# پروژه آزمایشگاه ریزپردازنده اتصال ترمینال متلب (MATLAB) به میکروکنترلر اتصال ترمینال متلب

دانشگاه آزاد اسلامی واحد تهران مرکز

نام استاد : محمدرضا پرویزی سید شایان امیرشاه کرمی 39910141054072

تايم دوشنبه 14:45

ترم بهمن 1402

### فهرست

| 3  | نوضيحاتنوضيحات  |
|----|-----------------|
| 4  | خش Proteus      |
| 5  | خش Code Visionخ |
| 5  | بخش code wizard |
| 7  | بخش كد          |
| 11 | مان خروج        |

# پروژه اتصال ترمینال متلب (MATLAB) به میکروکنترلر

### توضيحات

برنامه ی متلب در صنایع مختلف بسیار مورد استفاده قرار میگیرد. سیستمهای ماهوارهای :از ابزارهای متلب برای طراحی مدار ماهواره، کنترل موقعیت، پردازش سیگنال و توسعه سیستمهای ارتباطی استفاده می شود.

حال بیاندیشید بتوانیم با استفاده از متلب و اتصال آن به میکرو کنترل از صرف زمان و هزینه بیشتر در ساخت و نوشتن برنامه بپرهیزیم. این گونه که کاربر با دانش متلب اطلاعات را وارد کرده و در میکروکنترلر پردازش می شوند.

عملکرد اصلی و مهم پروژه ترمینال متلب

- اتصال ترمينال COM1 و COM2
- دریافت ورودی COM1 از خروجی COM2
  - نوشتن برنامه و ساخت ترمینال متلب
    - اتصال متلب به proteus
- نمایش ورودی ترمینال متلب در خروجی LCD

# نحوه عملكرد پروژه

عملکرد پروژه بدین صورت است که کاربر یک ترمینال در متلب میسازد. به وسیله virtual serial port که یک اتصال مجازی سریال بین COM1 و COM1 (COM2 پروتووس و پرت مجازی آن – COM2 متلب و پرت مجازی آن) اتصال ایجاد میکند. ترمینال متلب را اجرا می کند و دستور خود را تایپ می کند. با فرستادن دستور دستور در پروتووس در LCD نمایش داده می شود.

با استفاده از 4 نرم افزار proteus و codevision و Virtual Serial Port Driver و MATLAB میتوانیم این سنسور را شبیه سازی کنیم .

# بخش Proteus

به کمک نرم افزار proteus شماتیک مدار را طراحی میکنیم.

برای پیاده سازی این پروژه از میکروکنترولر atmega16 و LCD(LM016L) و COMPIM برای درست کردن virtual COM استفاده می کنیم.



LCD را به PORTC میکرو وصل میکنیم. COMPIM را به PORTD RXD وصل می کنیم.

# بخش Code Vision

## بخش code wizard

در تنظيمات code wizard ميكرو atmega16 را انتخاب ميكنيم.





# در قسمت USART گيرنده (Receiver) را فعال مي کنيم. و USART گيرنده



# سپس alphanumeric LCD را فعال کرده و برروی PORTB تنظیم میکنیم.



### بخش کد

ابتدا كتابخانه هاى مورد نياز را include ميكنيم. و variable هاى global را تعريف ميكنيم.

```
#include <mega16.h>
#include <delay.h>

// Alphanumeric LCD functions
#include <alcd.h>

// Declare your global variables here

// Standard Input/Output functions
#include <stdio.h>

char mychar; //Declare 8 bit character variable
bit i=0; //TO declare single bit variable
```

فایل های هدر لازم برای عملکردهای میکروکنترلر، توابع تاخیر، ورودی و خروجی استاندارد (stdio.h) و کتابخانه LCD سفارشی (alcd.h) را شامل می شود.

<mega16.h> این فایل سربرگ، تعاریف مربوط به میکروکنترلر ATmega16 را در اختیار برنامه قرار می دهد.

<delay.h> این فایل کتابخانه تاخیر را برای ایجاد وقفه های زمانی در برنامه فراهم می کند.

. این فایل کتابخانه توابع مربوط به نمایشگر LCD الفبا-عددی را در اختیار برنامه قرار می دهد. <alcd.h>

stdio.h> این فایل سربرگ استاندارد ورودی اخروجی را برای توابعی مانند printf و scanf(در صورت نیاز) شامل می شود.

### Global variables

- Mychar به صورت char که 8 بیت کاراکتری که از سریال دریافت می شه.
  - i یک متغیر بیتی برای تشخیص وقوع وقفه دریافت سریال

### :Interrupt

اینتراپت برای دریافت سریال به نام myinterrupt:

()Getchar در C تابع برای دریافت ورودی

l نشان دهنده به وجود آمدن interrupt. در اصل نشان دهنده این است یک کاراکتر دریافت شده.

### :Main

### تنظيم پورت ها:

- کد، پورت های C ، B ، Aو C را به عنوان ورودی (Input) تعریف می کند.
- (PORTC=0xff;). برای اتصال به نمایشگر LCD تنظیم می شود. (Output) برای اتصال به نمایشگر •

### تنظیم USART:

- این بخش مربوط به پیکربندی واحد ارسال و دریافت سریال (USART) است.
- پارامترهای ارتباطی شامل 8 بیت داده، 1 بیت توقف و بدون برابری تنظیم می شوند.
  - گیرنده سریال روشن و فرستنده سریال خاموش است.
  - سرعت Baud Rate برای USART روی 9600 تنظیم می شود.

### غيرفعال كردن وقفه هاي خارجي:

• كد، وقفه هاى خارجىINT1 ، INT0و INT2 وINT1 مى كند.

```
// INT2: Off
MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);
MCUCSR=(0<<ISC2);
```

### فعال کردن وقفه های سراسری:

• دستور sei در اسمبلی، وقفه های سراسری را فعال می کند

```
#asm ("sei");
// Alphanumeric LCD initialization
// Connections are specified in the
// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu:
```

### تنظیم نمایشگر LCD:

• تابع (16) الحربندی می کند. LCD دا برای نمایش 16 کاراکتر در هر خط پیکربندی می کند.

lcd\_init(16); // Characters/line: 16

# حلقه اصلی:(while)

- این حلقه به طور دائم تکرار می شود.
- کد بررسی می کند که آیا i بر آبر با 1 است (یعنی یک کار اکتر دریافت شده است).
- روی اگر ن برابر با 1 باشد، کاراکتر دریافت شده ( $_{
  m mychar}$ ) با استفاده از تابع  $_{
  m i}$  اروی نمایشگر LCD چاپ می شود.
  - م سپس مقدار به 0 تنظیم می شود تا نشان دهد کار اکتر نمایش داده شده است.

# نمایش خروجی

