

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Радиотехнический» Кафедра ИУ5 «Системы обработки информации и управления»

Лабораторная работа №6 по дисциплине «Технологии машинного обучения»

Выполнил: студент группы РТ5-61Б М.А. Ходосов

Задание лабораторной работы:

Задание:

- 1. Выберите набор данных (датасет) для решения задачи прогнозирования временного ряда.
- 2. Визуализируйте временной ряд и его основные характеристики.
- 3. Разделите временной ряд на обучающую и тестовую выборку.
- 4. Произведите прогнозирование временного ряда с использованием как минимум двух методов.
- 5. Визуализируйте тестовую выборку и каждый из прогнозов.
- 6. Оцените качество прогноза в каждом случае с помощью метрик.

Лабораторная работа 6

Анализ и прогнозирование временного ряда.

Цель лабораторной работы: изучение основных методов анализа и прогнозирование временных рядов.

Задание:

min 2.814520

- 1. Выберите набор данных (датасет) для решения задачи прогнозирования временного ряда.
- 2. Визуализируйте временной ряд и его основные характеристики.
- 3. Разделите временной ряд на обучающую и тестовую выборку.
- 4. Произведите прогнозирование временного ряда с использованием как минимум двух методов.
- 5. Визуализируйте тестовую выборку и каждый из прогнозов.
- 6. Оцените качество прогноза в каждом случае с помощью метрик.

```
In [1]: import numpy as np
import pandas as pd
from matplotlib import pyplot
import matplotlib pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
from stlearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from stlearn.model.stsa.ariam.model import ARINA
from stlearn.model.sleatcoin import GridSearchCV
from gplearn.genetic import SymbolicRegressor
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from wornings import simplefilter
simplefilter('ignore')
```

Использован датасет, содержащий данные об изменении численности населения: https://www.kagqle.com/datasets/census/population-time-series-data?datasetId=51748&sortBy=voteCount

```
In [2]: data = pd.read_csv('../datasets/lab6_dataset.txt')
data.head()
```

```
data.head()

value

data

1991-07-01 3.526591

1991-08-01 3.180891

1991-09-01 3.252221

1991-10-01 3.611003

1991-11-10 3.355889
```

In [5]: data.head()

```
ut[5]: value

| dat | |
| 1991-07-01 | 3.525991 |
| 1991-08-01 | 3.500991 |
| 1991-09-01 | 3.52221 |
| 1991-10-01 | 3.611003 |
| 1991-11-01 | 3.55869
```

1991-	- 10-01 3.611003
1991-	- 11-01 3.565869
In [6]: data.	.describe()
Out[6]:	value
	t 204.000000
mean	n 10.694430
	10.054450

50% 9.319345 75% 14.289964 max 29.665356

Визуализация временного ряда

In [7]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Spemenwö ραι ε αναε γραφωνα')
data.plot(ax-ax, legend-False)
pyplot.show()

Временной ряд в виде графика

In [8]: for i in range(1, 5):
 fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(5,4))
 fig.suptitle(f'Mar nopagwa {\$\frac{1}{4}\$}')
 pd.plotting.lag_plot(data, lag-i, ax=ax)
 pyplot.show()

In [9]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Asтокорреляционная диаграмма') pd.plotting.autocorrelation_plot(data, ax-ax) pyplot.show()

Автокорреляционная функция

In [10]: plot_acf(data, lags=100)
 plt.tight_layout()

Частичная автокорреляционная функция

In [11]: plot_pacf(data, lags=30, method='ywm')
 plt.tight_layout()

Декомпозиция временного ряда

decomposed = seasonal_decompose(data['value'], model = 'add')
fig = decomposed.plot()
fig.set_size_inches((10, 8))
fig.tight_layout()
plt.show()

Разделение временного ряда на обучающую и тестовую выборку

```
In [13]: data_2 = data.copy()
                               # Uenovucnernas memsa uxans Openenu
xnum = list(range(data_2.shape[0]))
# Pasdenenue Obdopsu na odyvousya u mecnodyo
Y = data_2['value'].values
train_size = int(len(Y) * 0.7)
xnum_train_xnum_test= xnum[0:train_size], xnum[train_size:]
train, test = Y[0:train_size], Y[train_size:]
history_arima = [x for x in train]
```

Прогнозирование временного ряда авторегрессионным методом (ARIMA)

```
# Параметры модели (p,d,q)
arina_order = (2,1,0)
# Формирование предсказаний
predictions_arina = list()
for t in range(len(test)):
model_arina = ARIMA(history_arina, order-arina_order)
model_arina_fit = model_arina_fit()
yhat_arina = nodel_arina_fit()
yhat_arina = nodel_arina_fit()
predictions_arina.append(yhat_arina)
history_arina.append(test[t])
# Вынисление межарики ИМБЕ
error_arina = mean_squared_error(test, predictions_arina, squared=False)
In [16]: # Ошибка прогноза
пр.mean(Y), error_arima
                                    (10.694429582156861, 3.087041364389784)
```

Записываем предсказания в DataFrame data_2['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_arima) In [18]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Предсказания временного ряда')
data 2.plot(ax-ax, legend=True)
pyplot.show()

Предсказания временного ряда


```
In [19]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.supritle('Предсказания временного ряда (тестовая выборка)')
data_2[train_size:].plot(ax=ax, legend=True)
pyplot.show()
```

27.5 25.0 22.5 20.0 17.5 12.5 10.0

Прогнозирование временного ряда методом символьной регресии

```
In [21]: SR.fit(np.array(xnum_train).reshape(-1, 1), train.reshape(-1, 1))
```

	Populat	ion Average		Best Individual	ı	
Gen	Length	Fitness	Length	Fitness	00B Fitness	Time Left
0	263.65	2.60969e+51	137	52.4421	N/A	1.72m
1 2	150.29 100.75	2.31086e+10	44 1	44.7186 13.2697	N/A N/A	40.95s 31.44s
3	100.75 49.61	3.3938e+08 3.36747e+10	141	13.2697 3.58406	N/A N/A	31.44s 25.51s
4		4.94445e+10	106	2.88037	N/A	20.89s
5	88.37	3.35228e+09	102	2.08309	N/A	27.81s
6		5.72434e+08	41	1.96391	N/A	30.62s
7	94.38	3.9886e+09	45	1.88267	N/A	29.06s
8	74.23	2.83158e+10	47	1.85907	N/A	25.23s
9 10	49.31 42.09	6.62331e+08 1.09979e+09	37 41	1.76829 1.7546	N/A N/A	21.07s 20.14s
11		8.59967e+08	43	1.74225	N/A	19.62s
12		2.01293e+09	41	1.73156	N/A	18.435
13		4.32481e+08	33	1.67804	N/A	17.97s
14		4.30404e+08	43	1.678	N/A	17.43s
15		5.605e+10	41	1.67615	N/A	17.70s
16		356914	47	1.67239	N/A	17.30s
17		199911	42	1.67236	N/A	17.87s
18		370767	34	1.66796	N/A	16.52s
19		195144	31	1.66366	N/A	15.77s
20 21		439781 361032	32 36	1.66181 1.65974	N/A N/A	15.02s 14.76s
22		895261	36	1.65974	N/A	14.765
23		307091	29	1.65937	N/A	15.90s
24		330752	31	1.65753	N/A	13.35s
25	30.31	387730	32	1.65762	N/A	13.84s
26		222864	31	1.65753	N/A	13.99s
27		344917	31	1.65753	N/A	12.77s
28		306110	31	1.65753	N/A	13.02s
29		167424	31	1.65753	N/A	12.625
30		335435 627881	31	1.65753 1.65753	N/A N/A	11.86s 11.72s
31 32		211590	31 31	1.65753	N/A N/A	11.725
32		211590	31	1.65753	N/A N/A	11.735
34		181278	31	1.65753	N/A	10.95s
35		363114	31	1.65753	N/A	10.295
36	30.56	290978	31	1.65753	N/A	10.13s
37		204967	31	1.65753	N/A	9.86s
38		181335	31	1.65753	N/A	10.43s
39		154103	25	1.6573	N/A	10.88s
40		102759	25	1.6573	N/A	8.63s
41 42		61146.4 34651.5	25 25	1.6573 1.6573	N/A N/A	8.76s
42		34651.5 1692.08	25 25	1.6573	N/A N/A	8.13s 7.63s
44		167542	25	1.6573	N/A	7.195
45		125055	25	1.6573	N/A	6.95s
46		4137.5	25	1.6573	N/A	7.20s
47		27400.8	25	1.6573	N/A	6.63s
48	24.34	1979.09	25	1.6573	N/A	6.30s
	22.22	40/120	- 23	1.00/0	11/15	0.003
]: •					Symbolic	Regressor
adı	d(div(X0, 1	4.579), sub(sub	(div(X0, X	0), sin(sub(sub(-	10.392, 71.98	3), sin(sin
ol. pr	int(SRpro	eram)				
			liv(X0, X0)	, sin(sub(sub(-10.3	92, 71.983), s	in(sin(sin(s
У_	Предсказания s = SR.predict(np.array(xnum_test).reshape(-1, 1)) sr[:10]					
			- 40 4777	2464 12 21102460		

In [25]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.supritle('Предсказания временного ряда (тестовая выборка)') data_2[train_size:].plot(ax=ax, legend=True) pyplot.show() Предсказания временного ряда (тестовая выборка)

Out[23]: array([12.1262825 , 12.14957997, 12.17778464, 12.21103469, 12.24916232, 12.29186476, 12.33849853, 12.38734853, 12.44287316, 12.49803004])
In [24]: # 3anucudaen npedcxasanus d DataFrame data_Z['predictions_GPLERNY'] = (train_size * [np.NAN]) + list(y_sr)


```
In [26]: error_SR = mean_squared_error(test, y_sr, squared=False)

In [27]: # Omutikan прогмаза пр.mean(Y), error_SR

Out[27]: (10.694429582156861, 4.902532668025038)
```

Качество прогноза моделей

```
In [28]: def print_metrics(y_test, y_pred):
    print("R"2: {r2_score(y_test, y_pred)}")
    print("MSt: (meam_sboolut_error(y_test, y_pred)}")
    print("MSt: (meam_sboolut_error(y_test, y_pred)}")
    print("MSt: (meam_sboolut_error(y_test, y_pred)}")
    print("MR"1x")
    pr
```

Вывод: Лучше оказалась ARIMA.