

Aula 24 de abril de 2023

Problemas
Propriedades de superfícies

1. Um tensioativo a ser usado num gel de banho, apresentou a seguinte dependência entre a tensão superficial de soluções aquosas e a concentração, a 36 °C:

$$\frac{\gamma}{\gamma_0} = 1 - b \ln (1 + d c)$$

Onde γ_0 = 0,0727 Nm⁻¹, b= 0,15 e d = 5780 M⁻¹. Sabendo que a temperatura de Krafft (temperatura mínima para se dar a formação de micelas) é de 22 ° C, e a concentração micelar crítica é de 3,54 x 10⁻³ M, calcule:

- 1.1. a isotérmica de Gibbs para este sistema, para uma temperatura superior a 22 ° C e uma concentração inferior a 3,54 x 10^{-3} M.
- 1.2. a área coberta por uma molécula deste tensioativo adsorvido numa monocamada saturada, a esta temperatura de 36 °C.

2. Seguiu-se a adsorção de azoto N_2 no zeólito ZSM-1 a 77 K no laboratório 421 do Ed. Departamental. Na tabela seguinte apresentam-se os volumes de N_2 (corrigidos para 1 atm e 273 K) adsorvidos por grama de zeólito para diferentes pressões de equilíbrio:

p/mbar	15,71	47,12	94,25	125,66	219, 91
$V/ \text{ cm}^3 \text{ g}^{-1}$	3,14	8,80	16,02	20,42	31,10

- 2.1. Calcule através da isotérmica de Langmuir o número de moles de N_2 por grama de zeólito necessário para se formar a monocamada.
- 2.2. Realizou-se ainda uma isotérmica de adsorção a 150 K e observou-se que para um volume de N_2 adsorvido de 20,42 cm³ g⁻¹ (corrigido para 1 atm e 273 K) a pressão em equilíbrio era de 726,19 mbar. Calcule a entalpia de adsorção. Comente o resultado obtido.

3. Seguiu-se a adsorção de azoto N_2 sobre ZnO em pó a 77 K. Na tabela seguinte apresentam-se os volumes de N_2 (recalculados para 1 atm e 273 K) adsorvidos por grama de ZnO. A esta temperatura de 77 K, a pressão de saturação do azoto é 1021 mbar.

p/mbar	74,8	193,6	297,8	590,3	667,8	934,9
$V(N_2)/\text{ cm}^3\text{ g}^{-1}$	850	980	1050	1500	1800	7300

- 3.1. Diga se os valores estão segundo uma isotérmiva de B.E.T. ou de Langmuir. Explique a sua escolha.
- 3.2. Se a área de uma molécula de N_2 for 16,2 A^2 , qual a área disponível para a adsorção do azoto por grama de ZnO prevista pela teoria de B.E.T.? Comente.
- 3.3. Consegue-se uma fração de 50% de ZnO ocupada com moléculas de N_2 à temperatura de 77 K para uma pressão de 26,7 mbar enquanto que para 100 K a pressão é de 667,8 mbar. Calcule a entalpia de adsorção de N_2 sobre ZnO. Comente o resultado obtido.

4. Observou-se a reação sobre platina

$$CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g)$$

a T = 250 °C segue a lei cinética
$$v = k \frac{p_{O_2}^{1/2}}{p_{CO}}$$

Proponha um mecanismo de catáslise heterogénea e dê significado a \emph{k} .