Chap 2: Data processing

- 1. Numerical system and data format
- 2. Data processing systems

2.1. Number Systems

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Conversion Among Bases

• The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

Binary to Decimal

- Technique
 - Multiply each bit by 2ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - · Add the results

Example 101011₂ => 1 x 2⁰ = 1 1 x 2¹ = 2 0 x 2² = 0 1 x 2³ = 8 0 x 2⁴ = 0 1 x 2⁵ = $\frac{32}{43_{10}}$

Octal to Decimal

- Technique
 - Multiply each bit by 8^a, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Example

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 48$

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 160, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - · Add the results

Example

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

Example $10AF_{16} = ?_{2}$ $10AF_{16} = ?_{2}$ $10AF_{16} = 0001000010101111_{2}$

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

Decimal to Hexadecimal

- Technique
 - Divide by 16 _
 - Keep track of the remainder

Example $1234_{10} = ?_{16}$ $16 \frac{1234}{16 \frac{77}{16 \frac{4}{0}}} ?_{13} = D$ $1234_{10} = 4D2_{16}$

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - · Convert to hexadecimal digits

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

Example

 $1076_8 = 23E_{16}$

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

Common Powers (1 of 2)

• Base 10

Power	Preface	Symbol	Value
10-12	pico	p	.000000000001
10-9	nano	n	.000000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10^{3}	kilo	k	1000
106	mega	M	1000000
109	giga	G	1000000000
1012	tera	T	1000000000000

Common Powers (2 of 2)

• Base 2

Power	Preface	Symbol	Value
210	kilo	k	1024
2 ²⁰	mega	М	1048576
230	Giga	G	1073741824

- What is the value of "k", "M", and "G"?
 In computing, particularly w.r.t. memory, the base-2 interpretation generally applies

Exercise – Free Space

• Determine the "free space" on all drives on a machine in the lab

	Free space		
Drive	Bytes	GB	
A:			
C:			
D:			
E:			
etc.			

Review – multiplying powers

• For common bases, add powers

$$a^{b} \times a^{c} = a^{b+c}$$
 $2^{6} \times 2^{10} = 2^{16} = 65,536$
or...
 $2^{6} \times 2^{10} = 64 \times 2^{10} = 64k$

Binary Addition (2 of 2)

- Two *n*-bit values
 - Add individual bits
 - Propagate carries

Multiplication (1 of 3)

• Decimal (just for fun)

Multiplication (2 of 3)

• Binary, two 1-bit values

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication (3 of 3)

- Binary, two *n*-bit values
 - As with decimal values
 - E.g.,

 $\begin{array}{c} & 1110 \\ \times & 1011 \\ \hline & 1110 \\ 0000 \\ \hline 1110 \\ 10011010 \\ \end{array}$

Fractions

• Decimal to decimal (just for fun)

pp. 46-50

Fractions

• Binary to decimal

