Problem List 5 (Random graphs)

GRAPH THEORY, WINTER SEMESTER 2022/23, IM UWR

- 1. OBy colouring the vertices of a graph G red/blue independently at random, show that V(G) has a partition $V(G) = V_1 \sqcup V_2$ such that $e(G[V_1]) + e(G[V_2]) \leq \frac{1}{2}e(G)$. Give also a constructive proof of the same fact.
- 2.° Let G be a graph with |G| = n and $e(G) = m \ge 4n$. Show that the crossing number of G (see Problem 4.4) satisfies $\operatorname{cr}(G) > \frac{m^3}{64n^2}$. [Hint: draw G on a plane with $\operatorname{cr}(G)$ crossings, and apply Problem 4.4(b) to G[W], where $W \subseteq V(G)$ is a random subset containing each vertex with probability $\frac{4n}{m}$.]
- 3.° Show that for any $s, t \geq 2$ we have $R(s,t) \geq n \binom{n}{s} p^{\binom{s}{2}} \binom{n}{t} (1-p)^{\binom{t}{2}}$ for all $n \in \mathbb{N}$ and $p \in (0,1)$. By choosing n = n(t) appropriately and taking $p = n^{-2/3}$, deduce that $R(4,t) = \Omega\left(\left(\frac{t}{\ln t}\right)^{3/2}\right)$. [Hint: by Stirling's Formula, $\ln(t!) = t \ln t + O(t)$; also, $\ln(1-p) < -p$ for $p \in (0,1)$.]
- 4. Let $n \in \mathbb{N}$ players participate in a *tournament*, where each pair of players play a game and one of them beats the other (there are no draws).
 - (a) For every $k \ge 1$, prove that there exists a tournament in which for every k players, some other player beats all k of them.
 - (b) Construct such a tournament explicitly for k = 2. [Hint: consider a tournament in which the players play rock-paper-scissors.]
- 5. Find a threshold function for $G \in \mathcal{G}(n,p)$ to contain a path of length 2.
- 6. A vertex v of a graph G is said to be *isolated* if $d_G(v) = 0$. Show that $\frac{\ln n}{n}$ is a threshold function for $G \in \mathcal{G}(n,p)$ to have no isolated vertices.
- 7. We define the Rado graph R as an infinite graph with $V(R) = \mathbb{Z}_{\geq 0} = \{0, 1, \ldots\}$, so that given non-negative integers x < y, we have $x \sim_R y$ if and only if $\lfloor \frac{y}{2^x} \rfloor$ is odd.
 - (a) Show that R satisfies the extension property: given any finite disjoint subsets $U, W \subset V(R)$, there exists $v \in V(R) \setminus (U \cup W)$ such that $v \sim u$ for all $u \in U$ and $v \nsim w$ for all $w \in W$.
 - (b)⁺ Let G, H be two infinite graphs, with V(G) and V(H) countable, satisfying the extension property. Show that $G \cong H$.
 - (c) Given $p \in (0,1)$, let $\mathcal{G}(\infty,p)$ be the probability space of all infinite graphs G with vertex set $\mathbb{Z}_{\geq 0}$, with each edge appearing independently at random with probability p. Show that $G \in \mathcal{G}(\infty,p)$ is isomorphic to R with probability one. [Hint: recall that probability measures are countably additive; you can assume without proof that all probabilities you are computing are well-defined.]