Marking scheme_Mid Semester Exam of Applied Mathematics (30 Marks)

Question1. A. Find all value of r for whic $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix}$ commutes with $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (4 Marks)

B. Draw a true table for the following Boolean functions

(6 Marks)

i)
$$F = x'y'z + (x'yz)' + xy'$$

ii)
$$F = (x + y)(x' + z)(y + z)'$$

Answer:

A.
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix} \text{ commutes with } \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\text{iff } \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix} \qquad \text{/2Marks}$$

$$\Leftrightarrow \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ r & 0 & r \end{bmatrix} = \begin{bmatrix} 2 & 0 & r \\ 0 & 1 & 0 \\ 2 & 0 & r \end{bmatrix} \qquad \text{/1 Mark}$$

$$\Rightarrow r = 2$$
 /1 Mark

B.i)

x	у	z	χ'	<i>y</i> ′	x'y'z	x'yz	(x'yz)'	xy	F
0	0	0	1	1	0	0	1	0	1
0	0	1	1	1	1	0	1	0	1
0	1	0	1	0	0	0	1	0	1
0	1	1	1	0	0	1	0	0	0
1	0	0	0	1	0	0	1	1	1
1	0	1	0	1	0	0	1	1	1
1	1	0	0	0	0	0	1	0	1
1	1	1	0	0	0	0	1	0	1
					/1 Mark		/1 Mark		/1 Mark

111)

х	у	Z	x'	x + y	x'	y + z	(y+z)'	F
					+z			
0	0	0	1	0	1	0	1	0
0	0	1	1	0	1	1	0	0
0	1	0	1	1	1	1	0	0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	0	1	0
1	0	1	0	1	1	1	0	0
1	1	0	0	1	0	1	0	0
1	1	1	0	1	1	1	0	0
				/1 Mark			/1 Mark	/1 Mark

Question2. A. Use Cramer's rule to solve the following systems.

$$\begin{cases} 2x_1 + x_2 + x_3 = 4 \\ x_1 - x_2 + 2x_3 = 2 \\ 3x_1 - 2x_2 - x_3 = 0 \end{cases}$$
B. Find the domain of definition of the function f(x) given below.

i.
$$f(x) = \sqrt{-x} + \frac{1}{\sqrt{2+x}}$$
 (3 Marks)

(5 Marks)

ii.
$$f(x) = log_2(3 - 2x)$$
 (2 Marks)

Answer:

A. The system is written in matrix form as $\begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & -2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$ /0.5 Mark

; then the determinant of the system is $\begin{vmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & -2 & -1 \end{vmatrix} = 18 \cdot \frac{\text{0.5 Mark}}{\text{0.5 Mark}}$

The roots are $x_1 = \frac{\begin{vmatrix} 4 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -2 & -1 \end{vmatrix}}{\begin{vmatrix} 18 & 18 \\ 18 & 18 \end{vmatrix}}; x_2 = \frac{\begin{vmatrix} 2 & 4 & 1 \\ 1 & 2 & 2 \\ 3 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} 18 & 18 \\ 18 & 18 \end{vmatrix}}; x_3 = \frac{\begin{vmatrix} 2 & 1 & 4 \\ 1 & -1 & 2 \\ 3 & -2 & 0 \end{vmatrix}}{\begin{vmatrix} 18 & 18 \\ 18 & 18 \end{vmatrix}}.$ /1.5Marks

After calculation we find c = 1; $x_2 = \frac{18}{18} = 1$; $x_3 = \frac{18}{18} = 1$; /1.5Marks

and $S = \{(1, 1, 1)\} / 1 Mark$

B.i. EC:
$$\begin{cases} -x \ge 0 \\ 2+x > 0 \end{cases}$$
 /1 Mark
$$\begin{cases} x \le 0 \\ x > -2 \end{cases}$$
 /1 Mark

$$Dom f =]-2, 0]$$
 /1 Mark

ii. EC:
$$3 - 2x > 0 \Leftrightarrow x < \frac{3}{2}$$
 /1 Mark
$$Dom f = \left] -\infty, \frac{3}{2} \right[$$
 /1 Mark

Question3. A. Consider the open proposition over the universe $U = \{-5,0,1,2,3,4,5,6,7,8,9,10\}$ $p(x): x^2 < 5,$ $q(x): x \ge 3$, r(x): is a multiple of 2, $s(x): x^2 = 25$

Find the truth sets of:

$$i)\sim p(x) \bigvee \{q(x) \land \sim r(x)\}$$
 (3 Marks)
 $ii)[p(x) \land q(x)] \land s(x)$ (3 Marks)

B. i) How many ways of selecting a president, a vice president, a secretary, and a treasurer in a club consisting of 10 persons? (2 Marks)

ii) How many numbers of ordered samples of five cards that can be drawn without replacement from a standard deck of 52 playing cards? (2 Marks)

Answer:

A.
$$P = \{0,1,2\}; \ Q = \{3,4,5,6,7,8,9,10\}; \ R = \{2,4,6,8,10\}; \ S = \{-5,5\}$$
 /2 Marks i. $\sim p(x) \ \forall \{q(x) \land \sim r(x)\} \equiv P' \cup (Q \cap R')$ /1 Mark $P' \cup (Q \cap R') = \{-5,3,4,5,6,7,8,9,10\}$ /1 Mark ii. $[p(x) \land q(x)] \land s(x) \equiv (P \cap Q) \cap S$ /1 Mark $(P \cap Q) \cap S = \{\} \cap S = \{\}$ /1 Mark

B.i.
$$10P_4 = \frac{10!}{6!} = 5040$$
 /2 Marks
ii. $\binom{52}{5} = \frac{52!}{5! \times 47!} = 2598960$ **/2 Marks**

END CORRECTIONS!!!!!!!!!