

Procesamiento Digital de Imágenes

Fundamentos

Sistema de Coordenadas

Representación Matricial

$$f = \begin{bmatrix} f(1,1) & f(1,2) & \cdots & f(1,N) \\ f(2,1) & f(2,2) & \cdots & f(2,N) \\ \vdots & \vdots & & \vdots \\ f(M,1) & f(M,2) & \cdots & f(M,N) \end{bmatrix}$$

Imagen Digital \rightarrow Matriz M x N $f(m,n) \rightarrow$ Valor de

intensidad

M: nro. de filas

del pixel

N: nro. de columnas

Formatos de Imagen

Format Name	Description	Recognized Extensions
TIFF	Tagged Image File Format	.tif,.tiff
JPEG	Joint Photographic Experts Group	.jpg,.jpeg
GIF	Graphics Interchange Format [†]	.gif
BMP	Windows Bitmap	.bmp
PNG	Portable Network Graphics	.png
XWD	X Window Dump	.xwd

[†]GIF is supported by imread, but not by imwrite.

Some of the image/graphics formats supported by imread and imwrite, starting with MATLAB 6.5. Earlier versions support a subset of these formats. See online help for a complete list of supported formats.

TABLE 2.1

Lectura de Imágenes

```
>>f = imread('cameraman.tif');
>>[M,N] = size(f);
>>whos f
```

Visualización de Imágenes

>>imshow(f,G) G: niveles de intensidad usado para mostrar la imagen (si se omite, default G=256)

Proc. Digital de Imágenes

Visualización de Imágenes

```
>>imshow(f,[low,high])
```

Muestra en negro los valores de intensidad menores o iguales que low, y en blanco los valores mayores o iguales que high.

```
>>imshow(f,[ ])
```

Setea como low al menor valor en f, y como high al máximo valor. (mejora el rango dinámico)

```
>>pixval
```

>>impixelinfo

Permite obtener la intensidad de cada pixel.

Visualización de Imágenes

FIGURE 2.3 (a) An image, h, with low dynamic range. (b) Result of scaling by using imshow (h,[]). (Original image courtesy of Dr. David R. Pickens, Dept.

a b

Radiological Sciences, Vanderbilt University Medical Center.)

of Radiology &

La Figura 2.3(a) tiene bajo rango dinámico

```
>>h = imread('xray-chest.png');
>>imshow(h)
```

Se mejora el rango dinámico (Fig, 2.3(b)) con los comandos

```
>>figure, imshow(h,[])
```

Escritura de Imágenes

```
>>imwrite(h,'filename','tif')
>>imwrite(h,'filename.jpg',q)
```

Donde q determina el grado de compresión jpeg (0 < q < 100). Los detalles de una imagen pueden verse con el comando:

>>imfinfo bubbles.png

Escritura de Imágenes

Un factor de compresión alto (q bajo) introduce artefactos en la imagen.

a b c d e f

FIGURE 2.4

(a) Original image. (b) through (f) Results of using jpg quality values q = 50, 25, 15, 5, and 0, respectively. False contouring begins to be barely noticeable for q = 15 [image (d)] but is quite visible for q = 5 and q = 0.

```
X = imread('bubbles.png');
imwrite(X,'bubbles50.jpeg','q',50);
imwrite(X,'bubbles25.jpeq','q',25);
imwrite(X,'bubbles10.jpeg','g',10);
imwrite(X,'bubbles05.jpeg','q',5);
X05=imread('bubbles05.jpeg');
K=imfinfo('bubbles05.jpeg');
X05_bytes=K.Width*K.Height*K.BitDepth/8;
X05 Compressed bytes=K.FileSize;
X05 Compression ratio=X05 bytes/X05 Compressed bytes;
X05_Compression_ratio =
```

Métricas de Distorsión de Imágenes

 $A_{M \times N}$ imagen original

 $\tilde{A}_{M\times N}$ imagen comprimida

Root Mean Square Error (Métrica no perceptual)

$$RMSE = \sqrt{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \left[\tilde{A}(i,j) - A(i,j) \right]^{2}}$$

Cambio de resolución dpi

dpi: dots per inches

X es una imagen en formato jpg de 450 x 450 pixeles, con resolución 200 dpi, resulta en una imagen con dimensiones de 2.25 x 2.25 inches (pulgadas). Manteniendo el número de pixeles pero ahora con resolución de 300 dpi, resulta en una imagen con dimensiones 1.5 x 1.5 inches.

a

FIGURE 2.5

Effects of changing the dpi resolution while keeping the number of pixels constant. (a) A 450×450 image at 200 dpi (size = $2.25 \times$ 2.25 inches). (b) The same 450×450 image, but at 300 dpi (size = $1.5 \times$ 1.5 inches). (Original image courtesy of Lixi, Inc.)

>> imwrite(X,'Xsc.tif','compression', `none','resolution', [300,300])

Aplicable solo para imágenes tif

Clases de datos

Name	Description
double	Double-precision, floating-point numbers in the approximate range -10^{308} to 10^{308} (8 bytes per element).
uint8	Unsigned 8-bit integers in the range [0, 255] (1 byte per element).
uint16	Unsigned 16-bit integers in the range [0, 65535] (2 bytes per element).
uint32	Unsigned 32-bit integers in the range [0, 4294967295] (4 bytes per element).
int8	Signed 8-bit integers in the range $[-128, 127]$ (1 byte per element).
int16	Signed 16-bit integers in the range $[-32768, 32767]$ (2 bytes per element).
int32	Signed 32-bit integers in the range $[-2147483648, 2147483647]$ (4 bytes per element).
single	Single-precision floating-point numbers with values in the approximate range -10^{38} to 10^{38} (4 bytes per element).
char	Characters (2 bytes per element).
logical	Values are 0 or 1 (1 byte per element).

TABLE 2.2 Data classes. The first eight entries are referred to as numeric classes; the ninth entry is the character class, and the last entry is of class

logical.

Conversión entre clases y tipos de imágenes

Name	Converts Input to:	Valid Input Image Data Classes
im2uint8	uint8	logical, uint8, uint16, and double
im2uint16	uint16	logical, uint8, uint16, and double
mat2gray	double (in range $[0,1]$)	double
im2double	double	logical, uint8, uint16, and double
im2bw	logical	uint8, uint16, and double

TABLE 2.3

Functions in IPT for converting between image classes and types. See Table 6.3 for conversions that apply specifically to color images.

Transformación de Imágenes mediante Indexado de arreglos

a b c d e

FIGURE 2.6
Results obtained using array indexing.
(a) Original image. (b) Image flipped vertically. (c) Cropped image.
(d) Subsampled image. (e) A horizontal scan line through the middle of the image in (a).

Operator	Name	MATLAB Function	Comments and Examples
+	Array and matrix addition	plus(A, B)	a + b, A + B, or a + A.
-	Array and matrix subtraction	minus(A, B)	a - b, A - B, A - a, or $a - A$.
.*	Array multiplication	times(A, B)	C = A.*B,C(I,J) = A(I,J)*B(I,J).
*	Matrix multiplication	mtimes(A, B)	A*B, standard matrix multiplication, or a*A, multiplication of a scalar times all elements of A.
./	Array right division	rdivide(A, B)	C = A./B, C(I, J) = $A(I, J)/B(I, J).$
٠١	Array left division	ldivide(A, B)	$C = A. \setminus B, C(I, J)$ = $B(I, J) / A(I, J)$.
/	Matrix right division	mrdivide(A, B)	A/B is roughly the same as A*inv(B), depending on computational accuracy.
\	Matrix left division	mldivide(A, B)	A\B is roughly the same as inv(A)*B, depending on computational accuracy.
.^	Array power	power(A, B)	If $C = A \cdot B$, then $C(I, J) = A(I, J) \cdot B(I, J)$.
^	Matrix power	mpower(A, B)	See online help for a discussion of this operator.
.'	Vector and matrix transpose	transpose(A)	A.'. Standard vector and matrix transpose.
1	Vector and matrix complex conjugate transpose	ctranspose(A)	A'. Standard vector and matrix conjugate transpose. When A is real A.' = A'.
+	Unary plus	uplus (A)	+A is the same as 0 + A.
_	Unary minus	uminus (A)	-A is the same as $0 - A$ or $-1*A$.
:	Colon		Discussed in Section 2.8.

TABLE 2.4

Array and matrix arithmetic operators. Computations involving these operators can be implemented using the operators themselves, as in A + B, or using the MATLAB functions shown, as in plus (A, B). The examples shown for arrays use matrices to simplify the notation, but they are easily extendable to higher dimensions.

Operaciones aritméticas con imágenes

Function	Description
imadd	Adds two images; or adds a constant to an image.
imsubtract	Subtracts two images; or subtracts a constant from an image.
immultiply	Multiplies two images, where the multiplication is carried out between pairs of corresponding image elements; or multiplies a constant times an image.
imdivide	Divides two images, where the division is carried out between pairs of corresponding image elements; or divides an image by a constant.
imabsdiff	Computes the absolute difference between two images.
imcomplement	Complements an image. See Section 3.2.1.
imlincomb	Computes a linear combination of two or more images. See Section 5.3.1 for an example.

TABLE 2.5
The image arithmetic functions supported by IPT.

Operadores relacionales y lógicos

Operator	Name
<	Less than
<=	Less than or equal to
>	Greater than
>=	Greater than or equal to
==	Equal to
~=	Not equal to

Operator	Name
&	AND
1	OR
~	NOT

TABLE 2.7 Logical operators.

TABLE 2.6 Relational operators.

Funciones lógicas

Function	Comments
xor (exclusive OR)	The xor function returns a 1 only if both operands are logically different; otherwise xor returns a 0.
all	The all function returns a 1 if all the elements in a vector are nonzero; otherwise all returns a 0. This function operates columnwise on matrices.
any	The any function returns a 1 if any of the elements in a vector is nonzero; otherwise any returns a 0. This function operates columnwise on matrices.

TABLE 2.8 Logical functions.

Funciones lógicas

Function	Description
iscell(C)	True if C is a cell array.
iscellstr(s)	True if s is a cell array of strings.
ischar(s)	True if s is a character string.
isempty(A)	True if A is the empty array, [].
isequal(A, B)	True if A and B have identical elements and dimensions.
isfield(S, 'name')	True if 'name' is a field of structure S.
isfinite(A)	True in the locations of array A that are finite.
isinf(A)	True in the locations of array A that are infinite.
isletter(A)	True in the locations of A that are letters of the alphabet.
islogical(A)	True if A is a logical array.
ismember(A, B)	True in locations where elements of A are also in B.
isnan(A)	True in the locations of A that are NaNs (see Table 2.10 for a definition of NaN).
isnumeric(A)	True if A is a numeric array.
isprime(A)	True in locations of A that are prime numbers.
isreal(A)	True if the elements of A have no imaginary parts.
isspace(A)	True at locations where the elements of A are whitespace characters.
issparse(A)	True if A is a sparse matrix.
isstruct(S)	True if S is a structure.

TABLE 2.9

Some functions that return a logical 1 or a logical 0 depending on whether the value or condition in their arguments are true or false. See online help for a complete list.

Algunas variables y constantes

Function	Value Returned
ans	Most recent answer (variable). If no output variable is assigned to an expression, MATLAB automatically stores the result in ans.
eps	Floating-point relative accuracy. This is the distance between 1.0 and the next largest number representable using double-precision floating point.
i(orj)	Imaginary unit, as in 1 + 2i.
NaN or nan	Stands for Not-a-Number (e.g., 0/0).
pi	3.14159265358979
realmax	The largest floating-point number that your computer can represent.
realmin	The smallest floating-point number that your computer can represent.
computer	Your computer type.
version	MATLAB version string.

TABLE 2.10Some important variables and constants.

Control de flujo

Statement	Description
if	if, together with else and elseif, executes a group of statements based on a specified logical condition.
for	Executes a group of statements a fixed (specified) number of times.
while	Executes a group of statements an indefinite number of times, based on a specified logical condition.
break	Terminates execution of a for or while loop.
continue	Passes control to the next iteration of a for or while loop, skipping any remaining statements in the body of the loop.
switch	switch, together with case and otherwise, executes different groups of statements, depending on a specified value or string.
return	Causes execution to return to the invoking function.
trycatch	Changes flow control if an error is detected during execution.

TABLE 2.11 Flow control statements.

Visualización de funciones de 2 variables

Función sinusoidal en 2D

$$f(x, y) = A \sin(u_0 x + v_0 y)$$

 $x = 0, 1, 2, \dots, M - 1$
 $y = 0, 1, 2, \dots, N - 1$

FIGURE 2.7 Sinusoidal image generated in Example 2.13.

Ejemplo 2.13: Implementar usando lazos for anidados y el comando meshgrid. Comparar tiempos de cómputo usando comandos tic y toc.