Chapitre 3

Espaces euclidiens

3.1 Formes Bilinéaires et formes quadratiques

3.1.1 Formes bilinéaires symétriques

Définition 3.1.1. Une forme bilinéaire sur un \mathbb{R} espace vectoriel E est une application $\varphi: E \times E \to \mathbb{R}$ qui est linéaire par rapport à chacune de ses variables :

- 1. $\forall u, v, w \in E \text{ et } \lambda, \mu \in \mathbb{R}, \varphi(\lambda u + \mu v, w) = \lambda \varphi(u, w) + \mu \varphi(v, w),$
- 2. $\forall u, v, w \in E \text{ et } \lambda, \mu \in \mathbb{R}, \ \varphi(u, \lambda v + \mu w) = \lambda \varphi(u, v) + \mu \varphi(u, w).$

Elle est **symétrique** si $\varphi(u,v) = \varphi(v,u)$ pour tout $u,v \in E$

Étant donnée une base $\mathcal{B} = (e_1, \dots, e_n)$ de E et $u = x_1 e_1 + \dots + x_n e_n$ et $v = y_1 e_1 + \dots + y_n e_n$. On a

$$\varphi(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} x_i y_j$$

 $m_{ij} = \varphi(e_i, e_j) \in \mathbb{R}$ pour tout $i, j = 1, \dots, n$. Ainsi une forme bilinéaire s'écrit comme comme un polynôme homogène de degré 2 en les coordonnées de u et v.

Exemple 3.1.1.

3.1.2 Formes quadratiques

Définition 3.1.2. Soit E un \mathbb{R} espace vectoriel. Une application $q:E\to\mathbb{R}$ est appelée une forme quadratique s'il existe une forme bilinéaire $\varphi:E\times E\to\mathbb{R}$ telle que pour tout $u\in E$

$$q(u) = \varphi(u, u)$$

On dit que φ est associée à q. (q est un polynôme homogène de degré 2 en les coordonnées).

Exemple 3.1.2.					

Proposition 3.1.1. Toute forme quadratique q sur un \mathbb{R} espace vectoriel E est associée à une unique forme bilinéaire symétrique.

Démonstration.

Définition 3.1.3. Soit $q: E \to \mathbb{R}$ une forme quadratique définie sur un \mathbb{R} espace vectoriel E. La forme bilinéaire symétrique $\varphi(u,v) = \frac{1}{4} \left(q(u+v) - q(u-v) \right)$ est la **forme polaire** de q.

Exemple 3.1.4. Soit $E = \mathbb{R}^3$ et $q: (x_1, x_2, x_3) \mapsto 7x_1^2 + 5x_2x_3$.

3.1.3 Notation matricielle

Soit E un \mathbb{R} espace vectoriel de dimension finie et $\mathcal{B}=(e_1,\cdots,e_n)$ une base de E et $u=x_1e_1+\cdots+x_ne_n$ et $v=y_1e_1+\cdots+y_ne_n$ deux éléments de E. Une forme bilinéaire symétrique

sur E s'écrit

$$\varphi(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} \underbrace{\varphi(e_i, e_j)}_{=m_{ij}} x_i y_j.$$

Réciproquement si $(m_{ij})_{i,j=1}^n$ est une famille de réels telles que $m_{ij}=m_{ji}$ pour tout $i,j=1,\cdots,n$. Alors

$$(u,v) \mapsto \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} x_i y_j$$

est une forme bilinéaire symétrique sur E.

Définition 3.1.4. Soit E un \mathbb{R} espace vectoriel de dimension finie et $\mathcal{B}=(e_1,\cdots,e_n)$ une base de E.

(i) La matrice

$$M = [m_{ij} = \varphi(e_i, e_j)]_{i,j=1}^n$$

est appelée matrice de la forme bilinéaire symétrique φ dans la base \mathcal{B} .

- (ii) La matrice (dans la base \mathcal{B}) de la forme quadratique $q(u) = \varphi(u, u)$ est la matrice M de φ . Autrement dit, la matrice d'une forme quadratique est la matrice de sa forme polaire.
- Si $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ sont les matrices colonnes des coordonnées de u et v dans la base

$$\varphi(u,v) = X^t M Y = Y^t M X = \varphi(v,u)$$

 et

$$q(u) = X^t M X.$$

On a de plus $M = M^t$.

Exemple 3.1.5. 1) Soit
$$E = \mathbb{R}^2$$
 et $q(u) = x_1^2 + x_2^2$

2)	Soit $E = \mathbb{R}$	$2^3 \text{ et } q:(x_1,x_2)$	$(x_2, x_3) \mapsto 7x_1^2$	$x_1^2 + 6x_1x_2 + 8$	$5x_2x_3$.		

3.2 Produit scalaire et norme euclidienne

3.2.1 Produit scalaire

Définition 3.2.1. On dit qu'une forme bilinéaire est

- (i) Symétrique : si $\forall u, v \in E, \varphi(u, v) = \varphi(v, u)$.
- (ii) Positive : si $\forall u \in E, \varphi(u, u) \geq 0$.
- (iii) **Définie** : si $\varphi(u, u) = 0 \Leftrightarrow u = 0$.

Une forme forme bilinéaire symétrique définie positve est appelé produit scalaire.

Suivant les auteurs et le contexte, le produit scalaire est noté $(u, v) \mapsto \langle u, v \rangle$ ou $(u, v) \mapsto \langle u | v \rangle$ ou encore $(u, v) \mapsto (u | v)$.

Définition 3.2.2. Un espace euclidien est un espace vectoriel réel E de dimension finie muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. On note $(E, \langle \cdot, \cdot \rangle)$.

Exemple 3.2.1.

3.2.2 Norme euclidienne

Soit l'application

$$\|\cdot\|: E \to \mathbb{R}$$

$$u \mapsto \|u\| = \sqrt{\langle u, u \rangle}$$

Remarquons qu'elle est bien définie car le produit scalaire est positif.

Exemple 3.2.2. Si $E = \mathbb{R}$ on voit que la $\|\cdot\|$ est simplement la valeur absolue. Si $E = \mathbb{R}^n$ avec le produit scalaire canonique alors $\|(x_1, \dots, x_n)\| = \sqrt{x_1^2 + \dots + x_n^2}$.

Proposition 3.2.1 (Inégalité de Cauchy-Schwarz). Pour tous $u, v \in E$ on a :

$$|\langle u, v \rangle| < ||u|| \, ||v||$$

De plus on a $|\langle u, v \rangle| = ||u|| \, ||v||$ si et seulement si il existe un $\lambda \in \mathbb{R}$ tel que $v = \lambda u$.

Démonstration.

Remarque 11. 1. On peut bien sûr utiliser l'expression (au carré) : $ \langle u, v \rangle ^2 \le \langle u, u \rangle \langle v, v \rangle$ 2. Si $E = \mathbb{R}^n$ muni du produit scalaire cannonique, on obtient $(\sum_{i=1}^n x_i y_i)^2 \le \sum_{i=1}^n x_i \sum_{i=1}^n y_i$
Proposition 3.2.2 (Inégalité de Minkowski). $\forall u,v\in E \text{ on a}$
$ u+v \le u + v .$
De plus on a $ u+v = u + v $ si et seulement si il existe un $\lambda \in \mathbb{R}$ tel que $v = \lambda u$.
$D\'{e}monstration.$

Un espace euclidien est en fait un espace normé :

Définition - Proposition 3.2.1. Soit un espace euclidien $(E, \langle \cdot, \cdot \rangle)$. L'application $\| \cdot \| : E \to \mathbb{R}$ définie pour tout $u \in E$ par $\| u \| = \sqrt{\langle u, u \rangle}$ est une norme sur E et elle est appelé **norme euclidienne**.

Démonstration. On vérifie les trois propriétés vérifiées pour une norme :

- 1. $||u|| = 0 \Rightarrow \langle u, u \rangle = 0 \Rightarrow u = 0$ car le produit scalaire est défini.
- 2. homogénéité $\|\lambda u\| = \sqrt{\langle \lambda u, \lambda u \rangle} = \sqrt{\lambda^2} \sqrt{\langle u, u \rangle} = |\lambda| \|u\|$.
- 3. Inégalité triangulaire : c'est exactement l'inégalité de Minkowski.

Les normes euclidiennes sont donc des normes bien particulières car elles découlent d'un produit scalaire. Les normes euclidiennes satisfont un certain nombre de propriétés remarquables :

Proposition 3.2.3. Soit un espace euclidien $(E, \langle \cdot, \cdot \rangle)$ et $\| \cdot \|$ la norme euclidienne sur E. Pour tous $u, v \in E$ on a

$$\langle u, v \rangle = \frac{1}{2} (\|u + v\|^2 - \|u\|^2 - \|v\|^2) = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2)$$

et

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

Démonstration.

3.2.3 Mesure d'angle géométrique

Comme on vient de le voir, un produit scalaire permet de mesurer des distances entre point E. Il permet aussi de mesurer un angle. L'inégalité de Cauchy-Schwarz implique que :

$$-1 \le \frac{\langle u, v \rangle}{\|u\| \|v\|} \le 1$$

On est donc en mesure de poser la définition suivante :

Définition 3.2.3. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Soient u, v deux vecteurs non nuls de

E. On appelle mesure de l'angle non orienté du couple (u, v) le réel compris $\theta \in [0, \pi]$ tel que

$$\cos(\theta) = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

Définition 3.2.4. On dit que les vecteurs u et v de $(E, \langle \cdot, \cdot \rangle)$ sont orthogonaux si $\langle u, v \rangle = 0$.

Proposition 3.2.4 (Théorème de Pythagore). Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Les vecteurs u et u de E sont orthogonaux ssi $||u+v||^2 = ||u||^2 + ||v||^2$.

Démonstration.

3.3 Signe d'une forme quadratique

3.3.1 Rappels

Définition 3.3.1. Soit E un \mathbb{R} espace vectoriel. Une **forme linéaire** ℓ est une application $\ell: E \to \mathbb{R}$ qui est linéaire.

Si $E = \mathbb{R}^n$ et ℓ une forme linéaire sur E. Alors il existe un vecteur $a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in E$ tel que

$$\ell(u) = \langle a, u \rangle = a_1 x_1 + \dots + a_n x_n$$
, pour tout $u \in E$.

En notation matricielle, les vecteurs $u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ sont notés en colonne et les formes linaires ℓ sont des matrices lignes (de taille $1 \times n$). La matrice de ℓ n'est autre que celle de a transposée et on a

$$\ell(u) = (a_1, \cdots, a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Définition 3.3.2. Une forme quadratique $q: E \to \mathbb{R}$ définie sur un \mathbb{R} espace vectoriel E est 1. **Positive** : si $\forall u \in E, q(u) \geq 0$.

2. **Négative** : si $\forall u \in E, q(u) \leq 0$.

3.3.2 Décomposition de Gauss

Soit $q: E \to \mathbb{R}$ une forme quadratique définie sur un \mathbb{R} espace vectoriel de dimension n. Alors il existe $(s+t) \le n$ formes linéaires $\ell_1, \dots, \ell_s, \ell_{s+1}, \dots, \ell_{s+t} : E \to \mathbb{R}$ linéairement indépendantes telles que pour tout $u \in E$

$$q(u) = (\ell_1(u))^2 + \dots + (\ell_s(u))^2 - (\ell_{s+1}(u))^2 - \dots - (\ell_{s+t}(u))^2$$

Il n'y a pas unicité des ℓ_i mais les nombres entiers s et t ne dépendent pas de la décomposition choisie (c'est la **signature** de q).

Remarque 12. On peut déduire le signe de la forme quadratique q grâce à sa décomposition de Gauss :

- 1. Si t = 0 alors la forme quadratique q est positive.
- 2. Si s=0 alors la forme quadratique q est négative.

L'algorithme de Gauss permet de calculer les formes linéaires indépendantes ℓ_i . Soit $q: E \to \mathbb{R}$ une forme quadratique. On l'écrit tout d'abord dans une base

$$q(x_1, \dots, x_n) = a_{11}x_1^2 + \dots + a_{nn}x_n^2 + \sum_{i=1}^n \sum_{\substack{j=1 \ j \neq i}}^n a_{ij}x_ix_j.$$

De deux choses l'une :

1. Il y a au moins un "terme carré" dans l'écriture de q. C'est à dire, il existe un entier $1 \le i \le n$ tel que a_{ii} n'est pas nul. On supposera pour simplifier qu'il s'agit de a_{11} et on note $a = a_{11}$. On peut alors écrire q sous la forme :

$$q(x_1, \dots, x_n) = ax_1^2 + x_1 B(x_2, \dots, x_n) + C(x_2, \dots, x_n)$$

où on a factorisé les termes en x_1 et fait apparaître une forme linéaire $\mathbf{B} = B(x_2, \dots, x_n)$ et une forme quadratique $\mathbf{C} = C(x_2, \dots, x_n)$. On peut alors "complèter le carré" (mise

sous forme canonique):

$$q(x_1, \cdots, x_n) = a\left(x_1 + \frac{\mathbf{B}}{2a}\right)^2 + \mathbf{C} - \frac{\mathbf{B}^2}{4a}$$

On a donc écrit la forme quadratique q comme somme du carré d'une forme linéaire et d'une forme quadratique où x_1 n'intervient plus (linéairement indépendant). Il suffit alors de réitérer la méthode de Gauss avec $q'(x_2, \dots, x_n) = C(x_2, \dots, x_n) - \frac{B^2(x_2, \dots, x_n)}{4a}$.

2. Il n'y a que des "termes rectangles" dans l'écriture de q. Si la forme quadratique est nulle, l'algorithme s'arrête. On suppose pour simplifier que $a_{12} \neq 0$ et on note $a = a_{12}$. On écrit alors q sous la forme :

$$q(x_1, \dots, x_n) = ax_1x_2 + x_1B(x_3, \dots, x_n) + x_2C(x_3, \dots, x_n) + D(x_3, \dots, x_n)$$

où $B(x_3, \dots, x_n)$ et $C(x_3, \dots, x_n)$ sont des formes linéaires et $D(x_3, \dots, x_n)$ est une forme quadratique. Dans la suite, on note respectivement ces applications $\boldsymbol{B}, \boldsymbol{C}$ et \boldsymbol{D} . On factorise alors sous la forme suivante :

$$q(x_1, \dots, x_n) = a\left(x_1 + \frac{C}{a}\right)\left(x_2 + \frac{B}{a}\right) + D - \frac{BC}{a}$$

Puis on utilise le fait que pour tous réels a et b on a $ab = ((a+b)^2 - (a-b)^2)/4$ pour obtenir finalement :

$$q(x_1, \dots, x_n) = \frac{a}{4} \left(x_1 + x_2 + \frac{B + C}{a} \right)^2 - \frac{a}{4} \left(x_1 - x_2 + \frac{C - B}{a} \right)^2 + D - \frac{BC}{a}$$

Il suffit alors d'itérer la méthode avec la forme quadratique $q'(x_3, \dots, x_n) = \mathbf{D} - \frac{\mathbf{BC}}{a}$, qui ne fait plus intervenir que x_3, \dots, x_n .

Remarque 13. Il existe d'autres méthodes pour écrire une forme quadratique sous la forme d'une somme de carrés de formes linéaires indépendantes : la diagonalisation de la forme quadratique (conjugaison par une matrice orthogonale) et q-orthonormalisation d'une base de E (méthode de Lagrange). A noter que pour les matrices définies positives, il existe aussi l'algorithme de Choleski et pour les matrices non définies il existe l'algorithme LDL.

3.3.3 Critère de Sylvester ou des déterminants mineurs principaux

Proposition 3.3.1. Soit $q: \mathbb{R}^2 \to \mathbb{R}$ une forme quadratique sur \mathbb{R}^2 de matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

On note $\Delta_1 = a$ et $\Delta_2 = (ad - cb)$ et tr(M) = a + d. Alors :

- 1. q est définie positive ssi $\Delta_1 > 0$ et $\Delta_2 > 0$ ssi $\mathrm{tr}(M) > 0$ et $\Delta_2 > 0$.
- 2. q est définie négative ssi $\Delta_1 < 0$ et $\Delta_2 > 0$ ssi $\mathrm{tr}(M) < 0$ et $\Delta_2 > 0$.

Démonstration. On se contente d'une illustration sur les matrices diagonales.

22	SICNE	DIINE	FORMF	QUADRA	ATIOHE
ാ.ാ.	SIGNE	DUNE	FURME	QUADRA	AIIQUL

41

Proposition 3.3.2. Soit $q: \mathbb{R}^3 \to \mathbb{R}$ une forme quadratique sur \mathbb{R}^3 de matrice $M = (m_{ij})_{i,j=1}^3$. On note :

$$\Delta_1 = m_{11}, \qquad \Delta_2 = \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix}, \quad \text{ et } \quad \Delta_3 = \det(M) = \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix}.$$

Alors:

- 1. q est définie positive ssi $\Delta_1 > 0$ et $\Delta_2 > 0$ et $\Delta_3 > 0$,
- 2. q est définie négative ssi $\Delta_1 < 0$ et $\Delta_2 > 0$ et $\Delta_3 < 0$.

Démonstration. On se contente d'une illustration sur les matrices diagonales.

Bibliographie

- [1] A. Bodin et al. exo7 Cours de mathématiques Première année. http://exo7.emath.fr/cours/cours-exo7.pdf.
- [2] J.P. Ramis, A. Warusfel, X. Buff, J. Garnier, E. Halberstadt, T. Lachand-Robert, et al. *Mathématiques Tout-en-un pour la Licence 1. Cours complet, exemples et exercices corrigés Tome 1.* Collection : Sciences Sup, Dunod, 2013 2ème édition.