

INF1600 Architecture des micro-ordinateurs

Groupe 1

Laboratoire 5

Soumis par:

Joe Abdo - 1 939 689 Jean-Sébastien Patenaude – 1 961 302

Le 9 avril 2019

EXERCICE 1:

Voir les fichiers.

EXERCICE 2:

1)

Mémoire principale de $1024\text{Ko} = 2^{20}\text{octets} \rightarrow \text{adressage sur } 20 \text{ bits}$

Mémoire cache de 16Ko = 2¹⁴octets

Lignes de 16 octets = 2^4 octets

Write-back, write-allocate et remplacement LRU

a) Direct:

- Il y a 1024 (2^{10}) blocs de mémoire cache (2^{14} octets/ 2^{4} octets = 1024), donc 10 bits réservés pour l'ensemble.
- Il y a 16 octets (2⁴) par bloc (ligne), donc 4 bits réservés pour l'octet.
- Il y a 2^6 étiquettes (20 bits d'adressage 10 bits ensemble 4 bits octet = 6bits), donc 6 bits réservés pour le tag.

Donc l'adresse est divisée ainsi :

tag	ensemble	octet
6 bits	10 bits	4 bits

b) <u>Associative par ensemble de 2 blocs :</u>

- Il y a 512 (2^9) blocs de mémoire cache par ensemble, car (2^{14} octets/ 2^4 octets = 2^{10} blocs) et (2^{10} blocs/2 ensembles = 2^9 blocs), donc 9 bits réservés pour l'ensemble.
- Il y a 16 octets (2⁴) par bloc (ligne), donc 4 bits réservés pour l'octet.
- Il y a 2^7 étiquettes, car (20 bits d'adressage 9 bits ensemble 4 bits octet = 7bits), donc 7 bits réservés pour le tag.

Donc l'adresse est divisée ainsi :

tag	ensemble	octet
7 bits	9 bits	4 bits

c) <u>Associative par ensemble de 4 blocs :</u>

- Il y a 256 (2^8) blocs de mémoire cache par ensemble, car (2^{14} octets/ 2^4 octets = 2^{10} blocs) et (2^{10} blocs/4 ensembles = 2^8 blocs), donc 8 bits réservés pour l'ensemble.
- Il y a 16 octets (2⁴) par bloc (ligne), donc 4 bits réservés pour l'octet.
- Il y a 2^8 étiquettes, car (20 bits d'adressage 8 bits ensemble 4 bits octet = 8bits), donc 8 bits réservés pour le tag.

Donc l'adresse est divisée ainsi :

tag	ensemble	octet
8 bits	8 bits	4 bits

2)

,		Direct				2 blocs				4 blocs	S	
Accès	Tag	Set	Hit	w-b	Tag	Set	Hit	w-b	Tag	Set	Hit	w-b
WR 0x5EF1D	17	2F1			2F	0F1			5E	F1		
WR 0x19C7C	06	1C7			0C	1C7			19	C7		
RD 0x5EF1B	17	2F1	Х		2F	0F1	х		5E	F1	Х	
RD 0x8CDB0	23	0DB			46	0DB			8C	DB		
WR 0x3CDB3	0F	0DB		х	1E	0DB			3C	DB		
WR 0x5EF15	17	2F1	Х		2F	0F1	х		5E	F1	Х	
RD 0x68DBF	1A	0DB		х	34	0DB		х	68	DB		
WR 0xCAF1C	32	2F1		Х	65	0F1			CA	F1		
RD 0x39C7E	0E	1C7		х	1C	1C7			39	C7		
WR 0xCAF1A	32	2F1	Х		65	0F1	Х		CA	F1	Х	

0x5EF1D: 0101 1110 1111 0001 1101 donc:
direct: tag ensemble octet
01 0111 | 10 1111 0001 | 1101
2 blocs: tag ensemble octet
010 1111 | 0 1111 0001 | 1101
4 blocs: tag ensemble octet
0101 1110 | 1111 0001 | 1101

Les autres adresses suivent la même logique.

3)

direct:

Set	Tag0
2F1	32*
1C7	0E
0DB	1A

2 blocs:

Set	Tag0	Tag1
0F1	2F*	65*
1C7	0C*	1C*
0DB	1E*	34

4 blocs:

Set	Tag0	Tag1	Tag2	Tag3
F1	5E*	CA*		
C7	19*	39*		
DB	8C*	3C*	68*	

4)

Formule : temps d'accès effectif = h*tp + (1-h)*ts avec h : taux de succès d'accès (succès/total)

temps accès effectif = (succès*8ns + défauts*100ns + accès mémoire principale*100ns)/total

direct:

3*8ns + 7*100ns + 4*100ns = 1124ns

→ temps accès effectif = 1124ns/10accès = 112,4ns en moyenne

2 blocs:

3*8ns + 7*100ns + 1*100ns = 824ns

→ temps accès effectif = 824ns/10accès = 82,4ns en moyenne

4 blocs:

3*8ns + 7*100ns = 724ns

→ temps accès effectif = 724ns/10accès = 72,4ns en moyenne

5) Si la politique de placement de la cache avait été complètement associative, alors la structure de l'adresse n'aurait comporté que deux sections : une pour le tag et l'autre pour l'octet. Ainsi, la section pour l'ensemble aurait disparue. Il y aurait encore eu 4 bits réservés pour l'octet, car il y aurait encore des lignes de $16 (2^4)$ octets en cache. Par contre, il y aurait eu 16 bits réservés pour le tag, car la mémoire principale comprend 2^{20} octets et qu'il n'y a pas d'ensembles (20 bits d'adressage -4 bits octet = 16 bits tag).