## 1 Dugga 5 - Fråga 8

Hur många ord kan bildas av VINGUMMIN där varken II, NN eller MM förekommer?

## Svar

Vi börjar med att räkna det totala antalet av ord som går att bilda. Vi har

$$1 \text{ V}, 2 \text{ I}, 2 \text{ N}, 1 \text{ G}, 1 \text{ U}, 2 \text{ M}.$$
 (1)

och det är totalt 9 bokstäver. Alltså blir det

$$\frac{9!}{1! \cdot 2! \cdot 2! \cdot 1! \cdot 1! \cdot 2!} = 45367 \tag{2}$$

och för att se till att inga dubletter förekommer börjar vi med att räkna de arrangemang där mins en dublett förekommer och räknar det som en enhet

$$\frac{8!}{1! \cdot 1! \cdot 2! \cdot 1! \cdot 1! \cdot 2!} = 10080 \tag{3}$$

och eftersom det finns  $\binom{3}{1} = 3$  sätt att välja vilket par som förekommer, så multiplicerar vi svaret med 3.

$$10080 \cdot 3 = 30240. \tag{4}$$

Nu räknar vi antalet arrangemang där 2 dubletter förekommer

$$\frac{7!}{1! \cdot 1! \cdot 1! \cdot 1! \cdot 2!} = 2520 \tag{5}$$

och eftersom det finns  $\binom{3}{2} = 3$  sätt att välja vilka två par som förekommer multiplicerar vi med 3 här också här med

$$2520 \cdot 3 = 7560. \tag{6}$$

Sedan räknar vi på när alla 3 par förekommer

$$\frac{6!}{1! \cdot 1! \cdot 1! \cdot 1! \cdot 1!} = 6! = 720 \tag{7}$$

nu måste vi ta hänsyn till dubbelräkning, och det gör vi genom att ta uträkning 4 subtraherat med uträkning 6 och sist adderat med uträkning 7

$$30240 - 7560 + 720 = 23400 \tag{8}$$

och till sist för att få veta hur många ord som kan bildas av VINGUMMIN där inga dubletter förekommer tar vi totala antalet ord subtraherat med de oönskade fallen

$$45367 - 23400 = 21960. (9)$$

