

第三章 半导体与集成门电路

主讲教师: 何云峰

本章知识要点

- □半导体器件的开关特性
- □逻辑门电路的功能、外部特性及使用方法

提纲

1 数字集成电路的分类

- 2 半导体器件的开关特性
- 3)门电路

对比和选择

对比和选择

对比和选择

100 100 100 100 100

数字集成电路

- ■集成门电路和触发器等逻辑器件实现数字系统功能 的物质基础
- □集成电路块,通常又称为集成电路芯片
 - 封装各种逻辑功能
 - 半导体材料
 - 引线

数字集成电路

数字集成电路

□优点

- 可靠性高
- 可维性好
- 功耗低
- 成本低
- 可以大大简化设计和调试过程

- □根据半导体器件进行分类
 - 双极型集成电路
 - 采用双极型半导体器件作为元件
 - 速度快、负载能力强, 功耗较大、 集成度较低
 - 单极型集成电路
 - 金属-氧化物半导体场效应管作为元件
 - 结构简单、制造方便、集成度高、功耗低,速度较慢

- □双极型集成电路可进一步可分为
 - TTL(Transistor Transistor Logic)电路
 - ECL(Emitter Coupled Logic)电路

- I²L(Integrated Injection Logic)电路

- ■MOS集成电路又可进一步分为
 - PMOS(P-channel Metal Oxide Semiconductor)

NMOS(N-channel Metal Oxide Semiconductor)

– CMOS(Complement Metal Oxide Semiconductor)

- □根据集成电路规模的大小进行分类
 - SSI(小规模集成电路)
 - 逻辑门数小于10 门(或元件数小于100个)
 - MSI(中规模集成电路)
 - 逻辑门数为10 门~99 门(或元件数100个~999个)
 - LSI(大规模集成电路)
 - 逻辑门数为100 门~9999 门(或元件数1000个~99999个)
 - VLSI(超大规模集成电路)
 - 逻辑门数大于10000 门(或元件数大于100000个)

提纲

- 1 数字集成电路的分类
- 2 半导体器件的开关特性

3)门电路

半导体器件的开关特性

- 口以开关方式运用
 - 工作状态相当于开关的"接通"与"断开"
- □运用在开关频率十分高的电路中
 - 一 开关状态变化的速度可高达每秒百万次数量级甚至千万次数量级

半导体器件的开关特性

- □静止特性
 - 半导体器件处于导通和截止两种稳定状态下的特性
- □动态特性
 - 半导体器件在导通和截止两种状态转换过程中的特性
 - 反向恢复时间
 - 开通时间

晶体二极管的开关特性

晶体二极管的开关特性

二极管的静态特性

二极管的静态特性

- ■单向导电性
 - 正向导通
 - 反向截止
- □注意:
 - 正向导通时可能因电流过大而导致二极管烧坏
 - 组成实际电路时通常要串接一只电阻 R,以限制二极管的正向电流

二极管的静态特性

■单向导电性

- 做开关使用

二极管开关电路及其等效电路

二极管的动态特性

二极管的动态特性

□反向恢复时间 t = t_s + t_t

二极管的动态特性

□开通时间

- 截止转为正向导通所需的时间
- 主要由外电路参数决定
- 加入输入电压后, 回路电流几乎是立即达到最大值
- 开通时间与反向恢复时间相比很小,可以忽略不计

晶体三极管

晶体三极管

晶体三极管

三极管的静态特性

- $U_b > V_c, V_b > V_e,$ 饱和导通 $V_{ce} = 0.3v, V_{be} = 0.7v$
- \square $V_b < V_c$, $V_b < V_e$, 截止
- \square $V_b < V_c$, $V_b > V_e$, 放大
- \square $V_b > V_c$, $V_b < V_e$, 倒置放大 (发射极和集电极互换)

三极管的静态特性

饱和状态

PN结均正偏

截止状态

- PN结均为反偏
- I_b≈0
- I_c ≈0,Uce ≈Ucc
- 三极管呈现高阻抗
- 类似于开关断开

晶体三极管的开关特性

- □截止、放大、饱和3种工作状态
- □三极管的静态开关特性:
 - 在截止与饱和这两种稳态下的特性

三极管的静态特性

□由基极信号控制的无触点开关

动态特性

- □饱和与截止两种状态转换过程中的特性
 - 存在着电荷的建立与消失过程
 - 两种状态的转换也需要一定的时间才能完成

三极管的动态特性

三极管的动态特性

口延迟时间td

当输入电压u_i由-U₁ 跳
 变到+U₂时,三极管从
 截止到开始导通所需要
 的时间

三极管的动态特性

口上升时间t_r

- 经过延迟时间t_d后, i_c不断增大
- i_c上升到最大值的90% 所需要的时间

动态特性

动态特性

□存储时间ts

- 当输入电压ui由 +U2跳变到-U1时 , 集电极电流从Ics 开始下降到0.9Ics所

需要的时间

■ 華中科技大学

动态特性

□下降时间tf

- 集电极电流由0.9lcs 降至0.1lcs所需的时间

动态特性

□关闭时间

- 三极管从饱和状态到截止状态所需要的时间
- $-\mathbf{t}_{\mathsf{OFF}} = \mathbf{t}_{\mathsf{S}} + \mathbf{t}_{\mathsf{f}}$
- 一 开通时间和关闭时间是影响电路工作速度的主要因素

关闭时间t_{OFF}

提纲

- 1 数字集成电路的分类
- 2 半导体器件的开关特性
- 3 门电路

逻辑门电路

- □组成数字系统的基本单元电路
- □主要介绍TTL集成逻辑门和CMOS集成逻辑门
- □重点
 - 功能
 - 外部特性
 - 器件的使用方法
- □内部结构和工作原理只要求作一般了解

二极管与门电路

与逻辑符号

二极管与门电路

	输	λ	输出
V_{A}	V_{B}	V_{C}	V_{L}
0	0	0	0
0	0	+5 V	0
0	+5 V	0	0
0	+5 V	+5 V	0
+5 V	0	+5 V	0
+5 V	0	+5 V	0
+5 V	+5 V	0	0
+5 V	+5 V	+5 V	+5 V

二极管与门电路

	输	λ	输出
A	В	C	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

二极管或门电路

二极管或门电路

或逻辑符号

二极管或门电路

箱		λ	输出
A	В	C	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

二极管或门电路

箱	Ū.	λ	输出
A	В	C	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

非门电路 - 反相器

非门电路 - BJT反相器

非逻辑真值表

输入A	输出L	
0	1	

非门电路 - BJT反相器

非逻辑真值表

输入A	输出L
0	1
1	0

TTL反相器的基本电路

反相器的工作原理

□当输入为低电平($υ_I = 0.3 V$)

υ _l	低电平 (0.3V)
T ₁	深饱和
T ₂	截止
T ₄	放大
T ₃	截止
υο	高电平 (3.6V)

TTL反相器的工作原理

ロ当输入为高电平($\upsilon_l = 3.6 V$)

υΙ	高电平 (3.6V)
T ₁	倒置放大
T ₂	饱和
T ₄	截止
T ₃	饱和
υο	低电平 (0.3V)

TTL与非门

口多发射极

TTL与非门

- □任─输入端为低电平,输出为高电平
- □全部输入端为高电平,输出为低电平

TTL与非门工作原理

υ _Ι	输入有 低电平 (0.3V)	输入全为高电平 (3.6V)
T ₁		
T ₂		
T ₃		
T ₄		
υ_{0}		

TTL与非门工作原理

υ _Ι	输入有 低电平 (0.3V)	输入全为高电平 (3.6V)
T ₁	深饱和	
T ₂	截止	
T ₃	截止	
T ₄	放大	
υο	高电平 (3.6V)	

TTL与非门工作原理

υι	输入有 低电平 (0.3V)	输入全为高电平 (3.6V)
T ₁	深饱和	倒置放大状态
T ₂	截止	饱和
T ₃	截止	饱和
T_4	放大	截止
υ_{0}	高电平 (3.6V)	低电平(0.3V)

TTL与非门集成电路芯片

TTL7400、7420引脚图

□输出的高、低电压

- 输出高电平VoH

- 指至少有一个输入端接低电平时的输出电平
- 典型值: 3.6V
- 规范值: V_{OH} ≥2.4V

- 输出低电平Vol

- 指输入全为高电平时的输出电平。
- 典型值: 0.3V
- 规范值: V_{OL}≤0.4V

□开门电平V_{ON}

- 确保与非门输出为低电平时所允许的最小输入高电平
- 表示使与非门开通的输入高电平最小值
- 反映了高电平抗干扰能力
- 典型值: 1.5V
- 规范值: V_{ON}≤1.8V。

■关门电平Voff

- 确保与非门输出为高电平时所允许的最大输入低电平
- 表示使与非门关断所允许的输入低电平的最大值
- 反映了低电平抗干扰能力
- 典型值: 1.3V
- 规范值: V_{OFF}≥0.8V。

□扇入系数Ni

- 与非门允许的输入端数目
- 输入端数目超过Ni时,通过分级方法减少对扇入系数要求

□扇出系数No

- 与非门输出端连接同类门的最多个数
- 反映了与非门的带负载能力
- -般No≥8
- □是反映门电路互连性能的指标

- □扇出数:则区分灌电流和拉电流
 - 灌电流
 - · 负载电流I_L从负载流入反相器
 - 当负载门的个数增加时,总的灌电流I_L将增加,引起输出低电压
 V_{OL}的升高
 - 拉电流
 - 负载电流I_L从反相器流入负载
 - 当负载门的个数增多时,必将引起输出高电压的降低

□负载门的个数增加

- 总的灌电流I_L将增加
- I_C=I_{IL}+I_{rc}, I_C增加
- 输出低电压V_{OL}升高 Vo<=0.4v

- □负载门的个数增加
 - 输出高电压的降低

- □输入短路电流I_{IS}
 - 基一个输入端接地而其余输入端悬空时,流过接地输入端的电流
 - 流入前级与非门的灌电流
 - 直接影响前级与非门的工作情况
- □輸入漏电流I_Ⅲ
 - 某一输入端接高电平,而其他输入端接地时,流入高电平输入端的电流
 - —般I_{IH}≤50µA

□传输延迟时间

- 电路在输入脉冲波形的作用下,输出波形相对于输入波形的延迟时间
- tph. 门电路输出由低电平转换到高电平所经历的时间
- t_{PHI}: 门电路输出由高电平转换到低电平所经历的时间

□传输延迟时间

- 平均传输延迟时间t_{Pd} = (t_{PLH} + t_{PHL})/2
- 平均延迟时间是反映与非门开关速度的一个重要参数
- 典型值约10ns , 一般小于40ns

□空载功耗P

- 空载功耗是当与非门空载工作时所消耗的功率
- 输出为低电平时的功耗称为空载导通功耗PON
- 输出为高电平时的功耗称为空载截止功耗Poff
- 平均功耗 P = (P_{ON} + P_{OFF})/2
 - 一般P < 50mW,如74H系列门电路平均功耗为22mW

TTL或非门

$$\begin{array}{c|c}
A & \geq 1 \\
B & \end{array}$$

$$F = \overline{A + B}$$

TTL或非门集成芯片

TTL与或非门

$$F = \overline{A_1 A_2 + B_1 B_2}$$

TTL与或非门集成芯片

集电极开路门(OC门)

集电极开路门(OC门)

- □输出端可以直接连接的特殊逻辑门
- □TTL与非门电路的推拉式输出级改为三极管集电极 开路输出

集电极开路门结构

- □负载电阻和电源需选择恰当
 - 既保证输出的高电平符合要求
 - 又能使流过T4的电流不至于过大
- ■集电极开路与非门只有在外接负载电阻和电源后才 能正常工作

集电极开路门

□分析右图

- 只要有一个门输出为低电平, 输出F便为低电平
- 仅当两个门的输出均为高电平时,输出F才为高电平
- 逻辑功能:
 - 两个与非门输出相"与"
- "线与"逻辑
 - 由输出端引线连接实现的

线与逻辑图

三态输出门

□三种输出状态

- 工作状态:
 - 高电平、输出低电平
- 禁止状态
 - 高阻状态

□三态与非门真值表

ENI	数据输入端		输出端	
EZ	A	В	L	
1	0	0	1	
	0	1	1	
	1	0	1	
	1	1	0	

当EN= 1时

□三态与非门真值表

EN	数据输	输出端	
	Α	В	L
1	0	0	1
	0	1	1
	1	0	1
	1	1	0

□三态与非门真值表

EN	数据输	输出端	
	Α	В	L
1	0	0	1
	0	1	1
	1	0	1
	1	1	0
0	×	×	高阻

$$egin{aligned} \mathbf{L} = \overline{\mathbf{A}} \mathbf{B} \Big|_{\mathbf{EN} = 1} = \mathbf{5}$$
事功能 $\mathbf{L} = \mathbf{Z} \Big|_{\mathbf{EN} = 0}$ 高阻状态

三态与非门(TSL)

□主要应用

- 总线传送
 - 可用于单向数据传送
 - 可用于双向数据传送

三态门构成单向总线

□分析:

- EN=1时
 - G₁工作
 - G₂处于高阻状态
 - 数据D₁被取反后送至总线

三态门构成的双向总线

□分析:

- EN=0时
 - G₂工作
 - G₁处于高阻状态
 - 总线上的数据被取反后送 到数据端D₂

三态门构成的双向总线

□分析:

- 实现数据的分时双向传送

三态门构成的双向总线

CMOS集成逻辑门电路

- □优点
 - 制造工艺简单
 - 集成度高
 - 功耗小
 - 抗干扰能力强
- □缺点
 - 速度相对TTL电路较低

CMOS集成逻辑门电路

- ■MOS门电路的三种类型
 - 使用P沟道管的PMOS电路
 - 使用N沟道管的NMOS电路
 - CMOS电路
 - 电路性能更优,是当前应用较普遍的逻辑电路

MOS管的开关特性

- ■MOS管作为开关元件,同样工作在截止或导通两 种状态
- □主要由栅源电压决定其工作状态

□由NMOS增强型管构成的等效开关电路

静态特性

口当U_{GS} < 开启电压U_T时

- MOS管工作在截止区
- 漏源电流I_{DS}基本为0
- 输出电压U_{DS} ≈U_{DD}
- MOS管处于"断开"状态

静态特性

口当U_{GS} > 开启电压U_T时

- 工作在导通区
- $-i_{DS}=U_{DD}/(R_D+r_{DS})$.
- r_{DS}为 MOS 管导通时的漏源电阻
- $U_{DS} = U_{DD} \cdot r_{DS} / (R_D + r_{DS})$
 - 若r_{DS} < < R_D,则U_{DS}≈ 0V,
 MOS管处于"接通"状态

动态特性

- □本身导通和截止时电荷积累和消散的时间很短
- □主要取决于电路中杂散电容充、放电所需时间

动态特性

•当电压Ui由高变低, MOS管由导通转换为截 止时,电源 U_{DD} 通过 R_{D} 向杂散电容 C_{L} 充电,充 电时间常数 $T_{1} = R_{D}C_{L}$

-当电压Ui由低变高,MOS管由截止转换为导通时,杂散电容C_L上的电荷通过r_{DS} 进行放电,其放电时间常数τ₂≈r_{DS}C_L。

动态特性

- ■截止到导通的转换时间比由导通到截止的转换时间要短
- □开关速度比晶体三极管的开关速度低
 - MOS管的充、放电时间较长

CMOS电路

- □为提高MOS器件的工作速度,引入CMOS电路
- □CMOS电路有较高的开关速度
 - 充电电路和放电电路都是低阻电路

CMOS电路

□高电平 "1": NMOS导通 PMOS截止

□低电平"0":NMOS截止PMOS导通

(b) PMOS

CMOS反相器

□分析

- $-V_{IN}=0$
 - T_N截止
 - T_P导通
 - V_{OUT}≈V_{DD}为高电平
- $-V_{IN}=1$
 - T_P截止
 - T_N导通
 - V_{OUT}≈0为低电平

$$-\overline{V_{out}} = V_{in}$$

CMOS反相器

- □电路正常工作条件
 - $-V_{DD}$ 大于 T_N 管开启电压 V_{TN} 和 T_P 管开启电压 V_{TP} 的绝对值之和
 - $V_{DD} > V_{TN} + |V_{TP}|$
- □除有较好的动态特性外, 电路静态功耗很低

CMOS与非门

□分析

- A=1, B=1
 - T_{P1}& T_{P2} 截止
 - T_{N1}& T_{N2} 导通
 - V_{OUT}=0
- A=0 (B=0)
 - T_{N1}(T_{N2}) 截止
 - T_{P1}(T_{P2}) 导通
 - V_{OUT}=1
- $-V_{out} = \overline{AB}$

CMOS或非门

□分析

- A=0, B=0
 - T_{N1}& T_{N2} 截止
 - T_{P1}& T_{N2} 导通
 - $V_0 = 1$
- -A=1(B=1)
 - T_{P1}(T_{P2}) 截止
 - T_{N1}(T_{N2}) 导通
 - $V_0 = 0$
- $-V_{out} = \overline{A+B}$

CMOS三态门

- □低电平使能控制的三态非门
- □在CMOS反相器的基础 上增加NMOS管T_N′ 和PMOS管T_P′

CMOS三态门

- □低电平使能控制的三态非门
- **□** EN=1
 - T_N '和T_P'同时截止
 - 输出F呈高阻状态

CMOS三态门

CMOS三态门

- □低电平使能控制的三态非门
- **□** EN = 1
 - T_N '和T_P'同时截止
 - 输出F呈高阻状态
- \square EN=0
 - T_N '和T_P'同时导通
 - 非门正常工作,实现非门功 能
- □也可用于总线传输

□当C=1(U_{DD})时, U_i 在0V ~ Unn范围内变化,两管 中至少有一个导通,输 入和输出之间呈低阻状 态,相当于开关接通, 输入信号Vi能通过传输 Ì]。

□当 C=0(0V)时, U_i在0V ~ Unn范围内变化,两管 均处于截止状态,输入 和输出之间呈高阻状态 (10⁷Ω), 信号U_i不能通 过,相当于开关断开。

- 口MOS管的结构是对称的
 - 源极和漏极可以互换使用
- 口传输门的输入端和输出 端可以互换使用
- ロMOS传輸门具有双向
 - 又称为可控双向开关

正逻辑和负逻辑

- □约定用高电平表示逻辑1、低电平表示逻辑0
- □既可以规定用高电平表示逻辑1、低电平表示逻辑0,也可以规定用高电平表示逻辑0,低电平表示逻辑0,低电平表示逻辑1。
- □正逻辑和负逻辑
 - 正逻辑: 用高电平表示逻辑1, 低电平表示逻辑0
 - 负逻辑:用高电平表示逻辑0,低电平表示逻辑1

- □对于同一电路,可以采用正逻辑,也可以采用负逻辑
- □正逻辑与负逻辑的规定不涉及逻辑电路本身的结构 与性能好坏
- □不同的规定可使同一电路具有不同的逻辑功能

□某逻辑门电路的输入、输出电平关系如下表所示 按正逻辑与负逻辑的规定,电路的逻辑功能分别如何?

输入输出电平关系

输	λ	输出	
Α	В	F	
L	L	L	
L	Н	L	
Н	L	L	
Н	Н	Н	

输入输出电平关系

正逻辑真值表

负逻辑真值表

输	输出	
Α	В	F
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

输	入	输出	输	入	输出
Α	В	F	Α	В	F
0	0	0	1	1	1
0	1	0	1	0	1
1	0	0	0	1	1
1	1	1	0	0	0

电路是一个正逻辑的"与"门,负逻辑的"或"门。即正逻辑与门等价于负逻辑或门。

□证明:

- 假定一个正逻辑与门的输出为F,输入为A、B,则有

$$F = A \cdot B$$

根据反演律,可得

$$\overline{F} = \overline{A \cdot B} = \overline{A} + \overline{B}$$

- 可见, 若将一个逻辑门的输出和所有输入都反相,则正逻辑变为负逻辑。据此,可将正逻辑门转换为负逻辑门

- □前面讨论各种逻辑门电路时,都是按照正逻辑规定 来定义其逻辑功能
- □在本课程中,若无特殊说明,约定按正逻辑讨论问题
- □所有门电路的符号均按正逻辑表示

问题解答

Thank Mous

