MCR - Compléments et Outils de Recherche Opérationnelle Cours 1 - Dualité en Programmation Linéaire

E. Soutil (eric.soutil@lecnam.net)

Ensiie

2021-2022

2021-2022

Plan du cours

- 🕕 Dualité en PL
 - Motivation : trouver un majorant de la valeur optimale
 - Généralisation
 - Théorèmes de la dualité
 - Définition du dual dans le cas général
 - De la base optimale du primal à celle du dual
 - Interprétation économique du dual
 - Écarts complémentaires
- 2 Analyse de sensibilité / Paramétrisation
- 3 PLNE
- Introduction aux métaheuristiques
- Dualité lagrangienne

Dualité en programmation linéaire

- La dualité une notion fondamentale en PL.
- Chaque PL de maximisation donne lieu à un PL de minimisation appelé son problème dual.
- Les deux problèmes sont liés : chaque solution admissible de l'un fournit une borne de la valeur optimale de l'autre et si les deux problèmes ont des solutions, leurs valeurs optimales coïncident.

• Notre **exemple** de base :

(P)
$$\begin{cases} \max z = 4x_1 + x_2 + 5x_3 + 3x_4 \\ x_1 - x_2 - x_3 + 3x_4 \le 1 & (L_1) \\ 5x_1 + x_2 + 3x_3 + 8x_4 \le 55 & (L_2) \\ -x_1 + 2x_2 + 3x_3 - 5x_4 \le 3 & (L_3) \\ x_i \ge 0, \ i = 1 \ \text{a} \ 4 \end{cases}$$

- On désire avoir une idée, la plus précise possible, de la valeur optimale de la valeur optimale z* de (P) (sans avoir à la calculer par la méthode du simplexe). On va chercher à encadrer la valeur de z*.
- Pour avoir un **minorant**, il est toujours possible de considérer n'importe quelle solution admissible, par exemple x=(3,0,2,0), de valeur $22:22 \le z^*$. Mais on ignore comment chercher de façon efficace un bon minorant.
- On cherche maintenant un majorant de z*, le meilleur possible (c'est-à-dire le plus petit possible).

 Essayons d'obtenir un majorant de z*, en nous servant des contraintes (et de la non-négativité des variables):

$$2^{\mathsf{ème}} \; \mathsf{contrainte} \times \frac{5}{3} : \underbrace{\frac{4x_1 + x_2 + 5x_3 + 3x_4}{z}}_{z} \leq \underbrace{\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \leq \frac{275}{3}}_{5/3 \times \left[2^{\mathsf{ème}} \; \mathsf{contrainte}\right]}$$

$$\Rightarrow z^* \leq \frac{275}{3} (\simeq 91, 6)$$

• On peut faire beaucoup mieux : $L_2 + L_3$ donne :

$$4x_1+3x_2+6x_3+3x_4 \le 58$$

• Donc : $z^* \le 58$

$$(P) \begin{cases} \text{max } z = 4x_1 + x_2 + 5x_3 + 3x_4 \\ x_1 - x_2 - x_3 + 3x_4 \leq 1 & (\times y_1) \\ 5x_1 + x_2 + 3x_3 + 8x_4 \leq 55 & (\times y_2) \\ -x_1 + 2x_2 + 3x_3 - 5x_4 \leq 3 & (\times y_3) \end{cases}$$

$$x_i \geq 0, \ i = 1 \text{ à } 4$$

- On peut généraliser cette stratégie : on multiplie chaque contrainte Li par un multiplicateur yi (appelé variable duale) et on somme toutes les contraintes :
 - ▶ Le premier cas présenté $(2^{\text{ème}} \text{ contrainte } \times \frac{5}{3})$ correspond à :

$$y_1 = 0, y_2 = \frac{5}{3}, y_3 = 0$$

▶ Le deuxième cas $(L_2 + L_3)$ correspond à :

$$y_1 = 0, y_2 = 1, y_3 = 1$$

$$(P) \begin{cases} \max z = 4x_1 + x_2 + 5x_3 + 3x_4 \\ x_1 - x_2 - x_3 + 3x_4 \le 1 & (\times y_1) \\ 5x_1 + x_2 + 3x_3 + 8x_4 \le 55 & (\times y_2) \\ -x_1 + 2x_2 + 3x_3 - 5x_4 \le 3 & (\times y_3) \\ x_i \ge 0, \ i = 1 \ \text{a} \ 4 \end{cases}$$

• L'inégalité qui en résulte, en sommant les 3 contraintes multipliées chacune par leur multiplicateur, est :

$$\frac{(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3}{+(3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3} (1)$$

• Chaque multiplicateur y_i doit être **positif ou nul** (sinon il y aurait un changement de sens de l'inégalité).

$$\frac{(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3}{+(3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3}$$
(1)

• On désire utiliser le membre de droite de (1) comme majorant de

$$z = 4x_1 + x_2 + 5x_3 + 3x_4$$

• Cela n'est valide que si, pour chaque variable x_i , son coefficient dans (1) est supérieur ou égal à son coefficient dans z. Nous voulons donc :

• Si $y_i \ge 0$ pour tout i et si les 4 contraintes ci-dessus sont vérifiées, alors toute solution réalisable de (P) vérifie l'inégalité :

$$z = 4x_1 + x_2 + 5x_3 + 3x_4 \le y_1 + 55y_2 + 3y_3$$

$$z = 4x_1 + x_2 + 5x_3 + 3x_4 \le y_1 + 55y_2 + 3y_3$$

• En particulier pour x^* (solution optimale de (P)) cette inégalité est vraie. On a donc :

$$z^* \le y_1 + 55y_2 + 3y_3$$

• Comme on désire un majorant le plus petit possible on est naturellement amené à choisir pour y la solution du programme linéaire (D) suivant, que l'on appelle **programme dual** de (P):

(D)
$$\begin{cases} \min w = y_1 + 55y_2 + 3y_3 \\ y_1 + 5y_2 - y_3 \ge 4 \\ -y_1 + y_2 + 2y_3 \ge 1 \\ -y_1 + 3y_2 + 3y_3 \ge 5 \\ 3y_1 + 8y_2 - 5y_3 \ge 3 \\ y_i \ge 0, \ i = 1 \ \text{a} \ 3 \end{cases}$$

Écriture du dual à partir du primal : exemple de base

• Problème primal :

Problème dual :

(D)
$$\begin{cases} \min w = y_1 + 55y_2 + 3y_3 \\ y_1 + 5y_2 - y_3 \ge 4 \\ -y_1 + y_2 + 2y_3 \ge 1 \\ -y_1 + 3y_2 + 3y_3 \ge 5 \\ 3y_1 + 8y_2 - 5y_3 \ge 3 \\ y_i \ge 0, \ i = 1 \text{ à } 3 \end{cases}$$

Généralisation

• Au problème (P), appelé **problème primal**, et défini par :

$$(P) \left\{ \begin{array}{l} \max z = \sum_{j=1}^{n} c_j x_j \\ \text{s.c.} \left| \begin{array}{l} \sum_{j=1}^{n} a_{ij} x_j \le b_i & (i=1 \text{ à } m) \\ x_j \ge 0 & (j=1 \text{ à } n) \end{array} \right. \right.$$

 \rightarrow problème primal

on associe son problème dual (D) :

$$(D) \begin{cases} \min w = \sum_{i=1}^{m} b_i y_i \\ \text{s.c.} & \sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad (j = 1 \text{ à } n) \\ y_i \ge 0 & (i = 1 \text{ à } m) \end{cases}$$

ightarrow problème dual

Généralisation

Ou bien, sous forme matricielle :

$$(P) \begin{cases} \max z = cx \\ \text{s.c.} & Ax \le b \\ x \ge 0 \end{cases} \qquad (D) \begin{cases} \min w = yb \\ \text{s.c.} & yA \ge c \\ y \ge 0 \end{cases}$$

• NB : $(yA)^t = A^t y^t$. La matrice des contraintes de (D) est la transposée de celle de (P).

Théorème de la dualité faible

$$(P) \begin{cases} \max z = cx \\ \text{s.c.} & Ax \le b \\ x \ge 0 \end{cases} \qquad (D) \begin{cases} \min w = yb \\ \text{s.c.} & yA \ge c \\ y \ge 0 \end{cases}$$

Théorème (Dualité faible)

Si (P) et (D) admettent des solutions réalisables, toute solution réalisable x de (P), $x=(x_1,\ldots,x_n)$, et toute solution réalisable y de (D), $y=y_1,\ldots,y_m)$, vérifient :

$$z = cx \le yb = w$$

Démonstration :

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$$

Théorème de la dualité faible

$$(P) \begin{cases} \max z = cx \\ \text{s.c.} & Ax \le b \\ x \ge 0 \end{cases} \qquad (D) \begin{cases} \min w = yb \\ \text{s.c.} & yA \ge c \\ y \ge 0 \end{cases}$$

Corollaire (1)

Si x^* et y^* sont deux solutions respectivement de (P) et (D) qui vérifient $z(x^*) = w(y^*)$, alors il est possible de conclure immédiatement que x^* est optimal pour (P) et y^* pour (D).

Théorème de la dualité faible

$$(P) \begin{cases} \max z = cx \\ \text{s.c.} & Ax \le b \\ x \ge 0 \end{cases} \qquad (D) \begin{cases} \min w = yb \\ \text{s.c.} & yA \ge c \\ y \ge 0 \end{cases}$$

Corollaire (2)

Si un des deux problèmes primal ou dual n'est pas borné, alors le domaine réalisable de l'autre problème est vide.

Démonstration

Supposons que le problème primal ne soit pas borné supérieurement. Ainsi, $cx \longrightarrow +\infty$. Or, si le problème dual admettait une solution réalisable, alors il existerait un $y \in \{y \in \mathbb{R}^m : yA \ge c, y \ge 0\}$ et d'après le théorème de la dualité faible, on aurait $cx \le yb \ \forall x$, autrement dit yb serait une borne supérieure de la fonction objectif du primal cx, d'où une contradiction.

2021-2022

Théorème de la dualité forte

$$(P) \left\{ \begin{array}{ll} \max z = cx \\ \text{s.c.} & Ax \le b \\ x \ge 0 \end{array} \right. (D) \left\{ \begin{array}{ll} \min w = yb \\ \text{s.c.} & yA \ge c \\ y \ge 0 \end{array} \right.$$

Théorème (Dualité forte)

Si le problème primal (P) a une solution optimale $x^* = (x_1^*, \dots, x_n^*)$ alors le problème dual (D) a une solution optimale $y^* = (y_1^*, \dots, y_m^*)$ telle que $z^* = \sum_{j=1}^n c_j x_j^* = \sum_{i=1}^m b_i y_i^* = w^*$.

Idée de la preuve :

- On considère la solution de base optimale de (P) et on construit une solution du dual en posant $y_i^* = -\Delta_i$ où Δ_i désigne le coût réduit de la $i^{\text{ème}}$ variable d'écart de (P) dans la base optimale de (P).
- On montre qu'alors y^* vérifie toutes les contraintes du dual et qu'il y a égalité entre les valeurs de x^* dans (P) et y^* dans (D).

Théorème de la dualité forte

Démonstration (1/2)

 Nous allons démontrer le théorème de la dualité forte en nous référant à la paire primal/dual dans laquel le problème primal est sous forme standard (contraintes d'égalité). Dans ce cas, les variables du dual ne sont pas astreintes à être positives ou nulles : on peut facilement s'en convaincre en reprenant les étapes de la section 1 (Motivation).

$$(P) \begin{cases} \max z = cx \\ \text{s.c.} & | Ax = b \\ x \ge 0 \end{cases} \qquad (D) \begin{cases} \min w = yb \\ \text{s.c.} & | yA - z = c \\ y \in \mathbb{R}^m, z \ge 0 \end{cases}$$

Théorème de la dualité forte

Démonstration (2/2)

- Soit \mathcal{B} une base optimale de (P), B la matrice de base associée et N la matrice hors-base. Soit \tilde{x} la solution de base associée. Cette solution est de valeur $c_B B^{-1} b$ et on a $\tilde{x}_B = B^{-1} b$ et $\tilde{x}_N = 0$.
- Le point (\tilde{y}, \tilde{z}) défini par :

$$\tilde{y} = c_B B^{-1}, \ \tilde{z}_B = 0, \ \tilde{z}_N = c_B B^{-1} N - c_N$$

vérifie $\tilde{y}A - \tilde{z} = c$

- On peut observer que les valeurs des \tilde{z}_N sont simplement les opposés des coûts réduits de (P) (≤ 0 dans une base optimale). Donc $\tilde{z} \geq 0$ et d'après le point précédent, (\tilde{y}, \tilde{z}) est une solution réalisable du dual.
- On a : $c\tilde{x} = c_B B^{-1} b = \tilde{y} b$. D'après le corollaire (1), \tilde{x} est optimal pour (P) et \tilde{y} est optimale pour (D) et les valeurs coïncident.

Résumé des différents cas possibles

		(P) admet une solution réalisable		(P) n'a pas	
		(P) admet une solution optimale	(P) n'a pas de solution optimale	de solution réalisable	
(D) admet	(D) admet une solution optimale	Théorème de la dualité z _{max} = w _{min}	impossible	impossible	
une solution réalisable	(D) n'a pas de solution optimale	imp ossi ble	impossible	$w o -\infty$	
(D) n'a pas de solution réalisable		imp ossi ble	$z \to +\infty$	p ossi ble	

Définition du dual dans le cas général

• Pour un PL quelconque, pas nécessairement sous la forme canonique ni standard, on applique les règles d'écriture suivantes, dont on peut se convaincre en ré-écrivant le PL considéré dans la forme canonique.

Problème de maximisation	Problème de minimisation	
Fonction objectif	Second membre	
A: matrice des contraintes	A ^t : matrice des contraintes	
$Variable\ x_i \geq 0$	Contrainte i de type \geq	
Variable $x_i \leq 0$	Contrainte i de type \leq	
Variable x_i non contrainte en signe $(\in \mathbb{R})$	Contrainte i de type $=$	
Contrainte j de type \leq	Variable $y_j \geq 0$	
Contrainte j de type $=$	Variable y_j non contrainte en signe $(\in \mathbb{R})$	
Contrainte j de type \geq	Variable $y_j \leq 0$	

- Attention, le tableau n'est pas symétrique, il faut considérer que la colonne de gauche est le problème de maximisation et celle de droite le problème de minimisation dans un couple primal/dual.
- On observe en particulier que le dual du dual est le primal.

ES (MCR-CORO)

Définition du dual dans le cas général

Un exemple

PRIMAL

$$\begin{cases} & \min & 2x_1 - 3x_2 \\ & s.c. & \begin{vmatrix} x_1 - x_2 & \leq & 1 \\ 2x_1 + 3x_2 & \geq & 4 \\ x_1 + x_2 & = & 3 \end{vmatrix} & \begin{cases} & \max & y_1 + 4y_2 + 3y_3 \\ & y_1 + 2y_2 + y_3 & \leq & 2 \\ & -y_1 + 3y_2 + y_3 & = & -3 \end{vmatrix} \\ & s.c. & \begin{vmatrix} y_1 + 2y_2 + y_3 & \leq & 2 \\ -y_1 + 3y_2 + y_3 & = & -3 \end{vmatrix} \\ & y_1 \leq 0, y_2 \geq 0, y_3 \in \mathbb{R} \end{cases}$$

Problème de maximisation	Problème de minimisation	
Fonction objectif	Second membre	
A : matrice des contraintes	A ^t : matrice des contraintes	
$Variable\; x_i \geq 0$	Contrainte i de type \geq	
Variable $x_i \leq 0$	Contrainte i de type \leq	
Variable x_i non contrainte en signe $(\in \mathbb{R})$	Contrainte i de type $=$	
Contrainte j de type \leq	$Variable\ y_j \geq 0$	
Contrainte j de type $=$	Variable y_j non contrainte en signe $(\in \mathbb{R})$	
Contrainte j de type \geq	$Variable\; y_j \leq 0$	

Relations entre les variables du primal et du dual

- Comme on l'a déjà évoqué dans la preuve du théorème de la dualité forte, il est possible de déduire la solution optimale du dual à partir de la solution optimale du primal. Pour cela, on commence par établir des règles de correspondance entre les variables du primal et celles du dual.
- La résolution des deux programmes (P) et (D) par la méthode du simplexe, nécessite l'introduction de variables d'écarts, au nombre de m pour (P) (variables $x_{\overline{i}}$) et n pour (D) (variables $y_{\overline{i}}$).
- À une variable principale de l'un est associée la variable d'écart correspondante de l'autre :

et

x_ī correspond à y_i

• Notation: à un indice k on associe l'indice \overline{k} , avec

$$\left\{ \begin{array}{ll} \overline{k}=\overline{i} & \mathrm{si} \quad k=i\\ \overline{k}=i & \mathrm{si} \quad k=\overline{i} \end{array} \right.$$

De la base primal-optimale à la base dual-optimale (1/2)

- Il est possible d'écrire le problème dual (en version maximisation) dans sa base optimale, à partir de l'écriture du primal (également en version maximisation) dans sa base optimale.
- Les variables hors-base de (P) déterminent les variables en base de (D) :

 x_k est hors-base dans la base optimale de (P) \updownarrow $y_{\overline{k}}$ est en base dans la base optimale de (D)

 Puis, on applique les règles suivantes pour écrire le dual dans sa base optimale.

De la base primal-optimale à la base dual-optimale (2/2)

De la base primal-optimale à la base dual-optimale Un exemple

• Exemple. Considérons la paire primal-dual suivante :

$$(P) \begin{cases} \max z = 4x_1 + 12x_2 + 3x_3 \\ x_1 & \leq 1000 \\ x_2 & \leq 500 \\ x_3 \leq 1500 \\ 3x_1 + 6x_2 + 2x_3 \leq 6750 \\ x_1, x_2, x_3 \geq 0 \end{cases} \qquad (D) \begin{cases} \min w = 1000y_1 + 500y_2 + 1500y_3 + 6750y_4 \\ y_1 & +3y_4 \geq 4 \\ y_2 & +6y_4 \geq 12 \\ y_3 & +2y_4 \geq 3 \\ y_1, y_2, y_3, y_4 \geq 0 \end{cases}$$

• La version maximisation de (D) est :

$$(D') \begin{cases} \max w' = -1000y_1 - 500y_2 - 1500y_3 - 6750y_4 \\ & y_1 \\ \text{s.c.} & y_2 \\ & y_3 \\ & +6y_4 \geq 12 \\ & y_3 \\ & +2y_4 \geq 3 \end{cases}$$

De la base primal-optimale à la base dual-optimale (4/4)Un exemple

• (P) écrit dans sa base optimale devient :

$$(P) \begin{cases} \max & z = 11500 -4x_{\overline{2}} -\frac{1}{3}x_{\overline{3}} -\frac{4}{3}x_{\overline{4}} \\ x_1 = 250 +2x_{\overline{2}} +\frac{2}{3}x_{\overline{3}} -\frac{1}{3}x_{\overline{4}} \\ x_2 = 500 -x_{\overline{2}} \\ x_{\overline{1}} = 750 -2x_{\overline{2}} -\frac{2}{3}x_{\overline{3}} +\frac{1}{3}x_{\overline{4}} \\ x_3 = 1500 -x_{\overline{3}} \\ x_1, x_2, x_3, x_{\overline{1}}, x_{\overline{2}}, x_{\overline{3}}, x_{\overline{4}} \ge 0 \end{cases}$$

ullet On en déduit l'écriture de (D') dans sa base optimale :

$$(D') \begin{cases} \max & w' = -11500 -750y_1 -250y_{\overline{1}} -500y_{\overline{2}} -1500y_{\overline{3}} \\ & y_2 = 4 +2y_1 -2y_{\overline{1}} +y_{\overline{2}} \\ & y_3 = \frac{1}{3} +\frac{2}{3}y_1 -\frac{2}{3}y_{\overline{1}} \\ & y_4 = \frac{4}{3} -\frac{1}{3}y_1 +\frac{1}{3}y_{\overline{1}} \\ & y_1, y_2, y_3, y_4, y_{\overline{1}}, y_{\overline{2}}, y_{\overline{3}} \ge 0 \end{cases}$$

Un problème de transport

- ▶ Une entreprise de construction d'automobiles possède trois usines situées à Paris, Strasbourg et Lyon.
- ▶ Le métal nécessaire à la construction est disponible aux ports du Havre et de Marseille, en quantité 550 pour Marseille et 350 pour Le Havre.
- Paris a besoin de 400 tonnes de métal chaque semaine, Strasbourg 300 et Lyon 200.
- ► Les coûts de transport varient proportionnellement aux quantités transportées et les coûts unitaires sont :

	Paris	Strasbourg	Lyon
Marseille	5	6	3
Le Havre	3	5	4

	Paris	Strasbourg	Lyon
Marseille	5	6	3
Le Havre	3	5	4

Le PL associé est :

$$(P_2) \begin{cases} \min z = 5x_{11} + 6x_{12} + 3x_{13} + 3x_{21} + 5x_{22} + 4x_{23} \\ x_{11} + x_{12} + x_{13} & \leq & 550 \\ x_{21} + x_{22} + x_{23} & \leq & 350 \\ x_{11} + x_{21} & \geq & 400 \\ x_{12} + x_{22} & \geq & 300 \\ x_{13} + x_{23} & \geq & 200 \\ x_{ij} \geq 0, i = 1, 2, j = 1, 2, 3 \end{cases}$$

Son dual est:

$$(D_2) \begin{cases} \min w = 550y_1 + 350y_2 - 400y_3 - 300y_4 - 200y_5 \\ y_1 - y_3 & \geq -5 \\ y_1 - y_4 & \geq -6 \\ y_1 - y_5 & \geq -3 \\ y_2 - y_3 & \geq -3 \\ y_2 - y_4 & \geq -5 \\ y_2 - y_5 & \geq -4 \\ y_i \geq 0, \forall i \in \{1, \dots, 5\} \end{cases}$$

Un problème de transport

	Paris	Strasbourg	Lyon
Marseille	5	6	3
Le Havre	3	5	4

- Supposons maintenant qu'un transporteur propose à la direction de l'entreprise de construction automobile de lui acheter le métal aux prix π_1 et π_2 aux ports de Marseille et du Havre, de se charger du transport et de lui revendre le métal aux prix η_1 , η_2 et η_3 aux usines de Paris, Strasbourg et Lyon.
- Pour convaincre la direction que l'affaire ne lui sera pas défavorable, le transporteur garantit que ses prix seront compétitifs avec les coûts actuels de transport, c-à-d :

$$\begin{pmatrix}
\eta_{1} - \pi_{1} & \leq 5 \\
\eta_{2} - \pi_{1} & \leq 6 \\
\eta_{3} - \pi_{1} & \leq 3 \\
\eta_{1} - \pi_{2} & \leq 3 \\
\eta_{2} - \pi_{2} & \leq 5 \\
\eta_{3} - \pi_{2} & \leq 4 \\
\eta_{i}, \pi_{j} \geq 0
\end{pmatrix}$$

Un problème de transport

- La direction de l'entreprise convient que dans ces conditions, il vaut mieux laisser le transporteur se charger du travail.
- Le transporteur quant à lui doit trouver des prix qui satisfont l'ensemble des contraintes (1).
- Comme il désire de plus rendre son profit maximum il cherchera à maximiser la somme que lui versera l'entreprise, à savoir :

$$400\eta_1 + 300\eta_2 + 200\eta_3 - 550\pi_1 - 350\pi_2$$

- En posant $y_1 = \pi_1$, $y_2 = \pi_2$, $y_3 = \eta_1$, $y_4 = \eta_2$ et $y_5 = \eta_3$, le programme linéaire du transporteur est (D_2) , le dual du PL de l'entreprise de construction d'automobiles.
- Les variables duales ont dans la plupart des cas une interprétation physique ou économique suivant la nature des problèmes que le PL modélise.

Écarts complémentaires

- Soit (P) un programme linéaire et (D) son dual.
- On considère deux solutions potentielles de (P) et (D) :

 - $\tilde{\mathbf{x}} = (\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_n, \tilde{\mathbf{x}}_{\overline{1}}, \dots, \tilde{\mathbf{x}}_{\overline{m}}) \in \mathbb{R}^{n+m}$ $\tilde{\mathbf{y}} = (\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_m, \tilde{\mathbf{y}}_{\overline{1}}, \dots, \tilde{\mathbf{y}}_{\overline{n}}) \in \mathbb{R}^{m+n}$

Théorème (Écarts complémentaires)

 $\tilde{x} \in \mathbb{R}^{n+m}$ est solution optimale de (P) et $\tilde{y} \in \mathbb{R}^{m+n}$ est solution optimale de (D) si et seulement si :

$$\left\{ \begin{array}{l} \tilde{x} \text{ est admissible pour (P) et } \tilde{y} \text{ pour (D)} \\ \text{et (I)} \left\{ \begin{array}{l} \forall i = 1, \ldots, n, \ \tilde{x}_i \tilde{y}_{\bar{i}} = 0 \\ \forall i = 1, \ldots, m, \ \tilde{y}_i \tilde{x}_{\bar{i}} = 0 \end{array} \right. \end{array} \right.$$

• Les relations (I) sont appelées relations d'écarts complémentaires ou relations d'exclusion.

Écarts complémentaires

• Les relations d'écarts complémentaires s'écrivent, de façon équivalente :

$$(I) \left\{ \begin{array}{l} \forall j=1,\ldots,n, \ \tilde{x}_{j} \left(\sum_{i=1}^{m} a_{ij} \tilde{y}_{i} - c_{j} \right) = 0 \\ \forall i=1,\ldots,m, \ \tilde{y}_{i} \left(b_{i} - \sum_{j=1}^{n} a_{ij} \tilde{x}_{j} \right) = 0 \end{array} \right.$$

- En d'autres termes, \tilde{x} et \tilde{y} sont deux solutions optimales respectivement pour (P) et (D) si et seulement si :
 - ▶ Si une contrainte de l'un des programmes linéaires est lâche (non saturée), la variable correspondante du dual est nulle
 - Si une variable de l'un des programmes linéaires est strictement positive, la contrainte correspondante du dual est saturée
- Ce théorème est utilisé
 - pour confirmer ou infirmer l'optimalité d'une solution proposée pour l'un des problèmes primal ou dual.
 - pour déduire de la solution optimale de l'un des problèmes (primal ou dual) la solution de l'autre.

