(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年4 月12 日 (12.04.2001)

PCT

(10) 国際公開番号 WO 01/25447 A1

(51) 国際特許分類7: C12N 15/60, 15/54, 15/53, 15/31, 15/56, 9/88, 9/12, 9/04, C07K 14/34, C12N 9/26, C12P 13/04

(21) 国際出願番号:

PCT/JP00/06913

(22) 国際出願日:

2000年10月4日(04.10.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/282716 特願平11/311147 1999年10月4日(04.10.1999) JP 1999年11月1日(01.11.1999) JP

特願2000/120687

2000年4月21日(21.04.2000) JP よく全ての指定国について): 味の素株

(71) 出願人 (米国を除く全ての指定国について): 味の素株 式会社 (AJINOMOTO CO., INC.) [JP/JP]; 〒104-8315 東京都中央区京橋一丁目15番1号 Tokyo (JP). (72) 発明者: および

(75) 発明者/出願人 (米国についてのみ): 平野聖子 (HIRANO, Seiko) [JP/JP]. 野中 源 (NONAKA, Gen) [JP/JP]. 松崎友美 (MATSUZAKI, Yumi) [JP/JP]. 秋好 直樹 (AKIYOSHI, Naoki) [JP/JP]. 中村佳苗 (NAKA-MURA, Kanae) [JP/JP]. 木村英一郎 (KIMURA, Eiichiro) [JP/JP]. 大住 剛 (OSUMI, Tsuyoshi) [JP/JP]. 松井和彦 (MATSUI, Kazuhiko) [JP/JP]. 河原義雄 (KAWAHARA, Yoshio) [JP/JP]. 倉橋 修 (KURA-HASHI, Osamu) [JP/JP]. 中松 亘 (NAKAMATSU, Tsuyoshi) [JP/JP]. 杉本慎一 (SUGIMOTO, Shinichi) [JP/JP]; 〒210-8681 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社発酵技術研究所内 Kanagawa (JP).

- (74) 代理人: 遠山 勉, 外(TOYAMA, Tsutomu et al.); 〒 103-0004 東京都中央区東日本橋3丁目4番10号 ヨコヤマビル6階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM,

[続葉有]

(54) Title: THERMOPHILIC AMINO ACID BIOSYNTHESIS SYSTEM ENZYME GENE OF THERMOTOLERANT CORYNEFORM BACTERIUM

(54) 発明の名称: 高温耐性コリネ型細菌の耐熱性アミノ酸生合成系酵素遺伝子

(57) Abstract: PCR is effected by using chromosomal DNA of Corynebacterium thermoaminogenes as a template with plural primer pairs designed on the basis of domains conserved at the amino acid level among known gene sequences of various microorganisms corresponding to genes encoding L-amino acid biosynthesis system enzymes originating in Corynebacterium thermoaminogenes (preferably enzymes acting at higher temperatures than Corynebacterium glutamicum does). By using primers providing amplified fragments as screening primers, clones containing the target DNA fragments are selected from a Corynebacterium thermoaminogenes chromosomal DNA plasmid library.

(57) 要約:

コリネバクテリウム・サーモアミノゲネス由来のLーアミノ酸生合成系酵素、好ましくはコリネバクテリウム・グルタミカムよりも高い温度で機能する酵素をコードする遺伝子に対応する種々の微生物の既知の遺伝子配列の間でアミノ酸レベルで保存されている領域に基づいて設計した複数組のプライマーとして、コリネバクテリウム・サーモアミノゲネスの染色体DNAを鋳型としてPCRを行い、増幅断片が得られたプライマーをスクリーニング用プライマーに用いて、コリネバクテリウム・サーモアミノゲネスの染色体DNAのプラスミドライブラリーから、目的とするDNA断片を含むクローンを選択する。

VO 01/25447 A1

DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

高温耐性コリネ型細菌の耐熱性アミノ酸生合成系酵素遺伝子

技術分野

本発明は、高温耐性コリネ型細菌であるコリネバクテリウム・サーモアミノゲネスの耐熱性酵素遺伝子、特にLーグルタミン酸等のLーアミノ酸生合成系酵素及び取り込み系遺伝子に関する。

背景技術

現在、Lーグルタミン酸等のLーアミノ酸の製造は、コリネ型細菌による発酵生産が主流となっている。アミノ酸の発酵生産は、生産能に優れた菌株の育種や発酵技術の開発によって、コストダウンが図られている。従来、コストダウン実現の方向性は、高収率化が主なものであるが、発酵におけるコストとしては、原料以外にも培養中に発生する発酵熱の冷却エネルギーを無視することはできない。すなわち、発酵に用いられている通常の微生物は、発酵中に自らが発生する発酵熱により培地の温度が上昇し、発酵に必要な酵素が失活したり生産菌が死滅したりするために、発酵中に培地を冷却することが必要となっている。したがって、冷却費用を低減するために、高温での発酵に関する検討が古くから行われている。また、高温で発酵を行うことが可能となれば、反応速度を向上させることができる可能性もある。しかし、これまでのところ、Lーアミノ酸発酵において、有効な高温培養は実現していない。

コリネバクテリウム・サーモアミノゲネス(Corynebacterium thermoaminogen es)は、L-アミノ酸の発酵に汎用されているコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)(ブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum))等と同様にコリネ型細菌に分類される細菌であるが、生育至適温度はコリネバクテリウム・グルタミカムの30~35℃に対して37~43℃と高く、<math>L-グルタミン酸生成の至適温度も42~45℃とかなり高温側にシフトしている(特開昭63-240779号)。

ところで、コリネバクテリウム属またはブレビバクテリウム属細菌において、エシェリヒア・コリ又はコリネバクテリウム・グルタミクム由来のL-アミノ酸合成系酵素をコードする遺伝子を導入することにより、同L-アミノ酸の生産能を増強する技術が開発されている。例えば、このような酵素として、例えば、L-グルタミン酸生合成系酵素であるクエン酸シンターゼ (特公平7-121228号)、グルタミン酸デヒドロゲナーゼ (特開昭61-268185号)、イソクエン酸デヒドロゲナーゼ、特開昭63-214189号)等がある。

しかし、高温耐性のコリネ型細菌由来のL-アミノ酸生合成酵素及びそれらを コードする遺伝子は報告されていない。

発明の開示

本発明は、コリネバクテリウム・サーモアミノゲネス由来の酵素、好ましくは コリネバクテリウム・グルタミカムよりも高い温度で機能する酵素をコードする 遺伝子を提供することを課題とする。

本発明者は、上記課題を解決するために鋭意検討を行った結果、コリネバクテリウム・サーモアミノゲネスのアミノ酸生合成系酵素をコードする遺伝子、又はアミノ酸の細胞内への取り込みに関与するタンパク質をコードする遺伝子を単離することに成功し、本発明を完成するに至った。

すなわち本発明は、以下のとおりである。

- (1)配列番号 2 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1 若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、50 ℃、5 分の熱処理後に30 %以上の残存活性を有するイソシトレートリアーゼ活性を有するタンパク質。
- (2)配列番号4に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するアシルCo-Aカルボキシラーゼ活性に関与するタンパク質。
- (3) 配列番号6に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸 配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位

を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネス に由来するDtsR活性を有するタンパク質。

- (4)配列番号8に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するDtsR活性を有するタンパク質。
- (5)配列番号10に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、60 $\mathbb C$ で 30 $\mathbb C$ における活性と同等又はそれ以上のホスホフルクトキナーゼ活性を有するタンパク質。
- (6)配列番号94に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスにシュークロース資化能を付与する活性を有するタンパク質。
- (7)配列番号17~20に記載のアミノ酸配列のいずれかを有するタンパク質、 又は、前記アミノ酸配列のいずれかにおいて、1若しくは数個のアミノ酸の置換、 欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテ リウム・サーモアミノゲネスに由来するグルタミン酸の取り込みに関与する機能 を有するタンパク質。
- (8)配列番号22に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するピルビン酸デヒドロゲナーゼ活性を有するタンパク質。
- (9)配列番号24に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するピルビン酸カルボキシラーゼ活性を有するタンパク質。
- (10)配列番号26に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は

逆位を含むアミノ酸配列からなり、かつ、45℃、5分の熱処理後に50%以上の残存活性を有するホスホエノールビルビン酸カルボキシラーゼ活性を有するタンパク質。

- (11)配列番号28に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、50℃、3分の熱処理後に30%以上の残存活性を有するアコニターゼ活性を有するタンパク質。
- (12)配列番号30に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、45℃、10分の熱処理後に50%以上の残存活性を有するイソクエン酸デヒドロゲナーゼ活性を有するタンパク質。
- (13)配列番号32に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するジヒドロリポアミドデヒドロゲナーゼ活性を有するタンパク質。
- (14)配列番号34に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、50℃、10分の熱処理後に30%以上の残存活性を有する2-オキソグルタル酸デヒドロゲナーゼ活性を有するタンパク質。
- (15)配列表の配列番号80に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、42℃で37℃における活性と同等又はそれ以上のグルタミン酸デヒドロゲナーゼ活性を有するタンパク質。
- (16)配列表の配列番号 90に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、37 $^{\circ}$ で23 $^{\circ}$ における活性と同等又はそれ以上のクエン酸シンターゼ活性を有するタンパク質。
- (17)配列番号2に記載のアミノ酸配列を有するタンパク質、又は、同アミノ

酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、イソシトレートリアーゼ活性を有するタンパク質をコードするDNA。

- (18) 下記 (a1) 又は (b1) に示すDNAである (17) のDNA。
 - (a1) 配列表の配列番号1に記載の塩基配列からなる塩基配列を含むDNA。
- (b1)配列表の配列番号1に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、イソシトレートリアーゼ活性を有するタンバク質をコードするDNA。
- (19)配列番号4に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、アシルCo-Aカルボキシラーゼ活性に関与するタンパク質をコードするDNA。
 - (20) 下記 (a2) 又は (b2) に示すDNAである (19) のDNA。
 - (a2) 配列表の配列番号3に記載の塩基配列からなる塩基配列を含むDNA。
- (b2)配列表の配列番号3に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、アシルCo - Aカルボキシラーゼ活性に関与するタンパク質をコードするDNA。
- (21)配列番号6に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、DtsR活性を有するタンパク質をコードするDNA。
- (22) 下記 (a3) 又は (b3) に示すDNAである (21)のDNA。
 - (a3)配列表の配列番号5に記載の塩基配列からなる塩基配列を含むDNA。
- (b3)配列表の配列番号5に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、DtsR活性を有するタンパク質をコードするDNA。
- (23)配列番号8に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、DtsR活性を有するタンパク質をコー

ドするDNA。

- (24) 下記 (a4) 又は (b4) に示すDNAである (23) のDNA。
 - (a4)配列表の配列番号7に記載の塩基配列からなる塩基配列を含むDNA。
- (b4)配列表の配列番号7に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、DtsR活性を有するタンパク質をコードするDNA。
- (25)配列番号10に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ホスホフルクトキナーゼ活性を有するタンパク質をコードするDNA。
- (26) 下記(a5) 又は(b5) に示すDNAである(25) のDNA。
 - (a5) 配列表の配列番号9に記載の塩基配列からなる塩基配列を含むDNA。
- (b5)配列表の配列番号9に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、ホスホフル クトキナーゼ活性を有するタンパク質をコードするDNA。
- (27)配列番号93に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、インベルターゼ活性を有するタンパク質をコードするDNA。
- (28) 下記 (a6) 又は (b6) に示すDNAである (27) のDNA。
- (a6)配列表の配列番号93に記載の塩基配列からなる塩基配列を含むDNA。
- (b6)配列表の配列番号93に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、インベルターゼ活性を有するタンパク質をコードするDNA。
- (29)配列番号17~20に記載のアミノ酸配列のいずれかを有するタンパク質、又は、前記アミノ酸配列のいずれかにおいて、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、グルタミン酸の取り込みに関与する機能を有するタンパク質、をコードするDNA。

- (30) 下記(a7) 又は(b7) に示すDNAである(29) のDNA。
- (a7)配列表の配列番号 16に記載の塩基配列からなる塩基配列を含む DNA。
- (b7)配列表の配列番号16に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、グルタミン酸の取り込みに関与する機能を有するタンパク質をコードするDNA。
- (31)配列番号22に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ピルビン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (32) 下記 (a8) 又は (b8) に示すDNAである (32) のDNA。
- (a8)配列表の配列番号21に記載の塩基配列からなる塩基配列を含むDNA。
- (b8)配列表の配列番号21に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ピルビン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (33)配列番号24に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ピルビン酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。
- (34)下記(a9)又は(b9)に示すDNAである(33)のDNA。
- (a9)配列表の配列番号23に記載の塩基配列からなる塩基配列を含むDNA。
- (b9)配列表の配列番号23に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ピルビン酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。
- (35)配列番号26に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ホスホエノールピルビン酸カルボキシ

- ラーゼ活性を有するタンパク質をコードするDNA。
- (36) 下記 (a10) 又は (b10) に示すDNAである (35) のDNA。
- (a 1 0) 配列表の配列番号 2 5 に記載の塩基配列からなる塩基配列を含む D N A。
- (b10)配列表の配列番号25に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ホスホエノールピルビン酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。
- (37)配列番号28に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、アコニターゼ活性を有するタンパク質をコードするDNA。
- (38)下記(a11)又は(b11)に示すDNAである(37)のDNA。(a11)配列表の配列番号27に記載の塩基配列からなる塩基配列を含むDNA。
- (b11)配列表の配列番号27に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、アコニターゼ活性を有するタンパク質をコードするDNA。
- (39)配列番号30に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、イソクエン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
 - (40)下記(a12)又は(b12)に示すDNAである(39)のDNA。
- (a 1 2) 配列表の配列番号 2 7 に記載の塩基配列からなる塩基配列を含む D N A。
- (b12)配列表の配列番号27に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、イソクエン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (41)配列番号32に記載のアミノ酸配列を有するタンパク質、又は、同アミ

WO 01/25447

ノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は 逆位を含むアミノ酸配列からなり、かつ、ジヒドロリポアミドデヒドロゲナーゼ 活性を有するタンパク質をコードするDNA。

- (42)下記(a13)又は(b13)に示すDNAである(41)のDNA。
- (a 1 3) 配列表の配列番号 3 1 に記載の塩基配列からなる塩基配列を含む DNA。
- (b13)配列表の配列番号31に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ジヒドロリポアミドデヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (43)配列番号34に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、2-オキソグルタル酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (44) 下記(a14) 又は(b14) に示すDNAである(43) のDNA。
- (a 1 4) 配列表の配列番号33に記載の塩基配列からなる塩基配列を含むDNA。
- (b14)配列表の配列番号33に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、2-オキソグルタル酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (45)配列表の配列番号80に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、42 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ における活性と同等又はそれ以上のグルタミン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- (46) 下記(a15) 又は(b15) に示すDNAである(45) のDNA。
- (a 1 5) 配列表の配列番号79に記載の塩基配列からなる塩基配列を含むDNA。
- (b 1 5) 配列表の配列番号 7 9 に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、 4 2 ℃

で37℃における活性と同等又はそれ以上のグルタミン酸デヒドロゲナーゼ活性 を有するタンパク質をコードするDNA。

(47)配列表の配列番号90に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、37 $^{\circ}$ で23 $^{\circ}$ における活性と同等又はそれ以上のクエン酸シンターゼ活性を有するタンパク質をコードするDNA。

(48)下記(a16)又は(b16)に示すDNAである(47)のDNA。(a16)配列表の配列番号89に記載の塩基配列からなる塩基配列を含むDNA。

(b16)配列表の配列番号89に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、37℃で23℃における活性と同等又はそれ以上のクエン酸シンターゼ活性を有するタンパク質をコードするDNA。

(49) L-アミノ酸生産能を有し、かつ、(17)~(48)のいずれかのDNAが導入された微生物を培地に培養し、L-アミノ酸を培地に生成蓄積させ、該培地よりL-アミノ酸を採取することを特徴とするL-アミノ酸の製造法。

以下、上記の各DNAのいずれか、又はこれらを総称して、本発明のDNAということがある。

以下、本発明を詳細に説明する。

本発明のDNAの塩基配列及び遺伝子名、並びに本発明のDNAがコードする タンパク質を表1に示す。

11

表 1

塩基配列	遺伝子名	コードされるタンパク質 (略称)
配列番号 1 配列番号 3 配列番号 5 配列番号 7 配列番号 9 配列番号11,13,15,93	aceA accBC dtsR1 dtsR2 pfk scrB	イソシトレートリアーゼ (ICL) アシルCo-Aカルボ・キシラ-セ・BCサブユニット DTSR1蛋白質 DTSR2蛋白質 ホスホフルクトキナーゼ インベルターゼ
配列番号16 配列番号23 配列番号25 配列番号27 配列番号29 配列番号31 配列番号33 配列番号79 配列番号89	gluABCD pdhA pc ppc acn icd lpd odhA gdh gltA	グルタミン酸取り込み系 ピルビン酸デヒドロゲナーゼ ピルビン酸カルボキシラーゼ ホスホエノールピルビン酸カルボキシラーゼ アコニターゼ イソクエン酸デヒドロゲナーゼ ジヒドロリポアミドデヒドロゲナーゼ 2-オキソグルタル酸デヒドロゲナーゼ グルタミン酸デヒドロゲナーゼ クエン酸シンターゼ

尚、配列番号3、23、25、31及び33におけるオープン・リーディング・フレーム(ORF)、及び配列番号16の4番目のORFはいずれもGTGから始まっている。配列表にはこのGTGによりコードされるアミノ酸はバリンとして記載されているが、メチオニンである可能性がある。

また、配列番号16は4つのORFを含み、5 1側から順にgluA、gluB、gluC及 びgluDに対応する。

上記の各DNAは、コリネバクテリウム・サーモアミノゲネスAJ12310株 (FER M BP-1542) の染色体DNAから単離されたものである。但し、AJ12310株は、インベルターゼ活性及びシュークロース資化性を持たず、同株から単離したscrB遺伝子断片には、オープンリーディングフレームが存在しなかったため、配列番号11及び13に示すDNAは、インベルターゼ活性及びシュークロース資化性を

有するコリネバクテリウム・サーモアミノゲネスAJ12340株 (FERM BP-1539) 及 VAJ12309株 (FERM BP-1541) からそれぞれ単離されたものである。

コリネバクテリウム・サーモアミノゲネスAJ12310株 (YS-314株とも称される) 及びAJ12309株 (YS-155株とも称される) は、1987年3月10日に通商産業省工業技 術院生命工学工業技術研究所 (郵便番号305-8566 日本国茨城県つくば市東一丁 目1番3号) に、各々順にFERM P-9246及びFERM P-9245の受託番号で寄託され、 1987年10月27日にブタペスト条約に基づく国際寄託に移管され、受託番号FERM B P-1542及びFERM BP-1541が付与されている。

AJ12340株(YS-40株とも称される)は、1987年3月13日に工業技術院生命工学工業技術研究所(郵便番号305-8566 日本国茨城県つくば市東一丁目1番3号)にFERM P-9277の受託番号で寄託され、1987年10月27日にブダベスト条約に基づく国際寄託に移管され、FERM BP-1539が付与されている。

尚、配列番号11、13及び15に示す塩基配列は、scrBの部分配列であって、 配列番号11及び13は配列番号12及び14に示すインベルターゼの部分アミ ノ酸配列をコードしている。

目的とする遺伝子の部分断片を含むDNAは、すでに報告されているブレビバクテリウム・ラクトファーメンタム等の種々の微生物の目的とする遺伝子の塩基配列の比較を行い、塩基配列がよく保存されている領域を選択し、その領域の塩基配列に基づいて設計したプライマーを用い、コリネバクテリウム・サーモアミノゲネスの染色体DNAを鋳型とするPCRを行うことによって、取得することができる。得られたDNA断片又はその配列に基づいて作製したプローブを用いたハイブリダイゼーションにより、コリネバクテリウム・サーモアミノゲネスの染色体DNAライブラリーをスクリーニングすることによって、目的とする遺伝子全長を含むDNA断片を得ることができる。また、得られた遺伝子の部分断片を用いてゲノムウォーキングを行うことによっても、目的とする遺伝子全長を含むDNA断片を得ることができる。ゲノムウォーキングと、市販のキット、例えばTaKaRa LA PCR in vitro Cloning Kit (宝酒造(株)製)を用いて行うことができる。

例えば、グルタミン酸デヒドロゲナーゼ (以下、「GDH」ともいう) をコード

するDNA(以下、「gdh」ともいう)は、コリネバクテリウム・サーモアミノゲネス、例えばコリネバクテリウム・サーモアミノゲネスAJ12310株の染色体DNAから、該染色体DNAを鋳型とし、配列表の配列番号77及び78に示す塩基配列を有するプライマーを用いたPCR(ポリメラーゼ・チェイン・リアクション)により部分断片を取得することができる。さらに、得られた部分断片を用いてゲノムウォーキングを行うことにより、gdh遺伝子全体を取得することができる。

また、クエン酸シンターゼ(以下「CS」ともいう)をコードするDNA(以下、「gltA」ともいう)は、コリネバクテリウム・サーモアミノゲネス、例えばコリネバクテリウム・サーモアミノゲネスAJ12310株の染色体DNAから、該染色体DNAを鋳型とし、配列表の配列番号83及び84に示す塩基配列を有するプライマーを用いたPCR(ポリメラーゼ・チェイン・リアクション)により部分断片を取得することができる。さらに、得られた部分断片を用いてゲノムウォーキングを行うことにより、gltA遺伝子全体を取得することができる。

上記プライマーの塩基配列は、すでに報告されている種々の微生物のgdh遺伝子又はgltA遺伝子の塩基配列の比較を行い、塩基配列がよく保存されている領域を見出し、その領域の塩基配列に基づいて設計したものである。

同様に、他の酵素をコードするDNAも、表1に示すプライマーを用いてそれ らの酵素をコードする部分断片を取得することができ、得られた部分断片を用い て目的とする遺伝子全長を得ることができる。

本発明のDNAは、上記のようにして取得されたものであるが、本発明のDNAの塩基配列に基づいて作製したオリゴヌクレオチドをプローブとするハイブリダイゼーションによって、コリネバクテリウム・サーモアミノゲネスの染色体DNAライブラリーから取得することもできる。

染色体DNAの調製、染色体DNAライブラリーの作製、ハイブリダイゼーション、PCR、プラスミドDNAの調製、DNAの切断及び連結、形質転換等の方法は、Sambrook,J.,Fritsch,E.F.,Maniatis,T.,Molecular Cloning, Cold Spring Harbor Laboratory Press,1.21(1989)に記載されている。また、ゲノムウォーキングは、市販のキット、例えばTaKaRa LA PCR in vitro Cloning Kit (宝酒

造(株)製)を用いて行うことができる。

次に、本発明のDNAを取得する具体的な方法を例示する。

まず、コリネバクテリウム・サーモアミノゲネスの染色体DNAを、適当な制限酵素、例えばSau3AIで消化し、アガロースゲル電気泳動により分画して約4~6kbのDNAフラグメントを取得する。得られたDNAフラグメントをpHSG399等のクローニングベクターに挿入し、得られた組換えブラスミドでエシェリヒア・コリを形質転換して、染色体DNAのプラスミドライブラリーを作製する。

一方、プラスミドライブラリーから目的の遺伝子を含むクローンをPCRにより選択するために用いるプライマーを作製する。このプライマーは、目的とする遺伝子に対応する種々の微生物の既知の遺伝子配列の間でアミノ酸レベルで保存されている領域に基づいて設計する。その際、コリネ型細菌のコドンユーセージを考慮してプライマーを複数組づつ設計する。

次に、作製されたプライマーの適正を調べるために、これらのプライマーを用いて、コリネバクテリウム・サーモアミノゲネスの染色体DNAを鋳型としてPCRを行う。そして、増幅断片が得られたプライマーをスクリーニング用プライマーとして用い、プラスミドライブラリーから調製した組換えプラスミドを鋳型としてPCRを行い、目的とするDNA断片を含むクローンを選択する。この操作は、一次スクリーニングとして形質転換体数十株を含むバッチ毎に行い、二次スクリーニングとして増幅断片が得られたバッチについてコロニーPCRを行うことにより、迅速に行うことができる。尚、増幅された遺伝子の断片長は、表2~7に記載した。

上記のようにして選択された形質転換体から組換えDNAを調製し、挿入断片の塩基配列をダイ・デオキシ・ターミネーション法等により決定し、塩基配列を既知の遺伝子配列と比較することによって、目的の遺伝子を含むことを確認する。 得られたDNA断片が、目的とする遺伝子の一部を含んでいる場合には、ゲノムウォーキングにより欠失部分を取得する。

本発明のDNAは、コードされるタンパク質が本来の機能を有する限り、1若しくは複数の位置での1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むタンパク質をコードするものであってもよい。ここで、「数個」と

は、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、一般的に、それぞれのタンパク質のアミノ酸配列全体に対し、30から40%以上、好ましくは $55\sim65$ %以上の相同性を有することが好ましい。具体的には、前記「数個」は、 $2\sim$ 数百個、好ましくは、 $2\sim$ 数十個、より好ましくは $2\sim10$ 個である。

塩基配列及びアミノ酸配列の相同性解析は、例えば、LipmanとPeasonの方法 (Science, 227, 1435-1441, 1985) 等により、市販のソフトウェア (Genetyx-Mac computer program、Software Development Co., Tokyo, Japan) を用いて計算することができる。

GDHは、GDHを構成するアミノ酸配列全体に対し、 $40\sim80\%$ 以上、好ましくは $80\sim90\%$ 以上の相同性を有し、42%で37%におけるGDH活性と同等又はそれ以上の活性を有するものであってもよい。また、前記「数個」は、2から300個、好ましくは、2から500個、より好ましくは2から100個である。

CSは、CSを構成するアミノ酸配列全体に対し、40~80%以上、好ましくは80~90%以上の相同性を有し、37%で23%におけるCS活性と同等又はそれ以上の活性を有するものであってもよい。また、前記「数個」は、2から300個、好ましくは、2から50個、より好ましくは2から100個である。

上記のような本来のタンパク質と実質的に同一のタンパク質をコードするDNAは、例えば部位特異的変異法によって、特定の部位のアミノ酸残基が置換、欠失、挿入、付加、又は逆位を含むように、それぞれのタンパク質をコードするDNAの塩基配列を改変することによって得られる。また、上記のような改変されたDNAは、従来知られている変異処理によっても取得され得る。変異処理としては、目的の遺伝子をコードするDNAをヒドロキシルアミン等でインビトロ処理する方法、及び目的の遺伝子をコードするDNAを保持する微生物、例えばエシェリヒア属細菌を、紫外線照射またはNーメチルーN'ーニトローNーニトロソグアニジン(NTG)もしくは亜硝酸等の通常変異処理に用いられている変異剤によって処理する方法が挙げられる。

また、上記のような塩基の置換、欠失、挿入、付加、又は逆位等には、コリネバクテリウム・サーモアミノゲネスの菌株の違い等に基づく場合などの天然に生

じる変異 (mutant又はvariant) も含まれる。

変異を有するDNAを、適当な細胞で発現させ、発現産物のタンパク質の活性 又は機能を調べることにより、本来のタンパク質と実質的に同一のタンパク質を コードするDNAが得られる。また、そのようなDNAは、変異を有するタンパ ク質をコードするDNAまたはこれを保持する細胞から、例えば表1に示す各配 列番号の塩基配列を有するDNAもしくはそのコード領域又はその塩基配列から 調製されるプローブとストリンジェントな条件下でハイブリダイズし、かつ、当 該タンパク質が本来有する活性を示すタンパク質をコードするDNAを単離する ことによっても得ることができる。前記活性としては、GDHでは42℃で、CSでは3 7℃で、各々の酵素活性を示すことが好ましい。

上記プローブは、表1に示す各配列番号の塩基配列を有するDNA、又はそれらの塩基配列を有するDNAから、適当なプライマーを用いてPCRにより調製することができる。

上記でいう「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。この条件を明確に数値化することは困難であるが、一例を示せば、相同性が高いDNA同士、例えば50%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である50%、 $1\times SSC$, 50%0、50%0、50%0、50%1 以子の条件である。

このような条件でハイブリダイズする遺伝子の中には途中にストップコドンが発生したものや、活性中心の変異により活性を失ったものも含まれるが、それらについては、市販の活性発現ベクターにつなぎ、活性又は機能を調べることによって容易に取り除くことができる。

本発明のDNAを、適当な宿主-ベクター系を用いて発現させることにより、 それぞれのDNAに対応したタンパク質を製造することができる。

遺伝子の発現に用いる宿主としては、ブレビバクテリウム・ラクトファーメンタム (コリネバクテリウム・グルタミカム)、コリネバクテリウム・サーモアミ

ノゲネス等のコリネ型細菌、エシェリヒア・コリ、バチルス・ズブチリスをはじめとする種々の原核細胞、サッカロマイセス・セレビシエ (Saccharomyces cere visiae)をはじめとする種々の真核細胞、動物細胞、植物細胞が挙げられるが、これらの中では原核細胞、特にコリネ型細菌及びエシェリヒア・コリが好ましい。

本発明のDNAは、エシェリヒア・コリ及び/又はコリネ型細菌等の細胞内において自律複製可能なベクターDNAに接続して組換えDNAを調製し、これをエシェリヒア・コリ細胞に導入しておくと、後の操作がしやすくなる。エシェリヒア・コリ細胞内において自律複製可能なベクターとしては、プラスミドベクターが好ましく、宿主の細胞内で自立複製可能なものが好ましく、例えば pUC19、pUC18、pBR322、pHSG299、pHSG399、pHSG398、RSF1010等が挙げられる。

コリネ型細菌の細胞内において自律複製可能なベクターとしては、pAM330 (特開昭58-67699号公報参照)、pHM1519 (特開昭58-77895号公報参照)等が挙げられる。また、これらのベクターからコリネ型細菌中でプラスミドを自律複製可能にする能力を持つDNA断片を取り出し、前記エシェリヒア・コリ用のベクターに挿入すると、エシェリヒア・コリ及びコリネ型細菌の両方で自律複製可能ないわゆるシャトルベクターとして使用することができる。

このようなシャトルベクターとしては、以下のものが挙げられる。尚、それぞれのベクターを保持する微生物及び国際寄託機関の受託番号をかっこ内に示した。

pAJ655 エジェリヒア・コリAJ11882(FERM BP-136)

コリネハ、クテリウム・ク、ルタミクムSR8201(ATCC39135)

コリネハ * クテリウム・ク * ルタミクムSR8202(ATCC39136)

pAJ611 エシェリヒア・コリAJ11884(FERM BP-138)

pAJ3148 コリネハ クテリウム・ク ルタミクムSR8203(ATCC39137)

pAJ440 N° fNX·X° 7° fYXAJ11901 (FERM BP-140)

pHC4 エシェリヒア・コリAJ12617(FERM BP-3532)

本発明のDNAとコリネ型細菌で機能するベクターを連結して組み換えDNA を調製するには、本発明のDNAの末端に合うような制限酵素でベクターを切断

する。連結は、T4DNAリガーゼ等のリガーゼを用いて行うのが普通である。 上記のように調製した組み換えDNAをコリネ型細菌等の宿主に導入するには、 これまでに報告されている形質転換法に従って行えばよい。例えば、エシェリヒ ア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウ ムで処理してDNAの透過性を増す方法 (Mandel,M.and Higa,A.,J. Mol. Biol., 53, 159 (1970)) があり、バチルス・ズブチリスについて報告されているよう な、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法 (D uncan, C.H., Wilson, G.A. and Young, F.E., Gene, 1, 153 (1977)) がある。ある いは、バチルス・ズブチリス、放線菌類及び酵母について知られているような、 DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはス フェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法 (Cha ng.S.and Choen, S.N., Molec. Gen. Genet., 168, 111 (1979); Bibb, M.J., Ward, J. M. and Hopwood, O.A., Nature, 274, 398 (1978); Hinnen, A., Hicks, J.B. and Fink, G.R., Proc. Natl. Acad. Sci. USA, 75 1929 (1978)) も応用できる。コリネ型 細菌においては、電気パルス法(特開平2-207791号公報参照)が有効で ある。

また、コリネバクテリウム・サーモアミノゲネス等の高温耐性コリネ型細菌の形質転換は、宿主細胞の細胞壁の構造を変化させる薬剤で処理し、細胞壁の構造が変化した細胞とDNAを含む溶液に電気パルスを印加することにより、効率よく形質転換を行うことができる。前記薬剤とは、薬剤で処理した細菌とDNAを含む溶液に電気パルスを印加したときに、同細菌がDNAを取り込むことができるように、細胞壁の構造を変化させることができる薬剤(以下、「細胞壁処理剤」ということがある)であり、細菌の正常な細胞壁の合成を阻害する薬剤、又は、細菌の細胞壁を溶解する薬剤が挙げられる。具体的には、リゾチーム、ペニシリンG、グリシン等が挙げられる。

細胞壁処理剤は1種でもよく、2種以上を用いてもよい。前記薬剤の中では、 リゾチーム又はペニシリンGが好ましく、リゾチームが特に好ましい。

さらに、コリネバクテリウム・サーモアミノゲネスの形質転換は、細胞壁を超音波処理 (FEMS Microbiology Letters, 151, 135-138 (1987)) 等の物理的な方

法で弱化させた宿主細胞とDNAを含む溶液に電気パルスを印加することによっても、行うことができる。

本発明のDNAに含まれる遺伝子の発現を効率的に実施するために、これらの遺伝子のコード領域の上流に、宿主細胞内で働くlac、trp、P₁等のプロモーターを連結してもよい。ベクターとして、プロモーターを含むベクターを用いると、各遺伝子と、ベクター及びプロモーターとの連結を一度に行うことができる。

上記のようにして製造され得る本発明のタンパク質は、必要に応じて、菌体抽出液又は培地からイオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、吸着クロマトグラフィー、塩析、溶媒沈殿等、通常の酵素の精製法を用いて精製することができる。

本発明のタンパク質は、コリネバクテリウム・グルタミカム等の対応するタンパク質に比べて、熱安定性に優れているか、又は高温下で高い活性を示すことが期待される。例えば、ブレビバクテリウム・ラクトファーメンタムのGDHが37℃付近で最もGDHの比活性が高く、42℃付近で活性は著しく低下するのに対し、本発明のGDHは、42℃で37℃における活性と同等又はそれ以上のGDH活性を示す。好ましい実施態様では、本発明のGDHは、42℃付近で最も比活性が高く、45℃でも活性を示す。

GDH活性は、例えば、100mM Tris-HCl (pH8.0)、20mM NH $_4$ Cl、10mM α ーケトグルタル酸ナトリウム、0.25mM NADPHに酵素を加え、340nmにおける吸光度の変化を測定することによって、測定することができる (Molecular Microbiology (1992) 6, 317-326)。

また、ブレビバクテリウム・ラクトファーメンタムのCSが23 $^{\circ}$ C付近で最もCSの比活性が高く、33 $^{\circ}$ C付近で活性が著しく低下するのに対し、本発明のCSは、37 $^{\circ}$ Cで23 $^{\circ}$ Cにおける活性と同等又はそれ以上の活性を示す。好ましい実施態様では、本発明のCSは、37 $^{\circ}$ C付近までは反応温度に依存して高い比活性を示し、40 $^{\circ}$ Cでも37 $^{\circ}$ Cにおける活性の約4割の活性を示す。

CS活性は、例えば、Methods in Enzymol., 13, 3-11 (1969)に記載の方法によって測定することができる。

さらに、本発明の他のタンパク質は、典型的には以下の性質を有する。イソシトレートリアーゼは、50 °C、5 分の熱処理後に30 %以上の残存活性を有する。ホスホフルクトキナーゼは、60 °C で 30 °C における活性と同等又はそれ以上の活性を有する。ホスホエノールビルビン酸カルボキシラーゼは、45 °C、5 分の熱処理後に50 %以上の残存活性を有する。アコニターゼは、50 °C、3 分の熱処理後に30 %以上の残存活性を有する。イソクエン酸デヒドロゲナーゼは、45 °C、10 分の熱処理後に50 %以上の残存活性を有する。2- オキソグルタル酸デヒドロゲナーゼは、50 °C、10 分の熱処理後に30 %以上の残存活性を有する。2- オキソグルタル酸デヒドロゲナーゼは、50 °C、10 分の熱処理後に30 %以上の残存活性を有する。

本発明のタンパク質は、コリネバクテリウム・サーモアミノゲネス、例えばコリネバクテリウム・サーモアミノゲネスAJ12310株の菌体破砕液から、それぞれの活性を指標として、通常の酵素の精製法、例えば、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、吸着クロマトグラフィー、塩析、溶媒沈殿等の方法で精製することによって、取得することもできる。

本発明のDNAのうち、pfk、pdhA、pc、ppc、acn、icd、gdh及びgltA(これらの遺伝子がコードする酵素名は表1に示す)は、コリネ型細菌等のLーアミノ酸生産菌に導入することによって、Lーアミノ酸生産能を高めることができる。また、本発明のDNAが導入されたコリネ型細菌は、通常よりも高い温度でのLーアミノ酸の生産が可能となることが期待される。Lーアミノ酸としては、Lーグルタミン酸、Lーアスパラギン酸、Lーリジン、Lーアルギニン、Lープロリン及びLーグルタミン等が挙げられる。

例えば、gdh遺伝子又はgltA遺伝子を、コリネ型細菌等のLーグルタミン酸生産菌に導入することによって、通常よりも高い温度でのLーグルタミン酸の生産が可能となることが期待される。また、ブレビバクテリウム・ラクトファーメンタムのCSは、通常の培養温度、例えば31.5℃では十分に機能していない可能性があるが、本発明のgltA遺伝子を導入することによって、活性を高めることができる。

また、dtsR1及びdtsR2は、コリネ型細菌に界面活性剤に対する耐性を付与する蛋白質 (DTSR蛋白) をコードする遺伝子であり、これらの遺伝子が破壊され

たコリネ型 L-グルタミン酸生産菌は、野生株がほとんど L-グルタミン酸を生成しない量のビオチンが存在する条件においても著量の L-グルタミン酸を生成する。また、L-リジン生産能を有するコリネ型 L-グルタミン酸生産菌は、dtsR1及 VdtsR2 遺伝子を増幅すると、著量の L-リジンを生産する能力が付与される(V095/23224号国際公開パンフレット、特開平10-234371号 Q3 。

scrB遺伝子は、シュークロースを含む培地でコリネ型細菌を用いてL-アミノ酸を製造する場合に、同コリネ型細菌の育種に用いることができる。

コリネ型細菌等のLーグルタミン酸生産菌において、aceA、accBC、lpd又はod hAを欠失させることにより、Lーグルタミン酸生産性を高めることができる。また、gluABCDはLーグルタミン酸の取り込み系の遺伝子クラスターであり、コリネ型Lーグルタミン酸生産菌において、gluA、gluB、gluCもしくはgluD、又はこれらの1種、2種、3種もしくは4種を欠失させることにより、培地に蓄積されるLーグルタミン酸量を増大させることができる。本発明のaceA、accBC、lpd、odhA及びgluABCDは、染色体上のこれらの遺伝子を破壊するのに用いることができる。

上記のようにして本発明のDNAが導入された微生物を用いてL-アミノ酸を製造するのに用いる培地は、炭素源、窒素源、無機イオン及び必要に応じその他の有機微量栄養素を含有する通常の培地である。炭素源としては、グルコース、ラクトース、ガラクトース、フラクトース、シュクロース、廃糖蜜、澱粉加水分解物などの炭水化物、エタノールやイノシトールなどのアルコール類、酢酸、フマール酸、クエン酸、コハク酸等の有機酸類を用いることができる。

窒素源としては、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム等の無機アンモニウム塩、アンモニア、ベブトン、肉エキス、酵母エキス、酵母エキス、コーン・スティーブ・リカー、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。

無機イオンとしては、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。有機微量栄養素としては、ビタミンB₁などの要求物質または酵母エキス等を必要に応じ適量含有させることが望ましい。

培養は、振とう培養、通気撹拌培養等による好気的条件下で $16\sim72$ 時間実施するのがよく、培養温度は $30\%\sim47\%$ に、培養中pHは $5\sim9$ に制御する。培養温度は、本発明のDNAが導入されていない微生物の培養に適した温度、又はそれよりも高い温度で培養する。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。

発酵液からのL-アミノ酸の採取は、L-アミノ酸の種類に応じてイオン交換 樹脂法、沈澱法、晶析法その他の公知の方法を組み合わせることにより実施でき る。

図面の簡単な説明

図 1 は、コリネバクテリウム・サーモアミノゲネスAJ12310株及びブレビバク テリウム・ラクトファーメンタム2256株のグルタミン酸デヒドロゲナーゼの活性 の温度による変化を示す図である。

図2は、AJ12310株及び2256株のグルタミン酸デヒドロゲナーゼの熱安定性を示す図である。

図3は、AJ12310株及び2256株のクエン酸シンターゼの活性の温度による変化を示す図である。

図 4 は、AJ12310株及び2256株のクエン酸シンターゼの熱安定性を示す図である。

図 5 は、AJ12310株及び2256株のイソシトレートリアーゼの活性の温度による 変化を示す図である。

図 6 は、AJ12310株及び2256株のイソシトレートリアーゼの熱安定性を示す図 である。

図7は、AJ12310株及び2256株のホスホフルクトキナーゼの活性の温度による 変化を示す図である。

図8は、AJ12310株及び2256株のホスホフルクトキナーゼの熱安定性を示す図である。

図 9 は、AJ12310株及び2256株のホスホエノールピルビン酸カルボキシラーゼ の活性の温度による変化を示す図である。 図10は、AJ12310株及び2256株のホスホエノールピルビン酸カルボキシラーゼの熱安定性を示す図である。

図11は、AJ12310株及び2256株のアコニターゼの活性の温度による変化を示す図である。

図12は、AJ12310株及び2256株のアコニターゼの熱安定性を示す図である。

図13は、AJ12310株及び2256株のイソクエン酸デヒドロゲナーゼ活性の温度による変化を示す図である。

図14は、AJ12310株及び2256株のイソクエン酸デヒドロゲナーゼの熱安定性 を示す図である。

図15は、AJ12310株及び2256株の2-オキソグルタル酸デヒドロゲナーゼの 熱安定性を示す図である。

図16は、scrB遺伝子搭載プラスミドpSCR155の構築を示す図

図17は、pdhA遺伝子搭載プラスミドpPDHA-2の構築を示す図である。

図18は、pdhA遺伝子増幅株によるL-グルタミン酸生産性を示す図である。

(a):37°C (b):44°C

図19は、icd遺伝子搭載プラスミドpICD-4の構築を示す図である。

図20は、icd遺伝子増幅株によるL-グルタミン酸生産性を示す図である。

(a):37°C (b):44°C

図21は、プラスミドpHSG299YGDH及びpYGDHの構築を示す図である。

図22は、プラスミドpHSG299YCS及びpYCSの構築を示す図である。

<u>発明を実施するための最良の形態</u>

以下、本発明を実施例によりさらに具体的に説明する。

<u>実施例1</u>

< 1>コリネバクテリウム・サーモアミノゲネスのプラスミドライブラリーの作製

コリネバクテリウム・サーモアミノゲネス AJ12310株を、CM2B液体培地 (イーストエキストラクト (Difco社製) 1g/dl、ポリペプトン (日本製薬製) 1g/dl、N

aCl 0.5g/dl、ビオチン 10μg/dl、pH 7.0 (KOHで調整)) で37℃にて15時間培養し、10mlの培養液から、染色体DNAを染色体DNA抽出キット (Bacterial Genome D NA Purification Kit (Advanced Genetic Technologies社製)を用いて取得した。取得したDNAを、制限酵素Sau3AIを用いて部分消化し、0.8%アガロースゲル電気泳動を行い、DNAを分画した後に、約4~6kbのDNAフラグメントをゲルから切り出し、DNAゲル抽出キット (GIBCO BRL社、Concert™ Rapid Gel Extraction System) を用いて、目的サイズのDNA断片を取得した。

プラスミドpHSG399 (宝酒造 (株) 製)をBamHIで完全消化し、末端をアルカリフォスファターゼ (CIAP;宝酒造 (株) 製)を用いて脱リン酸化した。このベクター断片と、上記の染色体DNA断片を宝酒造社製DNAライゲーションキットを用いて連結し、得られた組換えベクターを用いてエシェリヒア・コリ JM109を形質転換した。形質転換体の選択は、 $30\mu g/ml$ のクロラムフェニコール、0.04mg/mlのIPTG (イソプロピルー β – D – チオガラクトピラノシド)、0.04mg/mlのX-Gal (5 – プロモー 4 – クロロー 3 – インドリルー β – D – ガラクトシド)を含むLB 寒天培地 (寒天 1.5g/dlを含む)上にて行い、白色コロニーを約4000コロニー取得した。

<2>各遺伝子断片増幅用プライマーの設定

上記で得られたプラスミドライブラリーから目的の遺伝子を含むクローンをPCRにより選択するために用いるプライマーを設計した。目的とする遺伝子は前記のとおりである。

プライマーは、コリネ型細菌の既知の遺伝子配列をベースとして、他の微生物 の相当する遺伝子との間でアミノ酸レベルで保存されている領域に基づいて設計 した。その際、コリネ型細菌のコドンユーセージを考慮してプライマーを複数組 づつ設計した。

作製されたプライマーの適正を調べるために、これらのプライマーを用いて、コリネバクテリウム・サーモアミノゲネスAJ12310株の染色体DNAを鋳型としてPCRを行い、遺伝子断片を増幅した。その結果、いずれの遺伝子も、表2~表7の上段に示すプライマーを用い、各表中に「部分断片取得のPCR」として示

した条件及びポリメラーゼでPCRを行った場合に、増幅断片が認められた。各 プライマーの末尾のカッコ内の数字は、配列表中の配列番号を示す。これらのプ ライマーを、後述のスクリーニング用プライマーとして用いた。

		表2		
遗伝子名	aceA	accBC	dtsR1	
5, →3, 7° ¬1?- 3, →5, 7° ¬1?-	CCTCTACCCAGCGAACTCCG (35)	CCTCTACCCAGCGAACTCCG (35) CATCCACCCCGGCTACGGCT (37) ACGGCCCAGCCCTGACCGAC (39) CGGCCTTGACTCACGGCTTC (36) CGGTGACTGGGTGTTCCACC (38) AGCAGCGCCCATGACGGCGA (40)	ACGGCCCAGCCCTGACCGAC (38	<u>660</u>
部分断片取得のPCR 条件 みが	94°C 5min	94°C 5min	94°C 5min	
XTT XON-こング。PCRの条件	98°C 5sec 66°C 2sec 30 cycle Z-Taq	98°C 5sec 66°C 2sec 30 cycle Z-Taq	98°C 5sec 66°C 2sec 30 cycle Z-Taq	
JDZ-PCRの条件	94°C 7min	94°C 7min	94°C 7min	
	91°C 30sec 55°C 1sec 72°C 2.5min 30 cycle Ex-Taq	91°C 30sec 55°C 1sec 72°C 2.5min 30 cycle Ex-Taq	91°C 30sec 55°C 1sec 72°C 2.5min 30 cycle Ex-Taq	
增幅断片	824bp	673bp	805bp	

		表ら	
遗伝子名	dtsR2	pfk	scrB
5' +3' 7° 517- 3' +5' 7° 517-	ACGCCCAGCCTGACCGAC (41) AGCAGCGCCCATGACGGCGA (42)	ACGCCCAGCCCTGACCGAC (41) CGTCATCCGAGGAATCGTCC (43) GGNCGHYTBAAYGAYCC AGCAGCGCCCCATGACCTCC (44) GGRCAYTCCCACATRTANCC	GGNCGHYTBAAYGAYCC (45) GGRCAYTCCCACATRTANCC (46)
部分断片取得のPCR	94°C 5min	94°C 5min	94°C 5min
※午 & & & C	98°C 5sec 66°C 2sec 30 cycle Z-Taq	98°C 5sec 66°C 2sec 30 cycle Z-Taq	98°C 5sec 50°C 10sec 72°C 20sec 40 cycle Z-Taq
JDZ-PCRの条件	94°C 7min	94°C 7min	94°C 7min
	91°C 30sec 55°C 1sec 72°C 2.5min 30 cycle Ex-Taq	91°C 30sec 55°C 1sec 72°C 2.5min 30 cycle Ex-Taq	91°C 30sec 55°C 1sec 72°C 2.5min 30 cycle Ex-Taq
增幅断片	805bp	472bp	500bp

遺伝子名	gluABCD	pdhA
	CCATCCGGATCCGGCAAGTC (47 AATCCCATCTCGTGGGTAAC (48	ACTGTGTCCATGGGTCTTGGCCC (49) CGCTGGAATCCGAACATCGA (50)
部分断片 取得の PCR条件	94°C 5min 98°C 5sec 50°C 10sec 72°C 20sec 30 cycle Z-Taq	94°C 5min 98°C 5sec 50°C 10sec 72°C 20sec 30 cycle Z-Taq
增幅断片	500bp	1200bp
スクリーニング * PCR コロニーPCR の条件	94°C 5min 94°C 30sec 50°C 1min 72°C 2min 30 cycle EX-Taq	94°C 5min 94°C 30sec 50°C 1min 72°C 2min 30 cycle EX-Taq

表 5

遺伝子名	pc	ррс
5' →3'7° ライマ- 3' →5'7° ライマ-	GGCGCAACCTACGACGTTGCAATGCG (51) TGGCCGCCTGGGATCTCGTG (52)	GGTTCCTGGATTGGTGGAGA (53) CCGCCATCCTTGTTGGAATC (54)
部分断片 取得の PCR条件	94°C, 5min 98°C, 5sec 55°C, 80sec 30 cycle Z-Taq	94°C 5min 98°C 5sec 50°C 5sec 72°C 10sec 30 cycle Z-Taq
増幅断片	781bp	1000bp
スクリーニンク、PCR の条件	94°C, 5min 98°C, 5sec 55°C, 80sec 30 cycle Z-Taq	94°C 5min 98°C 5sec 50°C 5sec 72°C 10sec 30 cycle Z-Taq
JDニ-PCR の条件	94°C, 5min 1 cycle 98°C, 5sec 55°C, 80sec 50 cycle Z-Taq	94°C 5min 98°C 5sec 50°C 10sec 72°C 20sec 50 cycle Z-Taq

表 6

遺伝子名	acn	icd	lpd
5' →3' 7° ライマー 3' →5' 7° ライマー	GTIGGIACIGAYTCSCATAC (55) GCIGGAGAIATGTGRTCIGT (56)	GACATTTCACTCGCTGGACG (57) CCGTACTCTTCAGCCTTCTG (58)	ATCATCGCAACCGGTTC (59) CGTCACCGATGGCGTAAAT (60)
部分断片 取得の PCB条件	94°C 1min 96°C 20sec 45°C 1min 68°C 2min 30 cycle EX-Taq	94°C 5min 98°C 5sec 55°C 80sec 30 cycle Z-Taq	94°C 5min 98°C 5sec 50°C 10sec 72°C 20sec 30 cycle Z-Taq
增幅断片	1500bp	1500bp	500bp
スクリーニンク*PCR コロニーPCR の条件 スクリーニンク*PCR	同上	同上	94°C 5min 94°C 30sec 57°C 1min 72°C 1min 30 cycle Ex-Taq
5' →3' 7° 517- 3' →5' 7° 517-			TACGAGGAGCAGATCCTCAA (63) TTGACGCCGGTGTTCTCCAG (64)
	S1:GGTGAAGCTAAGTAGTTAGC (65) S2:AGCTACTAAACCTGCACC (66)	S1:CCGTACTCTTCAGCCTTCTG (67) S2:TCGTCCTTGTTCCACATC (68)	S1:ATCATCGCAACCGGTTC (69) S2:TACGAGGAGCAGATCCTCAA (70)
LAクローニング(C') 5'→3'プライマー	S1:GCTAACTACTTAGCTTCACC (71) S2:GAACCAGGAACTATTGAACC (72)	S1:TCCGATGTCATCATCGAC (73) S2:ATGTGGAACAAGGACGAC (74)	
制限酵素	PstI(N') HindIII(C')	Sall(N') PstI(C')	HindIII
LA7ローニング の条件	N' 94°C lmin 94°C 30sec 57°C 2min 72°C 2min 30 cycle LA-Taq C' 94°C lmin 94°C 30sec 57°C 2min 72°C 2.5min 30 cycle LA-Taq	94°C lmin 94°C 30sec 57°C 2min 72°C 2.5min 30 cycle LA-Taq	94°C lmin 94°C 30sec 57°C 2min 72°C lmin 30 cycle LA-Taq

表 7

遺伝子名	odhA
5' →3' 7° 517- 3' →5' 7° 517-	ACACCGTGGTCGCCTCAACG (61) TGCTAACCCGTCCCACCTGG (62)
部分断片 取得の PCR条件	94°C 5min 98°C 5sec 66°C 2sec 30 cycle Z-Taq
増幅断片	1306bp
LAクローニンク (N') 5'→3'7°ライマー	S1:GTACATATTGTCGTTAGAACGCGTAATACGACTCA (75) S2:CGTTAGAACGCGTAATACGACTCACTATAGGGAGA (76)
制限酵素	XbaI
LAクローニング の条件	1回目 94℃ 30seC 55℃ 2min 72℃ 1min 30cycle LA-Taq
	2回目 94℃ 1min
	98℃ 20seC 68℃ 15min 30 cycle
	72°C 10min LA-Taq

<3>PCRによるプラスミドライブラリーのスクリーニング

前記のブラスミドライブラリーから目的の遠伝子を含むクローンを、PCRにより選択した。プラスミドライブラリーから、コロニーを60個ずつピックアップし、2枚づつのLB寒天培地プレートにレブリカした。各プレートのコロニー60個づつをまとめて、4mlのLB液体培地を含む試験管に接種し、15時間培養した後、プロメガ社製プラスミドDNA抽出キットを用いてそれぞれプラスミドの混合物を取得した。このプラスミド混合物を鋳型とし、各目的遺伝子毎に作製したスクリーニング用プライマーを用いて、各表中に「スクリーニングPCRの条件」として示した条件でPCRを行い、染色体DNAを鋳型とするPCRと同じ大きさのDNA断片が増幅されるクローンを選択した。

増幅されたDNA断片は、パーキンエルマー社製ビッグダイ・ダイターミネーターサイクルシークエンスキットを用いて塩基配列を決定し、既知の遺伝子情報との相同性を比較することにより、目的遺伝子の取得の成否を確認した。

尚、1pdについては、<2>で作製したプライマーでは目的のDNA断片が 増幅されなかったので、決定された塩基配列に基づいて、スクリーニング用プラ イマーを別途作製した。

< 4 > コロニー P C R による目的遺伝子保持クローンの選択

目的の遺伝子断片の増幅が確認されたプラスミド混合物が由来するプレートを用いて、コロニーPCRを行い、遺伝子断片を含むクローンを選択した。コロニーPCRは、表 2~7に示す条件で行った。

選択された形質転換体からプラスミドDNAを回収し、挿入DNA断片の塩基配列を決定した。挿入DNA断片に目的遺伝子の全長が挿入されておらず、遺伝子の上流域、下流域またはこれらの両方が欠失している場合は、判明した塩基配列を利用してプライマーを作製し、TaKaRa LA PCR in vitro Cloning Kit (宝酒造(株))を用いて、目的遺伝子の全領域の遺伝子断片を取得し、塩基配列を決定した。

LA PCRクローニングの概要は以下のとおりである。挿入DNA断片のうち2つの領域の塩基配列を有する2種のプライマーを作製する。コリネバクテリウム・サーモアミノゲネスAJ12310株の染色体DNAを各種制限酵素で切断し、各制限酵素に対応したカセットプライマーと連結する。これを鋳型として、作製されたプライマーのうち欠失部分から遠い位置に対応するプライマー(S1)と、カセットプライマーの外側の位置に対応するカセットプライマー(C1)を用いてPCRを行う。次に、作製されたプライマーのうち欠失部分に近い位置に対応するプライマー(S2)と、カセットプライマーの内側の位置に対応するカセットプライマー(C2)を用いてPCRを行う。こうして、欠失部分を含むDNA断片が得られる。得られたDNA断片と既に取得されいるDNA断片を連結することにより、目的遺伝子全長を含むDNA断片を得ることができる。尚、カセットの5、末端にはリン酸基が付いていないので、DNA断片の3、末端とカセットの

5、末端との接続部位にはニックができる。そのため、1回目のPCRではプライマーC1からのDNA合成はこの接続部分でストップし、非特異的な増幅は起こらないため、特異的な増幅を行うことができる。

LA PCRクローニングに用いたプライマーと反応条件は、表 $2 \sim 7$ に示した。表中「(N')」は上流側の欠失部分のクローニングに用いたプライマーを、「(C')」は下流側の欠失部分のクローニングに用いたプライマーを、それぞれ示す。また、PCR反応はLA PCRクローニングキットの説明書に従い、2回行った。表に示したプライマーのうち、上段には1回目の反応に用いたプライマー(S1)を、下段には2回目の反応に用いたプライマー(S2)を示す。

上記のようにして得られた各遺伝子を含むDNA断片の塩基配列を、前記と同様にして決定した。それらの塩基配列及び同塩基配列がコードし得るアミノ酸配列を、配列番号1~34に示す。各配列番号に記載された配列は、後記〔配列表の説明〕に示したとおりである。

scrBについては、オープン・リーディング・フレームが見つからなかった。コリネバクテリウム・サーモアミノゲネス AJ12310株は、インベルターゼ活性を有しておらず、シュークロース資化性を持たないため、シュークロース資化性を有するコリネバクテリウム・サーモアミノゲネスAJ12340株及びAJ12309株から、同様にしてscrB遺伝子断片を取得した。その結果、いずれの株からもオープン・リーディング・フレームを有するDNA断片が得られた。

実施例 2 gdh、及びgltA遺伝子の取得

<1>コリネバクテリウム・サーモアミノゲネスのGDH活性の検討

CM-2B寒天培地(イーストエキストラクト (Difco社製) 1g/dl、ポリペプトン (日本製薬製) 1g/dl、NaCl 0.5g/dl、ピオチン 10μ g/dl、寒天 1.5g/dl、pH 7.00 (KOHで調整)) で生育させたコリネバクテリウム・サーモアミノゲネス野生株 であるAJ12310株の菌体を、下記組成のフラスコ用培地を20ml入れた500ml容フラスコに接種し、37℃で17時間 (残糖が1g/dl程度になるまで) 培養した。

同様に、CM-2B寒天培地で生育させたブレビバクテリウム・ラクトファーメンタム2256株 (ATCC13869) の菌体を31.5℃で17時間培養した。

(フラスコ用培地)

グルコース 3 g/dl KH₂PO₄ $0.1 \, \text{g/dl}$ MgSO₄ · 7H₂O 0.04 g/dlFeSO₄·7H₂O 1 mg/dl MnSO4 · 4H 2 O 1 mg/dl ビタミンB1-HCl $200 \mu g/L$ ビオチン $50 \mu g/L$ $(NH_4)_2SO_4$ 1.5 g/dl 大豆蛋白加水分解液 48 mg/dl (Memeno(T-N)) CaCO₃(局方) 5 g/dl (別殺菌) pH 8.0 (KOHで調整)

上記培養液約1mlを1000rpmで1分遠心してCaCO3を除去した後、菌体を200mM K-リン酸緩衝液 (pH6.9) で2回洗浄し、同緩衝液300μlに懸濁させた。得られた菌体懸濁液を5分間超音波処理して菌体を破砕した後、1000rpmで30分遠心し、上清を粗酵素液として得た。

上記粗酵素液を用いてGDH活性の至適反応温度及び熱安定性を調べた。GDH活性の測定は、反応液(100mM Tris-HCl (pH8.0)、20mM NH4Cl、10mM α -ケトグルタル酸ナトリウム、0.25mM NADPH)に粗酵素液を加え、340nmにおける吸光度の変化を測定することによって行った。また、粗酵素液のタンパク質濃度を、Bradford法(Bio-Rad Protein Assay Kitを使用)により、ウシ血清アルブミンを標準として、595nmでの吸光度を測定することによって定量した。吸光度の測定は、HITACHI U-2000(日立製作所製)を用いて行った。

種々の反応温度で測定したGDH活性を、図1に示す。ATCC13869株では、37℃付近で最もGDHの比活性が高く、42℃付近で活性が著しく低下するのに対し、AJ123 10株では42℃付近で最も比活性が高く、45℃でも活性を示した。

次に、GDHの熱安定性を調べた。反応前に、粗酵素液を0~30分間65℃におい

た後、30°Cにおける酵素活性を測定した。その結果を図2に示す。この結果から明らかなように、ATCC13869株のGDHは5分間の熱処理で失活したのに対し、AJ12310株のGDHは30分間の熱処理でも活性が維持された。尚、AJ12310株の粗酵素液は、少なくとも65°C、90分の熱処理後にもGDH活性にほとんど変化が認められなかった(データは示さない)。

<2>コリネバクテリウム・サーモアミノゲネスのCS活性の検討

実施例 1 と同様にコリネバクテリウム・サーモアミノゲネスAJ12310株の菌体及びプレビバクテリウム・ラクトファーメンタムATCC13869株から調製した粗酵素液を用いて、CSの反応至適温度及び熱安定性を調べた。CS活性の測定は、反応液 (100mM Tris-HCl (pH 8.0), 0.1mM DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)), 200mMLーグルタミン酸ナトリウム、0.3mM アセチルCo-A) に粗酵素液を加え、412nmにおける吸光度の変化を測定することによって行った。

種々の反応温度で測定したCS活性を、図3に示す。ATCC13869株では23℃付近で最もCSの比活性が高く、33℃付近で活性が著しく低下するのに対し、AJ12310株では37℃付近までは反応温度に依存して高い比活性を示し、40℃でも37℃における活性の約4割の活性を示した。

次に、CSの熱安定性を調べた。反応前に、粗酵素液を $33\sim55$ \mathbb{C} で 5 分間おいた後、30 \mathbb{C} における酵素活性を測定した。その結果を図 4 に示す。ATCC13869株のCSは $35\sim40$ \mathbb{C} の熱処理で失活したのに対し、AJ12310株のCSは50 \mathbb{C} の熱処理でも約4割の活性が維持された。

<3>コリネバクテリウム・サーモアミノゲネスのgdh遺伝子の取得

すでに報告されている種々の微生物のgdh遺伝子の塩基配列の比較を行った。 そして、塩基配列がよく保存されている領域を見出し、その領域の塩基配列に基 づいて配列番号77及び78に示す塩基配列を有するプライマーを作製した。

コリネバクテリウム・サーモアミノゲネスAJ12310株からBacterial Genome DN A Purification Kit (Advanced Genetic Technologies社製)を用いて調製した染色体DNAを鋳型とし、前記プライマーを用いてPCRを行った。得られたDNA断片をもとに、TaKaRa LA PCR in vitro Cloning Kit (宝酒造 (株) 製)を用いてゲノ

ムウォーキングを行い、gdh遺伝子全体を取得し、全塩基配列を決定した。結果 を配列番号79に示す。また、この塩基配列から予想されるアミノ酸配列を配列 番号80に示す。

同様にして、ブレビバクテリウム・ラクトファーメンタムATCC13869株のgdh遺伝子を取得し、塩基配列を決定した。結果を配列番号81に示す。また同塩基配列によってコードされるアミノ酸配列を配列番号82に示す。

上記のようにして決定されたコリネバクテリウム・サーモアミノゲネスAJ1231 0株とブレビバクテリウム・ラクトファーメンタムATCC 13869株のgdh遺伝子の塩基配列及びGDHのアミノ酸配列と、公知のコリネバクテリウム・グルタミカム (C. glutamicum) ATCC13032株のgdh遺伝子及びGDHのアミノ酸配列 (Molecular Microbiology (1992) 6, 317-326) との相同性を調べた。結果を表 8 (塩基配列)及び表 9 (アミノ酸配列) に示す。

ATCC13869 ATCC13032 AJ12310

ATCC13869 — 94.5% 82.4% ATCC13032 — 78.1% AJ12310 — —

表 8 各種gdh遺伝子の塩基配列の相同性

表 9 各種 GDHのアミノ酸配列の相同性

	ATCC13869	ATCC13032	AJ12310
ATCC13869	_	90.8%	91.7%
ATCC13032		_	83.4%
AJ12310	_	_	_

<4>コリネバクテリウム・サーモアミノゲネスのgltA遺伝子の取得

すでに報告されている種々の微生物のgltA遺伝子の塩基配列の比較を行った。 そして、塩基配列がよく保存されている領域を見出し、その領域の塩基配列の基

づいて配列番号83及び84に示す塩基配列を有するプライマーを作製した。

コリネバクテリウム・サーモアミノゲネスAJ12310株 (FERM BP-1542) からBac terial Genome DNA Purification Kit (Advanced Genetic Technologies社製)を用いて調製した染色体DNAを鋳型とし、前記プライマー7、8を用いてPCRを行い、増幅した約0.9kbの塩基配列を決定した。

得られたコリネバクテリウム・グルタミカムのgltA遺伝子の塩基配列 (Microbiol., 140, 1817-1828 (1994)) をもとに、配列番号85、86、87、及び88のプライマーを作成し、上記と同様にAJ12310の染色体DNAを鋳型にし、配列番号85、86、87、及び88のプライマーを用いてPCRを行い、増幅したDNA断片の塩基配列を決定し、gltA遺伝子全体の全塩基配列を決定した。結果を配列番号89に示す。また、この塩基配列から予想されるアミノ酸配列を配列番号90に示す。

同様にして、ブレビバクテリウム・ラクトファーメンタム2256株のgltA遺伝子を取得し、塩基配列を決定した。結果を配列番号91に示す。また同塩基配列によってコードされるアミノ酸配列を配列番号92に示す。

上記のようにして決定されたコリネバクテリウム・サーモアミノゲネスAJ1231 0株とブレビバクテリウム・ラクトファーメンタムATCC13869株のgltA遺伝子の塩基配列及びCSのアミノ酸配列と、公知のコリネバクテリウム・グルタミカム (Mi crobiol., 140, 1817-1828 (1994)) ATCC13032株のgltA遺伝子及びCSのアミノ酸配列との相同性を調べた。結果を表 1 0 (塩基配列)及び表 1 1 (アミノ酸配列)に示す。

表10 各種gltA遺伝子の塩基配列の相同性

	ATCC13869	ATCC13032	AJ12310
ATCC13869	-	99.5%	85.7%
ATCC13032	_	-	85.6%
AJ12310	_	_	_

表11 各種CSのアミノ酸配列の相同性

	ATCC13869	ATCC13032	AJ12310
ATCC13869	_	99.3%	92.1%
ATCC13032		_	92.1%
AJ12310	_	_	_

実施例3 コリネバクテリウム・サーモアミノゲネスのscrB遺伝子の取得

実施例1に示したように、コリネバクテリウム・サーモアミノゲネスAJ12309 株からscrB遺伝子断片が得られたので、同遺伝子の全配列の取得を行った。まず、 実施例1と同様にして、配列番号45及び配列番号46に示すプライマーを用い て部分断片の取得を行った。これらのプライマーは、ブレビバクテリウム・ラク トファーメンタム2256株のscrB配列(特開平08-196280)をもとに合成した。

一方、AJ12309株からBacterial Genome DNA Purification Kit(Advanced Gene tic Technologies Corp.)を用いて染色体を調製した。この染色体DNAを0.5μg、前記プライマーを各々50pmol、dNTP mixture (各2.5mM) 4μl、10× Z-Taq Buff er (宝酒造) 5μl、Z-Taq 2U (宝酒造) に滅菌水を加えて全量50μlのPCR反応液を調製した。この反応液を用いて、サーマルサイクラーGeneAmp PCR System 960 0 (PE) を使用して、変性98℃ 5秒、会合50℃ 10秒、伸長反応72℃ 20秒の条件で30サイクルのPCRを行い、scrBの部分断片約600bpを増幅した。

次にLA PCR in vitro Cloning Kit (宝酒造)を用いてscrB全配列を決定した。 方法はすべて、LA PCR in vitro Cloning Kitに従った。取得した部分配列をも とに、配列番号 9 7、 9 8、 9 9、 1 0 0に示すプライマーを合成した。上流部 分の配列決定のための1回目のPCR反応は、配列番号 9 5、 9 7に示すプライマ ーを、鋳型DNAとしてEcoT14Iで処理したAJ12309株染色体DNAを用いた。2回目の PCR反応は、配列番号 9 6、 9 8に示すプライマーを用いた。下流部分の配列決 定のための1回目のPCR反応は、配列番号 9 5、 9 9に示すプライマーを、鋳型D NAとしてSalI (宝酒造)で処理したAJ12309株染色体DNAを用いた。2回目のPCR 反応は、配列番号 9.6、 1.0.0 に示すプライマーを用いた。以上の操作から、scrBのORFを含む全長1656bpの配列を決定した。この塩基配列を配列番号 9.3 に、アミノ酸配列を配列番号 9.4 に示す。

<u>実施例4 イソシトレートリアーゼ、ホスホフルクトキナーゼ、ホスホエノール</u> <u>ピルビン酸カルボキシラーゼ、アコニターゼ、イソクエン酸デヒドロゲナーゼ、</u> 2-オキソグルタル酸デヒドロゲナーゼの熱安定性の検討

コリネバクテリウム・サーモアミノゲネス由来の下記の酵素について、熱安定性を調べた。尚、本実施例では、タンパク質濃度は、Bradford法 (Bio-Rad Protein Assay Kitを使用)により、標準タンパク質に牛血清アルブミンを用いて測定した。また、吸光度の測定は、特記しない限りHITACHI U-2000 (日立製作所)を用いて行った。

<1>イソシトレートリアーゼ

コリネバクテリウム・サーモアミノゲネスAJ12310株由来イソシトレートリアーゼ (以下、「ICL」ともいう)とブレビバクテリウム・ラクトファーメンタム2 256株 (ATCC13869)由来ICLの活性の熱安定性を調べた。活性測定には、表 1 2 に示した培地にて完全に糖を消費し尽くす前に培養を終了させた菌体を用いた。活性測定方法は、Dieter J. Reinscheid et al., J. Bacteriol., 176(12), 347 4 (1994))に従った。具体的には、菌体を50mM トリス緩衝液 (pH7.3)にて洗浄後、同バッファーに懸濁し、超音波破砕 (KUBOTA社製 INSONATOR201Mを使用、2 00W、5分)を行った。超音波破砕後、遠心分離 (13000×g、30分)を行い、未破砕算体を取り除いたものを粗酵素液とした。

50mM MOPS-NaOH(pH7.3)、5mM ジチオスレイトール、15mM MgCl₂、1mM EDTA、5 mM D-threo-isocitrate、0.2mM NADH、18U LDH (ラクテートデヒドロゲナーゼ) を含む反応系に粗酵素液を添加し、各温度 (30、40、50、60、70℃) における34 0nmの吸収を日立分光光度計U-3210にて測定した。反応温度を変化させた測定結果を図 5 に示す。また、粗酵素液を50℃にて前処理(前処理時間5分、又は15分)し、37℃における活性を測定した結果を図 6 に示す。

その結果、2256株のICLは50℃近辺に最大活性を示すのに対し、AJ12310株のICLは60℃で最大活性を示した。また、2256株のICLは前処理時間5分で完全に失活しているのに対し、AJ12310株のICLは前処理時間5分では約半分の活性を維持していたことから、AJ12310株のICLの高温での安定性が確認された。

表 1 2 ICL活性測定用培地組成

成分	濃度
(NH4) ₂ SO ₄	5g/l
Urea	5g/l
KH 2 PO 4	0.5g/1
K2HPO4	0.5g/l
MOPS	20.9g/l
MgSO ₄ • 7H ₂ O	0.25g/l
CaCl ₂ ·7H ₂ O	10mM
CuSO ₄ · 7H ₂ O	0.2 mg/l
ビオチン	0.2 mg/1
MnSO ₄ · 7H ₂ O	10mg/l
FeSO ₄ ·7H ₂ O	10mg/l
ZnSO ₄ · 7H ₂ O	lmg/l
酢酸	4%

<2>ホスホフルクトキナーゼ

コリネバクテリウム・サーモアミノゲネス AJ12310株由来ホスホフルクトキナーゼ (以下、「PFK」ともいう) とブレビバクテリウム・ラクトファーメンタム2 256株由来PFKの活性の熱安定性について調べた。活性測定には、表 1 3 に示した培地にて完全に糖を消費し尽くす前に培養を終了させた菌体を用いた。活性測定方法は、Michiko Mori et al., Agric. Biol. Chem., 51(10), 2671 (1994)) に従った。具体的には、菌体を0.1M トリス緩衝液 (pH7.5) にて洗浄後、同緩衝液に懸濁し、超音波破砕 (KUBOTA社製 INSONATOR201Mを使用、200W、5分) を行った。超音波破砕後、遠心分離 ($13000\times g$ 、30分) を行い、未破砕菌体を取り除いたものを粗酵素液とした。

100mMトリス緩衝液 (pH7.5)、0.2mM NADH、10mM MgCl2、2mM NH4Cl、10mM KC

1、0.2mM ホスホエノールピルピン酸、6.4mM フルクトース 6 リン酸、1mM ATP、 40μ g LDH/PK (ピルピン酸キナーゼ)を含む反応系に粗酵素液を添加し、各温度(30、40、50、60、70°C)における340nmの吸収を日立分光光度計U-3210にて測定した。反応温度を変化させた測定結果を図7に示す。また、粗酵素液を50°Cにて前処理(前処理時間1、3、5、10分)し、37°Cにおける活性を測定した結果を図8に示す。

以上の結果、2256株のPFKは30℃近辺で最大活性を示すことに対し、AJ12310株のPFKは50℃近辺で最大活性を示したことから、AJ12310のPFK株の至適温度は高温域にあることが確認された。

成分	濃度
ポリペプトン 酵母エキス 塩化ナトリウム グルコース	20g/l 20g/l 5g/l 20g/l

表 1 3 PFK活性测定用培地組成

<3>ホスホエノールピルビン酸カルボキシラーゼ

コリネバクテリウム・サーモアミノゲネス AJ12310株由来ホスホエノールビルビン酸カルボキシラーゼ (以下、「PEPC」ともいう) とブレビバクテリウム・ラクトファーメンタム2256株由来のPEPC活性の熱安定性について検討した。

CM-2B寒天培地で生育させたAJ12310株の菌体を、フラスコ用培地(グルコース8g/dl、KH₂PO₄ 0.1g/dl、MgSO₄·7H₂O 0.04g/dl、FeSO₄·7H₂O 1mg/dl、MnSO₄·4H₂O 5mg/dl、(NH₄)₂SO₄ 3g/dl、TN (大豆タンパク質加水分解液) 48mg/dl、ビタミンB1 200μg/l、ビオチン 300μg/l、GD-113 (消胞剤) 50μl/l、CaCO₃ 5g/dl(局方、別殺菌)、 pH8.0 (KOHで調整))を20ml入れた500ml容フラスコに接種し、37℃で培養した。同様に、CM-2B寒天培地で生育させた2256株の菌体を31.5℃で培養した。

対数増殖期まで生育させた上記培養液を1000rpmで1分間遠心してCaCO3を除去した後、菌体を洗浄緩衝液(100mM Tris/HCl pH8.0、10mM MgSO4、1mM DTT、20% glycerol)で3回洗浄、超音波で破砕し、15krpmで10分間遠心し破砕片を除去し、上清をさらに60krpmで1時間遠心し、上清を粗酵素液として得た。

上記粗酵素液を用いてPEPC活性の至適反応温度及び熱安定性を調べた。PEPC活性の測定は、反応液(100mM Tris/ H_2 SO₄(pH8.5)、5mM ホスホエノールピルピン酸、10mM KHCO₃、0.1mM acetyl-CoA、0.15mM NADH、10mM MgSO₄、10Uリンゴ酸脱水素酵素、0.1mM DTT)に粗酵素液を添加し、反応液量800 μ l中で340nmにおける吸光度の変化を測定することによって行った。

種々の反応温度で測定したPEPC活性を図9に示す。2256株では40℃で活性が著しく低下するのに対し、AJ12310株では40℃でも活性の低下はほとんど認められなかった。

次に、PEPCの熱安定性を調べた。反応前に、粗酵素液を0~20分間45℃においた後、20℃における酵素活性を測定した。その結果を図10に示す。この結果から明らかなように、2256株では10分間の熱処理後にはPEPC活性はほとんど失われてしまったが、AJ12310株では20分間の熱処理後でも活性は維持されていた。

これらの結果からAJ12310のPEPCの高温での安定性が示された。

く4>アコニターゼ

コリネバクテリウム・サーモアミノゲネス AJ12310株由来アコニターゼ(以下、「ACN」ともいう)とプレビバクテリウム・ラクトファーメンタム2256株由来ACNを測定し、その熱安定性について検討した。

CM-2B寒天培地で生育させたAJ12310株の菌体を、<3>と同じ組成のフラスコ 用培地を20ml入れた500ml容フラスコに接種し、37℃で培養した。同様に、CM-2B 寒天培地で生育させた2256株の菌体を31.5℃で培養した。

対数増殖期まで生育させた上記培養液を1000rpmで1分間遠心してCaCO₃を除去した後、菌体を50mM Tris/HCl pH7.5で3回洗浄、超音波で破砕し、15krpmで10分間遠心した上清を粗酵素液として得た。

上記粗酵素液を用いてACN活性の至適反応温度及び熱安定性を調べた。ACN活性

の測定は反応液(20mM Tris/HC1(pH7.5)、50mM NaCl、20mM isocitrate·3Na)に粗酵素液を添加し反応液量 800μ l中で240nmにおける吸光度の変化を測定することによって行った。

種々の反応温度で測定したACN活性を図11に示す。AJ12310株はより高温において2256株よりも高い活性を示した。

次に、ACNの熱安定性を調べた。反応前に、粗酵素液を $0\sim15$ 分間50℃においた後、30℃における酵素活性を測定した。その結果を図12に示す。この結果から明らかなように、AJ12310株のACNは2256株のACNよりも熱処理による活性の低下が少なかった。

これらの結果からAJ12310のACNの高温での熱安定性が確認された。

く5>イソクエン酸デヒドロゲナーゼ

コリネバクテリウム・サーモアミノゲネス AJ12310株由来イソクエン酸デヒドロゲナーゼ (以下、「ICDH」ともいう) とブレビバクテリウム・ラクトファーメンタム2256株由来ICDHの活性の熱安定性について検討した。

CM-2B寒天培地で生育させたAJ12310株の菌体を、<3>と同じ組成のフラスコ 用培地を20ml入れた500ml容フラスコに接種し、37℃で培養した。同様に、CM-2B 寒天培地で生育させた2256株の菌体を31.5℃で培養した。

対数増殖期まで生育させた上記培養液を1000rpmで1分間遠心してCaCO₃を除去した後、菌体を50mM Tris/HCl pH7.5で3回洗浄、超音波で破砕し、15krpmで10分間遠心した上清を粗酵素液として得た。

上記粗酵素液を用いてICDH活性の至適反応温度及び熱安定性を調べた。ICDH活性の測定は反応液 (35mM Tris/HCl、0.35mM EDTA (pH7.5)、1.5mM MnSO₄、0.1mM NADP、1.3mM isocitrate・3Na) に粗酵素液を添加し反応液量800μl中で340nmにおける吸光度の変化を測定することによって行った。

種々の反応温度で測定したICDH活性を図13に示す。2256株では70℃で活性が著しく低下するのに対し、AJ12310株では70℃でも活性の低下はほとんど認められなかった。

次に、ICDHの熱安定性を調べた。反応前に、粗酵素液を0~15分間45℃におい

た後、30℃における酵素活性を測定した。その結果を図14に示す。この結果から明らかなように、2256株では15分間の熱処理後には15%ほどのICDHの活性が残存するだけであったが、AJ12310株では約60%のICDHの活性が残存していた。

これらの結果から、AJ12310のICDHの高温での熱安定性が示された。

<6>2-オキソグルタル酸デヒドロゲナーゼ

コリネバクテリウム・サーモアミノゲネス AJ12310株由来 2 - オキソグルタル酸デヒドロゲナーゼ (以下、「ODHC」ともいう) とブレビバクテリウム・ラクトファーメンタム2256株由来ODHCを測定し、その熱安定性について調べた。

活性測定には、表 1.4 に示した培地にて完全に糖を消費し尽くす前に培養を終了させた菌体を用いた。活性測定方法は、Isamu Shiio et al., Agric. Biol. Chem., 44(8), 1897 (1980)) に従った。具体的には、菌体を0.2% 塩化カリウムにて洗浄後、100mM TES-NaOH (pH7.5)、30% グルセロール溶液に懸濁し、超音波破砕 (KUBOTA社製 INSONATOR201Mを使用、200W、5分)を行った。超音波破砕後、遠心分離($10000 \times g$ 、30分)を行い、未破砕菌体を取り除いたものをSephadex-G25を用いて、同バッファーにてゲルろ過することによって調製したものを粗酵素液とした。

100mM TES-NaOH(pH7.7)、5mM MgCl₂、0.2mM Coenzyme A、0.3mM コカルボキシラーゼ、1mM α -ケトグルタル酸、3mM L-システイン、1mM アセチルピリジン-アデニン-ジヌクレオチドを含む反応系に粗酵素液を添加し、各温度(30、40、50、60、70°C)における365nmの吸収を日立分光光度計U-3210にて測定した。粗酵素液を50°Cにて前処理(前処理時間1、3、5、10分)し、37°Cにおける活性を測定した結果を図15に示す。

その結果、2256株の0DHCは前処理時間10分で完全に失活しているのに対し、AJ 12310の0DHCは前処理時間に関係なく、ほぼ一定の活性を有しており、高温処理 に対する安定性が確認された。

表 1 4 ODHC活性測定用培地組成

成分	濃度
グルコース	80g/l
KH ₂ PO ₄	1g/l
$MgSO_4 \cdot 7H_2O$	0.4g/l
FeSO ₄ • 7H ₂ O	0.01g/l
MnSO ₄ • 7H ₂ O	0.05g/l
(NH4)2SO4	30g/l
大豆蛋白加水分解物	480mg/l
サイアミン塩酸	$200 \mu \text{g/l}$
ビオチン	$300\mu\mathrm{g/l}$

実施例 5 scrB遺伝子導入によるシュークロース資化能の付与

コリネバクテリウム・サーモアミノゲネスAJ12310株は、インベルターゼ活性 及びシュークロース資化性を持たないため、同株に、AJ12309株由来のscrB遺伝 子を導入することによってシュークロースに対する資化能を付与できるのかを調 べた。

<1>コリネバクテリウム・サーモアミノゲネス AJ12309株由来scrB搭載プラスミドの作製

scrB遺伝子断片を取得するために、配列番号 9 3 に示す塩基配列をもとに、両端にSmaI配列を連結した配列番号 1 0 1、 1 0 2 に示すプライマーを合成した。AJ12309株染色体DNAを $0.5\mu g$ 、前記オリゴヌクレオチドを各々50pmol、dNTP mix ture (各2.5mM) $4\mu l$ 、 $10 \times$ Pyrobest Buffer (宝酒造) $5\mu l$ 、Pyrobest polyme rase 2U (宝酒造) に滅菌水を加えて全量 $50\mu l$ のPCR反応液を調製した。この反応液を用いて、サーマルサイクラーGeneAmp PCR System 9600 (PE) を使用して、変性98°C 10秒、会合55°C 30秒、伸長反応72°C 2分の条件で30サイクルのPCRを行い、scrB 0RFを含む約1.7kbを増幅した。

次に、上記の増幅断片をSmal(宝酒造)にて消化し、脱リン酸化処理したコリネ型細菌で機能する複製起点を搭載したプラスミドpSAC4をSmalで切断したもの

と連結し、pSCR155を作製した。pSCR155の構築を図16に示す。なおpSAC4は、以下のようにして作製した。エシェリヒア・コリ用ベクターpHSG399(宝酒造(株))をコリネ型細菌で自律複製可能にするために、既に取得されているコリネ型細菌で自律複製可能なプラスミドpHM1519(Miwa, k. et al., Agric. Biol. Chem., 48(1984)2901-2903)由来の複製起点(特開平5-7491号公報)を導入した。具体的には、pHM1519を制限酵素BamHIおよびKpnIで消化し、複製起点を含む遺伝子断片を取得し、得られた断片を宝酒造(株)製Blunting kitを用いて平滑末端化した後、SalIリンカー(宝酒造(株)製)を用いて、pHSG399のSalIサイトに挿入し、pSAC4を得た。

< 2 > AJ12310株へのscrB遺伝子搭載プラスミドの導入

上記で作製したpSCR155、及び、ブレビバクテリウム・ラクトファーメンタム 由来scrB遺伝子を搭載したプラスミドpSSM30BS (特開平08-196280号) を、コリ ネバクテリウム・サーモアミノゲネスAJ12310株に導入した。形質転換は、以下 の手順で行った。菌体を、20%シュクロースを含むCM-2B培地にOD660=0.1となる ように接種し、OD660=0.3まで37℃で振盪培養した後、100μg/mlになるようにリ ゾチームを添加し、さらに2時間培養した。菌体を20%シュクロースで3回洗浄後、 20%シュクロースに懸濁し、エシェリヒア・コリJM110から回収したプラスミドを 加えよく混合し、電気パルス (18KV/cm 300msec) をかけ、DNAを導入した。20% シュクロースを含むCM-2B培地で一晩回復培養を行なった後、クロラムフェニコ ール5μg/mlを含むCM-2B寒天培地で形質転換体を選択した。具体的には、電気パ ルス法 (特開平12-204236号) を用い、形質転換体の選択は5µg/mlのクロラムフ ェニコールを含むCM2Bプレート培地で、37℃にて行った。その結果、ブレビバク テリウム・ラクトファーメンタム由来scrB搭載プラスミドpSSM30BSを保持する形 質転換体は得られず、コリネバクテリウム・サーモアミノゲネス由来scrBを搭載 プラスミドpSCR155を保持する形質転換体のみが取得出来た。この株をAJ12310/p SCR155と命名した。

< 3 > AJ12310/pSCR155株のシュークロースを糖源とする培養評価

上記で作製したAJ12310/pSCR155を、表15に示す組成の培地に接種し、37℃

にて22時間振とう培養した。培養後の培地の吸光度(0D)及び残糖(RS)を測定した結果を表 16に示す。その結果、AJ12310株は、シュークロースを資化出来ず、生育が不能であるのに対し、scrB遺伝子導入株AJ12310/pSCR155株はシュークロースを資化出来るようになったことが確認された。

表 1 5 培地組成

培地組成	濃度
シュークロース	60g/l
KH ₂ PO4	1g/l
MgSO4 · 7H2O	0.4g/l
FeSO ₄ ·7H ₂ O	0.01/1
MnSO ₄ • 7H ₂ O	0.01g/l
(NH4) ₂ SO ₄	30g/l
大豆蛋白加水分解物	480mg/l
サイアミン塩酸塩	200 μ g/l
ビオチン	$300 \mu \text{g/l}$

表16 シュークロース培養結果

	OD(×51)	RS(g/1)
2256	1.292	0.00
AJ12310	0.058	60.00
AJ12310/pSCR155	1.571	0.84

実施例 6 pdhA遺伝子増幅株によるL-グルタミン酸生産

<1>由来pdhA搭載プラスミドpPDHA-2の構築

コリネバクテリウム・サーモアミノゲネスAJ12310株のpdhA遺伝子は、プラスミドライブラリのスクリーニングにより取得した。具体的には、プラスミドライブラリ混合物を鋳型として、実施例1の表4に示した条件にてPCRを行い、染色体DNAを鋳型とするPCRと同じ大きさのDNA断片が増幅されるクローンp21Aを選択

した。このプラスミドのDNA配列を決定することによりpdhAの全長が含まれていることを確認した。

p21AをXbaI、KpnIで消化し、pdhA遺伝子の全長とプロモーター領域を含む4kbのDNA断片を切り出した。このpdhA遺伝子を含むDNA断片を、pHSG299(宝酒造)のXbaI、KpnIサイトに挿入した。次にこのプラスミドをXbaIで消化し、pXK4をXbaIで処理した断片を挿入してpPDHA-2を作成した。pPDHA-2の構築の過程を図17に示す。ライゲーション反応はDNA Ligation Kit Ver.2(宝酒造)を、遺伝子操作のホストにはエシェリヒア・コリJM109株(宝酒造)を用いた。尚、前記pXK4は、以下のようにして作製した。コリネ型細菌とエシェリヒア・コリのシャトルベクターpHK4(特開平5-7491号)を制限酵素BamHI、KpnIで消化して、複製起点を持つDNA断片を取得して、得られた断片をDNA平滑末端化キット(宝酒造社製、Blunting Kit)を用いて平滑末端化したあと、XbaIリンカー(宝酒造社製)を結合し、pHSG299のXbaIサイトに挿入し、プラスミドpXK4を得た。

< 2 > AJ12310株へのpdhA遺伝子搭載プラスミドの導入

上記で作製したプラスミドpPDHA-2をコリネバクテリウム・サーモアミノゲネスAJ12310株に導入し、pdhA遺伝子増幅株を作製した。形質転換は実施例 5 と同様にして行い、形質転換体はカナマイシン 25μ g/mlを含むCM-2B寒天培地で選択し、AJ12310/pPDHA-2株を取得した。

<3>pdhA増幅株によるL-グルタミン酸生産

CM-2B寒天培地で生育させたAJ12310株、及び上記で取得したpdhA遺伝子増幅株AJ12310/pPDHA-2株を、表 1 7に示す種培養フラスコ用培地を20ml入れた500ml容フラスコに接種し、37℃でグルコースを完全消費するまで振湿培養した。この培養液を、表 1 7に示す本培養フラスコ用培地を20ml入れた500ml容フラスコに2ml接種し、37℃及び44℃において本培養を行なった。本培養はグルコースを完全消費するまで行い、培養終了後、培養液の0D620及びLーグルタミン酸の蓄積量を測定し、遺伝子増幅による菌体形成及びグルタミン酸の生産に対する効果を検討した。0Dの測定は分光光度計HITACHI U-2000(日立製作所)を、Lーグルタミン酸濃度の測定はグルタミン酸アナライザーAS-210(旭化成)を用いた。結果を図

18に示す。

pdhA遺伝子増幅株AJ12310/pPDHA-2株では、AJ12310株に比べ、L-グルタミン酸蓄積、ODともに上昇し、pdhA遺伝子の増幅がL-グルタミン酸生産に有効であることが明らかとなった。

培地組成	種培養	本培養
グルコース	30g/l	60g/l
KH ₂ PO ₄	1g/l	lg/l
Mg SO ₄ · 7H ₂ O	0.4g/1	0.4g/l
FeSO ₄ · 7H ₂ O	0.01g/1	0.01g/l
$MnSO_4 \cdot 7H_2O$	0.01g/1	0.01g/l
(NH ₄) ₂ SO ₄	15g/l	30g/1
大豆蛋白加水分解物	480mg/l	480mg/l
サイアミン塩酸塩	$200 \mu g/1$	$200 \mu g/l$
ビオチン	$10 \mu g/l$	
AZ-20R (消泡剤)	$20 \mu 1/1$	$20 \mu 1/1$
CaCO ₃ (別殺菌)	50g/L	50g/L
pH8.0(KOHで調整)	o,	<u>.</u>

表 17 pdhA增幅株評価培地

実施例7 icd遺伝子増幅株によるL-グルタミン酸生産

<1>コリネバクテリウム・サーモアミノゲネス AJ12310株由来icd搭載プラスミドpICD-4の構築

配列番号 2 9 記載のAJ12310株のicd遺伝子配列をもとに、配列番号 1 0 3 及び配列番号 1 0 4に示すプライマーを合成した。この両プライマーの5 端にはBglI Iサイトを導入した。一方、Genomic DNA Purif. Kit (Edge BioSystems社)を用いて、コリネバクテリウム・サーモアミノゲネスAJ12310株のゲノムDNAを調製した。このゲノムDNAを鋳型として、上記プライマーをそれぞれ100pmol、dNTP mix ture (各2.5mM) 8μ l、 $10\times$ Pyrobest Buffer II (宝酒造) 10μ l、Pyrobest DNA polymerase (宝酒造) 2.5Uに滅菌水を加えて全量 100μ lのPCR反応液を調製した。この反応液を用いて、サーマルサイクラーTP240(宝酒造)を使用して、変性98% 10秒、会合55% 1分、伸長反応72% 4分の条件で30サイクルのPCRを行

い、icd遺伝子及びそのプロモーターを含む3.3kbのDNA断片を増幅した。

このicd遺伝子を含むDNA断片をBglIIで処理し、pHSG299 (宝酒造)のBamHIサイトに挿入した。次にこのプラスミドをXbaIで処理し、pXK4をXbaIで処理した断片を挿入してpICD-4を構築した。pICD-4の作製の手順は図19に示す。ライゲーション反応は、DNA Ligation Kit Ver.2 (宝酒造)を、遺伝子操作のホストにはエシェリヒア・コリJM109株 (宝酒造)を用いた。

< 2 > AJ12310株へのicd遺伝子搭載プラスミドの導入

上記で作製したプラスミドpICD-4を、コリネバクテリウム・サーモアミノゲネスAJ12310株に導入し、icd遺伝子増幅株を作製した。形質転換は、実施例 5 と同様にして行い、形質転換体は、カナマイシン 25μ g/mlを含むCM-2B寒天培地で選択し、AJ12310/pICD-4株を取得した。

<3>icd増幅株によるL-グルタミン酸生産

AJ12310株、およびそのicd増幅株であるAJ12310/pICDについて、実施例6記載の培養方法により培養評価を行った。結果を図20に示す。icd遺伝子増幅株AJ12310/pICD-4株では、野生株AJ12310株に比べ、L-グルタミン酸蓄積、ODともに上昇し、icd遺伝子の増幅はグルタミン酸生産に有効であることが示された。

実施例 8 gdh遺伝子増幅株によるL-グルタミン酸生産

< 1 > コリネバクテリウム・サーモアミノゲネス AJ12310株由来のgdh遺伝子搭載プラスミドの作製

配列番号79に記載のAJ12310株のgdh遺伝子の配列をもとに、配列番号105 および配列番号106に示すプライマーを合成した。

一方、Bacterial Genome DNA Purification Kit (Advanced Genetic Technolo gies Corp.) を用いてAJ12310の染色体DNAを調製した。この染色体DNAを0.5μg、前記オリゴヌクレオチドをそれぞれ10pmol、dNTP mixture(各2.5mM)8μl、10×LA Taq Buffer (宝酒造) 5μl、LA Taq (宝酒造) 2Uに滅菌水を加えて全量50μlのPCR反応液を調製した。この反応液を用いて、サーマルサイクラーTP240 (宝酒造) を使用して、変性94℃ 30秒、会合55℃ 1秒、伸長反応72℃ 3分の条件で30

サイクルのPCRを行ない、gdh遺伝子およびそのプロモーターを含む約2KbpのDNA 断片を増幅した。得られた増幅断片をPstI(宝酒造社製)で消化し、これとpHSG 299(宝酒造)をPstIで完全分解したものを混合し連結した。連結反応は宝酒造社製 DNA ligation kit ver2にて行なった。連結した後、エシェリヒア・コリJM 109のコンピテントセル(宝酒造社製)を用いて形質転換を行い、IPTG(イソプロピル- β -D-チオガラクトピラノシド) 10μ g/ml、X-Gal(5-プロモ-4-クロロ-3-インドリル- β -D-ガラクトシド) 40μ g/ml及びクロラムフェニコール 40μ g/mlを含むL培地(バクトトリプトン10g/l、バクトイーストエキストラクト1g/l、NaCl 1g/l、寒天115g/l、pH7.2)に塗布し、一晩培養後、出現した白色のコロニーを釣り上げ、単コロニー分離し、形質転換株を得た。

形質転換株からアルカリ法 (生物工学実験書、日本生物工学会編、105頁、培風館、1992年)を用いてプラスミドを調製し、制限酵素地図を作成し、図21に示す制限酵素地図と同等であるものをpHSG299YGDHと名付けた。

このpHSG299YGDHにコリネ型細菌で機能する複製起点を導入した。具体的には、pXC4を制限酵素XbaIにて消化し、pHM1519由来の複製起点を含む断片を取得し、pHSG299YGDHをXbaIで完全分解したものと混合し連結した。上記と同様の方法でプラスミドを調製し、図21に示す制限酵素地図と同等であるものをpYGDHと名付けた。尚、pXC4は、pHSG299の代わりにpHSG399 (Cm^r)を用いた以外は、実施例6に記載したpXK4と同様にして構築した。

< 2 > AJ12310株へのgdh遺伝子搭載プラスミドの導入

上記で作製したプラスミドを、コリネバクテリウム・サーモアミノゲネスAJ12 310株に導入し、gdh遺伝子増幅株を作製した。形質転換は、実施例 5 と同様にして行い、形質転換体はカナマイシン 25μ g/mlを含むCM-2B寒天培地で、31 ℃にて選択し、AJ12310/pYGDHを取得した。

<3>gdh増幅株によるL-グルタミン酸生産

CM-2B寒天培地で生育させたAJ12310株及び上記で取得したgdh遺伝子増幅株AJ1 2310/pYGDH株を、表 1 8 に示す種培養フラスコ用培地を20ml入れた500ml容フラスコに接種し、37℃でグルコースを完全消費するまで振盪培養した。この培養液

を、表 1.9 に示す本培養フラスコ用培地を20ml入れた500ml容フラスコに2ml接種し、37 で及び44 でにおいて本培養を行なった。本培養はグルコースを完全消費するまで行い、培養終了後、培養液の $0D_{620}$ 及びL-グルタミン酸の蓄積量を測定し、遺伝子増幅による菌体形成及びグルタミン酸の生産に対する効果を検討した。0Dの測定は分光光度計HITACHIU-2000(日立製作所)を、<math>L-グルタミン酸濃度の測定はグルタミン酸アナライザーAS-210(旭化成)を用いた。

表 1 8 種培養培地組成

培地組成	濃度
グルコース	30 g/l
硫安	15 g/l
KH ₂ PO ₄	1 g/l
$MgSO_4 \cdot 7H_2O$	0.4 g/l
FeSO ₄ ·7H ₂ O	0.01 g/l
$MnSO_4 \cdot 5H_2O$	0.01 g/l
大豆蛋白加水分解物	0.48 g/l
サイアミン塩酸塩	200 ug/l
ビオチン	10 ug/l
AZ20R	0.02 ml/l
CaCO3 (別殺菌)	1 g/L
pH8.0(KOH)	

表 19 本培養培地組成

培地組成	濃度
グルコース	60 g/l
硫安	30 g/l
KH ₂ PO ₄	1 g/l
MgSO ₄ ·7H ₂ O	0.4 g/l
FeSO ₄ ·7H ₂ O	0.01 g/l
MnSO4 · 5H 2 O	0.01 g/l
大豆蛋白加水分解物	0.48 g/l
サイアミン塩酸塩	200 ug/l
AZ20R	0.02 ml/l
CaCO3 (別殺菌)	1 g/L
pH8.0(KOH)	

培養結果を表 20、表 21に示す。37°Cでは、gdh增幅株は、糖消費速度が、 親株のAJ12310株と比較して速く、生育も良く、到達0Dが上昇した。またL-グルタミン酸蓄積に関しても、収率に関しても37°Cでは3~5%と大幅に向上した。44°Cにおいても収率が向上し、また到達0Dも上昇した。-方、gdh増幅株では副生物である α -ケトグルタル酸の蓄積が減少していることが確認された。これらの結果から、gdhの増幅がL-グルタミン酸収率の向上および副生物の低減に有効であることが示された。

表 2 0 gdh増幅株の培養結果 (37℃)

	0D ₆₂₀ (51×)	L-Glu蓄積 (g/dl)	L-Glu収率 (%)	α-KG (mg/dl)
AJ12310	0.58	1.74	30.7	53.9
AJ12310/pYGDH	0.65	2.23	39.3	4.1

表21 gdh増幅株の培養結果	(44°C)
-----------------	--------

	OD ₆₂₀ (51×)	L-Glu蓄積 (g/dl)	L-Glu収率 (%)
AJ12310	0.63	1.70	26.7
AJ12310/pYGDH	0.71	1.79	27.8

実施例 9 gltA遺伝子増幅株によるL-グルタミン酸生産

<1>コリネバクテリウム・サーモアミノゲネス由来gltA遺伝子搭載プラスミドの作製

配列番号89記載のAJ12310株由来のgltA遺伝子の配列をもとに、配列番号107および配列番号108に示すプライマーを合成した。

一方、Bacterial Genome DNA Purification Kit(Advanced Genetic Technolog ies Corp.)を用いてコリネバクテリウム・サーモアミノゲネスAJ12310の染色体D NAを調製した。この染色体DNAを $0.5 \mu g$ 、前記オリゴヌクレオチドをそれぞれ10pmol、dNTP mixture(各2.5mM)8μl、10× Pyrobest- Taq Buffer (宝酒造) 10μl、 Pyrobest Taq (宝酒造) 20に滅菌水を加えて全量100μ1のPCR反応液を調製した。 この反応液を用いて、サーマルサイクラーTP240(宝酒造)を使用して、変性94 °C30秒、会合 45°C 30秒、伸長反応72°C 3分の条件で30サイクルのPCRを行ない、 gltA遺伝子およびそのプロモーターを含む約2KbpのDNA断片を増幅した。得られ た増幅断片をKpnI(宝酒造)で消化し、これとpHSG299(宝酒造)をKpnIで完全 分解したものを混合し連結した。連結反応は宝酒造社製 DNA ligation kit ver2 にて行なった。連結した後、エシェリヒア・コリJM109のコンピテントセル (宝 酒造社製)を用いて形質転換を行い、IPTG (イソプロピル-β-D-チオガラクトピ ラノシド) 10μ g/ml、X-Gal(5-プロモ-4-クロロ-3-インドリル-β-Dーガラクト シド)40μg/ml及びクロラムフェニコール40μg/mlを含むL培地 (バクトトリプ トン10g/l、バクトイーストエキストラクト5g/l、NaCl 5g/l、寒天15g/l、pH7.2) に塗布し、一晩培養後、出現した白色のコロニーを釣り上げ、単コロニー分離し、 形質転換株を得た。

形質転換株からアルカリ法 (生物工学実験書、日本生物工学会編、105頁、培 風館、1992年)を用いてプラスミドを調製し、制限酵素地図を作成し、図22に 示す制限酵素地図と同等であるものをpHSG299YCSと名付けた。

このpHSG299YCSにコリネ型細菌内で複製出来る複製起点を導入した。具体的には、pXC4を制限酵素XbaIにて消化し、pHM1519の複製起点を含むDNA断片を取得し、pHSG299YCSをXbaIで完全分解したものと混合、連結した。上記と同様の方法でプラスミドを調製し、図22に示す制限酵素地図と同等であるものをpYCSと名付けた。

< 2 > AJ12310株へのgltA遺伝子搭載プラスミドの導入

上記で作製したプラスミドを、コリネバクテリウム・サーモアミノゲネスAJ12 310株を導入し、gltA遺伝子増幅株を作製した。形質転換は、実施例 5 と同様にして行い、形質転換体の選択は25μg/mlのカナマイシンを含むCM2B寒天培地で、31℃にて選択し、AJ12310/pYCSを取得した。

<3>gltA増幅株によるL-グルタミン酸生産

CM-2B寒天培地で生育させたAJ12310株及び上記で取得したgltA遺伝子増幅株AJ12310/pYCS株を、実施例 8 と同様にして培養した。培養結果を表 2 2 、表 2 3 に示す。CS増強株では、37°C、44°Cいずれの培養温度においても、親株よりLーグルタミン酸蓄積が向上していることが確認された。また、gltA増幅株はオキサロ酢酸から合成されるLーアスパラギン酸、Lーリジンが減少していた。

以上の結果から、gltAの増幅がLーグルタミン酸の収率向上および副生物低減に有効であることが示された。

	L-Glu蓄積	収率	L-Asp蓄積	L-lys蓄積
	(g/dl)	(%)	(mg/dl)	(mg/dl)
AJ12310	1.79	31.9	11.8	11.0
AJ12310/pYCS	2.04	36.5	8.1	7.3

表 2 2 gltA増幅株の培養結果 (37℃)

表 2 3 gltA増幅株の培養結果 (44℃)

	0D	L-Glu蓄積 (g/dl) 	収率 (%)	L-Asp蓄積 (mg/dl)	L-lys蓄積 (mg/dl)
AJ12310 AJ12310/pYCS	0.58 0.65	1.38	21.8	23.3	29.2 17.2

〔配列表の説明〕

配列番号1: aceA 塩基配列 配列番号2: aceA アミノ酸配列 配列番号3: accBC 塩基配列 配列番号4: accBC アミノ酸配列 配列番号5: dtsR1 塩基配列 配列番号6: dtsR1 アミノ酸配列 配列番号7: dtsR2 塩基配列 配列番号8: dtsR2 アミノ酸配列 配列番号9: pfk 塩基配列 配列番号10: pfk アミノ酸配列 配列番号11: scrB(AJ12340株) 塩基配列 配列番号12: scrB(AJ12340株) アミノ酸配列 配列番号13: scrB(AJ12309株) 塩基配列 配列番号14: scrB(AJ12309株) アミノ酸配列 配列番号15: scrB(AJ12310株) 塩基配列 配列番号16: gluABCD 塩基配列 配列番号17: gluABCD アミノ酸配列 配列番号18: gluABCD アミノ酸配列 配列番号19: gluABCD アミノ酸配列 配列番号20: gluABCD アミノ酸配列 配列番号21: pdhA 塩基配列

配列番号22: pdhA アミノ酸配列

配列番号23: pc 塩基配列

配列番号24: pc アミノ酸配列

配列番号25: ppc 塩基配列

配列番号26: ppc アミノ酸配列

配列番号27: acn 塩基配列

配列番号28: acn アミノ酸配列

配列番号29: icd 塩基配列

配列番号30: icd アミノ酸配列

配列番号31: lpd 塩基配列

配列番号32: lpd アミノ酸配列

配列番号33: odhA 塩基配列

配列番号34: odhA アミノ酸配列

配列番号79: gdh(AJ12310株) 塩基配列

配列番号80: gdh(AJ12310株) アミノ酸配列

配列番号81: gdh(2256株) 塩基配列

配列番号82: gdh (2256株) アミノ酸配列

配列番号89: gltA(AJ12310株) 塩基配列

配列番号90: gltA(AJ12310株) アミノ酸配列

配列番号91: gltA(2256株) 塩基配列

配列番号92: gltA(2256株) アミノ酸配列

配列番号93: scrB(AJ12309株) 塩基配列

配列番号94: scrB(AJ12309株) アミノ酸配列

産業上の利用可能性

本発明により、コリネバクテリウム・サーモアミノゲネスのアミノ酸生合成系 酵素をコードする遺伝子、又はアミノ酸の細胞内への取り込みに関与するタンパ ク質をコードする遺伝子が提供される。 WO 01/25447 PCT/JP00/06913 56

本発明の遺伝子は、前記酵素又はタンパク質の製造、又はアミノ酸生産菌の育種に利用することができる。

請求の範囲

- 1. 配列番号 2 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、50℃、5分の熱処理後に30%以上の残存活性を有するイソシトレートリアーゼ活性を有するタンパク質。
- 2. 配列番号4に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するアシルCo-Aカルボキシラーゼ活性に関与するタンパク質。
- 3. 配列番号 6 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するDtsR活性を有するタンパク質。
- 4. 配列番号8に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するDtsR活性を有するタンパク質。
- 5. 配列番号 10 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1 若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、60 ℃で 30 ℃における活性と同等又はそれ以上のホスホフルクトキナーゼ活性を有するタンパク質。
- 6. 配列番号94に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスにシュークロース資化能を付与する活性を有するタンパク質。
 - 7. 配列番号17~20に記載のアミノ酸配列のいずれかを有するタンパク

質、又は、前記アミノ酸配列のいずれかにおいて、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するグルタミン酸の取り込みに関与する機能を有するタンパク質。

- 8. 配列番号 2 2 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、 1 若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するピルビン酸デヒドロゲナーゼ活性を有するタンパク質。
- 9. 配列番号 2 4 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノゲネスに由来するピルビン酸カルボキシラーゼ活性を有するタンパク質。
- 10. 配列番号 26 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、 1 若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、 45 $\mathbb C$ 、 5 分の熱処理後に 50 %以上の残存活性を有するホスホエノールピルビン酸カルボキシラーゼ活性を有するタンパク質。
- 11. 配列番号 28 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、50 \mathbb{C} 、3分の熱処理後に30 %以上の残存活性を有するアコニターゼ活性を有するタンパク質。
- 12. 配列番号30に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、45 $^{\circ}$ $^{\circ}$ 、10 分の熱処理後に50 %以上の残存活性を有するイソクエン酸デヒドロゲナーゼ活性を有するタンパク質。
- 13. 配列番号32に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又

は逆位を含むアミノ酸配列からなり、かつ、コリネバクテリウム・サーモアミノ ゲネスに由来するジヒドロリポアミドデヒドロゲナーゼ活性を有するタンパク質。

- 14. 配列番号34に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、50℃、10分の熱処理後に30%・以上の残存活性を有する2-オキソグルタル酸デヒドロゲナーゼ活性を有するタンパク質。
- 15. 配列表の配列番号80に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、42℃で37℃における活性と同等又はそれ以上のグルタミン酸デヒドロゲナーゼ活性を有するタンパク質。
- 16. 配列表の配列番号 90 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、37 $^{\circ}$ で23 $^{\circ}$ における活性と同等又はそれ以上のクエン酸シンターゼ活性を有するタンパク質。
- 17. 配列番号2に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、イソシトレートリアーゼ活性を有するタンパク質をコードするDNA。
- 18. 下記 (a1) 又は (b1) に示すDNAである請求項17記載のDNA。
 - (a1) 配列表の配列番号1に記載の塩基配列からなる塩基配列を含むDNA。
- (b1)配列表の配列番号1に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、イソシトレ ートリアーゼ活性を有するタンパク質をコードするDNA。
- 19. 配列番号4に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は

逆位を含むアミノ酸配列からなり、かつ、アシルCo-Aカルボキシラーゼ活性 に関与するタンパク質をコードするDNA。

- 20. 下記(a2)又は(b2)に示すDNAである請求項19記載のDNA。
 - (a2)配列表の配列番号3に記載の塩基配列からなる塩基配列を含むDNA。
- (b2)配列表の配列番号3に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、アシルCo-Aカルボキシラーゼ活性に関与するタンパク質をコードするDNA。
- 21. 配列番号6に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、DtsR活性を有するタンパク質をコードするDNA。
- 22. 下記(a3)又は(b3)に示すDNAである請求項21記載のDNA。
 - (a3)配列表の配列番号5に記載の塩基配列からなる塩基配列を含むDNA。
- (b3)配列表の配列番号 5 に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、DtsR活性を有するタンパク質をコードするDNA。
- 23. 配列番号8に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、DtsR活性を有するタンパク質をコードするDNA。
- 24. 下記(a4)又は(b4)に示すDNAである請求項23記載のDNA。
 - (a 4) 配列表の配列番号7に記載の塩基配列からなる塩基配列を含むDNA。
- (b4)配列表の配列番号7に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、DtsR活

WO 01/25447

性を有するタンパク質をコードするDNA。

- 25. 配列番号10に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ホスホフルクトキナーゼ活性を有するタンパク質をコードするDNA。
- 26. 下記(a5)又は(b5)に示すDNAである請求項25記載のDNA。
 - (a5)配列表の配列番号9に記載の塩基配列からなる塩基配列を含むDNA。
- (b5)配列表の配列番号9に記載の塩基配列又は同塩基配列から調製される プライマーとストリンジェントな条件下でハイブリダイズし、かつ、ホスホフル クトキナーゼ活性を有するタンパク質をコードするDNA。
- 27. 配列番号93に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、インベルターゼ活性を有するタンパク質をコードするDNA。
- 28. 下記(a6)又は(b6)に示すDNAである請求項27記載のDNA。
- (a6)配列表の配列番号93に記載の塩基配列からなる塩基配列を含むDNA。
- (b6)配列表の配列番号93に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、インベルターゼ活性を有するタンパク質をコードするDNA。
- 29. 配列番号17~20に記載のアミノ酸配列のいずれかを有するタンパク質、又は、前記アミノ酸配列のいずれかにおいて、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、グルタミン酸の取り込みに関与する機能を有するタンパク質、をコードするDNA。
 - 30. 下記(a7)又は(b7)に示すDNAである請求項29記載のDN

Α.

- (a7)配列表の配列番号16に記載の塩基配列からなる塩基配列を含むDNA。
- (b7)配列表の配列番号16に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、グルタミン酸の取り込みに関与する機能を有するタンパク質をコードするDNA。
- 31. 配列番号22に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ピルビン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 32. 下記(a8)又は(b8)に示すDNAである請求項31記載のDNA。
- (a8)配列表の配列番号21に記載の塩基配列からなる塩基配列を含むDNA。
- (b8)配列表の配列番号21に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ピルビン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 33. 配列番号24に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ピルビン酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。
- 34. 下記(a9)又は(b9)に示すDNAである請求項33記載のDNA。
- (a9)配列表の配列番号23に記載の塩基配列からなる塩基配列を含むDNA。
- (b9)配列表の配列番号23に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ピルビン

酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。

- 35. 配列番号26に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ホスホエノールピルビン酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。
- 36. 下記(a10)又は(b10)に示すDNAである請求項35記載のDNA。
- (a 1 0) 配列表の配列番号 2 5 に記載の塩基配列からなる塩基配列を含む DNA。
- (b10)配列表の配列番号25に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ホスホエノールピルピン酸カルボキシラーゼ活性を有するタンパク質をコードするDNA。
- 37. 配列番号28に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、アコニターゼ活性を有するタンパク質をコードするDNA。
- 38. 下記 (a11) 又は (b11) に示す DNA である請求項 37 記載の DNA。
- (a 1 1) 配列表の配列番号 2 7 に記載の塩基配列からなる塩基配列を含む D N A。
- (b11)配列表の配列番号27に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、アコニターゼ活性を有するタンパク質をコードするDNA。
- 39. 配列番号30に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、イソクエン酸デヒドロゲナーゼ活性

を有するタンパク質をコードするDNA。

- 40. 下記(a12)又は(b12)に示すDNAである請求項39記載のDNA。
- (a 1 2) 配列表の配列番号 2 7 に記載の塩基配列からなる塩基配列を含む D N A。
- (b12)配列表の配列番号27に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、イソクエン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 41. 配列番号32に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、ジヒドロリポアミドデヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 42. 下記(a13)又は(b13)に示すDNAである請求項41記載のDNA。
- (a13)配列表の配列番号31に記載の塩基配列からなる塩基配列を含むDNA。
- (b13)配列表の配列番号31に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、ジヒドロリポアミドデヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 43. 配列番号34に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、2-オキソグルタル酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 44. 下記(a14)又は(b14)に示すDNAである請求項43記載のDNA。
- (a 1 4) 配列表の配列番号33に記載の塩基配列からなる塩基配列を含むDNA。

- (b14)配列表の配列番号33に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、2-オキソグルタル酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 45. 配列表の配列番号 80 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1 若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、42 ℃で 37 ℃における活性と同等又はそれ以上のグルタミン酸デヒドログナーゼ活性を有するタンパク質をコードする DNA。
- 46. 下記(a15)又は(b15)に示すDNAである請求項45記載のDNA。
- (a 1 5) 配列表の配列番号 7 9 に記載の塩基配列からなる塩基配列を含む D N A。
- (b15)配列表の配列番号79に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、42℃で37℃における活性と同等又はそれ以上のグルタミン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
- 47. 配列表の配列番号 90 に記載のアミノ酸配列を有するタンパク質、又は、同アミノ酸配列において、1 若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、37 $^{\circ}$ $^{\circ$
- 48. 下記(a16)又は(b16)に示すDNAである請求項47記載のDNA。
- (a 1 6) 配列表の配列番号89に記載の塩基配列からなる塩基配列を含むDNA。
- (b 1 6) 配列表の配列番号89に記載の塩基配列又は同塩基配列から調製されるプライマーとストリンジェントな条件下でハイブリダイズし、かつ、37℃

で23℃における活性と同等又はそれ以上のクエン酸シンターゼ活性を有するタンパク質をコードするDNA。

66

49. Lーアミノ酸生産能を有し、かつ、請求項 $17\sim48$ のいずれか一項に記載のDNAが導入された微生物を培地に培養し、Lーアミノ酸を培地に生成蓄積させ、該培地よりLーアミノ酸を採取することを特徴とするLーアミノ酸の製造法。

Fig. 1

Fig. 2

THIS PAGE BLANK (USPTO)

Fig. 3

Fig. 4

PAGE BLANK (USPTO)

Fig. 5

Fig. 6

PAGE BLANK (USPTO)

WO 01/25447 PCT/JP00/06913

4 / 15

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

WO 01/25447 PCT/JP00/06913

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

WO 01/25447 PCT/JP00/06913

Fig. 22

1/123

配列表 SEQUENCE LISTING

- <110> Ajinomoto Co., Inc.
- <120> Genes for Heat resistant Enzymes of Amino Acid Biosynthetic Pathway Derived from Thermophilic Coryneform Bacteria
- <130> B691SM0P1072

<140>

<141> 2000-10-04

<150> JP 11-282716

<151> 1999-10-04

<150> JP 11-311147

<151> 1999-11-01

<150> JP 2000-120687

<151> 2000-04-21

<160> 108

<170> PatentIn Ver. 2.0

<210> 1

<211> 1980

<212> DNA

<213 > Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (577)..(1869)

<400> 1

tgcattccac cgacggtcac gcgttcggtc ttgtcagcg cgtcaatctg ctgatggttc 60 atgcaaagct ccttcgaagc aagagatcgg gtgtgtgcgg gcacctatcg ggggaagccc 120 tcgctgcgcc ccagggggag ctggcgatgt gaccaggtta agtgataacc atcaccttgc 180 caatgggttt gcgaacttta ccgtgacgct acccccgctt ttgtttgatc acaccagctc 240 gaaggctgtc gcttttccga agatgcacgt gaagtggcaa atccttgcca cccgaggttt 300 tcccagtaca aacgtactag tgatgaggat cacggggaac attgtggaga ttgcactttg 360

caatatttgc aaaaggggtg actacccccg cgcaaaactt															0+000	-++	420	
			_															
			_							gcacgccacc cagtgtgcag								
			-															
	cgcc	ettac	cag (cagca	eccaa	ag aa	igaag	gtgac	tci	tag					gga		594	
		Met Ser Asn Val Gly Thr												Thr				
1 5																		
		_		-	_	-		-							cca		642	
	Pro	Arg	Thr	Ala	Gln	Glu	Ile	Gln	Gln	Asp	Trp	Asp	Thr	Asn	Pro	Arg		
				10					15					20				
			-												gag		690	
	Trp	Asn	Gly	Ile	Thr	Arg	Asp	Tyr	Thr	Ala	Glu	Gln	Val	Ala	Glu	Leu		
			25					30					35					
	cag	ggc	agc	gtc	gtc	gag	gag	cac	acc	ctc	gca	aag	cgc	ggc	gcc	gag	738	
	Gln	Gly	Ser	Val	Val	Glu	Glu	His	Thr	Leu	Ala	Lys	Arg	Gly	Ala	Glu		
		40					45					50						
	atc	ctg	tgg	gat	gca	gtt	tcc	gca	gag	ggc	gac	gac	tac	atc	aac	gca	786	
	Ile	Leu	Trp	Asp	Ala	Val	Ser	Ala	Glu	Gly	Asp	Asp	Tyr	Ile	Asn	Ala		
	55					60					65					70		
	ctg	ggc	gcc	ctt	acc	ggt	aac	cag	gct	gtc	cag	cag	gtc	cgt	gcc	ggc	834	
	Leu	Gly	Ala	Leu	Thr	Gly	Asn	Gln	Ala	Val	Gln	Gln	Val	Arg	Ala	Gly		
					75					80					85			
	ctg	aag	gct	gtc	tac	ctc	tcc	ggc	tgg	cag	gtc	gca	ggt	gac	gcc	aac	882	
	Leu	Lys	Ala	Val	Tyr	Leu	Ser	Ġly	Trp	Gln	Val	Ala	Gly	Asp	Ala	Asn		
				90	-				95					100)			
	ctc	gcc	ggt	cac	acc	tac	ccc	gac	cag	tcc	ctg	tac	ccg	gcg	aac	tcc	930	
	Leu	Ala	Gly	His	Thr	Tyr	Pro	Asp	Gln	Ser	Leu	Tyr	Pro	Ala	. Asn	Ser		
			105					110					115					
	gtc	ccg	aac	gtt	gtc	cgt	cgc	atc	aac	aac	gca	ctg	ctg	cgc	gcc	gat	978	
	Val	Pro	Asn	Val	Val	Arg	Arg	Ile	Asn	Asn	Ala	Leu	Leu	Arg	Ala	Asp		
		120					125					130						
	gag	atc	gca	cgc	gtc	gag	ggt	gac	acc	tcc	gtc	gac	aac	tgg	ctc	gtc	1026	
															Leu			
	135					140					145					150		
	ccg	atc	gtc	gcc	gac	ggc	gag	gcc	ggc	ttc	ggt	ggc	gcc	ctc	aac	gtc	1074	
															Asn			
					155	•			•	160	•	•			165			
	tac	gag	ctc	cag	aag	ggc	atg	atc	acc	gct	ggt	gcc	gca	ggc	acc	cac	1122	
															Thr			
	- , .			170	_, _				175		•			180		-		
	t.gg	gag	gat		ctc	get	tee	gag		aag	tøt.	ggc	cac		ggt	ggc	1170	
															Gly			
	11 P	~Iu	185	0111	μu	u	501	190	J, J	2,0	-,0	~	195	_ J v u				
	ааб	øtc		atc	_ር ር ዎ	acc	cag		cac	atr	cgc	acc		ลลก	tcc	gcc	1218	
	டமத	900	0.00		~~ <u>5</u>	400	CES	~u5	Juc		~5~	200	~ ~ 5	uut		0~~		

3/123

Lys	Val 200	Leu	Ile	Pro	Thr	Gln 205	Gln	His	Ile	Arg	Thr 210	Leu	Asn	Ser	Ala	
_					gtg Val 220											1266
					gcc Ala											1314
-	_				acc Thr											1362
_					gag Glu											1410
					atc Ile											1458
_	-	_			gcc Ala 300											1506
ctg	_				tgc Cys											1554
	_	_			gct Ala											1602
					atc Ile											1650
					gct Ala											1698
	gtc				aac Asn 380											1746
ttc					cac His					ggc						1794
		_		acc	gtt Val				tcc					ctg		1842
			gag		tgc Cys			cac								1889

PCT/JP00/06913 WO 01/25447 4/123 425 430 gccgtatggc ctgacggcac cgcccctccc tttgcactcc agtactcctt tgtgcacatc 1949 ggccatctcc acaccgcgcg ccccgccacc t <210> 2 <211> 431 <212> PRT <213> Corynebacterium thermoaminogenes <400> 2 Met Ser Asn Val Gly Thr Pro Arg Thr Ala Gln Glu Ile Gln Gln Asp 10 Trp Asp Thr Asn Pro Arg Trp Asn Gly Ile Thr Arg Asp Tyr Thr Ala 25 Glu Gln Val Ala Glu Leu Gln Gly Ser Val Val Glu Glu His Thr Leu 40 Ala Lys Arg Gly Ala Glu Ile Leu Trp Asp Ala Val Ser Ala Glu Gly 55 Asp Asp Tyr Ile Asn Ala Leu Gly Ala Leu Thr Gly Asn Gln Ala Val Gln Gln Val Arg Ala Gly Leu Lys Ala Val Tyr Leu Ser Gly Trp Gln 90

Val Ala Gly Asp Ala Asn Leu Ala Gly His Thr Tyr Pro Asp Gln Ser 100 105 110

Leu Tyr Pro Ala Asn Ser Val Pro Asn Val Val Arg Arg Ile Asn Asn 115 120 125

Ala Leu Leu Arg Ala Asp Glu Ile Ala Arg Val Glu Gly Asp Thr Ser 130 135 140

Val Asp Asn Trp Leu Val Pro Ile Val Ala Asp Gly Glu Ala Gly Phe 145 150 155 160

Gly Gly Ala Leu Asn Val Tyr Glu Leu Gln Lys Gly Met Ile Thr Ala 165 170 175

Gly Ala Ala Gly Thr His Trp Glu Asp Gln Leu Ala Ser Glu Lys Lys 180 185 190

Cys Gly His Leu Gly Gly Lys Val Leu Ile Pro Thr Gln Gln His Ile 195 200 205

Arg Thr Leu Asn Ser Ala Arg Leu Ala Ala Asp Val Ala Asn Thr Pro 210 215 220

Thr Val Val Ile Ala Arg Thr Asp Ala Glu Ala Ala Thr Leu Ile Thr 225 230 235 240

Ser Asp Val Asp Glu Arg Asp Arg Pro Phe Ile Thr Gly Glu Arg Thr 245 250 255

Ala Glu Gly Tyr Tyr His Val Lys Pro Gly Leu Glu Pro Cys Ile Ala


```
265
                                                     270
            260
Arg Ala Lys Ser Tyr Ala Pro Tyr Ala Asp Met Ile Trp Met Glu Thr
                            280
                                                 285
Gly Thr Pro Asp Leu Glu Leu Ala Lys Lys Phe Ala Glu Gly Val Arg
                        295
                                             300
    290
Ser Glu Phe Pro Asp Gln Leu Leu Ser Tyr Asn Cys Ser Pro Ser Phe
                                         315
                                                             320
                    310
Asn Trp Ser Ala His Leu Glu Ala Asp Glu Ile Ala Lys Phe Gln Lys
                                     330
                325
Glu Leu Gly Ala Met Gly Phe Lys Phe Gln Phe Ile Thr Leu Ala Gly
                                345
                                                     350
            340
Phe His Ser Leu Asn Tyr Gly Met Phe Asp Leu Ala Tyr Gly Tyr Ala
                            360
                                                 365
        355
Arg Glu Gly Met Pro Ala Phe Val Asp Leu Gln Asn Arg Glu Phe Lys
                                             380
    370
                        375
Ala Ala Glu Glu Arg Gly Phe Thr Ala Val Lys His Gln Arg Glu Val
                                         395
                    390
Gly Ala Gly Tyr Phe Asp Thr Ile Ala Thr Thr Val Asp Pro Asn Ser
                                     410
                405
Ser Thr Thr Ala Leu Lys Gly Ser Thr Glu Glu Cys Gln Phe His
                                425
                                                     430
            420
```

<210> 3

<211> 2381

<212> DNA

<213 > Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (577)..(2349)

<400> 3

agcaggccgt gttgccgaac ggcaacttcc gcagccgcaa ggagatcgag gaggtgtact 60 cgcacctcaa ccctgccgag gacaccgtgg tgtactgccg cgtgggtgac cgcgcgccc 120 acacctggtt cgtgttgaag tacctgctgg ggtttgaaaa cgtccgcaac tatgacggtt 180 cctggtccga gtggggcaac atggtgcgca tgcccatcgt ccagggtgat gagccgggct 240 cactctagtc accccggggt cacctccctg gtcacccccg taccctcccg ggtacacccc 300 ggggacgggg tgtgacctgg atctccctg catgtggaca ccgggaaact ttgcctggga 360 aatgaccatc cagtaccgta atgcgggtat gttaacgcgg tcacagggtat caccaggata caccagaatc 420 cggatcgtct aaccccctta gcgggattcg ctaaaagatc accgagttag tgtgcaagaa 480 taatgctgat cgcaggggca ctgtcatacg ctgtcatgca gtcaatgaac agtgcggtgc 540 tctgtcgtga agaaaatcaa aaccaggagg gtttta gtg tca gtc gag acc agg 594 Val Ser Val Glu Thr Arg

WO 01/25447 PCT/JP00/06913

										1				5		
aag	atc	acc	aag	gta	ctt	gtc	gcc	aac	cgt	ggt	gaa	atc	gca	atc	cgt	642
Lys	Ile	Thr	Lys 10	Val	Leu	Val	Ala	Asn 15	Arg	Gly	Glu	Ile	Ala 20	Ile	Arg	
~		-	_	_	cgg											690
		25			Arg		30					35				
		_			gat											738
	40				Asp	45					50					
	_				cag								_			786
55					Gln 60					65					70	
					gca											834
				75	Ala				80					85		
					gcc											882
			90		Ala			95					100			000
					tgg											930
		105			Trp		110					115				0.70
		_			acc								_			978
	120	_			Thr	125					130					1000
					acc											1026
135	мес	Ala	PPO	GIY	Thr 140	LYS	gru	FFU	Val	145	мър	Ala	Ala	Ulu	150	
	gcc	ttc	gcc	gag	gag	ttc	ggt	ctc	ссс		gcc	atc	aag	gct		1074
_	_				Glu											
ttc	ggt	ggc	ggc	gga	cgt	ggc	atg	aag	gtc	gcc	tac	gag	atg	gac	gag	1122
Phe	Gly	Gly	Gly 170	Gly	Arg	Gly	Met	Lys 175	Val	Ala	Tyr	Glu	Met 180	Asp	Glu.	
gtc	gcc	gac		ttc	gaa	tcc	gcc		cgt	gag	gcc	acc		gcc	ttc	1170
					Glu											
ggt	cgt	ggt	gag	tgc	ttc	gtg	gag	cgc	tac	ctg	gac	aag	gcc	cgc	cac	1218
Gly	Arg 200	Gly	Glu	Cys	Phe	Val 205	Glu	Arg	Tyr	Leu	Asp 210	Lys	Ala	Arg	His	
_		_	_	_	atc	-		-					_			1266
	Glu	Ala	Gln	Val	Ile	Ala	Asp	Lys	His		Asn	Val	Val	Val		
215					220					225					230	

		_	_	_		_	_	_	_		cag Gln	_		-		1314
	_	_	_	ccg				_	gag	_	cgt Arg	_	_	atc		1362
		_	aag	_				gag	_		tac Tyr		ggt	_		1410
		gag					tcc				atc Ile 290	tcc				1458
_	aac		_	_	_	gtg	_			_	acc Thr					1506
ggc		_	_	_	cgc		_		-	atc	gcc Ala	_		_	gag	1554
				gag					cgc		cac His			gag		1602
_			ggc		_	_		tcc			atg Met		gca			1650
_		acc	_		_	_	ссс	_		_	ggt Gly 370	gtc	_	_	-	1698
	ggc	_	Val		Gly	tcc			Ser		cag Gln		-			1746
ctg	_	_	ctg	atc	gtc	-		-	acc	cgt	gag Glu	_	_	_	gag	1794
-		-	-	gcg					atc		gag Glu			ccg		1842
-		-	ttc					gtc			ccg Pro	_	ttc	-		1890
		gag					tac				atc Ile 450	gag				1938
gac		ccg	atc	gag	ccg		gtc	gat	gca	gcc	gac	ctc	gac	gac	gag	1986

								•								
Asp	Asn	Pro	Ile	Glu		Phe	Val	Asp	Ala		Asp	Leu	Asp	Asp	Glu	
455					460					465					470	
	_		_	_	_	aag	_							_	-	2034
Glu	Lys	Thr	Pro	Ser 475	Gin	Lys	vai	116	va1 480	Glu	116	Asp	Gly	Arg 485	Arg	
at a	ar o ar	art ar	go+		000	ggc	gan	c t c		ctc	g g c	aat	aac		o o t	2082
_			_		_	Gly	_		_					_		2002
, 41	U I U	, 41	490	Бой			пор	495	1114	Dog	01,	01	500	1114	01,	
gcc	gcc	aag	aag	aag	ccg	aag	aag	cgt	cgc	gca	ggt	ggc	gcc	aag	gcc	2130
Ala	Ala	Lys	Lys	Lys	Pro	Lys	Lys	Arg	Arg	Ala	Gly	Gly	Ala	Lys	Ala	
		505					510					515				
	_			_		gtc	_		-			-				2178
Gly		Ser	Gly	Asp	Ser	Val	Ala	Ala	Pro	Met		Gly	Thr	Val	He	
000	520	000	~++	<i>a</i> 0 <i>a</i>		525	700	~~ ~	at a	t 0.0	530	aa+	~ 0.0	0.00	at o	2226
	_		-		_	ggc Gly										2220
535	141	ASII	141	010	540	013	Mu	oru	141	545	014	013	пор	1111	550	
	gtt	ctc	gag	gcc		aag	atg	gag	aac	ccg	gtc	aag	gcc	cac		2274
Val	Val	Leu	Glu	Ala	Met	Lys	Met	Glu	Asn	Pro	Val	Lys	Ala	His	Lys	
				555					560					565		
						ctg										2322
Ser	Gly	Thr		Ser	Gly	Leu	Thr		Ala	Ala	Gly	Glu		Val	Thr	
200	aat	A 0. 65	570	ata	o t a	gag	ato	575	taat	tocot	tta a	a a a a a	580	79		2369
_			_			Glu			taa		LLC 6	2555	iacae	5a		2009
2,5	013	585	,	Dou	Dou	014	590	5, 5								
cago	ccte		et													2381
<210																
	> 59															
	?> PE		. h a a 4		+1											
\ 413))I.AIIE	evacı	eri	1M f1	1ermo	аши	logei	ies							
<400)> 4															
		Val	Glu	Thr	Arg	Lys	Ile	Thr	Lys	Val	Leu	Val	Ala	Asn	Arg	
1				5					10					15	•	
Gly	Glu	lle	Ala 20	Ile	Arg	Val	Phe	Arg 25	Ala	Ala	Arg	Asp	Glu 30	Gly	Ile	
Ala	Ser	Val		Val	Tyr	Ala	Glu		Asp	Ala	Asp	Ala		Phe	Val	
		35			-		40				-	45				
	_	. 1		~ .					~ .				_		A 1	
Glu		Ala	Asp	Glu	Ala		Ala	Leu	Gly	Gly		Thr	Ser	Ala	Glu	
Glu	Tyr 50	Ala	Asp	Glu	Ala	Phe 55	Ala	Leu	Gly	Gly	Gln 60	Thr	Ser	Ala	Glu	

Ser Tyr Leu Val Ile Asp Lys Ile Ile Asp Ala Ala Arg Lys Ser Gly

65					70					75					80
Ala	Asp	Ala	Val	His	Pro	Gly	Tyr	Gly	Phe	Leu	Ala	Glu	Asn	Ala	Asp
				85					90					95	
Phe	Ala	Glu		Val	Ile	Asn	Glu		Leu	lle	Trp	Ile		Pro	Ser
			100			_		105					110		
Pro	Glu		lle	Arg	Ser	Leu		Asp	Lys	Val	Thr		Arg	His	lle
		115	4.1			_	120		_		m1	125	0.1		••
Ala		Asn	Ala	Asn	Ala				Pro	Gly	Thr	Lys	Glu	Pro	Val
7	130	41.	41.0	<u>ر ۱</u>	Val		410		Ala	C1	140	Dha	C1	Tan	Dno
145	ASP	Ala	Ala	ulu	150	Vai	Ala	rne	Ala	155	Glu	rne	uly	Leu	160
	Ala	110	Ive	Δla		Phρ	Glv	Glv	Glv		Arg	Glv	Mat	Ινς	
116	N.G.	110	ט נע	165	AIG	THE	ulj	ory		ul,		ulj	1100	175	141
Ala	Tyr	Glu	Met		Glu	Val	Ala	Asp			Glu	Ser	Ala		Arg
	•		180	-				185					190		
Glu	Ala	Thr	Ala	Ala	Phe	Gly	Arg	Gly	Glu	Cys	Phe	Val	Glu	Arg	Tyr
		195					200					205			
Leu	_	Lys	Ala	Arg	His		Glu	Ala	Gln	Val	Ile	Ala	Asp	Lys	His
	210				. •	215				_	220	_			
	Asn	Val	Val	Val				Arg	Asp		Ser	Leu	Gln	Arg	
225	01-	1	T	17.0 1		01		D==	410	235	Dha	1	ጥኤኤ	Aan	240
rne	GIN	LYS	Leu	va 1 245	GIU	GIU	AIA	Pro	250	Pro	Phe	Leu	ınr	255	GIU
Gln	Δrσ	A en	Δησ		His	Ser	Ser	Δla		Ala	Ile	Cvs	Arø		Ala
UIN	мъ	лэр	260	110	1113	bei	501		D, S	MIG			270	ulu	AT G
Gly	Tyr	Tyr		Ala	Gly	Thr	Val			Leu	Val	Gly		Asp	Gly
•	·	275			-		280		•			285		_	_
Leu	Ile	Ser	Phe	Leu	Glu	Val	Asn	Thr	Arg	Leu	Gln	Val	Glu	His	Pro
	290					295					300				
Val	Thr	Glu	Glu	Thr		Gly	Ile	Asp	Leu		Arg	Glu	Met	Phe	
305					310		_		_	315		_		_	320
He	Ala	Glu	Gly		Glu	Leu	Ser	He		Glu	Asp	Pro	Thr		Arg
01	11.2 -	A1 -	nt.	325	DL.	1	11.		330	01		41.	C1	335	A
GIY	HIS	AIA	340	GIU	Pne	Arg	116	345	GIY	Giu	Asp	Ala	350	26L	ASI
Dha	Mat	Pro		Dro	Glv	lve	Πο		Aro	Tur	Arg	Glu		Δla	Glv
1 116	nec	355	Ala	110	ary	БУS	360	1111	нις	131	мις	365	110	VIG	uly
Pro	Glv		Arg	Met	Asn	Ser		Val	Val	Glu	Gly		G111	He	Ser
	370		0			375					380				
Gly		Phe	Asp	Ser	Met		Ala	Lys	Leu	Ile	Val	Trp	Gly	Gln	Thr
385			•		390			-		395		-	•		400
Arg	Glu	Gln	Ala	Leu	Glu	Arg	Ser	Arg	Arg	Ala	Leu	Gly	${\bf Glu}$	Tyr	Ile
				405					410					415	

```
Val Glu Gly Met Pro Thr Val Ile Pro Phe His Ser His Ile Val Ser
                                425
            420
Asn Pro Ala Phe Val Gly Asp Gly Glu Gly Phe Glu Val Tyr Thr Lys
                            440
                                                 445
        435
Trp Ile Glu Glu Val Trp Asp Asn Pro Ile Glu Pro Phe Val Asp Ala
                        455
                                             460
Ala Asp Leu Asp Asp Glu Glu Lys Thr Pro Ser Gln Lys Val Ile Val
                    470
                                        475
                                                             480
465
Glu Ile Asp Gly Arg Arg Val Glu Val Ala Leu Pro Gly Asp Leu Ala
                485
                                    490
Leu Gly Gly Gly Ala Gly Ala Ala Lys Lys Pro Lys Lys Arg Arg
            500
                                505
                                                     510
Ala Gly Gly Ala Lys Ala Gly Val Ser Gly Asp Ser Val Ala Ala Pro
                            520
                                                 525
        515
Met Gln Gly Thr Val Ile Lys Val Asn Val Glu Asp Gly Ala Glu Val
                        535
                                             540
Ser Glu Gly Asp Thr Val Val Leu Glu Ala Met Lys Met Glu Asn
545
                    550
                                        555
                                                             560
Pro Val Lys Ala His Lys Ser Gly Thr Val Ser Gly Leu Thr Ile Ala
                                    570
                565
Ala Gly Glu Gly Val Thr Lys Gly Gln Val Leu Leu Glu Ile Lys
            580
                                585
                                                     590
```

<210> 5

<211> 2128

<212> DNA

<213 > Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (339)..(1967)

<400> 5

gctgtcattc cgaccacatt cgccccgga tccgggctcc accacctccc ggacccatgc 60 cccatacctg cggaaaccac gggaaacacg ggaaaaaccg atctcattca gaccggcggg 120 atccacctgt ggaacagtca gcggcggc catggaggc agcgacaggt gacgtccgag 180 cacccggttc cccaccgtgg acacggcatt gatccgacac ggtggggata gtttcatgct 240 gaaaaactat cgctgtgcag ggaggatccg gaatgtgacc tatttcatgg agaaatgatt 300 gtggacgata cccccgggta cggctaccat tccaaaac atg acc att tcc tca cct 356 Met Thr Ile Ser Ser Pro

1 9

ttg att gac gtc gct aac ctg cca gac atc aac acc gcc ggc aag 404 Leu Ile Asp Val Ala Asn Leu Pro Asp Ile Asn Thr Thr Ala Gly Lys

			10					15					20			
atc	gcc	gac	ctg	aag	gcc	cgc	cgg	gcg	gaa	gcc	cac	ttc	ccc	atg	ggt	452
Ile	Ala	Asp 25	Leu	Lys	Ala	Arg	Arg 30	Ala	Glu	Ala	His	Phe 35	Pro	Met	Gly	
													acc			500
	40					45					50		Thr			
-	_												gaa			548
55					60	•				65			Glu		70	
_		_	-		-								aac			596
				7 5					80				Asn	85		
_	_												gac			644
			90	•				95					Asp 100			
	-	_											ggc			692
Glu	Val		He	Phe	Ser	Gln		Gly	Thr	Val	Phe	Gly 115	Gly	Ala	Leu	
aat	or o or	105	tac	a a c	a a a	220	110	atr	220	atc	ator		ctg	gcc	atc	740
		-		_									Leu			140
uly	120	V 44 1	.,.	OI,	014	125	1100	110	2,0	110	130	014				
gac	acc	ggc	cgc	cca	ctc	atc	ggc	ctg	tac	gag	ggt	gca	ggt	gcc	cgc	788
Asp	Thr	Gly	Arg	Pro	Leu	Ile	Gly	Leu	Tyr	Glu	Gly	Ala	Gly	Ala	Arg	
135					140					145					150	
	_	_											acc			836
lle	Gln	Asp	Gly		Val	Ser	Leu	Asp		He	Ser	Gln	Thr		Tyr	
			22.5	155	+ 0.0	<i>~~</i>	at a	a t	160	000	a t a	+ 0 0	at a	165	ata	884
_			_	_					_				gtg Val			004
UIII	W211	116	170	,	361	uly	441	175	110	UIII	116	561	180	110	1100	
ggt	gcc	tgc		ggt	ggc	aac	gcc	tac	ggc	ccg	gcc	ctg	acc	gac	ttc	932
													Thr			
		185					190					195				
	_	_		_									ggc			980
Val		Met	Val	Asp	Lys		Ser	Lys	Met	Phe		Thr	Gly	Pro	Asp	
	200					205					210			٠.		1000
		_		_									gag			1028
	116	Lys	Inr	vai	Thr 220	σΙУ	viu	GIU	116	Thr 225	GID	viU	Glu	Leu	230	
215		200	200	690		gta	200	gr.o			tee	620	tac	acc		1076
	_												Tyr			1010
J. J				235					240		~~.		- 🗸 •	245		

•		_			_		_		_	_	gac					1124
Ala	Thr	Asp	G1u 250	Glu	Ala	Leu	Asp	Trp 255	Val	Gln	Asp	Leu	11e 260	Ser	Phe	
ctg	ccc	tcc		aat	CEC	tcc	tac		ccg	gtg	gag	gag		gac	gag	1172
_											Glu					
		265					270					275		_		
gag	gac	ggt	ggc	atc	gcc	gag	aac	atc	acc	gcc	gat	gac	ctg	aag	ctg	1220
Glu	Asp	Gly	Gly	Ile	Ala	Glu	Asn	lle	Thr	Ala	Asp	Asp	Leu	Lys	Leu	
	280					285					290					
_				_	_						tat					1268
Asp	Glu	Ile	lle	Pro	_	Ser	Ala	Thr	Val		Tyr	Asp	Val	Arg		
295					300					305					310	
_											ctg					1316
Val	He	Gln	Cys		Thr	Asp	Asp	Gly		Tyr	Leu	Glu	He		Ala	
				315			4		320			_ 4 _		325		1004
-											cgc					1364
ASP	Arg	Ala		ASN	vai	vai	11 e		rne	uly	Arg	116	340	GIŞ	GIII	
+ 0 0	a to	aat	330	at a		220	000	335	200	030	ttc	arc c		torn	nt or	1412
	_			_	_						Phe					1412
Ser	AGI	345	rne	Vai	NIG	VOII	350	110	1 111	0111	1116	355	uly	0,3	Бец	
gac	atc	-	tcc	tee	gag	ลลฐ		gcc	cgc	t.t.c	gtc		acc	tgc	gat	1460
_		_					-				Val					
	360					365					370	0		- • -	•	
gcc	ttc	aac	atc	ccg	atc	gtc	atg	ctt	gtc	gac	gtc	ccc	ggc	ttc	ctc	1508
Ala	Phe	Asn	Ile	Pro	Ile	Val	Met	Leu	Val	Asp	Val	Pro	Gly	Phe	Leu	
375					380					385					390	
		_									cgt					1556
Pro	Gly	Ala	Gly		Glu	Tyr	Gly	Gly		Leu	Arg	Arg	Gly		Lys	
				395					400					405		
_											aag					1604
Leu	Leu	Tyr		Туг	Gly	Glu	Ala		Val	Pro	Lys	116		val	Inr	
1			410	4				415	1 I	-4.	.+~		420	~	~~t	1652
_	_										atg Met				_	1032
rie t	Arg	425	Ala	ŢŢſ	GIY	uly	430	LYL	C.y.s	V d I	пес	435	961	цуз	Ulj	
cto	g g c		gar	atr	aac	ctø		tøø	CCF	acc	gcg		atc	gcc	gt.c	1700
_		_	_			_	-		_		Ala					****
Dou	440	1114				445	4	P			450				.	
atg		gcc	gcc	ggc	gcg		cag	ttc	atc	tac	cgc	aag	gag	ctc	atg	1748
_		-	_			-	_				Arg					
455	•			•	460					465	9				470	
gcc	gct	gat	gcc	aag	ggc	ctg	gac	acc	gtc	gcc	ctg	gcc	cag	tcc	ttc	1796

				'				13,	/123				,			
Ala A	Ala	Asp	Ala	Lys 475	Gly	Leu	Asp			Ala	Leu	Ala	Gln	Ser 485	Phe	
gag d Glu A	_		Tyr	gag				Leu	aac				Ala			1844
cgt g		Leu					Ile									1892
atc g												gtc				1940
gcc c Ala A	cgc	_				atg		_	taag	gcaco		ggac	eacc	cc		1987
ctace	acgo	cc e	ggcc	cct	cc ci										gegeet gegeea	
<210><211><211><212><212><213>	> 54 > PR	tT.	ebact	teri	ım tl	nermo	oamin	nogei	nes							
<400>	_	• •	0	0	D	•	7.1		17 - 1	41.	4	T	D	4	11.	

Met Thr Ile Ser Ser Pro Leu Ile Asp Val Ala Asn Leu Pro Asp Ile 10 Asn Thr Thr Ala Gly Lys Ile Ala Asp Leu Lys Ala Arg Arg Ala Glu Ala His Phe Pro Met Gly Glu Lys Ala Val Glu Lys Val His Ala Ala 35 40 Asn Arg Leu Thr Ala Arg Glu Arg Leu Asp Tyr Leu Leu Asp Glu Gly 55 Ser Phe Ile Glu Thr Asp Gln Leu Ala Arg His Arg Thr Thr Ala Phe Gly Leu Gly Asn Lys Arg Pro Ala Thr Asp Gly Ile Val Thr Gly Trp 85 90 95 Gly Thr Ile Asp Gly Arg Glu Val Cys Ile Phe Ser Gln Asp Gly Thr 105 Val Phe Gly Gly Ala Leu Gly Glu Val Tyr Gly Glu Lys Met Ile Lys 115 120 125 Ile Met Glu Leu Ala Ile Asp Thr Gly Arg Pro Leu Ile Gly Leu Tyr 135 Glu Gly Ala Gly Ala Arg Ile Gln Asp Gly Ala Val Ser Leu Asp Phe

145					150					155					160
	Ser	Gln	Thr	Phe	Tyr	Gln	Asn	lle	Gln	Ala	Ser	Gly	Val	Ile	Pro
		•	., ,	165		0.1	. 1	^	170	0.1	0.1		4.7	175	0.1
Gln	He	Ser	Val 180	lle	Met	Gly	Ala	Cys 185	Ala		Gly	Asn	Ala 190	Туг	Gly
Pro	Ala	Leu 195	Thr	Asp	Phe	Val	Val 200	Met		Asp	Lys	Thr 205	Ser	Lys	Met
Phe	Val 210		Gly	Pro	Asp	Val 215				Val	Thr 220		Glu	Glu	Ile
Thr		Glu	Glu	Leu	Gly		Ala	Thr	Thr	His		Val	Thr	Ala	Gly
225										235					240
Asn	Ser	His	Tyr	Thr 245	Val	Ala	Thr	Asp	Glu 250	Glu	Ala	Leu	Asp	Trp 255	Val
Gln	Asp	Leu	Ile 260	Ser	Phe	Leu	Pro		Asn		Arg	Ser	Tyr 270	Ala	Pro
Val	Glu	Glu 275	Phe	Asp	Glu	Glu	Asp 280				Ala	Glu 285	Asn	Ile	Thr
Ala	Asp 290	Asp	Leu	Lys	Leu		Glu		Ile	Pro	Asp 300	Ser	Ala	Thr	Val
	Tyr	Asp	Val	Arg		Val	lle	Gln	Cys		Thr	Asp	Asp	Gly	
305	_				310					315					320
Tyr	Leu	Glu	Ile	Gln 325		Asp	Arg	Ala	Glu 330	Asn	Val	Val	lle	Ala 335	Phe
Gly	Arg	Ile	Glu 340	Gly	Gln	Ser	Val	Gly 345	Phe	Val	Ala	Asn	Gln 350	Pro	Thr
Gln	Phe	Ala 355	Gly	Cys	Leu	Asp		Asp		Ser	Glu	Lys 365	Ala	Ala	Arg
Phe	Val 370	Arg	Thr	Cys	Asp	Ala 375	Phe	Asn	Ile	Pro	11e 380	Val	Met	Leu	Val
Asp 385		Pro	Gly	Phe	Leu 390		Gly	Ala	Gly	Gln 395		Tyr	Gly	Gly	Ile 400
	Arg	Arg	Gly	Ala		Leu	Leu	Tyr	Ala		Gly	Glu	Ala	Thr	
			•	405	_•-			• "	410	•				415	
Pro	Lys	Ile	Thr 420	Val	Thr	Met	Arg	Lys 425	Ala	Tyr	Gly	Gly	Ala 430	Tyr	Cys
Val	Met	Gly 435	Ser	Lys	Gly	Leu	Gly 440	Ala	Asp	Ile	Asn	Leu 445	Ala	Trp	Pro
Thr	Ala 450		Ile	Ala	Val	Met 455		Ala	Ala	Gly	Ala 460	Val	Gln	Phe	Ile
Tyr		Lys	Glu	Leu	Met		Ala	Asp	Ala	Lys		Leu	Asp	Thr	Val
465	_	-			470			_		475	-		-		480
Ala	Leu	Ala	Gln	Ser 485	Phe	Glu	Arg	Glu	Tyr 490	Glu	Asp	His	Met	Leu 495	Asn

Pro Tyr Leu Ala Ala Glu Arg Gly Leu Ile Asp Ala Val Ile Leu Pro 505 500 Ser Glu Thr Arg Gly Gln Ile Ala Arg Asn Leu Arg Leu Leu Lys His 520 525 515 Lys Asn Val Ser Arg Pro Ala Arg Lys His Gly Asn Met Pro Leu 535 540 530 <210> 7 <211> 2076 <212> DNA <213> Corynebacterium thermoaminogenes <220> <221> CDS <222> (412)..(2022) <400> 7 acgcccggcc ccctgccctg tgatgcgatc tgcggatgtg atctgcgccc gcgccaactc 60 ccctggttga accctgccac ataccctgag tcgcacctgg gtggggtcac tttccacctc 120 acggggggga ggaggtcaca taggccatac gctgcacttt tgatgaagtg tgggcagatc 180 gaccgggcaa atctgggaaa taaggggcct ggtgaactag cattcccctt agcgaagggt 240 gagcategeg gacceegega tgteceaace ggtegtaaat teatgtgeeg eeacagteee 300 ctcaccaggg gatcggaacc agcccagcct gattccggcg tgacggacct caccgtgaac 360 aagteeege attacteaca gaacteacae caggatttag actaagaaac e atg act 417 Met Thr gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ctc gcg 465 Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu Ala 10 5 15 gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag gcc 513 Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Gln Ala 20 25 30 561 tcc gtg gag aag gtg cac gag gca ggg aag aag acc gca cgc gag cgc Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Glu Arg 35 40 45 atc gag tac ctg ctc gat gag ggc tcc ttc gtt gag gtc gat gcc ctc 609 lle Glu Tyr Leu Leu Asp Glu Gly Ser Phe Val Glu Val Asp Ala Leu 55 60 gee ege cac egt tee aag aac tte gge etg gae tee aag ege eeg gte 657 Ala Arg His Arg Ser Lys Asn Phe Gly Leu Asp Ser Lys Arg Pro Val 70 75 acc gac ggt gtg gtc acc ggt tac ggc acc atc gac gga cgc aag gtc 705 Thr Asp Gly Val Val Thr Gly Tyr Gly Thr Ile Asp Gly Arg Lys Val

		85					90					95				
tgc	gtc		tcc	cag	gac	ggc	gct	atc	ttc	ggc	ggt	gcc	ctc	ggt	gag	753
Cys	Val	Phe	Ser	Gln	Asp	Gly	Ala	Ile	Phe	Gly	Gly	Ala	Leu	Gly	Glu	
	100					105					110					
_			-	_		-	-						atc			801
	Tyr	Gly	Glu	Lys		Vai	Lys	He	Met		Leu	Ala	lle	Lys		
115			_4_	_1_	120	_ 4 _				125					130	040
	-												cgc			849
GIY	vai	Pro	Leu	11e	GIY	116	ASII	GIU	140	Ala	GI y	Ala	Arg	145	UIII	
ora a	o o c	o++	gt c		ctø	ø ø c	ctø	tac		cag	atc	ttc	tac		aac	897
-		_	_										Tyr			001
Ulu	013	741	150	DC.	Doa	013	Dou	155	201	0111	110		160	0		
acc	cag	gca		ggt	gtc	atc	cca		atc	tcc	ctc	atc	atg	ggt	gcc	945
													Met			
		165					170					175				
tgc	gcc	ggt	ggc	cat	gtg	tac	tcc	ccc	gcc	ctg	${\tt acc}$	gac	ttc	atc	atc	993
Cys		Gly	Gly	His	Val		Ser	Pro	Ala	Leu		Asp	Phe	Ile	Ile	
	180					185					190					
_		-	_										gac			1041
	Val	Asp	Lys	Thr		Lys	Met	Phe	11e		Gly	Pro	Asp	val		
195	000	at a	000	~~	200	<i>a</i> 0 <i>a</i>	at o	200	000	205		a t or	ggt	a a t	210	1089
													Gly			1003
பிவ	1 111	141	1 111	215	014	ulu	141	1111	220	oru	ulu	БСС	u.,	225	,,,,,	
tac	acc	cac	atg		cag	tcc	ggc	acc		cac	tac	acc	gca		gat	1137
			_	_	_				_				Ala	_	_	
			230					235					240			
_			_		_			_					tac			1185
Asp	Ser	Asp	Ala	Leu	Asp	Trp	Val	Arg	Glu	Leu	Val		Tyr	Leu	Pro	
		245			•		250					255				4000
													atc			1233
Ser		Asn	Arg	Ala	Glu		Pro	Arg	GIN	Asp		Asp	Ile	met	val	
~~~	260	a t a	000	<b></b>	000	265		an a	200	<b></b>	270	ma a	ctc	<b></b>	200	1281
													Leu			1201
275	961	116	БJЗ	Ulu	280	110	1111	oru	1111	285	БСЦ	oru	Deu	Кор	290	
	atc	CCE	gat.	tee		aac	cag	ccg	tac		atg	aag	gac	gtc		1329
_		_	_		_		_	-		_	_	-	Asp	_		
			•	295		,			300	-		J	•	305		
acc	cgc	atc	gtc	gat	gat	gcc	gag	ttc	ttc	gag	atc	cag	gag	ggt	tac	1377
Thr	Arg	Ile	Val	Asp	Asp	Ala	Glu	Phe	Phe	Glu	Ile	Gln	Glu	Gly	Tyr	
			310					315					320			

_				tgc Cys			_		_					gtg Val	1425
				cag Gln											1473
_	_			gcc Ala 360											1521
		_		gag Glu			-	_							1569
		_		gac Asp					-						1617
	-		-	 gcc Ala		_		_							1665
_				 gcc Ala		-									1713
	-		_	gca Ala 440				_	-		_	-			1761
_			-	ggc Gly				_							1809
				gat Asp		4.									1857
_				ctg Leu	_		_			-	-				1905
		gac		atc Ile											1953
-	ggt	_		ctc Leu 520	gac	-	_			aac					2001
aag				ccg Pro		taaa	accgt	tct 1		etecg	gg ca	icca	egecg		2052
gaga	aaggo	ett 1	tgtco	gc tg	tc										2076

<210> 8



<211> 537 <212> PRT <213> Corynebacterium thermoaminogenes <400> 8 Met Thr Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Ala Gly Lys 10 Leu Ala Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly 25 Gln Ala Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg 40 Glu Arg Ile Glu Tyr Leu Leu Asp Glu Gly Ser Phe Val Glu Val Asp 50 55 60 Ala Leu Ala Arg His Arg Ser Lys Asn Phe Gly Leu Asp Ser Lys Arg 75 Pro Val Thr Asp Gly Val Val Thr Gly Tyr Gly Thr Ile Asp Gly Arg 85 90 Lys Val Cys Val Phe Ser Gln Asp Gly Ala Ile Phe Gly Gly Ala Leu 105 Gly Glu Val Tyr Gly Glu Lys Ile Val Lys Ile Met Asp Leu Ala Ile 125 120 Lys Thr Gly Val Pro Leu Ile Gly Ile Asn Glu Gly Ala Gly Ala Arg 135 140 130 lle Gln Glu Gly Val Val Ser Leu Gly Leu Tyr Ser Gln Ile Phe Tyr 150 155 Arg Asn Thr Gln Ala Ser Gly Val Ile Pro Gln Ile Ser Leu lle Met 175 165 170 Gly Ala Cys Ala Gly Gly His Val Tyr Ser Pro Ala Leu Thr Asp Phe 185 Ile Ile Met Val Asp Lys Thr Ser Lys Met Phe Ile Thr Gly Pro Asp 205 200 195 Val lle Lys Thr Val Thr Gly Glu Glu Val Thr Gln Glu Glu Leu Gly 215 220 Gly Ala Tyr Thr His Met Ala Gln Ser Gly Thr Ser His Tyr Thr Ala 230 235 225 Ala Asp Asp Ser Asp Ala Leu Asp Trp Val Arg Glu Leu Val Ser Tyr 245 250 255 Leu Pro Ser Asn Asn Arg Ala Glu Thr Pro Arg Gln Asp Ala Asp Ile 265 Met Val Gly Ser Ile Lys Glu Asn Ile Thr Glu Thr Asp Leu Glu Leu 275 280 285

```
Asp Thr Leu lle Pro Asp Ser Pro Asn Gln Pro Tyr Asp Met Lys Asp
                         295
                                              300
Val Ile Thr Arg Ile Val Asp Asp Ala Glu Phe Phe Glu Ile Gln Glu
                                          315
305
                     310
                                                              320
Gly Tyr Ala Glu Asn Ile Ile Cys Gly Phe Ala Arg Val Glu Gly Arg
                 325
                                     330
Ala Val Gly Ile Val Ala Asn Gln Pro Met Gln Phe Ala Gly Cys Leu
             340
                                 345
                                                      350
Asp Ile Lys Ala Ser Glu Lys Ala Ala Arg Phe Ile Arg Thr Cys Asp
                             360
                                                  365
Ala Phe Asn Ile Pro Ile Ile Glu Leu Val Asp Val Pro Gly Phe Leu
                         375
Pro Gly Thr Asn Gln Glu Phe Asp Gly Ile Ile Arg Arg Gly Ala Lys
                     390
                                         395
Leu Leu Tyr Ala Tyr Ala Glu Ala Thr Val Gly Lys Ile Thr Val Ile
                 405
                                     410
Thr Arg Lys Ser Tyr Gly Gly Ala Tyr Cys Val Met Gly Ser Lys Asp
            420
                                 425
                                                      430
Met Gly Ala Asp Leu Val Phe Ala Trp Pro Thr Ala Gln Ile Ala Val
                             440
Met Gly Ala Ser Gly Ala Val Gly Phe Ile Tyr Arg Lys Glu Leu Lys
    450
                         455
                                             460
Gln Ala Ala Ala Gly Glu Asp Val Thr Ala Leu Met Lys Lys Tyr
                     470
                                         475
Glu Gln Glu Tyr Glu Glu Thr Leu Val Asn Pro Tyr Met Ala Ala Glu
                 485
                                     490
Arg Gly Tyr Val Asp Ala Val Ile Pro Pro Ser Glu Thr Arg Gly Gln
            500
                                 505
                                                      510
Ile Ile Glu Gly Leu Arg Leu Leu Asp Arg Lys Val Val Asn Val Pro
                             520
                                                  525
Ala Lys Lys His Gly Asn Ile Pro Leu
    530
                         535
. <210> 9
<211> 1643
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (326)..(1363)
```

<400> 9



ago	egege	cgg	cago	caco	ag t	ggga	tcgt	g co	cago	ggad	gga	atge	gga	ttca	cggcgg	60
															cagcgt	
															aacatg	
															caggca	
															ggcaca	
															ctc	352
0			·0 ·0	0000	0 .	, , , ,									Leu	302
							1161	Oly	A1 a	net	. ALE	,	. Ala	IHI	Leu	
200	tra	gge	990		+ 00		440	0+0	00+	ant.	_	•			-4-	400
															atc	400
10		Uly	GIY	иор			GIY	Leu	ASII			116	Arg	GIY	Ile	
				4	15					20					25	
															cag	448
vai	Arg	Thr	Ala		Asn	Glu	Phe	Gly	Ser	Thr	Val	Val	Gly	Tyr	Gln	
				30					35					40		
															gac	496
Asp	Gly	Trp	Glu	Gly	Leu	Leu	Ala	Asp	Arg	Arg	Val	Gln	Leu	Tyr	Asp	
			45					50					55			
gat	gag	gac	atc	gac	cgc	atc	ctg	ctc	cgc	ggt	gga	aca	atc	ctg	ggc	544
Asp	Glu	Asp	Ile	Asp	Arg	Ile	Leu	Leu	Arg	Gly	Gly	Thr	Ile	Leu	Gly	
		60					65					70				
acc	ggt	cgt	ctc	cac	ccc	gac	aag	ttc	aga	gcc	gga	atc	gac	cag	gtc	592
												Ile				
	. 75					80			Ū		85		•			
aag	gcg	aat	ctc	gcc	gat	gcg	gga	att	gac	gca	ctc	atc	ccg	atc	ggt.	640
												Ile				
90					95		•			100					105	
ggc	gag	ggc	acc	ctc	aag	gga	gcg	aag	t.gg		gee	gac	aac	øør •		688
												Asp				000
- •		•		110	-,-			2,0	115	Dou	u	пор	Mon	120	116	
ccc	gto	gtr	σσ t		CCG	222	200	ato		2 2 t	an t	gtc	200		000	726
																736
110	141	141	125	vai	110	LJS	1111		wsh	ASII	ASP	Val		uly	inr	
ma t	++0	0.00		~~+	44.	+	4	130	_4_	4.4	_1_		135			=0.4
gat	Dha	ML_	լլը Մե	ggı	LLC	gat	tcc	gcg	gtc	tct	gtg	gcc	acc	gac	gcc	784
ASP	Pne		rne	Gly	Phe	Asp		Ala	Val	Ser	Val	Ala	Thr	Asp	Ala	
		140					145					150				
												cgt				832
He		Arg	Leu	His	Thr		Ala	Glu	Ser	His	Asn	Arg	Val	Met	Ile	
	155					160					165					
												ctg				880
												Leu				
170					175					180					185	
atg	gcc	ggt	gga	gcc	cac	tac	acc	gtc	atc	ССС	gag	gtg	ccc	ttc		928
Met	Ala	Gly	Gly	Ala	His	Tyr	Thr	Val	Ile	Pro	Glu	Val	Pro	Phe	Asp	- <del>-</del>
		-	-			• -			_ =				•		F	

		190		19	15				200		
atc tcg	gag atc	tgc aag	cgt atg	gaa cg	t cgc	ttc	cag	atg	ggg	gag	976
lle Ser	Glu Ile	Cys Lys	Arg Met	Glu Ar	g Arg	Phe	Gln	Met	Gly	Glu	
	205			210				215			
aag tac	ggc atc	atc gtc	gtc gcg	gag gg	t gcc	ctg	ccc	aag	gag	gga	1024
Lys Tyr		lle Val			y Ala			Lys	Glu	Gly	
	220		225				230				
acc atg											1072
Thr Met	Glu Leu	Arg Glu		Val As	p Gln		Gly	His	Lys	Thr	
235			240			245					
ttc acc									_	_	1120
Phe Thr	Gly lle			Ala As		Val	His	Arg	Arg		
250		255			260					265	1100
ggt cat a											1168
Gly His A	ASP Val		inr vai			116	GIN	Arg		GIY	
acc ccc a	000 000	270	agt gta	27		0.00	+00	aat	280	0.00	1216
Thr Pro		-							_	-	1210
1111 110	285	The Rap	VIE ATI	290	a IIII	AIG	1 3/1	295	Val	AIG	
gcc gcg (		tec cac	gag ggt		C 22C	acc	o t o		grg	ctc	1264
Ala Ala A				_				-			1204
	300	.,	305				310			Dou	
aag ggg g		atc cgg		tcc tt	c gat			gtg	ggc	acc	1312
Lys Gly (											
315			320		•	325			•		
ctg aag a	aag gtg	ccg atg	gaa cgc	tgg gt	g acc	gcc	cag	gct	atg	ttc	1360
Leu Lys I	Lys Val	Pro Met	Glu Arg	Trp Va	l Thr	Ala	Gln	Ala	Met	Phe	
330		335			340					345	
ggt tagto	caggcc g	cattece	gg ttccg	cgccc g	cgggg	cgg	gttt	tttc	at		1413
Gly											
gccccggaa				_		_		_			
ccgtcacct											
cgccgatto									ggcc	cgccg	
ggattatga	ag accgg	tatcc g	cccggtcg	t ggacg	agttc	ggtc	ccgc	gg			1643

<210> 10

<211> 346

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 10

Met Gly Ala Met Arg Ile Ala Thr Leu Thr Ser Gly Gly Asp Cys Pro 1 5 10 15

- 22/123

Gly Leu Asn Ala Val Ile Arg Gly Ile Val Arg Thr Ala Ser Asn Glu Phe Gly Ser Thr Val Val Gly Tyr Gln Asp Gly Trp Glu Gly Leu Leu Ala Asp Arg Arg Val Gln Leu Tyr Asp Asp Glu Asp Ile Asp Arg Ile Leu Leu Arg Gly Gly Thr Ile Leu Gly Thr Gly Arg Leu His Pro Asp Lys Phe Arg Ala Gly Ile Asp Gln Val Lys Ala Asn Leu Ala Asp Ala Gly Ile Asp Ala Leu Ile Pro Ile Gly Gly Glu Gly Thr Leu Lys Gly Ala Lys Trp Leu Ala Asp Asn Gly Ile Pro Val Val Gly Val Pro Lys Thr Ile Asp Asn Asp Val Asn Gly Thr Asp Phe Thr Phe Gly Phe Asp Ser Ala Val Ser Val Ala Thr Asp Ala Ile Asp Arg Leu His Thr Thr Ala Glu Ser His Asn Arg Val Met Ile Val Glu Val Met Gly Arg His Val Gly Trp Ile Ala Leu His Ala Gly Met Ala Gly Gly Ala His Tyr Thr Val Ile Pro Glu Val Pro Phe Asp Ile Ser Glu Ile Cys Lys Arg Met Glu Arg Arg Phe Gln Met Gly Glu Lys Tyr Gly Ile Ile Val Val Ala Glu Gly Ala Leu Pro Lys Glu Gly Thr Met Glu Leu Arg Glu Gly Glu Val Asp Gln Phe Gly His Lys Thr Phe Thr Gly Ile Gly Gln Gln Ile Ala Asp Glu Val His Arg Arg Leu Gly His Asp Val Arg Thr Thr Val Leu Gly His Ile Gln Arg Gly Gly Thr Pro Thr Ala Phe Asp Arg Val Leu Ala Thr Arg Tyr Gly Val Arg Ala Ala Arg Ala Cys His Glu Gly Gln Phe Asn Thr Val Val Ala Leu Lys Gly Glu Arg Ile Arg Met lle Ser Phe Asp Glu Ala Val Gly Thr Leu Lys Lys Val Pro Met Glu Arg Trp Val Thr Ala Gln Ala Met Phe Gly 

<210> 11 <211> 498 <212> DNA <213> Corynebacterium thermoaminogenes <220> <221> CDS <222> (1)..(498) <400> 11 48 tac tac cag cac gat cca ggt ttc ccc ttc gca cca aag cgc acc ggt Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly 96 tgg gct cac acc acc acg ccg ttg acc gga ccg cag cga ttg cag tgg Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp 20 25 acg cac ctg ccc gat gct ctt tac ccg gat gta tcc tat gac ctg gat 144 Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Val Ser Tyr Asp Leu Asp 45 40 35 gga tgc tat tcc ggc gga gcc gta ttt tct gac ggc acg ctt aaa ctt 192 Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser Asp Gly Thr Leu Lys Leu 50 55 60 ttc tac acc ggc aac cga aaa att gac ggc aag cgc cgc gcc acc caa 240 Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln 75 65 70 aac ctc gtc gaa gtc gag gac cca act ggg ctg atg ggc ggc att cat 288 Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His 90 95 85 cgc cgc tcg cct aaa aat ccg ctt atc gac gga ccc gcc agc ggt ttt 336 Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe 105 110 100 acg ccc cac tac cgc gat ccc atg atc agc cct gat ggg gat ggt tgg 384 Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp 120 125 aag atg gtt ctt ggg gct cag cgc gaa aac ctc acc ggt gca gcg gtt 432 Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val 135 140 130 cta tac cgc tcg gca gat ctt gaa aac tgg gaa ttc tcc ggt gaa atc 480 Leu Tyr Arg Ser Ala Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu Ile 155 160 145 150 498 acc ttt gac ctc agc gac Thr Phe Asp Leu Ser Asp 165

WO 01/25447 PCT/JP00/06913

```
<210> 12
<211> 166
<212> PRT
<213 > Corynebacterium thermoaminogenes
<400> 12
Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly
Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp
             20
                                  25
                                                      30
Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Val Ser Tyr Asp Leu Asp
                             40
Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser Asp Gly Thr Leu Lys Leu
     50
                         55
Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln
                     70
                                          75
Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His
                 85
                                      90
Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe
                                 105
                                                     110
Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp
                            120
                                                 125
        115
Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val
                        135
                                             140
    130
Leu Tyr Arg Ser Ala Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu Ile
                                         155
Thr Phe Asp Leu Ser Asp
                165
<210> 13
<211> 479
<212> DNA
<213 > Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (1)..(477)
<400> 13
tac tac cag cac gat cca ggt ttc ccc ttc gca cca aag cgc acc ggc
                                                                    48
Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly
 1
                  5
                                     10
                                                          15
```

								acc Thr								96
			20					25					30			
								ccg								144
Thr	His		Pro	Asp	Ala	Leu		Pro	Asp	Ala	Ser	Tyr	Asp	Leu	Asp	
		35	_				40					45				
								ttt								192
Gly		Tyr	Ser	Gly	Gly		Val	Phe	Thr	Asp		Thr	Leu	Lys	Leu	
	50					55					60					
								gac								240
	Tyr	Thr	Gly	Asn		Lys	He	Asp	Gly		Arg	Arg	Ala	Thr		
65	- 1 .				70					75					80	
								act								288
ASI	Leu	vai	Glu		Glu	ASP	Pro	Thr		Leu	Met	Gly	Gly		His	
		4		85					90					95		
								atc								336
Arg	Arg	ser	100	Lys	ASN	Pro	Leu	Ile	Asp	Gly	Pro	Ala		Gly	Phe	
000	000	00 t		0.000	~a+		.+.	105			4		110			004
								atc					-			384
1111	rro	115	1 % 1.	Arg	ASP	11.0	те і 120	lle	ser	Pro	ASP	-	ASP	GIY	Trp	
222	ato		ctt	σσσ	g c c			gaa	000	ata	0.00	125	~~~	<i>~~~</i>	~++	422
								Glu				-	_		-	432
цуз	130	Vai	Deu	OIJ	VIT	135	AI &	Ulu	MSII	Leu	140	GI y	Ala	Ala	vaı	
cta		cgc	tce	aca	gat		gaa	aac	tσσ	<b>0</b> 22		tee	o o t	or a a	a <del>†</del>	479
								Asn						_	aı	413
145	- , .	0	501	****	150	Dog	O1 u	ASII	пр	155	THE	561	013	ulu		
			•							100						
<210	> 14	ļ														
-011		_			,											

<211> 159

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 14

Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly 10 15 Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp 25 Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Ala Ser Tyr Asp Leu Asp 40 45 Gly Cys Tyr Ser Gly Gly Ala Val Phe Thr Asp Gly Thr Leu Lys Leu 55 Phe Tyr Thr Gly Asn Leu Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln

```
65
                     70
                                         75
                                                              80
Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His
                 85
                                     90
Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe
                                105
            100
                                                     110
Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp
                            120
                                                 125
        115
Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val
                        135
                                            140
Leu Tyr Arg Ser Thr Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu
145
                    150
                                        155
<210> 15
<211> 490
<212> DNA
<213> Corynebacterium thermoaminogenes
<400> 15
attttaatgg atattatcta tattttatca atattatcct tatgcacctg aatggggacc 60
aatgcattgg ggacacgcac gtagtaaaga tttagttcat tgggaaacat taccgattgc 120
tttagaacct ggagatgaag aagaaaaatg gttgtttctc tggtacaggt atagtcaaag 180
atgataagtt gtatttattt tatacaggtc accattatta taatgacgat gatcccgatc 240
atttttggca aaatcaaaat atggcttata gtgaagatgg cattcatttt caaaaatata 300
aacaaaatgc aatcattcct accccacctg aagataatac acatcacttc agagatccaa 360
aggtatggga acatccatgg cttattatta catgatagta ggtagtcaaa atgatagaga 420
attaggacgt attatcttat atcgttctga ggatttatag aggggaattc tggtcctgag 480
atcaatccaa
                                                                   490
<210> 16
<211> 4254
<212> DNA
<213 > Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (637)..(1362)
<220>
<221> CDS
<222> (1434)..(2315)
<220>
<221> CDS
```

<222> (2432)..(3115)

<220> <221> CDS <222> (3235)..(4065) <400> 16 tcacggcgcg cagattaccc agtgtgccgt agagacgctg atcggcattc tcacgcaccg 60 cgcaggtgtt gaagacgatg agatcagggg tgtcaccctc ccccgccgcg gtgtaaccgg 120 cctcctcgag cagaccggag agacgctcgg aatcgtggac gttcatctgg cagccgaagg 180 tacgcacctc ataggtgcgg gcagtggtgc cctcccggtt cccccgcgcc gggagggtgt 240 cggcggggtg gtccgggtgg gatggatggg tgttcatctg gtgggtatca atctgctgcg 300 tcacgggagg taattgtatc ggccgcgggc accctgacat aaacgtccga tccagaggaa 360 cgcaaccccg tggagtgtcg cagccatgca ggttgggcaa caccgtaacg gaacctagca 420 gagtggtagg attgacttca cattctttac ctattgagct attgataaaa tccgggcgga 480 aatggaaatc accccacaa atcaccccaa ctgacctgtg gaaagggcga gaaatccagg 540 gaaatteatt teaaaatgga eteaateaea ggatttaeee eacatgaeee aacatteett 600 tatgctatcc ccatgacgca gaccacaaat cacccg atg atc aag atg acg ggg 654 Met Ile Lys Met Thr Gly 1 gtg cag aag ttc ttc gat gac ttc cag gcc ctg acc gat atc aat ctt 702 Val Gln Lys Phe Phe Asp Asp Phe Gln Ala Leu Thr Asp Ile Asn Leu 10 15 gag gtc ccc gcg gga cag gtc gtt gtt gtt ctc ggc ccg tcc ggt tcc 750 Glu Val Pro Ala Gly Gln Val Val Val Leu Gly Pro Ser Gly Ser 30 gga aag teg aeg etg tge ege ace ate aac ege ete gaa aee ate gag 798 Gly Lys Ser Thr Leu Cys Arg Thr Ile Asn Arg Leu Glu Thr Ile Glu 45 gag gga acc atc gag atc gat gga aaa ctg ctt ccg gag gag ggc aag 846 Glu Gly Thr Ile Glu Ile Asp Gly Lys Leu Leu Pro Glu Glu Gly Lys 60 gac ctg gcc aag atc cgt gcc gac gtg ggc atg gtg ttc cag tct ttc 894 Asp Leu Ala Lys Ile Arg Ala Asp Val Gly Met Val Phe Gln Ser Phe 75 80 85 aac etc tte eec cae etc ace ate aag gae aat gte ace etc gge eeg 942 Asn Leu Phe Pro His Leu Thr Ile Lys Asp Asn Val Thr Leu Gly Pro 90 95 100 atg aag gto ogg aag atg aag aag too gag goo aat gag gtg goo atg 990 Met Lys Val Arg Lys Met Lys Lys Ser Glu Ala Asn Glu Val Ala Met 105 110 115 aag ctg ttg gaa cgc gtc ggc atc gcc aac cag gcc gag aaa tac ccg 1038 Lys Leu Leu Glu Arg Val Gly Ile Ala Asn Gln Ala Glu Lys Tyr Pro 120 125 gca cag ctc tcg ggc ggg cag cag cag cgc gtg gcc atc gcc cgc gca 1086

Ala																
135		Leu	Ser	Gly	Gly 140		Gln	Gln	Arg	Val 145	Ala	Ile	Ala	Arg	Ala 150	
		ate	aac	ccc			ato	ctt	tto		σοο	cca	200	too	gcc	1194
															Ala	1134
БСС	. AIG	. 1100	Mon	155	בינת	116	net	Leu	160		oru	FFO	1111			
a t a	~~~	000	~~~		at a	000	<b>~~</b>	-++						165		1100
															ctg	1182
Leu	ASP	Pro		met	val	ASN	GIU		Leu	Asp	Val	Met			Leu	
			170					175					180			
			ggc										_			1230
Ala	Lys		Gly	Met	Thr	Met	Val	Cys	Val	Thr	His	Glu	Met	Gly	Phe	
		185					190					195				
gca	cgc	agg	gcc	gca	gac	cgt	gtg	ctg	ttc	atg	tct	gac	ggc	gcc	atc	1278
Ala	Arg	Arg	Ala	Ala	Asp	Arg	Val	Leu	Phe	Met	Ser	Asp	Gly	Āla	Ile	
	200					205					210	_	•			
gtc	gag	gac	tcc	gac	ccg	gag	acc	ttc	ttc	acc	aat	cca	caa	acc	gac	1326
			Ser													1020
215		•			220					225			<b>U</b> 111		230	
		aag	gat	ttc		<del>ወ</del> ወር	aag	atc	ctc		cac	tos	ecte.	000	200	1372
			Asp									LSE				1314
111 6	1114	п) 3	пор	235	Deu	uly	பரவ	116	240	HIG	111.5					
tra	cteti	oto t	tonas		20 00	ogot c				T 0 0T 0	0001		200		agcatc	1400
															ge gea	
				ia C	sc ac	LE LI	ic ac	JU UE	st Ci	LC BE	c go	a go	cc a	cc a	ec eca	1481
M	Δt Ci	ar Hi	ie Is	70 A1												
M	et S	er Hi 24		/s Ai				nr Ai				a Al	la T		er Ala	
		24	15		rg Me	et Ph	ie Th 25	or Ai 50	rg Le	eu Al	a Al	la Al 25	la T1 55	hr S	er Ala	
gct	gtt	ctc	gcc	ggc	rg Me	et Ph acc	ie Th 25 ctc	or Ai 50 acc	rg Le	eu Al	a Al	a Al 25 gat	la Ti 55 tcc	hr S	er Ala ggt	
gct	gtt	ctc Leu	15	ggc	rg Me	et Ph acc	ie Th 25 ctc	or Ai 50 acc	rg Le	eu Al	ggt Gly	a Al 25 gat	la Ti 55 tcc	hr S	er Ala ggt	
gct Ala	gtt Val 260	24 ctc Leu	gcc Ala	ggc Gly	atc Ile	acc Thr 265	re Th 25 ctc Leu	or Ai 50 acc Thr	gcc Ala	tgt Cys	ggt Gly 270	a Al 25 gat Asp	la Ti 55 tcc Ser	hr S gag Glu	er Ala ggt Gly	1529
gct Ala ggt	gtt Val 260 gac	ctc Leu ggt	gcc Ala	ggc Gly ctc	atc Ile	acc Thr 265 gcc	te Th 25 ctc Leu atc	or And	gcc Ala aat	tgt Cys	ggt Gly 270 aat	a Al 25 gat Asp	la T 55 tcc Ser acc	gag Glu atc	er Ala ggt Gly ggc	
gct Ala ggt Gly	gtt Val 260 gac	ctc Leu ggt	gcc Ala	ggc Gly ctc	atc Ile gcc Ala	acc Thr 265 gcc	te Th 25 ctc Leu atc	or And	gcc Ala aat Asn	tgt Cys ggc Gly	ggt Gly 270 aat	a Al 25 gat Asp	la T 55 tcc Ser acc	gag Glu atc	er Ala ggt Gly ggc Gly	1529
gct Ala ggt Gly 275	gtt Val 260 gac Asp	ctc Leu ggt Gly	gcc Ala ctg Leu	ggc Gly ctc Leu	atc Ile gcc Ala 280	acc Thr 265 gcc Ala	te The 25 ctc Leu atc	or An 50 acc Thr gaa Glu	gcc Ala aat Asn	tgt Cys ggc Gly 285	ggt Gly 270 aat Asn	25 gat Asp gtc Val	tcc Ser acc	gag Glu atc Ile	ggt Gly ggc Gly 290	1529 1577
gct Ala ggt Gly 275 acc	gtt Val 260 gac Asp	ctc Leu ggt Gly	gcc Ala ctg Leu	ggc Gly ctc Leu	atc Ile gcc Ala 280 ccg	acc Thr 265 gcc Ala	te The 25 ctc Leu atc Ile ctg	or An 50 acc Thr gaa Glu gga	gcc Ala aat Asn	tgt Cys ggc Gly 285 cgt	ggt Gly 270 aat Asn	gat Asp gtc Val	tcc Ser acc Thr	gag Glu atc Ile	ggt Gly ggc Gly 290 tcc	1529
gct Ala ggt Gly 275 acc	gtt Val 260 gac Asp	ctc Leu ggt Gly	gcc Ala ctg Leu	ggc Gly ctc Leu cag Gln	atc Ile gcc Ala 280 ccg	acc Thr 265 gcc Ala	te The 25 ctc Leu atc Ile ctg	or An 50 acc Thr gaa Glu gga	gcc Ala aat Asn ctg Leu	tgt Cys ggc Gly 285 cgt	ggt Gly 270 aat Asn	gat Asp gtc Val	tcc Ser acc Thr	gag Glu atc Ile aat Asn	ggt Gly ggc Gly 290 tcc	1529 1577
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac Tyr	gcc Ala ctg Leu gat Asp	ggc Gly ctc Leu cag Gln 295	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala ggt Gly	te The 25 ctc Leu atc Ile ctg Leu	or And Solve acc Thr gaa Glu gga Gly	gcc Ala aat Asn ctg Leu 300	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac	gat Asp gtc Val ccg Pro	tcc Ser acc Thr gac Asp	gag Glu atc Ile aat Asn 305	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac Tyr	gcc Ala ctg Leu gat Asp	ggc Gly ctc Leu cag Gln 295 gat	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala ggt Gly	te The 25 ctc Leu atc Ile ctg Leu gtc	or Andrews And	gcc Ala aat Asn ctg Leu 300 cag	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac Asn	gat Asp gtc Val ccg Pro gtc	tcc Ser acc Thr gac Asp	gag Glu atc Ile aat Asn 305	ggt Gly ggc Gly 290 tcc Ser	1529 1577
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac Tyr	gcc Ala ctg Leu gat Asp ctg Leu	ggc Gly ctc Leu cag Gln 295 gat	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala ggt Gly	te The 25 ctc Leu atc Ile ctg Leu gtc Val	or Andrews And	gcc Ala aat Asn ctg Leu 300 cag	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac Asn	gat Asp gtc Val ccg Pro gtc	tcc Ser acc Thr gac Asp	gag Glu atc Ile aat Asn 305	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys agc Ser	ctc Leu ggt Gly tac Tyr gga Gly	gcc Ala ctg Leu gat Asp ctg Leu 310	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val	acc Thr gaa Glu gga Gly gcg Ala 315	gcc Ala aat Asn ctg Leu 300 cag Gln	tgt Cys ggc Gly 285 cgt Arg tac	ggt Gly 270 aat Asn aac Asn gtg Val	gat Asp gtc Val ccg Pro gtc Val	tcc Ser acc Thr gac Asp aac	gag Glu atc Ile aat Asn 305 tcc Ser	ggt Gly ggc Gly 290 tcc Ser atc	1529 1577 1625
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys agc Ser	ctc Leu ggt Gly tac Tyr gga Gly	gcc Ala ctg Leu gat Asp ctg Leu	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val	acc Thr gaa Glu gga Gly gcg Ala 315	gcc Ala aat Asn ctg Leu 300 cag Gln	tgt Cys ggc Gly 285 cgt Arg tac	ggt Gly 270 aat Asn aac Asn gtg Val	gat Asp gtc Val ccg Pro gtc Val	tcc Ser acc Thr gac Asp aac	gag Glu atc Ile aat Asn 305 tcc Ser	ggt Gly ggc Gly 290 tcc Ser atc	1529 1577 1625
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys agc Ser	ctc Leu ggt Gly tac Tyr gga Gly	gcc Ala ctg Leu gat Asp ctg Leu 310 aac	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val cac	acc Thr gaa Glu gga Gly gcg Ala 315 ccc	gcc Ala aat Asn ctg Leu 300 cag Gln acc	tgt Cys ggc Gly 285 cgt Arg tac Tyr	ggt Gly 270 aat Asn aac Asn gtg Val	gat Asp gtc Val ccg Pro gtc Val tgg	tcc Ser acc Thr gac Asp aac Asn 320 cgc	gag Glu atc Ile aat Asn 305 tcc Ser	ggt Gly ggc Gly 290 tcc Ser atc Ile	1529 1577 1625 1673
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys agc Ser	ctc Leu ggt Gly tac Tyr gga Gly	gcc Ala ctg Leu gat Asp ctg Leu 310	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val cac	acc Thr gaa Glu gga Gly gcg Ala 315 ccc	gcc Ala aat Asn ctg Leu 300 cag Gln acc	tgt Cys ggc Gly 285 cgt Arg tac Tyr	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu	gat Asp gtc Val ccg Pro gtc Val tgg	tcc Ser acc Thr gac Asp aac Asn 320 cgc	gag Glu atc Ile aat Asn 305 tcc Ser	ggt Gly ggc Gly 290 tcc Ser atc Ile	1529 1577 1625 1673
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys agc Ser gat Asp	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp	acc Thr 265 gcc Ala ggt Gly gac Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val cac His 330	acc Thr gaa Glu gga Gly gcg Ala 315 ccc Pro	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu	gat Asp gtc Val ccg Pro gtc Val tgg Trp 335	tcc Ser acc Thr gac Asp aac Asn 320 cgc Arg	gag Glu atc Ile aat Asn 305 tcc Ser gag Glu	ggt Gly ggc Gly 290 tcc Ser atc Ile acc Thr	1529 1577 1625 1673
gct Ala  ggt Gly 275 acc Thr  atg Met gcc Ala	gtt Val 260 gac Asp aag Lys agc Ser gat Asp	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325 gcc	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn cag	ggc Gly ctc Leu cag Gln 295 gat Asp ggt Gly	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp	acc Thr 265 gcc Ala ggt Gly gac Asp gat Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val cac His 330 ctc	or Andrews And	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu ggt	gat Asp gtc Val ccg Pro gtc Val tgg Trp 335 gag	tcc Ser acc Thr gac Asp aac Asn 320 cgc Arg	gag Glu atc Ile aat Asn 305 tcc Ser gag Glu	ggt Gly ggc Gly 290 tcc Ser atc Ile acc Thr	1529 1577 1625 1673
gct Ala  ggt Gly 275 acc Thr  atg Met gcc Ala	gtt Val 260 gac Asp aag Lys agc Ser gat Asp tcc Ser	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325 gcc	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn	ggc Gly ctc Leu cag Gln 295 gat Asp ggt Gly	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp gag Glu	acc Thr 265 gcc Ala ggt Gly gac Asp gat Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val cac His 330 ctc	or Andrews And	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu ggt	gat Asp gtc Val ccg Pro gtc Val tgg Trp 335 gag	tcc Ser acc Thr gac Asp aac Asn 320 cgc Arg	gag Glu atc Ile aat Asn 305 tcc Ser gag Glu	ggt Gly ggc Gly 290 tcc Ser atc Ile acc Thr	1529 1577 1625 1673
gct Ala ggt Gly 275 acc Thr atg Met gcc Ala ccc Pro	gtt Val 260 gac Asp aag Lys agc Ser gat Asp tcc Ser 340	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325 gcc Ala	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn cag	ggc Gly ctc Leu cag Gln 295 gat Asp ggt Gly cgc Arg	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp gag Glu	acc Thr 265 gcc Ala ggt Gly gac Asp gat Asp	te The 25 ctc Leu atc Ile ctg Leu gtc Val cac His 330 ctc Leu	or Andrews And	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val aac Asn	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu ggt Gly 350	gat Asp gtc Val ccg Pro gtc Val tgg Trp 335 gag Glu	tcc Ser acc Thr gac Asp aac Asn 320 cgc Arg	gag Glu atc Ile aat Asn 305 tcc Ser gag Glu gat Asp	ggt Gly ggc Gly 290 tcc Ser atc Ile acc Thr atg Met	1529 1577 1625 1673

Ile	Ala	Ala	Thr	Tyr	Ser	Ile	Asn	Pro	Gly	Arg	Ser	Glu	Ser	Val		
355					360					365					370	1005
					ctc											1865
Phe	Gly	Gly	Pro		Leu	Leu	Inr	HIS	380	Ala	Leu	Leu	vaı	385	GIU	
<b>~</b> 0.0	mo t	<b>400</b>	000	375	cag	200	at a	a a a		ctc	ora t	ga c	<b>ወ</b> ወሶ	-	atr	1913
-	-				Gln											1010
лэр	лэр	лор	390	110	UIII	1 131	Dou	395	пор	БСС	пор	пор	400	Боц	110	
ctg	tet	tcc		acc	gga	tcc	acc		gcc	cag	aag	gtc		gat	gtc	1961
_					Gly										_	
		405			•		410				_	415				
ctc	ccc	ggc	gtc	cag	ctg	cag	gaa	tac	gac	acc	tac	tcc	tcc	tgt	gtg	2009
Leu	${\tt Pro}$	Gly	Val	Gln	Leu	Gln	Glu	Tyr	Asp	Thr	Tyr	Ser	Ser	Cys	Val	
	420					425					430					
	_	_	_	-	ggc											2057
	Ala	Leu	Ser	Gln	Gly	Asn	Val	Asp	Ala		Thr	Thr	Asp	Ala		
435					440					445				_4_	450	0105
			-		gcg											2105
116	Leu	Pne	GIY	1yr 455	Ala	GIN	GIN	Arg	460	GIY	GIU	rne	Arg	465	Val	
a a a	ato	ora a	^ ഉ ന		ggc	σασ	e e e	tte		aat	<b>да</b> д	tar	tac		atc	2153
					Gly											<b>D</b> 100
uıu	nec	uıu	470	пор	u 1 y	Ulu	110	475		11011	UIU	- , .	480	01,	110	
ggt	atc	acc		gat	gac	acc	gaa		acc	gat	gcg	atc	-	gca	gcg	2201
			_	_	Asp			-								
		485					490					495	•			
					gcc											2249
Leu		Arg	Met	Tyr	Ala		Gly	Ser	Phe	Gln		Phe	Leu	Thr	Glu	
	500					505					510					
					tcc											2297
	Leu	Gly	Glu	Asp	Ser	GIN	Val	vai	GIN		GIY	Inr	Pro	GIY		
515	+	44.	a + ~	~~~	520	+ ==	n a t			525	0.07 0.4			n	530	2345
			Leu	-	gag	tga	cciga	acg 8	gggc	gaa	eg e	liga	LEAS	٠		2343
Leu	Ser	rne	Leu	535	Ulu											
ateo	ete	700 e	nace		CC ES	gggt.s	zcca	e ge	atca	tcac	ttte	cacca	act	gatc	ccctac	2405
															g ggt	2458
			-0-00	<b>,</b> 0											u Gly	
										540			_		545	
ccg	tca	ctc	cta	ccc	gca	ttc	tgg	gtg	aca	atc	caa	ctc	acc	gtc	tat	2506
					Ala											
				550					555					560		
tcc	gcc	atc	gga	tcc	atg	atc	ctc	ggt	acc	atc	ctc	acc	gcc	atg	agg	2554

Ser	Ala	Ile	Gly 565	Ser	Met	lle	Leu	Gly 570	Thr	Ile	Leu	Thr	Ala 575	Met	Arg	
		_		_										atc Ile		2602
_	_	_				-			_		_		_	tcc Ser		2650
	_		_							_		_	_	agt Ser		2698
		_	-	_										ttc Phe 640		2746
_				_		_		-						atc Ile		2794
														ctc Leu		2842
	_	gac											-	cgt Arg		2890
-	atc		_	-						_	_		_	aac Asn		2938
acg							-	-	-	_	_	-	_	atg Met 720	_	2986
	_										_	-		gcc Ala		3034
	_	_	ggc		_			acc			_		ctg	ggg Gly		3082
		ctc				atg Met 760	gcg				taat		etc (	etecg	tacgc	3135
	cagt					ccgg				eg g V	gtg g	gc a	igt g	catca gtt d /al I		3195 3249
cag	gaa	aac	ggc	cag	ttg	gac	ggc	gac	aaa			ccg	ttc	ctc	gat	3297

Gln 770	Glu	Asn	Gly	Gln	Leu 775	Asp	Gly	Asp	Lys	Trp 780	Thr	Pro	Phe	Leu	Asp 785	
												tgg Trp			_	3345
												atg Met			_	3393
				-			-				_	cgc Arg 830			_	3441
												ctg Leu			_	3489
		_		_	_		_	-		_		gtt Val			_	3537
						_						atg Met				3585
								_			_	tcc Ser	_	_	_	3633
									-	_		acc Thr 910	-	_		3681
		_		_			-			_		atg Met	_		_	3729
												gcc Ala				3777
												cag Gln		-		3825
									gcg			gcg Ala		atc		3873
			aac					gca				cgt Arg 990	atc	_	_	3921
		cgt					cgc					gca Ala	_			3969

1000 1005 995 gag gaa ccc gat cag ggc ctg gat acc aag gac aat gtg aac gtg gat 4017 Glu Glu Pro Asp Gln Gly Leu Asp Thr Lys Asp Asn Val Asn Val Asp 1020 1025 1015 1010 tgg cac gat ccc gat tac aag gaa gtc aaa cac ccg gga ccg tca ttc 4065 Trp His Asp Pro Asp Tyr Lys Glu Val Lys His Pro Gly Pro Ser Phe tgacaggtcc ctggatcccc gctgcggtca ggaggcgggt gcaacaatga agtccggctg 4125 cccagatgtc tggggcagcc ggactttgtg gcagatcaat gctgactgag gtcctcgatg 4185 cgctcatcga gagcctcccg ggccaggtcc atcgacatac ccgcggggaa tccacgacgg 4245 4254 gcaagtgct <210> 17 <211> 242 <212> PRT <213> Corynebacterium thermoaminogenes <400> 17 Met Ile Lys Met Thr Gly Val Gln Lys Phe Phe Asp Asp Phe Gln Ala Leu Thr Asp Ile Asn Leu Glu Val Pro Ala Gly Gln Val Val Val 25 30 20 Leu Gly Pro Ser Gly Ser Gly Lys Ser Thr Leu Cys Arg Thr Ile Asn 40 Arg Leu Glu Thr Ile Glu Glu Gly Thr Ile Glu Ile Asp Gly Lys Leu 60 55 Leu Pro Glu Glu Gly Lys Asp Leu Ala Lys Ile Arg Ala Asp Val Gly -70 75 Met Val Phe Gln Ser Phe Asn Leu Phe Pro His Leu Thr Ile Lys Asp 85 Asn Val Thr Leu Gly Pro Met Lys Val Arg Lys Met Lys Lys Ser Glu 105 110 100 Ala Asn Glu Val Ala Met Lys Leu Leu Glu Arg Val Gly Ile Ala Asn 120 Gln Ala Glu Lys Tyr Pro Ala Gln Leu Ser Gly Gly Gln Gln Gln Arg 140 135 130 Val Ala Ile Ala Arg Ala Leu Ala Met Asn Pro Lys Ile Met Leu Phe 150 155 Asp Glu Pro Thr Ser Ala Leu Asp Pro Glu Met Val Asn Glu Val Leu 170 165 Asp Val Met Ala Ser Leu Ala Lys Glu Gly Met Thr Met Val Cys Val 190 180 185 Thr His Glu Met Gly Phe Ala Arg Arg Ala Ala Asp Arg Val Leu Phe

200 205 195 Met Ser Asp Gly Ala Ile Val Glu Asp Ser Asp Pro Glu Thr Phe Phe 215 220 Thr Asn Pro Gln Thr Asp Arg Ala Lys Asp Phe Leu Gly Lys Ile Leu 235 230 240 225 Ala His <210> 18 <211> 294 <212> PRT <213> Corynebacterium thermoaminogenes <400> 18 Met Ser His Lys Arg Met Phe Thr Arg Leu Ala Ala Ala Thr Ser Ala 1 Ala Val Leu Ala Gly Ile Thr Leu Thr Ala Cys Gly Asp Ser Glu Gly 25 Gly Asp Gly Leu Leu Ala Ala Ile Glu Asn Gly Asn Val Thr Ile Gly 40 Thr Lys Tyr Asp Gln Pro Gly Leu Gly Leu Arg Asn Pro Asp Asn Ser 55 Met Ser Gly Leu Asp Val Asp Val Ala Gln Tyr Val Val Asn Ser Ile 70 75 Ala Asp Asp Asn Gly Trp Asp His Pro Thr Val Glu Trp Arg Glu Thr 90 Pro Ser Ala Gln Arg Glu Thr Leu Ile Gln Asn Gly Glu Val Asp Met 105 Ile Ala Ala Thr Tyr Ser Ile Asn Pro Gly Arg Ser Glu Ser Val Asn 120 125 115 Phe Gly Gly Pro Tyr Leu Leu Thr His Gln Ala Leu Leu Val Arg Glu 135 Asp Asp Asp Arg Ile Gln Thr Leu Glu Asp Leu Asp Asp Gly Leu Ile 155 145 150 Leu Cys Ser Val Thr Gly Ser Thr Pro Ala Gln Lys Val Lys Asp Val 175 165 170 Leu Pro Gly Val Gln Leu Gln Glu Tyr Asp Thr Tyr Ser Ser Cys Val 180 185 Glu Ala Leu Ser Gln Gly Asn Val Asp Ala Met Thr Thr Asp Ala Thr 200 205 195 Ile Leu Phe Gly Tyr Ala Gln Gln Arg Glu Gly Glu Phe Arg Val Val 220 215 Glu Met Glu Gln Asp Gly Glu Pro Phe Thr Asn Glu Tyr Tyr Gly Ile 235 240 225 230

<210> 19

<211> 228

<212> PRT

210

<213> Corynebacterium thermoaminogenes

<400> 19 Met Ser Thr Leu Trp Ala Asp Leu Gly Pro Ser Leu Leu Pro Ala Phe 10 Trp Val Thr Ile Gln Leu Thr Val Tyr Ser Ala Ile Gly Ser Met Ile 20 25 Leu Gly Thr Ile Leu Thr Ala Met Arg Val Ser Pro Val Lys Ile Leu 40 Arg Ser Ile Ser Thr Ala Tyr Ile Asn Thr Val Arg Asn Thr Pro Leu 60 55 Thr Leu Val Ile Leu Phe Cys Ser Phe Gly Leu Tyr Gln Asn Leu Gly 80 70 Leu Thr Leu Ala Gly Arg Asp Ser Ser Thr Phe Leu Ala Asp Asn Asn 90 Phe Arg Leu Ala Val Leu Gly Phe Ile Leu Tyr Thr Ser Ala Phe Val 110 100 105 Ala Glu Ser Leu Arg Ser Gly Ile Asn Thr Val His Phe Gly Gln Ala 120 125 Glu Ala Ala Arg Ser Leu Gly Leu Gly Phe Ser Asp Ile Phe Arg Ser 140 135 lle Ile Phe Pro Gln Ala Val Arg Ala Ala Ile Ile Pro Leu Gly Asn 155 160 150 Thr Leu Ile Ala Leu Thr Lys Asn Thr Thr Ile Ala Ser Val Ile Gly 170 165 Val Gly Glu Ala Ser Leu Leu Met Lys Ser Thr Ile Glu Asn His Ala 190 180 185 Asn Met Leu Phe Val Val Phe Ala Ile Phe Ala Val Gly Phe Met Ile 200 205 Leu Thr Leu Pro Met Gly Leu Gly Leu Gly Lys Leu Ala Glu Lys Met

215

220

WO 01/25447 PCT/JP00/06913

Ala Val Lys Lys 225 <210> 20 <211> 277 <212> PRT <213> Corynebacterium thermoaminogenes <400> 20 Val Gly Ser Val Leu Gln Glu Asn Gly Gln Leu Asp Gly Asp Lys Trp Thr Pro Phe Leu Asp Pro Gln Thr Trp Thr Thr Tyr Leu Leu Pro Gly 25 Leu Trp Gly Thr Leu Lys Ala Ala Val Ala Ser Ile Leu Leu Ala Leu 35 Ile Met Gly Thr Leu Leu Gly Leu Gly Arg Ile Ser Glu Ile Arg Leu 55 Leu Arg Trp Phe Cys Gly Ile Ile Ile Glu Thr Phe Arg Ala Ile Pro **75** 70 Val Leu Ile Leu Met Ile Phe Ala Tyr Gln Leu Phe Ala Arg Tyr Gln 90 Leu Val Pro Ser Arg Gln Leu Ala Phe Ala Ala Val Val Phe Gly Leu 105 Thr Met Tyr Asn Gly Ser Val Ile Ala Glu Ile Leu Arg Ser Gly Ile 120 125 115 Ala Ser Leu Pro Lys Gly Gln Arg Glu Ala Ala Ile Ala Leu Gly Met 135 140 Ser Thr Arg Gln Thr Thr Trp Ser Ile Leu Leu Pro Gln Ala Val Ala 160 145 150 155 Ala Met Leu Pro Ala Leu Ile Ala Gln Met Val Ile Ala Leu Lys Asp 170 165 Ser Ala Leu Gly Tyr Gln Ile Gly Tyr Ile Glu Val Val Arg Ser Gly 185 190 180 Ile Gln Ser Ala Ser Val Asn Arg Asn Tyr Leu Ala Ala Leu Ala Val 200 205 195 Val Ala Val Ile Met Ile Leu Ile Asn Phe Ala Leu Thr Ala Leu Ala 215 220 Glu Arg Ile Gln Arg Gln Leu Arg Ala Gly Arg Ala Arg Arg Asn Ile 230 240 235 225 Val Ala Lys Val Pro Glu Glu Pro Asp Gln Gly Leu Asp Thr Lys Asp 245 250 Asn Val Asn Val Asp Trp His Asp Pro Asp Tyr Lys Glu Val Lys His 270 260 265



WO 01/25447 PCT/JP00/06913

Pro Gly Pro Ser Phe 275

<210> 21 <211> 3598

<212> DNA

<213 > Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (454)..(3222)

<400> 21

agcacggcca aacatgagag aaacttcaca ttttgaattt cccctttcct gcatatggaa 60 aaccgccggt gacacccctg ccatttgggc agctccccc acctcaccat gtccacattt 120 tecataatgt ggeetgtaac accettggge teaaggette caegeeceae egggaceete 180 atcagcaggt gaaacagacc ctcctgcaat gctttgttaa aaagaaccgc cctttgtgcg 240 tatecttgtg teaattgtge gegeactgee accagettte eteaggattg aacaeggteg 300 ggaaatcctc cccggatacc ctgcacgccc cacctcccac accgacaccg gcggggggg 360 ccgggcacgt tttcagctgc gggtgatgga agcggtcgcc ggtcccccgg tcgcataaac 420 gaaatgaaaa acattccaac aggaggtgtg gaa atg gcc gat caa gca aaa ctt Met Ala Asp Gln Ala Lys Leu

1

ggt ggc aaa ccc aca gat gac acc aac ttc gcg atg atc cgt gat ggc 522 Gly Gly Lys Pro Thr Asp Asp Thr Asn Phe Ala Met Ile Arg Asp Gly 15

gtt gca tct tat ttg aac gac tcc gac ccg gag gag acc aag gag tgg 570 Val Ala Ser Tyr Leu Asn Asp Ser Asp Pro Glu Glu Thr Lys Glu Trp

30

atg gac tcc cta gac ggt cta ctg cag gat tcc tct ccg gag cgc gcc 618 Met Asp Ser Leu Asp Gly Leu Leu Gln Asp Ser Ser Pro Glu Arg Ala

cgt tac ctg atg ctg cgc ctg ctg gag cgg gca tcc gcc aag cgt gtc 666 Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys Arg Val

60 65 70

cca ctg ccc ccg atg acg tcc acc gat tac gtc aac acc atc ccc aca 714 Pro Leu Pro Pro Met Thr Ser Thr Asp Tyr Val Asn Thr Ile Pro Thr 75 80 85

tcc atg gag ccc gat ttc ccg ggt gat gag gag atg gag aag cgc tac 762 Ser Met Glu Pro Asp Phe Pro Gly Asp Glu Glu Met Glu Lys Arg Tyr

90 95 100

110

810 cgc cgc tgg atg cgc tgg aac gcc gcc atc atg gtg cac cgt gcc cag Arg Arg Trp Met Arg Trp Asn Ala Ala Ile Met Val His Arg Ala Gln 105

cgc ccg gga atc ggt gtg ggt ggg cac atc tcc acc tac gcc ggc gcc 858



Arg 120	Pro	Gly	Ile	Gly	Val 125	Gly	Gly	His	Ile	Ser 130	Thr	Tyr	Ala	Gly	Ala 135	
_			tac													906
Ala	Pro	Leu	Ţyr	Glu 140	Val	Gly	Phe	Asn	His 145	Phe	Phe	Arg	Gly	Lys 150	Asp	
cac	ccg	ggt	ggc		gac	cag	gtc	ttc		cag	ggt	cac	gcc		ccg	954
	_		Gly													
			155					160					165			
	_		gcc	-	_											1002
Gly	мет	1yr 170	Ala	Arg	Ala	Pne	175	GIU	GIY	Arg	ren	180	Glu	261.	ASP	
_	_	-	ttc													1050
Leu	Asp 185	Ser	Phe	Arg	Gln	Glu 190	Val	Ser	Tyr	Glu	Gly 195	Gly	Gly	Ile	Pro	
		_	cac	_												1098
	Tyr	Pro	His	Pro		Gly	Met	Pro	Asp		Trp	Glu	Phe	Pro		
200	+	a + #	ggc	a <b>t</b> a	205	0.00	a t a	an t	<b>400</b>	210	taa	0 0 m	<b></b>	000	215	1146
			Gly													1140
141	501	1100	<b>U1</b> ,	220					225		- • -			230		
	_		ctg													1194
Asn	Arg	Tyr	Leu	His	Asn	Arg	Gly		Lys	Asp	Thr	Ser		Gln	His	
	<b>.</b>		235	a <b>t</b> a	~~+		~~~	240	o t σ	an t	~ o ~	0 0 <b>c</b>	245	+ 0 0	agt	1242
_		_	ttc Phe													1242
741	11 P	250	1 110	Dou	013	мор	255	014		p	o.u	260		20.	6	
ggt	ctc	atc	cac	cag	gct	gcg	ctg	aac	aac	ctg	gac	aac	ctc	acc	ttc	1290
Gly		Ile	His	Gln	Ala		Leu	Asn	Asn	Leu		Asn	Leu	Thr	Phe	
	265		+ ~ ~	000	0+4	270	o a t	a <del>t</del>	ant.	<b></b>	275	at o	0.00	a a t	220	1338
			tgc Cys													1330
280	110	71011	0,0	71011	285	0111	6	Dou	p	290			6		295	
	-		atc													1386
Thr	Lys	Ile	Ile		Glu	Leu	Glu	Ser		Phe	Arg	Gly	Ala		Trp	
	_4_			300	a <b>t</b> a	+ ~ ~	~~~	a <del>a</del> t	305	+ ~~	an t	<b>~</b> 00	o t «	310	g0 g	1434
			aag Lys													1404
			315					320					325			
-			gac													1482
Lys	ASP	330	Asp	Gly	Ala	Leu	va1 335	ulu	vaı	мет	ASI	4sn 340	ınr	ser	ASP	
ggt	gac		cag	acc	ttc	aag		aat	gac	ggt	gcc		gtc	cgt	gag	1530
	_		Gln			_	_									



	345					350					355					
cac	ttc	ttc	ggc	cgt	gac	ccc	cgc	acc	ctc	aag	ctc	gtc	gag	gac	atg	1578
His	Phe	Phe	Gly	Arg	Asp	Pro	Arg	Thr	Leu	Lys	Leu	Val	Glu	Asp	Met	
360					365					370					375	
acc	gac	gag	gag	atc	tgg	aag	ctg	ccc	cgt	ggt	ggc	cat	gac	tac	cgt	1626
Thr	Asp	Glu	Glu	Ile	Trp	Lys	Leu	Pro	Arg	Gly	Gly	His	Asp	Tyr	Arg	
				380					385					390		
aag	gtc	tac	gcc	gcc	tac	aag	cgt	gcg	ctg	gag	acc	aag	gac	cgc	ccg	1674
Lys	Val	Tyr		Ala	Tyr	Lys	Arg		Leu	Glu	Thr	Lys		Arg	Pro	
			395					400					405			
					cat											1722
Thr	Val		Leu	Ala	His	Thr		Lys	Gly	Tyr	Gly		Gly	His	Asn	
		410					415					420				1550
			-		gcg											1770
Phe		Gly	Arg	Asn	Ala		HIS	GIN	met	Lys		Leu	Thr	Leu	ASP	
	425		o + a	++0	o m t	430		000	~~+	a + #	435	a <b>t</b> a	000	ant.	<b>~</b> 0 ~	1818
_	_	_	_		cgt	_	_	_		_						1010
440	Leu	LYS	Leu	rne	Arg 445	wsh	гåг	UIII	g 1 y	450	FFU	116	1111	voh	455	
	cto	<b>020</b>	220	o a t	CCC	tac	ctø	cct	CCG		tar	cac	_С С	o o t		1866
	_	-			Pro											1000
UIU	Doa	Viu	2,5	460		- , -	204		465	- , .	- , .			470		
gac	gca	ccg	gag		aag	tac	atg	aag		cgt	cgc	cag	gcg		ggt	1914
-	_	_			Lys		-									
_			475					480					485			
ggt	ttc	ctg	ccg	gag	cgc	cgt	gag	aag	tac	gag	cca	ctg	cag	gtt	ccc	1962
Gly	Phe	Leu	${\tt Pro}$	Glu	Arg	Arg	Glu	Lys	Tyr	Glu	Pro	Leu	Gln	Val	Pro	-
		490					495					500				
_	_	_	_	_	cgg			_	_							2010
Pro		Asp	Lys	Leu	Arg		Val	Arg	Lys	Gly		Gly	Lys	Gln	Gln	
	505					510					515					
	_			_	gcc	_		_			_	_		_	•	2058
	Ala	Thr	Thr	Met	Ala	Thr	Val	Arg	Thr		Lys	Glu	Leu	Met		
520					525					530					535	0100
	-				gac										_	2106
Asp	Lys	Asn	Leu		Asp	Arg	Leu	vai		116	116	Pro	ASP		Ala	
		<b>LL</b> -	<b></b> -	540		4	<b>+</b> ~	<b>+</b> + -	545	00-	a +		0+-	550	000	9154
_				_	gac				_		_					2154
Arg	ımr	rne	555	Leu	Asp	set.	11.h	560	L 1.0	1111.	Leu	rλg	565	1 <b>y</b> 1,	WOII	
000	000	aa+		200	+	a+a	007		ma n	02+	<b>400</b>	oto		eta	too	2202
-					tac Tyr											2202
Lt.A	1115	570	UIII	Noll	1 % 1.	4 <b>4</b> 1	575	Val	voh	1112	voh	580	rie t	Pen	261	
		010					010					000				

	_	gag Glu													2250
	ggt	tcc Ser				ttt					acc				2298
cat		gag Glu	_	_	atc					ttc				ggc	2346
	_	cgc Arg		ggt	_				gcc				atg		2394
_		ttc Phe 650	ctc	_				gcc							2442
		ctc Leu													2490
		ggt Gly					_		-						2538
	_	gtc Val		_											2586
-		gtc Val													2634
_	_	gag Glu 730													2682
		tac Tyr													2730
_	gcc	tcc Ser													2778
ctc	_	gag Glu	-		ggc					atc					2826
	-	gag Glu		gcc					cgc				gcg		2874
cgc	aac	ccg		gcg	gat	gtc	ggt		gca	ttc	gtg	acc	cag	ctg	2922

Arg Asn Pro Gly Ala Asp Val Gly Glu Ala Phe Val Thr Thr Gln Leu 810 815 820	
aag aag ggt too ggc coc tac gto gog gtg too gac tto gog acc gac	2970
Lys Lys Gly Ser Gly Pro Tyr Val Ala Val Ser Asp Phe Ala Thr Asp 825 830 835	
ctg ccg aac cag atc cgc gag tgg gtt ccc ggt gac tac atc gtc ctc	3018
Leu Pro Asn Gln Ile Arg Glu Trp Val Pro Gly Asp Tyr Ile Val Leu	
840 845 850 855	
ggt gcc gac ggc ttc ggt ttc tcc gat acc cgt ccg gca gcc cgt cgt	3066
Gly Ala Asp Gly Phe Gly Phe Ser Asp Thr Arg Pro Ala Ala Arg Arg	
860 865 870	
tac ttc aac atc gac gcc gag tcc atc gtc gtg gcg gtc ctg cgc ggc	3114
Tyr Phe Asn Ile Asp Ala Glu Ser Ile Val Val Ala Val Leu Arg Gly	
875 880 885	
ctg gtc cgc gag ggt gtc atc gat gcc tcc gtg gcg gcg cac gcg gct	3162
Leu Val Arg Glu Gly Val Ile Asp Ala Ser Val Ala Ala His Ala Ala	
890 895 900	
gag aag tac aag ctg tcc gac ccg acg gca cca cag gtc gat ccg gac	3210
Glu Lys Tyr Lys Leu Ser Asp Pro Thr Ala Pro Gln Val Asp Pro Asp	
905 910 915	
gea eeg ate gag tagacetget tgtegaegaa aaacaceeee geeeeteae	3262
Ala Pro Ile Glu	
920	
atgatgaggg gggcggggt gtgctcgttt acggcgggta caggggggta tcagcccagc	
atcgccttat cggagagcgt cgcgcccttg atcttggcga attcctgcag cagatcccgc	
acggtgaget tetgetteae etetgegetg geeteataga egateegtee etegtgeate	
atgatgaggc ggttacccag gcggatagcc tgttccatgt tgtgggtgac catgagggtg	
gtcagtttgc cgtcctcgac gatcttctcg gtcagggtgg tgaccagttc ggctcgctgg	
gggtccaggg cggcggtgtg ttcgtcgaga agcatg	3598

<210> 22

<211> 923

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 22

 Met Ala Asp Gln Ala Lys Leu Gly Gly Lys Pro Thr Asp Asp Thr Asn

 1
 5
 10
 15

 Phe Ala Met Ile Arg Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp
 20
 25
 30

 Pro Glu Glu Thr Lys Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln
 45

 Asp Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu

	50					55					60				
Arg	Ala	Ser	Ala	Lys	Arg	Val	${\tt Pro}$	Leu	Pro	Pro	Met	Thr	Ser	Thr	Asp
65					70					<b>7</b> 5					80
Tyr	Val	Asn	Thr		Pro	Thr	Ser	Met		Pro	Asp	Phe	Pro		Asp
0.1	0.1	W. L	01	85	A	Т	A	A	90	Wat	4	T	1	95	41a
Glu	Glu	met	100	Lys	Arg	lyr	Arg	105	ırp	met	Arg	1 rp	110	Ala	Ala
Π	Mat	Va 1		Δrσ	Ala	Gln	Arg		Glv	I le	Glv	Val		Glv	His
116	nec	115	1113	мь	A14	0111	120	110	ulj	110	013	125	013	ulj	
Ile	Ser		Tyr	Ala	Gly	Ala			Leu	Tyr	Glu		Gly	Phe	Asn
	130		•		•	135				•	140				
His	Phe	Phe	Arg	Gly	Lys	Asp	His	${\tt Pro}$	Gly	Gly	Gly	Asp	Gln	Val	Phe
145					150					155				_	160
Phe	Gln	Gly	His		Ser	Pro	Gly	Met		Ala	Arg	Ala	Phe		Glu
01	<b>.</b>	T a	Th -	165	C a m	4 ~~	Lan	Aan	170	Dha	A 2.0	Cl.	C1.,	175	Can
GIA	Arg	Leu	180	GIU	Ser	ASP	Leu	185	ser.	riie	Arg	0111	190	Val	Sel
Tyr	Glu	Glv		Glv	Ile	Pro	Ser		Pro	His	Pro	His		Met	Pro
.,.	014	195	-1,			- • -	200	- • •				205			
Asp	Phe	Trp	Glu	Phe	Pro	Thr	Val	Ser	Met	Gly	Leu	Gly	Pro	Met	Asp
	210					215					220				
	Ile	Tyr	Gln	Ala	Arg	Phe	Asn	Arg	Tyr		His	Asn	Arg	Gly	
225		m i		01	230	37.5 <u>-</u>	17 - 1	m	41.	235	T	01	A	C 1	240
Lys	Asp	Inr	Ser	245	Gln	HIS	vai	lrp	A1a 250	rne	Leu	GIY	ASP	255	GIU
Met	Asp	Glu	Pro		Ser	Arg	Glv	Leu		His	Gln	Ala	Ala		Asn
	пор	014	260	014		6	01,	265					270		
Asn	Leu	Asp	Asn	Leu	Thr	Phe	Val	Ιle	Asn	Cys	Asn	Leu	Gln	Arg	Leu
		275					280					285			
Asp		Pro	Val	Arg	Gly		Thr	Lys	Ile	Ile		Glu	Leu	Glu	Ser
<b>D</b> 1	290		0.1			295 m	0	** 1	T 1 .	*	300	71.	m	01	<b>4</b>
	Phe	Arg	Gly	Ala	Gly 310	Trp	Ser	vai	116	1315	vai	116	ırp	ыу	320
305	Trn	Asn	Glu	Leu	Leu	Glu	Į.vs	Asn	Gln		Glv	Ala	I.en	Val	
01u	пр	лэр	oru	325	DCu	Ulu	DJ 3	пор	330	пор	013	u	Dou	335	014
Val	Met	Asn	Asn		Ser	Asp	Gly	Asp		Gln	Thr	Phe	Lys		Asn
			340			_	-	345					350		
Asp	Gly	Ala	Tyr	Val	Arg	Glu	His	Phe	Phe	Gly	Arg	Asp	Pro	Arg	Thr
		355					360					365	_		
Leu		Leu	Val	Glu	Asp		Thr	Asp	Glu	Glu		Trp	Lys	Leu	Pro
4	370	ρ1	tr: -	۸	ጥ	375	1	Va 1	ጥ	41.	380	Т	T~	A	41.
Arg 385	uly	GIY	n1S	ASP	Tyr 390	Arg	Lys	val	ı yı,	395	AIA	1 <b>y</b> r	LYS	Arg	400
200					JJU					000					700

Leu	Glu	Thr	Lys	Asp 405	Arg	Pro	Thr	Val	Ile 410	Leu	Ala	His	Thr	Ile 415	Lys
Gly	Tyr	Gly	Leu 420		His	Asn	Phe	Glu 425		Arg	Asn	Ala	Thr 430	His	Gln
Met	Lys	Lys 435	Leu	Thr	Leu	Asp	Asp 440	Leu	Lys	Leu	Phe	Arg 445	Asp	Lys	Gln
Gly	Leu 450	Pro	Ile	Thr	Asp	Glu 455	Glu		Glu	Lys	Asp 460	Pro	Tyr	Leu	Pro
Pro 465	Tyr	Tyr	His	Pro	Gly 470	Glu	Asp	Ala	Pro	Glu 475	Ile	Lys	Tyr	Met	Lys 480
Glu	Arg	Arg	Gln	Ala 485	Leu	Gly	Gly	Phe		Pro		Arg	Arg	Glu 495	Lys
Tyr	Glu	Pro	Leu 500	Gln	Val	Pro	Pro	Leu 505	Asp	Lys	Leu	Arg	Ser 510	Val	Arg
Lys	Gly	Ser 515	Gly	Lys	Gln	Gln	Val 520	Ala		Thr	Met	Ala 525	Thr	Val	Arg
Thr	Phe 530	Lys	Glu	Leu	Met	Arg 535	Asp	Lys	Asn	Leu	Ala 540	Asp	Arg	Leu	Val
Pro 545	lle	Ile	Pro	Asp	Glu 550	Ala	_	Thr	Phe	Gly 555	Leu	Asp	Ser	Trp	Phe 560
Pro	Thr	Leu	Lys	11e 565	Tyr	Asn	Pro	His	Gly 570	Gln	Asn	Tyr	Val	Pro 575	Val
Asp	His	Asp	Leu 580	Met	Leu	Ser	Tyr	Arg 585	Glu		Lys	Asp	Gly 590	Gln	Ile
Leu	His	Glu 595	Gly	Ile	Asn	Glu	Ala 600	Gly	Ser	Val	Ala	Ser 605	Phe	Ile	Ala
Ala	Gly 610	Thr	Ser	Tyr	Ala	Thr 615	His				Met 620	Ile	Pro	Leu	Tyr
Ile 625						Gly									Trp 640
Ala	Ala	Ala	Asp	Gln 645	Met	Thr	Arg	Gly	Phe 650	Leu	Leu	Gly	Ala	Thr 655	Ala
Gly	Arg	Thr	Thr 660	Leu	Thr	Gly	Glu	Gly 665	Leu	Gln	His	Met	Asp 670	Gly	His
Ser	Pro	11e 675	Leu	Ala	Ser	Thr	Asn 680	Pro	Gly	Val	Glu	Thr 685	Tyr	Asp	Pro
Ala	Phe 690	Ser	Tyr	Glu	Ile	Ala 695	His	Leu	Val	His	Arg 700	Gly	Ile	Asp	Arg
705					710·	Gly				715					720
				725		Gln			730					735	
Glu	Gly	Leu	His	Lys	Gly	Ile	Tyr	Leu	Tyr	Asp	Lys	Ala	Ala	Glu	Gly

```
740
                                745
                                                     750
Glu Gly His Glu Ala Ser Ile Leu Ala Ser Gly Ile Gly Met Gln Trp
                            760
                                                 765
Ala Leu Arg Ala Arg Asp Ile Leu Ala Glu Asp Tyr Gly Ile Arg Ala
                        775
                                             780
    770
Asn Ile Phe Ser Ala Thr Ser Trp Val Glu Leu Ala Arg Asp Gly Ala
                    790
                                         795
                                                             800
Arg Arg Asn Leu Glu Ala Leu Arg Asn Pro Gly Ala Asp Val Gly Glu
                805
                                    810
Ala Phe Val Thr Thr Gln Leu Lys Lys Gly Ser Gly Pro Tyr Val Ala
                                825
                                                     830
            820
Val Ser Asp Phe Ala Thr Asp Leu Pro Asn Gln Ile Arg Glu Trp Val
                            840
                                                 845
Pro Gly Asp Tyr Ile Val Leu Gly Ala Asp Gly Phe Gly Phe Ser Asp
                                             860
                        855
    850
Thr Arg Pro Ala Ala Arg Arg Tyr Phe Asn Ile Asp Ala Glu Ser Ile
                    870
                                        875
Val Val Ala Val Leu Arg Gly Leu Val Arg Glu Gly Val Ile Asp Ala
                                    890
                885
Ser Val Ala Ala His Ala Ala Glu Lys Tyr Lys Leu Ser Asp Pro Thr
                                905
                                                     910
Ala Pro Gln Val Asp Pro Asp Ala Pro Ile Glu
        915
                            920
<210> 23
<211> 4013
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (319)..(3735)
<400> 23
gtcctttttg caaattctgc aaagtgggta gaggtcagat gtcagcaggt cggtccgatt 60
tetgtaggaa agtggageeg ttgggggeaa cattaacett eeceetggga tgtagetaaa 120
cggcaatggg ggtctcgggc ggggggcatt cttttcacgg caaggtggtg aaattccgca 180
ggtcactccc cggccggcgg tagagaacgg agcgaaaacg gaaagcaata cgtggttttc 240
cggactggcc gttacgatgt tctgaagagt gactgccatc acccaacagg ctggtcctcg 300
tegaaaggaa caaaaact gtg gtt aca aca aca ccc tcc acg ctg ccg gcg
                                                                   351
                    Val Val Thr Thr Thr Pro Ser Thr Leu Pro Ala
                      1
                                       5
                                                          10
                                                                   399
ttc aaa aag atc ctg gtg gcc aac cga ggt gaa atc gcg gtg cga gca
```

Phe	Lys	Lys	Ile 15	Leu	Val	Ala	Asn	Arg 20	Gly	Glu	Ile	Ala	Val 25	Arg	Ala	
ttc	cgc	gcc	gcc	tac	gag	acc	ggg	gcc	gca	acc	gtg	gcc	atc	tac	ccc	447
Phe	Arg	Ala 30	Ala	Tyr	Glu	Thr	Gly 35	Ala	Ala	Thr	Val	Ala 40	Ile	Tyr	Pro	
cgg	gag	gac	cgt	ggc	tcc	ttc	cac	cgc	tcc	ttc	gcc	tcc	gag	gcg	gtg	495
	_	_	_			Phe										
	45	•	0	•		50					55					
agg		gga	acc	gag	ggc	tca	ccc	gtc	aag	gcg		ctc	gat	att	gat	543
						Ser		_	_	_					_	
60					65				-4-	70					75	
	atc	atc	aac	gcc		aag	aag	gtg	aaa		gac	gcg	gtc	tac		591
						Lys										
				80		2, 2	2, 2		85					90		
ggg	tat	ggt	ttc	ctt	tcg	gaa	aat	gcc	cag	ctc	gcg	cgt	gaa	tgc	gcg	639
					_	Glu		_	_			_	_	-		
	- 7 -		95					100				0	105	- , -		
gag	aac	ggc		acc	ttc	atc	ggt		acc	ccg	gag	gtg		gac	ctc	687
						Ile										
		110			• •		115					120				
acg	ggc		aag	tcc	aag	gct		tcc	gcc	gcg	aag		gcc	ggg	ctg	735
_		_				Ala										
	125	-	•		•	130					135	•		·		
ccg	gtg	ctg	gcg	gaa	tcc	acc	ссс	agc	acc	gac	atc	gat	gag	atc	gtc	783
_		_		_		Thr				_		-				•
140					145					150					155	
aag	agt	gcc	gag	ggg	cag	acc	tac	ccg	atc	ttc	gtc	aag	gcc	gtc	gca	831
Lys	Ser	Ala	Glu	Gly	Gln	Thr	Tyr	Pro	Ile	Phe	Val	Lys	Ala	Val	Ala	
				160					165					170		
ggt	ggt	ggc	ggg	cgt	ggt	atg	cgg	ttc	gtc	gag	aag	ccc	gag	gac	ctg	879
Gly	Gly	Gly	Gly	Arg	Gly	Met	Arg	Phe	Val	Glu	Lys	Pro	Glu	Asp	Leu	
			175					180					185			
cgt	gag	ctg	gcc	agg	gag	gcc	tcc	cgc	gag	gcg	gag	gcc	gct	ttc	ggt	927
Arg	Glu	Leu	Ala	Arg	Glu	Ala	Ser	Arg	Glu	Ala	Glu	Ala	Ala	Phe	Gly	
		190					195					200				
gac	gga	tcc	gtc	tac	gtc	gaa	cgg	gcc	gtg	atc	aaa	ccc	cag	cac	atc	975
Asp	Gly	Ser	Val	Tyr	Val	Glu	Arg	Ala	Val	Ile	Lys	Pro	Gln	His	Ile	
-	205					210					215					
gag	gtg	cag	atc	ctc	ggt	gat	cac	acc	ggc	gat	gtc	atc	cac	ctg	tat	1023
						Asp										
220					225	_			-	230					235	
gaa	cgc	gac	tgt	tcc	ctg	cag	cgc	cgc	cac	cag	aag	gtc	gtg	gag	atc	1071
_	_	_			-	Gln	_	_			_	-				

				240					245					250		
gca	cct	gcc	cag	cac	ctc	gac	ccg	gag	ctg	cgc	gac	cgc	atc	tgt	gcc	1119
Ala	${\tt Pro}$	Ala	Gln	His	Leu	Asp	Pro	Glu	Leu	Arg	Asp	Arg	lle	Cys	Ala	
			255					260					265			
•	_		_		_						cag		_			1167
Asp	Ala		Lys	Phe	Cys	Lys		lle	Gly	Tyr	Gln		Ala	Gly	Thr	
		270					275					280				101-
-											gtc					1215
Val		Phe	Leu	val	Asp		Ala	Gly	Asn	HIS	Val	Pne	116	GIU	met	
	285		a <b>t</b> a		~+~	290			-t-	000	295	~~ ~	at o		+ 0 0	1263
											gag					1203
300	FFO	Arg	116	GIII	305	GIU	1112	1111	Vai	310	Glu	oru	Val	1111	315	
	gar	ctø	øtc	ааб		cag	ato	cac	ctø		gcc	øøt.	ጀርር	acc		1311
_	_	_	-	_							Ala					1011
		204	, 41	320		0111			325			,		330		
aag	gaa	ctg	ggc		acc	cag	gac	aag	atc	acc	acc	cac	ggt	gcc	gcc	1359
Lys	Glu	Leu	Gly	Leu	Thr	Gln	Asp	Lys	Ile	Thr	Thr	His	Gly	Ala	Ala	
			335					340					345			
ctg	cag	tgc	cgc	atc	acc	acg	gag	gac	ccg	tcc	aac	aac	ttc	cgg	ccc	1407
Leu	Gln		Arg	Ile	Thr	Thr		Asp	Pro	Ser	Asn		Phe	Arg	Pro	
		350					355					360				
_						_		_			ggt					1455
Asp		Gly	Val	He	Thr		Туг	Arg	Ser	Pro	Gly	Gly	Ala	Gly	vai	
	365					370	-1-				375		<b></b>	+	++-	1502
-		_		-							atc					1503
380	Leu	ASP	UI y	Ala	385	0111	Leu	GIY	GIŞ	390	Ile	1111	Ala	1112	395	
	tee	ato	ctø	øtc		atø	acc	tøc	ር <del>ፓ</del> ር		tcc	ga t	ttc	gag		1551
_		_	_	_	_	_		-	_		Ser					1001
	201		204	400	., .			٠,٠	405					410		
gcc	gtg	tcc	cga	gcc	cag	cgc	gcc	ctg	gcg	gag	ttc	aac	gtc	tcc	ggc	1599
_											Phe					
			415					420					425			
gtg	gcc	acc	aac	atc	ggc	ttc	ctg	cgt	gcg	ctg	ctg	cgc	gag	gaa	gac	1647
Val	Ala	Thr	Asn	Ile	Gly	Phe	Leu	Arg	Ala	Leu	Leu	Arg	Glu	Glu	Asp	
		430					435					440				
											ggc					1695
Phe		Lys	Arg	Arg	lle		Thr	Gly	Phe	He	Gly	Ser	His	Gln	His	
	445					450					455			,		1540
_											ggg					1743
	Leu	Gln	Ala	Pro		Ala	Asp	Asp	Glu		Gly	Arg	116	reu		
460					465					470					475	

	_	_	_	_						cac His		_	_			1791
				ata					gag	gtg Val				ccg		1839
	_		tcc	_				aag	_	ctc Leu		_	gag			1887
		gat					gat			gcc Ala		acc				1935
										acc Thr 550						1983
						-	-		_	aag Lys				-		2031
_	_			_				_		tac Tyr	_		_	_	_	2079
										gat Asp				-		2127
			-			_	-	_		cgt Arg		-			_	2175
	tac	Thr	Pro	Tyr		gat Asp	_		Cys	cgc Arg 630	gcg		-			2223
gcc		aag	tcc	ggt	gtg	gac			cgc	atc Ile					aac	2271
				atg						gcc Ala				acc		2319
			gcc					gcg		tcc Ser			ctg			2367
		gag					ctg			tac Tyr		aac				2415
cag		gtc	gac	tcc	ggt		cac	atc	ctg	gcc		aag	gac	atg	gcc	2463

Gln 700	Ile	Val	Asp	Ser	Gly 705	Ala	His	Ile	Leu	Ala 710	Ile	Lys	Asp	Met	Ala 715	
	n t a	r t or	coc	coc	σcc.	gcg	σοσ	ccc	222	cto	σt c	200	gee	cto	CGC	2511
	_		-	_	-										-	2011
GIY	Leu	Leu	Alg		Ala	Ala	Ala	rro		ren	Val	тиг	Ala		Alg	
				720					725					730		
cgt	gaa	ttc	gac	ctg	ccc	gtg	cat	gtc	cac	acc	cac	gac	acc	gcc	ggc	2559
Arg	Glu	Phe	Asp	Leu	Pro	Val	His	Val	His	Thr	His	Asp	Thr	Ala	Gly	
			735					740					745			
ggt.	cag	ctg	gcc	acc	tac	ctg	gcc	gcc	gcc	aac	gcc	ggg	gcc	gat	gcc	2607
			-			Leu	_		_							_,,,
ulj	0111	750	AIG	1 111	1 7 1	псц	755	MIL	MIG	Mon	MIG	760	111u	пор	MIG	
				4				4	+						4	2055
_	_	_	_		_	ccc	-						-		-	2655
Vai	_	Ala	Ala	Ser	Ala	Pro	Leu	Ser	Gly	Thr		Ser	Gin	Pro	Ser	
	765					770					775					
atg	tcc	gct	ctg	gtt	gcc	gcg	ttt	gcg	cac	acc	cga	cgc	gac	acc	ggc	2703
Met	Ser	Ala	Leu	Val	Ala	Ala	Phe	Ala	His	Thr	Arg	Arg	Asp	Thr	Gly	
780					785					790		_	-		795	
	220	cto	cag	orr.		tcc	ga r	cto	o a a		tac	tσσ	gag	<b>ፓ</b> ቦ ፓ		2751
		_	_	_	-	Ser	_	_	-							2101
Leu	ASII	Leu	GIII		VAI	Set	АЅР	rea		rro	lyr	ПЪ	Ulu		vai	
				800					805					810		0=00
						ttt										2799
Arg	Gly	Leu	Tyr	Leu	Pro	Phe	Glu	Ser	Gly	Thr	Pro	Gly	Pro	Thr	Gly	
			815					820					825			
cgc	gtt	tac	cgc	cac	gag	atc	ccc	ggc	ggt	cag	ctg	tcc	aac	ctg	cgt	2847
Arg	Val	Tyr	Arg	His	Glu	Ile	Pro	Gly	Gly	Gln	Leu	Ser	Asn	Leu	Arg	
_		830	_				835	-	_			840				
gee	cag		gt.t.	gca	ctg	ggt		gcc	gac	cgc	ttc	gag	ctc	atc	gag	2895
_						Gly										
VIG			Val	VIT	ьсu		Deu	AIG	лэр	пъ	855	oru	Deu	110	ulu	
	845	• • •				850	٠.		- 4 -							0049
						aac										2943
	Tyr	Tyr	Ala	Ala		Asn	Glu	Met	Leu		Arg	Pro	Thr	Lys		
860					865					870					875	
acc	ccg	tcc	tcc	aag	gtt	gtc	ggt	gac	ctc	gca	ctg	cac	ctc	gtc	ggt	2991
Thr	Pro	Ser	Ser	Lys	Val	Val	Gly	Asp	Leu	Ala	Leu	His	Leu	Val	Gly	
				880					885					890		
ጀርር	e e t	g t.g	аес		gag	gat	t.t.c	gcc	gee	gat.	ccg	cag	aag	tac	ga.c	3039
						Asp										0000
піа	uly	141		110	ulu	иор	Ine	900	Ald	изр	110	0111		1 3 1	иор	
			895										905		1	0007
						gcc										3087
Пе	Pro		Ser	Val	lle	Ala		Leu	Arg	Gly	Glu		Gly	Thr	Pro	
		910					915					920				
ccc	ggt	ggc	tgg	ccc	gaa	ccg	ctg	cgc	acc	cgt	gca	ctc	gag	ggt	cgc	3135
Pro	Gly	Gly	Trp	Pro	Glu	Pro	Leu	Arg	Thr	Arg	Ala	Leu	Glu	Gly	Arg	
	-	-	-					_		_				-	-	

	925					930					935					
tcc	cag	ggt	aag	gcc	ccg	ctg	gcg	gag	atc	ccc	gcc	gag	gag	cag	gcc	3183
Ser	Gln	Gly	Lys	Ala	Pro	Leu	Ala	Glu	Ile	Pro	Ala	Glu	Glu	Gln	Ala	
940					945					950					955	
cac	ctg	gat	tcc	gat	gat	tcc	gcg	gag	cgt	cgc	ggc	acc	ctc	aac	cgc	3231
										Arg						
				960					965					970		
ctg	ctg	ttc	ccg	aag	ccg	acc	gag	gag	ttc	ctt	gag	cac	cgt	cgc	cgc	3279
Leu	Leu	Phe	Pro	Lys	Pro	Thr	Glu	Glu	Phe	Leu	Glu	His	Arg	Arg	Arg	
			975					980					985			
ttc	ggc	aac	acc	tcc	gcc	ctg	gat	gac	cgc	gag	ttc	ttc	tac	ggc	ttg	3327
Phe	Gly	Asn	Thr	Ser	Ala	Leu	Asp	Asp	Arg	Glu	Phe	Phe	Tyr	Gly	Leu	
		990					995				1	1000				
aag	gag	gga	cgt	gag	gag	ctg	atc	cga	ctg	acc	ggt	gtg	tcc	acc	ccg	3375
Lys	Glu	Gly	Arg	Glu	Glu	Leu	lle	Arg	Leu	Thr	Gly	Val	Ser	Thr	Pro	
1	1005				•	1010				]	1015					
atg	gtg	gtc	cgc	ctg	gat	gcg	gtg	tcc	gaa	ccg	gat	gac	aaa	ggc	atg	3423
Met	Val	Val	Arg	Leu	Asp	Ala	Val	Ser	Glu	Pro	Asp	Asp	Lys	Gly	Met	
1020	)				1025				]	1030					1035	
cgc	aac	gtg	gtg	gtc	$\mathbf{a}\mathbf{a}\mathbf{c}$	gtc	aac	ggc	cag	atc	cgc	ccg	atc	aag	gtg	3471
Arg	Asn	Val	Val	Val	Asn	Val	Asn	Gly	Gln	Ile	Arg	Pro	Ile	Lys	Val	
			]	1040					1045					1050		
-	-	_								acc						3519
Arg	Asp	Arg	Ser	Val	Glu	Ser			Ala	Thr	Ala			Ala	Asp	
			1055					1060					1065			
_			-			_	-			ttc						3567
Ala			Lys	Gly	His			Ala	Pro	Phe			Val	Val	Thr	
		1070					1075	•		•		1080				0015
		_	_							gct						3615
		Val	Ala	Glu	-	_	Glu	He	Lys	Ala	-	Asp	Ala	Val	Ala	
	1085					1090					1095					0000
			-	_						atc						3663
		Glu	Ala			Met	Glu	Ala		lle	Thr	Ala	Pro			
1100					1105				_	1110					1115	0511
										gcc						3711
Gly	Val	He			Val	Val	Val			Ala	Thr	Lys			Gly	
				1120					1125					1130		0505
	_				_	-		tage	cgact	tga g	gagco	cacaa	ac c	cgtc	ccggg	3765
Gly	Asp			Val	Val	Val	Ser									٠
			135					, .								0005
_	_					-									ctcacc	
		_			_	_								_	aaccac	
ccca	actc	egt g	gatgi	tccci	gt go	ctgat	tecca	a ggo	caggo	ccgg	ttgg	gaaag	gaa a	aaac	cagtga	3945

tggaacggcc atcggacagc gagacggaac caagcgtcat cggctccggt agagcggtga 4005 ggagcctg 4013

<210> 24 <211> 1139 <212> PRT <213> Corynebacterium thermoaminogenes <400> 24 Val Val Thr Thr Thr Pro Ser Thr Leu Pro Ala Phe Lys Lys Ile Leu 10 Val Ala Asn Arg Gly Glu Ile Ala Val Arg Ala Phe Arg Ala Ala Tyr 20 25 Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly 40 Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu 55 Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Asn Ala 65 Ala Lys Lys Val Lys Ala Asp Ala Val Tyr Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr 100 105 Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys Ser 120 Lys Ala Val Ser Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu 135 140 Ser Thr Pro Ser Thr Asp Ile Asp Glu Ile Val Lys Ser Ala Glu Gly 145 150 155 Gln Thr Tyr Pro Ile Phe Val Lys Ala Val Ala Gly Gly Gly Gly Arg 165 170 Gly Met Arg Phe Val Glu Lys Pro Glu Asp Leu Arg Glu Leu Ala Arg 180 185 190 Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ser Val Tyr 200 Val Glu Arg Ala Val Ile Lys Pro Gln His Ile Glu Val Gln Ile Leu 210 215 220 Gly Asp His Thr Gly Asp Val Ile His Leu Tyr Glu Arg Asp Cys Ser 230 235 Leu Gln Arg Arg His Gln Lys Val Val Glu Ile Ala Pro Ala Gln His 245 250 255 Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala Asp Ala Val Lys Phe 265 Cys Lys Ser Ile Gly Tyr Gln Gly Ala Gly Thr Val Glu Phe Leu Val

		275					280					285			
Asp	Glu	Ala	Gly	Asn	His	Val	Phe	Ile	Glu	Met	Asn	Pro	Arg	Ile	Gln
	290					295					300				
Val	Glu	His	Thr	Val	Thr	Glu	Glu	Val	Thr	Ser	Val	Asp	Leu	Val	Lys
305					310					315					320
Ala	Gln	Met	His	Leu 325	Ala	Ala	Gly	Ala	Thr 330	Leu	Lys	Glu	Leu	Gly 335	Leu
Thr	Gln	Asp	Lys 340		Thr	Thr	His	Gly 345		Ala	Leu	Gln	Cys 350		Ile
Thr	Thr	Glu 355			Ser	Asn	Asn 360			Pro	Asp	Thr 365		Val	Ile
Thr	Ala 370	Tyr	Arg	Ser	Pro	Gly 375	Gly		Gly	Val	Arg 380		Asp	Gly	Ala
Ala			Glv	Glv	Glu				His	Phe		Ser	Met	Len	Val
385					390					395	110 P	001		Bou	400
Lys	Met	Thr	Cys	Arg 405	Gly	Ser	Asp	Phe	Glu 410			Val	Ser	Arg 415	
Gln	Arg	Ala	Leu 420	Ala	Glu	Phe	Asn	Val 425	Ser	Gly	Val	Ala	Thr 430	Asn	Ile
Gly	Phe	Leu 435	Arg	Ala	Leu	Leu	Arg 440	Glu		Asp	Phe	Thr 445	Lys	Arg	Arg
Ile	Asp 450	Thr	Gly	Phe	Ile	Gly 455	Ser	His	Gln	His	Leu 460	Leu	Gln	Ala	Pro
	Ala	Asp	Asp	Glu	Gln	Gly	Arg	Ile	Leu	Glu	Tyr	Leu	Ala	Asp	Val
465				_	470					475					480
Thr	Val	Asn	Lys	Pro 485	His	Gly	Glu	Arg	Pro 490	Glu	Thr	Ala	Arg	Pro 495	Ile
Glu	Lys	Leu	Pro 500	Glu	Val	Glu	Asn	Ile 505	Pro	Leu	Pro	Arg	Gly 510	Ser	Arg
Asp	Arg	Leu 515	Lys	Gln	Leu	Gly	Pro 520	Glu	Gly	Phe	Ala	Arg 525	Asp	Leu	Arg
Glu	Gln 530	Asp	Ala	Leu	Ala	Val 535	Thr	Asp	Thr	Thr	Phe 540	Arg	Asp	Ala	His
Gln	Ser	Leu	Leu	Ala	Thr	Arg	Val	Arg	Ser	Phe		Leu	Thr	Pro	Ala
545					550					555					560
Ala	Arg	Ala	Val	Ala 565	Lys	Leu	Thr	Pro	Glu 570	Leu	Leu	Ser	Val	Glu 575	Ala
Trp	Gly	Gly	Ala 580	Thr	Tyr	Asp	Val	Ala 585	Met	Arg	Phe	Leu	Phe 590		Asp
Pro	Trp	Ala 595		Leu	Asp	Glu	Leu 600		Glu	Ala	Met	Pro 605		Val	Asn
lle	Gln 610	Met	Leu	Leu	Arg	Gly 615	Arg	Asn	Thr	Val	Gly 620		Thr	Pro	Tyr

WO 01/25447 PCT/JP00/06913

											•				
Pro 625	Asp	Ser	Val	Cys	Arg 630	Ala	Phe	Val	Gln	Glu 635	Ala	Ala	Lys	Ser	Gly 640
Val	Asp	Ile	Phe	Arg 645	Ile	Phe	Asp	Ala	Leu 650	Asn	Asp	Ile	Ser	Gln 655	Met
Arg	Pro	Ala	Ile 660	Asp	Ala	Val	Leu	Glu 665	Thr	Gly	Thr	Ser	Val 670	Ala	Glu
Val	Ala	Met 675	Ala	Tyr	Ser	Gly	Asp 680		Ser	Asn	Pro	Gly 685	Glu	Lys	Leu
Tyr	Thr 690	Leu	Asp	Tyr	Tyr	Leu 695	Asn	Leu	Ala	Glu	Gln 700	lle	Val	Asp	Ser
Gly 705	Ala	His	Ile	Leu	Ala 710	Ile	Lys	Asp	Met	Ala 715	Gly	Leu	Leu	Arg	Arg 720
Ala	Ala	Ala	Pro	Lys 725	Leu	Val	Thr	Ala	Leu 730	Arg	Arg	Glu	Phe	Asp 735	Leu
Pro	Val	His	Val 740	His	Thr	His	Asp	Thr 745	Ala	Gly	Gly	Gln	Leu 750	Ala	Thr
	Leu	<b>7</b> 55					760		_			765			
	Pro 770					775					780				
785					790			_		795					800
	Ser	_		805					810					815	
	Phe		820					825					830		
	Ile	835					840				•	845			
						855					860				
865					870					875					880
Val	Val	Gly	Asp	Leu 885	Ala	Leu	His	Leu	Val 890	Gly	Ala	Gly	Val	Ser 895	Pro
Glu	Asp	Phe	Ala 900	Ala	Asp	Pro	Gln	Lys 905	Tyr	Asp	lle	Pro	Asp 910	Ser	Val
Ile	Ala	Phe 915	Leu	Arg	Gly	Glu	Leu 920	Gly	Thr	Pro	Pro	Gly 925	Gly	Trp	Pro
Glu	Pro 930	Leu	Arg	Thr	Arg	Ala 935	Leu	Glu	Gly	Arg	Ser 940	Gln	Gly	Lys	Ala
Pro 945	Leu	Ala	Glu	Ile	Pro 950	Ala	Glu	Glu	Gln	Ala 955	His	Leu	Asp	Ser	Asp 960
Asp	Ser	Ala	Glu	Arg	Arg	Gly	Thr	Leu	Asn	Arg	Leu	Leu	Phe	Pro	Lys

965 970 975 Pro Thr Glu Glu Phe Leu Glu His Arg Arg Phe Gly Asn Thr Ser 980 985 Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Lys Glu Gly Arg Glu 1000 1005 995 Glu Leu Ile Arg Leu Thr Gly Val Ser Thr Pro Met Val Val Arg Leu 1015 1020 Asp Ala Val Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val Val 1035 1030 Asn Val Asn Gly Gln Ile Arg Pro Ile Lys Val Arg Asp Arg Ser Val 1050 1045 1055 Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ala Thr Asn Lys Gly 1060 1065 His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Ala Glu 1085 1075 1080 Gly Asp Glu Ile Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala Met 1095 1100 Lys Met Glu Ala Thr Ile Thr Ala Pro Val Asp Gly Val Ile Asp Arg 1110 1115 Val Val Val Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile Val 1125 1130 Val Val Ser <210> 25 <211> 3306 <212> DNA <213> Corynebacterium thermoaminogenes <220> <221> CDS <222> (64)..(2820) <400> 25 gatcaaccta agccaggaga atccggcggg cggtttctac ttctacagga gctgaacccc 60 acc gtg aat gaa ctt ctc cgt gac gat atc cgt tat ctc ggc cgg atc 108 Val Asn Glu Leu Leu Arg Asp Asp Ile Arg Tyr Leu Gly Arg Ile 5 10 156 ctg ggc gag gtg atc tcc gag cag gag ggc cac cat gtc ttc gaa ctg Leu Gly Glu Val Ile Ser Glu Gln Glu Gly His His Val Phe Glu Leu 20 25 gtt gaa cgc gcc cgc cgg acc tcc ttc gac atc gcc aag gga cgc gcg 204

Val Glu Arg Ala Arg Arg Thr Ser Phe Asp Ile Ala Lys Gly Arg Ala

## WO 01/25447 PCT/JP00/06913

			35					40					45			
gag	atg	gac	agt	ctg	gtg	gag	gtg	ttc	gct	ggc	atc	gac	ccg	gag	gac	252
		50					55				Ile	60			_	
											gcc					300
Ala	Thr 65	Pro	Val	Ala	Arg	Ala 70	Phe	Thr	His	Phe	Ala 75	Leu	Leu	Ala	Asn	
	-		_	_		_	_	_	_		gaa	_	_	_		348
80					85					90	Glu				95	
											gcc		-			396
				100					105		Ala			110		
										_	gcc				_	444
			115					120			Ala		125			
											ccg					492
		130					135				Pro	140				
											acc		_	_	-	540
	145					150					Thr 155					
	-						_		_		gcc			_		588
160	Arg	HIS	Leu	Leu	165	Ala	Leu	Pro	Thr		Ala	Arg	Thr	Gln		
	cto	σa t	g a c	atr		cac	220	atc	caa	170	cgg	a t o	200	ato	175	636
										_	Arg		_		-	030
				180					185					190		£0.4
											cgc Arg					684
			195					200					205			<b>500</b>
											ctg		_			732
		210					215				Leu	220				
									-	_	gcc		_			780
	225					230					Ala 235					
											gga					828
G1y 240	ASP	116	rro	ınr	Thr 245	Ala	met	val	Arg	Pro 250	Gly	2er	Trp	116		
	gar	rat	gra t	gge		cco	tta	σtο	200		gag	art	et o	200	255	876
											Glu		-			010
	<b>-</b> F		F	260		0			265		J. U			270		

•			cgg Arg 275			-										924
_		_	ctg Leu	-		_		_			-		-		-	972
	_	_	gag Glu	_	_			_	_	_		-				1020
			gtt Val													1068
			ctg Leu													1116
			tgg Trp 355													1164
		_	gac Asp		_			_						_		1212
_	-		atc Ile													1260
	-		ggg Gly													1308
-			gag Glu	_	_			Glu	_							1356
			tac Tyr 435													1404
	_	_	ctg Leu	-			_				_					1452
_		tcc	gag Glu	-			cgt	-	_				-	_	_	1500
	gag	_	gtg Val			ttc					gtg					1548
	tcc	atg	gcc	tct		gtc	acg	gac	atc		gaa	ccg	atg	gtg		1596

Ile	Ser	Met	Ala	Ser 500	Ser	Val	Thr	Asp	Ile 505	Leu	Glu	Pro	Met	Val 510	Leu	
ctc	aag	gag	ttc	ggt	ctg	atc	cgg	gcc	aac	ggg	aag	aac	ccg	acg	ggc	1644
	_					lle										
пса	D , O	UIU	515	V1,	204		0	520		~_,	_, _		525		~_,	
	_4_			o t o		0 t a	++0		0.00	a t a	an t	<b>G</b> O O		006	04	1692
-	-	_				ctg										1092
Ser	Val	•	val	ile	Pro	Leu		GIU	Inr	116	ASP	_	Leu	Gin	Arg	
		530					535					540				
ggc	gcg	ggc	atc	ctg	gag	gaa	ttg	tgg	gac	atc	gac	ctc	tac	cgc	aat	1740
Gly	Ala	Gly	Ile	Leu	Glu	Glu	Leu	Trp	Asp	Ile	Asp	Leu	Tyr	Arg	Asn	
·	545					550					555					
tac		рар	cag	CFF	gac	aac	gtc	cag	gag	gtc	ate	ctg	222	t.a.t.	tee	1788
						Asn										2.00
	ьeц	Ulu	UIII	пΕ		VOII	101	0111	Olu	570	1100	БСц	ulj	1,7,1	575	
560					565							4				1000
_			_	_		ggg										1836
Asp	Ser	Asn	Lys	Asp	Gly	Gly	Tyr	Phe		Ala	Asn	Trp	Ala		Туг	
				580					585					590		
gac	gcg	gag	tta	cgc	ctg	gtc	gaa	cta	tgc	cgg	ggc	cgt	aat	gtc	aag	1884
Asp	Ala	Glu	Leu	Arg	Leu	Val	Glu	Leu	Cys	Arg	Gly	Arg	Asn	Val	Lys	
•			595					600	-		_	_	605			
ctc	cgt	ctc		cac	ggt	cgt	ggt	ggc	acg	gtg	ggt	cgt	ggc	ggt	ggc	1932
	_					Arg		-								
Dea	0	610	1 110		01,	••• 0	615				<b>~1,</b>	620	-1,	,		
	+		an t	<b>505</b>	a t a	a + a		A 0 4		0.00	~ ~ ~		at o	000	aa+	1980
			-		-	ctg										1300
Pro		Tyr	Asp	Ala	TIE	Leu	Ala	GIN	rro	Lys		Ala	val	Arg	игу	
	625					630					635					
gcg	gtg	cgg	gtg	act	gaa	cag	ggc	gag	atc	atc	tcc	gcg	aag	tac	ggt	2028
Ala	Val	Arg	Val	Thr	Glu	Gln	Gly	Glu	Ile	lle	Ser	Ala	Lys	Tyr	Gly	
640					645					650					655	
aac	ccg	gat	acg	gca	cgc	cgc	aac	ctt	gag	gcc	ctg	gtg	tcc	gcg	acg	2076
						Arg										
11011		пор		660	0	••••			665				- • •	670		
a + ~	<b>~~~</b>	~~~	+ ~ ~		a t a	gat	an t	a+ a		οtσ	000	nn t	0 0 0		o ot o	2124
_																6164
Leu	Glu	Ala		Leu	Leu	Asp	ASP		GIU	Leu	Pro	ASN		Glu	Arg	
			675					680					685			0.4-0
						gag										2172
Ala	His	Gln	lle	Met	Gly	Glu	lle	Ser	Glu	Leu	Ser	Phe	Arg	Arg	Tyr	
		690					695					700				
tca	tca	ctg	gtc	cat	gag	gat	ccc	gga	ttc	atc	cag	tac	ttc	acc	cag	2220
						Asp										
<del>-</del>	705		<del>-</del>		-	710	-	•			715	•				
tee		000	cto	C 2 G	<b>O</b> D O	atc	o o o	tee	ctc	220		ggt	tee	<u> </u>	CCC	2268
																2200
96L	I II I.	rro	ьeu	OIII	olu	Ile	all	261.	ьeu	W2II	116	ary	oei,	WI.R	LIO	

720					725					730					735	
tcc	tca	cgt	aaa	cag	acc	aac	acg	gtg	gag	gat	ctg	cgt	gcc	atc	ccg	2316
Ser	Ser	Arg	Lys	Gln	Thr	Asn	Thr	Val	$\hbox{\tt Glu}$	Asp	Leu	Arg	Ala	lle	Pro	
				740					745					<b>750</b>		
tgg	gtg	ctc	agc	tgg	tcc	cag	tcc	cgt	gtc	atg	ctg	ccg	ggc	tgg	ttc	2364
Trp	Val	Leu	Ser	Trp	Ser	Gln	Ser	Arg	Val	Met	Leu	Pro	Gly	Trp	Phe	
			755					760					765			
ggt	gtg	ggt	acc	gca	ctg	cgt	gag	tgg	atc	ggt	gag	ggg	gag	ggg	gct	2412
Gly	Val	Gly	Thr	Ala	Leu	Arg	Glu	Trp	lle	Gly	Glu	Gly	Glu	Gly	Ala	
		770					775					780				
-	-										cgg					2460
Ala	Glu	Arg	lle	Ala	Glu		Gln	Glu	Leu	Asn	Arg	Cys	Trp	Pro	Phe	
	785					790					795					
		_	-	_							atg					2508
Phe	Thr	Ser	Val	Leu		Asn	Met	Ala	Gln		Met	Ser	Lys	Ala		
800					805					810					815	
-	_	_	-								ccg					2556
Leu	Arg	Leu	Ala		Leu	Tyr	Ala	Asp		He	Pro	Asp	Arg		Val	
				820					825					830		0004
	_										tat					2604
Ala	Asp	Arg		Tyr	Glu	Thr	11 <b>e</b>		Gly	Glu	Tyr	Phe		Thr	Lys	
			835				4	840			_ 4		845			9659
-	_		_								ctg					2652
GIU	met		Cys	ınr	11e	ınr		261.	GIN	ASP	Leu		ASP	ASP	ASII	
		850			4		855	a <del>a t</del>		++0	000	860	a t c	οŧσ	0.00	2700
											ccg					2100
Pro		Leu	Ala	Arg	261.	870	Arg	ser	Alg	rne	Pro 875	1 9 1	Leu	Leu	rro	
a t a	865	at a	a t a	000	a t a		a tor	2+0	0.00	caa	tac	٨σσ	tee	oot	ora t	2748
											Tyr					2140
880	Non	Val	116	uIII	885	UIU	nec	net	пιδ	890	1 7 1	мг	bei	UIJ	895	
	ggc	ace	øct	etc	-	cet	aat.	at.c	cgc		acc	atg	aat.	gga		2796
		_	_								Thr					
UIU	0.,			900		0			905	-				910		
tee	acg	gcc			aac	tcg	ggt	tags		cca :	gacge	ccci	gg g		cgcac	2850
	_	-	_	-	Asn				30-0		J J		<b>.</b> .			
			915				·									
ccts	tgta	ata (	ctgt	taaa	ag ti	tgcco	eggt	g tea	atcc	gggc	gtga	atgg	ata ;	gaca	acttaa	2910
															ccagcg	
															gcctct	
-		_													tggacc	
															tcatcc	
-															tttgca	

ttctccaggt gatgtccatc acccaccggt tttaaactat tgaccgatag aaacacctgc 3270 actaggttat ctgttatgca atagaaaata gtgcat 3306

<210> 26 <211> 919 <212> PRT <213> Corynebacterium thermoaminogenes <400> 26 Val Asn Glu Leu Leu Arg Asp Asp Ile Arg Tyr Leu Gly Arg Ile Leu 15 Gly Glu Val Ile Ser Glu Gln Glu Gly His His Val Phe Glu Leu Val Glu Arg Ala Arg Arg Thr Ser Phe Asp Ile Ala Lys Gly Arg Ala Glu 35 40 Met Asp Ser Leu Val Glu Val Phe Ala Gly Ile Asp Pro Glu Asp Ala 55 60 Thr Pro Val Ala Arg Ala Phe Thr His Phe Ala Leu Leu Ala Asn Leu 75 65 Ala Glu Asp Leu His Asp Ala Ala Gln Arg Glu Gln Ala Leu Asn Ser Gly Glu Pro Ala Pro Asp Ser Thr Leu Glu Ala Thr Trp Val Lys Leu 105 110 Asp Asp Ala Gly Val Gly Ser Gly Glu Val Ala Ala Val Ile Arg Asn 125 115 120 Ala Leu Val Ala Pro Val Leu Thr Ala His Pro Thr Glu Thr Arg Arg 135 Arg Thr Val Phe Asp Ala Gln Lys His Ile Thr Ala Leu Met Glu Glu 155 160 150 145 Arg His Leu Leu Leu Ala Leu Pro Thr His Ala Arg Thr Gln Ser Lys 165 170 Leu Asp Asp Ile Glu Arg Asn Ile Arg Arg Arg Ile Thr Ile Leu Trp 185 190 180 Gln Thr Ala Leu Ile Arg Val Ala Arg Pro Arg Ile Glu Asp Glu Val 205 200 195 Glu Val Gly Leu Arg Tyr Tyr Lys Leu Ser Leu Leu Ala Glu Ile Pro 215 Arg Ile Asn His Asp Val Thr Val Glu Leu Ala Arg Arg Phe Gly Gly 230 235 240 225 Asp lie Pro Thr Thr Ala Met Val Arg Pro Gly Ser Trp lie Gly Gly 250 245 Asp His Asp Gly Asn Pro Phe Val Thr Ala Glu Thr Val Thr Tyr Ala 270 260 265

Thr	His	Arg 275	Ala	Ala	Glu	Thr	Val 280	Leu	Lys	Tyr	Tyr	Val 285	Lys	Gln	Leu
His	Ala 290	Leu	Glu	His	Glu	Leu 295	Ser	Leu	Ser	Asp	Arg 300	Met	Asn	Val	Ile
Ser 305	Asp	Glu	Leu	Arg	Val 310	Leu	Ala	Asp	Ala	Gly 315	Gln	Asn	Asp	Met	Pro 320
Ser	Arg	Val	Asp	Glu 325	Pro	Tyr	Arg	Arg	Ala 330	Ile	His	Gly	Met	Arg 335	Gly
Arg	Met	Leu	Ala 340	Thr	Thr	Ala	Ala	Leu 345	Ile		Glu	Glu	Ala 350	Val	Glu
		355				Phe	360					365			
Lys	Arg 370	Asp	Leu	Asp	Ile	Val 375	Asp		Ser	Leu	Arg 380	Met	Ser	Arg	Asp
385					390	Arg				395					400
Ser	Phe	Gly	Phe	Asn 405	Leu	Tyr	Ser	Leu	Asp 410	Leu		Gln	Asn	Ser 415	Asp
·			420			Thr		425					430		
•		435	_	·		Thr	440					445			
Arg	Glu 450	Leu	Ser	Thr	Pro	Arg 455	Pro	Leu	Ile	Pro	His 460	Gly	Asp	Pro	Asp
465					470	Arg				475					480
				485	• •	Gly	•		490					495	
			500			Thr		505					510		
-		515				Arg	520					525			
	530					Phe 535					540				
545	·				550	Leu				555					560
Leu	Glu	Gln	Arg	Asp 565	Asn	Val	Gln	Glu	Val 570	Met	Leu	Gly	Tyr	Ser 575	Asp
Ser	Asn	Lys	Asp 580	Gly	Gly	Tyr	Phe	Ala 585	Ala	Asn	Trp	Ala	Leu 590	Tyr	Asp
		595	_			Glu	600					605			
Arg	Leu	Phe	His	Gly	Arg	Gly	Gly	Thr	Val	Gly	Arg	Gly	Gly	Gly	Pro

	610					615					620				
	Tyr	Asp	Ala	Ile		Ala	Gln	Pro	Lys		Ala	Val	Arg	Gly	
625	4 5 6	Vol.	Tha	C1.,	630	Gly	61	Ιlο	Tla	635	A 1 a	Lvc	Tun	Cly	640
vaı	Arg	vai	IIII	645	GIN	g 1 y	Ulu	116	650	Ser	Ala	гìя	lyl	655	ASII
Pro	Asp	Thr	Ala 660	Arg	Arg	Asn	Leu	Glu 665	Ala	Leu	Val	Ser	Ala 670	Thr	Leu
Glu	Δla	Sar		Len	4 s n	Asp	Val		Len	Pro	Acn	Δησ		Δησ	Δla
ulu	Via	675	рсц	Dog	мор	пор	680	or u	Dou		11011	685	oru	o	
His	Gln	Ile	Met	Gly	Glu	Ile	Ser	Glu	Leu	Ser	Phe	Arg	Arg	Tyr	Ser
	690					695					700				
	Leu	Val	His	Glu		Pro	Gly	Phe	Ile		Tyr	Phe	Thr	Gln	
705	_	_			710		_	_		715		_		_	720
Thr	Pro	Leu	Gln	Glu 725	He	Gly	Ser	Leu	730	He	Gly	Ser	Arg	Pro 735	Ser
Ser	Arg	Lys	Gln	Thr	Asn	Thr	Val	Glu	Asp	Leu	Arg	Ala	lle	Pro	Trp
			740					745					<b>750</b>		
Val	Leu		Trp	Ser	Gln	Ser		Val	Met	Leu	Pro		Trp	Phe	Gly
		755					760					765			
Val		Thr	Ala	Leu	Arg	Glu	Trp	Ile	Gly	Glu		Glu	Gly	Ala	Ala
0.1	770	71.	41.	01		775	01	T		<b>.</b>	780	T	D	nl.	DL -
	Arg	116	Ala	Glu	ьеи 790	Gln	GIU	Leu	ASN	795	Cys	Trp	Pro	Pne	Pne 800
785	Sar	Val	Lan	Acn		Met	Ala	Gln	Val		Sar	Tve	Ala	Glu	
1111	261	vai	ьец	805	ASII	nec	Ala	UIN	810	nec	561	цуз	ліа	815	Deu
Arg	Leu	Ala	Arg	Leu	Tyr	Ala	Asp	Leu	Ile	Pro	Asp	Arg	Glu	Val	Ala
			820		•			825					830		
Asp	Arg		Tyr	Glu	Thr	Ile		Gly	Glu	Tyr	Phe		Thr	Lys	Glu
		835				~ .	840			_	_	845		â	_
Met		Cys	Thr	lle	Thr	Gly	Ser	Gln	Asp	Leu		Asp	Asp	Asn	Pro
41.	850	41-	4	0	17 _ 1	855	C	<b>A</b>	nh.	D	860	T	1	D	T
	Leu	Ala	Arg	ser		Arg	26L	Arg	Pne	875	lyr	Leu	Leu	Pro	
865	Vol	Tla	Gin	Vo l	870	Met	Mat	450	Ana		Ana	San	Cly	Acn	880
				885					890					895	
Gly	Thr	Ala		Pro	Arg	Asn	lle	Arg	Leu	Thr	Met	Asn	Gly	Leu	Ser
			900					905					910		
Thr	Ala		Arg	Asn	Ser	Gly									
		915													

<210> 27

<211> 3907

<212> DNA

<213 > Corynebacterium thermoaminogenes

<220> <221> CDS <222> (686)..(3388)

<400> 27

attacttcag ctgactcagc aacattcgta ttaggtatgc aaacaacatt tggttcgtta 60 aatccaagta gtatggttaa agtaacttgg ggtattgctc aagcacttat cgcctttgta 120 ttattattag ctggtggcgg agatggaact aaagctctca acgcaattca gagtgccgct 180 attattagtg cgtttccatt ctcctttgtc gtcatattaa tgatgatcag tttctacaaa 240 gatgctaata aagaacgtaa attcttagga ttaacattaa cgcctaataa acacagatta 300 gaagaatacg ttaaatatca acaagaggat tacgaatctg atattttaga aaaacgtgaa 360 tctagacgta atcgtgaaag agaagaataa ttgaatgaaa tatctactat aatggtgggt 420 ttaaagctat caacaatttt gttgatagct atttttatgt ttcaaacata taaatattat 480 ttacttgcga ttgataacca ttctcaatta ataaaaataa cttatagtac aaatgcgtta 540 taataagttt tacttatact acctgattaa aaatgcgaaa tgaaaaatga cccctttata 600 tacctataca gttgtgttcg aaaacatata ataatacaat ttaactaagg catataaata 660 tatagaaatt caagggggat atcaa atg gct tct aat ttt aaa gaa aca gcg 712 Met Ala Ser Asn Phe Lys Glu Thr Ala 1 760 aag aaa caa ttt gat tta aat ggc caa tca tac acg tac tat gat tta Lys Lys Gln Phe Asp Leu Asn Gly Gln Ser Tyr Thr Tyr Tyr Asp Leu 10 15 20 aaa tca tta gaa gaa caa ggt tta act aaa att tca aag tta cct tat 808 Lys Ser Leu Glu Glu Gln Gly Leu Thr Lys Ile Ser Lys Leu Pro Tyr 35 tca atc cgt gta tta cta gaa tca gtg tta cgt cag gaa gat gat ttt 856 Ser Ile Arg Val Leu Leu Glu Ser Val Leu Arg Gln Glu Asp Asp Phe 45 50 55 gta att act gat gat cac att aaa caa tta gca gaa ttt ggc aaa aaa 904 Val Ile Thr Asp Asp His Ile Lys Gln Leu Ala Glu Phe Gly Lys Lys 60 65 70 952 ggt aac gaa ggt gaa gta cct ttc aaa cca tct cga gtt att tta caa Gly Asn Glu Gly Glu Val Pro Phe Lys Pro Ser Arg Val Ile Leu Gln 75 80 85 1000 gae tte act ggt gta cea gea gta gtt gae tta geg tet tta egt aaa Asp Phe Thr Gly Val Pro Ala Val Val Asp Leu Ala Ser Leu Arg Lys 90 95 105 100 1048 Ala Met Asn Asp Val Gly Gly Asp Ile Asn Lys Ile Asn Pro Glu Val 110 115

cca gtt gac tta gtt att gac cac tct gta caa gta gat agt tat gct

1096

Pro	Val	Asp	Leu 125	Val	Ile	Asp	His	Ser 130	Val	Gln	Val	Asp	Ser 135	Туг	Ala	
		_						atg Met								1144
	_	_						tgg Trp	_			_				1192
		_	-			-		ggt Gly								1240
gaa					_	-		gtt Val	_	_	_	_				1288
	_			_			_	ggt Gly 210								1336
			att		_			tgg Trp		-			atc	_	_	1384
_	_	ggt	-				cca	tca Ser				att				1432
	ggt	-			_	aat	-	tta Leu			ggt					1480
gac		-		-	gta		-	gag Glu		cgt					gta	1528
				gag				cct Pro 290	ggt					cca		1576
			gca					atg Met					ggt			1624
-	Gly	ttc				Asp	gaa	gaa Glu			Lys	tac				1672
Thr		_			Asp			gca Ala		Val					Gln	1720
			_				_	gaa Glu		_	_		_			1768

				350					355					360		
gaa	gtg	att	gat	tta	gat	tta	tct	aca	gtt	caa	gct	tct	tta	tca	ggt	1816
Glu	Val	Ile	Asp	Leu	Asp	Leu	Ser	Thr	Val	Gln	Ala	Ser	Leu	Ser	Gly	
			365					370					375			
	aaa	_			-					-						1864
Pro	Lys	_	Pro	Gln	Asp	Leu		Phe	Leu	Ser	Asp		Lys	Thr	Glu	
		380					385					390				4040
	gaa															1912
Phe	Glu	Lys	Ser	Val	Thr		Pro	Ala	Gly	Asn		Gly	HIS	Gly	Leu	
	395	4		111		400					405	111	+	<b></b>	+	1060
_	gaa	_	_		_	_		-	-							1960
410	Glu	261.	GIU	rne	415	Lys	LYS	Ala	gru	420	r 3 2	rne	ASII	Y2b	425	
	act	tra	act	ato		act	oot	σa t	σtt		att	gca	g c g	att		2008
•	Thr			-	_			-		_					_	2000
b	1 111	501		430	2,0		013	no _P	435		110			440		
tca	tgt	aca	aat		tct	aac	cct	tac		atg	tta	ggt	gca		tta	2056
	Cys															
	•		445					450					455			
gta	gct	aaa	aaa	gca	att	gaa	aaa	ggc	tta	aaa	gta	$\operatorname{cct}$	gat	tat	gta	2104
Val	Ala	Lys	Lys	Ala	Ile	Glu	Lys	Gly	Leu	Lys	Val	Pro	Asp	Tyr	Val	
		460					465					470				
	act			_					_	_						2152
Lys	Thr	Ser	Leu	Ala	Pro		Ser	Lys	Val	Val		Gly	Tyr	Leu	Arg	
	475					480					485					0000
_	tca				_											2200
•	Ser	Gly	Leu	Gin		Tyr	Leu	ASP	ASP		ыу	Pne	ASN	Leu		
490	+ + +	~~+	+~+	0.00	495	+ ~+	o t o	aat	000	500	aat	000	++0	++0	505	2248
	tat Tyr															2240
uly	1 9 1	013	O y S	510	1 1111	O) S	116	013	515	561	uly	110	Deu	520	110	
gaa	att	gaa	ลลล		gta	gct	gac	gaa		tta	tta	gta	act		gta	2296
_	Ile						-									
			525		- <b></b> .		•	530					535			
ctt	tct	ggt	aac	cgt	aac	ttt	gaa	ggt	cgt	atc	cat	ccg	tta	gtt	aaa	2344
	Ser			_												
		540					545					550				
gct	aac	tac	tta	gct	tca	cca	caa	tta	gtt	gta	gct	tat	gca	tta	gct	2392
Ala	Asn	Tyr	Leu	Ala	Ser	Pro	Gln	Leu	Val	Val		Tyr	Ala	Leu	Ala	
	555					560					565					
	acg	_	_													2440
_	Thr	Val	Asp	Ile	_	Leu	His	Asn	Glu		lle	Gly	Lys	Gly		
570					575					580					585	

gat ggc gaa gat ggat ggat ggat ggat at cott aaa gat atc tgg cca agt atc aaa gaa       2488         Asp Gly Glu Asp Val Tyr Leu Lys Asp Ile Trp Pro Ser Ile Lys Glu 599       595       600         gtt gca gac act gtt gat agt gtc gta acg cca gaa tta ttc tta gaa       2536         Val Ala Asp Thr Val Asp Ser Val Val Thr Pro Glu Leu Phe Leu Glu 615       605       606         gaa tat gca aat gta tac gaa aat aat gaa atg gga aat gaa atc gac 620       625       630         gat act gac gca cca tta tat gat ttc gat cca aat tca act tat att 74 Asp Asp Asp Asp Po Leu Tyr Asp Phe Asp Pro Asp Ser Thr Tyr Ile 635       640       645         caa aat cca tca tc tc tc caa ggt tta tct aaa gaa cca gga act att 2660       665       665       665         gaa act gca ca tta tat gat ttc gat act gaa act gac 640       665       665       665         caa aat cca tca tc tc tc caa ggt tta tct aaa gaa cca gga act att 610       670       665       666         Gaa act gca cat tat aac gat att gg gt aaa gaa act gac 660       665       666       666       666         gaa act gaa cca tat gat ggt gg ga act gg																	
Strong   S	-		-	-	_				-				_			_	2488
Val         Ala         Asp         Thr         Val         Asp         Ser         Val         Thr         Pro         Glu         Leu         Phe         Leu         Glu         Glu         Ass         2584         2584         Glu         Tyr         Ala         Ass         Val         Tyr         Glu         Ass         Glu         Met         Trp         Ass         Glu         Trp         Ass         Glu         Met         Trp         Ass         Glu         Trp         Ass         Glu         Met         Trp         Ass         Glu         Tru         Tru         Tru         Ile         Ass         Glu         Pro         Ass         Ass         Glu         Pro         Ass         Ass         Leu         Ass         Ass         Leu         Ass         His </td <td>_</td> <td>-</td> <td></td> <td></td> <td>590</td> <td></td> <td></td> <td></td> <td>_</td> <td>595</td> <td>_</td> <td></td> <td></td> <td></td> <td>600</td> <td></td> <td></td>	_	-			590				_	595	_				600		
gaa tat gca aat gta tac gaa aat aat gaa atg gag aat gaa atc gac 2584 Glu Tyr Ala Asn Val Tyr Glu Asn Asn Glu Met Trp Asn Glu Ile Asp 620	_	_	-														2536
gaa tat         gca at         gta tat         gta tat         gaa at         gaa         gaa <td>Val</td> <td>Ala</td> <td>Asp</td> <td></td> <td>Val</td> <td>Asp</td> <td>Ser</td> <td>Val</td> <td></td> <td>Thr</td> <td>Pro</td> <td>Glu</td> <td>Leu</td> <td></td> <td>Leu</td> <td>Glu</td> <td></td>	Val	Ala	Asp		Val	Asp	Ser	Val		Thr	Pro	Glu	Leu		Leu	Glu	
Glu         Tyr         Ala         Asn         Val         Tyr         Glu         Asn         Glu         Met         Trp         Asn         Glu         Ile         Asp           gtt         act         gac         gca         cca         tat         tat         gat         tcc         gat         tat         att         gat         caa         att         tat         att         gat         caa         att         tat         att         gat         caa         aat         tat         att         gat         caa         gat         tat         aat         caa         gat         tat         gat         caa	gaa	tat	gca		gta	tac	gaa	aat		gaa	atg	tee	aat		atc	gac	2584
Secondary   Seco	_		_							-						-	
Val         Thr         Asp         Ala         Pro         Leu         Tyr         Asp         Phe         Asp         Pro         Ash         Ser         Thr         Tyr         Ile         645         645         645         2680         645         645         645         645         666         665         666         660         665         660         666         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         666         665         665         666         665         666         665         666         665         666         665         666         665         666         665         665         665         665         665         665         665         665         665         665         665         665         665         665 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td></td>		•				•						•				•	
Caa   aat   cca   tca   tcc   tcc   tcc   caa   ggt   tta   tct   aaa   gaa   cca   gga   act   att   2680	gtt	act	gac	gca	cca	tta	tat	gat	ttc	gat	cca	aat	tca	act	tat	att	2632
caa aat cca at cca tca tca tct ctc       caa ggt tta tct aaa gaa cca agg aat caat 266       caa ggt tta tct aaa gaa cca att 266       caa ggt tta cca caa gga aat 27       caa ggt caa aaa cca att aaa gat tta cgt att atg ggt aaa ttt ggt gat tca gtt 2728       caa cca tta aaa gat tta cgt att atg ggt aaa ttt ggt gat caa gtt 2728       caa cca tta aaa gat tta cgt att atg ggt aaa ttt ggt gat caa gtt 2728       caa caa ct gac cac att tct cca gca ggt ggt gat gat ggt gat aaa gat aca cca 2776       caa act gac cac att tct cca gca ggt ggt gat ggt ggt aaa gat aca cca 2776       caa act gac cac att tct cca gca ggt ggt gat gat ggt gat aca ac cca 2776       caa act gat gat aca ac cca 2776         Thr Thr Asp His Ile Ser Pro Ala Gly Ala Ile Gly Lys Asp Thr Pro 685       caa act gat gtt cca att aga gaa ttt aac 2824       cat ggt aaa tat tta tta gac cat gat gtt cca att aga gaa ttt aac 2824       cat ggt aaa tat tta aca cat gaa gtt gat aca cat gaa gt ggt gat aca cat gaa gta atg gat act 2872       caa ggt aat aca cca 2824         Ser Tyr Gly Lys Tyr Leu Leu Asp His Asp Val Pro Ile Arg Gly Phe Asn 700       roo 700        roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700       roo 700 <td>Val</td> <td>Thr</td> <td>Asp</td> <td>Ala</td> <td>Pro</td> <td>Leu</td> <td>Tyr</td> <td>Asp</td> <td>Phe</td> <td>Asp</td> <td>Pro</td> <td>Asn</td> <td>Ser</td> <td>Thr</td> <td>Tyr</td> <td>Ile</td> <td></td>	Val	Thr	Asp	Ala	Pro	Leu	Tyr	Asp	Phe	Asp	Pro	Asn	Ser	Thr	Tyr	Ile	
Gln Asn Pro Ser Phe Phe Gln Gly Leu Ser Lys Glu Pro Gly Thr Ile 650 gaa cca tta aaa gat tta cgt att atg ggt aaa ttt ggt gat tca gtt 665 gaa cca tta aaa gat tta cgt att atg ggt aaa ttt ggt gat tca gtt 670 670 675 aca act gac cac att tct cca gca ggt gg act ggt aaa gat aca cca 670 675 aca act gac cac att tct cca gca ggt gg act ggt aaa gat aca cca 670 675 675 680 aca act gac cac att tct cca gca ggt gg act ggt aaa gat aca cca 676 677 Asp His Ile Ser Pro Ala Gly Ala Ile Gly Lys Asp Thr Pro 685 gca ggt aaa tat tta tta gac cat gat gtt cca att aga gaa ttt aac 685 gca ggt aaa tat tta tta gac cat gat gtt cca att aga gaa ttt aac 700 ctct tat ggt tca aga cgt ggt aac cat gaa gta atg gta cgt ggt act 700 ctct tat ggt tca aga cgt ggt aac cat gaa gta atg gta cgt ggt act 877 787 798 gga ttt aca aca tc cgt att aaa acc caa tta gca cca ggc act gaa ggt 699 gca gct atg aga tac aaa ac caa tta gca cca ggc act gaa ggt 730 735 gga ttt aca aca tat tgg cct aca gaa gaa atc atg cct acc ggc act gaa ggt 740 740 745 gga ttt aca aca tat tgg cct aca gaa gaa acc atg acc acc ggc acc gac acc ggc 740 740 745 gga ttt aca aca tat tgg cct aca gaa gaa acc atg acc acc acc acc acc acc acc acc acc ac												-					
650   2728   655   2728   666   2728   666   2728   667   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   67												_					2680
gaa cca         tta aaa gat tta cgt att atg ggt aaa         ttt ggt gat tca gtt 2728         2728           Glu Pro Leu Lys Asp Leu Lys G70         Arg Ile Met G1y Lys Phe G1y Asp G80         278         Ser Val 680         2776           aca act gac cac act gac cac act gat tca ggt ggt ggg atc gat ggt ggg act ggg ggg acg acg ggt aaa gat ggt ggg acg acg ggt aaa gga gaa gat ggg ggg acg ggg ggg acg ggg ggg acg ggg gg		Asn	Pro	Ser	Phe		Gln	Gly	Leu	Ser		Glu	Pro	Gly	Thr		
Glu Pro Leu Lys Asp Leu Arg Ile Met Gly Lys Phe Gly Asp Ser Val 670  aca act gac cac att tct cca gca ggt gcg atc ggt aaa gat aca cca 2776  Thr Thr Asp His Ile Ser Pro Ala Gly Ala Ile Gly Lys Asp Thr Pro 685  gca ggt aaa tat tta tta gac cat gat gtt cca att aga gaa ttt aac 2824  Ala Gly Lys Tyr Leu Leu Asp His Asp Val Pro Ile Arg Glu Phe Asn 700  tct tat ggt tca aga cgt ggt aac cat gaa gta atg gta cgt ggt act 2872  Ser Tyr Gly Ser Arg Arg Gly Asn His Glu Val Met Val Arg Gly Thr 715  tct gct aat atc cgt att aaa aac caa tta gga atc ggt ggt act 2920  Phe Ala Asn Ile Arg Ile Lys Asn Gln Leu Ala Pro Gly Thr Glu Gly 730  gga ttt aca aca tat tgg cct aca gaa gaa atc atc atg gat ggt tta ggt 2920  Phe Ala Asn Ile Arg Ile Lys Asn Gln Leu Ala Pro Gly Thr Glu Gly 730  gga ttt aca aca tat tgg cct aca gaa gaa atc atc atg gat ggt 2920  Phe Thr Thr Tyr Trp Pro Thr Glu Glu Ile Met Pro Ile Tyr Asp 750  gca gct atg aga tac aaa gaa aat ggt act ggt tta gct gtt tta gct 3016  Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala Val Leu Ala 765  ggt aat gat tac ggt atg ggt tca tc tct cgt gac tgg gct aac ggt 3064  Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780  act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112  Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795									_4_						4		0700
aca act gac act gac act act tct cca gca gca gcg gcg act gcg act gcg gcg act gcg gcg act gcg gcg gcg act gcg gcg gcg gcg gcg gcg gcg gcg gcg g	_				_		_							_		_	2128
aca act         gac         cac         att         tct         cca         ggt         ggt         gct         atc         ggt         aaa         gat         aca         cca         2776           Thr         Thr         Asp         His         Ile         Ser         Pro         Ala         Gly         Ala         Ile         Gly         Lys         Asp         Thr         Pro         Asp         Gly         Ala         Ile         Gly         Lys         Asp         Thr         Pro         Asp         File         Asp         Val         Pro         Ile         Arg         Gly         Phe         Asn         Asn         Pro         Ile         Arg         Gly         Phe         Asn         Asn         File         Asp         Val         Pro         Ile         Arg         Gly         Phe         Asn         Pro         Ile         Arg         Branch         Asp         Val         Pro         Ile         Arg         Asn         Pro         Ile         Arg         Asn         Ile <td< td=""><td>uıu</td><td>rru</td><td>Leu</td><td>гîг</td><td>_</td><td>Leu</td><td>Arg</td><td>116</td><td>net</td><td>-</td><td>LYS</td><td>rne</td><td>uly</td><td>ASP</td><td></td><td>Val</td><td></td></td<>	uıu	rru	Leu	гîг	_	Leu	Arg	116	net	-	LYS	rne	uly	ASP		Val	
The The The Asp His IIe Ser Pro Ala Gly Ala IIe Gly Lys Asp The Pro 685   690   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695   695	aca	act	gac	cac		tet	cca	gca	ggt.		atc	gg t.	aaa	gat		cca	2776
gca ggt ggt aaa tat tta tta ggc ggt act gat gtt cca ggt ggt act lata ggt ggt lata ggt lata ggt ggt act lata ggt ggt act lata ggt ggt ggt ggt ggt ggt ggt ggt ggt			-					_									2
Ala Gly Lys Tyr Leu Leu Asp His Asp Val Pro Ile Arg Glu Phe Asn 700				685					690	•				695			2004
tct tat ggt tca aga cgt gly Asn His Glu Val Met Val Arg Gly Thr 715  ttc gct aat atc cgt att aaa aac caa tta gca gcc act gaa ggt 2920  Phe Ala Asn Ile Arg Ile Lys Asn Gln Leu Ala Pro Gly Thr Glu Gly 730  gga ttt aca aca tat tgg cct aca gaa gaa atc atc atc tat gat 2968  Gly Phe Thr Thr Tyr Trp Pro Thr Glu Glu Ile Met Pro Ile Tyr Asp 755  gga gct atg aga tac aaa gaa aat ggt act ggt tta gct gtt tta gct 3016  Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala Val Val Val Leu Ala Val Val Val Val Val Val Val Val Val V	_												-				2824
Ser         Tyr         Gly         Ser         Arg         Arg         Gly         Asn         His         Glu         Val         Met         Val         Arg         Gly         Thr           715         720         720         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         725         726         725         725         726         725         726         725         726         725         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         726         727         727         727	Ala	Gly		Tyr	Leu	Leu	ASP		ASP	vai	Pro	116		Glu	Pne	ASN	
715       720       725         ttc gct aat atc gct att aaa aac caa tta gca cca ggc act gaa ggt Phe Ala Asn Ile Arg Ile Lys Asn Gln Leu Ala Pro Gly Thr Glu Gly 730       735       740       745         gga ttt aca aca tat tgg cct aca gaa gaa atc atg ggt tta aca gat fly Phe Thr Thr Tyr Trp Pro Thr Glu Glu Ile Met Pro Ile Tyr Asp 750       755       760         gca gct atg aga tac aaa gaa aat ggt act ggt tta gct atg gct atg gct atg gct atg gct atg gct atg gct act acg gat acg gct aat gct atg gct acg gct aaa ggt acg gct aat gct acg gct acg gct aaa gct acg gct acg gct aaa gct acg gct acg gct aaa gct acg gct											-						2872
ttc gct aat atc cgt att aaa aac caa tta gca cca ggc act gaa ggt 2920 Phe Ala Asn Ile Arg Ile Lys Asn Gln Leu Ala Pro Gly Thr Glu Gly 730	Ser	-	Gly	Ser	Arg	Arg	-	Asn	His	Glu	Val		Val	Arg	Gly	Thr	
Phe Ala Asn Ile Arg         Ile Lys Asn Gln Leu Ala Pro Gly Thr Glu Gly 730         745           gga ttt aca aca tat tgg cct aca gaa gaa atc atg cct atc tat gat Gly Phe Thr Thr Tyr Trp Pro Thr Glu Glu Ile Met Pro Ile Tyr Asp 750         755         760           gca gct atg aga tac aaa gaa aat ggt act ggt tta Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala Val Leu Ala 765         770         775           ggt aat gat tac ggt atg ggt tca tct cgt gac tgg gca gct aaa ggt Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780         3064           Gly Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795         800         805																	0000
730		_															2920
gga ttt aca aca tat tgg cct aca gaa gaa atc atg cct atc tat gat       2968         Gly Phe Thr Thr Tyr Trp Pro Thr Glu Glu Glu Ile Met Pro Ile Tyr Asp 750       755       760         gca gct atg aga tac aaa gaa aat ggt Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala 765       770       770       775         ggt aat gat tac ggt atg ggt tca tct cgt gac tgg gca gct aaa ggt Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780       3064         act aac tta tta ggt gtt aaa act gtt at tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112         Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795       3016		Ala	ASN	11e	Arg		Lys	ASN	GIN	Leu		Pro	GIY	inr	GIU		
Gly Phe Thr Thr Tyr Trp Pro Thr Glu Glu Ile Met Pro Ile Tyr Asp 750 755 760  gca gct atg aga tac aaa gaa aat ggt act ggt tta gct gtt tta gct Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala Val Leu Ala 765 770 775  ggt aat gat tac ggt atg ggt tca tct cgt gac tgg gca gct aaa ggt Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780 785 790  act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805		+++	0.00	202	t a t		cet		<b></b>	or a a		a t o	cct	ato	tat		2068
750 755 760  gca gct atg aga tac aaa gaa aat ggt act ggt tta gct gtt tta gct 3016  Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala Val Leu Ala 765 770 775  ggt aat gat tac ggt atg ggt tca tct cgt gac tgg gca gct aaa ggt 3064  Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780 785 790  act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112  Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805									_	-		_				_	2300
Ala Ala Met Arg Tyr Lys Glu Asn Gly Thr Gly Leu Ala Val Leu Ala 765 770 775  ggt aat gat tac ggt atg ggt tca tct cgt gac tgg gca gct aaa ggt 3064 Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780 785 790  act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112 Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805	uly	THO	1111	1111	•	11 P	1.0	1111			110	110 0	110	110	-	пор	
ggt aat gat tac ggt atg ggt tca tct cgt gac tgg gca gct aaa ggt 3064 Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780 785 790 act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112 Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805			_														3016
Gly Asn Asp Tyr Gly Met Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly 780 785 790  act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112  Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805	Ala	Ala	Met	_	Tyr	Lys	Glu	Asn	-	Thr	Gly	Leu	Ala		Leu	Ala	
780 785 790  act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112  Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805	ggt	aat	gat	tac	ggt	atg	ggt	tca	tct	cgt	gac	tgg	gca	gct	aaa	ggt	3064
act aac tta tta ggt gtt aaa act gtt att gca caa agt tat gaa cgt 3112 Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805	Gly	Asn	Asp	Tyr	Gly	Met	Gly	Ser	Ser	Arg	Asp	Trp	Ala	Ala	Lys	Gly	
Thr Asn Leu Leu Gly Val Lys Thr Val Ile Ala Gln Ser Tyr Glu Arg 795 800 805			780					785					790				
795 800 805						_			_								3112
	Thr		Leu	Leu	Gly	Val		Thr	Val	Ile	Ala		Ser	Tyr	Glu	Arg	
	atc		cgt	tca	aac	tta		atg	atg	ggt	gta		cca	tta	caa	ttt	3160

lle 810	His	Arg	Ser	Asn	Leu 815	Val	Met	Met	Gly	Val 820	Leu	Pro	Leu	Gln	Phe 825	
		-												gaa		3208
Lys	Gln	Gly	Glu		Ala	Asp	Ser	Leu	-	Leu	Glu	Gly	Lys	Glu	Glu	
				830					835					840		0050
		_	_		-									gta		3256
He	Ser	Val	_	He	Asp	Glu	Asn		Lys	Pro	His	Asp		Val	Thr	
			845					850					855			0001
_		_			-			_	-	_	-		-	gca	_	3304
Val	His		Lys	Lys	Glu	Asn		Glu	Val	Val	Asp		Glu	Ala	Met	
		860					865					870				
														ggt		3352
Val	-	Phe	Asp	Ser	Leu		Glu	Leu	Asp	Tyr		Arg	His	Gly	Gly	
	875					880					885					
atc	tta	caa	atg	gta	tta	aga	aac	aaa	tta	gct	caa	taat	tcaca	aat		3398
lle	Leu	Gln	Met	Val	Leu	Arg	Asn	Lys	Leu		Gln					
890					895					900						
gtga	ectt	ttg a	acagt	gcta	ia cg	gttta	ıggtt	ago	cacte	gttt	tttt	tatge	cta a	aacta	atatat	3458
gtaa	atgti	taa t	tagtt	aagg	ga ag	gatt	ggad	tta	aat	gatt	tata	agtti	tga (	ctgaa	aattga	3518
acca	agat	tat o	aaga	igaca	ig at	taaaa	ıtggg	cgt	tgatt	ttat	cate	ggcaa	att a	atgca	aacatg	3578
gttt	tgaag	gta g	cgcg	taca	ig at	taca	ittag	aaa	acta	agga	ttta	agtta	atg	ctgat	tatgga	3638
aaag	gcaag	gg a	itcat	ttct	to ca	igtta	caga	ctt	taaat	tatc	aaat	tataa	aaa a	aatca	aatttt	3698
ttat	tcctg	gaa a	aagt	aaco	a tt	aaaa	cate	ggt	ggaa	aaaa	tatt	tcaag	gat	tacgi	ttctgt	3758
gtat	tagat	at g	gaaat	tttt	ta at	gaac	aggg	g aga	acti	tgca	acta	acagg	gtt a	ataci	tgagtt	3818
aatt	ttgta	itg a	aago	tgat	ca co	ettta	gaco	aat	taga	atta	gate	egtta	att i	tctca	agattg	3878
gcat	tgaaa	icc t	atag	taaa	ig tt	gaag	ctt									3907

<210> 28

<211> 901

<212> PRT

<213 > Corynebacterium thermoaminogenes

<400> 28

 Met
 Ala
 Ser
 Asn
 Phe
 Lys
 Glu
 Thr
 Ala
 Lys
 Lys
 Gln
 Phe
 Asp
 Leu
 Asn

 1
 5
 10
 15
 15

 Gly
 Gln
 Ser
 Tyr
 Tyr
 Asp
 Leu
 Lys
 Ser
 Leu
 Glu
 <

WO 01/25447 PCT/JP00/06913

Phe	Lys	Pro	Ser	Arg 85	Val	lle	Leu	Gln	Asp 90	Phe	Thr	Gly	Val	Pro 95	Ala
Val	Val	Asp	Leu 100	Ala	Ser	Leu	Arg	Lys 105	Ala	Met	Asn	Asp	Val 110	Gly	Gly
Asp	Ile	Asn 115	Lys	Ile	Asn	Pro	Glu 120	Val	Pro	Val	Asp	Leu 125	Val	Ile	Asp
His	Ser 130	Val	Gln	Val	Asp	Ser 135	Tyr	Ala	Asn	Pro	Asp 140	Ala	Leu	Gln	Arg
Asn 145	Met	Lys	Leu	Glu	Phe 150	Glu	Arg	Asn	Tyr	Glu 155	Arg	Tyr	Gln	Phe	Leu 160
			Thr	165					170					175	
			Val 180					185					190		
		195	Asp				200					205			
	210		Asp			215					220				
225			Val		230					235					240
		•	Phe	245					250					255	
			Gln 260					265					270		
		275	Arg				280					285			
-	290		Val			295					300				
305					310	,			-	315					320
			Leu	325					330					335	
			Val 340'					345					350	-	
		355	Glu	-			360					365		_	
	370		Gln			375					380				
385			Ser		390					395					400
			Asn	405					410					415	
гÄЭ	VIG	atn	lle	$r \lambda 2$	rne	V2II	vsh	ara	VI.R	1111	OCI.	1 11 1	net	r \ 2	THIL

			420					425		_			430	_	
Gly	Asp		Ala	Ile	Ala	Ala		Thr	Ser	Cys	Thr	Asn	Thr	Ser	Asn
		435					440					445			
Pro	Туг	Val	Met	Leu	Gly	Ala	Gly	Leu	Val	Ala	Lys	Lys	Ala	Ile	Glu
	450					455					460				
Lvs	Gly	Leu	Lys	Val	Pro	Asp	Tyr	Val	Lys	Thr	Ser	Leu	Ala	Pro	Glv
465	•				470	•	-•-		_, _	475					480
	Lys	Val	Val	Thr		Tvr	Ĭ. <u>6</u> 11	Δrσ	Aen		Glv	Len	Gln	Glu	
561	цуз	141	141	485	013	1 7 1	Deu	лιδ	490	961	uly	Бец	0111	495	131
Lan	Aan	Aan	Lan		Dha	A 0.5	Ι	Vo l		Т	C1	Cva	The		Cwa
Leu	Asp	ASP		GIÀ	rne	ASII	reu		_	-	uly	Cys		1111	Cys
	<b>0.1</b>		500	٥,١							0.1		510	1	
11e	Gly		Ser	Gly	Pro	Leu		Pro	Glu	11e	Glu		Ala	Val	Aia
		515					520					525			
Asp	Glu	Asp	Leu	Leu	Val		Ser	Val	Leu	Ser	Gly	Asn	Arg	Asn	Phe
	530					535					540				
Glu	Gly	Arg	Ile	His	Pro	Leu	Val	Lys	Ala	Asn	Туг	Leu	Ala	Ser	Pro
545					550					555					560
Gln	Leu	Val	Val	Ala	Tyr	Ala	Leu	Ala	Gly	Thr	Val	Asp	Ile	Asp	Leu
				565					570					575	
His	Asn	Glu	Pro	Ile	Gly	Lys	Gly	Lys	Asp	Gly	Glu	Asp	Val	Tyr	Leu
			580			•	•	585	•			•	590	•	
Lvs	Asp	He		Pro	Ser	He	Lvs		Val	Ala	Asp	Thr		Asp	Ser
-,-		595	F		~ ~ ~		600					605			
Val	Val		Pro	Glu	1.611	Phe		G111	G1n	Tvr	Δla		Val	Tvr	Glu
, 41	610	1111	110	UIU	ВСС	615	ВСЦ		ulu	1,71	620	ADII	· aı	1,71	VIU
Acn	Asn	61,,	Mat	Tnn	Aan				Vol	ጥኩሎ		A 1 o	Dno	Lan	Tyn
	Wall	Ulu	net	ПЪ				_			ysh	Ala	rro	Leu	
625	DL.	A	n	<b>A</b>	630		TV			635	D	C	nh.	DL -	640
ASP	Phe	ASP	Pro		26L	ınr	lyr	116		ASN	Pro	2er	rne		GIN
	_	_		645	_			- 1	650	_	_	_		655	
Gly	Leu	Ser		Glu	Pro	Gly	Thr		Glu	Pro	Leu	Lys		Leu	Arg
			660					665					670		
Ile	Met	Gly	Lys	Phe	Gly	Asp	Ser	Val	Thr	Thr	Asp	His	lle	Ser	Pro
		675					680					685			
Ala	Gly	Ala	Ile	Gly	Lys	Asp	Thr	Pro	Ala.	Gly	Lys	Tyr	Leu	Leu	Asp
	690					695					700				
His	Asp	Val	Pro	lle	Arg	Glu	Phe	Asn	Ser	Tyr	Gly	Ser	Arg	Arg	Gly
705					710					715			_		720
	His	Glu	Val	Met.		Arg	Glv	Thr	Phe		Asn	He	Arg	lle	
				725		0			730			•	6	735	-, -
Aen	Gln	ĪΔn	Δla		Glw	Thr	GI 11	Glv		Dha	Thr	The	Tun		Pro
11011	GIII	ьсu	740	110	013	1 111	oru	745	013	1 116	1111	1111	750	11 b	110
ጥ⊩∽	C1	<u>c</u> 1		Mak	Dra	T 1 -	Φ		41.	41.	Ma+	A = -		1	C1
1 1111,	Glu		116	riet	L 1.0	116	-	ASP	WIG	Ala	net	_	IYP	LYS	oru
		755					760					765			

Asn Gly Thr Gly Leu Ala Val Leu Ala Gly Asn Asp Tyr Gly Met Gly 775 780 Ser Ser Arg Asp Trp Ala Ala Lys Gly Thr Asn Leu Leu Gly Val Lys 800 795 790 785 Thr Val Ile Ala Gln Ser Tyr Glu Arg Ile His Arg Ser Asn Leu Val 810 Met Met Gly Val Leu Pro Leu Gln Phe Lys Gln Gly Glu Ser Ala Asp 825 830 820 Ser Leu Gly Leu Glu Gly Lys Glu Glu Ile Ser Val Asp Ile Asp Glu 845 840 Asn Val Lys Pro His Asp Leu Val Thr Val His Ala Lys Lys Glu Asn 860 855 850 Gly Glu Val Val Asp Phe Glu Ala Met Val Arg Phe Asp Ser Leu Val 865 870 875 Glu Leu Asp Tyr Tyr Arg His Gly Gly Ile Leu Gln Met Val Leu Arg 890 895 885 Asn Lys Leu Ala Gln 900

<210> 29

<211> 3006

<212> DNA

<213 > Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (328)..(2514)

<400> 29

gtcgacgacg aacccccac cgccgaacca gccgccgatc tggtgtgga gacacccggg 60 ttctcctcc tgggtgaaca ggtgccacaa ccccgtcca acaggcacac ctaccactgg 120 atcgccggg agagcagcat ggtcacacgc ctgcggcgtg ccctggtgaa ggatcacggc 180 ctggacagat cgcaggtgc attcatggt tattggaggc agggagtggc catgaggggt 240 tgatatcgct tccctgaggg tccgcaggcg tgcctcaccc tgtattcttg atagttgaac 300 aaaagagccc acataacaag gagactc atg gct aag atc atc tgg acc cgc acc 354 Met Ala Lys Ile Ile Trp Thr Arg Thr

ŗ

gac gaa gca ccg ctg ctc gcg acc tac tcg ctg aag ccg gtc gtc gag
Asp Glu Ala Pro Leu Leu Ala Thr Tyr Ser Leu Lys Pro Val Val Glu
10 15 20 25
gct ttc gcc gcc acc gcg ggc atc gag gtg gag acc cgc gat atc tct
Ala Phe Ala Ala Thr Ala Gly Ile Glu Val Glu Thr Arg Asp Ile Ser
30 35 40

	_		_				_	ttc Phe 50		-						498
_	_	_		_			-	gag Glu		_						546
	_	_				_		ccc Pro				-		-	_	594
_				-	-		_	ctg Leu		-						642
								cgc Arg								690
	-		_	-	_	_		ggc Gly 130			_	_	_		_	738
	_		-					aag Lys								786
		_	_		_			gtt Val	_		_		_	_	_	834
	_	-						atc Ile								882
		_		_	-	_	_	ggc Gly						_	-	930
								gtc Val 210								978
	_							ctc Leu	-							1026
							_	cac His	_	_	-		_	_	_	1074
_	tcc	_	_			ttc		cac His		_	cgc	_				1122
	gtc	tac	gca	cag		ggt	gag	cag	ctg		gcc	gcc	ggc	ctc		1170

Asp	Val	Tyr	Ala	Gln 270	Tyr	Gly	Glu	Gln	Leu 275	Leu	Ala	Ala	Gly	Leu 280	Asn	
eet.	gag	aac	gg t	ctc	gcc	gcc	atc	tac	gcc	ggc	ctg	gac	aag	ctg	gac	1218
					-	-	Ile								_	
aac	øøt	ወርር	gag	atc	аар	gca	gcc	t.t.c	gac	ลลฮ	eec.	cte	gaa	gag	<del>ያ</del> ያር	1266
		_			_	_	_		_	_		_	_			1200
ASII	GIŞ	300	ulu	116	гуs	Ala	Ala 305	rne	ASP	гÃ2	uly	310	ulu	gru	uly	
ccc	gac	ctg	gcc	atg	gtg	aac	tcc	gcc	aag	ggc	atc	acc	aac	ctg	cat	1314
	_	_	-	-			Ser	_						_		
	315	Dou				320	501		2,5	V.,	325	• • • •		204	1110	
-+-		+	<b>~</b> 0 +	~ <b>t</b> o	a <del>t</del> a		<b>~~</b>	~~~	+ 0 0	a + ~		~~~	۰+ <del></del>	a <b>t</b> a	000	1362
			-	-			gac	-		_			_		-	1302
	Pro	26r	ASP	vai		116	Asp	Ala	2er		Pro	Ala	met	116	_	
330					335					340					345	
acc	tcc	ggc	aag	atg	tgg	aac	aag	gac	gac	cag	acc	cag	gat	gcc	ctg	1410
Thr	Ser	Gly	Lys	Met	Trp	Asn	Lys	Asp	Asp	Gln	Thr	Gln	Asp	Ala	Leu	
		-		350					355					360		
get	gtc	ate	ccg	gac	tee	tee	tac	gcc	eet.	gtc	tac	cag	acc	etc	atc	1458
_	_		_	_			Tyr	_		_		_		_		1100
VIG	V a. 1	116	365	лор	961	GCI	1,71	370	uly	141	1,51	UIII	375	741	110	
gag	gac	tgc	cgc	aag	aat	ggc	gcc	ttc	gat	ccg	acc	acc	atg	ggc	acc	1506
Glu	Asp	Cys	Arg	Lys	Asn	Gly	Ala	Phe	Asp	Pro	Thr	Thr	Met	Gly	Thr	
	_	380					385		_			390		_		
gtc	ccc		gtc	ggt	ctg	atg	gca	cag	aag	gcc	gag	gag	tac	ggc	tcc	1554
_			_				Ala		_							
,	395	11.011	V C .	uly	Dou	400	1114	0111	<i>D</i> , 0	1110	405	UIU	.,.	01,	001	
				44.								-+-		-+-	-+-	1600
	_						gag									1602
	Asp	Lys	Thr	Phe	_	116	Glu	Ala	ASP	-	Lys	vai	GIN	val		
410					415					420					425	
gcc	tcc	aac	ggt	gat	gtc	ctc	atc	gag	cac	gac	gtg	gag	aag	ggc	gac	1650
Ala	Ser	Asn	Gly	Asp	Val	Leu	Ile	Glu	His	Asp	Val	Glu	Lys	Gly	Asp	
				430					435					440		
atc	t.gg	cgc	gcc	tgc	cag	acc	aag	gac	gcc	ccg	atc	cag	gac	t.gg	gtc	1698
		-	_	-	_		Lys	_	-	_		_	_		_	
110	11 P	b	445	0,3	0111	1 111	<i>L</i> , <i>S</i>	450	71.1.1	110	110	0111	455	Р		
							+		4					-+-	++ ~	1746
_	_	_	_		_	_	cgt				_		_			1746
Lys	Leu		Val	Asn	Arg	Ala	Arg	Leu	Ser	Gly	Met		Ala	Val	Phe	
		460					465					470				
tgg	ctg	gat	ccc	gcc	cgc	gca	cac	gac	cgc	aac	ctg	acc	aca	ctg	gtg	1794
Trp	Leu	Asp	Pro	Ala	Arg	Ala	His	Asp	Arg	Asn	Leu	Thr	Thr	Leu	Val	
•	475	•			_	480		•	_		485					
σρσ		tar	cto	gra.	<b>72</b> 0		gac	acc	gag	gge		gan	atc	്മെ	atc	1842
																1076
oru	Γλ2	I A I.	red	WI 9	wsb	птг	Asp	HIL	ara	uly	ւես	wsh	116	GIII	116	

		70/123
90	495	

490					495					500					505	
ctc	tcc	ccc	gtc	gag	gcc	acc	cag	cac	gcc	atc	gac	cgc	atc	cgc	cgc	1890
Leu	Ser	Pro	Val	Glu 510	Ala	Thr	Gln	His	Ala 515	Ile	Asp	Arg	Ile	Arg 520	Arg	
ggc	gag	gac	acc	atc	tcc	gtc	acc	ggt	aac	gtc	ctg	cgť	gac	tac	aac	1938
Gly	Glu	Asp	Thr 525	lle	Ser	Val	Thr	Gly 530	Asn	Val	Leu	Arg	Asp 535	Tyr	Asn	
acc	gac	ctc	ttc	ccg	atc	ctc	gag	ctg	ggc	acc	tcc	gcc	aag	atg	ctc	1986
Thr	Asp	Leu 540	Phe	Pro	Ile	Leu	Gl u 545	Leu	Gly	Thr	Ser	Ala 550	Lys	Met	Leu	
				_	_						ttc					2034
Ser	Val 555	Val	Pro	Leu	Met	Ala 560	Gly	Gly	Gly	Leu	Phe 565	Glu	Thr	Gly	Ala	
			_	_	_		_	_	_	_	atc		_			2082
-	Gly	Ser	Ala	Pro	_	His	Val	Gln	Gln		Ile	Glu	Glu	Asn		
570					575					580					585	04.00
						-				-	ctg					2130
Leu	Arg	irp	ASP	590	Leu	GIÀ	GIU	rne	595	Ala	Leu	Ala	aru	600	rne	
coc	cac	gag	ctc	-	200	cac	220	220		220	gcc	oot	ot c		gr.c	2178
										_	Ala		-		-	2110
6			605		• • • •	6		610		2,0		<b>-1</b>	615	204		
gat	gcc	ctg	gac	cgt	gcg	acc	gag	aag	ctc	ctc	aac	gag	gag	aag	tcc	2226
Asp	Ala	Leu 620	Asp	Arg	Ala	Thr	Glu 625	Lys	Leu	Leu	Asn	Glu 630	Glu	Lys	Ser	
ccg	tcc	cgc	aag	gtc	ggc	gag	atc	gac	aac	cgt	ggt	tcc	cac	ttc	tgg	2274
Pro		Arg	Lys	Val	Gly		lle	Asp	Asn	Arg	Gly	Ser	His	Phe	Trp	
	635		•			640					645					0000
_	_				_	_	_	_	_		cag			-		2322
ьец 650	Ala	ınr	ıyr	1 rp	655	ASP	GIU	Leu	Ala	660	Gln	ınr	GIU	ASP	665	
	cta	oct.	σοσ	200		σcc.	cet	σt c	or o o		gcc	ctor	220	220		2370
										-	Ala					2310
				670					675					680		0.440
											cag					2418
Ala	Aia	ASP	685	ASP	Ala	Ala	Leu	690	Gly	Glu	Gln	Gly	Lys 695	Pro	vai	
as c	cta	o o t		tac	tac	a c a	000		orat	சூச	aag	200		σοσ	ato	2466
									-		Lys					2400
	Dou	700	~ 1 ,			1114	705	<b>5</b> 01	, top	ulu	<i>L</i>	710				
atg	cgc	ccg	gtg	gcc	gca	ttc	aac	gag	atc	atc	gac	tcc	ctg	aag	aag	2514
Met	_	Pro	Val	Ala	Ala		Asn	Glu	Ile	Ile	Asp	Ser	Leu	Lys	Lys	
	715					720					725					

taaccccttc teeggageeg acageegaeg geeaegetee eeeggeategge 2574 geegteggee gtttetggea etggagtgaa caetteegtg ataatggtga gatgaacage 2634 eeeegtgtee eegeeateet gteegeegtt teegeegtg gtetgatege tgegetggge 2694 acceeegttg eegtegeaga eaceateaee geggaeaeeg acegggaaae etgegtggee 2754 ageeagaatg acaacteeag egtgateagg ttetgggatg acetggagge egatgteegt 2814 gageagegee tgaeegaaet ggatgeaeag gaeeeeggee teaagaaega eategaggee 2874 tteategeeg aggaeeeggt ageeeeetee geageegate teeagageeg getggatgea 2934 aatgaegeeg gtgagggeet ggeeatgetg etaeetgaat eeeggaaeg getggatgea 2994 gtggaeetge ag

```
<210> 30
```

<211> 729

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 30

Met Ala Lys Ile Ile Trp Thr Arg Thr Asp Glu Ala Pro Leu Leu Ala
1 5 10 15

Thr Tyr Ser Leu Lys Pro Val Val Glu Ala Phe Ala Ala Thr Ala Gly
20 25 30

Ile Glu Val Glu Thr Arg Asp Ile Ser Leu Ala Gly Arg Ile Leu Ala 35 40 45

Gln Phe Ala Asp Gln Leu Pro Glu Glu Gln Lys Val Ser Asp Ala Leu 50 55 60

Ala Glu Leu Gly Glu Leu Ala Lys Thr Pro Glu Ala Asn Ile Ile Lys 65 70 75 80

Leu Pro Asn Ile Ser Ala Ser Val Pro Gln Leu Lys Ala Ala Val Lys
85 90 95

Glu Leu Gln Glu Gln Gly Tyr Asp Leu Pro Glu Tyr Glu Asp Ala Lys 100 105 110

Asp Arg Tyr Ala Ala Val Ile Gly Ser Asn Val Asn Pro Val Leu Arg 115 120 125

Glu Gly Asn Ser Asp Arg Arg Ala Pro Val Ala Val Lys Asn Phe Val 130 135 140

Lys Lys Phe Pro His Arg Met Gly Glu Trp Ser Ala Asp Ser Lys Thr 145 150 155 160

Asn Val Ala Thr Met Gly Ala Asp Asp Phe Arg Ser Asn Glu Lys Ser 165 170 175

Val Ile Met Asp Glu Ala Asp Thr Val Val Ile Lys His Val Ala Ala 180 185 190

Asp Gly Thr Glu Thr Val Leu Lys Asp Ser Leu Pro Leu Lys Gly
195 200 205

Glu Val Ile Asp Gly Thr Phe Ile Ser Ala Lys Ala Leu Asp Ala Phe

	210					215					220				
Leu	Leu	Asp	Gln	Val	Lys	Arg	Ala	Lys	Glu	Glu	Gly	Ile	Leu	Phe	Ser
225			_		230					235					240
Ala	His	Met	Lys			Met	Met	Lys		•	Asp	Pro	lle		Phe
01	11.5	11.	V. I	245		т	nh.	A 1 a	250		m	41-	01	255	01.
GIY	HIS	116	260	Arg	Ala	lyr	Phe	A1a 265	ASP	vai	Tyr	Ala	61n 270	Tyr	Gly
Glu	Gln	Len		Ala	Δla	Glv	Leu		Glv	Gla	Aen	Glv		Δla	۵la
UIU	0111	275	БСС	1110	MIG	013	280	11511	013	ulu	71511	285	БСЦ	Ald	Ala
Ile	Tyr		Gly	Leu	Asp	Lys	Leu	Asp	Asn	Gly	Ala		Ile	Lys	Ala
	290				_	295		_		_	300			•	
Ala	Phe	Asp	Lys	Gly	Leu	Glu	Glu	Gly	Pro	Asp	Leu	Ala	Met	Val	Asn
305					310					315					320
Ser	Ala	Lys	Gly		Thr	Asn	Leu	His		Pro	Ser	Asp	Val		lle
4~~	41.	C	W. +	325	41.	Mat	71.	<b>A</b>	330	C	C1	T	W.A	335	4
АЅР	Ala	Sel.	340	PFO	Ala	met	Ile	345		261.	Gly	Lys	мет 350	1 l.b	ASII
Lys	Asp	Asp		Thr	Gln	Asp	Ala			Val	He	Pro		Ser	Ser
-, -		355					360					365		20.	
Tyr	Ala	Gly	Val	Tyr	Gln	Thr	Val	Ile	Glu	Asp	Cys	Arg	Lys	Asn	Gly
	370					375					380				
	Phe	Asp	Pro	Thr		Met	Gly	Thr	Val		Asn	Val	Gly	Leu	
385	0.1				390	<b></b>	0.1	•		395		m)	5.1		400
Ala	Gin	Lys	Ala	61u 405	Glu	Tyr	Gly	Ser	H1S 410	Asp	Lys	Thr	Phe		He
G1 11	Ala	Asn	Glv		Val	Gln	Val	Val		Ser	Asn	Gl v	Aen	415 Val	Ī pu
UIU	111 6	пор	420	ц	141	u I II	741	425	niu	501	ASII	GI y	430	101	ьeu
Ile	Glu	His		Val	Glu	Lys	Gly		Ile	Trp	Arg	Ala		Gln	Thr
		435					440				-	445			
Lys		Ala	Pro	Ile	Gln	Asp	Trp	Val	Lys	Leu	Ala	Val	Asn	Arg	Ala
	450	_	~ 1		_	455			_	_	460	_			
	Leu	Ser	Gly	Met		Ala	Val	Phe	Trp		Asp	Pro	Ala	Arg	
465	Aan	A 20 cm	Aan	I 011	470	ጥከ።	Lau	Vo 1	C1	475	Ψ	T 0.11	41.	4.55	480
1112	voh	Arg	ASII	485	1111	1111	Leu	Val	490	гåг	1 y I	Leu	Ala	495	піѕ
Asp	Thr	Glu	Glv		Asp	He	Gln	He		Ser	Pro	Val	G111		Thr
F			500					505	204	201			510		
Gln	His	Ala	Ile	Asp	Arg	Ile	Arg	Arg	Gly	Glu	Asp	Thr		Ser	Val
		515					520					525		•	
Thr		Asn	Val	Leu	Arg		Tyr	Asn	Thr	Asp		Phe	Pro	Ile	Leu
	530			_		535		_	_		540	_			
	Leu	Gly	Thr	Ser		Lys	Met	Leu	Ser		Val	Pro	Leu	Met	
545					550					555					560

```
Gly Gly Gly Leu Phe Glu Thr Gly Ala Gly Gly Ser Ala Pro Lys His
                565
                                     570
Val Gln Gln Val Ile Glu Glu Asn His Leu Arg Trp Asp Ser Leu Gly
            580
                                 585
                                                     590
Glu Phe Leu Ala Leu Ala Glu Ser Phe Arg His Glu Leu Asn Thr Arg
        595
                             600
                                                 605
Asn Asn Thr Lys Ala Gly Val Leu Ala Asp Ala Leu Asp Arg Ala Thr
    610
                        615
                                             620
Glu Lys Leu Leu Asn Glu Glu Lys Ser Pro Ser Arg Lys Val Gly Glu
                    630
                                         635
Ile Asp Asn Arg Gly Ser His Phe Trp Leu Ala Thr Tyr Trp Ala Asp
                                     650
                645
Glu Leu Ala Asn Gln Thr Glu Asp Ala Glu Leu Ala Glu Thr Phe Ala
            660
                                 665
                                                     670
Pro Val Ala Glu Ala Leu Asn Asn Gln Ala Ala Asp Ile Asp Ala Ala
                            680
                                                 685
Leu Ile Gly Glu Gln Gly Lys Pro Val Asp Leu Gly Gly Tyr Tyr Ala
    690
                                             700
                        695
Pro Ser Asp Glu Lys Thr Ser Ala Ile Met Arg Pro Val Ala Ala Phe
                    710
                                         715
                                                             720
705
Asn Glu Ile Ile Asp Ser Leu Lys Lys
                725
```

<210> 31

<211> 2322

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (806)..(2212)

## <400> 31

ggtacccca cgtaccctag gccatcacag caatttttac atcggatatt ttaggtgtgc 60 tcataacgtc cttatgaatt tcgcagttat tagttatta aatagagaat caaactccga 120 cctagcctct gccgatgcta aaagtcagct gaccccttgg ggcgcttcat ttgaaactgc 180 gaccaagctc atgaatgcgc gaaagcattt ccattataag ggtaagctgt aagaatagtg 240 ggagaaaatg ttcagtcgtg ttctaactca cttgagaaat tccatttttc tgggcttctc 300 tcaaatagat taagtggccc gtatgctgga ttctagaat atttagaagc gcgccaactc 360 atgattatgt attgtataag cctcaaagac cgaatagatt actaacattt aagtggacca 420 gagcgttaga agctttgtag agtgctcatt ccttgctgac ggcaagggtt tcctaccatg 480 agatagatcg gcagatagtt ggtttgtaaa aattttaag gacggtccgc aatgtcaatt 540 cttgaacaga tcatcttctt catcaacacc atcttgggtt atggtctgca cgctggttct 600

ctg ttt	tgta tcat	aca ctt	gtcg tttt	cccg aaat	cg t tg a	gatt gttt	gtgt ggaa gtg	c tt g at act	ttta caag gaa	ggcg tgcc cat	ccc ccc tat	gcgc ggat gac	ggg gca gta	cgat cgac	•	660 720 780 832
	Gly						tat Tyr					_	_		_	880
							atc Ile									928
							cca Pro								_	976
							cat His 65									1024
							gag Glu	_	-		_	_		_	~~	1072
							ggt Gly						-	-		1120
							ttc Phe				-		_	_		1168
						Lys	gat Asp	Ala								1216
							tcc Ser 145						_		-	1264
							tcc Ser								_	1312
							atc Ile									1360
							aac Asn									1408
gag	ttc	atg	gac		gtt	ctg	ccg	aac	_	gat	cca	gag	gtg		aag	1456

Glu	Phe	Met	Asp 205	Arg	Val	Leu	Pro	Asn 210	Glu	Asp	Pro	Glu	Val 215	Ser	Lys	
gtt	atc	gcc	aag	gcc	tac	aag	aag	atg	ggc	atc	aag	ctc	ctc	ccg	ggc	1504
_	Ile	_														
Vai	116	220	ц	nia		Д, 5	225	1100	OI,	110	БуБ	230	Dou	110	013	
cac	gca		acc	gcg	g t.g	cgc	_	aat	e e c	gat.	t.c.c		gag	etc	gat.	1552
	Ala															1005
1115		1 11 1	1111	AIG	141	_	лор	лэп	uly	пор	245	V 42.1	ulu	141	ASP	
	235					240							_4_			1000
	cag	_	_		_								_			1600
Tyr	Gln	Lys	Lys	Gly		Asp	Lys	Thr	Glu		ile	Thr	Val	Asp		
250					255					260					265	
gtt	ctt	atc	tcc	gtc	ggc	ttc	cgc	cca	cgc	gtc	gag	ggc	ttc	ggc	ctg	1648
Val	Leu	lle	Ser	Val	Gly	Phe	Arg	Pro	Arg	Val	Glu	Gly	Phe	Gly	Leu	
				270					275					280		
gag	aac	acc	ggc	gtc	aag	ctc	acc	gaa	cgc	ggt	gcc	atc	gac	att	gat	1696
-	Asn															
uıu	MJII	1 111	285	141	<i>D</i> , <i>D</i>	Dou	• • • • • • • • • • • • • • • • • • • •	290	*** 0	u.,		110	295	110		
<b>~~</b>	aa +	a + æ				a t a	<b>70</b>	_	0 t 0	+00	<b>~~~</b>	n t a		<b>G</b> 0 0	at o	1744
	cat															1144
GIU	His		Arg	inr	ASN	vai		GIY	11e	lyr	Ala		GLY	ASP	vai	
		300					305					310				4=00
	gcc	_	_	_	_	_		-	-		_	_				1792
Thr	Ala	Lys	Leu	Gln	Leu	Ala	His	Val	Ala	Glu	Ala	Gln	Gly	He	Val	
	315					320					325					
gcc	gcc	gag	aca	ctc	gcc	ggc	gca	gaa	acc	cag	acc	ctg	ggc	gac	tac	1840
Ala	Ala	Glu	Thr	Leu	Ala	Gly	Ala	Glu	Thr	Gln	Thr	Leu	Gly	Asp	Tyr	
330					335					340					345	
	atg	atg	CCE	cgt	gcc	acc	ttc	tgc	aac	cca	cag	gtt	gcc	tcc	ttc	1888
_	Met	_	_	-	_			_				-				
1100	1100	1100	110	350				0,0	355					360		
aa+	tac	0.00	an a		car	are e	220	g a g		tσσ	ccg	ora t	നമ		atc	1936
																1000
uly	Tyr	Ш		oru	0111	nia	rys		r 3 2	пр	rio	nsp		uıu	116	
			365				4	370					375		_ 4 _	1004
	gtg															1984
Lys	Val		Ser	Phe	Pro	Phe		Ala	Asn	Gly	Lys		Val	Gly	Leu	
•		380					385					390				
gct	gag	acc	gat	ggt	ttc	gcc	aag	atc	gtc	gcc	gac	gct	gag	ttc	ggt	2032
Ala	Glu	Thr	Asp	Gly	Phe	Ala	Lys	Ile	Val	Ala	Asp	Ala	Glu	Phe	Gly	
	395		-			400					405					
gaa	ctg	ctg	ggt	ggc	cac	att	gtc	ggt	gcc	aac	gcc	tcc	gag	ctg	ctc	2080
_	Leu	_														
410	Lvu	204	-1,	~	415					420					425	
	gag	a t a	at a	n+ m		nam	224	ton	gra t	_	300	200	ወጋወ	gag		2128
	_															2120
ASN	Glu	ьeu	vai	Leu	AIA	uln	ASII	1 t.h	vsh	Leu	TIII.	1111.	arn	ntn	116	

440 430 435 age ege age gte cae ate cae eeg ace etg teg gag get gte aag gaa 2176 Ser Arg Ser Val His Ile His Pro Thr Leu Ser Glu Ala Val Lys Glu 450 445 455 get gee cae gge gte aac gge cae atg ate aac tte taaateeegt 2222 Ala Ala His Gly Val Asn Gly His Met Ile Asn Phe 460 cagacaaatg caaatcccct caccgatggc atatcggtga ggggattttc tcatgcacgt 2282 aaaatcataa tccatggcaa ggaaagtcga caacagcgcc 2322 <210> 32 <211> 469 <212> PRT <213> Corynebacterium thermoaminogenes <400> 32 Val Thr Glu His Tyr Asp Val Val Leu Gly Ala Gly Pro Gly Gly 15 Tyr Val Ser Ala Ile Arg Ala Ala Gln Leu Gly Lys Lys Val Ala Val Ile Glu Lys Gln Tyr Trp Gly Gly Val Cys Leu Asn Val Gly Cys Ile 40 Pro Ser Lys Ala Leu Ile Lys Asn Ala Glu Ile Ala His Ile Phe Asn 55 His Glu Lys Lys Thr Phe Gly Ile Asn Gly Glu Val Thr Phe Asn Tyr 70 75 65 Glu Asp Ala His Lys Arg Ser Arg Gly Val Ser Asp Lys Ile Val Gly 90 Gly Val His Tyr Leu Met Lys Lys Asn Lys Ile Thr Glu Ile Asp Gly 100 105 Phe Gly Thr Phe Lys Asp Ala Lys Thr Ile Glu Val Thr Asp Gly Lys 120 125 115 Asp Ala Gly Lys Thr Val Thr Phe Asp Asp Cys Ile Ile Ala Thr Gly 135 Ser Val Val Asn Ser Leu Arg Gly Val Glu Phe Ser Glu Asn Val Val 155 160 145 150 Ser Tyr Glu Glu Gln Ile Leu Asn Pro Val Ala Pro Lys Lys Met Val 165 170 Ile Val Gly Gly Gly Ala Ile Gly Met Glu Phe Ala Tyr Val Leu Gly 180 185 190 Asn Tyr Gly Val Asp Val Thr Leu Ile Glu Phe Met Asp Arg Val Leu 200 205

Pro Asn Glu Asp Pro Glu Val Ser Lys Val Ile Ala Lys Ala Tyr Lys

	210					215					220				
Lvs		Gly	Ile	Lys	Leu						-	Thr	Ala	Val	Arg
225				-•-						235					240
	Asn	Gly	Asp	Ser	Val	Glu	Val	Asp	Tyr	Gln	Lys	Lys	Gly	Ser	Asp
-				245					250					255	
Lys	Thr	Glu	Thr	Ile	Thr	Val	Asp	Arg	Val	Leu	Ile	Ser	Val	Gly	Phe
			260									•	270		
Arg	Pro	_	Val	Glu	Gly	Phe							Val	Lys	Leu
		275					280					285	-,		
Thr		Arg	Gly	Ala	He	_		_		His		Arg	Thr	Asn	Val
<b>.</b>	290	T 1 -	m	41-	11.		4			A 1 -	300	T	C1-	Ι	41.
305	GIY	11e	Tyr	Ala	310		ASP		lnr	315	Lys	Leu	GIII	Leu	320
	Val	Ala	Glu	Ala					Δla		Glu	Thr	Len	Ala	
1113	101	Ala	UIU	325	UIII	uıy	116	141		AIG			DCu	335	01,
Ala	Glu	Thr	Gln		Leu	Gly	Asp	Tyr					Arg	Ala	Thr
			340				•	345					350		
Phe	Cys	Asn	Pro	Gln	Val	Ala	Ser	Phe	Gly	Tyr	Thr	Glu	Glu	Gln	Ala
		355					360					365			
Lys	Glu	Lys	Trp	${\tt Pro}$	Asp	_	Glu	Ile	Lys	Val	Ser	Ser	Phe	Pro	Phe
	370					375					380				
	Ala	Asn	Gly	Lys							Thr	Asp	Gly	Phe	
385	7.1	** 1	41.		390		DL -			395	T	01	01	11:-	400
Lys	11e	vai	Ala	_	Ala		Phe	Gly	410	Leu		Gly	Gly	His 415	116
Vo I	Glv	Ala	Acn	405			T 011	ומו				Va l	Lan	Ala	Gln
Val	OIA	VIT	420		261					ulu			430	Ala	UIII
Asn	Trp	Asp												Ile	His
		435					440					445			
Pro	Thr	Leu	Ser	Glu	Ala	Val	Lys	Glu	Ala	Ala	His	Gly	Val	Asn	Gly
	450					455					460				
His	Met	Ile	Asn	Phe											
465															
<b>~91</b> 6	)> 33	<b>)</b>													
	l> 4(														
	2> DN														
	3> Co		ebact	teri	ım th	nermo	amin	ogei	nes						
		_ 🗸			-			<b>J</b>							
<220	)>														
200		٠.0													

<220> <221> CDS

<222> (250)..(3951)

<400> 33																	
	ccgg	gatca	atc g	gtggt	ttga	cg g	ggga	cgtai	t ca	tega	ggat	ggt	tecea	acg	atgaa	acttct	60
	ggga	agcga	aat g	ggaao	ecta	eg ca	aacaa	atgt	g gca	attta	agta	ggg	tgaca	agg a	atat	tttagg	120
	aaag	gacti	tgt 1	tacca	aaaa	gg tg	gcta	atact	t gg	ggtg	ctag	gtc	cccg	cga	ccgga	aaccag	180
	cgti	taca	gtg g	gataa	aaata	aa ag	gecea	attta	a ga	accc	tcaa	caa	gcaa	gga a	aaaga	aggcga	240
	gtac	cctg	_	-								_		-		tg gtg	291
			Va	al Se	er So	er Al	la So	er Tl	nr Pl	ne G	ly G			la T	rp Le	eu Val	
				1				5				•	10				000
	_					cag											339
	-	GIU	met	rne	GIN	Gln 20	rne	Lys	Lys	ASP	25	GIN	26L	vai	ASP	туs 30	
	15	+ ~ ~	0.00	a o a	a t a	ttc	<b>~~~</b>	tat	000	a a a		000	A 2 ff	got	ora a		387
	_	_				Phe											201
	oru	пр	S	oru	35	1 110	ulu	501	UIII	40	urj	110	<b>0111</b>	71.14	45	<i>D</i> , 0	
	gct	acc	ccc	gcc		ccc	gaa	gcc	aag		gca	gct	tcg	tcg		tcc	435
	_					Pro											
				50					55	•				60			
	tca	act	tcc	gga	cag	tcc	acc	gcc	aag	gct	gcc	cct	gcc	gcc	aag	acc	483
	Ser	Thr	Ser	Gly	Gln	Ser	Thr	Ala	Lys	Ala	Ala	Pro	Ala	Ala	Lys	Thr	
			65	•				70					<b>7</b> 5				
	_	_	-			cca	-	_	_	-		_	_			_	531
	Ala		Ala	Ser	Ala	Pro		Lys	Ala	Ala	Pro		Lys	GIn	Asn	Gln	
		80					85					90					550
	-		_		_	aag	_	_	_				_				579
	95	Sel.	LYS	Pro	Ala	Lys 100	гåз	Ala	LYS	uıu	105	rro	Leu	Ser	LYS	110	
		<b>o</b> cc	ator	cct	gag	ccg	<b>о о</b> о	200	acc	cca	_	200	ወወር	atc	ttc		627
	_	_	_			Pro						-					02.
					115		,			120		0			125	2, -	
	tcc	atc	gcc	aag		atg	gac	ctc	tcc		gag	gtg	ccc	acc		acc	675
	Ser	Ile	Ala	Lys	Asn	Met	Asp	Leu	Ser	Leu	Glu	Val	Pro	Thr	Ala	Thr	
				130					135					140			
	tcc	gtc	cgc	gac	atg	ccc	gcg	cgc	ctc	atg	ttc	gag	aac	cgc	gcc	atg	723
	Ser	Val	Arg	Asp	Met	Pro	Ala		Leu	Met	Phe	Glu		Arg	Ala	Met	
			145					150					155				
						aag											771
	Val		Asp	Gln	Leu	Lys	_	Thr	Arg	Gly	Gly	•	He	Ser	Phe	Thr	
		160			4		165	-4-			_4_	170					010
						gcc	_		_								819
	ні S 175	116	116	g 1 Å	ı yı.	Ala 180	net	v a. I	гЯЗ	AIA	185	nel	WIG	птз	11.0	190	
		220	220	tee	† ₂ †	gac	ato	σtc	gar	ggr		<b>ሶ</b> ሶ ወ	tee	cto	gto		867
						Asp											UU 1
	.100	11011	11011		- J -	P	110	141	1135	~ _ J	_, _		~~1	204		1	

				195					200					205		
ccg	gag	cac	atc	aac	ctc	ggc	ctg	gcc	atc	gac	ctc	ccc	cag	aag	gac	915
Pro	Glu	His	Ile	Asn	Leu	Gly	Leu	Ala	Ile	Asp	Leu	Pro	Gln	Lys	Asp	
			210	-				215					220			
		_	-		_									aag		963
Gly	Ser	-	Ala	Leu	Val	Val		Ala	Ile	Lys	Glu		Glu	Lys	Met	
		225					230					235			4	1011
														cgc		1011
Inr	240	zei.	GIN	rne	Leu	245	Ala	1 7 1	GIU	ASP	250	Val	Ala	Arg	Ser	
c a c		σσο	220	ctc	200		og t	ga c	tac	റമെ		σtc	acc	atc	tee	1059
_	_		_											Ile		1000
255	741	ulj	<i>D</i> , 3	Dou	260	1100	пор	мор	1,1	265	OIJ	, 41	• • • • • • • • • • • • • • • • • • • •	110	270	
	acc	aac	CCE	ggt		atc	ggt	acc	cgc		tcc	atc	ccg	cgt		1107
_			_						_				_	Arg	_	
				275					280					285		
acc	aag	ggc	cag	ggc	acc	atc	atc	ggt	gtc	ggt	tcc	atg	gac	tac	ccg	1155
Thr	Lys	Gly		Gly	Thr	lle	Ile	-	Val	Gly	Ser	Met	-	Tyr	Pro	
			290					295					300			
_			_		_									ggt		1203
Ala	Glu		GIn	Gly	Ala	Ser		Asp	Arg	Leu	Ala		Leu	Gly	val	
~~~		305	a t o	000	a t a	0.00	310	0.00	+ 0.0	an t	000	315	at o	atc	00.0	1251
	_		_							-			_	Ile	_	1201
Uly	320	ьсu	141	1 111	110	325	501	1111	1 3 1	ЛОР	330	WI P	741	110	0111	
ggc		gaa	tcc	ggt	gag		ctg	cgc	acc	atg		cag	ctg	ctc	gtg	1299
		_					_	_		_				Leu		
335					340					345					350	
														ccc		1347
Asp	Asp	Ala	Phe	Trp	Asp	His	Πle	Phe		Glu	Met	Asn	Val	Pro	Tyr	
				355					360					365		
														gac		1395
Thr	Pro	Met	_	Trp	Ala	Gln	Asp		Pro	Asn	Thr	Gly		Asp	Lys	
		a m t	370	0+4	005	a t a	a t a	375	~~~	t a a	000	+ 0.0	380	~~+	000	1443
		_	_	_	_				_		_		_	ggt Gly		1440
ASII	шг	385	Val	Met	UIII	Leu	390	ulu	Ala	1 91	Alg	395	Arg	uly	1112	
ctc	atc		gac	acc	aac	cca		ccc	tee	gtc	cag		ggc	atg	ccc	1491
		_	_				_			_	_			Met		
	400			_	_ •-	405			- 1		410		•	-		
gtc		gat	cac	cgt	gac	ctc	gac	atc	gag	acc	cac	ggc	ctg	acc	ctg	1539
Val	Pro	Asp	His	Arg	Asp	Leu	Asp	Ile	Glu	Thr	His	Gly	Leu	Thr	Leu	
415					420					425					430	

					acc											1587
Trp	Asp	Leu	Asp	Arg 435	Thr	Phe	His	Val	Gly 440	Gly	Phe	Gly	Gly	Lys 445	Glu	
acc	atg	acc	ctg		gag	gtg	ctc	agc		ctc	cgc	gcc	gcc		acc	1635
					Glu						_	-	_			1000
			450					455					460			
					gag							_	_		-	1683
Leu	Lys	va 1 465	Gly	Ser	Glu	Tyr	Thr 470	His	He	Leu	Asp	Arg 475	Asp	Glu	Arg	
acc	tgg	ctg	cag	gac	cgc	ctc	gag	gcc	ggt	atg	ccc	aag	ccc	acc	gcc	1731
Thr		Leu	Gln	Asp	Arg		Glu	Ala	Gly	Met	Pro	Lys	Pro	Thr	Ala	
	480					485					490					
					atc									_		1779
495	GIU	GIII	Lys	ıyı.	Ile 500	Leu	GIN	Lys	Leu	505	Ala	Ala	GIU	Ala	Pne 510	
	aac	ttc	ctg	cag	acc	aag	tac	gtc	ጀጀር		ឧឧទ	cet	ttr	tee		1827
					Thr											1021
				515			•		520		·	Ŭ		525		
					ctg							_		-		1875
Glu	Gly	Ala		Ser	Leu	Ile	Pro		Met	Asp	Ser	Ala		Asp	Thr	
700		~~~	530	~~~			~~ -	535		_4_			540			1000
_					ctt Leu				_			_			_	1923
****	711 tt	545	0111	ulj	Dea	пор	550	101	441	116	ury	555	110	1113	MI E	
ggt	cgc	ctc	aac	gtg	ctg	ttc	aac	atc	gtc	ggc	aag	-	ctg	gcc	tcg	1971
Gly		Leu	Asn	Val	Leu		Asn	Ile	Val	Gly	Lys	${\tt Pro}$	Leu	Ala	Ser	
	560					565					570					
					gag											2019
575	rne	ASII	GIU	rne	Glu 580	GIY	GIN	met	GIU	585	ыу	GIN	116	Gly	590	
	ggt	gac	gtg	aag	tac	cac	ctc	ggt.	tee		ggc	acc	cac	cte		2067
					Tyr											2001
				595					600		Ť			605		
					gag											2115
Met	Phe	Gly		Gly	Glu	lle	Lys		Ser	Leu	Thr	Ala		Pro	Ser ·	
000	a t a		610	~+ ~			-4-	615			_4_	_4_	620			0100
					aac Asn											2163
1113	LCu	625	Ala	vai	VOII	110	630	441	ulu	uly	116	635	Arg	Ala	гåэ	
cag	gac		ctg	gac	aag	ggc		gac	ggc	tac	acc		gtc	ccg	ctg	2211
					Lys											_
	640					645					650					
ctg	ctc	cac	ggt	gac	gcc	gcc	ttc	gcc	ggc	ctg	ggc	atc	gtg	ccc	gag	2259

Leu 655	Leu	His	Gly	Asp	Ala 660	Ala	Phe	Ala	Gly	Leu 665	Gly	Ile	Val	Pro	Glu 670	
		aac Asn		Ala												2307
		gtg Val	Val			_		Gly	ttc				Pro	gac		2355
_		tcc Ser														2403
_		705 ttc		_			-	-			_		_		_	2451
	720	Phe				725					730					2499
		ctg Leu	-				_	-								2499
	_	ctc Leu														2547
		atg Met		cag	_	_	_		gag	_				cgc	_	2595
		cgt Arg 785	gcc					gac				-	ggt	-		2643
	Pro	gag Glu	_	_		Ala	gtt	-	_	_	Phe	cac	_	_	_	2691
		gtg Val														2739
gag		acc Thr			acc					ctg					gac	2787
		atc Ile		cgc			_	_	gaa					ttc		2835
		cca Pro 865	gag					cac					ccg			2883
_	_	cgt Arg	-			-	acc					gac				2931

	880					885					890					
ggc		ctc	atc	gcc	ttc	ggc	tcc	ctg	gcc	acc	tcc	ggc	agg	ctg	gtc	2979
Gly	Glu	Leu	Ile	Ala	Phe	Gly	Ser	Leu	Ala	Thr	Ser	Gly	Arg	Leu	Val	
895					900					905					910	
cgc	ctc	gcc	ggt	gag	gat	tcc	cgc	cgt	ggt	acc	ttc	acc	cag	cgt	cac	3027
Arg	Leu	Ala	Gly	Glu	Asp	Ser	Arg	Arg	Gly	Thr	Phe	Thr	Gln	Arg	His	
				915					920					925		
gcc	gtg	gcc	atc	gac	ccg	aac	${\tt acc}$	gcc	gag	gag	ttc	aac	ccg	ctc	cac	3075
Ala	Val	Ala	Ile	Asp	Pro	Asn	Thr	Ala	Glu	Glu	Phe	Asn	Pro	Leu	His	
			930					935					940			
	_	-	_	_	aag				-							3123
Glu	Leu	Ala	Gln	Ala	Lys	Gly	Gly	Gly	Lys	Phe	Leu	Val	Tyr	Asn	Ser	
		945					950					955				
					gcg											3171
Ala	Leu	Thr	Glu	Tyr	Ala		Met	Gly	Phe	Glu		Gly	Tyr	Ser	Val	
	960					965					970					
		_	_	_	gtg											3219
	Asn	Pro	Asp	Ala	Val	Val	Ser	Trp	Glu		Gln	Phe	Gly	Asp		
975					980					985					990	
_			-	-	acc			-								3267
Ala	Asn	Gly	Ala		Thr	He	lle			Tyr	lle	Ser			Glu	•
				995					1000					1005		0015
_	_			_	acc		_	_		_	_	_				3315
Ala	Lys	_		Gin	Thr	Ser			116	Leu	Leu			HIS	Gly	
			1010					1015					1020		11.	0000
	_				ccg											3363
Tyr			GIN	GIY	Pro			3er	ser	Ala			Glu	Arg	rne	
4		1025	.				1030	a + =				1035	225	000		9411
					gag											3411
		Leu	Cys	Ala	Glu	01y 1045	261.	met	I III.		M1a 1050	GIII	Pro	1111	1111	
	1040		+00	++0	cac		o t a	oat	o art			o t a	aar	226	ator	3459
_					His	_	_	_	_		-					2423
1059		ASII	I y I		1060	Leu	red	Ai g		1065	Ala	ьeu	013		1070	
		000	o t m		gtc	++0	200	000			atσ	n t or	CTC			3507
_	_	_	_	_	Val				_		-	_				5001
гуз	AIG	110		1075	141	THE	1111		1080	961	riec	Deu		1085	D J J	
0 00	000	200	_		ccg	தவச	தைத்	-		gag	gtn	200		_	ឧឧទ	3555
					Pro											0000
AIG	AIG		1090	AIU	110	oru		1095	1 111	oru	141		1100	1	<i>-,</i> 0	
too	σtσ			gat	ccg	220			gat	gee	tee			ลลฮ	аар	3603
					Pro											2000
261		1105	ush	пор	110		1110	AIG	пор	1116		1115	101	2,3	1,5	
		1100					LIIV									

- -	-			_	aag cgc aag	3651							
	cys ser		ile lyr lyr	Glu Leu Ala 1130	Lys Arg Lys								
1120		1125		- ·		0000							
					gag atg ctg	3699							
Glu Lys Asp	Asn Arg	Asp Asp I		Val Arg Ile									
1135	1	140	1	.145	1150								
				gcc ttc gac		3747							
His Pro Ile	Pro Phe	Asn Arg L	eu Arg Asp	Ala Phe Asp	Gly Tyr Pro								
	1155		1160		1165								
aac gcc gag	gag atc	ctg ttc g	gtt cag gac	gag ccg gca	aac cag ggt	3795							
Asn Ala Glu	Glu Ile	Leu Phe V	/al Gln Asp	Glu Pro Ala	Asn Gln Gly								
Asn Ala Glu Glu Ile Leu Phe Val Gln Asp Glu Pro Ala Asn Gln Gly 1170 1175 1180													
gcc tgg ccg	ttc tac	cag gag c	eac ctg ccc	aac ctc atc	gag ggc atg	3843							
-				Asn Leu Ile									
1185	·		90	1195									
ctc ccg atg	cgt cgc	atc tcg c	egc cgt tcc	cag tcc tcg	act gcg acc	3891							
				Gln Ser Ser									
1200	0 0	1205		1210									
	aag gtg		atc gag cag		ctg gat gat	3939							
				Gln Lys Leu									
1215	-	220		225	1230								
			·	itaccttga ac		3991							
Ala Phe Asn		icgitaa ta	icascssic sc	icaccitga ac	,00g00g0	0001							
			attt maatma	tog gogotos:	tat taatataaaa	4 051							
					tat tcatatacac								
ccatcacgtt	taagttetg	c attigga	iteg tgegage	cate eeggt		4096							

<210> 34

<211> 1234

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 34

Val	Ser	Ser	Ala	Ser	Thr	Phe	Gly	Gln	Asn	Ala	Trp	Leu	Val	Asp	Glu
1				5					10					15	
Met	Phe	Gln	Gln	Phe	Lys	Lys	Asp	Pro	Gln	Ser	Val	Asp	Lys	Glu	Trp
			20					25					30		
Arg	Glu	Leu	Phe	Glu	Ser	Gln	Gly	Gly	Pro	Gln	Ala	Glu	Lys	Ala	Thr
		35					40					45			
Pro	Ala	Thr	${\tt Pro}$	Glu	Ala	Lys	Lys	Ala	Ala	Ser	Ser	Gln	Ser	Ser	Thr
	50					55					60				
Ser	Gly	Gln	Ser	Thr	Ala	Lys	Ala	Ala	Pro	Ala	Ala	Lys	Thr	Ala	Pro
65					70					75					80
Ala	Ser	Ala	Pro	Ala	Lys	Ala	Ala	Pro	Val	Lys	Gln	Asn	Gln	Ala	Ser

				85					90					95	
Lys	Pro	Ala	Lys	Lys	Ala	Lys	Glu	Ser	Pro	Leu	Ser	Lys	Pro	Ala	Ala
			100					105					110		
Met	Pro	Glu	Pro	Gly	Thr	Thr	Pro	Leu	Arg	Gly	Ile	Phe	Lys	Ser	Ile
		115					120					125			
Ala	Lys	Asn	Met	Asp	Leu		Leu	Glu	Val	Pro		Ala	Thr	Ser	Val
	130					135					140				
_	Asp	Met	Pro	Ala		Leu	Met	Phe	Glu		Arg	Ala	Met	Val	
145		_	_		150		0.1	a 1		155	^	D.	m)		160
Asp	Gln	Leu	Lys		Thr	Arg	Gly	Gly		He	Ser	Phe	Thr		11e
7 1	0.1	m	41 -	165	W = 1	T	41-	W = 1	170	41.	111: -	Dno	Ann	175	Aan
116	GIY	lyr		met	vai	гуs	Ala	185	met	Ala	nis	Pro	190	met	ASII
Acn	con	Tur	180	Ilα	Val	Aen.	Gly		Pro	Sor	I.a.11	Val		Pro	Glu
ASII	Ser	195	ASP	116	Val	иор	200	гуз	110	261	пец	205	vai	110	UIU
Hic	ء ۱۱		Len	Glv	I.en	Ala	Ile	Asp	Len	Pro	Gln		Asp	Glv	Ser
1113	210	11011	БСЦ	ur,	Dou	215	110		20u		220	2,0			
Arg		Leu	Val	Val	Ala		Ile		Glu	Thr		Lys	Met	Thr	Phe
225					230			•		235					240
Ser	Gln	Phe	Leu	Glu	Ala	Tyr	Glu	Asp	Val	Val	Ala	Arg	Ser	Arg	Val
				245					250					255	
Gly	Lys	Leu	Thr	Met	Asp	Asp	Tyr	Gln	Gly	Val	Thr	Ile		Leu	Thr
			260					265		_	_		270		_
Asn	Pro		Gly	Ile	Gly	Thr	Arg	His	Ser	Ile	Pro		Leu	Thr	Lys
		275					280	~ 1	•			285	D	4.1	0.1
Gly		Gly	Thr	He	He		Val	Gly	Ser	Met		Tyr	Pro	Ala	Glu
Dh.	290	C1	41.	C	C1	295	4	Lou	410	Cl.,	300	Cly	Val	G1 w	Lvc
305	GIN	GIY	Ala	Sel.	310	ASP	Arg	Leu	Ala	315	Leu	diy	Val	uly	320
	Va 1	Thr	ماا	Thr		Thr	Tyr	Asn	Hie		Val	Πle	Gln	Glv	
Leu	441	1111	110	325	501	1111	1 9 1	пор	330		, 41	110	V	335	
Glu	Ser	Glv	Glu		Leu	Arg	Thr	Met			Leu	Leu	Val		Asp
•••	001	,	340			0		345					350	•	•
Ala	Phe	Trp		His	Ile	Phe	Glu		Met	Asn	Val	Pro	Tyr	Thr	Pro
		355	-				360					365			
Met	Arg	Trp	Ala	Gln	Asp	Leu	Pro	Asn	Thr	Gly	Val	Asp	Lys	Asn	Thr
	370					375					380				
Arg	Val	Met	Gln	Leu	Ile	Glu	Ala	Tyr	Arg	Ser	Arg	Gly	His	Leu	Ile
385		•			390					395					400
Ala	Asp	Thr	Asn		Leu	Pro	Trp	Val		Pro	Gly	Met	Pro		Pro
				405					410		_			415	
Asp	His	Arg		Leu	Asp	lle	Glu		His	Gly	Leu	Thr		Trp	Asp
			420					425					430		

Leu	Asp	Arg 435	Thr	Phe	His	Val	Gly 440	Gly	Phe	Gly	Gly	Lys 445	Glu	Thr	Met
Thr	Leu 450	Arg	Glu	Val	Leu	Ser 455			Arg		Ala 460	Tyr	Thr	Leu	Lys
Val 465	Gly	Ser	Glu	Tyr	Thr 470	His	Ile		Asp	Arg 475	Asp	Glu	Arg	Thr	Trp 480
Leu	Gln	Asp	Arg	Leu 485	Glu	Ala	Gly	Met				Thr		Ala 495	Glu
			500			Lys		505					510		
		515				Val	520					525			
	530					Leu 535					540				
545					550					555					560
				565		Ile			570					575	
			580			Met		585					590		
_		595				Gly	600					605			
•	610	-				Val 615					620				
625					630	Val				635					640
				645					650					655	
			660			Ala		665					670		
		675				Gly	680					685			
	690					Gly 695					700				
705					710	Asp				715					720
				725		Asp			730					735	
			740			Arg		745					750		
		755				Arg	760					765			
Met	Thr	Gln	Pro	Lys	Met	Tyr	Glu	Leu	He	Thr	Gly	Arg	Asp	Ser	vai

	770					775					780				
Arg	Ala	Thr	Tyr	Thr		Asp	Leu	Leu	Gly		Gly	Asp	Leu	Ser	
785				4.7	790	., 1			D.I	795		01	W - 4	01	800
Glu	Asp	Ala	Glu		Val	Val	Arg	Asp				GIN	Met	61u 815	Ser
Val	Dha	Aen	Glu	805	Ive	Glu	Ala	Glv	810	Ive		Pro	A en		Gln
Val	1 116	ASII	820	141	цуз	oru	AIG		n) o		0111	110	830	UIU	0111
Thr	Gly	Ile		Gly	Ser	Gln	Glu				Gly	Leu		Thr	Asn
	•	835					840					845			
Ile	Thr	${\tt Arg}$	Glu	Glu	Leu		Glu	Leu	Gly	Gln	Ala	Phe	Val	Asn	Thr
	850				_	855	_		-		860			_	_
Pro	Glu	Gly	Phe	Thr	-	His	Pro	Arg	Val		Pro	Val	Ala	Lys	
865 Arg	Ala	61	gop.	Va l	870	Glu	Cl v	Glv	מוז	875	Trn	Δla	Trn	Glv	880
Al-g	Ala	uıu	Sel	885	1111	uıu	uıy	uly	890	лър	II P	AI &	пр	895	oru
Leu	Ile	Ala	Phe		Ser	Leu	Ala	Thr		Gly	Arg	Leu	Val		Leu
			900	_				905		-			910		
Ala	Gly	$\hbox{\tt Gl} u$	Asp	Ser	Arg	Arg		Thr	Phe	Thr	Gln		His	Ala	Val
_		915	_								_	925		0.1	
Ala		Asp	Pro	Asn	Thr		Glu	Glu	Phe	Asn		Leu	His	Glu	Leu
	930	Ala	Ive	Gl v	Glv	935	Ive	Pho	T A11	Va 1	940 Tyr	Δen	Ser	Ala	Ī. 6 11
945	UIII	Ala	БåЗ	uly	_		-			955		ASII	JUI	ma	960
	Glu	Tyr	Ala.	Gly	Met	Gly	Phe	Glu	Tyr		Tyr	Ser	Val'	Gly	
				965					970					975	
Pro	Asp	Ala		Val	Ser	Trp	Glu		Gln	Phe	Gly	Asp		Ala	Asn
		0.1	980	- 1			0.1	985		•	٥.	01	990	41.	T
Gly	Ala	995	Thr	116	116		61u 1000	Tyr	116	ser		61y 1005	GIU	Ala	Lys
Trn	Glv		Thr	Ser	Ser			Leu	Leu	Len			Glv	Tvr	Glu
	010	0111		501		1015		204	200		1020			- • -	
Gly	Gln	Gly	Pro	Asp	His	Ser	Ser	Ala	Arg	Ile	Glu	Arg	Phe	Leu	Gln
025					1030					1035					1040
Leu	Cys	Ala			Ser	Met	Thr			Gln	Pro	Thr	Thr		
	m .	nL.		1045	7	A	.		1050	T	C1	T	Wat	105	
Asn	Tyr		н1S	Leu	Leu	Arg		H1S	Ala	Leu	uly		met 1070	Lys	Arg
Pro	Len			Phe	Thr	Pro			Met	Len	Arg			Ala	Ala
110		1075	141	1 110	1111		1080	001	1100	Dou		1085	_, _		
Thr			Pro	Glu	Glu			Glu	Val	Thr	Arg	Phe	Lys	Ser	Val
	090					1095					1100				
	Asp	Asp	Pro			Ala	Asp	Ala			Val	Lys	Lys		
105					1110					1115					1120

Leu Cys Ser Gly Lys Ile Tyr Tyr Glu Leu Ala Lys Arg Lys Glu Lys 1125 1130 1135	
Asp Asn Arg Asp Asp Ile Ala Ile Val Arg Ile Glu Met Leu His Pro	
1140 1145 1150	
Ile Pro Phe Asn Arg Leu Arg Asp Ala Phe Asp Gly Tyr Pro Asn Ala	
1155 1160 1165	
Glu Glu Ile Leu Phe Val Gln Asp Glu Pro Ala Asn Gln Gly Ala Trp	
1170 1175 1180	
Pro Phe Tyr Gln Glu His Leu Pro Asn Leu Ile Glu Gly Met Leu Pro 185 1190 1195 1200	
Met Arg Arg Ile Ser Arg Arg Ser Gln Ser Ser Thr Ala Thr Gly Ile	
1205 1210 1215	
Ala Lys Val His Thr Ile Glu Gln Gln Lys Leu Leu Asp Asp Ala Phe	
1220 1225 1230	
Asn Ala	
<210> 35	
<211> 20	
<212> DNA <213> Artificial Sequence	
\ZIS> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for aceA	
<400> 35	
cctctaccca gcgaactccg	20
<210> 36	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for aceA	
.400. 00	
<400> 36	20
ctgccttgaa ctcacggttc	20
<210> 37	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Description of Artificial Sequence: primer for accBC	
\223\(\rightarrow\) Description of Artificial Sequence. Primer for access	
<400> 37	
catccaccc ggctacggct	20
<210> 38	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for accBC	
<400> 38	
cggtgactgg gtgttccacc	20
<210> 39	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for dtsR1	
(225) beset ipoton of motificial boquence. Primer for deski	
<400> 39	
acggcccagc cctgaccgac	20
<210> 40	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for dtsR1	
and beset ipsion of motificial sequence. Primer for deski	
<400> 40	
agcagcgccc atgacggcga	20
<210> 41	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<220>							
<223> D	escription of A	rtificial	Sequence:	primer	for	dtsR2	
<400> 4	-1						
acggccc	agc cctgaccgac						20
<210> 4	2						
<211> 2	0					•	
<212> D	NA						
<213> A	rtificial Seque	ence					
<220>							
<223> D	escription of A	rtificial	Sequence:	primer	for	dtsR2	
<400> 4							
agcagcg	ccc atgacggcga						20
<210> 4							
<211> 2							
<212> D							
<213> A	rtificial Seque	ence					
.000		:					
<220>			C	*	£	_ £1_	
<223> D	escription of A	rtificial	sequence:	primer	ior	рік	
<100× 1	n						
<400> 4	-						20
cgicaic	cga ggaatcgtcc						20
<210> 4	Λ						
<211> 2							
<211> Z							
	rtificial Seque	nce					
\\$10> A	iciliciai beque	ince					
<220>							
	escription of A	rtificial	Sequence:	primer	for	nfk	
10000	obotipulon of h		boquomoo.	Primor		P	
<400> 4	4						
	gcc catgacetee						21
-0 -00 -0							
<210> 4	5						
<211> 1							
<212> D							

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer for scrB
<220>
<221> UNSURE
<222> (3)
\langle 223 \rangle n=a or g or c or t
<400> 45
                                                                       17
ggncghytba aygaycc
<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer for scrB
<220>
                             <221> UNSURE
<222> (18)
\langle 223 \rangle n=a or g or c or t
<400> 46
                                                                       20
ggreaytece acatrtance
<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer for gluABCD
<400> 47
                                                                       20
ccatccggat ccggcaagtc
<210> 48
<211> 20
<212> DNA
```

<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Sequence: primer for gluABCD			
<400>		00		
aatcco	catct cgtgggtaac	20		
<210>	49			
<211>	23			
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Sequence: primer for pdhA			
<400>	49			
actgtg	steca tgggtettgg eec	23		
<210>	50			
<211>	•			
<212>				
	Artificial Sequence			
<220>				
	Description of Artificial Sequence: primer for pdhA			
<400>				
cgctgg	gaatccgaacatcga	20		
<210>	51			
<211>	26			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial Sequence: primer for pc			
<400>	51			
ggcgcaacct acgacgttgc aatgcg 26				
<210>	52			
<21U>				

92/123

<212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for pc <400> 52 20 tggccgcctg ggatctcgtg <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for ppc <400> 53 20 ggttcctgga ttggtggaga <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for ppc <400> 54 20 ccgccatcct tgttggaatc <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for acn <220> <221> UNSURE <222> (3,6,9) <223> n=inosine

<400>	55	
gtnggr	nacng aytcscatac	20
<210>	56	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: primer for acn	
	·	
<220>		
<221>	UNSURE	
<222>	(3, 9, 18)	
<223>	n=inosine	
<400>	56	
gengga	ngana tgtgrtengt	20
<210>	57	
<211>	20	
<212>		
	Artificial Sequence	
	·	
<220>		
<223>	Description of Artificial Sequence: primer for icd	
<400>	57	
gacatt	tcac tcgctggacg	20
-		
<210>	58	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: primer for icd	
= =	• • • • • • • • • • • • • • • • • • • •	
<400>	58	
	etctt cagccttctg	20
-00		
(2105	50	

<211><212><213>		
<220> <223>	Description of Artificial Sequence: primer for lpd	
<400> atcatc	59 gcaa ccggttc	17
<210><211><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: primer for lpd	
<400> cgtcac	60 cgat ggcgtaaat	19
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: primer for odhA	
<400> acaccg	61 tggt cgcctcaacg	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: primer for odhA	
<400> tgctaa	62 .cccg tcccacctgg	20

<210>	63				
<211>	_				
<212>					
<213>	Artificial Sequence				
<220>					
	Description of Artificial	Sequence:	primer	for	
	screening PCR of lpd	•	•		
<400>					
tacgag	ggagc agatcctcaa				20
<210>	64				
<211>					
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	primer	for	
	screening PCR of lpd				
<400>	64				
ttgace	geegg tgtteteeag				20
0.4.0					
<210>					
<211><212>					
	Artificial Sequence			•	
\L10>	Artificial bequence				
<220>					
<223>	Description of Artificial	Sequence:	primer	for	
	LA cloning of acn				
<400>	65				
	ngcta agtagttagc				20
55 .546	agour agougo				
<210>	66				
<211>	- -				
<212>					
<213>	Artificial Sequence				
<220>					
	Description of Artificial	Sequence:	primer	for	
-			-		

WO 01/25447 PCT/JP00/06913

96/123

LA cloning of acn

<400> 66
agctactaaa cctgcacc 18

<210> 67

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for LA cloning of icd

<400> 67

ccgtactctt cagccttctg 67

<210> 68

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for LA cloning of icd

<400> 68

tegteettgt tecacate 18

<210> 69

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for LA cloning of lpd

<400> 69

atcatcgcaa ccggttc 17

<210> 70

<211> 20

WO 01/25447 PCT/JP00/06913

<212> <213>	> DNA > Artificial Sequence	
<220> <223>	> Description of Artificial Sequence: primer for LA cloning of lpd	
<400>		20
tacgae	aggage agatecteaa	20
<210><211><211><212><213>	> 20	
2000 5		
<220> <223>	> Description of Artificial Sequence: primer for LA cloning of acn	
<400>		
gctaac	actact tagetteace	20
<210><211><211><212><213>	> 20	÷
.000		
	> Description of Artificial Sequence: primer for LA cloning of acn	
<400>	> 72	
gaacca	caggaa ctattgaacc	20
<210>	× 79	
<211>	·	
<212>		
	> Artificial Sequence	
<220>		
	> Description of Artificial Sequence: primer for LA cloning of icd	

WO 01/25447 PCT/JP00/06913

98/123

<400> 73	
tccgatgtca tcatcgac	18
<210> 74	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for	
LA cloning of icd	
<400> 74	
atgtggaaca aggacgac	18
<210> 75	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for	
LA cloning of odhA	
<400> 75	
gtacatattg tcgttagaac gcgtaatacg actca	35
<210> 76	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for	
LA cloning of odhA	
<400> 76	
cgttagaacg cgtaatacga ctcactatag ggaga	35
ος υταράσος ος υπαυπόρα ο υταυτάνας έξαξα	00
<210> 77	•
<211> 32	

<212> DNA

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying gdh gene	
<400> 77	
gcgcctgcag gtccgagggt gtgcgttcgg ca	32
<210> 78	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:primer for amplifying gdh gene	
<400> 78	
gcgcctgcag ccaccagga tgccctcaacc ag	32
<210> 79	
<211> 1344	
<212> DNA	
<213> Corynebacterium thermoaminogenes	
<220>	
<221> CDS	
<222> (1)(1341)	
<400> 79 • • • • • • • • • • • • • • • • • • •	48
atg act gta gat gag cag gtc tcc aac tac tac gac atg ctg ctg aag Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys	40
1 5 10 15	
cgc aac gcc ggg gaa cct gag ttc cac cag gct gtc gcg gag gtt ctc	96
Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu	
gaa tot otg aag ato gto otg gag aag gac oog cac tac goo gac tac	144
Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr	111
35 40 45	
ggt ctg atc cag cgt ctc tgc gaa ccg gaa cgc cag ctg atc ttc cgt	192

	50				55	Glu			60			
						ggt Gly						240
_	-	_				ctc Leu						288
						ggc Gly						336
						acc Thr 120						384
						aag Lys						432
_		_	_			acc Thr						480
						gac Asp						528
						cgc Arg						576
						ctg Leu 200						624
						acc Thr						672
						gag Glu						720
tcc						gcc Ala						768
				ggc		gac Asp		agc				816
			gac			ctg Leu	cgt			gtc		864

		275					280					285				
gca	cgc	gtg	tcc	tcc	tac	gcc	gac	gag	gtg	gag	ggt	gcg	gag	tac	cac	912
Ala	Arg	Val	Ser	Ser	Tyr	Ala	Asp	Glu	Val	Glu	Gly	Ala	Glu	Tyr	His	
	290					295					300					
	_				tgg											960
Thr	Asp	Gly	Ser	lle	Trp	Asp	Leu	Thr	Ala		lle	Ala	Leu	Pro		
305					310					315					320	
_					ctg											1008
Ala	Thr	Gln	Asn		Leu	Asp	Gly	Asp		Ala	Arg	Thr	Leu		Asp	
				325					330					335		1050
		_	_		gtg						_					1056
Asn	Gly	Cys	_	Phe	Val	Ala	Glu		Ala	Asn	met	Pro		Inr	Pro	
			340	_ 4 _		4		345			_4_		350		~~~	1104
	_		-	-	ttc											1104
GIU	Ala		ASP	vai	Phe	Arg	360	Arg	uly	vai	Leu	365	gly	Pro	GIŞ	
	~ a +	355	000	~^^	ggt				0.00	too	ma a		ரவர	a tor	69 G	1152
-	_	_		_	Gly											1102
LYS	370	HIA	ASII	Ala	uly	375	AGI	міа	1 111	261	380	ьeu	UIU	nec	OIII	
Cag		σc c	tee	cøt	gat		tσσ	age	ttc	дар		acc	gat.	gag	cet.	1200
_		-		_	Asp											1200
385	11011	71.1.0	501	0	390	501	** P	301		395					400	
	cac	cgc	atc	atg	aag	aac	atc	ttc	aag	tcc	tgc	gcc	gat	acc	gcc	1248
		_			Lys											
				405	•				410					415		
aag	gag	tac	ggc	cac	gag	aag	aac	tac	gtg	gtc	ggt	gcg	aac	atc	gcc	1296
Lys	Glu	Tyr	Gly	His	Glu	Lys	Asn	Tyr	Val	Val	Gly	Ala	Asn	lle	Ala	
			420					425					430			
~~		_	_	_	gct	-	_	_							taa	1344
Gly	Phe	Lys	Lys	Val	Ala	Asp	Ala	Met	Leu	Ala	Gln	Gly	Val	Ile		
		435					440					445				

<210> 80

<211> 447

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 80

 Met Thr Val Asp
 Glu Gln Val Ser Asn
 Tyr Tyr Asp
 Met Leu Leu Lys

 1
 5
 10
 15

 Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu
 20
 25

 Glu Ser Leu Lys 1le Val Leu Glu Lys Asp
 Pro His Tyr Ala Asp
 Tyr

		35					40					45			
Gly	Leu 50	Ile	Gln	Arg	Leu	Cys 55	Glu	Pro	Glu	Arg	Gln 60	Leu	Ile	Phe	Arg
Val 65	Pro	Trp	Val	Asp	Asp 70	Asn	Gly	Gln	Val	His 75	Val	Asn	Arg	Gly	Phe 80
Arg	Val	Gln	Phe	Asn 85	Ser	Ala	Leu	Gly	Pro 90	Tyr	Lys	Gly	Gly	Leu 95	Arg
Phe	His	Pro	Ser 100	Val	Asn	Leu	Gly	lle 105	Val	Lys	Phe	Leu	Gly 110	Phe	Glu
Gln	Ile	Phe 115	Lys	Asn	Ser	Leu	Thr 120	Gly	Leu	Pro	lle	Gly 125	Gly	Gly	Lys
Gly	Gly 130	Ser	Asp	Phe	Asp	Pro 135	Lys	Gly	Lys	Ser	Glu 140	Leu	Glu	lle	Met
Arg 145	Phe	Cys	Gln	Ser	Phe 150	Met	Thr	Glu	Leu	His 155	Arg	His	Ile	Gly	Glu 160
Tyr	Arg	Asp	Val	Pro 165	Ala	Gly	Asp	Ile	Gly 170	Val	Gly	Gly	Arg	Glu 175	Ile
Gly	Tyr	Leu	Phe 180	Gly	His	Tyr	Arg	Arg 185	Leu	Ala	Asn	Gln	His 190	Glu	Ser
Gly	Val	Leu 195	Thr	Gly	Lys	Gly	Leu 200	Thr	Trp	Gly	Gly	Ser 205	Leu	Val	Arg
Thr	Glu 210	Ala	Thr	Gly	Phe	Gly 215	Thr		Tyr	Phe	Val 220	Gln	Glu	Met	Ile
Lys 225	Ala	Glu	Gly	Glu	Thr 230	Leu	Glu	Gly	Lys	Lys 235	Val	lle	Val	Ser	Gly 240
	•			245	Thr	-			250					255	
Ala	Val	Val	Val 260	Gly	Phe	Ser	Asp	Ser 265	Ser	Gly	Trp	Val	Ser 270	Thr	Pro
Asn	Gly	Val 275	Asp	Val	Ala	Lys	Leu 280	Arg	Glu	Ile	Lys	Glu 285	Val	Arg	Arg
	290				Tyr	295	_				300				
Thr 305	Asp	Gly	Ser	Ile	Trp 310	Asp	Leu	Thr	Ala	Asp 315	lle	Ala	Leu	Pro	Cys 320
Ala	Thr	Gln	Asn	Glu 325	Leu	Asp	Gly	Asp	Asn 330	Ala	Arg	Thr	Leu	Ala 335	Asp
		_	340		Val			345					350		
Glu	Ala	11e 355	Asp	Val	Phe	Arg	Glu 360	Arg	Gly	Val	Leu	Phe 365	Gly	Pro	Gly
Lys	Ala 370	Ala	Asn	Ala	Gly	Gly 375	Val	Ala	Thr	Ser	Ala 380	Leu	Glu	Met	Gln

Gln Asr 385	Ala	Ser	Arg	Asp 390	Ser	Trp	Ser	Phe	Glu 395	Tyr	Thr	Asp	Glu	Arg 400	
Leu His	Arg	Ile	Met 405	Lys	Asn	Ile	Phe	Lys 410	Ser	Cys	Ala	Asp	Thr 415	Ala	
Lys Glu	ı Tyr	Gly 420	His	Glu	Lys	Asn	Tyr 425	Val	Val	Gly	Ala	Asn 430	lle	Ala	
Gly Phe	Lys 435	Lys	Val	Ala	Asp	Ala 440	Met	Leu	Ala	Gln	Gly 445	Val	Ile	•	
<210> 8 <211> 1 <212> I <213> E	.344)NA	bacto	eriu	n lad	ctofe	ermei	ntum								
<220> <221> 0	פחי														
<222> ((134)	1)												
<400> 8 atg aca		o a t	0 20	^2 0	σtc	tet	220	tat	tar	52 0	ator	ctt	cto	220	48
Met Thr	-	-		_	-						-				40
cgc aat	_														96
Arg Asn	ı Ala	Gly 20	Glu	Pro	Glu	Phe	His 25	Gln	Ala	Val	Ala	Glu 30	Val	Leu	
gaa tct Glu Ser	_	_						-							144
olu sei	35	гуз	116	Val	ьец	40	цуз	лэр	110	1112	45	NIG	лор	1 3 1	
ggt cto															192
Gly Leu 50		GIN	Arg	Leu	55	Glu	Pro	GIU	Arg	60	Leu	116	rne	Arg	
gtg cct		_	_	_											240
Val Pro	Trp	Val	Asp	Asp 70	Gln	Gly	Gln	Val	His	Val	Asn	Arg	Gly	Phe 80	
cgc gtg	cag	ttc	aac		gca	ctt	gga	cca	-	aag	ggc	ggc	ctg		288
Arg Val	Gln	Phe	Asn 85	Ser	Ala	Leu	Gly	Pro 90	Tyr	Lys	Gly	Gly	Leu 95	Arg	
ttc cac	cca	tct		aac	ctg	ggc	att		aag	ttc	ctg	ggc		gag	336
Phe His	Pro	Ser 100	Val	Asn	Leu	Gly	Ile 105	Val	Lys	Phe	Leu	Gly 110	Phe	Glu	
cag ato	ttt		aac	tcc	cta	acc	_	ctg	cca	atc	ggt		ggc	aag	384
Gln Ile							-								
	110					100					100				

		Gly		_		_	Pro			_		gat Asp					432
4	Arg		_	_		Phe	_			_	His	140 cgc Arg				Glu	480
		_	_	_	Pro	•		_		Gly	-	ggt Gly		_	Glu		528
			_	Phe				_	Arg			aac Asn		His			576
			Leu					Leu				gga Gly	Ser				624
			_					_				gtg Val					672
	_	_	_			_		_				220 atc Ile					720
												gct Ala					768
	_		_					_		_		tgg Trp	-				816
			-	-		_						aag Lys					864
į	gca	cgc	275 gta	tcc	gtg	tac	gcc	280 gac	gaa	att	gaa	ggc Gly	285 gca	acc	tac	cac	912
;	acc	290 gac	ggt	tcc	atc	tgg	295 gat	ctc	aag	tgc	gat	300 atc	gct	ctt	cct	tgt	960
	305 gca	act	cag	aac	gag	310 ctc	aac	ggc	gag	aac	315 gct	aag	act	ctt	gca	320 gac	1008
;	aac	ggc	tgc	cgt	325 ttc	gtt	gct	gaa	ggc	330 gcg	aac	Lys	cct	tcc	335 acc	cct	1056
		·	·	340					345			Met		350			1104

								100	/ 140							
Glu	Ala	Val 355	Glu	Val	Phe	Arg	Glu 360	Arg	Asp	Ile	Arg	Phe 365	Gly	Pro	Gly	
_	_				ggt Gly											1152
_		_	_	_	gat Asp 390			_								1200
ctc		_			aag Lys											1248
_					gag Glu		_									1296
		_	aag	_	gct Ala	_		atg	_	_	_		gtc		taa	1344
<211 <212 <213)> 82 > 44 > PI S> B1)> 82	47 RT revit	oacte	eriu	n lac	etofe	ermer	ntum								
			Asp	Glu 5	Gln	Val	Ser	Asn	Tyr 10	Tyr	Asp	Met	Leu	Leu 15	Lys	
Arg	Asn	Ala	Gly 20	Glu	Pro	Glu	Phe	His 25	Gln	Ala	Val	Ala	Glu 30	Val	Leu	
Glu	Ser	Leu 35	Lys	Ile	Val	Leu	Glu 40	Lys	Asp	Pro	His	Tyr 45	Ala	Asp	Tyr	
Gly	Leu 50	Ile	Gln	Arg	Leu	Cys 55	Glu	Pro	Glu	Arg	Gln 60	Leu	Ile	Phe	Arg	
Val 65	Pro	Trp	Val	Asp	Asp 70	Gln	Gly	Gln	Val	His 75	Val	Asn	Arg	Gly	Phe 80	
Arg	Val	Gln	Phe	Asn 85	Ser	Ala	Leu	Gly	Pro 90	Tyr	Lys	Gly	Gly	Leu 95	Arg	
			100		Asn			105					110			
Gln	lle	Phe 115	Lys	Asn	Ser	Leu	Thr 120	Gly	Leu	Pro	lle	Gly 125	Gly	Gly	Lys	
		_				_	_		-	_		_				

Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Leu Glu Ile Met

Arg Phe Cys Gln Ser Phe Met Thr Glu Leu His Arg His Ile Gly Glu

140

135

145					150					155					160
Tyr	Arg	Asp	Val	Pro 165	Ala	Gly	Asp	Ile	Gly 170	Val	Gly	Gly	Arg	Glu 175	Ile
Gly	Tyr	Leu	Phe 180	Gly	His	Tyr	Arg	Arg 185	Met	Ala	Asn	Gln	His 190	Glu	Ser
Gly	Val	Leu 195	Thr	Gly	Lys	Gly	Leu 200	Thr	Trp	Gly	Gly	Ser 205	Leu	Val	Arg
Thr	Glu 210	Ala	Thr	Gly	Tyr	Gly 215	Cys		Tyr	Phe	Val 220	Ser	Glu	Met	lle
Lys 225	Ala	Lys	Gly	Glu	Ser 230	Ile	Ser	Gly	Gln	Lys 235	Ile	Ile	Val	Ser	Gly 240
Ser	Gly	Asn	Val	Ala 245	Thr	Tyr	Ala	Ile	Glu 250	Lys		Gln	Glu	Leu 255	Gly
Ala	Thr	Val	Ile 260	Gly	Phe	Ser	Asp	Ser 265	Ser	Gly	Trp	Val	His 270	Thr	Pro
Asn	Gly	Val 275	Asp	Val	Ala	Lys	Leu 280	Arg	Glu	Ile	Lys	Glu 285	Val	Arg	Arg
Ala	Arg 290	Val	Ser	Val	Tyr	Ala 295	Asp	Glu	lle	Glu	Gly 300	Ala	Thr	Tyr	His
Thr 305	Asp	Gly	Ser	Ile	Trp 310	Asp	Leu	Lys	Cys	Asp 315	Ile	Ala	Leu	Pro	Cys 320
Ala	Thr	Gln	Asn	Glu 325	Leu	Asn	Gly	Glu	Asn 330	Ala	Lys	Thr	Leu	Ala 335	Asp
Asn	Gly	Cys	Arg 340					•	Ala		Met	Pro	Ser 350	Thr	Pro
Glu	Ala	Val 355	Glu	Val	Phe	Arg	Glu 360	Arg	Asp	Ile	Arg	Phe 365	Gly	Pro	Gly
Lys	Ala 370	Ala	Asn	Ala	Gly	Gly 375	Val	Ala	Thr	Ser	Ala 380	Leu	Glu	Met	Gln
Gln 385	Asn	Ala	Ser	Arg	Asp 390	Ser	Trp	Ser	Phe	Glu 395	Tyr	Thr	Asp	Glu	Arg 400
Leu	Gln	Val	Ile	Met 405	Lys	Asn	Ile	Phe	Lys 410	Thr	Cys	Ala	Glu	Thr 415	Ala
Ala	Glu	Tyr	Gly 420	His	Glu	Asn	Asp	Tyr 425	Val	Val	Gly	Ala	Asn 430	Ile	Ala
Gly	Phe	Lys 435	Lys	Val	Ala	Asp	Ala 440	Met	Leu	Ala	Gln	Gly 445	Val	lle	

<210> 83

<211> 20

<212> DNA

<220> <223>	Description of Artificial amplifying gltA gene	Sequence:primer	for	
<222>	misc_feature (9) n=inosine			
<400> aagato	83 cacnt acatcgaygg			20
<210> <211> <212>	20			
<213>	Artificial Sequence			
<220> <223>	Description of Artificial amplifying gltA gene	Sequence:primer	for	
<400> tagaag	84 steta egttegggta			20
<210> <211> <212>	21			
<213>	Artificial Sequence			
<220> <223>	Description of Artificial amplifying gltA gene	Sequence:primer	for	
<400>				21
gtcga	caata gcctgaatct g			4 1
<210>				
<211>				
ィフェンシ	IIIV A			

<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence:primer for	
	amplifying gltA gene	
400		
<400>		21
cggtgg	gaacc ggtgctgaca t	4 1
<210>	87	
<211>	21	
<212>	DNA	
40.1.05	Audificial Common	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for	
	amplifying gltA gene	
<400>	07	
	ggga atteggteatg t	21
555 558	5554 410055 00405 0	
<210>	88 _	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
(810)	Al III I I I I I I I I I I I I I I I I I	
<220>		
<223>	Description of Artificial Sequence:primer for	
	amplifying gltA gene	
<400>	88	
	tagec geggtagege a	21
0 0		
<210>		
<211>		
<212>		
<213>	Corynebacterium thermoaminogenes	
<220>		
<221>	CDS	
<222>	(1)(1290)	

.404																
)> 89										1	4				40
-	_			aac												48
vai	Ala	Ser	Asp	Asn	ASN	Lys	Ala	vaı		HIS	lyr	Pro	GIY		GIU	
l				, 5					10					15	- 4 -	0.0
	-	_		atc												96
Phe	Glu	Met	_	Ile	Lys	GIn	Ala		Glu	Gly	Asn	Ser		Val	He	
			20					25					30			
_		_	_	ctg	_	-			_	_			_			144
Leu	Gly	-	Met	Leu	Ser	Glu		Gly	Leu	Val	Thr		Asp	Pro	Gly	
		35					40					45				
	_	_		ggt					_						-	192
Tyr		Ser	Thr	Gly	Ser		Glu	Ser	Lys	He		Tyr	He	Asp.	Gly	
	50					55					60					
_	_			ctg	_		-			_			_	_		240
-	Ala	Gly	Ile	Leu		Tyr	Arg	Gly	Tyr		He	Ala	Asp	Leu		
65					70					75					80	
_				ttc												288
Glu	Asn	Ala	Thr	Phe	Asn	Glu	Val	Ser		Leu	Leu	He	Lys		Glu	
				85					90					95		
	_			gaa												336
Leu	Pro	Thr		Glu	Glu	Leu	His		Phe	Asn	Asp	Glu		Arg	His	
			100					105					110			
		_	_	gac	_											384
His	Thr		Leu	Asp	Glu	Asp		Lys	Ser	Gln	Phe		Val	Phe	Pro	
		115					120					125				
	-	-		ccg												432
Arg	_	Ala	His	Pro	Met		Thr	Leu	Ala	Ser		Val	Asn	He	Leu	
	130					135					140					
				cag	_	_	_	-		_	-		-	_	_	480
	Thr	Tyr	Tyr	Gln	_	Gln	Leu	Asp	Pro		Asp	Glu	Ala	Gln		
145					150					155					160	
				gtc												528
Asp	Lys	Ala	Thr	Val	Arg	Leu	Met	Ala		Val	Pro	Met	Leu		Ala	
				165					170					175		
	_			gcc												576
Tyr	Ala	His		Ala	Arg	Lys	Gly		Pro	Tyr	Met	Tyr		Asp	Asn	
			180					185					190			
			_	cgt												624
Ser	Leu	Asn	Ala	Arg	Glu	Asn		Leu	Arg	Met	Met		Gly	Tyr	Pro	
		195					200					205				
				gag												672
Thr	Glu	Pro	Tyr	Glu	Val	Asp	Pro	lle	Met	Val	Lys	Ala	Leu	Asp	Lys	

	210					215					220					
_													acc			720
	Leu	Ile	Leu	His		Asp	His	Glu	Gln		Cys	Ser	Thr	Ser		
225					230					235					240	5 00
_	_												tcc			768
vai	Arg	met	11e	245	26L	Ala	GIII	Ala	250	met	rne	Val	Ser	255	Ala	
gge	aac	atc	220		ctc	tee	o o c	ccø		cac	oot	gg c	gcc		cag	816
				_									Ala			010
ulj	013	110	260		Dou		41	265	204		013		270			
gct	gtc	ctc	gag	atg	ctc	gag	gag	atc	gca	gcc	aac	ggc	ggc	gac	gca	864
													Gly			
		275					280					285				
	_		_		_	-							gtc			912
Thr	_	Phe	Met	Asn	Arg		Lys	Asn	Lys	Glu		Gly	Val	Arg	Leu	
	290					295					300					000
_					-	_							cgt			960
	Gly	Pne	GIY	HIS	_	vaı	lyr	Lys	ASN		ASP	Pro	Arg	AIA	320	
305	σtο	000	700	0.00	310	000	a. a.	2 † 0	a t a	315	020	ot c	ggt	aar		1008
	_	_	_										Gly			1000
110	vai	БуЗ	лор	325	miu		ulu	110	330	U.u	1110	Dou	01,	335	пор	
cca	ctg	ctg	gat		gct	ctc	aag	ctg	gaa	gaa	atc	gca	ctc	aac	gac	1056
Pro	Leu	Leu	Asp	Leu	Ala	Leu	Lys	Leu	Glu	Glu	Ile	Ala	Leu	Asn	Asp	
			340					345					350			
•					_	_	_		_			-	ttc			1104
Asp	Tyr		Ile	Ser	Arg	Lys		Tyr	Pro	Asn	Val		Phe	Tyr	Thr	
		355					360					365				1150
													ttc			1152
Gly		116	Tyr	Arg	Ala	мет 375	Gly	rne	Pro	Inr	380	rne	Phe	ппг	vai	
c t a	370	gr.c	atc	aac	ege		CCT	886	†σσ	atc		cac	tac	ር <mark>ወ</mark> ር	gag	1200
_		_											Tyr			1500
385	1 110		110	013	390	Dou		013	P	395			• • •	0	400	
	ctc	gcc	gat	ccg		gcc	aag	atc	aac		cct	cgc	cag	atc		1248
													Gln			
			_	405	•				410	•		-		415		
						_							cgc	tag		1293
Thr	Gly	Glu		Ala	Arg	Lys	lle		Pro	Arg	Glu	Glu				
			420					425					430			

<212> PRT

PCT/JP00/06913

<213> Corynebacterium thermoaminogenes <400> 90 Val Ala Ser Asp Asn Asn Lys Ala Val Leu His Tyr Pro Gly Gly Glu Phe Glu Met Gly Ile Lys Gln Ala Thr Glu Gly Asn Ser Gly Val Ile 20 Leu Gly Lys Met Leu Ser Glu Thr Gly Leu Val Thr Phe Asp Pro Gly Tyr Val Ser Thr Gly Ser Thr Glu Ser Lys Ile Thr Tyr Ile Asp Gly 60 55 50 Asp Ala Gly Ile Leu Arg Tyr Arg Gly Tyr Asp Ile Ala Asp Leu Ala 75 70 Glu Asn Ala Thr Phe Asn Glu Val Ser Tyr Leu Leu Ile Lys Gly Glu 90 85 Leu Pro Thr Pro Glu Glu Leu His Lys Phe Asn Asp Glu Ile Arg His 105 110 His Thr Leu Leu Asp Glu Asp Phe Lys Ser Gln Phe Asn Val Phe Pro 120 115 Arg Asp Ala His Pro Met Ala Thr Leu Ala Ser Ser Val Asn Ile Leu 135 140 130 Ser Thr Tyr Tyr Gln Asp Gln Leu Asp Pro Leu Asp Glu Ala Gln Leu 155 150 Asp Lys Ala Thr Val Arg Leu Met Ala Lys Val Pro Met Leu Ala Ala 165 170 Tyr Ala His Arg Ala Arg Lys Gly Ala Pro Tyr Met Tyr Pro Asp Asn 185 Ser Leu Asn Ala Arg Glu Asn Phe Leu Arg Met Met Phe Gly Tyr Pro 200 205 Thr Glu Pro Tyr Glu Val Asp Pro Ile Met Val Lys Ala Leu Asp Lys 220 210 215 Leu Leu Ile Leu His Ala Asp His Glu Gln Asn Cys Ser Thr Ser Thr 235 230 Val Arg Met Ile Gly Ser Ala Gln Ala Asn Met Phe Val Ser Ile Ala 250 255 245 Gly Gly Ile Asn Ala Leu Ser Gly Pro Leu His Gly Gly Ala Asn Gln 260 265 Ala Val Leu Glu Met Leu Glu Glu Ile Ala Ala Asn Gly Gly Asp Ala 275 280 285 Thr Asp Phe Met Asn Arg Val Lys Asn Lys Glu Lys Gly Val Arg Leu 295 300

Met Gly Phe Gly His Arg Val Tyr Lys Asn Tyr Asp Pro Arg Ala Ala

305					310					315					320	
Ile	Val	Lys	Asp	Thr 325	Ala	His	Glu	lle	Leu 330	Glu	His	Leu	Gly	Gly 335	Asp	
Pro	Len	Leu	Asp		Ala	Leu	Lvs	Leu		Glu	Ile	Ala	Leu		Asp	
110	Dou	Dog	340	204		504	2,0	345	014	V			350			
Asp	Tyr			Ser	Arg	Lys			Pro	Asn	Val			Tyr	Thr	
0.1		355	m -	A	41.	W . 4	360	DL.	D	ጥե	4	365	nh.	mL	V-1	
Gly	10 Jeu	116	Tyr	Arg	Ala	мет 375	GIY	Pne	Pro	ınr	380	rne	Pne	inr	vai	
Leu 385	Phe	Ala	Ile	Gly	Arg 390	Leu	Pro	Gly	Trp	11e 395	Ala	His	Туг	Arg	Glu 400	
Gln	Leu	Ala	Asp	Pro 405	Gly	Ala	Lys	lle	Asn 410	Arg	Pro	Arg	Gln	Ile 415	Tyr	
Thr	Glv	Glu	Thr		Arg	Lvs	He	He		Arg	Glu	Glu	Arg	110		
1111	01 ,	Olu	420	7114	6	2,0	110	425		••••	014		430			
<210	> 91	L														
<211	> 13	314														
<212	> D!	NA														
<213	> Br	revit	oacte	eriu	n lac	ctofe	ermer	ntum								
<220	>															
<220 <221		S														
	> CI		[131]	l)												
<221 <222	> CI > (1	l)([131]	l)												
<221 <222 <400	> CI > (1 > 91	l)(atc	ete	gct	act	gat	aac	aac	aag	gct	gtc	ctg	48
<221 <222 <400 atg	> CI > (1 > 91 ttt	l)(l gaa	agg	gat												48
<221 <222 <400	> CI > (1 > 91 ttt	l)(l gaa	agg	gat												48
<221 <222 <400 atg Met 1	> CI > (1 > 91 ttt Phe	l)(gaa Glu	agg Arg	gat Asp 5	lle	Val	Ala	Thr	Asp 10	Asn	Asn	Lys	Ala	Val 15	Leu	48 96
<221 <222 <400 atg	> CI > (1 > 91 ttt Phe tac	gaa Glu	agg Arg ggt	gat Asp 5 ggc	lle gag	Val ttc	Ala gaa	Thr	Asp 10 gac	Asn atc	Asn atc	Lys	Ala gct	Val 15 tct	Leu gag	
<221 <222 <400 atg Met 1 cac	> CI > (1 > 91 ttt Phe tac	gaa Glu	agg Arg ggt	gat Asp 5 ggc	lle gag	Val ttc	Ala gaa	Thr	Asp 10 gac	Asn atc	Asn atc	Lys	Ala gct	Val 15 tct	Leu gag	
<221 <222 <400 atg Met 1 cac	> CI > (1 > 91 ttt Phe tac Tyr	gaa Glu ccc Pro	agg Arg ggt Gly 20	gat Asp 5 ggc Gly	lle gag Glu	Val ttc Phe	Ala gaa Glu	Thr atg Met 25	Asp 10 gac Asp	Asn atc Ile	Asn atc Ile	Lys gag Glu	Ala gct Ala 30	Val 15 tct Ser	Leu gag Glu	
<221 <222 <400 atg Met 1 cac His	> CI > (1 > 91 ttt Phe tac Tyr	gaa Glu ccc Pro	agg Arg ggt Gly 20 ggt	gat Asp 5 ggc Gly	Ile gag Glu gtc	Val ttc Phe ctg	Ala gaa Glu ggc	Thr atg Met 25 aag	Asp 10 gac Asp	Asn atc Ile ctg	Asn atc Ile tct	Lys gag Glu gag	gct Ala 30 act	Val 15 tct Ser gga	Leu gag Glu ctg	96
<221 <222 <400 atg Met 1 cac His ggt Gly	> CI > (1 > 91 ttt Phe tac Tyr aac Asn	gaa Glu ccc Pro aac Asn	agg Arg ggt Gly 20 ggt Gly	gat Asp 5 ggc Gly gtt Val	gag Glu gtc Val	Val ttc Phe ctg Leu	Ala gaa Glu ggc Gly 40	Thr atg Met 25 aag Lys	Asp 10 gac Asp atg Met	Asn atc Ile ctg Leu	atc Ile tct Ser	gag Glu gag Glu 45	Ala gct Ala 30 act Thr	Val 15 tct Ser gga Gly	gag Glu ctg Leu	96 144
<221 <222 <400 atg Met l cac His ggt Gly atc	> CI > (1 > 91 ttt Phe tac Tyr aac Asn	gaa Glu ccc Pro aac Asn 35	agg Arg ggt Gly 20 ggt Gly	gat Asp 5 ggc Gly gtt Val	gag Glu gtc Val	Val ttc Phe ctg Leu tat	Ala gaa Glu ggc Gly 40 gtg	Thr atg Met 25 aag Lys agc	Asp 10 gac Asp atg Met act	Asn atc Ile ctg Leu ggc	Asn atc Ile tct Ser tcc	gag Glu gag Glu 45 acc	gct Ala 30 act Thr	Val 15 tct Ser gga Gly tcg	gag Glu ctg Leu	96
<221 <222 <400 atg Met 1 cac His ggt Gly	> CI > (1 > 91 ttt Phe tac Tyr aac Asn act	gaa Glu ccc Pro aac Asn 35	agg Arg ggt Gly 20 ggt Gly	gat Asp 5 ggc Gly gtt Val	gag Glu gtc Val	Val ttc Phe ctg Leu tat Tyr	Ala gaa Glu ggc Gly 40 gtg	Thr atg Met 25 aag Lys agc	Asp 10 gac Asp atg Met act	Asn atc Ile ctg Leu ggc	Asn atc Ile tct Ser tcc Ser	gag Glu gag Glu 45 acc	gct Ala 30 act Thr	Val 15 tct Ser gga Gly tcg	gag Glu ctg Leu	96 144
<221 <222 <400 atg Met l cac His ggt Gly atc Ile	> CI > (1 > 91 ttt Phe tac Tyr aac Asn act Thr	gaa Glu ccc Pro aac Asn 35 ttt	agg Arg ggt Gly 20 ggt Gly gac Asp	gat Asp 5 ggc Gly gtt Val cca Pro	gag Glu gtc Val ggt Gly	Val ttc Phe ctg Leu tat Tyr 55	gaa Glu ggc Gly 40 gtg Val	Thr atg Met 25 aag Lys agc Ser	Asp 10 gac Asp atg Met act Thr	atc Ile ctg Leu ggc Gly	atc Ile tct Ser tcc Ser 60	gag Glu gag Glu 45 acc Thr	gct Ala 30 act Thr gag Glu	Val 15 tct Ser gga Gly tcg Ser	gag Glu ctg Leu aag Lys	96 144 192
<221 <222 <400 atg Met l cac His ggt Gly atc Ile atc	> CI > (1 > 91 ttt Phe tac Tyr aac Asn act Thr 50 acc	gaa Glu ccc Pro aac Asn 35 ttt Phe	agg Arg ggt Gly 20 ggt Gly gac Asp	gat Asp 5 ggc Gly gtt Val cca Pro	gag Glu gtc Val ggt Gly	Val ttc Phe ctg Leu tat Tyr 55 gat	Ala gaa Glu ggc Gly 40 gtg Val	Thr atg Met 25 aag Lys agc Ser gga	Asp 10 gac Asp atg Met act Thr	Asn atc Ile ctg Leu ggc Gly ctg	Asn atc Ile tct Ser tcc Ser 60 cgt	gag Glu gag Glu 45 acc Thr	Ala gct Ala 30 act Thr gag Glu cgc	Val 15 tct Ser gga Gly tcg Ser	gag Glu ctg Leu aag Lys	96 144
<221 <222 <400 atg Met I cac His ggt Gly atc Ile atc Ile	> CI > (1 > 91 ttt Phe tac Tyr aac Asn act Thr 50 acc	gaa Glu ccc Pro aac Asn 35 ttt Phe	agg Arg ggt Gly 20 ggt Gly gac Asp	gat Asp 5 ggc Gly gtt Val cca Pro	gag Glu gtc Val ggt Gly	Val ttc Phe ctg Leu tat Tyr 55 gat	Ala gaa Glu ggc Gly 40 gtg Val	Thr atg Met 25 aag Lys agc Ser gga	Asp 10 gac Asp atg Met act Thr	atc Ile ctg Leu ggc Gly ctg Leu	Asn atc Ile tct Ser tcc Ser 60 cgt	gag Glu gag Glu 45 acc Thr	Ala gct Ala 30 act Thr gag Glu cgc	Val 15 tct Ser gga Gly tcg Ser	gag Glu ctg Leu aag Lys tat	96 144 192
<221 <222 <400 atg Met 1 cac His ggt Gly atc Ile atc Ile 65	> CI > (1 > 91 ttt Phe tac Tyr aac Asn act Thr 50 acc Thr	gaa Glu ccc Pro aac Asn 35 ttt Phe	agg Arg ggt Gly 20 ggt Gly gac Asp	gat Asp 5 ggc Gly gtt Val cca Pro gat Asp	gag Glu gtc Val ggt Gly ggc Gly 70	Val ttc Phe ctg Leu tat Tyr 55 gat Asp	Ala gaa Glu ggc Gly 40 gtg Val gcg Ala	Thr atg Met 25 aag Lys agc Ser gga Gly	Asp 10 gac Asp atg Met act Thr	Asn atc Ile ctg Leu ggc Gly ctg Leu 75	Asn atc Ile tct Ser tcc Ser 60 cgt Arg	gag Glu gag Glu 45 acc Thr tac	Ala gct Ala 30 act Thr gag Glu cgc Arg	Val 15 tct Ser gga Gly tcg Ser ggc Gly	gag Glu ctg Leu aag Lys tat Tyr	96 144 192 240
<221 <222 <400 atg Met I cac His ggt Gly atc Ile atc Ile	> CI > (1 > 91 ttt Phe tac Tyr aac Asn act Thr 50 acc Thr	gaa Glu ccc Pro aac Asn 35 ttt Phe tac Tyr	agg Arg ggt Gly 20 ggt Gly gac Asp atc	gat Asp 5 ggc Gly gtt Val cca Pro gat Asp	gag Glu gtc Val ggt Gly ggc Gly 70 gct	Val ttc Phe ctg Leu tat Tyr 55 gat Asp	Ala gaa Glu ggc Gly 40 gtg Val gcg Ala	Thr atg Met 25 aag Lys agc Ser gga Gly gcc	Asp 10 gac Asp atg Met act Thr atc Ile	Asn atc Ile ctg Leu ggc Gly ctg Leu 75 ttc	atc Ile tct Ser tcc Ser 60 cgt Arg	gag Glu gag Glu 45 acc Thr tac Tyr	Ala gct Ala 30 act Thr gag Glu cgc Arg gtt	Val 15 tct Ser gga Gly tcg Ser ggc Gly	gag Glu ctg Leu aag Lys tat Tyr 80 tac	96 144 192

				85					90					95		
cta	ctt	atc	aac	ggt	gaa	cta	cca	acc	cca	gat	gag	ctt	cac	aag	ttt	336
Leu	Leu	Ile	Asn	Gly	Glu	Leu	Pro	Thr	Pro	Asp	Glu	Leu	His	Lys	Phe	
			100					105					110			
	_			-		cac										384
Asn	Asp		lle	Arg	His	His		Leu	Leu	Asp	Glu		Phe	Lys	Ser	
		115					120					125				400
_						cgc										432
Gln		Asn	Val	Phe	Pro	Arg	Asp	Ala	His	Pro		Ala	Thr	Leu	Ala	
	130			. 1 6		135		1	1		140		-4-			400
						tct						_				480
	Ser	vaı	ASN	116		Ser	Inr	Tyr	Туг		ASP	GIN	Leu	ASII		
145	4				150					155		. + .	.+.		160	528
	_		_	_		gat	_	-		_	_		_	-	_	320
Leu	ASP	GIU	Ala	165	Leu	Asp	LYS	Ala	170	Val	Alg	ւես	net	175	P 3 2	
at t	003	a t or	n t or		aca	tac	av a	020		gra.	cac	220	oot		cet	576
-		_	_	-		Tyr										0.0
441	110	ne c	180	AIa	AIG	1 3 1	A1 a	185	MI S	AIL	VI P	Ц	190	nia	110	
tac	ate	tac		gar	aac	tcc	ctc		ece.	cet.	gag	aac		ctg	cgc	624
	_			-		Ser				_						021
- , .		195					200			0		205			0	
atg	atg	ttc	ggt	tac	cca	acc	gag	cca	tac	gag	atc	gac	cca	atc	atg	672
Met	Met	Phe	Gly	Tyr	Pro	Thr	Glu	Pro	Tyr	Glu	Ιle	Asp	Pro	Ile	Met	
	210					215					220					
gtc	aag	gct	ctg	gac	aag	ctg	ctc	atc	ctg	cac	gct	gac	cac	gag	cag	720
Val	Lys	Ala	Leu	Asp	Lys	Leu	Leu	Ile	Leu	His	Ala	Asp	His	Glu	Gln	
225					230					235					240	
	_					gtt						_				768
Asn	Cys	Ser	Thr		Thr	Val	Arg	Met		Gly	Ser	Ala	Gln		Asn	
				245					250					255		
_		_			_	ggt				-	_				-	816
Met	Phe	Val		He	Ala	Gly	Gly		Asn	Ala	Leu	Ser	-	Pro	Leu	
			260					265					270			004
			-			gct	_	_		_						864
HIS	Gly	-	Ala	Asn	GIN	Ala		Leu	Glu	Met	Leu		ASP	116	Lys	
		275					280			_ 4		285	_4_			012
						gca		-								912
ASN		пlS	υIΆ	uly	ASP	Ala	ınr	на	rne	met		гÀ2	val	LYS	ASII	
00~	290	~ ~ ~	a~^	at a	0.77	295	0 + ~	~~ ^	++^	<i>a.</i>	300	0.55	a++	+	900	960
						ctc Leu										300
305	σıu	wsh	n I A	AGI	310	Leu	ne t	all	rne	315	1115	vi.R	A CP I	I y I	320	
300					210					010					320	

									, 120							
	tac Tyr															1008
	gag Glu		Leu	ggt				Leu	ctg							1056
	gaa Glu	Ile					Asp					Arg	aag			1104
_	aac Asn					Thr					Arg					1152
Pro	370 act Thr	_														1200
	atc Ile				cgc					gca					atc	1248
	cgc Arg			cag					aag					ttg		1296
	cgc Arg		gag	_	taa											1314
<21 <21	0> 9: 1> 4: 2> P: 3> B:	37 RT	bacto	eriu	m lao	ctof	ermei	ntum								
	0> 9:											_			_	
Met 1	Phe	Glu	Arg	Asp 5	Ile	Val	Ala	Thr	Asp 10	Asn	Asn	Lys	Ala	Val 15	Leu	
His	Tyr	Pro	Gly 20	Gly	Glu	Phe	Glu	Met 25	Asp	Ile	Ile	Glu	Ala 30	Ser	Glu	
Gly	Asn	Asn 35	Gly	Val	Val	Leu	Gly 40	Lys	Met	Leu	Ser	Glu 45	Thr	Gly	Leu	
Ile	Thr 50		Asp	Pro	Gly	Tyr 55		Ser	Thr	Gly	Ser 60	_	Glu	Ser	Lys	
65	Thr				70	Asp				75	Arg				80	
Asp	Ile	Ala	Asp	Leu	Ala	Glu	Asn	Ala	Thr	Phe	Asn	Glu	Val	Ser	Tyr	

90

85

95

Leu	Leu	lle	Asn 100	Gly	Glu	Leu	Pro	Thr 105	Pro	Asp	Glu	Leu	His 110	Lys	Phe
Asn	Asp	Glu 115	lle	Arg	His	His	Thr 120	Leu	Leu	Asp	Glu	Asp 125	Phe	Lys	Ser
Gln	Phe 130	Asn	Val	Phe	Pro	Arg 135	Asp	Ala	His	Pro	Met 140	Ala	Thr	Leu	Ala
Ser 145	Ser	Val	Asn	Ile	Leu 150	Ser	Thr	Tyr	Tyr	Gln 155	Asp	Gln	Leu	Asn	Pro 160
Leu	Asp	Glu	Ala	Gln 165	Leu	Asp	Lys	Ala	Thr 170	Val	Arg	Leu	Met	Ala 175	Lys
			Leu 180					185					190		
		195	Pro				200					205			
	210		Gly			215					220				
225			Leu		230					235					240
			Thr	245					250					255	
			Ser 260					265					270		
		275	Ala				280					285			
	290		Gly			295					300				
305			Gly		310					315					320
			Pro	325					330					335	
			Leu 340					345					350		
		355	Ala				360					365			
	370		Asp			375					380				
385			Phe		390					395					400
			His	405					410					415	
			Arg 420		Val	Tyr	Thr	Gly 425	Lys	Glu	Ser	Arg	Lys 430	Leu	Val
Pro	Arg	Glu	Glu	Arg											

435

<210> 93 <211> 1656 <212> DNA <213 > Corynebacterium thermoaminogenes <220> <221> CDS <222> (309)..(1595) <400> 93 acgcccgatt cttcaacact atcgaagagg tcccaaccca cgcgttgacc cagggcttgg 60 gtactttgtc ccgcgcgcaa aatatcgtgt tggtggcaac tggccaagga aaagcagaca 120 gccatccgcg gaactgtgga aggtccagtg actgcttctt gcccaggttc cattctgcaa 180 atgcacaaca acgccaccat catcgttgat gaagcagcag catccaagct gaaaaatgct 240 gaccattacc gtctcatgga gcaattaaag ctgcgctaga aacaaaaagg aaagtactgt 300 gtggggct atg cac aca gaa ctt tcc agt ttg cgc cct gcg tac cat gtg 350 Met His Thr Glu Leu Ser Ser Leu Arg Pro Ala Tyr His Val 398 act cct ccg cag ggc aga ctc aat gat ccc aat gga atg tac gtc gat Thr Pro Pro Gln Gly Arg Leu Asn Asp Pro Asn Gly Met Tyr Val Asp 15 25 20 gga gat acc ctc cac gtc tac tac cag cac gat cca ggt ttc ccc ttc 446 Gly Asp Thr Leu His Val Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe 35 40 45 gea eca aag ege ace ggt tgg get eac ace ace acg eeg ttg ace gga 494 Ala Pro Lys Arg Thr Gly Trp Ala His Thr Thr Pro Leu Thr Gly 55 60 50 ccg cag cga ttg cag tgg acg cac ctg ccc gat gct ctt tac ccg gat 542 Pro Gln Arg Leu Gln Trp Thr His Leu Pro Asp Ala Leu Tyr Pro Asp 70 75 65 590 gta tcc tat gac ctg gat gga tgc tat tcc ggc gga gcc gta ttt tct Val Ser Tyr Asp Leu Asp Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser 80 85 90 638 gac ggc acg ctt aaa ctt ttc tac acc ggc aac cga aaa att gac ggc Asp Gly Thr Leu Lys Leu Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly 100 105 95 aag cgc cgc gcc acc caa aac ctc gtc gaa gtc gag gac cca act ggg 686 Lys Arg Arg Ala Thr Gln Asn Leu Val Glu Val Glu Asp Pro Thr Gly 115 120 734 ctg atg ggc ggc att cat cgc cgc tcg cct aaa aat ccg ctt atc gac Leu Met Gly Gly Ile His Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp

			130					135					140			
					ttt											782
Gly	Pro	Ala	Ser	Gly	Phe	Thr		His	Tyr	Arg	Asp		Met	lle	Ser	
		145					150					155				
	-			_	tgg											830
Pro	-	Gly	Asp	Gly	Trp		Met	Val	Leu	Gly		GIn	Arg	Glu	Asn	
	160				_1.1	165			.		170				+	070
			_		gtt											878
175	Inr	GIY	Ala	Ala	Val 180	Leu	lyr	Arg	ser	185	ASP	Leu	gru	ASII	190	
	++0	too	aa+	maa	atc	200	+++	ga v	ete		ga c	gr 2	caa	cct		926
-			-	_	Ile											320
oru	1 116	Dei	uı,	195	116	1 1111	THE	лор	200	DCI	пор	MIG	0111	205	uly	
tct	gcc	cct	gat	ctc	gtt	cct	ggc	ggc	tac	atg	tgg	gaa	tgc	ccc	aac	974
Ser	Ala	Pro	Asp	Leu	Val	Pro	Gly	Gly	Tyr	Met	Trp	Glu	Cys	Pro	Asn	
			210					215					220			
		_		_	gat	-				_	_					1022
Leu	Phe	Thr	Leu	Arg	Asp	Glu	Lys	Thr	Gly	Glu	Asp		Asp	Val	Leu	•
		225					230					235				
		_			gga											1070
He		Cys	Pro	Gln	Gly		Asp	Arg	He	Asp		Glu	Vai	Thr	HIS	
4	240					245		4-4	-4-	_4_	250			~~~	~~	1110
	-	-		-	cag											1118
255	Ala	Ser	261.	ASP	Gln 260	Cys	GI Ş	1 y I	vai	265	UI y	гуз	Leu	oru	270	
	200	ttc	cet	otr	ctg	rga	g g a	ttc	agc		ctø	gat	ttc	eet.		1166
_			-	-	Leu									_		1100
			0	275	202	6	,		280					285		
gaa	ttc	tac	gcg	ccg	cag	gtt	gca	gtc	aac	ggt	tcc	gat	gcc	tgg	ctt	1214
Glu	Phe	Tyr	Ala	Pro	Gln	Val	Ala	Val	Asn	Gly	Ser	Asp	Ala	Trp	Leu	
			290					295					300			
_	-				ttg											1262
Val	Gly		Met	Gly	Leu	Pro		Gln	Asp	Asp	His		Thr	Val	Ala	
		305					310			4		315				4040
_	_				cac	_	_									1310
Gln		Gly	Trp	Val	His		Leu	Tnr	vai	Pro		Arg	Leu	HIS	Leu	
1	320			- - -	4.4	325	~~ ~	a++	a + +	a t a	330	~ 00	~~~	~~~	tor	1358
_					tat Tyr							_		-		1990
335	USII	1115	nid	116	340	0111	ulu	Leu	ren	345	110	oru	ary	oru	350	
	pts	act	aga	tet	gta	tta	g g t	tet	gaa		gtc	Cga	gta	gar		1406
					Val											1100
913	* 1.0.1	. 141	6	355	, w.i	Dou	~1J	-01	360			0	1	365		
									-							

cga	gac	aat	gtt	tcc	ctc	gag	tgg	gat	ggt	gtc	cgg	ttg	tct	gtg	gat	1454
Arg	Asp	Asn	Val	Ser	Leu	Glu	Trp	Asp	Gly	Val	Arg	Leu	Ser	Val	Asp	
			370					375					380			
cgc	gat	ggc	gat	cgt	cgt	gta	gct	gaa	gta	aaa	cct	ggc	gaa	tta	gtg	1502
Arg	Asp	Gly	Asp	Arg	Arg	Val	Ala	Glu	Val	Lys	Pro	Gly	Glu	Leu	Val	
		385					390					395				
atc	gcg	gac	gat	aat	aca	gcg	att	gag	ata	aca	gca	ggt	cat	ggc	çag	1550
Ile	Ala	Asp	Asp	Asn	Thr	Ala	He	Glu	Ile	Thr	Ala	Gly	His	Gly	Gln	
	400					405					410					
gtt	tcc	ttc	gct	ttc	cgc	acc	ttc	aaa	ggt	gac	${\tt act}$	att	gag	aga		1595
Val	Ser	Phe	Ala	Phe	Arg	Thr	Phe	Lys	Gly	Asp	Thr	Ile	Glu	Arg		
415					420					425						
taag	gtcai	taa a	aaaag	ggc	ct to	ctgtg	gcgg	g at	tgtad	caaa	tac	ttcg	caa	aatco	ccttga	1655
t																1656

<210> 94

<211> 429

<212> PRT

<213 > Corynebacterium thermoaminogenes

165

<400> 94

Met His Thr Glu Leu Ser Ser Leu Arg Pro Ala Tyr His Val Thr Pro Pro Gln Gly Arg Leu Asn Asp Pro Asn Gly Met Tyr Val Asp Gly Asp 25 20 Thr Leu His Val Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro 40 Lys Arg Thr Gly Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln 55 60 Arg Leu Gln Trp Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Val Ser 70 75 Tyr Asp Leu Asp Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser Asp Gly 90 Thr Leu Lys Leu Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly Lys Arg 100 110 105 Arg Ala Thr Gln Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met 120 125 Gly Gly Ile His Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro 130 135 140 Ala Ser Gly Phe Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp 150 155

Gly Asp Gly Trp Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr

170

175

Gly	Ala	Ala	Val 180	Leu	Tyr	Arg	Ser	Ala 185	Asp	Leu	Glu	Asn	Trp 190	Glu	Phe
Ser	Gly	Glu 195		Thr	Phe	Asp	Leu 200		Asp	Ala	Gln	Pro 205		Ser	Ala
Pro	Asp 210		Val	Pro	Gly	Gly 215	Tyr	Met	Trp	Glu	Cys 220		Asn	Leu	Phe
Thr 225	Leu	Arg	Asp	Glu	Lys 230	Thr	Gly	Glu	Asp	Leu 235	Asp	Val	Leu	Ile	Phe 240
				245			Ile	_	250					255	
Ser	Ser	Asp	Gln 260	Cys	Gly	Tyr	Val	Val 265	Gly	Lys	Leu	Glu	Glu 270	Thr	Thr
Phe	Arg	Val 275	Leu	Arg	Gly	Phe	Ser 280	Glu	Leu	Asp	Phe	Gly 285	His	Glu	Phe
Tyr	Ala 290	Pro	Gln	Val	Ala	Val 295	Asn	Gly	Ser	Asp	Ala 300	Trp	Leu	Val	Gly
Trp 305	Met	Gly	Leu	Pro	Ala 310	Gln	Asp	Asp	His	Pro 315	Thr	Val	Ala	Gln	Glu 320
Gly	Trp	Val	His	Cys 325	Leu	Thr	Val	Pro	Arg 330	Arg	Leu	His	Leu	Arg 335	Asn
His	Ala	Ile	Tyr 340	Gln	Glu	Leu	Leu	Leu 345	Pro	Glu	Gly	Glu	Ser 350	Gly	Val
Thr	Arg	Ser 355	Val	Leu	Gly	Ser	Glu 360	Pro	Val	Arg	Val	Asp 365	Ile	Arg	Asp
Asn	Val 370	Ser	Leu	Glu	Trp	Asp 375	Gly	Val	Arg	Leu	Ser 380	Val	Asp	Arg	Asp
Gly 385	Asp	Arg	Arg	Val	Ala 390	Glu	Val	Lys	Pro	Gly 395	Glu	Leu	Val	Ile	Ala 400
Asp	Asp	Asn	Thr	Ala 405	Ile	Glu	Ile	Thr	Ala 410	Gly	His	Gly	Gln	Val 415	Ser
Phe	Ala	Phe	Arg 420	Thr	Phe	Lys	Gly	Asp 425	Thr	Ile	Glu	Arg			

<210> 95

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying scrB gene

WO 01/25447 PCT/JP00/06913

<400>	95	
gtacat	tattg tegttagaac gegtaataeg actea	35
<210>	96	
<211>	35	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for amplifying scrB gene	
<400>	96	
cgttag	gaacg cgtaatacga ctcactatag ggaga	35
<210>	97	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for LA cloning of scrB	
<400>	97	
gtaaag	gageg tegggeaggt gegteeactg	30
<210>	98	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for LA cloning of scrB	
<400>	98	
ggtgtg	gagec cageeggtge getttggtge	30
<210>	99	

	131/130	
<211><212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for LA cloning of scrB	
<400>		30
<210>	100	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for LA cloning of scrB gene	
<400>		
ggtgca	agcgg ttctataccg ctcgacagat	30
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: primer for	
	amplifying scrB gene	
<400>		
ggcccg	gggac gcccgattct tcaacactat cg	32
<210>	102	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	

<220>	Description of Autificial Common primary for	
	Description of Artificial Sequence:primer for amplifying scrB gene	
<400>		
ggcccg	ggga tcaagggatt ttgcgaagta tt	32
<210>	103	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: primer for	
	amplifying icd gene	
<400>		
gaagat	ctct atgaccagcg catcaagctg	30
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for amplifying icd gene	
<400>		30
gaagat	cetgg teateceaga acetgateae	30
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for amplifying gdh gene	

<400> gcgcct	105 gcag gtccgagggt gtgcgttcgg ca	32
<210><211><211><212>	32	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for amplifying gdh gene	
<400>	106	
gcgcct	cgcag gcaccaggat gccctcaacc ag	32
<210><211><211><212>	30	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<400>	107	
ggggta	accga tcactataac cccacagcac	30
<210><211><211><212>	30	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for	
	amplifying gltA gene	
<400> ggggta	108 accet ggetgatetg aactaggege	30

		<u></u>	
Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C12N15/60, C12N15/54, C12N1 19/12, C12N9/04, C07K14/34, C12N9	15/53, C12N15/31, C12N15 0/26, C12P13/04	/56, C12N9/88,
According to	o International Patent Classification (IPC) or to both nat	ional classification and IPC	
B. FIELDS	SEARCHED		
Int. C12N	ocumentation searched (classification system followed b Cl ⁷ C12N15/60, C12N15/54, C12N 19/12, C12N9/04, C07K14/34, C12N9	15/53, C12N15/31, C12N15 0/26, C12P13/04	
	ion searched other than minimum documentation to the	_	
JICS	ata base consulted during the international search (name ST FILE (JOIS), WPI (DIALOG), BIOSI L/DDBJ/Genebank/PIR/Swissprot/Ger	(S(DIALOG), MEDLINE(STN)	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y	JP, 7-63383, B2, (Ajinomoto Co. 12 July, 1995 (12.07.95), & FR, 2612937, A & US, 52504 & AU, 8811614, A & BR, 88012 & KR, 9606580, A	, Inc.),	1-49
Y	JP, 4-4887, A (Ajinomoto Co., I 09 January, 1992 (09.01.92), & FR, 2661191, A & US, 52504		1-49
Y	Microbiology, Vol.144[5](1998), K. Takai et al., "ppc, the gene carboxylase from an extremely to Rhodothermus obamensis: Clor overexpression in Escherichia of	for phosphoenolpyruvate thermophilic bacterium, ning, sequencing and	1-49
Y	JP, 5-56782, A (Ajinomoto Co., 09 March, 1993 (09.03.93), & EP, 530765, A2 & US, 57700 & CA, 2077308, A & US, 54390 & TW, 260709, A & DE, 6921	0661, A 322, A	1,17,18,49
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
* Specia "A" docum conside "E" earlier date "L" docum cited to specia "O" docum means "P" docum	al categories of cited documents: ment defining the general state of the art which is not ered to be of particular relevance document but published on or after the international filing ment which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other al reason (as specified) ment referring to an oral disclosure, use, exhibition or other in the published prior to the international filing date but later the priority date claimed	"T" later document published after the interpriority date and not in conflict with the understand the principle or theory and document of particular relevance; the considered novel or cannot be considered step when the document is taken alone document of particular relevance; the considered to involve an inventive stee combined with one or more other such combination being obvious to a person document member of the same patent	the application but cited to lerlying the invention claimed invention cannot be tred to involve an inventive claimed invention cannot be claimed invention cannot be p when the document is a documents, such a skilled in the art family
19	actual completion of the international search December, 2000 (19.12.00)	Date of mailing of the international sea 26 December, 2000 (rch report 26.12.00)
Name and I	mailing address of the ISA/ anese Patent Office	Authorized officer	
Facsimile N	No.	Telephone No.	

		<u> </u>
C (Continus	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
¥	WO, 92/18635, A1 (Commenwealth Sci. & Ind. Res. Org.), 29 October, 1992 (29.10.92), & ZA, 9202761, A & AU, 9215771, A & NZ, 242370, A Fig. 5; Table 4	1,17,18,49
Y	Gene, Vol.145[1](1994) D.Wereecke et al. "Cloning and sequence analysis of the gene encoding isocitrate lyase from <i>Rhodococcus fascians</i> " pp.109-114	1,17,18,19
Y	Arch. Microbiol, Vol.166[2](1996) W. Jager et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins" pp.977-984	
Y	Mol. Microbiol, Vol.19(1996) S. Donadio et al. "Erythromycin production in Saccharopolyspora erythraea does not require a functional propionyl-CoA carbocylase" pp.977-984	2,19,20,49
Y	WO, 94/08016, A1 (Arch Dev. Corp.), 14 April, 1994 (14.04.94), & EP, 663012, A1 & AU, 9352956, A & US, 5539092, A & US, 5756290, A & US, 5792627, A & US, 5972644, A Figs. 2,3; sequence No. 6	2,19,20,49
Y	WO, 96/32484, A2 (Arch Dev. Corp.), & EP, 820514, A1 & AU, 9655432, A & US, 5910626, A Claim 32; sequence No. 8	2,19,20,49
Y	Biosci. Biotechnol. Biochem., Vol.60(1996), E. Kimura et al., "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum" pp.1565-1570	3,4,21-24,49
1	WO, 95/23224, Al (Ajinomoto Co., Inc.), 31 August, 1995 (31.08.95), & EP, 752472, Al & BR, 9506883, A & US, 5929221, A & DE, 69514914, B Claim 2, sequence No. 2	3,4,21-24,49
Y	JP, 10-234371, A (Ajinomoto Co., Inc.), 08 September, 1998 (08.09.98) (Family: none)	3,4,21-24,49
Y	JP, 7-121227, B2 (KYOWA HAKKO KOGYO CO., LTD.), 25 December, 1995 (25.12.95) (Family: none)	5,25,26,49
	J. Bacteriol., Vol.178(1996) A. M. Alves et al., "Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase" pp.149-155	5,25,26,49
	Appl. Environ. Microbiol., Vol.63(1997), A.M.C.R.Alves et al., "Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actnomycete Streptomyces coelicolor A3(2)" pp.951-956	5,25,26,49
2022	A/210 (continuation of second chart) (fully 1002)	

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	J. Bacteriol., Vol.177(1995) W. Kronemeyer et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum", pp.1152-1158	7,29,30,49
Y	Eur. J. Biochem., Vol.227[1-2](1995), C. Rollin et al., "13C-NMR studies of <i>Corynebacterium</i> melassecola metabolic pathways" pp.488-493	8,31,32,49
Y	J. Bacteriol., Vol.176(1994), S. Heinet al., "Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of new type of dihydrolipoamide dehydrogenase", pp.4394-4408	8,31,32,49
Y	Eur. J. Biochem., vol.133(1983), P. E. Stephens et al., "The pyruvate dehydrogenase complex of <i>Escherichia coli</i> K12. Nucleotide sequence encoding the pyruvate dehydrogenase component", pp.155-162	8,31,32,49
Y	WO, 99/18228, A2 (Forschungzentrum Juelich GmbH), 15 April, 1999 (15.04.99), & EP, 10125621, A2 & AU, 9911482, A & ZA, 9809014, A & DE, 19831609, A1 & SK, 200000481, A & BR, 9813021, A Claims 15, 18; sequence No. 2	9,33,34,49
Y	JP, 10-165180, A (Ajinomoto Co., Inc.), 23 June, 1998 (23.06.98), & EP, 857784, A2 & SK, 9701635, A & HU, 9702361, A2 & BR, 9706058, A	10,35,36,49
Y	JP, 2-291276, A (Degussa AG.), 18 April, 1990 (18.04.90), & EP, 358940, A1 & GB, 2223754, A & DE, 68924227, B	10,35,36,49
Y	<pre>JP, 11-196887, A (Mitsubishi Chemical Corporation), 27 July, 1999 (27.07.99) (Family: none)</pre>	10,35,36,49
Y	JP, 8-66189, A (Mitsubishi Chemical Corporation), 12 March, 1996 (12.03.96) (Family: none)	10,35,36,49
Y	MIKROBIOLOGIA, Vol.56[5](1987), M. P. Ruklish et al., "The functioning of the tricarboxylic acid cycle in Brevibacterium flavum and Micrococcus glutamicus", pp.759-763	11,37,38,49
Y	J. Bacteriol., Vol.175(1993), J. M. Mengaud et al., "The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron -responsive element-binding protein" pp.5666-5676	11,37,38,49
¥	Eur. J. Biochem. Vol.204(1992), c. Prodromou et al., "The aconitase of Esherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial isopropylmalate isomerases", pp.599-609	11,37,38,49

Category* Citation of document, with indication, where appropriate, of the relevant passages Y J. Bacteriol., Vol.177(1995), B. J. Eikmanns et al., "Cloning, sequence analysis, expression, and inactivation of the Corymebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme", pp.774-782 Y J. Bacteriol., Vol.175(1993), A. Ishi et al., "Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. Strain ABE-1", pp.6873-6880 Y Genbank, Acc. No. Y16642(01 February, 1999), B. J. Eikmanns et al., "Corynebacterium glutamicum lpd gene, complete CDS" Y WO. 97/48790, Al (Ajinomoto Co., Inc.), 24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, Al Claims; pages 38-40; sequence No. 7 Y WO, 95/34672, Al (Ajinomoto Co., Inc.), 21 December, 1995 (21.12.95), & US, 5977331, A & EP, 771879, Al Claims; sequence Nos. 1, 2 W Mol. Microbiol., Vol.,6(1992), E. R. Boermann et al., "Molecular analysis of the Corynebecterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al & US, 6027920, A Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional anaysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 960012, A & ZA, 9600656, A & BR, 9600268, A	C (Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
J. Bacteriol., Vol.177(1995), B. J. Eikmanns et al.,			
"Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme", pp.774-782 Y J. Bacteriol., Vol.175(1993), A. Ishi et al., "Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. Strain ABE-1", pp.6873-6880 Y Genbank, Acc. No. Y16642(01 February, 1999), B. J. Eikmanns et al., "Corynebacterium glutamicum lpd gene, complete CDS" Y WO, 97/48790, Al (Ajinomoto Co., Inc.), 24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, Al (Claims; pages 38-40; sequence No. 7 Y WO, 95/34672, Al (Ajinomoto Co., Inc.), 21 December, 1995 (21.12.95), & US, 597731, A & EP, 771879, Al Claims; sequence Nos. 1, 2 Y Mol. Microbiol., Vol.,6(1992), E. R. Boermann et al., "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al & US, 6027920, A Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional anaysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
"Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. Strain ABE-1", pp.6873-6880 Y Genbank, Acc. No. Y16642(01 February, 1999), B. J. Eikmanns et al., "Corynebacterium glutamicum lpd gene, complete CDS" Y WO, 97/48790, Al (Ajinomoto Co., Inc.), 24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, Al Claims; pages 38-40; sequence No. 7 Y WO, 95/34672, Al (Ajinomoto Co., Inc.), 21 December, 1995 (21.12.95), & US, 597731, A & EP, 771879, Al Claims; sequence Nos. 1, 2 Y Mol. Microbiol., Vol., 6(1992), E. R. Boermann et al., "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al & US, 6027920, A Y Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	"Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical	12,39,40,49
B. J. Eikmanns et al., "Corymebacterium glutamicum lpd gene, complete CDS" Y WO, 97/48790, Al (Ajinomoto Co., Inc.), 24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, Al Claims; pages 38-40; sequence No. 7 Y WO, 95/34672, Al (Ajinomoto Co., Inc.), 21 December, 1995 (21.12.95), & US, 5977331, A & EP, 771879, Al Claims; sequence Nos. 1, 2 Y Mol. Microbiol., Vol., 6(1992), E. R. Boermann et al., "Molecular analysis of the Corymebecterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al & US, 6027920, A Y Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional analysis of the Corymebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	"Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. Strain ABE-1",	12,39,40,49
24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, Al Claims; pages 38-40; sequence No. 7 Y WO, 95/34672, Al (Ajinomoto Co., Inc.), 21 December, 1995 (21.12.95), & US, 5977331, A & EP, 771879, Al Claims; sequence Nos. 1, 2 Y Mol. Microbiol., Vol.,6(1992), E. R. Boermann et al., "Molecular analysis of the Corynebecterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al & US, 6027920, A Y Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	B. J. Eikmanns et al., "Corynebacterium glutamicum lpd	13,41,42,49
21 December, 1995 (21.12.95), & US, 5977331, A & EP, 771879, A1 Claims; sequence Nos. 1, 2 Y Mol. Microbiol., Vol.,6(1992), E. R. Boermann et al., "Molecular analysis of the Corynebecterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, A1 & WO, 93/03158, A1 & FR, 2679921, A1 & FR, 2679922, A1 & US, 6027920, A Y Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional anaysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, A1	14,43,44,49
"Molecular analysis of the Corynebecterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326 Y JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, A1 & WO, 93/03158, A1 & FR, 2679921, A1 & FR, 2679922, A1 & US, 6027920, A Y Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	21 December, 1995 (21.12.95), & US, 5977331, A & EP, 771879, A1	14,43,44,49
24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al & US, 6027920, A Y Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional anaysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	"Molecular analysis of the Corynebecterium glutamicum gdh	15,45,46,49
"Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828 Y Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 6,27,28,49 O6 August, 1996 (06.08.96), EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 6,27,28,49 24 september, 1993 (24.09.93),	Y	24 March, 1994 (24.03.94), & EP, 551506, Al & WO, 93/03158, Al & FR, 2679921, Al & FR, 2679922, Al	15,45,46,49
"Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321 Y JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93),	Y	"Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene	16,47,48,49
06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A Y JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93), 6,27,28,49		"Nodulationg ability of Rhizobium tropici is conditioned	16,47,48,49
24 september, 1993 (24.09.93),		06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A	6,27,28,49
	ľ	24 september, 1993 (24.09.93),	6,27,28,49
l l			

国際調査報告

国際出願番号 PCT/JP00/06913

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl' C12N15/60, C12N15/54, C12N15/53, C12N15/31, C12N15/56, C12N9/88, C12N9/12, C12N9/04, C07K14/34, C12N9/26, C12P13/04

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl' C12N15/60, C12N15/54, C12N15/53, C12N15/31, C12N15/56, C12N9/88, C12N9/12, C12N9/04, C07K14/34, C12N9/26, C12P13/04

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) JICSTファイル(JOIS), WPI(DIALOG), BIOSIS(DIALOG), MEDLINE (STN),

EMBL/DDBJ/Genebank/PIR/Swissprot/Geneseq

C.	関連す	Z.	L	剑丛	C h	スか	*
C .	対性ソ	ູ	C	吸むタノ	ワイレ	シス	m/

し 大理 9 る	5 と認められる人似	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 7-63383, B2 (味の素株式会社) 12. 7月. 1995 (12. 07. 95) &FR, 2612937, A &US, 5250434, A &AU, 8811614, A &BR, 8801289, A &KR, 9606580, A	1-49
Y	JP, 4-4887, A (味の素株式会社) 9. 1月. 1992 (09. 01. 92) &FR, 2661191, A &US, 5250423, A	1-49

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公安された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献.

特許庁審査官(権限のある職員)

上條 発

国際調査を完了した日

19.12.00

国際調査報告の発送日

26.12.00

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区盤が関三丁目4番3号

SECTION DO

4 B

9453

電話番号 03-3581-1101 内線 3448

		EDVILLE IN TOTAL OF THE PROPERTY OF THE PROPER	
C (続き).	関連すると認められる文献		,
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは	は、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Microbiology, Vol. 144[5] (1998) K. Taka "ppc, the gene for phosphoenolpyruva extremely thermophilic bacterium, Rh Cloning, sequenceing and overexpress coli"p. 1423-1434	ite.carboxylase from an odothermus obamensis:	1-49
Y	JP, 5-56782, A (味の素株式 9.3月.1993 (09.03.93 &EP, 530765, A2 &US, &CA, 2077308, A &US, &TW, 260709, A &DE, 6	5700661, A 5439822, A	1, 17, 18, 49
Y	WO, 92/18635, A1 (Common Res. Org.) 29. 10月. 1992 (2&ZA, 9202761, A &AU, &NZ, 242370, A 第5図, Table4参照	29, 10, 92)	1, 17, 18, 49
Y	Gene, Vol. 145[1] (1994) D. Wereecke et a "Cloning and sequence analysis of the isocitrate lyase from Rhodococcus factorisms."	e gene encoding	1, 17, 18, 49
Y	Arch. Microbiol, Vol. 166[2](1996) W. Ja "A Corynebacterium glutamicum gene el protein similar to biotin carboxylas -carrier proteins" p. 977-984	ncoding a two-domain	2, 19, 20, 49
Y	Mol. Microbiol, Vol. 19(1996) S. Donadio "Erythromycin production in Saccharo, does not require a functional propior p. 977-984	polyspora erythraea	2, 19, 20, 49
Y	WO, 94/08016, A1 (Arch Do 14.4月.1994 (14.04.9 &EP, 663012, A1 &AU, &US, 5539092, A &US, &US, 5792627, A &US, 第2, 3図, 配列番号6参照	4)	2, 19, 20, 49
Y	WO, 96/32484, A2 (Arch De 17.10月.1996 (17.10. &EP, 820514, A1 &AU, &US, 5910626, A 請求項32, 配列番号8参照	96)	2, 19, 20, 49
Y	Biosci. Biotechnol. Biochem., Vol. 60 (1997) "Molecular cloning of a novel gene, of the detergent sensitivity of a mutant Brevibacterium lactofermentum" p. 1569	dtsR, which rescues t derived from	3, 4, 21-24, 49
Y	WO, 95/23224, A1 (Ajinomo 31.8月.1995 (31.08.9 &EP, 752472, A1 &BR, &US, 5929221, A &DE, 請求項2, 配列番号2参照	9506883. A	3, 4, 21-24, 49

国際調査報告

国際出願番号 PCT/JP00/06913

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 10-234371, A (味の素株式会社) 8.9月.1998 (08.09.98) (ファミリー無し)	3, 4, 21–24, 49
Y	JP, 7-121227, B2 (協和醗酵工業株式会社) 25. 12月. 1995 (25. 12. 95) (ファミリー無し)	5, 25, 26, 49
Y	J. Bacteriol., Vol. 178 (1996) A. M. Alves <i>et al</i> . "Characterization and phylogeny of the <i>pfp</i> gene of <i>Amycolatopsis methanolica</i> encoding PPi-dependent phosphofructokinase" p. 149-155	5, 25, 26, 49
Y	Appl. Environ. Microbiol., Vol. 63(1997) A. M. C. R. Alves <i>et al</i> . "Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete <i>Streptomyces coelicolor</i> A3(2)" p. 951-956	5, 25, 26, 49
Y	J. Bacteriol., Vol. 177 (1995) W. Kronemeyer <i>et al</i> . "Structure of the <i>gluABCD</i> cluster encoding the glutamate uptake system of <i>Corynebacterium glutamicum</i> " p. 1152-1158	.7, 29, 30, 49
Y	Eur. J. Biochem., Vol. 227[1-2](1995) C. Rollin <i>et al.</i> "13C-NMR studies of <i>Corynebacterium melassecola</i> metabolic pathways" p. 488-493	8, 31, 32, 49
Y	J. Bacteriol., Vol. 176(1994) S. Hein <i>et al</i> . "Biochemical and molecular characterization of the <i>Alcaligenes eutrophus</i> pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase" p. 4394-4408	8, 31, 32, 49
Y	Eur. J. Biochem., Vol. 133 (1983) P.E. Stephens <i>et al</i> . "The pyruvate dehydrogenase complex of <i>Escherichia coli</i> K12. Nucleotide sequence encoding the pyruvate dehydrogenase component" p. 155-162	8, 31, 32, 49
Y	WO, 99/18228, A2 (Forschungszentrum Juelich GMBH) 15. 4月. 1999 (15. 04. 99) & EP, 10125621, A2 & AU, 9911482, A & ZA, 9809014, A & DE, 19831609, A1 & SK, 200000481, A & BR, 9813021, A 請求項15,18, 配列番号2	9, 33, 34, 49
Y	JP, 10-165180, A (味の素株式会社) 23. 6月. 1998 (23. 06. 98) &EP, 857784, A2 &SK, 9701635, A &HU, 9702361, A2 &BR, 9706058, A	10, 35, 36, 49
Y	JP, 2-291276, A (Degussa AG.) 18. 4月. 1990 (18. 04. 90) &EP, 358940, A1 &GB, 2223754, A &DE, 68924227, B	10, 35, 36, 49

国際調査報告

国際出願番号 PCT/JP00/06913

		0/00913
C (続き). 引用文献の	関連すると認められる文献	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 11-196887, A (三菱化学株式会社) 27. 7月. 1999 (27. 07. 99) (ファミリー無し)	10, 35, 36, 49
Y.	JP, 8-66189, A (三菱化学株式会社) 12.3月.1996 (12.03.96) (ファミリー無し)	10, 35, 36, 49
Y	MIKROBIOLOGIYA, Vol. 56[5] (1987) M. P. Ruklish <i>et al</i> . "The functioning of the tricarboxylic acid cycle in <i>Brevibacterium flavum</i> and <i>Micrococcus glutamicus</i> " p. 759-763	11, 37, 38, 49
Y	J. Bacteriol., Vol. 175(1993) J. M. Mengaud <i>et al</i> . "The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein" p. 5666-5676	11, 37, 38, 49
Y	Eur. J. Biochem., Vol. 204(1992) C. Prodromou <i>et al</i> . "The aconitase of <i>Escherichia coli</i> . Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial isopropylmalate isomerases" p. 599-609	11, 37, 38, 49
Y	J. Bacteriol., Vol. 177 (1995) B. J. Eikmanns <i>et al</i> . "Cloning, sequence analysis, expression, and inactivation of the <i>Corynebacterium glutamicum icd</i> gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme" p. 774-782	12, 39, 40, 49
Y	J. Bacteriol., Vol. 175(1993) A. Ishii <i>et al.</i> "Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, <i>Vibrio</i> sp. strain ABE-1" p. 6873-6880	12, 39, 40, 49
Y	Genbank, Acc. No. Y16642(1999-Feb-01) B. J. Eikmanns <i>et al.</i> "Corynebacterium glutamicum lpd gene, complete CDS"	13, 41, 42, 49
Y	WO, 97/48790, A1 (味の素株式会社) 24.12月.1997 (24.12.97) &JP, 10-87, A &EP, 974647, A1 特許請求の範囲, 38-40頁, 配列番号7	14, 43, 44, 49
Y	WO, 95/34672, A1 (味の素株式会社) 21.12月.1995 (21.12.95) &US, 5977331, A &EP, 771879, A1 特許請求の範囲, 配列番号1,2	14, 43, 44, 49
Y	Mol. Microbiol, Vol. 6(1992) E. R. Boermann <i>et al</i> . "Molecular analysis of the <i>Corynebacterium glutamicum gdh</i> gene encoding glutamate dehydrogenase" p. 317-326	15, 45, 46, 49
	,	
		

	EDVENDE TRO		
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、	その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 6-502548, A (0rsan) 24.3月.1994(24.03.94 &EP, 551506, A1 &WO, 9 &FR, 2679921, A1 &FR, &US, 6027920, A	33/03158, A1	15, 45, 46, 49
Y	Microbiology, Vol. 140(1994) B. J. Eikman "Nucleotide sequence, expression and analysis of the <i>Corynebacterium gluta</i> encoding citrate syntase"p. 1817-1828	transcriptional	16, 47, 48, 49
Y	Mol. Microbiol, Vol. 11 (1994) M. A. Pardo "Nodulating ability of <i>Rhizobium trop</i> a plasmid- encoded citrate syntase" p	<i>ici</i> is conditioned by	16, 47, 48, 49
Y	JP, 8-196280, A (味の案株式 6.8月.1996(06.08.96) &EP, 724017, A2 &FR, 2 &SK, 9600112, A &ZA, 9 &BR, 9600268, A	2729970, A	6, 27, 28, 49
Y	JP, 5-244958, A (味の素株元 24.9月.1993 (24.09.93 &US, 5556776, A	代会社) 3)	6, 27, 28, 49
	· .		
		·	
			l

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

To	:

Commissioner
US Department of Commerce
United States Patent and Trademark
Office, PCT
2011 South Clark Place Room
CP2/5C24
Arlington, VA 22202

Date of mailing (day/month/year)

06 July 2001 (06.07.01)

International application No.

PCT/JP00/06913

International filing date (day/month/year)

04 October 2000 (04.10.00)

ETATS-UNIS D'AMERIQUE

in its capacity as elected Office

Applicant's or agent's file reference

B691SMOP1072

Priority date (day/month/year)

04 October 1999 (04.10.99)

PCT/JP00/06913	B691SMOP1072
International filing date (day/month/year)	Priority date (day/month/year)
04 October 2000 (04.10.00)	04 October 1999 (04.10.99)
Applicant	
HIRANO, Seiko et al	
The designated Office is hereby notified of its election ma	de:
X in the demand filed with the International Prelimina	ry Examining Authority on:
10 April 2001	(10.04.01)
in a notice effecting later election filed with the Inte	rnational Bureau on:
2. The election X was	
was not	
made before the expiration of 19 months from the priority Rule 32.2(b).	date or, where Rule 32 applies, within the time limit under

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Henrik Nyberg

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

PCT

NOTIFICATION OF THE RECORDING **OF A CHANGE**

(PCT Rule 92his 1 and

From the INTERNATIONAL BUREAU

To:

TOYAMA, Tsutomu Yokoyama Building 6th floor 4-10, Higashi Nihonbashi 3-chome

Administrative Instructions, Section 422)	Chuo-ku, Tokyo 103-0004 JAPON		
Date of mailing (day/month/year) 09 April 2002 (09.04.02)			
Applicant's or agent's file reference 8691SMOP1072	IMPORTANT NOTIFICATION		
International application No. PCT/JP00/06913	International filing date (day/month/year) 04 October 2000 (04.10.00)		
The following indications appeared on record concerning: X the applicant X the inventor	the agent the common representative		
Name and Address NAKAMATSU, Tsuyoshi C/O Ajinomoto Co., Inc. Fermentation & Biotechnology Laboratories 1-1, Suzuki-cho, Kawasaki-ku Kawasaki-shi, Kanagawa 210-8681 Japan	State of Nationality JP Telephone No. Facsimile No. Teleprinter No.		
2. The International Bureau hereby notifies the applicant that the the person the name X the add			
Name and Address NAKAMATSU, Tsuyoshi c/o Tokyo Denki University Department of Materials Science and Engineering 2-2, Kanda Nishiki-cho Chiyoda-ku, Tokyo 101-0054 Japan	State of Nationality JP Telephone No. Facsimile No. Teleprinter No.		
3. Further observations, if necessary:			
4. A copy of this notification has been sent to: X the receiving Office the International Searching Authority the International Preliminary Examining Authority	the designated Offices concerned X the elected Offices concerned other:		
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20 Switzerland	Authorized officer Shinji IGARASHI		

Telephone No.: (41-22) 338.83.38 Facsimile No.: (41-22) 740.14.35

PCT

国際調査報告

(法8条、法施行規則第40、41条) [PCT18条、PCT規則43、44]

出願人又は代理人 B091 の書類記号 SMOP1072	及び不記5を参照すること。			
国際出願番号 PCT/JP00/06913	国際出願日 (日.月.年) 04.10.00 優先日 (日.月.年) 04.10.99			
出願人 (氏名又は名称) 味 の 素 枝	朱式会社			
国際調査機関が作成したこの国際調査 この写しは国際事務局にも送付される	日報告を法施行規則第41条 (PCT) 8条) の規定に従い出願人に送付する。			
この国際調査報告は、全部で 6	ページである。			
□ この調査報告に引用された先行技	技術文献の写しも添付されている。			
□ この国際調査機関に提出さ	(ほか、この国際出願がされたものに基づき国際調査を行った。 れた国際出願の翻訳文に基づき国際調査を行った。			
b. この国際出願は、ヌクレオチト この国際出願に含まれる書	・又はアミノ酸配列を含んでおり、次の配列表に基づき国際調査を行った。面による配列表			
図 この国際出願と共に提出さ	れたフレキシブルディスクによる配列表			
	関に提出された書面による配列表・			
出願後に、この国際調査機	関に提出されたフレキシブルディスクによる配列表 る配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述			
歩の提出があった。				
X 曹面による配列表に記載し 事の提出があった。	た配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述			
2. 間 請求の範囲の一部の調査が	ができない(第1欄参照)。			
3. [] 発明の単一性が欠如している(第 II 欄参照)。				
4. 発明の名称は 🗵 出	頭人が提出したものを承認する。			
□ 次1	に示すように国際調査機関が作成した。			
_				
0. 5.4.4.	願人が提出したものを承認する。			
国	Ⅲ欄に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により 際調査機関が作成した。出願人は、この国際調査報告の発送の日から1カ月以内にこ 国際調査機関に意見を提出することができる。			
6. 要約書とともに公表される図は 第 図とする。 □ 出	、 願人が示したとおりである。 区なし			
	願人は図を示さなかった。			
□ 本	図は発明の特徴を一層よく表している。			

THIS PA

国際出願番

国際調査

発明の属する分野の分類(国際特許分類(IPC))

Int.Cl' C12N15/60, C12N15/54, C12N15/53, C12N15/31, C12N15/56, C12N9/88, C12N9/12, C12N9/04, C07K14/34, C12N9/26, C12N13/04

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N15/60, C12N15/54, C12N15/53, C12N15/31, C12N15/56, C12N9/88, C12N9/12, C12N9/04, C07K14/34, C12N9/26, C12N13/04

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) JICSTファイル(JOIS), WPI(DIALOG), BIOSIS(DIALOG), MEDLINE (STN),

EMBL/DDBJ/Genebank/PIR/Swissprot/Geneseq

C. 関連する引用文献のカテゴリー*	ると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 7-63383, B2 (味の素株式会社) 12. 7月. 1995 (12. 07. 95) &FR, 2612937, A &US, 5250434, A &AU, 8811614, A &BR, 8801289, A &KR, 9606580, A	1-49
Y .	JP, 4-4887, A (味の素株式会社) 9. 1月. 1992 (09. 01. 92) &FR, 2661191, A &US, 5250423, A	1-49

図 C欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「A」特に関連のある文献ではなく、一般的技術水準を示す。「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
 - 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
 - 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
 - 「&」同一パテントファミリー文献

国際調査を完了した日

19.12.00

国際調査報告の発送日

26.12.00

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 上條 肇

9453 4 B

電話番号 03-3581-1101 内線 3448

					•	
				-		
-						
	·					
					,	
•						
		-				
			•			

国際出願番

C(続き).	関連すると認められる文献	
引用文献の		関連する 請求の範囲の番号
カテゴリー* Y	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 Microbiology, Vol. 144[5](1998) K. Takai et al. "ppc, the gene for phosphoenolpyruvate carboxylase from an extremely thermophilic bacterium, Rhodothermus obamensis: Cloning, sequenceing and overexpression in Escherichia coli"p. 1423-1434	1-49
Y	JP, 5-56782, A (味の素株式会社) 9. 3月. 1993 (09. 03. 93) &EP, 530765, A2 &US, 5700661, A &CA, 2077308, A &US, 5439822, A &TW, 260709, A &DE, 69217144, B	1, 17, 18, 49
Y	WO, 92/18635, A1 (Commonwealth Sci. & Ind. Res. Org.) 29. 10月. 1992 (29. 10. 92) & ZA, 9202761, A & AU, 9215771, A & NZ, 242370, A 第5図, Table4参照	1, 17, 18, 49
Y	Gene, Vol. 145[1] (1994) D. Wereecke <i>et al</i> . "Cloning and sequence analysis of the gene encoding isocitrate lyase from <i>Rhodococcus fascians</i> "p. 109-114	1, 17, 18, 49
Y	Arch. Microbiol, Vol. 166[2](1996) W. Jager et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins" p. 977-984	2, 19, 20, 49
Y	Mol. Microbiol, Vol. 19(1996) S. Donadio et al. "Erythromycin production in Saccharopolyspora erythraea does not require a functional propionyl-CoA carbocylase" p. 977-984	2, 19, 20, 49
Y	WO, 94/08016, A1 (Arch Dev. Corp.) 14.4月.1994 (14.04.94) &EP, 663012, A1 &AU, 9352956, A &US, 5539092, A &US, 5756290, A &US, 5792627, A &US, 5972644, A 第2,3図,配列番号6参照	2, 19, 20, 49
Y	WO, 96/32484, A2 (Arch Dev. Corp.) 17.10月.1996 (17.10.96) &EP, 820514, A1 &AU, 9655432, A &US, 5910626, A 請求項32, 配列番号8参照	2, 19, 20, 49
Y	Biosci. Biotechnol. Biochem., Vol. 60 (1996) E. Kimura <i>et al.</i> "Molecular cloning of a novel gene, <i>dtsR</i> , which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium lactofermentum</i> " p. 1565-1570	3, 4, 21-24, 49
Y	WO, 95/23224, A1 (Ajinomoto Co. Inc.) 31. 8月. 1995 (31. 08. 95) &EP, 752472, A1 &BR, 9506883, A &US, 5929221, A &DE, 69514914, B 請求項2, 配列番号2参照	3, 4, 21-24, 49

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 10-234371, A (味の素株式会社) 8. 9月. 1998 (08. 09. 98) (ファミリー無し)	3, 4, 21-24, 49
Y	JP,7-121227,B2(協和醗酵工業株式会社) 25.12月.1995(25.12.95) (ファミリー無し)	5, 25, 26, 49
Y	J. Bacteriol., Vol. 178 (1996) A. M. Alves <i>et al</i> . "Characterization and phylogeny of the <i>pfp</i> gene of <i>Amycolatopsis methanolica</i> encoding PPi-dependent phosphofructokinase" p. 149-155	5 , 25, 26, 4 9
Y	Appl. Environ. Microbiol., Vol. 63(1997) A. M. C. R. Alves <i>et al</i> . "Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete <i>Streptomyces coelicolor</i> A3(2)" p. 951-956	5, 25, 26, 49
Y	J. Bacteriol., Vol. 177 (1995) W. Kronemeyer <i>et al</i> . "Structure of the <i>gluABCD</i> cluster encoding the glutamate uptake system of <i>Corynebacterium glutamicum</i> " p. 1152-1158	7, 29, 30, 49
Y	Eur. J. Biochem., Vol. 227[1-2](1995) C. Rollin <i>et al.</i> "13C-NMR studies of <i>Corynebacterium melassecola</i> metabolic pathways" p. 488-493	8, 31, 32, 49
. Y	J. Bacteriol., Vol. 176(1994) S. Hein <i>et al</i> . "Biochemical and molecular characterization of the <i>Alcaligenes eutrophus</i> pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase" p. 4394-4408	8, 31, 32, 49
Y	Eur. J. Biochem., Vol. 133(1983) P.E. Stephens <i>et al.</i> "The pyruvate dehydrogenase complex of <i>Escherichia coli</i> K12. Nucleotide sequence encoding the pyruvate dehydrogenase component" p. 155-162	8, 31, 32, 49
Y	WO, 99/18228, A2 (Forschungszentrum Juelich GMBH) 15. 4月. 1999 (15. 04. 99) & EP, 10125621, A2 & AU, 9911482, A & ZA, 9809014, A & DE, 19831609, A1 & SK, 200000481, A & BR, 9813021, A 請求項15,18, 配列番号2	9, 33, 34, 49
Y	JP, 10-165180, A (味の素株式会社) 23.6月.1998 (23.06.98) &EP, 857784, A2 &SK, 9701635, A &HU, 9702361, A2 &BR, 9706058, A	10, 35, 36, 49
Y	JP, 2-291276, A (Degussa AG.) 18. 4月. 1990 (18. 04. 90) &EP, 358940, A1 &GB, 2223754, A &DE, 68924227, B	10, 35, 36, 49

C(続き).	関連すると認められる文献	·
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
カテゴリー* Y	JP, 11-196887, A (三菱化学株式会社) 27. 7月. 1999 (27. 07. 99) (ファミリー無し)	10, 35, 36, 49
Y	JP,8-66189,A(三菱化学株式会社) 12.3月.1996(12.03.96) (ファミリー無し)	10, 35, 36, 49
Y	MIKROBIOLOGIYA, Vol. 56[5] (1987) M. P. Ruklish <i>et al.</i> "The functioning of the tricarboxylic acid cycle in <i>Brevibacterium flavum</i> and <i>Micrococcus glutamicus</i> " p. 759-763	11, 37, 38, 49
Y	J. Bacteriol., Vol. 175(1993) J. M. Mengaud <i>et al</i> . "The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein" p. 5666-5676	11, 37, 38, 49
Y	Eur. J. Biochem., Vol. 204(1992) C. Prodromou <i>et al</i> . "The aconitase of <i>Escherichia coli</i> . Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial isopropylmalate isomerases" p. 599-609	11, 37, 38, 49
Y	J. Bacteriol., Vol. 177 (1995) B. J. Eikmanns <i>et al</i> . "Cloning, sequence analysis, expression, and inactivation of the <i>Corynebacterium glutamicum icd</i> gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme" p. 774-782	12, 39, 40, 49
Y	J. Bacteriol., Vol. 175(1993) A. Ishii <i>et al</i> . "Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, <i>Vibrio</i> sp. strain ABE-1" p. 6873-6880	12, 39, 40, 49
Y	Genbank, Acc. No. Y16642(1999-Feb-01) B. J. Eikmanns <i>et al.</i> "Corynebacterium glutamicum lpd gene, complete CDS"	13, 41, 42, 49
Y	WO, 97/48790, A1 (味の素株式会社) 24.12月.1997 (24.12.97) &JP, 10-87, A &EP, 974647, A1 特許請求の範囲, 38-40頁, 配列番号7	14, 43, 44, 49
Y	WO, 95/34672, A1 (味の素株式会社) 21.12月.1995 (21.12.95) &US, 5977331, A &EP, 771879, A1 特許請求の範囲, 配列番号1,2	14, 43, 44, 49
Y	Mol. Microbiol, Vol. 6(1992) E. R. Boermann <i>et al</i> . "Molecular analysis of the <i>Corynebacterium glutamicum gdh</i> gene encoding glutamate dehydrogenase" p. 317-326	15, 45, 46, 49

C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 6-502548, A (0rsan) 24. 3月. 1994 (24. 03. 94) &EP, 551506, A1 &WO, 93/03158, A1 &FR, 2679921, A1 &FR, 2679922, A1 &US, 6027920, A	15, 45, 46, 49
Y	Microbiology, Vol. 140 (1994) B. J. Eikmanns <i>et al</i> . "Nucleotide sequence, expression and transcriptional analysis of the <i>Corynebacterium glutamicum gltA</i> gene encoding citrate syntase"p. 1817-1828	16, 47, 48, 49
Y	Mol. Microbiol, Vol. 11 (1994) M. A. Pardo <i>et al</i> . "Nodulating ability of <i>Rhizobium tropici</i> is conditioned by a plasmid- encoded citrate syntase" p. 315-321	16, 47, 48, 49
Y	JP, 8-196280, A (味の素株式会社) 6.8月.1996 (06.08.96) &EP, 724017, A2 &FR, 2729970, A &SK, 9600112, A &ZA, 9600656, A &BR, 9600268, A	6, 27, 28, 49
Y	JP, 5-244958, A (味の素株式会社) 24. 9月. 1993 (24. 09. 93) &US, 5556776, A	6, 27, 28, 49
		,
	*	
·		

Introduction No. PCT/JP00/06913

CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ Cl2N15/60, Cl2N15/54, Cl2N15/53, Cl2N15/31, Cl2N15/56, Cl2N9/88, Cl2N9/12, Cl2N9/04, C07K14/34, Cl2N9/26, Cl2P13/04				
According to International Patent Classification (IPC) or to both national classification and IPC				
3, C12N15/31, C12N15 C12P13/04				
ALOG), MEDLINE(STN),	ch terms used)			
	Relevant to claim No.			
A .	1-49			
j	1-49			
ophilic bacterium, sequencing and	1-49			
A AC	1,17,18,49			
See patent family annex.				
later document published after the interpriority date and not in conflict with the understand the principle or theory unded document of particular relevance; the considered novel or cannot be considered to document is taken alone document of particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent if	e application but cited to enlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be to when the document is documents, such a skilled in the art family			
of mailing of the international sear 26 December, 2000 (2				
	assification and IPC ification symbols) 3, C12N15/31, C12N15 C12P13/04 that such documents are included in the base and, where practicable, sear ALOG), MEDLINE (STN) e, of the relevant passages C.), A A chosphoenolpyruvate and passages c.), A A chosphoenolpyruvate and passages c.), A A chosphoenolpyruvate and passages c.), A A chosphoenolpyruvate appending and pp.1423-1434), A AC B See patent family annex. Inter document published after the interpriority date and not in conflict with the understand the principle or theory understand the principle or the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step document of particular relevance; the considered to involve an inventive step docume			

	4	•	
	•		
			•
1			~ .
ļ			
			÷
			· •
-			•
	-		
		•	

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	- 1
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO, 92/18635, Al (Commenwealth Sci. & Ind. Res. Org.), 29 October, 1992 (29.10.92), & ZA, 9202761, A & AU, 9215771, A & NZ, 242370, A Fig. 5; Table 4	1,17,18,49
Y	Gene, Vol.145[1](1994) D.Wereecke et al. "Cloning and sequence analysis of the gene encoding isocitrate lyase from Rhodococcus fascians" pp.109-114	1,17,18,19
Y	Arch. Microbiol, Vol.166(2)(1996) W. Jager et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins" pp.977-984	2,19,20,49
Y	Mol. Microbiol, Vol.19(1996) S. Donadio et al. "Erythromycin production in Saccharopolyspora erythraea does not require a functional propionyl-CoA carbocylase" pp.977-984	2,19,20,49
Y	WO, 94/08016, Al (Arch Dev. Corp.), 14 April, 1994 (14.04.94), & EP, 663012, Al & AU, 9352956, A & US, 5539092, A & US, 5756290, A & US, 5792627, A & US, 5972644, A Figs. 2,3; sequence No. 6	2,19,20,49
Y	WO, 96/32484, A2 (Arch Dev. Corp.), & EP, 820514, A1 & AU, 9655432, A & US, 5910626, A Claim 32; sequence No. 8	2,19,20,49
Y	Biosci. Biotechnol. Biochem., Vol.60(1996), E. Kimura et al., "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum" pp.1565-1570	3,4,21-24,49
Ā	WO, 95/23224, A1 (Ajinomoto Co., Inc.), 31 August, 1995 (31.08.95), & EP, 752472, A1 & BR, 9506883, A & US, 5929221, A & DE, 69514914, B Claim 2, sequence No. 2	3,4,21-24,49
Y	JP, 10-234371, A (Ajinomoto Co., Inc.), 08 September, 1998 (08.09.98)	3,4,21-24,49
Y	JP, 7-121227, B2 (KYOWA HAKKO KOGYO CO., LTD.), 25 December, 1995 (25.12.95) (Family: none)	5,25,26,49
Y	J. Bacteriol., Vol.178(1996) A. M. Alves et al., "Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase" pp.149-155	5,25,26,49
Y .	Appl. Environ. Microbiol., Vol.63(1997), A.M.C.R.Alves et al., "Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actnomycete Streptomyces coelicolor A3(2)" pp.951-956	5,25,26,49

	cion). DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ategory* Y	J. Bacteriol., Vol.177(1995) W. Kronemeyer et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum", pp.1152-1158	7,29,30,49
Y	Eur. J. Biochem., Vol.227[1-2](1995), C. Rollin et al., "13C-NMR studies of Corynebacterium melassecola metabolic pathways" pp.488-493	8,31,32,49
Y	J. Bacteriol., Vol.176(1994), S. Hein et al., "Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of new type of dihydrolipoamide dehydrogenase", pp.4394-4408	8,31,32,49
Y	Eur. J. Biochem., vol.133(1983), P. E. Stephens et al., "The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the pyruvate dehydrogenase component", pp.155-162	8,31,32,49
Y	WO, 99/18228, A2 (Forschungzentrum Juelich GmbH), 15 April, 1999 (15.04.99), & EP, 10125621, A2 & AU, 9911482, A & ZA, 9809014, A & DE, 19831609, A1 & SK, 200000481, A & BR, 9813021, A Claims 15, 18; sequence No. 2	9,33,34,49
Y	JP, 10-165180, A (Ajinomoto Co., Inc.), 23 June, 1998 (23.06.98), & EP, 857784, A2 & SK, 9701635, A & HU, 9702361, A2 & BR, 9706058, A	10,35,36,49
Y	JP, 2-291276, A (Degussa AG.), 18 April, 1990 (18.04.90), & EP, 358940, A1 & GB, 2223754, A & DE, 68924227, B	10,35,36,49
Y	<pre>JP, 11-196887, A (Mitsubishi Chemical Corporation), 27 July, 1999 (27.07.99) (Family: none)</pre>	10,35,36,49
Y	JP, 8-66189, A (Mitsubishi Chemical Corporation), 12 March, 1996 (12.03.96) (Family: none)	10,35,36,49
¥	MIKROBIOLOGIA, Vol.56[5](1987), M. P. Ruklish et al., "The functioning of the tricarboxylic acid cycle in Brevibacterium flavum and Micrococcus glutamicus", pp.759-763	
Y	J. Bacteriol., Vol.175(1993), J. M. Mengaud et al., "The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein" pp.5666-5676	-
Y	Eur. J. Biochem. Vol.204(1992), c. Prodromou et al., "The aconitase of Esherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial isopropylmalate isomerases" pp.599-609	

INTERNATION SEARCH REPORT

	//	
C (Continual	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	J. Bacteriol., Vol.177(1995), B. J. Eikmanns et al., "Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme", pp.774-782	12,39,40,49
Y	J. Bacteriol., Vol.175(1993), A. Ishi et al., "Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. Strain ABE-1", pp.6873-6880	12,39,40,49
Y	Genbank, Acc. No. Y16642(01 February, 1999), B. J. Eikmanns et al., "Corynebacterium glutamicum lpd gene, complete CDS"	13,41,42,49
Y	WO, 97/48790, Al (Ajinomoto Co., Inc.), 24 December, 1997 (24.12.97), & JP, 10-87, A & EP, 974647, Al Claims; pages 38-40; sequence No. 7	14,43,44,49
Y	WO, 95/34672, Al (Ajinomoto Co., Inc.), 21 December, 1995 (21.12.95), & US, 5977331, A & EP, 771879, Al Claims; sequence Nos. 1, 2	14,43,44,49
Y	Mol. Microbiol., 'Vol.,6(1992), E. R. Boermann et al., "Molecular analysis of the Corynebecterium glutamicum gdh gene encoding glutmate dehydrogenase", pp.317-326	15,45,46,49
Y	JP, 6-502548, A (Orsan), 24 March, 1994 (24.03.94), & EP, 551506, A1 & WO, 93/03158, A1 & FR, 2679921, A1 & FR, 2679922, A1 & US, 6027920, A	15,45,46,49
Y	Microbilogy, Vol.140(1994), B. J. Eikmanns et al., "Nucleotide sequence, expression and transcriptional anaysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase", pp.1817-1828	16,47,48,49
Y	Mol. Microbil., Vol.11(1994), M. A. Pardo et al., "Nodulationg ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate syntase", pp.315-321	
Y	JP, 8-196280, A (Ajinomoto Co., Inc.), 06 August, 1996 (06.08.96), & EP, 724017, A2 & FR, 2729970, A & SK, 9600112, A & ZA, 9600656, A & BR, 9600268, A	6,27,28,49
Y	<pre>JP, 5-244958, A (Ajinomoto Co., Ltd.), 24 september, 1993 (24.09.93), & US, 5556776, A</pre>	6,27,28,49

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

From the INTERNATIONAL BUREAU

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

TOYAMA, Tsutomu Yokoyama Building 6th floor 4-10, Higashi Nihonbashi 3-chome Chuo-ku, Tokyo 103-0004

JAPON

3524.73
IMPORTANT NOTIFICATION
International filing date (day/month/year) 04 October 2000 (04.10.00)
Priority date (day/month/year) 04 October 1999 (04.10.99)

AJINOMOTO CO., INC. et al

- The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date	Priority application No.	Country or regional Office or PCT receiving Office	Date of receipt of priority document
04 Octo 1999 (04.10.99) 01 Nove 1999 (01.11.99)	11/282716 11/311147	JP	08 Dece 2000 (08.12.00) 08 Dece 2000 (08.12.00)
21 Apri 2000 (21.04.00)	2000/120687	Jb.	08 Dece 2000 (08.12.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Somsak Thiphrakesone

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

To:

TOYAMA, Tsutomu Yokoyama Building 6th floor 4-10, Higashi Nihonbashi 3-chomesa (%) Chuo-ku, Tokyo 103-0004

Date of mailing (day/month/year)

31 May 2001 (31.05.01)

Applicant's or agent's file reference 8691SMOP1072

International application No.

PCT/JP00/06913

International filing date (day/month/year)

Priority date (day/month/year)

IMPORTANT NOTICE

04 October 2000 (04.10.00)

04 October 1999 (04.10.99)

Applicant

AJINOMOTO CO., INC. et al

 Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice: AU,KP,KR,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

AE,AG,AL,AM,AP,AT,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CR,CU,CZ,DE,DK,DM,DZ,EA,EE,EP,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OA,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZW

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 12 April 2001 (12.04.01) under No. WO 01/25447

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Shinji IGARASHI

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

4061335

Translation

PATENT COOPERATION TYPATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

	<u>,</u>	
Applicant's or agent's file reference B691SMOP1072	FOR FURTHER ACTION	SeeNotificationofTransmittalofInternational Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/JP00/06913	International filing date (day/n 04 October 2000 (04.	• • • • • • • • • • • • • • • • • • • •
International Patent Classification (IPC) or r C12N 15/60, 15/54, 15/53, 15/3		07K 14/34, C12N 9/26, C12P 13/04
Applicant	AJINOMOTO CO.,	INC.
and is transmitted to the applicant ac 2. This REPORT consists of a total of This report is also accompar been amended and are the bar Rule 70.16 and Section 607 centers.	ccording to Article 36. 9 sheets, including the sheets of	s of the description, claims and/or drawings which have
This report contains indications relat Basis of the report	ting to the following items:	
Priority III Non-establishment of IV Lack of unity of inverse V Reasoned statement citations and explanations and explanations. VI Certain documents of Certain defects in the III	ention under Article 35(2) with regard to ations supporting such statement	
Date of submission of the demand	Date of o	completion of this report
10 April 2001 (10.04.		28 September 2001 (28.09.2001)
Name and mailing address of the IPEA/JP	Authoriz	zed officer
Facsimile No.	Telephor	ne No.

International application No.

PCT/JP00/06913

┡		of the report	<u> </u>
1.	. With	egard to the elements of the international application:*	
	\boxtimes	the international application as originally filed	
		the description:	
	_	pages	, as originally filed
		pages	
		pages, filed with the letter of	•
	\Box		
		the claims:	
			, as originally filed
		pages, as amended (together with any	
		pages	
		pages, filed with the letter of	
		the drawings:	
		pages	, as originally filed
		pages	
		pages, filed with the letter of	
	\Box		********
	<u></u>	e sequence listing part of the description:	
		pages	
		pages	, filed with the demand
		pages, filed with the letter of	
2.	the in	regard to the language, all the elements marked above were available or furnished to this Authority ernational application was filed, unless otherwise indicated under this item. elements were available or furnished to this Authority in the following language the language of a translation furnished for the purposes of international search (under Rule 23.1(b)) the language of publication of the international application (under Rule 48.3(b)). the language of the translation furnished for the purposes of international preliminary examination 55.3).	which is:
3.	With prelii	regard to any nucleotide and/or amino acid sequence disclosed in the international applinary examination was carried out on the basis of the sequence listing: contained in the international application in written form. filed together with the international application in computer readable form.	lication, the international
	H	furnished subsequently to this Authority in written form.	
	H		
	H	furnished subsequently to this Authority in computer readable form.	
		The statement that the subsequently furnished written sequence listing does not go beyon international application as filed has been furnished.	
	K)	The statement that the information recorded in computer readable form is identical to the wribeen furnished.	itten sequence listing has
4.		The amendments have resulted in the cancellation of:	
		the description, pages	
		the claims, Nos.	
		the drawings, sheets/fig	
5.		This report has been established as if (some of) the amendments had not been made, since they have beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**	ave been considered to go
	Replace in this and 70	ement sheets which have been furnished to the receiving Office in response to an invitation under report as "originally filed" and are not annexed to this report since they do not contain (17).	Article 14 are referred to amendments (Rule 70.16
		olacement sheet containing such amendments must be referred to under item I and annexed to this	report.
			F

PCT/JP 00/06913

Statement		
Novelty (N)	Claims 1-49	YES
	Claims	NO
Inventive step (IS)	Claims	YES
• • •	Claims 1-49	NO
Industrial applicability ([A) Claims 1-49	YES
	Claims	NO
Citations and explanation	ns	
Document 1:	JP, 7-63383, B2 (12.07.95)	
Document 2:	JP, 4-4887, A (09.01.92)	
Document 3:	K. Takai et al., "ppc, the gene for	phospho-
	enolpyruvate carboxylase from an ex	tremely
	thermophilic bacterium, Rhodothermu	S
	obamensis: Cloning, sequencing and	over-
	expression in Escherichia coli", Mi	crobiology
	(1988), Vol. 144, No. 5, pp. 1423-1	.434
Document 4:	JP, 5-56782, A (09.03.93)	
Document 5:	WO, 92/18635, A1 (29.10.92)	
Document 6:	D. Wereecke et al., "Cloning and se	equence
	analysis of the gene encoding isoci	trate
	lyase from Rhodococcus fascians", G	Gene
	(1994), Vol. 145, No. 1, pp. 109-11	. 4
Document 7:	W. Jager et al., "A Corynebacterium	n
	glutamicum gene encoding a two-doma	ain protein
	similar to biotin carboxylases and	biotin-
	carboxyl-carrier proteins", Arch. N	Microbiol.
	(1996), Vol. 166, No. 2, pp. 977-98	34

Document 8: S. Donadio et al., "Erythromycin production

19, pp. 977-984

in Saccharopolyspora erythrae does not

carbocyclase", Mol. Microbiol. (1996), Vol.

require a functional propionyl-CoA

- Document 9: WO, 94/08016, A1 (14.04.94)
- Document 10: WO, 96/32484, A2 (17.10.96)
- Document 11: E. Kimura et al., "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum", Biosci. Biotechnol Biochem. (1996), Vol. 60, pp. 1565-1570
- Document 12: WO, 95/23224, A1 (31.08.95)
- Document 13: JP, 10-234371, A (08.09.98)
- Document 14: JP, 7-121227, B2 (25.12.95)
- Document 15: A. M. Alves et al., "Characterization and phylogeny of the pfp gene of Amycolatopsis methanolica encoding PPi-dependent phosphofructokinase", J. Bacteriol. (1996), Vol. 178, pp. 149-155
- Document 16: A. M. C. R. Alves et al., "Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3 (2)", Appl. Environ. Microbiol. (1997), Vol. 63, pp. 951-956
- Document 17: JP, 8-196280, A (06.08.96)
- Document 18: JP, 5-244958, A (24.09.93)
- Document 19: W. Kronemyer et al., "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum, "J. Bacteriol. (1995), Vol. 177, pp. 1152-1158
- Document 20: C. Rollin et al., "13C-NMR studies of Corynebacterium melassecola metabolic pathways", Eur. J. Biochem. (1995), Vol. 227, No. 1-2, pp. 488-493
- Document 21: S. Hein et al., "Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and

identification of a new type of dihydrolipoamide dehydrogenase", J. Bacteriol. (1994), Vol. 176, pp. 4394-4408

Document 22: P. E. Stephens et al., "The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the pyruvate dehydrogenase component", Eur. J. Biochem. (1983), Vol. 133, pp. 152-162

Document 23: WO, 99/18228, A2 (15.04.99)

Document 24: JP, 10-165180, A (23.06.98)

Document 25: JP, 2-291276, A (18.04.90)

Document 26: JP, 11-196887, A (27.07.99)

Document 27: JP, 8-66189, A (12.03.96)

- Document 28: M. P. Ruklish et al., "The functioning of the tricarboxylic acid cycle in Brevibacterium flavum and Micrococcus glutamicus",

 Mikrobiologiya (1987), Vol. 56, No. 5, pp. 759-763
- Document 29: J. M. Mengaud et al., "The major ironcontaining protein of Legionella pneuphilia
 is an aconitase homologous with the human
 iron-responsive element-binding protein", J.
 Bacteriol. (1993), Vol. 175, pp. 5666-5676
- Document 30: C. Prodromou et al., "The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with the mitochondrial isopropylmalate isomerases", Eur. J. Biochem (1992), Vol. 204, pp. 588-609
- Document 31: B. J. Eikmanns et al., "Cloning and sequence analysis, expression and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme", J.

 Bacteriol. (1995), Vol. 177, pp. 774-782

- Document 32: A. Ishii et al., "Genes encoding two isocitrate dehydrogenase isoenzymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1", J. Bacteriol. (1993), Vol. 175, pp. 6873-6880
- Document 33: B. J. Eikmanns et al., "Corynebacterium glutamicum lpd gene, complete CDS", Genbank (1 February 1999), Acc. No. Y16642
- Document 34: WO, 97/48790, A1 (24.12.97)
- Document 35: WO, 95/34672, A1 (21.12.95)
- Document 36: E. R. Boermann et al., "Molecular analysis of Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase", Mol. Microbiol. (1992), Vol. 6, pp. 317-326
- Document 37: JP, 6-502548, A (24.03.94)
- Document 38: B. J. Eikmanns et al., "Nucleotide sequence, expression and transriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase", Microbiology (1994), Vol. 140, pp. 1817-1828
- Document 39: M. A. Pardo et al., "Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase", Mol. Microbiol. (1994), Vol. 11, pp. 315-321

Claim 49

Documents 1 and 2 disclose methods for amino acid fermentation using the thermoduric bacterium Corynebacterium thermoaminogenes.

The disclosures in Documents 1 and 2 differ from the inventions set forth in Claims 1, 17 and 18 in the present application in that the former do not mention an isocitrate lyase of the specified amino acid sequence from Corynebacterium thermoaminogenes which contributes to amino acid synthesis, or a nucleic acid which encodes the

same.

However, it was known before the filing date of the present application that enzymes for industrial use are preferably heat-resistant enzymes, and cloning of heatresistant enzymes from a thermoduric bacterium was a known problem; and Document 3 discloses a means for solving this problem by constructing a primer based on the nucleic acid sequence of the gene for a desired enzyme which contributes to amino acid synthesis in another, closely related, species, cloning the desired heat-resistant enzyme and determining the sequence of the gene coding the desired enzyme.

Documents 4-6 disclose amino acid sequences of bacterial isocitrate lyase from closely related species and sequences of the nucleic acid coding the same, and since construction of a primer and cloning do not entail any unexpected special difficulty for a person skilled in the art, the inventions set forth in Claims 1, 17 and 18 could be deduced easily by a person skilled in the art from Documents 1-6.

Production of transformant microorganisms using a cloned gene, and amino acid fermentation, were routine practices before the filing date of the present application; therefore, the same applies to Claim 49.

The fact that the resulting enzyme is heat-resistant is obvious given the nature of the microorganism from which it comes and cannot, therefore, be regarded as surprising.

Similarly, Documents 7-10 disclose amino acid sequences for acyl-CoA carboxylases and sequences of nucleic acid coding the same; Documents 11-13 disclose amino acid sequences for Dtsr and sequences of nucleic acid coding the same; Documents 14-16 disclose amino acid sequences for phosphofructokinase and sequences of nucleic

acid coding the same; Documents 17 and 18 disclose amino acid sequences for proteins which are able to bestow the ability to utilize sucrose, and sequences of nucleic acid coding the same; Claim 19 discloses amino acid sequences of proteins which have a function contributing to glutamic acid uptake, and sequences of nucleic acid coding the same; Documents 20-22 disclose amino acid sequences for pyruvate dehydrogenase and sequences of nucleic acid coding the same; Document 23 discloses an amino acid sequence for pyruvate carboxylase and the sequence of nucleic acid coding the same; Documents 24-27 disclose amino acid sequences for phosphoenolpyruvate carboxylase and sequences of nucleic acid coding the same; Documents 28-30 disclose amino acid sequences for aconitase and sequences of nucleic acid coding the same; Documents 31 and 32 disclose amino acid sequences for isocitrate dehydrogenase and sequences of nucleic acid coding the same; Document 33 discloses an amino acid sequence for dihydrolipoamide dehydrogenase and the sequence of nucleic acid coding the same; Documents 34-35 disclose amino acid sequences for 2-oxoglutarate dehydrogenase and sequences of nucleic acid coding the same; Documents 36 and 37 disclose amino acid sequences for glutamate dehydrogenase and sequences of nucleic acids coding the same; and Documents 38 and 39 disclose amino acid sequences for citrate synthase and sequences of nucleic acid encoding the same.

Therefore, the inventions relating to acyl-CoA carboxylases set forth in Claims 2, 19 and 20, the inventions relating to Dtsr set forth in Claims 3, 4 and 21-24, the inventions relating to phosphofructokinase set forth in Claims 5, 25 and 26, the inventions relating to proteins capable of bestowing the ability to utilize sucrose set forth in Claims 6, 27 and 28, the inventions relating to proteins having a function contributing to

glutamate uptake set forth in Claims 7, 29 and 30, the inventions relating to pyruvate dehydrogenase set forth in Claims 8, 31 and 32, the inventions relating to pyruvate carboxylase set forth in Claims 9, 33 and 34, the inventions relating to phosphoenolpyruvate carboxylase set forth in Claims 10, 35 and 36, the inventions relating to aconitase set forth in Claims 11, 37 and 38, the inventions relating to isocitrate dehydrogenase set forth in Claims 12, 39 and 40, the inventions relating to dihydrolipoamide dehydrogenase set forth in Claims 13, 41 and 42, the inventions relating to 2-oxoglutarate dehydrogenase set forth in Claims 14, 43 and 44, the inventions relating to glutamate dehydrogenase set forth in Claims 15, 45 and 46 and the inventions relating to citrate synthase set forth in Claims 16, 47 and 48 could be conceived easily from the aforementioned documents.

* 1

151

萨路力条約

REC'D 1 2 OCT 2001

PCT

国際予備審査報告

(法第12条、法施行規則第56条) [PCT36条及びPCT規則70]

	691SM P1072	今後の手続きについては、国際予備審査報告の送付通知(様式PCT/ IPEA/416)を参照すること。						
国際出願番号 PCT/JP00/069	国際出願日 (日.月.年)	04.10	0.00	優先日 (日. 月. 年)	04.10.99			
国際特許分類 (IPC) Int. Cl' C12N15/60, C12N15/54, C12N15/53, C12N15/31, C12N15/56, C12N9/88, C12N9/12, C12N9/04, C07K14/34, C12N9/26, C12P13/04								
出願人 (氏名又は名称) 味	出願人 (氏名又は名称) 味 の 素 株 式 会 社							
1. 国際予備審査機関カ	1. 国際予備審査機関が作成したこの国際予備審査報告を法施行規則第57条(PCT36条)の規定に従い送付する。							
2. この国際予備審査報								
この国際予備審査報告には、附属書類、つまり補正されて、この報告の基礎とされた及び/又はこの国際予備審査機関に対してした訂正を含む明細書、請求の範囲及び/又は図面も添付されている。 (PCT規則70.16及びPCT実施細則第607号参照) この附属書類は、全部で ページである。								
3. この国際予備審査報								
I 🗵 国際予備	審査報告の基礎							
Ⅱ □ 優先権								
Ⅲ								
IV □ 発明の単-	一性の欠如							
V X PCT3!		る新規性、進歩性	E又は産業 .	上の利用可能性	についての見解、	それを裏付けるため		
VI D ある種の	引用文献							
VI 国際出願の	の不備							
VII 国際出願に	に対する意見							
								

国際予備審査の請求書を受理した日 10.04.01	国際予備審査報告を作成した日 28.09.01
名称及びあて先 日本国特許庁 (IPEA/JP)	特許庁審査官(権限のある職員) 4 B 9 4 5 3
郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	上條整
	電話番号 03-3581-1101 内線 3448

様式PCT/IPEA/409 (表紙) (1998年7月)

I.	Į	国際予備審査報	8告の基礎			•			
1.	1. この国際予備審査報告は下記の出願書類に基づいて作成された。 (法第6条 (PCT14条) の規定に基づく命令に 応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。 PCT規則70.16,70.17)								
	×	出願時の国際	発出願書類						
		明細書 明細書 明細書	第 第 第		ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求審と共に提出されたもの 付の書簡と共に提出されたもの			
		請求の範囲 請求の範囲 請求の範囲 請求の範囲	第 第 第		項、 項、 項、 	出願時に提出されたもの PCT19条の規定に基づき補正されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの			
		図面 図面 図面	第 第 						
		明細書の配列 明細書の配列 明細書の配列	リ表の部分	第	ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書と共に提出されたもの 付の書簡と共に提出されたもの			
2.	-	上記の出願書類	質の言語は、	下記に示す場合	合を除くほか、こ	の国際出願の言語である。			
	-	上記の書類は、	下記の言	語である <u> </u>	語であ	ა.			
	□ 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語 □ PCT規則48.3(b)にいう国際公開の言語 □ 国際予備審査のために提出されたPCT規則55.2または55.3にいう翻訳文の言語								
3.	,	一 この国際出願!	は、ヌクレ:	オチド又はアミノ	/ 酸配列を含んで	おり、次の配列表に基づき国際予備審査報告を行った。			
	□ この国際出願に含まれる書面による配列表 図 この国際出願と共に提出されたフレキシブルディスクによる配列表 □ 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表 □ 出願後に、この国際予備審査(または調査)機関に提出されたフレキシブルディスクによる配列表 □ 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった 図 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述								
	,		があった。		, , , , , , ,				
4.		浦正により、「 明細書 請求の範囲 図面	第	が削除された。	ページ 項 ペー	· ジ/図			
5.	5. □ この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1.における判断の際に考慮しなければならず、本報告に添付する。)								
				. ·	•	••			

予闻審查報告		

新規性、進歩性又は産業上の利用可能性につい 文献及び説明	(の伝第12)	* (PC135	条(2)) に定める§ 	見解、それを 長 付 —————	ける
見解					
新規性(N)	請求の範囲 請求の範囲		1-49		有無
進歩性(IS)	請求の範囲 請求の範囲		1 – 4 9		有 無
産業上の利用可能性(IA)	請求の範囲 請求の範囲		1-49		有無
文献及び説明(PCT規則70.7)					
文献 2: JP 4-4887 A (文献 3: K. TAKAI et al., ppc, the from an extremely thermo Cloning, sequenceing and Microbiology (1998), Vol. 1 文献 4: JP 5-56782 A 文献 5: WO 92/18635 文献 6: D. WEREECKE et al., Cloni encoding isocitrate lyas	o 9. 0 gene for philic ba overexpo 44, No. 5, 1 (0 9. A1 (2 ng and so e from Ra	1. 92) r phosphoe acterium, ression in b.1423-143 03. 93 9. 10. equence ana hodococcus	nolpyruvate Rhodothermus Escherichia 4) 9 2) alysis of th	s obamensis a coli,	e :
文献 7: W. JAGER et al., A Coryne two-domain protein simil biotin-carboxyl-carrier No. 2, p. 977-984 文献 8: S. DONADIO et al., Erythr erythraea does not requi Mol. Microbiol (1996), Vol. 文献 9: WO 94/08016 文献 10: WO 96/32484 文献 11: E. KIMURA et al., Molecul rescues the detergent se	bacterium ar to bio proteins, omycin pr re a func 19, p. 977- A 1 (1 A 2 (1 ar clonin nsitivity	m glutamics otin carbo Arch. Mics coduction ctional pro- 984 4. 0 4. 7. 1 0. ng of a muta	xylases and robiol(1996) in <i>Saccharop</i> opionyl-CoA 9 4) 9 6) vel gene, <i>dt</i> ant derived	, Vol. 166, oolyspora carbocylasoss.	e,
Vol. 60, p. 1565-1570 文献12: WO 95/23224 文献13: JP 10-234371 文献14: JP 7-121227 文献15: A. M. ALVES et al., Charac of Amycolatopsis methano phosphofructokinase, J. Ba 文献16: A. M. C. R. ALVES et al., Id phosphofructokinase as a of the actinomycete Stree Appl. Environ. Microbiol. (A 1 (3 A (0 B 2 (2 terization lica enconteriol. entification regulator ptomyces 1997), Vol	1. 08. 8. 09. 5. 12. on and physoding PPi-o (1996), Vol. tion of ATI ory step in coelicologies 63, p. 951-	95) 98) 95) logeny of the lependent 178, p. 149-1 dependent the glycol A3(2),	e <i>pfp</i> gene 55	ay
	東京	大献及び説明 見解 一次 一次 一次 一次 一次 一次 一次 一	大京	大献及び観明	大藤及び説明

補充欄(いずれかの欄の大きさが足りない 合に使用すること)

V 欄の続き

文献18:JP 5 - 244958A (24. 09. 93)

文献19: W. KRONEMYER et al., Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum, J. Bacteriol. (1995), Vol. 177, p. 1152-1158

文献20: C. ROLLIN et al., 13C-NMR studies of Corynebacterium melassecola metabolic pathways, Eur. J. Biochem. (1995), Vol. 227, No. 1-2, p. 488-493 文献21: S. HEIN et al., Biochemical and molecular characterization of the

Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase, J. Bacteriol. (1994), Vol. 176, p. 4394-4408

文献22: P.E. STEPHENS et al., The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the pyruvate

dehydrogenase component, Eur. J. Biochem. (1983), Vol. 133, p. 155-162 WO 99/18228 A2 (15.04.99) JP 10-165180 A (23.06.98) 文献23:WO 文献24: JP 文献25: JP 文献26: JP 文献27: JP 2-291276 A (18.04.90)11-196887 A (27.07.99)

8-66189 A (12.03.96)

文献28: M. P. RUKLISH et al., The functioning of the tricarboxylic acid cycle in Brevibacterium flavum and Micrococcus glutamicus,

MIKROBIOLOGIYA(1987), Vol. 56, No. 5, p. 759-763 文献29: J. M. MENGAUD *et al.*, The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein, J. Bacteriol. (1993), Vol. 175, p. 5666-5676

文献30:C.PRODROMOU *et al.*, The aconitase of *Escherichia coli*. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial isopropylmalate isomerases,

Eur. J. Biochem. (1992), Vol. 204, p. 599-609 文献31: B. J. EIKMANNS *et al.*, Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme, J. Bacteriol. (1995), Vol. 177, p. 774-782

文献32:A.ISHII *et al.*, Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, *Vibrio* sp. strain ABE-1, J. Bacteriol. (1993), Vol. 175, p. 6873-6880

文献33: B. J. EIKMANNS *et al.*, *Corynebacterium glutamicum lpd* gene, complete CDS, Genbank (1999-Feb-01), Acc. No. Y16642

97/48790 A1 (24. 12. 97) 95/34672 A1 (21. 12. 95) 文献34:WO

文献36:E.R.BOERMANN *et al.*, Molecular analysis of the *Corynebacterium* glutamicum gdh gene encoding glutamate dehydrogenase, Mol. Microbiol (1992), Vol. 6, p. 317-326

文献37:JP 6-502548 A (24.03.94)

文献38:B. J. EIKMANNS *et al*., Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate syntase, Microbiology (1994), Vol. 140, p. 1817-1828

文献39:M. A. PARDO *et al*., Nodulating ability of *Rhizobium tropici* is conditioned by a plasmid-encoded citrate syntase, Mol. Microbiol (1994), Vol. 11, p. 315-321

補充欄 (いずれかの欄の大きさが足りない場合に使用すること)

第 V 欄の続き

請求の範囲1-49

文献1,2には耐熱性細菌コリネバクテリウム・サーモアミノゲネスを用いてアミ

ノ酸醗酵をする方法が記載されている。

文献1,2には特定のアミノ酸配列を有するコリネバクテリウム・サーモアミノゲ ネス由来のアミノ酸合成に関与するイソシトレートリアーゼ及びそれをコードする核 酸が記載されていない点で本願請求項1,17,18に記載の発明と相違する。

しかしながら、本出願前に工業用酵素として耐熱性のものが好ましいこと、及び 熱性酵素を耐熱性細菌からクローニングしようとすることは周知の課題である。ま た、その手法として、他の近縁の細菌から目的のアミノ酸合成に関与する酵素の遺伝 子の核酸配列を基とするプライマーを作成し、目的の耐熱性酵素をクローニングし酵 素をコードする遺伝子の配列の決定を行うことは文献3に記載されている。

そして、近縁の細菌由来のイソシトレートリアーゼのアミノ酸配列及びそれをコー ドする核酸の配列については文献4~6に記載されており、プライマーの作成、クロ ニング作業についても当業者にとって予見不可能な程度の格別の困難性があったと も認められないから、請求の範囲1,17,18に記載の発明は当業者が文献1~6より容 易になし得るものである。

クローニングされた遺伝子を基に組み換え微生物を作成し、アミノ酸醗酵を行うこ とは本出願前の常套手段であるから請求の範囲49についても同様である。

得られた酵素が耐熱性を有することは由来となる微生物の特性から自明の範囲であ り、格別のこととすることはできない。

アシルCo-Aカルボキシラーゼのアミノ酸配列及びそれをコードする核酸 の配列については文献 $7 \sim 1$ 0 に記載され、D t s r のアミノ酸配列及びそれをコー ドする核酸の配列については文献11~13に記載され、ホスホフルクトキナーゼの アミノ酸配列及びそれをコードする核酸の配列については文献14~16に記載さ れ、スクロース資化能を付与する活性を有する蛋白質のアミノ酸配列及びそれをコー ドする核酸の配列については文献17~18に記載され、グルタミン酸の取り込みに 関与する機能を有する蛋白質のアミノ酸配列及びそれをコードする核酸の配列につい ては文献19に記載され、ピルビン酸デヒドロゲナーゼのアミノ酸配列及びそれをコードする核酸の配列については文献20~22に記載され、ピルビン酸カルボキシラ -ゼのアミノ酸配列及びそれをコードする核酸の配列については文献23に記載さ れ、ホスホエノールピルビン酸カルボキシラーゼのアミノ酸配列及びそれをコードす る核酸の配列については文献24~27に記載され、アコニターゼのアミノ酸配列及 びそれをコードする核酸の配列については文献28~30に記載され、イソクエン酸 デヒドロゲナーゼのアミノ酸配列及びそれをコードする核酸の配列については文献3 1~32に記載され、ジェドロリポアミドデェドロゲナーゼのアミノ酸配列及びそれ をコードする核酸の配列については文献33に記載され、2-オキソグルタル酸デヒ ドロゲナーゼのアミノ酸配列及びそれをコードする核酸の配列については文献34~ 35に記載され、グルタミン酸デヒドロゲナーゼのアミノ酸配列及びそれをコードす る核酸の配列については文献36~37に記載され、クエン酸シンターゼのアミノ酸 配列及びそれをコードする核酸の配列については文献38~39に記載されている。 よって、アシルCo-Aカルボキシラーゼに関する請求の範囲2,19,20に係る発 、D t s r に関する請求の範囲3, 4, 21-24に係る発明、ホスホフルクトキナーゼに 関する請求の範囲5, 25, 26に係る発明、スクロース資化能を付与する活性を有する蛋 白質に関する請求の範囲6,27,28に係る発明、グルタミン酸の取り込みに関与する機 能を有する蛋白質に関する請求の範囲7,29,30に係る発明、ピルビン酸デヒドロゲナ でに関する請求の範囲8,31,32に係る発明、ピルビン酸カルボキシラーゼに関する 請求の範囲9,33,34に係る発明、ホスホエノールピルビン酸カルボキシラーゼに関す る請求の範囲10,35,36に係る発明、アコニターゼに関する請求の範囲11,37,38に係る 発明、イソクエン酸デヒドロゲナーゼに関する請求の範囲12,39,40に係る発明、ジヒ ドロリポアミドデヒドロゲナーゼに関する請求の範囲13,41,42に係る発明、2-オキ

補充欄(いずれかの欄の大きさが足りない場合に使用すること)

第 V・欄の続き

ソグルタル酸デヒドロゲナーゼに関する請求の範囲14,43,44に係る発明、グルタミン酸デヒドロゲナーゼに関する請求の範囲15,45,46に係る発明、クエン酸シンターゼに関する請求の範囲16,47,48に係る発明のそれぞれについても、同様に上記各文献から容易になし得るものである。