

ŘADA B PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXIX/1980 ČÍSLO 1

V TOMTO SEŠITĚ

AKUSTIKA PROSTORU PŘI REPRODUK- CI a nejen při reprodukci
Poslech, pole, prostor
Zaměření, veličiny a jednotky 2
Fyziologiestuchu5
Postřehnutelnost změn tónové kvality6
Směrové slyšení
Dynamický rozsah
Hudební a řečové signály

 Šíření zvuku
 14

 Zvuková pole
 16, 17

 Pohlcování zvuku překážkami
 17

 Doba dozvuku
 19

 Vlastní kmity prostoru
 21

 Akustičnost prostoru
 21

 Úprava místností
 23

Požádavky na kvalitu přenosové cesty .11

 Ozvučení prostorů
 .27

 Snímání zvuku
 .32

 Grafické výpočty
 .35

 Výpočetní postupy
 .39

AMATÉRSKÉ RADIO ŘADA B

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJ-SKO, Vladislavova 26, PSČ 113 66 Praha 1, telefon 26 06 51-7, Šéfredaktor ing. F. Smolík, redaktor L. Kalousek, Redakční radá: K. Bartoš, V. Brzák, RNDr. V. Brunnhofer, K. Donát, A. Glanc, I. Harminc, Z. Hradiský, P. Horák, J. Hudec, ing. J. T. Hyan, ing. J. Jaroš, doc. ing. dr. M. Joachim, ing. J. Klabal, ing. E. Králík, RNDr. L. Kryška, PhDr. E. Křížek, K. Novák, ing. O. Petráček, ing. M. Smolka, doc. ing. J. Vackář. laureát st. ceny KG, ing. J. Zíma. Redakce Jungmannova 24, PSČ 113 66 Praha 1, telefon 26 06 51-7, ing. Smolík linka 354, Kalousek linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 5 Kčs. pololetní předplatné 15 Kčs. Rozšiřuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJ-SKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne NAŠE VOJSKO, n. p., závod 08, 162 00 Praha 6-Liboc, Vlastina 710.

Za původnost a správnost přispěvku ručí autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hodině.

Čislo indexu 46 044.

Toto číslo má vyjit podle plánu 23. ledna 1980. © Vydavatelství NAŠE VOJSKO, Praha

Spolupráce Svazarm – SSM

Svaz pro spolupráci s armádou i Socialistický svaz mládeže představují organizace, které se velmi významně podílejí na výchově mladé generace. Z toho vyplývá i oboustranná snaha o vzájemnou spolupráci, a to hlavně v oblasti politické a branné výchovy. Krátee po vzniku SSM, v únoru 1971, byla uzavřena dohoda mezi ÚV SSM a ÚV Svazarmu o spolupráci na všech stupních řízení při rozšiřování branné výchovy mládeže. Důležitým bodem při této spolupráci se stalo červencové zasedání ÚV KSČ v roce 1973, jež přijalo závěry o výchově mladé generace a jež se stalo vodítkem při vytváření koncepce a stanovení úkolů v oblasti výchovného působení na mládež v organizacích Svazarmu a SSM. Nejdůležitější dokumenty s konkrétními úkoly i cíli byly vypracovány v součin-nosti ústředních výborů obou organizací a dále projednány a upřesněny republikovými, krajskými a okresními výbory Svazarmu

Výhody této spolupráce jsou zřejmé. Svazarm může poskytovat odborné lektory a instruktory pro zájemce o brannětechnické a branněsportovní obory z řad členů SSM a PO SSM a zároveň tak získávat nové mladé členy Svazarmu, SSM má značné zkušenosti. s ideově výchovným působením na mládež, které v samotných ZO Svazarmu někdy není na požadované úrovni. Systematická spolupráce nutně povede k rozšiřování zájmové branné činnosti a k účinnější ideově politické výchove mládeže. Zatím spatřujeme rezervy a tedy další možné pole působnosti v praktickém zavádění moderních metod ideověvýchovné práce, které odpovídají mentalitě a zájmům mladé generace, a nemůžeme být spokojení ani s množstvím mladých lidí, zabývajících se některými brannými sporty. Z radioamatérských branných sportů máme na mysli především moderní víceboj telegrafistů (MVT) a telegrafii (v radiovém orientačním běhu je základna uspokojivá), ale příčiny je třeba spatřovat v případě MVT hlavně v požadované vysoké všestrannosti závodníka, vyplývající ze soutěžních disciplín, v případě telegrafie zájemci dávají přednost spíše než sálové telegrafii atraktivnějšímu a na rychlost méně náročnému provozu na KV nebo VKV. Pravidla místních a okresních soutěží v těchto sportech jsou však upravena s ohledem na možnosti a schopnosti mládeže do 15 let, z jejíchž řad máme především v úmyslu získávat nové zájemce, takže ani uvedené překážky nejsou nepřekonatelné, o čemž svědčí v posledních letech neustále vzrůstající počet účastníků mistrovských soutěží v MVT a telegrafii v kategorii C do 15 let (startovat mohou jen držitelé I. a II. VT). Je nutno využívat toho, že Morseova abeceda, topografie, střelba a hod granátem jsou disciplíny, o něž je možno získat zájemce z řad PO SSM formou her, mezi dětmi rozšířených a oblíbených. Je v silách každého radioklubu Svazarmu podobné propagační soutěže a hry ve spolupráci s SSM pořádat, ovšem za důležitého předpokladu, že se zájemci bude výcvik pokračovat. Otázky materiálního a technického zabezpečení je možno řešit rovněž formou spolupráce mezi Svazarmem a SSM, ale nejčastěji asi z prostředků nadřízeného OV nebo KV

Společná podpora Svazarmu a SSM masovému rozvoji zájmové brannětechnické-a branněsportovní činnosti dětí a mládeže a jejich účasti v náročnějších branných sportech (tedy i MVT, ROB a telegrafii) je přímo zakotvena v dokumentu "Hlavní úkoly orgánů a organizaci SSM a Svazarmu po II. sjezdu SSM a VI. sjezdu SVazarmu v branné výchové mládeže", vydaném ÚV SSM a ÚV Svazarmu v roce 1979, jako jeden ze základních úkolů

Na prvním místě stojí systematické prohlubování ideověvýchovné práce mezi dětmi a mládeží, ale zde musíme mít vždy na paměti již zmíněnou specifickou mentalitu mladé generace, a využívat proto raději zprostředkovaných forem ideověvýchovného působení, které jsou pro mládež přitažlivější. Všimněme si například možno říci apriorně kladného postoje chlapců ve věku do 15 let k vojenské základní službě: kladný vztah, na něniž nám záleží, tu nepochybně je, stačí tedy jej vhodně rozvíjet a usměrňovat atraktivními a psychologicky podloženými metodami (z nichž za dosud nejvíce osvědčené považujeme praktickou činnost v ZO Svazarmu a přímá setkání s příslušníky ČSLA) a dbát, aby nebyl neodbornou propagandou a jinými možnými vlivy tlumen. Na základě vlastních zkušeností s výcvikem mládeže v radioklubu Svazarmu OK1KUH v Bechyni (okres Tábor) můžeme jednoznačně doporučit spolupráci radioklubů s vojenskými útvary tam, kde je to možné. Tyto poznatky se vztahují stejnou měrou na žáky škol I. i II. cyklu. Jako třetí hlavní úkol vytyčily ÚV·Svazar-

mu a ÚV SSM úsilí o zkvalitnění přípravy branců na vojenskou základní službu a na vojenská povolání. Stejně tak ani tento úkol nelze v žádném případě chápat izolovaně od ostatních. Je jasné, že zvyšování politické uvědomělosti a rozšířování členské základny v brannětechnických sportech jsou jednou z podmínek úspěšného zvládnutí tohoto úkolu. Za brance sice považujeme obecně chlapce na školách a učilištích II. cyklu, ale předpoklady pro základní vojenskou službu nebo vojenská povolání si získávají průběžně už od dětství. Výcviková střediska branců by měla být institucemi, které po politické i odborné stránce dovršují předchozí správnou výchovu mladých chlapců k vojenské službě a k vojenským povoláním. Jako konkrétní kladný příklad můžeme uvést výcvikové středisko branců při střední průmyslové škole strojnické v Jedovnicích v okrese Blansko (radioklub OK2KLA), kde správně a odborně podchycují pedagogové zájem o svazarmovské disciplíny u žáků přicházejících ze ZDŠ a dále jej rozvíjejí v rámci zájmových kroužků a branné výchovy. Při hodnocení výsledků dosahovaných pravidelně tímto výcvikovým střediskem branců docházíme k závěru, že každý instruktor a cvičitel mládeže ve Svazarmu a SSM, pokud si chce být jist pozitivními výsledky své práce, musí rozšiřovat svoje znalosti pedagogiky a psychologie.

Na fyzické připravenosti branců pro vojenskou službu se velkou měrou podílejí svazarmovské skladby na československých spartakiádách. Nácviku branné skladby Svazarm – školy na ČSS 1980 se účastní v celostátním měřítku zhruba 10 000 mladých cvičenců. Přínos ocení každý, kdo má zkušenosti s fyzickou připraveností našich branců. nastupujících k útvarům. Tato letošní společná skladba Svazarmu a škol je dokladem dobře organizované spolupráce mezi Svazarmem a SSM na školách a učilištích 11. cyklu.

Čtvrtým úkolem je společná výchova a působení na vrcholové sportovce, talentovanou mládež a reprezentanty ČSSR v branných sportech. K splnění tohoto úkolu přispěje nepochybně ustavení svazáckých skupin nebo pionýrských oddílů ve všech střediscích vrcholového sportu, tréninkových střediscích mládeže a vrcholových střediscích branců ve Svazarmu. Naší nejlepší sportovci reprezentují kromě našeho sportu také naše socialistické žřízení, a k tomu musí být výchova sportovců zaměřena. Větší popularizace reprezentantů CSSR v branných sportech poskytne množství dobrých příkladů a vzorů pro mládež – v tomto směru má velké možnosti svazarmovský tisk, ale také mládežnický tisk, který je mezi mládeží do 15 let pochopitelně sledovanější, než v podstatě monotematické svazarmovské čásopisy, určené čtenářům s již vyhraněnými zájmy. Další účinnou formou je pořádání besed a setkání přímo s předními svazarmovskými sportovci; tato forma přes svoje výhody, kterými jsou bezprostřední kontakt a vliv na mladé lidi, má však jenom omezený rozsah působnosti.

Pátý úkol, ačkoliv je uváděn na posledním místě, svým významem je rovnocenný ostatním a jeho obsah se stal Achillovou patou již mnoha perspektivních svazarmovských organizací i akci. Jedná se o zabezpečení politickoorganizačních, materiálních, kádrových a metodických předpokladů pro rozvoj zájmové branné činnosti dětí a mladeže. Spolupráce Svazarm – SSM zaručuje podstatné zlepšení, i když při řešení některých těchto problémů bude muset být rozšířena o další

partnery - komise NV, organizaci ČSTV a další. Zastavíme se u otázky materiálního zabezpečení, která bývá často diskutována. Několik postřehů z radioamatérských spor-tů: V roce 1979 uspořádal ÚRK Svazarmu ČSSR poprvé závod na VKV k Mezinárodnímu dni dětí. Pravidla závodu umožňovala využít při něm dovážené kvalitní transceivery FT221 a přesto účast kolektivních stanic, vlastnících toto zařízení, byla jenom asi padesátiprocentní. Zájem o závod mezi mladými členy kolektivek nepochybně byl, takže nezbývá než konstatovat, že chyba je v tomto případě na straně vedoucích operatérů nezúčastněných kolektivních stanic. A jak je využito 250 transceiverů typu Meteor vyrobených podnikem Radiotechnika v letech 1975 až 1976 pro potřeby moderního vícebo-je telegrafistů? Na místních a okresních přeborech v MVT disciplína práce na stanici není a konání krajských přeborů je zatím stále ještě v některých krajích spíše výjimkou než pravidlem. Takže držitel alespoň II. výkonnostní třídy v MVT má přinejlepším pouze tří hodiny v roce (krajský přebor,

přebor republiky a mistrovství ČSSR) možnost Meteor využít pro ten účel, kterému byl původně určen. Účast šedesáti startujících na mistrovství ČSSR v roce 1979 je potěšitelná, ale neopravňuje nás domnívat se, že zbývajících 190 transceiverů Meteor je využíto alespoň v krajských přeborech v MVT. Proto se obracíme na funkcionáře ZO Svazarmu a radioklubů, kam byly tyto stanice přidělovány: snažte se, aby transceivery Meteor plnily svoje poslání; pokud k tomu nejsou z jakýchkoliv důvodů podmínky, vratte stanice příslušnému OV Svazarmu, prostřednictvím kterého vám byly zapůjčeny, aby mohly být využity jinde, kde jsou vhodné podmínky i zájemci o MVT. Zařízení a materiál pro branné radioamatérské sporty musí být.v ZO využívány efektivněji než dosud.

Na závěr tedy připustme, že netřeba vždy žehrat na špatné možnosti materiálně-technického zabezpečení radioamatěrských branných sportů. Zkusme začít s překonáváním vlastní pohodlnosti – možnosti i úkoly spolupráce mezi Svazarmem a SSM nám k tomu poskytují celou řadu příležitostí.

pfm

AKUSTIKA PROGTORU Wi neprodukci ... a nejen při reprodukci

Ing. Jiří Hanouz

Úvod

Amatéři pracující v oboru elektroakustických zařízení věnují velkou pozornost vypracování a kvalitě elektronických částí elektroakustického řetězce, avšak konečnému výsledku, tj. poslechu v akustickém poli, jehož jakost by měla odpovídat jakosti jejich práce, nevěnují téměř žádnou pozornost a nesnaží se obvykle ani předběžně zhodnotit jeho dosažitelnou kvalitu.

Je nutno přiznat, že v otázkách poslechu, nichž se mísí objektivní – fyzikální – veličiny se subjektivními hodnoceními, je situace méně přehledná, než v oblasti elektrických obvodů. Přesto lze stanovit určitá kritéria, jimiž se subjektivní vjem při poslechu řídí. Některé závislosti se řídí přesnými rovnicemi s fyzikálními veličinami, v některých případech je nutno použít empirické vztahy, někde pomohou soudy podle známých psychofyziologických závislostí. Nelze tedy sice tvrdit, že výsledky výpočtů a úvah budou vždy zcela jednoznačné a přesné, ale přesto je vhodné věnovat se otázkám poslechu v akustickém poli alespoň v poměrné míře tak, jak vlastní stavbě zařízení, abychom se vyhnuli nejhrubším chybám. Vždyť poslechové akustické pole má přinejmenším stejný vliv na výsledný poslech, jako zařízení

Pro amatéry, kterým skutečně záleží na výsledném poslechu, je seznámení se alespoň s rozhodujícími informacemi krokem skutečně nezbytným, i když není možné podat jednoznačný návod, který by zaručoval optimální konečný výsledek; způsobů řešení je totiž tolik, kolik je různých poslechových prostorů. Každý nějak bydlíme a v bytě chceme poslouchat. Přítom nelze předpokládat, že si poslechový prostor můžeme upravit pouze s ohledem na optimální výsledek vždy musíme respektovat i ostatní zájmy běžného bytového provozu. Výsledné řešení bude tedy řadou uvážených kompromisů

a následující informace mají pomoci určit, až jaké kompromisy si můžeme dovolit, aniž by byly porušeny zásady alespoň dobrého poslechu.

Přitom nelze vyloučit, že v některých případech nebude možno přijatelné řešení v daných podmínkách realizovat. Ale i to je třeba vědět, aby se nedostavilo zklamání z výsledku až po vynaložení velké práce. Pro amatérské poslechové prostory postačí dále uvedené postupy, které s ohledem na přístupnost a aplikovatelnost pro amatéry se základními znalostmi jsou často zjednodušené a nemusí být tedy exaktní. Je však lepší přibližný výsledek než výsledek teoreticky přesný a exaktní, který nelze v běžné praxi realizovat.

POSLECH, POLE, PROSTOR

Zaměření

Na subjektivním vjemu při poslechu se podílí sluch, prostor a akustické pole, které se v prostoru vytváří. Všechny tyto složky ovlivňují kvalitu poslechu. Mlčky vždy předpokládáme, že do poslechového prostoru odevzdáváme kvalitní akustický signál. Základní je samozřejmě vlastní akustické pole, které je ovlivňováno a spoluurčováno vlastnostmi prostoru, kde posloucháme.

Poslech akustických signálů se uskutečňuje sluchem a nikoli na stinitku osciloskopu nebo na stupnici voltmetru. Víme však, že náš sluchový orgán je z ryze technického hlediska přístroj velmi nedokonalý, poněvadž má kmitočtovou charakteristiku silně závisnejen kmitočtově ale i amplitudově, nezaručuje lineární vzrůst sluchového počitku při lineárním zvětšování působícího akustického tlaku, odevzdává sluchovému analy-zátoru signál zkreslený vytvářením aurálních tónů atd. Na druhé straně by však bylo obtížným technickým úkolem výtvořit akustické čidlo splňující tak protichůdné požadavky, jaké sluch zvládá - z tohoto hlediska je to nástroj nanejvýš dokonalý. Proto se musíme především seznámit se zákonitostmi, podle nichž se řídí sluchový vjem.

Prostor sám může svými vlastnostmi oylivňovat poslechový vjem a to v dobřém i špatném smyslu. Zákonitosti, které je nutno respektovat, se týkají nejen geometrických rozměrů prostoru, ale i akustických vlastností materiálů, které se v prostoru nacházejí. Kromě toho se uplatňují při poslechu i signály cizí, nechtěné, např. pronikající ze sousedství poslechového prostoru.

Pole akustických vln, které se v prostoru vytvoří, je ovlivňováno jak tvarem prostoru, tak i rozmístěním zářičů a místem poslechu.

Při popisu závislostí se setkáme s řádou nových veličin, jejichž fyzikální rozměrové jednotky nejsou obecně vžité. Uvádíme je proto hned v úvodu, aby nemusely být vždy znovu opakovány u jednotlivých vztahů a závislostí.

Veličiny a jednotky

Při jakýchkoli výpočtech je vždy třeba jednoznačně definovat fyzikální veličinu a její rozměrovou jednotku. V tab. 1 je přehled veličin a jejich jednotek, používáných při návrhu a výpočtech akustického pole, poslechových prostorů a při hodnocení vlastního poslechu.

Přestože od 1. 1. 1980 platí jednoznačně zákonem stanovené jednotky SI, opakujeme v základních vztazích vždy použitou jednotku, abychom připomněli základní rozměřové jednotky, tj. např. že míry jsou vždy v [m] (a nikoli cm nebo mm), objem v [m³] (smí být j po 1. 1. 1980 také v litrech [l]), tlak je vždy v Pa (a nikoli v barech, atmosférach či kilopondech), využijeme však přípustné úlevy vzákoně a teplotu budeme udávat zásadně ve stupních Celsia [°C] a nikoli v kelvinech [K]

Záměna jednotek vede vždy k chybnému výpočtu. V tab. 1 jsou i fyzikální rozměry jednotek, tj. jak byla jednotka vytvořena z těchto jednotek SI:

Tab. 1. Značky, jednotky a rozměry veličin

Značka	Veličina	Jednotka	Fyzi	kální ro	ozměr	Poznámka
а	délkový rozměr	m ,	m			9 3
a, `	zrychlení	m/s²	m		s ⁻² ·	$a=v/\tau (dv/d\tau=d^2s/d\tau^2)$
Ą	práce	J (joule)	m ²	kg	s ⁻²	$A=Fs(A=\int Fds)$
Α	pohltivost	m² .	m ²			$A=\alpha S$ (1 sabine = 1 m ²)
Α	útlum	dB	1		(dB)	(A=20log (U _{vst} /U _{vyst}))
ь	šířkový rozměr m	m	m			
ь.	báze (stereofonní, dipólu, sloupu)	m -	m			
В	magnetická indukce	T (tesla)		kg	ŝ ⁻² A ⁻¹	(1 G (gauss) = 10 ⁻⁴ T)
Ċ	výškový, hloubkový rozměr	m`	m			,,
c	rychlost šíření rozruchu	m/s	m		s ^{−1}	co=rychlost šíření zvuku
C	kapacita	F (farad)	m ⁻²	${\rm kg}^{-1}$	s ⁴ A ²	C=Q/U
d. D	průměr	m (laraa)	m	"9	3 /1	D _a =aktivní průměr membrán
	zkreslení	% .	1		(%)	Da-aktivii piumei membran
d		⁷⁰ ·	۱'		(701	e=2.7183
e	základ přirozených logaritmů		1	4.1	s ⁻²	e=2,7103
E	modul pružnosti v tahu	Pá	m_,	kg	S	•
	1	(pascal)	1		~1	
f	kmitočet	Hz	1		s ⁻¹	(d-doiní; h-horní;
		(hertz)	i .		-2	k–kritický)
F	síla	N	m	kg	s ⁻²	
		(newton)				
G	tíha, tíhová síla	N	m	kg	s -2	(G= m.zrychlení zemské)
	•	(newton)	1 .			l .
G	elektrická vodivost	s	ṁ ⁻²	kg ⁻¹	$s^3 A^2$	G=1/R
		(siemens)	l			
G	zisk	dΒ	i		(dB)	(G=20 log (U _{vyst} /U _{vst}))
ĥ .	výška, hloubka m	m	m		. ,	1
H.	intenzita magnetického pole	A/m	m ⁻¹		Α	H= B/ μ; (nesprávně
						ampérzávit/m)
1	elektrický proud	A (ampér)		Α	
ì	intenzita zvuku	W/m ²	í	kg	A : −3	(4-prahová intenzita=10 ⁻¹²)
h	index směrovosti	dB	1	~9	(dBi)	(= 10log Q
6.	proudová hustota	A/m²	m ⁻²		٠, ,	J=1/S
J			. 181		Α	J - " 3
k	násobící koeficient, poměr		-			Land to the second of the second of
K	transformační poměr	1	1			(k=sekund, závity/primár,
		و. ا	,			závity)
K	prostorová konstanta	m ²	m²			$K = A/(1-\bar{\alpha})$
1	délka, vzdálenost, (dráha)	m	m			(indexy: b-délka sloupu;
						m–minimální; M–mikrofon,
		1 1				maximální; p-postuchač;
		i 1				š-šířka pásu; R-reproduktor
						z–zdroj; Z–zářič)
L	indukčnost	H (henry)	m ²	kg	s ⁻² A ⁻²	L= Φ/1
Ĺ	hladina (logaritmický poměr)	dB I	1	٠.	(dB)	indexy: n-kolikátá; l-intenzit
_	maama (regarmen, pemen,	"			(00)	zvuku; p-akustického tlaku;
]	,			P-akustického výkonu;
		} . i				s-součtová)
m 🐣	hmotnost	kg .		kg		S souciova,
m	útlum zvuku	dB/m	m ⁻¹	ng.	(dB)	
	počet	1	1		(ub)	
m	l'	ز حجام در ا	_2	l. m	s ⁻² A ⁻²	į
м	vzajemna indukcnost	H (nenry)	111	кg	s A s 1	
n	kmitočet otáčení, otáčky	1/s			S	i
n	počet	1	1			
N	počet závitů	1	1 -1		-2	
p .	tlak	Pa	m ⁻¹	kg	s ⁻²	p=F/S (indexy: n-normální
		(pascal)				atmosférický=0,1013 MPa;
	1					r-referenční, vztažny=2.10
						Pa; α 0-pod úhlem α°, 0°;
	1					s-střední)
P	výkon	W (watt)	m²	kg	s ⁻³	P=A/τ (indexy: a-akustický;
						e-elektrický příkon; p-příkor
						v-výkon činný; s-zdántivý
						[VA]; q-jalový [var]; p'-přím
		<u> </u>				viny)
q	objemová rychlost	m ³ /s	m ³		s ⁻¹	q=vS
Q.	elektrický náboj	c l			s A	Q=1 T
-		(coulomb	2)		, , ,	l = ··· ,
a	činitel jakosti	1	1			Q = X /R
ä	činitel směrovostí					$Q = \rho_0^2/\rho_s^2$ (indexy: R-repro
<u> </u>	Ciniter Sinerovosti		1			1
_	notomać	_				duktoru; M-mikrofonu)
r	poloměr	<u>m</u> .	m			findou Olies
r _d	dozvuková vzdálenost	m	m			(index Q – respektuje
_	(poloměr dozvuku)	1				Q měniče)
R	poloměř	m	m		_0	
R	elektrický odpor	Ω	m ²	kg	s ⁻³ À ⁻²	<i>R</i> =Re (<i>Z</i>)
R	stupeň vzduchové	dB	1		(dB)	(s-stěny; p-přepážky;
	neprůzvučnosti					z-zeslábení)
R _{mag}	magnetický odpor	1/H	m ⁻²	kg ⁻¹	s^2A^2	$R_{\text{mag}} = U_{\text{mag}}/\Phi$
rimag S	dráha, výchylka kmitavého	m	m	9		
-	pohybu ,	'''				
c.=	charaktěrištícká citlivost	اینا	1		(dD)	/y dB/1 VA/1 m objected
SdB		dB	1		(dB)	(v dB/1 VA/1 m, obvykle
_	reprod.	_	1	l. c	s-2	1000 Hz)
Sipa .	charakteristická citlivost	Pa	m ⁻¹	kg	S	(v Pa/1 VA/1 m, obvykle
	reprod.	(pascal)				1000 Hz)

délka – metr [m],
hmotnost – kilogram [kg],
čas – sekunda [s],
elektrický proud – ampér [A],
teplota – kelvin [K],
svítivost – kandela [cd],
rovinný úhel – radián ([rad]),
prostorový úhel – steradián ([sr]):

Fyzikální rozměry jednotek uvádíme proto, aby bylo možno vždy překontrolovat správnost rovnice, protože rovnice musí platit i pro fyzikální rozměry veličin (pokud se nejedná o empirický vztah). Tak např. vztah pro rychlost (= délka za čas) je zapsán takto

$$c = s/\tau \qquad [m s^{-1}; m, s].$$

Zápis komplikovanějšího vztahu pro akustický výkon zdroje zvuku je

$$P_a = I\dot{S} = \dot{p}^2 \frac{4\pi I^2}{z_0 Q}$$
 [W: W m⁻², \dot{m}^2 ; Pa, m,
Pa s/m, -1

kde akustický výkon P_a je ve [$W = m^2 k g \ s^3$], intenzita zvuku ve [W/m2 $= kg s^3],$ v [m²], v [Pa = plocha akustický tlak $=m^{-1}kg s^{-2}$], v [m], vzdálenost vlnový odpor v Pa s/m =·Żo m⁻²kg s⁻¹], bezrozměná velia činitel směrovosti Q čina [-].

Pak musí také platiti

$$m^2kg\,s^{\text{-}3} = kg\,s^{\text{-}3}m^2 = \frac{m^{\text{-}2}kg^2s^{\text{-}4}m^2}{m^{\text{-}2}kgs^{\text{-}1}}$$

jako kontrola vztahu a správně dosazovaných veličin.

Opakují-li se ve vztahu stejné veličiny, uvádíme jejich rozměr jen jednou.

Základní akustické veličiny

Zvukem nazýváme slyšitelný projev mechanického kmitání prostředí, které nás obklopuje – vzduchu. Fyzikálně se zvuk projevuje tak, že částice prostředí jsou vychylovány ze své klidové polohy, přičemž současně předávají část svého pohybu sousedícím částicím prostředí a tak se toto kmitání šíří na stále vzdálenější částice (obr. 1). Máme-li jako konečný cíl našich úvah na mysli kvalitní poslechové podmínky, nebudeme si všímat zvukového vlnění v kapalinách (jako např. ve vodě) a pouze okrajově si všimneme chvění, tj. mechanického kmitání přenášeného hmotným prostředím.

Rychlost, s jakou se zvuk jako rozruch v prostředí síří, nazýváme rychlostí zvuku. Nesmíme ji zaměňovat se zvukovou (akustickou) rychlostí, což je rychlost, jakou kmitají částice vzduchu kolem své klidové – rovnovážné – polohy, přenášejí-li šířící se zvukový rozruch. Rychlost zvuku ve vzduchu c₀ (m/s] je závislá na teplotě ϑ [°C] (zanedbáme-li pro nás nepodstatnou závislost na barometrickém tlaku). Vztah

$$c_0 = 331 + 0.6 \vartheta \quad [\text{m/s}; °\text{C}]$$
 (1)

určuje pro 20 °C známou rychlost zvuku $c_0 = 343$ m/s. Za běžných okolností si závislosti rychlosti zvuku na teplotě sice všímat nemusíme, ale přesto si uvědomme, že se může projevit nezanedbatelnou měrou při šíření zvuku na volném prostranství nebo ve velkých poslechových prostorech. Proti rychlosti zvuku při 20 °C se rychlost zvuku mění o 5 % při teplotách +48 °C a -8 °C, což nás

Značka	: Veličina	Jednotka	Fyz	ikální r	ozměr	Poznámka	hodné tím, že jako veličina v být údána nejen velikostí, ale
	plocha, płośný obsan	m²	m²	•		(p-přepážky; z-zeslabení;	a orientací v prostoru. Tak jako vytváří rozruch na chu kruhové vlny, vytvářejí
s				•		(p-kmitající plochy;	zvuku vlnoplochy, šířící se
. 3	směrová funkce akustického měniče	_	-			s-soustavy)	zdroje rozruchu jako koule, je
t	tlouštka	١m	m				se zvětšují se zvětšující se
Τ	doba kmitu či otáčky.	s			s	(index sum – výsledná.	zdroje rozruchu (obr. 1). Vz
	doba dozvuku]			součtová)	sousedních vlnoploch s maxim
u	napětí elektrické	V (volt)	m ²	kg	s ⁻³ A ⁻¹		zředění) částic prostředí určuj
U	napětí elektrické	V	m ²	kg	s ⁻³ A ⁻¹	(U _e -elektromotorická síla)	ku zvuku vázanou s rychlosti
Umag	napětí magnetické	A (ampér)			A -1	(nesprávně Az = ampérzávit)	kmitočtem vztahem
V	rychlost	m/s	m		s ·	V= S/ T	$\lambda = c/f$ [m; m/s, Hz]
V	objem .	m³ a	m ³		_2		VI
w	objemová hustota energie	J/m ³	m,	kg	s ⁻² s ⁻²	w=W/V	Vlnová délka zvuku (a její z šíření zvuku jednou z rozhod
W	energie .	J (joule)	m ²	kg	s - s - 3 A - 2	(k-kinetická; p-potenciální)	a proto si pro rychlou orientaci
. X	reaktance	Ω (ohm)	m ²	kg -1	s A s ³ A ²	· X=Im(Z) Y=1/Z	2 vlnové délky zvuku ve vzdu
Y	admitance	S(siemens)	m-,	kg	S A	z ₀ -akust. vln. odpor vzduchu =	kmitočty
Z	vlnový odpor prostředí	 -	-			= 414 Pa s/m	Podobně jako v elektrotech
-	imandanas	Ω (ohm)	m ²	kg	s ⁻³ A ⁻²	Z=R+iX=1/Y	pětím a proudem může být i m
Z	impedance rovinný úhel, (vyzařovací úhel)	radián	["	ĸg	(rad)	$a_{\rm rad} = a^{\circ} \cdot \pi/180$	tlakem a akustickou rychlostí
α.	činitel pohltivosti	1.	1		(/44)	æprůměrný činit, pohltivosti	
α β. γ. δ	rovinný úhel, (vyzařovací úhel)	, radián	1		(rad)	-	, - , , , ,
Δ	přírůstek, změna veličiny	-	_		, ,		$\psi = \operatorname{arctg} \lambda / 2\pi I \text{ [rad; m, m]}$
ε .	permitivita (r-relativni;	F/m	m ⁻³	kg ⁻¹	s^4A^2	$\epsilon[F/m] = \epsilon_t[-] \cdot 8.85 \cdot 10^{-12}$	
• • •	n-vakua)	•		-		[F/m]	kde / je vedálenost od zdro
η	účinnost	1. %	1		(%)	$ \eta - = P_v/P_p; \eta \% = 100 P_v/P_p$	$l = 3 \lambda$ je fázový posuv $\psi = 0.999$) a můžeme ho pr
θ	teplota	°C, K(kelvin)			K	$\vartheta[K] = \vartheta[°C] + 273.15$	praxi považovat za nulový. K chy šířící se od bodového zdro
θ	fermodynamická teplota	K (kelvin)			K		velké vzdálenosti I považovat
×	činitel vazby; poměr měrných tepel	1	1				rovinné. Poměr akustického tlaku a a
λ	vlnová délka	m	m			$\lambda = c/f$	losti definuje tzv. vlnovou ii
μ	permeabilita (µ-relatívní: µ0-vakua)	H/m	m	kg	s ⁻² A ⁻²	$\mu[H/m] = \mu[-]$ -1,257-10 ⁻⁶ [H/m]	středí .
v	úhlová rychlost	rad/s			s ⁻¹ (rad)	· .	$z = p/v \qquad [\text{Nsm}^{-3}; \text{Pa, ms}^{-1}]$
2	hustota, měrná hmotnost	kg/m ³	m-3	. kg		$\varrho = m/V$	Je-li fázový posuv $\psi = 0$, mluv
ę	měrný elektrický odpor	Ωm	m ³	kg.	s ⁻³ A ⁻²	$(R = \varrho I/S)$	odporu prostředí z ₁ [Ns/m ³]. V
ō	činitel rozptylu	1	1				u rovinné vlnoplochy určen s
τ	čas .	s	1		s		losti zvuku c ₀ a hustoty prostř
$\boldsymbol{\varphi}$	úhlová dráha .	radián	1		(rad)	<i>q</i> ≔ <i>v</i> τ	takže pro vzduch 20 °C ($\varrho = 1$
q^{i}	relativní vlhkost	%	1		(%)	·	$z_0 = c_0 \rho = 343 \cdot 1, 2 = 414 \text{ Ns}$
Φ.	magnetický tok	Wb (weber)	m ²	kg	s ⁻² A ⁻¹	φ= BS	Jak již jméno veličiny říká,
ψ·	fázový úhel	radián	1		(rad)	$(\psi = \omega \tau + \psi_0)$	odpor, který klade prostřed
ψ	elektrický indukční tok	C	1	s	Α	1	rozruchu; objevuje se proto
	,	(coulomb)	1		-1.	1	všech vztazích popisujících a
w	úhlový kmitočet	1/s	1.		s ⁻¹	$\omega=2\pi f$	Vlnový odpor je závislý na te
Ω	prostorový úhel	sr .	1		(sr)	(sr = steradián)	proti 20 °C se změní při t
Σ	znak součtu členů řady		<u> </u>		<u> </u>		a +44 °C. Intenzita zvuku I [Wm ⁻²] je

Pro značky veličin byly použity hlavní nebo alternativ... značky podle ČSN 01 1301 tak, aby dvojznačnost jejich významu byla omezena na minimum.

běžně jistě zajímat nemusí, ale i tato malá změna rychlosti zvuku způsobí např. zakřivení zvukového paprsku.

Při šíření zvuku vzniká kmitáním částic v určitých místech prostředí zhuštování částic, v jiných zřeďování; to se projeví zvětšením či zmenšením tlaku v prostředí proti běžnému barometrickému tlaku p_n. změna statického tlaku je jednou z veličin, kterou zvuk popisujeme. Nazýváme ji akustickým tlakem, označujeme ji p, udáváme ji v Pascalech [Pa]; p je měřítkem velikosti zvukového rozruchu. Jednotka [Pa] je tlak, který vyvolá kolmo působící síla 1 N. rovnoměrně rozložená, na rovinné ploše obsahu 1 m². Starší jednotkou akustického tlaku byl mikrobar (= 0,1 Pa). Akustický tlak se měří měřicími mikrofony nebo zvukoměry. Jednoduché zvuky (čisté tóny) mají sinusový

průběh změny akustického tlaku v daném místě prostředí; není-li jinak udáno, je jako velikost akustického tlaku udávána jeho

nelze jednoduše přímo měřit, jednak (a to především) proto, že její používání je nevý-

Poměr akustického tlaku a akustické rychlosti definuje tzv. vlnovou impedanci prostředí [Nsm⁻³; Pa, ms⁻¹] z = p/v

> Je-li fázový posuv $\psi = 0$, mľuvíme o *vlnovém odporu* prostředí $z_1[Ns/m^3]$. Vlnový odpor je u rovinné vlnoplochy určen součinem rychlosti zvuku c_0 a hustoty prostředí ϱ [kg m⁻³], takže pro vzduch 20 °C (ϱ = 1,21 kg m⁻³) je

hodné tím, že jako veličina vektorová musí být údána nejen velikostí, ale i svým směrem

Tak jako vytváří rozruch na vodním povrchu kruhové vlny, vytvářejí se při šíření zvuku vlnoplochy, šířící se od bodového zdroje rozruchu jako koule, jejichž poloměry se zvětšují se zvětšující se vzdáleností od zdroje rozruchu (obr. 1). Vzdálenost dvou sousedních vlnoploch s maximem zhuštění (či zředění) částic prostředí určuje vlnovou dělku zvuku vázanou s rychlostí zvuku a jeho

Vlnová délka zvuku (a její zlomky) je pro šíření zvuku jednou z rozhodujících veličin a proto si pro rychlou orientaci uvedme v tab. 2 vlnové délky zvuku ve vzduchu pro různé

Podobně jako v elektrotechnice mezi napětím a proudem může být i mezi akustickým tlakem a akustickou rychlostí fázový posuv.

kde l je vzdálenost od zdroje zvuku. Při $l=3~\lambda$ je fázový posuv $\psi=3^\circ$ (cos $\psi=0.999$) a můžeme ho pro technickou praxi považovat za nulový. Kulové vlnoplo-

chy šířící se od bodového zdroje můžeme pro velké vzdálenosti I považovat za vlnoplochý

 $\psi = \operatorname{arctg} \lambda / 2\pi I \text{ [rad; m, m]}$.

(2).

(4)

$$z_0 = c_0 \varrho = 343 \cdot 1,2 = 414 \text{ Ns/m}^3$$
 (5)

Jak již jméno veličiny říká, je to vlastně odpor, který klade prostředí šířícímu se rozruchu; objevuje se proto prakticky ve všech vztazích popisujících akustické pole. Vlnový odpor je závislý na teplotě a o 5 % proti 20 °C se změní při teplotách -10

Intenzita zvuku I [Wm⁻²] je dána vztahy

$$I = pv\cos\psi = z_0v^2 = \frac{p^2}{z_0} [W/m^2; Pa, m/s, °; Ns/m^3, m/s; Pa, Ns/m^3] (6).$$

Intenzita zvuku je akustický výkon Pa [W], procházející kolmo jednotkovou plochou S: je tedy akustický výkon

$$P_{\rm a} = IS = \frac{p^2}{z_0}S$$
 [W; W/m², m²] (7).

Pro nasycení uzavřeného prostoru je důležitým údajem hustota zvukové energie

$$w = \frac{I}{a_0}$$
 [J/m³; W/m², m/s] (8).

Pro výpočty, a sledování dějů v akustickém poli používáme např. tyto ďalší veličiny:

částic prostředí

Obr. 1. Ve volném prostoru se zvukové paprsky šíří přímočaře a jsou kolmé na zvukové vlnoplochy

efektivní hodnota. Zvukovou rychlost v [ms-1] v běžné technické praxi nepoužíváme proto, že ji jednak

Úhlový kmitočet
$$\omega = 2\pi f = \frac{2\pi}{T} [s^{-1}; Hz; s]$$
 (9)

doba kmitu
$$T = \frac{1}{f}$$
 [s; Hz] (10),

a tzv. vlnové číslo

$$k = \frac{\omega}{c_0} = \frac{2\pi f}{c_0} = \frac{2\pi}{\lambda}$$
 [m⁻¹; s⁻¹, m/s; Hz,
m/s; m] (11).

Pro aplikaci elektroakustických měničů (reproduktorů) napomohou veličiny: výchylka s [m] (tj. výchylka částice z rovnovážné polohy), a objemová rychlost

$$q = vS$$
 [m³/s; m/s, m²] (12),

což je objem prostředí, dočasně přemístěný zvukovou vlnou za jednotku času.

Tab. 2. Vlnové délky zvuku ve vzduchu

Kmitočet	Vlnová délka a její zlomky [m]						
f[Hz]	λ	λ/2	λ/4				
20	17,15	8.52	4,29				
50	6,86	3,43	1,72				
100	3,43	1,72	0,86				
200	1,72	0,86	. 0,43				
500	0,69	0,34	0,17				
1000	0,34	0,17	0.09				
2000	0,172	0,086	-0,043				
5000	0,069	0,034	0,017				
10000	0,034	0,017	0,009				
20000	0,017	0,009	0,004				
20000	5,517	2,303	3,007				

POSLECH

Fyziologie sluchu

Sluchový vjem nezávisí na určité objektivní fyzikální veličině, kterou můžeme zvukový signál popsat, ale je výsledkem subjektivního hodnocení, daného vlastnostmi sluchového orgánu, zkušeností vyhodnocovanou při vjemu v mozkovém analyzátoru a dalšími činiteli, lišícími se u různých jedinců. Zjistit výsledek všech těchto vlivů lze jen statickým zpracováním odpovědí velkého, reprezentativně složeného souborů jedinců (ve smyslu statickém tedy různého věku, pohlaví, povolání, rasy i typu životního prostředí jedince atd.). Experimentálně lze zjistit závislosti mezi objektivními fyzikálními veličinami zvuku (které můžeme měřicími přístroji změřit) a průměrným subjektivním vjemem.

Popisem vlivu zvukových signálů na subjektivní sluchový vjem se zabývá fyziologická akustika. Nejnápadnější rozdíl nalezneme mezi zvětšením akustického tlaku (jako fyzikální veličinou) a subjektivním vjemem hlasitosti. Nejslabší zvukový signál (tzv. prahová hodnota), který vnímáme, má při kmitočtu 1000 Hz akustický tlak $p=2.10^{-5} \text{ Pa. Nejsilnější signály, vnímané ještě jako zvuk a nikoli jako bolest, mají akustické tlaky až <math>100 \text{ Pa. Rozsah vnímaných hlasitostí tedy představuje "dynamický rozsah" <math>120 \text{ dB}$ a to je první věc, kdy musíme před sluchovým orgánem jako čidlem – mikrofonem, smeknout.

Podobně jako pro jiné fyziologické vjemy (zrak, hmat, čich a reakce organismu na vnější podmínky jako teplota apod.) platí i pro sluch zákon Fechner – Weberův: minimální postřehnutelná změna je dána stálým poměrem velikosti změny k výchozí veličině, jinak řečeno, intenzita počitku je úměrná logaritmu intenzity podnětu. To vede k definici hladin a logaritmických (deci-

belových) stupnic jako měřítku sluchového viemu

Hladiny akustického tlaku definujeme vztahem

$$L_{\rm p} = 20\log\frac{p}{p_{\rm s}}$$
 [dB; Pa] (13).

kde za vztažný (referenční) akustický tlak p volíme prahovou hodnotu 2.10⁻⁵ Pa. Vztah můžeme upravit na (obr. 68)

$$L_p = 20 \log p + 94 [dB; Pa].$$

Naopak můžeme určit akustický tlak z hladin akustického tlaku L podle vztahu

$$p = 2 \cdot 10^{-5} \cdot 10^{1/20}$$
 [Pa; dB] (14).

Prahová hodnota akustického tlaku $p=2\cdot 10^{-5}$ Pa odpovídá prahové hodnotě intenzity zvuku [viz vztah (6)]

$$I_{\rm r} = \frac{p^2}{z_0} = \frac{(2 \cdot 10^{-5})^2}{414} = 1 \cdot 10^{-12} \,\mathrm{W/m^2}$$
 (15)

a hladiny intenzity zvuku jsou definovány

$$L_{\rm I} = 10\log\frac{I}{I_{\rm r}} \qquad [dB] \quad (16),$$

nebo

$$L_1 = 10\log I + 120$$
 [dB] (17).

Všimněme si, že platí podobně jako v elektrotechnice: je-li sledovaná veličina, pro níž hladinu určujeme, úměrná energii (výkon, intenzita zvuku atd.), je činitel ve vztahu pro určení hladin v [dB] roven 10; počítáme-li však se základními veličinami (napětím, proudem, zde akustickým tlakem, akustickou rychlostí, výchylkou atd.), je tento činitel roven 20, protože energie je úměrná druhé mocnině této veličiny. Platí [viz vztahy (13), (6), (16)]

$$L_{p} = 20\log \frac{p}{p} = 10\log \frac{p^{2}}{p^{2}} =$$

$$= 10\log \frac{p^{2}/z_{0}}{p^{2}/z_{0}} = 10\log \frac{l}{l_{c}} = L_{1}$$
 (18)

tzn., že hladiny akustického tlaku jsou velikostí stejné jako hladiny intenzity zvuku.

V hladinách můžeme určovat í jiné veličiny (tab. 3). Uvedená prahová hodnota $p = 2 \cdot 10^{-5}$ Pa platí pro signál o kmitočtu 1000 Hz. Citlivost sluchového orgánu je totiž kmitočtově závislá, a tak i prahové tlaky pjsou pro různé kmitočty různé. Nejslabší slyšitelné zvuky dávají spolu v závislosti na kmitočtu tzv. prahovou křivku slyšitelnosti, nejhlasitější signály vnímané ještě jako zvuky definují křivku bolestivosti.

Tab. 3. Vztažné hodnoty akustických a elektrických veličin

Veličina	Znak	Vztažná hodnota	Označení log. poměru
akustický tlak intenzita zvuku akustický výkon elektrické napětí el. nap. pro 1 mW na 600 Ω elektrický výkon	P I Pa U	p_r =20 μ Pa l_r =1 pW/m $P_{a,r}$ = 1 pW U_r =1 μ V 0,775 V P_r =1 mW	2

Kmitočtová závislost vnímané hlasitosti je závislá na působící intenzitě zvukového signálu; soustava těchto závislostí tvoří tzv. Fletcherovy-Munsonovy křivky hladin stejné hlasitosti. Na obr. 2 jsou křivky stejné

Obr. 2. Normalizované křivky hladin stejné hlasitosti; oblast hudebních signálů je řídce šrafována, oblast řečových signálů je šrafována hustě

hlasitosti spolu s oblastmi běžně se vyskytujících hudebních či řečových signálů. Hladiny hlasitosti udáváme v [Ph] (fónech) a číselně jim připisujeme hlasitost, jakou má hladina akustického tlaku v [dB] pro stejně hlasitý zvuk kmitočtu 1000 Hz. Oblasti hudebních a řečových signálů určují objektivní požadavky na kvalitní přenos elektroakustickou cestou.

Uvedené křivky hladin stejné hlasitosti, které byly na základě velmi rozsáhlých subjektivních testů mezinárodně normalizovány, platí pro průměrného posluchače ve věku od 18 do 25 let (při šíření zvukové vlny ve volném prostoru a poslechu oběma ušima). S věkem se sluchový práh snižuje především u vyšších kmitočtů (nevěřte vašemu 40letému kolegovi, že slyší signály kmitočtů kolem 16 000 Hz). Zvláště markantní sluchové ztráty mají osoby zaměstnané v hlučných provozech (ale i v dopravě), nebo osoby často navštěvující diskotéky a programy pop music. Průměrné ztráty sluchu jsou naznačeny v obr. 3.

Obr. 3. Statisticky zjištěné snižování prahu slyšitelnosti s věkem posluchače

Zákonitá a přirozená "sluchová ztráta" u starších osob je např. důvodem, proč někteří zvukoví mistři kontrolují kvalitu zvukového snímku při poslechových hladinách (nikoli jen zřídka) překračujících hodnotu 100 až 110 dB. Mładší zvukaři, kteří si dosud svůj sluch nezničili vysokými poslechovými hladinami, mohou pro stejně zodpovědné posuzování kvality hudebního snímku používat střední hladinu hlasitosti (asi 80 až 90 dB). Kontrola hudebních snímků při hladinách nad 100 dB je bud módní záležitostí nebo známkou, že zvukař má již sluch oslaben či zničen, a vede jen k ještě rychlejší sluchové ztrátě. Opačným důsledkem této zákonitosti je, že s pokračujícím věkem se subjektivně vnímaná hlasitost pro vyšší kmitočty zmenšuje a tak se např. ztrácí možnost postřehnout zkreslující harmonické.

Podle Fletcherových-Munsonových křivek má tedy sluch pro jinou hlasitost i jinou .kmitočtovou charakteristiku". Změníme-li hlasitost, změníme i poslechu odpovídající křivku hladiny stejné hlasitosti a to někdy dost zásadní měrou. Proto byly navrženy tzv. fyziologické regulátory hlasitosti, které při změně hlasitosti mění i kmitočtovou charakteristiku elektroakustické přenosové cesty tak, aby odpovídala křivce hladin stejné hlasitosti pro tuto změněnou hlasitost poslechu. Je-li tedy např. hudba snímána při určité hladině akustického tlaku, má být při této hladině také reprodukovaná, jinak dochází ke změně celkové přenosové charakteristiky většinou se projeví úbytkem hlubokých tónů. Toto jen ve stručnosti, neboť velmi dobře podané "teoretické pozadí" nutnosti fyziologické regulace hlasitosti byló publikováno v Amatérském radiu A3/79, str. 96, kde nalezneme i vhodné realizační informace.

Proto by fyziologický regulátor hlasitosti neměl chybět v žádném zesilovači, který si činí nárok na název hi-fi. To však nestačí, Nemůžeme totiž zaručit, že všechny hudební snímky budou pořizovány při stejné hladině akustického tlaku a že fyziologický regulátor hlasitosti je tedy navržen pro tuto hladinu. Fyziologický regulátor hlasitosti bude mít smysl jen tehdy, bude-li doplněn i běžným regulátorem hlasitosti, jímž můžeme "lineárvyrovnat nestejné hladiny akustického tlaku při snímání, a teprve pak, tj. od hlasitosti, dané nastavením běžného regulátoru hlasitosti, ovládat hlasitost poslechu fyziologickou regulací hlasitosti. Není-li tato podmínka splněna, je lepší fyziologickou regulaci hlasitosti nepoužívat a věrnost reprodukce upravovat výškovým a hloubkovým korektorem. Lze uvést, že je třeba nastavit absolutní úroveň hlasitosti reprodukce při plném "vytočení" fyziologické regulace hlasitosti na asi 95 až 105 dB.

Postřehnutelnost změn tónové kvality

Pro fyziologické hodnocení vlastností sluchového orgánu jsou důležitým pojmem tzv. limeny, tj. nejmenší postřehnutelné změny. Pro hlasitost můžeme zhruba říci, že při možnosti vzájemného srovnání je limen hlasitosti asi 1 dB, bez možnosti srovnávání asi 3 dB. Přesněji udává velikost nejmenší postřehnutelné změny hlasitosti při vzájemném srovnávání hlasitějšího a tiššího tónu tab. 4.

Tab. 4. Nejmenší postřehnutelná změna hlasitosti [dB]

Kmitočet [Hz]	Hladina akustického tlaku (dB)							
	10	30	60	90				
200	3.5	1,2	0,6	0.4				
1000	2,4	. 1,0	0,4	0,3				
4000	1,7	0,7	0,3	0,2				
10000	3,3	1,1	0.7	- [
	1 1			l				

Tato tabułka není pro nás důležitá pro vlastní pozorovatelnou změnu hlasitosti, ale pro nepřímé posouzení toho, jak velké zkreslení přenášeného signálu ještě nebude vnímatelné. Tak na kmitočtu 1000 Hz při hladině hlasitosti 60 dB nebudou pozorovatelné zkreslující složky menší než asi 0,4 dB. Odpovídá-li na elektrické straně hladina hlasitosti 60 dB napětí např. 1 V (L = 20 log U/U_0 , , $U = U_0 \cdot 10^{1./20}$, U = 1 V pro $U_0 = 1 \text{ mV}$), pak hodnotě 60,4 dB odpovídá napětí U = 1047 mV a zkreslující složky o kmitočtu 1000 Hz (tj. druhá harmonická pro 500 Hz, třetí pro 333 Hz atd.) nemají v součtu překročit 47 mV, tj. zkreslení nemá přesáhňout (47/1000). 1000 = 4,7 %. To platí ovšem potud, pokud je přítomen signál o kmitočtu 1000 Hz s hlasitostí 60 dB, který zkreslující složky maskuje. V praxi, kdy v daném kmitočtovém pásmu harmonických maskující signál nemusí být, připouštíme pro obvyklý hudební signál asi desetinu uvedené-ho údaje, tj. asi 0,5 %. Přibližně lze udat, že přípustná zkreslení jsou v % číselně shodná s hodnotami limenů uvedených v tab. 4 (opět vztaženo na běžného, 25letého posluchače). Zde nacházíme protichůdný požadavek k technickým vlastnostem zesilovačů (a reproduktorů): směrem k vyšším hladinám se zkreslení přenosového řetězce zvětšuje, avšak "fyziologicky" požadujeme, aby se zmenšovalo.

Sluchový orgán nevnímá ani výšku hudebního tónu souhlasně s fyzikální veličinou – kmitočtem. Zdvojnásobení subjektivní výšky tónu (udávané v melech) sluch nevnímá pro dvojnásobný kmitočet. Tato závislost (obr. 4) je pro poslech kvalitní hudby málo významná, a je závislá i na hlasitosti (obr. 5).

Obr. 4. Subjektivní výška tónu v závislosti na kmitočtu (při hlasitosti 40 Ph)

Obr. 5. Změna subjektivní výšky tónu v [%] v závislosti na hladině zvuku

Obr. 6. Citlivost sluchu na kolísání výšky tónu pro různé kmitočty s hlasitostí ("flutter")

Obr. 7. Práh poznatelnosti kmitočtových změn v závislosti na kmitočtu kolísání ("wow")

Hluboké tóny pří zvětšování hlasitosti jakoby zmenšovaly svou subjektivní výšku tónu (100 Hz při 40 Ph zmenší vnímanou subjektivní výšku tónu při 100 Ph asi o 10 %, tj. přibližně o jeden celý hudební tón!). Obě tyto nelineární závislosti sluchového orgánu jsou při poslechu kompenzovány zkušeností a nemusíme jim věnovat pozornost, ale pomohou nám vysvětlit některé vjemy při poslechu čistých trvalých tónů.

Při poslechu reprodukované hudby ze záznamu se uplatní limen změny kmitočtu. Minimální postřehnutelná změna výšky tónu je závislá jednak na absolutní výšce tónu, jednak na jeho hlasitosti. Poznatelná změna kmitočtu v promile jmenovitého kmitočtu je uvedena v obr. 6. Pro obvyklou poslechovou hlasitost 85 dB a těžiště hudebních tónů v pásmu 300 až 2000 Hz vidíme, že by relativní kmitočtová změna $\Delta l/f$ neměla překročit asi 0,2 %. U záznamových zařízení se objevuje kolísání o nižších kmitočtech a vodítkem pro požadavky kladené na kvalitní zařízení bude závislost z obr. 7, z níž vidíme, že nejnebezpečnější je kolísání s kmitočtem asi 4 Hz, při němž se změna 0,25 % již projeví jako rušivá.

Složky rušící poslech

Poslední z důležitých fyziologických závislostí pro kvalitní poslech je vlastnost sluchového orgánu, že může sám vytvářet složky, které ve zvukovém poli obsaženy nebyly, a naopak neregistrovat tóny, které ve zvukovém signálu byly. Při současném znění několika tónů vznikají ve sluchovém ústrojí další tóny, tzv. tóny aurální, které jsou součtovými, rozdílovými a kombinačními tóny tónů původních. Tyto tóny vznikající na nelineárních přenosových vlastnostech ucha se uplatňují tím více, čím je větší hlasitost původních tónů a čím jsou původní tóny hlubší.

Práh slyšitelnosti v obr. 2 platí pro čisté tóny; znějí-li současně dva či několik tónů, pak tón silnější maskuje tón slabší a citlivost sluchového ústrojí se pro tento slabší tón jakoby žmenšuje. Necháme-li např. znít úzkopásmový šum o středním kmitočtu 1000 Hz a při jeho různých intenzitách pro-

Obr. 8. Základní charakter maskovacích prahů

měříme prahy slyšitelnosti pro ostatní čisté tóny, zjistíme v oblasti kolem 1000 Hz, že citlivost sluchového ústrojí je pro blízké tóny menší. Takto zjištěným prahovým křivkám říkáme maskovací prahy, které jsou závislé na intenzitě maskujícího tónu (obr. 8). Směrem k hlubším kmitočtům od kmitočtu (nebo pásma kmitočtů) maskujícího je maskující jev méně výrazný, než směrem k tónům vyšším. Při několika současně znějicích tónech jsou maskovací prahy složitější, a pokud mají kmitočty sobě blízké, nelze je jednoduše matematicky nebo graficky obecně popsat.

Velmi zhruba, pouze pro první orientaci, lze říci, že tón silnější maskuje tón slabší (mají-li tóny blízké kmitočty), je-li jeho hladina hlasitosti větší o 10 dB; směrem k hlubším kmitočtům nepřesáhne maskovací jev šířku jedné oktávy, avšak směrem ke kmitočtům vyšším se při větších intenzitách maskujícího tónu rozprostírá maskovací jev až do nejvyšších kmitočtů akustického pásma.

Nežádoucí signály rušící poslech mohou vzniknout i přímo ve zvukovém poli. Nejznámější je ozvěna, což je odrazem vrácený zvukový signál, který do místa poslechu dorazí s časovým zpožděním větším než asi 100 ms. Sluch ho vnímá odděleně od primárního signálu a posuzuje ho nutně jako rušivý. Podmínkou pro vjem ozvěny je časové zpoždění mezi doběhy signálů větší než asi 100 ms, což odpovídá při rychlosti zvuku 343 m/s dráze 34 m. Ozvěnový signál dorazí tedy k posluchači až po dráze o 34 m delší než je dráha primárního signálu. Příčinou ozvěny je tedy odraz zvuku od rozměrné překážky ve vzdálenosti větší než 17 m (dráha tam a zpět)

Při násobných odrazech od několika překážek (např. protějších stěn sálu při rozdílech drah zvukového paprsku větších než 34 m) vzniká několikanásobný vjem zvuku, tzv. třepotavá ozvěna.

Je-li zpoždění odraženého signálu menší než asi 90 ms, ale větší než asi 40 ms,

Obr. 9. Směrová charakteristika pravého ucha

mluvime o směšování, které velmi podstatně zmenšuje srozumitelnost mluveného slova (obr. 80).

Směrové slyšení

Při poslechu – především ve volném prostoru – se projeví i směrová charakteristika ucha, daná umístěním (stíněním hlavou) a utvářením boltce ucha. Směrová charakteristika ucha je kmitočtové závislá (obr. 9). Směrový účinek se projevuje i ve vertikální rovině, tato závislost však běžné poslechové podmínky neovlivňuje.

Obr. 10. Ucho odvrácené vnímá menší intenzitu zvuku, než ucho přivrácené

Obr. 11. Časový nebo fázový rozdíl dopadajícího signálu

Obr. 12. Směrová lokalizace precedenčním jevem

Součinností obou uší lze určit i směr, z něhož zvuk k posluchači přichází. Směrová charakteristika každého ucha není sama o sobě schopna zaručit dostatečně přesnou lokalizaci zdroje zvuku. Na směrové lokalizaci spolupůsobí i rozdíl intenzity (hlasitosti) zvuku (obr. 10) a časový rozdíl (obr. 11) mezi dopadem zvuku na jedno či druhé ucho. Časový rozdíl můžeme převést na rozdíl fáze vnímaných signálů, rozdíl intenzity je zdůrazňován vznikem akustického stínu pro odvrácené ucho (obr. 10). Časový (nebo fázový) rozdíl signálů dopadajících na obě uši napomáhá směrově lokalizovat střední a nízké tóny. Rozdíl intenzit, daný při poslechu přirozeného signálu rozdílem vzdáleností k jednotlivým uším, rozhoduje o směrové lokalizaci bez ohledu na kmitočet a je významně zdůrazňován u vyšších kmitočtů akustickým stínem pro odvrácené ucho (kdy je "překážka" – hlava – větší než vlnová délka, obr. 10).

Značnou úlohu při směrové lokalizaci hraje Haasův jev (také známý jako precedenční jev nebo zákon první vlnoplochy), podle něhož sluchový analyzátor určuje směr ke zvukovému zdroji podle toho, které ucho a s jakým časovým předstihem bylo zasaženo první vlnoplochou. Další (odražené) vlny mohou dopadat na ucho s intenzitou až o 10 dB větší a zpožděny až o 40 ms, aniž by korigovaly původní směrový vjem (obr. 12). Tohoto jevu se využívá u intenzitní stereofonie a zde se také při instalaci aparatury a volbě poslechového místa dopouštíme nejspíše chyby. Aniž bychom na tomto místě zabíhali do podrobností, uvedme pouze zásady, které jsou blíže zdůvodněny a objasněny, např. v článku v Sdělovací technice č. 2/79, str. 59. Zkoumáme-li totiž precedenční jev podrobněji, dojdeme k tzv. Van de Boerovu grafu v obr. 13, z něhož vyplývá: intenzitní stereofonie (kvadrofonie) může dát správný směrový vjem potud, pokud není rozdíl časového doběhu signálů od jednotlivých reproduktorů větší než asi 5 ms. Pro skutečně dobrý směrový vjem nemá tato doba u intenzitní stereofonie překročit asi 2,5 ms. Pouze v takovém případě směrová lokalizace téměř lineárně závisí na rozdílu hlasitosti ΔL , jak je v obr. 13 naznačeno čárkovanou přímkou počátkem. Poslechem mimo osu reprodukční báze přidáváme ještě vliv časového rozdílu doběhů Δt , který se projeví změnou směrnice i nelinearitou křivky středové lokalizace. Maximální uvažované $\Delta t = 5$ ms odpovídá rozdílu vzdálenosti posluchače od jednotli-vých reproduktorů asi 1,7 m. Z toho lze odvodit, že při intenzitní stereofonii (nebo kvadrofonii) by reprodukční báze neměla být širší než asi 3,5 m. Přitom, je-li jeden že signálů o více než 20 dB hlasitější, je lokalizační směr určen jednoznačně hlasitějším

Obr. 13. Závislost středové lokalizace na rozdílu hlasitosti reproduktorů a na rozdílu času doběhu od jednotlivých reproduktorů

reproduktorem. Začne-li se při intenzitní stereofonii uplatňovat vedle rozdílu hlasitosti i časový rozdíl doběhů signálů, vzniká dojem pohybujícího se středu zvukového obrazu, hraničící s ping-pongovou stereofonií, kdy obraz přeskakuje z jednoho reproduktoru do druhého, aniž by byla možná jiná lokalizace.

U intenzitní stereofonie, kterou se dnes hudební snímky snímají takřka výhradně, tedy nelze pro větší poslechovou plochu zaručit kvalitní stereofonní vjem, a nepomohou ani regulátory šířky báze či jiná technická zařízení, poněvadž omezení leží svou podstatou ve fyziologii slyšení. U stereofonie je poslech omezen na středový pás ne-velké šířky, u kvadrofonie je to podobný středový pás omezený na malou hloubku a poslechová plocha zabírá plochu nejvýše několíka křesel. Šířka středového pásu k, kde se při intenzitní stereofonii může vytvořit věrné směrové rozložení zvukového obrazu, je při šířce stereofonní báze ba vzdálenosti / poslechového místa od stereofonní fáze dána vztahem

$$k = \sqrt{1 + 4I^2/(4b^2 - 1)}$$
 [m; m] (19).

Co je nad tyto meze, "to si namlouváme", nebo byla ošizena jiná poslechová místa či se jedná o speciální nahrávku, která má vyvolat efekty, ale nemůže dát prostorově správnou a věrnou reprodukci. Vztah. (19) byl odvozen pro $\Delta r = 2.5$ ms jako extrémní hodnotu; pro skutečně věrný stereofonní poslech hi-fi by měla být šířka středového pásu uvažována asi poloviční vzhledem k vypočtené. Pouze v úseku do ± 2.5 ms je křivka středové lokalizace v obr. 13 skutečně lineárně závislá na změnách intenzity jednotlivých signálů.

Dynamický rozsah

Sluch může vnímat zvuky v dynamickém rozsahu asi 120 dB. Takový dynamický rozsah není schopno přenést žádné z přenosových zařízení. Není to ani třeba, originální hudební signály takového dynamického rozsahu zdaleka nedosahují. I skromnější hodnota asi 65 dB (viz tab. 5) je však stálým středem úsilí techniků a není většinou dosahována.

Dynamický rozsah reprodukčních zařízení je závislý na

(Amatérské! A 1) (1)

mnoha činitelech. Jiný rozsah má samozřejmě rozhlasový přenos amplitudové modulovaný, jiný při kmitočtové modulaci, velmi však záleží i na velikosti anténního signálu. U gramofonové desky rozhoduje volba záznamové charakteristiky a pro dnešní LP desky z kvalitního materiálu lze udat dynamický rozsah asi 60 dB. U magnetického záznamu je to vedle materiálu i šířka záznamové stopy – u běžných magnetofonů lze dosáhnout dynamického rozsahu asi 45 až 50 dB, u profesionálních zařízení výjimečně přes 55 dB. Nelze proto např. v obr. 14 udat jednoznačně dynamické rozsahy jednotlivých přenosových a záznamových prostředků.

Moderní způsoby potlačování sumu jsou přijatelné, pokud neporušují požadavek reprodukce hi-fi. Je to např. známý systém Dolby A (nikoli B), s nímž lze dosáhnout zlepšení o asi 12 až 15 dB, nebo novější kompanderové systémy např. Telefunken nebo Philips se zlepšením o 25 až 30 dB a konečně speciální systém firmy dBx se zlepšením údajně až 50 dB. Přitom si uvědomme, že je žádoucí určitá kompatibilita, tedy možnost přehrávat komprimované snímky případně i bez expanderů na reprodukční straně. Z tohoto hlediska je pro poslech, i když nikoli hi-fi, přijatelná komprese kolem asi 20 dB.

Jinou otázkou jsou zvukové signály zaznamenávané a přenášené v digitalizované formě, u níž není dynamický rozsah teoreticky omezen a pouze praktické důvody vedly u nejprogresívnějšího systému firmy Philips k omezení dynamického rozsahu na 85 dB.

Dynamický rozsah přenosového zařízení 85 dB lze považovat i perspektivně za splňující nároky přenosu hi-fi. Jak bude uvedeno ještě dále, k této hodnotě u stávajících zařízení zatím pořád mnoho chybí.

Hudební signály

Před dalšími informacemi uveďme ještě několik nejdůležitějších pojmů z oblasti hudební akustiky. Je to např. stupnice hlasitosti hudby uvedená v tab. 5 a dále obr. 14, v němž jsou pro hudební nástroje vyneseny základní kmitočtové rozsahy (tlustě), rozsah tónů spoluznějících a harmonických (tence) a oblast zákmitových a názvukových jevů (čárkovaně) (8. a 9. str.). Kroužky označují mezní kmitočty pro věrnou reprodukci, tedy hranice poznatelnosti změny zabarvení. Přehled je doplněn dynamickými rozsahy jednotlivých hudebních nástrojů. Porovnáním, s kmitočtovými- rozsahy reprodukčních prostředků můžeme porovnat splnitelnost podmínek věrné reprodukce.

Hudební interval je dán prostým poměrem kmitočtu vyšího tónu ke kmitočtu tónu nižšího. Je-li tento poměr rovný 2, mluvíme o oktávě. Hudební intervaly jsou uvedeny v tab. 6; např. čistou kvartu ("hoří") máme "v uchu" a nalezneme tak snadno na tónovém generátoru kmitočet o 1/3 nižší atp.

Jeden půltón (temperovaný) má velikost $^{12}\sqrt{2} = 1,059$, odpovídá tedy změně kmítoč-

Tab. 5. Hladiny zvuku odpovídající hudební stupnicí hlasitosti

Značení	Slovně	Hlad. zvuku
ppp pp p mp mf f f	co nejslaběji velmi slabě (pianissimo) slabě (piano) středně slabé (mezzopiano) středně silně (mezzoforte) silně (forte) velmi silně (fortissimo) co nejsilněji (con tutta sforza)	40 dB 50 dB 60 dB 65 dB 70 dB 80 dB 90 dB

tu asi o 6 %. Pro objektivní měření velikosti intervalů je v hudební akustice používána jednotka cent, definovaná jako 1/100 půltónu.

Uvedené informace nemůžeme využít při poslechu přímo, ale napomohou nám při podrobnějším "dolaďování" aparatur.

Řečový signál – srozumitelnost

Řečový signál obsahuje v daleko větší míře než signál hudební neperiodické signály vznikající jako přechodné jevy při vyslovování a spojování hlásek a při vyslovování hlásek samých. Z tohoto hlediska by byl přenos řečového signálu technicky náročnější, ale naštěstí má daleko užší kmitočtový rozsah a při poslechu napomáhá to, že i mírně chybně přijaté (nebo vůbec chybějící) hlásky dovede mozkové centrum z celkové souvislosti doplnit. Přenos řečového signálu hodnotíme dosahovanou srozumitelností předávané zprávy.

Je samozřejmé, že lepší srozumitelnosti dosáhneme u předávaných celých vět, kde si zkušenost i intelekt doplní podle smyslu, případně i očekávání, třeba i celé chybějící části, což je již obtížnější při vysílání jednotlivých slov, ještě horší při slabikách a skutečným měřítkem srozumitelnosti je vlastně vysílání a přijímání jednotlivých hlásek (pak mluvíme o tzv. rozpoznatelnosti). Šamohlásky jsou nositeli energie řečového signálu a k vlastnímu porozumění přispívají poměrně málo. Nositeli informací jsou většinou souhlásky, které ale mají o 20 až 60 dB menší energii. Proto je pro výslednou srozumitelnost základním kritériem přenos souhlásek.

Srozumitelnost se hodnotí pouze přímým pokusem, kdy vyjádříme v % počet správně přijatých hlásek, slabik, slov či celých vět k počtu celkově vyslaných.

Pro učety komunikační či pro informační systémy je třeba, a často i rozhodující, určit výslednou očekávatelnou srozumitelnost řečového signálu předem. Pro praktickou využitelnost je z mnoha metod nejpřijatelnější metoda určení ztráty srozumitelnosti souhlásek. Za předpokladu, že je přenášené kmitočtové pásmo širší než 100 Hz až 6000 Hz, a že odstup signálu od šumu je lepší než 25 dB, byl pro ztrátu srozumitelnosti souhlásek (ZSS [%]) odvozen vztah

ZSS =
$$\frac{200 T^2 k_p^2 n}{VQ} = 0.65 Tn \left(\frac{k_p}{r_d}\right)^2$$
 [%; s, m, -, m³, -] (20).

který platí pro vzdálenost $L_{\rm p}$ (zdroj zvuku – posluchač) menší než πr_d , kde r_d je dozvuková vzdálenost [vztah (34)] v daném prostoru. Další veličiny: T [s] je doba dozvuku (viz vztah (42)) pro f=1400 Hz, n je počet stejných zářičů (např. reproduktorových soustav) podílejících se v místě poslechu závažnou měrou na vytváření akustického

Tab. 6. Hudební intervaly v temperovaném ladění (zlomkem v přirozeném ladění)

Hudební interval	uđán				
,	zlomkem	poměrem			
prima	1	1,000			
sekunda	9/8	1,122			
malá tercie	6/5	1,189			
velka tercie	5/4	1,260			
kvarta	4/3	1,335			
kvinta	3/2	1,498			
malá sexta	8/5	1,587			
velká sexta	5/3	1,682			
malá septima	9/5	1,782			
velká septima	15/8	1,888			
oktáva	2 ,	2,000			

pole; $V[m^3]$ je objem prostoru a Q[-] je činitel směrovosti zdroje zvuku. Tak např. kulturním klubu o rozměrech $8 \times 13 \times 4.5$ m (příklad v dalším textu) je doba dozvuku T_{1400} změřená, nebo alespoň vypočtená jako průměr pro kmitočty $1000 \text{ Hz} \cdot 2000 \text{ Hz} \cdot T_{1400} = (T_{1000} + T_{2000})/2 = (1.13 + 0.92)/2 = 1.03 s (příp. jako prů$ mer T_{500} , T_{1000} , T_{2000} a $T_{4000} = 1.0 \text{ s}$). Pro dozvukovou průměrnou vzdálenost $r_d = 1.9 \text{ m}$ vzdálenost posluchače $L_p = 6$ m bude pro řečníka (Q = 2.5), n = 1, a tedy ZSS = 6,6 %. Při ZSS menším než 8 % lze srozumitelnost hodnotit jako velmi dobrou, při ZSS větším než 15 % je srozumitelnost nedostatečná. Při ozvučování prostoru několika reproduktory (n>1) nemusíme vůbec uvažovat soustavy, dávají-li v místě poslechu přímý signál o 6 až 10 dB menší než nehlasitější přijímaný signál z reproduktoru nebo soustavy reproduktorů. Abychom vyjádřili dílčí vliv některé soustavy, lze počítat i s n jako necelým číslem. Pro orientační výpočty při několika zářičích používáme n = 1,4. Zvětšující se vzdálenost l_p respektuje i vliv rušivých signálů vznikajících odrazy v daném prostoru a při $I_{zp} = \pi r_d$ je dán signál v nejvzdálenějším místě pouze dozvukovým polem. Proto při vzdálenostech $L_{\rm p}$ větších než $\pi r_{\rm d}$ se ZSS již dále nemění a je

$$ZSS = 9T$$
 [%; s] (21).

Ze zkušenosti víme, že při Tvětším než asi 1,6 s nelze zaručit dobrou srozumitelnost ve vzdálenějších místech prostoru (ZSS = 9 1,6 = 15 %, tedy hranice vyhovující srozumitelnosti).

Obr. 15. Závislost ztráty srozumitelnosti souhlásek (ZSS) na době dozvuku a poměru vzdálenosti zdroj-posluchač k dozvukové vzdálenosti (l_{1p}/r_d)

Obr. 16. Zvětšení ztráty srozumitelnosti souhlásek se zmenšujícím se odstupem signálu od šumu při určité době dozvuku T

Výpočet ZSS podle vztahu (20) je zjednodušeně (pro n=1,4; tj. pro ozvučení několika reproduktory)) vynesen v obr. 15 v závislosti na l_p/r_d (pro uvedený příklad je ZSS = 9,5 %).

Při zhoršování odstupu signálu od šumu se zvětšuje i ZSS podle obr. 16. Závislost obr. 16 můžeme využít dvojím způsobem:

a) při známém T (např. 1,03 s) se nesmí odstup zmenšiť pod určitou velikost (asi 18 dB), aby ZSS: nepřekročilo nejvýše přípustnou velikost 15 %; nebo naopak při daném odstupu můžeme určit maximální velikost doby dozvuku T;

b) známe-li ZSS (např. 6,6 %) v určitém místě poslechu podle vztahu (20) nebo z obr. 15 (tj. ZSS určenou pro odstup signálu od šumu nejméně 25 dB), pak se může změnit odstup (v našem případě asi na 14 dB), aby ZSS při působícím hluku pozadí nebyla větší než 15 %. V našem příkladě musí být tedy v celém sále (max $I_{\rm tp}/I_{\rm d}=5$) hladina řečového signálu alespoň o 14 dB vyšší, než je hluk pozadí, aby byla zaručena vyhovující srozumitelnost.

Ztráta slabikové srozumitelnosti se zvětší i při nedostatečném kmitočtovém rozsahu přenosového řetězce. Určenou ZSS můžeme korigovat podle činitelů k, a k, vynesených v obr. 17 pro nejvyšší a nejnižší přenášený kmitočet podle vztahu

$$ZSS_{korig} = 50 - k_v k_h (50-ZSS) [\%; -, \%]$$
(22)

Kdyby tedy v našem případě byly při ozvučení mezní kmitočty (pro -3 dB) přenosové cesty 250 Hz (omezeno reproduktory) a 3500 Hz (omezeno např. tónovou clonou, aby nevznikla akustická vazba), bude $k_h = 0.98$ a $k_v = 0.90$ a ZSS_{korig} ve vzdálenosti 6 m

$$ZSS_{korig} = 50 - 0.98 \cdot 0.90 (50 - 6.6) = 11.7 \%.$$

Odstup hladiny řečového signálu od hluku pozadí by se nesměl zmenšit pod 21 dB (viz obr. 16).

Alespoň orientační určení očekávatelné srozumitelnosti v daném prostoru je výhodné proto, že o srozumitelnosti rozhodují v podstatnější míře vlastnosti prostoru a umístění zdroje a posluchače než technické zařízení samo.

Požadavky na kvalitu přenosové cesty

Na základě fyziologických vlastností sluchů můžeme určit technické požadavky kladané na přenosovou cestu jako celek. Z fyziologických závislostí odvozené požadavky se mnohdy neshodují s požadavky naších i cizích norem, buď proto, že zaručit technické vlastnosti by bylo velmi nákladné, nebo proto, že naopak lze snadno dosáhnout parametrů lepších, i když s ohledem na

Obr. 17. Součinitelé respektující zužování přenášeného kmitočtového pásma na ztrátu srozumitelnosti souhlásek

fyziologii nemohou být využity a jsou proto samoúčelné.

Všimněme si tedy zvláší požadavků, které s ohledem na reprodukci hi-fi je třeba zaručit, a zvláší na požadavky normativní. Uvědomíme si hned v úvodu, že jako požadavky pro reprodukci hi-fi lze označit takové velikosti jednotlivých veličin, jejichž další zlepšování lze sice určit měřením, ale sluch však již není schopen rozeznat další zlepšování, poněvadž to leží pod prahem poznatelnosti. Hodnoty veličin, potřebné pro to, aby byla zaručena reprodukce hi-fi, budou tedy ležet jen mírně pod hranicí poznatelnosti změny pro jednotlivé veličiny. Přenosová cesta nesmí samozřejmě k signálu nic "přidávat" a je fyziologicky posuzována jako celek v úhrnném vjemu, který vyvolává.

Kmitočtový rozsah dobrého přenosového řetězce hi-fi by se měl rozprostírat v celém slyšitelném pásmu, tedy asi od 18 Hz do 18 kHz. Některé studie senzorické akustiky však ukazují, že se při rozšíření pásma nad 18 až 20 kHz sluchový vjem zlepší. Souvisí to zřejmě s přenosem přechodných jevů (především názvuků), které obsahují i kmitočty několikanásobně vyšší. Bude tedy snahou přenášet (tj. i vyzářit reproduktorem) kmitočty co nejvyšší. Jako nejnižší požadavek pro skutečnou reprodukci hi-fi lze podle obr. 14 považovat kmitočet 16 kHz. Další zlepšení rozeznají již pouze asi 3 % posluchačů.

Signál nejnižšího přenášeného (a vyzařovaného) kmitočtu £ je rozhodující měrou omezován použitými zářiči. Zde je nutné volit jistý kompromis – pro reprodukci hi-filze považovat za přijatelnou mez asi 45 Hz. V běžných hudebních snímcích se tóny pod 50 Hz (= G1) vyskytují jen zřídka, i když špičkové varhany mají rozsah až do subkontra C2. Při poslechu napomáhá u nejhlubších tónů i fyziologie. Rozdílový kmitočet vznikající jako aurální tón při poslechu druhé a třetí harmonické (jako nejvýraznějších) dává subjektivní vjem tohoto základního tónu. Tohoto jevu využívají i malé rozhlasové přijímače, u nichž zdůrazněním harmonických jsou jakoby slyšet základní tóny, které by malé reproduktory nikdy vyzářit nemohly.

Je samozřejmě snahou, aby přenášené

Je samozřejmě snahou, aby přenášené pásmo bylo rozšířeno co nejvíce. Kdyby se přenášené kmitočtové pásmo rozšířovalo pouze jedním směrem, mohla by být reprodukce, "divná" – nepřirozená. Sluch vyžaduje určitou vyváženost a udává se, že geometrický průměr nejvyššího a nejnižšího kmitočtu má být asi 630 až 800 Hz. Má tedy přibližně platit

630 až
$$800 = \sqrt{f_0} f_0$$
 [Hz] (23).

Není-li splněn požadavek vyváženosti, dosáhne se lepšího vjemu, omezí-li se úmyslně přenos tak, aby byl požadavek splněn. Tak sobě odpovídají jako mezní kmitočty kmitočty, uvedené v tab. 7. (Nemá-li být přenášen hudební signál, pak se při zdůraznění vyšších kmitočtů nad asi 600 Hz zlepší srozumitelnost na úkor hlasové věrnosti.)

Tab. 7. Vyvážené mezní kmitočty přenosové elektroakustické cesty

Kmitočet [Hz]				
nejnižší	nejvyšší			
30	. 21 000			
40	16 000			
50	13 000			
70 -	9 000			
100	6 500			
200	3 200			

Nerovnoměrnost kmitočtové charakteristiky by neměla být v přenášeném pásmu větší než asi 3 dB (rozpoznatelná změna úrovně signálu). Tato nerovnoměrnost je však spíše určována změnou barvy tónu vznikající potlačováním či zdůrazňováním harmonických a formantových složek než vlastní změnou hlasitosti, např. klouzavého tónu.

Zkreslení vznikající v přenosovém řetězci a projevující se jako nové – cizí složky, je poslechem průkazně zjistitelné ažtehdy, je-li větší než I %. Jako vodítko může sloužit i tab. 4 a příslušný text; rozhodně však není z fyziologického hlediska nutné používat zesilovače se zkreslením desetin až setin procenta, zvláště když o slyšeném zkreslení rozhodují především reproduktory (ty mají při velkých výkonech často zkreslení několik procent, tab. 11).

V normách udávaná maximální přípustná zkreslení se vztahují např. u zesilovačů pro plný výkon, kdežto zkreslení odvozená podle tab. 4 jsou uvažována pro průměrnou poslechovou hladinu, tedy pro hladiny hlasitosti alespoň o 10 dB nižší než maximální.

Jinou otázkou cizích nebo rušivých signálů je reprodukovaný hluk pozadí hodnocený odstupem signálu od cizích nebo rušivých napětí.

Odstup cizích napětí, odstup rušivých napětí a odstup hluku (u gramofonů) hodnotíme z efektivního napětí změřeného přes různé váhové filtry, potlačující signály nízkých a vysokých kmitočtů. Nejpřísnější je odstup cizích napětí, neboť váhový filtr má největší kmitočtový rozsah a to od 22 Hz do 22 kHz s boky o strmosti nejméně 18 dB/ okt. Při měření rušivého napětí se snažíme přiblížit fyziologii sluchu a proto je používán zvukoměrný váhový filtr "A" (obr. 18). Při měření odstupu hluku u gramofonů má filtr pásmo propustnosti od 10 Hz do 315 Hz; nad 315 Hz je pokles 12 dB/okt, pod 10 Hz je 6 dB/okt. Takto naměřený odstup hluku bývá označován jako odstup hluku A (nezaměňovat se zvukoměrnou křivkou "A"!). Odstup hluku B je měřen přes filtr, který pod i nad kmitočtem 315 Hz klesá se směrnicí 12 dB/okt. Odstupy cizího a rušivého napětí jsou vyjádřovány násobkem logaritmického poměru jmenovitého výstupního napětí k naměřenému cizímu či rušivému napětí, kdežto u odstupu hluku je to poměr převrácený

Obr. 18. Váhové filtry pro hodnocení používaných čtyř druhů odstupů

Proto jsou odstupy cizího a rušivého napětí kladná, kdežto odstupy hluku záporná čísla.

V otázce odstupů musíme hledat odpověď jinde než ve fyziologii sluchu, který pracuje s dynamickým rozsahem asi 120 dB. Rozhodující bude hladina okolního hluku a schopnost sluchu tento hluk maskovat. V městských bytech nebude ve dne hladina okolního hluku menší než asi 40 dB (A) (při hodnocení zvukoměrným filtrem A, jako filtrem nejlépe se přibližujícím zrcadlovému průběhu křivek hladin stejné hlasitosti pro nižší hladiny). V příznivých podmínkách lze naměřit až 30 dB (A). Nejvyšší reprodukovanou hladinu můžeme (s ohledem na sousedy a naše uši) připustit asi 105 dB. Pak je dosažitelný dynamický rozsah asi 65 až 75 dB a pouze na samotách může být větší. Je-li nejvyšší hladina asi 105 dB, pak střední poslechová hládina bude 85 až 90 dB. Dostačuje tedy odstup rušivých napětí asi 45 až 60 dB. To je ovšem prostý výpočet, sluch je však náročnější, protože v tichých pasážích slyší právě to, co nemá.

Odstupy rušivých napětí 65 až 70 dB možno považovat za odpovídající a vyhovující. Tomu odpovídá za běžných poměrů odstup cizích napětí asi 55 až 60 dB. K tomu je však nutno uvést, že hluk pozadí musí mít skutečně šumový (neutrální) charakter a nesmí obsahovat složky s vyjádřenou kmitočtovou závislostí (např. síťový brum). Na tuto otázku se musíme dívat znovu jako na záležitost fyziologickou: oko hledá pohybující se předmět a ucho si všímá něčeho "mimořádného"; v ustáleném dopravním hluku, který by sám o sobě nerušil, si okamžitě všimneme Roburu s jeho typickým hvízdáním.

Další veličinou, jejíž velikost je určována fyziologií sluchu, je vjem kmitočtových změn – kolísání. Podle obr. 6 můžeme pro obvyklou postechovou hladinu asi 85 dB určit maximální kolísání (flutter) 0,18 %, pro poslechové hladiny kolem 95 dB maximálně 0,15 %. Protože se však jen zřídka objevují delší dobu znějící tóny vyšší než 1000 Hz s hladinou nad 80 dB, lze pro běžné hudební

snímky při zachování kvality hi-fi připustit kolísání asi 0,2 %. Jinou otázkou je vlastní kmitočet kolísání. Podle obr. 7 (wow) je sluch nejcitlivější na kmitočet kolísání asi 4 Hz, který se objevuje i např. v pohonných systémech záznamových zařízení. Tak např. u kazetového magnetofonu s rychlostí posuvu pásku 47,5 mm/s s hnací kladkou o průměru 4 mm bude situace nebezpečná, neboť hnací kladka má obvod 4 mm $\cdot \pi = 12,5$ mm; 47,5/12,5 = 3,8 ot/s - kladka bude tedy generovat svou nepravidelností kmitočet 3,8 Hz! Podobně nevýhodné poměry mohou vzniknout i u gramofonů a magnetofonů; jinak řečeno: vyhýbejme se jakékoli rotující součástce, která by měla asi (4 Hz·60 s =) 240 ot/min. I z tohoto důvodu nemá být kolísání větší než 0,25 %; pro hi-fi požadujeme asi 0,12 %.

Absolutní sluch má asi 0,05 % populace; proto odchylky od jmenovité rychlosti záznamových rychlostí do 2 až 3 % (necelý hudební čtvrttón) nejsou běžně pozorovatelné.

Poslední veličinou vázanou na fyziologii sluchu je přeslech mezi signály přenosových kanálů, který se uplatňuje při stereofonní reprodukci. Poněvadž maskovácí efekt (obr. 8) a jev precedence (obr. 12) potlačí význam a vjem signálů o více než asi 10 dB slabších než hlavní signál, stačil by tedy přeslech lepší než, řekněme, 12 dB. V normách požadované mnohem lepší přeslechy se uplatní u speciální efektové reprodukce, ale nevyžaduje je reprodukce stereofonní. (U maticové kvadrofonie se spokojujeme s přeslechy daleko horšími, např. u 10/40 "blend" je to 7 dB u hlavních kanálů a 3 dB(!) u zadních.)

Jinou otázkou jsou přeslechy mezi signály u vícestopého magnetofonového záznamu. Zde se jedná o dva nesourodé signály a přeslechový signál je zde plně vnímán jako rušivý. Proto by měly být tyto přeslechy stejné jako požadované (nebo aspoň dosahované) odstupy signálu od cizího či rušivého napětí, tedy asi 65 dB. To jest technicky podobně jako samotné odstupy – u magnetofonů nedosažitelné a proto jsou normy naopak skromnější, než by požadovala fyziolo-

gie sluchu. Jediným řešením je nenahrávat druhou stopu, nebo ještě lépe, provozovat obě sousedící stopy paralelně jak při nahrávce, tak i reprodukci; paralelním záznamem stejného signálu do sousedících stop dosáhneme i zlepšení základního odstupu o asi 3 dB (i když stále nedostatečného) a přeslechům zabráníme vůbec. To ovšem některé z komerčních magnetofonů nedovolují.

Můžeme tedy shrnout požadavky na technické parametry přenosové cesty (jako celku):

kmitočtový rozsah: 40 až 16 000 Hz; nerovnoměrnost kmitočtové charakteristiky: <3 dB:

zkreslení (při střední poslechové úrovni): 100 Hz < 0,6 %,

1 kHz < 0,4 %,

8 kHz <0,5 %;

odstup cizích/rušivých napětí: >57/67 dB, (při celkové dynamice: 75 dB); kolísání: <0,12 %;

přeslech (k vyšším kmitočtům může být horší)

u stereofonní reprodukce (2 kHz): 12 dB,

u vícestopého záznamu (2 kHz): 60 dB.

Znovu zdůrazňujeme, že to jsou hodnoty požadované pro přenosový řetězec jako celek. Nerovnoměrnost kmitočtové charakteristiky a zkreslení bude prakticky vyčerpáno akustickými zářiči – zde reproduktorovými soustavami, poněvadž reproduktor není schopen přenést kmitočtový rozsah 40 až 16 000 Hz s požadovanou nerovnoměrností (viz tab. 11). O odstupu a dynamice bude rozhodovat předzesilovač, spolu s instalací a propojením celého zařízení (viz tab. 12 a 13). Kolísání je specifická vlastnost zázna-mového zařízení. Požadovaného přeslechu pro stereofonní reprodukci dosáhneme u všech prvků, s výjimkou přenoskové vložky, poměrně snadno, požadovaného přeslechu pro vícestopý záznam většinou nedosáhneme.

Tab. 8. Technické požadavky na zesilovače (podle 2. revize ČSN 36 7420)

		předzesilovač	Třída: 0 / I / II / III výkonový zesilovač	† celek	
					
Kmitočtový rozsah [Hz]	<u> </u>	(40 až 16 000) /	(40 až 16 000) / (63 až 12 5	00) / (100 až 6300)	
Nerovnoměrnost [dB]; vstupy lin.		,5; -1,5/+0,5; -1,5/±2	'	±1,5/±2/+2; -3/+2; -4	
vstupy korigované · .	±1,5/±	:1,5 ·/±2 /±3	±1/±1/±2/±3	±2 /±2,5/ ±3 /±4	
	05/4	, , ,	05/0//	0.7/0.5/	
Zkreslení (%) pro kmitočet 63 Hz		/ - / - /1.5/ -	0,5/2/-/-	0.7/2,5/ - / -	
125 · · · 250		/1,5/ - / 2	0,5/ - / 2 / + 0.5/ - / - / 5	0,7/ - / 3 / - 0,7/ - / - / 5	
1 000		/ 1 / 1,5	0,5/ - / - / 5	0,7/ = / = / 5	
3 150		/ - / 2	0.5/ - / - / 4	0,7/1,5/2/3	
5 900		11/-	0.5/ - / - / 4	0.7/ - / 3 / -	
8 000		/-/-	0.5/ 2 / -/ -	0.7/ 2 / - / -	
12 500		/-/-	0,5/ - / - / -	0,7/ - / - / -	
Odstup cizího napětí (dB) vstup: mikro	-58/-5	0/-46/-40		-55/-50/-46/-40	
gramo	-58/-5	8/-55/-50		,-55/-55/-52/-50	
, univerzál.	-65/-6	5/60/55 .	-81/-70/-66/- 6 0	-62/-62/-57/-52	
oři výstupním výkonu 50 mW	-			-78/-68/ - / -	
Odstup rušivého napětí [dB] vstup: mikro	-63/-5	5/ /		-60/-50/ - / -	
gramo	-63/-6	3/ - / -		-60/-60/ - / -	
univerzál.	~70/-7	0/:- / -	-86/-75/ - / -	-67/-67/ - / -	
při výstupním výkonu 50 mW	-			-83/-72/ - / -	
Preslech (dB) pro stereo: 1000 Hz	48/43/		55/50/45/ -	45/40/35/ -	
250 až 10 000	39/36/	28/ -	46/43/35/ -	36/33/25/ ~	
Přeslech pro nestereofonní signály [dB]	minimálně 60 dB				
Souběh zesílení stereofonních kanálů [dB]	3 / 4 / 6 / -				

Tab. 9. Technické požadavky na gramofony a přenoskové vložky (ČSN 36 8401 a ČSN 36 8415) Čs. normy kvalitativních požadavků

		Kvalitativní třída	
(Údaje pro 33 ot/min)	l – hi-fi	11 -	ш
Kmitočtový rozsah [Hz] / / nerovnoměrnost [dB]	63 až 8000/ 4 40 až 12 500/ 6 40 až 16 000/10	50 až 12 500/10	125 až 10 000/12
Odstup hluku [dB] (cizí sígnály v pásmu 10 Hz až 315 Hz)	- 38	- 33	- 30
Kolisání otáček [%]	± 0,15	± 0,22	± 0,3 (bateriove ± 0,5)
Odchylka od jmenovitých otáček [%]	± 1,2	± 1,8	± 2,2 (bateriové ± 3,5)
'Přeslech [dB] na kmitočtu 1 kHz 6,3 kHz	- 20 - 15	- 16 - 12	- 12 - 10
Rozdíl citlivosti mezi stereofonními kanály [%]	2	3 .	3
Svislá síla na hrot [mN] (10 mN = 1 g)	30	50	70 až 120
Poddajnost [mm/N]: vertikální horizontální	3 3,5	1 1,5	-

Tab. 10. Technické požadavky na magnetofony (ČSN 36 8430)

Kvalitativní třída							
hi-fi		cívkový		kazetový			
jakákoli	190,5 95,3		47,6	47,6			
				80 až 8000/8 160 až 4000/5			
3	5	5	. 5	5			
-50 -50	48 45	-46 -43	-44 -41	-40 -37			
-50 -50	50 47	-48 -45	-45 -42	-40 40			
±0,2	±0,2	±0,3	±0,4	±0,4			
			,				
- -30	-25 -20	-25 -20	-25 -20	-20 -15			
-45	-40	-40	-40	40			
	jakákoli 40 až 12 500/7 250 až 6300/5 3 -50 -50 -50 ±0,2	hi-fi jakákoli 190,5 40 až 12 500/7 40 až 15 000/7 250 až 6300/5 80 až 7500/5 3 5 -50 -48 -50 -45 -50 -47 ±0,2 ±0,2	hi-fi cívkový jakákoli 190,5 95,3 40 až 12 500/7 40 až 15 000/7 50 až 12 500/8 250 až 6300/5 80 až 7500/5 100 až 6300/5 3 5 5 -50 -48 -46 -50 -45 -43 -50 -47 -45 ±0,2 ±0,2 ±0,3 - 30 -25 -25 -30 -20 -20	hi-fi cívkový jakákoli 190.5 95.3 47.6 40 až 12 500/7 40 až 15 000/7 50 až 12 500/8 63 až 8000/8 250 až 6300/5 80 až 7500/5 100 až 6300/5 125 až 4000/5 3 5 5 5 5 5 5 5 5			

Tab. 11. Technické požadavky na reproduktorové soustavy (ČSN 36 8265)

•		Skupina		
	1	2 .	3	
Kmitočtový rozsah [Hz] /	80 až 12 500/ 8	125 až 8000/ 8	180 až 5000/15	
/ nerovnoměrnost [dB]	45 až 16 000/16	63 až 12 500/20	125 až 8000/27	
Maximální zkreslení [%]				
v pásmu 44 až 125 Hz	7 .	-	_	
63 až 125 Hz) -	10 -	-	
125 až 250 Hz	4	7	10	
250 ấž 6300 Hz	. 2	3	· 5	

a způsobů propojování částí zařízení

Všimněme si, jak se uvedené veličiny promítají do čs. norem. Normativní požadavky na předzesilovače, výkonové zesilovače a úplné zesilovače jsou v tab. 8, pro gramofony (a gramofonové vložky) v tab. 9, pro magnetofony v tab. 10. Reproduktory (ČSN 36 8261) a mikrofony (ČSN 36 8210) nejsou v příslušných normách tříděny do tříd. V plstusných notnach tučený do tud. U elektrodynamických mikrofonů nalézáme třídění do "skupin" A až E; u reproduktoro-vých soustav (ČSN 36 8265) nalézáme, jako doporučené, třídění uvedené v tab. 11.

Správné propojování částí přenosového elektroakustického řetězce je pro dosažení odstupů podstatnou částí práce při uvádění zařízení do chodu. Normou stanovené vstupní a výstupní impedance a napětí jednotlivých částí elektroakustického řetězce je v tab. 12, zapojení tří a pětipolových vidlic a zásuvek je v tab. 13. Jsou-li použity vidlice a zásuvky sedmipólové, jsou u mikrofonů a mikrofonních vstupů kontakty 6a 7určeny pro dálkové ovládání. U osmipólových konektorů, ùrčených pro kombinovaná vstupní a výstupní přípojná místa magnetofonů pro motorová vozidla, jsou kontakty 6a 7určeny pro přívod napájecího napětí, na kontakt 6 jde "zemní" vodič. (Kontakt 8 je určen jako případný kontrolní bod). U zásuvek pro vnější reproduktor je kolík určen pro signálový vodič, plochý kontakt pro zpětný vodič. Rozměry pro upevnění do panelu jsou u re-produktorových i vícepólových konektorů stejné (obr. 19).

Obr. 19. Rozměry a uspořádání kontaktů u panelových konektorů

V tab. 12 je jako "zemní" vodič označen

v tab. 12 je jako "zemni" vodic oznacen kontakt 2; obvykle jsou těleso vidlice a kon-takt 2spojeny a na spoj je připojeno stínění. Stereofonní magnetofon, který má mož-nost monofonního záznamu, musí při režimu "mono" propojit kontakty I a 4 a při reprodukci v režimu "mono" propojit kontakty 3 a 5. Naopak ve všech ostatních případech musí být mezi kontakty 3 a 5 impedance nejméně 1 MΩ, aby se předešlo nežádoucímu propojéní levého a pravého kanálu u přenosky, výstupu detektoru přijímače nebo výstupu zesilovače. Při záznamu mohou být kontakty 3 a 5 konektoru magne-

Tab. 12. Spojování článků elektroakustického řetězce

	Č	ánek bud	icí'			,]	Článek zatěžo	vací		
	menovitá i vnitřní Z	mpedanci zatěžov. Z _{z,j.}	e budicí signál			ětí při <i>Z</i> z, n./max.]		impedance vstupní Z		etí pro jmen men./min./r U ₂ [mV]	
Přenoska – výchylková – rychlostní – rychlostní, HiFi	podle výrobce	470 kΩ 47 kΩ 47 kΩ	záznamová rychlost 1 cm s ⁻¹	71,5 0,715 0,715	1	285 2,85 2,85	vstup pro přenosku	≥ 470 kΩ 47 kΩ ±20 % 47 kΩ ±20 %	500 5 5	200 2 2	2000 20 30
Mikrofon – eldyn "elektrøt	50 Ω 200 Ω 600 Ω 2000 Ω	150 Ω 600 Ω 1800 Ω 6000 Ω	akustický tlak 1 Pa (tj. hladina akustického	0,5 1,0 1,75 3,0	- - -	1,0 2,0 3,5 6,0	vstup pro mikrofon	≧ 150 Ω ≧600 Ω ≧ 1800 Ω ≧ 6000 Ω	0,5 1,0 1,75 3,0	0,2 0,4 0,8 1,0	1,0 2,0 3,5 6,0
– kondenzátorový (s předzesil.)	50 Ω 200 Ω 600 Ω	150 Ω 600 Ω 1800 Ω	tlaku 94 dB)	2,5 5,0 8,5	- - -	' -		≥ 150 Ω ≥ 600 Ω ≥ 1800 Ω	2,5 5,0 8,5	1,0 2,0 3,2	-
Přijímač – detektorový výstup	≦ 22 kΩ	220 kΩ	1,73 mV na anténě 300 Ω	5001)	200 ²⁾	2000 ³⁾		≧ 220 kΩ	500	200	2000
Pomocná zařízení	≦ 22 kΩ	220 kΩ	neurčen	500	×	2000	univerzální vstup	≧ 220 kΩ	500	200	2000
Magnetofon – výstup, reprodukce	€ 22 kΩ	220 kΩ	jmenovitá úroveň záznamu	500		2000		≧ 220 kΩ	500	200	2000
(profesionální)	≦ 1 kΩ	10 kΩ	202710710	500	-	2000	speciální vstup	≧ 10 kΩ	500	200	.2000
Předzesilovač	≦ 1 kΩ	10 kΩ	neurčen	1000	1000	≐ 1000	speciální vstup	≧ 10 kΩ	1000	1000	(8000)
Pasívní obvod '	*)200, 600; 10 kΩ 30 kΩ	*)200; 600; 47 kΩ	neurčen ,				-	-		-	
Zesilovač – výstup pro záznam na magnetofon	≧ 150 kΩ	47 kΩ	proudový zdroj	0,5**	0,2**)	2,0**)	vstup magnetofonu pro záznam	≦ 47 kΩ ⁴⁾	0,5**;	0,2:-)	2,0**;
,	≦ 22 kΩ	220 kΩ	napěťový zdroj	500	200	2000	Ì	≧ 220 kΩ	500	200	2000
(profesionální	≦ 1 kΩ	10 kΩ		500	.200	2000		≧ 10 kΩ	500	200	2000
– reproduktorový výstup	≦ 1/3 Z ₂	Zz	výkanový výstup (rozvod)	(50;	70;)	100 V	reproduktor	*)4; 8; 16 Ω 25; 50; 100 Ω			
– sluchátkový výstup	120 Ω nebo	Z,	pro sluchátka		-		sluchátka	*)8; 16; 300; 600 Ω 1 k; 2 k; 4 kΩ			
	Zz	,	(profesionální)	(5	5; 10;)	25 V '					

¹⁾ při FM zdvih 40 kHz, při AM modulace 80 %; 2) při FM zdvih 22,5 kHz, při AM modulace 30 %

tofonu využity pro vstup signálu z druhého magnetofonu, či jiného zdroje signálu, je-li mezi kontakty 1 a 3 a kontakty 4 a 5 odpor 0.5 M Ω až 2.2 M Ω (obr. 20). U monofonního magnetofonu jsou v konektoru propojeny kontakty 1 a 4 a kontakty 3 a 5.

Doporučujeme také nahlédnout do Amatérského radia pro konstruktéry, B5/1977, kde na str. 179 nalezneme některé další podrobnosti, přesahující rámec tohoto čísla.

POLE

Šíření zvuku

Zvukový rozruch vysílaný zdrojem zvuku se šíří ve vzduchu ve formě postupného vlnění (obr. 1); vytvářejí se tak zvukové vlny,

šířící se do okolí rychlostí zvuku. Nejvzdálenější místa, do nichž zvukový rozruch dorazil, tvoří jednu z vlnoploch, tzv. čelo vlny. Ve vzduchu (a kapalinách) oproti tuhým látkám se nemohou vytvořit smyková napětí a proto zde vzniká pouze podělné postupné vlnění, v němž částice prostředí kmitají ve směru šíření zvukového paprsku.

Obr. 20. Kombinované zapojení konektorů magnetofonů (společné pro záznam a reprodukci)

Mezi zdrojem zvuku a bodem snímání se šíří zvuk po nejkratší možné dráze (tedy po spojnici těchto bodů) jako zvukový paprsek. Přímočaré šíření zvukového paprsku může být ovlivňováno změnou vlastností prostředí - lomem (obr. 21), tj. např. přechodem do teplejších či studenějších vrstev vzduchu (obr. 22 a 23), ohybem kolem hmotných překážek (šíření kolem okrajů otvorů v obr. 25) nebo přímo odrazem zvukového paprsku od rozměrné překážky (obr. 24). Zvuková vlna po průchodu otvorem o značně menších rozměrech než je vlnová délka vysílaného signálu vytvoří novou kulovou vlnu, jakoby v místě otvoru byl zvukový zdroj (obr. 25). Dopadne-li zvuková vlna na překážku, která má rozměry větší než je vlnová délka šířícího se zvukového signálu, dochází k odrazu zvukové vlny (podle "kulečníkového" pravidla) a za překážkou se vytvoří akustický stín (obr. 24). Ve volném prostoru může být zvuk "zanášen" větrem (obr. 26).

V uzavřených místnostech (nebo v menších sálech s malou výškou stropu) můžeme

³⁾ maximální anténní signál a modulace; 4) pro spojovací kabel s maximální kapacitou 170 pF a proto doporučována Zz = 10 kΩ; *) doporučovaná řada **) v [mV/kΩ]

Tab. 13. Použití a zapojení tří a pětikolíkových zásuvek a vidlic

Kontakty ze	Použití				Číslo kontaktu	()	
strany pájení u vidlice	,	typ zařízení	. 1	- 2	3	4	5
	mikrofony a mikrofonní	monofonní (symetrický)	signál	stínění	zpětný vodíč		_
. ~ ~	vstupy	monofonní (nesymetrický)	signál	stínění a zpět. vodič		- 1	-
3(0 0)1		stereofonní (symetrický) stereofonní (nesymetrický)	signál levého kanálu signál levého kanálu	stínění a zpět, vodič	zpět. vodič lev. kanálu	signál pravého kanálu signál pravého kanálu	zpět. vodič prav. kanálu
76.	náhlavní sluchátka s mikrofonem (monofonním)		signál z mikrofonu	zemní *)	signál levého sluchátka	zpět. vodič lev. i prav. sluchátka	şignál pravého sluchátka (spojen s 3)
5 2 4		stereofonní	signál z mikrofonu	zemní	signál levého sluchátka	zpět. vodič L i P sluch.	signál pravého sluchátka
	gramofonová přenoska, tuner	monofonní	· - ·	stínění a zpět. vodič.	signál	· _	spojeno s kontaktem 3
		stereofonní	-	stínění a zpět. vodič	signál levého kanálu	-	signál pravého kanálu
	kombinované vstupní a výstupní přípojné místo	monofonní	záznamový signál	stínění a zpět. vodič	reprodukční signál	spojen s kontakt. 1	spojen , s kontakt. 3
	magnetofonu s dalšími přístroji	stereofonní *)	záznamový signál levého kanálu	stínění a zpětný vodič	reprodukční signál levého kanálu	záznamový signál pravého kanálu	reprodukční signál pravého kanálu

Obr. 21. Lom zvukového paprsku při změně vlastností prostředí

Obr. 22. Změna směru šíření zvukového paprsku za typických poměrů ve vysokém uzavřeném prostoru, nebo při tepelné inverzi v zimě ve volné přírodě

Obr. 23. Změna směru šíření zvukového paprsku při přechodu do studenějších vrstev – volné prostranství

Obr. 24. Vliv překážky na zvukové pole; odraz zvukového paprsku od rozměrné překážky a vznik akustického stínu

vždy uvažovat přímočaré šíření zvukového paprsku a všímat si pouze odrazů od rozměrných překážek. Pro lepší rozložení zvukové energie při poslechu toho také využíváme instalováním vhodně umístěných a tvarovaných odrazových ploch. Lze zhruba říci, že

 a) zvuková vlna se odrazí od překážky, jejíž rozměry jsou větší než vlnová délka dopadajícího zvukového signálu (obr. 24).

 b) zvuková vlna projde otvorem, pokud jsou rozměry otvoru větší než vlnová délka dopadajícího zvukového signálu (obr. 25),
 c) zvuková vlna se od překážky odráží pod

 c) zvuková vlna se od překážky odráží pod stejným úhlem, pod jakým na překážku dopadla (obr. 24),

d) akustický stín se vytvoří za překážkou, která má rozměry větší, než je vlnová délka dopadajícího zvukového signálu (obr. 24); v tom případě se i zvětšuje akustický tlak před překážkou,

e) ohybu a lomu zvukových paprsků si v prostorách o rozměrech, se kterými přichází amatérský pracovník do styku, všímat nemusíme – že by ovlivňovaly poslech připadá v úvahu pouze ve volném prostoru.

Odrazí-li se zvuková vlna od překážky stojící kolmo ke směru jejího šíření, vrací se odražená vlna proti směru původního šíření. Postupují-li dvě vlny o stejném kmitočtu (např. trvale buzená původní sinusová vlna a vlna odražená od překážky) stejným směrem, avšak proti sobě, dochází mezi oběma vlnami k interferenci, která má v místě překážky trvale maximum zvukového tlaku a před překážkou se vytvoří stojaté vlny; v místech vzdálených od překážky o násobky poloviny vlnové délky jsou tzv. kmitny (maxima) akustického tlaku a uzly (nulová velikost) akustické rychlosti. Uprostřed mezi nimi jsou naopak uzly tlaku a kmitny rychlosti (obr. 27).

Setkají-li se sinusové signály o různém kmitočtu, je jejich součet dán při jejich současném působení součtem jejich intenzit.

Po převedení intenzit na hľadiny akustických tlaků je výsledná – součtová – hladina akustického tlaku (obr. 70)

$$L_s = 10\log (10^{L_1/10} + 10^{L_2/10} + ...)$$
 [dB; dB] (24).

Obr. 25. Průchod zvuku otvorem v závislosti na rozměrech otvoru; za relativně malým otvorem vznik pole kulových vln

Obr. 26. Vliv větru na směry šíření zvukového paprsku

Obr. 27. Vznik stojatého vlnění

Tab. 14. Základní typy akustických polí

		Zvuko	vé pole	180
	- kulové	válcové	rovinné	difúzní
ldeální zdroj zvuku	pulsující koule ("dýchající")	nekonečná řada soufázově pulsujících bodových zářičů (dýchající žížala)	kmitající rovins (d 》 礼)	jakýkoli, v uzavřeném prostoru při dostatečné vzdálenosti od zářiče
Zářič	bodový	přímkový	plošný	jakýkoli
Rozhodující směr	od záříče do všech směrů	do všech směrů kolmých na osu zářiče	kolmo na kmitající rovinu	náhodný
Tvar vinoploch	koule se středem v bodovém zářiči	válcové pláště s osou shodnou s osou přímkového zářiče	roviny rovnoběžné s kmitající rovinou	nedefinovatelný
Pole se vyskytuje	při vyzařování většinou skutečných zdrojů pro !\$\(2\); (i kmitající rovina při d\(2\))	např. u plynulého proudu dopravních vozidel pro ½ {½ = délka zářiče); ideální reprod. sloup	v dlouhých, netlumených chodbách (trubicích) stálého průřezu	v každém uzavřeném prostoru po mnohanásob ných odrazech
Piocha vinoploch S [m²]	$S=4\pi f^2$ (koule); zvětšuje se úměrně s druhou mocninou r	S = 2π/(plášť válce); zvětšuje se úměrně s / válce	S = konstanta (rovina) :	nelze určit
Akustický výkon P _a [W] na vlnoplochách	konstantní	konstantni ,	konstantní	konstantní hustota zvukové energie
Intenziza zvuku / [W/m²] != P _a /S	nepřímo úměrná r ² I–konst/r ²	pokud / ∢ ¼ klesá úměřně s /, l~konst//; pro /≧ ½ se chová jako kulový zářič, /~konst/ /²	konstantní	konstantní
Akustický tlak pro /> λ (p=√lz₀ [Pa]	p~1//	p~1/√T	<i>p</i> =konst	<i>p</i> =konst
Fázový posuv mezi p a v na povrchu zářiče: l = 0 pokud l= \(\lambda \) pro \(\lambda \)	$ψ = 90^\circ = π/2$ $ψ = arctg (λ/2π)$ $ψ = 0$	$\psi = 45^{\circ} = \pi/4$ $\psi = 0$	$\psi = 0$ $\psi = 0$ $\psi = 0$	neurčitelný
Pokles akustického tlaku ρ[Pa] a hladiny tlaku <i>L</i> [dB] se vzdálenosti /{m}	pro $\lambda < t$. $p_2 = p_1 h/b_2$ $L_2 = L_1 - 20 \log (b/h)$	pro $\lambda < k \le k$: $p_2 = p_1 \sqrt{\frac{1}{k}}$ $L_2 = L_1 - 10 \log (\frac{1}{k} / h)$	$ \rho_2 = \rho_1 L_2 = L_1 $	P2=P1 L2 = L1
Pokles hladiny akustického tlaku při zdvojnásobení vzdálenosti /[m]	6 dB	3 dB	0 dB	0 dB

/- vzdálenost od zdroje [m]; λ - vlnová délka vyzařovaného signálu [m]; λ - reálná délka přímkového zářiče [m]; σ - největší rozměr zářiče [m]; σ - největší vinoploch (=/) [m]; p - akuştický tlak [Pa]; v - akuştická rychlost [m/s]; L - hladina akuştickéhoi tlaku [dB]; zo - vinový odpor vzduchu = 414 Ns/m

Jedná-li se tedy o dva stejně hlasité signály o různém kmitočtu, je výsledná hladina akustického tlaku o 3 dB vyšší než kterýkoli z nich, a to bez ohledu na jejich původní hladinu akustického tlaku.

Pokud se jedná o signály se stejným kmitočtem (jako např. při vzniku stojatého vlnění), záleží na jejich okamžité fázi; hladina akustického tlaku se může zvýšit až o 6 dB, signály se však mohou také vyrušit. Vzniká složité interferenční pole, jehož komplikované zákonitosti nemá zde smysl sledovat, i když se při stereofonní reprodukci uplatňují. Naštěstí se veličiny s místem v prostoru velmi rychle mění, jsou pro každý kmitočet jiné a běžný, rychle se měnící hudební signál a prostorová vzdálenost obou uší nedovolí, aby se tento jev při poslechu výrazně uplatňoval. Pouze tehdy, zní-li současně dva kmitočtově blízké tóny, mohou vzniknout vnímané rázy - zázněje.

Ve všech těchto případech akustického pole vyvolávaného někôlika signály je lhostejné, zda další signály vznikají odrazem, či jsou vysílány "synchronizovanými" zdroji

 $L_{\rm p} = 20\log\frac{\rm p}{\rm p}$ [dB; Pa] (25),

kde p. je referenční (vztažný) akustický tlak, který je normou stanoven na $p_t = 2.10^{-5} Pa$. Hladina akustického tlaku se bude tedy snižovat v logaritmické míře o 6 dB při -zdvojnásobení vzdálenosti, o 10 dB při ztrojnásobení atd.

Volné zvukové pole

V okolí rozměrově malého zdroje se zvuková vlna šíří v kulových vlnoplochách a hovoříme proto o kulové vlně. Protože vyslaný akustický výkon je konstantní a při šíření se změnit nemůže, musí se intenzita zvuku zmenšovat se zvětšujícím se povrchem kulové vlnoplochy $(S = 4 \pi l^2)$, a bude se tedy zmenšovat se čtvercem vzdálenosti l od zdroje zvuku (podle vztahu (7), $I = P_a/S = P_a/4 \pi I^2$). Ve dvojnásobné vzdálenosti I bude intenzita zvuku čtvrtinová, ve trojnásobné devítinová atd. Většínou však počítáme s akustickým tlakem p, pro který

podle vztahu (7) platí, že p = konst/l. Akustický tlak p se tedy zmenšuje úměrně se zvětšující se vzdáleností, tj. ve dvojnásobné vzdálenosti je poloviční, ve trojnásobné třetinový atd. Hladina akustického tlaku Lp je dána vztahem

nebo naopak můžeme určit vzdálenost [m; m, Pa] (28)

Pro zmenšení akustického tlaku a snížení

[Pa; Pa, m] (26)

[dB; dB, m] (27)

hladiny zvuku mezi dvěma body (indexy 1 a 2) u akustického pole kulových vln platí

tyto vztahy

 $p_2 = p_1 \frac{l_1}{l_2}$

 $L_2 = L_1 - 20\log\frac{h}{h}$

$$L_2 = I_1 \cdot 10^{(L_1 - L_2)/20}$$
 [m; m, dB] (29)

Ve velkých vzdálenostech od zdroje zvuku můžeme uvažovanou část kulové vlnoplochy považovat přibližně za rovinnou. U rovinné vlny se plocha S se vzdáleností nemění, nemění se proto ani intenzita zvuku, ani akustický tlak a tedy ani hladina akustického tlaku. Platí tedy

$$p_2 = p_1;$$
 $L_2 = L_1$ (30).

Takový případ nastane např. při šíření zvuku v dlouhé rouře (i chodbě), jejíž stěny mají zanedbatelnou zvukovou pohltivost a nezmenšují tedy energii zvukové vlny. Pak je na

začátku i konci chodby stejný akustický tlak i stejná hladina akustického tlaku. Ke změně se vzdáleností nedochází, akustický tlak a akustická rychlost nemají mezi sebou fázo-

vý posuv. Třetím typem vlnoploch jednoduchého geometrického tvaru jsou válcové vlnoplochy vytvářené tzv. liniovým zdrojem zvůku. Takovým zdrojem zvuku může být např. reproduktorový sloup s velkým počtem zářičů nebo souvislá řada jedoucích automobilů. V takovém poli zvukových vln se hladina akustického tlaku snižuje o 3 dB při zdvojnásobení vzdálenosti. Odpovídající vztahy jsou

$$L_2 = L_1 - 10\log\frac{L}{l_1}$$
 [dB; dB, m] (31)

$$a \dot{p}_2 = p_1 \sqrt{\frac{I_1}{h}}$$
 [Pa; Pa, m] (32).

Souhrnně jsou tyto nejdůležitější informace o akustickém poli uvedeny v tab. 14.

Uvažme jako příklad použití uvedených vztahů, jak velký rušivý signál vytvoří u stěny poslechového prostoru letadlo a silnice I. tř s hustým provozem. Dopravní letadlo vybudí hladinu asi 116 dB ve vzdálenosti 15 m a přelétává ve vzdálenosti 3,5 km. Ve vzdálenosti 25 m od silnice byl zjištěn akustický tlak 0,12 Pa a silnice je vzdálena 125 m. (Při šíření útlumy atmosférou neuvažujeme). Nejdříve určíme hladinu akustického tlaku pro 0,12 Pa (vztah (24), obr. 69)

$$L_1 = 20\log \frac{0.12}{2 \cdot 10^{-5}} = 75.6 \text{ dB}.$$

Do sledovaného místa "dopadne" hladina akustického tlaku [vztahy (30) a (26)]

od silnice
$$L_{2.s} = 75.6 - 10\log \frac{125}{25} = 68.6 \,\mathrm{dB},$$

od letadla
$$L_{2,1} = 116 - 20\log \frac{3500}{15} = 68,6 \text{ dB}.$$

Protože jsou oba signály (ze silnice i od letadla) stejně hlasité, bude výsledná hladina akustického tlaku (viz vztah (24)) o 3 dB vyšší, tedy 71,6 dB, což je (i při útlumu obvodovou stěnou domu) značně rušivý signál, narušující požadavky poslechu hi-fi.

Útlum zvuku

Zvuková energie je při šíření atmosférou tlumena. Tlumení je závislé např. na viskozitě vzduchu, která závisí na teplotě, tlaku a vlhkosti. Podrobnosti nejsou pro úvahy týkající se poslechu důležité a stačí uvést, že přídavný útlum, tj. útlum, který se uplatňuje se vzdáleností nad útlumy dané např. vztahy (27), (30) a (31), můžeme určit z tab. 15. Pro přesnější výpočty můžeme použít empirický vztah, respektující teplotu θ[°C], relativní vlhkost φ [%] a kmitočet f [Hz]. Pro

$$m = 10^{x} [dB/m],$$
kde $x = \frac{\log t - 4,35 - 5 \cdot 10^{-3} \varphi}{0,62}$ (33)

Tab. 15. Přídavné útlumy atmosférou [dB]

Vzdálenost	Klimatické podmínky					
[m]	sucho	obvyklé	vihko (miha, déšť)			
100	1	. 5	10			
200	2	9	18			
400	3	13	28			
700	4	16	36			
1000	6	18	45			
2000	9 -	34	84			

Útlum zvuku ve vzduchu se uplatní nejen při velkých vzdálenostech ve volném prostoru, ale i v uzavřených prostorách díky celkové délce běhu zvukového paprsku při mnohonásobných odrazech.

Vítr zvuk "zanáší" a projeví se také jako "útlum". Lze uvažovat, že tímto útlumem, přesněji zeslabením, se sníží hladina zvuku o tolik dB na každých 100 m, kolik je třicetina z rychlosti větru v [km/h]. Ve směru po větru se hladina zvuku naopak zvýší, a to o steinou velikost.

Uvážíme-li i útlum zvuku pro příklad výpočtu hladiny rušivých zvuků z minulé části, vidíme, že se silniční hluk zmenší podle tab. 14 asi o 6 dB, tedy na 62,6 dB. Hluk letadla bude utlumen o více než 34 dB a nemusíme ho tedy v dalším uvažovat: celková situace se zlepší asi o 9 dB a při útlumu obvodovou stěnou domu asi 25 dB se sníží hladina rušivých hluků pod 40 dB, což je již možno považovat za přijatelné.

Zvukové pole v uzavřených prostorech

V uzavřených prostorech se může vytvořit některý z typů uvedených akustických polí pouze potud, pokud se neuplatní odrazy primární – postupující – zvukové vlny od stěn prostoru, vytvoří se tedy pouze v blízkosti zdroje zvuku Mnohonásobnými odrazy od stěn se vytvoří pole odražených vln - sekundární, v němž nemůžeme již určit, kterým směrem se zvuk šíří, směr šíření je náhodný a neustále se měnící a nelze proto určit ani jeho vlnoplochu. V difúzním poli je akustická energie rozložena rovnoměrně, zvuková energie má stejnou hustotu, intenzita zvuku je v celém prostoru difúzního pole stálá a tím jsou stejné i akustický tlak a hladina akustického tlaku, která proto nezávisí na vzdálenosti od zdroje zvuku, ani na místě v pro-

Není-li akustické pole omezováno ohraničujícími překážkamí a rozruch se šíří volně, mluvíme o volném poli (někdy také o poli přímých vln, poli primárním).

V praxi se v uzavřených prostorech samozřejmě setkáváme s akustickými poli daleko složitějších tvarů, které jsou výsledkem odrazů, ohybů či lomů zvukových paprsků, a musíme uváženě aplikovat poznatky o uvedených základních typech polí podle skutečných podmínek. Akustická pole rozlišujeme:

- a) podle základního typu vlnoplochy na: rovinná, kulová, válcová, či složitější,
- b) podle vzdálenosti od zdroje zvuku, jeho rozměrů a ve vztahu k vyzařované vlnové délce zvuku na: blízká a vzdálená (ale nikoli u pole rovinného),
- c) podle vlivu prostoru, v němž se vlnění šíří, na: volná a dozvuková; zvláštním případem dozvukového pole, v němž se mnohonásobnými odrazy vytvoří náhodný směr šíření energie, je pole difúzní.

Na obr. 28 jsou oblasti rozložení jednotlivých druhů polí u technicky realizovaného kulového zářiče, umístěného v uzavřeném, odrazivém prostoru. Do určité vzdálenosti od zdroje není akustický tlak p jednoznačně definován a je nutné vyhnout se poslechu či měřením v tomto blízkém poli, chceme-li získat kvalitní poslech, nebo obecně platné údaje např. akustického tlaku. Při větších vzdálenostech lod zdroje zvuku se akustický tlak p zmenšuje úměrně se vzdáleností až do vzdálenosti rd, kdy se hustota energie přímých vln rovná hustotě zvukové energie dozvukového pole. Vzdálenosti r_a říkáme poloměr doznívání, je definován pomocí celkové pohltivosti prostoru A [m^2] nebo z objemu prostoru V [m^3] a doby dozvuku T[s] vztahem (obr. 71)

Obr. 28. Různé druhy akustického pole v uzavřené prostoře

$$r_{\rm d} = 0.14 \sqrt{A} = 0.057 \sqrt{\frac{V}{T}}$$
 (34).

Tím docházíme k první důležité veličině pro charakterizování vjemu zvukového signálu poslouchaného v uzavřeném prostoru. Ve vzdálenosti rd od ideálního všesměrového zdroje zvuku se mění charakter volného pole na charakter difúzního pole. Zatímco ve volném poli nejsou zvukové signály zatěžovány dozvukovými složkami (tzn. zvukové signály vícenásobně odražené od stěn prostoru jsou značné slabší než primární signál jsou jím fyziologicky maskovány), pak difúzním poli určují hladinu hlasitosti zvuku složky dozvukové (a složky volného pole jsou maskovány). V poli přímých vln – volném poli – je zvuk ostrý, "syrový", kdežto v dozvukovém poli získává "sametový" charakter. Zvukové paprsky primárního vlnění se šíří přímočaře, směr šíření zvukové energie v difúzním poli je však zcela náhodný. Většina poslechových míst v poslechových prostorech leží v poli difúzním. Poněvadž tomuto typu zvukového pole bude věnována většina pozornosti, jsou podrobnější informace uvedeny v dalších částech.

PROSTOR

Pohlcování zvuku překážkami

Postaví-li se do cesty zvukových vln rozměrná hmotná překážka, tvořená v uzavřeném prostoru stěnami místnosti, pak se část energie zvukových vln odrazí, část energie bude při styku s překážkou přeměněna v teplo a tedy ztracena a část projde překážkou a bude částečně na druhé straně překážky znovu vyzářena (obr. 29).

Pro určení vlastností prostoru je lhostejné, zda zvuková energie stěnou prošla či byla pohlcena. Vyjádříme-li to v intenzitách zvuku, musí platit rovnost

$$I_{dop} = I_{odr} + I_{pohl}$$

$$I_{pr}$$

$$I_{dop}$$

$$I_{loop} = I_{odr} \cdot I_{pohl}$$

$$I_{loop} = I_{odr} \cdot I_{pohl}$$

$$I_{loop} = I_{odr} \cdot I_{pohl}$$

Obr. 29. Intenzita dopadajícího, odraženého, ztraceného a procházejícího zvuku

kde indexy znamenají dopadající, odražená a pohlcená.

Poměr intenzity zvuku stěnou pohlcené k intenzitě zvuku na stěnu dopadající udává tzv. činitel pohltivosti, tedy

$$\alpha = I_{\text{pohl}}/I_{\text{dop}} \qquad [\cdot; \text{Wm}^{-2}] \qquad (36).$$

Tento činitel bude 0 pro materiál stěny ideálně odrazivý a 1 pro materiál ideálně pohltivý (bez odrazů). Obvykle se jako příklad ideálně pohltivé plochy uvádí plocha "otevřeného okna". Činitele pohltivosti materiálu stěn a předmětů v místnosti jsou jednou z rozhodujících veličin, ovlivňujících akustické poměry v uzavřeném prostoru, poněvadž určují nejdůležitější veličinu uzavřeného prostoru – dobu dozvuku.

Činitel zvukové pohltivosti je záviský na kmitočtu a na úhlu dopadu zvuku. V praxi se skoro vždy setkáváme s nejrůznějšími úhly dopadu, tak jak se vyskytují v místnostech s mnohonásobnými odrazy. Muvíme pak o difúzním či integrálním činiteli zvukové pohltivosti, který udává střední zvukovou pohltivost látky pro všechny možné úhly dopadu zvukových vln.

Jak činitel pohltivosti, tak i činitel zvukové propustnosti se udává někdy v sabinech. 1 Sab je zvuková pohltivost 1 m²,,otevřeného okna", neboť veškerá energie na něj dopadající jím prochází ($I_{dop} = I_{pr}$) a nic se neodráží ($I_{dop} = I_{poh}$), $\alpha = 1$). Stěny místnosti mohou zvuk pohlcovat –

Stěny místnosti mohou zvuk pohlcovat – absorbovat – svou porézností, což je běžný případ, nebo pohlcování zvukové energie můžeme dosáhnout i kmitajícími panely nebo pohlcováním zvukové energie ve vhodně navržených rezonátorech. Speciální obkladové materiály na stěny místností jako Akulit, Feal a ostatní jsou založeny na principu Helmholtzova rezonátoru a dosahují největší účinnosti. Jejich vhodnou volbou můžeme získat i selektivní pohlcování signálů určitého kmitočtového pásma.

Pohltivost prostoru

Pro praktickou potřebu udáváme činitele pohltivosti pro jednotkovou plochu, tedy pro 1 m^2 , u předmětů pro $1 \text{ kus. Pak lze sestavit tabulky středních činitelů pohltivosti používaných materiálů <math>\alpha_n$, předmětů α_n a výpočtem určovat celkovou pohltivost A místnosti, danou součtem součinů jednotlivých činitelů pohltivosti a příslušných ploch, nebo počtu kusů n

$$A = \alpha_{m1}S_1 + \alpha_{m2}S_2 + \dots \dots + \alpha_{p1}n_1 + \alpha_{p2}n_2 + \dots = \Sigma \alpha S_1 [m^2;; -, m^2]$$
(37).

V obytných místnostech jsou rozhodujícími absorpčními plochami plochy tkanin. Tkanina těsně položená na stěnu nebo podlahu má u hlubokých kmitočtů poměrně malýčinitel pohltivosti a významněji se uplatňuje u středních a hlavně vyšších kmitočtů, tak jako i ostatní "chlupaté" materiály. Absorpce "lesklých" ploch je v bilanci celkové pohltívosti místnosti většinou zanedbatelná. Zavěsime-li ale tutéž průzvučnou tkaninu před stěnu (ponecháme za ní vzduchový polštář), pak se začne uplatňovat i pohltivost pro hluboké kmitočty. Nelze udat jednoduchý vztah pro zvětšení pohltivosti u nízkých kmitočtů bez znalosti struktury a fyzikálních vlastností použité tkaniny. Jako orientační informace může sloužit, že při vzduchovém polštáři za tkaninou tlustém asi 50 mm se činitel pohltivosti pro 1000 Hz zvětší až asi na trojnásobek, pro 500 Hz až na dvojnáso-

Tab. 16. Činitelé pohltivosti běžných materiálů

Materiál – předmět	Činitel pohltivosti při kmitočtu [Hz]						
	125	250	500	1000	2000	4000	
Stěny:				·			
hladký kámen, olejový lak	0,009	0,011	0,014	0,016	0,017	0,018	
hladká omítka, beton	0,012	0,013	. 0,018	0,025	0,035	0,045	
hrubá omítka, cihly	0,025	0,035	0,040	0,050	0,055	0,060	
tapeta papírová	0,020	0,030	0,040	0,050	0,070	0,080	
heraklit neupravený	0,080	0,170	0,400	0,660	0,600	0,600	
heraklit s hlinkovým nástříkem	0,080	0,100	0,150	0,230	0,280	0.300	
dřevo, povrch surový či mořený	0,100	0,110	0,100	0,080	0,090	0,110	
kovový povrch neupravený; vodní hladina	0,015	0,015	0,015	0,020	0,025	0,030	
sklo okenní	0,080	0,060	0,027	0,025	0,020	0,020	
sklo obkládací; zrcadlové	0,012	0,050	0,020	0,018	0,015	0,012	
tkanina – přímo na stěně, tloušťka 5 mm	0,060	0,080	0,150	0,280	0,400	0,500	
tkanina – volně řasená před stěnou	0,040	0,230	0,400	0,570	0,530	0,400	
otvor do velkého sousedního prostoru	0,250	0,350	0,500	0,550	0,600	0,700	
Podlahy:							
parkety	0,050	0,060	0,080	0,090	0,100	0,100	
koberec 5 mm tloušťky	0,040	0,100	0,150	0,300	0,520	0,600	
koberec 10 mm tloušťky	0,090	0,300	0,400	0,450	0.550	0.650	
prkna neupravená	0,100	0,100	0,100	0,090	0,080	0,070	
linoleum (střed mezi PVC, pryží a korkem)	0,020	0,040	0,060	0,050	0,050	0,040	
umělý kámen; hlazený beton	0,020	0,020	0,020	0,030	0,040	0,050	
dřevo lakované (také nábytek)	0,050	0,040	0,030	0,030	0,030	0,030	
Předměty (pohltivost v m² pro 1 kus)							
židle čalouněná *)	0,090	0,120	0,140	0,160	0,160	0,160	
křeslo látkové *)	0,280	0,400	0,550	0,550	0,500	0,350	
křeslo plyšové *)	0,370	0,500	0,670	0,600	0,510	0,300	
křeslo koženkové *)	0,420	0,550	0,720	0,450	0,220	0,200	
posluchač – jednotlivě **)	0,330	0,410	0,440	0,460	0,480	0,500	
posluchačí v těsných řadách	0,460	0,430	0,470	0,470	0,490	0,490	
Pohltivost A[m²] respektující útlum vzdu-		·					
chem – na každých 100 m ³ objemu	0,028	0,085	0,260	0,795	2,432	7,439	

^{*)} při obsazení se uvažuje jenom polovina

bek a při 150 mm vzduchového polštáře můžeme počítat až s trojnásobkem jak pro 1000 Hz tak i pro 500 Hz. Úměrně tomu se zvětšují i pohltivosti pro sousední kmitočtová pásma. Podobného, i když poněkud menšího zvětšení pohltivosti dosáhneme i u koberců na pružné podložce, např. plsti nebo pěnové nryži

Tab. 16 obsahuje nejběžnější materiály a předměty, vyskytující se v obytných místnostech; podrobnější tabulky nalezneme v odborné literatuře, ale pro běžnou praxi stačí uvedené materiály. Průmyslově vyráběné akustické absorpční materiály jsou svými hlavními typovými zástupci uvedeny v tab. 17.

Všimněme si v tab. 16 a 17, že velmi záleží na úpravě vlastního povrchu materiálu, u průzvučných materiálů na jejich vzdálenosti od stěny; ukazuje to např. heraklit neupravený a heraklit nastříkaný hlinkovou barvou, nebo materiály při různé vzdálenosti od stěny. Proto při aplikaci průmyslově vyráběných zvuk pohlcújících obkladů stěn je nutno bezpodmínečně dbát instalačního předpisu výrobce.

Tab. 17. Činitelé pohltivosti zvláštních úprav a některých průmyslových obkladových materiálů

	Činitel pohltivosti při kmitočtu [Hz]						
Materiál	125	250	500	1000	2000	4000	
překližka tl. 4 mm, holá	0,200	0,300	0,250	0,150	0,130	0,100	
na laľkovém rámu až	0,320	0,450	0,350	0,180	0,160	0,120	
překližka dtto + dutina vyplněná až	0,250	0,270	0,210	0,150	0,110	0,150	
vláknitou látkou	0,550	. 0,600	0,450	0,350	0,270	0,250	
sololit na latkovém rámu	0,500	₹0,250	0,100	0,100	0,100	0,100	
Akulit EC 3	0.180	0,400	0,620	0,970	0,900	0,770	
Akulit EC 10	0,220	0,800	0,910	0,810	0,780`	0,640	
Akulit ED 10	0,450	0,640	0,760	0,730	0,870	0.780	
Akulit DC 3	0,180	0,520	0,820	0,560	0,250	0,240	
Akulit DC 10	0,260	0.890	0,730	0,380	0,210	0,240	
Akulit KC 3 ⁻	0,320	0,400	0,140	0.090	0,100	0,190	
Akulit KC 10	0,300	0,280	0,130	0,080	0,080	0,110	
Akuplat. 200 děr v desce 30/30, na stěně	0.050	0,220	0,510	0,530	0,570	0,610	
dtto, 100 mm od stěny	0.580	0,260	0,330	0,490	0,600	0,630	
Feal, prostřídané lamely, 150 mm od stropu	0,720	0,900	0,850	0,810	0,700	0,640	
ltaver, tlouštka 25 mm, na stěně	0,100	0,210	0,360	0,540	0,690	0,700	
dtto, 70 mm od stěny	0,220	0,460	0,640	0,760	0,650	0.710	
minerální vata tloušťky 35 mm	0,390	0,450	0,560	0,590	0,610	0,550	
mikrostaple v PE fólii,ti. 50 mm, na stěně	0,100	0,380	0,750	0,960	0,650	0,500	
cihelný rezonátor tlumený ltaverem 40 mm,		Ì				,	
6 đếr o průměru 22 mm v cihle, 100 mm			•			,	
od stěny	0,990	0,640	0,110	0,130	0,490	0,310	

^{**)} plavci a cvičenci (polonazí) jenom polovinu

Uvedme si jako příklad výpočtu pohltivosti místnosti výpočet celkové pohltivosti běžné obytné místnosti a kulturního sálu.

Obytná místnost má rozměry a=5,3 m; b=4,7 m; c=výška=2,55 m. Celkový povrch místnosti

$$S = 2(ab + ac + bc) = 100.8 \text{ m}^2$$
 (38)

z toho podlahová plocha Sp=ab=24,9 m². Plocha stěn a stropu je tedy 75,9 m². Objem místnosti V=abc=63,5 m³. Místnost má stěny a strop s hladkou omítkou, podlaha je kryta vysokým kobercem, parkety zanedbáváme. Plochu oken a dveří můžeme zanedbat, jak si později dokážeme. V místnosti jsou dvě látková křesla a gauč (který považujeme za 3 další křesla). Nábytek s velkým leskem má odhadem povrch 10 m². Dále počítejme, že v místnosti se pohybují dvě osoby. Můžeme tedy určit celkovou pohltivost místnosti. Výpočet podle vztahu (37) shrneme do tabulky, v níž jsou uvedený postupně pohltivosti jednotlivých částí pro kmitočty 125 Hz/250 Hz/500 Hz/1 kHz/2 kHz/4 kHz:

celkově tedy

	S _i [m²]	A; [m²]
stěny	75.9	0,91 /0,98/ 1,26/ 1,75 /2,45/ 3,15
podlaha ·	20,0	1,80 /6,00/ 8,00/ 9,00 /11,00/ 13,00
křesla	(5 ks)	1,40 /2,00/ 2,75/ 2,75 /2,50/ 1,75
osoby	(2 ks)	0,66 /0,82/ 0,88/ 0,92 /0,96/ 1,00
nábytek	10	0,50 /0,40/ 0,30/ 0,30 /0,30/ 0,30
útlum šiřením	(<i>V</i> =63,5) ·	0 /0.05/ 0.16/ 0.50 /1.54/ 4.72

 $A[m^2] =$

místnosti.

5,27 /10,25/ 13,35/ 15,22 /18,75/ 23,92 nější doby dozvuku je dáno zkušenostmi ze

známých místností a sálů. Pro dobu dozvuku T[s] je určující veličinou celková pohltivost místnosti A [m2] spolu s objemem místnosti V [m3]. Doba dozvuku je dána vztahem Sabineovým

Doba dozvuku

$$T = \frac{0.163 V}{A}$$
 [s; m³, m²] (40).

Měřená doba dozvuku je takřka nezávislá na místě, kde měříme a je jen nepodstatně závislá na místě, kde je umístěn zdroj zvuku.

3,30 /3,57/ 4,95/ 6,88 /9,63/ 12,38

5,20 /6,24/ 8,32/ 9,36 /10,40/ 10,40

1.04 /0.78/ 0.26/ 0.23 /0.20/ 0.16

0.05 /0.05/ 0.07/ 0.08 /0.09/ 0.09

1,25 /1,00/ 0,75/ 0,75 /0,75/ 0,75

3,15 /4,20/ 4,90/ 5,60 /5,60/ 5,60 1,80 /2,40/ 2,80/ 3,20 /3,20/ 3,20 23,10 /28,70/ 30,80/ 32,20 /33,60/ 35,00

 A_i [m²]

2000 Hz/4000 Hz a celkovou pohltivost:				
•	S; [m²]			
stěny	275			
podlaha	104			
okna · 、	. 13			
dveře (olej. lak)	5			
nábytek	25			
židle obsazené	(70 ks)			
židle neobsazené	(20 ks)			
posluchači	(70 ks)			
útlum šířením	(V=468)			
celkově tedy	$A[m^2] =$			

Kulturní sál má rozměry a=8 m; b=13 m;

c=4,5 m. Celkový povrch místnosti je

397 m², podlahová plocha 104 m² a objem 468 m³. Na stěnách a stropu (275 m²) je

hladká omítka, podlaha je parketová, okna mají plochu 13 m² a dveře 5 m². Ostatní

nábytek (25 stolů, skříně) odhadneme na 25 m². V místnosti je 90 čalouněných židlí,

z toho průměrně 70 obsazeno posluchači.

Můžeme tedy vypočítat dílčí pohltivosti pro

kmitočty 125 Hz/250 Hz/500 Hz/1000 Hz/

Z výpočtů vidíme, že v obytných prostorách můžeme pohltivost oken, dveří a nábytku zanedbat, aniž bychom se dopustili v určení celkové pohltivosti chyby větší než asi 5 %, což je chyba ležící pod přesností těchto

Pro některé z dalších výpočtů je nutné určit průměrný činitel zvukové pohltivosti (obr. 71)

$$\overline{\alpha} = \frac{A}{S} \qquad [-; m^2, m^2] \quad (39).$$

Pro uvažovanou obytnou místnost bude (v řadě zvolených kmitočtů)

 $\overline{\alpha} = 0.052/0, 102/0, 132/0, 151/0, 186/0, 237;$ pro kulturní sál

 $\overline{\alpha}$ = 0,098/0,119/0,136/0,156/0,188/0,258.

0,13 /0,40/ 1,21/ 3,72 /11,38/ 34,81 39.02 /47.34/ 54.06/ 62.02 /74.85/ 102.39 Přesnější, s praxí se lépe shodující výsled-

ky dává vztah Eyringův, který respektuje i tzv. střední volnou dráhu Is [m]. Střední volná dráha je průměrná vzdálenost mezi jednotlivými odrazy, kdy je zvuková energie po částech pohlcována, a lze ji statisticky určit ze vztahu

$$L = 4 \text{ V/S}$$
 [m; m', m²] (41).

Tak např. v naších příkladech bude v uvažované obytné místnosti L = 2,52 m a v kulturním klubu L = 4,71 m. Eyringův vztah pro dobu dozvuku, který dává při T<2 s, tedy v obvyklých případech velmi dobrou shodu s údají naměřenými, je (obr. 72)

$$T = \frac{0.163 \ \text{V}}{-S \ln (1 - \alpha)} \quad [s; m^3, m^2] \quad (42).$$

Obr. 30. Závislost -ln (1 - a) na a pro vztah (42)

Původní Sabineův vztah (40) stačí pro rychlou orientaci, lépe je však užívat vždy Eyringův vztah (42), i když jeho vyčíslení je obtížňější. Existuje celá řada dalších vztahů pro určení doby dozvuku, ale pro účely amatérské práce je není třeba uvádět.

Vyčíslovat výraz – ln $(1 - \overline{a})$ v Eyringově vztahu je pracné, proto je v grafu na obr. 30 uvedena jeho hodnota pro zjištěný střední činitel zvukové pohltivosti α podle vztahu. (39).

Nejvhodnější doba dozvuku

Určeme doby dozvuku ve zvolené řadě kmitočtů pro naše příklady: v obýtné místnosti bude T = 1,92/0,95/0,73/0,63/0,50/0.38 s a v kulturním klubu T = 1.86 / 1.52 /,31/ 1,13 /0,92/ 0,64 s.

Jsou vypočtené doby dozvuku krátké ("mrtvá" nebo "suchá" místnost), vhodné nebo příliš dlouhé?

Nejvhodnější doby dozvuku podle daného objemu místnosti a pro dané použití byly stanoveny pokusně a můžeme je nalézt na obr. 31. Optimální doby dozvuku jsou udány pro 500 Hz. Doby dozvuku pro jiné kmitočty můžeme určit z obr. 32, kde pro různé kmitočty určíme, kolikrát větší má být sku-

Obr. 31. Doporučené optimální doby dozvuku To pro kmitočet 500 Hz pro řeč a různé druhy hudby

Obr. 32. Relativní toleranční pole pro dobu dozvuku vztaženou k době dozvuku pro kmitočet 500 Hz

tečný dozvuk, než byl určen pro kmitočet 500 Hz z obr. 31.

Pro stereofonní poslech se udávají optimální doby dozvuku kratší než pro poslech monaurální. Rozdíly jsou dost značné (obr. 31)

Nejsprávnější je v dané místnosti dobu dozvuku změřit a upravit celkovou pohltivost podle výpočtu tak, aby bylo dosaženo optimální doby dozvuku. Protože měření výžaduje méně obvyklé přístroje, jsme většinou nucení spokojit se s výpočtem celkové pohltivosti A a z ní určit T.

Milovník vážné hudby bude volit doby dozvuku spíše delší, ten, kdo dává přednost rytmické hudbě, spíše kratší. To platí i pro uvedené pásmo pro stereofonní reprodukci.

Pro poslech reprodukované hudby v místnostech menších rozměrů (až do 1000 m³) se udává jako nejvýhodnější (s ohledem na poslech také stereofonní reprodukce) kompromisní doba dozvuku

$$T = \frac{1}{3} \log V$$
 [s; m³] (43)

(čárkovaně v obr. 31).

Úpravy doby dozvuku

Můžeme tedy porovnat vypočtené doby dozvuku s doporučovanými. Pro naše příklady vidíme, že uvažovaná obytná místnost je pro signály nízkých kmitočtů nedotlumena, u vysokých přetlumena. To bude mít za následek, že signály nízkých kmitočtů budou zdůrazňovány, vysokých bude nedostatek. V tom smyslu bude nutné volit u zesilovače hluboké a výškové korekce nebo upravit pohltivost místnosti v žádaném směru. Vyjádříme-li vypočtené doby dozvuku pro jednotlivé kmitočty v poměru k době dozvuku vypočtené pro 500 Hz, dostaneme 2,54 / 1,30/ 1,00/ 0,86 /0,68/ 0,52. Tytéž poměry k době dozvuku žádané u 500 Hz podle vztahu (43), tj. k hodnotě 0,6 s jsou 3,20 /1,58/ 1,21/ 1,05 /0,83/ 0,63. Vidíme, že uvažovaná místnost s ohledem na tolerance z obr. 32 vyhovuje s výjimkou kmitočtů pod 500 Hz. K utlumení tohoto pásma nedostačují obvyklé materiály (tab. 16) a museli bychom použít průmyslově vyráběné absorbery, např. typu Akulit DC 10 nebo lépe KD 3. Protože chyba v utlumení není závažná, je věcí spíše ekonomické úvahy, máme-li takovou úpravu udělat či nikoli. Bylo by nutné použít asi 10 m² KD 3 při současném zmenšení plochy koberce na polovinu (a co na to manželka), nebot koberec je hlavní pohltivou plochou pro vysoké kmitočty. Po přepočvou pidchiou pid vyssek kilintoty, 19 piece tu pohltivosti, (7,57/11,25/10,75/10,75/11,62/14,25/19,32) a $\overline{\alpha}$ (0,075/0,112/0,107/0,115/0,141/0,192) by se změnila doba dozvuku na T=1,32/0,86/0,90/0,84/0,68/ 0,48, tedy kmitočtový průběh bude podstatně vyrovnanější, než před úpravou.

Amatérské! ADI 10 B/1

Podobně v kulturním domě by bylo účelné (pro přiblížení se optimálním výsledkům) zvětšit celkovou absorpci u hlubokých kmitočtů. Použili-li bychom na asi 100 m^2 stropu Akulit DC 10, zvětší se celková pohltivost o $A_i = 26,0$ /89,0/ 73,0/ 38,0 /21,0/ 24,0 tedy na 65 /136,4/ 127/ 100 /95,8/ 126,4, $\overline{\alpha}$ bude 0,164 /0,344/ 0,320 /0,252 /0;241/ 0,318 a konečně nová doba dozvuku T = 1,07 /0,46/ 0,50/ 0,66 /0,70/ 0,50. Sál by byl v tomto případě velmi přetlumen, mírným zdůrazněním kmitočtového pásma 1000 Hz až 2000 Hz by vyvolával příznivý dojem "prezence", snad vhodný pro řeč, ale nevhodný pro hudbu. Vidíme, že použité množství (plocha) Akulitu je příliš velká.

Výběrem typu zvuk pohlcujícího materiálu můžeme řídit kmitočtovou závislost doby dozvuku, jeho množstvím nastavit nejvhodnější dobu dozvuku. Přestože sortiment průmyslově vyráběných materiálů je velmi rozsáhlý, optimální nastavení doby dozvuku a jeho kmitočtového průběhu je věcí opakovaných výpočtů.

Naštěstí nejsou toleranční pole podle obr. 32, ani optimální doby dozvuku podle obr. 31 tak kritické, jak je graficky naznače-no. Úchylky až 25 % nejsou u běžných místností na závadu. Na zkrácení doby dozvuku u vyšších kmitočtů a prodloužení u kmitočtů hlubokých jsme zřejmě dlouhodobou zkušeností z poslechu v reálných prostorech tak navyklí, že nepůsobí vůbec rušivě a opak by mohl vyvolat dojem nepřirozenosti. Přesto však alespoň orientační výpočet doby dozvuku nám může ukázat, proč nemáme v reprodukci vysoké kmitočty, přestože změřená soustava reproduktorů jich má údajně přebytek, nebo proč prostor "duní". V extrémních případech, kdy se doba dozvuku odchyluje více než dvakrát od žádané, již nepomohou korektory na zesilovači. Pak jakékoli laborování na elektronickém zařízení již nepomůže a musí se "sáhnout na prostor'

Dozvuková vzdálenost

Vzdálenost, v níž dochází k rovnosti hustoty zvukové energie přímého – primárního signálu a energie dozvukových – sekundárních složek signálu, označujeme jako dozvukovou vzdálenost ra. Základní vztah (34) pro její určení byl uveden v části popisu zvukového pole v uzavřených prostorech. V této vzdálenosti od zdroje zvuku je hladina akustického tlaku o 3 dB vyšší, než je hladina akustického tlaku v difúzním poli.

U skutečných zdrojů (příp. přijímačů) zvuku, u nichž se uplatňuje jejich směrová charakteristika, zářič vysílá do (přijímač přijímá z) různých směrů různé díly akustické energie a není pak namístě mluvit o poloměru doznívání, jak určují čs. terminologické normy, ale o dozvukové vzdálenosti, protože je v různých směrech různá. Zde se uplatňují i činitelé směrovosti zdroje zvuku Q_k (reproduktoru) a přijímače zvuku Q_k (mikrofonu) a vztah pro dozvukovou vzdálenost se rozšíří na

$$r_{\text{d}} = \sqrt{\frac{AQ_{\text{R}}Q_{\text{M}}}{16\pi}} = 0.14\sqrt{AQ_{\text{R}}Q_{\text{M}}} =$$

Pane kolego, vidíte ty krásné basy?

=
$$0.057\sqrt{VQ_RQ_M/T}$$

[m; m², -; m³, -, s] (44).

Poslech v poli přímých vln, tj. pro vzdálenosti menší než r_0 , je "syrový", bez charakteristického ozevu prostoru, a je vhodný pouze pro poslech řečových signálů. K poslechu hudby patří i dozvukové složky prostoru, tedy poslech ve vzdálenostech větších než je dozvuková vzdálenost, jak tomu také v praxi skutečně je. Pro prostory z našeho příkladu můžeme určit (při $Q_R = 2.5$) u obytné místnosti $r_0 = 0.51 / 0.71 / 0.81 / 0.86 / 0.96 / 1.08$, u kulturního domu $r_0 = 1.38 / 1.52 / 1.63 / 1.74 / 1.91 / 2.24 (v obou případech jsou uvažovány pohltivosti před úpravami).$

Vlastní kmity prostoru

Prostor, tak jako každé mechanické těleso, má své vlastní kmity. Kmitočty, na nichž prostor rezonuje, zdůrazňují přenášené kmitočty a při podrobných měřeních bychom nalezli zdůraznění signálů určitých kmitočtů až o desítky dB. To by vypadalo hrozivě, ale u místností jsou tyto kmitočty naštěstí tak hustě vedle sebe, že posloucháme vlastně takřka souvislou řadu zdůrazněných kmitočtů a pouze u hlubokých kmitočtů nalezneme mezi nimi větší kmitočtové rozestupy.

Vlastní kmity prostoru jsou – zhruba řečeno – dány vybuzenými stojatými vlnami po jednoduchých, nebo i vícenásobných odrazech od stěn místností a jsou tedy určeny geometrickými rozměry prostoru podle vztahu

$$f = \frac{c_0}{2} \sqrt{\left(\frac{n_0}{a}\right)^2 + \left(\frac{n_0}{b}\right)^2 + \left(\frac{n_c}{c}\right)^2}$$
[Hz; m/s, -, m] (45),

kde za n_a , n_b a n_c dosazujeme celá čísla $(0, 1, 2, 3 \dots)$, jsou-li a, b, c rozměry místnosti tvaru kvádru. Dostáváme tak řadu kmitočtů, která je směrem k vyšším kmitočtům čím dále tím hustší. Počet vlastních kmitů místnosti u kmitočtu f na šířku pásma 1 Hz určuje vztah (se zanedbáním členů s nižší mocninou f)

$$N = 4\pi V \frac{f^2}{c_0^3}$$
 [1/Hz; m³, Hz, m/s] (46).

Vypočteme pro názornost hustotu vlastních kmitů N pro obytnou místnost z našich příkladů ($V=63,5~{\rm m}^3$) (podle přesných vztahů)

,		
do/u kmitočtu [Hz]	je počet vlast- ních kmitů	celkem v rozsahu 1 Hz
30	1	0,062
50	3	0,120
70	6 ,	0,195
100 -	. 14	. 0,34
200	80	1,06
500	994	5,62
1000	7268	21,12
10 000	6 658 764	1990.9

Vidíme, že se počet i hustota vlastních kmitočtů velmi rychle zvětšuje. Vztahy (45) a (46) jsou uváděny pouze pro ilustraci a výpočty pro konkrétní místnost nemá smysl provádět ("stejně s tím nelze nic dělat")

Otázkou tedy bude spíše kmitočeť, od něhož můžeme místnost považovat při poslechu za vhodnou. Na tom, jak se vlastní kmitočty místnosti při poslechu uplatní, spolurozhoduje i jejich tlumení, tedy pohltivost, popř. doba dozvuku. Ták byl odvozen vztah pro dolní kritický kmitočet místnosti

$$f_k = 2000 \sqrt{T/V} \text{ [Hz; s, m}^3 \text{]}$$
 (47).

20

Obr. 33. Dolní kritický kmitočet místnosti pro obvyklé T v závislosti na objemu

výpočlech používat vztahy odvozené pro statisticky průměrné veličiny. Pod tímto kmitočtem nenaměříme v různých místech a pro různé polohy zdroje zvuku stejnou dobu dozvuku a i poslechový vjem bude i v dozvukovém poli (tedy ve vzdálenosti větší než dozvuková vzdálenost, vztah (34), (44)) závislý na místě poslechu. Při poslechu můžeme u signálů s kmitočty ležícími pod dolním kritickým kmitočtem místnosti zažít různá "překvapení", bez ohledu na kvalitu zařízení a vlastních zářičů.

Od průměru přenosové charakteristiky prostoru lze běžně očekávat maximální odchylky asi 10 dB a to většinou velmi ostře kmitočtově ohraničené, což se nutně projeví jako rušivé.

· Předpokládáme-li, že doba dozvuku vyhovuje vztahu (43), můžeme v závislosti na objemu místnosti podle obr. 33 určit dolní kritické kmitočty místnosti. Vidíme, že u malých místností, sloužících jako poslechové prostory, musíme očekávat dolní kritické kmitočty mezi 150 až 200 Hz. Z toho hlediska není zcela správné, že v našich příkladech vypočítáváme údaje i pro kmitočet 125 Hz.

Nebude tedy lhostejné, kde je umístěn zdroj zvuku a kde bude poslechové místo. Odpověď na to může dát jen pokus, abychom volbou předem nezvolili např. právě nejnevhodnější kombinaci, kde prostor dodá reprodukci zdůrazněním vlastních kmitů místnosti dunivý charakter. V některých místnostech rozdíly vůbec nezjistíme (hodně členíté), v některých neuspějeme.

Tvar prostoru

Vlastní kmity prostoru závislé od geometrických rozměrů prostoru mohou mít hustotu vlastních kmitů rozloženu nerovnoměrně, ale pro poslech je důležité jejich vyrovnané, co nejhustší rozložení. Záleží na poměru stran (pravoúhlého) prostoru - maximální počet vlastních (neopakujících se) kmitů mají pro-story s poměrem stran 1 : 1,9 : 1,4: V každém případě by měly "příznivé" prostory mít poměr délky k výšce v rozmezí 1,84 až 3,46 a poměr šířky (strana, na niž je umístěn zdroj zvuku) k výšce v rozmezí 1,42 až 2,31. U o-bou z našich příkladů je tento požádavek splněn.

Nebezpečnější pro poslech mohou však být rozměrné vyduté či vypuklé plochy stěn. Tvarované plochy porušují žádoucí rovnoměrné rozložení hustoty zvukové energie v prostoru. Energie se např. koncentruje do určité oblasti (obr. 34), nebo u ploch vypuk-

Obr. 34. Koncentrace zvukové energie při půlkruhovém arkýři

lých jsou naopak určité části místnosti ochuzeny. Takové nerovnoměrnosti jsou pro poslech na závadu, pokud je ve velkých prostorech nevyužíváme zúmyslně např. k "ozáření" ploch auditoria, ke směrování zvukové energie orchestru z pódia do hlediště apod.

Akustičnost prostoru

Ze zkušenosti víme, že některé místnosti mají "dobrou akustiku", jiné "špatnou" Přítom závisí i na tom, posuzujeme-li poslech řečových či hudebních (a jakých) signálů. Jak ukazují obr. 31 a 32, vliv druhu zvukového signálu vyžaduje určitou dobu dozvuku a výborný poslechový sál může být až nepřijatelnou posluchárnou a naopak. Soubor fyzikálních podmínek, který má pro požadovaný účel využití prostoru poskytnout optimální působení uzavřeného prostoru na posluchače, nazýváme jeho akustičností.

Jak hodnotit akustické vlastnosti prostoru? Máme k dispozici vlastně pouze dobu dozvuku T (42), dozvukovou vzdálenost r_d (34), (44), dolní kritický kmitočet fk (47) a určitá pravidla pro respektování tvaru místnosti. Ze zkušenosti však víme, že ani optimální doba dozvuku a ostatní známé podmínky nezaručují konečný úspěch. Je zde tedy něco navíc, co nemůžeme těmito veličinami daného prostoru podchytit.

Jak ukazují některá psychoakustická hodnocení, jsou pro subjektivní vjem velmi důležité změny přechodných složek v časovém sledu superponovaných signálů primárních a sekundárních. Byla proto věnována velká pozornost tzv. energetickým kritériím akustičnosti prostoru, které hodnotí různým způsobem poměr energií, které dorazily k posluchači v prvním okamžiku, k energii, kterou dodávají k posluchači opožděné dozvukové složky. Za užitečnou, prvotní energii, považujeme signály, které k posluchači doběhnou v prvních asi 50 až 80 ms po doběhu primárního signálu, pozdější signály považujeme za rušivé.

Vznikla celá řada takovýchto kritérií, zvaných např. zřetelnost, stupeň ozvěny, míra doznívání, průzračnost atd. Poněvadž jejich určení je pro amatéry nepřístupné, nemá smysl je uvádět. Pouze (na základě statisticky průměrných hodnot určovanou) čistotu přenosu lze vypočítat ze vztahu

$$C = 10\log \frac{\left(\frac{r_{d}}{l_{ep}}\right)^{2} + 1 - e^{-k/T}}{e^{-k/T}}$$

$$[dB; m, m, -, s] \quad (48).$$

Tento vztah hodnotí poměr energie, která dorazila k posluchači v prvních 50 ms (pak je k=0,69) nebo 80 ms (pak je k=1,1), k celkové energii vyslaného zvukového impulsu. Kvalitní reprodukce hudby (k=1,1) vyžaduje, aby C bylo větší než +1,6 dB, pro řeč (k=0,69) má být pro dobrou srozumitelnost C větší než asi +3 dB, nejméně však 0 dB. Vztah respektuje samozřejmě vzdálenost lap (zdroj zvuku – posluchač) a jak dozvukovou vzdálenost, tak i dobu dozvuku. Pouze pro informaci uvádíme, že pro prostory z našich příkladů můžeme určit (1 kHz) – obytná místnost ($l_{zp} = 3 \text{ m}$): řeč G = 3.5 dB, hudba

 $C_h = 7.2 \text{ dB a kulturní dům } (l_{ep} = 6 \text{ m})$: řeč G = 0 dB a hudba $G_h = 2.7$ dB. Vztah (48) odvozen za mnohých zjednodušujících předpokladů a proto má být používán pouze jako vodítko. Tak je to konečně i s celou akustičností prostoru, protože se na výsled-ném – subjektivním – hodnocení nepodílejí jen technické vlastnosti prostorů, ale i fyziologie sluchu, pohledy estetické a ba i dočasné, módní aspekty.

Pronikání vnějších hluků do prostoru

Pro pronikání zvuku do místnosti je rozhodující samozřejmě úroveň vnějšího hluku, který je třeba izolovat. Lze těžko předpokládat, že v budově sousedící s hlavní dopravní tepnou můžeme zaručit naprosté vyloučení rušení vnějším hlukem. Nejjednodušeji lze potlačit vliv vnějšího hluku velkou vzdáleností od zdroje hluku. Můžeme si přitom pomoci např. odkloněním směru šíření zvukové energie překážkou – např. zdí, která za sebou vytvoří akustický stín. Poměrně účinný je keřový či stromkový porost, který zvuk nejen odklání, ale i pohlcuje.

Obr. 35. Zmenšení hladiny hluku v akustickém stínu za překážkou

Zmenšení ΔL úrovně hluku překážkou můžeme určit z obr. 35, vypočteme-li pomocnou veličinu

$$q[-] = 0.076h\sqrt{f\left(\frac{1}{a} + \frac{1}{b}\right)}$$
 (49),

kde h je výška překážky stromů, zdí, sousední budovy atd. [m], f kmitočet [Hz], a, b jsou vzdálenosti zdroje hluku a sledovaného místa od překážky [m]. Hluk ve sledovaném místě je o ΔL menší proti hluku, který by byl v místě bez překážky. Nejsou-li zdroj hluku a pozorovatel v jedné rovině proti patě překážky, musíme uvažovat jako výšku překážky pouze tu část, která se uplatní nad jejich spojnicí. Při určování ΔL u stromů se neuplatní na jedné straně jejich celá výška, ale na druhé straně neuvažuje uváděný výpočet zmenšení vlivem jejich pohltivosti. Nedo-pustíme se velké chyby, budeme-li uvažovat, že se oba vlivy kompenzují a počítat ΔL jako u hmotné překážky. Stromový porost musí ovšem tvořit skutečně souvislou překážku (několik řad proloženě – neprůhledně).

U zdrojů zvuků umístěných uvnitř búdovy je hlučnost proti hlučnostem naměřeným ve volném prostoru poněkud větší – to je dáno mnohonásobnými odrazy; přírůstek proti úrovni hluku stejného zdroje zvuku ve volném prostoru je závislý na střední hodnotě činitele zvukové pohltivosti α místnosti, a můžeme ho určit ze vztahu

Obr. 36. Zvětšení hlasitosti umístěním zdroje zvuku do uzavřeného prostoru s průměrným činitelem pohltivosti α

$$\Delta L = 10\log \frac{1}{\bar{\alpha}}$$
 [dB] (50),

nebo přečíst z grafu na obr. 36. Do $\overline{\alpha} \ge 0.2$ je zvýšení úrovně takřka nezávislé na velikosti místnosti, pro menší $\overline{\alpha}$ jsou skutečné údaje ΔL u velkých místností (nad asi 1000 m^3) o něco menší.

Neprůzvučnost stěn

Schopnost dělicího prvku propouštět do chráněného prostoru pouze část na něj dopadající energie, W_{pr} , z celkové na něj dopadající energie, W_{dop} , nazýváme neprůzvučnost R. Protože se tyto energie šíří vzduchem – proto vzduchová neprůzvučnost. Dosadímeli do definičního vztahu

$$R = 10\log \frac{W_{\text{dop}}}{W_{\text{pf}}} \qquad [dB; J] \quad (51)$$

plochu S dělicího prvku (stěny) a celkovou pohltivost A chráněného prostoru, můžeme neprůzvučnost definovat vnějšími a vnitřními hladinami akustického tlaku

$$R = L_{mit} - L_{mit} + 10\log\frac{S}{A}$$

$$[dB; dB, m^2] \quad (52).$$

Rozdíl
$$L_{\text{nej}} - L_{\text{mit}} = D$$
 [dB] (53)

označujeme jako zvukovou izolaci uzavřené-

Jako střední stupeň vzduchové neprůzvučnosti můžeme uvažovat neprůzvučnost pro kmitočet 250 Hz.

Do místnosti proniká hluk stěnami místnosti. Lze očekávat, že stěny místnosti budou tím lépe tlumiť pronikající zvuk, čím větší bude hmotnost stěny v kg/m².

Určitá plošná hmotnost stěny má určitý střední stupeň neprůzvučnosti, který můžeme přečíst z obr. 37. Stupeň neprůzvučnosti je samozřejmě závislý také na kmitočtu. Jeho závislost můžeme sledovat v obr. 38.

Při stejné celkové hmotnosti stěny získáme lepší výsledky, je-li uvnitř stěny vzduchová mezera. U dvojité stěny o celkové plošné hmotnosti (obou částí stěny) nalezneme odpovídající stupeň neprůzvučnosti; k tomuto údaji se připočítává ještě zlepšení udané např. na obr. 39 v závislosti na kmitočtu a na tloušíce vzduchové mezery mezi oběma částmi stěny.

Naopak zeslabení stěny, i třeba v malé ploše, značně zhoršuje stupeň neprůzvučnosti. Okna a dveře zmenší neprůzvučnost tím více, čím větší část plochy stěny zaujímají a čím nižší stupeň neprůzvučnosti mají. Předpokládá-li se, že stupeň neprůzvučnosti stěny R_s je větší než stupeň neprůzvučnosti zeslabujících částí R_s , a že plocha celé přepážky je S_p , plocha stěny S_s , plocha zeslabujících částí S_s , plocha stěny S_s plocha vzduchové neprůzvučnosti přepážky

$$R_{p} = R_{s} - 10\log \left[1 + \frac{S_{s}}{S_{p}} \left(10^{(R_{s} - R_{s})/10} - 1\right)\right]$$
(54)

V našem případě obytné místnosti má v nasem prípade obytne mistnosti ma vnější stěna plochu $S_b = 5.3 \times 2.55 = 13.5^2$, z toho plocha oken $S_z = 2 (1.3 \times 1.6) = 4.2 \text{ m}^2$. Obvodový plášť domu je z panelu tloušťky 15 cm. Podle obr. 37 je pro panel 10 cm plošná hmotnost 270 kg/m², pro 15 cm uvažujeme plošnou hmotnost asi 400 kg/m^2 , a z obr. 38 bude R_s u 250 Hz = = 53 dB. Dvojitá okna mají vzduchovou mezeru mezi skly asi 4 cm, takže střední stupeň vzduchové neprůzvučnosti můžeme zjistit z obr. 37 (pro skla 2× 3 mm) na 29 dB. Vzduchový polštář mezi skly je asi 4 cm a podle obr. 39 se neprůzvučnost u 250 Hz zlepší o asi 2 dB, tedy na 31 dB. To je neprůzvučnost určená pro vlastní skla, ale nerespektuje netěsnosti - škvíry v rámech atd. U dveří a oken uvažujeme přibližně v souhlasu s údaji naměřenými za skutečných poměrů neprůzvučnosti v decibelech asi poloviční, než určíme z obr. 37 nebo 38. Pro okna - zeslabení - tedy v našem případě $R_z = 16 \text{ dB}$. Pak střední stupeň vzduchové neprůzvučnosti celé přepážky - vnější zdi je

$$R_{\rm p} = 53 - 10\log\left[1 + \frac{4.3}{13.5}\left(10^{(53 - 16)/10} - 1\right)\right]$$

Obr. 39. Zlepšení stupně vzduchové neprůzvučnosti AR vzduchovou mezerou tlouštky l

8

Obr. 38. Stupeň neprůzvučnosti R [dB] (šikmé čáry) v závislosti na kmitočtu a plošné hmotnosti stěny [kg/m²] (svislá osa)

Dopadá-li na stěnu domu hluk přilehlé silnice s hladinou 62,6 dB (viz příklad v části útlumu zvuku), bude do místnosti pronikat vnější hluk v hladině $L_{\text{miif}} = L_{\text{rntj}} - R_{\text{p}} + 10\log$ (S/A), viz (50), takže pro náš příklad $L_{\text{miif}} = 62,6 - 21 + 10\log$ (13,5/10,25) = 42,8 dB. Původní předpoklad, že obvodová stěna domu bude mít útlum 25 dB, se nesplnil ($R_{\text{p}} = 21$ dB), a uvnitř prostoru bude hladina hluku pozadí asi 43 dB a to pouze od vnějšího hluku.

Zmiňovat se zde o kročejové neprůzvučnosti, tj. neprůzvučnosti stropů, nemá smysl, konstrukce stropů nemůžeme amatérsky měnit a nemají-li sousedé nad námi koberec (co nejvyšší) a mají-li běhající malé dětí, můžeme pouze konstatovat, že máme smůlu.

Úprava místnosti

Izolace místnosti proti pronikání vnějšího hluku a vhodná doba dozvuku (správná celková pohltivost místnosti) samy o sobě nemohou ještě zaručit nejlepší podmínky pro snímání či poslech. U velkých sálů je stejně důležité rovnoměrné rozložení zvukové energie, aby nedocházelo k soustřeďování zvuku či hluchým koutům. Souvisí to se správným rozptylem zvukové energie; nemůžeme očekávat rovnoměrné rozložení, je-li kupř. materiál s velkou pohltivostí soustředěn v jedné části místnosti, zatímco v jiné části jsou materiály s velkou odrazivostí. Podobně i geometrické tvary místnosti mohou odrazem soustředit zvuk do určitých míst a naopak zastíněním některá místa značně ochudit. Interference mezi zvukovou vlnou přímou a vlnami odraženými může také velmi značně ovlivnit jakost poslechu. Možnost vzniku takových interferencí značně zmenšíme velkou členitostí prostoru tím, že odstraníme velké rovné souvislé plochy stěn. V důležitých případech musíme řešit i rozčlenění stropu závěsnými panely či profilováním.

Určitým ukazatelem správného rozložení zvukové energie je pokles křivky útlumu

Amatérske! A 1 11 B/1

Obr. 37. Střední stupeň neprůzvučnosti R v závislosti na plošné hmotnosti stěny

úrovně hlasitosti (při měření dozvuku na záznamovém měřiči úrovně). Sleduje-li pokles zhruba logaritmický zákon, tak jak je kupř. předpokládáno ve vztahu pro dobu dozvuku T, lze očekávat dobré akustické vlastnosti místnosti. Naopak větší nesouhlas s logaritmickým poklesem je podle zkušeností provázen/téměř vždy méně příznivými poslechovými vlastnostmi, i když je třeba dodržena optimální doba dozvuku a její kmitočtová závislost.

Úprava doby dozvuku závisí na vhodné volbě pohltivých materiálů a je do značné míry i v rukou amatéra, jak bylo ukázáno již

dříve na příkladu výpočtů.

Rušení ze sousedního prostoru (chodby, výtahové šachty atp.) můžeme také do značné míry ovlivnit. Velmi účinné jsou tzv. lehké předštěny, realizovatelné i domácími prostředky. Na latovém rámu, který tvoří vzduchovou mezeru tloušíky asi 5 cm na celé ploše stěny, dostačuje i sololitová deska, abychom (při vyplnění vzduchové mezery vláknitou načechranou látkou) dosáhli zlepšení neprůzvučnosti až o 20 dB. Tento způsob nemá však takřka význam u stěn s okny či dveřmi, které prakticky zmenší neprůzvučnost rozhodující měrou a předstěna by se na výsledku projevila jen několíka málo decibely. Zde musíme přikročit k utěsnění spár (tkalouny, správné nastavení zámků) jako prvnímu opatření a teprve je-li úspěšné, můžeme zvětšit, floušťku dveří (např. dřevotřískou) anebo, což bývá překvapivě účinné, neboť se zabrání vibracím, vyměnit obvyklá skla (3 mm) za skla tloušťky 5 až 6 mm.

Šíří-li se hluk konstrukcí domu a je vyzařován stěnami, pak musí být celá konstrukce rámu přichycena ke stěně pružně, tedy přes plstěné podložky (asi 1 cm, jen mírně stlačené) a i příchytné šrouby nemají mít "tvrdý dotyk s rámem (převlečena pryžová trubička, plstěná či pryžová podložka pod kovovou podložkou hlavy šroubu). Celá předstěná (i proti podlaze) nemá mít tedy tvrdý styk s konstrukcí domu.

Řešit takto např. zlepšení kročejové neprůzvučnosti, tj. pronikání hluku stropem, je sice možné, ale neřadíme je již mezi amatérské úpravy.

Zvětšením pohltivosti, prostoru se sice sníží hladina pronikajícího vnějšího (a i vnitřního) hluku, ale má-li být snížení pozorovatelné, ovlivníme podstatně i dobu dozvuku, což není vhodné.

Prostorová konstanta

Při výpočtech hladin zvuku, dosahovaných v uzavřeném prostoru, je výhodné používat tzv. prostorovou konstantu, definovanou vztahem

$$K = \frac{A}{1 - \overline{\alpha}}$$
 [m², m², -] (55).

Tak můžeme vypočítat pro místnosti z našich příkladů:

pro obytnou místnost K = 5,56 /11,41/15,38 /17,92/23,03/31,35 a pro kulturní dům K = 43,26/53,73/62,57/73,48/92,18/138.00.

AKUSTICKÉ VYSÍLAČE A PŘIJÍMAČE

Reproduktor je technická součástka, a proto při ozvučování hovoříme ve zcela obecném smyslu o akustických vysílačích nebo zářičích. Podobně i mikrofon: přijímačem může být i posluchač. Proto není tato kapitola nazvána řeproduktory a mikrofony.

Směrové vlastnosti

Ideální zářič by vysílal do všech směrů zvuk stejné intenzity, ideální přijímač by pro všechny směry měl stejnou citlivost. Ve skutečnosti – technické praxi – tomu tak není a při seriózním návrhu poslechového prostoru tomu musíme věnovat pozornost.

Směrové charakteristiky vysílačů i přijímačů jsou vždy kmitočtově závislé a při jakékoli instalaci nesmíme na tuto závislost zapomínat. Akustickou osou nazýváme u vysílačů i přijímačů směr, v němž je vysílán maximální výkon, nebo v němž má přijímač maximální citlivost; pouze výjimečně nesouhlasí tento směr s geometrickou osou symetrie měniče.

Směrové charakteristiky zobrazujeme v polárním diagramu pro vybrané kmitočty zobrazením např. citlivostí měniče pro různé směry buď vyzařování nebo dopadu signálu (obr. 40). Např. u zářičů je to směrová závislost odevzdávaného akustického tlaku nebo hladiny akustického tlaku v určité konstantní vzdálenosti při konstantním příkonu. V údajích výrobců je (kmitočtově) kompletní sada směrových charakteristik uváděna jen výjimečně a údaje se většinou omezují na tzv. činitele směrovosti.

Obr. 40. Směrové charakteristiky reproduktoru ARO 667 v deskové ozvučnici

Obr. 41. Směrové charakteristiky dvou reproduktorů (vlevo a vpravo) se stejným činitelem směrovosti Q=11.4

Činitel směrovosti je v čs. normách definován pro zářiče poměrem druhé mocniny akustického tlaku v určitém bodě na jeho akustické ose ke druhé mocnině akustického tlaku ve stejném bodě, který by zde odevzdával ideální všesměrový zářič při stejném akustickém výkonu. Tato definice nám mnoho neřekne pro naši aplikaci, poněvadž dva různé zářiče mohou mít stejný činitel směrovosti, přestože se jejich směrové charakteristiky mohou zásadně lišit. V obr. 41 jsou uvedeny vlevo a vpravo směrové charakteristiky dvou zářičů s činitelem směrovosti Q = 11,4; pravý je pro ozvučování zřejmě nevhodný.

Je-li činitel směrovosti podle dřívější definice určen z akustického tlaku v akustické ose (p₀) a z akustického tlaku ideálně kulověho zářiče (p₃) vztahem (obr. 42).

$$Q = \frac{p_0^2}{p^2}$$
 [-; Pa] (56),

můžeme pro ideální zářiče určit podle jejich umístění v prostoru činitele směrovosti podle tab. 18.

Z dané směrové charakteristiky určíme činitel směrovosti podle vztahu

$$Q = \frac{2}{\sum_{n=0}^{180} 10^{\ln/10} (\cos \alpha_{d,n} - \cos \alpha_{h,n})}$$
 (57)

Vztah předpokládá osově symetrickou směrovou charakteristiku a stačí ho tedy vyčíslit od 0 do 180°. Význam veličin vyplývá z obr. 42.

Vyjádříme-li činitel směrovosti v [dB] dostaneme tzv. index směrovosti

$$I_0 = 10\log Q$$
 [dB; -] (58).

U mikrofonů můžeme v tab. 19 vyjádřit pro typické směrové charakteristiky jejich činitel směrovosti, směrový index a předozadní poměr, který udává buď prostým poměrem, nebo v logaritmické míře poměr akustického tlaku ve směru 0° k akustickému tlaku ve směru 180°, tedy

$$\frac{p_0}{p_{180}}$$
, nebo 20log $\frac{p_0}{p_{180}}$ (59).

Předozadní poměr je měřítkem potlačení citlivosti mikrofonu pro signály dopadající z "nechtěné" strany.

V anglosaské literatuře a v propagačních materiálech nalezneme pro zářiče často jiný údaj, tzv. činitel tlakového zvýšení (angl.

Obr. 42. K určování činitele směrovosti

Tab. 18. Směrové vlastnosti ideálního zářiče podle umístění

	,	, Činitel		
Umístění zářiče	vertikálně (°)	horizontálně . [°]	prostorový [sr]	směrovosti []
ve volném prostoru	180	360	4π=1	1
v nekonečné rovině (do poloprostoru)	180	180	2π=1/2	2
v průsečníci dvou kolmých rovin	90	180	π=1/4	4
v průsečíku tří kolmých rovin	(trojboký	jehlan)	π/2=1/8	8

pressure coefficient, něm. Bündelungsfaktor), který udává, kolikrát je v akustické ose akustický tlak větší než tlak, který by odevzdával ideální kulový zářič; je tedy roven VQ. Při ozvučování je to sice veličina názornější, ale v souhlasu s čs. normami budeme v dalším používat vždy činitel směrovosti.

v dalším používat vždy činitel směrovosti.

Velmi pomalu se bohužel o směrových vlastnostech zářičů objevují údaje, které by jednoduše (nejsou-li již k dispozici směrové charakteristiky) udávaly informace pro jednoznačnou použitelnost zářičů při ozvučování prostoru. Jsou to tzv. vyzařovací úhly, tj. úhly, v nichž se odevzdávaná hladina akustického tlaku zářiče nezmenší proti hladině v akustické ose o více než 10 dB, tj. o velikost, o níž by se měla maximálně měnit hladina akustického tlaku v poslechovém prostoru. V obr. 41 jsou vyzařovací úhly obou zářičů vyznačeny a i z nich vidíme nevýhodnost zářiče v pravé polovině, i když má stejné Q.

Pro obvyklé elektrodynamické reproduktory se odevzdávaný akustický výkon zužuje kolem akustické osy tím více, čím má vyzařovaný signál vyšší kmitočet. Toto "svazkování" akustické energie je závislé na velikosti membrány reproduktoru a v obr. 43 jsou naznačeny teoretické směrové charakteristiky reproduktoru, umístěného v ozvučnici, pro různé poměry průměru reproduktoru D k vlnové délce A vyzařovaného zvuku. Zdůrazňujeme, že se jedná o teoretické údaje, praktické se mohou podle konstrukce (reproduktoru i ozvučnice) značně lišit.

Směrovou funkci reproduktorů, danou poměrem akustického tlaku p₁ v hledaném směru α° k akustickému tlaku p₀ ve směru 0° můžeme pro přímovyzařující reproduktory určit ze vztahu

$$S_{p} = \frac{p_{x}}{p_{0}} = \frac{\sin x}{x}$$

$$kde \ x = \frac{\sqrt{3}}{2} \pi \frac{f}{c_{0}} D_{a} \sin \alpha = \frac{f D_{a} \sin \alpha}{125}$$

$$[rad; Hz, m, rad] (60),$$

kde f je vyzařovaný kmitočet, D_a je aktivní průměr membrány (tj. asi průměr do středu vlnek membrány) a α je směrový úhel.

Protože výrobci uvádějí směrové charakteristiky jen zcela výjimečně, pomůže nám vztah pro výpočet vyzařovacího úhlu (zde, poněvadž měnič je osově symetrický, je to úhel vyzařovacího kužele. obr. 74).

$$\beta = 2\arcsin (0.87 \ \lambda/D_{ak}) =$$

$$= 2\arcsin \left(\frac{300}{fD_{ak}}\right) \quad [^\circ; Hz, m] \quad (61).$$

Vztah můžeme použít pouze pro kmitočty vyšší než $f=300/D_{\rm a}$. Tak např. reproduktor o průměru 200 mm má aktivní průměr asi (200 mm – 10 %) = 180 mm. Pro kmitočet 2000 Hz má vyzařovací úhel β = 2arcsin (300/[2000·0,18]) = 113°, ale pro kmitočet 10 kHz již pouze β = 19°. Pak bychom se nemohli divit, že my v reprodukci signály kmitočtů kolem 10 kHz slyšíme, ale že na našeho sousedního posluchače již "nezbyly"; sedí vně vyzařovacího úhlu pro tyto kmitočty a diťuzní pole je již pohltivostí prostoru značně zeslabilo.

Z vyzařovacího úhlu zjistíme snadno činitel směrovosti (obr. 75)

$$Q = \frac{2}{1 - \cos(\beta/2)} \tag{62}.$$

Pro minulý příklad bude u 2000 Hz Q = 4,46 a pro 10 kHz by Q (teoreticky)

Tab. 19. Směrové vlastnosti ideálních mikrofonů

	á charakteristik nikrofonu	Činitel .směrovosti	Index směrovosti	Předozadní	poměr
		[-]	[dB]	[-]	[dB]
kulová _		1,0	0,0		, 0,0
osmičková —		3,0	4,8	1,0	0,0
kardioidní _		3.0	4,8	∞	∞ ∞
hyperkardioidní _		4,0	6,0	2,0	, 3,0
vlnový –	*	~ 16,0	~ 12,0	~ 30,0	~ 15,0
gradientní 2. řádu _		· ~ 8,0	~ 9,0	~ 3,5	~ 5,5
			,		

Obr. 43. Směrové vyzařovací diagramy pístově kmitající membrány pro různé poměry průměru membrány D k vlnové délce λ vyzařovanřho zvuku

bylo 145. Ve skutečnosti pro vysoké kmitočty klesá aktivní průměr membrány (kmitá pouze střed membrány) a tím se vyzařovací úhel nezmenšuje tak rychle. To respektuje empirický vztah (obr. 73)

$$\beta = 2\arcsin\left(\frac{380\log f - 1000}{fD_a}\right) \tag{63},$$

který dává pro minulý příklad se skutečností lépe korespondující údaje: pro 2000 Hz β = 90° a Q = 6,8 a pro 10 kHz je β = 33,6° a Q = 47. Tento výpočet použijeme jen tehdy, nemáme-li k dispozici směrové charakteristiky.

U reproduktorů vybavených zvukovodem nalézáme jiný vyzařovací úhel ve vertikální rovině a iiný v rovině horizontální (tedy vyzařování do jehlanu). Pro zvukovody vyzařovací úhly znát musíme, neboť je nelze určit výpočtem ani přibližně. Činitel směrovosti je pak dán při $\alpha > \beta$ vztahem (obr. 78)

$$Q = \frac{720}{\sqrt{2}\beta\sqrt{1-\cos\alpha}} \tag{64},$$

Např. pro zářič s vyzařovacím úhlem $\alpha = 120^{\circ}$ a $\beta = 60^{\circ}$ bude Q = 6.93.

Znalost činitelů směrovosti je potřebná při výpočtu hladin zvuku v poslechovém prostoru; pro zaručení dobrého poslechu na všech místech určité plochy jsou však rozhodující vyzařovací úhly, neboť plocha musí být celá ozařována rovnoměrně i signály vyšších kmitočtů, na což z činitele směrovosti (porovnej s obr. 41) usuzovat nemůžeme. Ze známých vyzařovacích úhlů můžeme činitel směrovostiurčit, naopak však nikoli.

Směrové zářiče

Není problémem vyzářit běžně dosažitelnými reproduktory zvukovou energii, ale je obtížnější ji vyzářit do míst nebo ploch, kde ji potřebujeme, a nevyzářit ji tam, kde by mohla vadit. Ve víceúčelové místnosti, v níž budou reprodukovány hudební pořady i provozována, živá" představení, nechceme, aby zesílený zvukový signál dopadal zpět na snímací mikrofon a vyvolával tak akustickou zpětnou vazbu. Chceme tedy ozářit plochu posluchačů – auditorium, ale nikoli jeviště (řečniště). Potřebujeme tedy zářiče se směrovým vyzařováním akustické energie. I v běžném poslechovém prostoru využíváme směrových zářičů, nechceme-li např., aby primární signál dopadal na celoskleněnou stěnu, která narušuje akustickou symetrii prostoru.

Přirozené směrování akustické energie reproduktorů vyplývající z obr. 43 nebo vyjádřením vyzařovacího úhlu podle vztahu (63) lze při návrhu v malých prostorech

Obr. 44. Akustický dipól, jeho směrová charakteristika a zmenšování akustického tlaku se vzdáleností

Obr. 45. Směrové charakteristiky reproduktorového sloupu v horizontální a vertikální rovině

respektovat "vodvokativním" nasměrováním, což se děje automaticky. Můžeme tomu napomoci i umístěním zářičů (je-li vhodné) podle tab. 18. U vysokých kmitočtů a v menších poslechových prostorech tedy nebudou se směrovými účinky zářičů problémy.

Jinak je tomu u nízkých kmitočtů; přirozený způsob jejich vyzařování reproduktory je prakticky všesměrový, ale i při vestavění do ozvučnic můžeme i v nejpříznivějším případě očekávat nejvýše vyzařování do poloprostoru před ozvučnicí. U běžných soustav si nemůžeme pro nízké kmitočty volit, kam "pošleme" primární vlnu.

V praxi využíváme prakticky čtyři typy směrových zářičů. Nejjednodušší jsou reproduktory s kuželovým zvukovodem (rozhlas na návsi), akustické dipóly, skupinové řazení reproduktorů (např. reproduktorové sloupy) a nejdokonalejší výsledky získáme se speciálně navrženými exponenciálními zvukovody.

Kuželový zvukovod připojený přímo k přímovyzařujícímu reproduktoru je většinou nevýhodný pro své velké rozměry. Vstupní průměr d_1 musí odpovídat aktivnímu průměru reproduktoru (D_{ak}) , minimální výstupní průměr d_2 je dán pro nejnižší kmitočet ℓ_3 vztahem

$$d_2 = \frac{c_0}{\pi \ell_d}$$
 [m; m/s, Hz] (65)

a délka zvukovodu je

$$I = \frac{c_0}{2\pi f_d} \left(\frac{d_2}{d_1} - 1 \right)$$
 [m; m/s, Hz, m, m] (66).

Jaký nejnižší kmitočet přenáší "návesní" reproduktor s výstupním průměrem 50 cm?

$$f_0 = c_0/(\pi d_2) = 343/(\pi \cdot 0.5) = 216 \text{ Hz}$$

Akustický dipól

Akustickým dipólem nazýváme dvojicí bodových zářičů (pulsujících koulí), vyzařujících akustický signál v protifázi, jejichž vzdálenost je malá ve srovnání s vyzařovanou vlnovou délkou. Vlnoplochy vytvořené akustickým dipólem bychom získali vektorovým složením polí obou jednotlivých zářičů. Složením bychom nalezli výrazné směrové vyzařování akustického dipólu; prostorová směrová charakteristika by byla vytvořena dvěma dotýkajícími se koulemi se středem v jednotlivých zářičích. V rovině kolmé na osu dipólu, ve středu mezi zářiči, není akustická energie vyzařována a největší podíl energie je vyzařován ve směru osy dipólu. Proto akustický dipól umístěný nad zemí a orientovaný osou kolmo k zemi ve volném prostoru odevzdává akustický signál jen v blízkém okolí pod sebou. Se zvětšující se vzdáleností od bodu umístění dipólu se akustický tlak zmenšuje s druhou mocninou vzdálenosti, tedy o 12 dB při zdvojnásobení vzdálenosti. To je velmi cenná vlastnost akustického dipólu, neboť není technicky obtížné vytvořit

signál v určitém prostoru, kde ho potřebujeme, zrušit existující akustický signál v určitém prostoru, kde nám vadí, je obecně neřešitelné

Akustický dipól realizujeme dvěma reproduktory (soustavami) vzdálenými od sebe o tzv. bázi dipólu b. Akustické pole odpovídající teoretickému předpokladu se vytvoří ve vzdálenosti I»b. Reproduktory (nebo celé soustavy – obvykle diskové uspořádání reproduktorů) musí být napájeny v protifázi. Dipóly nalézají hlavní použití při ozvučování ve volném prostoru, kde jako jediné mohou zaručit dobrý odstup užitečného signálu od signálu rušivého tj. od signálů přicházejících do poslechového místa od ostatních zářičů, a dávají tak jinak nedosažitelnou čistotu reprodukce. Jinak nalézají využití tam, kde musí být reproduktory v blízkosti mikrofonů; pak je nulová rovina vyzařování (rovina kolmá na osu dipólu v polovině báze dipólu) orientována na mikrofony. V domácím po-slechu, tj. v malých místnostech nejsou dipóly používány.

Reproduktorové sloupy

Tak, jak závisí směrové vyzařování reproduktorů na poměru průměru membrány a vlnové délky vyzařovaného zvuku, můžeme vyvolat směrový účinek i spojováním reproduktorů do soustav; pak závisí již nejen na rozměrech membrány, ale i na jejich vzájemné vzdálenosti, jak se u jednotlivých kmitočtů projeví směrový účinek.

Umístíme-li dva zářiče (kmitajíčí ve fázi) do soustavy, bude ve směru spojnice obou zářičů odevzdáván nejmenší výkon, v rovině souměrnosti obou zářičů největší výkon. Dosahujeme tedy právě opačného směrového účínku než u akustického dipólu; osmičková směrová charakteristika je orientována kolmo na spojnici obou zářičů.

Ještě výraznější svazkování získáme u řady reproduktorů, u nichž se akustická energie svazkuje do roviny kolmé ke spojnici jednotlivých reproduktorů; takové uspořádání nazýváme reproduktorový sloup. Reproduktorovými sloupy se snažíme z dílčích reproduktorů vytvořit zářič s obdélníkovou membránou. Rovina maximálního vyzařovaného výkonu je u reproduktorového sloupu uprostřed sloupu a kolmo na osu sloupu (obr. 45). Všechny reproduktory musí být napájeny soufázově a musí mít mezi sebou stejné a konstrukčně co nejmenší rozteče.

Podobný účinek mají i štěrbinové zvukovody, pro něž opět platí: ve směru, ve kterém se zvukovod rozevírá, je vyzařovaný paprsek zúžen.

Protože jsou reproduktorové sloupy instalovány téměř vždy s geometrickou osou ve vertikálním směru, hovoříme o horizontální (široký lalok) a vertikální (zúžený lalok) směrové charakteristice.

Horizontální směrová charakteristika je určena směrovou charakteristikou reproduktorů použitých ve sloupu. Můžeme ji tedy určit podle vztahu (60) nebo z obr. 43. V horizontálním směru se svazkování akustické energie reproduktorovým sloupem neuplatňuje.

Ve vertikální rovině se uplatňuje svazkování akustické energie uspořádáním reproduktorů do sloupu. Toto svazkování se uplatní ve vzdálenostech l větších než je délka sloupu k (= počet × báze = nb; je-li npočet reproduktorů ve sloupu).

Pro využití reproduktorových sloupů nás zajímá jeho vertikální směrová charakteristika (tj. směrová charakteristika ležící v rovině geometrické osy sloupu). Směrovou charakteristiku sloupu udává vztah podobný vztahu (60)

$$S_{s} = \frac{\sin nx'}{n\sin x'} S_{p} \qquad [-; rad, -],$$

kde

$$x' = \frac{\pi f b \sin \alpha}{c_0} \quad [-; Hz, m, ^\circ, m/s] \quad (67),$$

a S_p je směrová charakteristika použitých reproduktorů (např. vztah (60)). Pokud je $I_b/\lambda < 1$, vytváří se jen jeden lalok směrové charakteristiky; s rostoucím poměrem I_b/λ se objevují další laloky, oddělené vždy směrem, v němž není vyzařována akustická energie. Tyto tzv. nulové směry můžeme vypočítat ze vztahu (platí pro $\lambda/L < 1$)

$$\alpha_0 = 2\arcsin(\lambda/l_0)$$
 [rad; m, m] (68).

Tak např. sedmireproduktorový sloup s délkou k=1.5 m má pro kmitočet 343 Hz nulové směry pro úhel $\alpha_0=84^\circ$; pro f=229 Hz je $\alpha_0=180^\circ$ (tj. kmitočet, pro nejž $\lambda=I_b$).

Stanovíme-li ve vertikální rovině vyzařovací úhel (tj. úhel rozevření od akustické osy sloupu, kdy je pokles hladiny akustického tlaku směrové charakteristiky 10 dB, obr. 76)

$$\tilde{\alpha} = 2\arcsin\left(0.74 \ \lambda/l_0\right) = 2\arcsin\left(254/(fl_0)\right)$$

opět pro kmitočet 343 Hz, je ;,šířka" hlavního laloku ve vertikální rovině 60°. Báze tohoto reproduktorového sloupu je b=k/n=1,5/7=0;21 m; zřejmě se jedná o reproduktory průměru 200 mm, tedy s $D_{ak}=180$ mm.

Porovnejme vyzařovací úhly tohoto reproduktorového sloupu pro kmitočet 2000 Hz. Vertikální vyzařovací úhel bude podle (69) $\alpha = 2\arcsin{(254/(2000 \cdot 1.5))} = 10^{\circ 4}$ V horizontální rovině podle (63) $\beta = 2\arcsin{(380 \cdot \log 2000 - 1000)/(2000 \cdot 0.18)} = 90^{\circ}$

Chtěli-li bychom určit činitele směrovosti, nemůžeme u reproduktorového sloupu (ani žádné jiné soustavy zářičů) použít vztahy (62) nebo (64), poněvadž vzájemnou interakcí se může vytvořit celá soustava bočních laloků, které uvedenými vztahy nejsou respektovány (obr. 46). Vyčíslování přesných vztahů pro činitel směrovosti sloupu je obtížné. Běžně stačí toto určení: pokud je b/λ větší než 1, pak Q = n; z toho plyne, že pro kmitočty výšší než $f = a_i/b$ se činitel směrovosti již dále nezvětšuje! Pro kmitočty nižší,

je-li b/λ menší než 1, avšak větší než 0,1 $(f = c_0/10b)$, bude (obr. 77)

$$Q = \frac{n}{3} (\log \frac{b}{\lambda} + 1.7)^2 \qquad [-; -, m] \quad (70).$$

Reproduktorový sloup, který jsme zvolili jako příklad, bude mít pro kmitočty vyšší než f = 343/0,21 = 1633 Hz činitel směrovosti Q = n = 7. Pro kmitočet např. 1000 Hz bude

 $Q = 7(\log(0.21.1000/343) + 1.7)^2/3 = 5.2$ a ještě u kmitočtu f = 275 Hz bude Q = 2, což je činitel směrovosti, jednotlivým zářičem nedosažitelný (při umístění ve volném prostoru).

Podobně jako reproduktorové sloupy směrují zvukovou energii i speciálně navrhované exponenciální zvukovody. Jsou přímo navrhovány pro široký horizontální a úzký vertikální úhel. Zde jsme ale plně odkázáni na údaje výrobce nebo výsledky vlastního proměření. Příkladem velmi úspěšných ozvučovacích zářičů se zvukovody je reproduktorová soustava Electro voice typ Sentra V, obr. 47.

Obr. 47. Směrové charakteristiky profesionální ozvučovací reproduktorové soustavy firmy Electro voice, typ Sentra V

Samozřejmě můžeme řadit reproduktory nejen do řad jako u sloupů, ale i do ploch a vytvářet tak plošné zářiče.

Zvuková energie se pak svazkuje jak ve vertikálním, tak i horizonrálním směru. Výsledný činitel směrovosti je dán přibližně

cích reproduktorů 0,25 m)

součinem činitele směrovosti "řad" a činitele směrovosti "sloupců". Poněvadž jsou reproduktorové sloupy i plošné reproduktorové zářiče ve svých vlastnostech podobné, pokud mají stejný poměr b/λ , můžeme si pro přehlednou, rychlou informaci určit vyzařovací úhly a činitele směrovosti pro různé kmitočty při různém uspořádání soustavy reproduktorů; viz tab. 20 (pro b=0,25 m).

Pro využití jakýchkoli zářičů, a tedy i reproduktorových sloupů při poslechu, jsou důležitější jejich vyzařovací úhly, ukazující, která poslechová místa jsou přímou – primární vlnou pokrývána, než činitelé směrovosti. Znovu poukažme na obr. 41 a porovnejme ho s obr. 46. Činitelé směrovosti určují, jak je nasyceno difúzní pole uzavřeného prostoru zvukovou energií; pouze tehdy, tvoří-li směrová charakteristika jediný, tj. hlavní lalok, i kam je energie soustředována.

Charakteristická citlivost, výkon a účinnost

Jak u samostatných reproduktorů, tak u reproduktorových soustav udáváme tzv. charakteristickou citlivost, která určuje, jaký akustický tlak (nebo jakoú hladinu akustického tlaku) reproduktor vybudí v akustické ose ve vzdálenosti 1 m před reproduktorem (soustavou) při příkonu 1 VA. Příkon ve VA můžeme určit ze vztahu

$$P_{\rm e} = \frac{U^2}{Z_{\rm i}} \qquad [VA; V, \Omega] \quad (71),$$

kde U je napájecí napětí reproduktoru [V] a Z_j je jeho jmenovitá impedance $[\Omega]$. Charakteristická citlivost s se udává větši-

Charakteristická citlivost s se udává většinou údajem hladin akustického tlaku, tedy v [dB/1 VA/1 m]. Je-li udána v [Pa/1 VA/1 m], můžeme ji převést (podle vztahu (13), obr. 68)

$$s_{\text{dB}} = 20\log \frac{s_{\text{Pa}}}{p_{\text{l}}} [dB/1 \text{ VA/1 m}; Pa/1 \text{ VA/1 m}, Pa]$$
 (72),

kde $p_{\rm r} = 2 \cdot 10^{-5} \text{ Pa.}$

V zahraniční literatuře, zvláště americké, nalézáme údaj citlivosti s_A v [dB/1 VA/4 stopy]. Převod na charakteristickou citlivost je

$$s_{\text{dB}} = s_{\text{A}} + 1.7 \quad [dB]$$
 (73)

Jak minulé zápisy rozměru [dB/1 VA/1 m] nebo [Pa/1 VA/1 m], tak i zápis [dB/1 VA/4 stopy] není zápisem fyzikálního rozměru

sledný činitel směrovosti je dán přibližně stopy] není z

Obr. 46. Příklad vertikální směrové charakteristiky reproduktorového sloupu při n=4 a l/\(\lambda = 8\) (tj. čtyři reproduktory, l_b=1 m, f=2700 Hz; čárkovaně pro f=260 Hz)

	Kmitočet								
Uspořádání soustavy (hor. × vert.)	vyzař. hor.	343 úhel [°] <i>ver</i> t.	Hz Q [-]	-	1000 úhel [°]	Hz : Q [-]	vyzař. ú	3430 ihel [°] <i>ver</i> t.	Hz <i>Q</i> , [~]
1 × 3		161	1,2	<u> </u>	40	` 3.4	45	11	3,6
1 × 6	-	59	2,4	- '	19	6,5	45	6	6,9
1 × 9	-	. 38	3,6	_	13	9.2	45	4	9,5
1 × 12	-	29	4,8		10	12,7	45	3	13,1
2 × 3	-	161	1,3	61	40	4.3	17	11	8.6
2 × 6		、59	2,6	61	19	8.8	17 ·	6	16,6
2 × 12	70	29	5,2	61	10	15,5	. 17	3	31,4
3 × 3	161	161	1,5	40	40	5,8	11	11	13,0
3 × 6	161	59	2,9	40	19	11,8	11	6	25,2
3 × 12	161	29	5,9	40	10	24,0	11	3	47
4 × 6	96	59	4,1	29	19	15,7	9	6	33
4 × 12	96	29	8,3	29	10	32	9	3	47
6 × 6	- 59	59	5,9	19	19	24	6	6	47
6 × 12	59	29	11,5	19	10	48	:6	3	90

Tab. 20. Vyzařovací úhly a činitelé směrovosti soustav reproduktorů (při vzdálenosti sousedí-

veličiny (který je pouze [dB] nebo [Pa], ale symbolickým zápisem měřicích podmínek.

Odevzdává-li zdroj zvuku akustický výkon P_n [W] při všesměrovém vyzařování, vyvolá na ploše S intenzitu zvuku podle vztahu (7). Ve vzdálenosti I je plocha S dána povrchem koule ($S = 4\pi \hat{I}$) a intenzita zvuku bude

$$I = \frac{P_a}{S} = \frac{P_a}{4\pi l^2}$$
 [W/m²; ; W, m] (74).

Odpovídající akustický tlak p (podle vztahu (6))

$$p = \sqrt{\frac{z_0 P_a}{4\pi l^2}} = \frac{5,74}{l} \sqrt{P_a} \text{ [Pa; ; m, W] (75)}$$

a hladina akustického tlaku (za respektování vztahu (13))

$$L_p = 10\log P_a - 20\log I + 109$$
 [dB, W, m] (76)

Pro účinnost zářiče η platí při elektrickém příkonu $P_{\rm e}$ [W]

$$\eta = \frac{P_{\bullet}}{P_{\epsilon}} \cdot 100 \qquad [\%; W]$$

a tedy

$$P_{a} = \frac{P_{c}\eta}{100} \quad [W; W, \%];$$

$$P_{c} = \frac{P_{a} \cdot 100}{n} \quad [W; W, \%] \quad (77)$$

Nevyzařuje-li zdroj zvuku všesměrově, musíme toto směrové vyzařování charakterizované činitelem směrovosti *Q* respektovat i v uvedených vztazích:

$$L_p = 10\log P_a + 10\log Q - 20\log I + 109 = 10\log P_c + 10\log Q + 10\log \eta - 20\log I + 89$$

$$[dB] \qquad (78)$$

$$p = \sqrt{\frac{z_0 P_a Q}{4\pi l^2}} \approx \frac{5.74}{l} \sqrt{P_a Q}$$
 [Pa] (79).

Charakteristickou citlivost můžeme podobně jako ve vztahu (78) vyjádřit pro vzdálenost I[m], pro vybuzenou hladinu akustického tlaku v této vzdálenosti L[dB], pro elektrický příkon $P_{c}[W]$ a pro činitel směrovosti (při uvažovaném kmitočtu) Q vztahem

$$s_{IB} [dB/1 VA/1 m] =$$

= $L_1 + 20log I - 10log P_c - 10log Q$ (80)

Z tohoto vztahu můžeme určit s_{1B} reproduktorové soustavy a pro jinou vzdálenost příkon a činitel směrovosti. Změříme např. hladinu $L_1 = 103$ dB ve vzdálenosti 4 m při příkonu 25 W; je-li kmitočet 1000 Hz, činitel směrovosti Q = 2,7, bude $s_{2B} = 103 + 20 \log 4 - 10 \log 25 - 10 \log 2,7 = 96,7 dB/1 VA/1 m.$

Pomocí charakteristické citlivosti můžeme naopak určit hladinu akustického tlaku ve vzdálenosti I (ve volném prostoru)

$$L_1 = s_{dB} + 10\log P_c + 10\log Q - 20\log l$$
 (81)

Reproduktor s charakteristickou citlivostí 92 dB/1 VA/1 m odevzdá při příkonu 3,5 W ve vzdálenosti 17 m a Q = 5,2 hladinu $L = 92 + 10.\log 3,5 + 10.\log 5,2 - 20.\log 17 = 80 dB$.

Charakteristickou citlivost reproduktorového sloupu s můžeme určit z charakteristické citlivosti použitých reproduktorů s a činitele směrovosti sloupu Q ze vztahu

$$s = s\sqrt{Q_s} [Pa/1 VA/1 m; Pa/1 VA/1 m, -]$$

(82).

mít při Q = 7 a pro reproduktory s s = 89 dB charakteristickou citlivost (s převedeno podle vztahu (14), obr. 68) s = 2 · 10⁻⁵ · 10^{89/20} · $\sqrt{7} = 1,49 \text{ Pa}/1 \text{ VA}/1\text{ m}$ s = 20.log 1,49 + 94 = 97,5 dB/1 VA/1 m. Tento sloup odevzdá např. ve vzdálenosti 9 m hladinu akustického tlaku při příkonu 5 W: $L_1 = 97,5+10 \log 5-20.\log 9 = 85,4 \text{ dB}$ (Q sloupu respektováno přepočtem!)

Tak např. sedmireproduktorový sloup bude

Odevzdávaný akustický výkon

Je-li odevzdávaný akustický výkon podle vztahu (7) udán pro zářič všesměrový, uplatní se činitel směrovosti tak, že svazkováním akustické energie do určitého směru se celkový akustický výkon zářiče vlastně zmenšuje, je-li v akustické ose zářiče ve stejné vzdálenosti [m] stejný akustický tlak p.

Pak bude
$$P_{a} = p^{2} \frac{4\pi I^{2}}{z_{0}Q} = 0.03 \frac{p^{2}I^{2}}{Q} \text{ [W; Pa, m, -] (83).}$$

$$\text{Laká to má pro popřívaná roproduktoru a pro-$$

Jaké to má pro používané reproduktory a pro poslech v ozvučovaném přostoru důsledky? Víme-li, že uřcitý reproduktor má (ideálně) kmitočtově nezávislou kmitočtovou charakteristiku, tj. odevzdává tedy pro všechny kmitočty tlak např. 1 Pa ve vzdálenosti. 1 m a má při určitém kmitočtu známý činitel směrovosti, můžeme ze vztahu (89) určit jím odevzdávaný celkový akustický výkon. Můžeme tak (pro ARO 667) určit:

f[Hz]	Q[-]	<i>P</i> _a [mW]	Pa,t/Pa,1000
1000	2,4	12,6	1 '
2000	6,5	4,67	0,370
4000	14	2,17	0,172
16 000	30	1.01	0.080

To znamená, že přesto, že do reproduktoru odevzdáváme konstantní napájecí napětí a tedy příkon, akustický výkon zářiče se pro tyto vyšší kmitočty rychle zmenšuje! Konstantím elektrickým příkonem nenasytíme ozvučovací prostor konstantním akustickým výkonem! Difúzní pole uzavřeného prostoru je buzeno různým akustickým výkonem pro různé kmitočty; při běžně používaných reproduktorech je o vysoké kmitočty ochuzováno. A v tom tkví hlavní důvod v rozdílu při ozvučování různých prostor.

Podobně jako se zmenšuje výkon reproduktoru se zvyšujícím se kmitočtem, mohli bychom podle vztahu (77) určit i odpovídající účinnost reproduktoru; také účinnost se zmenšuje se zvyšujícím se kmitočtem.

OZVUČENÍ PROSTORU

Hladina akustického tlaku vybuzená zdrojem zvuku v uzavřeném prostoru

Je-li hladina akustického tlaku vyvolaná zdrojem zvuku ve volném poli určena vztahem (76), uplatní se v uzavřeném prostoru ještě zvětšení hustoty zvukové energie následkem mnohonásobných odrazů od stěn místností.

Hladina akustického tlaku v difúzním poli je při do prostoru odevzdávaném akustickém výkonu P_a [W] určována prostorovou konstantou $K[m^2]$ (vázanou s pohltivostí prostoru vztahem (55)) podle vztahu (obr. 79)

$$L_p = 10\log P_a + 10\log(\frac{4}{K}) + 120 \text{ [dB; W, m}^2\text{]}$$
(84).

Je to tedy hladina, kterou naměříme v uza-

vřeném prostoru v kterémkoli místě ve vzdálenostech několikanásobně větších, než je dozvuková vzdálenost $r_{\rm d}$ (vztahy (34), (44)). Tak např. v kulturním domě z dřívějších příkladů ($K=73,48~{\rm m}^2$) bychom při elektrickém příkonu reproduktorů $P_{\rm c}=15~{\rm W}$, účinnosti reproduktorů $\eta=0,6~\%$ ($P_{\rm a}$ vztah (77)) naměřili pro signál o kmitočtu

1000 Hz hladinu
$$L_p = 10 \log \frac{15 \cdot 0.6}{100} + 10 \log (4/73.48) + 120 = 96.9 \text{ dB}.$$

Hladinu akustického tlaku vyvolanou přímou – primární vlnou podle vztahu (76) spolu s hladinou sekundárních – odražených signálů můžeme vypočítat ze vztahu (obr. 79)

$$L_p = 10\log P_a + 10\log \left(\frac{Q}{4\pi l^2} + \frac{4}{K}\right) + 120$$

[dB; W, -, m, m²] (85)

Tento vztah můžeme aplikovat na příklad z minulého odstavce pro různé vzdálenosti (kdyby šlo o reproduktor s Q = 2.5 u kmitočtu 1000 Hz):

/ [m]	L _p [dB]
0,5	108,8
. 1	103,6
2	99,7
4	97,8
. 7	97,2
10 .	97,1

Podle vztahu (44) je $r_d = 1,74$ m; v této vzdálenosti je L_p asi o 3 dB větší, než v difúzním poli a nakreslením grafu bychom získali závislost odpovídající obr. 28. V kroku 0,5 až 1 m poklesla hladina o 108,8-103,6=5,2 dB; ani tak blízko zdroji zvuku se hladina nesnižuje o 6 dB při zdvojnásobené vzdálenosti a tedy i zde se (i když nepodstatně) uplatňují odražené signály. Podobně i ve vzdálenosti 10 m se uplatňují (opět nepodstatně) primární signály, jak ukazuje rozdíl 0,2 dB proti hladině v difúzním poli. Nezapomínejme, že charakteristickou citlivost určujeme z hladin ve volném poli, nelze ji určovat z hladin v dozvukovém poli.

Poslechové místo nebo poslechová plocha?

Máme-li ozvučit malý poslechový prostor obytnou místnost, předpokládáme, že prostor poslechu bude poměrně malý, jedno až několik poslechových míst. Do tohoto prostoru nasměrujeme zářiče; ty mají v akustické ose velmi dobrou kmitočtovou charakteristiku. Posluchač dostává tedy přímý signál kmitočtově vyrovnaný; i když bude difúzní pole o vyšší kmitočty ochuzováno zmenšováním akustického výkonu směrovým vyzařováním zářiče, vjem přímo dopadajících vyšších kmitočtů bude poslechově vyrovnaný a celkové posouzení přiznivé.

Jinak je tomu však ve větších poslechových prostorech, kde jsou posluchači rozmístěni na velké ploše auditoria. Posluchači na místech, do kterých nedopadají signály vyšších kmitočtů přímo v důsledku směrového vyzařování, jsou odkázáni pouze na difúzní pole, a to je zmenšením odevzdávaného akustického výkonu u těchto kmitočtů o ně ochuzeno. Při ozvučování auditoria musíme

tedy u zářičů dbát nejen o dobrou kmitočtovou charakteristiku, ale i o kmitočtově vyrovnanou (stálou) účinnost i pro vyšší kmitočty Tento ideální stav splňují pouze zvláště pro ozvučovací účely větších prostorů navrhova-né zářiče. Příkladem může být reproduktorová soustava SENTRA V (obr. 48).

Obr. 48. Kmitočtové charakteristiky účinnosti reproduktorové soustavy Sentra V

Problém zmenšující se účinnosti a akustického výkonu řešíme nejčastěji tím, že soustavu vybavíme větším počtem vysokotónových jednotek nasměrovaných tak, aby se jejich vyzařovací úhly vzájemně doplňovaly a aby "vykrývaly" stejnou plochu, jakou vykrývá jednotka středo či hlubokotónová (obr. 49)

Obr. 49. Vykrytí vyzařovacího úhlu hlubokotónového reproduktoru několika reproduktory vysokotónovými

Připravujeme-li tedy ozvučení prostoru, zjistíme si nejdříve, zda plochu, kde budou posluchači, vykryjeme jediným vysokotónovým zářičem, či budeme-li potřebovat několik různě směrovaných zářičů. Skládáme-li jejich směrové charakteristiky tak, aby se krajní paprsky vyzařovacích úhlů (kde je u každého pokles asi 10 dB) právě dotýkaly, pak součtem jejich signálů bude (podle (24) v těchto směrech pokles o 7 dB proti hladině v akustické ose. Kolísání hladin v poslechovém prostoru o asi 6 dB lze považovat za přijatelné, případně lze dosáhnout menšího kolísání určitým překrýváním vyzařovacích úhlů vysokotónových jednotek (zapojených soufázově).

Potřebná hlasitost signálů v poslechovém prostoru

Správná hlasitost poslechu je taková hlasitost, jakou má přímý posluchač ve studiu či koncertním sále. Při rozdílných hlasitostech přímého a reprodukovaného zvuku uplatní se nepříznivě kmitočtová závislost sluchového orgánu na úrovni zvukového signálu. Hlasitější poslech než úroveň, při níž byl snímek pořízen, vyvolává dojem plnější re-produkce, než poslech s nižší úrovní, který je nevyrovnaný jak v hlubokých, tak i vysokých kmítočtech, pokud není použit fyziologický regulátor hlasitosti. Pro přenos maximálních hladin musíme počítat s dostatečnou rezervou výkonu elektroakustických zařízení. Potřebné poslechové hlasitosti udává tab. 21.

Podle vztahu (85) bychom mohli určit potřebný akustický výkon P_a pro dosažení maximální hladiny v převážné většině poslechových míst. Extrémní hladiny by neměly být vyšší než o +4 dB a nižší o -6 dB vzhledem k těm, které jsou uvedeny v tab. 21.

Tab. 21. Doporučené poslechové hlasitosti

	Hladina z	vuku (dB)
	střední	maximál.
	 	 -
Poslech hudby v obytné	ļ	
mistnosti	80	95
Poslech hudby ve	1	1
společenské místnosti	85	105
Poslech řeči ve	ľ	} •
společenské místnosti	80	90
Veřejné prostory:		
shromaždiště, kina		
v přírodě, cvičiště	75	90
travnatá hřiště, sportovní		
stadiony, staniční haly	80	96
nástupiště, městský rozhlas,		
velké stadiony	84	92
sportovní haly, restaurace		
a zábavní podníky	86	94
shromažďovací haly, dílny,	1	ł
restaurace a zábavní	ļ	1
podniky s tancem apod.	92	98
	1	ł

Potřebné příkony zářičů

Pro uzavřené prostory, v nichž se uplatňuje i obvyklá pohltivost místnosti, dobře vyhoví pro určení potřebného elektrického příkonu empirický vztah

$$P_{\rm c} = k \sqrt[3]{V^2}$$
 [W; m³] (86),

kde V je objem místnosti a koeficient k je pro druh signálu a typ zářiče uveden v tab. 22.

Tab. 22. Násobitel k ve vztahu (86)

Druh signálu	Násobitel <i>k</i> pro zářiče hi-fi kvalitní		Hladina zvuku [dB] střední maxim.	
řeč lehká hudba koncertní hudba a hudba	0,12 0,4	0,06 0,2	86 92	90 97
k tanci	1,2	0,6	97	103

Pro zářiče určené pro hi-fi přenos je uvažována střední účinnost 0,6 %, pro dobrý, avšak nikoli náročný poslech je střední účinnost 1,2 %. Udané koeficienty zajišťují dostatečnou rezervu.

Pro ozvučení volných ploch potřebujeme asi 5 až 2 mW na 1 m² plochy při rovnoměrném rozložení reproduktorů (počítá se s účinností běžných reproduktorů, tj. asi 3 %); S mW platí pro menší, 2 mW pro veliké plochy.

Pro přesnější výpočty potřebného elektrického příkonu můžeme použít pro uzavřené prostory vztahy

$$P_{c} = \frac{K}{\eta} \cdot 10^{(L-106)/10} = \frac{A}{\eta (1-\bar{\alpha})} \cdot 10^{(L-106)/10} \qquad P_{e} = \frac{S}{\eta} \cdot 10^{(L-100)/10} \cos \alpha$$
[W; m², %, dB] [W; m², %, dB, °] (90).

případne
$$P_c = 0.0631 \frac{p^2 K}{\eta}$$
 [W; Pa, m², %] (87)

nebo (s jistým zanedbáním)

$$P_{c} = \frac{V}{T\eta} \cdot 10^{(L-114)/10} = \frac{Vp^{2}}{100\eta T}$$
[W; m³, s, %, dB; m³, Pa, %, s] (88),

Tak pro hodnoty pro 1000 Hz u prostorů z naších příkladů určíme pro maximální hladinu 97 dB (tzn. p = 1,41 Pa) tyto příkony – u obytné místnosti ($\eta = 0,8\%$), (87):

$$P_{\rm c} = \frac{17.92}{0.9} \cdot 10^{(97-106)/10} = 2.82 \text{ W},$$

$$P_{\rm c} = 0.0631 \cdot \frac{1.41^2 \cdot 17.92}{0.8} = 2.81 \text{ W},$$

přibližně, (88):

$$P_{\rm e} = \frac{63.5}{0.63 \cdot 0.8} \cdot 10^{(97 - 114)/10} = 2.51 \text{ W}$$

podle vztahu (86) pro lehkou hudbu $P_e = 0.2 \cdot \sqrt[3]{63.5^2} = 3.18$ W. Pro místnost v kulturním domě ($\eta = 1.1$ %) podle vztahu (87):

$$P_{\rm e} = \frac{73,48}{1.1} \cdot 10^{(97-106)/10} = 8,41 \text{ W}.$$

$$P_{\rm c} = 0.0631 \cdot \frac{1.41^2 \cdot 73.48}{1.1} = 8.38 \text{ W},$$

přibližně podle vztahu (88)

$$P_{\rm e} = \frac{468}{1,13 \cdot 1,1} \cdot 10^{(97-114)/10} = 7,51 \text{ W}$$

a podie vztahu (86) pro lehkou hudbu $P_c = 0.2 \, ^3 \sqrt{468^2} = 12 \, \text{W}.$

U volných ploch vycházíme z charakteristické citlivosti sus zářičů. Pro hladinu Lp odevzdávanou v ose zářiče platí

$$P_{\rm c} = 10^{\rm x/10} \, [\dot{\rm W}]$$

kde
$$x = L_p - s_{dB} - 10\log Q + 20\log I$$

[dB,dB,-,m] (89)

Pro dosažení hladiny $L_p = 85 \text{ dB}$ při $s_{dB} = 92 \text{ dB}$ a Q sloupu = 4 bude ve vzdálenosti l = 15 m potřebný příkon

$$x = 85 - 92 - 10 \cdot \log 4 + 20 \cdot \log 15 = 10.5;$$

 $P_c = 11.2 \text{ W}.$

Pokud je volná plocha ozařována šikmo (obr. 50), pak je potřebný příkon pro dosaže-

Obr. 50. Ozvučení volné plochy zářičem skloněným pod úhlem a; vytvoření ozářené plochy S, obvykle oválného tvaru

ní střední hladiny Lp přibližně (předpokládaná výška zářičů nad plochou asi 5 m)

$$P_{e} = \frac{S}{\eta} \cdot 10^{(L-100)/10} \cos \alpha$$
 [W; m², %, dB, °] (90)

plochu $S = 15 \times 25 = 375 \text{ m}^2$ a střední hladinu $L_p = 85$ dB při $\eta = 1.8 \%$

$$P_{\rm c} = \frac{15 \cdot 25}{1.8} \cdot 10^{(85 - 100)/10} \cos 70 = 2,25 \, \text{W}.$$

(Podle odhadovaných 0,005 W/m² by byl příkon P_e = 1,88 W).

Při ozvučování velikých ploch musíme odečíst od dosahovaných hladin i útlum zvuku šířením podle tab. 15.

Při určování potřebného příkonu podle uvedených vztahů je pro určitou požadovanou hlasitost nutno znát účinnost použitých zářičů. Známe-li charakteristickou citlivost san a pro kmitočet, při němž byla stanovena (není-li udáno jinak, je s_{dB} určováno pro 1000 Hz) i činitel směrovosti Q, můžeme účinnost vypočíst ze vztahu

$$\eta = \frac{1,25 \cdot 10^{-9}}{Q} \cdot 10^{38^{110}} \quad [\%; -, dB] \quad (91).$$

Pro $s_{dB} = 92 \text{ dB}$ a $Q_{1000} = 2,7$ $\eta = 0,73 \%$...

Neznáme-li ani charakteristickou citlivost, můžeme ji odhadnout podle typu reproduktoru, na kterém je účinnost význačnou měrou závislá. Nejčastější účinnosti pro různé typy reproduktorů jsou v tab. 23.

Vliv doby dozvuku ozvučovaného prostoru

Při záznamu se uplatní v místě poslechu jak dozvuk v místnosti, kde se záznam snímal, tak i dozvuk poslechové místnosti. Celkově se uplatní výsledný vjem jako prodloužení dožvuku; výslednou dobu dozvuku T_{sum} ze známé doby dozvuku místnosti, kde je záznam snímán – T_1 – a vlastní doby dozvuku poslechové místnosti – T_2 – můžeme zjistit

Obr. 51. Výsledná doba dozvuku Tsum z dozvuku T₁ místnosti, v níž je signál snímán a vlastní doby dozvuku T₂ poslechového prostoru

jsou doby dozvuku poměrně malé, se vliv doby dozvuku poslechového prostoru výrazně neuplatňuje a sluchový vjem odpovídá zhruba době dozvuku snímacího prostoru. I z tohoto důvodu je vhodné, aby místnosti, v nichž je hudba pouze reprodukována, měly vlastní dobu dozvuku spíše kratší než udává obr. 31, byly tedy mírně "přetlumené". Výsledný vjem potom odpovídá lépe záměrům hudebního režiséra při snímání a zachovává charakter doby dozvuku snímací místnosti.

Pro obytné místnosti a menší sály, v nichž

Vliv lokalizovatelnosti zdroje zvuku

Při poslechu reprodukce hudebního snímku vnímáme směr přicházejícího signálu podle rozmístění zářičů. Rozdíl v umístění hlubokotónových či vysokotónových zářičů nemá být větší než několik úhlových stupňů při pohledu z poslechového místa.

Ani při stereofonní reprodukci v menších prostorech nebude tento požadavek běžně porušen.

Psychologicky jiná otázka se však uplatní při zvláštních reproduktorových soustavách pro doprovodný zvuk promítaného obrazu. At se již jedná o film či zvuk televize, nemá tento úhel překročit asi 15° při pohledu z poslechového místa. Rozdíl ve vjemu směru přicházejícího zvuku a směru pohledu na obraz, kam zvuk přisuzujeme, nazýváme audiovizuální chybový úhel - je-li větší než 15°, projevuje se rušivě; zvláště rušivě se projeví, mění-li se o více než asi 5° (např. zvuk v pevném místě, avšak na obrazu se zdroj, kam i přicházející zvuk přisuzujeme, pohybuje). Zachováme-li pozorovací vzdálenost obrazu at filmu či televize alespoň 5krát; avšak raději 8krát úhlopříčka obrazu, je změna pozorovacího úhlu (= arctg (úhlopříčka/vzdálenost)) maximálně 8°, což lze považovat za skutečné maximum. Zdroj zvuku by neměl být od středu obrazu vzdálen o více než 1,5krát úhlopříčka obrazu v horizontálním směru. Ve vertikálním směru je totiž psychofyziologicky přijatelný audiovizuální chybový úhel podstatně větší, až 25°.

Při běžném poslechu hi-fi nám tato otázka sice nevadí, ale ve větších, společenských místnostech a oddělených reproduktorech hlubokotónových a vysokotónových je dobře mít uvedený jev na paměti. Je-li prostor, ať volný či uzavřený, ozvučován různě rozmístěnými zářiči, uplatní se i jev precedence (obr. 12) a otázka audiovizuálního úhlu se při různých časech doběhu signálů pro nízké a vysoké kmitočty může projevit jako rušivá, nepřirozená. I zde se promítá tvrzení odborníků v oboru ozvučování: podle výsledného vjemu má 95 % úspěšně ozvučených prostorů jediný (byť i kombinovaný) centrální zářič.

Vliv hluku pozadí

Vysoká hladina hluku pozadí zmenšuje dosažitelnou dynamiku přenášeného signálu. V hudbě se projeví jako rušivý signál, který požadavek reprodukce hi-fi zásadně a neod-stranitelně potlačuje. Zvyšování hladiny reprodukovaného zvuku lze sice požadovat, ale příliš hlasitá reprodukce (včetně pop music) si nemůže sama o sobě činit nárok na kvalitu hi-fi a věrnost. Místnost, v níž má být provozována reprodukce hi-fi, by neměla mít hladinu hluku pozadí vyšší než 40 dB (A), při přísnějších požadavcích asi 35 dB (A). Je tedy jednou z otázek přípravy místnosti i zvuková izolace prostoru proti pronikání vnějšího hluku, jak již bylo uvedeno. Je samozřejmé, že uvnitř místnosti samotné nesmí být zdroj rušivého zvuku či hluku; jako rušivé se projevují při tichých pasážích i pohonné mechanismy reprodukčních zařízení. Často stačí zařízení pružně uložit, protože se u skutečně kvalitních zařízení jedná hlavně o hluky, přenášené chvěním zařízení na okolní předměty, které potom hluk vyzařují.

Jak dalece je kvalitní reprodukce hlukem pozadí ovlivňována, záleží i na druhu hudby U taneční či lehké hudby nejsou nároky tak

Obr. 52. Vliv hladiny hluku pozadí na přenos řečového signálu

Tab. 23. Očekávatelná účinnost reproduktorů

	1	Reproduktory		
	hi-fi	kvalitní	obyčejné	
Přímovyzařující:				
elektrodynamické: malé do Ø 120 mm	0,1	0,4	1	
středotánové, při f _{rez} >100 Hz	0,5	1	3	
při f _{rez} > 40 Hz	0,3	0,5	0,5	
hlubokotónové	-2	3	5	
piezoelektrické (nad 3 kHz)		0,3	1	
s kuželovým zvukovodem	_	3 .	10	
Nepřímovyzařující:				
s exponenciálním zvukovodem	5	8	15	
tlakové elektrodynamické	10	15	až 25	
úzkopásmové	-	-	. až 50	

přísné, jako u hudby vážné. Jednoznačné měřítko nelze podat tak snadno jako u signálu řečového, kde je jediným kritériem srozumitelnost při přiměřené věrnosti. Jako příklad citlivosti přenášeného řečového signálu na rušivé signály je uveden graf na obr. 52, udávající možnost dorozumívání se (95 % větné srozumitelnosti) na určitou vzdálenost při působící hladině hluku pozadí. I pro řečový signál, který je méně náročný než signál hudební, by hladina hluku pozadí neměla být vyšší než asi 45 dB.

Vliv dozvukové vzdálenosti

Dozvuková vzdálenost při jediném zdroji zvuku v prostoru je dána vztahem (44). Protože je dozvuková vzdálenost měřítkem poměru přímé a dozvukové energie, změní se, přidáme-lí do prostoru další zářič stejného zvukového signálu. Tento další zářič (zářiče) se může podílet na energii přímých-primárních zvukových vln, které ozařují poslechové místo, většinou však přispívá pouze ke zvětšení energie dozvukového pole.

Poslech dosahuje nejvyšší emocionální kvality, dostává-li posluchač časově jako první signál přímého pole a teprve se zpozděním signál z pole dozvukového. To je konečně věc samozřejmá, důležitý je však i poměr intenzit primárního a sekundárního signálu. Ze zkušenosti je známo, že jako nejkvalitnější je považován poslech v místech vzdálených o jedno až dvojnásobek dozvukové vzdálenosti od zdroje zvuku. Optimum je podle hudebního žánru $l_{opt} = (1,2 \text{ až } 1,5) r_d$. Existují-li ale v prostoru další zdroje zvuku, přispívající svou energií pouze dozvukovému poli, pak se změní i poměr přímé a dozvukové intenzity a změní se tedy i dozvuková vzdálenost. Poněvadž se zvětšila energie pole dozvukového, dozvuková vzdálenost se zmenší o to v poměru akustických výkonů přímého a difúzního signálu

$$r'_{d} = r_{d} \sqrt{\frac{P_{p'}}{\Sigma P}}$$
 [m; m, W] (92),

kde $P_{\rm p}'$ je akustický výkon zářiče dodávajícího do poslechového místa primární signál; ΣP je součet akustických výkonů všech zářičů v prostoru.

Je-li tedy v prostoru s dozvukovou vzdáleností (určenou ze vztahu (34)) $r_d = 2,2$ m umístěno 5 zářičů, každý s akustickým výkonem 0,1 W, bude v ploše blízké k jednomu ze zářičů (kde se tento zářič uplatňuje naprosto rozhodující měrou) dozvuková vzdálenost $r_d = 2,2 \ \sqrt{0,1/5.0,1} = 1$ ′m. Budou-li mít zářiče činitel směrovosti Q = 9, zvětší se dozvuková vzdálenost na $r_{d,0} = r_d \sqrt{Q_R} = 6,6$ m a i v prostoru blízkém k zářiči, zajišťujícímu pro dané poslechové místo primární signál, se nezmenší pod původní velikost, totiž na $r'_{d,0} = r_{d,0} \sqrt{1/5} = 3$ m; ve vztahu (92) jsme použili – jak lze při stejných zářičích – pouze jejich počet.

Použití směrových zářičů umožňuje změnit celkem jednoduše a levně dozvukovou vzdálenost prostoru a dodržet tak podmínku optimální vzdálenosti od zdroje (asi 1,5krát dozvuková vzdálenost).

Užitná poslechová plocha

Dobré poslechové podmínky lze vytvořit pouze v části půdorysné plochy místnosti. Jednak se má poslechové místo volit v akustické ose zářiče (při stereofonii považujeme za zářič dvojici, jejichž akustická osa leží v ose reprodukční báze), nemá být příliš blizko zářiči, což souvisí i s podmínkou, že optimální poslechové místo je ve vzdálenosti o 20 až 50 % větší, než je dozvuková vzdálenost (vztah 44) mistnosti, poslechové místo nesmí být samozřejmě ničím proti zářiči (zářičům) zastiňováno a nesmí být ani v blízkosti stěn místnosti nebo v blízkosti velkých odrazných ploch.

Volba poslechového místa v akustické ose zářiče nedělá v amatérské praxi potíže, poněvadž se jedná o jedno, nejvýše několík poslechových míst. Tento požadavek je důležitý i při monofonní reprodukci proto, aby posluchač byl ve vyzařovacím úhlu (vztah (63)) i pro vysoké kmitočty. V bytových poměrech běžně používané reproduktorové soustavy mají pro nejvyšší kmitočty kolem 16 kHz vyzařovací úhel asi 30°. Ke zhruba stejnému úhlu dojdeme i při stereofonním poslechu, jak bude ukázáno později (obr.

Nejmenší poslechová vzdálenost je u monofonní reprodukce asi 1,5 m (a je teoreticky určena asi trojnásobkem největší rozteče reproduktorů v používané soustavě). U stereofonní reprodukce hi-fi určuje tuto minimální vzdálenost požadavek, aby jednotlivé reproduktory nebyly posluchačem viděny pod úhlem větším než 60°, max. 80°; je tedy u stereofonie minimální vzdálenost od reprodukční báze dána vztahem $l_m = (0.87 \text{ až } 0.6)$ krát báze; při vzdálenosti $l_m < 0.8$ krát báze se začne směrový vjem trhat do směrů k jednotlivým reproduktorům. Stereofonní vjem lokalizovatelnosti zaniká, zmenší-li se úhel, pod nímž vidí posluchač reproduktory, pod minimálně 20°. Tomu odpovídá maximální poslechová vzdálenost I_M = 2,5krát báze; pro náročný poslech hi-fi by se vzdálenost & neměla zvětšit nad asi 1,5násobek šířky báze (odpovídá pohledovému úhlu asi 40°). Můžeme tak pro různé reprodukční báze určit:

<i>b</i> [m]	/m [m]	íм [m]	M. hi-fi [m]
0,7	0,6	1,8	1,1
1	8,0	2,5	1,5
1,2	1,0	3,0 -	1,8
1,5	1,2	3,8	2,3
2	1,6	5.0	3,0
2,5	2,0	6,3	3,8
3	2,4	7,5	4,5

V rozsahu I_m až I_M by měl být současně i 1,2 až 1,5 násobek dozvukové vzdálenosti míst-

Obr. 53. Užitná poslechová plocha při monofonní reprodukci

Obr. 54. Užitná poslechová plocha při stereofonní reprodukci

nosti; tento požadavek nás v běžných bytových prostorech bude nutit volit poslechové místo spíše podle l_m .

Má-li poslechové místo splnit uvedené požadavky, pak se plocha obytné místnosti, považovaná jako užitná, značně zmenšuje. V obr. 53 a 54 jsou naznačeny šrafováním, okrajové" plochy a čárkovaně naznačen vyzařovací úhel 30°; z obr. 53 vidíme, že mnoho z půdorysné plochy nezbývá a nesmí nás překvapit, že pro poslech hi-fi zůstává často méně než 30 % půdorysné plochy.

U stereofonního poslechu (obr. 54) je situace ještě tíživější, tj. užitná plocha pro kvalitní stereofonní poslech je ještě menší a v běžných místnostech menších rozměrů bývá jen několik procent (jedno či dvě poslechová místa). Omezena je hlavně šířka poslechového prostoru. Pro kvalitní poslech můžeme podle přibližného vztahu (19) určit šířku poslechového prostoru; pro přísnější požadavky hi-fi je dosahovaná šířka poslechového prostoru v obr. 55, v němž jsou křivky vymezeny minimální a maximální vzdáleností; vymezena je tedy poslechová plocha pro různé reprodukční báze. Z tohoto poměrového grafu můžeme pro určité báze určit užitnou plochu:

báze [m]	teoretická užitná plocha [m²]	maximální počet umístitelných křesel
1	4,8	2 až 3 – vedle sebe
1,2	3,2	2 - vedle sebe
1,5	4,6	3 - v řadách 1+2
2	5,6	3 - za sebou
2,5	6,7	4 - v řadách 1+1+2
3.	7,8	5 - v řadách 1+2+2

Způsob rozmístění v řadách za sebou není vhodný pro bytové uspořádání a proto se někdy používá rohové uspořádání podle obr. 56, kdy hostitel zaujme méně vhodné blízké místo (nesmí však stínit).

Obr. 55. Užitné poslechové plochy pro různé stereofonní báze v měřítku pro zakreslení konkrétního aplikačního prostoru (rastr. 1 m × 1 m)

Obr. 56. Rohové uspořádání poslechového prostoru v obytné místnosti

Vidíme, že pro malé bytové prostory nejsou vhodné reprodukční báze širší než 2 m, ale naopak "blízký" poslech ve vzdálenosti 2 m při reprodukční bázi 1 až 1,2 m. Rozšířením stereofonní báze se šířka poslechového prostoru nezvětšuje, naopak se zmenšuje! V tom tkví nejčastější chyba při instalaci stereofonních aparatur. Nedivte se, že Vaši aparaturu návštěvník nepochválí, sedí-li vedle Vás (stačí i o šířku křesla) mimo akustickou osu zářičů.

V literatuře častá doporučení pro zvětšování stereofonní báze vycházejí z mylně vykládané zkušenosti, že se ve větších vzdálenostech směrový vjem u malých stereofonních bází nevytváří, nebo je neprůkazný, Zánik stereofonního viemu zde souvisí s překročením maximální vzdálenosti Im od reproduktorů, nikoli z úzké stereofonní báze. Zásada velké stereofonní báze platila plně u plnohodnotné stereofonie snímané systémem oddělených mikrofonů (reprodukční stereofonní báze by měla být stejná jako snímací stereofonní báze, která bývala 3 až 5 m), ale je nesprávná u dnes takřka jedině používané stereofonie intenzitní, snímané systémem soumístných mikrofonů. Proto se u ní také uplatňuje ve stále větší míře poslech na sluchátka, která tuto otázku vyloučí. Zpětně, rozšiřující se poslech na sluchátka vyvolává v poslední době návrat ke snímání systémem oddělených mikrofonů, nyní ale ve formě snímání umělou hlavou (tedy snímací

stereofonní báze je asi 0,16 m).

Zákonitosti uvedené obr. 55 a vztahem (19) neporuší ani další, pro jednoduchost zde opomíjená podmínka, tj. podmínka maximálního rozdílu hlasitosti od jednotlivých reproduktorů, která se v praxi uplatňuje při velmi malých vzdálenostech od reprodukční báze (menších než 1 m). I zde však platí, že čím menší je reprodukční báze, tím širší získáme poslechový prostor (extrémem jsou právě sluchátka). Z této druhé podmínky pro kvalitní stereofonní poslech si stačí odvodit, že vzdálenosti posluchače od jednotlivých reproduktorů se nesmí příliš lišit; tato podmínka dovoluje jen mírně "stočit" akustické osy rozvážením kanálů.

Při uspořádání poslechového prostoru se z důvodů geometrického rozložení zářičů a křesel v místnosti využívá mírného rozvážení kanálů, které stočí osu středového poslechu; toto uspořádání je možné (jsou-li poslechová místa ve vyzařovacím úhlu vysokých kmitočtů obou reproduktorových soustavnebo musí být soustavy natočeny), ale vede

Obr. 57. Stočení akustické osy zářičů stereofonních kanálů

vždy k absolutnímu zmenšení užitné poslechové plochy (obr. 57).

Ke stanovení velikosti reprodukční báze můžeme použít vztah pro maximální poslechovou vzdálenost, kterou položíme rovnu největší vzdálenosti mezi záříči a "zadní" stěnou místnosti. Tak např. pro místnost z našich příkladů, která má půdorys 5,3 × 4,7 m, bude vhodná reprodukční báze 5,3/2,5 = 2,1 m, budou-li reproduktory na kratší ze stěn; budou-li na delší straně, pak 4,7/2,5 = 1,9 m. Podobné jednoduché pravidlo pro místnost v kulturním domě (8×13 m) z našich příkladů použít nemůžeme, poněvadž je nutné brát ohled i na nejmenší poslechovou vzdálenost, která by např. při bázi 13/2,5 = 5,2 m vyžadovala odstup prvních řad poslouchajících $L_n =$ = $5.2 \cdot 0.8 = 4.2$ m. V takových případech je nutné hledat vhodný kompromis také s ohledem na dozvukovou vzdálenost místnosti; např. při bázi 3 m by bylo $I_m = 2.8 \text{ m}$ a $k_{\rm M} = 9$ m. Pro nikoli hi-fi, ale dobrý kvalitní poslech by była šířka poslechového prostoru ve vzdálenosti 9 m asi 5 m a neobsáhla by tedy ani celou šířku místnosti. Při podrobném rozboru bychom ziistili, že v místnosti je možné umístit (v těsných řadách) asi 25 až 28 křesel s dobrými poslechovými podmínkami pro stereofonní reprodukci a asi 55 až 60 křesel pro kvalitní monofonní poslech.

Rozmístění zářičů

Jak již bylo dříve uvedeno, je 95 % úspěšně ozvučených prostorů ozvučováno tzv. centrálním zářičem, tzn., že jediným zářičem případně blokem zářičů je zajištováno ozvučení celého prostoru. V amatérské praxi při ozvučování menších poslechových prostorů lze tuto podmínku takřka vždy dodržet a z hlediska reprodukte hi-fi je nutno zamítat tzv. pomocně reproduktory, které nepomáhají vlastnímu ozvučení prostoru, ale mají vyvolávat dnes již vývojem překonané třídimenzionální (3 D) ozvučování. Za centrální ozvučení prostoru, je-li použita jediná dvojice zářičů.

Zvláště u stereofonní reprodukce je umístění jakýchkoli dalších zářičů pro vjem směrové lokalizace nebezpečné. Pouze u dvou a půlkanálového stereoambiofonního přenosu je umístění "zadního" zářiče, přenášejícího ambiofonní složku ze snímacího prostoru, přínosem k vjemu bezprostřední účasti posluchače v originálním prostoru.

sluchače v originálním prostoru.

Podmínku centrálního ozvučení porušuje u stereofonní reprodukce i samostatný hlubokotónový reproduktor, umístěný ve středu reprodukční báze a přenášející nejnižší kmitočty z obou stereofonních kanálů. Tyto způsoby rozmnožování počtu zářičů, ať při monofonní či stereofonní reprodukci, jsou vždy krokem zpět od poslechu hi-fi. I když jsou někdy schopny vyvolat vjemí efektní, není to vjem věrný a pro seriózní poslech hi-fi je nutno je odmítat tak, jako obchodní slogan n. p. TESLA Valašské Meziříčí ze šedesátých let "Zvýšením počtu reproduktorů zlepšíte Váš (pozn. "i náš") příjem".

Při ozvučování menších prostorů se tedy jedná vždy spíše o ozáření určitého poslechového místa než o poslechovou plochu. Proto je centrální ozvučení vždy použitelné, je možné i jednoznačně směrovat zářiče a poslechová hladina bude v celém poslechovém místě stejná, nebo přinejmenším vyrovnaná, protože poslechové místo neobsahuje více než několik křesel.

Pro ozvučení větších prostorů nemusíme již s centrálním ozvučením dosáhnout jednak vyrovnané posjechové hlasitosti, jednak rovnoměrného ozáření celé poslechové plochy vysokými kmitočty. Jedna či druhá podmínka pro velmi kvalitní poslech nás někdy donutí použít další zářiče, umístěné ve větší vzdálenosti od hlavních zářičů. Nejhrubší chybou by bylo umístit odděleně pouze pomocné vysokotónové zářiče, protože centrální hlubokotónový zářič by podmínky rovnoměrného ozáření celé poslechové plochy splňoval; prostorové oddělení zářiče hlubokotónového a vysokotónového vyvolává dojem neskutečnosti, dezorientace a nepříjemné pocity. I když se ve velkých prostorech (divadla, společenské sály) takřka nikdy nepodaří zajistit podmínky reprodukce hi-fi, velmi kvalitní monofonní reprodukci lze zajistit vždy. Při velmi pečlivém návrhu lze zajistit i podmínky pro velmi kvalitní stereofonní reprodukci, ale vždy musí určitý zářič (dvojice zářičů) zajišťovat ozáření určité části plochy auditoria kompletním signálem v celém kmitočtovém rozšahu.

Určitým zářičem má být ozářena jen určitá plocha auditoria – je tedy třeba využívat směrových zářičů. Směrovým vlastnostem zářičů jsme věnovali takovou pozornost proto, poněvadž u místností s půdorysnou plo-chou větší než asi 100 m² již nezaručíme již nezaručíme velmi kvalitní ozvučení bez směrových zářičů. Takové prostory se v praxi hifiklubů Svazarmu běžně vyskytují, a u nich nevystačíme již s obvyklou praxí pravidel pro ozvučování poslechového místa v obytné místnosti. Pro dosažení vhodných akustických vlastností by bylo nutno např. zdvojnásobit celkovou pohltivost prostoru, aby se zmenšila energie odražených zvukových vln (zvětšení dozvukové vzdálenosti); přitom zdvojnásobit celkovou pohltivost může být otázkou statisíců korun na akustických úpravách místností. Použijí-li se však zářiče s dvojnásobným činitelem směrovosti (aby se dosáhlo stejné dozvukové vzdálenosti, viz vztah (44)), dosáhne se účelu mnohonásobně levnějí a je-li směrování účinné, i vhodněji.

J V ploše auditoria budou však existovat části, kam zasahují přímé signály sé stejnou intenzitou od různých zářičů; tam bude poslech i u monofonní reprodukce méně kvalitní. Nalezneme také plochy, v nichž bude poslechová hladina příliš vysoká (v blízkosti zdrojů) nebo příliš nízká (v koutech, zastínění apod.). Pro informaci lze uvést, že v poslechových sálech s plochou auditoria nad 100 m² se podaří zajistit velmi kvalitní poslech na asi 60 % plochy při monofonní a asi na 25 % plochy při stereofonní reprodukci. Čím menší je místnost, tím je i menší procento užitné plochy.

Decentralizované ozvučování, tj. ozvučení prostoru velkým počtem málo výkonných zářičů, si nemůže nikdy klást požadavek reprodukce hi-fi, i když je nanejvýš vhodné pro přenos řečového signálu do prostorů s vyšší hladinou hluku pozadí. Tyto informační ozvučovací systémy nejsou vhodné pro hudební signály.

Určitým řešením u velkých prostorů je ozvučování tzv. padající vlnou, při němž je použit velký počet málo výkonných záříčů, umístěných ve stropě místnosti. Návrh musí být velmi pečlivě propracován a může být pro kvalitní přenos monofonní hudby úspěšný jen potud, pokud veškerá přímo vyzařovaná energie dopadá na plochu auditoria s velkým činitelem pohltivosti (α ≥ 0,35). Pro neobvyklost a náročnost mu nebudeme věnovat další pozornost.

K rozmístění zářičů platí ještě jedno pravidlo vycházející z psychofyziologických zákonitostí, nebo spíše zkušeností. Zářiče nemají být umisťovány v horní polovině místnosti ve výšce větší než asi 2 m, u vysokých místností 3 m, a nemají být ani blízko nad podlahou. Souvisí to s poslechovými zkušenostmi – zvuk orchestru při přímém poslechu přichází k posluchači mírně shora (obr. 58).

Obr. 58. Umístění zářičů ve výškovém profilu místnosti

Zářiče umístěné příliš vysoko vzbuzují dojem mimořádnosti a jsou vhodné snad jedině pro varhanní hudbu, kterou jsme zvyklí takto poslouchat. Při příliš nízkém umístění zářičů by zdroj zvuku mohl být zastíněn.

Rozmístění zářičů pro kvadrofonní reprodukci se řídí pravidly pro stereofonní reprodukci, aplikovanou ve dvou na sebe kolmo orientovaných směrech. Užitná poslechová plocha v obytných místnostech nepřekročí plochu jednoho křesla. Nejlepších výsledků dosáhneme při rozmístění zářičů v rohu čtverce bez ohledu na tvar půdorysu místnosti (obr. 59). Podle dosavadních zkušeností

Obr. 59. Užitná poslechová plocha při kvadrofonní reprodukci

není u zatímních systémů maticové kvadrofonie ve větších sálech naděje pro více než 4 až 8 křesel bez ohledu na absolutní velikost sálu.

Vliv poslechového prostoru

Přísně vzato by měl mít poslechový prostor stejné akustické vlastnosti a stejné geometrické rozměry a tvary, jako prostor, v němž byl snímek pořízen. To je požadavek nesplnitelný, proto máme v poslechovém prostoru zaručit alespoň to, aby se vlastnosti snímacího prostoru mohly ve výsledném vjemu uplatnit význačnou měrou.

Doba dozvuku má být kratší než ve snímacím prostoru a proto se snažíme spíše o kratší doby dozvuku, než jaké jsou optimální (viz obr. 31 a příslušný text); poslechový prostor však nepřetlumíme, nebot i jeho vlastnosti mají pro výsledný vjem základní důležitost.

Poslechový prostor má mít dobrou "akustičnost", což znamená, že např. nemá mít konkávní nebo konvexní plochy, které by zvukovou energii soustřeďovaly nebo o ni ochuzovaly určité části místnosti, nemá být nejen geometricky, ale ani akusticky nesymetrický-(jedna stěna s okny, druhá s velkou pohltivostí) a neměl by samozřejmě vytvářet ozvěnové signály. S jistým druhem ozvěnových signálů se můžeme setkat i v malých místnostech, které jsou spojeny se sousedními prostory. Tak hala, užívaná jako poslechový prostor se může projevit jako nevhodná, je-li spojena schodištěm s vyšším patrem. Zákon schválnosti vytvoří jistě někde odraz ve vzdálenosti větší než 17 m a ozvěna je tu;

nemusíte si ji uvědomovat, ale projeví se jako "něco" u signálů některých kmitočtů.

V bytech můžeme při poslechu využít závěsů k zakrytí velkých okenních ploch, které akusticky "rozváží" prostor a jakoby stočí akustickou osu při stereofonním poslechu. Podobně můžeme zakrýt volně řasenou tkaninou i vstup do vedlejších prostorů (schodiště z haly). Tkanina musí být skutečně volně řasena (asi 2,5násobná šířka, než by bylo třeba); použijeme nikoli nějaké lehké záclony, ale alespoň tzv. dekorační tkaninu.

Velmi nepříjemné je např. drnčení skel, které však identifikujeme snadno. Horší jsou někdy velmi těžko odhalitelné rezonance předmětů v místnosti; při jejich hledání je každá rada drahá a jako jediná se uplatní trpělivost spolu s tónovým generátorem, u něhož měníme velmi pomalu kmitočet budicího signálu. Této práci věnujte vždy velkou pozornost, i když při běžném poslechu nic neslyšíte, zkuste s velkým výkonem budit "místnost" z generátoru a zcela určitě "něco" naleznete (např. z místnosti musel být odstraněn telefonní aparát a vyměněn požději za jiný).

Dobré difuzitě akustického pole napomáhá vysoká členitost prostoru; "rozbijte" velké rovné odrazné plochy, jako např. stěny místnosti, obrazy nebo závěsnou skříňkou, skříňové stěny otevřenými výklenky, okna zakryjte (alespoň při poslechu) tkaninovým závěsem. Neumisfujte reproduktorové soustavy do blízkosti jiných předmětů, které by při poslechu mohly buď stínit, nebo působit naopak jako odrazné (z tohoto hlediska není např. vhodně umístěn pravý reproduktor v obr. 56, nedáme-li alespoň falešný závěs na nejbližší část stěny).

Při volbě orientace akustické osy v poslechovém prostoru přednostně umistujeme zářič u kratší stěny místnosti (poslechová osa ve směru většího rozměru místnosti). Podobně se, je-li to možné, budeme snažit, aby akustická osa prostoru byla shodná s jeho podélnou geometrickou osou.

Při rozmisťování zářičů nezapomeňme na přenos nízkých kmitočtů místností tak, jak bylo uvedeno.v části "Vlastní kmity prostoru" a teprve po přezkoušení (tónový generátor nebo alespoň měřicí gramofonová deska s klouzavým tónem) určíme definitivní polohu zářičů a poslechových míst.

Uvedené zásady jsou pouze směrné a v určitém konkrétním případě se mohou projevit někdy podstatně, někdy vůbec ne. Popsat poslechový prostor zcela přesně nelze, proto nelze stanovit ani jednoznačné zásady k jeho navržení

SNÍMÁNÍ ZVUKU

Umístění snímacího mikrofonu při nahrávání

Při snímání zvuku musíme vycházet z dobré znalosti akustického pole v prostoru, kde má být snímáno. Mnohokrát se již v praxi potvrdilo, že většina neúspěšných zvukových snímků byla zaviněna nedodržováním zásad správného snímání zvuku, a že v daleko menší míře je jakost snímku určována jakostí technického zařízení. Na tomto místě se

Obr. 60. Umístění snímacího mikrofonu v uzavřeném prostoru

nechceme zabývat případy, kdy je k dispozici velký počet snímacích cest a dokonalý mixážní stůl, ale naopak případy, kdy se nejlepších výsledků dosáhne nejjednoduššími prostředky v takřka improvizovaných poměrech.

O tom, zda se dosáhne správného poměru mezi zvukem přímým a odraženým, rozhoduje umístění snímacího mikrofonu. Vzdálenost snímacího mikrofonu se nemá příliš lišit od dozvukové vzdálenosti r_d podle vztahu (44). Zvukový snímek se správně voleným poměrem mezi přímým a odraženým zvukem nese i při jednokanálovém přenosu známky geometrického rozložení zvukového zdroje. Lze u něho rozlišit blízký a vzdálenější zdroj, použijeme-li pro snímání mikrofon s kardioidní směrovou charakteristikou, tj. mikrofon, který odevzdává výstupní napětí úměrné jak tlakové, tak i rychlostní složce zvukového signálu. V akustickém poli nepříliš vzdáleném zvukovému zdroji je v poli kulových zvukových vln mezi akustickým tlakem a akustickou rychlostí fázový posuv, uplatňující se i ve výsledném signálu (tab. 14). Snímáme-li zvukový signál mikrofonem s kulovou směrovou charakteristikou, tj. mikrofonem reagujícím pouze na tlakovou složku signálu, nebo mikrofonem s osmičkovou směrovou charakteristikou, reagujícím pouze na rychlostní složku, nemohou se vlivy přenášející informaci blízko-daleko uplatnit a snímky jimi pořízené působí nevýrazně, ploše. Tyto mikrofony snímají navíc nežádoucí zvuky ze zadních prostor snímací místnosti. Při snímání kardioidním mikrofonem se uplatňují obě složky, a to v různých poměrech pro pole z menší či větší vzdálenosti zvukového zdroje. Pojem blízký je ovšem relativní, neboť závisí na poměru skutečné vzdálenosti snímacího mikrofonu a zvukového zdroje k vlnové délce zvukové vlny. Tedy i poměr složky tlakové a uplatňující se složky rychlostní se mění podle dopadajícího zvukového signálu (přesněji podle jeho vlnové délky). To je ovšem v souhlasu s poměry, vznikájícími ve sluchovém ústrojí při přímém poslechu a vnímání zvuku, a tedy i v souhlasu se získanými subjektivními zkušenostmi, které se uplatní i při poslechu reprodukovaného signálu. Na druhé straně má tento jev i nepříznivé důsledky, neboť např. při kardioidním mikrofonu umístěném příliš blízko zdroje se zdají snímané signály nízkých kmitočtů orientovány blíže než vysokých tónů. Tak např. nejmenší vhodná vzdálenost snímajícího kardioidního mikrofonu od klavíru je asi 3 m při uvažovaném kmitočtovém rozsahu 30 až 4000 Hz. Podobně i sopránový hlas při kmitočtu 500 Hz a vzdálenosti od mikrofonu 0,4 m dává stejný vjem vzdálenosti jako basový hlas o kmitočtu 200 Hz při vzdálenosti asi 1 m. O subjektivním vjemu rozhodují převážně složky zvukovéhosignálu do 500 Hz a u zdroje s kmitočtovým spektrem nad 500 Hz nemůžeme očekávat, že bude vyvolán výrazný dojem blízkosti či vzdálenosti zdroje zvuku.

Pĺně se mohou tyto jevy uplatnit pouze tehdy, nejsou-li vlny přímé překrývány vlnami odraženými či dozvukem. Jsou-li tedy vlna přímá i odražená v rovnováze, má být vzdálenost mikrofonu od zdroje zvuku rovna dozvukové vzdálenosti: za činitel směrovosti

Q_M ve vztahu (44) dosadíme údaje z tab. 19. Podle zkušenosti z praxe se považuje za optimální, platí-li pro umístění mikrofonu, že je jeho vzdálenost od zdroje zvuku I menší než r_d; při I < r_d převažuje ve zvukovém snímku signál přímého pole a odražené vlny se potlačují se zmenšující se vzdáleností l. Zmenšení vzdálenosti Í tak, že se odražené vlny neuplatní vůbec, vede však k tomu, že se zvukový snímek podobá spíše snímání ve volném prostoru a nikoli v uzavřené místnosti a snímky působí ostře až řezavě a odporují zkušenosti. Zvukový snímek lze tedy "vyvá-žit" změnou vzdálenosti. "Polykání" mikrofonů zpěváky lze ve zvukovém snímku opravit pouze tehdy, má-li orchestr (či spíše každá jeho část) vlastní mikrofony a dozvuk se vytváří uměle nebo dalšími mikrofony. Vždy však platí, že vyvážit snímek pořízený několika mikrofony je nesrovnatelně obtížnější, než dosáhnout dobrého záznamu s jediným mikrofonem. Soustava mikrofonů je citlivá i na změnu úrovně 1 dB a na velmi malé změny polohy zdrojů (zpěváků či sólistů) vzhledem k mikrofonu. To vše vyžaduje náročné a dobře vybavené mixážní stoly a především cit a jasný záměr u hudebního režiséra. Takové snímky jsou sice líbivé, ale nikoli skutečné, věrné. Snímání v blízkém akustickém polí zdroje zvuku je technicky nesprávné a je spíše současnou módní záležitostí (porovnej také s kmitočtovým "zkresle-ním" podle bodu d) v dalším textu). Nejkva-litnější zvukové snímky (i velkých hudebních těles jako je filharmonie) pořizoval nositel Řádu práce, F. Burda, jediným kardioidním mikrofonem.

Při volbě 1<ra> r_d napomohou, k vyvolání</ra> dojmu orientace ještě přechodné jevy, dorazí-li odražená vlna k mikrofonu s časovým zpožděním (podle zkušenosti a subjektivního hodnocení) v rozmezí 20 až maximálně 50 ms za vlnou přímou. Pro vzdálenost mikrofon-zdroj zvuku 2_M [m], rovnoběžnou s nějbližší stěnou a vzdálenou od této stěny lms [m], můžeme určit časové zpoždění τs [ms] mezi přímou a první odraženou vlnou

$$\tau_s = 3\sqrt{I_{ZM}^2 + 4I_{ZM}^2} - I_{ZM}[ms; m, m]$$
 (93).

Rozdíl mezi vzdáleností km, tj. dráhou, kterou proběhne přímá zvuková vlna, a nejkratší vzdáleností, kterou musí proběhnout vlna odražená, nesmí být větší než 17 m a neměla by být menší než 6 m.

Liší-li se dráhy zvukových paprsků přímého a odraženého signálu o méně než 6 m, mohou v akustickém poli u snímacího mikrofonu vznikat interference, které vyruší signály určitých kmitočtů (a zdůrazní jiné). Jde o kmitočty, pro něž je rozdíl drah roven lichému násobku poloviny vlnové délky zvuku. Tento případ se významně uplatní např. tehdy, je-li vzdálenosť zdroje zvuku od mikrofonu větší než výška mikrofonu nad podlahou. Přenosová kmitočtová charakteristika se zvlní a znemožní věrnou reprodukci. Vyloučit tyto nechtěné odrazy lze poměrně snadno, i když způsob, jímž se toho dosáhne, vyvolává překvapení až nedůvěru (obr. 61).

Obr. 61. Snímací mikrofon na podlaze při snímání velkoplošných zdrojů zvuku, kdy je nutné, aby lzm>rd

Vzdálenost od podlahy musí být však skutečně minimální (nejvýše 2 cm, což odpovídá N2 pro 8500 Hz); čím méně, tím lépe. Přezkoušíte-li tento způsob snímání u velkoplošných zdrojů zvuku (hudební skupina, pohyb po jevišti atp.), budėte překvapeni "vyčištěním" signálu; mezi mikrofonem a zdrojem (zdroji) zvuku nesmí být ovšem žádná stínicí překážka a na mikrofon se nesmí přenášet otřesy podlahy

Dosud uvedené zásady platily pro snímání monofonní. Stereofonní snímání systémem oddělených mikrofonů (systém A-B) je pro improvizované podmínky, které máme na mysli, velmi obtížné a zásady, které by musely být respektovány, přesahují rámec této stručné informace. Stereofonní snímání intenzitní, systémem soumístných mikrofonů, se řídí stejnými zásadami, jaké byly uvedeny pro monofonní snímání, pokud použijeme systém M-S! (nikoli systém X-Y), a pokud respektujeme středové umístění podélné ose snímací místnosti, a to jak u zdroje zvuku, tak i snímacího stereofonního mikrofonu. K dosažení vhodného poměrupřímého a odraženého zvuku musí se mikrofon umístit s ještě větší pečlivostí než při jednokanálovém snímání. Stereofonní mikrofon musí být co nejpřesněji orientován směrově. Naopák drobné nepřesnosti v souměrnosti vlastností snímací místnosti můžeme vyrovnat citlivým "vyosením" hlavní snímací osy mikrofonu.

Souhrnně platí tyto zásady:

a) dáme přednost mikrofonu kardioidnímu před kulovým nebo osmičkovým,

b) při možnosti volby použijeme mikrofon kondenzátorový (lze očekávat lepší kmitočtovou charakteristiku),

c) mikrofon umistujeme do vzdálenosti menší než r_d asi 0,8 r_d (je-li to možné, měla by být vzdálenost mikrofonu a zdroje zvuku od nejbližší stěny větší než asi 3 m a nesmí být větší než 8,5 m, nemá-li stěna dostatečnou pohltivost),

d) pro snímání zdroje zvuku s větším kmitočtovým rozsahem by měl být mikrofon umístěn ve vzdálenosti větší než asi 100/f_d, kde fd je nejnižší přenášený kmitočet.

Kondenzátorový mikrofon se doporučuje proto, že i kvalitní páskové mikrofony při vzdálenosti zdroje zvuku menší než asi 1 m potlačují signály nízkých kmitočtů a mikrofony cívkové (dynamické) mívají v oblasti nízkých kmitočtů rezonanci, která způsobí změnu poměru tlakové a rychlostní složky, čímž zkreslí informaci pro vyvolání dojmu blízko-daleko.

V každém případě jsou uvedené zásady pouze hlavními hledisky a nemohou postihnout rozdílnost různých místností.

Zvukový snímek by bylo možné zlepšit umístěním dalšího mikrofonu (snímajícího odražené vlny) tak, aby zpoždění odpovídalo vztahu uvedenému pro τ_s; mikrofon dodávající snímku ozev sálu by musel být ve vzdále-

$$l_{ZM}^{\prime} = \sqrt{l_{ZM}^{2} + 4l_{Ms}^{2}} - l_{ZM}$$
 (94)

ve směru za hlavním mikrofonem (obr. 62).

Obr. 62. Umístění pomocného dozvukového mikrofonu M' v uzavřeném prostoru

Při míchání pomocného signálu k signálu hlavního mikrofonu volíme úroveň o 6 až 10 dB nižší, než jakou má signál hlavní (nikoli úroveň hudebního signálu, ale absolutní zmenšení citlivosti pomocného mikrofonu při stejné citlivosti obou mikrofonů). U pomocného mikrofonu je třeba (nejrychleji subjektivně) přezkoušét vhodnou polaritu odevzdávaného napětí proti napětí hlavního mikrofonu. Při nesprávné polaritě se zdá snímek rozmazaný, a to především při snímání sólistů v blízkosti mikrofonu. Pomocný signál napomáhá jak vjemu prostorové orientace, tak i vhodně doplňuje dozvuk, pro který by však dostačovaly úrovně nižší přibližně o 10 dB, než jaké má signál mikrofonu snímajícího přímé zvukové vlny. Směrová charakteristika pomocného mikrofonu může být jak kulová, tak osmičková. Popsané uspořádání nelze však použít vždy, buď proto, že jsou zároveň snímány i rušivé, nežádoucí zvuky, nebo proto, že se na snímku takto zdůrazněný dozvuk místnosti projeví naopak přehnaně, nevhodně.

Pomocný mikrofon (popř. i několik mikrofonů) ve vhodné vzdálenosti je nezbytný při snímání ve volném prostoru a doplňuje zvukový snímek alespoň náznakem dozvuku, který u těchto snímků jinak chybí vůbec; bez dozvuku, třeba i uměle odvozeného, působí zvukový snímek prázdným dojmem bez jakékoli zvukové perspektivy, podobně jako při snímání v uzavřeném prostoru, kdy je mikrofon v bezprostřední blízkosti akustického zdroje.

Snímek musí být pořizován v místnosti odpovídající svou velikostí tomu, jaký zvukový obraz chceme získat. Např. pětičlenná hudební estrádní skupina by v místnosti pokojové velikosti či v neúměrně velikém sále "vyšla" na snímku nepřirozeně, naproti tomu komorní kvarteto snímané ve velikém studiu či plenéru nemůže dát snímku bez zvláštních opatření žádaný dojem "komornosti". Drobných úprav můžeme dosáhnout přiblížením mikrofonu při dojmu neúměrně velikého prostoru, nebo vzdálením wikrofo-nu od zdroje zvuku při dojmu malého prostoru.

Dojem prostoru je těsně svázán s vnímanou velikostí doby dozvuku ve vztahu k poměru přímých a odražených vln. Je samozřejmé, že lépe a jemněji můžeme výsledný dojem prostoru ovlivnit změnou doby dozvuku nebo přímícháním umělého dozvuku přetlumených místností (s malou, kratší dobou dozvuku, než je optimální). Zvláště u jazzové a lehké hudby jsou v poslední době používány delší doby dozvuku, než jaké jsou udávány jako optimální. Zlepšuje se tím barvitost a ozev tónů a snímky jsou subjektivně dynamičtější, pokud tím ovšem není narušena jejich průzračnost a srozumitelnost nebo esteticko-umělecká hlediska. Takových výsledků lze ovšem jen těžko dosáhnout bez vytvoření umělého dozvuku. Dobu dozvuku není možné zvětšovat zvětšováním poměru signálu vln odražených k signálu vln přímých. vzdalováním mikrofonu nad dozvukovou vzdálenost rd nebo rdQ.

Jinou otázkou při pořizování zvukového snímku je vlastní zvuková režie. Tak jako úspěšnou fotografii nedělá jen dokonalá technika zpracování, ale i volba a úprava záběru, je i pro zvukový snímek nutný především jasný záměr, režijní připravenost a především u hudebního snímku režijní umělecké zpracování. Z technického hlediska je nutné při rozmístění hudební skupiny respektovat i směrové charakteristiky jednotlivých hudebních nástrojů a jejich maximální zvukový výkon. Zároveň je třeba brát zřetel i k jejich obvyklému umístění v celém

hudebním tělese. Znamená to: hlouběji zabarvené nástroje vpravo (od dirigenta) a hlasitější z nich vzadu, výše laděné nástroje vlevo, sólisté vlevo vpředu. Z technické stránky je zvuková režie snímku odkázána hlavně na řízení vzájemné a vyrovnané úrovně jednotlivých nástrojů pro dosažení sledovaného záměru a zároveň na řízení úrovně celkového zpracovávaného signálu. Při znalosti dynamického rozsahu celé záznamové či reprodukční cesty je důležité využívat v hlasitých partiích největší přípustné úrovně, v ti-chých pasážích lze (ovšem citlivě a při dobré znalosti nahrávaného pořadu – s partiturou v ruce) úroveň signálu relativně zvětšit. To se ovšem musí dít velmi zvolna, před příchodem vlastní tiché pasáže a úroveň se musí včas opět vrátit, aby aní první ze silných signálů nepřemoduloval přenosovou cestu. Jde o zásah velmi úspěšný pro výslednou jakost záznamu, ale není-li dokonalý a dělán s citem, je lépe ho nepoužívat. Různé expandery a kompresory měnící automaticky dynamiku signálu nemohou tento lidský zásah nahradit, aniž by nenarušily jakost snímku. Použe nenáročná jazzová hudba dovoluje použít omezovače, zabraňující přemodulování záznamové cesty při hlasitých partiích a malé vzdálenosti účinkujících od mikrofonu.

Při přenosu řečového signálu je postavení mikrofonu vůči řečníkovi vázáno především dosahovanou srozumitelností. To situaci zjednodušuje, poněvadž bychom nemuscli brát zřetel na odražené signály – mikrofon bychom mohli postavit do vzdálenosti mnohem menší (3 až 5krát), než je dozvuková vzdálenost prostoru. Při určení dozvukové vzdálenost podle vztahu (44) nahradí činitel směrovosti reproduktoru $Q_{\rm R}$ "činitel směrovosti reproduktoru $Q_{\rm R}$ "činitel směrovosti řečníka. Za $Q_{\rm R}$ dosazujeme 2,5; tento údaj platí pro obvyklé energetické rozložení jednotlivých kmitočtů v řečovém signálu. Volbou typu mikrofonu a tím jeho $Q_{\rm M}$ (podle tab. 19) můžeme dosáhnout změny dozvukové vzdálenosti a tím vzdálenosti řečník–mikrofon v poměrně velkém rozsahu.

Avšak i přenos řečového signálu by neměl znít suše, což můžeme očekávat při popsaném umístění nikrofonu ve vzdálenosti přibližně $r_d/4$. Vezmeme-li v úvahu i částečný přenos dozvukové složky prostoru, můžeme pro určení vzdálenosti řečník-mikrofon $L_{z,M}$ [m] použít tzv. Maxwellův vztah

$$k_{\rm LM} = \frac{\sqrt{kVQ_{\rm M}}}{30T} \tag{95},$$

kde V je objem místnosti $[m^3]$, Q_M je činitel směrovosti použitého mikrofonu [-], Tdoba dozvuku [s] a k je násobitel v rozsahu 0.5 až 2 (při 0.5 "suchý" přenos, při k blížícím se 2 jsou v přenosu silně zdůrazněny dozvukové složky). Podlé subjektivních testů na straně reprodukční jsou nejpříznivější poměry při k = 1. Použijeme-li k = 1 a zavedeme-li do vztahu (95) dozvukovou vzdálenost, má být nejpříznivější vzdálenost

$$I_{Z,M,} \approx \frac{r_0}{\sqrt{3T}}$$
 [m; m, s] (96).

Tak je, jako prozatím vše, co jsme si již uvedli, určena vzdálenos! $k_{.M}$ pro řečový signál pouze tehdy, nezavádíme-li snímaný signál zpět do téhož prostoru, tedy není-li prostor přizvučován.

Snímací technika má své záludnosti, které vedou k méně kvalitním výsledkům – jejich příčina je častěji na straně snímaného zvukového pole a jeho nedokonalé znalosti než v technickém vybavení.

Přizvučování

Jestliže ozvučováním označujeme zavedení reprodukovaného zvukového signálu do prostoru, ve kterém originální zvuk snímán není, je to veliký rozdíl proti stavu, kdy v témže prostoru signál snímáme a zesílený znovu reprodukujeme. Tento technicky daleko obtížnější úkol odlišujeme proto někdy názvem přizvučování. Použili jsme širokého výrazu prostor, neboť přizvučovat můžeme jak uzavřený tak i volný prostor.

jak uzavřený, tak i volný prostor.

V obou případech se může vytvořit uzavřená smyčka cestou: mikrofon – zesilovač – reproduktor – prostor – mikrofon. Touto cestou se může uzavřít akustická zpětná vazba. Akustická (zpětná) vazba vzniká tehdy, je-li v místě snímacího mikrofonu akustický tlak vyvozený reprodukovaným signálem větší než akustický tlak dopadající na mikrofon od originálního zdroje zvuku, je-li tedy zesílení ve smyčec (včetně přenosu prostorem) větší než 1. Při přizvučování vzniká kladná zpětná vazba přes prostor vždy, ale akustickou vazbou rozumíme až vlastní "rozhoukání" systému. A v tom právě tkví nebezpečí při přízvučování.

U přizvučování je snahou umístit reproduktory co nejblíže zdroji zvuku, aby se shodovaly směry šíření zvuku a nenastával tak rozpor mezi optickým a akustickým vjemem. Tomu však odporuje podmínka, aby na mikrofon dopadal co nejmenší reprodukovaný signál a co největší originální signál. Současně se uplatňuje i rozdíl časových doběhů (obr. 63). Zde může pomoci

Obr. 63. Nejdříve má k posluchači dorazit přímá primární vlna; proto mají být reproduktory "za" řečníkem, pak je však mikrofon v poli jejich vyzařování

pouze směrové vyzařování a směrované snímání (obr. 64) využitím akustických vysílačů a přijímačů s výraznými směrovými účinky (obr. 65 a 66).

Zavedeme-li do prostoru zesílený signál, můžeme z podmínky, aby na mikrofon dopadal zesílený signál s menší intenzitou než signál originální, odvodít podmínku pro stabilitu systému proti akustické vazbě. Je-li akustický výkon originálního zdroje zvuku

Obr. 64. Využitím směrové charakteristiky sloupu mají všichni posluchači stejnou hlasitost L a mikrofon může být umístěn přímo pod zavěšeným sloupem (doba doběhu přímé vlny k posluchači je kratší než vlny z reproduktoru)

Obr. 65. Využití směrových měničů při uspořádání reproduktorového sloupu a kardoidního mikrofonu v malém sále

Obr. 66. Pro přizvučování vhodná ostře směrová charakteristika ochudí posluchače v krajích sálu o vysoké kmitočty (porovnej s obr. 49)

 P_Z a akustický výkon dodávaný do prostoru reproduktory P_R , pak musí v uzavřeném prostoru platit podmínka stability

$$\frac{P_R + P_Z}{r_d^2} < \frac{P_Z}{\hat{f}_{ZM}^2}$$
 [W, m; W, m] (97).

kde r_0 je dozvuková vzdálenost a $l_{\rm ZM}$ je vzdálenost zdroj zvuku-mikrofon.

S bezpečností proti "rozhoukání" 6 dB (signál dopadající na mikrofon z reproduktorů je poloviční oproti signálu originálního zdroje) platí

$$2\frac{P_{R}}{P_{L}} \le \left[\left(\frac{r_{dR}}{L_{M}} \right)^{2} - 1 \right] \tag{98}.$$

je-li r_{dr} dozvuková vzdálenost při uvažování činitele směrovosti reproduktoru. Pro hrubou informaci lze uvést, že průměrný akustický tlak ve vzdálenosti 1 m před ústy běžně hovořícího muže bývá 0,1 Pa (asi 75 dB), při zvýšeném hlasu asi 0,3 Pa (asi 85 dB). Při respektování vyzařovací charakteristiky úst tomu odpovídají akustické výkony 0,1 a 1 mW.

Můžeme tedy určit např. maximální akustický výkon reproduktorů v místnosti kulturního domu (při $Q_R \approx 4.2$ je $t_{\rm dR} = 1.74 \sqrt{4.2} \approx 3.56$ m) při vzdálenosti úst řečníka od mikrofonu $t_{\rm ZM} = 0.4$ m podle upraveného vztahu (98)

$$P_{\rm R} = P_{\rm Z} \left[\left(r_{\rm dR} / I_{\rm ZM} \right)^2 - 1 \right] / 2$$
 (99);

tedy $P_{\rm R}=(10^{13}(3.56/0.4)^2-1)/2=39.1$ mW. při učinnosti reproduktorů 1 % bude maximálně použitelný elektrický příkon reprudktoru (nebo všech repruktorů dohromady) 3,9 W; tento příkon je v místnosti schopen vyvolat difúzní hladinu akustického tlaku (tj. hladinu ve vzdálenosti větší než $r_{\rm dR}=3,6$ m podle vztahu (84)) $L_{\rm p}=93,3$ dB. Řečník sám ($P_{\rm Z}=1$ mW) by vyvolal difúzní hladinu 77.4 dB.

Uvážíme-li, že na kritických kmitočtech místnosti (vztah (45)) mohou maxima přesahovat průměrnou hlasitost o 10 až 15 dB, nemusí být vztahy (98) a (99) uvažovaná bezpečnost 6 dB dostatečná a je lépe uvažo-

vat přípustné výkony P_R poloviční až třetinové, než jaké udává rovnice (99).

Pro rychlou informaci uveďme odhadové vzdálenosti l_{zm} , mikrofon-originální zdroj zvuku, a l_{zm} , mikrofon-reproduktor:

$$I_{MZ} < \frac{r_{dZ}}{2} \text{ a } I_{MR} > r_{dR}$$
 [m] (100);

kde r_{uz} je dozvuková vzdálenost při uvažovaném činiteli směrovosti originálního zdroje zvuku. Jinak řečeno: mikrofon musí být v poli přímých vln originálního zdroje zvuku, ale v dozvukovém poli všech zářičů. Většinou s těmito odhady při instalaci vystačíme a pouze u náročných prostorů kontrolujeme i maximální příkony reproduktorů.

Na volném prostranství vycházíme z tzv. dosahu zdroje, kterým rozumíme vzdálenost od zdroje zvuku, v níž je v daném prostředí (např. podle hluku pozadí, obr. 52) zvuková energie dostatečné intenzity pro dobrý poslech (obr. 67). Chceme-li přizvučením zvět-

Obr. 67. Půdorysná dispozice pro ztrojnásobení dosahu ve volném prostoru (posluchači ve středu před reproduktorem jsou mimo přirozený dosah)

šit tento dosah Nkrát, pak musí platit

$$I_{MR} \ge NI_{ZM}k \qquad [m; -, m] \tag{101},$$

kde k je koeficient bezpečnosti proti nasazení akustické vazby; volí se 3 až 5 a nesmí být menší než 2. Chceme-li tedy přirozený "dosah řečníka" – asi 9 m – zvětšit na 60 m, musí být při bezpečnosti 3 a vzdálenosti mikro-

Obr. 68. Graf pro přepočet hladin akustického tlaku na akustický tlak a naopak

fon-reproduktor $k_{MR} = 8 \text{ m}$ vzdálenost mikrofon-řečník maximálně $k_{ZM} = 8/(3.(60/9)) = 0.4 \text{ m}.$ Při přizvučování zvuku orchestru musí být bezpečnost proti akustické vazbě značně větší. Již při 10 dB se objevuje zaznívání, které zkresluje přenos a proto maximálně přípustný akustický výkon reproduktorů podle vztahu (99) uvažujeme nejvýše třetinový a koeficient bezpečnosti ve vztahu (101) volíme nejméně 4.

GRAFICKÉ VÝPOČTY

Pro usnadnění výpočtů častěji používaných veličin nebo obtížněji vyčíslitelných výrazů jsou v dalším textu uvedeny jejich nomogramy. Rozsahy nomogramů jsou uzpůsobeny pro běžné výpočty pro místnosti a menší sály; pouze při méně obvyklém výpočtu výkonových zisků by se rozsah grafů mohl projevit jako nedostačující. U každého nomogramu je v průvodním textu uvedeno číslo výrazu, který je zpracován a uveden příklad výpočtu naznačený v nomogramu vstupními a výstupními šipkami s čárkovanými průsečíky pro první z uvedených číselných příkladů. Zúmyslně jsou voleny jiné číselné hodnoty, než u výpočtů přímo v textu. U grafů jsou naznačeny klíče postupu vkládání a čtení hodnot.

Přepočet akustického tlaku p na hladinu akustického tlaku L_p a naopak (obr. 68)

Určeme hladinu akustického tlaku L_p pro akustický tlak 0,17 Pa; jaký by musel být akustický tlak, aby hladina akustického tlaku byla o 9 dB vyšší?

V levé části obr. 68 určíme pro akustický tlak 0,17 Pa zhruba odpovídající hladinu akustického tlaku: 79 dB; v pravé části nalezneme pro akustická, tlak, číselně rovný 1,7, číselnou hodnotu akustického tlaku: 8,7 dB. Hladina akustického tlaku odhadnutá původně na 79 dB bude tedy 78,7 dB. Zpětně pro 78,7 + 9 = 87,7 dB můžeme určit akustický tlak p = 0,49 Pa.

Přepočet poměru veličin na logaritmický poměr v dB (obr. 69)

Na vstup zesilovače přivádíme napětí 3 mV, na výstupu jsme naměřili 1,7 V. Jaký je napětový zisk?

Obr. 69. Přepočet poměru veličin na logaritmický poměr v decibelech; určení jedné z poměrových veličin při známém logaritmickém poměru v decibelech

36

Obr. 73. Vyzařovací úhel \(\beta \) přímovyzařujícího reproduktoru s aktivním průměrem Da pro kmitočty vyšší než 600/Da

Obr. 74. Vyzařovací úhel \(\beta \) přímovyzařujícího reproduktoru s aktivním průměrem Da pro kmitočty vyšší než 300/Da, avšak nižší než

Zisk G je poměr výstupní veličiny (x_2) k veličině vstupní (x_1) (tab. 1). Pro $x_2 = 1.7$ V a $x_1 = 3 \cdot 10^{-3}$ V nalezneme v levé části grafu pro L_p (tj. 20log) přibližně 56 dB. Ve stejném místě (pozor, zda v levém horním nebo pravém dolním trojúhelníku ve čtverci dekády) nalezneme pro číselné hodnoty x1 a x2 na stupnici L_p údaj 15,0 dB; výsledkem tedy je $G = 55 \, \mathrm{dB}$

Naopak ke známému zisku při známém např. $\hat{x_1}$ můžeme určit zbývající veličinu, tj.

Podobně při výpočtu výkonového získu určíme ze známých dvou údajů třetí, používáme však stupnie L. (protože pro výkonové veličiny je úroveň nebo hladina určena: 10log poměru).

Grafu v obr. 69 můžeme využít i pro určení dílčích výrazů např. ve vztahu (78). tak, že hledaný údaj klademe jako x2 a za x₁ dosazujeme 1. Jakou má např. hodnotu výraz 10log η pro $\eta = 0.7$ %?

$$x_2 = 0.7$$
, $x_1 = 1$, $L_0(10 \log !) = -1.5 \text{ dB}$.

Graf můžeme použít i pro výpočet změny hladiny akustického tlaku se změnou vzdálenosti podle vztahů (27) a (31). Tak např. pro hladinu akustického tlaku L naměřenou ve vzdálenosti l=7 m při příkonu $P_{\rm e}=3$ W a směrovém činiteli Q u 5000 Hz = 3.5, můžeme podle vztahu (80) zjištěním jednotlivých členů z grafu na obr. 69 určit charakteristickou citlivost $s_{IB} = L_I + 16.9 - 4.8 - 5.4$ $= L_1 + 6,7 \, \mathrm{dB}.$

Výsledná hladina akustického tlaku při současném působení dvou signálů (obr. 70)

V ozvučovaném prostoru jsou tři zářiče a každý samostatně odevzdává v určitém sledovaném místě hladinu akustického tlaku 87,5; 86 a 91 dB. Jaká bude výsledná hladinapři současném působení všech zářičů?

Rozdílu 87.5 - 86 = 1.5 dB odpovídápodle grafu zvýšení hladiny hlasitějšího z nich o 2,3 dB, tedy na 89,8 dB. Rozdíl další a této hladiný je 91 – 89,8 = 1,2 a zvýší hladinu 91 dB o 2,4 dB; výsledna hladina

Obr. 76. Vertikální vyzařovací úhel a reproduktorového sloupu délky l, pro různé kmitočtv f

než asi 10 dB, slabší ze signálů se prakticky neuplatňuje,

Zpětně bychom mohli určit snížení hladiny po vypnutí zdroje s určitou vlastní hladinou.

> Pohltivost, dozvuková vzdálenost a prostorová konstanta (obr. 71)

Graf uvedený v obr. 71 (na straně 36) zahrnuje v sobě výpočty podle vztahů (34), (39) a (55). Můžeme ho využít několikerým způsobem.

Při určování pohltivosti ze známého činitele pohltivosti α určité plochy S můžeme využít levé části grafu. Např. pro $\alpha=0,15$ na ploše 45 m 2 lze určit pohltivost A=6,7 m 2 . Při výpočtu celkové pohltívosti jako součtu dílčích je však výhodnější provést potřebná násobení vé formě tabulky jak je tomu v části "Pohltivost prostoru".

Známe-li celkovou pohltivost prostoru, můžeme určit dozvukovou vzdálenost rd, střední činitel pohltivosti \bar{a} a prostorovou konstantu K. Je-li $A = 140 \text{ m}^2$, určíme

Obr. 75. Činitel směrovosti Q pro kuželový vyzařovací úhel β

Obr. 77. Činitel směrovosti Q reproduktorového sloupu o n členech a bázi b pro různé 'kmitočty

Výpočet doby dožvůku T (obr. 72)

Jedním z nejčastěji používaných vztahů je výpočet doby dozvuku podle vztahu (42). Je-li v místností objemů $V = 1600 \text{ m}^3$; celkového povrchu $S = 800 \text{ m}^2$ střední činitel pohltivosti $\bar{\alpha} = 0,175$, můžeme z grafu v obr. 72 (levá i pravá část) určit dobu dozvuku $T = 1,65 \text{ s. Jako dílčí výsledek můžeme u grafu prěští i príma <math>S = S \ln (1 - \bar{\alpha})$ pro žeme v grafu určit i výraz – $S \ln (1-\bar{\alpha})$; pro minulý příklad je tento výraz asi 170.

Vyzařovací úhel ß reproduktoru (obr. 73 a 74)

Eliptický řeproduktor 12×20 cm má, plochu membrány $S = \pi ab/4$. Rovnoplochý kruh má průměr $D = \sqrt{4S/\pi}$. Bůde tedy průměr rovnoplochého křuhu $D = \sqrt{ab}$ = $\sqrt{0,12\cdot 0,2} = 0,155$ m. Aktivní průměr D_a je asi o 10 % menší, tedy $D_a = 0,14$ m. Jaký bude mit reproduktor vyzařovací úhel pro f = 3000 a 8000 Hz? Pro 3000 Hz bude podle grafu v obr. $73 \beta > 90^{\circ}$, u kmitočtu 8000 Hz se zmenší na 53°.

Pro kmitočty nižší než asi 3000 Hz nemůžeme při tomto Da vyzařovací úhel stanovit

Obr. 78. Činitel směrovosti Q reproduktorové soustavy se zvůkovôdem při vyzařovacích úhlech α a β ($\alpha > \beta$)

tímto jednoduchým způsobem, protože pro tento empirický vziah (63) platí určitá omezení. Proto byl graf podle vztahu (63) omezen na maximální $\beta = 90^{\circ}$, ale dává skutečnosti lépe odpovídající výsledky než vztah (61) pro kmitočty vyšší než $f = 600/D_a$.

Obr. 79. Určení hladiny akustického tlaku L_p při ozvučování ve volném nebo uzavřeném prostoru, kterou vyvolá reproduktor s příkonem P_e a s účinností 1 % ve vzdálenosti l; Q je činitel směrovosti a K je prostorová konstanta místnosti

Pro kmitočty nižší než $f = 600/D_a$, avšak vyšší než 300/Da musíme použít graf v obr. 74 nebo přímo vztah (61). Podle obr. 74 bude při $D_a = 0.14$ m a f = 3000 Hz vyzařovací úhel $\beta = 88^\circ$ a pro f = 2500 Hz bude $\beta = 125^\circ$. a pro f = 2500 Hz bude

Činitel směrovosti Q pro kuželový vyzařóvací úhel β (obr. 75)

Jaký bude činitel směrovosti daný vztahem (62) u reproduktoru z minulého příkladu? Pro $\beta = 125^{\circ}$ (f = 2500 Hz) bude podle grafu v obr. 75 Q = 3.8; pro 8000 Hz, tj. $\beta = 53^{\circ}$ bude Q = 19.

Vertikální vyzařovací úhel reproduktorového sloupu (obr. 76)

Reproduktorový sloup se sedmi eliptický-mi reproduktory 0,12 × 0,2 m má při vzdálenosti sousedních reproduktorů (bázi) 0,25 m délku L = nb = 1,75 m. Tento sloup bude mít podle vztahu (69) vertikální vyzařovací úhel určený z grafů na obr. 76 u 1500 Hz $\alpha = 12^{\circ}$ a ještě u 250 Hz bude 70° .

Horizontální vyzařovací úhel reproduktorového sloupu je dán vyzařovacími úhly jednotlivých reproduktorů.

Činitel směrovosti reproduktorového sloupu (obr. 77)

Pro reproduktorový sloup se sedmi reproduktory (n = 7) při bázi 0.25 m můžeme (v souhlasu se vztahem (70)) určit z grafu v obr. 77 pro kmitočet f = 250 Hz činitel směrovosti pro kmitočet 1500 Hz bude, Q = 6.9.

Činitel směrovosti reproduktorové soustavy se zvukovodem (obr. 78)

Reproduktorová soustava s exponenciálním zvukovodem u středotónového a vyso-

Obr. 80. Dráha s, kterou urazí zvuk za čas t

kotónového reproduktoru má pro střední kmitočty horizontální vyzařovací úhel 85° a vertikální vyzařovací úhel 45°. V souhlasu se vztahem (64) můžeme určit její činitel směrovosti. Jako a uvažujeme vždy větší z vyzařovacích úhlů. Výpočtem z grafu na obr. 78 určime pro $\alpha=85^{\circ}$ a $\beta=45^{\circ}$ činitel směrovosti Q=12.

Určení hladiny akustického tlaku Lo při ozvučování (obr. 79)

Chceme-li určit hladinu akustického tlaku podle vztahu (85), vybuzenou reproduktorem ve vzdálenosti I = 6 m při Q = 5 a příkonu 1,5 W ve volném prostoru, použijeme čáru v pravé části grafu, označenou "volný prostor". Určíme tak hladinu $L_p = 82 \text{ dB}$.

Umístime-li reproduktor do místnosti s prostorovou konstantou $K = 60 \text{ m}^2$, zvýší se ve stejné vzdálenosti hladina akustického tlaku na 91 dB, tedy o 9 dB.

Tentýž reproduktor za stejných podmínek, avšak ve vzdálenosti I = 18 m vyvolá ve volném poli hladinu $L_{\rm p}=73~{\rm dB}$ a ve stejné místnosti hladinu $L_{\rm p}=89.5~{\rm dB}$, tedy o 16,5 dB vyšší. Dalším zvětšováním vzdálenosti se bude hladina akustického tlaku ve volném prostoru snižovat vždy o 6 dB na každé zdvojnásobení vzdálenosti, kdežto v uzavřené místnosti s dalším zvětšováním vzdálenosti se snižuje jen velmi málo (o 91-89,5 = 1,5 dB), protože se jedná o vzdálenost větší, než je dozvuková vzdálenost

***Čas potřebný pro proběhnutí určité dráhy zvukem (obr. 80)

V mnoha případech je důležité znát, jaký čas potřebuje zvuk pro proběhnutí určité dráhy. Je-li např. dráha zvukového paprsku odraženého od rozměrné odrazné překážky o 9 m delší než dráha přímé vlny, doběhne tento sekundární signál za primární vlnou se zpožděním asi 27 ms a je ho možno považovat za užitečný. Opakuje-li se takový odraz ještě jednou, doběhne po 54 ms, a dorazí-li vlna i podruhé s intenzitou srovnatelnou ještě s intenzitou primární vlny bude vnímána jako signál rušivý.

Výpočetní postupy

Na tomto místě jsou v "konstruktérovi" obvykle konkrétní návody na stavbu zařízení. Po přečtení a snad i prostudování textu je však každému jasné, že neexistuje univerzální předpis, jak navrhnout ideální poslechový prostor. Je možno pouze opakovat myslenku ze začátku: každý nějak bydlíme a v těchto podmínkách chceme dosáhnout optimálnich poslechových podmínek. Experimentování je nezbytné, od mnoha užitečných pokusů nás však zachrání alespoň základní výpočty nejdůležitějších veličin poslechového akustického pole

Některé z výpočtů isou pracné a zdlouhavé a proto byly podány nejdůležitější ze vztahů v nomogramech: samozřejmě modernější je využít dnes již velmi rozšířených kapesních kalkulaček. Máme-li k dispozici i velmi jednoduchou kalkulačku, výpočty se neobyčejně zrychli a zpřesní. Uvedme některé užitečné úpravy či přímo pracovní postupy pro kalkulacky, mající vedle základních funkcí alespon jednu paměť, log x, 10^x, trigonometrické funkce a dovolující zakládat čísla ve vědecké notaci, tj. s exponentem 10. Přitom používáme pro uložení čísla z displeje do paměti symbol STO (store=ulož) a pro jejich vývolání zpět symbol RCL (recall=vývolej). V naznačených postupech není předpokládáno, že má kalkulačka možnost součto-vání do pamětí. Ti, kteří takové i dokonalejší kalkułačky mají, si programy pro svou potřebu již snadno upraví a tím podstatně zkrátí počet potřebných úkonů. Důležité je, aby nebylo nutno jakýkoli mezivýsledek si poznamenávat a znovu jej zakládat.

Přípomeňme tedy, že $\log (a/b) = \log (b/a)$, nebo že součet logaritmů je roven násobku jejich argumentů (log a + log b = log ab), což při rozkladu a úpřavě příkazů značně napomáhá. To umožňuje např. upravit vztah pro přepočet dosahované hladiny akustic-kého tlaku L_2 ve vzdálenosti k_2 ze známě hladiny L_1 ve vzdálenosti / na pracovní postup: vlož L1; STO; vlož h; ;; vlož ½; = ; log; x; vlož 20; = ; + ; RCL; = ; čti L₂. V poli válcových vln je postup stejný, ale místo vlož 20 vkládáme 10.

Podobně můžeme daleko komplikovanější vztah

(85) pro výpočet hladiny akustického tlaku v uzavřenem prostoru upravit na postup: vlož Q; ; ; vlož 4 ; ; ; $vlož \pi; : ; vlož I; X^2; = ; STO; vlož 4; : ; vlož K; = ; + ;$ RCL; =; STO; vlož P_a ; x; RCL; =; log; x; vlož 10; =; +; vlož 120; =; čti L_p . Všimněme si, že není nutno si jakýkoliv mezivysledek poznamenávat a znovu jej vkladat. Člselný příklad je v textu u vztahu (85).

Překontrolujme číselný výpočet např. u vztahu (63) pro vyzarovací uhel reproduktoru na tomto pracovním postupu: vlož f. STO; log; x, vlož 380; = ; ; vlož 1000; = ; : ; RCL; : ; vlož D_{a} ; = ; arcsin; x; vlož 2 = ; čti β.

Tyto příklady pracovních postupů jsou dostateč ně ilustrativní pro vytvoření pracovních postupů přizpůsobených Vaší kalkulačce pro ostatní častěji

používané vztahy.

Pro šťastnější z Vás, kteří mají kalkulačky programovatelné, uvádíme na závěr komplexní program pro výpočty všech veličin potřebných pro popis akustického pole. Program je upraven v rozpisu pro kalkulačky TI 58 (nebo TI 59). Při zápisu programu v LRN (learn=uč se) režimu používáme tuto symboli-ku: příkazy vkládané přímo píšeme velkými písmeny, druhotné příkazy (2nd) zapisujéme malými pismeny. Pro násobení používáme znak ×, pro X⊋ T znak X/T. Všechna návěští začínají na novém řádku, jednotlivě uzavřené bloky příkazů jsou ukončeny pro kontrolu informací, co po jejich ukončení ukazuje displej.

Celý sled příkazů komplexního programu je tento:

příprava 2 op 17 (čti 319.19; tj. 319 kroků, 19 datových registrů)

fix 2 R/S RST

Ibi A STO $11 \times X/T$ SUM 11 = STO 10 STO 1 R/S prd 1 prd 11 RCL 10 SUM 11-2 prd 11 RST (čti 030 00) IЫ В 0 STO 12 STO 19

Ibl INV R/S SUM 19 e' SUM 12 pause RCL 12 : RCL 19 - pause STO 07 1 = +/- : RCL 12 = 1/X STO 2 GTO INV

Ibl $e' \times X/T = INV SBR$ (čti 073 00) STO 3 R/S: RCL 1 = $\sqrt{X} \times 2000 = RST$ (čti 114 00) Ibl D: 4: $\pi = STO 14 \times RCL 12: 4 = \sqrt{X}$

STO 4 RST (čti 133 00) Ibl E: 100 = X/T iffig 5 LNX STO 5 e' STO

lbi LNX RCL 15 X/T 1/X e' STO 5 RST (čti

160 00) lbl c' STO 8 STO 18 X/T STO 17 RST (čti 170 00)

lbl b' SBR CE lbl RCL SBR X/T × RCL 15 = $\log \times 10$ + SBR X² SBR SUM GTO RCL IN CE RCL 18 STO 8 INV SBR

Ibi X/T (ifflg 2 ((RCL 14 : RCL 8 pause X²) GTO 1/X

| Did 1/X iff[g 1) + (4 : RCL 2) | Did 1/X iff[g 1] + (4 : RC

lbl: RCL 4: RCL 8 pause = $X^2 + 1 - RCL 9$ = RCL 9 SBR SUM GTO: (sviti 319.19, tj. automaticky se zrušilo LRN)

Program postupně ukládá veličiny vkládané nebo v průběhu výpočtů získané na tato paměťová místa: MO1: objem $V=a \cdot b \cdot c$; MO2: prostorová konstanta MO3: $K=A/(1-\tilde{\alpha})$: doba $T = (0,163 \text{ V})) / (-\Sigma S \ln(1-\overline{\alpha}); \text{MO4: dozvuková vzdá-}$ lenost $r_0 = \sqrt{(AQ)} / 16\pi$); MO5: elektrický příkon Pel=Pa·100/η, MO6: żádaná hladina akustického tlaku Lp; MO7: střední činitel pohltivosti u= 1 - A/K; MO8: aktuální (sledovaná) vzdálenost /a; MO9: výraz e^{-k/T} pro výpočet v lbl. c': M10: plocho cadlab pro výpočet v lbf c': M10: plocha podlahy $S_p = ab$; M11: celkový povrch stěn místnosti S=2(ab+ac+bc); M12: celková pohltivost $A=\Sigma \alpha S_1$; M13 pomocný výraz pro výpočet hustoty vlastních kmitů místnosti; M14: výraz (Q/4π); M15: Pa = Pei η/100, akustický výkon, je ukládán pouze při výpočtu z Pel (lbl E), nikoli při výpočtu ze žádané hladiny L_p : M16: střední volná dráha $I_{stř} = 4 V/S$; M17: krok výpočtové vzdálenosti; M18. základní (výchozi) výpočtová vzdálenost; M19: součet ploch SS při výpočtu celkové pohltivosti.

Podprogramy: **[b]** A – urči a uloží z rozměrů podlahy a výšky místnosti tvaru kvádru objem $V(M01)\{m^3\}$, plochu podlahy $S_p(M10)\{m^2\}$ a celkový povrch stěn $S(M11)\{m^2\}$:

vlož a; X/T; vlož b; A; čti S_p ; vlož výšku c; R/S; (svítí 2.00)

Ibl B – určuje a postupně ukládá ze zadaných činitelů pohltivosti $\alpha_1 [-]$ a příslušných ploch S_1 $[m^2]$ prostorovou konstantu $K(M02) [m^2]$; celkovou pohltivost $A(M12) [m^2]$ a součtovou plochu (M19).

B (svítí 0); opakuj pro všechny druhy povrchů (vlož) α; X/T; vlož S; R/S; blikne A_{aktuální}; blikne α_{aktuální}; čti K_{aktuální}) konec opakování; čti K

Při kusovém činiteli pohltivosti ($a_{\rm pi}$ ve vztahu (37)) dosazuj za s počet kusů; pak se ΣS (M19) liší od S (M11) o celkový počet kusů.

Ibi C – určí střední činitel pohltivosti $\bar{\alpha}[-]$, dobu dozvuku T[s] a dolní kritický kmitočet místnosti f_0 [Hz] a uloží $\bar{\alpha}(M07)$ a T(M03): C: čti $\bar{\alpha}R/S$; čti T:R/S; čti f_0

Ibi D – pro zadaný činitel směrovosti Q[--] (platný i pro další výpočty pomocným výrazem v M14) určí a uloží dozvukovou vzdálenost r_d (M04) [m]

vlož Q, D, čti r_d

Ibl E – určí a uloží ze zadaného elektrického příkonu $P_{\rm el}$ (M05) {W} a učinnosti záříčů η {%] akustický výkon $P_{\rm a}$ (M15) [W]:

vlož Pel; X/T; vlož η; E; čti Pa

nebo – určí a uloží elektrický příkon P_{el} (M05) z účinnosti η [%] a akustického výkonu P_{a} uloženého v M15:

stflg; 5; vlož η; E; čti Pel

lbl c' – připravuje program pro výpočty hladin akustického tlaku $L_p[dB]$ nebo žádaného akustického výkonu P_a [W] připadně pro výpočet čistoty přenosu C tak, že výpočty začnou v základní vzdáleností L_{dak} [m], která se každým cyklem zvyšuje pokrocich [m]:

vlož krok; X/T; vlož báki; c'; (svítí krok)

lbl b' – určuje hladiny akustického tlaku L_0 [dB] ze zadaných a dříve uložených hodnot činitele směrovosti Q, prostorové konstanty K a akustického výkonu P_a (nebo elektrického příkonu P_e 1 a účinnosti η vložených do podprogramu E) ve vzdálenostech určených podprogramem c'. Při těchto výpočtech má být v kroku 252 příkaz nop (jinak ihned po R/S blikne bezvýznamové číslo):

b'; začátek opakování (blikne l_{aktuální}; čti L_p; R/S) opakuje se podle potřeby

Dále je možno volit výpočet $L_{\rm p}$ ve volném poli (nebo jen v poli přímých vln v uzavřeném prostoru) tím, že předrazíme příkazy stflg; 1; nebo výpočet $L_{\rm p}$ jen v díťuzním poli předražením příkazů stflg; 2; (pak by se při R/S výpočet pouze opakoval, protože $L_{\rm p}$ je na vzdálenosti nezávislé) tedy např: stflg; 2; b'; čti $L_{\rm p}$ vdíťuzním poli. Zrusení nastavených flagů dosáhneme příkazem RST.

Ibi a – určuje potřebný akustický výkon P_a , má-li být dosažena hladina akustického tlaku L_p ve vzdálenosti k_{akl} . Žádanou vzdálenost k_{akl} zavedme příkazy: vlož k_{akl} ; STO; 18;

vlož žádané $L_{\rm p}$; a', blikne $k_{\rm akl}$; čti $P_{\rm a}$ (při R/S by proběhl nový výpočet pro vzdálenost $k_{\rm akl}$ plus krok uložený podprogramem c').

Opét můžeme předražením stílg; 1; volit výpočet pro volné pole a předražením stílg; 2; volit výpočet pro pole difúzní. Při zrušení flagů (RST;) proběhne výpočet v zadané vzdálenosti pro obě složky pole.

Tento podprogram neukládá vypočtené P_a na pamětové místo M15!; chceme-li P_a dále používat pak STO: 15:

Ibl d' – určuje čistotu přenosu buď prostým poměrem C [−] nebo odpovídající hodnotu C [dB] pro dřive určenou dozvukovou vzdálenost r_d (M04) [m] a dobu dozvuku T (M03) [s] přo krokování vzdálenosti určené podprogramem c'. Za k dosazujeme hodnotu podle textu u vztahu (48). Pro tento podprogram musí být v kroku 252 příkaz pause (nebo neblikne po R/S hodnota C [dB]:

vłoż k; d'; opakuje se (blikne $I_{aktuálni}$; čti C [-]; R/S; blikne C [dB]) konec opakováni

lbl e' - pomocný podprogram

Určení pomocných informačních veličin: střední volnou dráhu vypočteme sledem příkazů: vlož.4; \times ; RCL; 1; :; RCL; 11: =; čti k. Hodnotu uložíme na STO; 16.

Průměrný počet odrazů zvukového paprsku: vlož 343; × ; RCL; 3; : ; RCL; 16; = ; čtí výsledek.

Počet vlastních kmitů místnosti na šířku pásma 1 Hz: připravíme si pomocnou hodnotu příkazy: (; vlož 4; \times ; vlož π ; \times : RCL; 1;); : (; vlož 343; Y^X : vlož 3;); = ; čti výsledek a ulož na STO; 13; . Pak u daného kmitočtu fje počet vlastních kmitů na 1 Hz: vlož f, X^2 ; \times : RCL; 13; = ; čti výsledek.

Při využívání komplexního programu je nutno dodržet pořadí podprogramu: A, B, C, D, E a c'; pak podle potřeby buď a'. nebo b'. nebo d'. aby se postupně ukládaly potřebné veličiny. "Vyšší" podprogramy nenarušují žádný z "nižších" podprogramu. Lze ovšem také naplnit přislušna paměťová místa přimo podle uvedeného adresáře paměťových míst.

Jednotlivé podprogramy lze uložit také samostatně, pak ale nesmíme přehlédnout žádné z volaných návěští a založit ho také, i když se nachází v bloku jiného podprogramu.

Správné "dolaďování" Vašeho konkrétního prostoru vyžaduje velkjý počet opakujících se výpočtů pro měnicí se podminky tak, jak hledáme optimum – pák založení tohoto komplexního programu je nanejvýš žádoucí a uspoří mnoho času a mnohá

Kde nás najdete:

Praha 1, Dlouhá 36; Praha 1, Martinská 4; Praha 8, Sokolovská 95; Praha 10, Černokostelecká 27; Kladno, Čs. armády 590; České Budějovice, Jírovcové 5; Lanškroun, Školní 128/l; Králíky, nám. Čs. armády 362; Ústí n. L., Pařížská 19; Děčín, Prokopa Holého 21; Chomutov, Puchmajerova 2; Liberec, Pražská 142; Jablonec nad Nisou, Lidická 8; Teplice v Čechách, 28. října 858; Cheb, tř. SČSP 26; Plzeň, Rooseveltova 20; Karlovy Vary, Varšavská 13; Brno, tř. Vítězství 23; Brno, Františkánská 7; Jihlava, nám. Míru 3; Prostějov, Žižkovo nám. 10; Hodonín, Gottwaldova 13; Znojmo, Havlíčkova ul.; Uherský Brod, Moravská 92; Uherský Brod, nám. Vítězného února 12; Gottwaldov, Murzínova 94; Ostrava-Poruba, Leninova 680; Havířov, Zápotockého čp. 63; Frýdek-Místek, Radniční 4; Karviná, Čapkova 1516; Olomouc, nám. Rudé armády 2; Šumperk, nám. Pionýrů 18; Přerov, Čs. armády 2; Bruntál, nám. Míru 26; Krnov, K můstku 1; Valašské Meziříčí, Hranická 550; Příbor, sídliště Čs. lid. armády; Vsetín, Luh II; Lipník nad Bečvou, nám. Čs. lid. armády 41; Vrbno pod Pradědem, tř. Svobody 103; Bratislava, Červenej armády 8 a 10; Bratislava, Tehelná 13; Trenčín, Mierové nám. 8; Trnava, Jilemnického 34; Banská Bystrica, Malinovského 2; Nižná nad Oravou, Dom služieb; Žilina, Hodžova 12; Zvolen, Dom služieb, ul. kpt. Nálepku 2182; Košice, Leninova 104; Spišská Nová Ves, Gottwaldova 72; Michalovce, nám. Osvoboditelů 44; Prešov, Slov. republiky rád 5.