1 Definitions (15 marks total)

(a) [5 Marks] Give the second-order Taylor series expansion of a grayscale image I in the neighbourhood of pixel (x_0, y_0) .

(b) [5 Marks] Give the definition of the Laplacian of image I at pixel (x, y) using standard calculus notation.

(c) [5 Marks] Define the principal curvatures at an image point I(x,y). You may assume that (x,y) is an intensity extremum.

2 Gradient-based Image Reconstruction (15 marks total)

(a) [2 Marks] Suppose you are given an $N \times N$ grayscale image I. You are asked to compute ∇I using a first-order least-squares fit with a 1D, three-pixel sliding window. Mark on the grid below the pixels where it is possible to compute the gradient this way. Explain in a sentence.

(b) [10 Marks] After computing ∇I , you somehow managed to erase the original image accidentally. Now you want to use ∇I to get the original image back. Formulate this computation as the solution of a linear system of equations of the form $\mathbf{A}\mathbf{x} = \mathbf{b}$. *Hint:* you should specify the dimensions of \mathbf{A} , \mathbf{x} and \mathbf{b} and the contents of at least one row of \mathbf{A} and one element of \mathbf{b} .

4

(c) [3 Marks] Can I be computed from ∇I ? Using your answer in (b), briefly explain why or why not. No

marks will be awarded without an explanation.

3 Weighted Least Squares Estimation (20 marks total)

Consider the 1D image shown below, whose 41 pixels have intensities I_0, \ldots, I_{40} , respectively. We want to estimate the image intensity, I(x), and its first derivative, $\frac{d}{dx}I(x)$, at pixel x using the sliding window algorithm with a first-order, weighted least squares fit. Assume the window has size 2*2+1 pixels and the weights are given by a function $\Omega(q)$, with $q \in [-2, 2]$.

(a) [5 Marks] Using matrix notation, show the linear system that must be solved to compute the fit for pixel x = 20. Be sure to indicate the dimensions and contents of each matrix.

(b) Now suppose that the weight function is a Gaussian

$$\Omega(q) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{q^2}{2\sigma^2}} ,$$

with $\sigma=1$ (plotted below). Observe that the function is maximized at q=0 and is almost zero when q is outside the range $[-2\sigma,2\sigma]$.

(b1) **[5 Marks]** Plot the estimated intensity I(x) on the graph below for $x \in [5,35]$ and indicate the x values where important transitions in the shape of I(x) will occur. For reference, the original pixel intensities are shown as well.

(b2) **[5 Marks]** Plot the estimated intensity derivative $\frac{d}{dx}I(x)$ for $x \in [5,35]$. Indicate the x values where important transitions in the shape of $\frac{d}{dx}I(x)$ will occur and indicate the (approximate) value of $\frac{d}{dx}I(x)$ at those locations. For reference, the original pixel intensities are shown as well.

(c) [5 Marks] Finally, suppose that we do our estimation with a Gaussian weight function that *changes* from window to window and depends on pixel *intensities* within the window. Specifically, for the window centered at pixel x, we use the weight function

$$\Omega_x(q) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\langle I(x+q)-I(x)\rangle^2}{2\sigma^2}},$$

with $\sigma = 10$ (plotted below).

Plot of the Gaussian weight function $\Omega_{\mbox{\tiny \sc v}}(\mbox{\scriptsize q})$ with $\sigma \mbox{\scriptsize =} 10$

Plot the estimated intensity I(x) on the graph below for $x \in [5, 35]$ and indicate the x values where important transitions in the shape of I(x) will occur. For reference, the original pixel intensities are shown as well.

Midterm Test

February 24th, 2010

CSC320H1S: Introduction to Visual Computing

Duration: 50 minutes

No aids allowed

There are 8 pages total (including this page)

Given name	e(s):	
Family nar	ne:	
Student nun	nber:	
Question	Marks	
1 _	/15	
2 _	/15	
3 _		
Total	/50	