Math 260 HW I

Mario L. Gutierrez Abed

Section 1.2

- (9) Prove the following two corollaries:
- Corollary 1:

The zero vector, $\vec{0}$, is unique in a vector space.

Proof:

Assume there exists another zero vector in V, denoted $\hat{0}$, that also satisfies (VS3). Namely, $x + \hat{0} = x$ for all $x \in V$, and $\hat{0} \neq \vec{0}$. Then we have

$$x + \hat{0} = x = x + \vec{0}$$

$$x + \hat{0} = x + \vec{0}$$

$$\hat{0} = \vec{0} \quad \text{(by theorem 1.1)} \quad (\Rightarrow \Leftarrow)$$

We have a contradiction, which means that the zero vector of a vector space is unique. ■

• Corollary 2:

Each vector in a vector space has a unique additive inverse.

Proof:

From (VS4) we know that for each element x in a vector space V, there exists an element y in V such that x + y = 0. Now we assume that this element y, called the additive inverse of x, is not unique. Namely, there exists an element \hat{y} in V such that $x + \hat{y} = 0$, and $y \neq \hat{y}$. In this case we have

$$x + y = 0 = x + \hat{y}$$

$$x + y = x + \hat{y}$$

$$y = \hat{y} \text{ (by theorem 1.1) } (\Rightarrow \Leftarrow)$$

We have a contradiction, which means that the additive inverse of each element $x \in V$ is unique.

(17) Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{F}\}$, where \mathbb{F} is a field. Define addition of elements of V coordinatewise, and for $c \in \mathbb{F}$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) = (a_1, 0).$$

Is V a vector space over \mathbb{F} with these operations? Justify your answer.

Solution:

V is not a vector space. We can easily see that, with the way scalar multiplication has been defined there is no multiplicative identity. In other words, by letting c = 1 we have $1(a_1, a_2) = (a_1, 0) \neq (a_1, a_2)$. This violates one of the required properties of a vector space, hence we may conclude that V is not a vector space over \mathbb{F} .

(21) Let
$$V$$
 and W be vector spaces over a field \mathbb{F} . Let $\mathcal{Z} = \{(v, w) : v \in V \text{ and } w \in W\}.$

Prove that \mathcal{Z} is a vector space over \mathbb{F} with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (c v_1, c w_1)$.

Solution:

Let us test the conditions that \mathcal{Z} must meet in order to be considered a vector space:

 \rightarrow • Given two arbitrary vectors $(v_1, w_1), (v_2, w_2) \in \mathcal{Z}$, their sum is also in \mathcal{Z} :

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) \in \mathcal{Z}$$
 (closed under addition)

• Given an arbitray vector (v_1, w_1) and a scalar $c \in \mathbb{F}$, we have $c(v_1, w_1) \in \mathcal{Z}$, and $c(v_1, w_1) = (c v_1, c w_1) \in \mathcal{Z}$ (closed under scalar multiplication)

$$→ (VS1) (v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) = (v_2 + v_1, w_2 + w_1)$$

$$= (v_2, w_2) + (v_1, w_1)$$
 (commutativity of addition) \checkmark

 \rightarrow (VS2) Given three arbitrary vectors $(v_1, w_1), (v_2, w_2), (v_3, w_3) \in \mathcal{Z}$, we need to prove that $(v_1, w_1) + ((v_2, w_2) + (v_3, w_3)) = ((v_1, w_1) + (v_2, w_2)) + (v_3, w_3)$

First we start with the left hand side

$$(v_1, w_1) + ((v_2 + v_3, w_2 + w_3)) = (v_1 + v_2 + v_3, w_1 + w_2 + w_3)$$

Now the right hand side

$$((v_1 + v_2, w_1 + w_2)) + (v_3, w_3) = (v_1 + v_2 + v_3, w_1 + w_2 + w_3)$$
 (associativity of addition)

$$\rightarrow$$
 (VS3) $(v_1, w_1) + (0, 0) = (v_1 + 0, w_1 + 0) = (v_1, w_1)$ (existence of the additive identity) ✓

$$\rightarrow$$
 (VS4) $(v_1, w_1) + (-v_1, -w_1) = (v_1 + (-v_1), w_1 + (-w_1)) = (0, 0) = $\vec{0}$ (existence of the additive inverse) ✓$

$$\rightarrow$$
 (VS5) 1 (v_1 , w_1) = (1 v_1 , 1 w_1) = (v_1 , w_1) (existence of the multiplicative identity) \checkmark

→ (VS7) Given an arbitrary scalar
$$c \in \mathbb{F}$$
 and two arbitrary vectors (v_1, w_1) , $(v_2, w_2) \in \mathcal{Z}$, we have $c((v_1, w_1) + (v_2, w_2)) = c(v_1 + v_2, w_1 + w_2) = (c(v_1 + v_2), c(w_1 + w_2))$ = $(c v_1 + c v_2, c w_1 + c w_2) = (c v_1, c w_1) + (c v_2, c w_2) = c(v_1, w_1) + c(v_2, w_2)$ (distributivity) \checkmark

$$\rightarrow$$
 (VS8) Given two arbitrary constants $a, b \in \mathbb{F}$ and any given vector $(v_1, w_1) \in \mathcal{Z}$, we have $(a+b)(v_1, w_1) = ((a+b)v_1, (a+b)w_1) = (av_1 + bv_1, aw_1 + bw_1)$
$$= (av_1, aw_1) + (bv_1, bw_1) = a(v_1, w_1) + b(v_1, w_1)$$
 (distributivity) \checkmark

Since all the properties are satisfied, we can conclude that \mathcal{Z} is a vector space over \mathbb{F} .