N-Channel Enhancement Mode MOSFET

Features

- Low on resistance $R_{\text{DS}(\text{ON})}$
- Low gate threshold voltage
- Low input capacitance
- ESD protected up to 2KV

1.Gate 2.Source 3.Drain TO-236 Plastic Package

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Gate-Source Voltage	V_{GSS}	± 20	V
Drain Current (Continuous)	I _D	300	mA
Drain Current (Pulse Width ≤ 10 μs)	I _{DM}	800	mA
Total Power Dissipation	P _{tot}	350	mW
Operating and Storage Temperature Range	T_{j},T_{stg}	- 55 to + 150	°C

Thermal Characteristics

Parameter	Symbol Value		Unit
Thermal Resistance-Junction to Ambient 1)	$R_{ heta JA}$	357	°C/W

¹⁾ Device mounted on FR-4 substrate PC board, with minimum recommended pad layout.

MMBT7002K

Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain Source Breakdown Voltage at I _D = 10 μA	BV _{DSS}	60	-	-	V
Zero Gate Voltage Drain Current at V_{DS} = 60 V	I _{DSS}	-	-	1	μA
Gate Source Leakage Current at V _{GS} = ± 20 V	I _{GSS}	-	-	± 10	μΑ
Gate Threshold Voltage at $V_{DS} = V_{GS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	1	-	2.5	V
Static Drain Source On-Resistance at V_{GS} = 10 V, I_D = 500 mA at V_{GS} = 4.5 V, I_D = 200 mA	R _{DS(ON)}	- -	- -	3 4	Ω
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 10 V, I_D = 200 mA	g _{FS}	80	-	-	mS
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{MHz}$	R_g	-	200	-	Ω
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	22.5	50	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	C _{oss}	-	9	25	pF
Reverse Transfer Capacitance at V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	C _{rss}	-	7.5	10	pF
Gate charge total at V_{DS} =10 V, I_D = 0.5 A, V_{GS} = 4.5 V	Q_g	-	0.44	-	nC
Gate to Source Gate Charge at V_{DS} =10 V, I_D = 0.5 A, V_{GS} = 4.5 V	Q_{gs}	-	0.2	-	nC
Gate to Drain Charge at V_{DS} =10 V, I_D = 0.5 A, V_{GS} = 4.5 V	Q_{gd}	-	0.1	-	nC
Turn-On Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 0.5 A, R_G = 25 Ω	t _{d(on)}	-	2.7	-	ns
Turn-On Rise Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 0.5 A, R_G = 25 Ω	t _r	-	2.5	-	ns
Turn-Off Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 0.5 A, R_G = 25 Ω	t _{d(off)}	-	13	-	ns
Turn-Off Fall Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 0.5 A, R_G = 25 Ω	t _f	-	8	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at V_{GS} = 0 V, I_{S} = 0.5 A	V _{SD}	-	0.85	-	V
Body Diode Reverse Recovery Time at I_S = 0.5 A, di/dt = 100 A / μs	t _{rr}	-	30	-	ns
Body Diode Reverse Recovery Charge at $I_{\rm S}$ = 0.5 A, di/dt = 100 A / μs	Q _{rr}	-	29	-	nC

Electrical Characteristics Curves

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

Fig. 8 Gate Charge 4.5 V_{DS}= 10 V 4.0 I_{DS}= 0.5 A 3.5 V_{GS}, Gate-Source Voltage (V) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.2 0.3 0.4 0.5 0.1 Qg, Gate Charge (nC)

Fig. 9 Gate Threshold Variation vs. T_j

MMBT7002K

Test Circuits

PACKAGE OUTLINE

Plastic surface mounted package (Dimensions in mm)

TO-236

Recommended Soldering Footprint

Packing information

i acking information								
	Package Ta	Tape Width Pit		rch Reel Size		Size	Day Day I Dayling Occupits	
		(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
	TO-236	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information

" K72 " = Part No.

"YM" = Date Code Marking

"Y" = Year

"M" = Month

Font type: Arial

