Des essais de fluage ont permis d'enregistrer l'évolution du module en fonction du temps à trois températures différentes.

température	log(temps)	log(module)	
	2	7,59	
156	2,25	7,55	
	2,5	7,50	
	2,75	7,41	
	3	7,34	
	3,25	7,25	
	3,5	7,19	
	3,75	7,06	
	4	6,94	
	4,25	6,78	
167	2,75	6,25	
	3	5,97	
	3,25	5,63	
	3,5	5,22	
171	2,25	6,00	
	2,5	5,72	
	2,75	5,41	
	3,00	5,03	
	3,25	4,63	

¹j) Construire les courbes log E = f (log t)

2i) Sachant que
$$\log$$
 aT = 1,51 pour T =146° C

(pour une température de référence de 150,8 °C)

déterminer les coefficients de l'équation WLF

3i) Tracer la courbe maîtresse pour la température de 150,8°C