Đại học Bách Khoa TPHCM Khoa Điện – Điện Tử Bộ môn ĐKTĐ ---00---

ĐỀ KIỂM TRA GIỮA KỲ 2. Năm học 2017-2018

Môn: Cơ sở điều khiển tự động

Ngày thi: 23/03/2018 Thời gian làm bài: 45 phút

(Sinh viên không được phép sử dụng tài liệu in hoặc photo)

Bài 1: (3.0đ) Tính hàm truyền tương đương $G(s) = \frac{Y(s)}{N(s)}\Big|_{R(s)=0}$ của hệ thống có sơ đồ khối ở hình 1.

Bài 2: (2.0đ) Viết phương trình trạng thái mô tả hệ kín ở hình 2 với các biến trạng thái cho trên sơ đồ.

Bài 3: (2.5 điểm) Cho hệ thống ở hình 3.

Vẽ QĐNS của hệ thống khi $0 \le K < +\infty$. Dựa vào QĐNS, hãy đánh giá tính ổn định của hệ thống.

Bài 4: (2.5 điểm) Cho hệ thống hồi tiếp âm đơn vị có hàm truyền hở là

$$G(s) = \frac{200(s+1)e^{-0.1s}}{s(s+5)^2}$$

Vẽ biểu đồ Bode biên độ và pha của G(s), xác định độ dự trữ biên và độ dự trữ pha, kết luận tính ổn định của hệ kín?

(Hết)

CNBM

Bài 1:

 \bullet Đường tiến : $P_1 = G_2G_3, \qquad P_2 = G_5$

• Vòng kín : $L_1 = -G_2G_4$, $L_2 = -G_3$, $L_3 = -G_1G_2G_3$, $L_4 = -G_1G_5$

• Định thức : $\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + L_1L_2$

 $= 1 + G_2G_4 + G_3 + G_1G_2G_3 + G_1G_5 + G_2G_3G_4$

• Định thức con : $\Delta_1 = 1$, $\Delta_2 = 1$

• Hàm truyền tương đương:

$$G_{td} = \frac{Y(s)}{N(s)} = \frac{G_2G_3 + G_5}{1 + G_2G_4 + G_3 + G_1G_2G_3 + G_1G_5 + G_2G_3G_4}$$

<u>Bài 2</u>:

$$*X_1(s) = \frac{2}{s} \cdot (X_3(s) - X_2(s))$$

$$\Leftrightarrow sX_1(s) = 2X_3(s) - 2X_2(s)$$

$$\Rightarrow x_1(t) = 2x_3(t) - 2x_2(t) \quad (1)$$

$$*X_2(s) = \frac{2}{s+5} \cdot X_1(s)$$

$$\Leftrightarrow sX_2(s) = 2X_1(s) - 5X_2(s)$$

$$\Rightarrow x_2(t) = 2x_1(t) - 5x_2(t) \quad (2)$$

$$(1),(2),(3) \Rightarrow \begin{cases} \overset{\bullet}{x_1}(t) = -2x_2(t) + 2x_3(t) \\ & \\ & \\ x_2(t) = 2x_1(t) - 5x_2(t) \end{cases} \qquad \text{v\'oi} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \\ \overset{\bullet}{x_3}(t) = -3x_1(t) - x_3(t) + 3r(t) \qquad C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\dot{x}(t) = A x(t) + B r(t)$$

$$c(t) = x_1(t) = Cx(t)$$

<u>Bài 3</u>:

Phương trình đặc trưng:

$$1 + G(s) = 0 \iff 1 + \frac{Ks}{(s+3)(s^2+4)} = 0 \tag{1}$$

Cực:
$$p_1 = -3$$
, $p_{2,3} = \pm j2$

Zero: $z_1 = 0$

Tiệm cận:
$$\alpha = \frac{(2l+1)\pi}{n-m} \rightarrow \begin{cases} \alpha_1 = \frac{\pi}{2} \\ \alpha_2 = -\frac{\pi}{2} \end{cases}$$

Giao điểm của tiệm cận với trục hoành: $OA = \frac{-3}{2}$

Điểm tách nhập:

$$(1) \Leftrightarrow K = -\frac{(s+3)(s^2+4)}{s}$$

$$\frac{dK}{ds} = 0 \Leftrightarrow \begin{cases} s = 1.43 \text{ (loại)} \\ s = -1.47 \pm j1.43 \text{ (loại)} \end{cases}$$

Giao điểm của QĐNS với trục ảo:

Thay
$$s = j\omega$$
 vào (1), ta được:
$$\begin{cases} \omega = \pm 2 \\ K = 0 \end{cases}$$

Góc xuất phát của QĐNS tại cực phức:

$$\theta_2 = 180^{\circ} + \arg(j2) - \arg(3+j2) - \arg(j4) = 180^{\circ} + 90^{\circ} - 33.7^{\circ} - 90^{\circ} = 146.3^{\circ}$$

Hệ thống ổn định khi K > 0.

<u>Bài 4</u>:

$$\overline{G(s)} = \frac{200(s+1)e^{-0.1s}}{s(s+5)^2} = \frac{8(s+1)e^{-0.1s}}{s(0.2s+1)^2}$$

Các tần số gãy: $\omega_1 = 1(rad/s)$, $\omega_2 = 5(rad/s)$

Xác định điểm A:

$$A: \begin{cases} \omega_0 = 0.1(rad / s) \\ L(\omega_0) = 20\log(8) - 20\log(0.1) = 38dB \end{cases}$$

Pha:

$$\varphi(\omega) = -90^{\circ} + \arctan \omega - 2\arctan(0.2\omega) - 0.1\omega \frac{180^{\circ}}{\pi}$$

ω	0.01	0.1	0.5	1	5	7	9	13
$\varphi(\omega)$	-90	-87.3	-77.4	-73.4	-130	-156	-180	-219

Biểu đồ Bode:

Từ biểu đồ Bode ta có:

$$\begin{cases} \omega_c \approx 13 rad / s \\ \omega_{-\pi} \approx 9 rad / s \end{cases} \Rightarrow \begin{cases} L(\omega_{-\pi}) \approx 5.5 dB \\ \varphi(\omega_c) \approx -219^0 \end{cases} \Rightarrow \begin{cases} GM = -L(\omega_{-\pi}) = -5.5 dB \\ \varphi M = 180 + \varphi(\omega_c) = -39^0 \end{cases}$$

→ Hệ thống kín không ổn định

Thang đánh giá (Rubric): mức độ đạt chuẩn đầu ra mỗi câu hỏi được đánh giá qua 5 mức:

0	Không làm gì
1	Làm sai phương pháp
2	Làm đúng phương pháp, nhưng có nhiều sai sót trong tính toán số liệu
3	Làm đúng phương pháp, có vài sai sót nhỏ trong tính toán số liệu
4	Làm đúng phương pháp, tính toán số liệu đúng hoàn toàn

Cách chấm điểm, ghi điểm:

- Đánh giá mỗi câu hỏi dựa vào thang đánh giá ở trên.
- Nhập số liệu vào file excel đính kèm: máy tính sẽ tự tính điểm qui đổi, có thể copy & paste vào bảng điểm online; đồng thời máy tính cũng sẽ tính mức độ đạt chuẩn đầu ra của SV để phục vụ kiểm định ABET.