

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

What Is Pattern Discovery?

Pattern Discovery: Why Is It Important?

☐ Finding inherent regularities in a data set

ศาราง, รูปภาพ, วิดีโอ, แผนที่

- ☐ Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - ☐ Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

- □ Itemset: A set of one or more items
- □ k-itemset: X = {x₁, ..., x_k}
- ☐ (absolute) <u>support</u> (count) of X, sup{X}: Frequency or the number of occurrences of an itemset X
 - □ Ex. sup{Beer} = 3 Absolute ใม่ดี เฟราะไม่รั
 - □ Ex. sup{Diaper} = 4 transaction ทั้งหมด
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

จุดมุ่งหมายคือ	เราต้องทำมือได้	
	เข้าใจการทำงานของ	Data Mihing

Tid	Items bought	
10	Beer, Nuts, Diaper = ผ้าอ้อมเดิ่ก	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

มักใช้ relative แทน absolute

Absolute ไม่ดี เพราะไม่รู้ (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

- \Box Ex. s{Beer} = 3/5 = 60%
- \Box Ex. s{Diaper} = 4/5 = 80%
 - Ex. $s\{Beer, Eggs\} = 1/5 = 20\%$

Basic Concepts: Frequent Itemsets (Patterns)

ดูยังใงว่ามีความถี่ = เกิดขึ้นบ่อย ☐ An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ ค่าขีดแบ่งว่า จะเอา นรือ ไม่เอา

Let $\sigma = 50\%$ (σ : minsup threshold)-	Ь	
For the given 5-transaction dataset		

All the frequent 1-itemsets:

□ Beer: 3/5 (60%); Nuts: 3/5 (60%)

□ Diaper: 4/5 (80%); Eggs: 3/5 (60%) ☐ All the frequent 2-itemsets: coffee 2/5 (40)/)

□ {Beer, Diaper}: 3/5 (60%)

All the frequent 3-itemsets?

None

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

■ Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?

Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - □ Ex. Diaper → Beer คนซื้อ Diaper จะนำไปสู่การซื้อ Beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets
 - Support, s: The probability that a transaction contains X U Y
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \Box Ex. $c = \sup{\text{Diaper, Beer}}/\sup{\text{Diaper}} = \frac{3}{4} = 0.75$

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

8

Mining Frequent Itemsets and Association Rules

Tid Association rule mining ก่อนจะนา ต้องกำหนด minsup, minconf Items bought Given two thresholds: minsup, minconf 10 Beer, Nuts, Diaper 20 Beer, Coffee, Diaper Find all of the rules, $X \rightarrow Y$ (s, c) 30 Beer, Diaper, Eggs \square such that, $s \ge minsup$ and $c \ge minconf$ 40 Nuts, Eggs, Milk อาจเลือกจากตัวที่มี support และ confident สูงสุด ■ Let minsup = 50% 50 Nuts, Coffee, Diaper, Eggs, Milk ☐ Freq. 1-itemsets: Beer: 3, Nuts: 3, Observations: Diaper: 4, Eggs: 3 Mining association rules and □ Freq. 2-itemsets: {Beer, Diaper}: 3 mining frequent patterns are very close problems $c = \sup(X \cup Y) / \sup(X)$ ■ Let minconf = 50% Scalable methods are needed Beer \rightarrow Diaper (60%, 100%) for mining large datasets Diaper \rightarrow Beer (60%, 75%) (Q: Are these all rules?)

Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- ☐ Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- ☐ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

10

Apriori Pruning and Scalable Mining Methods

นลักการสำคัญ 🏲

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

17

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k F_k: Frequent itemset of size k
```

```
K:=1;
F_k:=\{ \text{frequent items} \}; \ // \ \text{frequent 1-itemset}
While \ (F_k:=\emptyset) \ \text{do} \ \{ \ // \ \text{when} \ F_k \ \text{is non-empty}
C_{k+1}:= \ \text{candidates generated from} \ F_k; \ // \ \text{candidate generation}
C_{k+1}:= \ \text{candidates} \ \text{candidates} \ \text{candidates} \ \text{in} \ C_{k+1} \ \text{with respect to} \ TDB \ \text{at minsup};
c_{k}:= \ \text{k}+1
```

The Apriori Algorithm—An Example

