Physics 231B Homework #7

Nathan Solomon

June 14, 2024

Consider the n-fold tensor product

$$\mathbb{C}^{2^n} = \bigotimes_{i=1}^n \mathbb{C}^2$$

and define the Pauli matrices X_i, Y_i, Z_i as acting on the ith factor via

$$X_1 = X \otimes I \otimes \cdots \otimes I,$$

 $X_2 = I \otimes X \otimes I \cdots \otimes I,$
 \cdots
 $X_n = I \otimes I \otimes \cdots X,$

and so on (using the shorthand $\sigma^x = X$, $\sigma^y = Y$, $\sigma^z = Z$). With these, we define 2n "Majorana" operators via $\gamma_1 = X_1, \gamma_2 = Y_1$, and for $1 \le k < n$:

$$\gamma_{2k+1} = \left(\prod_{i=1}^k Z_i\right) X_i$$
$$\gamma_{2k+2} = \left(\prod_{i=1}^k Z_i\right) Y_i.$$

This is called the Jordan-Wigner transformation. The next few problems will develop spinor representations from these variables.

Problem 0.1. Prove that these satisfy the Clifford algebra relations:

$$\begin{cases} \gamma_i^2 = 1 & \text{for any } i \\ \gamma_i \gamma_j = -\gamma_j \gamma_i & \text{whenever } i \neq j \end{cases}$$

Problem 0.2. Recall $\mathfrak{so}(2)$ is the Lie algebra of anti-symmetric real matrices. Prove that

$$A_{\mu\nu} \mapsto \frac{1}{4} A_{\mu\nu} \gamma_{\mu} \gamma_{\nu}$$

defines a Lie algebra representation of $\mathfrak{so}(2n)$ on \mathbb{C}^{2^n} . In other words, prove

$$\frac{1}{16}A_{ij}B_{kl}[\gamma_i\gamma_j,\gamma_k,\gamma_l] = \frac{1}{4}[A,B]_{ab}\gamma_a\gamma_b.$$

1

Problem 0.3. We define the group Spin(2n) by exponentiating these operators inside $U(2^n)$:

$$\exp\left(\frac{1}{2}A_{\mu\nu}\gamma_{\mu}\gamma_{\nu}\right).$$

Show that the conjugation action of these operators on the Clifford algebra acts on γ_i according to the 2n-dimensional representation on the index i, thus giving a surjective map $Spin(2n) \to SO(2n)$.

Problem 0.4. Show that the representation of Spin(2n) on \mathbb{C}^{2^n} we have obtained from this construction does not define an SO(2n) representation. Decompose this representations into irreducibles of $Spin(4) = SU(2) \times SU(2)$ in the case n = 2.

Problem 0.5. The action of Spin(2n) on \mathbb{C}^{2^n} is reducible because of the commuting element $\gamma_c := \prod_{i=1}^n Z_i$. Prove that this element satisfies

$$\gamma_c^2 = 1$$

$$\gamma_i \gamma_c = -\gamma_c \gamma_i.$$

Thus we get a 2^n dimensional representation of $\mathfrak{so}(2n+1)$ and a corresponding double cover group Spin(2n+1). Verify for n=1 we get the identification Spin(3)=SU(2).