

MONASH BUSINESS SCHOOL

Forecasting using R

Rob J Hyndman

3.3 Hierarchical forecasting

Outline

- 1 Hierarchical and grouped time series
- 2 Lab session 15
- 3 Temporal hierarchies
- 4 Lab session 16

Australian tourism demand

Australian tourism demand

Quarterly data on visitor night from 1998:Q1 – 2013:Q4

15/1

- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
 - Holiday
 - Visiting friends and relatives (VFR)
 - Business
 - Other
- 304 bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

Hierarchical time series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

Tourism by state and region

Hierarchical time series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

■ Tourism by state and region

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc..

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc.

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

- Labour turnover by occupation and state
- Spectacle sales by brand, gender, stores, etc.

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima, ...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima,...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima,...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

hts package for R

hts: Hierarchical and Grouped Time Series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 5.0

Depends: R (\geq 3.0.2), forecast (\geq 5.0), SparseM, Matrix, matrixcalc

Imports: parallel, utils, methods, graphics, grDevices, stats

LinkingTo: Rcpp (\geq 0.11.0), RcppEigen

Suggests: testthat Published: 2016-04-06

Author: Rob J Hyndman, Earo Wang, Alan Lee, Shanika Wickramasuriya

Maintainer: Rob J Hyndman < Rob. Hyndman at monash.edu>

BugReports: https://github.com/robjhyndman/hts/issues

License: GPL (\geq 2)

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

Example using R

```
library(hts)
```

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


Example using R

```
library(hts)
```

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))
# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)</pre>
```


gts function

gts(y, characters)

Usage

```
Arguments
               Multivariate time series containing the bottom
 У
               level series
 characters Vector of integers, or list of vectors, showing
               how column names indicate group structure.
Example
bnames <-
  c("VIC1F","VIC1M","VIC2F","VIC2M","VIC3F","VIC3M",
     "NSW1F", "NSW1M", "NSW2F", "NSW2M", "NSW3F", "NSW3M")
bts <- matrix(ts(rnorm(120)), ncol = 12)
colnames(bts) <- bnames
```

 $x \leftarrow qts(bts, characters = c(3, 1, 1))$

gts function

Example 2

```
bnames <-
 c("VICMelbAA", "VICMelbAB",
   "VICGeelAA", "VICGeelAB",
   "VICMelbBA", "VICMelbBB",
   "VICGeelBA", "VICGeelBB",
   "NSWSyndAA", "NSWSyndAB",
   "NSWWollAA", "NSWWollAB",
   "NSWSyndBA", "NSWSyndBB",
   "NSWWollBA", "NSWWollBB")
bts <- matrix(ts(rnorm(160)), ncol = 16)
colnames(bts) <- bnames
```

forecast.gts function

```
Usage
forecast(object, h,
  method = c("comb", "bu", "mo", "tdgsa", "tdgsf", "tdfp"),
  weights = c("wls", "ols", "mint", "nseries"),
  fmethod = c("ets", "arima", "rw"),
  algorithms = c("lu", "cg", "chol", "recursive", "slm"),
  covariance = c("shr", "sam"),
  positive = FALSE,
  parallel = FALSE, num.cores = 2, ...)
Arguments
 object
              Hierarchical time series object of class gts.
 h
              Forecast horizon
              Method for distributing forecasts within the hierarchy.
 method
 weights
              Weights used for "optimal combination" method. When weights =
              "sd", it takes account of the standard deviation of forecasts.
 fmethod
              Forecasting method to use
 algorithm
              Method for solving regression equations
 positive
              If TRUE, forecasts are forced to be strictly positive
 parallel
              If TRUE, allow parallel processing
```

Example: Australian tourism

Example: Australian tourism

Example: Australian tourism

Base forecasts

Test sets
$$h = 1$$

Training sets

Test sets h = 1

Training sets

Test sets h = 1

Training sets Test sets h = 1 time

Hierarchy: states, zones, regions

Forecast horizon							
RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	Ave
Australia							
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22
OLS	1747.60	1757.68	1751.77	1800.67	1686.00	1706.45	1741.69
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43
States							
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43
OLS	404.47	407.62	405.43	413.79	401.10	404.90	406.22
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95
Regions							
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47
OLS	93.28	93.53	93.64	94.17	93.78	93.88	93.71
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34

 y_t : observed aggregate of all series at time t.

y_{X,t}: observation on series X at time

 y_t : observed aggregate of all series at time t.

y_{X,t}: observation on series X at time t.

y_t: observed aggregate of all series at time t.

y_{X,t}: observation on series X at time

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{b}_{t}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

y_t: observed aggregate of all series at time t.

 $y_{X,t}$: observation on series X at time

$$\mathbf{y}_{t} = [\mathbf{y}_{t}, \mathbf{y}_{A,t}, \mathbf{y}_{B,t}, \mathbf{y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} \mathbf{y}_{A,t} \\ \mathbf{y}_{B,t} \\ \mathbf{y}_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

YAX,t

 $\mathbf{y}_{t} = \mathbf{Sb}_{t}$

Grouped data

Total

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Grouped data

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

Grouped data

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{X,t} \\ y_{Y,t} \\ y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} y_{AX,t} \\ y_{AY,t} \\ y_{BX,t} \\ y_{BY,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$

 $\mathbf{y}_t = \mathbf{Sb}_t$

Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$\mathbf{y}_t = \mathbf{S}\mathbf{b}_t$$

where

- \mathbf{y}_t is a vector of all series at time t
- **b**_t is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

(In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix P.

■ P extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.

= Sadds them iii

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

- **P** extracts and combines base forecasts $\hat{y}_n(h)$ to get bottom-level forecasts.
- S adds them up

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{n}}(h) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{n}}(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{\mathsf{n}}(h) = \mathbf{SP}\hat{\mathbf{y}}_{\mathsf{n}}(h)$$

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{P} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$.

$$ilde{\mathbf{y}}_{\mathsf{n}}(\mathbf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathbf{h})$$

Reconciled forecasts

Base forecasts

Problem: Σ_h hard to estimate, especially for h>1. **Solutions:**

- Ignore Σ_h (OLS)
- Assume Σ_h diagonal (WLS) [Default in hts]
- \blacksquare Try to estimate Σ_h (GLS)

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{P} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Problem: Σ_h hard to estimate, especially for h > 1. **Solutions:**

- Ignore Σ_h (OLS)
- lacksquare Assume Σ_h diagonal (WLS) [Default in hts]
- Try to estimate Σ_h (GLS)

Optimal combination forecasts

Main result

The best (minimum sum of variances) unbiased forecasts are obtained when $\mathbf{P} = (\mathbf{S}'\Sigma_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\Sigma_h^{-1}$.

$$\tilde{\mathbf{y}}_{\mathsf{n}}(\mathsf{h}) = \mathbf{S}(\mathbf{S}'\boldsymbol{\Sigma}_{\mathsf{h}}^{-1}\mathbf{S})^{-1}\mathbf{S}'\boldsymbol{\Sigma}_{\mathsf{h}}^{-1}\hat{\mathbf{y}}_{\mathsf{n}}(\mathsf{h})$$

Reconciled forecasts

Base forecasts

Problem: Σ_h hard to estimate, especially for h > 1.

Solutions:

- Ignore Σ_h (OLS)
- Assume Σ_h diagonal (WLS) [Default in hts]
- \blacksquare Try to estimate Σ_h (GLS)

Outline

- 1 Hierarchical and grouped time series
- 2 Lab session 15
- 3 Temporal hierarchies
- 4 Lab session 16

Forecasting using R Lab session 15

Lab Session 15

Forecasting using R Lab session 15 2

Outline

- 1 Hierarchical and grouped time series
- 2 Lab session 15
- 3 Temporal hierarchies
- 4 Lab session 16

Temporal hierarchies

Basic idea

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Temporal hierarchies

Basic idea:

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly data

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

In general

For a time series y_1, \ldots, y_T , observed at frequency m, we generate aggregate series

$$y_j^{[k]} = \sum_{t=1+(j-1)k}^{jk} y_t, \quad \text{for } j = 1, \dots, \lfloor T/k \rfloor$$

- $k \in F(m) = \{\text{factors of } m\}.$
- A single unique hierarchy is only possible when there are no coprime pairs in F(m).
- $M_k = m/k$ is seasonal period of aggregated series.

- Type 1 Departments Major A&E
- Type 2 Departments Single Specialty
- Type 3 Departments Other A&E/Minor Injury
- 4 Total Attendances
- Type 1 Departments Major A&E > 4 hrs
- Type 2 Departments Single Specialty > 4 hrs
- 7 Type 3 Departments Other A&E/Minor Injury > 4 hrs
- 8 Total Attendances > 4 hrs
- 9 Emergency Admissions via Type 1 A&E
- Total Emergency Admissions via A&E
- 11 Other Emergency Admissions (i.e., not via A&E)
- 12 Total Emergency Admissions
- Number of patients spending > 4 hrs from decision to admission

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

Aggr. Level		Base	Reconciled	Change
Weekly	1	1.6	1.3	-17.2%
Weekly	4	1.9	1.5	-18.6%
Weekly	13	2.3	1.9	-16.2%
Weekly	1-52	2.0	1.9	
Annual	1	3.4	1.9	-42.9%

- Minimum training set: all data except the last year
- Base forecasts using auto.arima().
- Mean Absolute Scaled Errors for 1, 4 and 13 weeks ahead using a rolling origin.

Aggr. Level	h	Base	Reconciled	Change
Weekly	1	1.6	1.3	-17.2%
Weekly	4	1.9	1.5	-18.6%
Weekly	13	2.3	1.9	-16.2%
Weekly	1-52	2.0	1.9	-5.0%
Annual	1	3.4	1.9	-42.9%

thief package for R

thief: Temporal HIErarchical Forecasting

```
Install from CRAN
install.packages("thief")
```

Install from github

```
library(devtools)
install_github("/robjhyndman/thief")
```

```
Usage
thief(y)
```

thief package for R

thief: Temporal HIErarchical Forecasting

Install from CRAN

install.packages("thief")

Install from github

library(devtools)
install_github("/robjhyndman/thief")

instact_grends(/ robjityfidilidil/ chief)

Usage
thief(y)

thief package for R

thief: Temporal HIErarchical Forecasting

Install from CRAN

install.packages("thief")

Install from github

library(devtools)

install_github("/robjhyndman/thief")

Usage

thief(y)

Outline

- 1 Hierarchical and grouped time series
- 2 Lab session 15
- 3 Temporal hierarchies
- 4 Lab session 16

Forecasting using R Lab session 16

Lab Session 16

Forecasting using R Lab session 16 3