Damegender: Towards an International and Free Dataset about Name, Gender and Frequency

David Arroyo Menéndez Grupo de Sistemas y Comunicaciones (GSyC) Universidad Rey Juan Carlos, Madrid, Spain {d.arroyome@alumnos}.urjc.es

URJC

Abstract

Equality of gender is the 5th objective of sustanaible development in United Nations¹.

This equality can be reached working on to measure and to analyze data and to apply politics from the results. On many gender studies, we need to count males and females deciding gender from names, for instance, research papers, job positions, streets, ... The traditional way is to use commercial APIs with propietary data without idea about how the data has been built. Another way, is taking data from wikipedia or scientific sites.

With Open Data on mind, many statistical institutions are providing Open Datasets about name, gender and frequency. So, we need a scientific discussion about unifying formats, making easy ways to process these data and ways towards make standards.

Meanwhile, has been developed Damegender (Free and Open Source Software) to retrieve and make calculus with these data.

The dataset is covering more than 20 countries in the occidental world (above all), with more names than any open source software in this moment, generating an international dataset, too. Sureley, allowing to measure gender gap to students and academics interested on the phenomenon without costs and on a repro-

Copyright © by the paper's authors. Use permitted under Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

ducible way, more people will be contributing to fix the gender gap.

There are a warranty of quality on reproducible research, that's the Free Software and the citation about official sources about names, gender and frequency provided by statistics institutions making easy the peer review and opening doors to the semantic web and the attention to diversity.

1 Introduction

So, we have an objective in United Nations about gender gap. We understand that "if you cannot measure it, you cannot improve it" [Tho33] and Software Engineering Economics is an invaluable guide to determining software costs, applying the fundamental concepts of microeconomics to software engineering [B⁺81]. So, the objective in this paper is reduce costs to measure gender gap.

Detecting personal names, you can infer gender on academical papers, books, newspapers and many interactions on Internet. So, the task about detect gender from the names could be a strategical task to measure gender gap.

Nowadays, many people is using APIs such as Genderapi, Genderize, Namsor, or NameApi. Another people is using solutions based on Wikipedia, or free software solutions (NLTK[LB02], R Gender, Gender Detector, Gender Computer², ...) with few number of names due to use files of a single country or being software not maintained in the long time. Wikipedia is not taking into account the frequency of the names.

However, the gender gap is a problem recognised in United Nations and the IT market is leading big inequalities in the world in economy and gender gap.

¹https://www.un.org/sustainabledevelopment/gender-equality/

²https://github.com/tue-mdse/genderComputer

This paper present a real work collecting data with a scientific perspective to solve the problem.

Another previous work [KWL⁺16] about this kind of tools is discussing about the datasets as a way to improve the accuracies, comparing tools that is using different public datasets (SSA, IPUMS, Sexmachine, ...)

We are facing the solution by the practical way augmenting the number of names using official statistics and taking into account diversity goals such as non binary gender and cultural minorities.

The remainder of this paper is structured as follows: In Section 2 we discuss the different ways to find evidence about names, gender and frequency.

Section 3 introduces the diversity discussion about minorities.

Section 4 is giving clues about how to approach the semantic web goals with the previous dicussion presented.

Section 6 reports on values of accuracy and offers a confusion matrix using a scientific dataset.

Section 7 is about how we use Machine Learning in damegender.

Section 9 discusses limitations and further research, and concludes the paper.

2 Truehood and Falsehood in names, gender and frequency

The current idea in the field is the data about name, gender and frequency is ok because there are people who is paying by it, or many people is downloading a product. This intuition is right generally, although sometimes the people is paying by a bad product due to a good marketing strategy, a monopoly or there are a fraud, ... Another idea is the people trust in the government about statistics such as economy, demography, democracy, ... So the people can trust on names, gender and frequency. In Damegender, we are trusting in both notions about truehood: the market's point of view and the official statistics's point of view.

Sometimes there are problems downloading the official statistics, but there are people who has retrieved these data, for example, with webscraping. We want classify these files with another idea about truehood.

Another problem arises when the government does little chances in the data, sometimes communicating it to the users and another times not. That could be a problem about upgrades, but it's not a problem with the truehood, although it's possible make a trace about this chances.

Another sources to retrieve gender and names can be personal scientific websites, wikipedia, or similar, but these sources is not giving the frequency, now. So, we are rejecting this idea. With an international free dataset about names, gender and frequency we can build reproducible science in fields such as Natural Language Processing (gender detection from the name), social sciences or journalism (gender gap [HSFH18, MLA $^+$ 11, NP17, dBA14]), lingüistic [LN05, Kru62, vdWRvdW $^+$ 20, Agy06, FMO $^+$ 87], software engineering [VCS12], ...

3 Gender, Language, Nation and Diversity

There are exists rules and exceptions in the languages to predict if a name is about male or female when you don't know the name. For example, in spanish or english there are more names ending with 'a' classified as females than classified as males. And Andrea is female in Spain and male in Italy. So, it's useful to understand the language and culture associated with a name. Language is close to nation, but there are differences, for example, in Spain there are several languages basque, catalan, castillian, ... or the spanish is the main language in Spain and in another countries such as Argentina, Mexico, Ecuador, Bolivia, ... So, it would be useful to detect the language and nation from names and surnames to help to detect gender.

Some countries, such as Spain, are providing free datasets about surnames but we need more efforts from many countries on this objective. On other hand, there are previous works to relate name and surnames with ethnicity using Wikipedia and Machine Learning [AWM⁺09].

4 Semantic Web

When we are describing people with names and gender could be giving semantic richness with semantic markup taking into account the lessons learned about the domain, for example, using microformats. Changing the current situation using a poor html:

Towards the semantic way:

With a richness markup take into account the gender in the context of a country.

5 Free APIs for Free Datasets?

Many websites about Open Data is delivering methods to retrieve Open Data with a structured format and without costs for the user, such as, Wikipedia with SPARQL, OpenStreetMap with API rest, ...

We are detecting that the Open Datasets about names, gender and frequency is being modified one time per year as maximum for each statistical institution.

Damegender contains python scripts to create the different datasets and publish json files that could be used as a Free API Rest publishing the json files in sites as github pages, gitlab pages, or similar sites with free uploads.

```
$ cat DAVID_all.json
[{
        "name": "DAVID",
        "frequency": 4856689,
        "males": "99.73267796229078 %",
        "females": "0.26732203770922947 %"
}]
```

So, we could think that could have Free API Rest about names, gender and frequency reaching reduce costs to fix the gender gap on a collaborative way similar to Wikipedia, OpenStreetMap or many Free Software projects.

6 Damegender Open Datasets Collection

In Damegender, we have unified the different formats to name, gender and frequency from official sources in these countries: Austria, Australia, Belgium, Canada, Denmark, Germany, Spain, Finland, France, Great Britain, Ireland, Mexico, New Zealand, Portugal and Slovenia.

Dataset	SSA	namdict	NLTK	Damegender
males	91.320	48.821	2.943	278.929
females	91.320	48.821	5.001	299.846

Table 1: Comparison about the number of names

Later, we have merged these datasets building a free and international dataset.

Generally, these data are providing name, gender and frequency about births (Canada), although in some countries (Spain) are giving the total.

We have found open datasets about countries such as Turkey and China retrieved by another open source developers that is being included in Damegender, but not in the international dataset. In Turkey the data has been retrieved using webscraping. And in China the data has been built by a company in collaboration with the China government and contributed to R language program. We want compare precision about this dataset with the commercial solutions to understand the truehood about these datasets.

When the work is finished, we could to rebuild machine learning models to predict new names and nicknames in any language and culture. The results is the longest list of public names.

A possible criticism about our idea is the Leslie Problem[BM15]: the match between gender and name has been changing in some years. And the answer is about you need introduce the age of the person to solve it. The most used use case is the input is the name and the output must be gender, frequency and percentage. So, we are deciding without age, surname, ... in the most of use cases. The idea about this dataset is to be designed for the most used use case. Although, we can take into account another inputs, such as surname or age to improve the accuracy. There are many Open Datasets with names and frequencies classified by years. So, this problem can be fixed with Open Data, too.

7 Measuring Gender Gap. GNU/Linux as Use Case

With a trust open dataset about names, gender and frequency is too easy to measure gender gap. Doing cheap to measure gender gap more students and academic people could work in the fith Objective Development Sustainaible of United Nations: to delete the gender gap.

This section is divided counting males and females in Debian, GNU and Linux.

We have reached the csv files from different ways to know the names about the people in these communities.

When this paper was being wrote in the Debian community all members must be collaborating with

Figure 1: Males (blue), Females (orange) and Unknows (green) in Debian, GNU and Linux

a gpg key, so we can count males and females from the keyring. The keyring was imported with gpg commands and later was dumped the keyring in a csv file.

In the moment to write this paper GNU³ and Linux⁴ has websites with the people collaborating in these projects. So, making webscraping scripts we have downloaded the people and processed the people to csv files

In Damegender, we have developed csv2gender, a software with a csv file as input and deploy a statistics graph and/or return the result of males, females and unknows about the input.

To make easy to reproduce the experiment we are pasting the commands used with the version 0.3.4 of damegender.

python3 csv2gender.py files/gnu-maintainers.csv

- --first_name_position=0
- --title="GNU maintainers grouped by gender"
- --dataset="inter"
- --outcsv="files/gnu-maintainers.gender.csv"
- --outimg="files/gnu-maintainers.gender.png"
- --noshow --delete_duplicated

python3 csv2gender.py files/linux-maintainers.csv

- --first_name_position=0
- --title="Linux maintaners grouped by gender"
- --dataset="inter"
- --outcsv="files/linux-maintainers.gender.csv"
- --outimg="files/linux-maintainers.gender.png"
- --noshow --delete_duplicated

- --first_name_position=0
- --title="Debian maintaners grouped by gender"
- --dataset="inter"
- --outcsv="files/debian-maintainers.gender.csv"
- --outimg="files/debian-maintainers.gender.png"
- --noshow --delete_duplicated

The inter dataset was created merging several open datasets downloaded from official statistics sites from different nations: Austria, Australia, Belgium,

Canada, Germany, Denmark, Spain, Finland, Ireland, Iceland, Mexico, New Zealand, Portugal, Slovenia, United States of America, Uruguay and France. That's a good representation of the Western World and the Free Software world is populating this world's area[GBRAIG08].

Linux divides the developers in 537 males (73.9%), 98 females (13.5%) and 92 unknows (12.7%). The number of unknows is due to different reasons, but it's so common in Linux that the developer is a company and not a name of a person.

GNU divides the developers in 164 males (89.6%), 12 females (6.6%) and 7 unknows (3.8%)

The GNU people has a number lowest in females, they are the founder of the Free Software philosophy, the Debian principles and the Open Source philosophy was invented later influenced by GNU with very similar practical decisions (for example: deciding licenses for the software). Richard Stallman returned to be president recently apologizing by his personal behaviour with the females.⁵

Debian is a distribution, the project who makes the CD/DVD and the software ready to be downloaded from Internet with the dependencies. There are many distributions, such as, Ubuntu or RedHat so it is not representative, but it's interesting to understand that the numbers are similar in Debian dividing the developers in 408 males (75%), 69 females (12.7%) and 67 unknows (12.3%).

Changing Software Industry with Open Datasets about Names, Gender and Frequency

Currently, when you are doing searches with strings about personal names (ex: Leticia) in search engines such as Google, these strings are not being classified as personal names, one solution will be data structured such as JSON-LD, microdata, microformats, rdfa ... Another solution will be store in the servers the Open Data Collection about names, gender and frequency python3 csv2gender.py files/debian-maintainers.csvd identify the context about the string is a personal name, that's an easy problem in popular sites such as wikipedia, academic websites, ...

> If the search engine identify the string as personal name, it can help to the user about the gender. That is similar than another problems such as streets, products, ... where you are giving additional information such as maps in streets or prices in products.

> Another sites such as github or gitlab could be giving data about gender of developers in the site or in the software project with these datasets.

³https://www.gnu.org/people/

⁴https://www.kernel.org/doc/html/latest/process/maintainers

⁵https://www.fsf.org/news/rms-addresses-the-free-softwarecommunity

Another industry is about match sites (Meetic, Tinder, ...) where only is important photos, age and gender generally. It could be possible to give to users gender, photo and interests from personal names our open data collection and information related in Internet.

9 Conclusions

This paper is explaining the application about Damegender, the motivations (reproducible research, fix gender gap to reach an objective of United Nations, fields of application: lingüistic, social sciences, software engineering, natural language processing, journalism, ...)

A good improvement is to build an international, universal and free dataset about names, gender and frequency with the right design with the current state of the job, attending to the diversity (LGBT options, cultural minorities, ...).

This paper has explained what technologies is involved on reduce costs about gender gap (gender detection from the names, api rest, semantic web, ...)

Augmenting the number of countries with statistical institutions giving names, gender and frequencies with Open Data will be augmenting the accuracies and giving more attention to the diversity.

The current state of work is the longest Open Dataset about names, gender and frequency with more than 20 countries representing the Western World, being a solution with low number of unknows in the real world

References

[Agy06] Kofi Agyekum. The sociolinguistic of akan personal names. Nordic journal of African studies, 15(2):206–235, 2006.

[AWM⁺09] Anurag Ambekar, Charles Ward, Jahangir Mohammed, Swapna Male, and Steven Skiena. Name-ethnicity classification from open sources. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, pages 49–58, 2009.

[B⁺81] Boehm Barry et al. Software engineering economics. New York, 197, 1981.

[BM15] Cameron Blevins and Lincoln Mullen. Jane, john... leslie? a historical method for algorithmic gender prediction. *DHQ: Digital Humanities Quarterly*, 9(3), 2015.

Clara Sainz de Baranda Andújar. El género de los protagonistas en la información deportiva (1979-2010): noticias y titulares/the gender of the main characters in sports reporting (1979-2010): News and headlines. Estudios sobre el mensaje periodístico, 20(2):1225, 2014.

[dBA14]

[KWL⁺16]

[LB02]

[FMO⁺87] Peter Marshall Fraser, Elaine Matthews, Michael J Osborne, Sean G Byrne, Richard WV Catling, J-S Balzat, E Chiricat, Thomas Corsten, and Fabienne Marchand. A lexicon of Greek personal names, volume 5. Lexicon of Greek Personal Name, 1987.

[GBRAIG08] Jesus M Gonzalez-Barahona, Gregorio Robles, Roberto Andradas-Izquierdo, and Rishab Aiyer Ghosh. Geographic origin of libre software developers. Information Economics and Policy, 20(4):356–363, 2008.

[HSFH18] Luke Holman, Devi Stuart-Fox, and Cindy E Hauser. The gender gap in science: How long until women are equally represented? *PLoS biology*, 16(4):e2004956, 2018.

[Kru62] John R Krueger. Mongolian personal names. Names, 10(2):81-86, 1962.

Fariba Karimi, Claudia Wagner, Florian Lemmerich, Mohsen Jadidi, and Markus Strohmaier. Inferring gender from names on the web: A comparative evaluation of gender detection methods. In Proceedings of the 25th International conference companion on World Wide Web, pages 53–54, 2016.

Edward Loper and Steven Bird. Nltk: the natural language toolkit. $arXiv\ preprint\ cs/0205028,\ 2002.$

[LN05] Edwin D Lawson and Natan Nevo. Russian given names: Their pronunciation, meaning, and frequency. Names, 53(1-2):49-77, 2005.

[MLA+11] Alan Mislove, Sune Lehmann, Yong-Yeol Ahn, Jukka-Pekka Onnela, and James Rosenquist. Understanding the demographics of twitter users. In *Proceedings of the International*

AAAI Conference on Web and Social Media, volume 5, 2011.

[NP17] Mari K Niemi and Ville Pitkänen. Gendered use of experts in the media: Analysis of the gender gap in finnish news journalism. *Public Understanding of Science*, 26(3):355–368, 2017.

[Tho33] W Thompson. Electrical units of measurement, popular lectures, 1833.

[VCS12] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. Gender, representation and online participation: A quantitative study of stackoverflow. In 2012 International Conference on Social Informatics, pages 332–338. IEEE, 2012.

[vdWRvdW⁺20] Jeroen van de Weijer, Guangyuan Ren, Joost van de Weijer, Weiyun Wei, and Yumeng Wang. Gender identification in chinese names. *Lin*gua, 234:102759, 2020.