Mathematical Preliminary

1. Introduction

1.1 Forms and components of a mathematical programming problems

A mathematical programming problem or, simply, a mathematical program is a mathematical formulation of an optimization problem.

Unconstrained Problem:

(P)
$$\min_{x} f(x)$$

s.t. $x \in X$,

where $x=(x_1, ..., x_n)^T \in \mathbf{R}^n$, $f(x): \mathbf{R}^n \to \mathbf{R}$, and X is an open set (usually $X \in \mathbf{R}^n$).

Constrained Problem:

(P)
$$\min_{x} f(x)$$

s.t. $g_{i}(x) \le 0$ $i = 1,..., m$
 $h_{i}(x) = 0$ $i = 1,..., l$
 $x \in X$,

where $g_1(x), \ldots, g_m(x), h_1(x), \ldots, h_l(x)$: $\mathbf{R}^n \to \mathbf{R}$.

Let $g(x)=(g_1(x),...,g_m(x))^T$: $\mathbf{R}^n \to \mathbf{R}^m$, $h(x)=(h_1(x),...,h_l(x))^T$: $\mathbf{R}^n \to \mathbf{R}^l$. Then (P) can be written as

(P)
$$\min_{x} f(x)$$

s.t.
$$g(x) \le 0$$

 $h(x) = 0$ (1)
 $x \in X$.

Some terminology: Function f(x) is the *objective function*. Restrictions " $h_i(x)=0$ " are referred to as *equality constraints*, while " $g_i(x) \le 0$ " are *inequality constraints*. Notice that we do not use constraints in the form " $g_i(x) < 0$ "!

A point x is *feasible* for (P) if it satisfies all the constraints. (For an unconstrained problem, $x \in X$.) The set of all feasible points forms the *feasible region*, or *feasible set* (let us denote it by F). The goal of an optimization problem in minimization form, as above, is to find a feasible point x such that $f(x) \le f(x)$ for any other feasible point x.

1.2 Linear Programming and the Simplex Method

Let's start with an example.

Minimize
$$x_1 - 3x_2$$

subject to
$$-x_1 + 2x_2 \le 6$$

$$x_1 + x_2 \le 5$$

$$x_1 \quad x_2 \ge 0$$

To make it be a standard format

Minimize
$$x_1 - 3x_2$$

subject to $-x_1 + 2x_2 + x_3 = 6$
 $x_1 + x_2 + x_4 = 5$
 $x_1, x_2, x_3, x_4 \ge 0$

where x_3 and x_4 are slack variables

define $x_3 = 6 + x_1 - 2x_2$ (The form illustrated below is called "a dictionary.") $x_4 = 5 - x_1 - x_2$

$$z = x_1 - 3x_2$$

$$z = x_1 - 3x_2$$

Initial solution

 $x_1 = 0$, $x_2 = 0$, $x_3 = 6$, $x_4 = 5$, z = 0, x_1 x_2 are nonbasic variables, x_3 x_4 are basic variables. Choosing the entering variable x_2

$$x_3 = 6 + x_1 - 2x_2 \ge 0 \implies x_2 \le 3$$
 (1)

$$x_4 = 5 - x_1 - x_2 \ge 0 \implies x_2 \le 5$$
 (2)

(1) is the most stringent. Increasing x_2 up to (1).

$$x_1 = 0$$
, $x_2 = 3$, $x_3 = 0$, $x_4 = 3$ (x_3 leaves the basis)

To construct the new system, we shall begin with the new comer to the left hand side, Namely, the variable x_2 . The desired formula for x_2 in terms of x_1, x_3, x_4 is

$$x_2 = 3 + \frac{x_1}{2} - \frac{x_3}{2}$$

Next, in order to express x_4 and z in terms of x_1, x_3 we simply substitute

$$x_4 = 5 - x_1 - \left(3 + \frac{x_1}{2} - \frac{x_3}{2}\right) = 2 - \frac{3}{2}x_1 + \frac{x_3}{2}$$

$$z = x_1 - 3\left(3 + \frac{x_1}{2} - \frac{x_3}{2}\right) = -9 - \frac{x_1}{2} + \frac{3}{2}x_3$$

Hence our new system

$$x_{2} = 3 + \frac{x_{1}}{2} - \frac{x_{3}}{2}$$

$$x_{4} = 2 - \frac{3}{2}x_{1} + \frac{x_{3}}{2}$$

$$z = -9 - \frac{x_{1}}{2} + \frac{3}{2}x_{3}$$

Increase x_1 (x_1 enters the basis)

$$x_{2} = 3 + \frac{x_{1}}{2} - \frac{x_{3}}{2} \ge 0 \implies x_{1} \text{ can be infinity}$$

$$x_{4} = 2 - \frac{3}{2}x_{1} + \frac{x_{3}}{2} \ge 0 \implies x_{1} \le \frac{4}{3} \qquad (x_{4} \text{ leaves the basis})$$

$$\therefore x_{1} = \frac{4}{3}, \quad x_{2} = \frac{11}{3}, \quad x_{3} = 0, \quad x_{4} = 0$$

$$\implies x_{1} = 2 \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{2}{3}x_{3} - \frac{2}{3}x_{4} = \frac{4}{3} + \frac{1}{3}x_{3} - \frac{2}{3}x_{4}$$
and
$$x_{2} = 3 + \frac{1}{2} \left(\frac{4}{3} + \frac{1}{3}x_{3} - \frac{2}{3}x_{4} \right) - \frac{x_{3}}{2} = \frac{11}{3} - \frac{1}{3}x_{3} - \frac{1}{3}x_{4}$$

$$z = -9 - \frac{1}{2} \left(\frac{4}{3} + \frac{1}{3} x_3 - \frac{2}{3} x_4 \right) + \frac{3}{2} x_3 = -\frac{29}{3} + \frac{4}{3} x_3 + \frac{1}{3} x_4$$

Hence

$$x_{1} = \frac{4}{3} + \frac{1}{3}x_{3} - \frac{2}{3}x_{4}$$

$$x_{2} = \frac{11}{3} - \frac{1}{3}x_{3} - \frac{1}{3}x_{4}$$

$$z = -\frac{29}{3} + \frac{4}{3}x_{3} + \frac{1}{3}x_{4}$$

- x_3 and x_4 in the objective function are with positive coefficients. x_4 Stop.

2. The Supremum Property of R

The supremum property of the real numbers will help us to ensure that $S = \mathbf{R}$ exists as a real number. The formulation of this property involves upper or lower bounds for sets of real numbers.

SUPREMA AND INFIMA

Definition 2.1

Let $S \subset \mathbf{R}$.

- (a) We say that $u \in \mathbf{R}$ is an upper bound of S if $s \le u$ for all $s \in S$.
- (b) We say that $w \in \mathbf{R}$ is a *lower bound* of S if $s \ge w$ for all $s \in S$.

Examples

- (I) If $S = \{x \in \mathbb{R} : 0 < x < 1\}$, then 1 is an upper bound, but so is any $u \ge 1$. Likewise 0 is a lower bound, and so is any $w \le 0$.
- (II) If $S = \mathbf{R}$, then S does not have an upper or lower bound.

Remarks

- (a) If a set has an upper bound, then we say that it is bounded above;
- (b) If a set has a lower bound, then we say that it is bounded below;
- (c) If a set has both an upper **and** lower bound, then we say that it is *bounded*; otherwise it is *unbounded*.

Examples

- (I) $S = \{x \in \mathbf{R} : 0 < x < 1\}$ is bounded above and below, so is bounded;
- (II) $P = \{x \in \mathbf{R} : x > 0\}$ is bounded below, but not above, so is unbounded.

Definition 2.2

Let $S \subset \mathbf{R}$.

- (a) Let S be bounded above. An upper bounded of S is said to be a *supremum* (or *least upper bound*), if it is less than any other upper bound of S. We denote the supremum by sup S.
- (b) Let S be bounded below. A lower bounded of S is said to be an *infimum* (or *greatest lower bound*), if it is larger than any other lower bound of S. We denote the infimum by inf S.

Remarks

We see that u is a supremum of S if and only if it satisfies the following two conditions:

- (i) $s \le u$ for all $s \in S$.
- (ii) if v is any upper bound for S then $u \le v$.

Thus a supremum is the "least upper bound" or "smallest upper bound". It is then fairly easy to see that if exists, it must be unique. Similarly for an infimum.

Lemma 2.3

Let $S \subseteq \mathbf{R}$ be non-empty. Then $u \in \mathbf{R}$ is the supremum of S if and only if both

- (i) there are no elements $s \in S$ with u < s;
- (ii) If v < u, then there exists $s \in S$ with v < s.

Proof

Examples

(I) Let
$$S_1 = \{ x \in \mathbb{R} : 0 < x < 1 \}$$
. Then

$$\sup S = 1$$
; inf $S = 0$

(II) Let
$$S_2 = \{x \in \mathbf{R} : 0 \le x \le 1\}$$
. Then again

$$\sup S = 1; \inf S = 0$$

Note that S_1 does not contain its supremum or infmum, but S_2 contains both.

(III) Let
$$P = \{x \in \mathbb{R} : x > 0\}$$
. Then $\inf P = 0$, but $\sup P$ does not exist.

It is an important property of the reals that every set bounded above has a supremum:

Property 2.4 Supremum Property

Every non-empty set of real numbers which has an upper bound has a supremum.

Property 2.5 Infimum Property

Every non-empty set of real numbers which has a lower bound has a infimum.

3. Open and Closed Sets

We shall discuss topological notions such as open and closed sets, interior points,.... Recall that \mathbf{R}^p is the set of p-tuples

$$\underline{x} = \left(x_1, x_2, \dots x_p\right)$$

with

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots x_p^2}$$
.

Definition 3.1

A set G in \mathbb{R}^p is said to be *open* in \mathbb{R}^p (or merely open) if for **each** $x \in G$, there exists r > 0 such that

$$\left\{ y \in \mathbf{R}^p : \left\| y - x \right\| < r \right\} \subseteq G$$

Remark

Thus G is open if each point in G is the center of some open ball contained in G.

Examples

(I) (0,1) is open in **R** and $\{(x, y) \in \mathbf{R}^2 : x^2 + y^2 < 1\}$ is open in \mathbf{R}^2 .

(II) [0,1] and [0,1) are not open in \mathbf{R} and $\{(x,y) \in \mathbf{R}^2 : x^2 + y^2 \le 1\}$ is not open in \mathbf{R}^2 . Why?

We now establish some properties of open sets, which are often taken as the starting point for studying topology:

Theorem 3.3

- (a) The empty set is open in \mathbb{R}^p ; \mathbb{R}^p is open in \mathbb{R}^p .
- (b) The intersection of any two open sets is open.
- (c) The union of any collection of open sets is open.

Proof

RemarkFrom (b) follows that the intersection of **finitely** many open sets is open. However, the intersection of **infinitely** many open sets need not be open. For example, $\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n}\right) = \left[-1, 1\right],$ which is not open.

CLOSED SETS

Definition 3.4

A set F in \mathbb{R}^p is said to be closed if $\mathbb{R}^p \setminus F$ is open.

Thus a set is closed if its complement is open.

Examples

- (I) [0,1] and $[0,\infty)$ are closed in **R** and $\{(x,y) \in \mathbf{R}^2 : x^2 + y^2 \le 1\}$ is closed in \mathbf{R}^2
- (II) [0,1) is not closed in **R**.
- (III) The empty set is closed in \mathbf{R}^p

Proposition 3.6 Properties of closed Sets

- (a) The empty set ϕ and the whole space \mathbb{R}^p are closed in \mathbb{R}^p .
- (b) The union of any two closed sets is closed in \mathbf{R}^p
- (c) The intersection of any collection of closed sets is closed in \mathbf{R}^p .

NEIGHBORHOODS

Definition 3.7

(a) If $x \in \mathbb{R}^p$, then any set which contains an open set containing x is called a *neighborhood* of x.

Now let $A \subseteq \mathbb{R}^p$ and $x \in A$. (Definition by Marsden and Hoffman, 1993: A neighborhood of a point is an open set containing that point.)

- (b) We call x an *interior point* of A if **there is** a neighborhood of x that is contained in A. The interior of A is the collection of all interior points of A and is denoted int(A).
- (c) We call \underline{x} a boundary point of A if **every** neighborhood of \underline{x} contains a point in A and a point in $\mathbf{R}^p \setminus A$.
- (d) We call x an exterior point of A if **there is** a neighborhood of x that is contained in $\mathbb{R}^p \setminus A$.

Remark

Note that exactly one of the three holds: x is interior or boundary or exterior, but cannot be more than one of these.

Examples

(I) Let A = [0,1] in \mathbf{R} . Then any point in (0,1) is an interior point of A, while 0 and 1 are boundary points. The exterior points of A are $\mathbf{R} \setminus [0,1]$. The same is true if we take A = (0,1) or [0,1).

(II) Let $A = \left\{ y \in \mathbf{R}^p : \left\| y - x \right\| < r \right\}$ be an open ball in \mathbf{R}^p . We see that each point in A is an interior point, while the boundary points of A are those points y with $\left\| y - x \right\| > r$. Similarly for the closed ball $\left\{ y \in \mathbf{R}^p : \left\| y - x \right\| \le r \right\}$.

We may characterize open and closed sets in terms of their interior / boundary points:

Theorem 3.10

A set $F \subseteq \mathbb{R}^p$ is closed iff it contains all its boundary points.

Proof

4. CLUSTER POINTS AND THE BOLZANO-WEIERSTRASS THEOREM

Another useful way to determine whether or not a set is closed is based on the concept of a cluster point.

Definition 4.1

Let $A \subseteq \mathbb{R}^p$ and $x \in \mathbb{R}^p$. We say that x = 0 is a cluster point (or a point of accumulation) of A if every neighborhood of x contains at least one point of A other than x.

Remarks

(a) Thus for x to be a cluster point of A, we need

$$(B \cap A) \setminus \{x\} \neq \emptyset$$

for every neighborhood B of x.

(b) Cluster points are often also called accumulation points or limit points.

Examples

- (a) If A = (0,1), then every point of A is a cluster point, but 0 and 1 are also cluster points.
- (b) If A = [0,1], then every point of A is a cluster point.
- (c) If A is an open set in \mathbb{R}^p , then every point of A is a cluster point, but the boundary points of A are also cluster points.
- (d) If Q denotes the rational numbers, then every real number is a cluster point of Q. (Every neighborhood of a real number contains at least one rational number other than the original one.)
- (e) More examples: $S = \{-1, 1, -1, 1, ...\}$. -1 and 1 are cluster points of *S*. Why? (Hint: all -1's are viewed as different ones.)

We can now characterize closed sets in terms of their cluster points: (we often use this result)

Theorem 4.2

Let $F \subseteq \mathbb{R}^p$. Then F is closed iff it contains all its cluster points.

Proof

Theorem 4.3 (Bolzano-Weierstrass Theorem)

Every bounded infinite set in \mathbb{R}^p has a cluster point.

Remark

- (a) A set A is called bounded if it is contained in a ball of finite radius.
- (b) If A is a bounded set with infinitely many elements, then A has at least one cluster point.

Example

 $A = \{-1, 1, -1, 1, ...\}$ -1 and 1 are cluster points

 $A = \{1, 3, 7, 13\}$ is finite (having only four elements) and bounded. A has no cluster point.

Definition 4.4

Let $A \subseteq \mathbb{R}^p$ and $x \in \mathbb{R}^p$. We say that x is a closure point of A if every neighborhood of x contains at

least one point of A. The closure of A is the collection of all closure points of A and is denoted cl(A).

Remarks

(a) Thus for x to be a closure point of A, we need

$$(B \cap A) \neq \phi$$

for every neighborhood B of x.

(b) A closure point of a set *A* is a point that is "close" to the set, in the sense that for every neighborhood, there is some element of *A* in the neighborhood.

Examples

If $A = [0,1) \cup \{2\}$, the closure of A in **R** is $[0,1] \cup \{2\}$.

If $A = [0,1) \cup \{2\}$, every point of [0,1] is cluster point, but 2 is not a cluster point.

Theorem

The closure of *A* is the intersection of all closed sets containing *A*.

Remarks

- (a) The largest open subset of *A* is called the interior of *A*.
- (b) The smallest <u>closed set</u> containing *A* is the closure of *A*.

Theorem 4.5 The Heine Borel Theorem

Let $K \subseteq \mathbb{R}^p$. Then K is compact iff it is closed and bounded.

Remark

It was seen the closed set $K = [1, \infty)$ is not compact; note that K is not bounded. It was also seen in Example that the bounded set K = (0,1) is not compact; note that K = (0,1) is not closed.

Introduction to Sequences

You have discussed sequences of real numbers or vectors in earlier courses. Here we revisit them, and discuss them more carefully. A somewhat formal definition of the notion of a sequence is given in:

Definition 5.1

Let S be a set. A sequence in S is a function on N and whose range is in S. In particular, a sequence in \mathbf{R}^p is a function whose domain is N and whose range is contained in \mathbf{R}^p . In other words, a sequence in \mathbf{R}^p assigns to each natural number n = 1, 2, ..., a uniquely determined element of \mathbf{R}^p .

Remarks

- (a) We shall denote a sequence by placing brackets around the elements of the sequence. Thus if $x_n \in S$, $n \ge 1$, then we denote the sequence by (x_n) . (Many of you have used $\{x_n\}$ in earlier courses.)
- (b) Mostly we shall deal with sequences in \mathbb{R}^p . Thus (\underline{x}_n) denotes a sequence in \mathbb{R}^p .
- (c) Sequences may be defined by a formula, e.g.

$$x_n=2^n, \ n\geq 1,$$

 $x_n = x_{n-1} + x_{n-2}, \ n \ge 3.$

or finitely many formulas, or inductively: e.g. $x_1 = x_2 = 1$, $(x_n, \dots, x_{np})(y_n, \dots, y_{np})$

$$(\chi_{n}, \dots \chi_{np})(y_{n}, \dots y_{np})$$

$$= \chi_{n_{1}}y_{n_{1}} + \dots + \chi_{np}y_{np}$$

$$= \sum_{j=1}^{p} \chi_{n_{j}}y_{n_{j}}$$

(d) We can perform arithmetical operations on sequences:

Definition 5.2

Let (\underline{x}_n) and (y_n) be sequences in \mathbb{R}^p .

- $\Rightarrow \left(\sum_{j=1}^{P} \chi_{nj} y_{nj}\right)$ (I) We define the *sum* of (\underline{x}_n) and (\underline{y}_n) to be the sequence $(\underline{x}_n + \underline{y}_n)$. Their *difference* is $(\underline{x}_n - \underline{y}_n)$.
- (II) The *inner product* of (\underline{x}_n) and (\underline{y}_n) is defined to be the sequence $(\underline{x}_n \cdot \underline{y}_n)$.
- (III) If $c \in \mathbf{R}$, we define the sequence $c(\underline{x}_n)$ to be the sequence $(c\underline{x}_n)$.
- (IV) If (z_n) is a sequence of real numbers, we define the *product* of (z_n) and (\underline{x}_n) to be the sequence $(z_n \underline{x}_n)$. If also $z_n \neq 0$, $n \geq 1$, we define the *quotient* of (\underline{x}_n) and (z_n) to be the sequence (\underline{x}_n / z_n) .

13

Example

If (x_n) and (z_n) are sequences in **R** given by

$$x_n = n;$$

$$z_n = (-1)^n / n,$$

then

$$(x_n) = (1, 2, 3, ...);$$

 $(z_n) = \left(-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, ...\right)$

and

$$(x_n + z_n) = (n + (-1)^n / n) = (0, 2\frac{1}{2}, 2\frac{2}{3}, \dots);$$

$$(x_n - z_n) = (n - (-1)^n / n) = (2, 1\frac{1}{2}, 3\frac{1}{3}, 2\frac{3}{4}, \dots);$$

$$(x_n z_n) = ((-1)^n) = (-1, 1, -1, \dots);$$

$$(x_n / z_n) = ((-1)^n n^2) = (-1, 4, -9, \dots).$$

A very important part of analyzing sequences is discussing their convergence:

Definition 5.3 Sequence Convergence

Let (\underline{x}_n) be a sequence in \mathbb{R}^p and $\underline{x} \in \mathbb{R}^p$. We say that \underline{x} is a *limit* of (\underline{x}_n) if for each

neighborhood V of \underline{x} , there is a natural number K_V such that

$$n \ge K_{v} \Longrightarrow x_{v} \in V$$
.

If \underline{x} is a *limit* of (\underline{x}_n) , we say that (\underline{x}_n) converges to \underline{x} , and that the sequence is convergent. We also write

$$\underline{x} = \lim_{n \to \infty} \underline{x}_n$$

If the sequence does not converge, we say that it is *divergent*.

Thus, given any neighborhood V of \underline{x} , \underline{x}_n must lie in V for n large enough (depending on the particular neighborhood V). We can reformulate this in terms of norm distances:

Theorem 5.4 (Another definition of sequence convergence)

Let (\underline{x}_n) be a sequence in \mathbb{R}^p and $\underline{x} \in \mathbb{R}^p$. Then \underline{x} is a limit of (\underline{x}_n) iff for each $\varepsilon > 0$, there exists $K(\varepsilon) \in \mathbb{N}$ such that

$$n \ge K(\varepsilon) \Rightarrow ||\underline{x}_n - \underline{x}|| < \varepsilon$$
.

Theorem 5.5 Uniqueness of Limits

Let (\underline{x}_n) be a sequence in \mathbb{R}^p . There it can have at most one limit.

Proof

Suppose that \underline{x} and \underline{y} are limits of (\underline{x}_n) and that $\underline{x} \neq \underline{y}$. Let V' and V'' be disjoint neighborhoods of \underline{x} and \underline{y} and let K' and K'' be natural numbers such that if $n \geq K'$ then $\underline{x}_n \in V'$ and $n \geq K''$ then $\underline{x}_n \in V''$. Let $K = \sup\{K', K''\}$ so that both $\underline{x}_K \in V'$ and $\underline{x}_K \in V''$. We infer that \underline{x}_K belongs to $V' \cap V''$ contradicting to that V' and V'' are disjoint.

Lemma 5.6 Boundedness of Convergent Sequences

A convergent sequence (\underline{x}_n) in \mathbb{R}^p is bounded.

Proof

Let

$$\underline{x} = \lim_{n \to \infty} \underline{x}_n$$

By Theorem 5.4 with $\varepsilon = 1$, there exists $K(\varepsilon)$ such that

$$n \ge K(\varepsilon) \Longrightarrow ||\underline{x}_n - \underline{x}|| < 1.$$

Then for $n \ge K(\varepsilon)$,

$$\left\|\underline{x}_n\right\| = \left\|\underline{x}_n - \underline{x} + \underline{x}\right\| \le \left\|\underline{x}_n - \underline{x}\right\| + \left\|\underline{x}\right\| < 1 + \left\|\underline{x}\right\|.$$

Then if we set

$$M = \sup \left\{ \left\| \underline{x}_1 \right\|, \ \left\| \underline{x}_2 \right\|, \ \left\| \underline{x}_3 \right\| \ \dots \ \left\| \underline{x}_{K(\varepsilon)} \right\|, \ 1 + \left\| \underline{x} \right\| \right\}$$

we see that

$$\left\|\underline{x}_n\right\| \leq M, \ n \geq 1.$$

It follows easily form the definition of the norm in \mathbb{R}^p that a sequence in \mathbb{R}^p converges iff all its

component sequences converge:

Theorem 5.7

Let

$$\underline{x}_n = (x_{n1}, x_{n2}, \dots x_{np}) \in \mathbf{R}^p, n \ge 1.$$

Then (\underline{x}_n) converges in \mathbf{R}^p iff every one of the component sequence $(x_{nk})_{n=1}^{\infty}$, k=1,2,...,p, converges in \mathbf{R} .

SOME EXAMPLES

Example 5.8 (a)

Let

$$x_n = \frac{1}{n}, n \ge 1.$$

Then we know from experience that this sequence converges to 0. Let us prove this rigorously. Let $\varepsilon > 0$. Let $K(\varepsilon)$ be any integer $> 1/\varepsilon$. Then

$$n \stackrel{\bigcirc}{\geq} K(\varepsilon) \Rightarrow |x_n - 0| = \left| \frac{1}{n} - 0 \right|$$
$$= \frac{1}{n} \stackrel{\bigcirc}{\leq} \frac{1}{K(\varepsilon)} \stackrel{\bigcirc}{<} \frac{1}{1/\varepsilon} = \varepsilon.$$

By Theorem 5.4, (\underline{x}_n) converges to 0.

Example 5.8 (b)

Let a > 0 and

$$x_n = \frac{1}{1 + na}, n \ge 1.$$

Let $K(\varepsilon)$ be any integer $>1/(a\varepsilon)$. Then

$$n \stackrel{\circlearrowleft}{\geq} K(\varepsilon) \Rightarrow |x_n - 0| = \left| \frac{1}{1 + na} - 0 \right|$$
$$= \frac{1}{1 + na} < \frac{1}{na} < \frac{1}{K(\varepsilon)a} \stackrel{\circlearrowleft}{\leq} \frac{1}{\left(\frac{1}{a\varepsilon}\right)a} = \varepsilon.$$

By Theorem 5.4, (x_n) converges to 0.

Theorem 5.9

A set F is closed if and only if for every convergent sequence (a_n) such that $a_n \in F$ for all $n \ge 1$, we have that $\lim_{n \to \infty} a_n \in F$.

Proof

We first show that if (F is closed), then (for every convergent sequence (a_n) such that $a_n \in F$ for all $n \ge 1$, we have that $\lim_{n \to \infty} a_n \in F$.)

Let (a_n) be a convergent sequence such that $a_n \in F$ for all n and denote its limit by ℓ . Assume that $\ell \notin F$. Then ℓ is in the complement of F, which is open.

So, there exists an r>0 such that the open ball $B(\ell,r)$ with center ℓ and radius r>0 is contained in the complement of F, that is, $B(\ell,r)$ contains no point from F. But as (a_n) is convergent with limit ℓ , we can choose a larger enough k so that $\|a_k,\ell\|<\frac{r}{2}$. This implies that $a_k\in B(\ell,r)$. But also $a_k\in F$ and so we have a contradiction.

<u>Conversely</u>, we want to show (if for every convergent sequence (a_n) such that $a_n \in F$ for all $n \ge 1$, we have that $\lim a_n \in F$), then (F is closed).

Let's show it by contradiction. Now suppose that *F* is not closed. Then its complement is not open. (Recall if the complement of *F* is open, then *F* is closed.)

Recall: if (for each $x \in F$, there exists r > 0 such that $B(x, r) \subseteq F$), then (F is open)

.. If the complement of F is not open, there exists a point ℓ in the complement of F such that for every r > 0, the open ball $B(\ell, r) \not\subset$ the complement of F. Then $B(\ell, r)$ has at least one point from F.

Now take successively $r = \frac{1}{n}$ $(n \in \mathbb{N})$ (recall "for every r > 0"), and choose a point $a_n \in F \cap B\left(\ell, \frac{1}{n}\right)$.

In this manner we obtain a sequence (a_n) such that $a_n \in F$ for each n, and $||a_n - \ell|| < \frac{1}{n}$. The property

 $||a_n - \ell|| < \frac{1}{n}$ $(n \in \mathbb{N})$ implies that (a_n) is a convergent sequence with limit ℓ . So we have obtained the existence of a convergent sequence (a_n) such that $a_n \in F$ $(n \in \mathbb{N})$, but $\lim_{n \to \infty} a_n = \ell \notin F$ (contradiction)

Suppose that F is closed

Conversely

6. Subsequences and Combinations

Very often we can learn a lot of about a sequence by looking at different "parts" of the sequence. These parts are called subsequences:

Definition 6.1

Let $X = (\underline{x}_n)$ be a sequence in \mathbb{R}^p . Let

$$r_1 < r_2 < r_3 < \dots$$
 (*)

be a strictly increasing sequence of natural numbers. Then the sequence given by

$$X' = (\underline{x}_{r_n}) = (\underline{x}_{r_n})_{n=1}^{\infty} = (\underline{x}_{r_1}, \underline{x}_{r_2}, \underline{x}_{r_3}, \dots)$$

is called a *subsequence* of (\underline{x}_n) .

Theorem 6.2

If a sequence X in \mathbb{R}^p converges to a limit $\underline{x} \in \mathbb{R}^p$, then any subsequence of X also has the same limit.

Proof

Let

$$X' = \left(\underline{x}_{r_n}\right)_{n=1}^{\infty} = \left(\underline{x}_{r_1}, \underline{x}_{r_2}, \underline{x}_{r_3}, \ldots\right)$$

be a subsequence of X. Let V be a neighborhood of \underline{x} . Then there exists $K_V \in \mathbf{N}$ such that

$$n \ge K_V \Longrightarrow \underline{x}_n \in V$$
.

By definition, $\left(\underline{x}_{r_n}\right)_{n=1}^{\infty}$ converges to \underline{x} .

Corollary 6.3

If $X = (\underline{x}_n)$ is a sequence that converges to \underline{x} , and $m \in \mathbb{N}$, then $(\underline{x}_{n+m})_{n=1}^{\infty}$ also converges to \underline{x} .

Example

Let

$$x_n = \left(-1\right)^n, \ n \ge 1.$$

Then (x_n) is a divergent sequence. On the other hand,

$$x_{2n} = 1, n \ge 1,$$

So (x_{2n}) converges to 1. Similarly (x_{2n+1}) converges to -1.

COMBINATIONS OF SEQUENCES

Now we can investigate what happens when we add, multiply, ... convergent sequences.

Theorem 6.6

- (a) Let X and Y be sequences in \mathbb{R}^p that converge to \underline{x} and y respectively. Then
 - (i) THE LIMIT OF THE SUM IS THE SUM OF THE LIMITS X + Y converges to $\underline{x} + y$.
 - (ii) THE LIMIT OF THE DIFFERENCE IS THE DIFFERENCE OF THE LIMITS X-Y converges to $\underline{x}-y$.
 - (iii) THE LIMIT OF THE INNER PRODUCT IS THE INNER PRODUCT OF THE LIMITS $X \cdot Y$ converges to $\underline{x} \cdot \underline{y}$.
- (b) THE LIMIT OF THE PRODUCT IS THEPRODUCT OF THE LIMITS

 Let $X = (\underline{x}_n)$ be a sequence in \mathbf{R}^p that converges to \underline{x} and let $A = (a_n)$ be a sequence in \mathbf{R} that converges to a. Then the sequence $(a_n \underline{x}_n)$ in \mathbf{R}^p converges to $a\underline{x}$.
- (c) THE LIMIT OF THE QUOTIENT IS THE QUOTIENT OF THE LIMITS IF THE DENOMINATOR LIMIT IS NON-ZERO

Let $X = (\underline{x}_n)$ be a sequence in \mathbf{R}^p that converges to \underline{x} and $B = (b_n)$ be a sequence of non-zero real numbers that converges to a non-zero number b. Then the sequence $(b_n^{-1}\underline{x}_n)$ in \mathbf{R}^p converges to $b^{-1}\underline{x}$.

Proof

(a)

(i) Write $X = (\underline{x}_n)$ and $Y = (\underline{y}_n)$. We must show that $(\underline{x}_n + \underline{y}_n)$ has limit $\underline{x} + \underline{y}$. To do this, we must estimate

$$\begin{split} & \left\| \left(\underline{x}_n + \underline{y}_n \right) - \left(\underline{x} + \underline{y} \right) \right\| = \left\| \left(\underline{x}_n - \underline{x} \right) + \left(\underline{y}_n - \underline{y} \right) \right\| \\ & \leq \left\| \underline{x}_n - \underline{x} \right\| + \left\| \underline{y}_n - \underline{y} \right\|. \end{split} \tag{*}$$

But by our hypothesis, given $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that both

$$n \ge K \Longrightarrow \left\| \underline{x}_n - \underline{x} \right\| < \frac{\varepsilon}{2}$$

and

$$n \ge K \Longrightarrow \left\| \underline{y}_n - \underline{y} \right\| < \frac{\varepsilon}{2}.$$

(Of course the K may be different for X and Y but we can take the larger one). Then (*) shows that for $n \ge K$,

$$\left\|\left(\underline{x}_n + \underline{y}_n\right) - \left(\underline{x} + \underline{y}\right)\right\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

By definition, $(\underline{x}_n + \underline{y}_n)$ has limit $\underline{x} + \underline{y}$.

Remark

It is essential in (c) that the denominator limit is non-zero. For example, let (x_n) and (b_n) be sequences of real numbers defined by

$$x_n = 1 + \frac{1}{n}, \ n \ge 1$$

and

$$b_n = \frac{1}{n}, n \ge 1.$$

Then it is easy to see that (x_n) converges to 1 and (b_n) converges to 0, but

$$b_n^{-1} x_n = n \left(1 + \frac{1}{n} \right) = n + 1$$

So $(b_n^{-1}x_n)$ is not bounded, and cannot converge.

Examples

(I) Consider the sequence (x_n) given by

$$x_n = \frac{5n-3}{4n+2}, n \ge 1.$$

We may write

$$x_{n} = \frac{n\left(5 - \frac{3}{n}\right)}{n\left(4 + \frac{2}{n}\right)} = \frac{5 - \frac{3}{n}}{4 + \frac{2}{n}}.$$

Then,

$$\lim_{n \to \infty} \left(5 - \frac{3}{n} \right) = \lim_{n \to \infty} 5 - \lim_{n \to \infty} \frac{3}{n}$$
$$= 5 - 3 \lim_{n \to \infty} \frac{1}{n} = 5 - 0.$$

Similarly,

$$\lim_{n\to\infty}\left(4+\frac{2}{n}\right)=4\neq0.$$

The above theorem gives

$$\lim_{n \to \infty} \frac{5 - \frac{3}{n}}{4 + \frac{2}{n}} = \frac{\lim_{n \to \infty} (5 - 3/n)}{\lim_{n \to \infty} (4 + 2/n)} = \frac{5}{4}.$$

Theorem 6.7

Every sequence (x_n) has a monotonic subsequence.

Example

Let

$$x_n = (-1)^n + \frac{1}{n}, \ n \ge 1.$$

Then (x_n) is a divergent sequence and is not monotonic. On the other hand,

$$x_{2n} = 1 + \frac{1}{2n}, \ n \ge 1,$$

So (x_{2n}) is a monotonic subsequence. Similarly (x_{2n+1}) is a monotonic subsequence as well.

Two Criteria for Convergence

In this section, we derive two important general criteria for convergence of a sequence. They are often simpler to apply than the original definition of convergence.

Theorem 6.8 MONOTONE CONVERGENCE THEOREM

Let (x_n) be a sequence of real numbers such that

$$x_1 \le x_2 \le x_3 \le \dots \le x_n \le x_{n+1} \le \dots$$
.

(We say that (x_n) is monotone increasing). Then the sequence converges iff it is bounded. If it is bounded, then

$$\lim_{n \to \infty} x_n = \sup \{x_n : n \ge 1\} \tag{*}$$

Corollary 6.9

Let (x_n) be a sequence of real numbers such that

$$x_1 \ge x_2 \ge x_3 \ge \dots \ge x_n \ge x_{n+1} \ge \dots$$

(We say that (x_n) is monotone decreasing). Then the sequence converges iff it is bounded. If it is bounded, then

$$\lim_{n\to\infty} x_n = \inf \left\{ x_n : n \ge 1 \right\}.$$

Examples

(a) The sequence (x_n) given by

$$x_n = 1 - \frac{1}{n^2}, n \ge 1$$

is monotone increasing (check!). It is also bounded above by 1, and hence bounded. By the Monotone Convergence Theorem, (x_n) converges, and

$$\lim_{n\to\infty} x_n = \sup\{x_n : n \ge 1\} = 1.$$

(b) Let a > 1. Let us define a sequence by $x_1 = 1$ and

$$x_{n+1} = \sqrt{ax_n}, n \ge 1$$

Then we claim that (x_n) is increasing and that $x_n \le a$ for all n. Let us prove this by induction.

The case n=1

We see that $x_2 = \sqrt{a \cdot 1} = \sqrt{a} > 1 = x_1$ (as a > 1). Also, $x_2 = \sqrt{a} \le a$ (since $a = \sqrt{a}\sqrt{a} \ge \sqrt{a} \cdot 1$), so $x_1 \le x_2 \le a$.

Induction Step

Assume now as an induction step that $x_n \le x_{n+1} \le a$

Then

$$x_{n+2} = \sqrt{ax_{n+1}}$$

So

$$x_{n+2} / x_{n+1} = \sqrt{ax_{n+1}} / x_{n+1} = \sqrt{a / x_{n+1}} \ge 1$$

(We just used our induction hypothesis $a / x_{n+1} \ge 1$). Also,

$$x_{n+2} / a = \sqrt{ax_{n+1}} / a = \sqrt{x_{n+1} / a} \le 1.$$

(We just used our induction hypothesis $a / x_{n+1} \ge 1$). So we have proved that

$$x_{n+1} \le x_{n+2} \le a.$$

Thus by induction, for all $n \ge 1$,

$$x_n \le x_{n+1} \le a$$
.

Then (x_n) is both bounded above (by a) and monotone increasing. By the monotone convergence

theorem, (x_n) converges. Let us call the limit r. That theorem also tells us

$$r = \lim_{n \to \infty} x_n = \sup \left\{ x_n : n \ge 1 \right\}.$$

Let $\varepsilon \in (0, r)$. There exists $K(\varepsilon) \in \mathbb{N}$ such that

$$n \ge K(\varepsilon) \Longrightarrow r - \varepsilon < x_n (< r + \varepsilon)$$

And we know $r \ge x_n$ for all n, so for $n \ge K(\varepsilon)$,

$$r - \varepsilon \le x_{n+1} = \sqrt{ax_n} \le \sqrt{ar}$$

and

$$r \ge x_{n+1} = \sqrt{ax_n} \ge \sqrt{a(r-\varepsilon)}$$

Let us square these last two relations. Then, for each $\varepsilon \in (0, r)$,

$$(r-\varepsilon)^2 \le (\sqrt{ar})^2 = ar;$$

 $r^2 \ge (\sqrt{a(r-\varepsilon)})^2 = a(r-\varepsilon).$

Since ε may be made arbitrarily small and r is independent of ε , we have

$$r^2 \le ar;$$
$$r^2 \ge ar.$$

Thus

$$r^2 = ar;$$
$$\Rightarrow r = a$$

So we have shown that

$$\lim_{n\to\infty} x_n = a$$

THE BOLZANO WEIERSTRASS THEOREM

It will be useful to reformulate the Bolzano-Weierstrass Theorem for sequences:

Theorem 6.9 Bolzano-Weierstrass Theorem for sequences

A bounded sequence in \mathbb{R}^p has a convergent subsequence.

Proof

By Theorem 6.7: Every sequence (x_n) has a monotonic subsequence. The subsequence converges by Theorem 6.8 or Corollary 6.9.

CAUCHY SEQUENCES

Roughly speaking, a Cauchy sequence may be defined as follows: if all elements of a sequence, beyond a certain index, are close to one another, they form a Cauchy sequence. More precisely:

Definition 6.10

A sequence (\underline{x}_n) in \mathbb{R}^p is said to be a Cauchy sequence if for every $\varepsilon > 0$, there exists $M(\varepsilon) \in \mathbb{N}$ such that

$$m, n \ge M(\varepsilon) \Rightarrow ||\underline{x}_m - \underline{x}_n|| < \varepsilon$$
.

In fact every convergent sequence is a Cauchy sequence:

Lemma 6.11

If (\underline{x}_n) is a convergent sequence in \mathbb{R}^p , it is also a Cauchy sequence.

Proof

Let

$$\underline{x} = \lim_{n \to \infty} \underline{x}_n$$

given $\varepsilon > 0$. By Theorem 13.4, there exists $K\left(\frac{\varepsilon}{2}\right) \in \mathbb{N}$ such that

$$n \ge K\left(\frac{\varepsilon}{2}\right) \Longrightarrow \left\|\underline{x}_n - \underline{x}\right\| < \frac{\varepsilon}{2}$$

Then, if $M(\varepsilon) = K\left(\frac{\varepsilon}{2}\right)$,

$$m, n \ge M(\varepsilon) \Longrightarrow \|\underline{x}_m - \underline{x}_n\| \le \|\underline{x}_m - \underline{x}\| + \|\underline{x} - \underline{x}_n\|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

So, it is Cauchy.

We shall also prove that every Cauchy sequence is convergent, that is the converse holds. First we need to prove:

24

Lemma 6.12

A Cauchy sequence (\underline{x}_n) in \mathbb{R}^p is bounded.

Proof

By the definition of a Cauchy sequence, with $\varepsilon = 1$. There exists a natural number M(1) such that

$$n, m \ge M(1) \Longrightarrow ||\underline{x}_n - \underline{x}_m|| < 1.$$

Then, setting m = M(1), we see that

$$n \ge M\left(1\right) \Longrightarrow \left\|\underline{x}_n\right\| = \left\|\underline{x}_n - \underline{x}_{M(1)} + \underline{x}_{M(1)}\right\| \le \left\|\underline{x}_n - \underline{x}_{M(1)}\right\| + \left\|\underline{x}_{M(1)}\right\| < 1 + \left\|\underline{x}_{M(1)}\right\|.$$

It follows that if we set

$$B = \sup \left\{ \left\| \underline{x}_{1} \right\|, \left\| \underline{x}_{2} \right\|, \left\| \underline{x}_{3} \right\|, \dots \left\| \underline{x}_{M(1)-1} \right\|, 1 + \left\| \underline{x}_{M(1)} \right\| \right\},\,$$

Then

$$\|\underline{x}_n\| \leq B, n \geq 1$$
.

We need another lemma:

Lemma 6.13

If a subsequence of a Cauchy sequence converges to some $\underline{x} \in \mathbf{R}^p$, then the entire sequence converges to \underline{x} .

Proof

Assume that (\underline{x}_n) is Cauchy sequence, and that it has a subsequence $(\underline{x}_{n_k})_{k=1}^{\infty}$ converging to \underline{x} . Let $\varepsilon > 0$.

By the definition of a Cauchy sequence, there exists $M\left(\frac{\varepsilon}{2}\right) \in \mathbb{N}$ such that

$$n, m \ge M\left(\frac{\varepsilon}{2}\right) \Rightarrow \left\|\underline{x}_m - \underline{x}_n\right\| < \frac{\varepsilon}{2}$$
 (1)

Next, as $\left(\underline{x}_{n_k}\right)_{k=1}^{\infty}$ converges to \underline{x} , there exists $K\left(\frac{\varepsilon}{2}\right) \in \mathbf{N}$ such that

$$k \ge K\left(\frac{\varepsilon}{2}\right) \Longrightarrow \left\|\underline{x}_{n_k} - \underline{x}\right\| < \frac{\varepsilon}{2}$$
 (2)

Let us set $L = \sup \left\{ K\left(\frac{\varepsilon}{2}\right), M\left(\frac{\varepsilon}{2}\right) \right\}$. For $n \ge L$, we have $n \ge M\left(\frac{\varepsilon}{2}\right)$ and $n_L \ge L \ge M\left(\frac{\varepsilon}{2}\right)$, so by (1)

$$\|\underline{x}_{n} - \underline{x}\| = \|\underline{x}_{n} - \underline{x}_{n_{L}} + \underline{x}_{n_{L}} - \underline{x}\|$$

$$\leq \|\underline{x}_{n} - \underline{x}_{n_{L}}\| + \|\underline{x}_{n_{L}} - \underline{x}\|$$

$$\leq \frac{\varepsilon}{2} + \|\underline{x}_{n_{L}} - \underline{x}\| \quad \text{(by (1) as } n \geq M\left(\frac{\varepsilon}{2}\right) \text{ and } n_{L} \geq L \geq M\left(\frac{\varepsilon}{2}\right) \text{)(} \because \text{Cauchy)}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \quad \text{(by (2) as } L \geq K\left(\frac{\varepsilon}{2}\right) \text{)(} \because \text{Converges)}$$

It follows that (\underline{x}_n) converges to \underline{x} .

Now we can prove the important Cauchy criterion:

Theorem 6.14

A sequence in \mathbf{R}^p is convergent iff it is a Cauchy sequence.

Proof

Convergent ⇒ Cauchy (This was Lemma 6.11)

Cauchy ⇒Convergent

Let (\underline{x}_n) be a Cauchy sequence. Form Lemma 6.12, the sequence is bounded. By the Bolzano-Weierstrass Theorem for sequence (Theorem 6.9), the sequence then has a convergent subsequence. By Lemma 6.13, the full sequence converges.