

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Prof. María Anacleto – Prof. Alex Tello

FORMATIVO 02 - ÁLGEBRA II (220156) Segundo semestre 2022

- 1. Determine si cada proposición siguiente es verdadera (V) o falsa (F), justificando su respuesta.
 - a) () El subconjunto $S = \{ p \in \mathcal{P}_2(\mathbb{R}) : p(1) = 0, p(0) = 3 \}$ es un subespacio de $\mathcal{P}_2(\mathbb{R})$.
 - b) () El subconjunto $U = \{p(x) \in \mathcal{P}_3(\mathbb{R}) : p(1) = 1\}$ es un subespacio vectorial de $\mathcal{P}_3(\mathbb{R})$.
 - c) () El subconjunto de \mathbb{R}^3 , $\{(1,1,0),(0,-1,-1),(1,0,-1)\}$ es l.d.
 - d) () El subconjunto de \mathbb{R}^3 , $\{(2,0,1),(1,-1,1),(0,3,-2)\}$ es l.i.
 - e) () Sea $B = \{v_1, v_2, v_3\}$ base ordenada del espacio vectorial V, entonces las coordenadas de $[v_3 + 2v_2 + 3v_1]_B = (1, 2, 3)$.
 - f) () Se pueden escribir el vector (1,7,-4) como una combinación lineal de $\vec{u}=(1,-3,2)$ y $\vec{v}=(2,-1,1)$.
- 2. Caracterice el subespacio generado por $V = \{(-2, -1, 0), (1, -2, 3), (-1, -3, 3)\}$ y hallar una base y la dimensión del subespacio.
- 3. Caracterice el subespacio de \mathbb{R}^3 generado por $B = \{(1,2,1), (1,1,0), (2,8,6)\}$ y hallar una base y la dimensión del subespacio.
- 4. Encuentre una base en cada uno de los siguientes subespacios vectoriales de dimensión finita.
 - a) $V = \{(x, y, z) \in \mathbb{R}^3 : x y = 0\}$
 - b) $W = \{(x, y, z) \in \mathbb{R}^3 : 3x 4y + z = 0\}$
 - c) $U = \{(a_{ij}) \in \mathcal{M}_2(R) : a_{11} + a_{22} = 0\}$
- 5. Sean $\mathcal{B}_1 = \{(1,2),(1,-1)\}, \ \mathcal{B}_2 = \{(1,3),(2,0)\}$ bases de \mathbb{R}^2 y sean $\alpha = (2,-3), \ \beta = (4,2)$.
 - a) Hallar los vectores coordenadas de α , β respecto a \mathcal{B}_1 y la matriz cambio de base P de la base \mathcal{B}_1 a la base \mathcal{B}_2 .
 - b) Hallar los vectores coordenadas de α , β respecto a \mathcal{B}_2 y la matriz de transición Q de la base \mathcal{B}_2 a la base \mathcal{B}_1 .
- 6. Sean $\mathcal{B}_1 = \{2x 1, 5x + 4\}$, $\mathcal{B}_2 = \{x, 1\}$ bases de $\mathcal{P}_1[\mathbb{R}]$. Hallar la matriz cambio de base de \mathcal{B}_1 a \mathcal{B}_2 y la matriz cambio de base de \mathcal{B}_2 a \mathcal{B}_1 .
- 7. Hallar una base ortonormal a partir de la base $\{(1,1); (-2,1)\}\$ de \mathbb{R}^2 .
- 8. Hallar una base ortonormal a partir de la base $\{(1,2);(-2,5)\}$ de \mathbb{R}^2 .

- 5. Sean $\mathcal{B}_1 = \{(1,2), (1,-1)\}, \ \mathcal{B}_2 = \{(1,3), (2,0)\}$ bases de \mathbb{R}^2 y sean $\alpha = (2,-3), \ \beta = (4,2)$.
 - a) Hallar los vectores coordenadas de α , β respecto a \mathcal{B}_1 y la matriz cambio de base P de la base \mathcal{B}_1 a la base \mathcal{B}_2 .

$$3 : (2, -3) = \alpha(1, 7) + \beta(1, -1) \quad \forall z : (1, 2) = x(1, 2) + \beta(1, -1) \\
(2, 13) = (\alpha + \beta, 2\alpha - \beta) \quad \forall 3 = (1, 2) = (\alpha + \beta, 2\alpha - \beta) \\
(\alpha + \beta = 1 \quad (1) \quad \Rightarrow 1 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 + \beta = 1 \\
(12\alpha - \beta = -3 \quad (1) \quad \Rightarrow 1 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 - 1 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 - 1 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad 2 = \beta \quad | 1 \quad 2\alpha - \beta = 2 \quad | 1 \quad$$