DIC L7: MOSFET (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

2.1. Introduction (1)

- MOS capacitor
 - Gate / oxide / body
- Operating modes
 - (a) Accumulation
 - (b) Depletion
 - (c) Inversion

Fig. 2.2

GIST Lecture on October 8, 2019

2.1. Introduction (2)

An example

2.1. Introduction (3)

Four termianl device

- Source and drain are symmetric.
 - By convention, the source is biased with at a lower voltage.
 - Therefore, $V_{ds} \ge 0$
- NMOS body is grounded.
- Operation regions: Subthreshold ("cutoff" in the textbook), linear, and saturation

2.1. Introduction (4)

- When the gate-to-source voltage is less than the threshold voltage (V_t) ,
 - No mobile carrier

$$I_d \approx 0$$

Fig. 2.3(a)

2.1. Introduction (5)

Linear mode

- When $V_{gs} > V_t$, we have an inversion channel.

- By applying a positive V_{ds} , we have $I_d > 0$.

Fig. 2.3(b) & 2.3(c)

2.1. Introduction (6)

Saturation mode

- When $V_{ds} > V_{gs} V_t$
- The drain current is controlled only by the gate voltage and ceases to be influenced by the drain.

Fig. 2.3(d)

2.1. Long-channel (1)

- Current through the channel depends on
 - How much "electron" charge is in the channel?
 - Number of mobilie carriers
 - How fast is the charge moving?
- Charge

$$Q_{channel} = C_g(V_{gc} - V_t)$$
 Eq. (2.1)

- Note) $Q_{channel}$ for electrons. (It should be negative, but in Eq. (2.1), it is understood.)
- Note) V_{qc} appears instead of V_{qb} .

2.1. Long-channel (2)

Capacitance

$$C_g = C_{OX}WL$$

Eq. (2.2)

- The "oxide capacitance," C_{OX} , is given as

$$C_{OX} = \frac{\epsilon_{OX}}{t_{OX}}$$

Fig. 2.6

2.1. Long-channel (3)

- IV characteristics
 - After some manipulation, we have

$$I_d = 0$$

$$I_d = \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$I_d = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

Here,

$$\beta = \mu_n C_{OX} \frac{W}{L}$$

Eq. (2.10)