Multi-objective Optimization

Notations:

- N number of nodes
- \bullet M number of modules
- \bullet K number of dependencies
- ullet Z number of module pairs with dependencies
- \bullet Q number of loop deadlines
- P^{Mips} [\in], $1 \times N$ matrix representing the price of using processing resources in each fog node
- P^{Ram} [\in], $1 \times N$ matrix representing the price of using memory resources in each fog node
- P^{Strg} [\in], $1 \times N$ matrix representing the price of using storage resources in each fog node
- P^{Bw} [\in], $1 \times N$ matrix representing the price of using network resources in each fog node
- P^{Pw} [\in], $1 \times N$ matrix representing the power price in each fog node
- f^{Mips} [MIPS], $N \times 1$ matrix representing the processing capacity of each fog node
- f^{Ram} [Byte], $N \times 1$ matrix representing the memory capacity of each fog node
- f^{Strg} [Byte], $N \times 1$ matrix representing the storage capacity of each fog node
- f^{bPw} [W], $N \times 1$ matrix representing the busy power consumption of each fog node
- f^{iPw} [W], $N \times 1$ matrix representing the idle power consumption of each fog node
- f^{Tx} [W], $N \times 1$ matrix representing the transmitter power (f_n^{Tx} is non 0 if n is a mobile node)
- m^{Mips} [MIPS], $M \times 1$ matrix representing the processing resources needed for each module
- m^{Ram} [Byte], $M \times 1$ matrix representing the memory resources needed for each module
- m^{Strg} [Byte], $M \times 1$ matrix representing the storage resources needed for each module
- e^{Cpu} [MI], $K \times 1$ matrix representing the tuple CPU size needed to be processed for each dependency
- e^{Nw} [Byte], $K \times 1$ matrix representing the tuple network size needed to be sent for each dependency
- e^{Pe} [s], $K \times 1$ matrix representing the periodicity of sending the tuple for each dependency
- e^{Prob} [%], $K \times 1$ matrix representing the probability of sending the tuple for each dependency
- e^S , $K \times 1$ matrix representing the source module for each dependency
- e^D , $K \times 1$ matrix representing the destination module for each dependency
- l^S , $Z \times 1$ matrix representing the source module for each pair of modules with dependencies
- l^D , $Z \times 1$ matrix representing the destination module for each pair of modules with dependencies
- m^D , $M \times M$ matrix representing the dependencies between modules
- m^B , $M \times M$ matrix representing the bandwidth needed between modules

item f^L , $N \times N$ matrix representing the link latency between each two nodes

- f^B , $N \times N$ matrix representing the link bandwidth between each two nodes
- ullet D, $N \times M$ binary matrix representing the nodes where each module can be deployed
- $C, N \times M$ binary matrix representing the current module placement
- \bullet b, constant representing the percentage of link bandwidth allocated for sending tuples
- \bullet ϵ small constant

Variables:

- ullet $P, N \times M$ binary matrix representing the placement mapping between modules and nodes
- $R, Z \times N \times N$ binary matrix representing the tuple routing map between modules
- $V, M \times N \times N$ binary matrix representing the module migration routing map

Preliminary computations:

$$\begin{split} m_{i}^{Mips} &= \sum_{k \in K} \frac{e_{k}^{Prob} e_{k}^{Cpu}}{e_{k}^{Pe}}, \ e_{k}^{D} = i \\ m_{i,j}^{B} &= \sum_{k \in K} \frac{e_{k}^{Prob} e_{k}^{Nw}}{e_{k}^{Pe}}, \ e_{k}^{S} = i, \ e_{k}^{D} = j \\ m_{i,j}^{D} &= \sum_{k \in K} \frac{e_{k}^{Prob}}{e_{k}^{Pe}}, \ e_{k}^{S} = i, \ e_{k}^{D} = j \end{split}$$

Objectives:

Operational Cost (C_O)

$$C_O = P^{Mips} \times P \times m^{Mips} + P^{Ram} \times P \times m^{Ram} + P^{Strg} \times P \times m^{Strg} + \left(P^{Bw} \sum_{z \in Z} m^B_{l_z^S, l_z^D} \times R_z\right) 1N + C_{Pw}(P^{Pw'})$$

Power Cost (C_{Pw})

$$C_{Pw}(x) = C_P(x. \times (f^{bPw} - f^{iPw})) + C_B(x. \times f^{Tx}),$$

$$x = 1N$$

Processing Cost (C_P)

$$C_P(x) = \sum_{n \in N} x_n \frac{P_n \times m^{Mips}}{f_n^{Mips}},$$

 $x = 1N$

Transmission Cost (C_T)

$$C_T = \sum_{i \in N} \sum_{j \in N} f_{i,j}^L \sum_{z \in Z} \left(m_{l_z^S, l_z^D}^D \times R_{z,i,j} \right)$$

Bandwidth Cost (C_B)

$$C_B(x) = \sum_{z \in Z} m_{l_z^S, l_z^D}^B \sum_{i \in N} x_i \sum_{j \in N} \frac{R_{z,i,j}}{f_{i,j}^B \times b + \epsilon},$$

$$x = 1N$$

Migration Cost (C_M)

$$C_{M} = \sum_{i \in N} \sum_{j \in N} \sum_{m \in M} V_{m,i,j} \times \left(\frac{m_{m}^{Strg} + m_{m}^{Ram}}{f_{i,j}^{B} \times (1 - b)} + f_{i,j}^{L} \right)$$

Final problem:

$$\begin{split} & \underset{P,R}{\text{minimize}} & \quad C_O, \; C_E, \; C_P, \; C_T, \; C_B, \; C_M \\ & \text{subject to} & \quad P \times m^{Mips} \leq f^{Mips}, \\ & \quad P \times m^{Ram} \leq f^{Ram}, \\ & \quad P \times m^{Strg} \leq f^{Strg}, \\ & \quad P \leq D \\ & \quad P_{i,j} \in \{0,1\}, \; \forall i \in [0,N], \; \forall j \in [0,M] \\ & \quad R_{z,i,j} \in \{0,1\}, \; \forall z \in [0,Z], \; \forall i \in [0,N], \; \forall j \in [0,N] \\ & \quad V_{z,i,j} \in \{0,1\}, \; \forall z \in [0,M], \; \forall i \in [0,N], \; \forall j \in [0,N] \\ & \quad \sum_{i \in N} P_{i,j} = 1, \; \forall j \in [0,M] \\ & \quad \sum_{j \in N} R_{z,i,j} - \sum_{j \in N} R'_{z,i,j} = P_{i,l_z^S} - P_{i,l_z^D} \;\;, \forall z \in [0,Z], \; \forall i \in [0,N] \\ & \quad \sum_{z \in Z} m^B_{l_z^S,l_z^D} \times R_{z,i,j} \leq f^B_{i,j} \times b \;\;, \; \forall i \in [0,N], \; \forall j \in [0,N] \\ & \quad \sum_{j \in N} V_{z,i,j} - \sum_{j \in N} V'_{z,i,j} = C_{j,i} - P_{j,i} \;\;, \; \forall z \in [0,M], \; \forall i \in [0,N] \end{split}$$