Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Backgroun MRF

MRF ShapeBM

MRF + ShapeBM

EM inference

References

Combination of MRF and ShapeBM for Image Labeling

Alexander Kirillov, Dmitry Vetrov

arhipisk@gmail.com

2013

Table of Contents

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background

MRF ShapeBM

ShapeBM

ShapeBM

dual decomposition inference

- Background: image labeling
 - MRF
 - ShapeBM
- 2 MRF + ShapeBM
 - EM inference
 - dual decomposition inference
- References

Problem definition

Combination of MRF and ShapeBM for Image Labeling

Background MRF

ShapeBM

EM inference
dual
decompositio

Deference

Given: image and information about the type of object this image contains (horse, car, etc.).

Required: two classes pixels labeling — object and background.

State-of-art method: Markov Random Fields (MRF)

Markov Random Fields

Combination of MRF and ShapeBM for Image Labeling

Vetrov

MRF

ShapeBM

ShapeBM EM inference dual decompositio

References

Let $G(\mathbf{v}, \mathbf{e})$ be a graph, $\mathbf{y} \in \{0, 1\}^{|\mathbf{v}|}$ be a vector of labels $(0 - \mathsf{background}, \ 1 - \mathsf{object})$.

Pairwise MRF Energy:

$$E(\mathbf{y}) = \sum_{v \in \mathbf{v}} \phi_v(y_v) + \sum_{(v,u) \in \mathbf{e}} \phi_{vu}(y_v, y_u). \tag{1}$$

The goal is to find $y^* = \operatorname{argmin}_{\mathbf{y}} E(\mathbf{y})$.

MRF advantages

Combination of MRF and ShapeBM for Image Labeling

Vetiov

MRF ShapeBM

MRF + ShapeBM

EM inference dual decomposition inference

- Unary potentials $\phi_i(v_i)$ are defined by the colour model which is tuned on images from labeled dataset. They define probability of each pixel being a part of object or background
- Binary potentials $\phi_{i,j}(v_{i,j})$ penalize labeling where a boundary between an object and a background lays across similar pixels.
- Effective inference method graph cuts

MRF disadvantages

Combination of MRF and ShapeBM for **Image** Labeling

MRF

- MRF doesn't take into account the shape of the object
- Only local interdependencies: cannot use global constraints, e.g. shape

ShapeBM [S. M. Ali Eslami et al. 2012]

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

MRF ShapeRM

ShapeBM

ShapeBM

EM inference
dual
decompositio
inference

References

Shape Boltzmann Machine (ShapeBM) — a type of Deep Boltzmann Machine with some weights set to zero. Energy function:

$$E(v, h^1, h^2) = -v^T W^1 h^1 - (h^1)^T W^2 h^2 - b_v^T v - b_{h^1}^T h^1 - b_{h^2}^T h^2$$

$$v - \text{visible variables (labeling)}, \ h^1, h^2 - \text{first and second hidden}$$
layers variables.

ShapeBM

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

MRF ShaneRM

ShapeBM

ShapeBM EM inference dual decompositio

References

ShapeBM is a model of an object shape, which allows to reconstruct the object from a binary image with an uncompleted or vague object.

ShapeBM also estimates the probability of a binary image resembling a horse.

ShapeBM — pros and cons

Combination of MRF and ShapeBM for Image Labeling

Vetrov

MRF ShaneRM

ShapeBM

ShapeBM EM inference

dual decomposition inference

- + Stores probability distribution on shapes which is tuned to a train dataset
- + Generates new objects different from a training data
- Not applicable for high resolution images. For 32×32 image the number of nodes is approx. 3000
- Doesn't take into account the interdependences between neighbour pixels. The boundary between the object and the background may lay across two pixels of same color

Table of Contents

Combination of MRF and ShapeBM for Image Labeling

Vetrov

MRF ShapeBM

MRF + ShapeBM

EM inference dual decomposition inference

- Background: image labeling
 - MRF
 - ShapeBM
 - MRF + ShapeBM
 - EM inference
 - dual decomposition inference
 - 3 References

MRF + ShapeBM

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background
MRF
ShapeBM

MRF + ShapeBM

dual decomposition inference

References

The main objective is to build model which can label image containing certain predefined shape with help of local interdependences.

Energy function:

$$E(v, h^1, h^2) = E_{MRF}(v) + \gamma E_{ShapeBM}(v, h^1, h^2)$$
 (2)

Combination of MRF and ShapeBM:

[Fei Chen et al. CVPR 2013]

Different resolution

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background MRF

MRF + ShapeBM

dual decomposition inference

References

We use ShapeBM for a coarse shape prior, so low-resolution ShapeBM is enough.

Energy function:

$$E(v, h^1, h^2) = E_{MRF}(v) + \gamma E_{ShapeBM}(v^s, h^1, h^2)$$
 (3)

where $v_i^s = \frac{\sum_{j \in fileds(i)} v_j}{|fields(i)|}$.

Combination of high-resolution MRF and low-resolution ShapeBM:

MRF + ShapeBM inference

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background
MRF
ShapeBM

ShapeBM

EM inference
dual

- During experiments we use per-tuned ShapeBM [S. M. Ali Eslami et al. 2012]. It is pre-tuned on Weismann horse dataset for centered and scaled shapes with 32×32 resolution.
- Unary potentials $\phi_i(\theta, v_i)$ are defined by the colour model mixtures of Gaussians on RGB and LUV representations of images for object and background (tuned on Weismann dataset subsample).
- Binary potentials $\phi_{i,j}(v_i,v_j) = \exp(-\|v_i-v_j\|_{RGB}^2)$

EM algorithm for inference

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Backgroun MRF ShapeBM

MRF + ShapeBM

EM inference dual decomposition inference

References

Maximize $p(\theta, v, h^1, h^2) = \exp(-E(\theta, v, h^1, h^2))$

• E-step: Variational approximation $q(h^1, h^2) = \prod_i q_i(h_1^1) \cdot \prod_i q_i(h_i^2)$ with fixed v and θ :

$$KL(q(h^1, h^2)||p(h^1, h^2|v, \theta) \rightarrow \min_{q(h^1, h^2)}.$$

The parameters are recalculated iteratively as follows:

$$h_j^1 = \frac{1}{1 + \exp(-\sum_i W_{ij}^1 v_i^s - \sum_k W_{jk}^2 h_k^2)},$$

$$h_k^2 = \frac{1}{1 + \exp(-\sum_j W_{jk}^2 h_j^1)},$$

$$h_j^1 = \frac{1}{1 + \exp(-\sum_i W_{ij}^1 v_i^s - \sum_k W_{jk}^2 h_k^2)}$$

EM algorithm for inference

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Backgroun MRF ShapeBM

MRF + ShapeBM EM inference

dual decomposition inference

References

*M*₁-step:

$$\mathbb{E}_{q(h^1,h^2)}E(\theta,v,h^1,h^2)\to \min_{v}$$

M₂-step:
 On this step we adjust the colour model to specific input image:

$$\mathbb{E}_{q(h^1,h^2)}E(\theta,v^*,h^1,h^2) \to \min_{\theta}$$

The v^* is resulted labeling from the M_1 step.

Test sample

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background MRF ShapeBM

MRF + ShapeBM **EM inference**

dual decomposition

References

As a testing dataset we created a new set with 16 images with 128×128 resolution.

Inference quality measure — mean weighted Hamming distance on our dataset.

Experiments results

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background MRF ShapeBM

MRF + ShapeBM EM inference

dual decompositio inference

References

Four inference schemes were compared:

- MRF with fixed colour model
- EM-algorithm, which uses steps E and M_1
- adaptive MRF: re-tuning of colour model after each iteration using new labeling
- EM-algorithm, which uses steps E, M_1 and M_2

MRF	EM_1	adaptive <i>MRF</i>	EM_1M_2
0.3247	0.2883	0.1790	0.1585

Experiments results

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Backgroun

MRF
ShapeBM

MRF + ShapeBM

EM inference

D (

MRF + ShapeBM inference

Combination of MRF and ShapeBM for Image Labeling

ackground

MRF ShapeBM

MRF + ShapeBM

dual decomposition inference

Reference

Energy function:

$$E(v, h^1, h^2) = E_{MRF}(v) + \gamma E_{ShapeBM}(v, h^1, h^2)$$
 (4)

Minimization of this energy is equivalent to the following system:

$$\min_{v_1} E_{MRF}(v^1) + \gamma \sum_{t \in T} \min_{v_t^2, h_t^1, h_t^2} E_{ShapeBM}(v_t^2, h_t^1, h_t^2)$$
 (5)

$$s.t. v^1 = v^2 (6)$$

$$v_t^2 = v^2, t \in T \tag{7}$$

$$h_{\star}^{1} = h^{1} \in T \tag{8}$$

$$h_t^2 = h^2, t \in T \tag{9}$$

Where T — is a set of subgraphs.

MRF + ShapeBM inference

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Backgroun MRF ShaneBM

MRF + ShapeBM

dual decomposition inference

Deference

Using dual decomposition:

$$\min_{v,h^{1},h^{2}} (E(v,h^{1},h^{2})) \geq \min_{v^{1}} (E_{MRF}(v^{1}) + \lambda_{0}^{v}v^{1}) +
+ \gamma \sum_{t \in T} \min_{v_{t}^{2},h_{t}^{1},h_{t}^{2}} (E_{ShapeBM}(v_{t}^{2},h_{t}^{1},h_{t}^{2}) + \lambda_{t}^{v}v_{t}^{2} + \lambda_{t}^{h^{2}}h_{t}^{2}) =
= Q(\gamma,\lambda_{0}^{v},\lambda_{t}^{v},\lambda_{t}^{v},\lambda_{t}^{h^{2}},v^{1},v_{t}^{2},h_{t}^{1},h_{t}^{2}) \quad (10)$$

$$\sum_{t} \lambda_t^{h^2} = 0 \tag{12}$$

Subgraph

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Backgrour MRF

MRF + ShapeBM

dual decomposition inference

- + BP for inference
- A huge number of Lagrangian Coefficients

Subgraph

Combination of MRF and ShapeBM for Image Labeling

> Kirillov Vetrov

Backgroun MRF

MRF + ShapeBM

dual decomposition inference

References

Number of nodes from middle layer in each subgraph is a trade-off between a speed of inference and a number of Lagrangian Coefficients.

Combination benefits

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background MRF ShapeBM

MRF + ShapeBM EM inference

decomposition inference

- Train MRF and SBM models independently since they are responsible for different types of dependencies
- Combine high-resolution MRF with low-resolution SBM
- Use dual decomposition framework from inference by splitting SBM into subtrees

Open issue

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Background MRF ShapeBM

ShapeBM

EM inference
dual
decomposition

inference Reference The task is to label arbitrary images of objects using ShapeBM as a shape prior which is tuned on the shapes:

- centered in the middle of the image,
- in the same direction (e.g. horses facing left),
- uniformly scaled relative to the size of the image.

Future work

Combination of MRF and ShapeBM for Image Labeling

> Kirillov Vetrov

Backgroun MRF ShapeBM

MRF + ShapeBM

dual decomposition inference

References

 Tune ShapeBM to "remember" 2.5D shapes, where each pixel has an additional depth value;

Improve object detector methods using our model;

 Tune ShapeBM for an multi-label segmentation problem [Kae A., Sohn K. et al. 2013].

Table of Contents

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Vetrov

MRF

ShapeBM

ShapeBM

dual decomposition inference

- Background: image labeling
 - MRF
 - ShapeBM
- MRF + ShapeBM
 - EM inference
 - dual decomposition inference
- References

References

Combination of MRF and ShapeBM for Image Labeling

> Kirillov Vetrov

Backgroun MRF

MRF ShapeBM

ShapeBM
EM inference
dual

- Eslami, S.M., Heess, N., Winn, J. The Shape Boltzmann Machine: a Strong Model of Object Shape. CVPR, 2012.
- Chena F. et al. Deep Learning Shape Priors for Object Segmentation. CVPR, 2013
 - Kae A., Sohn K. et al. Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling. CVPR, 2013