

A full pipeline to analyse lung histopathology images

Lluis Borràs Ferrís

@SPIE, San Diego 19th February 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No GA 101137074. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Background

Lung cancer has high mortality and incidence

Absolute numbers, Mortality, Both sexes, in 2022.

Absolute numbers, Incidence, Both sexes, in 2022.

Lung cancer subtypes

- Small-cell lung cancer (SCLC), 20%
- Non-small-cell lung cancer, 80%
 - Adenocarcinoma (LUAD), 50%
 - Squamous cell carcinoma (LUSC), 30%
 - Others, 20%
- Normal tissue (NL)
- Data are heterogeneous

Histopathology

- Microscopic images of the tissues
- Gold standard to diagnose cancer
- Identify which cancer subtype
- Experts are needed

Digital pathology

- Whole Slide Image (WSI) is a digitized slide scanned at high-resolution
- Multi-scale format
- Gigapixel images
- SOTA based on Deep Learning

Data representation

Pre-training

Transfer learning

Self-supervised learning

Annotations

Training

- Local Annotations
 - Fully-supervised learning

- Label at pixel-level
- Costly to collect
- Highest performance

- Global Annotations
 - Weakly-supervised learning

- Label at WSI-level
- Cheaper to collect

Motivation

 Representation from natural images may not be that effective for medical data

Hard to collect large locally-annotated datasets

Objective

Develop a fully automatic pipeline for WSI cancer subtype classification using self-supervision and weakly-supervised learning

Datasets

• Data are Multi-label

Source	SCLC	LUAD	LUSC	Normal	Total labels	Total images
Trainir	ng dataset	from two	different	private data	isets:	
AOEC	53	601	353	237	1,244	1,225
RUMC	0	297	205	499	1,001	1,001
Total	53	898	558	736	2,245	2,226
Testing	private d	atastets:				
AOEC	17	16	9	14	46	46
RUMC	0	29	18	45	92	92
Total	17	45	27	59	138	138
Testing	public da	itaset:				
TCGA	0	530	506	0	1,036	1,036

Pipeline

Results

Test on the private AOEC and RUMC datasets

Pre-training	AUC SCLC	AUC LUAD	AUC LUSC	AUC Norma	nl micro-AUC	weighted f1-score
Train on AOEC and RUMC:						
Self-supervised	0.8825 ± 0.0712	0.7457 ± 0.0267	0.8428 ± 0.0171	0.8468 ± 0.0	0.8558 ± 0.0051	0.6537 ± 0.0237

Results

- Test on the public TCGA dataset
 - Capability of generalize on public data

Pre-training	micro-AUC	weighted f1-score				
Test on TCGA:						
Train on AOEC and RUMC:						
Self-supervised	0.9433 ± 0.0198	0.7726 ± 0.0438				

Results

 Heatmaps can help pathologists localizing and diagnosing lung cancer

LUSC

Discussion

• Differences on **Data representation**

Conclusions

- A fully automatic pipeline to classify 4-class lung cancer WSIs
- Pre-training with self-supervision for a better data representation
- Weakly-supervised learning enables training the model using only global annotations
- The model generates accurate predictions on the TCGA dataset showing its generalization capabilities
- Heatmaps a potential tool to help pathologists in the localization and diagnosis of lung cancer on WSI

https://medgift.hevs.ch/wordpress/

Lluis Borràs Ferrís, PhD Student

Email: lluis.borrasferris@hevs.ch

LinkedIn: @lluis-borras-ferris

Supervisor: Henning Müller

@SPIE, San Diego 19th February 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No GA 101137074. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

