Question Number	Answer		Mark
12(a)	 Curve of decreasing negative gradient beginning at a positive current value Initial current labelled as 0.077 (A) Use of Time Constant = RC Time for discharge marked as 11(.05) (s) Or 2.2 s marked when current has decreased to about 1/3 of initial value (0.028 A) Or 1.5 s marked when current has decreased to about 1/2 of initial value (0.038 A) Example of graph 	(1) (1) (1)	4
	Current / A 0.077 11 Time / s		
	Example of calculation $I = V/R = 5000 \text{ V} / 65 \times 10^3 \Omega = 0.077 \text{ A}$ $T = RC = 65 \times 10^3 \Omega \times 34 \times 10^{-6} \text{ F} = 2.21 \text{ s}$		
12(b)	 Use of I₀ = V/R Use of ln I = ln I₀ - t/RC t = 0.53 ms Conclusion with comparison between relevant calculated quantity and corresponding value from question 	(1) (1) (1) (1)	4
	 Use of I₀ = V/R Use I = I₀e^t/_{RC} with t = 2.0 ms I = 22.5 A Conclusion with comparison between relevant calculated quantity and corresponding value from question 	(1) (1) (1) (1)	
	Example of calculation $I_0 = 5000/150 = 33.3 \text{ A}$ $\ln 30 = \ln 33.3 - t/150\Omega \times 34 \times 10^{-6} \text{ F}$ $t = 0.53 \text{ ms}$ which is less than 2.0 ms, so it does not meet the requirement		