1 Locally Free Sheaves

2 Algebraic Vector Bundles

3 Derivations

Definition 3.0.1. Let \mathscr{A} be a sheaf of algebras and \mathscr{B} an \mathscr{A} -algebra and \mathscr{F} a \mathscr{B} -module. Then an \mathscr{A} -derivation $D: \mathscr{B} \to \mathscr{F}$ is a \mathscr{A} -module map such that on all local sections,

$$D(fg) = D(f)g + fD(g)$$

Furthermore, we write $\mathcal{D}_{erd}(\mathcal{B}, \mathcal{F}) \subset \mathcal{H}_{ord}(\mathcal{B}, \mathcal{F})$ for the \mathscr{A} -submodule of derivations.

Definition 3.0.2. If the functor $\mathscr{F} \mapsto \mathscr{D}_{er\mathscr{A}}(\mathscr{B}, \mathscr{F})$ is representable on the category on \mathscr{B} -modules then we say the representing pair $(\Omega_{\mathscr{B}/\mathscr{A}}, d)$ is the \mathscr{B} -module of \mathscr{A} -differentials where,

$$\mathscr{H}\!\mathit{om}_{\mathscr{A}}\!\!\left(\Omega_{\mathscr{B}/\mathscr{A}},\mathscr{F}\right)=\mathscr{D}\!\mathit{er}_{\mathscr{A}}(\mathscr{B},\mathscr{F})$$

and the derivation $d: \mathcal{B} \to \Omega_{\mathcal{B}/\mathcal{A}}$ is the universal element given by,

$$\mathrm{id} \in \mathscr{H}\!\mathit{om}_{\mathscr{A}}\!\!\left(\Omega_{\mathscr{B}/\mathscr{A}},\Omega_{\mathscr{B}/\mathscr{A}}\right) = \mathscr{D}\!\mathit{er}_{\mathscr{A}}\!\left(\mathscr{B},\Omega_{\mathscr{B}/\mathscr{A}}\right)$$

Definition 3.0.3. Given morphism of locally ringed spaces $f: X \to S$ we say that $(\Omega_{X/S}, d)$ is the \mathcal{O}_X -module of $f^{-1}\mathcal{O}_S$ -differentials viewing \mathcal{O}_X as a $f^{-1}\mathcal{O}_S$ -algebra via the map $f^{-1}\mathcal{O}_S \to \mathcal{O}_X$.

4 Connections

Remark. Here we have a locally ringed space $X \to S$ over S. We write $\Omega_X = \Omega_{X/S}$ and

Definition 4.0.1. A connection on a vector bundle \mathcal{E} on X in a \mathcal{O}_S -linear derivation,

$$\nabla: \mathcal{E} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{E}$$

Lemma 4.0.2. Suppose that $\nabla_1, \nabla_2 : \mathcal{E} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{E}$ are connections. Then,

$$\nabla_1 - \nabla_2 : \mathcal{E} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{E}$$

is a \mathcal{O}_X -module map.

Proof.
$$(\nabla_1 - \nabla_2)(fs) = f(\nabla_1 s - \nabla_2 s) + df \otimes s - df \otimes s = f(\nabla_1 - \nabla_2)s$$
.

Remark. Therefore, the space of connections is a affine subspace of Hom $(\mathcal{E}, \Omega_X^1 \mathcal{E})$. Then if \mathcal{E} is finite locally free,

$$\operatorname{Hom}\left(\mathcal{E},\Omega_X^1\mathcal{E}\right) = H^0(X,\Omega_X^1 \otimes_{\mathcal{O}_X} \operatorname{End}_{\mathcal{O}_S}(\mathcal{E}))$$

Definition 4.0.3. The first Chern class $c_1 : \operatorname{Pic}(X) \to H^1(X, \Omega^1) \subset H^2_{dR}(X)$ is defined by $H^1(X, -)$ applied to the map dlog : $\mathcal{O}_X^{\times} \to \Omega_X^1$ defined as $\operatorname{dlog}(f) = f^{-1} df$.

Proposition 4.0.4. A line bundle \mathcal{L} admits a connection $\nabla: \mathcal{L} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{L}$ if and only if $c_1(\mathcal{L}) = 0$.

Proof. A line bundle \mathcal{L} is represented by a Cech cocycle $(U_i, f_{ij}) \in H^1(X, \mathcal{O}_X^{\times})$. Then a connection on a line bundle is represented by (U_i, ω_i) with $\omega_i \in \Omega_X^1(U_i)$ where (U_i, s_i) is a trivialization of \mathcal{L} with $\mathcal{O}_{U_i} \xrightarrow{s_i} \mathcal{L}|_{U_i}$ then $s_i|_{U_i \cap U_j} = f_{ij}s_j|_{U_i \cap U_j}$ and $\nabla s_i = \omega_i \otimes s_i$. However, we must have on $U_i \cap U_j$,

$$\nabla s_i = \nabla f_{ij} s_j = f_{ij} \nabla s_j + \mathrm{d} f_{ij} \otimes s_j$$

Therefore,

$$\omega_i \otimes f_{ij} s_j = f_{ij} \omega_j \otimes s_j + \mathrm{d} f_{ij} \otimes s_j$$

and thus,

$$(\omega_i - \omega_j)|_{U_i \cap U_j} = \operatorname{dlog}(f_{ij})$$

Consider the Cech differential $d: \check{C}^0(\mathfrak{U}, \Omega_X^1) \to \check{C}^1(\mathfrak{U}, \Omega_X^1)$ which takes the sections (ω_i) to the coboundary $(\omega_i - \omega_j)|_{U_{ij}}$. Therefore, such a connection i.e. such a class exists iff the class,

$$c_1(\mathcal{L}) = [\operatorname{dlog}(f_{ij})] \in \check{H}^1(X, \Omega_X^1)$$

is trivial since it is a coboundary.

5 Curvature

Definition 5.0.1. The connection ∇ defines a corresponding curvature map,

$$\omega_{\nabla} = \nabla_1 \circ \nabla : \mathcal{E} \to \Omega^2_X \otimes_{\mathcal{O}_S} \mathcal{E}$$

We say that ∇ is flat or integrable if the curvature vanishes $\omega_{\nabla} = \nabla_1 \circ \nabla = 0$.

Lemma 5.0.2. The curvature $\omega_{\nabla}: \mathcal{E} \to \Omega^2_X \otimes_{\mathcal{O}_X} \mathcal{E}$ is a \mathcal{O}_X -module map.

Proof. Consider,

$$\omega_{\nabla}(fs) = \nabla_{1}(\mathrm{d}f \otimes s + f\nabla s) = \mathrm{d}\mathrm{d}f \otimes s - \mathrm{d}f \wedge \nabla s + \mathrm{d}f \wedge \nabla s + f\nabla_{1} \circ \nabla s = f\nabla_{1} \circ \nabla s = f\omega_{\nabla}(s)$$

Remark. Therefore ω_{∇} defines the curvature form $\omega_{\nabla} \in \Gamma(X, \Omega_X^2 \otimes \mathcal{E}nd_{\mathcal{O}_X}(\mathcal{E}))$.

Remark. If we write locally,

$$\nabla e = \sum_{i} f_i \mathrm{d}g_i \otimes s_i$$

then the curvature takes the form,

$$\omega_{\nabla}(e) = \sum_{i} (\mathrm{d}f_i \wedge \mathrm{d}g_i \otimes e - f_i \mathrm{d}g_i \otimes \nabla s_i)$$

6 Differential Operators

Definition 6.0.1. Let \mathscr{A} be a sheaf of algebras and \mathscr{B} an \mathscr{A} -algebra and \mathscr{F},\mathscr{G} be \mathscr{B} -modules. Then a differential operator $D:\mathscr{F}\to\mathscr{G}$ of order k is a \mathscr{A} -module map such that for all local sections $b\in\Gamma(U,\mathscr{B})$ the map, $D(b\cdot -)-b\cdot D:\Gamma(U,\mathscr{F})\to\Gamma(U,\mathscr{G})$ is a differential operator of order k-1. Where a differential operator of order k=0 is a \mathscr{B} -linear map $D:\mathscr{F}\to\mathscr{G}$. Furthermore, we write $\mathscr{Diff}_{\mathscr{B}/\mathscr{A}}^{k}(\mathscr{F},\mathscr{G})\subset\mathscr{Hom}_{\mathscr{A}}(\mathscr{F},\mathscr{G})$ to denote the \mathscr{B} -submodule of differential operators of order k.

7 Sheaves of Jets

8 The Atiyah Class

9 Riemann-Hilbert Correspondence

10 Connections on Real and Complex Manifolds

Remark. Let $\nabla : \mathcal{E} \to \Omega^1_X \otimes \mathcal{E}$ be a connection. For a vector field X we write $\nabla_X : \mathcal{E} \to \mathcal{E}$ for the map,

$$\mathcal{E} \xrightarrow{\nabla} \Omega^1_X \otimes \mathcal{E} \xrightarrow{X \otimes \mathrm{id}} \mathcal{O}_X \otimes \mathcal{E} \to \mathcal{E}$$

Therefore, in previous notation $\nabla_X = Q(X)$. Thus we see that, viewing $\omega_{\nabla} \in \Omega^2_X \otimes \operatorname{End}_{\mathcal{O}_X}(\mathcal{E})$ that,

$$\omega_{\nabla}(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$$

When ∇ is the Levi-Civita connection then ω_{∇} is the Riemann tensor.

Definition 10.0.1. A form $\sigma \in \Gamma(X, \Omega_X \otimes \mathcal{E})$ is called a *solder form* if $\sigma : \mathscr{T}_X \to \mathcal{E}$ is an isomorphism. Given a connection $\nabla : \mathcal{E} \to \Omega_X \otimes \mathcal{E}$, the *torsion* is $T_{(\nabla, \sigma)} = \nabla_1 \sigma \in \Gamma(X, \Omega_X^2 \otimes \mathcal{E})$.

Remark. Choose a local frame $\{e_i\}$ of $\mathcal{E}|_U \cong \mathcal{O}_U^{\oplus n}$ and $\{\sigma_i\}$ of Ω_X compatibly via σ . Then,

$$\sigma = \sum_{i} \sigma_{i} \otimes e_{i}$$

and write,

$$\nabla e_j = \sum_i \omega_{ij} \otimes e_i$$

for 1-forms $\omega_{ij} \in \Omega^1_X(U)$. Then we compute,

$$\nabla_1 \sigma = \sum_i d\sigma_i \otimes e_i - \sum_j \sigma_j \wedge \nabla e_j$$
$$= \sum_i \left(d\sigma_i + \sum_j \omega_{ij} \wedge \sigma_j \right) \otimes e_i$$

Therefore,

$$T_{(\nabla,\sigma)} = 0 \iff \tau_i = d\sigma_i + \sum_j \omega_{ij} \wedge \sigma_j = 0$$

Remark. For $\mathcal{E} = \mathcal{T}_X$ we have a canonical solder form σ_{id} given by $id : \mathcal{T}_X \to \mathcal{T}_X$. Then $T_{\nabla} = T_{(\nabla, \sigma_{id})}$ is the torsion of ∇ . In local coordinates,

$$\sigma_{\mathrm{id}} = \sum_{i} \mathrm{d}x^{i} \otimes \frac{\partial}{\partial x^{j}}$$
 and $\nabla \frac{\partial}{\partial x^{j}} = \sum_{i} \omega_{ij} \otimes \frac{\partial}{\partial x^{i}}$

Then,

$$\nabla_1(\sigma_{\mathrm{id}}) = -\sum_{i,j} (\mathrm{d}x^j \wedge \omega_{ij}) \otimes \frac{\partial}{\partial x^j}$$

Therefore, if $X = v^i \frac{\partial}{\partial x^i}$ and $Y = u^i \frac{\partial}{\partial x^i}$ we find that,

$$T_{\nabla}(X,Y) = \sum_{i,j} \left(u^j v^k \omega_{ij} \left(\frac{\partial}{\partial x^k} \right) - v^j u^k \omega_{ij} \left(\frac{\partial}{\partial x^k} \right) \right) \otimes \frac{\partial}{\partial x^j}$$

However,

$$\nabla_X Y - \nabla_Y X = \sum_{i,j} \left(u^j v^k \omega_{ij} \left(\frac{\partial}{\partial x^k} \right) - v^j u^k \omega_{ij} \left(\frac{\partial}{\partial x^k} \right) \right) \otimes \frac{\partial}{\partial x^i}$$

$$+ \left(v^k du^j \left(\frac{\partial}{\partial x^k} \right) \otimes \frac{\partial}{\partial x^j} - u^k dv^j \left(\frac{\partial}{\partial x^k} \right) \otimes \frac{\partial}{\partial x^j} \right)$$

$$= T_{\nabla}(X,Y) + [X,Y]$$

Therefore, we write down the following.

Definition 10.0.2. Let $\nabla : \mathcal{T}_X \to \Omega_X \otimes \mathcal{T}_X$ be a connection on the tangent bundle. The torsion $T_{\nabla} \in \Gamma(X, \Omega_X^2 \otimes \mathcal{T}_X)$ is defined via,

$$T_X(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

10.1 Metric Compatibility

Remark. A complex vector bundle $E \to M$ is equivalent to a pair (E, I) where $E \to M$ is a real vector bundle and $I: E \to E$ is a bundle endomorphism such that $I^2 = -\text{id}$. Therefore, an almost complex structure is the same as endowing the tangent bundle with a complex structure.

Remark. A holomorphic structue on a complex vector bundle $E \to X$ over a complex manifold is the structue of a complex manifold on E such that $E \to X$ is holomorphic and such that there exist biholomorphic linear charts for $E \to X$ as a bundle.

Definition 10.1.1. Let $E \to M$ be a real vector bundle. A metric on E is a positive-definite symetric section $g \in \Gamma(M, \operatorname{Sym}^2(E^*))$.

Definition 10.1.2. A connection $\nabla: E \to \mathcal{A}_X^1 \otimes E$ is compatible with the metric g if $\nabla g = 0$.

Remark. Explicitly,

$$(\nabla g)(s_1, s_2) = d(g(s_1, s_2)) - g(\nabla s_1, s_2) - g(s_1, \nabla s_2)$$

and thus $\nabla g = 0$ iff $d(g(s_1, s_2)) = g(\nabla s_1, s_2) + g(s_1, \nabla s_2)$.

Definition 10.1.3. Let $(E, I) \to M$ be a complex vector bundle. A hermitian structure on E is a section $h \in \Gamma(M, E^* \otimes \overline{E}^*)$ such that h_x is a hermitian metric on E_x .

Proposition 10.1.4. A hermitian structure on (E, I) is equivalent to a metric compatible with I.

Proof. The equivalence is given by $h = g - i\omega$ where $\omega(-, -) = g(I(-), -)$ is the fundamental form. (CHECK THIS)

Definition 10.1.5. Let $E \to M$ be complex. We say a connection $\nabla : E \to \mathcal{A}_M^1 \otimes E$ is complex if ∇ is complex linear. If E has a hermitian structure we say that ∇ is hermitian if $\nabla h = 0$.

Remark. Note that ∇ being complex linear is equivalent to $\nabla \circ I = I \circ \nabla$ is equivalent to $\nabla I = 0$ via the induced connection on $E^* \otimes E$. Explicitly,

$$(\nabla I)(s) = \nabla I(s) - I(\nabla(s)) = 0$$

Remark. Note that we need ∇ to be complex for $\nabla h = 0$ to make sense since we need ∇ to induce a connection on $E^* = \operatorname{Hom}_{\mathbb{C}}(E, \mathcal{O}_X)$. To see why, consider a section $\varphi \in \Gamma(X, E^*)$ then, $\nabla \varphi$ should be complex linear. However,

$$(\nabla \varphi)(I(s)) = d\varphi(I(s)) - \varphi(\nabla I(s)) = id\varphi(s) - i\varphi(\nabla s) + \varphi([I \circ \nabla - \nabla \circ I](s))$$
$$= i(\nabla \varphi)(s) + \varphi([I \circ \nabla - \nabla \circ I](s))$$

and therefore we need $\nabla \circ I = I \circ \nabla$.

Proposition 10.1.6. Let (E, I, h) be a complex bundle with a hermitian structure and g the associated compatible metric with funamental form ω . A complex connection $\nabla : E \to \mathcal{A}_X^1 \otimes E$ is hermitian iff

$$\nabla h = 0 \iff \nabla g = 0 \iff \nabla \omega = 0$$

Proof. Because $\nabla I = 0$ we see that $(\nabla \omega)(-, -) = (\nabla g)(I(-), -)$ and thus $\nabla g = 0 \iff \nabla \omega = 0$. Furthermore, $h = g - i\omega$ so if $\nabla h = 0$ then the real and imaginary parts must indiviually vanish so $\nabla g = \nabla \omega = 0$. Explicitly,

$$d(h(s_1, s_2)) = h(\nabla s_1, s_2) + h(s_1, \nabla s_2)$$

$$\iff$$

$$d(g(s_1, s_2)) - id(\omega(s_1, s_2)) = g(\nabla s_1, s_2) + g(s_1, \nabla s_2) - i\omega(\nabla s_1, s_2) - i\omega(s_1, \nabla s_2)$$

and therefore,

$$d(g(s_1, s_2)) = g(\nabla s_1, s_2) + g(s_1, \nabla s_2)$$
 and $d(\omega(s_1, s_2)) = \omega(\nabla s_1, s_2) + \omega(s_1, \nabla s_2)$

10.2 The Levi-Civita and Chern Connections

Proposition 10.2.1. Let (E, g, σ) be a real vector bundle on M with a metric and solder form $\sigma: T_M \to E$. Then there exists a unique torsion-free connection ∇ compatible with the metric called the Levi-Civita connection.

Definition 10.2.2. Let $E \to X$ be a holomorphic vector bundle. We say a complex connection $\nabla : E \to \mathcal{A}_X^1 \otimes E$ is compatible if $\nabla^{0,1} = \bar{\partial}_E$ where $\nabla^{0,1} = (\Pi^{0,1} \otimes \mathrm{id}_E) \circ \nabla$.

Proposition 10.2.3. Let (E, h) be a holomorphic vector bundle with a hermitian structure. Then there exists a unique compatible hermitian connection ∇ called the Chern connection.

$$Proof.$$
 (DO THIS)

Remark. Now we consider the tangent bundle of a hermitian manifold (X, g) that is a Riemannian manifold (M, g) with a compatible almost complex structure X = (M, I). There may be obstructions to the Levi-Civita connection being complex

Proposition 10.2.4.

Proposition 10.2.5. Let (X, g) be a hermitian manifold. Let ∇_{LC} be the Levi-Civita connection on TM of the underlying Riemannian manifold (M, g). Then,

$$\nabla_{\mathrm{LC}}(I) =$$

Proposition 10.2.6. Let (X, g) be a hermitian complex manifold. Let ∇ be a torsion-free complex hermitian connection. Then the following hold,

- (a) ∇ is the Levi-Civita connection for the underlying Riemannian structure
- (b) ∇ is the Chern connection of $(T^{1,0}X, g_{\mathbb{C}})$
- (c) (X, g) is Kähler.

10.3 Ricci Curvature

11 Conventions

Symmetric and exterior algebras are *quotients* not subspaces. The subspaces of symmetric and alternating tensors are a distinct notion. In characteristic zero $V^{\otimes n} \to \bigwedge^n V$ is split and the image is the alternating tensors and similarly for symmetric tensors and $V^{\otimes n} \to \operatorname{Sym}^n(V)$.

To identify $\bigwedge^k V^* \cong (\bigwedge^k V)^*$ we need to choose a perfect pairing $\bigwedge^k V \times \bigwedge^k V^* \to k$. We do this in the only natural way that works in all characteristics,

$$(v_1 \wedge \cdots \wedge v_k, \varphi^1 \wedge \cdots \varphi^k) \mapsto \det \varphi^i(v^j)$$

Note that $(\varphi \wedge \psi)(v,u) = (\varphi \wedge \psi)(v \wedge u) = \varphi(v)\psi(u) - \varphi(u)\psi(v)$. There are NO factors of $\frac{1}{2}$ anywhere to be seen! The natural map $\bigwedge^k V^* \xrightarrow{\sim} (\bigwedge^k V)^* \hookrightarrow (V^{\otimes k})^* \xrightarrow{\sim} (V^*)^{\otimes k} \twoheadrightarrow \bigwedge^k V^*$ is thus multiplication by k!.

Some obnoxious as sholes define the pairing with a factor of $\frac{1}{k!}$ to agree with alternating tensors but then they also define the wedge product with a strange coefficient to make everything work out. Explicitly,

$$\operatorname{Alt}(\varphi \otimes \psi)(v,u) = \frac{1}{2} \left(\varphi \otimes \psi - \psi \otimes \varphi \right)(v,u) = \frac{1}{2} \left(\varphi(v)\psi(u) - \psi(v)\varphi(u) \right)$$

and likewise this means that,

$$\langle \operatorname{Alt}(\varphi \otimes \psi), \operatorname{Alt}(v \otimes u) \rangle = \frac{1}{4} \left(\varphi(v)\psi(u) - \psi(v)\varphi(u) - \varphi(u)\psi(v) + \psi(u)\varphi(v) \right) = \frac{1}{2} \left(\varphi(v)\psi(u) - \varphi(u)\psi(v) \right)$$

But then they define $v \wedge u = 2 \text{Alt}(v \otimes u) = v \otimes u - u \otimes v$ to "fix" everything so that,

$$(\varphi \wedge \psi)(v, u) = \varphi(v)\psi(u) - \psi(v)\varphi(u)$$

so in fact $v \wedge u$ has the same image in $V^{\otimes 2}$ as previously.

12 Flatness

Proposition 12.0.1. Let $\varphi: A \to B$ be a flat local map of local rings. Let M be a finitely presented B-module which is flat over A. Suppose that $M/\mathfrak{m}_A M$ is a free $B/\mathfrak{m}_A B$ -module. Then M is a free M-module.

Proof. Choose an isomorphism,

$$(B/\mathfrak{m}_A B)^n \xrightarrow{\sim} M/\mathfrak{m}_A M$$

and choose a lift to a map $B^n \to M$ inducing a sequence,

$$0 \longrightarrow K \longrightarrow B^n \longrightarrow M \longrightarrow Cr \qquad 0$$

Since M is finitely-presented, K and C are finite B-modules. From the exact sequence, $C/\mathfrak{m}_A C = 0$ and thus,

$$C/\mathfrak{m}_AC \twoheadrightarrow C/\mathfrak{m}_BC$$

proves that $C = \mathfrak{m}_B C$ and thus by Nakayama's lemma C = 0. Therefore, we have a short exact sequence,

$$0 \longrightarrow K \longrightarrow B^n \longrightarrow M \longrightarrow 9$$

Since M is flat over A this sequences remains exact after applying $-\otimes_A(A/\mathfrak{m}_A)$ and thus $K/\mathfrak{m}_AK=0$ and hence $K/\mathfrak{m}_BK=0$. Since K is a finite B-module, by Nakayama, we see that K=0 and hence $B^n \xrightarrow{\sim} M$.

Corollary 12.0.2. Let $f: X \to Y$ be a flat map of schemes and \mathscr{F} a coherent \mathcal{O}_X -module flat over Y. Suppose that $\mathscr{F}|_{X_y}$ is a vector bundle on X_y for some y. Then there is an open neighborhood $U \subset X$ of X_y such that $\mathscr{F}|_U$ is a vector bundle.

Proof. Since \mathscr{F} is coherent, it suffices to show that \mathscr{F}_x is a free $\mathcal{O}_{X,x}$ -module for each $x \in X_y$ which follows immediately from the previous result.

Example 12.0.3. Consider $X = \mathbb{A}^3 \setminus \{(0,0,0)\} \to \mathbb{A}^1 = \operatorname{Spec}(k[z])$ and $\mathscr{F} = (x,y)$. This sheaf is obviously flat but its fiber over z = 0 is a vector bundle since it is \mathcal{O}_X away from x = y = 0. However, it is not a vector bundle on any other fiber.

Corollary 12.0.4. Let $f: X \to Y$ be a flat and proper map of schemes and \mathscr{F} a coherent \mathcal{O}_{X^-} module flat over Y. Suppose that $\mathscr{F}|_{X_{y_0}}$ is a vector bundle on X_{y_0} for some $y_0 \in Y$. Then there is an open $y_0 \in V \subset Y$ such that $\mathscr{F}|_{X_V}$ is a vector bundle. In particular for all $y \in V$ we have that $\mathscr{F}|_{X_y}$ is a vector bundle.

Proof. Using the previous result, it suffices to show that the set,

$$V = \{ y \in Y \mid \mathscr{F}|_{X_y} \text{ is a vector bundle} \}$$

is open. For any $y \in V$ there is an open neighborhood $X_y \subset U \subset X$ so that $\mathscr{F}|_U$ is a vector bundle and thus $y \in f(U^C)^C \subset V$ is open because f is closed.

Example 12.0.5. Let $\pi_1: X = \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 = S$ be the projection. Let x = X be a point and $\mathscr{I} \subset \mathcal{O}_X$ the ideal sheaf of $x = (0,0) \in X$. For each fiber X_t with $t \neq 0$ we have $\mathscr{I}|_{X_t} = \mathcal{O}_{X_t}$ is a vector bundle. However, \mathscr{I} is not a vector bundle so we cannot have $\mathscr{I}|_{X_0}$ be a vector bundle

by the above result. I claim that \mathscr{I} is π_1 -flat. This is clear on $X \setminus \{x\}$ so I we consider the local structure around x. On a dense open we have the following algebra problem,

$$A = k[x]_{(x)} \to k[x,y]_{(x,y)} = B$$
 with the ideal $I = \mathfrak{m}_B = (x,y) \subset k[x,y]_{(x,y)}$

I claim that I is flat over A. There is an exact sequence,

$$0 \longrightarrow B \xrightarrow{(y-x)} B^2 \xrightarrow{(xy)} I \longrightarrow 0$$

Then applying Tag 00MK we just need to show that $B/\mathfrak{m}_A B \to (B/\mathfrak{m}_A B)^2$ is injective which is true because y is a non zero-divisor on $B/\mathfrak{m}_A B$. Thus I is A-flat. Furthermore, there is an exact sequence,

$$0 \longrightarrow (B/\mathfrak{m}_A B) \xrightarrow{(y\ 0)} (B/\mathfrak{m}_A B)^2 \xrightarrow{(0\ y)} I/\mathfrak{m}_A I \longrightarrow 0$$

Therefore, we get the local structure,

$$I/\mathfrak{m}_A I \cong k \oplus k[y]_{(y)}$$

but its image in $B/\mathfrak{m}_A B$ is just (y) which is locally free. This we see that $\mathscr{I}|_{X_0} \cong \mathscr{O}_{X_0}(-1) \oplus \iota_* k$ which has degree zero as it must because $\mathscr{I}|_{X_t} \cong \mathscr{O}_{X_t}$ for $t \neq 0$ and degree is constant in flat families.

Example 12.0.6. Consider a degeneration,

$$f: X = \operatorname{Proj}\left(k[t][X, Y, Z]/(XY - tZ^2)\right) \to \operatorname{Spec}\left(k[t]\right) = S$$

with X smooth and f flat and proper but f has a singular fiber over t=0. Then there is a sequence,

$$0 \longrightarrow f^*\Omega^1_S \longrightarrow \Omega_X \longrightarrow \Omega_{X/S} \longrightarrow 0$$

Now $\Omega_{X/S}|_{X_t} = \Omega_{X_t}$ is a vector bundle for the smooth fibers $(t \neq 0)$. However, $\Omega_{X/S}|_{X_0} = \Omega_{X_0}$ is not a vector bundle since X_0 is singular. I claim that $\Omega_{X/S}$ is flat over S. We consider the local structure, on the chart $D_+(Z)$. Let A = k[t] and B = k[t][x,y]/(xy-t) then the above exact sequence becomes,

$$0 \longrightarrow B dt \xrightarrow{x dy + y dx} B dx \oplus B dy \longrightarrow \Omega_{D_{+}(Z)/S} \longrightarrow 0$$

Therefore,

$$M = \Omega_{D_{+}(Z)/S} = (Bdx \oplus Bdy)/(xdy + xdy)$$

Thus the rank jumps at $\mathfrak{m} = (x, y)$. However, I claim that M is flat over A. Applying Tag 00MK we just need to show that,

$$(B/tB)_{\mathfrak{m}}dt \to (B/tB)_{\mathfrak{m}}dx \oplus (B/tB)_{\mathfrak{m}}dy$$

is injective. Indeed, if $f dt \mapsto 0$ then fx = 0 and fy = 0 in $(B/tB)_{\mathfrak{m}} = (k[x,y]/(xy))_{\mathfrak{m}}$. Then $f \in \text{Ann}(x) \cap \text{Ann}(y) = (y) \cap (x) = (xy)$ so f = 0 in $(B/tB)_{\mathfrak{m}}$. Thus the map is injective.

Remark. We saw in the first example that a smooth proper map can have a flat ideal sheaf fail to be a vector bundle. However, this does not happen for flat families of Cartier divisors in smooth families.

Proposition 12.0.7. Let $f: X \to Y$ be a smooth proper map of schemes and $Z \subset X$ a closed subscheme flat over Y. Then the locus,

$$V = \{ y \in Y \mid Z_y \subset X_y \text{ is Cartier} \}$$

is clopen.

Proof. Consider the ideal sheaf sequence,

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_X \longrightarrow \iota_* \mathscr{O}_Z \longrightarrow 0$$

Because $Z \to Y$ is flat, $\mathscr{I}|_{X_y}$ is the ideal sheaf of $Z_y \subset X_y$. By the previous result, the locus where $\mathscr{I}|_{X_y}$ is a vector bundle (and hence a line bundle since it embedds in \mathcal{O}_X) is open. Thus we just need to prove closedness. It suffices to show that V is stable under specialization. (REDUCE TO THE DVR CASE, 1 NOETHERIAN, 2 BLOW UP, 3 NORMALIZE) Thus we can assume that $Y = \operatorname{Spec}(R)$ where R is a DVR and $D_K \subset X_K$ is a Cartier divisor. We we need to show that $D_0 \subset X_0$ is Cartier. For each $x \in X_0$ let $A = \mathcal{O}_{X,x}$ and we have the following: a flat ring map $R \to A$ with A regular, an ideal $I \subset A$ with $R \to A/I$ flat such that $I \otimes_R K \subset A \otimes_R K$ is principal. Since $R \to A/I$ is flat A/I can only have associated points in the generic fiber thus A/I is unmixed since in the generic fiber I is principal and A is regular so I has no embedded primes by the unmixedness theorem. Consider the primary decomposition,

$$I = Q_1 \cap \cdots \cap Q_r$$

where Q_i is \mathfrak{p}_i -primary where $\mathbf{ht}(\mathfrak{p}_i) = 1$ by unmixedness. Since A is a UDF we have $\mathfrak{p}_i = (p_i)$ are principal. Therefore, FINISH THIS!!!

Remark. The following example shows that smoothness really is necessary.

Example 12.0.8. Consider,

$$f: X = \text{Proj}(k[t][X, Y, Z]/(X^3 - Y^2 Z)) \to S = \text{Spec}(k[t])$$

and the divisor

$$D = \text{Proj}\left(k[t][X, Y, Z]/(X^3 - Y^2 Z, X - t^2 Z, Y - t^3 Z)\right)$$

which is the image of a section of f and hence flat. For $t \neq 0$ we have $D_t \subset X_t$ a Cartier divisor but $D_0 \subset X_0$ is not a Cartier divisor.