

Camada de rede Endereçamento IPv4 Tradução de endereços IP/MAC

•Modelo Internet TCP/IP

Introdução às Redes de Computadores carlos.rocha@ifrn.edu.br

A Camada de rede possui, entre outras, as seguintes funções

- Endereçamento
 - Atribuição de endereços lógicos (endereços IP) a cada uma das estações da rede
- Tradução de endereços
 - Realizar o mapeamento entre os endereços lógicos (IP) em físicos (MAC)
- Roteamento
 - Encaminhamento das unidades de dados até o seu destino, passando pelos sistemas intermediários

Protocolo IP

- Implementa as funções de endereçamento e roteamento
- Opera pela transferência de blocos de dados denominados datagramas (pacotes)
- A origem e destino de cada datagrama são identificados através de endereços presentes no seu cabeçalho
- Cada datagrama é tratado de forma independente pela rede, não possuindo nenhuma relação com qualquer outro

Protocolo IP

- Características
 - •Não confiável
 - •Não orientado a conexão
 - •Não realiza controle de erro
 - •Não realiza controle de fluxo
- Todas estas funções são deixadas para, se desejado, serem implementadas no nível de transporte

Protocolo IP

O formato de um datagrama IPv4 é mostrado a seguir

0	7	15		23			31			
VERS	HLEN	DSCP/ECN	TOTAL LENGTH							
-	IDENTIF	FLAG	FRAGI	MENT	OFFSET					
T	ΓL	PROTOCOL	Н	EADER (CHECK	KSUM	SUM			
SOURCE IP ADDRESS										
DESTINATION IP ADDRESS										
	IP OPTIONS (IF ANY) PADDING									
DATA										
• • •										
• • •										

Introdução às Redes de Computadores carlos.rocha@ifrn.edu.br

Protocolo IPv4

- Significado dos principais campos:
 - VERS: Indica a versão do protocolo IP (4)
 - •HLEN: Tamanho do cabeçalho (em múltiplos de 32)
 - DSCP/ECN: Inicialmente chamado de TOS
 - DSCP: Possibilita a atribuição de diversos níveis de prioridade no encaminhamento do datagrama
 - ECN: Possibilita a notificação de situações onde há a eminência de congestionamento na rede. Tenta evitar o descarte de datagramas

Protocolo IPv4

- Significado dos principais campos
 - •TOTAL LENGTH: Tamanho total do datagrama
 - •TTL: Usado para limitar o número de roteadores pelos quais um pacote pode passar
 - Sempre que passa por um roteador seu valor é decrementado
 - Se chegar a 0 o datagrama é descartado

Protocolo IPv4

- Significado dos principais campos
 - HEADER CHECKSUM: Controle de erros para o cabeçalho do pacote
 - SOURCE IP ADDRESS, DESTINATION IP ADDRESS: Endereços IP de origem e destino
 - DATA: Dados
 - Na teoria um datagrama IP pode ter até 64k bits
 - Na prática normalmente se utilizam datagramas menores

Endereçamento - IPv4

- O endereçamento é feito pela atribuição de um (ou mais) endereços IP a cada equipamento da rede
- Quatro bytes (A.B.C.D) cada um variando de 0 a 255
- "Distribuídos" (vendidos) por provedores de backbone
 - No Brasil, operadoras de telefonia e RNP

Endereçamento - IPv4

- Endereços IP são divididos em 5 "classes", delimitadas pelo valor do primeiro byte
 - As três primeiras classes são de uso geral
 - As duas últimas tem finalidades específicas

•Endereçamento - IPv4

Redes Máquinas

Endereçamento - IPv4

Classes de endereços:

Classe A: 0.0.0.0 até 127.255.255.255

Classe B: 128.0.0.0 até 191.255.255.255

Classe C: 192.0.0.0 até 223.255.255.255

Classe D (endereços multicast): 224.0.0.0 até 239.255.255.255

Classe E (reservados para uso futuro): 240.0.0.0 até 255.255.255.255

Endereçamento - IPv4

 As classes A, B e C possuem uma faixa de endereços reservados para uso em redes privadas (intranets), que não devem ser utilizados na Internet pública:

Classe A: 10.0.0.0 até 10.255.255.255

Classe B: 172.16.0.0 até 172.31.255.255

Classe C: 192.168.0.0 até 192.168.255.255

Endereçamento - IPv4

- Endereço de "loopback"
 - É um endereço especial, usado na comunicação entre processos de um mesmo computador.
 - Normalmente é utilizado o IP 127.0.0.1

Endereçamento - Máscaras de rede:

- Separam a parte que identifica a "rede" da parte que identifica a "máquina" de um endereço
- Em uma máscara
 - Todos os bits "rede" == 1
 - Todos os bits "máquina" == 0
- A máscara de rede delimita a faixa de endereços que pertence a cada rede

Endereçamento - Máscaras de rede:

- O primeiro endereço (da faixa de endereços) de cada rede é chamado de endereço de rede
- O último endereço (da faixa de endereços) de cada rede é chamado de endereço de broadcast
- Os endereços de rede e de broadcast podem ser facilmente calculados, dados um IP e uma máscara

Endereçamento - Máscaras de rede:

- Se dois equipamentos quaisquer possuem o mesmo endereço de rede
 - Elas estão em uma mesma rede IP
 - Estão em um mesmo domínio de broadcast
 - Estão em uma mesma rede lógica
- Elas podem se comunicar diretamente, sem o auxílio de nenhuma outra entidade da rede

Endereçamento - Máscaras de rede

- Se dois equipamentos quaisquer possuem o endereço de rede distintos
 - Elas estão em redes IP distintas
- Só podem se comunicar através de um processo chamado de roteamento, com o auxílio de uma outra entidade da rede (roteador)

Endereçamento - Máscaras de redeValores possíveis para cada byte de uma máscara:

0: 00000000

• 128: 10000000

192: 11000000

224: 11100000

240: 11110000

248: 11111000

252: 111111100

254: 11111110

255: 111111111

Notação posicional

128 64 32 16 8 4 2 1

Endereçamento – Endereços de rede e broadcast

 Dado um endereço IP e uma máscara de rede podemos calcular facilmente os endereços de rede e broadcast como descrito a seguir

Endereçamento – Endereços de rede e broadcast

Exemplo 1: IP = 200.179.145.123 Máscara = 255.255.255.0

Notação posicional

128 64 32 16 8 4 2 1

IP: 200.179.145.123 = 11001000.10110011.10010001.10111011

Máscara: 255.255.255.0 = 111111111.11111111.1111111. 00000000

Rede: 200.179.145.0 = 11001000.10110011.10010001.

Bcast: 200.179.145.255 = 11001000.10110011.10010001.

0000000

11111111

A partir do ponto onde a máscara muda de 1 pra 0: Todos os bits iguais a 1

A partir do ponto onde a máscara muda de 1 pra 0: Todos os bits iguais a 0

Endereçamento – Endereços de rede e broadcast

Exemplo 2: IP = 10.4.128.116 Máscara = 255.255.240.0

Notação posicional

128 64 32 16 8 4 2 1

IP: 10.4.128.116 = 00001010.00000100.1000[0000.01110100]

Máscara: 255.255.240.0 = 111111111.11111111.1111 0000.00000000

Rede: 10.4.128.0 = 00001010.00000100.1000 0000.00000000

Bcast: 10.4.143.255 = 00001010.00000100.1000 1111.11111111

A partir do ponto onde a máscara muda de 1 pra 0: Todos os bits iguais a 1

A partir do ponto onde a máscara muda de 1 pra 0: Todos os bits iguais a 0

Endereçamento – Endereços de rede e broadcast

Exemplo 3: IP = 126.45.13.116 Máscara = 255.255.255.248

Notação posicional 128 64

128 64 32 16 8 4 2 1

IP: 126.45.13.116 = 01111110.00101101.00001101.01110 | 100

Masc: 255.255.255.248 = 111111111.11111111.1111111 000

Rede: 126.45.13.112 = 011111110.00101101.00001101.01110 000

Bcast: 126.45.13.119 = 011111110.00101101.00001101.01110 111

A partir do ponto onde a máscara muda de 1 pra 0: Todos os bits iguais a 1

A partir do ponto onde a máscara muda de 1 pra 0: Todos os bits iguais a 0

Endereçamento – Representação das máscaras de rede

- Máscaras de rede são normalmente representadas
 - Por extenso
 - Pelo número de bits iguais a "1"
- Exemplos

$$255.0.0.0 = /8$$

$$255.255.128.0 = /17$$

$$255.255.255.0 = /24$$

$$255.255.240.0 = /20$$

Endereçamento – Representação das máscaras de rede

Desta forma as seguintes representações são equivalentes

Endereço IP/Máscara

192.123.89.123/255.255.25.0 192.123.89.123/24

Endereço IP/Máscara

200.19.145.12/255.255.240.0 200.19.145.12/20

Introdução às Redes de Computadores carlos.rocha@ifrn.edu.br

Tradução de endereços

- É necessário para que duas estações consigam trocar informações
- Em uma rede baseada no modelo Internet TCP/IP há dois protocolos envolvidos
 - ARP (Address Resolution Protocol):
 Mapeia um endereço IP (rede) em um endereço MAC (enlace)
 - RARP (Reverse Address Resolution Protocol):

 Mapeia um endereço MAC (enlace) em um endereço IP (rede)

Tradução de endereços – ARP

- •Estação que quer descobrir um MAC envia um ARP
- Estação com este IP responde com o seu MAC

Tradução de endereços – ARP

- Comando "arp"
 - Mostra o conteúdo da tabela ARP da máquina

[root@maquina root]# arp								
HWtype	HWaddress	Flags	Iface					
ether	00:10:B5:94:77:F9	С	eth0					
ether	00:20:35:99:0D:75	С	eth0					
ether	00:02:55:5D:23:A6	С	eth0					
ether	02:60:8C:F1:EB:7D	С	eth0					
	HWtype ether ether	HWtype HWaddress ether 00:10:B5:94:77:F9 ether 00:20:35:99:0D:75 ether 00:02:55:5D:23:A6	HWtype HWaddress Flags ether 00:10:B5:94:77:F9 C ether 00:20:35:99:0D:75 C ether 00:02:55:5D:23:A6 C					

Tradução de endereços – ARP

- Comando "arp" principais opções:
 - -a: Mostra todas as entradas da tabela (obrigatório no windows)
 - -d: Remove manualmente uma entrada da tabela
 - -s: Insere manualmente uma entrada na tabela

Roteamento

Introdução às Redes de Computadores carlos.rocha@ifrn.edu.br