$$\chi(t)$$
 \longrightarrow $g[n]$ \longrightarrow $\chi[n]$

- Nyquist Frequency: 10kH2 ×2 = 20kHz Down sampling Pareio = 50kHz = 2.5,
- b) (i) Upsample by a factor of 2, upping the sampling frequency to 100kHz
 - (ii) Pass through the ideal low pass fifter to remove images, cutoff frequency would be 10kHz.

 In normalized digital it would be 10kHz × 27C = 0.272

 (iii) Downsample by a factor of 5
 - with a final sampling frequency of 20kHz

1.2) A]
$$\chi(z) = \sum_{n=-\infty}^{\infty} \chi[n] z^{-n}$$

a)
$$X(Z)$$
 of $X[n-n_0] := \sum_{n=-\infty}^{\infty} x[n-n_0]Z^{-n}$, let $M=N-n_0$

$$Z\{x[n-n_0]\} := \sum_{n=-\infty}^{\infty} x[m] x^{-(m+n_0)} = x^{-n_0} \sum_{m=-\infty}^{\infty} x[m] x^{-m}$$

$$X(Z) = x^{-n_0} X[m] x^{-(m+n_0)} = x^{-n_0} X[m] x^{-m}$$

$$X(Z) = x^{-n_0} X[m] x^{-n_0} X[Z]$$

b) let
$$-n = m$$

$$Z\{x[-n]\} = \sum_{n=-\infty}^{\infty} x[-n] z^{-n} > Z\{x[n]\} = \sum_{m=-\infty}^{\infty} x[m] z^{m} = \sum_{m=-\infty}^{\infty} x[n](z^{-i})^{-m}$$

$$= > Z\{x[-n]\} = X(z^{-i})$$

$$\begin{array}{lll}
 & (2) &$$

$$\beta] \quad \chi(z) = \sum_{n=-\infty}^{\infty} \chi[n] z^{-n}$$

a)
$$\chi(z) = \sum_{n=-\infty}^{\infty} J[n-3] z^{-n}$$
, $\chi[n] \neq 0$ only when $n=3$
=> $\chi(z) = z^{-3}$, $\chi[n] \neq 0$ only when $\chi[n] = 0$

b)
$$x[n] = 1$$
 for $0 \le n \le 4$, 0 otherwise $X(z) = \sum_{n=0}^{4} (1) z^{-n}$, $\sum_{n=0}^{2} (1)^{2} z^{-n}$, $\sum_{n=0}^{2} (1)^$

ROC: YZ, Z = O

c)
$$\chi(\chi) = \sum_{n=0}^{\infty} (0.25)^n 2^{-n} = \sum_{n=0}^{\infty} (0.25 \chi^{-1})^n$$
, infinite sum: $\frac{1}{1-\lambda}$, $\lambda = 0.25 \chi^{-1}$

POC =
$$|0.25z^{-1}| < |=> 0.25|2^{-1}| < |\Rightarrow \frac{0.25}{|2|} < |$$

$$|x| > 0.25$$

d)
$$x[n] = (0.25)^{n-1} u[n-1] = \chi^{-1} \frac{1}{0.25} (0.25)^n u[n-1]$$

$$X(\chi) = \sum_{m=0}^{\infty} (0.25)^m \chi^{-(m+1)} = \chi^{-1} \sum_{m=0}^{\infty} (0.25 \chi^{-1})^m = \chi^{-1}. \quad (1-0.25 \chi^{-1})^{-1}$$

$$= \frac{\chi^{-1}}{1-0.25 \chi^{-1}}$$

200: |天| > 0.25

e)
$$\chi[n]: 0.25^{n}u[n] - 0.25^{o}f[n] = (0.25)^{n}u[n] - f[n]$$

 $\chi(\chi): \chi\{(0.25)^{n}u[n]\} - \chi\{f[n]\}$

$$= \frac{1}{1-0.25\chi^{-1}} - 1 = \frac{1-(1-0.25\chi^{-1})}{1-0.25\chi^{-1}} = \frac{0.25\chi^{-1}}{1-0.25\chi^{-1}}$$

ROC: |x|> 0.25

f)
$$X(z) = \chi \{(0.25)^n u[n]\} + \chi \{(0.5)^n u[n]\}$$

 $u/ infinite sum: X(z) = \frac{1}{1-0.25z^{-1}} + \frac{1}{1-0.5z^{-1}}$
POC: $0.25 + 0.25$

g)
$$\cos(\theta) = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$$

 $x[n] = (0.25)^n \cdot \frac{1}{2} (e^{j \cdot 0.25\pi n} + e^{-j \cdot 0.25\pi n}) u[n]$
 $= \frac{1}{2} ((0.25e^{j \cdot 0.25\pi})^n u[n] + (0.25e^{-j \cdot 0.25\pi})^n u[n])$

$$X(\chi) = \frac{1}{2} \left[\left(\left[-(0.25 e^{j0.28t}) \chi^{-1} \right]^{-1} + \left(\left[\left[-0.25 e^{-j0.25t} \right] \chi^{-1} \right]^{-1} \right] \right]$$

$$2.4$$
] $Y[n] = \chi[n] + h[n]$

a)
$$x[n] = 1$$
 for $0 \le n \le 4$
 $h[n] = 0.5$ at $n = 3$
 $Y[n] = 0.5 \times [n-3] = 0.5 (u[n-3] - u[n-8])$

b)
$$x[n] = 1, 2, 3, 4 \ 30$$
 otherwise $n = 1, 2, 3, 4 \ 30$ otherwise $h[n] = 2$ are $n = -3$ $y[n] = 2x[n+3], n = -2, -1, 0, 1$ otherwise

c)
$$x[n] = 1$$
, $0 \le n \le 4$
 $h[n] = 2$, $0 \le n \le 4$
 $y[n] = n+1$: $0 \le n \le 4$
 $g(n+1) = 8-n$: $5 \le n \le 8$
 0 , $n \ge 0$, $n \ge 0$, $n \ge 0$, $n \ge 9$

d)
$$x[n] = 1$$
, $0 \le n \le 4$
 $h[n] = 1$, $0 \le n \le 2$
 $y[n] = \{1, 2, 3, 3, 3, 2, 1\}$, for $n = 0, 1, 2, 3, 4, 5, 6$

$$y[n] = \sum_{k=-\infty}^{n} x[k] \rightarrow y[n] = \begin{cases} 0, & n \ge 0 \\ nt \end{cases}, & n \ge 5 \end{cases}$$

$$X(e^{j\omega}) = \sum_{n=0}^{3} e^{-j\omega n} = \frac{1 - e^{-j\omega}}{1 - e^{-j\omega}} = e^{-j\frac{3\omega}{2}} \frac{\sin(2\omega)}{\sin(\omega/2)}, \quad X(e^{j\omega}) = -\frac{3\omega}{2} + \begin{cases} 0, & \frac{\sin(2\omega)}{\sin(\omega/2)} > 0 \\ -\pi, & \frac{\sin(2\omega)}{\sin(\omega/2)} < 0 \end{cases}$$

$$r[n] = x[n] * x[n] = \sum_{k=-\infty}^{\infty} x[k] x[n-k]$$

$$2(e^{ju}) = [X(e^{ju})]^2, x[n] = 1, 0 \le n \le 5$$

$$X(e^{j\omega}) = \sum_{n=0}^{3} e^{-j\omega n} = \frac{1 - e^{-j\omega}}{1 - e^{-j\omega}} = \left(\frac{\sin(3\omega)}{\sin(\omega/2)}\right) e^{-j(5\omega/2)}$$

$$|R(e^{j\omega})| = |X(e^{j\omega})|^2 = \left|\frac{\sin(3\omega)}{\sin(\omega/2)}\right|^2 = \left(\frac{\sin(3\omega)}{\sin(\omega/2)}\right)^2$$

$$\angle X(e^{j\omega}) = 2 \cdot \angle X(e^{j\omega})$$

$$= 2 \left(\frac{-5\omega}{2}\right)_{z} - 5\omega$$

Assignment 3 Page 5

$$= 2\left(\frac{-5\omega}{2}\right)_{z} - 5\omega$$

: ∑x[n]ejwn

a)
$$\mathcal{K}\{x[n-n_0]\}=\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-j\omega n}=\sum_{m=-\infty}^{\infty}x[m]e^{-j\omega(m+n_0)}$$

Let this be $m=-\infty$

$$\Rightarrow x[m]e^{-j\omega n_0}$$

$$\Rightarrow x[n-n_0]\}=e^{-j\omega n_0}$$

$$\Rightarrow x[m]e^{-j\omega n_0}$$

$$\Rightarrow x[n-n_0]\}=e^{-j\omega n_0}$$

b)
$$x[n] \in \mathbb{R}$$
, even if $x[n] = x^*[n]$ $\chi(e^{j\omega}) = \chi(e^{-j\omega}) = \chi^*(e^{j\omega})$

$$x[n] = x^*[n]$$

= $x[-n]$

$$\chi(e^{-j\omega})$$
 = $\chi(e^{-j\omega})$ = $\chi(e^{-j\omega})$

c) Same as b) but odd,
$$x[n] = -x[-n] \times (e^{-j\omega}) = -x^*(e^{-j\omega})$$

$$X(e^{-j\alpha}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\alpha n}$$

$$= \sum_{n=-\infty}^{\infty} x[-m]e^{-j\alpha n}$$

$$= \sum_{m=-\infty}^{\infty} (-\chi[m]) e^{-j\alpha m} = -\sum_{m=-\infty}^{\infty} \chi[m] e^{-j\alpha m} = -\chi(e^{j\alpha})$$

Upsampled Plots:

If we were to observe all three of the signals without the scale of the index, all three look generally similar.

Comparing between the increased sample rate and original signal:

- Increasing the sample rate of the signal seems to expand the signal's range by another factor of 10, seemingly from the multiplied factor of U.
- Data points appear more dense in the original signal while there are interspersed points of 0 in the increased sample rate signal. One in every 4 data points is a zero point while the original signal is non-zero throughout.

Comparing the Digitally Upsampled signal to both signals:

- All of the upsampled data points are non-zero, just like the original, contrary to the increased sample rate signal.
- Since the upsampling filter acts as an anti-imaging filter it has eliminated most of the introduced sparsed zero points, meaning data points appear to be seemingly smoother than the increased sample rate signal.
- Lastly, the amplitude of the upsampled signal actually increased by a bit, approaching [-1.2, 1.2] compared to [-1, 1] of both the original and increased sample rate signal.

Downsampled Plot:

The filter introduces a delay, appearing as though it has time shifted.