

CHEMIA SESJA WIOSENNA 2016

Fragn	nent u	kładu	okres	owego	dost	arczy	Ci info	ormac	ji niez	będny	ch do	rozwi	ązania	a niek	tórych	zada	ń.			
Fragment układu okresowego dostarczy Ci informacji niezbędnych do rozwiązania niektórych zadań.																				
₁ H Wodór	2											13	14	15	16	17	₂ He	1		
₃ Li	2 ₄Be									5B	6C	7N	βO	₉ F	10 Ne					
Lit 7	ADE Beryt 9							5 Bor 11	6 Węgiel 12	Azot 14	8 Tlen 16	9 ' F l uor 19	Neon 20	2						
₁₁ Na	₁₂ Mg											₁₃ AI	14Si	₁₅ P	₁₆ S	17 CI	18Ar	3		
Sód 23	Magnez 24	3	4	5	6	7	8	9	10	11	12	Glin 27	Krzem 28	Fosfor 31	Siarka 32	Chlor 35,5	Argon 40	J		
19 K Potas 39	20 Ca Wapń 40	21 SC Skand 45	₂₂ Ti Tytan 48	23 V Wanad 51	24 Cr Chrom 52	₂₅ Mn Mangan 55	₂₆ Fe Żelazo 56	27 Co Kobalt 59	28 Ni Nikiel 59	₂₉ Cu Miedź 64	₃₀ Zn Cynk 65	31 Ga Gal 70	32 Ge German 73	33As Arsen 75	34 Se Selen 79	35 Br Brom 80	36 Kr Krypton 84	4		
37 Rb Rubid 85	38 Sr Stront 88	39 Y Itr 89	₄₀ Zr Cyrkon 91	41 Nb Niob 93	42 Mo Molibd. 96	43 Tc Technet	44 Ru Ruten 101	45 Rh Rod 103	46 Pd Pallad 106	47Ag Srebro 108	48 Cd Kadm 112	49 In Ind 115	₅₀ Sn Cyna 119	51 Sb Antymon 122	52 Te Te∎ur 128	53 Jod 127	54 Xe Ksenon 131	5		
55 Cs Cez 133	56 Bar 137	La-Lu 57-71	72 Hf Hafn 178	73 Ta	74 W Wolfram 184	75 Re Ren 186	76 Os Osm 190	77 r 1ryd 192	78 Pt Platyna 195	79Au Złoto 197	80 Hg Rtęć 201	81 TI Tal 204	82 Pb Ołów 207	83 Bi Bizmut 209	84 Po Polon 209	85 At Astat 210	86 Rn Radon 222	6		
1. Promieniotwórczość naturalną odkrył Antoine 6. Reakcję, opisaną w zadaniu 4, prezentuje																				
	Henri Becquerel w 1896 r. Promieniotwórczość naturalna jest efektem zawartości pierwiastków										równanie:									
promieniotwórczych w skorupie ziemskiej. Należy										\bigcirc A) $Cr_2O_3 + AI \longrightarrow AIO_3 + 2 Cr$ B) $Cr_2O_3 + 2 AI \longrightarrow AI_2O_3 + 2 Cr$										
do nich:									1 ~	\bigcirc C) CrO ₃ + 2 Al \longrightarrow Al ₂ O ₃ + 2 Cl										
A) radon B) bizmut C) uran D) rad									1 ~	$\bigcirc D) CrO_3 + 274 $										
										7 jest pierwiastkiem chemicznym, który										
2. Które równanie reakcji prezentuje reakcję wymiany?										w warunkach normalnych jest gazem.										
$\bigcirc A) 2 CO + O_2 \longrightarrow 2 CO_2$										A) Neon B) Wodór										
B) 2 Mg + CO₂ → 2 MgO + C										C) Para wodna D) Fluor										
C) Fe + 2 HCl → FeCl ₂ + H ₂										8. Stosunek masowy miedzi do siarki w siarczku miedzi (I) to:										
\bigcirc D) 2 H ₂ O \longrightarrow O ₂ + 2 H ₂									1 ~	○A) 2:1										
3. Większość substancji stałych, rozpuszczalnych w wodzie, rozpuszcza się tym szybciej, im:									9. Zawartość procentowa (procent masowy) miedzi w siarczku miedzi (I) wynosi:											
A) I	A) bardziej rozdrobnimy substancję stałą									() () () () () () () () () () () () () (
●B) \	wyższa	a będz	ie tem	peratu	ra woo	ly			10.	10 jest ciężkim metalem o stosunkowo										
(C)	bardzie	ej kulis	te nac	zynie	zastos	ujemy			niskiej temperaturze topnienia (327°C). Jest											
D) i	intensy	/wniej ˌ	je mie	szamy						substancją szkodliwą dla człowieka. Dawniej był używany do produkcji rur wodociągowych,										
4. W wyniku reakcji 30,4 g tlenku chromu (III) z 10,8 g sproszkowanego glinu otrzymano czystego chromu. W trakcie tej reakcji wydzieliła się znaczna ilość ciepła.										co powodowało poważne choroby u ludzi. Obecnie jest stosowany do produkcji akumulatorów, szkła kryształowego, śrutu i jest wykorzystywany jako osłona chroniąca przed promieniowaniem gamma.										
○A) 19,6 g ○B) 20,4 g										•		/anien	າ gam ົ	$\overline{}$	Secondary 1					
C) 20,8 g										A) Ołów B) Cynk C) Kadm D) Molibden										
5. Reakcja opisana w zadaniu 4 jest reakcją:																				
A) egzoenergetyczną									'''	11. Metal, o którym mowa w zadaniu 10, był do niedawna wykorzystywany do lutowania										
(B) endoenergetyczną												stopu	z	<u> </u>						
C) wymiany									(A) magnezem (B) glinem											
D)	D) utlenienia-redukcji										C) miedzią D) cyną									

12. Masa cząsteczkowa wynosi 160 u.	21 jest gazem lżejszym od powietrza.							
○A) bromku srebra (I)	○A) Ozon ●B) HeI							
B) tlenku żelaza (III)	C) Azot D) Wodór							
C) siarczku miedzi (I)	22. W szkolnej sali gimnastycznej o wymiarach							
D) bromu	20 m x 14 m x 8 m znajduje się ok tlenu.							
13. Atom posiada tyle elektronów, ile	Przyjmij gęstość tlenu d = 1,43 g/dm³. → A) 465,9 m³ → B) 2240 m³							
nukleonów znajduje się w jądrze atomu kryptonu.	C) 320,3 kg D) 666,3 kg							
A) polonu (B) chloru								
C) złota D) tytanu	23. Metalem szlachetnym, o bardzo małej aktywności chemicznej, jest:							
14. Wybierz prawdziwe zdania o cząstkach	(A) wolfram (B) ruten							
elementarnych.	C) platyna D) kadm							
A) Masa neutronu wynosi ok. 1 u. B) Proton posiada ładunek elektryczny dodatni.	24. Do odmierzania potrzebnej do doświadczeń							
C) Neutrony znajdują się w jądrach wszystkich	objętości cieczy używa się następującego							
atomów.	sprzętu laboratoryjnego:							
D) Proton znajduje się w jądrze każdego atomu.								
15. Tabelka przedstawia wartości elektroujemności								
pierwiastków wg Paulinga.	■B) B							
Na K C O CI								
0,9 0,8 2,5 3,5 3,0								
Wiązania jonowe występują w cząsteczkach:								
A) chlorku potasu B) tlenku węgla (II)								
C) tlenku potasu D) chlorku sodu	Oc) D)							
16. Metalem lekkim (o gęstości poniżej 5 g/cm³), ale cięższym od wody, jest:								
A) glin B) magnez	25. Wzór sumaryczny tlenku ołowiu (IV) ma postać:							
C) wapń D) tytan	\bigcirc A) Pb_2O_4 \bigcirc B) Pb_2O \bigcirc C) PbO_2 \bigcirc D) Pb_4O_2							
17. Stopem metali, w którym głównym składnikiem	26. Masa atomu wynosi 4,04 • 10 ⁻²³ grama.							
jest miedź (zawartość powyżej 50% masowych), jest:	○A) helu ○B) berylu							
A) stal	C) magnezu D) tlenu							
C) tombak D) duraluminium	27. Wszystkie pierwiastki znajdujące się w 17 grupie							
18. Nowe srebro, jest również stopem miedzi z	układu okresowego pierwiastków							
niklem, manganem i cynkiem, którego głównym	A) mają siedem elektronów walencyjnych.							
składnikiem jest miedź - 60% masowych. Nowe	B) są niemetalami.							
srebro doskonale imituje prawdziwe srebro i jest stosowane do wyrobu instrumentów	C) są gazami lub cieczami w warunkach normalnych.							
muzycznych, ozdób i sztućców. Do otrzymania	D) mają 2 elektrony na powłoce najbliższej jądra.							
500 g nowego srebra zużywa się ok	28. Okres połowicznego rozpadu izotopu ¹³ N							
miedzi.	wynosi 10 minut. Z próbki tego izotopu o masie 64 gramy po upływie 1 godziny pozostanie:							
(A) 150 g (B) 200 g (C) 250 g (D) 300 g	A) 4 gramy B) 2 gramy							
19. Wybierz prawdziwe zdania o miedzi.	C) 1 gram							
A) Jedynie srebro jest lepszym przewodnikiem ciepła	29. Tryt jest izotopem wodoru,							
i elektryczności niż miedź.	A) który posiada w jądrze 1 proton i 2 neutrony							
B) Miedź jest metalem odpornym na korozję.	i 1 elektron wokół jądra.							
C) Miedź jest metalem ciężkim o barwie srebrzystoszarej.	B) który jest radioaktywny. C) którego masa wynosi 3 u.							
 D) Łacińska nazwa miedzi to cuprum i wywodzi się od nazwy wyspy Cypr. 	D) który posiada w jądrze 2 protony i 1 neutron i 3 elektrony wokół jądra.							
20 jest związkiem chemicznym, który jest	30. W wyniku 4 kolejnych przemian α i jednej							
składnikiem powietrza, a którego zawartość w nim nie jest stała.	przemiany β izotopu uranu ²³⁵ U otrzymamy izotop:							
A) Para wodna B) Amoniak	○A) ²¹⁸ Po ○B) ²¹⁹ Rn							
C) Dwutlenek węgla D) Ozon	○C) ²¹⁵ Rn							