

深度学习

线性模型 Linear Model

高飞 Fei Gao gaofei@hdu.edu.cn

- 线性判别函数和决策边界
- Logistic Regression
- Softmax Regression
- Perceptron 感知器

分类示例

数据集: CIFAR-10

• 60000张32x32色彩图像,共10类,每类6000张图像。

数据集: ImageNet

• 14,197,122 images, 21841 synsets

应用: 图像分类

应用: 文本情感分类

根据文本内容来判断文本的相应类别

 D_2 : "我讨厌读书"

	我	喜欢	讨厌	读书
D_1	1	1	0	1
D_2	1	0	1	1

杭电计算机学院

应用: 垃圾邮件过滤

应用: 文档归类

意义 原田 未新

线性判别函数和决策边界

线性模型

线性模型(Linear Model)是机器学习中应用最广泛的模型,指通过样本特征的线性组合来进行预测的模型。给定一个d维样本 $[x_1, \dots, x_d]^T$,其线性组合函数为

$$f(\mathbf{x}, \mathbf{w}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b \tag{3.1}$$

$$= \mathbf{w}^{\mathrm{T}} \mathbf{x} + b, \tag{3.2}$$

其中 $\mathbf{w} = [w_1, \dots, w_d]^{\mathrm{T}}$ 为d维的权重向量, b为偏置。

医阑牙术 闻亚柔菜

线性模型

线性模型(Linear Model)是机器学习中应用最广泛的模型,指通过样本特征的线性组合来进行预测的模型。给定一个d维样本 $[x_1, \cdots, x_d]^T$,其线性组合函数为

$$f(\mathbf{x}, \mathbf{w}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b \tag{3.1}$$

$$= \mathbf{w}^{\mathrm{T}} \mathbf{x} + b, \tag{3.2}$$

其中 $\mathbf{w} = [w_1, \dots, w_d]^{\mathrm{T}}$ 为d维的权重向量, b为偏置。

分类结果需要是离 散值,怎么办?

决策函数/判别函数

在分类问题中,由于输出目标y是一些离散的标签,而 $f(\mathbf{x}, \mathbf{w})$ 的值域为实数,因此无法直接用 $f(\mathbf{x}, \mathbf{w})$ 来进行预测,需要引入一个非线性的决策函数 (decision function) $g(\cdot)$ 来预测输出目标

$$y = g(f(\mathbf{x}, \mathbf{w})), \tag{3.3}$$

其中 $f(\mathbf{x}, \mathbf{w})$ 也称为判别函数 (discriminant function)。

对于两类分类问题, $g(\cdot)$ 可以是符号函数 (sign function)

$$g(f(\mathbf{x}, \mathbf{w})) = \operatorname{sgn}(f(\mathbf{x}, \mathbf{w}))$$
 (3.4)

$$\triangleq \begin{cases} +1 & \text{if } f(\mathbf{x}, \mathbf{w}) > 0, \\ -1 & \text{if } f(\mathbf{x}, \mathbf{w}) < 0. \end{cases}$$
 (3.5)

当 $f(\mathbf{x}, \mathbf{w}) = 0$ 时不进行预测。公式 (3.5) 定义了一个典型的两类分类问题的决策函数,其结构如图3.1所示。

两类线性分类模型(符号函数)

$$g(f(\mathbf{x}, \mathbf{w})) = \operatorname{sgn}(f(\mathbf{x}, \mathbf{w})) \triangleq \begin{cases} +1 & \text{if } f(\mathbf{x}, \mathbf{w}) > 0, \\ -1 & \text{if } f(\mathbf{x}, \mathbf{w}) < 0. \end{cases}$$
$$f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b.$$

决策边界/决策平面

在两个分类中,我们只需要一个线性判别函数 $f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ 。特征空间 \mathbb{R}^d 中所有满足 $f(\mathbf{x}, \mathbf{w}) = 0$ 的点组成用一个分割超平面(hyperplane),称为决策边界(decision boundary)或决策平面(decision surface)。决策边界将特征空间一分为二,划分成两个区域,每个区域对应一个类别。

多类分类(Multi-class Classification)

"argmax"方式:这是一种改进的"一对其余"方式,共需要C个判别函数

$$f_c(\mathbf{x}; \mathbf{w}_c) = \mathbf{w}_c^{\mathrm{T}} \mathbf{x} + b_c, \qquad c = [1, \cdots, C]$$
 (3.10)

如果存在类别c,对于所有的其他类别 $\tilde{c}(\tilde{c} \neq c)$ 都满足 $f_c(\mathbf{x}; \mathbf{w}_c) > f_{\tilde{c}}(\mathbf{x}, \mathbf{w}_{\tilde{c}})$,那么 \mathbf{x} 属于类别c。即

$$y = \operatorname*{arg\,max}_{c=1}^{C} f_c(\mathbf{x}; \mathbf{w}_c). \tag{3.11}$$

震亂 原作 富田柔新

分类问题

• 将分类问题看作条件概率估计问题

- 为了解决连续的线性函数不适合进行分类的问题,引入非线性函数g来预测类别标签的后验概率 p(y = c|x)。
- 以两类分类为例,

$$p(y = 1|\mathbf{x}) = g(f(\mathbf{x}; \mathbf{w}))$$

- 函数f: 线性函数
- 函数g: 把线性函数的值域从实数区间"挤压"到了(0,1)之间,可以用来表示概率。

如何构建函数g?

逻辑回归 Logistic Regression

Logistic函数

Logistic函数

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

• Logistic回归

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x}) \triangleq \frac{1}{1 + \exp(-\mathbf{w}^{\mathrm{T}}\mathbf{x})}$$

Logistic分类

线性分类器

$$\hat{y} = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} > 0 \\ 0 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} \le 0 \end{cases}$$

Logistic分类器

$$P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

$$\triangleq \frac{1}{1 + \exp(-\mathbf{w}^{\mathrm{T}}\mathbf{x})},$$

交叉熵损失

• 分类任务: 真实概率 vs. 预测概率

如何衡量两个条件分布的差异?

熵(Entropy)

• 在信息论中,熵用来衡量一个随机事件的不确定性

• 自信息 (Self Information)

$$I(x) = -\log(p(x))$$

• 熵

$$H(X) = \mathbb{E}_X[I(x)]$$

$$= \mathbb{E}_X[-\log(p(x))]$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

Rudolf Julius Emanuel Clausius 热力学第二定律

Entropy

香农创造性的引入 "信息熵" 解决了对信息的量化问题

IEEE INFORMATION THEORY SOCIETY SCIE. CQUPT

杭电计算机学院

熵 (Entropy)

• 克劳德·香农Claude E. Shannon

■ 生卒年: 1916-2001

■ 信息论之父

贝尔实验室雕像

交叉熵(Cross Entropy)

• 交叉熵是按照概率分布q的最优编码对真实分布为p的信息进行编码的长度。

$$H(p,q) = \mathbb{E}_p[-\log q(x)]$$
$$= -\sum_x p(x) \log q(x)$$

• 二分类问题中

$$H(p,q) = \begin{cases} ? & \text{if } p = q \\ \\ ? & \text{if } p = [1,0], q = [0.3,0.7] \end{cases}$$

KL散度(Kullback-Leibler Divergence)

- KL散度是用概率分布q来近似p时所造成的信息损失量。
 - KL散度是按照概率分布q的最优编码对真实分布为p的信息进行编码,其平均编码长度(即交叉熵)
 H(p,q)和p的最优平均编码长度(即熵)H(p)之间的差异。

$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$
$$D_{KL}(P||Q) = \int P(x) \log \frac{P(x)}{Q(x)} dx$$

交叉熵损失

• 交叉熵损失 → 负对数似然

$$\begin{split} \mathrm{D_{kl}}(p_r(y|x)||p_{\theta}(y|x)) &= \sum_{y=0}^1 p_r(y|x) \log \frac{p_r(y|x)}{p_{\theta}(y|x)} \\ & \propto -\sum_{y=0}^1 p_r(y|x) \log p_{\theta}(y|x) \\ & \qquad \qquad \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_r(y|x) \log p_{\theta}(y|x) \\ & \qquad \qquad \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_r(y|x) \log p_{\theta}(y|x) \\ & \qquad \qquad = -I(y^*=1) \log p_{\theta}(y=1|x) - I(y^*=0) \log p_{\theta}(y=0|x) \\ & \qquad \qquad = -y^* \log p_{\theta}(y=1|x) - (1-y^*) \log p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad \qquad = -\log p_{\theta}(y^*|x) \\ & \qquad \qquad & \overset{\mathbf{\Sigma}}{\mathbf{\Sigma}} \sum_{y=0}^{\infty} p_{\theta}(y=0|x) \\ & \qquad &$$

交叉熵损失函数

• 负对数似然损失函数

$$\mathcal{L}(\mathbf{y}, f(\mathbf{x}, \theta)) = -\sum_{c=1}^{C} y_c \log f_c(\mathbf{x}, \theta)$$

■ 对于一个三类分类问题,类别为[0,0,1],预测的类别概率为[0.3,0.3,0.4],则

Ex: Computed (ŷ) Targets (y)
[0.3, 0.3, 0.4] [0, 0, 1]

 $\mathcal{L}(\theta) = 0$

交叉熵损失函数

• 负对数似然损失函数

$$\mathcal{L}(\mathbf{y}, f(\mathbf{x}, \theta)) = -\sum_{c=1}^{C} y_c \log f_c(\mathbf{x}, \theta)$$

■ 对于一个三类分类问题,类别为[0,0,1],预测的类别概率为[0.3,0.3,0.4],则

Ex: Computed (ŷ) Targets (y)
[0.3, 0.3, 0.4] [0, 0, 1]

$$\mathcal{L}(\theta) = -(0 \times \log(0.3) + 0 \times \log(0.3) + 1 \times \log(0.4))$$

= -\log(0.4).

交叉熵损失

• 交叉熵损失 → 负对数似然

$$-\sum_{y=1}^{C} p_r(y|x) \log p_{\theta}(y|x)$$

• 交叉熵损失函数,模型在训练集的风险函数为

$$\mathcal{R}(\mathbf{w}) = -\frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} \log \left(\sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - \sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)}) \right) \right).$$

• 梯度为

$$\frac{\partial \mathcal{R}(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{x}^{(i)} \cdot \left(\sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)}) - y^{(i)} \right) \right)$$

■ 推导

$$\frac{\partial \mathcal{R}(\mathbf{w})}{\partial \mathbf{w}} = -\frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} \frac{\hat{y}^{(n)} (1 - \hat{y}^{(n)})}{\hat{y}^{(n)}} \mathbf{x}^{(n)} - (1 - y^{(n)}) \frac{\hat{y}^{(n)} (1 - \hat{y}^{(n)})}{1 - \hat{y}^{(n)}} \mathbf{x}^{(n)} \right) \\
= -\frac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} (1 - \hat{y}^{(n)}) \mathbf{x}^{(n)} - (1 - y^{(n)}) \hat{y}^{(n)} \mathbf{x}^{(n)} \right) \\
= -\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} \left(y^{(n)} - \hat{y}^{(n)} \right).$$

Logistic回归

Softmax Regression

Softmax判别函数

Softmax函数

$$\operatorname{softmax}(x_k) = \frac{\exp(x_k)}{\sum_{i=1}^K \exp(x_i)}$$

Softmax回归

$$P(y = c | \mathbf{x}) = \operatorname{softmax}(\mathbf{w}_c^{\mathsf{T}} \mathbf{x})$$
$$= \frac{\exp(\mathbf{w}_c^{\mathsf{T}} \mathbf{x})}{\sum_{i=1}^{C} \exp(\mathbf{w}_i^{\mathsf{T}} \mathbf{x})}.$$

• Softmax回归是logistic回归的多类推广: $\hat{y} = \operatorname*{arg\,max}_{c=1}^{C} \mathbf{w}_c^{\mathrm{T}} \mathbf{x}$

交叉熵损失 Cross Entropy Loss

$$\mathcal{R}(W) = -\frac{1}{N} \sum_{n=1}^{N} (\mathbf{y}^{(n)})^{\mathrm{T}} \log \hat{\mathbf{y}}^{(n)}$$

Perceptron 感知器

感知器

■ 模拟生物神经元行为的机器,有与生物神经元相对应的部件,如权重(突触)、偏置(阈值)及激活函数(细胞体),输出为+1或-1。

标准神经元结构

感知器的学习过程

• 一种错误驱动的在线学习方法

1. 初始化权重向量

2. 每分错一个样 本时更新权重

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

输入: 训练集: $(\mathbf{x}_i, y_i), i = 1, \dots, N$, 迭代次数: T1 初始化: $\mathbf{w}_0 = 0$; **2** k = 0; 3 for $t = 1 \cdots T$ do for $i = 1 \cdots N$ do 选取一个样本 (\mathbf{x}_i, y_i) , if $\mathbf{w}^{\mathrm{T}}(y_i \mathbf{x}_i) < 0$ then 5 $\mathbf{w}_{k+1} = \mathbf{w}_k + y_i \mathbf{x}_i, \quad ;$ 6 表示分错 k = k + 1;7 end 8 $\hat{y} = \begin{cases} +1 & \stackrel{\text{def}}{=} \mathbf{w}^{\mathsf{T}} \mathbf{x} > 0 \\ -1 & \stackrel{\text{def}}{=} \mathbf{w}^{\mathsf{T}} \mathbf{x} \le 0 \end{cases},$ end 9 10 end 输出: \mathbf{w}_k

感知器参数学习的更新过程

- 蓝色空心点为负例
- 黑色箭头表示权重向量
- 红色虚线箭头表示权重的 更新方向

感知器参数学习的更新过程

- 蓝色空心点为负例
- 黑色箭头表示权重向量
- 红色虚线箭头表示权重的 更新方向

• 一种错误驱动的在线学习方法

根据感知器的学习策略,可以反推出感知器的损失函数为:

$$\mathcal{L}(\mathbf{w}; \mathbf{x}, y) = \max(0, -y\mathbf{w}^{\mathrm{T}}\mathbf{x}).$$

采用随机梯度下降, 其每次更新的梯度为

$$\frac{\partial \mathcal{L}(\mathbf{w}; \mathbf{x}, y)}{\partial \mathbf{w}} = \begin{cases} 0 & \text{if } y\mathbf{w}^{\mathrm{T}}\mathbf{x} > 0, \\ -y\mathbf{x} & \text{if } y\mathbf{w}^{\mathrm{T}}\mathbf{x} < 0. \end{cases}$$

每分错一个样本时更新权重 $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

感知器的学习过程

• 一种错误驱动的在线学习方法

1. 初始化权重向量

2. 每分错一个样 本时更新权重

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

输入: 训练集: $(\mathbf{x}_i, y_i), i = 1, \dots, N$, 迭代次数: T

对比Logistic回归的更新方式:

$$\frac{\partial \mathcal{R}(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{x}^{(i)} \cdot \left(\sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) - y^{(i)} \right) \right)$$

定义 3.1 – 两类线性可分: 对于训练集 $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$,如果存在权重向量 \mathbf{w}^* ,对所有样本都满足 $yf(\mathbf{x}; \mathbf{w}^*) > 0$,那么训练集 \mathcal{D} 是线性可分的。

定理 3.1 – 感知器收敛性: 给定一个训练集 $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$,假设R是训练集中最大的特征向量的模,

$$R = \max_{n} \|x^{(n)}\|.$$

如果训练集 \mathcal{D} 线性可分,感知器学习算法3.1的权重更新次数不超过 $\frac{R^2}{\gamma^2}$ 。

支持向量机 SVM

-Q:将训练样本分开的超平面可能有很多,哪一个好呢?

- A:应选择"正中间",容忍性好,鲁棒性高,泛化能力最强.

间隔与支持向量

超平面方程:

$$\boldsymbol{w}^{\top}\boldsymbol{x} + b = 0$$

支持向量

支持向量机基本型

• 最大间隔: 寻找参数 $oldsymbol{w}$ 和 b , 使得 γ 最大.

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,max}} \frac{2}{\|\boldsymbol{w}\|}$$
s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

支持向量机基本型

• 最大间隔: 寻找参数 w 和 b , 使得 γ 最大.

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

线性不可分

- Q:若不存在一个能正确划分两类样本的超平面,怎么办?
- A:将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分.

核支持向量机

• 设样本 $m{x}$ 映射后的向量为 $\phi(m{x})$,划分超平面为 $f(m{x}) = m{w}^ op\phi(m{x}) + b$

原始问题

$$\min_{oldsymbol{w},b} \; rac{1}{2} \|oldsymbol{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^{\top}\phi(\mathbf{x}_i) + b) \ge 1, i = 1, 2, ..., m.$$

.

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j) - \sum_{i=1}^{m} \alpha_i$$

s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \ \alpha_i \ge 0, \ i = 1, 2, \dots, m.$$

预测

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{m} \alpha_i y_i \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}) + b$$

只以内积的形式出现

震器 历 补 周 平 柔 新

核函数

• 基本想法: 不显式地设计核映射, 而是设计核函数.

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j)$$

核函数

• 基本想法: 不显式地设计核映射, 而是设计核函数.

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j)$$

• Mercer定理(充分非必要): 只要一个对称函数所对应的核矩阵半正定,则它就能作为核函数来使用.

核函数

• 基本想法: 不显式地设计核映射, 而是设计核函数.

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j)$$

- Mercer定理(充分非必要): 只要一个对称函数所对应的核矩阵半正定,则它就能作为核函数来使用.
- 常用核函数:

名称	表达式	参数
线性核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = oldsymbol{x}_i^ op oldsymbol{x}_j$	
多项式核	$\kappa(oldsymbol{x_i}, oldsymbol{x_j}) = (oldsymbol{x}_i^ op oldsymbol{x}_j)^d$	$d \ge 1$ 为多项式的次数
高斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2}{2\delta^2}\right)$	$\delta > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ }{\delta}\right)$	$\delta > 0$
Sigmoid核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\beta \boldsymbol{x}_i^{\top} \boldsymbol{x}_j + \theta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

图 7: 核函数映射示意

《支持向量机通俗导论:理解SVM 的三层境界》

http://scikit-learn.org/stable/modules/svm.html

小结

线性分类器小结

	激活函数	损失函数	优化方法
线性回归	=	$(y - \mathbf{w}^{\mathrm{T}}\mathbf{x})^2$	最小二乘、梯度下降
Logistic 回归	$\sigma(\mathbf{w}^{ ext{ iny T}}\mathbf{x})$	$\mathbf{y} \log \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x})$	梯度下降
Softmax 回归	$\operatorname{softmax}(W^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$	$\mathbf{y} \log \operatorname{softmax}(W^{\mathrm{T}}\mathbf{x})$	梯度下降
感知器	$\operatorname{sgn}(\mathbf{w}^{\mathrm{T}}\mathbf{x})$	$\max(0, -y\mathbf{w}^{\mathrm{T}}\mathbf{x})$	随机梯度下降
支持向量机	$\operatorname{sgn}(\mathbf{w}^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$	$\max(0, 1 - y\mathbf{w}^{\mathrm{T}}\mathbf{x})$	二次规划、SMO等

表 3.1 几种不同的线性模型对比

不同损失函数的对比

为了比较这些损失函数,我们统一定义类别标签 $y \in \{+1, -1\}$,并定义 $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b$ 。这样对于样本 (\mathbf{x}, y) ,若 $yf(\mathbf{x}; \mathbf{w}) > 0$,则分类正确,相反则分类错误。这样为了方便比较这些模型,我们可以将它们的损失函数都表述为定义在 $yf(\mathbf{x}; \mathbf{w})$ 上的函数。

$$\mathcal{L}_{LR} = \log (1 + \exp(-yf(\mathbf{x}; \mathbf{w})))$$

$$\mathcal{L}_{hinge} = \max (0, 1 - yf(\mathbf{x}; \mathbf{w}))$$

$$\mathcal{L}_p = \max(0, -yf(\mathbf{x}; \mathbf{w}))$$

$$\mathcal{L}_{squared} = (1 - yf(\mathbf{x}; \mathbf{w}))^2$$

• 编程练习: <u>chap3_softmax_regression</u>

12	激活函数	损失函数	优化方法
线性回归		$(y - \mathbf{w}^{\mathrm{T}}\mathbf{x})^2$	最小二乘、梯度下降
Logistic 回归	$\sigma(\mathbf{w}^{ ext{ iny T}}\mathbf{x})$	$\mathbf{y} \log \sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x})$	梯度下降
Softmax 回归	$\operatorname{softmax}(W^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$	$\mathbf{y} \log \operatorname{softmax}(W^{T}\mathbf{x})$	梯度下降
感知器	$\mathrm{sgn}(\mathbf{w}^{\scriptscriptstyle\mathrm{T}}\mathbf{x})$	$\max(0, -y\mathbf{w}^{\mathrm{T}}\mathbf{x})$	随机梯度下降
支持向量机	$\mathrm{sgn}(\mathbf{w}^{\scriptscriptstyle{\mathrm{T}}}\mathbf{x})$	$\max(0, 1 - y\mathbf{w}^{\mathrm{T}}\mathbf{x})$	二次规划、SMO等

表 3.1 几种不同的线性模型对比

深度学习

附录: 概率基本概念

关于概率的一些基本概念

- 概率 (Probability)
 - 一个随机事件发生的可能性大小,为0到1之间的实数。
- 随机变量 (Random Variable)
 - 比如随机掷一个骰子,得到的点数就可以看成一个随机变量X,其取值为{1,2,3,4,5,6}。
- 概率分布 (Probability Distribution)
 - 一个随机变量X取每种可能值的概率
 - 并满足

$$P(X = x_i) = p(x_i), \quad \forall i \in \{1, \dots, n\}.$$

$$\sum_{i=1}^{n} p(x_i) = 1,$$

$$p(x_i) \geq 0, \quad \forall i \in \{1, \cdots, n\}.$$

概率的一些基本概念

• 伯努利分布 (Bernoulli Distribution)

■ 在一次试验中,事件A出现的概率为 μ ,不出现的概率为 $1 - \mu$ 。若用变量X表示事件A出现的次数,则X的取值为0和1,其相应的分布为

$$p(x) = \mu^x (1 - \mu)^{(1-x)}$$

- 二项分布 (Binomial Distribution)
 - 在n次伯努利分布中,若以变量X表示事件A出现的次数,则X的取值为{0,...,n},其相应的分布

$$P(X = k) = \binom{n}{k} \mu^k (1 - \mu)^{n-k}, \qquad k = 1 \dots, n$$

二项式系数,表示从n个元素中取出k个元素而不考虑其顺序的组合的总数。

概率的一些基本概念

- 条件概率 (Conditional Probability)
 - 对于离散随机向量(X,Y), 已知X=x的条件下, 随机变量Y=y的条件概率为:

$$p(y|x) = P(Y = y|X = x) = \frac{p(x,y)}{p(x)}$$

- 贝叶斯公式
 - 两个条件概率p(y|x)和p(x|y)之间的关系

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$