

DISCUSSION

Who has done CV development?

(even toy projects)

Computer Vision - Motivation

- Enables autonomy
- Rich, high bandwidth sensor data
- Easy for humans to understand the raw data

Computer Vision - Current Industry Status

On drones, CV functionality is limited to roughly:

- Collision Prevention
- VIO
- Follow-me tracking or other use-case specific applications

Computer Vision - Current Industry Status

On drones, CV functionality is limited to roughly:

The cheap, lightw	/eight (some	etimes more r	eliable) s	solution

Collision Prevention
 SONAR / laser distance sensors

VIO
 On-chip Optical Flow (think optical mouse)

Follow-me tracking
 Target GPS tracking

Computer Vision - Current PX4 Status

On drones, CV functionality is limited to roughly:

Collision Prevention

Follow-me tracking

The cheap, lightweight (sometimes more reliable) solution

SONAR / laser distance sensors

On-chip Optical Flow (think optical mouse)

Target GPS tracking

- Human use of vision
 - Localization
 - Recognition and object tracking
 - o Environment awareness & map building
 - Minimum risk path planning
 - Safe stopping locations
 - Facial expressions, body language

- Academic projects, but not industry:
 - SLAM build maps and localize the robot dynamically via the robot's movement
 - Safety analysis beyond simple landing systems
 - Object classification
 - Playback of exact flight paths based on visual markers
 - Learned safe flight patterns from dashcam videos
 - Accurate landings on dynamic platform
 - Many many more

- Academic projects, but not industry:
 - SLAM build maps and localize the robot dynamically via the robot's movement
 - Safety analysis beyond simple landing systems
 - Object classification
 - Playback of exact flight paths based on visual markers
 - Learned safe flight patterns from dashcam videos
 - Accurate landings on dynamic platform
 - Many many more

- Academic projects, but not industry:
 - SLAM build maps and localize the robot dynamically via the robot's movement
 - Safety analysis beyond simple landing systems
 - Object classification
 - Playback of exact flight paths based on visual markers
 - Learn safe flight patterns from dashcam videos
 - Accurate landings on dynamic platform
 - Many many more

Computer Vision - Why isn't it everywhere

Expensive

- Weight
- Power
- Hardware prices

These are being solved in newer hardware generations

Computer Vision - Why isn't it everywhere

Reliability

Depends on lighting conditions

Historical deployments of CV/ML systems are in controlled environment

• Eg. factory assembly lines for component alignment and QA

Partially solved with better cameras - industrial still catching up with consumer

Active sensors - IR pattern projectors

Computer Vision - Why isn't it everywhere

Other problems:

- Concentrated R&D Costs
- Systems are complex and require large upfront investment, with risk of failure
- Customers and regulators don't trust black boxes

Open Source solves these problems

Computer Vision - So what are we waiting for

- Purpose designed hardware
 - Higher bandwidth between FCU and companion computer WIP
 - Cheap enough to deploy in scale
 Depending on platform
 - Widely available
 Depending on platform
- The frameworks to effectively re-use libraries
 - ho Reliable PX4 \leftarrow \rightarrow ROS[2] communication ROS1 works, ROS2 WIP
 - Integration of vision interfaces into PX4 architecture
 Works, but extensions missing
 - Making vision components with better integration

 WIP

DISCUSSION

Who has ideas for CV projects they'd like to see integrated into or created for the PX4 ecosystem?

Computer Vision - Features I'd like to see

- Minimum risk path planning
- Full SLAM with collision prevention in position mode
 - Give pilot additional environmental awareness based on generated map
- RTL following visual landmarks if GPS is lost, including precision landing
- Structure following for inspection
- Full integration of compatible ROS[2] packages with PX4

Computer Vision - Integrating with the FCU

- Offboard mode great for research, poor for end users
- As of 1.9 we can inject trajectories while in auto modes
- Integrating more fully requires PX4 flight mode awareness
 - Make a standard ROS[2] node to do this

Conclusions

- Computer vision is hard, but the community can help
- Hardware is finally good enough for (some) drones
- We still need to customize things, the software isn't just 'plug and play'

