Week 7 HWK

Ross Walker, Mike Kozel, Qi Hao March 21, 2018

Plot 1

Replicate the last plot from https://fivethirtyeight.com/features/what-the-world-thinks-of-trump/

Note: Fonts were shrunken to appear clean on the knitted HTML rather than in RStudio output.

```
suppressMessages(library(reshape2))
suppressMessages(library(ggplot2))
suppressMessages(library(dplyr))
urls <- paste0("https://raw.githubusercontent.com/fivethirtyeight/data/master/trump-world-trust/TRUMPWO
datalist = lapply(urls, function(x){read.csv(file = x, header = T, stringsAsFactors = F)})
names(datalist) <- c('climate_change', 'wall', 'Iran', 'trade', 'Muslim_travel')</pre>
regions <- list(
  `Europe and Russia` = c('France', "Germany", "Greece", "Hungary", "Italy", "Netherlands", "Poland", "
  `Middle East and Africa` = c("Israel", "Jordan", "Lebanon", "Tunisia", "Turkey", "Ghana", "Kenya", "N
  `South America and Mexico` = c("Argentina", "Brazil", "Chile", "Colombia", "Mexico", "Peru", "Venezue
  `Asia` = c("India", "Indonesia", "Japan", "Philippines", "South Korea", "Vietnam")
for(i in 1:length(datalist)){
  colnames(datalist[[i]])[2] <- names(datalist)[i]</pre>
  datalist[[i]] <- datalist[[i]][1:2]</pre>
}
main <- Reduce(function(x,y) {merge(x , y, by = 'country')}, datalist)</pre>
main <- main[-which(main$country %in% c("Canada", "Australia")), ]</pre>
main$region <- sapply(main$country, function(y){</pre>
  names(regions)[unlist(lapply(regions, function(x){
    return(y %in% x)
  }))]
}) %>%
  unlist
suppressMessages(gg <- melt(main))</pre>
gg$region <- as.factor(gg$region)</pre>
levels(gg$region) <- c("Asia", "Europe\nand Russia", "Middle East\nand Africa", "South America\nand Mex</pre>
levels(gg$variable) <- c("Withdraw from global climate change agreements", "Build a wall between the U.
ggplot(gg, aes(x = value, y = region, fill = factor(region))) +
  geom_point(shape = 21, size = 3, alpha = .5, aes(stroke = ifelse(country %in% c("Russia", "Germany",
  geom text(aes(label = ifelse(country %in% c("Russia", "Germany", "Israel", "Turkey", "Brazil", "Mexic
  geom_vline(xintercept = 0, color = "grey") +
  geom_vline(data = gg %>% group_by(variable) %>% summarise(avg = mean(value, na.rm = T)), aes(xinterce
  theme_light() +
```

```
ggtitle(label = "What do people in other countries think of Trump's proposed policies?", subtitle = "
facet_wrap(~variable, nrow = 1, labeller=label_wrap_gen()) +
theme(
  panel.grid.minor = element_blank(),
 panel.border = element_blank(),
  axis.ticks = element blank(),
  axis.title = element_blank(),
  axis.text.x = element blank(),
  axis.text.y = element text(color = "black", size = 12, hjust = 0),
  axis.line.x = element blank(),
 panel.grid.major.x = element_blank(),
 legend.position = "none",
  strip.background = element rect(fill="white"),
  strip.text = element_text(color = "black", size = 7),
  plot.title = element_text(size=12, hjust=0.5, face="bold", colour="black", vjust=-1),
 plot.subtitle = element_text(size=12, hjust=0.5, color="black")
```

What do people in other countries think of Trump's proposed policies Net approval rating for Trump's proposed policy to...

Plot 2

```
library(ggplot2)
library(dplyr)
library(magrittr)
```

```
library(tidyr)
library(purrr)
library(ggjoy)
library(ggridges)
library(scales)
library(MASS)
library(grid)
# hwk 2
# recreate 2nd plot
# ignore all polls button, for extra credit you can add it
# graph the upper and lower trend line
# add the *ribbon*
# add plots on top
# indicate 50% mark and make sure axis are same
# get text on the right added
topline <- read.csv('approval_topline.csv')</pre>
poll <- read.csv('approval_polllist.csv')</pre>
head(topline)
##
        president subgroup modeldate approve_estimate approve_hi approve_lo
## 1 Donald Trump
                  Voters 3/20/2018
                                             42.01020 46.33399
                                                                   37.68641
## 2 Donald Trump
                   Adults 3/20/2018
                                              39.91188 43.94455
                                                                    35.87922
                                              40.73125
## 3 Donald Trump All polls 3/20/2018
                                                         45.33642
                                                                    36.12609
## 4 Donald Trump
                                              41.74577
                    Voters 3/19/2018
                                                         46.24588
                                                                    37.24566
## 5 Donald Trump
                    Adults 3/19/2018
                                              39.92498
                                                         44.04139
                                                                    35.80856
## 6 Donald Trump All polls 3/19/2018
                                              40.73995
                                                         45.40366
                                                                    36.07623
## disapprove_estimate disapprove_hi disapprove_lo
                                                                timestamp
## 1
               52.84654
                              56.98879
                                           48.70428 16:10:49 20 Mar 2018
## 2
                54.14520
                              58.21628
                                            50.07412 16:10:40 20 Mar 2018
## 3
                53.52146
                              57.67319
                                           49.36973 16:10:30 20 Mar 2018
## 4
                                          48.76191 18:48:46 19 Mar 2018
                53.18254
                              57.60318
## 5
                54.20846
                              58.39294
                                          50.02398 18:48:37 19 Mar 2018
## 6
                              57.79469
                                            49.31954 18:48:27 19 Mar 2018
                53.55711
top <- topline %>%
  filter(
    subgroup == 'All polls'
  )
df <- poll %>%
  filter(
    subgroup == 'All polls'
  )
df$date <- format(as.Date(strptime(df$timestamp, '%H:%M:%S %d %b %Y')), '%d %b %Y')
df$date <- as.Date(df$date, '%d %b %Y')</pre>
df$date <- as.Date(df$startdate, '%m/%d/%Y')</pre>
```

```
top$date <- format(as.Date(strptime(top$timestamp, '%H:%M:%S %d %b %Y')), '%d %b %Y')
top$date <- as.Date(top$date, '%d %b %Y')</pre>
min <- as.Date('2017-1-23')
max <- as.Date('2018-1-23')
top$approve = top$approve estimate
top$disapprove = top$disapprove_estimate
ggplot() +
  geom_line(data=top, aes(x=date, y=approve_estimate, group=subgroup, color='Approve'), size = 1) +
  geom_line(data=top, aes(x=date, y=top$disapprove_estimate, group=subgroup, color='Disapprove'), size=
  geom_point(data=df, aes(x=date, y=df$adjusted_approve), color='dark green', alpha= .15) +
  geom_point(data=df, aes(x=date, y=df$adjusted_disapprove), color='dark orange', alpha=.15) +
  geom_ribbon(data=top, aes(x=date, ymin=top$approve_hi, ymax=top$approve_lo), alpha=0.1, color=NA) +
  geom_ribbon(data=top, aes(x=date, ymin=top$disapprove_lo, ymax=top$disapprove_hi), alpha=0.1, color=N
  scale_y\_continuous('', breaks = seq(20, 80, 10), limits = c(20,80)) +
  scale_x_date(breaks = seq(as.Date('2017-1-23'), as.Date('2018-1-23'), by='2 months'), labels = date_
  scale_color_manual(values = c('Approve'='dark green','Disapprove'='dark orange')) +
  theme bw() +
  theme(
    axis.ticks = element_blank(),
   legend.title = element_blank(),
   panel.border = element_rect(linetype = 'dashed', fill=NA)
  ) +
  geom_hline(yintercept = 50)
```


Plot 3

Question 3. from here on till the separation line below, are all from the midterm code, can be replaced with any code that outputs the final merged data

```
# read in data
load('Dyadicdata.RData')
         ### so the data is loaded in as "x", not sure why
    [1] "datalist" "df"
                               "gg"
                                                      "main"
                                                                 "max"
    [7] "min"
                   "poll"
                               "regions"
                                          "top"
                                                      "topline"
                                                                 "urls"
## [13] "x"
Dyadata <- x[which(x$ccode1==2),] ### isolate only to ccode1 == USA
library(foreign)
y <- read.dta('EPR3CountryNewReduced.dta') ### y is the EPR3 data frame
polity <- read.csv('p4v2016.csv', stringsAsFactors = F)</pre>
load('LJI-estimates-20140422.RData')
```

```
## again it is loaded in as x, so i'll rename it again
ljidata <- x
# merge data
library(countrycode)
Dyadata$cname <- countrycode(sourcevar=Dyadata$ccode2,origin="cown", destination='country.name')
y$country <- countrycode(sourcevar=y$cowcode,origin="cown", destination='country.name')
### according to the code book, the country code was in the "cow" format
### create the match variable, country_year
Dyadata$cyear <- paste( Dyadata$cname, Dyadata$year, sep='_')</pre>
y$cyear <- paste( y$country, y$year, sep='_')
# merge in from y
for (i in c("lmtnest", 'exclpop', 'ethfrac')){
  Dyadata[,i] <- y[,i][ match(Dyadata$cyear, y$cyear )]</pre>
# merge in from polity
### first, create binary variables bidemoc and biautoc
polity$bidemoc <- ifelse(polity$polity2 >= 6, 1, 0 )
polity$biautoc <- ifelse(polity$polity2 <= -6, 1, 0)</pre>
polity$country <- countrycode(sourcevar=polity$country,origin="country.name", destination='country.name
## Warning in countrycode(sourcevar = polity$country, origin = "country.name", : Some values were not m
## Warning in countrycode(sourcevar = polity$country, origin = "country.name", : Some strings were matc
polity$cyear <- paste( polity$country, polity$year, sep='_')</pre>
Dyadata[,"bidemoc"] <- polity[,'bidemoc'][ match(Dyadata$cyear, polity$cyear )]</pre>
Dyadata[,"biautoc"] <- polity[,'biautoc'][ match(Dyadata$cyear, polity$cyear )]</pre>
# merge in from ljidata
ljidata$X.country. <- countrycode(ljidata$X.ccode., "cown", "country.name")
## Warning in countrycode(ljidata$X.ccode., "cown", "country.name"): Some values were not matched unamb
ljidata$cyear <- paste(ljidata$X.country., ljidata$X.year., sep = "_")
Dyadata[,"lji"]<- ljidata[,"X.LJI."][ match(Dyadata$cyear, polity$cyear )]</pre>
merged_data <- Dyadata[,c("ccode2","year","absidealdiff","cyear","lmtnest","exclpop","ethfrac","bidemoc</pre>
head (merged data)
##
     ccode2 year absidealdiff
                                                 cyear lmtnest exclpop
## 1
         20 1946
                                                                  0.020
                        0.313
                                           Canada_1946 2.797281
## 2
         40 1946
                        0.777
                                                                  0.330
                                             Cuba_1946 1.694107
         41 1946
                                                                  0.000
## 3
                        1.494
                                            Haiti_1946 2.797281
## 4
         42 1946
                        0.338 Dominican Republic_1946 2.856470
                                                                  0.070
## 5
         70 1946
                        1.151
                                           Mexico_1946 3.471967
                                                                  0.115
         90 1946
                        1.527
                                        Guatemala_1946 3.763523
## 6
                                                                  0.392
        ethfrac bidemoc biautoc
                                   lji
## 1 0.75499403
                              0 0.8631
                   1
## 2 0.03572363
                     0
                              0 0.2609
## 3 0.01359123
                    0
                              0 0.4888
## 4 0.03698879
                     0
                              1 0.3711
## 5 0.30510819
                      0
                              1 0.9846
## 6 0.64368415
                      0
                              0 0.8780
```

```
# prepare data
for (i in c("lmtnest","exclpop","ethfrac","bidemoc","biautoc","lji")){
   merged_data <- merged_data[which(!is.na(merged_data[,i])),]
}
nrow(merged_data) ### rows has no missing value
## [1] 4164</pre>
```

up till here are all from mid-term code. can be replaced with any code that outputs the final merged data

now start to test test the uncertainty of the parameters, i choose model 2

```
model_2 <- "absidealdiff ~ lmtnest + exclpop + ethfrac"
lmoutput <- lm( model_2, merged_data)

betaMean = coef(lmoutput)
betaDist = vcov(lmoutput)
betaDraws = mvrnorm(1000, betaMean, betaDist)</pre>
```

create a function called substantive that takes the beta name and outputs the uncertainty graph

```
substantive <- function(betaname) {
  min <- min(merged_data[,betaname])
  max <- max(merged_data[,betaname])
  Values = seq(min, max, length.out=100)
  scenario = cbind(intercept=rep(1,100), lmtnest=mean(merged_data$lmtnest), exclpop = mean(merged_data$
  scenario[,betaname] <- Values
  yPred = scenario %*% betaMean
  yPredUncert = scenario %*% t(betaDraws)
  yPredInt = apply(yPredUncert, 1, function(x){quantile(x, c(0.025, 0.975), na.rm=TRUE) })
  yPredInt <- t(yPredInt)
  simAnalysis = data.frame(betaname=Values, yPred=yPred, yPredInt)
  names(simAnalysis)[3:4] = c('q95lo','q95hi')

ggplot(simAnalysis, aes(x=betaname, y=yPred)) + geom_line() + geom_ribbon(aes(ymin=q95lo, ymax=q95hi))
}
substantive('lmtnest')</pre>
```


so this beta estimate is not a good one because the ribon is too wide and the linear relation (beta)
substantive('exclpop')

this is better than the first one. although the uncertainty towards the end is getting bigger. in the substantive('ethfrac')

this is the best estimate. the ribon is narrow so the uncertainty is low.

R Markdown