THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA

Department of Electrical and Computer Engineering

ELEC 318 Electromagnetic Fields

HW #5, due February 26, 2015

Reading Assignment: Chapter 4 (all)

Chapter 5 (Sections 5.1-5.3)

Written Assignment:

- 1. An infinitely-long coaxial cylindrical structure has an inner conductor of radius a=2 mm and an outer conductor of radius b=4.5 mm. The space between the conductor is filled with a volume charge density of $\frac{10\varepsilon_0}{r}$ $\frac{C}{m^3}$ and a permittivity equal to that of free space. The inner conductor is grounded and the outer conductor is maintained at 40 V. Determine the potential everywhere in the space $2 \le r \le 4.5$ mm.
- 2. The potential field $V = 2x^2yz y^3z$ (V) exists in a dielectric medium with a relative permittivity of 2.
 - (a) Determine if the potential field satisfies Laplace's equation.
 - (b) Calculate the total charge within the unit cube $0 \le x \le 1 \text{ m}$, $0 \le y \le 1 \text{ m}$, $0 \le z \le 1 \text{ m}$.
- 3. Calculate the energy stored in the region $R \le 2 \,\mathrm{m}$, $0 \le \theta \le \pi$, $0 \le \phi \le \pi$ for an electric field intensity equal to $2R \sin \theta \cos \phi \,\hat{\mathbf{R}} + R \cos \theta \cos \phi \,\hat{\mathbf{\theta}} R \sin \phi \,\hat{\boldsymbol{\phi}} \,\,\mathrm{V/m}$, in free space.
- 4. A spherical capacitor has inner radius a and outer radius b and is filled with an inhomogeneous dielectric with permittivity equal to $\varepsilon_0 k/r^2$. Determine the capacitance of the capacitor in terms of ε_0 , k, a, and b.
- 5. In free space, infinite planes y = 4 m and y = 8 m carry charges of 20 nC/m² and 30 nC/m², respectively. If plane y = 2 m is grounded, calculate the electric field intensity at P(-4 m, 6 m, 2 m).