$10_{143} \ (K10n_{26})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2u^{12} - 2u^{11} - 9u^{10} + 10u^9 + 12u^8 - 18u^7 + 7u^6 + 4u^5 - 25u^4 + 18u^3 + 4u^2 + 4b - 2u + 2, \\ &- u^{11} + 4u^9 - 5u^7 - u^5 + 2u^4 + 6u^3 - 2u^2 + 4a + 2u - 4, \\ &u^{13} - 2u^{12} - 3u^{11} + 9u^{10} - u^9 - 12u^8 + 14u^7 - 7u^6 - 11u^5 + 23u^4 - 12u^3 + 2u^2 - 2 \rangle \\ I_2^u &= \langle b + 1, \ 2a + u, \ u^2 - 2 \rangle \\ I_3^u &= \langle -a^2 + b + a, \ a^3 - 2a^2 + a - 1, \ u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 2u^{12} - 2u^{11} + \dots + 4b + 2, -u^{11} + 4u^9 + \dots + 4a - 4, u^{13} - 2u^{12} + \dots + 2u^2 - 2 \rangle$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{4}u^{11} - u^{9} + \dots - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{12} + \frac{1}{2}u^{11} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{12} + \frac{3}{4}u^{11} + \dots - \frac{1}{2}u^{2} + \frac{1}{2} \\ -\frac{1}{2}u^{12} + \frac{1}{2}u^{11} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{4}u^{11} + u^{9} + \dots - \frac{3}{2}u + 1 \\ -\frac{1}{4}u^{11} + u^{9} + \dots - \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{10} + u^{8} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{7} - \frac{3}{2}u^{5} + \frac{1}{2}u^{4} + u^{3} - u^{2} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$=2u^{12}-10u^{10}+2u^9+18u^8-8u^7-4u^6+10u^5-26u^4+20u^2-2u+8$$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$u^{13} + 2u^{12} + \dots - 2u^2 + 2$
c_2	$u^{13} + 3u^{12} + \dots - 92u + 46$
c_3, c_9	$u^{13} - 2u^{12} + \dots - 3u - 1$
c_4, c_8	$u^{13} + 2u^{12} + \dots + 9u - 1$
C ₇	$u^{13} + 18u^{12} + \dots + 65u + 1$
c_{10}	$u^{13} - 2u^{12} + \dots + 17u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6	$y^{13} - 10y^{12} + \dots + 8y - 4$
c_2	$y^{13} + 23y^{12} + \dots + 7728y - 2116$
c_3, c_9	$y^{13} - 2y^{12} + \dots + 17y - 1$
c_4, c_8	$y^{13} - 18y^{12} + \dots + 65y - 1$
	$y^{13} - 42y^{12} + \dots + 2989y - 1$
c_{10}	$y^{13} + 22y^{12} + \dots + 205y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.116060 + 1.025320I		
a = -1.94905 - 0.25674I	-10.21610 + 3.70097I	0.67358 - 2.50956I
b = -1.69551 + 0.12749I		
u = 0.116060 - 1.025320I		
a = -1.94905 + 0.25674I	-10.21610 - 3.70097I	0.67358 + 2.50956I
b = -1.69551 - 0.12749I		
u = 1.197110 + 0.332616I		
a = -0.447636 - 0.899887I	1.92578 + 4.88678I	6.41460 - 5.91732I
b = -0.583119 + 0.809161I		
u = 1.197110 - 0.332616I		
a = -0.447636 + 0.899887I	1.92578 - 4.88678I	6.41460 + 5.91732I
b = -0.583119 - 0.809161I		
u = 1.236960 + 0.573659I		
a = 0.918969 + 0.882216I	-6.78115 + 1.92961I	2.66803 - 0.98070I
b = 1.67219 - 0.07727I		
u = 1.236960 - 0.573659I		
a = 0.918969 - 0.882216I	-6.78115 - 1.92961I	2.66803 + 0.98070I
b = 1.67219 + 0.07727I		
u = 1.38959		
a = -0.810069	6.53354	13.9760
b = -0.135830		
u = 0.094132 + 0.586012I		
a = 0.854196 + 0.075054I	-1.38205 - 1.36942I	-0.56235 + 3.09698I
b = 0.787240 + 0.445864I		
u = 0.094132 - 0.586012I		
a = 0.854196 - 0.075054I	-1.38205 + 1.36942I	-0.56235 - 3.09698I
b = 0.787240 - 0.445864I		
u = -1.45446		
a = 0.0472843	3.37738	1.87580
b = -1.10499		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.40252 + 0.47847I		
a = 0.81193 - 1.16730I	-5.44762 - 9.07090I	4.16718 + 5.02365I
b = 1.62497 + 0.28976I		
u = -1.40252 - 0.47847I		
a = 0.81193 + 1.16730I	-5.44762 + 9.07090I	4.16718 - 5.02365I
b = 1.62497 - 0.28976I		
u = -0.418617		
a = 1.38596	0.992576	11.4260
b = -0.370722		

II.
$$I_2^u=\langle b+1,\; 2a+u,\; u^2-2\rangle$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u - 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u \\ -1 \end{pmatrix}$$

 $a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

$$a_{10} = \begin{pmatrix} 0 \\ -\frac{1}{2}u \\ u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \ c_6$	u^2-2
c_3, c_4	$(u+1)^2$
c_7, c_8, c_9 c_{10}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$(y-2)^2$
c_3, c_4, c_7 c_8, c_9, c_{10}	$(y-1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.707107	4.93480	8.00000
b = -1.00000		
u = -1.41421		
a = 0.707107	4.93480	8.00000
b = -1.00000		

III.
$$I_3^u = \langle -a^2 + b + a, \ a^3 - 2a^2 + a - 1, \ u + 1 \rangle$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ a^2 - a \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a^2 \\ a^2 - a \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -a^2 \\ -a \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^2 \\ a^2 - a \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$(u-1)^3$
c_2	u^3
$c_3,c_4,c_8 \ c_9$	$u^3 - u + 1$
c_7	$u^3 + 2u^2 + u + 1$
c_{10}	$u^3 - 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6	$(y-1)^3$
c_2	y^3
c_3, c_4, c_8 c_9	$y^3 - 2y^2 + y - 1$
c_{7}, c_{10}	$y^3 - 2y^2 - 3y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.122561 + 0.744862I	1.64493	6.00000
b = -0.662359 - 0.562280I		
u = -1.00000		
a = 0.122561 - 0.744862I	1.64493	6.00000
b = -0.662359 + 0.562280I		
u = -1.00000		
a = 1.75488	1.64493	6.00000
b = 1.32472		

IV.
$$I_1^v = \langle a, b-1, v-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6	u
c_3, c_4, c_7 c_{10}	u-1
c_{8}, c_{9}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	y
c_3, c_4, c_7 c_8, c_9, c_{10}	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$u(u-1)^{3}(u^{2}-2)(u^{13}+2u^{12}+\cdots-2u^{2}+2)$
c_2	$u^4(u^2-2)(u^{13}+3u^{12}+\cdots-92u+46)$
c_3	$(u-1)(u+1)^{2}(u^{3}-u+1)(u^{13}-2u^{12}+\cdots-3u-1)$
c_4	$(u-1)(u+1)^{2}(u^{3}-u+1)(u^{13}+2u^{12}+\cdots+9u-1)$
c_7	$((u-1)^3)(u^3+2u^2+u+1)(u^{13}+18u^{12}+\cdots+65u+1)$
<i>C</i> ₈	$((u-1)^2)(u+1)(u^3-u+1)(u^{13}+2u^{12}+\cdots+9u-1)$
<i>c</i> 9	$((u-1)^2)(u+1)(u^3-u+1)(u^{13}-2u^{12}+\cdots-3u-1)$
c_{10}	$((u-1)^3)(u^3-2u^2+u-1)(u^{13}-2u^{12}+\cdots+17u-1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6	$y(y-2)^{2}(y-1)^{3}(y^{13}-10y^{12}+\cdots+8y-4)$
c_2	$y^{4}(y-2)^{2}(y^{13}+23y^{12}+\cdots+7728y-2116)$
c_3,c_9	$((y-1)^3)(y^3-2y^2+y-1)(y^{13}-2y^{12}+\cdots+17y-1)$
c_4, c_8	$((y-1)^3)(y^3-2y^2+y-1)(y^{13}-18y^{12}+\cdots+65y-1)$
c ₇	$((y-1)^3)(y^3 - 2y^2 - 3y - 1)(y^{13} - 42y^{12} + \dots + 2989y - 1)$
c_{10}	$((y-1)^3)(y^3 - 2y^2 - 3y - 1)(y^{13} + 22y^{12} + \dots + 205y - 1)$