Path Analysis

Todd K. Hartman Lecturer in Quantitative Methods Sheffield Methods Institute

14 February 2017

Path Model

Path Model Variations

Path Model: Example

Path Model: Covariances / Correlations

Path Model: Partial Regression Coefficients

Path Model: Partial Regression Coefficients

Path Model: Partial Regression Coefficients

• Standardized values (z-scores) are better when

- Standardized values (z-scores) are better when
 - comparing coefficients within the same model

- Standardized values (z-scores) are better when
 - comparing coefficients within the same model
 - or across models within the same sample

- Standardized values (z-scores) are better when
 - comparing coefficients within the same model
 - or across models within the same sample
- Unstandardized values are better when

- **Standardized** values (z-scores) are better when
 - comparing coefficients within the same model
 - or across models within the same sample
- Unstandardized values are better when
 - comparing coefficients for the same variable relationships across samples

- **Standardized** values (z-scores) are better when
 - comparing coefficients within the same model
 - or across models within the same sample
- Unstandardized values are better when
 - comparing coefficients for the same variable relationships across samples
 - or when the raw score units are meaningful (e.g., dollars, height, age)

- Standardized values (z-scores) are better when
 - · comparing coefficients within the same model
 - or across models within the same sample
- Unstandardized values are better when
 - comparing coefficients for the same variable relationships across samples
 - or when the raw score units are meaningful (e.g., dollars, height, age)

Regression Estimate

$$\beta = \beta^* \frac{\sigma_{\mathsf{Y}}}{\sigma_{\mathsf{X}}}$$

$$\beta^* = \beta \frac{\sigma_X}{\sigma_Y}$$

Path Model: Single Cause

Path Model: Correlated Causes

Path Model: Correlated Causes

Path Model: Correlated Causes

Path Model: Indirect Effects

Path Model: Indirect Effects

Types of Structural Models

Recursive models

Uncorrelated disturbances Unidirectional causal effects

Types of Structural Models

- Recursive models
 - Uncorrelated disturbances Unidirectional causal effects
- Nonrecursive models
 - Correlated disturbances Feedback loops

Recursive or Nonrecursive?

Recursive or Nonrecursive?

Recursive

Recursive or Nonrecursive?

Nonrecursive

Nonrecursive

Nonrecursive

