(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 3 February 2005 (03.02.2005)

PCT

(10) International Publication Number $WO\ 2005/010486\ A2$

(51) International Patent Classification⁷:

G01N

(21) International Application Number:

PCT/US2004/022594

(22) International Filing Date: 14 July 2004 (14.07.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/488,660 18 July 2003 (18.07.2003) US 10/690,880 22 October 2003 (22.10.2003) US

- (71) Applicants and
- (72) Inventors: LEE, Nancy, M. [US/US]; 1830 Funston Avenue, San Francisco, CA 94116 (US). CHEN, Ling, C. [US/US]; 510 Lowell Place, Fremont, CA 94536 (US).
- (74) Agents: SWEDBERG, Sally, A. et al.; Fliesler Meyer LLP, Four Embarcadero Center, Fourth Floor, San Francisco, CA 94111 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BIOMARKER PANEL FOR COLORECTAL CANCER

(57) Abstract: A panel of biomarkers has been identified for analysis of colorectal cancer. The panel, originally identified using a mouse colon cancer model, has been used to assess changes in human tissue from surgical and biopsy samples against a normal human control panel of biomarkers. The panel may be used for providing a cost effective, rapid, noninvasive procedure for risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, detecting relapse, and for the discovery of therapeutic intervention of colorectal cancer.

BIOMARKER PANEL FOR COLORECTAL CANCER

Reference to Related Applications

5

10

15

20

25

This application claims priority to U.S. Provisional Patent Application 60/488,660 entitled Molecular Marker Panel for Determination of Colorectal Cancer, by Nancy M. Lee et al., filed July 18, 2003 (Attorney Docket CPMC-01000US0); and U.S. Patent Application 10/690,880 entitled Biomarker Panel for Colorectal Cancer, by Nancy M. Lee et al., filed October 22, 2003 (Attorney Docket CPMC-01000US1), both of which are incorporated herein by reference.

Background

The field of art of this disclosure concerns biomarkers for colorectal cancer (CRC). These biomarkers are useful for risk assessment, early detection, establishing prognosis, evaluation of intervention, recurrence of CRC, and discovery of therapeutic intervention, and methods of use thereof.

In the field of medicine, clinical procedures providing for the risk assessment and early detection of CRC have been long sought. Currently, CRC is the second leading cause of cancer-related deaths in the Western world. One picture that has clearly emerged through decades of research into CRC is that early detection is critical to enhanced survival rates.

The currently accepted methods for CRC screening include the fecal occult blood test (FOBT), x-ray using double contrast between barium enema and air (DCBE), sigmoidoscopy, and colonoscopy. Sigmoidoscopy is an invasive procedure that visually examines the lower third of the colon using a lighted, flexible endoscope, while a related method, colonoscopy, is a procedure that examines the entire colon. In both cases, biopsy samples can be taken during the procedure.

Concerning the accepted methods for screening, none clearly possess what is desired in a screening examination for CRC. While FOBT is

5

10

15

20

25

30

rapid, it is a very general, and therefore a very non-specific screening method for CRC. Though DCBE has proven useful in specifically imaging abnormalities in the colon, the drawbacks of the DCBE method include: 1.) Patient discomfort in preparation of and during the examination, creating reluctance for compliance of DCBE as a screening method. 2.) Exposure of a patient to x-ray radiation, limiting DCBE in terms of frequency of use as a screening method. 3.) Research indicating that DCBE is more effective in detecting larger growths, which contraindicates its use for early detection. 4.) Biopsy samples cannot be taken during the procedure. 5.) Due to the cost involved, not all insurance providers pay for DCBE screening exams. Though sigmoidoscopy has gained favor from many physicians, the drawbacks of this method include: 1.) Patient discomfort in preparation of and during the examination, creating reluctance for compliance of sigmoidoscopy as a screening method. 2.) Due to the cost involved, not all insurance providers pay for sigmoidoscopy screening exams. 3.) Since only the lower third of the colon is inspected, there is a suggestion by studies that many significant lesions are in the proximal end of the colon, rendering sigmoidoscopy inadequate. Though colonoscopy addresses the issue of complete inspection of the colon, the drawbacks of colonoscopy as a screening method include: 1.) Creating even more patient discomfort than sigmoidoscopy, therefore generally requiring sedation, and thereby exacerbating the issue with patient compliance. 2.) Due to the cost involved, not all insurance providers pay for colonoscopy screening exams. 3.) There are risks of colonoscopy that include bleeding, and puncture of the lining of the colon.

Emerging spectroscopic technologies, such as magnetic resonance imaging and tomographic imaging each have drawbacks that are drawn from the list of drawbacks for the currently accepted screening methodologies.

Accordingly, there is a need in the art for approaches that have value in early detection and treatment of CRC that are cost effective, rapid, and

minimally or noninvasive. Additional utility would be realized from an approach that would also serve as the basis for establishing prognosis, monitoring patient treatment, and detecting relapse, as well as the discovery of therapeutic intervention of CRC.

5

Brief Description of Figures

FIG 1 is a summary of the sequence listings.

FIGS 2A-2C show data that illustrate a panel of biomarkers for samples taken from adenomous polyps, and suspect tissues vs. normal controls. Figs 2A-2B are tables that compare the results of model studies done in mouse (2A) for a selection of members of the set of 22 biomarkers listed in the sequence listings with the comparable selection in of biomarkers for human subjects (2B).Fig 2c shows the multivariate analysis for 9 markers for 78 biopsies taken from 12 normal patients and 63 biopsies taken from 6 patients with CRC.

15

10

FIGS 3B-3c show expression levels for representative biomarkers, IL-8 (3A), CXCR-2 (3B), and COX-2 (3c) for a series of samples taken from a human subject comparing a histologically identified cancerous lesion, a polyp, and an adjacent non-cancerous tissue vs. a normal control.

20

FIGS 4A-4c show the results of multiple analysis across a 53 cm distance of a colon for a patient with CRC: 4A shows expression levels for IL-8; 4B shows expression levels for C0X-2; and 4c shows expression levels for CXCR-2.

Detailed Description

25

Still another sought after approach apart from currently accepted methods for screening for CRC, has been the search for biomarkers that have value in detection and treatment of CRC. For more than four decades, since the discovery of alpha-fetoprotein (AFP) and carcinogenic embryonic antigen (CEA), the search for biomarkers for cancer detection and treatment in general has been in a state of evolution. Biomarkers for cancer have five potential uses in the management of patient care. Ideally, they would be

used for risk assessment, for early diagnosis, for establishing prognosis, for monitoring treatment, and for detecting relapse. Additionally, such markers could play a valuable role in developing therapeutic interventions.

It is further advantageous for the sampling methods used in conjunction with biomarker analysis to be minimally invasive or non-invasive. Examples of such sampling methods include serum, stool, swabs, and the like. Non-invasive and minimally invasive methods increase patient

provide value in some aspects of patient care management.

compliance, and generally reduce cost.

Clinically, the two criteria that are important for assessing the effectiveness of biomarkers are selectivity and sensitivity. Selectivity of a biomarker defined clinically refers to percentage of patients correctly diagnosed. Sensitivity of a biomarker in a clinical context is defined as the probability that the disease is detected at a curable stage. Ideally, biomarkers would have 100% clinical selectivity and 100% clinical sensitivity. To date, no single biomarker has been identified that has an acceptably high degree of selectivity and sensitivity required to be effective in for the broad range of needs in patient care management. However, from the clinical perspective, single serum biomarkers, such as AFP and CEA have proven to

20

5

10

15

For example, elevated serum levels of CEA were first discovered in 1965 in patients with adenocarcinoma of the colon. Elevated levels can be found in a variety of benign and malignant conditions other than colon cancer. Additionally, the production of CEA by early localized tumors of the colon is in the normal range. Therefore CEA lacks both the sensitivity and selectivity required to be of value for risk assessment or early diagnosis. Further, elevated levels of CEA correlate poorly with colon tumor differentiation and stage, rendering CEA as a biomarker for prognosis of colon cancer of limited value. The two areas for which CEA has proven helpful clinically in managing patient care are in evaluating the effectiveness of treatment, and for detecting relapse. Illustrative of this, numerous studies

30

have found that there is high correlation between elevated serum levels of CEA preceding clinical detection of recurrence of colon cancer. This has proven to be of value in managing the care of high-risk patents with second-look surgical procedures based on rising levels of CEA.

5

Currently, investigations across numerous areas of oncology research, including CRC, ovarian, breast, and head and neck, are finding increased sensitivity and selectivity in panels of markers. It is now generally held that many mutations must take place before normal cell processes are altered, resulting in a disease, such as cancer. Still, given the complexity of biological systems, discovery of panels useful in providing value in patient care management for CRC is in the nascent stage.

10

15

To date, a greater understanding of the biology of CRC has been gained through the research on adenomous polyposis coli (APC), p53, and Ki-ras genes, as well as the corresponding proteins, and related pathways involved in the regulation thereof. However, there is a distinct difference between research on a specific a gene, its expression, protein product, and regulation, and understanding what genes are critical to include in a panel used to for the analysis of CRC that is useful in the management of patient care for the disease. To date, panels that have been suggested for CRC are comprised of specific point mutations of APC, p53, and Ki-ras, as well as BAT-26, which is a gene that is a microstatelite instability marker.

20

What is disclosed herein is based on studies conducted in mouse multiple intestinal neoplasia (MIN) model, in which expressions levels of genes were screened in adenomous polyps. In the mouse MIN subjects, a chemically induced mutation of the APC gene is effected. The normal control is defined by littermates for which there was no aberration of the APC gene, and are therefore designated wildtype. From studies based on the mouse MIN model, candidate genes were selected for studying human subjects. From these human subject studies, a panel of biomarkers is disclosed herein. Further, what is disclosed are methods for measuring gene and

30

protein expression levels based on the panel. Additionally, another aspect of what is disclosed are kits which provide the reagents and instructions for measuring gene and protein expression levels based on the panel. The panel, methods and kits are useful in the management of patient care for CRC. Additionally, the panel, methods, and kits are believed useful as the basis for discovery of therapeutic interventions for CRC.

5

10

15

20

25

30

Fig 1 is a table that gives an overview of the sequence listing for the disclosed biomarkers. The combination of biomarkers disclosed forms the basis for monitoring CRC with enhanced selectivity and sensitivity, and therefore providing enhanced management of patient care for CRC. It is to be understood that fragments and variants of the biomarkers described in the sequence listings are also useful biomarkers in a panel used for the analysis of CRC. What is meant by fragment is any incomplete or isolated portion of a polynucleotide or polypeptide in the sequence listing. It is recognized that almost daily, new discoveries are announced for gene variants, particularly for those genes under intense study, such as genes implicated in diseases like cancer. Therefore, the sequence listings given are exemplary of what is now reported for a gene, but it recognized that for the purpose of an analytical methodology, variants of the gene, and their fragments are also included.

One embodiment of what is disclosed is a panel of biomarkers with the selectivity and sensitivity required for managing patient care for CRC. In Table 1, entries 1-22 are the polynucleotide coding sequences for a panel of biomarkers, and include the name and abbreviation of the gene. Entries 23-44 in Table 1 are the protein, or polypeptide, amino acid sequences that correspond to the coding sequences for entries 1-22. A biomarker, as defined by the National Institutes of Health (NIH) is a molecular indicator of a specific biological property; a biochemical feature or facet that can be used to measure the progress of disease or the effects of treatment. A panel of biomarkers is a selection of biomarkers. Biomarkers may be from a variety of

classes of molecules. As previously mentioned, there is still a need for biomarkers for CRC having the selectivity and sensitivity required to be effective for all aspects of patient care management. Therefore, the selection of an effective set of biomarkers is differentiating in providing the basis for effective determination of CRC.

5

10

15

20

25

30

In another embodiment of this disclosure, expression levels of polynucleotides for the biomarkers indicated in SEQ ID NOs 1-22, are used in the determination of CRC. Such analysis of polynucleotide expression levels is frequently referred to in the art as gene expression profiling. In gene expression profiling, levels of mRNA in a sample are measured as a leading indicator of a biological state, in this case, as an indicator of CRC. One of the most common methods for analyzing gene expression profiling is to create multiple copies from mRNA in a biological sample using a process known as reverse transcription. In the process of reverse transcription, the mRNA from the sample is used to create copies of the corresponding DNA sequence from which the mRNA was originally transcribed. In the reverse transcription amplification process, copies of DNA are created without the regulatory regions in the gene known as introns. These multiple copies made from mRNA are therefore referred to as copy DNA, or cDNA. Entries 45-88 are the sets of primers used in the reverse transcription process for each gene listed in entries 1-22.

Since the reverse transcription procedure amplifies copies of cDNA proportional to the original level of mRNA in a sample, it has become a standard method that allows the analysis of even low levels of mRNA present in a biological sample. Genes may either be up regulated or down regulated in any particular biological state, and hence mRNA levels shift accordingly.

In still another embodiment of this disclosure, expression levels of proteins listed in SEQ ID NOs 23-44, which correspond to the genes indicated in SEQ ID NOs 1-22, are disclosed. The term "polypeptide" or

"polypeptides" is used interchangeably with the term "protein" or "proteins" herein. As discussed previously, proteins have been long investigated for their potential as biomarkers, with limited success. There is value in protein biomarkers as complementary to polynucleotide biomarkers. Reasons for having the information provided by both types of biomarkers include the current observations that mRNA expression levels are not good predictors of protein expression levels, and that mRNA expression levels tell nothing of the post-translational modifications of proteins that are key to their biological activity. Therefore, in order to understand the expression levels of proteins, and their complete structure, the direct analysis of proteins is required.

5

10

15

20

25

demonstrated in Fig 2c.

Figs 2A-2B show an exemplary panel of biomarkers from the list of 22 biomarkers for which gene expression levels are compared in the mouse MIN model, and in human subjects. The selection for the panel is taken from across the list of the 22 biomarkers and is taken for the purpose of easy visual assimilation of data in order to demonstrate the utility of a panel. Typically, for complex data sets represented in the 22 member panel of biomarkers, multivariate analysis (MANOVA) is applied, such as that

In Fig 2A, the data reported for the mouse MIN studies represent statistical averaging of a number of animal subjects, and the standard error is reported. The p value on the right indicates the degree of confidence that the values are significantly different. As an example, the first gene listed, SDF-1, is related to the human IL-8 gene, and is in the same super family. For SDF-1, the p value of 0.003 indicates that the probability that the differences in the values of the wildtype control and that of the adenomous polyps of the MIN mice occurred by chance alone is only 3 in 1000. Screening the expression levels in adenomous polyps in the subject mice was specifically targeted, since it has been established that adenomous polyps are useful in risk assessment for CRC. What is demonstrated in Fig.

2A is that the panel of 6 clearly differentiate the results of the MIN mice over that of the wildtype control.

Figs 2B-2c address the issue of selectivity for biomarker panels. Regarding biomarkers that have an acceptable level of selectivity for CRC, the incidence of CRC for individuals in families with a history of CRC is 3-4 times that of the general population. However, It is now estimated that 6% of all Americans will develop CRC, and of those 70-80% will occur in people of average risk. There is clearly a need for biomarkers that have the necessary selectivity required for confidence in the determination of CRC.

10

15

20

5

In Fig 2B, the same panel of 6 biomarkers established in the mouse MIN model in Fig 2A are the basis for determination of CRC in human subjects. In Fig 2B, the results of biopsy tissue determined to be normal by histological evaluation taken from patients known to have CRC are compared to biopsy tissue from individuals validated as normal controls. It should be noted that histological methodologies are the accepted standard for the identification of a cancerous colonic lesion. There are two aspects of FIG 2B to further discuss. First, values for gene expression profiling for patient vs. normal control may vary either up, as in the case of IL 8, or down, as in the case of PPAR-8. It is the determination of the collective shift for the patient vs. normal control that is significant when using a panel of biomarkers. Second, in glancing through the patient data, sample-to-sample variation can be noted, which is anticipated, given all the patient-to-patient variables. It is clear at a glance that the expression levels for the panel taken as a group distinguish the patient samples overall from the normal control group, even though a value for any one specific biomarker may not in itself distinguish the patient sample from the normal control. For example, the patient designated as H008 has an expression level for PPAR-δ that is not distinct from the normal control. However, at a glance it is clear that the results of the panel for H008 distinguish it from the normal control set. This demonstrates in principle why a validated panel of markers, given the

30

complexity and variability of biology, enhance the selectivity of a determination vs. a single marker alone.

Fig 2c further serves to emphasize the value of a panel of biomarkers in enhancing the selectivity of a determination between patient vs. normal samples. An example of demonstrating the use of MANOVA for a panel of 9 biomarkers selected from the group of 22 is demonstrated in Fig 2c. In this study, 78 sigmoidal-rectal biopsies from 12 normal patients, and 63 sigmoidal-rectal biopsies from non-cancerous sections of 6 patients with sigmoidal-rectal carcinoma were compared. The Wilks' Lambda criterion was used to assess the difference between the patient samples and normal control samples using the 9 biomarkers listed. The lambda value close to 1.0 signifies a significant difference between the patient and normal samples is indicated, with the probability of about 9 chances in 1000 that the difference is by chance alone.

15

20

25

10

5

FIGS 3A-3c and FIGS 4A-4c address the issue of sensitivity for biomarker panels. As previously mentioned, since survival rates are greatly enhanced with the earliest indication of CRC, biomarkers for risk assessment and early detection of CRC have been long sought. The difference between risk assessment and early detection is the degree of certainty regarding acquiring CRC. Biomarkers that are used for risk assessment confer less than 100% certainty of CRC within a time interval, whereas biomarkers used for early detection confer an almost 100% certainty of the onset of the disease within a specified time interval. Risk factors may be used as surrogate end points for individuals not diagnosed with cancer, providing they there is an established relationship between the surrogate end point and a definitive outcome. An example of an established surrogate end point for CRC is the example of adenomous polyps. What has been established is that the occurrence of adenomous polyps are a necessary, but not sufficient condition for an individual to later develop CRC. This is demonstrated by the fact that 90% percent of all preinvasive

cancerous lesions are adenomous polyps or precursors, but not all individuals with adenomous polyps go on to later develop CRC.

5

10

15

20

25

30

FIGS 3A-3C show graphs of gene expression levels taken for multiple biopsy samples taken from the colon of one exemplary patient diagnosed with CRC. The determination of cancerous lesions, polyps, and adjacent tissues was made by conventional histological methods. The expression levels for three of the panel of biomarkers are shown for the biopsy samples categorized in that fashion. Again, as was demonstrated with the examples given in Figs 2A-2c, it is evident that the three markers taken together for the cancerous lesions sampled are significantly different than the normal controls, even though one by itself (CXCR2) would not have been differentiating for this patient. What is additionally indicated in this representation is the distinction between the results of the polyp vs. the normal control. Given that polyps are already accepted as surrogate endpoints for CRC, then a determination of the presence of polyps by a validated analytical methodology using a minimally invasive method, such as a swab, or a non-invasive sampling method, such as a stool sample, would also serve as surrogate end point for risk assessment.

FIGS 4A-4C show the results of gene expression levels for three of the biomarkers in biopsy samples taken over a 53 cm region of the colon of a patient with CRC. The irregularly shaped objects represent biopsy samples that were confirmed to be cancerous lesions by histological methodology, while the oval shapes represent samples that were determined to be non-cancerous by histological methodology. Gene expression profiling was done for each of the biopsy samples, as well. The results of the expression profiling, where the legend indicates relative levels in the patient biopsy samples as compared to normal controls, are depicted in FIGS 4A-4C.

The representation of FIGS 4A-4C indicates the distance over which the biomarkers are able to distinguish differences in the colon tissue for the patient, where these biopsy samples were rendered normal by conventional

histological analysis. These results demonstrate that it is possible to sample cells through a minimally invasive swabbing collection method from an area distant from a cancerous lesion, but capable of indicating a non-normal colon condition. Moreover, collection of a stool sample is an already validated sampling method for collecting sloughed cells or cell debris from which these determinations may be made. In that regard, samples taken either minimally invasively or non-invasively would render samples that could be analyzed using the disclosed panel of biomarkers. Such non-invasive procedures not only reduce the cost of determination of CRC, but reduce the discomfort and risk associated with current methodology. All these factors together increase the attractiveness of regular testing, and hence patient compliance. Increased patient compliance, coupled with an effective determination for CRC, enhance the prospects for early detection, and enhanced survival rates.

15

10

5

Methods and kits for the polynucleotide and polypeptide expression profiling for the panel of molecular markers are also contemplated as part of the present disclosure.

20

In one embodiment, a method for gene expression profiling comprises measuring cDNA levels for biomarkers selected in the claimed panel. Such a method requires the use of primers, enzymes, and other reagents for the preparation, detection, and quantitation of cDNAs. The method of creating cDNA from mRNA in a sample is referred to as the reverse transcriptase polymer chain reaction (RT-PCR). The primers listed in SEQ ID NOs 45-88 are particularly suited for use in gene expression profiling using RT-PCR based on the claimed panel. A series of primers were designed using Primer Express Software (Applied Biosystems, Foster City, CA). Specific candidates were chosen, and then tested to verify that only cDNA was amplified, and not contaminated by genomic DNA. The primers listed in SEQ ID NOs 45-88 were specifically designed, selected, and tested accordingly. In addition to the primers, reagents such as one including a dinucleotide triphosphate

30

mixture having all four dinucleotide triphosphates (e.g. dATP, dGTP, dCTP, and dTTP), one having the reverse transcriptase enzyme, and one having a thermostable DNA polymerase are required for RT-PCR. Additionally buffers, inhibitors and activators are also required for the RT-PCR process. Once the cDNA has been sufficiently amplified to a specified end point, the cDNA sample must be prepared for detection and quantitation. Though a number of detection schemes are contemplated, as will be discussed in more detail below, one method contemplated for detection of polynucleotides is fluorescence spectroscopy, and therefore chromophores that are suited to fluorescence spectroscopy are desirable for labeling polynucleotides. One example of such a fluorescent label is SYBR Green, though numerous related chromophores exist, and are known in the art.

5

10

15

20

25

30

In another embodiment, a method for protein expression profiling comprises using an antibody panel based on the claimed panel of biomarkers for measuring targeted polypeptide levels from a biological sample. In one embodiment contemplated for the method, the antibodies for the panel are bound to a solid support. The method for protein expression profiling may use a second antibody having specificity to some portion of the bound polypeptide. Such a second antibody may be labeled with molecules useful for detection and quantitation of the bound polypeptides, and therefore in binding to the polypeptide label it for detection and quantitation. Additionally, other reagents are contemplated for labeling the bound polypeptides for detection and quantitation. Such reagents may either directly label the bound polypeptide or, analogous to a second antibody, may be a moiety with specificity for the bound polypeptide having labels. Examples of such moieties include but are not limited to small molecules such as cofactors, substrates, complexing agents, and the like, or large molecules, such as lectins, peptides, olionucleotides, and the like. Such moieties may be either naturally occurring or synthetic.

Examples of detection modes contemplated for the disclosed

methods include, but are not limited to spectroscopic techniques, such as fluorescence and UV-Vis spectroscopy, scintillation counting, and mass spectroscopy. Complementary to these modes of detection, examples of labels for the purpose of detection and quantitation used in these methods include, but are not limited to chromophoric labels, scintillation labels, and mass labels. The expression levels of polynucleotides and polypeptides measured using these methods may be normalized to a control established for the purpose of the targeted determination. These methods are believed useful in providing determinations as the basis of effective management of patient care for CRC. These methods may also be used in the discovery of therapeutic interventions for CRC. Additionally, not only biopsy samples from sigmoidoscopy, colonoscopy, or surgery may be analyzed by these methods, but biological samples from non-invasive or minimally evasive collection methods are indicated for these methods, as well.

15

10

5

It is further contemplated in what is disclosed to provide kits having the reagents and procedures that facilitate the ready implementation of the methods, and provide consistency and quality control thereby.

20

In one embodiment, a kit for gene expression profiling comprises the reagents and instructions necessary for the gene expression profiling of the claimed panel. Thus, for example, the reagents may include primers, enzymes, and other reagents for the preparation, detection, and quantitation of cDNAs for the claimed panel of biomarkers. As discussed above, the method of creating cDNA from mRNA in a sample is referred to as the reverse transcriptase polymer chain reaction (RT-PCR). The primers listed in SEQ ID NOs 45-88 are particularly suited for use in gene expression profiling using RT-PCR based on the claimed panel. The primers listed in SEQ ID NOs 45-88 were specifically designed, selected, and tested accordingly. In addition to the primers, reagents such as one including a dinucleotide triphosphate mixture having all four dinucleotide triphosphates (e.g. dATP, dGTP, dCTP, and dTTP), one having the reverse transcriptase

30

enzyme, and one having a thermostable DNA polymerase are required for RT-PCR. Additionally buffers, inhibitors and activators used for the RT-PCR process are suitable reagents for inclusion in the kit embodiment. Once the cDNA has been sufficiently amplified to a specified end point, the cDNA sample must be prepared for detection and quantitation. One method contemplated for detection of polynucleotides is fluorescence spectroscopy, and therefore chromophores that are suited to fluorescence spectroscopy are desirable for labeling polynucleotides and may also be included in reagents of the kit embodiment. Instructions included with the kit embodiment for gene expression profiling preferably teach the user the following steps: to obtain a biological sample; to isolate cellular RNA from the sample; to amplify copies of cDNA from the sample for each biomarker in the panel, and the panel for which the reagents are provided; and to quantify levels of cDNA amplified from the sample. Though tissue samples from a variety of procedures may be used, the instructions for obtaining a biological sample are preferably whereby the user obtains a sample of colorectal cells in a minimally invasive manner, such as by use of a swab or collection of a stool sample. The instructions may also preferably include the step of comparing the cDNA levels quantified to a control.

20

25

15

5

10

In another embodiment, a kit for protein expression profiling comprises the reagents and instructions necessary for protein expression profiling of the claimed panel. Thus, in this embodiment, the kit for protein expression profiling includes supplying an antibody panel based on the claimed panel of biomarkers for measuring targeted polypeptide levels from a biological sample. One embodiment contemplated for such a panel includes the antibody panel bound to a solid support. Additionally, the reagents included with the kit for protein expression profiling may use a second antibody having specificity to some portion of the bound polypeptide. Such a second antibody may be labeled with molecules useful for detection and quantitation of the bound polypeptides, and therefore in binding to the

5

10

15

20

25

polypeptide label it for detection and quantitation. Additionally, other reagents are contemplated for labeling the bound polypeptides for detection and quantitation. Such reagents may either directly label the bound polypeptide or, analogous to a second antibody, may be a moiety with specificity for the bound polypeptide having labels. Examples of such moieties include but are not limited to small molecules such as cofactors, substrates, complexing agents, and the like, or large molecules, such as lectins, peptides, olionucleotides, and the like. Such moieties may be either naturally occurring or synthetic. Instructions for the protein expression profiling kit preferably teach the user: to obtain a biological sample; to use the antibody panel supplied with the kit for each biomarker in the panel to bind the polypeptides from the sample; and to quantify levels of polypeptides bound from the sample to the antibody panel. Preferably, the kit instructions also include a step of comparing the polypeptide levels to a control. Preferably the biological sample is obtained by a minimally invasive procedure such as use of a swab to through a stool sample.

Additionally, consumable labware required for sample collection, preparation, and analysis may be provided with the kits.

What has been disclosed herein has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit what is disclosed to the precise forms described. Many modifications and variations will be apparent to the practitioner skilled in the art. What is disclosed was chosen and described in order to best explain the principles and practical application of the disclosed embodiments of the art described, thereby enabling others skilled in the art to understand the various embodiments and various modifications that are suited to the particular use contemplated. It is intended that the scope of what is disclosed be defined by the following claims and their equivalence.

What Is Claimed:

1. A panel of biomarkers for colorectal cancer and colorectal polyps comprising at least two polynucleotides selected from SEQ ID NOs 1-5.

- 2. The panel of claim 1, where the panel is selected for analysis of polynucleotide expression levels for colorectal cancer and colorectal polyps.
- 3. The panel of claim 2, where the polynucleotide expression levels are mRNAs.
- 4. The panel of claim 2, where the polynucleotide expression levels are cDNAs.
- 5. The panel of claim 1, where at least one of the polynucleotides is a fragment.
- 6. The panel of claim 1, where at least one of the polynucleotides is a variant.
- 7. The panel of claim 1, where the panel is used for the management of patient care in colorectal cancer and colorectal polyps.
- 8. The panel of claim 7, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.
- 9. The panel of claim 1, where the panel is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.

10. A panel of biomarkers for colorectal cancer and colorectal polyps comprising:

at least two polynucleotides selected from SEQ ID NOs 1-5; and at least one polynucleotide selected from SEQ ID NOs 6-14

- 11. The panel of claim 10, where the panel is selected for analysis of polynucleotide expression levels for colorectal cancer and colorectal polyps.
- 12. The panel of claim 11, where the polynucleotide expression levels are mRNAs.
- 13. The panel of claim 11, where the polynucleotide expression levels are cDNAs.
- 14. The panel of claim 10, where at least one of the polynucleotides is a fragment.
- 15. The panel of claim 10, where at least one of the polynucleotides is a variant.
- 16. The panel of claim 10, where the panel is used in the management of patient care for colorectal cancer and colorectal polyps.
- 17. The panel of claim 16, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.
- 18. The panel of claim 10, where the panel is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.

19. A panel of biomarkers for colorectal cancer and colorectal polyps comprising:

at least two polynucleotides selected from SEQ ID NOs 1-5; at least one polynucleotide selected from SEQ ID NOs 6-14; and at least one polynucleotide selected from SEQ ID NOs 15-22.

- 20. The panel of claim 19, where the panel is selected for analysis of polynucleotide expression levels for colorectal cancer and colorectal polyps.
- 21. The panel of claim 20, where the polynucleotide expression levels are mRNAs.
- 22. The panel of claim 20, where the polynucleotide expression levels are cDNAs.
- 23. The panel of claim 19, where at least one of the polynucleotides is a fragment.
- 24. The panel of claim 19, where at least one of the polynucleotides is a variant.
- 25. The panel of claim 25, where the panel is the basis for management of patient care in colorectal cancer and colorectal polyps.
- 26. The panel of claim 19, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.

27. The panel of claim 25, where the panel is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.

- 28. A panel of biomarkers for colorectal cancer and colorectal polyps comprising at least two polypeptides selected from SEQ ID NOs 23-27.
- 29. The panel of claim 28, where the panel is selected for analysis of polypeptide expression levels for colorectal cancer and colorectal polyps.
- 30. The panel of claim 28, where at least one of the polypeptides is a fragment.
- 31. The panel of claim 28, where at least one of the polypeptides is a variant.
- 32. The panel of claim 28, where the panel is used in the management of patient care in colorectal cancer and colorectal polyps.
- 33. The panel of claim 32, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.
- 34. The panel of claim 28, where the panel is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.
- 35. A panel of biomarkers for colorectal cancer and colorectal polyps comprising:
 - at least two polypeptides selected from SEQ ID NOs 23-27; and at least one polypeptide selected from SEQ ID NOs 28-36.

36. The panel of claim 35, where the panel is selected for analysis of polypeptide expression levels for colorectal cancer and colorectal polyps.

- 37. The panel of claim 35, where at least one of the polypeptides is a fragment.
- 38. The panel of claim 35, where at least one of the polypeptides is a variant.
- 39. The panel of claim 35, where the panel is used in the management of patient care in colorectal cancer and colorectal polyps.
- 40. The panel of claim 39, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.
- 41. The panel of claim 35, where the panel is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.
- 42. A panel of biomarkers for colorectal cancer and colorectal polyps comprising:

at least two polypeptides selected from SEQ ID NOs 23-27; at least one polypeptide selected from SEQ ID NOs 28-36; and at least one polypeptide selected from SEQ ID NOs 37-44.

43. The panel of claim 42, where the panel is selected for analysis of polypeptide expression levels for colorectal cancer and colorectal polyps.

44. The panel of claim 42, where at least one of the polypeptides is a fragment.

- 45. The panel of claim 42, where at least one of the polypeptides is a variant.
- 46. The panel of claim 42, where the panel is used in the management of patient care in colorectal cancer and colorectal polyps.
- 47. The panel of claim 46, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.
- 48. The panel of claim 42, where the panel is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.
- 49. A method for measuring expression levels of polynucleotides from biomarkers for colorectal cancer and colorectal polyps, comprising:

selecting a panel of biomarkers comprising at least two polynucleotides from SEQ ID NOs 1-5;

obtaining a biological sample;

isolating cellular RNA from the sample;

amplifying copies of cDNA from the sample for each biomarker in the panel; and

quantifying levels of cDNA amplified from the sample.

50. The method of claim 49, where the step of selecting a panel of biomarkers further comprises at least one polynucleotide from SEQ ID NOs 6-14.

51. The method of claim 49, where the step of selecting a panel of biomarkers further comprises:

at least one polynucleotide from SEQ ID NOs 6-14; and at least one polynucleotide from SEQ ID NOs 15-22.

- 52. The method of claim 49, where the step of amplifying copies of cDNA further comprises at least two sets of primers chosen from SEQ. ID NOs 45-50.
- 53. The method of claim 52, where the step of amplifying copies of cDNA further comprises using enzymes and reagents for the preparation of cDNAs.
- 54. The method of claim 49, where the step of quantifying the levels of cDNA further comprises labeling cDNA.
- 55. The method of claim 54, where labeling cDNA includes at least one chromophore.
- 56. The method of claim 49, where the cDNA levels for the sample are compared to a control.
- 57. The method of claim 56, where the comparison is used in the management of patient care in colorectal cancer and colorectal polyps.
- 58. The method of claim 57, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.

59. The method of claim 56, where the comparison is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.

- 60. The method of claim 49, where the step of obtaining a biological sample is by obtaining a sample of colorectal cells.
- 61. The method of claim 60, where the step of obtaining a sample of colorectal cells is minimally invasive.
- 62. The method of claim 61, where the minimally invasive step is by use of a swab.
- 63. The method of claim 60, where the step of obtaining a sample of colorectal cells is non-invasive.
- 64. The method of claim 63, where the non-invasive step is by collection of a stool sample.
- 65. A method for measuring expression levels of polypeptides from biomarkers for colorectal cancer and colorectal cancer, comprising:

selecting a panel of biomarkers comprising at least two polypeptides from SEQ ID NOs 23-27;

obtaining a biological sample;

creating an antibody panel for each biomarker in the panel;

using the antibody panel to bind the polypeptides from the sample;

and

quantifying levels of polypeptides bound from the sample to the antibody panel.

66. The method of claim 65, where the step of selecting a panel of biomarkers further comprises at least one polypeptide from SEQ ID NOs 28-36.

67. The method of claim 65, where the step of selecting a panel of biomarkers further comprises:

at least one polypeptide from SEQ ID NOs 28-36; and at least one polypeptide from SEQ ID NOs 37-44.

- 68. The method of claim 65, where the polypeptide levels for the sample are compared to a control.
- 69. The method of claim 68, where the comparison is used in the management of patient care in colorectal cancer and colorectal polyps.
- 70. The method of claim 69, where the management of patient care includes one or more of risk assessment, early diagnosis, establishing prognosis, monitoring patient treatment, and detecting relapse.
- 71. The method of claim 68, where the comparison is used in discovery of therapeutic intervention of colorectal cancer and colorectal polyps.
- 72. The method of claim 65, where the step of obtaining a biological sample is by obtaining a sample of colorectal cells.
- 73. The method of claim 72, where the step of obtaining a sample of colorectal cells is minimally invasive.

74. The method of claim 73, where the minimally invasive step is by use of a swab.

- 75. The method of claim 72, where the step of obtaining a sample of colorectal cells is non-invasive.
- 76. The method of claim 75, where the non-invasive step is by collection of a stool sample.
- 77. The method of claim 65, where the step of quantifying the bound polypeptides further comprises labeling the polypeptides.
- 78. The method of claim 77, where labeling the polypeptides comprises using a second antibody.
- 79. A kit for the determination of colorectal cancer and colorectal polyps comprising:

at least one reagent that is used in analysis of polynucleotide expression levels for a panel of biomarkers for colorectal cancer and colorectal polyps, where the panel comprises at least two polynucleotides listed in SEQ ID NOs 1-5; and

instructions for using the kit for analyzing the expression levels.

- 80. The kit of claim 79, where the panel of biomarkers further comprises at least one polynucleotides listed in SEQ ID NOs 6-14.
- 81. The kit of claim 79, where the panel of biomarkers further comprises: at least one polynucleotide selected from SEQ ID NOs 6-14; and at least one polynucleotide selected from SEQ ID NOs 15-22.

82. The kit of claim 79, where the polynucleotide expression levels are mRNAs.

- 83. The kit of claim 79, where the polynucleotide expression levels are cDNAs.
- 84. The kit of claim 83, where the reagent comprises at least two sets of primers chosen from SEQ. ID NOs 45-50.
- 85. The kit of claim 84, further comprising reagents for the preparation of cDNA.
- 86. The kit of claim 79, comprising a reagent that is used for detection and quantitation of polynucleotides.
- 87. The kit of claim 86, where the reagent includes at least one chromophore.
- 88. The kit of claim 79, further comprising consumable labware for at least one of sample collection, sample preparation, and sample analysis.
- 89. A kit for the determination of colorectal cancer and colorectal polyps comprising:

at least one reagent used in that analysis of polypeptide expression levels for a panel of biomarkers for colorectal cancer and colorectal polyps, where the panel comprises at least two polypeptides listed in SEQ. ID NOs 23-27; and

instructions for using the kit for analyzing the expression levels.

90. The kit of claim 89, where the panel of biomarkers further comprises at least one polynucleotides listed in SEQ ID NOs 28-36.

- 91. The kit of claim 89, where the panel of biomarkers further comprises: at least one polynucleotide selected from SEQ ID NOs 28-36; and at least one polynucleotide selected from SEQ ID NOs 37-44.
- 92. The kit of claim 89, where the reagent is an antibody reagent that binds a polypeptide selected in the panel.
- 93. The kit of claim 89, further comprising a reagent that is used for detection and quantitation of a bound polypeptide.
- 94. The kit of claim 93, where the reagent includes a second antibody.
- 95. The kit of claim 89, further comprising consumable labware for at least one of sample collection, sample preparation, and sample analysis.

Sequence ID No. / ID	NCBI Entrez Database	Name	Abbreviation
1. Coding sequence	XM_031289	Interleukin 8	IL8
2. Coding sequence	XM_051900	Prostaglandin-endoperoxide synthase 2	PTGS2
3. Coding sequence	M94582	Interleukin 8 receptor B	ILR8RB
4. Coding sequence	NM_005555	Lipocalin 2	LCN2
5. Coding sequence	NM_000331	Serum amyloid A1	SAA1
6. Coding sequence	NM_000757	Macrophage colony stimulating factor 1	CSF1 (MCSF1)
7. Coding sequence	X54489	Melanoma growth stimulatory activity	MGSA
8. Coding sequence	NM_002090	Chemokine (C-X-C motif) ligand 3	CXCL3
9. Coding sequence	XM_032429	Secreted phosphoprotein 1	SPP1 (OPN)
10. Coding sequence	M64349	Cyclin D	CCND1
11. Coding sequence	AX057136	c-Myc	c-Myc
	L25610	Cyclin-dependent kinase inhibitor	HUMCDK1
13. Coding sequence	BC021998	Cyclin-dependent kinase inhibitor 2A	CDKN2A
14. Coding sequence	NM_058195	Alternative reading frame p14	CDKN2A
15. Coding sequence	NM_005036	Peroxisome proliferative activated receptor, alpha	PPARA
16. Coding sequence	XM_003059	Peroxisome proliferative activated receptor, gamma	PPARG
17. Coding sequence	NM_006238	Peroxisome proliferative activated receptor, delta	PPARD
18. Coding sequence	XM_030326	CD44 antigen	CD44
19. Coding sequence	XM_044882	Prostaglandin-endoperoxide synthase 1	PTGS1
20. Coding sequence	NM_002131	High-mobility group AT-hook1 isoform B	HMGA1
!	X54942	CKSHS2	CKSHS2
22. Coding sequence	U22055	100 kDa coactivator	p100 coactivator
23. Protein	XP_031289	Interleukin 8	IL8
24. Protein	XP_051900	Prostaglandin-endoperoxide synthase 2	COX2
25. Protein	AAA36108	Interleukin 8 receptor B	CXCR2
	NP_005555	Lipocalin 2	LCN2
27. Protein	NP_000331	Serum amyloid A1	SAA1
28. Protein	NP_000757	Macrophage colony stimulating factor 1	MCSF1
29. Protein	CAA38361	Melanoma growth stimulatory activity	Groa
30. Protein	NM-002090	Chemokine (C-X-C motif) ligand 3	Groy

Sequence ID No. / ID	NCBI Entrez Database	Name	Abbreviation
31. Protein	XP_032429	Osteopontin	OPN
32. Protein	AAA52136	Cyclin D	cyclin D1
33. Protein	CAC22425	c-Myc	c-Myc
34. Protein	AAA16109	Cyclin-dependent kinase inhibitor	p21
35. Protein	AAH21998	Cyclin-dependent kinase inhibitor 2A	p16
36. Protein	NP_047862	Alternative reading frame p14	p14ARF
37. Protein	NP_005027	Peroxisome proliferatie activated receptor, alpha	PPARα
38. Protein	XP_003059	Peroxisome proliferatie activated receptor, gamma	PPARy
39. Protein	NP_006229	Peroxisome proliferatie activated receptor, delta	PPARS
40. Protein	XP_030326	CD44 antigen	CD44
41. Protein	XP_044882	Prostaglandin-endoperoxide synthase 1	C0X1
42. Protein	NP_002122	High-mobility group AT-hook1 isoform B	HYGYI
43. Protein	CAA38703	CKS1 protein homolog	CKS1
44. Protein	AAA80488	100 kDa coactivator	p100 coactivator
45. Forward primer		Interleukin 8	IL8
46. Reverse primer			
47. Forward primer		Prostaglandin-endoperoxide synthase 2	PTGS2
48. Reverse primer			
49. Forward primer		Interleukin 8 receptor B	ILR8RB
50. Reverse primer			
51. Forward primer		Lipocalin 2	LCN2
52. Reverse primer			
53. Forward primer		Serum amyloid A1	SAA1
54. Reverse primer			
55. Forward primer		Macrophage colony stimulating factor 1	CSF1 (MCSF1)
56. Reverse primer			
57. Forward primer		Melanoma growth stimulatory activity	MGSA
58. Reverse primer			
59. Forward primer		Chemokine (C-X-C motif) ligand 3	MGSA
60. Reverse primer			

ligure 1 – cont

61. Forward primer Secreted phosphoprotein 1 SPP1 (OPN) 62. Reverse primer Co. Myc CCND1 63. Forward primer c-Myc c-Myc 66. Reverse primer c-Myc c-Myc 66. Reverse primer c-Myc c-Myc 67. Forward primer Cyclin-dependent kinase inhibitor 2A HUMCDK1 68. Reverse primer Cyclin-dependent kinase inhibitor 2A HUMCDK1 69. Forward primer Cyclin-dependent kinase inhibitor 2A CDKN2A 70. Reverse primer Cyclin-dependent kinase inhibitor 2A CDKN2A 71. Forward primer Alternative reading frame p14 CDKN2A 72. Reverse primer Peroxisome proliferative activated receptor, alpha PPARc 73. Forward primer Peroxisome proliferative activated receptor, alpha PPARc 75. Forward primer CD44 antigen CD44 80. Reverse primer CD44 antigen COX1 81. Forward primer High-mobility group AT-hook I isoform B HMGYI 82. Reverse primer CKS1 protein homolog CKS1 83. Forward primer CKS1 protein homolog C	Sequence ID No. / ID	NCBI Entrez Database	Name	Abbreviation
Reverse primer Forward primer Forwar	61. Forward primer		Secreted phosphoprotein 1	SPP1 (OPN)
Forward primer Reverse primer Forward primer				
Reverse primer Reverse primer Forward primer Reverse primer Forward primer Forward primer Forward primer Forward primer Reverse primer Forward primer Forward primer Forward primer Forward primer Forward primer Reverse primer Forward primer Forward primer Forward primer Forward primer Reverse primer Forward primer Forward primer Forward primer Reverse primer Forward primer			Cyclin D	CCND1
Forward primer Reverse primer Forward primer	64. Reverse primer			
Reverse primer Forward primer Forwar	65. Forward primer		c-Myc	c-Myc
Forward primer Cyclin-dependent kinase inhibitor Reverse primer Cyclin-dependent kinase inhibitor 2A Reverse primer Cyclin-dependent kinase inhibitor 2A Reverse primer Alternative reading frame p14 Reverse primer Alternative reading frame p14 Reverse primer Peroxisome proliferative activated receptor, alpha Reverse primer Peroxisome proliferative activated receptor, ganna Reverse primer Peroxisome proliferative activated receptor, delta Reverse primer Prostaglandin-endoperoxide synthase 1 Reverse primer Prostaglandin-endoperoxide synthase 1 Reverse primer High-mobility group AT-hook1 isoform B Reverse primer CKS1 protein homolog Reverse primer CKS1 protein homolog Reverse primer CKS1 protein homolog	66. Reverse primer			
Reverse primer Forward primer Reverse primer Forward primer	67. Forward primer		Cyclin-dependent kinase inhibitor	HUMCDK1
Reverse primer Forward primer	68. Reverse primer			
Reverse primer Forward primer Reverse primer Forward primer	69. Forward primer		Cyclin-dependent kinase inhibitor 2A	CDKN2A
Forward primer Alternative reading frame p14 Reverse primer Peroxisome proliferative activated receptor, alpha Reverse primer Peroxisome proliferative activated receptor, ganna Reverse primer Peroxisome proliferative activated receptor, delta Reverse primer CD44 antigen Reverse primer Prostaglandin-endoperoxide synthase 1 Reverse primer High-mobility group AT-hook1 isoform B Reverse primer CKS1 protein homolog Reverse primer Loward primer Reverse primer Loward primer Reverse primer Reverse primer Reverse primer Look kDa coactivator	70. Reverse primer			
Reverse primer Forward primer	71. Forward primer		Alternative reading frame p14	CDKN2A
Forward primer Peroxisome proliferative activated receptor, alpha Reverse primer Peroxisome proliferative activated receptor, ganna Reverse primer Peroxisome proliferative activated receptor, ganna Forward primer CD44 antigen Reverse primer CD44 antigen Forward primer Prostaglandin-endoperoxide synthase 1 Reverse primer High-mobility group AT-hook1 isoform B Reverse primer CKS1 protein homolog Forward primer CKS1 protein homolog Reverse primer CKS1 protein homolog Reverse primer CKS1 protein homolog	72. Reverse primer			
Reverse primerPeroxisome proliferative activated receptor, gannaForward primerPeroxisome proliferative activated receptor, gannaForward primerCD44 antigenReverse primerCD44 antigenForward primerProstaglandin-endoperoxide synthase 1Reverse primerHigh-mobility group AT-hook1 isoform BForward primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologReverse primerCKS1 protein homologReverse primerCKS1 protein homologReverse primerReverse primer	73. Forward primer		Peroxisome proliferative activated receptor, alpha	PPARα
Forward primerPeroxisome proliferative activated receptor, gannaReverse primerPeroxisome proliferative activated receptor, deltaForward primerCD44 antigenReverse primerCD44 antigenForward primerProstaglandin-endoperoxide synthase 1Reverse primerProstaglandin-endoperoxide synthase 1Reverse primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologReverse primerCKS1 protein homologReverse primerReverse primerForward primerCKS1 protein homologReverse primerReverse primer				
Reverse primerPeroxisome proliferative activated receptor, deltaForward primerCD44 antigenForward primerCD44 antigenReverse primerProstaglandin-endoperoxide synthase 1Forward primerHigh-mobility group AT-hook1 isoform BForward primerCKS1 protein homologForward primerCKS1 protein homologReverse primerCKS1 protein homologReverse primerReverse primerForward primer100 kDa coactivatorReverse primerReverse primer	75. Forward primer		Peroxisome proliferative activated receptor, ganna	PPARy
Forward primerPeroxisome proliferative activated receptor, deltaReverse primerCD44 antigenForward primerProstaglandin-endoperoxide synthase 1Forward primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologForward primerCKS1 protein homologForward primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer	76. Reverse primer			
Reverse primerCD44 antigenForward primerProstaglandin-endoperoxide synthase 1Forward primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologForward primerCKS1 protein homologForward primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer	77. Forward primer		Peroxisome proliferative activated receptor, delta	PPARS
Forward primerCD44 antigenReverse primerProstaglandin-endoperoxide synthase 1Forward primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologForward primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer	78. Reverse primer			
Reverse primerProstaglandin-endoperoxide synthase 1Forward primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologReverse primerCKS1 protein homologReverse primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer	79. Forward primer		CD44 antigen	CD44
Forward primerProstaglandin-endoperoxide synthase 1Reverse primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologReverse primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer				
Reverse primerHigh-mobility group AT-hook1 isoform BForward primerCKS1 protein homologForward primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer			Prostaglandin-endoperoxide synthase 1	COX1
Forward primerHigh-mobility group AT-hook1 isoform BReverse primerCKS1 protein homologForward primer100 kDa coactivatorReverse primer100 kDa coactivator	82. Reverse primer			
Reverse primerCKS1 protein homologForward primer100 kDa coactivatorReverse primer100 kDa coactivator			High-mobility group AT-hook1 isoform B	HMGYI
Forward primerCKS1 protein homologReverse primer100 kDa coactivatorReverse primerReverse primer				
Reverse primer100 kDa coactivatorReverse primerReverse primer			CKS1 protein homolog	CKS1
Forward primer 100 kDa coactivator Reverse primer	86. Reverse primer			
	87. Forward primer		100 kDa coactivator	p100 coactivator
			- Annual Control of the Control of t	

4/6

Relative Gene Expression Levels in Colon Polyps (Average ± SE)

No.	Genes	Wild-Type Littermate	Individual Poly	P Value
1	SDF-1	1.23±0.34	11.02±2.45	0.003
2	COX2	1.41±0.25	87.48±16.50	< 0.001
3	CXCR2	1.41±0.35	11221±23.76	< 0.001
4	OPN	1.62±0.60	463.37±130.49	0.004
5	MCSFI	1.05±0.15	4.26±1.60	0.08
6	PPARδ	1.16±0.27	0.44±0.05	0.04

FIG. 2A

		Sigmoid					lucosa from C As	cending (
	NB	H002	H004	H006	H008	H011	NB	H003	H009	H010
IL-8	1.80±0.26	28.91	7.14	6.88	18.35	24.67	1.72±0.35	16.03	4.90	28.26
COX2	1.85±0.29	13.54	10.34	18.23	14.63	1.87	1.74±0.45	25.48	11.98	33.06
CXCR2	1.31±0.14	11.35	6.82	6.85	7.18	100.20	1.26±0.17	10.23	22.62	11.20
OPN	2.11±0.52	10.85	9.84	11.88	21.29	3.41	1.43±0.20	26.83	23.97	64.13
MCSF1	1.69±0.19	4.49	11.88	12.84	7.24	7.98	1.57±0.22	12.40	17.89	14.97
PPAR-δ	1.14±0.07	0.10	0.09	0.12	1.28	0.96	1.16±0.11	0.09	1.10	0.30

FIG. 2B

Dependent Variable: II-8, M-CSF-1, COX-2, OPN, p21, PPAR-γ,

CXCR2, CD44, PPAR-δ

Results for Multivariate Analysis: Wilks Lambda Criterion

Source	Lambda	probability
Cancer	0.989	0.0086

FIG. 2C

Fig. 3A

Fig. 3B

Fig. 3C

WO 2005/010486 PCT/US2004/022594 1/88

SEQUENCE LISTING

<110> LEE, NANCY M. CHEN, LING C.	
<120> BIOMARKER PANEL FOR COLORECTAL CANCER	
<130> NLEE 01000WO0	
<140><141>	
<150> 60/488,660 <151> 2003-07-18	
<150> 10/690,880 <151> 2003-10-22	
<160> 88	
<170> PatentIn Ver. 3.2	
<210> 1 <211> 1629 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (74)(274)	
<400> 1 gcagagcaca caagcttcta ggacaagagc caggaagaaa ccaccggaag gaaccatctc	60
actgtgtgta aac atg act tcc aag ctg gcc gtg gct ctc ttg gca gcc Met Thr Ser Lys Leu Ala Val Ala Leu Leu Ala Ala 1 5 10	109
ttc ctg att tct gca gct ctg tgt gaa ggt gca gtt ttg cca agg agt Phe Leu Ile Ser Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser 15 20 25	157
gct aaa gaa ctt aga tgt cag tgc ata aag aca tac tcc aaa cct ttc Ala Lys Glu Leu Arg Cys Gln Cys Ile Lys Thr Tyr Ser Lys Pro Phe 30 35 40	205
cac ccc aaa ttt atc aaa gaa ctg aga gtg att gag agt gga cca cac His Pro Lys Phe Ile Lys Glu Leu Arg Val Ile Glu Ser Gly Pro His 45 50 55 60	253
tgc gcc aac aca gaa att atg taaagctttc tgatggaaga gagctctgtc Cys Ala Asn Thr Glu Ile Met 65	304
tggaccccaa ggaaaactgg gtgcagaggg ttgtggagaa gtttttgaag agggctgaga	364
attcagaatt cataaaaaaa ttcattctct gtggtatcca agaatcagtg aagatgccag	424

2/88

tgaaacttca agcaaatcta cttcaacact tcatqtattg tgtgggtctg ttgtagggtt 484 gccagatgca atacaagatt cctggttaaa tttgaatttc agtaaacaat gaatagtttt 544 tcattgtacc atgaaatatc cagaacatac ttatatgtaa agtattattt atttgaatct 604 acaaaaaaca acaaataatt tttaaatata aggattttcc tagatattgc acgggagaat 664 atacaaatag caaaattgag gccaagggcc aagagaatat ccgaacttta atttcaggaa 724 ttgaatgggt ttgctagaat gtgatatttg aagcatcaca taaaaatgat gggacaataa 784 attttgccat aaagtcaaat ttagctggaa atcctggatt tttttctgtt aaatctggca 844 accetagtet getagecagg atecacaagt cettgtteca etgtgeettg gttteteett 904 tatttctaag tggaaaaagt attagccacc atcttacctc acagtgatgt tgtgaggaca 964 tgtggaagca ctttaagttt tttcatcata acataaatta ttttcaagtg taacttatta 1024 acctatttat tatttatgta tttatttaag catcaaatat ttgtgcaaga atttggaaaa 1084 atagaagatg aatcattgat tgaatagtta taaagatgtt atagtaaatt tattttattt 1144 tagatattaa atgatgtttt attagataaa tttcaatcag ggtttttaga ttaaacaaac 1204 aaacaattgg gtacccagtt aaattttcat ttcagataaa caacaaataa ttttttagta 1264 taagtacatt attgtttatc tgaaatttta attgaactaa caatcctagt ttgatactcc 1324 cagtottgto attgocagot gtgttggtag tgotgtgttg aattacggaa taatgagtta 1384 gaactattaa aacagccaaa actccacagt caatattagt aatttcttgc tggttgaaac 1444 ttgtttatta tgtacaaata gattcttata atattattta aatgactgca tttttaaata 1504 caaggettta tatttttaac tttaagatgt ttttatgtgc tetecaaatt ttttttactg 1564 tttctgattg tatggaaata taaaagtaaa tatgaaacat ttaaaatata atttgttgtc 1624 aaagt 1629

```
<210> 2
<211> 3356
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (98)..(1909)
<400> 2
gtccaggaac tcctcagcag cgcctccttc agctccacag ccagacgccc tcagacagca 60
aagcctaccc ccgcgccgcg ccctgcccgc cgctgcg atg ctc gcc cgc gcc ctg 115
```

Met Leu Ala Arg Ala Leu

3/88

5 ctg ctg tgc gcg gtc ctg gcg ctc agc cat aca gca aat cct tgc tgt Leu Leu Cys Ala Val Leu Ala Leu Ser His Thr Ala Asn Pro Cys Cys tcc cac cca tgt caa aac cga ggt gta tgt atg agt gtg gga ttt gac 211 Ser His Pro Cys Gln Asn Arg Gly Val Cys Met Ser Val Gly Phe Asp cag tat aag tgc gat tgt acc cgg aca gga ttc tat gga gaa aac tgc Gln Tyr Lys Cys Asp Cys Thr Arg Thr Gly Phe Tyr Gly Glu Asn Cys 40 45 tca aca ccg gaa ttt ttg aca aga ata aaa tta ttt ctg aaa ccc act 307 Ser Thr Pro Glu Phe Leu Thr Arg Ile Lys Leu Phe Leu Lys Pro Thr cca aac aca gtg cac tac ata ctt acc cac ttc aag gga ttt tgg aac 355 Pro Asn Thr Val His Tyr Ile Leu Thr His Phe Lys Gly Phe Trp Asn gtt gtg aat aac att ccc ttc ctt cga aat gca att atg agt tat gtg 403 Val Val Asn Asn Ile Pro Phe Leu Arg Asn Ala Ile Met Ser Tyr Val ttg aca tcc aga tca cat ttg att gac agt cca cca act tac aat gct Leu Thr Ser Arg Ser His Leu Ile Asp Ser Pro Pro Thr Tyr Asn Ala 110 gac tat ggc tac aaa agc tgg gaa gcc ttc tct aac ctc tcc tat tat 499 Asp Tyr Gly Tyr Lys Ser Trp Glu Ala Phe Ser Asn Leu Ser Tyr Tyr 125 130 act aga gcc ctt cct cct gtg cct gat gat tgc ccg act ccc ttg ggt 547 Thr Arg Ala Leu Pro Pro Val Pro Asp Asp Cys Pro Thr Pro Leu Gly 140 145 gtc aaa ggt aaa aag cag ctt cct gat tca aat gag att gtg gaa aaa 595 Val Lys Gly Lys Lys Gln Leu Pro Asp Ser Asn Glu Ile Val Glu Lys 155 160 ttg ctt cta aga aga aag ttc atc cct gat ccc cag ggc tca aac atg 643 Leu Leu Arg Arg Lys Phe Ile Pro Asp Pro Gln Gly Ser Asn Met 170 atg ttt gca ttc ttt gcc cag cac ttc acg cat cag ttt ttc aag aca Met Phe Ala Phe Phe Ala Gln His Phe Thr His Gln Phe Phe Lys Thr 185 gat cat aag cga ggg cca gct ttc acc aac ggg ctg ggc cat ggg qtq 739 Asp His Lys Arg Gly Pro Ala Phe Thr Asn Gly Leu Gly His Gly Val 200 205 gac tta aat cat att tac ggt gaa act ctg gct aga cag cgt aaa ctg 787 Asp Leu Asn His Ile Tyr Gly Glu Thr Leu Ala Arg Gln Arg Lys Leu 215

											ata Ile					835
											gag Glu					883
		_							_		glà aaa	_		_		931
											atc Ile 290					979
		_	_	_	_				_		cat His		_			1027
											ctg Leu					1075
											ttg Leu					1123
		_			_		_				aac Asn				_	1171
			_		_	_	_				ctc Leu 370					1219
											cag Gln					1267
caa Gln											gaa Glu					1315
											ggc Gly					1363
											tca Ser					1411
gac Asp	cag Gln 440	agc Ser	agg Arg	cag Gln	atg Met	aaa Lys 445	tac Tyr	cag Gln	tct Ser	ttt Phe	aat Asn 450	gag Glu	tac Tyr	cgc Arg	aaa Lys	1459

5,55	
cgc ttt atg ctg aag ccc tat gaa tca ttt gaa gaa ctt aca gga gaa 1507 Arg Phe Met Leu Lys Pro Tyr Glu Ser Phe Glu Glu Leu Thr Gly Glu 455 460 465 470	
aag gaa atg tct gca gag ttg gaa gca ctc tat ggt gac atc gat gct 1555 Lys Glu Met Ser Ala Glu Leu Glu Ala Leu Tyr Gly Asp Ile Asp Ala 475 480 485	
gtg gag ctg tat cct gcc ctt ctg gta gaa aag cct cgg cca gat gcc 1603 Val Glu Leu Tyr Pro Ala Leu Leu Val Glu Lys Pro Arg Pro Asp Ala 490 495 500	
atc ttt ggt gaa acc atg gta gaa gtt gga gca cca ttc tcc ttg aaa 1651 Ile Phe Gly Glu Thr Met Val Glu Val Gly Ala Pro Phe Ser Leu Lys 505 510 515	
gga ctt atg ggt aat gtt ata tgt tct cct gcc tac tgg aag cca agc 1699 Gly Leu Met Gly Asn Val Ile Cys Ser Pro Ala Tyr Trp Lys Pro Ser 520 525 530	
act ttt ggt gga gaa gtg ggt ttt caa atc atc aac act gcc tca att 1747 Thr Phe Gly Gly Val Gly Phe Gln Ile Ile Asn Thr Ala Ser Ile 535 540 545 550	
cag tot oto ato tgo aat aac gtg aag ggo tgt oco ttt act toa tto 1795 Gln Ser Leu Ile Cys Asn Asn Val Lys Gly Cys Pro Phe Thr Ser Phe 555 560 565	
agt gtt cca gat cca gag ctc att aaa aca gtc acc atc aat gca agt 1843 Ser Val Pro Asp Pro Glu Leu Ile Lys Thr Val Thr Ile Asn Ala Ser 570 575 580	
tct tcc cgc tcc gga cta gat gat atc aat ccc aca gta cta cta aaa 1891 Ser Ser Arg Ser Gly Leu Asp Asp Ile Asn Pro Thr Val Leu Leu Lys 585 590 595	
gaa cgt tcg act gaa ctg tagaagtcta atgatcatat ttatttattt 1939 Glu Arg Ser Thr Glu Leu 600	
atatgaacca tgtctattaa tttaattatt taataatatt tatattaaac tccttatgtt 1999	
acttaacatc ttctgtaaca gaagtcagta ctcctgttgc ggagaaagga gtcatacttg 2059	
tgaagacttt tatgtcacta ctctaaagat tttgctgttg ctgttaagtt tggaaaacag 2119	
tttttattct gttttataaa ccagagagaa atgagttttg acgtcttttt acttgaattt 2179	
caacttatat tataagaacg aaagtaaaga tgtttgaata cttaaacact gtcacaagat 2239	
ggcaaaatgc tgaaagtttt tacactgtcg atgtttccaa tgcatcttcc atgatgcatt 2299	
agaagtaact aatgtttgaa attttaaagt acttttggtt atttttctgt catcaaacaa 2359	
aaacaggtat cagtgcatta ttaaatgaat atttaaatta gacattacca gtaatttcat 2419	
gtctactttt taaaatcagc aatgaaacaa taatttgaaa tttctaaatt catagggtag 2479	

6/88

aatcacctgt aaaagcttgt ttgatttctt aaagttatta aacttgtaca tataccaaaa 2539 agaagetgte ttggatttaa atetgtaaaa teagtagaaa ttttaetaca attgettgtt 2599 aaaatatttt ataagtgatg ttcctttttc accaagagta taaacctttt tagtgtgact 2659 gttaaaactt ccttttaaat caaaatgcca aatttattaa ggtggtggag ccactgcagt 2719 gttatcttaa aataagaata ttttgttgag atattccaga atttgtttat atggctggta 2779 acatgtaaaa totatatoag caaaagggto tacotttaaa ataagcaata acaaagaaga 2839 aaaccaaatt attgttcaaa tttaggttta aacttttgaa gcaaactttt ttttatcctt 2899 gtgcactgca ggcctggtac tcagattttg ctatgaggtt aatgaagtac caagctgtgc 2959 ttgaataatg atatgttttc tcagattttc tgttgtacag tttaatttag cagtccatat 3019 cacattgcaa aagtagcaat gacctcataa aatacctctt caaaatgctt aaattcattt 3079 cacacattaa ttttatctca gtcttgaagc caattcagta ggtgcattgg aatcaagcct 3139 ggctacctgc atgctgttcc ttttcttttc ttcttttagc cattttgcta agagacacag 3199 tetteteate aettegttte teetattttg ttttaetagt tttaagatea gagtteaett 3259 tetttggaet etgeetatat titettaeet gaactittge aagtitteag gtaaacetea 3319 gctcaggact gctatttagc tcctcttaag aagatta 3356

```
<210> 3
<211> 1750
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (53)..(1132)
<400>3
cctacaggtg aaaagcccag cgacccagtc aggatttaag tttacctcaa aa atg gaa 58
                                                          Met Glu
gat ttt aac atg gag agt gac agc ttt gaa gat ttc tgg aaa ggt gaa
                                                                   106
Asp Phe Asn Met Glu Ser Asp Ser Phe Glu Asp Phe Trp Lys Gly Glu
gat ctt agt aat tac agt tac agc tct acc ctg ccc cct ttt cta cta
                                                                   154
Asp Leu Ser Asn Tyr Ser Tyr Ser Ser Thr Leu Pro Pro Phe Leu Leu
gat gcc gcc cca tgt gaa cca gaa tcc ctg gaa atc aac aag tat ttt
                                                                   202
Asp Ala Ala Pro Cys Glu Pro Glu Ser Leu Glu Ile Asn Lys Tyr Phe
```

45

40

35

	_				_	_	_		_	_	_	_	_	gga Gly 65		250
														tcc Ser		298
	_	_		_	_			_	_	_	_			ttt Phe	_	346
		_								_				att Ile		394
				_	_		_			_	_	_	_	aac Asn		442
	_			_		_	_	_		_	_	_	_	tac Tyr 145	_	490
_		_		_		_		_		_	_	_		ttg Leu	_	538
			-		_				_		_		_	gcc Ala	_	586
	_				_			_					_	agc Ser		634
														atg Met		682
														ctg Leu 225		730
														gcc Ala		778
atg Met	gly aaa	cag Gln 245	aag Lys	cac His	cgg Arg	gcc Ala	atg Met 250	cgg Arg	gtc Val	atc Ile	ttt Phe	gct Ala 255	gtc Val	gtc Val	ctc Leu	826
														gca Ala		874

acc ctc atg agg acc cag gtg atc cag gag acc tgt gag cgc cgc aat 922 Thr Leu Met Arg Thr Gln Val Ile Gln Glu Thr Cys Glu Arg Arg Asn 275 280 285 290
cac atc gac egg gct etg gat gcc acc gag att etg ggc atc ett eac 970 His Ile Asp Arg Ala Leu Asp Ala Thr Glu Ile Leu Gly Ile Leu His 295 300 305
agc tgc ctc aac ccc ctc atc tac gcc ttc att ggc cag aag ttt cgc 1018 Ser Cys Leu Asn Pro Leu Ile Tyr Ala Phe Ile Gly Gln Lys Phe Arg 310 315 320
cat gga ctc ctc aag att cta gct ata cat ggc ttg atc agc aag gac 1066 His Gly Leu Leu Lys Ile Leu Ala Ile His Gly Leu Ile Ser Lys Asp 325 330 335
tcc ctg ccc aaa gac agc agg cct tcc ttt gtt ggc tct tct tca ggg 1114 Ser Leu Pro Lys Asp Ser Arg Pro Ser Phe Val Gly Ser Ser Ser Gly 340 345 350
cac act tcc act act ctc taagacctcc tgcctaagtg cagccccgtg His Thr Ser Thr Thr Leu 355 360
gggttcctcc cttctcttca cagtcacatt ccaagcctca tgtccactgg ttcttcttgg 1222
teteagtgte aatgeageee ceattgtggt cacaggaage agaggaggee acgttettae 1282
tagtttccct tgcatggttt agaaagcttg ccctggtgcc tcaccccttg ccataattac 1342
tatgtcattt gctggagctc tgcccatcct gcccctgagc ccatggcact ctatgttcta 1402
agaagtgaaa atctacactc cagtgagaca gctctgcata ctcattagga tggctagtat 1462
caaaagaaag aaaatcaggc tggccaacgg gatgaaaccc tgtctctact aaaaatacaa 1522
aaaaaaaaa aaaaattagc cgggcgtggt ggtgagtgcc tgtaatcaca gctacttggg 1582
aggctgagat gggagaatca cttgaacccg ggaggcagag gttgcagtga gccgagattg 1642
tgcccctgca ctccagcctg agcgacagtg agactctgtc tcagtccatg aagatgtaga 1702
ggagaaactg gaactetega gegttgetgg gggggattgt aaaatggt 1750
<210> 4 <211> 597 <212> DNA <213> Homo sapiens
<220> <221> CDS <222> (1)(597)
<pre><400> 4 atg ccc cta ggt ctc ctg tgg ctg ggc cta gcc ctg ttg ggg gct ctg Met Pro Leu Gly Leu Leu Trp Leu Gly Leu Ala Leu Leu Gly Ala Leu 1 5 10 15</pre>

9/88

											atc Ile				96
_	_	_	_		_	_	_			_	gac Asp			_	144
	_				_		_	_			gca Ala 60		_	_	192
_		_	_		_	_		_			tat Tyr	 _		_	240
_	_	_			_			_	_		agg Arg	_	_	_	288
_							_			_	cag Gln				336
											acg Thr				384
_			_					_		_	atg Met 140			_	432
	_								_		acc Thr			_	480
	_		_		_	_		_			ttc Phe	_			528
											ttc Phe				576
_	Gln	_		_	ggc Gly	tga									597

<210> 5 <211> 369 <212> DNA <213> Homo sapiens

<220> <221> CDS <222> (1)(369)													
<400> 5 atg aag ctt ctc acg ggc ctg gtt ttc tgc tcc ttg gtc ctg ggt gtc 48 Met Lys Leu Thr Gly Leu Val Phe Cys Ser Leu Val Leu Gly Val 1 5 10 15													
agc agc cga agc ttc ttt tcg ttc ctt ggc gag gct ttt gat ggg gct 96 Ser Ser Arg Ser Phe Phe Ser Phe Leu Gly Glu Ala Phe Asp Gly Ala 20 25 30													
cgg gac atg tgg aga gcc tac tct gac atg aga gaa gcc aat tac atc 144 Arg Asp Met Trp Arg Ala Tyr Ser Asp Met Arg Glu Ala Asn Tyr Ile 35 40 45													
ggc tca gac aaa tac ttc cat gct cgg ggg aac tat gat gct gcc aaa 192 Gly Ser Asp Lys Tyr Phe His Ala Arg Gly Asn Tyr Asp Ala Ala Lys 50 55 60													
agg gga cct ggg ggt gtc tgg gct gca gaa gcg atc agc gat gcc aga 240 Arg Gly Pro Gly Gly Val Trp Ala Ala Glu Ala Ile Ser Asp Ala Arg 65 70 75 80													
gag aat atc cag aga ttc ttt ggc cat ggt gcg gag gac tcg ctg gct 288 Glu Asn Ile Gln Arg Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala 85 90 95													
gat cag gct gcc aat gaa tgg ggc agg agt ggc aaa gac ccc aat cac 336 Asp Gln Ala Ala Asn Glu Trp Gly Arg Ser Gly Lys Asp Pro Asn His 100 105 110													
ttc cga cct gct ggc ctg cct gag aaa tac tga 369 Phe Arg Pro Ala Gly Leu Pro Glu Lys Tyr 115 120													
<210> 6 <211> 3939 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> (106)(1767)													
<400> 6 cctgggtcct ctcggcgcca gagccgctct ccgcatccca ggacagcggt gcggccctcg 60													
gccggggcgc ccactccgca gcagccagcg agccagctgc cccgt atg acc gcg ccg 117 Met Thr Ala Pro 1													
ggc gcc gcc ggg cgc tgc cct ccc acg aca tgg ctg ggc tcc ctg ctg Gly Ala Ala Gly Arg Cys Pro Pro Thr Thr Trp Leu Gly Ser Leu Leu 5 10 15 20													

_	ttg Leu	_	_		-	_	_		_						_	213
	tac Tyr	_	_		_			_			_	_		_	_	261
	ctg Leu		_	_	_	_			_	_						309
	gta Val 70	_	-	_	_	_		_			_			_	_	357
	ttt Phe															405
_	aac Asn		_								-	_	_			453
_	agg Arg	_	_	_	_			_	-		_			_	_	501
_	tgc Cys	_	_								_	_	_		_	549
_	aag Lys 150		_			_		_				_	_	_		597
	att Ile															645
caa Gln	gat	ata	~+~			aat								222	acc	693
	Asp				_		_	-		_	_				_	033
	_	Val	Val	Thr 185 gac	ccg	Pro gcc	Asp	Cys gtc	Asn 190 tcc	Cys	Leu	Tyr cag	Pro	Lys 195 ctc	Ala	741
Ile	Asp	Val agc Ser	Val agt Ser 200	Thr 185 gac Asp	Lys ccg Pro	Pro gcc Ala gct	Asp tct Ser	Cys gtc Val 205 ttg	Asn 190 tcc Ser	Cys cct Pro	Leu cat His	Tyr cag Gln gac	Pro ccc Pro 210	Lys 195 ctc Leu	Ala gcc Ala gga	

	cca Pro															885
	gag Glu	_					_	_	_	-	_					933
	cca Pro			_			_		_							981
_	att Ile		_		_	_					-		_	_	_	1029
	gga Gly 310		_	_				_								1077
	tcc Ser															1125
_	aac Asn				_						_		_	_		1173
	cag Gln	_	_	_	_		_		_							1221
	atg Met				_	_						_	_		_	1269
	cca Pro 390			_		_	_		_							1317
	tca Ser															1365
	cag Gln															1413
	Gly 999															1461
gca Ala	gag Glu	cca Pro 455	gaa Glu	gca Ala	gca Ala	cca Pro	gca Ala 460	agt Ser	gaa Glu	Gly 999	gca Ala	gcc Ala 465	agg Arg	ccc Pro	ctg Leu	1509

ccc cgt ttt aac tcc gtt cct ttg act gac aca ggc cat gag agg cag Pro Arg Phe Asn Ser Val Pro Leu Thr Asp Thr Gly His Glu Arg Gln 470 475 480
tcc gag gga tcc tcc agc ccg cag ctc cag gag tct gtc ttc cac ctg Ser Glu Gly Ser Ser Ser Pro Gln Leu Gln Glu Ser Val Phe His Leu 485 490 495 500
ctg gtg ccc agt gtc atc ctg gtc ttg ctg gct gtc gga ggc ctc ttg 1653 Leu Val Pro Ser Val Ile Leu Val Leu Leu Ala Val Gly Gly Leu Leu 505 510 515
ttc tac agg tgg agg cgg cgg agc cat caa gag cct cag aga gcg gat 1701 Phe Tyr Arg Trp Arg Arg Arg Ser His Gln Glu Pro Gln Arg Ala Asp 520 525 530
tct ccc ttg gag caa cca gag ggc agc ccc ctg act cag gat gac aga 1749 Ser Pro Leu Glu Gln Pro Glu Gly Ser Pro Leu Thr Gln Asp Asp Arg 535 540 545
cag gtg gaa ctg cca gtg tagagggaat tctaagctgg acgcacagaa 1797 Gln Val Glu Leu Pro Val 550
cagtetette gtgggaggag acattatggg gegteeacea eeaceeetee etggeeatee 1857
teetggaatg tggtetgeec teeaceagag eteetgeetg eeaggaetgg accagageag 1917
ccaggetggg geceetetgt etcaaceege agaceettga etgaatgaga gaggeeagag 1977
gatgeteece atgetgeeae tatttattgt gageeetgga ggeteecatg tgettgagga 2037
aggetggtga geeeggetea ggaeeetett eeeteagggg etgeageete eteteaetee 2097
cttccatgcc ggaacccagg ccagggaccc accggcctgt ggtttgtggg aaagcagggt 2157
gcacgctgag gagtgaaaca accetgcacc cagagggeet geetggtgee aaggtateee 2217
agcetggaca ggcatggace tgtetecaga cagaggagee tgaagttegt ggggegggae 2277
agecteggee tgattteeeg taaaggtgtg cageetgaga gaegggaaga ggaggeetet 2337
gcacctgctg gtctgcactg acagcctgaa gggtctacac cctcggctca cctaagtccc 2397
tgtgctggtt gccaggccca gaggggaggc cagccctgcc ctcaggacct gcctgacctg 2457
ccagtgatgc caagaggggg atcaagcact ggcctctgcc cctcctcctt ccagcacctg 2517
ccagagette tecageagge caageagagg etceeeteat gaaggaagee attgeactgt 2577
gaacactgta cctgcctgct gaacagcctc cccccgtcca tccatgagcc agcatccgtc 2637
egtectecae tetecageet etececagee teetgeaetg agetggeete accagtegae 2697
tgagggagcc ceteageeet gaeettetee tgaeetggee tttgaeteee eggagtggag 2757
tggggtggga gaaceteetg ggeegeeage cagageeget etttaggetg tgttettege 2817

14/88

ccaggtttct gcatcttcca ctttgacatt cccaagaggg aagggactag tgggagagag 2877 caagggaggg gagggcacag acagagagcc tacagggcga gctctgactg aagatgggcc 2937 tttgaaatat aggtatgcac ctgaggttgg gggagggtct gcactcccaa accccagcgc 2997 agtgtccttt ccctgctgcc gacaggaacc tggggctgag caggttatcc ctgtcaggag 3057 ccctggactg ggctgcatct cagccccacc tgcatggtat ccagctccca tccacttctc 3117 accettettt cetectgace ttggtcagea gtgatgacet ceaactetea cecaceceet 3177 ctaccatcac ctctaaccag gcaagccagg gtgggagagc aatcaggaga gccaggcctc 3237 agettecaat geetggaggg cetecaettt gtggeeagee tgtggtgetg getetgagge 3297 ctaggcaacg agcgacaggg ctgccagttg cccctgggtt cctttgtgct gctgtgtgcc 3357 tectetectg eegecetttg teeteegeta agagaceetg eectaeetgg eegetgggee 3417 ccgtgacttt cccttcctgc ccaggaaagt gagggtcggc tggccccacc ttccctgtcc 3477 . tgatgccgac agcttaggga agggcactga acttgcatat ggggcttagc cttctagtca 3537 cagcetetat atttgatget agaaaacaca tatttttaaa tggaagaaaa ataaaaagge 3597 atteccectt cateccecta cettaaacat ataatattt aaaggteaaa aaageaatee 3657 aacccactgc agaagctctt tttgagcact tggtggcatc agagcaggag gagccccaga 3717 gccacctctg gtgtccccca ggctacctgc tcaggaaccc cttctgttct ctgagaactc 3777 aacagaggac attggctcac gcactgtgag attttgtttt tatacttgca actggtgaat 3837 tattttttat aaagtcattt aaatatctat ttaaaagata ggaagctgct tatatattta 3897 ataataaaag aagtgcacaa gctgccgttg acgtagctcg ag

```
<210> 7
<211> 1024
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(321)
atg gee ege get get ete tee gee gee eee age aat eee egg ete etg
                                                                  48
Met Ala Arg Ala Ala Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu
 1
cga gtg gca ctg ctc ctg ctc ctg gta gcc gct ggc cgg cgc gca
                                                                  96
Arg Val Ala Leu Leu Leu Leu Leu Val Ala Ala Gly Arg Arg Ala
            20
                                25
                                                    30
```

gca gga gcg tcc gtg gcc act gaa ctg cgc tgc cag tgc ttg cag acc Ala Gly Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr 35 40 45	
ctg cag gga att cac ccc aag aac atc caa agt gtg aac gtg aag tcc 192 Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys Ser 50 55 60	
ccc gga ccc cac tgc gcc caa acc gaa gtc ata gcc aca ctc aag aat240Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn707580	
ggg cgg aaa gct tgc ctc aat cct gca tcc ccc ata gtt aag aaa atc 288 Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys Lys Ile 85 90 95	
atc gaa aag atg ctg aac agt gac aaa tcc aac tgaccagaag ggaggaggaa 341 Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn 100 105	
gctcactggt ggctgttcct gaaggaggcc ctgcccttat aggaacagaa gaggaaagag 401	
agacacaget geagaggeea eetggattgt geetaatgtg tttgageate gettaggaga 461	
agtettetat ttatttattt atteattagt tttgaagatt etatgttaat attttaggtg 521	
taaaataatt aagggtatga ttaactctac ctgcacactg tcctattata ttcattcttt 581	
ttgaaatgtc aaccccaagt tagttcaatc tggattcata tttaatttga aggtagaatg 641	
ttttcaaatg ttctccagtc attatgttaa tatttctgag gagcctgcaa catgccagcc 701	
actgtgatag aggctggcgg atccaagcaa atggccaatg agatcattgt gaaggcaggg 761	
gaatgtatgt gcacatctgt tttgtaactg tttagatgaa tgtcagttgt tatttattga 821	
aatgatttca cagtgtgtgg tcaacatttc tcatgttgaa actttaagaa ctaaaatgtt 881	
ctaaatatcc cttggacatt ttatgtcttt cttgtaaggc atactgcctt gtttaatggt 941	
agttttacag tgtttctggc ttagaacaaa ggggcttaat tattgatgtt ttcatagaga 100	1
atataaaaat aaagcactta tag 102-	4

```
<210> 8
<211> 1064
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (78)..(395)

<220>
<221> modified_base
```

16/88

<222> (27) <223> a, c, t, g, other or unknown <220> <221> modified base <222> (766) <223> a, c, t, g, other or unknown <400> 8 cacagooggg togoaggeac etcocongec agetetocog cattetgeac agettocoga 60 egegtetget gageece atg gee cae gee acg ete tee gee gee eee age 110 Met Ala His Ala Thr Leu Ser Ala Ala Pro Ser aat eec egg ete etg egg gtg geg etg etc etg etc etg gtg gge 158 Asn Pro Arg Leu Leu Arg Val Ala Leu Leu Leu Leu Leu Val Gly age egg ege gea gea geg tee gtg gte aet gaa etg ege tge eag 206 Ser Arg Arg Ala Ala Gly Ala Ser Val Val Thr Glu Leu Arg Cys Gln 35 tgc ttg cag aca ctg cag gga att cac ctc aag aac atc caa agt gtg 254 Cys Leu Gln Thr Leu Gln Gly Ile His Leu Lys Asn Ile Gln Ser Val 50 aat gta agg tcc ccc gga ccc cac tgc gcc caa acc gaa gtc ata gcc 302 Asn Val Arg Ser Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala 65 aca ctc aag aat ggg aag aaa gct tgt ctc aac ccc gca tcc ccc atg 350 Thr Leu Lys Asn Gly Lys Lys Ala Cys Leu Asn Pro Ala Ser Pro Met 80 395 gtt cag aaa atc atc gaa aag ata ctg aac aag ggg agc acc aac Val Gln Lys Ile Ile Glu Lys Ile Leu Asn Lys Gly Ser Thr Asn tgacaggaga gaagtaagaa gcttatcagc gtatcattga cacttcctgc agggtggtcc 455 ctgcccttac cagagctgaa aatgaaaaag agaacagcag ctttctaggg acagctggaa 515 agggacttaa tgtgtttgac tatttcttac gagggttcta cttatttatg tatttatttt 575 tgaaagettg tattttaata ttttacatge tgttatttaa agatgtgagt gtgtttcate 635 aaacatagct cagtcctgat tatttaattg gaatatgatg ggttttaaat gtgtcattaa 695 actaatattt agtgggagac cataatgtgt cagccacctt gataaatgac agggtgggga 755 actggagggt ngggggattg aaatgcaagc aattagtgga tcactgttag ggtaagggaa 815 tgtatgtaca catctatttt ttatactttt ttttttaaaa aagaatgtca gttgttattt 875 attcaaatta totcacatta tgtgttcaac atttttatgc tgaagtttcc cttagacatt 935 ttatgtcttg cttgtagggc ataatgcctt gtttaatgtc cattctgcag cgtttctctt 995

tcccttggaa aagagaattt atcattactg ttacatttgt acaaatgaca tgataataaa 1055

agttttatg														
<210> 9 <211> 1469 <212> DNA <213> Homo sapiens <220>														
<221> CDS <222> (102)(1001)														
<400> 9 agcagcagga ggaggcagag cacagcatcg tcgggaccag actcgtctca ggccagttgc														
agcagcagga ggaggcagag cacagcatcg togggaccag actogtotca ggccagttgc agcottotca gccaaacgco gaccaaggaa aactoactac c atg aga att gca gtg Met Arg Ile Ala Val 1 5														
att tgc ttt tgc ctc cta ggc atc acc tgt gcc ata cca gtt aaa cag Ile Cys Phe Cys Leu Leu Gly Ile Thr Cys Ala Ile Pro Val Lys Gln 10 15 20	164													
gct gat tct gga agt tct gag gaa aag cag ctt tac aac aaa tac cca Ala Asp Ser Gly Ser Ser Glu Glu Lys Gln Leu Tyr Asn Lys Tyr Pro 25 30 35	212													
gat gct gtg gcc aca tgg cta aac cct gac cca tct cag aag cag aat Asp Ala Val Ala Thr Trp Leu Asn Pro Asp Pro Ser Gln Lys Gln Asn 40 45 50	260													
ctc cta gcc cca cag acc ctt cca agt aag tcc aac gaa agc cat gac Leu Leu Ala Pro Gln Thr Leu Pro Ser Lys Ser Asn Glu Ser His Asp 55 60 65	308													
cac atg gat gat gat gat gat gat gat gat gat	356													
cag gac tcc att gac tcg aac gac tct gat gat gta gat gac act gat Gln Asp Ser Ile Asp Ser Asn Asp Ser Asp Asp Val Asp Asp Thr Asp 90 95 100	404													
gat tot cac cag tot gat gag tot cac cat tot gat gaa tot gat gaa Asp Ser His Gln Ser Asp Glu Ser His His Ser Asp Glu Ser Asp Glu 105 110 115	452													
ctg gtc act gat ttt ccc acg gac ctg cca gca acc gaa gtt ttc act Leu Val Thr Asp Phe Pro Thr Asp Leu Pro Ala Thr Glu Val Phe Thr 120 125 130	500													
cca gtt gtc ccc aca gta gac aca tat gat ggc cga ggt gat agt gtg Pro Val Val Pro Thr Val Asp Thr Tyr Asp Gly Arg Gly Asp Ser Val 135 140 145	548													

														gac Asp		596
_			_	_		_		_					_	gaa Glu 180	_	644
		_			_		_	_			_	_	_	gac Asp	_	692
				_		_	_	_		_	_	_		gaa Glu	_	740
_	_	_	_	_	_	-	_	_			_		_	cag Gln		788
-			_			_		_				-		tcc Ser	_	836
		_	_	_	_				_	_	_	_		cac His 260	_	884
	_			-		-	_	_	_	-	_	_		aaa Lys	_	932
_	_	_	_			_			_				_	tta Leu	_	980
_	_				gtc Val		taaa	agga	aga a	aaaa	ataca	aa tt	tete	cactt	:	1031
tgca	ttta	agt o	caaaa	agaaa	aa aa	tgct	ttat	ago	caaaa	itga	aaga	gaad	at c	gaaat	gcttc	1091
tttc	ctcag	gtt t	atte	gtt	ga at	gtgt	atct	att	tgag	gtct	ggaa	ataa	act a	atgt	gtttg	1151
ataa	attag	gtt t	agtt	tgtg	gg ct	tcat	ggaa	act	ccct	gta	aact	aaaa	igc t	tcag	ggtta	1211
tgto	ctate	gtt o	catto	ctata	ag aa	ıgaaa	atgca	aaa	ctato	act	gtat	ttta	aat a	atttg	jttatt	1271
ctct	cato	gaa t	agaa	attt	a to	gtaga	agca	aac	aaaa	tac	tttt	acco	ac t	taaa	aagag	1331
aata	taac	at t	ttat	gtca	ac ta	taat	cttt	tgt:	tttt	taa	gtta	gtgt	at a	tttt	gttgt	1391
gatt	atct	tt t	tgtg	gtgt	g aa	taaa	tctt	. tta	tctt	gaa	tgta	ataa	iga a	aaaa	aaaaa	1451
aaaa	acaa	aa a	aaaa	aaaa												1469

```
<210> 10
<211> 1256
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (145)..(1029)
<400> 10
gcagtagcag cgagcagcag agtccgcacg ctccggcgag gggcagaaga gcgcgaggga 60
gegeggggea geagaagega gageegageg eggaeeeage eaggaeeeae ageeeteeee 120
agetgeecag gaagageece agee atg gaa cae cag ete etg tge tge gaa
                           Met Glu His Gln Leu Leu Cys Cys Glu
gtg gaa acc atc cgc cgc gcg tac ccc gat gcc aac ctc ctc aac gac
                                                                   219
Val Glu Thr Ile Arg Arg Ala Tyr Pro Asp Ala Asn Leu Leu Asn Asp
                     15
                                         20
cgg gtg ctg cgg gcc atg ctg aag gcg gag acc tgc gcg ccc tcg
                                                                   267
Arg Val Leu Arg Ala Met Leu Lys Ala Glu Glu Thr Cys Ala Pro Ser
gtg tcc tac ttc aaa tgt gtg cag aag gag gtc ctg ccg tcc atg cgg
                                                                   315
Val Ser Tyr Phe Lys Cys Val Gln Lys Glu Val Leu Pro Ser Met Arg
aag atc gtc gcc acc tgg atg ctg gag gtc tgc gag gaa cag aag tgc
                                                                   363
Lys Ile Val Ala Thr Trp Met Leu Glu Val Cys Glu Glu Gln Lys Cys
gag gag gag gtc ttc ccg ctg gcc atg aac tac ctg gac cgc ttc ctg
                                                                   411
Glu Glu Glu Val Phe Pro Leu Ala Met Asn Tyr Leu Asp Arg Phe Leu
teg etg gag eee gtg aaa aag age ege etg eag etg etg ggg gee aet
                                                                   459
Ser Leu Glu Pro Val Lys Lys Ser Arg Leu Gln Leu Leu Gly Ala Thr
90
                     95
                                        100
tgc atg ttc gtg gcc tct aag atg aag gag acc atc ccc ctg acg gcc
                                                                   507
Cys Met Phe Val Ala Ser Lys Met Lys Glu Thr Ile Pro Leu Thr Ala
                110
gag aag ctg tgc atc tac acc gac ggc tcc atc cgg ccc gag gag ctg
                                                                   555
Glu Lys Leu Cys Ile Tyr Thr Asp Gly Ser Ile Arg Pro Glu Glu Leu
            125
                                130
ctg caa atg gag ctg ctc ctg gtg aac aag ctc aag tgg aac ctg gcc
                                                                   603
Leu Gln Met Glu Leu Leu Val Asn Lys Leu Lys Trp Asn Leu Ala
gca atg acc ccg cac gat ttc att gaa cac ttc ctc tcc aaa atg cca
                                                                   651
Ala Met Thr Pro His Asp Phe Ile Glu His Phe Leu Ser Lys Met Pro
```

20/88

gag gcg gag gag Glu Ala Glu Glu 170		-		_	699
gtt gcc tct tgt Val Ala Ser Cys			Ile Ser Asn	-	747
atg gtg gca gcg Met Val Ala Ala 205	Gly Ser Va				795
agg agc ccc aac Arg Ser Pro Ass 220			_	_	843
tcc aga gtg atc Ser Arg Val Ile 235		Pro Asp Cys			891
cag atc gaa gcc Gln Ile Glu Ala 250					939
atg gac ccc aag Met Asp Pro Lys					987
gac ctg gct tgc Asp Leu Ala Cys 285	Thr Pro Th				1029
tgaggggccc agg	aggegg gege	accgc cacccg	cagc gagggcg	gag ccggccccag	1089
gtgctccaca tgad	agtece tect	tccgg agcatt	ttga taccaga	agg gaaagcttca	1149
ttctccttgt tgtt	ggttgt tttt	cettt getett	tece eetteca	tct ctgacttaag	1209
caaaagaaaa agat	taccca aaaa	tgtct ttaaaa	gaga gagagag		1256
<210> 11 <211> 2121 <212> DNA <213> Homo sapi	ens				
<220> <221> CDS <222> (559)(1	.875)				

<221> CDS
<222> (559)..(1875)

<400> 11
ctgctcgcgg ccgccaccgc cgggccccgg ccgtccctgg ctccctcct gcctcgagaa 60
gggcagggct tctcagaggc ttggcgggaa aaaagaacgg agggagggat cgcgctgagt 120
ataaaagccg gttttcgggg ctttatctaa ctcgctgtag taattccagc gagaggcaga 180

gggagcgagc ggg	eggeegg e	tagggtgg	a agagccg	gggc	gagcag	agct	gcgct	gcggg	240
cgtcctggga agg	gagatee g	gagcgaata	a gggggct	tcg	cctctg	gccc	agcco	ctcccg	300
cttgatcccc cag	gccagcg g	tccgcaac	c cttgccg	gcat	ccacga	aact	ttgco	ccatag	360
cagcgggcgg gca	ctttgca c	tggaactt	a caacaco	ccga	gcaagg	acgc	gacto	tcccg	420
acgcggggag gct	attctgc c	catttggg	g acactto	ccc	gccgct	gcca	ggaco	cgctt	480
ctctgaaagg ctc	tccttgc a	gctgcttag	g acgctgg	gatt	tttttc	gggt	agtgg	gaaaac	540
cagcagcctc ccg			aac gtt Asn Val 5						591
tat gac ctc ga Tyr Asp Leu As	Tyr Asp					_	Asp		639
gag gag aac tt Glu Glu Asn Ph 30	_			_	Glu Le			_	687
gcg ccc agc ga Ala Pro Ser Gl 45									735
ccc ctg tcc cc Pro Leu Ser Pr 60		_		_	_			_	783
gcg gtc aca cc Ala Val Thr Pr									831
agc ttc tcc ac Ser Phe Ser Th 9	r Ala Asp								879
gga gac atg gt Gly Asp Met Va 110	-	_		_		p Asp			927
ttc atc aaa aa Phe Ile Lys As: 125									975
gcc gcc gcc aa Ala Ala Ala Ly 140									1023
cgc aaa gac ag Arg Lys Asp Se									1071

tcc Ser																1119
tgc Cys																1167
tcg Ser																1215
tcg Ser 220													ggc Gly			1263
gag Glu		_							_							1311
tct Ser			_		_	_		_	_		_	_	_		_	1359
gaa Glu	_		_	_												1407
gct Ala				_					_		_	_		_		1455
tgc Cys 300																1503
cgg Arg	_	_			_	_	_		_	_	_	_	-	_	_	1551
gtc Val																1599
tcg Ser																1647
cgc Arg																1695
cag Gln 380																1743

										
ctt aaa aaa gcc aca gca tac atc ctg tcc gtc caa gca gag gag caa Leu Lys Lys Ala Thr Ala Tyr Ile Leu Ser Val Gln Ala Glu Gln 400 405 410	1791									
aag ctc att tct gaa gag gac ttg ttg cgg aaa cga cga gaa cag ttg Lys Leu Ile Ser Glu Glu Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu 415 420 425	1839									
aaa cac aaa ctt gaa cag cta cgg aac tct tgt gcg taaggaaaag Lys His Lys Leu Glu Gln Leu Arg Asn Ser Cys Ala 430 435	1885									
taaggaaaac gattccttct aacagaaatg tcctgagcaa tcacctatga acttgtttca	1945									
aatgcatgat caaatgcaac ctcacaacct tggctgagtc ttgagactga aagatttagc	2005									
cataatgtaa actgcctcaa attggacttt gggcataaaa gaactttttt atgcttacca	2065									
tcttttttt ttctttaaca gatttgtatt taagaattgt ttttaaaaaa ttttaa	2121									
<210> 12 <211> 2098 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (79)(570)										
<pre><400> 12 cctgccgaag tcagttcctt gtggagccgg agctgggcgc ggattcgccg aggcaccgag</pre>	60									
gcactcagag gaggcgcc atg tca gaa ccg gct ggg gat gtc cgt cag aac Met Ser Glu Pro Ala Gly Asp Val Arg Gln Asn 1 5 . 10	111									
cca tgc ggc agc aag gcc tgc cgc ctc ttc ggc cca gtg gac agc Pro Cys Gly Ser Lys Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser 15 20 25	159									
gag cag ctg agc cgc gac tgt gat gcg cta atg gcg ggc tgc atc cag Glu Gln Leu Ser Arg Asp Cys Asp Ala Leu Met Ala Gly Cys Ile Gln 30 35 40	207									
gag gcc cgt gag cga tgg aac ttc gac ttt gtc acc gag aca cca ctg Glu Ala Arg Glu Arg Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu 45 50 55	255									
gag ggt gac ttc gcc tgg gag cgt gtg cgg ggc ctt ggc ctg ccc aag Glu Gly Asp Phe Ala Trp Glu Arg Val Arg Gly Leu Gly Leu Pro Lys 60 65 70 75	303									
ctc tac ctt ccc acg ggg ccc cgg cga ggc cgg gat gag ttg gga gga Leu Tyr Leu Pro Thr Gly Pro Arg Arg Gly Arg Asp Glu Leu Gly Gly 80 85 90	351									

		hr Ser Pro	gct ctg ctg Ala Leu Leu 100		Ala Glu	399
	s Val Asp L		tct tgt acc Ser Cys Thr			447
			ggt gga cct Gly Gly Pro			495
	g Arg Gln T		aca gat ttc Thr Asp Phe 150		_	543
		ag agg aag ys Arg Lys	ccc taatccgo Pro	ccc acaggaaq	gcc	590
tgcagtcctg	gaagcgcgag	ggcctcaaag	gcccgctcta	catcttctgc	cttagtctca	650
gtttgtgtgt	cttaattatt	atttgtgttt	taatttaaac	acctcctcat	gtacataccc	710
tggccgcccc	ctgcccccca	gcctctggca	ttagaattat	ttaaacaaaa	actaggcggt	770
tgaatgagag	gttcctaaga	gtgctgggca	tttttatttt	atgaaatact	atttaaagcc	830
tcctcatccc	gtgttctcct	tttcctctct	cccggaggtt	gggtgggccg	gcttcatgcc	890
agctacttcc	tcctccccac	ttgtccgctg	ggtggtaccc	tctggagggg	tgtggctcct	950
tcccatcgct	gtcacaggcg	gttatgaaat	tcaccccctt	tcctggacac	tcagacctga	1010
attcttttc	atttgagaag	taaacagatg	gcactttgaa	ggggcctcac	cgagtggggg	1070
catcatcaaa	aactttggag	tececteace	tcctctaagg	ttgggcaggg	tgaccctgaa	1130
gtgagcacag	cctagggctg	agctggggac	ctggtaccct	cctggctctt	gatacccccc	1190
tctgtcttgt	gaaggcaggg	ggaaggtggg	gtcctggagc	agaccacccc	gcctgccctc	1250
atggcccctc	tgacctgcac	tggggagccc	gtctcagtgt	tgagcctttt	ccctctttgg	1310
ctcccctgta	ccttttgagg	agccccagct	accettette	tccagctggg	ctctgcaatt	1370
cccctctgct	gctgtccctc	ccccttgtcc	tttcccttca	gtaccctctc	agctccaggt	1430
ggctctgagg	tgcctgtccc	acccccaccc	ccagctcaat	ggactggaag	gggaagggac	1490
acacaagaag	aagggcaccc	tagttctacc	tcaggcagct	caagcagcga	ccgcccctc	1550
ctctagctgt	gggggtgagg	gtcccatgtg	gtggcacagg	ccccttgag	tggggttatc	1610
tctgtgttag	gggtatatga	tgggggagta	gatctttcta	ggagggagac	actggcccct	1670
caaatcgtcc	agcgaccttc	ctcatccacc	ccatccctcc	ccagttcatt	gcactttgat	1730

25/88

tagcagcgga acaaggagte agacattta agatggtgge agtagagget atggacaggg 1790 catgccacgt gggetcatat ggggetggga gtagttgtet tteetggeae taacgttgag 1850 ceeetggagg caetgaagtg ettagtgtae ttggagtatt ggggtetgae eccaaacace 1910 tteeagetee tgtaacatae tggeetggae tgttteetet eggeteecea tgtgteetgg 1970 tteeegttte teeacetaga etgtaaacet etegagggea gggaceacae eetgtaetgt 2030 teetgtgtett teacagetee teecacaatg etgatataca geaggtgete aataaacgat 2090 teetagtg

```
<210> 13
<211> 827
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (256)..(570)
<400> 13
ggcacgaggc aaagggcggc gcagcggctg ccgagctcgg ccctggaggc ggcgagaaca 60
tggtgcgcag gttcttggtg accetccgga ttcggcgcgc gtgcggcccg ccgcgagtga 120
gggttttcgt ggttcacatc tcgtggttca cgggggagtg ggcagcgcca ggggcgcccg 180
ccgctgtggc cctcgtgctg atgctactga ggagccagcg tctagggcag cagccgcttc 240
ctagaagacc aggtc atg atg agg agc gcc cga gtg gcg gag ctg ctg
                 Met Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu
ctg ctc cac ggc gcg gag ccc aac tgc gcc gac ccc gcc act ctc acc
                                                                  339
Leu Leu His Gly Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr
                             20
cga ccc gtg cac gac gct gcc cgg gag ggc ttc ctg gac acg ctg gtg
                                                                  387
Arg Pro Val His Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val
gtg ctg cac cgg gcc ggg gcg cgg ctg gac gtg cgc gat gcc tgg ggc
Val Leu His Arg Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly
45
cgt ctg ccc gtg gac ctg gct gag gag ctg ggc cat cgc gat gtc gca
                                                                  483
Arg Leu Pro Val Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala
                 65
                                                         75
egg tae etg ege geg get geg ggg gge ace aga gge agt aac eat gee
Arg Tyr Leu Arg Ala Ala Gly Gly Thr Arg Gly Ser Asn His Ala
```

85

80

cgc ata gat gcc gcg gaa ggt ccc tca gac atc ccc gat tgaaagaacc 580 Arg Ile Asp Ala Ala Glu Gly Pro Ser Asp Ile Pro Asp 95 100 105	1
agagaggete tgagaaacet eeggaaacet agateateag teacegaagg teetacaggg 640)
ccacaactgc ccccgccaca acccaccccg ctttcgtagt tttcatttag aaaatagagc 700)
ttttaaaaat gtcctgcctt ttaacgtaga tatatgcctt cccccactac cgtaaatgtc 760)
catttatatc atttttata tattcttata aaaatgtaaa aaagaaaaaa aaaaaaaaa 820)
aaaaaaa 827	,
<210> 14 <211> 1275 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (163)(681)	
<400> 14	
cetecetaeg ggegeeteeg geageeette eegegtgege agggeteaga geegtteega 60	,
gatettggag gteegggtgg gagtgggggt ggggtggggg tgggggtgaa ggtggggge 120	
gggcgcgctc agggaaggcg ggtgcgcgcc tgcggggcgg ag atg ggc agg ggg 174 Met Gly Arg Gly 1	ì
cgg tgc gtg ggt ccc agt ctg cag tta agg ggg cag gag tgg cgc tgc 222 Arg Cys Val Gly Pro Ser Leu Gln Leu Arg Gly Gln Glu Trp Arg Cys 5 10 15 20	!
tca cct ctg gtg cca aag ggc ggc gca gcg gct gcc gag ctc ggc cct 270 Ser Pro Leu Val Pro Lys Gly Gly Ala Ala Ala Glu Leu Gly Pro 25 30 35	j
gga ggc ggc gag aac atg gtg cgc agg ttc ttg gtg acc ctc cgg att 318 Gly Gly Glu Asn Met Val Arg Arg Phe Leu Val Thr Leu Arg Ile 40 45 50	j
cgg cgc gcg tgc ggc ccg ccg cga gtg agg gtt ttc gtg gtt cac atc 366 Arg Arg Ala Cys Gly Pro Pro Arg Val Arg Val Phe Val Val His Ile 55 60 65	,
ccg cgg ctc acg ggg gag tgg gca gcg cca ggg gcg ccc gcc gct gtg Pro Arg Leu Thr Gly Glu Trp Ala Ala Pro Gly Ala Pro Ala Ala Val 70 . 75 80	
gcc ctc gtg ctg atg cta ctg agg agc cag cgt cta ggg cag cag ccg 462 Ala Leu Val Leu Met Leu Leu Arg Ser Gln Arg Leu Gly Gln Gln Pro	

27/88

ctt cct aga aga cca ggt cat gat ggg cag cgc ccg agt ggc gga Leu Pro Arg Arg Pro Gly His Asp Asp Gly Gln Arg Pro Ser Gly Gly 105 110 115	510
gct gct gct gct cca cgg cgc gga gcc caa ctg cgc cga ccc cgc cac Ala Ala Ala Pro Arg Arg Gly Ala Gln Leu Arg Arg Pro Arg His 120 125 130	558
tct cac ccg acc cgt gca cga cgc tgc ccg gga ggg ctt cct gga cac Ser His Pro Thr Arg Ala Arg Arg Cys Pro Gly Gly Leu Pro Gly His 135 140 145	606
gct ggt ggt gct gca ccg ggc cgg ggc gcg gct gga cgt gcg cga tgc Ala Gly Gly Ala Ala Pro Gly Arg Gly Ala Ala Gly Arg Ala Arg Cys 150 155 160	654
ctg ggg ccg tct gcc cgt gga cct ggc tgaggagctg ggccatcgcg Leu Gly Pro Ser Ala Arg Gly Pro Gly 165 170	701
atgtcgcacg gtacctgcgc gcggctgcgg ggggcaccag aggcagtaac catgcccgca	761
tagatgccgc ggaaggtccc tcagacatcc ccgattgaaa gaaccagaga ggctctgaga	821
aacctcggga aacttagatc atcagtcacc gaaggtccta cagggccaca actgcccccg	881
ccacaaccca ccccgctttc gtagttttca tttagaaaat agagctttta aaaatgtcct	941
gccttttaac gtagatatat gccttccccc actaccgtaa atgtccattt atatcatttt	1001
ttatatattc ttataaaaat gtaaaaaaga aaaacaccgc ttctgccttt tcactgtgtt	1061
ggagttttct ggagtgagca ctcacgccct aagcgcacat tcatgtgggc atttcttgcg	1121
agectegeag ecteeggaag etgtegaett eatgacaage attttgtgaa etagggaage	1181
tcagggggt tactggcttc tcttgagtca cactgctagc aaatggcaga accaaagctc	1241
aaataaaaat aaaataattt tcattcattc actc	1275

```
<210> 15
<211> 1850
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (213)..(1616)
<400> 15
```

ggcccaggct gaagctcagg gccctgtctg ctctgtggac tcaacagttt gtggcaagac 60 aagctcagaa ctgagaagct gtcaccacag ttctggaggc tgggaagttc aagatcaaag 120 tgccagcaga ttcagtgtca tgtgaggacg tgcttcctgc ttcatagata agagcttgga 180

gctcggcgca caaccag	cac catctggtcg cg	atg gtg gac acg Met Val Asp Thr 1	
ctc tgc ccc ctc tcc Leu Cys Pro Leu Se: 10			
tct gaa gag ttc ct Ser Glu Glu Phe Let 25			
tcc atc ggc gag ga Ser Ile Gly Glu As 40			
tat tta gga agc tg Tyr Leu Gly Ser Cy: 60	s Pro Gly Ser Asp		
ctt tca cca gct tc Leu Ser Pro Ala Se 75			
ggc agc gtg gac gag Gly Ser Val Asp Glu 90		-	
atc tgc ggg gac aag Ile Cys Gly Asp Ly: 105			
gaa ggc tgc aag ggc Glu Gly Cys Lys Gly 120			
tat gac aag tgc gac Tyr Asp Lys Cys Asp 140	Arg Ser Cys Lys		_
aaa tgc cag tat tg Lys Cys Gln Tyr Cys 155	_	_	
cac aac gcg att cgt His Asn Ala Ile Arg 170			
ctg aaa gca gaa att Leu Lys Ala Glu Ile 185			
act gca gat ctc aaa Thr Ala Asp Leu Lys 200	a tct ctg gcc aag s Ser Leu Ala Lys 205	aga atc tac gag Arg Ile Tyr Glu 210	gcc tac ttg 857 Ala Tyr Leu 215

_						_	_		_		_		ctc Leu			905
													gag Glu 245			953
_	_	_		_	_	_		_	_	_		_	aat Asn			1001
													cag Gln			1049
													gcc Ala			1097
		_		_	_	_		_				_	cta Leu			1145
	_			_			_	_	_				atg Met 325			1193
_			_	_									cgt Arg	_		1241
													ccc Pro			1289
_		_	_	_			_	_	_		_	_	agt Ser	_		1337
													cct Pro			1385
cta Leu	aac Asn	gta Val	gga Gly 395	cac His	att Ile	gaa Glu	aaa Lys	atg Met 400	cag Gln	gag Glu	ggt Gly	att Ile	gta Val 405	cat His	gtg Val	1433
													ttt Phe			1481
													gtg Val			1529

His Ala Gln Leu Val Gln Ile Ile Lys Lys Thr Glu Ser Asp Ala Ala 440 445 450 455	1577
ctg cac ccg cta ctg cag gag atc tac agg gac atg tac tgagttcctt Leu His Pro Leu Leu Gln Glu Ile Tyr Arg Asp Met Tyr 460 465	1626
cagatcagec acacetttte caggagttet gaagetgaca geactacaaa ggagaegggg	1686
gagcagcacg attttgcaca aatatccacc actttaacct tagagcttgg acagtctgag	1746
ctgtaggtaa ccggcatatt attccatatc tttgttttaa ccagtacttc taagagcata	1806
gaactcaaat getggggag gtggetaate teaggaetgg gaag	1850
<210> 16 <211> 1609 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (92)(1606)	
<pre><400> 16 ttcaagtctt tttctttaa cggattgatc ttttgctaga tagagacaaa atatcagtgt</pre>	60
gaattacagc aaacccctat tccatgctgt t atg ggt gaa act ctg gga gat	
Met Gly Glu Thr Leu Gly Asp 1 5	112
•	112
tct cct att gac cca gaa agc gat tcc ttc act gat aca ctg tct gca Ser Pro Ile Asp Pro Glu Ser Asp Ser Phe Thr Asp Thr Leu Ser Ala	160
tct cct att gac cca gaa agc gat tcc ttc act gat aca ctg tct gca Ser Pro Ile Asp Pro Glu Ser Asp Ser Phe Thr Asp Thr Leu Ser Ala 10 15 20 aac ata tca caa gaa atg acc atg gtt gac aca gag atg cca ttc tgg Asn Ile Ser Gln Glu Met Thr Met Val Asp Thr Glu Met Pro Phe Trp	160
tct cct att gac cca gaa agc gat tcc ttc act gat aca ctg tct gca Ser Pro Ile Asp Pro Glu Ser Asp Ser Phe Thr Asp Thr Leu Ser Ala 10 15 20 aac ata tca caa gaa atg acc atg gtt gac aca gag atg cca ttc tgg Asn Ile Ser Gln Glu Met Thr Met Val Asp Thr Glu Met Pro Phe Trp 25 30 35 ccc acc aac ttt ggg atc agc tcc gtg gat ctc tcc gta atg gaa gac Pro Thr Asn Phe Gly Ile Ser Ser Val Asp Leu Ser Val Met Glu Asp	160
tct cct att gac cca gaa agc gat tcc ttc act gat aca ctg tct gca Ser Pro Ile Asp Pro Glu Ser Asp Ser Phe Thr Asp Thr Leu Ser Ala 10 15 20 aac ata tca caa gaa atg acc atg gtt gac aca gag atg cca ttc tgg Asn Ile Ser Gln Glu Met Thr Met Val Asp Thr Glu Met Pro Phe Trp 25 30 35 ccc acc acc ttt ggg atc agc tcc gtg gat ctc tcc gta atg gaa gac Pro Thr Asn Phe Gly Ile Ser Ser Val Asp Leu Ser Val Met Glu Asp 40 45 50 55 cac tcc cac tcc ttt gat atc aag ccc ttc act act gtt gac ttc tcc His Ser His Ser Phe Asp Ile Lys Pro Phe Thr Thr Val Asp Phe Ser	160 \ 208 256

	gca Ala 105															448
	cag Gln				_			_							_	496
_	att Ile	-	_	_	_	_		_		_						544
	gtt Val		_	_	_		_	_					_			592
_	ttg Leu	_				_	_	_	_			_				640
	aaa Lys 185	_	_			_	_		_			_		_		688
	gtg Val															736
_	gag Glu	_		_		-					_	_		_	_	784
_	aat Asn				_	_			_	_	_			_		832
	tca Ser															880
	ttg Leu 265			-			_					_			_	928
atg Met 280	aat Asn	tcc Ser	tta Leu	atg Met	atg Met 285	gga Gly	gaa Glu	gat Asp	aaa Lys	atc Ile 290	aag Lys	ttc Phe	aaa Lys	cac His	atc Ile 295	976
	ccc Pro															1024
ggc	tgc Cys	cag Gln	ttt Phe 315	cgc Arg	tcc Ser	gtg Val	gag Glu	gct Ala 320	gtg Val	cag Gln	gag Glu	atc Ile	aca Thr 325	gag Glu	tat Tyr	1072

32/88

_		_					-			_	_		gac Asp		-	1120
													atg Met			1168
													caa Gln			1216
_						_	_	_	_	_			ggt Gly	_		1264
													ctg Leu 405			1312
_	_	_	_	_	_				_	_			ctc Leu	_		1360
_	_			_	_			_			_	_	att Ile		_	1408
	_			-	_			-	_	_	_		cac His			1456
		_	_		_	_	_		_		_		gac Asp		_	1504
_		_	_	_			_		_	_			aag Lys 485	_	_	1552
		_	_	-			_		_	_			tac Tyr	_	_	1600
_	tac Tyr 505	tag														1609
		_														

<210> 17 <211> 3301 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (338)..(1660)

33/88

<220> <221> modified base <222> (2966)..(2972) <223> a, c, t, g, other, or unknown <400> 17 gaattetgeg gageetgegg gaeggeggeg ggttggeeeg taggeageeg ggaeagtgtt 60 gtacagtgtt ttgggcatgc acgtgatact cacacagtgg cttctgctca ccaacagatg 120 aagacagatg caccaacgag ggtctggaat ggtctggagt ggtctggaaa gcagggtcag 180 atacccctgg aaaactgaag cccgtggagc aatgatetet acaggactgc ttcaaggetg 240 atgggaacca ccctgtagag gtccatctgc gttcagaccc agacgatgcc agagctatga 300 ctgggcctgc aggtgtggcg ccgaggggag atcagcc atg gag cag cca cag gag Met Glu Gln Pro Gln Glu gaa gcc cct gag gtc cgg gaa gag gag aaa gag gaa gtg gca gag 403 Glu Ala Pro Glu Val Arg Glu Glu Glu Lys Glu Glu Val Ala Glu 10 15 gca gaa gga gcc cca gag ctc aat ggg gga cca cag cat gca ctt cct 451 Ala Glu Gly Ala Pro Glu Leu Asn Gly Gly Pro Gln His Ala Leu Pro 25 tee age age tae aca gae etc tee egg age tee teg eea eec tea etg 499 Ser Ser Ser Tyr Thr Asp Leu Ser Arg Ser Ser Ser Pro Pro Ser Leu 40 ctg gac caa ctg cag atg ggc tgt gac ggg gcc tca tgc ggc agc ctc 547 Leu Asp Gln Leu Gln Met Gly Cys Asp Gly Ala Ser Cys Gly Ser Leu 55 aac atg gag tgc cgg gtg tgc ggg gac aag gca tcg ggc ttc cac tac 595 Asn Met Glu Cys Arg Val Cys Gly Asp Lys Ala Ser Gly Phe His Tyr ggt gtt cat gca tgt gag ggg tgc aag ggc ttc ttc cgt cgt acg atc Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile 95 cgc atg aag ctg gag tac gag aag tgt gag cgc agc tgc aag att cag 691 Arg Met Lys Leu Glu Tyr Glu Lys Cys Glu Arg Ser Cys Lys Ile Gln aag aag aac cgc aac aag tgc cag tac tgc cgc ttc cag aag tgc ctg 739 Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe Gln Lys Cys Leu 120 125 130 gca ctg ggc atg tca cac aac gct atc cgt ttt ggt cgg atg ccg gag 787 Ala Leu Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met Pro Glu 135 140 145 150

	gag Glu														835
_	tac Tyr			_				_	_	_		_			883
	aat Asn														931
	atc Ile 200														979
_	atc Ile			_		_	_	_							1027
_	gtg Val			_				_			-		_		1075
	cgc Arg														1123
	gcc Ala	_	_			_		_	_				_	_	1171
	acc Thr 280														1219
_	tct Ser		_		_	_		_	_	_	_		_		1267
	gtc Val														1315
	att Ile														1363
	gat Asp														1411

gac acc atc ctg cgt gcc ctc gaa ttc cac ctg cag gcc aac cac cct Asp Thr Ile Leu Arg Ala Leu Glu Phe His Leu Gln Ala Asn His Pro 375 380 385 390	1507
gat gcc cag tac ctc ttc ccc aag ctg ctg cag aag atg gct gac ctg Asp Ala Gln Tyr Leu Phe Pro Lys Leu Leu Gln Lys Met Ala Asp Leu 395 400 405	1555
cgg caa ctg gtc acc gag cac gcc cag atg atg cag cgg atc aag aag 1 Arg Gln Leu Val Thr Glu His Ala Gln Met Met Gln Arg Ile Lys Lys 410 415 420	1603
acc gaa acc gag acc tcg ctg cac cct ctg ctc cag gag atc tac aag Thr Glu Thr Glu Thr Ser Leu His Pro Leu Leu Gln Glu Ile Tyr Lys 425 430 435	1651
gac atg tac taacggcggc acccaggcct ccctgcagac tccaatgggg Asp Met Tyr 440	1700
ccagcactgg aggggcccac ccacatgact tttccattga ccagctctct tcctgtcttt 1	1760
gttgtctccc tctttctcag ttcctctttc ttttctaatt cctgttgctc tgtttcttcc 1	1820
tttctgtagg tttctctctt cccttctccc ttctcccttg ccctccct	1880
tececaegte tgteeteett tettattetg tgagatgttt tgtattattt caccageage 1	1940
atagaacagg acctctgctt ttgcacacct tttccccagg agcagaagag agtgggcctg 2	2000
ccctctgccc catcattgca cctgcaggct taggtcctca cttctgtctc ctgtcttcag 2	2060
agcaaaagac ttgagccatc caaagaaaca ctaagctctc tgggcctggg ttccagggaa 2	2120
ggctaagcat ggcctggact gactgcagcc ccctatagtc atggggtccc tgctgcaaag 2	2180
gacagtggca gaccccggca gtagagccga gatgcctccc caagactgtc attgcccctc 2	2240
cgatcgtgag gccacccact gacccaatga teetetecag cagcacacet cagecccact 2	2300
gacacccagt gtccttccat cttcacactg gtttgccagg ccaatgttgc tgatggcccc 2	2360
tccagcacac acacataage actgaaatca etttacetge aggcaccatg caceteeett 2	2420
ccctccctga ggcaggtgag aacccagaga gaggggcctg caggtgagca ggcagggctg 2	2480
ggccaggtct ccggggaggc aggggtcctg caggtcctgg tgggtcagcc cagcacctcg 2	2540
cccagtggga gcttcccggg ataaactgag cctgttcatt ctgatgtcca tttgtcccaa 2	2600
tagetetaet geceteceet teccetttae teageecage tggecaceta gaagteteee 2	2660
tgcacagcct ctagtgtccg gggaccttgt gggaccagtc ccacaccgct ggtccctgcc 2	2720
ctcccctgct cccaggttga ggtgcgctca cctcagagca gggccaaagc acagctgggc 2	2780
atgccatgtc tgagcggcgc agagccctcc aggcctgcag gggcaagggg ctggctggag 2	2840

36/88

teteagagea cagaggtagg agaactgggg tteaageeca ggetteetgg gteetgeetg 2900 gteeteette eeaaggagee attetatgtg actetgggtg gaagtgeeca geeeetgeet 2960 gaeggnnnnn nngateaete tetgetggea ggattettee egeteecae etaeceaget 3020 gatggggtt ggggtgette ttteageeaa ggetatgaag ggacagetge tgggaceeae 3080 etececeett eeeeggeeae atgeeggte eetgeeeeea eeegggtetg gtgetgagga 3140 taeagetett eteagtget gaacaatete eaaaattgaa atgtatattt ttgetaggag 3200 eeeeagette etgtgtttt aatataaata gtgtacaeag actgaegaaa etttaaataa 3260 atgggaatta aatattaaa aaaaaageg geegegaatt e 3301

```
<210> 18
<211> 3083
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (162)..(2387)
<400> 18
aaaaactgca gccaacttcc gaggcagcct cattgcccag cggaccccag cctctgccag 60
gtteggteeg ceatectegt ecegteetee geeggeeeet geeeggee cagggateet 120
ccageteett tegecegege ceteegtteg etceggacae e atg gae aag tit tgg 176
                                              Met Asp Lys Phe Trp
tgg cac gca gcc tgg gga ctc tgc ctc gtg ccg ctg agc ctg gcg cag
Trp His Ala Ala Trp Gly Leu Cys Leu Val Pro Leu Ser Leu Ala Gln
ate gat ttg aat ata ace tge ege ttt gea ggt gta tte eac gtg gag
                                                                   272
Ile Asp Leu Asn Ile Thr Cys Arg Phe Ala Gly Val Phe His Val Glu
                                 30
aaa aat ggt cgc tac agc atc tct cgg acg gag gcc gct gac ctc tgc
                                                                  320
Lys Asn Gly Arg Tyr Ser Ile Ser Arg Thr Glu Ala Ala Asp Leu Cys
         40
aag gct ttc aat agc acc ttg ccc aca atg gcc cag atg gag aaa gct
                                                                  368
Lys Ala Phe Asn Ser Thr Leu Pro Thr Met Ala Gln Met Glu Lys Ala
     55
ctg agc atc gga ttt gag acc tgc agg tat ggg ttc ata gaa ggg cac
                                                                   416
Leu Ser Ile Gly Phe Glu Thr Cys Arg Tyr Gly Phe Ile Glu Gly His
                                         80
```

	ccc cgg atc Pro Arg Ile 90					464
	tac atc ctc Tyr Ile Leu 105		n Thr Ser	-		512
-	gct tca gct Ala Ser Ala	_		-	_	560
	aat gcc ttt Asn Ala Phe		o Ile Thr			608
	acc cgc tat Thr Arg Tyr 155	Val Gln Ly				656
	tac ccc ago Tyr Pro Ser 170					704
_	gaa agg agc Glu Arg Ser 185	_	r Gly Gly			752
	gta cac ccc Val His Pro	_				800
	gac aga atc Asp Arg Ile	-	r Thr Leu i			848
	gag aca gca Glu Thr Ala 235	Thr Lys Ar				896
	ttt cta cca Phe Leu Pro 250		_			944
aca caa atg Thr Gln Met	gct ggt acg Ala Gly Thr 265	tct tca aa Ser Ser As 27	n Thr Ile 8	tca gca ggc Ser Ala Gly 275	tgg gag Trp Glu	992
	gaa aat gaa Glu Asn Glu					1040
gga tca ggc Gly Ser Gly 295	att gat gat Ile Asp Asp	gat gaa ga Asp Glu As 300	p Phe Ile S	tcc agc acc Ser Ser Thr 305	att tca Ile Ser	1088

				_	ttt Phe 315	_				_		_	_			1136
_				_	cat His			_	_							1184
					gta Val											1232
					gca Ala											1280
					cca Pro											1328
_	_		_	_	gaa Glu 395		_		_	_	_	_				1376
					gga Gly											1424
					gct Ala											1472
					cca Pro	_			_	_				_		1520
					cac His		_		_				_		_	1568
	-	_	_	_	tcc Ser 475	_		_		_		_			_	1616
					ttg Leu											1664
	_			_	cag Gln	_			_	_						1712
					gat Asp											1760

tca ago Ser Ser 535	Asn														1808
tct gaa Ser Glu 550															1856
cac acc His Thr	_	_	_									-	_		1904
ggg tco Gly Ser			_		_	_		_		_					1952
gtc aat Val Asr	_					_		_					_		2000
ggg tcc Gly Ser 615	His						_		_						2048
agt caa Ser Glr 630	_			_											2096
caa att Gln Ile															2144
ttg att Leu Ile			_	_		_	_		-	_	_		_		2192
cag aag Gln Lys															2240
aga aag Arg Lys 695	Pro	_						_	_	_		_	_	_	2288
gtg cat Val His 710															2336
aca gct Thr Ala	gat Asp	gag Glu	aca Thr 730	agg Arg	aac Asn	ctg Leu	cag Gln	aat Asn 735	gtg Val	gac Asp	atg Met	aag Lys	att Ile 740	glà aaa	2384
gtg taa Val	cacc	tac a	accat	tato	et to	ggaaa	agaaa	caa	accgt	tgg	aaac	cataa	acc		2437
attacag	gga g	gctgg	ggaca	ac tt	aaca	gato	g caa	tgtg	gcta	ctga	ttgt	tt c	catto	gcgaat	2497
cttttt	agc a	ataaa	attt	t ct	acto	ettt	tgt:	tttt	tgt	gttt	tgtt	ct t	taaa	gtcag	2557

40/88

gtccaatttg taaaaacagc attgcttct gaaattaggg cccaattaat aatcagcaag 2617
aatttgatcg ttccagttcc cacttggagg cctttcatcc ctcgggtgtg ctatggatgg 2677
cttctaacaa aaactacaca tatgtattcc tgatcgccaa cctttccccc accagctaag 2737
gacatttccc agggttaata gggcctggtc cctgggagga aatttgaatg ggtccatttt 2797
gcccttccat agcctaatcc ctgggcattg ctttccactg aggttggggg ttgggggtgta 2857
ctagttacac atcttcaaca gaccccctct agaaattttt cagatgcttc tgggagacac 2917
ccaaagggtg aagctattta tctgtagtaa actatttatc tgtgtttttg aaatattaaa 2977
ccctggatca gtcctttgat cagtataatt ttttaaagtt acttgtcag aggcacaaaa 3037
gggtttaaac tgattcataa taaatactg tacttctcg atcttc

```
<210> 19
<211> 2539
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (321)..(1787)
ggagtetett getetggtte ttgetgttee tgeteetget eeegeegete eeegteetge 60
tegeggacce aggggegece aegecagtga atceetgttg ttactateca tgecagcace 120
agggcatetg tgteegette ggcettgace getaccagtg tgactgcace egeacggget 180
atteeggee caactgeace atceetggee tgtggacetg geteeggaat teactgegge 240
ccagcccctc tttcacccac ttcctgctca ctcacgggcg ctgqttctgg qaqtttqtca 300
atgccacctt catecgagag atg ctc atg cgc ctg gta ctc aca gtg cgc tcc 353
                      Met Leu Met Arg Leu Val Leu Thr Val Arg Ser
aac ctt atc ccc agt ccc ccc acc tac aac tca gca cat gac tac atc
Asn Leu Ile Pro Ser Pro Pro Thr Tyr Asn Ser Ala His Asp Tyr Ile
age tgg gag tet tte tee aac gtg age tat tae act eqt att etg eec
Ser Trp Glu Ser Phe Ser Asn Val Ser Tyr Tyr Thr Arg Ile Leu Pro
                             35
tct gtg cct aaa gat tgc ccc aca ccc atg gga acc aaa ggg aag aag
                                                                  497
Ser Val Pro Lys Asp Cys Pro Thr Pro Met Gly Thr Lys Gly Lys Lys
    45
                         50
                                             55
```

_	_		_	_	cag Gln 65		_	_	_	_		_				545
_				_	ccc Pro						_		_			593
_					cac His	_							_	_		641
				_	gcc Ala	_				_	_					689
					gag Glu											737
					cag Gln 145											785
_	_				gtg Val	_	_				_			_		833
_	_	-	_		gtg Val		_					-				881
	_	_		_	acg Thr				_				_		_	929
_	_	_	_	_	gag Glu						_		_			977
-	_		_		atc Ile 225							_		_		1025
					cag Gln											1073
					ttc Phe											1121
					cat His											1169

	ttc Phe 285															1217
	acc Thr															1265
	tct Ser															1313
	cac His															1361
	cgg Arg															1409
	tac Tyr 365															1457
gag Glu 380	ttg Leu	gag Glu	gaa Glu	ttg Leu	tat Tyr 385	gga Gly	gac Asp	att Ile	gat Asp	gcg Ala 390	ttg Leu	gag Glu	ttc Phe	tac Tyr	cct Pro 395	1505
	ctg Leu															1553
	ata Ile															1601
	atc Ile															1649
	ggc Gly 445															1697
	aac Asn															1745
_	cag Gln	_	_			_			_							1787
ctc	tgag	3 9 9 (cagga	aaag	ca go	catto	ctgga	a ggg	ggaga	agct	ttgt	gctt	gt (catto	cagag	1847
tgc	tgag	gcc a	aggg	ctgai	g gt	ctta	aaatg	g cto	catt	tct	ggtt	tggd	cat q	ggtga	agtgtt	1907
999	gttga	aca 1	ttag	gaact	t ta	aagto	ctcad	c cca	attat	ctg	gaat	atte	gtg a	attct	gttta	1967

43/88

ttcttccaga atgctgaact ccttgttagc ccttcagatt gttaggagtg gttctcattt 2027 ggtctgccag aatactgggt tcttagttga caacctagaa tgtcagattt ctggttgatt 2087 tgtaacacag tcattctagg atgtggagct actgatgaaa tctgctagaa agttaggggg 2147 ttcttatttt gcattccaga atcttgactt tctgattggt gattcaaagt gttgtgttcc 2207 tggctgatga tccagaacag tggctcgtat cccaaatctg tcagcatctg gctgtctaga 2267 atgtggattt gattcatttt cctgttcagt gagatatcat agagacggag atcctaaggt 2327 ccaacaaqaa tqcattccct qaatctqtqc ctqcactqaq aqqqcaaqqa aqtqqqqtqt 2387 tettettggg acceccacta agaccetggt etgaggatgt agagagaaca ggtgggetgt 2447 atteacqcca ttggttggaa gctaccagag ctctatcccc atccaggtet tgactcatgg 2507 cagctgtttc tcatgaagct aataaaattc gc 2539

<210> 20 <211> 1875 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (232)..(519) <400> 20 ggccggtgct gcgctcctct aattgggact ccgagccggg gctatttctg gcgctggccg 60 ggctccaaga aggcatccgc atttgctacc agcggcggcc gcggcggagc caggccggtc 120 ctcagegece ageacegecg ctcceggeaa cceggagege gcacegeage eggeggeega 180 gctcgcgcat cccagccatc actcttccac ctgctcctta gagaagggaa g atg agt Met Ser gag teg age teg aag tee age cag eee ttg gee tee aag eag gaa aag 285 Glu Ser Ser Ser Lys Ser Ser Gln Pro Leu Ala Ser Lys Gln Glu Lys gac ggc act gag aag cgg ggc cgg ggc agg ccg cgc aag cat ccg 333 Asp Gly Thr Glu Lys Arg Gly Arg Gly Arg Pro Arg Lys Gln Pro Pro aag gag ccc agc gaa gtg cca aca cct aag aga cct cgg gqc cqa cca Lys Glu Pro Ser Glu Val Pro Thr Pro Lys Arg Pro Arg Gly Arg Pro 35 40 aag gga agc aaa aac aag ggt gct gcc aag acc cgg aaa acc aca Lys Gly Ser Lys Asn Lys Gly Ala Ala Lys Thr Arg Lys Thr Thr 55

act cca gga agg aaa cca agg ggc aga ccc aaa aaa	477
gaa gag gag ggc atc tcg cag gag tcc tcg gag gag gag cag Glu Glu Glu Gly Ile Ser Gln Glu Ser Ser Glu Glu Glu Gln 85 90 95	519
tgacccatgc gtgccgcctg ctcctcactg gaggagcagc ttccttctgg gactggacag	579
ctttgctccg ctcccaccgc ccccgcccct tccccaggcc caccatcacc accgcctctg	639
geegecacee ceatetteca eetgtgeeet caccaceaea etacacagea caccageege	699
tgcagggete ceatgggetg agtggggage agttttecee tggeeteagt teecagetee	759
ccccgcccac ccacgcatac acacatgccc tcctggacaa ggctaacatc ccacttagcc	819
gcaccetgca cetgetgcgt ceccaetece ttggtggtgg ggacattget etetgggett	879
ttggtttggg ggcgccctct ctgcctcctt cactgttccc tctggcttcc catagtgggg	939
cctgggaggg ttccccctgg ccttaaaagg ggcccaagcc catctcatcc tggcacgccc	999
tactccactg ccctggcagc agcaggtgtg gccaatggag gggggtgctg gcccccagga	1059
ttcccccage caaactgtet ttgtcaccae gtggggetea ettttcatee ttccccaact	1119
tecetagtee eegtactagg ttggacagee eeettegget acaggaagge aggagggtg	1179
agtcccctac tecetettea etgtggccae ageceeettg eeeteegeet gggatetgag	1239
tacatattgt ggtgatggag atgcagtcac ttattgtcca ggtgaggccc aagagccctg	1299
tggccgccac ctgaggtggg ctggggctgc tcccctaacc ctactttgct tccgccactc	1359
agccatttcc ccctcctcag atggggcacc aataacaagg agctcaccct gcccgctccc	1419
aacccccctc ctgctcctcc ctgcccccca aggttctggt tccatttttc ctctgttcac	1479
aaactacctc tggacagttg tgttgttttt tgttcaatgt tccattcttc gacatccgtc	1539
attgctgctg ctaccagcgc caaatgttca tcctcattgc ctcctgttct gcccacgatc	1599
ccctccccca agatactctt tgtggggaag aggggctggg gcatggcagg ctgggtgacc	1659
gactacccca gtcccaggga aggtgccctg cccctaggat gctgcagcag agtgagcaag	1719
ggggcccgaa tcgaccataa agggtgtagg ggccacctcc tccccctgtt ctgttgggga	1779
ggggtagcca tgatttgtcc cagcctgggg ctccctctct ggtttcctat ttacagttac	1839
ttgaataaaa aaaatatcct tttctggaaa aaaaaa	1875

```
<210> 21
<211> 626
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (96)..(332)
<400> 21
agtctccggc gagttgttgc ctgggctgga cgtggttttg tctgctgcgc ccgctcttcg 60
cgctctcgtt tcattttctg cagcgcgcca cgagg atg gcc cac aag cag atc
                                       Met Ala His Lys Gln Ile
                                         1
tac tac tcg gac aag tac ttc gac gaa cac tac gag tac cgg cat gtt
                                                                  161
Tyr Tyr Ser Asp Lys Tyr Phe Asp Glu His Tyr Glu Tyr Arg His Val
             10
atg tta ccc aga gaa ctt tcc aaa caa gta cct aaa act cat ctg atg
                                                                  209
Met Leu Pro Arg Glu Leu Ser Lys Gln Val Pro Lys Thr His Leu Met
         25
                             30
tct gaa gag gag tgg agg ctt ggt gtc caa cag agt cta ggc tgg
                                                                  257
Ser Glu Glu Glu Trp Arg Leu Gly Val Gln Ser Leu Gly Trp
gtt cat tac atg att cat gag cca gaa cca cat att ctt ctc ttt aga
                                                                  305
Val His Tyr Met Ile His Glu Pro Glu Pro His Ile Leu Leu Phe Arg
cga cct ctt cca aaa gat caa caa aaa tgaagtttat ctggggatcg
                                                                  352
Arg Pro Leu Pro Lys Asp Gln Gln Lys
tcaaatcttt ttcaaattta atgtatatgt gtatataagg tagtattcag tgaatacttg 412
agaaatgtac aaatctttca tccatacctg tgcatgagct gtattcttca cagcaacaga 472
gctcagttaa atgcaactgc aagtaggtta ctgtaagatg tttaagataa aagttcttcc 532
agtcagtttt tctcttaagt gcctgtttga gtttactgaa acagtttact tttgttcaat 592
aaagtttgta tgttgcattt aaaaaaaaaa aaaa
                                                                  626
```

```
<210> 22
<211> 3480
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (268)..(2922)
```

<400> 22 ggcggagatc gcgtctcttt cgctccgtgt ccgctgctgc tcctgtgagc gcccggcgag 60
teegteeegt ccaeegteeg cagetggtag ccageetgee cetegeeteg acteeettte 120
accaacaccg acacccacat tgacacctcc agteeggeea geegeteeae tegttgeett 180
tgcatctcca cacatggcgt cctcgcgcag agcggcggct cctccggggg acccgcggtc 240
cccaccgtgc agcggggcat catcaag atg gtc ctc tca ggg tgc gcc atc att 294 Met Val Leu Ser Gly Cys Ala Ile Ile 1 5
gtc cga ggt cag cct cgt ggt ggg cct cct cct gag cgg cag atc aac 342 Val Arg Gly Gln Pro Arg Gly Gly Pro Pro Pro Glu Arg Gln Ile Asn 10 15 20 25
ctc agc aac att cgt gct gga aat ctt gct cgc cgg gca gcc gcc aca 390 Leu Ser Asn Ile Arg Ala Gly Asn Leu Ala Arg Arg Ala Ala Ala Thr 30 35 40
caa cct gat gca aag gat acc cct gat gag ccc tgg gca ttt cca gct 438 Gln Pro Asp Ala Lys Asp Thr Pro Asp Glu Pro Trp Ala Phe Pro Ala 45 50 55
cga gag ttc ctt cga aag aag ctg att ggg aag gaa gtc tgt ttc acg 486 Arg Glu Phe Leu Arg Lys Lys Leu Ile Gly Lys Glu Val Cys Phe Thr 60 65 70
ata gaa aac aag act ccc cag ggg cga gag tat ggc atg atc tac ctt 534 Ile Glu Asn Lys Thr Pro Gln Gly Arg Glu Tyr Gly Met Ile Tyr Leu 75 80 85
gga aaa gat acc aat ggg gaa aac att gca gaa tca ctg gtt gca gag 582 Gly Lys Asp Thr Asn Gly Glu Asn Ile Ala Glu Ser Leu Val Ala Glu 90 95 100 105
ggc tta gcc acc cgg aga gaa ggc atg aga gct aat aat cct gag cag 630 Gly Leu Ala Thr Arg Arg Glu Gly Met Arg Ala Asn Asn Pro Glu Gln 110 115 120
aac cgg ctt tca gaa tgt gaa gaa caa gca aag gca gcc aag aaa ggg 678 Asn Arg Leu Ser Glu Cys Glu Glu Gln Ala Lys Ala Ala Lys Lys Gly 125 130 135
atg tgg agt gag ggg aac ggt tca cat act atc cgg gat ctc aag tat 726 Met Trp Ser Glu Gly Asn Gly Ser His Thr Ile Arg Asp Leu Lys Tyr 140 145 150
acc att gaa aac cca agg cac ttt gtg gac tca cac cag aag cct 774 Thr Ile Glu Asn Pro Arg His Phe Val Asp Ser His His Gln Lys Pro 155 160 165
gtt aat gct atc gag cat gtg cgg gac ggc agt gtg gtc agg gcc 822 Val Asn Ala Ile Ile Glu His Val Arg Asp Gly Ser Val Val Arg Ala 170 185 180 185

	ctc Leu															870
_	tgc Cys				_		_	_	_		_	-				918
	ttt Phe	_	_	_	_						_	_	_		_	966
	gat Asp 235															1014
	acc Thr													_	_	1062
_	ggt Gly		_	_	_		_		_		_	_				1110
	gca Ala															1158
_	aga Arg			_	_			_			_		_	_		1206
_	gac Asp 315	_	_		_	_	_		_	_	_	_		_	_	1254
_	att Ile	_							_		Lys	_			_	1302
	agc Ser															1350
	aag Lys															1398
	gaa Glu															1446
	gac Asp 395															1494

			_		_	_		_						aac Asn		1542
_		_		_	_				_				_	tac Tyr 440		1590
_	_	_	_	_	_					-	_	_		gct Ala	_	1638
	_	_	_		_					_		_	_	aag Lys	_	1686
				_	_	_	_				_			aaa Lys	_	1734
_	_		_				_		_		_		_	gct Ala		1782
														cca Pro 520		1830
														ccc Pro		1878
	_	_					_		_	_				ttc Phe	-	1926
														gag Glu		1974
														ggc Gly		2022
														cac His 600		2070
														aag Lys		2118
														gtc Val		2166

	cac His 635															2214
	aag Lys															2262
	gat Asp															2310
	cag Gln	_	_	_			_	_		-		_	_			2358
	gta Val					_		_	_				_		-	2406
	ttt Phe 715	_	_		_			-	_	_	_			_		2454
	cct Pro															2502
	ctg Leu															2550
	gtg Val	_		_		_	_			-		_			_	2598
	ccc Pro		_	_	_	_	_	_	_	-		_	_	_	_	2646
	gat Asp 795		_			_	-	_				_		_	_	2694
	ggc Gly															2742
gtg Val	Gly 999	ctg Leu	ggc Gly	ttg Leu 830	gtg Val	aag Lys	gaa Glu	Gly 999	ctg Leu 835	gtc Val	atg Met	gtg Val	gag Glu	gtg Val 840	cgc Arg	2790
	gag Glu															2838

50/88

gag tea gee aag age gee agg etg aac etg tgg ege tat gga gae ttt 2886 Glu Ser Ala Lys Ser Ala Arg Leu Asn Leu Trp Arg Tyr Gly Asp Phe cga gct gat gat gca gac gaa ttt ggc tac agc cgc taaggagggg 2932 Arg Ala Asp Asp Ala Asp Glu Phe Gly Tyr Ser Arg 880 ategggtttg gececeagec ceegteaege eagtecetet teetetgeeg ggagggtgtt 2992 ttcaactcca aaccccagag aggggttgta cattgggtcc agctttgctt cagtgtgtgg 3052 aaatgteteg tggggtggca teggggetge ggggtgggga eeceaagget ttetggggca 3112 gaccettgte etetgggatg atgggeactg etatecacag tetetgecag ttggttttat 3172 ttggaggttt gtgggctttt ttaaaaaaaaa aaaagtcctc aaatcaggaa gaaacatcaa 3232 agactatgtc ctagtggagg gagtaatcct aacacccagg ctggccgcca gctggcacct 3292 geetetatee cagactgeee tegteecage tetetgteea actgttgatt atgtgatttt 3352 totgatacqt ccattotcaa atgccaqtgt gttcacatot togototggc cagoccattc 3412 tgtatttaaa gctttttgag gcccaataaa atagtacgtg ctgctgcagc ccttattgat 3472 3480 caaaaaaa

<210> 23

<211> 67

<212> PRT

<213> Homo sapiens

<400> 23

Met Thr Ser Lys Leu Ala Val Ala Leu Leu Ala Ala Phe Leu Ile Ser 1 5 10 15

Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser Ala Lys Glu Leu 20 25 30

Arg Cys Gln Cys Ile Lys Thr Tyr Ser Lys Pro Phe His Pro Lys Phe 35 40 45

Ile Lys Glu Leu Arg Val Ile Glu Ser Gly Pro His Cys Ala Asn Thr 50 55 60

Glu Ile Met

<210> 24

<211> 604

<212> PRT

<213> Homo sapiens

51/88

<400> 24 Met Leu Ala Arg Ala Leu Leu Cys Ala Val Leu Ala Leu Ser His Thr Ala Asn Pro Cys Cys Ser His Pro Cys Gln Asn Arg Gly Val Cys Met Ser Val Gly Phe Asp Gln Tyr Lys Cys Asp Cys Thr Arg Thr Gly Phe Tyr Gly Glu Asn Cys Ser Thr Pro Glu Phe Leu Thr Arg Ile Lys Leu Phe Leu Lys Pro Thr Pro Asn Thr Val His Tyr Ile Leu Thr His Phe Lys Gly Phe Trp Asn Val Val Asn Asn Ile Pro Phe Leu Arg Asn Ala Ile Met Ser Tyr Val Leu Thr Ser Arg Ser His Leu Ile Asp Ser Pro Pro Thr Tyr Asn Ala Asp Tyr Gly Tyr Lys Ser Trp Glu Ala Phe Ser Asn Leu Ser Tyr Tyr Thr Arg Ala Leu Pro Pro Val Pro Asp Asp Cys Pro Thr Pro Leu Gly Val Lys Gly Lys Lys Gln Leu Pro Asp Ser Asn Glu Ile Val Glu Lys Leu Leu Arg Arg Lys Phe Ile Pro Asp Pro Gln Gly Ser Asn Met Met Phe Ala Phe Phe Ala Gln His Phe Thr His Gln Phe Phe Lys Thr Asp His Lys Arg Gly Pro Ala Phe Thr Asn 200 Gly Leu Gly His Gly Val Asp Leu Asn His Ile Tyr Gly Glu Thr Leu 215 Ala Arg Gln Arg Lys Leu Arg Leu Phe Lys Asp Gly Lys Met Lys Tyr Gln Ile Ile Asp Gly Glu Met Tyr Pro Pro Thr Val Lys Asp Thr Gln Ala Glu Met Ile Tyr Pro Pro Gln Val Pro Glu His Leu Arg Phe Ala 265 Val Gly Gln Glu Val Phe Gly Leu Val Pro Gly Leu Met Met Tyr Ala

Thr Ile Trp Leu Arg Glu His Asn Arg Val Cys Asp Val Leu Lys Gln

52/88

Glu His Pro Glu Trp Gly Asp Glu Gln Leu Phe Gln Thr Ser Arg Leu 315 Ile Leu Ile Gly Glu Thr Ile Lys Ile Val Ile Glu Asp Tyr Val Gln 330 His Leu Ser Gly Tyr His Phe Lys Leu Lys Phe Asp Pro Glu Leu Leu . 345 Phe Asn Lys Gln Phe Gln Tyr Gln Asn Arg Ile Ala Ala Glu Phe Asn Thr Leu Tyr His Trp His Pro Leu Leu Pro Asp Thr Phe Gln Ile His 375 Asp Gln Lys Tyr Asn Tyr Gln Gln Phe Ile Tyr Asn Asn Ser Ile Leu Leu Glu His Gly Ile Thr Gln Phe Val Glu Ser Phe Thr Arg Gln Ile 410 Ala Gly Arg Val Ala Gly Gly Arg Asn Val Pro Pro Ala Val Gln Lys 420 425 Val Ser Gln Ala Ser Ile Asp Gln Ser Arg Gln Met Lys Tyr Gln Ser 440 Phe Asn Glu Tyr Arg Lys Arg Phe Met Leu Lys Pro Tyr Glu Ser Phe Glu Glu Leu Thr Gly Glu Lys Glu Met Ser Ala Glu Leu Glu Ala Leu Tyr Gly Asp Ile Asp Ala Val Glu Leu Tyr Pro Ala Leu Leu Val Glu Lys Pro Arg Pro Asp Ala Ile Phe Gly Glu Thr Met Val Glu Val Gly 505 Ala Pro Phe Ser Leu Lys Gly Leu Met Gly Asn Val Ile Cys Ser Pro Ala Tyr Trp Lys Pro Ser Thr Phe Gly Gly Glu Val Gly Phe Gln Ile Ile Asn Thr Ala Ser Ile Gln Ser Leu Ile Cys Asn Asn Val Lys Gly 550 Cys Pro Phe Thr Ser Phe Ser Val Pro Asp Pro Glu Leu Ile Lys Thr Val Thr Ile Asn Ala Ser Ser Ser Arg Ser Gly Leu Asp Asp Ile Asn 585 Pro Thr Val Leu Leu Lys Glu Arg Ser Thr Glu Leu

600

53/88

<210> 25 <211> 360 <212> PRT <213> Homo sapiens <400> 25 Met Glu Asp Phe Asn Met Glu Ser Asp Ser Phe Glu Asp Phe Trp Lys Gly Glu Asp Leu Ser Asn Tyr Ser Tyr Ser Ser Thr Leu Pro Pro Phe Leu Leu Asp Ala Ala Pro Cys Glu Pro Glu Ser Leu Glu Ile Asn Lys Tyr Phe Val Val Ile Ile Tyr Ala Leu Val Phe Leu Leu Ser Leu Leu Gly Asn Ser Leu Val Met Leu Val Ile Leu Tyr Ser Arg Val Gly Arg Ser Val Thr Asp Val Tyr Leu Leu Asn Leu Ala Leu Ala Asp Leu Leu 90 Phe Ala Leu Thr Leu Pro Ile Trp Ala Ala Ser Lys Val Asn Gly Trp Ile Phe Gly Thr Phe Leu Cys Lys Val Val Ser Leu Leu Lys Glu Val Asn Phe Tyr Ser Gly Ile Leu Leu Leu Ala Cys Ile Ser Val Asp Arg Tyr Leu Ala Ile Val His Ala Thr Arg Thr Leu Thr Gln Lys Arg Tyr Leu Val Lys Phe Ile Cys Leu Ser Ile Trp Gly Leu Ser Leu Leu Ala Leu Pro Val Leu Leu Phe Arg Arg Thr Val Tyr Ser Ser Asn Val 180 185 Ser Pro Ala Cys Tyr Glu Asp Met Gly Asn Asn Thr Ala Asn Trp Arg 200 Met Leu Leu Arg Ile Leu Pro Gln Ser Phe Gly Phe Ile Val Pro Leu Leu Ile Met Leu Phe Cys Tyr Gly Phe Thr Leu Arg Thr Leu Phe Lys 230 Ala His Met Gly Gln Lys His Arg Ala Met Arg Val Ile Phe Ala Val Val Leu Ile Phe Leu Leu Cys Trp Leu Pro Tyr Asn Leu Val Leu Leu

54/88

Ala Asp Thr Leu Met Arg Thr Gln Val Ile Gln Glu Thr Cys Glu Arg
275 280 285

Arg Asn His Ile Asp Arg Ala Leu Asp Ala Thr Glu Ile Leu Gly Ile 290 295 300

Leu His Ser Cys Leu Asn Pro Leu Ile Tyr Ala Phe Ile Gly Gln Lys 305 310 315 320

Phe Arg His Gly Leu Leu Lys Ile Leu Ala Ile His Gly Leu Ile Ser 325 330 335

Lys Asp Ser Leu Pro Lys Asp Ser Arg Pro Ser Phe Val Gly Ser Ser 340 345 350

Ser Gly His Thr Ser Thr Thr Leu
355 360

<210> 26

<211> 198

<212> PRT

<213> Homo sapiens

<400> 26

Met Pro Leu Gly Leu Leu Trp Leu Gly Leu Ala Leu Leu Gly Ala Leu

1 5 10 15

His Ala Gln Ala Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro 20 25 30

Leu Ser Lys Val Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe Gln 35 40 45

Gly Lys Trp Tyr Val Val Gly Leu Ala Gly Asn Ala Ile Leu Arg Glu 50 55 60

Asp Lys Asp Pro Gln Lys Met Tyr Ala Thr Ile Tyr Glu Leu Lys Glu 65 70 75 80

Asp Lys Ser Tyr Asn Val Thr Ser Val Leu Phe Arg Lys Lys Lys Cys 85 90 95

Asp Tyr Trp Ile Arg Thr Phe Val Pro Gly Cys Gln Pro Gly Glu Phe
100 105 110

Thr Leu Gly Asn Ile Lys Ser Tyr Pro Gly Leu Thr Ser Tyr Leu Val 115 120 125

Arg Val Val Ser Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys
130 135 140

Lys Val Ser Gln Asn Arg Glu Tyr Phe Lys Ile Thr Leu Tyr Gly Arg 145 150 155 160

Thr Lys Glu Leu Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser 165 170 175

55/88

Lys Tyr Leu Gly Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile 180 185 190

Asp Gln Cys Ile Asp Gly 195

<210> 27

<211> 122

<212> PRT

<213> Homo sapiens

<400> 27

Met Lys Leu Leu Thr Gly Leu Val Phe Cys Ser Leu Val Leu Gly Val 1 5 10 15

Ser Ser Arg Ser Phe Phe Ser Phe Leu Gly Glu Ala Phe Asp Gly Ala 20 25 30

Arg Asp Met Trp Arg Ala Tyr Ser Asp Met Arg Glu Ala Asn Tyr Ile
35 40 45

Gly Ser Asp Lys Tyr Phe His Ala Arg Gly Asn Tyr Asp Ala Ala Lys 50 55 60

Arg Gly Pro Gly Gly Val Trp Ala Ala Glu Ala Ile Ser Asp Ala Arg 65 70 75 80

Glu Asn Ile Gln Arg Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala 85 90 95

Asp Gln Ala Asn Glu Trp Gly Arg Ser Gly Lys Asp Pro Asn His 100 \$105\$

Phe Arg Pro Ala Gly Leu Pro Glu Lys Tyr

<210> 28

<211> 554

<212> PRT

<213> Homo sapiens

<400> 28

Met Thr Ala Pro Gly Ala Ala Gly Arg Cys Pro Pro Thr Thr Trp Leu 1 5 10 15

Gly Ser Leu Leu Leu Val Cys Leu Leu Ala Ser Arg Ser Ile Thr
20 25 30

Glu Glu Val Ser Glu Tyr Cys Ser His Met Ile Gly Ser Gly His Leu

Gln Ser Leu Gln Arg Leu Ile Asp Ser Gln Met Glu Thr Ser Cys Gln 50 60

Ile 65	Thr	Phe	Glu	Phe	Val 70	Asp	Gln	Glu	Gln	Leu 75	Lys	Asp	Pro	Val	Cys 80
Tyr	Leu	Lys	Lys	Ala 85	Phe	Leu	Leu	Val	Gln 90	Asp	Ile	Met	Glu	Asp 95	Thr
Met	Arg	Phe	Arg 100	Asp	Asn	Thr	Ala	Asn 105	Pro	Ile	Ala	Ile	Val 110	Gln	Leu
Gln	Glu	Leu 115	Ser	Leu	Arg	Leu	Lys 120	Ser	Cys	Phe	Thr	Lys 125	Asp	Tyr	Glu
Glu	His 130	Asp	Lys	Ala	Cys	Val 135	Arg	Thr	Phe	Tyr	Glu 140	Thr	Pro	Leu	Gln
Leu 145	Leu	Glu	Lys	Val	Lys 150	Asn	Val	Phe	Asn	Glu 155	Thr	Lys	Asn	Leu	Leu 160
Asp	Lys	Asp	Trp	Asn 165	Ile	Phe	Ser	Lys	Asn 170	Cys	Asn	Asn	Ser	Phe 175	Ala
Glu	Cys	Ser	Ser 180	Gln	Asp	Val	Val	Thr 185	Lys	Pro	Asp	Cys	Asn 190	Cys	Leu
Tyr	Pro	Lys 195	Ala	Ile	Pro	Ser	Ser 200	Asp	Pro	Ala	Ser	Val 205	Ser	Pro	His
Gln	Pro 210	Leu	Ala	Pro	Ser	Met 215	Ala	Pro	Val	Ala	Gly 220	Leu	Thr	Trp	Glu
Asp 225	Ser	Glu	Gly	Thr	Glu 230	Gly	Ser	Ser	Leu	Leu 235	Pro	Gly	Glu	Gln	Pro 240
Leu	His	Thr	Val	Asp 245	Pro	Gly	Ser	Ala	Lys 250	Gln	Arg	Pro	Pro	Arg 255	Ser
Thr	Сув	Gln	Ser 260	Phe	Glu	Pro	Pro	Glu 265	Thr	Pro	Val	Val	Lys 270	Asp	Ser
Thr	Ile	Gly 275	Gly	Ser	Pro	Gln	Pro 280	Arg	Pro	Ser	Val	Gly 285	Ala	Phe	Asn
Pro	Gly 290	Met	Glu	Asp	Ile	Leu 295	Asp	Ser	Ala	Met	Gly 300	Thr	Asn	Trp	Val
Pro 305	Glu	Glu	Ala	Ser	Gly 310	Glu	Ala	Ser	Glu	Ile 315	Pro	Val	Pro	Gln	Gly 320
Thr	Glu	Leu	Ser	Pro 325	Ser	Arg	Pro	Gly	Gly 330	Gly	Ser	Met	Gln	Thr 335	Glu
Pro	Ala	Arg	Pro 340	Ser	Asn	Phe	Leu	Ser 345	Ala	Ser	Ser	Pro	Leu 350	Pro	Ala
Ser	Ala	Lys 355	Gly	Gln	Gln	Pro	Ala 360	Asp	Val	Thr	Ala	Thr 365	Ala	Leu	Pro

57/88

Arg Val Gly Pro Val Met Pro Thr Gly Gln Asp Trp Asn His Thr Pro Gln Lys Thr Asp His Pro Ser Ala Leu Leu Arg Asp Pro Pro Glu Pro Gly Ser Pro Arg Ile Ser Ser Leu Arg Pro Gln Ala Leu Ser Asn Pro 405 410 Ser Thr Leu Ser Ala Gln Pro Gln Leu Ser Arg Ser His Ser Ser Gly Ser Val Leu Pro Leu Gly Glu Leu Glu Gly Arg Arg Ser Thr Arg Asp Arg Thr Ser Pro Ala Glu Pro Glu Ala Ala Pro Ala Ser Glu Gly Ala 455 Ala Arg Pro Leu Pro Arg Phe Asn Ser Val Pro Leu Thr Asp Thr Gly

His Glu Arg Gln Ser Glu Gly Ser Ser Ser Pro Gln Leu Gln Glu Ser

Val Phe His Leu Leu Val Pro Ser Val Ile Leu Val Leu Leu Ala Val 505

Gly Gly Leu Leu Phe Tyr Arg Trp Arg Arg Arg Ser His Gln Glu Pro

Gln Arg Ala Asp Ser Pro Leu Glu Gln Pro Glu Gly Ser Pro Leu Thr

Gln Asp Asp Arg Gln Val Glu Leu Pro Val 545 550

<210> 29

<211> 107

<212> PRT

<213> Homo sapiens

<400> 29

Met Ala Arg Ala Ala Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu

Arg Val Ala Leu Leu Leu Leu Leu Val Ala Ala Gly Arg Arg Ala

Ala Gly Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr

Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys Ser

Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn 75

58/88

Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys Lys Ile 85 90 95

Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn 100 105

<210> 30

<211> 106

<212> PRT

<213> Homo sapiens

<400> 30

Met Ala His Ala Thr Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu 1 5 10 15

Arg Val Ala Leu Leu Leu Leu Leu Val Gly Ser Arg Ala Ala 20 25 30

Gly Ala Ser Val Val Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu
35 40 45

Gln Gly Ile His Leu Lys Asn Ile Gln Ser Val Asn Val Arg Ser Pro $50 \ 55 \ 60$

Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly 65 70 75 80

Lys Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Gln Lys Ile Ile 85 90 95

Glu Lys Ile Leu Asn Lys Gly Ser Thr Asn 100 105

<210> 31

<211> 300

<212> PRT

<213> Homo sapiens

<400> 31

Met Arg Ile Ala Val Ile Cys Phe Cys Leu Leu Gly Ile Thr Cys Ala 1 5 10 15

Ile Pro Val Lys Gln Ala Asp Ser Gly Ser Ser Glu Glu Lys Gln Leu 20 25 30

Tyr Asn Lys Tyr Pro Asp Ala Val Ala Thr Trp Leu Asn Pro Asp Pro
35 40 45

Ser Gln Lys Gln Asn Leu Leu Ala Pro Gln Thr Leu Pro Ser Lys Ser 50 55 60

Asn Glu Ser His Asp His Met Asp Asp Met Asp Asp Glu Asp Asp Asp 65 70 75 80

59/88

Asp His Val Asp Ser Gln Asp Ser Ile Asp Ser Asn Asp Ser Asp Asp 85 90 95

Val Asp Asp Thr Asp Asp Ser His Gln Ser Asp Glu Ser His His Ser
100 105 110

Asp Glu Ser Asp Glu Leu Val Thr Asp Phe Pro Thr Asp Leu Pro Ala 115 120 125

Thr Glu Val Phe Thr Pro Val Val Pro Thr Val Asp Thr Tyr Asp Gly 130 135 140

Arg Gly Asp Ser Val Val Tyr Gly Leu Arg Ser Lys Ser Lys Lys Phe 145 150 155 160

Arg Arg Pro Asp Ile Gln Tyr Pro Asp Ala Thr Asp Glu Asp Ile Thr
165 170 175

Ser His Met Glu Ser Glu Glu Leu Asn Gly Ala Tyr Lys Ala Ile Pro 180 185 190

Val Ala Gln Asp Leu Asn Ala Pro Ser Asp Trp Asp Ser Arg Gly Lys 195 200 205

Asp Ser Tyr Glu Thr Ser Gln Leu Asp Asp Gln Ser Ala Glu Thr His 210 215 220

Ser His Lys Gln Ser Arg Leu Tyr Lys Arg Lys Ala Asn Asp Glu Ser 225 230 235 240

Asn Glu His Ser Asp Val Ile Asp Ser Gln Glu Leu Ser Lys Val Ser 245 250 255

Arg Glu Phe His Ser His Glu Phe His Ser His Glu Asp Met Leu Val
260 265 270

Val Asp Pro Lys Ser Lys Glu Glu Asp Lys His Leu Lys Phe Arg Ile 275 280 285

Ser His Glu Leu Asp Ser Ala Ser Ser Glu Val Asn 290 295 300

<210> 32

<211> 295

<212> PRT

<213> Homo sapiens

<400> 32

Met Glu His Gln Leu Leu Cys Cys Glu Val Glu Thr Ile Arg Arg Ala 1 5 10 15

Tyr Pro Asp Ala Asn Leu Leu Asn Asp Arg Val Leu Arg Ala Met Leu 20 25 30

60/88

Lys Ala Glu Glu Thr Cys Ala Pro Ser Val Ser Tyr Phe Lys Cys Val 35 40 45

Gln Lys Glu Val Leu Pro Ser Met Arg Lys Ile Val Ala Thr Trp Met 50 60

Leu Glu Val Cys Glu Glu Gln Lys Cys Glu Glu Glu Val Phe Pro Leu 65 70 75 80

Ala Met Asn Tyr Leu Asp Arg Phe Leu Ser Leu Glu Pro Val Lys Lys 85 90 95

Ser Arg Leu Gln Leu Leu Gly Ala Thr Cys Met Phe Val Ala Ser Lys
100 105 110

Met Lys Glu Thr Ile Pro Leu Thr Ala Glu Lys Leu Cys Ile Tyr Thr 115 120 125

Asp Gly Ser Ile Arg Pro Glu Glu Leu Leu Gln Met Glu Leu Leu 130 135 140

Val Asn Lys Leu Lys Trp Asn Leu Ala Ala Met Thr Pro His Asp Phe 145 150 155 160

Ile Glu His Phe Leu Ser Lys Met Pro Glu Ala Glu Glu As
n Lys Gl
n 165 170 175

Ile Ile Arg Lys His Ala Gln Thr Phe Val Ala Ser Cys Ala Thr Asp 180 185 190

Val Lys Phe Ile Ser Asn Pro Pro Ser Met Val Ala Ala Gly Ser Val 195 200 205

Val Ala Ala Val Gln Gly Leu Asn Leu Arg Ser Pro Asn Asn Phe Leu 210 215 220

Ser Tyr Tyr Arg Leu Thr Arg Phe Leu Ser Arg Val Ile Lys Cys Asp 225 230 235 240

Pro Asp Cys Leu Arg Ala Cys Gln Glu Gln Ile Glu Ala Leu Leu Glu 245 250 255

Ser Ser Leu Arg Gln Ala Gln Gln Asn Met Asp Pro Lys Ala Ala Glu 260 265 270

Glu Glu Glu Glu Glu Glu Glu Val Asp Leu Ala Cys Thr Pro Thr 275 280 285

Asp Val Arg Asp Val Asp Ile 290 295

<210> 33

<211> 439

<212> PRT

<213> Homo sapiens

61/88

<400> 33 Met Pro Leu Asn Val Ser Phe Thr Asn Arg Asn Tyr Asp Leu Asp Tyr Asp Ser Val Gln Pro Tyr Phe Tyr Cys Asp Glu Glu Glu Asn Phe Tyr Gln Gln Gln Gln Ser Glu Leu Gln Pro Pro Ala Pro Ser Glu Asp Ile Trp Lys Lys Phe Glu Leu Pro Thr Pro Pro Leu Ser Pro Ser Arg Arg Ser Gly Leu Cys Ser Pro Ser Tyr Val Ala Val Thr Pro Phe Ser Leu Arg Gly Asp Asn Asp Gly Gly Gly Ser Phe Ser Thr Ala Asp Gln Leu Glu Met Val Thr Glu Leu Leu Gly Gly Asp Met Val Asn Gln Ser Phe Ile Cys Asp Pro Asp Glu Thr Phe Ile Lys Asn Ile Ile Ile Gln Asp Cys Met Trp Ser Gly Phe Ser Ala Ala Ala Lys Leu 135 Val Ser Glu Lys Leu Ala Ser Tyr Gln Ala Ala Arg Lys Asp Ser Gly Ser Pro Asn Pro Ala Arg Gly His Ser Val Cys Ser Thr Ser Ser Leu 170 Tyr Leu Gln Asp Leu Ser Ala Ala Ala Ser Glu Cys Ile Asp Pro Ser Val Val Phe Pro Tyr Pro Leu Asn Asp Ser Ser Pro Lys Ser Cys 200 Ala Ser Gln Asp Ser Ser Ala Phe Ser Pro Ser Ser Asp Ser Leu Leu Ser Ser Thr Glu Ser Ser Pro Gln Gly Ser Pro Glu Pro Leu Val Leu 230 235 His Glu Glu Thr Pro Pro Thr Thr Ser Ser Asp Ser Glu Glu Glu Gln Glu Asp Glu Glu Ile Asp Val Val Ser Val Glu Lys Arg Gln Ala Pro Gly Lys Arg Ser Glu Ser Gly Ser Pro Ser Ala Gly Gly His Ser 280 Lys Pro Pro His Ser Pro Leu Val Leu Lys Arg Cys His Val Ser Thr 295 300

62/88

His Gln His Asn Tyr Ala Ala Pro Pro Ser Thr Arg Lys Asp Tyr Pro 305 310 315 320

Ala Ala Lys Arg Val Lys Leu Asp Ser Val Arg Val Leu Arg Gln Ile 325 330 335

Ser Asn Asn Arg Lys Cys Thr Ser Pro Arg Ser Ser Asp Thr Glu Glu 340 345 350

Asn Val Lys Arg Arg Thr His Asn Val Leu Glu Arg Gln Arg Asn 355 360 365

Glu Leu Lys Arg Ser Phe Phe Ala Leu Arg Asp Gln Ile Pro Glu Leu 370 375 380

Glu Asn Asn Glu Lys Ala Pro Lys Val Val Ile Leu Lys Lys Ala Thr 385 390 395 400

Ala Tyr Ile Leu Ser Val Gln Ala Glu Glu Gln Lys Leu Ile Ser Glu 405 410 415

Glu Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu Lys His Lys Leu Glu
420 425 430

Gln Leu Arg Asn Ser Cys Ala 435

<210> 34

<211> 164

<212> PRT

<213> Homo sapiens

<400> 34

Met Ser Glu Pro Ala Gly Asp Val Arg Gln Asn Pro Cys Gly Ser Lys

1 10 15

Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser Glu Gln Leu Ser Arg
20 25 30

Asp Cys Asp Ala Leu Met Ala Gly Cys Ile Gln Glu Ala Arg Glu Arg 35 40 45

Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu Glu Gly Asp Phe Ala 50 55 60

Trp Glu Arg Val Arg Gly Leu Gly Leu Pro Lys Leu Tyr Leu Pro Thr 65 70 75 80

Gly Pro Arg Arg Gly Arg Asp Glu Leu Gly Gly Gly Arg Arg Pro Gly
85 90 95

Thr Ser Pro Ala Leu Leu Gln Gly Thr Ala Glu Glu Asp His Val Asp
100 105 110

Leu Ser Leu Ser Cys Thr Leu Val Pro Arg Ser Gly Glu Gln Ala Glu
115 120 125

63/88

Gly Ser Pro Gly Gly Pro Gly Asp Ser Gln Gly Arg Lys Arg Arg Gln 130 135 140

Thr Ser Met Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser 145 150 155 160

Lys Arg Lys Pro

<210> 35

<211> 105

<212> PRT

<213> Homo sapiens

<400> 35

Met Met Met Gly Ser Ala Arg Val Ala Glu Leu Leu Leu His Gly
1 5 10 15

Ala Glu Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His
20 25 30

Asp Ala Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Val Leu His Arg 35 40 45

Ala Gly Ala Arg Leu Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val 50 60

Asp Leu Ala Glu Glu Leu Gly His Arg Asp Val Ala Arg Tyr Leu Arg 65 70 75 80

Ala Ala Ala Gly Gly Thr Arg Gly Ser Asn His Ala Arg Ile Asp Ala

Ala Glu Gly Pro Ser Asp Ile Pro Asp 100 105

<210> 36

<211> 173

<212> PRT

<213> Homo sapiens

<400> 36

Met Gly Arg Gly Arg Cys Val Gly Pro Ser Leu Gln Leu Arg Gly Gln
1 5 10 15

Glu Trp Arg Cys Ser Pro Leu Val Pro Lys Gly Gly Ala Ala Ala Ala 20 25 30

Glu Leu Gly Pro Gly Gly Gly Glu Asn Met Val Arg Arg Phe Leu Val
35 40 45

Thr Leu Arg Ile Arg Arg Ala Cys Gly Pro Pro Arg Val Arg Val Phe 50 55 60

64/88

Val Val His Ile Pro Arg Leu Thr Gly Glu Trp Ala Ala Pro Gly Ala 65 70 75 80

Pro Ala Ala Val Ala Leu Val Leu Met Leu Leu Arg Ser Gln Arg Leu 85 90 95

Gly Gln Gln Pro Leu Pro Arg Arg Pro Gly His Asp Asp Gly Gln Arg
100 105 110

Pro Ser Gly Gly Ala Ala Ala Ala Pro Arg Gly Ala Gln Leu Arg 115 120 2125

Arg Pro Arg His Ser His Pro Thr Arg Ala Arg Cys Pro Gly Gly 130 135 140

Leu Pro Gly His Ala Gly Gly Ala Ala Pro Gly Arg Gly Ala Ala Gly 145 150 155 160

Arg Ala Arg Cys Leu Gly Pro Ser Ala Arg Gly Pro Gly
165 170

<210> 37

<211> 468

<212> PRT

<213> Homo sapiens

<400> 37

Met Val Asp Thr Glu Ser Pro Leu Cys Pro Leu Ser Pro Leu Glu Ala 1 5 10 15

Gly Asp Leu Glu Ser Pro Leu Ser Glu Glu Phe Leu Gln Glu Met Gly
20 25 30

Asn Ile Gln Glu Ile Ser Gln Ser Ile Gly Glu Asp Ser Ser Gly Ser 35 40 45

Phe Gly Phe Thr Glu Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Asp 50 55 60

Gly Ser Val Ile Thr Asp Thr Leu Ser Pro Ala Ser Ser Pro Ser Ser 65 70 75 80

Val Thr Tyr Pro Val Val Pro Gly Ser Val Asp Glu Ser Pro Ser Gly 85 90 95

Ala Leu Asn Ile Glu Cys Arg Ile Cys Gly Asp Lys Ala Ser Gly Tyr
100 105 110

His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg

Thr Ile Arg Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys Lys 130 140

Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe His Lys 145 150 155 160

Cys Leu	Ser	Val	Gly 165	Met	Ser	His	Asn	Ala 170	Ile	Arg	Phe	Gly	Arg 175	Met
Pro Arg	Ser	Glu 180	Lys	Ala	Lys	Leu	Lys 185	Ala	Glu	Ile	Leu	Thr 190	Сув	Glu
His Asp	Ile 195	Glu	Asp	Ser	Glu	Thr 200	Ala	Asp	Leu	Lys	Ser 205	Leu	Ala	Lys
Arg Ile 210	Tyr	Glu	Ala	Tyr	Leu 215	Lys	Asn	Phe	Asn	Met 220	Asn	Lys	Val	Lys
Ala Arg 225	Val	Ile	Leu	Ser 230	Gly	Lys	Ala	Ser	Asn 235	Asn	Pro	Pro	Phe	Val 240
Ile His	Asp	Met	Glu 245	Thr	Leu	Cys	Met	Ala 250	Glu	Lys	Thr	Leu	Val 255	Ala
Lys Leu	Val	Ala 260	Asn	Gly	Ile	Gln	Asn 265	Lys	Glu	Ala	Glu	Val 270	Arg	Ile
Phe His	Cys 275	Cys	Gln	Cys	Thr	Ser 280	Val	Glu	Thr	Val	Thr 285	Glu	Leu	Thr
Glu Phe 290	Ala	Lys	Ala	Ile	Pro 295	Gly	Phe	Ala	Asn	Leu 300	Asp	Leu	Asn	Asp
Gln Val	~ 1	_	_											
305	Thr	Leu	Leu	Lys 310	Tyr	Gly	Val	Tyr	Glu 315	Ala	Ile	Phe	Ala	Met 320
				310		_		_	315					320
305	Ser	Val	Met 325	310 Asn	Lys	Asp	Gly	Met 330	315 Leu	Val	Ala	Tyr	Gly 335	320 Asn
305 Leu Ser	Ser	Val Thr 340	Met 325 Arg	310 Asn Glu	Lys Phe	Asp Leu	Gly Lys 345	Met 330 Ser	315 Leu Leu	Val Arg	Ala Lys	Tyr Pro 350	Gly 335 Phe	320 Asn Cys
305 Leu Ser Gly Phe	Ser Ile Met 355	Val Thr 340 Glu	Met 325 Arg Pro	310 Asn Glu Lys	Lys Phe	Asp Leu Asp 360	Gly Lys 345 Phe	Met 330 Ser	315 Leu Leu Met	Val Arg Lys	Ala Lys Phe 365	Tyr Pro 350 Asn	Gly 335 Phe Ala	320 Asn Cys Leu
Leu Ser Gly Phe Asp Ile Glu Leu	Ser Ile Met 355 Asp	Val Thr 340 Glu Asp	Met 325 Arg Pro	310 Asn Glu Lys Asp	Lys Phe Phe Ile 375	Asp Asp 360 Ser	Gly Lys 345 Phe Leu	Met 330 Ser Ala	315 Leu Leu Met Val	Val Arg Lys Ala 380	Ala Lys Phe 365 Ala	Tyr Pro 350 Asn	Gly 335 Phe Ala Ile	320 Asn Cys Leu Cys
Gly Phe Asp Ile Glu Leu 370 Cys Gly	Ser Ile Met 355 Asp	Val Thr 340 Glu Asp	Met 325 Arg Pro Ser	310 Asn Glu Lys Asp Gly 390	Lys Phe Phe Ile 375 Leu	Asp Leu Asp 360 Ser	Gly Lys 345 Phe Leu Asn	Met 330 Ser Ala Phe	Leu Leu Met Val Gly	Val Arg Lys Ala 380 His	Ala Lys Phe 365 Ala	Tyr Pro 350 Asn Ile Glu	Gly 335 Phe Ala Ile Lys	320 Asn Cys Leu Cys Met 400
Leu Ser Gly Phe Asp Ile Glu Leu 370 Cys Gly 385	Ser Ile Met 355 Asp Asp Gly Asp	Val Thr 340 Glu Asp Arg	Met 325 Arg Pro Ser Pro Val 405	310 Asn Glu Lys Asp Gly 390 His	Lys Phe Phe Ile 375 Leu Val	Asp Leu Asp 360 Ser Leu Leu	Gly Lys 345 Phe Leu Asn	Met 330 Ser Ala Phe Val Leu 410	Leu Leu Met Val Gly 395 His	Val Arg Lys Ala 380 His	Ala Lys Phe 365 Ala Ile Gln	Tyr Pro 350 Asn Ile Glu Ser	Gly 335 Phe Ala Ile Lys Asn 415	320 Asn Cys Leu Cys Met 400 His

66/88

Lys Thr Glu Ser Asp Ala Ala Leu His Pro Leu Leu Gln Glu Ile Tyr 450 455 460

Arg Asp Met Tyr 465

<210> 38

<211> 505

<212> PRT

<213> Homo sapiens

<400> 38

Met Gly Glu Thr Leu Gly Asp Ser Pro Ile Asp Pro Glu Ser Asp Ser 1 5 10 15

Phe Thr Asp Thr Leu Ser Ala Asn Ile Ser Gln Glu Met Thr Met Val 20 25 30

Asp Thr Glu Met Pro Phe Trp Pro Thr Asn Phe Gly Ile Ser Ser Val

Asp Leu Ser Val Met Glu Asp His Ser His Ser Phe Asp Ile Lys Pro 50 55 60

Phe Thr Thr Val Asp Phe Ser Ser Ile Ser Thr Pro His Tyr Glu Asp 65 70 75 80

Ile Pro Phe Thr Arg Thr Asp Pro Val Val Ala Asp Tyr Lys Tyr Asp 85 90 95

Leu Lys Leu Gln Glu Tyr Gln Ser Ala Ile Lys Val Glu Pro Ala Ser 100 105 110

Pro Pro Tyr Tyr Ser Glu Lys Thr Gln Leu Tyr Asn Lys Pro His Glu 115 120 125

Glu Pro Ser Asn Ser Leu Met Ala Ile Glu Cys Arg Val Cys Gly Asp 130 135 140

Lys Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys 145 150 155 160

Gly Phe Phe Arg Arg Thr Ile Arg Leu Lys Leu Ile Tyr Asp Arg Cys 165 170 175

Asp Leu Asn Cys Arg Ile His Lys Lys Ser Arg Asn Lys Cys Gln Tyr 180 185 190

Cys Arg Phe Gln Lys Cys Leu Ala Val Gly Met Ser His Asn Ala Ile 195 200 205

Arg Phe Gly Arg Met Pro Gln Ala Glu Lys Glu Lys Leu Leu Ala Glu 210 215 220

Ile Ser Ser Asp Ile Asp Gln Leu Asn Pro Glu Ser Ala Asp Leu Arg 225 230 235 240

67/88

Ala Leu Ala Lys His Leu Tyr Asp Ser Tyr Ile Lys Ser Phe Pro Leu Thr Lys Ala Lys Ala Arg Ala Ile Leu Thr Gly Lys Thr Thr Asp Lys 265 Ser Pro Phe Val Ile Tyr Asp Met Asn Ser Leu Met Met Gly Glu Asp 280 Lys Ile Lys Phe Lys His Ile Thr Pro Leu Gln Glu Gln Ser Lys Glu 295 Val Ala Ile Arg Ile Phe Gln Gly Cys Gln Phe Arg Ser Val Glu Ala Val Gln Glu Ile Thr Glu Tyr Ala Lys Ser Ile Pro Gly Phe Val Asn 330 Leu Asp Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu Ile Ile Tyr Thr Met Leu Ala Ser Leu Met Asn Lys Asp Gly Val Leu Ile Ser Glu Gly Gln Gly Phe Met Thr Arg Glu Phe Leu Lys Ser Leu 375 Arg Lys Pro Phe Gly Asp Phe Met Glu Pro Lys Phe Glu Phe Ala Val Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Ile Phe Ile Ala Val Ile Ile Leu Ser Gly Asp Arg Pro Gly Leu Leu Asn Val Lys 425 Pro Ile Glu Asp Ile Gln Asp Asn Leu Leu Gln Ala Leu Glu Leu Gln Leu Lys Leu Asn His Pro Glu Ser Ser Gln Leu Phe Ala Lys Leu Leu 455 Gln Lys Met Thr Asp Leu Arg Gln Ile Val Thr Glu His Val Gln Leu 470 475 Leu Gln Val Ile Lys Lys Thr Glu Thr Asp Met Ser Leu His Pro Leu

<210> 39

<211> 441

<212> PRT

<213> Homo sapiens

Leu Gln Glu Ile Tyr Lys Asp Leu Tyr

68/88

<400> 39 Met Glu Gln Pro Gln Glu Glu Ala Pro Glu Val Arg Glu Glu Glu Glu Lys Glu Glu Val Ala Glu Ala Glu Gly Ala Pro Glu Leu Asn Gly Gly Pro Gln His Ala Leu Pro Ser Ser Ser Tyr Thr Asp Leu Ser Arg Ser Ser Ser Pro Pro Ser Leu Leu Asp Gln Leu Gln Met Gly Cys Asp Gly Ala Ser Cys Gly Ser Leu Asn Met Glu Cys Arg Val Cys Gly Asp Lys Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Glu Arg Ser Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met Pro Glu Ala Glu Lys Arg Lys Leu Val Ala Gly Leu Thr Ala Asn Glu Gly Ser Gln Tyr Asn Pro Gln Val Ala Asp Leu Lys 165 170 Ala Phe Ser Lys His Ile Tyr Asn Ala Tyr Leu Lys Asn Phe Asn Met 185 Thr Lys Lys Lys Ala Arg Ser Ile Leu Thr Gly Lys Ala Ser His Thr Ala Pro Phe Val Ile His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys 215 Gly Leu Val Trp Lys Gln Leu Val Asn Gly Leu Pro Pro Tyr Lys Glu Ile Ser Val His Val Phe Tyr Arg Cys Gln Cys Thr Thr Val Glu Thr Val Arg Glu Leu Thr Glu Phe Ala Lys Ser Ile Pro Ser Phe Ser Ser Leu Phe Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu Ala Ile Phe Ala Met Leu Ala Ser Ile Val Asn Lys Asp Gly Leu Leu 295

69/88

Val Ala Asn Gly Ser Gly Phe Val Thr Arg Glu Phe Leu Arg Ser Leu 305 310 315 320

Arg Lys Pro Phe Ser Asp Ile Ile Glu Pro Lys Phe Glu Phe Ala Val

Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile 340 345 350

Ala Ala Ile Ile Leu Cys Gly Asp Arg Pro Gly Leu Met Asn Val Pro 355 360 365

Arg Val Glu Ala Ile Gln Asp Thr Ile Leu Arg Ala Leu Glu Phe His 370 375 380

Leu Gln Ala Asn His Pro Asp Ala Gln Tyr Leu Phe Pro Lys Leu Leu 385 390 395 400

Gln Lys Met Ala Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln Met 405 410 415

Met Gln Arg Ile Lys Lys Thr Glu Thr Glu Thr Ser Leu His Pro Leu 420 425 430

Leu Gln Glu Ile Tyr Lys Asp Met Tyr 435 440

<210> 40

<211> 742

<212> PRT

<213> Homo sapiens

<400> 40

Met Asp Lys Phe Trp Trp His Ala Ala Trp Gly Leu Cys Leu Val Pro 1 5 10 15

Leu Ser Leu Ala Gln Ile Asp Leu Asn Ile Thr Cys Arg Phe Ala Gly 20 25 30

Val Phe His Val Glu Lys Asn Gly Arg Tyr Ser Ile Ser Arg Thr Glu 35 40 45

Ala Ala Asp Leu Cys Lys Ala Phe Asn Ser Thr Leu Pro Thr Met Ala 50 55 60

Gln Met Glu Lys Ala Leu Ser Ile Gly Phe Glu Thr Cys Arg Tyr Gly 65 70 75 80

Phe Ile Glu Gly His Val Val Ile Pro Arg Ile His Pro Asn Ser Ile 85 90 95

Cys Ala Ala Asn Asn Thr Gly Val Tyr Ile Leu Thr Ser Asn Thr Ser

70/88

Gln Tyr Asp Thr Tyr Cys Phe Asn Ala Ser Ala Pro Pro Glu Glu Asp Cys Thr Ser Val Thr Asp Leu Pro Asn Ala Phe Asp Gly Pro Ile Thr 135 Ile Thr Ile Val Asn Arg Asp Gly Thr Arg Tyr Val Gln Lys Gly Glu Tyr Arg Thr Asn Pro Glu Asp Ile Tyr Pro Ser Asn Pro Thr Asp Asp Asp Val Ser Ser Gly Ser Ser Ser Glu Arg Ser Ser Thr Ser Gly Gly 185 Tyr Ile Phe Tyr Thr Phe Ser Thr Val His Pro Ile Pro Asp Glu Asp Ser Pro Trp Ile Thr Asp Ser Thr Asp Arg Ile Pro Ala Thr Thr Leu 215 Met Ser Thr Ser Ala Thr Ala Thr Glu Thr Ala Thr Lys Arg Gln Glu 230 Thr Trp Asp Trp Phe Ser Trp Leu Phe Leu Pro Ser Glu Ser Lys Asn His Leu His Thr Thr Gln Met Ala Gly Thr Ser Ser Asn Thr Ile Ser Ala Gly Trp Glu Pro Asn Glu Glu Asn Glu Asp Glu Arg Asp Arg His Leu Ser Phe Ser Gly Ser Gly Ile Asp Asp Glu Asp Phe Ile Ser Ser Thr Ile Ser Thr Thr Pro Arg Ala Phe Asp His Thr Lys Gln 310 Asn Gln Asp Trp Thr Gln Trp Asn Pro Ser His Ser Asn Pro Glu Val Leu Leu Gln Thr Thr Thr Arg Met Thr Asp Val Asp Arg Asn Gly Thr Thr Ala Tyr Glu Gly Asn Trp Asn Pro Glu Ala His Pro Pro Leu Ile His His Glu His His Glu Glu Glu Thr Pro His Ser Thr Ser Thr Ile Gln Ala Thr Pro Ser Ser Thr Thr Glu Glu Thr Ala Thr Gln Lys 390 395 Glu Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr Pro 405

71/88

Lys Glu Asp Ser His Ser Thr Thr Gly Thr Ala Ala Ala Ser Ala His 425 Thr Ser His Pro Met Gln Gly Arg Thr Thr Pro Ser Pro Glu Asp Ser Ser Trp Thr Asp Phe Phe Asn Pro Ile Ser His Pro Met Gly Arg Gly 455 His Gln Ala Gly Arg Arg Met Asp Met Asp Ser Ser His Ser Ile Thr Leu Gln Pro Thr Ala Asn Pro Asn Thr Gly Leu Val Glu Asp Leu Asp Arg Thr Gly Pro Leu Ser Met Thr Thr Gln Gln Ser Asn Ser Gln Ser 500 505 Phe Ser Thr Ser His Glu Gly Leu Glu Glu Asp Lys Asp His Pro Thr Thr Ser Thr Leu Thr Ser Ser Asn Arg Asn Asp Val Thr Gly Gly Arg Arg Asp Pro Asn His Ser Glu Gly Ser Thr Thr Leu Leu Glu Gly Tyr 550 555 Thr Ser His Tyr Pro His Thr Lys Glu Ser Arg Thr Phe Ile Pro Val Thr Ser Ala Lys Thr Gly Ser Phe Gly Val Thr Ala Val Thr Val Gly Asp Ser Asn Ser Asn Val Asn Arg Ser Leu Ser Gly Asp Gln Asp Thr 600 Phe His Pro Ser Gly Gly Ser His Thr His Gly Ser Glu Ser Asp 615 Gly His Ser His Gly Ser Gln Glu Gly Gly Ala Asn Thr Thr Ser Gly 635 Pro Ile Arg Thr Pro Gln Ile Pro Glu Trp Leu Ile Ile Leu Ala Ser Leu Leu Ala Leu Ala Leu Ile Leu Ala Val Cys Ile Ala Val Asn Ser 665 Arg Arg Cys Gly Gln Lys Lys Leu Val Ile Asn Ser Gly Asn Gly Ala Val Glu Asp Arg Lys Pro Ser Gly Leu Asn Gly Glu Ala Ser 695 Lys Ser Gln Glu Met Val His Leu Val Asn Lys Glu Ser Ser Glu Thr 710 715

72/88

Pro Asp Gln Phe Met Thr Ala Asp Glu Thr Arg Asn Leu Gln Asn Val
725 730 735

Asp Met Lys Ile Gly Val 740

<210> 41

<211> 489

<212> PRT

<213> Homo sapiens

<400> 41

Met Leu Met Arg Leu Val Leu Thr Val Arg Ser Asn Leu Ile Pro Ser 1 5 10 15

Pro Pro Thr Tyr Asn Ser Ala His Asp Tyr Ile Ser Trp Glu Ser Phe 20 25 30

Ser Asn Val Ser Tyr Tyr Thr Arg Ile Leu Pro Ser Val Pro Lys Asp 35 40 45

Cys Pro Thr Pro Met Gly Thr Lys Gly Lys Lys Gln Leu Pro Asp Ala 50 60

Gln Leu Leu Ala Arg Arg Phe Leu Leu Arg Arg Lys Phe Ile Pro Asp 65 70 75 80

Pro Gln Gly Thr Asn Leu Met Phe Ala Phe Phe Ala Gln His Phe Thr 85 90 95

His Gln Phe Phe Lys Thr Ser Gly Lys Met Gly Pro Gly Phe Thr Lys
100 105 110

Ala Leu Gly His Gly Val Asp Leu Gly His Ile Tyr Gly Asp Asn Leu 115 120 125

Glu Arg Gln Tyr Gln Leu Arg Leu Phe Lys Asp Gly Lys Leu Lys Tyr 130 135 140

Gln Val Leu Asp Gly Glu Met Tyr Pro Pro Ser Val Glu Glu Ala Pro 145 150 155 160

Val Leu Met His Tyr Pro Arg Gly Ile Pro Pro Gln Ser Gln Met Ala 165 170 175

Val Gly Gln Glu Val Phe Gly Leu Leu Pro Gly Leu Met Leu Tyr Ala 180 185 190

Thr Leu Trp Leu Arg Glu His Asn Arg Val Cys Asp Leu Leu Lys Ala

Glu His Pro Thr Trp Gly Asp Glu Gln Leu Phe Gln Thr Thr Arg Leu 210 215 220

Ile Leu Ile Gly Glu Thr Ile Lys Ile Val Ile Glu Glu Tyr Val Gln 225 230 235 240

73/88

Gln Leu Ser Gly Tyr Phe Leu Gln Leu Lys Phe Asp Pro Glu Leu Leu Phe Gly Val Gln Phe Gln Tyr Arg Asn Arg Ile Ala Met Glu Phe Asn His Leu Tyr His Trp His Pro Leu Met Pro Asp Ser Phe Lys Val Gly 280 Ser Gln Glu Tyr Ser Tyr Glu Gln Phe Leu Phe Asn Thr Ser Met Leu Val Asp Tyr Gly Val Glu Ala Leu Val Asp Ala Phe Ser Arg Gln Ile 310 315 Ala Gly Arg Ile Gly Gly Arg Asn Met Asp His His Ile Leu His 330 Val Ala Val Asp Val Ile Arg Glu Ser Arg Glu Met Arg Leu Gln Pro Phe Asn Glu Tyr Arg Lys Arg Phe Gly Met Lys Pro Tyr Thr Ser Phe Gln Glu Leu Val Gly Glu Lys Glu Met Ala Ala Glu Leu Glu Glu Leu 375 Tyr Gly Asp Ile Asp Ala Leu Glu Phe Tyr Pro Gly Leu Leu Glu Lys Cys His Pro Asn Ser Ile Phe Gly Glu Ser Met Ile Glu Ile Gly Ala Pro Phe Ser Leu Lys Gly Leu Leu Gly Asn Pro Ile Cys Ser Pro Glu Tyr Trp Lys Pro Ser Thr Phe Gly Gly Glu Val Gly Phe Asn Ile Val Lys Thr Ala Thr Leu Lys Lys Leu Val Cys Leu Asn Thr Lys Thr Cys Pro Tyr Val Ser Phe Arg Val Pro Asp Ala Ser Gln Asp Asp Gly 470 475

Pro Ala Val Glu Arg Pro Ser Thr Glu 485

<210> 42 <211> 96 <212> PRT

<213> Homo sapiens

<400> 42
Met Ser Glu Ser Ser Ser Lys Ser Ser Gln Pro Leu Ala Ser Lys Gln
1 5 10 15

74/88

Glu Lys Asp Gly Thr Glu Lys Arg Gly Arg Gly Arg Pro Arg Lys Gln
20 25 30

Pro Pro Lys Glu Pro Ser Glu Val Pro Thr Pro Lys Arg Pro Arg Gly 35 40 45

Arg Pro Lys Gly Ser Lys Asn Lys Gly Ala Ala Lys Thr Arg Lys Thr 50 55 60

Thr Thr Pro Gly Arg Lys Pro Arg Gly Arg Pro Lys Lys Leu Glu 65 70 75 80

Lys Glu Glu Glu Glu Gly Ile Ser Glu Glu Ser Ser Glu Glu Glu Glu 85 90 95

<210> 43

<211> 79

<212> PRT

<213> Homo sapiens

<400> 43

Met Ala His Lys Gln Ile Tyr Tyr Ser Asp Lys Tyr Phe Asp Glu His 1 5 10

Tyr Glu Tyr Arg His Val Met Leu Pro Arg Glu Leu Ser Lys Gln Val 20 25 30

Pro Lys Thr His Leu Met Ser Glu Glu Glu Trp Arg Arg Leu Gly Val

Gln Gln Ser Leu Gly Trp Val His Tyr Met Ile His Glu Pro Glu Pro

His Ile Leu Leu Phe Arg Arg Pro Leu Pro Lys Asp Gln Gln Lys 65 70 75

<210> 44

<211> 885

<212> PRT

<213> Homo sapiens

<400> 44

Met Val Leu Ser Gly Cys Ala Ile Ile Val Arg Gly Gln Pro Arg Gly 1 5 10 15

Gly Pro Pro Glu Arg Gln Ile Asn Leu Ser Asn Ile Arg Ala Gly

Asn Leu Ala Arg Arg Ala Ala Ala Thr Gln Pro Asp Ala Lys Asp Thr
35 40 45

Pro Asp Glu Pro Trp Ala Phe Pro Ala Arg Glu Phe Leu Arg Lys Lys 50 55 60

75/88

Leu Ile Gly Lys Glu Val Cys Phe Thr Ile Glu Asn Lys Thr Pro Gln Gly Arg Glu Tyr Gly Met Ile Tyr Leu Gly Lys Asp Thr Asn Gly Glu Asn Ile Ala Glu Ser Leu Val Ala Glu Gly Leu Ala Thr Arg Arg Glu 105 Gly Met Arg Ala Asn Asn Pro Glu Gln Asn Arg Leu Ser Glu Cys Glu 120 Glu Gln Ala Lys Ala Ala Lys Lys Gly Met Trp Ser Glu Gly Asn Gly Ser His Thr Ile Arg Asp Leu Lys Tyr Thr Ile Glu Asn Pro Arg His Phe Val Asp Ser His His Gln Lys Pro Val Asn Ala Ile Ile Glu His Val Arg Asp Gly Ser Val Val Arg Ala Leu Leu Pro Asp Tyr Tyr Leu Val Thr Val Met Leu Ser Gly Ile Lys Cys Pro Thr Phe Arg Arg Glu Ala Asp Gly Ser Glu Thr Pro Glu Pro Phe Ala Ala Glu Ala Lys Phe Phe Thr Glu Ser Arg Leu Leu Gln Arg Asp Val Gln Ile Ile Leu Glu Ser Cys His Asn Gln Asn Ile Val Gly Thr Ile Leu His Pro Asn 250 Gly Asn Ile Thr Glu Leu Leu Leu Lys Glu Gly Phe Ala Arg Cys Val Asp Trp Ser Ile Ala Val Tyr Thr Arg Gly Ala Glu Lys Leu Arg Ala Ala Glu Arg Phe Ala Lys Glu Arg Arg Leu Arg Ile Trp Arg Asp Tyr Val Ala Pro Thr Ala Asn Leu Asp Gln Lys Asp Lys Gln Phe Val Ala Lys Val Met Gln Val Leu Asn Ala Asp Ala Ile Val Val Lys Leu Asn Ser Gly Asp Tyr Lys Thr Ile His Leu Ser Ser Ile Arg Pro Pro Arg 345 Leu Glu Gly Glu Asn Thr Gln Asp Lys Asn Lys Lys Leu Arg Pro Leu 360

76/88

Tyr Asp Ile Pro Tyr Met Phe Glu Ala Arg Glu Phe Leu Arg Lys Lys 375 Leu Ile Gly Lys Lys Val Asn Val Thr Val Asp Tyr Ile Arg Pro Ala Ser Pro Ala Thr Glu Thr Val Pro Ala Phe Ser Glu Arg Thr Cys Ala 410 Thr Val Thr Ile Gly Gly Ile Asn Ile Ala Glu Ala Leu Val Ser Lys Gly Leu Ala Thr Val Ile Arg Tyr Arg Gln Asp Asp Gln Arg Ser Ser His Tyr Asp Glu Leu Leu Ala Ala Glu Ala Arg Ala Ile Lys Asn 455 Gly Lys Gly Leu His Ser Lys Lys Glu Val Pro Ile His Arg Val Ala 475 Asp Ile Ser Gly Asp Thr Gln Lys Ala Lys Gln Phe Leu Pro Phe Leu Gln Arg Ala Gly Arg Ser Glu Ala Val Val Glu Tyr Val Phe Ser Gly 505 Ser Arg Leu Lys Leu Tyr Leu Pro Lys Glu Thr Cys Leu Ile Thr Phe Leu Leu Ala Gly Ile Glu Cys Pro Arg Gly Ala Arg Asn Leu Pro Gly Leu Val Gln Glu Gly Glu Pro Phe Ser Glu Glu Ala Thr Leu Phe Thr Lys Glu Leu Val Leu Gln Arg Glu Val Glu Val Glu Val Glu Ser Met Asp Lys Ala Gly Asn Phe Ile Gly Trp Leu His Ile Asp Gly Ala Asn Leu Ser Val Leu Leu Val Glu His Ala Leu Ser Lys Val His Phe Thr 600 Ala Glu Arg Ser Ser Tyr Tyr Lys Ser Leu Leu Ser Ala Glu Glu Ala Ala Lys Gln Lys Lys Glu Lys Val Trp Ala His Tyr Glu Glu Gln Pro Val Glu Glu Val Met Pro Val Leu Glu Glu Lys Glu Arg Ser Ala Ser 645 650 Tyr Lys Pro Val Phe Val Thr Glu Ile Thr Asp Asp Leu His Phe Tyr 665

77/88

Val Gln Asp Val Glu Thr Gly Thr Gln Phe Gln Lys Leu Met Glu Asn 675 680 685

Met Arg Asn Asp Ile Ala Ser His Pro Pro Val Glu Gly Ser Tyr Ala 690 695 700

Pro Arg Arg Gly Glu Phe Cys Ile Ala Lys Phe Val Asp Gly Glu Trp 705 710 715 720

Tyr Arg Ala Arg Val Glu Lys Val Glu Ser Pro Ala Lys Ile His Val
725 730 735

Phe Tyr Ile Asp Tyr Gly Asn Arg Glu Val Leu Pro Ser Thr Arg Leu 740 745 750

Gly Thr Leu Ser Pro Ala Phe Ser Thr Arg Val Leu Pro Ala Gln Ala 755 760 765

Thr Glu Tyr Ala Phe Ala Phe Ile Gln Val Pro Gln Asp Asp Ala 770 780

Arg Thr Asp Ala Val Asp Ser Val Val Arg Asp Ile Gln Asn Thr Gln 785 790 795 800

Cys Leu Leu Asn Val Glu His Leu Ser Ala Gly Cys Pro His Val Thr 805 810 815

Leu Gln Phe Ala Asp Ser Lys Gly Asp Val Gly Leu Gly Leu Val Lys 820 825 830

Glu Gly Leu Val Met Val Glu Val Arg Lys Glu Lys Gln Phe Gln Lys 835 840 845

Val Ile Thr Glu Tyr Leu Asn Ala Gln Glu Ser Ala Lys Ser Ala Arg 850 855 860

Leu Asn Leu Trp Arg Tyr Gly Asp Phe Arg Ala Asp Asp Ala Asp Glu 865 870 875 880

Phe Gly Tyr Ser Arg 885

<210> 45

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic primer

<400> 45

agatattgca cgggagaata tacaaa

```
<210> 46
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 46
tcaattcctg aaattaaagt tcggata
                                                                     27
<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 47
tctgcagagt tggaagcact cta
                                                                    23
<210> 48
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 48
gccgaggctt ttctaccaga a
                                                                    21
<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     primer
<400> 49
catggcttga tcagcaagga
                                                                    20
```

```
<210> 50
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 50
tggaagtgtg ccctgaagaa g
                                                                    21
<210> 51
<211> 23
<212> DNA
<213> Homo sapiens
<400> 51
caaggagetg actteggaae taa
                                                                    23
<210> 52
<211> 22
<212> DNA
<213> Homo sapiens
<400> 52
agggaagacg atgtggtttt ca
                                                                    22
<210> 53
<211> 22
<212> DNA
<213> Homo sapiens
<400> 53
gggacatgtg gagagcctac tc
                                                                    22
<210> 54
<211> 21
<212> DNA
<213> Homo sapiens
<400> 54
catcatagtt cccccgagca t
                                                                    21
<210> 55
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> aagcag	55 gcacc agcaagtgaa g		2	:1
<210><211><212><212><213>	21			
<220>	Description of Artificial primer	Sequence:	Synthetic	
<400> tcatgg	56 geetg tgteagteaa a		2	:1
<210><211><212><213>	22			
	Description of Artificial primer	Sequence:	Synthetic	
<400> acatgo	57 cage cactgtgata ga		2	2
<210><211><211><212><213>	21			
<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> ccctgc	58 ette acaatgatet e		2	1
<210><211><212><212><213>	23			

<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> ggaatt	59 ccacc tcaagaacat cca			23
<210><211><211><212><213>	23			
<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> agtgtg	60 ggcta tgacttcggt ttg			23
<210><211><212><213>	22			
<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> cagcca	61 acaag cagtccagat ta			22
<210><211><212><213>	24			
<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> cctgac	62 statc aatcacatcg gaat			24
<210><211><211><212>	21			

```
<220>
<223> Description of Artificial Sequence: Synthetic
<400> 63
ccaggtgctc cacatgacag t
                                                                    21
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 64
aaacaaccaa caacaaggag aatg
                                                                    24
<210> 65
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     primer
<400> 65
cgtctccaca catcagcaca a
                                                                    21
<210> 66
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     primer
<400> 66
tcttggcagc aggatagtcc tt
                                                                    22
<210> 67
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     primer
```

```
<400> 67
gcagaccagc atgacagatt tc
                                                                    22
<210> 68
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 68
gcggattagg gcttcctctt
                                                                    20
<210> 69
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 69
ggcaccagag gcagtaacca t
                                                                    21
<210> 70
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 70
agcctctctg gttctttcaa tcg
                                                                    23
<210> 71
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     primer
```

```
<400> 71
tggttcacat cccgcggct
                                                                     19
<210> 72
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 72
tggctcctca gtagcatcag
                                                                    20
<210> 73
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 73
tgaagttcaa tgcactggaa ctg
                                                                    23
<210> 74
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 74
caggacgatc tccacagcaa
                                                                    20
<210> 75
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 75
tggagtccac gagatcattt aca
                                                                   23
```

```
<210> 76
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 76
agccttggcc ctcggatat
                                                                    19
<210> 77
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 77
cactgagttc gccaagagca t
                                                                    21
<210> 78
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 78
cacgccatac ttgagaaggg taa
                                                                    23
<210> 79
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 79
gctagtgatc aacagtggca atg
                                                                    23
```

```
<210> 80
 <211> 18
 <212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 80
gctggcctct ccgttgag
                                                                    18
<210> 81
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 81
tgttcggtgt ccagttccaa ta
                                                                    22
<210> 82
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 82
tgccagtggt agagatggtt ga
                                                                    22
<210> 83
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 83
acaactccag gaaggaaacc aa
                                                                    22
<210> 84
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial primer	Sequence:	Synthetic	
<400> cgagga	84 actcc tgcgagatg		;	19
<210><211><212>	23 DNA			
<220>	Artificial Sequence Description of Artificial primer	Sequence:	Synthetic	
<400> tgaaga	85 aggag tggaggagac ttg		2	23
<210><211><212>	24 DNA			
<220>	Artificial Sequence Description of Artificial primer	Sequence:	Synthetic	
<400> gaatat	86 Egtgg ttetggetea tgaa		2	24
<210><211><211><212><213>	22			
	Description of Artificial primer	Sequence:	Synthetic	
<400> gagaag	87 ggagc gatctgctag ct		2	22
<210><211><211><212><213>	23			

88/88

<220>

<223> Description of Artificial Sequence: Synthetic primer

<400> 88

cacgtagaag tgcaggtcat cag

23