Algorithms II Cheat Sheet

Tips

Apply an algorithm you know in a clever way, don't write a new algorithm.

Set notation

 $A \in [10] \equiv A \in [1..10]$

Big O

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C : \exists n_0 : \forall n \geq n_0 : f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Interval Scheduling

A **request** is a pair of integers (s, f) with $0 \le s \le f$. We call s the **start time** and f the **finish time**.

A set A of requests is **compatible** if for all distinct (s, f), $(s', f') \in A$, either s' > f or s > f' — that is, the requests' time intervals don't overlap.

Interval Scheduling Problem

Input: An array \mathcal{R} of n requests $(s_1, f_1), \ldots, (s_n, f_n)$.

Desired Output: A compatible subset of \mathcal{R} of maximum possible size.

Algorithm: GREEDYSCHEDULE

Input: An array \mathcal{R} of n requests.

Output: A maximum compatible subset of \mathcal{R} .

1 begin

- Sort \mathcal{R} 's entries so that $\mathcal{R} \leftarrow [(s_1, f_1), \dots, (s_n, f_n)]$ where $f_1 \leq \dots \leq f_n$.
- Initialise $A \leftarrow []$, lastf $\leftarrow 0$.
- foreach $i \in \{1, \ldots, n\}$ do
- if $s_i \ge lastf$ then
- Append (s_i, f_i) to A and update lastf $\leftarrow f_i$.
- Return A

Complexity:

Step 2 takes O(n log n)

Steps 3–6 all take O(1) time and are executed at most n times.

 $\therefore totalrunningtime = O(nlogn) + O(n)O(1) =$ O(nlogn).

Interval Scheduling

Formal GreedySchedule

 $A^{+} := \operatorname{argmin} \{f : (s, f) \in R, A \cup \{(s, f)\} \text{ is } \}$ compatible} for all $A \subseteq R$,

 $A_{i+1} := A_i \cup \{A_i^+\}$ $A_0 := \emptyset$,

 $t := \max\{i: A_i \text{ is defined}\}\$

Interval Scheduling Proofs

Lemma: Greedy Schedule always outupts A_t

Proof: By induction form the following loop invariant. At the start of the i'th iteration of 4-7:

- A is equal to $A_t \cap \{(s_1, f_1), ..., (s_{i-1}, f_{i-1})\}$
- last is equal to the latest finish time of any request in A (or 0 if A = [])

Lemma: A_t is a compatible set

Proof: Instant by induction; A_0 is compatible, and if A_i is compatible then so is $A_{i+1} = A_i \cup A^+$ by the definition of A_i^+

Lemma: A_t is a maximum compatible subset of the Array R (look in pseudocode)

Proof:

Base case for i = 1: A_0^+ is the fastest finishing request in R by definition

Inductive step: Suppose A_i finishes faster than B_i . Let B_i^+ be the (i+1)'st fastetst-finishing element of B. Since A_i finishes faster than B_i , $A_i \cup \{B_i^+\}$ is compatible. Hence by definition, A_i^+ exists and finishes no later than B_i^+

ODEs

1st Order Linear	Use integrating factor, $I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	dy/dx = f(x,y) = f(xt,yt) sub $y = xV$ solve, then sub $V = y/x$
Exact:	If $M(x, y) + N(x, y)dy/dx = 0$ and $M_y = N_x$ i.e. $\langle M, N \rangle = \nabla F$ then $\int_x M + \int_y N = F$
Order Reduction	Let $v = dy/dx$ then check other types If purely a function of y , $\frac{dv}{dx} = v\frac{dv}{dy}$
Variation of Parameters:	When $y'' + a_1 y' + a_2 y = F(x)$ F contains $\ln x$, $\sec x$, $\tan x$, \div
Bernoulli	$y' + P(x)y = Q(x)y^{n}$
Cauchy-Euler	$x^{n}y^{n} + a_{1}x^{n-1}y^{n-1} + \dots + a_{n-1}y^{n-2} + a_{n}y = 0$ guess $y = x^{r}$
3 Cases:	$r_1 + L_r r_2$
1) Distinct real roots 2) Repeated real roots	$y = ax^{r_1} + bx^{r_2}$ $y = Ax^r + y_2$ $Guess \ y_2 = x^r u(x)$ $Solve \ for \ u(x) \ and \ choose$ $one \ (A = 1, C = 0)$
3) Distinct complex roots	$y = B_1 x^a \cos(b \ln x) + B_2 x^a \sin(b \ln x)$

Laplace Transforms

$$L[f](s) = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^{n+1}}, s > 0$$

$$f(t) = e^{at}, a \ constant \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \ constant \qquad F(s) = \frac{b}{s^2+b^2}, s > 0$$

$$f(t) = \cos bt, b \ constant \qquad F(s) = \frac{s}{s^2+b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{\pi}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t-a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f'' \qquad L[f''] = s^2 L[f] - sf(0) - f'(0)$$

Vector Spaces

$$v_1, v_2 \in V$$

1.
$$v_1 + v_2 \in V$$

$$2. \ k \in \mathbb{F}, kv_1 \in V$$

3.
$$v_1 + v_2 = v_2 + v_1$$

4.
$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

5.
$$\forall v \in V, 0 \in V \mid 0 + v_1 = v_1 + 0 = v_1$$

6.
$$\forall v \in V, \exists -v \in V \mid v + (-v) = (-v) + v = 0$$

7.
$$\forall v \in V, 1 \in \mathbb{F} \mid 1 * v = v$$

8.
$$\forall v \in V, k, l \in \mathbb{F}, (kl)v = k(lv)$$

9.
$$\forall k \in \mathbb{F}, k(v_1 + v_2) = kv_1 + kv_2$$

10.
$$\forall v \in V, k, l \in \mathbb{F}, (k+l)v = kv + lv$$