Examenul de bacalaureat național 2015

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 - \frac{1}{2} = \frac{3}{2}$	3p
	$\frac{3}{2} \cdot \frac{10}{3} = 5$	2 p
2.	f(-2)=0, f(2)=0	2p
	f(-2) = 0, f(2) = 0 f(-2) + f(2) = 0	3 p
3.	2x-1=9	3 p
	x = 5, care verifică ecuația	2p
4.	Mulţimea A are 10 elemente, deci sunt 10 cazuri posibile	1p
	În mulțimea A sunt 2 multipli de 5, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{10} = \frac{1}{5}$	2p
5.	MO = 4	2 p
	$ON = 4 \Rightarrow \Delta MON$ este isoscel	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{10 \cdot 12}{2} =$	3 p
	= 60	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & -2 \\ 5 & -3 \end{vmatrix} = 3 \cdot (-3) - (-2) \cdot 5 =$	3p
	=-9+10=1	2 p
b)	$A \cdot A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	3 p
	$A \cdot A + I_2 = \begin{pmatrix} -1+1 & 0 \\ 0 & -1+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$A - aI_2 = \begin{pmatrix} 3 - a & -2 \\ 5 & -3 - a \end{pmatrix} \Rightarrow \det(A - aI_2) = \begin{vmatrix} 3 - a & -2 \\ 5 & -3 - a \end{vmatrix} = -9 + a^2 + 10 =$	3 p
	$=a^2+1\ge 1$, pentru orice număr real a	2 p
2.a)	$f(-5) = (-5)^3 + 5 \cdot (-5)^2 + (-5) + 5 =$	3p
	=-125+125-5+5=0	2 p
b)	Câtul este $X-1$	3 p
	Restul este $2X + 10$	2p

c)
$$x_1 + x_2 + x_3 = -5$$
, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = -5$
 $\frac{x_3}{x_1x_2} + \frac{x_2}{x_1x_3} + \frac{x_1}{x_2x_3} = \frac{(x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)}{x_1x_2x_3} = \frac{(-5)^2 - 2 \cdot 1}{-5} = -\frac{23}{5}$
2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 4x^3 - 4x =$	3р
	$=4x(x^2-1)=4x(x-1)(x+1), x \in \mathbb{R}$	2p
b)	f(1) = 0, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = 0$	3p
c)	$f'(-1) = f'(0) = f'(1) = 0, f'(x) \ge 0$, pentru $x \in [-1,0]$ și $f'(x) \le 0$, pentru $x \in [0,1]$	2p
	$f(-1) = f(1) = 0$ și $f(0) = 1 \Rightarrow 0 \le f(x) \le 1$, pentru orice $x \in [-1,1]$	3p
2.a)	$\int_{1}^{3} (f(x) - \sqrt{x}) dx = \int_{1}^{3} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{3} =$	3p
	$=\frac{3^3}{3}-\frac{1^3}{3}=\frac{26}{3}$	2p
b)	$F'(x) = \frac{3x^2}{3} + \frac{2}{3} \left(\sqrt{x} + x \cdot \frac{1}{2\sqrt{x}} \right) =$	3p
	$= x^2 + \sqrt{x} = f(x)$, pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{2} x^{2} e^{x} dx = x^{2} e^{x} \Big _{1}^{2} - \int_{1}^{2} 2x e^{x} dx = 4e^{2} - e - 2\left(xe^{x}\Big _{1}^{2} - \int_{1}^{2} e^{x} dx\right) =$	3p
	$=4e^{2}-e-2(2e^{2}-e)+2e^{x}\Big _{1}^{2}=2e^{2}-e=e(2e-1)$	2p