The Stable Core

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

Mathematical Philosophy and Mathematical Practice September 20, 2018 This is joint work with Sy-David Friedman and Sandra Müller.

2 / 27

Classical inner models

An inner model of a ZFC-universe is a definable transitive sub-model $M \models \operatorname{ZF}(C)$ with $\operatorname{Ord} \subseteq M$.

A canonical inner model M, defined by $\varphi(x)$, should have the following properties:

- Fine structure.
- Regularity: GCH, □, etc.
- Absoluteness: $M = \{x \mid \varphi^M(x)\}.$
- Forcing absolutness: $M = \{x \mid \varphi^{V[G]}(x)\}.$
- ...

- $L_0 = \emptyset$
- $L_{\alpha+1}$ consists of all definable subsets of L_{α}
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for a limit λ
- $L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$
- Most large cardinals are incompatible with L.
- In the presence of large cardinals, L is not "close to V".

Canonical inner models (continued)

The Dodd-Jensen core model K^{DJ}

- $L[\mathcal{M}]$, where \mathcal{M} is the class of all mice.
- (oversimplified) A mouse N is a transitive model with fine-structure such that for some $\kappa \in N$, there is an iterable N-ultrafilter on κ .
- \bullet K^{DJ} is compatible with all known large cardinals up to a measurable cardinal.
- Measurable cardinals are incompatible with K^{DJ} .
- In the presence of larger large cardinals, K^{DJ} is not "close to V".

Kunen's canonical model for one measurable cardinal L[U]

- Suppose κ is measurable and U is a normal measure on κ .
- $L_0[U] = \emptyset$.
- $L_{\alpha+1}[U]$ consists of all definable subsets of $\langle L_{\alpha}[U], \in, U \cap L_{\alpha}[U] \rangle$.
- $L_{\lambda}[U] = \bigcup_{\alpha < \lambda} L_{\alpha}[U]$ for a limit λ .
- $L[U] = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}[U].$
- $U \cap L[U]$ is the unique normal measure on κ and κ is the unique measurable in L[U].
- If U and W are two normal measures on κ , then L[U] = L[W].
- ullet In the presence of larger large cardinals, (two measurables), L[U] is not "close to V".

4 D > 4 A > 4 B > 4 B >

The inner model HOD

OD is the collection of all sets definable with ordinal parameters.

- Ord \subseteq OD.
- (Lévy-Montague Reflection) Every first-order formula $\varphi(x,a)$ is reflected by unboundedly many V_{α} .
- A set $a \in OD$ iff there is an ordinal α such that a is ordinal definable in V_{α} .
- OD is definable.

Gödel's hereditarily ordinal definable sets HOD

- The "hereditary" condition makes HOD transitive.
- If $V \models ZF$, then $HOD \models ZFC$.

HOD is not canonical

"We can code information into HOD using forcing".

Theorem: If \mathbb{P} is a weakly homogeneous forcing notion and $G \subseteq \mathbb{P}$ is V-generic, then $HOD^{V[G]} \subseteq HOD^V$.

Theorem: Consistently $HOD^{HOD} \subsetneq HOD$.

Proof: Start in *L*.

- Let g be an L-generic Cohen real.
- ullet HOD $^{\mathcal{L}[g]} = \mathcal{L}$ because Cohen forcing is weakly homogeneous.
- Let \mathbb{P} be the product forcing to make GCH to fail at \aleph_n iff the *n*-th bit of g is 1 and let $H \subseteq \mathbb{P}$ be L[g]-generic.

"Code g into the continuum function."

- ullet Is weakly homogeneous.
- $\bullet \ \ V = L[g][H].$
- $g \in \text{HOD}$, so HOD = L[g].
- $HOD^{HOD} = L$.

Corollary: HOD can be changed by forcing.

6 / 27

The every $p,q\in\mathbb{P}$, there is an automorphism π of \mathbb{P} such that $\pi(p)$ is compatible to q.

HOD can be close to V

Theorem: (Roguski) V is the HOD of one of its class forcing extensions.

Proof:

- (McAloon) Let \mathbb{P} be the Easton-support Ord-length product to code every set in V into the continuum function and let $G \subseteq \mathbb{P}$ be V-generic.
- ullet ${\mathbb P}$ is weakly homogeneous.
- $\bullet \ \mathrm{HOD}^{V[G]} \subseteq V.$
- $HOD^{V[G]} = V$. \square

Corollary:

- GCH can fail at every regular cardinal in HOD.
- Every known large cardinal is compatible with HOD.

HOD can be far from V

"HOD can be wrong about large cardinals."

Theorem: (Cheng, Friedman, Hamkins)

- It is consistent that every measurable cardinal of V is not even weakly compact in HOD.
- It is consistent that there is a supercompact cardinal in V that is not even weakly compact in HOD.

"HOD can be wrong about successor cardinals."

Theorem: (Cummings, Friedman, Golshani) It is consistent that $\alpha^+ > (\alpha^+)^{\text{HOD}}$ for every infinite cardinal α .

HOD in the presense of large cardinals

Woodin has conjectured that in the presence of large cardinals HOD must be close to V.

Conjecture: (Woodin)

- If there is a supercompact cardinal, then there is a measurable cardinal in HOD.
- If there is an extendible cardinal δ , then $\alpha^+ = (\alpha^+)^{\text{HOD}}$ for all singular cardinals $\alpha > \delta$.

Is V a class forcing extension of HOD?

Theorem: (Vopěnka) Every set of ordinals is set-generic over HOD: If A is a set of ordinals, then there is a partial order $\mathbb{P} \in \mathrm{HOD}$ and $G \subseteq \mathbb{P}$ which is HOD-generic such that $\mathrm{HOD}[A] = \mathrm{HOD}[G]$.

Question: Is V a class forcing extension of HOD?

Theorem: (Hamkins, Reitz) It is consistent that V is not a class forcing extension of HOD.

Theorem: (Friedman) There is a definable class S such that every initial segment of S is in HOD and V is a class forcing extension of (HOD, S).

- (HOD, S) \models ZFC.
- There is a class partial order \mathbb{P} definable in (HOD, S) and $G \subseteq \mathbb{P}$ which is (HOD, S)-generic such that HOD[G] = V.
 - ▶ \mathbb{P} has the Ord-cc: every maximal antichain of \mathbb{P} definable in (HOD, S) is set-sized.
 - ▶ $(V, G) \models ZFC$, but G is not definable over V.

Theorem: (Friedman) V is a class forcing extension of (L[S], S).

The Stability Predicate

"The stability predicate codes elementarity relations between initial segments H_{lpha} of V."

Models H_{α}

- For a cardinal α , H_{α} is the set of all sets a with $|tc(a)| < \alpha$.
- (Lévy) For every cardinal α , $H_{\alpha} \prec_{\Sigma_1} V$.
- For every regular cardinal α , $H_{\alpha} \models ZFC^{-}$.

n-good cardinals

- A cardinal α is *n*-good if:
 - $ightharpoonup \alpha$ is a strong limit.
 - ▶ $H_{\alpha} \models \Sigma_n$ -Collection.
- Every strong limit cardinal α is 1-good.
- For every *n*-good cardinal α with $n \geq 2$, if $H_{\beta} \prec_{\Sigma_n} H_{\alpha}$, then β is *n*-good.

Stability predicate *S*: triples (α, β, n) such that

- α , β are *n*-good cardinals.
- $H_{\alpha} \prec_{\Sigma_n} H_{\beta}$.

The Stable Core (L[S], S)

Observation:

- The collection of all strong limit cardinals of V is definable in (L[S], S).
- If the GCH holds, then the collection of all limit cardinals of V is definable in (L[S], S).

Proof: α is a strong limit cardinal iff $(\alpha, \beta, 1) \in S$ for some β . \square

Observation: $L[S] \subseteq HOD$.

Proof: All initial segments of S are ordinal definable. \square

Corollary: (Hamkins, Reitz) It is consistent that *S* is not definable over HOD.

The Stable Core (L[S], S) (continued)

Some forcing absoluteness

Suppose $\mathbb{P} \in \mathcal{H}_{\alpha}$ is a forcing notion, $G \subseteq \mathbb{P}$ is V-generic, and $\beta > \alpha$ is a cardinal.

- $H_{\alpha}^{V[G]} = H_{\alpha}[G]$ (definability of forcing relation).
- $H_{\alpha} \prec_{\Sigma_n} H_{\beta}$ iff $H_{\alpha}[G] \prec_{\Sigma_n} H_{\beta}[G]$ (definability of forcing relation, ground model is Δ_2 -definable).
- $H_{\alpha} \models \Sigma_n$ -Collection iff $H_{\alpha}[G] \models \Sigma_n$ -Collection (definability of forcing relation, ground model is Δ_2 -definable).
- $(\alpha, \beta, n) \in S$ iff $(\alpha, \beta, n) \in S^{V[G]}$.
- S and $S^{V[G]}$ agree above the size of \mathbb{P} .
- If \mathbb{P} has size smaller than the first strong limit cardinal, then $S = S^{V[G]}$.

Theorem: (Friedman) It is consistent that $L[S] \subseteq HOD$.

Proof: Use the "coding universe into a real" forcing. □

0# in the Stable Core

Lemma: If $0^{\#}$ exists, then $0^{\#} \in L[S]$.

Proof:

- $\bullet \ 0^{\#} = \{ \varphi \mid L_{\aleph_{n}^{V}} \models \varphi(\aleph_{1}^{V}, \ldots, \aleph_{n}^{V}) \}.$
- Let $\langle \alpha_i \mid i < \omega \rangle \in L[S]$ be the first ω -many strong limit cardinals of V.
- $\varphi(x_1,\ldots,x_n)\in 0^\#$ iff $L_{\alpha_{n+1}}\models \varphi(\alpha_1,\ldots,\alpha_n)$ \square .

Measurable cardinals in the Stable Core

Theorem: (Friedman, G., Müller) If there is a measurable cardinal, then $L[U] \subseteq L[S]$.

Proof: Suppose κ is measurable and U is a normal measure on κ .

Let $\mu = U \cap L[U]$ be the unique normal measure on κ in $L[U] = L[\mu]$.

Step 1: Iterate μ to a "simple" measure $\mu_{\lambda} \in L[S]$.

- Let $\lambda \gg \kappa^+$ be a limit of strong limit cardinals in V.
- Let $j_{\lambda}: L[\mu] \to L[\mu_{\lambda}]$ be the λ -th iterated ultrapower by μ .
- In $L[\mu_{\lambda}]$, μ_{λ} is a normal measure on $\lambda = j_{\lambda}(\kappa)$.
- Let $\langle \kappa_{\eta} \mid \eta < \lambda \rangle$ be the critical sequence of the μ -iteration.
- Let $A_{\xi} = \{ \eta < \lambda \mid \xi \leq \eta \text{ is a strong limit cardinal} \}$ for $\xi < \lambda$ (tails of strong limit cardinals in λ).
- Let \mathcal{F} be the filter on λ generated by the tails A_{ξ} .
- $\mathcal{F} \in L[S]$, so $L[\mathcal{F}] \subseteq L[S]$.

$$L[\mu_{\lambda}] = L[\mathcal{F}] \subseteq L[S].$$

- $\mu_{\lambda} \subseteq \mathcal{F}$.
 - ▶ $X \in \mu_{\lambda}$ iff there is $\xi < \lambda$ such that $\{\kappa_{\eta} \mid \xi \leq \eta < \lambda\} \subseteq X$.
 - $\kappa_{\eta} = \eta$ for *V*-cardinals $\eta > \kappa$.
- $\mathcal{F} \cap L[\mu_{\lambda}] = \mu_{\lambda}$.
 - $\mathcal F$ is a filter and μ_λ is an ultrafilter in $L[\mu_\lambda]$.

Measurable cardinals in the Stable Core (continued)

Proof: (continued)

Step 2: Collapse a well-chosen $X \prec L_{\theta}[\mu_{\lambda}]$ to obtain $L_{\bar{\theta}}[\mu]$ with $\bar{\theta} > \kappa^+$.

- In L[S], define a sequence $\langle \nu_{\xi} \mid \xi < \kappa^+ \rangle$ of strong limit cardinals of V above λ such that $\mathrm{cf}^V(\nu_{\xi}) \geq \kappa^+$.
- $j_{\lambda}(\nu_{\xi}) = \nu_{\xi} \ (\nu_{\xi} > \lambda$, length of iteration, is a strong limit of cf greater than κ).
- Let θ be above $\sup \langle \nu_{\xi} \mid \xi < \kappa^{+} \rangle$.
- Let $X \prec L_{\theta}[\mu_{\lambda}]$ be generated by $\kappa \cup \{\nu_{\xi} \mid \xi < \kappa^{+}\} \subseteq X$.
 - $\lambda \in X$ (the unique measurable cardinal in $L_{\theta}[\mu_{\lambda}]$).
- Let N be the Mostowski collapse of X.
- λ collapses to κ (there is nothing in j_{λ} " $L[\mu]$ between κ and λ).
- $N = L_{\bar{\theta}}[\nu]$ with $\bar{\theta} \geq \kappa^+$.
- By uniqueness, $\mu = \nu$. \square

Corollary:

- The Stable Core of K^{DJ} is K^{DJ} .
- The Stable Core of $L[\mu]$ is $L[\mu]$.

More measurable cardinals in the Stable Core

Theorem: (Friedman, G., Müller) If $\kappa^{(\xi)}$ for $\xi < \nu < \kappa^{(0)}$ are distinct measurable cardinals with normal measures $U^{(\xi)}$, then $L[\langle U^{(\xi)} | \xi < \nu \rangle] \subseteq L[S]$.

Proof: Generalize the one measurable cardinal argument using Kunen's generalized uniqueness. \Box

Question: Can the Stable Core have a measurable limit of measurable cardinals?

The model L[Card]

Studied by Kennedy, Magidor, and Väänänen.

Theorem: (Kennedy, Magidor, Väänänen)

- If $0^{\#}$ exists, then $0^{\#} \in L[Card]$.
- If there is a measurable cardinal, then $L[U] \subseteq L[Card]$.
- If $\kappa^{(\xi)}$ for $\xi < \nu < \kappa^{(0)}$ are distinct measurable cardinals with normal measures $U^{(\xi)}$, then $L[\langle U^{(\xi)} | \xi < \nu \rangle] \subseteq L[Card]$.

We generalized their techniques to the Stable Core using strong limit cardinals.

The structure of L[Card] becomes regular in the presence of large cardinals.

Theorem: (Kennedy, Magidor, Väänänen, Welch) Assume there is (a little more than) a measurable limit of measurables, then in L[Card]:

- There are no measurable cardinals.
- GCH holds.

Coding into the Stability Predicate

Any object that can be added generically to L can exist in the Stable Core.

Theorem: (Friedman, G., Müller) Suppose $\mathbb{P} \in L$ is a forcing notion and $G \subseteq \mathbb{P}$ is L-generic. Then there is a further forcing extension L[G][H] such that $G \in L[S^{L[G][H]}]$.

Corollary: The following can consistently happen in the Stable Core:

- The GCH fails on a large initial segment of the cardinals.
- An arbitrarily large cardinal of *L* is countable.
- Martin's Axiom holds.

Proof of Theorem: *G* can be coded into any "*n*-th slice" of the Stable Core.

Without loss $G \subseteq \kappa$ for some κ .

Fix $\delta_0 \gg \kappa$. Above δ_0 :

- L and L[G] agree on the cardinals, GCH, and the stability predicate S.
- We will define a sequence of "coding pairs" $(\beta_{\xi}, \beta_{\xi}^*)$ for $\xi < \kappa$.
 - $\blacktriangleright (\beta_{\xi}, \beta_{\xi}^*, n) \in S^L, S^{L[G]}.$
 - ▶ In L[G][H], we will have $(\beta_{\xi}, \beta_{\xi}^*, n) \in S^{L[G][H]}$ iff $\xi \in G$.
- In L, call a cardinal α n-useful if it is a \beth -fixed point such that $H_{\alpha} \prec_{\Sigma_n} L$.

Coding into the Stability Predicate (continued)

- β_{ξ} is the least *n*-useful cardinal above δ_{ξ} of cofinality δ_{ξ}^{+} .
- ullet eta_{ξ}^{*} is the least *n*-useful cardinal above $eta_{\xi}.$
- δ_{η} is the supremum of the β_{ξ}^{*} for $\xi < \eta$.

Coding forcing: full-support product $\mathbb{C} = \prod_{\xi < \kappa} \mathbb{C}_{\xi}$.

- If $\xi \in G$, then \mathbb{C}_{ξ} is trivial.
- If $\xi \notin G$, then $\mathbb{C}_{\xi} = \operatorname{Coll}(\delta_{\xi}^+, \beta_{\xi})$.
- \mathbb{C} preserves GCH above δ_0 .
- \mathbb{C} collapses a cardinal γ iff $\gamma \in (\delta_{\varepsilon}^+, \beta_{\varepsilon}]$ with $\xi \notin G$.

Suppose $H \subseteq \mathbb{C}$ is L[G]-generic.

- $L[S^{L[G][H]}]$ can see the coding pairs $(\beta_{\xi}, \beta_{\xi}^{*})$ because it can define L.
- If $\xi \notin G$, then $(\beta_{\xi}, \beta_{\xi}^*, n) \notin S^{L[G][H]}$.
- If $\xi \in G$, then $(\beta_{\varepsilon}, \beta_{\varepsilon}^*, n) \in S^{L[G][H]}$.
 - β_{ξ} and β_{ξ}^{*} are strong limit cardinals in L[G][H].
 - ▶ Factor $\mathbb{C} = \Pi_{\eta < \xi} \mathbb{C}_{\eta} \times \Pi_{\xi < \eta < \kappa} \mathbb{C}_{\eta}$. Correspondingly factor $H = H_1 \times H_2$.
 - $\blacktriangleright \ \Pi_{\eta<\xi}\mathbb{C}_{\eta} \in H^{L[G]}_{\beta_{\varepsilon}}, \ \Pi_{\xi<\eta<\kappa}\mathbb{C}_{\eta} \ \text{is} \le \beta_{\xi}^*\text{-closed}.$
 - $H_{\beta_{\xi}}^{L[G]}[H_{1}] = H_{\beta_{\xi}}^{L[G]}[H] \prec_{\Sigma_{n}} H_{\beta_{\xi}^{*}}^{L[G]}[H] = H_{\beta_{\xi}^{*}}^{L[G]}[H_{1}]. \square$

The GCH can fail everywhere in the Stable Core

Theorem: (Friedman, G., Müller) It is consistent that the GCH fails at all regular cardinals in the Stable Core.

Proof: Start in L. Let L[G] be the class forcing extension in which the GCH fails at all regular cardinals.

- Let $A \subseteq \text{Ord}$ code all subsets of cardinals added by G.
- Define a sequence of "coding pairs" $(\beta_{\xi}, \beta_{\xi}^*)$ for $\xi \in Ord$.
- Define the coding forcing Easton-support product $\mathbb{C} = \Pi_{\xi \in \mathrm{Ord}} \mathbb{C}_{\xi}$.
- $\xi \in A$ if and only if $(\beta_{\xi}, \beta_{\xi}^*, n) \in S^{L[G][H]}$. \square

Coding into the Stable Core over L[U]

Theorem: (Friedman, G., Müller) Suppose $\mathbb{P} \in L[U]$ is a forcing notion and $G \subseteq \mathbb{P}$ is L[U]-generic. Then there is a further forcing extension L[U][G][H] such that $G \in L[S^{L[U][G][H]}]$.

Proof: $L[U] \subseteq L[S^{L[U][G][H]}]$. \square

Theorem: (Friedman, G., Müller) It is consistent that the Stable Core has a measurable cardinal and the GCH fails on on a tail of regular cardinals.

Big Open Question: Does the structure of the Stable Core become regular in the presence of stronger large cardinals?

Measurable cardinals are not downward absolute to the Stable Core

Theorem: (Kunen) Weakly compact cardinals are not downward absolute.

Proof: Suppose κ is weakly compact.

- Let \mathbb{P}_{κ} be the Easton-support iteration of length κ forcing with $\mathrm{Add}(\xi,1)$ at every inaccessible cardinal $\xi \in V^{\mathbb{P}_{\xi}}$. Let $G \subseteq \mathbb{P}_{\kappa}$ be V-generic.
- In V[G], let $\mathbb Q$ be the forcing to add a homogeneous κ -Suslin tree. Let $T\subseteq \mathbb Q$ be V[G]-generic.
- In V[G][T], κ is not weakly compact.
- Let $b \subseteq T$ be a V[G][T]-generic branch through T.
- $\mathbb{Q} * \dot{\mathcal{T}}$ is forcing equivalent to $Add(\kappa, 1)$.
- κ is again weakly compact in V[G][T][b] ($\mathbb{P}_{\kappa} * \mathrm{Add}(\kappa, 1)$ preserves weak compactness of κ). \square

Measurable cardinals are not downward absolute to the Stable Core (continued)

Theorem: (Friedman, G., Müller) It is consistent that κ is measurable in V, but not even weakly compact in the Stable Core.

Proof: Start in V = L[U] where κ is measurable.

- Let G * T be V-generic for $\mathbb{P}_{\kappa} * \dot{\mathbb{Q}}$.
- κ is not weakly compact in V[G][T].
- Let $\mathbb C$ be the coding forcing (high above κ) to code T into the Stable Core. Let $H\subseteq \mathbb C$ be V[G][T]-generic.
- κ is not weakly compact in $L[S^{V[G][T][H]}]$.
 - ▶ $T \in L[S^{V[G][T][H]}].$
 - ▶ V[G][T][H] does not have a branch through T (\mathbb{C} is highly closed).
- Let $b \subseteq T$ be V[G][T][H]-generic.
- κ is measurable in V[G][T][H][b].
 - κ is measurable in V[G][T][b] ($\mathbb{P}_{\kappa} * Add(\kappa, 1)$ preserves measurability of κ).
 - ▶ V[G][T][b] and V[G][T][H][b] have the same subsets of κ .
- $S^{V[G][T][H][b]} = S^{V[G][T][H]}$ (not obvious).
- κ is not weakly compact in $L[S^{V[G][T][H][b]}]$. \square

Big Open Question: Are measurable cardinals downward absolute to the Stable Core in the presence of large cardinals?

Another way to code into the Stability Predicate

Start in L.

Let \mathbb{P} be a forcing notion and $G \subseteq \mathbb{P}$ be L-generic. Assume $G \subseteq \kappa$.

In L, high above κ , choose a sequence $(\beta_{\xi}, \beta_{\xi}^*)$ for $\xi < \kappa$ of widely spaced "coding pairs". Let C be the Easton-support product forcing:

GCH fails cofinally often in $\beta_{\mathcal{E}}$ iff $\xi \notin G$.

Let $H \subseteq \mathbb{C}$ be L[G]-generic.

- L, L[G], and L[G][H] agree on cardinals above κ .
- $L[S^{L[G][H]}]$ sees the sequence of coding pairs because it can define L.
- Fix some large n.
- If $\xi \notin G$, then $(\beta_{\xi}, \beta_{\xi}^*, n) \notin S^{L[G][H]}$ because GCH fails cofinally in β_{ξ} , but not in β_{ξ}^* .
- If $\xi \in G$, then $(\beta_{\varepsilon}, \beta_{\varepsilon}^*, n) \in S^{L[G][H]}$.
 - ▶ Factor $\mathbb{C} = \mathbb{C}_{small} \times \mathbb{C}_{tail}$ with $\mathbb{C}_{small} \in \mathcal{H}_{\beta_{\mathcal{E}}}$ and \mathbb{C}_{tail} is $\leq \beta_{\mathcal{E}}^*$ -closed.

 - ► Factor $H = H_{\text{small}} \times H_{\text{tail}}$ correspondingly. ► $H_{\beta_{\xi}}^{L[G]}[H_{\text{small}}] = H_{\beta_{\xi}}^{L[G]}[H] \prec_{\Sigma_{n}} H_{\beta_{\xi}}^{L[G]}[H] = H_{\beta_{\xi}}^{L[G]}[H_{\text{small}}].$
- $\xi \in G$ iff $(\beta_{\varepsilon}, \beta_{\varepsilon}^*, n) \in S^{L[G][H]}$.

Separating L[Card] and L[S]

Theorem: (Friedman, G., Müller) It is consistent that $L[Card] \subseteq L[S]$.

Proof: Start in *L*. Let $g \subseteq \omega$ be *L*-generic for Cohen forcing.

- Let \mathbb{C} be the forcing to code G into the stability predicate using GCH failure.
- Let $H \subseteq \mathbb{C}$ be L[g]-generic.
- $L[\operatorname{Card}^{L[g][H]}] = L$ (L and L[g][H] have same cardinals).
- $g \in L[S^{L[G][H]}]$. \square

Note: Same argument works over L[U].

Open Questions

Question: Is it consistent that the Stable Core of the Stable Core is smaller than the Stable Core?

• The analogous result for HOD uses coding.

Question: Is the Stable Core of every canonical inner model the inner model itself?

- $\bullet \ L[S^{K^{DJ}}] = K^{DJ}.$
- $\bullet \ L[S^{L[U]}] = L[U].$
- Is $L[S^{M_1}] = M_1$? (M_1 is the canonical model for one Woodin cardinal.)

Question: What does the Stable Core look like in the presence of large cardinals?

- Is there a bound on the large cardinals the Stable Core can have? Or:
 - Are large cardinals downward absolute to the Stable Core?
 - Does the GCH hold?