TW9: Clustering

Xiaomei Xie: xiaomeiX/TW9 (github.com)

Lili Hao: lhaoSeattleu/TW9 (github.com)

## Submit Assignment

• **Due** Sunday by 11:59pm

- Points 10
- Submitting a text entry box or a file upload
- File Types doc, docx, txt, jpeg, png, py, and zip

## **Learning objectives:**

- Be able to understand clustering models: k-Means, DBSCAN and Gaussian Mixture models
- Be able to understand clustering problems and select an appropriate clustering algorithms.

## Part 0: Basic applications of clustering models.

We will work together on basic applications of common clustering models.

- K-means and DBSCAN
- Download the starter notebook: TW9-clustering.zip
  - o Use the following notebook (Part 0 is completed). Save it in TW9 folder.
    - clustering basic part0 completed.ipynb

#### Part 1: K-means vs. DBSCAN

- (1) Apply the following clustering models on the generated data above. (Links to an external site.)
  - K-mean
    - Apply k-means model
    - $\circ$  use k = 2



- DBSCAN
  - Apply DBSCAN model: eps=0.2, min\_samples=5



- (2) Apply k-means model on breast cancer dataset and check the model performance
  - check also notebook, <u>clustering Kmeans.ipynb</u> for implementation details of k-means model

| KMeans(n_clusters=2) | KMeans(n_clusters=3) |
|----------------------|----------------------|
|----------------------|----------------------|



- (3) Evaluate cluster models
  - evaluation methods are described in the starter notebook.



Part 2: Optimal parameters of clustering models:

The given notebooks of k-means and DBSCAN models includes examples of finding optimal parameters. Apply these techniques to find optimal parameters of K-means and DBSCAN models for the given dataset.

K-means: <u>clustering Kmeans.ipynb</u>DBSCAN: <u>clustering DBSCAN.ipynb</u>





We learn Basic applications of clustering models.

K-means and DBSCAN.

For the K-means: the parameter n\_clusters value can affect the result of the model.

- The dataset need be scaled by using MinMaxScaler() for normalized values of X.
- Evaluate Model performance by checking Accuracy of the model, which is y\_pred/ y\_real \* 100 %.
- Optimal parameters of clustering models by Kmeans: by increasing or decreasing the k value/n\_clusters; or can use Silhouette score

For the DBSCAN: the parameter eps and min samples value can affect the result of the model.

- The dataset need be scaled by using MinMaxScaler() for normalized values of X.
- Optimal parameters of clustering models by DBSCAN: by increasing or decreasing the eps value, or the min samples; or can use **Silhouette score**

**Silhouette Score:** The silhouette score is calculated utilizing the mean intra- cluster distance between points, AND the mean nearest-cluster distance. A silhouette score ranges from -1 to 1, with -1 being the worst score possible and 1 being the best score. Silhouette scores of 0 suggest overlapping clusters.

# Submission(s)

Each student should make individual submissions.

- Part 1:
  - Push an updated notebook file to his/her/their Git repo.
    - You do not need to submit any notebook files to Canvas.
    - I will visit your Github to check the file.
- Part 2:
  - Submit a summary of your learning to Canvas. Your document should include:
    - Full names of your team members who work on the assignment.
    - URL links to the notebook of each student on GitHub repo.
    - A summary of what you learned from the teamwork assignment.