Basics

• General p-norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$

• Taylor: $f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$ • $\frac{\partial}{\partial x}(\boldsymbol{b}^{\top} A \boldsymbol{x}) = A^{\top} \boldsymbol{b}$ • $\frac{\partial}{\partial X}(\boldsymbol{c}^{\top} X \boldsymbol{b}) = c \boldsymbol{b}^{\top}$

 $\circ f(\mathbf{x}) \approx f(\mathbf{a}) + \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{a}} - \frac{1}{2} (\mathbf{x} - \mathbf{a})^{\top} \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \right) \Big|_{\mathbf{a}} (\mathbf{x} - \mathbf{a})$

• Power series of exp.: $\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}$

• Entropy: $H(X) \equiv H(p_X) = \mathbb{E}_X[-\log \mathbb{P}(X=x)]$

 $\circ H(X \mid Y) = \sum_{v} \mathbb{P}(Y = y) H(X \mid Y = y) \le H(X)$

 $\circ H(X,Y) = H(X) + H(Y | X)$

 $\circ \ H(X \mid g(X)) \ge 0 \quad \circ H(g(X) \mid X) = 0$

 $\circ H(5X) \begin{cases} = H(X) & \text{discrete} \\ > H(X) & \text{continuous} \end{cases}$

• MI: $I(X; Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z)$ (symmetric)

 $o I(X; Y) = D_{KL}(p(x, y) || p(x)p(y)) \ge 0$

 $\circ I(X_1,...,X_n;Z) = \sum_{i=1}^n I(X_i;Z \mid X_1,...,X_{i-1})$

Markov chain: $I(X_1; X_2, X_3,...) = I(X_1; X_2)$

 $\circ I(X,Y;Z) = I(X;Z) + I(Y;Z \mid X)$

• KL-divergence: $D_{KL}(p \parallel q) = \sum_{x} p(x) \log \left(\frac{p(x)}{q(x)} \right) \ge 0$

• Cauchy-Schwarz: $|\mathbb{E}[X,Y]|^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2]$

• $1-z \leq \exp(-z)$

• Jensen, f(X) convex: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

1.1 Probability / Statistics

• Gaussian: $\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$ $\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$

 $\circ X \sim \mathcal{N}(\mu, \Sigma), Y = A + BX \Longrightarrow Y \sim \mathcal{N}(A + B\mu, B\Sigma B^{\top})$

• Binomial: $f(k, n; p) = \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$

• $\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ $\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathbb{C}\text{ov}(X,Y)$

• $\mathbb{C}\text{ov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$ $= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

 $\mathbb{C}\text{ov}(aX, bY) = ab\mathbb{C}\text{ov}(X, Y)$

1.2 Calculus

• Partial: $\int uv' dx = uv - \int u'v dx$ • $\frac{\partial}{\partial x} \frac{g}{h} = \frac{g'h}{h^2} - \frac{gh'}{h^2}$

• $\frac{\partial}{\partial x}(||x-b||_2) = \frac{x-b}{||x-b||_2}$ • $\frac{d}{dx}|x| = \frac{x}{|x|}$

• $\frac{\partial}{\partial X} \log |X| = X^{-\top}$ • $|X^{-1}| = |X|^{-1}$

• $\frac{\partial}{\partial x}(b^{\top}x) = \frac{\partial}{\partial x}(x^{\top}b) = b$

• $\frac{\partial}{\partial X}(c^{\top}X^{\top}b) = bc^{\top}$ • $\frac{\partial}{\partial x}(x^{\top}x) = 2x$

• $\frac{\partial}{\partial x}(x^{\top}Ax) = (A^{\top} + A)x \stackrel{A \text{ sym.}}{=} 2Ax$

• $\frac{\partial}{\partial X} Tr(X^{\top} A) = A$ • Trace trick: $x^{\top} Ax = ...$ $\dots \stackrel{\text{inn. prod.}}{=} Tr(\mathbf{x}^{\top} A \mathbf{x}) \stackrel{\text{cycl. permut.}}{=} Tr(\mathbf{x} \mathbf{x}^{\top} A) = Tr(A \mathbf{x} \mathbf{x}^{\top})$

• $\sigma(x) = \frac{1}{1 + \exp(-x)} \implies \nabla \sigma(x) = \sigma(x)(1 - \sigma(x))$

• $\tanh(x) = \frac{2\sinh(x)}{2\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \cdot \nabla \tanh(x) = 1 - \tanh^2(x)$

2 Empirical Risk Minimisation (ERM)

Cost: $R(c, X, Y) = \sum_{i < N} ||y_i - c^{\top} x_i||^2$ (regr.)

or $R(c, X, Y) = \sum_{i \le N} \max(0, -y_i c^{\top} x)$ (class.)

or $R(c, \theta, X) = \sum_{i \le N} ||\mathbf{x}_i - \theta_{c(i)}||^2$ (clust.)

Goal: $\arg \min \mathbb{E}_{\mathcal{X}}[R(c,\mathcal{X})] \approx \arg \min \frac{1}{N}R(c,X)$

2.1 Bayesianism / Frequentism

Bayesianism: Define prior $P(\theta)$, define likelihood $P(X \mid \theta)$, compute posterior $P(\theta \mid x_{1...n})$.

Bayes: $P(\theta \mid X) = \frac{P(X|\theta)P(\theta)}{P(X)}, P(X) = \sum_{\theta} P(X|\theta_i)P(\theta_i)$

Frequentism: Define param. model $P(Y|X,\theta)$, compute likelihood of data $P((X,Y)|\theta)$ and compute $\hat{\theta}_{\text{MLE}}$ via $\arg \max_{\theta}$ of likelihood.

2.2 Linear Regression model: $\hat{\mathbf{v}} = X\beta$

Ridge: $\epsilon_{RSS}(\beta, \lambda) = (y - X^{T}\beta)^{T}(y - X^{T}\beta) + \lambda \beta^{T}\beta$ $\hat{\beta} = (X^{\top}X + \lambda \mathbb{I})^{-1}X^{\top}y$, prior: $\beta \sim \mathcal{N}(0, \frac{\sigma^2}{\lambda}\mathbb{I})$

Lasso: $\hat{\beta} = \arg\min_{\beta} \sum_{i \le n} (y_i - x_i^{\top} \beta)^2 + \lambda ||\beta||_2$ (no closed form), prior: $p(\beta_i) = \frac{\lambda}{4\sigma^2} \exp(-|\beta_i| \frac{\lambda}{2\sigma^2})$

3 Maximum Entropy Inference

Sample $c \sim p(\cdot \mid X)$ s.t. $H[p(\cdot \mid x)]$ is maximal,

 $\mathbb{E}_{C|X}[R(C,X)] = \mu$ and $\sum_{c} p(c \mid X) = 1$.

 \implies Gibbs dist.: $p(c \mid X) = \frac{1}{Z(X)} \exp(-\beta R(c, X))$

Free energy: $F(X) := -\frac{1}{\beta} \log Z(X)$

 $\iff p(c \mid X) = \exp(-\beta [R(c, X) - F(X)])$

 \implies entropy: $H[c \mid X] = \beta \mathbb{E}_{C|X}[R(C,X)] - \beta F(X)$

ME: $\max H[c \mid X] \iff \max Z(X) \iff \min F(X)$

• Exp. generalisation costs: $\mathbb{E}_{X''}\mathbb{E}_{X'}\mathbb{E}_{C|X'}[R(c,X'')]$

• Min. out-of-sample descr. length per deg. of freedom $\min_{p(\cdot|\cdot)} \mathbb{E}_{X',X''} \mathbb{E}_{C\mid X'} \left[-\log \frac{p(c\mid X'')}{p(c)} \right] \quad p(c) = \mathbb{E}_{X} [p(c\mid X)]$ $\stackrel{\text{Jensen}}{\geq} \min_{p(\cdot|\cdot)} \mathbb{E}_{X',X''} \Big[-\log \mathbb{E}_{C|X'}[p(c \mid X'')] \Big] - H[c]$

 $= \max_{n(\cdot,\cdot)} \mathbb{E}_{X',X''}[e^{H[c]} \cdot \kappa(X',X'')]$

PA: $T^* = \operatorname{arg\,max}_T \kappa(X', X'')$

• PA-kernel: $\kappa(X', X'') := \sum_{c} p(c \mid X') p(c \mid X'')$

• combined: $p(c \mid X', X'') \propto p(c \mid X')p(c \mid X'')$

4 Methods for intractable Gibbs distr.

4.1 Sampling and SA

Well behaving Markov Chains are

• irreducible: can go from/to any state, and

• aperiodic: chain doesn't go "back & forth" forever.

 \implies Stationary dist. $p(c') = \sum_{c} \pi(c \mid c') p(c)$

 \iff det. balance $\pi(c' \mid c)p(c) = \pi(c \mid c')p(c')$

Metropolis-Hastings: Assume $p(c) \propto f(c)$.

 $\pi(c' \mid c) := \begin{cases} q(c' \mid c) A(c, c') & c \neq c \\ 1 - \sum_{c' \neq c} q(c' \mid c) A(c, c') & \text{otw.} \end{cases}$

where q(c' | c): prob. to propose the move $c \rightarrow c'$, and $A(c,c') := \min \left\{ 1, \frac{q(c|c') f(c')/Z}{q(c'|c) f(c)/Z} \right\}$ prob. accept move **Metropolis Algorithm:** Assume $p(c) \propto f(c)$ and $q(c' \mid c) = q(c \mid c')$, i.e. symmetric.

1. Define symmetric $\{q(\cdot \mid c)\}_{c \in C}$ s.t. graph G_a is connected and every vertex in G_a has edge to itself.

2.
$$c_0 \leftarrow \$$$
 Then, for $t = 1, 2, ..., do$:

•
$$\tilde{c} \leftarrow q(\cdot \mid c_{t-1})$$
 // sample

•
$$b \leftarrow \operatorname{Bern}\left(\min\left\{1, e^{-\frac{1}{T}[R(\tilde{c}, X) - R(c_{t-1}, X)]}\right\}\right)$$

• If
$$b = 1$$
 then $c_t \leftarrow \tilde{c}$ else $c_t \leftarrow c_{t-1}$.

$$\pi(c' \mid c) = \{ \dots \leftarrow \text{c.f. scr. } (2.7) \}$$

Simulated annealing: Gradually decrease temp. T to escape bad local minima. \rightarrow MH-sampling from Gibbs (DA does not sample!).

4.2 Laplace's Method (Least angle clust.)

1. Square the cost:
$$e^{-\frac{1}{T}R(c,X)} = const \cdot e^{g(c)^{\top}g(c)}$$

2. Complete the square:
$$\int e^{-\frac{1}{T}(y-g(c))^2} dy = (\pi T)^{d/2}$$

$$\Rightarrow e^{g(c)^{\top}g(c)} = (\pi T)^{-d/2} \int \exp^{-y^{\top}y+2y^{\top}g(c)} dy$$

3. *Rewrite normalisation constant:*

$$Z = \sum_{c} e^{-\frac{1}{T}R(c,X)} = \dots = const \int e^{-\frac{1}{T}f(y)} dy$$

4. Apply Laplace's method:

If
$$f$$
 has unique min. y_0 and Hessian $H := \frac{\partial^2 f}{\partial y^2}\Big|_{y_0}$

$$\left[e^{-\frac{1}{T}f(y)} dy \stackrel{(T \to 0)}{\approx} e^{-\frac{1}{T}f(y_0)} \Big|_{\frac{H}{2\pi T}} \Big|^{-1/2} \right]$$

4.3 Mean-field Approximation

Idea: Approximate p_{β} (Gibbs) with a "simple", factorisable distribution $p = p_1 \cdots p_N$.

Approach: Minimise $D_{KL}(p \parallel p_{\beta})$

← Minimise Gibbs free energy:

$$G(p) = \frac{1}{\beta} D_{\mathrm{KL}}(p \parallel p_{\beta}) + F(\beta) = \mathbb{E}_{c \sim p}[R(c)] - \frac{1}{\beta} H[p]$$

Note: $H[p] = \sum_{i=1}^{N} H[p_i]$ and $F(\beta) \leq G(p)$

Ising model: $R(c \mid J) = -\frac{1}{2} \sum_{i,j} J_{ij} c_i c_j - \sum_i h_i c_i$

where J_{ij} : interaction between particles,

 h_i : noisy image, σ_i : denoised image

Problem: $\frac{\partial G(p)}{\partial p_{i\ell}} = 0$ s.t. $\sum_{\ell'} p_{i\ell'} = 1 \ \forall i$

Solution: with the mean field $h_i = [\cdots h_{i\ell} \cdots]^{\top}$

$$h_{i\ell} := \frac{\partial \mathbb{E}[R(c)]}{\partial p_{i\ell}} = \mathbb{E}_{c \sim p_{|i \to \ell}}[R(c)] \leftarrow \text{object } i \text{ chooses } class \, \ell$$

$$p_{i\ell} = e^{-\beta h_{i\ell}}/Z_i$$

EM-like Algo: Iteratively 1. Pick random *i* 2. $h_i^{\text{new}} \leftarrow p_i^{\text{old}}$ 3. $p_i^{\text{new}} \leftarrow h_i^{\text{new}}$ until converged.

4.3.1 Smooth *k*-means scr.20 (p. 39)

$$R(c \mid X) = \sum_{i} ||x_{i} - y_{c_{i}}||^{2} + \frac{\lambda}{2} \sum_{i} \sum_{j \in N(i)} \mathbb{I}_{\{c_{i} \neq c_{j}\}}$$
 where the second term measures #violations of these neighbourhood constraints.

$$\implies h_{i\ell} = ||x_i - y_\ell||^2 + \lambda \sum_{j \in N(i)} p_{j\ell} + const_i$$

5 Deterministic Annealing (Z is tractable)

Lemma: func's \times domain \rightarrow domain \times co-dom.

$$\mathcal{O}(K^{N}) \to \sum_{c} \prod_{i} \epsilon_{i,c(i)} = \prod_{i} \sum_{k} \epsilon_{ik} \leftarrow \mathcal{O}(NK)$$
$$p(c \mid \theta, X) = \prod_{i < N} p_{i}(c(i) \mid \theta, X)$$

where
$$p_i(k \mid \theta, X) \propto \exp(-\frac{1}{T}||x_i - \theta_k||^2)$$

Max. entr.
$$\implies \frac{\partial \log Z}{\partial \theta_k} = 0 \implies \theta_k^* = \frac{\sum_i p_i(k|\theta^*,X) \cdot x_i}{\sum_i p_i(k|\theta^*,X)}$$

E-step: $p_i(k|\theta^{\text{old}}, X) = \frac{\exp(-\frac{1}{T}||x_i - \theta_k||^2)}{\sum_{i \le K} \exp(-\frac{1}{T}||x_i - \theta_i||^2)}$ **M-step:** $\theta_k \leftarrow \dots$ $\theta^{\text{old}} \leftarrow \theta$

until convergence of θ

$$\theta_k \leftarrow \theta_k + \epsilon$$
 (noise s.t. centroids can separate)

Phase transitions: For $T \rightarrow \infty$: $\theta_k^* = \overline{X} \ \forall k \leq K$

Once $T = 2\lambda_{\text{max}}$, more centroids appear, where $\lambda_{\text{max}} = \text{max. eigenvalue of } \frac{1}{N} X^{\top} X. \quad (x_i \text{'s row-wise})$

6 Histogram Clustering

Least Angle Clust. (LAC): [Idea]

Similarity $S(\mathbf{x}_i, \mathbf{x}_i) = w_{ij} \cos(\phi_{ij}) = w_{ij} \mathbf{e}_i \cdot \mathbf{e}_i$ with unit vectors $e_i := x_i/||x_i||$, e.g. choice $w_{ij} = ||x_i|| \cdot ||x_j||$.

Dyadic data: $\mathcal{Z} = \{(x_{i(r)}, y_{i(r)}); 1 \leq r \leq \ell\}$

• prototype / "centroid": $q(y_i | \alpha)$

• empirical dist.: $\hat{p}(y_j \mid x_i) = \frac{\hat{p}(x_i, y_j)}{\hat{p}(x_i)} \stackrel{\leftarrow \text{scr.} (5.10)}{\leftarrow \text{scr.} (5.11)}$ Likelihood: $P(\mathcal{Z} \mid c, q) = \prod_{r < \ell} p(x_{i(r)}, y_{j(r)} \mid c, q)$ $= \overset{\text{scr.}(5.12)}{\dots} = \prod_i \prod_i [q(y_i|c(i)) \cdot p(c(i))]^{\ell \hat{p}(x_i,y_i)}$ Assume $p(\alpha) = 1/k$ and $\hat{p}(x_i) = 1/n$ \Rightarrow Cost: $R^{\text{hc}}(c, q, \mathcal{Z}) = \frac{\ell}{\hbar} \sum_{i \le n} D_{\text{KL}}[\hat{p}(\cdot \mid x_i) \parallel q(\cdot \mid c(i))]$ Solving the **Gibbs dist.** $p(c \mid q, \hat{p}) = \prod_{i \le n} P_{i,c(i)}$ via Lagrange yields $q^*(y_j \mid \alpha) = \frac{\sum_{i \le n} P_{i\alpha} \cdot \hat{p}(y_j \mid x_i)}{\sum_{i \le n} P_{i\alpha}}$ Lemma 2 ch.3 p.36

6.1 Information Bottleneck Method

Find efficient code $X \mapsto \hat{X}$ (codebook vector) and preserve relevant info. about context *Y* .

Criterion: $R^{\mathrm{IB}}(q(\hat{x} \mid x)) = I(X; \hat{X}) - \beta I(\hat{X}; Y)$

Markov chain: $\hat{X} \xrightarrow{q(\hat{x}|x)} X \xrightarrow{p(y|x)} Y$

Generation process: w/ distortion $d(x, \hat{x}) = D_{KI}[\cdot]$

 $q_t(\hat{x}|x) \propto q_t(\hat{x}) \cdot \exp(-\beta D_{KL}[p(y|x) || p_t(y|\hat{x})])$

 $q_{t+1}(\hat{x}) = \sum_{x} p(x) \cdot q_t(\hat{x} \mid x)$

 $p_{t+1}(y|\hat{x}) = \sum_{x} p(y|x) \cdot p(x) \cdot q_t(\hat{x}|x) / q_t(\hat{x})$

6.2 Parametric Distributional Clustering

Idea: Use a mixture of Gaussian prototypes, i.e.

$$p(y_j \mid v) \equiv p(b \mid v) = \sum_{\alpha \le s} p(\alpha \mid v) G_{\alpha}(b).$$
$$x_i \xrightarrow{c(i)=v} v \xrightarrow{p(b \mid v)} \hat{p}(b \mid i)$$

Note: Feature values y_i ("bins" b) only depend on cluster index ν and not explicitly on the site x_i !

Notation: $x_i \leftarrow i$, $y_j \leftarrow b$ (bins), $v \leftarrow$ clusters

Likelihood: (both equivalent if $p(i) = \frac{1}{n}$)

$$P(X \mid c, \theta) = \prod_{i \le n} p(c(i)) \prod_{b \le m} [p(b \mid c(i))]^{\ell \hat{p}(i,b)},$$

$$P(X, M \mid \theta) = \prod_{i \le n} \prod_{v \le k} \left[p(v) \cdot \prod_{b \le m} p(b \mid v)^{n_{ib}} \right]^{M_{iv}}$$

where n_{ih} : #occur. an observ. at site *i* is inside I_h

 $M_{i\nu} = p(\nu \mid i) \in \{0, 1\}$ clust. membersh. assign.

Cost (IB):
$$R^{\text{PDC}}(c, p_{\cdot|c}) = -\log P(X, M\theta) = \dots$$

 $\dots = -\sum_{i \le n} \left| \log p_{c(i)} + \frac{\ell}{n} \sum_{b \le m} \hat{p}(b \mid i) \log p(b \mid c(i)) \right|$

E-step:
$$h_{i\nu} = -\log p_{\nu} - \sum_{b} \frac{\ell}{n} \hat{p}(b \mid i) \log p(b \mid \nu)$$

 $q_{i\nu} = \mathbb{E}[\mathbb{I}_{\{c(i)=\nu\}}] \propto \exp(-h_{i\nu}/T)$
M-step: $p_{\nu} = \frac{1}{n} \sum_{i \le n} q_{i\nu}$

No closed form sol. for $p(\alpha \mid \nu)$. Thus, iteratively optimize pairs s.t. $\sum_{\alpha} p(\alpha \mid \nu) = 1$.

7 Graph-based Clustering

Non-metric relations: might assume negative values or violate the triangular inequality.

Setting: objects $o_i, o_j \in \mathcal{O}$; relations with weights $\mathcal{D} := \{D_{ij}\}$ on the edges (i, j).

- Cluster α : $\mathcal{G}_{\alpha} \equiv \{ \boldsymbol{o} \in \mathcal{O} : c(\boldsymbol{o}) = \alpha \}$
- Inter-cluster edges: $\mathcal{E}_{\alpha\beta} = \{(i,j) \in \mathcal{E} : o_i \in \mathcal{G}_{\alpha} \land o_j \in \mathcal{G}_{\beta}\}$
- $\operatorname{cut}(A, B) = \sum_{i \in A, i \in B} W_{ij} \rightarrow \operatorname{weight} \operatorname{matrix} W$
- assoc(A, V) = $\sum_{i \in A, j \in V} W_{ij}$ \rightarrow total connection strength from nodes in A to all nodes in the graph

Correlation clustering:

Minimise the sum of *pairwise* intracluster distances.

$$R^{cc}(c;\mathcal{D}) = -\sum_{\nu \leq k} \sum_{(i,j) \in \mathcal{E}_{\nu\nu}} S_{ij} + \sum_{\nu \leq k} \sum_{\mu \leq k} \sum_{(i,j) \in \mathcal{E}_{\nu\mu}} S_{ij}$$

$$= -2 \sum_{\nu \leq k} \sum_{(i,j) \in \mathcal{E}_{\nu\nu}} S_{ij} + \sum_{(i,j)} S_{ij}$$

$$\Leftrightarrow \text{intra-cluster} \quad \Leftrightarrow \text{const}$$

$$\text{up to} \quad \stackrel{*}{=} -\frac{1}{2} \sum_{\nu \leq k} \sum_{(i,j) \in \mathcal{E}_{\nu\nu}} (|S_{ij} - u| + S_{ij} - u)$$

$$\text{thresh. } u \quad + \frac{1}{2} \sum_{\nu \leq k} \sum_{\mu \leq k} \sum_{(i,j) \in \mathcal{E}_{\nu\mu}} (|S_{ij} + u| - S_{ij} - u)$$

*: altern. def. where $\frac{1}{2}(|X| \pm X) = \max\{0, \pm X\}$

Graph partitioning: $D_{ij} \in \mathbb{R}$

$$\begin{split} R^{\mathrm{gp}}(c;\mathcal{D}) &= const - \sum_{\nu \leq k} \mathrm{cut}(\mathcal{G}_{\nu}(\mathcal{D}), \mathcal{V} \setminus \mathcal{G}_{\nu}(\mathcal{D})) \\ &= const + \sum_{\nu \leq k} \mathrm{cut}(\mathcal{G}_{\nu}(\mathcal{S}), \mathcal{V} \setminus \mathcal{G}_{\nu}(\mathcal{S})) \end{split}$$

Bias in R(c;D): Cost should scale prop. to #objects,

i.e.
$$R(c; D) = O(n)$$
. *: use $D_{ij} = D(1 - \delta_{ij})$

Tipp:
$$\frac{\operatorname{cut}(\mathcal{G}_{\alpha}, \mathcal{V} \setminus \mathcal{G}_{\alpha})}{\operatorname{assoc}(\mathcal{G}_{\alpha}, \mathcal{V})} \stackrel{*}{=} \frac{n \cdot p_{\alpha} \cdot n(1 - p_{\alpha}) \cdot D}{n \cdot p_{\alpha} \cdot n \cdot D} = 1 - p_{\alpha}$$

7.1 Pairwise Clustering

Cost:
$$R^{\text{pc}}(c; \mathcal{D}) = \sum_{\alpha} \sum_{(i,j) \in \mathcal{E}_{\alpha\alpha}} \frac{D_{ij}}{|\mathcal{G}_{\alpha}|} = \sum_{\alpha} \sum_{(i,j) \in \mathcal{E}_{\alpha\alpha}} |\mathcal{G}_{\alpha}| \frac{D_{ij}}{|\mathcal{E}_{\alpha\alpha}|}$$

Equivariance to *k*-means: $(if D_{ij} = ||x_i - x_j||^2)$

$$\sum_{i \leq n} \|\boldsymbol{x}_i - \boldsymbol{y}_{c(i)}\|^2 = \sum_{i \leq n} \sum_{j \leq n} \sum_{\alpha \leq k} \frac{\mathbb{I}_{\{c(i) = \alpha\}} \mathbb{I}_{\{c(j) = \alpha\}}}{|\mathcal{G}_{\alpha}|} D_{ij}$$

Invariance properties:

- Symmetrisation: $R^{pc}(c; \mathcal{D}^s) \equiv R^{pc}(c; \mathcal{D})$
- Off-diagonal shift: $R^{\text{pc}}(c; \tilde{\mathcal{D}}) = R^{\text{pc}}(c; \mathcal{D}) \lambda_{\min} \cdot n$

Theorem: If S^c is p.s.d., then D derives from squared Eucl. space. \Longrightarrow Make S p.s.d.: $\tilde{S} := S - \lambda_{\min} \mathbb{I}$

Constant Shift Embedding:

- 1. Symmetrise $D \to D^s$: $D_{ij}^s := \frac{1}{2}(D_{ij} + D_{ji})$
- 2. **Centralise** D, then $S: X^c := QX^sQ^{\top}$ $Q = \mathbb{I} \frac{1}{n}e_ne_n^{\top} \qquad S^c = -\frac{1}{2}D^c$ $X_{ij}^c = X_{ij} \frac{1}{n}\sum_k X_{ik} \frac{1}{n}\sum_k X_{kj} + \frac{1}{n^2}\sum_{k,\ell} X_{k\ell}$ $\implies \text{sum over column/rows} = 0$
- 3. **(Off-)Diagonal shift**: Find λ_{\min} of S^c $\tilde{S} := S^c \lambda_{\min} \mathbb{I} \qquad \tilde{D} := D \lambda_{\min} (\mathbf{1} \mathbb{I})$ $\tilde{D}_{ij} = \tilde{S}_{ii} + \tilde{S}_{jj} 2\tilde{S}_{ij} = ||x_i x_j||^2$

Reconstruction:

- 1. EVD: $\tilde{S} = V \Lambda V^{\top}$ via $(\tilde{S} \lambda \mathbb{I})v \stackrel{!}{=} 0$ (|v| = 1) where $\Lambda = \operatorname{diag}(\lambda_1 \dots \lambda_n)$ and $V = [v_1 \dots v_n]$
- 2. Find *p* s.t. $\lambda_1 \ge \dots \lambda_p > \lambda_{p+1} = \dots = \lambda_n = 0$
- 3. $\Longrightarrow X_p = V_p(\Lambda_p)^{1/2}$ (each row is a vector)
- 4. $\Longrightarrow X_t = V_t(\Lambda_t)^{1/2}$ (approx. & denoising)

Cluster membership of new data:

Note: S^{new} is def. by $D_{ij}^{\text{new}} = S_{ii}^{\text{new}} + \tilde{S}_{jj} - 2S_{ij}^{\text{new}}$

1.
$$(S^{\text{new}})^{\text{c}} = -\frac{1}{2} \left[D^{\text{new}} (\mathbb{I}_n - \frac{1}{n} \boldsymbol{e}_n \boldsymbol{e}_n^{\top}) - \frac{1}{n} \boldsymbol{e}_m \boldsymbol{e}_n^{\top} + \tilde{D} (\mathbb{I}_n - \frac{1}{n} \boldsymbol{e}_n \boldsymbol{e}_n^{\top}) \right]$$

- 2. Project: $X_p^{\text{new}} = (S^{\text{new}})^c V_p (\Lambda_p)^{-1/2}$
- 3. Assign: $\hat{c}_i = \arg\min_c \| (x_p^{\text{new}})_i y_{c(i)} \|$

8 Model Selection for Clustering

What is the appropriate #clusters k for my data? **General approach:** Measure quality (neg. log-likelihood) for different $k \rightarrow$ **elbow**.

8.1 Complexity-based Model Selection

Strategy: add a complexity term to neg. log-likelihood **Attention:** MDL/BIC rely on likelihood optimisation → not generally applicable

Ocam's razor: Choose the model that provides the shortest description of the data.

8.1.1 Min. Description Length (MDL)

Minimise **descr. length**: $-\log p(X \mid \theta) - \log p(\theta)$

Approx.: $\hat{k} \in \arg\min_{k} \frac{-\log p(X \mid \hat{\theta}) + \frac{k'}{2} \log n}{n}$

8.1.2 Bayesian Information Crit. (BIC)

Parametrise likelihood $p(X \mid M)$ by θ :

$$p(X \mid M) = \int_{\Theta_M} \exp(\log p(X \mid M, \theta)) \cdot p(\theta \mid M) d\theta$$

Assume flat prior $p(\theta|M) \approx const$ and expand log-likelihood by ML estimator $\hat{\theta}$:

$$\overline{\ell}(\theta) = \frac{\ell(\theta)}{n} = \frac{1}{n} \log p(X|M,\theta) \stackrel{\text{i.i.d.}}{=} \frac{1}{n} \sum_{i} \ell(\theta, X_i) \stackrel{\text{Taylor}}{\approx} \dots$$

$$\implies p(X \mid M) = const_2 \cdot \exp(\frac{\ell(\hat{\theta}) - \frac{k'}{2} \log n}{n})$$

where k': dimension of (trainable) parameters

9 Model Validation

9.1 Stability-based Validation

Stability: Solutions on two data sets drawn from the same source should be similar.

9.2 Information-theoretic Validation

9.2.1 Shannon's Channel Coding Thm.

- Channel: $(S, \{p(\cdot \mid s)\}_{s \in S})$, S: alphabet • ϵ -noisy binary channel: $p(\hat{s} \mid s) = \begin{cases} 1-\epsilon & \text{if } \hat{s}=s \\ \epsilon & \text{if } \hat{s}\neq s \end{cases}$
- Capacity: $cap = max_p I(S; \hat{S}) \rightsquigarrow p_S(s)$
- (M, n)-code: is a pair (Enc, Dec) \leftarrow scr. p.87 where M: #messages, n: code-length

• Rate:
$$r = \frac{\log_2 M}{n} \Leftrightarrow M = \lfloor 2^{nr} \rfloor$$

∘ Commu. err.:
$$p_{\text{err}} := \max_{i < M} \mathbb{P}(Dec(\widehat{Enc(i)}) \neq i)$$

Goal / Best code:
$$\lim_{n\to\infty} \frac{\log M}{n}$$
 s.t. $\lim_{n\to\infty} p_{\text{err}} \to 0$

Asymptotic equiparition property (AEP):

•
$$A_{\epsilon}^{(n)}$$
: Typical set of sequences $(s_1, ..., s_n) \in S^n$

$$\left| -\frac{1}{n} \log p_{S^n}(s^n) - H[S] \right| < \epsilon \qquad \leftarrow \text{scr. p.89}$$

•
$$\mathbb{P}\left((S^n, \hat{S}^n) \in A_{\epsilon}^{(n)}\right) \stackrel{n \to \infty}{\to} 1$$
 $\leftarrow \text{scr. p.90}$

•
$$p_{\text{err}} \le 2^{-n(\text{cap}-3\epsilon-r)} \stackrel{n\to\infty}{\to} 0 \text{ if } r < \text{cap}$$

9.2.2 Algorithm Validation

Assumptions:

- Exponential solution space, i.e. $\log |\mathcal{C}| = \mathcal{O}(n)$
- \mathcal{A} 's output is probabilistic, i.e. $p(\cdot \mid X')$

Ideal variant:

Messages:
$$\mathcal{M} = \{X'_1, \dots, X'_m\}$$

Code:
$$X_i' \xrightarrow{Enc_A} p(\cdot \mid X_i') \xrightarrow{C_A} p(\cdot \mid X_i'') \xrightarrow{Dec_A} \hat{X}$$

Empirical variant:

Messages: $\mathcal{M} = \{\tau_1, \dots, \tau_m\}$ drawn u.a.r. from \mathbb{T}

• Require
$$\sum_{\tau} p(c \mid \tau \circ X') \approx \frac{|\mathbb{T}|}{|\mathcal{C}|} \pm \rho$$
 \leftarrow scr. p.95

Code:
$$\tau_i \xrightarrow{Enc} p(\cdot \mid \tau_i \circ X') \xrightarrow{\mathcal{C}_{\mathcal{A}}} p(\cdot \mid \tau_i \circ X'') \xrightarrow{Dec} \hat{\tau}$$

- $Enc_{\mathcal{A}}$: encodes $\tau_i \in \mathcal{M}$ as $p(\cdot \mid \tau_i \circ X')$
- $Dec_{\mathcal{A}}$: selects $\hat{\tau} = \arg \max_{\tau} \kappa(\tau_i \circ X'', \tau \circ X')$

whereby $\kappa(X'', X') := \sum_{c} p(c \mid X'') p(c \mid X')$

Asymptotic Equipartition Property (AEP):

AEP fulfilled if $\log \kappa(X', X'') \stackrel{n \to \infty}{\to} \mathcal{E}$ whereby $\mathcal{E} := \mathbb{E}_{X', X''}[\log \kappa(X', X'')]$

- $A_{\epsilon}^{(n)}$: set of (ϵ, n) -typical pairs X', X'' $|\log \kappa(X', X'') - \mathcal{E}| < \epsilon$
- $p_{\text{err}} \le P_{(n)} \text{ c.f. scr. } (6.19) \stackrel{n \to \infty}{\to} 0 \text{ if } \frac{\log m}{\log |\mathcal{C}|} < I$ where $I := \frac{1}{\log |\mathcal{C}|} \mathbb{E}_{X',X''}[\log(|\mathcal{C}|\kappa(X',X''))]$

9.3 Applications of PA

PA: *quantifies the amount of information that algorith- ms extract from phenomena.* → quantified by **capacity**(max. # distinguishable messages that can be communicated)

Temperature: $T^* = \operatorname{arg\,max}_T \kappa(X', X'')$

Cost functions: Given $R_1(\cdot, \cdot), \dots, R_s(\cdot, \cdot)$

$$\max_{\ell \le s} \kappa_{\ell}(X', X'') = \max_{\ell \le s} \frac{1}{Z_{X'}Z_{X''}} \sum_{c} e^{-\frac{1}{T}R_{\ell}(c, X')} e^{-\frac{1}{T}R_{\ell}(c, X'')}$$

Algorithms: Many MST (min. spanning tree) algo's are **contractive** (\rightarrow sequence of candidate sol's).

Approximation Set Coding (ASC):

$$p^{\text{ASC}}(c \mid X') = \begin{cases} 1/|G_{\gamma}(X')| & \text{if } c \in G_{\gamma}(X') \\ 0 & \text{otw.} \end{cases}$$

$$G_{\gamma}(X') := \left\{ c \in \mathcal{C} : R(c, X') - \min_{c \in \mathcal{C}} R(c, X') \le \gamma \right\}$$

- 1. Run \mathcal{A} to compute $G_t^{\mathcal{A}}(X')$ and $G_t^{\mathcal{A}}(X'')$, for all t
- 2. $t^* = \arg\max_t \kappa(X', X'') = \arg\max_t \frac{|G_t^{\mathcal{A}}(X') \cap G_t^{\mathcal{A}}(X'')|}{|G_t^{\mathcal{A}}(X')| \cdot |G_t^{\mathcal{A}}(X'')|}$
- 3. $c^* \stackrel{\$ \text{ sample}}{\longleftarrow} \text{Unif}(G_{t^*}^{\mathcal{A}}(X') \cap G_{t^*}^{\mathcal{A}}(X''))$

10 Appendix

10.1 Tips and Tricks

Complete the square:

TC () (1 TA

If $p(x) \propto \exp(-\frac{1}{2}x^{T}Ax + x^{T}b)$, then $p(x) = \mathcal{N}(x \mid A^{-1}b, A^{-1})$

Constrained optimisation:

primal: $\min_{\mathbf{x}} f(\mathbf{x})$ s.t. $g_i(\mathbf{x}) = 0$; $h_j(\mathbf{x}) \le 0$

Lagrangian: with each $\alpha_i \ge 0$

$$\mathcal{L}(\mathbf{x}, \lambda, \alpha) = f(\mathbf{x}) + \sum_{i} \lambda_{i} g_{i}(\mathbf{x}) + \sum_{j} \alpha_{j} h_{j}(\mathbf{x})$$

Solve:
$$\frac{\partial \mathcal{L}}{\partial x} = 0$$
; $g_i(x) = 0$; $\alpha_j \ge 0$; $h_j(x) \le 0$

If **Slater's cond.** holds, $\exists x : g_i(x) = 0, h_j(x) < 0$, then we can solve the *dual* instead:

$$\max_{\lambda,\alpha} \{ \min_{x} \mathcal{L}(x,\lambda,\alpha) \}$$
 s.t. $\alpha_j \ge 0$

Solve:
$$\frac{\partial \mathcal{L}}{\partial x} = 0$$
; $\frac{\partial \mathcal{L}}{\partial \lambda} = 0$; $\alpha_j h_j(x) = 0$; $\alpha_j \ge 0$

Euler-Lagrange: Find extrema of functional $\mathcal{F}[f] =$

$$\int G(x, f(x), f(x)) dx, \text{ thus } \frac{\partial \mathcal{F}}{\partial f} \stackrel{!}{=} 0.$$

If *G* is twice diff'able, then

$$\frac{\partial \mathcal{F}}{\partial f} = \frac{\partial G}{\partial f(x)} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial G}{\partial f'(x)} \right) \stackrel{(*)}{=} \frac{\partial G}{\partial f(x)}.$$

(*): when G does not depend on f'.

Hyperbolic Functions:

$$\sinh(x) = \frac{e^{x} - e^{-x}}{2}, \quad \frac{d}{dx} \sinh(x) = \cosh(x)$$

$$\cosh(x) = \frac{e^{x} + e^{-x}}{2}, \quad \frac{d}{dx} \cosh(x) = \sinh(x)$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}, \cosh^{2}(x) + \sinh^{2}(x) = 1$$

$$\frac{d}{dx}\tanh(x) = 1 - \tanh^2(x) = \frac{1}{\cosh^2(x)} = \operatorname{sech}^2(x)$$

10.2 Approximations

Laplace Approximation:
$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x_0} = 0$$

$$\implies \int_{\mathbb{R}} \mathrm{e}^{Cf(x)} \, \mathrm{d}x \approx \sqrt{2\pi} C \cdot |f''(x_0)| \cdot \mathrm{e}^{Cf(x_0)}$$