Национальный исследовательский университет «МЭИ» Институт Радиотехники и электроники им. В.А. Котельникова

Лабораторная работа №3 «Нелинейные режимы работы системы слежения за частотой»

Студенты: Жеребин В.Р.

Калугин К.С.

Юрьев Д.С.

Группа: ЭР-15-15

Цель работы: изучение особенностей захвата и срыва слежения в нелинейной дискретной системе слежения за частотой.

Функциональная схема ССЧ представлена на Рис. 1. Информативным параметром для ССЧ является доплеровская частота входного сигнала. При этом остальные параметры (задержка, амплитуда) полагаются известными.

Рис.1. функциональная схема ССЧ.

В дискриминаторе производится операция перемножения отсчётов входного процесса и опорного сигнала, а также суммирование результата — накопление. Операцию производит коррелятор — общий для всех дискриминаторов дискретных следящих систем блок, на выходе которого формируются синфазная и квадратурная компоненты:

$$\begin{split} I_k &= \sum_{l=1}^M y_{l,k} \times h(t_{l,k} + \hat{\tau}_k) \cos\left((\omega_0 + \hat{\omega}_{\partial,k})t_{l,k}\right), \\ Q_k &= \sum_{l=1}^M y_{l,k} \times h(t_{l,k} + \hat{\tau}_k) \sin\left((\omega_0 + \hat{\omega}_{\partial,k})t_{l,k}\right), \end{split}$$

Методика оценки полосы захвата и полосы удержания путём графического решения нелинейного дифференциального уравнения

Рассмотрим случай, когда отклонение $\delta\omega_{\rm c}$ частоты сигнала от номинального значения постоянно во времени, а фильтр умеет следующий коэффициент передачи:

$$K_{\Phi}(p) = \frac{1}{1 + pT_{\Phi}}$$

При этом система будет описываться следующим уравнением:

$$T_{\Phi} * \frac{d\Omega(t)}{dt} + \Omega(t) + F(\Omega(t)) = \delta\omega_{c}$$

В установившемся режиме, когда $\frac{d\Omega(t)}{dt}$ =0, ошибка слежения Ω определяется решением нелинейного уравнения, вытекающего из предыдущего:

$$F(\Omega) = \delta \omega_{\rm c} - \Omega$$

На рис. 2.а представлено графическое решение уравнения.

Выполнив построения, показанные на Рис. 2.а, для ряда значений $\delta\omega_{\rm c}$ можно найти зависимость расстройки Ω промежуточной частоты от величины отклонения $\delta\omega_{\rm c}$ частоты входного сигнала. Эта зависимость представлена на рис. 2.б. Ее участок AA' соответствует устойчивым точкам равновесия вида 1 на рис. 2.а. Участки БВ и В'Б' формируются устойчивыми точками равновесия типа 3 на рис. 2.а. Участки AB и A'B' соответствуют неустойчивым точкам равновесия (точка 2 на рис. 2.а).

Зависимость, изображенная на рис. 2.б, позволяет проследить поведение системы автоподстройки при изменении частоты входного сигнала. Область частот, лежащая между абсциссами точек А и А' (рис. 2.б), называется полосой удержания, а область между абсциссами точек Г и Г' - полосой захвата системы. Величины этих полос являются важными параметрами, учитываемыми при проектировании систем частотной автоподстройки. Полоса захвата определяет диапазон первоначальных расстроек частоты сигнала, в пределах которого при включении системы обеспечивается переход к режиму слежения. Полоса удержания определяет диапазон расстроек частоты сигнала, в пределах которого при медленном изменении частоты входного сигнала режим слежения сохраняется, если система в этот режим уже была введена. Полоса удержания всегда больше полосы захвата.

Методика экспериментального определения полос захвата и удержания

Положим $\delta \omega_{\rm c} = 0$, при этом Ω =0. С увеличением отклонения $\delta \omega_{\rm c}$ расстройка Ω промежуточной частоты сигнала возрастает. Когда величина $\delta \omega_{\rm c}$ превысит значение, соответствующее точке A, система скачком перейдет в новое устойчивое состояние, изображаемое точкой Б. Подстраивающее действие системы при этом прекращается (происходит срыв слежения), и величины Ω и $\delta \omega_{\rm c}$ становятся примерно равными. Если теперь уменьшать отклонение $\delta \omega_{\rm c}$ частоты сигнала, то подстраивающее действие системы восстановится (произойдет захват), когда отклонение $\delta \omega_{\rm c}$ станет меньше значения, соответствующего точке B, и система перейдет в состояние, изображаемое точкой Γ . При отрицательных значениях $\delta \omega_{\rm c}$ в системе возникают аналогичные процессы. Далее наложим полученные зависимости друг на друга для определения полос захвата и удержания.

Лабораторное задание

1. Построить зависимость $\Omega(\Omega c)$ – расстройки Ω от отклонения Ωc для двух значений крутизны регулировочной характеристики путём графического решения нелинейного дифференциального уравнения.

S = 3		S = 2	
$\delta\omega_{c3}$	$\Omega_{\scriptscriptstyle 3}$, Гц	$\delta\omega_{c2}$	Ω_2 , Гц
10	6.48	10	8.7
60	23	60	27.14
100	33	100	41
150	46	150	58
200	58.5	200	75.67
250	72	250	94.35
300	86	300	114.38
350	100	350	136.3
400	117	400	161.2
450	134	450	191.25
500	(153; 520)	500	247
550	(176; 440; 625)	515	(255; 400; 515)
600	(210; 385; 670)	530	(291; 358; 569)
650	(273.2; 711)	550	600
700	747	600	649

Рис.3. График зависимости $\Omega(\delta\omega)$ при S=3.

Puc.4. График зависимости $\Omega(\delta\omega)$ при S=2.

2. Построить зависимость $\Omega(\Omega c)$ – расстройки Ω от отклонения Ωc для двух значений крутизны регулировочной характеристики путём имитационного моделирования

Начальная ошибка <i>, х</i>	Отклонение, Δ	
10	5	
50	25	
100	50.65	
150	77.22	
200	105.55	
250	136.72	
350	217	
450	394	
500	500	
600	625	
700	718	
800	807.5	
900	901.1	
1000	1000	
1100	1092.2	
1200	1199.6	

Puc.5. Зависимость отклонения Δ от начальной ошибки x.

3. Сопоставить результаты и сделать выводы.

Отношение сигнал/шум <i>, q</i>	Отклонение частоты, $ \delta \! \Omega $	
20	389	
30	465	
40	485	
50	500	

Рис. 6. Зависимость отклонения частоты $\delta\Omega$ от отношения сигнал/шум q при срыве слежения.

Вывод: при крутизне S=3 полоса захвата составляет 420 Гц, полоса удержания — 620 Гц. При крутизне S=2 полоса захвата составляет 515 Гц, полоса удержания — 530 Гц. При увеличении крутизны увеличивается ширина полосы удержания.

При начальной ошибке 500 Гц происходит срыв слежения.

При отношении сигнал/шум, равном меньше 20 захват на слежение невозможен. При увеличении отношения сигнал/шум увеличивается отклонение частоты, при которой происходит срыв слежения. (Фиксированное отклонение частоты, равное 500 Гц.)