干涉與繞射 實驗報告

實驗日期 2023/11/23 組員:王嗣方

實驗目的

利用幾何光學原理,使用已知縫寬與縫距的狹縫求出雷射光波長,並測出頭髮直徑與光碟片凹槽槽距。

實驗原理

當兩光束間光程差 $\Delta l = n\lambda$ 時發生建設性干涉,呈亮紋; $\Delta l = \left(n + \frac{1}{2}\right)\lambda$ 時則有破壞性干涉,呈暗紋。在雙狹縫干涉中,雷射光垂直照在狹縫上。由兩狹縫射出的光線有光程差 $\Delta l = d \sin \theta \approx d\theta$ 。在距L處的屏幕上可觀察到間隔 $\Delta y = \frac{L\lambda}{d}$ 的干涉條紋。在單狹縫繞射中,繞射條紋間距亦為 $\Delta y = \frac{L\lambda}{d}$,但中央亮紋寬度為 $2\Delta y$ 。

當雷射光照射在頭髮上,從左右繞過頭髮的光線相當於雙狹縫干涉中由兩狹縫射出的光線,亦能從干涉現象反推頭髮直徑 $d=\frac{L\lambda}{\Delta v}$ 。

另外,給定N組X,Y數據,其迴歸直線Y = mX + b之斜率m的不確定度為

$$\Delta m = \sqrt{N \frac{A}{\Delta}}$$

其中 $A = \frac{1}{N-2}\Sigma_i(Y_i - (mX_i + b))^2$, $\Delta = N\Sigma_iX_i^2 - (\Sigma_iX_i)^2$.

實驗裝置圖

實驗器材

器材名稱	數量/規格	器材名稱	數量/規格
雙狹縫片	1月/縫距	單狹縫片	1 片 / 縫寬
雷射光源	1個/半導體雷射紅光	升降台	1個
狹縫片架	1 個	狹縫片架底座	1 個
長尺	1把/lm長	屏幕	1個/可黏貼白紙
雷射電源線	1條	透明膠帶	1 捲
透明直尺	1 把 / 15cm 長	透明直尺貼紙	數條 / 15cm, 黏於白紙上
CD / DVD	1片	頭髮	1根

實驗步驟

架設實驗器材如實驗器材圖。

單狹縫繞射

- 1. 於狹縫片架上使用透明膠帶固定雙狹縫片。
- 2. 調整屏幕位置,使 $L \approx 1 m$,以長尺量測屏幕與狹縫距離 L。
- 3. 量測屏幕上 10 個亮暗間隔的長度,記錄此數值為 10Δy。
- 4. 計算雷射光波長

雙狹縫繞射

- 1. 於狹縫片架上使用透明膠帶固定單狹縫片。
- 2. 調整屏幕位置,使 $L \approx 0.4 \, m$,以長尺量測屏幕與狹縫距離 L。
- 3. 量測屏幕上 10 個亮暗間隔的長度,記錄此數值為 10Δy。
- 4. 以 $L \approx 0.6 \, m$, $0.8 \, m$, $0.9 \, m$, $1.0 \, m$ 重複上述。
- 5. 繪圖計算雷射光波長。

頭髮的干涉

- 1. 於狹縫片架上使用透明膠帶固定一根頭髮。
- 2. 調整屏幕位置,使 $L \approx 0.6 \, m$,以長尺量測屏幕與狹縫距離 L。
- 3. 量測屏幕上 10 個亮暗間隔的長度,記錄此數值為 $10\Delta y$ 。
- 4. 以 $L \approx 0.8 \, m$, $0.9 \, m$, $1.0 \, m$, $1.2 \, m$ 重複上述。

5. 繪圖計算頭髮直徑。

CD 片干涉

- 1. 於狹縫片架上使用透明膠帶固定撕除印刷層的 CD 片。
- 2. 調整屏幕位置,使 $L \approx 0.1 \, m$,以長尺量測屏幕與狹縫距離 L。
- 3. 量測屏幕上 1 個亮暗間隔的長度 (第一級干涉條紋),記錄此數值為 Δy。
- 4. 以 $L \approx 0.2 \, m$, $0.3 \, m$, $0.4 \, m$, $0.5 \, m$ 重複上述。
- 5. 繪圖計算 CD 片凹槽槽距。

實驗結果

單狹縫繞射

 $L = 1.00 \pm 0.02$ (m)。縫距 $d = 1 \times 10^{-4}$ m。

$$10 \Delta y = 6.1 \pm 0.1 (cm) \Rightarrow \Delta y = (6.1 \pm 0.1) \times 10^{-3} (m)$$

$$\lambda = \frac{d\Delta y}{L} = \frac{(1 \times 10^{-4})(6.1 \pm 0.1) \times 10^{-3}}{(1.00 \pm 0.02)} (m) = (610 \pm 16) \times 10^{-9} (m) = (610 \pm 16) \text{ nm}$$

註: $\tan\theta = \frac{\Delta y}{L} = \frac{6.1\times10^{-3}}{1}$, θ 極小。以下除了 CD 干涉實驗外將使用 $\theta\approx\sin\theta\approx\tan\theta$ 之 近似。

雙狹縫繞射

$$d = 2.5 \times 10^{-4} m$$

$(L \pm 0.02) m$	$(10 \Delta y \pm 0.05) \times 10^{-2} m$	$(\Delta y \pm 0.005) \times 10^{-2} m$
0.40	1.05	0.105
0.60	1.60	0.160
0.80	2.10	0.210
0.90	2.40	0.240
1.00	2.70	0.270

$$\lambda = \frac{d\Delta y}{L} \Rightarrow \Delta y = (\frac{\lambda}{d})L$$

$$\Delta y = (-4.27 \times 10^{-5}) + (2.72 \times 10^{-3})L$$

$$r^2 = 0.999 \ b = -4.27 \times 10^{-5}, m = 2.72 \times 10^{-3}$$

何承祐

X	Y	$Y_i - [b + mX]$	$(Y_i - [b + mX])^2$
0.40	1.05×10^{-3}	4.7×10^{-6}	2.21×10^{-11}
0.60	1.60×10^{-3}	1.07×10^{-5}	1.14×10^{-10}
0.80	2.10×10^{-3}	-3.33×10^{-5}	1.11×10^{-9}
0.90	2.40×10^{-3}	-5.3×10^{-6}	2.81×10^{-11}
1.00	2.70×10^{-3}	2.27×10^{-5}	5.15×10^{-10}

$$A = \frac{1}{N-2} \Sigma_i (Y_i - (mX_i + b))^2 = \frac{1}{5-2} \times (1.79 \times 10^{-9}) = 5.97 \times 10^{-10}$$

$$\Delta = N\Sigma_i X_i^2 - (\Sigma_i X_i)^2 = 5(2.97) - (3.7)^2 = 1.16$$

$$\Delta m = \sqrt{N\frac{A}{\Delta}} = \sqrt{5 \times \frac{5.97 \times 10^{-10}}{1.16}} = 5.07 \times 10^{-5}$$

$$m = 2.72 \times 10^{-3} \pm 5 \times 10^{-5}$$

$$\lambda = md = (680 \pm 13) \text{ nm}$$

雙狹縫干涉 $\Delta y - L$ 關係圖

以下計算使用二方法得出之波長值平均

$$\lambda_{avg} = \frac{(610\pm16)+(680\pm13)}{2} = (645\pm10) \text{ nm}$$

頭髮的繞射

$(L \pm 0.02) m$	$(10 \Delta y \pm 0.05) \times 10^{-2} m$	$(\Delta y \pm 0.005) \times 10^{-2} m$
0.60	3.10	0.310
0.80	4.40	0.440
0.90	4.70	0.470
1.00	5.35	0.535
1.20	6.4	0.640

$$\lambda = \frac{d\Delta y}{L} \Rightarrow \Delta y = (\frac{\lambda}{d})L$$

$$\Delta y = (-9.25 \times 10^{-5}) + (5.43 \times 10^{-3})L$$

$$r^2 = 0.994, b = -9.25 \times 10^{-5}, m, = 5.43 \times 10^{-3}$$

$$A = \frac{1}{N-2} \Sigma_i (Y_i - (mX_i + b))^2 = \frac{1}{5-2} \times (3.72 \times 10^{-8}) = 1.24 \times 10^{-8}$$

$$\Delta = N\Sigma_i X_i^2 - (\Sigma_i X_i)^2 = 5(4.25) - (4.5)^2 = 1$$

$$\Delta m = \sqrt{N\frac{A}{\Delta}} = \sqrt{5 \times \frac{1.24 \times 10^{-8}}{1}} = 2.49 \times 10^{-4}$$

$$m = 5.4 \times 10^{-3} \pm 3 \times 10^{-4}$$

$$d = \frac{\lambda}{m} = \frac{(645 \pm 10) \text{ nm}}{(5.4 \pm 0.3) \times 10^{-3}} = \frac{645}{5.4} \left(1 \pm \sqrt{\left(\frac{10}{645}\right)^2 + \left(\frac{0.3}{5.4}\right)^2}\right) \mu m$$

$$\bar{g} \notin \Delta M = (119 \pm 7) \mu m$$

(一般值:17μm~181μm)

頭髮繞射 $\Delta y - L$ 關係圖

CD 干射 $\Delta y - L$ 關係圖

CD片干涉

由於 CD 干涉實驗的 L 較小,以下採用較精確的計算方式。令 CD 槽寬為 d。

$$\tan \theta = \frac{\Delta y}{L} \Rightarrow \sin \theta = \frac{\Delta y}{\sqrt{L^2 + (\Delta y)^2}} \Rightarrow d\frac{\Delta y}{\sqrt{L^2 + (\Delta y)^2}} = \lambda$$
$$L^2 + (\Delta y)^2 = \frac{d^2}{\lambda^2} (\Delta y)^2$$

$(L \pm 0.02) m$	$(\Delta y \pm 0.2) \times 10^{-2} m$	$(\Delta y)^2 (m)$	$L^2 + (\Delta y)^2 (m)$
0.10	4.9	0.24×10^{-2}	0.12×10^{-1}
0.20	10.5	1.1×10^{-2}	0.51×10^{-1}
0.30	14.4	2.07×10^{-2}	1.11×10^{-1}
0.40	19.0	3.61×10^{-2}	1.96×10^{-1}
0.50	22.9	5.24×10^{-2}	3.02×10^{-1}

$$L^{2} + (\Delta y)^{2} = \frac{d^{2}}{\lambda^{2}}(\Delta y)^{2} \Rightarrow Y = \frac{d^{2}}{\lambda^{2}}X$$

$$Y = (-8.46 \times 10^{-3}) + 5.83X$$

$$r^{2} = 0.996, b = -8.46 \times 10^{-3}, m = 5.83$$

$$A = \frac{1}{N-2}\Sigma_{i}(Y_{i} - (mX_{i} + b))^{2} = \frac{1}{5-2} \times (1.26 \times 10^{-4}) = 4.2 \times 10^{-5}$$

$$\Delta = N\Sigma_{i}X_{i}^{2} - (\Sigma_{i}X_{i})^{2} = 5(4.6 \times 10^{-3}) - (0.1226)^{2} = 8.0 \times 10^{-3}$$

$$\Delta m = \sqrt{N\frac{A}{\Delta}} = \sqrt{5 \times \frac{4.2 \times 10^{-5}}{8.0 \times 10^{-3}}} = 0.162$$

$$m = 5.8 \pm 0.2$$

$$\Delta(\sqrt{m}) = \frac{\Delta m}{2\sqrt{m}} = \frac{0.2}{2 \times \sqrt{5.8}} = 0.0415$$

$$\sqrt{m} = \sqrt{m} \pm \Delta(\sqrt{m}) = 2.41 \pm 0.04$$

$$m = \frac{d^{2}}{\lambda^{2}} \Rightarrow d = \lambda\sqrt{m} = (645 \pm 10)(2.41 \pm 0.04) \text{ nm}$$

$$\mathbf{CD} \stackrel{\text{HE}}{=} \mathbf{d} = (1554 \pm 35) \text{ nm}$$

$$(-\Re \text{fi} : \sim 1.6 \, \mu\text{m})$$

結果與討論

結果彙整

項目	測量值
雷射光波長 (單狹縫)	$(610 \pm 16) \text{ nm}$
雷射光波長 (雙狹縫)	$(680\pm13)~\text{nm}$
頭髮直徑	$(119\pm7)~\mu m$
CD 槽距	(1554 ± 35) nm

誤差分析與問題討論

- 1. 頭髮直徑與 CD 槽距的測量值都在公認範圍內。
- 2. 本實驗使用紅光雷射,測得的波長在紅光波長範圍內。
- 3. 雙狹縫干涉實驗中,亦能觀察到單狹縫的繞射現象,選取 10 條亮暗間距時需額外 注意。
- 4. 進行單、雙狹縫繞射與頭髮繞射實驗時,若取靠近中央的10個條紋,角度θ較小,使用小角度近似較恰當。若要求更高精確度,可從中央亮紋往左右各取5個間隔,並使用測量CD槽距的計算方式進行分析。
- 頭髮易彎曲,固定時應注意其為豎直的, 否則易使干涉條紋變形,影響實驗結果。
- 6. 若將雷射光改成白熾燈泡,將得到彩色的 干涉條紋,但燈泡必須稍微遠離,以近似 於平行光。
- http://physicsexperiments.eu/
- 7. 為增加實驗準確性,可在狹縫前放置凸透鏡,並使點光源位於焦點處。如此一來, 入射光便能成為平行光。
- 8. 除了將 CD 外膜撕除,亦可將雷射筆直接照向 CD,反射時鉛直入射屏幕,如圖所示。

實驗照片

