

FOND Planning for LTL_f Goals: Theory and Implementation

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corso di Laurea Magistrale in Engineering in Computer Science

Candidate

Francesco Fuggitti ID number 1735212

Thesis Advisor

Prof. Giuseppe De Giacomo

Academic Year 2017/2018

Thesis not yet defended

FOND Planning for ${\tt LTL}_f$ Goals: Theory and Implementation

Master's thesis. Sapienza – University of Rome

 $\ensuremath{{\mathbb C}}$ 2018 Francesco Fuggitti. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

 $Author's\ email:\ fuggitti.1735212@studenti.uniroma1.it$

Contents

1	Intr	roduction	1			
	1.1	Context	1			
	1.2	Problem	1			
	1.3	Objectives	1			
	1.4	Results	1			
	1.5	Structure	1			
2	PLTI	\mathbb{L} and LTL_f	3			
	2.1	LTL, LTL $_f$ and PLTL	3			
	2.2	$\mathrm{LTL}_f \mathrm{2DFA}$	3			
	2.3	PLTL2DFA	3			
	2.4	$\mathrm{LTL}_f 2$ FOL and MONA	3			
	2.5	PLTL2FOL and MONA	3			
3	LTL_{f}	^e 2DFA	5			
	3.1	Introduction	5			
	3.2	Package Structure	6			
		3.2.1 Lexer.py	6			
		3.2.2 Parser.py	8			
		3.2.3 Translator.py	11			
		3.2.4 DotHandler.py	18			
	3.3	Comparison with FLLOAT	20			
	3.4	Discussion	20			
4	Jan	us	2 1			
5	DFA	$oldsymbol{A}_{ ext{game}}$	23			
6	Con	aclusions and Future Work	25			
Bi	ibliography 27					

Introduction

Here the intro of the intro

1.1 Context

here the context of the thesis

1.2 Problem

what is the problem solved

1.3 Objectives

what are the objective of the thesis

1.4 Results

what are the results achieved

1.5 Structure

what is the structure of the thesis

PLTL and LTL $_f$

intro to the chapter

2.1 LTL, LTL_f and PLTL

talk about theory of logics future and past finite and infinite

2.2 LTL $_f$ 2DFA

talk about theory behind conversion to automata in future

2.3 PLTL2DFA

talk about theory behind conversion to automata in past

2.4 LTL $_f$ 2FOL and MONA

talk about theory behind translation and intro with mona future

2.5 PLTL2FOL and MONA

talk about theory behind translation and intro with mona past

$LTL_f 2DFA$

In this chapter we will present LTL_f 2DFA, a software package written in Python.

3.1 Introduction

 LTL_f 2DFA is a Python tool that processes a given LTL_f formula (with past and future operators) and generates the corresponding minimized DFA using MONA (Elgaard et al., 1998). In addition, it offers the possibility to compute the DFA with or without the DECLARE assumption (De Giacomo et al., 2014). The main features provided by the library are:

- parsing an LTL_f formula with past or future operators;
- translation of an LTL_f formula to MONA program;
- conversion of an LTL_f formula to DFA automaton.

LTL_f2DFA can be used with Python>=3.6 and has the following dependencies:

- PLY, a pure-Python implementation of the popular compiler construction tools Lex and Yacc. It has been employed for parsing the input LTL $_f$ formula;
- MONA, a C++ tool that translates formulas to DFA. It has been used for the generation of the DFA;
- Dotpy, a Python library able to parse and modify .dot files. It has been utilized for post-processing the MONA output.

The package is available to download on PyPI and you can install it by typing in the terminal:

pip install ltlf2dfa

All the code is available online on $GitHub^1$, it is open source and it is released under the MIT License. Moreover, LTL_f2DFA can also be tried online at ltlf2dfa.diag.uniroma1.it.

¹https://github.com/Francesco17/LTLf2DFA

 $\mathbf{3.}\ \mathrm{LTL_{f}2DFA}$

3.2 Package Structure

The structure of the LTL $_f$ 2DFA package is quite simple. It consists of a main folder called ltlf2dfa/ which hosts the most important library's modules:

- Lexer.py, where the Lexer class is defined;
- Parser.py, where the Parser class is defined;
- Translator.py, where the main APIs for the translation are defined;
- DotHandler.py, where we the MONA output is post-processed.

In the following paragraphs we will explore each module in detail.

3.2.1 Lexer.py

In the Lexer.py module we can find the declaration of the MyLexer class which is in charge of handling the input string and tokenizing it. Indeed, it implements a tokenizer that splits the input string into declared individual tokens. To our extent, we have defined the class as in Listing 3.1

Listing 3.1. Lexer.py module

```
1
    import ply.lex as lex
    class MyLexer(object):
3
        reserved = {
            'true':
                        'TRUE',
            'false':
                        'FALSE',
            'X':
                        'NEXT',
            'U':
                        'UNTIL',
            'E':
                        'EVENTUALLY',
            'G':
                        'GLOBALLY',
11
                        'PASTNEXT', #PREVIOUS
            'Y':
12
            'S':
                        'PASTUNTIL', #SINCE
13
            00:
                        'PASTEVENTUALLY', #ONCE
14
            'H':
                        'PASTGLOBALLY'
        }
16
        # List of token names. This is always required
17
        tokens = (
            'TERM',
            'NOT',
20
            'AND',
            'OR',
            'IMPLIES',
23
```

```
'DIMPLIES',
24
            'LPAR',
            'RPAR'
26
        ) + tuple(reserved.values())
28
        # Regular expression rules for simple tokens
        t_TRUE = r'T'
30
        t FALSE = r'F'
31
        t_{AND} = r' \ \&'
        t_OR = r' \mid '
33
        t_{IMPLIES} = r' ->'
34
        t_DIMPLIES = r'\<->'
35
        t_NOT = r' \
36
        t_LPAR = r' \setminus ('
        t_RPAR = r' \rangle
38
        # FUTURE OPERATORS
39
        t_NEXT = r'X'
40
        t_UNTIL = r'U'
41
        t_EVENTUALLY = r'E'
        t_GLOBALLY = r'G'
        # PAST OPERATOR
        t_PASTNEXT = r'Y'
45
        t_PASTUNTIL = r'S'
46
        t_PASTEVENTUALLY = r'0'
47
        t_PASTGLOBALLY = r'H'
        t_{ignore} = r'_{i}'+'_{n}'
50
51
        def t_TERM(self, t):
            r'[a-z]+'
53
            t.type = MyLexer.reserved.get(t.value, 'TERM')
            return t # Check for reserved words
55
56
        def t error(self, t):
57
            print("Illegal_character_'%s'_in_the_input_formula" % t.value[0])
58
            t.lexer.skip(1)
59
        # Build the lexer
61
        def build(self,**kwargs):
62
            self.lexer = lex.lex(module=self, **kwargs)
63
```

Firstly, we have defined the reserved words within a dictionary so to match each reserved word with its identifier. Secondly, we have defined the tokens list with all possible tokens that can be produced by the lexer. This tokens list is always required for the

3. LTL $_f$ 2DFA

implementation of a lexer. Then, each token has to be specified by writing a regular expression rule. If the token is simple it can be specified using only a string. Otherwise, for non trivial tokens we have to write the regular expression in a class method as for our token TERM in line 52. In that case, defining the token rule as a method is also useful when we would like to perform other actions. After that, we have a method to handle unrecognized tokens and, finally, we have written the function that builds the lexer.

3.2.2 Parser.py

In the Parser.py module we can find the declaration of MyParser class which implements the parsing component of PLY. The MyParser class operates after the Lexer has split the input string into known tokens. The main feature of the parser is to interpret and build the appropriate data structure for the given input. To this extent, the most important aspect of a parser is the definition of the syntax, usually specified in terms of a BNF² grammar, that should be unambiguous. Furthermore, Yacc, the parsing component of PLY, implements a parsing technique known as LR-parsing or shift-reduce parsing. In particular, this parsing technique works on a bottom up fashion that tries to recognize the right-hand-side of various grammar rules. Whenever a valid right-hand-side is found in the input, the appropriate action code is triggered and the grammar symbols are replaced by the grammar symbol on the left-hand-side and so on until there is no more rule to apply. The parser implementation is shown in Listing 3.2

Listing 3.2. Parser.py module

```
import ply.yacc as yacc
    from ltlf2dfa.Lexer import MyLexer
2
    class MyParser(object):
4
5
       def __init__(self):
6
           self.lexer = MyLexer()
           self.lexer.build()
           self.tokens = self.lexer.tokens
           self.parser = yacc.yacc(module=self)
           self.precedence = (
11
12
               ('nonassoc', 'LPAR', 'RPAR'),
               ('left', 'AND', 'OR', 'IMPLIES', 'DIMPLIES', 'UNTIL', \
                'PASTUNTIL'),
               ('right', 'NEXT', 'EVENTUALLY', 'GLOBALLY', \
               'PASTNEXT', 'PASTEVENTUALLY', 'PASTGLOBALLY'),
17
               ('right', 'NOT')
18
           )
```

²The Backus–Naur form is a notation technique for context-free grammars.

```
20
        def __call__(self, s, **kwargs):
21
           return self.parser.parse(s, lexer=self.lexer.lexer)
22
23
        def p_formula(self, p):
24
25
            formula : formula AND formula
26
                     | formula OR formula
                     | formula IMPLIES formula
                     | formula DIMPLIES formula
29
                     | formula UNTIL formula
30
                     | formula PASTUNTIL formula
31
                     | NEXT formula
32
                     | EVENTUALLY formula
33
                     | GLOBALLY formula
34
                     | PASTNEXT formula
35
                     | PASTEVENTUALLY formula
36
                     | PASTGLOBALLY formula
37
                     | NOT formula
38
                     | TRUE
                     | FALSE
                     TERM
41
            , , ,
42
43
            if len(p) == 2: p[0] = p[1]
            elif len(p) == 3:
                if p[1] == 'E': # E(a) == true UNITL A
46
                   p[0] = ('U', 'T', p[2])
                elif p[1] == 'G': # G(a) == not(eventually (not A))
48
                   p[0] = ('^{,},('U', 'T', ('^{,},p[2])))
49
                elif p[1] == '0': # 0(a) = true SINCE A
                   p[0] = ('S', 'T', p[2])
51
                elif p[1] == 'H': # H(a) == not(pasteventually(not A))
                    p[0] = ('^{,}('S', 'T', ('^{,}, p[2])))
53
                else:
54
                    p[0] = (p[1], p[2])
            elif len(p) == 4:
                if p[2] == '->':
                   p[0] = ('|', ('-', p[1]), p[3])
58
                elif p[2] == '<->':
                    p[0] = ('\&', ('|', ('~', p[1]), p[3]), ('|', ('~', p[3]), )
60
                    p[1]))
61
                else:
```

3. LTL $_f$ 2DFA

```
p[0] = (p[2], p[1], p[3])
63
            else: raise ValueError
65
66
        def p_expr_group(self, p):
67
68
            formula : LPAR formula RPAR
69
            p[0] = p[2]
72
        def p_error(self, p):
73
            raise ValueError("Syntax_error_in_input!_%s" %str(p))
74
```

As we can see, as soon as the parser is instantiated it builds the lexer, gets the tokens and defines their precedence if needed. Then, we have defined methods of the MyParser class that are in charge of constructing the syntax tree structure from tokens found by the lexer in the input string. In our case, we have chosen to use as data structure a tuple of tuples as it is the one of the simplest data structure in Python. In general, a tuple of tuples represents a tree where each node represents an item present in the formula.

For instance, the LTL_f formula $\varphi = G(a \to Xb)$ is represented as $('\sim', ('U', 'T', ('\sim', ('|', ('\sim', a'), ('X', b')))))$ and it corresponds to a tree as the one depicted in Figure 3.1. Finally, as in the MyLexer class, we have to handle errors defining a specific method.

Figure 3.1. The syntax tree generated for the formula " $G(a \sim Xb)$ ". Symbols are in green while operators are in blue.

 $LTL_f 2DFA$ can be used just for the parsing phase of an LTL_f formula as shown in Listing 3.3.

Listing 3.3. How to use only the parsing phase of LTL_f2DFA.

```
from ltlf2dfa.Parser import MyParser
```

```
formula = "G(a->Xb)"

parser = MyParser()

parsed_formula = parser(formula)

print(parsed_formula) # syntax tree as tuple of tuples
```

3.2.3 Translator.py

The Translator.py module contains the majority of APIs that the LTL $_f$ 2DFA package exposes. Indeed, this module consists of a Translator class which concerns the core feature of the package: the translation of an LTL $_f$ formula into a DFA. Since the package takes advantage of the MONA tool for the formula conversion, the Translator class has to translate first the given formula into the syntax recognized by MONA, then create the input program for MONA and, finally, invoke MONA to get back the resulting DFA in the Graphviz³ format. The main methods of the Translator class are:

- translate(), which starting from the formula syntax tree generated (Figure 3.1) in the parsing phase translates it into a string using the syntax of MONA;
- createMonafile(flag), which, as the name suggests, creates the program .mona that will be given as input to MONA. The flag parameter is going to be True of False whether we need to compute also DECLARE assumptions or not;
- invoke_mona(), which invokes MONA in order to obtain the DFA.

Now we will go into details of the methods stated above showing their implementation.

The translate method

The translate method is a crucial step towards reaching a good result and performance. Formally, the translation procedure from an LTL_f formula to the MONA syntax is done passing through FOL as shown in 3.1.

$$LTL_f \to FOL \to MONA$$
 (3.1)

The former translation from LTL_f to FOL is done accordingly to (De Giacomo and Vardi, 2013), while the latter follows from (Klarlund and Møller, 2001). In Listing 3.4 we can see the translation's implementation. Three dots ... represent omitted code.

Listing 3.4. The translate method.

```
import ...
class Translator:
...
```

³Graphviz is open source graph visualization software. For further details see https://www..org

 ${f 3.}\;{
m LTL}_f{
m 2DFA}$

```
def translate(self):
           self.translated_formula = translate_bis(self.parsed_formula, \
           var='v_0')+";\n"
9
    def translate_bis(formula_tree, var):
12
        if type(formula_tree) == tuple:
13
           #enable this print to see the tree pruning
14
           # print(self.parsed_formula)
           # print(var)
16
           if formula_tree[0] == '&':
17
               # print('computed tree: '+ str(self.parsed_formula))
               if var == 'v_0':
19
                   a = translate_bis(formula_tree[1], '0')
20
                   # a = translate_bis(self.parsed_formula[1], '0')
21
                   b = translate_bis(formula_tree[2], '0')
22
               else:
                   a = translate_bis(formula_tree[1], var)
24
                   b = translate_bis(formula_tree[2], var)
               if a == 'false' or b == 'false':
26
                   return 'false'
27
               elif a == 'true':
28
                   if b == 'true': return 'true'
               elif b == 'true': return a
               else: return '('+a+'\_\&\_'+b+')'
31
           elif formula_tree[0] == '|':
32
               # print('computed tree: '+ str(self.parsed_formula))
               if var == 'v_0':
34
                   a = translate_bis(formula_tree[1], '0')
                   b = translate_bis(formula_tree[2], '0')
36
               else:
37
                   a = translate_bis(formula_tree[1], var)
38
                   b = translate_bis(formula_tree[2], var)
39
               if a == 'true' or b == 'true':
40
                   return 'true'
               elif a == 'false':
42
                   if b == 'true': return 'true'
43
                   elif b == 'false': return 'false'
44
                   else: return b
45
               elif b == 'false': return a
46
               else: return '('+a+',|,'+b+')'
```

```
elif formula_tree[0] == '~':
48
                  # print('computed tree: '+ str(self.parsed_formula))
                  if var == 'v_0': a = translate_bis(formula_tree[1], '0')
50
                  else: a = translate_bis(formula_tree[1], var)
                  if a == 'true': return 'false'
                  elif a == 'false': return 'true'
53
                  else: return '~('+ a +')'
54
              elif formula tree[0] == 'X':
                  # print('computed tree: '+ str(self.parsed_formula))
                  new_var = _next(var)
57
                  a = translate_bis(formula_tree[1],new_var)
58
                  if var == 'v_0':
                       return '('+ 'ex1_''+new_var+':_''+ new_var +'_=_11_''+ '&_''+ \
60
                       a +')'
                  else:
62
                       return '('+ 'ex1_''+new_var+':_''+ new_var +'_=_''+ var + \
                       '_+_1_'+ '&_''+ a +')'
64
              elif formula_tree[0] == 'U':
65
                  # print('computed tree: '+ str(self.parsed_formula))
66
                  new_var = _next(var)
                  new_new_var = _next(new_var)
                  a = translate_bis(formula_tree[2],new_var)
69
                  b = translate_bis(formula_tree[1],new_new_var)
70
71
                  if var == 'v 0':
                       if b == 'true': return '(\(\_'\)'+ 'ex1\(\_'\)'+new_var+':\(\_0\)<=\(\_'\)'+\\
                       new_var+'_{\square}\&_{\square}'+ new_var+'_{\square}<=_{\square}max(\$)_{\square}\&_{\square}'+ a +'_{\square})'
74
                       elif a == 'true': return '(_{\square}'+ 'ex1_{\square}'+new_var+':_{\square}0_{\square}<=_{\square}'+ \
75
                       new_var+'_{u}\&_{u}'+new_var+'_{u}<=_{u}max(\$)_{u}\&_{u}all1_{u}'+
76
                       new_new_var+': \_0\_<=\_'+new_new_var+'\_\&\_'+\
77
                       new_new_var+'_{\sqcup}<_{\sqcup}'+new_var+'_{\sqcup}>_{\sqcup}'+b+'_{\sqcup})'
                       elif a == 'false': return 'false'
79
                       else: return '(''+ 'ex1''+new_var+':"0'<="'+new_var+'
80
                       '_{1} \&_{1}'+new var+'_{1} <= \max(\$)_{1} \&_{1}'+ a +'_{1} \&_{1}all1_{1}'+ \
81
                       new new var+':_{|\cdot|}0_{|\cdot|} <=_{|\cdot|}'+new new var+'_{|\cdot|}\&_{|\cdot|}'+ \
82
                       new_new_var+'_{\sqcup}<_{\sqcup}'+new_var+'_{\sqcup}>_{\sqcup}'+b+'_{\sqcup})'
83
                  else:
                       if b == 'true': return '(\(\_'\tex1\(\_'\texn{\text{+ new_var+':}}\(\_'\texn{\text{+ var+}}\)
                       '_<=_'+new_var+'_&_'+new_var+'_<=_max($)_&_'+ a +'_)'
86
                       elif a == 'true': return '(\(\_'\)'+ 'ex1\(\_'\)'+new_var+':\(\_'\)'+var+ \
                       88
                       new_new_var+':'''+var+'''<='''+new_new_var+'''&'''+ \
89
                       new_new_var+'_{\sqcup}<_{\sqcup}'+new_var+'_{\sqcup}>_{\sqcup}'+b+'_{\sqcup})'
```

 ${f 3.}\;{
m LTL}_f{
m 2DFA}$

```
elif a == 'false': return 'false'
 91
                                                    else: return '(''+ 'ex1''+new_var+':''+var+''<=''+ \
 92
                                                    new_var+'_{u}\&_{u}'+new_var+'_{u}<=_{u}max(\$)_{u}\&_{u}'+a+
 93
                                                     'u&uall1u'+new_new_var+':u'+var+'u<=u'+new_new_var+\
 94
                                                     '\_\&\_'+new_new_var+'\_\'-\',+new_var+'\_=\\_'+b+'\_\)'
 95
                                elif formula_tree[0] == 'Y':
 96
                                          # print('computed tree: '+ str(self.parsed_formula))
 97
                                          new var = next(var)
                                          a = translate_bis(formula_tree[1],new_var)
                                          if var == 'v 0':
100
                                                    return '('+ 'ex1_''+new_var+':_''+ new_var + \
                                                     'u=umax($)u-u1u'+ '&umax($)u>u0u&u'+ a +')'
                                          else:
103
                                                    return '('+ 'ex1_''+new_var+':_''+ new_var + \
                                                     '_=_'+ var + '_-_1_'+ '&_'+new_var+'_>_0_&_'+ a +')'
                                elif formula_tree[0] == 'S':
106
                                          # print('computed tree: '+ str(self.parsed formula))
                                          new_var = _next(var)
                                          new_new_var = _next(new_var)
                                          a = translate_bis(formula_tree[2],new_var)
                                          b = translate_bis(formula_tree[1],new_new_var)
112
                                          if var == 'v 0':
113
                                                    if b == 'true': return '(\(\_'\)'+ 'ex1\(\_'\)'+new_var+':\(\_0\)<=\(\_'\)'+\\
114
                                                    new_var+'_u\&_u'+new_var+'_u<=_umax(\$)_u\&_u'+a+'_u)'
                                                    elif a == 'true': return '(_''+ 'ex1_''+new_var+ \
                                                     117
                                                    ' \sqcup <= \coprod \max(\$) \sqcup \& \sqcup all1 \sqcup '+new_new_var+' : \sqcup '+new_var+' \sqcup '+ \setminus \otimes \sqcup all1 \sqcup '+new_new_var+' : \sqcup '+new_var+' \sqcup '+new_var+' : \sqcup '+new_var+' :
118
                                                    new_new_var+'_{\square}\&_{\square}'+new_new_var+'_{\square}<=_{\square}max(\$)_{\square}=>_{\square}'+b+'_{\square})'
119
                                                    elif a == 'false': return 'false'
120
                                                    else: return '(_{\square}'+ 'ex1_{\square}'+new_var+':_{\square}0_{\square}<=_{\square}'+ \
                                                    new_var+'_{\square}\&_{\square}'+new_var+'_{\square}<=_{\square}max(\$)_{\square}\&_{\square}'+a+
122
                                                     'u&uall1u'+new_new_var+':u'+new_var+'u<u'+ \
123
                                                    new_new_var+'_{\square}\&_{\square}'+new_new_var+'_{\square}<=_{\square}max(\$)_{\square}=>_{\square}'+b+'_{\square})'
124
                                          else:
                                                    if b == 'true': return '(\(\_'\)' + 'ex1\(\_'\)'+new_var+ \
126
                                                    : _{\sqcup}0_{\sqcup}<=_{\sqcup}'+new_var+:_{\sqcup}\&_{\sqcup}'+new_var+:_{\sqcup}<=_{\sqcup}\max(\$)_{\sqcup}\&_{\sqcup}'+ a +:_{\sqcup})'
                                                    elif a == 'true': return '(\(\_'\)+ 'ex1\(\_'\)+new_var+ \
128
                                                     ':_0_<=_'+new_var+'_&_'+new_var+'_<=_'+var+ \
129
                                                     '_&_all1_'+new_new_var+':_'+new_var+'_<_'+ \
130
                                                    new_new_var+'\_\&\_'+new_new_var+'\_\<=\_'+var+'\_=>\_'+b+'\_\)'
                                                    elif a == 'false': return 'false'
132
                                                    else: return '('' + 'ex1'' + new_var+': '0' <= '' + \
```

```
new_var+'\u&\u'+new_var+'\u<=\u'+var+'\u&\u'+ a +'\u&\uall1\u'+ \
134
                    new_new_var+'_{\sqcup} <=_{\sqcup}'+var+'_{\sqcup} >_{\sqcup}'+b+'_{\sqcup})'
136
        else:
            # handling non-tuple cases
138
            if formula_tree[0] == 'T': return 'true'
            elif formula_tree[0] == 'F': return 'false'
140
141
            # enable if you want to see recursion
            # print('computed tree: '+ str(self.parsed formula))
143
144
            # BASE CASE OF RECURSION
145
            else:
146
                if formula_tree.isalpha():
                    if var == 'v_0':
148
                       return '0_in_''+ formula_tree.upper()
149
                    else:
                        return var + '\(\in\)' + formula_tree.upper()
                else:
                    return var + 'uinu' + formula_tree
    def _next(var):
        if var == '0': return 'v 1'
156
        else:
            s = var.split('_')
            s[1] = str(int(s[1])+1)
            return '_'.join(s)
160
```

As we can see, the translate method is actually very simple. In fact, it just calls the translate_bis function (line 12) to perform the proper translation. The function works in a recursive fashion taking as input the parsed formula and a variable and outputting a string containing the result. Obviously, when an instance of the Translator class is created the input formula is checked to have either only future or past operators. The base case of the recursion handles the translation of symbols as they are the leaves of the syntax tree composed in the parsing phase (Figure 3.1). On the other hand, the recursive step regards the handling of operators (non leaf components of the syntax tree) which are in our case \wedge , \vee , \neg , \circ , \mathcal{U} , \ominus , \mathcal{S} . During the translation, we simplify the resulting formula by avoiding pieces of the expression that are logically True or False. This simplification has two main advantages. First, it substantially reduces the length of the resulting formula, improving its readability. Second, it increases the computation performances of MONA. Additionally, since the MONA syntax requires the declaration of the free variables, the translate bis function has to compute also the appriopriate free variables declaration. In this terms, the translation function uses the _next function to compute the next variable each time is needed.

 ${f 3.}\;{
m LTL}_f{
m 2DFA}$

The createMonafile method

The createMonafile method is employed to write the program .mona and save it in the main directory. It takes as input a boolean flag that, as stated before, stands for indicating whether one would like to compute and add the DECLARE assumption or not. In particular, in formal logic, as stated in (De Giacomo et al., 2014), the DECLARE assumption is expressed as in 3.2.

$$\Box(\bigvee_{a\in\mathcal{P}}a)\wedge\Box(\bigwedge_{a,b\in\mathcal{P},a\neq b}a\to\neg b)\tag{3.2}$$

It consists essentially in two parts joined by the \land operator. The former indicates that it is always true that at each point in time only one symbol is true, while the latter means that always for each couple of different symbols in the formula if one is true the other must be false. The practical part can be seen in Listing 3.5.

Listing 3.5. The createMonafile method.

```
1
         def compute_declare_assumption(self):
2
              pairs = list(it.combinations(self.alphabet, 2))
              if pairs:
                  first_assumption = "\sim(ex1_{\square}y:_{\square}0<=y_{\square}&_{\square}y<=max($)_{\square}&_{\square}\sim("
                   for symbol in self.alphabet:
                       if symbol == self.alphabet[-1]: first_assumption += \
                        'y<sub>\(\sin\(\sin\)</sub>'+ symbol +'))'
                       else : first_assumption += 'y<sub>□</sub>in<sub>□</sub>'+ symbol +'<sub>□</sub>|<sub>□</sub>'
11
                   second_assumption = "\sim(ex1_{\sqcup}y:_{\sqcup}0<=y_{\sqcup}&_{\sqcup}y<=max($)_{\sqcup}&_{\sqcup}\sim("
                   for pair in pairs:
                       if pair == pairs[-1]: second_assumption += '(y_notin_'' + \
                       pair[0]+'_\|\uy\notin\''+pair[1]+'\)));'
                       else: second_assumption += '(y_notin_'+ pair[0]+ \
                        '_| | _y _ notin _ '+pair [1] + ') _ & _ '
                  return first_assumption +'\sqcup&\sqcup'+ second_assumption
              else:
                  return None
         def buildMonaProgram(self, flag_for_declare):
23
              if not self.alphabet and not self.translated_formula:
                   raise ValueError
              else:
26
                   if flag_for_declare:
27
                       if self.compute_declare_assumption() is None:
2.8
```

```
if self.alphabet:
29
                            return self.headerMona + \
                            'var2_{\square}' + ",_{\square}".join(self.alphabet) + ';_{n'} + 
31
                             self.translated_formula
32
                        else:
33
                            return self.headerMona + self.translated_formula
34
                    else: return self.headerMona + 'var2<sub>□</sub>' +\
                     ", u".join(self.alphabet) + '; \n' + \
                     self.translated_formula + \
                     self.compute_declare_assumption()
38
                else:
39
                    if self.alphabet:
40
                        return self.headerMona + 'var2' +\
41
                         ", _ ".join(self.alphabet) + '; \n' + \
                         self.translated_formula
43
                    else:
                        return self.headerMona + self.translated_formula
45
46
        def createMonafile(self, flag):
            program = self.buildMonaProgram(flag)
            try:
                with open('./automa.mona', 'w+') as file:
50
                    file.write(program)
                    file.close()
            except IOError:
                print('Problem_with_the_opening_of_the_file!')
```

As shown in the code, the createMonafile method calls another method, the buildMonaProgram (line 23), which literally builds the .mona program by joining all pieces that should belong to it. Instead, regarding the DECLARE assumption, if needed, it is added to the .mona program directly translated through compute_declare_assumption method at line 2.

The invoke_mona method

Finally, the <code>invoke_mona</code> method is the one that executes the MONA compiled executable giving it the .mona program. Consequently, the DFA resulting from the computation of MONA will be stored in the main directory. As stated in 3.1, the LTL_f2DFA package requires MONA to be installed. Indeed, without this requirements the <code>invoke_mona</code> method will raise an error. The implementation can be seen in Listing 3.6.

Listing 3.6. The invoke_mona method.

```
def invoke_mona(self, path='./inter-automa'):
```

 $\mathbf{3.}$ LTL $_f2$ DFA

```
if sys.platform == 'linux':
3
                 package_dir = os.path.dirname(os.path.abspath(__file__))
                 mona_path = pkg_resources.resource_filename('ltlf2dfa', 'mona')
                 if os.access(mona path, os.X OK): #check if mona is executable
                     try:
                          subprocess.call(package_dir+'/./mona_-u_-gw_' + \
                          './automa.mona<sub>□</sub>><sub>□</sub>' + path + '.dot', shell=True)
                      except subprocess.CalledProcessError as e:
                          print(e)
                          exit()
12
                      except OSError as e:
13
                          print(e)
14
                          exit()
                 else:
                     print('[ERROR]: \( \) MONA\( \) tool\( \) is\( \) not\( \) executable...')
17
                      exit()
             else:
19
                 try:
20
                      subprocess.call('mona_{\sqcup}-u_{\sqcup}-gw_{\sqcup}./automa.mona_{\sqcup}>_{\sqcup}' + path + \setminus
                      '.dot', shell=True)
                 except subprocess.CalledProcessError as e:
                     print(e)
24
                      exit()
25
                 except OSError as e:
26
                     print(e)
                      exit()
```

To the execute of the MONA tool we have leveraged the built-in module subprocess that enables to spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

Unfortunately, the DFA resulting from MONA needs to be post-processed because of some extra states added for other purposes not relevant for us. This aspect will be better explained in the following subsection 3.2.4.

3.2.4 DotHandler.py

The DotHandler class has been created in order to manage separately and better the post-processing of the DFA, in .dot format, resulting from the computation of MONA. Indeed, since MONA has been developed for different purposes, its output has an additional initial state and transition that to our intent are completely meaningless.

Additionally, the interaction with the .dot format has been implemented thanks to the dotpy library (available on GitHub⁴) developed for this specific purpose paying

⁴https://github.com/Francesco17/dotpy

particular attention to performances.

As we can see in the implementation of the DotHandler class in Listing 3.7, the main methods are modify_dot and output_dot.

Listing 3.7. The DotHandler class.

```
from dotpy.parser.parser import MyParser
    import os
    class DotHandler:
        def __init__(self, path='./inter-automa.dot'):
           self.dot_path = path
           self.new_digraph = None
9
        def modify_dot(self):
10
           if os.path.isfile(self.dot_path):
11
               parser = MyParser()
               with open(self.dot_path, 'r') as f:
                   dot = f.read()
14
                   f.close()
16
               graph = parser(dot)
               if not graph.is_singleton():
                   graph.delete_node('0')
19
                   graph.delete_edge('init', '0')
20
                   graph.delete_edge('0', '1')
21
                   graph.add_edge('init', '1')
22
               self.new_digraph = graph
24
           else:
               print('[ERROR]_-_No_file_DOT_exists')
25
               exit()
26
27
        def delete_intermediate_automaton(self):
28
           if os.path.isfile(self.dot_path):
29
               os.remove(self.dot_path)
30
               return True
31
           else:
32
               return False
34
        def output_dot(self, result_path='./automa.dot'):
36
           try:
               if self.delete_intermediate_automaton():
37
                   with open(result_path, 'w+') as f:
38
                       f.write(str(self.new_digraph))
39
```

 ${f 20}$

```
f.close()
else:
raise IOError('[ERROR]___Something_wrong_occurred_in_'+ \
'the_elimination_of_intermediate_automaton.')
except IOError:
print('[ERROR]___Problem_with_the_opening_of_the_file_%s!' \
%result_path)
```

The former method at line 10 takes advantage of the APIs exposed by dotpy. Especially, it parses the .dot file output of MONA (Figure 3.2a), deletes the starting node 0 and the edge from node 0 to node 1 and, finally, makes node 1 initial. Consequently, the latter method at line 35 manages the output of the final post-processed DFA (Figure 3.2b) and stores it in the main directory. For instance, in Figure 3.2 we can see graphically what is the outcome of the post-processing of the automaton corresponding to the formula $\varphi = \Box(a \to Ob)$.

Figure 3.2. Before and after DFA post-processing

3.3 Comparison with FLLOAT

3.4 Discussion

In this chapter, we have presented the LTL_f 2DFA Python package. We have also described the structure of the package, discussed in detail its implementation highlighting all the main features and, finally, seen how it performs with respect to time and memory relatively to the FLLOAT Python package.

Janus

DFAgame

Conclusions and Future Work

Continue the introduction and possible future work

Bibliography

- Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and linear dynamic logic on finite traces. In *IJCAI*, volume 13, pages 854–860, 2013.
- Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on ltl on finite traces: Insensitivity to infiniteness. In *Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence*, AAAI'14, pages 1027–1033. AAAI Press, 2014. URL http://dl.acm.org/citation.cfm?id=2893873.2894033.
- Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: new techniques for WS1S and WS2S. In *Proc. 10th International Conference on Computer-Aided Verification (CAV)*, volume 1427 of *LNCS*, pages 516–520. Springer-Verlag, June/July 1998.
- Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, Department of Computer Science, Aarhus University, January 2001. Notes Series NS-01-1. Available from http://www.brics.dk/mona/. Revision of BRICS NS-98-3.