Soós Tamás Szakdolgozat

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Műszaki Mechanikai Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Műszaki Mechanikai Tanszék Szakdolgozat

Digitális admittancia szabályozó stabilitásának vizsgálata

Soós Tamás

Konzulens: Vizi Máté Benjámin Témavezető:

Tóth András

Budapest, 2023.12.13.

Nyilatkozatok

Beadhatósági nyilatkozat

A jelen <u>szakdolgozat</u>/diplomaterv az üzem/<u>intézmény</u> által elvárt szakmai színvonalnak mind tartalmilag, mind formailag megfelel, beadható.

nak mind tartalmilag, mind formailag megfelel, beadható.
Kelt, Budapest, 2019.12.13. Az üzem részéről:
üzemi konzulens
Elfogadási nyilatkozat
Ezen szakdolgozat/diplomaterv a Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kara által a Diplomatervezési és Szakdolgozat feladatokra előírt va lamennyi tartalmi és formai követelménynek, továbbá a feladatkiírásban előírtaknak maradéktalanul eleget tesz. E szakdolgozatot/diplomatervet a nyilvános bírálatra és nyilvános előadásra alkalmasnak tartom.
A beadás időpontja: 2019.12.13.
témavezető
Nyilatkozat az önálló munkáról
Alulírott, Majoros Tamás (NEPTUN KOD), a Budapesti Műszaki és Gazdaságtudományi Egyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sa játkezű aláírásommal igazolom, hogy ezt a <u>szakdolgozatot</u> /diplomatervet meg nem engedett segítség nélkül, saját magam készítettem, és dolgozatomban csak a megadott
forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelem ben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak

megfelelően, a forrás megadásával megjelöltem.

Budapest, 2019.12.13.

Köszönetnyilvánítás

Kivonat

Tartalomjegyzék

Ábrák jegyzéke

Táblázatok jegyzéke

Bevezetés

1. Fizikai modell

1.1. Egyenáramú motor dinamikája

1.1. ábra. Egyenáramú motor áramkör és szabadtest ábra

A robot motorjának modelljét az ??-es ábra mutatja. A felhasznált motor feltételezetten állandó gerjesztésű. A kifejtett nyomaték a Biot-Savart-törvény szerint arányos a forgórészen átfolyó árammal. A forgórészben indukált feszültség pedig arányos annak szögsebességével. A Lenz-törvény alapján

$$\tau_m = K_\tau i,\tag{1.1}$$

$$V_b = K_e \dot{\theta}, \tag{1.2}$$

ahol K_{τ} a nyomatékállandó, K_{e} a sebesség-feszültség állandó, τ_{m} a kifejtett nyomaték, i a rotor árama, V_{b} az rotorban indukált feszültség és $\dot{\theta}$ a rotor szögsebessége. Az

energia-megmaradás törvénye alapján a két konstans értéke megegyezik

$$K_m = K_\tau = K_e, \tag{1.3}$$

így a következőkben K_m paraméterként jelennek meg. A forgórész áramkörére Kirchhoff I. törvénye alapján felírható

$$V - Ri - L\frac{di}{dt} - K_m \dot{\theta} = 0, \tag{1.4}$$

ahol R a forgórész tekercsének ellenállása, L a tekercs induktivitása, K_m a motorállandó, V a motor feszültsége, i a motoráram és θ a szögelfordulás. A forgórészt mechanikailag egy merev testként tekintve Newton II. törvénye alapján

$$J\ddot{\theta} = -B_m \dot{\theta} + K_m i + \tau, \tag{1.5}$$

ahol J a forgórész tehetetlensége, B_m a viszkózus csillapítási együttható, K_m a motorállandó, θ a szögelfordulás, i a motoráram és τ a forgórészre ható külső nyomaték. Ez a két lineáris differenciálegyenlet egyértelműen leírja a rendszer időtartománybeli viselkedését. A további vizsgálathoz kedvezőbb a differenciálegyenleteket állapottér modellként felírni. Egy állapottér modell általánosan

$$\dot{x} = Ax + Bu \tag{1.6}$$

$$y = Cx + Du \tag{1.7}$$

alakban írható fel. A két bemenet a külső nyomaték és a motorra adott feszültség. A kimenet a forgórész szöge. A paramétereket kifejtve (??) és (??) alapján a modell

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{B_m}{J} & \frac{K_m}{J} \\ 0 & -\frac{K_m}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{1}{J} & 0 \\ 0 & \frac{1}{L} \end{bmatrix} \begin{bmatrix} \tau \\ V \end{bmatrix}$$
(1.8)

$$\theta = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} \tau \\ V \end{bmatrix}$$
 (1.9)

alakba írható át. A frekvenciatartománybeli vizsgálatokhoz felírható a rendszer szög-

nyomaték és szög-feszültség átviteli függvénye. Az állapottér modellt felhasználva

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$
(1.10)

általános formában, ahol ${\it I}$ az identitás mátrix. Behelyettesítve (??) és (??) paramétereit (??) felírható

$$\begin{bmatrix} \frac{\theta(s)}{\tau(s)} \\ \frac{\theta(s)}{V(s)} \end{bmatrix} = \frac{1}{s \left(JLs^2 + (B_mL + JR)s + K_m^2 + B_mR \right)} \begin{bmatrix} Ls + R \\ K_m \end{bmatrix}$$
(1.11)

alakban.

1.2. Egyenáramú motor stabilitása

A szabályozókör visszacsatoló ágának megbomlása instabilitáshoz vezet, ha a szabályozó vagy a szabályozott rendszer önmagában instabil. Ez a valós rendszernél szaturációt eredményez, mely a jelen alkalmazás kontextusában nem elfogadható. A motor stabilitása ezért egy rendszerkövetelmény, ami a karakterisztikus egyenletből meghatározható. Az (??)-es átviteli függvény alapján a karakterisztikus egyenlet

$$JLs^{2} + (B_{m}L + JR)s + K_{m}^{2} + B_{m}R = 0, (1.12)$$

ahol a nullában elhelyezkedő pólussal átszorozva a szögsebesség a vizsgált kimenet. Ez a polinom valós együtthatókkal rendelkezik, így a Liénard–Chipart kritérium - a Routh-Hurwitz kritérium módosított alakja - segítségével a stabilitás szükséges és elégséges feltételei

$$JL > 0$$
, $B_m L + JR > 0$, $K_m^2 + B_m R > 0$. (1.13)

A feltételekben megjelenő paraméterek mind pozitívak a valós rendszerben, így a rendszer önmagában aszimptotikusan stabil. Ezen felül linearitásából következik, hogy exponenciálisan stabil.

1.3. Irányíthatóság és megfigyelhetőség

A felhasznált aktuátorok és szenzorok minimalizálása érdekében egy bemenet és egy kimenet használata a cél. Az impedancia modell teljes realizálásához további követelmény, hogy a rendszer szögelfordulása és szögsebessége irányítható legyen a bemeneti feszültség megváltoztatásával, és a szögelfordulás mérésével minden állapot

megfigyelhető legyen. Az (??)-os állapottér modell alapján az irányíthatóság feltétele, hogy

$$\left[\begin{array}{c|c} CB & CAB & CA^2B & D \end{array} \right]$$
(1.14)

legyen maximális rangú. Behelyettesítve (??) és (??) paramétereit a kimeneti mátrixot kiegészítve a szögsebességgel

$$\begin{bmatrix} 0 & 0 & \frac{K_m}{JL} & 0 \\ 0 & \frac{K_m}{JL} & -\frac{K_m(B_mL+JR)}{J^2L^2} & 0 \end{bmatrix},$$
 (1.15)

redukált lépcsős alakban

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \tag{1.16}$$

mely mátrix rangja megegyezik sorainak számával, így az irányíthatósági feltétel teljesül. Az előzőekhez hasonlóan a megfigyelhetőség feltétele, hogy

legyen maximális rangú, ahol C csupán a szöglfordulást tartalmazza. Ismét behelyettesítve $(\ref{eq:csuparameter})$ és $(\ref{eq:csuparameter$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{B_m}{J} & \frac{K_m}{J} \end{bmatrix}, \tag{1.18}$$

redukált lépcsős alakban

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{1.19}$$

tehát a rendszer minden állapota megfigyelhető a szögelfordulás méréséből.

2. Szabályozó modellezése

2.1. Impedancia modell

Az eredményes ember-robot interakció érdekében a szabályozó előírása nem csupán az elérni kívánt pozíció vagy kifejtett nyomaték, hanem a mozgásállapot és a kifejtett nyomaték közötti összefüggés. Ezt az összefüggést linearitása végett egy tömeg-rugócsillapitás modell adja meg a továbbiakban. A modell három paraméterrel

$$M_e \ddot{\theta} + B_e \dot{\theta} + K_e \theta = \tau, \tag{2.1}$$

ahol M_e a rendszer előírt tehetetlensége, B_e a viszkózus csillapítása, K_e a rugóállandója és τ a rendszerre ható külső nyomaték.

2.2. Állapotmegfigyelő

Az állapotvisszacsatoláshoz szükséges belső állapotok közül csak a szögelfordulás áll rendelkezésre közvetlen mérésből. A többi állapotra egy megfigyelő ad becslést. Elkülönítve a mért és becsült állapotokat (??) és (??) felírható

$$\left[\begin{array}{c|c} \dot{\theta} \\ \hline \dot{x}_b \end{array} \right] = \left[\begin{array}{c|c} A_{\theta\theta} & A_{\theta b} \\ \hline A_{b\theta} & A_{bb} \end{array} \right] \left[\begin{array}{c|c} \theta \\ \hline x_b \end{array} \right] + \left[\begin{array}{c|c} B_{\theta} \\ \hline B_b \end{array} \right] \left[\begin{array}{c} \tau \\ V \end{array} \right]$$
(2.2)

$$\theta = \left[\begin{array}{c|c} 1 & 0 \end{array} \right] \left[\begin{array}{c} \theta \\ \hline x_b \end{array} \right] \tag{2.3}$$

alakban, ahol x_b jelöli a becsült állapotokat. Továbbá jelölje $\tilde{*}$ a becsült paramétereket. Ezután legyen

$$\hat{A} = A_{bb} - K_e A_{\theta b}$$

$$\hat{B} = \hat{A} K_e + A_{b\theta} - K_e A_{\theta \theta}$$

$$\hat{F} = B_b - K_e B_{\theta},$$
(2.4)

ahol \hat{A} a megfigyelő belső állapotának (továbbiakban $\tilde{\eta}$) dinamikáját adja meg, \hat{B} és \hat{F} a mért illetve a becsült állapotok bemeneti mátrixai. A becsült állapotok és az állapotváltozók közötti összefüggés ekkor

$$\eta = x_b - K_e \theta
\tilde{\eta} = \tilde{x}_b - K_e \theta$$
(2.5)

alakban adható meg. A belső állapot dinamikája

$$\dot{\tilde{\eta}} = \hat{A}\tilde{\eta} + \hat{B}\theta + \hat{F}u. \tag{2.6}$$

Végül (??) átalakításával a rendszer becsült állapotvektora

$$\tilde{x} = \hat{C}\tilde{\eta} + \hat{D}\theta,\tag{2.7}$$

ahol

$$\hat{C} = \begin{bmatrix} 0 \\ I_{n-1} \end{bmatrix}, \quad \hat{D} = \begin{bmatrix} 1 \\ K_e \end{bmatrix}, \tag{2.8}$$

mely tartalmazza a mért állapotot is.

2.3. Nyomaték kompenzáció

A modell két bemenete közül csak a feszültségre van hatással a szabályozó. A külső nyomaték környezeti hatásokból ered. Az impedancia modell mindkét bemenetre adott válasz alakját előírja, így a környezet hatását a feszültség megváltoztatásával kell kompenzálni. A kompenzáció a külső nyomaték direkt vagy indirekt visszacsatolásával érhető el. Direkt mérés esetén a külső nyomaték értékét egy szenzor adja meg, mely dinamikája jelen vizsgálat során elhanyagolható. Az állapotmegfigyelővel és kompenzációval ellátott rendszer teljes blokkdiagramját az ??-es ábra mutatja. A teljes rendszer dinamikája az (??)-es állapottér modell és az (??)-es állapotmegfigyelő

2.1. ábra. Impedancia szabályozó közvetlen nyomaték méréssel

összekapcsolásával írható le, a következő visszacsatolási összefüggéssel

$$V = -K\tilde{x} - K_c \tau + k_1 \theta_r, \tag{2.9}$$

ahol K az állapot visszacsatolási mátrix, K_c a nyomaték kompenzációs együttható, k_1 a az állapot visszacsatolási mátrix első eleme és θ_r az előírt szögelfordulás. Behelyettesítve (??)-ba

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}_{V} \left[-\boldsymbol{K}\tilde{\boldsymbol{x}} - \boldsymbol{K}_{c}\boldsymbol{\tau} + \boldsymbol{k}_{1}\boldsymbol{\theta}_{r} \right] + \boldsymbol{B}_{\tau}\boldsymbol{\tau}, \tag{2.10}$$

ahol a bemeneti mátrix B oszlopai elkülönítve B_V és B_τ paraméterként jelennek meg. Bevezetve a valós és becsült állapot közötti hibát, mint

$$e = x - \tilde{x},\tag{2.11}$$

(??) a következő alakra hozható

$$\dot{x} = (A - B_V K) x + B_V K e + (B_\tau - B_V K_c) \tau + B_V k_1 \theta_r, \tag{2.12}$$

a becsült állapot kiküszöbölésével. A valós és becsült állapot közötti eltérés dinamikája pedig (??) felhasználásával

$$\dot{\boldsymbol{x}}_b = \boldsymbol{A}_{b\theta} \boldsymbol{x}_{\theta} + \boldsymbol{A}_{bb} \boldsymbol{x}_b + \boldsymbol{B}_{bB} \boldsymbol{V} + \boldsymbol{B}_{b\tau} \boldsymbol{\tau}, \tag{2.13}$$

$$\dot{\tilde{x}}_b = (A_{bb} - K_e A_{\theta b}) \tilde{x}_b + A_{b\theta} x_\theta + K_e A_{\theta b} x_b + B_{bB} V + B_{b\tau} \tau, \tag{2.14}$$

melyeket kivonva egymásból

$$\dot{e} = (A_{bb} - K_e A_{\theta b}) e. \tag{2.15}$$

A rendszer dinamikája blokk mátrix alakban

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - B_V K & B_V K \\ 0 & A_{bb} - K_e A_{\theta b} \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B_{\tau} - B_V K_c & B_V k_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tau \\ \theta_r \end{bmatrix}.$$
 (2.16)

Indirekt nyomaték visszacsatolás kontextusában, a rendszer szöggyorsulásának mérése alapján, az ??-es ábra mutatja a teljes blokkdiagramot. Ekkor egy becsült

2.2. ábra. Impedancia szabályozó szöggyorsulás méréssel

nyomaték érték kerül visszacsatolásra, melyeket

$$\tilde{\tau} = J\ddot{\theta}_s - C_{\ddot{\theta}}A\tilde{x} \tag{2.17}$$

$$C_{\ddot{\theta}} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \tag{2.18}$$

alakban, a becsült állapot és a mért szöggyorsulás kombinációjával adható meg. A feszültségjel a becsült nyomatékértékkel

$$V = -K\tilde{x} - K_c\tilde{\tau} + k_1\theta_r. \tag{2.19}$$

Az előző levezetéshez hasonlóan a teljes rendszer dinamikája blokk mátrix alakban

Ez a kompenzáció csak akkor lehet eredményes, ha a rendszer feszültségre és külső nyomatékra egyaránt közel azonos sebességgel reagál. Az eltérő válaszokat

2.3. ábra. Külső nyomatékra és feszültségre adott válasz összehasonlítása, $J=0.01\left[kg\cdot m^2\right]$, $K_m=0.01\left[kg\cdot \frac{m^2}{s^2}\right]$, $B_m=0.1\left[kg\cdot \frac{m^2}{s}\right]$, $L=0.5\left[H\right]$, $R=1\left[\Omega\right]$

szemlélteti ??-es ábra, mely az (??)-es egyenletben szereplő átviteli függvények alapján a szögsebesség egységugrásra adott válaszát mutatja. A két válasz végértékét egységnyire normalizálva jeleníti meg az ábra a fefutási idő összehasonlításának megkönnyítése érdekében.

2.4. Szabályozó stabilitása

3. Stabilitásvizsgálat időkéséssel

- 3.1. Vizsgálati módszerek összehasonlítása
- 3.2. Stabilitás folytonos időben
- 3.3. Stabilitás diszkrét időben

4.	Kísérleti eredmények

A rúd differenciálegyenlete

$$\ddot{\phi}(t) - \frac{6g}{l}\phi(t) + \frac{6D}{ml}\dot{\phi}(t-\tau) + \frac{6P}{ml}\phi(t-\tau) = 0$$
 (4.1)

A differenciálegyenlet Laplace transzformáltja

$$s^{2}\phi(s) - s\phi_{0} - \dot{\phi}_{0} - \frac{6g}{l}\phi(s) + \frac{6D}{ml}\left(se^{-s\tau}\phi(s) - \phi_{-\tau}\right) + \frac{6P}{ml}e^{-s\tau}\phi(s) = 0 \tag{4.2}$$

Kifejezve $\phi(s)$ -t

$$\phi(s) = \frac{s\phi_0 + \dot{\phi}_0 + \frac{6D}{ml}\phi_{-\tau}}{s^2 + \frac{6D}{ml}se^{-s\tau} + \frac{6P}{ml}e^{-s\tau} - \frac{6g}{l}}$$
(4.3)

A végérték frekvenciatartománybeli reprezentációban

$$\lim_{t \to \infty} \phi(t) = \lim_{s \to 0} \phi(s) = \frac{\dot{\phi}_0 + \frac{6D}{ml} \phi_{-\tau}}{\frac{6P}{ml} - \frac{6g}{l}}$$
(4.4)

Az időkésést Taylor-sorral közelítve

$$\phi(t - \tau) = \phi(t - 1) - \frac{1}{1!}\dot{\phi}(t)\tau + \frac{1}{2!}\ddot{\phi}(t)\tau^2 - \frac{1}{3!}\ddot{\phi}(t)\tau^3 + \dots$$
 (4.5)

különböző rendű közelítéssekkel

5. Összegzés

6. Következtetések

FÜGGELÉK

A. Measurement dataset

A.1. táblázat. Dataset for the equilibrium position measurement.

$U_{\rm in}$	\dot{arphi}	θ	$ U_{\rm in} $	\dot{arphi}	θ
1.3	0	3.1415926536	1.3	0	3.1415926536
1.4	4.3	3.1415926536	1.4	-4.3	3.1415926536
1.5	4.7	3.1415926536	1.5	-4.7	3.1415926536
1.6	5.2	3.1415926536	1.6	-5.2	3.1415926536
1.7	5.67	3.1415926536	1.7	-5.67	3.1415926536
1.8	6.34	3.1415926536	1.8	-6.34	3.1415926536
1.9	6.61	3.1415926536	1.9	-6.61	3.1415926536
2	7.22	3.1415926536	2	-7.22	3.1415926536
2.1	7.72	3.1415926536	2.1	-7.72	3.1415926536
2.2	8.02	3.1415926536	2.2	-8.02	3.1415926536
2.3	8.5	3.8746309394	2.3	-8.3366666667	3.1415926536
2.4	9.0033333333	3.9677151662	2.4	-8.78	2.3561944902
2.5	9.5366666667	4.0666171571	2.5	-9.26	2.2514747351
2.6	9.9666666667	4.1306125631	2.6	-9.7	2.1758438008
2.7	10.4366666667	4.2120612615	2.7	-10.2	2.1060306307
2.8	10.7833333333	4.264421139	2.8	-10.63	2.0594885174
2.9	11.3933333333	4.3284165449	2.9	-11.1333333333	1.9605865264
3	11.84	4.3516876016	3	-11.55	1.9198621772
2.9	11.41	4.3225987808	2.9	-11.1033333333	1.9722220548
2.8	11.0133333333	4.2818744316	2.8	-10.6433333333	2.0653062815
2.7	10.5233333333	4.2353323182	2.7	-10.2633333333	2.1060306307
2.6	10.0566666667	4.1655191481	2.6	-9.7733333333	2.1700260366
2.5	9.5933333333	4.1015237422	2.5	-9.31	2.21656815
2.4	9.1266666667	4.0666171571	2.4	-8.8633333333	2.2514747351
2.3	8.55	3.9735329304	2.3	-8.4566666667	2.3329234335
2.2	8.2	3.8571776469	2.2	-7.9366666667	2.4609142453
2.1	7.71	3.7466401276	2.1	-7.5366666667	2.5539984721

B. Poster

Abstract