ST2132 Tutorial 6 2210

- 1. Let X_1, \ldots, X_n be IID $N(\mu, \sigma^2)$ RV's.
 - (a) State the analogue to the probability statement on Survey Sampling II slide 7, that justifies the CI on slide 14.
 - (b) Derive the statement in (a).
 - (c) Suppose -1.53, 2.24, 0.73, -0.72, -1.77 are independent realisations from $N(\mu, \sigma^2)$. Use R to compute an estimate of μ , its estimated SE, and an exact 95%-CI for μ , to two decimal places.
 - (d) What can you say about the CI for μ on slide 14, as $n \to \infty$?
- 2. Let X_1, \ldots, X_n be IID RV's with mean μ and variance σ^2 . For a positive integer k, the k-th moment of X_i is $\mu_k = \mathrm{E}(X_i^k)$.
 - (a) Is $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ an unbiased estimator of μ_k ?
 - (b) Express $var(\hat{\mu}_k)$ in terms of the moments.
- 3. Let X_1, \ldots, X_n be IID random variables with the Bernoulli(p) distribution.
 - (a) Derive \hat{p} , the MOM estimator of p.
 - (b) Write down the distribution of \hat{p} .
 - (c) Given data 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, find the MOM estimate of p, state the exact SE, and estimate it.
 - (d) With the estimate and SE from (c), do you think (estimate 1.96 SE, estimate + 1.96 SE) is a good 95% CI for p?
- 4. Let $Y \sim \text{Binomial}(n, p)$.
 - (a) Find the MOM estimator of p.
 - (b) How is this estimator related to that in the previous question?
- 5. In muon decay, each electron is emitted at a random angle. The cosine of the angle has the density

$$f(x) = \frac{1 + \alpha x}{2}, \quad -1 \le x \le 1.$$

where $\alpha \in [-1, 1]$ is a parameter. Let X_1, \ldots, X_n are IID RVs having this distribution.

- (a) Find $\hat{\alpha}$, the MOM estimator of α . Is it unbiased?
- (b) For $n=225, \bar{x}=0.04$. Estimate α , and compute an approximate SE.
- (c) Construct a 95%-CI for α .