Strutture Merge-Find

Gianluigi Zavattaro Dipartimento di Informatica—Scienza e Ingegneria Università di Bologna

gianluigi.zavattaro@unibo.it

Struttura dati per insiemi disgiunti

- Operazioni fondamentali:
 - Creare n insiemi composti da un singolo elemento;
 assumiamo che gli insiemi siano {1}, {2}, ... {n}
 - Unire due insiemi
 - Identificare l'insieme a cui appartiene un elemento
- Ogni insieme è identificato da un rappresentante univoco
 - Il rappresentante è un qualsiasi membro dell'insieme
 - Operazioni di ricerca del rappresentante su uno stesso insieme devono restituire sempre lo stesso elemento
 - Solo in caso di unione con altro insieme il rappresentante può cambiare

Operazioni su strutture Merge-Find

- Mfset(integer n)
 - Crea n insiemi disgiunti {1}, {2}, ... {n}
- integer find(integer x)
 - Restituisce il rappresentante dell'unico insieme contenente x
- merge(integer x, integer y)
 - Unisce i due insiemi che contengono x e y (se x e y appartengono già allo stesso insieme, non fa nulla)
 - Il rappresentante puo' essere scelto in modo arbitrario; ad esempio, come uno dei vecchi rappresentanti degli insiemi contenenti x e y.

(i valori sottolineati indicano il rappresentante)

Mfset(6)

merge(1,2)

merge(3,4)

merge(5,6)

merge(2,3)

merge (4,6)

1

2

<u>3</u>

<u>4</u>

<u>5</u>

<u>6</u>

<u>1, 2</u>

<u>3</u>

<u>4</u>

<u>5</u>

<u>6</u>

<u>1, 2</u>

<u>3,</u> 4

<u>5</u>

<u>6</u>

<u>1, 2</u>

<u>3,</u> 4

<u>5</u>, 6

1, **2**, **3**, **4**

<u>5,</u> 6

1, 2, 3, 4, 5, 6

- Rappresentiamo il circuito con un insieme V = {1, ...,
 n} di n nodi (pin) collegati da segmenti conduttivi
- Indichiamo con E la lista di coppie (v_1, v_2) di pin che sono tra di loro adiacenti (collegati)
- Vogliamo pre-processare il circuito in modo da rispondere in maniera efficiente a interrogazioni del tipo: "i pin x e y sono tra loro collegati?"

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

I pin x e y non sono tra loro collegati perché

 $find(x) \neq find(y)$

I pin x e y sono tra loro collegati perché

$$find(x) = find(y)$$

```
Mfset MF ← Mfset(n);
for each (v, w) ∈ E do
    MF.merge(v, w);
endfor
integer x ← ...;
integer y ← ...;
if ( MF.find(x) = MF.find(y) ) then
    print "x e y sono collegati";
else
    print "x e y non sono collegati";
endif
```

Implementazione di Merge-Find

- Strutture dati di base:
 - Strutture QuickFind: liste (alberi di altezza 1)
 - Strutture QuickUnion: alberi generali
- Algoritmi basati su euristiche di bilanciamento
 - QuickFind—Euristica sul peso
 - QuickUnion—Euristica sul rango

QuickFind

QuickFind

- Ogni insieme viene rappresentato (concettualmente) con un albero di altezza uno
 - Le foglie dell'albero contengono gli elementi dell'insieme
 - Il rappresentante è la radice

Implementazione

 Generalmente si rappresentano gli insiemi QuickFind con strutture concatenate simili a liste

QuickFind: Esempio merge (3,2)

QuickFind

• Mfset(n)

- Crea *n* liste, ciascuna contenente un singolo intero
- Costo O(n)

find(x)

- Restituisce il riferimento al rappresentante di x
- Costo O(1)

merge(x,y)

- Tutti gli elementi della lista contenente y vengono spostati nella lista contenente x
- Costo nel caso pessimo O(n), essendo n il numero complessivo di elementi in entrambi gli insiemi disgiunti
 - Nel caso peggiore l'insieme contenente y ha n 1 elementi

QuickUnion

QuickUnion

- Implementazione basata su foresta
 - Si rappresenta ogni insieme con un albero radicato generico
 - Ogni nodo contiene
 - un intero
 - un riferimento al padre (la radice è padre di se stessa)
 - Il rappresentante di un insieme è la radice dell'albero corrispondente

QuickUnion

Mfset(n)

- Crea *n* alberi, ciascuno contenente un singolo intero
- Costo O(n)

find(x)

- Risale la lista degli antenati di x fino a trovare la radice e ne ritorna il contenuto come rappresentante
- Costo O(n) nel caso pessimo

merge(x,y)

- Rende la radice dell'albero che contiene y figlia della radice dell'albero che contiene x
- Costo O(1) nel caso ottimo (x e y sono già le radici dei rispettivi alberi), O(n) nel caso pessimo

QuickUnion: Esempio merge (2,7)

Strutture Merge-Find

QuickUnion: Esempio merge (2,7)

Caso pessimo per find()

Mfset(6)

merge(5,6)

merge(4,5)

merge(3,4) ...

Nota implementativa

 Un modo molto comodo per rappresentare una foresta di alberi QuickUnion è di usare un array di interi (vettore di padri)

Implementazione Java

```
public class QuickUnion
   private int[] p;
   public QuickUnion(int n) {
       p = new int[n];
       for (int i = 0; i < n; i++) {</pre>
          p[i] = i;
   private int find(int x) {
       while (x != p[x]) {
          x = p[x];
       return x;
   public void merge(int x, int y) {
       int rx = find(x);
       int ry = find(y);
      p[ry] = rx;
```

Costo delle operazioni

	QuickFind	QuickUnion
Mfset(n)	O(<i>n</i>)	O(<i>n</i>)
merge(x,y)	O(<i>n</i>)	O(1) caso ottimo O(<i>n</i>) caso pessimo
find(x)	O(1)	O(1) caso ottimo O(<i>n</i>) caso pessimo

- Quando usare QuickFind?
 - Quando le merge () sono rare e le find () frequenti
- Quando usare QuickUnion?
 - Quando le find() sono rare e le merge() frequenti
- Esistono euristiche che permettono di migliorare questi risultati

Ottimizzazioni

QuickFind: Euristica sul peso

- Una strategia per diminuire il costo dell'operazione merge() in QuickFind consiste nel:
 - memorizzare nel nodo rappresentante il numero di elementi dell'insieme; la dimensione corretta può essere mantenuta in tempo O(1)
 - appendere l'insieme con meno elementi a quello con più elementi

QuickFind: Euristica sul peso

- Mfset(n)
 - Costo O(n)
- find(x)
 - Costo O(1)
- merge(x,y)
 - Tutti i nodi della lista con meno nodi vengono spostati nella lista con più nodi
 - Dimostriamo che il costo complessivo di una sequenza di (n - 1) merge è O(n log n)
 - Quindi il costo ammortizzato per una singola operazione è O(log n)

Dimostrazione

- Ogni volta che una foglia di un albero QuickFind cambia padre, entra a far parte di un insieme che ha almeno il doppio di elementi di quello cui apparteneva
 - merge (A, B) con size(A) ≥ size(B)
 - Le foglie di B cambiano padre
 - $size(A) + size(B) \ge size(B) + size(B) = 2 \times size(B)$
 - merge (A, B) con size(A) ≤ size(B)
 - Le foglie di A cambiano padre
 - $size(A) + size(B) \ge size(A) + size(A) = 2 \times size(A)$

Costo delle operazioni

- Le strutture QuickFind supportano una operazione Mfset(n), m operazioni find(), ed al più (n 1) merge() in tempo totale O(m + n log n).
 L'occupazione di memoria è O(n)
- Dimostrazione
 - Mfset(n) ed m find() costano O(n + m)
 - Le (n-1) merge () richiedono complessivamente $O(n \log n)$

Costo delle operazioni merge

- Il costo di una singola merge () è dato dal numero di nodi che cambiano padre
- Ogni volta che un elemento cambia padre, entra a far parte di un insieme con almeno il doppio di elementi di quello cui faceva parte
 - Dopo k merge () fa parte di un insieme con almeno 2^k elementi
 - Quindi ci possono essere O(log₂ n) cambi di paternità per ciascun elemento
- Il costo totale dell'intera sequenza di merge () è
 quindi O(n log n)

Domanda

- Si consideri una struttura QuickFind con euristica sul peso composta inizialmente da 8 insiemi {1}, {2}, ..., {8}. Descrivere una sequenza di merge() che alla fine producano un singolo albero, e tali che il costo totale di tutte le merge() sia il minimo possibile.
- Ripetere l'esercizio identificando una sequenza di operazioni merge () il cui costo totale sia massimo possibile.

QuickUnion Euristica "union by rank"

- Il problema degli alberi QuickUnion è che possono diventare troppo alti
 - quindi rendere inefficienti le operazioni find()
- Idea:
 - Rendiamo la radice dell'albero più basso figlia della radice dell'albero più alto
- Ogni radice mantiene informazioni sul proprio rango
 - il rango rank(x) di un nodo x è il numero di archi del cammino più lungo fra x e una foglia sua discendente
 - cioè l'altezza dell'albero radicato in x

Esempio

Mfset(6)

merge (5,6)

merge(4,5)

merge(3,5)

Proprietà union by rank

- Un albero QuickUnion con euristica "union by rank" avente il nodo x come radice ha ≥ 2^{rank(x)} nodi
- Dimostrazione: induzione sul numero di merge ()
 effettuate
 - Base (0 operazioni merge): tutti gli alberi hanno rango zero (singolo nodo) quindi hanno esattamente 2º = 1 nodi
 - Induzione: consideriamo cosa succede prima e dopo una operazione merge (A,B)
 - A U B denota l'insieme ottenuto dopo l'unione
 - rank(A U B) è l'altezza dell'albero che denota A U B
 - |A U B| è il numero di nodi dell'albero A U B, e risulta
 |A U B| = |A| + |B| perché stiamo unendo sempre insiemi disgiunti

Passo induttivo

caso rank(A) = rank(B)

- $|A \cup B| = |A| + |B|$
- rank(A U B) = rank(A) +1
- Per ipotesi induttiva, $|A| \ge 2^{\operatorname{rank}(A)}$, $|B| \ge 2^{\operatorname{rank}(B)}$
- Quindi

$$|A \cup B| = |A| + |B|$$

 $\geq 2^{rank(A)} + 2^{rank(B)} = 2 \times 2^{rank(A)} = 2^{rank(A)+1} = 2^{rank(A \cup B)}$

Passo induttivo

caso rank(A) > rank(B)

- $|A \cup B| = |A| + |B|$
- $rank(A \cup B) = rank(A)$
 - perché l'altezza dell'albero A U B è uguale all'altezza dell'albero A
- Per ipotesi induttiva, |A| ≥ 2^{rank(A)}, |B| ≥ 2^{rank(B)}
- Quindi

$$|A \cup B| = |A| + |B| \ge 2^{rank(A)} + 2^{rank(B)} > 2^{rank(A)} = 2^{rank(A \cup B)}$$

Passo induttivo caso rank(A) < rank(B)

- $|A \cup B| = |A| + |B|$
- $rank(A \cup B) = rank(B)$
 - perché l'altezza dell'albero A U B è uguale all'altezza dell'albero B
- Per ipotesi induttiva, |A| ≥ 2^{rank(A)}, |B| ≥ 2^{rank(B)}
- Quindi

$$|A \cup B| = |A| + |B| \ge 2^{rank(A)} + 2^{rank(B)} > 2^{rank(B)} = 2^{rank(A \cup B)}$$

Teorema

- Durante una sequenza di operazioni merge() e find(),
 l'altezza di un albero QuickUnion by rank è ≤ (log₂ n),
 essendo n il parametro della Mfset(n) iniziale
- Dimostrazione
 - L'altezza di un albero QuickUnion A è rank(A)
 - Da quanto appena visto, 2^{rank(A)} ≤ n
 - Quindi altezza = $rank(A) \le (log_2 n)$
- Quindi:
 - Mfset (n) ha costo O(n)
 - merge () ha costo O(1) nel caso ottimo
 - O(log n) nel caso pessimo (vedi punto seguente)
 - find() ha costo O(log n) nel caso pessimo

Riepilogo

	QuickFind	QuickUnion	QuickFind eur. peso	QuickUnion by eur. rank
Mfset(n)	O(<i>n</i>)	O(<i>n</i>)	O(<i>n</i>)	O(<i>n</i>)
merge	O(<i>n</i>)	O(1) ottimo $O(n)$ pessimo	O(log n) ammortizzato	$O(1)$ ottimo $O(\log n)$ pessimo
find	O(1)	O(<i>n</i>)	O(1)	O(log n)