TA Session 2: Pretesting and Post Model Selection Inference

Shuowen Chen¹

EC708: PhD Econometrics I (Spring 2020)

¹Parts of the materials are from Belloni, Chernozhukov and Hansen (2014, JEP)

OUTLINE

- Review of Hausman Specification Test
- ► Hausman Test as a Pretest for Endogeneity(Guggenberger, 2010)
- Bonus: Machine Learning and Econometrics
 - Causal Inference: Double Selection Algorithm (Belloni, Chernozhukov and Hansen, 2014)
 - ► Prediction: Selecting among IVs in the first stage (Belloni, Chen, Chernozhukov and Hansen, 2012)

Hausman Test

Consider two estimators $\widehat{\theta}_A$ and $\widehat{\theta}_B$ and a general hypothesis H_0 against alternative H_1 . If

- ▶ Under H_0 : both estimators are consistent while $\widehat{\theta}_B$ is more efficient than $\widehat{\theta}_A$,
- ▶ Under H_1 : only $\widehat{\theta}_A$ is consistent

Hausman test statistic:

$$H_T = T(\widehat{\theta}_B - \widehat{\theta}_A)' \Big[V(\widehat{\theta}_A) - V(\widehat{\theta}_B) \Big]^{-1} (\widehat{\theta}_B - \widehat{\theta}_A),$$

under H_0 , $H_T \xrightarrow{d} \chi_K^2$, where $K = dim(\widehat{\theta}_B) = dim(\widehat{\theta}_A)$.

Use Hausman test as a model specification test

- Test for endogeneity
- ► Fixed or random effects estimators

Pretesting Question (Guggenberger, 2010, ET)

Consider the following regression

$$y = X\beta + u$$
,

and we want to conduct hypothesis testing

$$H_0: \beta = \beta_0, \quad H_1: \beta \neq \beta_0,$$

but unsure about the exogeneity of X. Suppose we have K valid and strong instruments Z

$$X = Z\Pi + v$$

and conditional homoskedasticity.

- ▶ If X is exogeneous, $\widehat{\theta}_{OLS}$ and $\widehat{\theta}_{2SLS}$ are both consistent but $\widehat{\theta}_{OLS}$ is more efficient
- ▶ If X is endogenous, only $\widehat{\theta}_{2SLS}$ is consistent

A natural thought is to choose which estimator to use based on results by Hausman test on exogeneity.

EXOGENEITY PRETEST

The null of the Hausman test:

$$H_0^{hausman}$$
: X is exogenous,

Hausman statistic:
$$H_T = \frac{T(\widehat{\theta}_{2SLS} - \widehat{\theta}_{OLS})^2}{\widehat{V}_{2SLS} - \widehat{V}_{OLS}}$$

If reject $H_0^{hausman}$, use 2SLS estimator and conduct inference with 2SLS t-test. If do not reject, use OLS instead

$$t_{OLS}(\beta_0) = \frac{\sqrt{T}(\widehat{\beta}_{OLS} - \beta_0)}{\sqrt{\widehat{V}_{OLS}}}, \quad t_{2SLS}(\beta_0) = \frac{\sqrt{T}(\widehat{\beta}_{2SLS} - \beta_0)}{\sqrt{\widehat{V}_{2SLS}}}$$

In summary, the two-stage test statistic is

$$t_n(\beta_0) = t_{OLS}(\beta_0) \mathbb{1}(H_T < \chi^2_{1,1-\alpha}) + t_{2SLS}(\beta_0) \mathbb{1}(H_T > \chi^2_{1,1-\alpha})$$

Problem: severe size distortion in the second stage. WHY?

Sources of Pretesting Problem

Three factors that affect the two-stage test

- 1. $\rho = corr(u_i, v_i)$: level of endogeneity
- 2. μ/\sqrt{T} : the strength of instruments, where μ^2 is the concentration parameter. Assume $\mu/\sqrt{T} \in [\kappa, \overline{\kappa}]$: The lower bound abstracts away weak instrument complications.
- 3. α : nominal size of the Hausman test

The level of endogeneity is the main problem.

WHEN AND WHY DOES HAUSMAN PRETEST FAIL?

Qualitatively speaking, *X* is either weakly or strongly endogenous.

- ➤ X is strongly endogeneous: Hausman test always rejects the null, and 2SLS t-stat is always used. Since instruments are strong by assumption, second-stage inference is good.
- ➤ X is weakly endogeneous: Hausman test might not be able to detect local alternatives in some directions (local power). When it cannot reject, OLS t-test is used, leading to invalid inference. Size distortion can be huge (Wong, 1997; Guggenberger, 2010)

Since in practice we don't know how endogenous X is, the two–stage test can be problematic. Increasing α and κ reduces the size distortion.

THE OTHER TWO FACTORS THAT AFFECT THE TEST

Nominal size of Hausman test: α

- Recall we reject the null if $H_T > \chi^2_{1,1-\alpha}$
- An increase in α means it's easier to reject the null
- ► This means we use 2SLS more often in the second stage, and hence alleviate the size distortion

Strength of Instruments: κ

- An increase in κ means the instruments are stronger
- ► Hence 2SLS properties are further guaranteed in finite samples.

But there is an upper limit to which we can change these parameters.

POST-MODEL SELECTION INFERENCE

- ► Pretesting is a type of model selection: based on first-stage test we choose which model is work with
- Model selections are common in economics, with different selection criterion (hypothesis testing, information criterion, machine learning, etc.)
- ▶ But inference after model selection can be tricky and intractable (Davidson and McKinnon, 1993 p.97; Leeb and Pötscher, 2005)
- ► Subsampling and m out of n bootstrap² also have size problems (Andrews and Guggenberger, 2009)

²We will cover them later this semester.

New Paradigm: Incorporating Machine Learning

- ► Thanks to a continuing decrease of cost of data collection and storage, economists now have access to big datasets
- ▶ When *p*, the number of characteristics measured on a person or object, is larger than *n*, the sample size, the dataset is considered to be high-dimensional.
- ▶ OLS no longer feasible when p > n (no unique solutions)
- Usually economists specify key variables and functional forms and conduct robustness checks afterwards
- ► An alternative: do semi/nonparametric econometrics³. Cost: curse of dimensionality
- ► New alternative: select key variables using machine learning methods and conduct inference on selected specifications

³We will probably teach these in EC709.

Causal Inference in High-Dimensional Econometrics

Consider the following linear model

$$y = \alpha D + g(X) + u,$$

- ► *D*: treatment parameter
- $\triangleright \alpha$: causal coefficient of interest
- ► *X*: control variables (high-dimensional)
- $ightharpoonup g(\cdot)$: general function form

After conditioning on X, D is considered to be exogenous, and we want to estiamte and conduct inference on α .

- ▶ We impose approximate sparsity assumption: g(X) can be approximated, up to some errors, by a few covariates (< n) whose identities are ex-ante unknown
- ► The assumption allows for imperfect model selection⁴

⁴In Hasuman pretest example, being unable to detect weak endogeneity and using OLS can be considered as an example.

APPROXIMATE SPARSITY ASSUMPTION

$$g(X) = X\beta + r_{\mathrm{g}}, \quad ||\beta||_0 \leq s, \quad \sqrt{\{\mathbb{E}(r_{\mathrm{g}}^2)\}} \leq C\sqrt{s/n};$$

- ▶ The sparsity index s obeys $s^2 \log^2(\max\{p, n\})/n \to 0$.
- ▶ $||\beta||_0$: number of non-zero components of vector β
- $ightharpoonup r_g$: approximation errors

The number s is defined so that the approximating error is no larger than $\sqrt{s/n}$ of the oracle estimator⁵.

- ► The approximate sparsity is a dimension reduction assumption
- ▶ We will use LASSO to select variables among *X* that have non-zero coefficients

⁵Oracle means the DGP creator.

A Crash Course on LASSO

Given a collection of data $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$, the LASSO estimator for least square solves the following optimization problem

$$\min_{\beta} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - \alpha d_i - x_i' \beta)^2 + \lambda \sum_{j=1}^{p} |\pi_j \beta_j| \right\},\,$$

where $\lambda \geq 0$ is a penalty parameter and π_j is penalty loading.

- ► The constraint $\lambda \sum_{i=1}^{p} |\pi_i \beta_i|$ restricts the coefficients by shrinking them to zero and hence prevents overfitting.
- We exclude D from LASSO penalty
- ► The number of zero coefficients at the LASSO solution $\hat{\beta}$ depends on λ : the heavier the penalty, the more the zeros.
- λ chosen based on cross-validation or data-driven methods (Belloni, Chen, Chernozhukov and Hansen, 2012)

LASSO COEFFICIENT FOR INFERENCE?

LASSO coefficients cannot be used for inference because by construction they are biased toward zero

By Kuhn-Tucker condition, any LASSO solution $\widehat{\beta}$ satisfies $X'(y-X\widehat{\beta})=\lambda q$, where q is subgradient of l_1 norm at $\widehat{\beta}$

$$q_i = \begin{cases} 1, & \widehat{\beta}_i > 0 \\ -1, & \widehat{\beta}_i < 0 \\ [-1, 1], & \widehat{\beta}_i = 0 \end{cases}$$

Define $B = \{i \in 1, ..., p : |q_i| = 1\}$ and assume that X_B has full rank, then $\hat{\beta}_B = (X_B'X_B)^{-1}(X_B'y - \lambda q_B)$ while $\hat{\beta}_{-B} = 0$. Therefore LASSO solution shrinks coefficients toward zero and the results depend on λ .

POST LASSO MODEL

Suppose LASSO selects the first two variables in X and researchers now work with the following model

$$y = \alpha D + X_1 \beta_1 + X_2 \beta_2 + u$$

A natural thought: run OLS and perform t-test on $\widehat{\alpha}$. Size Distortion

Why Post-LASSO Doesn't Give Correct Inference

Omitted variable bias

- ► LASSO targets prediction, so variables in *X* that are highly correlated with *D* won't be selected since adding them won't add much gain in prediction
- ▶ But if these variables actually have non-zero statistically significant coefficients in OLS, we have omitted variable bias.

Remedy: Belloni, Chernozhukov and Hansen (2014, ReStud)

▶ Add an auxiliary regression: $D = X\gamma + r_{\gamma} + v$ and consider the following system

$$y = \alpha D + X\beta + r_g + u \tag{1}$$

$$D = X\gamma + r_{\gamma} + v \tag{2}$$

Equation (2) aims to bring in variables that are correlated with D

REMEDY APPROACH: DOUBLE SELECTION

- 1. Run LASSO on y against D and X, excluding D from penalty. Denote the selected set of variables from X as \widehat{I}_1
- 2. Run LASSO on D against X. Denote the selected set of variables from X as \widehat{I}_2
- 3. Run OLS on y against D and $\widehat{I} = \widehat{I}_1 \cup \widehat{I}_2$. Conduct t-stat on $\widehat{\alpha}$.

Machine Learning for Prediction

- ► Many econometric methods feature prediction steps: 2SLS, structural estimation methods like BBL
- ► Machine learning methods target predictions, and thus natural to exploit their advantage on prediction steps
- ► Consider the endogeneity model with very many candidate IVs to choose from

$$y = X\beta + u$$
$$X = Z\Pi + r_Z + v,$$

 r_Z is approximation error, $\mathbb{E}[u|Z] = \mathbb{E}[v|r_Z,Z] = 0$, $\mathbb{E}[uv] \neq 0$

- ▶ The first-stage is actually a prediction problem: choose IVs that get the best fitted \widehat{X} , no need for inference
- ► Therefore we can just run LASSO in the first stage and then perform 2sls
- Belloni, Chen, Chernozhukov and Hansen (2012) formalize the intuition and establish the asymptotic properties