AIPI 590 - Human-AI Interaction

Neha L Senthil

October 20, 2025

LIME: Local Interpretable Model-Agnostic Explanations (Summary)

LIME is a technique to explain the predictions of complex, black-box machine learning models. Instead of trying to explain the entire model, LIME focuses on explaining a specific prediction for a single data point. The key idea is to approximate the black-box model locally (around the chosen instance) with a simple, interpretable model.

This process provides human-understandable insights into which features played the biggest role in the model's decision for that instance. LIME does not depend on the underlying model, making it a model-agnostic explanation approach.

Flowchart

Algorithm

Goal: Explain how a complex (black-box) model makes a specific prediction for one instance x_0 by learning a simple, interpretable model around it. This is more in depth compared to the flow chart, aimed more for developers and people looking at this algorithm from a technical perspective.

Inputs:

- f(x): trained black-box model
- x_0 : instance to explain
- X: background dataset
- N: number of neighborhood samples to generate (e.g., 5000)
- σ : kernel width for measuring locality
- g: simple surrogate model (e.g., linear or decision tree)
- K: number of top features to display

Outputs:

- Top-K features that most strongly influenced the model near x_0
- A local fidelity score showing how well the explanation matches the original model

Algorithm Steps:

- 1. Select an instance. Choose the particular data point x_0 whose prediction you want to explain.
- 2. Build a neighborhood around x_0 . Construct a small region around the chosen instance x_0 to study how the model behaves for similar data points.
 - (2a) If sufficient nearby data points already exist: Select those samples from the original dataset X that lie close to x_0 based on a distance measure (e.g., Euclidean distance). These points form the local neighborhood.
 - (2b) If the dataset is sparse around x_0 : Generate additional synthetic samples by making small, controlled changes to x_0 . For example:
 - Add slight Gaussian noise to numeric features to create realistic variations.
 - Randomly flip categorical values with a small probability while preserving valid feature combinations.

This process creates a smooth 'cloud' of data around x_0 , ensuring enough samples to approximate the model's local behavior.

- 3. **Get model predictions.** Pass each sample (real or synthetic based on output from 2) through the black-box model f(x) and record the predicted value or class probability.
- 4. Compute proximity weights. Assign a weight w_i to each sample z_i based on its distance from x_0 :

$$w_i = \exp\left(-\frac{d(z_i, x_0)^2}{\sigma^2}\right)$$

Nearby samples have higher weights, ensuring the explanation focuses on the local region around x_0 .

- 5. **Transform into an interpretable representation.** Prepare the data so that it can be understood both by the surrogate model and by humans:
 - Machine side: Normalize numeric features and one-hot encode categorical features, producing $Z^{(int)}$ for model training.
 - **Human side:** Keep a mapping so each encoded feature can later be converted back to a readable concept (e.g., *Gender: Male, Income: \$75,000*).
- 6. Fit the interpretable surrogate model. Train a simple model g (e.g., sparse linear regression or small decision tree) on the interpretable data $Z^{(int)}$ using the proximity weights w_i . This surrogate mimics the behavior of f(x) locally around x_0 .
- 7. Extract and rank feature importance.
 - (7a) Obtain feature coefficients β_j from g.

- (7b) Rank features by their absolute weights $|\beta_j|$ to determine their influence strength.
- (7c) Select the top-K most important features and translate their encoded form back into human labels.
- (7d) Interpret each feature's sign:
 - Positive β_j : increasing this feature raises the model's predicted outcome.
 - Negative β_i : increasing this feature lowers the model's predicted outcome.
- 8. Output the top features. Present the top-K features in a readable table showing their names, values, weights, and qualitative interpretation. Also report a local fidelity measure (e.g., weighted R^2) to indicate how well g matches f near x_0 .

Example Output Table:

Feature	Value	Weight	Interpretation
Credit Utilization	0.82	+0.70 -0.60 $+0.40$	Higher utilization increases risk
Income	\$75,000		Higher income decreases risk
Debt Ratio	0.55		Higher debt increases risk