Лекция 11

Сходимость случайных величин

Рассмотрим 3 вида сходимости:

• Сходимость «почти наверное»

Def. Случайная величина ξ имеет свойство Cond «почти наверное», если вероятность $p(\xi$ имеет свойство Cond) = 1

Nota. То есть $p(\xi$ не имеет свойство Cond) = 0 $p(\omega \in \Omega \mid \xi(\omega)$ не имеет св-во Cond)

Def. Последовательность случайных величин $\{\xi_n\}$ сходится «почти наверное» к случайной величине ξ при $n \to \infty$ $(\xi_n \xrightarrow{\text{п. н.}} \xi)$, если $p(\omega \in \Omega \mid \xi_n(\omega) \xrightarrow{n \to \infty} \xi(\omega)) = 1$

• Сходимость по вероятности

Def. Последовательность случайных величин $\{\xi_n\}$ сходится по вероятности к случайной величине ξ при $n \to \infty$ $(\xi_n \stackrel{p}{\longrightarrow} \xi)$, если $\forall \varepsilon > 0$ $p(|\xi_n - \xi| < \varepsilon) \underset{n \to \infty}{\longrightarrow} 1$

Nota. Не надо думать, что из сходимости по вероятности следует сходимости математического ожидания $\xi_n \stackrel{p}{\longrightarrow} \xi \not\Longrightarrow E\xi_n \longrightarrow E\xi$

Th. Пусть
$$|\xi_n| \le C = \text{const} \quad \forall n$$
 Тогда $\xi_n \xrightarrow{p} \xi \Longrightarrow E\xi_n \longrightarrow E\xi$

• Слабая сходимость

Def. Последовательность случайных величин ξ_n слабо сходится к случайной величине ξ при $n \to \infty$ ($\xi_n \rightrightarrows \xi$), если $F_{\xi_n}(x) \longrightarrow F_{\xi}(x) \forall x$, где $F_{\xi}(x)$ - непрерывна

Связь между видами сходимости

Th.
$$\xi_n \xrightarrow{\text{II. H.}} \xi \Longrightarrow \xi_n \xrightarrow{p} \xi \Longrightarrow \xi_n \Longrightarrow \xi$$

Th. Если
$$\xi_n C = \text{const}$$
, то $\xi_n \stackrel{p}{\longrightarrow} C$

Если
$$\xi_n \rightrightarrows C$$
, то по определению $F_{\xi_n}(x) \longrightarrow F_C(x) = \begin{cases} 0, & x \leq C \\ 1, & x > C \end{cases}$ $\forall x \neq C$

$$\forall \varepsilon > 0 \quad p(|\xi_n - C| < \varepsilon) = p(-\varepsilon < \xi_n - C < \varepsilon) = p(C - \varepsilon < \xi_n < C + \varepsilon) \ge p\left(C - \frac{\varepsilon}{2} < \xi_n < C + \varepsilon\right) = F_{\xi_n}(C + \varepsilon) - F_{\xi_n}\left(C - \frac{\varepsilon}{2}\right) = 1 - 0 = 1$$
 Так как $p(|\xi_n - C| < \varepsilon) \le 1$, то по теореме о 2 милиционерах $p(|\xi_n - C| < \varepsilon) \xrightarrow[n \to \infty]{} 1$ то есть по определению $\xi_n \xrightarrow{p} C$

Nota. В общем случае не только из слабой сходимости не следует сходимость по вероятности, но и бессмысленно говорить об этом, так как слабая сходимость - это сходимость не случайных величин, а их распределений

$$Ex. \ \exists \xi_n \Rightarrow \xi \in N(0,1), \$$
тогда $\eta = -\xi \in N(0,1), \$ но ясно, что $\xi_n \stackrel{p}{\longrightarrow} \eta = -\xi$ - неверно

Ключевые неравенства

В дальнейшем будем считать, что у случайных величин первый момент существует

I. Неравенство Маркова

Th.
$$p(|\xi| \ge \varepsilon) \le \frac{E|\xi|}{\varepsilon} \quad \forall \varepsilon > 0$$

$$I_{A}(\omega) = \begin{cases} 0, & \omega \notin A - A \text{ HeT} \\ 1, & \omega \in A - A \text{ ectb} \end{cases}$$

$$EI_{A} = p(A)$$

$$|\xi| \ge |\xi| \cdot I(|\xi| \ge \varepsilon) \ge \varepsilon I(|\xi| \ge \varepsilon)$$

$$E|\xi| \ge E(\varepsilon \cdot I(|\xi| \ge \varepsilon))$$

$$E|\xi| \ge \varepsilon \cdot E(\varepsilon I(|\xi| \ge \varepsilon)) = \varepsilon \cdot p(|\xi| \ge \varepsilon) \Longrightarrow p(|\xi| \ge \varepsilon) \le \frac{E|\xi|}{\varepsilon}$$

II. Неравенство Чебышева

Th.
$$P(|\xi - E\xi| \ge \varepsilon) \le \frac{D\xi}{\varepsilon^2}$$

$$p(|\xi - E\xi| \ge \varepsilon) = p((\xi - E\xi)^2 \ge \varepsilon^2) \le \frac{E(\xi - E\xi)^2}{\varepsilon^2} = \frac{D\xi}{\varepsilon}$$

III. Правило «трех сигм»

Th.
$$P(|\xi - E\xi| \ge 3\sigma) \le \frac{1}{9}$$

По неравенству Чебышева
$$P(|\xi-E\xi|\geq 3\sigma)\leq \frac{D\xi}{(3\sigma)^2}=\frac{D\xi}{9\sigma^2}=\frac{1}{9}$$

Среднее арифмитическое независимых одинаково распределенных случайных величин

Пусть $\xi_1, \xi_2, \dots, \xi_n$ - независимые одинаково распределенные случайные величины с конечным вторым моментом

Обозначим
$$a = E\xi_i, d = D\xi_i, \sigma = \sigma_{\xi_i}, \quad 1 \le i \le n$$

$$S_n = \xi_1 + \dots + \xi_n$$
 - их сумма

$$S_n = \xi_1 + \dots + \xi_n$$
 - их сумма $\frac{S_n}{n} = \frac{\xi_1 + \dots + \xi_n}{n}$ - среднее арифмитическое

$$E\left(\frac{S_n}{n}\right) = \frac{1}{n}(E\xi_1 + \dots + E\xi_n) = \frac{1}{n}na = a = E\xi_1$$
 - математическое ожидание не меняется

$$D\left(\frac{S_n}{n}\right) = \frac{1}{n^2}(D\xi_1 + \dots + D\xi_n) = \frac{1}{n^2}nd = \frac{d}{n} = \frac{D\xi_1}{n}$$
 - дисперсия уменьшилась в n раз

$$\sigma\left(\frac{S_n}{n}\right) = \frac{\sigma}{\sqrt{n}}$$
 - СКО уменьшилось в \sqrt{n} раз

Законы больших чисел

I. Закон больших чисел Чебышева

Th. Пусть $\xi_1, \dots, \xi_n, \dots$ - последовательность независимых одинаково распределенных с конечным вторым моментом, тогда $\xrightarrow{\xi_1 + \cdots + \xi_n} \xrightarrow{p} E\xi_1$

Обозначим
$$a = E\xi_i, d = D\xi_i, \sigma = \sigma_{\xi_i}, \quad 1 \le i \le n$$

$$S_n = \sum_{i=1}^n \xi_i$$

Тогда по неравенству Чебышева
$$p\left(\left|\frac{S_n}{n}-a\right| \ge \varepsilon\right) = p\left(\left|\frac{S_n}{n}-E\left(\frac{S_n}{n}\right)\right| \ge \varepsilon\right) \le \frac{D\left(\frac{S_n}{n}\right)}{\varepsilon^2} = \frac{d}{n\varepsilon^2} \xrightarrow[n \to \infty]{} 0 \Longrightarrow p\left(\left|\frac{S_n}{n}-a\right| < \varepsilon\right) \xrightarrow[n \to \infty]{} 1$$
, то есть $\frac{S_n}{n} \xrightarrow[n \to \infty]{} a$

Среднее арифмитическое большое числа независимых одинаковых случайных величин «стабилизируется» около математического ожидания, «при $n \to \infty$ случайность переходит в закономерность»

<u>Статистический смысл</u>: при большом объеме n статистических данных среднее арифмитическое данных дает достаточно точную оценку теоретического математического ожидания

Nota. При доказательстве получили полезную, хотя и грубую оценку: $p\left(\left|\frac{S_n}{n}-a\right|\geq \varepsilon\right)\leq \frac{D\xi_i}{n\varepsilon^2}$

II. Закон больших чисел Бернулли

Th. Пусть v_n - число успехов из n независимых испытаний, p=P(A) - вероятность успеха при одном испытании. Тогда $\frac{v_n}{n} \stackrel{p}{\longrightarrow} P(A)$

При этом
$$P\left(\left|\frac{v_n}{n} - p\right| \le \varepsilon\right) \le \frac{p(1-p)}{n\varepsilon^2}$$

$$v_n=\xi_1+\cdots+\xi_n$$
, где $\xi_i\in B_p$ - число успехов при i -ом испытании $E\xi_i=p; D\xi_i=pq$ $\frac{v_n}{n}\stackrel{p}{\longrightarrow} E\xi_1=p$ $p\left(\left|\frac{v_n}{n}-p\right|\geq \varepsilon\right)\leq \frac{D\xi_1}{n\varepsilon^2}=\frac{pq}{n\varepsilon^2}$

III. Закон больших чисел Хинчина

Th. $v_n = \xi_1 + \dots + \xi_n$ последовательность независимых одинаково распределенных случайных величин с конечным первым моментом, тогда $\underbrace{\xi_1 + \dots + \xi_n}_{n} \xrightarrow{p} E\xi_i$

IV. Усиленный закон больших чисел Холмогорова

В условиях теоремы Хинчина $\frac{\xi_1+\dots+\xi_n}{n} \xrightarrow{\text{п.н.}} E\xi_1$

V. Закон больших чисел Маркова

Th. Пусть имеется последовательность случайных величин $\xi_1, \dots, \xi_n, \dots$ с конечными вторыми моментами, таких что $D(S_n) = o(n^2)$. Тогда $\frac{S_n}{n} \stackrel{p}{\longrightarrow} E\left(\frac{S_n}{n}\right)$ или $\frac{\xi_1 + \dots + \xi_n}{n} \stackrel{p}{\longrightarrow} \frac{1}{n}(E\xi_1 + \dots + E\xi_n)$

По неравенству Чебышева
$$p\left(\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| \ge \varepsilon\right) \le \frac{D\left(\frac{S_n}{n}\right)}{\varepsilon^2} = \frac{D(S_n)}{n^2\varepsilon^2} = \frac{1}{\varepsilon^2} \frac{o(n^2)}{n^2} \longrightarrow 0 \Longrightarrow p\left(\left|\frac{S_n}{n} - E\left(\frac{S_n}{n}\right)\right| \le \varepsilon\right) \longrightarrow 1$$

Центральная предельная теорема

Th. Центральная предельная теорема (ЦПТ Ляпунова, ≈ 1901 год) Пусть $\xi_1, \ldots, \xi_n, \ldots$ - последовательность независимых одинаково распределенных случайных величин с конечной дисперсией $(D\xi_1 < \infty)$ и $S_n = \sum_{i=1}^n \xi_i$. Тогда имеет место слабая сходимость:

$$\frac{S_n - nE\xi_1}{\sqrt{nD\xi_1}} \rightrightarrows N(0,1)$$

Теорема показывает, что стандартизованная сумма слабо сходится к стандартному нормальному распределению

Nota. Можно представить в ином виде: $\exists a = E\xi_i, \sigma = \sigma_{\xi_i},$ тогда $E\left(\frac{S_n}{n}\right) = a, \sigma\left(\frac{S_n}{n}\right) = \frac{\sigma}{\sqrt{n}},$ а $\frac{S_n}{\sigma\sqrt{n}} \Rightarrow N(0,1)$

Nota. Другая, грубая, формулировка: $\frac{S_n}{n} \rightrightarrows N\left(a, \frac{\sigma^2}{n}\right)$