Homework 5

Lance Remigio

March 26, 2025

Problem 1. Let A be a nonempty set of \mathbb{R} . Suppose that for each $n \in \mathbb{N}$, $f_n : A \to \mathbb{R}$ is a uniformly continuous function on A. Prove that if (f_n) converges uniformly to $f : A \to \mathbb{R}$, then f is uniformly continuous on A.

Proof. Suppose that $f_n \to f: A \to \mathbb{R}$ uniformly. Our goal is to show that f is uniformly continuous; that is, we want to show that for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in A$, whenever $|x - y| < \delta$, we have

$$|f(x) - f(y)| < \varepsilon.$$

Let $\varepsilon > 0$ be given and let $x, y \in A$. Since $f_n \to f$ uniformly, there exists an $N \in \mathbb{N}$ such that for any $x \in A$ and for any n > N, we have

$$|f_n(x) - f(x)| < \frac{\varepsilon}{3}. (1)$$

Since f_n is uniformly continuous on A for all $n \in \mathbb{N}$. In particular, f_n is uniformly if n = N + 1; that is, there exists $a\hat{\delta} > 0$ such that for any $|x - y| < \hat{\delta}$, we have

$$|f_n(x) - f_n(y)| < \frac{\varepsilon}{3}. (2)$$

We claim that $\hat{\delta}$ can be used as the same δ we were looking for. Indeed, whenever $|x-y| < \hat{\delta}$, (1) and (2) imply that

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon$$

as our desired result.

Problem 2. Let A be a nonempty set and suppose $(f_n : A \to \mathbb{R})_{n \ge 1}$ is a sequence of functions. Suppose $f : A \to \mathbb{R}$ is a function. Prove that the following statement are equivalent:

- (i) (f_n) converges uniformly to $f: A \to \mathbb{R}$.
- (ii) $\forall \varepsilon > 0$, $\exists N$ such that $\forall n > N \sup_{x \in A} |f_n(x) f(x)| < \varepsilon$.
- (iii) $\lim_{n \to \infty} (\sup_{x \in A} |f_n(x) f(x)|) = 0.$

Proof. $((i) \Longrightarrow (ii))$ Suppose that $f_n \to f$ uniformly. Our goal is to show that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n > N

$$\sup_{x \in A} |f_n(x) - f(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Since $f_n \to f$ uniformly, there exists an $\tilde{N} \in \mathbb{N}$ such that for all $x \in A$, for all

 $n > \tilde{N}$, we have

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}.$$

Note that $\varepsilon/2$ is an upper bound for the set

$$\{|f_n(x) - f(x)| : \forall x \in A \ \forall n > \tilde{N}\}.$$

We claim that \tilde{N} is the same N we were looking for. Taking the supremum of the inequality above, we have

$$\sup_{x \in A} |f_n(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

for any $n > \tilde{N}$ which is our desired result.

 $((ii) \Longrightarrow (iii))$ Suppose that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N, we have

$$\sup_{x \in A} |f_n(x) - f(x)| < \varepsilon.$$

Our goal is to show that $\lim_{n\to\infty} \left(\sup_{x\in A} |f_n(x) - f(x)| \right) = 0$. By assumption, we can let $\varepsilon = \frac{1}{n}$ for all $n\in\mathbb{N}$ such that there exists an $\kappa_n\in\mathbb{N}$ such that for any $n>\kappa_n$, we have k

$$0 \le \sup_{x \in A} |f_n(x) - f(x)| < \frac{1}{n}.$$

Clearly, we see that $\frac{1}{n} \to 0$ as $n \to \infty$. Applying the squeeze theorem to the inequality above as $n \to \infty$, we have that

$$\lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0.$$

 $((iii)\Longrightarrow (i))$ Suppose that $\lim_{n\to\infty} \Big(\sup_{x\in A} |f_n(x)-f(x)|\Big)=0$. Our goal is to show that $f_n\to f:A\to\mathbb{R}$ uniformly; that is, for all $\varepsilon>0$, there exists an $N\in\mathbb{N}$ such that for any $x\in A$, for any n>N, we have

$$|f_n(x) - f(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = 0$, (with our given ε) there exists an $\tilde{N} \in \mathbb{N}$ such that for any $n > \hat{N}$

$$|\sup_{x \in A} |f_n - f(x)|| < \varepsilon;$$

that is, for any $n > \hat{N}$

$$\sup_{x \in A} |f_n(x) - f(x)| < \varepsilon.$$

Note that $|f_n(x) - f(x)| \le \sup_{x \in A} |f_n(x) - f(x)|$ for all $x \in A$. We claim that \hat{N} is the same N we were looking for. Hence, for any $n > \hat{N}$, we have

$$|f_n(x) - f(x)| < \varepsilon$$

Hence, $f_n \to f$ uniformly.

Problem 3. Suppose (a_n) and (b_n) are two sequences of real numbers and $a_n \geq b_n$ for all $n \in \mathbb{N}$. Suppose $\lim_{n \to \infty} b_n > 0$. Explain in one line why it follows from the order limit theorem that $\lim_{n \to \infty} a_n$ cannot be zero.

Proof. There exists $n_o \in \mathbb{N}$ such that $a_n \geq b_n$ for all $n \geq n_0$, $\lim_{n \to \infty} a_n \geq \lim_{n \to \infty} b_n > 0$.

Problem 4 (4-1). For each $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \frac{x^2}{n^4 + x^2}$.

Proof. Clearly, f_n converges to f pointwise. Indeed, for all $n \in \mathbb{N}$, we have

$$0 \le \frac{x^2}{n^4 + x^2} \le \frac{x^2}{n^4}.$$

Consider the right-hand side of the above inequality, we have $\lim_{n\to\infty}\frac{x^2}{n^4}=x^2\lim_{n\to\infty}\frac{1}{n^4}=x^2\cdot 0=0$. By applying the Squeeze theorem as $n\to\infty$ to the inequality above, we have

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^2}{n^4 + x^2} = 0$$

pointwise.

Now, we want to show that $f_n \to 0$ is NOT uniform. Immediately, we see that

$$\sup_{x \in \mathbb{R}} \left| \frac{x^2}{n^4 + x^2} \right| \ge |f_n(x)|$$

for all $x \in \mathbb{R}$. In particular, if we let $x = n^2$, then we have

$$\sup_{x \in \mathbb{R}} \left| \frac{x^2}{n^4 + x^2} \right| \ge |f_n(n^2)| = \frac{1}{2}.$$

Clearly, if we define $b_n = f(n^2)$, we have

$$\lim_{n \to \infty} f(n^2) = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2} > 0.$$

Problem 5 (4-2). For each $n \in \mathbb{N}$, let $f_n : [0,1) \to \mathbb{R}$ be defined by $f_n(x) = x^n$. It is easy to show that $f_n \to 0$ pointwise. Prove that the convergence is NOT uniform.

Proof. We can easily show that $f_n \to 0$ pointwise. We will show that the convergence is NOT uniform. Define $b_n = \left(1 - \frac{1}{n}\right)^n$ for all $n \in \mathbb{N}$. Indeed, we see that

$$\sup_{x \in [0,1)} |f_n(x)| = \sup_{x \in [0,1)} |x^n| = \sup_{x \in [0,1)} \ge \left(1 - \frac{1}{n}\right)^n \tag{1}$$

and

$$\lim_{n \to \infty} \left(1 - \frac{1}{kn} \right)^n = \frac{1}{\varepsilon} > 0. \tag{2}$$

Thus, (1) and (2) imply that $f_n \to 0$ does NOT converge uniformly.

Problem 6. Suppose that $A = G \cup H$ where G and H are nonempty sets. Prove that if (f_n) converges uniformly to f on both G and H, then (f_n) converges uniformly to f on A.

Proof. Our goal is to show that for any $\varepsilon > 0$ be given and for any $x \in A$, for any n > N, we have

$$|f_n(x) - f(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given and let $x \in A$. Since $A = G \cup H$, we either have $x \in G$ or $x \in H$. If $x \in G$, then we can use the fact that $f_n \to f$ uniformly on G, there exists an $N_1 \in \mathbb{N}$ such that for any $n > N_1$, we have

$$|f_n(x) - f(x)| < \varepsilon.$$

On the other hand, if $x \in H$, then using the fact that $f_n \to f$ uniformly on H, there exists an

 $N_2 \in \mathbb{N}$, with our given ε , such that for any $n > N_2$, we have

$$|f_n(x) - f(x)| < \varepsilon.$$

Hence, in both cases $f_n \to f$ on A uniformly.

Problem 7. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers and suppose that $a_n\to a$ in \mathbb{R} . Let $f:A\to\mathbb{R}$ be a function. For each $n\in\mathbb{N}$, define $f_n:A\to\mathbb{R}$ by $f_n(x)=f(x)+a_n$. Prove that (f_n) converges uniformly to the function f+a on the set A.

Proof. Our goal is to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $x \in A$ and for all n > N, we have

$$|f_n(x) - (f(x) + a)| < \varepsilon.$$

Let $\varepsilon > 0$ be given and let $x \in A$. Since $a_n \to a$, there exists $\tilde{N} \in \mathbb{N}$ such that for any $n > \tilde{N}$, we have

$$|a_n - a| < \varepsilon$$
.

We claim that \tilde{N} is the same N we were looking for. Hence, for any $n > \tilde{N}$, we have

$$|f_n - (f(x) + a)| = |(f(x) + a_n) - (f(x) + a)|$$
$$= |a_n - a|$$
$$< \varepsilon.$$

Hence, $f_n \to f + a$ uniformly.

Problem 8. Suppose that (g_k) converges uniformly to g on the nonempty st A. Use the Cauchy Criterion for uniform convergence of sequences to prove that the sequence (h_k) where $h_k = g_{k+1} - g_k$ converges uniformly to zero on A.

Proof. Our goal is to show that $h_k \to 0$ uniformly on A; that is, we want to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any k > N, we have

$$|h_k| < \varepsilon$$
.

Let $\varepsilon > 0$ be given and let $x \in A$. Since $g_n \to g$ converges uniformly on A, the Cauchy Criterion implies that there exists an $\tilde{N} \in \mathbb{N}$ such that for any $m > n > \tilde{N}$, we have

$$|g_n(x) - g_m(x)| < \varepsilon. \tag{*}$$

We claim that \tilde{N} can be used as the same N we were looking for. Indeed, for any $k+1>k>\tilde{N}$, (*) implies that

$$|g_{k+1}(x) - g_k(x)| < \varepsilon.$$

But we have $h_k = g_{k+1} - g_k$ for all $k \in \mathbb{N}$, we have

$$|h_k| = |g_{k+1} - g_k| < \varepsilon$$

as desired.

Problem 9. Complete the following the proof presented.

Proof. Because $|\sin(n_{\hat{i}}x_0) - \sin(n_{N+1}x_0)| \ge 1$ and $b_n = \sin(n_{\hat{i}}x_0) > 0$ for all $n \in \mathbb{N}$, we have found a subsequence of $(\sin(nx))_{n\ge 1}$ that does not converge uniformly on the interval $[0, 2\pi]$ which is a contradiction.

Problem 10. For all $n \geq 1$ define $f_n : [0,1] \to \mathbb{R}$ as follows:

$$f_n(x) = \begin{cases} 1 & \text{if } n! x \in \mathbb{Z} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $f_n \to f$ pointwise where $f:[0,1] \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{I} \\ 1 & \text{if } x \in \mathbb{Q}. \end{cases}$$

Proof. (1) If $x \in [0,1]$ is irrational, then $f_n(x) = 0$. Clearly, we see that $f_n \to f$.

(2) If $x \in [0,1]$ is a rational number, then $c = \frac{p}{q}$ for some nonnegative $p, q \in \mathbb{Z}$. Then for all n > q, $n!x \in \mathbb{Z}$. Hence, for all n > q $f_n(c) = 1$. From here, it immediately follows that $f_n \to f$.

Hence, (1) and (2) imply that $f_n \to f$ pointwise.

Problem 11 (i). For all $n \geq 1$ define $f_n : [0, \infty) \to \mathbb{R}$ as follows:

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } 0 \le x \le n \\ 0 & \text{if } x > n \end{cases}$$

Prove that $f_n \to f$ uniformly where $f:[0,\infty) \to \mathbb{R}$ is defined by $f \equiv 0$.

Proof. If x > n, f(x) = 0. Clearly, $f_n \to 0$ uniformly. Otherwise, assume that $0 \le x \le n$. Then $f_n(x) = \frac{1}{n}$ for all $n \in \mathbb{N}$. By the Archimedean Property, there exists an $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. Hence, for any n > N, we have

$$|f_n(x) - 0| = |f_n(x)| = \frac{1}{n} < \frac{1}{N} < \varepsilon.$$

Hence, $f_n \to 0$ uniformly.

Problem 12 (ii). Show that $\lim_{n\to\infty}\int_0^\infty f_n\ dx\neq \int_0^\infty f\ dx$.

Proof. Note that

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \ dx = \lim_{n \to \infty} \int_0^\infty \frac{1}{n} \ dx$$

$$= \lim_{n \to \infty} \left[\lim_{R \to \infty} \int_0^R \frac{1}{n} \ dx \right]$$

$$= \lim_{n \to \infty} \left[\lim_{R \to \infty} \frac{R}{n} \right] = \infty.$$

On the other hand, we have

$$\int_0^\infty f \ dx = \lim_{R \to \infty} \left[\int_0^R (0) \ dx \right] = \lim_{R \to \infty} (0) = 0.$$

Clearly, we have that

$$\lim_{n\to\infty} \int_0^\infty f_n \ dx \neq \int_0^\infty f \ dx.$$

Problem 13 ((i)). For all $n \ge 1$ define $f_n : [-1,1] \to \mathbb{R}$ by $f_n(x) = \frac{x}{1+n^2x^2}$. Prove that f_n converges uniformly to $f : [-1,1] \to \mathbb{R}$ defined by $f \equiv 0$.

Proof. Our goal is to show that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $x \in [-1, 1]$ and for all n > N, we have

$$|f_n(x) - 0| < \varepsilon.$$

Let $\varepsilon > 0$ be given. By the Archimedean Property, there exists an $N \in \mathbb{N}$ such that

$$\frac{1}{2N} < \frac{1}{N} < \varepsilon.$$

Then from our hint, we can see that for any n > N, we have

$$|f_n(x) - 0| = \left| \frac{x}{1 + n^2 x^2} \right|$$

$$= \frac{|x|}{1 + n^2 x^2}$$

$$\leq \frac{|x|}{2n|x|}$$

$$= \frac{1}{2n}$$

$$< \frac{1}{2N}$$

$$< \varepsilon.$$

hence, we can see that $f_n \to f$ uniformly on [-1,1].

Problem 14. Prove that f'_n converges pointwise to $g:[-1,1]\to\mathbb{R}$ defined by

$$g(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } 0 < |x| \le 1 \end{cases}.$$

Proof. Since each f_n is differentiable, we have that

$$f'_n(x) = \frac{1}{1 + n^2 x^2} - \frac{x}{(1 + n^2 x^2)^2} \cdot 2n^2 x$$
$$= \frac{(1 + n^2 x^2) - 2n^2 x^2}{(1 + n^2 x^2)^2}.$$

Hence, we have

$$f_n'(x) = \frac{1 - n^2 x^2}{(1 + n^2 x^2)^2}$$

and note that

$$f_n'(0) = \frac{1}{1} = 1.$$

Clearly, if x = 0, then $f'_n(0) \to g(0)$. Otherwise, suppose $0 < |x| \le 1$. Then we have

$$|f'_n(x) - 0| = |f'_n(x)|$$

$$= \left| \frac{1 - n^2 x^2}{(1 + n^2 x^2)^2} \right|$$

$$= \frac{|1 - n^2 x^2|}{(1 + n^2 x^2)^2}$$

$$\leq \frac{2(1 - n|x|)}{4n^2|x|^2}$$

$$= \frac{1}{n^2|x|^2} - \frac{1}{2n|x|}$$

$$\xrightarrow{\text{ALT}} 0 + 0 = 0.$$

Using the Squeeze Theorem, we have that as $n \to \infty$, we have

$$|f_n'(x)| \to 0.$$

Clearly, the convergence above depends on x. Thus, the $f'_n \to 0$ pointwise.

Problem 15 (iii). Does f'_n converge uniformly to g.

Solution. No, because the pointwise limit of f'_n in part (ii) is NOT a continuous function.

Problem 16. Prove the following theorem.

Theorem. Assume that for each $n \in \mathbb{N}$, $f_n : [a, b] \to \mathbb{R}$ is differentiable, there exists $x_0 \in [a, b]$ such that $(f_n(x_0))_{n \ge 1}$ converges, and (f'_n) converges uniformly on [a, b]. Then (f_n) converges uniformly on [a, b].

Proof. Our goal is to show that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n > m > N and $\forall x \in [a, b]$,

$$|f_n(x) - f_m(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Without loss of generality $x_0 < x$. By the Mean Value Theorem, there exists an $\hat{x} \in (x_0, x)$ such that

$$f'_n(\hat{x}) = \frac{f_n(x) - f_n(x_0)}{x - x_0} \Longrightarrow f_n(x) - f_n(x_0) = f'_n(\hat{x})(x - x_0)$$

and similarly, we have

$$f'_m(\hat{x}) = \frac{f_m(x) - f_m(x_0)}{x - x_0} \Longrightarrow f_m(x) - f_m(x_0) = f'_m(\hat{x})(x - x_0).$$

Subtracting these two quantities gives us

$$f_n(x) - f_n(x_0) - (f_m(x) - f_m(x_0)) = (f'_n(\hat{x}) - f'_m(\hat{x}))(x - x_0)$$

$$\Longrightarrow f_n(x) - f_m(x)q - (f_n(x_0) - f_m(x_0)) = (f'_n(\hat{x}) - f'_m(\hat{x}))(x - x_0)$$

$$\Longrightarrow f_n(x) - f_m(x) = (f'_n(\hat{x}) - f'_m(\hat{x}))(x - x_0) + f_n(x_0) - f_m(x_0).$$

Hence, we have

$$|f_n(x) - f_m(x)| = |(f'_n(\hat{x})) - f'_m(\hat{x})(x - x_0) + f_n(x_0) - f_m(x_0)|$$

$$\leq |f'_n(\hat{x}) - f'_m(\hat{x})||x - x_0| + |f_n(x_0) - f_m(x_0)|.$$

Since each f_n is differentiable on [a,b], we know that each f_n is continuous on [a,b]. Therefore, f_n is continuous at $x_0 \in [a,b]$. That is, there exists a $\delta > 0$ such that whenever $|x-x_0| < \delta$, we have

$$|f_n(x) - f_n(x_0)| < \varepsilon.$$

Furthermore, we can see by our assumption that if $(f_n(x_0))_{n\geq 1}$ converges, we have that $(f_n(x_0))_{n\geq 1}$ is a Cauchy sequence. That is, there exists an $N_1 \in \mathbb{N}$ such that for any $n > m > N_2$, we have

$$|f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}.$$

Since (f'_n) converges uniformly, there exists an $N_2 \in \mathbb{N}$ such that for any $n > m > N_1$ (given $\hat{x} \in [a, b]$)

$$|f'_n(\hat{x}) - f'_m(\hat{x})| < \frac{\varepsilon}{2\delta}.$$

Let $N = \max\{N_1, N_2\}$. Then for any n > m > N, we have

$$|f_n(x) - f_m(x)| \le |f'_n(\hat{x}) - f'_m(\hat{x})||x - x_0| + |f_n(x_0) - f_m(x_0)|$$

$$< \frac{\varepsilon}{2 \cdot \delta} \cdot \delta + \frac{\varepsilon}{2}$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Hence, f_n converges uniformly on [a, b] by the Cauchy Criterion.