

(11) EP 0 791 660 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 27.08.1997 Bulletin 1997/35

(51) Int Cl.6: C12Q 1/68

(21) Application number: 97300988.9

(22) Date of filing: 14.02.1997

(84) Designated Contracting States:

AT BE CH DE DK FR GB IT LI NL SE

(30) Priority: 22.02.1996 US 12077

(71) Applicants:

 SMITHKLINE BEECHAM CORPORATION Philadelphia Pennsylvania 19103 (US)

 WASHINGTON UNIVERSITY St. Louis, Missouri 63110 (US)

 University of South Florida Tampa, Florida 33613 (US) (72) Inventors:

 Hardy, John, Mayo Clinic Jacksonville Jacksonville, FL 32224 (US)

 Goate, Alison, Washington University St. Louis, Missouri 63110 (US)

Barton, Amanda,
 SmithKline Beecham Pharmaceuticals
 Harlow, Essex CM19 5AW (GB)

(74) Representative: Valentine, Jill Barbara et al SmithKline Beecham plc Corporate Intellectual Property, Two New Horizons Court Brentford, Middlesex TW8 9EP (GB)

(54) A novel diagnostic marker for splicing variants of genes associated with neurological function

(57) Methods are described for detecting the presence or absence of a four amino acid motif (VRXQ) in expressed proteins that arise from aberrant alternative splicing of premRNA in genes associated with normal neurological function which are useful for detecting neurodegenerative disease. The presence of these variants

suggest that mutational events in these genes have occurred. Methods to measure the levels of gene expression of such genes to detect neurodegenerative disease are provided. Nucleotide sequences and intron-exon junctional sequences of examples of this splicing variant and probes for detecting this variant which are useful as diagnostic reagents are also provided.

Description

5

10

20

30

40

50

BACKGROUND OF THE INVENTION

In eukaryotes, the initial transcription of genomic DNA into RNA proceeds in the nucleus and yields a contiguous full-length reverse complementary heteronuclear RNA (hnRNA) primary transcript. The hnRNA contains regions or contiguous blocks of nucleotide sequence that end up in the final mRNA (exons) interspersed between "intervening" nucleotide sequences (introns) that do not. In addition to adenylyl methylation and polyadenylation, these hnRNAs are extensively modified in a process referred to as RNA "splicing" wherein discontiguous exons are joined and the intervening intron precisely deleted as an RNA "lariat" from the final mature mRNA transcript (B. Rushkin et al. Cell 1984, 38:317; R.A. Padgett et al. Science 1984, 225:898). RNA splicing is a complex process involving large protein-RNA assemblies called spliceosomes that coordinate the concerted excision and ligation events to yield intron-free mRNAs (M.M. Konarska and P.A. Sharp Cell 1987, 49:763; R. Reid et al. Cell 1988, 53:949; T.A. Steitz Sci. Am. 1988, 258:56).

In normal RNA processing, the resultant mRNA reflects the linear sequence orientation of the exons in the hnRNA: however all exons do not end up in the final transcripts. Rather, several of the resultant mRNAs have only certain exons that result from "alternatively spliced" hnRNA, wherein discontiguous intron-exon junctions are spliced to bring for instance exon 1 and exon 4 into juxtaposition rather than exon 1 and exon 2. Therefore, several mRNAs may arise from one gene sequence or hnRNA. Not all possible combinations of exons are normally represented in actual mRNA pools arising from one hnRNA as determined by mRNA, cDNA and protein analyses. As an example with three exons (Figure 1), while seven combinations are possible (exon1-exon2-exon3, exon1-exon2, exon1-exon3, exon2-exon3, exon1, exon2, or exon3) perhaps only two (exon1-exon2-exon3 and exon1-exon3) may actually result and be expressed at any appreciable level. These alternatively spliced transcripts are sometimes referred to as "variants". However, for purposes of this invention splice "variant" refers to heretofore unrepresented or expressed mRNAs arising from potential alternative splice sites that result from genomic mutation altering the structure of the hnRNA so that these splices now occur

The location of splice sites in an hnRNA primary transcript can be determined by comparing the sequences of the corresponding genomic DNA with that of cDNA prepared by copying the corresponding mature mRNA. Any discontinuities between the genomic DNA and cDNA sequences mark the exon-intron boundaries. Such analyses of a number of different RNAs have defined moderately -short "consensus" sequences at the intron-exon boundaries in pre-mRNA and a tendency for a pyrimidine-rich region just upstream of the 3' splice junction (Figure 2). The only universally conserved nucleotides are the first two (GU) and last two (AG) in the intron (Figure 2), though there is a propensity for AG at the 5' exon termini and an initial G at the 3' exon. Only 30-40 nucleotides in the center portion of introns are necessary for efficient splicing. There is also a conserved A within the context of the pyrimidine rich region of the intron (Figure 2) (...PyrPyrPurAPyrnAG; where Pyr is a pyrimidine and Pur is a purine nucleotide) which is the branch point where the cleaved 5' exon-intron junction loops back to form the "lariat" splicing intermediate (Padgett et al. Science 1984, 225:898). Genetic point mutations that delete or alter these conserved intronic nucleotides (5' GU, 3' AG, or branch point A) would eliminate these splice junctions and prevent normal splicing yielding aberrantly truncated transcripts or transcripts where this exon is deleted and another downstream exon spliced in, that normally may not be spliced in.

A final mechanism for splice variation occurs when several GU or AG dinucleotide motifs occur near consensus intron splice regions of 5' exon-intron or 3' intron-exon boundaries, respectively, such that the splicing system may sometimes not correctly distinguish the correct splice site resulting in alternate protein product some of which may be non-functional or aberrant.

Multiple examples of splice variations exist, many of which are associated with diseases or related disorders. Previous genetic linkage studies have shown a G to A mutation at the 3' splice junction of exon 8 of the gene encoding lysosomal acid lipase. Defects in this gene are associated with cholesterol ester storage disease that result in premature artherosclerosis, hepatomegaly, and elevated LDL cholesterol (U. Seedorf et al. Arterioscler. Throb. Vasc. Biol. 1995, 15: 773-778). Two mutations at the exon 1/intron 1 boundary altered the hepatic specific splicing of the human hydroxymethylbilane synthase gene (third enzyme in heme biosynthetic pathway) and resulted in an enzyme with half-normal activity (K.H. Astrin Human Mutat. 1994, 4:243-252). Deficiency of this enzyme activity eventually results in acute intermittent porphyria (AIP), an autosomal dominant inborn error of metabolism in which life-threatening attacks are precipitated by ecogenetic factors. Molecular cloning of cDNA and genomic DNA have provided probes allowing presymptomatic detection of these gene defects. In Menke's disease, a point mutation at the - 2 exonic position of a splice donor site in the middle of the gene causes exon-skipping and activation of a cryptic splice acceptor site (S.G. Kaler et al. Nat. Genet. 1994, 8:195-202). Exon skipping of the entire exon 19 results from a G to A point mutation at the 5' donor site of intron 19 in muscle phosphofructokinase deficiency (T. Hamaguchi Biochem, Biophys. Res. Comm. 1994, 202:444-449). Aberrant RNA splicing from a splice site mutant in the interleukin-2 receptor gamma (gIL2-R) gene results in the generation of an abundant non-functional gIL2-R containing a small intronic insertion and a second

mutant form with 5-fold lower affinity (J.P. DiSanto et al. Proc. Natl. Acad. Sci. 1994, 91:9466-9470). These isoforms produce an atypical form of an X chromosome-linked severe combined immunodeficiency disease.

The presence of splice variants can be used as diagnostic markers of diseases associated with genetic mutations. For example, the expression of the exon 6 splice variant (v6) of the cell adhesion molecule CD44 is correlated with the expression of the tumor suppressor gene p53. Both have been shown to be markers of tumor progression in colorectal cancer (J.W. Mulder et al. Gut.1995, 36:76-80; Y. Matsumura Lancet 1992, 340:1053-1058). Asymptomatic carriers of the acute intermittent porphyria were identified by identification of a mutant allele containing a CG to CT transversion at the exon1/intron 1 boundary via in vitro amplification of DNA followed by hybridization of the target sequence to allele-specific oligonucleotides.

Accordingly, splicing variants have been observed in several gene loci and several diseases. Identification of these variants has proven to be especially useful in diagnosis and detection of asymptomatic carriers.

SUMMARY OF THE INVENTION

10

15

20

30

35

40

45

55

A novel insertional motif that arises from splice mutations or alternative utilization of cryptic or less preferred splice donor sites has now been identified. These splicing variations result in the in-frame insertion within a normal protein sequence of four amino acids, valine-arginine-X-glutamine (VRXQ), where X is a hydrophilic amino acid. This motif has been identified in splice variants of a receptor, an enzyme, and a putative channel protein, all of which are involved in normal neurological functioning. Identification of this motif allows for screening of genes and gene products for splice variations.

A method for the detection of this motif in expressed proteins in vitro or in situ with the use of specific antisera, polyclonal or monoclonal antibodies is provided. A method for the detection of allele-specific genetic mutations using selected oligonucleotides with standard hybridization-based detection techniques is also provided. A method for diagnosing Alzheimer's Disease (AD) by detecting differences in levels of transcripts having the VRXQ insertion or proteins encoded therefrom is further provided. A preferred embodiment of such method for detecting AD provides for the detection of Familial Adult Onset Alzheimer's Disease (FAD).

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic of potential alternative splicing with 3 exons and 4 introns.

Figure 2 is a schematic of the consensus exon-intron-exon structure and sequence

Figure 3 provides the sequence of the VRSQ variant of the presentlin 1 gene. SEQ ID NOS: 1 - 2

Figure 4 provides PS-1 Oligonucleotide Probes. SEQ ID NOS: 3 - 5

Figure 5 provides tabulated results of quantification of the ISH signal for PS-1-long and PS-1-short mRNAs in human brain.

DETAILED DESCRIPTION OF THE INVENTION

The presenilin 1 (herein "PS-1") gene encodes a neuropeptide predicted to be a classical seven transmembrane protein (Sherrington et al. Nature 1995, 375:754-760). Missense mutations within this gene have been found in several families exhibiting early-onset Alzheimer's disease. Genomic analysis has revealed the intron-exon boundaries of the hnRNA. A common polymorphism located within the intron 3' to exon 9 was identified in early onset AD patients. This polymorphism also showed a strong association with the occurrence of typical late onset AD families. This particular mutation did not produce an alteration in the coding sequence but is typical of variations leading to alternatively spliced proteins.

Other mutations within different introns of the PS-1 gene have been identified. These lead to alternatively spliced variants as well. One novel variant of the PS-1 protein isolated from a human cerebellar cDNA library contains a four amino acid insertion between codons 26 and 27 (VRSQ) (Figure 3). This variant arises from alternative use of a 5' exon donor site in the exon 3/intron 3 boundary and results in the loss of some potential phosphorylation sites. A similar motif (VRXQ- where X is a hydrophilic amino acid) arising from aberrant splicing has also arisen due to alternative splicing in several other neurological proteins as well.

For example, the mRNA for tyrosine hydroxylase, the rate limiting enzyme in the synthesis of catecholomines, can undergo alternative splicing to produce several different isoforms (Kobayashi et al. J. Biochem. 1988, 103(6) 907-12; Lewis et al. Neuroscience 1993, 54(2) 477-92). The identified variants contain a 12 bp insertion encoding the sequence VRGQ. Isoforms containing the VRGQ insertion have also been found to exhibit alterations in phosphorylation by MAP kinase (Sutherland et al. Eur J Biochem. 1993, 217(2) 715-22). Furthermore, a tyrosine hydroxylase variant containing this insertion has been implicated in Parkinson's disease.

Another neuropeptide, gamma-Aminobutyric acid A (GABAA) receptor, undergoes alternative splicing to yield a

multiplicity of transcripts (Whiting et al. P.N.A.S. 1990, 87(24) 9966-70; Lasham et al. Biochem. Soc. Trans. 1991, 19 (1) 9S). GABA receptors are multisubunit ligand gated ion channels which mediate neuronal inhibition by GABAA and are composed of at least four subunit types (alpha, beta, gamma, and delta). The beta 4 subunit can undergo alternative splicing at two 5'-donor splice sites separated by 12 bp in the region that encodes the presumed intracellular loop between transmembrane domains M3 and M4. The insertion of the 12 bp sequence results in the addition of a VREQ motif (Bateson et al. J. Neurochem 1991, 56(4) 1437-40).

In all three neurological proteins, the alternative splice site generates variants containing a specific motif (VRXQ) which appears to be intracellularly located and alters phosphorylation by various kinases.

In the present invention, a method for detecting the presence of the VRXQ motif in polyadenylated messenger RNA transcripts (polyA mRNA) and resultant expressed proteins, (where V is valine, R is arginine, X is any hydrophilic amino acid residue, and Q is glutamine) or in cDNA resulting from these RNAs is provided. A method for quantitating such transcripts encoding and proteins having a VRXQ motif are also provided. Oligonucleotides having the anticodon sequences associated with the VRXQ motif having degenerate positions at the third base position of each codon can be used for the detection and quantitation of mRNA. Additionally, these oligonucleotides can be associated with codon sequences and used for the detection of cDNAs, and quantitation of the transcript from which the cDNA was derived. For example, codon and anticodon oligonucleotides for VRNQ comprise GU(N) AG(A/G) AA(C/U) CA(A/G) and the reverse complement. Hybridization of appropriate oligonucleotides can be detected and quantitated directly by procedures well known to those of skill in the art using radioactively or fluorescently labeled oligonucleotides. Indirect detection and quantitation procedures such as, but not limited to, biotinylated oligonucleotides/strepavidin-horseradish peroxidase, enhanced chemiluminescent detection, or fluorescently tagged strepavidins can also be performed.

Specific antibodies against the VRXQ motif can also be used for detection of the motif and quantitation of proteins having the motif. Various procedures known in the art may be used for the production of such antibodies.

For example, these antibodies can be obtained by direct injection of a polypeptide containing a VRXQ motif into an animal, preferably a nonhuman. The antibody so obtained will then bind to polypeptides containing this motif. Such antibodies can then be used to isolate and quantitate polypeptides containing this motif from tissues.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, Nature 1975, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 1983, 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al. in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., 1985, pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4.946,778) can be adapted to produce single chain antibodies to the immunogenic motif of this invention. Also, transgenic mice may be used to express humanized antibodies to polypeptides containing this motif.

Primary antibody-antigen reactions can be visualized and quantitated secondarily by standard enzyme-linked immunosorbent assay (ELISA) procedures. An ELISA assay initially comprises preparing an antibody specific to a VRXQ motif, preferably a monoclonal antibody. In addition a reporter antibody is prepared against the monoclonal antibody. To the reporter antibody is attached a detectable reagent such as horse radish peroxidase. A sample is then removed from a host and incubated on a solid support, e.g., a polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein like BSA. Next, the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to any proteins containing the VRXQ motif attached to the polystyrene dish. All unbound monoclonal antibody is washed out with buffer. The reporter antibody linked to horseradish peroxidase is then placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to proteins containing the VRXQ motif. Unattached reporter antibody is then washed out. Peroxidase substrates are then added to the dish and the amount of color developed in a given time period is a measurement of the amount of protein containing the VRXQ motif present in a given volume of patient sample when compared against a standard curve to detect and quantitate the protein. Examples of other detectable reagents which can be used include, but are not limited to, luciferase and fluorescently or radioactively tagged secondary antibodies. Specific populations of immune cells or chimeric cells (e.g., hybridomas) that express antibodies to VRXQ epitopes on their cell surfaces and respond by degranulation or release of cellular contents such as histamines that can be detected functionally or preloaded radiolabeled metals such as chromium are also useful.

Embodiments of the invention can be used to detect alterations in and make comparisons between expression in of PS-1 variants in presumptive neurodegenerative disease, particularly neurodegenerative disease associated with head injury and AD, and more particularly chromosome 14 FAD. In a particularly preferred embodiment, probes and methods of the invention can be used to detect a reduction in the expression of PS-1 transcript encoding the VRSQ motif, shown by this invention to be a diagnostic marker for chromosome 14 FAD, since lowered levels are associated with chromosome 14 FAD. Preferred embodiments of the invention provide for comparisons between variants comprising the VRSQ region with those lacking it enabling the diagnosis of AD, particularly chromosome 14 FAD.

The methods of the invention to detect and quantitate PS-1 polynucleotide sequence, PS-1 expression levels and

5

20

25

35

45

gene expression products, particularly the immunological methods and methods using oligonucleotides, can be used with bodily tissues and fluids from individuals. Preferred bodily tissues and fluids useful with the methods of the invention include, but are not limited to, blood cells, plasma, skin cells, and brain cells, particularly neuronal, glial, and astrocyte cells.

The following examples are provided for illustrative purposes only and are not intended to limit the invention.

EXAMPLES

Example 1

10

5

15

20

25

30

35

45

55

A novel splice variant of the PS-1 gene described by Sherrington et al. Nature 1995, 375:754-760, was isolated from a human cerebellar and a human fibroblast library. In this novel splice variant there is a deletion of four amino acids at codons 26-27 (VRSQ). This arises from alternative use of a 5' exon donor site in the exon3/intron 3 (-52 to 75 nt) boundary. The ... CAG/gta... boundary of the final Gln codon of exon 3 of the VRSQ motif provides a 5' exon AG donor site and GT intron consensus 5' boundary and use of this splice site results in the insertion of the 12-nts encoding the VRSQ motif. The upstream ... ACT/GTA... boundary of the Thr-Val codons provides the less preferred CT (AG preferred) 5' exonic boundary to the consensus GT 5' intronic boundary and splicing at this site would remove the VRSQ motif. Interestingly, in the PS-1 protein of Sherrington et al. Nature 1995, 375:754-760, this is the sole observed product and point mutations are interspersed elsewhere.

Example 2

In the GABA receptor 4 subunit alternative splicing adds a VREQ motif (Bateson et al. J. Neurochem 1991, 56(4) 1437-40). A chicken genomic cDNA library was screened with chicken beta- 4' subunit cDNA at high stringency. Southern blot analysis, using cDNA sequence specific oligonucleotides as probes and subsequent restriction mapping allowed the identification of overlapping DNA fragments containing the coding regions of the beta-4 subunit gene. These fragments were subcloned into pBluescript and sequenced. Complete sequencing of one of the clones revealed the presence of 12 bp in the part encoding the intracellular loop (amino acid residues 335-338). Analysis of the beta-4 subunit gene reveals that the different transcripts encoding the two variants (absence or presence of 12bp loop) arise by the use of one of two 5'-donor splice sites (located in the intron immediately 3' of the 12 bp sequence).

Example 3

The expression of two PS-1 mRNA transcripts, one containing (herein "PS-1-long") and one lacking the VSRQ motif (herein "PS-1-short"), in the brains of patients with early onset FAD was analyzed. In situ hybridization (ISH) was used to determine the qualitative and quantitative pattern of expression of PS-1 mRNA in the brains of early onset (presumptive chromosome 14-linked) FAD cases; comparisons with brains from patients with late onset AD and from normal individuals were made.

40 In Situ Hybridization

PS-1 mRNA expression was examined in 4 neurologically normal control cases, 6 late onset AD cases and 3 early onset FAD cases. The late onset cases were thought to be of a sporadic nature as there was no evidence of family history and the mean age at death was 81.2 years (range: 79-84 years); they had a mean post mortem delay of 8.3 hours. The early onset FAD cases were presumed to be linked to chromosome 14 as they all had onset ages, family history, clinical presentations and histopathology typical of chromosome 14-linked FAD. For these the mean age at death was 45 years (range: 44-46 years) and the mean post mortem delay was 41.7 hours. All AD cases were diagnosed according to standard pathological criteria (Khachaturian, 1985, Archives of Neurology, 42:1097-1105). The controls had a mean age at death of 68.8 years (range: 57-85 years) and mean post mortem delay of 11.8 hours. The brain regions examined were the hippocampus, temporal cortex and frontal cortex (regions severely affected by AD pathology), the visual cortex (an area relatively unaffected, but which at the time of death may be in the early stages of the disease process) and the cerebellum (an area not affected by the classic pathology associated with AD and with no clinical involvement).

Three different oligoprobes were chosen and synthesized (Figure 4): one to detect PS-1-long, one to PS-1-short and one that recognizes both transcripts, PS-1-both, These probes are not predicted to detect the transcripts of presenilin-2, a closely related gene on chromosome 1 (Rogaev, et al., 1995, Nature 376:775-78).

The ISH methodology is well known in the art and has been described in detail elsewhere (Najlerahim et al., 1990, FEBS Letters 7:317-333). For the ISH analyses 10(m cryostat tissue sections were used. Probes were labelled at their

3' end with ³⁵S-dATP using the NEN DuPont 3' end labelling system. Hybridization and wash temperatures for the various probes are given in Figure 4. Hybridized sections were apposed to tritium-sensitive film for the generation of autoradiographs. Hybridization with the PS-1 probes in the sense orientation on adjacent sections were used to control for non-specific background. The signal on autoradiographic film was quantified using an image analyzer (Seescan®). A representative area over most of a tissue section was measured: for example, in the hippocampus the different subfields were not separately quantified. The background signal (sense strand hybridization) was subtracted from the antisense signal. Statistical analysis of the data was performed using the well known two-tailed Student's t-test.

Northern Analysis

10

15

20

25

30

35

40

45

50

55

Northern analysis was carried out with the PS-1-both probe on a Northern blot (Clontech®, catalogue number: 7750-1) containing polyA+ mRNA from a number of different human brain regions. The probe was 3' end labelled with 32P-dATP using terminal transferase and hybridized under standard conditions (Clontech®, data sheet).

Diagnostic Methods and Reagents for FAD

In situ hybridization using all three probes revealed that PS-1 mRNA was present in all of the brain regions examined. Hybridization with a sense strand control probe gave a very low background signal. In the cerebral cortex (three regions) a signal was detected in both the grey and white matter, often with a similar intensity. A diffuse rather than laminar pattern was observed in grey matter and in the hippocampus the different subfields were not readily delineated (although the dentate gyrus was sometimes visible). In the cerebellum, the granule cell layer contained the most labelling. These data are consistent with PS-1 mRNA expression in both neurons and glia.

Northern analysis confirmed that the PS-1-both oligoprobe detected a major transcript in human brain of the correct size for PS-1 mRNA (in accordance with the sequence data of Sherrington et al., 1995, Nature 375:754-760). A major band of approximately 3.4 kb was detected in all brain regions examined, indicating a wide distribution in brain for PS-1 mRNA. The observation of PS-1 mRNA in corpus callosum is consistent with the interpretation from our ISH data that PS-1 is expressed in glia.

A similar anatomical pattern was seen by ISH, in each region, for both PS-1-long and PS-1-short transcripts. Nevertheless there appeared to be differences between the transcripts in their levels of expression according to brain region: for example PS-1-short was relatively less abundant in the cerebellum (Figure 5).

The hybridization pattern was similar for the controls, sporadic AD and FAD cases. Quantification of the autoradiographic film revealed a statistically significant reduction in the amount of PS-1-long mRNA in FAD hippocampus and frontal cortex compared with the sporadic AD cases (Figure 5: p = 0.003 and p = 0.014 respectively). In the cerebellum there was no significant difference between the controls, sporadic AD and FAD cases. The reduction in PS-1-long appears to be specific because there was no change in the level of expression of PS-1-short mRNA in any brain region investigated between the three different groups (Figure 5), which indicates reasonable data consistency.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
	(i) APPLICANT: University of South Florida, Washington University and
	SmithKline Beecham Corporation
10	(ii) TITLE OF INVENTION: A Novel Diagnostic Marker for Splicing
	Variants of Genes Associated with Neurological Function
15	(iii) NUMBER OF SEQUENCES: 5
15	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: SmithKline Beecham Corporation
	(B) STREET: 709 Swedeland Road, P.O. Box 1539
20	(C) CITY: King of Prussia
	(D) STATE: PA
	(E) COUNTRY: USA
	(F) ZIP: 19406-0939
25	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: DISKETTE, 3.5 INCH, 1.44 Mb
	STORAGE
	(B) COMPUTER: IBM 486
30	(C) OPERATING SYSTEM: WINDOWS FOR WORKGROUPS
	(D) SOFTWARE: WORDPERFECT 5.1
	(vi) CURRENT APPLICATION DATA:
35	(A) APPLICATION NUMBER: not yet assigned
	(B) FILING DATE: Herewith
	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
40	(A) APPLICATION NUMBER:60/012,077
	(B) FILING DATE: February 22, 1996
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: William T. Han
45	(B) REGISTRATION NUMBER: 34,344
	(C) REFERENCE/DOCKET NUMBER: ATG50003
	(ix) TELECOMMUNICATION INFORMATION:
50	(A) TELEPHONE: 610-270-5024
50	(B) TELEFAX: 610-270-5090
	(2) INFORMATION FOR SEQ ID NO: 1:
	(i) SEQUENCE CHARACTERISTICS:
55	(A) LENGTH: 1914

	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO	: 1:		
	CCGTACGTAG	CCGCGGCGGC	AGCGGGGCGG	CGGGGAAGCG	TATGCATACA	50	
5	AATTTATTAG	CATGCAGACT	GGGAGAACCA	CAAGACCTAA	TCTGGGAGCC	100	
	TGCAAGTGAC	AACAGCCTTT	GCGGTCCTTA	GACAGCTTGG	CCTGGAGGAG	150	
	AACACATGAA	AGAAAGAACC	TCAAGAGGCT	TTGTTTTCTG	TGAAACAGTA	200	
	TTTCTATACA	GTTGCTCCAA	TGACAGAGTT	ACCTGCACCG	TTGTCCTACT	250	
10	TCCAGAATGC	ACAGATGTCT	GAGGACAACC	ACCTGAGCAA	TACTAATGAC	300	
	AATAGAGAAC	GGCAGGAGCA	CAACGACAGA	CGGAGCCTTG	GCCACCCTGA	350	
	GCCATTATCT	AATGGACGAC	CCCAGGGTAA	CTCCCGGCAG	GTGGTGGAGC	400	
	AAGATGAGGA	AGAAGATGAG	GAGCTGACAT	TGAAATATGG	CGCCAAGCAT	450	
15	GTGATCATGC	TCTTTGTCCC	TGTGACTCTC	TGCATGGTGG	TGGTCGTGGC	500	
	TACCATTAAG	TCAGTCAGCT	TTTATACCCG	GAAGGATGGG	CAGCTAATCT	550 .	
	ATACCCCATT	CACAGAAGAT	ACCGAGACTG	TGGGCCAGAG	AGCCCTGCAC	600	
	TCAATTCTGA	ATGCTGCCAT	CATGATCAGT	GTCATTGTTG	TCATGACTAT	650	
20	CCTCCTGGTG	GTTCTGTATA	AATACAGGTG	CTATAAGGTC	ATCCATGCCT	700	
	GGCTTATTAT	ATCATCTCTA	TTGTTGCTGT	TCTTTTTTTC	ATTCATTTAC	750	
	TTGGGGGAAG	TGTTTAAAAC	CTATAACGTT	GCTGTGGACT	ACATTACTGT	800	
	TGCACTCCTG	ATCTGGAATT	TTGGTGTGGT	GGGAATGATT	TCCATTCACT	850	
25	GGAAAGGTCC	ACTTCGACTC	CAGCAGGCAT	ATCTCATTAT	GATTAGTGCC	900	
	CTCATGGCCC	TGGTGTTTAT	CAAGTACCTC	CCTGAATGGA	CTGCGTGGCT	950	
	CATCTTGGCT	GTGATTTCAG	TATATGATTT	AGTGGCTGTT	TTGTGTCCGA	1000	
	AAGGTCCACT	TCGTATGCTG	GTTGAAACAG	CTCAGGAGAG	AGATGAAACG	1050	
30	CTTTTTCCAG	CTCTCATTTA	CTCCTCAACA	ATGGTGTGGT	TGGTGAATAT	1100	
	GGCAGAAGGA	GACCCGGAAG	CTCAAAGGAG	AGTATCCAAA	AATTCCAAGT	1150	
	ATAATGCAGA	AAGCACAGAA	AGGGAGTCAC	AAGACACTGT	TGCAGAGAAT	1200	
35	GATGATGGCG	GGTTCAGTGA	GGAATGGGAA	GCCCAGAGGG	ACAGTCATCT	1250	
33	AGGGCCTCAT	CGCTCTACAC	CTGAGTCACG	AGCTGCTGTC	CAGGAACTTT	1300	
	CCAGCAGTAT	CCTCGCTGGT	GAAGACCCAG	AGGAAAGGGG	AGTAAAACTT	1350	
	GGATTGGGAG	ATTTCATTTT	CTACAGTGTT	CTGGTTGGTA	AAGCCTCAGC	1400	
40	AACAGCCAGT	GGAGACTGGA	ACACAACCAT	AGCCTGTTTC	GTAGCCATAT	1450	
	TAATTGGTTT	GTGCCTTACA	TTATTACTCC	TTGCCATTTT	CAAGAAAGCA	1500	
					TCTACTTTGC		
	CACAGATTAT	CTTGTACAGC	CTTTTATGGA	CCAATTAGCA	TTCCATCAAT	1600	
45	TTTATATCTA	GCATATTTGC	GGTTAGAATC	CCATGGATGT	TTCTTCTTTG	1650	
	ACTATAACAA	AATCTGGGGA	GGACAAAGGT	GRTTTTCCTG	TGTCCCACAT	1700	
	CTAACAAAGT	CAAGATTCCC	GKCTGGACTT	TTGCAGCTTC	CTKCCAAGTC	1750	
	TTCCTGACCA	CCTTGCACTW	TTGGACTTTG	GARGGAGGTG	CCTAKAGAAA	1800	
50	ACGRTTTTGA	MCATACTTCA	TCGCAGTGGA	CTGTGTCCCT	CGGTGCAGAA	1850	
	ACTACCAGAT	TTGAGGGACG	AGGTCAAGGA	GATATGATAG	GCCCGGAAGT	1900	
	TGCTGTGCCC	ATCA					1914

		1													
5	(2)	INF	ORMA?	NOIT	FOR	SEQ	ID I	vo: 2	2:						
3		(:	i) SI	EQUE	VCE (CHARA	ACTE	RIST	cs:						
				(A)	LENG	GTH:	463	3							
				(B)	TYPI	Ξ: 2	Amino	Ac	id						
10				(D)	TOP	DLOG	Y: I	linea	ar						
, 0		(:	xi) S	SEQUE	ENCE	DESC	CRIP	NOI	: SI	EQ II	ON C	: 2:			
	MET	THR	GLU	LEU	PRO	ALA	PRO	LEU	SER	TYR	PHE	GLN	ASN	ALA	GLN
	1				5					10					15
15															
	MET	SER	GLU	ASP	ASN	HIS	LEU	SER	ASN	THR	ASN	ASP	ASN	ARG	GLU
					20					25					30
20	ARG	GLN	GLU	HIS	ASN	ASP	ARG	ARG	SER	LEU	GLY	HIS	PRO	GLU	PRO
					35					40					45
	LEU	SER	ASN	GLY	ARG	PRO	GLN	GLY	ASN	SER	ARG	GLN	VAL	VAL	GLU
25					50					55					60
	GLN	ASP	GLU	GLU		ASP	GLU	GLU	LEU		LEU	LYS	TYR	GLY	
					65					70					75
30							~		222		m//m				
	LYS	HIS	VAL	TLE		LEU	PHE	VAL	PRO		THR	LEU	CYS	MET	
					80					85					90
	TENT	7.F3.F	7.23 F	3.5.3	OLI D	TTC	tvc	CEB	VAL	cen	DRE	๛ฃ๛	സ്ഥാ	1 D.C	rve
35	VAL	VAL	VAL	ALA	95	The	LIS	SER	VAL	100	PRE	·	Ink	ARG	105
					33					100					103
	ACD	GLY	GI.N	LEU	TLE	TVR	THR	PRO	PHE	THR	GLII	ASP	THR	GLII	THR
40	.,,,,	021	GDI.	220	110		2111			115	00				120
40												•			
	VAL	GLY	GLN	ARG	ALA	LEU	HIS	SER	ILE	LEU	ASN	ALA	ALA	ILE	MET
					125					130					135
45															
	ILE	SER	VAL	ILE	VAL	VAL	MET	THR	ILE	LEU	LEU	VAL	VAL	LEU	TYR
					140					145					150
						•									
50	LYS	TYR	ARG	CYS	TYR	LYS	VAL	ILE	HIS	ALA	TRP	LEU	ILE	ILE	SER
					155					160					165
	SER	LEU	LEU	LEU	LEU	PHE	GLU	GLU	SER	PHE	ILE	TYR	LEU	GLY	GLU

5	VAL	PHE	LYS	THR	TYR 185	ASN	VAL	ALA	VAL	ASP 190	TYR	ILE	THR	VAL	ALA 195
	LEU	LEU	ILE	TRP	ASN 200	PHE	GLY	VAL	VAL	GLY 205	мет	ILE	SER	ILE	HIS 210
10	TRP	LYS	GLY	PRO	LEU 215	ARG	LEU	GLN	GLN	ALA 220	TYR	LEU	ILE	MET	1LE 225
15	SER	ALA	LEU	MET	ALA 230	LEU	VAL	PHE	ILE	LYS 235	TYR	LEU	PRO	GLU	TRP 240
20	THR	ALA	TRP	LEU	1LE 245	LEU	ALA	VAL	ILE	SER 250	VAL	TYR	ASP	LEU	VAL 255
	ALA	VAL	LEU	CYS	PRO 260	LYS	GLY	PRO	LEU	ARG 265	MET	LEU	VAL	GLU	THR 270
25	ALA	GLN	GLU	ARG	ASP 275	GLU	THR	LEU	PHE	PRO 280	ALA	LEU	ILE	TYR	SER 285
30	SER	THR	MET	VAL	TRP 290	LEU	VAL	ASN	MET	ALA 295	GLU	GLY	ASP	PRO	GLU 300
35	ALA	GLN	ARG	ARG	VAL 305	SER	LYS	ASN	SER	LYS 310	TYR	ASN	ALA	GLU	SER 315
	THR	GLU	ARG	GLU	SER 320	GLN	ASP	THR	VAL	ALA 325	GLÜ	ASN	ASP	ASP	GLY 330
40	GLY	PHE	SER	GLU	GLU 335	TRP	GLU	ALA	GLN	ARG 340	ASP	SER	HIS	LEU	GLY 345
45	PRO	HIS	ARG	SER	тнк 350	PRO	GLU	SER	ARG	ALA 355	ALA	VAL	GLN	GLU	LEU 360
50	SER	SER :	SER	ILE	365	ALA	GLY	GLÜ	ASP	PRO 370	GLU	GĽU	ARG	GLY	VAL 375
	LYS	LEU	GLY	LEU	GLY 380	ASP	PHE	ILE	PHE	TYR 385	SER	VAL	LEU	VAL	GLY 390
55	LYS	ALA	SER	ALA	THR 395	ALA	SER	GLY	ASP	TRP 400	ASN	THR	THR	ILE	ALA 405

	CYS PHE	VAL A	ALA ILE 410	LEU I	LE GLY	LEU	CYS 415	LEU	THR	LEU	LEU	LEU 420		
5														
	LEU ALA	ILE P	HE LYS	LYS A	LA LEU	PRO	ALA	LEU	PRO	ILE	SER	ILE		
			425				430					435		
10	THR PHE	CIVI	בוו עאו.	מער ה	אם סתב	* A. T.A	ਜਾਪਾ ਹ	ASD	שעים	r.em	MAT.	GLM		
	THR PHE	GLI L	440	FRE I	ik fng	ADA	445	ASF	IIK	LEO	VAL	450		
			440				1.5							
_	PRO PHE	MET A	ASP GLN	LEU A	LA PHE	HIS	GLN	PHE	TYR	ILE				
15			455				460							
		((2) INFO	RMATTO	N FOR	SEO	א מז): 3	l :					
20		,	2, 1112						•					
		(i) SE	QUENCE	CHARA	CTERIS	TICS								
			LENGTH:											
25		(B)	TYPE: r	uclei	c acid									
		(C)	STRANDE	DNESS	: sing	le								
		(D)	TOPOLOG	Y: li	near									
					0.1									
30		(11) M	OLECULE	TYPE	: Otne	r								
		(xi) S	EQUENCE	DESC	RIPTIO	N: 51	EQ II	ONO:	: 3:					
35				·		.								30
	GCACTC.	AATT C	TGAATGO	rig cc	ATCATG	AT								30
		(2)	INFORM	IATION	FOR S	EQ II	NO:	: 4:						
40														
			QUENCE				:							
			LENGTH:											
			STRANDE										-	
45			TOPOLOG											
	•	(ii) M	OLECULE	TYPE	: 0	ther								
50	•													
		(xi) S	EQUENCE	DESC	RIPTIO	N: SI	EQ II	NO:	4:					
	AGCAAT	астс т	'ACGTAGO	CA GA	ATGACA	ΑT								30
<i>55</i>				on										
		(2)	INFORM	TATTON	FOR S	FO TI	. אם	. 5.						

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: Other	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CACCTGAGCA ATACWATGAC AATAGAGAA	29
20		
25		
30		
35		

Possible Final mRNAs

13

re-mRNA

едиенсу оf

6:7

-.. -..

5

10

15

20

25

30

35

Figure

40

45

50

55

Structure of Exon-Intron Boundaries and

100 100 60 74 84 50 Intron Consensus Sequences 63.91 intron 78 100 100 55 3' Exon G

51 Exon

FIGURE IA

5	

					11			20			29			38			47			56
	5	5 '	CCG	TAC	GTA	GCC	CCC	CCC	GCA	GCG	GGG	CGG	CCG	GGÀ	AGC	GTA	TGC	ATA	CAA	ATT
10																				
					6.5			7 4			83			92			101			110
							GAC													
15																				
																				164
		•					GCG													AAG
20																				
20																				210
			7 7 3				GAG.													GCT
25																				
					227			226			215			254			262			272
			CCA	ATG			ΤΤΛ													
																				~
30				М	T	Ε	L	P	Α	Ъ	L	S	Y	F	Q	N	A	Q	14	5
					281			290			299			308			317			326
					AAC	CAC	CTG	AGC	AAT	ACT	AAT	GAC	TAA	AGA	GAA	CGG	CAG	GAG	CAC	AAC
					дьс 	CAC	CTG	AGC	AAT	ACT	AAT	GAC	ΑλΤ 		G&A.	CGG 	CAG	GAG.	CAC	AA.C
35					дьс 	CAC	CTG	AGC	AAT	ACT	AAT	GAC	ΑλΤ 		G&A.	CGG 	CAG	GAG.	CAC	AA.C
35			E	D	AAC N 335	H CAC	CTG L	AGC 5 344	AAT N	ACT T	AAT N 353	GAC D	AAT ~~~ N	AGA R 362	GAA E	CGG R	CAG Q 371	GAG E	CAC H	AAC N 380
35			E	D AGA	AAC N 335 CGG	H AGC	CTG L CTT	AGC S 344 GGC	AAT N CAC	ACT T	AAT N 353 GAG	GAC D CCA	AAT N TTA	AGA R 362 TCT	GAA E E	CGG R R	Q 371 CGA	GAG E CCC	CAC H CAG	AAC N 380 GGT
			E GAC	D AGA	AAC N 335 CGG	H AGC	CTG L CTT	AGC S 344 GGC	AAT N CAC	ACT	AAT N 353 GAG	GAC D CCA	AAT N TTA	AGA R 362 TCT	GAA E E AAT	CGG R R GGA	Q 371 CGA	GAG E	CAC H CAG	AAC N 380 GGT
35 40			E GAC	D AGA	AAC N 335 CGG	CAC H AGC	CTG L CTT	AGC s 344 GGC G	AAT N CAC	ACT T CCT P	AAT N 353 GAG E	GAC D CCA P	AAT n TTA L	AGA R 362 TCT	AAD E TAA H	CGG R GGA	CAG Q 371 CGA	GAG E CCC	CAC H CAG	AAC N 380 GGT G
			E GAC	D AGA R	AAC N 335 CGG R 389	CAC H AGC	CTG L CTT L	AGC S 344 GGC G	AAT N CAC	ACT T CCT	AAT N 353 GAG E 407	GAC D CCA P	AAT N TTA L	AGA R 362 TCT S 416	E E AAT 	CGG R GGA	CAG Q 371 CGA R 425	GAG E CCC	CAC H CAG Q	AAC N 380 GGT G
			GAC D	AGA R	AAC N 335 CGG R 389 CGG	AGC S	CTG L CTT	AGC S 344 GGC G 398 GTG	AAT N CAC H	ACT T CCT P	AAT N 353 GAG E 407 GAT	GAC D CCA P GAG	AAT N TTA L	AGA R 362 TCT S 416 GAA	GAA E AAT N	CGG R GGA GGA GAG	Q 371 CGA R 425 GAG	GAG E CCC	CAC H CAG Q ACA	AAC N 380 GGT G 434 TTG
			GAC D	AGA R	AAC N 335 CGG R 389 CGG	AGC S	CTG L CTT L GTG	AGC S 344 GGC G 398 GTG	AAT N CAC H	ACT T CCT P	AAT N 353 GAG E 407 GAT	GAC D CCA P GAG	AAT N TTA L GAA	AGA R 362 TCT S 416 GAA	E E AAT N GAT	GGA GAG	Q 371 CGA R 425 GAG	GAG E CCC P	CAC H CAG Q ACA	AAC N 380 GGT G 434 TTG
40			GAC D	AGA R	335 CGG R 389 CGG	AGC S	CTG L CTT L GTG	344 GGC G 398 GTG	AAT N CAC H	ACT T CCT P	AAT N 353 GAG E 407 GAT D	GAC CCA P GAG	AAT N TTA L GAA E	AGA R 362 TCT S 416 GAA E	GAA E AAT N GAT D.	GGA GAG	CAG Q 371 CGA R 425 GAG E	CCC P	CAC H CAG Q ACA	AAC N 380 GGT G 434 TTG L
40			GAC D	AGA R TCC	A A C N 3 3 5 C G G R R 3 6 9 C G G G R 4 4 3	CAC H AGC S CAG Q	CTG L CTT L GTG	AGC S 344 GGC G 398 GTG V 452	AAT N CAC H GAG	ACT T CCT P CAA	AAT N 353 GAG E 407 GAT D	GAC CCA P GAG E	AAT N TTA L GAA E	AGA R 362 TCT S 416 GAA E	GAA E AAT N GAT D.	GGA GAG	Q 371 CGA R 425 GAG E 479	CCC P	CAG CAG Q ACA T	AAC N 380 GGT G 434 TTC L 488
40			GAC D AAC N	AGA R TCC	335 CGG R 369 CGG R 443 GGC	CAG S CAG Q GCC	CTG L CTT L GTG V AAG	AGC S 344 GGC G 398 GTG V 452 CAT	AAT N CACC	ACT T CCT P CAA Q ATC	AAT N 353 GAG E 407 GAT D 461 ATG	GAC CCA P GAG E CTC	TTA L GAA E	AGA R 362 TCT S 416 GAA E 470 GTC	GAAT N GAT D.	GGA GAG GTG	Q 371 CGA R 425 GAG E 479 ACT	CCC P CTG L	CAG CAG Q ACA T	AAC N 380 GGT G 434 TTC L 488 ATG
40			GAC D AAC N	AGA R TCC	335 CGG R 369 CGG R 443 GGC	CAG S CAG Q GCC	CTG L CTT L GTG V	AGC S 344 GGC G 398 GTG V 452 CAT	AAT N CACC	ACT T CCT P CAA Q ATC	AAT N 353 GAG E 407 GAT D 461 ATG	GAC CCA P GAG E CTC	TTA L GAA E	AGA R 362 TCT S 416 GAA E 470 GTC	GAAT N GAT D.	GGA GAG GTG	Q 371 CGA R 425 GAG E 479 ACT	CCC P CTG L	CAG CAG Q ACA T	AAC N 380 GGT G 434 TTC L 488 ATG
40 45			GAC D AAC N	AGA R TCC	335 CGG R 369 CGG R 443 GGC	CAG S CAG Q GCC	CTG L CTT L GTG V AAG	AGC S 344 GGC G 398 GTG V 452 CAT	AAT N CACC	ACT T CCT P CAA Q ATC	AAT N 353 GAG E 407 GAT D 461 ATG	GAC CCA P GAG E CTC	TTA L GAA E	AGA R 362 TCT S 416 GAA E 470 GTC	GAAT N GAT D.	GGA GAG GTG	Q 371 CGA R 425 GAG E 479 ACT	CCC P CTG L	CAG CAG Q ACA T	AAC N 380 GGT G 434 TTC L 488 ATG
40 45			GAC D AAC N AAA	D AGA R TCC	AXC N 335 CGG R 389 CGG R 443 GGC G	CAC H AGC S CAG Q GCC A	CTG L CTT L GTG V AAG	398 GGC G 398 GTG V 452 CAT H	AAT N CAC H GAG E GTG V	ACT T CCT P CAA Q ATC	AAT N 353 GAG E 407 GAT D 461 ATG H 515	GAC CCA P GAG CTC L	AAT H TTA L GAA E TTT	AGA S 416 GAA E 470 GTC V 524	E AAT N GAT D.	GGA GAG GTG	Q 371 CGA R 425 GAG E 479 ACT T 533	CCC P CTG L CTC	CAC H CAG Q ACA T TGC	AAC N 380 GGT G 434 TTC L 488 ATG M 542
40 45			GAC D AAC N AAA	D AGA R TCC	A A C C C C C C C C C C C C C C C C C C	CAC H AGC S CAG Q GCC A	CTG L CTT L GTG V AAG	344 GGC G 398 GTG V 452 CAT H	AATT	ACT T CCT P CAA Q ATC	AAT N 353 GAG E 407 GAT D 461 ATG M 515 TCA	GAC CCA P GAG E CTC L GTC	AAT TTA L GAA E TTT F	AGA R 362 TCT S 416 GAA E 470 GTC V 524 TTT	E AAT N GAT D.	GGA GAG GTG V	Q 371 CGA R 425 GAG E 479 ACT T 533	CCC P CTG L CTC	CAG Q ACA T GGC GAT	AAC N 380 GGT G 434 TTC L 488 ATG M 542

FIGURE 1B

5	CAG	CTA.	551 ATC	TAT	ACC	560 CCA	TTC	àСА	569 GAA	GAT	ACC	578 GAG	አርፕ	G1'G	587 GGC	CAG	λGA	596 GCC	
	-			 Y		 P			 ε			 E				Q		 А	
	Ì		605			614			623			632			641			650	
10	CTG	CAC	TCA	ATT.	CTG	AAT	GCT	GCC	ATC	ATG	ATC	AGT	GTC	TTA	GTT	GTC	ATG	ACT	
	i.	н	 S		L	N		λ.	ı		1	 s	v	I	v	v	М	T	
			659			668			677			686			695			704	
15	ATC	CTC	CTG	GTG	GTT	CTG	TAT	AAA	TAC	AGG	TGC	TAT	λAG	GTC	ATC	CAT	GCC	TGG	
		I.	L	V	V	L	Y	ĸ	Y	R	C	Y	ĸ	v	I	н	A	W	
			713			722			731			740			749			758	
20	CTT	ATT	ATA	TCA				TTG					TCA	TTC	TT.S	TAC	TTG	GGG -	
	L	I	1	s	s	L				F		£	s	£	I	Y	L	·G	
			767			776			785			794		•	803			e 1 2	
25	GAA	GTG	TTT	AAA	ACC	TAT	AAC	GTT	GCT	GTG	GAC	TAC	ATT	ACT	GTT	GCA	CTC	CTG	
	£	v	F	ĸ	т	Y	N	v	Α.	v	D	Y	1	T	v	A	L	L	
			821			830			839			848			857			866	
30	ATC	TGG	TAA	TTT	GGT												CCA	CTT	
	 ī	 W	и 	 F	 G	v	~		м	I			н	W			 P	L	
35	CGA	CTC	875 CAG	CAG	GCA	980 Tat	CTC	TTA	893 ATG	ATT	AGI	902 GCC	CIC	ATG	911 GCC		GTG	920 TIT	
		 L	 0	 Q	n	 Y	,		 м		~ - ~	~ A	L	м	 A	L.	 v	 :	
	••	-	-	*	•		-	•			.		2	••		-	·		
40	λΤС	AAG	929 TAC	CTC	ССТ	938 GAA	TGG	лст	947 GCG		CTC	956 ATC	TTG	GCT	965 GTG	ATT	TCA	97 <i>4</i> GTA	
40			 Y		 P										 V		 s	 V	
	1	N	1	L	r	Ε	W	•	λ	W	L	I	L	^	٧	1	د	•	
	Pr 2, 150	C N TT	983	- T-		992						1010		C C IT				1028 Gaa	
45																			
	Y	D	L	V	A	٧	L	С	P	ĸ	G	Ð	L	R	М	L	v	Ε	
			1037															1082	
50	ACA	GCT	CAG	GAG		GAT						GCT		ATT	TAC	TCC	TCA	ACA	
	T	A	Q	F.										1	Y	s	s	т	
		;	1091			1100			1109			1118			1127			1136	
55	ATG																	GTA	

FIGURE 1C

						-	_									_		
•	м	ν	W	L	v	И	М	A	E	G	D	P	Ξ	A	Q	R	R	V
5			_		_													
	T.C.C		1145				AAT											
	s	К	И	s	К	Y	13	A	Ε	s	T	E	я	Ē	s	Ş	а	T
10		_				200												
	CTT		C 199		GAT.		GGC	606										
	v	λ	Ε	Ħ	D	D	G	G	F	s	ε	E	W	E	Α	Q	R	D
15																		
			L253				a e: a											
							CGC											
							R											
20																		
			1307															
							GCT											
							A							-				
25	-	3	,	-	•	-		_	-	_	•	_	•		_		-	
		1	1361			1370		:	1379		:	1388		:	1397		:	1406
							TTC											
·30	J	D	•		•	•	•	•	.,	•	~	Ť	J	•		ŭ		_
		í	1415			1424		:	1433		:	1442		:	1451			1460
							ACA											
							 T											
35	۸	3	G	D	W	и	1	1	1	A	C	Ē	•	Α.	,	L	1	G
		ı	1469			1478			1487		;	1496		:	1505		. :	1514
							CTC											
40	1.	_	L	Г	ענ	مد	L	1.	A	1	E	K	ĸ	^	1.	٢	A	L
		1	1523		:	1532			1541			1550			1559			1568
	CCV	A1.C	TCC	ATC														GTA
45	P	Ι	S	1	Т	F	G	1.	V	F	Y	F	A	T	D	Y	L	V
		1	1577			1586			1595			1604			1613			1622
	CAG						TTA											
																		 -
50	Q	₽	F	М	D	Q	L	A	F	Н	Q	F	Y	I	٠.			
**		í	1 631			1640			1649			1658		,	1667			1676
	GGT						GTT											
	<u></u>																	

17

FIGURE 1D

		16	85	1694		1703		1712		1721		1/30
	ААЛ	GGT G	RI TTT	CCT GTG	TCC	CAC ATC	TAA	CAA AGT	ርሊጓ	GAT TCC	CGK	CTG GAG
5												
			20	1240		1262		>7.66		1226		1304
				1748						_		
	TTT	TGC A	GC TTC	CTK CCA	AGT	CIT CCT	GAC	CAC CTT	GCA	CTW TIG	GYC	TTT GGA
10								/				
		0.75	93	1802		1811		1820		1829		1838
	RGG			KAG LAA								
15					,,	,,,						
				-								
		18	47	1856		1865		1874		1883		1892
	ccc	1.CC C.	rg cas	AAA CTA	CCA	GAT TTG	AGG	GAC GAG	GTC	AAG GAG	ATA	TGA TNG
20												
		19	•	1910						•		
	CCC	CGG 1	AG TTG	CTG TGC	CCY	TCA 3'						
25												

Figure 4

PS-1 Oligonucleotide Probes

35	Probe	Sense Sequence	Bases *	Ti °C	Tw °C
	PS-1-both	5'-GCACTCAATTCTGAATGCTGCCATCATGAT-3'	638-667	24	50
		SEQ ID NO: 3			
40	PS-1-long	5-'AGCAATACT <u>GTACGTAGCCAG</u> AATGACAAT-3'	315-344	23	49
		SEQ ID NO: 4			
45	PS-1-short	5'-CACCTGAGCAATACT/AATGACAATAGAGAA-3'	309-323 and 336-350	22	47
70		SEQ ID NO: 5			
		•			

^{*}Refers to EMBL and GenBank entry HUMS182R (accession number: L42110); Sherrington et al 1995, Nature 375:754-760. Ti represents the hybridization temperature (incubation) and Tw represents the wash temperature. The underlined bases code for the amino acids V, R, S and Q.

55

50

Figure 5.

Quantification of the ISH signal for PS-1-long and PS-1-short mRNAs in human brain.

	Brain region	Case	PS-1-long (n)	PS-1-short (n)
10				
	Hippocampus	Control	0.025 ± 0.014 (2)	0.023 (1)
15		AD	0.035 ± 0.007 (3)	0.026 ± 0.01 (3)
		FAD	0.008 ± 0.001 (3)*	0.030 ± 0.004 (3)
20	Frontal cortex	AD	0.024 ± 0.005 (3)	0.042 ± 0.014 (3)
		FAD	$0.012 \pm 0.0 (3)^{**}$	0.022 ± 0.011 (3)
25	Cerebellum	Control	0.036 (1)	0.013 (1)
		AD	0.024 ± 0.007 (3)	0.019 ± 0.006 (3)
30		FAD	0.012 ± 0.002 (2)	0.014 ± 0.005 (2)
	Temporal cortex	FAD	0.014 ± 0.009 (3)	0.015 ± 0.01 (3)
25	Visual Cortex	FAD	0.016 ± 0.007 (3)	0.032 ± 0.001 (3)
35				

values represent means \pm s.d.; units are arbitrary (machine grey levels). FAD vs AD p = 0.003; FAD vs AD p = 0.014; Student's t-test.

45 Claims

40

- 1. A method of identifying an individual susceptible to a neurological disease comprising:
- providing a sample of genetic material from an individual susceptible to a neurological disease; and
 detecting the presence of an alternative splice site comprising the sequence VRXQ, wherein V is valine, R is arginine, X is any hydrophobic amino acid residue and Q is glutamine, in a polyadenylated messenger RNA transcript or protein encoded therefrom in the sample of genetic material.
 - 2. The method of claim 1 wherein the sequence VRXQ is detected using selected oligonucleotide probes comprising anticodon sequences associated with the sequence VRXQ having degenerate positions at the third base position.
 - The method of claim 2 further comprising associating said oligonucleotides with codon sequences and detecting cDNA.

- The method of claim 1 wherein the sequence VRXQ is detected using an antibody against a polypeptide comprising the sequence VRXQ.
- 5. The method of claim 1 wherein the neurological disease comprises Alzheimer's Disease and the mRNA or protein is encoded by the presentiin 1 gene.
 - **6.** The method of claim 5 therein the sequence comprises a 4 amino acid insertion between codons 26 and 27 of the gene and the sequence VRSQ.
- The method of claim 1 wherein the mRNA or protein is encoded by the gamma-Aminobutyric acid A receptor gene and the sequence comprises VREQ.
 - 8. The method of claim 1 wherein the mRNA or protein is encoded by the tyrosine hydroxylase gene and the sequence comprises VRGQ.
 - 9. A method for diagnosing a neurological disease comprising determining the levels of polyadenylated messenger RNA transcripts or proteins encoded therefrom comprising the sequence VRXQ wherein V is valine, R is arginine, X is any hydrophobic amino acid residue and Q is glutamine, in a sample of genetic material and comparing these levels with established controls.
 - 10. The method of claim 9 wherein the neurological disease comprises Alzheimer's Disease and the mRNA or protein is encodes by the presentiin 1 gene.
- 11. The method of claim 10 wherein the sequence comprises a 4 amino acid insertion between codons 26 and 27 of the gene and the sequence VRSQ.
 - 12. The method of claim 9 wherein the mRNA or protein is encoded by the gamma-Aminobutyric acid A receptor gene and the sequence comprises VREQ.
- 13. The method of claim 9 wherein the mRNA or protein is encoded by the tyrosine hydroxylase gene and the sequence comprises VRGQ.

5

15

20

35

40

45

50

EUROPEAN SEARCH REPORT

Application Number

	OCUMENTS CONSIDERED	EP 97300988.		
Category	Citation of document with indication, who of relevant passages	cre appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL 6)
A, D	NATURE GENETICS, VOI no. 1, October 1994 S.G. KALER et al. "C horn syndrome and a Menkes phenotype ass with splice site mut the MNK locus" pages 195-202 * Totality *	1,9	C 12 Q 1/68	
A,D	PROCEEDINGS OF THE NATIO ACADEMY OF SCIENCES OF T UNITED STATES OF AMERICA vol. 91, September 1994 J.P. DISANTO et al. "Def tive human interleukin 2 ceptor gamma chain in an typical X chromosome-lin severe combined immunode ficiency with peripheral cells" pages 9466-9470 * Totality *		1,9	TECHNICAL FIELDS SEARCHED (Iot. Cl.6)
Α, D	BIOCHEMICAL AND BIOF RESEARCH COMMUNICATI vol. 202, no. 1, 199 T. HAMAGUCHI et al. variant of muscle ph fructokinase deficie Japanese case with a RNA splicing" pages 444-449	1,9	C 12 Q	
A	WO - A - 94/18 319 (INSTITUT NATIONAL E SANTE ET DE LA RECHE MEDICALE) * Claims 1-6,12-1	1,9		
Place of search Date of comp		e of completion of the search -06-1997	Examiner WOLF	
X : particula V : particula documen	EGORY OF CITED DOCUMENTS Itly relevant if taken alone athy relevant if combined with another to of the same category gical background	E: earlier patent of after the filing D: document cited	iple underlying the locument, but public date I in the application for other reasons	invention shed on, or

EPO FORM 1503 03.82 (1940))

document

