

MATH1131 Mathematics 1A – Algebra

Lecture 5: Lengths and the Dot Product

 $Lecturer: \ Sean \ Gardiner - sean.gardiner@unsw.edu.au$

Based on slides by Jonathan Kress

Length in *n* dimensions

Recall the length of $\mathbf{a} \in \mathbb{R}^n$ with

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_n \mathbf{e}_n$$

is defined to be

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$
.

Length in *n* dimensions

Recall the length of $\mathbf{a} \in \mathbb{R}^n$ with

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_n \mathbf{e}_n$$

is defined to be

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$
.

If $|\mathbf{a}| = 1$, we say that \mathbf{a} is a unit vector.

Length in *n* dimensions

Recall the length of $\mathbf{a} \in \mathbb{R}^n$ with

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_n \mathbf{e}_n$$

is defined to be

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$$
.

If $|\mathbf{a}| = 1$, we say that \mathbf{a} is a unit vector.

Properties

- 1. |a| is a real number.
- 2. $|a| \ge 0$.
- 3. $|\mathbf{a}| = 0$ if and only if $\mathbf{a} = \mathbf{0}$.
- 4. $|\lambda \mathbf{a}| = |\lambda||\mathbf{a}|$ for all $\lambda \in \mathbb{R}$.

Proof of properties

Property 1 follows from the definition of $\sqrt{\cdot}$. Since the components a_1, \ldots, a_n are in \mathbb{R} , we have $a_1^2 + a_2^2 + \cdots + a_n^2 \geq 0$.

Hence
$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$
 is defined and a real number.

Proof of properties

Property 1 follows from the definition of $\sqrt{\cdot}$. Since the components a_1, \ldots, a_n are in \mathbb{R} , we have $a_1^2 + a_2^2 + \cdots + a_n^2 \ge 0$.

Hence $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$ is defined and a real number.

In fact, the definition of $\sqrt{\cdot}$ says that $\sqrt{a_1^2 + a_2^2 + \cdots + a_n^2} \ge 0$. This means $|\mathbf{a}| \ge 0$, which is Property 2.

Proof of properties

Property 1 follows from the definition of $\sqrt{\cdot}$. Since the components a_1,\ldots,a_n are in \mathbb{R} , we have $a_1^2+a_2^2+\cdots+a_n^2\geq 0$. Hence $|\mathbf{a}|=\sqrt{a_1^2+a_2^2+\cdots+a_n^2}$ is defined and a real number.

In fact, the definition of $\sqrt{\cdot}$ says that $\sqrt{a_1^2 + a_2^2 + \cdots + a_n^2} \ge 0$. This means $|\mathbf{a}| \ge 0$, which is Property 2.

For Property 3 we use that $\sqrt{x} = 0$ if and only if x = 0. Hence

$$|\mathbf{a}| = 0 \iff a_1^2 + a_2^2 + \dots + a_n^2 = 0$$

 $\iff a_1 = a_2 = \dots = a_n = 0$
 $\iff \mathbf{a} = \mathbf{0}$

Proof of properties (continued)

For Property 4, take $\lambda \in \mathbb{R}$. Since

$$\lambda \mathbf{a} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \\ \vdots \\ \lambda a_n \end{pmatrix}$$

we have

$$|\lambda \mathbf{a}| = \sqrt{(\lambda a_1)^2 + (\lambda a_2)^2 + \dots + (\lambda a_n)^2}$$

$$= \sqrt{\lambda^2 (a_1^2 + a_2^2 + \dots + a_n^2)}$$

$$= \sqrt{\lambda^2} \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

$$= |\lambda| |\mathbf{a}|.$$

Find the two unit vectors parallel to
$$\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 6 \end{pmatrix}$$
.

Example

Find the two unit vectors parallel to $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 6 \end{pmatrix}$.

Here
$$|\mathbf{b}| = \sqrt{1^2 + 3^2 + 2^2 + 6^2} = \sqrt{50} = 5\sqrt{2}$$
.

Example

Find the two unit vectors parallel to $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 6 \end{pmatrix}$.

Here
$$|\mathbf{b}| = \sqrt{1^2 + 3^2 + 2^2 + 6^2} = \sqrt{50} = 5\sqrt{2}$$
.

So the unit vector
$$\hat{\mathbf{b}} = \frac{1}{|\mathbf{b}|} \mathbf{b} = \frac{1}{5\sqrt{2}} \begin{pmatrix} 1\\3\\2\\6 \end{pmatrix}$$
.

Example

Find the two unit vectors parallel to $\mathbf{b} = \begin{pmatrix} 1\\3\\2\\6 \end{pmatrix}$.

Here
$$|\mathbf{b}| = \sqrt{1^2 + 3^2 + 2^2 + 6^2} = \sqrt{50} = 5\sqrt{2}$$
.

So the unit vector
$$\hat{\mathbf{b}} = \frac{1}{|\mathbf{b}|} \mathbf{b} = \frac{1}{5\sqrt{2}} \begin{pmatrix} 1\\3\\2\\6 \end{pmatrix}$$
.

The second unit vector that is parallel to \mathbf{b} is $-\hat{\mathbf{b}}$, that is,

$$-\frac{1}{5\sqrt{2}}\begin{pmatrix}1\\3\\2\\6\end{pmatrix}.$$

Find a vector of length 5 parallel to
$$\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

Find a vector of length 5 parallel to
$$\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

Here
$$|\mathbf{w}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
.

Find a vector of length 5 parallel to
$$\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

Here
$$|\mathbf{w}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
.

So the unit vector
$$\hat{\mathbf{w}} = \frac{1}{|\mathbf{w}|} \mathbf{w} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

Example

Find a vector of length 5 parallel to $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Here
$$|\mathbf{w}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
.

So the unit vector
$$\hat{\mathbf{w}} = \frac{1}{|\mathbf{w}|} \mathbf{w} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

A vector parallel to \mathbf{w} with length 5 is therefore given by

$$5\hat{\mathbf{w}} = rac{5}{\sqrt{14}} egin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Definition

The dot product (or scalar product) of two vectors \mathbf{a} , $\mathbf{b} \in \mathbb{R}^n$ with

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{k=1}^n a_k b_k.$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 1 \times 3 + 2 \times 4 = 11$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} =$$

$$\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 1 \times 3 + 2 \times 4 = 11$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \times 1 + 2 \times 2 = 5$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} =$$

$$\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 1 \times 3 + 2 \times 4 = 11$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \times 1 + 2 \times 2 = 5$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 1 \times (-2) + 2 \times 1 = 0$$

$$\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 1 \times 3 + 2 \times 4 = 11$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \times 1 + 2 \times 2 = 5$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 1 \times (-2) + 2 \times 1 = 0$$

$$\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \times 1 + 0 \times 1 + 4 \times 1 = 7$$

Properties

Properties of the dot product

For all vectors \mathbf{a} , \mathbf{b} , $\mathbf{c} \in \mathbb{R}^n$ and scalars $\lambda \in \mathbb{R}$,

- $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$, so $|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$
- $\mathbf{a} \cdot \mathbf{b} \in \mathbb{R}$
- $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ (commutative law)
- $\mathbf{a} \cdot (\lambda \mathbf{b}) = \lambda (\mathbf{a} \cdot \mathbf{b})$ (associative law of scalar multiplication)
- $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (distributive law)

Exercise

Prove these laws.

Properties

Properties of the dot product

For all vectors \mathbf{a} , \mathbf{b} , $\mathbf{c} \in \mathbb{R}^n$ and scalars $\lambda \in \mathbb{R}$,

- $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$, so $|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$
- $\mathbf{a} \cdot \mathbf{b} \in \mathbb{R}$
- $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ (commutative law)
- $\mathbf{a} \cdot (\lambda \mathbf{b}) = \lambda (\mathbf{a} \cdot \mathbf{b})$ (associative law of scalar multiplication)
- $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (distributive law)

Exercise

Prove these laws.

Note that the dot product is not itself associative, since an expression like $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ has no sensible meaning.

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

$$|\mathbf{c}|^2 = (|\mathbf{a}|\sin\theta)^2 + (|\mathbf{a}|\cos\theta - |\mathbf{b}|)^2$$

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

$$|\mathbf{c}|^2 = (|\mathbf{a}|\sin\theta)^2 + (|\mathbf{a}|\cos\theta - |\mathbf{b}|)^2$$
$$= |\mathbf{a}|^2\sin^2\theta + |\mathbf{a}|^2\cos^2\theta + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

$$|\mathbf{c}|^2 = (|\mathbf{a}|\sin\theta)^2 + (|\mathbf{a}|\cos\theta - |\mathbf{b}|)^2$$

$$= |\mathbf{a}|^2\sin^2\theta + |\mathbf{a}|^2\cos^2\theta + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$

$$= |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$

Consider a triangle in \mathbb{R}^n with sides \mathbf{a} , \mathbf{b} and $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Let θ be the smaller angle between **a** and **b**.

Applying Pythagoras' Theorem to the shaded triangle:

$$|\mathbf{c}|^2 = (|\mathbf{a}|\sin\theta)^2 + (|\mathbf{a}|\cos\theta - |\mathbf{b}|)^2$$
$$= |\mathbf{a}|^2\sin^2\theta + |\mathbf{a}|^2\cos^2\theta + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$
$$= |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$

This is called the cosine rule.

$$2|\mathbf{a}||\mathbf{b}|\cos\theta$$

$$= |\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2$$

$$2|\mathbf{a}||\mathbf{b}|\cos\theta$$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1 - b_1)^2 + \dots + (a_n - b_n)^2)$

$$2|\mathbf{a}||\mathbf{b}|\cos\theta$$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1 - b_1)^2 + \dots + (a_n - b_n)^2)$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1^2 + b_1^2 - 2a_1b_1) + \dots + (a_n^2 + b_n^2 - 2a_nb_n))$

$$2|\mathbf{a}||\mathbf{b}|\cos\theta$$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1 - b_1)^2 + \dots + (a_n - b_n)^2)$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1^2 + b_1^2 - 2a_1b_1) + \dots + (a_n^2 + b_n^2 - 2a_nb_n))$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - (|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b})$

$$2|\mathbf{a}||\mathbf{b}|\cos\theta$$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1 - b_1)^2 + \dots + (a_n - b_n)^2)$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1^2 + b_1^2 - 2a_1b_1) + \dots + (a_n^2 + b_n^2 - 2a_nb_n))$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - (|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b})$
= $2\mathbf{a} \cdot \mathbf{b}$

Geometric interpretation

From the cosine rule for triangles,

$$2|\mathbf{a}||\mathbf{b}|\cos\theta$$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1 - b_1)^2 + \dots + (a_n - b_n)^2)$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - ((a_1^2 + b_1^2 - 2a_1b_1) + \dots + (a_n^2 + b_n^2 - 2a_nb_n))$
= $|\mathbf{a}|^2 + |\mathbf{b}|^2 - (|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b})$
= $2\mathbf{a} \cdot \mathbf{b}$

So
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

and $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$

where θ is the smaller angle between vectors **a** and **b** joined tail-to-tail:

Example

Use

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Example

Use

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Example

Use

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$
$$= \frac{2 \times 1 + 0 \times 1}{\sqrt{2^2 + 0^2} \sqrt{1^2 + 1^2}}$$

Example

Use

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$
$$= \frac{2 \times 1 + 0 \times 1}{\sqrt{2^2 + 0^2}\sqrt{1^2 + 1^2}}$$
$$= \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

Example

Use

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

to find the smaller angle θ between $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

$$= \frac{2 \times 1 + 0 \times 1}{\sqrt{2^2 + 0^2} \sqrt{1^2 + 1^2}}$$

$$= \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

So the angle θ is given by $\arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

Find the smaller angle
$$\theta$$
 between $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$.

Find the smaller angle
$$\theta$$
 between $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$.

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Find the smaller angle
$$\theta$$
 between $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$.

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

$$= \frac{2 \times 1 + 0 \times 1 + 3 \times 0 + (-1) \times 2}{\sqrt{2^2 + 0^2 + 3^2 + (-1)^2} \sqrt{1^2 + 1^2 + 0^2 + 2^2}}$$

Find the smaller angle
$$\theta$$
 between $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$.

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

$$= \frac{2 \times 1 + 0 \times 1 + 3 \times 0 + (-1) \times 2}{\sqrt{2^2 + 0^2 + 3^2 + (-1)^2} \sqrt{1^2 + 1^2 + 0^2 + 2^2}}$$

$$= \frac{0}{\sqrt{14}\sqrt{6}} = 0.$$

Example

Find the smaller angle θ between $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$.

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

$$= \frac{2 \times 1 + 0 \times 1 + 3 \times 0 + (-1) \times 2}{\sqrt{2^2 + 0^2 + 3^2 + (-1)^2} \sqrt{1^2 + 1^2 + 0^2 + 2^2}}$$

$$= \frac{0}{\sqrt{14}\sqrt{6}} = 0.$$

So the angle θ is given by $arccos(0) = \frac{\pi}{2}$.

Theorems

Theorem

For any two non-zero vectors ${\bf a}$ and ${\bf b}$ in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Theorems

Theorem

For any two non-zero vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Proof

Theorems

Theorem

For any two non-zero vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Proof

Let **a** and **b** be two non-zero vectors in \mathbb{R}^n

Theorems

Theorem

For any two non-zero vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Proof

Let **a** and **b** be two non-zero vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

Theorems

Theorem

For any two non-zero vectors ${\bf a}$ and ${\bf b}$ in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Proof

Let **a** and **b** be two non-zero vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

If $\mathbf{a} \perp \mathbf{b}$, that is, if $\theta = \frac{\pi}{2}$, then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \frac{\pi}{2} = 0$.

Theorems

Theorem

For any two non-zero vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Proof

Let **a** and **b** be two non-zero vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

If $\mathbf{a} \perp \mathbf{b}$, that is, if $\theta = \frac{\pi}{2}$, then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \frac{\pi}{2} = 0$.

Conversely, if $\mathbf{a} \cdot \mathbf{b} = 0$, then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = 0$. Hence $\theta = \frac{\pi}{2}$ and $\mathbf{a} \perp \mathbf{b}$.

Theorems

Theorem

For any two non-zero vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

 $\mathbf{a} \perp \mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Proof

Let **a** and **b** be two non-zero vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

If $\mathbf{a} \perp \mathbf{b}$, that is, if $\theta = \frac{\pi}{2}$, then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \frac{\pi}{2} = 0$.

Conversely, if $\mathbf{a} \cdot \mathbf{b} = 0$, then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = 0$. Hence $\theta = \frac{\pi}{2}$ and $\mathbf{a} \perp \mathbf{b}$.

This is where we need that **a** and **b** are non-zero vectors.

Theorems

Theorem (Cauchy-Schwarz inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a}\cdot\mathbf{b}|\leq |\mathbf{a}||\mathbf{b}|$$

Theorems

Theorem (Cauchy-Schwarz inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|a\cdot b| \leq |a||b|$$

Proof

Theorems

Theorem (Cauchy-Schwarz inequality)

For any two vectors ${\bf a}$ and ${\bf b}$ in \mathbb{R}^n

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|$$

Proof

Let **a** and **b** be two vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

Theorems

Theorem (Cauchy-Schwarz inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|$$

Proof

Let **a** and **b** be two vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

Then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$.

Theorem (Cauchy-Schwarz inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|$$

Proof

Let **a** and **b** be two vectors in \mathbb{R}^n , and let θ be the smaller angle between **a** and **b**.

Then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$.

Since $-1 \le \cos \theta \le 1$, it follows that

$$-|a||b| \leq a \cdot b \leq |a||b|,$$

which means $|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}||\mathbf{b}|$.

Triangle inequality (Minkowski's inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a}+\mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}|$$

Triangle inequality (Minkowski's inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

This inequality is commonly known as the triangle inequality since we can illustrate it as follows:

Triangle inequality (Minkowski's inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

This inequality is commonly known as the triangle inequality since we can illustrate it as follows:

When we add two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n we get this triangle.

Triangle inequality (Minkowski's inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

This inequality is commonly known as the triangle inequality since we can illustrate it as follows:

When we add two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n we get this triangle.

Look at the lengths of the sides of the triangle.

Triangle inequality (Minkowski's inequality)

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

This inequality is commonly known as the triangle inequality since we can illustrate it as follows:

When we add two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n we get this triangle.

Look at the lengths of the sides of the triangle.

The distance travelled along \mathbf{a} and then \mathbf{b} can never be shorter than the distance travelled along $\mathbf{a} + \mathbf{b}$, and will only be equal in distance when \mathbf{a} and \mathbf{b} point in the same direction.

Triangle inequality

For any two vectors ${\bf a}$ and ${\bf b}$ in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

Triangle inequality

For any two vectors ${\bf a}$ and ${\bf b}$ in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

Triangle inequality

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

$$|\mathbf{a} + \mathbf{b}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

Triangle inequality

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

$$|\mathbf{a} + \mathbf{b}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

= $\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a}$

Triangle inequality

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

$$|\mathbf{a} + \mathbf{b}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

$$= \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a}$$

$$= |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$$

Triangle inequality

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

$$|\mathbf{a} + \mathbf{b}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

$$= \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a}$$

$$= |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$$

$$\leq |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}||\mathbf{b}|$$

Triangle inequality

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

$$|\mathbf{a} + \mathbf{b}|^{2} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

$$= \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a}$$

$$= |\mathbf{a}|^{2} + |\mathbf{b}|^{2} + 2\mathbf{a} \cdot \mathbf{b}$$

$$\leq |\mathbf{a}|^{2} + |\mathbf{b}|^{2} + 2|\mathbf{a}||\mathbf{b}|$$

$$= (|\mathbf{a}| + |\mathbf{b}|)^{2}.$$

Triangle inequality

For any two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^n

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

Proof

Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Using the Cauchy-Schwarz inequality,

$$|\mathbf{a} + \mathbf{b}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

$$= \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a}$$

$$= |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$$

$$\leq |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}||\mathbf{b}|$$

$$= (|\mathbf{a}| + |\mathbf{b}|)^2.$$

Taking square roots of both sides gives the claim.

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Theorem

The angle subtended by a diameter at the circumference of a circle is ${\sf a}$.

Theorem

The angle subtended by a diameter at the circumference of a circle is ${\sf a}$.

Theorem

The angle subtended by a diameter at the circumference of a circle is ${\sf a}$.

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the vectors as shown in the diagram.

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the vectors as shown in the diagram. We need to show that

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$$

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the vectors as shown in the diagram. We need to show that

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$$

Now,
$$|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}|$$
 and $\mathbf{c} = -\mathbf{b}$.

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the vectors as shown in the diagram. We need to show that

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$$

Now,
$$|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}|$$
 and $\mathbf{c} = -\mathbf{b}$. Hence

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = \mathbf{b} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{a}$$

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the vectors as shown in the diagram. We need to show that

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$$

Now,
$$|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}|$$
 and $\mathbf{c} = -\mathbf{b}$. Hence

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = \mathbf{b} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{a}$$
$$= -\mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$$

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let \mathbf{a} , \mathbf{b} and \mathbf{c} be the vectors as shown in the diagram. We need to show that

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$$

Now,
$$|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}|$$
 and $\mathbf{c} = -\mathbf{b}$. Hence

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = \mathbf{b} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{a}$$
$$= -\mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$$
$$= -|\mathbf{b}|^2 + |\mathbf{a}|^2$$

Theorem

The angle subtended by a diameter at the circumference of a circle is a right angle.

Proof

Let a, b and c be the vectors as shown in the diagram. We need to show that

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$$

as this means $(\mathbf{b} - \mathbf{a}) \perp (\mathbf{c} - \mathbf{a})$.

Now,
$$|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}|$$
 and $\mathbf{c} = -\mathbf{b}$. Hence

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = \mathbf{b} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{a}$$

$$= -\mathbf{b} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$$

$$= -|\mathbf{b}|^2 + |\mathbf{a}|^2$$

$$= 0.$$

b

18/18

which gives the claim.

