Week 4 October 13, 2020

1 Open Questions

Exercise 1. (**) Determine whether each of the following statements are true or false

- 1. $\emptyset \in \{\emptyset\}$
- $2. \ \emptyset \in \{\emptyset, \{\emptyset\}\}$
- $3. \{\emptyset\} \in \{\emptyset\}$
- $4. \{\emptyset\} \in \{\{\emptyset\}\}\$
- 5. $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
- 6. $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$
- 7. $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}\}$

Exercise 2. (*) Prove or disprove that if A and B are sets, then $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$

Exercise 3. (*) Prove or disprove that for all sets A, B and C, we have

- $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Exercise 4. (**) Useful definitions that you are supposed to be familiar with:

- A function $f: X \to Y$ is injective if given any $x, y \in X$, f(x) = f(y) implies x = y.
- A function $f: X \to Y$ is surjective if given any $y \in Y$ there exists a value $x \in X$ such that f(x) = y.
- A function is bijective if it is both injective and surjective.
- Given a function $f: X \to Y$ and $g: Y \to Z$, the composition $g \circ f$ is a function mapping the domain of f, i.e. X, to the codomain of g, i.e. Z, such that for each $x \in X$, $(g \circ f)(x) = g(f(x))$ (here $f(x) \in Y$ and so, g(f(x)) is well defined).
- 1. Let f be a function mapping set X to set Y and let g be a function from set Y to set Z. For each statement below, prove it if it is true and give a counterexample otherwise.
 - (a) If f or g is injective, then $g \circ f$ is injective.
 - (b) If f or g is surjective, then $g \circ f$ is surjective.
 - (c) If f and g are injective, then $g \circ f$ is injective.
 - (d) If f and g are surjective, then $g \circ f$ is surjective.
 - (e) If $g \circ f$ is injective, then f is injective.
 - (f) If $q \circ f$ is injective, then q is injective.

- (g) If $g \circ f$ is surjective, then g is surjective.
- (h) If $g \circ f$ is surjective, then f is surjective.
- (i) If $g \circ f$ is bijective, then f is bijective.
- (j) If $g \circ f$ is bijective, then g is bijective.
- 2. For each false implication above, determine if it is always false irrespective of the choices of f and g (in which case it would be called a *contradiction*) or if it may be true or false depending on the particular choices of f and g (in which case it would be called a *contingency*).

Exercise 5. (**)

Let $X = \mathscr{P}(\mathbf{Q})$ be the set of subsets of \mathbf{Q} . Determine whether or not the following relations \sim_i on X are a) reflexive, b) symmetric, c) transitive. Let A and B be arbitrary elements of X.

- 1. $A \sim_1 B$ if and only if $A \subseteq B$.
- 2. $A \sim_2 B$ if and only if $A \cap B = \emptyset$.
- 3. $A \sim_3 B$ if and only if $A \oplus B$ is finite.
- 4. $A \sim_4 B$ if and only if there exists a $c \in \mathbf{R}$ such that for any $x \in A \oplus B$, we have |x| < c.
- 5. $A \sim_5 B$ if and only if A and B contain the same number of integers (potentially infinite).

2 Exam Questions

Exercise 6. (*)

(français) Soit $\mathcal{P}(X)$ l'ensemble des parties d'un ensemble X (c'est-à-dire le "power set" de X) et soit \emptyset l'ensemble vide. Soient les propositions ci-dessous

pour tous ensembles A et B, si $\mathcal{P}(A) = \mathcal{P}(B)$, alors A = B;

et

il existe un ensemble C tel que $\mathcal{P}(C) = \emptyset$.

(English) Let $\mathcal{P}(X)$ denote the power set of a set X and let \emptyset denote the empty set. Consider the two statements

for any sets A and B, if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B;

and

there exists a set C such that $\mathcal{P}(C) = \emptyset$.

- $\bigcirc \left\{ \begin{array}{l} \textit{Elles sont vraies toutes les deux.} \\ \textit{They are both true.} \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} \textit{Seulement la première est vraie.} \\ \textit{Only the first is true.} \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} \textit{Seulement la seconde est vraie.} \\ \textit{Only the second is true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont fausses toutes les deux.} \\ \textit{They are both false.} \end{array} \right.$

Exercise 7. (*)

(français) Soient $X = \{1, 2, 3, 4, 5\}$ et $\mathcal{P}(X)$ l'ensemble des parties de X (c'est-à-dire le "power set" de X). Soient les propositions ci-dessous

(English) Let $X = \{1, 2, 3, 4, 5\}$ and let $\mathcal{P}(X)$ denote the power set of X. Given the statements

$$\emptyset \in \mathcal{P}(X)$$
 $\{\emptyset\} \in \mathcal{P}(X)$

- $\bigcirc \ \left\{ \begin{array}{l} \textit{Seulement la première est vraie.} \\ \textit{Only the first is true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont vraies toutes les deux.} \\ \textit{They are both true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Seulement la seconde est vraie.} \\ \textit{Only the second is true.} \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} \textit{Elles sont fausses toutes les deux.} \\ \textit{They are both false.} \end{array} \right.$

Exercise 8. (*)

(français) Soit $f: \{x \mid x \in \mathbf{R}, -2 \le x \le 5\} \to \mathbf{R}$,

$$x \mapsto \begin{cases} 3 + \frac{3}{2}x & pour \quad -2 \le x \le 0 \\ \lfloor x \rfloor & pour \quad 0 \le x < 2 \\ x^2 & pour \quad 2 \le x \le 5. \end{cases}$$

(English) Let $f: \{x \mid x \in \mathbf{R}, -2 \le x \le 5\} \to \mathbf{R}$,

$$x \mapsto \begin{cases} 3 + \frac{3}{2}x & for \quad -2 \le x \le 0 \\ \lfloor x \rfloor & for \quad 0 \le x < 2 \\ x^2 & for \quad 2 \le x \le 5. \end{cases}$$

- $\bigcirc \ \left\{ \begin{array}{l} f \ est \ injective \ mais \ f \ n'est \ pas \ surjective. \\ f \ is \ injective \ but \ not \ surjective. \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} f \ est \ surjective \ mais \ f \ n'est \ pas \ injective. \\ f \ is \ surjective \ but \ not \ injective. \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} f \ est \ bijective. \\ f \ is \ bijective. \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} f \ \textit{n'est pas une fonction.} \\ f \ \textit{is not a function.} \end{array} \right.$

Exercise 9. (**) Let $f : \{x \mid x \in \mathbf{R}, 0 < x < 1\} \to \mathbf{R}$,

$$x \mapsto \begin{cases} 2 - \frac{1}{x} & \text{if } 0 < x < 1/2 \\ \frac{1}{1 - x} - 2 & \text{if } 1/2 \le x < 1. \end{cases}$$

- \bigcirc f is not injective and not surjective.
- Of is injective but not surjective.
- \bigcirc f is surjective but not injective.
- \bigcirc f is bijective.

Exercise 10. (**)

(français) Pour un $\delta \in \mathbf{R}$ arbitraire, soient f_{δ} et g_{δ} les deux fonctions de \mathbf{R} vers \mathbf{R} suivantes

$$f_{\delta}(x) = \begin{cases} x + \delta & si \ x \in \mathbf{Z} \\ -x + \delta & si \ x \notin \mathbf{Z}, \end{cases}$$
 $g_{\delta}(x) = \begin{cases} x + \delta & si \ x \in \mathbf{Z} \\ -x - \delta & si \ x \notin \mathbf{Z}. \end{cases}$

Considérez les deux propositions

 $\forall \delta \in \mathbf{R} \ f_{\delta} \ est \ une \ bijection \qquad et \qquad \forall \delta \in \mathbf{R} \ g_{\delta} \ est \ une \ bijection.$

(English) For any $\delta \in \mathbf{R}$ let f_{δ} and g_{δ} be the following two functions from \mathbf{R} to \mathbf{R}

$$f_{\delta}(x) = \begin{cases} x + \delta & \text{if } x \in \mathbf{Z} \\ -x + \delta & \text{if } x \notin \mathbf{Z}, \end{cases} \qquad g_{\delta}(x) = \begin{cases} x + \delta & \text{if } x \in \mathbf{Z} \\ -x - \delta & \text{if } x \notin \mathbf{Z}. \end{cases}$$

Consider the two statements

 $\forall \delta \in \mathbf{R} \ f_{\delta} \ is \ a \ bijection$ and $\forall \delta \in \mathbf{R} \ g_{\delta} \ is \ a \ bijection.$

- $\bigcirc \ \left\{ \begin{array}{l} \textit{Seule la seconde proposition est vraie.} \\ \textit{Only the second statement is true.} \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} \textit{Seule la première proposition est vraie.} \\ \textit{Only the first statement is true.} \end{array} \right.$
- $\bigcirc \left\{ \begin{array}{l} \textit{Elles sont vraies toutes les deux.} \\ \textit{They are both true.} \end{array} \right.$
- $\bigcirc \ \left\{ \begin{array}{l} \textit{Elles sont fausses toutes les deux.} \\ \textit{They are both false.} \end{array} \right.$