TED	(15)	-1	003

(REVISION — 2015)

Reg. No	
Signature	

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — OCTOBER/NOVEMBER, 2016

ENGINEERING PHYSICS - I

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Distinguish between Giga and nano.
 - 2. What do you mean by period in simple harmonic motion?
 - 3. What is the direction of acceleration of a body when it is thrown vertically upwards and is momentarily at rest at the highest position?
 - 4. What is elastic limit?
 - 5. State the triangle method of vector addition.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - 1. Write the 3 equations of motion for a body:
 - (i) moving upwards under gravity
 - (ii) moving downwards under gravity.
 - 2. For a body thrown vertically upwards, prove that time of ascent is same as time of descent.
 - 3. State Newton's first law of motion. Explain its significance.
 - Define parallel forces. What are like and unlike parallel forces? A force of 30N makes an angle 30° with horizontal. Find its horizontal and vertical components.
 - 5. Explain the different types of energies associated with fluid flow. Write their equations also. Hence, state Bernoulli's theorem and give the equation.
 - 6. Distinguish between free vibrations and forced vibrations. Hence, define resonance.
 - 7. A steel rod of length 4m and 1mm radius is stretched by a 15kg mass. Find the extension produced. Young's modulus of steel is $2 \times 10^{11} \text{ N/m}^2$.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - I

		UNII — I	
III	(a)	Define displacement, velocity and acceleration.	3
	(b)	Derive the equation for displacement of a body during the n th second of its motion. A body having initial velocity 10m/s is moving with an acceleration of 2m/s ² . Find the displacement of the body (i) in the 5 th second of motion, (ii) in 5 seconds.	6
	(c)	A bullet loses $\frac{1 \text{ th}}{10}$ of its velocity when it passes through a wooden block.	6
		How many such blocks are required to stop the bullet?	U
		OR	
IV .	(a)	Define Inertia. When a moving bus is stopped suddenly, passengers are thrown forward. Why?	3
	(b)	Prove the law of conservation of momentum by considering the collision of two bodies moving in a straight line.	6
	(c)	Explain rocket propulsion. When a gun of 5kg fires a bullet of 200g with a velocity 100m/s, find the recoil velocity of the gun.	6
		Unit — II	
V	(a)	Derive the expression for the magnitude and direction of resultant of two forces using parallelogram law of forces.	6
	(b)	Two forces 10N and 20N are acting at an angle 60° with the horizontal. Find the magnitude and direction of the resultant force.	6
	(c)	What are the concurrent forces? What is the name of the force that brings the body under a set of forces to equilibrium?	3
		OR	
VI	(a)	Explain the resolution of a vector into rectangular components.	3
	(b)	Two objects are suspended on either ends of a beam 1m long. If a 60kg mass at one end is balanced by a pivot at 0.4m from the same end, find the mass of the other object.	6
	(c)	Define couple. What is moment of a couple? Derive an expression for work done by a couple.	6

Unit — III

VII	(a)	Write the equation of continuity for steady and uniform flow of an incompressible fluid with a diagram and explain the terms. The radius of a hose decreases from 2.5cm to 1.5cm. The flow rate of the hose is 10m³/s. If water flows through the hose, find its velocities at the two ends.	6
	(I-)		6
	(b)	What do you mean by strain? What are the three types of strain? Write the three corresponding modulii of elasticity.	6
	(c)	Discuss the working principle of airfoil with a figure.	3
		OR	
VIII	(a)	Write the equation for viscous force listing the terms. Describe a method for finding the velocity of liquid using Stoke's method.	.6
	(b)	Discuss the variation of viscosity with temperature.	3
	(c)	Calculate the terminal velocity of a water drop of radius 0.1mm falling through air of viscocity $1.8 \times 10^{-5} \text{ kgm}^{-1}\text{s}^{-1}$, if the viscous force on the drop is $5 \times 10^{-11} \text{ N}$.	6
		Unit — IV	
IX	(a)	Define simple harmonic motion. Write its differential equation.	3
	(b)	Derive a relation connecting the wavelength, frequency and velocity of a wave. Calculat the frequency of blue light of wavelength 430 nanometers. Velocity of	
		light is $3 \times 10^8 \text{m/s}$.	6
	(c)	What are ultrasonic waves? Describe a method to produce ultrasonic waves. OR	6
X	(a)	Discuss the resonance column experiment to determine the velocity of sound in air.	6
	(b)	You are given the velocity of sound in air at $t^{\circ}C(v_t)$. Write an equation to find the velocity of sound at $0^{\circ}C(v_0)$. Hence, find the velocity of sound at $0^{\circ}C$, given that velocity of sound at $60^{\circ}C$ is 365 m/s.	6
	(c)	Distinguish between nodes and antinodes in wave motion.	3
	(-)		7.