ОЦІНКА АДЕКВАТНОСТІ І ТОЧНОСТІ ТРЕНДОВИХ МОДЕЛЕЙ

Незалежно від того як ми будували модель питання про можливість застосування її для аналізу і прогнозування економічних показників можливе тільки після встановлення адекватності її.

Адекватність моделі еквівалентна таким вимогам до випадкової залишкової величини:

- 1. випадковість коливань рівнів залишкової величини;
- 2. відповідність розподілу випадкової залишкової величини нормальному закону розподілу;
- 3. рівність математичного сподівання випадкової залишкової величини нулю;
- 4. незалежність значень рівнів випадкової залишкової величини;

Розглянемо кожну вимогу окремо.

1. Перевірка випадковості коливань рівнів залишкової величини.

Для перевірки випадковості $\varepsilon_t = y_t - \hat{y}_t \ (t = \overline{1,n})$ можна скористатися розглянутими раніше тестами: критерій серій, заснований на медіані; критерій піків і критерій Аббе.

2. Перевірка відповідності розподілу випадкової компоненти нормальному розподілу.

Критерій Девіда-Хартлі-Пірсона (RS-критерій)

Критерій нормальності розподілу ймовірності випадкової величини, грунтується на розподілу відношення розкиду до стандартного відхилення.

Статистика критерія має вигляд $U=\frac{R}{S}$, де $R=y_{max}-y_{min}$, s - стандартне відхилення.

Гіпотеза нормальності приймається, якщо $U_1(\alpha) < U < U_2(\alpha)$ (α - рівень знагущості).

Критерій нормальності Фроціні

Фроціні запропонував простий, але достатньо потужний критерій нормальності з параметрами, що оцінюються за вибіркою, і грунтується на статистиці

$$B_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left| \Phi(z_i) - \frac{i - 0.5}{n} \right|,$$

де
$$z_i=rac{y_i-ar{y}}{s};$$
 $ar{y}=rac{1}{n}\sum_{i=1}^ny_i;$ $s^2=rac{1}{n}\sum_{i=1}^n(y_i-ar{y})^2;$ $\Phi(z_i)$ - функція розподілу $N(0,1)$.

Критичні значення статистики B_n наведені в таблиці

Якщо $B_n < B_n(\alpha)$, то гіпотеза про нормальність розподілу випадкових величин не відхиляється.

3. Перевірка рівності математичного сподівання випадкової компоненти нулю.

Якщо випадкова величина розподілена за нормальним законом, то перевірку на нормальність здійснимо за допомогою t-критерія Стюдента. Розрахункове значення цього критерія розраховується за формулою

$$t_{\rm ct} = \frac{\bar{\varepsilon} - 0}{S_{\varepsilon}} \sqrt{n},$$

де $\bar{\varepsilon}$ - середнє арифметичне значення рівнів залишкової послідовностей $\varepsilon_t, S_{\varepsilon}$ - стандартне відхилення для пієї послідовності.

Якщо $t_{\rm cr} < t_{\rm kp} = t(\alpha; n-1)$, то гіпотеза про рівність нулю математичного сподівання випадкової послідовності приймається, в іншому випадку модель вважається неадекватною.

4. Перевірка незалежності значень рівнів випадкової компоненти.

Якщо між залишками існує авторегресійний процес першого порядку, тобто

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$
, де $|\rho| < 1, M(u_t) = 0$ для всіх t ,

то його можна виявити за допомогою тесту Дарбіна-Уотсона.

Алгоритм тесту Дарбіна-Уотсона

1. Формулюються гіпотези.

 $H_A: \rho \neq 0$, присутня автокореляція,

 $H_0: \rho = 0$, відсутня автокореляція,

- 2. Задаємо рівень знагущості α .
- 3. Розраховуємо $d_{\rm CT}$ за формулою.

$$d_{\rm ct} = \frac{\sum_{i=1}^{n} (\varepsilon_i - \varepsilon_{i-1})^2}{\sum_{i=1}^{n} \varepsilon_i^2},$$

Параметр $d_{\rm cr}$ належить проміжку [0;4]. Так як тест двосторонній, $d_{\rm kp}$ знаходимо за ТАБЛИЦЯМИ при $\alpha_i=rac{lpha}{2}$.

4. Нижче представлено області прийняття рішень при d - тесті нульової гіпотези $H_0:
ho = 0.$

Умовні значення:

Якщо $d_{\rm CT}$ попадає в область невизначеності, то приймається гіпотеза про наявність автокореляції, хоча вона може бути і відсутня. Так як тест Дарбіна-Уотсона може виявити автокореляцію тільки першого порядку, а вона може бути і вищих порядків, і має області невизначеності, то краще користуватись тестом серій Бреуша-Годфрі.

Тест Бреуша-Годфрі

Нехай існує автокореляція залишків р-го порядку, тобто

$$\varepsilon_t = \alpha_1 \varepsilon_{t-1} + \alpha_2 \varepsilon_{t-2} + \dots + \alpha_n \varepsilon_{t-n} + u_t, \quad (*)$$

де u_t - залишок у виписаному регресійному рінянні. Методом найменших квадратів оцінюємо коефіцієнти α_i . Якщо модель (*) значимо відрізняється від нуля, то існує автокореляція. Для визначення значущості моделі розрахуємо $F_{\rm ct}=\frac{\hat{\varepsilon}^T\hat{\varepsilon}(W-2p)}{\hat{u}^T\hat{u}(p-1)}$, де $\hat{\varepsilon}$ - оцінені значення залишків, а $\hat{u}_i=\varepsilon_i-\hat{\varepsilon}_i$. Якщо $F_{\rm ct}< F_{\rm k}=F(\alpha;p-1;n-2)$, то модель (*) значимо відрізняється від нуля. На практиці найчастіше p=1,2,3 або 4