Kyle Havenga

<u>30161878</u>

2020/10/02

Assignment 2

austion 1 Scoto dot runder of appearances (b) The graph shows that the higher the dorard the higher the amount of approvance.

The graph also indicates a medium drough possible correlation.

(c) $y = 5c - (y - y)^{2} - (x - x)^{2} - (x - 5c)(y - y)^{2}$ $y = (x - 5c)(y - y)^{2} - (x - 5c)(y - y)^{2}$ $y = (x - 5c)(y - y)^{2} - (x - 5c)(y - y)^{2} - (x - 5c)(y - 6c)^{2} - (x - 5c)(x - 5c)^{2} - (x - 5c)^{2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(a) $f \propto = 20$ · · · $\hat{y} = 1 + 1(20)$ Thorfor the donard that should be expected Using the least eguer regression line to estimate the do and around is just an estimate and does not represent reality. = 0,893 r = 0,77 59.3 % is a positive correlation but there is other voide that or impeling it. 1

	ration :	
2 2 3 4 5 6 7 8 9	4 6 4 8 10 8 7 9	$3-y$ co raing along E_{170} $4+6+4$ / $3=4,667$ $(s-4,167)=0,255$ $(6+4+5)/2=S$ $(10-S)=S$ $(4+8+10)/2=6,337$ $(8-6,27)=1,867$ $(8+10+8)/2=7,667$ $(7-7,667)=0,667$ $(8+7+9)/3=8,737$ $(9-8,37)=0,67$ $(12-8)=4$ $(14-9,77)=4,167$ $(9+12+14)/3=11,167$
11 12 M	A) =	$\frac{(9+12+14)/3}{(12+14+13)/3} = \frac{11}{3},667$ $\frac{2(aro)}{2} = \frac{19}{8}$ $\frac{19}{8}$ $\frac{19}{8}$

September 1			
(1) You Donno 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(s-a,c)=0.5 (10-s)=s (8-7.7s)=0.7s (7-7.7s)=0.7s (9-8)=1 (12-8.7s)=7.7s (14-10)=4 (15-12.2s)=2.7s
2	MAD =	18, S 8 2, 313	2(Esror) = 8,5

Ca	2 2 4 S 6 7 8	Donoco 4 6 4 5 10 8 7	Forceast 2.2181 + 1, asas	(1) = 3,27 (z) = 4,23 (y) = 5,28 (a) = 6,44 (c) = 7,49 (b) = 8,55 (7) = 9,60 (8) = 19,65	(6-a.30) = $(a-6.28) =$ $(6-6.44) =$ $(6-7.49) =$ $(8-8.68) =$	1,78 1,44 2,51 0,55 2,60
	9 10 11 12		15, 24 11 1, 5884	(9) = 11,71 (10) = 12,76 (11) = 13,82 (12) = 14,87	(12 - 11,71) = (14 - 12,76) = (18 - 13,82) = (18	= 1,18
2			24.82			

BASI	WALLES TO BE THE REAL PROPERTY OF THE PERSON	ZAI
(d)	Ver Dand Farcast 1	Eno 1 1,3 09 0,24 5,17 1,62 0,13
	9 12 6,900963 to,3 (9-6,908963) = 7154 10 14 7,50566741+0,3 (12-7,53566741) = 8187	0.46 S17 A189 -
(c)	Ft. = Ft + x (/t-Ft) where Ft = previous Forcast x = Smoothing Contact Yt = previous point donard MAD = 26,82 11 = 2,44 The voiry the MAD sition C is the most reliable fracast one/MAD of 13 that predicts 14872, 10 litros at Drade	288