

Computação Móvel

Aula 2: Introdução às Redes Móveis

Diego Passos

Redes Sem Fio

Popularização

- Final dos anos 1990.
 - Redes celular.
 - Redes Locais Sem Fio (WLAN).

Comparação com redes cabeadas

Prós	Contras
Praticidade	Escalabilidade
Custo	Desempenho
Novas aplicações	Segurança

Comunicação Sem Fio

História mais longa

Época	Marco
Década de 1890	Surgimento do rádio
Meados do Século XX	Rádio e TV: comunicação em massa
Final do Século XX	Telefonia móvel
Final do Século XX	Redes Locais Sem Fio

Desafios específicos

Atenuação

Interferências

Segurança

Comunicação de Dados Sem Fio

Sistemas especializados (TV, rádio, telefonia)

- Incorporação pela Internet.
- Fluxo contínuo ⇒ comutação de pacotes.

Pacotes – informação fracionada

- Endereços, outros parâmetros da comunicação:
 - Cabeçalhos.
 - Trailers.

Sistemas de Comunicação de Dados Móvel

Evolução em dois ramos

	Telefonia Móvel	Redes Locais Sem Fio
Comutação de pacotes?	Originalmente, não	Sim
Investimento	Alto	Baixo
Área de atuação principal	outdoor	indoor

Níveis de Abrangência

Classificação quanto ao alcance

Tipo	Abrangência	Exemplos
WBAN	Corporal	IEEE 802.15.6?
WPAN	Pessoal	Bluetooth, Zigbee
WLAN	Local	Wi-Fi
WMAN	Metropolitana	LTE, WiMax
WWAN	Longa distância	LTE, WiMax?
WRAN	Regional	IEEE 802.22?

WLANs: Precursores

ALOHAnet

- Universidade do Havaí, 1970.
- Comutação de pacotes.
- MAC: ALOHA e slotted ALOHA.

WaveLAN

- AT&T, Lucent e NCR, 1988.
- Precursor direto do Wi-Fi.

HiperLAN.

- ETSI, 1992.
- Sem êxito comercial.

Comunicação de Rádio

Método mais comum

- Ondas eletromagnéticas
- 3 kHz a 300 GHz.

Espectro

- Dividido em bandas
 - Faixas de frequência.
 - Características diferentes.

Alternativas

- Infra-vermelho.
- Luz visível.
- Ondas acústicas.
- **...**

Bandas Não Licenciadas

Espectro é regulado

- Agências governamentais.
 - e.g., ANATEL.
 - e.g., FCC.
- Recomendações da ITU.

Licença

- Concessão para uso.
- Leilões bilhonários.
- Burocracia.

Bandas não licenciadas

Dispensam licença.

Exemplos:

- Bandas ISM.
- Banda U-NII.

Mapa de Atribuição de Frequências no Brasil

Bandas ISM

Industrial, Scientific and Medical

- Diversas faixas.
- Mais populares: 2,4 GHz e 5,8 GHz.
 - e.g., Wi-Fi.
- Outras faixas de interesse: 900 MHz e 60 GHz.

Bandas ISM segundo a ITU (MHz)

Faixa de frequências	Largura da faixa	Abrangência
6,765 a 6,795 MHz	30 kHz	Sujeita à aceitação local
13,553 a 13,567 MHz	14 kHz	Mundial
26,957 a 27,283 MHz	326 kHz	Mundial
40,66 a 40,7 MHz	40 kHz	Mundial
433,05 a 434,79 MHz	1,74 MHz	Região 1, sujeita à aceitação
902 a 928 MHz	28 MHz	Região 2 (com exceções)

Bandas ISM segundo a ITU (GHz)

Faixa de frequências	Largura da faixa	Abrangência
2,4 a 2,5 GHz	100 MHz	Mundial
5,725 a 5,875 GHz	150 MHz	Mundial
24 a 25 GHz	250 MHz	Mundial
61 a 61,5 GHz	500 MHz	Sujeita à aceitação local
122 a 123 GHz	1 GHz	Sujeita à aceitação local
244 a 246 GHz	2 GHz	Sujeita à aceitação local

Bandas U-NII

Sub-banda	Faixa de frequência	Largura da faixa
U-NII 1 (ou Baixa)	5,15 a 5,25 GHz	100 MHz
U-NII 2 (ou Média)	5,25 a 5,35 GHz	100 MHz
U-NII 2e (ou Mundial)	5,47 a 5,725 GHz	255 MHz
U-NII 3 (ou Alta)	5,725 a 5,825 GHz	150 MHz

Camada Física = PHY

Chipset de rádio

- Lida com bits no canal.
- Serviços à camada MAC.

Recepção

- Recepção do sinal.
- Decodificação.
- Montagem do quadro.

Transmissão

- Recepção do quadro.
- Codificação.
- Transmissão do sinal.

Mesma tecnologia pode definir múltiplas PHYs!

Preparando o Quadro para Transmissão

Informações de controle adicionadas

	Preâmbulo	Postâmbulo
Posição	Antes do quadro	Após o quadro
Finalidade	Auxilia recepção	Geralmente, para integridade
Exemplos	Seleção de antena, sincronização	CRC32 no Ethernet, Wi-Fi

Codificação

Bits redundantes

- Maior imunidade à erros.
- Possibilita detecção e correção.

Redundância ajustável

- ↑ Robustez ↓ Taxa de Transmissão
- Taxas de codificação comuns:
 - **1/2, 2/3, 3/4.**

Usado em adição ao mecanismo de verificação de integridade.

Portadora

Onda que transporta sinal

- Matematicamente, senoide.
- Parâmetros: frequência, amplitude, fase.

Exemplo: Wi-Fi

Canal 1: portadora em 2,412 GHz.

Modulação

Definição

Alteração de características da portadora, introduzindo informação.

Informação e portadora

- Portadora adequada ao sistema em questão.
- Independente da representação da informação.

Sinal modulante

- Informação.
- Combinado à portadora.

Diversos tipos

Variam na forma de alteração da portadora.

Modulação por Amplitude

AM = Amplitude Modulation

■ Dados diferentes ⇒ Amplitudes diferentes.

Exemplo: ASK

- Modulação por amplitude binária.
 - Duas amplitudes \Rightarrow 0 e 1.

Modulação por Frequência

FM = Frequency Modulation

- Dados diferentes ⇒ Frequências diferentes.
 - Relativas à frequência da portadora.

Exemplo: FSK

- Modulação por frequência binária.
 - Duas frequências ⇒ 0 e 1.

Modulação por Fase

PM = Phase Modulation

- Dados diferentes ⇒ Fases diferentes.
 - Deslocamento temporal.

Exemplo: BPSK

- Modulação por fase binária.
 - Duas fases \Rightarrow 0 e 1.

Modulação Multinível

Símbolo

Estado discreto da portadora modulada.

Símbolos Binários

- Exemplos anteriores.
- 1 símbolo ⇔ 1 bit.

Símbolos Multinível

- a 1 símbolo ⇔ N bits.
 - $ightharpoonup 2^N$ estados da portadora.

Modulação	Característica Modulada	Níveis	Símbolos
ASK	Amplitude	2	0 e 1
4ASK	Amplitude	4	00, 01, 10 e 11
256QAM	Amplitude e Fase	256	00000000, 00000001,

25/33

Largura de Banda

Tamanho da faixa de frequência utilizada para transmissão

Padrão	Largura de banda
802.11a	20 MHz
802.11n	20 ou 40 MHz
802.11ac	80 MHz
802.11ah	2, 4, 8 ou 16 MHz

Largura de banda vs. capacidade (b/s)

- ↑ largura de banda ⇒ ↑ maior a capacidade.
- ↓ largura de banda ⇒ ↓ maior a capacidade.

Espalhamento espectral

Tipicamente obrigatório em bandas não licenciadas

Dispersar o sinal por uma banda mais larga que a necessária

Motivação

- Redução da interferência
- Melhor coexistência.

Diversas técnicas

- Salto de frequências.
- DSSS.
- OFDM.

Salto de Frequências

Histórico

Segunda Guerra Mundial.

Princípio

- Transmissor e receptor saltam de canal.
 - Rápido.
 - Sincronizado.

Vantagens

- Dificuldade de interceptação da comunicação.
- Espalhamento espectral.

Exemplos de uso

- IEEE 802.11 (legado).
- Bluetooth.

Salto de Frequências: Exemplo

DSSS (Direct Sequence Spread Spectrum)

Funcionamento

- Cada bit ⇒ sequência de chips.
 - Pseudo-aleatória.
- Duração de um chip bem menor que de um bit.

Uso

IEEE 802.11 (legado)

OFDM (Orthogonal Frequency Division Multiplexing)

Funcionamento

- Várias subportadoras.
 - Analogia: subcanais usados em paralelo.
- Informação quebrada entre subportadoras.
- Modulações tradicionais em cada subportadora.

Vantagem

Robustez contra interferências de banda estreita e poluição espectral. Ampla utilização: tecnologias sem fio e cabeadas.

Próxima aula

Mais conceitos básicos

Agora sobre propagação.

Tarefas

Pós-graduação	Todos os alunos
Escolher primeiro artigo a ser	Ler páginas 74 a 83 (antenas) e 111 a 118
apresentado (dentre os 10	(propagação) do livro Tecnologias de Redes
primeiros da lista)	Sem Fio