

Tema 5B. Diseño e implementación de diagramas GRAFCET para automatización

GRAFCET, la norma IEC848 y los diagramas SFC

- ✓ GRAFCET no es un lenguaje de programación, sino una manera de resolver el problema de automatización secuencial previo a su programación en el PLC
- ✓ Además, tiene limitaciones (gestión de arranques y paradas de línea , emergencias, situaciones anómalas), que se tratarán con la guía GEMMA.

Sequential Function (Flow) Charts (SFC)

- ✓ Es la técnica más adecuada para programar procesos de automatización de tipo secuencial (que se puedan modelar mediante diagramas de estados)
- ✓ El proceso se divide en etapas (estados) que siguen una determinada secuencia
- ✓ Siempre hay una etapa inicial, y líneas de evolución que conectan etapas.
- ✓ El cambio de una etapa a la siguiente se produce si se cumplen las condiciones lógicas de una transición
- Cada etapa tiene unas acciones

 asociadas (que se puede programar con diagramas de escalera)
- ✓ Siemens dispone del <u>lenguaje SFC</u> (<u>Sequential Function/Flow Charts</u>) que permite la programación gráfica directa

Símbolos estandarizados en GRAFCET

Símbolo Nombre Descripción Indica el comienzo del esquema GRAFCET y se activa al poner en Rigeneral suele haber una sola etapa de este tipo.		Descripción
		Indica el comienzo del esquema GRAFCET y se activa al poner en RUN el autómata. Por lo general suele haber una sola etapa de este tipo.
ф	Etapa	Su activación lleva consigo una acción o una espera.
	Unión	Las uniones se utilizan para unir entre si varias etapas.
+	Transición	Condición para desactivarse la etapa en curso y activarse la siguiente etapa, Se indica con un trazo perpendicular a una unión.
	- Direccionamiento	Indica la activación de una u otra etapa en función de la condición que se cumpla.
	Proceso simultáneo	Muestra la activación o desactivación de varias etapas a la vez.
	Acciones asociadas	Acciones que se realizan al activarse la etapa a la que pertenecen.

Tipos de secuencias de etapas en GRAFCET

 Lineales: El ciclo se compone de una sucesión de etapas sin bifurcaciones.
 Cuando se activa una etapa se desactiva la anterior

Secuencia simultánea o paralela: varias etapas se activan a la vez Con direccionamiento (selección de secuencia): El ciclo varía en función de la condición que se cumpla. Puede incluir saltos de etapas:

Ejercicio 1: control de tres pistones para el conformado de chapa metálica

El proceso completo consta del movimiento secuencial de tres pistones. Todos están gobernados por señales para extenderlos (Pist+) o comprimirlos (Pist-), además están equipados con finales de carrera para determinar la posición extendida (FC+) o comprimida (FC-). La secuencia de acciones es:

- 1. El operario acciona el pulsador P_on
- 2. El pistón base se extienda para sujetar la chapa contra el molde.
- 3. El pistón 1 se extiende hasta su final de carrera.
- 4. El pistón 2 se extiende hasta su final de carrera.
- 5. Se contrae el pistón 1 hasta su posición inicial.
- 6. Se contrae el pistón 2 hasta su posición inicial.
- Se contrae el pistón base para liberar la chapa ya conformada

Ejercicio 1: control de tres pistones para el conformado de chapa metálica

Ejercicio 2: control de tres pistones para el conformado de chapa metálica, con selección de acción

El proceso completo consta del movimiento secuencial de tres pistones. Todos están gobernados por señales para extenderlos (Pist+) o comprimirlos (Pist-), además están equipados con finales de carrera para determinar la posición extendida (FC+) o comprimida (FC-). La secuencia de acciones es:

- 1. El operario acciona el pulsador P_on
- 2. El pistón base se extienda para sujetar la chapa contra el molde.
- 3. Si el selector está en la posición P1 (Selec=0), se extiende y contrae el pistón 1.
- 4. Si el selector está en la posición P2 (Selec=1), se extiende y contrae el pistón 2.
- Se contrae el pistón base para liberar la chapa ya conformada

Ejercicio 2: control de tres pistones para el conformado de chapa metálica, con selección de acción

Robótica Industrial – Grado en Robótica Software

Ejercicio 3: control de tres pistones para el conformado de chapa metálica, con movimiento simultáneo

El proceso completo consta del movimiento secuencial de tres pistones. Todos están gobernados por señales para extenderlos (Pist+) o comprimirlos (Pist-), además están equipados con finales de carrera para determinar la posición extendida (FC+) o comprimida (FC-). La secuencia de acciones es:

- 1. El operario acciona el pulsador P_on
- 2. El pistón base se extienda para sujetar la chapa contra el molde.
- 3. Los pistones 1 y 2 inician su recorrido simultáneamente, una vez completamente extendidos e independientemente del estado del otro pistón se retraen.
- 4. Cuando ambos pistones están completamente comprimidos, se contrae el pistón base para liberar la chapa ya conformada

Ejercicio 3: control de tres pistones para el conformado de chapa metálica, con movimiento simultáneo

Robótica Industrial – Grado en Robótica Software

- 1. Al accionar **S1**, se inicia la marcha del motor a derechas activando **KMD**.
- Cuando el husillo activa el final de carrera Fd, se detiene el giro a derechas durante 7 segundos
- 3. Transcurrido dicho tiempo se conecta el giro a izquierdas con KMI.
- 4. Al llegar el husillo a **Fi** el motor se detiene.
- La secuencia se ha de repetir 5 veces, una vez ocurridas se esperará hasta una nueva orden de S1
- 6. Mientras KMI o KMD estén activos, el indicador **LUM** estará luciendo

Grafcet	Ladder
Etapas	Marcas internas. Se activan y desactivan con bobinas Set/Reset
Transiciones	Condiciones para la activación y desactivación de cada etapa
Acciones	Eventos que han de ocurrir cuando la marca correspondiente a cada etapa está activa

Fase 1: elaboración del Grafcet del proceso

Fase 2: asignar direcciones de memoria en el PLC a etapas, entradas y salidas, (también a contadores y temporizadores si los hubiera):

Etapas	Entradas	Salidas
E0: %M0.0	Pulsador: %I0.0	Act_entradaPieza: %Q0.0
E1: %M0.1	FC_avance: %I0.1	Act_avancePieza: %Q0.1
E2: %M0.2	FC_retroceso: %I0.2	Act_retrocesoSoporte: %Q0.2

Fase 3: ecuaciones para la transición de etapas

Etapas	Set / Reset	Final Ocean Mana
E0:	Set E0 = (E2*FC_retroceso) - FSM Reset E0 = E1	First Scan Marc: Es una marca del PLC activada por Hardware que sólo se activa
E1:	Set E1: E0*Pulsador Reset E1: E2	en el primer ciclo de Scan, es decir, cuando el PLC pasa de
E2:	Set E2: E1*FC_avance Reset E2: E0	STOP a RUN

Fase 4: ecuaciones para la ejecución de acciones

Acción	Lógica de activación
Entrada pieza:	Act_entradaPieza = E0
Avance pieza:	Act_avancePieza = E1
Retroceso soporte:	Act_retrocesoSoporte = E2

Fase 5.1: traducir ecuaciones lógicas de las transiciones entre etapas a Ladder

Etapas	Set / Reset	%M1.0 "FirstScan"	%M0.0 "E0"
E0:	Set E0 = (E2*FC_retroceso) + FSM Reset E0 = E1	%M0.2 %I0.2 "E2" "FC_retroceso"	(s)—
E1:	Set E1: E0*Pulsador Reset E1: E2	%M0.1 "E1"	%M0.0 "E0"
E2:	Set E2: E1*FC_avance Reset E2: E0	%M0.0 %i0.0 "E0" "Pulsador"	(R) %M0.1 "E1" (S)
		%M0.2 "E2" %M0.1 "E1" "FC_avance" %M0.0 "E0"	%M0.1 "E1" (R) %M0.2 "E2" (S) %M0.2 "E2" (R)

Fase 5.2: traducir ecuaciones lógicas de las acciones a Ladder

Acción	Lógica de actívación
Entrada pieza:	Act_entradaPieza = E0
Avance pieza:	Act_avancePieza = E1
Retroceso soporte:	Act_retrocesoSoporte = E2

Ejercicio 1: control secuencial de tres pistones para el conformado de chapa metálica

Etapas	Entradas	Salidas
E0: %M0.0	P_on: %I0.0	Pist_base+: %Q0.0
E1: %M0.1	FC_base+: %I0.1	Pist_base-: %Q0.1
E2: %M0.2	FC_base-: %I0.2	Pist_1+: %Q0.2
E3: %M0.3	FC_Pist1+: %I0.3	Pist_1-: %Q0.3
E4: %M0.4	FC_Pist1-: %I0.4	Pist_2+: %Q0.4
E5: %M0.5	FC_Pist2+: %I0.5	Pist_2-: %Q0.5
E6: %M0.6	FC_Pist2-: %I0.6	
E7: %M0.7		

Robótica Industrial - Grado en Robótica Software

Ejercicio 1: control secuencial de tres pistones para

el conformado de chapa metálica

Etapas	Set / Reset
E0:	Set E0 = FSM Reset E0 = E1
E1:	Set E1 : (E0+E7) * P_on Reset E1: E2
E2:	Set E2: E1 * FC_base+ Reset E2: E3
E3:	Set E3 : E2 * FC_Pist1+ Reset E3: E4
E4:	Set E4: E3 * FC_Pist2+ Reset E4: E5
E5	Set E5 : E4 * FC_Pist1- Reset E5 : E6
E6	Set E6 : E5 * FC_Pist2- Reset E6 : E7
E7	Set E7: E6*FC_base- Reset E7: E1

Robótica Industrial – Grado en Robótica Software

Ejercicio 1: control secuencial de tres pistones para el conformado de chapa metálica

```
%M1.0
                                                                             %M0.0
"FirstScan"
                                                                              "E0"
 %M0.1
                                                                             %M0.0
  "E1"
                                                                              "E0"
 %M0.0
                     %10.0
                                                                             %M0.1
  "E0"
                    "P_on"
 %M0.7
  "E7"
 %M0.2
                                                                             %M0.1
  "E2"
                                                                              "E1"
                                                                              (R)
 %M0.1
                     %10.1
                                                                             %M0.2
  "E1"
                                                                              "E2"
                  "FC base+"
 %M0.3
                                                                             %M0.2
  "E3"
                                                                              (R)-
 %M0.2
                    %10.3
                                                                             %M0.3
  "E2"
                  "FC_Pist1+"
                                                                              "E3"
 %M0.4
                                                                             %M0.3
  "E4"
```

```
%M0.3
                                                                          %M0.4
                   %10.5
 "E3"
                 "FC_Pist2+"
                                                                           "E4"
%M0.5
                                                                           %M0.4
 "E5"
                                                                           "E4"
                                                                           (R)
%M0.4
                   %10.4
                                                                          %M0.5
 "E4"
                 "FC Pist1-"
                                                                           "E5"
%M0.6
                                                                           %M0.5
 "E6"
                                                                           "E5"
                                                                           (R)
%M0.5
                   %10.6
                                                                           %M0.6
 "E5"
                 "FC_Pist2-"
                                                                           "E6"
                                                                           -( s )-
%M0.7
                                                                           %M0.6
 "E7"
                                                                           "E6"
                                                                           (R)
%M0.6
                   %10.2
                                                                          %M0.7
 "E6"
                 "FC base-"
                                                                           "E7"
%M0.1
                                                                          %M0.7
 "E1"
                                                                           "E7"
                                                                           (R)
```


Ejercicio 1: control secuencial de tres pistones para el conformado de chapa metálica

Lógica de activación
Pist_base+ = E1
Pist_base- = E6
Pist_1+ = E2
Pist_1- = E4
Pist_2+ = E3
Pist_2- = E5

Ejercicio 1: control secuencial de tres pistones para el conformado de chapa metálica

```
%M0.1
                                                                                %Q0.0
 "E1"
                                                                             "Pist_base+"
%M0.6
                                                                                %Q0.1
 "E6"
                                                                             "Pist_base-"
%M0.2
                                                                               %Q0.2
 "E2"
                                                                              "Pist_1+"
%M0.4
                                                                                %Q0.3
 "E4"
                                                                               "Pist 1-"
%M0.3
                                                                               %Q0.4
 "E3"
                                                                              "Pist_2+"
%M0.5
                                                                               %Q0.5
"E5"
                                                                               "Pist 2-"
```


Etapas	Entradas	Salidas
E0: %M0.0	P_on: %I0.0	Pist_base+: %Q0.0
E1: %M0.1	FC_base+: %I0.1	Pist_base-: %Q0.1
E2: %M0.2	FC_base-: %I0.2	Pist_1+: %Q0.2
E3: %M0.3	FC_Pist1+: %I0.3	Pist_1-: %Q0.3
E4: %M0.4	FC_Pist1-: %I0.4	Pist_2+: %Q0.4
E5: %M0.5	FC_Pist2+: %I0.5	Pist_2-: %Q0.5
E6: %M0.6	FC_Pist2-: %I0.6	
E7: %M0.7	Select: %I0.7	

Ejercicio 2: control secuencial de tres pistones con

selección de acción

ries bisto	1100 0011
Etapas	Set / Reset
E0:	Set E0 = FSM Reset E0 = E1
E1:	Set E1: (E0+E7) * P_on Reset E1: E2 + E4
E2:	Set E2: E1 * FC_base+ * Selec Reset E2: E3
E3:	Set E3 : E2 * FC_Pist1+ Reset E3 : E6
E4:	Set E4: E1 * FC_base+ * Selec Reset E4: E5
E5	Set E5: E4 * FC_Pist2+ Reset E5: E6
E6	Set E6 : (E3 * FC_Pist1-) + (E5 * FC_Pist2-) Reset E6 : E7
E7	Set E7: E6*FC_base- Reset E7: E1

Lógica de activación
Pist_base+ = E1
Pist_base- = E6
Pist_1+ = E2
Pist_1- = E3
Pist_2+ = E4
Pist_2- = E5

```
%M0.1
                                                                                 %O0.0
 "E1"
                                                                              "Pist_base+"
%M0.6
                                                                                 %Q0.1
 "E6"
                                                                              "Pist_base-"
%M0.2
                                                                                 %Q0.2
 "E2"
                                                                                "Pist 1+"
%M0.3
                                                                                 %Q0.3
 "E3"
                                                                                "Pist_1-"
%M0.4
                                                                                 %Q0.4
 "E4"
                                                                               "Pist_2+"
%M0.5
                                                                                 %Q0.5
 "E5"
                                                                                "Pist_2-"
```


Ejercicio 3: control secuencial de tres pistones movimiento simultáneo

Etapas

E0: %M0.0

E1: %M0.1

E2: %M0.2

E3: %M0.3

E4: %M0.4

E5: %M0.5

E6: %M0.6

E7: %M0.7

E8: %M1.0

E9: %M1.1

Entradas	Salidas
P_on: %I0.0	Pist_base+: %Q0.0
FC_base+: %I0.1	Pist_base-: %Q0.1
FC_base-: %I0.2	Pist_1+: %Q0.2
FC_Pist1+: %I0.3	Pist_1-: %Q0.3
FC_Pist1-: %I0.4	Pist_2+: %Q0.4
FC_Pist2+: %I0.5	Pist_2-: %Q0.5
FC Pist2-: %I0.6	

Ejercicio 3: control secuencial de tres pistones movimiento simultáneo

Etapas	Set / Reset
E0:	Set E0 = FSM Reset E0 = E1
E1:	Set E1: (E0+E9) * P_on Reset E1: E2 * E5
E2:	Set E2: E1 * FC_base+ Reset E2: E3
E3:	Set E3 : E2 * FC_Pist1+ Reset E3 : E4
E4:	Set E4: E3 * FC_Pist1- Reset E4: E8
E5	Set E5: E1 * FC_base+ Reset E5: E6

Ejercicio 3: control secuencial de tres pistones movimiento simultáneo

Etapas	Set / Reset
E6	Set E6: E5 * FC_Pist2+ Reset E6: E7
E7	Set E7 : E6 * Pist2- Reset E7 : E8
E8	Set E8 : E7 * E4 Reset E8 : E9
E9	Set E9: E8 * FC_base- Reset E9: E1

Ejercicio 3: control secuencial de tres pistones movimiento simultáneo

Ejercicio 3: control secuencial de tres pistones con movimiento simultáneo

Lógica de activación
Pist_base+ = E1
Pist_base- = E8
Pist_1+ = E2
Pist_1- = E3
Pist_2+ = E5
Pist_2- = E6

Ejercicio 3: control secuencial de tres pistones con movimiento simultáneo

```
%M0.1
                                                                                %Q0.0
 "E1"
                                                                              "Pist base+"
%M1.0
                                                                                %Q0.1
 "E8"
                                                                              "Pist_base-"
%M0.2
                                                                                %Q0.2
 "E2"
                                                                                "Pist_1+"
%M0.3
                                                                                %Q0.3
 "E3"
                                                                                "Pist_1-"
%M0.5
                                                                                %Q0.4
 "E5"
                                                                               "Pist_2+"
%M0.6
                                                                                %Q0.5
 "E6"
                                                                                "Pist 2-"
```


Ejercicio 4: control de un husillo en movimiento de ida y vuelta mediante un motor

de giro a izquierdas y derechas

S1	KMI KMD	Lum
	Fi	Fd

Etapas
E0: %M0.0
E1: %M0.1
E2: %M0.2
E3: %M0.3
E4: %M0.4

Entradas	Salidas
S1: %I0.0	KMD: %Q0.0
Fd: %I0.1	KMI: %Q0.1
Fi: %I0.2	Lum: %Q0.2

Temporizador	Contadores
Temp: DB1	Cnt: DB2
Temp>7s: %M0.6	Cnt>=5: %M0.7

Etapas	Set / Reset
E0:	Set E0 = FSM + E4*Cnt>=5 Reset E0 = E1
E1:	Set E1: (E0 * S1) + (E4 * \overline{\overline{Cnt}}=5) Reset E1: E2
E2:	Set E2 : E1 * Fd Reset E2: E3
E3:	Set E3: E2 * Temp>7s Reset E3: E4
E4:	Set E4: E3 * Fi Reset E4: E1 + E0

Lógica de activación
KMD = E1
KMI = E3
Lum = E1 + E3
Temp = E2
Cnt+1 = E4
Reset Cnt = E0

Modos de marcha y parada. La guía GEMMA

- ✓ **GEMMA** es el acrónimo de *Guía de Estudios de Modos de Marcha y de Parada* (del francés *Guide d'Etude des Modes de Marches et d'Arrêts*)
- ✓ Se trata de un procedimiento o guía (no es una norma IEC 61131) que permite representar de una manera gráfica todos los modos de marcha y modos de paro de un proceso de producción automatizado.
- ✓ Se asume que un proceso puede estar en tres tipos de estado diferentes:
 - 1. F: Estados de funcionamiento (producción): F1: producción normal, F2: Marcha de preparación, F3: Marcha de cierre...
 - 2. A: Estados de parada. A1: Parada en el estado inicial, A2: Parada fin de ciclo,..., A5: Preparación para puesta en marcha tras un defecto
 - D: Estados de alarma o defecto (producto no aprovechable):
 D1: parada de emergencia, D2: Diagnóstico, D3: Producción a pesar de los defectos.
 - ✓ Cada estado individual (F1,F2, A1, etc) se programa con un GRAFCET

Ejemplo de uso de la guía GEMMA con 6 estados

