

Accessibility of Teaching Materials

Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials

Master of Science thesis in Learning and Leadership

HÅKAN ANDERSSON SEBASTIAN EVERETT ERIKSSON

Master's thesis 2018:NN

Accessibility of Teaching Materials

Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials

HÅKAN ANDERSSON SEBASTIAN EVERETT ERIKSSON

Department of Communication and Learning in Science CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 Accessibility of Teaching Materials Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials HÅKAN ANDERSSON & SEBASTIAN EVERETT ERIKSSON

© HÅKAN ANDERSSON & SEBASTIAN EVERETT ERIKSSON, 2018.

Supervisor: Mats Ander, Department of Industrial and Materials Science Examiner: Samuel Bengmark, Department of Mathematical Sciences

Master's Thesis 2018:NN Department of Communication and Learning in Science Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000

Cover: —Caption for cover page figure if used, possibly with reference to further information in the report—

Typeset in I⁴TEX Gothenburg, Sweden 2018 Accessibility of Teaching Materials

Exploring Obtainability and Testing Usability in Design of Shareable Teaching Materials

HÅKAN ANDERSSON & SEBASTIAN EVERETT ERIKSSON

Department of Communication and Learning in Science

Chalmers University of Technology

Abstract

For shareable teaching materials to work as intended, they need to be accessible to possible recipients. In this study, accessibility is defined as being obtainable and usable.

The obtainability aspect is primarily explored via literature study. The usability aspect is analyzed by testing of existing teaching materials. The methodology is inspired by usability testing methods found in computer science and IT.

Research questions created to be answered in this thesis are:

- RQ1: How can usability testing be used to improve the usability of teaching materials?
- RQ2: How can usability testing as a method be made accessible for teachers with limited experience of usability design?
- RQ3: What factors do teachers consider when deciding on how to use a teaching material?
- RQ4: From the perspective of a technological system, how can usability design for teaching materials be used to help teachers?

Keywords: usability, obtainability, teaching materials, accessibility, Kleindagarna, Steve Krug.

Acknowledgements

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Name Familyname, Gothenburg, Month Year

Contents

Li	st of	Figures	xi
Li	st of	Tables	xiii
1	Intr 1.1 1.2	oductionResearch Questions	1 1 1 2
2	The 2.1 2.2 2.3	Project types	3 5 5 5 6 7 8
3	Met 3.1	hods The KRUT-methodology	9 9 11 12
4	Res: 4.1 4.2 4.3	Summary of usability tests	13 13 15 15 15 16 16 17 17 18 18

		4.3.3	Lessons learned	19			
	4.4	The ma	aterials list	19			
		4.4.1	The original materials list	19			
		4.4.2	Revisions of the materials list	20			
		4.4.3	Results from studying how teachers chose their materials	22			
	4.5		al perspective: Things that were learned from all the usability				
		tests .		22			
		4.5.1	Comparisons between the teachers' typical lessons	22			
		4.5.2	Making the material intuitive for different behaviours is im-				
			portant	23			
		4.5.3	Having student handouts as part of a material is appreciated .	23			
		4.5.4	Accounting for teachers' and students' previous knowledge	24			
		4.5.5	Finding common usability problems	24			
5	Disc	ussion		25			
	5.1	Answei	rs to RQ1: How can usability testing be used to improve the				
		usabili	ty of teaching materials?	25			
	5.2	· ·					
	accessible for teachers with limited experience of usability design? .						
	5.3	Answer	rs to RQ3: What factors do teachers consider when deciding				
		on how	to use a teaching material?	27			
	5.4	Answer	rs to RQ4: From the perspective of a technological system, how				
		can usa	ability design for teaching materials be used to help teachers? .	28			
	5.5	Limita	tions of the study	29			
		5.5.1	Homogeneity of usability test data	29			
		5.5.2	Control of usability test data	29			
		5.5.3	Balancing revision sizes	30			
	5.6		work	30			
		5.6.1	For teachers	30			
		5.6.2	For universities and colleges	31			
		5.6.3	For others	31			
6	Con	clusion	ns	33			
Bi	bliog	raphy		35			
\mathbf{A}	\mathbf{App}	endix	1	Ι			

List of Figures

2.1	A redrawn illustration of Obeng's 4 project types	3
2.2	Projects usually resemble a NUMBERS-project more as they progress.	4
2.3	Projects closer to a NUMBERS-project benefit more from a water-	
	fall methodology. Projects farther from a NUMBERS-project benefit	
	more from agile methodology.	4
2.4	A redrawn illustration of the ASD model	
3.1	The custom KRUT-methodology, created for usability testing teaching materials	10
4.1	The original list of materials on Kleindagarna's official website [SOURCE]	. 20
4.2	The second revision of the list of materials, based on Kleindagarna's	
	original seen in figure 4.1	21

List of Tables

2.1	Turner & Cochrane, Dombkins and Obeng described the same type	
	of project differently	Ç
4.1	Summary of all usability tests of the study	14

1

Introduction

Teachers often design their own teaching materials. Many problems may appear when sharing these materials with each other, including: misunderstood abbreviations, unclear purpose and structure, and lack of adaptability that require time and resources for reworking the material.

Usability testing is a method used in software development to discover usability problems in a cheap, efficient and easy-to-do manner. As the usability testing proponent Krug proposes [KÄLLA], these tests can be used for other projects outside of software development. This study explores the use of usability tests in the context of teaching materials, and how it can be done effectively, even by teachers without previous knowledge of usability design.

1.1 Research Questions

More specifically, this study aims to answer the research questions below:

- 1. How can usability testing be adopted to improve the usability of teaching materials?
- 2. How can usability testing as a method be made accessible for teachers with limited experience of usability design?
- 3. What factors do teachers consider when deciding on how to use a teaching material?
- 4. From the perspective of a technological system, how can usability design for teaching materials be used to help teachers?

1.2 Background

[Kleindagarna, what more?]

1.2.1 Kleindagarna

To be able to test teaching materials, a teaching material must exist. For this study, all the teaching materials tested were created by a triannual three-day workshop called Kleindagarna. Kleindagarna is organized by the Swedish Committee for Mathematics Education (SKM), the Swedish National Committee for Mathematics (KVA), the Institute Mittag-Leffler and is funded by Brummer & Partners.

At this workshop, maths teachers from upper secondary school meet up with professors and maths teachers from universities and colleges at the Mittag-Leffler Institute outside Stockholm. During the workshop they collaborate to produce teaching materials in mathematics. These teaching materials are meant to be used for teaching upper secondary school, and often touch subjects that are not typically found in course literature.[SOURCE: Kleindagarna.se]

2

Theory

2.1 Project types

When working on a project, it can be advantageous to identify what kind of project it starts off as. One model put forward by Obeng describes four project types. This is roughly the same model presented by Dombkins, which itself is a revised version of a model made by Turner & Cochrane. Instead of labeling them Type 1-4 or Type A-D, Obeng made the labels descriptive.

The project types each answer yes or no to the two questions: Is the project objective clear? (or Is it known WHAT the project is?) and Are the project methods clear? (or Is it known HOW the project will be done?). [SOURCE: Putting strategy to work, 1996]

Table 2.1: Turner & Cochrane, Dombkins and Obeng described the same type of project differently.

		Turner &			
What	How	Cochrane	Dombkins	Obeng	Example project
yes	yes	Type 1	Type A	Painting by NUMBERS	Engineering
yes	no	Type 2	Type B	Going on a QUEST	Product development
no	yes	Type 3	Type C	Making a MOVIE	Application development
no	no	Type 4	Type D	Lost in a FOG	Research

Obeng visualized these projects with a 2-by-2 matrix. Although the types are categorical, the axes are continual. This means that a project can be represented by a point somewhere within the matrix.

Figure 2.1: A redrawn illustration of Obeng's 4 project types.

Robert Buttrick took Obeng's matrix further, introducing arrows to visualize that projects can change type as they progress. This is done by defining previously unknown HOWs and/or WHATs. [SOURCE ISBN:9780273745273].

Figure 2.2: Projects usually resemble a NUMBERS-project more as they progress.

Depending on the type of project, Obeng suggests differenent approaches to progressing them. If the WHATs and the HOWs are known, it gets easier to estimate the cost, time and result of a project. Conversely, a project with more unknowns requires work before it starts to look promising. The work required before projects with many unknowns show promise can vary, which is why Obeng recommends that at least the initial processes of these projects should follow an agile (iterative and/or parallell) methodology. Generally, projects closer to FOG benefit from agile methodology and projects closer to NUMBERS benefit from waterfall (linear) methodology.

Figure 2.3: Projects closer to a NUMBERS-project benefit more from a waterfall methodology. Projects farther from a NUMBERS-project benefit more from agile methodology.

2.1.1 Types of teaching material projects

It can be argued that designing teaching materials can start off as any type of project.

One project may for example start with a set of inspirational resources, and the designer knows exactly what to add and what to remove to finish the project. The designer has a clear vision both concerning the WHATs and the HOWs of the project, making it a NUMBERS-project.

Another project may stem from a forced need of new teaching materials, because of a governmental decision to introduce programming in mathematics. The WHATs are somewhat known but if it is unknown how to reach these objectives, the project start off as a QUEST-project. If this project would be riddled with more question marks, for example if it would be unclear what programming language (if any) should be used and on what level the programming should to be taught, then the WHATs are less known and the problem would therefore start as a FOG-project.

Designing a teaching material as a MOVIE-project would be if the designer had all the skills (pedagogical, technological etc.) needed to create the teaching material, but did not know at the start of the project what content the teaching material should include or what objectives should be met.

2.1.2 Types when revising teaching material projects

When a teaching material has been created, more or less successfully, the teaching material can be used in a new project aiming to improve it. The teaching materials may not only change HOW the previous objectives are met, because it may sometimes prove beneficial to also change WHAT the objectives are. These projects therefore start as FOG-projects.

2.2 Franklin's theory: Technology as a system

Since it is not obvious what the implications of shared teaching materials could be, it is important to stay critical and discuss the effects of certain material designs during the study. A certain perspective that can be used is one by U. Franklin, in the book and lecture series The Real World of Technology (Franklin, 1990). In it, she discusses technology as a complex system:

"Technology is not the sum of the artifacts, of the wheels and gears, of the rails and electronic transmitters. Technology is a system. It entails far more than its individual material components. Technology involves organization, procedures, symbols, new words, equations, and, most of all, a mindset. [...] Personally, I much prefer to think in terms not of systems but of a web of interactions. This allows me to see how stresses on one thread affect all others. The image also acknowledges the inherent strength of a web and recognizes the existence of patterns and designs." - Franklin, 1990, pages 16 and 95.

Since teaching materials encompass both a way of working and artifacts, they can be viewed as a technology, as defined by Franklin. As such, they affect how a teacher does their work in complex ways. For example, as Franklin also notes, materials can be used both to assist teachers in their lesson design, or to make them comply to certain standards and control structures. Therefore, it becomes important to consider effects on the teacher's work as a whole, instead of limiting the analysis to a specific lesson.

An important aspect of these systems of technology that Franklin defines is the difference between holistic and prescriptive technologies. In short, these can be described as the difference between an early industrial factory worker and an artisan: While the artisan maintains control over how they do their work throughout the whole production process, the factory worker works only on a specific task in a process controlled through strict social structures. The artisan relates to the holistic technology, while the factory worker relates to the prescriptive technology. Franklin further comments that, while prescriptive technology can be efficient and productive, it comes with a big social mortgage of a culture of compliance, and there only being one way of doing something.

2.3 Krug's theory: What is usability, and how do you test it?

Steve Krug is a usability consultant who wrote books about usability. His usability books are mainly focused on websites, but as he writes himself, his methods are applicable on other things as well.

Krug defines his first law of usability as "Don't make me think!", implying that users should understand what a website is and how to use it without expending any effort thinking about it:

"A person of average (or even below average) ability and experience can figure out how to use the thing to accomplish something without it being more trouble than it's worth." [SOURCE: DON'T MAKE ME THINK REVISITED, p.9]

Aside from a few principles of usability, Krug puts a lot of effort into describing the usefulness of usability testing and how to do such testing in a cheap and easy manner. In his book specifically about usability testing, he defines such tests as:

"Watching people try to use what you're creating/designing/building (or something you've already created/desgined/built), with the intention of

(a) making it easier for people to use or (b) proving that it is easy to use."

Or, in simpler terms:

"A facilitator sits in a room with the participant, gives him[/her] some tasks to do, and asks him[/her] to think out loud while he[/she] does them."

2.3.1 Making usability testing scientific

One important difference between Krug's method and the method used in this thesis is that Krug's focus is not to be scientific, but to merely improve what one is building [SOURCE: ROCKET SURGERY MADE EASY]. Thus, certain parts of his method have been adapted to make it easier to analyze:

- 1. In contrast to Krug's method, the tasks in the tests are not altered mid-test. This makes them more comparable.
- 2. There is more data gathering involved in the form of recordings and notes, rather than having a group of observers watching the test, to make analysis and comparison easier long after the tests have been conducted.

2.3.2 Connecting usability theory for websites to teaching materials

One can argue that there is a large difference between teaching materials and websites. While in some cases these can be the same, such as online materials shared through a blog post, a teaching material can sometimes take the form of a book, a single PDF file, and more. All the materials have in common is that they are used to facilitate and/or empower a teacher's work. However, usability testing is still clearly applicable in the sense that it consists of observing someone using what you are testing.

Since teaching materials can be used in many different ways, the use case had to be narrowed down. Thus, in this thesis, the use case that the usability tests cover consist mainly of how teachers use teaching materials to plan their lessons. This does not mean that other use cases are ignored, such as a teacher simply using a material to learn more about a subject. However, the lesson planning is the main focus of the usability testing in this thesis.

2.4 Adaptive Software Development

The main method of collecting data for this study consisted of a process inspired by Adaptive Software Development (ASD). This method involves iterative development with strengths that fit this study, such as being flexible and low risk. This can for example mean that new information can be easily adopted in future tests and that results can be delivered even if test subjects decide to terminate involvement in this study early. (Sommerville, 2016)

ASD is an antecedent to Agile Software Development, paving the way for popular project management methodologies such as Scrum and Kanban. The methodology for this study has no need of being as complex as Scrum or Kanban, one of the main reasons being the relative small size of the development team (i.e. the two authors of this paper), whereas for example the Scrum model is generally used by splitting a larger workforce in teams of 3 to 9. (Schwaber, 2004)

As can be seen in Figure 2.4 ASD consists of three stages with a feedback loop, enabling developers to perform multiple iterations of improvement based on what they learn from users. This model is similar to the methodology that was developed in this study to collect data on usability of teaching materials. (Highsmith, 2000, p.84)

Figure 2.4: A redrawn illustration of the ASD model

3

Methods

When discussing accessibility of a teaching material, in this study, it has been separated into two aspects: obtainability and usability. A method was developed for collecting usability data, but to accommodate for collecting obtainability data, this method was slightly modified when implementing it. The following methodology describes the foundation of the methodology used in this study, as well as a methodology one can use when revising their own shareable teaching material.

3.1 The KRUT-methodology

While deciding on the aim of this study, a new methodology was developed for usability testing. The methodology was named KRUT, from the processes involved; Kick-off meeting, Revising material, Usability Testing. Developing KRUT helped clarify what the study did and did not aim to investigate and how that was expected to play out. As with ASD, KRUT includes a learning loop. The main purpose of KRUT is to use data collected by usability testing a teaching material to revise said material. Usability testing fills two roles; identifying satisfactory usability as well as identifying potential gains in usability. KRUT also describes the roles of the different actors, based on the current stage of the testing phase. It is designed with a team of two and a single subject group in mind. The KRUT-methodology is described in Figure 3.1.

Comparing ASD to KRUT

There are both similarities and differences when comparing KRUT to the ASD methodology presented in Figure 2.4.

The **Kick Off Meeting** used to introduce one or more teachers to the study, as well as deciding on a teaching material to work on and a date for the first usability test, is comparable to the **Project Initiation** of ASD, being prior to the steps contained inside the **Learning Loop**.

What in the ASD methodology is called **Adaptive Cycle Planning** is the initial

MATERIAL #2 MATERIAL # i-PRESENTERS KICK OFF MEETING TEACHER(S) >+ >+ >+ >+ MATERIAL REVISING DESIGNERS Do ITERATION n MODERATOR **USABILITY TESTING** SECRETARY USER (teacher) USABILITY DATA >+ TESTING PHASE

Figure 3.1: The custom KRUT-methodology, created for usability testing teaching materials

step of the **Revising Material** stage, deciding on how to rework the teaching material based on the data collected from a **Kick Off Meeting** or previous **Usability Test**. This is inevitably one of the stages where collected data is summarized and analyzed, even if just as a thought process.

The **Concurrent Component Engineering** part of ASD is practically the same as the **Revising Material** stage. This is where a coder would revise the code of the program and this is likewise where the product, the teaching material, is being worked on with the intent of improving its usability.

What is called *Quality Review* in ASD is the Usability Testing part of KRUT. This is where the teaching material is tested on a teacher and the data needed to improve the usability of the teaching material is collected. The method used to test usability is based on Steve Krug's script for usability testing websites. Because a teaching material is quite different from a website, oftentimes focusing on interactivity, the script could not be used without some changes. There is however some important aspects of Steve Krug's script, e.g. not asking leading questions, that is of great importance to the quality of the data and thereby the quality of future revisions of the teaching material. (Krug, 2009)

The end goal of ASD is called *Final QA and Release*. In the case of KRUT, this step has been reduced. Its original intent is to finalize a product, whereas KRUT defines every revision as an equally valid product, even though the latest revision would theoretically be the most desired.

3.1.1 Implementation of KRUT

Test subjects consisted of individual teachers and teacher students, instead of a team (or teams) of teachers, as would have been desired. Because of this, and to collect more data concerning the obtainability aspect, each usability tests began with a stripped down version of a Kick Off Meeting. This meant that the subject was able to choose from a detailed list what teaching material they wanted to use for their usability test. This list was compiled specifically for this study and consisted of sample teaching materials produced at Kleindagarna. This was done as a compromise between delimiting the study and offering teaching materials that felt relevant to the teachers. Even though KRUT was designed to be implemented by a team of two, there were no severe difficulties in executing KRUT when the team at times was forced to only one member.

mention Kleinda garna earlier or describe more here. /H

When revising material, the decisions of what to revise when is determined by a combination of data from usability tests and by studying literature. There may have been instances where a teacher's assumptions of how the next revision will look have been unmet. These cases need to be analyzed and mentioned in the final report, as they may lead to interesting discussions. If for example a revision is made following a certain pedagogic template, and the resulting material makes the test subject less inclined to use it on a lesson, new conclusions can possibly be drawn

The later part of this paragraph brings up something we don't do /H about accessibility of designing teaching materials.

3.1.2 Test subject anonymity

There are several ways of presenting the personal details of test subjects in scientific studies. In this study some personal details have been disclosed and some have been held anonymous. What is disclosed and examples of what is held anonymous are listed below.

Disclosed information

- Age rounded to nearest 5 years.
- Current status if the test subject is currently working as a teacher and if so on what stage of education, or if they are e.g. studying to become a teacher.
- Years in teaching nearest year if under 10 years, can otherwise be rounded to nearest 5 years. No regard to the age of students taught. No regard to full-time or part-time employment.
- Subjects what school subjects is the test subject certified to teach or studying to teach?

Anonymous information

- Sex/Gender the risk of a reader finding false correlations from the data is assumed to be greater if the test subject's sex and/or gender is disclosed.
- Name the name of the test subjects will not be disclosed, and because the sex/gender will not either, the label of the test subjects will also be as gender free as possible.
- Name of school with this information, it would be too easy to identify the test subject.
- Place of school all subjects studied will live and work in close proximity to Gothenburg, Sweden, as it has been decided to delimit the tests to personal meetings.

4

Results

Results can be presented in different ways. One way would be to describe the usability tests in detail, and another way would be to only summarize the results in table. By describing all usability tests in detail, it would be hard to get a good overall view of the findings. Focusing more on something also means focusing less on something else, and there are other parts of the documentation that deserve that attention more. It would therefore not be ideal to do lengthy elaborations on each teaching material. On the flip side, only giving a summary on the findings would leave out describing the crucial process. The process mainly includes:

By results, do we limit ourselves to the usability tests' If not we need to change this opening text. /H

- 1. Performing a usability test
- 2. Identifying what can be learned from the data
- 3. Figuring out how the particular teaching material can be improved from the data
- 4. Revising the teaching material (preferably in an effective manner)

The ideal way of delivering the results should entail a comportance between these two extremes. The finding has therefore been divided into a sample case and a summary. The sample case describes a teaching material thouroughly, delving into details of the process and findings, exemplifying the usability testing process.

4.1 Summary of usability tests

Seen in table 4.1 is a summary of all the usability tests. Each test has a codename containing one lower case letter, referring to the material that was tested, and an uppercase letter, referring to the test subject. For example, test "nB" tested material "Nätverk - insamling av data" on test subject B.

Every test subject also has a longer codename containing their age, profession and teaching experience. This is according to section 3.1.2, about what information is disclosed about the test subjects. The format of this codename is as follows:

• A letter in alphabetical order chosen chronologically. For example, test subject

"B" was done earlier than test "D" but later than test "A".

- The age of the test subject, rounded to the nearest 25 years.
- \bullet The letter "T" if they worked or had worked as a teacher, or "S" if they were studying teaching.
- The total number of years they worked as a teacher, rounded up if less than 10, otherwise rounded to the nearest 5 years.

Thus, "A30T2" means test subject A is approximately 30 years old, has worked as a teacher, and has approximately two years of teaching experience.

Test codename	Date for test	Material that was tested	Test subject
mA	2018-04-24	Mönster och talföljder - Pascals triangel ur slantsin- gling	A30T2
nB	2018-04-30	Nätverk - insamling av data	B25S
1C	2018-05-03	Vad ska lotten kosta?	C35T3
aD	2018-05-09	Konsten att bestämma arean	D35T6
sE	2018-05-09	Område statistik	E40T4
oF	2018-05-14	Modellering	F50T30
nF	2018-05-14	Nätverk - insamling av data	F50T30
mG	2018-05-24	Mönster och talföljder - Pascals triangel ur slantsin- gling	G25T2
dG	2018-05-24	Den dolda och tvetydiga matematiken	G25T2
dH	2018-05-30	Den dolda och tvetydiga matematiken	H25S
dI	2018-06-12	Den dolda och tvetydiga matematiken	I30T1

Table 4.1: Summary of all usability tests of the study

4.2 Sample case 1. Kleinmaterial: Nätverk

Each teaching material tested has a different story to tell. Keep in mind that some of the content of the steps below are common to all teaching materials tested, while some are specific to the particular teaching material.

4.2.1 The preexisting work

The sample teaching material was produced by a team at Kleindagarna. These consisted of a handful of teachers, a subject expert and a Klein-representative. When the workshop at Kleindagarna was over, the teaching material was published on Kleindagarna's website.

4.2.2 Usability test I

The first usability test was performed by one of the authors of this report on the other author. As this was the second ever usability test performed, the intention was primarily to identify what to take into account for future usability testing and to identify the possibility of improving the usability testing methodology. The method consisted of following a script document on a computer including:

- A table made to be filled with personal information
- A list of keywords and questions (manuscript) inspired by the usability test script created by Steve Krug.

Results from this test included:

- Unclear if some tasks were meant to be executed by teacher or students.
- The material expected the teacher to be very familiar with the subject, tackling advanced areas of mathematics with mostly bullet points, expecting the teacher to provide the explanation.
- There was a concern on the material having too large scope. The material includes network theory, statistics, algorithms and data protection laws (GDPR), and aims to both explain and problematize all of these aspects.

4.2.3 Revision of methodology

After usability testing the teaching material, the authors identified that there was very limited information presented in the list of teaching materials on Kleindagarna's website. This made it difficult for the curious to know if the material was suitable

for them. Because of that, a new list of teaching materials was compiled. This consisted of information not just what the subject of the material was, but also for what grade it was suited and a more detailed description of the teaching material. After the usability test, a discussion arose on what type of material the revisions would be. Two suggested possibilities were documents (i.e. pdf- or odt-files) and presentations (e.g. pptx-files). A document would have the strength of being easily skimmed and modified. A presentation would have the strength of being a ready-made lesson material, with the potential of not requiring as much planning time. The discussion culminated in the decision to choose type on a case-by-case basis. Some factors to take into account when deciding on the type would be: results from usability tests, perceived intent of original creators and what form would be most suited for the particular teaching material.

4.2.4 Watching the Klein-lecture

Before designing a teaching material, the participators on Kleindagarna receive a lecture by the subject-expert. This lecture was recorded and confidentially shared online. Before revising the material, it was decided that it would be beneficial to watch this lecture, to learn more about the theory the material was based upon and what the creators intended the students would learn.

4.2.5 Usability test II

The same revision was tested again. The test subject this time was a Klein-representative that had been involved in the creation of the original teaching material. Testing teaching materials on a subject that was not a teacher in upper-secondary-school or a teacher student aiming to teach at upper-secondary-school was not the norm. One purpose of this was to analyze how rewarding usability testing non-intended subject could be. The test subject is also teaching mathematics on an upper-secondary-school level, but to post-secondary school students (one additional difference is that the pace of the courses are comparably higher than in upper-secondary-school). Results from this test included:

- The teaching material wasn't considered complete by the creators.
- The biggest remaining problem of the material design lies in a student activity where the class are to compile data to create a network. To be able to make the network and its analysis meaningful, it was suggested that the compiled data should be personal and able to lead to a finding. Ultimately, the activity asks for generated data, instead of personal, more valuable data. The reason for this is because no conceivable alternative could eliminate the risk that personal data could result in undesirable findings. For example if the data collected answers what students had lunch together, outcasts are visible in the finding.

4.2.6 Revision of teaching material

From the data collected, the following revisions were made: A decision was made to revise the material in the form of a presentation, with the aim to offer a ready-made presentation with enough explanation of the required theory to be a desirable product. To realize this, changes were made to the structure and to content.

Structural changes

- The separation of information to the teacher and the main presentation was improved by implementing tabs similar to how many websites function. This also clarified the structure to the user, enabling the user to quickly get an overview of the structure.
- The presentation's first slides contains useful information targeted to a curious teacher including how to read the important presentation notes (as these consists of teacher instructions and explanations).

Content changes

- As mentioned previously, the presentation contains teacher instructions and
 explanations in the form of presentation notes. These can be printed or read
 in the presentation program, and also viewed while presenting. This was
 previously missing from the teacher material, or carelessly intertwined with
 content that seemed to be aimed to students.
- Activities were altered to be either less vague or more closely tied to what the students are expected to learn.
- The content was modified to be easily understood and conveyed. An example of this was replacing the headings so that they describe their respective slide, instead of being named after the current 5E-phase.

4.2.7 What was learned from this case?

From this particular case, the following knowledge was obtained:

- Someone involved in the creation of a teaching material can have a very different experience and connection to the teaching material than what is conveyed to a reader. Maybe there is a part the creator is not satisfied with, but the reader might assume it is meant to be complete and only understand it as poorly made. This exemplifies the flaws of one-way communication.
- There needs to be a decision on how the teaching material is presented and

what it aims to be. It can be everything from inspiring reading material to a documentary.

4.3 Sample case 2. Kleinmaterial: Vanliga missuppfattningar

4.3.1 The preexisting work

Just like sample case 1, in section 4.2, the teaching material in sample case 2 was produced by a team at Kleindagarna. It was about common misconceptions in mathematics. It had a list of exercises in the beginning and a list of correct answers in the end. In between these lists, it had a lesson plan. One of the main points of the material was to categorize different mathematical exercises as "beräkning" (calculation), "förenkling" (simplification), and "ekvationslösning" (equation solving).

[FIGURE: MATERIAL ZOOMED OUT] [REFERENCE: MATERIAL APPENDIX]

4.3.2 Usability tests and problems found

There were three relatively similar usability tests done on this material. The tests revealed that the material had some problems with structure and explaining what the exercises were supposed to teach. All subjects understood the main points of the material eventually, but it took them a while to dos o. In order of the tests done, these problems were found:

- In test dG, see table 4.1, the meaning of the different categories were unclear at first. The test subject first thought the exercises were examples of solutions rather than exercises. The subject also expressed that it took a lot of scrolling up and down to connect the first list with the lesson plan.
- The test subject in test dH expressed directly that they wanted a written purpose, connection to the curriculum, and time estimations. They expressed a need for more descriptions in general since the material was lacking an introduction or background, though they didn't want too much text either.
- In test dI, the test subject scanned the text up and down more compared to the previous tests, rather than reading it from top to bottom. This time, it took even longer for the subject to understand the material. This revealed a possible problem with the material's adaption to scanning. For example, the material had headings called things such as "Part A" and "B:2", which didn't explain what the different parts were about. Furthermore, starting the material with a list might have meant that the subject did not know where to start reading, similarly to what happened in tests dG and dH.

4.3.3 Lessons learned

Since three test subjects chose to test this material and revision, it proved to be a good chance to study how different subjects react to the same material. According to Krug [KÄLLA], testing the same thing several times tends to reveal the same problems, aside from a couple of differences. This was found to be the case with this material; the unclear structure and lack of introduction was prominent in all tests, but the subjects read the material differently. While in dG and dH the subjects read the material more in-depth, in dI they used more of a scanning approach. This likely affected their abilities to understand the material. The most important lesson gained from this, however, was that test subjects do read the same material in different ways, possibly due to different reading habits in general. This is further strengthened by another test, aD, in which the teacher tended to read everything top-to-bottom and in-depth directly, including the list of materials.

Interestingly, despite complaining about the material's clarity, all test subjects found a way that they could hypothetically use the material in a lesson, and two of them expressed positive thoughts about the material. More specifically, dH said that the material was "fun, with a lot of interactive parts" and "you can cut out [the exercises] and hold the lesson directly, which is good." In dG, the subject said that the material "feels very fun and doable", and "a fun way for the students to get a bit of a [habit]." This might point toward that a material which is difficult to understand still can be useful, if the rest of its content is good and relevant enough.

4.4 The materials list

The original list of materials was remade and revised continuously after feedback from the usability tests. It proved useful as a way to study how the teachers picked their materials, and what information they want when doing so. Below is presented the original list made by Kleindagarna, and the revised list made as part of this thesis.

4.4.1 The original materials list

The original list of materials was a part of Kleindagarna's website. This list contained information about the "Kleinföreläsare" (Klein lecturer), generic maths subject, who was testing the material, followed by a link to most of these materials in PDF-format. This information did not prove enough for the test subjects looking through the materials, which might be due to Kleindagarna's website being designed for a different target group. Note that the design of Kleindagarna's list seen in figure 4.1 was changed slightly during the thesis, and thus the revised list of materials was based on a slightly different design. However, the change only affected the color and font, and the information in the list remained unchanged. Thus, this change should

have little to no effect on the comparability between these different lists.

	erial som utvecklats under tid eftersom fler lektioner utvec	digare Kleindagar. klas. Använd och sprid gärna!	
Kleinföreläsare	Ämne	Lektionspiloter	Lektion
Torsten Ekedahl	Algebra	Kerstin Pettersson och Anny Markussen	Lektion
Magnus Fontes	Modellering	Christer Bergsten och Peter Berggren	Lektion
Axel Hultman	Kombinatorik	Samuel Bengmark och Elisabeth Samuelsso	n Lektion
Torbjörn Lundh	Differentialekvationer	Ola Helenius och Torbjörn Jansson	Saknas
Jana Madjarova	Geometri	Samuel Bengmark och Roger Willför	Lektion
2012			
Kleinföreläsare	Ämne	Lektionspiloter	Lektion

Figure 4.1: The original list of materials on Kleindagarna's official website [SOURCE].

4.4.2 Revisions of the materials list

Revisions of the list of materials were made continuously during the project, building on feedback from the usability tests. The list was remade from scratch in the form of a website, similar to the original list but containing other information, see figure 4.2. Comparing the original list with the revised list, a couple of things were changed:

- A tagline was added under the title: "Lektionsplaneringar med nya matteperspektiv" in Swedish, or "Lesson plans with new mathematical perspectives" in English. This was meant to change the expectations of the teachers looking through the list, so they knew the materials were about mathematics, and that they had innovative perspectives on mathematics rather than remaking typical maths lesson materials.
- A description was added for every material due to teachers expressing during the tests that they wanted to know more about the material they were going

to choose. The descriptions were originally taken directly from the materials and slightly reworked, leading to some materials lacking a description due to not having one in the material itself. This further lead to teachers ignoring the materials that were lacking a description during some tests. Thus, descriptions were added to all the materials.

- The "Lektionspiloter" and "Kleinföreläsare" parts of the list were removed since few of the test subjects would understand what it was or know the people by name, and more space was needed for other information.
- "Relevant(a) gymnasiekurs(er)", in English "Revelant secondary school course(s)", were added due to them existing in most of the materials themselves, and thus easily added into the list. Likewise, "Koppling till ämnesplan", "Connection to the subject curriculum" in English, was added in the same way, also replacing "Ämne" in the original list..
- A title was added to every material in the list to make the materials more scannable instead of having to read the whole description to understand the general idea of the material.

Material från Kleindagarna

Lektionsplaneringar med nya matteperspektiv

Titel	Beskrivning	Relevant(a) gymnasiekurs(er)	Koppling till ämnesplan	Länk
Primtal och kryptering	Beskriver några metoder för att hitta primtal och hur de kan användas i kryptering.	Ma 1b, 1c och 5	Taluppfattning, aritmetik och algebra: primtal, potenser med heltalsexponenter, strategier för användning av digitala verktyg. Innehåller övningsuppgifter.	PDF
Modellering	Eleverna får skapa en modell som mäter hur mycket som går åt av ett stift på en penna per millimeter streck som ritas.	Ma 1b, 1c och 2a	Matematisk modellering	PDF
Ramseytal	Eleverna får lära sig om begreppen permutation och kombination genom något som kallas Ramseytal. Innehåller blad som kan delas ut till eleverna.	Ma 5	Permutation och kombination, grafer och grafteoretiska problem.	PDF
Geometri: Definition, sats och bevis	Eleverna får ställa upp sig på ett sätt så att de bildar en mittpunktsnormal. Sedan får de formulera hypotes och bevis, och fördjupa sig i ämnet med fler geometriska problem.	Ma 1b och 1c		PDF
Operationer: Associativitet och kommutativitet	Undersöker ifall operationer är associativa och/eller kommutativa.			<u>PDF</u>
Område statistik	Går igenom statistiska begrepp genom att låta eleverna rita tsreck utan att prata med varandra, och efteråt analysera strecklängderna.	Ma 2b och 2c	Statistik, beräkning av lägesmått och spridningsmått mm., normalfördelning.	PDF
Randvinkelsatsen	Går igenom randvinkelsatsen laborativt.	Ma 2b och 2c	Geometri, randvinkelsatsen.	PDF
Den dolda och tvetydiga matematiken	Går igenom vanliga missuppfattningar i algebran och aritmetiken.	Ma 1 och 2	Aritmetik och algebra.	<u>PDF</u>
	Utforskar hur en mäter längd, area och			

Figure 4.2: The second revision of the list of materials, based on Kleindagarna's original seen in figure 4.1.

4.4.3 Results from studying how teachers chose their materials

Studying how the teachers chose one material from the materials list generated a few findings that might point toward how teachers choose materials in general. This is relevant for discussing obtainability later in the report.

One common finding was that the teachers want to know what type of material they are picking. For example, they want to know whether the material is a practical lab kind of lesson, or if it's a more common combination of lecture and exercises. Information about the material's connection to the curriculum, and what courses it can be used in, was also appreciated by the test subjects.

Another finding was that teachers looked for materials that connected to what they were teaching at the moment. For example, in test sE, the teacher chose the statistics material to get some perspective on what they had taught recently. This is important to consider in the case of innovative or different materials, since teachers might ignore such materials in favor of those that connect more strongly to their teaching curriculum.

Important to note about these findings is that the teachers were told to choose one material per test, without opening it. Thus, they didn't learn anything about the materials other than what was shown in the list of materials. This is different from reality, since if a teacher would visit a website containing several materials, they would be able to open each of them and look them over before picking one that they'd use in a lesson. However, the findings in this study might still be useful for getting some pointers in what teachers are looking for in a material, and what they want to know about it.

4.5 General perspective: Things that were learned from all the usability tests

The previous usability test cases in this chapter described how results were produced from a couple of specific tests. In a similar manner, more results were produced by going through the tests one by one and summarizing the findings, and comparing the tests next to each other. Below are some findings from this general analysis.

4.5.1 Comparisons between the teachers' typical lessons

As described earlier [REFERENS? GÖR VI DETTA I METODKAPITLET?], part of the usability test consisted of asking the teachers what their typical lesson looked like. The answers the teachers gave showed that most teachers work with a combination of lectures in group and individual student exercises, even if their lesson

lengths and structures were different. For example, one teacher had three hour lessons with multiple 10 minute breaks, while another had one hour lessons. Other than that, tools such as Goegebra, calculators, computers, and online quiz tools were mentioned by some individual teachers.

4.5.2 Making the material intuitive for different behaviours is important

Because of the difference in how teachers read a material, where one might instantly read the material in-depth and the other might just scroll down while scanning it, having a material be intuitive at first glance is a good thing. Some materials took the teachers a while to understand, which could have been rectified through a more clear structure and by following typical patterns that the teachers are used to. One pattern that was asked for directly in two of the usability tests (dH and dI) was to have an introductory text, which was lacking for the specific material that was tested. At the same time, in one of the tests (mA), the teacher completely ignored the introduction at first to make sense of the material's content by itself. In either case, the material should ideally be clear to understand for both types of material reading behaviours.

4.5.3 Having student handouts as part of a material is appreciated

All materials didn't have parts that could be handed out to students, such as a list of exercises. However, many teachers seemed to appreciate such "handouts", or ask for them when they were missing. For example, one teacher, in test aD, wanted a handout for the student that explained a difficult word that they hadn't encountered before. Another teacher said in test dI that they could use a list of exercises by itself without following the exact lesson plan. This shows that exercises as a part of a material can improve the adaptability of the material. In contrast to this, in test nB one teacher expressed that materials can also work as a source of inspiration rather than something concrete and finished as a handout or a finished lesson plan. An important aspect of both of these materials, the "concrete handout" and the "source of inspiration", is the amount of work that these different types require for adaption into a real lesson: The handout can be printed and handed out directly, while the inspiration has to be reworked into a new material.

4.5.4 Accounting for teachers' and students' previous knowledge

A common problem among many materials was the teacher's lack of previous knowledge about the subject that the material presented. The most common and concrete

problem that appeared was when new vocabulary was used, such as RSA (tests IC and dH) and Dido's problem (dH). There was also an issue with one teacher not feeling competent enough to teach a subject that a material covers (sE). In contrast, another teacher expressed that a material could be explored together with the students when the teacher didn't know everything about it either (IC). Similarly, some materials seemed too difficult for certain teachers to use due to their students' lack of previous knowledge (aD and sE).

4.5.5 Finding common usability problems

In every test, at least one unclear explanation or structure, unanswered question, or other smaller, easily rectified usability problem was found. Thus, the usability tests proved effective in finding these problems. Examples of the problems found include:

- No clear explanation about what part the student should do and what part the teacher should do during a lesson.
- A lack of description of the axes in a diagram.
- Mixed use of comma (,) and dot (.) as decimal separator.
- An undefined word that needed explanation (Galton board).
- Unclear use of the 5E-structure when it wasn't used as the teacher expected it to be used.
- Unclear whether "degrees" was referencing temperature, geometric angles, or "levels."
- Misunderstandings about what a list of exercises was, where the teacher described it simply as a "list" of unknown purpose.
- Instructions that required more explanation. In this case, the instructions merely showed a couple of numbers without describing what the numbers were for; "0,0,0,50...", where it was explaining a point system for gambling with dice.

Although many of these misconceptions were often understood by the test subject after a while, it often took a lot of time, and likely frustration, for them to figure it out.

5

Discussion

5.1 Answers to RQ1: How can usability testing be used to improve the usability of teaching materials?

Looking at what issues were found during the usability tests in this study, usability testing of teaching materials seemed to work similarly to how they work with websites, according to Krug's method. Both methods are effective in finding problems with misunderstandings and lack of clarity. However, when it comes to testing how the teachers would choose and use their material, the results are dependent on what is possible in a realistic teaching situation. For example, as described in section 4.5.4, some teachers evaluated a material according to their students' previous knowledge. Similar results were also found relating to how well a material connected to the school curriculum, see section 4.4.3. Without previous experience with working as a teacher, such things could be difficult to evaluate. That said, this study did not directly test and compare doing usability testing done with non-teachers, so specifying what difference having non-teachers as test subjects would make for the results is difficult to say. Studying what test subjects would be eligible for testing different aspects of teaching materials is an interesting subject for further study.

Aside from finding common usability problems, the usability tests also produced a few results that were unique for teaching materials, compared to testing websites or other things. For example, as seen in section 4.5.3, student handouts specifically seemed appreciated in many tests. This likely has several reasons:

- Student handouts require little preparation to use, since they often simply require printing, in contrast to for example having to write a slideshow from scratch.
- Student handouts are concrete and easy to understand, as long as the teacher understands that they are student handouts. This is because teachers know what student handouts are, and they know intuitively how they are supposed to be used, compared to more abstract materials.

Even if many materials could be improved with student handouts, it is likely not an

all-encompassing solution. Similarly, future usability tests might find problems with student handouts that this study did not find. However, the result shows a strength in usability testing teaching materials, in that similar findings might be possible in more tests. Furthermore, the finding says something about the importance of being concrete: If a teaching material is to explain something abstract, having an example of what an explanation to a student would look like might make the explanation easier to understand for the teacher. Such realizations are a reason why the usability testing also makes the tester a better usability designer, aside from finding specific problems for specific materials.

Finally, testing the materials list as well as the materials in it showed an important distinction: The difference between making good content, and making the content easier to understand. While solving common usability problems is an important part of designing good teaching materials, it's also important to consider how useful a materials' theme or content is. For example, in sample case 2, section 4.3, it was revealed that the material was appreciated, despite big usability problems. The teacher expressed interest in the material's theme, which was common misconceptions in mathematics. The material also had student handouts. Usability testing can likely be used to find whether or not a teacher appreciates a specific theme, but figuring out what themes teachers are looking for, amon gother things, can be difficult to do by testing only one material. In other words, usability testing does not seem effective in testing whether a material asks the right questions, but it is effective in testing whether it answers its questions clearly.

5.2 Answers to RQ2: How can usability testing as a method be made accessible for teachers with limited experience of usability design?

While there are different forms of usability testing, the tests in this study were based on a method designed to be accessible to a wide audience, which is the one designed by Krug. To do similar tests, a material designer could use the usability test script supplied in this study [REFERENS: APPENDIX SCRIPT]. This script is adapted from web development to teaching materials. However, due to the difference between doing a scientific study and a usability test meant for material development, there are some things that could be further simplified from the method used in this study.

To start with, the test subjects could consist of teacher colleagues. As this study found, it's a good thing if the test subjects have teaching experience due to being able to find problems with the curriculum, student experience, and similar issues. If the material that is to be tested is to be reused locally in a school, doing these tests could then be as simple as asking teacher colleagues to "have a look" at the material. This would save a lot of time and effort in looking for test subjects elsewhere.

Important to note when testing teaching materials is that there is a difference be-

tween simply asking a test subject "what they think", and to actually watch them try to use the material. The difference between these methods is less obvious in the method used in this study compared to when testing websites. This is due to the teachers actually not using the material in conjunction with real lesson planning, and thus the subjects end up thinking how it would be to use the tested material in an imaginary lesson. However, the main difference lies in watching the test subject read and/or analyse the material while they think out loud, instead of asking them what they think after they have read or scanned the material.

Finally, what seemed to help while making revisions in this study was to use short iterations. The idea behind this is that less time is spent guessing between different design decisions, and more time is spent gathering data that facilitates these decisions. Doing tests early and often also has the advantage of finding expensive problems early, where expensive means that redesigning the material late in the process would take significantly more time and effort than choosing the better design early in the process.

5.3 Answers to RQ3: What factors do teachers consider when deciding on how to use a teaching material?

Answers to this question can be found in the Results chapter, under section 4.4.3. Instead of reiteraing these results, the results will be discussed here about what they say about the obtainability of teaching materials.

Obtainability, in terms of the ability for teachers to get access to a material, is difficult to measure. This study limited its obtainability research to a single materials list, and what the teachers looked for in that list. In reality, a teacher might not have access to a list. A school might for example have an internal network where they share files. Some teachers may also share their materials online through blogs. However, as long as the teacher has the ability to choose between materials, knowing what the teacher wants to know about a material before they pick it can be an important factor in making said material obtainable. If a material is accessible online, for example, but no teachers understand what it is, chances are that this material will never be looked at.

Designing systems that make teaching materials more obtainable is an important part of making teaching materials accessible, just like designing the materials themselves. What this study has shown is that understanding what the material is about can be an important part of making it obtainable, at least when said material is to be chosen among many other materials. Material designers should take this into consideration when sharing their materials.

5.4 Answers to RQ4: From the perspective of a technological system, how can usability design for teaching materials be used to help teachers?

Using usability testing to solve usability problems is a simpler problem than making sure that it is used in a way that helps teachers. This is an important consideration when, for example, employing usability testing in a larger organisation, such as a school or a group of teachers. Analysing the usefulness of approaches to usability testing requires a holistic perspective, for which this study applies the theory of Holistic Technology as described in section 2.2. Note that this part of the discussion will be more theoretical and based on literature, compared to the more concrete, results-based analysis of the usability tests themselves.

To begin with, *help* in this case is defined as improving how well teachers do their job, as well as their enjoyment of work. Enjoyment of work means, for example, to avoid overworking the teachers with too many responsibilities. Depending on how usability testing is applied in a teacher's worklife, it can have different effects on these aspects.

Usability testing as a technology can be divided into Franklin's holistic and prescriptive categories. As a prescriptive technology, usability testing could be delegated to a group of usability experts. In this case, a usability designer has to be educated and do a proper form of usability testing, conforming to usability testing standards. In such a system, a teacher's usability tests would be considered amateurish, and not following proper usability procedures. While teachers would be allowed to hire usability experts to do testing for them, this would take a lot of resources, and the teachers themselves would lose control over that part of the design process. As Franklin describes it, it creates a form of division of labour - the teachers teach, while the usability designers design. While it is hard to predict exactly how such a system would look like, it could be compared to how schoolbooks are used by many teachers in the current system. The schoolbooks are designed by specific material designers, over whom the teachers have no control.

In contrast to the prescripitive system, a holistic system would be characterized with teachers having control over the whole material design process. Applying usability testing in such a system would mean that the teachers would do tests on the materials that they designed wanted to share with each other. This means less division of labour, and more power to the teachers over the design process. Usability testing would be considered common knowledge rather than something delegated to experts. While this could affect the quality of usability tests, the teachers would also likely understand the tests better, and thus become better usability designers.

Effects on the teachers' work and enjoyment of work in both systems could be various. While usability testing does take time, teachers sharing materials with

each other could also lower the workload for the individual teacher. Delegating material design to external parts, such as schoolbook designers, could also both increase and decrease workload: The teacher doesn't have to do a lot of material design themselves, but the material still has to be adapted, and the teacher loses control over part of their work process. Letting teachers control how they do their work, and avoiding division of labour, is important to avoid the social mortgage described by Franklin.

Another, slightly different finding from this study was that the teachers tended to look for materials that fit the requirements they had to follow in their teaching. This leads to an interesting conflict: Making teaching materials more accessible could lead to teachers learning new things, but usability tests might lead to design decisions that conform more to the school curriculum. Kleindagarna's materials are a clear example of this, since they are often meant to show new and innovative perspectives on mathematics. If these materials were to conform more to what teachers require, there's a risk that they could become less innovative. At the same time, if a material does not conform to what teachers want, it might not be used at all.

5.5 Limitations of the study

5.5.1 Homogeneity of usability test data

The study's focus could be different if the test data collected was more homogeneous. A good way to achieve this would have been to collaborate with teachers from a single school, as these teachers might then optimise the teaching materials with some respect to the same group of teachers and students. Regular testing with the same teachers could then be established, which better reflect the way this study's findings are proposed to be used. Interest was showed by representatives on schools contacted, but claims were made that the teachers' schedules didn't allow for this kind of collaboration. Any effects exclusive to collaboration within a school's teacher base has therefore not been examined. Instead, teaching materials were limited to maths and test subjects were exclusively math teachers connected to upper secondary school and students nearly eligible to teach maths at upper secondary school. Even though the data is less homogeneous, it can be assumed that this has led to other findings that would not have been made when testing materials exclusively with teachers from a single school.

5.5.2 Control of usability test data

In this study, exploring accessibility has encompassed studying both obtainability and usability. To collect more data on obtainability, usability tests were preceded by the usability subjects choosing the teaching material they wanted to test. This reduced the authors' control of testing certain teaching materials. This removed the

ability to focus on a particular teaching material and usually prevented the authors to get the desired familiarity with the teaching material ahead of time.

5.5.3 Balancing revision sizes

Should this be included in conclusions instead? /H

Usability testing makes it possible to revise the tested teaching material. Much of the data collected during the testing figuratively screams to be put to use in a revision. Adding alteration to a teaching material is in itself a project. When tackling a project, one should have a plan on how to reach the goal. Seeing that the development cycle in this study is iterative, adopting an iterative development process when making a revision is appropriate. That means that one should make many smaller changes, instead of trying to implement everything at once. A benefit of this is that one can have a new, albeit smaller, revision ready each time the teaching material is put down. This smaller revision is then ready to be usability tested on, if such an opportunity emerges.

5.6 Future work

5.6.1 For teachers

A suggestion is that teachers can use the methods presented in this thesis as activities in collaborative meetings, as a way to assess the accessibility of teacher materials. They could also discuss how they are affected by accessibility of teacher materials created by others. To assess accessibility on an institutional level, the following questions could be asked:

- In what ways might their economy deny better quality education (obtainability issue)?
- Is the quality of their education unreasonably dependent on the teachers finding teaching materials themselves (obtainability issue)?
- Do their teachers use teaching materials that can not be shared to others, e.g. substitute teachers, without a significant drop in educational quality (usability issue)?
- Do their teachers produce their own material with the sole intent of only using it themselves (obtainability and usability issue)?

5.6.2 For universities and colleges

Future theses could be made to e.g. verify, falsify, implement, expand and/or improve upon this thesis.

5.6.3 For others

Other fields of study could adopt a usability testing method, perhaps one inspired by the iterative method developed in this thesis, to identify the unknown in their particular field.

6

Conclusions

- A method was developed and tested [...]
- Usability testing was shown to work on teaching materials, with certain differences from web development. $[\ldots]$
- Some common usability problems that were found $[\ldots]$
- Further questions that could be studied [...]

Bibliography

[1] Frisk, D. (2016) A Chalmers University of Technology Master's thesis template for LaTeX. Unpublished.

A

Appendix 1

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.