TWO MACHINE FLOW SHOP SCHEDULING PROBLEM WITH UNLIMITED INTERMEDIATE STORAGE

F2||Cmax Problem

Consider a flow shop with two machines in series with unlimited storage between the two machines. There are n jobs, the processing time of job j on machine 1 is p1j, and the processing time on machine 2 is p2j. This was one of the first problems to be analyzed in the early days of Operations Research and led to a classical paper in scheduling theory by S.M. Johnson. The rule that minimizes the makespan is commonly referred to as Johnson's rule.

SPT(1)-LPT(2) Schedule

An optimal sequence for F2||Cmax problem can be described as follows:

• Step 0:

Partition the jobs into two sets.

 $O = \{j: p1j < p2j\}, j=1...n$

 $R = \{j: p1j > p2j\}, j=1...n$

The jobs with p1j=p2j may be put in either set.

• Step 1:

Put the jobs in O into schedule S in increasing order of p1j (SPT).

Ties may be broken arbitrarily.

$$S = (... i, k, l,...)$$
 where p1i < p1k< p1l, i,k,l \in O

• Step 2: Add the jobs in R into schedule S in decreasing order of p2j (LPT).

Ties may be broken arbitrarily.

$$S = (..., i, k, l,..., t,u,v,...)$$
 where p2t> p2u> p2v , t,u,v $\in R$

A schedule S is referred to as a SPT(1)-LPT(2) schedule. Of course there may be more than one schedule constructed this way.

Case

There are 10 jobs to be scheduled. The processing times on two machines:

Table 1: Processing times of jobs on two machines

Job ID	p_{1j}	p_{2j}
1	6	3
2	4	8
3	12	5
4	6	11
5	10	6
6	6	4
7	3	10
8	15	7
9	9	11
10	10	2

In the sheet "Jobs", there should be a button. When one clicks the button, the Optimal Sequence table should be filled.

	Mach. 1	Mach. 2
J1	6	3
J2	4	8
J3	12	5
J4	6	11
J5	10	6
J6	6	4
J7	3	10
J8	15	7
J9	9	11
J10	10	2

Optimal Sequence