

ĐẠI HỌC ĐÀ NẮNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Chapter 6 Data Manipulation with Pandas

Thu Huong Nguyen, PhD Si Thin Nguyen, PhD

About Authors

Thu Huong Nguyen

PhD in Computer Science at Université Côte d'Azur, France

Email: <u>nthuong@vku.udn.vn</u>

Address: Faculty of Computer Science, VKU

Si Thin Nguyen

PhD in Computer Science at Soongsil University, Korea

Email: <u>nsthin@vku.udn.vn</u>

Address: Faculty of Computer Science, VKU

Chapter Content

- > Introduction
- Pandas Getting Started With
- > Pandas vs SQL
- Pandas Features
- > Pandas Data Structure
- > Operations on Pandas
- Working with text data
- Working with time series data

Introduction

→ Pandas is an essential tool to data analysis and manipulation.

| pandas

Pandas Getting Started

- → Installing Numpy: pip install pandas
- → Import Numpy: import pandas
- → Alias of Numpy: import pandas as pd
- → Check Numpy version: pd.__version__

Why uses Pandas?

- → one of the most widely used data science libraries in the world.
- → capable of handling huge sets of data.
- → Useful for data analysis and machine learning
- → Working with data in a new way
- → "to master data science, you must be skillful in Pandas"

Pandas Features

Pandas Data Structure

Data	Dimension	Description
Structure		
Series	1	• 1Dimentional
		Size Immutable
		 Value of Data Mutable
Data-	2	• 2Dimentional
Frame		Size Mutable
		• Heterogeneous typed
		columns
Panel	3	3Dimentional
		Size Mutable

Pandas Series

→ a one-dimensional labeled array capable of holding any data type

Series Index


```
s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
s

a     0.115188
b     0.893129
c     0.659912
d     2.502990
e     -0.956800
dtype: float64
```


Pandas DataFrame

→ is a 2 dimensional data structure with mutable size and potentially heterogeneous tabular data.

Pandas DataFrame Creation

- → pandas.DataFrame([data, index, columns, dtype, copy])
 - ◆ data the data from which the dataframe will be made
 - ◆ index states the index from dataframe
 - ◆ columns states the column label
 - ◆ dtype the datatype for the dataframe
 - ◆ copy any copied data taken from inputs (True/False)
- → Create an empty DataFrame | import pandas as pd | df = pd.DataFrame()
- → Create a DataFrame from the inputs like *dictionaries*, *ndarrays*, *Series*, *Lists*.

Pandas Panel

- → a 3-dimensional container of data
- → its origins in econometrics
- → partially responsible for the name of the library pandas: **pan**el dat**as**.

Pandas Panel Creation

- → pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)
 - ◆ data: the data will be represented by the panel.
 - ♦ items: can represent and compare to a DataFrame.
 - major-axis: rows of a DataFrame.
 - minor-axis: columns of a DataFrame.
 - copy: Boolean value to denote whether data will be copied from inputs.
 - dtype: specifies a data type.

Operations on Pandas

- → Retrieving Data from csv file
- → Handling of missing data
- → Data Extraction/Filter
- → Data Addition/Deletion
- → Concatenation DataFrame
- → Merging /Joining DataFrame
- → Data Grouping

Retrieving Data from CSV

- → CSV (comma-separated value) files are a common file format for transferring and storing data.
- → Using read_csv() function to retrieve data from CSV file, where the delimiter is a comma character.
- → Demo

Handling of missing data

	ID	Name	Age	Address	Qualification	
0	10	John	27	Chicago	Btech	
1	11	Jim	24	NaN	NaN	Ć
2	12	Jackson	22	Texas	B.A	
3	13	Amy	32	New York	Bcom	

Missing data

- → a very big problem in a real-life scenarios
- → it exists and was not collected or it never existed
- → represented for None and NaN (Not a Number) indicating missing or null values

- → Checking for missing values using isnull() and notnull()
- → Filling missing values using fillna(), replace() and interpolate()
- → Dropping missing values using dropna()

Data Extraction

	Name	Location	Age
0	Anna	New York	20
1	Peter	Paris	15
2	John	London	18

→ Extract a column data of DataFrame by calling it by the column name.

```
df[['Location']]
```

Anna New York Peter Paris John London

Location Age

Name

Anna	New York	20
Peter	Paris	15
John	London	18

→ Extract a row data of DataFrame by using method

Location Paris
Age 15
Name: Peter, dtype: object

Data Filter

- - item Takes list of axis labels that need to filter.
 - **like** Takes axis string label that need to filter
 - regex regular expression
 - **axis** {0 or 'index', 1 or 'columns', None}, default None. When not specified it used columns.

Examples

df.filter(regex='e\$', axis=1)

Age

20

15

18

Anna

Peter

John

	Location	Age
Anna	New York	20
Peter	Paris	15
John	London	18

```
df.filter(items=['Location'])

Location

Anna New York

Peter Paris

John London
```

df.filter(like='er', axis=0)

Location Age
Peter Paris 15

Data Addition

→ Adding a new column data: declare a new list as a column data and

add to a existing Dataframe

```
# Declare a list that is to be converted into a column
height = [1.6, 1.8, 1.5]
#Using 'Height' as the column name and equating it to the list
df['Height'] = height
```

	Location	Age	Height
Anna	New York	20	1.6
Peter	Paris	15	1.8
John	London	18	1.5

→ Adding a new row data: concat the old dataframe with new one

```
new_row = pd.DataFrame({'Name':['Hoa'], 'Location':['Vietnam'], 'Age':[16], 'Height':[1.55]}, index=[0])
#concatenating the new row with the old dataframe
df=pd.concat([new_row,df]).reset_index(drop=True)
Name Location Age Height
```

	Name	Location	Age	Height
0	Hoa	Vietnam	16	1.55
1	Anna	New York	20	1.60
2	Peter	Paris	15	1.80
3	John	London	18	1.50

#create a new row

Data Deletion

- → Using the drop() method
- → Delete a column:

```
#Droping columns with column names
df.drop(["Location"],axis=1, inplace = True)
```

	Name	Age	Height
o	Hoa	16	1.55
1	Anna	20	1.60
2	Peter	15	1.80
3	John	18	1.50

→ Deleting a <u>new row</u>: concat the old dataframe with new one

#Droping row with index labels
df.drop([3], inplace = True)

	Name	Age	Height
0	Hoa	16	1.55
1	Anna	20	1.60
2	Peter	15	1.80

Concatenating DataFrame

- → Using concat() method to combine DataFrames across axes
 - axis = 0 (rows)

• <u>axis=1</u> (columns)

Concatenating DataFrame

- With setting different logic on axes
 - Taking the <u>union</u> of them all with the argument <u>join='outer'</u>
 (default)
 - Taking the <u>intersection</u> with the argument <u>join='inner'</u>
- ♦ With ignoring indexes with the argument <u>ignore index=True</u>
- With group keys with the argument <u>keys</u>

Examples

	Name	Location	Age		Name	Location	Age
0	Anna	New York	20	3	Jim	Hensiki	21
1	Peter	Paris	15	2	John	London	29
2	John	London	18				

concating dataframe with axes and join='outer'
res2 = pd.concat([df, df2], axis=1, sort=False)

	Name	Location	Age	Name	Location	Age
0	Anna	New York	20.0	NaN	NaN	NaN
1	Peter	Paris	15.0	NaN	NaN	NaN
2	John	London	18.0	John	London	29.0
3	NaN	NaN	NaN	Jim	Hensiki	21.0

concating dataframe
res=pd.concat([df,df2])

	Name	Location	Age
0	Anna	New York	20
1	Peter	Paris	15
2	John	London	18
3	Jim	Hensiki	21
2	John	London	18

concating dataframe with axes and join='inner'
res=pd.concat([df,df2], axis=1,join='inner')

	Name	Location	Age	Name	Location	Age
2	John	London	18	John	London	29

Data Merging/Joining

- → Using merge() method to combine data on common columns or indices.
- → Using join() method to combine the columns of two differentlyindexed DataFrames into a single result DataFrame based on a key

column or an index.

how= 'inner'

how= 'right'

how= 'left'

how= 'outer'

- with one unique key combination on = [key]
- using multiple join keys on=[key1,key2,...]

Joining Examples

	Name	Age		Address	Qualification
Ю	John	27	10	Chicago	Btech
11	Jim	24	12	Texas	B.A
12	Jackson	22	13	New York	Bcom
13	Amy	32	14	Florida	B.hons

using join method to join dataframes (based on index)
res2 = df.join(df1)

	Name	Age	Address	Qualification
10	John	27	Chicago	Btech
11	Jim	24	NaN	NaN
12	Jackson	22	Texas	B.A
13	Amy	32	New York	Bcom

<pre># getting union res1 = df.join(df1, how='outer')</pre>				
	Name	Age	Address	Qualification
ю	John	27.0	Chicago	Btech
11	Jim	24.0	NaN	NaN
12	Jackson	22.0	Texas	B.A
13	Amy	32.0	New York	Bcom
14	NaN	NaN	Florida	B.hons

Data Grouping

- → grouping the data according to the categories and apply a function to the categories.
- → often involves 3 operations:
 - Splitting the Data Object
 - Applying a function
 - Combining the results

Examples of Splitting Data Objects

	Key	Data
0	Α	7
1	Α	6
2	Α	5
3	В	2
4	В	20
5	С	6
6	С	5
7	_	6

Using groupby() for splitting the dataframe over some criteria into data subsets.

groupby('key')

```
df.groupby('Key').groups
{'A': [0, 1, 2], 'B': [3, 4], 'C': [5, 6, 7]}
```

groupby(['key1','key2'])

```
df.groupby(['Key','Data']).groups
{('A', 5): [2], ('A', 6): [1], ('A', 7): [0], ('B', 2): [3], ('B', 20): [4], ('C', 5): [6], ('C', 6): [5, 7]}
```


Statistical functions in Pandas

→ computing a summary statistic

sum()	Compute sum of column values
min()	Compute min of column values
max()	Compute max of column values
mean()	Compute mean of column
size()	Compute column sizes
describe()	Generates descriptive statistics

first()	Compute first of group values
last()	Compute last of group values
count()	Compute count of column values
std()	Standard deviation of column
var()	Compute variance of column
sem()	Standard error of the mean of column

Transformation Functions

- → Returns a self-produced dataframe with transformed values after applying the function specified in its parameter.
 - apply()
 - applymap()
 - melt()
 - transform()

apply () function

- → Used to apply a function along an axis of the DataFrame.

 DataFrame.apply(func, axis, raw, reduce=None, result_type, args=(), **kwds)
- func: Function to apply to each column or row.
- axis: Axis along which the function is applied: 0 or 'index': apply function to each column; 1 or 'columns': apply function to each row.
- raw: False passes each row or column as a Series to the function; True the passed function will receive ndarray objects instead.
- result_type: only act when axis=1 (columns): 'expand': list-like results will be turned into columns; 'reduce': returns a Series if possible rather than expanding list-like results; 'broadcast': results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained.
- arg(): Positional arguments to pass to func in addition to the array/series.

http=//vk**kwds: Additional keyword arguments to pass as keywords arguments to func.

Examples


```
P Q0 3.0 5.01 3.0 5.02 3.0 5.0
```

```
df.apply(np.sum, axis=1)
```

```
0 34
1 34
2 34
dtype: int64
```

```
df.apply(lambda x: [1, 2], axis=1)
```

```
0 [1, 2]
1 [1, 2]
2 [1, 2]
dtype: object
```

```
df.apply(lambda x: [1, 2], axis=1, result_type='expand')
```

```
0 1 2 1 1 2
```

```
df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
```

```
P Q0 1 21 1 22 1 2
```


applymap () function

→ Used to apply a function to a Dataframe elementwise.

```
DataFrame.apply( func)
```

func: Python function, returns a single value from a single value.

```
0 2.000 3.120
1 4.356 5.567
```

```
df.applymap(lambda x: len(str(x)))
```

```
0 1
0 3 4
```


df.applymap(lambda x: x**2)

1 18.974736 30.991489

melt() function

→ used to unpivot a given DataFrame from wide format to long format

```
DataFrame.melt([id_vars], [value_vars], var_name, value_name, [col_level])
```

- [id_vars]: column(s) to use as identifier variables.
- [value_vars]: column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
- var_name: name to use for the 'variable' column. If None it uses frame.columns.name or 'variable'.
- value_name: name to use for the 'value' column.
- [col_level]: if columns are a MultiIndex then use this level to melt.

Examples


```
PQR
```

0 p 1 2

1 a 3

2 r 5

```
df.melt(id_vars=['P'], value_vars=['Q'])
```

P variable value

0	р	Q	1

2 r Q

```
df.melt(id_vars=['P'], value_vars=['Q', 'R'])
```

P variable value

1
3
5
2
4

R

5 r

P myVarname myValname

0	р	Q	1
1	q	Q	3

P variable value

0	р	Q	1
1	q	Q	3
2	r	Q	5

transform() function

→ used to call function (func) on self producing a DataFrame with transformed values and that has the same axis length as self.

DataFrame.transform(func, axis, *args, **kwargs)

- func: Function to use for transforming the data
- axis: 0 or 'index': apply function to each column; 1 or 'columns': apply function to each row.
- *args: Positional arguments to pass to func.
- **kwargs: Keyword arguments to pass to func.


```
ΧY
```

0 2

1 1 3

2 2 4

3 3 5

df.transform(lambda x: x + 1)

	X	Y
0	1	3
1	2	4
2	3	5

Examples

df.transform([np.sqrt, np.exp])

	X		Υ	
	sqrt	ехр	sqrt	ехр
0	0.000000	1.000000	1.414214	7.389056
1	1.000000	2.718282	1.732051	20.085537
2	1.414214	7.389056	2.000000	54.598150
3	1.732051	20.085537	2.236068	148.413159

Categorical Data

- → a pandas data type corresponding to categorical variables in statistics, e.g. gender, social class, blood type,....
- → Using the standard pandas Categorical constructor to create categorical object

```
pandas.Categorical(values, categories, ordered)
```

```
cat = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], categories=["b","a","c"], ordered=True)
cat
```

```
['a', 'b', 'c', 'a', 'b', 'c']
Categories (3, object): ['b' < 'a' < 'c']
```


Working with time series data

- → A *time series* is any data set where the values are measured at different points in time.
 - uniformly spaced. Eg. hourly weather measurements, daily counts of web site visits, or monthly sales totals.
 - ◆ irregularly spaced. Eg. timestamped data in a computer system's event log, a history of 115 emergency calls
- → Pandas provides useful objects in working with time series data:
 - ◆ Timestamp Object
 - Period Object
- http://vku.udn.vn/

Period Object

→ Period object represents an interval in time used to check if a specific event occurs within a certain period such as when monitoring the number of flights taking off or the average stock price during a period.

```
# Create time period
p1 = pd.Period('2020-12-25')
# Create time stamp
t1 = pd.Timestamp('2020-12-25 18:12')
# Test Time interval
p1.start_time < t1 < p1.end_time</pre>
```


The function to_period()

→ Used to convert a DatetimeIndex object to a PeriodIndex

Timedelta Object

→ represents the temporal difference between two datetimeobjects used to calculate the difference between two dates.

Date Range and Frequency

- → Regular date sequences can be created using functions:
 - ◆ The function date_range() for timestamp
 - ◆ The function period_range() for periods
 - ◆ The function timedelta_range() for time deltas

Working with textual data

lower()	Converts strings in the Series/Index to lower case.			
upper()	Converts strings in the Series/Index to upper case.			
len()	Computes String length().			
strip()	Helps strip whitespace(including newline) from each string in the Series/index from both the sides.			
split(' ')	Splits each string with the given pattern.			
cat(sep=' ')	Concatenates the series/index elements with given separator.			
get_dummies()	Returns the DataFrame with One-Hot Encoded values.			
contains(pattern)	Returns a Boolean value True for each element if the substring contains in the element, else False.			

http://vku.udn.vp/(a,b)

Replaces the value a with the value b.