Анализа 2 – основне идеје доказа важнијих теорема и тврђења

1 Диференцирање

1.1 Диференцирање у нормираним векторским просторима

Теорема. (Извод сложене функције) Нека су X, Y, и Z нормирани векторски простори, $V \subseteq X, W \subseteq Y$ отворени скупови, $f: V \to Y, g: W \to Z$ и $a \in V, f(a) \in W$. Тада важи:

$$f\mathcal{D}a \wedge g\mathcal{D}f(a) \implies g \circ f\mathcal{D}a$$

и при томе је

$$D(g \circ f)(a) = Dg(f(a)) \cdot Df(a)$$

 \mathcal{A} оказ. Доказ следи из дефиниције извода пресликавања и чињенице да је o(O(h)) = o(h).

Теорема. (Извод инверзне функције) Нека су X и Y нормирани векторски простори, $V \subseteq X$ отворен скуп, $a \in V$ и $f: V \to Y$ пресликавање са следећим својствима:

- 1) $f\mathcal{D}a$
- 2) Df(a) инвертибилан
- 3) у некој W околини тачке b := f(a) пресликавање f има инверзно
- 4) $f^{-1}Cb$

Тада је $f^{-1}\mathcal{D}b$ и важи:

$$(Df^{-1})(b) = (Df(a))^{-1}$$

Доказ. Нека је $b = f(a), a = f^{-1}(b)$. Показати да, пошто су транслације хомеоморфизми, важи f(a+h) = b+t и $f^{-1}(b+t) = a+h$. Из непрекидности f^{-1} у b закључити чему је једнако $f^{-1}(b+t) - f^{-1}(b)$. Из услова $f\mathcal{D}a$ закључити чему је једнако $(f'(a))^{-1}t$ као и да је o(h) = o(t). На основу претходних корака, и дефиниције извода, извести коначни закључак.

Тврђење. Ако је простор Банахов (комплетан нормиран векторски простор), скуп GL(X) је отворен у $\mathcal{L}(X;X)$.

Доказ. Посматрати $A \in GL(X)$ и $h \in \mathcal{L}(X;X)$. Доказати да је и $A+h \in GL(X)$ односно да постоји $(A+h)^{-1}$. Искористити комплетност домена као и дефинисаност норме.

Напомена. Претходно тврђење важи и у нешто општијем случају, за $\mathcal{L}(X;Y)$, уколико је X Банахов, а Y нормирани векторски простор.

Теорема. (Теорема о коначном прираштају) Нека су X и Y нормирани векторски простори, $V \in X$ отворен и $f: V \to Y$ непрекидно. Ако је

$$[a, a+h] = \{a+th \mid 0 \le t \le 1\} \subseteq V$$

и ако је пресликавање f диференцијабилно у свим тачкама скупа

$$|a, a + h| = \{a + th \mid 0 < t < 1\}$$

онда важи

$$||f(a+h) - f(a)|| \le \sup_{x \in]a, a+h[} ||f'(x)|| \cdot ||h||$$

Доказ. Доказати да теорема важи на сваком сегменту $[c_1, c_2] \subseteq]a, a+h[$. Претпоставити супротно,

 $\sup_{x \in [c_1, c_2]} \|f'(x)\| < \frac{\|\Delta f\|}{\|\Delta x\|}$

Поделити интервал $[c_1, c_2]$ на два подинтервала и применити помоћну лему на њих. Продужити поступак, формирати низ интервала. Поново применити помоћну лему. Извести контрадикцију.

Напомена. Помоћна лема из претходне теореме је следећа неједнакост:

Ако за $\alpha, \beta, \gamma, a, b, c \in \mathbb{R}_+$ важи $c \le a + b$ и $\gamma = \alpha + \beta$, онда је

$$\frac{c}{\gamma} \le \max\{\frac{a}{\alpha}, \frac{b}{\beta}\}$$

Теорема. (Ојлерова теорема) Нека је X нормирани векторски простор над \mathbb{R} . Диференцијабилна функција $f: X \to \mathbb{R}$ је хомогена степена k > 0 ако и само ако је

$$df(x) \cdot x = kf(x)$$

Доказ. Дефинишати помоћну функцију $\psi(t)=f(tx)-t^kf(x)$ и одатле доказати оба смера еквиваленције.

Тврђење. $\mathcal{L}(X;\mathcal{L}(X;Y))\cong\mathcal{L}(X,X;Y)$

 \mathcal{A} оказ. Нека је $L\in\mathcal{L}(X;\mathcal{L}(X;Y))$ произвољно. Дефинисати $\tilde{L}:X imes X o Y$ као

$$\tilde{L}(\eta,\xi) := L(\eta)(\xi)$$

Доказати да је са $\varphi(L)=\tilde{L}$ добро дефинисан тражени изоморфизам. \square

Тврђење. $fD^n a \implies D^n f(a)$ је симетрично n-линеарно пресликавање.

Доказ. Приметити најпре да је довољно доказати за транспозиције, јер оне генеришу групу пермутација. Увести

$$F_{\zeta,\eta}(t) := f(a + t(\zeta + \eta)) - f(a + t\zeta) - f(a + t\eta) - f(a)$$

и доказати да је

$$D^{2}f(a)(\zeta,\eta) = \lim_{t \to 0} \frac{F_{\zeta,\eta}(t)}{t^{2}}.$$

Извести закључак из тога, чињенице да је F симетрично по ζ и η , као и

$$D^n f(a)(\zeta_1, \zeta_2, \dots, \zeta_n) = D_{\zeta_1} D_{\zeta_2} \dots D_{\zeta_n} f(a).$$

Теорема. Нека су X, Y нормирани векторски простори, $V \subseteq X$ отворен, $a \in V$, $f\mathcal{D}^{n-1}V$ и $f\mathcal{D}^n a$. Тада је

$$f(a+h) = f(a) + f'(a)h + \dots + \frac{1}{n!}f^{(n)}(a)h^n + o(\|h\|^n), h \to 0$$

Доказ. Доказ извести индукцијом по n коришћењем Последице 2. теореме о коначном прираштају и чињенице да је $(Lx^n)' = nLx^{n-1}$.

1.2 Унутрашње тачке екстремума

Тврђење. Нека је V отворен подскуп нормираног векторског простора $X, a \in V, f : V \to \mathbb{R}, fD^na, Df(a) = D^2f(a) = \ldots = D^{n-1}f(a), D^nf(a) \neq 0$. Да би a била тачка локалног екстремума функције f:

- **неопходно** је да n буде паран број и да је $D^n f(a)$ семидефинитна форма.
- довољно је да су вредности $D^n f(a) h^n$ одвојене од 0 на јединичној свери ||h|| = 1.

Доказ. Применити Тејлорову формулу.

Пример. (Ојлер-Лагранжове једначине)

1.3 Теорема о имплицитној функцији

Теорема. (Теорема о имплицитној функцији) Нека су X,Y и Z нормирани векторски простори, при чему је Y комплетан, $x_0 \in X, y_0 \in Y$ и $W = B]x_0; \alpha[\times B]y_0; \beta[\subseteq X \times Y.$ Претпоставимо да пресликавање $F: W \to Z$ испуњава следеће услове:

- (1) $F(x_0, y_0) = 0$
- (2) $FC(x_0, y_0)$
- (3) $D_2 F$ дефинисано на W и непрекидно у тачки (x_0, y_0)
- (4) $\exists (D_2F(x_0, y_0))^{-1} \in \mathcal{L}(Z; Y)$

Тада постоје околине U и V тачака x_0 и y_0 и пресликавање $f:U\to Y$ са својствима:

(a) $U \times V \subseteq W$

(б)
$$[(x,y) \in U \times V \text{ и } F(x,y) = 0] \iff y = f(x)$$

(B)
$$fCx_0$$

Доказ. Пошто су транслације хомеоморфизми, без умањења општости претпоставити да важи $x_0 = 0$ и $y_0 = 0$. Дефинисати помоћну функцију $g_x : B[0; \beta[\to Y]$ као

$$g_x(y) := y - (D_2 F(0,0))^{-1} F(x,y).$$

Користећи Теорему о коначном прираштају доказати да је g_x контракција и да слика неки комплетан скуп у себе. Применити Банахов став о фиксној тачки. Одатле извести закључак. \Box

Теорема. (Теорема о инверзној функцији) Нека су X, Y нормирани векторски простори, при чему је Y комплетан, нека је $V \subseteq Y$ отворен скуп, $y_0 \in V$ и $g: V \to X$ пресликавање које има следећа својства:

- (1) $g \in \mathcal{D}(V;X)$
- $(2) DqCy_0$
- $(3) \exists (Dg(y_0))^{-1} \in \mathcal{L}(X;Y)$

Тада постоје околина $V_0 \subseteq Y$ тачке y_0 и околина $U_0 \subseteq X$ тачке $x_0 := g(y_0)$ такве да је $g: V_0 \to U_0$ бијекција, $g^{-1}\mathcal{D}x_0$ и важи

$$Dg^{-1}(x_0) = (Dg(y))^{-1}.$$

Доказ. Доказ следи из Теореме о имплицитној функцији примењене на функцију F(x,y) = x - g(y).

Теорема. (Теорема о рангу) Нека је $V \subseteq \mathbb{R}^k$ отворен и $f: V \to \mathbb{R}^l$ пресликавање класе C^n , такво да је за све $x \in V$ rangDf(x) = r. Тада у околини сваке тачке $x_0 \in V$ и њене слике $y_0 = f(x_0) \in \mathbb{R}^l$ постоје локалне координате класе C^n у којима f има запис

$$f:(s_1,\ldots,s_k)\to (s_1,\ldots,s_r,0,\ldots,0).$$

Краће речено, пресликавање константног ранга r локално изгледа као пројекција на \mathbb{R}^r .

$$oldsymbol{arDelta}$$
оказ.

Тврђење. Сваки дифеоморфизам класе C^1

$$\mathbb{R}^l \supseteq V \xrightarrow{f} f(V) \subseteq \mathbb{R}^l$$

може локално да се представи као композиција l простих дифеоморфизама.

Доказ. Индукцијом по k доказати да дифеоморфизам који мења највише k координата може локално да се представи као композиција k простих дифеоморфизама.

2 Многострукости

$\mathbf{2.1}$ Подмногострукости у \mathbb{R}^n и условни екстремуми

Тврђење. За $M \subseteq \mathbb{R}^{k+l}$ следећа тврђења су еквивалента:

- (a) М је k димензиона подмногострукост класе C^p
- (б) $(\forall p \in M)$ постоје отворене околине $p \in V$ и $0 \in U$ у \mathbb{R}^{k+l} и дифеоморфизам $g: U \to V$ класе C^p такав да је $g(V \cap M) = U \cap (\mathbb{R}^k \times 0)$
- (в) $(\forall p \in M)$ постоје отворене околине $p \in V$ у \mathbb{R}^{k+l} и $0 \in U$ у \mathbb{R}^k и имерзија $h: D \to V$ класе C^p таква да је $h: D \to V \cap M$ хомеоморфизам у релативној топологији на $V \cap M$ наслеђеној из R^{k+l} .

Доказ. Како је k-дим подмногострукост у \mathbb{R}^{k+l} локално задата једначином f(x)=0, где је f сумбмерзија и rangDf(x)=l, из Теореме о рангу закључити да је могуће изабрати локалне координате у којима f има запис

$$f(x_1, \ldots, x_{k+l}) = (x_1, \ldots, x_l).$$

Одатле директно закључити (б). Уз помоћ претходног, дефинисати тражену имерзију и закључити (в). \Box

Тврђење. Нека је $h: D \to M$ локална параметризација околине тачке p = h(0) и нека је $f: V \to \mathbb{R}^l$ субмерзија таква да је $M \cap V = f^{-1}(0)$. Тада важи да је $T_pM = \ker Df(p)$.

Доказ. Диференцирањем $f(h(t)) \equiv 0$ у тачки t = 0 и применом правила за извод композиције пресликавања закључити да је $T_pM \subseteq \ker Df(p)$. Одатле, применом Прве теореме о изоморфизму на пресликавање Df(p) закључити да важи једнакост.

Теорема. Нека је $V \in \mathbb{R}^n$ отворен скуп, $f: V \to \mathbb{R}$ функција класе C^1 и $M \subseteq V$ глатка подмногострукост. Да би тачка $p \in M$ била тачка условног локалног екстремума функције $f|_M$ неопходно је да буде испуњен бар 1 од следећих услова:

- (a) df(p) = 0 (тj. p је критична тачка за f)
- (б) $T_pM \subseteq T_pS$, где је $S := \{x \in V | f(x) = f(p)\}$

Доказ. Претпоставити да важи a) у теореми. Одатле директно закључити да је p кандидат за безусловни, а самим тим и условни екстремум. Даље, претпоставити да a) у теореми не важи. Доказати да је онда у некој околини тачке p функција f субмерзија, па је онда S (n-1) - дим глатка подмногострукост, па има смисла T_pS . Узети $\gamma:]-\delta, +\delta[\to M]$ такво да $\gamma(0)=p$. Из $(f\circ\gamma)'(0)=0$ извести $T_pM\subseteq T_pS$.

Напомена. Нека је M глобално задато једначином g(x)=0 за неку субмерзију $g:V\to\mathbb{R}$ и нека је p локални екстремум за $f|_M$. Са $\gamma:I\to M$ дата је нека крива која лежи на M и за коју важи $\gamma(0)=p$. Тада, $f\circ\gamma$ има локални екстремум у 0, тј. за $f\circ\gamma:\mathbb{R}\to\mathbb{R}$ важи $(f\circ\gamma)'(0)=0$ односно $\overrightarrow{\nabla f}(\gamma(0))\cdot\gamma'(0)=0$ за свако γ кроз p. Одатле следи $\overrightarrow{\nabla f}(p)\perp M$. Како је $\gamma\in M$, одатле следи $(g\circ\gamma)(t)=0$ па када то диференцирамо по t добијамо да је $\overrightarrow{\nabla g}\perp M$. Коначно, добијамо систем n+1 једначина са n+1 непознатих који је одређен и који нам служи за одређивање условних екстремума:

$$\overrightarrow{\nabla f}(p) = \lambda \overrightarrow{\nabla g}(p)$$
$$g(p) = 0$$

2.2 Апстрактне многострукости

Лема. Нека је $M \subseteq \mathbb{R}^{k+l}$ k - димензиона подмногострукост класе C^p , нека су V_1, V_2 околине (у \mathbb{R}^{k+l}) тачке $p \in M$ и нека су $h_1: D_1 \to V_1, h_2: D_2 \to V_2$ две локалне C^p параметризације скупова $V_1 \cap M$ и $V_2 \cap M$. Тада је

$$h_2 \circ {h_1}^{-1}: D_1 \cap {h_1}^{-1}(V_2) \to D_2 \cap {h_2}^{-1}(V_1)$$

дифеоморфизам класе C^p .

Доказ. Доказ леме следи из чињенице да је композиција дифеоморфизама дифеоморфизам.

Тврђење. Не постоји имерзија класе C^p где је $p \leq 1$ где $h: \mathbb{R} \to \mathbb{R}^2$ таква да је $h(\mathbb{R}) = \Gamma$.

Доказ. Из непрекидности h' извести контрадикцију.

Теорема. За свако отворено покривање $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ глатке многострукости M постоји разлагање јединице $\{\rho_{\lambda}\}_{{\lambda}\in\Lambda}$ такво да је $\mathrm{supp}\rho_{\lambda}\subseteq U_{\lambda}$.

Теорема. За $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ као у претходној теореми постоји разлагање јединице $\{\rho_{\sigma}\}_{{\sigma}\in\Sigma}$ са компактним носачем, такво да $(\forall {\sigma}\in\Sigma)(\exists {\lambda}\in\Lambda)$ supp $\rho_{\sigma}\subseteq U_{\lambda}$.

Теорема. (Витнијева) Свака глатка n-димензиона многострукост М може да се глатко уложи у \mathbb{R}^{2n+1} , тј. постоји C^{∞} улагање $f: M \to \mathbb{R}^{2n+1}$. Другим речима, свака апстрактна глатка многострукост је дифеоморфна подмногострукости у еуклидском простору.

Теорема. Свака компактна глатка многострукост M може глатко да се уложи у \mathbb{R}^l за довољно велико l.

 \mathcal{A} оказ. Нека је $\{(U_j, \varphi_j)_{1 \leq j \leq k}\}$ атлас на M, такав да је $\varphi_j(U_j) = B(0; 3)$ и да $V_j = {\varphi_j}^{-1}(B(0; 1))$ такође покривају M. За свако j конструисати функцију $h_j: U_j \to \mathbb{R}$ помођу

$$h(x) = \frac{g(4 - ||x||^2)}{g(4 - ||x||^2) + g(||x||^2 - 1)}$$

где је g дато са

$$g(t) = \begin{cases} e^{-\frac{1}{t}}, & t > 0\\ 0, & t \le 0 \end{cases}$$

Дефинисати пресликавање

$$f: M \to \underbrace{\mathbb{R}^n \times \dots \times \mathbb{R}^n}_k \times \underbrace{\mathbb{R} \times \dots \times \mathbb{R}}_k =: \mathbb{R}^l$$

ca

$$f(p) = \left(h_1(p)\varphi_1(p), \dots, h_k(p)\varphi_k(p), h_1(p), \dots, h_k(p)\right)$$

где је $n = \dim M$. Доказати да је f једно улагање.

2.3 Извод пресликавања $f: M \to N$

Лема. Деривација D на $C^{\infty}(p)$ пресликавања које је константно у некој околини тачке p је 0.

Доказ. Примнити Лајбницово правило и из хомогености (деривација је линеарно пресликавање, дакле и хомогено) закључити да је довољно доказати D1 = 0. □

Лема. Нека је $f \in C^{\infty}_{\mathbb{R}}(U)$ и $p \in U$. Тада постоје лопта $B := B(p, \varepsilon) \subseteq U$ и функције $g_1, g_2, \ldots, g_n \in C^{\infty}_{\mathbb{R}}(U)$ такве да:

1.
$$g_j(p) = \frac{\partial f}{\partial x_j}(p)$$

2.
$$f(x_1, x_2, \dots, x_n) = f(p) + \sum_{j=1}^{n} (x_j - p_j)g_j(x)$$

Доказ. За $x \in B$ (B као у поставци) можемо написати

$$f(x) = f(p) + \int_0^1 \frac{1}{dt} f(p + t(x - p)) dt$$
$$= f(p) + \sum_{j=1}^n (x_j - p_j) \int_0^1 \frac{\partial f}{\partial x_j} f(p + t(x - p)) dt$$

Узети да је
$$g_j = \int_0^1 \frac{\partial f}{\partial x_i} f(p + t(x - p)) dt$$
.

Теорема. Нека је $U \subseteq \mathbb{R}^n$ отворен скуп и $p \in U$. За сваку деривацију $D: C^{\infty}(p) \to C^{\infty}(p)$ алгебре $C^{\infty}(p)$ постоји јединствени вектор $\xi \in T_pU$ такав да је $Df(p) = df(p) \cdot \xi$.

Доказ. Написати f(x) као у претходној леми, и применити деривацију на тај запис. Добијемо

$$Df(x) = \sum_{j=1}^{n} (D\pi_{j}(x) \cdot g_{j}(x) + (x_{j} - p_{j}) \cdot Dg_{j}(x)),$$

Применом овога у тачки p имамо:

$$Df(p) = \sum_{j=1}^{n} D\pi_{j}(p) \cdot \frac{\partial f}{\partial x_{j}}(p) = df(p) \cdot \xi,$$

за
$$\xi = (D\pi_1, D\pi_2, \dots, D\pi_n).$$

Напомена. Претходна теорема нам даје еквиваленцију геометријског и алгебарског (аналитичког) приступа дефиницији тангнетног простора многострукости.

Последица. $T_p M$ је векторски простор, јер је линеарна комбинација деривација такође деривација.

 $\mathbf{\Pi o c}$ ледица. $\dim M = n \implies \dim T_p M = n$

 \mathcal{A} оказ. Нека је $\varphi:U\to\mathbb{R}^n$ локална карта и $p\in U$. Тада је $\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2},\dots,\frac{\partial f}{\partial x_n}$ база за $T_{\varphi(p)}U$, па је $(\varphi^{-1})_*\frac{\partial f}{\partial x_1},(\varphi^{-1})_*\frac{\partial f}{\partial x_2},\dots,(\varphi^{-1})_*\frac{\partial f}{\partial x_n}$ база за T_pM .

3 Интеграција

3.1 Апстрактни интеграли

Лема. Векторски потпростор \mathcal{E} простора \mathbb{R}^T је решетка акко важи

$$f \in \mathcal{E} \implies |f| \in \mathcal{E}.$$

Доказ. Искористити везу између апсолутне вредности и максимума и мимимума.

Тврђење. Радонов интеграл је уједно и елементарни интеграл.

Доказ. По дефиницији је радонов интеграл линеаран, тако да је довољно доказати да за опадајући низ функција f_n са компактним носачем који тежи 0 важи и да је $I(f_n) \to 0$, кад $n \to \infty$. Нека је K_n носач функције f_n . Како је f_n опадајући низ који тежи нули, следи да је $K_1 \supseteq K_2 \supseteq \ldots$ Из Динијеве теореме (0 је непрекидна функција) следи да $f_n \rightrightarrows 0$, па за произвољно $\varepsilon > 0$ постоји $n_0 \in \mathbb{N}$, такво да $n \ge n_0 \implies f_n \mid_{K_1} < \varepsilon$.

На крају, нека је $\psi \in C_C(T)$ функција за коју је $0 \le \psi \le 1$ и $\psi \mid_{K_1} \equiv 1$ (таква функција постоји због Урисонове леме). Због $\sup f_n \subseteq K_1$, важи

$$f_n = f_n \cdot \chi_{K_1} \le f_n \cdot \psi \le \varepsilon \psi.$$

Из позитивности и линеарности Радоновог интеграла имамо $I(f_n) \leq \varepsilon I(\psi)$, па је онда и $I(f_n) \to 0$, кад $n \to \infty$.

Напомена. Простор $C_C(T)$ је простор непрекидних функција $f: T \to \mathbb{R}$ које имају компактан носач, при чему је T локално компактан метрички (или Хаусдорфов) простор. Пример. Још неки примери елементарног интеграла су:

- Диракова делта функција $\delta_a: C_C(T) \to \mathbb{R}, \, \delta_a(f):=f(a)$ (валуација у тачки).
- Риманов интеграл
- Риман-Стилтјесов интеграл

Лема. За Радонов интеграл $I: C_C(T) \to \mathbb{R}$ важи:

- 1. $f \leq g \implies I(f) \leq I(g)$
- 2. $|I(f)| \leq I(|f|)$

Доказ. За први део тврђења применити линеарност и позитивност I. За други део применити први део и $-|f| \le f \le |f|$.

Тврђење. Нека је T локално компактан Хаусдорфов простор, $K \subseteq T$ компактан подскуп и C(T;K) скуп функција и $C_C(T)$ којима је носач у K. Тада је рестрикција

$$I:C(T;K)\to\mathbb{R}$$

Радоновог интеграла непрекидна у односу на норму

$$||f||_K := \sup\{|f(t)| \mid t \in K\}.$$

Доказ. Нека је $\psi \in C_C(T)$ функција за коју је $0 \le \psi \le 1$ и $\psi \mid_K \equiv 1$. Тада је

$$(\forall f \in C(T; K))(\forall t \in T)|f(t)| \le ||f||_K \cdot \psi(t),$$

па је $|I(f)| \le I(|f|) \le I(\psi) \cdot ||f||_K$.

Теорема. (Фубини) Нека су S и T комапктни Хаусдорфови простори и нека су

$$I_S: C(S) \to \mathbb{R}, I_T: C(T) \to \mathbb{R}$$

Радонови интеграли. Тада постоји јединствен Радонов интеграл

$$I: C(S \times T) \to \mathbb{R}$$

такав да је

$$I(f \otimes g) = I(f) \cdot I(g).$$

Напомена. Тензорски производ функција $f:S\to\mathbb{R}$ и $g:T\to\mathbb{R}$ је функција $f\otimes g:S\times T\to\mathbb{R}$ дефинисана са

$$f \otimes g(s,t) := f(s) \cdot g(t)$$

Дефинишемо и простор $C(S) \otimes C(T)$ као

$$C(S) \otimes C(T) := \Big\{ \sum_{j} f_j \otimes g_j \mid f_j \in C(S), g_j \in C(T) \Big\},$$

где је наведена сума коначна.

Доказ. Из претходног тврђења следи да је Радонов интеграл на компактним просторима непрекидан, па је и равномерно непрекидан по Канторовој теореми. Из Стон-Вајерштрасове теореме следи да је $\overline{C(S)}\otimes C(T)=C(S\times T)$, па доказ тврђења следи из Принципа продужења равномерно непрекидног пресликавања са комплетним кодоменом (одатле следи и јединственост).

Последица. (Фубинијева теорема за Риманов интеграл) Нека је $\mathcal{J} = \mathcal{J}_1 \times \mathcal{J}_2$ n-димензиони квадар, представљен као производ k-димензионог квадра \mathcal{J}_1 и (n-k)-димензионог квадра \mathcal{J}_2 . Тада, за непрекидну функцију $f: \mathcal{J} \to \mathbb{R}$ важи:

$$\int_{\mathcal{J}} = \int_{\mathcal{J}_2} \left(\int_{\mathcal{J}_1} f(x, y) dx \right) dy = \int_{\mathcal{J}_1} \left(\int_{\mathcal{J}_2} f(x, y) dy \right) dx.$$

 \mathcal{A} оказ. Због линеарности Римановог интеграла и претходне теореме, довољно је доказати тврђење за $f = f_1 \otimes f_2$, за $f_i : \mathcal{J}_i \to \mathbb{R}, i \in \{1,2\}$ непрекидне функције. Сада директно следи доказ из дефиниције Римановог интеграла по квадру \mathcal{J} .

- 3.2 Класа интеграбилних функција
- 3.3 Нормирани простор интеграбилних функција
- 3.4 Комплетирање метричког простора и Лебегов интеграл
- 3.5 Простор функција интеграбилних по Риману
- 3.6 Смена променљиве у интегралу
- 4 Векторска поља и диференцијалне форме