Chapter 7 and 8 Review
Changed question
1. Determine the longest wavelength of light required to remove an electron from a sample of potassium me
if the binding energy for an electron in K is 1.76×103 kJ/mol. A) 147 nm $f = \frac{3.60 \times 10^8}{4.101 \times 10^{-7}} = 7.32 \times 10^{14} \text{ Hz}$ B) 68.0 nm
R) 680 nm f= = = = = = = = = = = = = = = = = = =
C) 113 nm
D) 885 nm
D) 885 nm E) 387 nm E= (6.626×10-34)(7.32×1014)= 4.85×10-19J
2. Calculate the wavelength of an electron ($m = 9.11 \times 10\text{-}28 \text{ g}$) moving at $3.66 \times 106 \text{ m/s}$.
A 1 00 × 10.10 m
B) $5.03 \times 10-10 \mathrm{m}$ $\ell = 10 = 6.026 \times 10^{-1}$
B) $5.03 \times 10-10 \text{ m}$ C) $1.81 \times 10-10 \text{ m}$ P) $5.52 \times 10.9 \text{ m}$ $(9.11 \times 10^{-31})(3.66 \times 10^{6})$
0)334 × 10-9 III
E) 2.76 × 10-9 m 9, 11 × 10-28 g x 1 Kg = 9, 11 × 10-31
Calculate the energy of the violet light emitted by a hydrogen atom with a wavelength of 410.1 nm.
A) 4.85 × 10-19 J
B) 2.06 × 10-19 J Ohn and Questin
B) 2.06 × 10-19 J C) 1.23 × 10-19 J D) 8.13 × 10-19 J C) 8.13 × 10-19 J C) 8.13 × 10-19 J
D) 8.13 × 10-19 J B = VLO let
E) 5.27 x 10-19 J
4. How many sublevels are contained in the second shell $(n = 4)$ of a given atom?
A) 1
09 48 - 1
D) 4 4 p - 3 E) 16 4 p - 3 4 p - 3
44 - 7
5. What is the maximum number of d orbitals that are possible?
A) 1
B) 3
C) 7 D) 5 E) 9
E) 9
6. Give the ground state electron configuration for Sr.
A) [Kr]5s ² 4d ²
B) [Kr]5s ² 4d ¹⁰ 5p ²
B) [Kr]5s ² 4d ¹¹ 5p ² [Kr]5s ²
D) [Kr]5s ² 5d ¹⁰ 5p ²
A) [Kr]5s ² 4d ² B) [Kr]5s ² 4d ¹⁰ 5p ² C) [Kr]5s ² D) [Kr]5s ² 5d ¹⁰ 5p ² E) [Kr]5s ² 4d ¹⁰
7. Place the following in order of decreasing radius.
te2-,02-, F1
15 ² 10 0 ²

A)
$$F^- > O^{2-} > Te^{2-}$$

B)
$$F^- > Te^{2-} > O^{2-}$$

$$\bigcirc$$
 Te²⁻ > O²⁻ > F⁻

D)
$$Te^{2-} > F^- > O^{2-}$$

E)
$$O^{2-} > F^{-} > Te^{2-}$$

8. Give the ground state electron configuration for Se²⁻

B)
$$[Ar]4s^23d^{10}4p^2$$

(D)
$$[Ar]4s^23d^{10}4p^6$$

9. Choose the valence orbital diagram that represents the ground state of Se2-.

4516 4p 16 1V 1V

[Ar] 452 3d 10 4p6

$$\left(-2.178 \times 10^{-18} \right) \left(-.9375 \right) = 2.04 \times 10^{-18}$$

$$E = -2.178 \times 10^{-18} J \left(\frac{1}{(4)^2} - \frac{1}{(1)^2} \right)$$

- 10. Calculate the energy of an electron in hydrogen moving from the 1st energy level to the 4th energy level 11. In the above problem is energy absorbed or released.
- XXXXXXXXXXXXXXX
- 12. A photon of light have the wavelength of 4.56 X 10⁻⁷m.
- a. Calculate its energy

b. What is its frequency?

avelength of 4.56 X
$$10^{-7}$$
 m.
 $V = \frac{3.00 \times 108}{4.56 \times 10^{-7}} = \frac{6.58 \times 10^{14} \text{ Hz}}{4.56 \times 10^{-7}}$
 $E = \frac{16.676 \times 10^{-34}}{6.58 \times 10^{14}}$
 $E = \frac{4.36 \times 10^{-19} \text{ J}}{6.58 \times 10^{-19}}$