Probability and Computing, 2nd Edition

Solutions to Chapter 5: Balls, Bins, and Random Graphs

Hahndeul Kim

 $\mathrm{July}\ 2025$

5.1

As $(1+1/n)^n$ increases, we find the smallest n to reach the threshold. $(1+1/n)^n$ first reaches 0.99e at n=50, and 0.999999e at n=499982. Since $(1-1/n)^n$ also increases, we solve in a similar way. $(1-1/n)^n$ first reaches 0.99/e at n=51 and 0.999999/e at n=499991.

5.2

Recall the formula used in the birthday paradox: If there are N possibilities, then we solve for the smallest n that satisfies $\prod_{i=1}^{n-1} (1-\frac{i}{N}) \approx \prod_{i=1}^{n-1} e^{-i/n} = e^{-(n-1)n/2N} < 1/2$. Note that we omitted the final approximation to derive exact numerical answers. Regardless of whether the number of Social Security number digits is 9 or 13, using the last four digits gives N = 10000 and this gives n = 119. In the case where the number of digits is n = 109, we get n = 37234. In the case where the number of digits is n = 10000, we get n = 3723298.

5.3

Let the number of balls thrown be m. Then the desired probability is $\prod_{i=0}^{m-1} (1-\frac{i}{n})$. We first determine c_1 . $m=c_1\sqrt{n}$ should satisfy $\prod_{i=0}^{m-1} (1-\frac{i}{n}) \leq \prod_{i=0}^{m-1} e^{-i/n} = e^{-(m-1)m/2n} \leq e^{-1}$. Since $(m-1)m=c_1^2n-c_1\sqrt{n} \geq 2n$, $(c_1^2-2)\sqrt{n} \geq c_1$. Therefore, we choose c_1 that is greater than or equal to $\frac{1}{2}\left(\frac{1}{\sqrt{n}}+\sqrt{\frac{1}{n}}+8\right)$. Now we determine c_2 . To use the given hint, assume that 2m < n. $\prod_{i=0}^{m-1} (1-\frac{i}{n}) \geq \prod_{i=0}^{m-1} \exp(-\frac{i}{n}-\frac{i^2}{n^2}) = \exp(-\frac{m(m-1)}{2n}-\frac{(m-1)m(2m-1)}{6n^2}) = \exp(-\frac{m(m-1)}{2n}(1+\frac{2m-1}{3n})) \geq \exp(-\frac{m^2}{2n}(1+\frac{2m}{3\sqrt{n}})) \geq \frac{1}{2}$ should be satisfied for $m=c_2\sqrt{n}$. This is equivalent to satisfying $\frac{c_2^2}{2}(1+\frac{2c_2}{3\sqrt{n}}) \leq \ln 2$. Since n is sufficiently large, choosing $c_2=\sqrt{2\ln 2-\frac{1}{\ln n}}$ yields the desired result.

5.4