Transformações Lineares

Definição

Sejam V e W dois espaços vetoriais. Uma transformação linear (aplicação linear) é uma função de V em W, $F:V \rightarrow W$, que satisfaz as seguintes condições:

i) Quaisquer que sejam u e v em V,

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$$

ii) Quaisquer que sejam $k \in \mathbb{R}$ e $\mathbf{v} \in V$, $F(k\mathbf{v}) = kF(\mathbf{v})$

Exemplos

1)
$$V = W = \mathbf{R} \in Q : \mathbf{R} \to \mathbf{R}$$

 $x \mapsto 0,2x$

2) $V = \mathbf{R}$ e $W = \mathbf{R}$ $F: \mathbf{R} \to \mathbf{R}$ definida por $\mathbf{u} \mapsto \alpha \mathbf{u}$ ou $F(\mathbf{u}) = \alpha \mathbf{u}$

3)
$$F: \mathbb{R} \to \mathbb{R}$$

 $\mathbf{u} \to \mathbf{u}^2$ ou $F(\mathbf{u}) = \mathbf{u}^2$.

4)
$$V = \mathbb{R}^2$$
 e $W = \mathbb{R}^3$
 $F: \mathbb{R}^2 \to \mathbb{R}^3$
 $(x, y) \mapsto (2x, 0, x + y)$ ou $F(x, y) = (2x, 0, x + y)$.

5) Sejam
$$V = W = P_n$$
 (polinômios de grau $\leq n$) e

$$D: P_n \to P_n$$
, a aplicação derivada $f \mapsto f'$

6)
$$V = \mathbb{R}^n$$
 e $W = \mathbb{R}^m$
Seja A uma matriz $m \times n$. Definimos $L_A : \mathbb{R}^n \to \mathbb{R}^m$ por $\mathbf{v} \mapsto A \cdot \mathbf{v}$

Transformações do Plano no Plano

Expansão ou Contração

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

 $\mathbf{v} \mapsto \alpha \cdot \mathbf{v}$

Por exemplo: $T: \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{v}\mapsto 2\mathbf{v}$$
, ou $T(x, y)=2(x, y)$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow 2 \begin{bmatrix} x \\ y \end{bmatrix} \text{ ou } \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Reflexão em torno do eixo x

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x \\ -y \end{bmatrix} \text{ ou } \begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Reflexão em torno da origem

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $\mathbf{v} \mapsto -\mathbf{v}$, ou seja, $T(x, y) = (-x, -y)$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotação de um Ângulo θ

 $R_{\theta}(x, y) = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)$ ou na forma coluna,

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x \cos \theta - y \sin \theta \\ y \cos \theta + x \sin \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Consideremos o caso particular onde $\theta = \frac{\pi}{2}$. Neste caso, $\cos \theta = 0$ e sen $\theta = 1$.

Então,
$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -y \\ x \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Cisalhamento Horizontal

$$T(x, y) = (x + \alpha y, y), \alpha \in \mathbb{R}$$

Por exemplo: T(x, y) = (x + 2y, y)

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x + 2y \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Translação

$$T(x, y) = (x + a, y + b)$$

ou
$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

Esta é uma translação do plano segundo o vetor (a, b) e, a menos que a = b = 0, T não é linear.

Conceitos e Teoremas

Teorema

Dados dois espaços vetoriais reais V e W e uma base de V, $\{v_1, ..., v_n\}$, sejam w_1 ..., w_n elementos arbitrários de W. Então existe uma única aplicação linear $T: V \to W$ tal que $T(v_1) = w_1$, ..., $T(v_n) = w_n$. Esta aplicação é dada por:

se
$$v = a_1 v_1 + ... + a_n v_n$$
,

$$T(\mathbf{v}) = a_1 T(\mathbf{v}_1) + \dots + a_n T(\mathbf{v}_n)$$
$$= a_1 \mathbf{w}_1 + \dots + a_n \mathbf{w}_n$$

Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 0) = (2, -1, 0) e T(0, 1) = (0, 0, 1)?

Exemplo 2

Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?

Definição

Seja $T: V \to W$ uma aplicação linear. A imagem de T é o conjunto dos vetores $\mathbf{w} \in W$ tais que existe um vetor $\mathbf{v} \in V$, que satisfaz $T(\mathbf{v}) = \mathbf{w}$. Ou seja

$$Im(T) = \{ \mathbf{w} \in W; \ T(\mathbf{v}) = \mathbf{w} \ \text{para algum} \ \mathbf{v} \in V \}$$

Definição

Seja $T: V \to W$ uma transformação linear. O conjunto de todos os vetores $v \in V$ tais que T(v) = 0 é chamado núcleo de T, sendo denotado por ker(T). Isto é

$$ker(T) = \{\mathbf{v} \in V; T(\mathbf{v}) = \mathbf{0}\}$$

Exemplo 1

$$T: \mathbb{R}^2 \to \mathbb{R}$$

 $(x, y) \to x + y$

Neste caso temos $ker T = \{(x, y) \in \mathbb{R}^2; x + y = 0\}$, isto é, ker T é a reta y = -x. Podemos dizer ainda que $ker T = \{(x, -x); x \in \mathbb{R}\} = \{x(1, -1); x \in \mathbb{R}\} = \{(1, -1)\}$. $Im T = \mathbb{R}$, pois dado $w \in \mathbb{R}$, w = T(w, 0).

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x, 2y, 0).

Definição

Dada uma aplicação (ou função) $T: V \rightarrow W$, diremos que T é injetora se dados $u \in V$, $v \in V$ com T(u) = T(v) tivermos u = v. Ou equivalentemente, T é injetora se dados u, $v \in V$ com $u \neq v$, então $T(u) \neq T(v)$.

Definição

A aplicação $T: V \to W$ será sobrejetora se a imagem de T coincidir com W, ou seja T(V) = W.

Teorema

Seja $T: V \to W$, uma aplicação linear. Então $ker(T) = \{0\}$, se e somente se T é injetora.

Teorema

Seja $F:V \to W$ uma aplicação linear. Então dim $\ker T + \dim \operatorname{Im} T = \dim V$.

Corolário

Se dim $V = \dim W$, então T linear é injetora se e somente se T é sobrejetora.

Corolário

Seja $T: V \to W$ uma aplicação linear injetora. Se dim $V = \dim W$, então T leva base em base.

Quando uma transformação linear $T: V \to W$ for injetora e sobrejetora, ao mesmo tempo, dá-se o nome de isomorfismo. Quando há uma tal transformação entre dois espaços vetoriais dizemos que estes são isomorfos. Sob o ponto de vista de Álgebra Linear, espaços vetoriais isomorfos são, por assim dizer, idênticos. Observe que devido à proposição 5.3.9 espaços isomorfos devem ter a mesma dimensão. Portanto, pelo corolário 5.3.11, um isomorfismo leva base em base. Além disso, um isomorfismo $T: V \to W$ tem uma aplicação inversa $T^{-1}: W \to V$ que é linear, como você poderia provar, e também é um isomorfismo.

Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x - 2y, z, x + y). Vamos mostrar que T é um isomorfismo, e calcular sua inversa T^{-1} .

Aplicações Lineares e Matrizes

De um modo geral, fixadas as bases $\beta = \{v_1, ..., v_n\}$ e $\beta' = \{w_1, ..., w_m\}$, à matriz

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

podemos associar

$$T_{\mathbf{A}}: \mathbf{R}^n \to \mathbf{R}^m$$
.
 $\mathbf{v} \mapsto T_{\mathbf{A}}(\mathbf{v})$ como:

Seja
$$\mathbf{X} = [\mathbf{v}]_{\beta} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbf{A} \cdot \mathbf{X} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Então, $T_{\mathbf{A}}(\mathbf{v}) = y_1 \mathbf{w}_1 + ... + y_m \mathbf{w}_m$ onde $y_i = \mathbf{A}_i \cdot \mathbf{X} \in \mathbf{A}_i \in \mathbf{a}$ i-ésima linha de \mathbf{A} .

Em geral, dada uma matriz $A_{m \times n}$, ela é encarada como uma aplicação linear $T_A: \mathbb{R}^n \to \mathbb{R}^m$ em relação às bases canônicas de \mathbb{R}^n e \mathbb{R}^m .

Exemplo 1

$$A = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{bmatrix}, \beta = \{(1, 0), (0, 1)\} e$$

 $\beta' = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$

 $T_A: \mathbb{R}^3 \to \mathbb{R}^2$. Encontremos esta transformação linear.

Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x, y, z) = (2x + y - z, 3x - 2y + 4z). Sejam $\beta = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ e $\beta' = \{(1, 3), (1, 4)\}$. Procuremos $[T]_{\beta'}^{\beta}$.

Exemplo 3

Seja T a transformação linear do Exemplo 1 e sejam $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ e $\beta' = \{(1, 0), (0, 1)\}$. Calculemos $[T]_{\beta'}^{\beta}$.

Exemplo 4

Dadas as bases $\beta = \{(1, 1), (0, 1)\}$ de \mathbb{R}^2 e $\beta' = \{(0, 3, 0), (-1, 0, 0), (0, 1, 1)\}$ de \mathbb{R}^3 , encontremos a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ cuja matriz é

$$\begin{bmatrix} T \mathbf{I}_{\beta'}^{\beta} = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{bmatrix}$$

Teorema

Sejam V e W espaços vetoriais, α base de V, β base de W e $T:V \rightarrow W$ uma aplicação linear. Então, para todo $v \in V$ vale:

$$[T(\mathbf{v})]_{\beta} = [T]_{\beta}^{\alpha} \cdot [\mathbf{v}]_{\alpha},$$

$$\alpha$$

$$\nu \xrightarrow{\tau} w$$

$$\bullet \tau_{\mathbf{v}}$$

Exemplo

Seja a transformação linear T:R² → R³ dada por

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

onde $\alpha = \{(1, 0), (0, 1)\}$ é base de \mathbb{R}^2 , $\beta = \{(1, 0, 1), (-2, 0, 1), (0, 1, 0)\}$ é base de \mathbb{R}^3 . Queremos saber qual é a imagem do vetor $\mathbf{v} = (2, -3)$ pela aplicação T.

Teorema

Seja $T: V \rightarrow W$ uma aplicação linear e α e β bases de V e W respectivamente. Então

$$\dim Im(T) = \text{posto de } [T]^{\alpha}_{\beta}$$

 $\dim ker(T) = \text{nulidade de } [T]^{\alpha}_{\beta}$
 $= \text{número de colunas - posto de } [T]^{\alpha}_{\beta}.$

Teorema

Sejam $T_1: V \to W$ e $T_2: W \to U$ transformações lineares e α , β , γ bases de V, W e U respectivamente. Então a composta de T_1 com T_2 , $T_2 \circ T_1: V \to U$, é linear e

$$[T_2 \circ T_1]_{\gamma}^{\alpha} = [T_2]_{\gamma}^{\beta} \cdot [T_1]_{\beta}^{\alpha}$$

Consideremos uma expansão do plano \mathbb{R}^2 dada por $T_1(x, y) = 2(x, y)$, e um cisalhamento dado por $T_2(x, y) = (x + 2y, y)$. Ao efetuarmos primeiro a expansão e depois o cisalhamento, teremos a sequência

Exemplo 2

Sejam as transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ cujas matrizes são

$$\begin{bmatrix} T_1 \end{bmatrix}_{\beta}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \quad \mathbf{e} \quad \begin{bmatrix} T_2 \end{bmatrix}_{\gamma}^{\beta} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

em relação às bases $\alpha = \{(1, 0), (0, 2)\}, \beta = \{(\frac{1}{3}, 0, -3), (1, 1, 15), (2, 0, 5)\}$ e $\gamma = \{(2, 0), (1, 1)\}$. Queremos encontrar a transformação linear composta $T_2 \circ T_1: \mathbb{R}^2 \to \mathbb{R}^2$, ou seja, precisamos achar $(T_2 \circ T_1)(x, y)$.

Corolário

Se $T: V \to W$ é uma transformação linear inversível (T é um isomorfismo) e α e β são as bases de V e W, então $T^{-1}: W \to V$ é um operador linear e

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$

Corolário

Seja $T: V \to W$ uma transformação linear e α e β bases de $V \in W$. Então T é inversível se e somente se det $|T|^{\alpha}_{\beta} \neq 0$.

Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por

$$[T]^{\frac{5}{2}} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

onde ξ é a base canônica de R2.

Corolário

Como caso particular da situação anterior temos: Se $T: V \to V$ é uma transformação linear e α e β são bases de V, então

Exemplo

Seja a transformação linear T: R³ → R³ cuja matriz em relação à base canônica ξ é

$$[T]_{\xi}^{\xi} = \begin{bmatrix} -2 & 4 & -4 \\ 1 & -2 & 1 \\ 3 & -6 & 5 \end{bmatrix}$$

Calculemos a matriz desta transformação em relação à base $\beta = \{(0, 1, 1), (-1, 0, 1), (1, 1, 1)\}.$