Additive quantile regression 1

Matteo Fasiolo (University of Bristol, UK)

matteo.fasiolo@bristol.ac.uk

May 17, 2018

Today's plan

Morning session

- What is quantile regression
- When is it useful
- Section Linear quantile mixed models
- Non-parametric additive quantile models
- Quantile regression using qgam
- Hands-on session

Afternoon session

- Fitting additive quantile models
- Model checking
- Types of smooths
- More quantile regression using qgam
- Hands-on session

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 Linear quantile mixed models
- Non-parametric additive quantile models
- Quantile regression using qgam

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 Linear quantile mixed models
- Non-parametric additive quantile models
- 6 How to do quantile regression using qgam

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In **distributional regression** we want a good model for $p(y|\mathbf{x})$.

Model is $p_m\{y|\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})\}$, where $\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})$ are parameters.

In a Gaussian model, the mean and/or variance depend on the covariates

$$y|\mathbf{x} \sim N\{y|\mu = \theta_1(\mathbf{x}), \sigma^2 = \theta_2(\mathbf{x})\},$$

where $\mu = \mathbb{E}(y|\mathbf{x})$ and $\sigma^2 = \text{Var}(y|\mathbf{x})$.

Figure: Gaussian model with variable mean. In mgcv: gam(y~s(x), family=gaussian).

Figure: Gaussian model with variable mean and variance. In $mgcv: gam(list(y^s(x), s(x)), family=gaulss)$.

Lots of options for $p_m(y|\mathbf{x})$: binomial, gamma, Poisson, Tweedie...

We consider continuous (not discrete) y.

Let $F(y|\mathbf{x})$ be $Prob(Y \leq y|\mathbf{x})$.

The τ -th $(\tau \in (0,1))$ quantile is $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Given $p_m(y|\mathbf{x})$ we can get the conditional quantiles $\mu_{\tau}(\mathbf{x})$.

Quantile regression estimates conditional quantiles $\mu_{\tau}(\mathbf{x})$ directly.

No model for $p(y|\mathbf{x})$.

The τ -th quantile is

$$\mu = F^{-1}(\tau | \mathbf{x}),$$

but also the minimizer of

$$L(\mu|\mathbf{x}) = \mathbb{E}\{ \rho_{\tau}(y-\mu)|\mathbf{x} \},$$

where

$$\rho_{\tau}(z) = (\tau - 1)z\mathbb{1}(z < 0) + \tau z\mathbb{1}(z \ge 0),$$

is the "pinball" loss.

In linear quantile regression $\mu_{\tau}(\mathbf{x}) = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} = \beta_1 x_1 + \dots \beta_p x_p$.

 $\hat{oldsymbol{eta}}$ is the minimizer of total pinball loss

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} L_{\boldsymbol{y}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \rho_{\tau}(y_{i} - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i}).$$

In additive quantile regression $\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_{j}(\mathbf{x})$.

 f_i 's can be fixed, random or smooth effects.

 $\hat{oldsymbol{eta}}$ is the minimizer of total **penalized** pinball loss

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{eta} ig\{ L_y(oldsymbol{eta}) + \mathsf{Pen}(oldsymbol{eta}) ig\}.$$

where $Pen(\beta)$ penalizes the complexity of the f_j 's.

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 Linear quantile mixed models
- Non-parametric additive quantile models
- 6 How to do quantile regression using qgam

Median income is a better indicator of how the "average" person is doing, relative to mean income.

The median is also more resistant to outliers.

Some quantiles are more important than others:

- electricity producers need to satisfy top electricity demand
- urban planners need estimates of extreme rainfall

Effect of explanatory variables may depend on quantile

$$q_{\tau}(\mathsf{Demand}) = f_1(\mathsf{Temp}) + f_2(\mathsf{TimeOfYear}) + f_3(\mathsf{Trend}) + f_4(\mathsf{Holiday}) + \cdots$$

$$q_{\tau}(\mathsf{RT}) = f_1(\mathsf{Subject}) + f_2(\mathsf{Trial}) + f_3(\mathsf{WordFrequency}) + f_4(\mathsf{WordLength}) + \cdots$$

No assumptions on $p(y|\mathbf{x})$:

- no need to find good model for $p(y|\mathbf{x})$;
- no need to find normalizing transformations (e.g. Box-Cox);

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 Linear quantile mixed models
- Non-parametric additive quantile models
- 6 How to do quantile regression using qgam

Linear quantile mixed models

Suppose we have data on bone density (bd) as a function of age.

We have m subjects and n data pairs per subject

- subj 1: $\{bd_{11}, age_{11}\}, \dots, \{bd_{n1}, age_{n1}\}$
- subj j: $\{bd_{1j}, age_{1j}\}, \ldots, \{bd_{nj}, age_{nj}\}$
- subj m: $\{bd_{1m}, age_{1m}\}, \ldots, \{bd_{nm}, age_{nm}\}$

Standard linear quantile model ignores individual differences

$$\mu_{\tau}(age_{ij}) = \alpha + \beta age_{ij}.$$

We can include random intercept per subject

$$\mu_{\tau}(age_{ij}) = \alpha + \beta age_{ij} + a_j,$$

where $\mathbf{a} = \{\mathsf{a}_1, \dots, \mathsf{a}_m\} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}).$

Linear quantile mixed models

We can also include random slopes

$$\mu_{\tau}(age_{ij}) = \alpha + (\beta + b_i)age_{ij} + a_i$$

where $\mathbf{a} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{a}})$ and $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{b}})$.

Linear quantile mixed models

In qgam (as in mgcv) random effect are specified as:

In simplest case $\mathbf{\Sigma_a} = \gamma_{\mathbf{a}} \mathbf{I}$ and $\mathbf{\Sigma_b} = \gamma_{\mathbf{b}} \mathbf{I}$, that is

$$\Sigma_{\mathbf{a}} = \begin{bmatrix} \gamma_{\mathbf{a}} & 0 & 0 & \dots & 0 \\ 0 & \gamma_{\mathbf{a}} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \gamma_{\mathbf{a}} \end{bmatrix}$$

Variances γ_a and γ_b must be estimated (afternoon session).

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 Linear quantile mixed models
- Non-parametric additive quantile models
- 6 How to do quantile regression using qgam

In additive modelling

$$\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_j(\mathbf{x}),$$

where f_j can be fixed, random or smooth effects. Example

$$\mu_{\tau}(\mathsf{age}_{ij}) = \alpha + \mathsf{a}_j + f(\mathsf{age}_{ij})$$

where f a non-linear smooth function.

Smooth effects built using spine bases

$$f(age) = \sum_{k=1}^{r} \beta_k b_k(age)$$

where β_k are unknown coeff and $b_k(age)$ are known spline basis functions.

Example 1: B-splines

Figure: B-spline basis (left) and smooth (right). Courtesy of Simon Wood.

Example 2: Thin plate regression splines (TPRS)

Figure: Rank 7 TPRS basis. Image from Wood (2006).

Figure: Rank 17 2D TPRS basis. Courtesy of Simon Wood.

In general

$$f(\mathbf{x}) = \sum_{k=1}^{r} \beta_k b_k(\mathbf{x}).$$

To determine complexity of $f(\mathbf{x})$:

- the basis rank r is large enough for sufficient flexibility
- ullet a Gaussian prior on eta controls the wiggliness of the effects

In morning practical we'll see only 1D effects.

More complex effects explained in the afternoon.

In qgam or mgcv:

$$qgam(y ~1 + s(x1, bs = "tp") + s(x2, bs = "cr"), ...)$$

Model selection

In probabilistic regression we can use Akaike Information Criterion (AIC):

$$AIC = \underbrace{-2 \log p(\mathbf{y}|\beta)}_{\text{goodness of fit}} + \underbrace{2p}_{\text{model complexity}}$$

If $AIC_{m1} < AIC_{m2}$ choose model 1.

In quantile regression pinball loss substitutes likelihood $\log p(\mathbf{y}|\beta)$.

Maybe justifiable for median regression ($\tau = 0.5$).

Practical approach: choose model with lowest AIC at median and use it for other quantiles.

Probably better: choose model on mean model and use it for quant reg.

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 Linear quantile mixed models
- Non-parametric additive quantile models
- **10** How to do quantile regression using qgam

Conclusions

THANK YOU!

Figure: Examples of quantile GAMs from Fasiolo et al. (2017).

References I

Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2017). Fast calibrated additive quantile regression. *arXiv preprint arXiv:1707.03307*.