Definition NP-Vollständig

Definition 1:

Eine Sprache $L \subseteq \Sigma^*$ heißt NP-Vollständig, falls L

- 1. NP-hart ist und
- 2. selbst ein Element von NP.

Alle NP-Vollständigen Probleme bilden die Klasse NPC

NP-Hart

Definition 2:

Eine Sprache L' ist NP-Hart, falls für alle $L \in NP$ gilt:

$$L \leq_p L'$$

Polynomielle Reduktion

Definition 3:

Gegeben zweier Sprachen $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$ ist ein Problem dann polynomiell reduzierbar, falls es eine Funktion $f(x): \Sigma_1^* \to \Sigma_2^*$, $x \in L_1$ gibt, welche:

1. in polynomieller Zeit berechnet werden kann und

2. $x \in L_1 \Leftrightarrow f(x) \in L_2$ gilt.

Existiert diese Funktion, so schreibt man: $L_1 \leq_p L_2$

Nichtdeterminismus und NDTM

Ein Nichtdeterministischer polynomieller Algorithmus besteht aus zwei Phasen:

- 1. Raten
- 2. Verifizieren

Auf diese Weise als TM darstellbar

SAT

Kurzform von "Satisfiability" (Erfüllbarkeit)

Auch bekannt als "Erfüllbarkeitsproblem der Aussagenlogik"

Klausel: Disjunktion von Literalen -> $(x_1 \lor y_1)$

Formel: Konjunktion von Klauseln -> $(x_1 \lor y_1) \land (x_2 \lor y_2)$

Problemformulierung:

"Gibt es eine Belegung für alle Literale bei denen die Formel zu WAHR evaluiert wird?"

Cook-Levin Theorem

Satz:

SAT ist NP-Vollständig

Beweis C-L - Variablen

• Bandinhalt *B*:

 $B_{i,k,\sigma} = 1 \rightarrow \text{Nach i Schritten steht Symbol } \sigma \text{ in Feld } k$

• Zustand S:

$$S_{i,s} = 1 \rightarrow \text{Nach } i \text{ Schritten ist TM in Zustand s}$$

 $0 \le i \le p(n)$ $-p(n) \le k \le p(n)$

• Kopfposition *P*:

 $P_{i,k} = 1 \rightarrow \text{Nach } i \text{ Schritten ist Kopf an Position } k$

Beweis C-L - Startbedingung

Zu Beginn gilt die Startbedingung S:

- TM ist im Startzustand $s_0 \rightarrow S_{0,s_0}$
- Kopf ist an Position 0 -> $P_{0,0}$
- \circ Auf dem Band findet sich nur das Eingabewort ω
- Darstellung:

$$S = S_{0,S_0} \wedge P_{0,0} \left(\bigwedge_{k=-p(n)}^{-1} B_{0,k,\blacksquare} \right) \left(\bigwedge_{k=0}^{n-1} B_{0,k,x_k} \right) \left(\bigwedge_{k=n}^{p(n)} B_{0,k,\blacksquare} \right)$$

Beweis C-L - Randbedingungen

Zusätzlich gelten Randbedingungen $R = R_1 \wedge R_2 \wedge R_3$

- R_1 : zu jedem Zeitpunkt i ist die TM in **genau einem** Zustand
- R_2 : zu jedem Zeitpunkt i ist der Kopf an **genau einer** Position
- \circ R_3 : zu jedem Zeitpunkt i ist **genau ein** Symbol in jedem Feld

$$R_{1} = \bigwedge_{i=0}^{p(n)} one (S_{i,S_{0}}, S_{i,S_{1}}, ...)$$

$$R_{2} = \bigwedge_{i=0}^{p(n)} one (P_{i,-p(n)}, ..., P_{i,p(n)})$$

$$R_{3} = \bigwedge_{i=0}^{p(n)} \bigwedge_{k=-p(n)}^{p(n)} One (B_{i,k,\sigma_{1}}, B_{i,k,\sigma_{2}}, ...)$$

One
$$(y_1,..,y_m) \Leftrightarrow \sum_{i=1}^n y_i = 1$$

Beweis C-L - Transition

Es gilt $T = (T_1 \wedge T_2 \wedge T_3)$

 T_1 sichert ab, dass die TM beim Schritt von i nach i+1 in eine Folgekonfiguration übergeht

 T_2 sorgt dafür, dass eine terminierte TM nicht weiter arbeitet

 T_3 bildet die Tatsache ab, dass nur der Kopf den Bandinhalt ändern kann

$$T_{2} = \bigwedge_{\substack{i,k,s,\sigma \\ \delta(s,\sigma) = \emptyset}} (S_{i,s} \wedge P_{i,k} \wedge B_{i,k,\sigma}) \to (S_{i+1,s} \wedge P_{i+1,k} \wedge B_{i+1,k,\sigma})$$

$$T_{3} = \bigwedge_{i=0}^{p(n)} \bigwedge_{k=-p(n)} \bigwedge_{\sigma \in \Pi} (\overline{P_{i,k}} \wedge B_{i,k,\sigma}) \to B_{i+1,k,\sigma}$$

Beweis Cook-Levin - Bedingungen

$$T_1 = \bigwedge_{\substack{i,k,s,\sigma \\ \delta(s,\sigma) \neq \emptyset}} (S_{i,s} \wedge P_{i,k} \wedge B_{i,k,\sigma}) \rightarrow \begin{bmatrix} \bigvee_{\substack{(s',\sigma',\leftarrow) \\ \in \delta(s,\sigma)}} (S_{i+1,s'} \wedge P_{i+1,k-1} \wedge B_{i+1,k,\sigma'}) \end{bmatrix}$$

$$\left. \bigvee_{\substack{(s',\sigma',\rightarrow)\\ \in \boldsymbol{\delta}(s,\sigma)}} (S_{i+1,s'} \wedge P_{i+1,k+1} \wedge B_{i+1,k,\sigma'}) \bigvee_{\substack{(s',\sigma',\circlearrowleft)\\ \in \boldsymbol{\delta}(s,\sigma)}} (S_{i+1,s'} \wedge P_{i+1,k} \wedge B_{i+1,k,\sigma'}) \right]$$

09.11.2020 11

Beweis Cook-Levin - Bedingungen

Zusätzlich gilt die Akzeptanzbedingung:

$$A = \bigvee_{z \in E} S_{p(n),z}$$

Beweis Cook-Levin - Klauselmenge

Klauselmenge bleibt polynomiell:

$$\circ$$
 $|S| = \mathcal{O}(p(n))$

$$|R| = \mathcal{O}(p(n)^3)$$

$$|T| = \mathcal{O}(p(n)^2)$$

$$|A| = \mathcal{O}(1)$$

Fazit

- NP-Vollständigkeit eines Problems P bedeutet:
 - P ist NP-Hart und
 - *P* liegt in *NP*
- \circ Ein Problem liegt dann in NP, wenn ein ND-Algorithmus existiert der das Problem löst
 - ND-Polynomielle Algorithmen bestehen aus Guess & Check Phasen
- \circ NP-Härte wird dadurch gezeigt, dass sich alle Probleme in NP auf ein bestimmtes Problem polynomiell reduzieren lassen

Quellen nach Folie

D.W. Hoffmann - Theoretische Informatik, Kapitel 7

M.R. Garey, D.S. Johnson – Computers and Intractability, Kapitel 2