DATA CUBES

Hari Sundaram

hs1@illinois.edu

http://sundaram.cs.illinois.edu

adapted from slides by Jiawei Han and Kevin Chang

BASIC CONCEPTS

Methods Advanced Processing Multidimensional Summary

Important!

academic integrity

zero tolerance policy!

You are encouraged to form a study group to discuss the homework and the programming assignments but are expected to compete the homework and programming assignments completely on your own without recourse to notes from the group discussions.

Plagiarism: It is an academic violation to copy, to include text from other sources, including online sources, without proper citation.

Any student found to be violating this code will be subject to disciplinary action.

data cube: a lattice of cuboids

DATA CUBE: A LATTICE OF CUBOIDS

Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells

(9/15, milk, Urbana, Dairy_land)

(9/15, milk, Urbana, *)

(*, milk, Urbana, *)

(*, milk, Chicago, *)

(*, milk, *, *)

a priori principle

CUBE MATERIALIZATION

Full cube vs. iceberg cube

compute cube sales iceberg as

select month, city, customer
group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

Computing only the cuboid cells whose measure satisfies the iceberg condition

Only a small portion of cells may be "above the water" in a sparse cube

How many aggregate cells if "having count >= 1"?

Exercise!

$$\{(a_1,a_2,a_3,...,a_{100}): 10, (b_1,b_2,b_3,...,b_{100}): 10\}$$

how many aggregate cells have more than or equal to 10?

$$2100 + 2100 - 1 - 2 = 2101 - 3$$

two base cells

one common aggregate cell (*)

Exercise!

how many aggregate cells have counts greater than or equal to 10?

$$2100 + 2100 - 4 - 2 = 2101 - 6$$

two base cells

four common aggregate cells

Closed cell c: if there exists no cell d, such that d is a descendant of c, and d has the same measure value as c.

	QI	Q2	Q3	Q4	
Milk	5	I	4	I	
Poultry	I	10	5	3	
Beer	6	7	I	11	
Chocolate	1	8	12	2	

closed cube

Exercise!

$$\{(a_1,a_2,a_3,...,a_{100}):10,(a_1,a_2,b_3,...,b_{100}):10\}$$

how many closed cells?

cube shell

Pre-compute only the cuboids involving a small # of dimensions, e.g., 3

More dimension combinations will need to be computed on the fly

EFFICIENT COMPUTATION ROADMAP

General cube computation heuristics (Agarwal et al.'96)

Computing full/iceberg cubes: 3 methodologies

Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande & Naughton, SIGMOD'97)

Top-down:

BUC (Beyer & Ramarkrishnan, SIGMOD'99)

H-cubing technique (Han, Pei, Dong & Wang: SIGMOD'01)

Integrating Top-Down and Bottom-Up:

Star-cubing algorithm (Xin, Han, Li & Wah: VLDB'03)

High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB'04)

Computing alternative kinds of cubes:

Partial cube, closed cube, approximate cube, etc.

Agarwal, S., Agrawal, R., Deshpande, P. M., Gupta, A., Naughton, J. F., Ramakrishnan, R., & Sarawagi, S. (1996, September). On the computation of multidimensional aggregates. In VLDB (Vol. 96, pp. 506-521).

GENERAL HEURISTICS

Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples

Aggregates may be computed from previously computed aggregates, rather than from the base fact table

Smallest-child: computing a cuboid from the smallest, previously computed cuboid

Cache-results: caching results of a cuboid from which other cuboids are computed to reduce disk I/Os

Amortize-scans: computing as many as possible cuboids at the same time to amortize disk reads

Share-sorts: sharing sorting costs cross multiple cuboids when sort-based method is used

Share-partitions: sharing the partitioning cost across multiple cuboids when hash-based algorithms are used

Closed cell c: if there exists no cell d, such that d is a descendant of c, and d has the same measure value as c.

BASIC CONCEPTS SUMMARY

Methods Advanced Processing Multidimensional Summary

iceberg cube

2n - 1 base cell aggregates

Multi-Way Array Aggregation

BUC

High-Dimensional OLAP

DATA GUBE METHODS

Basic Concepts Advanced Processing Multidimensional Summary

MULTI-WAY AGGREGATION

Array-based "bottom-up" algorithm

Using multi-dimensional chunks

No direct tuple comparisons

Simultaneous aggregation on multiple dimensions

Intermediate aggregate values are re-used for computing ancestor cuboids

Cannot do *Apriori* pruning: No iceberg optimization

MOLAP

Partition arrays into chunks (a small subcube which fits in memory).

Compressed sparse array addressing: (chunk_id, offset)

Compute aggregates in "multiway" by visiting cube cells in the order which minimizes the number of cell visits, and which reduces memory access and storage cost.

Can we avoid revisiting cells to compute different aggregates?

A-B Plane 13 | 14 | 15 | 16 9 10 11 5 1 2 $a_0 \ a_1 \ a_2 \ a_3$

MOLAP SUMMARY

Method: the planes should be sorted and computed according to their size in ascending order

Idea: keep the smallest plane in the main memory, fetch and compute only one chunk at a time for the largest plane

Limitation of the method: performs well only for a small number of dimensions

If there are a large number of dimensions, "top-down" computation and iceberg cube computation methods can be explored

data is not sparse moderate dimensionality

failure cases

apriori

all Bottom Up Construction ACBCABABC

BOTTOM UP CONSTRUCTION

Bottom-up cube computation

(Note: top-down in our view!)

Divides dimensions into partitions and facilitates iceberg pruning

If a partition does not satisfy min_sup, its descendants can be pruned

If $min_sup = I \Rightarrow compute full$ CUBE!

No simultaneous aggregation

BUC: PARTITIONING

Usually, entire data set can't fit in main memory

Sort distinct values

partition into blocks that fit

Continue processing

Optimizations

Partitioning

External Sorting, Hashing, Counting Sort

Ordering dimensions to encourage pruning

Cardinality, Skew, Correlation

COUNT SORT

For simplicity, consider the data in the range 0 to 9.

Input data: 1, 4, 1, 2, 7, 5, 2

I) Take a count array to store the count of each unique object.

Index: 0 1 2 3 4 5 6 7 8 9 Count: 0 2 2 0 1 1 0 1 0 0

2) Modify the count array such that each element at each index stores the sum of previous counts.

Index: 0 1 2 3 4 5 6 7 8 9 Count: 0 2 4 4 5 6 6 7 7 7

The modified count array indicates the position of each object in the output sequence.

3) Output each object from the input sequence followed by

Decreasing its count by 1.

Process the input data: 1, 4, 1, 2, 7, 5, 2. Position of 1 is 2.

Put data I at index 2 in output. Decrease count by I to place the next data value of I at an index one smaller than this index.

BUC: OVERVIEW

Start from partition = Apex (*, *, *, *)

Have an order of dimensions

Count current partition

Sort distinct values in next dimension

Partition into distinct values

Recurse into each partition

Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

- input: the relation to aggregate;
- dim: the starting dimension for this iteration.

Globals:

- constant numDims: the total number of dimensions;
- constant cardinality[numDims]: the cardinality of each dimension;
- constant min_sup: the minimum number of tuples in a partition for it to be output;
- outputRec: the current output record;
- dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers of size cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.

Method:

- (1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
- (3) write outputRec;
- (4) **for** (d = dim; d < numDims; d + +) **do** //Partition each dimension
- (5) C = cardinality[d];
- (6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
- (7) k = 0;
- (8) **for** (i = 0; i < C; i + +) **do** // for each partition (each value of dimension d)
- (9) c = dataCount[d][i];
- (10) if $c >= min_sup$ then // test the iceberg condition
- (11) $\operatorname{outputRec.dim}[d] = \operatorname{input}[k].\operatorname{dim}[d];$
- (12) BUC(input[k..k+c-1], d+1); // aggregate on next dimension
- (13) endif
- (14) k += c;
- (15) **endfor**
- (16) $\operatorname{outputRec.dim}[d] = \operatorname{all};$
- (17) endfor


```
Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(1)
    if input.count() == 1 then // Optimization
         WriteDescendants(input[0], dim); return;
     endif
                                   the total number of dimensions
     write outputRec;
(3)
     for (d = dim; d < numDims; d + +) do //Partition each dimension
         C = cardinality[d]; \leftarrow the number of attribute values in d
(5)
(6)
         Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
(7)
        k = 0;
(8)
        for (i = 0; i < C; i + +) do // for each partition (each value of dimension d)
               (9)
(10)
               if c >= min\_sup then // test the iceberg condition
                     outputRec.dim[d] = input[k].dim[d];
(11)
                     BUC(input[k..k+c-1], d+1); // aggregate on next dimension
(12)
(13)
               endif
                                 recursively call BUC
(14)
               k += c;
         endfor
(15)
(16)
         outputRec.dim[d] = all;
(17) endfor
```

exploration order

Different orders may result in different numbers of cells to be computed.

ABCD

$A \rightarrow B \rightarrow C \rightarrow D$

no aggregate sharing

what about high dimensions?

Li, Xiaolei, Jiawei Han, and Hector Gonzalez. "High-dimensional OLAP: a minimal cubing approach." Proceedings of the Thirtieth international conference on Very large data bases-Volume 30. VLDB Endowment, 2004.

1600 Full Data Cube lceberg Cube, Mir∕sup=5 ····×-· 1400 Quotignt Cube ----+ 1200 Sube Size (MB) 1000 800 600 400 200 🖟 11 8 9 10 12 Dimensionality

ICEBERG CHALLENGES

First, if a high-dimensional cell has the support already passing the iceberg threshold, it cannot be pruned by the iceberg condition and will still generate a huge number of cells. For example, a base- cuboid cell: "(a1, a2, ..., a60): 5" (i.e., with count 5) will still generate 2^{60} iceberg cube cells.

Second, it is difficult to set up an appropriate iceberg threshold. A too low threshold will still generate a huge cube, but a too high one may invalidate many useful applications.

Third, an iceberg cube cannot be incrementally updated. Once an aggregate cell falls below the iceberg threshold and is pruned, incremental update will not be able to recover the original measure.

CHALLENGES

The "curse of dimensionality" problem

Iceberg cube and compressed cubes: only delay the inevitable explosion

Full materialization: still significant overhead in accessing results on disk

High-D OLAP is needed in applications

Science and engineering analysis

Bio-data analysis: thousands of genes

Statistical surveys: hundreds of variables

Observation: OLAP occurs only on a small subset of dimensions at a time

Semi-Online **Computational Model**

Partition the set of dimensions into shell fragments

High Dimensional

Compute data cubes for each shell fragment while retaining inverted indices or value-list indices

Given the pre-computed fragment cubes, dynamically compute cube cells of the highdimensional data cube online

Partitions the data vertically

Reduces highdimensional cube into a set of lower dimensional cubes

Online reconstruction of original highdimensional space

properties

Lossless reduction

Offers tradeoffs between the amount of preprocessing and the speed of online computation

Divide the 5-D table into 2 shell fragments: (A, B, C) and (D, E)

measure: count

tid	A	В	С	D	E
1	al	bІ	cl	dl	el
2	al	b2	cl	d2	el
3	al	b2	cl	dl	e2
4	a2	bІ	cl	dl	e2
5	a2	bІ	cl	dl	e3

The inverted index table uses the same amount of storage space as the original database.

Attribute Value	TID List	List Size
al	123	3
a2	4 5	2
bl	I 4 5	3
b2	2 3	2
cl	12345	5
dl	1345	4
d2	2	I
el	I 2	2
e2	3 4	2
e3	5	I

Build traditional inverted index or RID list

Attribute Value	TID List	List Size
al	123	3
a2	4 5	2
bl	I 4 5	3
b2	2 3	2
cl	12345	5
dl	I 3 4 5	4
d2	2	I
el	I 2	2
e2	3 4	2
e3	5	I

Cell	Intersection	TID List	List Size
$\overline{(a_1,b_1)}$	$\{1, 2, 3\} \cap \{1, 4, 5\}$	{1}	1
(a_1, b_2)	$\{1, 2, 3\} \cap \{2, 3\}$	$\{2, 3\}$	2
(a_2, b_1)	$\{4,5\} \cap \{1,4,5\}$	${4,5}$	2
(a_2, b_2)	$\{4,5\} \cap \{2,3\}$	{}	0

SHELL FRAGMENTS

Generalize the I-D inverted indices to multi-dimensional ones in the data cube sense

Compute all cuboids for data cubes ABC and DE while retaining the inverted indices

For example, shell fragment cube ABC contains 7 cuboids:

A, B, C

AB, AC, BC

ABC

This completes the offline computation stage

Given a database of T tuples, D dimensions, and F shell fragment size, the fragment cubes' space requirement is:

each tuple id will be stored in these many cuboids

SHELL SIZE AND DESIGN

Shell fragments do not have to be disjoint

Fragment groupings can be arbitrary to allow for maximum online performance

Known common combinations (e.g., < city, state >) should be grouped together.

Shell fragment sizes can be adjusted for optimal balance between offline and online computation

If measures other than **count** are present, store in **ID_measure** table separate from the shell fragments

tid	count	sum
	5	70
2	3	10
3	8	20
4	5	40
5	2	30

FRAG SHELLS ALGORITHM

measure array

	inicasare arraj	,
tid	count	sum
1	5	70
2	3	10
3	8	20
4	5	40
5	2	30

Attribute Value	TID List	List Size
al	123	3
a2	4 5	2
bl	1 4 5	3
b2	2 3	2
cl	12345	5
dl	1345	4
d2	2	I
el	I 2	2
e2	3 4	2
e3	5	I

Partition set of dimension $(A_1,...,A_n)$ into a set of k fragments $(P_1,...,P_k)$.

Scan base table once and do the following:

insert <tid, measure> into ID_measure table.

for each attribute value a_i of each dimension A_i

build inverted index entry <a_i, tidlist>

For each fragment partition Pi

build local fragment cube S_i by intersecting tid-lists in bottom-up fashion.

frag shells

QUERY

A query has the general form $a_1, a_2, ..., a_n : m$

Each a_i has 3 possible values

Instantiated value (specific; e.g. $a_1 = Chicago$)

Aggregate * function (i.e. don't care; aggregate over)

Inquire ? function (results should include all values of this attribute)

For example:

<3, ?, ?, *, *, *, 1 : count>

returns a 2-D data cube.

Dimensions D Cuboid **EF** Cuboid Ε F В **DE** Cuboid Cell Tuple-ID List {1, 3, 8, 9} d1 e1 {2, 4, 6, 7} d1 e2 d2 e1 {5, 10} **ABC** DEF Cube Cube

METHOD

Given the fragment cubes, process a query as follows

Divide the query into fragment, same as the shell

Fetch the corresponding TID list for each fragment from the fragment cube

Intersect the TID lists from each fragment to construct instantiated base table

Compute the data cube using the base table with any cubing algorithm

STORAGE SIZE

Figure 2: Storage size of shell fragments: (50-C) \mathcal{T} = 10^6 , $\mathcal{C} = 50$, $\mathcal{S} = 0$, $\mathcal{F} = 3$. (100-C) $\mathcal{T} = 10^6$, $\mathcal{C} = 100$, $\mathcal{S} = 2$, $\mathcal{F} = 2$.

D denotes the number of dimensions, C is the cardinality of each dimension, T is the number of tuples in the database, F is the size of the shell fragment, I is the number of instantiated dimensions, Q is the number of inquired dimensions, and S is the skew or zipf of the data. **Minimum support level is 1.**

Storage grows linearly as the number of dimensions D.

$$O\left(T\left\lceil\frac{D}{F}\right\rceil(2^F-1)\right)$$

$O\left(T\left\lceil\frac{D}{F}\right\rceil(2^F-1)\right)$

Figure 2: Storage size of shell fragments: (50-C) \mathcal{T} = 10^6 , $\mathcal{C} = 50$, $\mathcal{S} = 0$, $\mathcal{F} = 3$. (100-C) $\mathcal{T} = 10^6$, $\mathcal{C} = 100$, $\mathcal{S} = 2$, $\mathcal{F} = 2$.

D denotes the number of dimensions, C is the cardinality of each dimension, T is the number of tuples in the database, F is the size of the shell fragment, I is the number of instantiated dimensions, Q is the number of inquired dimensions, and S is the skew or zipf of the data. **Minimum support level is 1.**

EXPERIMENTS

UCI Forest CoverType data set

54 dimensions, 581K tuples

Shell fragments of size 2 took 33 seconds and 325MB to compute

3-D subquery with I instantiated dim: 85ms~1.4 sec.

Longitudinal Study of Vocational Rehab. Data

24 dimensions, 8818 tuples

Shell fragments of size 3 took 0.9 seconds and 60MB to compute

5-D query with 0 instantiated dimensions: 227ms~2.6 sec.

Deep Dive!

Figure 5: Average computation time per query over 1,000 trials. $\mathcal{T}=10^6,~\mathcal{D}=10,~\mathcal{C}=10,~\mathcal{S}=0,~\mathcal{I}=4.$

Exercise!

what is the value of F, that will lead to smallest fragment cube size?

$$O\left(T\left[\frac{D}{F}\right](2^F-1)\right)$$

Exercise!

Why don't we use the smallest value in shell cube design?

$$O\left(T\left[\frac{D}{F}\right](2^F-1)\right)$$

