2.2 Integral de Riemann e aplicações

Definição de integral

Propriedades do integral definido Teorema fundamental do cálculo

Métodos de integração

Integração por decomposição Integração imediata Integração por partes Integração por substituição

Aplicações do integral de Riemann

Áreas de domínios planos Comprimento de curvas planas

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

1 / 45

Motivação

Calcular a área sob o gráfico da função limitada $f:[a,b]\longrightarrow \mathbb{R}$ e $f(x)\geq 0.$

M.Isabel Caiado [MIEInf] Cálculo-2019-20 2 / 45

Uma aproximação para a área de $\mathcal D$ é, por exemplo, a área do retângulo cuja base mede b-a e cuja altura mede $f(\widetilde x)$, sendo $\widetilde x$ um qualquer ponto de [a,b]

Neste caso

área do retângulo
$$= f(\widetilde{x})(b-a)$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

3 / 45

A aproximação anterior pode ser significativamente melhorada, por exemplo

A área a sombreado é,

$$f(\widetilde{x_0})(x_1-a) + f(\widetilde{x_1})(x_2-x_1) + f(\widetilde{x_2})(x_3-x_2) + f(\widetilde{x_3})(b-x_3)$$

M.Isabel Caiado [MIEInf] Cálculo-2019-20 4 / 45

Uma outra (ainda melhor) aproximação à área de \mathcal{D} é

A área a sombreado é, agora,

$$f(\widetilde{x_0})(x_1-a)+f(\widetilde{x_1})(x_2-x_1)+\cdots+f(\widetilde{x_{14}})(x_{15}-x_{14})+f(\widetilde{x_{15}})(b-x_{15})$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

5 / 45

Integral de Riemann: definição

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada.

Considere-se uma partição $\mathcal P$ do intervalo [a,b], isto é uma subdivisão do intervalo [a,b] em n subintervalos $[x_k,x_{k+1}]$ cuja reunião é [a,b] e cujos extremos $x_0,x_1,\ldots,x_{n-1},x_n$ tais que

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

lacktriangle Chama-se soma de Riemann de f no intervalo [a,b] para ${\mathcal P}$ a

$$\sum_{k=0}^{n-1} f(\widetilde{x_k}) \left(x_{k+1} - x_k \right)$$

onde cada $\widetilde{x_k}$ é escolhido arbitrariamente em $[x_k, x_{k+1}]$

ou

$$\sum_{k=0}^{n-1} f(\widetilde{x_k}) \, \Delta \, x_{k+1}, \qquad \text{onde} \quad \Delta \, x_{k+1} = x_{k+1} - x_k \, .$$

M.Isabel Caiado [MIEInf] Cálculo-2019-20 6 / 45

▶ [Função integrável] Diz-se que f é integrável (no sentido de Riemann) no intervalo [a, b] quando existe

$$I = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\widetilde{x_k}) \, \Delta \, x_{k+1}$$

para toda a escolha dos pontos $\widetilde{x_0}$, $\widetilde{x_1}$,..., \widetilde{x}_{n-1} .

• A I chama-se integral definido de f em [a,b] e representa-se

$$I = \int_{a}^{b} f(x) \, dx$$

• Observe-se que $n \longrightarrow \infty$ equivale a $\Delta x_{k+1} \longrightarrow 0$.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

7 / 45

Terminologia

$$I = \int_{a}^{b} f(x) \, dx$$

- ightharpoonup [a, b] é o intervalo de integração;
- a e b são, respetivamente, o limite inferior e o limite superior de integração;
- f é a função integranda;
- ▶ x é a variável de integração;
- I é a medida da área da região do plano limitada pelo eixo dos x, as retas verticais x=a e x=b e o gráfico da função f quando $f\geq 0$.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 8 / 45

- ► [Definição alternativa]
 - Em cada subintervalo $[x_k, x_{k+1}]$ de $\mathcal P$ a função f admite um supremo M_k e um ínfimo m_k .
 - Chama-se soma superior de f para \mathcal{P} ao número

$$U_f(\mathcal{P}) = M_0 \, \Delta x_1 + M_1 \, \Delta x_2 + \dots + M_{n-1} \, \Delta x_n$$

• Chama-se soma inferior de f para $\mathcal P$ ao número

$$L_f(\mathcal{P}) = m_0 \, \Delta x_1 + m_1 \, \Delta x_2 + \dots + m_{n-1} \, \Delta x_n$$

 Prova-se que existe um único número real I que, para qualquer partição \mathcal{P} de |a,b| satisfaz a desigualdade

$$L_f(\mathcal{P}) \le I \le U_f(\mathcal{P})$$

ullet Este número real define-se como sendo o integral definido de fem [a,b].

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

9 / 45

Exemplo

- 1. Seja $f:[1,2]\longrightarrow \mathbb{R}$ definida por $f(x)=\frac{1}{x}$ e $\mathcal{P}=\{1,3/2,2\}$ uma partição de [1, 2] tem-se

Assim, $\frac{7}{12} \leq I \leq \frac{5}{6}$.

2. Seja $f:[a,b]\longrightarrow \mathbb{R}$ definida por $f(x)=\alpha,\ \alpha\in\mathbb{R}$. Então

$$\int_{a}^{b} f(x) dx = \alpha (b - a).$$

Propriedades do integral definido

1. Sejam f limitada em [a,b] e $c \in]a,b[$.

Então f é integrável em [a,b] se e só se f integrável separadamente em [a,c] e [c,b], tendo-se

$$\int_{a}^{b} f(x) \, dx \, = \int_{a}^{\mathbf{c}} f(x) \, dx \, + \int_{\mathbf{c}}^{b} f(x) \, dx.$$

- Por convenção

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

11 / 45

2. Se f e g são integráveis em [a,b] e $g(x) \leq f(x), \ \forall x \in [a,b]$, então

$$\int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x) dx.$$

3. Se f é integrável em [a,b] então a função |f| é integrável em [a,b] e

$$\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx \, .$$

M.Isabel Caiado [MIEInf] Cálculo-2019-20 12 / 45

4. Se f é limitada em [a,b], anulando-se em todos os pontos de [a,b] exceto, eventualmente, num número finito de pontos de [a,b], então

$$\int_a^b f(x) \, dx = 0 \, .$$

5. Se f é integrável em [a,b] e g é uma função que difere de f apenas num número finito de pontos [a,b], então

$$\int_a^b g(x) \, dx = \int_a^b f(x) \, dx.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

13 / 45

6. [Caracterização das funções integráveis]

Seja $f:[a,b]\longrightarrow \mathbb{R}$. Se f é

- contínua então f é integrável em [a,b];
- é monótona então f é integrável em [a,b];
- é limitada possuindo apenas um número finito de pontos de descontinuidade então f é integrável em [a,b].

Exemplos

1. A função de Dirichlet $d: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$d(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

embora limitada em $\mathbb R$ não é integrável em algum [a,b] .

2. A função $f:[0,1]\longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0, & x = 0\\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n} \end{cases}$$

possui um número infinito de pontos de descontinuidade (todos os pontos da forma $1/n,\,n\in\mathbb{N}$). No entanto f é integrável por ser monótona.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

15 / 45

Observação

A função f não ser integrável em [a,b] não implica que |f| não seja integrável nesse intervalo.

Por exemplo, a função

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

não é integrável em nenhum intervalo, contudo |f| é integrável em qualquer intervalo.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 16 / 45

Teoremas clássicos do cálculo integral

► [Teorema do valor médio do cálculo integral]

Seja f contínua em [a,b]. Então existe $c \in [a,b]$ tal que

$$\int_a^b f(x) dx = f(c)(b-a).$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

17 / 45

► [Teorema fundamental do cálculo]

Seja $f\colon [a,b] \longrightarrow \mathbb{R}$ uma função contínua.

1) A função $F \colon [a,b] \longrightarrow \mathbb{R}$ definida por

$$F(x) = \int_{a}^{x} f(t) dt$$

é derivável em [a,b], tendo-se

$$F'(x) = f(x), \quad \forall x \in [a, b].$$

2) (Fórmula de Barrow) Se F é uma primitiva de f em [a,b], então

$$\int_{a}^{b} f(t) dt = F(t) \Big|_{a}^{b} \stackrel{def}{=} F(b) - F(a).$$

M.Isabel Caiado

Exemplo

1. Calcular
$$F'$$
 quando $F(x) = \int_0^x \frac{1}{1+t} dt$.

2. Calcular
$$\int_0^{\pi} \sin x \, dx$$
.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

19 / 45

► [Consequências do TFC: derivação sob o sinal de integral]

Sejam $f\colon [a,b] \longrightarrow \mathbb{R}$ uma função contínua e $\varphi\colon [c,d] \longrightarrow [a,b]$ derivável.

• Então f é integrável, em particular, entre a e $\varphi(x)$, tendo-se

$$\int_{a}^{\varphi(x)} f(t) dt = F(\varphi(x)).$$

• Pelo teorema da derivação da função composta vem

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = [F(\varphi(x))]' = F'(\varphi(x)) \varphi'(x).$$

 \bullet Por 1) do teorema fundamental do cálculo $F^\prime=f$, pelo que se conclui que

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = f(\varphi(x)) \varphi'(x).$$

M.Isabel Caiado

► [Caso geral]

Sendo $\varphi, \psi \colon [c,d] \longrightarrow [a,b]$ funções deriváveis, tem-se

$$\left(\int_{\varphi(x)}^{\psi(x)} f(t) dt\right)' = f(\psi(x)) \psi'(x) - f(\varphi(x)) \varphi'(x).$$

Basta notar que

$$\int_{\varphi(x)}^{\psi(x)} f(t) dt = \int_a^{\psi(x)} f(t) dt - \int_a^{\varphi(x)} f(t) dt = F(\psi(x)) - F(\varphi(x))$$

e conjugar o teorema fundamental do cálculo com o teorema da derivação de funções compostas.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

21 / 45

Exemplo

1. Calcular
$$G'(x)$$
 quando $G(x) = \int_0^{x^2} \frac{1}{1+t} dt$.

Observação

A função

$$F(x) = \int_{a}^{x} f(t) dt$$

em geral possuí melhores propriedades do que f.

Em particular, mostra-se que

- F é contínua em [a,b];
- Se f é contínua em [a,b] então F é derivável em [a,b] .

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

23 / 45

Exemplos

1. f é limitada e possui uma descontinuidade (logo é integrável). F é limitada e contínua (logo é também integrável).

2. f é contínua, logo é integrável, mas não é derivável. F é contínua e derivável (logo, é também integrável).

M.Isabel Caiado

Observação

- Pela fórmula de Barrow, o integral definido de f é calculado à custa da primitiva da função.
 - Contudo, há funções integráveis em [a,b] que não são primitiváveis neste intervalo.

Exemplo: Função de Heaveside.

• Há funções primitiváveis em [a,b] mas não integráveis neste intervalo.

Exemplo: A função

$$f(x) = \begin{cases} 2x \sin(\frac{1}{x^2}) - \frac{1}{x}\cos(\frac{1}{x^2}), & x > 0\\ 0, & x = 0 \end{cases}$$

é primitivável em [0,1] com $F(x)=x^2\,\sin(\frac{1}{x^2})+\mathcal{C}, x>0$ e F(0)=0 mas não é integrável em nenhum intervalo que contenha zero pois, aí, não é uma função limitada .

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

25 / 45

Métodos de integração

- Integração por decomposição
- ► Integração imediata
- Integração por partes
- Integração por substituição

M.Isabel Caiado

► [Integração por decomposição]

Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções contínuas e $\alpha\,,\beta\,\in\mathbb{R}$ constantes.

Então

$$\int_a^b [\alpha f(x) + \beta g(x)] dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx.$$

• Exemplo $\int_0^{\pi} \left[\sqrt{2} x^2 + 2 \sin x \right] dx$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

27 / 45

► [Integração imediata]

Sejam funções $f:I\longrightarrow J$ e $g:J\longrightarrow \mathbb{R}$ duas funções deriváveis tais que a função composta está bem definida. Então

$$\int_{a}^{b} g'(f(x)) \cdot f'(x) \, dx = \int_{a}^{b} [g(f(x))]' \, dx = g(f(b)) - g(f(a)).$$

• Exemplo $\int_{\pi/4}^{\pi} \cos x \, (\sin x)^3 \, dx$

► [Integração por partes]

Sejam funções $f,g:[a,b]\longrightarrow \mathbb{R}$ funções de classe $\mathscr{C}^1.$ Então

$$\int_{a}^{b} f'(x) g(x) dx = \left[f(x) g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx.$$

• Exemplo r^{π}

$$\int_0^\pi x \cos x \, dx$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

29 / 45

► [Integração por substituição]

Sejam $g:[a,b]\longrightarrow \mathbb{R}$ contínua, I um intervalo, $f:I\longrightarrow [a,b]$ de classe \mathscr{C}^1 e $\alpha,\beta\in I$ tais que

$$f(\alpha) = a$$
 e $f(\beta) = b$.

Então

$$\int_a^b g(x) dx = \int_\alpha^\beta g(f(t)) f'(t) dt.$$

 O método de integração por substituição também é referido como método de integração por mudança de variáveis.

Exemplo

1. Calcular
$$\int_0^3 \sqrt{9-x^2} \, dx$$
 fazendo $x=3 \, \mathrm{sen} \, t$.

Aqui
$$g$$
 é a função $g:[0,3]\longrightarrow \mathbb{R}$ definida por $g(x)=\sqrt{9-x^2}$. Considere-se
$$f:[0,\frac{\pi}{2}]\longrightarrow [0,3] \qquad \text{dada por} \qquad f(t)=3\, \sin t.$$

A função
$$f\in \mathscr{C}^1$$
, $f'(t)=3\,\cos t$, $f(0)=0$ e $f(\frac{\pi}{2})=3$. Além disso,

$$g(f(t)) = \sqrt{9 - 9\operatorname{sen}^2 t} = 3\sqrt{1 - \operatorname{sen}^2 t} = 3\sqrt{\cos^2 t} = 3|\cos t| = 3\cos t$$

pois $t \in [0, \pi/2]$. Então,

$$\int_0^3 \sqrt{9 - x^2} \, dx = \int_0^{\pi/2} g(f(t)) f'(t) dt = \int_0^{\pi/2} 9 \cos^2 t \, dt = \frac{9}{2} \int_0^{\pi/2} 1 + \cos(2t) \, dt$$
$$= \frac{9}{2} \left[t + \frac{1}{2} \sin(2t) \right]_0^{\pi/2} = \frac{9}{4} \pi.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

31 / 45

Aplicações

- ► Cálculo de áreas de domínios planos
- Cálculo do comprimento de uma curva plana

Cálculo de áreas

Se f é contínua em [a,b] e $f(x)\geq 0$ para todo o $x\in [a,b]$ então a medida da área da região sob o gráfico de f entre x=a e x=b e a acima do eixo das ordenadas é determinada por

$$\int_{a}^{b} f(x) \, dx.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

33 / 45

ightharpoonup [Problema] Sejam f e g funções contínuas em [a,b] e

$$f(x) \ge g(x) \qquad \forall x \in [a, b].$$

Então se

$$f(x) \ge 0$$
 e $g(x) \ge 0$ $\forall x \in [a, b]$

a medida da área, A, da região limitada acima por y=f(x), abaixo por y=g(x) e lateralmente por entre x=a e x=b é

$$A=$$
 "área abaixo de f " — "área abaixo de g "
$$=\int_a^b f(x)\,dx - \int_a^b g(x)\,dx$$

$$=\int_a^b \left[\,f(x)-g(x)\,\right]dx.$$

Observação

 \blacktriangleright A fórmula anterior estende-se aos casos em que f e g não são necessariamente positivas desde que

$$f(x) \ge g(x), \quad \forall x \in [a, b]$$

M.Isabel Caiado [MIEInf] Cálculo-2019-20 35 / 45

Exemplo

1. Calcular a medida da área da região limitada pelas curvas seno e cosseno quando x está entre 0 e $\frac{\pi}{4}$.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 36 / 45

Observação

1. Quando a região é menos simples, é possível encontrar alguns entraves.

Exemplo: Qual a medida da área limitada na figura?

2. Se a região for limitada por curvas definidas por

$$x = w(y), \qquad x = v(y), \qquad \text{com} \quad y \in [c, d]$$

procede-se de modo idêntico ao exposto anteriormente trocando os papéis de x e y.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

37 / 45

3. A escolha entre usar um integral em ordem a x ou um integral em ordem a y é ditada pela forma da região de integração.

Deve-se optar

- pelo integral que requer menos seccionamentos
- pelo integral que apresente a primitivação mais simples

Exemplo

1. Calcular a medida da área da região limitada curvas definidas por $y^2=x$ e y=x-2.

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

39 / 45

Comprimento de curvas planas

- lacktriangle Seja f uma função definida e derivável no intervalo [a,b].
 - Qual o comprimento da curva definida por

$$y = f(x)$$

entre x = a e x = b.

Sejam

- ightharpoonup f de classe \mathscr{C}^1 em [a,b];
- $ightharpoonup \mathcal{P}$ uma partição de [a,b] :

$$a = x_0 < x_1 < \dots < x_n = b$$

$$(x_k, f(x_k))$$

A medida do comprimento da linha poligonal definida pelos pontos P_k é a soma da medida dos comprimentos dos segmentos de reta $\overline{P_k P_{k+1}}$, isto é

$$\sum_{k=0}^{n-1} \overline{P_k P_{k+1}} = \sum_{k=0}^{n-1} \sqrt{[x_{k+1} - x_k]^2 + [f(x_{k+1}) - f(x_k)]^2}.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

41 / 45

Pelo teorema do valor médio de Lagrange (Cap. 1.5), existe $\widetilde{x_k} \in]x_k, x_{k+1}[$ tal que

$$f(x_{k+1}) - f(x_k) = f'(\widetilde{x_k})(x_{k+1} - x_k)$$

pelo que

$$[x_{k+1} - x_k]^2 + [f(x_{k+1}) - f(x_k)]^2 = [x_{k+1} - x_k]^2 + [f'(\widetilde{x_k})(x_{k+1} - x_k)]^2$$
$$= (x_{k+1} - x_k)^2 (1 + [f'(\widetilde{x_k})]^2).$$

Assim,

$$\sum_{k=0}^{n-1} \overline{P_k P_{k+1}} = \sum_{k=0}^{n-1} \sqrt{(x_{k+1} - x_k)^2 (1 + [f'(\widetilde{x_k})]^2)}$$
$$= \sum_{k=0}^{n-1} \sqrt{1 + [f'(\widetilde{x_k})]^2} (x_{k+1} - x_k)$$

Mas

$$\sum_{k=0}^{n-1} \sqrt{1 + (f'(\widetilde{x_k}))^2} (x_{k+1} - x_k)$$

é a soma de Riemann para a função

$$g(x) = \sqrt{1 + [f'(x)]^2}.$$

- A função $g(x) = \sqrt{1 + [f'(x)]^2}$ é contínua logo integrável.
- Fazendo $n \to \infty$, a medida do comprimento da linha poligonal (soma de Riemann) tende para a medida do comprimento da curva (integral).

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

43 / 45

▶ [Comprimento de uma curva] Seja f de classe \mathscr{C}^1 em [a,b].

A medida, L, do comprimento da curva definida pelo gráfico de f do ponto (a,f(a)) ao ponto (b,f(b)) é dado por

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

Exemplo

1. Calcular a medida do comprimento da curva

$$f(x) = (x-1)^{3/2} \qquad \text{quando} \quad x \in [1,2]$$

Tem-se

$$f'(x) = \frac{3}{2}\sqrt{x-1}.$$

 ${\rm Com}\ x-1>0\ {\rm para}\ x\in[1,2]\ {\rm vem}$

$$\sqrt{1 + [f'(x)]^2} = \sqrt{1 + \left[\frac{3}{2}\sqrt{x - 1}\right]^2}$$
$$= \frac{1}{2}\sqrt{9x - 5}$$

Assim,

$$L = \int_{1}^{2} \sqrt{1 + [f'(x)]^{2}} d = \int_{1}^{2} \frac{1}{2} \sqrt{9x - 5} dx$$
$$= \frac{1}{18} \frac{2}{3} (9x - 5)^{3/2} \Big|_{1}^{2} = \frac{13\sqrt{13 - 8}}{27}.$$

M.Isabel Caiado

[MIEInf] Cálculo-2019-20

45 / 45