λ -calculus

Valeran MAYTIE

Lemma $- \ \forall t, |t| \rightarrow^*_{\beta} \varphi(t)$

Proof: We will show our property by induction on the term t.

- Case t = x, $|x| = x = \varphi(x)$, so we have $|t| \to_{\beta}^{0} \varphi(t)$.
- Case $t = \lambda x.t_0$, by the induction hypothesis we know that $|t_0| \to_{\beta}^* \varphi(t_0)$.

$$|(\lambda x.t_0)| = \lambda x.|t_0|$$

$$\to_{\beta}^* \lambda x.\varphi(t_0)$$
 By induction hypothesis
$$= \varphi(\lambda x.t_0)$$

• Case $t = \underline{\lambda}x.t_0$, by the induction hypothesis we know that $|t_0| \to_{\beta}^* \varphi(t_0)$.

$$|(\underline{\lambda}x.t_0)| = \lambda x.|t_0|$$

 $\rightarrow^*_{\beta} \lambda x.\varphi(t_0)$ By induction hypothesis
 $= \varphi(\underline{\lambda}x.t_0)$

• Case $t=t_1$ t_2 where $t_1 \neq \underline{\lambda} x.t_0$, by the induction hypothesis we know that $|t_1| \to_{\beta}^* \varphi(t_1)$ and $|t_2| \to_{\beta}^* \varphi(t_2)$.

$$|t_1 \ t_2| = |t_1| \ |t_2|$$

$$\to_\beta^* \varphi(t_1) \ \varphi(t_2)$$
 By induction hypothesis
$$= \varphi(t_1 \ t_2)$$

• Case $t = (\underline{\lambda}x.t_0) t_1$, by the induction hypothesis we know that $|t_0| \to_{\beta}^* \varphi(t_0)$ and $|t_1| \to_{\beta}^* \varphi(t_1)$.

$$\begin{split} |(\underline{\lambda}x.t_0) \ t_1| &= (\lambda x.|t_0|) \ |t_1| \\ &\to_{\beta}^* \ (\lambda x.\varphi(t_0)) \ \varphi(t_1) \\ &\to \varphi(t_0) \{x \leftarrow \varphi(t_1)\} \\ &= \varphi((\underline{\lambda}x.t_0) \ t_1) \end{split}$$
 By induction hypothesis