Limita posloupnosti

Vypočítejte

1.
$$\lim_{n \to \infty} \frac{\sqrt{n^3 - 2n^2 + 1} + \sqrt[3]{n^4 + 1}}{\sqrt[4]{n^6 - 6n^5 + 2} + \sqrt[5]{n^7 + n^3 + 1}}$$

$$2. \lim_{n \to \infty} \frac{a^n}{n!}, a \in \mathbb{R}$$

3.
$$\lim_{n\to\infty} \sqrt[n]{n}$$

4.
$$\lim_{n\to\infty} \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n(n+1)}$$

5.
$$\lim_{n\to\infty} a_n$$
, kde $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{a_n+2}$, $n \ge 1$

6.
$$\lim_{n \to \infty} a_n$$
, $a_1 > 0$, $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$, $n \ge 1$

7. Zjistěte, pro která $x \in \mathbb{R}$ existuje $\lim_{n \to \infty} \sin nx$.

Najděte $\limsup_{n\to\infty}$ a $\liminf_{n\to\infty}$

8.
$$a_n = \frac{n-1}{n+1} \cos \frac{2}{3} n\pi$$

9.
$$a_n = n(2 + (-1)^n)$$

$$10. \ a_n = \cos^n \frac{2}{3} n\pi$$

Najděte hromadné body následujících posloupností

11.
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{8}$, $\frac{7}{8}$, ..., $\frac{1}{2^n}$, $\frac{2^n - 1}{2^n}$, ...

12.
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, ...