Lecture 8 (ontinue § 4.4)
The Canton's Intersection $7hm$ $A_1 \supset A_2 \supset \cdots$ $A_i \neq \emptyset$ A_i is compact $\forall i \in \mathbb{N} \implies \bigcap_{i \geq 1} A_i \neq \emptyset$
The Cautor Set
Six from Si by taking out the middle third from each of the intervals of Si. Si $\neq \emptyset$ Si are compact (closed & bounded) $C = \bigcap Si \neq \emptyset$ all of the endpoints of the intervals are in C .
Each path is a nested seg of interval $\bigcap_{i \ge l} \mathbb{I}_i \neq \emptyset$ 000 00 010 01 · · For each path $\exists a \text{ nonempty intersection}$
(1) C is compact (2) C = C (3) int C = Ø. suppose (a,b) C (= > (a,b) C Sn \forall n
$b-a \leq B^{-n}$, $\forall n$ not possible
Def: A set whose closure has no interior is nowhere dense
Ex. Q $Q=R$ Note: int. $Q=R$ int $Q=R$
Def: A point xeA is called isolated if 3 E>O S.t. BE (x) NA= [x]
$M = f_{\overline{h}} : n \in \mathbb{N}$) Every point of M is an isolated pt.
S=MU(0) is not b/c(0) is not isolated b/c nim n=0
Claim: () has no isolated pts (() is a perfect set)

Proof. Let $x \in C$.

Case 1: x is not the right end-point of any interval. For each n if x is in one of the interval x_n . $|x-x_n| \leq \frac{1}{3^n} \longrightarrow 0$

Case 2: If x is the right-end point \Rightarrow let x_n be the left-end point:

Two sots A&B have the same coordinality if \exists a bijection $f:A \rightarrow B$ |A| > |B| if \exists injective func. from $B \rightarrow A$

|A|>|B| if I an injective map from B to A, but no bijection map.

if ISI=IN 1=> S is a countable read as a leph-null written as No |Q|=|N|

|R|=C |[0,1]|=C coordinality of continuum)

Claim: $|C| = |[O_1]|$

The Canter—Bernstein—Schroeder—Hum

If I injective functions:

f: A -> B

g: B -> A => |A|= |B|

Consider the numbers in [0,1] $\chi = (\chi_0, \chi_1 \chi_2 \chi_3 \cdots)$ bases $= \sum_{k \ge 0} \frac{\chi_k}{3^k}$, $\chi_i = \{0,1,2\}$

7=(.1)=(0.022222...)

 S_4 consists of all numbers of [0,1] for which the first digit after a pt, is either 0 or 2.

Sz: it will consist of the numbers s.t. their dec. expansion will have the first two digits after"." to either 0 or 2

Si: it will consist of all number of [0,1] s.t the first i terms are all either 0 or 2

C: consists of all numbers of [0, 1] that have a ternary expansion using only 0's and 2's.

Goal is to construct an invective map (one-to-one map) from $[0, 1] \rightarrow C$.

Consider a binary expansion of number in [0, 1] $y=(0. y_1y_2 y_3...) \in [0, 1]$

$$\sum_{k \geqslant 0} \frac{y_k}{2^k} \quad y_k = \{0,1\}$$

Note that some points have two expansions $\frac{1}{2} = 0.1 = 0.011111...$

Pick the expansion that ends at o's in this case.

$$\chi = (0. \chi_1 \chi_2 \chi_3 \cdots \chi_i \cdots)_{base2}$$

If
$$x_{i=0} = 3$$
, $x_{i=0}$
 $x_{i=0}$
 $x_{i=1} = 3$, $x_{i} = 2$
one-to-one map