Ab initio methods in solid state physics

Przemek Piekarz and Paweł T. Jochym

Computational Materials Science Institute of Nuclear Physics Polish Academy of Sciences Kraków

March 25, 2021

Table of Contents

- Electron interactions theoretical background
- Density functional theory
- 3 Electronic states in crystals
- 4 Band structure calculations
- 5 Functionals and potentials dependent on orbitals
- Strongly correlated and magnetic systems
- Modeling of nanostructures

Band structure of Cu - comparison with experiment

Band structure of copper obtained from the angle resolved photoemission spectroscopy (ARPES) and DFT calculations, $E < E_F$.

- R. Courths and S. Hüfner, Phys. Rep. 112, 53 (1984).
- H. Eckardt, L. Fritsche, and J. Noffke, J. Phys. F: Met. Phys. 14, 97 (1984).

Band structure of Cu - comparison with experiment

Band structure of copper obtained from the angle resolved photoemission spectroscopy (ARPES) and DFT calculations, $E > E_F$.

- R. Courths and S. Hüfner, Phys. Rep. 112, 53 (1984).
- H. Eckardt, L. Fritsche, and J. Noffke, J. Phys. F: Met. Phys. 14, 97 (1984).

Band structure of Si

Calculations for silicon gives the energy gap $E_{\rm g}=0.58$ eV (GGA-PBE), which is underestimated by $\sim 50\%$ comparing to the experimental value $E_{\rm g}^{\rm exp}=1.14$ eV.

Band structure of Ge

Calculations for germanium, which is a semiconductor with the energy gap $E_g^{\text{exp}}=0.66$ eV, gives the metallic state (in LDA or GGA).

Electronic density of states of Ge

Jacob's ladder of DFT

J. M. L. Martin and G. Santra, IJC 60, 787 (2020).

Energy gap problem

The fundamental energy gap can be obtained as the difference between the first ionization energy I and the first electron affinity A of the neutral solid

$$I = E(N-1) - E(N), \tag{1}$$

$$A = E(N) - E(N+1), \tag{2}$$

$$E_{g} = I - A = [E(N-1) - E(N)] - [E(N) - E(N+1)], \tag{3}$$

$$E_{g} = E(N+1) - E(N) - [E(N) - E(N-1)] = \varepsilon_{N+1}(N+1) - \varepsilon_{N}(N)$$

$$= \varepsilon_{N+1}(N) - \varepsilon_{N}(N) + \varepsilon_{N+1}(N+1) - \varepsilon_{N+1}(N) = \Delta_{KS} + \Delta_{xc}.$$
(4)

Kohn-Sham energy gap

$$\Delta_{\mathsf{KS}} = \varepsilon_{\mathsf{N}+1}(\mathsf{N}) - \varepsilon_{\mathsf{N}}(\mathsf{N}), \tag{5}$$

 $\varepsilon_{N+1}(N)$ – lowest unoccupied KS state, $\varepsilon_N(N)$ – highest occupied KS state.

Energy gap problem

Derivative of the exchange-correlation functional is discontinuous with the change of number of electrons – this effect is not described by analytical functionals.

$$\Delta_{xc} = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}|_{N+\delta} - \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}|_{N-\delta} = 0 \quad (LDA, GGA)$$
 (6)

Exchange charge density

A. D. Becke, Int. J. Quantum Chern. 23, 1915 (1983).

The exchange energy can be written using the spin density matrix

$$E_{x} = -\frac{1}{2} \sum_{\sigma} \int d\mathbf{r}_{1} d\mathbf{r}_{2} \frac{|\rho_{\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2})|^{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|},$$
 (7)

$$\rho_{\sigma}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i} \psi_{i}^{\sigma*}(\mathbf{r}_1) \psi_{i}^{\sigma}(\mathbf{r}_2). \tag{8}$$

Exchange charge density with respect to the reference point r

$$\rho_{x\sigma}(\mathbf{r},\mathbf{r}+\mathbf{s}) = \frac{|\rho_{\sigma}(\mathbf{r},\mathbf{r}+\mathbf{s})|^2}{n_{\sigma}(\mathbf{r})}, \quad \mathbf{r} = \mathbf{r}_1, \quad \mathbf{s} = \mathbf{r}_2 - \mathbf{r}_1. \tag{9}$$

Taylor expansion of the exact spherically averaged exchange charge density

$$\rho_{\mathsf{x}\sigma}(\mathbf{r},s) = n_{\sigma}(\mathbf{r}) + \frac{1}{6} \left[\nabla^2 n_{\sigma}(\mathbf{r}) - 2\tau_{\sigma}(\mathbf{r}) + \frac{1}{2} \frac{(\nabla n_{\sigma}(\mathbf{r}))^2}{n_{\sigma}(\mathbf{r})} \right] s^2 + \dots, \tag{10}$$

$$\tau_{\sigma}(\mathbf{r}) = \sum_{i} |\nabla \psi_{i\sigma}(\mathbf{r})|^{2}. \tag{11}$$

Meta-GGA potentials

A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)

$$V_{x\sigma}^{\mathsf{BJ}}(\mathbf{r}) = V_{x\sigma}^{\mathsf{Slater}}(\mathbf{r}) + \frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2\tau_{\sigma}(\mathbf{r})}{n_{\sigma}(\mathbf{r})}},$$
 (12)

$$V_{x\sigma}^{\text{Slater}}(\mathbf{r}) = -\frac{1}{2} \int d\mathbf{r}' \frac{\rho_{\sigma}(\mathbf{r}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}.$$
 (13)

F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

modified Becke-Johnson potential

$$V_{x\sigma}^{\text{mBJ}}(\mathbf{r}) = cV_{x\sigma}^{\text{BR}}(\mathbf{r}) + (3c - 2)\frac{1}{\pi}\sqrt{\frac{5}{12}}\sqrt{\frac{2\tau_{\sigma}(\mathbf{r})}{n_{\sigma}(\mathbf{r})}},$$
 (14)

$$V_{x\sigma}^{\mathsf{BR}}(\mathbf{r}) = -\frac{1}{b_{\sigma}(\mathbf{r})} (1 - e^{-x_{\sigma}(\mathbf{r})} - \frac{1}{2} x_{\sigma}(\mathbf{r}) e^{-x_{\sigma}(\mathbf{r})}). \tag{15}$$

Electron localization function (ELF)

Meta-GGA functionals use the dimensionless parameter

$$\alpha = \frac{\tau - \tau^w}{\tau^u},\tag{16}$$

where $\tau^{\rm w}$ is the Weizsäcker density of kinetic energy $\tau^{\rm w}=|\nabla n|^2/8n$, which defines τ for a single orbital, and $\tau^{\rm u}$ is the value for a uniform gas

$$\tau^{\mathsf{u}} = \frac{3}{10} \left(\frac{3}{\pi^2}\right)^{\frac{2}{3}} n^{\frac{5}{3}}.\tag{17}$$

Parameter $lpha \in [0,1]$ is connected with the electron localization function

$$ELF = \frac{1}{1 + \alpha^2},\tag{18}$$

which is used to characterize the distribution of electron density

- **1** slowly changing density, typical for metals, $\alpha \approx 1$, ELF $\approx \frac{1}{2}$.
- ② covalent bonds between two orbitals, $\alpha=0$, ELF =1.
- **3** weak noncovalent bonds between closed atomic shells, $\alpha \to \infty$, ELF $\to 0$.

Meta-GGA functionals

The exchange-correlation functional in meta-GGA is written in a general form

$$E_{\rm xc}[n_{\uparrow}, n_{\downarrow}] = \int d\mathbf{r} n(\mathbf{r}) \varepsilon_{\rm xc}(n_{\uparrow}, n_{\downarrow}, \nabla n_{\uparrow}, \nabla n_{\downarrow}, \tau_{\uparrow}, \tau_{\downarrow}). \tag{19}$$

J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. **115**, 036402 (2015).

Strongly constrained and appropriately normed (SCAN) functional obeys all 17 known exact constraints. The exchange part can be written in a form

$$E_{x}[n] = \int d\mathbf{r} n(\mathbf{r}) \varepsilon_{x}(n) F_{x}(s, \alpha), \qquad (20)$$

where $\varepsilon_{\rm x}(n)$ is the exchange energy for uniform gas per one electron and s is the dimensionless gradient of density

$$s = \frac{|\nabla n|}{2(3\pi^2)^{1/3} n^{4/3}}. (21)$$

Meta-GGA functionals

In this figure, F_{\times} is plotted as a function of s for three characteristic values of α . F_{\times} fulfills the condition for $s \to 0$, as well as for $s \to \infty$. For $\alpha = 1$ and small s, F_{\times} coincides with the GGA-PBE functional. Values of F_{\times} for other values od α are obtained using the interpolation between $\alpha = 0$ and $\alpha = 1$, and the extrapolation for $\alpha \to \infty$.

The full exchange-correlation function $F_{\rm xc} = F_{\rm x} + F_{\rm c}$, in the limit of high density, converges to $F_{\rm x}$, while for small density it fulfills the Lieb-Oxford bound, $F_{\rm xc} < 2.215$.

Meta-GGA functionals

E. B. Isaacs and C. Wolverton, Phys. Rev. Mater. 2, 063801 (2018)

Self-interaction problem

One electron system - hydrogen atom ($E = E_k + E_Z$)

LDA or GGA

$$E_{H}$$
 - exact, $E_{x},~E_{c}$ - approximate $E_{H}\neq E_{x}+E_{c}\rightarrow E_{H}+E_{x}+E_{c}\neq 0$ (self-interaction)

Hartree-Fock

$$E_{x} = -\frac{1}{2} \sum_{i=j,\sigma} \int d\mathbf{r}_{1} d\mathbf{r}_{2} \frac{\psi_{i}^{\sigma*}(\mathbf{r}_{1})\psi_{j}^{\sigma*}(\mathbf{r}_{2})\psi_{i}^{\sigma}(\mathbf{r}_{2})\psi_{j}^{\sigma}(\mathbf{r}_{1})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}$$

$$= -\frac{1}{2} \int d\mathbf{r}_{1} d\mathbf{r}_{2} \frac{n(\mathbf{r}_{1})n(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} = -E_{H}$$
(22)

$$\rightarrow E_{H} + E_{x} = 0$$
 (no self-interaction)

Hybrid functionals

A. D. Becke, J. Chem. Phys. **98**, 1372 (1993)

$$H_{\lambda} = E_{k} + \lambda V$$
 $\frac{dE_{\lambda}}{d\lambda} = \langle \psi_{\lambda} | V | \psi_{\lambda} \rangle.$ (23)

Adiabatic connection formula

$$E[n] = E_{k}[n] + \int_{0}^{1} d\lambda \langle \psi_{\lambda} | V | \psi_{\lambda} \rangle, \qquad (24)$$

$$E_{xc}[n] = \int_0^1 d\lambda \langle \psi_{\lambda} | V | \psi_{\lambda} \rangle - E_{H}[n] = \int_0^1 d\lambda E_{xc,\lambda}[n], \qquad (25)$$

$$E_{\mathrm{xc},\lambda}[n] = (1 - \lambda)E_{\mathrm{x}}^{\mathsf{HF}}[n] + \lambda E_{\mathrm{xc}}^{\mathsf{DFT}}[n], \quad (26)$$

$$E_{\text{xc}}^{\text{hyb}}[n] = \frac{1}{2}E_{\text{x}}^{\text{HF}}[n] + \frac{1}{2}E_{\text{xc}}^{\text{DFT}}[n].$$
 (27)

Hybrid functionals

J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996)

$$E_{xc}^{hyb}[n] = E_{xc}^{DFT}[n] + \alpha (E_{x}^{HF}[n] - E_{x}^{DFT}[n]),$$

$$\alpha = 0.25 \text{ (PBE0)},$$

$$\alpha = 0.5 \text{ (Fock-0.5)}.$$

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) (HSE)

$$E_{\mathsf{xc}}^{\mathsf{hyb}}(\mu) = (1 - \alpha)E_{\mathsf{x}}^{\mathsf{GGA},\mathsf{SR}}(\mu) + \alpha E_{\mathsf{x}}^{\mathsf{HF},\mathsf{SR}}(\mu) + E_{\mathsf{x}}^{\mathsf{GGA},\mathsf{LR}} + E_{\mathsf{c}}^{\mathsf{GGA}}. \tag{29}$$

Meta-GGA potential mBJ vs functional HSE

Solid	LDA	MBJLDA	HSE	G_0W_0	GW	Expt.
Ne (A1)	11.42	22.72		19.59 ^e	22.1 ^g	21.70
Ar (A1)	8.16	13.91	10.34 ^a	13.28e	14.9 ^g	14.20
Kr (A1)	6.76	10.83				11.6
Xe (A1)	5.78	8.52				9.8
C (A4)	4.11	4.93	5.49 ^b	5.50 ^e	6.18^{g}	5.48
Si (A4)	0.47	1.17	1.28 ^b	1.12 ^e	1.41 ^g	1.17
Ge (A4)	0.00	0.85	0.83 ^b	0.66^{f}	0.95^{g}	0.74
LiF (B1)	8.94	12.94		13.27e	15.9 ^g	14.20
LiCl (B1)	6.06	8.64				9.4
MgO (B1)	4.70	7.17	6.67 ^b	7.25 ^e	9.16^{g}	7.83
ScN (B1)	-0.14	0.90		$0.95^{\rm f}$	1.4 ^h	~ 0.9
MnO (B1)	0.76	2.95	2.8°		3.5 ⁱ	3.9 ± 0.4
FeO (B1)	-0.35	1.82	2.2°			2.4
NiO (B1)	0.42	4.16	4.2°	1.1^{f}	4.8^{i}	4.0, 4.3
SiC (B3)	1.35	2.28	2.40 ^b	2.27 ^e	2.88^{g}	2.40
BN (B3)	4.39	5.85	5.99 ^b	6.10 ^e	7.14^{g}	~6.25
GaN (B3)	1.63	2.81	3.14 ^b	2.80^{e}	3.82^{g}	3.20
GaAs (B3)	0.30	1.64	1.12 ^b	1.30 ^e	1.85 ^g	1.52
AlP (B3)	1.46	2.32	2.51 ^b	2.44 ^e	2.90^{g}	2.45
ZnS (B3)	1.84	3.66	3.49 ^b	3.29 ^e	$4.15^{\rm g}$	3.91
CdS (B3)	0.86	2.66	2.25 ^b	2.06 ^e	2.87^{g}	2.42
AlN (B4)	4.17	5.55	5.81 ^b	5.83 ^f		6.28
ZnO (B4)	0.75	2.68	2.49 ^d	2.51^{f}	3.8g	3.44

Ferroelectrics

J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M. L. Klein and J. P. Perdew, Nature Chemistry 8, 831 (2016)

Table 2 | Properties of prototypical ferroelectric (BaTiO₃ and PbTiO₃) and multiferroic (BiFeO₃) materials predicted by LDA, PBE with and without the Hubbard U correction, SCAN and hybrid GGAs.

System	Property	LDA	PBE (<i>U</i> = 2)	HSE	SCAN	B1WC	Expt
BaTiO ₃	Eg	1.72	1.73	3.27	2.13	3.44	3.38
	V _o	62.1	67.5	64.5	65.1	63.2	64.0
	c/a	1.011	1.054	1.039	1.029	1.015	1.010
	P _s	0.24	0.47	0.41	0.35	0.28	0.27
	ΔE	5.0	56.1	53.8	25.1	24	-
PbTiO ₃	$E_{\rm g}$	1.47	1.88	3.00	2.08	2.83	3.60
	V _o	60.4	70.4	65.2	64.9	62.4	62.6
	c/a	1.045	1.239	1.158	1.122	1.097	1.071
	$P_{\rm s}$	0.80	1.26	1.14	1.06	1.03	~0.5 - 1.00
	ΔE	58.1	204.8	194.1	122.7	110.6	-
BiFeO ₃	E_{g}	0.34	1.05 (1.76)	3.4	1.89	3.0	2.74
	V _o	345.1	382.7 (384.8)	375.1	369.8	369.0	373.9
	Ps	0.989	1.048 (1.003)	1.103	1.027	-	1.0
	μ	3.27	3.70 (3.95)	4.1	3.96	4.2	3.75

In the PBE column, the values of PBE with U=2 correction are in parentheses. The BIVC hybrid GGAP designed for ferroelectric materials is used as the reference in the second last columns, E_{ij} (eV) is the fundamental bandago, V_{ij} (AT) is the column E_{ij} (as the column E_{ij} (as the column E_{ij}) is the magnetic moment per Fe. The BIVC and experimental results for BaTiO₂ are from ref. 37, and the hybrid GGAs and experimental results for BiFGO₂ are from ref. 37, the experimental policitation for BiFGO₂ is taken from ref. 32. The experimental policitation for BiFGO₂ is taken from ref. 32. The scale from ref. 33. The scale from ref. 35. The scal

Ag₂ZnSnSe₄ and Cu₂ZnSnSe₄

D. Fritsch and S. Schorr, J. Phys. Energy 3, 015002 (2021)

