Generative Al

Diffusion Models; Why and How

Diffusion

Low

Entropy

Can we reverse this?

Yes! Thats how diffusion models work,

High

We can extend this to images and diffusion models

Can we reverse this?

Yes! Thats how diffusion models work,

Math behind Diffusion models

Forward Diffusion

t=0 Output from the step t becomes input in the **t+1** step

Reverse Diffusion

Loss function

Algorithm 1 Training

1: repeat

2:
$$\mathbf{x}_0 \sim q(\mathbf{x}_0)$$

3:
$$t \sim \text{Uniform}(\{1, \ldots, T\})$$

4:
$$\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: until converged

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: **for**
$$t = T, ..., 1$$
 do

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 if $t > 1$, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

5: end for

6: return x_0

Why not just use GANs