MATEMATICA DISCRETA - ELEMENTI DI ALGEBRA LINEARE (CdL Informatica) ISTITUZIONI DI MATEMATICHE - ELEMENTI DI ALGEBRA LINEARE (CdL Chimica) 21 Luglio 2014 - Prova parziale

Nome	e	Cognome
Tionic	C	Cognome

Matricola:

Corso di Laurea:

In TUTTI gli esercizi sostituire k con l' ultima cifra della propria matricola

1. Basi

Determinare se i vettori (1, 0, 2, -1), (3, k, 1, 2), (-3, 1, 0, 4), (4, -1, 2, -5) sono o no una base di \mathbb{R}^4 .

2. Nullita

Determinare il rango della trasformazione lineare \mathbb{R}^3 in \mathbb{R}^3 di rappresentata, rispetto alla base canonica, dalla seguente matrice: $\begin{pmatrix} k+1 & 2 & 11 \\ 0 & 1 & 3 \\ -1 & 0 & 3 \end{pmatrix}$.

3. Autovettori e autovettori

Determinare gli autovalori e gli autovettori dell'operatore lineare di \mathbb{R}^2 in \mathbb{R}^2 che manda i due vettori e_1,e_2 della base canonica di \mathbb{R}^2 rispettivamente in (1,1) e (0,k+2).

MATEMATICA DISCRETA - ELEMENTI DI ALGEBRA (CdL Informatica) 21 Luglio 2014 - Prova parziale

Nome e Cognome:

Matricola:

Ove necessario sostituire k con l'ultima cifra della propria matricola

1. Omomorfismi

Sia G un gruppo, $g \in G$, e sia $\alpha : \mathbb{Z} \to G$ la funzione definita da $\alpha(n) = x^n$. Mostrare che α e' un omomorfismo di gruppi.

2. Gruppi

Usare il teorema di Lagrange per mostrare esplicitamente che un gruppo di 12 elementi non ha sottogruppi di ordine 5 (non basta ricordare l'enunciato del teorema, occorre ricordare la dimostrazione).

3. Numeri complessi

Risolvere l'equazione $z = -\overline{z}$ in campo complesso.