ARBORI DE REGĂSIRE

ȘI. Dr. Ing. Şerban Radu Departamentul de Calculatoare Facultatea de Automatică și Calculatoare

Arbori de regăsire

- Arborii de regăsire sunt arbori de căutare multicăi
- Acești arbori sunt denumiți și trie, denumire provenită din termenul retrieval (regăsire)
- Fiecare subarbore dintr-un arbore de regăsire grupează informațiile ale căror chei au același prefix

Arbori de regăsire

- Se observă că lungimea prefixului este egală cu nivelul rădăcinii subarborelui – 1
- Ordinul nodurilor este determinat de modul în care sunt reprezentate cheile – acestea pot fi șiruri de cifre sau de caractere

Arbori de regăsire

- În cazul cheilor numerice de lungime fixă, ordinul nodurilor este egal cu baza sistemului de numerație utilizat
- Şirurile de caractere pot fi şi ele privite drept codificări în baza 26

Exemplu

In cazul unui dicționar, în care intervin cuvinte de lungime variabilă, cheia de regăsire poate fi limitată la primele 3 caractere, urmând ca pentru cuvintele cu același prefix să se aleagă o altă variantă de memorare a sufixelor (de exemplu, listă înlănțuită sau arbore binar de căutare)

Algoritm de căutare

- Algoritmul descrie modul în care se caută într-un arbore de regăsire subarborele corespunzător unui prefix dat
- În acest algoritm s-a presupus că nodurile sunt reprezentate prin vectori de pointeri către fii

м

Pseudocod

CăutareAR (Rădăcină, prefix)

- 1. Curent ← Rădăcină
- \blacksquare 2. i \leftarrow 0
- 3. Cât timp (Curent != ArboreVid) și (i < lungime prefix) execută
 - $\square 3.1. i \leftarrow i+1$
 - \square 3.2. k \leftarrow elementul i al prefixului
 - \square 3.3. Curent \leftarrow fiu[k]

Observații

- O organizare similară este și cea a cuprinsului unei cărți, dar în acest caz, deși fiii unui nod oarecare au indici consecutivi, ordinul nodurilor poate să fie diferit
- De aceea, pentru reprezentarea arborelui de regăsire corespunzător, este preferabilă folosirea unei liste înlănţuite de fii, care să pună în evidenţă "cheia" fiecărei secţiuni din carte

Observații

- S-a ajuns la reprezentarea printr-un arbore binar, în care orice subarbore stânga reprezintă conținutul unei secțiuni, iar orice subarbore dreapta reprezintă continuarea secțiunii reprezentate de arborele părinte
- Algoritmul de căutare a unei anumite secțiuni, pe baza prefixului său, detectează prezența sau absența secțiunii căutate

Pseudocod algoritm de căutare

CautăNod (Rădăcină, prefix)

- 1. R ← Rădăcina
- 2. Cât timp R!= ArboreVid și

prefix nevid execută

- \square 2.1. R \leftarrow SubarboreStâng(R)
- \square 2.2. k \leftarrow elementul curent al prefixului
- □ 2.3. Cât timp R!= ArboreVid și k > 1 execută
 - 2.3.1. $R \leftarrow SubarboreDrept(R)$
 - 2.3.2. $k \leftarrow k 1$
- 3. Întoarce R