MTH 343 Numerical Analysis Lecture 4: Bisection Method (f(x) = 0)

Sheikh Abdul Raheem Ali

February 3, 2019

Strategy/Algorithm

Assume f(x) is continuous.

- 1. Begin with two values x = a & x = b that bracket the root by finding $f(a) \cdot f(b) < 0$ (i.e they are of opposite signs).
- 2. The method successfully divides the interval in half & replaces one endpoint by the midpoint so that the root is again bracketed.

$$x^2-2=0,$$
 (solution $x=\sqrt{2}$) on the interval $[1,2]$
$$\begin{cases} f(a=1)=-1 & <0 \\ f(b=2)=2 & >0 \end{cases}$$

# of iterations n	a_n	b_n	midpoint P_n	$f(P_n)$
0	1	2	1.5	0.25
1	1	1.5	1.25	-0.4375
2	1.25	1.5	1.375	-0.1094
3	1.375	1.5	1.4375	+0.0664
4	1.4375	1.375	1.40625	-0.0225
5	1.4375	1.40625	1.421875	-0.0217
6	1.40625	1.421895	1.4140625	-0.0004
7	1.4140625	1.421875	1.41796875	-0.0106

Remarks

- 1. The main advantage of the bisection method is that it is guaranteed to work if f(x) is continuous on [a, b] and a, b bracket the root.
- 2. Its accuracy after n iterations is known in advance which is $\leq |\frac{b-a}{2^n}|$

$$|P_n - P| \le \frac{b - a}{2^n}$$

Where P = exact value, and $P_n = \text{midpoint (approx)}$

In the previous example, find how many iterations are needed to achieve an accuracy for $10^{-4}(x^2-2=0$ on [1,2]).

$$|E_n| \le \frac{2-1}{2^n} < 0.0001$$

$$2^n > 10,000$$

$$n \cdot \ln 2 > \ln(10,000)$$

$$n > \frac{\ln(10,000)}{\ln 2} \approx 13.28$$

$$n = 14 \ terms$$

- 3. A minor disadvantage is that it is slow to converge, however with speedy computers available the slowness is of less concern.
- 4. When multiple roots are concerned, the method may not be applicable since it might not change signs.

$$0 = x^2 - 6x + 9 = (x - 3)^2, \ x = 3$$