Experiment in Taxi Routes in Porto — GMDII —

N. Benali, L. Fuentes, R. Maatouk

Université Paris-Saclay

March 27, 2024

Outline

- Introduction
 - Présentation de l'article
 - Contexte général
- 2 Contexte théorique
 - Littérature
 - ADVI
 - PPCA
- 3 Implémentations et résultats
- 4 Conclusion

Présentation de l'article

Article

- "Automatic Differentiation Variational Inference"
- Auteurs: A. Kucukelbir, D.Tran, R. Ranganath, A. Gelman, D.M. Blei Columbia University & Princeton University

Objectif présenté: Appliquer l'inférence variationnelle sur des grands jeux de données de manière plus efficace

Littérature

Soit un modèle probabiliste de distribution jointe $p(x, \theta)$ des variables latentes $\theta \in \mathbb{R}^K$ et des variables observées $x = x_{1:N}$

L'inférence variationnelle

Estimer $p(\theta/x)$

Cette estimation est: $q(\theta; \phi*)$

Avec

$$\phi^* = \underset{\phi}{\operatorname{argmin}} \ \mathit{KL}(q(\theta; \phi) || p(\theta|x)).$$

sous la contrainte $supp(q(\theta; \phi)) \subseteq supp(p(\theta|\mathbf{x}))$

Littérature

Problème

 $\phi^*=\mathop{\rm argmin}_{\phi} KL(q(\theta;\phi)||p(\theta|x))$ est défini en fonction de $p(\theta/x)$ qui est inconnu en pratique.

Solution

$$\begin{split} \mathit{KL}(q(\theta;\phi)||p(\theta|x)) \\ &= \mathbb{E}_q[\log(q(\theta;\phi))] - \mathbb{E}_q[\log(p(\theta|x))] \\ &= \mathbb{E}_q[\log(q(\theta;\phi))] - \mathbb{E}_q[\log(\frac{p(\theta,x)}{p(x)})] \\ &= \mathbb{E}_q[\log(q(\theta;\phi))] - \mathbb{E}_q[\log(p(\theta,x)) - \log(p(x))] \\ &= \mathbb{E}_q[\log(q(\theta;\phi))] - \mathbb{E}_q[\log(p(\theta,x))] + \log(p(x)) \end{split}$$

Littérature

Conclusion

minimiser $KL(q(\theta; \phi)||p(\theta|x))$ revient à maximiser $\mathbb{E}_q[\log(p(\theta, x))] - \mathbb{E}_q[\log(q(\theta; \phi))]$

On définit la fonction ELBO:

$$\mathcal{L}(\phi) = \mathbb{E}_{q(\theta)}[\log(p(x,\theta))] + H(q(\theta;\phi))$$

C'est une fonction que nous pouvons évaluer car elle utilise des termes connus. Ainsi le problème devient:

$$\phi^* = \operatorname*{argmax}_{\phi} \mathcal{L}(\phi)$$

tel que $supp(q(\theta; \phi)) \subseteq supp(p(\theta|\mathbf{x}))$

$$T: \operatorname{supp}(p(\theta)) \to \mathbb{R}^K$$
est définie par $\xi = T(\theta)$

On peut alors réécrire la densité jointe

$$p(x,\xi) = p(x,T^{-1}(\xi)) \cdot |\det J_{T^{-1}}(\xi)|$$

$$\mathcal{L}(\phi) = \mathbb{E}_{q(\theta)}[\log(p(x,\theta))] + H(q(\theta;\phi))$$

$$\mathcal{L}(\phi) = \mathbb{E}_{q(\xi;\phi)}[\log(p(x,\xi))] + H(q(\xi;\phi))$$

$$\mathcal{L}(\phi) = \mathbb{E}_{q(\xi;\phi)}[\log(p(x, T^{-1}(\xi))) + \log(|\det J_{T^{-1}}(\xi)|)] + H(q(\xi;\phi))$$

Nous avons beaucoup de choix d'approximation variationnelle $q(\xi; \phi)$ dans R^K . Les auteurs ont présenté deux options:

- mean-field Gaussian: $q(\xi;\phi)=$ Normal $(\xi;\mu,\text{ diag }(\sigma^2))=\prod_{k=1}^K \text{Normal}(\xi_k;\mu_k,\sigma_k^2)$, où le vecteur $\phi=(\mu_1,..,\mu_K,\sigma_1^2,...,\sigma_K^2)$ regroupe la moyenne et la variance de chaque facteur gaussien. On pose $\omega=\log(\sigma)$
- ② full-rank Gaussian: $q(\xi;\phi)=$ Normal $(\xi;\mu,\sum)$, où le vecteur $\phi=(\mu,\sum)$ regroupe la moyenne et la matrice de covariance. Pour garantir que \sum reste toujours semi-définie positive, nous reparamétrons la matrice de covariance en utilisant une factorisation de Cholesky, $\sum=LL^T$. Le full-rank Gaussian généralise la mean-field Gaussian.

Les auteurs développent un algorithme de montée de gradient stochastique qui utilise :

- l'intégration MC pour approximer les espérances non calculables, $q(\xi;\phi)$
- la différenciation automatique pour calculer les gradients.

terme non calculable

Nous ne pouvons pas utiliser directement la différenciation automatique sur l'ELBO:

$$\mathcal{L}(\phi) = \mathbb{E}_{q(\xi;\phi)}[\log(p(x,T^{-1}(\xi))) + \log(|\text{det}J_{\mathcal{T}^{-1}}(\xi)|)] + H(q(\xi;\phi))$$

à cause de la présence du terme d'espérance non calculable. Cependant, nous pouvons différencier automatiquement les fonctions à l'intérieur de cette espérance.

Nous utilisons une dernière transformation: la standarisation elliptique $\eta=S_\phi(\xi)$ qui convertit l'approximation variationnelle gaussienne $q(\xi;\phi)$ en une gaussienne centrée réduite $q(\eta)$. Cette nouvelle variable η utilise θ et ξ , ce qui permet :

- calculer les derivées partielles par la règle de la chaîne
- se ramener à une espérance plus facile à calculer.

Ainsi le calcul des gradients est possible. On obtient alors:

$$\mathcal{L}(\phi) = \mathbb{E}_{\mathcal{N}(\eta;0,I)}[\log p(x, T^{-1}(S_{\phi}^{-1}(\eta))) + \log(|\det J_{T^{-1}}(S_{\phi}^{-1}(\eta))|)] + H(q(\xi;\phi))$$

Il ne nous reste alors qu'à déterminer les paramètres de la distribution variationelle $q(\eta) = \mathcal{N}(\mu, \omega)$.

Contexte théorique: PPCA

Principe

On utilise une méthode appelée PPCA (Analyse en Composantes Principales Probabiliste) pour la réduction de dimension. Le modèle considère que les données sont générées selon la relation $x=wz+\sigma$, où w et z sont des paramètres latents et σ est l'écart-type du bruit.

La distribution des données x suit une distribution normale $\mathcal{N}(wz,\sigma)$. La PPCA utilise l'algorithme EM, un ensemble d'observations x et un ensemble de paramètres $\theta=(z,w,\sigma)$. L'objectif est d'estimer la distribution postérieure $p(\theta|x)$.

Cette distribution postérieure permet de déterminer les valeurs optimales des paramètres θ , ce qui facilite la réduction de dimension et la reconstruction des observations.

Contexte théorique: PPCA

Modélisation de la vraisemblance

On rappelle qu'on a $p(x,\theta)=p(x|\theta)\times p(\theta)$. On dispose également d'un jeu de données $\mathbf{x}=(x_i)_{0\leq i\leq N}$ avec $x_i\in\mathbb{R}^D$ pour tout i. On veut faire une projection sur un sous-espace de dimension $\mathbf{M}\leq D.$ Enfin, ondéfinit θ le vecteur de paramètres du modèle tel que $\theta=(w,z,\sigma,\alpha)$.

On fait alors une série d'hypothèse permettant l'estimation in fine des paramètres du modèle:

- $x|\theta \sim \mathcal{N}(w^T z, \sigma)$
- $x|w,z,\sigma \sim \mathcal{N}(x;wz,\sigma \mathbf{I})$
- $w | \alpha \sim \mathcal{N}(w; \mathbf{0}, \sigma diag(\alpha))$
- $\alpha \sim InvGamma(\alpha; 1, 1)$

Ici, α désigne un vecteur de taille M qui va décider quelles composantes retenir lors de la PPCA.

Présentation du jeu de données

- Taxi Service Trajectory Prediction Challenge 2015
- Trajectoires de taxis effectuées à Porto, Portugal.
- Coordonnées enregistrées toutes les 15 secondes
- 1ère paire de coordonnées: point de départ du trajet
- Dernière paire: destination
- Description:
 - 442 taxis (Porto, Portugal)
 - TRIP_ID: identifiant unique pour chaque trajet
 - POLYLINE: liste de coordonnées GPS (chaîne de caractères)

Objectif: Regrouper les trajectoires

Étape 1: Interpolation

- Longueur des trajets dépend de la durée
- \rightarrow Biais dans clusters introduit par la durée (\neq Trajectoire)
- √ Solution: Interpolation
 - Normaliser longueur des trajets
 - Rend le clustering indépendant de la durée du trajet
 - Interpolation à 50 coordonnées (trajet moyen \approx 13 minutes)

A) Avant interpolation

B) Après interpolation

 Objectif: identifier une représentation des données de dimension inférieure (structures cachées)

Outils:

- PPCA: Déterminer une distribution q pour approcher $p(\theta|x)$ et optimiser θ
- ADVI: déterminer les paramètres de la distribution variationnelle $q(\mu,\sigma^2=e^\omega)$

Algorithm 1 Automatic Differentiation Variational Inference (ADVI)

Input Jeu de données $x = x_{1:N}$, modèle $p(x, \theta)$. Configurer le compteur d'itérations i = 1. Initialiser $\mu^{(1)} = 0$. Initialiser $\omega^{(1)} = 0$ (mean-field) or $L^{(1)} = I$ (full-rank). Déterminer η par recherche sur des valeurs finies. while Le changement dans l'ELBO est supérieur à un certain seuil do Tirer M échantillons $\eta_m \sim \mathbb{N}(0, I)$. Approximer $\nabla_{\mu} \mathcal{L}$ par intégration MC. Approximer $\nabla_{\omega} \mathcal{L}$ or $\nabla_{I} \mathcal{L}$ par intégration MC. Calculer le step-size (i). Mise à jour de $\mu^{(i+1)} = \mu^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\mu} \mathcal{L}$. Mise à jour de $\omega^{(i+1)} = \omega^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\omega} \mathcal{L}$. or $L^{(i+1)} = L^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_L \mathcal{L}$

Incrémentation du compteur d'itérations

end while Retourne $\mu^* = \mu^{(i)}$

Retourne $\omega^{=\omega^{(i)}}$ or $L^{=L^{(i)}}$

$$\begin{split} \boxed{\nabla_{\mu}\mathcal{L}} &= \mathbb{E}_{\mathcal{N}(0,I)}[\nabla_{\theta}\log(p(x,\theta))\nabla_{\xi}T^{-1}(\xi)] + \nabla_{\xi}\log(|J_{T^{-1}}|) \\ \boxed{\nabla_{\omega}\mathcal{L}} &= \mathbb{E}_{\mathcal{N}(0,I)}[\nabla_{\theta}\log(p(x,\theta))\nabla_{\xi}T^{-1}(\xi)] + \nabla_{\xi}\log(|J_{T^{-1}}|)\eta^{T}\mathrm{diag}(e^{\omega}) + 1 \end{split}$$

Objectif: Estimer les espérances par Monte Carlo

$$\begin{split} \nabla_{\mu}\mathcal{L} &= \boxed{\mathbb{E}_{\mathcal{N}(0,I)}} \left[\boxed{\nabla_{\theta} \log(p(\mathbf{x},\theta)) \nabla_{\xi} T^{-1}(\xi)} \right] + \nabla_{\xi} \log(|J_{T^{-1}}|) \\ \nabla_{\omega}\mathcal{L} &= \boxed{\mathbb{E}_{\mathcal{N}(0,I)}} \left[\boxed{\nabla_{\theta} \log(p(\mathbf{x},\theta)) \nabla_{\xi} T^{-1}(\xi)} \right] + \nabla_{\xi} \log(|J_{T^{-1}}|) \eta^{T} \operatorname{diag}(e^{\omega}) + 1 \end{split}$$

Démarche:

1 On tire M échantillons de $f(x, \theta_m)$

2
$$\mathbb{E}_{\mathcal{N}(0,I)}[f(x,\theta)] \approx \frac{1}{M} \sum_{i=1}^{M} f(x,\theta_m)$$

Calcul de $log(p(x, \theta))$

$$\nabla_{\mu} \mathcal{L} = \mathbb{E}_{\mathcal{N}(0,I)} [\nabla_{\theta} \log(p(x,\theta))] \nabla_{\xi} T^{-1}(\xi)] + \nabla_{\xi} \log(|J_{T^{-1}}|)$$

$$\nabla_{\omega} \mathcal{L} = \mathbb{E}_{\mathcal{N}(0,I)} [\nabla_{\theta} \log(p(x,\theta))] \nabla_{\xi} T^{-1}(\xi)] + \nabla_{\xi} \log(|J_{T^{-1}}|) \eta^{T} \operatorname{diag}(e^{\omega}) + 1$$

- 1 Tirer $\eta_i \sim \mathcal{N}(0, I)$
- 2 Standardisation elliptique: $\xi_i = S_{\phi}(\eta_i) = \frac{(\eta \mu)}{\omega}$
- 3 Extraction de $\theta_i = T^{-1}(\xi_i)$
- 4 Extraction des échantillons des priors: z_i , w_i et σ_i
- 5 Calcul de $log(p(x, \theta)) = log(p(z_i)) + log(w_i) + log(\sigma_i) + log(p(x|\theta_i))$

Calcul des gradients par différentiation automatique

$$\begin{split} \nabla_{\mu}\mathcal{L} &= \mathbb{E}_{\mathcal{N}(0,I)} \big[\boxed{\nabla_{\theta}} \log(p(x,\theta)) \boxed{\nabla_{\xi}} T^{-1}(\xi) \big] + \boxed{\nabla_{\xi}} \log(|J_{T^{-1}}|) \\ \nabla_{\omega}\mathcal{L} &= \mathbb{E}_{\mathcal{N}(0,I)} \big[\boxed{\nabla_{\theta}} \log(p(x,\theta)) \boxed{\nabla_{\xi}} T^{-1}(\xi) \big] + \boxed{\nabla_{\xi}} \log(|J_{T^{-1}}|) \eta^{T} \operatorname{diag}(e^{\omega}) + 1 \end{split}$$

Calcul des gradients par différentiation automatique

$$\begin{split} &\nabla_{\mu}\mathcal{L} = \mathbb{E}_{\mathcal{N}(0,I)}[\boxed{\nabla_{\theta}}\log(p(x,\theta))\boxed{\nabla_{\xi}}T^{-1}(\xi)] + \boxed{\nabla_{\xi}}\log(|J_{T^{-1}}|) \\ &\nabla_{\omega}\mathcal{L} = \mathbb{E}_{\mathcal{N}(0,I)}[\boxed{\nabla_{\theta}}\log(p(x,\theta))\boxed{\nabla_{\xi}}T^{-1}(\xi)] + \boxed{\nabla_{\xi}}\log(|J_{T^{-1}}|)\eta^{T}\mathrm{diag}(\mathrm{e}^{\omega}) + 1 \end{split}$$

Il ne reste qu'un dernier calcul!

```
Algorithm 1 Automatic Differentiation Variational Inference (ADVI)
```

```
Input Jeu de données x = x_{1:N}, modèle p(x, \theta).
Configurer le compteur d'itérations i = 1.
Initialiser \mu^{(1)} = 0.
Initialiser \omega^{(1)} = 0 (mean-field) or L^{(1)} = I (full-rank).
Déterminer n par recherche sur des valeurs finies.
while Le changement dans l'ELBO est supérieur à un certain seuil
do
    Tirer M échantillons \eta_m \sim \mathbb{N}(0, I).
     Approximer \nabla_{\mu} \mathcal{L} par intégration MC.
     Approximer \nabla_{\omega} \mathcal{L} or \nabla_{L} \mathcal{L} par intégration MC.
     Calculer le step-size (i).
     Mise à jour de \mu^{(i+1)} = \mu^{(i)} + \text{diag}(\rho^{(i)}) \nabla_{\mu} \mathcal{L}.
     Mise à jour de \omega^{(i+1)} = \omega^{(i)} + \text{diag}(\rho^{(i)}) \nabla_{\omega} \mathcal{L}.
     or L^{(i+1)} = L^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_I \mathcal{L}
     Incrémentation du compteur d'itérations
end while
Retourne \mu^* = \mu^{(i)}
```

$$\rho_k^{(i)} = \eta \times i^{-1/2 + \epsilon} \times (\tau + \sqrt{s_k^{(i)}})
s_k^{(i)} = \alpha g_k^{2(i)} + (1 - \alpha) s_k^{(i-1)}$$

Retourne $\omega^{=\omega^{(i)}}$ or $L^{=L^{(i)}}$

• On met à jour
$$\mu^{(i+1)}$$
 et $\omega^{(i+1)}$
$$\mu^{(i+1)} = \mu^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\mu} \mathcal{L}$$

$$\omega^{(i+1)} = \omega^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\omega} \mathcal{L}$$

• On met à jour $\mu^{(i+1)}$ et $\omega^{(i+1)}$ $\mu^{(i+1)} = \mu^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\mu} \mathcal{L}$ $\omega^{(i+1)} = \omega^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\omega} \mathcal{L}$

• Processus répété jusqu'à convergence de l'ELBO

Benali, Fuentes, Maatouk

• On met à jour $\mu^{(i+1)}$ et $\omega^{(i+1)}$ $\mu^{(i+1)} = \mu^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\mu} \mathcal{L}$ $\omega^{(i+1)} = \omega^{(i)} + \operatorname{diag}(\rho^{(i)}) \nabla_{\omega} \mathcal{L}$

- Processus répété jusqu'à convergence de l'ELBO
- Projection du dataset (x) dans l'espace de plus petite dimension:
 - 1 On tire $\eta \sim q(\mu^*, e^{\omega^*}) = \mathcal{N}(\mu^*, e^{\omega^*})$
 - 2 On extrait $\theta = T^{-1}(\eta)$ puis z, w, σ
 - 3 Par la PPCA on a: $x \sim wz + \sigma$
 - 4 Projection dans le sous-espace: $z = (w^T w)^{-1} (w^T (x \sigma))$

Étape 3: Clustering

Le modèle de mélange outil fondamental pour le regroupement de données

- Attribuer les observations à des clusters
- Identification de structures sous-jacentes
- Appartenance au cluster C_k : estimation de $p(z \in C_k | \theta)$
- BayesianGausianMixture de sklearn

Étape 3: Clustering

Le modèle de mélange outil fondamental pour le regroupement de données

- Attribuer les observations à des clusters
- Identification de structures sous-jacentes
- Appartenance au cluster C_k : estimation de $p(z \in C_k | \theta)$
- BayesianGausianMixture de sklearn

Figure: Groupement des trajectoires 2 et 30 clusters [Extrait de l'article]

Figure: Groupement des trajectoires pour différents nombres de clusters

Benali, Fuentes, Maatouk GMDIL 2023 March 27, 2024 22 / 23

Conclusion

En conclusion

L'implémentation de l'algorithme ADVI nous a effectivement permis de réaliser un clustering sur un problème sans contraintes. Il est montré dans l'article que cet algorithme peut être appliqué à bien d'autres types de problèmes, de par son utilisation de l'inférence variationnelle.

Cependant, lors de notre lecture, et analyse de l'article, nous avons rencontré quelques difficultés:

- Comprendre Stan,
- Problème de reproductibilité: il manque des paramètres dans l'article,
- Survol de la partie application: l'article ne présente pas les transformations réalisées dans chaque cas de figure,
- Computation: nous avons dû réduire de beaucoup les dimensions du jeu de données par manque de ressources computationnelles,
- L'algorithme est assez sensible à la valeur du learning rate.