Testability Measure

- Introduction
- SCOAP
 - Combinational
 - Sequential
- COP
- High-level testability measures

Sequential SCOAP Measures

- Sequential controllability: SC⁰(N), SC¹(N)
 - Minimum number of FF assignments (number of clock cycles) required to control 0 or 1 on node N
 - smaller number means easier to control
- Sequential observability: SO(N)
 - Minimum number of FF assignments required to propagate logical value on node N to a primary output
- NOTE: assume no scan
 - Can only control PI, observe PO
 - Can NOT control FF, can NOT observe FF

Sequential SCOAP Measures # of Clock Cycles Needed

SC⁰(N) and SC¹(N)

	SC ⁰ (y)	SC ¹ (y)
Primary inputs	0 (not 1)	0
X_1 X_2 Y	min[SC $^0(x_1)$,SC $^0(x_2)$] +	$SC^1(x_1) + SC^1(x_2)$
X_1 X_2 Y	$SC^0(x_1) + SC^0(x_2)$	min[SC $^1(x_1)$,SC $^1(x_2)$]
X_1 X_2 Y	min[SC $^{0}(x_{1})$ + SC $^{0}(x_{2})$, SC $^{1}(x_{1})$ + SC $^{1}(x_{2})$]	min[SC $^{0}(x_{1})$ + SC $^{1}(x_{2})$, SC $^{1}(x_{1})$ + SC $^{0}(x_{2})$]
x — y	SC ¹ (x)	SC ⁰ (x)
$x_1 - y_2$	$SC^0(y_1) = SC^0(y_2) = SC^0(x_1)$	$SC^{1}(y_{1}) = SC^{1}(y_{2}) = SC^{1}(x_{1})$

SO(N)

	SO(x ₁)
Primary outputs	0
X_1 X_2 Y	$SO(y) + SC^1(x_2)$
X_1 X_2 Y	$SO(y) + SC^0(x_2)$
X_1 X_2 Y	SO(y) + min[SC0(x2),SC1(x2)]
x ₁ — y	SO(y)
$x_1 - y_2$	min[SO(y_1),SO(y_2)]

Flip-Flop (Controllability)

Positive edge triggered, asynchronous reset

$$CC^{1}(Q) = CC^{1}(D) + CC^{1}(CLK) + CC^{0}(CLK) + CC^{0}(R)$$

 $SC^{1}(Q) = SC^{1}(D) + SC^{1}(CLK) + SC^{0}(CLK) + SC^{0}(R) + 1$

$$CC^{0}(Q) = min[CC^{1}(R),$$

 $CC^{0}(D) + CC^{1}(CLK) + CC^{0}(CLK) + CC^{0}(R)]$
 $SC^{0}(Q) = min[SC^{1}(R),$
 $SC^{0}(D) + SC^{1}(CLK) + SC^{0}(CLK) + SC^{0}(R)] + 1$

Flip-Flop (Observability)

$$CO(D) = CO(Q) + CC1(CLK) + CC0(CLK) + CC0(R)$$

$$SO(D) = SO(Q) + SC1(CLK) + SC0(CLK) + SC0(R) + 1$$

Seq. SCOAP Computation Alg.

- Computation of SC, SO is similar to CC, CO
 - but require iterations for controllability to converge

Controllability:

- 1. For all Pl's, set $CC^0 = CC^1 = 1$ and $SC^0 = SC^1 = 0$
- 2. For all other nodes, set $CC^0 = CC^1 = \infty$ and $SC^0 = SC^1 = \infty$
- Propagate controllability from Pl's to PO's Iterate until numbers stabilize.

Observability:

- 1. For all PO's, set CO = SO = 0
- 2. For all other nodes, set CO = SO = ∞
- 3. Propagate observability from PO's to PI's (note: no iteration needed for CO/SO)

Controllability Computation - 1

Quiz

Q: Given numbers from the 1st iteration, please continue to calculate CC⁰/ CC¹, SC⁰/SC¹ in 2nd iteration.

Controllability Computation - 2

Controllability Computation - 3

Quiz

Q1: Generate a sequence of test patterns to control C to 0?

Q2: Generate a sequence of test patterns to control C to 1? (assume no scan. can only assign PI)

What Does SC¹=2 Mean?

- Control C to zero is easier. Assign B=1 and pulse one clock
- Control C to one is more difficult. Assign B=1 and B=0. Two clocks

Obervability Computation

Quiz

Q1: Generate a sequence of test patterns to observe A?

Q2: Generate a sequence of test patterns to observe *B*?

(assume no scan. can only assign PI)

Summary

- Sequential SCOAP
 - ◆ SC⁰ SC¹ = 0 and 1 controllability; SO = observability
 - Measure FF assignments (or clock cycles) needed
 - Smaller means easier
 - No scan is allowed
- Requires iterations to compute SC

FFT

When does the algorithm fail to converge?

Computing Sequential SCOAP

- Computation of SC⁰(N), SC¹(N), and SO(N) is similar to
 - CC⁰(N), CC¹(N), and CO(N).
- Differences are
 - Increments sequential SCOAP by 1 only when signals propagate from FF inputs to Q, or backwards
 - 2 May require iterations for controllability to converge