Feuille d'exercices n°1 - Groupes - Sous-groupes

Exercice 1: (1) Soit $a, b, c \in \mathbb{R}$. On considère la loi de composition interne sur \mathbb{R} : $\forall x, y \in \mathbb{R}$, x * y = ax + by + c. Quelles sont les conditions sur a, b, c pour que \mathbb{R} muni de la loi * admette un élément neutre? soit un groupe?

(2) Soit $G = [0, 1] \cup [1, +\infty]$ muni de la loi $x * y = x^{\ln y}$. Est-ce que (G, *) est un groupe? abélien?

Exercice 2: Soit G l'ensemble des applications bijections affines de \mathbb{R} , c'est-à-dire les applications $f_{a,b}$: $x \mapsto ax + b$ avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$. (G, \circ) est-il un groupe? commutatif?

Exercice 3 : Soit G un groupe d'ordre 4, d'élément neutre e.

- (1) On suppose dans cette question qu'il existe un élément x de G tel que $x^2 \neq e$; x^2 est noté y, et on note z le quatrième élément de G. Déterminer la table de Cayley de G.
- (2) On suppose à l'inverse que le carré de tout élément de G est e, et on note x, y, z les éléments de G distincts de e. Déterminer la table de Cayley de G.
- (3) En déduire que tout groupe d'ordre 4 est commutatif.

Exercice 4: Soit G un groupe d'élément neutre e et a un élément donné de G. On considère dans le groupe G le système suivant, d'inconnues x et y:

$$(S) \begin{cases} x^2 = e \\ y^3 = e \\ xy = yx = a \end{cases}$$

- (1) Montrer que si (x, y) vérifie (S), alors a commute avec x et avec y.
- (2) Montrer que si $a^6 \neq e$, alors (S) n'a pas de solution.
- (3) On suppose $a^6 = e$. Résoudre (S).

Exercice 5: On rappelle que S_n désigne le *n*-ième groupe symétrique de $\{1, 2, \ldots, n\}$.

- (1) Montrer que S_3 contient six éléments, et décrire chacun de ces éléments. Etablir la table de Cayley de S_3 .
- (2) Quel est l'inverse de $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$? de $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$?
- (3) Déterminer tous les sous-groupes de S_3 .

Exercice 6 : Montrer que H l'ensemble des matrices de type $\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$ avec $x \in \mathbb{R}^*$ est un groupe multiplicatif. Est-ce un sous-groupe de $GL(2,\mathbb{R})$?

Exercice 7: Soit G un sous-groupe de $(\mathbb{R}, +)$ tel que $G \neq \{0\}$.

- (1) Montrer que $G \cap \mathbb{R}_{+}^{*}$ admet une borne inférieure, que l'on notera a.
- (2) Supposons que a>0. Montrer que $a\in G$ (on pourra raisonner par l'absurde). En déduire que $G=a\mathbb{Z}.$
- (3) Supposons que a=0. Montrer que G est dense dans \mathbb{R} , c'est-à-dire que pour tous réels x < y, il existe $g \in G$ tel que x < g < y.

Exercice 8:

Soit H_8 l'ensemble des 8 matrices de $\mathcal{M}_2(\mathbb{C})$: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$, $\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$, $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

- (1) Montrer que H_8 est un sous-groupe de $GL_2(\mathbb{C})$ (on établira la table de Cayley de H_8). Est-il abélien?
- (2) Donner les sous-groupes de H_8 .
- (3) Montrer que H_8 est engendré par $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

Exercice 9: Soit $H = \langle a \rangle$ un groupe cyclique d'ordre n.

- (1) Montrer que a^m est un générateur de H si et seulement si m est premier avec n.
- (2) Quel est le nombre de générateurs de H pour n=36? Donner la liste de tous les générateurs de H.

Exercice 10: Soit G le groupe $\mathbb{Z}/36\mathbb{Z}$ et $\sigma: \mathbb{Z} \to \mathbb{Z}/36\mathbb{Z}$ la surjection canonique.

- (1) Montrer que si H est un sous-groupe de $(\mathbb{Z}/36\mathbb{Z},+)$ alors $\sigma^{-1}(H)$ est un sous-groupe de $(\mathbb{Z},+)$ contenant $36\mathbb{Z}$.
- (2) Déterminer tous les sous-groupes du groupe $\mathbb{Z}/36\mathbb{Z}$
- (3) Donner la liste de tous les générateurs de $\mathbb{Z}/36\mathbb{Z}$.
- (4) Quel est l'ordre du sous-groupe engendré par $\overline{9}$?

Exercice 11: Quels sont les automorphismes de $\mathbb{Z}/18\mathbb{Z}$? Quels sont les morphismes de groupes de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{Z} ? $(n \in \mathbb{N}^*)$

Exercice 12: Soit G un groupe. Pour tout $a \in G$, on définit l'application $\varphi_a : G \to G$ par

$$\varphi_a(x) = axa^{-1}.$$

- (1) Vérifier que φ_a est un automorphisme de G.
- (2) On pose $H = \{\varphi_a : a \in G\}$. Montrer que H est un sous-groupe du groupe des permutations $\mathcal{S}(G)$.
- (3) Soit $\Psi: G \to \mathcal{S}(G)$ l'application définie par $\Psi: a \mapsto \varphi_a$. Vérifier que Ψ est un morphisme de groupes.
- (4) Notons Z(G) le centre de G:

$$Z(G) = \{ y \in G \mid \forall x \in G, \ xy = yx \}.$$

Montrer que Z(G) est un sous-groupe de G et que G/Z(G) est un groupe isomorphe à H.