Matrices in Geometry - 4.13.42

EE25BTECH11037 Divyansh

Sept, 2025

Problem Statement

Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle. If $\mathbf{P}=(\cos\theta,\,\sin\theta)$ and $\mathbf{Q}=(\cos\left(\alpha-\theta\right),\,\sin\left(\alpha-\theta\right))$, then \mathbf{Q} can be obtained from \mathbf{P} by (a) clockwise rotation around the origin through an angle α (b) anticlockwise rotation around the origin through an angle α (c) reflection in the line through origin with slope $\tan\alpha$ (d) reflection in the line through origin with slope $\tan\left(\frac{\alpha}{2}\right)$

Solution

We know that
$$\mathbf{Q} = \begin{pmatrix} \cos{(\alpha - \theta)} \\ \sin{(\alpha - \theta)} \end{pmatrix}$$
 and $\mathbf{P} = \begin{pmatrix} \cos{\theta} \\ \sin{\theta} \end{pmatrix}$ We also know that the rotation matrix $\mathbf{R} = \begin{pmatrix} \cos{\alpha} & -\sin{\alpha} \\ \sin{\alpha} & \cos{\alpha} \end{pmatrix}$, where α is anticlockwise. We can obtain \mathbf{Q} by

$$\mathbf{Q} = \mathbf{RP} \implies \mathbf{Q} = \begin{pmatrix} \cos \theta \cos \alpha - \sin \theta \sin \alpha \\ \sin \theta \cos \alpha + \cos \theta \sin \alpha \end{pmatrix}$$
(1)

We know from trigonometric identities that

$$\cos(\alpha - \theta) = \cos\theta\cos\alpha + \sin\theta\sin\alpha \tag{2}$$

$$\sin(\alpha - \theta) = \cos\theta \sin\alpha - \sin\theta \cos\alpha \tag{3}$$

Solution

If we take α clockwise, that is, exchange it with $-\alpha$, we will get the rotation matrix as

$$\mathbf{R} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \tag{4}$$

Thus, the required rotation matrix is ${\bf R}$ using which ${\bf Q}$ can be obtained from ${\bf P}$ by clockwise rotation around the origin through an angle α , therefore the correct option is (a)

Solution

Let us plot a graph for $\theta = 45^{\circ}$ and $\alpha = 30^{\circ}$

Figure: Graph for 4.13.42