Double Turán Problem

Ray Tsai

April 20, 2025

Contents

1	Introduction		2
	1.1	Link graphs and hypergraphs	3
	1.2	Main results: the induced case	3
	1.3	Main results: the non-induced case	5
	1.4	Definitions and Notation	7
2	$\operatorname{Th}\epsilon$	e induced double Turán problem	7
	2.1	Proof of Theorem 2	9
	2.2	Proof of Theorem 1	10
	2.3	Proof of Theorem 3	11
3	$\operatorname{Th}\epsilon$	non-induced double Turán problem	12
	3.1	Proof of Theorem 6	12
	3.2	Proof of Theorem 4	13
	3.3	Proof of Theorem 5	14
	3.4	Proof of Theorem 7	17
	3.5	Proof of Theorem 8	19
4	Con	acluding Remarks	20

1 Introduction

This thesis focuses on a variation of the $Tur\'{a}n$ problem in extremal combinatorics. The fundamental question in extremal hypergraph theory is determining the maximum number of edges in an n-vertex r-uniform graph that does not contain a prescribed r-uniform graph F as a subgraph. These maxima, denoted ex(n, F), are referred to as the extremal numbers or $Tur\'{a}n$ numbers for F. One of the cornerstones of extremal graph theory, concerning the case F is a clique, is Tur\'{a}n's Theorem [19]. To state the theorem, we need the $Tur\'{a}n$ graphs $T_k(n)$, which denotes a complete multipartite graph with n vertices and k parts of size $\lfloor n/k \rfloor$ or $\lfloor n/k \rfloor$.

Theorem A (Turán's Theorem). The maximum number of edges in an n-vertex graph containing no clique of order k + 1 is $e(T_k(n))$, with equality only for $T_k(n)$.

Simonovits [5] observed via the Erdős-Stone Theorem [3] that one may obtain the asymptotic value of ex(n, F) whenever F is a graph of chromatic number $k + 1 \ge 3$:

Theorem B (Erdős-Stone Theorem, Simonovits' Theorem). Let F be any graph of chromatic number $k+1 \geq 3$. Then $\operatorname{ex}(n,F) = (1+o_n(1))T_k(n)$ as $n \to \infty$.

The case where F is bipartite is in general wide open, and the order of magnitude of $\operatorname{ex}(n, K_{4,4})$ or $\operatorname{ex}(n, C_8)$ is not known – see Füredi and Simonovits [8] for a history of the bipartite Turán problem. There is also no analog of the above theorems for r-uniform hypergraphs; the asymptotic value of $\operatorname{ex}(n, K_k^r)$ is not known for any $k > r \geq 3$, where K_k^r denotes the complete r-uniform hypergraph on k vertices. The asymptotic value of $\operatorname{ex}(n, K_4^3)$ was conjectured by Turán [19] to be $\frac{5}{9}\binom{n}{3}$, and this remains open despite decades of intensive research.

In this thesis, we investigate closely related problems which we refer to as double Turán problems. To describe these problems, let G_1, G_2, \ldots, G_m be graphs with the same vertex set $V(G_i) = [n]$ for $i \in [m]$. For a graph F, we say that G_1, G_2, \ldots, G_m is double F-free if $E(F) \not\subseteq E(G_i) \cap E(G_j)$ for $1 \le i < j \le m$. In other words, F does not appear in the intersection of any two of the graphs G_i . We refer to a copy of F in the intersection of two of the graphs G_i as a double F. Let $\phi(m,n,F)$ denote the maximum value of $\sum_{i=1}^m e(G_i)$ such that G_1, G_2, \ldots, G_m does not contain a double F. We say that graphs G_1, G_2, \ldots, G_m are induced to mean that every G_i is an induced subgraph of $\bigcup_{i=1}^m G_i$. In other words, if $\{u,v\} \in E(G_i)$ and $u,v \in V(G_j)$, then $\{u,v\} \in E(G_j)$. Let $\phi^*(m,n,F)$ denote the maximum value of $\sum_{i=1}^m e(G_i)$ such that G_1, G_2, \ldots, G_m does not contain a double F and G_1, G_2, \ldots, G_m are induced. Evidently, $\phi^*(m,n,F) \le \phi(m,n,F)$, and the study of $\phi^*(m,n,F)$ and $\phi(m,n,F)$ is motivated by certain hypergraph extremal problems.

1.1 Link graphs and hypergraphs

Apart from the intrinsic interest in studying $\phi(m, n, F)$, a motivation is that $\phi(m, n, F)$ is closely connected to pure hypergraph extremal problems via the notion of link graphs. Let H be a triple system, that is, a set of three-element subsets of a finite set [n]. These three-element subsets form the edge-set E(H) of H, while V(H) = V is the vertex set of H. For $i \in V(H)$, let H_i denote the link graph of i, with $V(H_i) = V(H) \setminus \{i\}$ and $E(H_v) = \{\{j, k\} : \{i, j, k\} \in E(H)\}$. A useful idea in extremal hypergraph theory is to try to reduce an extremal problem for hypergraphs to extremal problems for the link graphs. For instance, a triple system H does not contain three triples on four vertices if and only if all its link graphs are triangle-free.

In the current context, given a graph F, let F^+ denote the triple system with vertex set $V(F^+) = V(F) \cup \{x,y\}$ and edge set $\{e \cup \{x\}, e \cup \{y\} : e \in E(F)\}$. Then $\phi(n,n,F)$ and $\operatorname{ex}(n,F^+)$ are intimately related: if H is an F^+ -free triple system with vertex set [n], then clearly the link graphs H_1, H_2, \ldots, H_n are double F-free, which implies $\operatorname{ex}(n,F^+) \leq \phi(n,n,F)$. This relates the double Turán problem to hypergraph extremal problems.

Now let G be the graph consisting of all pairs contained in triples in F^+ . The generalized $Tur\'{a}n$ problem asks for the maximum number $ex(n,G,K_3)$ of triangles in a graph H with vertex set [n] that does not contain G. This problem was studied by Alon and Shikhelman [1] and Kostochka, Mubayi and Verstraete [10, 12, 14]. This problem is related to $\phi^*(n, n, F)$ as follows: define $H_i = \{\{j, k\} : \{i, j\}, \{j, k\}, \{i, k\} \in E(H)\}$. Then H_1, H_2, \ldots, H_n are induced and double F-free, so $\phi^*(n, n, F) \geq ex(n, G, K_3)$. This relates the induced double Turán problem to extremal problems for triangles in graphs.

1.2 Main results: the induced case

The determination of $\phi^*(m, n, F)$ turns out to be fairly straightforward when F is a non-bipartite graph: the extremal objects are m copies of the same extremal graph for F:

Theorem 1. For $r \geq 3$, there exists $n_0(r)$ such that if $n \geq n_0(r)$ and F is a graph of chromatic number r, then for all $m \geq 3$,

$$\phi^*(m, n, F) = m \cdot ex(n, F),$$

with equality only for identical extremal n-vertex F-free graphs.

In the case $F = K_r$, we shall see the theorem is true for all $n \geq 3$:

Theorem 2. Let $m, n, r \geq 3$. Then $\phi^*(m, n, K_r) = m \cdot e(T_{r-1}(n))$ with equality for induced K_r -free graphs G_1, G_2, \ldots, G_m only if $G_1 = G_2 = \cdots = G_m = T_{r-1}(n)$.

In the case F is a bipartite graph, even the problem of determining the order of magnitude of $\phi^*(m, n, F)$ appears to be difficult, and we do not know the order of magnitude of $\phi^*(m, n, P)$ when P is a path with two edges. In this thesis, we propose the following very broad conjecture:

Conjecture A. Let F be any non-empty graph and $m, n \ge 1$. Then

$$\phi^*(m, n, F) = \Theta(m \cdot \operatorname{ex}(n, F) + n^2).$$

It is clear that a single complete graph K_n does not contain a double F, and neither do identical copies G_1, G_2, \ldots, G_m of an extremal n-vertex F-free graph. In particular,

$$\phi^*(m, n, F) \ge \max\left\{ \binom{n}{2}, m \cdot \operatorname{ex}(n, F) \right\}.$$

This conjecture is true when F is non-bipartite, by Theorem 1. If F is bipartite, then upper bounds on $\phi^*(m, n, F)$ are more difficult to come by, especially when m is large. For instance, we know

$$ex(n, K_{2,2,2}, K_3) \le \phi^*(n, n, K_{2,2})$$

and so Conjecture A implies that an n-vertex graph not containing the octahedron graph has $O(n^{5/2})$ triangles. In fact, it is also the case that $\operatorname{ex}(2n, K_{2,2,2}, K_3) \geq \phi^*(n, n, K_{2,2})$: if we have double $K_{2,2}$ -free induced graphs G_1, G_2, \ldots, G_n with vertex set [n], then let H be the graph with V(H) = [2n] consisting of all triangles with vertex set $\{i, j, k\}$ such that $n < k \leq 2n$ and $\{i, j\} \in E(G_k)$. The graph H is $K_{2,2,2}$ -free and $|E(H)| = \sum_{i=1}^{n/2} e(G_i)$. Similarly, we have

$$ex(n, K_{1,2,2}, K_3) \le \phi^*(n, n, K_{1,2})$$

and so Conjecture A implies that an n-vertex graph not containing the octahedron graph has $O(n^2)$ triangles, which is conjectured by Mubayi and Verstraete [14]. The conjecture proposes more generally that if F is a tree, then $\phi^*(n, n, F) = O(n^2)$. In fact, it is possible to prove the following theorem using the $removal\ lemma$ as in [12] as well as a construction for $\phi(n, n, P)$ in this work:

Theorem 3. Let P be a path with two edges. Then $\phi(n, n, P) = \Omega(n^{5/2})$, whereas $\phi^*(n, n, P) = o(n^{5/2})$, as $n \to \infty$. In particular,

$$\lim_{n \to \infty} \frac{\phi^*(n, n, P)}{\phi(n, n, P)} = 0.$$

If M is a matching with two edges, and M^+ is the graph obtained from two copies of K_4 sharing one edge by removing that edge, then $\operatorname{ex}(n,M^+,K_3) \leq \phi^*(n,n,M)$. If F is the triple system consisting of all four triangles in M^+ , then Füredi [7] showed $\operatorname{ex}(n,M^+) = O(n^2)$, answering a conjecture of Erdős [4]. It is possible to adapt Füredi's proof to give $\phi^*(n,n,M) = O(n^2)$, so in this case, $\operatorname{ex}(n,M^+,K_3) = \Theta(\phi^*(n,n,M))$. For improvements of the constant factor, see Mubayi and Verstraete [13] and Pikhurko and Verstraete [15]. We shall see that if F is bipartite and m is not too large relative to n, then Conjecture A is also true.

1.3 Main results: the non-induced case

Determining $\phi(m, n, F)$ even when F is a complete graph is challenging. The second theorem we give is well-suited to the case of bipartite graphs, and is due to Wilson:

Theorem 4. Let F be a graph. If there exists an extremal F-free n-vertex graph with maximum degree at most $n^{1/2}/m^2$, then

$$\phi(m, n, F) = \binom{n}{2} + \binom{m}{2} ex(n, F).$$

[JV: It should be true that if m is a constant, then equality holds for every bipartite graph F when n is large enough.] Since $\binom{n}{2} + m - 1 \le \phi^*(m, n, F) \le \phi(m, n, F)$ for any graph F with at least two edges, this theorem shows $\phi^*(m, n, F) = (1 + o(1))\binom{n}{2}$ whenever the conditions on m in the theorem are satisfied. In particular, if P is the path with two edges, and $m = o(n^{1/4})$ as $n \to \infty$, then for $n \ge 2$,

$$\binom{n}{2} + m - 1 \le \phi^*(m, n, F) \le \phi(m, n, F) = \binom{n}{2} + \binom{m}{2} \left\lfloor \frac{n}{2} \right\rfloor.$$

When F is bipartite, the value of $\phi(m, n, F)$ for larger m appears to be difficult to determine. We investigate the case that F is a path or matching with two edges more closely. For a family \mathcal{F} of graphs, we write $\phi(m, n, \mathcal{F})$ for the maximum number of edges in graphs G_1, G_2, \ldots, G_m which are double F-free for all $F \in \mathcal{F}$.

Theorem 5. Let P be the path with two edges. Then as $n \to \infty$,

$$\phi(m, n, P) = \begin{cases} \left(\frac{1}{2} + o(1)\right) n^2, & \sqrt{n}/m \to \infty \\ \Theta(n^2), & m = \Theta(\sqrt{n}) \end{cases}$$

$$\left(\frac{1}{2} + o(1)\right) mn^{3/2}, & \sqrt{n} < m \le n \\ \left(\frac{1}{2} + o(1)\right) \sqrt{m}n^2, & n < m \le n^2 \\ \Theta(n^3), & m = \Theta(n^2) \\ (1 + o(1)) mn, & m/n^2 \to \infty \end{cases}$$

Interestingly, while Conjecture A proposes $\phi^*(m, n, P) = O(n^2 + mn)$ for all $m, n \ge 1$, the above theorem shows $\phi(m, n, P)$ is much larger, of order at least $mn^{3/2}$ when $m \ge \sqrt{n}$.

Our first theorem on $\phi(m, n, F)$ for non-bipartite graphs F uses the notion of supersaturation – see Erdős and Simonovits [6]. We determine the asymptotic value of $\phi(m, n, F)$ as $m \to \infty$ when F is a non-bipartite graph:

Theorem 6. Let $n \geq 1$ and let F be a non-bipartite graph. Then as $m \to \infty$,

$$\phi(m, n, F) = (1 + o(1))m \cdot ex(n, F).$$

The next result we present concerns non-bipartite graphs. To state the theorem, we require the notion of k-color Ramsey numbers. Define $R_k(r)$ to be the k-color Ramsey number for the complete graph K_r : that is, the minimum N such that there exists a monochromatic F in any coloring of $E(K_N)$ with k colors. Suppose we have a coloring $c: E(K_N) \to 2^{[m]}$ for some $N < R_k(r)$ where $k \leq {m \choose 2}$ and $|c(u, w)| \geq 2$ for all $\{u, w\} \in E(K_N)$. For $i \in [m]$, let $H_i = \{\{u, w\} \in E(K_N) : i \in c(u, w)\}$. Then H_1, H_2, \ldots, H_m are double K_r -free. If we replace the vertices of K_N with disjoint sets $V_w : w \in V(K_N)$ whose sizes add up to n, and then let $G_1 = K_n$ and

$$G_i = \{\{x, y\} : (x, y) \in V_u \times V_w, i \in c(u, w)\}$$

then G_1, G_2, \ldots, G_m is also double K_r -free. We call G_1, G_2, \ldots, G_m an (m, n, k)-blowup, and let f(m, n, r) denote the maximum of $e(H_1) + e(H_2) + \cdots + e(H_m)$ such that H_1, H_2, \ldots, H_m is an (m, n, k)-blowup for some $k \leq {m \choose 2}$. This turns out to be exactly the construction which determines $\phi(m, n, F)$ when F is a complete graph:

Theorem 7. Let $r \geq 2$ and $m, n \geq 1$. Then

$$\phi(m, n, K_r) = f(m, n, r).$$

While computing f(m, n, r) is a finite calculation, the Ramsey number $R_k(r)$ unfortunately appears to be intractable in general; it is known that $R_2(3) = 6$ and $R_3(3) = 17$ and $R_2(4) = 18$, but no further multicolor Ramsey numbers are known [2, 11]. In the special case r = m = 3, the following holds:

Theorem 8. For all $n \geq 1$,

$$\phi(3, n, K_3) = \binom{n}{2} + \left\lfloor \frac{n^2}{2} \right\rfloor.$$

1.4 Definitions and Notation

Denote the set of first n positive integers as $[n] = \{1, 2, ..., n\}$. Given a set X, we denote 2^X as the power set of X.

Let G = (V, E) be a graph. Let V(G) denote the vertex set and E(G) denote the edge set of G. Let e(G) = |E(G)| be the number of edges in G. For vertex $v \in V(G)$, we denote by $N_G(v) = \{u \in V(G) : \{u, v\} \in E(G)\}$ the neighborhood of v.

Given graphs G_1, G_2, \ldots, G_m on some vertex set V, we denote G_{i_1,\ldots,i_k} as graph on V with edge set $E(G_{i_1,\ldots,i_k}) = \bigcap_{\alpha=1}^k E(G_{i_\alpha})$. Given two graphs G_1, G_2 , we denote $G_1 \cup G_2$ as the graph on $V(G_1) \cup V(G_2)$ with edge set $E(G_1 \cap G_2) = E(G_1) \cup E(G_2)$. Let S

In this thesis, we reserve n to denote the number of vertices in a graph. We call a n-vertex complete graph K_n , and a complete bipartite graph $K_{a,b}$, where a,b are the sizes of its parts. We denote P_n as a path with n edges, and C_n as a cycle with n edges. Given graph G, H, define G + H as the graph fully connecting G, H, i.e. $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{\{u, v\} : u \in V(G), v \in V(H)\}.$

Given graphs G and F, we say that G is F-free if G does not contain F as a subgraph. We denote $\operatorname{ex}(n, F)$ to be the maximum possible number of edges an F-free graph on n vertices, and we call a F-free graph achieving this maximum an extremal graph for F. Given graphs G_1, \ldots, G_m on the same set of vertices and F, we say that G_1, \ldots, G_m are pairwise F-free if $E(G_i) \cap E(G_j)$ does not contain F for $i \neq j$. Let v be a vertex from G_1, G_2, \ldots, G_m . Unless otherwise specified, we denote d(v) as the sum of the degree of v over all G_i .

2 The induced double Turán problem

We prove the theorems for $\phi^*(m, n, F)$ in this chapter. In particular, the main theorem we prove is Theorem 1 for general non-bipartite graphs F and in the special case of cliques. We

will first introduce two observations that significantly simplify the problem.

The first observation is that the determination of $\phi^*(m, n, F)$ can be reduced down to the case of two graphs, which is stated in the following lemma:

Lemma 9. Let $n, m, k \geq 2$ with $m \geq k$, F be some graph. Then

$$\phi^*(m, n, F) \le \frac{m}{k} \cdot \phi^*(k, n, F).$$

Moreover, let G_1, \ldots, G_m be induced double F-free graphs on [n] and suppose $\sum_{i=1}^k e(G_i) = \phi^*(k, n, F)$ only if $G_1 = \cdots = G_k$. Then $\sum_{i=1}^m e(G_i) = \phi^*(m, n, F)$ only if $G_1 = \cdots = G_m$.

Proof. Let G_1, \ldots, G_m be induced double F-free graphs on [n]. Put $G_{i+m} = G_i$ for all $i \in [m]$. Then

$$\sum_{i=1}^{m} e(G_i) = \frac{1}{k} \sum_{i=1}^{m} [e(G_i) + \dots + e(G_{i+k-1})] \le \frac{1}{k} \sum_{i=1}^{m} \phi^*(k, n, F) = \frac{m}{k} \cdot \phi^*(k, n, F),$$

which establishes the upper bound. The lower bound follows from the construction with $G_1 = \cdots = G_m$ to be *n*-vertex extremal graphs for F.

Now suppose $\sum_{i=1}^{m} e(G_i) = (m/k)\phi^*(k, n, F)$ and $G_1 \neq G_2$. By assumption $\sum_{i=1}^{k} e(G_i) < \phi^*(k, n, F)$. But then $\sum_{i=1}^{k} e(G_{i+j}) > \phi^*(k, n, F)$ for some $j \geq 1$, contradiction.

Now that we may determine $\phi^*(m, n, F)$ by examining $\phi^*(m, n, F)$, the second observation is that $\phi^*(m, n, F)$ can be further reduced to a finite optimization problem on a single variable. To state the lemma, we introduce the following construction function:

Definition 10. For $n \ge t \ge 1$ and F some graph, define

$$\mathcal{C}(n,t,F) := \binom{n-t}{2} + (n-t)t + 2\mathrm{ex}(t,F).$$

The construction described by C(n, t, F) are graphs G_1, G_2 on [n], such that G_2 is a t-vertex extremal graph for F and $G_1 = G_2 + K_{n-t}$.

Lemma 11. Let F be some graph. For $n \geq 1$,

$$\phi^*(2, n, F) = \max_{0 \le t \le n} \mathcal{C}(n, t, F).$$

Moreover, the equality holds for graphs G_1, G_2 on [n] only if G_1, G_2 are the construction described by $C(n, t_{max}, F)$, where $t_{max} \in [n]$ is a maximizer for C(n, t, F).

Proof. Let G_1, G_2 be induced double F-free graphs on [n]. Put $T = V(G_1) \cap V(G_2)$, t = |T|, $s = |V(G_1) \setminus T|$, and $n - t - s = |V(G_2) \setminus T|$. Note that $t, s \in \mathbb{Z}_{\geq 0}$. Since G_1, G_2 are induced subgraphs of $G_1 \cup G_2$, we have $G_1[T] = G_2[T] = G_1 \cap G_2$. But then $G_1 \cap G_2$ is F-free, so $e(G_1[T]) = e(G_2[T]) \leq \operatorname{ex}(t, F)$. Notice there can be at most t(n - t) edges between T and $(V(G_1) \cup V(G_2)) \setminus T$. Since $G[V(G_1) \setminus T] \leq {s \choose 2}$ and $G[V(G_2) \setminus T] \leq {n-t-s \choose 2}$,

$$e(G_1) + e(G_2) \le {s \choose 2} + {n-s-t \choose 2} + t(n-t) + 2ex(t, F).$$

But then $\binom{n-t}{2} > \binom{s}{2} + \binom{n-t-s}{2}$ for 0 < s < n-t, so

$$e(G_1) + e(G_2) \le {n-t \choose 2} + (n-t)t + 2ex(t,F) = \mathcal{C}(n,t,F).$$

This establishes the upper bound. From this we also know that $e(G_1) + e(G_2) = \mathcal{C}(n, t, F)$ only if G_1, G_2 are the construction described by $\mathcal{C}(n, t, F)$. The result now follows.

2.1 Proof of Theorem 2

By Lemma 9, it suffices to prove the theorem for m = 3. Let G_1, G_2, G_3 be induced double K_r -free graphs, such that $e(G_1) + e(G_2) + e(G_3) = \phi^*(3, n, K_r)$. We may assume $e(G_1) \ge e(G_2) \ge e(G_3)$, and we already know $\phi^*(3, n, K_r) \ge 3 \text{ex}(n, K_r)$. Consequently, we must have $e(G_1) + e(G_2) \ge 2 \text{ex}(n, K_r)$. Since G_1, G_2, G_3 are induced and $e(G_1) + e(G_2) + e(G_3) \ge 3 \text{ex}(n, K_r)$, it suffices to show that $G_1 = G_2 = T_{r-1}(n)$. In particular, we will use Lemma 11 to show that G_1, G_2 is an extremal configuration without containing a double K_r .

Let $t = |V(G_1 \cap G_2)|$. By Turán's Theorem,

$$ex(t, K_r) - ex(t - 1, K_r) = e(T_{r-1}(t)) - e(T_{r-1}(t - 1)) = t - \left[\frac{t}{r - 1}\right].$$

It immediately follows that

$$C(n, t, K_r) - C(n, t - 1, K_r) = -t + 1 + 2[ex(t, K_r) - ex(t - 1, K_r)] = t + 1 - 2\left[\frac{t}{r - 1}\right].$$
(1)

For $r \geq 4$, $C(n, t, K_r)$ is strictly increasing on t, so by Lemma 11,

$$\phi^*(2, n, K_r) = \mathcal{C}(n, n, K_r) = 2\mathrm{ex}(n, K_r) = e(G_1) + e(G_2)$$

and $G_1 = G_2 = T_{r-1}(n)$, as desired.

Now suppose r=3. Equation (1) shows that $C(n,t,K_r)$ is non-decreasing on t and $C(n,t,K_r) > C(n,t,K_r)$ for even t. By Lemma 11, we now have

$$\phi^*(2, n, K_r) = \max[\mathcal{C}(n, n, K_r), \mathcal{C}(n, n-1, K_r)] = 2\exp(n, K_r) = e(G_1) + e(G_2),$$

and either $G_1 = G_2 = T_{r-1}(n)$, or $G_2 = T_{r-1}(n-1)$ and $G_1 = G_2 + K_1$. If the latter case is true, then $e(G_3) \ge \operatorname{ex}(n, F) > e(G_2)$, and this contradiction completes the proof.

2.2 Proof of Theorem 1

If F is a graph of chromatic number $r+1 \geq 3$, then Theorem B shows $\operatorname{ex}(n, F) = (1 + o(1))\operatorname{ex}(n, K_{r+1})$ as $n \to \infty$. In this section, we prove Theorem 1.

Proof of Theorem 1. By Lemma 9, it suffices to prove the theorem for m = 3. Let G_1, G_2, G_3 be induced double F-free graphs, such that $e(G_1) + e(G_2) + e(G_3) = \phi^*(3, n, F)$. We may assume $e(G_1) \geq e(G_2) \geq e(G_3)$, and we already know $\phi^*(3, n, F) \geq 3\text{ex}(n, F)$. Consequently, we must have $e(G_1) + e(G_2) \geq 2\text{ex}(n, F)$. Since G_1, G_2, G_3 are induced and $e(G_1) + e(G_2) + e(G_3) \geq 3\text{ex}(n, F)$, it suffices to show that $G_1 = G_2$ are n-vertex F-free extremal graphs. In particular, we will use Lemma 11 to show that G_1, G_2 is an extremal configuration without containing a double F.

Let $t = |V(G_1 \cap G_2)|$. If $t < \sqrt{n}$, then

$$2\mathrm{ex}(n,F) \ge 2e(T_{r-1}(n)) \ge 2\left\lfloor \frac{n^2}{4} \right\rfloor \ge \binom{n}{2} + \binom{\sqrt{n}}{2} > \mathcal{C}(n,t,F).$$

Thus $t \geq \sqrt{n}$. But then for large enough t, any extremal t-vertex F-free graph contains a spanning complete (r-1)-partite subgraph $T_{r-1}(t)$, so we may add $\operatorname{ex}(t-1,F) - e(T_{r-1}(t-1))$ egdes to $T_{r-1}(t)$ and still avoid F as a subgraph. Hence for large enough t, we have $\operatorname{ex}(t,F) \geq \operatorname{ex}(t-1,F) - e(T_{r-1}(t-1)) + e(T_{r-1}(t))$, and so

$$ex(t,F) - ex(t-1,F) \ge e(T_{r-1}(t)) - e(T_{r-1}(t-1)) \ge t - \left\lceil \frac{t}{r-1} \right\rceil.$$

It immediately follows that

$$C(n, t, F) - C(n, t - 1, F) = -t + 1 + 2[ex(t, F) - ex(t - 1, F)] \ge t + 1 - 2\left[\frac{t}{r - 1}\right]. \quad (2)$$

For $r \geq 4$, C(n, t, F) is strictly increasing on t, so by Lemma 11,

$$\phi^*(2, n, F) = \mathcal{C}(n, n, F) = 2\operatorname{ex}(n, F) = e(G_1) + e(G_2),$$

and $G_1 = G_2$ are *n*-vertex *F*-free extremal graphs, as desired.

Now suppose r = 3. Equation (2) shows that C(n, t, F) is strictly increasing for even t and $C(n, t, F) \ge C(n, t - 1, F)$ for odd t. By Lemma 11, we now have

$$\phi^*(2, n, F) = \max[\mathcal{C}(n, n, F), \mathcal{C}(n, n - 1, F)] = 2\operatorname{ex}(n, F) = e(G_1) + e(G_2),$$

and either $G_1 = G_2$ are *n*-vertex extremal *F*-free graphs, or G_2 is an (n-1)-vertex extremal *F*-free graph and $G_1 = G_2 + K_1$. If the latter case is true, then $e(G_3) \ge ex(n, F) > e(G_2)$, and this contradiction completes the proof.

2.3 Proof of Theorem 3

According to Theorem 5, $\phi(n, n, P) = (1/2 + o(1))n^{5/2}$. So to prove Theorem 3, it is sufficient to show $\phi^*(n, n, P) = o(n^{5/2})$. To this end, let G_1, G_2, \ldots, G_n be induced and double P-free and let $\epsilon > 0$. Let $d_i(v)$ be the degree of vertex v in the graph G_i . Let I be the set of pairs (i, v) such that $d_i(v) \geq \sqrt{n}/\epsilon + 1$. Since G_1, G_2, \ldots, G_m do not contain a double P,

$$\sum_{(i,v)\in I} \binom{d_i(v)}{2} \le n^3.$$

The maximum possible value of $\sum_{(i,v)\in I} d_i(v)$ subject to this constraint is when $d_i(v) = \sqrt{n}/\epsilon + 1$ for all (i,v), in which case

$$\sum_{(i,v)\in I} d_i(v) \le (2\epsilon^2 n^2) \cdot \left(\frac{\sqrt{n}}{\epsilon} + 1\right) = 3\epsilon n^{5/2}$$

for large enough n. Remove all edges of G_i on vertex v such that $(i,v) \in I$. The total number of edges removed is at most $3\epsilon n^{5/2}$. Let G'_1, G'_2, \ldots, G'_n be the remaining subgraphs of G_1, G_2, \ldots, G_n . If $e(G'_i) \leq \epsilon n^{3/2}$, then remove all edges of G'_i . The total number of edges removed is at most $\epsilon n^{5/2}$. The remaining graphs $G''_1, G''_2, \ldots, G''_m$ have each at least $\epsilon n^{3/2}$ edges and maximum degree at most \sqrt{n}/ϵ . In particular, each G''_i contains a matching M_i of size at least $\epsilon^2 n/2$. If $m \leq \epsilon n$, then

$$\sum_{i=1}^{n} e(G_i) \le 4\epsilon n^{5/2} + \sum_{i=1}^{m} e(G_i'') \le 4\epsilon n^{5/2} + \phi(m, n, P) \le 5\epsilon n^{5/2}$$

by Theorem 5. If $m > \epsilon n$, then we apply Szemerédi's Regularity Lemma (see Ruzsa and Szemerédi [16]) to find, for some $\delta > 0$ depending only on ϵ , a matching say M_1 in G_1'' such that for some pair of set $X, Y \subseteq V(M)$ of size at least δn each, there is a set E of at least $\delta^3 n^2$ edges $\{x,y\}$ of $G_1'' \cup G_2'' \cup \cdots \cup G_m''$ such that $x \in X$ and $y \in Y$. Since G_1'' is induced, $E \subseteq E(G_1)$. In particular, there are at least $\delta^5 n^3/4$ copies of P in G_1 . We can repeat the argument in the remaining graphs $G_i'' : i \in [2, m]$ to get say M_2 in G_2'' as above, which gives $\delta^5 n^3/4$ copies of P in G_2 . If we do this $4\delta^{-5}$ times, then we have found n^3 copies of P in the first $4\delta^{-5}$ graphs, and two of them have the same edge-set. We conclude $\sum_{i=1}^n e(G_i) \leq 5\epsilon n^{5/2}$ if n is large enough. Since this is true for all $\epsilon > 0$, we are done.

3 The non-induced double Turán problem

In this section, we prove our main theorems on $\phi(m, n, F)$.

3.1 Proof of Theorem 6

We need the following *saturation theorem*, which may be found in [6].

Proposition 12. Let F be any non-empty graph with k vertices. For all $\epsilon > 0$, there exists $\delta > 0$ such that if G is any n-vertex graph with $\operatorname{ex}(n, F) + \epsilon n^2$ edges, then G contains δn^k copies of F.

Proof of Theorem 6. Let k = |V(F)| and let $\epsilon > 0$. Let G_1, G_2, \ldots, G_m be double F-free. Reorder G_1, G_2, \ldots, G_m so that $e(G_i) \ge \operatorname{ex}(n, F) + \epsilon n^2$ for $1 \le i \le \ell$ and $e(G_i) < \operatorname{ex}(n, F) + \epsilon n^2$ for $\ell < i \le m$. Then each $G_i : 1 \le i \le \ell$ contains at least δn^k copies of F, by Proposition 12. On the other hand, there are at most n^k copies of F such that $F \subseteq G_i$ for some $i \in [m]$. Therefore $\ell \le 1/\delta$ and

$$\sum_{i=1}^{m} e(G_i) = \sum_{i=1}^{\ell} e(G_i) + \sum_{i=\ell+1}^{m} e(G_i)$$

$$\leq \frac{1}{\delta} \binom{n}{2} + (m-\ell) \operatorname{ex}(n, F) + (m-\ell) \epsilon n^2$$

$$\leq m \cdot \operatorname{ex}(n, F) + \epsilon m n^2 + \frac{1}{\delta} \binom{n}{2}.$$

Since F is not bipartite, $\exp(n, F) = \Theta(n^2)$ and so $\phi(m, n, F) \leq m \cdot \exp(n, F) + (\epsilon + 1/\delta m) m n^2$. Since ϵ was arbitrary and δ is a constant depending only on ϵ , we conclude $\phi(m, n, F) \leq (1 + o(1))m \cdot \exp(n, F)$ as $m \to \infty$. Let F be a bipartite graph with $k \geq 2$ vertices and $j \geq 1$ edges. A strong version of a conjecture of Simonovits [17, 18] would suggest that for all $\epsilon > 0$, there exists $\delta > 0$ such that every n-vertex graph G with at least $p\binom{n}{2}(1+\epsilon)\mathrm{ex}(n,F)$ edges contains at least $\delta p^j n^k$ copies of F. For instance, this is known to be true whenever the asymptotic behavior of $\mathrm{ex}(n,F)$ is known, which includes the case $F = K_{2,t}$. If F is bipartite and $m \cdot \mathrm{ex}(n,F)/n^2 \to \infty$ as $m,n\to\infty$, then this conjecture with the same proof as above shows $\phi(m,n,F)=(1+o(1))m\cdot\mathrm{ex}(n,F)$. When F contains a cycle, then there exists $\alpha>0$ such that $\mathrm{ex}(n,F)\geq n^{1+\alpha}$ for large enough n. Thus, we conclude that if F contains a cycle and the Simonovits conjecture is true for F, then $\phi(m,n,F)=(1+o(1))m\cdot\mathrm{ex}(n,F)$ for $m\geq n$ and $n\to\infty$. In particular, this shows $\phi(m,n,K_{2,t})=(1+o(1))m\cdot\mathrm{ex}(n,F)$ for $m\geq n$ as $n\to\infty$.

We also present a weaker version of the above theorem that holds for all graphs F, which adopts a similar proof.

Proposition 13. Let $n, k \ge 1$ and let F be a graph with k vertices. If $m \cdot \operatorname{ex}(n, F)/n^k \to \inf ty$, then

$$\phi(m, n, F) = (1 + o(1))m \cdot ex(n, F),$$

as $m \to \infty$.

Proof. Let G_1, G_2, \ldots, G_m be double F-free. Write $e(G_i) = \operatorname{ex}(n, F) + t_i$ for each $i \in [m]$. Reorder G_1, \ldots, G_m so that $e(G_i) > \operatorname{ex}(n, F)$ for $1 \le i \le \ell$ and $e(G_i) \le \operatorname{ex}(n, F)$ for $\ell < i \le m$. Then each $G_i : 1 < i \le \ell$ contains at least t_i copies of F, and so there are $T = \sum_{i=1}^{\ell} t_i$ copies of F over all G_i . But then there are at most n^k copies of F such that $F \subseteq G_i$ for some $i \in [m]$, so $T \le n^k = o(m) \cdot \operatorname{ex}(n, F)$. It now follows that

$$\sum_{i=1}^{m} e(G_i) \le T + m \cdot ex(n, F) = (1 + o(1))m \cdot ex(n, F).$$

3.2 Proof of Theorem 4

We first show that for all $m, n \ge 1$ and graph F,

$$\phi(m, n, F) \le \binom{n}{2} + \exp(n, F) \binom{m}{2}.$$

Thereafter, we show that if there is an extremal F-free graph with maximum degree at most $n^{1/2}/m^2$, then the above bound is tight.

13

Proof of the upper bound. For $S \subseteq [m]$, let E_S denote the set of edges that are contained in exactly $\{G_i\}_{i\in S}$. Then

$$\sum_{i=1}^{m} e(G_i) = \sum_{S \subseteq [m]} |S| |E_S| \le \binom{n}{2} + \sum_{S \subseteq [m], |S| \ge 2} (|S| - 1) |E_S|.$$

Let $A_S = \bigcup_{T \supseteq S} E_T$, i.e., the set of edges that are contained in all G_i with $i \in S$. When $|S| \ge 2$, the edge set A_S is F-free and thus

$$\sum_{T\supset S} |E_T| \le \operatorname{ex}(n, F).$$

Hence,

$$\sum_{\substack{S \subseteq [m] \\ |S| > 2}} (|S| - 1)|E_S| = \sum_{\substack{S \subseteq [m], T \subseteq S \\ |S| = 2}} \sum_{\substack{(|T| - 1)|E_T| \\ 2}} \frac{(|T| - 1)|E_T|}{\binom{|T|}{2}} \le \sum_{\substack{S \subseteq [m], T \subseteq S \\ |S| = 2}} \sum_{|E| = 2} |E_T| \le \binom{m}{2} \exp(n, F),$$

as each $T \in [m]$ with $|T| \ge 2$ is counted $\binom{|T|}{2}$ times in total and $|T| - 1 \le \binom{|T|}{2}$. This proves the upper bound.

Proof of the lower bound. We need to show there exists a construction such that the graph with edge set E_S is an extremal F-free graph, for all $S \subseteq [m]$ of size 2. Let $M = {m \choose 2}$ and H_1, \ldots, H_M be copies of an extremal F-free graph on n vertices such that H_i with maximum degree $\Delta \leq n^{1/2}/m^2$ for all $i \in [m]$. It suffices to show that we can embed each H_i onto [n] such that their edge sets are pairwise disjoint. We begin by an arbitrary embedding of each H_i and iteratively decrease the number of intersecting edges. Define a (u, v, i)-swap by swapping the embedding of vertex u and v of H_i , i.e. replacing each edge $\{u, w\} \in E(H_i)$ with the edge $\{v, w\}$. This preserves the type of isomorphism of H_i . Given a vertex v, let $N(v) = N_{H_1}(v) \cup \cdots \cup N_{H_M}(v)$. Suppose there exists an intersecting edge $\{u, w\} \in E(H_i) \cap E(H_j)$. Since $|N(u)| \leq M \cdot \Delta \leq n^{1/2}/2$, $|N(u) \cup N(N(u))| \leq \Delta + \Delta(\Delta - 1) \leq n/4$ so there exists a vertex $v \notin N(u) \cup N(N(u))$. Since $N(u) \cap N(v) = \emptyset$, performing a (u, v, i)-swap reduces the number of intersecting edges. The result now follows from iterating this process.

3.3 Proof of Theorem 5

Let G_1, \ldots, G_m be graphs on [n] not containing a double P. We first show the following claims:

Claim 1. $\phi(m, n, P) \leq mn(1 + \sqrt{4n^2/m + 1})/4$.

Proof. Since there is no double P in G_1, G_2, \ldots, G_m ,

$$\sum_{i=1}^{m} \#\{P \subseteq G_i\} \le \#\{P \subseteq K_n\}.$$

For all G_i , each vertex v in G_i along with two of its neighbors form one unique P, so

$$\#\{P \subseteq G_i\} = \sum_{v \in V(G_i)} {d_{G_i}(v) \choose 2}.$$

By Jensen's inequality,

$$\sum_{v \in V(G_i)} \binom{d_{G_i}(v)}{2} \ge n \binom{\sum_{v \in V(G_i)} d_{G_i}(v)/n}{2} = n \binom{2e(G_i)/n}{2} \ge \frac{2(e(G_i))^2}{n} - e(G_i).$$

On the other hand, since each three vertices in G can form at most three P's,

$$\#\{P \subseteq K_n\} \le 3\binom{n}{3} \le \frac{n^3}{2}.$$

Combining the above inequalities yields and using Jensen's inequality once more yields

$$\frac{2m}{n} \left(\frac{1}{m} \sum_{i=1}^{m} e(G_i) \right)^2 - \sum_{i=1}^{m} e(G_i) \stackrel{\text{Jensen}}{\leq} \sum_{i=1}^{m} \frac{2(e(G_i))^2}{n} - e(G_i) \leq \frac{n^3}{2}.$$

Solving the quadratic equation gives

$$\sum_{i=1}^{m} e(G_i) \le mn \cdot \frac{1 + \sqrt{4n^2/m + 1}}{4}.$$

This proves the claim.

Claim 2. $\phi(m, n, P) \leq (mn^{3/2} + n^2)/2$.

Proof. For each vertex $u \in [n]$, define H_u as the $m \times n$ bipartite graph with edge set $E(H_u) := \{\{v,i\} : \{u,v\} \in E(G_i)\}$. If H_u contains a quadrilateral $\{v,i\}, \{v,j\}, \{w,i\}, \{w,j\}$, then $\{u,v\}, \{u,w\}$ form a double P in $G_i \cap G_j$, contradiction. Thus we conclude that H_u is quadrilateral-free, and therefore $e(H_u) \leq m\sqrt{n} + n$, by the Kővari-Sós-Turán Theorem [9].

It now follows that

$$\sum_{i=1}^{m} e(G_i) = \frac{1}{2} \sum_{u \in V(G)} e(H_u) \le \frac{1}{2} (mn^{3/2} + n^2).$$

This proves the claim.

Claim 2 along with the construction of one complete graph now yield the desired bounds for $m \leq \sqrt{n}$. On the other hand, Claim 1 along with the construction of m extremal graphs for P yield the desired bounds for $m = \Theta(n^2)$. The bound for the case for $m/n^2 \to \infty$ follows from Proposition 13.

Thus it remains to show that $\phi(m, n, P) \ge (1/2 + o(1))mn^{3/2}$ for $\sqrt{n} < m \le n$ and $\phi(m, n, P) \ge (1/2 + o(1))\sqrt{m}n^2$ for $n < m \le n^2$.

We first prove the case $\sqrt{n} \leq m \leq n$. Suppose G_1, G_2, \ldots, G_n are graphs on [n] containing no double P and $\sum_{i=1}^n e(G_i) \geq (1/2 + o(1))n^{5/2}$, with $e(G_1) \geq e(G_2) \geq \cdots \geq e(G_n)$. Then G_1, G_2, \ldots, G_m are graphs with no double P and $\sum_{i=1}^m e(G_i) \geq (1/2 + o(1))mn^{3/2}$. Hence, it suffices to prove the case for m = n.

Consider a finite projective plane with n points and n lines, with prime q chosen so that $n = (1 + o(1))(q^2 + q + 1)$ as $q \to \infty$. Let $S_1, \ldots, S_n \subseteq [n]$ be the n lines of the projective plane. Note that each line S_i contains q + 1 points, and the intersection of any two distinct lines S_i, S_j contains $|S_i \cap S_j| = 1$ point.

Define G_1, \ldots, G_n to be graphs on [n], each with edge set

$$E(G_i) := \{ \{j, k\} \subseteq [n] : j \neq k, j + k \in S_i \mod n \}.$$

Note that the intersection of distinct G_i , G_j is P free: since $|S_i \cap S_j| = 1$, if $\{a, b\}, \{a, c\} \in E(G_i) \cap E(G_j)$, then a + b = a + c so b = c.

We now count the number of edges in G_1, \ldots, G_n . Since $|S_i| = q + 1$, for each point $j \in [n]$, there are q + 1 choices for $k \in [n]$ such that $j + k \in S_i$. But then we have to avoid counting the same edge twice and loops, so the number of edges in G_i is

$$e(G_i) = \frac{n(q+1) - \#\text{loops counted for } G_i}{2}.$$

If $j \in [n]$ is even, then k = j/2 is the unique number in [n] such that $k + k = j \mod n$. If $j \in [n]$ is odd, then k = (n+j)/2 is the unique number in [n] such that $k + k = j \mod n$, as n is even. Hence, for each $j \in S_i$, there exists a unique $k \in [n]$ such that $k + k = j \mod n$,

and thus

#loops counted for
$$G_i = |S_i| = q + 1$$
.

Since $q + 1 = (1 + o(1))n^{1/2}$, the number of edges in G_1, \ldots, G_n is

$$\sum_{i=1}^{n} e(G_i) = n \cdot \frac{n(q+1) - (q+1)}{2} = \left(\frac{1}{2} + o(1)\right) n^{5/2},$$

as $n \to \infty$.

The case for $n < m \le n^2$ is similar. Consider the finite projective plane P with n points defined above. Since $|S_i| = q + 1 > \sqrt{n} \ge n^2/m$, we may further place a smaller projective plane P_i with n^2/m points inside each line S_i . Since each line of P_i has size roughly n/\sqrt{m} , each S_i contains roughly m/n lines, and thus we now have m small lines in total. Define G_i' on each small line the same way we defined G_i on S_i . Following the same line of calculations above, the construction of G_1', \ldots, G_m' now gives $\sum_{i=1}^m e(G_i) = (1/2 + o(1))\sqrt{m}n^2$, provided $m \le n^2$. This completes the proof.

3.4 Proof of Theorem 7

We now prove Theorem 7. Notice that we trivially have $f(m, n, r) \leq \phi(m, n, K_r)$, so it suffices to show the reverse inequality. That is, we need to show that there exists a blowup construction meeting the desired bound.

Let G_1, G_2, \ldots, G_m be graphs on [n] with no double K_r and $\sum_{i=1}^m e(G_i) = \phi(m, n, K_r)$. Observe that any pair $\{i, j\} \subseteq [n]$ must be in some G_i , otherwise, we may add it to G_1 without creating a double K_r .

We call vertices v, v' clones if for all $u \in [n] \setminus \{v, v'\}$ and $i \in [m]$, the edge $\{u, v\} \in E(G_i)$ if and only if $\{u, v'\} \in E(G_i)$. Furthermore, we call $\{v, v'\}$ a light edge if $\{v, v'\}$ is in exactly one graph G_i .

We now apply Algorithm 1 to G_1, G_2, \ldots, G_m .

Algorithm 1 symmetrization algorithm

```
while \exists a light edge whose endpoints are not clones \mathbf{do} among all vertices incident to such an edge, select a vertex v with maximum degree B_v \leftarrow collection of vertices sending a light edge to v that are not clones of v while B_v \neq \emptyset \mathbf{do} pick u \in B_v j \leftarrow colour of the light edge from u to v for 1 \leq i \leq m \mathbf{do} if i \neq j then; N_{G_i}(u) \leftarrow N_{G_i}(v) else if i = j then N_{G_i}(u) \leftarrow (N_{G_i}(v) \setminus \{u\}) \cup \{v\} end if end for end while end while
```

Claim 3. Algorithm 1 terminates.

Proof. Notice that at the end of the 'while $B_v \neq \emptyset$ ' loop, every vertex sending a light edge to v is a clone of v. This implies v along with the set L_v of vertices receiving light edges from v induce a clique of size at least two in some G_i , and an empty graph in every other graph G_j with $j \neq i$. Moreover, any vertex $w \notin L_v$ sends edges to either all or none of the vertices in L_v , and if w is incident to L_v , then w sends edges to L_v in at least two graphs. It now follows that no light edge incident with a vertex in L_v will be picked again in an iteration of the out most while loop. Thus the algorithm can run through at most n/2 such iterations, and so it terminates.

Claim 4.
$$G'_1, G'_2, \ldots, G'_m$$
 do not contain a double K_r and $\sum_{i=1}^m e(G'_i) = \phi(m, n, K_r)$.

Proof. Note that we replace u by a clone of v in the for loop of Algorithm 1. Since $\{u, v\}$ remains a light edge in this step, u and v cannot both belong to a double K_r in the modified graphs. Furthermore, any double K_r containing u after the for loop arises from a double K_r containing v prior to the for loop. But then G_1, G_2, \ldots, G_m contained no double K_r to begin with, so G'_1, G'_2, \ldots, G'_m do not contain a double K_r .

We now show that the algorithm does not reduce the number of edges. By our choice of v, we know $d(v) \geq d(u)$ for all $u \in B_v$ prior to the for loop. Hence, replacing u with a clone

of v does not decrease the number of edge over a complete iteration of the inner while loop. Therefore, $\sum_{i=1}^{m} e(G'_i) = \phi(m, n, K_r)$.

Hence, the algorithm outputs graphs G'_1, G'_2, \ldots, G'_m with $\phi(m, n, K_r)$ edges and the additional property that light edges come in 'clone cliques.' We may thus partition the vertex set [n] into k disjoint sets V_1, V_2, \ldots, V_k , such that each V_i induces a clique of light edges from the same graph. Moreover, for distinct $i, j \in [k]$, define S_{ij} to be the set of all edges between V_i and V_j , and note that any edge in S_{ij} appears in at least two modified graphs. The sets S_{ij} now yield a k-blowup. Notice that if the pattern of the k-blowup contains a double K_r , then the original graphs G_1, G_2, \ldots, G_m must have contained a double K_r as well, contradiction. Thus the k-blowup is double K_r -free.

It remains to show that $k < R_M(K_r)$. For each edge $\{i, j\} \subseteq [k]$ in the pattern of the k-blowup, we assign an arbitrary distinct pair $\{a, b\} \subseteq L_{ij} \subseteq [m]$ to $\{i, j\}$. If $k \ge R_M(K_r)$, then there exists K_r in the pattern of the k-blowup colored by some distinct pair $\{a, b\} \subseteq [m]$. But then this implies the pattern of the k-blowup contains a double K_r , contradiction. This completes the proof.

3.5 Proof of Theorem 8

It is not hard to see that $\phi(2, n, K_3) = \binom{n}{2} + \lfloor n^2/4 \rfloor$: if G_1, G_2 is double triangle-free, then we have

$$e(G_1) + e(G_2) \le \binom{n}{2} + e(G_1 \cap G_2) \le \binom{n}{2} + e(n, K_3)$$

and so $\phi(2, n, K_3) \leq \binom{n}{2} + \lfloor n^2/4 \rfloor$. Taking $G_1 = K_n$ and $G_2 = K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ meets this bounds. The main result of this section is to show for all $n \geq 1$,

$$\phi(3, n, K_3) = \binom{n}{2} + \left\lfloor \frac{n^2}{2} \right\rfloor.$$

Let G_1, G_2, G_3 be double triangle-free. Define $H_k \subseteq G$ to be the graph with edges contained in at least k of the G_i 's and note that $e(G_1) + e(G_2) + e(G_3) = e(H_1) + e(H_2) + e(H_3)$. Thus it suffices to show that $e(H_2) + e(H_3) \le \frac{n^2}{2}$. Notice H_2 must not contain any triangles with two edges in H_3 , so

$$e(H_2) + e(H_3) \le \binom{n}{2} + e(H_3) - |\{\{u, v\} : u \ne v, N_{H_3}(u) \cap N_{H_3}(v) \ne \emptyset\}|.$$

Let H_3' be the graph with the same vertex set as H_3 and edge set $\{\{u,v\}: u \neq v, N_{H_3}(u) \cap N_{H_3}(v) \neq \emptyset\}$. It suffices to show that $\frac{n}{2} \geq e(H_3) - e(H_3')$.

Let $d_1 \geq d_2 \geq \cdots \geq d_n$ and $f_1 \geq f_2 \geq \cdots \geq f_n$ each be the degree sequence of H_3 and H'_3 , respectively. We show that $f_i \geq d_i - 1$ for all i. Let v_i denote the vertex in H with degree d_i and u_i be the vertex in H with degree f_i . Let $S_i = |N_{H_3}(v_1) \cup \cdots \cup N_{H_3}(v_i)|$. Since

$$\sum_{u \in S_i} d_{H_3}(u) \ge d_1 + \dots + d_i,$$

we have that $|S_i| \ge i$. But then $S_i \setminus \{u_1, \dots, u_{i-1}\}$ is non-empty, and every $u \in S_i$ has degree $d_{H'_3}(u) \ge d_i - 1$. Hence, $f_i \ge d_i - 1$ for all i, which yields

$$e(H_3') = \frac{1}{2} \sum_{i=1}^{n} f_i \ge \frac{1}{2} \sum_{i=1}^{n} (d_i - 1) = e(H_3) - \frac{n}{2}.$$

This proves Theorem 8.

4 Concluding Remarks

- For Theorem 1, we may not be able to achieve the same result with smaller n. For example, consider F to be the bowtie graph, i.e. the 5-vertex graph with two triangles sharing a vertex. The n-vertex extremal graph for F is given by $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ plus an edge when $n \geq 5$, otherwise it is the complete graph. For n = 5, the construction $G_1 = K_4, G_2 = K_5$ then shows that $\phi^*(2,5,F) > 2 \cdot \text{ex}(5,F)$. Fortunately, for non-bipartite F with |V(F)| = k, it is not hard to show $n \geq k^2$ is sufficient to avoid this issue.
- We note that Szemerédi's Regularity lemma may be used to generalize Theorem 7 to any family of non-bipartite graphs up to asymptotic error.
- One could ask for the analogous results for hypergraphs. That is, if F is an r-uniform hypergraph, let $\phi(m, n, F)$ be the maximum number of edges over m double F-free r-uniform hypergraphs on [n]. Again, we have $\phi(m, n, F) \geq \binom{n}{r} + (m-1) \cdot \operatorname{ex}(n, F)$. Another direction of generalization is to relax the constraint to no copies of F contained in the intersection of k of the graphs G_1, G_2, \ldots, G_m . Many of the theorems and proofs also hold in this case. For instance, the proof of Theorem 4 applies for this generalization by merely changing the numbers.

References

- [1] N. Alon and C. Shikhelman. Many T copies in H-free graphs. J. Combin. Theory Ser. B, 121:146–172, 2016. ISSN 0095-8956,1096-0902. doi: 10.1016/j.jctb.2016.03.004. URL https://doi.org/10.1016/j.jctb.2016.03.004.
- [2] D. Conlon and A. Ferber. Lower bounds for multicolor Ramsey numbers. Adv. Math.,
 378:Paper No. 107528, 5, 2021. ISSN 0001-8708,1090-2082. doi: 10.1016/j.aim.2020.
 107528. URL https://doi.org/10.1016/j.aim.2020.107528.
- [3] P. Erdős and A. H. Stone. On the structure of linear graphs. *Bull. Amer. Math. Soc.*, 52:1087–1091, 1946. ISSN 0002-9904. doi: 10.1090/S0002-9904-1946-08715-7. URL https://doi.org/10.1090/S0002-9904-1946-08715-7.
- [4] P. Erdős. Problems and results in combinatorial analysis. In *Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977)*, volume No. XIX of *Congress. Numer.*, pages 3–12. Utilitas Math., Winnipeg, MB, 1977. ISBN 0-919628-19-2.
- [5] P. Erdős and M. Simonovits. A limit theorem in graph theory. *Studia Sci. Math. Hungar*, 1:51–57, 1966. ISSN 0081-6906.
- [6] P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. Combinatorica, 3(2):181–192, 1983. ISSN 0209-9683. doi: 10.1007/BF02579292. URL https://doi. org/10.1007/BF02579292.
- [7] Z. Füredi. Hypergraphs in which all disjoint pairs have distinct unions. Combinatorica, 4(2-3):161–168, 1984. ISSN 0209-9683. doi: 10.1007/BF02579216. URL https://doi. org/10.1007/BF02579216.
- [8] Z. Füredi and M. Simonovits. The history of degenerate (bipartite) extremal graph problems. In Erdős centennial, volume 25 of Bolyai Soc. Math. Stud., pages 169–264. János Bolyai Math. Soc., Budapest, 2013. doi: 10.1007/978-3-642-39286-3_7. URL https://doi.org/10.1007/978-3-642-39286-3_7.
- [9] T. Kővari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium Math., 3:50-57, 1954. doi: 10.4064/cm-3-1-50-57. URL https://doi.org/10.4064/ cm-3-1-50-57.
- [10] A. Kostochka, D. Mubayi, and J. Verstraëte. Turán problems and shadows III: expansions of graphs. SIAM J. Discrete Math., 29(2):868-876, 2015. ISSN 0895-4801,1095-7146. doi: 10.1137/140977138. URL https://doi.org/10.1137/140977138.

- [11] H. Lefmann. A note on Ramsey numbers. Studia Sci. Math. Hungar., 22(1-4):445–446, 1987. ISSN 0081-6906,1588-2896.
- [12] D. Mubayi and S. Mukherjee. Triangles in graphs without bipartite suspensions. *Discrete Math.*, 346(6):Paper No. 113355, 19, 2023. ISSN 0012-365X,1872-681X. doi: 10.1016/j.disc.2023.113355. URL https://doi.org/10.1016/j.disc.2023.113355.
- [13] D. Mubayi and J. Verstraëte. A hypergraph extension of the bipartite Turán problem. J. Combin. Theory Ser. A, 106(2):237–253, 2004. ISSN 0097-3165,1096-0899. doi: 10.1016/j.jcta.2004.02.002. URL https://doi.org/10.1016/j.jcta.2004.02.002.
- [14] D. Mubayi and J. Verstraëte. A survey of Turán problems for expansions. In Recent trends in combinatorics, volume 159 of IMA Vol. Math. Appl., pages 117–143. Springer, [Cham], 2016. ISBN 978-3-319-24296-5; 978-3-319-24298-9. doi: 10.1007/978-3-319-24298-9\sqrt{5}. URL https://doi.org/10.1007/978-3-319-24298-9_5.
- [15] O. Pikhurko and J. Verstraëte. The maximum size of hypergraphs without generalized 4-cycles. J. Combin. Theory Ser. A, 116(3):637–649, 2009. ISSN 0097-3165,1096-0899. doi: 10.1016/j.jcta.2008.09.002. URL https://doi.org/10.1016/j.jcta.2008.09.002.
- [16] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, volume 18 of Colloq. Math. Soc. János Bolyai, pages 939–945. North-Holland, Amsterdam-New York, 1978.
- [17] A. Sidorenko. A correlation inequality for bipartite graphs. Graphs Combin., 9(2):201–204, 1993. ISSN 0911-0119. doi: 10.1007/BF02988307. URL https://doi.org/10.1007/BF02988307.
- [18] M. Simonovits. Extremal graph problems, degenerate extremal problems, and super-saturated graphs. In *Progress in graph theory (Waterloo, Ont., 1982)*, pages 419–437. Academic Press, Toronto, ON, 1984.
- [19] P. Turán. Eine Extremalaufgabe aus der Graphentheorie. *Mat. Fiz. Lapok*, 48:436–452, 1941.