Si $f: \vec{E} \longrightarrow \mathbb{R}^+$ et $\vec{B} \subseteq \vec{E}$, on définit : $f(\overrightarrow{B}) = \sum_{\overrightarrow{e} \in B} f(\overrightarrow{e})$

Dans cet exercice, on considère un graphe orienté $\vec{G} = (V, \vec{E})$, des sommets $s, t \in V$ et une capacité $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Si $A \subseteq V$, on définit :

dans \vec{G} .

• $A^+ = \{(u, v) \in \vec{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A») • $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)

Si $v \in V$, on définit $v^+ = \{v\}^+$ et $v^- = \{v\}^-$.

Un **flot** est une fonction $f: \vec{E} \longrightarrow \mathbb{R}^+$ telle que :

- 2. Montrer que tout graphe muni d'une capacité possède un flot (on cherchera à définir un flot très simple).
- 3. Soit \vec{P} un chemin de s à t et c la capacité minimum des arcs de \vec{P} . On définit $f: \vec{E} \longmapsto \mathbb{R}^*$ qui vaut c sur chaque arc de \overrightarrow{P} et 0 partout ailleurs. Justifier que f est un flot.
- Algorithme: Ford-Fulkerson $f \leftarrow \text{flot nul}$

4. L'algorithme suivant permet de construire un flot en ajoutant itérativement un chemin de s à t:

Diminuer de c la capacité des arcs de \overrightarrow{P} Augmenter le flot f de c, le long des arcs de \overrightarrow{P}

Tant que \exists un chemin \overrightarrow{P} de s à t, dont les arcs sont tous de capacité > 0:

Appliquer l'algorithme de Ford-Fulkerson sur le graphe de la 1ère question.

 $c \leftarrow$ minimum des capacités de \vec{P}

des capacités des arcs sortants de S.

l'algorithme de Ford-Fulkerson en OCaml, avec l'une de ces méthodes.

5. On suppose que toutes les capacités sont entières. Montrer que l'algorithme de Ford-Fulkerson termine et

donner la complexité dans le pire cas. Une **coupe** de \vec{G} est un ensemble $S \subseteq V$ contenant s mais pas t. La capacité d'une coupe S est la somme $c(S^+)$

6. Soit S une coupe. Montrer que $f(S^+) \le c(S^+)$ et $f(S^+) = |f|$. 7. Soit f un flot et S une coupe vérifiant $f(S^+) = c(S^+)$. Montrer que :

- \bullet f est un flot de valeur maximum • S une coupe de capacité minimum
- 8. Montrer que si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum
 - 9. Quelle méthode connaissez-vous pour trouver un chemin dans l'algorithme de Ford-Fulkerson? Implémenter