Question: 2

Which of the following multiplication tables defined on the set $G = \{a, b, c, d\}$ form a group? Support your answer in each case.

Solution:

- a. This is not a group because it doesn't have an identity element, e, such that $g \circ e = e \circ g = g$ for all $g \in G$.
- b. This table does have an identity element, e=a. Now we check for invertibility. In this table, each element is it's own inverse because $g \circ g = e = a$ for all $g \in G$.
- c. d
- d.

Question: 7

Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Solution:

Question: 17

Give an example of three different groups with eight elements. Why are the groups different?

Solution:

Question: 25

Let a and b be elements in a group G. Prove that $ab^na^{-1}=(aba^{-1})^n$ for $n\in\mathbb{Z}$.

Solution:

Question: 31

Show that if $a^2 = e$ for all elements a in a group G, then G must be abelian.

Solution:

Question: 32

Show that if G is a finite group of even order, then there is an $a \in G$ such that a is not the identity and $a^2 = e$.

Solution:

Question: 33

Let G be a group and suppose that $(ab)^2 = a^2b^2$ for all a and b in G. Prove that G is an abelian group.

Solution: