Визуализация дисперсии на прозрачных предметах

Студент: Недолужко Денис Вадимович ИУ7-53Б Научный руководитель: Новик Наталья Владимировна

Цель работы

Разработка программного обеспечения для визуализации трехмерных объектов и наблюдения дисперсии света на прозрачных поверхностях.

- объектов сцены
- источники освещения (положение, интенсивность)

Основные задачи

- изучение явления дисперсии с физической точки зрения;
- анализ существующих алгоритмов построения реалистичных изображений;
- выбор алгоритма для решения поставленной задачи;
- написание программы и тестирование;
- сравнение времени работы программы при параллельной и последовательной реализациях.

Выбор алгоритма

- алгоритм Варнака
- Z-буффер
- прямая трассировка лучей
- обратная трассировка лучей

z-буффер

алгоритм Варнака

обратная трассировка лучей

Основные физические соотношения

Закон Снеллиуса

$$n_1 sin(\theta_1) = n_2 sin(\theta_2)$$

- n1 показатель преломления первой среды
- θ_1 угол падения света
- n2 показатель преломления второй среды
- θ_2 угол преломления света

Формула Зельмейера

$$n^2(\lambda) = 1 + \sum \frac{B_i \lambda^2}{\lambda^2 - C_i}$$

 ${\sf n}$ - показатель преломления; ${\it t}$

λ - длина волны;

Ві, Сі - экспериментально определяемые коэффициенты Селлмейера

Модификация алгоритма обратной трассировки

При реализации алгоритма обратной трассировки лучей отдельной рассматриваются красные, зеленые и синие лучи.

Технологические раздел

Выбранный язык: С++

Фреймворк: Qt

Используемые инструменты:

- cmake
- make
- valgrind

Пользовательский интерфейс

Пользовательский интерфейс

Пользовательский интерфейс

Примеры работы

Примеры работы

Примеры работы

Эксперимент. Сравнение последовательной и параллельной реализации

Кол-во объектов	Размерность сцены	Время (мс)	
		Послед. реал.	Паралл. реал.
2	100x100	49	21
	200x200	301	83
	500x500	1606	442
	1000x1000	5068	1853
	2000x2000	20428	8349
4	100x100	135	49
	200x200	380	168
	500x500	2024	672
	1000x1000	7840	2672
	2000x2000	32666	10859
8	100x100	135	38
	200x200	544	165
	500x500	3341	1072
	1000x1000	13009	4233
	2000x2000	51708	17864
16	100x100	272	74
	200x200	1098	302
	500x500	6693	1864
	1000x1000	26108	7451
	2000x2000	102328	31217

Зависимость времени работы алгоритма от размера сцены

 Зависимость времени работы алгоритма от количества объектов сцены

Заключение

В ходе курсового проекта было реализовано программное обеспечение для визуализации трехмерных объектов и наблюдения дисперсии света на прозрачных поверхностях. Программное обеспечение предоставляет функционал для задания пользователем объектов сцены и источников освещения.