Comparison of Methodologies: Earthquake and Corrosion Damage Detection vs. Autonomous Concrete Crack Detection

Furkan Öztürk

28 June 2024

Introduction

Both papers leverage deep learning techniques for detecting structural damage, yet they approach the problem from different angles and with distinct methodologies. Here is a comparative analysis of their methodologies and differences.

Paper 1: Detection of Damages Caused by Earthquake and Reinforcement Corrosion in RC Buildings with Deep Transfer Learning

Methodology

• **Objective**: To distinguish between earthquake-induced damages and reinforcement corrosion in RC buildings.

• Data Collection:

- Images of damaged RC elements collected from field surveys post-earthquakes (İstanbul-Silivri and Elazığ-Sivrice earthquakes).
- Validation with data from the Samos Earthquake.
- Model: Deep transfer learning.
 - Uses a pre-trained CNN model.
 - Fine-tunes the model with a dataset of damaged RC elements.

• Training and Validation:

- 1040 images used for training.
- Validation with a different data pool to ensure robustness.

• Performance:

 Achieved a success rate of 90.62% in distinguishing between corrosion and earthquake-induced damages.

Paper 2: Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network

Methodology

• **Objective**: To detect cracks in concrete using a deep fully convolutional network (FCN).

• Data Collection:

- Public dataset from Middle East Technical University.
- 40,000 images for crack and non-crack classification.
- 600 annotated images for segmentation tasks.

• Model:

- Initial classification using pre-trained CNNs (VGG16, InceptionV3, ResNet).
- Semantic segmentation using an FCN with an encoder-decoder structure inspired by KittiSeg.

• Training and Validation:

- Classification performance evaluated with pre-trained models.
- FCN trained end-to-end for pixel-level segmentation.

• Performance:

- VGG16 and InceptionV3 outperformed ResNet in classification.
- FCN achieved around 90% average precision in crack detection.
- Validated with images from a cyclic loading test video.

Key Differences

1. Objective and Focus:

- Paper 1: Focuses on differentiating between types of structural damage (earthquake vs. corrosion) in RC buildings.
- Paper 2: Focuses on detecting and segmenting cracks in concrete surfaces.

2. Type of Damage:

- Paper 1: Deals with earthquake-induced and corrosion-induced damages.
- Paper 2: Specifically targets crack detection.

3. Data and Validation:

- Paper 1: Utilizes field-collected images of damaged RC elements. Validates with different earthquake data.
- Paper 2: Uses a large public dataset for initial training and a smaller annotated dataset for segmentation. Validates with both static images and dynamic video frames.

4. Model Architecture:

- Paper 1: Employs a transfer learning approach using a pre-trained CNN fine-tuned for the specific task.
- Paper 2: Uses a fully convolutional network (FCN) for pixel-level segmentation with an encoder-decoder structure.

5. Implementation and Output:

- Paper 1: Aims to assist in post-earthquake damage assessment, providing a classification of damage types.
- Paper 2: Aims to provide detailed crack detection and path/density information, useful for ongoing structural health monitoring.

6. Performance Metrics:

- Paper 1: Reports a success rate of 90.62% for damage type classification.
- Paper 2: Reports around 90% average precision for crack detection and segmentation.

Conclusion

Both papers contribute to the field of structural health monitoring using deep learning but address different problems with distinct methodologies. Paper 1 focuses on classifying types of damage in RC buildings using a transfer learning approach, while Paper 2 focuses on detecting and segmenting concrete cracks using a fully convolutional network. Each method demonstrates high accuracy and provides valuable tools for improving the assessment and maintenance of civil engineering structures.

References

- Paper 1: Dogan, G., Hakan Arslan, M., Ilki, A. (2023a). Detection of damages caused by earthquake and reinforcement corrosion in RC buildings with Deep Transfer Learning. Engineering Structures, 279, 115629. https://doi.org/10.1016/j.engstruct.2023.115629
- 2. Paper 2: Dung, C. V., Anh, L. D. (2019a). Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 99, 52–58. https://doi.org/10.1016/j.autcon.2018.11.028