MULTI-PERIOD OPTIMAL POWER FLOW

Ву

ARYAN RITWAJEET JHA

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY School of Electrical Engineering and Computer Science

AUGUST 2026

© Copyright by ARYAN RITWAJEET JHA, 2026 All Rights Reserved

То	the	Faculty	of	Washington	State	University	:

The members of the Committee appointed to examine the dissertation of ARYAN RIT-WAJEET JHA find it satisfactory and recommend that it be accepted.

Anamika Dubey, Ph.D., Chair
Committee Member A, Ph.D.
Committee Member C, Ph.D.

ACKNOWLEDGMENT

TBA

MULTI-PERIOD OPTIMAL POWER FLOW

Abstract

by Aryan Ritwajeet Jha, Ph.D. Washington State University August 2026

: Anamika Dubey

TBA

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	. iii
ABSTRACT	. iv
LIST OF TABLES	. vi
LIST OF FIGURES	. vii
CHAPTER	
1 SOME FORMATTING EXAMPLES	
2 FIGURES AND TABLES	
REFERENCES	. 3
APPENDIX	
A Branch Flow Model: Relaxations and Convexification	. 5
B Abstracts: Optimization-based Methods for solving MP-OPF	. 7
C Abstracts: Dynamic Programming Methods for solving MP-OPF .	. 8
D Abstracts: Differential Dynamic Programming	. 9
E Models: Battery Model for Multi-Period OPF	. 12

LIST OF TABLES

A.1	Table describing the variables involved in the Branch Flow Model equations.	Ę
A.2	Table describing the Branch Flow Model equations	6
E.1	Description of Grid Parameters	13
E.2	Description of Branch Flow Model Variables	14
E.3	Description of Battery Variables	15
E.4	Values, Lower Bounds and Upper Bounds on Battery Variables	17

LIST OF FIGURES

Dedication

TBA

Chapter One

SOME FORMATTING EXAMPLES

1.1 Chapter one tittle section

Chapter Two

FIGURES AND TABLES

2.1 Examples of a figure

REFERENCES

- [1] Aayushya Agarwal and Larry Pileggi. "Large Scale Multi-Period Optimal Power Flow With Energy Storage Systems Using Differential Dynamic Programming". In: *IEEE Trans. Power Syst.* 37.3 (Sept. 2021), pp. 1750–1759. ISSN: 1558-0679. DOI: 10.1109/TPWRS.2021.3115636.
- [2] Masoud Farivar and Steven H. Low. "Branch flow model: Relaxations and convexification". In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (Dec. 2012), pp. 3672–3679. ISSN: 0743-1546. DOI: 10.1109/CDC.2012.6425870.
- [3] Nawaf Nazir and Mads Almassalkhi. "Receding-Horizon Optimization of Unbalanced Distribution Systems with Time-Scale Separation for Discrete and Continuous Control Devices". In: 2018 Power Systems Computation Conference (PSCC) (June 2018), pp. 1–7. DOI: 10.23919/PSCC.2018.8442555.
- [4] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi. "Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders". In: arXiv (June 2019). DOI: 10.48550/arXiv.1906.04108. eprint: 1906.04108.
- [5] Xiaodong Qian and Yuanguo Zhu. "Differential Dynamic Programming for Multistage Uncertain Optimal Control". In: 2014 Seventh International Joint Conference on Computational Sciences and Optimization. IEEE, July 2014, pp. 88–92. DOI: 10.1109/CSO. 2014.25.

Appendix A

Branch Flow Model: Relaxations and

Convexification

In [2] the authors came up the Relaxed Branch Flow Model, and showed that in the case of Tree/Radial networks, the Relaxed Model can solve for the unique optimal solution, including the bus angles, and in the case of weakly meshed networks, there is a mechanism for extracting the bus angles from the relaxed solution, to find out its unique solution, if it exists.

Legend for Table A.2:

Table A.1 Table describing the variables involved in the Branch Flow Model equations.

Symbol	Meaning		
p_j, q_j	Real, Reactive Power flowing from bus j into the network.		
P_{ij}, Q_{ij}	Real, Reactive Power flowing in branch $i \to j$ (sending-end).		
I_{ij}, l_{ij}	Complex Current flowing in branch		

Table A.2 Table describing the Branch Flow Model equations.

Equation $\#$	Equation	Unknowns	Knowns	No. of Equations
13		$1 \times p_0$	$n \times p_j$	
	$\nabla D + \nabla D = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	$m \times P_{ij}$	$m \times r_{ij}$	(n+1)
10	$p_j = \sum P_{jk} + \sum (P_{ij} - r_{ij}l_{ij}) + g_j v_j$	$m \times l_{ij}$	$(n+1) \times g_j$	(n+1)
		$n \times v_j$	$1 \times v_0$	
		$1 \times q_0$	$n \times q_j$	
14	$q_j = \sum Q_{jk} + \sum (Q_{ij} - x_{ij}l_{ij}) + b_j v_j$	$m \times Q_{ij}$	$m \times x_{ij}$	(n+1)
14	$q_j = \Delta Q_{jk} + \Delta (Q_{ij} - x_{ij}u_{ij}) + o_j o_j$	$m \times l_{ij}$	$(n+1) \times b_j$	(n+1)
		$n \times v_j$	$1 \times v_0$	
		$m \times P_{ij}$,	
1.5	$v_j = v_i + (r_{ij}^2 + x_{ij}^2)l_{ij} - 2(r_{ij}P_{ij} + x_{ij}Q_{ij})$	$m \times Q_{ij}$	$b \times r_{ij}$	
15		$m \times l_{ij}$	$m \times x_{ij}$ $1 \times v_0$	m
		$n \times v_j$		
		$m \times P_{ij}$		
16	$l_{ij} = \frac{P_{ij}^2 + Q_{ij}^2}{v_j}$	$m \times Q_{ij}$	$1 \times v_0$	m
10		$m \times l_{ij}$		
		$n \times v_j$		
		1	$n \times p_j$	
13 to 16		$1 \times p_0$	$n \times q_j$	
		$1 \times q_0$	$m \times r_{ij}$	
		$m \times P_{ij}$	$m \times x_{ij}$	2(n+1+m)
		$m imes Q_{ij}$	$(n+1) \times g_j$	
		$m \times l_{ij}$	$(n+1) \times b_j$	
		$n \times v_j$	$1 \times v_0$	
		2(n+1+m)	4n + 2m + 3	2(n+1+m)

Appendix B

Abstracts: Optimization-based Methods

for solving MP-OPF

In [4], the authors use a two-step paradigm for solving the MP-OPF problem, by first solving for a more relaxed SOCP problem for the all of the time-steps in a horizon, and using the SOC values from its solution, solve for the NLP OPF problem for every time-step in parallel.

In [3], they prove that for 'realistic' systems, appending an additional 'complementarity' cost function to the original objective function, Simultaneous Charging and Discharging (SCD) in the optimal solution is avoided, and that the Mixed-Integer SOCP problem of AC-OPF with energy storage can be relaxed into a regular SOCP problem without violating the battery physics in the optimal solution.

Appendix C

Abstracts: Dynamic Programming

Methods for solving MP-OPF

In [1], the authors use a Differential Dynamic Programming approach, which involved usage of Forward and Backward passes made over a sequence of time-steps, doing a back-and-forth between computation for one time-step, say t, by making some assumptions on any variables required from the next time-step t+1, and then updating the assumed values at t, once new values for the t+1 time-step have been made.

Appendix D

Abstracts: Differential Dynamic

Programming

In [5], the authors lay out the framework on how Differential Dynamic Programming can be utilized to solve a Mutli-Stage Uncertain Optimal Control problem programmatically.

$$J(x_0, 0) = \min_{\substack{u_j \in U_j \\ j = 0, 1 \dots N - 1}} \mathbb{E} \left[\sum_{j=0}^{N-1} \{ L(x_j, u_j, j) \} + G(x_N, N) \right]$$

$$s.t.$$

$$x_{k+1} = f(x_j, u_j, j) + \sigma_{j+1} \xi_{j+1}$$

$$j = 0, 1, \dots N - 1$$
(D.1)

$$J(x_N, N) = G(x_N, N) \tag{D.2}$$

$$J(x_k, k) = \min_{u_k \in U_k} \mathbb{E} \left[J(x_{k+1}, k+1) + L(x_k, u_k, k) \right]$$
 (D.3)

$$\bar{x}_{k+1} = f(\bar{x}_k, \bar{u}_k, k)$$

$$\bar{x}_0 = x_0$$
(D.4)

$$f(x_k, u_k, k) = f(\bar{x}_k, \bar{u}_k, k) + f_x \delta x_k + f_u \delta u_k$$

$$+ \frac{1}{2} f_{xx} (\delta x_k)^2 + \frac{1}{2} f_{uu} (\delta u_k)^2$$
(D.5)

where

$$\delta x_k = x_k - \bar{x}_k$$

$$\delta u_k = u_k - \bar{u}_k$$

$$\delta x_{k+1} = f(x_k, u_k, k) + \sigma_{k+1} \xi_{k+1} - f(\bar{x}_k, \bar{u}_k, k)$$
or,
$$\delta x_{k+1} = f_x \delta x_k + f_u \delta u_k + \frac{1}{2} f_{xu}(\delta x_k) (\delta u_k)$$

$$+ \frac{1}{2} f_{xx} (\delta x_k)^2 + \frac{1}{2} f_{uu} (\delta u_k)^2 + \sigma_{k+1} \xi_{k+1}$$
(D.6)

Similarly,

$$L(x_k, u_k, k) = L(\bar{x}_k, \bar{u}_k, k) + L_x \delta x_k + L_u \delta u_k + \frac{1}{2} L_{xx} (\delta x_k)^2 + \frac{1}{2} L_{uu} (\delta u_k)^2$$
(D.7)

and,

$$J(x_k, k) = J(\bar{x}_k, k) + J_x \delta x_k + \frac{1}{2} J_{xx} (\delta x_{k+1})^2$$
 (D.8)

Appendix E

Models: Battery Model for Multi-Period OPF

All subscripts j for a variable imply the node in the power grid (for node j). All superscripts t refer to the time period number t.

In [3, 4], the batteries are modelled using four state/control variables, which are:

Table E.1 Description of Grid Parameters

Variable	Description
\mathcal{N}	Set of all nodes. $\mathcal{N} = \{1, 2, \dots n\}$
$\mathcal L$	Set of all branches.
	$\mathcal{L} = \{1, 2, \dots l\} = \{(i, k)\} \subset (\mathcal{N} \times \mathcal{N}).$
\mathcal{D}	Set of all nodes containing DERs.
	$\mathcal{D}\subset\mathcal{N}$
\mathcal{B}	Set of all nodes containing storage.
	$\mathcal{B}\subset\mathcal{N}$
Δt	Duration of a single time period. Here
	$\Delta t = 15 \text{ min.} = 0.25 \text{ h.}$
T	Prediction Horizon Duration. Total time
	duration solved for as part of one
	instance of MP-OPF.
K	Prediction Horizon Number. Total
	number of discrete-time steps solved for
	in one instance of MP-OPF. $T=K\Delta t$

Table E.2 Description of Branch Flow Model Variables

Variable	Description
p_j^t	Fixed Real Power Generation minus
	Fixed Real Power Load. Here,
	$p_j^t = p_{Dj}^t - p_{Lj}^t$. A known (predicted)
	value $\forall t, j$.
q_j^t	Fixed Reactive Power Generation minus
	Fixed Reactive Power Load. Here,
	$q_j^t = -q_{Lj}^t$. A known (predicted) value
	$\forallt,j.$
$p_{D_j}^t$	Real Power Generated by DERs
$p_{L_j}^t$	Real Power Demand
$q_{L_j}^t$	Reactive Power Demand

Table E.3 Description of Battery Variables

Variable	Description	Dimension	Dimension pu
$B_{n,k}$	State of Charge (SOC) of	[kWh]	[pu h]
	Battery after time-interval		
	k		
$P_{n,k}^c$	Average Charging Power of	[kW]	[pu]
	the Battery during the k -th		
	time interval.		
$P_{n,k}^d$	Average Discharging Power	[kW]	[pu]
	of the Battery during the		
	k-th time interval.		
$q_{B_{n,k}}$	Average Reactive Power	[kVAr]	[pu]
	Output from the Battery		
	Inverter during the k -th		
	time interval.		

where,

- $k \in \{0, 1, 2, ..., T/\Delta t\}$ The index of the discretized time intervals, where k represents the k-th time interval of duration Δt within the continuous time range [0, T]. The corresponding continuous time interval is $[(k-1)\Delta t, k\Delta t]$.
- $n \in \mathcal{N}$ The node n is an element of the set of all nodes in the power grid \mathcal{N} . Note that n can be used both as an iterator or as the total number of nodes in the grid (i.e. the cardinality of \mathcal{N}), and its meaning should be obvious from context.

Table E.4 Values, Lower Bounds and Upper Bounds on Battery Variables

Variable	Value or Limits	Description
P_{Max}	P_{Rated} of corresponding DER.	
$q_{B_{Max}}$	$q_{D_{Rated}}$ of corresponding DER.	
P_d, P_c	$[0, P_{Max}]$	
E_{Rated}	$P_{Max} \times 4 \text{ h}$	4 h of one-way
		Charging/Discharging at
		Maximum Power
B	$[0.30E_{Rated}, 0.95E_{Rated}]$	2.4 h of one-way
		Charging/Discharging at
		Maximum Power
B_0	$0.625E_{Rated}$	Batteries start with an
		SOC value in the middle
		of their SOC range.
η_d,η_c	0.95	
α	3e-5	Value depends on the
		magnitude of the loss
		term in the objective
		function (for IEEE 123
		node system, it is
		$\approx (1e-5, 10e-5)$). Too
		big a value of α would
		reduce both P_c and P_d
		terms to zero, whereas
		too small a value would
		not penalize SCD,
	17	causing physically
		infeasible solutions.

Optimization Equations

Original Problem: Mixed-Integer Nonlinear Optimization Model - Full Horizon

$$\min_{P_{ij}^t, Q_{ij}^t, v_j^t, l_{ij}^t, q_{D_j}^t, B_j^t, P_{c_j}^t, P_{dj}^t, q_{B_j}^t} \quad \sum_{t=1}^T \sum_{i \to j \in \mathcal{L}} (r_{ij} l_{ij}^t)$$
 (E.1)

$$p_{j}^{t} = \sum_{j \to k \in \mathcal{L}} P_{jk}^{t} - \sum_{i \to j \in \mathcal{L}} \left\{ P_{ij}^{t} - r_{ij} l_{ij}^{t} \right\} - P_{d_{j}}^{t} + P_{c_{j}}^{t}$$
(E.2)

$$q_j^t = \sum_{j \to k \in \mathcal{L}} Q_{jk}^t - \sum_{i \to j \in \mathcal{L}} \left\{ Q_{ij}^t - x_{ij} l_{ij}^t \right\} - q_{D_j}^t - q_{B_j}^t$$
 (E.3)

$$v_j^t = v_i^t + \left\{ r_{ij}^2 + x_{ij}^2 \right\} l_{ij}^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t)$$
(E.4)

$$l_{ij}^{t} = \frac{(P_{ij}^{t})^{2} + (Q_{ij}^{t})^{2}}{v_{i}^{t}}$$
 (E.5)

$$B_{j}^{t} = B_{j}^{t-1} + z\Delta t \eta_{c} P_{c_{j}}^{t} - (1-z)\Delta t \frac{1}{\eta_{d}} P_{d_{j}}^{t}$$
(E.6)

$$B_j^0 = 0.5(soc_{max} + soc_{min})E_{Rated} = 0.625E_{Rated}$$
 (E.7)

where,
$$(E.8)$$

$$p_j^t = p_{Dj}^t - p_{Lj}^t \tag{E.9}$$

$$q_j^t = -q_{Lj}^t \tag{E.10}$$

$$t = \{1, 2, \dots T\}$$
 (E.11)

$$z = \{0, 1\} \tag{E.12}$$

(Integer Constraint Relaxed) Naive Brute Force Full Optimization Model - Full Horizon

$$\min_{P_{ij}^{t}, Q_{ij}^{t}, v_{j}^{t}, l_{ij}^{t}, q_{D_{j}}^{t}, B_{j}^{t}, P_{c_{j}}^{t}, P_{d_{j}}^{t}, q_{B_{j}}^{t}} \quad \sum_{t=1}^{T} \sum_{i \to j \in \mathcal{L}} (r_{ij} l_{ij}^{t}) + \alpha \sum_{t=1}^{T} \sum_{j \in \mathcal{B}} \left\{ (1 - \eta_{c}) P_{c_{j}}^{t} + \left(\frac{1}{\eta_{d}} - 1\right) P_{d_{j}}^{t} \right\}$$
(E.13)

$$p_{j}^{t} = \sum_{i \to k \in \mathcal{L}} P_{jk}^{t} - \sum_{i \to j \in \mathcal{L}} \left\{ P_{ij}^{t} - r_{ij} l_{ij}^{t} \right\} - P_{d_{j}}^{t} + P_{c_{j}}^{t}$$
(E.14)

$$q_j^t = \sum_{j \to k \in \mathcal{L}} Q_{jk}^t - \sum_{i \to j \in \mathcal{L}} \left\{ Q_{ij}^t - x_{ij} l_{ij}^t \right\} - q_{D_j}^t - q_{B_j}^t$$
 (E.15)

$$v_j^t = v_i^t + \left\{ r_{ij}^2 + x_{ij}^2 \right\} l_{ij}^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t)$$
(E.16)

$$l_{ij}^{t} = \frac{(P_{ij}^{t})^{2} + (Q_{ij}^{t})^{2}}{v_{i}^{t}}$$
(E.17)

$$B_{j}^{t} = B_{j}^{t-1} + \Delta t \eta_{c} P_{c_{j}}^{t} - \Delta t \frac{1}{\eta_{d}} P_{d_{j}}^{t}$$
(E.18)

$$B_j^0 = 0.5(soc_{max} + soc_{min})E_{Rated} = 0.625E_{Rated}$$
 (E.19)

where,
$$(E.20)$$

$$p_j^t = p_{Dj}^t - p_{Lj}^t \tag{E.21}$$

$$q_j^t = -q_{Lj}^t \tag{E.22}$$

$$t = \{1, 2, \dots T\} \tag{E.23}$$

Step 2: Full Optimization Model - Single Time Step Greedy Approach

$$\min_{P_{ij}^t, Q_{ij}^t, v_j^t, l_{ij}^t, q_{D_j}^t, B_j^t, P_{c_j}^t, P_{dj}^t, q_{B_j}^t} \quad \sum_{i \to j \in \mathcal{L}} (r_{ij} l_{ij}^t) + \alpha \sum_{j \in \mathcal{B}} \left\{ (1 - \eta_c) P_{c_j}^t + \left(\frac{1}{\eta_d} - 1 \right) P_{d_j}^t \right\} \quad (E.24)$$

$$p_{j}^{t} = \sum_{j \to k \in \mathcal{L}} P_{jk}^{t} - \sum_{i \to j \in \mathcal{L}} \left\{ P_{ij}^{t} - r_{ij} l_{ij}^{t} \right\} - P_{d_{j}}^{t} + P_{c_{j}}^{t}$$
(E.25)

$$q_j^t = \sum_{j \to k \in \mathcal{L}} Q_{jk}^t - \sum_{i \to j \in \mathcal{L}} \left\{ Q_{ij}^t - x_{ij} l_{ij}^t \right\} - q_{D_j}^t - q_{B_j}^t$$
 (E.26)

$$v_i^t = v_i^t + \left\{ r_{ij}^2 + x_{ij}^2 \right\} l_{ij}^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t)$$
(E.27)

$$l_{ij}^{t} = \frac{(P_{ij}^{t})^{2} + (Q_{ij}^{t})^{2}}{v_{i}^{t}}$$
 (E.28)

$$B_{j}^{t} = B_{j}^{t-1} + \Delta t \eta_{c} P_{c_{j}}^{t} - \Delta t \frac{1}{\eta_{d}} P_{d_{j}}^{t}$$
(E.29)

$$B_j^0 = 0.5(soc_{max} + soc_{min})E_{Rated} = 0.625E_{Rated}$$
 (E.30)

where,
$$(E.31)$$

$$p_{j}^{t} = p_{Dj}^{t} - p_{Lj}^{t} \tag{E.32}$$

$$q_j^t = -q_{Lj}^t \tag{E.33}$$

$$t = \{1, 2, \dots T\} \tag{E.34}$$

Step 1b: Initialisation Lossless Optimization Model WITH Batteries

- Single Time Step Greedy Approach

$$\min_{P_{ij}^{t}, Q_{ij}^{t}, q_{D_{j}}^{t}, B_{j}^{t}, P_{c_{j}}^{t}, P_{dj}^{t}, q_{B_{j}}^{t}} \quad \sum_{i \to j \in \mathcal{L}} \left\{ r_{ij} \frac{(P_{ij}^{t})^{2} + (Q_{ij}^{t})^{2}}{v_{0i}^{t}} \right\} + \alpha \sum_{j \in \mathcal{B}} \left\{ (1 - \eta_{c}) P_{c_{j}}^{t} + \left(\frac{1}{\eta_{d}} - 1\right) P_{d_{j}}^{t} \right\}$$
(E.35)

$$p_j^t = \sum_{i \to k \in \mathcal{L}} P_{jk}^t - \sum_{i \to j \in \mathcal{L}} \left(P_{ij}^t \right) - P_{d_j}^t + P_{c_j}^t \tag{E.36}$$

$$q_{j}^{t} = \sum_{j \to k \in \mathcal{L}} Q_{jk}^{t} - \sum_{i \to j \in \mathcal{L}} (Q_{ij}^{t}) - q_{D_{j}}^{t} - q_{B_{j}}^{t}$$
(E.37)

$$v_{0j}^{t} = v_{0i}^{t} - 2(r_{ij}P_{ij}^{t} + x_{ij}Q_{ij}^{t})$$
(E.38)

$$B_j^t = B_j^{t-1} + \Delta t \eta_c P_{c_j}^t - \Delta t \frac{1}{\eta_d} P_{d_j}^t$$
 (E.39)

$$B_j^0 = 0.5(soc_{max} + soc_{min})E_{Rated} = 0.625E_{Rated}$$
 (E.40)

where,
$$(E.41)$$

$$p_j^t = p_{Dj}^t - p_{Lj}^t \tag{E.42}$$

$$q_i^t = -q_{Li}^t \tag{E.43}$$

$$t = \{1, 2, \dots T\}$$
 (E.44)

Step 1a: Initialisation Lossless Optimization Model WITHOUT Batteries - Single Time Step Greedy Approach

$$\min_{P_{ij}^t, Q_{ij}^t, v_j^t, q_{D_j}^t} 0 \tag{E.45}$$

s.t.

$$p_j^t = \sum_{j \to k \in \mathcal{L}} P_{jk}^t - \sum_{i \to j \in \mathcal{L}} P_{ij}^t \tag{E.46}$$

$$q_j^t = \sum_{j \to k \in \mathcal{L}} Q_{jk}^t - \sum_{i \to j \in \mathcal{L}} Q_{ij}^t \tag{E.47}$$

$$v_j^t = v_i^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t)$$
 (E.48)

where,
$$(E.49)$$

$$p_j^t = p_{Dj}^t - p_{Lj}^t (E.50)$$

$$q_j^t = -q_{Lj}^t \tag{E.51}$$

$$t = \{1, 2, \dots T\}$$
 (E.52)

A simple metric called P_{Save} gives an indication of the effect of power generated by batteries and DERs which offset substation power (indirectly flowing it via its parent area if it is not directly connected to the substation).

Its formula is as shown:

$$P_{Save} = 100\% * \left(\frac{\sum_{j \in \mathcal{B}} (P_{d_j} - P_{c_j})}{P_{12} + \sum_{j \in \mathcal{D}} P_{DER_j} + \sum_{j \in \mathcal{B}} (P_{d_j} - P_{c_j})} \right)$$
 (E.53)