Касательная через кратность.

Попробуем найти формулы касательной к графикам некоторых функций по аналогии с касательной к окружности. Под *касательной* к графику функции будем понимать наклонную прямую, которая имеет с графиком ровно одну общую точку.

- 1. Найдите уравнение касательной к параболе $y = x^2$ в точке (2,4).
- 2. Найдите уравнение касательной к параболе $y=x^2$ в произвольной точке (x_0,x_0^2) .
- 3. Найдите уравнение касательной к гиперболе y=1/x в произвольной точке $(x_0,1/x_0)$.
- 4. Найдите уравнение касательной к графику функции $y=x^3$ в точке (2,8).

Касательная как предельное положение хорды.

На примере касательной к $y=x^3$ видно, что даже к степенной функции степени больше двух сложно найти касательную в произвольной точке. Кроме того, хочется иметь определение, которое позволит находить касательную для функций, которые устроены сложнее, чем степенная.

Зафиксируем на графике функции y = f(x) точку $(x_0, f(x_0))$ и дадим аргументу x приращение (изменение) $\Delta x = h$, т. е. рассмотрим точку с абсциссой $x_0 + h$. Тогда приращение функции равно $\Delta y = f(x_0 + h) - f(x_0)$. Отношение $\frac{\Delta y}{\Delta x}$ показывает скорость изменения функции на отрезке $[x_0, x_0 + h]$ и равно угловому коэффициенту прямой, проходящей через точки $(x_0, f(x_0))$ и $(x_0+h, f(x_0+h))$. Естественно предположить, что при приближении Δx к нулю отношение $\frac{\Delta y}{\Delta x}$ должно приближаться к угловому коэффициенту касательной. 5. Проделайте это для функции $f(x)=x^2$ и точки $x_0=2$. К чему приближается $\frac{\Delta y}{\Delta x}$

- при приближении Δx к нулю?
- 6. Проделайте это для функции $f(x) = x^n$ и произвольной точки (x_0, x_0^n) .

Производная функции в точке

Угловой коэффициент касательной в том виде, который мы только что рассматривали называется производной функции f в точке x_0 . Строго говоря:

Производной функции f в точке x_0 называется предел $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, если он существует. Если сопоставить каждой точке x производную функции f в точке x, то получим новую функцию $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, которая называется производной функции f.

 $(x_0, f(x_0))$ и имеющая угловой коэффициент $f'(x_0)$.

7. Запишите в общем виде уравнение касательной в точке x_0 к графику функции f.

В приведённых выше определениях слово npeden заменило наивное понятие $npu \delta nu ж a$ ется, которое мы использовали до этого.

Предел функции в точке

Дадим строгое определение понятия " $npeden \ \phi y + \kappa u u u f \ e \ moure \ x_0 \ paeen \ A$ ":

$$\lim_{x \to x_0} f(x) = A \iff \forall \ \varepsilon > 0 \ \exists \ \delta \in \mathbb{R} : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon.$$

Если добавить слов, то получится: $\kappa a \kappa o e \ b \omega \ manoe \ u c no \ \varepsilon > 0 \ h u \ b \omega no \ s a d a h o, \ h a \ddot{u} d \ddot{e} m c n$ такая окрестность (интервал) $(x_0 - \delta, x_0 + \delta)$ точки x_0 , что значения функции f во всех точках этой окрестности (кроме x_0) отличаются от A меньше, чем на ε .

Вообще говоря, "окрестностью" точки x_0 на числовой прямой называется любое множество, содержащее точку x_0 и интервал, которому она принадлежит. Не ограничивая общности, можно сразу считать её интервалом с центром в x_0 .

 $^{^1\}mathrm{B}$ этом пункте наше определение касательной не подходит. Необходимо уточнить, что касательная — локальное понятие, т. е. она должна иметь ровно одну общую точку только на некотором промежутке.

- 8. Пользуясь определением докажите, что $\lim_{x \to \frac{1}{2}} \frac{4x^2 1}{2x 1} = 2$.
- 9. Вычислите a) $\lim_{x \to 2} \frac{3x^2 5}{2x + 1}$; b) $\lim_{x \to 2} \frac{x^2 3x + 2}{4 x^2}$; c) $\lim_{x \to 1} \frac{\sqrt[3]{8x} 2x}{x^2 1}$.
- 10. Докажите², что $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- 11. Докажите, что $\lim_{x\to 0}x\sin\frac{1}{x}=0$, в то время как $\lim_{x\to 0}\sin\frac{1}{x}$ не определён.

Свойства предела

Предположим, что заданы функции f и g, имеющие предел в точке x_0 , т. е. $\lim_{x \to x_0} f(x) = A$ и $\lim g(x) = B$. Рассмотрим следующие основные свойства пределов:

- 12. Докажите, что $\lim_{x \to x_0} f(x) = C \Rightarrow C = A$, т. е. предел в точке может быть только один.
- 13. Докажите, что $\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B$.
- 14. Докажите, что $\lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B$.
- 15. Докажите, что, если B>0, то g(x)>0 для всех x из некоторой окрестности точки x_0 .
- 16. Докажите, что, если $B \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$.
- 17. Докажите, что, если $f(x) \leqslant g(x)$ для всех x из некоторой окрестности x_0 , то $A \leqslant B$.
- 18. Докажите, что, если A=B и для некоторой функции h(x) в некоторой окрестности точки x_0 выполнено двойное неравенство $f(x) \leq h(x) \leq g(x)$, то $\lim_{x \to x_0} h(x) = A$.

Предел функции на бесконечности

Помимо стремления аргумента к точке, нетрудно дать естественное определение стремления аргумента к бесконечности.

19. Пусть задана функция $f \colon \mathbb{R} \to \mathbb{R}$. Сделаем замену $x = \operatorname{tg}(y)$, тогда для функции $g(y)=f(\operatorname{tg} y)\colon (-\frac{\pi}{2},\frac{\pi}{2})\to \mathbb{R}$ корректно определено понятие $\lim_{y\to \frac{\pi}{2}}g(y)$. Выясните, чему в этом определении соответствуют окрестности точки $y_0 = \frac{\pi}{2}$ для переменной x.

Соответствующее определение имеет вид:

$$\lim_{x \to +\infty} f(x) = A \stackrel{\text{oup}}{\Longleftrightarrow} \forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{R} : x > N \Rightarrow |f(x) - A| < \varepsilon.$$

- 20. Пользуясь определением докажите, что $\lim_{x \to \infty} \frac{x^2}{x^2 + 1} = 1$. 21. По аналогии с $\lim_{x \to +\infty} f(x) = A$ дайте определения для $\lim_{x \to -\infty} f(x) = A$ и $\lim_{x \to \infty} f(x) = A$. 22. Пользуясь определением докажите, что $\lim_{x \to -\infty} \sqrt{5 2x} = +\infty$.
- 23. Сформулируйте по аналогии определения, в которых вместо A стоит $+\infty$, $-\infty$ и ∞ .
- 24. Любая числовая последовательность $(a_n)_{n\in\mathbb{N}}$ является функцией $\mathbb{N}\to\mathbb{R}$, заданной по правилу $n \mapsto a_n$. Сформулируйте определение предела последовательности $\lim a_n$.

²Этот предел называется (первым замечательным пределом).

³Это утверждение называется **леммой о двух милиционерах**.