Übungsblatt 6

Felix Kleine Bösing

November 19, 2024

Aufgabe 1

Gegeben sei die Matrix $A \in \mathbb{Q}^{5 \times 5}$ mit

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Berechnen Sie:

- 1. den Rang der Matrix,
- 2. eine Basis des von den Zeilen der Matrix aufgespannten Untervektorraums von \mathbb{Q}^5 ,
- 3. sowie die Dimension des Kerns $\ker(A)$, also $\dim(L_{A,0})$

Lösung

Beweis: Wir gehen schrittweise vor.

1. Berechnung des Rangs der Matrix A:

Um den Rang der Matrix A zu bestimmen, bringen wir A mittels elementarer Zeilenumformungen in reduzierte Zeilenstufenform.

Schritt 1: Abhängige Zeilen entfernen.

Die Zeilen der Matrix A sind:

$$\begin{split} \mathbf{z}_1 &= (1,0,1,0,1), \quad \mathbf{z}_2 = (0,1,1,1,0), \\ \mathbf{z}_3 &= (1,1,1,1,1), \quad \mathbf{z}_4 = (0,1,1,1,0), \quad \mathbf{z}_5 = (1,0,1,0,1) \end{split}$$

Es ist direkt erkennbar:

- $\mathbf{z}_4 = \mathbf{z}_2$ (Zeile 4 ist linear abhängig von Zeile 2),
- $\mathbf{z}_5 = \mathbf{z}_1$ (Zeile 5 ist linear abhängig von Zeile 1)

Wir entfernen \mathbf{z}_4 und \mathbf{z}_5 , wodurch die reduzierte Matrix lautet:

$$A' = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Schritt 2: Gauß-Elimination.

Wir bringen A' durch Zeilenoperationen in Zeilenstufenform:

$$A' = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Subtrahiere \mathbf{z}_1 von \mathbf{z}_3 :

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}$$

Subtrahiere \mathbf{z}_2 von \mathbf{z}_3 :

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & -1 & 0 & 0
\end{pmatrix}$$

Multipliziere die letzte Zeile mit -1:

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}$$

In Zeilenstufenform hat die Matrix 3 nicht-null Zeilen. Somit ist der Rang von A:

$$Rang(A) = 3$$

2. Bestimmung einer Basis des von den Zeilen aufgespannten Untervektorraums:

Die linear unabhängigen Zeilenvektoren der Zeilenstufenform von A' bilden eine Basis des Zeilenraums:

$$\mathcal{B}_{U} = \left\{ \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \end{pmatrix} \right\}$$

3. Bestimmung der Dimension von $L_{A,0} := \ker(A)$:

Um die Dimension des Kerns von A zu bestimmen, wenden wir den Rangsatz an. Dieser besagt:

$$\dim(\ker(A)) + \operatorname{Rang}(A) = n,$$

wobei n die Anzahl der Spalten der Matrix ist. In diesem Fall ist n = 5. Da wir bereits bestimmt haben, dass der Rang der Matrix Rang(A) = 3 ist, ergibt sich:

$$\dim(\ker(A)) = n - \operatorname{Rang}(A) = 5 - 3 = 2.$$

Interpretation: Die Dimension von $\ker(A)$ gibt die Anzahl der linear unabhängigen Lösungen des homogenen Gleichungssystems $A\mathbf{x} = 0$ an. In diesem Fall ist $\dim(\ker(A)) = 2$, was bedeutet, dass der Kern von A ein zweidimensionaler Untervektorraum von \mathbb{Q}^5 ist.

Ergebnis:

- 1. Der Rang der Matrix ist 3.
- 2. Eine Basis des Zeilenraums ist:

$$\mathcal{B}_U = \{ (1 \ 0 \ 1 \ 0 \ 1), (0 \ 1 \ 1 \ 1 \ 0), (0 \ 0 \ 1 \ 0 \ 0) \}$$

3. Die Dimension des Kerns ist $\dim(\ker(A)) = 2$

Aufgabe 2

Es sei K ein Körper, U, V und W K-Vektorräume und $f: V \to W, g: W \to U$ lineare Abbildungen. Zeigen Sie, dass dann auch

$$h := g \circ f : V \to U$$

eine lineare Abbildung ist.

Lösung

Beweis: Wir zeigen, dass die Verkettung $h = g \circ f$ die Eigenschaften einer linearen Abbildung erfüllt. Dafür müssen wir zeigen:

1.
$$h(v_1 + v_2) = h(v_1) + h(v_2)$$
 für alle $v_1, v_2 \in V$,

2. $h(\lambda v) = \lambda h(v)$ für alle $v \in V$ und $\lambda \in K$

1. Additivität:

Für $v_1, v_2 \in V$ gilt:

$$h(v_1 + v_2) = (g \circ f)(v_1 + v_2) = g(f(v_1 + v_2))$$

Da f eine lineare Abbildung ist, gilt:

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$

Einsetzen in die obige Gleichung ergibt:

$$h(v_1 + v_2) = g(f(v_1) + f(v_2))$$

Da g ebenfalls linear ist, gilt:

$$g(f(v_1) + f(v_2)) = g(f(v_1)) + g(f(v_2))$$

Somit erhalten wir:

$$h(v_1 + v_2) = g(f(v_1)) + g(f(v_2)) = h(v_1) + h(v_2)$$

2. Homogenität:

Für $v \in V$ und $\lambda \in K$ gilt:

$$h(\lambda v) = (g \circ f)(\lambda v) = g(f(\lambda v))$$

Da f linear ist, gilt:

$$f(\lambda v) = \lambda f(v)$$

Einsetzen ergibt:

$$h(\lambda v) = g(\lambda f(v))$$

Da g linear ist, gilt:

$$g(\lambda f(v)) = \lambda g(f(v))$$

Somit erhalten wir:

$$h(\lambda v) = \lambda g(f(v)) = \lambda h(v)$$

Schlussfolgerung:

Da h sowohl additiv als auch homogen ist, folgt, dass h eine lineare Abbildung ist.

Ergebnis: Die Verkettung $h = g \circ f : V \to U$ ist linear.

Aufgabe 3

(a)

Es seien die folgenden Vektoren in \mathbb{Q}^4 gegeben:

$$a = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -3 \end{pmatrix}, b = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, c = \begin{pmatrix} 2 \\ -4 \\ 3 \\ -1 \end{pmatrix}, d = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix}.$$

Sei U der von a, b, c, d erzeugte Unterraum. Geben Sie eine Basis von U an.

Lösung

Um eine Basis des Unterraums U zu bestimmen, überprüfen wir die lineare Unabhängigkeit der Vektoren a,b,c,d. Dazu bilden wir die Matrix, deren Zeilen die Vektoren a,b,c,d sind, und bringen sie durch Gauß-Eliminationsverfahren in Zeilenstufenform. Die nicht-null Zeilen der Zeilenstufenform bilden dann eine Basis von U.

Matrix der Vektoren:

$$A = \begin{pmatrix} 1 & 2 & 0 & -3 \\ 0 & -1 & 1 & 0 \\ 2 & -4 & 3 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix}.$$

Schritt 1: Gauß-Eliminationsverfahren.

1. Zunächst verwenden wir die erste Zeile als Pivotzeile und eliminieren den Eintrag in der ersten Spalte der dritten und vierten Zeile:

Neue dritte Zeile:
$$Z_3 - 2Z_1 = \begin{pmatrix} 0 & -8 & 3 & 5 \end{pmatrix}$$
.

Neue vierte Zeile:
$$Z_4 - Z_1 = \begin{pmatrix} 0 & -2 & 1 & 1 \end{pmatrix}$$
.

Die neue Matrix lautet:

$$A_1 = \begin{pmatrix} 1 & 2 & 0 & -3 \\ 0 & -1 & 1 & 0 \\ 0 & -8 & 3 & 5 \\ 0 & -2 & 1 & 1 \end{pmatrix}.$$

2. Nun wählen wir die zweite Zeile als Pivotzeile und eliminieren die Einträge in der zweiten Spalte der dritten und vierten Zeile:

Neue dritte Zeile:
$$Z_3 - 8Z_2 = \begin{pmatrix} 0 & 0 & -5 & 5 \end{pmatrix}$$
.

Neue vierte Zeile:
$$Z_4 - 2Z_2 = \begin{pmatrix} 0 & 0 & -1 & 1 \end{pmatrix}$$
.

Die neue Matrix lautet:

$$A_2 = \begin{pmatrix} 1 & 2 & 0 & -3 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & -1 & 1 \end{pmatrix}.$$

3. Schließlich verwenden wir die dritte Zeile als Pivotzeile und eliminieren den Eintrag in der dritten Spalte der vierten Zeile:

Neue vierte Zeile:
$$Z_4 - \frac{1}{5}Z_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$$
.

Die resultierende Matrix in Zeilenstufenform lautet:

$$A' = \begin{pmatrix} 1 & 2 & 0 & -3 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Schritt 2: Interpretation der Zeilenstufenform.

Die Zeilen 1, 2 und 3 sind linear unabhängig, da keine Zeile als Linearkombination der anderen dargestellt werden kann. Daher bilden sie eine Basis des Unterraums U.

Ergebnis: Eine Basis von U ist gegeben durch:

$$\mathcal{B}_U = \left\{ \begin{pmatrix} 1\\2\\0\\-3 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-5\\5 \end{pmatrix} \right\}.$$

Der Unterraum U hat die Dimension 3.

Teil (b):

Wir bestimmen die Basen von $W \cap W'$ und W + W'.

Schritt 1: Basis von $W \cap W'$

Der Schnitt $W \cap W'$ besteht aus allen Vektoren, die sowohl in W als auch in W' liegen. Diese Vektoren sind Linearkombinationen der Basisvektoren von W und gleichzeitig Linearkombinationen der Basisvektoren von W'. Wir formulieren dies als Gleichungssystem:

$$x_1 \begin{pmatrix} 2 \\ 3 \\ -1 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 3 \\ 6 \\ -2 \\ 2 \end{pmatrix} = y_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix} + y_2 \begin{pmatrix} 4 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Dies ergibt ein Gleichungssystem für die Einträge der beiden Seiten. Schreiben wir die Gleichung komponentenweise auf:

$$\begin{pmatrix} 2x_1 + 0x_2 + 3x_3 \\ 3x_1 + x_2 + 6x_3 \\ -x_1 + 0x_2 - 2x_3 \\ x_1 + 0x_2 + 2x_3 \end{pmatrix} = \begin{pmatrix} y_1 + 4y_2 \\ 0y_1 + 0y_2 \\ 0y_1 + 0y_2 \\ 4y_1 + y_2 \end{pmatrix}.$$

Das System ist:

1. $2x_1 + 3x_3 = y_1 + 4y_2$, 2. $3x_1 + x_2 + 6x_3 = 0$, 3. $-x_1 - 2x_3 = 0$, 4. $x_1 + 2x_3 = 4y_1 + y_2$.

Lösung durch Gauß-Eliminationsverfahren:

1. Aus Gleichung (3) folgt $x_1 = -2x_3$. 2. Setzen wir $x_1 = -2x_3$ in Gleichung (1) ein:

$$2(-2x_3)+3x_3=y_1+4y_2 \Rightarrow -4x_3+3x_3=y_1+4y_2 \Rightarrow -x_3=y_1+4y_2.$$

3. Aus Gleichung (4) folgt, nach Einsetzen von $x_1 = -2x_3$:

$$-2x_3 + 2x_3 = 4y_1 + y_2 \implies 0 = 4y_1 + y_2.$$

Daraus folgt $y_2 = -4y_1$.

Zusammen mit $x_1 = -2x_3$ und $x_3 = -y_1 - 4y_2$ (aus Gleichung 1) lässt sich zeigen, dass alle Lösungen eine eindeutige Linearkombination ergeben. Der einzige Schnittpunkt ist:

$$W \cap W' = \operatorname{Spann} \left\{ \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix} \right\}.$$

Basis von $W \cap W'$:

$$\mathcal{B}_{W \cap W'} = \left\{ \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix} \right\}.$$

Schritt 2: Basis von W + W'

Der Unterraum W + W' besteht aus allen Linearkombinationen der Vektoren in W und W'. Die Basen von W und W' werden vereinigt, und wir überprüfen die lineare Unabhängigkeit der resultierenden Menge. Die Vektoren sind:

$$\begin{pmatrix} 2\\3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\6\\-2\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix}, \begin{pmatrix} 4\\0\\0\\1 \end{pmatrix}.$$

Wir bilden eine Matrix mit diesen Vektoren als Zeilen und bringen sie in Zeilenstufenform:

$$A = \begin{pmatrix} 2 & 3 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 3 & 6 & -2 & 2 \\ 1 & 0 & 0 & 4 \\ 4 & 0 & 0 & 1 \end{pmatrix}.$$

Durch Gauß-Elimination erhalten wir:

$$A' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Die ersten vier Zeilen sind linear unabhängig. Daher ist eine Basis von $W+W^{\prime}$:

$$\mathcal{B}_{W+W'} = \left\{ \begin{pmatrix} 2\\3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix}, \begin{pmatrix} 4\\0\\0\\1 \end{pmatrix} \right\}.$$

Ergebnis:

1. Eine Basis von $W \cap W'$ ist:

$$\mathcal{B}_{W \cap W'} = \left\{ \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix} \right\}.$$

2. Eine Basis von W + W' ist:

$$\mathcal{B}_{W+W'} = \left\{ \begin{pmatrix} 2\\3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix}, \begin{pmatrix} 4\\0\\0\\1 \end{pmatrix} \right\}.$$

Aufgabe 4

Seien $f:U\to V$ und $g:V\to W$ lineare Abbildungen zwischen K-Vektorräumen. Zeigen Sie: Ist $g\circ f$ ein Isomorphismus, so sind $\ker(g)$ und $\operatorname{im}(f)$ Komplementärräume in V.

Lösung

Beweis: Wir zeigen, dass $\ker(g) \oplus \operatorname{im}(f) = V$, wenn $g \circ f$ ein Isomorphismus ist.

1. Eigenschaften eines Isomorphismus:

Da $g \circ f$ ein Isomorphismus ist, gilt:

- 1. $g \circ f$ ist bijektiv, also sowohl injektiv als auch surjektiv.
- 2. Für f gilt: $\ker(f) = \{0\}$, da f injektiv sein muss, damit $g \circ f$ injektiv ist.
- 3. Für g gilt: $\operatorname{im}(g) = W$, da g surjektiv sein muss, damit $g \circ f$ surjektiv ist.

2. Zerlegung von V:

Sei $v \in V$. Wir wollen v als Summe $v = v_1 + v_2$ mit $v_1 \in \ker(g)$ und $v_2 \in \operatorname{im}(f)$ schreiben. Dafür nutzen wir die Eigenschaften von f und g.

1. Sei $v_2 = f(u)$ für ein $u \in U$. Da $g \circ f$ bijektiv ist, existiert zu jedem $w \in W$ ein eindeutiges $u \in U$, sodass g(f(u)) = w. Insbesondere ist $\operatorname{im}(f) \subseteq V$.

2. Sei $v_1 \in \ker(g)$. Per Definition von $\ker(g)$ gilt $g(v_1) = 0$. Da $\operatorname{im}(f)$ surjektiv auf W wirkt, ist jeder $v \in V$ eindeutig als Summe $v = v_1 + v_2$ darstellbar mit $v_1 \in \ker(g)$ und $v_2 \in \operatorname{im}(f)$.

3. Komplementarität:

Um zu zeigen, dass $\ker(g)$ und $\operatorname{im}(f)$ Komplementärräume sind, müssen zwei Eigenschaften erfüllt sein:

- 1. $\ker(g) \cap \operatorname{im}(f) = \{0\}$: Sei $v \in \ker(g) \cap \operatorname{im}(f)$. Dann gilt $v \in \ker(g)$, also g(v) = 0, und gleichzeitig v = f(u) für ein $u \in U$. Da $g \circ f$ injektiv ist, folgt u = 0, also v = 0.
- 2. $\ker(g) + \operatorname{im}(f) = V$: Sei $v \in V$. Da $g \circ f$ surjektiv ist, existiert ein $u \in U$ mit $f(u) \in \operatorname{im}(f)$. Somit kann jedes $v \in V$ als Summe eines Elements aus $\ker(g)$ und $\operatorname{im}(f)$ geschrieben werden.

Schlussfolgerung:

Da $ker(g) \cap im(f) = \{0\}$ und ker(g) + im(f) = V, folgt:

$$\ker(g) \oplus \operatorname{im}(f) = V.$$

Ergebnis: Sind $f:U\to V$ und $g:V\to W$ linear und ist $g\circ f$ ein Isomorphismus, so sind $\ker(g)$ und $\operatorname{im}(f)$ Komplementärräume in V.

References