Geometrie

Eric Kunze

8. November 2018

Kapitel 1

Endliche Gruppen

1 Erinnerung und Beispiele

1.1 Erinnerung

Eine Gruppe ist ein Paar (G, \star) bestehend aus einer Menge G und einer Abbildung $\star: G \times G \to G$, das die Axiome Assoziativität, Existenz eines neutralen Elements und Existenz eines inversen Elements erfüllt. Wir schreiben auch G für (G, \star) . Die Gruppe ist abelsch, wenn $g \star h = h \star g$ für alle $g, h \in G$ gilt. Eine allgemeine Gruppe schreiben wir multiplikativ mit neutralem Element 1, abelsche Gruppen auch additiv mit neutralem Element 0.

Eine Teilmenge $H \subseteq G$ ist eine Untergruppe von G, in Zeichen $H \subseteq G$, wenn $H \neq \emptyset$ und H abgeschlossen ist unter der Verknüpfung und dem Bilden von Inversen.

Wir schreiben 1 (bzw. 0) für die triviale Untergruppe $\{1\}$ (bzw. $\{0\}$) von G.

Eine Abbildung $\varphi:G\to G'$ zwischen Gruppen ist ein Gruppenhomomorphismus, wenn

$$\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2)$$

für alle $g_1, g_2 \in G$ und in diesem Fall ist

$$\operatorname{Ker}(\varphi) := \varphi^{-1}(\{1\})$$

der Kern von φ .

Wir schreiben $\operatorname{Hom}(G,G')$ für die Menge der Gruppenhomomorphismen $\varphi:G\to G'$.

1.2 Beispiel

Sei $n \in \mathbb{N}$, K ein Körper und X eine Menge.

- a) Sym(X), die symmetrische Gruppe aller Permutationen der Menge X mit $f \cdot g = g \circ f$, insbesondere $S_n := \text{Sym}(\{1, \dots, n\})$. Für $n \in \{1, 2\}$ ist S_n abelsch.
- b) \mathbb{Z} und $\mathbb{Z}/n\mathbb{Z} := \{a + n\mathbb{Z} : a \in \mathbb{Z}\}$ mit der Addition.
- c) $GL_n(K)$ mit der Matrizenmultiplikation. Spezialfall:

$$GL_1(K) = K^{\times} = K \setminus \{0\}$$

d) Für jeden Ring R bilden die Einheiten R^{\times} eine Gruppe unter Multiplikation, z.B. $\operatorname{Mat}_n(K)^{\times} = \operatorname{GL}_n(K)$ oder $\mathbb{Z}^{\times} = \mu_2 = \{1, -1\}$

1.3 Beispiel

Ist (G, \cdot) eine Gruppe, so ist auch (G^{op}, \cdot^{op}) mit $G^{op} = G$ und $g \cdot^{op} h = h \cdot g$ eine Gruppe.

1.4 Bemerkung

Ist G eine Gruppe und $h \in G$, so ist die Abbildung

$$au_h: egin{cases} G o G \ g \mapsto g \cdot h \end{cases}$$

eine Bijektion (also $\tau_h \in \text{Sym}(G)$) mit Umkehrabbildung $\tau_{h^{-1}}$.

1.5 Satz (vgl. LAAG I.3.8)

Sei G eine Gruppe. Zu jeder Teilmenge $X\subseteq G$ gibt es eine kleinste Untergruppe $\langle X\rangle$ von G, die X enthält, nämlich

$$\langle X \rangle = \bigcap_{X \subseteq H \leq G} H$$

1.6 Bemerkung

Man nennt $\langle X \rangle$ die von X erzeugte Untergruppe G. Die Gruppe G heißt endlich erzeugt, wenn $G = \langle X \rangle$ für eine endliche Menge $X \subseteq G$.

Bsp.: $\mathbb{Z} = \langle \{1\} \rangle$

1.7 Satz (vgl. LAAG II.2.8)

Ein Gruppenhomomorphismus $\varphi: G \to G'$ ist genau dann ein Isomorphismus, wenn es einen Gruppenhomomorphismus $\varphi': G' \to G$ mit $\varphi' \circ \varphi = \mathrm{id}_G$ und $\varphi \circ \varphi' = \mathrm{id}_{G'}$ gibt.

1.8 Beispiel

Ist G eine Gruppe, so bilden die Automorphismen $\operatorname{Aut}(G) \subseteq \operatorname{Hom}(G,G)$ eine Gruppe unter $\varphi \cdot \varphi' = \varphi' \circ \varphi$. Ist $\varphi \in \operatorname{Aut}(G)$ und $g \in G$ schreiben wir auch $g^{\varphi} := \varphi(g)$.

1.9 Satz (vgl. LAAG III.2.14)

Ein Gruppenhomomorphismus $\varphi: G \to G'$ ist genau dann injektiv, wenn $\operatorname{Ker}(\varphi) = 1$.

1.10 Beispiel

Seien $n \in \mathbb{N}$ und K ein Körper.

- a) sgn : $S_n \to \mu_2$ ist ein Gruppenhomomorphismus mit Kern die alternierende Gruppe A_n
- b) det : $GL_n(K) \to K^{\times}$ ist ein Gruppenhomomorphismus (vgl. Determinantenmultiplikationssatz) mit Kern $SL_n(K)$
- c) $\pi_{n\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, a \mapsto a + n\mathbb{Z}$ ist ein Gruppenhomomorphismus mit Kern $n\mathbb{Z}$
- d) Ist A eine abelsche Gruppe, so ist

$$[n]: \begin{cases} A \to A \\ x \mapsto n \cdot x \end{cases}$$

ein Gruppenhomomorphismus mit Kern A[n], die n-Torsion von A, und Bild nA

e) Ist G eine Gruppe, so ist

$$\begin{cases} G \to G^{op} \\ g \mapsto g^{-1} \end{cases}$$

ein Isomorphismus (vgl. Übung)

1.11 Definition

Seien $n, k \in \mathbb{N}$. Für paarweise verschiedene Elemente $i_1, \ldots, i_k \in \{1, \ldots, n\}$ bezeichnen wir mit $(i_1 \ldots i_k)$ das $\sigma \in S_n$ gegeben durch

$$\begin{split} &\sigma(i_j)=i_{j+1}\quad \text{für } j=1,\ldots,k-1\\ &\sigma(i_k)=i_1\\ &\sigma(i)=i\quad \text{für } i\in\{1,\ldots,n\}\backslash\{i_1,\ldots,i_k\} \end{split}$$

Wir nennen $(i_1 \ldots i_k)$ einen (k-)Zykel.

Zwei Zykel $(i_1\,\ldots\,i_k)$ und $(j_1\,\ldots\,j_l)\in S_n$ heißen disjunkt, wenn

$$\{i_1,\ldots,i_k\}\cap\{j_1,\ldots,j_l\}=\emptyset$$

1.12 Satz (LAAG IV.1.3)

Jedes $\sigma \in S_n$ ist Produkt von Transpositionen (d.h. 2-Zyklen).

1.13 Lemma

Disjunkte Zykel kommutieren, d.h. sind $\tau_1, \tau_2 \in S_n$ disjunkte Zykel, so ist

$$\tau_1 \, \tau_2 = \tau_2 \, \tau_1$$

.

Beweis. Sind $\tau_1 = (i_1 \dots i_k)$ und $\tau_2 = (j_1 \dots j_l)$, so ist

$$\tau_1 \, \tau_2(i) = \tau_2 \, \tau_1(i) = \begin{cases} \tau_1(i) & i \in \{i_1, \dots, i_k\} \\ \tau_2(i) & i \in \{j_1, \dots, j_l\} \\ i & \text{sonst} \end{cases}$$

1.14 Satz (Zykelzerlegung)

Jedes $\sigma \in S_n$ ist ein Produkt von paarweise disjunkten k-Zyklen mit $k \geq 2$, eindeutig bis auf Reihenfolge (sogenannte Zykelzerlegung von σ)

Beweis. Induktion nach $N := |\{i : \sigma(i) = i\}|$ (sogenannter Stabilisator von σ)

(IA) N = 0: $\sigma = ic$

(IS) N > 0: Wähle i_1 mit $\sigma(i_1) \neq i_1$, betrachte $i_1, \sigma(i_1), \sigma^2(i_1), \ldots$ Da $\{i_1, \ldots, n\}$ endlich ist und σ bijektiv ist, existiert ein minimales $k \geq 2$ mit $\sigma^k(i_1) = i_1$. Setze $\tau_1 = (i_1 \sigma(i_1) \ldots \sigma^{k-1}(i_1))$. Dann ist $\sigma = \tau_1 \cdot \tau_1^{-1} \sigma$ und nach Induktionshypothese ist

$$\tau_1^{-1}\sigma = \tau_2 \cdots \tau_m$$

Eindeutigkeit ist klar, denn jedes i kann nur in dem Zykel $(i \sigma(i) \dots \sigma^{k-1}(i))$ vorkommen. \square

1.15 Beispiel

Offensichtlich ist $(1\,2\,3\,4\,5)\cdot(2\,4)$ eine nicht-disjunkte Zerlegung in Zykel. Wir suchen daher eine solche Zykelzerlegung.

$$(12345) \cdot (24) = (145) \cdot (23)$$

$$= (145) \cdot (32)$$

$$= (451) \cdot (32)$$

$$\neq (154) \cdot (32)$$

2 Ordnung und Index

Sei G eine Gruppe und $g \in G$.

2.1 Definition

- a) $\#G = |G| \in \mathbb{N} \cup \{\infty\}$, die Ordnung von G.
- b) $\operatorname{ord}(g) = \#\langle g \rangle$, die Ordnung von g.

2.2 Beispiel

$$\#S_n = n!$$
 , $\#A_n = \frac{1}{2} \cdot n!$ $(n \ge 2)$ $\#\mathbb{Z}/n\mathbb{Z} = n$

2.3 Lemma

Für $X \subseteq G$ ist

$$\langle X \rangle = \{ g_1^{\varepsilon_1} \cdot \dots \cdot g_r^{\varepsilon_r} : r \in \mathbb{N}_0, g_1, \dots, g_r \in X, \varepsilon_1, \dots, \varepsilon_r \in \{1, -1\} \}$$

Beweis. klar, da rechte Seite Untergruppe ist, die X enthält, und jede solche enthält alle Ausdrücke der Form $g_r^{\varepsilon_1}, \cdots g_r^{\varepsilon_r}$.

2.4 Satz

- a) Ist $ord(g) = \infty$, so ist $\langle g \rangle = \{..., g^{-2}, g^{-1}, 1, g, g^2, ... \}$.
- b) Ist $\operatorname{ord}(g) = n < \infty$, so ist $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}.$
- c) Es ist $\operatorname{ord}(g) = \inf\{k \in \mathbb{N} : g^k = 1\}.$

Beweis. Nach 2.3 ist $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$. Sei $m = \inf\{k \in \mathbb{N} : g^k = 1\}$.

- $ho |\{g^k: 0 \le k < m\}| = m$: Sind $g^a = g^b$ mit $0 \le a < b < m$, so ist $g^{b-a} = 1$, aber 0 < b a < m im Widerspruch zur Minimalität von m.
- $\triangleright m = \infty$: $\Rightarrow \operatorname{ord}(q) = \infty$
- $\bowtie m < \infty$: $\Rightarrow \langle g \rangle = \{g^k : 0 \le k < m\}$: Die Inklusion $\{g^k : 0 \le k < m\} \subseteq \langle g \rangle$ ist klar. Für die andere Inklusion schreibe $k \in \mathbb{Z}$ als $k = g \cdot m + r$ mit $q, r \in \mathbb{Z}, 0 \le r < m$.

$$\Rightarrow g^k = g^{q \cdot m + r} = (g^m)^q \cdot g^1 = 1^q \cdot g^r = g^r \in \{1, g, \dots, g^{m-1}\}$$

$$\Rightarrow \langle g \rangle \subseteq \{g^k : 0 \le k < m\}$$

2.5 Beispiel

Sei $\sigma \in S_n$ ein k-Zykel, so ist $\operatorname{ord}(\sigma) = k$.

(Man muss genau k-mal tauschen bis alle Elemente wieder an ihrem Platz sind)

Für $\bar{1} \in \mathbb{Z}/n\mathbb{Z}$ ist $\operatorname{ord}(\bar{1}) = n$.

$$(n \cdot \bar{1} = \bar{n} = \bar{0} \in \mathbb{Z}/n\mathbb{Z})$$

2.6 Definition

Seien $A, B \subseteq G, H < G$.

- $\triangleright AB := A \cdot B := \{a \cdot b : a \in A, b \in B\}, \text{ das Komplex produkt von } A \text{ und } B$
- $ho gH := \{g\} \cdot H = \{g \cdot h : h \in H\}$, die Linksnebenklasse von H bezüglich g $Hg := H \cdot \{g\} = \{h \cdot g : h \in H\}$, die Rechtsnebenklasse von H bezüglich g

2.7 Beispiel

Für $h \in H$ ist hH = H = Hh (vgl. 1.4).

2.8 Lemma

Seien $H \leq G$, $g, g' \in G$.

- a) gH = g'H \Leftrightarrow $g' = gh \in G$ für ein $h \in H$. Hg = Hg' \Leftrightarrow $g' = hg \in G$ für eine $h \in H$
- b) Es ist gH = g'H oder $gH \cup g'H = \emptyset$ und Hg = Hg' oder $Hg \cup Hg' = \emptyset$.

c) Durch $gH \mapsto Hg^{-1}$ wird eine wohldefinierte Bijektion $G/H \to H\backslash G$ gegeben.

Beweis. Seien $H \leq G$, $q, q' \in G$.

- a) $(\Rightarrow): gH = g'H \Rightarrow g' = g' \cdot 1 \in g'H = gH \Rightarrow \exists h \in H: g' = gh.$ $(\Leftarrow): g' = gh \Rightarrow g'H = ghH \stackrel{2.7}{=} gH$
- b) Ist $gH \cap g'H \neq \emptyset$, so existieren $h, h' \in H$ mit gh = g'h'. $\Rightarrow gH = ghH = g'h'H = g'H$
- c) Wohldefiniertheit: $gH=g'H \stackrel{\text{a}}{\Rightarrow} g'h=gh$ mit $h\in H \Rightarrow H(g')^{-1}=Hh^{-1}g^{-1}=Hg^{-1}$ Bijektivität: klar, da Umkehrabbildung $Hg\mapsto g^{-1}H$

Beispiel. Betrachte S_3 als kleinste nicht-abelsche Gruppe.

2.9 Definition

Für $H \leq G$ ist

$$(G:H):=\#G/H\stackrel{2.8c}{=}\#h\backslash G\in\mathbb{N}\cup\infty$$

der Index von H in G.

2.10 Beispiel

$$(S_n: A_n) = 2$$
 $(n \ge 2)$
 $(\mathbb{Z}: n\mathbb{Z}) = n$

2.11 Satz

Der Index ist multiplikativ: Sind $K \leq H \leq G$, so ist

$$(G:K) = (G:H) \cdot (H:K)$$

Beweis. Nach 2.8b bilden die Nebenklassen von H eine Partition von G, d.h. es gibt eine Familie $(g_i)_{i\in I}$ in G mit $G = \bigcup_{i\in I} g_i H$ ($G = \bigcup_{i\in I} g_i H$ und $g_i H$, $i\in I$ sind paarweise disjunkt).

Analog ist $H = \bigcup_{j \in J} h_j K$ mit $h_j \in H$. Dann gilt:

$$\begin{split} H = \bigcup_{j \in J} h_j K & \stackrel{1.4}{\Rightarrow} & gH = \bigcup_{j \in J} g \, h_j \, K \quad \text{für jedes } g \in G \\ & \Rightarrow & G = \bigcup_{i \in I} g_i H = \bigcup_{i \in I} \bigcup_{j \in J} g_i h_j K = \bigcup_{(i,j) \in I \times J} g_i h_j K \end{split}$$

Somit ist $(G:K) = |I \times J| = |I| \cdot |J| = (G:H) \cdot (H:K)$.

2.12 Korollar (Satz von Lagrange (wichtigster Satz der Vorlesung))

Ist G endlich und $H \leq G$, so ist

$$\#G = \#H \cdot (G:H)$$

Insbesondere gilt $\#H \mid \#G \text{ und } (G:H) \mid \#G.$

Beweis.
$$\#G = (G:1) \stackrel{2.11}{=} (G:H) \cdot (H:1) = (G:H) \cdot \#H$$

2.13 Korollar (Kleiner Satz von Fermat)

Ist G endlich und n = #H, so ist $g^n = 1$ für jedes $g \in G$.

Beweis. Nach 2.12 gilt $\operatorname{ord}(g) = \#\langle g \rangle \mid \#G = n$. Nach 2.4 ist $g^{\operatorname{ord}(g)} = 1$, somit auch $g^n = (g^{\operatorname{ord}(g)})^{\frac{n}{\operatorname{ord}(g)}} = 1$

$$g^n = (\underbrace{g^{\operatorname{ord}(g)}}_{=1})^{\frac{n}{\operatorname{ord}(g)}} = 1$$

2.14 Bemerkung

Nach 2.12 ist die Ordnung jeder Untergruppe von G ein Teiler der Gruppenordnung #G. Umgekehrt gibt es im Allgemeinen aber nicht zu jedem Teiler d von #G eine Untergruppe H von G mit #H = d.

3 Normalteiler und Quotientengruppe

Sei G eine Gruppe.

3.1 Definition

Eine Unterguppe $H \leq G$ ist normal (in Zeichen $H \subseteq G$), wenn $g^{-1}hg \in H$ für alle $h \in H$ und $g \in G$. Ein Normalteiler von G ist eine normale Untergruppe von G.

3.2 Beispiel

- a) Ist G abelsch, so ist jede Untergruppe von G ein Normalteiler von G.
- b) Ist $\varphi \colon G \to H$ ein Gruppenhomomorphismus, so ist $\operatorname{Ker}(\varphi) \leq G$. $\varphi(n) = 1 \quad \Rightarrow \quad \varphi(g^{-1}hg) = \varphi(g)^{-1} \cdot \varphi(h) \cdot \varphi(g) = \varphi(g)^{-1} \cdot \varphi(g) = 1 \quad \forall g \in G$
- c) Jede Gruppe hat die trivialen Normalteiler $1 \subseteq G$ und $G \subseteq G$.

3.3 Lemma

Seien $H \leq G$ und $N \leq G$.

- a) $H \subseteq G \Leftrightarrow gH = HG$ für alle $g \in G$
- b) HN = NH , $HN \le G$, $N \le HN$, $H \cap N \le N$, $H \cap N \le H$
- c) Sind $N, H \subseteq G$, so auch $H \cap N \subseteq G$ und $HN \subseteq G$.
- d) Für $g, g' \in G$ ist $gN \cdot g'N = gg'N$.

Beweis. Wir beweisen die Eigenschaften unter Nutzung der Definition der Normalteiler.

- $\begin{array}{ll} \mathrm{a)} \ (\Rightarrow) \ \forall g \in G \ \forall h \in H : g^{-1}hg \in H \\ \Rightarrow & \forall g \in G : g^{-1}Hg \subseteq H \\ \Rightarrow & \forall g \in G : Hg \subseteq gH \ , \ g^{-1}H \subseteq Hg^{-1} \\ \Rightarrow & \forall g \in G : gH = Hg. \end{array}$
 - $\begin{array}{ll} (\Leftarrow) \ \forall g \in G : gH = Hg. \\ \Rightarrow & \forall g \in G \\ \forall h \in H \\ \exists h' \in H : gh' = hg \\ \Rightarrow & \forall g \in G \\ \forall h \in H : g^{-1}hg = h' \in H \end{array}$
- b) $\triangleright HN = \bigcup_{h \in H} hN \stackrel{(a)}{=} \bigcup_{h \in H} Nh = NH$ $\triangleright HN \cdot HN = H \cdot NH \cdot N = H \cdot HN \cdot N = HN$ $(HN)^{-1} = N^{-1}H^{-1} = NH = HN$ $\Rightarrow HN \leq G$
 - $\triangleright N \subseteq HN: \checkmark$
 - $\triangleright H \cap N \leq N : \checkmark$
 - $ightharpoonup H \cap N \leq H : n \in H \cap N, h \in H \implies h^{-1}nh \in H \cap N \text{ (da } n \text{ normal in } G)$
- c) $\triangleright H \cap N \leq G$: $h \in H \cap N, g \in G \Rightarrow g^{-1}hg \in H \cap N$
 - $ho HN
 lap{G}: g \in G \Rightarrow g \cdot HN \stackrel{(a)}{=} Hg \cdot N = H \cdot gN \stackrel{(a)}{=} H \cdot Ng = HNg$

d)
$$qN \cdot q'N = q \cdot Nq' \cdot N = q \cdot q'N \cdot N = qq'N$$

3.4 Satz

Sei $N \subseteq G$. Dann ist G/N mit dem Komplexprodukt als Verknüpfung eine Gruppe und $\pi_N \colon G \to G/N, g \mapsto gN$ ein Gruppenhomomorphismus mit $\operatorname{Ker}(\pi_N) = N$.

Beweis. \triangleright Komplexprodukt ist Verknüpfung auf G/N: vgl. 3.3(d)

- \triangleright Gruppenaxiome übertragen sich von G auf G/N mit neutralem Element 1N und inversem Element $g^{-1}N$.
- $\triangleright \pi_N$ ist Gruppenhomomorphismus: 3.3(d)

$$ightharpoonup \operatorname{Ker}(\pi_N) = N \colon 2.8(a)$$

3.5 Korollar

Die Normalteiler sind genau die Kerne von Gruppenhomomorphismen.

3.6 Definition

Für $N \subseteq G$ heißt G/N zusammen mit dem Komplexprodukt als Verknüpfung die Quotientengruppe (oder auch Faktorgruppe) von G nach N (oder auch G modulo N).

3.7 Lemma

Sei $N \leq G$. Für $H \leq G$ ist $\pi_N(H) = HN/H \leq G/N$ und $H \mapsto \pi_N(H)$ liefert eine Bijektion zwischen

- a) den $H \leq G$ mit $N \leq H$, und
- b) $H \leq G/N$

Beweis. Wir zeigen die Untergruppeneigenschaft und die Bijektivität der Abbildung separat, letzteres durch Angabe der Umkehrabbildung.

$$\Rightarrow \pi_N(H) = \{hN : h \in H\} = \{hnN : h \in H, n \in N\} = HN/H$$

ightharpoonup Umkehrabbildung: $H \mapsto \pi_N^{-1}(H)$

$$H \leq G/N$$
: $\pi_N(\pi_N^{-1}(H)) = H$, da π_N surjektiv ist $N \leq H \leq G$: $\pi_N^{-1}(\pi_N(H)) = \pi_N^{-1}(HN/N) = HN \subseteq HH = H$

3.8 Satz (Homomorphiesatz)

Sei $\varphi \colon G \to H$ ein Gruppenhomomorphismus und $N \subseteq G$ mit $N \subseteq \operatorname{Ker}(\varphi)$. Dann existiert genau ein Gruppenhomomorphismus $\bar{\varphi} \colon G/N \to H$ mit $\bar{\varphi} \circ \pi_N = \varphi$.

Beweis. Existiert so ein $\bar{\varphi}$, so ist $\bar{\varphi}(gN) = (\bar{\varphi} \circ \pi_N)(g) = \varphi(G)$. Definiere $\bar{\varphi}$ nun so.

 $\triangleright \bar{\varphi}$ ist wohldefiniert:

$$gN = g'N \stackrel{2.8}{\Rightarrow} \text{ ex. } g' = gn \text{ für ein } n \in \mathbb{N} \Rightarrow \varphi(g') = \varphi(g) \cdot \varphi(n) = \varphi(g)$$

 $\triangleright \bar{\varphi}$ ist Homomorphismus:

$$\bar{\varphi}(gN \cdot g'N) = \bar{\varphi}(gg'N) = \varphi(gg') = \varphi(g)\varphi(g') = \bar{\varphi}(gN) \cdot \bar{\varphi}(g'N) \qquad \Box$$

3.9 Korollar

Ein Gruppenhomomorphismus $\varphi \colon G \to H$ liefert einen Isomorphismus

$$\bar{\varphi} \colon G/\operatorname{Ker}(\varphi) \to \operatorname{Im}(\varphi) \le H$$

3.10 Korollar (1. Noetherscher Isomorphiesatz)

Seien $H \leq G$ und $N \leq G$. Der Homomorphismus

$$\varphi \colon H \stackrel{\iota}{\hookrightarrow} HN \to HN/N$$

induziert einen Isomorphismus

$$\bar{\varphi} \colon H/(H \cap N) \to HN/N$$

Beweis. φ surjektiv, denn für $h \in H, n \in N$ ist $hnN = hN = \varphi(n) \in \varphi(H) = \text{Im}(\varphi)$. Außerdem ist $\text{Ker}(\varphi) = H \cap \text{Ker}(\pi_N) = H \cap N$.

3.11 Korollar

Seien $N \subseteq G$ und $N \subseteq H \subseteq G$. Der Homomorphismus

$$\pi_N \colon G \to G/H$$

induziert einen Isomorphismus

$$(G/N)/(H/N)) \xrightarrow{\cong} G/H$$

Beweis. Da $N \leq H$ liefer π_H einen Epimorphismus $\bar{\pi_N} : G/N \to G/H$ (vgl. 3.8). Dieser hat $\text{Ker}(\bar{\pi_H}) = H/N$ und induziert nach 3.9 einen Isomorphismus

$$(G/N)/\operatorname{Ker}(\bar{\pi_H}) \stackrel{\cong}{\longrightarrow} \operatorname{Im}(\bar{\pi_H}) = G/H$$

3.12 Definition

Seien $x, x', g \in G$ und $H, H' \leq G$.

- a) $x^g := g^{-1}xg$ ist die Konjugation von x mit g.
- b) $x \text{ und } x^{-1} \text{ sind } konjugiert (in G) : \Leftrightarrow \exists g \in G : x' = x^g$
- c) H und H' heißen konjugiert (in G) $\Leftrightarrow \exists g \in G : H' = H^g := \{h^g : h \in H\}$

3.13 Lemma

Die Abbildung

$$int: \begin{cases} G \to \operatorname{Aut}(G) \\ g \mapsto (x \mapsto x^g) \end{cases}$$

ist ein Gruppenhomomorphismus.

Beweis. $\triangleright int(g) \in \text{Hom}(G,G)$: $(xy)^g = g^{-1}xyg = g^{-1}xgg^{-1}yg = x^g \cdot y^g \ \forall x,y,g \in G$

$$(x^g)^h = h^{-1}x^g h = h^{-1}g^{-1}xgh = (gh)^{-1}x(gh) = x^{gh}$$
 (1)

 $ightharpoonup int(g) \in \operatorname{Aut}(G)$: Umkehrabbildung zu int(g) ist $int(g^{-1})$

$$> int \in \operatorname{Hom}(G,\operatorname{Aut}(G)) : \qquad int(gh) \stackrel{(1)}{=} int(h) \circ int(g) = int(g) \cdot int(h)$$

3.14 Definition

- a) $\operatorname{Inn}(G) := \operatorname{Im}(int) \leq \operatorname{Aut}(G)$ Gruppe der inneren Automorphismen von G
- b) $Z(G) := \ker(int) = \{g \in G : gx = xg \ \forall x \in G\} \text{ das } Zentrum \text{ von } G$
- c) $H \leq G$ ist charakteristisch $\Leftrightarrow \forall \sigma \in \operatorname{Aut}(G) : H = H^{\sigma} = \{h^{\sigma} : h \in H\}$

3.15 Bemerkung

 \triangleright Konjugiertheit ist eine Äquivalenzrelation (auf G oder Menge der Untergruppen von G)

$$ightharpoonup H \leq G \text{ ist normal } \Leftrightarrow H = H^{\sigma} \ \forall \sigma \in \text{Inn}(G)$$

 \triangleright Deshalb gilt für $H \leq G$: H ist charakteristisch \Rightarrow H ist normal

3.16 Beispiel

Z(G) ist charakteristisch in G.

4 Abelsche Gruppen

Sei G eine Gruppe.

4.1 Definition

 $G \text{ ist } zyklisch \Leftrightarrow G = \langle g \rangle \text{ für ein } g \in G.$

4.2 Beispiel

- a) Z ist zyklisch.
- b) $\mathbb{Z}/n\mathbb{Z}$ ist zyklisch der Ordnung n.
- c) $C_n = \langle (1 \ 2 \cdots n) \rangle \leq S_n$ ist zyklisch der Ordnung n.
- d) Ist #G = p eine Primzahl, so ist G zyklisch (vgl. Ü6).

4.3 Lemma (!)

Die Untergruppen von $(\mathbb{Z}, +)$ sind genau die $\langle k \rangle = k\mathbb{Z}$ mit $k \in \mathbb{N}_0$ und für $k_1, \ldots, k_r \in \mathbb{Z}$ ist $\langle k_1, \ldots, k_r \rangle = \langle k \rangle$ mit $ggT(k_1, \ldots, k_r) = k$.

Beweis. Jede Untergruppe von \mathbb{Z} ist ein Ideal von $(\mathbb{Z}, +, \cdot)$ und \mathbb{Z} ist Hauptidealring. \square Beweis. Sei $H \leq \mathbb{Z}$. Setze $k = \min(H \cap N)$, o.E. sei $H \neq \{0\}$. Offensichtlich gilt $\langle k \rangle \subseteq H$.

 \Rightarrow r = 0wegen der Minimalität von k

$$\Rightarrow$$
 $n = q \cdot k$, d.h. $n \in \langle k \rangle$

$$\triangleright k = \operatorname{ggT}(k_1, \dots, k_r)$$
:

$$k_i \in \langle k \rangle \implies k \mid k_i \ \forall i$$

$$k \in \langle k_1, \dots, k_r \rangle \quad \Rightarrow \quad k = n_1 k_1 + \dots + n_r k_r \text{ mit } n_i \in \mathbb{Z}$$

$$d \mid k_i \ \forall i \quad \Rightarrow \quad d \mid k$$

 $\alpha \mid \mathcal{H} \quad \mathcal{H$

4.4 Satz

Sei $G = \langle g \rangle$ zyklisch. Dann ist G abelsch und $G \cong (\mathbb{Z}, +)$ oder $G \cong (\mathbb{Z}/n\mathbb{Z}, +)$ mit $n = \#G < \infty$.

Beweis. Betrachte

$$\varphi \colon \begin{cases} \mathbb{Z} \to G \\ k \mapsto g^k \end{cases}$$

 φ ist Homomorphismus und surjektiv, da $G = \langle g \rangle$. Nach 3.9. ist $G = \operatorname{Im}(\varphi) \cong \mathbb{Z}/\operatorname{Ker}(\varphi)$. Nach 4.3 ist $\operatorname{Ker}(\varphi) = \langle n \rangle$ für ein $n \in \mathbb{N}_0$. Ist n = 0, so ist $\operatorname{Ker}(\varphi) = \{0\}$ und $G \cong \mathbb{Z}$. Ist n > 0, so ist $G \cong \mathbb{Z}/n\mathbb{Z}$ und $n = \#\mathbb{Z}/n\mathbb{Z} = \#G$.

4.5 Satz

Sei $(G, +) = \langle g \rangle$ zyklisch der Ordnung $n \in \mathbb{N}$.

a) Zu jedem $d \in \mathbb{N}$ mit $d \mid n$ hat G genau eine Unterguppe der Ordnung d, nämlich $U_d := \langle \frac{n}{d} \ g \rangle$. Damit ist jede Untergruppe einer zyklischen Gruppe wieder zyklisch.

- b) Für $d \mid h$ und $d' \mid h'$ ist $U_d \subseteq U_{d'} \implies d \mid d'$.
- c) Für $k_1, \ldots k_r \in \mathbb{Z}$ ist $\langle k_1 g, \ldots, k_r g \rangle = \langle eg \rangle = U_{\frac{n}{e}}$ mit $e = \operatorname{ggT}(k_1, \ldots, k_r, n)$.
- d) Für $k \in \mathbb{Z}$ ist $\operatorname{ord}(kg) = \frac{n}{\operatorname{ggT}(k,n)}$.

Beweis. Betrachte wieder $\varphi \colon \mathbb{Z} \to G, k \mapsto kg$.

a) Nach 3.7 und 4.3 liefert φ eine Bijektion $\{e \in \mathbb{Z} : n\mathbb{Z} \le e\mathbb{Z}\} \to \{H \le G\}$ und $n\mathbb{Z} \le e\mathbb{Z} \iff e \mid n$. Ist $H = \varphi(e\mathbb{Z}) = \langle eg \rangle$, so ist $H \cong e\mathbb{Z}/n\mathbb{Z}$ $(n\mathbb{Z} = \ker(\varphi))$, also

$$n = (\mathbb{Z} : n\mathbb{Z}) = (\mathbb{Z} : e\mathbb{Z})(e\mathbb{Z} : n\mathbb{Z}) = e \cdot \#H$$

- b) $U_d \subseteq U_{d'} \iff \langle \frac{n}{d} \ g \rangle \subseteq \langle \frac{n}{d'} \ g \rangle \iff \frac{n}{d} \mathbb{Z} \leq \frac{n}{d'} \mathbb{Z} \implies \frac{n}{d'} \mid \frac{n}{d} \iff d \mid d'$
- c) Mit $H = \langle k_1, \dots, k_r \rangle \leq \mathbb{Z}$ ist $n\mathbb{Z} \leq H$, $\varphi(H) = \langle k_1 g, \dots, k_r g \rangle$ $(n \in \ker(\varphi))$. Nach 4.3 ist $H = \langle e \rangle$ mit $e = \operatorname{ggT}(k_1, \dots, k_r, n)$ und somit $\langle k_1 g, \dots k_r g \rangle = \varphi(e\mathbb{Z}) = U_{\underline{n}}$.

d)
$$\operatorname{ord}(kg) = \#\langle kg \rangle \stackrel{(c)}{=} U_{\frac{n}{2}} \text{ mit } e = \operatorname{ggT}(k,n). \text{ (Fall (c) mit } r = 1)$$

4.6 Lemma

Seien $a, b \in G$. Kommutieren a und b und sind $\operatorname{ord}(a), \operatorname{ord}(b)$ teilerfremd, so ist $\operatorname{ord}(a \cdot b) = \operatorname{ord}(a) \cdot \operatorname{ord}(b)$.

Beweis. Nach 2.12 ist $\langle a \rangle \cap \langle b \rangle = \{1\}$. Ist $(ab)^k = a^k \cdot b^k$, so ist $a^k = b^{-k} \in \langle a \rangle \cap \langle b \rangle = 1$, also $a^k = b^k = 1$. Somit ist $(ab)^k = 1 \iff a^k = 1$ und $b^k = 1$, und damit $\operatorname{ord}(ab) = \operatorname{kgV}(\operatorname{ord}(a), \operatorname{ord}(b)) = \operatorname{ord}(a) \cdot \operatorname{ord}(b)$

4.7 Korollar

Ist G abelsch und sind $a, b \in G$ mit $\operatorname{ord}(a) = <\infty, \operatorname{ord}(b) = n <\infty$, so existiert ein $c \in G$ mit $\operatorname{ord}(c) = \operatorname{kgV}(\operatorname{ord}(a), \operatorname{ord}(b))$.

Beweis. Schreibe $m = m_0 \cdot m'$ und $n = n_0 \cdot n'$ mit $m_0 \cdot n_0 = \text{kgV}(m, n)$ und $\text{ggT}(m_0, n_0) = 1$. $\Rightarrow \text{ord}(a^{m'}) = m_0$, $\text{ord}(b^{n'}) = n_0$ $\Rightarrow \text{ord}(a^{m'}b^{n'}) \stackrel{4.6}{=} m_0 \cdot n_0 = \text{kgV}(m, n)$ Dann ist $c := a^{m'}b^{n'}$.

4.8 Theorem (Struktursatz für endlich erzeugte abelsche Gruppen)

Jede endlich erzeugte abelsche Gruppe G ist eine direkte Summe zyklischer Gruppen

$$G^r \cong \mathbb{Z}^r \oplus \bigoplus_{i=1}^k \mathbb{Z}/d_i\mathbb{Z}$$

mit eindeutig bestimmten $d_i, \ldots, d_k > 1$, die $d_i \mid d_{i+1}$ für alle i erfüllen.

Beweis. Die Existenz folgt aus LAAG VIII.6.14 (Hauptsatz über endlich erzeugte Moduln über Hauptidealringen).

Eindeutigkeit: Für $d \in \mathbb{N}$ ist $\#G/dG = \#(\mathbb{Z}/d\mathbb{Z})^r \oplus \bigoplus_{i=1}^k (\mathbb{Z}/d_i\mathbb{Z})/d \cdot \mathbb{Z}/d_i\mathbb{Z} \stackrel{4.5(d)}{=} d^r \cdot \prod_{i=1}^k \frac{d_i}{\operatorname{ggT}(d,d_i)}$. Daraus kann man nun r, k, d_1, \ldots, d_k erhalten, z.B. für p prim $p \mid nichtd_i \ \forall i$ ist $\#G/pG = p^r \cdot \prod_{i=1}^k d_i$.

4.9 Lemma

Sei $G = (G, +) = \langle g \rangle$ zyklisch der Ordnung $n \in \mathbb{N}$. Die Endomorphismen von G sind genau die

$$\varphi_{\bar{k}}: \begin{cases} G \to G \\ x \mapsto kx \end{cases}$$

für $\bar{k} = k + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$. Dabei ist $\varphi_{\bar{l}} \circ \varphi_{\bar{k}} = \varphi_{\bar{k}l}$ für $\bar{k}, \bar{l} \in \mathbb{Z}/n\mathbb{Z}$.

Beweis. Zu zeigen sind eine Reihe von Aussagen.

- $ho \varphi_{\bar{k}}$ wohldefiniert: $\bar{k_1} = \bar{k_2} \implies k_2 = k_1 + an \text{ mit } a \in \mathbb{Z}$. Dann ist auch $k_2 x = k_1 x + a \cdot nx = k_1 x \ \forall x \in G$.
- $ightharpoonup \varphi_{\bar{k}} \in \text{Hom}(G,G)$: klar, da G abelsch.

$$\rhd \ \varphi \in \mathrm{Hom}(G,G) \colon \quad \Rightarrow \quad \varphi = \varphi_{\bar{k}} \text{ für ein } k \in \mathbb{Z} \ ; \ \varphi(g) = k \cdot g \text{ für ein } k \in \mathbb{Z} \quad \Rightarrow \quad \varphi = \varphi_{\bar{k}} \text{ für ein } k \in \mathbb{Z}$$

$$\triangleright \varphi_{\bar{l}} \circ \varphi_{\bar{k}} = \varphi_{\bar{k}l} : l \cdot (k \cdot x) = (l \cdot k) \cdot x \checkmark$$

4.10 Satz

Ist G zyklisch von Ordnung $n \in \mathbb{N}$, so ist $\operatorname{Aut}(G) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. (multiplikativ)

Beweis. Aut $(G) \subseteq \operatorname{Hom}(G,G) = \{\varphi_{\bar{k}} : \bar{k} \in \mathbb{Z}/n\mathbb{Z}\}.$

$$\varphi_{\bar{k}} \in \operatorname{Aut}(G) \quad \Leftrightarrow \quad \exists \bar{l} \in \mathbb{Z}/n\mathbb{Z} : \varphi_{\bar{l}} \circ \varphi_{\bar{k}} = \varphi_{\bar{1}}$$
$$\Leftrightarrow \quad \exists \bar{l} \in \mathbb{Z}/n\mathbb{Z} : \bar{l} \cdot \bar{k} = 1$$
$$\Leftrightarrow \quad \bar{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$$

und die Abbildung $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(G)$ mit $\bar{k} \mapsto \varphi_{\bar{k}}$ ist ein Isomorphismus. Offensichtlich ist diese ein Homomorphismus und die Bijektivität folgt aus der Tatsache, dass jeder Endomorphismus genau diese Gestalt $\varphi_{\bar{k}}$ hat.

4.11 Definition

Die Abbildung $\Phi \colon \mathbb{N} \to \mathbb{N}$ gegeben durch

$$\Phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$$

ist die Euler'sche Phi-Funktion.

4.12 Beispiel

Ist p prim, so ist $\Phi(p) = p - 1$, da $\mathbb{Z}/p\mathbb{Z}$ ein Körper ist.

5 Direkte und semidirekte Produkte

Sei G ein Gruppe und $n \in \mathbb{N}$.

5.1 Definition

Das direkte Produkt von Gruppen G_1, \ldots, G_n ist das kartesische Produkt

$$G = \prod_{i=1}^{n} G_i = G_1 \times \dots \times G_n$$

mit komponentenweise Multiplikation.

5.2 Bemerkung

Wir identifizieren G_j mit der Untergruppe

$$G_j \times \prod_{i \neq j} = 1 \times \cdots \times G_j \times 1 \times \cdots \times 1$$

von $\prod_{i=1}^n G_i$. Für $i \neq j, g_i \in G_i$ und $g_j \in G_j$ gilt dann

$$g_i \ g_j = g_j \ g_i \tag{2}$$

5.3 Definition

Seien $H_1, \ldots, H_n \leq G$. Dann isr G das (interne) direkte Produkt von H_1, \ldots, H_n , in Zeichen

$$G = \prod_{i=1}^{n} H_i = H_1 \times \dots \times H_n$$

wenn

$$\begin{cases} H_1 \times \dots \times H_n & \to G \\ (g_1, \dots, g_n) & \mapsto g_n + cdots \cdot g_n \end{cases}$$

ein Gruppenhomomorphismus ist.

5.4 Satz (!)

Seien $U, V \leq G$. Dann sind äquivalent

(1)
$$G = U \times V$$

(2)
$$U \trianglelefteq G$$
, $V \trianglelefteq G$, $U \cap V = 1$, $UV = G$

Beweis. Wir zeigen beide Richtungen der Äquivalenz.

(1) \Rightarrow (2): Im (externen) direktem Produkt $U \times V$ gilt:

$$\triangleright UV = G = U \times V$$
: Für $u \in U, v \in V$ ist $(u, v) = (u, 1) \cdot (1, v) \in UG$

$$\triangleright U \cap V = 1: \checkmark$$

$$U \subseteq G = U \times V \colon \text{F\"{u}r } g = (u, v) \in U \times V \text{ und } u_0 = (u_0, 1) \in U \text{ ist }$$

$$u_0^g = g^{-1} \cdot u_0 \cdot g = (u^{-1}, v^{-1}) \cdot (u_0, 1) \cdot (u, v) = (u_0^u, 1) \in U$$

 $\triangleright V \subseteq U \times V$: analog

 $(2) \Rightarrow (1)$: Betrachte $\varphi \colon U \times V \to G \text{ mit } (u, v) \mapsto u \cdot v$.

$$(2) \text{ gilt: F\"{u}r } u \in U \text{ und } v \in V \text{ gilt in } G : \\ u^{-1}v^{-1}uv = \underbrace{(v^{-1})^u}_{\in V} \cdot \underbrace{v}_{\in V} = \underbrace{u^{-1}}_{\in U} \cdot \underbrace{u^v}_{\in U} \in U \cap V = 1 \quad \Rightarrow \quad uv = vu$$

 $\triangleright \varphi$ ist Homomorphismus:

$$\varphi((u_1, u_2)(v_1, v_2)) = \varphi(u_1v_1, u_2v_2) = u_1u_2 \cdot v_1v_2 \stackrel{(2)}{=} (u_1v_1)(u_2v_2) = \varphi(u_1, u_2) \cdot \varphi(v_1, v_2)$$

 $\triangleright \varphi$ surjektiv: $\text{Im}(\varphi) = UV = G$

5.5 Korollar

Seien $H_1, \ldots, H_n \leq G$. Dann sind äquivalent

$$G = H_1 \times \dots \times H_n \tag{3}$$

$$G = H_1 \cdot \dots \cdot H_n$$
 und für alle i ist $H_i \subseteq G$ und $H_1 \cdot \dots \cdot H_{i-1} \cap h_i = 1$ (4)

Beweis. Wir beweisen die Implikation (4) \Rightarrow (3) durch vollständige Induktion nach n. Für n=1ist die Aussage trivial. Sei also n>1 und setze $U:=H-1\cdots h_{n-1}$ und $V=H_n$. Dann ist $U \leq G$ nach 3.3(c), $V \leq G$, $UV = H_1 \cdots H_n = G$ und $U \cap V = 1$, sodass die Bediungen aus Gleichung (4) erfüllen. Somit ist $\varphi \colon U \times V \to G$ ein Isomorphismus nach Satz 5.4. Da $H_i \subseteq U$ für i < n folgt nach Induktionshypothese, dass

$$\varphi'\colon\left\{\begin{array}{ccc} H_1\times\cdots\times H_{n-1}&\to&U\\ (h_1,\ldots,h_{n-1})&\mapsto&h_1\cdots h_{n-1} \end{array}\right.$$
ein Isomorphismus ist. Somit ist auch

$$\varphi \circ (\varphi' \times \mathrm{id}_{H_n}) \colon \left\{ \begin{array}{ccc} H_1 \times \cdots \times H_n & \to & G \\ (h_1, \dots, h_n) & \mapsto & \varphi(\varphi'(h_1 \cdots h_{n-1}), h_n) = h_1 \cdots h_n \end{array} \right.$$

ein Isomorphismus.

5.6 Definition

Seien $H, N \leq G$. Dann ist G das semidirekte Produkt von H und N, in Zeichen

$$G = H \ltimes N = N \rtimes H$$
,

wenn $N \leq G$, $H \cap N = 1$, HN = G.

5.7 Bemerkung

Ist $G = H \ltimes N$, so ist

$$\alpha \colon \left\{ \begin{array}{ccc} H & \to & \operatorname{Aut}(N) \\ h & \mapsto & \operatorname{int}_h \mid_N \end{array} \right.$$

Ein Gruppenhomomorphismus. Im Fall $G = H \times N$ ist $\alpha_h = \mathrm{id}_N$ für alle $h \in H$. Für $h_1, h_2 \in$ $H, n_1, n_2 \in N$ ist

$$h_1 n_1 \cdot h_2 n_2 = h_1 h_2 h_2^{-1} n_1 h_2 n_2 = h_1 h_2 \cdot \underbrace{n_1^{h_2}}_{\in N \leq G} \cdot n_2 = h_1 h_2 \cdot n_1^{\alpha \cdot h_2} \cdot n_2$$

5.8 Definition

Seien H, N Gruppen und $\alpha \in \text{Hom}(H, \text{Aut}(N))$. Das semidirekte Produkt $H \ltimes_{\alpha} N$ von H und Nbezüglich α ist das kartesische Produkt $H\times N$ imt der Multiplikation

$$(h_1, n_1)(h_2, n_2) = (h_1 \cdot h_2, n_1^{\alpha_{h_2}} \cdot n_2)$$

für $h_1, h_2 \in H$ und $n_1, n_2 \in N$