Lecture Summary: Covariance and Correlation

Source: Lecture 3.5.pdf

Key Points

• Motivation:

- Variance measures the spread of a single random variable, while covariance and correlation quantify the relationship between two random variables.
- Example:
 - * Two joint PMFs can have identical marginals but very different relationships between the random variables.
 - * Covariance and correlation help capture these relationships.

• Covariance:

- Definition:

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])].$$

- Simplified formula:

$$Cov(X, Y) = E[XY] - E[X]E[Y].$$

- Interpretation:
 - * Cov(X, Y) > 0: X and Y tend to increase together.
 - * Cov(X,Y) < 0: When X increases, Y tends to decrease.
 - * Cov(X, Y) = 0: X and Y are uncorrelated.

• Examples of Covariance:

- Positive Covariance:
 - * X: Height of a person, Y: Weight of a person.
 - * Taller individuals tend to weigh more.

- Negative Covariance:

- * X: Rainfall during monsoon, Y: Farmer debt.
- * Higher rainfall correlates with lower farmer debt.

• Correlation:

- Normalized version of covariance:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)},$$

where $\sigma(X)$ and $\sigma(Y)$ are the standard deviations of X and Y.

- Properties:

*
$$-1 \le \rho(X, Y) \le 1$$
.

- * $\rho(X,Y) = 1$: Perfect positive correlation.
- * $\rho(X,Y) = -1$: Perfect negative correlation.
- * $\rho(X,Y) = 0$: No linear relationship.

• Properties of Covariance:

- 1. Cov(X, X) = Var(X).
- 2. Cov(X + a, Y) = Cov(X, Y) (translation invariance).
- 3. $Cov(aX, bY) = ab \cdot Cov(X, Y)$ (scaling).
- 4. Symmetry:

$$Cov(X, Y) = Cov(Y, X).$$

• Relation Between Covariance and Independence:

- Independence implies Cov(X, Y) = 0 (uncorrelated).
- However, Cov(X, Y) = 0 does not imply independence.
- Example of dependent but uncorrelated variables:
 - * $X \in \{-1,0,1\}, Y \in \{0,1\}$ with specific joint probabilities.
 - * E[XY] = E[X]E[Y], but X and Y are not independent.

Simplified Explanation

Covariance: Measures how two random variables move together: - Positive: Variables increase together. - Negative: One increases while the other decreases.

Correlation: A normalized measure of covariance indicating the strength of a linear relationship.

Examples: - Positive covariance: Height and weight. - Negative covariance: Rainfall and farmer debt.

Important Note: Uncorrelated variables may still be dependent.

Conclusion

In this lecture, we:

- Defined covariance and correlation as measures of relationships between random variables.
- Explored their properties and practical examples.
- Highlighted the difference between independence and uncorrelation.

Covariance and correlation are foundational tools for understanding relationships in multivariable data.