

Generating Accurate Pseudo-labels in Semi-Supervised Learning and Avoiding Overconfident Predictions via Hermite Polynomial Activations

Vishnu Lokhande, Sathya N. Ravi, Songwong Tasneeyapant, Abhay Venkatesh, Vikas Singh University of Wisconsin-Madison

Hermite Polynomials

Hermite Polynomials as activations

- > The lower order terms in the Hermite polynomial series expansion of ReLU is
- used as an activation function with the coefficients as trainable parameters.

 > Optionally, a SoftSign function is added to handle large numerical values attained by the polynomials.

Gap in the Literature

Ge et al. [3] showed that for one hidden layer network, one could avoid spurious local minima by utilizing an orthogonal basis expansion for ReLUs.

Conclusion: Theoretical results not empirically investigated on regular computer vision architectures

> Nar et al. [4] showed that **smoother landscapes** enable the use of a larger range of step sizes in order for the gradient descent algorithm to converge.

Conclusion: Smoothness of the objective helps in convergence

Hermite Polynomials in ResNet 152

Test accuracy for hermite model converges in less than half the number of epochs.

Dataset CIFAR10	Number of Trainable Parameters	Best Test Accuracy	Epochs to reach 90% Test Accuracy
Hermite	58,145,574	95.48%	30
ReLU	58,144,842	94.5%	80

Hermite Polynomials in ResNet 18

Hermites have faster convergence in test accuracies over the initial epochs but ReLU has the higher test accuracy at the end of training.

Hermite Polynomials make conscious classifications

Unlike ReLU [5], when the test data is different from the training data, Hermite networks consciously make (approximately) random predictions unlike ReLU networks

Theorem: When the training data is zero mean (mean normalized) then for a K class classification problem we have,

$$||x_{test}|| > \log \frac{1}{\epsilon} \implies \frac{1}{K} - \epsilon \le \frac{e^{f_k(x)}}{\sum_{l=1}^{K} f_l(x)} \le \frac{1}{K} + \epsilon$$

The Semi-supervised Learning Setup

SaaS: Find labels with least training time

Speed as a Supervisor (SaaS)

SaaS seeks to find a set of pseudolabels that maximizes the decrease in the loss function over a small number of epochs.

Conclusion: Smoothness of the objective helps in training SaaS faster

Computational Benefits

Hermite-SaaS trains faster

 \succ Hermite-SaaS trains faster. The minimum number of epochs M_O to reach a given value of pseudolabel accuracy is **lower for Hermite-SaaS** than ReLU-SaaS.

Hermite-SaaS saves time and money

(Left) Hermite-SaaS is saving \$\$ on AWS p3.2xlarge. (Right) Hermite-SaaS is saving compute time on AWS p2.xlarge.

Lower generalization error in the semisupervised learning setup.

Hermite generates smoother landscape than ReLU

Gradients are more stable on Hermite loss landscape: lower maximum beta smoothness.

Magnitude of loss and its variation is lower for Hermites.

References

- [1] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016
- [2] S. Cicek, A. Fawzi, and S. Soatto. Saas: Speed as a supervisor for semi-supervised learning. In The European Conference on Computer Vision (ECCV), September 2018
- [3] R. Ge, J. D. Lee, and T. Ma. Learning one-hidden-layer neural networks with landscape design. arXiv:1711.00501, 2017
- [4] Nar, K. and Sastry, S. Step size matters in deep learning. In Advances in Neural Information Processing Systems, 2018
- [5] Hein, Matthias, Maksym Andriushchenko, and Julian Bitterwolf. "Why ReLU networks yield highonfidence predictions far away from the training data and how to mitigate the problem" *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.