

Linear Algebra – Math 205 Exercise Set of Lect 24 & 25 (SPRING 2023)

Date: 11/04/2023

Homework 6b Updated

Question 01

Question 06

Solution: Considering linearly dependent equation that holds for eigenvalues in \mathbb{R}^3

$$k_1v + k_2Av + k_3A^2v + k^4A^3v = 0 \forall k_i \neq 0$$
Now let $v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, so $Av = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$, $A^2v = \begin{bmatrix} 24 \\ 20 \\ 20 \end{bmatrix}$ and $A^3v = \begin{bmatrix} 176 \\ 168 \\ 168 \end{bmatrix}$. So the

matrix would be in the form of $k_1v + k_2Av + k_3A^2v + k^4A^3v = 0$

$$\begin{bmatrix} 1 & 4 & 24 & 176 \\ 0 & 2 & 20 & 168 \\ 0 & 2 & 24 & 176 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Echoleon form of above matrix leads to values for k_i .

$$k_1 = 16k_3 + 160k_4$$

$$k_2 = -10k_3 - 84k_4$$

$$k_3 = t$$

$$k_4 = s$$

Lets take s = 1 and t = -12 for simplication of k_i . Hence $k_1 = 32, k_2 = 36, k_3 = -12$ and $k_4 = 1$.

Now substitute in above equation and solve for the roots of equation, we have 8,2,2.

Question 06

(a)
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Solution: $\begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = 0 \Rightarrow \lambda^2 - 6\lambda + 8 = 0$
We have two eigenvalues $\lambda_1 = 4\&\lambda_2 = 2$. First take λ_1

$$\begin{bmatrix} 3 - \lambda_1 & 1 & 0 \\ 1 & 3 - \lambda_1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 - 4 & 1 & 0 \\ 1 & 3 - 4 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence we have $-x_1 + x_2 = 0$ and $x_2 = x_2$, so first eigenvector would be $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Similarly for λ_2 , we have second eigenvector $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. For orthogonal, we need

to each vector by its norm, so it would be unit vector...
$$v_1^* = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, v_2^* = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}. \text{ So, matrix } P \text{ would be } P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 and
$$P^{-1} = P^t = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$P^{-1}AP = P^{t}AP = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution: Using similar procedure we have eigenvalues
$$\lambda_1=2, \lambda_2=0, \lambda_3=0$$
 Eigenvalue: 2, eigenvector: $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, so unit vector $\begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2}\\0 \end{bmatrix}$

Eigenvalue:
$$0$$
, eigenvectors: $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, so they are orthogonal hence

we only need to make them unit vector. Unit eigenvectors are $\begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$ and

$$\left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right].$$

Form the matrix
$$P$$
, whose column i is eigenvector no. $i: P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Form the diagonal matrix D whose element at row, column is eigenvalue no. D =

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Question 07

If A is a real symmetric matrix, then any two eigenvectors corresponding to distinct eigenvalues are orthogonal.

Solution: Proof. Let λ_1 and λ_2 be distinct eigenvalues with associated eigenvectors v_1 and v_2 . Then, $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$. Take the inner product of the first equation by ν_2 and the inner product of the second equation by ν_1 :

$$v_2^{\mathrm{T}} A v_1 = \lambda_1 v_2 v_1, \quad A v_2^{\mathrm{T}} v_1 = \lambda_2 v_2 v_1$$

In Equation, $(A\nu_2)^{\top} \nu_1 = v_2^{\top} A^{\top} v_1$, so becomes $v_2^{\mathsf{T}} A v_1 = \lambda_1 v_2 v_1$, $v_2^{\mathsf{T}} A^{\mathsf{T}} v_1 = \lambda_2 v_2 v_1$ Since $A^{\top} = A$, in Equation, we have $v_2^{\mathsf{T}} A v_1 = \lambda_1 v_2 v_1$, $v_2^{\mathsf{T}} A v_1 = \lambda_2 v_2 v_1$ and

$$\lambda_1 v_2 v_1 = \lambda_2 v_2 v_1$$

Equation gives

$$(\lambda_1 - \lambda_2)v_2v_1 = 0.$$

Since $\lambda_1 \neq \lambda_2, \langle v_2, v_1 \rangle = 0$, and v_1, v_2 are orthogonal.