Day 4

Centre for the Mathematical Modelling of Infectious Diseases London School of Hygiene & Tropical Medicine

centre for the mathematical modelling of infectious diseases

The point of all of this

posterior probabilities

$$p(\theta|\text{data}) = \frac{p(\text{data}|\theta)p(\theta)}{p(\text{data})}$$

We interpret $p(\theta|\text{data})$ as the probability distribution of a random variable θ , from which we *sample* (via MCMC)

Why sample?

- 1. explore parameter space
- 2. samples can be useful
 - explore interventions, forecasts

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

Stochastic models

- one θ can lead to many possible outcomes X
- we can
 - 1. sample from $p(X|\theta)$ (via simulation)
 - 2. evaluate the trajectory likelihood $p(\text{data}|X,\theta)$
- we can't directly evaluate the likelihood $p(\text{data}|\theta)$

$$p(\mathrm{data}|\theta) = \sum_{X} p(\mathrm{data}|X,\theta) p(X|\theta)$$

▶ The number of possible trajectories X for one value of θ is large, potentially infinite

Sequential Monte Carlo (SMC) / Particle Filter I

To approximate

$$p(\mathrm{data}|\theta) = \sum_{X} p(\mathrm{data}|X,\theta) p(X|\theta)$$

we sample n trajectories X_n from

$$p(Y_{1:(T-1)}|X,\theta)p(X|\theta)$$

Sequential Monte Carlo (SMC) / Particle Filter II

We then calculate

$$p(Y_T|X_n,\theta)$$

for each of the particles. The sum of these values is

$$\sum_{X_n} p(Y_{1:T}|X_n,\theta) p(X_n|\theta)$$

which is a sample estimate of the likelihood.

$$\label{eq:log-likelihood} \begin{aligned} & \log\{p(y_{1:T}|\theta)\} = \sum_{T} \log\{p(y_{t}|y_{1:t-1},\theta)\} \end{aligned}$$

pMCMC

- ▶ Once we can estimate $p(\text{data}|\theta)$, we can combine this with the prior to evaluate the posterior $p(\theta|\text{data})$ for any θ .
- ▶ We can then use MCMC to sample from this -> pMCMC

MCMC

Stimating the likelihood NWC NWC

	Sampling normane posterior			
the	_	MCMC	SMC	
\sim 0	SMC	РМСМС	SMC ²	_

		•	
the	МСМС	SMC	
hoo swc	PMCMC V	SMC ²	
itima likeli	ABC-MCMC	ABC-SMC	