

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: **WO 00/17233** (11) Internationale Veröffentlichungsnummer: **A2** C07K 14/00 (43) Internationales

Veröffentlichungsdatum:

30. Marz 2000 (30.03.00)

(21) Internationales Aktenzeichen:

PCT/EP99/07055

(22) Internationales Anmeldedatum:

22. September 1999

(22.09.99)

(30) Prioritätsdaten:

198 43 279.8 199 23 567.8

22. September 1998 (22.09.98) DE

21. Mai 1999 (21.05.99)

DE

(71)(72) Anmelder und Erfinder: JOMAA, Hassan [DE/DE]; Breslauer Strasse 24, D-35398 Gießen (DE).

(74) Anwälte: PANTEN, Kirsten usw.; Reichel und Reichel, Parkstrasse 13, D-60322 Frankfurt am Main (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: GENES OF THE 1-DESOXY-D-XYLULOSE BIOSYNTHETIC PATHWAY
- (54) Bezeichnung: GENE DES 1-DESOXY-D-XYLULOSE-BIOSYNTHESEWEGS

(57) Abstract

The invention relates to the 1-desoxy- D-xylulose- 5-phosphate reductoisomerase gene, the 1-desoxy- D-xylulose- 5-phosphatesynthase gene and the gcpE gene of the 1-desoxy- D-xylulose biosynthetic pathway and to their use for transforming vectors, host organisms and plants and for determining substances that inhibit this biosynthetic pathway.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft das 1-Desoxy- D-xylulose- 5-phosphatreduktoisomerase -Gen, das 1-Desoxy- D-xylulose-5-phosphat- Synthase- Gen und das gcpE-Gen des 1-Desoxy- D-xylulose- Biosynthesewegs und ihre Verwendung zur Transformation von Vektoren, Wirtsorganismen und Pflanzen und zur Bestimmung von Stoffen, die diesen Biosyntheseweg inhibieren.

--- EEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanica	ES	Spanien	LS	Lesotho	. SI	Slowenien
AM	Armenica	FT	Finnland	LT	Litauen	SK	Slowakei
AT	Osterreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA		GE	Georgien	MD	Republik Moldau	TG	Togo
	Bosnien-Herzegowina	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BB	Barbados	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BE	Belgien	GR	Griechenland		Republik Mazedonien	TR	Türkei
BF	Burkina Faso		•	ML	Mali	TT	Trinidad und Tobago
BG	Bulgarien	HU	Ungarn	MN	Mongolei	UA	Ukraine
BJ	Benin	IE	Irland	MR	Mauretanien	UG	Uganda
BR	Brasilien	IL	Israel	MW	Malawi	US	Vereinigte Staaten von
BY	Belarus	18	Island			00	Amerika
CA	Kanada	IT	Italien	MX	Mexiko .	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger		Vietnam
CG	Kongo	KE	Kenia	NL	Niederlande	VN	
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawica
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
СМ	Kamenin		Kores	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
Cυ	Kuba	KZ	Kasachstan	RO	Ruminien		•
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	u	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
ER	Estland	LR	Liberia	SG	Singapur		
===	Lateral	2.50					

Gene des 1-Desoxy-D-xylulose-Biosynthesewegs

Die vorliegende Erfindung betrifft DNA-Sequenzen, die bei Integration in das Genom von Viren, Eukaryonten und Prokaryonten die Isoprenoid-Biosynthese verändern sowie gentechnologische Verfahren zur Herstellung dieser transgenen Viren, Eukaryonten und Prokaryonten. Außerdem betrifft sie Verfahren zur Identifiziereung von Stoffen mit herbizider, antimikrobieller, antiparasitärer, antiviraler, fungizider, bakterizider Wirkung bei Pflanzen und antimikrobieller, antiparasitärer, antimykotischer, antibakterieller und antiviraler Wirkung bei Mensch und Tier.

Der Biosyntheseweg zur Bildung von Isoprenoiden über den klassischen Acetat/ Mevalonat-Weg und einen alternativen, Mevalonat-unabhängigen Biosyntheseweg, den Desoxy-D-xylulose-Phosphat-Weg, ist bereits bekannt (Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993): Biochem. J. 295: 517-524).

Es ist aber nicht bekannt, wie und über welche Wege in Viren, Eukaryonten und Prokaryonten eine Änderung der Isoprenoidkonzentration über den Desoxy-D-xylulose-Phoshat-Weg erreicht werden kann. In Fig. 1 ist dieser Biosyntheseweg dargestellt.

Es werden daher DNA-Sequenzen zur Verfügung gestellt, die für die 1-Desoxy-D-xylulose-5-phosphat-Synthase (DOXP-Synthase),: 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase(DOXP-Reduktoisomerase) oder das gcpE-Protein kodieren. Alle drei Gene und Enzyme sind an der Isoprenoid-Biosynthese beteiligt.

Das gcpE-Protein hat eine Kinasefunktion und katalysiert die Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D-erythritol-phosphat, insbesondere 2-C-Methyl-D-erythritol-4-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrose-

phosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat. In der Vorstufe der Isoprenoidsynthese katalysiert das gcpE-Protein insbesondere die Phosphorylierung der folgenden Substanzen:

 $\begin{array}{l} \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{CH}_3\right) = \text{C}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{CH}_3\right) = \text{C}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_2\left(\text{OH}\right) - \text{CH}\left(\text{CH}_3\right) - \text{CO} - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CO} - \text{CH}_2 - \text{OH}, \\ \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CO} - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{CH}_2\right) - \text{C}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CHO} - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CHO} - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{OH}\right) \left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_3\right) \ _2 \text{HC} - \text{CO} - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_3\right) \ _2 \text{HC} - \text{CO} - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3) \ _2 \text{HC} - \text{CO} - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{(CH}_3) \ _2 \text{HC} - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{H}. \\ \text{(CH}_3)$

Die DOXP-Synthase katalysiert die Kondensation von Pyruvat und Glyceraldehyd-3-phosphat zu 1-Deoxy-D-xylulose-5-phosphat und die DOXP-Reduktoisomerase katalysiert die Umwandlung von 1-Deoxy-D-xylulose-5-phosphat zu 2-C-Methyl-D-erythritol-4-phosphat. (siehe Fig. 1).

Die Erfindung betrifft die folgenden DNA-Sequenzen:
DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:2
DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:2
dargestellten Aminosäuresequenz codieren oder für ein Analoges
oder Derivat des Polypeptids gemäß SEQ ID NO:2, worin eine oder
mehrere Aminosäuren deletiert, hinzugefügt oder durch andere
Aminosäuren substituiert worden sind,

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind,

sowie DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind.

Die Gene und ihre Genprodukte (Polypeptide) sind im Sequenzprotokoll mit ihrer Primärstruktur aufgeführt und haben folgende Zuordnung:

SEQ ID NO:1: 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase-Gen

SEQ ID NO:2: 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase

SEQ ID NO:3: 1-Desoxy-D-xylulose-5-phosphat-Synthase-Gen

SEQ ID NO:4: 1-Desoxy-D-xylulose-5-phosphat-Synthase

SEQ ID NO:5: gcpE-Gen

SEQ ID NO:6 : gcpE-Proteine.

Die DNA-Sequenzen stammen alle aus Plasmodium falciparum.

Außer den im Sequenzprotokoll genannten DNA-Sequenzen sind auch solche geeignet, die infolge der Degeneration des genetischen Codes eine andere DNA-Sequenz besitzen, jedoch für das gleiche Polypeptid oder für ein Analoges oder Derivat des Polypeptids kodieren, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind.

Die erfindungsgemäßen Sequenzen eignen sich für die Expression von Genen in Viren, Eukaryonten und Prokaryonten, die für die Isoprenoid-Biosynthese des 1-Desoxy-D-xylulose-Wegs verantwortlich sind.

Erfindungsgemäß gehören zu den Eukaryonten oder eukaryontischen Zellen tierischen Zellen, Pflanzenzellen, Algen, Hefen, Pilze und zu den Prokaryonten oder prokaryontischen Bakterien Archaebakterien und Eubakterien.

Bei Integration einer DNA-Sequenz in ein Genom, auf der eine der oben angegebenen DNA-Sequenzen lokalisiert ist, wird die Expression der oben beschriebenen Gene in Viren, Eukaryonten und Prokaryonten ermöglicht. Die erfindungsgemäß transformierten Viren, Eukaryonten und Prokaryonten werden in an sich bekannter Weise gezüchtet und das währenddessen gebildete Isoprenoid isoliert und gegebenenfalls gereinigt. Nicht alle Isoprenoide müssen isoliert werden, da die Isoprenoide in einigen Fällen direkt in die Raumluft abgegeben werden.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung von transgenen Viren, Eukaryonten und Prokaryonten zur Veränderung des Isoprenoid-Gehaltes, das die folgenden Schritte enthält.

- a) Herstellung einer DNA-Sequenz mit folgenden Teilsequenzen
 - i) Promotor, der in Viren, Eukaryonten und Prokaryonten aktiv ist und die Bildung einer RNA im vorgesehenen Zielgewebe oder den Zielzellen sicherstellt,
 - ii) DNA-Sequenz, die für ein Polypeptid mit der in SEQ ID NO:2,4 oder 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:2,4 oder 6,
 - iii) 5'- und 3'-nichttranslatierte Sequenz, die in Viren, Eukaryonten und Prokaryonten die Expression der bezeichneten Gene ermöglichen oder verbessern,
- b) Transfer und Einbau der DNA-Sequenz in das Genom von Viren, prokaryontischen oder eukaryontischen Zellen mit oder ohne Verwendung eines Vektors (z.B. Plasmid, virale DNA).

Aus derart transformierten Pflanzenzellen können die intakten ganzen Pflanzen regeneriert werden.

Die für die Proteine kodierenden Sequenzen mit den Nukleotidabfolgen Seq ID NO:1, Seq ID NO:3 und Seq ID NO: 5 können mit einem die Transkription in bestimmten Organen oder Zellen sicherstellenden Promotor versehen werden, der in sense-Orientierung (3'-Ende des Promotors zum 5'-Ende der kodierenden Sequenz) an die Sequenz, die das zu bildende Protein kodiert, gekoppelt ist. An das 3'-Ende der kodierenden Sequenz wird ein die Termination der mRNA-Synthese bestimmendes Terminationssignal angehängt. Um das zu exprimierende Protein in bestimmte subzelluläre Kompartimente, wie Chloroplasten, Amyloplasten, Mitochondrien, Vakuole, Cytosol oder Interzellularräume zu dirigieren, kann zwischen den Promotor und die kodierende Sequenz noch eine für eine sogenannte Signalsequenz oder ein Transitpeptid kodierende Sequenz gesetzt werden. In einigen Fällen ist es erforderlich, Sequenzen einzufügen, die für eine Signalsequenz am COOH-Terminus des Proteins kodieren. Die Sequenz muß im gleiPCT/EP99/07055 WO 00/17233 -5-

chen Leserahmen wie die kodierende Sequenz des Proteins sein. Zur Vorbereitung der Einführung der erfindungsgemäßen DNA-Sequenzen in höhere Pflanzen sind eine große Anzahl von Klonierungsvektoren verfügbar, die ein Replikationssignal für E.coli und einen Marker beinhalten, der eine Selektion der transformierten Zellen erlaubt. Je nach Einführungsmethode gewünschter Gene in die Pflanze können weitere DNA-Sequenzen erforderlich sein. Werden zum Beispiel für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens eine rechte Begrenzung, häufig jedoch die rechte und die linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich den einzuführenden Genen eingefügt werden. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekama, in: The Binary Plant Vector System, Offset-drukkerij Kanters B.V. Alblasserdam (1985), Chapter V; Fraley et al., Crit.Rev.Plant Sci. 4,1-46 und An et al. (1985) EMBO J. 4, 277-287 beschrieben worden. Ist die eingeführte DNA einmal im Genom integriert, so ist sie in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zellen erhalten. Sie erhält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum, wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der individuell verwendete Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingefügte DNA fehlt, gestatten.

Für die Einführung von DNA in eine Pflanze stehen viele Techniken zur Verfügung. Diese Techniken umfassen die Transformation mit Hilfe von Agrobakterien, z.B. Agrobacterium tumefaciens, die Fusion von Protoplasten, die Mikroinjektion von DNA, die Elekroporation, sowie ballistische Methoden und die Virusinfektion. Aus dem transformierten Pflanzenmaterial können dann im geeigneten Medium, welches Antibiotika oder Biozide zur Selektion enthalten kann, wieder ganze Pflanzen regeneriert werden. Bei der Injektion und Elektroporation sind an sich keine speziellen Anforderungen an die Plasmide gestellt. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens not-

wendig. Die transformierten Zellen wachsen innerhalb der Pflanzen in der üblichen Weise (McCormick et al. (1986), Plant Cell Reports 5, 81-84). Die Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen haben, gekreuzt werden. Die daraus entstehenden Individuen haben die entsprechenden phänotypischen Eigenschaften.

Weiterhin sind Gegenstand der Erfindung Expressionsvektoren, die eine oder mehrere der erfindungsgemäßen DNA-Sequenzen enthalten. Solche Expressionsvektoren erhält man, indem man die erfindungsgemäßen DNA-Sequenzen mit geeigneten funktionellen Regulationssignalen versieht. Solche Regulationssignale sind DNA-Sequenzen, die für die Expression verantwortlich sind, beispielsweise Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, und die vom Wirtsorganismus erkannt werden.

Gegebenenfalls können noch weitere Regulationssignale, die beispielsweise Replikation oder Rekombination der rekombinanten DNA im Wirtsorganismus steuern, Bestandteil des Expressionsvektors sein.

Ebenso gehören die mit den erfindungsgemäßen DNA-Sequenzen oder Expressionsvektoren transformierten Wirtsorganismen zum Gegenstand der Erfindung.

Für die Expression der erfindungsgemäßen Enzyme eignen sich besonders solche Wirtszellen und Organismen, die keine intrinsischen Enzyme mit der Funktion der DOXP-Synthase, der DOXP-Reduktoisomerase oder des gcpE-Proteins aufweisen. Dies trifft für Archaebacterien, Tiere, Pilze, Schleimpilze und einige Eubakterien zu. Durch das Fehlen dieser intrinsischen Enzymaktivitäten wird die Detektion und Aufreinigung der rekombinanten Enzyme wesentlich erleichtert. Auch wird es erst dadurch möglich, mit geringem Aufwand die Aktivität und insbesondere die Hemmung der Aktivität der erfindungsgemäßen rekombinanten Enzyme durch verschiedenen Chemikalien und Pharmaka in Rohextrakten aus den Wirtszellen zu messen.

-7-

Die Expression der erfindungsgemäßen Enzyme erfolgt vorteilhafterweise dann in eukaryontischen Zellen, wenn posttranslatorische Modifikationen und eine native Faltung der Polypeptidkette erreicht werden soll. Außerdem wird in Abhängigkeit vom Expressionssystem bei der Expression genomischer DNA-Sequenzen erreicht, daß Introns durch Spleißen der DNA beseitigt und die Enzyme in der für die Parasiten charakteristischen Polypeptidsequenz produziert werden. Für Introns codierende Sequenzen können auch durch rekombinante DNA-Technologie aus den zu exprimierenden DNA-Sequenzen beseitigt oder experimentell eingefügt werden.

Die Isolierung des Proteins kann aus der Wirtszelle oder dem Kulturüberstand der Wirtszelle nach dem Fachmann bekannten Verfahren erfolgen. Es kann auch eine in vitro Reaktivierung der Enzyme erforderlich sein.

Zur Erleichterung der Aufreinigung können die erfindungsgemäßen Enzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit verschiedenen Peptidketten exprimiert werden. Dazu eigenen sich besonders Oligo-Histidin-Sequenzen und Sequenzen, die von der Glutathion-S-Transferase, Thioredoxin oder Calmodulin-bindenden Peptiden abgeleitet sind.

Weiterhin können die erfindungsgemäßen Enzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit solchen, dem Fachmann bekannten, Peptidketten exprimiert werden, daß die rekombinanten Enzyme in das extrazelluläre Millieu oder in bestimmte Kompartimente der Wirtszellen transportiert werden. Dadurch kann sowohl die Aufreinigung, als auch die Untersuchung der biologischen Aktivität der Enzyme erleichtert werden.

Bei der Expression der erfindungsgemäßen Enzyme kann es sich als zweckmäßig erweisen, einzelne Codone zu verändern. Dabei ist der gezielte Austausch von Basen in der kodierenden Region auch sinnvoll, wenn die genutzten Codone in den Parasiten abweichend sind von der Codonnutzung im heterologen Expressionssystem, um eine optimale Synthese des Proteins zu gewährleisten.

Weiterhin können die erfindungsgemäßen Enzyme unter standardisierten Bedingungen durch dem Fachmann bekannte Techniken durch in vitro-Translation gewonnen werden. Dafür geeignete Systeme sind Kaninchen-Reticulozyten- und Weizenkeimextrakte und Bakterienlysate. Auch kann in vitro transskribierte mRNA in Xenopus-Oocyten translatiert werden.

Durch chemische Synthese können Oligo- und Polypeptide hergestellt werden, deren Sequenzen aus der Peptidsequenz der erfindungsgemäßen Enzyme abgeleitet sind. Bei geeigneter Wahl der Sequenzen besitzen derartige Peptide Eigenschaften, die für die erfindungsgemäßen Enzyme charakteristisch sind. Derartige Peptide können in großen Mengen hergestellt werden und eignen sich besonders für Studien über die Kinetik der Enzymaktivität, die Regulation der Enzymaktivität, die dreidimensionale Struktur der Enzyme, die Hemmung der Enzymaktivität durch verschiedenen Chemikalien und Pharmaka und die Bindungsgeometrie und Bindugnsaffinität verschiedener Liganden.

Vorzugsweise wird zur rekombinanten Herstellung der erfindungsgemäßen Enzyme eine DNA mit den Nukleotiden aus den Sequenzen SEQ ID NO: 1, 3 und 5 verwendet.

Die Erfindung umfaßt daher außerdem ein Verfahren zum Screening nach Verbindungen, die desDesoxy-D-xylulose-Phosphat-Stoffwechselweg inhibieren. Gemäß diesem Verfahren wird ein Wirtsorganismus, der einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz gemäß SEQ ID NO:1, SEQ ID NO: 3 oder SEQ ID NO: 5 oder Varianten oder Homologe dieser aufweist, und außerdem eine

Verbindung, von der vermutet wird, daß sie eine antimikrobielle, antiparasitäre, antibakterielle, antivirale und antimykotische Wirkung bei Mensch und Tier oder eine antimikrobielle, antivirale, bakterizide, herbizide oder fungizide Wirkung bei

Pflanzen hat, bereitgestellt. Anschließend wird der Wirtsorganismus mit der Verbindung in Kontakt gebracht und die Wirksamkeit der Verbindung bestimmt.

Ein weiterer Gegenstand dieser Erfindung sind Methoden zur Bestimmung der enzymatische Aktivität des gcpE-Proteins. Diese kann nach bekannten Verfahren bestimmt werden. Hierbei wird die Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D-erythritol-4-erythritol-phosphat, insbesondere 2-C-Methyl-D-erythrose-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrose-phosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat, detektiert. Ein weiterer Gegenstand dieser Erfindung ist die Vertektiert.

Die enzymatische Aktivität von DOXP-Synthase und DOXP-Reduktisomerase kann in einem einzigen Schitt detektiert werden, indem die Umwandlung von Glycerinaldehyd-3-phosphat zu 2-C-Methylerythritol-4-phosphat bestimmt wird.

wendung dieser Meßverfahren zur Ermittlung von Stoffen, die die

Aktivität der jeweiligen Enzyme inhibieren.

Analog erfolgt die Bestimmung der Aktivitäten von DOXP-Synthase und DOXP-Reduktoisomerase. Für die Bestimmung der DOXP-Synthase-Aktivität eignen sich auch fluorimetrische Verfahren, wie von Querol et al. beschrieben (Querol et al. Abstracts 4th european symposium on plant isoprenoids, Barcelona 21-23 April 1999).

Patentansprüche

- DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind.
- 2. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind.
- 3. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind.
- 4. DNA-Sequenz gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie außerdem funktionelle Regulationssignale, insbesondere Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, aufweist.
- 5. DNA-Sequenz mit folgenden Teilsequenzen
 - Promotor, der in Viren, Eukaryonten und Prokaryonten aktiv ist und die Bildung einer RNA im vorgesehenen Zielgewebe oder den Zielzellen sicherstellt,
 - ii) DNA-Sequenzen gemäß einem der Ansprüche 1 bis 3,
 - iii) 3'-nichttranslatierte Sequenz, die in Viren, Eukaryonten und Prokaryonten zur Addition von Poly-A Resten an das 3'-Ende der RNA führt.
- 6. Verfahren zur Herstellung von transgenen Viren, Eukaryonten und Prokaryonten zur Veränderung des Isoprenoid-Gehaltes, dadurch gekennzeichnet, daß eine DNA-Sequenz gemäß Anspruch 4 oder 5 in das Genom von Viren, eukaryontischen und proka-

ryontischen Zellen mit oder ohne Verwendung eines Vektors transferiert und eingebaut wird.

- 7. Transgene Systeme, insbesondere Pflanzen und Pflanzenzellen, welche ein oder mehrere DNA-Sequenzen gemäß der Ansprüche 1 bis 5 als "fremde" oder "zusätzliche" DNA enthalten, die exprimiert werden.
- 8. Expressionsvektor, enthaltend eine oder mehrere DNA-Sequenzen gemäß Anspruch 1 bis 5.
- 9. Protein, welches am 1-Deoxy-D-Xylulose-5-Phosphat-Stoffwechselweges beteiligt ist und a) codiert wird von den DNA-Sequenzen SEQ ID NO: 1,3 oder 5 oder b) codiert wird von DNA-Sequenzen, die mit den DNA-Sequenzen SEQ ID NO: 1,3,5 oder Fragmenten dieser DNA-Sequenzen im DNA-Bereich, der für das reife Protein codiert, hybridisieren.
- 10. Protein nach den Anspruch 9, erhältlich aus den Kulturüberständen von Parasiten oder aus den aufgeschlossenen Parasiten und Aufreinigung über chromatographische und elektrophoretische Techniken.
- 11. Protein nach einem der Ansprüche 9 und 10, dadurch gekennzeichnet, daß es a) das Produkt einer viralen, prokaryontischen oder eukaryontischen Expression einer exogenen DNA ist, b) codiert wird von den Sequenzen SEQ ID NO: 1, 3 oder 5 oder codiert wird von DNA-Sequenzen, die mit den in den DNA-Sequenzen SEQ ID NO: 1, 3 oder 5 oder Fragmenten dieser DNA-Sequenzen im DNA-Bereich, der für das reife Protein kodiert, hybridisieren, oder c) codiert wird von DNA-Sequenzen, die ohne Degeneration des genetischen Codes mit den in b) definierten Sequenzen hybridisieren würden und für ein Polypeptid mit entsprechender Aminosäure-Sequenz kodieren.

- 12. Protein gemäß einem der vorangehenden Ansprüchen, dadurch gekennzeichnet, daß es die Aminosäuresequenzen SEQ ID NO: 2, 4 oder 6 aufweist.
- 13. Verfahren zur Bestimmung der enzymatischen Aktivität des gcpE-Proteins, dadurch gekennzeichnet, daß Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D-erythritol-erythritol-phosphat, insbesondere 2-C-Methyl-D-erythritol-4-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrosephosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat, und der Phosphat- und Alkoholvorstufen, detektiert wird.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Phosphorylierung der folgenden Phosphate oder Alkohole detektiert wird:

 $CH_2(OH) - C(CH_3) = C(OH) - CH_2 - O - PO(OH)_2$

 CH_2 (OH) -C (CH₃) =C (OH) -CH₂-OH,

 CH_{2} (OH) -CH (CH_{3}) $-CO-CH_{2}-O-PO$ (OH) $_{2}$, CH_{2} (OH) -CH (CH_{3}) $-CO-CH_{2}-OH$

 $CH_2=C (CH_3) -CO-CH_2-O-PO (OH)_2$, $CH_2=C (CH_3) -CO-CH_2-OH$,

 $CH_2=C (CH_3) - CH (OH) - CH_2 - O - PO (OH)_2$, $CH_2=C (CH_3) - CH (OH) - CH_2 - OH$,

 CH_2 (OH) -C (= CH_2) -C (OH) - CH_2 -O-PO (OH) 2,

 CH_{2} (OH) -C (= CH_{2}) -C (OH) - CH_{2} -OH

 $\label{eq:cho-ch} \text{CHO-CH (CH}_3) - \text{CH (OH)} - \text{CH}_2 - \text{O-PO (OH)}_2, \quad \text{CHO-CH (CH}_3) - \text{CH (OH)} - \text{CH}_2 - \text{OH},$

 $CH_{2}(OH) - C(OH)(CH_{3}) - CH = CH - O - PO(OH)_{2}$

 CH_2 (OH) -C (OH) (CH₃) -CH=CH-OH

 $CH (OH) = C (CH_3) - CH (OH) - CH_2 - O - PO (OH)_2$,

CH (OH) =C (CH₃) -CH (OH) -CH₂-OH,

(CH₃)₂HC-CO-CH₂-O-PO(OH)₂,

 $(CH_3)_2HC-CO-CH_2-O-H_1$

 $(CH_3)_2HC-CH(OH)-CH_2-O-PO(OH)_2$,

(CH₃)₂HC-CH (OH) -CH₂-O-H.

15. Verfahren zur gekoppelten Bestimmung der enzymatischen Aktivität der DOXP-Synthase und der DOXP-Reduktase, dadurch gekennzeichnet, daß die Umwandlung von Glycerinaldehyd-3-phosphat zu 2-C-Methylerythritol-4-phosphat detektiert wird.

- 16. Verfahren zum Screening einer Verbindung für die Therapie von infektiösen Prozessen bei Mensch und Tier, wobei das Verfahren umfaßt:
 - a) Bereitstellen einer Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz gemäß SEQ ID NO:1, SEQ ID NO: 3 oder SEQ ID NO: 5 oder Varianten oder Analoga dieser aufweist, und außerdem eine Verbindung, von der vermutet wird, daß sie eine antimykotische, antibiotische, antiparasitäre oder antivirale Wirkung bei Mensch und Tier hat,
 - b) In-Kontakt-Bringen der Wirtszelle mit der Verbindung und
 - c) Bestimmung der antimikrobiellen, antimykotischen, antibiotischen, antiparasitären oder antiviralen Wirksamkeit der Verbindung.
- 17. Verfahren zum Screening nach Verbindungen zur Behandlung von Pflanzen, wobei das Verfahren umfaßt:
 - a) Bereitstellen einer Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz gemäß SEQ ID NO:1, SEQ ID NO: 3 oder SEQ ID NO: 5 oder Varianten oder Analoga dieser aufweist, und außerdem eine Verbindung, von der vermutet wird, daß sie eine antimikrobielle, antivirale, antiparasitäre, bakterizide, fungizide oder herbizide Wirkung bei Pflanzen hat,
 - b) In-Kontakt-Bringen der Wirtszelle mit der Verbindung und
 - c) Bestimmung der antimikrobiellen, antiviralen, antiparasitären, bakteriziden, fungiziden oder herbiziden Wirksamkeit der Verbindung.
- 18. Verwendung von DNA nach einem der Ansprüche 1 bis 5 oder von Proteinen nach einem der Ansprüche 9 bis 12 oder von transgenen Systemen nach Anspruch 7 zur Vorbeugung oder Therapie von Erkrankungen bei Mensch und Tier.

SEQUENZPROTOKOLL

```
<110> Jomaa, Hassan
<120> Gene des 1-Desoxy-D-xylulose-Biosynthesewegs
<130> 15696
<140> PCT/EP99
<141> 1999-09-22
<150> DE19923567.8
<151> 1999-05-22
<150> DE19843279.8
<151> 1998-09-22
<160> 6
<170> PatentIn Ver. 2.1
<210> 1
 <211> 1467
<212> DNA
 <213> Plasmodium falciparum
 <220>
 <221> CDS
 <222> (1)..(1467)
 <220>
 <221> gene
 <222> (1)..(1467)
 <220>
 <221> mRNA
 <222> (1)..(1467)
 <400> 1 .
 Met Lys Lys Tyr Ile Tyr Ile Tyr Phe Phe Ile Thr Ile Thr Ile
```

															aga -	96
Asn	Asp	Leu	Val	Ile	Asn	Asn	Thr	Ser	Lys	Cys	Val	Ser	Ile	Glu	Arg	
			20					25					30			
			aac													144
Arg	Lys	Asn	Asn	Ala	Tyr	Ile	Asn	Tyr	Gly	Ile	Gly	Tyr	Asn	Gly	Pro	
		35					40					45				
							•									
			ata													192
Asp	Asn	Lys	Ile	Thr	Lys	Ser	Arg	Arg	Cys	Lys	Arg	Ile	Lys	Leu	Cys	
	50					55					60					
								,			•. •					
			tta													240
Lys	Lys	Asp	Leu	Ile	Asp	Ile	Gly	Ala	Ile		Lys	Pro	Ile	Asn		
65					70					75					80	
												.:				200
			gga													288
Ala	Ile	Phe	Gly	Ser	Thr	Gly	Ser	Ile		Thr	Asn	Ala	Leu		He	
				85					90					95		
											•					226
			tgt													336
Ile	Arg	Glu	Cys	• •	Lys	Ile	Glu		vaı	Pne	Asn	vaı			Leu	
			100)				105					110			
													2.52	~~~	+++	384
			aag													304
Tyr	Val	٠.	Lys	Ser	· Val	. Asn			туг	GIU	GIN	125		GIU	FILE	
	٠	115	•				120					123				
											at a	tat	~ 22	722	tta	432
			tat													
Leu			туг	Leu	ı Cys			Asp	гуз	Ser	140		GIU	GIU	500	
	130)				135	ı				140					
									+-+	222	cct	ata	ata	tta	tat	480
			ggta													
		ı Leı	ı Val	LLys			: Lys	Asp	ıyı	155		116	110	Deu	160	
145)				150)				155					100	
												2.54	5 t -	, g=+	222	528
															aaa T.ve	220
Gly	/ Ası	p Gl	u Gl			s Glu	1 116	cys			. ASN	Jel	116	: ASP 175		
				16	5				170	,				1/3	•	
											. <u>.</u> .					576
at:	att	t at	t 00	t ati	t cal	t tci	: ttt	: caa	· aga	ı tta	ιtat	. CCT	act	. atg	tat	210

Ile	Vaļ	Ile	Gly	Ile	Asp	Ser	Phe	Gln	Gly	Leu	Tyr	Ser	Thr	Met	Tyr	
			180				٠	185					190		•	
•						•										624
gca	att	atg	aat	aat	aaa	ata	gtt	gcg	tta -	gct	aat	aaa	gaa	tcc	att	624
Ala	Ile	Met	Asn	Asn	Lys	Ile		Ala	Leu	Ala	Asn		GIU	Ser	iie	,
		195					200					205				
•													aa+	222	224	672
gtc	tct	.gct	ggt	ttc	ttt	tta -	aag	aaa	tta	tta	aat	Tlo	Cat	Tue	aat Aen	072
Val			Gly	Phe	Phe		Lys	rys	Leu	Leu	220	116	nıs	րդո	N3!!	
	210		-			215					220				•	
					gtt			733	cat	ant	act	ata	ttt	caa	tat	720
					Val											
		116	tte	Pro	230	ASP	Ser	014		235					240	
225					230											
++=	ast	aat	- 221	aag	gta	tta	aaa	aca	aaa	tgt	tta	caa	gac	aat	ttt	768
					Val											•
Leu	nop	, ,,,,,,,		245					250					255		
										٠.						
tct	aaa	ati	t aac	aat	ata	aat	aaa	ata	ttt	tta	tgt	tca	tct	gga	ggt	816 ->-
Ser	Lys	s Ile	e Ası	a Asn	Ile	Asn	Lys	Ile	Phe	Leu	Cys	Ser	Ser	Gly	Gly	
	,		260					265			.•	٠.	270			
													•			•
cca	tti	t ca	a aat	t tta	act	atg	gac	gaa	tta	aaa	aat	gta	aca	tca	gaa	864
Pro	Pho	e Gl	n Ası	n Lev	1 Thr	Met	Asp	Glu	Leu	Lys	Asn	Val	Thr	Ser	Glu	
		27	5				280)	•			285				
															•	
aat	t gc	t tt	a aa	g cat	cct	aaa	tgg	g aaa	atg	ggt	aag	aaa	ata	act	ata	912
Ası	n Al	a Le	u Ly	s His	Pro	Lys	Tr	Lys	Met	Gly			Ile	Thr	Ile	
	29	0				295	5				300)	-			
								•								960
ga	t tc	t go	a ac	t at	g ato	y aat	aaa	aggt	tta -	gaç	get	ata	gaa	acc	cat	300
As	p Se	r Al	a Th	r Me			ı Ly:	s Gly	Leu			LITE	GI	1 1111	His 320	
30	5				310)				315	•				320	
											. ~+1		at	a cai	- 222	1008
tt	t tt	a tt	t ga	t gt	a gat	t ta	t aa	t gat	: ata	a ga	a gu	. ala	. Va	1 Ui	t aaa	2000
Ph	e Le	u Ph	ne As		_	ту:	r As	n Asp			u va.	r 176	, va.	33	s Lys	
				32	5				330	J					-	
							.	+ ~=-	. +++	r at	a na	c aaa	a tc	a ota	a ata	1056
ga	a to	c at	tt at	a ca	t tc	c tg	. gc	1 G1.	, Dh	. a.	e De	n T.v	s Se	r Va	a ata 1 Ile	
Gl	u Cy	/s I			s Se	г Су	s va			e 11	e na	, ay	35		l Ile	
			34	10				349	,				55	-		

agt	caa	atg	tat	tat	cca	gat	atg	caa	ata	ccc	ata	·tta	tat	·tct	tta	1104
Ser	Gln	Met	Tyr	Tyr	Pro	Asp	Met	Gln	Ile	Pro	Ile	Leu	.Tyr	Ser	Leu	
		355					360					365				
•																
aca	t gg	cct	gat	aga	ata	aaa	aca	aat	tta	aaa	cct	tta	gat	ttg	gct	1152
Thr	Trp	Pro	Asp	Arg	Ile	Lys	Thr	Asn	Leu	Lys	Pro	Leu	Asp	Leu	Ala	
	370		_	_		375					380				,	•
cag	gtt	tca	act	ctt	aca	ttt	cat	aaa	cct	tct	tta	gaa	cat	ttc	ccg	1200
Gln	Val	Ser	Thr	Leu	Thr	Phe	His	Lys	Pro	Ser	Leu	Glu	His	Phe	Pro	
285					390					395					400	*
tat	att	aaa	tta	gct	tat	caa	gca	ggt	ata	aaa	gga	aac	ttt	tat	cca	1248
				Ala												
		-,-		405	-,-			•	410	•	•			415		
act	σta	ста	aat	gcg	tca	aat	gaa	ata	act	aac	aac	tta	ttt	tta	aat	1296
				Ala												
••••	141	Deu	420	NIG	561			425					430			
			120													
a a t	222	a++	222	tat	+++	gat	att	tcc	tct	ata	ata	tca	caa	att	ctt	1344
				Tyr												
	-y3	435	гуз	¥ y L	1110	nap	440	001	-			445	U 2	•		
		433					440					113				
~~~					•		a++	tca	~~~	22+	agt	<b>~</b> 22	ast	tta	ato	1392
				tct												1332
GIU		Pne	Asn	Ser	GIN		vaı	Ser	GIU	ASII		GIU	Asp	reu	met	
	450					455					460	-				
aag	caa	att	cta	caa	ata	cat	tct	tgg	gcc	aaa	gat	aaa	gct	acc	gat	1440
Lys	Gln	Ile	Leu	Gln	Ile	His	Ser	Trp	Ala	Lys	Asp	Lys	Ala	Thr	-	i.
465					470					475					480	
ata	tac	aac	aaa	cat	aat	tct	tca	tag								1467
Ile	Tyr	Asn	Lys	His	Asn	Ser	Ser						٠.			
				485												

<210> 2

<211> 488

<212> PRT

. <213> Plasmodium falciparum

<		^	^		_
<	4	u	u	•	

Met Lys Lys Tyr Ile Tyr Ile Tyr Phe Phe Phe Ile Thr Ile Thr Ile

1 5 10 15

Asn Asp Leu Val Ile Asn Asn Thr Ser Lys Cys Val Ser Ile Glu Arg 20 25 30

Arg Lys Asn Asn Ala Tyr Ile Asn Tyr Gly Ile Gly Tyr Asn Gly Pro

Asp Asn Lys Ile Thr Lys Ser Arg Arg Cys Lys Arg Ile Lys Leu Cys 50 55 60

Lys Lys Asp Leu Ile Asp Ile Gly Ala Ile Lys Lys Pro Ile Asn Val 65 70 75 80

Ala Ile Phe Gly Ser Thr Gly Ser Ile Gly Thr Asn Ala Leu Asn Ile 85 90 95

Ile Arg Glu Cys Asn Lys Ile Glu Asn Val Phe Asn Val Lys Ala Leu 100 105 110

Tyr Val Asn Lys Ser Val Asn Glu Leu Tyr Glu Gln Ala Arg Glu Phe

Leu Pro Glu Tyr Leu Cys Ile His Asp Lys Ser Val Tyr Glu Glu Leu 130 135 140

Gly Asp Glu Gly Met Lys Glu Ile Cys Ser Ser Asn Ser Ile Asp Lys 165 170 175

Ile Val Ile Gly Ile Asp Ser Phe Gln Gly Leu Tyr Ser Thr Met Tyr 180 185 190

Ala Ile Met Asn Asn Lys Ile Val Ala Leu Ala Asn Lys Glu Ser Ile 195 200 205

Val Ser Ala Gly Phe Phe Leu Lys Lys Leu Leu Asn Ile His Lys Asn

	210				٠,	215					220				
Ala 225	Lys	Ile	Ile	Pro	Val 230	Asp	Ser	Glu	His	Ser 235	Ala	Iļe	Phe	Gln	Cys 240
Leu	Asp	Asn	Asn	Lys 245	Val	Leu	Lys	Thr	Lys 250	Cys	Leu	Gln	Asp	Asn 255	Phe
Ser	Lys	Ile	Asn 260	Asn	Ile	Asn	Lys	Ile 265	Phe	Leu	Cys	Ser	Ser 270	Gly	Gly
Pro	Phe	Gln 275	Asn	Leu	Thr	Met	Asp 280	Glu	Leu	Lys	Asn	Val 285	Thr	Ser	Glu
Asn	Ala 290		Lys	His	Pro	Lys 295		Lys	Met	Gly	Lys 300	Lys	Ile	Thr	Ile
Asp 305		Ala	Thr	Met	Met 310		Lys	Gly	Leu	Glu 315	~Val	Ile	Glu	Thr	His
Phe	Leu	Phe	Asp	Val 325		Tyr	Asn	Asp	11e 330		Vaʻl	Ile	Val	His 335	Lys
Glu	Cys	Ile	: Ile 340		Ser	Cys	: Val	Glu 345		: Ile	Asp	Lys	Ser 350	Val	Ιlϵ
Ser	Glr	355		Туг	Pro	Asp	360		Ile	Pro	Ile	Leu 365		Ser	Let
Thi	370		o Asp	o Arç	ıle	2 Lys		: Asn	. Leu	ı Lys	9ro 380	Leu	Asp	Leu	Ala
G1:		l Se	r Thi	r Le	u Thi		e His	; Lys	e Pro	395	Leu	Glu	His	Phe	Pro
Cy	s Il	e Ly	s Le	u Ala		r Gl	n Ala	a Gly	/ Ile		Gly	Asn	Phe	Tyr 415	
Тh	r Va	 م.1	n As	n A1.	a Se	r As	n Gl	ı Ile	e Ala	a Ası	n Asn	Leu	Phe	Leu	As

Asn Lys Ile Lys Tyr Phe Asp Ile Ser Ser Ile Ile Ser Gln Val Leu

430

**7** .

435

445

Glu Ser Phe Asn Ser Gln Lys Val Ser Glu Asn Ser Glu Asp Leu Met 450 455 460

440

Lys Gln Ile Leu Gln Ile His Ser Trp Ala Lys Asp Lys Ala Thr Asp 465 470 475 480

Ile Tyr Asn Lys His Asn Ser Ser 485

<210> 3

<211> 3872

<212> DNA

<213> Plasmodium falciparum

<220>

<221> CDS

<222> (126)..(3740)

<220>

<221> gene

<222> (1) .. (3870)

<220>

<221> mRNA

<222> (1)..(3870)

<400> 3

ggtaatatac gtataatata tatataatat attcttacgt atgtatcatt tatgaatcat 60

aataatatto taaatttaco ttoogttttt gotogatott otoattttog tttoagottt 120

tatca atg att ttt aat tat gtg ttt ttt aag aac ttt gta cca gtt gtt 170 Met Ile Phe Asn Tyr Val Phe Phe Lys Asn Phe Val Pro Val Val

5 10 15

cta tac att ctc ctt ata ata tat att aac tta aat ggc atg aat aat 218 Leu Tyr Ile Leu Leu Ile Ile Tyr Ile Asn Leu Asn Gly Met Asn Asn

20

25

									•	• .						
aaa	aat	caa	ata	aaa	aca	gaa	aaa	att	tat	ata	aag	aaa	ttg	aat	agg	266
Lys	Asn	Gln	Ile	Lys	Thr	Glu	Lys	Ile	Tyr	Ile	Lys	Lys	Leu	Asn	Arg	
			35					40			·	,	45			
	,															
ttg	tca	agg	aaa	aat	tcg	tta	tgt	agt	tct	aaa	aat	aaa	ata	gca	tgc	314
Leu	Ser	Arg	Lys	Asn	Ser	Leu	Cys	Ser	Ser	Lys	Asn	Lys	Ile	Ala	Cys	
		50					55					60			٠	
					aat											362
Leu	Phe	Asp	Ile	Gly	Asn	Asp	Asp	Asn	Arg	Asn	Thr	Thr	Tyr	Gly	Tyr	
	65					70					. 75					
						•					•					
			-		aat											410
Asn	Val	Asn	Val	Lys	Asn	Asp	Asp	Ile	Asn	Ser	Leu	Leu	Lys	Asn	Asn	
-80					85					90					95	
														_		450
					tac											458
Tyr	Ser	Asn	Lys		Tyr	Met	Asp	Lys		Lys	Asn	Ile	Asn		Val	
			•	100					105					110		
																506
					ata											506
lle	Ser	Thr		Lys	Ile	Ser	GIĀ		116	Ser	ASN	TTE		Ser	Arg	
			115					120					125			
					gaa			242	22+		C22	202	tat	tta	act	554
					gaa Glu											331
MSII	GIII			ASII	GIU	GIII	135	AIG	no.	БyЗ	01	140		200		
		130					133									
C 2 2	tat	~ ~ ~	206	<b>+</b> - +	aat	ata	tca	cat	gaa.	cag	gac.	aaa	cta	act	aat	602
					Asn											
0111	145		1111	1 7 1	ASII	150				<b>J</b>	155					
	110	•				150										
gat	aat	aat	200	, aat	aat	222	аап	aat	ttt	aat	tta	tta	ttt	ata	aat	650
					Asn											
160		no.	nig	nou	165	2,0			,	170					175	
- • •					103				•	,						
tat	<b>++</b> +	+دم·	++^	, 225	cga	ato	222	aat	tct	ctt	cta	aat	aaa	gac	aat	698
					Arg											
- 3 -	- 116	. HOI	. nec	180		1.100	-,3		185				_,_,	190		
		•		100	•		•									
tro		tac	. +~+	. 222	gaa	aaa	aaa	tta	tca	ttt	cta	cat	aao	acc	tat	746

			,		•
Phe Phe Tvr	Cvs Lvs (	Glu Lys Lys	Leu Ser Phe	Leu His Lys	Ala Tyr
	_		200	205	
	195		200		•
				•	704
				tta aaa aga	
Lys Lys Lys	Asn Cys	Thr Phe Gln	Asn Tyr Ser	Leu Lys Arg	Lys Ser
210		215		220	
			* * * * * * * * * * * * * * * * * * *		tat aca 842
				ttt gac gat	
Asn Arg Asp	Ser His	Lys Leu Phe	Ser Gly Glu	Phe Asp Asp	Tyr Thr
225		230		235	
•			-		
		tat daa to	- даа ааа ааа	a gaa tac att	aca cta 890
Asn Asn Asr	Ala Leu	Tyr Giu Sei		Glu Tyr Ile	
240		245	250		255
					•
aat aat aat	t aat aaa	aat aat aa	t aat aaa aa	t aat gat aat	aaa aat 938
				n Asn Asp Asn	
ASII ASII ASI		7.51. 1.51. 1.5	265	•	270
	260		203		
					006
				t tgt aat aat	
Asn Asp As	n Asn Asp	Tyr Åsn As	n Asn Asn Se	r Cys Asn Ası	Leu Gly
	275		280	285	
	,				
			+ + - +	a dat aat aat	aat cca 1034
				a gat aat aat	
Glu Arg Se	r Asn His	Tyr Asp As	n Tyr Gly Gl	y Asp Asn Ası	ASI PIO
29	0	29	5	300	
			•		
tot aat aa	t aat aat	gac aaa ta	it gat ata gg	a aaa tat tto	c aaa cag 1082
				y Lys Tyr Pho	
Cys Asn As	in Asn Asn		'I wah iie di		
305		310		315	
•					
att aat ad	c ttt att	aat att ga	at gaa tat aa	a act ata ta	t ggt gat 1130
				s Thr Ile Ty	
	it the ric		33		335
320		325 ₁	J.		
gaa ata t	at aaa gaa	a ata tat g	aa cta tat g	ta gaa aga aa	t att cct 1178
				al Glu Arg As	
<b></b> -,	34(		345		350
•	74/	-			
					g agt gtc 1226
gaa tat t	at gaa cg	a aaa tat t	tt tca gaa g	at att aaa aa	9 -9- 5
Glu Tyr T	yr Glu Ar	g Lys Tyr P	he Ser Glu A	sp Ile Lys Ly	s Ser Val
-	355		360	36	

cta	ttt	gat	ata	gat	aaa	tat	aat	gat	gtc	gaa	ttt	gaa	aaa	gct	ata	1274
Leu	Phe	Asp	Ile	Asp	Lys	Tyr	Asn	Asp	Val	Glu	Phe	Ģlu	Lys	Ala	Ile	
		370					375			٠		380				
•																
aaa	gaa	gaa	ttt	ata	aat	aat	gga	gtt	tat	att	aat	aat	ata	gat	aat.	1322
Lys	Glu	Glu	Phe	Ile	Asn	Asn	Gly	Val	Tyr	Ile	Asn	Asn	Ile	Asp	Asn	ė
	385				•	390					395					-
aca	tat	tat	aaa	aaa	gaa	aat	att	tta	ata	atg	aaa	aag	ata	tta	cat	1370
			Lys													
400	-	_	<u> </u>	-	405					410		-			415	
											٠.					
tat	ttc	cca	tţa	tta	aaa	tta	att	aat	aat	сса	tca	gat	tta	aaa	aag	1418
			Leu													
-				420	•				425					430	-	
tta	aaa	aaa	caa	tat	tta	cct	tta	tta	gca	cat	gaa	tta	aaa	ata	ttt	1466
			Gln													
	•		435	- 4				440					445			•
tta	ttt	ttt	att	gta	aat	ata	aca	gga	ggt	cat	ttt	tcc	tct	gtt	tta	1514
			Ile													
		450					455					460				
agc	tct	tta	gaa	att	caa	tta	tta	tta	ttg	tat	att	ttt	aat	caa	сса	1562
			Glu													
	465					470					475					
	٠.															
tat	gat	aat	gtt	.ata	tat	gat	ata	qqa	cat	caa	gca	tat	gta	cat	aag	1610
			Val													•
480					485			•		490		-			495	
ata	++,					cta	tta	ttt	cta	tca	tta	aga	aat	aaa	aaa	1658
			. Gly													
116	Tier	1 1111	. GI	500		, Dec			505			3		510		
				300	,											
			t gga				+4	. +++	בפת י	an+	att	tat	gat	222	ttt	1706
стÀ	110	e Se	r Gly		e Let	ı ASI	1 116			. Jel		yr	525			
			519	5				520	,				J & J	,		
													~		*	1754
ggg	g qc	t gg	t ca	c aqt	t tc	c act	t tca	a tta	ı agt	. gct	. ata	caa	gga	tat	tat	1/34

Gly	Ala	Gly	His	Ser	Ser	Thr	Ser	Leu	Ser	Ala	Ile	Gln	Glý	Tyr	Tyr	
		530					535					540		•.	•	
																1802
					gtg Val											1002
GIu	A1a 545		Trp	GIn		ւչs 550	ASII	пуз	GIU	гуз	555	GIY	ASII	GLY	p	
	243					330					-					
ata	gaa	ata	agt	gat	aac	gca	aat	gtc	acg	aat	aat	gaa	agg	ata	ttt	1850
					Asn											
560					565					570					575	
																•
					aat											1898
Gln	Lys	Gly	Ile	His	Asn	Asp	Asn	Asn		Asn	Asn'	Asn	Ile		Asn	
				580					585					590		
					aat	t.c.2	ast	ata	ata	aaa	ада	gaa	aat	aco	aat	1946
					Pro											
nsu	no.	ıyı	595			002		600		2			605			
gta	сса	aat	gta	cga	aat	gat	aac	cat	aac	gtg	gat	aaa	gta	cac	att	1994
Val	Pro	Asn	Val	Arg	Asn	Asp	Asn	His	Asn	Val	Asp	Lys	Val	His	Ile	
		610	)				615					620				
																2042
					ggt											2042
Ala			e G13	/ Asp	Gly			Inr	GIY	GIÀ	635		neu	GIU	VIG	
	625	•				630					055					
tta		t tai	t ati	t tca	ttc	tta	aat	tct	aaa	att	tta	att	att	tat	aat	2090
					Phe											
640		•			645					650					655	
gat	t aa	c gg	а са	a gti	tct	tta	cca	aca	aat	gcc	gta	agt	ata	tca	ggt	2138
Ası	As	n Gl	y Gl	n Va	l Ser	Lev	Pro	Thr	Asr	Ala	[Va]	Ser	Ile	Ser	Gly	
				660	0				665	j .				670	)	
																2106
					t tct											2186
Ası	n Ar	g Pr			y Ser	: Ile	Sei			s Leu	H15	з Туг			. Ser	
			67	5				680	,				685	,		
<u>.</u> -					+ ~~*	- ~~	r nat	- aat		a tts	to	ı aas	a aat	gea	a aaa	2234
															Lys	
ns	11	69		a na	^*		69		3			700			-	

									_	-						
			att													2282
Glu	Asn	Asn	Ile	Phe	Glu	Asn	Leu	Asn	Tyr	Asp	Tyr	Iļe	Gly	Val	Val	
	705					710					715					
•					,											
															aaa.	2330
Asn	Gly	Asn	Asn	Thr		Glu	Leu	Phe	Lys		Leu	Asn	Asn	Ile		
720					725					730					735	
																2378
			tta													2376
Glu	Asn	Lys	Leu		Arg	Ala	Thr	vaı		HIS	val	Arg	inr		гàз	
				740					745		•	·		750		
								24	000	`a+a	 2 <b>4</b> 5	· .		C2.C	tot	2426
			ttt Phe													2120
ser	ASN	Asp	755	11e	ASII	261	гуз	760		116	361	116	765	1123	561	
			755					700								
ata	220	222	aat	<b>a</b> aa	att	ttc	cct	ttc	σat	acc	act	ata	tta	aat	gga	2474
			Asn													
	-,-	770					775		•			780			-	
aat	att	cat	aag	gag	aac	aag	ata	gaa	gaa	gag	aaa	aat	gtg	tct	tca	2522
			Lys													•
	785					790					795					
tct	aca	aag	, tat	gat	gta	aat	aat	aag	aat	aat	aaa	aat	aat	gat	aat	2570
Ser	Thr	Lys	Tyr	Asp	Val	Asn	Asn	Lys	Asn	Asn	Lys	Asn	Asn	Asp	Asn	
800					805					810					815	
agt	gaa	att	ata	aaa	tat	gaa	gat	atg	ttt	tca	aaa	gag	acg	ttc	aca	2618
Ser	Gli	ılle	: Ile	Lys	туг	Glu	Asp	Met	Phe	Ser	Lys	Glu	Thr	Phe	Thr	
				820	)				825	)				830		
gat	ata	i ta	t aca	a aat	gaa	ato	j tta	aaa	tat	tta	aag	aaa	gat	aga	aat	2666
Asp	Ile	e Ty	r Thi	: Asr	Glu	ı Met	Leu	Lys	Tyr	Leu	Lys	Lys	Asp	Arg	Asn	
			835	5				840					845			
			c cta													2714
Ile	: I1	e Ph	e Le	ı Se	r Pro	Ala	Met	Leu	Gly	/ Gly	Ser	Gly	Leu	Val	Lys	
		85	0				855	<b>i</b>				860	۲.			
art	. 24	t na	0 00	r tai	t cc:	a aa1	aat	ata	tat	gat	gta	aat	ata	gca	gaa	2762

										13					_	
Ile	Ser	Glu	Arg	Tyr	Pro	Asn	Asn	Val	Tyr	Asp	Val	Gly	Ile	Ala	Glu	
	865					870				•	875.					
		-												•		
				· 		<b>~~</b>	CC2	act	ato	gca	atg	aat	aag	aaa	tta	2810
Gln	His	Ser	Val	Thr	Phe	Ala	Ala	ATA	met	Ala	Mec	VOII	БХЗ	цуз		
880					885					890				•	895	
aaa	ata	caa	tta	tgt	ata	tat	tcg	acc	ttt	tta	caa	aga	gca	tat	gat	2858
										Leu						
-1-				900		<b>-</b>			905					910		
	•			500												
										24.2	cat	++=	220	att	ata	2906
										ata						2300
Gln	Ile	Ile	His	Asp	Leu	Asn	Leu	Gln	Asn	Ile	Pro	Leu		vaı	TIE	
			915					920					925			
																•
att	gga	aga	agt	gga	tta	gta	gga	gag	gat	ggg	gca	aca	cat	caa	ggt	2954
										Gly						
		930		,			935					940				
		٦٩٥														
									att	220	22+	aca	tat	ata	ata	3002
										aac						
Ιlε	Ty:	c Ası	Lei	ı Ser	Туг	Leu	Gly	Thr	Leu	Asn		Ala	Tyr	116	116	
	945	5				950	)				955					
tci	cc	a ag	t aai	t caa	gtt	gat	ttg	aaa	aga	gct	ctt	agg	ttt	gct	tat	3050
										Ala						
96					965					970					975	
,	<b>J</b> .				,,,,,	-										
			•							+.		202	ato	aac	ata	3098
										ata						
Le	u As	p Ly	s As	p Hi	s Se	r Va	l Tyr	: Ile		Ile	Pro	Arg	met			
				98	0				985	5				990		
tt	a aq	t qa	t aa	g ta	c at	g aa	a gga	a tat	: ttq	g aac	att	cat	ato	aaa	aat	3146
· I.e	u Se	r De	n Lu	ຼ ຮ ጥህ	r Me	t Lv	s Gl	v Týl	c Lev	ı Asn	ı Ile	His	Met	Lys	Asn	
						2		1000					1005			
			99	5					•							
					,											3194
ga	g ag	jc aa	a aa	t at	c ga	t gt	a aa	c gt	gga	t ata	aaa	: gat	. gat	. gta	gat	2134
G1	u Se	er Ly	s As	n Il	e As	p Va	l As	n Va	l Ası	p Ile	e Asr	, Ast	) Asp	Val	Asp	
		- 101	LO				101	5	•			1020	)			
<b>a</b> -	.a + ·	at =4	7t ~-	.a	a ta	it at	g ga	с да	t ga	t aat	t tt	tata	a aaa	tc	ttt	3242
•		a	, y	~	m-	Ma	, J.	n Ae	n As	n Ası	n Phe	e Ile	e Lvs	s Sei	Phe	
L			er G.	LU GJ	u T			L us	F 133		103		. –,-			•
	10	75				103	( ) I				TO3:	J				

			tct													3290
[le	Gly	Lys	Ser	Arg	Ile	Ile	Lys	Met	Asp	Asn	Glu	Asn	Asn	Asn	Thr	
1040				1	045				1	L050	•			1	055	
·																
	-		tat													3338
Aşn	Glu	His	Tyr	Ser	Ser	Arg	Gly	Asp	Thr	Gln	Thr	Lys			Lys	
			3	1060				1	1065					1070		
:																
			ttt													3386
<b>Val</b>	Cys	Ile	Phe	Asn	Met	Gly			Leu	Phe	Asn			Asn	Ala	
			1075					1080			•	•	1085		•	
											••					2424
		-	att	_												3434
Ile	Lys	Glu	Ile	Glu	. Lys			Tyr	Ile	Ser			Tyr	Ser	Phe	
		1090					1095				1	1100				
															-4-	3482
			gat													3402
			Asp	Met			Leu	Asn	Pro			гÃг	ASN	met	iie	
]	L105					1110					1115					
								aa+			<b>+</b> + a	att	act	tat	aaa	3530
			ata Ile													3330
		vaı	TIE		1125		БАЗ	nro		1130	Den	110			1135	
1120	J				1123					1130				•		
ast	224	201	ata	aat	aat	+++	tct	aca	cat	ttc	aat	aat	tat	tta	ata	3578
			lle													
vah	A3I			1140		1110	001		1145					1150		
				1140												
<b>~22</b>	221		tat	att	aca	222	cat	aac	tta	tat	att	cat	aat	att	tat	3626
			Tyr													
O.Lu	ASI	. nai	1155			-,-		1160					1165		•	
				,												
tts	tot		gag		. att	gaa	cat	gca	tct	ttt	ааσ	gat	caa	caa	gaa	3674
			. gag ı Glu													
БСС	Jei	1170			, 110	. 014	1175					1180				
		117	,													
ata	~+·		a atç	, ,,,,	. 225	tat	ant	ctt	ato	aat	aga.	att	aaa	aat	tat	3722
			a acç s Met													
	va. 118:		វ១៧ ខ	- wai	υys	1190		. Deu			1195		-,, -		- 4 -	1
	TTO:						•									
			t aat		- 20	ta:	tat:	ana	taaa	tata	ta t	ttct	aaaa	t		3770
CEE	. aa	a aa'	ı aai	CCI	L alie	, cyc								-		_

Leu Lys Asn Asn Pro Thr 1200 1205

tattttttt ttatacttta atgtgtacaa taaaatatat atctaaatat attttatttg 3830

tacgcttttt ttttttttt tttaattgtt atttttgtat at

3872

<210> 4

<211> 1205

<212> PRT

<213> Plasmodium falciparum

<400> 4

Met Ile Phe Asn Tyr Val Phe Phe Lys Asn Phe Val Pro Val Val Leu

1 5 10 15

Tyr Ile Leu Leu Ile Ile Tyr Ile Asn Leu Asn Gly Met Asn Asn Lys 20 25 30

Asn Gln Ile Lys Thr Glu Lys Ile Tyr Ile Lys Lys Leu Asn Arg Leu
35 40 45

Phe Asp Ile Gly Asn Asp Asp Asn Arg Asn Thr Thr Tyr Gly Tyr Asn 65 70 75 80

Val Asn Val Lys Asn Asp Asp Ile Asn Ser Leu Leu Lys Asn Asn Tyr 85 90 95

Ser Asn Lys Leu Tyr Met Asp Lys Arg Lys Asn Ile Asn Asn Val Ile 100 105 110

Ser Thr Asn Lys Ile Ser Gly Ser Ile Ser Asn Ile Cys Ser Arg Asn 115 120 125

Gln Lys Glu Asn Glu Gln Lys Arg Asn Lys Gln Arg Cys Leu Thr Gln 130 135 140

Cys His Thr Tyr Asn Met Ser His Glu Gln Asp Lys Leu Ala Asn Asp

1	A	ς	

155

160

Asn Asn Arg Asn Asn Lys Lys Asn Phe Asn Leu Leu Phe Ile Asn Tyr 165 170 175

Phe Asn Leu Lys Arg Met Lys Asn Ser Leu Leu Asn Lys Asp Asn Phe 180 185 190

Phe Tyr Cys Lys Glu Lys Lys Leu Ser Phe Leu His Lys Ala Tyr Lys

Lys Lys Asn Cys Thr Phe Gln Asn Tyr Ser Leu Lys Arg Lys Ser Asn 210 215 220

Arg Asp Ser His Lys Leu Phe Ser Gly Glu Phe Asp Asp Tyr Thr Asn 225 230 235 240

Asn Asn Ala Leu Tyr Glu Ser Glu Lys Lys Glu Tyr Ile Thr Leu Asn 245 250 255

Asn Asn Asn Lys Asn Asn Asn Asn Lys Asn Asn Asp Asn Lys Asn Asn Asn 260 265 270

Asp Asn Asn Asp Tyr Asn Asn Asn Ser Cys Asn Asn Leu Gly Glu 275 280 285

Arg Ser Asn His Tyr Asp Asn Tyr Gly Gly Asp Asn Asn Asn Pro Cys 290 295 300

Asn Asn Asn Asn Asp Lys Tyr Asp Ile Gly Lys Tyr Phe Lys Gln Ile 305 310 315 320

Asn Thr Phe Ile Asn Ile Asp Glu Tyr Lys Thr Ile Tyr Gly Asp Glu 325 330 335

Ile Tyr Lys Glu Ile Tyr Glu Leu Tyr Val Glu Arg Asn Ile Pro Glu 340 345 350

Tyr Tyr Glu Arg Lys Tyr Phe Ser Glu Asp Ile Lys Lys Ser Val Leu 355 360 365

Phe Asp Ile Asp Lys Tyr Asn Asp Val Glu Phe Glu Lys Ala Ile Lys

370

375

Glu Glu Phe Ile Asn Asn Gly Val Tyr Ile Asn Asn Ile Asp Asn Thr 385 390 395 400

Tyr Tyr Lys Lys Glu Asn Ile Leu Ile Met Lys Lys Ile Leu His Tyr 405 410 415

Phe Pro Leu Leu Lys Leu Ile Asn Asn Pro Ser Asp Leu Lys Lys Leu 420 425 430

Lys Lys Gln Tyr Leu Pro Leu Leu Ala His Glu Leu Lys Ile Phe Leu
435 440 445

Phe Phe Ile Val Asn Ile Thr Gly Gly His Phe Ser Ser Val Leu Ser 450 455 460

Ser Leu Glu Ile Gln Leu Leu Leu Leu Tyr Ile Phe Asn Gln Pro Tyr 465 470 475 480

Asp Asn Val Ile Tyr Asp Ile Gly His Gln Ala Tyr Val His Lys Ile 485 490 495

Leu Thr Gly Arg Lys Leu Leu Phe Leu Ser Leu Arg Asn Lys Lys Gly 500 505 510

Ile Ser Gly Phe Leu Asn Ile Phe Glu Ser Ile Tyr Asp Lys Phe Gly
515 520 525

Ala Gly His Ser Ser Thr Ser Leu Ser Ala Ile Gln Gly Tyr Tyr Glu 530 535 540

Ala Glu Trp Gln Val Lys Asn Lys Glu Lys Tyr Gly Asn Gly Asp Ile 545 550 555 560

Glu Ile Ser Asp Asn Ala Asn Val Thr Asn Asn Glu Arg Ile Phe Gln 565 570 575

Lys Gly Ile His Asn Asp Asn Asn Ile Asn Asn Ile Asn Asn Asn 580 585 590

Asn Tyr Ile Asn Pro Ser Asp Val Val Gly Arg Glu Asn Thr Asn Val

595

----

605

Pro Asn Val Arg Asn Asp Asn His Asn Val Asp Lys Val His Ile Ala 610 615 620

Ile Ile Gly Asp Gly Gly Leu Thr Gly Gly Met Ala Leu Glu Ala Leu 625 630 635 640

600

Asn Tyr Ile Ser Phe Leu Asn Ser Lys Ile Leu Ile Ile Tyr Asn Asp 645 650 655

Asn Gly Gln Val Ser Leu Pro Thr Asn Ala Val Ser Ile Ser Gly Asn 660 665 670

Arg Pro Ile Gly Ser Ile Ser Asp His Leu His Tyr Phe Val Ser Asn 675 680 685

Ile Glu Ala Asn Ala Gly Asp Asn Lys Leu Ser Lys Asn Ala Lys Glu 690 695 700

Asn Asn Ile Phe Glu Asn Leu Asn Tyr Asp Tyr Ile Gly Val Val Asn 705 710 715 720

Gly Asn Asn Thr Glu Glu Leu Phe Lys Val Leu Asn Asn Ile Lys Glu
725 730 735

Asn Lys Leu Lys Arg Ala Thr Val Leu His Val Arg Thr Lys Lys Ser 740 745 750

Asn Asp Phe Ile Asn Ser Lys Ser Pro Ile Ser Ile Leu His Ser Ile 755 760 765

Lys Lys Asn Glu Ile Phe Pro Phe Asp Thr Thr Ile Leu Asn Gly Asn 770 775 780

Ile His Lys Glu Asn Lys Ile Glu Glu Glu Lys Asn Val Ser Ser Ser 785

Thr Lys Tyr Asp Val Asn Asn Lys Asn Asn Lys Asn Asn Asn Asn Asn Ser 805 810 815

Glu Ile Ile Lys Tyr Glu Asp Met Phe Ser Lys Glu Thr Phe Thr Asp

830 .

Ile Tyr Thr Asn Glu Met Leu Lys Tyr Leu Lys Lys Asp Arg Asn Ile 835 840 845

825

The Phe Leu Ser Pro Ala Met Leu Gly Gly Ser Gly Leu Val Lys Ile 850 855 860

Ser Glu Arg Tyr Pro Asn Asn Val Tyr Asp Val Gly Ile Ala Glu Gln 865 870 875 880

His Ser Val Thr Phe Ala Ala Ala Met Ala Met Asn Lys Lys Leu Lys 885 890 895

Ile Gln Leu Cys Ile Tyr Ser Thr Phe Leu Gln Arg Ala Tyr Asp Gln 900 905 910

Ile Ile His Asp Leu Asn Leu Gln Asn Ile Pro Leu Lys Val Ile Ile 915 920 925

Gly Arg Ser Gly Leu Val Gly Glu Asp Gly Ala Thr His Gln Gly Ile 930 935 940

Tyr Asp Leu Ser Tyr Leu Gly Thr Leu Asn Asn Ala Tyr Ile Ile Ser 945 950 955 960

Pro Ser Asn Gln Val Asp Leu Lys Arg Ala Leu Arg Phe Ala Tyr Leu 965 970 975

Asp Lys Asp His Ser Val Tyr Ile Arg Ile Pro Arg Met Asn Ile Leu
980 985 990

Ser Asp Lys Tyr Met Lys Gly Tyr Leu Asn Ile His Met Lys Asn Glu 995 1000 1005

Ser Lys Asn Ile Asp Val Asn Val Asp Ile Asn Asp Asp Val Asp Lys
1010 1015 1020

Tyr Ser Glu Glu Tyr Met Asp Asp Asp Asn Phe Ile Lys Ser Phe Ile
025 1030 1035 1040

Gly Lys Ser Arg Ile Ile Lys Met Asp Asn Glu Asn Asn Asn Thr Asn

1045

1050 1055

Glu His Tyr Ser Ser Arg Gly Asp Thr Gln Thr Lys Lys Lys Val 1060 1065 1070

Cys Ile Phe Asn Met Gly Ser Met Leu Phe Asn Val Ile Asn Ala Ile 1075 1080 1085

Lys Glu Ile Glu Lys Glu Gln Tyr Ile Ser His Asn Tyr Ser Phe Ser 1090 1095 1100

Ile Val Asp Met Ile Phe Leu Asn Pro Leu Asp Lys Asn Met Ile Asp 105 1110 1115 1120

His Val Ile Lys Gln Asn Lys His Gln Tyr Leu Ile Thr Tyr Glu Asp 1125 1130 1135

Asn Thr Ile Gly Gly Phe Ser Thr His Phe Asn Asn Tyr Leu Ile Glu 1140 1145 1150

Asn Asn Tyr Ile Thr Lys His Asn Leu Tyr Val His Asn Ile Tyr Leu 1155 1160 1165

Ser Asn Glu Pro Ile Glu His Ala Ser Phe Lys Asp Gln Gln Glu Val 1170 1175 1180

Val Lys Met Asp Lys Cys Ser Leu Val Asn Arg Ile Lys Asn Tyr Leu 185 1190 1195 1200

Lys Asn Asn Pro Thr 1205

<210> 5

<211> 3147

<212> DNA

<213> Plasmodium falciparum

<220>

<221> CDS

<222> (199)..(2670)

<400	> 5													•	ż	
tttc	attt	tt c	tttad	ccca	c at	atat	atat	ata	tata	tat	aata	tata	ta 1	tataa	tatta	60
tatä	tttg	at a	tatg	attt.	a aa	attg	taac	ata	aaaa	aaa	taat	tata	itt a	aaata	tgtgt	120
									•		. '					
atac	atct	cc a	acat	ataa	a ta	ttat	tttt	tat	tatt	att	tttt	tttt	tt	tttt	cataa	180
tgcctgaata accacaaa atg agt tat ata aaa aga ctg att ctt ttt atg																
tgcc	tgaa	ta a	ccac													231
					Met	Ser	Tyr	Ile	Lys	Arg	Leu	Ile	Leu	Phe	Met	
					1				5					10		
												,		٠.		070
			tat													279
Leu	Leu	Phe	Tyr	Ser	His	Val	Lys		Lys	Lys	Leu	Phe		Lys	ITE	
			15					20					25			•
																297
			aac													3 <del>2</del> 7
Ser	Asn	Val	Asn	Ile	Phe	Phe		GIU	Ala	гÀ2	гÀг		GTA	Lys	гуз	
		30					35					40				
												200		cag	222	375
			ctt													3.0
Glu		Phe	Leu	Phe	Leu		Asn	TTE	Lys	Lys	55	Ser	GIII	GIII	шуз	
	45					50					33					
								226	300	a+ a	22+	222	agt	gat	ttt	423
			cat													
		Tyr	His	lle		гÀг	Arg	ASII	1111	70	ro!!	БУЗ	001	· ·····p	75	
60					65					,,						
						<b></b> 1	~~~	000	aat	tct	tca	aaa	aac	т даа	tat	471
			tta Leu													
Leu	Tyr	Ser	Leu		Asn	GIU	GIU	GLY	85		001	2,0	_,.	90		
				80					03							
						~~~	222	tat	aat	ato	ata	caa	aat	ata	aaa,	519
			aaa Lys													
гÀг	AST	ı Leu			GIU	GIU	nys	100					10:		-4-	
			95	1				100						•		
								+=+	בבב י	200	r ctc	: cca	. ac	а сда	gaa.	567
aaa	tat	tgt -	gaa	tgt	act	. aaa	aaa 	, Lai	. aaa	ayy A	, CCC	Dra	. до	r Ara	gaa [.] Glu	
Lys	Туз			ı Cys	Thr	гъ			. Lys	. wrd	, nec	120		. nry	, Glu	
٠.		110)		•		115	,				140	,			
_			t aas							+ee 1	· aat	. 222	at:	a oct	att	615
at:	4	- 2+4	000	a aat	att	aaa	ו מנו	. uuc	. yuc	. aal				`		

Val Val Ile Gly Asn Val Lys Ile Gly Gly Asn Asn Lys Ile Ala Ile

125		130	
-----	--	-----	--

caa act atg gct agc tgt gat aca aga aat gta gaa gaa tgt gta tat Gln Thr Met Ala Ser Cys Asp Thr Arg Asn Val Glu Glu Cys Val Tyr 145 150 caa att aga aaa tgt aaa gat ttg ggt gct gac att gta agg ttg act Gln Ile Arg Lys Cys Lys Asp Leu Gly Ala Asp Ile Val Arg Leu Thr 160 gtt caa gga gtt caa gaa gca caa gct agt tat cat att aaa gaa aaa 759. Val Gln Gly Val Gln Glu Ala Gln Ala Ser Tyr His Ile Lys Glu Lys 185 180 175 tta tta tct gaa aat gta aat atc cca tta gta gca gat att cat ttt 807 Leu Leu Ser Glu Asn Val Asn Ile Pro Leu Val Ala Asp Ile His Phe 200 195 190 aat cct aaa ata gct tta atg gca gct gat gtg ttt gaa aaa att cga 855 Asn Pro Lys Ile Ala Leu Met Ala Ala Asp Val Phe Glu Lys Ile Arg 205 210 215 gtg aat cca gga aat tat gtt gat gga aga aaa aaa tgg ata gat aaa Val Asn Pro Gly Asn Tyr Val Asp Gly Arg Lys Lys Trp Ile Asp Lys 230 220 225 Val Tyr Lys Thr Lys Glu Glu Phe Asp Glu Gly Lys Leu Phe Ile Lys 245 240 gaa aaa ttt gta cca tta att gaa aaa tgt aaa aga tta aat aga gca Glu Lys Phe Val Pro Leu Ile Glu Lys Cys Lys Arg Leu Asn Arg Ala 265 260 255 ata aga att gga aca aat cat gga tcc ctt tca tct cga gta tta tca Ile Arg Ile Gly Thr Asn His Gly Ser Leu Ser Ser Arg Val Leu Ser 275 270 tat tat gga gat aca cca tta ggt atg gta gaa tcg gct ttt gag ttt 1095 Tyr Tyr Gly Asp Thr Pro Leu Gly Met Val Glu Ser Ala Phe Glu Phe 290 295 285

									2							
ct	gat	tta	tgt	att	gaa	aac	aat	ttt	tac	aat	ctt	gtt	ttt	tct	atg	1143
Ser	Asp	Leu	Cys	Ile	Glu	Asn	Asn	Phe	Tyr	Asn	Leu	Val	Phe	Ser	Met	
300	•		•		305					310				•	315	
			•													
222	act	tet	22+	act	tat	att	atg	ata	caa	tct	tat	aga	tta	tta	gta	1191
							Met									
rys	MIG	Ser	ASII		IYL	Va1			325					330		
				320				, .			•					
							-4		***			oot.	++=		att	1239
tct	aaa	caa	tat	gaa	aga	aat	atg	aly	Dha:	D==	Tla	Uic	Lou	Glu	Val	
Ser	Lys	Gln	Tyr	Glu	Arg	Asn	Met		Pne	Pro	116	uis		GIY	441	• *
			335					340					345			
					•							:		٠		
															ggt .	1287
Thr	Glu	Ala	Gly	Phe	Gly	Asp	Asn	Gly	Arg	Ile	Lys	Ser	Tyr	Leu	Gly	
	•	350)				355					360				· · .
					•									•		
ata	gga	tct	tta	tta	tat	gat	ggt	ata	gga	gat	acc	att	cgt	ata	tcc	1335
Ile	Gly	Ser	Leu	Leu	Туг	Asp	Gly	Ile	Gly	Asp	Thr	Ile	Arg	.Ile	Ser	
	365		•			370					375			• •		
tta	aca	паз	gat	cct	t.ac	ı gaa	gag	tta	act	cct	tgt	aaa	aạa	tta	gtt	1383
							Glu									
380		. GI	LASI	, , ,	385					390		-	-		395	
300					50.	•			•							
							ttt	+ + + +	aat		aat	+++	aaa	gaa	gat	1431
Glu	ASI	n Le	u Ly:			3 116	Pne	ıyı			ASII	rne	Ly.	410	Asp	
•			`	400	0				405	•				410		•
	14,															. 1470
															ttt	1479
Asr	G1	u Le	u Ly	s As	n . As	n Gl	ı Met	Asp	Thr	Lys	Asn	Leu	Leu	Asn	Phe:	•
•			41	5				420)				425	· ·		
gaa	a ga	a aa	t ta	t cg	a aa	t tt	t aat	aat	ata	aaa	aaa	aga	aat	gta	gaa	1527
															Glu	٠.
		43					43					440				
		-					-									
	 			·			+ 42	a (12)	Tha	e act	ata	a aat	aat	: ata	gta	1575
aa	a aa	t aa	ıc aa	t gt	.a tt	.a ca	- C1	. ci-	, C.,	- ~~'	- Tle	יום . יעב -	, Aer	۔ اعلا	Val	
Ly			in As	n Va	ıı Le			n GT	L Cy:				. nai		Val	
	4 4	5				45	U				455	,				
				,			: •									1500
ac	c at	a a	aa ga	ag tt	ta ga	a ga	t tc	t ct	g ca	a at	t tti	c aaa	a gat	. tta	aat	1623
Th	r I	le L	vs Gi	lu Le	eu Gl	lu As	p Se	r Le	u Gl	n Il	e Phe	e Lys	a Ası	Le	ı Asn'	•

475

														•		
tta	gaa	gta	gat	tca	aat	gga	aat	ttg	aaa	aag	gga.	gċc	aaa	aca	act	1671
Leu	Glu	Val	Asp	Ser	Asn	Gly	Asn	Leu	Lys	Lys	Gly	Ala	Lys	Thr	Thr	
•	٠.			480	٠.				485		•	•		490		
	• •				•	•										
gat	atg	gtt	att	ata	aat	gat	ttt	cat	aat	ata	aca	aat	tta	gga	aaa	1719
-					Asn											.•
-			495					500			:		505	. •		
•												٠.				
aaa	act	gtg	gat	aaa	tta	atg	caa	gtg	gga	att	aat	ata	gta	gtt	caa	1767
					Leu											٠.
-		510	-		•		515					520				
. ,																
tat	gaa	сса	cat	aat	ata	.gaa	ttt	ata	gaa	aaa	atg	gaa	cca	aat	aat	1815
					Ile											
•	525					530	•	•			535					
								•				•			•	•
gat	aat	aat	aat	aat	aat	aat	aat	aat	aat	ata	tta	ttt	tat	gtg	gat	1863
Asp	Asn	Asn	Asn	Asn	Asn	Asn	Asn	Asn	Asn	Ile	Leu	Phe	Tyr	Val	Asp	
540					545					550					555	
			•													
ata	aaa	aat	att	atg	aac	agt	tca	gaa	aaa	aat	att	aaa	tta	agt	aat	1911
Ile	Lys	Asn	Ile	Met	Asn	Ser	Ser	Glu	Lys	Asn	Ile	Lys	Leu	Ser	Asn	
				560	٠.				565					570		
tct	aaa	gga	tat	gga	tta	att	tta	aac	gga	aaa	gaa	gat	ata	caa	acc	1959
Ser	Lys	Gly	Tyr	Gly	Leu	Ile	Leu	Asn	Gly	Lys	Glu	Asp	Ile	Gln	Thr	
	•		575	,				580					585			
ata	aaa	aaa	ata	aaa	gaa	tta	aat	cgt	cgt	cct	tta	ttc	att	cta	tta	2007
Ile	Lys	Lys	Ile	Lys	Glu	Leu	Asn	Arg	Arg	Pro	Leu	Phe	Ile	Leu	Leu	
		590				•	595					600				
aaa	tca	gat	: aac	: ata	tat	gaa	cat	gta	tta	ata	acc	aga	aga	att	aat	2055
					. Tyı											
-	609				_	610			•		615					
σaa	L Cti	: tta	a caa	a tco	e tta	aat	ata	a aat	ata	cct	tat	ata	cat	tat	gtt	2103
					r Lei											
620					625					630				•	635	
	•															

										25 .						
gat	att	aat	tca	aac	aat	tat	gat	gat	ata	tta	gtt	aat	tca	aca	tta	2151
Asp	Ile	Asn	Ser	Asn	Asn	Tyr	Asp	Asp	Ile	Leu	Val	Asn	Ser	Thr	Leu	
-				640					645					650	٠.	
		÷														· :
tat	gca	gga	agt	tgt	ttg	atg	gat	tta	atg	ggg	gat	ggt	ctt	att	gtt	2199
Tyr	Ala	Gly	Ser	Cys	Leu	Met	Asp	Leu	Met	Gly	Asp	Gly	Leu	Ile	Val	
		_	655					660					665			
aac	gta	act	aat	gat	gtt	ctt	aca	aat	aaa	aaa	aag	ata	gaa	aca	aaa	2247
Asn	Val	Thr	Asn	Asp	Val	Leu	Thr	Asn.	Lys	Lys	Lys	Ile	Glu	Thr	Lys	
		670					675			•		680				•
٠							•				•		•			
tat	qat	gaa	aaa	gaa	gaa	gta	gag	gaa	gag	gga	aac	aat	aaa	gat	att	2295
Tvr	Asp	Glu	Lys	Glu	ı Glu	Val	Glu	Glu	Glu	Gly	Asn	Asn	Lys	Asp	Ile	
	685		-			690					695					
cat	aga	ctt	: tt	g ago	aga	gtt	gca	tta	aat	tca	ttt	tta	aca	tta	aat	2543
His	Arc	Let	. Le	ı. Se:	r Arg	y Val	Ala	Leu	Asn	Ser	Phe	Leu	Thr	Leu	Asn	
700					705					710					715	
att	tta	a caa	a ga	t ac	a aga	a ata	cgt	tta	ttt	aaa	aca	gat	tat	ata	gcc	2391
Ile	Lei	ı Glı	n As	p Th	r Ar	g Ile	a Arg	Leu	Phe	. Lys	Thr	Asp	Tyr	Ile	a Ala	
				72					725					730		
							•	•								
tgo	c cc	a tc	t tg	t gg	a ag	a act	t tta	a ttt	aat	ata	caa	a gaa	act	act	t aaa	2439
Ċy	s Pr	o Se	r Cy	s Gl	y Ar	g Th	r Le	u Phe	Ası	ı Ile	e Glı	ı Glu	Thr	Th	r Lys	
			73				· .: .	740					745			
•		•														
aa	a at	t at	g aa	a tt	a ac	a gg	g ca	c tta	a aaa	a ggo	c gt	t aaa	att	gc:	a gtc	2487
Ly	s Il	e Me	t Ly	s Le	u Th	r Gl	y Hi	s Le	ı Ly	s Gl	y Va	l Lys	s Ile	e Al	a Val	
Ī		75					75					760				•
at	a ac	a to	it at	it al	t aa	ıt gg	t at	a gg	a ga	a at	g gc	a gat	t gc	a ca	t ttt	2535
Me	t GI	LV CI	, ,s I.	Le Va	al As	n Gl	y Il	e Gl	y Gl	u Me	t Al	a Ası	p Ala	a Hi	s Phe	
	76		,			77					. 77					
-	r t +:	at of	ht d	at a	at a	ca co	t aa	a aa	a at	t ga	t tt	a ta	t ta	t gg	t aaa	2583
رم در	ე დ. უ. თ.	ur W	al C	ye a' lu c	or D'	la Pi	o L	/s Lv	s Il	e As	p Le	u Ty	r Ty	r Gl	y Lys	
		, V	u_	-1 3		85	-	•		79		•	,		795	
78					7 (
		. . ~	. .		a a •	a+ =1	: ta co	et da	a a	a qa	a go	t tq	t ga	t aa	a ttg	2631
ga	ig t	.a g	ca g	aa a	ya a	at a	le P	ro G1	u Gl	Lu Gl	u Al	a Cv	s As	p Ly	/s Leu	,
1.4	. 11 1.	V	A 1 1-		co #	3U -						•		-		

800

810

ata gaa tta att aaa aaa cat aac aaa tgg aaa gat cca taaattgaat 2680 Ile Glu Leu Ile Lys Lys His Asn Lys Trp Lys Asp Pro 815 820

<210> 6

<211> 824

<212> PRT ·

<213> Plasmodium falciparum

<400> '6

Met Ser Tyr Ile Lys Arg Leu Ile Leu Phe Met Leu Leu Phe Tyr Ser 1 5 10 15

His Val Lys Ile Lys Lys Leu Phe Ile Lys Ile Ser Asn Val Asn Ile 20 25 30

Phe Phe Ala Glu Ala Lys Lys Asn Gly Lys Lys Glu Phe Phe Leu Phe
35 40 45

Leu Leu Asn Ile Lys Lys Asn Ser Gln Gln Lys Lys Thr Tyr His Ile
50 55 60

Thr Lys Arg Asn Thr Ile Asn Lys Ser Asp Phe Leu Tyr Ser Leu Leu

.

70

75

80

Asn Glu Glu Gly Asn Ser Ser Lys Lys Glu Tyr Lys Asn Leu Lys Asp 85 90 95

Glu Glu Lys Tyr Asn Ile Ile Gln Asn Ile Lys Lys Tyr Cys Glu Cys 100 105 110

Thr Lys Lys Tyr Lys Arg Leu Pro Thr Arg Glu Val Val Ile Gly Asn 115 120 125

Val Lys Ile Gly Gly Asn Asn Lys Ile Ala Ile Gln Thr Met Ala Ser 130 135 140

Cys Asp Thr Arg Asn Val Glu Glu Cys Val Tyr Gln Ile Arg Lys Cys 145 150 155 160

Lys Asp Leu Gly Ala Asp Ile Val Arg Leu Thr Val Gln Gly Val Gln 165 170 175

Glu Ala Gln Ala Ser Tyr His Ile Lys Glu Lys Leu Leu Ser Glu Asn 180 185 190

Val Asn Ile Pro Leu Val Ala Asp Ile His Phe Asn Pro Lys Ile Ala 195 200 205

Leu Met Ala Ala Asp Val Phe Glu Lys Ile Arg Val Asn Pro Gly Asn 210 215 220

Tyr Val Asp Gly Arg Lys Lys Trp Ile Asp Lys Val Tyr Lys Thr Lys 225 230 235 240

Glu Glu Phe Asp Glu Gly Lys Leu Phe Ile Lys Glu Lys Phe Val Pro 245 250 255

Leu Ile Glu Lys Cys Lys Arg Leu Asn Arg Ala Ile Arg Ile Gly Thr 260 265 270

Asn His Gly Ser Leu Ser Ser Arg Val Leu Ser Tyr Tyr Gly Asp Thr 275 280 285

Pro Leu Gly Met Val Glu Ser Ala Phe Glu Phe Ser Asp Leu Cys Ile

Glu Asn Asn Phe Tyr Asn Leu Val Phe Ser Met Lys Ala Ser Asn Ala Tyr Val Met Ile Gln Ser Tyr Arg Leu Leu Val Ser Lys Gln Tyr Glu Arg Asn Met Met Phe Pro Ile His Leu Gly Val Thr Glu Ala Gly Phe Gly Asp Asn Gly Arg Ile Lys Ser Tyr Leu Gly Ile Gly Ser Leu Leu Tyr Asp Gly Ile Gly Asp Thr Ile Arg Ile Ser Leu Thr Glu Asp Pro Trp Glu Glu Leu Thr Pro Cys Lys Lys Leu Val Glu Asn Leu Lys Lys Arg Ile Phe Tyr Asn Glu Asn Phe Lys Glu Asp Asn Glu Leu Lys Asn Asn Glu Met Asp Thr Lys Asn Leu Leu Asn Phe Glu Glu Asn Tyr Arg Asn Phe Asn Asn Ile Lys Lys Arg Asn Val Glu Lys Asn Asn Asn Val Leu His Glu Glu Cys Thr Ile Gly Asn Val Val Thr Ile Lys Glu Leu Glu Asp Ser Leu Gln Ile Phe Lys Asp Leu Asn Leu Glu Val Asp Ser Asn Gly Asn Leu Lys Lys Gly Ala Lys Thr Thr Asp Met Val Ile Ile

Asn Asp Phe His Asn Ile Thr Asn Leu Gly Lys Lys Thr Val Asp Lys

Leu Met Gln Val Gly Ile Asn Ile Val Val Gln Tyr Glu Pro His Asn

Ile Glu Phe Ile Glu Lys Met Glu Pro Asn Asn Asn Asn Asn Asn 530 540

Asn Asn Asn Asn Ile Leu Phe Tyr Val Asp Ile Lys Asn Ile Met
545 550 555 560

Asn Ser Ser Glu Lys Asn Ile Lys Leu Ser Asn Ser Lys Gly Tyr Gly 565 570 575

Leu Ile Leu Asn Gly Lys Glu Asp Ile Gln Thr Ile Lys Lys Ile Lys
580 585 590

Glu Leu Asn Arg Arg Pro Leu Phe Ile Leu Leu Lys Ser Asp Asn Ile 595 600 605

Tyr Glu His Val Leu Ile Thr Arg Arg Ile Asn Glu Leu Leu Gln Ser 610 615 620

Leu Asn Ile Asn Ile Pro Tyr Ile His Tyr Val Asp Ile Asn Ser Asn 625 630 635 640

Asn Tyr Asp Asp Ile Leu Val Asn Ser Thr Leu Tyr Ala Gly Ser Cys 645 650 655

Leu Met Asp Leu Met Gly Asp Gly Leu Ile Val Asn Val Thr Asn Asp
660 665 670

Val Leu Thr Asn Lys Lys Lys Ile Glu Thr Lys Tyr Asp Glu Lys Glu 675 680 685

Glu Val Glu Glu Glu Gly Asn Asn Lys Asp Ile His Arg Leu Leu Ser 690 695 700

Arg Val Ala Leu Asn Ser Phe Leu Thr Leu Asn Ile Leu Gln Asp Thr 705 710 715 720

Arg Ile Arg Leu Phe Lys Thr Asp Tyr Ile Ala Cys Pro Ser Cys Gly
725 730 735

Arg Thr Leu Phe Asn Ile Gln Glu Thr Thr Lys Lys Ile Met Lys Leu

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationale Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

Veröffentlichungsdatum:

INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) WO 00/17233 (11) Internationale Veröffentlichungsnummer: (51) Internationale Patentklassifikation 7: C12N 9/90, 9/10, 9/12, C12Q 1/48 **A3** (43) Internationales

PCT/EP99/07055

22. September 1999 (22) Internationales Anmeldedatum:

(22.09.99)

(30) Prioritätsdaten:

198 43 279.8 199 23 567.8

(21) Internationales Aktenzeichen:

22. September 1998 (22.09.98) DE DR 21. Mai 1999 (21.05.99)

(71)(72) Anmelder und Erfinder: JOMAA, Hassan [DE/DE]; Breslauer Strasse 24, D-35398 Gießen (DE).

(74) Anwälte: PANTEN, Kirsten usw.; Reichel und Reichel, Parkstrasse 13, D-60322 Frankfurt am Main (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DK, DM, EE, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, MIL, MR, NE, SN, TD, TG).

30, März 2000 (30.03.00)

Veröffentlicht

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 25. Mai 2000 (25.05.00)

(54) Title: GENES OF THE 1-DESOXY-D-XYLULOSE BIOSYNTHETIC PATHWAY

(54) Bezeichnung: GENE DES 1-DESOXY-D-XYLULOSE-BIOSYNTHESEWEGS

(57) Abstract

The invention relates to the 1-desoxy- D-xylulose- 5-phosphate reductoisomerase gene, the 1-desoxy- D-xylulose- 5-phosphatesynthase gene and the gcpE gene of the 1-desoxy- D-xylulose biosynthetic pathway and to their use for transforming vectors, host organisms and plants and for determining substances that inhibit this biosynthetic pathway.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft das 1-Desoxy- D-xylulose- 5-phosphatreduktoisomerase -Gen, das 1-Desoxy- D-xylulose-5-phosphat- Synthase- Gen und das gcpE-Gen des 1-Desoxy- D-xylulose- Biosynthesewegs und ihre Verwendung zur Transformation von Vektoren, Wirtsorganismen und Pflanzen und zur Bestimmung von Stoffen, die diesen Biosyntheseweg inhibieren.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

		Albanien	RS	Spanien	LS	Lesotho	SI	Slowenien
	AL	Armenien	FI	Finnland	LT	Litaven	SK	Slowakei
	AM	Osterreich	PR	Frankreich	LU	Luxemburg	SN	Senegal
	AT			Gabun	LV	Lenland	SZ	Swasiland
	AU -	Australien Aserbaidschun	GA GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
	AZ			_	MD	Republik Moldau	TG	Togo
	BA	Bosnien-Herzegowina	GE	Georgien	MG	Madagaskar	TJ	Tadschikistan
	BB	Barbados	GH	Ghana	MK	Die ehemalige jugoslawische	TM	Turkmenistan
	BE	Belgien	GN	Guinea	1455	Republik Mazedonica	TR	Türkei
	BF	Burkina Faso	GR	Griechenland	ML	Mali	TT	Trinidad und Tobago
Ì	BG	Bulgarien	HU	Ungam	MN	Mongolci	ÜA	Ukraine
	BJ	Benin	IB	Irland	MR	Mauretanien	UG	Uganda
1	BR	Brasilien	11L	Israel	MW	Malawi	us	Vereinigte Staaten von
ŀ	BY	Belarus	IS	Island		Mexiko ·	•	Amerika
	CA	Kanada	IT	Italien	MX		UZ.	Usbekistan
l	CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	VN	Vietnam
l	CC	Kongo	KE	Kenia -	NL	Niederlande	YU	Jugoslawien
l	CH	Schweiz	KG	Kirgisistan	NO	Norwegen	zw	Zimbabwe
l	a	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	۷W	Zanozowe
ı	CM	· Kamerun		Korea	PL	Polen		
١	CN	China	KR	Republik Korea	PT	Portugal	•	
ı	Cn	Kuba	KZ.	Kasachstan	RO	Ruminien		
ĺ	CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
١	DE	Deutschland	u	Liechtenstein	SD	Sudan		
I	DK	Dänemark	LK	Sri Lanka	SE	Schweden		
ł	EE	Estland	LR	Liberia	SG	Singapur		
1								

PCT/EP 99/07055

A. CLASSIFI	CATION OF BUBLECT MATTER	C1001/49	
IPC 7	C12N9/90 C12N9/10 C12N9/12	C1201/48	
			·
	International Patent Classification (IPC) or to both national classifica-	don and IPC	
B. FIELDS 8	SEARCHED currentation searched (classification system followed by classification	on symbols)	
IPC 7	C12N C12Q	• •	
	· · · · · · · · · · · · · · · · · · ·	to the the district	arrhad
Documentati	on searched other than minimum documentation to the extent that s	ruch documents are included in the series so	
Bectronic de	da base consulted during the International search (name of data be	ee and, where practical, setucit territor and	
		•	
	• •	·	·
	ENTS CONSIDERED TO BE RELEVANT Challon of document, with indication, where appropriate, of the re-	levert passages	Relevent to claim No.
Category *	Chason of Goodiners, Wall Educated, Wiles 447-44		
E,L	WO 99 52938 A (HASSAN JOMAA)		1,2,4,
-,-	21 October 1999 (1999-10-21)		8-12, 16-18
ŀ	see SeqID's;Priority of inv. s	hared by	
	W09952938 and PCTEP99/07055 and	present in	
1	DE19816196.4, DE19825585.3, DE1982 9831637.2, DE19831639.9 or DE1983	18097.1,UE1 11638.0 may	
1	be invalid; A.4C(4) PC.	**	· ·
1	_	-/	
1			
			·
l	<u> </u>		dh emer
X ~	arther documents are fisted in the continuation of box C.	Peters family members are last	· · · · · · · · · · · · · · · · · · ·
* Special	cetegories of cited documents:	"T" later document published after the in or priority date and not in conflict will	
"A" docu	ment defining the general state of the art which is not aldered to be of porticular relevance	ched to understand the principle or the invention	aledly discovering the
	or document but published on or after the international g date	"X" document of particular relevance; the cannot be considered novel or carm	
"L" docu	ment which may throw doubts on priority claim(s) or oh is cited to establish the publication date of another	Involve an inventive step when the	cislmed Invention
cha	son or other special reason (as specified) Iment referring to an oral disclosure, use, exhibition or	-Y- document or paracular feet a bit volve an cannot be considered to trivolve an document is combined with one or i ments, such combination being obv	none other such dook-
TP* door	er means iment published prior to the international filing date but	in the sat. "8." document member of the same pete	
late	or than the priority date claimed	Date of mailing of the international	
Date of t	he actual completion of the international search		•
	7 March 2000	23/03/2000	
Name a	nd making address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patendam 2 NL — 2280 HV Rijevijk	M. Abadaa C	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Hoekstra, S	

Inh. Sonel Application No PCT/EP 99/07055

		FC1/EF 39/0/033
(Continue	Rtion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevent to claim No.
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Melecadur no cross ser
X	PUTRA ET AL: "Incorporation of	15
	'2,3-'13!C2!- and '2,4-'13!C2!-D-1-Deoxyxylulose into	
	ubiquinone of Escherichia coli via the Mevalonate-Independent pathway for	
	Isoprenoid Biosynthesis" TETRAHEDRON LETTERS, NL, ELSEVIER SCIENCE	
	PUBLISHERS, AMSTERDAM, vol. 39, no. 39, 1998, pages 23-26-26,	
٠.	XP002116676 ISSN: 0040-4039	
· ·	figure 1	15
X	KUZUYAMA ET AL: "Direct formation of 2-C-Methyl-D-Erythritol 4-phosphate from 1-Deoxy-D-Xylulose 5-phosphate	
	Reductoisomerase, a new enzyme in the non-mevalonate pathway to isopentenyl	
	diphosphate" TETRAHEDRON LETTERS, NL, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM,	
,	vol. 39, no. 39, 1998, pages 4509-4512-44512, XP002116675 ISSN: 0040-4039 figure 1	
P,X	SCHWENDER, J. ET AL.: "Cloning and heterologous expression of a cDNA encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana"	1,9–12
•	FEBS LETTERS, vol. 455, July 1999 (1999-07), pages 140-144, XP002132424 the whole document	
P,A	DE 197 52 700 A (HOECHST SCHERING AGREVO GMBH) 2 June 1999 (1999-06-02) the whole document	1-12
A	LANGE ET AL: "A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway"	1-18
	FASEB JOURNAL,US,FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD, vol. 95, March 1998 (1998-03), pages 2100-2104, XP002116672 ISSN: 0892-6638	
P,X	the whole document EMINY DATABASE: "AC: EF111813"	1,9-12
' ' '	PLASMODIUM FALCIPARUM 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE, 11 January 1999 (1999-01-11), XP002132425 see : Scores	
1		·

toth Jonel Application No PCT/EP 99/07055

C.(Continu	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Р,Х	TREMBL DATABASE: "AC: 096693" PLASMODIUM FALCIPARUM 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE, 1 May 1999 (1999-05-01), XP002132426 see: Scores	1,9-12	
X A	SPRENGER ET AL: "Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol" FASEB JOURNAL, US, FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD, vol. 94, November 1997 (1997-11), pages 12857-12862, XP002116674 ISSN: 0892-6638 figure 2 figure 1	2,9-12	
		3,9-12	
P,X	TREMBL DATABASE: "AC: QZ8HO" CHLAMYDIA PNEUMONIAE GCPE PROTEIN,	3,3 a.	
	1 May 1999 (1999-05-01), XP002132427 see : scores		
	see : scores		
	·		
,			
			•
1			
1			
1			
1]	
1			

Form PCT/IBA/210 (communition of second sheet) (Ady 1992)

information on patent family members

toth. Jonel Application No PCT/EP 99/07055

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9952938 A	21-10-1999	DE 19825585 A DE 19828097 A DE 19831637 A AU 4120899 A AU 4481699 A WO 9952515 A WO 9966875 A WO 0004031 A WO 0003699 A	21-10-1999 30-12-1999 27-01-2000 01-11-1999 01-11-1999 21-10-1999 29-12-1999 27-01-2000 27-01-2000
DE 19752700 A	02-06-19 99	DE 29800547 U JP 11169186 A	08-04-1999 29-06-1999

PCT/EP 99/07055

A KLASSIFI IPK 7	C12N9/90 C12N9/10 C12N9/12	C12Q1/48	
Nach der Inte	rmationalen Patentidassifikation (IPK) oder nach der nationalen Klassif	ikstion und der IPK	
B. RECHER	CHIERTE GEBI ETE		
	er Mindestprütstoff (Klassifikationssystem und Klassifikationssymbole C12N C12O		
	V.1.11	•	
	z aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowe	•	·
Während de	internationalen Recherche konsultierte elektronische Datenbank (Nan	ne der Datenbank und evil, verwendete S	uchbegrille).
	SENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angebe	for In Retrocks kommenden Telle	Betr, Anspruch Nr.
Kategorie*	Bezeichnung der Veröffentlichung, soweit erfordenten unter Aufgebo	od el Decama Kollsina del 1	
E,L	WO 99 52938 A (HASSAN JOMAA)		1,2,4,
-,-	21. Oktober 1999 (1999-10-21)		8-12, 16-18
	Siehe SeqID's;Priority of inv. sha W09952938 and PCTEP99/07055 and pi	ared by	
	DE19816196.4.DE19825585.3.DE198280	097.1,DE1	
	9831637.2,DE19831639.9 or DE198310 be invalid; A.4C(4) PC.	538.0 may	
<u> </u>			
1	7	/	
•	· · · · · · · · · · · · · · · · · · ·		
İ			·
		'	
1	· ·		
1			
		<u> </u>	
	ettere Veröffentlichungen sind der Fortsetzung von Feld C zu tnehmen	X Siehe Anheng Patentiamille	
	re Kategorien von angegebenen Veröffentlichungen : fentlichung, die den aligemeinen Stand der Technik definiert.	T Spätere Veröffentlichung, die nach der oder dem Prioritätsdatum veröffentlich Anmeldung nicht kollidiert, sondem na	
aber	r nicht als besonders bedeutsam arzusehen let e Dokument, das jedoch erst am oder nach dem Internationalen	Erfindung zugrundellegenden Pfinzips	odet det its Triftenoenefermen
Ann	teldedatum veröffertilicht worden list tentilchung, die geelgnet let, einen Prioritätsanspruch zweitehalt er-	"X" Veröffentlichung von besonderer Bede	CLINED INCOME OF THE STREET
ache and	einen zu lassen, oder durch die das veröffermichungsdamm erwei eren im Recherchenberichtigenannten Veröffentlichung belegt werden.	enfinderleicher Tätigkeit beruhend beit	e nor de beansoruchte Erfindung
81,16	oder die aus einem anderen besonderen Grund angegeben ist (wie geführt)	kann nicht als auf effinderlacher Tätig werden, wenn die Veröffentlichung m Veröffentlichungen dieser Kategorie is	Verbindung gebracht wird und
elne	ftentichung, die sich auf eine mündliche Offenbaung. Berutzung, eine Ausstellung oder andere Maßnahmen bezieht ftentichung, die vor dem Internationalen Anmeldedatum, aber nach	diese Verbindung für einen Fachman *&" Veröffentlichung, die Mitglied derselbe	I tita tene Aerim ser
den	n beenspruchten Prioritätsdatum veröffentlicht worden lat es Abschlusses der Internationalen Recherohe	Absendedetum des Internationalen R	
	7. März 2000	23/03/2000	
<u></u>	nd Postanachrith der Internationalen Recherchenbehörde	Bevolknächtigter Bedlensteter	
Mame un	Europälachee Patentamt, P.B. 5816 Patentiann 2	• • • • • • • • • • • • • • • • • • • •	
	NL — 2280 HV Rijewijk Tel. (+31-70) 340—2040, Tx. 31 651 epo nl. Fax: (+31-70) 340—3016	Hoekstra, S	

Formblett PCT/ISA/210 (Blatt 2) (Auf 1992)

PCT/EP 99/07055

degorie*	mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angebe der in Betracht kommenden Telle	Betr. Anspruch Nr.
		15
	PUTRA ET AL: "Incorporation of	1 2
	'2,3-'13!C2!- and	
	'2,4-'13!C2!-D-1-Deoxyxylulose into	
	ubiquinone of Escherichia coli via the	1
	Mevalonate-Independent pathway for	
	Isoprenoid Biosynthesis"	
	TETRAHEDRON LETTERS, NL, ELSEVIER SCIENCE	
	PUBLISHERS, AMSTERDAM,	
	Bd. 39, Nr. 39, 1998, Seiten 23-26-26,	
		i i
	XP002116676	
•	ISSN: 0040-4039	
	Abbildung 1	
-		15
X	KUZUYAMA ET AL: "Direct formation of	15
	2-C-Methyl-D-Erythritol 4-phosphate from	
•	1-Deoxy-D-Xylulose 5-phosphate	
	Reductoisomerase, a new enzyme in the	
	non-mevalonate pathway to isopentenyl	
		•
	diphosphate"	
	TETRAHEDRON LETTERS, NL, ELSEVIER SCIENCE	
	PUBLISHERS, AMSTERDAM,	
	Bd. 39, Nr. 39, 1998, Seiten	
	4509-4512-44512, XP002116675	1
	ISSN: 0040-4039	1
	Abbildung 1	1
P,X	SCHWENDER, J. ET AL.: "Cloning and	1,9-12
' ,^	heterologous expression of a cDNA encoding	
	1-deoxy-d-xylulose-5-phosphate	
	1-deoxy-d-xyluluse-s-phosphace	· [
	reductoisomerase of Arabidopsis thallana"	1.
, i	FEBS LETTERS,	
	Bd. 455, Juli 1999 (1999-07), Seiten	
	140-144, XP002132424	. •
1	das ganze Dokume nt	
		1-10
P,A	DE 197 52 700 A (HOECHST SCHERING AGREVO	1-12
′	GMBH) 2. Juni 1999 (1999-06-02)	
l .	das ganze Dokument	
1	and Antibo sources	
l a	LANGE ET AL: "A family of transketolases	1-18
A	that directs isoprenoid biosynthesis via a	
1	that directs isopremote network	
i	mevalonate-independent pathway	
1	FASEB JOURNAL, US, FED. OF AMERICAN SOC. FOR	
i	EXPERIMENTAL BIOLOGY, BETHESDA, MD,	İ
1	Bd. 95, März 1998 (1998-03), Seiten	1
1	2100-2104, XP002116672	· ·
1	ISSN: 0892-6638	
1	das ganze Dokument	1
1.	nas dative novamente	1
l	FUTUR DATADACE. MAC. EE1110124	1,9-12
P,X	EMINY DATABASE: "AC: EF111813"	-,- ==
1	PLASMODIUM FALCIPARUM 1-DEOXY-D-XYLULOSE	1
1	5-PHOSPHATE REDUCTOISOMERASE,	
1	11. Januar 1999 (1999-01-11), XP002132425	
1	Siehe: Scores	
1		
	-/	
•	1	

PCT/EP 99/07055

	PCIZERS	19/0/039
.(Forteetz	ng) ALB WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
ategorie"	Bezeichtung der Vertriermatung, sowielentriestell auf	<u> </u>
, X	TREMBL DATABASE: "AC: 096693" PLASMODIUM FALCIPARUM 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE, 1. Mai 1999 (1999-05-01), XP002132426 Siehe: Scores	1,9-12
	SPRENGER ET AL: "Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol" FASEB JOURNAL, US, FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD, Bd. 94, November 1997 (1997-11), Seiten 12857-12862, XP002116674 ISSN: 0892-6638	2,9-12
A	Abbildung 2 Abbildung 1	15
P,X	TREMBL DATABASE: "AC: QZ8HO" CHLAMYDIA PNEUMONIAE GCPE PROTEIN, 1. Mai 1999 (1999-05-01), XP002132427	3,9–12
	Siehe: scores	
		,

Angeben zu Veröffentlichungen, die zur eelben Petentfamilie gehören

Inh. Jonales Aktenzeichen
PCT/EP 99/07055

Im Recherchenbericht; angeführtes Patentdokument	Datum der Veröffentlichung	. Mitglied(er) der Patentfam ille	Datum der Veröffentlichung
WO 9952938 A	21-10-1999	DE 19825585 A DE 19828097 A DE 19831637 A AU 4120899 A AU 4481699 A WO 9952515 A WO 9966875 A WO 0004031 A	21-10-1999 30-12-1999 27-01-2000 01-11-1999 01-11-1999 21-10-1999 29-12-1999 27-01-2000
DE 19752700 A	02-06-1999	WO 0003699 A DE 29800547 U JP 11169186 A	08-04-19 99 29-06-19 99