$\label{eq:energy} \hbox{IEEE Big Data 2018}$ Computer Science Department at UFMG & Kunumi

Dynamic Prediction of ICU Mortality Risk Using Domain Adaptation

Tiago Alves (tiagohca@kunumi.com) Alberto Laender (laender@dcc.ufmg.br) Adriano Veloso (adrianov@dcc.ufmg.br) Nivio Ziviani (nivio@dcc.ufmg.br)

December, 2018

► Intensive Care Unit (ICU) is a special hospital area to treat patients that need constant attention.

- ► Intensive Care Unit (ICU) is a special hospital area to treat patients that need constant attention.
- ▶ Data from patients in the ICU are complex, extensive.

- ► Intensive Care Unit (ICU) is a special hospital area to treat patients that need constant attention.
- ▶ Data from patients in the ICU are complex, extensive.
- Monitoring patients in ICU can become a complex task as data becomes larger.

▶ Use of machine learning models.

- ▶ Use of machine learning models.
- Usually not enough data from single ICU.

- ▶ Use of machine learning models.
- Usually not enough data from single ICU.
- ▶ Models often lacks generalization as we change the population.

▶ Deep learning models to predict mortality

- ► Deep learning models to predict mortality
- ▶ Domain adaptation allows to create ICU specific models

- Deep learning models to predict mortality
- ▶ Domain adaptation allows to create ICU specific models
- Models are individual and dynamic

- Deep learning models to predict mortality
- ▶ Domain adaptation allows to create ICU specific models
- ► Models are individual and dynamic
- Mortality risk space

Contributions

- Deep learning models to predict mortality
- Domain adaptation allows to create ICU specific models
- ► Models are individual and dynamic
- Mortality risk space
- Model's explanation

▶ PhysioNet 2012 Challenge dataset [Silva et al., 2012].

- ▶ PhysioNet 2012 Challenge dataset [Silva et al., 2012].
- ► Records from 4000 patients.

- ▶ PhysioNet 2012 Challenge dataset [Silva et al., 2012].
- ▶ Records from 4000 patients.
- Age, gender, height, weight and 37 time-stamped physiological parameters.

- ▶ PhysioNet 2012 Challenge dataset [Silva et al., 2012].
- ▶ Records from 4000 patients.
- Age, gender, height, weight and 37 time-stamped physiological parameters.
- First 48 hours of ICU stay.

- ▶ PhysioNet 2012 Challenge dataset [Silva et al., 2012].
- ▶ Records from 4000 patients.
- Age, gender, height, weight and 37 time-stamped physiological parameters.
- First 48 hours of ICU stay.
- ► Target is in-hospital death.

4 Different ICU

- ► Cardiac Surgery Recovery Unit
- ► Coronary Care Unit
- ► Medical ICU
- ► Surgical ICU

	Cardiac	Coronary	Medical	Surgical
N	874	577	1,481	1,067
Age	67.91	69.22	62.83	60.50
Mortality Rate	4.9%	14.0%	18.6%	14.5%

	Cardiac	Coronary	Medical	Surgical
N	874	577	1,481	1,067
Age	67.91	69.22	62.83	60.50
Mortality Rate	4.9%	14.0%	18.6%	14.5%

	Cardiac	Coronary	Medical	Surgical
N	874	577	1,481	1,067
Age	67.91	69.22	62.83	60.50
Mortality Rate	4.9%	14.0%	18.6%	14.5%

	Cardiac	Coronary	Medical	Surgical
N	874	577	1,481	1,067
Age	67.91	69.22	62.83	60.50
Mortality Rate	4.9%	14.0%	18.6%	14.5%

Relative frequency in which physiological parameters are measured in different ICU domains.

Mean value for non-surviving patients at the Coronary ICU through time.

Mean value for non-surviving patients at the Cardiac ICU through time.

Mean value by ICU and outcome through time.

Network Architecture Methodology

Network architecture for predicting patient outcomes over time.

▶ Learn from source domain, specifies for target

- ▶ Learn from source domain, specifies for target
- ► Train over all available data

- ▶ Learn from source domain, specifies for target
- ► Train over all available data
- ► Fine-tune for the desired ICU

- ▶ Learn from source domain, specifies for target
- ► Train over all available data
- Fine-tune for the desired ICU
- First layers extract more general features

Feature Transferability Methodology

NF: No layers are frozen during fine-tuning.

Feature Transferability

FC: Freeze CNN layers during fine-tunning.

Feature Transferability Methodology

FCL: Freeze CNN and LSTM layers during fine-tunning.

FCR: Freeze CNN layer and all other layers have their weights randomly initialized during fine-tunning.

FCLR: Freeze CNN and LSTM layers and all other layers have their weights randomly initialized during fine-tunning.

Tiago Alves |

Domain Adaptation Approaches Experimental Results

AUC numbers for different feature transference approaches

Target	NF	FC	FCL	FCR	FCLR
Cardiac	0.852	0.885	0.829	0.849	0.858
Coronary	0.848	0.812	0.807	0.793	0.784
Medical	0.754	0.763	0.782	0.759	0.736
Surgical	0.822	0.827	0.808	0.818	0.788
Overall	0.819	0.822	0.806	0.804	0.791

AUC numbers for baselines and approaches

Model	Cardiac	Coronary	Medical	Surgical	Avg
SVM	0.627	0.572	0.503	0.532	0.558
LR	0.629	0.601	0.510	0.517	0.564
RF	0.610	0.578	0.587	0.623	0.599
TT	0.821	0.769	0.722	0.727	0.759
LSTM	0.812	0.807	0.742	0.769	0.782
CNN	0.866	0.802	0.747	0.812	0.807
NT^-	0.876	0.833	0.737	0.801	0.812
NT	0.876	0.837	0.757	0.812	0.820
[Che et al., 2015]	0.853	0.802	0.760	0.785	0.800
[Che et al., 2018]	0.868	0.824	0.775	0.823	0.823
CNN-LSTM	0.885	0.848	0.782	0.827	0.836

CNN-LSTM AUC within the first y hours (5 \leq y \leq 48).

Gains over [Che et al., 2015] at different prediction times $(5 \le y \le 48)$.

Mortality risk space for different ICU domains. Regions in red are risky.

Experimental Results Explanation

Explanations for a surviving patient instance

Explanation Experimental Results

Explanations for a surviving patient instance

Conclusion

▶ Patients within a specific ICU domain are different from patients within other domains.

Conclusion

- Patients within a specific ICU domain are different from patients within other domains.
- ▶ Deep learning models can employ local and temporal feature extractors to perform dynamic predictions, potentially leading to earlier diagnosis.

Conclusion

- Patients within a specific ICU domain are different from patients within other domains.
- ▶ Deep learning models can employ local and temporal feature extractors to perform dynamic predictions, potentially leading to earlier diagnosis.
- Specific models built with domain adaptation outperforms the general models.

$\label{eq:energy} \hbox{IEEE Big Data 2018}$ Computer Science Department at UFMG & Kunumi

Dynamic Prediction of ICU Mortality Risk Using Domain Adaptation

Tiago Alves (tiagohca@kunumi.com) Alberto Laender (laender@dcc.ufmg.br) Adriano Veloso (adrianov@dcc.ufmg.br) Nivio Ziviani (nivio@dcc.ufmg.br)

December, 2018