Background

 $\log(x+1) \approx x \text{ if } |x| \ll 1$

 $P(\frac{1}{n}\sum_{i=1}^{n} Z_i - \mathbb{E}[Z] \ge t) \le \exp\left(-\frac{2n^2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$

Jensen's inequality: f convex, then $f(E[X]) \le E[f(X)]$

Markov's inequality: $P(X \ge a) \le \frac{E[X]}{a}$ for $X \ge 0$ a.s., a > 0 GELU: $\phi(z) = z \mathbb{P}(Z \le z)$ $Z \sim \mathcal{N}(0, 1)$

KL Divergence: $KL(Q||P) = \int_{-\infty}^{\infty} q(x) \log \frac{q(x)}{p(x)} dx$

Entropy: $H(X) = -\sum_{i} P(x_i) \log P(x_i)$

For A, B square: $\det AB = \det A \cdot \det B$, $\det A^{-1} = \frac{1}{\det A}$

MGF: $M_X : \mathbb{R}^n \to \mathbb{R}$, $M_X(t) = \mathbb{E}_X[\exp(t^T X)]$, $M_{X+Y} = M_X \cdot M_Y$

Moment Represent.: $\mathbb{E}[X_1^{k_1} \cdots X_n^{k_n}] = \frac{\partial^k}{\partial t_1^{k_1} \cdots \partial t_n^{k_n}} M_X|_{t=0}$

For $x \sim \mathcal{N}(\mu, \Sigma)$, we have $M_x(t) = \exp(t^T \mu + \frac{1}{2} t^T \Sigma t)$

Normal: $p(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^k \det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right)$

KL-Divergence between $P \sim \mathcal{N}(\mu_P, \Sigma_P)$ and $Q \sim \mathcal{N}(\mu_Q, \Sigma_Q)$: Weierstrass Theorem $KL(P||Q) = \frac{1}{2}[(\mu_Q - \mu_P)^T \Sigma_Q^{-1}(\mu_Q - \mu_P) + \text{Tr}(\Sigma_Q^{-1}\Sigma_P) - \ln \frac{|\Sigma_P|}{|\Sigma_Q|} - n]$ Polynomials \mathcal{P} are dense $(\|\cdot\|_{\infty})$ in C([a,b]) $\forall a,b \in \mathbb{R}$ Gaussian Process: $\sum_{i=1}^{s} \alpha_i F(x_i) \sim \mathcal{N} \ \forall \alpha_1, \dots, \alpha_s \land x_1, \dots, x_s$

Exponential: $p(x|\lambda) = \lambda e^{-\lambda x}$ **Bernoulli:** $p(x|p) = p^{x}(1-p)^{1-x}$ **Binomial:** $p(x|n, p) = \binom{n}{x} p^{x} (1-p)^{n-x}$

Poisson: $p(x|\lambda) = \frac{\lambda^x \exp[-\lambda]}{x!}$

Level sets: $L_f(z) = \{x : \phi(w^T x + b) = z\} \perp w$

Jacobi Matrix: $\frac{\partial F}{\partial x} = (\frac{\partial F_i}{\partial x_i})_{ij}$

Connectionism Perceptron

Perceptron $(\mathbf{x}, \theta) \to \operatorname{sgn}(\mathbf{x}^T \theta)$, update: $\Delta \theta = \begin{cases} \mathbf{0}, & y \cdot \mathbf{x}^T \theta \ge 0 \\ y\mathbf{x}, & \text{otherwise} \end{cases}$

Update path zig-zags since $\Delta \theta^{T} \theta < 0$ if $\Delta \theta \neq 0$ Update rule is SGD for the loss: $l(\mathbf{x}, v; \theta) = \max\{0, -v\mathbf{x}^T\theta\}$ with induced updates $\Delta \theta^t$, set $\theta^s = \sum_{t=1}^s \Delta \theta^t$. Then by in- **Universality of ReLU/AbsU Networks:** duction $\|\theta^s\|^2 \le \sum_{t=1}^s \|\mathbf{x}^t\|^2$ and thus $\|\mathbf{x}^t\| \le 1 \Rightarrow \|\theta^s\| \le \sqrt{s}$ • Piecewise lin. functions are dense in C([0,1])**Def (Linear Separability)**: \mathcal{D} linearly separable with margin $\gamma > 0$ if $\exists \theta \in \mathcal{S}^{d-1} : y \cdot \mathbf{x}^T \theta \ge \gamma \quad \forall (\mathbf{x}, y) \in \mathcal{D}$

1, and γ -separable \mathcal{D} the perceptron converges in Minimal Non-Linearity $\sum_{t=1}^{s} \langle \theta^*, \Delta \theta^t \rangle = \sum_{t=1}^{s} y^t \cdot (x^t)^T \theta^* \ge s\gamma \Rightarrow 1 \ge ||\theta^*|| \ge \gamma \sqrt{s}$

Deep Linear Networks

Assume $X \in \mathbb{R}^{n \times s}$, $Y \in \mathbb{R}^{m \times s}$ s.t. $\sum_{i=1}^{s} x_i = 0$, $\sum_{i=1}^{s} y_i = 0$ and $XX^T = I_n$ (whitening). Then $W \stackrel{!}{\approx} \frac{1}{c} YX^T$ since $\arg\min_{W} \|Y - WX\|_F = \arg\min_{W} \|W - \Gamma\|_F^2$, $\Gamma = \frac{1}{6}YX^T$ This allows SVM-based analysis of 2-layer linear networks with $\binom{rank(\Gamma)}{width}$ fixed points and one global minimum. **Gradient Descent and Optimizers Deep Linear Network Gradients:**

 $\frac{1}{2} \frac{\partial ||\dot{W}^L \cdots W^1 x - y||_2^2}{\partial w^l} = (W^L \cdots W^{l+1})^T (W^L \cdots W^1 x - y) x^T (W^{l-1} \cdots W^1)^T$

Nonlinear Networks Absolute Value Unit (AbsU): |z|, $\partial |z| = \{ [-1,1] | z = 0 \}$ $(z)_{+} = (z + |z|)/2$ and $|z| = 2(z)_{+} - z = (z)_{+} + (-z)_{+}$

Logistic/Sigmoid unit: $\sigma(z) = \frac{1}{1 + \exp\{-z\}}$, $\sigma^{-1}(t) = \log \frac{t}{1-t}$

Hölder's inequality: $||v \cdot u||_1 \le ||v||_p ||u||_{p^*}$ with $1/p + 1/p^* = 1$ Hyperbolic Tangent: $\tanh(z) := \frac{e^z - e^{-z}}{e^z + e^{-z}} = 2\sigma(2z) - 1$

 $\tanh'(z) = 1 - \tanh^2(z)$

Softmax: $\sigma_i^{\max}(\mathbf{x}) = \frac{\exp[x_i]}{\sum_{j=1}^k \exp[x_j]}$

 $\frac{\partial}{\partial x_j} \sigma_i^{\max}(\mathbf{x}) = \begin{cases} \sigma_i^{\max}(\mathbf{x}) [1 - \sigma_i^{\max}(\mathbf{x})], & i = j \\ -\sigma_i^{\max}(\mathbf{x}) \cdot \sigma_i^{\max}(\mathbf{x}), & i \neq j \end{cases}$

Logistic Regression:

Cross-entropy loss $(v \in \{-1, +1\})$:

 $l(\mathbf{x}, y; \theta) = -\log \sigma(y\mathbf{x}^{\mathsf{T}}\theta) \Rightarrow \nabla_{\theta}l(\mathbf{x}, y; \theta) = -\sigma(-y\mathbf{x}^{\mathsf{T}}\theta)y\mathbf{x}$ Cross-entropy loss $(v \in \{0, 1\})$:

 $l(\mathbf{x}, y; \theta) = -y \log \sigma(\mathbf{x}^{\mathrm{T}}\theta) - (1 - y) \log (1 - \sigma(\mathbf{x}^{\mathrm{T}}\theta))$

Approximation Theory

Def. universal approx. \mathcal{G} : $C(S) \subseteq \overline{\mathcal{G}(S)} \ \forall \ \text{compact} \ S \subseteq \mathbb{R}^n$ Universal Approximation Theorem (1d):

Let $\sigma \in C^{\infty}(\mathbb{R}) \setminus \mathcal{P}(\mathbb{R})$. Then $H^1_{\sigma} = \operatorname{span}(\mathcal{G}^1_{\sigma})$ is a universal approximator with $\mathcal{G}_{\sigma}^1 = \{g : g(x) = \sigma(ax + b) \mid a, b \in \mathbb{R}\}.$

Universal Approximation Theorem (n-d): $H_{\sigma}^{n} = \operatorname{span}(\mathcal{G}_{\sigma}^{n})$ is a universal approximator where $\mathcal{G}_{\sigma}^{n} = \{g : g(x) = \sigma(x^{T}\theta + b) \mid \theta \in \mathbb{R}^{n}, b \in \mathbb{R} \}$ (Pinkus)

Activation Pattern in 1-layer ReLU Network:

Activation pattern for input x: $\mathbb{1}_{Wx+h>0} \in \{0,1\}^m$ Input partition into cells: $X_{\kappa} = \{x : \mathbb{1}_{Wx+b>0} = \kappa\}$ Restricted to a cell the network is affine.

Zaslavsky (upper bound reached if ${\cal H}$ in general pos.): $|\mathbb{R}^n - \mathcal{H}| \le \sum_{i=0}^{\min\{m,n\}} {m \choose i} = R(m)$ with \mathcal{H} the m hyperplanes and | | measuring the number of connected regions.

Montufar (deep *L*-layer nets with width m > n): Lemma (Norm Growth): For perceptron mistakes (\mathbf{x}^t, y^t) # cells = $R(m, L) \ge R(m) \lfloor \frac{m}{n} \rfloor^{n(L-1)}$ assuming general pos

- \bullet Piecewise lin. function with m pieces can be written as $g(x) = ax + b + \sum_{i=1}^{m-1} c_i(x - x_i)_+ (\exists \text{ formulation with } |x|)$
- **Novikov's convergence theorem:** For $\theta^0 = 0$, $\|\mathbf{x}^t\| \leq \text{versal function approximators (with Pinkus even on <math>\mathbb{R}^n$)

at most γ^{-2} updates. Proof: $\|\theta^*\| \cdot \|\theta^s\| \ge \langle \theta^*, \theta^s \rangle = \mathbf{k}$ -Hinge Function (maxout unit): $g(\mathbf{x}) = \max_{i=1}^k \{\boldsymbol{\theta}_i^T \mathbf{x} + b_i\}$

written as a signed sum of k-Hinges with k < n + 1Polyhedral Set: Intersection of half-planes (convex) **Def. Polyhedral Function**: epigraph(f) is polyhedral set **Thm**: Every continous piecewise linear $f: \mathbb{R}^n \to \mathbb{R}$ can be written as the difference of two polyhedral functions ⇒ Thm: Maxout networks with two maxout units (difference of two k-Hinges) are universal f-approximators

 $\lim_{\eta \to 0} \arg \min_{\vartheta: ||\vartheta||_2 = 1} f(\mathbf{x}; \boldsymbol{\theta} + \eta \vartheta) =$

Gradient Descent and Newton's Method

Gradient Descent:

Discretize gradient flow $\dot{\theta} = -\nabla f(\theta)$ as $\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$ Newton's Method:

Directly jumps to minimum of 2nd order Taylor of f: $f(\theta + \Delta\theta) \approx f(\theta) + \Delta\theta^T \nabla f(\theta) + \frac{1}{2} \Delta\theta^T \nabla^2 f(\theta) \Delta\theta$

 $\sigma'(z) = \sigma(z) \cdot [1 - \sigma(z)] = \sigma(z)\sigma(-z)$ which results in $\Delta \theta = -[\nabla^2 f(\theta)]^{-1} \nabla f(\theta)$. GD is recovered under isotropy assumption on the Hessian ($\nabla^2 f(\theta) = \frac{1}{n}$) **Thm. Nesterov:** Given f L-smooth and μ -strongly con-

Batch Gradient Descent (unbiased with $\mathbb{E}[\nabla \hat{f}_{\theta}] = \nabla f_{\theta}$): vex with conditioning $\kappa = \frac{L}{\eta}$ and $\beta = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$, then Nesterov Compute $\nabla \hat{f}_{\theta} = \frac{1}{r} \sum_{t=1}^{r} f_{\theta}(x_{i_t}, y_{i_t})$ where $i_t \sim \mathcal{U}(\{1, \dots, s\})$.

SGD (r = 1) Variance Reduction Technique (SVRG): Every T steps compute full gradient $\nabla_{\vartheta} f_{\vartheta}$. Use updates $\theta_{t+1} = \theta_t - \eta [\nabla f_{\theta_t}(x_i, y_i) - \nabla f_{\vartheta}(x_i, y_i) + \nabla_{\theta} f_{\vartheta}]$

Compressed Stochastic Gradients (SignSGD): Update $\theta_{k+1} = \theta_k - \eta_k \text{sign}[\nabla f(\theta_k)(x_{i_t}, y_{i_t})]$

Gradient Descent with Momentum

Nesterov's Accelerated Gradient Descent: $x_{k+1} = y_k - \eta \nabla f(y_{k+1})$ $y_k = x_k + \beta(x_k - x_{k-1})$

Polyak's Heavy Ball Method:

 $\Rightarrow \nabla_{\theta} l(\mathbf{x}, y; \theta) = [\sigma(x^T \theta) - y] x \quad x_{k+1} = x_k - \eta \nabla f(x_k) + \beta(x_k - x_{k-1}) \\ \text{with } x_{t+1} - x_t = -\eta \sum_{k=0}^{t} \beta^{t-k} \nabla f(x_k) \xrightarrow{t \to \infty, \ const \ \nabla f} \xrightarrow{\eta} \frac{\beta}{1-R} \nabla f(x_k) \xrightarrow{t \to \infty} \frac{1}{1-R} \nabla f(x_k)$

Adaptive Gradient Descent

AdaGrad (decays LR based on 2nd moment estimate): $\theta[j]$ is updated with learning rate $\eta_{t,j} = \frac{\eta}{\gamma_{t,j} + \delta}$ where Quasi-Convergence of SGD with Constant Step Size:

 $\gamma_{t,j}^2 = \gamma_{t-1,j}^2 + (\frac{\partial f_{\theta}(x_{it}, y_{it})}{\partial \theta_t[j]})^2$ with $0 < \delta \approx 0$ for stability. Adam - Adaptive Moment Estimation (w. momentum): Exponential averages: $\Delta_{t+1} = \alpha \Delta_t + (1 - \alpha) \nabla f_{\theta}(x_{i_t}, y_{i_t})$ and $\gamma_{t+1,j}^2 = \beta \gamma_{t,j}^2 + (1-\beta) \left(\frac{\partial f_{\theta}(x_{i_t}, y_{i_t})}{\partial \theta_t[j]} \right)^2$ where $\alpha, \beta \in [0,1)$

Update: $\theta_{t+1}[j] = \theta_t[j] + \frac{\eta}{\gamma_{t,i}/(1-\beta)+\delta} \frac{\Delta_{t+1,j}}{1-\alpha}$ with $0 < \delta \approx 0$

AMSGrad (fixes/ensures convergence):

Adam + monotonicity $\tilde{\gamma}_{t+1,i} = \max(\gamma_{t+1,i}, \tilde{\gamma}_{t,i})$.

Backpropagation

Chain rule: $\partial(G \circ F_{\theta} \circ H) = (\partial G \circ F_{\theta} \circ H) \cdot (\partial F_{\theta} \circ H)$ Backpropagation algorithm consists of three steps: (1) forward pass computing all pre-activations z_{l} ,

(2) backward pass computing all $\xi_l = \frac{\partial L}{\partial z_l} = \frac{\partial L}{\partial z_{l+1}} \frac{\partial z_{l+1}}{\partial z_l}$

(3) local computations computing all $\frac{\partial L}{\partial W_l} = \frac{\partial L}{\partial z_l} \frac{\partial z_l}{\partial W_l}$ Automatic Differentiation of $f: \mathbb{R}^N \to \mathbb{R}^M$ as a DAG(V, E)

• NNs with one hidden layer of ReLU or AbsU are uni- Usually N=# parameters and M=1 (scalar loss). Forward Mode: Chain rule from right to left (no separate kernel can be written as a Toeplitz matrix product) forward pass). Scales in $\mathcal{O}(N(V+E))$.

Reverse Mode: Chain rule from left to right (needs sepa- Exploiting translation equivariance, locality, and scale, rate forward pass \Rightarrow more memory). Scales in $\mathcal{O}(M(V+E))$.

• Every continuous piecewise linear function f can be **Optimization Convergence Guarantees** Convexity, Smoothness, and Polyak-Lojasiewicz

Def. Convexity: $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) \ \forall \lambda \in [0,1]$ **Def. Convexity of Diff'ble** $f: f(x) \ge f(y) + \nabla f(y)^T (x-y)$ Def. μ -Strong Convexity: $f(x) \ge f(y) + \nabla f(y)^T (x-y) + \frac{\mu}{2} ||x-y||^2$ **Def. Lipschitz Smoothness:** $\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$ L-Smoothness implies $f(x) \le f(y) + \nabla f(y)^T (x-y) + \frac{L}{2} ||x-y||_2^2$ using $f(x) - f(y) - \nabla f(y)^T (x - y) = \int_0^1 [\nabla f(y + (x - y)s) - \nabla f(y)]^T (x - y) ds$. Gradient information provides direction of steepest descent: Applied to GD we get $f(\theta - \frac{1}{t}\nabla f(\theta)) \le f(\theta) - \frac{1}{2t} ||\nabla f(\theta)||_2^2$.

> Hessian of *L*-Smooth & μ -Strongly Convex: $\mu I \leq \nabla^2 f \leq LI$ ϵ -Stationarity (approximate stationarity): $\|\nabla f(x)\|_2 \leq \epsilon$

PL condition: $\forall y \ \frac{1}{2u} ||\nabla f(y)||^2 \ge f(y) - \min_x f(x)$ implied by μ -strong convexity.

Convergence of GD and GD with Nesterov Momentum

Thm. Polyak: Given f L-smooth and μ -PL, then GD with

$$\eta=1/L$$
, i.e. $x_{t+1}=x_t-\frac{1}{L}\nabla f(x_t)$, converges globally:
$$f(x_t)-\min_x f(x) \leq (1-\frac{\mu}{L})^t [f(x_0)-\min_x f(x)]$$

GD converges globally: $f(x_t) - f(x^*) \le L(1 - \sqrt{\frac{\mu}{L}})^t ||x_0 - x^*||^2$

Convergence of Stochastic Gradient Descent

Consider BGD with r = 1. Then $\|\theta_t - \theta_*\|^2 - \hat{\mathbb{E}}_{x,y} \|\theta_{t+1} - \theta_*\|^2 =$ $2\eta_t(\theta_t-\theta_*)^T \hat{\mathbb{E}}_{x,v} \nabla f_{\theta_t}(x,y) - \eta_t^2 \hat{\mathbb{E}}_{x,v} ||\nabla f_{\theta_t}(x,y)||^2$ is positive for small enough η_t and $(\theta_t - \theta_*)^T \nabla \frac{1}{s} \sum_{k=1}^s f_{\theta_t}(x_k, y_k) > 0$.

 $\beta \in [0,1)$ **Polyak Averages:** To reduce $\hat{\mathbb{L}}_{x,v} || \overline{\theta}_{t+1} - \overline{\theta}_t ||^2$ use Polyak averaging $\overline{\theta}_{t+1} = \frac{t \cdot \overline{\theta}_t}{t+1} + \frac{\theta_{t+1}}{t+1} = \frac{-\eta_t \nabla f_{\theta_t}(x,y)}{t+1}$. Let $\eta_t \propto \frac{1}{t}$, then f convex: $\hat{\mathbb{E}}[f(\overline{\theta}_t)] - f(\theta^*) \in \mathcal{O}(1/\sqrt{t})$

- f μ -strongly convex: $\hat{\mathbb{E}}[f(\overline{\theta_t})] f(\theta^*) \in \mathcal{O}(\frac{\log t}{t})$
- $f \mu$ -strongly convex & L-smooth: $\hat{\mathbb{E}}[f(\overline{\theta_t})] f(\theta^*) \in \mathcal{O}(\frac{1}{t})$

Let $f_{\theta} = \frac{1}{s} \sum_{k=1}^{s} f_{\theta}(x_k, y_k)$ be μ -strongly convex with

each $\theta \mapsto f_{\theta}(x_k, y_k)$ being L-smooth with measure of variance $\sigma^2 = \frac{1}{s} \sum_{k=1}^{s} ||\nabla_{\theta} f_{\theta}(x_k, y_k) - \nabla_{\theta} f_{\theta}||^2$. Then for SGD with $\eta_{const} \leq 1/\mu$ it holds $\hat{\mathbb{E}} \|\theta_t - \theta^*\|^2 \leq A^t \|\theta_0 - \theta^*\|^2 + B$

where $A = 1 - 2\eta_{const}\mu(1 - \eta_{const}L)$ and $B = \frac{\eta_{const}\sigma^2}{\mu(1 - \eta_{const}L)}$

Convolutional Networks **Convolution Operator**

Integral Operator: $(Tf)(u) = \int_{t_0}^{t_2} H(u,t)f(t)dt$

Convolution: $(f * h)(u) := \int_{-\infty}^{\infty} h(u - t) f(t) dt = (h * f)(u)$ **Discrete Convolution:** $(f * h)[u] := \sum_{t=-\infty}^{\infty} f[t]h[u-t]$ **Theorem:** An operator T is linear and shift-equivariant

 \iff T is a convolution T(f) = f * h for some kernel h Cross-Corr.: $(f \star h)[u] := \sum_{t=-\infty}^{\infty} f[t]h[u+t] = (f[-\cdot]*h)[u]$ Fourier Transform: $(\mathcal{F}f)(u) := \int_{-\infty}^{\infty} \exp\{-2\pi i t u\} f(t) dt$

Convolution Theorem: $u * v = \mathcal{F}^{-1}(\mathcal{F}u \cdot \mathcal{F}v)$

Toeplitz Matrices: Constant diagonals (1D convolutional **Convolutional Neural Networks**

More efficient through parameter sharing and locality.

(Local) Receptive Field of x_i^l : $\mathcal{I}_i^l := \{j : w_{ij}^l \neq 0\}$

Sparse Backpropagation: $\partial x_i^l/\partial x_i^{l-1} = 0$, for $j \notin \mathcal{I}_i^l$

Weight Sharing: $\frac{\partial \mathcal{R}}{\partial h^l} = \sum_i \frac{\partial \mathcal{R}}{\partial x^l} \frac{\partial x^i_i}{\partial h^l}$, h^l_j kernel weight

Pooling 2D: $x_{ij}^{\text{max}} = \max\{x_{i+k,j+l} : 0 \le k < r, 0 \le l < r\}$

2D Convolutional Layer: (X, Y are of shape (c, x, y)): $y[r][s,t] = \sum_{u} \sum_{\Delta s, \Delta t} w[r,u][\Delta s, \Delta t] \cdot x[u][s + \Delta s, t + \Delta t]$ Output Size: $\lceil (input_width + 2pad - filter_width)/stride \rceil + 1$

Embeddings from Log-Bilinear: $\mathbb{P}(\nu|\omega) =$

Regularization

To lower generalization error but not the training error.

- informed regularization (prior knowledge)
- simplicity bias (Occam's razor)
- Bayesian averaging (ensembling, dropout)

L2-Regularization / Weight Decay

Regularized objective becomes $\overline{E}_{\theta}(S) = E_{\theta}(S) + \mu\Omega(\theta)$ Trick to generate larger, non-i.i.d. training set where $\Omega(\theta) = \frac{1}{2} \sum_{l=1}^{L} ||W^l||_F^2 = \frac{1}{2} \sum_{i} \theta_i^2$ (no bias reg.) for $\theta = vec(W^1, \dots, W^L, b^1, \dots, b^L)$. Since $\nabla_{\theta} \Omega(\theta) = u\theta$ the GD update includes weight decay: $\theta_{t+1} = (1 - \eta \mu)\theta_t - \eta \nabla_{\theta} E_{\theta_t}$ with Hessian $H_E = Q \operatorname{diag}(\lambda_i)Q'$. By first order conditions targets/label errors). Also helps with model robustness. $\theta \stackrel{!}{=} (H_E + \mu I)^{-1} H_E \theta^* = Q \operatorname{diag}(\frac{\lambda_i}{\lambda_i + \mu}) Q' \theta^*$. Hence, along low-curvature directions ($\lambda_i \ll \mu$) the weights are shrunk. **Constrained Optimization:**

Regularization objective becomes $\arg\min_{\{\theta:||\theta|| < r\}} E(\theta)$. Regularization only effective at late stages of learning. Optimized using projected gradient descent:

$$\theta_{t+1} = \Pi_r[\theta_t - \eta \nabla E_{\theta_t}(S)] \text{ where } \Pi_r(v) = \min\left\{1, \frac{r}{\|v\|}\right\} v$$

Ridge Regression: Linear regression + L_2 -regularization is termed Ridge regression with $\theta^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{v}$.

Early Stopping

Stop learning when loss on validation data increases. Early stopping acts as an approximate L2-regularizer: Spectral Analysis based on Taylor around $\arg\min E_{\theta}(S)$: Group: A set $\mathcal G$ with binary operation $\circ: \mathcal G \times \mathcal G \to \mathcal G$ s.t. $\nabla_{\theta} E_{\theta}(S) \approx H_E(\theta - \theta^*) + \mathcal{O}(\|\theta - \theta^*\|_2^2) \text{ w. } H_E = Q \operatorname{diag}(\lambda_i) Q'$ giving GD update $\theta_{t+1} = \theta_t - \eta H_E(\theta_t - \theta^*) + \mathcal{O}(\|\theta_t - \theta^*\|_2^2 \cdot \frac{1}{|\text{Identity: }\exists! \ e \in \mathcal{G}, \text{ for which } eg = ge = g}) \quad \forall g \in \mathcal{G}$ Hence, $\theta_{t+1} - \theta^* = (I - \eta H_E)(\theta_t - \theta^*) + \mathcal{O}(||\theta_t - \theta^*||_2^2)$. Then $\theta_t = (I - \eta \operatorname{diag}(\lambda_i))^t Q' \theta_0 + Q[I - (I - \eta \operatorname{diag}(\lambda_i))^t] Q' \theta^*$ Since $t\eta \operatorname{diag}(\lambda_i) \overset{\eta \lambda_i \ll 1}{\approx} I - (I - \eta \operatorname{diag}(\lambda_i))^t \overset{!}{=} \operatorname{diag}(\frac{\lambda_i}{\lambda_i + \mu})^t$ we get L_2 -regularization given $\eta \lambda_i \ll 1$, $\lambda_i \ll \mu$, $t = \frac{1}{n\mu}$

Residual Connections

Parametrize $G_{\theta}(x) = x + F_{\theta}(x)$ with $F \approx 0$ at initialization $S_{\theta}(x) = f(x) = f(x)$ deep CNNs with residual connections. DenseNets fur
Deep Sets: can represent any in-/equivariant function $\frac{\partial E}{\partial U} = \sum_{q=1}^{T} \frac{\partial E}{\partial z^q} \frac{\partial z^q}{\partial U} = \sum_{q=1}^{T} (\dot{\phi}(Uz^{q-1} + Vx^q) \odot z^{q-1}) \frac{\partial E}{\partial z^q}$ ther employ skip connections to all downstream layers.

- Residual Connections adds shortcut to output
- Skip Connections concatenates shortcut to output

Calibrate dynamic range of unit j in layer l (datapoint i): Graph Neural Nets

Batch Normalization (γ^{l}, β^{l} are params):

Normalization:
$$\ddot{z}_j^l[i] = \frac{z_j^l[i] - \mu_j^l}{\sigma_j^l + \delta} \quad 0 < \delta \approx 0, \quad \dot{z}_j^l = \gamma_j^l + \beta_j^l z_j^l$$
 Statistics: $\mu_j^l = \frac{1}{|B|} \sum_{i \in B} z_j^l[i], \quad (\sigma_j^l)^2 = \frac{1}{|B|} \sum_{i \in B} (z_j^l[i] - \mu_j^l)^2$

Layer Normalization (normal. along single instance):

Normalization: same formula as in Batch Norm

Statistics:
$$\mu_j^l = \frac{1}{m_l} \sum_{j=1}^{m_l} z_j^l[i]$$
, $(\sigma_j^l)^2 = \frac{1}{m_l} \sum_{j=1}^{m_l} (z_j^l[i] - \mu_j^l)^2$

Dropout

put $\pi_i^0 = 0.8$ and hidden unit $\pi_i^{l\geq 1} = 0.5$). Creates an **Spectral Graph Theory** exponentially large (in #nodes) ensemble of networks. Graph Laplacian: $L_G = D - A = \sum_{i < j} a_{ij} (e_i - e_j) (e_i - e_j)^T$

weights $\tilde{w}_{ii}^l \leftarrow \pi_i^{l-1} w_{ii}^l$ calibrating the net input to unit i. Dirichlet Energy: $L = \nabla^2 x^T L x = \nabla^2 \frac{1}{2} \sum_{u,v} A_{u,v} (x_u - x_v)^2$

Data Augmentation

Generate virtual examples by applying transformations cropping & resizing, rotations & reflections, etc.

Self-Supervised Training

Pretrain a model on a (self-supervised) task (e.g. patch location prediction, image coloring, video motion prediction, predictive coding of latent states) before finetuning.

 $p(x_{t+1})$

Contrastive Predictive Coding

Geometric Deep Learning

Closure: $gh \in \mathcal{G} \ \forall g, h \in \mathcal{G}$ Associativity: $(gh)f = g(hf) \forall g, h, f \in \mathcal{G}$ <u>Inverse:</u> $\forall g \exists ! g^{-1} \in \mathcal{G}$, s.t. $gg^{-1} = g^{-1}g = e$ **Group Action:** \otimes : $G \times X \to X$ s.t. $e(x) = x \land g(h(x)) = gh(x)$ and $H_W(\mathbf{z}) = \psi(W\mathbf{z})$ for activation functions ϕ, ψ . (by induction) where the first term is neglected if $\theta_0 = 0$. **Linear Group Action:** $g(\alpha x + y) = \alpha g(x) + g(y)$ with Representation $\rho: \mathcal{G} \to \mathbb{R}^{n \times n}$ s.t. $\rho(g)x = g(x) \Rightarrow \rho(gh) = \rho(g)\rho(h)$ **Action on Signals:** $(\rho(h)x)(s) = x(h^{-1}s)$ where $x: \Omega \to \mathbb{R}$

 \mathcal{G} -Invariance: $f: \mathcal{X}(\Omega) \to \mathcal{Y}$ satisfies $f(\rho(g)x) = f(x) \ \forall g \in \mathcal{G}$ *G*-Equivariance: $f: \mathcal{X}(\Omega) \to \mathcal{X}(\Omega)$ fulfills $f(\rho(g)x) = \rho(g)f(x)$ \mathcal{G} -Convolution: $(x*\theta)(g) = \int_{\Omega} x(u)\theta(g^{-1}u)du \quad g \in \mathcal{G}$

lowing weight decay toward identity. ResNets augment **Smoothing for Invariance:** $(S_G f)(x) = \frac{1}{|C|} \sum_{g \in G} f(\rho(g)(x))$

on sets using only the following two layers:

Invariant Layer: $f(X) = \phi(\sum_{x \in X} \psi(x))$ with ϕ, ψ learnable.

Equivariant Layer: $f(X, x_i) = \phi(\sum_i \psi(x_i), x_i)$

Node Feature Matrix: $X = [x_1, ..., x_n]^T \in \mathbb{R}^{n \times k}$

Permutation Invariance: $f(PX, PAP^T) = f(X, A)$

Permutation Equivariance: $f(PX, PAP^T) = Pf(X, A)$ **1-Hop Neighbourhood of** x_i : $\mathcal{N}_i = \{j : A_{i,j} \neq 0\}$ **E.V. GNN Layer** $f(X,A) = [\phi(x_1,X_{(\mathcal{N}_1)}),\ldots,\phi(x_n,X_{(\mathcal{N}_n)})]$ for the multiset $X_{(\mathcal{N}_i)} = \{\{x_j : j \in \mathcal{N}_i\}\}.$ Convolution GNN: $f(X,A)_i = \phi(x_i, \sum_{j \in \mathcal{N}_i} c_{ij}(A)\psi(x_j))$ Statistics: $\mu_j^l = \frac{1}{m_l} \sum_{j=1}^{m_l} z_j^l[i]$, $(\sigma_j^l)^2 = \frac{1}{m_l} \sum_{j=1}^{m_l} (z_j^l[i] - \mu_i^l)^2$ Attentional GNN: $f(X, A)_i = \phi(x_i, \sum_{j \in \mathcal{N}_i} a(x_i, x_j) \psi(x_j))$ Message-Passing GNN: $f(X,A)_i = \phi(x_i, \sum_{i \in \mathcal{N}} \psi(x_i, x_i))$ **WL-Test** is a necessary condition for graph isomorphism.

At inference, use as an ensemble method or rescale With $x^T L_G x = \sum_{i < j} a_{ij} (x_i - x_j)^2 \ge 0 \implies L_G \ge 0$ Norm. Laplacian: $\mathcal{L} = I - D^{-1/2}AD^{-1/2} = D^{-1/2}LD^{-1/2}$ **Graph Fourier:** $L = U\Lambda U^T$, induces $\hat{x} = U^T x$ and $x = U\hat{x}$ **Spectral Graph Conv**: $h(L)x = Uh(\Lambda)U^Tx$ using $O(n^2)$ τ to each training example $(\mathbf{x}, \mathbf{y}) \mapsto (\tau(\mathbf{x}), \mathbf{y})$, e.g. PCA. More efficient for polynomial kernel $p(L)x = \sum_{i=0}^{K} \alpha_i L^i x$ using $\mathcal{O}(K \cdot e)$. The filter is isotropic (circular symmetric). C_t Spectral Analysis based on Taylor around $\arg\min E_{\theta}(S)$: We can add noise to the inputs (ideally realistic noise), For c_{in}/c_{out} in-/output channels $X_{out}^{j} = \sum_{i=1}^{c_{in}} p_{i,j}(L) X_{in}^{i} + b_{j}$ $\overline{E}_{\theta}(S) \approx E_{\theta^*}(S) + \frac{1}{2}(\theta - \theta^*)^T H_E(\theta - \theta^*) + \mu\Omega(\theta) + \mathcal{O}(||\theta - \theta^*||_2^3) \text{ to the weights (regularizing effect) or to the targets (soft GCNs (positively) couple neighbouring units <math>X^{T+1} = \frac{1}{2}(\theta - \theta^*)^T H_E(\theta - \theta^*) + \mu\Omega(\theta) + \mathcal{O}(||\theta - \theta^*||_2^3)$ $\sigma((\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2})X^lW^l)$ where $\tilde{A}=A+I_n$ with $\tilde{D}=D+I$. Stability is ensured by $\lambda_{max}(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}) = 1, \lambda_{min} \geq 0$

Recurrent Neural Networks Simple RNNs

Given a non-i.i.d. sequence $\mathbf{x}^1, ..., \mathbf{x}^T$ derive a sequence of states $z^1,...,z^T$ according to the Markovian time-invariant update $z^t = F_{\theta}(z^{t-1}, x^t)$. Produce an output sequence Introduced to simplify LSTMs (less gates, less weights). via $\mathbf{y}^t = H_{\omega}(\mathbf{z}^t)$ (where \mathbf{y}^T may be used for classification). The forget gate and input gate are convexly combined

 F_{θ} and H_{θ} are parametrized as $F_{U,V}(\mathbf{z},\mathbf{x}) = \phi(U\mathbf{z} + V\mathbf{x})$

Backpropagation (through time):

Propagation:
$$\frac{\partial z^{k+1}}{\partial z^k} = \frac{\partial \phi(Uz^k + Vx^{k+1})}{\partial z^k} = diag(\dot{\phi}(Uz^k + Vx^{k+1}))U$$

$$\frac{\partial y^s}{\partial z^s} = \frac{\partial \psi(Wz^s)}{\partial z^s} = diag(\dot{\psi}(Wz^s))W$$

Per State: $\frac{\partial E}{\partial z^q} = \sum_{s=q}^T \frac{\partial E}{\partial y^s} \frac{\partial y^s}{\partial z^q} = \sum_{s=q}^T \frac{\partial E}{\partial y^s} \frac{\partial y^s}{\partial z^s} \prod_{k=q}^{s-1} \frac{\partial z^{k+1}}{\partial z^k}$

- $\frac{\partial E}{\partial V} = \sum_{q=1}^{T} \frac{\partial E}{\partial z^q} \frac{\partial z^q}{\partial V} = \sum_{q=1}^{T} (\dot{\phi}(Uz^{q-1} + Vx^q) \odot x^q) \frac{\partial E}{\partial z^q}$

$\bullet \frac{\partial E}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial E}{\partial y_t} \frac{\partial y_t}{\partial z_t} \sum_{t=1}^{t} (\prod_{k=t}^{i+1} \frac{\partial z_k}{\partial z_{k-1}}) \frac{\partial F_{\theta}(z, x)}{\partial \theta} \Big|_{z=z^{i-1}, x=x^{i-1}}$

Exploding/Vanishing Gradients

 $||A||_2 = \max_{x:||x||=1} ||Ax||_2 = \sigma_1(A)$ $||AB||_2 \le ||A||_2 ||B||_2$ In backpropagation the following derivative occurs: $\frac{\partial z^T}{\partial z^0} = \dot{\Phi}^T U \cdots \dot{\Phi}^1 U$ where $\dot{\Phi}^t = \text{diag}(\dot{\phi}(Uz^{t-1} + Vx^t))$ and $\exists \alpha : \dot{\Phi}^t \leq \alpha I$ (RELU: $\alpha = 1$, Sigmoid: $\alpha = 1/4$). If vanishing gradients. Similarly, exploding gradients occur. Bi-Directional RNN:

Additionally evolve $\tilde{z}^t = \phi(\tilde{U}\tilde{z}^{t+1} + \tilde{V}x^t)$ with $\tilde{z}^{T+1} = 0$. Modiffied output map couples the two: $v^t = \psi(Wz^t + \tilde{W}\tilde{z}^t)$. Deep RNN/Stacked RNN/Hierarchical RNN:

Randomly drop subsets of units for more robustness. It applies $x_i \leftarrow hash(x_i, X_{(N_i)})$ until convergence (up to $z^{t,l} = \phi(U^l z^{t-1,l} + V^l z^{t,l-1})$) where l denotes the layer and with retention probability π_i^l for unit i in layer l (in- relabelling) and compares statistics of the final features. $z^{t,0} = x^t$. Output computed from last state $y^t = \psi(Wz^{t,L})$. Decoder $\mathbf{z} \mapsto (\mathbf{y}^1,...,\mathbf{y}^S)$ (RNN with output feedback)

Gated Memory Units

Addressing the problem of vanishing/exploding gradients Gating unit: $z_{qated} = \sigma(G\zeta) \odot z$ where $\sigma(\cdot) \in [0,1]$. Gating units are embedded into gated units (LSTMs or GRUs).

We neglect bias terms in the following.

Long-Short-Term-Memory Unit (LSTM) - 3 Gates

3 gating weight matrices: H, F, G, 2 propagation weight matrices U, V, and 1 output weight matrix W. 6 in total.

Gated Recurrent Unit (GRU) - 2 Gates

and the context cell/hidden state duality is removed.

2 gating weight matrices: H, G, 1 propagation weight matrix V, and 1 output weight matrix W. 4 in total.

Linear Recurrent (State-Space) Models

Linear state space model: $z^{t+1} = Az^t + Bx^t$ with diagonalization $A = P\Lambda P^{-1}$ over \mathbb{C} . Change of basis leads to $\zeta^{t+1} = \Lambda \zeta^t + Cx^t$ with $\zeta^t = P^{-1}z^t$ in complex state space $(\max_i |\lambda_i| \le 1 \text{ for stabilization})$. To ensure high representational power of these systems, we give enough modelling power to the output map $v^t = MLP(Re(G\zeta^t))$.

Causal ($y^t \perp x^s \ \forall s > t$) Seq2Seq Modelling via RNN

To learn $p(\mathbf{y}^{1:T} \mid \mathbf{x}^{1:T}) \approx \prod_{t=1}^{T} p(\mathbf{y}^t \mid \mathbf{x}^{1:t}, \mathbf{y}^{1:t-1})$ parame-

trize $p(v^t|x^{1:t}, v^{1:t-1})$ through $x^{1:t} \stackrel{F}{\mapsto} z^t \stackrel{H}{\mapsto} \mu^t \mapsto p_{nt}(v^t)$.

By introducing feedback links from $v^{t-1} \rightarrow z^t$ we can ensure that z^t incorporates all knowledge on $x^{1:t}$, $y^{1:t-1}$.

Teacher Forcing:

During training, compute loss on predicted output but feed back in actual output.

 $\sigma_1(U) < 1/\alpha$, $\left\| \frac{\partial z^T}{\partial z^0} \right\|_2 \le (\alpha \sigma_1(U))^T \to 0$ as $T \to \infty$ giving During prediction, feed back predicted outputs. Improves learning BUT gives exposure bias (model only learns step predictions)

Professor Forcing is a variant of teacher forcing that randomizes whether to feed back in y_{pred} or y_{true} .

Encoder-Decoder Model:

Encoder: $(\mathbf{x}^1, ..., \mathbf{x}^T) \mapsto \mathbf{z}, \quad \mathbf{z} = \mathbf{z}^T$ (RNN)

Attention

vex combination of projected simple embeddings $x \in \mathbb{R}^e$ $\xi^s = \sum_t a_{st} W x^t$, $a_{st} \ge 0$, $\sum_t a_{st} = 1$ with $\Xi = AXW^T$

Transformer Architecture

 $Q = XU_Q, K = XU_K, V = XU_V \text{ with } U_O, U_K \in \mathbb{R}^{e \times d}, U_V \in \mathbb{R}^{e \times e}$ Single-head: $Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d}})V$ $\underline{\text{Multihead:}} \ Multihead(Q, K, V) = Concat(H_1, ..., H_h)W^O$ with $H_i = Attention(XU_O^i, XU_K^i, XU_V^i)$ where $U^i_{\{Q,K\}} \in \mathbb{R}^{n \times d_k}, U^i_V \in \mathbb{R}^{e \times d_v}, W^O \in \mathbb{R}^{hd_v \times e} \text{ Neural Tangent Kernel (NTK)}$

Sinusoidal Pos. Encodings: For position *t* and feature *k*:

 $\int \sin(t\omega_k) k \text{ even}$ $cos(t\omega_k)$ k odd where $\omega_k = C^{k/n}$, C = 10000

Self-Attention: Q, K, V from same sequence

Cross-Attention: Q from decoder, K, V from encoder

Masked Attention: Causal mask prevents peeking

RNN: intelligent forgetting (compression) Transformer: store and index intelligently

Memory Networks

Recurrent attention model over external memory.

Recursive Associative Recall: Given query q (e.g. question), find best matching memory cell i and use its content Functional Gradient Flow: $\frac{df_{\theta}(x_j)}{dt} = \sum_{i=1}^{s} (y_i - f_{\theta}(x_i)) K_{\theta}(x_j, x_i)$ \mathbf{m}_i and \mathbf{q} to generate new query - repeat

Applications in NLP

SpeechToText: Easier to model $\mathbb{P}(speech|text)$ and use **Linearize DNN** around θ_0 to get constant NTK $K_{\theta} = K$: LLM for $\mathbb{P}(text)$ in $\mathbb{P}(text|speech) \propto \mathbb{P}(speech|text)\mathbb{P}(text)$.

Construct word embeddings that reflect the context sed embedding is derived from a parametrized convex Loss function $\ell(\theta) = \frac{1}{2} \sum_{i=1}^{s} (\vartheta^T \nabla_{\theta} f_{\theta}(x_i)|_{\theta=\theta_0} - [y_i - f_{\theta_0}(x_i)])^2$ combination of the hidden states across layers

BERT: Bidirectional masked LLM. Pretrained by cloze random, or word), and by next sentence prediction, with input format [CLS], sentence A, [SEP], sentence B. BERT is often fine-tuned for specific downstream task.

GPT-n: (Autogressive decoder model) Few, one, or zero Nonlinear Deep Networks with constant NTK: shot learning (no gradient updates) - add task description & examples to working memory and predict.

Statistical Learning Theory

Uniform general bounds given function class \mathcal{F} (DNN) Shatter Coef.: $S(\mathcal{F}, s) = \max_{x_1, ..., x_s} |\{(f(x_1), ..., f(x_s)) \in \{\pm 1\}^s | f \in \mathcal{F}\}|$

VC dimension: $\max\{s: S(\mathcal{F}, s) = 2^s\} \leq \log_2 |\mathcal{F}|$

VC inequ.: $\mathbb{P}[\sup_{f \in \mathcal{F}} |\hat{R}_s(f) - R(f)| > \epsilon] \le 8S(\mathcal{F}, s)e^{-s\epsilon^2/32}$ A finite VC dimension is required for non-trivial bound.

Change Of Measure Inequality:

PAC-Bayesian Theorem:

Philosphy: P anchors Q (P must not depend on any samples from \mathcal{D} , but Q can) to ensure convergence/bound. with $\mathbb{P}_{\mathcal{D}}[\cdot] \ge 1 - \epsilon$ that $\mathbb{E}_{Q}[e_{f} - \hat{e}_{f}] \le \sqrt{\frac{2KL(Q||P) + \ln \frac{2\sqrt{s}}{\epsilon}}{s}}$ with true risk $e_f = \mathbb{E}_{\mathcal{D}} \mathbb{1}_{f(x) \neq v}$, s-sample risk \hat{e}_f $\mathbb{E}_{\mathcal{D}_s} \mathbb{1}_{f(x) \neq v}$, and param distributions Q, P over $f \in \mathcal{F}$.

CNNs can perfectly classify CIFAR-10 with random labels and permuted pixels (but no generalization to test).

already being at 100%. Assume a NN $f: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$.

Neural Tangent Features: $\nabla_{\theta} f_{\theta}(x) \in \mathbb{R}^d$

in analogy to generalized linear model $f_{\theta}(x) = \theta^T \Phi(x)$ Neural Tangent Kernel (NTK): $K_{\theta}(x,y) = \langle \nabla_{\theta} f_{\theta}(x), \nabla_{\theta} f_{\theta}(y) \rangle$

NTK Gram Matrix: $K(\theta) \in \mathbb{R}^{s \times s}$ $K_{i,j}(\theta) = K_{\theta}(x_i, x_j)$

Gradient Descent on sample $\{x_1, ..., x_s\}$ via NTK:

Minimize $\ell(\theta) = \frac{1}{2} \sum_{i=1}^{s} (f_{\theta}(x_i) - y_i)^2$ via parameter gradient flow (ODE): $\frac{d\theta}{dt} = -\nabla_{\theta} \ell(\theta) = \sum_{i=1}^{s} (y_i - f_{\theta}(x_i)) \nabla f_{\theta}(x_i)$.

$h(\vartheta)(x) = f_{\theta_0}(x) + \vartheta^T \nabla_{\theta} f_{\theta}(x)|_{\theta = \theta_0}$ where $\vartheta = \theta - \theta_0$ Applying GD: $\vartheta \in \text{span}\{\nabla_{\theta} f_{\theta}(x_1)|_{\theta=\theta_0}, \dots, \nabla_{\theta} f_{\theta}(x_s)|_{\theta=\theta_0}\}$ **ELMo**: Contextualised word embeddings by stacking single CNN with bidirectional LSTMs. The contextualibular representation of minimizer: $\vartheta^* = \sum_{i=1}^s \alpha_i \nabla_\theta f_\theta(x_i)|_{\theta=\theta_0}$

Convex Kernel Regression: $\alpha^* = K^{\dagger}(\theta_0)(\mathbf{y} - \mathbf{f}_{\theta_0})$

task, i.e. predict masked word in text (word \leftarrow [MASK], Predict $f^*(x) = f_{\theta_0}(x) + K_{\theta_0}(x, (x_1, \dots, x_s))K^{\dagger}(\theta_0)(\mathbf{y} - \mathbf{f}_{\theta_0})$ DNN induces a random NTK whose Gradient Flow solu-

Init $w_{ij}^l \sim \mathcal{N}(0, \frac{\sigma_w^2}{m_l}), b_i^l \sim \mathcal{N}(0, \frac{\sigma_b^2}{m_l})$ at layer l with width m_l . on & examples to working memory and predict. Wision transformers: Use vectorised image patches as "word" embeddings for Transformer (encoder). In the infinite width limit $m_l \to \infty$, $K_{\theta_0} \to K$ in probability, rization of a DNN we can iterate (DeepFool): repeatedly $D(p^*||p_\theta) + H(p^*) = \mathbb{E}_{p^*}[-\log p_z(f_\theta^{-1}(x)) - \log|\det\frac{df_\theta^{-1}(x)}{dx}|]$ "word" embeddings for Transformer (encoder). Linear Flow: $F_i(x) = A_i z + b_i$. Set $A_\theta = Q_\theta R_\theta$ for efficient

NTK Constancy: In the ∞ -width limit $\frac{dK_{\theta_t}}{dt} = 0$. We get a kernel machine $f^*(x) = f_{\theta_0}(x) + K(x, (x_1, ..., x_s))K^{\dagger}(\mathbf{y} - \mathbf{f}_{\theta_0}).$

Empirically, $||K(\theta_0) - K(\theta_t)||_F \in \mathcal{O}(\frac{1}{\sqrt{m}})$ over bounded \mathcal{X} .

DNNs as Gaussian Processes

Generate contextualised embeddings $\xi^s \in \mathbb{R}^m$ using con- $\mathbb{E}_{O}Z \leq KL(Q||P) + \ln \mathbb{E}_{P}e^Z$ $Q \ll P$ Z is P-measurable Given a linear layer $F : \mathbb{R}^n \to \mathbb{R}^m$ $x \mapsto Wx$ with weights **1 - Prescribed Model**: Density explicitly specified $p_{\theta}(x|z)$ $w_{ij} \sim \mathcal{N}(0, \frac{\gamma^2}{n})$ and given $X = [x_1, \dots, x_s]$ one gets the GP $WX \sim \mathcal{N}(0,K)$ with $K_{i\mu,j\nu} = \mathbb{1}_{i=j} rac{\gamma^2 \langle x_\mu, x_
u
angle}{n}$. In a DNN the Fix P (prior) and \mathcal{D} (data). Then for any $Q \ll P$ it holds $\int_{2KL(O||P)+\ln n} \frac{2\sqrt{s}}{2} dom$. In the wide layer limit the CLT restores a GP for preactivations whose K can be computed recursively (nu-= merically): $K_{i\mu,j\nu}^l = \mathbb{1}_{i=j} \mathbb{E}[\sum_s w_{is} \phi(x_{s\mu}^{l-1}) \sum_t w_{it} \phi(x_{t\nu}^{l-1})]$ Autoregressive Models

where $x^{l-1} \sim GP(0, K^{l-1})$ and ϕ denotes the activation. Generate output one variable at a time based on chain rule: function. The preactivation Gaussian Process of the out- $p(x_1,...,x_m) = \prod_{t=1}^m p(x_t | x_{1:t-1})$. Used in LLMs/PixelCNN/WaveNet. put layer can then be conditioned for prediction with Autoencoders conditional mean $f^*(x) = k(x, (x_1, ..., x_s))K^{\dagger}y$ and varian-Linear Autoencoder ce $k^*(x,x) = k(x,x) - k(x,(x_1,...,x_s))K^{\dagger}k(x,(x_1,...,x_s))^T$.

Sampling from Posterior for Bayesian DNNs Loss: $\ell(\mathbf{x}) = \frac{1}{2} ||\mathbf{x} - \mathbf{y}||^2 = \frac{1}{2} ||\mathbf{x} - \mathbf{DCx}||^2$

Markov Chain Monte Carlo: Gibb's distribution: $p(\theta|\mathcal{D}) = \text{Matrix notation: } X, Y \in \mathbb{R}^{n \times s} : \min_{\mathcal{D}} \frac{1}{2\pi} ||X - DCX||_{\mathbb{R}}^{2\pi}$ $\frac{1}{2}\exp(-f(\theta))$ with energy function $f(\theta) = -\log p(\theta|\mathcal{D}) - \log Z$. **Eckhart-Young-Mirsky:** $\min_{\text{rank}(\mathbf{Y}) \leq r} \|\mathbf{X} - \mathbf{Y}\|_F = \|\mathbf{X} - \mathbf{X}_r\|_F$ In Metropolis Hastings with proposal distri- for $X = U \Sigma V^T$ set $C = U_m^T D = U_m \Rightarrow DCX = X_m$ bution $r(\theta'|\theta)$ we accept with $\mathbb{P}[accept] = \text{Linear Factor Analysis}$ $\min\{1, \frac{r(\theta|\theta')}{r(\theta'|\theta)} \exp(f(\theta) - f(\theta'))\}.$

The NTK explains the interpolating regime, in particular Hamiltonian Monte Carlo visits all modes of posterior: why test accuracy decreases despite traing accuracy Lift $p(\theta|\mathcal{D})$ to $p(\theta,y|\mathcal{D}) \propto \exp(-H(\theta,y))$ with momentum yand $H(\theta, y) = ||y||_2^2/2m + f(\theta)$. Sample $p(y|\theta, \mathcal{D}) \sim \mathcal{N}(0, mI)$ Non-identifiability: $(WQ)(WQ)^T = WW^T$ for $Q \in O(m)$ and simulate for some $\Delta t \frac{d\theta}{dt} = \nabla_y H \frac{dy}{dt} = -\nabla_\theta H$ with **Posterior inference**: acceptance probability $\min(1, \exp(H(\theta, y) - H(\theta', y'))) = 1$. If $\nabla_{\theta}H$ is estimated stochastically, acceptance is not guaranteed **MLE**: $\max_{\mu,W}\log p(X;\mu,W)$, has no closed form solution We can add friction and noise (Langevin dynamics) to $\frac{dy}{dt}$.

$$dy = -\nabla_{\theta} H \ dt - B \ y \ dt + \mathcal{N}(0, 2B \ dt)$$
friction noise

Model Distillation

Parameters are an incomplete description of a network. Sampling of input/output map is most efficient for prowhich using the NTK Gram matrix gives $\frac{d\mathbf{f}}{dt} = K(\theta(t))(\mathbf{y} - \mathbf{f})$ cessing of model architecture. For better gradients a tempered softmax (temperature > 1) recovers more information from the teacher (cross-entropy loss alignment). q(z; x) is restricted to (typic. Gaussian) variational family:

Adversarial Robustness

Adversarial examples are small manipulations of input which cause the model to change its prediction.

Unconstrained Perturbations - DeepFool

detectable since close to decision boundary.

Te $f_i = w_i^T x + b_i$ the $\|\cdot\|_2$ -optimal perturbation is given by the smallest norm $\eta_i = \frac{f_{true}(x) - f_l(x)}{\|w_{true} - w_i\|_2^2} (w_i - w_{true})$. By linea- Flows are universal and optimised via gradient descent of

Robust Training using Constrained Perturbations

the maximization can be solved by projected gradient Emergence of constancy: $\frac{\|\nabla_{\theta}^2 f_{\theta_0}(x)\|_2}{\|\nabla_{\theta} f_{\theta_0}(x)\|_2^2} \ll 1 \text{ in the } \infty\text{-limit. ascent with projectors } \Pi_p z = \varepsilon z/\|z\|_p. \text{ For } p = 2 \text{ the gradi-} \text{ ner } c_i. \text{ Closely related to Linear Flows one gets efficient}$ $\text{ent steps use } \nabla \int_{-\theta}^{\theta} \inf_{x} \nabla \int_{-\theta}^{\theta} \int_{-\theta}$ ent steps use $\nabla_x \ell$ and for $p = \infty$ they use $\operatorname{sign} \nabla_x \ell$ instead. $\tau^{-1}(x)$ and $\det \partial \tau$ with upper diagonal Jacobian $\partial \tau$. FastGradientSignMethod: $p = \infty$ and single step with $\operatorname{Ir} = 1$. Invertible Linear Time Flows: $F_j(\mathbf{z}) = \mathbf{z} + \mathbf{u}\sigma(\langle \mathbf{w}, \mathbf{z} \rangle + b)$

Generative Models

which needs integration $p_{\theta}(x) = \int_{z} p_{\theta}(x|z)p(z)dz$.

2 - Implicit Model: Directly generate data $x = f_{\theta}(z)$, with implicit distribution $p_{\theta}(x) = p_z(f_{\theta}^{-1}(x)) \left| \frac{df_{\theta}^{-1}(x)}{dx} \right|$

False Generation: $\exists x : p_{\theta}(x) \gg p(x) \approx 0$

Def: $\mathbf{z} \mapsto \mathbf{z} \mapsto \mathbf{y}$, $\mathbf{z} = \mathbf{C}\mathbf{x}$, $\mathbf{y} = \mathbf{D}\mathbf{z}$, \mathbf{C} , $\mathbf{D}^T \in \mathbb{R}^{m \times n}$, m < n

Latent variable prior: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \mathbf{z} \in \mathbb{R}^m, \quad m \ll n$ **Linear observation model:** $\mathbf{x} = \boldsymbol{\mu} + \mathbf{W}\mathbf{z} + \boldsymbol{\eta} \in \mathbb{R}^n$ where

 $\eta \sim \mathcal{N}(\mathbf{0}, \Sigma), \ \Sigma := \operatorname{diag}(\sigma_1^2, ..., \sigma_n^2) \Rightarrow \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \Sigma)$

 $\mu_{\mathbf{z}|\mathbf{x}} = \mathbf{W}^T (\mathbf{W}\mathbf{W}^T + \mathbf{\Sigma})^{-1} (\mathbf{x} - \boldsymbol{\mu})$ $\Sigma_{\mathbf{z}|\mathbf{x}} = \mathbf{I} - \mathbf{W}^T (\mathbf{W}\mathbf{W}^T + \mathbf{\Sigma})^{-1} \mathbf{W}$

Probabilistic PCA: for $\Sigma = \sigma^2 \mathbf{I}$, $w_i^* = \sqrt{\max(0, \lambda_i - \sigma^2)} \cdot u_i$ with (λ_i, u_i) the i'th eigenvalue/-vector of $XX^T \in \mathbb{R}^{n \times n}$.

Variational Autoencoders

Latent variable $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and conditional $p_{\theta}(\mathbf{x}|\mathbf{z})$ require intractable integration for $p_{\theta}(x)$ (MLE). Hence, we max.

ELBO: $\log p(\mathbf{x}; \boldsymbol{\theta}) \ge \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}; \mathbf{x})} [\log p(\mathbf{x} | \mathbf{z}; \boldsymbol{\theta})] - \mathbb{D}(q(\mathbf{z}; \mathbf{x}) || p(\mathbf{z}))$ $= \log p(\mathbf{x}; \boldsymbol{\theta}) - \mathsf{D}(q(\mathbf{z}; \mathbf{x}) || p(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}))$

 $\mathcal{N}(\mathbf{z}; \boldsymbol{\mu}(\mathbf{x}), \boldsymbol{\Sigma}(\mathbf{x}))$, where $\boldsymbol{\Sigma}(\mathbf{x}) = \text{diag}(\sigma_1^2(\mathbf{x}), ..., \sigma_n^2(\mathbf{x}))$ stochastic backpropagation / re-parameterization trick: $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}), \boldsymbol{\Sigma}(\mathbf{x})) \quad \Leftrightarrow \quad \mathbf{z} = \boldsymbol{\mu}(\mathbf{x}) + \boldsymbol{\Sigma}^{1/2}(\mathbf{x}) \, \boldsymbol{\eta}, \quad \boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Normalizing Flows

Smallest perturbation in l_p -norm that induces mistake, Implicit model $f_{\theta}(z)$ with tractable $f_{\theta}^{-1}(x)$ and $\det \frac{df_{\theta}^{-1}(x)}{dx}$ Restrict f_{θ} to C^1 -diffeomorphisms by having each F_i tion approximates the optimal parameters to wide DNNS liven a linear multiclass model $g(x) = \arg\max_i f_i(x)$ where in $f_\theta = F_L \circ \cdots \circ F_1$ be one with specified F_i^{-1} and $\det(\partial F_i)$.

 $A^{-1}(x)$ in $\mathcal{O}(n^2)$ and $|\det A|$ in $\mathcal{O}(n)$ instead of both in $\mathcal{O}(n^3)$.

Loss: $\ell_{robust}^{\epsilon}(f_{\theta}(x), y) = \max_{\eta: \|\eta\|_{p} \le \epsilon} \ell(f_{\theta}(x+\eta), y)$ where **Autoregressive Flow:** $x_i = \tau(z_i; c_i(z_1, \dots, z_{i-1}))$ where $z \mapsto \tau(z;h)$ is strict monotonous with arbitrary conditio-

Generative Adversarial Networks (GANs)

Derive training signal for generator G_{θ} from classifier D_{ϕ} that discriminates data from model-generated samples. Shared Data Generation: $\tilde{p}_{\theta}(\mathbf{x}, y) = \frac{1}{2}(yp(\mathbf{x}) + (1-y)p_{\theta}(\mathbf{x}))$ **Objective:** $\ell(\theta, \phi) = \frac{1}{2} \mathbb{E}_{p}[\log(q_{\phi}(x))] + \frac{1}{2} \mathbb{E}_{p_{\theta}}[\log(1 - q_{\phi}(x))]$ $\ell(\theta,\phi^*) + \log 2 = \frac{1}{2}D(p\|\frac{p+p_{\theta}}{2}) + \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) = JSD(p,p_{\theta}) \quad \text{Hence, adapt loss to } \sum_{i=1}^{L}\lambda(i)\mathbb{E}_{p_{\sigma_i}}\|\nabla_x\log p_{\sigma_i} - s_{\theta}(x,i)\|_2^2 \quad \text{optimizer.step()} \\ \frac{anti-mode-}{collapse} \quad \frac{anti-false-}{generation} \quad \text{e}[0,\log 2] \quad \text{where } p_{\sigma_i} \text{ adds Gaussian noise to samples.} \\ \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) + \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) = JSD(p,p_{\theta}) \quad \text{Hence, adapt loss to } \sum_{i=1}^{L}\lambda(i)\mathbb{E}_{p_{\sigma_i}}\|\nabla_x\log p_{\sigma_i} - s_{\theta}(x,i)\|_2^2 \quad \text{optimizer.step()} \\ \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) + \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) = JSD(p,p_{\theta}) \quad \text{where } p_{\sigma_i} \text{ adds Gaussian noise to samples.} \\ \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) + \frac{1}{2}D(p_{\theta}\|\frac{p+p_{\theta}}{2}) = JSD(p_{\theta}\|\frac{p+p_{\theta}}{2}) = JSD(p_$

Training difficulties (k update steps on D_{ϕ} per step on G_{θ}): $k \gg 1 \Rightarrow$ Strong discriminator \Rightarrow vanishing gradients $k \approx 1 \Rightarrow$ Weak discriminator \Rightarrow mode collapse

Wasserstein-GAN

JS-divergence saturates if the support of p_{θ} , p does not **Evaluation Metrics for Implicit Models** overlap. Hence min. $W(p,p_{\theta}) = \inf_{\gamma \sim \Pi(p,p_{\theta})} \mathbb{E}_{(x,\gamma) \sim \gamma} ||x-y||$. 2**KR-duality:** $W(p, p_{\theta}) = \frac{1}{K} \sup_{\|f\|_{L} \le K} \mathbb{E}_{p} f(x) - \mathbb{E}_{p_{\theta}} f(x)$ Parametrize discriminator $f = f_{\phi}$ where the K-Lipschitz where p(y|x) is given by InceptionV3. p(y|x) should differ condition can be enforced through weight clipping or from marginal p(y) which is achieved by confidence (no gradient penalty $\mathbb{E}_{n_a}[(\|\nabla_{\hat{x}}f_{th}(\hat{x})\|_2-1)^2]$ where \hat{x} is sam-false generation) and coverage (no mode collapse). pled along straight lines between $x_1 \sim p$ and $x_2 \sim p_\theta$.

Diffusion Models

Noising: $q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I), \beta_t \in (0,1)$ **Shortcut Noising:** $q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\alpha_t}x_0, (1-\overline{\alpha_t})I)$ whe- stein distance between fitted m.v. Gaussians. re $\alpha_t = 1 - \beta_t \in (0,1)$ and $\overline{\alpha}_t = \prod_{i=1}^t \alpha_i$ (proof by induction) **Python** Convergence of Noising: $\lim_{t\to\infty} q(x_t|x_0) = \mathcal{N}(\cdot;0,I)$

Denoising: $q(x_{t-1}|x_t) = q(x_t|x_{t-1})\frac{q(x_{t-1})}{q(x_t)}$ is intractable, but Gaussian for $\beta_t \approx 0$, hence parametrize $p_{\theta}(x_{t-1}|x_t)$.

Variational Lower Bound of Likelihood:

 $\log p_{\theta}(x_0) \ge \log p_{\theta}(x_0) - D_{KL}(q(x_{1:T}|x_0)||p_{\theta}(x_{1:T}|x_0)) =$ $-\mathbb{E}_{q(x_{1:T}|x_{0})}[\log \frac{q(x_{1:T}|x_{0})}{p_{\theta}(x_{0:T})}] = -\mathbb{E}_{q(x_{1:T}|x_{0})}[D(q(x_{T}|x_{0})||p_{\theta}(x_{T})) || \text{Identity Matrix: numpy.eye}(\text{size})$

$$+\sum_{t=2}^{T}D(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))-\log p_{\theta}(x_0|x_1)\\ -L_{t-1} & L_0 \\ \text{Matrix Multiplication: A @ B} \\ \text{Inverse: numpy.linalg.inv(matrix)}\\ \text{Frobenius/Eucl. Norm:np.linalg.norm(vector/matrix)}\\ \text{Operator Norm:np.linalg.norm(matrix, ord=2)}\\ \text{Matrix Multiplication: A @ B}$$

Diffusion Loss Terms (minimized in $\mathbb{E}_{p(x_0)}\mathbb{E}_{q(x_1\cdot T|x_0)}$):

 $\lim_{T\to\infty} L_T = D_{KL}(\mathcal{N}(\cdot;0,I)||p_{\theta}(x_T)) \Rightarrow \text{set } p_{\theta}(x_T) = \mathcal{N}(\cdot;0,I)$ L_0 is often ignored in practice. That leaves L_t , where

$$\begin{split} q(x_{t-1}|x_t,x_0) &= \frac{q(x_0|x_{t-1})\cdot q(x_{t-1}|x_t)}{q(x_0|x_t)} \approx \mathcal{N}(x_{t-1};\tilde{\mu}(x_t,x_0),\tilde{\beta}_t I) \\ & = \varepsilon_t \\ \text{with } \tilde{\mu}_t(x_t,x_0) &= \frac{1}{\sqrt{\alpha_*}}(x_t - \frac{1-\alpha_t}{\sqrt{1-\alpha_*}}\frac{x_t - \sqrt{\alpha_t}x_0}{\sqrt{1-\alpha_*}}), \tilde{\beta}_t = \frac{1-\overline{\alpha}_t - 1}{1-\overline{\alpha}_t}\beta_t. \end{split}$$

Parametrization:
$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \tilde{\beta}_t I)$$
 where $\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \epsilon_{\theta}(x_t, t)).$

 $\begin{aligned} & \textbf{Reparametrized Loss:} \ L_t = D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) \\ & = \frac{\|\bar{\mu}(x_t,x_0) - \mu_{\theta}(x_t,t)\|^2}{2\bar{\beta}_t} = \frac{(1-\alpha_t)^2 \|\varepsilon_t - \varepsilon_{\theta}(\sqrt{\alpha_t}x_0 + \sqrt{1-\alpha_t}\varepsilon_t,t)\|^2}{2\alpha_t(1-\overline{\alpha_t})\bar{\beta}_t} \end{aligned} \\ & \textbf{Forward pass: model (torch.randn(1, 10))}$

In practice, a simplified L_{VLB} is minimized (SGD): Transpose: A.t() or $\mathbb{E}_{x_0 \sim p, t \sim \mathcal{U}([1,T]), \epsilon_t \sim \mathcal{N}(0,I)} [\|\epsilon_t - \epsilon_\theta(\sqrt{\overline{\alpha}_t}x_0 + \sqrt{1-\overline{\alpha}_t}\epsilon_t, t)\|_2^2$

Generation: Use $x_T \sim \mathcal{N}(0, I)$ and $x_{t-1}|x_t \sim p_{\theta}(x_{t-1}|x_t)$. **Scheduler:** vital for performance. Slowly decrease $\overline{\alpha}_t$.

Score-Based Models avoid Normalization Pytorch Activation Functions

Instead of learning p(x), learn tractable $\nabla \log p(x) = \frac{\nabla p(x)}{\langle x \rangle}$. Fisher Divergence loss: $\ell(p,\theta) = \mathbb{E}_p ||\nabla_x \log p(x) - s_{\theta}(x)||_2^2$ Loss Functions

Scaling: $\ell(p,\theta) = \mathbb{E}_p \mathbb{E}_{v \sim \mathcal{U}(S^d)}[(v^T s_{\theta}(x))^2 + 2v^T \nabla s_{\theta}(x)v] + C$ Optimizers

The process of sampling (ULA) from $S_{\theta}(x,i)$ where iteratively the noise is decreased is mathematically equivalent to sampling from a diffusion model (Inversion of SDE).

Forward SDE: dx = f(x, t)dt + g(t)dW

Reverse SDE: $dx = f(x,t)dt - g^2(t)\nabla_x \log p_t(x)dt + g(t)dW$ optimizer.step()

Implicit Models cannot use evaluation likelihood score.

Inception Score: $\exp\left(\mathbb{E}_{x \sim p_{\theta}}[KL(p(y|x)||\mathbb{E}_{x \sim p_{\theta}}p(y|x))]\right)$

FID: $\|\mu - \mu_{\theta}\|_{2}^{2} + \text{Tr}(\Sigma + \Sigma_{\theta} - 2(\Sigma\Sigma_{\theta})^{1/2})$ where μ, Σ and μ_{θ} , Σ_{θ} are the empirical mean and covariance matrix of the InceptionV3 output layer based on real and generated images respectively. It corresponds to the Wasser-

Basics

Round to 2 Digits: round(5.76543, 2)=5.77List Comprehension: [x**2 for x in list] Conditionals: result = val1 if cond else val2

Numpy ndarray Manipulation

Determinant: np.linalq.det(matrix) Create Diagonal Matrix: np.diag(diagonal elements) E-values, E-vectors $[v_1,...,v_n]$: np.linalg.eig(matrix) Inverse: numpy.linalg.inv(matrix)

Matrix Multiplication: A @ B SVD:U,S,Vt = np.linalg.svd(matrix) Trace: np.trace(matrix)

Transpose: A.getT() or A.transpose() Element-wise Multiplication: A * B

Element-wise Square Root: np.sqrt(matrix) Element-wise Exponential: np.exp(matrix)
Element-wise logarithm: np.log(matrix)

Matrix-Power: np.linalg.matrix_power(matrix, n)

Numpy Random ndarray Generation

Uniform in [0,1): np.random.rand(rows, cols) Intin(low, high): np.random.randint(low, high, size) Normal Distr: np.random.normal(mean, std dev. size)

PvTorch Basics

Matrix Multiplication: torch.mm(A, B)

torch.transpose(input, dim0, dim1)

Pytorch Neural Network Building Blocks

torch.nn.Module: base class for NN modules torch.nn.Linear: creates a fully connected layer

```
import torch.nn.functional as F
                                                                                                                                                                                    output = F.relu(input), F.sigmoid(input), F.tanh(input)
                                                                                                                                   = \mathbb{E}_p[\|s_{\theta}(x)\|_2^2 + 2\text{Tr}(\nabla s_{\theta}(x))] + C \quad \text{loss} = \text{criterion}(\text{output}, \text{target}) 
Optimal Discriminator: q_{\theta}(\mathbf{x}) = \frac{p(\mathbf{x})}{p(\mathbf{x}) + p_{\theta}(\mathbf{x})} = \tilde{P}_{\theta}(y = 1|\mathbf{x})
Sampling via ULA: x_{t+1} \sim \mathcal{N}(x_{t+1}; x_t + \eta_t \nabla_x \log p(x), 2\eta_t I) optimizer = torch.optim.Adam(model.parameters(), 1r=learning_rate) optimizer = torch.optim.Adam(model.parameters(), 1r=learning_rate)

Objective given q_{\phi}(x) \equiv q_{\theta}(x) becomes JS-divergence: Practical Issues: s_{\theta}(x) only accurate where p(x) \gg 0. loss.backward()
                                                                                                                                                                                     for epoch in range(num_epochs):
                                                                                                                                                                                             for inputs, targets in dataloader:
                                                                                                                                                                                                    optimizer.zero grad()
                                                                                                                                                                                                     outputs = model(inputs)
                                                                                                                                                                                                     loss = criterion(outputs, targets)
                                                                                                                                                                                                     loss.backward();
```

Authors

Nicolas Menet, Jacky Choi, Chandra de Viragh, Angéline Pouget, Leila Chettata