Review for Exam 1

- Types: Know how to classify the differential equaitons into: order, separable, linear, exact, homogeneous, bemoulti, of the type dy = f(4x+By+c), autonomous.
- Autonomous DEs: Find critical points (equilibrium/constant solutions) and know if they are stable, unstable or semistable.

dy = f(y); know how to find the critical pts.

Set f(y)=0 & find y, y2, y3 (etc) that solve the equality.

Phase Partiait y, y, + unstable

y, + semistable

MATH 267

1 / 11

- Applications (Models)
 - ► Population Dynamics

Radioactive Decay

$$\frac{dA}{dt} = -KA$$
 (K>0)

Newton's Law of Cooling

$$\frac{dT}{dt} = -K(T - T_m) \quad (x > 0)$$

Mixing Problems

Relawin * Concentration

· IVPs (Initial Value Problems) 1st find the general solution which includes an indetermined constant.

2nd Plug initial condition told into general sol. to find the constant.

Methods to solve 1st order DEs

Separable Equations: A DE is separable if
$$\frac{dy}{dx} = h(y) y(x)$$

To solve, separate $\int \frac{1}{h(y)} dy = \int g(x) dx$

Linear Equations: Have the term (Standard form): $\frac{dy}{dx} + P(x)y = f(x)$ To solve find $\mu(x) = e^{SPdx}$ then the equipments. $(\mu \cdot y)' = f(x)\mu(x) = 7$ $y = \frac{1}{\mu} (f(x)\mu(x) dx + c)$

Exact Equations: Given M(x,y)dx + N(x,y)dy = 0, the equ.

Is exact $\Longrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, then find f(x,y) such that $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$ and the sol is f(x,y) = C

MATH 267

Review

3 / 1

Homogeneous Equations: $\frac{dy}{dx} = G(\frac{y}{x})$. We can test for homogeneous, if $\frac{dy}{dx} = f(x,y)$; $f(tx,ty) = t^{\alpha}f(x,y)$. The substitution: $u = \frac{y}{x}(y = ux)$ and $\frac{dy}{dx} = x \frac{du}{dx} + u$, leget a separable equ.

- ► Bernoulli Equations: $\frac{dy}{dx} + P(x)y = f(x)y^n$ (n>1). We let $u = y^{1-n}$; $\frac{du}{dx} = (1-n)y^{-n} \frac{dy}{dx}$ & substitute to get a linear equ.
- Equations of the form $\frac{dy}{dx} = f(Ax + By + C)$ Let $u = A \times t B y + C \Rightarrow \frac{du}{dx} = A + B \frac{dy}{dx}$ & substitute

 to get a separable equation.

Examples

Example 1. Suppose that a large mixing tank initially holds 10 liters of **pure water**. Brine at a concentration of 2 gr/L is pumped into the tank at a rate of 10 ml/min, and when the solution is well stirred, it is then pumped out at the same rate. Determine a differential equation for the amount of salt A(t) in the tank at time t, and find the <u>concentration</u> of salt in the tank after 1 hour of pumping.

$$\frac{dA}{dt} = \begin{pmatrix} \text{input} \\ \text{vale} \end{pmatrix} - \begin{pmatrix} \text{ostpst} \\ \text{vale} \end{pmatrix}$$

$$\frac{dA}{dt} = \frac{1}{100} \frac{1}{\text{min}} \cdot \frac{2 \text{ gr}}{100} - \frac{1}{100} \frac{1}{\text{min}} \cdot \frac{A(t)}{10} \frac{\text{gr}}{100}$$

$$\frac{dA}{dt} = \frac{2}{100} - \frac{A}{1000} = -\frac{1}{1000} \left(-20 + A\right) \quad \left(\frac{\text{Solve as}}{\text{separable}}\right)$$

$$\int \frac{1}{A-20} dA = \int -\frac{1}{1000} dt \implies \ln |A-20| = -\frac{t}{1000} + C,$$

$$A(t) = 20 + Ce^{-t/1000} \implies C(t) = \frac{A(t)}{|V_0|} = \frac{20 + Ce^{-t/100}}{10}$$
Review 1

MATH 267

We need C(60). (concentration).

Note we have an initial randition A(0) = 0 (pure water).

:.
$$A(t) = 20 - 20e^{-t/100}$$

and
$$C(60) = 20 - 20e^{-60/1000} =$$

Example 2. Find the value of b so that the following equation is exact and find its general solution.

We need:
$$\frac{(2y\cos(2xy) - 3e^{3\cos x}\sin x) dx + (bx\cos(2xy)) dy = 0}{M(x,y)}$$

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(2y \cos(2xy) - 3e^{3\cos x} \sin x \right) = 2\cos(2xy) + 2y \left(-\sin(2xy) \right) 2x$$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(1 + \cos(2xy) \right) = h \cos(2xy) + b \times \left(-\sin(2xy) \right) 2y$$

these are equal if b = 2.

To find the solution we need f(x,y) such that $\frac{3x}{9t} = M$ & $\frac{3y}{9t} = N$

7 / 11

$$\frac{\partial f}{\partial y} = N \implies f = \int N \, dy = \int 2x \cos(2xy) \, dy = \sin(2xy) + g(x)$$
 $\frac{\partial f}{\partial x} = M \iff \frac{\partial}{\partial x} \left(\sin(2xy) + g(x) \right) = 2y \cos(2xy) - 3e^{3\cos x} \sin x$
 $2y \cos 2xy + g'(x) = 2y \cos(2xy) - 3e^{3\cos x} \sin x$

$$\int g'(x) = \int 3e^{3\cos x} \sin x = y \quad g(x) = e^{3\cos x}$$

update f(x,y) = sin(2xy)+e3cosx

MATH 267

Example 3. Find the general solution of the following IVP

$$x^{2} \frac{dy}{dx} - 2xy = 3y^{4}; \quad y(1) = 1/2$$

$$\frac{dy}{dx} - \frac{2}{x}y = \frac{3}{x^{2}}y^{4}$$
 (Bernalli) let $u = y^{-3}$

$$y^{-4} \frac{dy}{dx} - \frac{2}{x}y^{-3} = \frac{3}{x^{3}}$$
 => $\frac{du}{dx} = -3 y^{-4} \frac{dy}{dx}$

$$-\frac{1}{3} \frac{du}{dx} - \frac{2}{x}u = \frac{3}{x^{3}}$$
 (linear)
$$\frac{du}{dx} + \frac{b}{x}u = -\frac{9}{x^{3}}$$
 = in Standard ferm.

Solve for u (linocrequ).

Find
$$\mu = e^{\int 6/x \, dx} = e^{\int 6\ln|x|} = |x|^6 = x^6$$

9 / 11

After multiplying by u the equ. be comes:

$$(x^6 u)' = -\frac{9}{x^3} x^6 = -9x^4$$
.

$$\chi^{6} u = \int -9x^{4} dx = -\frac{9}{5}x^{5} + C$$

$$u = -\frac{9}{5x} + (x^{-6}) = y^{-3} = -\frac{9}{5x} + Cx^{-6}$$

So
$$y(x) = \left(-\frac{9}{5x} + (x^{-6})^{-1/3}\right) \in General Sol.$$

IVP sol: Plug initial andition $y(1) = (-\frac{9}{5} + c)^{-1/3} = \frac{1}{2}$

$$= 7 - \frac{9}{5} + C = 8 \Rightarrow C = 8 + \frac{9}{5} = \frac{49}{5}$$

: Sol.
$$y = \left(\frac{-9}{5x} + \frac{49}{5}x^{-6}\right)^{-1/3}$$

MATH 267

Example 4. Find the general solution of

$$\frac{dy}{dx} = \frac{\sec(x - y + 1) + y - x}{y - x}$$

$$\frac{dy}{dx} = \frac{\sec(x-y+1) - (x-y)}{-(x-y)}$$

Let
$$u = x - y + 1 \implies \frac{du}{dx} = 1 - \frac{dy}{dx} \implies \frac{dy}{dx} = 1 - \frac{du}{dx}$$

Sub:
$$1 - \frac{du}{dx} = \frac{\sec u - (u-1)}{-(u-1)} = \frac{\sec u}{u-1} - 1$$

=>
$$\frac{du}{dx} = \frac{\sec u}{u-1}$$
 (separable)

T. B. Parts

$$(x-y) \sin(x-y+1) + \cos(x-y+1) = x+c$$

11 / 11