Basic information

Name SUN, Yahui
Wechat quick123456
Mobile +65 90306992
Domain https://yahuisun.com
Email yahui.sun@ntu.edu.sg

Languages Mandarin, English, C++, R, MATLAB

Current position Research fellow, School of Computer Science

and Engineering, Nanyang Technological University

Education and positions

2019- Research fellow, Nanyang Technological University, Singapore
2018-2019 Postdoctoral fellow, Australian National University, Australia
2014-2018 Ph.D. in Steiner tree problems in graphs, University of Melbourne, Australia
Thesis title: Classical, prize-collecting and node-weighted Steiner tree problems in graphs
2012-2014 M.S. in aerospace engineering, Harbin Institute of Technology, China
2008-2012 B.S. in aerospace engineering, Harbin Institute of Technology, China

Research interests

- graph mining ⊂ data mining/analytics
- network optimization ⊂ networking ⊂ Internet of things

Career profile

Motivated by China's first crewed space mission in 2003, I studied aerospace engineering for my bachelor and master degrees in the Harbin Institute of Technology. Then, I studied Steiner tree problems in graphs for my PhD degree in the University of Melbourne. My current research interests originated from my PhD study.

Selected publications

Yahui Sun, Marcus Brazil, Doreen Thomas, and Saman Halgamuge. "The Fast Heuristic Algorithms and Post-Processing Techniques to Design Large and Low-Cost Communication Networks." **IEEE/ACM Transactions on Networking** (2019).

We propose two fast algorithms for the Prize-Collecting Steiner Tree Problem: the first one is a quasilinear-time heuristic algorithm that is faster and consumes less memory than the other algorithms; and the second one is an improvement of a state-of-the-art polynomial-time approximation algorithm that can produce near-optimal solutions at a speed that is only inferior to the first one. We demonstrate the competitiveness of our algorithms by comparing them with the state-of-the-art ones in large graphs with up to 1,000,000 vertices and 10,000,000 edges. We also propose some post-processing techniques to update the best-known solution for a notoriously difficult benchmark instance.

Yahui Sun, Chenkai Ma, and Saman Halgamuge. "The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways." International Conference on Bioinformatics (published in BMC Bioinformatics) (2017).

[PDF]

We propose the node-weighted Steiner tree approach to identifying important elements of cancer-related signaling pathways at the level of proteins. We apply this approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. On a commonly used personal computer, this new approach takes less than 2s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges.

The other publications

Yahui Sun, and Saman Halgamuge. "Minimum-cost heterogeneous node placement in wireless sensor networks." IEEE Access (2019).

[PDF]

Yahui Sun, Pathima Nusrath Hameed, Karin Verspoor, and Saman Halgamuge. "A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning." International Conference on Bioinformatics (published in BMC Systems Biology) (2016).

[PDF]

Yahui Sun, and Saman Halgamuge. "Fast algorithms inspired by physarum polycephalum for node weighted steiner tree problem with multiple terminals." In 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3254-3260. IEEE, (2016).

[PDF]

Yahui Sun, Yunhai Geng, and Shuang Wang. "Analysis and calibration of star sensor's image plane displacement." Infrared and Laser Engineering 10 (2014): 26. [PDF]

Yahui Sun, Yingying Xiao, and Yunhai Geng. "On-orbit calibration of star sensor based on a new lens distortion model." In Proceedings of the 32nd Chinese Control Conference, pp. 4989-4994. IEEE, (2013). [PDF]

Submitted manuscripts

Yahui Sun, Marcus Brazil, Daniel Rehfeldt, Doreen Thomas, and Saman Halgamuge. "A Physarum-inspired algorithm for minimum-cost relay node placement in wireless sensor networks", IEEE/ACM Transactions on Networking, (submitted in 03/2018; under the third round of review)

Scholarships and awards

2014-2018	Melbourne International Research Scholarship, University of Melbourne, Australia
2014-2018	Melbourne International Fee Remission Scholarship, University of Melbourne, Australia
2013	National Scholarship, China
2008-2014	First-level Scholarship (multiple), Harbin Institute of Technology, China

(timestamp: 09/2019)