Η

Weekly Activity & Quiz Week04 Activity 9/19 Review Test Submission: Week04 Quiz Ch03 (1)

Review Test Submission: Week04 Quiz Ch03 (1)

User	Keerthi Teja Konuri
Course	CS 6364.001 - Artificial Intelligence - F15
Test	Week04 Quiz Ch03 (1)
Started	9/19/15 2:26 PM
Submitted	9/19/15 2:44 PM
Due Date	9/19/15 11:59 PM
Status	Completed
Attempt Score	31 out of 33 points
Time Elapsed	18 minutes out of 40 minutes
	ed All Answers, Submitted Answers, Correct Answer

Question 1 10 out of 10 points

Select the best choice for each question.

Question	Со	rrect Match	Sel	lected Match
Breadth-first search is complete	❷	B. Yes	ூ	B. Yes
Uniform-cost search is complete	Ø	B. Yes	Ø	B. Yes
Depth-first search is complete	Ø	A. No	ਂ	A. No
Depth-limited search is complete	Ø	A. No	Ø	A. No
Iterative-deepening search is complete	Ø	B. Yes	Ø	B. Yes
Breadth-first search is optimal	Ø	B. Yes	Ø	B. Yes
Uniform-cost search is optimal	Ø	B. Yes	Ø	B. Yes
Depth-first search is optimal	Ø	A. No	Ø	A. No
Depth-limited search is optimal	9	A. No	Ø	A. No
Iterative-deepening search is optimal	❷	B. Yes	Ø	B. Yes

All Answer Choices

A. No

B. Yes

Question 2 13 out of 13 points

The functions for a node n are:

- g(n) the cost to reach the node (from the start)
- h(n) the cost to get from the node to the goal (often an estimate).
- f(n) an evaluation function which is the sum of g(n) and h(n)

Select the best choice for each informed search strategy.

Select the best choice for each informed search strategy.		
Question	Correct Match	Selected Match
tries to expand the node that is closest to the goal, on the grounds that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the heuristic function; that is, $f(n) = h(n)$.	D. Greedy best-first search	D. Greedy best-first search
evaluates nodes by combining $g(n)$, the cost to reach the node, and $h(n)$, the cost to get from the node to the goal: $f(n) = g(n) + h(n)$.	✓ H.A* search	✓ H.A* search
is identical to UNIFORM COST SEARCH except that this uses $g(n) + h(n)$ instead of $g(n)$.	♂ H.A* search	✓ H. A* search
is a simple recursive algorithm that attempts to mimic the operation of standard best-first search, but using only linear space.	C. RBFS	
expands nodes with minimal f(n).	♂ H.A* search	H.A* search
is complete and optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for GRAPH-SEARCH).	♂ H.A* search	✓ H.A* search
expands nodes with minimal h(N). It is not optimal but is often efficient.	D.Greedybest-firstsearch	D. Greedy best-first search
If h(n) is, then the values of f(n) along any path are nondecreasing.	G. consistent	G. consistent
$\underline{}$ is the simplest way to reduce memory requirements for A* is to adapt the idea of iterative deepening where the cutoff used is f(n) rather than the depth.	✓ A. IDA*	✓ A. IDA*
h(n) which is is one that never overestimates the cost to reach the goal.	I. admissible	I.admissible
Straight-line distance (for example, in Romanian routing problem) is because the shortest path between any two points is a straight line.	I. admissible	I. admissible
This condition is also called sometimes monotonicity.	G. consistent	G. consistent
A heuristic h(n) is if, for every node n and every successor n' of n generated by any action a, the estimated cost of reaching	G. consistent	G. consistent

the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n'.

All Answer Choices

A. IDA*

B. overestimating

C. RBFS

D. Greedy best-first search

E. linear

F. memory-efficient

G. consistent

H. A* search

I. admissible

Question 3 8 out of 10 points

Time and space complexity are measured in terms of

- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- *m* : maximum depth of the state space (may be infinite)
- -1 (letter L): is the depth limit.

Note: C* is the cost of the optimal solution path

Question	Correct Match	Selected Match
Time - Breadth-first search	⊘ D.	⊘ D.
	bd (b to the power of d)	b ^d (b to the power of d)
Time - Uniform-Cost search	\bigcirc E. b to the power of $(1+[C^*/\epsilon])$	\bigcirc E. b to the power of $(1+[C^*/\epsilon])$
Time - Depth-First search	⊘ A.	✓ A.
	bm (b to the power of m)	b (b to the power of m)
Time - Depth-Limited search	⊘ B.	⊘ B.
	b (b to the power of I)	b (b to the power of I)
Time - Iterative-Deepening	⊘ D.	⊘ D.
search	bd (b to the power of d)	bd (b to the power of d)
Space - breadth-first search	⊘ D.	⊘ D.
	bd (b to the power of d)	b ^d (b to the power of d)
Space - uniform-cost search	\bigcirc E. b to the power of $(1+[C^*/\epsilon])$	\bigcirc E. b to the power of $(1+[C^*/\epsilon])$

Space - depth-first search

b

(b to the power of d)

Space - depth-limited search

Space - Interative Deepening search

b

(b to the power of d)

C. bl (b times I)

C. bl (b times I)

F. bm (b times m)

F. bm (b times m)

C. bl (b times m)

All Answer Choices

A. $b^{\mathbf{m}}$ (b to the power of m)

B. b (b to the power of I)

C. bl (b times I)

D.b d (b to the power of d)

E. b to the power of $(1+|C^*/\epsilon|)$

F. bm (b times m)

Tuesday, October 6, 2015 4:52:00 PM CDT

 \leftarrow OK