

Multi-Agent Path Finding Under Time Uncertainty

Tomer Shahar, Shashank Shekhar, Dor Atzmon, Abdallah Saffidine, Brendan Juba, and Roni Stern

Previously published in the Journal of Artificial Intelligent Research (JAIR)

1. Motivation

Background

- Multi-Agent Pathfinding (MAPF) is needed when multiple agents travel simultaneously.
- MAPF has applications in domains such as video games or warehouse robots.
- Classic MAPF assumed move durations are **fixed**
- May real life MAPF scenarios contain time uncertainty

Fixed Duration

Uncertain Duration

MAPF under Time Uncertainty (MAPF-TU): move durations are bounded but non-deterministic

2. Contributions

- Definition of MAPF-TU, safety, and different optimality criteria
- Safe and Optimal MAPF-TU algorithms: A*+ODTU, CBSTU
- Online replanning algorithms for cases where
 - Agents can sense their location and replan
 - Agents can also communicate with each other
- **Experimental Evaluation**
- Learning technique to obtain duration ranges from data

3. Related Works

MAPF_R [Walker et al. ('18, '20), Andreychuk et al. ('19, '21)] MAMP [Cohen et al. ('19)]

Fixed Duration

MAPF-DP [Ma et al. '17, Wagner & Choset '17, Atzmon et al. '20]

4. Safety and Optimality

Safety

- A plan is safe if no collision occurs in any possible execution
- Potential Presence: the time ranges in which an agent might be at a certain vertex.
- Here: the *Potential Presence* of agents A and B at vertex C is [5-11] and [3]- 8], accordingly.
- Overlaps in a potential presence indicates an unsafe plan.

Optimality

- There are multiple optimality criteria.
- Our focus: min. worst or best case sum of cost.
- Contribution: $A^* + OD_{TII}$ and CBS_{TII}
- Both algorithms that find safe and optimal plans.

5. Online Replanning

- Replanning can greatly reduce the execution cost as safe replanning is very conservative.
- Online setting #1: agents can replan during execution after sensing their location.

The safe offline plan here requires agent 2 to wait at D for 9 time steps. But, by sensing its location agent 2, agent 2 can replan and reduce the time it has to wait at D according to the time it took it to get there.

Online setting #2: agents can also communicate their location.

The safe offline plan here requires agent 2 to wait at D for 9 time steps. But, if agent 3 senses its location and communicates it to agent 2, agent 2 can replan and reduce the time it has to wait at D accordingly.