Devoir maison 11.

À rendre le jeudi 30 mai 2024

Dans ce problème, p est un entier naturel non nul fixé.

Un jeu oppose 3 joueurs J_1, J_2, J_3 . Il y a un montant de τ euros à gagner.

Le jeu se déroule de la façon suivante : une pièce équilibrée est lancée 2p+1 fois. Avant les lancers, chaque joueur a écrit une liste de prévisions pour ces lancers. Cette liste contient donc une suite de 2p+1 caractères P (pour «pile ») ou F (pour «face»).

Pour tout i de $\{1,2,3\}$, on note X_i la variable aléatoire égale au nombre de prévisions correctes du joueur J_i .

Exemple pour p = 1:

Le joueur J_1 choisit (P, F, P), le joueur J_2 choisit (F, P, F) et le joueur J_3 choisit (F, P, P).

- Si les lancers donnent P, P, P:
 - J_1 a deux prévisions correctes, J_2 a une prévision correcte, J_3 a deux prévisions correctes donc :
 - $X_1 = 2, X_2 = 1, X_3 = 2.$
- Si les lancers donnent P, F, P:
 - $X_1 = 3, X_2 = 0, X_3 = 1.$

Le ou les gagnants sont le ou les joueurs ayant le plus grand nombre de prévisions correctes. S'il y a plusieurs gagnants, les τ euros à gagner sont partagés équitablement entre les gagnants. Pour tout i de $\{1, 2, 3\}$, on note G_i la variable aléatoire égale au gain du joueur J_i .

Dans l'exemple donné ci-dessus, on a donc $G_1 = G_3 = \frac{\tau}{2}$ et $G_2 = 0$ pour la première issue proposée, et pour la deuxième issue, $G_1 = \tau$, $G_2 = G_3 = 0$.

Le choix des listes de prévision ne fait pas partie de l'expérience aléatoire, mais ces listes peuvent avoir été choisies selon une stratégie réfléchie. L'objectif du problème est de déterminer l'espérance de gain des joueurs selon deux stratégies présentées dans les parties 2 et 3.

Partie 1 - Quelques résultats utiles pour les parties suivantes

1°) Reconnaître la loi des variables X_i pour tout $i \in \{1, 2, 3\}$.

On pose alors, pour tout $k \in \{-1, 0, 1, \dots, 2p + 1\}, r_k = P(X_1 \le k)$.

- **2**°) Que valent r_{-1} ? r_{2p+1} ?
- **3°)** Vérifier que pour tout $k \in \{0, \ldots, p\}$, $P(X_1 = k) = P(X_1 = 2p + 1 k)$. En déduire la valeur exacte de r_p .
- **4°)** Montrer que pour tout $k \in \{0, 1, \dots, 2p+1\}$, $P(X_1 = k) = r_k r_{k-1}$.

Remarque: Comme X_2 et X_3 suivent la même loi que X_1 , les résultats ci-dessus sont également valables en remplaçant X_1 par X_2 ou par X_3 .

Partie 2 - Les joueurs jouent au hasard et indépendamment les uns des autres

Dans cette partie, les variables X_i sont donc indépendantes.

- 5°) Que vaut $G_1(\Omega)$?
- **6**°) Soit $k \in \{0, \dots, 2p+1\}$.
 - a) Montrer que $P_{(X_1=k)}(G_1=\tau)=r_{k-1}^2$.
 - **b)** En déduire que $P(G_1 = \tau) = \sum_{k=0}^{2p+1} (r_k r_{k-1}) r_{k-1}^2$.
- 7°) On admet que des raisonnements similaires permettent d'obtenir

$$P\left(G_1 = \frac{\tau}{2}\right) = \sum_{k=0}^{2p+1} 2(r_k - r_{k-1})^2 r_{k-1}$$
 et $P\left(G_1 = \frac{\tau}{3}\right) = \sum_{k=0}^{2p+1} (r_k - r_{k-1})^3$.

En déduire que $E(G_1) = \frac{\tau}{3}$.

Indication : le calcul fera apparaître une somme télescopique.

8°) Retrouver ce résultat plus simplement.

Partie 3 - J_1 et J_2 forment un groupe, J_3 joue comme dans la partie 2

Dans cette partie, J_1 et J_2 adoptent la stratégie suivante : J_1 choisit une liste de prévisions au hasard, mais J_2 choisit la liste constituée, pour chaque lancer, par les prévisions contraires de celles de J_1 . Par exemple, pour p=1, si J_1 a choisi (F,P,P), alors J_2 choisit (P,F,F). J_1 et J_2 se partageront alors équitablement la somme de leurs gains individuels $G_1 + G_2$.

 J_3 , lui, choisit sa liste de prévision au hasard, indépendamment des autres.

Remarque : on pourra donc utiliser les résultats de la partie 1, mais seulement pour X_1 et X_3 .

On note $Y = \max(X_1, X_2)$ et $S = G_1 + G_2$.

- 9°) Quelle relation a-t-on entre X_1 et X_2 ?
- 10°) Justifier que les joueurs J_1 et J_2 ne peuvent pas avoir le même nombre de prévisions correctes, que $Y(\Omega) = \{p+1, \ldots, 2p+1\}$, et que $S(\Omega) = \left\{0, \frac{\tau}{2}, \tau\right\}$.
- **11**°) Montrer que, pour tout k de $\{p+1,\ldots,2p+1\}$, $P(Y=k)=2(r_k-r_{k-1})$.
- **12°)** Calculer, pour tout $k \in \{p+1, \ldots, 2p+1\}$, $P_{(Y=k)}\left(S = \frac{\tau}{2}\right)$ et $P_{(Y=k)}\left(S = \tau\right)$.
- 13°) En déduire :

$$E(S) = \tau(r_{2p+1}^2 - r_p^2).$$

Justifier que cette stratégie est préférable pour J_1 et J_2 .