Spatio-temporal statistics (MATH4341)

Michaelmas term, 2024

Homework 1: Point referenced data (building concepts)

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. (*) Let $Z = (Z(s) : s \in \mathbb{R}^d)$ be an intrinsic random field with E(Z(s) - Z(t)) = 0 and let $\gamma : \mathbb{R}^d \to \mathbb{R}$ be its semivariogram.

1. Let $a \in \mathbb{R}^n$ be a vector of constants. Consider sites $\{s_1, ..., s_n \subseteq \mathbb{R}^d\}$ Show that

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} Z\left(s_{i}\right)\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} c_{I}\left(s_{i}, s_{j}\right)$$

where $c_{I}\left(s,t\right)=\gamma\left(s-s_{0}\right)+\gamma\left(t-s_{0}\right)-\gamma\left(s-t\right)$ at some additional $s_{0}\in\mathbb{R}^{d}$.

2. Show that for all $n \in \mathbb{N}$, $(a_1, ..., a_n) \subseteq \mathbb{R}^n$ s.t. $\sum_{i=1}^n a_i = 0$, and for all $(s_1, ..., s_n) \subseteq S^n$, it is

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \gamma \left(s_i - s_j \right) \le 0$$

Exercise 2. (*) Consider the zero-mean random field $Z = (Z(s) : s \in \mathbb{R}^d)$ with covariogram function given by

$$c(h) = \begin{cases} \xi^{2} (1 + \rho \|h\|) \exp(-\rho \|h\|), & h > 0 \\ \nu^{2} + \xi^{2}, & h = 0 \end{cases}$$

- 1. Compute the semivariogram for the random field $(Z(s): s \in \mathbb{R}^d)$
- 2. What are the nugget, sill and partial sill for this covariance model? Justify your answer.
- 3. Would the slightly altered covariance function defined below be a good model for spatial data for $\phi > 0$? Justify your answer.

$$c(h) = \begin{cases} \xi^{2} (1 + \rho \|h\|) \exp(-\rho \|h\|) + \phi, & h > 0 \\ \nu^{2} + \xi^{2} + \phi, & h = 0 \end{cases}$$