

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ 2 Axis

Variant: 114 kW pitch 10m vertical, ew

Trackers single array

System power: 114 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

Variant: 114 kW pitch 10m vertical, ew

PVsyst V7.2.16

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

Situation

Latitude Longitude

Altitude

40.52 °N 22.97 °E

4 m Time zone UTC+2

Project settings

Albedo

0.20

Meteo data

Thessaloniki/Livadákion

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

System summary

Grid-Connected System

Trackers single array

PV Field Orientation

Orientation

Tracking plane, two axis

Tracking algorithm

Astronomic calculation

Near Shadings

Linear shadings

System information

PV Array

Nb. of modules Pnom total

216 units 114 kWp **Inverters**

Nb. of units

1 unit 111 kWac

Pnom total

Pnom ratio

1.031

User's needs

Unlimited load (grid)

Results summary

Produced Energy

216.5 MWh/year

Specific production

1891 kWh/kWp/year Perf. Ratio PR

84.01 %

Table of contents	
Project and results summary	:
General parameters, PV Array Characteristics, System losses	:
Horizon definition	
Near shading definition - Iso-shadings diagram	
Main results	
Loss diagram	
Special graphs	•

Variant: 114 kW pitch 10m vertical, ew

PVsyst V7.2.16

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

General parameters

Grid-Connected System

Trackers single array

PV Field Orientation

Orientation Tracking algorithm **Trackers configuration**

Tracking plane, two axis Astronomic calculation Nb. of trackers 12 units

Single array

Sizes

Tracker Spacing 30.0 m 10.4 m Collector width Ground Cov. Ratio (GCR) 34.6 % Tilt min / max. 10.0 / 40.0 ° Azimut min / max. -/+ 120.0 °

1.03

Models used

Transposition Perez Perez, Meteonorm Diffuse Circumsolar separate

Near Shadings Horizon User's needs 7.4 ° Average Height Linear shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Generic Manufacturer Generic Model JKM-530M-72HL4-V Model SG111-HV

(Custom parameters definition)

(Original PVsyst database) 111 kWac Unit Nom. Power 530 Wp Unit Nom. Power Number of PV modules 216 units Number of inverters 1 unit Nominal (STC) 114 kWp Total power 111 kWac Modules 8 Strings x 27 In series Operating voltage 780-1450 V

Pnom ratio (DC:AC)

At operating cond. (50°C)

104 kWp **Pmpp** 1002 V U mpp I mpp 104 A

Total PV power Total inverter power

Nominal (STC) 111 kWac 114 kWp Total power Total 216 modules Number of inverters 1 unit Module area 557 m² Pnom ratio 1.03

Array losses

Array Soiling Losses Thermal Loss factor DC wiring losses

Loss Fraction 1.5 % Module temperature according to irradiance Global array res. 106 mΩ 1.0 % at STC Loss Fraction

29.0 W/m2K Uc (const)

Uv (wind) 0.0 W/m2K/m/s

Module Quality Loss Module mismatch losses

0.0 % Loss Fraction Loss Fraction 0.6 % at MPP

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

Variant: 114 kW pitch 10m vertical, ew

PVsyst V7.2.16

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 540 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG111-HV

Wire section (1 Inv.) Copper 1 x 3 x 240 mm 2 Wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

PVsyst TRIAL

PVsyst TRIAL

Variant: 114 kW pitch 10m vertical, ew

PVsyst V7.2.16

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.40
Diffuse Factor	0.89	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Variant: 114 kW pitch 10m vertical, ew

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

Variant: 114 kW pitch 10m vertical, ew

PVsyst V7.2.16

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

Main results

System Production

Produced Energy

216.5 MWh/year

Specific production Performance Ratio PR 1891 kWh/kWp/year

84.01 %

Normalized productions (per installed kWp)

Balances and main results

0.1 0.0

Jan

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	95.7	84.0	9.54	9.23	0.842
February	76.4	39.36	6.71	124.7	113.2	12.73	12.36	0.866
March	118.0	57.36	9.91	174.7	161.7	17.92	17.41	0.870
April	150.3	77.02	13.73	200.9	187.3	20.46	19.89	0.865
May	195.0	84.41	19.52	258.4	242.1	25.74	25.04	0.847
June	218.4	75.24	24.54	289.6	274.7	28.49	27.70	0.836
July	214.7	82.15	27.83	285.4	269.3	27.63	26.88	0.823
August	194.0	76.29	27.71	271.6	252.6	25.98	25.28	0.813
September	144.2	53.93	21.67	216.0	200.6	21.10	20.51	0.829
October	94.1	43.87	16.53	153.4	139.9	15.17	14.72	0.838
November	57.9	29.79	11.46	102.4	92.0	10.18	9.85	0.840
December	43.4	24.96	6.66	78.5	70.2	7.93	7.64	0.850
Year	1559.1	673.58	15.99	2251.3	2087.4	222.86	216.52	0.840

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: 114 kW pitch 10m vertical, ew

PVsyst V7.2.16

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

Variant: 114 kW pitch 10m vertical, ew

VC0, Simulation date: 14/07/22 21:50 with v7.2.16

