Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 4

Piotr Chachuła, Cezary Dudkiewicz, Piotr Roszkowski

Spis treści

		I. Projekt
1.	Wery	rfikacja punktu pracy
		Opis postępowania
2.	Odpo	owiedzi skokowe
	2.2.	Wyznaczanie odpowiedzi skokwych
		II I aboratoria

Część I

Projekt

1. Weryfikacja punktu pracy

1.1. Opis postępowania

W celu sprawdzenia poprawności wartości sygnałów u, y oraz z pobudzono obiekt sterowaniem o wartości u=0,0, zakłóceniem z=0,0 i sprawdzeniu czy stabilizuje się on w punkcjie pracy y=0,0. Do symulacji wyjscia obiektu użyto udostępnionej funkcji symulacja_obiektu4y. Do testów napisano skrypt Zad1.m. Wyniki przedstawiono poniżej.

1.2. Wyniki

Zgodnie z przewidywaniami wyjscie obiektu ustaliło się na wartości y=0,0. Punkt pracy ustalony jest więc poprawnie.

Rys. 1.1. Odpowiedź obiektu na sterowanie
i $u=0,\!0$ i zakłócenie $z=0,\!0$

2. Odpowiedzi skokowe

2.1. Wyznaczanie odpowiedzi skokwych

W celu wyznaczenia odpowiedzi skokowej obiekt, znajdujący się w punkcie pracy (tzn. $u=0,0,\,z=0,0,\,y=0,0$) pobudzony zostaje skokową wartością sterowania/zakłócenia. Rysunek 2.1 oraz 2.2 przedstawia odpowiedź obiektu na dane skoki.

2.2. Wyznaczanie charakterystyki statycznej procesu

Aby wyznaczyć charakterystykę statyczną procesu przeprowadzono analogiczne działania co w rozdziale 1. Tym razem przy użyciu skryptu ${\tt Zad2.m}$ dla wielu wartosci u oraz z wyznaczono odpowiadające im y oraz z ich pomocą utworzono wykres 2.2. Jak widać charakterystyka statyczna obiektu jest liniowa, a co za tym idzie obiekt jest liniowy.

2.3. Wzmocnienie statyczne

Wzmocnienie statyczne, czyli stosunek pomiędzy zmianą wartosci wyjscia i zmianą wartosci wejścia w stanie ustalonym. Aby ją wyznaczyć można na przykład znaleźć nachylenie charakterystyki statycznej do osi OU lub OZ, czyli np.:

$$K_{\text{stat}_u} = \frac{y(u_{\text{max}}) - y(u_{\text{min}})}{u_{\text{max}} - u_{\text{min}}}$$
(2.1)

W przypadku tak wykreślonej charakterystyki, wzmocnienie statyczne jest równe tangensowi kąta α pomiędzy prostą a osią OU.

$$K_{\text{stat}_u} = \frac{24.9903 - 0}{10 - 0} \approx 2.5 \tag{2.2}$$

$$K_{\text{stat}_z} = \frac{11.9884 - 0}{10 - 0} \approx 1.2$$
 (2.3)

2. Odpowiedzi skokowe 5

Rys. 2.1. Odpowiedz procesu na skokową zmiane sterowania

Rys. 2.2. Odpowiedz procesu na skokową zmiane zakłócenia

2. Odpowiedzi skokowe 6

Rys. 2.3. Charakterystka statyczna $\boldsymbol{y}(\boldsymbol{u},\boldsymbol{z})$ symulowanego procesu

3. Wyznaczanie odpowiedzi skokowych

Odpowiedz skokowa w algorytmie DMC oznacza odpowiedz obiektu na jednostkowy skok sterowania. Wyznacza się ją poprzez albo pobudzenie obiektu takim właśnie skokiem jednostkowym, albo, gdy jest to niemożliwe, jakimkolwiek innym i normalizowanie jej. W naszym przypadku nic nie stoi na przeszkodzie aby odrazu pobudzić obiekt takimi właśnie sygnałami.

Rys. 3.1. Odpowiedz skokowa obiektu pobodzonego jednotkowym skokiem sterowania \boldsymbol{u}

Rys. 3.2. Odpowiedz skokowa obiektu pobodzonego jednotkowym skokiem sterowania \boldsymbol{z}

Część II

Laboratoria