MATH 185: Homework 1

William Guss 26793499 wguss@berkeley.edu

September 6, 2016

2 Algebraic Properties

2.

Theorem 1. If $z \in \mathbb{C}$ then Re(iz) = -Im(z) and Im(iz) = Re(z).

Proof. Since $z \in \mathbb{C}$, z = x + iy and iz = ix - y and so Re(iz) = -y = -Im(z). Furthermore Im(iz) = x = Re(z).

4. Verify that each of the two numbers $z = 1 \pm i$ satisfies the equation $z^2 2z + 2 = 0$.

$$(1+i)^2 - 2 - 2i + 2 = 1 + 2i - 1 - 2 - 2i + 2 = 0$$

$$(1-i)^2 - 2 + 2i + 2 = 1 - 2i - 1 - 2 + 2i + 2 = 0.$$
(1)

11. Solve the equation $z^2 + z + 1 = 0$.

Using $z \in \mathbb{C}$ we have

$$-\frac{4}{3}(z+1/2)^2 = 1. (2)$$

So we need solve $w^2=3/4e^{i\pi}$. Using eulers formula we get $r^2e^{i2\theta}=3/4e^{i\pi}$ and so it must be that $r^2=3/4$, so $r=\pm\sqrt{3}/2$ and $\theta=\pi/2$. Therefore $w=\pm\sqrt{3}/2i$. Furthermore, z=w-1/2 so $z=-1/2(1\mp\sqrt{3}i)$.

3 Further Properties

1. Reduce the following equations.

(a)
$$\frac{1+2i}{3-4i} + \frac{2-i}{5i} = \frac{(1+2i)(3+4i)}{25} + \frac{-5i(2-i)}{25}$$
$$= \frac{-5+10i-5-10i}{25}$$
$$= \frac{-10}{25} = -\frac{2}{5}$$
 (3)

(b)
$$\frac{5i}{(1-i)(2-i)(3-i)} = \frac{5i}{-10i} = -\frac{1}{2}$$
 (4)

(c)
$$(1-i)^4 = 1^4 + 4(-i)^1 + 6(-i)^2 + 4(-i)^3 + (-i)^4$$

$$= 1 - 4i - 6 + 4i + 1 = -4.$$
 (5)

2.

Theorem 2. If $z \in \mathbb{C}$ and $z \neq 0$ then

$$\frac{1}{1/z} = z. (6)$$

Proof. Recall that $w:=1/z=\overline{z}/|z|^2$. Furthermore $1/w=\overline{w}/|w|^2=\overline{w}/(1/|z|)^2$ by $\overline{z}/|z|^2=re^{i-\theta}/r^2=e^{i-\theta}/r$. Then $\overline{w}=\overline{z}/|z|^2=z/|z|^2$ and $\overline{w}/(1/|z|)^2=z=1/(1/z)$. This completes the proof.

5 Vectors and Moduli

4.

Theorem 3. If $z \in \mathbb{C}$ then

$$\sqrt{2}|z| \ge |Re(z)| + |Im(z)|. \tag{7}$$

Proof. Let z = x + iy then |Re(z)| + |Im(z)| = |x| + |y| and

$$(|x| + |y|)^2 = |x|^2 + 2|x||y| + |y|^2.$$
(8)

Then it remains to prove that $2|x||y| \le |x|^2 + |y|^2$. Now $0 \le (|x| - |y|)^2$ implies that $0 \le |x|^2 - 2|x||y| + |y^2|$ which clearly implies that

$$2|x||y| \le |x|^2 + |y|^2. (9)$$

Because $(|x|+|y|)^2 \le \sqrt{2}|z|^2$, then it follows that $\sqrt{2}|z| \ge |Re(z)| + |Im(z)|$.

5. Sketch the points determed by the given condition.

(a)
$$|z-1+i| = 1.2$$
 | $z - (1-i)$ | $z - (1$

6. Use geometric arguments!

(a)

Theorem 4. The set of points $z \in S \subset \mathbb{C}$ such that |z - 4i| + |z + 4i| = 10 is an elipse

Proof. Let z = x + iy. Then for every point $z \in S$ the points w = -4i and w = 4i are always a summed distance of 10 from z. By definition these points are foci of the set S. Furthermore

$$10 = \sqrt{x^2 + (y-4)^2} + \sqrt{x^2 + (y+4)^2}$$

$$100 = (f(x,y) + g(x,y))^2 = f(x,y)^2 + f(x,y)g(x,y) + g(x,y)^2$$
(10)

and $f(x,y)^2$ is a quadratic, f(x,y)g(x,y) is a quadratic. and $g(x,y)^2$ is a quadratic where no coefficients on the quadratic mononomial projection are 0. Therefore the levelset must be an elipse.

9. Prove the following.

Theorem 5. Let $z \in \mathbb{C}$ and n a positive integer. Then $|z^n| = |z|^n$.

Proof. We induct on n. Let n=1. Then $|z^1|=|z|=|z|^1$. Suppose that $|z^k|=|z|^k$. Then $|z^{k+1}|=|z^k\cdot z|=|z^k||z|$ by (8). Then by our assumption $|z^k||z|=|z|^k|z|=|z|^{k+1}$ and so the theorem holds fo k+1.s By induction the proof is complete.

6 Complex Conjugates

4. Prove the following.

Theorem 6. If z, z_1, z_2, z_3 are complex numbers then

$$\overline{z_1 z_2 z_3} = \overline{z_1 z_2 z_3}; \qquad \overline{z^4} = \overline{z}^4 \tag{11}$$

<u>Proof.</u> By associativity of \mathbb{C} and $(\underline{4})$ it follows that without loss of generality $\overline{z_1 z_2 z_3} = \overline{z_1 z_2 z_3} = \overline{z_1 z_2 z_3} = \overline{z_1 z_2 z_3}$. Then $\overline{z^4} = \overline{z(zzz)} = \overline{z}^3 \overline{z} = \overline{z}^4$.

5. Verify the following.

Theorem 7. If z_1, z_2 are complex numbers and $|\cdot| : \mathbb{C} \to \mathbb{R}$ is the complex moduli, then

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}.\tag{12}$$

Proof. Recall that $z_1/z_2=z_1\overline{z_2}/|z_2|^2$. Then

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1 \overline{z_2}|}{|z_2|^2} = \frac{|z_1||\overline{z_2}|}{|z_2|^2} = \frac{|z_1|}{|z_2|}$$
(13)

since $|z_1| = |\overline{z_2}|$ is trivially true, and $|ab| = |r_1 r_2 e^{i(\theta_a + \theta_b)}| = r_1 r_2 = |a||b|$.

6. Prove the following.

Theorem 8. Let $z_1, z_2, z_3 \in \mathbb{C}$ with $z_2, z_3 \neq 0$. Then

$$\overline{\left(\frac{z_1}{z_2 z_3}\right)} = \frac{\overline{z_1}}{\overline{z_1 z_2}}.$$
(14)

Proof. Observe the following

$$\overline{\left(\frac{z_1}{z_2 z_3}\right)} = \overline{z_1} \overline{\frac{1}{z_2 z_3}} = \overline{z_1} \overline{\frac{\overline{z_2 z_3}}{|z_2 z_3|^2}} = \overline{\frac{\overline{z_1} z_2 z_3}{\overline{z_2 z_3} z_2 z_3}} = \overline{\frac{\overline{z_1}}{\overline{z_1 z_2}}} \tag{15}$$

using the identities of the section.

Theorem 9. Let $z_1, z_2, z_3 \in \mathbb{C}$ with $z_2, z_3 \neq 0$. Then

$$\left| \frac{z_1}{z_2 z_3} \right| = \frac{|z_1|}{|z_1||z_2|}.\tag{16}$$

Proof. Let $a = z_1, b = z_2 z_3$ then by the previous exercise

$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|} = \frac{|z_1|}{|z_2 z_3|} = \frac{|z_1|}{|z_2||z_3|}.$$
 (17)

This completes the proof.

9. Prove the following.

Theorem 10. If z lies on the circle |z| = 2 then

$$\frac{1}{|z^4 - 4z^2 + 3|} \le \frac{1}{3} \tag{18}$$

Proof. Consider the factorization, $|z^4 - 4z^2 + 3| = |z^2 - 3||z^2 - 1|$. It follows that $||z^2| - 3|||z^2| - 1| = |4 - 3||4 - 1| = 3 \le |z^4 - 4z^2 + 3|$ from (9) section 4. So the reciprocal inequality holds.

14. Prove the following.

Theorem 11. Let $z \in \mathbb{C}$. Show that the hyperbola $x^2 - y^2 = 1$ can be written

$$z^2 + \overline{z}^2 = 2. \tag{19}$$

Proof. Let z = x + iy, then algebra gives

$$z^{2} + \overline{z}^{2} = x^{2} + 2ixy - y^{2} + x^{2} - 2ixy - y^{2} = 2x^{2} - 2y^{2} = 2.$$
 (20)

Dividing by two gives that all z satisfying the complex equation describe the hyperbola.

9 Arguments of Products and Quotients

- 1. Find the principle argument Argz.
 - (a) Let $z = \frac{-2}{1+\sqrt{3}i}$. Then $Argz = Arg(-2) Arg(1+\sqrt{3}i) = \pi Arg(1+\sqrt{3}i) = \pi tan^{-1}(\sqrt{3}) = 2\pi/3$
 - (b) Let $z = (\sqrt{3} i)^6$. Then $Argz = 6Arg(\sqrt{3} i) = -6\pi/6 = \pi$ in principle.
- 2. Prove the following theorem.

Theorem 12. If $\theta \in \mathbb{R}$ then $|e^{i\theta}| = 1$ and $\overline{e^{i\theta}} = e^{-i\theta}$.

Proof. Observe that $e^{i\theta} = \cos \theta + i \sin \theta$, so $|e^{i\theta}| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$. Now $\overline{e^{i\theta}} = \frac{\cos \theta + i \sin \theta}{e^{-i\theta}}$. Then by cos even and sin odd $e^{-i\theta} = \cos(-\theta) + i \sin -\theta = \cos \theta - i \sin \theta = \frac{e^{-i\theta}}{e^{-i\theta}}$.

9. Establish the Lagrange's trigonometric identity. Using the following trick,

$$(1+z+z^2+\cdots+z^n)(1-z)=1+(z-z)+\cdots+(z^n-z^n)+z^{n+1},$$
 (21)

we get that

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z}.$$
 (22)

Using $z = e^{i\theta}$ we get

$$1 + \sum_{k}^{n} \cos(n\theta) + i \sum_{k}^{n} \sin k\theta = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}$$

$$= \frac{(1 - e^{i(n+1)\theta})(1 - e^{-i\theta})}{(1 - e^{i\theta})(1 - e^{-i\theta})}$$

$$= \frac{1 - e^{-i\theta} - e^{i(n+1)\theta} + e^{in\theta}}{1 - e^{i\theta} - e^{-i\theta} + 1}$$

$$= \frac{1 - i2\sin(\theta) + e^{i(n+1)\theta}}{2 + 2\cos(\theta)}$$
(23)

10. Use de Moivre's formula to derive the following.

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$$

$$\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta.$$
(24)

Proof. Let $\theta \in \mathbb{R}$, then

$$\cos 3\theta + i\sin \theta = (\cos \theta + i\sin \theta)^3. \tag{25}$$

By binomial expansion then

$$\cos 3\theta + i\sin 3\theta = \cos^3 \theta + i3\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i\sin^3 \theta \cos^3. \tag{26}$$

Separating the imaginary and real parts gives the formulas exactly.

11 Roots of Complex Numbers

4. Identify the Principle Root.

We find the roots of $(-2-1)^{1/3}$ by taking $z_0 = e^{i\pi}$. Then $z_0^{1/3} = e^{i\pi/3 + i2k\pi/3}$. This gives a triangle and principle root $e^{i\pi/3}$.

We find the roots of $8^1/6$. Let $z_0 = 8e^{i0+i2k\pi}$. Then we get $8^{1/6} = \sqrt{2}e^{i2k\pi/6}$ which forms a hexagon with principle root $\sqrt{2}$.

6. Find the four zeros of $z^4 + 4$.

This problem is equivalent to finding the 4th root of $-4 = 4e^{i\pi}$. This gives

$$z = \sqrt{2}e^{i\pi/4 + ik\pi/2}. (27)$$

7. Prove the following.

Theorem 13. If c is an n^{th} root of unity then

$$1 + c + \dots + c^{n-1} = 0. (28)$$

Proof. Recall the formula

$$1 + c + c^{2} + \dots + c^{n-1} = \frac{1 - c^{n}}{1 - c} = \frac{0}{1 - c}.$$
 (29)

This completes the proof.

12 Regions in the Complex Plane

4. a) {- T < a 19 Z < T } = F

MATH 185 Homework 1 7

c)
$$\left\{ Re\left(\frac{1}{2}\right) \leq \frac{1}{2} \right\} = \overline{E} \quad x \in E \implies x \neq 0, '$$

$$\Rightarrow Re\left(\frac{\overline{x}}{|x|^2}\right) \leq \frac{1}{2} \Rightarrow \frac{x_1}{x_1^2 + x_2^2} \leq \frac{1}{2}$$

- 14 The mapping $w = z^2$.
 - 4. Write f(z) = z + 1/z in parametric form. Observe that

$$f(z) = z + \frac{1}{z} = re^{i\theta} + \frac{e^{-i\theta}}{r} = r(\cos(\theta) + i\sin(\theta)) + \frac{1}{r}(\cos(\theta) - i\sin(\theta))$$
 (30)

Clearly by separating the brackets and parameterizing the function we get

$$u(r,\theta) = (r + 1/r)\cos(\theta), v(r,\theta) = (r - 1/r)\sin(\theta).$$
 (31)