Computational Methods in Economics Data

January 21, 2020

Data

- Data for statistical analysis
 - Cross section
 - Longitudinal data
- A data structure is a particular way of organizing information in a computer so that it can be used effectively.
 - Array
 - Linked list
 - Stack, Queue, Heap, Hashing, Graph
 - Vector, Matrix
 - Dataframe
 - Individual/Time identifiers
 - Variables

Data: Tools

- Serious data analysis requires to store and access information quickly.
 - Python
 - SQL
- Libraries dplyr and data.table are recommenced on R.

Data: Tools (0)

- dplyr works with pipes % > %
- Basic structure of a dataframe.
 - Each variable is in its own column
 - Each observation is in its own row

Data: Tools (1)

Logical and boolean operators

- < and <=
- > and >=
- is.na() and !is.na()
- %in%
- | or *xor*() and &
- == and =!

Data: Tools (2)

Manipulate cases

- filter(.data.,...): Extract rows that meet a logical criteria.
- distinct(.data.,...): Remove rows with duplicate values
- slice(.data.,...): Select rows by position
- arrange(.data.,...): Order rows by values of a column or columns (low to high).

Data: Tools (3)

Manipulate Variables

- pull(.data.,var): Extract column values as a vector.
- select(.data.,...): Extract columns as a table.
- mutate(.data.,var): Compute new columns.
- rename(.data.,...): rename columns.
- add_column(.data.,...), add_count(), add_tally()

Data: Tools (4)

Combine variables

- bind_cols(): return tables side by side.
- Mutating join: match two dataframes or tables.
 - left_join(x,y,by=NULL): join matching values from y and x.
 - right_join(x,y,by=NULL): join matching values from x and y.
 - inner_join(x,y,by=NULL): join data. Retain only rows with matches.
 - full_join(x,y,by=NULL): join data. Retain all values, all rows.
- semi_join(x,y,by=NULL): WHAT WILL BE JOINED
- anti_join(x,y,by=NULL): WHAT WILL NOT BE JOINED

Data: Visualize

Library ggplot.

- ggplot (data = DATA)
- GEOM_FUNCTION
 - (mapping = aes(MAPPINGS)
 - stat = STAT ,
 - position = POSITION)
- COORDINATE FUNCTION
- FACET_FUNCTION
- SCALE FUNCTION
- THEME_FUNCTION

```
Examples
```

tab

dat <- read.dta13("nlsy_merged.dta")</pre> names (dat)

dat1 = subset(dat, select=c(year, job_req_educ),!is.n tab = dat1 %% group_by(year,job_req_educ) %%

summarise (n = n()) %mutate(freq = n / sum(n))

graph = ggplot(tab, aes(x=year, y=freq, color=as.facto geom_line(size=2) + ylab("Rates") + xlab("Years")

graph = graph +theme(axis.title = element_text(size $axis.text = element_text(size = rel(1.1)),$

 $strip.text = element_text(size = 12)$,