Raciocínio Probabilístico

Raciocínio sobre os padrões de interrupção para sistemas de trens usando Rede de Bayesian e Prolog

Alexandre Lacerda Moura dos Santos

Objetivo

O sistema ferroviário da Indonésia enfrenta diariamente várias interrupções nas linhas.

Os trens da Indonésia são os elétricos ou também conhecidos como os Commuter Line.

Tendo isso o objetivo desse trabalho era identificar as interrupções onde e quando iriam acontecer usando a Rede Bayesianas.

Os tipos de interrupções

As interrupções que fazem a linha parar:

- (1.) Ar Condicionado (AC).
- (2.) Freio.
- (3.) Compressor.
- (4.) Porta.
- (5.) Emergência.
- (6.) Árvore caída
- (7.) Fogo.
- (8.) Buzina.
- (9.) Motor gerador (MG).
- (10.) Linha aérea
- (11.) Pantógrafo.

As interrupções que fazem a linha parar:

- (12.) Ferrovia.
- (13.) Série.
- (14.) Mesa de serviço.
- (15.) Servidor e aplicação.
- (16.) Sinal.
- (17.) Velocimetro
- (18.) Inversor Estático
- (19.) Suspensão.
- (20.) Interruptor.
- (21.) Tração.
- (22.) Limpador.

Especificações das consultas no prolog

Q1

Calcule a probabilidade de uma certa interrupção das outras interrupções.

Q3

Encontre o caminho de interrupção de uma interrupção para outra interrupção que contém e não contém certa perturbação.

Q2

Encontre caminhos de uma interrupção para outras interrupções a partir de uma determinada probabilidade condicional do problema.

Especificações das consultas no prolog (cont.)

Q4

Encontre as interrupções desencadeadas comuns de duas outras interrupções. Esta consulta tem como objetivo encontrar interrupções que levaram diretamente a duas outras interrupções. Para qualquer interrupção Di, D1 é a interrupção desencadeada comum de D2 e D3 se D2 e D3 tiverem arestas diretas para D1. Q5

Encontre as interrupções desencadeantes comuns que levam a outras interrupções. Esta consulta tem como objetivo encontrar interrupções que podem desencadear diretamente duas outras interrupções. Para qualquer interrupção Di, D1 é a interrupção de disparo comum de D2 e D3 se D1 tiver uma borda direta para D2 e D3.

Especificações das consultas no prolog (cont.)

Q6

Encontre a interrupção mais desencadeante na rede.

Q7

Encontre a interrupção mas desencadeada na rede.

Definição dos fatos do prolog (Q2)

Definição dos fatos do prolog (Q3)

```
show_path(A, A, T, P) := reverse([A|T], P).
\operatorname{show\_path}(A, Z, T, P) := \operatorname{edge}(A, B), \operatorname{not}(\operatorname{member}(A, T)), \operatorname{show\_path}(B, Z, [A|T], P).
show_path(A,B,P) := show_path(A,B,[],P).
causing (A, B, Path, Cause) :-
          show_path(A, B, Path), subset([Cause], Path).
match(L1, L2) := member(X, L1), member(X, L2).
avoid (L1, L2) := not(match(L1, L2)).
not Causing (A, B, Path, Avoid) :-
          show_path(A, B, Path), avoid([Avoid], Path).
```

Definição dos fatos do prolog (Q4)

```
\begin{array}{c} com\_triged\_dis\,(X,Y,Z)\!:\!-\\ ancestor\,(X,Z)\,,\ ancestor\,(Y,Z)\,.\\ show\_com\_triged\_dis\,(X,\ Y,\ Com\_Triged\_Dis)\,:\!-\\ findall\,(Z,\ com\_triged\_dis\,(X,Y,Z)\,,\ L)\,,\ sort\,(L,\ Com\_Triged\_Dis)\,. \end{array}
```

Definição dos fatos do prolog (Q5)

```
\begin{array}{l} com\_triging\_dis\,(X,Y,Z)\!:\!-\\ ancestor\,(Z,X)\,,\ ancestor\,(Z,Y)\,,\ X\ \backslash\!=\ Y.\\ show\_com\_triging\_dis\,(Z,\ Com\_Triging\_Dis)\,:\!-\\ findall\,([X,Y]\,,\ com\_triging\_dis\,(X,Y,Z)\,,\ L)\,,\ sort\,(L,\ Com\_Triging\_Dis)\,. \end{array}
```

Definição dos fatos do prolog (Q6)

```
descendant(X,Y) := parent(X,Y).
descendant(X,Y) := parent(X,Z), descendant(Z,Y).
descendants ([Node, Descendant, Length]) :-
        node (Node), findall (A, descendant (Node, A), L),
        sort (L. Descendant), length (Descendant, Length).
all_descendant (Result) :-
        findall ([Node, Descendant, Length],
        descendants ([Node, Descendant, Length]), Result).
compare\_descending('<',\ [\_,\_,\ X]\,,\ [\_,\ \_,\ Y])\ :-\ X>Y,\ !.
compare_descending('>', _, _N).
sort_descendant_descending(Sorted):-
        all_descendant (Result),
        predsort (compare_descending, Result, Sorted).
max_descendant(L):-
        sort_descendant_descending(Result), nth0(0, Result, L).
detail_max_descendant ([Node, Descendant, Length]) :-
        max_descendant(L),
        nth0(0, L, Node),
        nth0(1, L, Descendant),
        nth0(2, L, Length).
```

Definição dos fatos do prolog (Q7)

```
ancestor(X,Y) := parent(X,Y).
ancestor(X,Y) := parent(X,Z), ancestor(Z,Y).
ancestors ([Node, Ancestor, Length]) :-
        node (Node), findall (A, descendant (A, Node), L),
        sort (L, Ancestor), length (Ancestor, Length).
all_ancestor(Result) :-
        findall ([Node, Ancestor, Length], ancestors ([Node, Ancestor, Length]), Result).
sort_ancestor_descending(Sorted):-
        all_ancestor(Result),
        predsort (compare_descending, Result, Sorted).
max_ancestor(L) :-
        sort_ancestor_descending(Result), nth0(0, Result, L).
detail_max_ancestor([Node, Ancestor, Length]):-
        max_ancestor(L),
        nth0(0, L, Node),
        nth0(1, L, Ancestor),
        nth0(2, L, Length).
```

Resultados

A interrupção mais acionada (usando a rede Bayesiana) é a interrupção em série. Pode levar a cinco outras interrupções: AC, linha aérea, pantógrafo, inversor estático e interrupção em série.

Conclusão

O sistema proposto pode ser usado para raciocinar casos relacionados a padrões de dados e relação parte-todo no sistema ferroviário. Colocamos várias questões para todas as redes bayesianas sobre a probabilidade, causalidade entre cada interrupção para outras interrupções e as interrupções mais desencadeadas e desencadeadas em cada rede

Obrigado

Referências

 Artigo ciêntifico <u>Reasoning about the disruption patterns for</u> <u>train system using Bayesian Network and Prolog</u>