Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Model Deployment

Overview

Machine Learning Workflow

Prepare & Train & Deploy & Ingest & Transform Analyze Tune Manage Data exploration Model deployment Feature engineering Automated ML Bias detection Automated pipelines Feature store Model train and tune Amazon SageMaker Amazon SageMaker Amazon S3 & Amazon SageMaker Autopilot **Endpoints** Amazon Athena Data Wrangler Amazon SageMaker Amazon SageMaker **AWS Glue** Amazon SageMaker Training & Debugger **Batch Transform Processing Jobs** Amazon SageMaker Amazon SageMaker Amazon SageMaker Data Wrangler Amazon SageMaker Hyperparameter Tuning **Feature Store Pipelines** & Clarify

Real-Time Inference

But let's start with deploying a model for real time inference in the cloud deploying a model for real time Inference. This means deploying it to a persistent hosted environment that's able to serve requests for prediction and provide prediction responses back in real time or near real time. This involves exposing an endpoint that has his serving stack that can accept and respond to requests. A serving stack needs to include a proxy that can accept incoming requests and direct them to an application that then uses your Inference code to interact with your model. This is a good option when you need to have low latency combined with the ability to serve new prediction requests that come in, so some example use cases here would be fraud detection or product recommendation.

Real-Time Inference - Product Review Example

Goal: Improve customer experience with quick responses to negative

Real-Time Inference - Product Review Example

Goal: Improve customer experience with quick responses to negative

Batch Inference

You aren't hosting a model that persists and can serve requests for prediction as they come in. Instead, your batch in those requests for prediction, running a batch job against those batch requests and then out putting your prediction responses typically is batch records as well. Then once you have your prediction responses, they can then be used in a number of different ways.

Batch Inference

Batch Inference

Batch Inference - Product Review

Goal: Identify vendors with potential quality issues

Batch Inference - Product Review

Goal: Identify vendors with potential quality issues

Batch Inference - Product Review

Goal: Identify vendors with potential quality issues

deployment to the edge which is an option that is not a cloud specific. But is a key consideration when deploying models closer to your users or in areas with poor network connectivity. In the case of edge deployments, you train your models in another environment in this case in the cloud and then optimize your model for deployment to edge devices. This process is typically aimed at compiling or packaging your model in a way that is optimized to run at the edge. Which usually means things like reducing the model package size for running on smaller devices. In this case you could use something like Sagemaker Neo to compile your model in a way that is optimized for running at the edge and use cases. Bring your model closer to where it will be used for prediction, so typical use cases here would be like manufacturing, where you have cameras on an assembly line.

Edge

Use Sagemaker Neo

Deployment Options Edge

Choose the deployment option that best fits the use case

	Real-Time Inference	Batch Inference	Edge
When to use	Low latency real-time predictions (Ex. Interactive Recommenders)	Batch request & response prediction is acceptable for your use case (Ex. Forecasting)	Models need to deployed to edge devices (Ex. Limited connectivity, Internet of Things)
Cost	Persistent endpoint - pay for resources while endpoint is running	Transient environments - pay for resources for the duration of the batch job	Varies

Model Deployment

Deployment Strategies

Strategies to deploy new and updated models

Goals:

- Minimize risk
- Minimize downtime
- Measure model performance

Common Strategies to deploy new and updated models

Blue/Green Shadow/ Canary A/B Multi-Armed Bandits

Common Strategies to deploy new and updated models

Blue/Green Shadow/ Challenger Canary A/B Multi-Armed Bandits

- Swap prediction request traffic
- Easy Rollback

With blue/green deployments, you deploy your new model version to a stack that conserved prediction and response traffic coming into an endpoint. Then when you're ready to have that new model version actually start to process prediction requests coming in, you swap the traffic to that new model version. This makes it easy to roll back because if there are issues with that new model or that new model version doesn't perform well, you can swap traffic back to the previous model version.

Blue/Green: Shift all traffic to the new model

With blue/green deployment, you have a current model version running in production. In this case, we have version 1. This accepts 100 percent of the prediction request traffic and responds with prediction responses. When you have a new model version to deploy, in this case, model version 2, you build a new server or container to deploy your model version into. This includes not only the new model version but also the code in the software that's needed to accept and respond to prediction requests. As you can see in this picture, the new model version is deployed, but the load balancer has not yet been updated to point to that new server hosting the model, so no traffic is hitting that endpoint yet. After the new model version is deployed successfully, you can then shift 100 percent of your traffic to that new cluster serving model version 2 by updating your load balancer. This strategy helps reduce downtime if there's a need to roll back and swap back to version 1 because you only need to re-point your load balancer back to version 1. The downside to this strategy is that it is 100 percent swap of traffic. So if the new model version, version 2, in this case, is not performing well, then you run the risk of serving bad predictions to 100 percent of your traffic versus a smaller percentage of traffic.

Traffic distribution

Blue/Green: Shift all traffic to the new model

Common Strategies to deploy new and updated models

Blue/Green Shadow/ Challenger Canary A/B Multi-Armed Bandits

- Parallel prediction request traffic
- Validate new version without impact

This is often referred to as challenger models because in this case, you're running a new model version in production by letting the new version accept prediction requests to see how that new model would respond, but you're not actually serving the prediction response data from that new model version. This lets you validate the new model version with real traffic without impacting live prediction responses.

Shadow/Challenger: Run multiple versions in parallel with one serving live traffic

Shadow/Challenger: Run multiple versions in parallel with one serving live traffic

Common Strategies to deploy new and updated models

Blue/Green Shadow/ Canary A/B Multi-Armed Bandits

- Split traffic
- Target smaller specific users/groups
- Shorter validation cycles
- Minimize risk of low performing model

Canary: Split traffic to compare model versions with target groups/users

Common Strategies to deploy new and updated models

Shadow/ Multi-Armed Blue/Green A/B Canary **Bandits** Challenger Split traffic

- Target larger users/groups ~OR~ Distribute % of traffic
- Longer validation cycles
 - Minimize risk of low performing model

A/B: Split traffic to compare model versions

Common Strategies to deploy new and updated models

Common Strategies to deploy new and updated models

Shadow/ Multi-Armed Blue/Green A/B Canary Challenger **Bandits** Static Dynamic **Approaches Approach**

Multi-Armed Bandits (MABs)

 Dynamic testing method for model version using Reinforcement Learning

- Exploit & Explore
 - Exploit: Reward the winning model with more traffic
 - Explore: Continue to send traffic to the nonwinning model(s) in case behavior changes

Deployment Strategies

Multi-Armed Bandits: Dynamically shift traffic to the winning model

25% Traffic

75% Traffic

Deployment Strategies

Multi-Armed Bandits: Dynamically shift traffic to the winning model

Real-Time Inference

Machine Learning Workflow

Prepare & Train & Deploy & Ingest & **Transform** Analyze Tune Manage Data exploration Model deployment Feature engineering Automated ML Bias detection Automated pipelines Feature store Model train and tune Amazon SageMaker Amazon SageMaker Amazon S3 & Amazon SageMaker Autopilot **Endpoints** Amazon Athena Data Wrangler Amazon SageMaker Amazon SageMaker **AWS Glue** Amazon SageMaker Training & Debugger **Batch Transform Processing Jobs** Amazon SageMaker Amazon SageMaker Amazon SageMaker Data Wrangler Amazon SageMaker Hyperparameter Tuning **Feature Store Pipelines** & Clarify

Deploy models to serve predictions in real-time

- Optimized for low latency of model predictions
- Example: As product reviews are coming in through online channels, you want to predict the sentiment for immediate action

Deploy models to serve predictions in real-time

Client Application

You choose:

- Instance Type
- Instance Size
- Number of Instances
- Autoscaling Options

Options to deploy models to serve predictions in real-time

Less Code

More Customizable

Built-In Algorithm: Pre-built code & serving container

Options to deploy models to serve predictions in real-time

Less Code

More Customizable

Bring Your Own Script: Pre-built container & Bring your own code

Options to deploy models to serve predictions in real-time

Less Code

More Customizable

Bring Your Own Container: Bring your own code & custom container

Autoscaling Endpoints

Why?

- Ensure you can meet the demands of your workload
- Cost optimization

Autoscaling Endpoints: How it works

Autoscaling Endpoints: How it works

Autoscale Amazon SageMaker Endpoints

Register Scalable Target

```
autoscale.register_scalable_target(
         ServiceNamespace="sagemaker",
    ResourceId="endpoint/" + endpoint name,
   ScalableDimension="sagemaker:variant:DesiredInstanceCount",
   MinCapacity=1,
   MaxCapacity=2,
   RoleARN=role,
   SuspendedState={
        "DynamicScalingInSuspended": False,
        "DynamicScalingOutSuspended": False,
        "ScheduledScalingSuspended": False,
    })
```


Autoscale Amazon SageMaker Endpoints

```
Register
                  Define
  Scalable
                  Scaling
   Target
                  Policy
                                                         Scaling Metric
scaling policy = {
         "TargetValue": 2.0,
         "PredefinedMetricSpecification": {
         "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance",
                                               Wait time, in seconds, before
         "ScaleOutCooldown": 60,
                                               beginning another scale out
         "ScaleInCooldown": _300,
                                               activity after last one completes
         },
                                           Wait time, in seconds, before
                                           beginning another scale in
                                           activity after last one completes
```


Autoscale Amazon SageMaker Endpoints

```
Register
Scalable
Target

Define
Scaling
Policy

Apply
Scaling
Policy
```

```
autoscale.put_scaling_policy(
          PolicyName=...,
          ServiceNamespace="sagemaker",
          ResourceId="endpoint/" + endpoint_name,
          ScalableDimension="sagemaker:variant:DesiredInstanceCount",
          PolicyType="TargetTrackingScaling",
          TargetTrackingScalingPolicyConfiguration=scaling_policy)
```


Advanced Deployment Options

Multi-Model Endpoints: How it works

Deploy Multiple Models to a Single Endpoint

Advanced Deployment Options

Inference Pipeline: How it works

Real-Time Inference Production Variants

Amazon SageMaker Production Variants

What is a Production Variant?

Hosting Resources Configuration

Production Variant

Configuration Example(s):

- Amazon S3 model artifact
- Inference image(s)
- Execution AWS IAM Role
- Model name

Example:

- Number of instances
- Instance type
- Model name
- Variant name
- Variant weight

Amazon SageMaker Production Variants

Using Production Variants for a Canary Rollout

Amazon SageMaker Production Variants

Using Production Variants for A/B Testing

Using Production Variants for A/B Testing with Bring-Your-Own Script

Less Code

More Customizable

A/B Testing with PyTorch Bring-Your-Own Script

Construct Docker Image URI

```
import sagemaker
inference_image_uri = sagemaker.image_uris.retrieve(
    framework=..., # PyTorch, TensorFlow, etc...
    version='1.6.0',
    instance_type='ml.m5.xlarge',
    py_version='py3',
    image_scope='inference'
)
```



```
Construct
Docker
Image URI

Create
SageMaker
Models
```



```
from sagemaker.session \
  import production_variant

variantA = production_variant(
          model_name=...,
  instance_type=...,
     initial_instance_count=1,
     variant_name='VariantA',
     initial_weight=50,
)
```

```
from sagemaker.session \
   import production_variant

variantB = production_variant(
        model_name=...,
   instance_type=...,
   initial_instance_count=1,
        variant_name='VariantB',
        initial_weight=50,
)
```


Amazon SageMaker Batch Transform

Batch Inference

Machine Learning Workflow

Deploy Model For Batch Inference Amazon SageMaker Batch Transform Job Package model create_model(_ for deployment Amazon Container Elastic Container Registry Inference code Amazon Model ML Instance(s)

Run Batch Transform Job For Batch Inference

Identify Configuration →

- Instance type
- Instance count
- Model name
- S3 output path
- ..

Run Batch Transform Job For Batch Inference **Amazon SageMaker** sm_transformer.transform(**Batch Transform Job** Start Batch Transform Job **Transient Compute** Container Prediction Amazon Inference Request Data **S**3 code Model ML Instance(s)

Run Batch Transform Job For Batch Inference **Amazon SageMaker** sm_transformer.transform(**Batch Transform Job** Start Batch Transform Job **Transient Compute** Container Prediction Amazon Inference Request Data **S**3 code Model Prediction Amazon Response Data ML Instance(s) **S**3

Advanced Deployment Options

Model Integration

Integrating Models with ML Applications

Integrating Models with ML Applications

Need to apply the same data transformations used during training

Prepare Data for Inference in Client Application

- Implement data transformations in Client Application
 - Challenge: Difficult to scale & manage
 - Consideration: Response may need to be transformed (1 = Positive)

Prepare Data for Inference in Client Application

- Implement transformation code before calling hosted model
 - O **Challenge:** Need to ensure transformation code stays in sync with training code

Prepare Data as Part of an Inference Pipeline

- Implement data transformations in Inference Pipeline
 - Benefit: Keep training & inference code in sync
 - Consideration: Additional Data
 Transformer for response may need to be transformed
 (1 = Positive)

Monitoring ML Workloads

Monitoring Machine Learning Workloads

Considerations

Why? Models degrade over time

Why? Models degrade over time

Customer behavior changeEx. Product change,
Demand change

Why? Models degrade over time

Customer behavior changeEx. Product change,
Demand change

Changing business environment Ex. New products

Why? Models degrade over time

Customer behavior change Ex. Product change, Demand change

Changing business environment Ex. New products

Changing data pipeline Ex. Feature data suddenly missing

Monitoring Machine Learning Workloads

Model Monitoring

Monitoring Machine Learning Workloads Concept Drift

What causes concept drift?

Environment changes that impact the context of the predicted target

Methods to detect:

Monitoring Machine Learning Workloads Data Drift

What causes **Data Drift?**

Changes in the model input data

Methods to detect:

Example: Deequ - Open Source Library

- Data Profiling: Gather statistics about each feature used to train the model
- Establish Constraints: Boundaries on normal/expected data
- O Detect Data Anomalies: Understand when prediction data violates constraints

Monitoring Machine Learning Workloads Considerations

Monitoring Machine Learning Workloads

System Monitoring

Why?

Ensure your model and supporting resources are functioning as expected

Monitoring Machine Learning Workloads Considerations

Monitoring Machine Learning Workloads

Monitoring Impact on Business Objectives

Why? Ensure your model has impact on the business objective

Model Monitoring

Using Amazon SageMaker Model Monitor

Monitor Types

Data Drift

Data Quality

Monitor drift in data quality

Concept Drift

Model Quality

Monitor drift in model quality metrics

Concept Drift

Statistical Bias Drift

Monitor statistical bias drift in model predictions

Data Drift

Feature
Attribution Drift

Monitor drift in feature attribution

Monitor Types

Data Drift

Data Quality

Monitor drift in data quality

Concept Drift

Model Quality

Monitor drift in model quality metrics

Concept Drift

Statistical Bias Drift

Monitor statistical bias drift in model predictions

Data Drift

Feature
Attribution Drift

Monitor drift in feature attribution

- Monitor when inference data drifts away from baseline (training) data
- Model Monitor uses, Deequ, an open source library built on Apache Spark

Monitor Type: Data Quality Monitor

statistics.json

- Columnar statistics for each feature
- Examples:
 - Numeric \rightarrow missing values, mean, min, max, distribution
 - String → missing values, distinct values, categorical distribution

Baseline statistics and constraints

Monitor Type: Data Quality Monitor

Baseline statistics and constraints

statistics.json

- Columnar statistics for each feature
- Examples:
 - O Numeric \rightarrow missing values, mean, min, max, distribution
 - O String \rightarrow missing values, distinct values, categorical distribution

constraints.json

- Constraints that are used to evaluate potential data drift
- Examples:
 - Numeric → non-negative
 - String → observed values

Monitor Types

Data Drift

Data Quality

Monitor drift in data quality

Concept Drift

Model Quality

Monitor drift in model quality metrics

Concept Drift

Statistical Bias Drift

Monitor statistical bias drift in model predictions

Data Drift

Feature Attribution Drift

Monitor drift in feature attribution

Monitor Type: Model Quality Monitor

Concept Drift

Model Quality

Monitor drift in model quality metrics

 Monitor model quality by comparing model predictions with ground truth labels

VS

Monitor Types

Data Drift

Data Quality

Monitor drift in data quality

Concept Drift

Model Quality

Monitor drift in model quality metrics

Concept Drift

Statistical Bias
Drift

Monitor statistical bias drift in model predictions

Data Drift

Feature
Attribution Drift

Monitor drift in feature attribution

Monitor Type: Statistical Bias Drift

Concept Drift Statistical Bias Drift

Monitor statistical bias drift in model predictions

- Monitor predictions for statistical bias
- Amazon SageMaker Clarify integrates with Amazon SageMaker Model Monitor to detect statistical bias drift

Monitor Types

Data Drift

Data Quality

Monitor drift in data quality

Concept Drift

Model Quality

Monitor drift in model quality metrics

Concept Drift

Statistical Bias
Drift

Monitor statistical bias drift in model predictions

Data Drift

Feature
Attribution Drift

Monitor drift in feature attribution

Monitor Type: Feature Attribution Drift

- Monitor features contributing to predictions over time
- Amazon SageMaker Clarify integrates with Amazon SageMaker Model Monitor to detect feature attribution drift
- Utilizes SHAP for baselining

