Please write your name at the top of each page

Show all working. Marks are awarded for method.

A cheat sheet is provided. No other notes are allowed.

Question	Marks
1	
2	
3	
4	
5	
6	
7	

		5]	points
ı) Given rigid	body transformations g_{EA} , g_{AR} ,	and g_{ES} , find g_{RS} .	
o) Suppose tha	t the frame S origin as seen from	n frame E is $[1, 1, 1]$ and that	
	.	7	
	$G_{ER} = egin{bmatrix} -1 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \end{bmatrix}$	0 1	
		$\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$	
Write down	the coordinates of the frame S of	origin as seen from the frame R .	

Figure 1: A rigid body rotating in the plane.

(a) Find the position of the point P on the moving body relative to the fixed reference frame $\{s\}$ in terms of θ .

(b) Find the velocity of the point P in terms of the fixed reference frame $\{s\}$. (2)

roduction	n to Robotics Name:	
(c) Find the	e velocity of the point P in terms of the rotating reference f	rame $\{s\}$.
(d) Write th	the configuration g_{SB} in terms of θ .	
(d) Wille th	te configuration ggs in terms of v.	
I		

		Name: _		
(0)				
(f) Find the tw	vist in spatial coo	$rdinates\{s\}.$		
(g) What is the	e relationship bet	ween the twists from	ı (d) and (e)?	

ntroduction to Robotics	Name:

leaving your answer in terms of $e^{\hat{\xi}_i \theta_i}$.	For this question, refer to the manipulator seen in Appendix \ref{main} . (a) Using matrix exponents, write an expression for the forward kinematic map $g_{WT}(\theta)$, leaving your answer in terms of $e^{\hat{\xi}_i\theta_i}$.	oduction to Robotics	Name:	
(a) Using matrix exponents, write an expression for the forward kinematic map $g_{WT}(\theta)$, leaving your answer in terms of $e^{\hat{\xi}_i\theta_i}$. (b) Write the initial configuration $g_{WT}(0)$ of the manipulator.	leaving your answer in terms of $e^{\hat{\xi}_i \theta_i}$.			
(b) Write the initial configuration $oldsymbol{g}_{WT}\left(0\right)$ of the manipulator.	(b) Write the initial configuration $g_{WT}\left(0\right)$ of the manipulator.			ward kinematic map $oldsymbol{g}_{WT}\left(oldsymbol{ heta} ight),$
(b) Write the initial configuration $g_{WT}\left(0\right)$ of the manipulator.	(b) Write the initial configuration $g_{WT}\left(0\right)$ of the manipulator.			
		(b) Write the initial configuration	$g_{WT}\left(0 ight)$ of the manipu	lator.

	10 points
The manipulator in Appendix ??	is to be moved to some valid desired configuration
$oldsymbol{g}_{d,WT}.$	
(a) The matrix g_1 can be expresse	d as:
	$\boldsymbol{g}_1 = e^{\hat{\boldsymbol{\xi}}_1 \theta_1} e^{\hat{\boldsymbol{\xi}}_2 \theta_2} e^{\hat{\boldsymbol{\xi}}_3 \theta_3}$
Write an expression for g_1 give configurations.	en our desired configuration $\boldsymbol{g}_{d,WT}$ and other known
I	
(b) Write down the invariant point	ts of the system and which joints they are invariant
(b) Write down the invariant point to.	ts of the system and which joints they are invariant
	ts of the system and which joints they are invariant
	ts of the system and which joints they are invariant
	ts of the system and which joints they are invariant
	ts of the system and which joints they are invariant
	ts of the system and which joints they are invariant
	ts of the system and which joints they are invariant

	te the inverse kir ems. Define all n			rms of Paden	Kahan
) (C:1	· 1	1.4.41	1:	 	1.0
	is value for θ_3 , for of Paden Kahan				
1					

?? and	??).		
Write t?? and		nanipulator in its initial co	enfiguration (Figures
Ia thia	a singular configuration?	If so, give an expression f	on the linear depen
dency b	-	If so, give an expression for show that the columns are ample).	_

Name:

(d) The spatial and body Jacobians can be written in terms of ξ' and ξ^{\dagger} . What is the relationship between ξ , ξ' , and ξ^{\dagger} ? What do the following matrices represent?

(3)

 $m{M}_1 = egin{bmatrix} \xi_1 & \xi_2 & \xi_3 \end{bmatrix} \quad m{M}_2 = egin{bmatrix} \xi_1' & \xi_2' & \xi_3' \end{bmatrix} \quad m{M}_3 = egin{bmatrix} \xi_1^\dagger & \xi_2^\dagger & \xi_3^\dagger \end{bmatrix}$

Name: _____

$$J^{s} = \begin{bmatrix} 0 & l_{0} & l_{0} \\ 0 & 0 & 0 \\ 0 & 0 & l_{1} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad J^{b} = \begin{bmatrix} 0 & l_{1} & 0 \\ l_{1} & 0 & 0 \\ 0 & l_{2} & l_{1} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

(a)	What instantaneous	linear body	velocities a	re possible in	this configuration.	(1)
-----	--------------------	-------------	--------------	----------------	---------------------	-----

(b)	Is this a singular configuration? Show how the joint velocities $\dot{\theta}_1$, $\dot{\theta}_2$, and $\dot{\theta}_3$ relate	(1)
	to the instantaneous linear body velocities.	

Introduction	to	Robotics
muducuom	$\mathbf{u}\mathbf{v}$	TODOUTCS

Name: _____

(c) Show that the matrix that relates the velocity of a point as seen in the tool frame (\mathbf{v}_{q_T}) to its coordinates as seen in the tool frame (\mathbf{q}_T) can be written:

$$\boldsymbol{M} = \begin{bmatrix} 0 & -\dot{\theta}_1 & \dot{\theta}_3 & -l_1\dot{\theta}_1 \\ \dot{\theta}_1 & 0 & -\dot{\theta}_2 & l_2\dot{\theta}_2 + l_3\dot{\theta}_1 \\ -\dot{\theta}_3 & \dot{\theta}_2 & 0 & -l_3\dot{\theta}_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(d) What is the instantaneous body velocity of the origin of the tool frame? (2)

(e) The figures below show the side and top views of the manipulator in configuration $g_{WT}\left(0,0,-\frac{\pi}{2}\right)$ (Appendix ??, Figure ??). Sketch this instantaneous body velocities from each joint on the figures below.

(2)

I			
· · · · · · · · · · · · · · · · · · ·	on, what is the spa	atial velocity of the	e same point.
) Without any Explain your	on, what is the spa	atial velocity of the	e same point.
· · · · · · · · · · · · · · · · · · ·	on, what is the spa	atial velocity of the	e same point.
· · · · · · · · · · · · · · · · · · ·	on, what is the spa	atial velocity of the	e same point.

Introduction to Robotics	Name:

There are no questions on this page.

Name: _____

(1)

(Appendix ??, Figure ??) can be written:

$$J^{s} = \begin{bmatrix} 0 & l_{0} & l_{0} \\ 0 & 0 & 0 \\ l_{0} & 0 & -l_{1} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad J^{b} = \begin{bmatrix} 0 & l_{0} & l_{0} + l_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

(a) What spatial forces and torques can be applied by the manipulator in this configuration?

(b) How many spatial forces and torques can be controlled independently in this configuration? (1)

(c) A mass m is held by the manipulator at the point with tool frame coordinates [0,0,0] What is the body wrench Γ^b associated with this load. Assume that the acceleration due to gravity acts in the negative Z_W direction.

od	luction to Robotics Name:
(d)	Using the Jacobians provided, what joint torques are associated with this body wrench?
e)	Based on these joint torques, explain how the mass is supported by the manipulator.
f)	Without performing any computation, what is the spatial wrench Γ^s associated with this body wrench Γ^b ? Explain your reasoning. sdads z

A torsion spring is a spring that works by torsion or twisting; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted.

Torsion springs obey an angular form of Hooke's law:

$$\tau = -\kappa \theta$$

where τ is the torque exerted by the spring, and θ is the angle of twist from its equilibrium position. κ is the spring's torsion coefficient, analogous to the spring constant of a linear spring. The negative sign indicates that the direction of the torque is opposite to the direction of twist.

The energy U, in joules, stored in a torsion spring is:

$$U = \frac{1}{2}\kappa\theta^2$$

.

Consider the pendulum with a point mass and a torsion spring. The angle θ is the displacement from the horizontal. Denote the equilibrium position of the mass θ_0 .

Figure 2: Pendulum with torsion spring.

(a)	Write an expression for the kinetic energy in this system.	
		1
		1
		1
		1
		1
(h.)	Write an expression for the potential energy in the system.	
(b)	write an expression for the potential energy in the system.	1
		1
		1
(c)	Derive the equations of motion using Lagrangian mechanics (use energy).	
		1
		1
		i i

sider a mass m v	with inertia	a I attached a	a a radius r .	Write the ed	quation of
sider a mass m vor this system.	vith inertia	a I attached i	a a radius r .	Write the ed	quation of
	vith inertia	a I attached a	a a radius r .	Write the ed	quation of
	vith inertia	a I attached :	a a radius r .	Write the ec	quation of
	vith inertia	a I attached :	a a radius r .	Write the ed	quation of
	vith inertia	a I attached	a a radius r .	Write the ed	quation of
	vith inertia	a I attached	a a radius r .	Write the ed	quation of
	vith inertia	a I attached	a a radius r .	Write the ed	quation of
	vith inertia	a I attached	a a radius r .	Write the ed	quation of

Introduction to Robotics	Name:	

1 Appendix: RRR Manipulator

Robotic manipulator with three revolute joints.

Figure 3: Schematic of a 3DoF RRR Manipulator in its initial configuration. Axes of rotation and the world and tool reference frames are shown.

Figure 4: Side view of a 3DoF RRR Manipulator in its initial configuration. Segment lengths are shown.

Figure 5: Manipulator in the configuration $\boldsymbol{\theta} = \left[0,0,-\frac{\pi}{2}\right]$

Figure 6: Manipulator in the configuration $\boldsymbol{\theta} = \left[-\frac{\pi}{2}, 0, 0 \right]$.

2 Appendix: Cheat Sheet

This is the cheat sheet that will be provided for every midterm.

2.1 Trigonometry

Pythagoras's theorem $h^2 = x^2 + y^2$ for a right angled triangle where h is the hypotenuse and x and y are the lengths of the two remaining sides.

Sine, Cosine Relation $(\cos(\theta))^2 + (\sin(\theta))^2 = 1$

Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos(\theta_C)$ where a, b, c are the lengths of the triangle and θ_A , θ_B and θ_C are the angles of their opposing corner.

2.2 Linear Algebra

For orthogonal matrices $A^{-1} = A^T$

Orthogonality A matrix $[v_1, ..., v_n]$ is said to be orthogonal if:

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

2.3 Special Operators

Hat

$$\hat{\boldsymbol{\omega}} = \begin{bmatrix} \hat{\omega}_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

Wedge

$$\hat{\boldsymbol{\xi}} = \widehat{\begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{\omega} \end{bmatrix}} = \begin{bmatrix} \hat{\boldsymbol{\omega}} & \boldsymbol{v} \\ \boldsymbol{0} & 0 \end{bmatrix}$$

2.4 Rotations

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} = e^{\hat{x}\theta}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} = e^{\hat{y}\theta}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = e^{\hat{z}\theta}$$

Name: _____

2.5 Rodrigues' Formula

$$R(\boldsymbol{\omega}, \boldsymbol{\theta}) = e^{\hat{\boldsymbol{w}}\boldsymbol{\theta}} = \mathbb{I}_3 + \frac{\hat{\boldsymbol{\omega}}}{\|\boldsymbol{\omega}\|} \sin(\boldsymbol{\theta}) + \frac{\hat{\boldsymbol{\omega}}^2}{\|\boldsymbol{\omega}\|^2} (1 - \cos(\boldsymbol{\theta}))$$

2.6 Rigid Body Motion

$$oldsymbol{g}_{AB} = egin{bmatrix} oldsymbol{R}_{AB} & oldsymbol{p}_{AB} \ oldsymbol{0} & 1 \end{bmatrix} \quad oldsymbol{g}_{AB}^{-1} = egin{bmatrix} oldsymbol{R}_{AB}^{-1} & -oldsymbol{R}_{AB}^{-1} oldsymbol{p}_{AB} \ oldsymbol{0} & 1 \end{bmatrix}$$

2.7 Exponential Notation

$$\mathbf{R}_{AB}(\theta_{1}) = e^{\hat{\omega}_{1}\theta_{1}}$$
$$\mathbf{g}_{AB}(\theta_{1}) = e^{\hat{\xi}_{1}\theta_{1}}\mathbf{g}_{AB}(0)$$
$$\mathbf{g}_{ST}(\theta_{1}, \dots, \theta_{n}) = e^{\hat{\xi}_{1}\theta_{1}} \dots e^{\hat{\xi}_{n}\theta_{n}}\mathbf{g}_{ST}(0)$$

2.7.1 Special Cases

Pure Rotation

$$oldsymbol{\xi} = egin{bmatrix} -oldsymbol{\omega} imes oldsymbol{q} \ oldsymbol{\omega} \end{bmatrix}$$

Pure Translation

$$oldsymbol{\xi} = egin{bmatrix} oldsymbol{v} \ oldsymbol{0} \end{bmatrix}$$

Pure Rotations, Screws (Rotation and Translation)

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}} & \left(\mathbb{I}_3 - e^{\hat{\boldsymbol{\omega}}\boldsymbol{\theta}}\right) \left(\boldsymbol{\omega} \times \boldsymbol{v}\right) + \boldsymbol{\omega}\boldsymbol{\omega}^T \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

Pure Translation

$$e^{\hat{\boldsymbol{\xi}}\boldsymbol{\theta}} = \begin{bmatrix} \mathbb{I}_3 & \boldsymbol{v}\boldsymbol{\theta} \\ \mathbf{0} & 1 \end{bmatrix}$$

2.8 Paden-Kahan

Subproblem 1: Rotation about a single axis

$$e^{\widehat{\xi}\theta}p = q$$

Subproblem 2: Rotation about two subsequent axes

$$e^{\widehat{\xi}_1\theta_1}e^{\widehat{\xi}_2\theta_2}p = q$$

Subproblem 3: Rotation to a distance

$$\left\| e^{\widehat{\xi}\theta} p - q \right\| = \delta$$

2.9 Velocities

Spatial Velocities

$$\widehat{V}_{AB}^{s} = \dot{g}_{AB}g_{AB}^{-1} \qquad V_{AB}^{s} = \begin{bmatrix} -\dot{R}R^{T}p + \dot{p} \\ (\dot{R}R^{T})^{\vee} \end{bmatrix} = \xi\dot{\theta}$$

Body Velocities

$$\widehat{V}_{AB}^b = g_{AB}^{-1} \dot{g}_{AB} \qquad V_{AB}^b = \begin{bmatrix} R^T \dot{p} \\ \left(R^T \dot{R}\right)^{\vee} \end{bmatrix} = \left(A d_{g_{AB}^{-1}(0)} \xi\right) \dot{\theta}$$

Adjoint

$$\begin{split} Ad_g &= \begin{bmatrix} R & \widehat{p}R \\ 0 & R \end{bmatrix} & V^s = Ad_gV^b \\ V^s_{AC} &= V^s_{AB} + Ad_{g_{AB}}V^s_{BC} & V^b_{AC} = Ad_{g_{BC}^{-1}}V^b_{AB} + V^b_{BC} \end{split}$$

2.10 Jacobians

Spatial Jacobian

$$V_{ST}^{s} = J_{ST}^{s} \dot{\theta}$$

$$J_{ST}^{s} = \begin{bmatrix} \xi_{1} & \xi_{2}' & \dots & \xi_{n}' \end{bmatrix}$$

$$\xi_{i}' = Ad_{\left(e^{\hat{\xi}_{1}\theta_{1}} \dots e^{\hat{\xi}_{i-1}\theta_{i-1}}\right)}^{s} \xi_{i}$$

Body Jacobian

$$\begin{aligned} V_{ST}^b &= J_{ST}^b \dot{\theta} \\ J_{ST}^b &= \begin{bmatrix} \xi_1^\dagger & \xi_2^\dagger & \dots & \xi_n^\dagger \end{bmatrix} \\ \xi_i^\dagger &= A d_{\left(e^{\hat{\xi}_i \theta_i} \dots e^{\hat{\xi}_n \theta_n} g_{ST}(0)\right)}^{-1} \xi_i \end{aligned}$$

2.11 Wrenches

$$oldsymbol{\Gamma} = egin{bmatrix} oldsymbol{F} \ oldsymbol{ au} \end{bmatrix} \ oldsymbol{\Gamma}^b = (Ad_{g_{ST}})^T \, oldsymbol{\Gamma}^s$$

Spatial Wrench

$$oldsymbol{ au} = \left(J_{ST}^s
ight)^T oldsymbol{\Gamma}^s$$

Body Wrench

$$oldsymbol{ au} = \left(J_{ST}^b
ight)^T oldsymbol{\Gamma}^b$$

2.12 Euler Lagrange

$$\mathcal{L}(q, \dot{q}) = T(q, \dot{q}) - V(q)$$

$$\Gamma_{i} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} - \frac{\partial \mathcal{L}}{\partial q_{i}}$$

Name: _____

2.13 Forces

Gravitational Force

$$W = -mg$$

where m is the mass, g is the acceleration due to gravity.

Elastic Force

$$F_k = -k\delta$$

where k is the spring constant and δ is the extension of the spring.

2.14 Energies

Kinetic

$$KE = \frac{1}{2}mv^2$$

where m is the mass and v is the velocity of the object.

Gravitational Potential

$$GPE = mgh$$

where m is the mass, g is the acceleration due to gravity and h is the distance along the gravitational axis.

Elastic Potential

$$EPE = \frac{1}{2}k\delta^2$$

where k is the spring constant and δ is the extension of the spring.

2.15 Moments of Inertia

Mass at a Radius

$$I = mr^2$$

where m is the mass, and r is the radius of the mass.

Introduction to Robotics	Name:	