Discriminant $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The discriminant is the part of the quadratic formula under the square root symbol: **b²-4ac.**The discriminant tells us whether there are two solutions, one solution, or no real solutions.

- The discriminant formula is used to determine the nature of the roots (x-intercepts) of a quadratic equation.
- The discriminant (**D**) of a quadratic equation is the part under the square root (sum of everything under the square root):

$$D = b^2 - 4ac$$

RULES:

If **D** > 0; the equation has two real distinct roots.

If $\mathbf{D} = 0$; the equation has only one real root.

If **D** = a negative number; there are no real roots

If **D** > 0
$$\Rightarrow$$
 2 solutions
 $x = \frac{-5 \pm \sqrt{4}}{4}$ $x = \frac{-3}{4}$ $x = \frac{-7}{4}$

One root will use the positive square root of four(+ $\sqrt{4}$) and the other will use the negative square root of four(- $\sqrt{4}$), so there will be two roots.

If **D** = 0
$$\Rightarrow$$
 1 solution
 $x = \frac{-4 \pm \sqrt{0}}{4}$ $x = -1$

Since the positive or negative square root of zero(+ $\sqrt{0}$ or - $\sqrt{0}$) is zero, there will be only one root.

If
$$\mathbf{D} = -\# \Rightarrow \text{No solutions}$$

 $x = \frac{-5 \pm \sqrt{-4}}{4}$ No Solutions

Since it is not possible to take the square root of a negative number $(\sqrt{-4})$, there are no real roots.

If $\mathbf{D} = -\# \Rightarrow \text{No solutions}$

$$x = \frac{-5 \pm \sqrt{-4}}{4}$$

$$x^2 + x + 2 ---$$
 No solutions

If
$$\mathbf{D} = 0 \Rightarrow \text{One solution}$$

$$x = \frac{-4 \pm \sqrt{0}}{4}$$

$$x^2 - 4x + 4$$
 --- One solution

If $D = 0 \Rightarrow Two solutions$

$$x = \frac{-5 \pm \sqrt{4}}{4}$$

$$x^2 - 7x + 3 ---$$
 Two solutions

