CSE 3666 Exam II Topics

Arithmetic for Computers

- operations on integers
 - addition and subtraction;
 - multiplication and division; multiplication/division algorithm and hardware;
 - o RISC-V Multiplication Instructions (Not appear in Cossay Queston)
- floating-point and real numbers
 - o Binary to decimal; Decimal to binary
 - $_{\circ}$ Normalized numbers. $\cancel{\downarrow}$ \times \times \times \times
 - Encode Floating Point Numbers with Bits
 IEEE Std 754-1985: Single precision; double precision
 - o Denormal Numbers; meaning. (Not essay)
 - o FP Support in RISC-V (Not essay)

Introduction to Digital Design

- use Boolean algebra to describe circuits
 - o Boolean operations: AND, OR, NAND, NOR, XOR, NOT
 - o use of truth tables to describe functionality
 - o Boolean algebra
 - o deriving Boolean expressions from truth tables
- two types of circuits:
 - combinational
 - sequential
- decoder
 - \circ N inputs, 2^N outputs
 - \circ one and only one output specified by input is asserted
- multiplexor
 - Selector: output is one of the inputs, selected by a control.
- 1-bit ALU
 - use Nx1 mux to select desired operation
 - o operations:
 - add, sub, AND, OR, NOR, etc. with individual gates
 - addition with full adder
 - subtraction with full adder and two's complement trick
- 32-bit ALU

Sequential Circuits

- Triggering: falling edge and rising edge
- Registers: clock, input, output, control
- Register Files

Performance

- CPU Execution Time and Throughput; Relative Performance
- CPU Time= CPU Clock Cycles* Clock Cycle Time= CPU Clock Cycles/Clock rate
- 2 CPU Time= Instruction Count *CPI Clock* Cycle Time
 - Instruction Count and CPI
 - average CPI
- How to improve the performance of a computer/CPU? Amdahl's Law

Datapath Design

- general concepts
 - o tasks of ``executing an instruction" into stages
 - o create the entire datapath for R/I type instruction.
- typical stages
 - o instruction fetch (IF) all
 - o instruction decode (ID) / register fetch all
 - o execution (EX/EXE) varies based on different instruction
 - o memory access (MEM) load and store only
 - o register write (WB) ALU and load only
- standard components
 - register file

 - o ``add 4" unit, i.e., PC+4
 - o sign-extention
 - instruction memory
 - o data memory
 - o ALU and its functions; ALU Control
 - multiplexors
- implementation choices
 - o single-cycle: perform all tasks in a single clock cycle
 - o multi-cycle/pipeline: use a clock cycle for each stage

Control Implementation

Clock cycle, clock rate
Bistable element, Memory Elements, Flip-Flops and Latches
Triggering: falling edge and rising edge
Registers: clock, input, output, control

Shift Register

Clock cycle, clock rate

Not escays

Refisering: Flip-Flops and Latches

Not escays

- single cycle control unit
 - o used for directing operations of datapath blocks
 - o generated based on opcode, function code (e.g., func 3 and func 7)
 - $_{\circ}$ figure out what control signals need to be activated for different R/I/S-type instructions.

Pipelining

- basic concepts
- simple 5-stage pipeline
- pipeline registers
- pipeline control units

Pipelining Hazard

- · Structural hazard
 - o Add more resources (IM, DM)
 - Share Resource (Reg)

Obsay Questions

Chay anatron