Análise Matemática Gleberson Antunes

15 de Setembro de 2023

Compilado de todas as minhas soluções, da parte de Análise Real, das provas de admissão ao Mestrado em Matemática na UFBA. As resoluções são desprentesiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Su	mário	1
1	Prova de seleção para o Mestrado em Matemática 2015.2	2
2	Prova de seleção para o Mestrado em Matemática 2016.1	6
3	Prova de seleção para o Mestrado em Matemática 2016.2	10
4	Prova de seleção para o Mestrado em Matemática 2017.2	14
5	Prova de seleção para o Mestrado em Matemática 2018.1	19
6	Prova de seleção para o Mestrado em Matemática 2018.2	28
7	Prova de seleção para o Mestrado em Matemática 2019.1	34
8	Prova de seleção para o Mestrado em Matemática 2023.2	38

1 Prova de seleção para o Mestrado em Matemática 2015.2

10 de Agosto de 2023

Exercício 1. Mostre que toda sequência convergente em \mathbb{R} é de Cauchy em \mathbb{R} .

Demonstração. Sejam $L \in \mathbb{R}$ e (x_n) uma sequência convergente de números reais, tal que $x_n \longrightarrow L$. Como (x_n) converge, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ que é tal que

$$n > n_0 \implies |x_n - L| < \frac{\varepsilon}{2}.$$

Então, para todos $m, n > n_0$, temos que

$$|x_m - x_n| \le |x_m - L| + |x_n - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo, (x_n) é uma sequência de Cauchy em \mathbb{R} .

Exercício 2. Use a definição formal de limite para mostrar que $\lim_{x \to 0} x^2 = 0$.

Demonstração. Dado $\varepsilon>0,$ tome $\delta=\sqrt{\varepsilon}.$ Então

$$0 < |x - 0| < \sqrt{\varepsilon} \Rightarrow x^2 = |x^2 - 0| < \varepsilon.$$

Logo, $\lim_{x \to 0} x^2 = 0$.

Exercício 3. Determine se a função real

$$f(x) = \begin{cases} x\sin\left(\frac{1}{x}\right) & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

é diferenciável em $x_0 = 0$.

Demonstração. Para f ser derivável em $x_0=0$ é necessário e suficiente que exista $\lim_{x\to 0} sin\left(\frac{1}{x}\right)$, uma vez que

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin\left(\frac{1}{x}\right) - 0}{x - 0} = \lim_{x \to 0} \sin\left(\frac{1}{x}\right).$$

Se existir $\lim_{x \to 0} \sin\left(\frac{1}{x}\right) = L$, então para toda sequência de pontos $x_n \in \mathbb{R} - \{0\}$, tal que $x_n \to 0$, $\sin\left(\frac{1}{x_n}\right) \to L$. Considere então as sequências $\left(\frac{1}{2n\pi}\right)$ e $\left(\frac{2}{4n\pi + \pi}\right)$, que claramente convergem para 0. Note agora que

$$sin\left(\frac{1}{2n\pi}^{-1}\right) = sin(2n\pi) \longrightarrow 0.$$

e

$$sin\left(\frac{2}{4n\pi+\pi}^{-1}\right) = sin\left(2n\pi+\frac{\pi}{2}\right) \longrightarrow 1.$$

Logo, não existe $\lim_{x \longrightarrow 0} sin\left(\frac{1}{x}\right)$ e, portanto, f não é derivável em $x_0 = 0$.

Exercício 4.

- (a) Derive a função $f(x) = \sqrt[3]{(e^{x^2} \cdot x^3 + 1)^2}$.
- (b) Calcule $\lim_{x \to 0^+} x^{\sin(x)}$.

Demonstração.

(a) Seja $u(x)=e^{x^2}\cdot x^3+1.$ Então

$$u'(x) = e^{x^2} 3x^2 + x^3 e^{x^2} 2x.$$

Segue daí que

$$f'(x) = \frac{2}{3} \cdot \frac{1}{\sqrt[3]{e^{x^2} \cdot x^3 + 1}} \cdot e^{x^2} 3x^2 + x^3 e^{x^2} 2x.$$

(b)

$$\lim_{x\longrightarrow \ 0^+} x^{sin(x)} \ = \ \lim_{x\longrightarrow \ 0^+} e^{sin(x)ln(x)}.$$

Como a função $f(x) = e^x$ é contínua, temos que

$$\lim_{x\longrightarrow\ 0^+}e^{sin(x)ln(x)}\ =\ exp\bigg(\lim_{x\longrightarrow\ 0^+}sin(x)ln(x)\ \bigg)\ =\ exp\bigg(\lim_{x\longrightarrow\ 0^+}\frac{ln(x)}{sin(x)^{-1}}\bigg).$$

Como $\lim_{x \to 0^+} ln(x) = \infty$ e $\lim_{x \to 0^+} sin(x)^{-1} = \infty$, a **Regra de L'Hopital** nos garante que

$$\lim_{x \longrightarrow 0^{+}} \frac{\ln(x)}{\sin(x)^{-1}} = \lim_{x \longrightarrow 0^{+}} -\frac{1}{x\cos(x)\cot q(x)} = 0$$

.

Logo, temos que

$$\lim_{x \longrightarrow \ 0^+} e^{sin(x)ln(x)} \ = \ exp \Bigg(\lim_{x \longrightarrow \ 0^+} \frac{ln(x)}{sin(x)^{-1}} \Bigg) \ = \ e^0 \ = \ 1.$$

Exercício 5. Considere o conjunto $X = \mathbb{R} \setminus \mathbb{Z}$. Mostre que X é um conjunto aberto de \mathbb{R} . O conjunto X é um compacto de \mathbb{R} ?

Demonstração. Note que

$$\mathbb{R}\setminus\mathbb{Z} = \bigcup_{z\in\mathbb{Z}}(z,z+1),$$

que é aberto, pois é uma união de abertos da reta. Se fosse verdade que $\mathbb{R}\setminus\mathbb{Z}$ é compacto, então ele seria fechado e limitado. Sendo fechado, \mathbb{Z} seria aberto. Seguiria então que

$$\mathbb{R} = (\mathbb{R} \setminus \mathbb{Z}) \cup \mathbb{Z},$$

é a união de dois abertos disjuntos. Logo, $\mathbb R$ seria desconexo, o que é um absurdo.

2 Prova de seleção para o Mestrado em Matemática 2016.1

10 de Agosto de 2023

Exercício 1. Mostre que se uma sequência de Cauchy possui uma subsequência que é convergente, então ela própria é convergente.

Demonstração. Sejam (x_n) uma sequência de Cauchy, (x_{n_k}) uma subsequência de (x_n) e $a \in \mathbb{R}$ tal que $x_{n_k} \longrightarrow a$. Dado $\varepsilon > 0$, existe $n_1 \in \mathbb{N}$ tal que

$$m, n > n_1 \Rightarrow |x_m - x_n| < \frac{\varepsilon}{2}.$$

Como $x_{n_k} \longrightarrow a$, existe $n_1 \in \mathbb{N}$ tal que

$$n_k > n_2 \Rightarrow |x_{n_k} - a| < \frac{\varepsilon}{2}.$$

Seja $n_0 = \max\{n_1, n_2\}$. Então, para todo

$$n > n_0 \Rightarrow |x_n - a| \le |x_n - x_{n_k}| + |x_{n_k} - a|$$

 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Exercício 2. Demonstre o Teorema da Conservação do Sinal: Se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em $x_0 \in \mathbb{R}$ e $f(x_0) > 0$ então existe um intervalo aberto J que contém x_0 e que é tal que f(x) > 0 para todo $x \in J$.

Demonstração. Tomemos $\varepsilon = \frac{f(x_0)}{2}$. Então existe $\delta > 0$ que é tal que

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \frac{f(x_0)}{2}$$

$$\Leftrightarrow f(x) \in \left(\frac{f(x_0)}{2}, \frac{3f(x_0)}{2}\right).$$

Ou seja, f(x) > 0 para todo $x \in (x_0 - \delta, x_0 + \delta)$.

Exercício 3. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$g(x) = \begin{cases} \frac{e^x - 1}{x} & \text{se } x \neq 0\\ 1 & \text{se } x = 0 \end{cases}$$

- (a) Determine g'(x) para todo $x \neq 0$.
- (b) Verifique se g é diferenciável em $x_0 = 0$ e escreva a equação da reta tangente ao gráfico de g no ponto de abcissa 0.

Demonstração.

(a) Seja $x \neq 0$. Então

$$g'(x) = \frac{e^x(x-1)+1}{x^2}$$

(b)

$$\lim_{x \to 0} \frac{\frac{e^x - 1}{x} - 1}{x} = \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x - 1}{2} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2},$$

pela Regra de L'Hopital. A reta tangente ao gráfico de g o ponto de abcissa 0 é

$$f(x) = \frac{x}{2} + 1$$

Exercício 4. Seja f uma função real que é duas vezes diferenciável e tal que f'(x) e f''(x) são positivas em todo ponto $x \in \mathbb{R}$; seja ainda $g : \mathbb{R} \longrightarrow \mathbb{R}$ tal que, para todo $x \in \mathbb{R}$,

$$g(x) = \int_0^x f(t^2)dt.$$

Justifique que g é três vezes diferenciável, calcule g'(x) e g''(x) para cada $x \in \mathbb{R}$ e aproveite o resultado para estudar, quanto à concavidade e inflexões, o gráfico de g.

Demonstração. Definamos $t=\sqrt{u},$ então $dt=\frac{du}{2\sqrt{u}}.$ Quando t=0temos u=0e quando t=x,temos $u=x^2.$ Logo

$$g(x) = \frac{1}{2} \int_0^{x^2} \frac{f(u)}{\sqrt{u}} du.$$

Segue do Teorema Fundamental do Cálculo que

$$g'(x) = \frac{1}{2} \cdot \frac{f(x^2)}{\sqrt{x^2}} \cdot 2x = f(x^2).$$

Consequentemente

$$g''(x) = f'(x^2) \cdot 2x$$
 e $g'''(x) = 2f'(x^2) + 4x^2f''(x^2)$.

Notemos que g''(x) > 0 para todo $x \in (0, \infty)$. Logo g tem concavidade para cima nessa região. De forma semelhante, temos que g''(x) < 0 para todo $x \in (-\infty, 0)$. Logo g tem concavidade para baixo nessa região. Como g''(0) = 0 e $g'''(x) \neq 0$, g possui um ponto de inflexão em g.

Exercício 5. Seja $f:[0,1]\longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & \text{se } x \text{ \'e racional} \\ 1 & \text{se } x \text{ \'e irracional.} \end{cases}$$

Mostre f não é integrável à Riemann em [0,1], ou seja, mostre que não existe $\int_0^1 f(x)dx$ no sentido de Riemann.

Demonstração. Sabemos que uma função $f:[a,b] \longrightarrow \mathbb{R}$ é Riemann integrável se, e somente se, o conjunto de suas descontinuidades possui medida nula. Provaremos agora que o conjunto D das descontinuidades de f coincide com o intervalo [a,b], que evidentemente não possui medida nula. A inclusão $D \subset [a,b]$ é óbvia.

Seja $x_0 \in [a, b]$ qualquer. Se fosse verdade que f é contínua em x_0 , então para toda sequência de pontos $x_n \in [a, b]$, tal que $x_n \longrightarrow x_0$, $f(x_n) \longrightarrow f(x_0)$. Como \mathbb{R} e \mathbb{Q} são densos em \mathbb{R} , podemos montar uma sequência (r_n) de racionais e uma sequência (i_n) de irracionais em [a, b] que convergem para x_0 . Note então que

$$f(r_n) = 0 \longrightarrow 0 \quad e \quad f(i_n) = 1 \longrightarrow 1.$$

Como $x_0 \in [a, b]$ é racional ou irracional, uma das sequências $f(r_n)$ ou $f(i_n)$ não convergirá para $f(x_0)$. Logo, f é descontínua em x_0 . Desse modo, $[a, b] \subset D$ e, portanto, D = [a, b]. Segue daí que f não é Riemann integrável.

3 Prova de seleção para o Mestrado em Matemática 2016.2

12 de Agosto de 2023

Exercício 1. Mostre que se uma sequência de Cauchy possui uma subsequência que é convergente, então ela própria é convergente.

Demonstração. Sejam (x_n) uma sequência de Cauchy, (x_{n_k}) uma subsequência de (x_n) e $a \in \mathbb{R}$ tal que $x_{n_k} \longrightarrow a$. Dado $\varepsilon > 0$, existe $n_1 \in \mathbb{N}$ tal que

$$m, n > n_1 \Rightarrow |x_m - x_n| < \frac{\varepsilon}{2}.$$

Como $x_{n_k} \longrightarrow a$, existe $n_1 \in \mathbb{N}$ tal que

$$n_k > n_2 \Rightarrow |x_{n_k} - a| < \frac{\varepsilon}{2}.$$

Seja $n_0 = \max\{n_1, n_2\}$. Então, para todo

$$n > n_0 \Rightarrow |x_n - a| \le |x_n - x_{n_k}| + |x_{n_k} - a|$$

 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Exercício 2. Demonstre o Teorema da Conservação do Sinal: Se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em $x_0 \in \mathbb{R}$ e $f(x_0) > 0$ então existe um intervalo aberto J que contém x_0 e que é tal que f(x) > 0 para todo $x \in J$.

Demonstração. Tomemos $\varepsilon = \frac{f(x_0)}{2}$. Então existe $\delta > 0$ que é tal que

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \frac{f(x_0)}{2}$$

$$\Leftrightarrow f(x) \in \left(\frac{f(x_0)}{2}, \frac{3f(x_0)}{2}\right).$$

Ou seja, f(x) > 0 para todo $x \in (x_0 - \delta, x_0 + \delta)$.

Exercício 3. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$g(x) = \begin{cases} \frac{\sin x}{x} & \sec x \neq 0\\ 1 & \sec x = 0 \end{cases}$$

- (a) Determine g'(x) para todo $x \neq 0$.
- (b) Verifique que g é diferenciável em $x_0 = 0$ e escreva a equação da reta tangente ao gráfico de g no ponto de abcissa 0.

Demonstração.

(a)

$$g'(x) = \frac{x \cos x - \sin x}{x^2}$$

(b)

$$\lim_{x \to 0} \frac{\frac{\sin x}{x} - 1}{x} = \lim_{x \to 0} \frac{\sin x - x}{x^2} = \lim_{x \to 0} \frac{\cos x - 1}{2x} = \lim_{x \to 0} \frac{-\sin x}{2} = 0,$$

pela **Regra de L'Hopital**. Segue daí que a reta tangente ao gráfico de g no ponto x=0 é y=1.

Exercício 4. Seja f uma função real que é duas vezes diferenciável e tal que f'(x) e f''(x) são negativas em todo ponto $x \in \mathbb{R}$; seja ainda $g : \mathbb{R} \longrightarrow \mathbb{R}$ tal que, para todo $x \in \mathbb{R}$,

$$g(x) = \int_0^x f(t^2)dt.$$

Justifique que g é três vezes diferenciável, calcule g'(x) e g''(x) para cada $x \in \mathbb{R}$ e aproveite o resultado para estudar, quanto à concavidade e inflexões, o gráfico de g.

Demonstração. Seja $\sqrt{u}=t.$ Então $\frac{du}{2\sqrt{u}}=dt.$ Quando t=0temos u=0e, quando t=x,temos $u=x^2.$ Segue daí que

$$g(x) = \int_0^{x^2} \frac{f(u)}{2\sqrt{u}} du$$

.

Pelo Teorema Fundamental do Cálculo segue-se que

$$g'(x) = f(x^2).$$

Daí

$$g''(x) = f'(x^2) \cdot 2x$$
 e $g'''(x) = 2 \cdot f'(x^2) + 4x^2 \cdot f''(x^2)$.

Notemos que g''(x) > 0 para todo $x \in (-\infty, 0)$. Logo g tem concavidade para cima nessa região. De forma semelhante, temos que g''(x) < 0 para todo $x \in (0, \infty)$. Logo g tem concavidade para baixo nessa região. Como g''(0) = 0 e $g'''(x) \neq 0$, g possui um ponto de inflexão em g.

Exercício 5. Seja $f:[0,1]\longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & \text{se } x \text{ \'e racional} \\ 1 & \text{se } x \text{ \'e irracional.} \end{cases}$$

Determine para quais valores de t a pré-imagem $f^{-1}(\{t\})$ é um aberto de \mathbb{R} .

Demonstração. Se t=0, então $f^{-1}(\{0\})=\mathbb{R} \cap [0,1]$, que como sabemos, não é um aberto de \mathbb{R} . De forma análoga, se t=1, então $f^{-1}(\{0\})=(\mathbb{R}\setminus\mathbb{Q}) \cap [0,1]$, que não é aberto de \mathbb{R} . Note que, para todo $t\in(\mathbb{R}\setminus\{0,1\}), f^{-1}(\{t\})=\emptyset$, que é um aberto de \mathbb{R} .

4 Prova de seleção para o Mestrado em Matemática 2017.2

13 de Agosto de 2023

Exercício 1. Sejam $f, g: X \subset \mathbb{R}$ contínuas no ponto $a \in X$. Prove que a função $\phi: X \longrightarrow \mathbb{R}$ definida por $\phi(x) = \max\{f(x), g(x)\}$ é contínua no ponto $a \in X$.

Demonstração. Dado $\varepsilon > 0$, existem δ_1 e δ_2 maiores que zero, que são tais que

$$|x-a| < \delta_1 \Rightarrow |f(x)-f(a)| < \varepsilon$$
 e $|x-a| < \delta_2 \Rightarrow |g(x)-g(a)| < \varepsilon$.

Tome $\delta = \min\{\delta_1, \delta_2\}$. Então

$$|x-a| < \delta_1 \Rightarrow |\phi(x) - \phi(a)| < \varepsilon.$$

Exercício 2. Seja $f:[0,1]\longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & \text{se } x \text{ \'e racional} \\ 1 & \text{caso contr\'ario.} \end{cases}$$

f é integrável? Justifique. Se sim, qual o valor de $\int_0^1 f(x)dx$.

Demonstração. Sabemos que uma função $f:[a,b] \to \mathbb{R}$ é Riemann integrável se, e somente se, o conjunto de suas descontinuidades possui medida nula. Provaremos agora que o conjunto D das descontinuidades de f coincide com o intervalo [0,1], que evidentemente não possui medida nula. A inclusão $D \subset [0,1]$ é óbvia.

Seja $x_0 \in [0, 1]$ qualquer. Se fosse verdade que f é contínua em x_0 , então para toda sequência de pontos $x_n \in [0, 1]$, tal que $x_n \longrightarrow x_0$, $f(x_n) \longrightarrow f(x_0)$. Como \mathbb{R} e \mathbb{Q} são densos em \mathbb{R} , podemos montar uma sequência (r_n) de racionais e uma sequência (i_n) de irracionais em [0, 1] que convergem para x_0 . Note então que

$$f(r_n) = 0 \longrightarrow 0 \quad \text{e} \quad f(i_n) = 1 \longrightarrow 1.$$

Como $x_0 \in [0, 1]$ ou é racional ou é irracional, uma das sequências $f(r_n)$ ou $f(i_n)$ não convergirá para $f(x_0)$. Logo, f é descontínua em x_0 . Desse modo, $[0, 1] \subset D$ e, portanto, D = [0, 1]. Segue daí que f não é Riemann integrável.

Exercício 3. Seja $\{x_n\}$ uma sequência limitada. Prove que $\{x_n\}$ converge se, e somente se, possui um único valor de aderência. Mostre que o resultado não vale se tirarmos a hipótese de $\{x_n\}$ ser limitada.

Demonstração. Diremos que $a \in \mathbb{R}$ é um valor de aderência da sequência (x_n) se existe uma subsequência $(x_{n(k)})$ de (x_n) que converge para a. Se (x_n) é uma sequência limitada, então ela possui exatamente dois valores de aderência, que chamaremos de α e β , e que são tais que, nenhum número menor que α e nenhum número maior que β podem ser valores de aderência de (x_n) . Esses valores são construidos da seguinte maneira:

(a) Como (x_n) é limitada, existe K > 0 tal que $|x_n| < K$. Considere então os conjuntos $X_n = \{x_n, x_{n+1}, x_{n+2},\}$. É possível montar uma sequência decrescente de conjuntos

$$[-K,K]\supset X_1\supset X_2\supset\ldots\supset X_n\supset\ldots$$

Definindo $a_n = inf X_n$ e $b_n = sup X_n$ obtemos $\alpha = lim \ a_n$ e $\beta = lim \ b_n$. Eles existirão uma vez que a sequência (a_n) é monótona não-decrescente limitada e a sequência (b_n) é monótona não-crescente limitada.

 \Rightarrow Se $x_n \longrightarrow a$, então toda subsequência $x_{n(k)} \longrightarrow a$. Logo a é o único valor de aderência de (x_n) .

 \Leftarrow Suponhamos que (x_n) possui um único valor de aderência a. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ que é tal que

$$n > n_0 \implies |a_n - a| < \varepsilon \quad e \quad |b_n - a| < \varepsilon.$$

Ou seja, para todo $n > n_0$ temos

$$a - \varepsilon < a_n < a < b_n < a + \varepsilon$$
.

Como $a_n = inf X_n$ e $b_n = sup X_n$, temos

$$a - \varepsilon < a_n < x_n < b_n < a + \varepsilon$$
.

$$\Leftrightarrow |x_n - a| < \varepsilon.$$

Ou seja, $x_n \longrightarrow a$.

Considere a sequência

$$x_n = \begin{cases} \frac{1}{n} & \text{se } n \text{ \'e impar} \\ n & \text{caso contr\'ario.} \end{cases}$$

Essa sequência não é limitada e, apesar de possuir um único valor de aderência, que é o 0, ela não é convergente.

Exercício 4. Sejam $a, b, c \in \mathbb{R}$ tais que $a \neq 0$ e bc > 0. Determine o(s) ponto(s) do gráfico de f(x) = a(x - b)(x - c) tais que a reta tangente passa pela origem.

Demonstração. Sendo $f(x) = ax^2 - a(b+c)x + bc$, teremos f'(x) = 2ax - a(b+c). Seja (x_0, y_0) um ponto arbitrário do gráfico de f. Então $y_0 = f(x_0) = ax_0^2 - a(b+c)x_0 + bc$ e $f'(x_0) = 2ax_0 - a(b+c)$. Então a reta tangente ao gráfico de f e que toca no ponto (x_0, y_0) é dada por

$$y = f'(x_0)x + \underbrace{f(x_0) - f'(x_0)x_0}_{\text{Passa pela origem se igual a 0.}}.$$

Temos então que

$$f(x_0) - f'(x_0)x_0 = ax_0^2 - a(b+c)x_0 + bc - 2ax_0^2 - a(b+c)x_0.$$

$$= -ax_0^2 + bc.$$

Logo

$$-ax_0^2 + bc = 0$$

$$\Rightarrow x_0 = \pm \sqrt{\frac{bc}{a}}$$

Exercício 5. Determine, sem usar nenhum método de integração, f(x) sabendo que $f'(x) = \frac{arctanx}{1+x^2}$ e $f(0) = \frac{1}{3}$.

Demonstração. Seja u = arctanx. Então $du = \frac{dx}{1+x^2}$. Segue daí que

$$\int f'(x)dx = \int \frac{u}{1+x^2} \cdot (1+x^2)du = \int f(u)du = \frac{u^2}{2} + c = \frac{arctan^2x}{2} + c.$$

Então, aplicando f em 0 obtemos

$$\frac{1}{3} = \frac{0}{2} + c.$$

Daí

$$f(x) = \frac{arctan^2x}{2} + \frac{1}{3}.$$

5 Prova de seleção para o Mestrado em Matemática 2018.1

13 de Agosto de 2023

Exercício 1. Considere A um subconjunto infinito arbitrário de \mathbb{R} , fixado. Mostre que as seguintes afirmações sobre A são equivalentes:

- (a) Todo subconjunto infinito de A possui um ponto de acumulação.
- (b) Toda sequência de pontos de A possui uma subsequência convergente.
 Em seguida, exiba um subconjunto não-enumerável da reta que satisfaça (a qualquer uma, logo ambas) essas propriedades, justificando cuidadosamente toda e qualquer afirmação feita.

Demonstração.

(a) Seja (x_n) uma sequência de pontos de A. Se $x(\mathbb{N})$ for finito, então facilmente conseguimos montar uma subsequência de (x_n) que converge. Suponhamos agora que $x(\mathbb{N})$ é infinito. Por hipótese, $x(\mathbb{N})' \neq \emptyset$. Seja $a \in x(\mathbb{N})'$.

Se tomarmos $\varepsilon = 1$, existirá $x_{n_1} \in [(a - 1, a + 1) - \{a\}] \cap x(\mathbb{N})$. Seja $\varepsilon_2 = \min\left\{\frac{1}{2}, \mid x_{n_1} - a \mid \right\}$. Então existe $x_{n_2} \in [(a - \varepsilon_2, a + \varepsilon_2) - \{a\}] \cap x(\mathbb{N})$. Seja $\varepsilon_3 = \min\left\{\frac{1}{3}, \mid x_{n_2} - a \mid \right\}$. Então existe $x_{n_3} \in [(a - \varepsilon_3, a + \varepsilon_3) - \{a\}] \cap x(\mathbb{N})$. Prosseguindo dessa maneira, obteremos uma subsequência de pontos $x_{n_k} \in x(\mathbb{N})$ que é tal que

$$|x_{n_{k+1}} - a| < |x_{n_k} - a|$$
 e $|x_{n_k} - a| < \frac{1}{n}$.

Pelo **Teorema do Confronto**, como $-\frac{1}{n}, \frac{1}{n} \longrightarrow 0, x_{n_k} - a \longrightarrow 0$. Ou seja, $x_{n_k} \longrightarrow a$.

(b) Seja $B \subset A$ infinito. Então existe um conjunto $C \subset B$ que é enumerável. Existe também uma sequência de termos dois a dois distintos (qualquer contagem de C) de $n \in \mathbb{N}$

$$\phi_n: \mathbb{N} \longrightarrow C$$
.

Por hipótese, existe uma subsequência $(\phi_{n'})$ de (ϕ_n) convergente. Seja $a = \lim \phi_{n'}$. Então, para todo $\varepsilon > 0$, $\phi^{-1}(a - \varepsilon, a + \varepsilon)$ é infinito. Como ϕ é injetiva, $(a - \varepsilon, a + \varepsilon)$ contém uma infinidade de pontos de C. Logo, é um ponto de acumulação de C.

Exercício 2. Sejam $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ funções reais e contínuas e suponha que $x_0 \in \mathbb{R}$ satisfaça $f(x_0) < g(x_0)$. Mostre que existe $\delta > 0$ que é tal que f(x) < g(x) sempre que $|x - x_0| < \delta$.

Demonstração. Tome $\varepsilon = \frac{g(x_0) - f(x_0)}{2}$. Então existem $\delta_1 > 0$ e $\delta_2 > 0$ que são tais que

$$|x - x_0| < \delta_1 \Rightarrow |f(x) - f(x_0)| < \frac{g(x_0) - f(x_0)}{2}$$

$$\Leftrightarrow f(x) \in \left(\frac{-g(x_0) + 3f(x_0)}{2}, \frac{g(x_0) + f(x_0)}{2}\right).$$

e

$$|x - x_0| < \delta_2 \Rightarrow |g(x) - g(x_0)| < \frac{g(x_0) - f(x_0)}{2}$$

$$\Leftrightarrow g(x) \in \left(\frac{g(x_0) + f(x_0)}{2}, \frac{3g(x_0) - f(x_0)}{2}\right).$$

Tome $\delta = \min{\{\delta_1, \delta_2\}}$. Então

$$|x - x_0| < \delta \Rightarrow f(x) < g(x).$$

Exercício 3. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ contínua em \mathbb{R} , porém não diferenciável em x=0, e seja f definida pela igualdade

$$f(x) = 1 + xg(x)$$
para todo $x \in \mathbb{R}$.

- (a) Mostre que f é diferenciável no ponto x = 0.
- (b) Determine a equação da reta tangente ao gráfico da f no ponto de interseção desse gráfico com o eixo y. Mostre ainda que se g for uma função estritamente crescente em \mathbb{R} então o ponto de tangência será o único ponto de interseção entre a reta tangente exibida e o gráfico da f.

Demonstração.

(a)

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1 + xg(x) - 1 + 0g(0)}{x} = \lim_{x \to 0} \frac{xg(x)}{x} = \lim_{x \to 0} g(x) = g(0).$$

(b) Como f é diferenciável em x=0, o coeficiente angular da reta tangente ao ponto (0, f(0)) é g(0). Sendo assim

$$y-1 = g(0)(x-0)$$

$$\Leftrightarrow y = q(0)x + 1.$$

Suponhamos agora que g é estritamente crescente, i.e, se a < b então g(a) < g(b). Suponhamos agora que existe um ponto $z \neq 0$ que é tal que y(z) = f(z). Então

$$g(0)z + 1 = 1 + zg(z)$$

$$\Rightarrow g(0) = g(z),$$

o que é um absurdo, uma vez que sendo $z \neq 0$, ou z < 0 ou 0 < z. Como g é estritamente crescente, $g(0) \neq g(z)$. Logo, o ponto de tangência será o único ponto de interseção entre a reta tangente exibida e o gráfico da f.

Exercício 4. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função diferenciável em \mathbb{R} e suponha que f satisfaça

$$\int_0^x f(t)dt = xf(x) \text{ para todo } x \in \mathbb{R}.$$

Sabendo que f(3) = 5, determine f(-3). Justifique todas as suas afirmações.

Demonstração. Seja $g(x) = \int_0^x f(t)dt$. O **Teorema Fundamental do Cálculo** juntamente com a **Regra da Cadeia** nos garantem que

$$g'(x) = f(x) = xf'(x) + f(x).$$

Ou seja

$$x \cdot f'(x) = 0,$$

para todo $x \in \mathbb{R}$. Como f'(x) = 0 para todo $x \neq 0$, temos que f é constante nos intervalos abertos $(-\infty, 0)$ e $(0, \infty)$. Dado $\alpha > 0$, o **Teorema do Valor Médio** nos garante que existe $c \in (0, \alpha)$ que é tal quer

$$f'(c) = \frac{f(\alpha) - f(0)}{\alpha}.$$

Daí

$$0 = \frac{5 - f(0)}{\alpha} \Rightarrow f(0) = 5.$$

Aplicando novamente o **Teorema do Valor Médio** em um intervalo $[\beta, 0]$, onde $\beta < 0$, vai existir algum ponto $d \in (\beta, 0)$ que é tal que

$$f'(d) = \frac{f(0) - f(\beta)}{-\beta}.$$

Daí

$$0 = \frac{5 - f(\beta)}{\beta} \Rightarrow f(\beta) = 5.$$

Como β é arbitrário, concluímos que f(x) = 5, para todo $x \in \mathbb{R}$. Em particular, f(-3) = 5.

Lema 1. Sejam X e Y subconjuntos limitados de \mathbb{R} , tais que $x \leq y$, para todo $x \in X$ e $y \in Y$. Então sup $X \leq \inf Y$. A igualdade vale se, e somente se, para todo $\varepsilon > 0$ existem $x \in X$ e $y \in Y$ tais que $y - x < \varepsilon$.

Demonstração. Seja $x_0 \in X$ arbitrário. Para todo $y \in Y$ temos que $x_0 \leq y$. Então $x_0 \leq \inf Y$. Como x_0 é arbitrário, $x \leq \inf Y$ para todo $x \in X$. Consequentemente, sup $X \leq \inf Y$.

$$y - x - (\inf Y - \sup X) = y - \inf Y + \sup X - x \ge 0$$

 \Rightarrow Suponhamos agora que sup $X=\inf\,Y.$ Então, dado $\varepsilon>0,$ existem $x\in X$ e $y\in Y$ tais que

$$y < \sup X + \frac{\varepsilon}{2}$$
 e $\sup X - \frac{\varepsilon}{2} < x$.

Daí

$$y-x < \varepsilon$$
.

Exercício 5. Dadas partições

$$P=\{a=x_0< x_1< x_2< ...< x_n=b\}$$
e $Q=\{a=y_0< y_1< y_2< ...< y_n=b\},$ de $[a,b],$ dizemos que Q refina P se $P\subseteq Q.$

(a) Considere $f:[a,b] \longrightarrow \mathbb{R}$ uma função limitada qualquer, fixada. Mostre que: Quando se refina um partição, a soma inferior de f não diminui e a soma superior de f não aumente, i.e, se Q refina P então

$$s(f;P) \leq s(f;Q) < S(f;P) \leq S(f:P).$$

(b) Prove o **Critério de Riemann** para integrabilidade: Uma função limitada $f:[a,b] \longrightarrow \mathbb{R}$ é Riemann-integrável se, e somente se, para qualquer $\varepsilon > 0$ existe uma partição P de [a,b] (que pode depender de ε) que é tal que $S(f;P) - s(f;P) < \varepsilon$.

Demonstração. Seja P uma partição de [a, b]. Para cada $1 \le i \le n$, sejam $m_i = \inf f([t_{i-1}, t_i])$ e $M_i = \sup f([t_{i-1}, t_i])$. Definimos então a **soma inferior de** f **relativa** à **partição P** e a **soma superior de** f **relativa** à **partição P**, respectivamente, como sendo

$$s(f:P) := \sum_{i=1}^{n} m_i(t_i - t_{i-1})$$
 e $S(f:P) := \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$

Por indução, seja Q uma partição de [a,b] que refina P em um único ponto, isto é, $P = \{t_0, t_1, t_2, ..., t_n\}$ e $Q = \{t_0, t_j, t_1, t_2, ..., t_n\}$ são tais que $Q = P \cup \{t_j\}$. Sejam $\alpha = \inf f([t_0, t_j]), \alpha' = \sup f([t_0, t_j]), \beta = \inf f([t_j, t_1])$ e $\beta' = \sup f([t_j, t_1])$. Como $f([t_0, t_j]), f([t_j, t_1]) \subset f([t_0, t_1])$, temos que $m_1 \leq \alpha, \beta$ e $\alpha', \beta' \leq M_1$. Segue daí que $s(f; P) \leq s(f; Q)$, uma vez que

$$s(f;Q) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}) = m_1(t_j - t_0) + m_1(t_1 - t_j) + \sum_{i=2}^{n} m_i(t_i - t_{i-1})$$

$$\leq \alpha(t_j - t_0) + \beta(t_1 - t_j) + \sum_{i=2}^{n} m_i(t_i - t_{i-1}) = s(f:Q),$$

e

$$S(f; P) = \alpha'(t_j - t_0) + \beta'(t_1 - t_j) + \sum_{i=2}^n M_i(t_i - t_{i-1})$$

$$\leq M_1(t_j - t_0) + M_1(t_1 - t_j) + \sum_{i=2}^n M_i(t_i - t_{i-1}) = S(f; P).$$

Suponhamos agora que a afirmação é válida para um certo n>1, isto é, se Q uma partição de [a,b] que refina P em n pontos, então $s(f;P)\leq s(f;Q)< S(f;P)\leq S(f:P)$. Tomando agora uma partição T de [a,b] que refina Q em um único ponto, temos que $s(f;Q)\leq s(f;T)\leq S(f;T)\leq S(f;Q)$, pelo que provamos anteriormente. Consequentemente, $s(f;P)\leq s(f;T)\leq S(f;T)\leq S(f;P)$. Logo a afirmação está provada para todo $n\in\mathbb{N}$.

- (b) Sejam \mathcal{N} o conjunto de todas as partições de [a,b], $s\mathcal{N} = \{s(f;P) \mid P \in \mathcal{N}\}$ o conjunto das somas inferiores de todas as partições de \mathcal{N} e $S\mathcal{N} = \{S(f;P) \mid P \in \mathcal{N}\}$ o conjunto das somas superiores de todas as partições de \mathcal{N} .
- 1. Notemos inicialmente que, dadas partições $P,Q\in\mathcal{N},\,s(f;P)\leq S(f;Q).$ De fato, como $P\cup Q$ refina P, temos que

$$s(f; P) \leq s(f; P \cup Q) \leq S(f; P \cup Q) \leq S(f; Q).$$

Sejam

$$\int_{a}^{b} f(x) dx = \sup s\mathcal{N} \quad e \quad \int_{a}^{\overline{b}} f(x) dx = \inf s\mathcal{N}.$$

Pelo **Lema 1**, temos que sup $s\mathcal{N} \leq \inf S\mathcal{N}$. Uma função f é dita Riemann-Integrável quando

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x.$$

 \Rightarrow Suponhamos que f é Riemann-integrável. Pelo **Lema 1**, dado $\varepsilon>0$, existem partições $T,Q\in\mathcal{N}$ tais que

$$S(f;Q) - s(f;T) < \varepsilon.$$

Tomemos $P=Q\cup T$. Pelo item (a) temos que $s(f;T)\leq s(f;P)\leq S(f;P)\leq S(f;Q)$. Segue daí que

$$S(f;P) - s(f;P) \le S(f;Q) - s(f;T) < \varepsilon.$$

 \Leftarrow

Imediato do Lema 1.

6 Prova de seleção para o Mestrado em Matemática 2018.2

19 de Agosto de 2023

Exercício 1. Seja $f:[a,b]\longrightarrow \mathbb{R}$. Mostre que f é uniformemente contínua.

Demonstração. Seja $x_0 \in [a, b]$ qualquer. Como f é contínua em x_0 , dado $\varepsilon > 0$, podemos encontrar $\delta_{x_0} > 0$ tal que

$$|x-x_0| < \delta_{x_0} \Rightarrow |f(x)-f(x_0)| < \frac{\varepsilon}{2}.$$

A coleção

$$S = \left\{ \left(x_0 - \frac{\delta_{x_0}}{2}, x_0 + \frac{\delta_{x_0}}{2} \right); |x - x_0| < \frac{\delta_{x_0}}{2} \Rightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{2} \right\},\,$$

é uma cobertura aberta de [a, b]. Logo admite uma subcobertura finita

$$S_n = \left\{ \left(x_i - \frac{\delta_{x_i}}{2}, x_i + \frac{\delta_{x_i}}{2} \right); 1 \le i \le n \right\}.$$

Tome

$$\delta = \min \left\{ \frac{\delta_{x_i}}{2}; 1 \le i \le n \right\}.$$

Então

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$
.

De fato, como $x \in [a, b]$, existe $1 \le k \le n$ tal que $x \in \left(x_k - \frac{\delta_{x_k}}{2}, x_k + \frac{\delta_{x_k}}{2}\right)$. Sabemos que $|x - y| \le |x - x_k| + |x_k - y|$. Como $|x_k - y| \le |x_k - x| + |x - y| < \frac{\delta_{x_k}}{2} + \delta < \delta_{x_k}$, ou seja $|x_k - y| < \delta_{k_k} \Rightarrow |f(x_k) - f(y)| < \frac{\varepsilon}{2}$.

Exercício 2. Seja $f:[0,1]\longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & \text{se } x \text{ \'e racional} \\ 1 & \text{caso contr\'ario.} \end{cases}$$

f é integrável? Justifique. Se sim, qual o valor de $\int_0^1 f(x)dx$.

Demonstração. Sabemos que uma função $f:[a,b] \longrightarrow \mathbb{R}$ é Riemann integrável se, e somente se, o conjunto de suas descontinuidades possui medida nula. Provaremos agora que o conjunto D das descontinuidades de f coincide com o intervalo [0,1], que evidentemente não possui medida nula. A inclusão $D \subset [0,1]$ é óbvia.

Seja $x_0 \in [0, 1]$ qualquer. Se fosse verdade que f é contínua em x_0 , então para toda sequência de pontos $x_n \in [0, 1]$, tal que $x_n \longrightarrow x_0$, $f(x_n) \longrightarrow f(x_0)$. Como \mathbb{R} e \mathbb{Q} são densos em \mathbb{R} , podemos montar uma sequência (r_n) de racionais e uma sequência (i_n) de irracionais em [0, 1] que convergem para x_0 . Note então que

$$f(r_n) = 0 \longrightarrow 0 \quad e \quad f(i_n) = 1 \longrightarrow 1.$$

Como $x_0 \in [0, 1]$ ou é racional ou é irracional, uma das sequências $f(r_n)$ ou $f(i_n)$ não convergirá para $f(x_0)$. Logo, f é descontínua em x_0 . Desse modo, $[0, 1] \subset D$ e, portanto, D = [0, 1]. Segue daí que f não é Riemann integrável.

Exercício 3. Seja $\{x_n\}$ uma sequência tal que $|x_{n+1} - x_n| < \frac{1}{n}$ para todo $n \in \mathbb{N}$. A sequência $\{x_n\}$ converge? Justifique.

Demonstração. Considere a sequência

$$x_n = \sum_{k=1}^n \frac{1}{2k-1}.$$

Temos então $(x_n) = \left(1, 1 + \frac{1}{3}, 1 + \frac{1}{3} + \frac{1}{5}, 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7}, \ldots\right)$. Notemos que

$$|x_{n+1} - x_n| = \left| \sum_{k=1}^{n+1} \frac{1}{2k-1} - \sum_{k=1}^{n} \frac{1}{2k-1} \right| = \frac{1}{2n+1} < \frac{1}{n},$$

porém (x_n) diverge. Para ver isto, basta considerar a sequência

$$y_n = \sum_{k=1}^n \frac{1}{2k},$$

que corresponde a $\frac{1}{2}$ vezes a sequência das reduzidas da **série harmônica**. Como $2n-1 < 2n \Rightarrow \frac{1}{2n} < \frac{1}{2n-1}$, para todo $n \in \mathbb{N}$, e o fato da série harmônica divergir nos garante que (y_n) diverge, temos que (x_n) também deve divergir.

Exercício 4. Considere a função

$$f(x) = \int_{-x^3+1}^{e^{5x}+3x+1} \sqrt{1+t^2} \ln(1+t^2) dt.$$

Calcule f'(0).

Demonstração. O Teorema Fundamental do Cálculo juntamente com a Regra da Cadeia nos garantem que

$$f'(x) = \sqrt{1 + (e^{5x} + 3x + 1)^2} \ln(1 + (e^{5x} + 3x + 1)^2) (5e^{5x} + 3)$$
$$-\sqrt{1 + (-x^3 + 1)^2} \ln(1 + (-x^3 + 1)^2) (-3x^2).$$

Consequentemente,

$$f'(0) = 4\sqrt{5} \ln(5).$$

Lema 1. Seja $p:[a,b]\longrightarrow \mathbb{R}$ integrável, com $p(x)\geq 0$ para todo $x\in [a,b]$. Se p é contínua em um ponto $c\in [a,b]$ e p(c)>0 então $\int_a^b p(x)dx>0$.

Demonstração. Sendo p contínua em c e p(c)>0, existe uma vizinhança de c de raio $\delta>0$ tal que

$$|x-c| < \delta \Rightarrow p(x) > \frac{p(c)}{2},$$

pelo Teorema da Conservação de Sinal. Seja $[\beta_1, \beta_2] \subset (c - \delta, c + \delta) \subset [a, b]$. Então

$$0 < \frac{p(c)(\beta_2 - \beta_1)}{2} \le \int_{\beta_1}^{\beta_2} p(x) dx.$$

Daí

$$\int_{a}^{b} p(x)dx = \int_{a}^{\beta_{1}} p(x)dx + \int_{\beta_{1}}^{\beta_{2}} p(x)dx + \int_{\beta_{2}}^{b} p(x)dx > 0,$$

uma vez que

$$\int_{a}^{\beta_1} p(x)dx, \int_{\beta_2}^{b} p(x)dx \ge 0$$

.

Exercício 5. Seja $p:[a,b] \longrightarrow \mathbb{R}$ integrável, com $p(x) \ge 0$ para todo $x \in [a,b]$. Prove que se $\int_a^b p(x)dx = 0$ então o conjunto $Y = \{x \in [a,b] \; ; \; p(x) = 0\}$ é denso em [a,b]. Demonstração. Suponhamos, por absurdo, que Y não é denso em [a,b]. Então existe um ponto $\alpha \in [a,b]$ e $\varepsilon > 0$ tal que

$$(\alpha - \varepsilon, \alpha + \varepsilon) \cap Y = \emptyset.$$

Seja $[\beta_1, \beta_2] \subset (\alpha - \varepsilon, \alpha + \varepsilon) \subset [a, b]$. Então

$$[\beta_1, \beta_2] \cap Y = \emptyset.$$

Sabemos que: Toda função Riemann-integrável é limitada e uma função limitada é Riemann-integrável se, e somente se, o conjunto dos seus pontos de descontinuidade tem medida nula.

Sendo p Riemann-integrável, então p deve ser contínua em algum ponto $x \in [a, b]$. De fato, se p fosse descontínua em todos os pontos de [a, b], então ela não poderia ser Riemann-integrável, já que a medida desse intervalo não é nula.

Suponhamos então que p é descontínua em todos de $(\alpha - \varepsilon, \alpha + \varepsilon) \cap [a, b]$. Então p é descontínua em $[\beta_1, \beta_2]$. Mas isso é um absurdo, uma vez que p não seria integrável em $[\beta_1, \beta_2]$, já que a medida desse intervalo é não-nula. Ou seja, existe um ponto $c \in [\beta_1, \beta_2]$ em que p é contínua e p(c) > 0.

Pelo Lema 1, temos que

$$\int_{\beta_1}^{\beta_2} p(x)dx > 0.$$

Consequentemente

$$\int_{a}^{b} p(x)dx = \int_{a}^{\beta_{1}} p(x)dx + \int_{\beta_{1}}^{\beta_{2}} p(x)dx + \int_{\beta_{2}}^{b} p(x)dx > 0,$$

uma vez que

$$\int_{a}^{\beta_1} p(x)dx, \int_{\beta_2}^{b} p(x)dx \ge 0,$$

o que é absurdo, por hipótese. Logo o conjunto Y deve ser denso em [a,b].

7 Prova de seleção para o Mestrado em Matemática 2019.1

16 de Agosto de 2023

Exercício 1. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua e seja $(a_n)_{n \in \mathbb{N}}$ uma sequência de Cauchy em \mathbb{R} . Mostre que $(f(a_n))_{n \in \mathbb{N}}$ também é uma sequência de Cauchy.

Demonstração. Sabemos que uma sequência é convergente se, e somente se, é uma sequência de Cauchy. Provaremos agora que se $a_n \longrightarrow a$, então $f(a_n) \longrightarrow f(a)$.

Sendo f contínua em a, dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|x-a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Como (a_n) converge para a, dado $\delta > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |x_n - a| < \delta.$$

Então

$$n > n_0 \Rightarrow |f(x_n) - f(a)| < \varepsilon.$$

Logo, $f(a_n) \longrightarrow f(a)$ e, portanto, $(f(a_n))$ é uma sequência de Cauchy.

Exercício 2. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{se } x \neq 0, \\ 0, & \text{caso contrário.} \end{cases}$$

- (a) Mostre que f'(x) existe para cada $x \in \mathbb{R}$.
- (b) f' é contínua no ponto x = 0?

Demonstração.

(a) Se $x \neq 0$ então

$$f'(x) = -\cos\left(\frac{1}{x}\right) + 2x \sin\left(\frac{1}{x}\right).$$

Se x = 0, então

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right) - 0}{x - 0} = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0,$$

uma vez que $\left| sin\left(\frac{1}{x}\right) \right| \le 1$, para todo $x \in \mathbb{R}$ e $\lim_{x \to 0} x = 0$.

(b) Sabemos que se uma função f é derivável num ponto x, então f é contínua em x. Note que

$$f''(x) = -\sin\left(\frac{1}{x}\right)\frac{1}{x^2} - 2\cos\left(\frac{1}{x}\right)\frac{1}{x} + 2\sin\left(\frac{1}{x}\right),$$

que claramente não é uma função contínua em 0. Logo f' não é contínua em 0.

Exercício 3. Seja $(a_n)_{n\in\mathbb{N}}$ uma sequência em \mathbb{R} com a seguinte propriedade: cada subsequência $(a_{n_k})_{n_k\in\mathbb{N}}$ de $(a_n)_{n\in\mathbb{N}}$ tem pelo menos uma $(a_{n_{k_l}})_{n_{k_l}\in\mathbb{N}}$ que converge para e os limites de todas estas subsubsequências coincidem. Mostre que $(a_n)_{n\in\mathbb{N}}$ converge.

Demonstração. Seja $a \in \mathbb{R}$ o limite de cada uma dessas subsubsequências. Suponhamos, por absurdo, que $a_n \not\longrightarrow a$. Existe então $\varepsilon > 0$, tal que para todo $k \in \mathbb{N}$, existe um $n_k > k$ que é tal que

$$n_k > k \Rightarrow |x_{n_k} - a| \ge \varepsilon.$$

A subsequência (x_{n_k}) não admite nenhuma subsequência que converge para a, o que é absurdo. Logo $a_n \longrightarrow a$.

Exercício 4. Seja $f \in C^2(\mathbb{R}; \mathbb{R})$, i.e., f é duas vezes diferenciável e f'' é uma função contínua. Suponha também que f''(x) = 0 para todo $x \in \mathbb{R}$. Mostre que f é um polinômio.

Demonstração. Seja [a, b] um intervalo fechado arbitrário. Como $f \in C^2(\mathbb{R}; \mathbb{R})$, f' é contínua em [a, b] e derivável em (a, b). Pelo **Teorema do Valor Médio**, existe para cada $x \in (a, b]$, um ponto $c \in (a, x)$ tal que

$$0 = f''(c) = \frac{f'(x) - f'(a)}{x - a}$$

$$\Rightarrow f'(x) = f'(a).$$

Logo, f' é constante em [a, b]. Como esse intervalo é arbitrário, f' é constante em \mathbb{R} . Seja $a \in \mathbb{R}$ tal que f'(x) = a, para todo $x \in \mathbb{R}$. Definamos a função g(x) = ax. Então

$$f(x) - ax = k,$$

Uma vez que f'(x) = g'(x) para todo $x \in \mathbb{R}$. Segue que

$$f(x) = ax + k$$

Logo é um polinômio de grau no máximo 1.

Exercício 5. Seja $f:[0,\infty)\longrightarrow \mathbb{R}$ uma função tal que

$$\int_0^\infty |f(x)| dx < \infty.$$

fé uma função limitada? Caso seja, justifique. Caso não seja, dê um contra-exemplo.

Demonstração. Considere a função

$$f(x) = \begin{cases} x, & \text{se } x \in \mathbb{N}, \\ 0, & \text{caso contrário.} \end{cases}$$

Então

$$\int_0^\infty |f(x)| dx = \int_0^\infty f(x) dx = \lim_{A \to \infty} \int_0^A f(x) dx = 0.$$

Mas, f é ilimitada.

8 Prova de seleção para o Mestrado em Matemática 2023.2

04 de Setembro de 2023

Parte I

Nas questões a seguir, assinale a(s) alternativa(s) corretamente com verdadeiro (V) ou falso (F). Cada questão vale 1 ponto.

Exercício 1. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ diferenciável. A reta horizontal y = L é chamada de assíntota horizontal à direita da curva y = f(x) se $\lim_{x \longrightarrow \infty} f(x) = L$.

- (a) Se $\lim_{x \to \infty} f'(x) = 0$, então f possui assíntota horizontal à direita.
- (b) Se $f'(x_0) = 0$, então x_0 é extremo de f.
- (c) Se f'(x) > 0 para todo $x \in A \subset \mathbb{R}$, então a restrição de f a A é crescente.
- (d) Se f'(x) é nula em infinitos pontos, então f não pode ser estritamente crescente.
- (e) Se x_0 é um ponto de inflexão de f, então x_0 é extremo de f'.

Demonstração.

(a) Falso. Consideremos a função f(x) = ln(x). Sabemos que $f'(x) = \frac{1}{x}$. Note porém que

$$\lim_{x \to \infty} \frac{1}{x} = 0,$$

mas

$$\lim_{x \to \infty} \ln(x) = \infty.$$

- (b) Falso. Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = x^3$. Note que f'(0) = 0, mas 0 não é um extremo de f.
- (c) Falso. Considere $f : \mathbb{R} \longrightarrow \mathbb{R}$, dada por $f(x) = \sin x$ e $A = \{0.1, 5.2\}$. Note que f'(0.1) = 0.995 e f'(5.2) = 0.4865, mas $\sin(5.2) < \sin(0.1)$.

- (d) Verdade.
- (e) Falso.

Exercício 2. Considere as seguintes séries e analise as afirmações a seguir.

- (a) $\sum_{n=1}^{\infty} a_n$ é convergente, se $a_n \longrightarrow 0$.
- (b) Se a série $\sum_{n=1}^{\infty} |a_n|$ diverge, então $\sum_{n=1}^{\infty} a_n$ diverge.
- (c) $\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n = \frac{2}{3}.$
- (d) A série $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ é convergente.
- (e) A série $\sum_{n=1}^{\infty} \frac{sen \ n}{n^2}$ é divergente.

Demonstração.

- (a) Falso. Note que $\frac{1}{n} \longrightarrow 0$, mas $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.
- (b) Falso. A afirmação é equivalente a provar que se $\sum_{n=1}^{\infty} a_n$ converge, então $\sum_{n=1}^{\infty} |a_n|$ converge. Note porém que

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln 2,$$

mas

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n},$$

diverge.

(c) Falso. Sabemos que $\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$ é uma série geométrica. Logo

$$\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n = \frac{1}{1 - \frac{2}{5}} = \frac{5}{3}.$$

(d) Falso. Tome $\sqrt{x} = u$. Então $x = u^2 \Rightarrow dx = 2u \ du$. Pelo **Teste da Integral** temos que

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1} = 2 \int_{1}^{\infty} \frac{u^{2}}{u^{2}+1} du = \lim_{A \to \infty} 2 \int_{1}^{A} \frac{u^{2}}{u^{2}+1} du = \lim_{A \to \infty} 2 \int_{1}^{A} \left(\frac{-1}{u^{2}+1}+1\right) du$$

$$= \lim_{A \to \infty} 2(-\arctan(u) + u) \Big|_{1}^{A} = \lim_{A \to \infty} 2(-\arctan(\sqrt{x}) + \sqrt{x}) \Big|_{1}^{A}$$

$$= \lim_{A \to \infty} -2 \arctan(\sqrt{A}) + \sqrt{A} + \frac{\pi}{2} - 2$$

$$= -1 + \infty + \frac{\pi}{2} - 2$$

$$= \infty$$

Logo $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ diverge.

(e) Falso.

Exercício 3. Considere as seguintes sequências de números reais e analise as afirmações a seguir.

- (a) Se $(a_n)_{n\in\mathbb{N}}$ é limitada, então $(a_n)_{n\in\mathbb{N}}$ converge.
- (b) Se $(a_n)_{n\in\mathbb{N}}$ é convergente, então $(a_n)_{n\in\mathbb{N}}$ é limitada.
- (c) Toda sequência de Cauchy em $\mathbb R$ é convergente.
- (d) Se $|a_n| \longrightarrow a$, com $a \in [0, +\infty)$, então $a_n \longrightarrow a$ ou $a_n \longrightarrow -a$.

(e) Se
$$a_n = \left(1 + \frac{1}{n^2}\right)^n$$
, então $\ln a_n \longrightarrow 0$.

Demonstração.

- (a) Falso.
- (b) Verdade.
- (c) Verdade.
- (d) Falso. Considere a sequência

$$s: \mathbb{R} \longrightarrow \mathbb{R}$$

$$n \longmapsto (-1)^n.$$

Note que $|(-1)^n| \longrightarrow 1$, mas $(-1)^n$ diverge.

(*e*)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n = \lim_{n \to \infty} e^{n \cdot ln \left(1 + \frac{1}{n^2} \right)} = e^{\lim_{n \to \infty} n \cdot ln \left(1 + \frac{1}{n^2} \right)} = 1,$$

uma vez que

$$\lim_{n \to \infty} n \cdot \ln \left(1 + \frac{1}{n^2} \right) = \lim_{n \to \infty} \frac{2n}{n^2 + 1} = \lim_{n \to \infty} \frac{2}{2n} = 0.$$

Segue daí que

$$\lim_{n \to \infty} ln \left[\left(1 + \frac{1}{n^2} \right)^n \right] = ln(1) = 0.$$

Parte II

Resolver as seguintes questões, justificando por extenso cada resposta. Cada questão vale 1 ponto. **Exercício 4**. Seja $f:[a,b] \longrightarrow [a,b]$ contínua. Prove que f possui pelo menos um ponto fixo, i.e. existe $x \in [a,b]$ tal que f(x) = x.

Demonstração. Consideremos a função contínua

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x - f(x).$$

Como $a \leq f(a)$ e $f(b) \leq b$, devemos ter

$$a - f(a) \le 0 \le b - f(b).$$

Se for a-f(a)=0 ou b-f(b)=0, então f possui um ponto fixo. Do contrário, sendo a-f(a)<0< b-f(b), o **Teorema do Valor Intermediário** nos garante que existe um ponto $x_0\in [a,b]$ tal que

$$x_0 - f(x_0) = 0$$
$$\Rightarrow f(x_0) = x_0.$$

Logo f possui um ponto fixo.

Exercício 5. Prove que $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfaz $|f(x) - f(y)| \leq (x - y)^2$ para todos $x, y \in \mathbb{R}$ se, e somente se, f é constante.

Demonstração.

 \Rightarrow Sabemos que $|x-y|^2 \ = \ (x-y)^2.$ Fixado $y_0 \in \mathbb{R},$ note que

$$|f(x) - f(y_0)| \le |x - y_0|^2$$

$$\Rightarrow \left| \frac{f(x) - f(y_0)}{x - y_0} \right| \le |x - y_0|.$$

$$\Leftrightarrow -|x-y_0| \le \frac{f(x)-f(y_0)}{x-y_0} \le |x-y_0|.$$

Como $\lim_{x \to y_0} -|x-y_0| = \lim_{x \to y_0} |x-y_0| = 0$, o **Teorema do Confronto** nos garante que

$$\lim_{x \to y_0} \frac{f(x) - f(y_0)}{x - y_0} = 0.$$

Ou seja, a derivada de f no ponto y_0 é igual a 0. Como y_0 é arbitrário, f deve ser constante, pelo **Corolário 1 do Teorema 7, do capítulo de Derivadas** de Curso de Análise vol 1.