

微机原理与接口技术

§6 微控制器存储器扩展

主讲人: 佘青山

Homepage: https://faculty.hdu.edu.cn/zdhxy/sqs/main.htm

Email: qsshe@hdu.edu.cn

Mob: 13758167196

Office: 第二教研楼南楼308室

2024年11月12日

- 1. MCS51系统扩展及结构
- 2. 存储器扩展与编址技术

内容提要

单片机内资源少,容量小,在进行较复杂过程的控制时,它自身的功能远远不能满足需要。为此,应扩展其功能。

MCS-51单片机的扩展性能较强,根据需要可扩展:

- □ ROM、RAM;
- □ 定时 / 计数器;
- □ 并行I/O口、串行口;
- □ 中断系统

80C51系列单片机有很强的外部扩展能力。外部扩展可分为并行扩展 和串行扩展两大形式。

- □ 并行扩展:指利用单片机的三组总线 (AB、DB、CB) 进行的系统 扩展
- □ 串行扩展:利用串行总线 (SPI三线总线、I²C双线) 进行系统扩展 在高速应用场合,并行扩展方法占主导地位。

串行扩展多应用于速度要求不高、接口器件体积小,节约电路板空间 和成本、连线少。

使单片机能运行的最少器件构成的系统,就是最小系统。

对于片内有ROM型单片机,其自身可以构成最小系统.

有ROM的芯片: 89C51等, 不必扩展ROM, 只要有复位、晶振电路。

6.1.2 单片机三总线概念

地址总线—— AB, PO口提供 (A7 ~ A0);

P2口提供 (A15 ~ A8) , 共16位。

数据总线—— DB, PO口提供 (D7 ~ D0) , 共8位。

控制总线—— CB, ALE、/EA、/PSEN、/RD、/WR等。

1、数据线的连接

PO口的八位线承担此任,此时不用外接上拉电阻。

2、地址线的连接

- □ P0□承担地址低八位线, A0 ~ A7;
- □ P2□承担地址高八位线。A8 ~ A15。

注意: P0口线地址/数据分时复用, 需用地址锁存器

74LS373或74LS573锁存地址。

3、控制线的连接

对存储器来讲控制线无非是:芯片的选通控制、读写控制。

单片机与外部器件数据交换要遵循两个重要原则:

- □ 地址唯一性,一个单元一个地址。
- 同一时刻,CPU只能访问一个地址,即只能与一个单元交换 数据。

不交换时: 外部器件处于锁闭状态, 对总线呈浮空状态。

□选通:CPU与器件交换数据或信息,需先发出选通信号

/CE或/CS,以便选中芯片。

□读 / 写: CPU向外部设备发出的读/写控制命令。

EPROM: /OE — /PSEN

SRAM: /WE — /WR

/OE --- /RD

存储器芯片在系统中地址分布由两个因素决定:

- □ 芯片本身的地址线 (与容量有关)
- 口 芯片选通信号的获得方式。

8K的RAM 8K的ROM A0~A7 A0~A7 6264 2764 D0~D7 D0~D7 A8~A12 A8~A12 /OE /OE /WE

/CE

/CE

外部数据存储器RAM读指令的时序

MOVX A, @DPTR MOVX A, @Ri

External Data Memory Read Cycle

外部数据存储器RAM<u>写指令</u>的时序

MOVX @DPTR, A MOVX @Ri, A

External Data Memory Write Cycle

09:29

在 MCS-51 中,为实现 P0 口线的数据和低位地址复用,应使用()

- A 地址锁存器
- B 地址寄存器
- **企** 地址缓冲器
- 地址译码器

提交

MCS-51 存储器进行扩展时,如下哪种表达是准确的?

- A P0和P2口分别作为高8位和低8位地址线
- B P2和P0口分别作为高8位和低8位地址线
- C P0可以作为8位数据线和高8位地址线
- P0可以作为8位数据线和低8位地址线

提交

- 1. MCS51系统扩展及结构
- 2. 存储器扩展与编址技术

EPROM 2764引脚说明

A₁₂~**A**₀: 地址线

D7~D0:数据线(编程时为输入,读

出时为输出)

CE: 芯片允许端, 低电平有效

OE: 输出允许端, 低电平有效(与RD

相连)

PGM: 编程脉冲控制端(输入)

Vp:编程电压输入端

V_{cc}: 工作电压, +5V

2764EPROM 只读工作时

V_{PP}、V_{CC}:接+5∨

 $D_7 \sim D_0$ PGM:接低电平,无编程信号

OE:接低电平,允许读出

CE:接低电平,选中芯片

【只读工作时】

根据CPU送来的地址信号 $A_{12}\sim A_0$ 选中某存储单元,进行读出操作。

1. 线选译码法(线选法)

低位地址直接连接,用一位或几位高地址与扩展芯片上控制线相连。

例1:

地址: P2.5=0 P2.6~P2.7=XX P2.0~P2.4=00000~11111

P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
A15	A14	A13	A12	A11	A10	A9	A8	A 7	A6	A5	A4	А3	A2	A1	A0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0													
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0													
0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0													
1	1	0													

√ 0000H ~ 1FFFH

×4000H ~ 5FFFH

×8000H ~ 9FFFH

×C000H ~ DFFFH

共四组地址

从上述可见,使用线选法编址存在同一芯片多组地址的映像区重叠。这也是线选法的一大缺点。

一般来说,我们往往将不用的引脚线统一用"0"来代替,这样其地址确定为0000H~1FFFH。(当然也可以用"1"来代替,不过一个系统中应尽可能一致,同时也很少使用既用"0"又用"1"的现象)

约定:

- (1) 对于(程序/数据)存储器芯片而言,一般不用的高8位地址均用"0"代替;
- (2) 对于外部I/O芯片而言,一般不用的高8位地址均用"1"代替;
- (3) 不用的低8位地址一般均用"0"代替!

例2: 有2块2732 EPROM芯片(4K×8),用线选法对它们进行寻址。试画出译码电路示意图(只要求标出地址线和片选信号),并列出它们的地址范围。

为区分两个不同的芯片,用 $A_{12}\sim A_{15}$ 中任意2根地址线来控制,如 A_{12} 、 A_{13} 来控制。

可见, 当 A_{12} =0, A_{13} =1时,选中1#芯片,地址范围为2000~2FFFH;当 A_{12} =1, A_{13} =0时,选中2#芯片,1000~1FFFH。

思考:如果 $A_{15}A_{14}=XX$,那么地址范围为多少?

采用线选法时,不仅地址重叠,而且用不同的地址线作选片控制,它们 的地址分配也是不同的。

典型的静态RAM芯片:

```
□ 2114 (1K×4位);
```

- □ 6116 (2K×8位);
- □ 6264 (8K×8位);
- □ 62128 (16K×8位);
- □ 62256 (32K×8位)

6116 —— 2K的静态随机存储器2K的静态

随机存储器

A0~A10 11根地址线 2¹¹=2K

D7~D0 8根数据线

/OE 允许输出与MCU的/RD相连

/WE 写选通信号与MCU的/WE相连

/CE 片选信号与高地址相连

6116 (2K×8) 引脚图

对多芯片选用时,也可以用不同的高地址线作其片选信号。

例3:4片6116随机存取存储器

对存储器芯片,不用的高地址以"0"代替,则:

§ 6.4 数据存储器扩展

芯	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	地址
片 组	A15	A14	A13	A12	A11	A10	A9	A 8	A7	A6	A5	A4	А3	A2	A 1	A0	范围
芯	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0800H
片 I	0	0	0	0	1												
Ľ	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0FFFH
芯	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1000H
片皿	0	0	0	1	0												
Ľ.	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	17FFH
芯	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2000H
 	0	0	1	0	0								 				
	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	27FFH
芯	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4000H
片	0	1	0	0	0		• • • • · · · · · · · · · · · · · · · ·		 				 		•••	•••	
IV	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	47FFH

2. 全译码法(译码法)

由于线性法存在映像区重叠现象,同时当系统较复杂时,芯片的数量多 于可利用的高位地址时,则线选法就无法进行。

译码法: 对高位地址经译码器译码后, 在以译码器的输出作为外部芯 片的片选信号。它能有效地利用存储器空间,并使地址保持连续性。

译码法大多用于RAM和I/O容量较大的应用系统中,低地址首先应满足 系统中地址线的最多的芯片,剩下的高位地址作为译码器的输入信号。常见 的译码器是74LS138。

对程序存储器可以不受此影响,因为它使用不同的指令。

74LS138<mark>译码器</mark>

G ₁	G _{2A}	G _{2B}	С	В	Α	输出					
1	0	0	0	0	0	/Y ₀ =0 其余为1					
1	0	0	0	0	1	/Y₁=0 其余为1					
1	0	0	0	1	0	/Y ₂ =0 其余为1					
1	0	0	0	1	1	/Y ₃ =0 其余为1					
1	0	0	1	0	0	/Y ₄ =0 其余为1					
1	0	0	1	0	1	/Y ₅ =0 其余为1					
1	0	0	1	1	0	/Y ₆ =0 其余为1					
1	0	0	1	1	1	/Y ₇ =0 其余为1					

例4: 假设一个微机系统的RAM容量为4K字节,采用1K×8的RAM芯片, $A_9\sim A_0$ 作为片内寻址, $A_{15}\sim A_{10}$ 译码后作为片间寻址。各芯片的地址范围?

A ₁₅		1 1	(11 A ₁₀	0 0	0 0 0	A_4 $A_3 A_2 A_1 A_0$ 0 0 0 01 1 1 1	74LS138 的输出 Y ₄	地址范围 3000H~33FFH
0	0	1 1	0	1	0 0 1 1	0 0 0 1 1 1	0 0 0 0 0 1 1 1 1 1	\mathbf{Y}_{5}	3400H~37FFH
0	0	1 1					0 0 0 0 0 1 1 1 1 1	\mathbf{Y}_{6}	3800H~3BFFH
0	0	1 1	1 1		0 0 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbf{Y}_7	3C00H~3FFFH

/WR1

/WR2

D0~D7

例5: **A1 A0** Α0 A12 **A0** A12 74LS573 **ROM RAM P0** 8255 6264 2764 8051 G D0~D7 D0~D7 D0~D7 /RD—/OE /RD-/RD **ALE** /WR— /WE P2.0~2.4 /WR /WR /OE /CE /CE /CE /PSEN /INT1 **/Y0 P2.5** (P3.3)**/Y1** P2.6 **/Y2** P2.7 /INT1(P3.3) /Y3 /RD-/RD +5V O---**G1** /WR -/CS OE EOC G2A **ALE DAC0832** G₂B /WR **ADC** /WR **START**

74LS138

0809

D0~D7

В С

A0 A1 A2

IN0

IN7

ADC0809模数转换器

- ALE——地址锁存ALE上跳沿将ABC地址送入内部地址锁存器;
- START——利用MOVX @DPTR, A (A中为ABC 的地址值) 来实现地址锁存器 和启动A/D转换。
- /OE——输出允许,利用MOVX A,@DPTR,在读入信号/RD有效时打开 D0~D7
- EOC——转换结束状态信号,**转换完毕为高电平**,即可以与P3.3 (/INT1) 相连采用中断(但要取反后输入),也可以使用JNB P3.3, rel 进行查询。
- INO~IN7——模拟信号输入端,图中没画出
- A、B、C——分别用于选择IN0~IN7, 因此ADC0809共有8个端口

□ DAC0832数模转换器

```
/CS——片选信号;
/WR1~/WR2 ——用于1~2级输入控制
内部只有一个端口号
```

□ 8255——可编程并行I/O接口芯片

```
/CS——片选信号;
AO、A1 ——用于选择PA、PB、PC和控制口,共4个端口
/RD——读信号,与单片机的/RD相连;
/WR——写信号,与单片机的/WR相连;
```

地址用"1"表示。	不用的低8位地址一般均用	"0"	代替。
-----------	--------------	-----	-----

			P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0		
芯	片	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A 0	地址	
			В	A															
27	764	0	0	0						 								0000-1FFFH	
62	264	0	0	0														0000-1FFFH	
8	PA	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	3F00H	
2	PB	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	1	3F01H	
5	PC	0	0	1	1	1	1	1	1	0	0	0	0	0	0	1	0	3F02H	
5	PD	0	0	1	1	1	1	1	1	0	0	0	0	0	0	1	1	3F03H	
30	332	0	1	0	1	1	1	1	1	0	0	0	0	 				5F00H	
	IN0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	7F00H	
	IN1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	7F01H	
0	IN2	0	1	1	1	1	1	1	1	0	0	0	0	0	0	1	0	7F02H	
8	IN3	0	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	7F03H	
0	IN4	0	1	1	1	1	1	1	1	0	0	0	0	0	1	0	0	7F04H	
9	IN5	0	1	1	1	1	1	1	1	0	0	0	0	0	1	0	1	7F05H	
	IN6	0	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	7F06H	
	IN7	0	1	1	1	1	1	1	1	0	0	0	0	0	1	1	1	7F07H	

2764的地址范围: 0000 ~ 1FFFH 8K ROM

6264的地址范围: 0000 ~ 1FFFH 8K RAM

8255: PA口: 3F00**H** 一个单元寄存器

PB口: 3F01**H** 一个单元寄存器

PC口: 3F02**H** 一个单元寄存器

控制口: 3F03H 一个单元寄存器

0832 : 5F00H 一个单元寄存器

0809 : IN0~IN7通道地址分别: 7F00H ~ 7F07H 8个寄存器

可见,全译码法只能确保地址不重复,并不能确保芯片外部空间的有效利用。

例如: **0832** 所用的地址区间为4000H-5FFFH, 共8K空间, 但0832却只占用其中一个单元或者说0832占去了这8K的所有空间。

同样, **8255** 所占用的空间为2000H-3FFFH也是8K空间, 但8255实际只需4个单元空间。

在单片机构成的系统中,实际上是很少使用译码法进行编址,即使高位地址线不够,也可以使用线选法进行编址,为避免地址重复,可以在软件编程时加以注意便可。

上述电路中2764即EPROM的地址范围0000H~1FFFH与6264RAM地址范围0000H~1FFFFH重叠,但2764是程序存储器,使用MOVC指令地址,而6264是外部数据存储器,使用MOVX指令寻址,因此实际上是完全不同的两个地址号。

09:29

在系统中扩展2片 Intel 2732 ($4K \times 8$) ,除应使用 P0 口的 8 条口线外,至少还应使用 P2 口的口线()

- A 4条
- B 5条
- 6条
- 7条

提交

THE EMP

