Lecture 7: Policy Gradient. Off-Policy Algorithms

Anton Plaksin

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{S}_F, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

- \bullet S is an infinite state space
- S_F is a set of final states
- \bullet \mathcal{A} is an infinite action space
- ullet P is an unknown transition probability function

$$\mathcal{P}(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

- \mathcal{P}_0 is an unknown initial state probability function
- \bullet \mathcal{R} is an unknown reward function

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t|S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ is a discount coefficient

DQN

Initialize q-networks Q^{θ} , $Q^{\theta'}$ ($\theta' = \theta$). Let $\varepsilon = 1$. During each episode, do

• Being in state S_t , act

$$A_t \sim \pi(\cdot|S_t), \quad \pi = \varepsilon\text{-greedy}(Q^{\theta})$$

get reward R_t , done signal D_t , and next state S_{t+1} . Store $(S_t, A_t, R_t, D_t, S_{t+1}) \to M$

• Get a batch $\{(s_j, a_j, r_j, d_j, s_j')\}_{j=1}^n \leftarrow M$, determine targets

$$y_j = r_j + \gamma (1 - d_j) \max_{a'} Q^{\theta'}(s'_j, a')$$

the loss function

$$L_1(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_j - Q^{\theta}(s_j, a_j))^2,$$

and update the parameters

$$\theta \leftarrow \theta - \beta_1 \nabla_{\theta} L_1(\theta), \quad \theta' \leftarrow \tau \theta' + (1 - \tau)\theta$$

• Decrease ε

Greedy Policy Approximation

Deterministic Policy Approximation

$$\pi^{\eta}(s) \approx \operatorname*{argmax}_{a \in \mathcal{A}} Q^{\theta}(s, a)$$

Greedy Policy Approximation

Deterministic Policy Approximation

$$\pi^{\eta}(s) \approx \operatorname*{argmax}_{a \in \mathcal{A}} Q^{\theta}(s, a)$$

 \Downarrow

Action due to ε -Greedy Policy

$$A_t = \left[\pi^{\eta}(S_t) + \varepsilon Noise\right]_{\mathcal{A}},$$

Targets for Q^{θ}

$$y_j = r_j + \gamma (1 - d_j) Q^{\theta'}(s'_j, \pi^{\eta}(s'_j))$$

DQN with π^{η}

Initialize networks Q^{θ} , $Q^{\theta'}$ $(\theta' = \theta)$ and π^{η} . Let $\varepsilon = 1$. During each episode, do

• Being in state S_t , act

$$A_t = \left[\pi^{\eta}(S_t) + \varepsilon Noise\right]_{\mathcal{A}},$$

get reward R_t , done signal D_t , and next state S_{t+1} . Store $(S_t, A_t, R_t, D_t, S_{t+1}) \to M$

• Get a batch $\{(s_j, a_j, r_j, d_j, s_j')\}_{j=1}^n \leftarrow M$, determine targets

$$y_j = r_j + \gamma (1 - d_j) Q^{\theta'}(s'_j, \pi^{\eta}(s'_j))$$

the loss function

$$L_1(\theta) = \frac{1}{n} \sum_{j=1}^{n} (y_j - Q^{\theta}(s_j, a_j))^2,$$

and update the parameters

$$\theta \leftarrow \theta - \beta_1 \nabla_{\theta} L_1(\theta), \quad \theta' \leftarrow \tau \theta' + (1 - \tau)\theta$$

• Decrease ε

Policy Gradient Theorems

Policy Gradient Theorem

Let $\exists \nabla_{\eta} \pi^{\eta}(a|s)$ and $\pi^{\eta}(a|s) \neq 0$ for any $s \in \mathcal{S}$, $a \in \mathcal{A}$. Then

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} \left[\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a) \right]$$

Policy Gradient Theorems

Policy Gradient Theorem

Let $\exists \nabla_{\eta} \pi^{\eta}(a|s)$ and $\pi^{\eta}(a|s) \neq 0$ for any $s \in \mathcal{S}$, $a \in \mathcal{A}$. Then

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} \left[\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a) \right]$$

Deterministic Policy Gradient Theorem

Let $\exists \nabla_{\eta} \pi^{\eta}(s)$ and $\exists \nabla_{a} q_{\pi^{\eta}}(s, a)$. Then

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} \left[\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s)) \right] = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} \left[\nabla_{a} q_{\pi^{\eta}}(s, \pi^{\eta}(s)) \nabla_{\eta} \pi^{\eta}(s) \right]$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Batch Approximation

If $\pi \approx \pi^{\eta}$ and $Q^{\theta} \approx q_{\pi^{\eta}}$, then

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \left(\frac{1}{n} \sum_{j=1}^{n} Q^{\theta}(s_j, \pi^{\eta}(s_j)) \right)$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Batch Approximation

If $\pi \approx \pi^{\eta}$ and $Q^{\theta} \approx q_{\pi^{\eta}}$, then

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \left(\frac{1}{n} \sum_{j=1}^{n} Q^{\theta}(s_j, \pi^{\eta}(s_j)) \right)$$

Bellman Expectation Equation for q_{π}

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma q_{\pi^{\eta}}(S_{t+1}, \pi^{\eta}(S_{t+1})) | S_t = s, A_t = a]$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Batch Approximation

If $\pi \approx \pi^{\eta}$ and $Q^{\theta} \approx q_{\pi^{\eta}}$, then

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \left(\frac{1}{n} \sum_{j=1}^{n} Q^{\theta}(s_j, \pi^{\eta}(s_j)) \right)$$

Bellman Expectation Equation for q_{π}

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma q_{\pi^{\eta}}(S_{t+1}, \pi^{\eta}(S_{t+1})) | S_t = s, A_t = a]$$

Batch Approximation

If

$$\frac{1}{n}\sum_{i=1}^{n} \left(r_j + \gamma Q^{\theta}(s_j', \pi^{\eta}(s_j')) - Q^{\theta}(s_j, a_j) \right) \approx 0,$$

then $Q^{\theta} \approx q_{\pi^{\eta}}$

Deep Deterministic Policy Gradient (DDPG)

Initialize networks π^{η} , $\pi^{\eta'}$ $(\eta' = \eta)$ and Q^{θ} , $Q^{\theta'}$ $(\theta' = \theta)$. Let $\varepsilon = 1$. During each episode, do

• Being in state S_t , act

$$A_t = \left[\pi^{\eta}(S_t) + \varepsilon Noise\right]_{\mathcal{A}},$$

get reward R_t , done signal D_t , and next state S_{t+1} . Store $(S_t, A_t, R_t, D_t, S_{t+1}) \to M$

• Get a batch $\{(s_j, a_j, r_j, d_j, s'_j)\}_{j=1}^n \leftarrow M$, determine targets

$$y_j = r_j + \gamma (1 - d_j) Q^{\theta'}(s'_j, \pi^{\eta'}(s'_j))$$

the loss functions

$$L_1(\theta) = \frac{1}{n} \sum_{j=1}^n (y_j - Q^{\theta}(s_j, a_j))^2, \quad L_2(\eta) = \frac{1}{n} \sum_{j=1}^n Q^{\theta}(s_j, \pi^{\eta}(s_j))$$

and update the parameters

$$\theta \leftarrow \theta - \beta_1 \nabla_{\theta} L_1(\theta), \quad \eta \leftarrow \eta + \beta_2 \nabla_{\eta} L_2(\eta),$$

$$\theta' \leftarrow \tau \theta' + (1 - \tau)\theta, \quad \eta' \leftarrow \tau \eta' + (1 - \tau)\eta$$

• Decrease ε

• Using fixed exploration noise $\mathcal{N}(0, \sigma)$

- Using fixed exploration noise $\mathcal{N}(0, \sigma)$
- Using two q-function approximations Q^{θ_i} , i = 1, 2 in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i=1,2} Q^{\theta'_i}(s_j, \pi^{\eta}(s_j))$$

- Using fixed exploration noise $\mathcal{N}(0,\sigma)$
- Using two q-function approximations Q^{θ_i} , i=1,2 in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i=1,2} Q^{\theta'_i}(s_j, \pi^{\eta}(s_j))$$

• Using clipped noisy actions in in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i = 1, 2} Q^{\theta_i'}(s_j, a_j), \ \ a_j = \pi^{\eta}(s_j) + [\epsilon]_c, \ \ \epsilon \sim \mathcal{N}(0, \sigma)$$

- Using fixed exploration noise $\mathcal{N}(0,\sigma)$
- Using two q-function approximations Q^{θ_i} , i = 1, 2 in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i=1,2} Q^{\theta'_i}(s_j, \pi^{\eta}(s_j))$$

• Using clipped noisy actions in in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i = 1, 2} Q^{\theta_i'}(s_j, a_j), \ \ a_j = \pi^{\eta}(s_j) + [\epsilon]_c, \ \ \epsilon \sim \mathcal{N}(0, \sigma)$$

• Updates the policy less frequently than the Q-function

- Using fixed exploration noise $\mathcal{N}(0,\sigma)$
- Using two q-function approximations Q^{θ_i} , i=1,2 in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i=1,2} Q^{\theta'_i}(s_j, \pi^{\eta}(s_j))$$

• Using clipped noisy actions in in targets:

$$y_j = r_j + \gamma (1 - d_j) \min_{i = 1, 2} Q^{\theta_i'}(s_j, a_j), \ \ a_j = \pi^{\eta}(s_j) + [\epsilon]_c, \ \ \epsilon \sim \mathcal{N}(0, \sigma)$$

• Updates the policy less frequently than the Q-function

Twin Delayed DDPG (TD3)

TD3 Results

Fujimoto S., Hoof H., Meger D. Addressing Function Approximation Error in Actor-Critic Methods

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{S}_F, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

- $S = \{s_1, s_2, \dots, s_n\}$ is an finite state space
- $S_F \subset S$ is a set of final states
- $\mathcal{A} = \{a_1, a_2, \dots, a_m\}$ is an finite action space
- ullet P is an unknown transition probability function

$$\mathcal{P}(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

- \mathcal{P}_0 is an unknown initial state probability function
- \bullet \mathcal{R} is an unknown reward function

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ is a discount coefficient

Soft RL Problem

RL Problem

$$\mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{t} \mathcal{R}(S_{t}, A_{t})\right] \to \max_{\pi},$$

where the expectation \mathbb{E} is taken by

$$S_0 \sim \mathcal{P}_0(\cdot), \quad A_t \sim \pi(\cdot|S_t), \quad S_{t+1} \sim \mathcal{P}(\cdot|S_t, A_t), \quad t = 0, 1, \dots$$

Soft RL Problem

RL Problem

$$\mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{t} \mathcal{R}(S_{t}, A_{t})\right] \to \max_{\pi},$$

where the expectation \mathbb{E} is taken by

$$S_0 \sim \mathcal{P}_0(\cdot), \quad A_t \sim \pi(\cdot|S_t), \quad S_{t+1} \sim \mathcal{P}(\cdot|S_t, A_t), \quad t = 0, 1, \dots$$

 \Downarrow

Soft RL Problem

$$\mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{t} \Big(\mathcal{R}(S_{t}, A_{t}) + \alpha \mathcal{H}(\pi(\cdot|S_{t}))\Big)\right] \to \max_{\pi},$$

where the expectation \mathbb{E} is taken by the same variables, $\alpha > 0$ and $\mathcal{H}(\pi(\cdot|S_t))$ is the policy entropy

$$\mathcal{H}(\pi(\cdot|s)) = -\sum_{i=1}^{m} \pi(a_i|s) \log \pi(a_i|s)$$

(8)

Soft Policy Evaluation

Soft Q-Function

$$q_{\pi}^{\alpha}(s, a) = \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^{t} \left(\mathcal{R}(S_{t}, A_{t}) + \alpha \mathcal{H}(\pi(\cdot|S_{t})) \right) \middle| S_{0} = s, A_{0} = a \right]$$

Soft Policy Evaluation

Soft Q-Function

$$q_{\pi}^{\alpha}(s, a) = \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^{t} \left(\mathcal{R}(S_{t}, A_{t}) + \alpha \mathcal{H}(\pi(\cdot | S_{t})) \right) \middle| S_{0} = s, A_{0} = a \right]$$

 \Downarrow

Bellman Equation for q_{π}^{α}

$$q_{\pi}^{\alpha}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{i=1}^{n} \mathcal{P}(s_i|s, a) v^{\alpha}(s_i),$$

$$v^{\alpha}(s_i) = \sum_{i=1}^{m} \pi(a_j|s_i) \left(q_{\pi}^{\alpha}(s_i, a_j) - \alpha \log \pi(a_j|s_i) \right)$$

Soft Policy Evaluation

Soft Q-Function

$$q_{\pi}^{\alpha}(s, a) = \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^{t} \left(\mathcal{R}(S_{t}, A_{t}) + \alpha \mathcal{H}(\pi(\cdot | S_{t})) \right) \middle| S_{0} = s, A_{0} = a \right]$$

 \Downarrow

Bellman Equation for q_{π}^{α}

$$q_{\pi}^{\alpha}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{i=1}^{n} \mathcal{P}(s_i|s, a)v^{\alpha}(s_i),$$

$$v^{\alpha}(s_i) = \sum_{i=1}^{m} \pi(a_j|s_i) \left(q_{\pi}^{\alpha}(s_i, a_j) - \alpha \log \pi(a_j|s_i) \right)$$

(Bellman Equation for q_{π}^{α}) \rightarrow (Bellman Equation for q_{π}) as $\alpha \rightarrow 0$.

KL-Divergence

$$D_{KL}\left(\pi(\cdot|s)\middle|\middle|\nu(\cdot|s)\right) = \sum_{i=1}^{m} \pi(a_i|s)\log\left(\frac{\pi(a_i|s)}{\nu(a_i|s)}\right)$$

KL-Divergence

$$D_{KL}\Big(\pi(\cdot|s)\Big|\Big|\nu(\cdot|s)\Big) = \sum_{i=1}^{m} \pi(a_i|s) \log\left(\frac{\pi(a_i|s)}{\nu(a_i|s)}\right)$$

Soft Greedy Policy Improvement

$$\pi'(\cdot|s) = \underset{\pi'}{\operatorname{argmax}} D_{KL}\left(\pi'(\cdot|s) \middle| \middle| \nu(\cdot|s)\right), \quad \nu(\cdot|s) = \operatorname{Softmax}\left(\frac{1}{\alpha}q_{\pi}^{\alpha}(s,\cdot)\right)$$

KL-Divergence

$$D_{KL}\left(\pi(\cdot|s)\Big|\Big|\nu(\cdot|s)\right) = \sum_{i=1}^{m} \pi(a_i|s) \log\left(\frac{\pi(a_i|s)}{\nu(a_i|s)}\right)$$

Soft Greedy Policy Improvement

$$\pi'(\cdot|s) = \underset{\pi'}{\operatorname{argmax}} D_{KL}\Big(\pi'(\cdot|s)\Big|\Big|\nu(\cdot|s)\Big), \quad \nu(\cdot|s) = \operatorname{Softmax}\Big(\frac{1}{\alpha}q_{\pi}^{\alpha}(s,\cdot)\Big)$$

(Soft Greedy Policy Improvement) \rightarrow (Greedy Policy Improvement) as $\alpha \rightarrow 0.$

KL-Divergence

$$D_{KL}\left(\pi(\cdot|s)\middle|\middle|\nu(\cdot|s)\right) = \sum_{i=1}^{m} \pi(a_i|s)\log\left(\frac{\pi(a_i|s)}{\nu(a_i|s)}\right)$$

Soft Greedy Policy Improvement

$$\pi'(\cdot|s) = \underset{\pi'}{\operatorname{argmax}} D_{KL}\Big(\pi'(\cdot|s)\Big|\Big|\nu(\cdot|s)\Big), \quad \nu(\cdot|s) = \operatorname{Softmax}\Big(\frac{1}{\alpha}q_{\pi}^{\alpha}(s,\cdot)\Big)$$

(Soft Greedy Policy Improvement) \rightarrow (Greedy Policy Improvement) as $\alpha \rightarrow 0.$

Soft Policy Improvement Theorem

Let π be a policy. If π' is defined by Soft Greedy Policy Improvement, then $q_{\pi'}^{\alpha}(s,a) \geq q_{\pi}^{\alpha}(s,a)$

Soft Policy Iteration

Let π_0 and $L, K \in \mathbb{N}$. For each $k \in \overline{0, K}$, do

• (Soft Policy Evaluation)

$$q_{l+1}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{i=1}^{n} \mathcal{P}(s_i|s, a) V_l(s_i),$$

$$V_l(s_i) = \sum_{j=1}^m \pi(a_j|s_i) \Big(q_l(s_i, a_j) - \alpha \log \pi(a_j|s_i) \Big)$$

• (Soft Policy improvement)

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmax}_{\pi'} D_{KL}\Big(\pi'(\cdot,s)\Big|\Big|\operatorname{Softmax}\big(q_L(s,a)/\alpha\big)\Big)$$

Soft Policy Iteration

Let π_0 and $L, K \in \mathbb{N}$. For each $k \in \overline{0, K}$, do

• (Soft Policy Evaluation)

$$q_{l+1}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{i=1}^{n} \mathcal{P}(s_i|s, a) V_l(s_i),$$

$$V_l(s_i) = \sum_{j=1}^m \pi(a_j|s_i) \Big(q_l(s_i, a_j) - \alpha \log \pi(a_j|s_i) \Big)$$

• (Soft Policy improvement)

$$\pi_{k+1}(\cdot|s) = \operatorname*{argmax}_{\pi'} D_{KL}\Big(\pi'(\cdot,s)\Big|\Big|\operatorname{Softmax}\big(q_L(s,a)/\alpha\big)\Big)$$

Theorem

$$\pi_k \to \pi_*^{\alpha} \text{ as } k \to \infty$$

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{S}_F, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

- \bullet S is an infinite state space
- S_F is a set of final states
- A is an infinite (finite) action space
- ullet P is an unknown transition probability function

$$\mathcal{P}(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

- \mathcal{P}_0 is an unknown initial state probability function
- ullet R is an unknown reward function

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ is a discount coefficient

Entropy and KL-Divergence

Entropy

$$\mathcal{H}(\pi(\cdot|s)) = -\int \pi(a|s) \log \pi(a|s) da \approx \frac{1}{k} \sum_{i=1}^{k} \log \pi(a_i|s), \quad a_i \sim \pi(\cdot|s)$$

Entropy and KL-Divergence

Entropy

$$\mathcal{H}(\pi(\cdot|s)) = -\int \pi(a|s) \log \pi(a|s) da \approx \frac{1}{k} \sum_{i=1}^{k} \log \pi(a_i|s), \quad a_i \sim \pi(\cdot|s)$$

KL-Divergence

$$D_{KL}(\pi(\cdot|s)||\nu(\cdot|s)) = \int \pi(a|s) \log\left(\frac{\pi(a|s)}{\nu(a|s)}\right) da$$

$$\approx \frac{1}{k} \sum_{i=1}^{k} \log\left(\frac{\pi(a_i|s)}{\nu(a_i|s)}\right), \quad a_i \sim \pi(\cdot|s)$$

SAC: Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi^{\alpha}_*(a|s), \quad Q^{\theta}(s,a) \approx q^{\alpha}_{\pi^{\eta}}(s,a)$$

SAC: Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi^{\alpha}_{*}(a|s), \quad Q^{\theta}(s,a) \approx q^{\alpha}_{\pi^{\eta}}(s,a)$$

Bellman equation for q_{π}^{s}

$$q_{\pi}^{\alpha}(s, a) = \mathbb{E}_{\pi} \left[R_t + \gamma \left(q_{\pi}^{\alpha}(S_{t+1}, A_{t+1}) - \alpha \log \pi(A_{t+1} | S_{t+1}) \right) \right]$$

where
$$R_t = \mathcal{R}(s, a)$$
, $S_{t+1} \sim \mathcal{P}(\cdot|s, a)$, and $A_{t+1} \sim \pi(\cdot|S_{t+1})$

SAC: Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi^{\alpha}_{*}(a|s), \quad Q^{\theta}(s,a) \approx q^{\alpha}_{\pi^{\eta}}(s,a)$$

Bellman equation for q_{π}^{s}

$$q_{\pi}^{\alpha}(s, a) = \mathbb{E}_{\pi} \left[R_t + \gamma \left(q_{\pi}^{\alpha}(S_{t+1}, A_{t+1}) - \alpha \log \pi (A_{t+1} | S_{t+1}) \right) \right]$$

where $R_t = \mathcal{R}(s, a)$, $S_{t+1} \sim \mathcal{P}(\cdot|s, a)$, and $A_{t+1} \sim \pi(\cdot|S_{t+1})$

For Each Step

If

$$Q^{\theta}(S_t, A_t) \approx R_t + \gamma \Big(Q^{\theta}(S_{t+1}, A_{t+1}) - \alpha \log \pi^{\eta}(A_{t+1}|S_{t+1}) \Big),$$

where $R_t = \mathcal{R}(S_t, A_t)$, $S_{t+1} \sim \mathcal{P}(\cdot|S_t, A_t)$, and $A_{t+1} \sim \pi^{\eta}(\cdot|S_{t+1})$, then

$$Q^{\theta} \approx q_{\pi^{\eta}}^{\alpha}$$

(**a**

SAC: Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi^{\alpha}_{*}(a|s), \quad Q^{\theta}(s,a) \approx q^{\alpha}_{\pi^{\eta}}(s,a)$$

Policy Improvement

$$\pi'(s, a) = \underset{\pi}{\operatorname{argmax}} D_{KL} \Big(\pi(\cdot, s) \Big| \Big| \operatorname{Softmax} \big(q_{\pi}^{\alpha}(s, \cdot) / \alpha \big) \Big)$$

SAC: Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi_*^{\alpha}(a|s), \quad Q^{\theta}(s,a) \approx q_{\pi^{\eta}}^{\alpha}(s,a)$$

Policy Improvement

$$\pi'(s, a) = \underset{\pi}{\operatorname{argmax}} D_{KL} \Big(\pi(\cdot, s) \Big| \Big| \operatorname{Softmax} \big(q_{\pi}^{\alpha}(s, \cdot) / \alpha \big) \Big)$$

For Each Step

If $Q^{\theta} \approx q_{\pi^{\eta}}^{\alpha}$, then

$$Q^{\theta}(S_t, a^{\eta}) - \alpha \log \pi^{\eta}(a^{\eta}|S_t) \to \max_{\eta}$$

where $a^{\eta} \sim \pi^{\eta}(\cdot|S_t)$

Case of Normal Distribution

If
$$\pi^{\eta}(a|s) = \mathcal{N}(a|\mu^{\eta}(s), (\sigma^{\eta}(s))^2)$$
, then
$$a \sim \pi^{\eta}(\cdot|s) \quad \Leftrightarrow \quad a = \mu^{\eta}(s) + \sigma^{\eta}(s)\epsilon, \quad \epsilon \sim \mathcal{N}(\cdot|0,1)$$

Case of Normal Distribution

If
$$\pi^{\eta}(a|s) = \mathcal{N}(a|\mu^{\eta}(s), (\sigma^{\eta}(s))^2)$$
, then
$$a \sim \pi^{\eta}(\cdot|s) \quad \Leftrightarrow \quad a = \mu^{\eta}(s) + \sigma^{\eta}(s)\epsilon, \quad \epsilon \sim \mathcal{N}(\cdot|0,1)$$

$$\downarrow \downarrow$$

$$L(\eta) = F(\mu^{\eta}(s) + \sigma^{\eta}(s)\epsilon), \quad \epsilon \sim \mathcal{N}(\cdot|0,1)$$

$$L(\eta) = F(a), \quad a \sim \pi^{\eta}(\cdot|s)$$

$$\downarrow \qquad \qquad \nabla_{\eta} L(\eta) = ?$$

Case of Normal Distribution

If
$$\pi^{\eta}(a|s) = \mathcal{N}(a|\mu^{\eta}(s), (\sigma^{\eta}(s))^2)$$
, then
$$a \sim \pi^{\eta}(\cdot|s) \quad \Leftrightarrow \quad a = \mu^{\eta}(s) + \sigma^{\eta}(s)\epsilon, \quad \epsilon \sim \mathcal{N}(\cdot|0,1)$$

$$\downarrow \qquad \qquad \downarrow L(\eta) = F(\mu^{\eta}(s) + \sigma^{\eta}(s)\epsilon), \quad \epsilon \sim \mathcal{N}(\cdot|0,1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\nabla_{\eta}L(\eta) = \nabla F(\mu^{\eta}(s) + \sigma^{\eta}(s)\epsilon) \Big(\nabla_{\eta}\mu^{\eta}(s) + \nabla_{\eta}\sigma^{\eta}(s)\epsilon\Big), \quad \epsilon \sim \mathcal{N}(\cdot|0,1)$$

Soft Actor-Critic (SAC)

Initialize policy network π^{η} and q-networks Q^{θ_i} and $Q^{\theta'_i}$ ($\theta'_i = \theta_i$), i = 1, 2. During each episode, do

- Being in state S_t , act $A_t \sim \pi^{\eta}(\cdot|S_t)$, get reward R_t , done signal D_t , and next state S_{t+1} . Store $(S_t, A_t, R_t, D_t, S_{t+1}) \to M$
- Get a batch $\{(s_j, a_j, r_j, d_j, s'_j)\}_{j=1}^n \leftarrow M$, sample $a'_j \sim \pi^{\eta}(\cdot | s'_j)$, determine target values

$$y_j = r_j + \gamma (1 - d_j) \left(\min_{i=1,2} Q^{\theta'_i}(s'_j, a'_j) - \alpha \log \pi(a'_j | s'_j) \right)$$

sample $a_j^{\eta} \sim \pi^{\eta}(\cdot|s_j)$, and determine the loss functions

$$L_i(\theta_i) = \frac{1}{n} \sum_{j=1}^n (y_j - Q^{\theta_i}(s_j, a_j))^2, \quad i = 1, 2,$$

$$L_3(\eta) = \frac{1}{n} \sum_{j=1}^{n} \left(\min_{i=1,2} Q^{\theta_i}(s_j, a_j^{\eta}) - \alpha \log \pi^{\eta}(a_j^{\eta} | s_j) \right)$$

and, for i = 1, 2, update the parameters

$$\theta_i \leftarrow \theta_i - \beta_i \nabla_{\theta_i} L_i(\theta_i), \quad \eta \leftarrow \eta + \beta \nabla_{\eta} L_3(\eta), \quad \theta_i' \leftarrow \tau \theta_i' + (1 - \tau)\theta_i$$

SAC Improvement

• Using
$$\pi^{\eta}(a|s) = \tanh \Big(\mathcal{N} \big(a \, \big| \, \mu^{\eta}(s), (\sigma^{\eta}(s))^2 \big) \Big)$$

SAC Improvement

- Using $\pi^{\eta}(a|s) = \tanh\left(\mathcal{N}\left(a \mid \mu^{\eta}(s), (\sigma^{\eta}(s))^{2}\right)\right)$
- \bullet It is possible to learn α (Haarnoja T. et al. Soft Actor-Critic Algorithms and Applications)

SAC Results

Haarnoja T. et al. Soft Actor-Critic Algorithms and Applications

QUESTIONS?