9 Clustering

Import and pre-processing

```
import pandas as pd
import numpy as np
import scipy as sp
import plotly
import plotly.plotly as py
import plotly.figure_factory as ff
plotly.tools.set_credentials_file(username='lilcutepawz', api_key='slzZafcOv

%matplotlib notebook
import matplotlib.pyplot as plt
import seaborn
from mpl_toolkits.mplot3d import Axes3D
plt.rcParams['font.size'] = 14
from sklearn.cluster import DBSCAN
from sklearn import metrics
```

Out[22]:

	lat	lon	alt
115954	9.914291	57.066334	1.075407
37636	8.899517	56.757708	11.193969
337386	9.964541	57.275934	38.956355
113565	10.424281	57.436673	27.396978
256465	9.896475	57.070760	3.111426

```
In [23]: # Transform data

XX = X.copy()
    XX['alt'] = (X.alt - X.alt.mean())/X.alt.std()
    XX['lat'] = (X.lat - X.lat.mean())/X.lat.std()
    XX['lon'] = (X.lon - X.lon.mean())/X.lon.std()

XX.head()
```

Out[23]:

	lat	lon	alt
115954	0.308535	-0.065197	-1.132141
37636	-1.295042	-1.129805	-0.592666
337386	0.387940	0.657821	0.887495
113565	1.114435	1.212294	0.271203
256465	0.280380	-0.049928	-1.023590

1. DBSCAN

a. Using DBSCAN iterate (for-loop) through different values of min_samples (1 to 10) to find clusters in the road-data used in the Lesson

```
In [24]: dbscan = DBSCAN(eps=0.5, min samples=1)
         XX.cluster = dbscan.fit predict(XX[['lat','lon', 'alt']])
         # cluster_dict = {'min_sample': min_sample, 'clusters': len(XX.cluster.value
         # print(min sample, cluster dict)
         # clusters.append(cluster dict)
In [26]: # # Establish variables, list in for loop
         min samples = range(1,11)
         # # list(min sample)
         clusters = []
         # min sample scores = []
         # for loop to run model
         for min sample in min samples:
             dbscan = DBSCAN(eps=0.05, min samples=min sample)
             XX['cluster'] = dbscan.fit predict(XX[['lat','lon', 'alt']])
             cluster dict = {'min sample': min sample, 'clusters': len(XX['cluster'].
             print(min sample, cluster dict)
             clusters.append(cluster dict)
```

	clusters	min_sample
0	4731	1
1	1317	2
2	619	3
3	345	4
4	229	5

b. and calculate the Silohouette Coeff for min_samples.

```
In [134]: for min sample in min samples:
              dbscan = DBSCAN(eps=0.4, min samples=min sample)
              XX['cluster'] = dbscan.fit predict(XX[['lat','lon', 'alt']])
                clusters.append(XX['cluster'])
              score = metrics.silhouette score(XX[['lon','lat','alt']], XX['cluster'])
              print(min sample, score)
              min sample score = {'min sample': min sample, 'score': score}
              min sample scores.append(min sample score)
          1 -0.16595282393
          2 -0.0745333011383
          3 - 0.0200024531798
          4 0.095012015895
          5 0.139377888269
          6 0.133918279376
          7 0.135890346625
          8 0.135890346625
          9 0.133162531791
          10 0.13049762749
```

```
In [154]: df_sample = pd.DataFrame(min_sample_scores)
    df_sample.head()
```

Out[154]:

	min_sample	score
0	1	-0.026420
1	2	-0.026420
2	3	-0.026420
3	4	0.132232
4	5	0.154515

```
In [155]: df_sample['clusters'] = clusters_sample['clusters']
    df_sample.head()
```

Out[155]:

	min_sample	score	clusters
0	1	-0.026420	4731.0
1	2	-0.026420	1317.0
2	3	-0.026420	619.0
3	4	0.132232	345.0
4	5	0.154515	229.0

c. and epsilon (.05 to .5, in steps of .01) to find clusters in the road-data used in the Lesson

```
In [144]:
          epsilons = np.arange(0.05, 0.51, 0.01)
          # list(epsilon)[:5]
          clusters = []
          # min sample scores = []
          # for loop to run model
          for epsilon in epsilons:
              dbscan = DBSCAN(eps=epsilon)
              XX.cluster = dbscan.fit_predict(XX[['lat','lon', 'alt']])
              cluster_dict = {'epsilon': epsilon, 'clusters': len(XX.cluster.value_col
              print(epsilon, cluster dict)
              clusters.append(cluster dict)
          0.05 {'epsilon': 0.0500000000000003, 'clusters': 229}
          0.06 {'epsilon': 0.0600000000000005, 'clusters': 242}
          0.07 {'epsilon': 0.0700000000000007, 'clusters': 259}
          0.08 {'epsilon': 0.08000000000000016, 'clusters': 271}
          0.09 {'epsilon': 0.0900000000000011, 'clusters': 277}
          0.1 {'epsilon': 0.100000000000001, 'clusters': 255}
          0.11 {'epsilon': 0.110000000000001, 'clusters': 217}
          0.12 {'epsilon': 0.120000000000001, 'clusters': 149}
          0.13 {'epsilon': 0.13, 'clusters': 98}
          0.14 {'epsilon': 0.140000000000001, 'clusters': 80}
          0.15 {'epsilon': 0.1500000000000002, 'clusters': 59}
          0.16 {'epsilon': 0.160000000000003, 'clusters': 43}
          0.17 {'epsilon': 0.170000000000004, 'clusters': 35}
          0.18 {'epsilon': 0.180000000000005, 'clusters': 26}
          0.19 {'epsilon': 0.19, 'clusters': 20}
          0.2 {'epsilon': 0.200000000000001, 'clusters': 14}
          0.21 {'epsilon': 0.2100000000000002, 'clusters': 11}
          0.22 {'epsilon': 0.220000000000003, 'clusters': 11}
          0.23 {'epsilon': 0.230000000000004, 'clusters': 8}
                          0 040000000000000
In [145]: | clusters eps = pd.DataFrame(clusters)
          clusters eps.head()
```

Out[145]:

	clusters	epsilon
0	229	0.05
1	242	0.06
2	259	0.07
3	271	0.08
4	277	0.09

d. and calculate the Silohouette Coeff for epsilon.

```
In [141]: epsilon_scores = []
           for epsilon in epsilons:
               dbscan = DBSCAN(eps=epsilon)
               labels = dbscan.fit_predict(XX[['lat','lon', 'alt']])
               score = metrics.silhouette_score(XX[['lon','lat','alt']], labels)
               print(epsilon, score)
               epsilon_score = {'epsilon': epsilon, 'score': score}
               epsilon_scores.append(epsilon_score)
          0.05 -0.419523918386
          0.06 - 0.342683583237
          0.07 -0.338527485292
          0.08 - 0.311017304843
          0.09 - 0.261419155027
          0.1 - 0.227767298122
          0.11 -0.267681514048
          0.12 - 0.391305145549
          0.13 - 0.531491548534
          0.14 - 0.526259239323
          0.15 - 0.478197542066
          0.16 - 0.470136171451
          0.17 - 0.479690948103
          0.18 - 0.473927789749
          0.19 - 0.466245223068
          0.2 - 0.426051587094
          0.21 - 0.366362047219
          0.22 - 0.364457852255
          0.23 - 0.26992793341
                0 000000470760
```

In [230]: df_eps = pd.DataFrame(epsilon_scores) df_eps.head()

Out[230]:

	epsilon	score
0	0.05	-0.419524
1	0.06	-0.342684
2	0.07	-0.338527
3	0.08	-0.311017
4	0.09	-0.261419

In [153]: df_eps['clusters'] = clusters_eps['clusters']
 df_eps.head()

Out[153]:

	epsilon	score	clusters
0	0.05	-0.413108	229
1	0.06	-0.332175	242
2	0.07	-0.305814	259
3	0.08	-0.259021	271
4	0.09	-0.255028	277

e. Plot *one* line plot with the multiple lines generated from the min_samples and epsilon values.

```
In [160]: df_eps.shape, df_sample.shape
```

Out[160]: ((46, 3), (34, 3))

In [166]: df_sample.head()

Out[166]:

	min_sample	score	clusters
0	1	-0.026420	4731.0
1	2	-0.026420	1317.0
2	3	-0.026420	619.0
3	4	0.132232	345.0
4	5	0.154515	229.0

```
In [171]: df_sample_plot = df_sample[1:]
    df_sample_plot.head()
```

Out[171]:

	min_sample	score	clusters
1	2	-0.026420	1317.0
2	3	-0.026420	619.0
3	4	0.132232	345.0
4	5	0.154515	229.0
5	6	0.153127	135.0

```
In [178]: # plot the results
    plt.figure()
    plt.plot(df_eps_plot['clusters'], df_eps_plot['score'], color='g')
    plt.plot(df_sample_plot['clusters'], df_sample_plot['score'], color='r')
    plt.xlabel('Number of clusters')
    plt.ylabel('Silhouette Coefficient')
    plt.grid(True)
    plt.show()
```


f. Use a 2D array to store the SilCoeff values, one dimension represents $min_samples$, the other represents epsilon.

In [261]: from tqdm import tqdm_notebook as tqdm

```
In [262]: # min samples = range(1,11)
                          \# epsilons = np.arange(0.05, 0.51, 0.01)
                           # fast for debug
                          min_samples = range(1,11, 2)
                          epsilons = np.arange(0.2, 0.51, 0.1)
                          silcoeff = np.zeros([len(min samples), len(epsilons)])
                          for i, min_sample in enumerate(tqdm(min_samples, desc='min_samples')):
                                    for j, epsilon in enumerate(tqdm(epsilons, desc='epsilons')):
                                               dbscan = DBSCAN(eps=epsilon, min samples=min sample)
                                               labels = dbscan.fit_predict(XX[['lat','lon', 'alt']])
                                               silcoeff[i,j] = metrics.silhouette_score(XX[['lon','lat','alt']], later in the silcoeff i
In [256]: \# silcoeff[0,0] = np.nan
In [265]: list(silcoeff)
Out[265]: [array([-0.57886386, -0.28390485, -0.16595282, -0.02641958]),
                            array([-0.46056487, -0.14476693, -0.02000245, -0.02641958]),
                             array([-0.42605159, -0.14603055, 0.13937789, 0.15451542]),
                             array([-0.35454116, -0.02232658, 0.13589035, 0.15312689]),
                             array([-0.36447705, 0.01737273, 0.13316253, 0.15131648])]
     In [ ]: len(min samples)
In [283]: df eps short scores = df eps['score'][:34]
                          # df eps short scores.shape
                          df eps['min score'] = df eps['score'][:34]
                          df eps.head()
                          df silcoeffs = df eps.groupby('epsilon')['min score', 'score'].apply(list).to
                          df silcoeffs
     In [8]: import plotly.figure factory as ff
                          # df eps
                          df eps ff = ff.create table(df eps)
                          df eps ff = py.iplot(df eps ff, filename='table1')
                          df eps ff
```

```
In [337]: # for s in silcoeffs:
           #
                 for eps silc in eps silcs:
           #
                     silcoeff.append([df eps['score']])
           #
                     print(silcoeff)
           #
                 for sample silc in sample silcs:
           #
                     silcoeff.append([df sample['score']])
                 print(silcoeff)
           # establish variables, shorten computation time
          min samples = range(1,11, 1)
           epsilons = np.arange(0.2, 0.51, 0.1)
           # create empty dictionary
           silcovfefe = np.zeros([len(min_samples), len(epsilons)])
           silcovfefe.shape
           # for loop, iterate through i, j
           for i,min sample in enumerate(min samples):
               for j, epsilon in enumerate(epsilons):
                   dbscan = DBSCAN(eps=epsilon, min_samples=min_sample)
                   labels = dbscan.fit_predict(XX[['lat','lon', 'alt']])
                     append silhouette coefficient of i,j to empty dictionary
                   silcovfefe[i,j] = metrics.silhouette_score(XX[['lon','lat','alt']],
           print(silcovfefe)
           [[-0.57886386 - 0.28390485 - 0.16595282 - 0.02641958]
           [-0.50891917 -0.16142834 -0.0745333 -0.02641958]
            [-0.46056487 -0.14476693 -0.02000245 -0.02641958]
            [-0.42684482 -0.14596664 0.09501202 0.13223161]
            [-0.42605159 -0.14603055 0.13937789 0.15451542]
            [-0.38925167 \quad 0.01322098 \quad 0.13391828 \quad 0.15312689]
            [-0.35454116 -0.02232658 0.13589035 0.15312689]
            [-0.34056536 \quad 0.00671813 \quad 0.13589035 \quad 0.15312689]
            [-0.36447705 \quad 0.01737273 \quad 0.13316253 \quad 0.15131648]
            [-0.3163645 -0.02514957 0.13049763 0.15131648]]
In [338]: len(min samples), len(epsilons)
Out[338]: (10, 4)
```

2D Array of Silhouettes: min_samples + epsilons

```
In [340]:
          silcovfefe_t = np.array(silcovfefe)
          silcovfefe t = silcovfefe t.transpose()
          silcovfefe_t
Out[340]: array([[-0.57886386, -0.50891917, -0.46056487, -0.42684482, -0.42605159,
                  -0.38925167, -0.35454116, -0.34056536, -0.36447705, -0.3163645],
                 [-0.28390485, -0.16142834, -0.14476693, -0.14596664, -0.14603055,
                   0.01322098, -0.02232658, 0.00671813, 0.01737273, -0.02514957],
                 [-0.16595282, -0.0745333, -0.02000245, 0.09501202,
                                                                       0.13937789,
                   0.13391828, 0.13589035, 0.13589035, 0.13316253,
                                                                       0.13049763],
                 [-0.02641958, -0.02641958, -0.02641958, 0.13223161,
                                                                       0.15451542,
                   0.15312689, 0.15312689, 0.15312689,
                                                         0.15131648,
                                                                       0.1513164
          8]])
  In [4]:
          # heatmap for silcovfefe
          import plotly.graph objs as go
```

Out[359]:

Still figuring out how to use plotly. Heatmap of the 2D array silhouette coefficients. As you can see, bright red would be phenomenal but is nowhere on the map. The silhouette coefficient appears to improve as both the minimum number of samples and epsilons increase.

2. Clustering your own data

Using your own data, find relevant clusters/groups within your data. If your data is labeled already, with a class that you are attempting to predict, be sure to not use it in fitting/training/predicting.

You may use the labels to compare with predictions to show how well the clustering performed using one of the clustering metrics (http://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation).

If you don't have labels, use the silhouette coefficient to show performance. Find the optimal fit for your data but you don't need to be as exhaustive as above.

Additionally, show the clusters in 2D and 3D plots.

For bonus, try using PCA first to condense your data from N columns to less than N.

Two items are expected:

- · Metric Evaluation Plot
- · Plots of the clustered data

Note

You may use any for both parts 1 and 2, I only recommend using the data I used in the Lesson for part 1. I've included several new datasets in the data/ folder, such as beers.csv, snow_tweets.csv, data/USCensus1990.data.txt.gz. You do not need to unzip or ungzip any data files. Pandas can open these files on its own.

```
import pandas as pd
import numpy as np
import scipy as sp
import plotly
import plotly.plotly as py
import plotly.figure_factory as ff
plotly.tools.set_credentials_file(username='lilcutepawz', api_key='slzZafcOv

%matplotlib notebook
import matplotlib.pyplot as plt
import seaborn
from mpl_toolkits.mplot3d import Axes3D
plt.rcParams['font.size'] = 14
from sklearn.cluster import DBSCAN
from sklearn import metrics
```

Data: Beer.csv

abv: alcohol by volume - ibu: hops measurement units

```
In [61]:
            # Import data
            X = pd.read csv('../data/beers.csv', header=0, index col=0)
            X.head()
Out[61]:
                             id
                                                                             brewery_id ounces
                 abv
                      ibu
                                                                        style
                                            name
               0.050
                      NaN
                           1436
                                         Pub Beer
                                                           American Pale Lager
                                                                                    408
                                                                                            12.0
               0.066
                     NaN
                           2265
                                        Devil's Cup
                                                        American Pale Ale (APA)
                                                                                    177
                                                                                           12.0
               0.071
                           2264
                                 Rise of the Phoenix
                                                                 American IPA
                                                                                           12.0
                     NaN
                                                                                    177
               0.090
                      NaN
                           2263
                                           Sinister
                                                  American Double / Imperial IPA
                                                                                    177
                                                                                            12.0
               0.075
                     NaN
                           2262
                                    Sex and Candy
                                                                 American IPA
                                                                                    177
                                                                                           12.0
In [63]:
           X['ibu'].isnull().value_counts()
Out[63]: False
                       1405
            True
                       1005
           Name: ibu, dtype: int64
In [68]:
            X.shape
Out[68]: (2410, 7)
In [72]:
            \# X = X.fillna(0)
            # X.head()
            # dropna values
            X = X.dropna(axis=0, how='any')
            X.shape
Out[72]: (1403, 7)
In [73]:
            X.head()
Out[73]:
                  abv
                        ibu
                              id
                                                           name
                                                                                style
                                                                                      brewery id
                                                                                                 ounces
                                                                     American Pale Ale
                0.061
                       60.0
                            1979
                                                      Bitter Bitch
                                                                                            177
                                                                                                    12.0
                                                                                (APA)
                                                  Lower De Boom
                0.099 92.0
                            1036
                                                                   American Barleywine
                                                                                            368
                                                                                                     8.4
                0.079 45.0
                                                     Fireside Chat
                                                                        Winter Warmer
                            1024
                                                                                            368
                                                                                                    12.0
                                                                     American Pale Ale
                0.044 42.0
                             876
                                                   Bitter American
                                                                                            368
                                                                                                    12.0
                                                                                (APA)
```

Find relevant clusters/groups within your data.

Hell or High Watermelon Wheat

(2009)

Fruit / Vegetable Beer

802

0.049 17.0

368

12.0

```
In [75]: X = pd.get_dummies(X)
X.head()
```

Out[75]:

	abv	ibu	id	brewery_id	ounces	name_#002 American I.P.A.	name_#004 Session I.P.A.	name_#9	name_077XX	name_'
14	0.061	60.0	1979	177	12.0	0	0	0	0	
21	0.099	92.0	1036	368	8.4	0	0	0	0	
22	0.079	45.0	1024	368	12.0	0	0	0	0	
24	0.044	42.0	876	368	12.0	0	0	0	0	
25	0.049	17.0	802	368	12.0	0	0	0	0	

5 rows × 1421 columns

```
In [76]: # K-means with N clusters
N = 7
from sklearn.cluster import KMeans
km = KMeans(n_clusters=N, random_state=1)
km.fit(X)
```

Out[76]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=7, n_init=10, n_jobs=1, precompute_distances='auto', random_state=1, tol=0.0001, verbose=0)

```
In [77]: set(km.labels_)
```

Out[77]: {0, 1, 2, 3, 4, 5, 6}

```
Out[78]: 4 243
2 238
6 221
3 203
1 203
0 195
5 100
Name: cluster, dtype: int64
```

```
In [82]: fig = plt.figure()
   plt.scatter(X.abv, X.ibu, c=X.cluster, s=5, cmap='Paired')

   plt.xlabel('abv')
   plt.ylabel('ibu')
   plt.show()
```



```
In [83]: XX = X.copy()
    XX['ibu'] = (X.ibu - X.ibu.mean())/X.ibu.std()
    XX['abv'] = (X.abv - X.abv.mean())/X.abv.std()
```

```
In [84]: # Rerun model with normalized data
km = KMeans(n_clusters=N, random_state=1)
XX['cluster'] = km.fit_predict(XX[['ibu', 'abv']])
```

```
In [86]: fig = plt.figure()
   plt.scatter(XX.ibu, XX.abv, c=XX.cluster, s=5, cmap='Paired')

   plt.xlabel('ibu')
   plt.ylabel('abv')
   plt.show()
```



```
In [105]: XX = X.copy()
          XX['ibu'] = (X.ibu - X.ibu.mean())/X.ibu.std()
          XX['abv'] = (X.abv - X.abv.mean())/X.abv.std()
          XX['brewery_id'] = (X.brewery_id - X.brewery_id.mean())/X.brewery_id.std()
          # XX['ounces'] = (X.ounces - X.ounces.mean())/X.ounces.std()
In [106]: XX.cluster.value_counts()
Out[106]: 4
                243
          2
                238
          6
                221
          3
                203
                203
          1
          0
                195
                100
          Name: cluster, dtype: int64
```

```
In [109]: # create a "colors" array for plotting
          import numpy as np
          colors = np.array(['red', 'green', 'blue', 'yellow', 'orange', 'purple', 'bl
          fig = plt.figure()
          plt.clf()
          ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=140)
          plt.cla()
          ax.scatter(XX['ibu'], XX['abv'], XX['brewery_id'], c=colors[XX.cluster], s=
          ax.set_xlabel('ibu')
          ax.set ylabel('abv')
          ax.set_zlabel('brewery_id')
          plt.show()
          # ax.scatter(XX['ibu'], XX['abv'], XX['ounces'], c=colors[XX.cluster], s=5)
          # ax.set xlabel('ibu')
          # ax.set ylabel('abv')
          # ax.set zlabel('ounces')
          # plt.show()
```


/Users/katie/anaconda3/envs/py36/lib/python3.6/site-packages/matplotlib/a xes/_axes.py:545: UserWarning:

No labelled objects found. Use label='...' kwarg on individual plots.

```
In [97]:
          # calculate SC for K=7
          from sklearn import metrics
          metrics.silhouette_score(XX[['ibu', 'abv', 'brewery_id']], XX.cluster)
Out[97]: -0.062820373307451327
 In [99]:
          # calculate SC for K=2 through K=19
          k_range = range(2, 40)
          scores = []
          for k in k range:
              km = KMeans(n_clusters=k, random_state=1)
              labels = km.fit_predict(XX[['ibu', 'abv', 'brewery_id']])
              scores.append(metrics.silhouette_score(XX[['ibu', 'abv', 'brewery_id']],
In [110]: scores[:5]
Out[110]: [0.3857409610342693,
           0.36606781700505159,
           0.35337054181303373,
           0.3558033430441358,
           0.368444486925636581
In [111]: # plot the results
          plt.figure()
          plt.plot(k range, scores)
          plt.xlabel('Number of clusters')
          plt.ylabel('Silhouette Coefficient')
          plt.grid(True)
          plt.show()
```


The clusters are quite distinct when plotting normalized data of alcohol by volume and international bitterness units. The model performs better generally with a lower number of clusters. It peaks at 6, and then again

around 2-3 clusters. That said, a silhouette score around 0.4 isn't bad but also isn't great. I also removed all rows that contained nan values, but this also eliminated about 30-40% of the records. Perhaps imputing some of the data may provide improved results.

PCA - still work in progress

```
In [132]: import matplotlib.pyplot as plt
%matplotlib inline

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
iris = datasets.load_iris()

# Import data
X = pd.read_csv('../data/beers.csv', header=0, index_col=0)
X.head()
X.head()
```

Out[132]:

	abv	ibu	id	name	style	brewery_id	ounces
0	0.050	NaN	1436	Pub Beer	American Pale Lager	408	12.0
1	0.066	NaN	2265	Devil's Cup	American Pale Ale (APA)	177	12.0
2	0.071	NaN	2264	Rise of the Phoenix	American IPA	177	12.0
3	0.090	NaN	2263	Sinister	American Double / Imperial IPA	177	12.0
4	0.075	NaN	2262	Sex and Candy	American IPA	177	12.0

```
In [133]: # dropna values
X = X.dropna(axis=0, how='any')
X.shape
```

Out[133]: (1403, 7)

Out[134]:

	abv	ibu	id	name	style	brewery_id	ounces	style_num
14	0.061	60.0	1979	Bitter Bitch	American Pale Ale (APA)	177	12.0	15
21	0.099	92.0	1036	Lower De Boom	American Barleywine	368	8.4	5
22	0.079	45.0	1024	Fireside Chat	Winter Warmer	368	12.0	88
24	0.044	42.0	876	Bitter American	American Pale Ale (APA)	368	12.0	15
25	0.049	17.0	802	Hell or High Watermelon Wheat (2009)	Fruit / Vegetable Beer	368	12.0	55

```
In [135]: X['style_num'].value_counts()[:5]
```

```
Out[135]: 13 301
15 153
3 77
10 75
17 61
```

Name: style_num, dtype: int64

Out[142]:

	abv	ibu	brewery_id	ounces
14	0.061	60.0	177	12.0
21	0.099	92.0	368	8.4
22	0.079	45.0	368	12.0
24	0.044	42.0	368	12.0
25	0.049	17.0	368	12.0

```
In [143]: print(type(XX))
```

<class 'pandas.core.frame.DataFrame'>

In [144]: type(XX.values)

Out[144]: numpy.ndarray

```
In [145]: XX = XX.values
    y = X['style_num']
    target_names = X['style']

In [1]: target = X['style_num']
    np.array(target)
    type(target)

...
```

In []: