- ۱) با استفاده از دستور \$display یا \$monitor جدول درستی چهارسطحی (0,1,x,z) را برای گیت های , AND , XOR , bufif0 (با استفاده از دستور notif1 تشکیل دهید.
- ۲) با استفاده از گیت های bufif0, bufif1 یک مالتی پلکسر 1<-2 مطابق شکل زیر توصیف کنید. تاخیر گیت ها را مطابق جدول زیر اعمال کنید. بلوک تحریک (Test Bench) را تشکیل داده و به ازای تمامی حالتهای ممکن ورودی شکل موجهای خروجی را در سه مد تاخیر maximum, minimum, typical آنالیز کنید.

	Min	Typ	Max
Rise	1	2	3
Fall	3	4	5
Turnoff	5	6	7

۳) شکل a دیاگرام منطقی یک دیکدر ۲به ۴ دارای پایه فعال ساز و شکل b یک دیکدر ۳به ۸ با استفاده از دیکدر بخش a را نمایش می دهد.

- الف) دیکدر بخش a را در سطح گیت توصیف کنید.
- ب) دیکدر بخش a را در سطح جریان داده توصیف کنید.
- ج) با استفاده از ماژول دیکدر توصیف شده، دیکدر بخش b را توصیف کرده و با استفاده از test bench جدول درستی آنرا استخراج کنید.

(ترتیب متغیر ها در جدول به صورت زیر باشد.)

$ \chi, V \chi D / D 0 D 3 \dots D 0$	z v x	D7 D6 D5 D0
---	-------	-------------

۴) شکل زیر بلوک دیاگرام یک ALU و بخش های داخلی آنرا نمایش می دهد.

جدول عملکرد ALU به صورت زیر می باشد

S3	S2	S1	S0	Cin	ALU Function
0	0	0	0	0	F = A + B
0	0	0	0	1	F = A + B +1
0	0	0	1	0	F = A + B'
0	0	0	1	1	F = A + B' +1
0	0	1	0	0	F = A
0	0	1	0	1	F = A + 1
0	0	1	1	0	F = A - 1
0	0	1	1	1	F = A
0	1	0	0	Х	F = A & B
0	1	0	1	Х	F = A B
0	1	1	0	Х	F = A ^ B
0	1	1	1	Х	F = A'
1	0	Х	Х	Х	F = ShIA
1	1	Х	Х	Х	F = ShrA

- الف) بلوک های داخلی این ALU را در سطح گیت به زبان Verilog توصیف کرده و سپس ماژول top level را بر اساس بلوک طراحی شده پیاده سازی کنید.
- ب) بلوک های داخلی این ALU را در سطح جریان داده به زبان Verilog توصیف کرده و سپس ماژول top level را بر اساس بلوک طراحی شده پیاده سازی کنید.
 - ج) بلوک test bench برای شبیه سازی ALU طراحی شده تشکیل دهید و به ازای حالتهای مختلف S[3:0] , Cin طبق جدول عملکرد ALU را شبیه سازی و نتایج را هم در محیط Wave و هم بصورت خروجی text آنالیز کنید.
- ۵) با استفاده از توصیف سطح dataflow یک ماژول مقایسه کننده ۸بتی طراحی کنید که دو عدد ۸بیتی بی علامت را گرفته و بر اساس مقدار آنها یکی از خروجی های کوچکتر ، مساوی یا بزرگتر را فعال کند.

A[7:0]	Comparator	AeqB
B[7:0]		AltB
		AgtB