SSH - Secure Shell

Week 6

Cryptography

- Plaintext Actual message
- **Ciphertext** Encrypted message (unreadable gibberish)
- **Encryption** Going from plaintext to ciphertext
- **Decryption** Going from ciphertext to plaintext
- Secret key
 - Part of the mathematical function used to encrypt/decrypt.
 - Good key makes it hard to get back plaintext from ciphertext

Image Source: gpgtools.org

Symmetric-key Encrption

- Same secret key used for encryption and decryption
- Example : Data Encryption Standard (DES)
- Caesar's cipher
 - Map the alphabet to a shifted version
 - ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - DEFGHIJKLMNOPQRSTUVWXYZABC
 - Plaintext SECRET. Ciphertext VHFUHW
 - Key is 3 (number of shifts of the alphabet)
- Key distribution is a problem
 - The secret key has to be delivered in a safe way to the recipient
 - Chance of key being compromised

Image Source: wikipedia

Image Source: gpgtools.org

Public-key Encryption (Asymmetric)

- Uses a pair of keys for encryption
 - Public key Published and known to everyone
 - Private key Secret key known only to the owner
- Encryption
 - Use public key to encrypt messages
 - Anyone can encrypt message, but they cannot decrypt the ciphertext
- Decryption
 - Use private key to decrypt messages
- **Example**: **RSA** Rivest, Shamir & Adleman
 - Property used Difficulty of factoring large integers to prime numbers
 - N = p * q (3233 = 61 * 53)
 - N is a large integer and p, q are prime numbers
 - N is part of the public key
 - http://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Image Source: MSDN

Secure Shell (SSH)

Telnet

- Remote access
- Not encrypted
- Packet sniffers can intercept sensitive information (username/password)

SSH

- Run processes remotely
- Encrypted session
- Session key (secret key) used for encryption during the session

An unencrypted login session such as through telnet

An encrypted login session such as through SSH

Image Source: suso.com

Secure Shell (SSH) – Client Authentication

- Password login
 - ssh username@ugrad.seas.ucla.edu
- Passwordless login with keys
 - Use private/public keys for authentication (Server and Client authentication)
 - ssh-keygen
 - Passphrase (longer version of a password / more secure)
 - Passphrase for protecting the private key
 - Passphrase needed whenever the keys are accessed
 - ssh-copy-id username@ugrad.seas.ucla.edu
 - Copies the public key to the server (~/.ssh/authorized_keys)
 - Login without password
 - ssh username@ugrad.seas.ucla.edu
 - Run scripts/commands on the remote machine
 - ssh username@ugrad.seas.ucla.edu ls
 - But you need to provide the passphrase to use the private key

Secure Shell (SSH) – Client Authentication

- Passphrase-less authentication
 - ssh-agent Authentication agent
 - Manages private key identities for SSH
 - To avoid entering the passphrase whenever the key is used
 - ssh-add
 - Registers the private key with the agent
 - · Passphrase asked only once
 - ssh will ask the ssh-agent whenever the private keys are needed

Encryption Schemes for SSH

Session encryption

- Symmetric encryption
- Exchange secret key (Example Diffie-Hellman)

Host/Client Validation

- Public-key Encryption
- Challenge-Response
 - Host sends a "challenge" that has to be answered by the client.
 - Similarly, client sends a "challenge" that has to be answered by the host.

Account Administration

- Install OpenSSH (Should be done on both server and client)
 - \$ sudo apt-get update
 - \$ sudo apt-get install openssh-server
 - \$ sudo apt-get install openssh-client

Server

- \$ sudo useradd -d /home/<username> -m <UserName>
- \$ sudo passwd <username>
- \$ cd /home/<username>
- \$ sudo mkdir .ssh
- \$ sudo chown -R <username> .ssh
- \$ sudo chmod 700 .ssh
- \$ ifconfig (This will give you the IP address of the server. Give this to your partner.)
- \$ ps aux | grep ssh (This should show a process named 'sshd' the ssh daemon/server)

Client

- Password login
 - \$ ping server ip addr (Just to check if the server responds)
 - \$ ssh <username>@server ip addr
- Password-less login
 - \$ ssh-keygen
 - \$ ssh-copy-id -i <username>@server ip addr
 - \$ ssh <username>@server ip addr [Should not ask for login password]
- Passphrase-less login
 - \$ ssh-add
 - \$ ssh <username>@server_ip_addr [Should not ask for key's passphrase]
- X Session forwarding Running programs with GUI
 - \$ ssh -X <UserName>@server ip addr
 - \$ xterm
 - \$ firefox

X Session forwarding

- X is the windowing system for GUI apps on Linux
- You want to run such apps remotely, but the GUI should show up on the local machine
 - ssh -X username@ugrad.seas.ucla.edu
 - gedit
 - gimp

Secure copy (scp)

- Based on Secure Shell (ssh)
- Used for transferring files between hosts in a secure way (encrypted)
- Usage similar to cp
 - scp [source] [destination]
- Transferring to remote host
 - scp /home/username/doc.txt username@ugrad.seas.ucla.edu:/home/user/docs/
- Transferring from remote host
 - scp username@ugrad.seas.ucla.edu:/home/user/docs/foo.txt /home/username

Digital Signature

- Protect integrity of the documents
 - Receiver received the document that the sender intended
- Digital signature is extra data attached to the document that can be used to check tampering
- Message digest
 - Shorter version of the document
 - Generated using **hashing** algorithms
 - Even a slight change in the original document will change the message digest with high probability

Digital Signature

- Verifies document integrity
- Does it prove origin?
- Who is Certificate Authority (CA) ?

Certificate Authority

- A Certificate authority (CA) is a trusted third party (Verisign ,Symantec, etc)
- Issues digital certificates (online identity of persons, companies) that map public keys to an entity
- Browsers have a list of trusted CAs that can be referred to, whenever the user needs to know the owner of a public key (verify a Digital Certificate)
- More details of the verification process at https://sites.google.com/site/ddmwsst/digital-certificates

GNU Privacy Guard

```
• gpg [option]
```

```
--gen-key (Generating new keys)
```

```
- --armor (ASCII format)
```

--export (Exporting public key)

--import (Import public key)

--detach-sign (Creates a file with just the signature)

--verify (Verify signature with a public key)

--encrypt (Encrypt document)

--decrypt (Decrypt document)

--list-keys (List all keys in the keyring)

--send-keys (Register key with a public server / –keyserver option)

--search-keys (Search for a someone's key)