Worksheet # 23: Approximating Area

1. Write each of following in summation notation:

(a)
$$1+2+3+4+5+6+7+8+9+10$$

(b)
$$2+4+6+8+10+12+14$$

(c)
$$2+4+8+16+32+64+128$$
.

2. Compute
$$\sum_{i=1}^{4} \left(\sum_{j=1}^{3} (i+j) \right)$$
.

The following summation formulas will be useful below.

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}, \qquad \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

- 3. Find the number n such that $\sum_{i=1}^{n} i = 78$.
- 4. Give the value of the following sums.

(a)
$$\sum_{i=1}^{20} (2k^2 + 3)$$

(b)
$$\sum_{j=11}^{20} (3k+2)$$

5. The velocity of a train at several times is shown in the table below. Assume that the velocity changes linearly between each time given.

t=time in minutes	0	3	6	9
v(t)=velocity in Km/h	20	80	100	140

- (a) Plot the velocity of the train versus time.
- (b) Compute the left and right-endpoint approximations to the area under the graph of v.
- (c) Explain why these approximate areas are also an approximation to the distance that the train travels.
- 6. Let f(x) = 1/x. Divide the interval [1,3] into five subintervals of equal length and compute R_5 and L_5 , the left and right endpoint approximations to the area under the graph of f in the interval [1,3]. Is R_5 larger or smaller than the true area? Is L_5 larger or smaller than the true area?
- 7. Let $f(x) = \sqrt{1 x^2}$. Divide the interval [0, 1] into four equal subintervals and compute L_4 and R_4 , the left and right-endpoint approximations to the area under the graph of f. Is R_4 larger or smaller than the true area? Is L_4 larger or smaller than the true area? What can you conclude about the value π ?
- 8. Let $f(x) = x^2$.
 - (a) If we divide the interval [0,2] into n equal intervals of equal length, how long is each interval?
 - (b) Write a sum which gives the right-endpoint approximation R_n to the the area under the graph of f on [0,2].
 - (c) Use one of the formulae for the sums of powers of k to find a closed form expression for R_n .
 - (d) Take the limit of R_n as n tends to infinity to find an exact value for the area.