Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$ \sqrt{12} > 3 $ $ 2\sqrt{2} < 3 $	2p
	$2\sqrt{2} < 3$	2 p
	$2\sqrt{2} < 3 < \sqrt{12}$	1p
2.	x și y sunt soluțiile ecuației $t^2 - 5t + 6 = 0$	2p
	$t_1 = 2, t_2 = 3$	2 p
	$S = \{(2,3),(3,2)\}$	1p
3.	g(1) = 1	2p
	f(g(1)) = f(1) = 1	3 p
4.	$C_n^2 = 10$	2p
	n = 5	3 p
5.	Fie M mijlocul segmentului $(AB) \Rightarrow M(4,3)$	2 p
	OM = 5	3 p
6.	$\frac{MN}{N} = \frac{MP}{N}$	2 p
	$\sin P \sin N$	
	MN = 8	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	Suma elementelor de pe diagonala principală a matricei este egală cu $m + (-m) + 2$	3 p
	Finalizare	2 p
b)	$\det A = -2m^2 - 2m + 12$, unde A este matricea sistemului	3р
	$m \in \mathbb{R} \setminus \{-3, 2\}$	$2\mathbf{p}$
c)	Pentru $m=1 \Rightarrow x_1=4$, $y_1=2$, $z_1=1$	4p
	Finalizare	1p
2.a)	Pentru $m = 0 \Rightarrow f = X^3 + 1$	2 p
	Restul este egal cu $f(1) = 2$	3 p
b)	f(-1) = -1 + m - m + 1 = 0	3p
	$X+1 \mid f$	2p
c)	$f = (X+1)(X^2 + (m-1)X + 1)$	2 p
	f are trei rădăcini reale $\Leftrightarrow X^2 + (m-1)X + 1$ are două rădăcini reale $\Leftrightarrow m^2 - 2m - 3 \ge 0$	2 p
	$m \in (-\infty, -1] \cup [3, +\infty)$	1p

Probă scrisă la Matematică

Varianta 3

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii

1.a)	$f'(x) = \left(\frac{2x^2 - 1}{x^2 + 2}\right)' = \frac{4x(x^2 + 2) - 2x(2x^2 - 1)}{(x^2 + 2)^2} =$	3p
	$=\frac{10x}{\left(x^2+2\right)^2}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^2 - 1}{x^2 + 2} = 2$	3p
	Ecuația asimptotei orizontale la graficul funcției f spre $+\infty$ este $y=2$	2 p
c)	$f'(x) \ge 0$ pentru orice $x \in [0,1] \Rightarrow f$ este crescătoare pe intervalul $[0,1]$	2p
	$0 \le x \le 1 \Rightarrow f(0) \le f(x) \le f(1) \Rightarrow -\frac{1}{2} \le f(x) \le \frac{1}{3}$, oricare ar fi $x \in [0, 1]$	3p
2.a)	$I_1 = \int_0^1 \frac{x}{x+1} dx =$	2 p
	$ = \int_{0}^{1} \left(1 - \frac{1}{x+1} \right) dx = \left(x - \ln(x+1) \right) \Big _{0}^{1} = 1 - \ln 2 $	3p
b)	$I_n + I_{n+1} = \int_0^1 \left(\frac{x^n}{x+1} + \frac{x^{n+1}}{x+1} \right) dx =$	2p
	$= \int_{0}^{1} \frac{x^{n}(x+1)}{x+1} dx = \frac{1}{n+1}$	3p
c)	$\frac{x^{2012}}{2} \le \frac{x^{2012}}{x+1} \le \frac{x^{2012}}{1} \text{ pentru orice } x \in [0, 1]$	2p
	$\int_{0}^{1} \frac{x^{2012}}{2} dx \le \int_{0}^{1} \frac{x^{2012}}{x+1} dx \le \int_{0}^{1} x^{2012} dx$	1p
	$\frac{1}{4026} \le I_{2012} \le \frac{1}{2013}$	2p

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 3

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Ordonați crescător numerele $\sqrt{12}$, $2\sqrt{2}$ și 3.
- **5p** 2. Rezolvați sistemul de ecuații $\begin{cases} x + y = 5 \\ xy = 6 \end{cases}$
- **5p** 3. Se consideră funcțiile $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \log_2(x+1)$ și $g:\mathbb{R} \to (-1,+\infty)$, $g(x) = 2^x 1$. Calculați f(g(1)).
- **5p 4.** Numărul submulțimilor cu două elemente ale unei mulțimi este egal cu 10. Determinați numărul elementelor mulțimii.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(5,1), B(3,5). Calculați lungimea medianei din vârful O în triunghiul OAB.
- **5p 6.** Se consideră triunghiul *MNP* cu MP = 6, $\sin N = \frac{3}{5}$ și $\sin P = \frac{4}{5}$. Calculați lungimea laturii (*MN*).

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră sistemul de ecuații $\begin{cases} mx 2y + z = 1 \\ 2x my 3z = 3, \text{ unde } m \in \mathbb{R} \\ x y + 2z = 4 \end{cases}$
- **5p a**) Arătați că suma elementelor de pe diagonala principală a matricei sistemului este egală cu 2.
- 5p b) Determinați valorile reale ale lui m pentru care matricea sistemului are determinantul diferit de zero.
- **5p** c) Pentru m = 1, arătați că $y_1^2 = x_1 \cdot z_1$, unde (x_1, y_1, z_1) este soluția sistemului.
 - **2.** Se consideră polinomul $f = X^3 + mX^2 + mX + 1$, unde $m \in \mathbb{R}$.
- **5p** a) Pentru m = 0, calculați restul împărțirii polinomului f la X 1.
- **5p b)** Arătați că polinomul f este divizibil cu X+1, pentru orice număr real m.
- **5p** c) Determinați valorile reale ale lui m pentru care polinomul f are trei rădăcini reale.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{2x^2 1}{x^2 + 2}$.
- **5p** a) Arătați că $f'(x) = \frac{10x}{(x^2 + 2)^2}$, pentru orice $x \in \mathbb{R}$.
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $-\frac{1}{2} \le f(x) \le \frac{1}{3}$, pentru orice $x \in [0,1]$.
 - 2. Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 \frac{x^n}{x+1} dx$.
- **5p a**) Calculați I_1 .

- **5p b)** Arătați că $I_n + I_{n+1} = \frac{1}{n+1}$, pentru orice $n \in \mathbb{N}^*$.
- **5p** c) Demonstrați că $\frac{1}{4026} \le I_{2012} \le \frac{1}{2013}$.

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$2^{-1} + 2^{-2} = \frac{1}{2} + \frac{1}{4} =$	3p
	$= \frac{3}{4} = 0.75$ $= \frac{2}{x-3} < 0 \Leftrightarrow x-3 < 0$	2p
2.	$\frac{2}{x-3} < 0 \Leftrightarrow x-3 < 0$	3 p
	$x \in (-\infty,3)$	2 p
3.	Condiție: $x + 2 \ge 0 \Rightarrow x \ge -2$	1p
	$x + 2 = x^2 + 4x + 4$	2 p
	$x_1 = -2$ și $x_2 = -1$	2p
4.	Dobânda obținută este $D = 1008 \text{lei} - 900 \text{lei} = 108 \text{lei}$	1p
	$\frac{p}{100} \cdot 900 = 108$	2 p
	p=12	2 p
5.	$x_A = \frac{x_O + x_B}{2}$ și $y_A = \frac{y_O + y_B}{2}$	3p
	$x_B = 4 \text{ si } y_B = 6$	2 p
6.	$\sin x + 4\cos x = 5\cos x$	1p
	$\sin x = \cos x$	2 p
	$x = 45^{\circ}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(H(x)) = 1 + 0 + 0 - 0 - 0 - 0$	4p
	Finalizare	1p
b)	$H(x) \cdot H(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \ln a + \ln x \end{pmatrix}$	3р
	$\begin{pmatrix} 0 & 0 & 1 & \end{pmatrix}$ $\ln a = 0 \Rightarrow a = 1$	2 p

Probă scrisă la Matematică

Varianta 5

Barem de evaluare și de notare

 $Filiera\ teoretică,\ profilul\ real,\ specializarea\ științele\ naturii$

c)	(2012 0 0)	
	$H(1) + H(2) + + H(2012) = \begin{vmatrix} 0 & 2012 & \ln(2012!) \\ 0 & 0 & 2012 \end{vmatrix}$	3р
	$\begin{vmatrix} 2012 & 0 & 0 \\ 0 & 2012 & \ln(2012!) \\ 0 & 0 & 2012 \end{vmatrix} = 2012^3$	2p
2.a)	$f(1) = 1^3 + 3 \cdot 1^2 - 3 \cdot 1 - 1 = 0$	3p
	$f(1) = 0 \Longrightarrow X - 1 \mid f$	2p
b)	$x_1 + x_2 + x_3 = -3$	1p
	$x_1 x_2 + x_1 x_3 + x_2 x_3 = -3$	1p
	$x_1^2 + x_2^2 + x_3^2 = 15$	3 p
c)	$f = X^3 + 3X^2 - 3X - 1 = (X - x_1)(X - x_2)(X - x_3) \Rightarrow f(2) = (2 - x_1)(2 - x_2)(2 - x_3)$	3p
	f(2) = 13	2p

SUB.	IECTUL al III-lea (30 de puncte)
1.a)	$f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x}, \ x > 0$	2p
	f derivabilă în $x = 4 \Rightarrow \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4} = f'(4)$	2p
	Finalizare	1p
b)	f este derivabilă pe $(0,+\infty)$ și $f'(x) = \frac{\sqrt{x}-2}{2x}$	2p
	$f'(x) > 0$ pentru orice $x \in (4, +\infty) \Rightarrow$ funcția f este crescătoare pe intervalul $(4, +\infty)$	3 p
c)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\sqrt{x} - \ln x\right) = +\infty$	3 p
	x = 0 este ecuația asimptotei verticale la graficul funcției f	2 p
2.a)	F este derivabilă și $F'(x) = xe^x + e^x - e^x$, pentru orice $x \in \mathbb{R}$	3 p
	F' = f	2 p
b)	$\int_{1}^{e} f(\ln x) dx = \int_{1}^{e} x \ln x dx =$	1p
	$= \frac{x^2}{2} \ln x \bigg _{1}^{e} - \int_{1}^{e} \frac{x^2}{2} \cdot \frac{1}{x} dx =$	2 p
	$=\frac{e^2}{2} - \frac{x^2}{4} \bigg _1^e = \frac{e^2 + 1}{4}$	2p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx =$	2 p
	$= \pi \int_{1}^{2} e^{2x} dx = \pi \frac{e^{2x}}{2} \Big _{1}^{2} =$	2 p
	$=\frac{\pi e^2 \left(e^2-1\right)}{2}$	1p

Probă scrisă la **Matematică**

Varianta 5

Barem de evaluare și de notare

 $Filiera\ teoretic\ \ \ \ profilul\ real,\ specializarea\ \ \ \ stiințele\ naturii$

Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ

Varianta 5

(30 de puncte)

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5n 1.** Arătați că $2^{-1} + 2^{-2} = 0.75$.
- **5p** 2. Rezolvați în mulțimea numerelor reale inecuația $\frac{2}{x-3} < 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+2} = x+2$.
- **5p 4.** La o bancă a fost depusă într-un depozit suma de 900 lei cu o dobândă de *p*% pe an. Calculați *p*, știind că, după un an, în depozit suma este de 1008 lei.
- 5p 5. În reperul cartezian xOy se consideră punctele O(0,0) și A(2,3). Determinați coordonatele punctului B, știind că A este mijlocul segmentului (OB).
- **5p 6.** Determinați măsura x a unui unghi ascuțit, știind că $\frac{\sin x + 4\cos x}{\cos x} = 5$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricele $H(x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \ln x \\ 0 & 0 & 1 \end{pmatrix}$, cu $x \in (0, +\infty)$.
- **5p** a) Arătați că det (H(x)) = 1, pentru orice $x \in (0, +\infty)$.
- **5p b**) Determinați numărul real a, a > 0, astfel încât $H(x) \cdot H(a) = H(x)$, pentru orice x > 0.
- **5p** c) Calculați determinantul matricei H(1) + H(2) + ... + H(2012).
 - **2.** În $\mathbb{R}[X]$ se consideră polinomul $f = X^3 + 3X^2 3X 1$, cu rădăcinile x_1, x_2, x_3
- **5p a**) Arătați că polinomul f se divide cu X 1.
- **5p b**) Calculați $x_1^2 + x_2^2 + x_3^2$.
- **5p** c) Verificați dacă $(2-x_1)(2-x_2)(2-x_3)=13$.

SUBIECTUL al III-lea

1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \sqrt{x} - \ln x$.

- **5p a)** Arătați că $\lim_{x \to 4} \frac{f(x) f(4)}{x 4} = 0$.
- **5p b**) Demonstrați că funcția f este crescătoare pe intervalul $(4, +\infty)$.
- **5p** $| \mathbf{c} |$ Determinați ecuația asimptotei verticale la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p** a) Arătați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = xe^x e^x + 2012$ este o primitivă a funcției f.
- **5p b**) Calculați $\int_{1}^{e} f(\ln x) dx$.
- **5p c**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, $g(x) = \frac{f(x)}{x}$.

Probă scrisă la Matematică Varianta 5

Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

БСБ	1ECTOLT (50 de panea	-,
1.	$\log_3 6 = \log_3 3 + \log_3 2$	2p
	$1 + \log_3 2 = 1 + a$	3p
2.	$A(0,1) \in G_f \Leftrightarrow f(0) = 1$	2p
	f(0) = m - 3	2p
	m = 4	1p
3.	$\log_2 \frac{x+1}{x+3} = -1 \Leftrightarrow \frac{x+1}{x+3} = 2^{-1}$	3 p
		1p
	x = 1 Verificarea condițiilor de existență	_
		1p
4.	$p = \frac{\text{nr.cazuri favorabile}}{\text{nr.cazuri favorabile}}$	1
	nr.cazuri posibile	1p
	Numerele divizibile cu 7 sunt $7,14,21,28 \Rightarrow 4$ cazuri favorabile	2p
	Mulţimea are 30 de elemente ⇒ 30 de cazuri posibile	1p
	$p=\frac{2}{1.5}$	
	^P 15	1p
5.	O este mijlocul segmentului $(AB) \Leftrightarrow x_B = 2x_O - x_A \Leftrightarrow x_B = -4$	3p
	$y_B = 2y_O - y_A \Leftrightarrow y_B = 1$	2 p
6.	$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A$	3 p
	$\cos A = \frac{1}{5}$	2n
	5	2p

SUB	IECTUL al II-lea (30 de puncte)	
1.a)	$\det A = \begin{vmatrix} 1 & 1 & 1 \\ 2 & a & 3 \\ 4 & a^2 & 9 \end{vmatrix} =$	2p
	$=-a^2+5a-6$	3 p
b)	A este inversabilă \Leftrightarrow det $A \neq 0$	2p
	$-a^2 + 5a - 6 = 0 \Rightarrow a_1 = 2, a_2 = 3$	2p
	$a \in \mathbb{R} \setminus \{2,3\}$	1p
c)	$\begin{cases} x + y + z = 1 \\ 2x + y + 3z = 1 \\ 4x + y + 9z = 1 \end{cases}$	2p
		3 p
2.a)	$f(\hat{1}) = m + n$	2p

	$m+n=m \Leftrightarrow n=\hat{0}$	3p
b)	$f = X^5 + \hat{4}X$	1p
	$f(\hat{0}) = f(\hat{1}) = f(\hat{2}) = f(\hat{3}) = f(\hat{4}) = \hat{0}$	3 p
	Rădăcinile polinomului f sunt $\hat{0}$, $\hat{1}$, $\hat{2}$, $\hat{3}$ și $\hat{4}$	1p
c)	$f(\hat{1}) = m + n, f(\hat{2}) = \hat{2}(m+n)$	1p
	$f(\hat{1}) = f(\hat{2}) \Rightarrow m + n = \hat{0}$	2 p
	$f(\hat{3}) = \hat{3}(m+n) = \hat{0}, f(\hat{4}) = \hat{4}(m+n) = \hat{0} \Rightarrow f(\hat{3}) = f(\hat{4})$	2 p

SUB	IECTUL al III-lea (30 de puncte)
1.a)	$f'(x) = \frac{(2x-1)(x+1) - (x^2 - x - 1)}{(x+1)^2} =$ $= \frac{x^2 + 2x}{(x+1)^2}$	3 p
	$=\frac{x^2+2x}{\left(x+1\right)^2}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) \cdot \ln x}{x^2 - x - 1} = \lim_{x \to +\infty} \frac{\ln x}{x + 1} =$	2 p
	$= \lim_{x \to +\infty} \frac{1}{x} = 0$	3 p
c)	$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - x - 1}{x^2 + x} = 1$	2 p
	$n = \lim_{x \to +\infty} \left(f(x) - mx \right) = \lim_{x \to +\infty} \frac{-2x - 1}{x + 1} = -2$	2 p
	$y = x - 2$ este ecuația asimptotei oblice spre $+\infty$	1p
2.a)	$g(x) = e^x$	2p
	$\int g(x)dx = e^x + C$	3p
b)	$\int g(x)dx = e^x + C$ $\int_1^2 \sqrt{x+1} \cdot f(x)dx = \int_1^2 (x+1) \cdot e^x dx = $	1p
	$=(x+1)e^{x}\Big _{1}^{2}-\int_{1}^{2}e^{x}dx=$	3 p
	$=2e^2-e$	1p
	$= 2e^2 - e$ $h(x) = \sqrt{x+1}$	1p
	$A = \int_{2}^{3} h(x) dx = \int_{2}^{3} \sqrt{x+1} dx = \frac{2}{3} (x+1) \sqrt{x+1} \Big _{2}^{3} =$	3p
	$=\frac{2}{3}\left(8-3\sqrt{3}\right)$	1p

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 9

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul $a = \log_3 2$. Arătați că $\log_3 6 = 1 + a$.
- **5p** 2. Determinați numărul real m, știind că punctul A(0,1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + m 3$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x+1) \log_2(x+3) = -1$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr din mulțimea {1,2,3,...,30}, acesta să fie divizibil cu 7.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(4,-1). Determinați coordonatele punctului B, știind că O este mijlocul segmentului (AB).
- **5p** | **6.** Calculați cosinusul unghiului A al triunghiului ABC, știind că AB = 5, AC = 6 și BC = 7.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră sistemul $\begin{cases} x+y+z=1\\ 2x+ay+3z=1\\ 4x+a^2y+9z=1 \end{cases}$, unde $a\in\mathbb{R}$ și se notează cu A matricea sistemului.
- **5p** | **a**) Arătați că det $A = -a^2 + 5a 6$.
- $\mathbf{5p} \mid \mathbf{b}$) Determinați valorile reale ale numărului a pentru care matricea A este inversabilă.
- **5p** | **c**) Pentru a = 1, rezolvați sistemul.
 - **2.** În $\mathbb{Z}_5[X]$ se consideră polinomul $f = mX^5 + nX$, cu $m, n \in \mathbb{Z}_5$.
- **5p** | **a**) Determinați $n \in \mathbb{Z}_5$ pentru care $f(\hat{1}) = m$.
- **5p b)** Pentru $m = \hat{1}$ și $n = \hat{4}$, determinați rădăcinile din \mathbb{Z}_5 ale polinomului f.
- **5p** c) Arătați că, dacă $f(\hat{1}) = f(\hat{2})$, atunci $f(\hat{3}) = f(\hat{4})$.

- **1.** Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x^2 x 1}{x + 1}$.
- **5p a**) Calculați $f'(x), x \in \mathbb{R} \setminus \{-1\}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x) \cdot \ln x}{x^2 x 1}$.
- **5p** c) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=e^x\cdot\sqrt{x+1}$
- **5p** a) Determinați primitivele funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = \frac{f(x)}{\sqrt{x+1}}$.
- **5p b)** Calculați $\int_{1}^{2} \sqrt{x+1} \cdot f(x) dx$.
- **5p** c) Calculați aria suprafeței determinate de graficul funcției $h:(0,+\infty) \to \mathbb{R}$, $h(x) = e^{-x} \cdot f(x)$, axa Ox și dreptele de ecuații x = 2 și x = 3.

Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUB	SUBIECTUL I (30 de puno	
1.	$S_5 = \frac{\left(2a_1 + 4r\right) \cdot 5}{2}$	3 p
	$S_5 = 45$	2p
2.	$\Delta = 0$	1p
	$m^2 + 2m + 1 - 4m = 0$	2p
	m=1	2p
3.	$G_f \cap Ox : f(x) = 0 \Rightarrow x = -1$	2p
	A(-1,0)	1p
	$G_f \cap Oy : f(0) = 1$	1p
	B(0,1)	1p
4.	$C_4^2 = 6$	2p
	$A_4^1 = 4$	2 p
	$2C_4^2 - 3A_4^1 = 0$	1p
5.	$\frac{2}{a+3} = \frac{a}{2}$	2p
		2p
	$a^2 + 3a - 4 = 0 \Rightarrow a = 1$ sau $a = -4$	1p
6.	$a > 0 \Rightarrow a = 1$ $A := A A A A B M M \cdot NP \cdot \sin N$	
	Aria $\Delta MNP = \frac{MN \cdot NP \cdot \sin N}{2}$	2p
	$\sin N = \frac{2 \cdot 16}{8 \cdot 8}$	2p
	$\sin N = \frac{1}{2}$	1p
	2	_
	IECTUL al II -lea (30 de)	ouncte)
1.a)	$A_1(0,3), A_2(1,4)$	2n

SUBIECTUL al II -lea (30 de pun		30 de puncte)
1.a)	$A_{1}(0,3), A_{2}(1,4)$	2 p
	$A_1 A_2 : \begin{vmatrix} x & y & 1 \\ 0 & 3 & 1 \end{vmatrix} = 0$	2 p
	$\begin{vmatrix} 1 & 4 & 1 \\ A_1 A_2 : y = x + 3 \end{vmatrix}$	1p

Probă scrisă la Matematică

Model

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

b)	m-1 m+2 1	
	Justificarea faptului că $\begin{vmatrix} n-1 & n+2 & 1 \\ n-1 & n+2 & 1 \end{vmatrix} = 0$	
	$\begin{vmatrix} p-1 & p+2 & 1 \\ p-1 & p+2 & 1 \end{vmatrix}$	3 p
	1* * 1	2p
	$\Rightarrow A_m, A_n, A_p$ coliniare	Zp
c)	$A_n A_{2011} \le 2$	1p
	$\sqrt{(n-2011)^2 + (n-2011)^2} \le 2$	1p
	$ n-2011 \le \sqrt{2}$	1p
	$M_{2011} = \big\{2010, 2011, 2012\big\}$	2p
2.a)	$m = 4 \Rightarrow f = X^3 + X^2 - 17X + 15$	1p
	$C = X^2 + 4X - 5$	3 p
	R = 0	1p
b)	$f:(X-1) \Leftrightarrow f(1)=0$	2p
	f(1) = 1 + m - 3 - 17 + 2m + 7 = 3m - 12	1p
	$3m-12=0 \Rightarrow m=4$	2p
c)	Cu notația $3^x = y > 0 \Rightarrow y^3 + y^2 - 17y + 15 = 0 \Rightarrow (y-1)(y-3)(y+5) = 0$	2p
	y = -5 < 0	1p
	$y = 1 \Rightarrow x = 0$	1p
	$y = 3 \Rightarrow x = 1$	1p

1.a)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -4, \ \lim_{\substack{x \to 0 \\ x > 0}} f(x) = -4, \ f(0) = -4$	3 p
	$f \text{ este continuă în punctul } x_0 = 0$	2p
b)	$\lim_{x \to 4} \frac{f(x)}{16 - x^2} = \lim_{x \to 4} \frac{x - 4}{(4 - x)(4 + x)} = \lim_{x \to 4} \frac{-1}{4 + x}$	3p
	$\lim_{x \to 4} \frac{f(x)}{16 - x^2} = -\frac{1}{8}$	2p
c)	Ecuația tangentei este $y - f(-1) = f'(-1)(x+1)$	2p
	Pentru $x \le 0$, $f(x) = \frac{-4}{x^2 + 1} \Rightarrow f'(x) = \frac{8x}{\left(x^2 + 1\right)^2}$, oricare ar fi $x < 0$	2p
	Ecuația tangentei este $y = -2x - 4$	1p
2.a)	Mulțimea primitivelor este $\int 9dx =$	2p
	=9x+C	3p
b)	$A = \int_{0}^{1} \left 3x^{2} + 6x + 9 \right dx = \int_{0}^{1} \left(3x^{2} + 6x + 9 \right) dx =$	2p
	$\left[-\left(x^{3}+3x^{2}+9x\right)^{1}\right]$	2p

Probă scrisă la Matematică

SUBIECTUL al III-lea

Model

30 de puncte

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

c)	$\int_{0}^{2} (12x+12)e^{x} dx = 12xe^{x}\Big _{1}^{2} =$	3 p
	$\begin{vmatrix} 1 \\ = 24e^2 - 12e \end{vmatrix}$	2p

Probă scrisă la Matematică

Model

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii.

Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ

Model

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Într-o progresie aritmetică $(a_n)_{n\geq 1}$ se cunosc $a_1=5$ și r=2. Calculați suma primilor 5 termeni ai progresiei.
- **5p** 2. Determinați numărul real m pentru care ecuația $x^2 (m+1)x + m = 0$ are soluții reale egale.
- **5p** 3. Determinați coordonatele punctelor de intersecție a graficului funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2^{x+1} 1$ cu axele Ox și respectiv Oy.
- **5p 4.** Calculați $2C_4^2 3A_4^1$
- **5p 5.** Se consideră vectorii $\overrightarrow{v_1} = 2\overrightarrow{i} + a\overrightarrow{j}$ și $\overrightarrow{v_2} = (a+3)\overrightarrow{i} + 2\overrightarrow{j}$, unde $a \in \mathbb{R}$. Determinați numărul a > 0 pentru care vectorii $\overrightarrow{v_1}$ și $\overrightarrow{v_2}$ sunt coliniari.
- **5p 6.** Aria triunghiului MNP este egală cu 16, iar MN = NP = 8. Calculați $\sin N$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** În reperul cartezian xOy se consideră punctele $A_n(n-1,n+2)$, $n \in \mathbb{N}^*$.
- **5p** a) Determinați ecuația dreptei A_1A_2 .
- **5p b)** Demonstrați că punctele A_m , A_n , A_p sunt coliniare, oricare ar fi $m, n, p \in \mathbb{N}^*$.
- **5p** c) Pentru fiecare $p \in \mathbb{N}^*$ notăm $M_p = \left\{ n \in \mathbb{N}^* \middle| A_n A_p \le 2 \right\}$. Determinați elementele mulțimii M_{2011} .
 - **2.** Se consideră polinomul $f = X^3 + (m-3)X^2 17X + (2m+7)$, cu $m \in \mathbb{R}$.
- **5p** a) Pentru m = 4 determinați câtul și restul împărțirii polinomului f la X 3.
- **5p b)** Determinați $m \in \mathbb{R}$ pentru care polinomul f este divizibil cu X-1.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $27^x + 9^x 17 \cdot 3^x + 15 = 0$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \frac{-4}{x^2 + 1}, & x \le 0 \\ x 4, & x > 0 \end{cases}$
- **5p a)** Demonstrați că funcția f este continuă în punctul $x_0 = 0$.
- **5p b)** Calculați $\lim_{x\to 4} \frac{f(x)}{16-x^2}$.
- **5p** c) Determinați ecuația tangentei la graficul funcției f în punctul A(-1, -2).
 - **2.** Se consideră funcțiile $f_m: \mathbb{R} \to \mathbb{R}$, $f_m(x) = 3m^2x^2 + 6mx + 9$, unde $m \in \mathbb{R}$.
- **5p** a) Determinați mulțimea primitivelor funcției f_0 .
- **5p b)** Calculați aria suprafeței cuprinse între graficul funcției f_1 , axa Ox și dreptele de ecuații x = 0 și x = 1
- **5p** c) Calculați $\int_{1}^{2} \frac{f_2(x) 9}{x} \cdot e^x dx$.

Probă scrisă la Matematică

Model

Filiera teoretică, profilul real, specializarea științele naturii.

Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$a - a + 5r \rightarrow r - 2$	2p
1.	$a_9 = a_4 + 5r \Rightarrow r = 3$	2p
	$a_{14} = a_9 + 5r = 37$	3 p
2.	A este punctul de intersecție a graficelor funcțiilor f și g ; $f(x) = g(x) \Rightarrow x - 3 = 5 - x$	1p
	$x - 3 = 5 - x \Longrightarrow x_A = 4$	2 p
	$y_A = 1$	2 p
3.	$2^{3-x} = 2^{-2}$	2p
	$3 - x = -2 \Rightarrow x = 5$	3p
4.	Numărul tripletelor (a,b,c) , cu a , b , c distincte din M este A_4^3	2p
	Numărul tripletelor $(0,b,c)$, cu b , c distincte nenule din M este A_3^2	2p
	$A_4^3 - A_3^2 = 18$ numere	1p
5.	Fie C simetricul lui A față de $B \Rightarrow B$ este mijlocul segmentului (AC)	1p
	$x_B = \frac{x_A + x_C}{2} \Rightarrow x_C = 5$	2p
	$y_B = \frac{y_A + y_C}{2} \Rightarrow y_C = -2$	2p
6.	$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A$	2 p
	$BC = \sqrt{31}$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$ \Delta = \begin{vmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & a \end{vmatrix} = = -2a - 4 $	2p 3p
b)	Matricea asociată sistemului este inversabilă $\Leftrightarrow \Delta \neq 0$	3 p
	$a \in \mathbb{R} \setminus \{-2\}$	2 p
c)	$\int x + y - 2z = 0$	
	$\begin{cases} x - y + z = 1 \end{cases}$	2p
	$\begin{cases} x + y - 2z = 0 \\ x - y + z = 1 \\ x + y = 2 \end{cases}$	•
	x = 1, y = 1, z = 1	3 p
2.a)	x*1 = x+1-1 =	4p
	$= x$, pentru orice $x \in \mathbb{R}$	1p
b)	x * x = 2x - 1	2 p

Probă scrisă la Matematică

Varianta 7

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științele naturii

	(x*x)*x=3x-2	2p
	x = 2	1p
c)	$C_n^1 = n, C_n^2 = \frac{n(n-1)}{2}$	2 p
	$n^2 + n - 30 = 0$	2 p
	Finalizare: $n = 5$	1p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{(x+1)' \cdot e^x - (x+1) \cdot (e^x)'}{e^{2x}} = -\frac{x}{e^x}, \ \forall x \in (0, +\infty)$	3р
	· ·	_
	Finalizare	2p
b)	$f'(x) = -\frac{x}{e^x} \Rightarrow f'(x) < 0$, oricare ar fi $x > 0$	3 p
	Finalizare	2 p
c)	$g\left(x\right) = \frac{x^2 + 2x + 1}{x}$	1p
	$m = \lim_{x \to +\infty} \frac{g(x)}{x} = 1$	1p
	$n = \lim_{x \to +\infty} \left(g\left(x\right) - mx \right) = 2$	1p
	y = x + 2 este ecuația asimptotei oblice la graficul funcției g	2p
2.a)	$\int f(x)dx = \frac{x^{2013}}{2013} + \frac{x^{2012}}{2012} + \frac{x^3}{3} + \frac{x^2}{2} + C$	2p
	$F(x) = \frac{x^{2013}}{2013} + \frac{x^{2012}}{2012} + \frac{x^3}{3} + \frac{x^2}{2} + c \text{ si } F(0) = 1 \Rightarrow c = 1$	2p
	$F: \mathbb{R} \to \mathbb{R}, \ F(x) = \frac{x^{2013}}{2013} + \frac{x^{2012}}{2012} + \frac{x^3}{3} + \frac{x^2}{2} + 1$	1p
b)	$\int_{0}^{1} \frac{f(x)}{x+1} dx = \int_{0}^{1} \left(x^{2011} + x\right) dx =$	2 p
	$= \left(\frac{x^{2012}}{2012} + \frac{x^2}{2}\right) \Big _0^1 = \frac{1}{2012} + \frac{1}{2} = \frac{1007}{2012}$	3 p
c)	$g\left(x\right) = x^2 + x$	1p
	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} \left(x^{4} + 2x^{3} + x^{2}\right) dx = \pi \left(\frac{x^{5}}{5} + 2\frac{x^{4}}{4} + \frac{x^{3}}{3}\right) \Big _{1}^{2} =$	3 p
	$=\frac{481\pi}{30}$	1p

Probă scrisă la **Matematică**

Varianta 7

Barem de evaluare și de notare

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 7

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Într-o progresie aritmetică $(a_n)_{n\geq 1}$ se cunosc $a_4=7$ și $a_9=22$. Calculați a_{14} .
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 5 x.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{3-x} = \frac{1}{4}$.
- **5p 4.** Determinați câte numere naturale de 3 cifre distincte se pot forma cu elementele mulțimii $M = \{0,1,2,3\}$.
- **5p 5.** Într-un reper cartezian xOy se consideră punctele A(1,2) și B(3,0). Determinați coordonatele simetricului punctului A față de punctul B.
- **5p** | **6.** Calculați lungimea laturii BC a triunghiului ABC, știind că AB = 6, AC = 5 și $m(\angle BAC) = 60^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră sistemul de ecuații $\begin{cases} x + y 2z = 0 \\ x y + z = 1 \end{cases}$, unde $a \in \mathbb{R}$. $\begin{cases} x + y 2z = 0 \\ x y + z = 1 \end{cases}$
- **5p** a) Calculați determinantul matricei asociate sistemului.
- **5p b**) Determinați valorile reale ale lui *a* pentru care matricea asociată sistemului este inversabilă.
- **5p** c) Pentru a = 0, rezolvați sistemul de ecuații.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = x + y 1.
- **5p** a) Arătați că x*1=x, pentru orice $x \in \mathbb{R}$.
- **5p** | **b**) Rezolvați în mulțimea numerelor reale ecuația x * x * x = 4.
- **5p** c) Determinați numărul natural $n, n \ge 2$, pentru care $C_n^1 * C_n^2 = 14$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+1}{x^x}$.
- **5p** a) Arătați că $\frac{f'(x)}{f(x)} = -\frac{x}{x+1}$ pentru orice $x \in (0, +\infty)$.
- **5p b**) Arătați că funcția f este descrescătoare pe $(0,+\infty)$.
- **5p** c) Determinați ecuația asimptotei oblice la graficul funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = \frac{e^{2x} \cdot f^2(x)}{x}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^{2012} + x^{2011} + x^2 + x$.
- **5p** a) Determinați primitiva $F: \mathbb{R} \to \mathbb{R}$ a funcției f, care verifică relația F(0) = 1.
- **5p b)** Calculați $\int_{0}^{1} \frac{f(x)}{x+1} dx$.
- **5p** c) Calculați volumul corpului obținut prin rotația, în jurul axei Ox, a graficului funcției $g:[1,2] \to \mathbb{R}$, $g(x) = f(x) x^{2012} x^{2011}$.