Katarzyna Sobczak gr.3 Piotr Powroźnik gr.3

Analiza zależności pomiędzy przyrostem rocznym drzew a danymi klimatycznymi.

19.06.2022

Spis treści

1.	Wstęp	2
2.	Materiały	2
3.	Metody	2
4.	Wyniki	4
5.	Podsumowanie	10
6.	Bibliografia	10

1. Wstęp

Projekt ma na celu przeprowadzenie analizy zależności pomiędzy przyrostem rocznym modrzewia, a danymi klimatycznymi na przestrzeni lat.

2. Materialy

W projekcie posłużono się danymi dendrochronologicznymi pochodzącymi ze stanowiska (le2_res) z nadleśnictwa Leska, składającymi się ze średnich rocznych wartości przyrostów modrzewia, oraz sumą opadów i średnią temperatury. Dane te zostały przycięte do okresu wspólnego obejmującego lata 1916-2014.

3. Metody

Metodami analizy wykorzystanymi w tym projekcie są:

- analiza chronologii
- analiza korelacji

Dodano nazwy kolumn:

```
colnames(opady) <- c("year", "I", "III", "IV", "V", "VII", "VIII", "IX", "X", "XI", "XII")
```

Przycięto dane do okresu wspólnego:

```
le2_res <- subset(le2_res, year >= 1916 & year < "2015")
```

Obliczono średnią z wierszy i zapisano ją do nowej ramki danych:

```
le2\_res\_mean <- select(mutate(le2\_res\_, mean = ((le2\_01 + le2\_02 + le2\_03 + le2\_040 + le2\_05 + le2\_06 + e2\_070 + le2\_081 + le2\_09 + le2\_10 + le2\_111 + le2\_12 + le2\_131 + le2\_14 + le2\_16 + le2\_17 + le2\_181+le2\_19)/18)), year, mean)
```

Stworzenie wykresu chronologii:

```
ggplot(le2_res_mean, aes(x = year, y = mean)) +
geom_line() +
labs(title="Wykres chronologi",x="Rok",y="Średnia przyrostów rocznych")
```

Przeprowadzono transponowanie ramki danych ze średnimi przyrostami:

```
le2_res_t <- t((le2_res_[,2:19]))
```

Został utworzony dendro-chronogram:

```
tmp <- hcluster(le2_res_t, method="correlation", link="ward")
plot(tmp)
rect.hclust(fit, k=3, border="red")</pre>
```

Dla każdej powstałej grupy została stworzona nowa ramka danych:

```
grupa_1 <- select(mutate(le2_res_, mean = (le2_17 + le2_12 + le2_181 + le2_111 + le2_14)/5), year, mean )
```

Każda grupa została przedstawiona w postaci wykresu liniowego:

```
ggplot(grupa_1, aes(x = year, y = mean)) +
geom_line() +
labs(title="Wykres chronologii grupa 1",x="Rok",y="Średnia przyrostów rocznych")
```

Zbadano współczynnik korelacji pomiędzy danymi klimatycznymi a średnimi wartościami przyrostów dla poszczególnych grup, oraz średnią przyrostów dla wszystkich przyrostów dla poszczególnych miesięcy:

```
cor.test(le2_res_mean$mean, opady_$IV)
```

Stworzono wykresy rozrzutu dla danych o istotnym współczynniku korelacji:

```
ggplot(,aes(le2_res_mean$mean, opady_$IV)) +
geom_point()+
geom_smooth(method = "Im") +
labs(title = "Wykres rozrzutu", x="Średnia przyrostów dla wszystkich stanowisk", y = "Opady kwiecień")
```

4. Wyniki

Wykres chronologii (Rys. 1) przedstawia średnie wartości przyrostów rocznych na przestrzeni lat 1916-2014. Średnia przyrostów rocznych modrzewi ze stanowiska Lesko 2 została obliczona na podstawie 18 serii. Można na nim zauważyć że największy średni przyrost modrzewia miał miejsce w 1920 roku, a jego wartość wynosiła ok. 1,4 mm.

Analizując hierarchiczne drzewo skupień (Rys. 2) można zauważyć że serie przyrostowe modrzewi ze stanowiska Lesko 2 wyraźnie grupują się w 3 oddzielne skupienia których skład został zaznaczony czerwonym polem. Na tej podstawie można wnioskować że warunki panujące na tym stanowisku charakteryzują się lokalną zmiennością.

Cluster Dendrogram

le2_res_t hcluster (*, "ward")

Na podstawie wykresów zmienności przyrostów rocznych dla poszczególnych grup można zauważyć wyróżniającą się wartość średniej przyrostów w grupie 2 dla roku 1980 (Rys 4.). Wartość średniego przyrostu w tym roku była rekordowo niska, i wynosiła ok. 0,3 mm. Natomiast najwyższe wartości średnich przyrostów na przestrzeni lat osiągają ok. 1,5 mm (Rys 3., Rys 4.).

Wykres chronologii grupa 1

W tabeli (Tab 1.) została obliczona wartość i istotność korelacji wartości przyrostów z danymi klimatycznymi dla 3 wydzielonych grup, oraz dla całości stanowiska. Podczas obliczania korelacji wykorzystano takie dane klimatyczne jak: suma opadów oraz średnia temperatura powietrza. Podczas określania istotności korelacji przyjęto że będzie ona istotna dla wartości p-value < 0,05. Korelacje zostały obliczone dla miesięcy wchodzących w skład okresu wegetacyjnego Leska (kwiecień – wrzesień).

Analizując otrzymane korelacje z temperaturą można zauważyć brak korelacji pomiędzy średnią wartością przyrostów rocznych modrzewia a wartością średniej miesięcznej temperatury. Można z tego wnioskować że wartość temperatury powietrza nie ma wpływu na wartość przyrostu rocznego tego gatunku (Tab 1.).

W przypadku korelacji wartości przyrostów z miesięczną sumą opadów można zauważyć jej istotność dla miesięcy należących do krańców przedziału wegetacyjnego Leska. Dla kwietnia korelacje z każdą z 3 grup oraz z całością stanowiska są istotne statystycznie, natomiast dla września istotna jest jedynie korelacja z grupą 2. Należy zauważyć że każda korelacja jest ujemnej wartości a ich wartości oscylują w okolicach wartości -0,25.

	Korelacja z temperaturą											
Mie	Średnia z całości		Grupa 1		Grupa 2		Grupa 3					
sią C	War tość	P- valu e	Ist otn ość	War tość	P- valu e	Ist otn ość	War tość	P- valu e	Ist otn ość	War tość	P- valu e	Ist otn ość
IV	0,1	0,3	NIE	0	0,9 8	NIE	0,1 9	0,0 6	NIE	0,1	0,2 8	NIE
V	0,1 5	0,1 4	NIE	0,0 9	0,3 6	NIE	0,1 9	0,0 7	NIE	0,1	0,1 9	NIE
VI	0,0 8	0,4 1	NIE	- 0,0 7	0,5	NIE	0,0 4	0,7 2	NIE	- 0,0 9	0,3 7	NIE
VII	0,0 1	0,9	NIE	- 0,0 9	0,3 9	NIE	- 0,0 7	0,4 9	NIE	0,0 5	0,6	NIE
VII I	0,0 7	0,4 7	NIE	0,0 2	0,8 3	NIE	0	0,9 5	NIE	0,1 3	0,1 9	NIE
IX	0,0	0,7 8	NIE	0,0 2	0,8 4	NIE	0,0 4	0,7 1	NIE	0,0 2	0,8 2	NIE
	Korelacja z opadami											
Mie	Sredr	Średnia z całości		Grupa 1		Grupa 2		Grupa 3				
sią c	War tość	P- valu e	Ist otn ość	War tość	P- valu e	Ist otn ość	War tość	P- valu e	Ist otn ość	War tość	P- valu e	Ist otn ość
IV	0,2 7	0,0 1	TA K	0,2 6	0,0 1	TA K	0,2 6	0,0 1	TA K	0,2 2	0,0	TA K
V	0,0 5	0,6	NIE	0,0 4	0,6 9	NIE	0	0,9 7	NIE	0,0 7	0,5	NIE
VI	0,0 4	0,6 7	NIE	0,0 2	0,8 4	NIE	0,0 4	0,7 1	NIE	0,0 7	0,5 1	NIE
VII	0,0 5	0,6 1	NIE	- 0,0 5	0,6 3	NIE	0,1 9	0,0 7	NIE	0,0 5	0,6 3	NIE
VII I	0,0 7	0,5 1	NIE	0,0 9	0,4	NIE	0,0 4	0,6 8	NIE	0,0 5	0,6 1	NIE
IX	0,1 7	0,1	NIE	-0,1	0,3 2	NIE	0,2 4	0,0 2	TA K	0,1 4	0,1 6	NIE

Dla miesięcy w których wartość korelacji jest istotna statystycznie zostały stworzone wykresy rozrzutu(Rys 6.).

Widoczna jest na nich odwrotna zależność pomiędzy średnią wartością przyrostów i sumą opadów, oznacza to że rosnąca ilość opadów powoduje zmniejszenie wartości przyrostów rocznych modrzewia.

5. Podsumowanie

Na podstawie przeprowadzonej analizy można zauważyć że wartość przyrostu rocznego modrzewia nie zależy od wartości średniej temperatury, jednakże w przypadku korelacji z sumą opadów zauważyć można odwrotną zależność. Wynika z tego że najodpowiedniejszym siedliskiem dla modrzewia są tereny o średniej ilości opadów. Warto także zwrócić uwagę na wyjątkowo niską wartość średniego przyrostu modrzewia 1980 roku w przypadku grupy 2.

Wyniki przeprowadzonej analizy pokrywają się z informacjami zawartymi w literaturze, wg. której modrzewia cechuje wysoka tolerancja na wahania temperatury, oraz na wczesne i spóźnione przymrozki. Informacje pochodzące z literatury zgadzają się także w przypadku preferowanej ilości opadów. Dla modrzewia swoim naturalnym środowisku suma opadów w ciągu roku nie jest wysoka i wynosi od 600 do 2000 mm.

6. Bibliografia

Okres wegetacyjny Leska:

https://pl.weatherspark.com/y/88735/%C5%9Arednie-warunki-pogodowe-w:-Lesko-Polska-w-ci%C4%85gu-roku

Informacje o modrzewiu:

https://www.encyklopedia.lasypolskie.pl/doku.php?id=m:modrzew-charakterystyka-hodowlana