Hyper-local root DNS

JÖRG BACKSCHUES - 6. DDI USER GROUP 12/2022

DNS-Server & Client

Authoritative DNS-Server

- verantwortlich für eine bestimmte Zone (z.B. Zone "net" oder Zone "backschues.net")
- verwaltet die Resource Records (RR) für eine bestimmte Zone

non-authoritative / recursive / caching DNS-Server

- holt sich Resource Records von den verschiedenen authoritative DNS-Servern der einzelnen Zonen, setzt sie zusammen und gibt sie an den Sub Resolver eines Clients weiter
- rekursive Vorgehensweise: 1. TLD 2. (Sub-) Domains ... X. Hostname

Client Sub Resolver

• eigentlicher Empfänger der DNS-Informationen (RRs)

Namesauflösung

host.example.com

Analyse einer DNS-Infrastruktur

- Wo befinden sich authoritative / recursive DNS-Server?
- Klassifizierung von Clients (Applikationen / Benutzer)
- Welche RRs benötigt ein Client (split-horizon DNS Situation)?
- Welcher Client fragt welchen DNS-Server ab?
- Welche RRs werden von den Clients abgefragt?

 (Chromium based browsers & DNS https://brainattic.in/blog/2020/06/03/chromium-based-browsers-dns/)

Anfragen beim DNS root

RFC 6761 name	As of Nov 2022	Past 3 months	Historic Low	Historic High
LOCAL	8.745%	7.280%	2.360%	8.069%
TEST	0.653%	0.235%	0.008%	0.345%
LOCALHOST	0.519%	0.525%	0.206%	0.561%
INVALID	0.359%	0.373%	0.191%	0.485%
ONION	0.012%	0.012%	0.002%	0.017%

RFC 6761 Special-Use Domain Names

EXAMPLE	Frequently used string	As of Nov 2022	Past 3 months	Historic Low	Historic High
	INTERNAL	4.468%	3.969%	0.301%	4.058%
	HOME	1.731%	1.626%	1.515%	4.279%
	стс	1.200%	1.130%	0.000%	1.156%
	DHCP	1.196%	1.328%	0.206%	1.618%
	BBROUTER	1.077%	1.069%	0.000%	1.443%
1/4	LAN	0.871%	0.681%	0.469%	1.306%
	WIFI	0.554%	0.495%	0.000%	0.578%

(root Server Statistiken: https://ithi.research.icann.org/graph-m3.html)

Performance & Privacy

- Query Time
 - NXDOMAIN

```
dig thisdoesnotexsists @b.root-servers.net
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 46293
[...]
;; Query time: 16 msec
;; SERVER: 2001:500:200::b#53(2001:500:200::b)
[...]</pre>
```

- Special-Use Domain Names / Leaked strings
 - Auswertung von (evtl. internen) Anfragen möglich

Historie Hyperlocal DNS

- RFC 7706 (obsolet): Decreasing Access Time to Root Servers by Running One on Loopback (November 2015)
 - "longer-than-desired round-trip times […]"
 - "Some DNS recursive resolver operators want to prevent snooping of requests sent to DNS root servers by third parties"
- RFC 88o6: Running a Root Server Local to a Resolver (Juni 2020)
 - "Added the idea that a recursive resolver using this design might switch to using the normal (remote) root servers if the local root server fails."
 - "Refreshed the list of where one can get copies of the root zone."
 - "Added examples of other resolvers and updated the existing examples."

Hyperlocal root DNS

Performance & Privacy

- Query Time
 - NXDOMAIN

```
dig thisdoesnotexsists @10.64.64.1
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 16394
[...]
;; Query time: 0 msec
;; SERVER: 10.64.64.1#53(10.64.64.1)
[...]</pre>
```

- Special-Use Domain Names / Leaked strings
 - (Interne) Anfragen werden bereits vom lokalen Resolver beantwortet.

Referenz Umsetzung bind

• bind 9.14 basierend auf fest integrierter IANA root zone Daten

```
zone "." {
    type mirror;
};
```

• Bind 9.12

```
zone "." {
   type slave;
   file "/var/cache/bind/slave/db.root";
   notify no;
   masters {
      199.9.14.201;  # b.root-servers.net
      2001:500:200::b; # b.root-servers.net
      [...]
   };
};
```

(RFC 8806 https://www.rfc-editor.org/rfc/rfc8806)

Referenz Umsetzung unbound

• unbound 1.8

```
auth-zone:
name: "."
    master: 199.9.14.201  # b.root-servers.net
    master: 192.33.4.200::b # b.root-servers.net
    [...]
    fallback-enabled: yes
    for-downstream: no
    for-upstream: yes

(RFC 8806 < https://www.rfc-editor.org/rfc/rfc8806>)
```

Referenz Umsetzung Windows Server

• Windows 2012

(RFC 88o6 < https://www.rfc-editor.org/rfc/rfc88o6 >)

Betrieb eines Hyperlocal root DNS

Monitoring

- Überwachung der AXFRs,
- Monitoring SOA der lokale Kopie der root Zone

Statistik

- in der Regel 1-3 neue Versionen der root Zone pro Tag
- aktuell ca. 1,7 MB Größe
- ca. 1500 TLDs

Verfügbarkeit & Zuverlässigkeit

unbound Setup: innerhalb der letzten 3 Jahre stabil

(Geoff Huston: Expanding the DNS Root: Hyperlocal vs NSEC Caching https://www.potaroo.net/ispcol/2019-04/root.html)

Hyperlocal DNS abseits von root Zone

- DNS Open Zone Data
 - Estonia
 - France
 - Slovakia
 - Switzerland
 - Sweden and Niue
- Sinnhaftigkeit?
 - Zuverlässigkeit der AXFRs
 - Größe der Zonen ca. 5 GB

(DNS open zone data https://jpmens.net/2021/05/18/dns-open-zone-data/)

Einsatz eines Hyperlocal root DNS

- Empfehlung: Netze mit Endbenutzern/-Geräten
 - Access Netze (z.B. WLAN)
 - Browser-Sessions
 - unkontrollierte Abfragen an den DNS
- eher nicht: Netze mit Servern & Applikationen
 - Netze mit Server & Applikationen
 - kontrollierte Abfragen an den DNS
 - Risiko-Minimierung, dass root Zone nicht zur Verfügung steht.

Vielen Dank!

OFFEN FÜR FRAGEN & DISKUSSION