WM - Ch. 12: Somenable Groups:

G = SL (l, IR) be senisimple with finitely many connected components,

\$12.1: Definition:

Def. (12.1.3): Let H be a Lie group. H is <u>animable</u> if \forall becally convex topological vector space V, \forall Continuous actum $\varkappa: H \longrightarrow End(V)$, $\forall S \subseteq V$, $\exists S \in S$:

S is compact, cower, and H-invariant => $\alpha(H,s) = \frac{5}{5}$?

Rem. (121.4):

(i) We assume that all locally convex topological spaces are Hausdorff.

(ii) In applications, V of Def. (12.1.7) is chosen as the cheal of a separable Banach space inchowed with week-x topology.

outable, and have retrizable ase of would result in a definition of

equal strength. EX 12.3.#17

(if we convolve only second countable)

\$12.2. Examples:

- · Abelian groups, and in particular cyclic groups, are amenable.
- · Compact groups are amenable.
- · Extensions of amenable groups are amenable, wheree solvable groups are amenable.
- . Closed subgroups of amenable groups are amenable.
- · Wonatchian free groups are not anenable.
- SL(2, R) is not amenable.

Prop. (12.2.1): lyclic groups are amenable.

Lor (12.2.3) (Kakutani-Markov Fixed Point Cheorem): Every abelian group is amenable.

Prop (12.2.4): Compact groups

Except Extensions & Solvability:

G is solvable if it can be obtained by a finite sequence of extensions of abelian groups

in In: G(1) = 1, where

G(1):= G, G(1) = [G(1) G(1)]

G, H, K & Obj (Fxp). G is an extension of K by H if there is an ses 1-1 K & G H-1

are amenable.

Prop (12.2.6): ∀N ∈ Pg(H) ∩ T (H): N and the averable ⇒ H is anenable. (1 → N ← H ← H → H → 1)

(ie. amenable extensions of amenable groups are annable)

lor.(12.2.7):

(i) Every solvable group is amenable.

(ii) $\forall N \in P_{\Delta}(H)$: if N is solvable and $\forall N$ is compact, then H is animable. $(1 \rightarrow N \subset H \xrightarrow{con} H_N \rightarrow 1)$

(ie., compact extensions of solvable groups are anenable)

Prop. (12.2.8): YK & P. (H) N. if H is amerable, then so is K.

812.3. Characterizations:

Thon (12.3.1): Let H be a Lie group. Then TFAE:

AME1

(i) H is amenable, ie.,

(ii) to consect withing

(ii) & compact metrijable topological space X, &

Continuous &: H + Enol(X),

Jue Prob(X), YheH:

«(h) = 1

VV, VX: H-+ End(V), VSCV, FSES: X(H,s) = Es?, where V is a locally convox topological vector space, X is a continuous action, S is compact convex and H-cioorians.

AME3 $\rightarrow 2(\kappa_H) = 1$ (iii) I a left-invariant mean 2 on C_b(H, R)in(f) ⊆[0,∞[] = 100 [. (is) 3 left-invariant finitely-adolitive map p: L(H) - [0,1] (Libergue measurable) subsets of H. p(\$) = 0 - VILLE 3: = 2(H). P(E) = = P(LL). $\rightarrow: \rho(H) = 1 \text{ (probability)}$ [AMES] $P \ll Maar_H$ (i., $\forall L \in L(H) : Maar_H(L) = 0 \Rightarrow p(L) = 0$)

(b) The left regular representation of H on $L^2(H, R)$ has almost invariant vectors. L: HxH-H Let (V,11) be a normal vector space, $(h, x) \mapsto hx$ X: HXV-1V be an action. Then L: Hx L2(H, R) -, L2(H, R) & has abust invariant vectors if $(h, \varphi) \mapsto [L(h', y)^* \varphi]$ 1=11 ×11: N3 (X3) × £ (H)X33 × 6 × 3 × |× + (/ -1x) and sup la(k,v)-vll < E. $^{IJ}_{24g}: H \rightarrow U(L^{2}(H, \mathbb{R}))$ $h \mapsto \widehat{\mathcal{L}}(h, \cdot)$ V=V(E,K) in this case in (E,K)in the left-regular (cs VE >0, VKEJC(H), 3v=v(E,K) EV: _ invariant. representation of H on L'(H, B). ||v||=1 & ~(K,v) ⊆ BE(v).

AME 6
(vi) F a Febrer seguence Et. ? (B(H).
F. = {Fn} = B(H) is a Fplace seguence if
- Vn: 0 < Haak (Fa) < 00 and
- $\forall K \in \mathcal{K}(H)$: lim sup $\frac{Naar_{H}(F_{n} \Delta L F_{n})}{N \rightarrow \infty} = 0$.
More on hek Haary (Fn)
H is amenable () [AME 2] VX, Vd: H- End(X) Ju & Brob(X);
· Since X is compact, metrizable, & is a continuous action.
$1.7296 (Y) \subset \mathcal{D} / \mathbb{R}^{2} (Y)$
I (C°(X, R)) by Riesz Representation Cheorene (con. (B. 6.10)) Loseof ball ⊆ C°(X, R)* → Prob(X) is compact by Bonach-Alacogh Cheorene (Prop. (B. 7.4)) Ex. (12.3:2): In the setting of [AME2]
> Prob(X) is compact by Banach- Slavyle Theorem
Ex. (12.3:2) . 7 11 . 44 (Prop. (B.7.4))
100(1) is a compact convex H-invariant subset
Prob(X) is a compact conven H-invariant subset of the bocally conven topological vector space ((XIR) +.

- More on
H is amenable (=) [AME2]: [Fift-invivious mean & on Cb (HiR)
Def (12:3.6) : Let · V ≤ 1 ∞(H R) (en · V:- Ci(H R))
→ A. («v.+v2) = x 2(v) is a mean if
(mornauzed)
$\operatorname{Rem} . (12.3.7). \text{ If } \lambda \text{ in a mean, then } \ \lambda\ = 1, \text{ and have}$
26 CM lin (V, R) = V. [=X 12.3.48]
Ex. (12.3.8): Let $\varphi \in L^1(H,R): \ \varphi\ = 1$ be and subspace containing χ_H . Then $\lambda \varphi: V \longrightarrow R$ in a mean.
July of Maary is a mean.
(reft- Maar)
{24 4EL (H, P): 11411=13 is weakly dense in the nt of all means.

Rem. (12.3.10): . If. H is amenable [AME1], then there is a left-invariant mean on L. (H, R) [EX 12.3.#14] Thus we have a new criterion for amenability: AMES : There is a left-invariant mean on ·L°(H,R). · Also, if H is amenable [AMEI], then there is a mean oh La (H, R) that is both left- and rightinvariant. [FX 12.3#16] More on . 3 left-invariant finitely-adolitive His amenable (AMF4 absolutely continuous with respect to Obs: Prob(X) => (9(XIR)+ the left Haar measure on H Fintrob(x) = Loo(x, R) P: X(H) → R. (finitely-additive probability measure's)

G

· More on .. They: H-> U(L2(H, PR)) how ...
almost invariount vectors H is amerable (AMES Def. (12.3.14): Let (V, 11.11) be a normal vector space, d: H - End(V) be an action. & hos almost invariant vectors if. VEYO, VK EXH), BV=V(E,K) & V:11V11=1 & MN = Be(V). In this case v is called (E, K) - invariant. Ex (12.3.16): Consider Treg: H-+ U(L2(H,R)). (i) If H is a compact Lie group, then $X_H \in L^2(H, IR)$; whence L2(H, R) has an H-invariant unit vector.

(namely, XH itself). (ii) II H= IR, then L2 (H, IR) has no ronzers H-invariant vectors [=X 12.3. #22], though it has almost invariant (Q: Is this true for any other (unitary)) representation?

 $\forall \ \mathcal{E} > 0, \ \forall \ \mathcal{K} \in \mathcal{K}(R), \ \exists \ N \in \mathbb{Z} > 0: \ \mathbf{K} \subseteq [-N,N] \ and$ ${}^{2} /_{N} < \mathcal{E}. \ \text{Put} \ \ \mathcal{C}: = \frac{1}{N} \ \mathcal{K}_{[0,N^{2}]}. \ \text{Then}$ $\forall \ \text{is} \ \ (\mathcal{E},\mathcal{K}) - \text{invariant.} \ \text{for} \ \ \mathcal{T}_{\text{reg.}}.$

Rem. (12.3.17): - L2(H, R) has about invariant vectors.

iff L1(H, R) has about invariant vectors, thus we take the take the sectors of the weethers.

EX 12.3.#23

howe yet another criterion for amerability:

AMES T: H - End (L'(H, IR)) how AMES almost involvious vectors

. In fact, any p E[1, 00[will do [=X 12.3. #24]

AME1 \iff AMES' $\exists P \in [I, \infty [: \Pi: H \rightarrow End(L^{P}(H, IR))]$ has almost invariant vectors

· More on H is amenable (=) AMF 6

There is a Folher segmence for H.

Def. (12.3.19): F:= {Fa}, & B(H) is a Foliar seguence

- Vn: 0 < p (Fn) < a

→ VKEJK(H): line sup p(Fn A L Fn) = 0.

where p = Maary.

Ex. (12: 3.21):

(i) Vn: Fi = Bn(0) > F := {Fn}, i. in R. FX 12.3.#29

(ii) . = (a,6) has no: Folker sequences. [EX 12.4. #2]

512.4. Nonamenable Groups:

Prop. (12.4.1): Nonabelian fuer groups are not amenable. Cor. (12.4.2): Let H be a discrete group. If H auntains a ronabelian free group, then H is not amenable. Rem (12.4.3): (i) the converse of lor. (12.4.2), dubbed "von Neuman's

harjecture is false.

(ii) In Cor. (12.4.2), the discreterers assumption is recessary, eg. 50(3) is compact, hence amenable, Alternative it contains romabelion but by the lits

free groups as well.

(iii) The ronamenability of ronabelian free Relegranges of SQ(3) is

Then (4.9.1) (Tits Alternative): If N & SL(e, 18) then either A contains a ronabelion the group, or it has a finite-inclessed solvable subgroup.

related to the Banach - Tarki Parachon.

(iv) If H contains a closed nonabelian free subgroup, then H is not amenable (for any die group H).

Trop. (12.4.4): 52 (2, R) is not amenable. Oly: This SL(2, R) is an example of o: connected nonamenable die group. Prop. (12.4.5). If a connected and sensimple lie group 6 is not compact, then it is not amenable. Trop (12.4.7) (Classification of Connected, Amenable Lie - groups): A connected hie group H is amenable () JNE.Pg(td) / T(H) / Conv(H). Nin solvable & H/N is compact. (1-N - H - H/N-1)

Contain the soil of

\$ 12.5. Closed Subgroups of Amenable Groups:

vector space, $\alpha: H \rightarrow End(V)$ be a continuous action, $S \subseteq V$ be a compact conven H-invariant set.

 $\Psi \in L^{\infty}(H,S)$ is essentially $\Lambda - equivariant$ if $\Psi \lambda \in \Lambda$, $\Psi h \in_{\mathfrak{C}} H: \Psi(\lambda h) = \chi(\lambda, \Psi(h)).$

Ln (H,S):= JYEL & (H,S) | I is essentially?

1. Invariant

Ex. (12.5.2): (2) If H is discrete, La (H, G) = GH is compart by Tychoroff's Cheoren.

(ii) If H is any hie group and $S:=\overline{B,(6)}\subseteq C$, then $L^{\infty}(H,S) = B_{1}\left(L^{\infty}(H,\mathbb{R})\right)$, and so is weaken compart by the Barach- Alaogh Chester. Lem. (12.5.3). Let H be a Lie group. Then · 1 6 PS(H) 177(H), => are compact, conven · V & OG (Vot-R) • $\alpha: H \rightarrow \text{End}(V)$ (with respect to some action) . a continuous action, 15 EV compact Gorven H-invariant P:= (\$ 3) < G:= SL3(R) : I separable Barroch space B: SCB* \$ 12.6. Equivariant Maps. 6/P -> Prob(X). Prop. (12.6.1) (Furstenberg's Kennen): Let 6 be a serissingle group with finitely many components, T = 6 be a lattice. If FPEPE(G) NT(G): P is amenable, and then I essentially 1-equivariant Dorce measurable 4: 4-1 Brob(X).

\$12.1: AMF1 Vis V, V ets d: HNV, V compact, Conver nonempty H-invariant SSV, 7565: x(H,5)= {5}. 12.1.#1: Every finite group is amusble. H = {ho=e, h,..., hn }. V be l.c.t.v.s, d:HQV, SEV be Compact conver noneryty H-in. pior s E S. = x (ho,s), x (hi,s), ..., x (hn,s) E S. $\Rightarrow_{HI} \int_{L_{-\alpha}} d(h_{k,s}) \in S$. since S is conven.

d(h, HI = x(huis)) = 1 = x(huis) = 5.

12.1.#2: H amenable, N ≥ H closed N amenable. V be a l.c.t.v.s, x: HNDV be cts, be compact conven t/N - inv. 216 x: Z: H × V ____ V (h, v) - d(hN,v). ~ (e,v) = ~ (e N,v) = v. 2(h, h2 1V) = x (h, h2 N, v) = x (h, N h2 N, v) = L(h,N, a(h,N,v)) I is comp of & and carohical map of I do. ~ (h,s) = ~ (hN,s) € 5.; ■ H ⇒ FsES: ~(H,s) = Es}

× (+/N,5)

12.1.#3: H, be amerable, 4: H, -> H2 be cto with in (4) = H2. Then H2 is accurable. V be l.c.t. v.s., P+5 C V be got, corner. Hz-in-X: H2 x V-1V Z:= 12: H, x V (h,v) + ~ ~ (4(h.),v). ~ (h,h', v) = ~ (4(h,h'),v) = ~ (4(h) 4(h'), v) = ~ (4/h.), ~ (4(h.), v)) = ~ (h., ~ (h., v)). Z(h,,s) = 2(Y(h),s) E5. ⇒ 7 s €s; Z(H,s) = {s} L (Ψ(H1), s) Claim: In fact & (H2, s) = 85%. (which union h2 ∈ H2, {hn} & H1: 4(hn) - h2 since im(4)= H2. ~ cts =1 5= ~ (4(ka),5) - ~ (62,5) = X (2,3)=5, V.

\$ 12.2:

Prop. (12.2.1): Cyclic groups are simulble.

Pf: H= (T). Let V be a l.c.t.v.s

N: HAV be do, \$ \$5 5 V be compact conven

and H-in

S is compact of VSES, ∃ n(s) ≤ n, ∃ a(s) € 5:

 $A(s, n(s)) \longrightarrow a(s)$

Claim: \$ 5 ES: a(s) is a fineal point of a [EX 12.2.#1

$$= \| \alpha(T, a) - a \|$$

$$A(s,n) \rightarrow a$$

$$\alpha \left(T, \frac{1}{h+1} \sum_{k=0}^{h+1} \alpha \left(T_{k}^{k} s\right)\right) - \alpha$$

$$\exists \alpha \left(T, A(s,n)\right) \rightarrow \alpha \left(T, a\right) = -1 \sum_{k=0}^{h+1} \alpha \left(T_{k}^{k} s\right)$$

$$= \frac{1}{4!} \frac{1}{k} \frac$$

$$= \frac{\alpha(T,s)_{+} \alpha(T^{2},s)_{+} \dots + \alpha(T^{n+1},s)_{+} \alpha(T^{n+2})_{+}}{\alpha(T,s)_{+} \alpha(T^{n+2},s)_{+} \alpha(T^{n+2},s)_{+}} - \alpha$$

$$|| (X, A) - \alpha ||$$

$$\leq || (X, A) - \alpha || (T, A(s,n)) ||$$

$$+ || (X, A(s,n)) - \alpha ||$$

$$\leq || ... || + || \frac{1}{AH} \sum_{k=0}^{nH} \alpha'(T_{n}^{k}s) - \alpha || + \frac{1}{AH} \sum_{k=0}^{nH} \alpha'(T_{n}^{k}s) = \alpha || + \frac{1}{AH} \sum_{k=0}^{nH} \alpha'(T_{n}^{k}s) = \alpha || + \alpha || +$$

A is well-det: since 5 is conven.

Obs: $A(h,o)(s) = \alpha(h,s) = s$.

Let $A := \left\{\frac{S}{A(h,n)} \middle| h \in H \right\}$ be the monoid generated by A(h,n)'s.

Sis yet = VaEA: a(S) ES is yet.

Olo: a1,..., an EA -> a142... an (S) E/) a(S)

Claim: 1 a(s) & s.

Consider $\{a(s) \in P(s) \mid a \in A \}$. By the above obs., I finite $A' \subseteq A : (\cap a(s) \neq \emptyset)$, so that $\{a(s) \in P(s) \mid a \in A \}$ has the finite interestion property, and $\{a(s) \subseteq P(s) \mid a \in A \} \subseteq A \subseteq A \} \subseteq K(s) \subseteq T'(s)$.

Then by Folland, Prys. 4.21 , since S is compact, () a (s) & p. Folland, Prop. 4.21 on p. 128: A topological space X is compact iff b F c T (X): F has FIP ⇒ NF + Ø. (Flow FIP it the FEF. 15/4 %.) 24 Let FST'(X) have FIP, U = [U | U C F] UUXX A NFX p, U has a finite subcover & F does not have the FIP. = Claim: 456 / a(5): s is H-civ. SE() a(S) > VaEA: SEa(S) => VIEH, VNEZZy, I ShINES: S= A(h,n)(ShIN)

1 x(h,s)-s1 = 1 x(h, A(h,n)(sh,n)) - A(h,n)(sh,n) 1

$$= \left\| \begin{array}{c} \left(\left\langle h \right\rangle, \frac{1}{h_{11}} \sum_{k=0}^{n} \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right) - \frac{1}{h_{11}} \sum_{k=0}^{n} \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle + \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle + \dots + \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - S_{h,n} \right\| + \dots + \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left\| \left\langle \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left(\left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle - \dots - \left\langle \left\langle h \right\rangle, S_{h,n} \right\rangle \right\|$$

$$= \left(\left\langle \left\langle$$

ACH Sh + & by (Followol, Prop. 4.21).

Prop. (12.2.4): lompact groups are Pf: H be got, V be L.C.T.V.S, SEV be ronempty got, cov, H-in. under some cts Pich $s \in S$, get $f_s : H \longrightarrow S$ $h \longmapsto \alpha(h, s)$ 5:= fs, u(5), where u = Houry. Barycenter Construction on Compact Conven Lets (Zimur, p. 61).
Let 5 be a compact conven set in a locally convex lines.

Space V. . If i is at atomic measure on S, ie, I seliz, CS, I se ?: 5[9,1] barycenter of p. Atonic measures are dense in Prob(5), where we have a barycenter map B: Prob(5) 5 · + 1 EV * + n EProb(s): 2(B(y)) = 5 2(0) d,60). · + n e Prob(s): B(p) = 5 odub).

(a) $\alpha(b, \cdot) = f_{s, \mu}(B) = (\alpha(b, \cdot) \circ f_{s})_{s, \mu}(B) = \mu((\alpha(b, \cdot) \circ f_{s})^{-1}(B))$ $= \mu(\{g \in H \mid \alpha(b, \cdot) \circ f_{s}(g) \in B\}) = \mu\{g \in H \mid \alpha(bg, s) \in B\}$ $= \mu(\{h^{-1}g \in H \mid \alpha(g, s) \in B\}) = \mu\{g \in H \mid \alpha(g, s) \in B\} = f_{s, \mu}(B)$ (p) in Hear,

hull in H-iw.)

Prop. (12.2.6): Amenable extensions of amenable groups are amenable, ie.,

then if Kicker 4 and H are amerable, then so is G.

Pf:

(in factiff;

3'muer, Pry 5.1.6.14)

Let V be a L.C.T.V.S. $\propto G \cap V$ be a cts action, $S \subseteq V$ be a runningty compact converse G inv. public $S_K := \{s \in S \mid \alpha(K, s) = \{s\}\}$. K is amerable, $f : S_K \neq \emptyset$. Also S_K is compact and conven.

$$s \in S_{K}, g \in G \rightarrow \alpha(K, \alpha(g,s)) = \alpha(Kg,s)$$

 $= \alpha(gK,s) = \alpha(g, \alpha(K,s)) = \alpha(g,s)$
 $= s$

$$g, K = g_2 K \Rightarrow g_2^{-1}g, \epsilon K \Rightarrow \alpha (g_2^{-1}g, s) = s$$

$$\Rightarrow \alpha(g, s) = \alpha(g_2, s) \nu.$$

$$H = G_K$$
 in amenable $\Rightarrow S_K = \{s \in S_K | \tilde{\alpha}(H, s) = |s|\} \subseteq S_K$

is ronempty.

$$\Rightarrow \exists s \in s: \alpha(K,s) = \{s\}$$

$$\alpha(K,s) = \{s\}$$

$$\alpha(K,s) = \{s\}$$

Cor.(12.2.7): (i) towable groups are amerable. (ii) Compact extensions of solvable groups are amenable Pf: (ii) Solvables are aven by (i), compacts are onen by Porep. (2.2:1). > by Berop (12.2.6) we are don, v. (i) 6 is solvable if In: 6(1) = 1, where G(1) = 6, G(n) = [G(n-1) G(n-1)]. 1 - 6(1) - 6(1) - 6(1) by induction : 1-, 6(1)

$$1 \rightarrow \begin{pmatrix} 10 & R \\ 01 & 0 \\ 001 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & R & R \\ 0 & 1 & R \\ 001 & R \end{pmatrix} \longrightarrow \begin{pmatrix} R & R & R \\ 0 & 1 & R \\ 01 & R & R \end{pmatrix} \longrightarrow \begin{pmatrix} R & R & R \\ 01 & R & R \\ 001 & R & R \end{pmatrix} \longrightarrow \begin{pmatrix} R & R & R \\ 01 & R & R \\ 001 & R & R \end{pmatrix} \longrightarrow \begin{pmatrix} R & R & R \\ 01 & R & R \\ 001 & R & R \\ 001 & R & R \end{pmatrix} \longrightarrow \begin{pmatrix} R & R & R \\ 01 & R & R \\ 001 & R & R \\$$

\$12.3:

Prop. 12.3.5:	IAMEA	AME 2
1307.12.3.3:	AME	CD[MMEZ

AMEN VI. CL.V.S. V, V CO X: HAV, V monempty compact conven H-in. SEV, .{z} = (2,H)> :232 E

[AME2] V compact nutrigable top. sy. X, V C° x: H(XX, F) & Prub(X):

(⇒) If X is compact metrijable by Kiez-Rep. & Basach-Alagglu, Prob(X) ⊆ B, (C(X,R)*) is compact, convex.

w: HxX CoxX is also given.

=> Z: Hx Prob(X) --> Prob(X) $(h, \mu) \longmapsto \alpha(h, \cdot)_{*} \mu:$ $B \mapsto \mu(\alpha(h', B))$

> By [AME], Fred(X), 2(H, p) = 5 pl, sen, p is H-inv., 1.

to with Respect to weak + - top on Prob(X).

FX. 12.3. #2 (second countable ?) (159)

(=) Let V be a l.c.l.v.s, d: HAV, SEV-be non-y, get, cow., H-in. Whoy we may assume S is netrizable. By [AME2], I H-in: [Freb(s). Since 5 is got & conv., $|f(p)| = \int \sigma dp(\sigma) \in S$ as in the proof of Prop. 12.2.4, since & is an affine action HAEH: d(h, B(u)) = B (d(h, -)*, p) = B(r)

.

EX. 12. 3. #2 «: HxX—X C° a HoProb(X) - Prob(X) (h, p) ~ d(h, e) $h_n \rightarrow h \stackrel{?}{\Rightarrow} \widetilde{\alpha}(h_{n,p}) \stackrel{Q}{\longrightarrow} \widetilde{\alpha}(h_{n,p}), \text{ and}$ $\lim_{h \to \infty} \widetilde{\beta} \stackrel{?}{\longrightarrow} \widetilde{\alpha}(h_{n,p}) \stackrel{Q}{\longrightarrow} \widetilde{\alpha}(h_{n,p})$ · ha - 1 h = & (ha, 6) - x/h, b) since & is cts, X 4.8 DCT → / (d(h, B)) - ~ u (d(1, B)) for Borll B ⊆ X. - By apasoninating a momestally function by simple · Z (h, j) ~ Z(h, j) v · Ma Comp. Z(h, pa)(B) = pa (Z(h', B)) - p(Z(h', B)) on Bouls. ٠٠ تر(لمربر) که مورد (لمربر) بر Second countability
of H is needed?

Def. (12.3.6): Let
$$V \subseteq L^{\infty}(H, \mathbb{R})$$
 (eg., $V:=C_0(H, \mathbb{R})$)

be such that $X_H \in V$. Then $\lambda: V \longrightarrow \mathbb{R}$ is a muon

if (i) λ (cf+g) = $c \lambda(f) + \lambda(g)$;

(ii) $\lambda(X_H) = 1$,

(iii) $\forall f \in V: in(f) \subseteq C_0, \infty \subseteq J(f) \supset 0$.

(Let $Mean(V)$ denote the set of means on V .)

Res. (12.3.7): $Mean(V) \subseteq C^{\circ} \Lambda Min(V, \mathbb{R}) = V^{\circ}$, because $\forall \lambda \in Mean(V): \|\lambda\| = 1$.

 $\forall \lambda \in Mean(V): \|\lambda\| = 1$.

 $EX. (12.3.48)$
 $EX.$

The supplies of the state of the supplies of the state of the supplies of the

Ex. (12.38): P(H) := {4 & L'(H, P) | 4 >0, 44 1 = 13. com ty EP(H): 24: La (H, R) - R is a mean. t +> \t' 4> [EX. 12.3.#12] {20/46 P(H)} in weakly dense in Mean (L"H, R)) Prop. 7.2.3 (Zimmer, p. 133): (i) Mean(V) is a closed convex subspace of the unit ball in V*, where V* has the weak-4-tay. (ii) {24 | 4 & P(H)} is weak-to-derse in Mean (V). If: (i). @ {ev, 1 v ev} & Mean (v) = Mean(v) + p. · (t 1,+ (-42)(x H) = + 2,(XH)+(1-t) 2,(XH) = 1. For fig., (+ 1,+(-+) 12) (+) = + 2,(+)+(1-+) 2,(+) = [2,(+), 2,(+)] = [0,00[> Mean (V) is convex.

- { \langle \gaman(v), \langle \est \frac{*}{i} \gamma_n \infty \langle $1 = \lambda_1(\chi_H) \longrightarrow \lambda(\chi_H) \rightarrow \lambda(\chi_H) = 1.$ For Fig., of $\lambda_n(f) \longrightarrow \lambda(f) \Rightarrow \lambda(f) > 0.$

=) Mean (v) in closed.

· Mean (V) = B, (V4) by Rem (12.3.7).

(ii) Suppose {24|46P(H)} is not weak-4-derse in Man(V).

⇒ ∃ λ ∈ Mean(V), ∃ € >0, ∃ V € V:

{λy |46P(H)} ⊆ { u ∈ Mean(V) | 1 u(V) - λ(V) | > € }.

⇒ ∃ λ ∈ Mean (V), ∃: € >0, ∃ V € V, V & € P(H):

|λy(V) - λ(V) | > €.

("by Slahe-Barach"?)

 $\Rightarrow \lambda(v) \neq \mathcal{E} + \lambda_{\varphi}(v)$ $\Rightarrow \lambda(v) > \lambda_{\varphi}(v), \quad \forall \ \forall \ \in P(H)$ $\Rightarrow \lambda(v) > \sup_{f \in P(H)} \lambda_{\varphi}(v) \stackrel{\mathcal{B}}{=} essup_{\varphi}(v)$ Why does this contradict $f \not\ni 0 \Rightarrow \lambda(f) \not\ni 0 ?$

Tolland, p. 189, Chon. 6.14:

Let p and 9 be conjugate
exponents, 96L°, VSES: $gSEL^1$; and $Mg(g) = Sup | Sgs | < \infty$, $SSH_p=1$ and Sg = Sx | 960 ≠ 03 is

<math>G = finite.

Then gEL^9 , Mg(g) = Ng Vg.

Prop. (12.3.9): [AME1] => [AME3] [AME1] & L.c.t.r.s. V, V C° X: HAV, & nonempty, gpt, com., H-cir SEV,
$\exists s \in S : \alpha(H,s) = \{s\}.$
[AME3] F26 Mean (C; (H, R)), Vh EH: \(\alpha(h), \right) \(\lambda = \lambda. \)
left-invariance
P1: Mean (Ci(H, R)) is nonempty convex
and L-in-, where L: Hxellan (Co (H, R)) - Men (ch, R)
EX. 12. 3. #13 ((b, 1) + (h, -) + 1.
· Mean (C 6(H, R)) is a weak-4-closed subset
of the unit ball in (G(H,R) 4
EX. 12.3. #14
3) By Bannoh - Alaogh Mean (Ci (H, IR))
is compact.
=> [AME1] gives à 6 Meon (C; (H, R)):
$\chi(H^{7})^{\times}$

Prop(12.3.11): [AME3] => [AME2] AME] I L-in. 2 & Mean (Co(H,R)). ANEZ & compact netrizable X, & c° x: HAX, I H-in. u & Prob(X).
Pf: Consider a cts «: HOX.
Pick $x \in X$
4: c°(x, A) c, (M, R)
$f \longmapsto \int h \mapsto f(\prec(h,\times))$
9x in H-equivariant.
$H \times C^{\circ}(X, \mathbb{R}) \longrightarrow C^{\circ}(X, \mathbb{R}) (I, F) \longmapsto f(\alpha(h^{-}, \bullet))$ $\downarrow \qquad \qquad \downarrow \qquad \qquad $
Hx Cb (H, R) Cb (H, R)

=> Any L-in. & & Mean (Ci (H, 18)) induces an H-inversant Px & E Mean (C°(X, Px)), which, by RRT, can be () is a mean =) (X=1) EX. 12.3.#15 4x: (°(X,R) - C°(H,R) P. *: Man (Co (H, B)) - Moon (Co(X, B))

2ef(12.3.14): Let $(V, |I \cdot II)$ be a normal vector space, $\alpha: H \mathcal{D}V$. ω has almost invariant vectors if $\forall E79, \forall K \in \mathcal{K}(H)$, $\exists V = V(E,K) \in V$:

 $\|v\| = 1$ & sup $\|\omega(k, v) - v\| \leq \varepsilon$. $k \in K$ $(\omega) \omega(k, v) \subseteq B_{\varepsilon}(v).$

In this case v=v(E,K) is (E,K)-invariant.

· TT reg: H — {(L²(H, R)) is the h → (Ψ) ×(h', 0)*9

left-regular rap. of H.

Ex. (12.3.16):

(i) If H is compact, then $Z_H \in L^2(H, \mathbb{R})$, $T(W)X_H = X_H \Rightarrow X_H$ is an H-in. unit vector.

ronzero (ii) Try: R - L'(R, R) has no view. vectors: If 4: R-1 R is T-in., then [EX.12.3. #22] Vt: Pk)= Y(++x) 2. -) 4 (x) = const. 2e. SIGIL (00 => 4=0 sc. But it has almost-int-vectors: (ZM) Let E>=, K=[a,b] SR => Take [c,1] large enough, and counter CXE, 1) where C is to be chosen wisely. It Eyo, K & JU(IR), pich N: K & [-N,N] 2/5 < E. Put 4:= 1 X [0, N2]. 1191, = 1,

$$\|\pi(t, y) - \gamma\|_{2}^{t} = \int_{0}^{t} \int_{1}^{N^{-}} \int_{N^{2}}^{N^{2}t} \frac{2t}{N^{2}} \leq \frac{2}{N} < \varepsilon^{2}$$

$$\|\pi(t, y) - \gamma\|_{2} < \varepsilon.$$

- · Similar results hold for the left-regular representations of Z' or R'.
- The basic discovery of Kay habour that led to the formulation of property (T) was that many seminimple groups and their lattice subgroups do not have representations with this type of behavior.

Ren. (12.3.17): (1) L2(H, R) has almost-in vectors (L'(H, P) has almost - inv. vectors [EX. 12.3.#23] (ii) L2(H, R) has almost - inv. vectors ← Jp € [] co [. L'(H, R) has almost - in vectors. EX.12.3.#24 EX. 12.3.#23 d: H x L3 (H, R) - L3 (H, R) (3) Let E>O, KK/H), 4 E L=(H,R) be

(4) Let E > 0, $E = |Y| | |Y||_{2} = 1$, $|Y||_{2} = 1$.

For $E \in K$, $|Y| | |Y||_{2} = 1$ $|Y| | |Y||_{$

(Holariok: Thr.)
Prop. (12.318): [AME3] (AME 5]
AME3] I left in. 26 Man (Ci(H, TR))
[AMES] They has abnost-invariant vectors. (in L2(H, FR)).
[AMES] Trees has abnort-invariant vectors. (in L2(HIR)). (Shetch) Pf: By Rem. (12.3.17). (i), we can instead
show [AME 3] () [AME 5]
AMES' True: H×L'(H, R) -> L'(H, R) has almost-invariant
(=>) By Pry. 7.2.3 of Zimmer,
{24 4 ∈ P(H)} is weak-4-dense in Mean (CL(H, F)).
>> 7468(H)= {466L'(H, IB) 4>0,1411=13:
24 2 2 , where I is a left - inv. mean.
"bectors close to I will be almost invariant"
[EX 12.3.#26] for the correct plant Pp. 133-139] H is discrete!
H is discrete!

(←) Mr. [AMES] ← JEP, G. CP(H):

IT Jug(k, Pn) - Pn || u., o on compactor.

· Mean (L[∞](H,R)) in compact (by Banach-Alogh)

⇒ 3N ∈ N: 29 m ∈ Mean (L[∞](H,R))

Plain: m in [FX. 12.3. #25]

٠,

	\$12.4	
Pro	p.(12.4.1)	

: Wonabelian fru groups are

Non-amenable.

Pf. Vare: F2 = (9,6).

. Using [AME3]: (From Tao's long)

At = all words beginning by a

B*= ___//___

 $Obs: B^+ \subseteq (\vec{a} A^+) \setminus A^+ = B^+ \cup B^-$ > 0 € 2 (XB+) ≤ 2 (a A+ A+) = 2 (a A+) - 2 (A+) = 0 $\Rightarrow \lambda \left(x_{B}^{+} \right) = 0.$

Similarly, $B^{-} \subseteq (a^{-}A^{+}) \setminus A^{+} = B^{+} \uplus B^{-}$ $A^{+} \subseteq (b^{-}B^{+}) \setminus B^{+} = A^{+} \uplus A^{-}$ $A^{-} \subseteq (b^{+}B^{+}) \setminus B^{+} = A^{+} \uplus A^{-}$

 $= \lambda \left(\chi_{A^{\dagger}}\right) = \lambda \left(\chi_{A^{\dagger}} + \chi_{A^{-}} + \chi_{B^{\dagger}} + \chi_{B^{-}}\right)$ $= \lambda \left(\chi_{A^{\dagger}}\right) + \lambda \left(\chi_{A^{-}}\right) + \lambda \left(\chi_{B^{\dagger}}\right) + \lambda \left(\chi_{B^{\dagger}}\right)$ = 0, 55.(This proof generalizes to Fn.)

Lot. (12.4.2): If H is discrete and it contains a nonarbelian free group, then it is not amenable.

Pf: Fr in not amenable; and by Prop(12.2.8) chosed subgroups of amenable groups are amenable.

Prop. (12.4.4): SL(2, PR) is not amenable.

Pf: Consider
$$\equiv S'$$
 $\alpha: SL(2,\mathbb{R}) \times (\mathbb{R} \times 5003) \longrightarrow (\mathbb{R} \times 5003)$
 $(ab)_{(cd)_{$

In a transitive action, and

Staba (6) $\frac{det}{det} S(ab) \in SL(2,R) \mid A(ab), 0 = 0$ $= S(ab) \mid b=0, d\neq 0$ $= SL(2,R) \cdot C$ $= SL(2,R) \cdot C$ $= SL(2,R) \cdot C$

· Bo En. (8.4.4) (1), P < SL(2, R) is a Minimal parabolic subgroup. By lor. (8.4.11), SL(2, R)/p is compact. · Boeel Density theorem imphis that there is no S((2, R) - in. phob. meoner on 5/ (2R) / EX. 4.6.#2 => G=SL(2,R) is not amenable, via [AME2]. B: SL(417) x 6/-, 6/ · 6, hP) + 3hP.

·Actually; SLh, R) for n7,2 is not amenable.

Lenens (Furstenbery): [[gm]] = PGL (n, R),
[2:mm p.31]

M, V & Prob (P"(R)), M. [gm] - V.

Then either (i) [[gm] m in bounded, or

(ii) IV, W & Rn (linear, 1 & dim V, dim W & n-1:

v is suggested on [V] U[W].

this Furstenboy's lemme shows that there are no invariant measures on P (R) under the SL (n, IR) action. (Zimer, p. 62).

Perop. (12.4.5): Let H be a connected semissingole Lie group. If H is amerable, then it is compact.

Pf: By los. 4. 9.2, non compact stoups which are closed. Contain nonabelian free groups, which are not amenable by Prop(12.4.1). Then by Prop. (12.2.8) H count be amenable

Phop (12.4.7). A connected hie gloup H is amenable iff
I wormed closed combiles N & H:

N is solvable & H/W is compact.

Pf: (=) lor(12.2.7). (ii).

=> By Prop. (12.4.5) H/R is compact v.

•

S12.5:
In this section our aim is to prove:

Pergo. (12.2.8): If H is amenable, then so is
and of its closed subgroups.

Let 1 SH be a closed subgroup.

- Let $\Lambda \leq H$ be a closed subgroup. V be a L.c.t.v.s, $S \subseteq V$ be a monempty cpt, conv. Λ - ins. set for some C action $d: \Lambda \cap V$. $d: S = L^{\infty}(H,S) = L^{\infty}(H,S)$

 $\Psi \in L(\mathbf{M}, S)$ is essentially Λ -equivariant

if $\forall \lambda \in \Lambda$, $\forall h \in H: \Psi(\lambda'h) = \lambda' \Psi(h)$ $\left(\Leftrightarrow \forall \lambda \in \Lambda: \Psi(\lambda' \cdot) = \chi' \Psi(h) \right)$

L'(H, S) denotes all essentially 1-equir. $4 \in L^{\infty}(H, S)$.

Ex. (12.5.2):

1 " - 11 . "

(i) If H is discrete, then $L^{\circ}(H,S) = S^{H}$, and so by Eychonoff's Thu. $L^{\circ}(H,S)$ is compact.

(ii) If $S := B_{s}(C)$, then

L'(H, S) = B, (L'(H, R)), where by

Banach-Alagla L'(H, S) is weak-4-compact.

Suparable

separable

separable

separable

space, d: H A B be cts, S = B* be reneryty

compact convene H-inv. Then

Compact convox H-in.

$$S \subseteq \mathbb{R}^* \rightarrow L^{\circ}(H,S) \subseteq L^{\circ}(H,\mathbb{R}^*)$$

$$L^{\infty}(H,S)$$

in L"(H, B*)

weak-x-compact,

R: H x L (H, S) -1 L (H, S) 25 cts (h, 4) -1 +1 P(xh)

· himbally for 4, (H, S) = 4 (H, S).

Since H is amenable, by [AME1],

I & E L & (H, Perob(x)):

Wheh: $\Psi(xh) = \Psi(x)$ $\forall \lambda \in \Lambda : \Psi(x^{-1}x) = \frac{1}{2}e^{-\frac{1}{2}(x^{-1}, \Psi(x))}$

Claim: Vx EH for which (4) holds,

P(x) is a 1-iw. probability measure
on X.

\$12.6:

Prop. (12.6.1) (Furstenberg's Lenna): Let & be a senisimple hie group with finitely many connected components, T & 6 be a lattice, A < G be a closed amenable subgroup, X be compact metrizable, d: TAX be autimous. Chen L'_ (G/A, Prob(X)) \(\neq \\ \empty. Proof: · Verob(X) is nonempty compact conven T-in-] ⇒ By Len 12.5.3, Lo (61, Prob(X))

is nonempty complet convice G-in.

=> Lo(G, Prob(X)) in also A-ino.

Og [AME 1], FA-in 46. Lr(6, Prob(X))

$$\mathcal{E}_{X}$$
: $G := SL(3, \mathbb{R})$

$$A := \begin{pmatrix} 4 & 0 & 0 \\ 4 & 4 & 0 \\ 7 & 9 & 9 \end{pmatrix} \subseteq G.$$

$$A : \Gamma \Omega X. C$$