Correction

Partie I

- f est bien définie sur \mathbb{R}^{+*} et est \mathcal{C}^{∞} par opérations sur les fonctions \mathcal{C}^{∞} . 1.a
- $f'(x) = \frac{(1+x^2)-2x^2 \ln x}{x(1+x^2)^2}$ du signe de g(x) car $x(1+x^2)^2 > 0$. 1.b
- g est C^{∞} et $g'(x) = -4x \ln x$ du signe de $-\ln x$. 1.c
 - g est strictement croissante sur]0,1[avec $\lim_{\Omega} g = 1$ et g(1) = 2.
 - g est strictement décroissante sur $[1,+\infty[$ avec g(1)=2 et $\lim_{n\to\infty}g=-\infty$.

Par suite l'équation g(x) = 0 n'a pas de solution dans [0,1] et en admet une et une seule m dans $[1,+\infty[$.

f est croissante sur [0,m] et décroissante sur $[m,+\infty[$. 2.a

 $\lim f = -\infty$ et $\lim f = 0$ de manière immédiate.

$$f(m) = \frac{\ln m}{1 + m^2} = \frac{\ln m}{2m^2 \ln m} = \frac{1}{2m^2} \text{ car } 1 + m^2 - 2m^2 \ln m = 0.$$

A la calculatrice : g(1,89) > 0 et g(1,90) < 0 donc m = 1,89 à 10^{-2} près. 2.b

Partie II

Si $x \ge 1$ alors F(x) est l'intégrale d'une fonction positive avec des bornes en ordre croissante, donc 1.a F(x) > 0.

Si $x \le 1$ alors F(x) est l'intégrale d'une fonction négative avec des bornes en ordre décroissante, donc

Finalement F est une fonction positive.

F est la primitive de f qui s'annule en 1. 1.b

F est donc dérivable et donc continue sur \mathbb{R}^{+*}

- $F'(x) = f(x) = \frac{\ln x}{1 + x^2}$. 1.c
- Via le changement de variable : u = 1/t : 2.

$$F(x) = \int_{1}^{x} \frac{\ln t}{1+t^{2}} dt = \int_{1}^{1/x} \frac{-\ln u}{1+1/u^{2}} \frac{-du}{u^{2}} = \int_{1}^{1/x} \frac{\ln u}{1+u^{2}} du = F(1/x).$$

Quand $x \to 0$, $\varphi(x) = \frac{\arctan x - \arctan 0}{x - 0} \to (\arctan)'(0) = 1$. φ est prolongeable par continuité en 0 en posant $\varphi(0) = 1$. 3.a

Par intégration par parties : $F(x) = \left[\ln t \arctan t\right]_1^x - \int_1^x \frac{\arctan t}{t} dt = \ln x \arctan x - \int_1^x \varphi(t) dt$. 3.b

3.c Quand
$$x \to 0$$
, $\ln x \arctan x \sim x \ln x \to 0$ et $\int_1^x \varphi(t) dt \to \int_1^0 \varphi(t) dt$ car φ est continue sur $[0,1]$. Ainsi $F(x) \to \int_0^1 \varphi(t) dt = F(0)$. Quand $x \to +\infty$, $F(x) = F(1/x) \to F(0)$. F tend vers $F(0)$ en $+\infty$.

3.d
$$F$$
 est continue en 0 et $F'(x) = \frac{\ln x}{1 + x^2} \xrightarrow[x \to 0]{} - \infty$.
 F n'est pas dérivable en 0 et Γ présente une tangente verticale en 0 .

4.a
$$I_k(x) = \int_1^x t^k \ln t \, dt = \left[\frac{t^{k+1} \ln t}{k+1} \right]^x - \int_1^x \frac{t^k}{(k+1)} dt = \frac{x^{k+1} \ln x}{k+1} - \frac{x^{k+1} - 1}{(k+1)^2}.$$

4.b Par récurrence ou
$$\sum_{k=0}^{n} (-1)^k x^{2k} = \sum_{k=0}^{n} (-x^2)^k = \frac{1 - (-x^2)^{n+1}}{1 + x^2}.$$

$$\begin{aligned} 4.c & \left| F(x) - \sum_{k=0}^{n} (-1)^{k} I_{2k}(x) \right| = \left| \int_{1}^{x} \ln t \left(\frac{1}{1+t^{2}} - \sum_{k=0}^{n} (-1)^{k} t^{2k} \right) dt \right| = \left| \int_{1}^{x} \ln t \frac{(-1)^{n+1} t^{2n+2}}{1+t^{2}} dt \right| \\ & \text{donc} \left| F(x) - \sum_{k=0}^{n} (-1)^{k} I_{2k}(x) \right| \le - \int_{x}^{1} (-\ln t) \frac{t^{2n+2}}{1+t^{2}} dt \le - \int_{x}^{1} (-\ln t) t^{2n+2} dt = I_{2n+2}(x) \end{aligned}$$

4.d Quand
$$x \to 0$$
: $F(x) \to F(0)$, $\sum_{k=0}^{n} (-1)^k I_{2k}(x) \to \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)^2} = u_n$ et $I_{2n+2}(x) \to \frac{1}{(2n+3)^2}$ et l'inégalité précédente donne à la limite : $|F(0) - u_n| \le \frac{1}{(2n+3)^2}$.

4.e Pour
$$n = 6$$
 on a $\frac{1}{(2n+3)^2} \le 0,5.10^{-2}$.
A la calculatrice $u_6 = 0,92$ à $0,5.10^{-2}$ près.
Donc $F(0) = 0,92$ à 10^{-2} près.

5. Sur]0,m], f=F' est croissante et donc F convexe. Sur $[m,+\infty[$, f=F' est décroissante et donc F concave. Le point d'inflexion est en m.

