• Let f be a real valued function defined on $\Omega \subseteq \mathbb{R}^n$.

- Let f be a real valued function defined on $\Omega \subseteq \mathbb{R}^n$.
- The problem is to minimize or maximize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$, where f need not be a linear function.

- Let f be a real valued function defined on $\Omega \subseteq \mathbb{R}^n$.
- The problem is to minimize or maximize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$, where f need not be a linear function.
- **Definition 1:** A point (or an element) $\mathbf{x}^* \in \Omega$ is called a local minimum (maximum) of f if there exists an $\epsilon > 0$, such that
 - $\mathbf{x} \in \Omega$ and $\|\mathbf{x} \mathbf{x}^*\| < \epsilon$ implies $f(\mathbf{x}^*) \le f(\mathbf{x}) \ (f(\mathbf{x}^*) \ge f(\mathbf{x}))$.

- Let f be a real valued function defined on $\Omega \subseteq \mathbb{R}^n$.
- The problem is to minimize or maximize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$, where f need not be a linear function.
- **Definition 1:** A point (or an element) $\mathbf{x}^* \in \Omega$ is called a local minimum (maximum) of f if there exists an $\epsilon > 0$, such that
 - $\mathbf{x} \in \Omega$ and $\|\mathbf{x} \mathbf{x}^*\| < \epsilon$ implies $f(\mathbf{x}^*) \le f(\mathbf{x}) \ (f(\mathbf{x}^*) \ge f(\mathbf{x}))$.
- **Definition 2:** A point $\mathbf{x}^* \in \Omega$ is called a global minimum (maximum) of f if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ ($f(\mathbf{x}^*) \geq f(\mathbf{x})$) for all $\mathbf{x} \in \Omega$.

• **Definition 3:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a **feasible direction** at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, $0 \le t \le c$, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.

- **Definition 3:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a **feasible direction** at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, 0 < t < c, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.
- **Example 1:** Let $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$

- **Definition 3:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a **feasible direction** at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, $0 \le t \le c$, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.
- **Example 1:** Let $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- At $[0,0]^T$ if $\mathbf{d} = [d_1,d_2]^T$ is a feasible direction then $d_1 \ge 0$ and $d_2 \ge 0$.

- **Definition 3:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a **feasible direction** at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, $0 \le t \le c$, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.
- **Example 1:** Let $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- At $[0,0]^T$ if $\mathbf{d} = [d_1,d_2]^T$ is a feasible direction then $d_1 \ge 0$ and $d_2 > 0$.
- At $[0, \frac{1}{2}]^T$ if **d** is a feasible direction then $d_1 \ge 0$ but d_2 can be any real number.

- **Definition 3:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a **feasible direction** at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, $0 \le t \le c$, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.
- **Example 1:** Let $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- At $[0,0]^T$ if $\mathbf{d} = [d_1,d_2]^T$ is a feasible direction then $d_1 \ge 0$ and $d_2 \ge 0$.
- At $[0, \frac{1}{2}]^T$ if **d** is a feasible direction then $d_1 \ge 0$ but d_2 can be any real number.
- At $[\frac{1}{2}, 0]^T$ if **d** is a feasible direction then $d_2 \ge 0$ but d_1 can be any real number.

- **Definition 3:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is said to be a **feasible direction** at $\mathbf{x}^* \in \Omega$, if there exists a c > 0 such that for all t, $0 \le t \le c$, $\mathbf{x}^* + t\mathbf{d} \in \Omega$.
- **Example 1:** Let $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- At $[0,0]^T$ if $\mathbf{d} = [d_1,d_2]^T$ is a feasible direction then $d_1 \ge 0$ and $d_2 \ge 0$.
- At $[0, \frac{1}{2}]^T$ if **d** is a feasible direction then $d_1 \ge 0$ but d_2 can be any real number.
- At $\left[\frac{1}{2},0\right]^T$ if **d** is a feasible direction then $d_2 \ge 0$ but d_1 can be any real number.
- At $\left[\frac{1}{2}, \frac{1}{2}\right]^T$ any $\mathbf{d} \in \mathbb{R}^2$ will be a feasible direction.

• Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .

- Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .
- Theorem 1: Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function

- Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .
- Theorem 1: Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function (that is, the first order partial derivatives of f exists and are continuous as functions from Ω to \mathbb{R}).

- Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n, \mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .
- Theorem 1: Let $f:\Omega\to\mathbb{R}$ be a continuously **differentiable** function (that is, the first order partial derivatives of f exists and are continuous as functions from Ω to \mathbb{R}). If \mathbf{x}^* is a **local minimum point** then for any feasible direction d at x*. $\nabla f(\mathbf{x}^*)\mathbf{d} > 0$,

- Remark 1: If x* is an interior point of Ω then any
 d ∈ Rⁿ, d ≠ 0 is a feasible direction at x*.
- Theorem 1: Let f: Ω → ℝ be a continuously differentiable function (that is, the first order partial derivatives of f exists and are continuous as functions from Ω to ℝ). If x* is a local minimum point then for any feasible direction d at x*,

$$\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$$
, where $(\nabla f(\mathbf{x}^*))_i = (\frac{\partial f}{\partial x_i})(\mathbf{x}^*)$ (the gradient vector of f at \mathbf{x}^* is written as a row vector), and $\mathbf{d} \in \mathbb{R}^n$ is a column vector.

- Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .
- Theorem 1: Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function (that is, the first order partial derivatives of f exists and are continuous as functions from Ω to \mathbb{R}). If \mathbf{x}^* is a local minimum point then for any feasible direction \mathbf{d} at \mathbf{x}^* , $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$, where $(\nabla f(\mathbf{x}^*))_i = (\frac{\partial f}{\partial x_i})(\mathbf{x}^*)$ (the gradient vector of f at \mathbf{x}^* is written as a row vector), and $\mathbf{d} \in \mathbb{R}^n$ is a column vector.
- Theorem 2 : Let $f : \Omega \to \mathbb{R}$ be a continuously differentiable function.

• Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .

• Theorem 1: Let $f:\Omega\to\mathbb{R}$ be a continuously

- **differentiable** function (that is, the first order partial derivatives of f exists and are continuous as functions from Ω to \mathbb{R}). If \mathbf{x}^* is a **local minimum point** then for any **feasible direction d** at \mathbf{x}^* , $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$, where $(\nabla f(\mathbf{x}^*))_i = (\frac{\partial f}{\partial x_i})(\mathbf{x}^*)$ (the gradient vector of f at \mathbf{x}^* is written as a row vector), and $\mathbf{d} \in \mathbb{R}^n$ is a column vector.
- Theorem 2 : Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function. Let \mathbf{x}^* be an interior point of Ω .

- Remark 1: If \mathbf{x}^* is an interior point of Ω then any $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction at \mathbf{x}^* .
- Theorem 1: Let f: Ω → ℝ be a continuously differentiable function (that is, the first order partial derivatives of f exists and are continuous as functions from Ω to ℝ). If x* is a local minimum point then for any feasible direction d at x*,
 ∇f(x*)d > 0

 $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0$, where $(\nabla f(\mathbf{x}^*))_i = (\frac{\partial f}{\partial x_i})(\mathbf{x}^*)$ (the gradient vector of f at \mathbf{x}^* is written as a row vector), and $\mathbf{d} \in \mathbb{R}^n$ is a column vector.

Theorem 2 : Let f : Ω → ℝ be a continuously differentiable function. Let x* be an interior point of Ω. If x* is a local minimum point of f then ∇f(x*) = 0

• **Example 1:** Consider the following problem:

• **Example 1:** Consider the following problem: Minimize $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + 2x_2^2$ • **Example 1:** Consider the following problem:

Minimize $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$

- **Example 1:** Consider the following problem:
 - Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- $\nabla f(\mathbf{x}) = (3x_1^2 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions $x_1 = 0, x_2 = 0$ and $x_1 = 6, x_2 = 9$.

- Example 1: Consider the following problem:
 - Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- $\nabla f(\mathbf{x}) = (3x_1^2 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions $x_1 = 0, x_2 = 0$ and $x_1 = 6, x_2 = 9$.
- So [6,9]^T and [0,0]^T satisfies the first order necessary conditions for a local minimum.

- Example 1: Consider the following problem:
 - Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- $\nabla f(\mathbf{x}) = (3x_1^2 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions $x_1 = 0, x_2 = 0$ and $x_1 = 6, x_2 = 9$.
- So [6,9]^T and [0,0]^T satisfies the first order necessary conditions for a local minimum.
- $[0,0]^T$ is also a **local minimum** of f.

- Example 1: Consider the following problem:
 - Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}.$
- $\nabla f(\mathbf{x}) = (3x_1^2 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions $x_1 = 0, x_2 = 0$ and $x_1 = 6, x_2 = 9$.
- So [6,9]^T and [0,0]^T satisfies the first order necessary conditions for a local minimum.
- $[0,0]^T$ is also a **local minimum** of f.
- Exercise: Will $[0,0]^T$ be a local minimum point of f given in Example 1, if $\Omega = \mathbb{R}^2$?

• **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$ • **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$ subject to $x_1 \ge 0$, $x_2 \ge 0$.

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 \ge 0$, $x_2 \ge 0$.
- Hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}$

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 \ge 0$, $x_2 \ge 0$.
- Hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}$
- Note that f is a continuously differentiable function

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 > 0$, $x_2 > 0$.
- Hence $\Omega = \{ [x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0 \}$
- Note that f is a continuously differentiable function
- Check that $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, satisfies the first order necessary conditions for a locally minimum

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 > 0$, $x_2 > 0$.
- Hence $\Omega = \{ [x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0 \}$
- Note that f is a continuously differentiable function
- Check that $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, satisfies the first order necessary conditions for a locally minimum
- Check that f has a **global minimum** at $x_1 = \frac{1}{2}, x_2 = 0$

• Theorem 3: Let $f:\Omega\to\mathbb{R}$ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by $\frac{\partial^2 f}{\partial x_j \partial x_i}$) exists and are continuous as functions from Ω to \mathbb{R}).

• Theorem 3: Let $f: \Omega \to \mathbb{R}$ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by $\frac{\partial^2 f}{\partial x_j \partial x_i}$) exists and are continuous as functions from Ω to \mathbb{R}). If \mathbf{x}^* is a local minimum of f then for any feasible

If \mathbf{x}^* is a **local minimum** of f then for any **feasible** direction \mathbf{d} at \mathbf{x}^*

Theorem 3: Let f: Ω → ℝ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by ∂²f/∂x_j∂x_i) exists and are continuous as functions from Ω to ℝ).
 If x* is a local minimum of f then for any feasible direction d at x*

Theorem 3: Let f: Ω → ℝ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by ∂²f/∂x_j∂x_i) exists and are continuous as functions from Ω to ℝ).
 If x* is a local minimum of f then for any feasible direction d at x*

- ② If $\nabla f(\mathbf{x}^*)\mathbf{d} = 0$, then $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*)\mathbf{d} \geq 0$.

• Theorem 3: Let $f:\Omega\to\mathbb{R}$ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by $\frac{\partial^2 f}{\partial x_j \partial x_i}$) exists and are continuous as functions from Ω to \mathbb{R}).

If \mathbf{x}^* is a **local minimum** of f then for any **feasible** direction \mathbf{d} at \mathbf{x}^*

- 2 If $\nabla f(\mathbf{x}^*)\mathbf{d} = 0$, then $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*)\mathbf{d} \geq 0$.

Note: The matrix $\nabla^2 f$ (also denoted by H) is called the **Hessian matrix** of f,

Second order necessary conditions for a point to be a local minimum

• Theorem 3: Let $f:\Omega\to\mathbb{R}$ be a twice continuously differentiable function (that is all the second order partial derivatives of f (given by $\frac{\partial^2 f}{\partial x_j \partial x_i}$) exists and are continuous as functions from Ω to \mathbb{R}).

If \mathbf{x}^* is a **local minimum** of f then for any **feasible** direction \mathbf{d} at \mathbf{x}^*

- 2 If $\nabla f(\mathbf{x}^*)\mathbf{d} = 0$, then $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*)\mathbf{d} \geq 0$.

Note: The matrix $\nabla^2 f$ (also denoted by H) is called the **Hessian matrix** of f,

$$(\nabla^2 f(\mathbf{x}^*))_{ij} = \frac{\partial^2 f}{\partial x_j \partial x_i}(x^*) = \left[\frac{\partial^2 f}{\partial x_j \partial x_i}\right]_{x^*}.$$

Theorem 4: Let f: Ω → ℝ be a twice continuously
differentiable function and let x* be an interior point of
Ω. If x* is a local minimum of f then

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

 - ② $\mathbf{d}^T \hat{\nabla}^2 f(\mathbf{x}^*) \mathbf{d} \geq 0$ for all vectors $\mathbf{d} \in \mathbb{R}^n$ (or $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite).

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

 - ② $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge 0$ for all vectors $\mathbf{d} \in \mathbb{R}^n$ (or $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite).
- **Example 1 revisited:** Consider the following problem: Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

 - **2** $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} \geq 0$ for all vectors $\mathbf{d} \in \mathbb{R}^n$ (or $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite).
- **Example 1 revisited:** Consider the following problem: Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$,

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

 - ② $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge 0$ for all vectors $\mathbf{d} \in \mathbb{R}^n$ (or $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite).
- **Example 1 revisited:** Consider the following problem: Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}$.

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

 - ② $\mathbf{d}^T \hat{\nabla}^2 f(\mathbf{x}^*) \mathbf{d} \geq 0$ for all vectors $\mathbf{d} \in \mathbb{R}^n$ (or $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite).
- **Example 1 revisited:** Consider the following problem: Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}$.
- $\nabla f(\mathbf{x}) = (3x_1^2 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions

- Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function and let x* be an interior point of Ω. If x* is a local minimum of f then

 - ② $\mathbf{d}^T \hat{\nabla}^2 f(\mathbf{x}^*) \mathbf{d} \geq 0$ for all vectors $\mathbf{d} \in \mathbb{R}^n$ (or $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite).
- **Example 1 revisited:** Consider the following problem: Minimize $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ subject to $x_1 \ge 0$, $x_2 \ge 0$, hence $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2 \ge 0\}$.
- $\nabla f(\mathbf{x}) = (3x_1^2 2x_1x_2, -x_1^2 + 4x_2) = [0, 0]$ has two solutions
- $x_1 = 0, x_2 = 0$ and $x_1 = 6, x_2 = 9$.

• $[6,9]^T$ is an **interior point** of the feasible region Ω hence any $\mathbf{d} \in \mathbb{R}^2$ is a **feasible direction** at $[6,9]^T$.

- $[6,9]^T$ is an **interior point** of the feasible region Ω hence any $\mathbf{d} \in \mathbb{R}^2$ is a **feasible direction** at $[6,9]^T$.
- [6,9]^T satisfies the **first order necessary conditions** for a **local minimum**.

- $[6,9]^T$ is an **interior point** of the feasible region Ω hence any $\mathbf{d} \in \mathbb{R}^2$ is a **feasible direction** at $[6,9]^T$.
- [6,9]^T satisfies the first order necessary conditions for a local minimum.

- $[6,9]^T$ is an **interior point** of the feasible region Ω hence any $\mathbf{d} \in \mathbb{R}^2$ is a **feasible direction** at $[6,9]^T$.
- [6,9]^T satisfies the first order necessary conditions for a local minimum.

• At
$$\mathbf{x}^* = [6, 9]^T$$
, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$.

• At
$$\mathbf{x}^* = [6, 9]^T$$
, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$

• But $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = -2$, for $\mathbf{d} = [1, 1]^T$.

• At
$$\mathbf{x}^* = [6, 9]^T$$
, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$

- But $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = -2$, for $\mathbf{d} = [1, 1]^T$.
- x* = [6,9]^T does not satisfy the second order necessary conditions for a local minimum, hence is not a local minimum point of f.

• At
$$\mathbf{x}^* = [6, 9]^T$$
, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$

- But $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = -2$, for $\mathbf{d} = [1, 1]^T$.
- x* = [6,9]^T does not satisfy the second order necessary conditions for a local minimum, hence is not a local minimum point of f.
- Hence the first order necessary conditions are necessary but not sufficient for a point to be a local minimum.

• At
$$\mathbf{x}^* = [6, 9]^T$$
, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$

- But $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = -2$, for $\mathbf{d} = [1, 1]^T$.
- x* = [6,9]^T does not satisfy the second order necessary conditions for a local minimum, hence is not a local minimum point of f.
- Hence the first order necessary conditions are necessary but not sufficient for a point to be a local minimum.
- At $\mathbf{x}^* = [0, 0]^T$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction if and only if $d_1 \geq 0$ and $d_2 \geq 0$.

• At
$$\mathbf{x}^* = [6, 9]^T$$
, $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 18 & -12 \\ -12 & 4 \end{pmatrix}$

- But $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = -2$, for $\mathbf{d} = [1, 1]^T$.
- x* = [6,9]^T does not satisfy the second order necessary conditions for a local minimum, hence is not a local minimum point of f.
- Hence the first order necessary conditions are necessary but not sufficient for a point to be a local minimum.
- At $\mathbf{x}^* = [0, 0]^T$, $\mathbf{d} \neq \mathbf{0}$ is a feasible direction if and only if $d_1 \geq 0$ and $d_2 \geq 0$. Since $\nabla f(\mathbf{x}^*) = \mathbf{0}$, $\nabla f(\mathbf{x}^*)\mathbf{d} = 0$ for all \mathbf{d} .

• Since
$$\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$$
,

• Since $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$, $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 4d_2^2 \ge 0$ for all \mathbf{d} .

- Since $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$, $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 4d_2^2 \ge 0$ for all \mathbf{d} .
- [0,0]^T satisfies both the first and second order necessary conditions for a local minimum.

- Since $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$, $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 4 d_2^2 \ge 0$ for all \mathbf{d} .
- [0,0]^T satisfies both the first and second order necessary conditions for a local minimum.
- If $\Omega = \mathbb{R}^2$ in Example 1 then $[0,0]^T$ satisfies both the first and second order necessary conditions but is not a local minimum.

- Since $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$, $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 4 d_2^2 \ge 0$ for all \mathbf{d} .
- [0,0]^T satisfies both the first and second order necessary conditions for a local minimum.
- If $\Omega = \mathbb{R}^2$ in Example 1 then $[0,0]^T$ satisfies both the first and second order necessary conditions but is not a local minimum.
- For $\mathbf{d} = [-1, 0]^T$ which is a **feasible direction** at $[0, 0]^T$, $f(\mathbf{x}^* + td) = f(\mathbf{0} + td) < f(\mathbf{0})$, for all t > 0,

- Since $\nabla^2 f(\mathbf{x}^*) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$, $\mathbf{d}^T \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 4 d_2^2 \ge 0$ for all \mathbf{d} .
- [0,0]^T satisfies both the first and second order necessary conditions for a local minimum.
- If $\Omega = \mathbb{R}^2$ in Example 1 then $[0,0]^T$ satisfies both the first and second order necessary conditions but is not a local minimum.
- For $\mathbf{d} = [-1, 0]^T$ which is a **feasible direction** at $[0, 0]^T$, $f(\mathbf{x}^* + td) = f(\mathbf{0} + td) < f(\mathbf{0})$, for all t > 0, so $[0, 0]^T$ is **not** a **local minimum** of f.

• **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$ • **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$ subject to $x_1 \ge 0$, $x_2 \ge 0$.

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 \ge 0$, $x_2 \ge 0$.
- Note that f is a twice continuously differentiable function.

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 \ge 0$, $x_2 \ge 0$.
- Note that f is a twice continuously differentiable function.
- Check that $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, satisfies the first and the second order necessary conditions for \mathbf{x}^* to be locally minimum.

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 > 0$, $x_2 > 0$.
- Note that f is a twice continuously differentiable function.
- Check that $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, satisfies the first and the second order necessary conditions for \mathbf{x}^* to be locally minimum.
- $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, is the global minimum of f.

- **Example 2 :** Consider the following problem: Minimize $f(x_1, x_2) = x_1^2 x_1 + x_2 + x_1x_2$ subject to $x_1 > 0$, $x_2 > 0$.
- Note that f is a twice continuously differentiable function.
- Check that $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, satisfies the first and the second order necessary conditions for \mathbf{x}^* to be locally minimum.
- $\mathbf{x}^* = [\frac{1}{2}, 0]^T$, is the global minimum of f.
- **Definition:** A real symmetric matrix A is said to be positive semidefinite (negative semidefinite) if $\mathbf{x}^T A \mathbf{x} \geq 0$ ($\mathbf{x}^T A \mathbf{x} \leq 0$) for all $\mathbf{x} \in \mathbb{R}^n$.

• **Definition:** A real symmetric matrix A is said to be positive definite (negative definite) if $\mathbf{x}^T A \mathbf{x} > 0$ ($\mathbf{x}^T A \mathbf{x} < 0$) for all **nonzero** vectors $\mathbf{x} \in \mathbb{R}^n$.

- Definition: A real symmetric matrix A is said to be positive definite (negative definite) if x^TAx > 0 (x^TAx < 0) for all nonzero vectors x ∈ Rⁿ.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:

- Definition: A real symmetric matrix A is said to be positive definite (negative definite) if x^TAx > 0 (x^TAx < 0) for all nonzero vectors x ∈ Rⁿ.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive semidefinite.

- Definition: A real symmetric matrix A is said to be positive definite (negative definite) if x^TAx > 0 (x^TAx < 0) for all nonzero vectors x ∈ Rⁿ.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive semidefinite.
 - All eigenvalues of A are nonnegative.

- Definition: A real symmetric matrix A is said to be positive definite (negative definite) if x^TAx > 0 (x^TAx < 0) for all nonzero vectors x ∈ Rⁿ.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive semidefinite.
 - 2 All eigenvalues of A are nonnegative.
 - All principal minors of A are nonnegative.

- Definition: A real symmetric matrix A is said to be positive definite (negative definite) if x^TAx > 0 (x^TAx < 0) for all nonzero vectors x ∈ Rⁿ.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive semidefinite.
 - 2 All eigenvalues of A are nonnegative.
 - All principal minors of A are nonnegative.
- **Definition:** $\lambda \in \mathbb{C}$ is called an eigenvalue of an $n \times n$ matrix A if there exists an $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq \mathbf{0}$ (that is atleast one component of \mathbf{x} is nonzero) such that $A\mathbf{x} = \lambda \mathbf{x}$.

- Definition: A real symmetric matrix A is said to be positive definite (negative definite) if x^TAx > 0 (x^TAx < 0) for all nonzero vectors x ∈ Rⁿ.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive semidefinite.
 - 2 All eigenvalues of A are nonnegative.
 - All principal minors of A are nonnegative.
- **Definition:** $\lambda \in \mathbb{C}$ is called an eigenvalue of an $n \times n$ matrix A if there exists an $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq \mathbf{0}$ (that is atleast one component of \mathbf{x} is nonzero) such that $A\mathbf{x} = \lambda \mathbf{x}$.
- For example the 0 matrix has all n eigenvalues equal to 0, the identity matrix In has all n eigenvalues equal to 1, and for an upper triangular matrix, the diagonal entries are its eigenvalues.

• **Definition:** If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the **(sub)matrix** obtained from A, by deleting all the rows of A which do not belong to α , and by deleting all the columns of A which do not belong to β .

- **Definition:** If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the **(sub)matrix** obtained from A, by deleting all the rows of A which do not belong to α , and by deleting all the columns of A which do not belong to β .
- If α = β, then A[α, α] is called a principal submatrix of A and det A[α, α] is called a principal minor of A.

- **Definition:** If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the **(sub)matrix** obtained from A, by deleting all the rows of A which do not belong to α , and by deleting all the columns of A which do not belong to β .
- If $\alpha = \beta$, then $A[\alpha, \alpha]$ is called a **principal submatrix** of A and det $A[\alpha, \alpha]$ is called a **principal minor** of A.
- If $\alpha = \beta = \{i\}$, where $i \in \{1, ..., n\}$, then $A[\alpha, \alpha] = [a_{ii}]$, and $detA[\alpha, \alpha] = a_{ii}$, the i th diagonal entry.

- **Definition:** If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the **(sub)matrix** obtained from A, by deleting all the rows of A which do not belong to α , and by deleting all the columns of A which do not belong to β .
- If $\alpha = \beta$, then $A[\alpha, \alpha]$ is called a **principal submatrix** of A and det $A[\alpha, \alpha]$ is called a **principal minor** of A.
- If $\alpha = \beta = \{i\}$, where $i \in \{1, ..., n\}$, then $A[\alpha, \alpha] = [a_{ii}]$, and $detA[\alpha, \alpha] = a_{ii}$, the i th diagonal entry.
- If $\alpha = \beta = \{i, j\}$, where $i, j \in \{1, ..., n\}$ and i < j, then

- **Definition:** If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the **(sub)matrix** obtained from A, by deleting all the rows of A which do not belong to α , and by deleting all the columns of A which do not belong to β .
- If α = β, then A[α, α] is called a principal submatrix of A and det A[α, α] is called a principal minor of A.
- If $\alpha = \beta = \{i\}$, where $i \in \{1, ..., n\}$, then $A[\alpha, \alpha] = [a_{ii}]$, and $detA[\alpha, \alpha] = a_{ii}$, the i th diagonal entry.
- If $\alpha = \beta = \{i, j\}$, where $i, j \in \{1, ..., n\}$ and i < j, then $A[\alpha, \alpha] = \begin{bmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{bmatrix}$.

- **Definition:** If A is an $n \times n$ matrix and $\alpha \subseteq \{1, \ldots, n\}$, $\beta \subseteq \{1, \ldots, n\}$ then $A[\alpha, \beta]$ is the **(sub)matrix** obtained from A, by deleting all the rows of A which do not belong to α , and by deleting all the columns of A which do not belong to β .
- If α = β, then A[α, α] is called a principal submatrix of A and det A[α, α] is called a principal minor of A.
- If $\alpha = \beta = \{i\}$, where $i \in \{1, ..., n\}$, then $A[\alpha, \alpha] = [a_{ii}]$, and $det A[\alpha, \alpha] = a_{ii}$, the i th diagonal entry.
- If $\alpha = \beta = \{i, j\}$, where $i, j \in \{1, \dots, n\}$ and i < j, then $A[\alpha, \alpha] = \begin{bmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{bmatrix}$. If $\alpha = \{1, \dots, n\}$, then $A[\alpha, \alpha] = A$, and det $A[\alpha, \alpha] = det(A)$.

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*
 ∇f(x*)d > 0.
 then is x* a local minimum of f?

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*
 ∇f(x*)d > 0.
 then is x* a local minimum of f?
- Answer is No.

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*
 ∇f(x*)d > 0.
 then is x* a local minimum of f?
- Answer is No.
- Example: Let $f(x_1, x_2) = x_1 2x_2^2$ be defined on

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*
 ∇f(x*)d > 0.
 then is x* a local minimum of f?
- Answer is No.
- Example: Let $f(x_1, x_2) = x_1 2x_2^2$ be defined on $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2^2 \le x_1\}.$

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*
 ∇f(x*)d > 0.
 then is x* a local minimum of f?
- Answer is No.
- Example: Let $f(x_1, x_2) = x_1 2x_2^2$ be defined on $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2^2 \le x_1\}.$ $\nabla f(\mathbf{x}) = [1, -4x_2], \nabla f(\mathbf{x}^*)\mathbf{d} = d_1 > 0$ for any feasible direction at $\mathbf{x}^* = [0, 0]^T$.

- Trying to find sufficient conditions for a local minima
- If x* is such that for any feasible direction d at x*
 ∇f(x*)d > 0.
 then is x* a local minimum of f?
- Answer is No.
- Example: Let $f(x_1, x_2) = x_1 2x_2^2$ be defined on $\Omega = \{[x_1, x_2]^T : x_1 \ge 0, x_2^2 \le x_1\}.$ $\nabla f(\mathbf{x}) = [1, -4x_2], \nabla f(\mathbf{x}^*)\mathbf{d} = d_1 > 0$ for any feasible direction at $\mathbf{x}^* = [0, 0]^T$. But $\mathbf{x}^* = [0, 0]^T$ is not a local minimum.

• Sufficient conditions for a local minima : Theorem 4 : Let $f:\Omega\to\mathbb{R}$ be a twice continuously differentiable function.

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

- Sufficient conditions for a local minima :
 - Theorem 4 : Let $f : \Omega \to \mathbb{R}$ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

 - 2 $\nabla^2 f(\mathbf{x}^*)$ is positive definite,

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

differentiable function.

 $\nabla^2 \hat{f}(\mathbf{x}^*)$ is **positive definite**, then \mathbf{x}^* is a **local minimum** point of f.

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

 - **2** $\nabla^2 \hat{f}(\mathbf{x}^*)$ is **positive definite**, then \mathbf{x}^* is a **local minimum** point of f.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

 - **2** $\nabla^2 \hat{f}(\mathbf{x}^*)$ is **positive definite**, then \mathbf{x}^* is a **local minimum** point of f.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive definite.

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

 - **2** $\nabla^2 \hat{f}(\mathbf{x}^*)$ is **positive definite**, then \mathbf{x}^* is a **local minimum** point of f.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive definite.
 - 2 All eigenvalues of A are positive.

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

 - **2** $\nabla^2 \hat{f}(\mathbf{x}^*)$ is **positive definite**, then \mathbf{x}^* is a **local minimum** point of f.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive definite.
 - 2 All eigenvalues of A are positive.
 - All principal minors of A are positive.

- Sufficient conditions for a local minima:
 Theorem 4: Let f: Ω → ℝ be a twice continuously differentiable function.
 - Let \mathbf{x}^* be an **interior point** of Ω . If \mathbf{x}^* satisfies the following conditions

 - ② $\nabla^2 f(\mathbf{x}^*)$ is **positive definite**, then \mathbf{x}^* is a **local minimum** point of f.
- **Theorem:** If A is a symmetric, $n \times n$, real matrix then the following statements are equivalent:
 - A is positive definite.
 - All eigenvalues of A are positive.
 - All principal minors of A are positive.
- Remark: A nonsingular (nonzero determinant) positive semidefinite matrix is positive definite.

• Remark: Since maximizing f is same as minimizing -f, all the previous theorems have corresponding analogues for a maximization problem with some obvious changes.

- Remark: Since maximizing f is same as minimizing -f, all the previous theorems have corresponding analogues for a maximization problem with some obvious changes.
- **Definition 4:** A real valued function f defined on a **convex set** $\Omega \subseteq \mathbb{R}^n$ is said to be a **convex function** on Ω if for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y})$.

- Remark: Since maximizing f is same as minimizing -f, all the previous theorems have corresponding analogues for a maximization problem with some obvious changes.
- **Definition 4:** A real valued function f defined on a **convex** set $\Omega \subseteq \mathbb{R}^n$ is said to be a **convex function** on Ω if for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y})$.
- **Definition 5:** An $f: \Omega \to \mathbb{R}$ (Ω convex) is said to be a concave function if -f is a convex function.

- Remark: Since maximizing f is same as minimizing -f, all the previous theorems have corresponding analogues for a maximization problem with some obvious changes.
- **Definition 4:** A real valued function f defined on a **convex** set $\Omega \subseteq \mathbb{R}^n$ is said to be a **convex function** on Ω if for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y})$.
- **Definition 5:** An $f: \Omega \to \mathbb{R}$ (Ω convex) is said to be a concave function if -f is a convex function.
- Theorem 1 : If f is a convex function on Ω (a convex set), then the set $S = \{ \mathbf{x} \in \Omega : f(\mathbf{x}) \le c \}$ is a convex set (for all real c).

- Remark: Since maximizing f is same as minimizing -f, all the previous theorems have corresponding analogues for a maximization problem with some obvious changes.
- **Definition 4:** A real valued function f defined on a **convex** set $\Omega \subseteq \mathbb{R}^n$ is said to be a **convex function** on Ω if for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y})$.
- **Definition 5:** An $f: \Omega \to \mathbb{R}$ (Ω convex) is said to be a concave function if -f is a convex function.
- Theorem 1 : If f is a convex function on Ω (a convex set), then the set $S = \{ \mathbf{x} \in \Omega : f(\mathbf{x}) \le c \}$ is a convex set (for all real c).
- Theorem 2: Let f be a continuously differentiable function defined on a convex set, $\Omega \subseteq \mathbb{R}^n$, then f is convex on Ω if and only if

- Remark: Since maximizing f is same as minimizing -f, all the previous theorems have corresponding analogues for a maximization problem with some obvious changes.
- **Definition 4:** A real valued function f defined on a **convex** set $\Omega \subseteq \mathbb{R}^n$ is said to be a **convex function** on Ω if for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $0 \le \alpha \le 1$, $f(\alpha \mathbf{x} + (1 \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 \alpha)f(\mathbf{y})$.
- **Definition 5:** An $f: \Omega \to \mathbb{R}$ (Ω convex) is said to be a concave function if -f is a convex function.
- Theorem 1 : If f is a convex function on Ω (a convex set), then the set $S = \{ \mathbf{x} \in \Omega : f(\mathbf{x}) \le c \}$ is a convex set (for all real c).
- Theorem 2: Let f be a continuously differentiable function defined on a convex set, $\Omega \subseteq \mathbb{R}^n$, then f is convex on Ω if and only if $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \Omega$.

• Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if

• Theorem 3 : Let f be a twice continuously differentiable function on a **convex set** Ω (where Ω has atleast one interior point), then f is **convex** on Ω if and only if for all $\mathbf{x} \in \Omega$,

• Theorem 3: Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.

- Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.
- Revisiting Example 1 : Let $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ be defined on

- Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.
- Revisiting Example 1 : Let $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ be defined on $\Omega = \{ [x_1, x_2]^T : x_1 > 0, x_2 > 0 \}.$

- Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.
- Revisiting Example 1 : Let $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ be defined on $\Omega = \{ [x_1, x_2]^T : x_1 > 0, x_2 > 0 \}.$

• Since
$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$$
,

- Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.
- Revisiting Example 1 : Let $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ be defined on $\Omega = \{ [x_1, x_2]^T : x_1 > 0, x_2 > 0 \}.$

• Since
$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$$
,

• At $x_1 = 1, x_2 = 3$,

- Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.
- Revisiting Example 1 : Let $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ be defined on $\Omega = \{[x_1, x_2]^T : x_1 > 0, x_2 > 0\}.$
- Since $\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$,
- At $x_1 = 1$, $x_2 = 3$, $\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 0 & -2 \\ -2 & 4 \end{pmatrix}$ is clearly not **positive semidefinite**.

- Theorem 3 : Let f be a twice continuously differentiable function on a convex set Ω (where Ω has atleast one interior point), then f is convex on Ω if and only if for all $\mathbf{x} \in \Omega$, $\nabla^2 f(\mathbf{x})$ is positive semidefinite.
- Revisiting Example 1 : Let $f(x_1, x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ be defined on $\Omega = \{ [x_1, x_2]^T : x_1 > 0, x_2 > 0 \}.$

• Since
$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{pmatrix}$$
,

• At $x_1 = 1$, $x_2 = 3$, $\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 0 & -2 \\ -2 & 4 \end{pmatrix}$ is clearly not **positive semidefinite**. Hence f is **not** a **convex function** on Ω . • Theorem 4: Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function.

 Theorem 4: Let f: Ω → ℝ be a continuously differentiable function. If f is convex on Ω, then x* is a global minimum of f if and only if Theorem 4: Let f: Ω → ℝ be a continuously differentiable function. If f is convex on Ω, then x* is a global minimum of f if and only if for all feasible direction d at x*
 ∇f(x*)d ≥ 0.

- Theorem 4: Let f: Ω → ℝ be a continuously differentiable function. If f is convex on Ω, then x* is a global minimum of f if and only if for all feasible direction d at x*
 ∇f(x*)d ≥ 0.
- Corollary 4: Let f: Ω → ℝ be a continuously differentiable function. If f is convex on Ω and x* an interior point of Ω, then x* is a global minimum of f if and only if ∇f(x*) = 0.

- Theorem 4: Let $f:\Omega\to\mathbb{R}$ be a continuously **differentiable** function. If f is **convex** on Ω , then \mathbf{x}^* is a **global** minimum of f if and only if for all feasible direction d at x* $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0.$
- Corollary 4: Let $f: \Omega \to \mathbb{R}$ be a continuously **differentiable** function. If f is **convex** on Ω and \mathbf{x}^* an **interior point** of Ω , then \mathbf{x}^* is a **global** minimum of f if and only if

 $\nabla f(\mathbf{x}^*) = \mathbf{0}.$

 The above result is **not** necessarily true if f is **not convex** as you have already seen in **Example 1**.

- Theorem 4: Let $f:\Omega\to\mathbb{R}$ be a continuously **differentiable** function. If f is **convex** on Ω , then \mathbf{x}^* is a **global** minimum of f if and only if for all feasible direction d at x* $\nabla f(\mathbf{x}^*)\mathbf{d} \geq 0.$
- Corollary 4: Let $f: \Omega \to \mathbb{R}$ be a continuously **differentiable** function. If f is **convex** on Ω and \mathbf{x}^* an **interior point** of Ω , then \mathbf{x}^* is a **global** minimum of f if and only if

 $\nabla f(\mathbf{x}^*) = \mathbf{0}.$

- The above result is **not** necessarily true if f is **not convex** as you have already seen in **Example 1**.
- **Remark**: Since minimizing f is same as maximizing -f, all the previous theorems for minimizing a convex function have corresponding analogues for maximizing a concave function

• Theorem 5: Let $f: \Omega \to \mathbb{R}$ be a **convex function**, then the following statements are true.

- Theorem 5: Let $f: \Omega \to \mathbb{R}$ be a **convex function**, then the following statements are true.
 - Let S be the collection of all x's where f attains its minimum value (that is, the set of all optimal solutions of f for a minimization problem).

- Theorem 5: Let $f: \Omega \to \mathbb{R}$ be a **convex function**, then the following statements are true.
 - Let S be the collection of all x's where f attains its minimum value (that is, the set of all optimal solutions of f for a minimization problem). Then S is a convex set.

- Theorem 5: Let $f: \Omega \to \mathbb{R}$ be a **convex function**, then the following statements are true.
 - Let *S* be the collection of all **x**'s where *f* attains its **minimum value** (that is, the set of all optimal solutions of *f* for a minimization problem). Then *S* is a **convex** set.
 - If x* is a local minimum point of f then it is also a global minimum point of f.

- Theorem 5: Let $f: \Omega \to \mathbb{R}$ be a **convex function**, then the following statements are true.
 - Let S be the collection of all x's where f attains its minimum value (that is, the set of all optimal solutions of f for a minimization problem). Then S is a convex set.
 - If x* is a local minimum point of f then it is also a global minimum point of f.
- Remark: The conclusions of Theorem 5 does not hold good when maximizing a convex function.

- Theorem 5: Let $f: \Omega \to \mathbb{R}$ be a **convex function**, then the following statements are true.
 - Let S be the collection of all x's where f attains its minimum value (that is, the set of all optimal solutions of f for a minimization problem). Then S is a convex set.
 - If x* is a local minimum point of f then it is also a global minimum point of f.
- Remark: The conclusions of Theorem 5 does not hold good when maximizing a convex function.
- Consider $f(x) = x^2, -1 \le x \le 1$. $f(x) = x^2, -1 \le x \le 2$.

 Remark: While minimizing or maximizing a linear function over a polyhedral set, the extremum was attained in at least one extreme point.

- Remark: While minimizing or maximizing a linear function over a polyhedral set, the extremum was attained in at least one extreme point.
- But in minimizing a convex function over a polyhedral set, the minimum may be attained at only an interior point of Ω.

- Remark: While minimizing or maximizing a linear function over a polyhedral set, the extremum was attained in at least one extreme point.
- But in minimizing a convex function over a polyhedral set, the minimum may be attained at only an interior point of Ω.

Consider $f(x) = x^2, -1 \le x \le 1$.

- Remark: While minimizing or maximizing a linear function over a polyhedral set, the extremum was attained in at least one extreme point.
- But in minimizing a convex function over a polyhedral set, the minimum may be attained at only an interior point of Ω.

Consider $f(x) = x^2, -1 \le x \le 1$.

• Theorem 6: Let f be a convex function defined on a closed and bounded convex set Ω (so it has atleast one extreme point), then there exists an extreme point of Ω , where f takes its maximum value.