ACM 常用算法模板

目录 1

目录

1	数据	结构 3
	1.1	并查集
	1.2	树状数组 3
		1.2.1 一维
		1.2.2 二维
		1.2.3 三维
	1.3	线段树
	1.4	普通平衡树 6
		1.4.1 树状数组实现
	1.5	可持久化线段树
	1.6	st 表
2	图论	
	2.1	最短路
		2.1.1 dijkstra
	2.2	树上问题 9
		2.2.1 最近公公祖先
		2.2.2 树链剖分
	2.3	强连通分量
	2.4	拓扑排序 11
3	字符	串 13
	3.1	kmp
	3.2	· · · · · · · · · · · · · · · · · · ·
	3.3	manacher
4	数学	
	4.1	扩展欧几里得
	4.2	线性代数
		4.2.1 向量公约数
	4.3	筛法
	4.4	分解质因数 18
	4.5	pollard rho
	4.6	组合数
	4.7	数论分块 20
	4.8	积性函数 20
		4.8.1 定义
		4.8.2 例子
	4.9	狄利克雷卷积
		4.9.1 性质
		4.9.2 例子
	4.10	欧拉函数 21
	4.11	莫比乌斯反演
		4.11.1 莫比乌斯函数性质 22

		4.11.2 莫比乌斯变换/反演	22
	4.12	杜教筛	22
		4.12.1 示例	22
	4.13	多项式	23
	4.14	盒子与球 2	27
		4.14.1 球同, 盒同, 可空 2	28
		4.14.2 球不同, 盒同, 可空	28
		4.14.3 球同, 盒不同, 可空	29
		4.14.4 球同, 盒不同, 不可空	29
		4.14.5 球不同, 盒不同, 可空	29
		4.14.6 球不同, 盒不同, 不可空	29
	4.15	线性基	29
	4.16	矩阵快速幂	3 0
5	计算	11 荷	1
0	5.1		31
	5.2		36
			12
	0.5	1.1.1.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1	: 2
6	杂项	4	4
	6.1	快读	14
	6.2	高精度	14
	6.3	离散化	15
	6.4	模运算	16
	6.5	分数	16
	6.6	表达式求值	17
	6.7	日期	18
	6.8	builtin 函数	19
	6.9	对拍	19
	6.10	编译常用选项	60
	6.11	开栈	60
	6.12	clang-format	60

1 数据结构

1.1 并查集

```
struct dsu {
2
      int n;
3
      vector<int> fa, sz;
4
      dsu(int _n) : n(_n), fa(n + 1), sz(n + 1, 1) { iota(fa.begin(), fa.end(), 0); }
5
      int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
6
      int merge(int x, int y) {
7
          int fax = find(x), fay = find(y);
8
          if (fax == fay) return 0; // 一个集合
9
          sz[fay] += sz[fax];
10
          return fa[fax] = fay; // 合并到哪个集合了
11
12
      int size(int x) { return sz[find(x)]; }
13 };
```

1.2 树状数组

1.2.1 一维

```
template <class T>
 2
   struct fenwick {
3
       int n;
 4
       vector<T> t;
 5
       fenwick(int _n) : n(_n), t(n + 1) {}
 6
       T query(int 1, int r) {
 7
           auto query = [&](int pos) {
 8
                T res = 0;
9
                while (pos) {
10
                    res += t[pos];
11
                    pos -= lowbit(pos);
12
                }
13
                return res;
14
           };
15
           return query(r) - query(l - 1);
16
17
       void add(int pos, T num) {
18
           while (pos <= n) {</pre>
19
                t[pos] += num;
20
                pos += lowbit(pos);
21
22
       }
23 };
```

1.2.2 二维

```
template <class T>
struct Fenwick_tree_2 {
    Fenwick_tree_2(int n, int m) : n(n), m(m), tree(n + 1, vector<T>(m + 1)) {}

T query(int l1, int r1, int l2, int r2) {
    auto query = [&](int l, int r) {
    T res = 0;
    for (int i = 1; i; i -= lowbit(i))
```

```
8
                for (int j = r; j; j -= lowbit(j)) res += tree[i][j];
9
            return res;
10
         11
12
13
     void update(int x, int y, T num) {
         for (int i = x; i <= n; i += lowbit(i))</pre>
14
15
            for (int j = y; j \leftarrow m; j \leftarrow lowbit(j)) tree[i][j] += num;
16
17
  private:
18
     int n, m;
19
     vector<vector<T>> tree;
20 };
```

1.2.3 三维

```
1
  template <class T>
2
   struct Fenwick_tree_3 {
3
       Fenwick_tree_3(int n, int m, int k)
 4
           : n(n), m(m), k(k), tree(n + 1, vector<vector<T>>(m + 1, vector<T>(k + 1))) {}
5
       T query(int a, int b, int c, int d, int e, int f) {
6
           auto query = [&](int x, int y, int z) {
7
               T res = 0;
8
               for (int i = x; i; i -= lowbit(i))
9
                   for (int j = y; j; j -= lowbit(j))
10
                        for (int p = z; p; p -= lowbit(p)) res += tree[i][j][p];
11
               return res;
12
           };
13
           T res = query(d, e, f);
14
           res -= query(a - 1, e, f) + query(d, b - 1, f) + query(d, e, c - 1);
15
           res += query(a - 1, b - 1, f) + query(a - 1, e, c - 1) + query(d, b - 1, c - 1);
           res -= query(a - 1, b - 1, c - 1);
16
17
           return res;
18
19
       void update(int x, int y, int z, T num) {
20
           for (int i = x; i <= n; i += lowbit(i))</pre>
21
               for (int j = y; j <= m; j += lowbit(j))</pre>
22
                   for (int p = z; p \leftarrow k; p += lowbit(p)) tree[i][j][p] += num;
23
24
  private:
25
       int n, m, k;
26
       vector<vector<T>>> tree;
27
  };
```

1.3 线段树

```
template <class Data, class Num>
2
  struct Segment_Tree {
3
       inline void update(int l, int r, Num x) { update(1, l, r, x); }
      inline Data query(int 1, int r) { return query(1, 1, r); }
4
5
      Segment_Tree(vector<Data>& a) {
           n = a.size();
6
7
           tree.assign(n * 4 + 1, \{\});
8
           build(a, 1, 1, n);
9
      }
10 private:
```

```
11
       int n;
       struct Tree {
12
13
           int 1, r;
14
           Data data;
15
16
       vector<Tree> tree;
17
       inline void pushup(int pos) { tree[pos].data = tree[pos << 1].data + tree[pos << 1 | 1].data; }</pre>
18
       inline void pushdown(int pos) {
19
           tree[pos << 1].data = tree[pos << 1].data + tree[pos].data.lazytag;</pre>
20
           tree[pos << 1 | 1].data = tree[pos << 1 | 1].data + tree[pos].data.lazytag;</pre>
21
           tree[pos].data.lazytag = Num::zero();
22
23
       void build(vector<Data>& a, int pos, int 1, int r) {
24
           tree[pos].1 = 1;
25
           tree[pos].r = r;
26
           if (1 == r) {
27
               tree[pos].data = a[l - 1];
28
               return;
29
           }
30
           int mid = (tree[pos].1 + tree[pos].r) >> 1;
31
           build(a, pos << 1, 1, mid);</pre>
32
           build(a, pos << 1 | 1, mid + 1, r);
33
           pushup(pos);
34
35
       void update(int pos, int& 1, int& r, Num& x) {
36
           if (1 > tree[pos].r || r < tree[pos].1) return;</pre>
37
           if (1 <= tree[pos].1 && tree[pos].r <= r) {</pre>
38
               tree[pos].data = tree[pos].data + x;
39
               return;
40
           }
41
           pushdown(pos);
42
           update(pos << 1, l, r, x);
43
           update(pos << 1 | 1, 1, r, x);
44
           pushup(pos);
45
46
       Data query(int pos, int& 1, int& r) {
47
           if (1 > tree[pos].r || r < tree[pos].l) return Data::zero();</pre>
48
           if (1 <= tree[pos].1 && tree[pos].r <= r) return tree[pos].data;</pre>
49
           pushdown(pos);
50
           return query(pos << 1, 1, r) + query(pos << 1 | 1, 1, r);
51
       }
52 };
53
  struct Num {
54
       11 add;
55
       inline static Num zero() { return {0}; }
56
       inline Num operator+(Num b) { return {add + b.add}; }
57 };
58
  struct Data {
59
       11 sum, len;
60
       Num lazytag;
61
       inline static Data zero() { return {0, 0, Num::zero()}; }
62
       inline Data operator+(Num b) { return {sum + len * b.add, len, lazytag + b}; }
63
       inline Data operator+(Data b) { return {sum + b.sum, len + b.len, Num::zero()}; }
64
  };
```

1.4 普通平衡树

1.4.1 树状数组实现

需要预先处理出来所有可能的数。

```
int lowbit(int x) { return x & -x; }
2
 3
  template <typename T>
4
   struct treap {
 5
       int n, size;
 6
       vector<int> t;
 7
       vector<T> t2, S;
 8
       treap(const vector<T>& a) : S(a) {
9
           sort(S.begin(), S.end());
           S.erase(unique(S.begin(), S.end()), S.end());
10
11
           n = S.size();
12
           size = 0;
13
           t = vector<int>(n + 1);
14
           t2 = vector < T > (n + 1);
15
       }
16
       int pos(T x) { return lower_bound(S.begin(), S.end(), x) - S.begin() + 1; }
17
       int sum(int pos) {
           int res = 0;
18
19
           while (pos) {
20
               res += t[pos];
21
               pos -= lowbit(pos);
22
           }
23
           return res;
24
       }
25
26
       // 插入cnt个x
27
       void insert(T x, int cnt) {
28
           size += cnt;
29
           int i = pos(x);
30
           assert(i <= n && S[i - 1] == x);
31
           for (; i <= n; i += lowbit(i)) {</pre>
32
               t[i] += cnt;
33
               t2[i] += cnt * x;
34
           }
35
       }
36
37
       // 删除cnt个x
38
       void erase(T x, int cnt) {
39
           assert(cnt <= count(x));</pre>
40
           insert(x, -cnt);
41
       }
42
43
       // x的排名
44
       int rank(T x) {
45
           assert(count(x));
46
           return sum(pos(x) - 1) + 1;
47
48
       // 统计出现次数
49
50
       int count(T x) { return sum(pos(x)) - sum(pos(x) - 1); }
51
52
       // 第k小
53
       T kth(int k) {
```

```
54
           assert(0 < k && k <= size);
55
           int cnt = 0, x = 0;
56
           for (int i = __lg(n); i >= 0; i--) {
57
               x += 1 << i;
               if (x >= n \mid \mid cnt + t[x] >= k) x -= 1 << i;
58
59
               else cnt += t[x];
60
           }
61
           return S[x];
62
       }
63
64
       // 前k小的数之和
65
       T pre_sum(int k) {
66
           assert(0 < k && k <= size);
67
           int cnt = 0, x = 0;
68
           T res = 0;
69
           for (int i = __lg(n); i >= 0; i--) {
70
               x += 1 << i;
71
               if (x >= n \mid | cnt + t[x] >= k) x -= 1 << i;
72
               else {
73
                   cnt += t[x];
                   res += t2[x];
74
75
               }
76
           }
77
           return res + (k - cnt) * S[x];
78
       }
79
80
       // 小于x, 最大的数
81
       T prev(T x) { return kth(sum(pos(x) - 1)); }
82
83
       // 大于x, 最小的数
84
       T next(T x) { return kth(sum(pos(x)) + 1); }
85
  };
```

1.5 可持久化线段树

```
1 constexpr int MAXN = 200000;
  vector<int> root(MAXN << 5);</pre>
3
  struct Persistent_seg {
4
       int n;
5
       struct Data {
6
           int ls, rs;
7
           int val;
8
9
       vector<Data> tree;
10
       Persistent_seg(int n, vector<int>& a) : n(n) { root[0] = build(1, n, a); }
11
       int build(int 1, int r, vector<int>& a) {
12
           if (1 == r) {
13
               tree.push_back({0, 0, a[1]});
14
               return tree.size() - 1;
15
           }
16
           int mid = 1 + r \gg 1;
17
           int ls = build(l, mid, a), rs = build(mid + 1, r, a);
18
           tree.push_back({ls, rs, tree[ls].val + tree[rs].val});
19
           return tree.size() - 1;
20
21
       int update(int rt, const int& idx, const int& val, int l, int r) {
22
           if (1 == r) {
```

```
23
               tree.push_back({0, 0, tree[rt].val + val});
24
               return tree.size() - 1;
25
26
           int mid = 1 + r >> 1, ls = tree[rt].ls, rs = tree[rt].rs;
27
           if (idx <= mid) ls = update(ls, idx, val, l, mid);</pre>
28
           else rs = update(rs, idx, val, mid + 1, r);
29
           tree.push_back({ls, rs, tree[ls].val + tree[rs].val});
30
           return tree.size() - 1;
31
       }
32
       int query(int rt1, int rt2, int k, int 1, int r) {
33
           if (1 == r) return 1;
34
           int mid = 1 + r \gg 1;
35
           int lcnt = tree[tree[rt2].ls].val - tree[tree[rt1].ls].val;
36
           if (k <= lcnt) return query(tree[rt1].ls, tree[rt2].ls, k, l, mid);</pre>
37
           else return query(tree[rt1].rs, tree[rt2].rs, k - lcnt, mid + 1, r);
38
39
  };
```

1.6 st 表

```
auto lg = []() {
2
       array<int, 10000001> lg;
3
       lg[1] = 0;
4
       for (int i = 2; i \leftarrow 10000000; i++) lg[i] = lg[i >> 1] + 1;
5
       return lg;
6
  }();
  template <typename T>
   struct st {
8
9
       int n;
10
       vector<vector<T>> a;
11
       st(vector<T>& _a) : n(_a.size()) {
12
           a.assign(lg[n] + 1, vector<int>(n));
           for (int i = 0; i < n; i++) a[0][i] = _a[i];</pre>
13
14
           for (int j = 1; j <= lg[n]; j++)</pre>
15
                for (int i = 0; i + (1 << j) - 1 < n; i++)
16
                    a[j][i] = max(a[j - 1][i], a[j - 1][i + (1 << (j - 1))]);
17
18
       T query(int 1, int r) {
19
           int k = lg[r - l + 1];
20
           return max(a[k][1], a[k][r - (1 << k) + 1]);</pre>
21
       }
22 };
```

2 图论

存图

```
1
   struct Graph {
2
       int n;
3
       struct Edge {
 4
           int to, w;
5
6
       vector<vector<Edge>> graph;
7
       Graph(int _n) {
8
           n = _n;
9
           graph.assign(n + 1, vector<Edge>());
10
11
       void add(int u, int v, int w) { graph[u].push_back({v, w}); }
12 };
```

2.1 最短路

2.1.1 dijkstra

```
void dij(Graph& graph, vector<int>& dis, int t) {
2
       vector<int> visit(graph.n + 1, 0);
3
       priority_queue<pair<int, int>> que;
4
       dis[t] = 0;
5
       que.emplace(0, t);
6
       while (!que.empty()) {
7
           int u = que.top().second;
8
           que.pop();
9
           if (visit[u]) continue;
10
           visit[u] = 1;
11
           for (auto& [to, w] : graph.graph[u]) {
12
               if (dis[to] > dis[u] + w) {
13
                   dis[to] = dis[u] + w;
14
                   que.emplace(-dis[to], to);
15
               }
16
           }
17
       }
18 }
```

2.2 树上问题

2.2.1 最近公公祖先

倍增法

```
vector<int> dep;
  vector<array<int, 21>> fa;
3
  dep.assign(n + 1, 0);
4
  fa.assign(n + 1, array<int, 21>{});
5
  void binary_jump(int root) {
6
      function<void(int)> dfs = [&](int t) {
7
           dep[t] = dep[fa[t][0]] + 1;
8
           for (auto& [to] : graph[t]) {
9
               if (to == fa[t][0]) continue;
10
               fa[to][0] = t;
11
               dfs(to);
```

```
12
13
       };
14
       dfs(root);
15
       for (int j = 1; j <= 20; j++)
16
           for (int i = 1; i \leftarrow n; i++) fa[i][j] = fa[fa[i][j - 1]][j - 1];
17
   int lca(int x, int y) {
18
19
       if (dep[x] < dep[y]) swap(x, y);</pre>
20
       for (int i = 20; i >= 0; i--)
21
           if (dep[fa[x][i]] >= dep[y]) x = fa[x][i];
22
       if (x == y) return x;
23
       for (int i = 20; i >= 0; i--) {
24
           if (fa[x][i] != fa[y][i]) {
25
                x = fa[x][i];
26
                y = fa[y][i];
27
28
       return fa[x][0];
29
30 }
```

树剖

```
int lca(int x, int y) {
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        x = fa[top[x]];
    }
    if (dep[x] < dep[y]) swap(x, y);
    return y;
}</pre>
```

2.2.2 树链剖分

```
1 vector<int> fa, siz, dep, son, dfn, rnk, top;
2 fa.assign(n + 1, 0);
3 siz.assign(n + 1, 0);
4
  dep.assign(n + 1, 0);
5
  son.assign(n + 1, 0);
6
  dfn.assign(n + 1, 0);
7
  rnk.assign(n + 1, 0);
  top.assign(n + 1, 0);
8
   void hld(int root) {
9
10
       function < void(int) > dfs1 = [\&](int t) {
11
           dep[t] = dep[fa[t]] + 1;
12
           siz[t] = 1;
           for (auto& [to, w] : graph[t]) {
13
14
               if (to == fa[t]) continue;
15
               fa[to] = t;
16
               dfs1(to);
17
               if (siz[son[t]] < siz[to]) son[t] = to;</pre>
18
               siz[t] += siz[to];
19
           }
20
       };
21
       dfs1(root);
22
       int dfn_tail = 0;
23
       for (int i = 1; i <= n; i++) top[i] = i;</pre>
24
       function<void(int)> dfs2 = [&](int t) {
           dfn[t] = ++dfn_tail;
```

```
26
            rnk[dfn_tail] = t;
27
           if (!son[t]) return;
28
           top[son[t]] = top[t];
29
           dfs2(son[t]);
           for (auto& [to, w] : graph[t]) {
30
                if (to == fa[t] || to == son[t]) continue;
31
32
                dfs2(to);
33
34
       };
35
       dfs2(root);
36
```

2.3 强连通分量

```
void tarjan(Graph& g1, Graph& g2) {
2
       int dfn_tail = 0, cnt = 0;
3
       vector < int > dfn(g1.n + 1, 0), low(g1.n + 1, 0), exist(g1.n + 1, 0), belong(g1.n + 1, 0);
4
       stack<int> sta;
 5
       function<void(int)> dfs = [&](int t) {
6
           dfn[t] = low[t] = ++dfn_tail;
7
           sta.push(t);
8
           exist[t] = 1;
9
           for (auto& [to] : g1.graph[t])
10
               if (!dfn[to]) {
11
                    dfs(to);
12
                    low[t] = min(low[t], low[to]);
13
               } else if (exist[to]) low[t] = min(low[t], dfn[to]);
14
           if (dfn[t] == low[t]) {
15
               cnt++;
16
               while (int temp = sta.top()) {
17
                    belong[temp] = cnt;
18
                    exist[temp] = 0;
19
                    sta.pop();
                    if (temp == t) break;
20
               }
21
22
           }
23
       };
24
       for (int i = 1; i <= g1.n; i++)</pre>
25
           if (!dfn[i]) dfs(i);
26
       g2 = Graph(cnt);
27
       for (int i = 1; i <= g1.n; i++) g2.w[belong[i]] += g1.w[i];</pre>
28
       for (int i = 1; i <= g1.n; i++)
29
           for (auto& [to] : g1.graph[i])
30
               if (belong[i] != belong[to]) g2.add(belong[i], belong[to]);
31
```

2.4 拓扑排序

```
dis[i] = g.w[i]; // dp
9
10
         }
11
       while (!que.empty()) {
12
          int u = que.front();
13
          que.pop();
14
           for (auto& [to] : g.graph[u]) {
15
               in[to]--;
               dis[to] = max(dis[to], dis[u] + g.w[to]); // dp
16
17
              if (!in[to]) que.push(to);
18
          }
19
      }
20 }
```

3 字符串 13

3 字符串

3.1 kmp

```
auto kmp(string& s) {
2
       vector next(s.size(), -1);
3
       for (int i = 1, j = -1; i < s.size(); i++) {</pre>
4
           while (j \ge 0 \&\& s[i] != s[j + 1]) j = next[j];
5
           if (s[i] == s[j + 1]) j++;
           next[i] = j;
6
7
8
       // next 意为长度
9
       for (auto& i : next) i++;
10
       return next;
11 }
```

3.2 哈希

```
1 constexpr int N = 1e6;
  int pow_base[N + 1][2];
  constexpr 11 mod[2] = {(int)2e9 + 11, (int)2e9 + 33}, base[2] = {(int)2e5 + 11, (int)2e5 + 33};
3
5
   struct Hash {
6
       int size;
 7
       vector<array<int, 2>> a;
8
       Hash() {}
       Hash(const string& s) {
9
10
           size = s.size();
11
           a.resize(size);
           a[0][0] = a[0][1] = s[0];
12
13
           for (int i = 1; i < size; i++) {</pre>
               a[i][0] = (a[i - 1][0] * base[0] + s[i]) % mod[0];
14
15
               a[i][1] = (a[i - 1][1] * base[1] + s[i]) % mod[1];
16
           }
17
18
       array<int, 2> get(int 1, int r) const {
19
           if (1 == 0) return a[r];
20
           auto getone = [&](bool f) {
               int x = (a[r][f] - 111 * a[1 - 1][f] * pow_base[r - 1 + 1][f]) % mod[f];
21
22
               if (x < 0) x += mod[f];
23
               return x;
24
25
           return {getone(0), getone(1)};
26
27
  };
28
29
  auto _ = []() {
30
       pow_base[0][0] = pow_base[0][1] = 1;
31
       for (int i = 1; i <= N; i++) {
32
           pow_base[i][0] = pow_base[i - 1][0] * base[0] % mod[0];
           pow_base[i][1] = pow_base[i - 1][1] * base[1] % mod[1];
33
34
35
       return true;
36 }();
```

3 字符串 14

3.3 manacher

```
1 auto manacher(const string& _s) {
2
       string s(_s.size() * 2 + 1, '$');
3
       for (int i = 0; i < _s.size(); i++) s[2 * i + 1] = _s[i];</pre>
4
       vector r(s.size(), 0);
5
       for (int i = 0, maxr = 0, mid = 0; i < s.size(); i++) {</pre>
6
           if (i < maxr) r[i] = min(r[mid * 2 - i], maxr - i);</pre>
7
           while (i - r[i] - 1 >= 0 && i + r[i] + 1 < s.size() && s[i - r[i] - 1] == s[i + r[i] + 1])
8
               ++r[i];
9
           if (i + r[i] > maxr) maxr = i + r[i], mid = i;
10
11
       return r;
12 }
```

4 数学

4.1 扩展欧几里得

```
需保证 a,b>=0 x=x+k*dx, y=y-k*dy 若要求 x\geq p,\ k\geq \left\lceil\frac{p-x}{dx}\right\rceil 若要求 x\leq q,\ k\leq \left\lfloor\frac{q-x}{dx}\right\rfloor 若要求 y\geq p,\ k\leq \left\lfloor\frac{y-p}{dy}\right\rfloor 若要求 y\leq q,\ k\geq \left\lceil\frac{y-q}{dy}\right\rceil
```

```
int __exgcd(int a, int b, int& x, int& y) {
2
       if (!b) {
3
           x = 1;
           y = 0;
4
5
           return a;
6
7
       int g = __exgcd(b, a % b, y, x);
8
       y -= a / b * x;
9
       return g;
10
11
  array<int, 2> exgcd(int a, int b, int c) {
12
13
      int x, y;
       int g = \__exgcd(a, b, x, y);
14
15
       if (c % g) return {INT_MAX, INT_MAX};
16
       int dx = b / g;
17
      int dy = a / g;
       x = c / g % dx * x % dx;
18
19
       if (x < 0) x += dx;
20
       y = (c - a * x) / b;
21
       return {x, y};
22 }
```

4.2 线性代数

4.2.1 向量公约数

```
1 // 将这两个向量组转化为b.y=0的形式
2
  array<vec, 2> gcd(vec a, vec b) {
3
      while (b.y != 0) {
4
          int t = a.y / b.y;
5
          a = a - b * t;
6
          swap(a, b);
7
8
      return {a, b};
9
10
11
  array<vec, 2> gcd(array<vec, 2> g, vec a) {
12
      auto [b, c] = gcd(g[0], a);
13
      g[0] = b;
14
      g[1] = vec(gcd(g[1].x, c.x), 0);
15
      if (g[1].x != 0) g[0].x %= g[1].x;
16
      return g;
17 }
```

4.3 筛法

primes

```
1 constexpr int N = 1e7;
  bitset<N + 1> ispr;
3
  vector<int> primes;
  bool _ = []() {
4
5
       ispr.set();
6
       ispr[0] = ispr[1] = 0;
7
       for (int i = 2; i <= N; i++) {</pre>
8
           if (!ispr[i]) continue;
9
           primes.push_back(i);
10
           for (int j = 2 * i; j <= N; j += i) ispr[j] = 0;
11
12
       return 1;
13 }();
```

 φ

 μ

```
constexpr int N = 1e7;
  bitset<N + 1> ispr;
3
  array<int, N + 1> mu;
  auto _ = []() {
       mu.fill(1);
6
       ispr.set();
7
       mu[0] = ispr[0] = ispr[1] = 0;
       for (int i = 2; i <= N; i++) {</pre>
8
9
           if (!ispr[i]) continue;
10
           mu[i] = -1;
           for (int j = 2 * i; j <= N; j += i) {
11
12
               ispr[j] = 0;
13
               if (j / i % i == 0) mu[j] = 0;
               else mu[j] *= -1;
14
15
16
17
       return true;
18 }();
```

prime φ

```
constexpr int N = 1e7;
bitset<N + 1> ispr;
array<int, N + 1> phi;
vector<int> primes;
bool _ = []() {
   ispr.set();
```

```
ispr[0] = ispr[1] = 0;
8
       iota(phi.begin() + 1, phi.end(), 1);
9
       for (int i = 2; i <= N; i++) {
10
           if (!ispr[i]) continue;
11
           phi[i] = i - 1;
12
           primes.push_back(i);
13
           for (int j = 2 * i; j <= N; j += i) {
14
               ispr[j] = 0;
15
               phi[j] = phi[j] / i * (i - 1);
16
           }
17
       }
18
       return 1;
19 }();
```

prime μ

```
1 constexpr int N = 1e7;
_2
  bitset<N + 1> ispr;
  array<int, N + 1> mu;
4
  vector<int> primes;
5
  bool _ = []() {
6
       mu.fill(1);
 7
       ispr.set();
8
       mu[0] = ispr[0] = ispr[1] = 0;
       for (int i = 2; i <= N; i++) {</pre>
9
10
           if (!ispr[i]) continue;
11
           mu[i] = -1;
12
           primes.push_back(i);
13
           for (int j = 2 * i; j \leftarrow N; j += i) {
14
                ispr[j] = 0;
                if (j / i % i == 0) mu[j] = 0;
15
16
                else mu[j] *= -1;
17
           }
18
       }
19
       return 1;
20 }();
```

prime $\mu \varphi$

```
1 constexpr int N = 1e7;
  bitset<N + 1> ispr;
3 array<int, N + 1> mu, phi;
 4
  vector<int> primes;
5
  bool _ = []() {
 6
       mu.fill(1);
 7
       ispr.set();
       mu[0] = ispr[0] = ispr[1] = 0;
8
9
       iota(phi.begin() + 1, phi.end(), 1);
10
       for (int i = 2; i <= N; i++) {</pre>
11
           if (!ispr[i]) continue;
12
           mu[i] = -1;
           phi[i] = i - 1;
13
14
           primes.push_back(i);
           for (int j = 2 * i; j <= N; j += i) {
15
16
               ispr[j] = 0;
17
               if (j / i % i == 0) mu[j] = 0;
               else mu[j] *= -1;
18
19
               phi[j] = phi[j] / i * (i - 1);
20
```

```
21 }
22 return 1;
23 }();
```

```
constexpr int N = 1e7;
  array<int, N + 1> minpr, mu, phi;
3
  vector<int> primes;
   bool _ = []() {
5
       phi[1] = mu[1] = 1;
6
       for (int i = 2; i <= N; i++) {</pre>
 7
           if (minpr[i] == 0) {
8
                minpr[i] = i;
                mu[i] = -1;
9
10
                phi[i] = i - 1;
11
                primes.push_back(i);
12
           }
13
           for (auto& j : primes) {
                if (i * j > N) break;
14
15
                minpr[i * j] = j;
16
                if (j < minpr[i]) {</pre>
17
                    phi[i * j] = phi[i] * phi[j];
18
                    mu[i * j] = -mu[i];
19
                } else {
20
                    mu[i * j] = 0;
21
                    phi[i * j] = phi[i] * j;
22
                    break;
23
                }
24
25
       }
26
       return 1;
27 }();
```

4.4 分解质因数

```
auto getprimes(int n) {
2
       vector<array<int, 2>> res;
3
       for (auto& i : primes) {
4
           if (i > n / i) break;
           if (n % i == 0) {
5
6
               res.push_back({i, 0});
7
               while (n % i == 0) {
8
                   n /= i;
9
                   res.back()[1]++;
10
               }
11
           }
12
13
       if (n > 1) res.push_back({n, 1});
14
       return res;
15
```

4.5 pollard rho

```
using LL = __int128_t;
random_device rd;
```

```
4 mt19937 seed(rd());
5
6
  11 power(ll a, ll b, ll mod) {
 7
       11 \text{ res} = 1;
 8
       while (b) {
9
           if (b & 1) res = (LL)res * a % mod;
10
           a = (LL)a * a % mod;
11
           b >>= 1;
12
       }
13
       return res;
14
15
16
   bool isprime(ll n) {
17
       static array primes{2, 3, 5, 7, 11, 13, 17, 19, 23};
18
       static unordered_map<11, bool> S;
19
       if (n < 2) return 0;</pre>
20
       if (S.count(n)) return S[n];
21
       11 d = n - 1, r = 0;
22
       while (!(d & 1)) {
23
           r++;
24
           d >>= 1;
25
26
       for (auto& a : primes) {
27
           if (a == n) return S[n] = 1;
28
           11 x = power(a, d, n);
29
           if (x == 1 || x == n - 1) continue;
30
           for (int i = 0; i < r - 1; i++) {</pre>
31
                x = (LL)x * x % n;
32
                if (x == n - 1) break;
33
           if (x != n - 1) return S[n] = 0;
34
35
36
       return S[n] = 1;
37
38
39
   11 pollard_rho(ll n) {
40
       11 s = 0, t = 0;
41
       11 c = seed() % (n - 1) + 1;
42
       ll val = 1;
       for (int goal = 1;; goal *= 2, s = t, val = 1) {
43
44
           for (int step = 1; step <= goal; step++) {</pre>
                t = ((LL)t * t + c) % n;
45
46
                val = (LL)val * abs(t - s) % n;
                if (step % 127 == 0) {
47
48
                    ll g = gcd(val, n);
49
                    if (g > 1) return g;
50
                }
51
           }
52
           11 g = gcd(val, n);
53
           if (g > 1) return g;
54
55
56
   auto getprimes(ll n) {
57
       unordered_set<ll> S;
58
       auto get = [&](auto self, ll n) {
59
           if (n < 2) return;</pre>
60
           if (isprime(n)) {
61
                S.insert(n);
```

```
62
                return;
63
            }
64
            11 mx = pollard_rho(n);
65
            self(self, n / mx);
66
            self(self, mx);
67
       };
68
       get(get, n);
69
       return S;
70 }
```

4.6 组合数

```
constexpr int N = 1e6;
  array<modint, N + 1> fac, ifac;
3
4
  modint C(int n, int m) {
5
      if (m < 0 || m > n) return 0;
6
      if (n <= mod) return fac[n] * ifac[m] * ifac[n - m];</pre>
       // n >= mod 时需要这个
7
8
       return C(n % mod, m % mod) * C(n / mod, m / mod);
9
10
11
  auto _ = []() {
12
       fac[0] = 1;
13
       for (int i = 1; i <= N; i++) fac[i] = fac[i - 1] * i;</pre>
       ifac[N] = fac[N].inv();
14
       for (int i = N - 1; i \ge 0; i--) ifac[i] = ifac[i + 1] * (i + 1);
16
       return true;
17 }();
```

4.7 数论分块

求解形如 $\sum_{i=1}^{n} f(i)g(\lfloor \frac{n}{i} \rfloor)$ 的合式 $s(n) = \sum_{i=1}^{n} f(i)$

```
modint sqrt_decomposition(int n) {
2
       auto s = [\&](int x) \{ return x; \};
3
       auto g = [&](int x) { return x; };
 4
       modint res = 0;
5
       while (1 <= R) \{
6
           int r = n / (n / 1);
 7
           res = res + (s(r) - s(l - 1)) * g(n / 1);
8
           1 = r + 1;
9
10
       return res;
11 }
```

4.8 积性函数

4.8.1 定义

```
函数 f(n) 满足 f(1) = 1 且 \forall x, y \in \mathbf{N}^*, \gcd(x, y) = 1 都有 f(xy) = f(x)f(y),则 f(n) 为积性函数。函数 f(n) 满足 f(1) = 1 且 \forall x, y \in \mathbf{N}^* 都有 f(xy) = f(x)f(y),则 f(n) 为完全积性函数。
```

4.8.2 例子

- 单位函数: $\varepsilon(n) = [n = 1]$ 。(完全积性)
- 恒等函数: $id_k(n) = n^k$ 。(完全积性)
- 常数函数: 1(n) = 1。(完全积性)
- 除数函数: $\sigma_k(n) = \sum_{d|n} d^k$ 。 $\sigma_0(n)$ 通常简记作 d(n) 或 $\tau(n)$, $\sigma_1(n)$ 通常简记作 $\sigma(n)$ 。
- 欧拉函数: $\varphi(n) = \sum_{i=1}^{n} [\gcd(i, n) = 1]$.
- 莫比乌斯函数: $\mu(n) = \begin{cases} 1 & n=1 \\ 0 & \exists d>1, d^2 \mid n, \text{ 其中 } \omega(n) \text{ 表示 } n \text{ 的本质不同质因子个数,它是} \\ (-1)^{\omega(n)} & \text{otherwise} \end{cases}$

一个加性函数。

4.9 狄利克雷卷积

对于两个数论函数 f(x) 和 g(x),则它们的狄利克雷卷积得到的结果 h(x) 定义为: $h(x)=\sum_{d|x}f(d)g\left(\frac{x}{d}\right)=\sum_{ab=x}f(a)g(b)$ 可以简记为: h=f*g。

4.9.1 性质

交換律: f * g = g * f。

结合律: (f * g) * h = f * (g * h)。

分配律: (f+g)*h = f*h+g*h.

等式的性质: f = g 的充要条件是 f * h = g * h, 其中数论函数 h(x) 要满足 $h(1) \neq 0$ 。

4.9.2 例子

- $\varepsilon = \mu * 1 \iff \varepsilon(n) = \sum_{d|n} \mu(d)$
- $id = \varphi * 1 \iff id(n) = \sum_{d|n} \varphi(d)$
- $d=1*1 \iff d(n)=\sum_{d|n}1$
- $\sigma = id *1 \iff \sigma(n) = \sum_{d|n} d$
- $\varphi = \mu * id \iff \varphi(n) = \sum_{d|n} d \cdot \mu(\frac{n}{d})$

4.10 欧拉函数

```
constexpr int N = 1e6;
array<int, N + 1> phi;
auto _ = []() {
    iota(phi.begin() + 1, phi.end(), 1);
    for (int i = 2; i <= N; i++) {
        if (phi[i] == i)
            for (int j = i; j <= N; j += i) phi[j] / i * (i - 1);
    }
    return true;
}
</pre>
```

4.11 莫比乌斯反演

4.11.1 莫比乌斯函数性质

$$\bullet \ \, \sum_{d|n} \mu(d) = \begin{cases} 1 & n=1 \\ 0 & n \neq 1 \end{cases}, \ \, \mathbb{R} I \sum_{d|n} \mu(d) = \varepsilon(n) \, , \ \, \mu*1 = \varepsilon$$

•
$$[\gcd(i,j) = 1] = \sum_{d \mid \gcd(i,j)} \mu(d)$$

```
constexpr int N = 1e6;
  array<int, N + 1> miu;
  array<bool, N + 1> ispr;
5
  auto _ = []() {
     miu.fill(1);
7
      ispr.fill(1);
8
       for (int i = 2; i <= N; i++) {</pre>
9
           if (!ispr[i]) continue;
10
           miu[i] = -1;
           for (int j = 2 * i; j <= N; j += i) {
11
12
               ispr[j] = 0;
13
               if ((j / i) % i == 0) miu[j] = 0;
14
               else miu[j] *= -1;
15
           }
16
17
       return true;
18 }();
```

4.11.2 莫比乌斯变换/反演

```
f(n) = \sum_{d|n} g(d),那么有 g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{n|d} \mu(\frac{d}{n}) f(d)。
用狄利克雷卷积表示则为 f = g * 1,有 g = f * \mu。
f \to g 称为莫比乌斯反演,g \to f 称为莫比乌斯反演。
```

4.12 杜教筛

杜教筛被用于处理一类数论函数的前缀和问题。对于数论函数 f,杜教筛可以在低于线性时间的复杂 度内计算 $S(n) = \sum_{i=1}^{n} f(i)$ 。

$$S(n) = \frac{\sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} g(i)S\left(\left\lfloor \frac{n}{i} \right\rfloor\right)}{g(1)}$$

可以构造恰当的数论函数 g 使得:

- 可以快速计算 $\sum_{i=1}^{n} (f * g)(i)$ 。
- 可以快速计算 g 的单点值,用数论分块求解 $\sum_{i=2}^{n} g(i)S(\left|\frac{n}{i}\right|)$ 。

4.12.1 示例

```
while (1 <= n) {
6
           11 r = n / (n / 1);
7
           res = res + (r - 1 + 1) * sum_phi(n / 1);
8
9
10
       return sp2[n] = (11)n * (n + 1) / 2 - res;
11
12
13
  11 sum_miu(ll n) {
14
       if (n <= N) return sm[n];</pre>
15
       if (sm2.count(n)) return sm2[n];
16
       11 \text{ res} = 0, 1 = 2;
17
       while (1 <= n) {
           11 r = n / (n / 1);
18
19
           res = res + (r - 1 + 1) * sum_miu(n / 1);
20
           1 = r + 1;
21
22
       return sm2[n] = 1 - res;
23
```

4.13 多项式

```
1 #define countr_zero(n) __builtin_ctz(n)
  constexpr int N = 1e6;
3
  array<int, N + 1> inv;
4
5
  int power(int a, int b) {
6
       int res = 1;
7
       while (b) {
8
           if (b & 1) res = 1ll * res * a % mod;
9
           a = 111 * a * a % mod;
10
           b >>= 1;
11
       }
       return res;
12
13
14
15 namespace NFTS {
16 \mid int g = 3;
17
  vector<int> rev, roots{0, 1};
18
   void dft(vector<int> &a) {
19
       int n = a.size();
20
       if (rev.size() != n) {
21
           int k = countr_zero(n) - 1;
22
           rev.resize(n);
23
           for (int i = 0; i < n; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
24
25
       if (roots.size() < n) {</pre>
26
           int k = countr_zero(roots.size());
27
           roots.resize(n);
28
           while ((1 << k) < n) {
29
               int e = power(g, (mod - 1) >> (k + 1));
               for (int i = 1 << (k - 1); i < (1 << k); ++i) {
30
                    roots[2 * i] = roots[i];
31
                    roots[2 * i + 1] = 1ll * roots[i] * e % mod;
32
33
               }
34
               ++k;
35
```

```
36
37
       for (int i = 0; i < n; ++i)</pre>
38
           if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
39
       for (int k = 1; k < n; k *= 2) {
           for (int i = 0; i < n; i += 2 * k) {
40
                for (int j = 0; j < k; ++j) {</pre>
41
                    int u = a[i + j];
42
                    int v = 111 * a[i + j + k] * roots[k + j] % mod;
43
44
                    int x = u + v, y = u - v;
45
                    if (x >= mod) x -= mod;
46
                    if (y < 0) y += mod;
47
                    a[i + j] = x;
48
                    a[i + j + k] = y;
49
               }
50
           }
51
       }
52
53
   void idft(vector<int> &a) {
54
       int n = a.size();
       reverse(a.begin() + 1, a.end());
55
56
       dft(a);
57
       int inv_n = power(n, mod - 2);
       for (int i = 0; i < n; ++i) a[i] = 1ll * a[i] * inv_n % mod;</pre>
58
59
60
  } // namespace NFTS
61
62
   struct poly {
63
       poly &format() {
64
           while (!a.empty() && a.back() == 0) a.pop_back();
           return *this;
65
66
67
       poly &reverse() {
           ::reverse(a.begin(), a.end());
68
69
           return *this;
70
71
       vector<int> a;
72
       poly() {}
73
       poly(int x) {
74
           if (x) a = \{x\};
75
76
       poly(const vector<int> &_a) : a(_a) {}
77
       int size() const { return a.size(); }
78
       int &operator[](int id) { return a[id]; }
       int at(int id) const {
79
            if (id < 0 || id >= (int)a.size()) return 0;
80
81
           return a[id];
82
83
       poly operator-() const {
           auto A = *this;
84
85
           for (auto &x : A.a) x = (x == 0 ? 0 : mod - x);
86
           return A;
87
       poly mulXn(int n) const {
88
89
           auto b = a;
90
           b.insert(b.begin(), n, 0);
91
           return poly(b);
92
93
       poly modXn(int n) const {
```

```
94
            if (n > size()) return *this;
95
            return poly({a.begin(), a.begin() + n});
 96
 97
        poly divXn(int n) const {
 98
            if (size() <= n) return poly();</pre>
99
            return poly({a.begin() + n, a.end()});
100
101
        poly &operator+=(const poly &rhs) {
102
            if (size() < rhs.size()) a.resize(rhs.size());</pre>
103
            for (int i = 0; i < rhs.size(); ++i)</pre>
104
                if ((a[i] += rhs.a[i]) >= mod) a[i] -= mod;
105
            return *this;
106
        }
        poly &operator-=(const poly &rhs) {
107
108
            if (size() < rhs.size()) a.resize(rhs.size());</pre>
109
            for (int i = 0; i < rhs.size(); ++i)</pre>
110
                if ((a[i] -= rhs.a[i]) < 0) a[i] += mod;</pre>
111
            return *this;
112
113
        poly &operator*=(poly rhs) {
            int n = size(), m = rhs.size(), tot = max(1, n + m - 1);
114
115
            int sz = 1 << __lg(tot * 2 - 1);</pre>
116
            a.resize(sz);
117
            rhs.a.resize(sz);
118
            NFTS::dft(a);
119
            NFTS::dft(rhs.a);
            for (int i = 0; i < sz; ++i) a[i] = 111 * a[i] * rhs.a[i] % mod;</pre>
120
121
            NFTS::idft(a);
122
            return *this;
123
124
        poly &operator/=(poly rhs) {
125
            int n = size(), m = rhs.size();
            if (n < m) return (*this) = poly();</pre>
126
127
            reverse();
128
            rhs.reverse();
            (*this) *= rhs.inv(n - m + 1);
129
130
            a.resize(n - m + 1);
131
            reverse();
132
            return *this;
133
134
        poly &operator%=(poly rhs) { return (*this) -= (*this) / rhs * rhs; }
        poly operator+(const poly &rhs) const { return poly(*this) += rhs; }
135
        poly operator-(const poly &rhs) const { return poly(*this) -= rhs; }
136
        poly operator*(poly rhs) const { return poly(*this) *= rhs; }
137
138
        poly operator/(poly rhs) const { return poly(*this) /= rhs; }
139
        poly operator%(poly rhs) const { return poly(*this) %= rhs; }
140
        poly powModPoly(int n, poly p) {
141
            poly r(1), x(*this);
            while (n) {
142
                if (n & 1) (r *= x) %= p;
143
                 (x *= x) %= p;
144
145
                n >>= 1;
146
            }
147
            return r;
148
        int inner(const poly &rhs) {
149
150
            int r = 0, n = min(size(), rhs.size());
            for (int i = 0; i < n; ++i) r = (r + 1ll * a[i] * rhs.a[i]) % mod;
151
```

```
152
            return r;
153
        }
154
        poly derivation() const {
155
            if (a.empty()) return poly();
156
            int n = size();
157
            vector<int> r(n - 1);
            for (int i = 1; i < n; ++i) r[i - 1] = 1ll * a[i] * i % mod;
158
159
            return poly(r);
160
        }
161
        poly integral() const {
162
            if (a.empty()) return poly();
163
            int n = size();
164
            vector < int > r(n + 1);
            for (int i = 0; i < n; ++i) r[i + 1] = 111 * a[i] * ::inv[i + 1] % mod;
165
166
            return poly(r);
167
        }
168
        poly inv(int n) const {
169
            assert(a[0] != 0);
170
            poly x(power(a[0], mod - 2));
171
            int k = 1;
            while (k < n) {
172
173
                k *= 2;
                x *= (poly(2) - modXn(k) * x).modXn(k);
174
175
176
            return x.modXn(n);
177
178
        // 需要保证首项为 1
179
        poly log(int n) const { return (derivation() * inv(n)).integral().modXn(n); }
        // 需要保证首项为 0
180
181
        poly exp(int n) const {
182
            poly x(1);
183
            int k = 1;
            while (k < n) {
184
185
                k *= 2;
                x = (x * (poly(1) - x.log(k) + modXn(k))).modXn(k);
186
187
188
            return x.modXn(n);
189
190
        // 需要保证首项为 1, 开任意次方可以先 ln 再 exp 实现。
191
        poly sqrt(int n) const {
192
            poly x(1);
            int k = 1;
193
            while (k < n) {
194
195
                k *= 2;
                x += modXn(k) * x.inv(k);
196
197
                x = x.modXn(k) * inv2;
198
            }
199
            return x.modXn(n);
200
        }
        // 减法卷积, 也称转置卷积 {\rm MULT}(F(x),G(x))=\sum_{i\ge0}(\sum_{j\ge
201
202
        // 0}f_{i+j}g_j)x^i
203
        poly mulT(poly rhs) const {
            if (rhs.size() == 0) return poly();
204
205
            int n = rhs.size();
206
            ::reverse(rhs.a.begin(), rhs.a.end());
207
            return ((*this) * rhs).divXn(n - 1);
208
        }
209
        int eval(int x) {
```

```
210
            int r = 0, t = 1;
211
            for (int i = 0, n = size(); i < n; ++i) {</pre>
                r = (r + 111 * a[i] * t) % mod;
212
213
                t = 111 * t * x % mod;
214
            }
215
            return r;
216
        }
217
        // 多点求值新科技: https://jkloverdcoi.github.io/2020/08/04/转置原理及其应用/
218
        // 模板例题: https://www.luogu.com.cn/problem/P5050
219
        auto evals(vector<int> &x) const {
220
            if (size() == 0) return vector(x.size(), 0);
221
            int n = x.size();
222
            vector ans(n, 0);
223
            vector<poly> g(4 * n);
224
            auto build = [&](auto self, int 1, int r, int p) -> void {
225
                if (r - 1 == 1) {
226
                    g[p] = poly(\{1, x[1] ? mod - x[1] : 0\});
227
                } else {
228
                    int m = (1 + r) / 2;
                    self(self, 1, m, 2 * p);
229
                    self(self, m, r, 2 * p + 1);
230
231
                    g[p] = g[2 * p] * g[2 * p + 1];
                }
232
233
            };
234
            build(build, 0, n, 1);
235
            auto solve = [&](auto self, int l, int r, int p, poly f) -> void {
                if (r - 1 == 1) {
236
                    ans[1] = f[0];
237
238
                } else {
                    int m = (1 + r) / 2;
239
                    self(self, 1, m, 2 * p, f.mulT(g[2 * p + 1]).modXn(m - 1));
240
241
                    self(self, m, r, 2 * p + 1, f.mulT(g[2 * p]).modXn(r - m));
242
                }
243
            };
244
            solve(solve, 0, n, 1, mulT(g[1].inv(size())).modXn(n));
245
            return ans;
246
247
   }; // 全家桶测试: https://www.luogu.com.cn/training/3015#information
248
249
   auto _ = []() {
250
        inv[0] = inv[1] = 1;
        for (int i = 2; i < inv.size(); i++) inv[i] = 111 * (mod - mod / i) * inv[mod % i] % mod;</pre>
251
252
        return true;
253 }();
```

4.14 盒子与球

n 个球, m 个盒

球同	盒同	可空	公式
√	√	√	$f_{n,m}=f_{n,m-1}+f_{n-m,m}$ 或 $[x^n]e^{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{\infty}rac{x^{ij}}{j}}$
√	√		$f_{n-m,m}$
×	√	√	$\Sigma_{i=1}^m g_{n,i}$ 或 $\sum_{i=1}^m \sum_{j=0}^i rac{j^n}{j!} rac{(-1)^{i-j}}{(i-j)!}$
×	√	×	$g_{n,m} = g_{n-1,m-1} + m * g_{n-1,m}$ 或 $\frac{1}{m!} \sum_{i=0}^{m} (-1)^i {m \choose i} (m-i)^n$
√	×		C_{n+m-1}^{m-1}
√	×	×	C_{n-1}^{m-1}
×	×	√	m^n
×	×	×	$m!*g_{n,m}$ 或 $\sum\limits_{i=0}^{m}(-1)^iinom{m}{i}(m-i)^n$

4.14.1 球同, 盒同, 可空

```
int solve(int n, int m) {
    vector a(n + 1, 0);
    for (int i = 1; i <= m; i++)
        for (int j = i, k = 1; j <= n; j += i, k++) a[j] = (a[j] + inv[k]) % mod;
    auto p = poly(a).exp(n + 1);
    return (p.a[n] + mod) % mod;
}</pre>
```

若要求不超过 k 个,答案为 $[x^ny^m]\prod\limits_{i=0}^k\left(\sum\limits_{j=0}^mx^{ij}y^j\right)$ 。

4.14.2 球不同, 盒同, 可空

```
int solve(int n, int m) {
2
       vector a(n + 1, 0);
3
       vector b(n + 1, 0);
       for (int i = 0; i <= n; i++) {</pre>
5
           a[i] = ifac[i];
6
           if (i & 1) a[i] = -a[i];
7
           b[i] = 1ll * power(i, n) * ifac[i] % mod;
8
9
       auto p = poly(a) * poly(b);
10
       int ans = 0;
11
       for (int i = 1; i \leftarrow min(n, m); i++) ans = (ans + p.a[i]) % mod;
12
       return (ans + mod) % mod;
13 }
```

若要求不超过 k 个,答案为 $m! \cdot [x^n y^m] \prod_{i=0}^k \left(\sum_{j=0}^n \frac{1}{i!^j} x^{ij} y^j \right)$ 。

4.14.3 球同, 盒不同, 可空

若要求不超过 k 个,答案为 $\left[x^n\right] \left(\sum_{i=0}^k x^i\right)^m = \left[x^n\right] \frac{(x^{k+1}-1)^m}{(x-1)^m}$ 。 也可以考虑容斥,令 f(i) 表示至少有 i 个盒子装了 > k 个球方案数, $f(i) = {m \choose i} {n-(k+1)i+m-1 \choose m-1}$ 。 总方案数则为 $\sum_{i=0}^m (-1)^i f(i)$ 。

4.14.4 球同,盒不同,不可空

若要求不超过 k 个,答案为 $\left[x^n\right] \left(\sum_{i=1}^k x^i\right)^m = \left[x^n\right] \frac{(x^k-1)^m x^m}{(x-1)^m}$ 。 也可以考虑容斥,令 f(i) 表示至少有 i 个盒子装了 > k 个球方案数, $f(i) = {m \choose i} {n-ki-1 \choose m-1}$ 。 总方案数则为 $\sum_{i=0}^m (-1)^i f(i)$ 。

4.14.5 球不同,盒不同,可空

若要求不超过 k 个,答案为 $m! \cdot [x^n] \left(\sum_{i=0}^k \frac{1}{i!} x^i\right)^m$ 。

4.14.6 球不同, 盒不同, 不可空

若要求不超过 k 个,答案为 $m! \cdot [x^n] \left(\sum_{i=1}^k \frac{1}{i!} x^i\right)^m$ 。

4.15 线性基

```
// 线性基
  struct basis {
      int rnk = 0;
      array<ull, 64> p{};
5
6
      // 将×插入此线性基中
7
      void insert(ull x) {
          for (int i = 63; i >= 0; i--) {
9
              if (!(x >> i & 1)) continue;
10
              if (p[i]) x ^= p[i];
              else {
12
                  p[i] = x;
13
                  rnk++;
14
                  break;
15
              }
16
          }
17
18
19
      // 将另一个线性基插入此线性基中
20
      void insert(basis other) {
21
          for (int i = 0; i <= 63; i++) {
22
              if (!other.p[i]) continue;
23
              insert(other.p[i]);
24
          }
25
26
27
      // 最大异或值
```

```
28     ull max_basis() {
29         ull res = 0;
30         for (int i = 63; i >= 0; i--)
31             if ((res ^ p[i]) > res) res ^= p[i];
32             return res;
33         }
34     };
```

4.16 矩阵快速幂

```
constexpr 11 mod = 2147493647;
 2
   struct Mat {
3
       int n, m;
 4
       vector<vector<ll>> mat;
 5
       Mat(int n, int m) : n(n), m(n), mat(n, vector<ll>(m, 0)) {}
6
       Mat(vector<vector<ll>>> mat) : n(mat.size()), m(mat[0].size()), mat(mat) {}
 7
       Mat operator*(const Mat& other) {
8
           assert(m == other.n);
9
           Mat res(n, other.m);
10
           for (int i = 0; i < res.n; i++)</pre>
                for (int j = 0; j < res.m; j++)</pre>
11
12
                    for (int k = 0; k < m; k++)
13
                        res.mat[i][j] = (res.mat[i][j] + mat[i][k] * other.mat[k][j] \% mod) \% mod;
14
           return res;
15
       }
16 };
17
  Mat ksm(Mat a, ll b) {
18
       assert(a.n == a.m);
19
       Mat res(a.n, a.m);
20
       for (int i = 0; i < res.n; i++) res.mat[i][i] = 1;</pre>
21
       while (b) {
22
           if (b & 1) res = res * a;
23
           b >>= 1;
24
           a = a * a;
25
26
       return res;
27 }
```

5 计算几何

5.1 整数

```
constexpr double inf = 1e100;
2
3
  // 向量
4
  struct vec {
5
       static bool cmp(const vec &a, const vec &b) { return tie(a.x, a.y) < tie(b.x, b.y); }</pre>
6
7
       11 x, y;
8
       vec() : x(0), y(0) \{ \}
9
       vec(11 _x, 11 _y) : x(_x), y(_y) {}
10
11
       // 模
12
       11 len2() const { return x * x + y * y; }
13
       double len() const { return sqrt(x * x + y * y); }
14
15
       // 是否在上半轴
16
       bool up() const { return y > 0 \mid | y == 0 && x >= 0; }
17
18
       bool operator==(const vec &b) const { return tie(x, y) == tie(b.x, b.y); }
19
       // 极角排序
20
       bool operator<(const vec &b) const {</pre>
21
           if (up() != b.up()) return up() > b.up();
22
           11 tmp = (*this) ^ b;
23
           return tmp ? tmp > 0 : cmp(*this, b);
24
       }
25
26
       vec operator+(const vec &b) const { return {x + b.x, y + b.y}; }
27
       vec operator-() const { return {-x, -y}; }
28
       vec operator-(const vec &b) const { return -b + (*this); }
29
       vec operator*(11 b) const { return {x * b, y * b}; }
30
       11 operator*(const vec &b) const { return x * b.x + y * b.y; }
31
32
       // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
33
       // 等于0共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
34
       11 operator^(const vec &b) const { return x * b.y - y * b.x; }
35
36
       friend istream &operator>>(istream &in, vec &data) {
37
           in >> data.x >> data.y;
38
           return in;
39
       }
40
       friend ostream &operator<<(ostream &out, const vec &data) {</pre>
41
           out << fixed << setprecision(6);</pre>
           out << data.x << " " << data.y;
42
43
           return out;
44
45
  };
46
47
  11 cross(const vec &a, const vec &b, const vec &c) { return (a - c) ^ (b - c); }
48
49
  // 多边形的面积a
50
  double polygon_area(vector<vec> &p) {
51
       11 area = 0;
52
       for (int i = 1; i < p.size(); i++) area += p[i - 1] ^ p[i];</pre>
       area += p.back() ^ p[0];
53
54
       return abs(area / 2.0);
```

```
55 }
56
57
   // 多边形的周长
58
   double polygon_len(vector<vec> &p) {
59
       double len = 0;
       for (int i = 1; i < p.size(); i++) len += (p[i - 1] - p[i]).len();</pre>
60
       len += (p.back() - p[0]).len();
61
62
       return len;
63
64
65
   // 以整点为顶点的线段上的整点个数
66
   11 count(const vec &a, const vec &b) {
67
       vec c = a - b;
68
       return gcd(abs(c.x), abs(c.y)) + 1;
69
70
71
   // 以整点为顶点的多边形边上整点个数
72
   11 count(vector<vec> &p) {
73
       11 cnt = 0;
74
       for (int i = 1; i < p.size(); i++) cnt += count(p[i - 1], p[i]);</pre>
75
       cnt += count(p.back(), p[0]);
76
       return cnt - p.size();
77
   }
78
79
   // 判断点是否在凸包内, 凸包必须为逆时针顺序
80
   bool in_polygon(const vec &a, vector<vec> &p) {
81
       int n = p.size();
82
       if (n == 0) return 0;
83
       if (n == 1) return a == p[0];
84
       if (n == 2) return cross(a, p[1], p[0]) == 0 && <math>(p[0] - a) * (p[1] - a) <= 0;
85
       if (cross(a, p[1], p[0]) > 0 || cross(p.back(), a, p[0]) > 0) return 0;
86
       auto cmp = [\&](vec \&x, const vec \&y) { return ((x - p[0]) ^ y) >= 0; };
87
       int i = lower_bound(p.begin() + 2, p.end() - 1, a - p[0], cmp) - p.begin() - 1;
88
       return cross(p[(i + 1) % n], a, p[i]) >= 0;
89
90
91
   // 凸包直径的两个端点
92
   auto polygon_dia(vector<vec> &p) {
93
       int n = p.size();
94
       array<vec, 2> res{};
95
       if (n == 1) return res;
       if (n == 2) return res = {p[0], p[1]};
96
97
       11 mx = 0;
98
       for (int i = 0, j = 2; i < n; i++) {
99
            while (abs(cross(p[i], p[(i + 1) % n], p[j])) <=</pre>
                   abs(cross(p[i], p[(i + 1) % n], p[(j + 1) % n])))
100
101
                j = (j + 1) \% n;
102
            11 tmp = (p[i] - p[j]).len2();
            if (tmp > mx) {
103
104
                mx = tmp;
105
                res = {p[i], p[j]};
106
107
           tmp = (p[(i + 1) % n] - p[j]).len2();
108
            if (tmp > mx) {
109
                mx = tmp;
110
                res = {p[(i + 1) % n], p[j]};
111
           }
112
```

```
113
        return res;
114
115
116
    // 凸包
117
   auto convex_hull(vector<vec> &p) {
118
        sort(p.begin(), p.end(), vec::cmp);
        int n = p.size();
119
120
        vector sta(n + 1, 0);
121
        vector v(n, false);
122
        int tp = -1;
123
        sta[++tp] = 0;
124
        auto update = [&](int lim, int i) {
125
            while (tp > lim && cross(p[i], p[sta[tp]], p[sta[tp - 1]]) >= 0) v[sta[tp--]] = 0;
126
            sta[++tp] = i;
127
            v[i] = 1;
128
        };
129
        for (int i = 1; i < n; i++) update(0, i);</pre>
130
        int cnt = tp;
131
        for (int i = n - 1; i >= 0; i--) {
            if (v[i]) continue;
132
133
            update(cnt, i);
134
        vector<vec> res(tp);
135
136
        for (int i = 0; i < tp; i++) res[i] = p[sta[i]];</pre>
137
        return res;
138
139
    // 闵可夫斯基和,两个点集的和构成一个凸包
140
    auto minkowski(vector<vec> &a, vector<vec> &b) {
141
142
        rotate(a.begin(), min_element(a.begin(), a.end(), vec::cmp), a.end());
143
        rotate(b.begin(), min_element(b.begin(), b.end(), vec::cmp), b.end());
        int n = a.size(), m = b.size();
144
145
        vector<vec> c{a[0] + b[0]};
146
        c.reserve(n + m);
        int i = 0, j = 0;
147
148
        while (i < n && j < m) {
            vec x = a[(i + 1) \% n] - a[i];
149
150
            vec y = b[(j + 1) \% m] - b[j];
151
            c.push_back(c.back() + ((x ^ y) >= 0 ? (i++, x) : (j++, y)));
152
153
        while (i + 1 < n) {
            c.push_back(c.back() + a[(i + 1) % n] - a[i]);
154
155
            i++;
156
157
        while (j + 1 < m) {
            c.push_back(c.back() + b[(j + 1) \% m] - b[j]);
158
159
            j++;
160
        }
161
        return c;
162
163
164
    // 过凸多边形外一点求凸多边形的切线,返回切点下标
   auto tangent(const vec &a, vector<vec> &p) {
165
166
        int n = p.size();
167
        int l = -1, r = -1;
        for (int i = 0; i < n; i++) {</pre>
168
            ll tmp1 = cross(p[i], p[(i - 1 + n) % n], a);
169
            ll tmp2 = cross(p[i], p[(i + 1) % n], a);
170
```

```
171
           if (1 == -1 \&\& tmp1 <= 0 \&\& tmp2 <= 0) 1 = i;
172
           else if (r == -1 \&\& tmp1 >= 0 \&\& tmp2 >= 0) r = i;
173
       return array{1, r};
174
175
176
   // 直线
177
178
   struct line {
179
       vec p, d;
180
       line() : p(vec()), d(vec()) {}
       line(const vec \&_p, const vec \&_d) : p(_p), d(_d) {}
181
182
183
   // 点到直线距离
184
185
   double dis(const vec &a, const line &b) { return abs((b.p - a) ^ (b.p + b.d - a)) / b.d.len(); }
186
187
    // 点在直线哪边,大于0在左边,等于0在线上,小于0在右边
   11 side_line(const vec &a, const line &b) { return b.d ^ (a - b.p); }
188
189
   // 两直线是否垂直
190
   bool perpen(const line &a, const line &b) { return a.d * b.d == 0; }
191
192
193
   // 两直线是否平行
194
   bool parallel(const line &a, const line &b) { return (a.d ^ b.d) == 0; }
195
196
   // 点的垂线是否与线段有交点
197
   bool perpen(const vec &a, const line &b) {
198
       vec p(-b.d.y, b.d.x);
       bool cross1 = (p ^ (b.p - a)) > 0;
199
       bool cross2 = (p ^ (b.p + b.d - a)) > 0;
200
201
       return cross1 != cross2;
202
   }
203
204 // 点到线段距离
205
   double dis_seg(const vec &a, const line &b) {
206
       if (perpen(a, b)) return dis(a, b);
207
       return min((b.p - a).len(), (b.p + b.d - a).len());
208
209
   // 点到凸包距离
210
211
   double dis(const vec &a, vector<vec> &p) {
       double res = inf;
212
213
       for (int i = 1; i < p.size(); i++) res = min(dis_seg(a, line(p[i - 1], p[i] - p[i - 1])), res);</pre>
       res = min(dis_seg(a, line(p.back(), p[0] - p.back())), res);
214
215
       return res;
216
217
218 // 两直线交点
219 vec intersection(11 A, 11 B, 11 C, 11 D, 11 E, 11 F) {
220
       return {(B * F - C * E) / (A * E - B * D), (C * D - A * F) / (A * E - B * D)};
221
   }
222
223 // 两直线交点
224
   vec intersection(const line &a, const line &b) {
225
       return intersection(a.d.y, -a.d.x, a.d.x * a.p.y - a.d.y * a.p.x, b.d.y, -b.d.x,
226
                           b.d.x * b.p.y - b.d.y * b.p.x);
227
   }
```

三维

```
1
  // 向量
2
  struct vec3 {
3
       static bool cmp(const vec3 &a, const vec3 &b) {
 4
           return tie(a.x, a.y, a.z) < tie(b.x, b.y, b.z);</pre>
5
6
7
       11 x, y, z;
 8
       vec3() : x(0), y(0), z(0) {}
9
       vec3(11 _x, 11 _y, 11 _z) : x(_x), y(_y), z(_z) {}
10
11
       // 模
12
       11 len2() const { return x * x + y * y + z * z; }
13
       double len() const { return hypot(x, y, z); }
14
       bool operator==(const vec3 &b) const { return tie(x, y, z) == tie(b.x, b.y, b.z); }
15
16
       bool operator!=(const vec3 &b) const { return !(*this == b); }
17
18
       vec3 operator+(const vec3 &b) const { return \{x + b.x, y + b.y, z + b.z\}; }
19
       vec3 operator-() const { return {-x, -y, -z}; }
20
       vec3 operator-(const vec3 &b) const { return -b + (*this); }
21
       vec3 operator*(ll b) const { return \{b * x, b * y, b * z\}; \}
22
       11 operator*(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; }
23
24
       // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
25
       // 等于O共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
26
       vec3 operator^(const vec3 &b) const {
27
           return {y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x};
28
       }
29
30
       friend istream &operator>>(istream &in, vec3 &data) {
31
           in >> data.x >> data.y >> data.z;
32
           return in;
33
       }
34
       friend ostream &operator<<(ostream &out, const vec3 &data) {</pre>
35
           out << fixed << setprecision(6);</pre>
           out << data.x << " " << data.y << " " << data.z;
36
37
           return out;
38
39
  };
40
41
   struct line3 {
42
       vec3 p, d;
43
44
       line3(const vec3 &a, const vec3 &b) : p(a), d(b - a) {}
45
  };
46
47
   struct plane {
48
       vec3 p, d;
49
       plane() {}
50
       plane(const vec3 &a, const vec3 &b, const vec3 &c) : p(a) {
51
           d = (b - a) ^ (c - a);
           assert(d != vec3());
52
53
       }
54
  };
55
56 // 线面是否垂直
57 bool perpen(const line3 &a, const plane &b) { return (a.d ^ b.d) == vec3(); }
```

5.2 浮点数

```
1
  using lf = double;
3
  constexpr lf eps = 1e-8;
  constexpr lf inf = 1e100;
4
  const lf PI = acos(-1);
5
6
 7
   int sgn(lf a, lf b) {
8
      lf c = a - b;
9
       return c < -eps ? -1 : c < eps ? 0 : 1;
10
11
12
  // 向量
  struct vec {
13
14
       static bool cmp(const vec &a, const vec &b) {
15
           return sgn(a.x, b.x) ? a.x < b.x : sgn(a.y, b.y) < 0;
16
17
       If x, y;
18
19
       vec() : x(0), y(0) \{ \}
       vec(lf _x, lf _y) : x(_x), y(_y) {}
20
21
22
       // 模
       1f len2() const { return x * x + y * y; }
23
24
       lf len() const { return sqrt(x * x + y * y); }
25
26
       // 与×轴正方向的夹角
27
       lf angle() const {
           If angle = atan2(y, x);
28
29
           if (angle < 0) angle += 2 * PI;</pre>
30
           return angle;
31
       }
32
       // 逆时针旋转
33
34
       vec rotate(const 1f &theta) const {
35
           return \{x * cos(theta) - y * sin(theta), y * cos(theta) + x * sin(theta)\};
36
37
38
       vec e() const {
39
           lf tmp = len();
40
           return {x / tmp, y / tmp};
41
42
       // 是否在上半轴
43
44
       bool up() const { return sgn(y, 0) > 0 \mid | sgn(y, 0) == 0 && sgn(x, 0) >= 0; }
45
       bool operator==(const vec &other) const { return sgn(x, other.x) == 0 && sgn(y, other.y) == 0; }
46
47
       // 极角排序
       bool operator<(const vec &b) const {</pre>
48
49
           if (up() != b.up()) return up() > b.up();
           If tmp = (*this) ^ b;
50
           return sgn(tmp, 0) ? tmp > 0 : cmp(*this, b);
```

```
52
53
54
       vec operator+(const vec &b) const { return {x + b.x, y + b.y}; }
55
       vec operator-() const { return {-x, -y}; }
56
       vec operator-(const vec &b) const { return -b + (*this); }
57
       vec operator*(lf b) const { return {x * b, y * b}; }
       vec operator/(lf b) const { return {x / b, y / b}; }
58
59
       lf operator*(const vec &b) const { return x * b.x + y * b.y; }
60
61
       // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
62
       // 等于0共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
       lf operator^(const vec &b) const { return x * b.y - y * b.x; }
63
64
65
       friend istream &operator>>(istream &in, vec &data) {
66
            in >> data.x >> data.y;
67
            return in;
68
69
       friend ostream &operator<<(ostream &out, const vec &data) {</pre>
70
            out << fixed << setprecision(6);</pre>
            out << data.x << " " << data.y;
71
72
            return out;
73
74
   };
75
76 | 1f cross(const vec &a, const vec &b, const vec &c) { return (a - c) ^ (b - c); }
77
   lf angle(const vec &a, const vec &b) { return atan2(abs(a ^ b), a * b); }
78
79
   // 多边形的面积
80
81
   lf polygon_area(vector<vec> &p) {
82
       If area = 0;
       for (int i = 1; i < p.size(); i++) area += p[i - 1] ^ p[i];</pre>
83
84
       area += p.back() ^ p[0];
85
       return abs(area / 2.0);
86
87
   // 多边形的周长
88
89
   lf polygon_len(vector<vec> &p) {
90
       lf len = 0;
       for (int i = 1; i < p.size(); i++) len += (p[i - 1] - p[i]).len();</pre>
91
92
       len += (p.back() - p[0]).len();
93
       return len;
94
95
96
   // 判断点是否在凸包内, 凸包必须为逆时针顺序
   bool in_polygon(const vec &a, vector<vec> &p) {
97
98
       int n = p.size();
99
       if (n == 0) return 0;
       if (n == 1) return a == p[0];
100
       if (n == 2) return sgn(cross(a, p[1], p[0]), 0) == 0 && <math>sgn((p[0] - a) * (p[1] - a), 0) <= 0;
101
       if (sgn(cross(a, p[1], p[0]), 0) > 0 \mid | sgn(cross(p.back(), a, p[0]), 0) > 0) return 0;
102
103
       auto cmp = [\&](\text{vec }\&x, \text{const vec }\&y) \{ \text{return sgn}((x - p[0]) ^ y, 0) >= 0; \};
       int i = lower_bound(p.begin() + 2, p.end() - 1, a - p[0], cmp) - p.begin() - 1;
104
105
       return sgn(cross(p[(i + 1) % n], a, p[i]), 0) >= 0;
106 }
107
   // 凸包直径的两个端点
109 auto polygon_dia(vector<vec> &p) {
```

```
110
        int n = p.size();
        array<vec, 2> res{};
111
112
        if (n == 1) return res;
113
        if (n == 2) return res = {p[0], p[1]};
114
        If mx = 0;
        for (int i = 0, j = 2; i < n; i++) {
115
            while (sgn(abs(cross(p[i], p[(i + 1) % n], p[j])),
116
117
                        abs(cross(p[i], p[(i + 1) % n], p[(j + 1) % n]))) <= 0)
                j = (j + 1) \% n;
118
119
            lf tmp = (p[i] - p[j]).len();
            if (tmp > mx) {
120
121
                mx = tmp;
122
                res = {p[i], p[j]};
123
            }
124
            tmp = (p[(i + 1) % n] - p[j]).len();
125
            if (tmp > mx) {
126
                res = {p[(i + 1) % n], p[j]};
127
128
            }
129
        }
130
        return res;
131
132
133
   // 凸包
   auto convex_hull(vector<vec> &p) {
134
135
        sort(p.begin(), p.end(), vec::cmp);
136
        int n = p.size();
137
        vector sta(n + 1, 0);
138
        vector v(n, false);
        int tp = -1;
139
140
        sta[++tp] = 0;
        auto update = [&](int lim, int i) {
141
            while (tp > \lim \&  sgn(cross(p[i], p[sta[tp]], p[sta[tp - 1]]), 0) >= 0) v[sta[tp--]] = 0;
142
143
            sta[++tp] = i;
            v[i] = 1;
144
145
        };
        for (int i = 1; i < n; i++) update(0, i);</pre>
146
147
        int cnt = tp;
        for (int i = n - 1; i >= 0; i--) {
148
            if (v[i]) continue;
149
150
            update(cnt, i);
151
        vector<vec> res(tp);
152
        for (int i = 0; i < tp; i++) res[i] = p[sta[i]];</pre>
153
154
        return res;
155
156
    // 闵可夫斯基和,两个点集的和构成一个凸包
157
    auto minkowski(vector<vec> &a, vector<vec> &b) {
158
        rotate(a.begin(), min_element(a.begin(), a.end(), vec::cmp), a.end());
159
        rotate(b.begin(), min_element(b.begin(), b.end(), vec::cmp), b.end());
160
161
        int n = a.size(), m = b.size();
        vector<vec> c{a[0] + b[0]};
162
163
        c.reserve(n + m);
164
        int i = 0, j = 0;
        while (i < n \&\& j < m) {
165
166
            vec x = a[(i + 1) \% n] - a[i];
            vec y = b[(j + 1) \% m] - b[j];
167
```

```
168
           c.push_back(c.back() + (sgn(x ^ y, 0) >= 0 ? (i++, x) : (j++, y)));
169
       }
170
       while (i + 1 < n) {
           c.push_back(c.back() + a[(i + 1) % n] - a[i]);
171
172
           i++;
173
       }
       while (j + 1 < m) {
174
175
           c.push_back(c.back() + b[(j + 1) \% m] - b[j]);
176
           j++;
177
178
       return c;
179
180
    // 过凸多边形外一点求凸多边形的切线, 返回切点下标
181
182
   auto tangent(const vec &a, vector<vec> &p) {
183
       int n = p.size();
184
       int l = -1, r = -1;
       for (int i = 0; i < n; i++) {</pre>
185
186
           lf tmp1 = cross(p[i], p[(i - 1 + n) % n], a);
187
           lf tmp2 = cross(p[i], p[(i + 1) % n], a);
           if (1 == -1 \&\& sgn(tmp1, 0) <= 0 \&\& sgn(tmp2, 0) <= 0) 1 = i;
188
189
           else if (r == -1 \&\& sgn(tmp1, 0) >= 0 \&\& sgn(tmp2, 0) >= 0) r = i;
190
191
       return array{1, r};
192
193
   // 直线
194
   struct line {
195
196
       vec p, d;
       line() : p(vec()), d(vec()) {}
197
198
       line(const vec \&_p, const vec \&_d) : p(_p), d(_d) {}
199
   };
200
201
   // 点到直线距离
202 If dis(const vec &a, const line &b) { return abs((b.p - a) ^ (b.p + b.d - a)) / b.d.len(); }
203
204
   // 点在直线哪边,大于0在左边,等于0在线上,小于0在右边
205 int side_line(const vec &a, const line &b) { return sgn(b.d ^ (a - b.p), 0); }
206
   // 两直线是否垂直
207
208
   bool perpen(const line &a, const line &b) { return sgn(a.d * b.d, 0) == 0; }
209
210
   // 两直线是否平行
211 bool parallel(const line &a, const line &b) { return sgn(a.d ^ b.d, 0) == 0; }
212
213
   // 点的垂线是否与线段有交点
214
   bool perpen(const vec &a, const line &b) {
215
       vec p(-b.d.y, b.d.x);
216
       bool cross1 = sgn(p \land (b.p - a), 0) > 0;
217
       bool cross2 = sgn(p ^ (b.p + b.d - a), 0) > 0;
218
       return cross1 != cross2;
219
220
   // 点到线段距离
221
222
   lf dis_seg(const vec &a, const line &b) {
223
       if (perpen(a, b)) return dis(a, b);
224
       return min((b.p - a).len(), (b.p + b.d - a).len());
225 }
```

```
226
227
    // 点到凸包距离
228
   lf dis(const vec &a, vector<vec> &p) {
229
       lf res = inf;
       for (int i = 1; i < p.size(); i++) res = min(dis_seg(a, line(p[i - 1], p[i] - p[i - 1])), res);</pre>
230
231
       res = min(dis_seg(a, line(p.back(), p[0] - p.back())), res);
232
       return res;
233
234
235
   // 两直线交点
236
   vec intersection(lf A, lf B, lf C, lf D, lf E, lf F) {
       return {(B * F - C * E) / (A * E - B * D), (C * D - A * F) / (A * E - B * D)};
237
238
239
240
   // 两直线交点
241
   vec intersection(const line &a, const line &b) {
242
        return intersection(a.d.y, -a.d.x, a.d.x * a.p.y - a.d.y * a.p.x, b.d.y, -b.d.x,
243
                            b.d.x * b.p.y - b.d.y * b.p.x);
244
245
246
   struct circle {
247
       vec o;
       lf r;
248
249
       circle(const vec &_o, lf _r) : o(_o), r(_r){};
250
251
       // 点与圆的关系 -1在圆内, 0在圆上, 1在圆外
252
       int relation(const vec &a) const { return sgn((a - o).len(), r); }
253
254
       // 圆与圆的关系 -3包含, -2内切, -1相交, 0外切, 1相离
255
       int relation(const circle &a) const {
256
            lf 1 = (a.o - o).len();
257
            if (sgn(1, abs(r - a.r)) < 0) return -3;</pre>
258
            if (sgn(1, abs(r - a.r)) == 0) return -2;
259
            if (sgn(1, abs(r + a.r)) < 0) return -1;
            if (sgn(1, abs(r + a.r)) == 0) return 0;
260
261
            return 1;
262
263
264
       lf area() { return PI * r * r; }
265
266
   // 圆与直线交点
267
   auto intersection(const circle &c, const line &l) {
268
269
       lf d = dis(c.o, 1);
270
       vector<vec> res;
271
       vec mid = 1.p + 1.d.e() * ((c.o - 1.p) * 1.d / 1.d.len());
272
       if (sgn(d, c.r) == 0) res.push_back(mid);
273
       else if (sgn(d, c.r) < 0) {
            d = sqrt(c.r * c.r - d * d);
274
275
            res.push_back(mid + 1.d.e() * d);
276
            res.push_back(mid - 1.d.e() * d);
277
278
       return res;
279
280
   // oab三角形与圆相交的面积
281
282 If area(const circle &c, const vec &a, const vec &b) {
       if (sgn(cross(a, b, c.o), 0) == 0) return 0;
283
```

```
284
        vector<vec> p;
285
        p.push_back(a);
286
        line l(a, b - a);
287
        auto tmp = intersection(c, 1);
288
        if (tmp.size() == 2) {
289
            for (auto &i : tmp)
                if (sgn((a - i) * (b - i), 0) < 0) p.push_back(i);</pre>
290
291
292
        p.push_back(b);
        if (p.size() == 4 \& sgn((p[0] - p[1]) * (p[2] - p[1]), 0) > 0) swap(p[1], p[2]);
293
294
        If res = 0;
295
        for (int i = 1; i < p.size(); i++)</pre>
296
            if (c.relation(p[i - 1]) == 1 || c.relation(p[i]) == 1) {
297
                lf ang = angle(p[i - 1] - c.o, p[i] - c.o);
298
                res += c.r * c.r * ang / 2;
299
            } else res += abs(cross(p[i - 1], p[i], c.o)) / 2.0;
300
        return res;
301
302
    // 多边形与圆相交的面积
303
304 | 1f area(vector<vec> &p, circle c) {
305
        If res = 0;
        for (int i = 0; i < p.size(); i++) {</pre>
306
307
            int j = i + 1 == p.size() ? 0 : i + 1;
308
            if (sgn(cross(p[i], p[j], c.o), 0) <= 0) res += area(c, p[i], p[j]);</pre>
309
            else res -= area(c, p[i], p[j]);
310
311
        return abs(res);
312 }
```

三维

```
constexpr lf eps = 1e-8;
2
3
  int sgn(lf a, lf b) {
4
        1f c = a - b; 
5
       return c < -eps ? -1 : c < eps ? 0 : 1;
6
  }
7
8
   // 向量
   struct vec3 {
9
10
       If x, y, z;
11
       vec3() : x(0), y(0), z(0) {}
       vec3(1f _x, 1f _y, 1f _z) : x(_x), y(_y), z(_z) {}
12
13
       // 模
14
       lf len2() const { return x * x + y * y + z * z; }
15
16
       lf len() const { return hypot(x, y, z); }
17
18
       bool operator==(const vec3 &b) const {
19
           return sgn(x, b.x) == 0 && sgn(y, b.y) == 0 && sgn(z, b.z) == 0;
20
21
       bool operator!=(const vec3 &b) const { return !(*this == b); }
22
23
       vec3 operator+(const vec3 &b) const { return \{x + b.x, y + b.y, z + b.z\}; }
24
       vec3 operator-() const { return {-x, -y, -z}; }
25
       vec3 operator-(const vec3 &b) const { return -b + (*this); }
26
       vec3 operator*(lf b) const { return {b * x, b * y, b * z}; }
27
       lf operator*(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; }
```

```
28
29
       // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
30
       // 等于0共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
31
       vec3 operator^(const vec3 &b) const {
           return \{y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x\};
32
33
34
35
       friend istream &operator>>(istream &in, vec3 &a) {
36
           in >> a.x >> a.y >> a.z;
37
           return in;
38
       }
       friend ostream &operator<<(ostream &out, const vec3 &a) {</pre>
39
40
           out << fixed << setprecision(6);</pre>
           out << a.x << " " << a.y << " " << a.z;
41
42
           return out;
43
44
  };
45
46
  struct line3 {
47
      vec3 p, d;
48
       line3() {}
49
       line3(const vec3 &a, const vec3 &b) : p(a), d(b - a) {}
50
  };
51
52
  struct plane {
53
       vec3 p, d;
54
       plane() {}
       plane(const vec3 &a, const vec3 &b, const vec3 &c) : p(a) {
55
56
          d = (b - a) ^ (c - a);
           assert(d != vec3());
57
58
59
  };
60
  // 线面是否垂直
62 bool perpen(const line3 &a, const plane &b) { return (a.d ^ b.d) == vec3(); }
63
64
  // 线面是否平行
65 bool parallel(const line3 &a, const plane &b) { return sgn(a.d * b.d, 0) == 0; }
66
67
  // 线面交点
68
  vec3 intersection(const line3 &a, const plane &b) {
69
       assert(!parallel(a, b));
70
       double t = (b.p - a.p) * b.d / (a.d * b.d);
71
       return a.p + a.d * t;
72
```

5.3 扫描线

```
10
           int pd;
11
       };
       vector<Line> line(rec.size() * 2);
12
13
       vector<ll> y_set(rec.size() * 2);
14
       for (int i = 0; i < rec.size(); i++) {</pre>
           y_set[i * 2] = rec[i].y_l;
15
16
           y_set[i * 2 + 1] = rec[i].y_r;
17
           line[i * 2] = {rec[i].x_l, rec[i].y_r, rec[i].y_l, 1};
           line[i * 2 + 1] = {rec[i].x_r, rec[i].y_r, rec[i].y_l, -1};
18
19
       }
20
       sort(y_set.begin(), y_set.end());
21
       y_set.erase(unique(y_set.begin(), y_set.end()), y_set.end());
22
       sort(line.begin(), line.end(), [](Line a, Line b) { return a.x < b.x; });</pre>
23
       struct Data {
24
           int 1, r;
25
           11 len, cnt, raw_len;
26
27
       vector<Data> tree(4 * y_set.size());
28
       function<void(int, int, int)> build = [&](int pos, int 1, int r) {
29
           tree[pos].1 = 1;
30
           tree[pos].r = r;
31
           if (1 == r) {
32
               tree[pos].raw_len = y_set[r + 1] - y_set[l];
33
               tree[pos].cnt = tree[pos].len = 0;
34
               return;
35
           build(ls, 1, mid);
36
37
           build(rs, mid + 1, r);
38
           tree[pos].raw_len = tree[ls].raw_len + tree[rs].raw_len;
39
       };
40
       function<void(int, int, int, int)> update = [&](int pos, int 1, int r, int num) {
41
           if (1 <= tree[pos].1 && tree[pos].r <= r) {</pre>
42
               tree[pos].cnt += num;
               tree[pos].len = tree[pos].cnt
43
                                                                ? tree[pos].raw_len
                                 : tree[pos].1 == tree[pos].r ? 0
44
45
                                                                : tree[ls].len + tree[rs].len;
46
               return;
47
           }
48
           if (1 <= mid) update(ls, 1, r, num);</pre>
49
           if (r > mid) update(rs, l, r, num);
50
           tree[pos].len = tree[pos].cnt ? tree[pos].raw_len : tree[ls].len + tree[rs].len;
51
       };
52
       build(1, 0, y_set.size() - 2);
53
       auto find_pos = [&](ll num) {
54
           return lower_bound(y_set.begin(), y_set.end(), num) - y_set.begin();
55
       };
56
       11 \text{ res} = 0;
57
       for (int i = 0; i < line.size() - 1; i++) {</pre>
           update(1, find_pos(line[i].y_down), find_pos(line[i].y_up) - 1, line[i].pd);
58
           res += (line[i + 1].x - line[i].x) * tree[1].len;
59
60
61
       return res;
62 }
```

6 杂项

6.1 快读

```
namespace IO {
   constexpr int N = (1 << 20) + 1;
 3
   char Buffer[N];
   int p = N;
 5
 6
   char& get() {
 7
       if (p == N) {
 8
           fread(Buffer, 1, N, stdin);
9
           p = 0;
10
11
       return Buffer[p++];
12
13
   template <typename T = int>
14
15
   T read() {
16
       T x = 0;
       bool f = 1;
17
18
       char c = get();
19
       while (!isdigit(c)) {
20
           f = c != '-';
21
           c = get();
22
23
       while (isdigit(c)) {
           x = x * 10 + c - '0';
24
25
           c = get();
26
27
       return f ? x : -x;
28
29
  } // namespace IO
  using IO::read;
```

6.2 高精度

```
struct bignum {
2
       string num;
3
4
       bignum() : num("0") {}
5
       bignum(const string& num) : num(num) { reverse(this->num.begin(), this->num.end()); }
6
       bignum(11 num) : num(to_string(num)) { reverse(this->num.begin(), this->num.end()); }
7
8
       bignum operator+(const bignum& other) {
9
           bignum res;
10
           res.num.pop_back();
11
           res.num.reserve(max(num.size(), other.num.size()) + 1);
           for (int i = 0, j = 0, x; i < num.size() || i < other.num.size() || j; i++) {
12
13
               x = j;
               j = 0;
14
15
               if (i < num.size()) x += num[i] - '0';</pre>
16
               if (i < other.num.size()) x += other.num[i] - '0';</pre>
17
               if (x >= 10) j = 1, x -= 10;
18
               res.num.push_back(x + '0');
19
           }
20
           res.num.capacity();
```

```
21
            return res;
22
       }
23
24
       bignum operator*(const bignum& other) {
25
            vector<int> res(num.size() + other.num.size() - 1, 0);
            for (int i = 0; i < num.size(); i++)</pre>
26
27
                for (int j = 0; j < other.num.size(); j++)</pre>
28
                     res[i + j] += (num[i] - '0') * (other.num[j] - '0');
29
            int g = 0;
30
            for (int i = 0; i < res.size(); i++) {</pre>
31
                res[i] += g;
32
                g = res[i] / 10;
33
                res[i] %= 10;
34
            }
35
            while (g) {
36
                res.push_back(g % 10);
37
                g /= 10;
38
            }
39
            int lim = res.size();
            while (lim > 1 && res[lim - 1] == 0) lim--;
40
41
            bignum res2;
42
            res2.num.resize(lim);
            for (int i = 0; i < lim; i++) res2.num[i] = res[i] + '0';</pre>
43
44
45
       }
46
47
       bool operator<(const bignum& other) {</pre>
            if (num.size() == other.num.size())
48
49
                for (int i = num.size() - 1; i >= 0; i--)
50
                    if (num[i] == other.num[i]) continue;
51
                    else return num[i] < other.num[i];</pre>
52
            return num.size() < other.num.size();</pre>
53
       }
54
55
       friend istream& operator>>(istream& in, bignum& a) {
56
            in >> a.num;
57
            reverse(a.num.begin(), a.num.end());
58
            return in;
59
60
       friend ostream& operator<<(ostream& out, bignum a) {</pre>
61
            reverse(a.num.begin(), a.num.end());
62
            return out << a.num;</pre>
63
64
```

6.3 离散化

```
template <typename T>
  struct Hash {
2
3
      vector<int> S;
4
      vector<T> a;
5
      Hash(const vector<int>& b) : S(b) {
6
           sort(S.begin(), S.end());
7
           S.erase(unique(S.begin(), S.end()), S.end());
8
           a = vector<T>(S.size());
9
10
      T& operator[](int i) const {
```

```
auto pos = lower_bound(S.begin(), S.end(), i) - S.begin();
assert(pos != S.size() && S[pos] == i);
return a[pos];
}
```

6.4 模运算

```
constexpr int mod = 998244353;
 1
 2
 3
   template <typename T>
 4
   T power(T a, int b) {
5
       T res = 1;
 6
       while (b) {
 7
           if (b & 1) res = res * a;
           a = a * a;
 8
9
           b >>= 1;
10
11
       return res;
12
  }
13
14
   struct modint {
15
       int x;
16
       modint(int _x = 0) : x(_x) {
17
           if (x < 0) x += mod;
           else if (x >= mod) x -= mod;
18
19
       modint inv() const { return power(*this, mod - 2); }
20
21
       modint operator+(const modint& b) { return x + b.x; }
22
       modint operator-() const { return -x; }
23
       modint operator-(const modint& b) { return -b + *this; }
24
       modint operator*(const modint& b) { return (11)x * b.x % mod; }
25
       modint operator/(const modint& b) { return *this * b.inv(); }
26
       friend istream& operator>>(istream& is, modint& other) {
27
           11 _x;
28
           is \rightarrow _x;
29
           other = modint(_x);
30
           return is;
31
32
       friend ostream& operator<<(ostream& os, modint other) { return os << other.x; }</pre>
33 };
```

6.5 分数

```
struct frac {
1
2
       11 a, b;
3
       frac() : a(0), b(1) {}
4
       frac(ll _a, ll _b) : a(_a), b(_b) {
5
           assert(b);
6
           if (a) {
7
               int tmp = gcd(a, b);
8
               a /= tmp;
9
               b /= tmp;
10
           } else *this = frac();
11
       frac operator+(const frac& other) { return frac(a * other.b + other.a * b, b * other.b); }
```

```
13
       frac operator-() const {
           frac res = *this;
14
15
           res.a = -res.a;
16
           return res;
17
       frac operator-(const frac& other) const { return -other + *this; }
18
19
       frac operator*(const frac& other) const { return frac(a * other.a, b * other.b); }
20
       frac operator/(const frac& other) const {
21
           assert(other.a);
           return *this * frac(other.b, other.a);
22
23
       }
24
       bool operator<(const frac& other) const { return (*this - other).a < 0; }</pre>
25
       bool operator<=(const frac& other) const { return (*this - other).a <= 0; }</pre>
26
       bool operator>=(const frac& other) const { return (*this - other).a >= 0; }
27
       bool operator>(const frac& other) const { return (*this - other).a > 0; }
28
       bool operator==(const frac& other) const { return a == other.a && b == other.b; }
29
       bool operator!=(const frac& other) const { return !(*this == other); }
30 };
```

6.6 表达式求值

```
1
   // 格式化表达式
  string format(const string& s1) {
3
       stringstream ss(s1);
4
       string s2;
5
       char ch;
 6
       while ((ch = ss.get()) != EOF) {
           if (ch == ' ') continue;
7
8
           if (isdigit(ch)) s2 += ch;
           else {
9
               if (s2.back() != ' ') s2 += ' ';
10
               s2 += ch;
11
               s2 += ' ';
12
13
           }
14
       }
15
       return s2;
16 }
17
18
   // 中缀表达式转后缀表达式
19
  string convert(const string& s1) {
20
       unordered_map<char, int> rank{{'+', 2}, {'-', 2}, {'*', 1}, {'/', 1}, {'^', 0}};
21
       stringstream ss(s1);
22
       string s2, temp;
23
       stack<char> op;
24
       while (ss >> temp) {
25
           if (isdigit(temp[0])) s2 += temp + ' ';
26
           else if (temp[0] == '(') op.push('(');
27
           else if (temp[0] == ')') {
28
               while (op.top() != '(') {
29
                   s2 += op.top();
                   s2 += ' ';
30
31
                   op.pop();
32
               }
33
               op.pop();
34
           } else {
35
               while (!op.empty() && op.top() != '(' &&
36
                       (temp[0] != '^' && rank[op.top()] <= rank[temp[0]] ||</pre>
```

```
37
                        rank[op.top()] < rank[temp[0]])) {</pre>
38
                    s2 += op.top();
                    s2 += ' ';
39
40
                    op.pop();
41
42
                op.push(temp[0]);
43
           }
44
45
       while (!op.empty()) {
46
           s2 += op.top();
           s2 += ' ';
47
48
           op.pop();
49
50
       return s2;
51
52
53
   // 计算后缀表达式
54
   int calc(const string& s) {
55
       stack<int> num;
56
       stringstream ss(s);
57
       string temp;
58
       while (ss >> temp) {
           if (isdigit(temp[0])) num.push(stoi(temp));
59
60
61
                int b = num.top();
62
                num.pop();
63
                int a = num.top();
64
                num.pop();
65
                if (temp[0] == '+') a += b;
                else if (temp[0] == '-') a -= b;
66
                else if (temp[0] == '*') a *= b;
67
68
                else if (temp[0] == '/') a /= b;
                else if (temp[0] == '^') a = ksm(a, b);
69
70
                num.push(a);
71
72
73
       return num.top();
74 }
```

6.7 日期

```
1 int month[] = {0, 31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31};
2
  int pre[13];
3
   vector<int> leap;
 4
   struct Date {
5
       int y, m, d;
6
       bool operator<(const Date& other) const {</pre>
7
            return array<int, 3>{y, m, d} < array<int, 3>{other.y, other.m, other.d};
8
9
       Date(const string& s) {
10
            stringstream ss(s);
11
            char ch;
12
            ss \rightarrow y \rightarrow ch \rightarrow m \rightarrow ch \rightarrow d;
13
       }
14
       int dis() const {
            int yd = (y - 1) * 365 + (upper_bound(leap.begin(), leap.end(), y - 1) - leap.begin());
15
16
            int md = pre[m - 1] + (m > 2 && (y % 4 == 0 && y % 100 || y % 400 == 0));
```

```
17          return yd + md + d;
18          }
19          int dis(const Date& other) const { return other.dis() - dis(); }
20     };
21     for (int i = 1; i <= 12; i++) pre[i] = pre[i - 1] + month[2];
22     for (int i = 1; i <= 1000000; i++)
23     if (i % 4 == 0 && i % 100 || i % 400 == 0) leap.push_back(i);</pre>
```

6.8 builtin 函数

如果是 long long 型,记得函数后多加个 ll。

- ctz, 从最低位连续的 0 的个数, 如果传入 0 则行为未定义。
- clz, 从最高位连续的 0 的个数, 如果传入 0 则行为未定义。
- popcount, 二进制 1 的个数。
- parity, 二进制 1 的个数奇偶性。

6.9 对拍

linux/Mac

```
#!/bin/bash
2
  g++ $1 -o a -02
3
  g++ $2 -o b -02
  g++ random.cpp -o random -02
6
7
  cnt=0
8
  while true; do
9
      let cnt++
10
       echo TEST:$cnt
11
       ./random > in
12
       ./a < in > out.a
13
       ./b < in > out.b
14
      if ! diff out.a out.b; then break; fi
15 done
```

windows

```
@echo off
 1
2
3 g++ %1 -o a -02
4
  g++ %2 -o b -02
  g++ random.cpp -o random -02
5
 7
   set cnt=0
8
9
   :again
10
       set /a cnt=cnt+1
11
       echo TEST:%cnt%
12
       .\random > in
13
       \cdot \ a < in > out.a
14
       .\b < in \rightarrow out.b
       fc out.a out.b > nul
15
16 if not errorlevel 1 goto again
```

6.10 编译常用选项

 $\left| 1 \right|$ -Wall -Woverflow -Wextra -Wpedantic -Wfloat-equal -Wshadow -fsanitize=address,undefined

6.11 开栈

不同的系统/编译器可能命令不一样

```
ulimit -s
-Wl,--stack=0x10000000
-Wl,-stack_size -Wl,0x10000000
-Wl,-z,stack-size=0x10000000
```

6.12 clang-format

转储配置

```
clang-format -style=Google -dump-config > ./.clang-format
```

 $. \\ clang-format$

```
BasedOnStyle: Google
IndentWidth: 4
AllowShortIfStatementsOnASingleLine: AllIfsAndElse
ColumnLimit: 100
```