MATH1231 CALCULUS Chapter 1B Term II, 2025

Professor Jeya Jeyakumar

H13-E-2073 V.Jeyakumar@unsw.edu.au

May 4, 2025

(1.3) Tangent Planes and Surface Normals Tangent Lines and Normals in one-dimension

Suppose (x_0, y_0) is a point on the curve y = f(x).

The **tangent line** through (x_0, y_0) has equation

$$y = y_0 + f'(x_0)(x - x_0)$$

A normal vector to the curve at (x_0, y_0) is

$$\begin{pmatrix} f'(x_0) \\ -1 \end{pmatrix}$$
.

The slope of the normal line in $\frac{-1}{f'(x_0)}$.

The equation of the normal line is given by

$$y-y_0=\frac{-1}{f'(x_0)}(x-x_0).$$

That is, $x - x_0 = f'(x_0)(y_0 - y)$.

If we let $\lambda = y_0 - y$ then the equation of the normal line in parametric vector form is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \lambda \begin{pmatrix} f'(x_0) \\ -1 \end{pmatrix}.$$

So, a normal vector to the curve y = f(x) at (x_0, y_0) is $\begin{pmatrix} f'(x_0) \\ -1 \end{pmatrix}$.

Tangent Planes and Surface Normals

 $\vec{u} = (1, 0, f_{\times}(x_0, y_0))$ is tangent to cut through f with $y = y_0$ at $(x_0, y_0, f(x_0, y_0))$

 $\vec{v} = (0, 1, f_y(x_0, y_0))$ is tangent to cut through f with $x = x_0$ at $(x_0, y_0, f(x_0, y_0))$

vectors \vec{u} and \vec{v} span the tangent plane touching f at $(x_0, y_0, f(x_0, y_0))$.

Normal Vectors

A **normal vector** to the tangent plane is $\vec{n} = \vec{v} \times \vec{u}$: The cross product of \vec{v} and \vec{u} is defined by

Note that $-\vec{n}$ is also normal to the tangent plane. Now that we have a normal vector, we can easily find the equation of the tangent plane:

Tangent Planes and Surface Normals

Suppose (x_0, y_0, z_0) is a point on the surface z = F(x, y).

▶ The **tangent plane** through (x_0, y_0, z_0) has equation

$$z = z_0 + F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0)$$

A normal vector to the surface at (x_0, y_0, z_0) is

$$\left(egin{array}{c} F_{\scriptscriptstyle X}(x_0,y_0) \ F_{\scriptscriptstyle Y}(x_0,y_0) \ -1 \end{array}
ight).$$

Example

Find the tangent plane and the normal vector to the surface
$$z = F(x, y) = -\frac{x^2}{4} - y^2$$
 at $(2, -1, -2)$.

(1.4) Total Differential Approximation

If f = f(x) then near a given point x_0

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

$$\Delta f = f(x) - f(x_0)$$

► The differential approximation to the difference is

$$\Delta f \approx f'(x_0)(x-x_0)$$

Geometrically this approximates points on the curve y = f(x) near x_0 by points on the tangent line near this point.

If F = F(x, y) then near a given point (x_0, y_0)

$$F(x,y) \approx F(x_0,y_0) + F_x(x_0,y_0)(x-x_0) + F_y(x_0,y_0)(y-y_0)$$

$$\Delta F = F(x, y) - F(x_0, y_0)$$

► The total differential approximation to the difference is

$$\Delta F \approx F_{\times}(x_0, y_0)(x - x_0) + F_{y}(x_0, y_0)(y - y_0)$$

Geometrically this approximates points on the surface z = F(x, y) near (x_0, y_0) by points on the tangent plane near this point.

Uses of the total differential approximation

- ► To estimate changes in output given changes in input
- ► To estimate upper bounds on absolute errors:

$$|\Delta F| \approx \left| \frac{\partial F}{\partial x} \Delta x + \frac{\partial F}{\partial y} \Delta y \right|$$

$$\leq \left| \frac{\partial F}{\partial x} |\Delta x| + \left| \frac{\partial F}{\partial y} |\Delta y| \right|$$

For in the output given errors Δx and Δy in the inputs.

Example

A right circular cone is measured to have a height of 10cm and a base radius of 30cm. Use the total differential approximation to estimate the maximum error in the volume if the maximum absolute error in each measurement is .1cm.

Example:

The dimensions of a cylinder are measured to the nearest millimeter using a measuring tape. The radius is measured to be 5cm and the height is measured to be 12cm. What should we expect the maximum percentage error in calculating the volume V to be?

(1.5) Chain Rules

If
$$F = F(x, y)$$
 and $x = x(t)$, $y = y(t)$ then

$$\frac{dF}{dt} = \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt}$$

To compute $\frac{dF}{dt}$ sum the paths (left to right) from F to t and multiply derivatives on a path.

Justification

A small change Δt in t produces small changes Δx in x and Δy in y which produces a small change ΔF in F – use differential approximations.

$$\Delta F \approx \frac{\partial F}{\partial x} \Delta x + \frac{\partial F}{\partial y} \Delta y$$

$$\frac{\Delta F}{\Delta t} \approx \frac{\partial F}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial F}{\partial y} \frac{\Delta y}{\Delta t}$$

$$\frac{\Delta F}{\Delta t} = \frac{F(t + \Delta t) - F(t)}{\Delta t} \rightarrow \frac{dF}{dt}$$

$$\frac{\Delta x}{\Delta t} = \frac{x(t + \Delta t) - x(t)}{\Delta t} \rightarrow \frac{dx}{dt}$$

$$\frac{\Delta y}{\Delta t} = \frac{y(t + \Delta t) - y(t)}{\Delta t} \rightarrow \frac{dy}{dt}$$

Note: Never treat a partial derivative as a quotient.

Example: If $z = F(x, y) = x^2y + 3xy^4$ and $x = e^t$, y = sint then use the chain rule to find $\frac{dz}{dt}$.

Example

A particle moves ona path, defined by the parametric equations $x=t,\,y=t^3+2$. The temperature at a point (x,y) on the path is given by $T=x^2+y^2$. Find the rate of change of temperature T on the path.

Chain Rule

If
$$F = F(x, y)$$
 and $x = x(s, t), y = y(s, t)$ then

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial t}$$

$$\frac{\partial F}{\partial s} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial s}$$

To compute $\frac{\partial F}{\partial s}$ sum the paths (left to right) from F to s and multiply partial derivatives on a path.

Example: If $z = e^x \sin(y)$ and $x = st^2$, $y = s^2t$ then use the chain rule to find $\frac{\partial z}{\partial s}$.

Chain Rule

If F = F(u) and u = u(x, y) then

$$\frac{\partial F}{\partial x} = \frac{dF}{du} \frac{\partial u}{\partial x}$$

$$\frac{\partial F}{\partial y} = \frac{dF}{du} \frac{\partial u}{\partial y}$$

To compute $\frac{\partial F}{\partial x}$ sum the paths (left to right) from F to x and multiply derivatives on a path.

Example: If $w = tan^{-1}(y/x)$ then calculate $\frac{\partial w}{\partial x}$ via the chain rule.

(1.6) Functions of Three (or more) Variables

If F = F(x, y, z) then

$$D_{1}F \equiv F_{x}(x,y,z) \equiv \frac{\partial F}{\partial x} = \lim_{h \to 0} \frac{F(x+h,y,z) - F(x,y,z)}{h}$$

$$D_{2}F \equiv F_{y}(x,y,z) \equiv \frac{\partial F}{\partial y} = \lim_{h \to 0} \frac{F(x,y+h,z) - F(x,y,z)}{h}$$

$$D_{3}F \equiv F_{z}(x,y,z) \equiv \frac{\partial F}{\partial z} = \lim_{h \to 0} \frac{F(x,y+h,z) - F(x,y,z)}{h}$$

Differentiate w.r.t. one of the variables by holding the other variables fixed.

Example: If w = xy + yz + zx then calculate $\frac{\partial w}{\partial y}$.

Chain Rule

If F = F(x, y, z) and x = x(u, v), y = y(u, v), z = z(u, v)then

$$\frac{\partial F}{\partial u} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial u}$$

(1.7) MAPLE NOTES

The MAPLE plot3d command is useful for visualization.

MAPLE also has a useful package for several variable calculus. Click on Tools in the menu bar then drag down to Tutors and across to Calculus – Multi-Variable to plot level curves and surfaces in 3D.

The MAPLE diff command carries out partial differentiation. For example diff(f(x,y),x) computes $\frac{\partial f}{\partial x}$