in Q_{\delta|y}(y_a)$  such that  $y_b \not\propto U_{|Y|}$  or there is  $V_{|Y|} \in Q_{\delta|y}(y_b)$  such that  $y_a \not\propto V_{|Y|}$ .

Thus, by definition of a Q- $T_0$ -space  $\langle Y, \mu \rangle$  is a Q- $T_0$ -space.

Theorem 3.0.2. Every subspace of a  $T_0$ -space is  $T_0$ -space.

*Proof.* Let,  $\langle X, \delta \rangle$  be a fuzzy topological space and  $\langle Y, \mu \rangle$  be a subspace of  $\langle X, \delta \rangle$ . Let  $x_a$  and  $y_b$  be two distinct points in Y. Then since,  $Y \subseteq X$ , we have,  $x_a$  and  $y_b$  in X with  $x_a \neq y_b$ . Now since  $\langle X, \delta \rangle$  is a fuzzy  $T_0$ —space. We have either there is  $U \in Q_\delta(x_a)$  such that  $y_b \not\propto U$  or, there is  $V \in Q_\delta(y_b)$  such that  $x_a \not\propto V$ .

Now,  $U_{|Y|} \in Q_{\delta|Y}(x_a)$  such that  $y_b \not\propto U_{|Y|}$  as  $x_a$ ,  $y_b \in Y$  and  $V_{|Y|} \in Q_{\delta|Y}(y_b)$  such that  $x_a \not\propto V_{|Y|}$ . Thus,  $\langle Y, \mu \rangle$  is a  $T_0$ -space.

Thus,  $\langle Y, \mu \rangle$  is a  $T_0$ -space.

Theorem 3.0.3. A fuzzy topological space  $\langle \mathcal{F}(X), \delta \rangle$  is a quasi- $T_0$ -space iff for every  $x \in X$  and  $a \in [0, 1]$  there exists  $B \in \delta$  such that B(x) = a.

*Proof.* Suppose,  $\langle \mathcal{F}(X), \delta \rangle$  be a quasi  $T_0$ -space. If a = 0, then it suffices to take  $B = \underline{0}$ . If 0 < a < 1, we take a strictly monotonic increasing sequence of positive real numbers converging to a. Let  $\Delta_n = (a_n, a_{n+1}]$ ,  $n = 1, 2, 3, \ldots$ 

Since  $\langle \mathcal{F}(X), \delta \rangle$  be a quasi  $T_0$ -space, then for any  $x \in X$  and  $\Delta = (a_1, a_2)$  with  $0 \le a_1 < a_2 < 1$ , there exists  $B \in \delta$  such that  $B(x) \in \Delta$ .

From this property, we can say that,  $\exists B_n \in \delta$  such that  $B_n(x) \in \Delta_n$ , for each n

$$\therefore B = \bigvee_{n=1}^{\infty} B_n \in \delta \quad \text{and} \quad B(x) = a.$$

Conversely, suppose  $x_a$  and  $x_b$  are two fuzzy points with b < a where  $a, b \in [0, 1]$ . Then by hypothesis, there is an open set B such that B(x) = 1 - b > 1 - a.

This implies, B is an open Q-nbd of  $x_a$  but not quasi-conincident with  $x_b$  [since, B is a nbd of  $x_{1-a}$ ]. Hence,  $\langle \mathcal{F}(X), \delta \rangle$  is a quasi  $T_0$ —space.

Theorem 3.0.4. A fuzzy topological space  $\langle \mathcal{F}(X), \delta \rangle$  is  $T_1$ -space iff for every  $x \in X$  and each  $a \in [0,1]$  there exists  $B \in \delta$  such that B(x) = 1 - a and B(y) = 1 for  $y \neq x$ .

Or,  $\langle \mathcal{F}(X), \delta \rangle$  is a  $T_1$ -space  $\Leftrightarrow$  every fuzzy point in  $\langle X, \delta \rangle$  is closed.

*Proof.* Suppose  $\langle \mathcal{F}(X), \delta \rangle$  be a  $T_1$ -space. If a = 0 then it suffices to take  $B = \underline{1}$ .

Suppose, a > 0 and  $x_a$  is a fuzzy point. Since, every fuzzy point in a  $T_1$ -space is closed, so,  $x_a$  is a closed set.  $\therefore$  We have,  $B = 1 - x_a \in \delta$  and hence B(x) = 1 - a and B(y) = 1. if  $y \neq x$ .

Conversely, let  $x_a$  be a fuzzy point. Then by hypothesis there exists  $B \in \delta$  such that B(x) = 1 - a and B(y) = 1 with  $y \neq x$ . This implies,  $B = 1 - x_a$  and hence  $B^c = x_a$  which is closed. Thus,  $B \in \delta$ . Hence,  $\langle \mathcal{F}(X), \delta \rangle$  is a  $T_1$ -space.

**Definition 40** (Purely  $T_2$ -space).  $\langle \mathcal{F}(X), \delta \rangle$  is called purely  $T_2$ -space if for every two zero-meet fuzzy points  $x_a$  and  $y_b$ ,  $\exists U \in Q_\delta(x_a)$  and  $V \in Q_\delta(y_b)$  such that  $U \wedge V = \underline{0}$ .

Theorem 3.0.5. For a fuzzy topological space  $\langle \mathcal{F}(X), \delta \rangle$  the following statements are equivalent

- 1.  $\langle X, \delta \rangle$  is a fuzzy  $T_0$ -space.
- 2. For  $x, y \in X$ ,  $x \neq y$ ,  $\exists U \in \delta$  such that U(x) > 0, U(y) = 0 or U(y) > 0, U(x) = 0.

*Proof.* (1)  $\Rightarrow$  (2), Suppose  $\langle X, \delta \rangle$  is a fuzzy  $T_0$ -space. Thus, we have  $\overline{x_1(y)} \cap \overline{y_1(x)} < 1$ .

Theorem 3.0.6 (X). A fuzzy topological space  $\langle \mathcal{F}(X), \delta \rangle$  is called a fuzzy  $T_0$  space iff

- (i)  $\forall x, y \in X, \exists U \in \delta \text{ such that } U(x) = 1, U(y) = 0 \text{ or } U(y) = 1, U(x) = 0.$
- (ii) For all  $\forall x, y \in X, x \neq y, \overline{x_1(y)} \cap \overline{y_1(x)} < 1$
- (iii)  $\forall x, y \in X, x \neq y$ , such that U(x) < U(y) or U(y) < U(x)

Theorem 3.0.7. For a fuzzy topological space  $\langle X, \delta \rangle$  the following statements are equivalent

- (i) For all  $x, y \in X, x \neq y, \bar{x}_1(y) \cap \bar{y}_1(x) < 1$ ,
- (ii) For all  $x, y \in X, x \neq y, \exists U \in \delta$  such that U(x) > 0, U(y) = 0 or U(y) > 0, U(x) = 0.

*Proof.* (i)  $\Rightarrow$  (ii)

Suppose  $\langle X, \delta \rangle$  be a fuzzy  $T_0$  space. Thus, we have,  $\bar{x}_1(y) \cap \bar{y}_1(x) < 1$ . This implies that either  $\bar{x}_1(y) < 1$  or  $\bar{y}_1(x) < 1$ . Consider  $\bar{x}_1(y) < 1$ . Hence,  $1 - \bar{x}_1(y) > 0$  and  $1 - \bar{x}_1(x) = 0$ .

Let,  $1 - \bar{x}_1 = U$ , then  $U \in \delta$  and U(x) = 0, U(y) > 0.

Similarly, from  $\bar{y}_1(x) < 1$  we can show that there exists  $V \in \delta$  such that V(y) = 0, V(x) > 0.

 $(ii) \Rightarrow (i)$ 

From (ii), we have for any two points  $x, y \in X$  with  $x \neq y \exists U \in \delta$  such that U(x) > 0, U(y) = 0 or U(y) > 0, U(x) = 0.

Then

$$1 - U(x) < 1$$
 and  $1 - U(y) = 1$   
or,  $1 - U(x) = 1$  and  $1 - U(y) < 1$ 

Since the complement of U is closed, we see that  $\bar{x}_1(y) < 1$  or  $\bar{y}_1(x) < 1$ . This implies  $\bar{x}_1(y) \cap \bar{y}_1(x) < 1$ .

Theorem 3.0.8. For any fuzzy topological space  $\langle X, \delta \rangle$  the following are equivalent:

- (i) For all  $x, y \in X, x \neq y, \exists U, V \in \delta$  such that U(x) = 1 = V(y) and  $U \subset V^c$
- (ii) If  $x \in X$ , then for each  $y \in X$ ,  $y \neq x$ ,  $\exists U \in \delta$  such that U(x) = 1 and  $\bar{U}(y) = 0$

*Proof.* Let  $\langle X, \delta \rangle$  be a fuzzy topological space. Let  $x, y \in X$  with  $x \neq y$ . Then by (i) there exist  $U, V \in \delta$  such that

$$U(x) = 1 = V(y)$$
 and  $U \subset V^c = 1 - V$   
 $\Rightarrow \bar{U} \subset \overline{1 - V} \subset 1 - V$ 

So,

$$\bar{U}(y) \subset (1 - V)(y) = 1 - V(y) = 0$$
 i.e.,  $\bar{U}(y) = 0$ 

 $(ii) \Rightarrow (i)$ 

Let  $\langle X, \delta \rangle$  be a fuzzy topological space. Let  $x, y \in X$  with  $x \neq y$ . By (ii) there exist  $U \in \delta$  with U(x) = 1 and  $\bar{U}(y) = 0$  or, there exist  $V \in \delta$  with V(y) = 1 and  $\bar{V}(x) = 0$ . Let  $V = 1 - \bar{U}$ . Then,

$$V(y) = (1 - \overline{U})(y)$$
$$= 1 - \overline{U}(y)$$
$$= 1 - 0$$
$$= 1$$

Again,  $U \subset \bar{U} = 1 - V = V^c$ . Hence  $U \subset V^c$ , U(x) = V(y) = 1 and it is also clear that  $U, V \in \delta$ .

**Definition 41** (Regular Space). A fuzzy topological space  $\langle X, \delta \rangle$  is said to be fuzzy regular iff for each  $x \in X$  and each closed fuzzy set U with U(x) = 0 there exists  $V, W \in \delta$  such that  $V(x) = 1, U \subset W$  and  $V \subseteq 1 - W$ .

Theorem 3.0.9. Let  $\langle X, \delta \rangle$  be a fuzzy topological space. Then the following are equivalent:

- (i)  $\langle X, \delta \rangle$  is a fuzzy regular space.
- (ii) For each  $x \in X$ ,  $U \in \delta$  with U(x) = 1,  $\exists V \in \delta$  with V(x) = 1 and  $V \subset \overline{V} \subset U$ .
- (iii) For each  $x \in X$ ,  $U \in \delta^c$  with U(x) = 0,  $\exists V \in \delta$  with V(x) = 1 such that  $U \subseteq 1 \bar{V}$  or  $\bar{V} \subseteq 1 U$ .

*Proof.* (i)  $\Rightarrow$  (ii)

Let  $\langle X, \delta \rangle$  be a fuzzy topological space. Let  $x \in X$  and  $U \in \delta$  with U(x) = 1. Then  $1 - U \in \delta^c$ . This implies

$$(1-U)(x) = 1 - U(x) = 1 - 1 = 0$$
 i.e.,  $U^{c}(x) = 0$ 

Then be definition of fuzzy regular space, there exists  $V, W \in \delta$  such that  $1 - U \subset W$  and  $V \subseteq 1 - W$ . Now,

$$\begin{split} V &\subseteq 1 - W \\ \Rightarrow \bar{V} &\subseteq \overline{1 - W} \\ \Rightarrow \bar{V} &\subseteq 1 - W \\ \Rightarrow \bar{V} &\subset U \end{split}$$

Hence,  $V \subset \bar{V} \subset U$ .

$$(ii) \Rightarrow (iii)$$

Let  $x \in X$  and  $U \in \delta^c$  with U(x) = 0. Now  $1 - U \in \delta$  and (1 - U)(X) = 1 - U(x) = 1. Hence, from (ii) there exists  $V \in \delta$  with V(x) = 1 such that  $V \subset \bar{V} \subset 1 - U$  or  $U \subset 1 - \bar{V}$ .

Lastly, (iii) 
$$\Rightarrow$$
 (i)

Let  $x \in X$  and  $U \in \delta^c$  with U(x) = 0. From (iii), there exists  $V \in \delta$  with V(x) = 1 and  $\overline{V} \subset 1 - U$ . This implies  $U \subset 1 - \overline{V}$ . Consider  $1 - \overline{V} = W$ . Therefore,  $W \in \delta$  and also  $V \subset \overline{V} = 1 - W$ . Hence,  $U \subset W$  and  $V \subseteq 1 - W$ . Therefore, by the definition of regular space  $\langle X, \delta \rangle$  is a regular space.

# Connected Fuzzy Topological Space

**Definition 42** (Separated Fuzzy Sets). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then  $A, B \in \mathcal{F}(X)$  are called separated sets if  $\bar{A} \wedge B = \underline{0} = A \wedge \bar{B}$ .

Lemma. Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $A, B, C \in \mathcal{F}(X)$ . If B and C are separated sets then  $A \wedge B$  and  $A \wedge C$  are separated.

*Proof.* Since B and C are separated, we have,  $\bar{B} \wedge C = \underline{0} = B \wedge \bar{C}$ .

We have,  $A \wedge B < B \implies \overline{A \wedge B} < \overline{B}$  and  $A \wedge C < C$ .

This implies,  $\overline{(A \wedge B)} \wedge (A \wedge C) \leq \overline{B} \wedge C = \underline{0}$ . Similarly,  $(A \wedge B) \wedge \overline{(A \wedge C)} \leq B \wedge \overline{C} = \underline{0}$ .

Hence,  $A \wedge B$  and  $A \wedge C$  are separated.

**Definition 43** (Connected Fuzzy Sets). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. A fuzzy set A on X is called connected if there do not exist  $C, D \in \mathcal{F}(X) \setminus \{\underline{0}\}$  such that  $A = C \vee D$ . Or, A set A is connected if  $A = B \vee C$  then either  $B = \underline{0}$  or,  $C = \underline{0}$ .

Theorem 4.0.1. Let,  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $A \in \mathcal{F}(X)$ . Then the following are equivalent:

- 1. A is connected.
- 2.  $B, C \in \mathcal{F}(X)$  are separated,  $A \leq B \vee C$  implies  $A \wedge B = \underline{0}$  or,  $A \wedge C = \underline{0}$ .
- 3. B,  $C \in \mathcal{F}(X)$  are separated,  $A < B \lor C$  implies A < B or, A < C.

*Proof.* (1)  $\Rightarrow$  (2), Since, B and C are separated set. By the above lemma, we have  $(A \land B)$  and  $(A \land C)$  are separated. Since, A is connected and  $A \leq B \lor C$  implies

$$A = A \wedge (B \vee C)$$
  
=  $(A \wedge B) \vee (A \wedge C)$ 

then by definition of connectedness, either  $A \wedge B = \underline{0}$  or,  $A \wedge C = \underline{0}$ . Hence, (2) holds.

 $(2) \Rightarrow (3)$ , Suppose,  $A \wedge B = \underline{0}$ , then,

$$A = (A \land B) \lor (A \land C)$$
  
=  $\underline{0} \lor (A \land C)$   
=  $(A \land C)$ .

So,  $A \leq C$ . Similarly, if  $A \wedge C = 0$ , then we can prove that  $A \leq B$ . Thus, (3) holds.

Finally, (3)  $\Rightarrow$  (1), Suppose, (3) holds, we need to show that, A is connected. Let  $B, C \in \mathcal{F}(X)$  are two separated fuzzy sets such that  $A \leq B \vee C$ . We need to prove that, either,  $B = \underline{0}$  or,  $C = \underline{0}$ .

By (3), we have either  $A \leq B$  or,  $A \leq C$ . Now if  $A \leq B$  then  $C \wedge A \leq C \wedge B \leq C \wedge \bar{B}$ . But since, B, C are separated sets so,  $C \wedge \bar{B} = \underline{0}$ .  $C \wedge A = \underline{0}$ .

Again,  $C \wedge A = C \wedge (B \vee C) = C$ . So  $C = \underline{0}$ . Now if  $A \leq C$ , we can similarly prove that  $B = \underline{0}$ .

Thus, A is connected.

Theorem 4.0.2. Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space,  $A \in \mathcal{F}(X)$  is connected such that  $A \leq B \leq \bar{A}$ . Show that B is connected.

*Proof.* Suppose, C and D are two separated fuzzy sets such that,  $B = C \vee D$ . To show that, B is connected we need only to show either, C = 0 or, D = 0.

By the lemma, we have  $(A \wedge C)$  and  $(A \wedge D)$  are separated sets. Let  $F = A \wedge C$ ,  $G = A \wedge D$ . Now

$$F \lor G = (A \land C) \lor (A \land D)$$
$$= A \land (C \lor D)$$
$$= A \land B$$
$$= A$$

Since, A is connected, we have either  $F = \underline{0}$  or,  $G = \underline{0}$ .

Suppose,  $F = \underline{0}$ . Then,  $A = F \vee G = G = A \wedge D$ . This implies,  $A \leq D$ . Thus,  $\bar{A} \leq \bar{D}$ . i.e.,  $B \leq \bar{A} \leq \bar{D}$ . Now,  $C \wedge B \leq C \wedge \bar{A} \leq C \wedge \bar{D} = \underline{0}$ . i.e.,

$$C \land B \leq \underline{0}$$
  

$$\Rightarrow C \land (C \lor D) \leq \underline{0}$$
  

$$\Rightarrow C = 0$$

Similarly, if G = 0, then we can show that D = 0. Hence, B is connected.

**Definition 44** (Connected Fuzzy Topological Space). If the fuzzy set  $\underline{1}$  is connected i.e., there does not exist separated sets  $C, D \in \mathcal{F}(X) \setminus \{\underline{0}\}$  such that  $\underline{1} = C \vee D$ , then the fuzzy topological space $\langle \mathcal{F}(X), \delta \rangle$  is called a connected fuzzy topological space.

Theorem 4.0.3 (Characterization Theorem). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Then the followings are equivalent

- 1.  $\langle \mathcal{F}(X), \delta \rangle$  is connected.
- 2.  $A, B \in \delta, A \vee B = \underline{1}, A \wedge B = \underline{0}, \text{ implies } \underline{0} \in \{A, B\}.$
- 3.  $A, B \in \delta', A \vee B = \underline{1}, A \wedge B = \underline{0}, \text{ implies } \underline{0} \in \{A, B\}.$

*Proof.* (1)  $\Rightarrow$  (2), Suppose, (2) is false. Then there are  $A, B \in \delta \setminus \{0\}$  such that

$$A \lor B = \underline{1}, \qquad A \land B = \underline{0}$$
  
 $\Rightarrow A^c \land B^c = \underline{0}, \text{ and } A^c \lor B^c = \underline{1} \text{ [By De Morgan's Law]}$   
 $\Rightarrow \bar{A}^c \land B^c = 0, \text{ and } A^c \land \bar{B}^c = 0 \text{ [Since, } A^c, B^c \text{ are closed.]}$ 

... We have by definition,  $A^c$  and  $B^c$  are two separated sets. Therefore, we have  $A^c \vee B^c = \underline{1}$  and  $A^c$ ,  $B^c$  are two separated sets. Hence,  $\langle \mathcal{F}(X), \delta \rangle$  is disconnected. Hence, (2) is true.

 $(2) \Rightarrow (3)$ , Let  $A, B \in \delta'$  such that  $A \vee B = \underline{1}$  and  $A \wedge B = \underline{0}$ . Then by De Morgan's Laws,  $A^c \wedge B^c = \underline{0}$  and  $A^c \vee B^c = \underline{1}$ . By  $(2), \underline{0} \in \{A^c, B^c\}$ . Hence,  $\underline{0} \in \{A, B\}$ .

 $(3) \Rightarrow (1)$ , If  $\langle \mathcal{F}(X), \delta \rangle$  is not connected, then there exists non-zero separated sets  $A, B \in \delta' \setminus \{\underline{0}\}$  such that  $A \vee B = \underline{1}$ , which contradicts (3).

Hence, 
$$\langle \overline{\mathcal{F}}(X), \delta \rangle$$
 is connected.

#### Compactness

**Definition 45** (Cover and C-compactness). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $A \in \mathcal{F}(X)$ . Then,  $\mathcal{A} \subseteq \mathcal{F}(X)$  is called a cover of A if  $A \subseteq \vee \mathcal{A}$ .

- $\langle \mathcal{F}(X), \delta \rangle$  is called C-compact if every open cover of  $\langle \mathcal{F}(X), \delta \rangle$  has a finite subcover.
- $\mathcal{A}$  is called an open cover of A, if  $\mathcal{A} \subseteq \delta$  and if  $\mathcal{A}$  is a cover of A.
- $\mathcal{B} \subseteq \mathcal{A}$  is called a subcover if  $\mathcal{B}$  is still a cover of A.

In particularly,  $\mathcal{A}$  is a cover of  $\langle \mathcal{F}(X), \delta \rangle$  if  $\mathcal{A}$  is a cover of  $\underline{1}$ .

**Definition 46** ( $\alpha$ -cover and  $\alpha$ -compactness). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $\alpha \in [0, 1)$ . Then a family  $\mathcal{A} \subseteq \mathcal{F}(X)$  is called an  $\alpha$ -cover, if for very  $x \in X \exists A \in \mathcal{A} \ni A(x) > \alpha$ .

•  $\langle \mathcal{F}(X), \delta \rangle$  is called an  $\alpha$ -compact, if for every open  $\alpha$ -cover of  $\langle \mathcal{F}(X), \delta \rangle$  has a finite sub- $\alpha$ -cover where  $\alpha \in [0, 1)$ .

**Definition 47** (Strong Compact). A fuzzy topological space  $\langle \mathcal{F}(X), \delta \rangle$  is called strongly compact if it is  $\alpha$ -compact for every  $\alpha \in [0, 1)$ .

**Definition 48** ( $\alpha^*$ -cover and  $\alpha^*$ -compactness). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $\alpha \in [0, 1)$ . Then a family  $\mathcal{A} \subseteq \mathcal{F}(X)$  is called an  $\alpha^*$ -cover, if for every  $x \in X$ , there exists  $A \in \mathcal{A}$  such that,  $A(x) \geq \alpha$ .

• For  $\alpha \in [0,1)$ ,  $\langle \mathcal{F}(X), \delta \rangle$  is called an  $\alpha^*$ -compact, if for every open  $\alpha^*$ -cover of  $\langle \mathcal{F}(X), \delta \rangle$  has a finite sub  $\alpha^*$ -cover.

**Example.** Given  $X = \{a, b, c\}, A = \{A, B, C\}, \alpha \in [0, 1), \delta = \{\underline{0}, \underline{1}, A, B, C\}$  where,

$$A: a \mapsto 0.2, b \mapsto 0.4, c \mapsto 0.6;$$
  
 $B: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8;$   
 $C: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 0.9;$ 

Check whether  $\mathcal{A}$  is  $\alpha$ -compact or,  $\alpha^*$ -compact corresponding to the given value of  $\alpha$ .

#### Solution.

- 1. Let  $\alpha=0.7$   $a\in X: \alpha=0.7>A(a), B(a), C(a).$  Hence, for  $\alpha=0.7, \mathcal{A}$  is not an  $\alpha-$ cover.
- 2. Let  $\alpha = 0.3$   $a \in X : \alpha = 0.3 < C(a) = 0.6$ , B(a) = 0.4  $b \in X : \alpha = 0.3 < A(b) = 0.4$ , B(b) = 0.6, C(b) = 0.8  $c \in X : \alpha = 0.3 < A(c) = 0.6$ , B(c) = 0.8, C(c) = 0.9 $\therefore A$  is an  $\alpha$ -compact space for a = 0.3.
- 3. Let  $\alpha = 0.6$ For,  $a \in X : \alpha = 0.6 = C(a)$ For,  $b \in X : \alpha = 0.6 = B(b), \alpha = 0.6 < C(b) = 0.8$ For,  $c \in X : \alpha = 0.6 = A(c) = 0.6, \alpha = 0.6 < B(c) = 0.8, C(c) = 0.9$  $\therefore A$  is an  $\alpha^*$ -compact space for a = 0.6.

**Definition 49** (Q-cover). Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $A \in \mathcal{F}(X)$ . Then a collection  $\mathcal{A} \subseteq \mathcal{F}(X)$  is called a Q-cover of A if for every  $x \in Supp(A)$ , there exists  $U \in \mathcal{A}$  such that  $x_{A(x)} \propto U$ .

**Definition 50** (Q-compact). A fuzzy set A is called Q-compact if every open Q-cover of A has a finite sub Q-cover. A fuzzy topological space  $\langle \mathcal{F}(X), \delta \rangle$  is called Q-compact if  $\underline{1}$  is Q-compact.

**Example.** Consider,  $X = \{a, b, c\}, \delta = \{\underline{0}, \underline{1}, U, V, W\}$  where

 $U: a \mapsto 0.3, b \mapsto 0.5, c \mapsto 0.7;$   $V: a \mapsto 0.4, b \mapsto 0.6, c \mapsto 0.8;$  $W: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 0.9;$ 

Consider  $\mathcal{A} = \{U, V\} \subseteq \delta$  and let,  $A: a \mapsto 0.1, b \mapsto 0.2, c \mapsto 0.3$ . Then, find the Q-cover of A.

**Solution.** Here,  $Supp(A) = \{a, b, c\}$ 

For, x = a,  $a_{A(a)} = a_{0.1} = 0.1$ 

For, x = b,  $b_{A(b)} = b_{0.2} = 0.2$ 

For, x = c,  $c_{A(c)} = c_{0.3} = 0.3$ 

For x = a, we have  $U_a$ : 0.3 + 0.1 < 1,  $V_a = 0.4 + 0.1 < 1$ . Hence  $\mathcal{A}$  is not a Q-cover of A.

# If  $A: a \mapsto 0.7$ ,  $b \mapsto 0.6$ ,  $c \mapsto 0.5$ .

Then, For x = a,  $a_{A(a)} = a_{0.7} = 0.7$ 

For, x = b,  $b_{A(b)} = b_{0.6} = 0.6$ 

For, x = c,  $c_{A(c)} = c_{0.5} = 0.5$ 

For,  $x = a, 0.3 + 0.7 \ge 1, 0.4 + 0.7 > 1$ 

For, x = b, 0.5 + 0.6 > 1, 0.6 + 0.6 > 1

For, x = c, 0.7 + 0.5 > 1, 0.8 + 0.5 > 1

Hence, for every  $x \in Supp(A)$ ,  $x_{A(x)} \propto U$ .

 $\therefore$   $\mathcal{A}$  is a Q-cover of A.

**Definition 51**  $(\alpha - Q - \text{cover})$ . Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $A \in \mathcal{F}(X)$ . Then a collection  $\varphi \subseteq \mathcal{F}(X)$  is called an  $\alpha - Q - \text{cover}$  of A, if for every  $x_a \subseteq A$ , there exists  $U \in \varphi$  such that  $x_a \propto U$ . It is denoted by  $\vee \varphi \hat{q} A(\alpha)$ .

**Definition 52**  $(\bar{\alpha} - Q - \text{cover})$ . Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space and  $A \in \mathcal{F}(X)$ . Then a collection  $\varphi \subseteq \mathcal{F}(X)$  is called an  $\bar{\alpha} - Q - \text{cover}$  of A, if there exists  $\gamma \in B^*(\alpha)$  such that  $\gamma$  is a  $\gamma - Q - \text{cover}$  of A.

- $B(b) = \{a \in L : a \propto b\}$ , where the binary relation  $\infty$  is defined as, for  $a, b \in L$ ,  $a \propto b \Leftrightarrow$  for every subset  $D \subset L$ , b < Sup D implies the existence of  $d \in D$  with a <
- $B^*(b) = B(b) \cap M(L)$ , where, M(L) = (0, 1].

**Definition 53.** Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space,  $A \in \mathcal{F}(X)$ . A is called N-compact if for every  $\alpha \in (0,1] - M([0,1])$ , every open  $\alpha - Q$ -cover of A has a finite subfamily which is an  $\bar{\alpha} - Q$ -cover of A.  $\langle \mathcal{F}(X), \delta \rangle$  is called N-compact, if  $\underline{1}$  is compact.

Theorem 5.0.1. Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space,  $A \in \mathcal{F}(X)$ . Then A is N-compact iff the following conditionds hold:

- (a) For every  $\alpha \in (0,1]$ , every open  $\alpha Q$ -cover of A has a finite sub  $\alpha Q$ -cover.
- (b) For every  $\alpha \in (0,1]$ , every open  $\alpha Q$ -cover of A which consists of just one subset is an  $\bar{\alpha} Q$ -cover of A.
- *Proof.* (a) Let, A be N-compact,  $\alpha \in (0,1]$  and  $\varphi$  is an open  $\alpha Q$ -cover of A. By the definition of N-compact,  $\varphi$  has a finite subfamily  $\psi$  such that,  $\psi$  is an  $\bar{\alpha} Q$ -cover of A. Hence,  $\vee \psi \hat{q} A(\alpha)$  i.e.,  $\psi$  is an  $\alpha Q$ -cover of A.
- (b) Suppose,  $U \in \delta$  and  $\varphi = \{U\}$  is an open  $\alpha Q$ -cover of A. Then, by the N-compactness of A,  $\varphi$  has a subfamily  $\psi$  such that  $\psi$  is an  $\bar{\alpha} Q$ -cover of A. But, clearly,  $\varphi = \psi$ . Hence,  $\psi$  is an open  $\alpha Q$ -cover of A.

Conversely, suppose (a) and (b) holds.

Let  $\alpha \in (0,1]$  and  $\varphi$  is an open  $\alpha - Q$ -cover of A.

By (a),  $\varphi$  has a finite sub  $\alpha - Q$ -cover  $\psi$  of A. Take  $U = \vee \psi$ . Then  $\{U\}$  is an  $\alpha - Q$ -cover of A.

By (b),  $\{U\}$  is also an  $\bar{\alpha} - Q$ -cover of A. By the definition of  $\bar{\alpha} - Q$ -cover, there exists  $\gamma \in B^*(\alpha)$  such that  $x_{\gamma}$  is a quasi-coincident with U for every  $x_{\gamma} \subseteq A$ . Hence,  $\gamma + U(x) > 1 \Rightarrow \gamma > 1 - U(x)$ 

i.e.,  $\gamma \leq (U(x))' \Rightarrow \gamma \not\leq (U\psi(x))' = \wedge \{(W(x))' | W \in \psi\}$ 

i.e.,  $W \in Q_{\gamma}(x_{\gamma})$ . So,  $\psi$  is an  $\bar{\alpha} - Q$ -cover of A. Hence, A is N-compact.

Theorem 5.0.2. Continuous image of an N-compact space is N-compact.

Proof. Let  $f^{\to}: \langle \mathcal{F}(X), \delta \rangle \to \langle \mathcal{F}(Y), \mu \rangle$  be a continuous fuzzy mapping and A be a N-compact fuzzy set in  $\mathcal{F}(X)$ . For  $\alpha \in (0,1]$ , let  $\mathcal{A}$  be an open  $\alpha - Q$ -cover of  $f^{\to}(A)$ . Then for every  $x_{\alpha} \leq A$ ,  $f^{\to}(x_{\alpha}) = f(x)_{\alpha} \leq f^{\to}(A)$ , there exists  $U \in \mathcal{A}$  such that  $f(x)_{\alpha} \propto U \Rightarrow f(x)_{\alpha} \not\propto U^{c} \Rightarrow \alpha \not\leq U^{c}(f(x)) \Rightarrow \alpha \not\leq f^{\leftarrow}(U^{c})(x) = f^{\leftarrow}(U)^{c}(x)$ . That is  $x_{\alpha} \propto f^{\leftarrow}(U)$ . Since,  $f^{\to}$  is continuous,  $f^{\leftarrow}(U) \in \delta$  and hence  $f^{\leftarrow}(U) \in Q(x_{\alpha})$ . Thus,  $f^{\leftarrow}(A)$  is an open  $\alpha - Q$ -cover of A.

Since A is N-compact, A has a finite subfamily  $A_n = \{U_i : 1 \le i \le n\}$  such that  $f^{\leftarrow}(A_n)$  is an  $\bar{\alpha} - Q$ -cover of A.

Now, we show that,  $\mathcal{A}_n$  is an  $\bar{\alpha} - Q$ -cover of  $f^{\rightarrow}(A)$ . Since,  $f^{\leftarrow}(\mathcal{A})_n$  is an open  $\bar{\alpha} - Q$ -cover of A, there exists  $\gamma \in \mathcal{B}(\alpha)$  such that  $f^{\leftarrow}(\mathcal{A}_{\setminus})$  is  $\gamma - Q$ -cover of A. This implies,  $\gamma \sqsubseteq a$  and hence  $\exists \lambda \in (0,1]$  such that  $\gamma \sqsubseteq \lambda \sqsubseteq \alpha$ . So,  $\lambda \in \mathcal{B}(\alpha)$  and hence we have,  $\lambda \leq f^{\leftarrow}(A)(y) = \vee \{A(x) : x \in X, f(x) = y\}$ . Now,  $\gamma \sqsubseteq \lambda$  implies,  $\gamma \not\leq (f^{\leftarrow}(U_i))^c(x) = f^{\leftarrow}(U_i^c)(x) = U_i^x(f(x)) = U_i^c(y)$ , for some  $1 \leq i \leq n$  such that  $x_{\gamma} \propto f^{\leftarrow}(U_i)$ . By  $\gamma \sqsubseteq \lambda$  and hence  $\gamma \leq \lambda$ , we have  $\lambda \not\leq U_i^c(y)$ . Thus  $y_{\lambda} \propto U_i$  for some  $1 \leq i \leq n$ . So,  $\mathcal{A}_n$  is an open  $\lambda - Q$ -cover of  $f^{\rightarrow}(A)$  and hence  $\mathcal{A}_n$  is an  $\bar{\alpha} - Q$ -cover of  $f^{\leftarrow}(A)$ .

Therefore,  $f^{\rightarrow}(A)$  is an N-compact.

**Definition 54** (Net in X). Let X be a non-empty ordinary set and D be a directed set then every mapping  $S: D \to X$  is called a net in X and D is called the index set of S.

Theorem 5.0.3. Let  $\langle \mathcal{F}(X), \delta \rangle$  be a fuzzy topological space. Let  $A, B, C \in \mathcal{F}(X)$  such that A be a N-compact and B be closed. Then  $A \wedge B$  is N-compact.

*Proof.* Let S be an  $\alpha$ -net in  $A \wedge B$ . Then S is also an  $\alpha$ -net in A. Since, A is N-compact, S has a cluster point  $x_{\alpha}$  in A such that  $ht(\alpha) = \alpha$ . But, S is also a net in closed subset B, we have  $x_{\alpha} \leq B$ .

So,  $x_a \leq A \wedge B$ , i.e.,  $x_a$  is a cluster point of  $\delta$  in  $A \wedge B$  such that  $ht(\alpha) = \alpha$ . Hence,  $A \wedge B$  is N-compact.  $\square$ 

### **Fuzzy Mapping**

**Definition 55** (Fuzzy Mapping). Let X and Y be two non-empty set and let  $f: X \to Y$  be an ordinary mapping. A fuzzy mapping  $f^{\to}: \langle \mathcal{F}(X), \delta \rangle \to \langle \mathcal{F}(Y), \mu \rangle$  is defined by  $f^{\to}(A)(y) = \bigvee \{A(x) | x \in X, f(x) = y\} \forall y \in Y$ , and a fuzzy reverse mapping  $f^{\leftarrow}: \langle \mathcal{F}(Y), \mu \rangle \to \langle \mathcal{F}(X), \delta \rangle$  is defined by  $f^{\leftarrow}(B)(x) = B(f(x)) \forall x \in X$ .

**Definition 56** (Continuous Fuzzy Mapping). Let  $\langle \mathcal{F}(X), \delta \rangle$  and  $\langle \mathcal{F}(Y), \mu \rangle$  be two fuzzy topological space. A fuzzy mapping  $f^{\rightarrow}: \langle \mathcal{F}(X), \delta \rangle \rightarrow \langle \mathcal{F}(Y), \mu \rangle$  is called continuous if for each  $v \in \mu$ ,  $f^{\rightarrow}(v) \in \delta$ .

**Definition 57** (Open Fuzzy Mapping). Let  $\langle \mathcal{F}(X), \delta \rangle$  and  $\langle \mathcal{F}(Y), \mu \rangle$  be two fuzzy topological space. A fuzzy mapping  $f^{\rightarrow}$  is called open if for each  $u \in \delta$ ,  $f^{\rightarrow}(u) \in \mu$ .

**Definition 58** (Closed Fuzzy Mapping). Let  $\langle \mathcal{F}(X), \delta \rangle$  and  $\langle \mathcal{F}(Y), \mu \rangle$  be two fuzzy topological space. A fuzzy mapping  $f^{\rightarrow}$  is called closed if for each closed set  $F \in \delta$ ,  $f^{\rightarrow}(F)$  is closed in  $\mu$ .

Theorem 6.0.1. Let  $\langle \mathcal{F}(X), \delta \rangle$  and  $\langle \mathcal{F}(Y), \mu \rangle$  be two fuzzy topological spaces and  $f: X \to Y$  be an ordinary mapping. Then for each  $a \in [0, 1]$  and every  $A \in \mathcal{F}(X)$ ,  $f^{\to}(aA) = af^{\to}(A)$ .

*Proof.* For all  $a \in [0,1]$ ,  $\forall A \in \mathcal{F}(X)$  and  $\forall y \in Y$  we have,

$$f^{\to}(aA)(y) = \bigvee \{ (aA)(x) | x \in X, \ f(x) = y \}$$

$$= \bigvee \{ a \wedge (A)(x) | x \in X, \ f(x) = y \}$$

$$= a \wedge (\bigvee \{ (A)(x) | x \in X, \ f(x) = y \})$$

$$= a \wedge f^{\to}(A)(y)$$

$$= (af^{\to}(A))(y)$$

Thus,  $f^{\rightarrow}(aA) = af^{\rightarrow}(A)$ .