Non-Negative Matrix Factorization

NNMF

What is NMF?

• Non-Negative Matrix Factorization (NMF) - For a matrix V of dimension $m \times n$ where each element $V_{ij} \ge 0$, the matrix is decomposed into two matrices W and H of dimensions $m \times k$ and $k \times n$, respectively, where each element $w_{ij} \ge 0$ and $h_{ij} \ge 0$ and $k < \min(m, n)$ such that:

$$W \times H = V$$

What is NMF cont...

- V is decomposed into a long matrix W and wide matrix H.
- k is specified by the user as long as k < min (m, n). This specifies the number of clusters the algorithm will create
- Each column of V_i , or v_i , can be calculated as: = $W \times h_i$

What is NMF cont...

Lee and Seung's multiplicative update rule

$$H_{cj} \leftarrow H_{cj} \frac{(W^T X)_{cj}}{(WHH^T)_{cj} + eps}$$

$$W_{cj} \leftarrow W_{cj} \frac{(XH^T)_{jc}}{(WHH^T)_{jc} + eps}$$

Why we use NMF?

- The data output we receive is a correlation between Terms and Documents
- NMF breaks down the multivariate data by creating a user-defined number of features. Each one of these features is a combination of the original attribute set. It is also key to remember these coefficients of these linear combinations are non-negative.

Process Overview

Step 1: Select terms

Step 2: Select web documents

Step 3: Use web scraping to count the amount of terms in each document

Step 4: Place web scraped matrix into Matlab NMF algorithm

Step 5: State the amount of iterations and clusters wanted

Step 6: Run NMF algorithm and evaluate data

Web Scrap Implementation

- Written in Python
- Word_count function used to automatically go to each website and count the number of times each term appeared
- The output was formatted to be placed directly into matlab

```
'https://en.wikipedia.org/wiki/Bulimia nervosa"
"https://en.wikipedia.org/wiki/Narcolepsy"
terms =
anger
 "cure'
def word count(url,term):
   html = urllib.request.urlopen(url).read()
   soup = BeautifulSoup(html, "lxml")
   for script in soup(["script", "style"]):
       script.extract()
   # get text
   text = soup.get text()
   # break into lines and remove leading and trailing space on each
   lines = (line.strip() for line in text.splitlines())
   # break multi-headlines into a line each
   chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
   # drop blank lines
   text = '\n'.join(chunk for chunk in chunks if chunk)
   #print (text)
   count = 0
   text_list = re.sub("[^\w]", " ", text).split()
   flag = False
   for word in text list:
       if word == term:
           count+=1
           flag = True
       term.capitalize()
       if word == term and flag == False:
            count+=1
   return count
```

 Our original V matrix created from the web scrape code

```
for url in urls:
    temp = []
    for term in terms:
        temp.append(word count(url,term))
        iteration += 1
    V.append(temp)
V = str(V)
V = V.replace(",","")
V = V.replace("]","; \n")
V = V.replace("[","")
print("V =[",V[:-6],"];")
```

```
V =[ 4 53 1 31 1 2 41 11 11 10 4 182 0 7 1 0 7 77 10 0 1 8 3 7;
 070001200001000112030000;
 11 33 0 10 0 2 5 7 2 1 0 9 0 0 0 5 3 3 2 1 0 0 2 25 1;
```

NNMF Implementation

Matlab code

- Rank = clusters
- V = Original matix

```
V = V + eps;
 rank = 6;
 iteration = 2000;
\exists for i = 1:iteration
     W = W .* ((V*H') ./ (W*(H*H') + eps));
     H = H .* ((W'*V) ./ ((W'*W)*H) + eps);
 end
 disp(W)
 disp(H)
 disp(H')
```


Size of each cluster through different iterations sizes

Number of times each cluster size appears

Size of each cluster through different iterations sizes

Number of times each cluster size appears

Size of each cluster through different rank sizes for W matrix

Size of each cluster through different rank sizes for H matrix

W	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6							
Computer security	12.3307	0.9584	1.2577	1.7957	0.7825	1.3874							
Spetre	0.8178	0	4.0528	0.2786	0	0.8318							
Meltdown	1.8938	0	4.0079	0.6997	0.0239	0.4803							
Encryption	0	0.0092	0	0	3.4414	0							
Password	2.5828	0.0877	0.0666	0	0.1727	0.6603	H(Transposed)	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster
Internet security	4.0213	0	0.3516	0.707	0.5856	0.3708							
Malware	1.3484	2.6026	0.937	2,9164	0	0.0898	exploit	0.0537					
Botnet	0.2683	1.7296	0	1.038	0.1105	0.5972	data	2.6251	0		1 -0.00		
Computer virus	0	5.5234	0.4863	3.138	0.3247	0	trick	0.087	2000000000000				
Computer worm	0.5145	1.14	0.0771	0.4004	0	0.103	attack	0.2815					
Ransomware	0.468	1.4599	1.9955	0.9914	1.4597	2.0359	steal	0.1204	0.0867				
Spyware	1.0757	2.003	0	3.6108	0.1513	0.1016	block	0	0				
Keystroke logging	1.5108	1.2017	0.112	2.2568	0.3145	0.3899	software	0.7147	0.7661	0.6656	16.5448	0.8539	
Trojan horse	1.1273	0.874	0	0.4985	0	0	vulnerability	0.4855	0	4.9701	0	0	1
Phishing	0.7956	0.2497	0.3479	0.5247	0	1.3115	protect	0.6243	0	0.9584	0.2307	1.1576	
Web-scraping-attack	0	0.0726	0.9182	0.0425	0.2834	0.0983	hack	0.6525	0.0035	0.6525	0	0	1
DDOS Attack	0	0.8989	0	0.0606	0	8.9909	privacy	0.2728	0	0	0.6939	1.7246	
Email spoofing	0	0.4106	0	0.0496	0	0	security	13.9645	3.2266	2.7225	0.8723	1.9502	
Antivirus software	1.2621	3.4479	0.1768	3.9187	0.0135	0.1346	illegal	0.0463	0.1853	0	0.0603	0.1675	
Layered Server Provider	0.0001	0.0871	0.3976	0.1	0.1558	0	encryption	0	0.1641	0	0	10.6539	
Doxing	0.0672	0.1426	0.168	0	0.1315	0.4823	harm	0.0612	0.1439	0.0021	0.0699	0	
Cyberattack	1.8207	1.3584	0.177	0.3335	0	2.8492	remote	0	CONTRACTOR	0.3249			
Hacker	1.6096	1.818	0	0.2479	0	0	malicious	0.3235	1.9517	1.0127			
Security Hacker	3.834	3.135	0	0	0	0.3614	computer	5.0555	13.3991	0			
Watering Hole Attack	0	0.1836	0.0004	0.1747	0	1.1583	threat	0.5522	0.0146				
Honeypot	0.5471	0.2868	0	0.3753	0	0.0414		-	200.000.000				
Computer virus	0	5.5234	0.4863	3.138	0.3247	0	bypass	0			English States		
Adware	0	0.7135	0	3.1968	0	0	infected	0	2.4828				
Session hijacking	0.3033	0.3709	0	0.0093	0.2715	0.1924	damage	0,4588	0.4447	0			
Redirect	0.2032	1.078	0.0511	0.4404	0.0293	0.0495	internet	0.0704	100000000000000000000000000000000000000				
Tor	2.0091	0	0.2188	1.46	1.3699	2.2925	code	0	4.0744				
HTTPS	0.3827	0	0.051	0.3076	0.7509	0.4743		4	7	5	1	5	
TLS	2.5097	0	2.4133	0.4773	3.6788	5.1173							
SQL Injection	1.2338	0.0421	1.9461	0	0	1.5834							
Cross-site scripting	0.9821	0.3002	2.375	0	0	0.7313							
Cheating in online games	0	0.6259	1.1102	1.1849	0.0308	0							
Buffer overflow	0	0.3263	3.8103	0.1232	0.2349	0.3281							

Final Output

Cluster 1		Cluster 2		Cluster 3		Cluster 4	Cluster 5		Cluster 6		
W	Н	W	Н	W	Н	W	Н	W	H	W	Н
Computer Security	Hack	Botnet	Trick	Spectre	Exploit	Malware	Software	Encryption	Steal	Ransomware	Attack
Password	Security	Computer Virus	Illegal	Meltdown	Data	Spyware		HTTPS	Block	Phising	Remote
Internet Security	Threat	Computer Worm	Harm	Web-scaping-attack	Vulnerability	Keystroke Logging			Protect	DDOS Attack	Internet
Trojan Horse	Damage	Email spoofing	Malicious	Layered Server Provider	Hack	Antivirus Software			Privacy	Doxing	
Security Hacker		Hacker	Computer	SQL Injection	Bypass	Adware			Encryption	Cyberattack	
Honeypot		Session hijacking	Infected	Cross-site scripting		Cheating in online games				Watering Hole Attack	
		Redirect	Code	Buffer overflow						Tor	
										TLS	

Pitfalls

- We had many 0's in our original matrix making for NaN output for our W and H matrices
 - Solution: we needed to add eps (epsilon) to our V matrix

NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN							
Colum	ns 1 ti	hrough	14											
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
Colum	ns 15	throug	n 24											
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN					

Works cited

https://iksinc.online/2016/03/21/what-is-nmf-and-what-can-you-do-with-it/

https://www.youtube.com/watch?reload=9&v=ZTxXGZwe2gw

https://www.youtube.com/watch?v=I3cjbB38Z4A

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nmf.htm#CHDEHCGC

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/text.htm#CIHGGBEI

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization

https://en.wikipedia.org/wiki/Document-term_matrix

https://en.wikipedia.org/wiki/Tf-idf

https://www.analyticsvidhya.com/blog/2015/10/beginner-guide-web-scraping-beautiful-soup-pyth on/

https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.45