DE LA RECHERCHE À L'INDUSTRIE

Implementation of "charge-only-DFT"+*U* and k-resolved spectral function in DFT+DMFT.

Bernard Amadon, CEA, DAM, DIF, F-91297 Arpajon, France

www.cea.fr

abidev 2019

1. "charge-only-DFT"+U

"charge-only-DFT"+U

•

Usual "spin DFT"+U: sDFT+U

$$E = -\sum_{\sigma,\nu} \int \psi_{\nu}^{\sigma*}(\mathbf{r}) \frac{\nabla^{2}}{2} \psi_{\nu}^{\sigma}(\mathbf{r}) d\mathbf{r} + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) + E_{\text{Hartree}}[n(\mathbf{r})]$$

$$+ E_{\text{xc}}[n^{\uparrow}(\mathbf{r}), n^{\downarrow}(\mathbf{r})] + E_{\text{ee}}^{U,J}[n_{m,m'}^{\uparrow}, n_{m,m'}^{\downarrow}] - E_{\text{DC}}^{U,J}[N^{\uparrow}, N^{\downarrow}]$$

"charge-only DFT"+U: DFT+U (or nsDFT+U) (Park et al PRB 2016)

$$\begin{split} E &= -\sum_{\sigma,\nu,\mathbf{k}} \int \psi_{\nu}^{\mathbf{k}\sigma*}(\mathbf{r}) \frac{\nabla^{2}}{2} \psi_{\nu}^{\sigma}(\mathbf{r}) d\mathbf{r} + \int d\mathbf{r} v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) + E_{\text{Hartree}}[n(\mathbf{r})] \\ &+ E_{\text{xc}}[n^{\uparrow}(\mathbf{r}) + n^{\downarrow}(\mathbf{r})] + E_{\text{ee}}^{U,J}[n^{\uparrow}_{m,m'}, n^{\downarrow}_{m,m'}] - E_{\text{DC}}^{U,J}[N^{\uparrow} + N^{\downarrow}] \end{split}$$

where $n_{m,m'}^{\sigma}$ is the density matrix for correlated electron (m,m'=-l,...+l)

$$n_{m,m'}^{\sigma} = \sum_{\mathbf{k},\nu} f_{\nu}^{\mathbf{k},\sigma} \langle \psi_{\nu}^{\mathbf{k},\sigma} | \chi_{m'} \rangle \langle \chi_m | \psi_{\nu}^{\mathbf{k},\sigma} \rangle$$
 and $N^{\sigma} = \sum_{m} n_{mm}^{\sigma}$

Input variables

```
usepawu=1 (usual) sDFT+U (FLL double counting) usepawu=4 (new) nsDFT+U (FLL double counting)
```

B. Amadon — abidev 2019 —

Comparison to previous calculations on Iron

- Experimental magnetic moment (2.2) is overestimated by sPBE+U.
- The role of J is more physical in nsPBE+U: it stabilizes ferromagnetism and increases magnetic moment.

Experimental volumes

B. Amadon and B. Dorado JPCM 2018

Magnetism

αγεδ

Pu

Am

Np

20

16

U

20

16

Cm

Magnetism

nsDFT+U ("charge-only-DFT"+U) does describe well the structure.

B. Amadon and B. Dorado JPCM 2018

k-resolved spectral function

DFT+DMFT: describes correlations

Scheme implemented in ABINIT

L.V. Pourovskii, B. Amadon, S. Biermann, A. Georges Phys. Rev. B 76, 235101 (2007) B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. Wehling and A. I. Lichtenstein Phys. Rev. B 77, 205112 (2008)

B. Amadon, Journal of Physics: Condensed Matter 24, 075604 (2012).

B. Amadon

DFT+DMFT: describes correlations

Scheme implemented in ABINIT

L.V. Pourovskii, B. Amadon, S. Biermann, A. Georges Phys. Rev. B 76, 235101 (2007)
B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. Wehling and A. I. Lichtenstein Phys. Rev. B 77, 205112 (2008)

B. Amadon, Journal of Physics: Condensed Matter 24, 075604 (2012).

B. Amadon — abidev 2019 —

• First step: Analytical continuation using Maximum Entropy Method. Self-energy $\sum_{m,m'}(i\omega_n)$ (Imaginary frequencies)

Analytical continuation

Self-energy $\Sigma_{m,m'}(\omega)$ (Real frequencies)

- Second step: Calculation of the lattice Green's function along a k-point path
 - Build Self-energy in the Bloch Basis

$$\Sigma_{\mathbf{k}\nu\nu'}(\omega) = \sum_{mm'} \langle \Psi_{\mathbf{k}\nu} | \chi_m \rangle \Sigma_{m,m'}(\omega) \langle \chi_{m'} | \Psi_{\mathbf{k}\nu'} \rangle.$$

Compute Green's function

$$G_{\nu\nu'}(\mathbf{k},\omega) = \left[\omega I - H(\mathbf{k}) - \Sigma_{\mathbf{k}}(\omega)\right]^{-1}\Big|_{\nu\nu'}$$

$$A(\omega, \mathbf{k}) = \sum_{\nu} -\frac{1}{\pi} \mathcal{I} G_{\nu\nu}(\mathbf{k}, \omega)$$

In practice: input and output files

- ABINIT DS1: A DFT calculation
- ABINIT DS2: A usual converged DFT+DMFT calculation should be done.

Output: O_DS2Self-omega_iatom0001_isppol1

Output: 0_DS2Selfrotformaxent0001_isppol1_iflavor000x (Self-energy in the basis that diagonalizes the crystal field)

Output: O_DS2.UnitaryMatrix_for_DiagLevel (Transformation matrix)

 OmegaMaxent: Analytical continuation using Maximum Entropy Input: 0_DS2Selfrotformaxent0001_isppol1_iflavor000x

Output: $\Sigma(\omega) \to 0$ _DS3Self_ra-omega_iatom0001_isppol1

Output: Freq. Grid \rightarrow I_DS3_spectralfunction_realfrequencygrid

• ABINIT DS3: Calculation of the spectral function

Input: I_DS3_DEN

Input: O_DS3Self_omega_iatom0001_isppol1
Input: O_DS3Self_ra-omega_iatom0001_isppol1

 $Input: I_DS3_spectral function_real frequency grid$

Input: I_DS3.UnitaryMatrix_for_DiagLevel

Output: O_DS3SpFunc_kresolved_forspectralfunction

Maxent on G Nekrassov *et al* PRB 73 115112 (2006)

This work

(Same values of *U* and *J*)

Karolak *et al* JPCM 23 085601 (2012)

Conclusion

- "charge only DFT"+U can be used in the current version of ABINIT.
- k-resolved spectral function is currently in development.
 - Use OmegaMaxent, a code written by Dominic Bergeron (https://www.physique.usherbrooke.ca/MaxEnt/), but other codes are available.
 - Generalization (atoms, spin orbit coupling).
 - Perspective: calculation of frequency dependent conductivity.

Thanks to M. Torrent for debugging, F. Jollet and B. Dorado for discussions

B. Amadon — abidev 2019 —