Espacio con producto interno Un espacio vectorial dotado de una estructura adicional llamada producto interno: $\langle \cdot, \cdot \rangle$, que asocia cada par de vectores con una cantidad escalar sobre F. Es decir, $\langle \cdot, \cdot \rangle : V \times V \to F$. Que cumple, para x, y, z vectores en V y a en F:

$$\quad \langle x,y\rangle = \overline{\langle y,x\rangle}$$

•
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

$$\langle x, x \rangle \ge 0$$

Espacio Funcional Un espacio funcional es un espacio vectorial cuyos elementos son funciones.

Espacio Metrico Un espacio métrico es un espacio donde la distancia (norma) inducida por el producto punto está definido sobre todos sus elementos. Norma: $||x|| = \sqrt{\langle x, x \rangle}$ la raiz no negativa del producto interno.

Espacio Métrico Completo Un espacio métrico es completo si todas las secuencias de Cauchy, convergen a puntos dentro del espacio.

Espacio Vectorial Un espacio vectorial sobre un campo F es un conjunto V, dotado de dos operaciones, $suma + y \ multiplicación \ escalar \cdot$ que cumple los siguientes axiomas. Sean x, y, z vectores en V, y a, b escalares en F

1.
$$x + (y + z) = (x + y) + z$$

$$2. \ x + y = y + x$$

3.
$$\exists 0 \in V \text{ tal que}, x + 0 = x$$

4.
$$\forall x \in V \quad \exists -x \in V \text{ tal que, } x + (-x) = 0$$

5.
$$a(bx) = (ab)x$$

6.
$$\exists 1 \in F \text{ tal que, } 1x = x$$

7.
$$a(x+y) = ax + ay$$

8.
$$(a + b)x = ax + bx$$

Ortogonalidad Dos elementos son ortogonales (en cierto espacio) si $\langle x,y\rangle=0$. Denotado $x\perp y$