پروژه پایانی

محمدمهدی تیموریان و فاطمه جعفری

چکیده

برنامه طراحی شده با تولید موج PWM، انواع موج های مختلف مانند سینوسی، مثلثی، مربعی و غیره را تولید میکند. همچنین میتوان نوع موج، فرکانس و دامنه را تغییر داد. ورودی ها با استفاده از مقاومت متغیر و سویچ به میکروکنترلر داده و سپس با وقفه ها مدیریت و پردازش میشوند. همچنین خروجی موج PWM با عبور از کلیلتر سلسلهای به موج آنالوگ تبدیل میشود.

تنظیمات کلاک

کلاک میکروکنترلر به صورت پیشفرض برابر با ۱۶Mhz می باشد. برای فراهم کردن فرکانس های بالاتر در موج خروجی و همچنین کیفیت بیشتر موج خروجی کلاک را با استفاده از تنظیمات زیر به ۸۴Mhz تغییر میدهیم:

با انتخاب HSI به عنوان منبع PLL و انتخاب PLL به عنوان کلاک سیستم، میتوان مقدار کلاک را به PLL با انتخاب HSI به عنوان منبع PLL و انتخاب STM۳۲۶۴۰۱RE ماکسیمم مقدار برای تایمر ها ۸۴Mhz می باشد. در نتیجه با تنظیم پرامترهای PLL و تنظیم Prescaler باس های ادوات به این مقدار دست می یابیم.

مقدار	پارامتر	بخش
15	М	
۳۳۶	N	PLL
۴	Р	1
۴	Q	
١	AHB Prescaler	باس AHB
۲	APBI Prescaler	باس ادوات APB۱
١	APBY Prescaler	باس ادوات APB۲

تنظيمات PWM

با استفاده از تایمر ۵ موج PWM تولید میشود. تایمر ۲ با ایجاد وقفه در بازه هایی متناسب با فرکانس موج PWM، مقدار duty cycle را از جدول موج مورد نظر خوانده و با در نظر گرفتن دامنه موج، بر روی تایمر مربوط به PWM تنظیم میکند. مقدار ARR همیشه ثابت می ماند و برابر با ۴۰۹۵ است. این مقدار در سیستم باینری ۱۲ بیت نیاز دارد که به میزان resolution موج خروجی اشاره میکند. همچنین مقدار PSC تایمر تولید کننده PWM، متناسب با فرکانس تنظیم شده توسط کاربر، تغییر میکند.

مقدار	ویژگی
[۴,۱۰]	دامنه موج
[1,Y•K]	فر کانس موج
۱۲۸	نمونه سمپل به ازای هر
	موج
۱۲	رزولوشن موج خروجى

جداول موجها

هر موج یک جدول از پیش محاسبه شده دارد که مقادیر duty cycle موج خروجی از این جدوال خوانده میشود. تعداد ۱۲۸ نمونه در هر جدول وجود دارد که متناسب با رزولوشن درنظر گرفته شده است و کیفیت خوب و مناسبی را در موج خروجی ارائه میدهد.

تغییر دامنه موج

مقدار duty cycle موج خروجی از جدول متناسب با انتخاب کاربر، خوانده میشود. سپس با بررسی مقدار دامنه موج مقدار duty cycle را به یک دامنه کوچکتر یا بزرگتر مقایس دهی میکند.

تغيير فركانس موج

در صورت تغییر فرکانس توسط کاربر، به صورت لحظه ای مقدار جدید PSC متناسب با کلاک تایمر، رزولوشن و فرکانس تنظیم شده توسط کاربر محاسبه و بر روی تایمر های ۵ و ۲ تنظیم میشود.

محاسبات مربوط به PWM

نحوه محاسبه amplitude و frequency در بخش خواندن ورودی آنالوگ توضیح داده شده است.

$$PSC = \frac{TIM\ CLK}{Frequency * 2^{Resolution}}; resolution = 12$$

$$Wave Scale = \frac{2^{Resolution} * Amplitude}{Max Amplitude} - 2048 ; resolution = 12$$

$$Duty\ Cycle = \frac{LUT_i*2*Wave\ Scale}{2^{Resolution}} + 2048 - Wave\ Scale\ ; resolution = 12$$

فيلتر موج PWM

برای گرفتن موج آنالوگ بهتر از دو فیلتر به صورت سلسلهای استفاده شده است. ابتدا با استفاده از یک LCF نوع T یکبار نویزهای موج گرفته میشود. خروجی موج از فیلتر اول به فیلتر دوم داده میشود تا کیفیت موج بالا رود و نویز آن کمتر شود. فیلتر نوع دوم یک LCF از نوع L میباشد.

با استفاده از معادلات مدارهای خازن القاگری و همچنین آزمون و خطا و مشاهده خروجی، بهترین مقادیر برای این فیلتر ها انتخاب شده که شرح آن در جدول زیر آمده است.

مقدار	پارامتر	فيلتر
1mH	هر دو القاگر	LCF-T
5u	خازن	LCF-T
1mH	القاگر	LCF-L
10u	خازن	LCF-L

خواندن ورودی آنالوگ

رزولوشن انتخابی برای 12 می باشد. علت این است که بتوانیم رنج کامل ولتاژ ورودی را دریافت کنیم و مقدار رزولوشن انتخابی برای دهیم. برای دریافت پارامترهای ورودی که شامل دامنه و فرکانس شکل موج آن را به بازه 0 تا 100 مقایس دهیم. برای دریافت پارامترهای ورودی که شامل دامنه و فرکانس شکل موج خروجی است، از ادوات ADC1 و TIM3 و از دو پین به دو کانال (regular channel) از ADC_ ADC1 پردازنده متصل می شود (SQ1, SQ2) در ADC1 یهر کدام از این کانال ها در مود sample time بیشینه (480 cycles) هستند. برای TIM3 نیز aupdate interrupt enable فعال ADC ، interrupt و با Prescaler = 1000-1 و Prescaler = 1000-1 به وسیله یک ADC ، interrupt روشن می کند و در interrupt مربوط به ADC بسته به این که خروجی ADC از کدام وسیله پین ADC روشن می کند و در amplitude در صورت تغییر ست می شوند. و پس ست شدن، با توجه به کانال است، مقدار frequency و یا amplitude در صورت تغییر ست می شوند. و پس ست شدن، با توجه به

درصد مقدار خوانده شده از ADC که همان میزان مقاومت متغیر ها را نشان می دهد به صورت پله ای مقادیر مناسب برای فرکانس و دامنه حساب می شود و با ست کردن یک flag که در صورت تغییر هر یک از ورودی ها (فرکانس، دامنه و نوع موج) ست می شود، و همزمان با تولید شکل موج روی نمایشگر LCD نمایش داده می شود. محاسبه و میزان هر پرش برای فرکانس و دامنه به صورت زیر است :

$$Frequency\ Percentage = round\left(\frac{Input\ Frequency\ Portion}{Input\ Resolution}\right)*100$$

$$Amplitude\ Percentage = round\left(\frac{Input\ Amplitude\ Portion}{Input\ Resolution}\right)*100$$

درصد مقاومت متغیر فرکانس	فرکانس معادل(Hz)	Step size	درصد مقاومت متغیر دامنه	دامنه معادل
0 to 10	1 to 10	1	0 to 14	4.0
11 to 20	20 to 100	10	15 to 29	5.0
21 to 38	150 to 1000	50	30 to 44	6.0
39 to 78	1100 to 5000	100	45 to 59	7.0
79 to 98	5250 to 10000	250	60 to 74	8.0
99	15000	-	75 to 89	9.0
100	20000	-	90 to 100	10.0

ترمینال مجازی و دیباگ

برای دیباگ کردن و فهمیدن مقدار دیجیتال شده (خروجی ADC) از USART1 استفاده شده است که صرفا از این دیوایس برای نوشتن و چک کردن پارامترها استفاده می شود. برای این منظور پین PA9 برای ارسال (پین PA10 برای دریافت که مورد استفاده نیست) در نظر گرفته شده است. در خارج از پردازنده این پین به یک PA10 برای دریافت که مورد استفاده نیست) در نظر گرفته شده است. برای اینکار نیاز است که PA9 را در مود VIRTUAL TERMINAL که برای نمایش به کار می رود متصل است. برای اینکار نیاز است که PA9 را در مود AF قرار دهیم. سپس از تابع usart_write برای نوشتن داده و ارسال آن به VT (ترمینال) استفاده می شود. از

این دیوایس برای دیباگ کردن، در بخش ADC_IRQHandler برای زمانی که مقدار پارامتر های ورودی (فرکانس و دامنه موج) تغییر می کنند استفاده می شود که مقادیر زیر، در صورت تغییر، در فرمت ذکر شده نمایش داده می شوند:

- دامنه ورودی که از ADC1 خوانده شده و به درصد تبدیل شده است.
- فرکانس ورودی که از ADC1 خوانده شده و به درصد تبدیل شده است.
- Prescaler مورد نظر برای تولید شکل موج که به صورت (CLK/(frequency*RES) محاسبه می شود (مقدار CLK, RES) ثابت های مورد نظر برای فرکانس کلاک و رزولوشن و frequency مقدار فرکانس ورودی است.) به همراه فرکانس تولید کننده آن (فرکانس ورودی).

نمایشگر

برای نمایش مقادیر اولیه که شامل فرکانس، دامنه و نوع موج ورودی است از LCD استفاده شده است که پین های آن به پورت C متصل شده اند (پین های تنظیمات روی PC0 تا PC2 و پین های دیتا روی PC3 تا PC3 های آن به پورت C متصل شده اند (پین های تنظیمات روی PC10 تا PC10 و سپس با استفاده از دستورات زیر، کار مورد نظر را انجام دهیم:

0x38	function set: 8-bit, 2-line, 5x7 font	
0x06	move cursor right after each char	
0x0C	turn on display, cursor off, no cursor blinking	
0x01	clear screen, move cursor to home	
0xC0	move cursor to next line	
0x80	force cursor to beginning to 1st line	

تمامی دستورات بالا، باید به وسیله تابع display_command فراخوانی شوند. در این تابع در هر مرحله پس از تنظیمات جدول زیر، command مورد نظر روی خروجی قرار می گیرد (به وسیله باس داده پورت C) و سپس بیت 0 = abble = 0 می شود:

E = 1	enable
RW = 0	data write(mp->lcd)
DI = 0	instruction input

برای نوشتن یک کاراکتر رو lcd کافیست در هر مرحله پس از تنظیمات جدول زیر، کاراکتر مورد نظر روی خروجی قرار بگیرد (به وسیله باس داده پورت C) و سپس بیت C enable = 0 می شود:

E = 1	enable
RW = 0	data write(mp->lcd)
DI = 1	data input

برای نوشتن یک string کافیست کاراکتر به کاراکتر رشته مورد نظر را روی lcd نمایش دهیم.

ورودی نوع موج

از آن جایی که 8 نوع موج داریم به 8 سوییچ نیاز داریم که از یک 8 DSWITCH تایی استفاده می کنیم و پین های آن را به PB5 تا PB5 متصل می کنیم. همه این پین ها امکان تغییر در طول برنامه را دارد (تضمین می شود هیچ 2 پینی با هم 1 نمی شوند). به همین علت این پین ها را به external interrupt های 5 تا 13 متصل میکنیم تا پس از هر تغییر interrupt مناسب داده شود. پس از هربار دریافت interrupt نوع موج دریافتی مقادیر ورودی که روی دریافتی ست می شود و mask مربوطه mask و در صورت تغییر نوع موج دریافتی، مقادیر ورودی که روی ادا اده می شدند آیدیت می شود.

رابطه بین پین ها، نوع موج و interrupt مربوطه به صورت زیر است:

نوع موج	پین متناظر	Interrupt متناظر
Sine Wave	PB5	EXTI5
Square Wave	PB6	EXTI6
Triangle Wave	PB7	EXTI7
Sawtooth Wave	PB8	EXTI8

Stairs Wave	PB9	EXTI9
Rectified Sine Wave	PB10	EXTI10
Segmented Sine Wave	PB12	EXTI12
Singe Modulation Wave	PB13	EXTI13

ورودى خروجىها

توضيحات	نوع	پین
آنالوگ فرکانس موج	ورودى	PAO
آنالوگ دامنه موج	ورودى	PA1
موج PWM	خروجی	PA2
ارتباط سریال با ترمینال مجازی	خروجی	PA9
ال ای دی کمکی	خروجی	PBO
سویچها برای انتخاب موج	ورودى	PB5-13
ارتباط با نمایشگر	خروجی	PC0-10

ادوات استفاده شده

توضيحات	ادوات
استفاده برای نوشتن مقدار خوانده شده از جدول موج درون PSC	TIM2
استفاده برای نمونه برداری از دو ورودی فرکانس و دامنه موج	TIM3
استفاده برای تولید موج PWM	TIM5
استفاده برای خواندن مقادیر آنالوگ دو ورودی فرکانس و دامنه موج	ADC1
استفاده برای دیباگ و لاگ انداخت در ترمینال مجازی	USART1

بهینهسازی

ابتدا برای افزایش سرعت عمل از جداول از پیش محاسبه شده برای موج ها استفاده شده است. این عمل کمک میکند بدون وقفه duty cycle عوض شود و شکل موج بهتری ارائه گردد. همچنین در انجام محاسبات تا جای ممکن ساده سازی شده تا محاسبات سریع تر انجام شود.

پیشرفت	میزان کاهش	اندازه کامپایل	بهینه سازی
28% كوچكتر	4384	15512	Optimization level -balance
2% کوچکتر	232	11128	Link-Time Optimization
بدون تغيير	0	10896	Split load store multiple
38% كوچكتر	5924	10896	MicroLib
68% کوچکتر	میزان پیشرفت	4972	اندازه نهایی