```
In [1]: # Install necessary packages
!pip install pandas
!pip install numpy
!pip install scipy
!pip install scikit-learn
!pip install matplotlib
!pip install seaborn
```

```
Requirement already satisfied: pandas in c:\users\josue\anaconda3\envs\d206performan ceassesment\lib\site-packages (2.2.1)
```

Requirement already satisfied: numpy<2,>=1.23.2 in c:\users\josue\anaconda3\envs\d20 6performanceassesment\lib\site-packages (from pandas) (1.26.4)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\josue\anaconda3\envs\d206performanceassesment\lib\site-packages (from pandas) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\josue\anaconda3\envs\d206per formanceassesment\lib\site-packages (from pandas) (2023.3.post1)

Requirement already satisfied: tzdata>=2022.7 in c:\users\josue\anaconda3\envs\d206p erformanceassesment\lib\site-packages (from pandas) (2024.1)

Requirement already satisfied: six>=1.5 in c:\users\josue\anaconda3\envs\d206perform anceassesment\lib\site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)

Requirement already satisfied: numpy in c:\users\josue\anaconda3\envs\d206performanc eassesment\lib\site-packages (1.26.4)

Requirement already satisfied: scipy in c:\users\josue\anaconda3\envs\d206performanc eassesment\lib\site-packages (1.12.0)

Requirement already satisfied: numpy<1.29.0,>=1.22.4 in c:\users\josue\anaconda3\env s\d206performanceassesment\lib\site-packages (from scipy) (1.26.4)

Requirement already satisfied: scikit-learn in c:\users\josue\anaconda3\envs\d206per formanceassesment\lib\site-packages (1.4.1.post1)

Requirement already satisfied: numpy<2.0,>=1.19.5 in c:\users\josue\anaconda3\envs\d 206performanceassesment\lib\site-packages (from scikit-learn) (1.26.4)

Requirement already satisfied: scipy>=1.6.0 in c:\users\josue\anaconda3\envs\d206per formanceassesment\lib\site-packages (from scikit-learn) (1.12.0)

Requirement already satisfied: joblib>=1.2.0 in c:\users\josue\anaconda3\envs\d206pe rformanceassesment\lib\site-packages (from scikit-learn) (1.3.2)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\josue\anaconda3\envs\d206performanceassesment\lib\site-packages (from scikit-learn) (3.3.0)

Requirement already satisfied: matplotlib in c:\users\josue\anaconda3\envs\d206perfo rmanceassesment\lib\site-packages (3.8.3)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\josue\anaconda3\envs\d20 6performanceassesment\lib\site-packages (from matplotlib) (1.2.0)

Requirement already satisfied: cycler>=0.10 in c:\users\josue\anaconda3\envs\d206per formanceassesment\lib\site-packages (from matplotlib) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\josue\anaconda3\envs\d2 06performanceassesment\lib\site-packages (from matplotlib) (4.49.0)

Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\josue\anaconda3\envs\d2 06performanceassesment\lib\site-packages (from matplotlib) (1.4.5)

Requirement already satisfied: numpy<2,>=1.21 in c:\users\josue\anaconda3\envs\d206p erformanceassesment\lib\site-packages (from matplotlib) (1.26.4)

Requirement already satisfied: packaging>=20.0 in c:\users\josue\anaconda3\envs\d206 performanceassesment\lib\site-packages (from matplotlib) (23.1)

Requirement already satisfied: pillow>=8 in c:\users\josue\anaconda3\envs\d206perfor manceassesment\lib\site-packages (from matplotlib) (10.2.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\josue\anaconda3\envs\d20 6performanceassesment\lib\site-packages (from matplotlib) (3.1.2)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\josue\anaconda3\envs \d206performanceassesment\lib\site-packages (from matplotlib) (2.8.2)

Requirement already satisfied: six>=1.5 in c:\users\josue\anaconda3\envs\d206perform anceassesment\lib\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)

Requirement already satisfied: seaborn in c:\users\josue\anaconda3\envs\d206performa nceassesment\lib\site-packages (0.13.2)

Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\users\josue\anaconda3\envs\d206performanceassesment\lib\site-packages (from seaborn) (1.26.4)

Requirement already satisfied: pandas>=1.2 in c:\users\josue\anaconda3\envs\d206perf ormanceassesment\lib\site-packages (from seaborn) (2.2.1)

Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\users\josue\anaconda3\e nvs\d206performanceassesment\lib\site-packages (from seaborn) (3.8.3)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\josue\anaconda3\envs\d20 6performanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1. 2.0)

Requirement already satisfied: cycler>=0.10 in c:\users\josue\anaconda3\envs\d206per formanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1) Requirement already satisfied: fonttools>=4.22.0 in c:\users\josue\anaconda3\envs\d2 06performanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.49.0)

Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\josue\anaconda3\envs\d2 06performanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.5)

Requirement already satisfied: packaging>=20.0 in c:\users\josue\anaconda3\envs\d206 performanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (23. 1)

Requirement already satisfied: pillow>=8 in c:\users\josue\anaconda3\envs\d206perfor manceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (10.2.0) Requirement already satisfied: pyparsing>=2.3.1 in c:\users\josue\anaconda3\envs\d20 6performanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.1.2)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\josue\anaconda3\envs \d206performanceassesment\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\josue\anaconda3\envs\d206per formanceassesment\lib\site-packages (from pandas>=1.2->seaborn) (2023.3.post1) Requirement already satisfied: tzdata>=2022.7 in c:\users\josue\anaconda3\envs\d206p erformanceassesment\lib\site-packages (from pandas>=1.2->seaborn) (2024.1) Requirement already satisfied: six>=1.5 in c:\users\josue\anaconda3\envs\d206perform anceassesment\lib\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0)

- In [2]: # Standard imports
 import numpy as np
 import pandas as pd
 from sklearn.preprocessing import scale
 from sklearn.decomposition import PCA

 import seaborn as sns
 import matplotlib.pyplot as plt
 %matplotlib inline
- In [4]: #display churn dataframe to know it actually loaded up.
 #A. Research Question how many people over the age of 62 have an active service and
 churn_df

Out[4]:		Unnamed: 0	CaseOrder	Customer_id	Interaction	City
	0	1	1	K409198	aa90260b-4141-4a24-8e36- b04ce1f4f77b	Point Baker
	1	2	2	S120509	fb76459f-c047-4a9d-8af9-e0f7d4ac2524	West Branch
	2	3	3	K191035	344d114c-3736-4be5-98f7- c72c281e2d35	Yamhill
	3	4	4	D90850	abfa2b40-2d43-4994- b15a-989b8c79e311	Del Mar
	4	5	5	K662701	68a861fd-0d20-4e51- a587-8a90407ee574	Needville
	•••					
	9995	9996	9996	M324793	45deb5a2-ae04-4518-bf0b- c82db8dbe4a4	Mount Holly
	9996	9997	9997	D861732	6e96b921-0c09-4993-bbda- a1ac6411061a	Clarksville
	9997	9998	9998	1243405	e8307ddf-9a01-4fff-bc59-4742e03fd24f	Mobeetie
	9998	9999	9999	1641617	3775ccfc-0052-4107-81ae-9657f81ecdf3	Carrollton
	9999	10000	10000	Т38070	9de5fb6e-bd33-4995-aec8- f01d0172a499	Clarkesville

10000 rows × 52 columns

In [5]: #list of dataframe columns

```
In [6]: #remove unnamed column and display first five records
    df= churn_df.drop(churn_df.columns[0], axis =1)
    df.head()
```

Out[6]:		CaseOrder	Customer_id	Interaction	City	State	County	Zip	
	0	1	K409198	aa90260b-4141-4a24-8e36- b04ce1f4f77b	Point Baker	AK	Prince of Wales- Hyder	99927	56
	1	2	S120509	fb76459f-c047-4a9d-8af9- e0f7d4ac2524	West Branch	MI	Ogemaw	48661	44
	2	3	K191035	344d114c-3736-4be5-98f7- c72c281e2d35	Yamhill	OR	Yamhill	97148	4 <u>:</u>
	3	4	D90850	abfa2b40-2d43-4994- b15a-989b8c79e311	Del Mar	CA	San Diego	92014	32
	4	5	K662701	68a861fd-0d20-4e51- a587-8a90407ee574	Needville	TX	Fort Bend	77461	29

5 rows × 51 columns

```
In [8]: #amount of records and columns of the dataset
df.shape
```

Out[8]: (10000, 51)

```
In [9]: #describe Churn dataset columns and rows
df.describe()
```

Out[9]:		CaseOrder	Zip	Lat	Lng	Population	Children
	count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	7505.000000
	mean	5000.50000	49153.319600	38.757567	-90.782536	9756.562400	2.095936
	std	2886.89568	27532.196108	5.437389	15.156142	14432.698671	2.154758
	min	1.00000	601.000000	17.966120	-171.688150	0.000000	0.000000
	25%	2500.75000	26292.500000	35.341828	-97.082812	738.000000	0.000000
	50%	5000.50000	48869.500000	39.395800	-87.918800	2910.500000	1.000000
	75%	7500.25000	71866.500000	42.106908	-80.088745	13168.000000	3.000000
	max	10000.00000	99929.000000	70.640660	-65.667850	111850.000000	10.000000

8 rows × 23 columns

Out[10]:	Population		Children	Age	Income	Outage_sec_perweek	
	count	10000.000000	7505.000000	7525.000000	7510.000000	10000.000000	10000
	mean	9756.562400	2.095936	53.275748	39936.762226	11.452955	12
	std	14432.698671	2.154758	20.753928	28358.469482	7.025921	3
	min	0.000000	0.000000	18.000000	740.660000	-1.348571	1
	25%	738.000000	0.000000	35.000000	19285.522500	8.054362	10
	50%	2910.500000	1.000000	53.000000	33186.785000	10.202896	12
	75%	13168.000000	3.000000	71.000000	53472.395000	12.487644	14
	max	111850.000000	10.000000	89.000000	258900.700000	47.049280	23

In [11]: #calculate churn rate
 df.Churn.value_counts() / len(df)

Out[11]: Churn

No 0.735 Yes 0.265

Name: count, dtype: float64

```
Out[12]: CaseOrder
                                      int64
          Customer_id
                                     object
          Interaction
                                     object
          City
                                     object
          State
                                     object
          County
                                     object
          Zip
                                      int64
                                    float64
          Lat
                                    float64
          Lng
          Population
                                      int64
          Area
                                     object
          Timezone
                                     object
          Job
                                    object
          Children
                                    float64
                                    float64
          Age
                                    object
          Education
          Employment
                                    object
                                    float64
          Income
          Marital
                                    object
          Gender
                                     object
          Churn
                                     object
          Outage_sec_perweek
                                    float64
          Email
                                      int64
          Contacts
                                      int64
          Yearly_equip_failure
                                      int64
          Techie
                                     object
          Contract
                                     object
          Port_modem
                                     object
          Tablet
                                     object
          InternetService
                                     object
          Phone
                                     object
          Multiple
                                     object
          OnlineSecurity
                                     object
          OnlineBackup
                                     object
          DeviceProtection
                                     object
          TechSupport
                                     object
          StreamingTV
                                     object
          StreamingMovies
                                     object
          PaperlessBilling
                                     object
          PaymentMethod
                                     object
          Tenure
                                    float64
          MonthlyCharge
                                    float64
          Bandwidth_GB_Year
                                    float64
          Responses
                                      int64
          Solutions
                                      int64
          Replacements
                                      int64
          Reliability
                                      int64
          Options
                                      int64
          Respectfulness
                                      int64
          Courteous
                                      int64
                                      int64
          Listening
          dtype: object
```

In [13]: # Re-validate column data types and missing values
 df.columns.to_series().groupby(df.dtypes).groups

In [14]: #find missing values
df.isnull()

Out[14]:		CaseOrder	Customer_id	Interaction	City	State	County	Zip	Lat	Lng	Popula
	0	False	False	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	False	False	
	•••						•••				
99	995	False	False	False	False	False	False	False	False	False	
99	996	False	False	False	False	False	False	False	False	False	
99	997	False	False	False	False	False	False	False	False	False	
99	998	False	False	False	False	False	False	False	False	False	
99	999	False	False	False	False	False	False	False	False	False	

10000 rows × 51 columns

```
In [15]: #access only rows from dataframe containing missing values
    df.isnull().any(axis=1)
```

```
Out[15]: 0
                   True
         1
                  False
          2
                  True
          3
                  False
                  False
                  . . .
          9995
                   True
          9996
                  True
          9997
                  True
          9998
                  False
          9999
                  True
          Length: 10000, dtype: bool
```

Out[16]:	CaseOrder	False
	Customer_id	False
	Interaction	False
	City	False
	State	False
	County	False
	Zip	False
	Lat	False
	Lng	False
	Population	False
	Area	False
	Timezone	False
	Job	False
	Children	True
	Age	True
	Education	False
	Employment	False
	Income	True
	Marital	False
	Gender	False
	Churn	False
	Outage_sec_perweek	False
	Email	False
	Contacts	False
	Yearly_equip_failure	False
	Techie	True
	Contract	False
	Port_modem	False
	Tablet	False
	InternetService	True
	Phone	True
	Multiple	False
	OnlineSecurity	False
	OnlineBackup	False
	DeviceProtection	False
	TechSupport	True
	StreamingTV	False
	StreamingMovies	False
	PaperlessBilling	False
	PaymentMethod	False
	Tenure	True
	MonthlyCharge	False
	Bandwidth_GB_Year	True
	Responses	False
	Solutions	False
	Replacements	False
	Reliability	False
	Options	False
	Respectfulness	False
	Courteous	False
	Listening	False
	dtype: bool	

```
In [17]: # store null values in a variable to get total counts
d_nulls = df.isnull().sum()
print(d_nulls)
```

<u> </u>	
CaseOrder	0
Customer_id	0
Interaction	0
City	0
State	0
County	0
Zip	0
Lat	0
Lng	0
Population	0
Area	0
Timezone	0
Job	0
Children	2495
Age	2475
Education	0
Employment	0
Income	2490
Marital	0
Gender	0
Churn	0
Outage_sec_perweek	0
Email	0
Contacts	0
Yearly_equip_failure	0
Techie	2477
Contract	0
Port_modem	0
Tablet	0
InternetService	2129
Phone	1026
Multiple	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	991
StreamingTV	0
StreamingMovies	0
PaperlessBilling	0
PaymentMethod	0
Tenure	931
MonthlyCharge	0
Bandwidth_GB_Year	1021
Responses	0
Solutions	0
Replacements	0
Reliability	0
Options	0
Respectfulness	0
Courteous	0
Listening	0
dtype: int64	

In [18]: # Store rows with missing values in a new variable rows_with_missing_values = df.isnull().any(axis=1) df[rows_with_missing_values]

Out[20]: array(['Urban', 'Suburban', 'Rural'], dtype=object)

In [21]: df['Timezone'].unique()

Out[18]:		CaseOrder	Customer_id	Interaction	City	State	Count
	0	1	K409198	aa90260b-4141-4a24-8e36- b04ce1f4f77b	Point Baker	AK	Prince c Wales-Hyde
	2	3	K191035	344d114c-3736-4be5-98f7- c72c281e2d35	Yamhill	OR	Yamhi
	5	6	W303516	2b451d12-6c2b-4cea-a295- ba1d6bced078	Fort Valley	GA	Peac
	6	7	U335188	6630d501-838c-4be4- a59c-6f58c814ed6a	Pioneer	TN	Sco
	7	8	V538685	70ddaa89- b726-49dc-9022-2d655e4c7936	Oklahoma City	OK	Oklahom
	•••						
	9994	9995	P175475	c60df12b-a50b-4397- ae57-98381a0d3960	West Kill	NY	Green
	9995	9996	M324793	45deb5a2-ae04-4518-bf0b- c82db8dbe4a4	Mount Holly	VT	Rutlan
	9996	9997	D861732	6e96b921-0c09-4993-bbda- a1ac6411061a	Clarksville	TN	Montgomer
	9997	9998	1243405	e8307ddf-9a01-4fff- bc59-4742e03fd24f	Mobeetie	TX	Wheele
	9999	10000	T38070	9de5fb6e-bd33-4995-aec8- f01d0172a499	Clarkesville	GA	Habershar
	8316 r	ows × 51 col	umns				
In [19]:		ine columns mployment']		elled words in categorical v	ariables us	sing un	quie() met
Out[19]:	array	v(['Part Tin dtype=obje		', 'Student', 'Full Time', '	Unemployed	'],	
In [20]:	df['A	rea'].uniqu	e()				

```
Out[21]: array(['America/Sitka', 'America/Detroit', 'America/Los_Angeles',
                 'America/Chicago', 'America/New_York', 'America/Puerto_Rico',
                 'America/Denver', 'America/Menominee', 'America/Phoenix',
                 'America/Indiana/Indianapolis', 'America/Boise',
                 'America/Kentucky/Louisville', 'Pacific/Honolulu',
                 'America/Indiana/Petersburg', 'America/Nome', 'America/Anchorage',
                 'America/Indiana/Knox', 'America/Juneau', 'America/Toronto',
                 'America/Indiana/Winamac', 'America/Indiana/Vincennes',
                 'America/North_Dakota/New_Salem', 'America/Indiana/Tell_City',
                 'America/Indiana/Marengo', 'America/Ojinaga'], dtype=object)
In [22]: #get total count of how many unquie items there are
         len(df['Job'].unique())
Out[22]: 639
In [23]: df['Children'].unique()
Out[23]: array([nan, 1., 4., 0., 3., 2., 7., 5., 9., 6., 10., 8.])
In [24]: #find the unique amount of ages then get a count for how many differnet age's then
         df['Age'].unique()
Out[24]: array([68., 27., 50., 48., 83., nan, 49., 86., 23., 56., 30., 39., 63.,
                 60., 61., 52., 75., 77., 47., 70., 69., 45., 40., 82., 26., 25.,
                 66., 72., 41., 44., 43., 84., 59., 31., 51., 58., 73., 33., 42.,
                 81., 87., 54., 67., 46., 24., 20., 71., 32., 29., 80., 53., 79.,
                 65., 35., 34., 74., 55., 76., 57., 38., 78., 19., 36., 88., 62.,
                 37., 28., 22., 85., 89., 18., 21., 64.])
In [25]: | age_range = df['Age'].unique()
         print(sorted(age range))
        [23.0, 25.0, 26.0, 27.0, 30.0, 31.0, 39.0, 40.0, 41.0, 43.0, 44.0, 45.0, 47.0, 48.0,
        49.0, 50.0, 51.0, 52.0, 59.0, 61.0, 68.0, 83.0, nan, 18.0, 19.0, 20.0, 21.0, 22.0, 2
        4.0, 28.0, 29.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 42.0, 46.0, 53.0, 54.0, 5
        5.0, 56.0, 57.0, 58.0, 60.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 69.0, 70.0, 71.0, 7
        2.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 84.0, 85.0, 86.0, 8
        7.0, 88.0, 89.0]
In [26]: #finding more unquie values in other columns
         df['Education'].unique()
Out[26]: array(["Master's Degree", 'Regular High School Diploma',
                 'Doctorate Degree', 'No Schooling Completed', "Associate's Degree",
                 "Bachelor's Degree", 'Some College, Less than 1 Year',
                 'GED or Alternative Credential',
                 'Some College, 1 or More Years, No Degree',
                 '9th Grade to 12th Grade, No Diploma',
                 'Nursery School to 8th Grade', 'Professional School Degree'],
                dtype=object)
In [27]: df['Employment'].unique()
```

```
Out[27]: array(['Part Time', 'Retired', 'Student', 'Full Time', 'Unemployed'],
                dtype=object)
In [28]: |df['Marital'].unique()
Out[28]: array(['Widowed', 'Married', 'Separated', 'Never Married', 'Divorced'],
                dtype=object)
In [29]: df['Gender'].unique()
Out[29]: array(['Male', 'Female', 'Prefer not to answer'], dtype=object)
         df['Contract'].unique()
In [30]:
Out[30]: array(['One year', 'Month-to-month', 'Two Year'], dtype=object)
In [31]: df['PaymentMethod'].unique()
Out[31]: array(['Credit Card (automatic)', 'Bank Transfer(automatic)',
                 'Mailed Check', 'Electronic Check'], dtype=object)
         # Display any duplicate rows in the dataframe.
In [32]:
         data_duplicates = df.loc[df.duplicated()]
         print(data_duplicates)
        Empty DataFrame
        Columns: [CaseOrder, Customer_id, Interaction, City, State, County, Zip, Lat, Lng, P
        opulation, Area, Timezone, Job, Children, Age, Education, Employment, Income, Marita
        1, Gender, Churn, Outage_sec_perweek, Email, Contacts, Yearly_equip_failure, Techie,
        Contract, Port_modem, Tablet, InternetService, Phone, Multiple, OnlineSecurity, Onli
        neBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, PaperlessBill
        ing, PaymentMethod, Tenure, MonthlyCharge, Bandwidth_GB_Year, Responses, Solutions,
        Replacements, Reliability, Options, Respectfulness, Courteous, Listening]
        Index: []
        [0 rows x 51 columns]
In [33]: data_nulls = df_stats.isnull().sum()
         print(data_nulls)
```

```
Customer_id
                           0
Interaction
                           0
City
                           0
State
                           0
County
                           0
Population
                           0
Area
                           0
Timezone
                           0
Job
                           0
Children
                        2495
                        2475
Age
Education
Employment
                           0
                        2490
Income
Marital
                           0
Gender
                           0
Churn
                           0
Outage_sec_perweek
                           0
Email
Contacts
                           0
Yearly_equip_failure
                           0
                        2477
Techie
Contract
                           0
Port_modem
                           0
Tablet
                           0
InternetService
                        2129
Phone
                        1026
Multiple
                           0
OnlineSecurity
                           0
OnlineBackup
                           0
DeviceProtection
TechSupport
                         991
                           0
StreamingTV
                           0
StreamingMovies
PaperlessBilling
                           0
PaymentMethod
                           0
Tenure
                         931
MonthlyCharge
                           0
                        1021
Bandwidth_GB_Year
Responses
                           0
Solutions
                           0
Replacements
                           0
Reliability
                           0
                           0
Options 0
Respectfulness
                           0
Courteous
                           0
Listening
dtype: int64
```

```
In [34]: #impute missing fields for variables with median or mean

df_stats['Children'] = df['Children'].fillna(df['Children'].median())

df_stats['Age'] = df['Age'].fillna(df['Age'].median())

df_stats['Income'] = df['Income'].fillna(df['Income'].median())

df_stats['Tenure'] = df['Tenure'].fillna(df['Tenure'].median())

df_stats['Bandwidth_GB_Year'] = df['Bandwidth_GB_Year'].fillna(df['Bandwidth_GB_Yea
```

```
In [35]: data_nulls = df_stats.isnull().sum()
         print(data_nulls)
                                    0
        Customer_id
        Interaction
                                    0
        City
                                    0
        State
                                    0
        County
                                    0
                                    0
        Population
        Area
                                    0
        Timezone
                                    0
        Job
                                    0
        Children
                                    0
        Age
                                    0
                                    0
        Education
        Employment
                                    0
        Income
                                    0
        Marital
                                    0
        Gender
                                    0
        Churn
                                    0
                                    0
        Outage_sec_perweek
        Email
                                    0
        Contacts
        Yearly_equip_failure
                                    0
        Techie
                                 2477
        Contract
                                    0
        Port_modem
                                    0
        Tablet
                                    0
        InternetService
                                 2129
                                 1026
        Phone
        Multiple
                                    0
        OnlineSecurity
                                    0
        OnlineBackup
                                    0
        DeviceProtection
                                    0
        TechSupport
                                 991
        StreamingTV
                                    0
                                    0
        StreamingMovies
        PaperlessBilling
                                    0
        PaymentMethod
                                    0
        Tenure
                                    0
        MonthlyCharge
        Bandwidth_GB_Year
                                    0
        Responses
                                    0
        Solutions
                                    0
        Replacements
                                    0
        Reliability
                                    0
        Options
                                    0
                                    0
        Respectfulness
                                    0
        Courteous
                                    0
        Listening
        dtype: int64
In [36]: # Create histograms of important variables
         df_stats[['Children', 'Age', 'Income', 'Tenure', 'MonthlyCharge', 'Bandwidth_GB_Yea
         plt.savefig('churn_pyplot.jpg')
         plt.tight_layout()
```


In [77]: # Create a boxplot of user duration, payment, useage,income & age variables
 df_stats.boxplot(['Tenure', 'MonthlyCharge', 'Bandwidth_GB_Year','Age','Income'])
 plt.savefig('churn_boxplots.jpg')

In [38]: #isolate monlthy charge where we can take a better look at the outliers
 df_stats.boxplot(['MonthlyCharge'])

Out[38]: <Axes: >

In [55]: # lets take a closer look at income to see the outliers here
 df_stats.boxplot(['Tenure','Income'])

Out[55]: <Axes: >


```
In [56]: #extract Clean dataset
    df_stats.to_csv('churn_cleaned.csv')

In [59]: #reload cleaned data & remove all variable except user services payment info and su churn_user = pd.read_csv('churn_cleaned.csv')

In [60]: #remove all but the last 11 service related variables for the PCA data = churn_user.loc[:, 'Tenure':'Listening']
    data.head()
```

Out[60]:		Tenure	MonthlyCharge	Bandwidth_GB_Year	Responses	Solutions	Replacements	Re
	0	6.795513	171.449762	904.536110	5	5	5	
	1	1.156681	242.948015	800.982766	3	4	3	
	2	15.754144	159.440398	2054.706961	4	4	2	
	3	17.087227	120.249493	2164.579412	4	4	4	
	4	1.670972	150.761216	271.493436	4	4	4	

```
In [61]: #Import Scikit Learn PCA application
    from sklearn.decomposition import PCA
```

```
In [62]: #Normalize the data
churn_normalized = (data - data.mean()) / data.std()
```

```
In [63]: #Select number of components to extract
         pca = PCA(n_components = data.shape[1])
In [65]:
         #Create a list of PCA names
         churn_numeric = data[['Tenure', 'MonthlyCharge', 'Bandwidth_GB_Year', 'Responses',
                                 'Solutions', 'Replacements', 'Reliability', 'Options',
                                 'Respectfulness', 'Courteous', 'Listening']]
         pcs_names = []
         for i, col in enumerate(churn_numeric.columns):
             pcs_names.append('PC' + str(i + 1))
         print(pcs_names)
        ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10', 'PC11']
In [66]: #Call PCA application & convert the dataset of 11 variables into a dataset of 11 col
         pca.fit(churn_normalized)
         churn_pca = pd.DataFrame(pca.transform(churn_normalized),
                                  columns = pcs_names)
In [67]:
         #For a scree plot import matplotlib & seaborn libraries
         import matplotlib.pyplot as plt
         import seaborn as sns
In [69]: #Run the scree plot
         plt.plot(pca.explained_variance_ratio_)
         plt.xlabel('Number of Components')
         plt.ylabel(' Variance')
         plt.show();
           0.25
           0.20
        Variance
           0.15
           0.10
           0.05
```

0.00

0

2

6

Number of Components

8

10

```
In [70]: |#Extract the eigenvalues
         cov_matrix = np.dot(churn_normalized.T, churn_normalized) / data.shape[0]
         eigenvalues = [np.dot(eigenvector.T, np.dot(cov_matrix, eigenvector)) for eigenvect
In [71]: #Plot the eigenvalues
         plt.plot(eigenvalues)
         plt.xlabel('Number of Components')
         plt.ylabel('Eigenvalue')
         plt.show();
            3.0
           2.5
            2.0
        Eigenvalue
           1.5
            1.0
            0.5
            0.0
                                2
                                                         6
                                                                      8
                                                                                   10
                                        Number of Components
In [72]: | for pc, var in zip(pcs_names, np.cumsum(pca.explained_variance_ratio_)):
             print(pc, var)
        PC1 0.2679266062396318
        PC2 0.44053732880229535
        PC3 0.589144452224861
        PC4 0.6801579842425111
        PC5 0.751321705437251
        PC6 0.814311709410132
        PC7 0.8681970531672304
        PC8 0.9171387362588809
        PC9 0.9610122820002168
        PC10 0.9905736363144829
        PC11 0.99999999999998
In [73]: # we see that 86% of variance is explained by 7 components
         # Create a rotation
         rotation = pd.DataFrame(pca.components_.T, columns = pcs_names, index = churn_numer
         print(rotation)
```

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6 \
      Tenure
                     -0.010403 0.701838 -0.072209 -0.063594 0.005683 -0.011155
                     MonthlyCharge
      Bandwidth GB Year -0.012166 0.703079 -0.074222 0.004399 0.009590 0.003466
      Responses
                     Solutions
                     Replacements
                     0.400639 0.034665 0.281118 -0.019631 -0.173742 -0.255336
                     0.145799 -0.050367 -0.567815 -0.010310 -0.171334 -0.483328
      Reliability
      Options 0
                     Respectfulness
                     0.405207 -0.012680 -0.183447 0.004596 -0.062342 0.064609
      Courteous
                     0.358342 -0.003886 -0.181697 -0.027959 -0.182406 0.806166
                     0.308925 -0.017396 -0.131173  0.015574  0.931612 -0.011133
      Listening
                                 PC8
                                                 PC10
                         PC7
                                         PC9
                                                         PC11
      Tenure
                     0.007419 -0.011527 0.006935 0.003286 -0.705445
      MonthlyCharge
                     Bandwidth_GB_Year 0.003701 -0.002364 -0.008068 0.008529 0.706925
                     Responses
      Solutions
                     -0.065414   0.074400   -0.592131   -0.573832   -0.002217
      Replacements
                     -0.146887 -0.396333   0.673088 -0.177665   0.014933
      Reliability
                     -0.443353   0.431528   0.087207   0.018301   0.002283
                     -0.209767   0.693861   0.265474   -0.042012   -0.002514
      Options 0
      Respectfulness
                     0.757954  0.402835  0.230319 -0.063972  0.001604
                     -0.379136   0.067889   0.067293   -0.040946   -0.006875
      Courteous
      Listening
                    -0.113297 -0.045132 0.046107 -0.042251 -0.002357
In [74]: # Output loadings for components
       loadings = pd.DataFrame(pca.components .T,
                          columns = pcs names,
                          index = data.columns)
```

Out[74]:		PC1	PC2	PC3	PC4	PC5	PC6	F
	Tenure	-0.010403	0.701838	-0.072209	-0.063594	0.005683	-0.011155	0.0074
	MonthlyCharge	0.000317	0.041147	-0.014151	0.996995	-0.022136	0.015231	-0.018(
Band	dwidth_GB_Year	-0.012166	0.703079	-0.074222	0.004399	0.009590	0.003466	0.0037
	Responses	0.458932	0.031325	0.281154	0.018568	-0.070233	-0.119149	-0.0459
	Solutions	0.434134	0.042559	0.282404	0.007508	-0.106632	-0.169752	-0.0654
	Replacements	0.400639	0.034665	0.281118	-0.019631	-0.173742	-0.255336	-0.1468
	Reliability	0.145799	-0.050367	-0.567815	-0.010310	-0.171334	-0.483328	-0.443
	Options	-0.175633	0.066334	0.587335	-0.000047	0.135949	0.060124	-0.2097
	Respectfulness	0.405207	-0.012680	-0.183447	0.004596	-0.062342	0.064609	0.7579
	Courteous	0.358342	-0.003886	-0.181697	-0.027959	-0.182406	0.806166	-0.379 ⁻
	Listening	0.308925	-0.017396	-0.131173	0.015574	0.931612	-0.011133	-0.113;

loadings

```
churn_reduced = churn_pca.iloc[ : , 0:3]
 print(churn_reduced)
         PC1 PC2 PC3
    1.923875 -1.421955 1.903125
0
1 -0.199798 -1.706801 0.538766
2 -0.667923 -0.985940 0.227390
    0.046465 -0.730628 2.282040
3
    1.326741 -1.924880 0.825729
                      ...
. . .
    9995 -2.097964 1.961837 0.104147
9996 1.917485 1.645946 0.611009
9997 1.431918 0.323573 0.028288
9998 2.011460 2.187756 -0.079864
9999 -2.266364 1.591986 -0.819973
[10000 rows x 3 columns]
```

In []: