

CP8319/CPS824 Lecture 12

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Review of Previous Lectures

2. Value Function Approximation Policy Evaluation

Policy Iteration: Known Model

```
Set i=0
Initialize \pi_0(s) randomly for all states s
While i=0 or \parallel \pi_i - \pi_{i-1} \parallel_1 > 0 (L1-norm, measures if the policy changed for any state):
```

- $v^{\pi_i} \leftarrow \text{MDP}$ value function policy evaluation of π_i
- $\pi_{i+1} \leftarrow \text{Policy improvement on } v^{\pi_i}$
- i = i + 1

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Model Free Policy Iteration

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if

the policy changed for any state):

- $Q^{\pi_i} \leftarrow \text{MDP}$ value function $\underline{\text{MC}}$ policy Q evaluation of π_i
- $\pi_{i+1} \leftarrow \epsilon$ -greedy Policy improvement on Q^{π_i}
- i = i + 1

greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} 1, & \text{if } a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi_i}(s, a') \\ 0, & \text{otherwise} \end{cases}$$

ϵ -greedy(Q)

$$\pi_{i+1}(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon \,, & \text{if } a = \argmax_{a' \in \mathcal{A}} Q^{\pi_i}(s, a') \\ \epsilon/m \,, & \text{otherwise} \end{cases}$$

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty} N_i(s,a)\to\infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i\to\infty}\pi(a|s)\to rg\max_a Q(s,a)$$
 with probability 1

• A simple GLIE strategy is ϵ -greedy where ϵ is reduced to 0 with the following rate: $\epsilon_i = 1/i$

Monte Carlo Online Control/On Policy Improvement

```
1: Initialize Q(s,a)=0, N(s,a)=0 \forall (s,a), Set \epsilon=1, k=1
2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,T}) given \pi_k
       G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_{k,T_i}
 4:
       for t = 1, \ldots, T do
 5:
          if First visit to (s, a) in episode k then
 6:
             N(s, a) = N(s, a) + 1
             Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s, a)}(G_{k, t} - Q(s_t, a_t))
 8:
          end if
 9:
       end for
10:
     k = k + 1, \epsilon = 1/k
11:
       \pi_k = \epsilon-greedy(Q) // Policy improvement
12:
13: end loop
```

SARSA For On-Policy Control

- 1: Set initial ϵ -greedy policy π , t=0, initial state $s_t=s_0$
- 2: Take $a_t \sim \pi(s_t)$ // Sample action from policy
- 3: Observe (r_t, s_{t+1})
- 4: **loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg\max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t = t + 1
- 10: end loop

Every time-step:

Policy evaluation Sarsa, $Q pprox q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Q-Learning Algorithm

```
1: Initialize Q(s,a), \forall s \in S, a \in A \ t = 0, initial state s_t = s_0

2: Set \pi_b to be \epsilon-greedy w.r.t. Q

3: loop

4: Take a_t \sim \pi_b(s_t) // Sample action from policy

5: Observe (r_t, s_{t+1})

6: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))

7: \pi(s_t) = \arg \max_a Q(s_t, a) w.prob 1 - \epsilon, else random

8: t = t + 1

9: end loop
```

Relationship Between DP (Known) and TD (Unknown)

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_\pi(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation Equation for $q_{\pi}(s, a)$	$q_{\pi}(s,a) \leftrightarrow s,a$ r s' $q_{\pi}(s',a') \leftrightarrow a'$	Sarsa
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Today's Agenda

1. Review of Previous Lectures

2. Value Function Approximation Policy Evaluation

Large-Scale Reinforcement Learning

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Helicopter: continuous state space
- How can we scale up the model-free methods for prediction and control from the last two lectures?

Value Function Approximation

- So far we have represented value function by a lookup table
 - Every state s has an entry v(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with *function approximation*

$$v^{\pi}(s) \approx \hat{v}(s; \mathbf{w})$$

or $Q^{\pi} \approx \hat{Q}(s, a; \mathbf{w})$

- Generalize from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

Function Approximators

- Many possible function approximators including:
 - Linear combinations of features
 - Neural networks
 - Decision trees
 - Nearest neighbors
 - Fourier/ wavelet bases
- In this class we will focus on function approximators that are differentiable (Why?)
- Two very popular classes of differentiable function approximators
 - Linear feature representations (2 lectures)
 - Neural networks (Next 2 lectures)
- We require a training method that is suitable for non-stationary, non-iid data

Gradient Descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- Define the *gradient* of $J(\mathbf{w})$ to be:

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{pmatrix}$$

• To find a *local minimum* of $J(\mathbf{w})$:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

Value Function Approximation with an Oracle

- First assume we could query any state s and an oracle would return the true value for $v^{\pi}(s)$
- Therefore, we could have a set $\{(s_1, v^{\pi}(s_1)), (s_2, v^{\pi}(s_2)), ...\}$ of data
- Goal: Find the parameter vector \mathbf{w} that minimizes the loss between a true value function $v^{\pi}(s)$ and its approximation $\hat{v}(s;w)$ as represented with a particular function/model class parameterized by \mathbf{w} .
- What does this remind you off?

How do we learn?

Batch Gradient Descent:

- Expensive to compute gradient for large dataset
- Computational and space complexity high

$$heta = heta - \eta \cdot
abla_{ heta} J(heta)$$

Stochastic Gradient Descent:

Lots of random motion (slow to converge)

$$igg| heta = heta - \eta \cdot
abla_ heta J(heta; x^{(i)}; y^{(i)})$$

Mini-batch Gradient Descent (Mini-batch of size n):

Hybrid between the two, still stochastic but less random

$$igg| heta = heta - \eta \cdot
abla_{ heta} J(heta; x^{(i:i+n)}; y^{(i:i+n)})$$

Value Function Approx. By Stochastic Gradient Descent

- Goal: Find the parameter vector \mathbf{w} that minimizes the loss between a true value function $v^{\pi}(s)$ and its approximation $\hat{v}(s;w)$ as represented with a particular function/model class parameterized by \mathbf{w} .
- Generally, use mean squared error and define the loss as

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right)^{2} \right]$$

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \mathbb{E}_{\pi} \left[\left(v^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w}) \right]$$

• Stochastic gradient descent (SGD) samples the gradient:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (v^{\pi}(s) - \hat{v}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w})$$

Expected update is equal to full gradient update

Model Free VFA Policy Evaluation

- Don't actually have access to an oracle to tell true $v^{\pi}(s)$ for any state s
- Now consider how to do model-free value function approximation for prediction / evaluation / policy evaluation without a model

What we did before

- Recall model-free policy evaluation from prior lectures
 - Following a fixed policy π for sampling
 - Goal is to estimate v^{π} and/or Q^{π}
- lacktriangle We did this by maintaining a look-up table to store estimates of v^π and/or Q^π
 - Update the look-up table estimate after each episode (Monte Carlo)
 - After each step (temporal difference)
- Now: in value function approximation, change the estimate update step to include fitting the function approximator

Feature Vectors

• The state is represented by a *feature vector*

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

- For example:
 - Distance of a robot from "landmarks"
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation With Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features:

$$\widehat{v}(s; \mathbf{w}) = \sum_{j=0}^{n} x_j(s) w_j = \mathbf{x}(s)^T \mathbf{w}$$

Objective function is:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right)^{2} \right]$$

Update rule is:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (v^{\pi}(s) - \hat{v}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w})$$
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (v^{\pi}(s) - \hat{v}(s; \mathbf{w})) \mathbf{x}(s)$$

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Using table lookup features

$$\mathbf{x}^{table}(S) = egin{pmatrix} \mathbf{1}(S = s_1) \ dots \ \mathbf{1}(S = s_n) \end{pmatrix}$$

■ Parameter vector w gives value of each individual state

$$\hat{v}(S, \mathbf{w}) = egin{pmatrix} \mathbf{1}(S = s_1) \ dots \ \mathbf{1}(S = s_n) \end{pmatrix} \cdot egin{pmatrix} \mathbf{w}_1 \ dots \ \mathbf{w}_n \end{pmatrix}$$

Monte Carlo Value Function Approximation

- Return G_t is an unbiased but noisy sample of the true expected return $v^{\pi}(s_t)$
- Therefore, can reduce MC VFA to doing supervised learning on a set of (state, return) pairs: $\langle s_1, G_1 \rangle$, $\langle s_2, G_2 \rangle$, ..., $\langle s_T, G_T \rangle$
 - Substitute G_t for the true $v^{\pi}(s_t)$ when fit function approximator
- Concretely when using linear VFA for policy evaluation

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (G_t - \hat{v}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s; \mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (G_t - \hat{v}(s; \mathbf{w})) \mathbf{x}(s)$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$$

• Note: G_t may be a very noisy estimate of true return

MC Linear VFA for Policy Evaluation

```
1: Initialize \mathbf{w} = \mathbf{0}, k = 1
 2: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,L_k}) given \pi
 3:
      for t = 1, \ldots, L_k do
 4:
          if First visit to (s) in episode k then
 5:
             G_t(s) = \sum_{j=t}^{L_k} r_{k,j}
 6:
            Update weights:
         end if
 8:
      end for
 9:
10: k = k + 1
11: end loop
```

MC Linear VFA for Policy Evaluation Example

Recall MC update: $\alpha(G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$ Two actions:

- a_1 goes to 7 (solid line)
- a_2 goes to 1-6 with 1/6 probability (dashed line) Observe s_1 , a_1 , 0, s_7 , a_1 , 0, s_7 , a_1 , 0, terminate Assume $\mathbf{w}_0 = [1,1,1,1,1,1,1], \alpha = 0.5, \gamma = 0.9$ What is \mathbf{w}_1 after the first SGD update?

MC Linear VFA for Policy Evaluation Example

Recall MC update: $\alpha(G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$ Two actions:

- a_1 goes to 7 (solid line)
- a_2 goes to 1-6 with 1/6 probability (dashed line) Observe s_1 , a_1 , 0, s_7 , a_1 , 0, s_7 , a_1 , 0, terminate Assume $\mathbf{w}_0 = [1,1,1,1,1,1,1], \alpha = 0.5, \gamma = 0.9$ What is \mathbf{w}_1 after the first SGD update?

Recall: Temporal Difference Learning w/ Lookup Table

- Uses bootstrapping and sampling to approximate $v^{\pi}(s)$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $v^{\pi}(s_t)$ toward estimated return $r_t + \gamma v^{\pi}(s_{t+1})$

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

- $r_t + \gamma v^{\pi}(s_{t+1})$ is called the <u>TD target</u>
- $\delta_t = r_t + \gamma v^{\pi}(s_{t+1}) v^{\pi}(s_t)$ is called the <u>TD error</u>
- a biased estimate of the true value $v^{\pi}(s)$
- Represent value for each state with a separate table entry

Temporal Difference (TD(0)) Learning with VFA

- In value function approximation, the target is $r + \gamma \hat{v}^{\pi}(s'; \mathbf{w})$, a biased and approximated estimate of the true value $v^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs:

$$\langle s_1, r_1 + \gamma \hat{v}^{\pi}(s_2; \mathbf{w}) \rangle, \langle s_2, r_2 + \gamma \hat{v}^{\pi}(s_3; \mathbf{w}) \rangle, \dots$$

Find weights to minimize mean squared error:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(r_j + \gamma \hat{v}^{\pi}(s_{j+1}; \mathbf{w}) - \hat{v}(s_j; \mathbf{w}) \right)^2 \right]$$
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(r_j + \gamma \mathbf{x}(s_{j+1})^T \mathbf{w} - \mathbf{x}(s_j)^T \mathbf{w} \right) \mathbf{x}(s_j)$$

Therefore, we are suing 3 forms of approximation, what are they?

TD(0) Linear VFA for Policy Evaluation

- 1: Initialize $\mathbf{w} = \mathbf{0}$, k = 1
- 2: **loop**
- 3: Sample tuple (s_k, a_k, r_k, s_{k+1}) given π
- 4: Update weights:

$$\mathbf{w} = \mathbf{w} + \alpha (\mathbf{r} + \gamma \mathbf{x} (\mathbf{s}')^T \mathbf{w} - \mathbf{x} (\mathbf{s})^T \mathbf{w}) \mathbf{x} (\mathbf{s})$$

- 5: k = k + 1
- 6: end loop

TD(0) Linear VFA for Policy Evaluation Example

Recall MC update: $\alpha(G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$ Two actions:

- a_1 goes to 7 (solid line)
- a_2 goes to 1-6 with 1/6 probability (dashed line)

Observe $(s_1, a_1, 0, s_7)$

Assume $\mathbf{w}_0 = [1,1,1,1,1,1,1]$, $\alpha = 0.5$, $\gamma = 0.9$ What is \mathbf{w}_1 after the first SGD update?

TD(0) Linear VFA for Policy Evaluation Example

Recall MC update: $\alpha(G_t - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$ Two actions:

- a_1 goes to 7 (solid line)
- a_2 goes to 1-6 with 1/6 probability (dashed line)

Observe $(s_1, a_1, 0, s_7)$

Assume $\mathbf{w}_0 = [1,1,1,1,1,1,1]$, $\alpha = 0.5$, $\gamma = 0.9$ What is \mathbf{w}_1 after the first SGD update?

Convergence Rates for Linear Value Function Approximation for Policy Evaluation

- Does TD or MC converge faster to a fixed point?
- Not (to my knowledge) definitively understood
- Practically TD learning often converges faster to its fixed value function approximation point