```
# gerardo Herrera... svm (kernel lineal) con 28k instacias de normal y recovering y 24 sensor
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files und
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#matplotlib inline
#sensor77 = pd.read_csv('../input/vombas/sensor_procesado.csv')
#sensor77 = pd.read csv('../input/vombas-28955-balanced-25sensor/sensor2-ordenado status sin
#sensor77 = pd.read_csv('../input/bombas-sensores-conocidos/sensor2.csv')
#sensor77 = pd.read_csv('../input/10ks25/s25balanced10k.csv')
#sensor77 = pd.read csv('../input/28k-s24-balan-vombas/sensor2-ordenado status sin broken bal
sensor77 = pd.read_csv('/content/drive/My Drive/datasets/sensor2-ordenado_status_sin_broken_b
cleanup nums = {"machine status":
                                      {"NORMAL": 0, "RECOVERING": 1, "BROKEN": 2}}
sensor77.replace(cleanup nums, inplace=True)
print(sensor77.shape)
sensor77.head()
```

(28002, 27)

	Unnamed: 0	timestamp	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04	sensor_
0	0	2018-04- 01 00:00:00	2.465394	47.09201	53.2118	46.310760	634375.0000	47.524
1	1	2018-04- 01 00:01:00	2.465394	47.09201	53.2118	46.310760	634375.0000	47.524
2	2	2018-04- 01 00:02:00	2.444734	47.35243	53.2118	46.397570	638.8889	48.177
3	3	2018-04- 01 00:03:00	2.460474	47.09201	53.1684	46.397568	628125.0000	48.65€
4	4	2018-04- 01 00:04:00	2.445718	47.13541	53.2118	46.397568	636.4583	49.062

sensor77.isnull()

	Unnamed: 0	timestamp	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04	sens
0	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	
27997	False	False	False	False	False	False	False	
27998	False	False	False	False	False	False	False	
27999	False	False	False	False	False	False	False	
28000	False	False	False	False	False	False	False	
28001	False	False	False	False	False	False	False	

28002 rows × 27 columns

[#] sensor77.dropna()

[#] sensor77.fillna(0, inplace=True)

sensor77.fillna(sensor77.mean(), inplace=True)

print(sensor77.shape)
sensor77.head()

(28002, 27)

	Unnamed: 0	timestamp	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04	sensor_
0	0	2018-04- 01 00:00:00	2.465394	47.09201	53.2118	46.310760	634375.0000	47.524
1	1	2018-04- 01 00:01:00	2.465394	47.09201	53.2118	46.310760	634375.0000	47.524
2	2	2018-04- 01 00:02:00	2.444734	47.35243	53.2118	46.397570	638.8889	48.177
3	3	2018-04- 01 00:03:00	2.460474	47.09201	53.1684	46.397568	628125.0000	48.656
4	4	2018-04- 01 00:04:00	2.445718	47.13541	53.2118	46.397568	636.4583	49.062

```
is_NaN = sensor77.isnull()
row_has_NaN = is_NaN.any(axis=1)
rows_with_NaN = sensor77[row_has_NaN]
```

print(rows_with_NaN)

Empty DataFrame

Columns: [Unnamed: 0, timestamp, sensor_00, sensor_01, sensor_02, sensor_03, sensor_04,
Index: []

#Show the number of missing (NAN, NaN, na) data for each column sensor77.isnull().sum()

Unnamed: 0	0
	^
timestamp	0
sensor_00	0
sensor_01	0
sensor_02	0
sensor_03	0
sensor_04	0
sensor_11	0
sensor_14	0

```
sensor 16
                       0
     sensor_17
                       0
                       0
     sensor 18
     sensor 19
                       0
     sensor 20
                       0
     sensor_21
                       0
     sensor 22
                       0
     sensor 23
     sensor_25
                       0
     sensor 26
                       0
     sensor 27
                       0
     sensor_28
                       0
     sensor 30
                       0
     sensor_31
                       0
     sensor 44
     sensor 50
                       0
     sensor 51
                       0
     machine_status
                       0
     dtype: int64
#sensor77.drop('sensor_15', axis=1, inplace=True);
#sensor77.drop('sensor 15', axis=1, inplace=True)
#sensor77.drop('sensor 05', axis=1, inplace=True);sensor77.drop('sensor 06', axis=1, inplace=
#sensor77.drop('sensor 07', axis=1, inplace=True);sensor77.drop('sensor 08', axis=1, inplace=
#sensor77.drop('sensor_09', axis=1, inplace=True);sensor77.drop('sensor_10', axis=1, inplace=
#sensor77.drop('sensor_12', axis=1, inplace=True);sensor77.drop('sensor_13', axis=1, inplace=
#sensor77.drop('timestamp', axis=1, inplace=True)
#sensor77.drop('Unnamed: 0', axis=1, inplace=True)
print(sensor77.shape)
sensor77.head()
```

(28002, 27)

	Unnamed: 0	timestamp	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04	sensor_
0	0	2018-04- 01 00:00:00	2.465394	47.09201	53.2118	46.310760	634375.0000	47.524
1	1	2018-04- 01 00:01:00	2.465394	47.09201	53.2118	46.310760	634375.0000	47.524
2	2	2018-04- 01 00:02:00	2.444734	47.35243	53.2118	46.397570	638.8889	48.177
import ti	ime 3	UT	Z.4bU4/4	47.09201	53.1084	40.39/508	b∠81∠5.UUUU	48.05¢

X=sensor77[['sensor_00', 'sensor_01', 'sensor_02', 'sensor_03','sensor_04', 'sensor_11', 'sen
#y=sensor['target'] # Labels
y=sensor77['machine_status'] # Labels

print(X.shape)
X.head()

(28002, 24)

	sensor_00	sensor_01	sensor_02	sensor_03	sensor_04	sensor_11	sensor_14	ser
0	2.465394	47.09201	53.2118	46.310760	634375.0000	47.52422	419.5747	4
1	2.465394	47.09201	53.2118	46.310760	634375.0000	47.52422	419.5747	4
2	2.444734	47.35243	53.2118	46.397570	638.8889	48.17723	420848.0000	4
3	2.460474	47.09201	53.1684	46.397568	628125.0000	48.65607	420.7494	4628
4	2.445718	47.13541	53.2118	46.397568	636.4583	49.06298	419.8926	4

Scale the data to be between -1 and 1
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X)
X = scaler.transform(X)

no coorrer
#import time

```
#X train=X
#start = time.time()
#X = sensor77.drop('machine status', axis=1)
#y = sensor77['machine status']
#from sklearn import preprocessing
#X train = preprocessing.scale(X train)
#X test = preprocessing.scale(X test)
#from sklearn.model selection import train test split
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
#from sklearn.preprocessing import MinMaxScaler
#scaling = MinMaxScaler(feature range=(-1,1)).fit(X train)
#X train = scaling.transform(X train)
#X test = scaling.transform(X test)
#!pip install sklearn.grid search
#from sklearn.svm import SVR
#from sklearn.grid search import GridSearchCV
#svclassifier = SVR(kernel='linear')
#svclassifier.fit(X train, y train)
#from sklearn.svm import SVC
#svclassifier = SVC(kernel='linear')
#svclassifier.fit(X train, y train)
#stop = time.time()
#print(f"Training time: {stop - start}s")
start = time.time()
#X = sensor77.drop('machine status', axis=1)
#y = sensor77['machine status']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
from sklearn.svm import SVC
#svclassifier = SVC(kernel='rbf', random state=0, gamma=.01, C=1)
#svclassifier = SVC(kernel='poly', degree=8)
#svclassifier = SVC(kernel='sigmoid')
svclassifier = SVC(kernel='linear')
svclassifier.fit(X train, y train)
stop = time.time()
print(f"Training time: {stop - start}s")
     Training time: 59.443317890167236s
```

```
y pred = svclassifier.predict(X test)
#Evaluacion
from sklearn.metrics import classification report, confusion matrix
print(confusion_matrix(y_test,y_pred))
print(classification report(y test,y pred))
     [[2561 235]
      [ 579 2226]]
                   precision
                                recall f1-score
                                                    support
                0
                        0.82
                                  0.92
                                             0.86
                                                       2796
                1
                        0.90
                                  0.79
                                             0.85
                                                       2805
                                             0.85
                                                       5601
         accuracy
        macro avg
                        0.86
                                  0.85
                                             0.85
                                                       5601
     weighted avg
                        0.86
                                   0.85
                                             0.85
                                                       5601
# validacion cruzada
from sklearn.model selection import cross validate
#from sklearn.model selection import cross val score
# https://scikit-learn.org/stable/modules/cross validation.html
##start3 = time.time()
#from sklearn import svm
#from sklearn.model selection import cross val score
#start3 = time.time()
#clf = svm.SVC(kernel='rbf', random_state=0, gamma=.01, C=1)
#clf = svm.SVC(kernel='poly', degree=8)
#clf = svm.SVC(kernel='sigmoid')
#clf = svm.SVC(kernel='linear')
#scores = cross val score(clf, X, y, cv=5)
#scores = cross_val_score(clf, X, y, cv=10)
#scores
#print(scores.mean())
#stop3 = time.time()
#print(f"CV Training time: {stop3 - start3}s")
#start3 = time.time()
from sklearn import svm
from sklearn.model selection import cross val score
from sklearn.model_selection import cross_validate
start3 = time.time()
#clf = svm.SVC(kernel='rbf', random state=0, gamma=.1, C=1)
#clf = svm.SVC(kernel='poly', degree=8)
#clf = svm.SVC(kernel='sigmoid')
```

https://colab.research.google.com/drive/1rDuoKJ191i2coHFnegJyHJpIzNlsiEwD#printMode=true

```
clf = svm.SVC(kernel='linear')
#scores = cross val score(clf, X, y, cv=5)
#scores = cross_val_score(clf, X, y, cv=10)
#cv = cross val score(clf, X, y, cv=10)
#cv = cross validate(clf, X, y, cv=10)
cv1 = cross_validate(clf, X, y, cv=10,scoring ='accuracy')
#scores
#cv
#print(scores.mean())
#print(cv.mean())
f1=cross validate(clf, X,y, cv=10, scoring ='f1')
recall score=cross validate(clf, X,y, cv=10, scoring ='recall')
pre score=cross validate(clf, X,y, cv=10, scoring ='precision macro')
print(confusion_matrix(y_test,y_pred))
print(f"precision macro score:")
print(pre_score['test_score'])
print(pre score['test score'].mean())
#print(f"test score:")
#print(cv['test score'])
#print(cv['test_score'].mean())
print(f"accu:")
print(cv1['test score'])
print(cv1['test_score'].mean())
#
print(f"recall:")
print(recall score['test score'])
print(recall score['test score'].mean())
print(f"f1score:")
print(f1['test score'])
print(f1['test_score'].mean())
stop3 = time.time()
print(f"CV Training time: {stop3 - start3}s")
     [[2561 235]
      [ 579 2226]]
     precision macro score:
     [0.87738344 0.81622904 0.85131497 0.86687179 0.84885794 0.85760566
      0.88268829 0.88671637 0.87445887 0.88566093]
     0.8647787306241252
     accu:
     [0.86719029 0.79900036 0.84392857 0.865
                                                   0.8425
                                                              0.85142857
      0.88107143 0.88535714 0.87071429 0.87928571]
     0.85854763604835
     recall:
     [0.785
                 0.68236974 0.77142857 0.82928571 0.775
                                                              0.78571429
      0.84857143 0.85571429 0.82071429 0.815
     0.7968798307331498
```

```
f1score:
     [0.85525292 0.77252525 0.83172892 0.86
                                                   0.8310992 0.84097859
      0.87707641 0.88185499 0.86390977 0.87099237]
     0.8485418417704687
     CV Training time: 3740.07017326355s
# print(scores[])
#print(scores.mean())
#stop3 = time.time()
#print(f"CV Training time: {stop3 - start3}s")
#mejorado
#start3 = time.time()
from sklearn import svm
from sklearn.model_selection import cross_val_score
from sklearn.model selection import cross validate
#para confu
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix
#para confu
start3 = time.time()
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
from sklearn.svm import SVC
clf = svm.SVC(kernel='linear')
#clf = SVC(kernel='rbf', random state=0, gamma=.1, C=1)
clf.fit(X_train, y_train)
#scores=cross validate(model, X,y, cv=10, scoring = ['accuracy','f1','recall','precision'],re
#clf = svm.SVC(kernel='rbf', random state=0, gamma=.1, C=1)
#GH
clf.fit(X train,y train)
y pred=clf.predict(X test)
#GH
#scores = cross val score(clf, X, y, cv=5)
#scores = cross_val_score(clf, X, y, cv=10)
#cv = cross_val_score(clf, X, y, cv=10)
#cv = cross_validate(clf, X, y, cv=10)
#cv1 = cross_validate(clf, X, y, cv=10,scoring ='accuracy')
scores = cross_validate(clf, X, y, cv=10,scoring =['accuracy','f1','recall','precision'],retu
```

```
#scores
#cv
#print(scores.mean())
#print(cv.mean())
#f1=cross validate(clf, X,y, cv=10, scoring ='f1')
#recall_score=cross_validate(clf, X,y, cv=10, scoring ='recall')
#pre score=cross validate(clf, X,y, cv=10, scoring ='precision macro')
#print(confusion matrix(y test,y pred))
#print(f"precision macro score:")
#print(pre score['test score'])
#print(pre_score['test_score'].mean())
#print(f"test score:")
#print(cv['test score'])
#print(cv['test score'].mean())
#print(f"accu:")
#print(cv1['test score'])
#print(cv1['test_score'].mean())
#print(f"recall:")
#print(recall_score['test_score'])
#print(recall score['test score'].mean())
#print(f"f1score:")
#print(f1['test score'])
#print(f1['test score'].mean())
stop3 = time.time()
print(f"CV Training time: {stop3 - start3}s")
#mejora gh
plot confusion matrix(clf, X test, y test, cmap=plt.cm.Blues)
plt.show()
gh4 = scores.get("test_accuracy")
print(f"accuracy:")
print(gh4)
print(gh4.mean())
gh3 = scores.get("test precision")
print(f"precision:")
print(gh3)
print(gh3.mean())
gh = scores.get("test_recall")
```

```
print(f"recall:")
print(gh)
print(gh.mean())
gh2 = scores.get("test_f1")
print(f"f1:")
print(gh2)
print(gh2.mean())
CM = confusion_matrix(y_test, y_pred)
print(f"----")
print(f"matriz de confusion:")
TN = CM[0][0]
FN = CM[1][0]
TP = CM[1][1]
FP = CM[0][1]
print(f"TN={TN}, FP={FP} ")
print(f"FN={FN}, TP={TP} ")
print(f"----")
print(f"matriz de confusion %:")
total1=(TN+TP+FN+FP)
print(f"TN={100*TN/total1}, FP={100*FP/total1} ")
print(f"FN={100*FN/total1}, TP={100*TP/total1} ")
print(f"----")
acc1=(TN+TP)/(TN+TP+FN+FP)
print(f"accuracy1={acc1}")
print(f"----")
re1=(TP)/(TP+FN)
print(f"reca1={re1}")
print(f"----")
pre1=(TP)/(TP+FP)
print(f"pre1={pre1}")
print(f"----")
f1s1=(2*pre1*re1)/(pre1+re1)
print(f"f1score={f1s1}")
```

Гэ

CV Training time: 1086.4614870548248s

```
0 - 2.6e+03 2.1e+02 - 2000 - 1500 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1
```

```
Predicted label
accuracy:
[0.86719029 0.79900036 0.84392857 0.865
                                             0.8425
                                                        0.85142857
 0.88107143 0.88535714 0.87071429 0.87928571]
0.85854763604835
precision:
[0.93931624 0.89013035 0.90225564 0.89307692 0.89595376 0.90460526
 0.90756303 0.90964313 0.91190476 0.9352459 ]
0.9089694992767873
recall:
[0.785
            0.68236974 0.77142857 0.82928571 0.775
                                                        0.78571429
 0.84857143 0.85571429 0.82071429 0.815
0.7968798307331498
f1:
[0.85525292 0.77252525 0.83172892 0.86
                                             0.8310992 0.84097859
0.87707641 0.88185499 0.86390977 0.87099237]
0.8485418417704687
-----
matriz de confusion:
TN=2552, FP=209
FN=556, TP=2284
-----
matriz de confusion %:
TN=45.563292269237635, FP=3.731476522049634
FN=9.926798785931084, TP=40.77843242278165
accuracy1=0.8634172469201928
reca1=0.8042253521126761
-----
pre1=0.9161652627356599
```

f1score=0.8565535345959123