

- Metode pencarian akar persamaan f(x) yang memanfaatkan titik potong garis singgung pada f(x) di titik x₀ dengan sumbu x.
- Metode pencarian akar dilakukan secara iteratif melalui pencarian garis singgung dan titik potong x baru berdasarkan garis singgung dan titik potong sebelumnya.
- Akar pendekatan iteratif diturunkan dari persamaan garis sebagai berikut:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

dimana $f'(x_n)$ adalah turunan pertama fungsi f(x) di $x = x_n$ atau gradient dari garis singgung pada f(x) di $x = x_0$.

Algoritma:

- 1. Definisikan fungsi f(x) dan $f^1(x)$
- 2. Tentukan toleransi error (e) atau iterasi maksimum (n)
- 3. Tentukan nilai akar awal x₀
- 4. Hitung $f(x_0)$ dan $f'(x_0)$
- 5. Untuk iterasi i = 1 s/d n atau $|f(x_i)| > e$, hitung $f(x_i)$ dan $f^1(x_i)$ berdasarkan nilai:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

6. Akar persamaan dari f(x) adalah nilai x_i yang terakhir diperoleh.

Cari salah satu akar dari x-e-x=0 dengan akar awal x₀=0 menggunakan metode Newton Raphson. Lakukan pencarian akar sampai 3 iterasi.

$$f(x)=x-e^{-x}$$

 $f'(x)=1-(-e^{-x})=1+e^{-x}$

Iterasi 1:

$$x_0=0 \rightarrow f(x_0)=(0)-e^{-(0)}=0-1=-1$$

$$x_0=0 \rightarrow f'(x_0)=1+e^{-(0)}=1+1=2$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{-1}{2} = 0,5$$

Iterasi 2:

■
$$x_1=0.5 \rightarrow f(x_1)=(0.5)-e^{-(0.5)}=-0.10653$$

$$x_1=0.5 \rightarrow f'(x_1)=1+e^{-(0.5)}=1,60653$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.5 - \frac{-0.10653}{1.60653} = 0.56631$$

Iterasi 3:

- $x_2=0,56631 \rightarrow f(x_2)=-0,00130$
- $x_2=0,56631 \rightarrow f'(x_2)=1,56762$
- $x_3 = x_2 \frac{f(x_2)}{f'(x_2)} = 0,56714$

Sampai dengan iterasi ke-3 diperoleh akar x₃=0,56714

Cari salah satu akar dari $x + e^{-x} \cos x - 2 = 0$ dengan akar awal $x_0 = 1$ menggunakan metode Newton Raphson. Lakukan pencarian akar sampai 3 iterasi.

$$f(x)= x + e^{-x} \cos x - 2$$

 $f'(x)= 1 - e^{-x} \cos x - e^{-x} \sin x$

Iterasi 1:

- $x_0 = 1 \rightarrow f(x_0) = -0.80123$
- $x_0=1 \rightarrow f'(x_0)=0,49167$
- $x_1 = x_0 \frac{f(x_0)}{f'(x_0)} = 2,62960$

Iterasi 2:

- $x_1=2,62960 \rightarrow f(x_1)=0,56674$
- $x_1=2,62960 \rightarrow f'(x_1)=1,02753$
- $x_2 = x_1 \frac{f(x_1)}{f'(x_1)} = 2,07805$

Iterasi 3:

- $x_2=2,07805 \rightarrow f(x_2)=0,01724$
- $x_2=2,07805 \rightarrow f'(x_2)=0,95139$
- $x_3 = x_2 \frac{f(x_2)}{f'(x_2)} = 2,05993$

Sampai dengan iterasi ke-3 diperoleh akar x₃=2,05993

- Metode ini tidak dapat digunakan ketika titik pendekatannya berada pada titik ekstrim atau titik puncak, karena pada titik ini nilai f'(x) = 0 sehingga nilai penyebut dari $\frac{f(x)}{f'(x)}$ sama dengan nol (tidak terdefinisi). Secara grafis dapat dilihat pada gambar disamping.
- Bila titik pendekatan berada pada titik puncak, maka titik selanjutnya akan berada di tak berhingga.

- Selain itu, metode ini menjadi sulit atau lama mendapatkan penyelesaian ketika titik pendekatannya berada di antara dua titik stasioner.
- Bila titik pendekatan berada pada dua tiitik puncak akan dapat mengakibatkan hilangnya penyelesaian (divergensi).
- Hal ini disebabkan titik selanjutnya berada pada salah satu titik puncak atau arah pendekatannya berbeda.

Contoh pencarian akar yang divergen

- 1. Bila titik pendekatan berada pada titik puncak maka titik pendekatan tersebut harus di geser sedikit, $x_i = x_i + \delta$ dimana δ adalah konstanta yang ditentukan sedemikian sehingga $f'(x) \neq 0$ dan metode Newton Raphson tetap dapat dioperasionalkan.
- 2. Untuk menghindari titik-titik pendekatan yang berada jauh, sebaiknya pemakaian metode newton raphson ini didahului oleh metode tabel, sehingga dapat di jamin konvergensi dari metode newton raphson.

Contoh

- $x \cdot e^{-x} + \cos(2x) = 0 \rightarrow x_0 = 0.176281$
- $f(x) = x \cdot e^{-x} + \cos(2x)$
- $f1(x) = (1-x) e^{-x} 2 \sin(2x)$
- $f(x_0) = 1,086282$
- $f^1(x_0) = -0,000015$

iterasi	х	f(x)	f'(x)
0	0,17628	1,086282	-1,52216E-05
1	71364,89	0,594134	-1,608732696
2	71365,26	-0,10227	-1,989513691
3	71365,2	0,00036	-1,99999987
4	71365,2	-2,9E-11	-2
5	71365,2	3,13E-13	-2
6	71365,2	3,13E-13	-2

Diperoleh akar x = 71365.2 padahal dalam range 0 sampai dengan 1 terdapat akar di sekitar 0.5 s/d 1.

Untuk menghindari hal tersebut di atas sebaiknya digunakan grafik atau tabel sehingga dapat diperoleh pendekatan awal yang baik. Misal, digunakan pendekatan awal x₀=0.5

Iterasi	х	f(x)	f'(x)
0	0,5	0,843568	-1,37967664
1	1,111424	-0,24106	-1,626349133
2	0,963203	0,019463	-1,86082504
3	0,973662	5,61E-05	-1,849946271
4	0,973692	4,98E-10	-1,849913417
5	0,973692	0	-1,849913417
6	0,973692	0	-1,849913417

Diperoleh akar x = 0.973692 yang berada pada interval 0.5 s/d 1.

Hasil dari penyelesaian akar persamaan dari:

x * exp(-x) + cos(2x) = 0

pada range [0,5]

Iterasi	x	f(x)	f'(x)
0	0.5	0.843568	-1.37968
1	1.11142	-0.24106	-1.62635
2	0.963203	0.0194632	-1.86083
3	0.973662	5.6107e-005	-1.84995
4	0.973692	4.98195e-010	-1.84991
Akar terletak o	4i x = 0.973692		
Iterasi	X	f(x)	f'(x)
0	2	-0.382973	1.37827
1	2.27787	0.0774688	1.84452
2	2.23587	0.000671812	1.81025
3	2.23549	6.74538e-008	1.80989
Akar terletak o	4i x = 2.23549		
Iterasi	X	f(x)	f'(x)
0	3.5	0.859593	-1.38947
1	4.11865	-0.307004	-1.90559
2	3.95754	0.0145632	-2.05279
3	3.96464	7.5622e-006	-2.05059
Akar terletak di x = 3.96464			

METODE NEWTON RAPHSON: MODIFIKASI TABEL

Algoritma Metode Newton Raphson dengan modifikasi tabel :

- 1. Definisikan fungsi F(x)
- 2. ambil range nilai x = [a, b] dengan jumlah pembagi n
- 3. Masukkan torelansi error (e) dan masukkan iterasi n
- 4. Gunakan algoritma tabel diperoleh titik pendekatan awal x_0 dari : $F(x_k) \cdot F(x_{k+1}) < 0$ maka $x_0 = x_k$
- 5. Hitung $F(x_0)$ dan $F^1(x_0)$
- 6. Bila $F(abs(F^1(x_0))) < e$ maka pendekatan awal x₀ digeser sebesar dx (dimasukkan)

$$x_0 = x_0 + dx$$

hitung $F(x_0)$ dan $F^1(x_0)$

7. Untuk iterasi I=1 s/d n atau $|F(x_i)| \ge e$

$$x_1 = x_{i-1} - \frac{F(x_{i-1})}{F^1(x_{i-1})}$$

hitung $F(x_i)$ dan $F^1(x_i)$ bila $|F^1(x_i)| \le e$ maka $x_i = x_i + dx$

hitung $F(x_i)$ dan $F^1(x_0)$

8. Akar persamaan adalah x terakhir yang diperoleh.

METODE NEWTON RAPHSON: MODIFIKASI TABEL

Contoh. Hitunglah akar $f(x) = e^x - 5x^2$ dengan metode Newthon Raphson. Gunakan nilai kesalahan sebesar 0.00001 dengan akar awal di $x_0 = 1$.

$$f(x) = e^x - 5x^2$$

$$f'(x) = e^x - 10x$$

$$x_{i+1} = x_i - \frac{e^x - 5x}{e^x - 10x}$$

Hasil iterasi pencarian akar:

İ	X	f(x)
		0.00470

0	1	-2.28172
4	0.000051	
1	0.686651	-0.370399
2	0.610741	-0.0232286
_	0.010/41	
3	0.605296	-0.000121011
4	0.605267	-3.35649e-009
	0.003207	J.JJUTJE UUJ
Aka	r terletak di x :	= 0.605267

METODE SECANT

- Metode Newton Raphson memerlukan perhitungan turunan fungsi f'(x).
- Tidak semua fungsi mudah dicari turunannya terutama fungsi yang bentuknya rumit.
- Turunan fungsi dapat dihilangkan dengan cara menggantinya dengan bentuk lain yang equivalen.
- Modifikasi metode Newton Raphson dinamakan metode Secant.

METODE SECANT

Contoh. Tentukan akar dari $x^2 - (x + 1) e^{-x} = 0$, dengan akar awal di $x_0 = 0.8$ dan $x_1 = 0.9$ hingga iterasi ke-3.

ambil $x_0 = 0.8$ dan $x_1 = 0.9$ maka dapat dihitung

$$y_0 = F(x_0) = -0.16879$$

$$y_1 = F(x_1) = 0.037518$$

Iterasi Metode Secant adalah sebagai berikut :

Iterasi 1:
$$x_2 = x_1 - y_1 \frac{x_1 - x_0}{y_1 - y_0} = 0,881815$$

$$y_2 = 0.00153$$

Iterasi 2:
$$x_3 = x_2 - y_2 \frac{x_2 - x_1}{y_2 - y_1} = 0,882528$$

$$y_3 = 1, 3.10^{-5}$$

Iterasi 3:
$$x_4 = x_3 - y_3 \frac{x_3 - x_2}{y_3 - y_2} = 0,882534$$

$$y_4 = 4,91.e^{-9}$$

Diperoleh akar x = 0,882534

