CSE-309 Operating Systems

Mohammad Shariful Islam

Lecturer, Department of CSE

Mobile: 01747612143

Email: sharifulruhan@gmail.com

Chapter 1: Introduction

Chapter 1: Introduction

- What Operating Systems Do
- Computer-System Organization
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security
- Kernel Data Structures
- Computing Environments
- Open-Source Operating Systems

Objectives

- To describe the basic organization of computer systems
- To provide a grand tour of the major components of operating systems
- To give an overview of the many types of computing environments
- To explore several open-source operating systems

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Computer System Components

- Computer system can be divided into four components:
 - Hardware provides basic computing resources
 - ▶ CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various applications and users
 - Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
 - Users
 - ▶ People, machines, other computers

Four Components of a Computer System

Functions of Operating System

Main functions of Operating system

A separate module of operating system software performs each of the function:

- (1). **Process management:-** Process management module takes care of creation and deletion of processes, and providing mechanisms for synchronization and communication among processes.
- (2). **Memory management:** Memory management module takes care of allocation and de-allocation of memory space to programs in need of this resources.
- (3). **File management**:- It takes care of file-related activities such as organization storage, retrieval, naming, sharing, and protection of files.

Functions of Operating System

(4). **Security**:- Security module protects the resources and information of a computer system against destruction and unauthorized access.

(5). **Command interpretation**:- Command interpretation module takes care of interpreting user commands, and directing system resources to process the commands.

Classification of Operating System

Operating System can also be classified as:-

(1). **Single User Systems**:-They are popularly associated with Desktop operating system which run on standalone systems where no user accounts are required.

Example: DOS.

(2). **Multi User Systems:**-Provides regulated access for a number of users by maintaining a database of known users. Refers to computer systems that support two or more simultaneous users.

Example: Unix, Microsoft Windows NT.

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

A kernel connects the application software to the hardware of a computer.

Kernel

- "The one program running at all times on the computer" is the kernel.
- The **kernel** is a computer program which is the central module of an operating system (OS). It loads first (after the bootloader), and it remains in main memory.
- It handles the rest of start-up as well as input/output requests from software, translating them into data-processing instructions for the central processing unit.
- It handles memory and peripherals like keyboards, monitors, printers, and speakers.

There are two types of kernels:

- A microkernel, which only contains basic functionality;
- A monolithic kernel, which contains many device drivers.

A computer user never interacts directly with the kernel. It runs behind the scenes and cannot be seen.

Computer System Organization

- Computer-system Organization
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles.

Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt.

Storage Structure

- Main memory only storage media that the CPU can access directly
 - Random access
 - Typically volatile
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Hard disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer
- Solid-state disks faster than hard disks, nonvolatile
 - Various technologies
 - Becoming more popular

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage
- Device Driver for each device controller to manage I/O
 - Provides uniform interface between controller and kernel

Storage-Device Hierarchy

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per byte

Operating System Structure

- Multiprogramming (Batch system) needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second
 - Each user has at least one program executing in memory ⇒ process
 - If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, **swapping** moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Open-Source Operating Systems

- Operating systems made available in source-code format rather than just binary closed-source
- Counter to the copy protection and Digital Rights
 Management (DRM) movement
- Started by Free Software Foundation (FSF), which has "copyleft" GNU Public License (GPL)
- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X), and many more
- Can use VMM like VMware Player (Free on Windows),
 Virtualbox (open source and free on many platforms http://www.virtualbox.com)
 - Use to run guest operating systems for exploration

Memory

Questions?

- What is an Operating System?
- What are the goals of an operating system?
- Why OS is required in computer system?
- Describe Computer System Components.
- What are the functions of Operating System?
- Classify of Operating System based on user.
- Define Kernel with types.
- Describe computer system organization and operation.
- Write short note on timesharing and multiprogramming

End of Chapter 1

