| 1. |                                                                             |     |
|----|-----------------------------------------------------------------------------|-----|
|    | Relative to a fixed origin O                                                |     |
|    | • the point A has position vector $5\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ |     |
|    | • the point B has position vector $2\mathbf{i} + 4\mathbf{j} + a\mathbf{k}$ |     |
|    | where $a$ is a positive integer.                                            |     |
|    | (a) Show that $ \overrightarrow{OA}  = \sqrt{38}$                           |     |
|    |                                                                             | (1) |
|    | (b) Find the smallest value of a for which                                  |     |
|    | $ \overrightarrow{OB}  >  \overrightarrow{OA} $                             |     |
|    |                                                                             | (2) |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |
|    |                                                                             |     |

| 2. |                                                                                         |     |
|----|-----------------------------------------------------------------------------------------|-----|
|    | Relative to a fixed origin O                                                            |     |
|    | • point A has position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$                 |     |
|    |                                                                                         |     |
|    | • point B has position vector $3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}$                 |     |
|    | • point C has position vector $2\mathbf{i} - 16\mathbf{j} + 4\mathbf{k}$                |     |
|    | $\langle \rangle$ $\rightarrow$                                                         |     |
|    | (a) Find $\overrightarrow{AB}$                                                          | (2) |
|    |                                                                                         | (2) |
|    | (b) Show that quadrilateral <i>OABC</i> is a trapezium, giving reasons for your answer. |     |
|    |                                                                                         | (2) |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |
|    |                                                                                         |     |

| 3. |                                                                                                                                       |     |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    | Relative to a fixed origin, points $P$ , $Q$ and $R$ have position vectors $\mathbf{p}$ , $\mathbf{q}$ and $\mathbf{r}$ respectively. |     |  |
|    | Given that                                                                                                                            |     |  |
|    | • $P, Q$ and $R$ lie on a straight line                                                                                               |     |  |
|    | • Q lies one third of the way from P to R                                                                                             |     |  |
|    | show that                                                                                                                             |     |  |
|    | $\mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})$                                                                                  |     |  |
|    |                                                                                                                                       | (3) |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
|    |                                                                                                                                       |     |  |
| _  |                                                                                                                                       |     |  |

| 4. |                                                                                                         |     |
|----|---------------------------------------------------------------------------------------------------------|-----|
|    | Relative to a fixed origin O,                                                                           |     |
|    | • A is the point with position vector 12i                                                               |     |
|    | • $B$ is the point with position vector $16\mathbf{j}$                                                  |     |
|    | • $C$ is the point with position vector $(50\mathbf{i} + 136\mathbf{j})$                                |     |
|    | • $D$ is the point with position vector $(22\mathbf{i} + 24\mathbf{j})$                                 |     |
|    | (a) Show that $AD$ is parallel to $BC$ .                                                                |     |
|    |                                                                                                         | (2) |
|    | Points A, B, C and D are used to model the vertices of a running track in the shape of a quadrilateral. |     |
|    | Runners complete one lap by running along all four sides of the track.                                  |     |
|    | The lengths of the sides are measured in metres.                                                        |     |
|    | Given that a particular runner takes exactly 5 minutes to complete 2 laps,                              |     |
|    | (b) calculate the average speed of this runner, giving the answer in kilometres per hour.               | (4) |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |
|    |                                                                                                         |     |

5.



Figure 3

Figure 3 shows a sketch of a parallelogram PQRS.

Given that

• 
$$\overrightarrow{PQ} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$$

• 
$$\overrightarrow{QR} = 5\mathbf{i} - 2\mathbf{k}$$

(a) show that parallelogram PQRS is a rhombus.

**(2)** 

(b) Find the exact area of the rhombus PQRS.

**(4)** 

| 6. |                                                                                                                     |     |
|----|---------------------------------------------------------------------------------------------------------------------|-----|
|    | Relative to a fixed origin O                                                                                        |     |
|    | • the point A has position vector $4\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$                                         |     |
|    | • the point B has position vector $4\mathbf{j} + 6\mathbf{k}$                                                       |     |
|    | • the point C has position vector $-16\mathbf{i} + p\mathbf{j} + 10\mathbf{k}$                                      |     |
|    | where $p$ is a constant.                                                                                            |     |
|    | Given that $A$ , $B$ and $C$ lie on a straight line,                                                                |     |
|    | (a) find the value of p.                                                                                            |     |
|    |                                                                                                                     | (3) |
|    | The line segment $OB$ is extended to a point $D$ so that $\overrightarrow{CD}$ is parallel to $\overrightarrow{OA}$ |     |
|    | (b) Find $ \overrightarrow{OD} $ , writing your answer as a fully simplified surd.                                  |     |
|    |                                                                                                                     | (3) |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |
|    |                                                                                                                     |     |