Lemma 5. Let x be a non zero non unit with a single minimal subvalued prime q in an HCF domain and let $\{P_{\beta}\} \subset \{P_{\alpha}\}$ be the family of valued primes containing x, then for every element y which is contained only in the intersection of a subfamily of $\{P_{\beta}\}$ such that y \not q then $y^n|_{X}$ for all n.

Proof. Let x and y be as in the hypothesis, then for each n_y $xy^n \in q$ and xy^n has q as its minimal subvalued prime of y is some subvalued prime containing q).

Now suppose that y|x and let d=(x,y) where $x=x_1d$, $y=y_1d$ and $(x_1,y_1)=1$, then since $y \not\in q$, $d \not\in q$ and so xy/d^2 and q is the single minimal subvalued prime of xy/d^2 . But $xy/d^2=x_1y_1$ where $(x_1,y_1)=1$. In other words xy/d^2 has a single minimal prime and is expressible as a product of two co-prime non units, a contradiction of (p_1) will and can show that $y^n|x$ for each n.

To show that $y^n|x$ for each n.

To show that (p_2) also holds for x of Lemma μ , we first

note that q being a prime ideal, x_i ϵ q or x_s ϵ q, and we have two cases to consider:

(a) $x_1 \in q_9$ and $x_2 \notin q$ (or $x_2 \in q$ and $x_1 \notin q$)

(b) $x_1, x_2 \in q$. If (a) holds, x_2 belongs to a subfamily of the valued

primes containing x and by Lemma 5, x_2 | x for each n,i.e. $x_2 \mid x_1$. And in case (b) holds, $x_1, x_2 \in q$ implies that x_1, x_3 both have q as their minimal subvalued prime and that $(x_1, x_2) = d \in q$ (R is an HCF domain and R is a valuation domain). Now if $(x_1, x_2) = d$ then $x_1 = x_1$ d, $x_2 = x_2$ where $(x_1, x_2) = 1$ i.e. at least one of x_1, x_2 is not in q. This in $(x_1, x_2) = 1$ i.e. at least one of x_1, x_2 is not in q. This in

turn gives rise to the following two cases: