Háskóli Íslands Raunvísindadeild

Línuleg algebra A

Lausnir á skilaverkefni 6

(Lausnir á dæmum 1, 2, 3, 4 og 5 af vikublaði 7)

22. október 2015

Dæmi 1. Reiknið ákveðu fylkisins
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 1 & 0 & 1 & 0 \\ 3 & 4 & 1 & 4 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- (a) með því að koma því fyrst á efra stallaform,
- (b) með því að beita liðun eftir vel valinni línu eða dálki.

LAUSN. (a) Með því að framkvæma línuaðgerðirnar $L_1\leftrightarrow L_2,\ L_2\to L_2-2L_1,\ L_3\to L_3-3L_1,\ L_2\leftrightarrow L_4,\ L_3\to L_3-4L_2,\ L_4\to L_4-3L_2$ og $L_4\to L_4+L_3$ á fylkinu **A** fæst fylkið

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}.$$

Par sem ákveða breytist ekki við umskiptingar, og víxlun tveggja lína breytir formerki á ákveðu, þá fæst að $\operatorname{Det}(\mathbf{A}) = \operatorname{Det}(\mathbf{B})$. Nú er \mathbf{B} efra þríhyrningsfylki svo ákveða þess er jöfn margfeldi hornalínustakanna og við fáum því $\operatorname{Det}(\mathbf{A}) = \operatorname{Det}(\mathbf{B}) = 1 \cdot 1 \cdot (-2) \cdot (-2) = 4$.

(b) Með liðun eftir annarri línu fáum við

$$Det(\mathbf{A}) = -Det \begin{bmatrix} 3 & 4 & 1 \\ 4 & 1 & 4 \\ 1 & 0 & 1 \end{bmatrix} - Det \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 4 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= -\left(Det \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} + Det \begin{bmatrix} 3 & 4 \\ 4 & 1 \end{bmatrix}\right) - \left(-Det \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} + Det \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}\right)$$
$$= -(16 - 1 + 3 - 16) - (-(8 - 3) + 8 - 9) = 4.$$

(Hér eru ákveður 3×3 fylkjanna hægra megin við fyrsta jafnaðarmerkið báðar reiknaðar með liðun eftir þriðju línu.)

Dæmi 2. Sannið eftirfarandi fullyrðingar eða hrekið þær með mótdæmum.

- (i) Látum **A** og **B** vera línujafngild $m \times n$ fylki. Pá gildir um sérhvert $n \times k$ fylki **C**, að **AC** og **BC** línujafngild.
- (ii) Látum \mathbf{A} vera $m \times n$ fylki og \mathbf{B} vera $n \times k$ fylki. Þá gildir að

$$Rank(\mathbf{AB}) \leq min\{Rank(\mathbf{A}), Rank(\mathbf{B})\}.$$

(iii) Látum **A** vera $m \times n$ fylki sem hefur metorð n, þá er $\text{Det}(\mathbf{A}^T \mathbf{A}) \neq 0$.

LAUSN. (i) Þessi fullyrðing er rétt. Við vitum að tvö fylki \mathbf{H} og \mathbf{K} eru línujafngild þá og því aðeins að hægt sé að fá \mathbf{K} fram með því að margfalda \mathbf{H} frá vinstri með endanlega mörgum frumfylkjum. Það eru því til frumfylki $\mathbf{R}_1, \ldots, \mathbf{R}_k$ sem uppfylla jöfnuna

$$\mathbf{B} = \mathbf{R}_1 \cdots \mathbf{R}_k \mathbf{A}.$$

Af því leiðir að

$$\mathbf{BC} = (\mathbf{R}_1 \cdots \mathbf{R}_k \mathbf{A}) \mathbf{C} = \mathbf{R}_1 \cdots \mathbf{R}_k (\mathbf{AC})$$

og þar með eru fylkin AC og BC línujafngild.

(ii) Ekki þurfti að skila lausn á þessum lið vegna þess að hann var fullsnemma á ferðinni miðað við framvindu námskeiðsins. Nú er hins vegar búið að fara yfir það efni sem á þarf að halda fyrir lausnina svo hún kemur hér.

Sýnum að fullyrðingin sé rétt. Sérhver dálkur í fylkinu \mathbf{AB} er línuleg samantekt af dálkum fylkisins \mathbf{A} svo að dálkrúm fylkisins \mathbf{AB} er innihaldið í dálkrúmi fylkisins \mathbf{A} . Af því leiðir að

$$Rank(\mathbf{AB}) = Dim(Col(\mathbf{AB})) \le Dim(Col(\mathbf{A})) = Rank(\mathbf{A}).$$

Sérhver lína í fylkinu \mathbf{AB} er línuleg samantekt af línum fylkisins \mathbf{B} svo að línurúm fylkisins \mathbf{AB} er innihaldið í línurúmi fylkisins \mathbf{B} . Af því leiðir að

$$\operatorname{Rank}(\mathbf{AB}) = \operatorname{Dim}(\operatorname{Row}(\mathbf{AB})) \ \leq \ \operatorname{Dim}(\operatorname{Row}(\mathbf{B})) = \operatorname{Rank}(\mathbf{B}).$$

(iii) Þessi fullyrðing er rétt. Um $n \times n$ fylkið $\mathbf{A}^T \mathbf{A}$ gildir, að $\mathrm{Det}(\mathbf{A}^T \mathbf{A}) \neq 0$ er jafngilt því að línulega jöfnuhneppið $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{0}$ hafi aðeins lausnina $\mathbf{x} = \mathbf{0}$. Sýnum að síðara skilyrðið sé uppfyllt. Gerum ráð fyrir að \mathbf{v} sé lausn á umræddu hneppi. Þá fæst

$$(\mathbf{A}\mathbf{v}) \cdot (\mathbf{A}\mathbf{v}) = (\mathbf{A}\mathbf{v})^T (\mathbf{A}\mathbf{v}) = (\mathbf{v}^T \mathbf{A}^T)(\mathbf{A})\mathbf{v}) = \mathbf{v}^T (\mathbf{A}^T \mathbf{A}\mathbf{v}) = \mathbf{v}^T \mathbf{0} = 0$$

og það jafngildir því að $\mathbf{A}\mathbf{v}$ sé núllvigurinn. Samkvæmt forsendu er metorð fylkisins \mathbf{A} jafnt dálkafjölda þess svo að jöfnuhneppið $\mathbf{A}\mathbf{x}=\mathbf{0}$ hefur aðeins lausnina $\mathbf{x}=\mathbf{0}$. Við getum því ályktað að $\mathbf{v}=\mathbf{0}$.

Dæmi. 3. Notið Cramer-reglu til þess að leysa eftirfarandi línulegt jöfnuhneppi.

$$5x + 2y + z = 6$$

 $2x + 2y + 2z = 4$
 $2x + y + z = -1$

Lausn. Setjum
$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$
 og $\mathbf{b} = \begin{bmatrix} 6 \\ 4 \\ -1 \end{bmatrix}$.

Fyrir j = 1, 2, 3 látum við samkvæmt venju $\mathbf{A}_{j}(\mathbf{b})$ tákna fylkið sem fæst með því að setja \mathbf{b} inn í stað j-ta dálkvigursins í \mathbf{A} .

Til þess að geta beitt Cramer-reglu þurfum við fyrst að ganga úr skugga um að ákveða fylkisins $\mathbf A$ sé ekki núll og þá hefur jöfnuhneppið nákvæmlega eina lausn og hún er

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{1}{\operatorname{Det}(\mathbf{A})} \begin{bmatrix} \operatorname{Det}(\mathbf{A}_1(\mathbf{b})) \\ \operatorname{Det}(\mathbf{A}_2(\mathbf{b})) \\ \operatorname{Det}(\mathbf{A}_3(\mathbf{b})) \end{bmatrix}$$

Við fáum nú (útreikningar eftirlátnir lesendum):

$$Det(\mathbf{A}) = Det \begin{bmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix} = 2$$

$$Det(\mathbf{A}_1(\mathbf{b})) = Det \begin{bmatrix} 6 & 2 & 1 \\ 4 & 2 & 2 \\ -1 & 1 & 1 \end{bmatrix} = -6$$

$$Det(\mathbf{A}_2(\mathbf{b})) = Det \begin{bmatrix} 5 & 6 & 1 \\ 2 & 4 & 2 \\ 2 & -1 & 1 \end{bmatrix} = 32$$

$$Det(\mathbf{A}_3(\mathbf{b})) = Det \begin{bmatrix} 5 & 2 & 6 \\ 2 & 2 & 4 \\ 2 & 1 & -1 \end{bmatrix} = -22.$$

Vigurinn $\begin{bmatrix} -3 \\ 16 \\ -11 \end{bmatrix}$ er þar með eina lausn jöfnuhneppisins.

Dæmi. 4. Í hverjum lið hér að neðan er gefið hlutmengi í tilteknu vigurrúmi. Gerið grein fyrir hvort þau eru hlutrúm í viðkomandi vigurrúmi.

- (a) $\{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0\}.$
- (b) $\{(x, y, z) \in \mathbb{R}^3 \mid xyz = 0\}.$
- (c) $\{p \in \mathbb{P}_3 \mid \operatorname{stig} p = 0\}.$

(d)
$$\{ \mathbf{A} \in \mathbb{R}^{3 \times 3} \mid \mathbf{AC} = \mathbf{CA} \}$$
, par sem $\mathbf{C} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$.

Lausn. (a) Þetta er lausnamengi línulegrar jöfnu og þar með er það hlutrúm.

- (b) Vigrarnir (1,0,0) og (0,1,1) eru í hlutmenginu, en summa þeirra (1,1,1) er ekki í því. Þar með er það ekki hlutrúm.
- (c) Í þessum lið gerði innsláttarpúkinn vart við sig því hér átti að standa stig $p \leq 0$. Miðað við þessa leiðréttu útgáfu er hér um hlutrúm að ræða því ljóst er að hlutmengið er ekki tómt og summa tveggja margliða af stigi 1 eða lægra er af stigi 1 eða lægra.

Einnig er ljóst að sé margliða af stigi 1 eða lægra margfölduð með rauntölu þá fæst fram margliða af stigi 1 eða lægra.

- (d) Táknum umrætt hlutmengi með V og sýnum að það sé hlutrúm í $\mathbb{R}^{3\times 3}$.
 - Núllfylkið er í V vegna þess að $\mathbf{O} = \mathbf{OC} = \mathbf{CO} = \mathbf{O}$.
 - Ef fylkin ${f A}$ og ${f B}$ eru í V og c er rauntala, þá er fylkið ${f A}+c{f B}$ líka í V vegna þess að

$$(\mathbf{A} + c\mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + c(\mathbf{B}\mathbf{C})$$
 (reglur um fylkjamargföldun)
= $\mathbf{C}\mathbf{A} + c(\mathbf{C}\mathbf{B})$ (\mathbf{A} og \mathbf{B} eru í V)
= $\mathbf{C}(\mathbf{A} + c\mathbf{B})$ (reglur um fylkjamargföldun).

Dæmi 5. Gerið grein fyrir hvort eftirfarandi tvístæð vensl eru spegilvirk, samhverf, andsamhverf eða gegnvirk.

(a) Venslin \sim á \mathbb{R} skilgreind með

$$x \sim y$$
 ef og aðeins ef $x \leq y$

(b) Venslin \sim á \mathbb{N} skilgreind með

$$n \sim m$$
 ef og aðeins ef $n - m = p$

bar sem p er gefin frumtala.

(c) Venslin \sim á $\mathcal{P}(M)$, þar sem M er gefið mengi, skilgreind með

$$A \sim B$$
 ef og aðeins ef $A \subset B$.

Lausn. (a) Þessi vensl eru spegilvirk, andsamhverf og gegnvirk, en ekki samhverf.

- (b) Pessi vensl eru andsamhverf, en hvorki spegilvirk, samhverf né gegnvirk.
- (c) Þessi vensl eru spegilvirk, andsamhverf og gegnvirk, en ekki samhverf.

Eina atriðið sem hugsanlega þarfnast skýringar hér er að venslin í lið (b) séu andsamhverf, en það er vegna þess að ekki er til nein spyrða (n, m) af náttúrlegum tölum, sem fullnægir báðum skilyrðunum m - n = p og n - m = p.