

BAYERO UNIVERSITY, KANO

FACULTY OF COMPUTER SCIENCE AND INFORMATION HELDING

DEPARTMENT OF COMPUTER SCIENCE

2020/2021 First Semester Examinations

MTH2301 - Mathematical Methods

instructione Allowed: 3 Hoursquestions

Instruction: Answer any five (5) questions

1. (a) Find for $F(x,y) = 2x + y^2$ (i) $\int_C F(x,y) dx$ (ii) $\int_C F(x,y) dy$ (iii) $\int_C F(x,y) ds$ where C is the line y = 2x starting from x = 0, y = 0 and ending at $x = \ln y = 2x$ starting from x = 0, y = 0

(b) From your results in (a) above, Is $\int_C F(x,y) dx = \int_C F(x,y) dy = \int_C F(x,y) ds$ (a) above, $\int_C F(x,y) ds$

2. (a) Use Maclaurin series to evaluate $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$ 2. (a) Use Maclaurin series to evaluate $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$

(b) if $F(x,y) = Ln\sqrt{x^2 + y^2}$, show that $x\frac{\delta F}{\delta x} + y\frac{\delta f}{\delta y} = 1$ (b) if $F(x,y) = Ln\sqrt{x^2 + y^2}$, show that $x = \frac{1}{2}$

3. (a) if $F(x,y) = x^2 - y^2$, $x = s \cos t$, $y = s \sin t$, find $\frac{\delta F}{\delta s}$ and $\frac{\delta F}{\delta t}(x,y) = x^2 - y^2$, $x = s \cos t$, $y = s \sin t$

(b) Find the increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and total differential if $F(x,y) = x^3 y(y)$ runs one increment and $F(x,y) = x^3 y(y)$ runs one inc

1 (a) Evaluate lim $\frac{\sqrt{2}+x}{\sqrt{2}}$. 4. (a) Evaluate $\lim_{x\to 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$

(b) Does the $\lim_{x\to 4} f(x)$ exist? Where $f(x) = \begin{cases} 4x+3, & x<4\\ 3x+7, & x\geq 4 \end{cases}$ (b) Does the lim f(x) exist? Where $f(x) = \begin{cases} 4x+3, & x<4\\ 3x+7, & x\geq 4 \end{cases}$

(c) if $y = e^{2x}$, evaluate $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y$ from (c) if $y = e^{2x}$, evaluate $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y$

5. (a) Use Lagrange multipliers to find the global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z ine global maximum and minimum of F(x,y) = x + y + 2z in a global maximum and minimum of F(x,y) = x + y + 2z in a global maximum and minimum of F(x,y) = x + y + 2z in a global maximum and minimum of F(x,y) = x + y + 2z in a global maximum and minimum of F(x,y) = x + y + 2z in a global maximum and F(x,y) = x + y + 2z in a global maximum and F(x,y) = x + y + 2z in a global maximum and F(x,y) = x + 2z in a on the surface $x^2 + y^2 + z^2 = 3$

(b) find $\frac{dy}{dx}$ the point (2,1) from $x^3 + 3xy^2 + y^2 = 21$ (b) find $\frac{dy}{dx}$ the point (2,1) from $x^3 + 3xy^2 + y^2$

6. (a) If $F(x,y) = y \sin x - x \sin y$ verify that F_{xyy} , F_{yxy} and F_{yyx} are equal. $y \sin x - x \sin y$ verify that F_{xyy}

(b) Show that

(i) $f(x) = \frac{1}{2}x - \sqrt{x}$ satisfies the hypothesis of Rolle's theorem on [0,4] and find the all values of c in (0,4) that satisfy the conclusion of the theorem, alone of c in (0,1) that satisfy the conclusion

(ii) $f(x) = \sqrt{25 - x^2}$ satisfies the hypothesis of Mean value theorem) on [25,3] and find the hypothesis all values of c in (-5,3) that satisfy the conclusion of the theorem tues of c in (-5,3) that satisfy the conclusion

7. Evaluate the following integrals

7. Evaluate the following integrals

(a) $\iint (1+(x-1)^2) dxdy$ where C is the region starting from |x| = 0, y = 0 and ending at is the region x = 2, y = 3

(b)
$$\iint_{0}^{1} \iint_{0}^{3} \left(x^{2} + y^{2} - z^{2} \right) dz dy dx$$

BAYERO UNIVERSITY, KANO FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY

2018/2019 Academic Session - First Semester Examinations ITC2203: Introduction to Information Technology in Business

Instructions: Attempt 4 Questions

Time Allowed: 2-Hour

- a) Define the term e-commerce. [3 Marks]
 - Briefly explain all the types of e-commerce. [10 Marks]
 - c) Briefly Explain vertical market and horizontal market [4.5 Marks]
- a) Define Supply Chain Management (SCM). [4 Marks]
 - b) Briefly explain the three main flows in SCM. [9 Marks] PIF
 - c) Briefly explain e-market [4.5 Marks]
- 3. a) Define the term internet economy. [4 Marks]
 - b) Differentiate between e-business and internet economy. [4.5 Marks]
 - c) Briefly explain the three major segments of internet economy. [9 Marks]
- With the aid of diagram explain an old economy relationship and new economy relationship. [8 Marks]
 - b) Explain the advantages of new economy relationship over old economy relationship.
 - c) Briefly explain the two primary components of B2B e-commerce. [3.5 Marks]
- 5. a) What are major forces that are fueling e-commerce? [9 Marks]
 - b) Explain the importance of intranet to e-commerce. [2.5 Marks]
 - c) Explain data transaction security components. [6 Marks]
 - 6. a) Briefly explain three authorization schemes. [6 Marks]
 - b) Explain all types of data flow and give an example of each. [6 Marks]
 - c) Assume n devices are connected using mesh topology, what is the number of cable links
 - i) Using half duplex. [3 Marks]
 - fi) Using full duplex. [2.5 Marks]