## Bevezetés a rezsóológia elméletbe

Rezső Dezső, Prof. Emeritus

2021. október 13.

# Tartalomjegyzék

| Előszó                                          | 1  |
|-------------------------------------------------|----|
| Jelölések és rövidítések jegyzéke               | 3  |
| I. Bevezetés                                    | 5  |
| 1. Rezsó típusok                                | 7  |
| 2. Algebrai áttekintés                          | 9  |
| II. Pálinkafőzés otthon                         | 11 |
| III. Soros kinematikai láncú rezsók modellezése | 13 |
| IV. Rezsók dinamikai modellezése                | 15 |

### Előszó

A könyv megszületését az Prof. Drexler Dániel motiválta. A cél pálinkafőzésre is alkalmas rezsó kifejlesztése, egyetemi alkalmazásának bevezetése.

Mélyebb érdeklődés esetén ajánljuk mátrixanalízis témába Rózsa Pál könyvét [1], optimalizációs területen [2], Bártfai Pál a lineáris algebra és az n-dimenziós geometria kapcsolatának rigorózus végigvezetését bemutató könyvét [3], stb.

# Jelölések és rövidítések jegyzéke

#### Jelölések

| Skalár értékek:                                                                                           | $a, b, c, \ldots, \alpha, \beta, \gamma, \ldots$                            |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Oszlop/sor vektorok:                                                                                      | $\mathbf{a},\mathbf{b},\mathbf{c},\dots$                                    |
| Mátrixok:                                                                                                 | $\mathbf{A},\mathbf{B},\mathbf{C},\dots$                                    |
| Koordinátarendszerek (keretek), pontok:                                                                   | $A, B, C, \dots$                                                            |
| Az $A$ pont koordinátái az $R$ keretben:                                                                  | $\mathbf{a}^{(R)}$                                                          |
| Az $O$ pontból a $P$ pontba mutató vektor:                                                                | $\overrightarrow{OP}$                                                       |
| ennek koordinátái az $R$ keretben:                                                                        | $\overrightarrow{OP}^{(R)}$                                                 |
| Az <b>u</b> <sub>1</sub> , <b>u</b> <sub>2</sub> , <b>u</b> <sub>3</sub> mátrixok által kifeszített       |                                                                             |
| $\{\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 +   \alpha_1 \in \mathbb{R}, \alpha_2 \in \mathbb{R},\}$ | $\mathrm{span}\left\{\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3},\right\}$ |
| tér:                                                                                                      |                                                                             |
| Az M mátrix képtere:                                                                                      | $\mathfrak{R}(\mathbf{M})$                                                  |
| Az M mátrix nulltere:                                                                                     | $\mathcal{N}(\mathbf{M})$                                                   |

#### Rövidítések

| Szabadságfok (Degree of Freedom):                    | DoF   |
|------------------------------------------------------|-------|
| Redundanciafok (Degree of Redundancy):               | DoR   |
| Lineáris intERPoláció:                               | LERP  |
| Gömbi lineáris interpoláció (Spherical LERP):        | SLERP |
| Normalizált lineáris interpoláció (Normalized LERP): | NLERP |
| Tool Center Point                                    | TCP   |

#### Vektor és mátrix műveletek

| Az $f$ skalár függvény gradiense:                                                                         | $\operatorname{grad}_f$                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{A}\;\mathbf{v}$ vektor transzponáltja:                                                           | $\mathbf{v}^{	op}$                                                                                                                                                 |
| A v vektor 2-es normája (hossza):                                                                         | $  \mathbf{v}  $                                                                                                                                                   |
| A <b>v</b> vektor normalizáltja (iránya):                                                                 | $egin{pmatrix} \mathbf{(v)}_{\mathrm{norm}} \ \mathbf{v}^{	op} \cdot \mathbf{w} \end{pmatrix}$                                                                     |
| $\mathbf{A} \ \mathbf{v}$ és $\mathbf{w}$ vektorok skaláris szorzata:                                     | $\mathbf{v}^{	op}\cdot\mathbf{w}$                                                                                                                                  |
| $\mathbf{A} \ \mathbf{v}$ és $\mathbf{w}$ vektorok vektoriális szorzata:                                  | $\mathbf{v} 	imes \mathbf{w}$                                                                                                                                      |
| Az a mátrix, amelyet bármely <b>w</b> vektorral                                                           |                                                                                                                                                                    |
| jobbról megszorozva $(\mathbf{v} \times \mathbf{w})$ értékét kapjuk:                                      | $\mathbf{v} \times$                                                                                                                                                |
| Az $\mathbf{M}$ mátrix $\mathbf{M} = \mathbf{U} \cdot \mathbf{S} \cdot \mathbf{V}^{\top}$ SVD felbontása: | $[\mathbf{U}, \mathbf{S}, \mathbf{V}] = \operatorname{svd}(\mathbf{M})$                                                                                            |
| Az M mátrix inverze:                                                                                      | ${f M}^{-1}$                                                                                                                                                       |
| Az M mátrix transzponáltja:                                                                               | $\mathbf{M}^{\top}$                                                                                                                                                |
| Az M mátrix determinánsa:                                                                                 | $\det \left( \mathbf{M}  ight)$                                                                                                                                    |
| Az ${\bf M}$ mátrix ún. Moore-Penrose pszeudoinverze :                                                    | ${f M}^+$                                                                                                                                                          |
| Az M mátrix ún. csillapított pszeudoinverze,                                                              |                                                                                                                                                                    |
| $\rho$ csillapítással :                                                                                   | $\mathbf{M}^{ ho+}$                                                                                                                                                |
| Az M mátrix nyoma (főátlóbeli elemeinek összege):                                                         | $\mathrm{Tr}\left(\mathbf{M} ight)$                                                                                                                                |
| A <b>t</b> irány körüli $\varphi$ szögű elfordulást leíró transzformáció:                                 | $\mathrm{Rot}(\mathbf{t},arphi)$                                                                                                                                   |
| Az $x, y$ vagy $z$ tengely körüli $\varphi$                                                               |                                                                                                                                                                    |
| szögű elfordulást leíró transzformáció:                                                                   | $\operatorname{Rot}_x(\varphi), \operatorname{Rot}_y(\varphi), \operatorname{Rot}_z(\varphi)$                                                                      |
| $\mathbf{A}\ \mathbf{d}$ mértékű elmozdulást leíró transzformáció:                                        | $\operatorname{Tran}(\mathbf{d})$                                                                                                                                  |
| Az $x, y$ vagy $z$ irányú $d$                                                                             |                                                                                                                                                                    |
| nagyságú elmozdulást leíró transzformáció:                                                                | $\operatorname{Tran}_x(d), \operatorname{Tran}_y(d), \operatorname{Tran}_z(d)$                                                                                     |
| Az aktuális példában egyértelmű, vagy indifferens méretű                                                  |                                                                                                                                                                    |
|                                                                                                           | $\begin{bmatrix} c_1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & \ldots \end{bmatrix}$                                                                         |
| vektorok, mátrixok jelölése:                                                                              | $\begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}, \begin{bmatrix} m_{11} & m_{12} & \dots \\ m_{21} & m_{22} & \dots \\ \vdots & \vdots & \vdots \end{bmatrix}$ |
| ,                                                                                                         |                                                                                                                                                                    |
| A $t$ érték a következő értékeket veheti fel: $a \leq t \leq b$                                           | $t \in [a,b]$                                                                                                                                                      |

## I. rész

## Bevezetés

## 1. fejezet

# Rezsó típusok



1.1. ábra

## 2. fejezet

# Algebrai áttekintés

# II. rész Pálinkafőzés otthon

#### III. rész

## Soros kinematikai láncú rezsók modellezése

### IV. rész

## Rezsók dinamikai modellezése

### Irodalomjegyzék

- [1] P. Rózsa, A mátrixanalízis alapjai. Typotex.
- [2] B. T. Polyak, *Introduction to optimization. optimization software*. Inc., Publications Division, New York, 1987.
- [3] P. Bártfai, Az n-dimenziós tér lineáris geometriája. Typotex.
- [4] E. Ziegel, "Numerical recipes: The art of scientific computing," 1987.
- [5] O. Khatib, "A unified approach for motion and force control of robot manipulators: The operational space formulation," *IEEE Journal on Robotics and Automation*, vol. 3, no. 1, pp. 43–53, 1987.
- [6] J. Angeles and J. Angeles, Fundamentals of robotic mechanical systems. Springer, 2002, vol. 2.
- [7] A. Householder, "The theory of matrices in numerical analysis, blaisdell publ," Co., New York, 1964.
- [8] J. G. Francis, "The QR transformation," *The Computer Journal*, vol. 4, no. 4, pp. 332–345, 1962.
- [9] J. A. Nelder and R. Mead, "A simplex method for function minimization," *The computer journal*, vol. 7, no. 4, pp. 308–313, 1965.
- [10] S. W. Shepperd, "Quaternion from rotation matrix," Journal of Guidance and Control, vol. 1, no. 3, pp. 223–224, 1978.