Name	Distribution	E[X]	Var[X]	z-transform	
Bernoulli $(p), p \in [0, 1]$	$p_X(k) = \begin{cases} p & k = 1\\ 1 - p & k = 0 \end{cases}$	p	p(1 - p)	1-p+zp	
Binomial(n, p)	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(zp + (1-p))^n$	
Geometric(p)	$p_X(k) = (1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{zp}{1-z(1-p)}$	
$Poisson(\lambda)$	$p_X(k) = \frac{e^{-\lambda}\lambda^k}{k!}$	λ	λ	$e^{(z-1)\lambda}$	

Name	p.d.f. (f_X)	c.d.f. (F_X)	E[X]	Var[X]
Uniform $(a, b), a < b$	$\begin{array}{ll} \frac{1}{b-a} & a \le x \le b, \\ 0 & otherwise \end{array}$	$ 0 \qquad x \le a, $ $ \frac{x-a}{b-a} a \le x \le b, $ $ 1 \qquad x \ge b $	$\frac{a+b}{2}$	$\begin{array}{ c c } \hline (b-a)^2 \\ \hline 12 \\ \hline \end{array}$
Exponential(λ), $0 < \lambda$	$ \lambda e^{-\lambda x} 0 \le x, \\ 0 x < 0 $	$ \begin{array}{ccc} 1 - e^{-\lambda x} & 0 \le x, \\ 0 & x < 0 \end{array} $	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Pareto(α), $0 < \alpha < 2$	$\begin{array}{cc} \alpha x^{-\alpha - 1} & 1 \le x, \\ 0 & x < 1 \end{array}$	$ \begin{array}{ccc} 1 - x^{-\alpha} & 1 \le x, \\ 0 & x < 1 \end{array} $	$\begin{array}{cc} \infty & \alpha \le 1, \\ \frac{\alpha}{\alpha - 1} & 1 < \alpha \end{array}$	∞
$Normal(\mu, \sigma^2),$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	GROSS	μ	σ^2

3 axioms (E, F mutually exclusive): 1) $P(E) \ge 0$, 2) $P(E \cup F) = P(E) + P(F)$, 3) $P(\Omega) = 1$

Bayes' Law (discrete):
$$P(F|E) = \frac{P(F \cap E)}{P(E)} = \frac{P(E|F) \cdot P(F)}{P(E)}$$
 (cont.): $f_X(x|Y=y) = \frac{P(Y=y|X=x)f_X(x)}{P(Y=y)}$

Two events are independent if P(E|F) = P(E) or $P(E \cap F) = P(E)P(F)$, they are conditionally independent if $P(E \cap F|G) = P(E|G)P(F|G)$

If X and Y are independent, then E[XY] = E[X]E[Y].

Memorilessness: P(X > s + t | X > s) = P(X > t).

X and Y are independent if $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$.

Z-transform of X is: $\hat{X}(z) = E[z^X] = \sum_{i=0}^{\infty} p_X(i)z^i$. $\hat{X}'(1) = E[X], \hat{X}''(1) = E[X(X-1)]$.

If X, Y are independent, and Z = X + Y, then $\widehat{Z}(z) = \widehat{X}(z) \cdot \widehat{Y}(z)$.

Also $\widehat{X}(z) = p \cdot \widehat{A}(z) + (1-p) \cdot \widehat{B}(z)$ if X = A with probability p and X = B with probability 1-p. $\operatorname{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

If X, Y independent, then Var(X + Y) = Var(X) + Var(Y).

The k^{th} moment is $E[X^k] = \sum_i p_X(i)i^k$, and the k^{th} central moment is defined as $E[(X - E[X])^k]$.

If $\{X\}_n$ are independent and identically distributed random variables, where N is the random variable indicating how many there are and $S = \sum_{i=1}^N X_i$, then E[S] = E[N]E[X], $E[S^2] = E[N]Var(X) + E[N^2](E[X])^2$ and $Var(S) = E[N]Var(X) + Var(N)(E[X])^2$

Yao's: Let \mathcal{A} be a class of deterministic algorithms, and let \mathcal{I} be a class of all inputs. Then, $\min_{A \in \mathcal{A}} E[T_A(I_\tau)] \leq \max_{I \in \mathcal{I}} E[T_{A_\sigma}(I),]$ where τ and σ are distributions on \mathcal{I} and \mathcal{A} .

Chebyshev: If X has finite expected value μ and variance $\sigma^2 \neq 0$, then, $\forall k > 0$, $P(|X - \mu| \geq \frac{1}{k^2})$.

Markov: If a > 0, the $P(|X| \ge a) \le \frac{E[|X|]}{a}$.

If $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = aX + b, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.