# Análisis de Eficiencia - Tiempo de Ejecución

Pablo Castro
Estructura de Datos y Algoritmos
UNRC

## Propiedades Deseables

Hay ciertas características deseables de los programas:

Corrección

Simplicidad

Que el programa haga lo que dice su especificación

Que sea fácil de comprender

> Que dada cualquier entrada, el tiempo de respuesta del algoritmo no sea excesivamente largo

Eficiencia en tiempo de ejecución

• Eficiencia en recursos

Que sea fácil de extender o

Que no ocupe demasiada

memoria

Adaptabilidad

Que sea fácil de usar

modificar

• Facilidad de uso-

# Importancia de la Eficiencia

Aunque los procesadores son cada vez más rápidos, la eficiencia es importante por:

- Existen soluciones a problemas simples \_\_\_\_
   que son extremadamente ineficientes
   (para cualquier procesador).
- Los algoritmos eficientes nos permiten resolver más problemas en menos tiempo.

La tesis extendida de Church-Turing.

El avance en hardware es solo polinomial

Por ejemplo Fibonacci

# Un Ejemplo

Supongamos que queremos calcular  $2^n$ :

```
/**
* Version ineficiente de f(n)=2^n
*/
public static long exp1(long n){
    if (n == 0)
        return 1;
    else
        return exp1(n-1) + exp1(n-1);
}
```

Para valores grandes de n se vuelve imposible de ejecutar

Este programa es correcto pero ineficiente!

# Cómo medir el tiempo...

Podemos pensar en varias alternativas:

Depende de la plataforma y la entrada

- Correr el programa y contar la cantidad de tiempo que tarda.
- Calcular la cantidad de operaciones elementales que realiza el prog.
- Calcular la cantidad de operaciones
   elementales en función del tamaño en el peor caso

• Hacer lo mismo pero en el caso promedio

Depende de la entrada

Puede no reflejar el tiempo de ejecución real

Difícil para calcular

# Análisis en el peor caso

Cuando hacemos análisis en el peor caso debemos:

 Determinar que es la longitud de las entradas del programas.

Bastante directo: longitud de la lista, altura de un árbol, etc

Determinar el peor caso del programa.

Hay que analizar el código

 Determinar cuales son las operaciones básicas del programa Directo: asignaciones, operaciones aritméticas, etc

Depende del nivel de abstracción que trabajemos

# Función de Crecimiento

Dado un programa podemos definir su función de crecimiento:

$$T_p: \mathbb{N} o \mathbb{N}$$
 programa P con una entrada de tamaño n

- Esta función refleja el tiempo de ejecución del programa con respecto a el tamaño de entrada
- Su definición depende del programa a analizar
- Suponemos que las funciones son monótonas:

$$n \leq m \Rightarrow T_p(n) \leq T_p(m)$$

# Ejemplo

#### Consideremos el SelectionSort:

```
int i = 0;
while (i < MAX_ARRAY) {</pre>
    int max, indice_max, j, aux;
    max = A[i];
    indice_max = i;
    i = i;
    while (j < MAX_ARRAY) {</pre>
         if (A[j] > max) {
             max = A[j];
             indice_max = j;
        j++;
    aux = A[i];
    A[i] = A[indice_max];
    A[indice_max] = aux;
    i++;
```

Ordena un arreglo de valores comparables

### Análisis del Selection

- Tamaño de entrada: La longitud del arreglo a ordenar.
- Peor caso: El arreglo está ordenado en forma creciente.
- Operaciones Elementales: Asignaciones, comparaciones, operaciones aritméticas, acceso a arreglos.

Debemos dar su función de crecimiento...

### SelectionSort

#### Veamos:

$$T(n) = c_1 + \text{nro.}$$
 de opns. básicas del loop externo

$$T(n) = c_1 + \sum_{i=0}^{n-1} (c_2 + \text{nro. de opns. básicas del loop interno})$$

$$T(n) = c_1 + \sum_{i=0}^{n-1} \left( c_2 + \sum_{j=i}^{n-1} c_3 \right)$$

$$T(n) = c_1 + \sum_{i=0}^{n-1} (c_2 + (c_3(n-i)))$$

$$T(n) = c_1 + (nc_2) + c_3 \sum_{i=0}^{n-1} (n-i)$$

$$T(n) = c_1 + (nc_2) + c_3 n^2 - \left(\frac{n^2 - n}{2}\right)$$

En este caso se dice que el algoritmo es orden cuadrático.

### Recordar:

$$\sum_{i=k}^{n} c = ((n-k)+1)*c$$

$$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, \quad c \neq 1$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=k}^{n} (t+t') = \sum_{i=k}^{n} t + \sum_{i=k}^{n} t'$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=k}^{n} c * t = c * \sum_{i=k}^{n} t$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

### Orden de Crecimiento

Podemos clasificar los programas según su tasa de crecimiento

- O(f(n)): funciones que están acotadas por arriba por f
- $\Omega(f(n))$ : funciones que están acotadas por abajo por f
- $\Theta(f(n))$ : funciones que crecen exactamente como f

## Notación O

O(f(n)) es la colección de funciones con una tasa de crecimiento menor o igual f

 $t(n) \in O(g(n))$  ssi existen una constante positiva c y un entero no negativo  $n_0$  tales que  $t(n) \le cg(n)$ , para todo  $n \ge n_0$ .

#### Ejemplos:

$$n \in O(n^2)$$
  
 $100n + 5 \in O(n^2)$   
 $\frac{1}{2}n(n-1) \in O(n^2)$   
 $0.000001n^3 \notin O(n^2)$ 

## Notación $\Omega$

 $\Omega(g(n))$  es la colección de funciones con una tasa de crecimiento mayor o igual g.

 $t(n) \in \Omega(g(n))$  ssi existen una constante positiva c y un entero no negativo  $n_0$  tales que  $t(n) \ge cg(n)$ , para todo  $n \ge n_0$ 

#### Ejemplos:

$$0.000001n^{3} \in \Omega(n^{3})$$

$$100n + 5 \notin \Omega(n^{2})$$

$$\frac{1}{2}n(n-1) \in \Omega(n^{2})$$

## Notación 🖯

 $\Theta(f(n))$  Es la clase de funciones con un crecimiento exactamente igual a f

 $t(n) \in \Theta(g(n))$  ssi existen constantes positivas  $c_1, c_2$  y un entero no negativo  $n_0$  tales que  $c_1g(n) \le t(n) \le c_2g(n)$ , para todo  $n \ge n_0$ 

#### Ejemplos:

$$n \notin \Theta(n^2)$$
  
 $100n + 5 \notin \Theta(n^2)$   
 $\frac{1}{2}n(n-1) \in \Theta(n^2)$   
 $0.000001n^3 \notin \Theta(n^2)$ 

# Algunas Clases Importantes

Las notaciones  $O \Theta \Omega$  permiten clasificar los programas según su orden, hay infinitas clases de funciones de crecimiento, pero algunas importantes:

- 1 :Algoritmos <u>constantes</u>, no dependen de la entrada
- n:Algoritmos <u>lineales</u>, recorren la entrada una cantidad constante de veces.
- n \* log n: Varios algoritmos de sorting caen en esta clase

# Algunas Clases Importantes (cont)

- $n^2$ :Algoritmos <u>cuadráticos</u>, por cada elemento recorren una vez la entrada
- $n^3$ :Algoritmos <u>cúbicos</u>, tres ciclos anidados.
- $2^n$ : Exponencial resuelven un problema utilizando varias instancias menores del mismo
- n!: Factorial tratan todas las combinaciones posibles

# Comparación

| ent.                                              | log <sub>2</sub> n                 | n                                                                                               | nlog <sub>2</sub> n                                                                                        | $n^2$                                                   | $n^3$                                                    | 2 <sup>n</sup>            | <i>n</i> !                              |
|---------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------|-----------------------------------------|
| $10$ $10^{2}$ $10^{3}$ $10^{4}$ $10^{5}$ $10^{6}$ | 3.3<br>6.6<br>10<br>13<br>17<br>20 | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> 10 <sup>5</sup> 10 <sup>6</sup> | $3.3 \times 10^{1}$ $6.6 \times 10^{2}$ $10^{4}$ $1.3 \times 10^{5}$ $1.7 \times 10^{6}$ $2 \times 10^{7}$ | $10^{2}$ $10^{4}$ $10^{6}$ $10^{8}$ $10^{10}$ $10^{12}$ | $10^{3}$ $10^{6}$ $10^{9}$ $10^{12}$ $10^{15}$ $10^{18}$ | $10^3$ $1.3\times10^{30}$ | $3.6 \times 10^6$ $9.3 \times 10^{157}$ |

# La Tasa de Crecimiento es más importante...



**VS** 



| ent.    | Cray-1 Fortran<br>Algoritmo Cubico | TRS-80 Basic<br>Algoritmo Lineal |  |  |
|---------|------------------------------------|----------------------------------|--|--|
| 10      |                                    | 202 :1:                          |  |  |
| 10      | 3 microseg.                        | 200 miliseg.                     |  |  |
| 100     | 3 miliseg.                         | 2 seg.                           |  |  |
| 1000    | 3 seg.                             | 20 seg.                          |  |  |
| 10000   | 50 seg.                            | 50 seg.                          |  |  |
| 100000  | 49 min.                            | 3.2 min.                         |  |  |
| 1000000 | 95 años                            | 5.4 horas                        |  |  |

# Análisis en el Peor Caso

- Las operaciones básicas toman tiempo constante.
- El tiempo de  $S_1$ ;  $S_2$  es:  $T_{S_1} + T_{S_2}$
- El tiempo de If B then  $S_1$  else  $S_2$  es:  $Max\{T_{S_1}, T_{S_2}\}$

Hay que considerar el tiempo de la condición

## Análisis de Ciclos

El tiempo que tarda un ciclo es el tiempo que tarda el código de adentro multiplicado por la cantidad de iteraciones.

```
for (int i = 0; i < n; i++) {
    for (int j = 0; i < m, j++){
        x=x*x;
    }
}</pre>
```

Viene dado por:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} c = n * m * c$$

# Ejemplo

#### El tiempo viene dado por:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} c = n * n * c = n^2 * c$$

Es decir, el algoritmo es:  $\Theta(n^2)$ 

# Propiedades

#### Propiedades de O:

- Reflexividad:  $f(n) \in O(f(n))$
- Transitividad:  $f(n) \in O(g(n))$  y  $g(n) \in O(t(n)) \Rightarrow f(n) \in O(t(n))$
- Sumas: Si  $f(n) \in O(g(n) + t(n))$ , entonces  $f(n) \in O(Max(g(n), t(n)))$
- Mult. Constantes: Si  $f(n) \in O(c * g(n))$ , entonces  $f(n) \in O(g(n))$
- Constantes:  $k \in O(1)$  para cualquier constante k

# Más Propiedades

Podemos usar límites para analizar funciones:

Si 
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ con } 0 < c, \text{ entonces } f(n) \in \theta(g(n))$$

Si 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, entonces  $f(n) \in O(g(n))$  y  $f(n) \notin \theta(g(n))$ 

Si 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$
, entonces  $f(n) \in \Omega(g(n))$  y  $f(n) \notin \theta(g(n))$ 

# Un Ejemplo

Demostremos:  $log n \in O(n)$ 

$$\lim_{n \to \infty} \frac{\log n}{n}$$

= [Derivando ambos lados]

= [Aritmetica]

$$\lim_{n \to \infty} \frac{\log e}{n} = 0$$

## Algoritmos Recursivos

La técnica principal es expansión de recurrencias:

- La función de tiempo viene expresada por una ecuación recursiva.
- Para resolverlas tenemos que utilizar substituciones
- Los casos bases nos permiten terminar este proceso de substitución.

# Un Ejemplo

#### Consideremos:

```
public void ordenar(int A[], int i, int j) {
    if (i<=j) {
        int ind = i; boolean ordenado = false;
        ordenar(A, i+1, j);
        while ((ind<j) & !ordenado) {</pre>
                                                     Método de ordenamiento
            if (A[ind]>A[ind+1]) {
                                                             recursivo
                 int aux = A[ind+1];
                A[ind+1] = A[ind];
                A[ind] = aux;
            else {
                 ordenado = true;
                                                        Peor caso: ordenado
                                                         decrecientemente
            ind++;
```

# Ejemplo (cont)

Veamos las ecuaciones de recurrencia:



Simplificando:

$$T(n) = T(n-1) + n + 1$$

# Expansión de Recurrencias

Podemos expandir las ecuaciones:

$$T(n) = T(n-1) + n + 1$$

$$T(n) = [T(n-2) + (n-1) + 1] + n + 1$$

$$T(n) = T(n-2) + (n-1) + n + 2$$

$$T(n) = [T(n-3) + (n-2) + 1] + (n-1) + n + 2$$

$$T(n) = T(n-3) + (n-2) + (n-1) + n + 3$$

$$\vdots$$

$$T(n) = T(n-i) + \sum_{j=0}^{i-1} (n-j) + i$$

# Resolviendo las Ecuaciones

Podemos reemplazar T(n-i) por 1 en la ecuación cuando

$$n - i = 0$$

es decir:

$$i = n$$

Es decir, en la ecuación obtenemos:

$$T(n) = 1 + \sum_{j=0}^{n-1} (n-j) + n = 1 + n^2 + \frac{(n^2 - n)}{2}$$

Usando las propiedades, el algoritmo es  $O(n^2)$ . En realidad también tenemos  $\Theta(n^2)$ 

# Otro Ejemplo

#### Consideremos devuelta el método:

```
/**
 * Version ineficiente de f(n)=2^n
 */
public static long exp1(long n){
    if (n == 0)
        return 1;
    else
        return exp1(n-1) + exp1(n-1);
}
Hace dos llamadas recursivas
por cada predecesor de n
```

$$T(0) = 1$$
 
$$T(n) = 2 * T(n-1) + c$$
 Ecuación de recurrencia

### Calculemos

$$T(n) = 2 * T(n-1) + c$$

$$= 2 * [2 * T(n-2) + c] + c$$

$$= 2 * [2 * [2 * T(n-3) + c] + c] + c$$

$$\vdots$$

$$= 2^{i} * T(n-i) + \sum_{j=0}^{i-1} c * 2^{j}$$

$$= 2^{n} * c + \sum_{j=0}^{n-1} c * 2^{j}$$

$$= 2^{n} * c + c * (2^{n} - 1) \in \Theta(2^{n})$$

### Otra versión

Otra versión más eficiente del mismo algoritmo:

```
/**
 * Version mas eficiente de f(n) = 2^n
 */
public static long exp2(long n){
    if (n == 0)
        return 1;
    else
        return 2*exp2(n-1);
}
Hace solo una llamada
recursiva por cada predecesor
de n
```

$$T(0) = c$$
 
$$T(n) = c + T(n-1)$$
 Ecuación de recurrencia

### Resolvamos la Ecuación

$$T(n) = c + T(n-1)$$

$$= c + [c + T(n-2)]$$

$$= c + [c + [c + T(n-3)]]$$

$$\vdots$$

$$= i * c + T(n-i)$$

$$= n * c + c \in \Theta(n)$$

Cuando n-i=0

Algoritmo lineal, mucho más eficiente!

### Fibonacci

#### Veamos Fibonacci:

$$fib 0 = 1$$

$$fib 1 = 1$$

$$fib n = fib (n - 1) + fib (n - 2)$$

#### Su tiempo de ejecución viene dado por:

$$T(0) = 0$$
 Su tiempo de ejecución viene dado por Fibonacci! 
$$T(1) = 1$$
 
$$T(n) = T(n-1) + T(n-2) + c$$

# Fibonacci (cont.)

El tiempo exacto de Fibonacci no es directo, acotemos por abajo y arriba

$$\begin{split} T(n) &= T(n-1) + T(n-2) + c \\ &\leq T(n-1) + T(n-1) + c \\ &= 2*T(n-1) + c \\ &\vdots \\ &= 2^i * T(n-i) + i * c \\ &= [\text{ con } i = n-1] \\ 2^{n-1} + (n-1) * c \end{split} \qquad \textbf{Es decir: } T(n) \in O(2^n) \end{split}$$

### Fibonacci

#### Si acotamos por abajo:

$$T(n) = T(n-1) + T(n-2) + c$$

$$\geq T(n-2) + T(n-2) + c$$

$$= 2 * T(n-2) + c$$

$$\vdots$$

$$= 2^{i} * T(n-2*i) + i * c$$

$$= [con i = \frac{n}{2}]$$

$$2^{n/2} + \frac{n}{2} * c$$

Es decir:  $T(n) \in \Omega(2^{n/2})$ 

# Tiempo Exacto de Fibonacci

Consideremos los siguientes números:

$$\phi = \frac{1+\sqrt{5}}{2} \qquad \qquad \mathbf{y} \qquad \hat{\phi} = \frac{1-\sqrt{5}}{2}$$

Se puede demostrar que:

$$fib(n) = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}$$

Es decir:  $fib(n) \in \theta(\phi^n)$  en donde  $\phi \cong 1.61$