The Sparks Foundation GRIP #JULY22

Data Science and Business Analytics Internship ¶

Task 2: Prediction Using Unsupervised Machine Learning!

By PUTTURU LIHKITHA

Problem statement

From the given 'iris' dataset, predict the optimum number of clusters and represent it visually.

```
In [1]: # Importing All Important libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
```

```
In [2]: #Loading the dataset
   iris = load_iris()
   data = pd.DataFrame(iris.data,columns=iris.feature_names)
   data.head()
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
In [3]: #To know the shape of the data
data.shape
```

Out[3]: (150, 4)

```
In [4]:
        #To know the informtion of the data
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 4 columns):
        sepal length (cm)
                             150 non-null float64
        sepal width (cm)
                             150 non-null float64
        petal length (cm)
                             150 non-null float64
        petal width (cm)
                             150 non-null float64
        dtypes: float64(4)
        memory usage: 4.8 KB
```

In [5]: data.describe() #Describing the data

Out[5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Handling the null values

Pairplot of dataframe

```
In [8]: #Pair plot:
    # It plots a pairwise relationship in the dataset, it will create a grid of axis
```

In [9]: sns.pairplot(data)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1facb2e5dc8>

In [10]: data.shape #Shape of the current data

Out[10]: (150, 4)

```
In [11]: # Here we are finding the optimaal number of clusters for k-means classification
    x = data.iloc[:, [0, 1, 2, 3]].values
    from sklearn.cluster import KMeans
    sse = []
    for i in range(1,11):
        km = KMeans(n_clusters = i , random_state = 0)
        km.fit(x)
        sse.append(km.inertia_)
    plt.plot(range(1,11), sse, color = 'green' , marker = '*')
    plt.title("value of K")
    plt.xlabel("k")
    plt.ylabel("sum of square error")
    plt.show()
```



```
In [13]: plt.scatter(x[y_means == 0,0],x[y_means == 0,1],c = 'red', s= 50 , label = 'Iris
    plt.scatter(x[y_means == 1,0], x[y_means == 1 , 1] , c = 'blue' ,s=50, label = 'Iris
    plt.scatter(x[y_means == 2,0] , x[y_means == 2,1] , c = 'green', s = 50 , label = 'Iris
    plt.scatter(model.cluster_centers_[:,0], model.cluster_centers_[:,1],marker = 's
    plt.title("prediction of iris dataset")
    plt.xlabel('petal length (cm)')
    plt.ylabel('petal width (cm)')
```

Out[13]: <matplotlib.legend.Legend at 0x1facc586488>

Here this concludes the K-Map clustering

