

EE4-13 Adaptive Signal Processing and Machine Intelligence (2018-2019)

IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

Coursework

Authors: CID

Adel Haddad 01060023

Supervisor:

Prof. Danilo P. Mandic

Date: April 2019 Word Count: 0

Contents

Contents 1				
1	Cla	Classical and Modern Spectrum Estimation		
	1.1		rties of Power Spectral Density (PSD)	
		1.1.a	Approximation in the Definition of PSD	
		1.1.b	Simulation of the Limiting Case	
	1.2	Period	logram-based Methods Applied to Real–World Data	
		1.2.a	The SunSpot Dataset	
		1.2.b	The ECG Dataset	
	1.3 Correlation Estimation		ation Estimation	
		1.3.a	Unbiased and Biased ACF Estimates	
		1.3.b	Biased ACF Estimator PSDs	
		1.3.c	Biased ACF Estimator PSDs on the dB Scale	
		1.3.d	Influence of Data Samples on the PSD	
		1.3.e	MUltiple SIgnal Classification (MUSIC) Estimator	
	1.4 Spectrum of Autoregressive (AR) Processes		rum of Autoregressive (AR) Processes	
		1.4.a	Shortcomings of the Unbiased ACF in finding AR Parameters	
		1.4.b	Error of the AR PSD Estimate	
		1.4.c	Error of the AR PSD Estimate with more Samples	
	1.5	Real V	Vorld Signals: Respiratory Sinus Arrhythmia from RR-Intervals	
		1.5.a	Standard & Average PSDs of the RRI Dataset	
		1.5.b	Analysis of the RRI PSD Estimates	
		1.5.c	AR PSD Estimate for the RRI Dataset	
	1.6 Robust Regression		t Regression	
		1.6.a	Single Value Decomposition (SVD)	
		1.6.b	Low Rank Approximation Error	
		1.6.c	Ordinary Least Squares (OLS) & Principle Component Regression (PCR) Es-	
			timate Errors	
		1.6.d	Ordinary Least Squares (OLS) & Principle Component Regression (PCR) Es-	
			timate Errors - Part 2	

1 Classical and Modern Spectrum Estimation

1.1 Properties of Power Spectral Density (PSD)

1.1.a Approximation in the Definition of PSD

Starting with the equation provided, (1), we: use the relationship between modulus and complex conjugate for complex numbers, we move out the summation terms from the expectation operator, we factor out the exponential terms - as they are independent of the random variable x and we finally use the property that the expectation of a complex conjugate is

$$P(\omega) = \lim_{N \to \infty} \mathbb{E} \left\{ \frac{1}{N} \left| \sum_{n=0}^{N-1} x(n) e^{-j\omega n} \right|^{2} \right\}$$

$$= \lim_{N \to \infty} \mathbb{E} \left\{ \frac{1}{N} \sum_{m=0}^{N-1} x(m) e^{-j\omega m} \sum_{k=0}^{N-1} x^{*}(k) e^{j\omega k} \right\}$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} \sum_{k=0}^{N-1} \mathbb{E} \left\{ x(m) e^{-j\omega m} x^{*}(k) e^{j\omega k} \right\}$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} \sum_{k=0}^{N-1} \mathbb{E} \left\{ x(m) x^{*}(k) \right\} e^{-j\omega(m-k)}$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} \sum_{k=0}^{N-1} r_{xx}(m-k) e^{-j\omega(m-k)} = \lim_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} \sum_{k=0}^{N-1} g(m-k)$$

$$(2)$$

where $g(\tau) = r_{xx}(\tau)e^{-j\omega\tau}$

We can convert the double summation into a single summation using:

$$\sum_{m=-N}^{N} \sum_{k=-N}^{N} g(m-k) = \sum_{\tau=-2N}^{2N} (2N+1-|\tau|)g(\tau)$$
(3)

(2) can then be written as:

$$P(\omega) = \lim_{N \to \infty} \frac{1}{N} \sum_{\tau = -(N-1)}^{N-1} (N - |\tau|) r_{xx}(\tau) e^{-j\omega\tau}$$

$$= \lim_{N \to \infty} \sum_{\tau = -(N-1)}^{N-1} r_{xx}(\tau) e^{-j\omega\tau} - \lim_{N \to \infty} \frac{1}{N} |\tau| \sum_{\tau = -(N-1)}^{N-1} r_{xx}(\tau) e^{-j\omega\tau}$$

$$\approx \sum_{\tau = -\infty}^{\infty} r_{xx}(\tau) e^{-j\omega\tau}$$
(4)

1.1.b Simulation of the Limiting Case

1.2 Periodogram-based Methods Applied to Real-World Data

1.2.a The SunSpot Dataset

I am putting some text

(a) Raw and its preprocessed datas

(b) Periodograms

1.2.b The ECG Dataset

(a) Standard Periodogram

(b) Bartlett Average Periodograms

1.3 Correlation Estimation

1.3.a Unbiased and Biased ACF Estimates

Figure 3: Set of Auto-Correlation Functions (ACFs) and their Correlograms

1.3.b Biased ACF Estimator PSDs

1.3.c Biased ACF Estimator PSDs on the dB Scale

1.3.d Influence of Data Samples on the PSD

Figure 6: PSD while varying n, the number of Data Samples used

1.3.e MUltiple SIgnal Classification (MUSIC) Estimator

Figure 7: Set of Auto-Correlation Functions (ACFs) and their Correlograms. n is the number of samples used, p is the Signal Space Dimensionality

1.4 Spectrum of Autoregressive (AR) Processes

1.4.a Shortcomings of the Unbiased ACF in finding AR Parameters

1.4.b Error of the AR PSD Estimate

1.4.c Error of the AR PSD Estimate with more Samples

1.5 Real World Signals: Respiratory Sinus Arrhythmia from RR-Intervals

1.5.a Standard & Average PSDs of the RRI Dataset

Figure 10: Standard and Bartlett Average Periodograms. W_L is the Window Length used

1.5.b Analysis of the RRI PSD Estimates

1.5.c AR PSD Estimate for the RRI Dataset

Test text

Figure 11: AR Estimate Periodograms. p is the model order.

1.6 Robust Regression

1.6.a Single Value Decomposition (SVD)

1.6.b Low Rank Approximation Error

(a) Effect of Lower Ranks on the Approximation Error

1.6.c Ordinary Least Squares (OLS) & Principle Component Regression (PCR) Estimate Errors

1.6.d Ordinary Least Squares (OLS) & Principle Component Regression (PCR) Estimate Errors - Part 2

(a) Mean Squure Error over several Realisations