Regular Expressions and Grammars

Formal Languages and Abstract Machines

Week 04

Baris E. Suzek, PhD

Outline

Last week

- Regular expressions
- Grammars

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

O: set of states

 \sum : input alphabet

 δ transition function is a total function there must be an action defined for every combination of state and symbol

 q_0 : initial state

F: set of final states

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

O: Set of states, i.e.

 \sum • Input alphabet, i.e.

 δ : Transition function

 q_0 : Initial state

F: Final states

 $\{q_0, q_1, q_2\}$

 $\{a,b\}$

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q.$

NFA vs. DFA

- Transition functions range is Q vs. 2^Q (powersets of Q)
- $m{\cdot}\,\lambda$ can be an argument of transition function; transition without consuming a symbol
- $\cdot \delta(q_k,a)$ can be empty (not a total function)

δ	а	Ь
90	q_1	
$\overline{q_1}$		92

Regular Languages

ullet A language L is regular if there is a DFA M such that L=L(M)

All regular languages form a language family

Reverse

- 1. Reverse all transitions
- Make initial state final state and vice versa

Concatenation

$$L_1L_2$$

NFA for

<u>Union</u>

 $L_1 \cup L_2$

• NFA for

Complement

- 1. Take the **DFA** that accepts $\,L_{
 m l}$
- Make final states non-final, and vice-versa

Describing Regular Languages

- DFA or NFA (covered)
- Regular expressions
- Regular grammars

Outline

- Last week
- Regular expressions

• Grammars

Regular Expressions

Regular expressions describe regular languages

$$(a+b\cdot c)*$$

• Example describes the language:

$$\{a,bc\}^* = \{\lambda,a,bc,aa,abc,bca,\ldots\}$$

Recursive Definition

Primitive regular expressions:

 \emptyset , λ , α

Given regular expressions \emph{r}_1 and \emph{r}_2

Union (or)
$$r_1 + r_2$$

Concatenation

$$r_1 \cdot r_2$$

Star closure

$$(r_1)$$

Are regular expressions

A regular expression:

$$(a+b\cdot c)*\cdot (c+\varnothing)$$

Not a regular expression:

$$(a+b+)$$

Languages of Regular Expressions

L(r): language of regular expression r

Example

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

• For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

• For regular expressions η_1 and η_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

$$L((r_1)) = L(r_1)$$

 $(a+b)\cdot a^*$ Regular expression: $L((a+b)\cdot a^*) = L((a+b))L(a^*)$ = L(a+b)L(a*) $= (L(a) \cup L(b))(L(a))^*$ $=({a}\cup{b})({a})*$ $= \{a,b\}\{\lambda,a,aa,aaa,...\}$ $= \{a, aa, aaa, ..., b, ba, baa, ...\}$

• Regular expression: r = (a+b)*(a+bb)

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

• Regular expression: r = (aa)*(bb)*b

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

• Regular expression: r = (0+1)*00(0+1)*

 $L(r) = \{ \text{all strings with at least two consecutive } 0 \}$

• Regular expression: $r = (1+01)*(0+\lambda)$

 $L(r) = \{ \text{ all strings without two consecutive 0 } \}$

Equivalent Regular Expressions

• Regular expressions η and η are **equivalent** if

$$L(r_1) = L(r_2)$$

 $L = \{ \text{ all strings without two consecutive 0} \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$
 are equivalent regular expr.

Regular Expressions and Regular Languages

Theorem

Eanguages
Generated by
Regular Expressions

Regular Languages

Theorem - Part 1

1. For any regular expression The language L(r) is regular

Proof - Part 1 Induction Basis

Primitive Regular Expressions:

 \emptyset , λ , α

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Proof - Part 1 Inductive Hypothesis

- Assume for regular expressions r_1 and r_2 that $L(r_1)$ and $L(r_2)$ are regular languages

Proof - Part 1 Inductive Step

• We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

• By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know are $L(r_1)$ and $L(r_2)$ regular languages. There exists single final state NFAs M_1 and M_2 that accepts them so:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Are regular languages

Theorem - Part 2

Eanguages
Generated by
Regular Expressions

Regular Languages

2. For any regular language L there is a regular expression ℓ with L(r)=L

Proof – Part 2

ullet Since L is regular take the NFA M that accepts it

Single final state

 \bullet From M construct the equivalent Generalized Transition Graph in which transition labels are regular expressions

Example:

Another Example:

• Reducing the states:

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

• Removing states:

• The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

An Exercise

а	b
b	а
С	b
d	а
е	{lamda}

An Exercise

r1	ba
r2	ba
r3	ba
r4	ba

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

(ba)*(ba)((ba)+(ba)(ba)*(ba))*

OR ((ba)*ba(ba)*ba)*(ba)*ba(ba)*

Some Linux and Regular Expressions

- more
- gz
- cat
- od
- cut
- join
- sort
- paste
- grep
- awk/sed
- shuf
- Wc
- head{tail

Outline

- Last week
- Regular expressions
- Grammars •

Describing Regular Languages

- DFA or NFA (covered)
- Regular expressions (covered)
- Regular grammars

Grammars

• Grammars express languages

• Example: the English language

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$

 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$

 $\langle verb \rangle \rightarrow walks$

A derivation of "the dog walks":

$$\langle sentence \rangle \Rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow the \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow the \langle dog \langle verb \rangle$$

$$\Rightarrow the \langle dog \langle walks \rangle$$

A derivation of "a cat runs":

$$\langle sentence \rangle \Rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow a \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow a cat \langle verb \rangle$$

$$\Rightarrow a cat runs$$

Language of the Grammar

```
\langle article \rangle \rightarrow a
                                                                                                                            L = { "a cat runs",
\langle article \rangle \rightarrow the
                                                                                                                                     "a cat walks",
                                                                                                                                     "the cat runs",
                                  \langle sentence \rangle \rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                                                                                                                                     "the cat walks",
\langle noun \rangle \rightarrow cat +
                                                                                                                                     "a dog runs",
\langle noun \rangle \rightarrow dog
                                  \langle noun\_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle
                                                                                                                                     "a dog walks",
                                                                                                                                     "the dog runs",
\langle verb \rangle \rightarrow runs
                                                                                                                                     "the dog walks" }
\langle verb \rangle \rightarrow walks
```

Notation

Another Example

• Grammar:

$$S \rightarrow aSb$$

 $S \to \lambda$

• Derivation of sentence : ab

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Another Example

• Grammar:

$$S \rightarrow aSb$$

$$S \to \lambda$$

Derivation of sentence

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Another Example

Language of the grammar

$$S \to aSb$$
$$S \to \lambda$$

$$L = \{a^n b^n : n \ge 0\}$$

- This is not a "regular language"
 - No DFA can accept this
 - We will learn one more method to test regular-ness: "Pumping Lemma"

• Grammar:

$$G = (V, T, S, P)$$

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of production rules

Example

$$G \qquad S \to aSb$$

$$S \to \lambda$$

$$G = (V, T, S, P)$$

$$V = \{S\} \qquad T = \{a, b\}$$

$$P = \{S \to aSb, S \to \lambda\}$$

$$S \to aSb$$

$$S \to \lambda$$

$$S \to \lambda$$

$$\langle article \rangle \rightarrow a$$
 $\langle article \rangle \rightarrow a \mid the$ $\langle article \rangle \rightarrow the$

 <u>Sentential Form:</u> A sentence that contains both variables and terminals

• Example:

• In general we write (similar to extended transition function):

$$w_1 \overset{*}{\Rightarrow} w_n$$
 • If:
$$w_1 \overset{*}{\Rightarrow} w_2 \overset{*}{\Rightarrow} w_3 \overset{*}{\Rightarrow} \cdots \overset{*}{\Rightarrow} w_n$$
 • Note:
$$w \overset{*}{\Rightarrow} w$$

Example

• We write:

$$S \Rightarrow aaabbb$$

• Instead of:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Example

Grammar

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivations

*

$$S \Longrightarrow \lambda$$

*

$$S \Rightarrow ab$$

*

$$S \Rightarrow aabb$$

*

$$S \Rightarrow aaabbb$$

Another Grammar Example

• Grammar
$$G: S \to Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

• Derivations:

$$S \Rightarrow Ab \Rightarrow b$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow abb$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbb \Rightarrow aabbb$$

More Derivations

$$S \to Ab$$

$$A \to aAb$$

$$A \to \lambda$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbbb \Rightarrow aaaAbbbbb$$

 $\Rightarrow aaaaAbbbbbb \Rightarrow aaaabbbbbb$
*
 $S \Rightarrow aaaabbbbbb$

$$S \Rightarrow aaaaaabbbbbbbb$$

$$S \Rightarrow a^n b^n b$$

- Parse trees: Another representation for derivations where:
 - Each interior node is a variable
 - Each leaf is a variable or terminal or λ
 - If λ then no more child

Example

$$S \rightarrow aSb$$

$$S \to \lambda$$

$$S \Rightarrow aabb$$

Language of a Grammar

ullet For a grammar $\,G\,$ with start variable $\,S\,$:

$$L(G) = \{w: S \Longrightarrow w\}$$

String of terminals

Example

ullet For grammar G:

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

Since:
$$S \Rightarrow a^n b^n b$$