Overfitting, Underfitting and Cross-Validation

Prof. Mingkui Tan

South China University of Technology
Southern Artificial Intelligence Laboratory(SAIL)

Content

Problem of Model Validation

- Underfitting and Overfitting
- Bias-Variance Tradeoff
- Cross-Validation
 - Training Data, Validation Data, Testing Data
 - Performance Report
 - Parameter Tuning
 - K-Fold Cross-Validation

Content

- Problem of Model Validation
 - Underfitting and Overfitting
 - Bias-Variance Tradeoff
- Cross-Validation
 - Training Data, Validation Data, Testing Data
 - Performance Report
 - Parameter Tuning
 - K-Fold Cross-Validation

Why We All Need Validation

1. Business Reasons

- Need to choose the best model.
- Measure accuracy/power of selected model.
- Good to measure ROI of the modeling project.

Statistical Reasons

- Model building techniques are inherently designed to minimize "loss" or "bias".
- To an extent, a model will always fit "noise" as well as "signal".
- → If you just fit a bunch of models on a given dataset and choose the "best" one, it will likely be overly "optimistic".

Some Definitions

- Target Variable: Y
 - What we are trying to predict.
 - House price,...
- Input Variables: $\{X_1, X_2, \dots, X_N\}$
 - Input features used to make predictions.
 - Size of house,
- Predictive Model: $Y = f(X_1, X_2, ..., X_N)$
 - Estimates the unknown value Y based on known values $\{X_i\}$.

General Fitting Scheme

Underfitting

Model cannot capture the underlying trend of the data

Solution to Underfitting

Model cannot capture the underlying trend of the data

The Problem of Overfitting

- Model is too complex to capture the true pattern
- Model seeks to fit the noise or outlier of the data

Underfitting vs Overfitting

Underfitting vs Overfitting

The Perils of Optimism

- Error on the dataset used to *fit* the model can be misleading
 - Doesn't predict future performance.
- Too much complexity can diminish model's accuracy on future data.
 - Sometimes called the Bias-Variance Tradeoff.

Training vs Test Error

The Bias-Variance Tradeoff

- Complex model:
 - Low "bias":
 - The model fit is good on the *training data*.
 - The model value is close to the data's expected value.
 - High "Variance":
 - Model more likely to make a wrong prediction.

Training vs Test Error

Signs of Underfitting/Overfitting

- How do we know if we are underfitting or overfitting?
- If by increasing capacity we decrease generalization error, then we are underfitting, otherwise we are overfitting.
- If the error in representing the training set is relatively large and the generalization error is large, then underfitting;

Signs of Underfitting/Overfitting

- Need to increase capacity (complexity of models).
- If the error in representing the training set is relatively small and the generalization error is large, then overfitting;
- Need to decrease capacity or increase training set.
- Many features and relatively small training set.
- if you have chosen a large capacity to complement the many features, then you might overfit the data:
- need to decrease the capacity.

Content

- Problem of Model Validation
 - Underfitting and Overfitting
 - Bias-Variance Tradeoff
- Cross-Validation
 - Training Data, Validation Data, Testing Data
 - Performance Report
 - Parameter Tuning
 - K-Fold Cross-Validation

Data Split

- Simplest idea: Divide data into 2 pieces.
 - Training data: data used to fit model
 - Test data: "fresh" data used to evaluate model
- Test data contains:
 - Actual target value Y
 - Model prediction Y*
- We can find clever ways of displaying the relation between Y and Y*.
 - Lift curves, gains charts, ROC curves

Testing Errors

How you can tell that a hypothesis overfits?

Plotting-not always good

We can split all data into 2 subsets

- ➤ Training set ≈ 70% of data, m-number of examples in the training set
- For Testing set \approx 30% of data, m_{test} -number of examples in the testing set

It's better to choose examples for training /testing sets randomly

Error Metrics		
	Prediction	Classification
Example Model	Linear Regression	Logistic Regression
Test Error	$J_{ ext{test}}(heta) = rac{1}{m_{ ext{test}}} \sum ext{error}ig(h_{ heta}(x_{ ext{test}}^{(i)}), y_{ ext{test}}^{(i)}ig)$	
$\operatorname{error}(h_{ heta}(x),y)$	Average Square Error $(h_{ heta}(x),y)=rac{1}{2}(h_{ heta}(x)-y)^2$	Misclassification Error $(h_{ heta}(x),y) = egin{cases} 0 ext{ if classification is correct} \ 1 ext{ otherwise} \end{cases}$

Validation

Generally cross-validation is used to find the best value of some parameter

- We still have training and testing sets
- ➤ But additionally we have a cross-validation set to test the performance of our model depending on the parameter

Cross-Validation for Evaluation

- Instead of splitting the data set into 2 categories, we split into 3 sets:
- ➤ Training set (≈60%)
 - $x^{(i)}$, $y^{(i)}$, total m examples
- Cross-validation set(or cv, ≈20%)
 - $x_{cv}^{(i)}, y_{cv}^{(i)}$, total m_{cv} examples
- ➤ Test set(≈20%)
 - $x_{\text{test'}}^{(i)}$ $y_{test}^{(i)}$, total m_{test} examples

Cross-Validation for Evaluation

Training error

$$J_{train}(\boldsymbol{\theta}) = \frac{1}{2m} \sum cost(\boldsymbol{x}^{(i)}, y^{(i)})$$

Cross-Validation error

$$J_{cv}(\boldsymbol{\theta}) = \frac{1}{2m_{cv}} \sum cost(\boldsymbol{x}_{cv}^{(i)}, y_{cv}^{(i)})$$

Test Error

$$J_{test}(\boldsymbol{\theta}) = \frac{1}{2m_{test}} \sum cost(\boldsymbol{x}_{test}^{(i)}, y_{test}^{(i)})$$

For model selection, we

- ightharpoonup Obtain $m{ heta}^{(1)}$,..., $m{ heta}^{(d)}$ and select best (lowest) $J_{cv}(m{ heta}^{(i)})$
- For final evaluation, we
- ightharpoonup Evaluate generalization error $J_{test}(oldsymbol{ heta}^{(i)})$ on testing set

Tuning Learning Parameter

- ➤ Split data set into
 - Learning set
 - Validation set
 - Test set

Training Validation Testing

Used to build the model

testing

Used to evaluate generalisation

Used to evaluate performances

- Use validation set for tuning hyper-parameters
- Use testing set only for final evaluation

Example: Tuning Regularization Parameter λ

Suppose now we're fitting a model with high-order polynomial

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_4 x^4$$

To prevent overfitting we use regularization

•
$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(\boldsymbol{x}_i), y_i) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

Regularization Parameter λ

- (a)If λ is large (say λ =10000), all $\boldsymbol{\theta}$ are penalized and $\theta_1 \approx \theta_2 \approx \cdots \approx 0$, $h_{\boldsymbol{\theta}}(\mathbf{x}) \approx \theta_0$.
- (b)If λ is intermediate, we fit well.
- (c)If λ is small(close to 0), we fit too well, i.e. we overfit.

Chose good λ on validation set

- \triangleright Choose a range of possible values for λ (0.02, 0.04,...,0.24)
- That gives us 12 models to checks
- \triangleright For each λ_i
 - Calculate θ_i
 - Calculate $J_{cv}(\boldsymbol{\theta}_i)$
 - And take λ_i with lowest $J_{cv}(\boldsymbol{\theta}_i)$
- \succ Finally, we report the test error as $J_{test}(\boldsymbol{\theta}_i)$
 - Dataset divided in three subsets: training, validation and testing

K-Fold Cross-Validation

If we want to reduce variability in the data

- We can use multiple rounds of cross-validation using different partitions
- And then average the result over all rounds
 We're given a dataset S sampled from the population D

K-Fold Cross-Validation

- Partition data S into K equal disjoint subsets $(T_1,...,T_k)$ (typically 5-10 subsets)
- Perform following K steps for k=1...K
 - Use R_k =S- T_k as the training set
 - Build classifier C_k using R_k
 - Use T_k as the validation set, compute error $Err_k = error(C_k, T_k)$
- ightharpoonup Let $Err^{ave} = \frac{1}{K} \sum_{k=1}^{K} Err_k$
 - This is the averaged error rate

Tuning Learning Parameter

Choosing best parameter λ with K-Fold Cross-Validation

- > Split your data into training set and validation set
- \triangleright For every possible value λ , estimate the error rate
- \triangleright Select λ with least average error rate Err^{ave}

Final evaluation on testing set