

ME613 - Análise de Regressão

Parte 9

Benilton S Carvalho - 1S2020

Modelo de Regressão Polinomial

Introdução

Podemos considerar funções polinomiais como um caso particular do modelo de regressão linear já visto.

Modelo com um preditor - segunda ordem

$$Y = \beta_0 + \beta_1 X_* + \beta_2 X_*^2 + \varepsilon$$

em que $X_* = X - \bar{X}$.

Função de resposta quadrática.

 β_0 : valor esperado de Y quando X_* é zero, isto é, $X=\bar{X}$.

 β_1 : coeficiente de efeito linear.

 β_2 : coeficiente de efeito quadrático.

Modelo com um preditor - terceira ordem

$$Y = \beta_0 + \beta_1 X_* + \beta_2 X_*^2 + \beta_3 X_*^3 + \varepsilon$$

em que $X_* = X - \bar{X}$.

Exemplos:

Modelo com dois preditores - segunda ordem

$$Y=\beta_0+\beta_1 X_{1*}+\beta_2 X_{1*}^2+\beta_3 X_{2*}+\beta_4 X_{2*}^2+\beta_5 X_{1*} X_{2*}+\varepsilon$$
 em que $X_{1*}=X_1-\bar{X}_1$ e $X_{2*}=X_2-\bar{X}_2$.

$$E(Y) = 1740 - 4X_{1*}^2 - 3X_{2*}^2 - 3X_{1*}X_{2*}$$

Método hierárquico de ajuste de modelo

Pode-se começar com um modelo de segunda ou terceira ordem e ir testando se os coeficientes de ordem maiores são significativos.

Por exemplo:

$$Y = \beta_0 + \beta_1 X_* + \beta_2 X_*^2 + \beta_3 X_*^3 + \varepsilon$$

Para testar se $\beta_3=0$ podemos utilizar $SQReg(X_*^3\mid X_*,X_*^2)$. Se quisermos testar se $\beta_2=\beta_3=0$:

$$SQReg(X_*^2, X_*^3 \mid X_*) = SQReg(X_*^2 \mid X_*) + SQReg(X_*^3 \mid X_*, X_*^2)$$

Se um termo de ordem mais alta é mantido no modelo, os de ordem mais baixa devem obrigatoriamente ser mantidos também.

Y: número de ciclos

```
X_1: carga, X_{1*} = (X_1 - \bar{X}_1)/0.4.
```

 X_2 : temperatura, $X_{2*} = (X_2 - \bar{X}_2)/10$.

Υ	X1	X2	x1	x2	
150	0.6	10	-1	-1	
86	1.0	10	0	-1	
49	1.4	10	1	-1	
288	0.6	20	-1	0	
157	1.0	20	0	0	
131	1.0	20	0	0	
184	1.0	20	0	0	
109	1.4	20	1	0	
279	0.6	30	-1	1	
235	1.0	30	0	1	
224	1.4	30	1	1	

Correlação entre X_1 e X_1^2 : 0.99.

Correlação entre X_{1*} e X_{1*}^2 : 0.

Correlação entre X_2 e X_2^2 : 0.99.

Correlação entre X_{2*} e X_{2*}^2 : 0.

$$Y = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{2*} + \beta_3 X_{1*}^2 + \beta_4 X_{2*}^2 + \beta_5 X_{1*} X_{2*} + \varepsilon$$

```
\label{eq:modelo} $$ \mod (Y \sim x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2), data=dados) $$ summary(modelo)$$
```

```
##
              Estimate Std. Error t value Pr(>|t|)
                        16.60761 9.8052730 0.000187839
## (Intercept) 162.84211
## x1
       -55.83333
                        13.21670 -4.2244519 0.008292287
## x2
       75.50000
                        13.21670 5.7124677 0.002297266
## I(x1^2) 27.39474
                        20.34008 1.3468353 0.235856323
## I(x2^2) -10.60526
                        20.34008 -0.5213973 0.624352247
## I(x1 * x2) 11.50000
                        16.18709 0.7104426 0.509183728
```



```
library(alr3)
pureErrorAnova(modelo)
```

```
## Analysis of Variance Table
##
## Response: Y
             Df Sum Sq Mean Sq F value Pr(>F)
##
            1 18704 18704 26.6315 0.03556 *
## x1
## x2
             1 34202 34202 48.6970 0.01992 *
## I(x1^2) 1 1646 1646 2.3436 0.26546
## I(x2^2) 1 285 285 0.4057 0.58935
## I(x1 * x2) 1 529 529 0.7532 0.47696
## Residuals 5 5240 1048
## Lack of fit 3 3836 1279 1.8205 0.37378
## Pure Error 2 1405
                       702
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Não rejeitamos H_0 , isto é, não encontramos evidências para rejeitar que o modelo de segunda ordem é um bom ajuste

Será que um modelo de primeira ordem já seria suficiente?

$$Y = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{2*} + \beta_3 X_{1*}^2 + \beta_4 X_{2*}^2 + \beta_5 X_{1*} X_{2*} + \varepsilon$$

$$H_0$$
: $\beta_3 = \beta_4 = \beta_5 = 0$.

 H_a : pelo menos um entre β_3, β_4 e β_5 é diferente de zero.

- $H_0: \beta_q = \beta_{q+1} = \dots = \beta_{p-1} = 0.$
- H_1 : pelo menos um $\beta_q, \ldots, \beta_{p-1}$ não é zero.

(por conveniência, a notação assume que os últimos p-q coeficientes do modelo serão testados)

Estatística do teste:

$$F^* = \frac{SQReg(X_q, \dots, X_{p-1} \mid X_1, \dots, X_{q-1})}{p-q} \div \frac{SQE(X_1, \dots, X_{p-1})}{n-p}$$

$$\underset{\sim}{\text{sob}} H_0$$

$$F_{p-q,n-p}$$

$$p = 6$$

$$n = 11$$

$$q = 3$$

$$F^* = \frac{SQReg(X_{1*}^2, X_{2*}^2, X_{1*}X_{2*} \mid X_{1*}, X_{2*})/3}{SQE(X_{1*}, X_{2*}, X_{1*}^2, X_{2*}^2, X_{1*}X_{2*})/5} \overset{\text{sob}}{\sim} H_0}{\sim} F_{3,5}$$

$$SQReg(X_{1*}^2, X_{2*}^2, X_{1*}X_{2*} \mid X_{1*}, X_{2*}) = SQReg(X_{1*}^2 \mid X_{1*}, X_{2*})$$

$$+ SQReg(X_{2*}^2 \mid X_{1*}, X_{2*}, X_{1*}^2)$$

$$+ SQReg(X_{1*}^2 \mid X_{1*}, X_{2*}, X_{1*}^2)$$

$$+ SQReg(X_{1*}X_{2*} \mid X_{1*}, X_{2*}, X_{1*}^2)$$

$$= 1646 + 284.9 + 529$$

$$= 2459.9$$

$$F_{obs} = \frac{2459.9/3}{1048.1} = 0.7823363$$

Comparando com F(0.95; 3, 5) = 5.41, não encontramos evidências contra a hipótese nula.

```
modeloreduz <- lm(Y ~ x1 + x2,data=dados)
anova(modeloreduz, modelo)

## Analysis of Variance Table
##
## Model 1: Y ~ x1 + x2
## Model 2: Y ~ x1 + x2 + I(x1^2) + I(x2^2) + I(x1 * x2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 7700.3
## 2 5 5240.4 3 2459.9 0.7823 0.5527
```


Modelo de primeira ordem:

$$Y = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{2*} + \varepsilon$$

```
modelo1 <- lm(Y ~ x1 + x2,data=dados)
summary(modelo1)$coef</pre>
```

```
## (Intercept) 172.00000 9.354346 18.387175 7.880002e-08

## x1 -55.83333 12.665844 -4.408181 2.261894e-03

## x2 75.50000 12.665844 5.960913 3.378234e-04
```


Modelo de primeira ordem (variáveis nas escalas originais):

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

```
modelo1 <- lm(Y ~ X1 + X2, data=dados)
summary(modelo1)$coef</pre>
```

```
## (Intercept) 160.5833 41.615451 3.858743 0.0048174887

## X1 -139.5833 31.664611 -4.408181 0.0022618941

## X2 7.5500 1.266584 5.960913 0.0003378234
```


Modelo de Regressão com Interação

Efeitos de interação

Um modelo de regressão com p-1 variáveis preditoras com efeitos aditivos tem função de regressão da forma:

$$E(Y) = f_1(X_1) + f_2(X_2) + \dots + f_{p-1}(X_{p-1})$$

em que f_1, f_2, \dots, f_{p-1} podem ser quaisquer funções.

Por exemplo:

$$E(Y) = \underbrace{\beta_0 + \beta_1 X_1 + \beta_2 X_1^2}_{f_1(X_1)} + \underbrace{\beta_3 X_2}_{f_2(X_2)}$$

O efeito de X_1 e X_2 em Y é aditivo.

Efeitos de interação

Já no exemplo a seguir, o efeito não é aditivo, há efeito de interação:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_3 X_1 X_2$$

Outro exemplo:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3$$

O efeito de uma variável sobre Y irá depender do nível da variável com a qual ela interage.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Suponha que $X_1 = a$:

$$E(Y) = \beta_0 + \beta_1 a + \beta_2 X_2 + \beta_3 a X_2$$

Suponha que $X_1 = a + 1$:

$$E(Y) = \beta_0 + \beta_1(a+1) + \beta_2 X_2 + \beta_3(a+1)X_2$$

Diferença no valor esperado de Y quando aumentamos X_1 em 1 unidade:

$$\beta_0 + \beta_1(a+1) + \beta_2 X_2 + \beta_3(a+1)X_2 - (\beta_0 + \beta_1 a + \beta_2 X_2 + \beta_3 a X_2)$$
$$= \beta_1 + \beta_3 X_2$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Suponha que $X_2 = a$:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 a + \beta_3 X_1 a$$

Suponha que $X_2 = a + 1$:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 (a+1) + \beta_3 X_1 (a+1)$$

Diferença no valor esperado de Y quando aumentamos X_2 em 1 unidade:

$$\beta_0 + \beta_1 X_1 + \beta_2 (a+1) + \beta_3 X_1 (a+1) - (\beta_0 + \beta_1 X_1 + \beta_2 a + \beta_3 X_1 a)$$
$$= \beta_2 + \beta_3 X_1$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Diferença no valor esperado de Y quando aumentamos X_1 em 1 unidade:

$$\frac{\partial E(Y)}{\partial X_1} = \beta_1 + \beta_3 X_2$$

Diferença no valor esperado de Y quando aumentamos X_2 em 1 unidade:

$$\frac{\partial E(Y)}{\partial X_2} = \beta_2 + \beta_3 X_1$$

Modelo aditivo:

$$E(Y) = 10 + 2X_1 + 5X_2$$

 β_1 : mudança no valor esperado de Y quando X_1 aumenta em 1 unidade, mantendo X_2 constante.

Mantendo X_2 constante: não importa se $X_2=1$ ou $X_2=3$ o efeito é sempre β_1 no valor esperado quando X_1 aumenta em 1 unidade (retas paralelas).

Modelo com interação:

$$E(Y) = 10 + 2X_1 + 5X_2 + 0.5X_1X_2$$

Se $X_2 = 1$:

$$E(Y) = 10 + 2X_1 + 5 \times 1 + 0.5X_1 \times 1 = 15 + 2.5X_1$$

Se $X_2 = 3$:

$$E(Y) = 10 + 2X_1 + 5 \times 3 + 0.5X_1 \times 3 = 25 + 3.5X_1$$

Para avaliarmos o efeito de 1 unidade de aumento em X_1 , devemos considerar o valor de X_2 (retas não paralelas).

$$E(Y) = 65 + 3X_1 + 4X_2 - 10X_1^2 - 15X_2^2 + 35X_1X_2$$

Se $X_1 = 1$:

$$E(Y) = 65 + 3 \times 1 + 4X_2 - 10 \times (1^2) - 15X_2^2 + 35 \times 1 \times X_2$$
$$E(Y) = 58 + 39X_2 - 15X_2^2$$

Se $X_1 = -1$:

$$E(Y) = 65 + 3 \times (-1) + 4X_2 - 10 \times (-1^2) - 15X_2^2 + 35 \times (-1) \times X_2$$
$$E(Y) = 52 - 31X_2 - 15X_2^2$$

 X_1 : tríceps, $X_{1*} = X_1 - \bar{X}_1$.

 X_2 : coxa, $X_{2*} = X_2 - \bar{X}_2$.

 X_3 : antebraço, $X_{3*} = X_1 - \bar{X}_3$.

Y: gordura corporal

X1	X2	Х3	Υ	x1	x2	х3	
19.5	43.1	29.1	11.9	-5.805	-8.07	1.48	
24.7	49.8	28.2	22.8	-0.605	-1.37	0.58	
30.7	51.9	37.0	18.7	5.395	0.73	9.38	
29.8	54.3	31.1	20.1	4.495	3.13	3.48	
19.1	42.2	30.9	12.9	-6.205	-8.97	3.28	
25.6	53.9	23.7	21.7	0.295	2.73	-3.92	
31.4	58.5	27.6	27.1	6.095	7.33	-0.02	
27.9	52.1	30.6	25.4	2.595	0.93	2.98	
22.1	49.9	23.2	21.3	-3.205	-1.27	-4.42	
25.5	53.5	24.8	19.3	0.195	2.33	-2.82	
31.1	56.6	30.0	25.4	5.795	5.43	2.38	
30.4	56.7	28.3	27.2	5.095	5.53	0.68	
18.7	46.5	23.0	11.7	-6.605	-4.67	-4.62	
19.7	44.2	28.6	17.8	-5.605	-6.97	0.98	
14.6	42.7	21.3	12.8	-10.705	-8.47	-6.32	
29.5	54.4	30.1	23.9	4.195	3.23	2.48	
27.7	55.3	25.7	22.6	2.395	4.13	-1.92	
30.2	58.6	24.6	25.4	4.895	7.43	-3.02	
22.7	48.2	27.1	14.8	-2.605	-2.97	-0.52	
25.2	51.0	27.5	21.1	-0.105	-0.17	-0.12	

$$E(Y) = \beta_0 + \beta_1 X_{1*} + \beta_2 X_{2*} + \beta_3 X_{3*} + \beta_4 X_{1*} X_{2*} + \beta_5 X_{1*} X_{3*} + \beta_6 X_{2*} X_{3*} + \varepsilon$$

```
modelo <- lm(Y \sim x1 + x2 + x3 + I(x1*x2) + I(x1*x3) + I(x2*x3), data=dat) summary(modelo)$coef
```

```
## (Intercept) 20.526893531 1.07362646 19.1192136 6.699796e-11
## x1 3.437808068 3.57866572 0.9606396 3.542612e-01
## x2 -2.094717339 3.03676957 -0.6897848 5.024579e-01
## x3 -1.616337237 1.90721068 -0.8474875 4.120550e-01
## I(x1 * x2) 0.008875562 0.03085046 0.2876963 7.781144e-01
## I(x1 * x3) -0.084790836 0.07341774 -1.1549093 2.689155e-01
## I(x2 * x3) 0.090415385 0.09200130 0.9827621 3.436619e-01
```


anova(modelo)

```
## Analysis of Variance Table
##
## Response: Y
##
           Df Sum Sq Mean Sq F value Pr(>F)
## x1 1 352.27 352.27 52.2238 6.682e-06 ***
## x2
           1 33.17 33.17 4.9173 0.04503 *
## x3
      1 11.55 11.55 1.7117 0.21343
## I(x1 * x2) 1 1.50 1.50 0.2217 0.64552
## I(x1 * x3) 1 2.70 2.70 0.4009 0.53760
## I(x2 * x3) 1 6.51 6.51 0.9658 0.34366
## Residuals 13 87.69 6.75
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


$$H_0$$
: $\beta_4 = \beta_5 = \beta_6 = 0$

 H_1 : pelo menos um dentre $\beta_4, \beta_5, \beta_6$ é diferente de 0.

$$p = 7$$

$$n = 20$$

$$q = 4$$

$$F^* = \frac{SQReg(X_{1*}X_{2*}, X_{1*}X_{3*}, X_{2*}X_{3*} \mid X_{1*}, X_{2*}, X_{3*})/3}{SQE(X_{1*}, X_{2*}, X_{3*}, X_{1*}X_{2*}, X_{1*}X_{3*}, X_{2*}X_{3*})/13} \sim F_{3,13}$$

$$SQReg(X_{1*}X_{2*}, X_{1*}X_{3*}, X_{2*}X_{3*} \mid X_{1*}, X_{2*}, X_{3*}) = SQReg(X_{1*}X_{2*} \mid X_{1*}, X_{2*}, X_{3*}) + SQReg(X_{1*}X_{3*} \mid X_{1*}, X_{2*}, X_{3*}, X_{1*}X_{2*}) + SQReg(X_{2*}X_{3*} \mid X_{1*}, X_{2*}, X_{3*}, X_{1*}X_{2*}, X_{1*}X_{3*}) = 1.5 + 2.7 + 6.514836 = 10.714836$$

$$F_{obs} = \frac{10.714836/3}{6.7} = 0.5330764$$

Comparando com F(0.95; 3, 13) = 3.41, não encontramos evidências contra a hipótese nula.


```
modeloreduz <- lm(Y ~ x1 + x2 + x3,data=dat)
anova(modeloreduz,modelo)

## Analysis of Variance Table
##
## Model 1: Y ~ x1 + x2 + x3
## Model 2: Y ~ x1 + x2 + x3 + I(x1 * x2) + I(x1 * x3) + I(x2 * x3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 16 98.405
## 2 13 87.690 3 10.715 0.5295 0.6699
```


Preditores Qualitativos

Y = meses até a implementação

 X_1 = tamanho da firma (em milhões de dólares)

$$X_2 = \begin{cases} 1, & \text{se a firma tem açoes na bolsa} \\ 0, & \text{caso contrário} \end{cases}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Se a firma não tem ações na bolsa, então $X_2 = 0$:

$$E(Y) = \beta_0 + \beta_1 X_1$$

Se a firma tem ações na bolsa, então $X_2 = 1$:

$$E(Y) = (\beta_0 + \beta_2) + \beta_1 X_1$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	33.8741	1.8139	18.6751	0
X1	-0.1017	0.0089	-11.4430	0
X2	8.0555	1.4591	5.5208	0

Incluindo termo de interação:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

Se a firma não tem ações na bolsa, então $X_2 = 0$:

$$E(Y) = \beta_0 + \beta_1 X_1$$

Se a firma tem ações na bolsa, então $X_2 = 1$:

$$E(Y) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	33.8384	2.4406	13.8645	0.0000
X1	-0.1015	0.0131	-7.7786	0.0000
X2	8.1313	3.6541	2.2253	0.0408
I(X1 * X2)	-0.0004	0.0183	-0.0228	0.9821

Exemplo: Desgaste (Y), velocidade (X_1) e modelo de uma peça.

Existem 4 tipos de modelos: M1, M2, M3 e M4.

Definimos 3 variáveis "dummy":

$$X_2 = \begin{cases} 1, & \text{se M1} \\ 0, & \text{caso contrário} \end{cases}$$

$$X_3 = \begin{cases} 1, & \text{se M2} \\ 0, & \text{caso contrário} \end{cases}$$

$$X_4 = \begin{cases} 1, & \text{se M3} \\ 0, & \text{caso contrário} \end{cases}$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Se a peça é do tipo M4:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 \times 0 + \beta_3 \times 0 + \beta_4 \times 0 = \beta_0 + \beta_1 X_1$$

Se a peça é do tipo M1:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 \times 1 + \beta_3 \times 0 + \beta_4 \times 0 = (\beta_0 + \beta_2) + \beta_1 X_1$$

Se a peça é do tipo M2:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 \times 0 + \beta_3 \times 1 + \beta_4 \times 0 = (\beta_0 + \beta_3) + \beta_1 X_1$$

Se a peça é do tipo M3:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 \times 0 + \beta_3 \times 0 + \beta_4 \times 1 = (\beta_0 + \beta_4) + \beta_1 X_1$$

O modelo de primeira ordem implica no fato de que o efeito da velocidade é linear e com o mesmo coeficiente angular para todos os modelos de peça. Temos diferentes interceptos para cada modelo.

- β_1 : mudança esperada no desgaste da peça (Y) para cada unidade de aumento na velocidade (X_1), considerando mesmo modelo de peça.
- β_2 : diferença esperada do desgaste da peça entre modelos M1 e M4, considerando a mesma velocidade.
- β_3 : diferença esperada do desgaste da peça entre modelos M2 e M4, considerando a mesma velocidade.
- β_4 : diferença esperada do desgaste da peça entre modelos M3 e M4, considerando a mesma velocidade.

Qual a diferença esperada do desgaste da peça entre modelos M3 e M2, mantendo a mesma velocidade?

Para modelo M3:

$$E(Y) = (\beta_0 + \beta_4) + \beta_1 X_1$$

Para modelo M2:

$$E(Y) = (\beta_0 + \beta_3) + \beta_1 X_1$$

A diferença entre M3 e M2, mantendo a mesma velocidade:

$$(\beta_0 + \beta_4) + \beta_1 X_1 - [(\beta_0 + \beta_3) + \beta_1 X_1] = \beta_4 - \beta_3$$

Após obtermos estimativas: $\hat{\beta}_4 - \hat{\beta}_3$ e devemos também fornecer o erro-padrão da estimativa.

Lembre que:

$$Var(\hat{\beta}_4 - \hat{\beta}_3) = Var(\hat{\beta}_4) + Var(\hat{\beta}_3) - 2Cov(\hat{\beta}_4, \hat{\beta}_3)$$

Y: resíduo de sabão

 X_1 : velocidade

$$X_2 = \begin{cases} 1, & \text{se produção na linha 1} \\ 0, & \text{caso contrário} \end{cases}$$

Υ	X1	X2
218	100	1
248	125	1
360	220	1
351	205	1
470	300	1
394	255	1
332	225	1
321	175	1
410	270	1
260	170	1
241	155	1
331	190	1
275	140	1
425	290	1
367	265	1

Iremos ajustar um modelo assumindo que:

- a relação entre a quantidade de resíduo e velocidade é linear para as duas linhas de produção;
- retas diferentes para as duas linhas de produção;
- · as variâncias dos termos de erros ao redor de cada reta são iguais.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Para a linha 1: $E(Y) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1$.

Para a linha 2: $E(Y) = \beta_0 + \beta_1 X_1$.

Se quisermos testar a hipótese nula de que temos apenas uma reta para representar as duas linhas:

$$H_0: \beta_2 = \beta_3 = 0$$

 H_a : pelo menos um entre β_2 e β_3 é diferente de zero.

Estatística do teste:

$$F^* = \frac{SQReg(X_q, \dots, X_{p-1} \mid X_1, \dots, X_{q-1})}{p-q} \div \frac{SQE(X_1, \dots, X_{p-1})}{n-p}$$

$$sob_{\sim} H_0 \atop \sim F_{p-q,n-p}$$

$$p = 4$$

$$n = 27$$

$$q = 2$$

$$F^* = \frac{SQReg(X_2, X_1X_2 \mid X_1)/2}{SQE(X_1, X_2, X_1X_2)/23} \stackrel{\text{sob}}{\sim} H_0 F_{2,23}$$

$$SQReg(X_2, X_1X_2 \mid X_1) = SQReg(X_2 \mid X_1) + SQReg(X_1X_2 \mid X_1, X_2 \mid X_1, X_2 \mid X_2, X_1X_2 \mid X_1, X_2 \mid X_2 \mid X_1) + SQReg(X_1X_2 \mid X_1, X_2 \mid X_2, X_1X_2 \mid X_1, X_2 \mid$$

Comparando com F(0.95; 2, 23) = 3.42, encontramos evidências contra a hipótese nula.


```
modeloreduz <- lm(Y ~ X1, data=dados)
anova(modeloreduz, modelo)

## Analysis of Variance Table
##
## Model 1: Y ~ X1
## Model 2: Y ~ X1 + X2 + I(X1 * X2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 25 29407.8
## 2 23 9904.1 2 19504 22.646 3.669e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Se quisermos testar a hipótese nula de que para as duas linhas de produção o coeficiente angular é o mesmo:

$$H_0: \beta_3 = 0$$

$$H_a$$
: $\beta_3 \neq 0$.

$$p = 4$$

$$n = 27$$

$$q = 3$$

$$F^* = \frac{SQReg(X_1X_2 \mid X_1, X_2)/1}{SQE(X_1, X_2, X_1X_2)/23} \stackrel{\text{sob}}{\sim} H_0$$

$$F_{obs} = \frac{809.6/1}{430.6} = 1.8801672$$

Comparando com F(0.95;1,23)=4.28, não encontramos evidências contra a hipótese nula.

Agradecimento

Slides criados por Samara F Kiihl / IMECC / UNICAMP

Leitura

- · Applied Linear Statistical Models: Seções 8.1-8.3, 8.5-8.7.
- Faraway Linear Models with R: Capítulo 14.
- Draper & Smith Applied Regression Analysis: Capítulo 12.

