EA075 Conversão A/D e D/A

Faculdade de Engenharia Elétrica e de Computação (FEEC) Universidade Estadual de Campinas (UNICAMP)

Prof. Rafael Ferrari

(Documento baseado nas notas de aula do Prof. Levy Boccato)

Introdução

- **Sinal digital:** possui um valor especificado como uma de duas possibilidades, como 0 ou 1, BAIXO ou ALTO, que correspondem a níveis de tensão dentro de intervalos específicos (e.g., 0-0.8 V e 2 a 5 V na família TTL).
- Sinal analógico: pode assumir qualquer valor em um intervalo contínuo; seu valor exato é importante (e.g., representa uma grandeza, como temperatura, diferente).
- Como utilizar sistemas digitais para monitorar e/ou controlar um processo físico?

Introdução

Conversores analógico-digital (ADC) e digital-analógico (DAC) são usados para permitir o contato de um sistema digital com o ambiente analógico.

 Processo que toma um valor representado em código binário (digital) e o converte em uma tensão ou corrente proporcional.

• Em geral, Saída analógica = $K \times$ entrada digital

• *K* é um fator de proporcionalidade constante para um certo DAC conectado a uma tensão fixa de referência.

	V _{OUT}	Α	В	С	D
volts	0	0	0	0	0
1	1	1	0	0	0
	2	0	1	0	0
	2 3	1	1	0	0
	4	0	0	1	0
	5	1	0	1	0
	6	0	1	1	0
	7	1	1	1	0
	8	0	0	0	1
	9	1	0	0	1
	10	0	1	0	1
	11	1	1	0	1
	12	0	0	1	1
	13	1	0	1	1
↓	14	0	1	1	1
volts	15	1	1	1	1

(b)

• $K = 1 \text{ V e V}_{OUT} = (1 \text{ V}) \times \text{entrada digital}.$

- Cada entrada digital contribui com um valor diferente para a tensão analógica.
 - ➤ O bit menos significativo contribui com $(2^0) \times K$ volts.
 - \gt O segundo bit menos significativo contribui com (2¹) × K volts.

•

- ➤ O bit mais significativo contribui com $(2^{N-1}) \times K$ volts, onde N é o número de bits que representa o valor digital.
- Exemplo: $0110 \rightarrow (2^2 + 2^1) \times K = 6V$

 A rigor, o sinal de saída não é analógico – afinal, ele pode assumir somente 2^N níveis de tensão.

- Resolução: menor mudança que pode ocorrer na saída analógica como resultado de uma mudança na entrada digital (tamanho do passo).
- Com N bits, é possível representar 2^N níveis de tensão. Existem, portanto, 2^N – 1 passos para sair do valor mais baixo (zero, por exemplo) e atingir o fundo de escala.
- Logo, $K = V_{ref} / (2^N 1)$.
- Aumentar N diminui K, tornando possível representar mais valores de tensão.

• Implementações:

- Amplificador operacional opera como um somador.
- ullet Cada tensão de entrada é multiplicada por um peso dado pela razão entre o resistor R_f e o resistor de entrada.

	Código 	binári	0	
D	С	В	Α	V _{OUT} (volts)
0	0	0	0	0
0	0	0	1	-0.625 ← LSB
0	0	1	0	-1.250
0	0	1	1	-1.875
0	1	0	0	-2.500
0	1	0	1	-3.125
0	1	1	0	-3.750
0	1	1	1	-4.375
1	0	0	0	-5.000
1	Ō	0	1	-5.625
1	0	1	o l	-6.250
1	Ö	1	1	-6.875
1	1	0	0	-7.500
1	1	Ö	1	-8.125
1	1	1	o l	_8.750 Fund
1	1	1	1	- 9.375 ← de
		(b)	escala

 $V_{OUT} = - (V_D + 1/2 V_C + 1/4 V_B + 1/8 V_A)$

• Implementações:

> R / 2R *ladder*: usa resistores com valores próximos (R e 2R ohms), independentemente de quantos bits existem na representação.

 Processo que toma um valor de tensão analógico e obtém um código binário para representá-lo.

> V_{REF} $\bigcirc b_1$ Digital Logic Encoder $\bigcirc b_{o}$

Conversor A/D de dois bits

	c_2	c ₁	\mathbf{c}_0	b_1	\mathbf{b}_0
$V_A < V_0$	0	0	0	0	0
V ₀ <v<sub>A<v<sub>1</v<sub></v<sub>	0	0	1	0	1
V ₁ <v<sub>A<v<sub>2</v<sub></v<sub>	0	1	1	1	0
V _A >V ₂	1	1	1	1	1

Com todos os resistores iguais:

$$V_{REF} - V_2 = V_2 - V_1 = V_1 - V_0$$

- Estrutura conhecida como A/D paralelo.
- Vantagem: conversão praticamente instantânea.
- **Desvantagem:** o número de comparadores e resistores aumenta exponencialmente com o número de bits da representação digital:
 - \triangleright Resistores: 2^N
 - \triangleright Comparadores: 2^N -1
- Solução inviável em termos de miniaturização.

• Estrutura mais usual:

• Operação básica:

- O comando de partida inicia a conversão;
- ➤ Em uma taxa determinada pelo *clock*, a unidade de controle continuamente modifica o número binário armazenado no registrador;
- \gt O DAC converte esta representação binária em um valor de tensão "analógico" V_{AX} .
- Enquanto $V_{AX} < V_A$, a saída do comparador fica no nível ALTO. Quando V_{AX} excede V_A (por uma quantidade maior ou igual a V_T tensão de *threshold*), a saída vai para nível BAIXO e interrompe o processo de adaptação do conteúdo do registrador.
- ightharpoonup Neste ponto, V_{AX} é uma aproximação de V_{A} e o código binário armazenado no registrador é o seu equivalente digital.
- ➤ A unidade de controle ativa o sinal EOC, indicando o fim da conversão.

ADC do tipo rampa digital:

> Um contador é usado no lugar do registrador. Seu conteúdo é incrementado a cada ciclo de relógio enquanto o valor V_{AX} for menor que V_{A} .

➤ O termo rampa digital vem da forma de onda que se

observa em V_{AX} .

• ADC do tipo rampa digital:

- ightharpoonup Erro de quantização: diferença entre a quantidade analógica verdadeira (V_A) e quantidade equivalente à sequência binária armazenada (V_{AX}).
 - Exemplo: V_{AX} está, no máximo, a 10 mV de V_A se a resolução do DAC (ADC) for 10 mV.
- > **Tempo de conversão:** o máximo tempo ocorre quando V_A é um pouco menor que a tensão de fundo de escala, de maneira que V_{AX} deve chegar ao último estágio da rampa digital.
 - Considerando N bits na conversão, $tc(max) = 2^N 1$ ciclos de relógio.
- ➤ **Desvantagem:** O tempo de conversão essencialmente dobra para cada bit que é adicionado ao contador só é possível melhorar a resolução com o custo de um *tc* maior.
- > Vantagem: simplicidade do circuito.

• ADC com aproximações sucessivas:

➤ O circuito é mais complexo, porém o tempo de conversão é bastante inferior e independe (ou seja, é aproximadamente o mesmo) do valor da entrada analógica V_A.

• ADC com aproximações sucessivas:

- \gt O processo começa colocando o bit mais significativo do registrador no valor 1 e testando se $V_{AX} \gt V_A$.
- ➤ Se for maior, o bit testado tem seu valor restaurado para 0. Senão, mantemos este bit em 1.
- ➤ Este procedimento se repete para cada um dos *N* bits do registrador de maneira sucessiva, até que todos tenham sido avaliados.
- Exemplo: N = 4 bits, resolução de 1 V e $V_A = 10.4$ V.
 - 1. $1000 \longrightarrow 8 \text{ V} < \text{V}_{\text{A}}$ mantém o bit = 1 e prossegue para o próximo.
 - 2. $1100 \longrightarrow 12 \text{ V} > \text{V}_{A}$ zera o segundo bit e prossegue para o próximo.
 - 3. $1010 \longrightarrow 10 \text{ V} < \text{V}_A$ mantém o bit = 1 e prossegue para o próximo.
 - 4. $1011 \longrightarrow 11 \text{ V} > \text{V}_{A}$ zera o bit e encerra.

FINAL: $1010 = 10 \text{ V} \approx 10.4 \text{ V}$

• ADC com aproximações sucessivas:

- ightharpoonup Este método termina com uma sequência binária cuja tensão V_{AX} correspondente é sempre menor que a tensão analógica V_{A} .
- ➤ Vantagem: o tempo de conversão varia linearmente com o número de bits usados para representar a grandeza analógica.

tc = N ciclos de relógio

Generalização

Resolução: $(V_{MAX} - V_{MIN}) / (2^N - 1)$

Bibliografia

• Tocci, Ronald J., Widmer, Neal S., Moss, Gregory L., *Digital Systems: principles and applications*. Pearson Education India, 2007. (capítulo 11)