Επιτάχυνση του αλγόριθμου του Lanczos χρησιμοποιώντας μηχανές γραφικών Παρουσίαση 1

Ιάσονας Παυλίδης michailpg [at] ece.auth.gr

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

9/5/2021

4□▶ 4□▶ 4□▶ 4□▶ □ 900

1/13

Ορισμός Ιδιοτιμών

Ορισμός 1

Έστω $A \in R^{n \times n}$ συμμετρικός πίνακας τάξης n. Το διάνυσμα $v \in R^n$ καλείται ιδιοδιάνυσμα του A αν υπάρχει λ τέτοιο ώστε να ισχύει,

$$Av = \lambda v, v \neq 0$$

Το λ καλείται ιδιοτιμή του Α. Το σύνολο όλων των ιδιοτιμών ενός πίνακα αποτελεί το φάσμα του.

- Οι ιδιοτιμές των τριγωνικών πινάκων είναι οι τιμές των διαγώνιων στοιχείων τους.
- Ένας πίνακας τάξης n έχει ακριβώς n μη μηδενικές ιδιοτιμές.
- ullet Αν λ_i είναι ιδιοτιμές του A, τότε οι ιδιοτιμές του A^{-1} είναι $\frac{1}{\lambda_i}$

Υποχώροι Krylov

Ορισμός 2

Έστω πίνακας $A \in R^{n\times n}$ και διάνυσμα $x \in R^n$. Ο Krylov υποχώρος ορίζεται ως

$$K_j(A,x) = span\{x,Ax,...,A^{j-1}x\}$$

Αποδεικνύεται πως αν $\{u_1,u_2,...,u_j\}$ είναι μια ορθοκανονική βάση του $K_j(A,x)$ και $U_k=[u_1,u_2,...,u_k]$,

$$AU_k = U_k H_k + u_{k+1} h_{k+1} e_k^T,$$

 $e_k^T = [0 \ 0 \ ... \ 1] \in R^k$

Ο πίνακας H είναι άνω Hessenberg στη γενική περίπτωση και τριδιαγώνιος όταν ο A είναι συμμετρικός.

→□▶ →□▶ → □▶ → □ ● ○○○

Αλγόριθμος του Lanczos

Έστω συμμετρικός πίνακας $A \in R^{n \times n}$ και ενα μη μηδενικό διάνυσμα $q \in R^n$. Ο αλγόριθμος του Lanczos παράγει τα ορθοκανονικά διανύσματα $\{q_1,q_2,...,q_j\}$ για τα οποία ισχύει

$$span\{q_1, q_2, ..., q_j\} = K_j(A, x)$$

Χρησιμοποιώντας τον πίνακα $\mathit{Q}_{j} = [\mathit{q}_{1} \; \mathit{q}_{2} \; ... \; \mathit{q}_{j}]$ προκύπτει

$$AQ_j = Q_j T_j + q_{j+1} \beta_{k+1} e_k^T$$

Μετά απο η βήματα θα έχουμε,

$$AQ_n = Q_n T_n$$

$$A = Q_n T_n Q_n^T$$

Άρα οι ιδιοτιμές του Α είναι ίδιες με του Τ!

(ロ) (部) (部) (目) (目) (2) (2)

Block Lanczos

Στην block εκδοχή του αλγόριθμου αντικαθιστούμε το αρχικό διάνυσμα με ένα βλοςκ διανυσμάτων και σε κάθε επανάληψη παράγουμε ένα νέο. Αν το μέγεθος ενός βλοςκ είναι b και $Q_0=[q_1\ q_2\ ...\ q_b]$, παράγεται μια βάση για το χώρο

$$K_j(A, Q_0) = span\{Q_0, AQ_0, ..., A^{j-1}Q_0\}, jb \ll n$$

Σε σύγκριση με την απλή μέθοδο, η block εκδοχή:

- Είναι πιο αποδοτική σε άποψη χρόνου και μνήμης cache
- Μπορεί να υπολογίσει ιδιοτιμές με πολλαπλότητα μέχρι το μέγεθος του block
- Έχει πιο γρήγορη σύγκλιση ως προς τον αριθμό των επαναλήψεων

Randomized Block Lanczos

Η randomized block εκδοχή του αλγόριθμου βασίζεται στη γενικότερη φιλοσοφία των randomized αλγορίθμων που αναπτύσσονται πολύ την τελευταία δεκαετία.

Αντί να ξεκινήσουμε με ένα τυχαίο μπλόκ, επιλέγουμε το $Q_0=A\Omega$ όπου $\Omega\in R^{n\times b}$ ένας πίνακας κανονικής κατανομής. Με αυτόν τον τρόπο το αρχικό μπλόκ περιέχει ένα κομμάτι του χώρου των στηλών του A.

$$K_j(A, Q_0) = span\{Q_0, AQ_0, ..., A^{j-1}Q_0\}, \ jb \ll n$$

Η σύγκλιση του RBL είναι 'ὑπεργραμμική" (superlinear) όταν το φάσμα του πίνακα Α φθίνει σχετικά γρήγορα προς το 0.

Χρησιμότητα του Αλγόριθμου και Ακρίβεια Ιδιοτιμών

Σκοπός μας είναι να υπολογίσουμε κάποιες ακραίες ιδιοτιμές του πίνακα Α χρησιμοποιώντας λίγες επαναλήψεις $j \ll n$.

$$A = Q_j T_j Q_j^T + E \approx Q_j T_j Q_j^T$$

Έτσι, υπολογίζουμε τις ιδιοτιμές ενός μεγάλου πίνακα A $(O(n^3))$, λύνοντας το ιδιοπρόβλημα ενός πολύ μικρότερου τριδιαγώνιου T $(O(n^2))$.

Οι ιδιοτιμές του πίνακα T ονομάζονται Ritz τιμές του A γιατί είναι οι Rayleigh-Ritz-Galerkin προσεγγίσεις των πραγματικών ιδιοτιμών του A.

Ακρίβεια Ιδιοτιμών

Έστω μ μια ιδιοτιμή του T και x το ιδιοδιάνυσμα που της αντιστοιχεί. Αν $v=Qx\in R^n$,

$$||Av - \mu v||_2 = ||B_{j+1}x_b||_2$$

όπου x_b είναι τα b τελευταία στοιχεία του διανύσματος x.

Ο Αλγόριθμος

Ο αλγόριθμος αποτελείται ουσιαστικά από 4 βήματα:

- **Φ** Επιλογή του αρχικού μπλόκ, $V = A\Omega \in \mathbb{R}^{n \times b}$
- **2** Δημιουργία μιας ορθοκανονικής βάσης για τον $K_i(A, V)$ αποθήκευση στον $Q_i \in R^{n \times jb}$
- 🔞 Δημιουργία του μπλόκ τριδιαγώνιου πίνακα $T_i \in R^{jb \times jb}$
- Τπολογισμούς ιδιοτιμών και ιδιοδιανυσμάτων του T_i

Όλοι οι πίνακες μπορούν να συνδυαστούν στην ακόλουθη αναδρομική σχέση

$$Q_{j+1}B_{j+1}=AQ_j-Q_jA_j-Q_{j-1}B_j^{ au}$$
Όπου $oldsymbol{A}_{i}=Q^TAQ_i$

$$Q_{j+1}\mathbf{B}_{j+1} = qr(AQ_j - Q_jA_j - Q_{j-1}B_j^T)$$

$$\begin{aligned}
Q_{j+1}B_{j+1} &= AQ_j - Q_jA_j - Q_{j-1}B_j^T \\
\text{mov} & T_j = \begin{bmatrix} A_1 & B_2^T & 0 & \dots & 0 \\ B_2 & A_2 & B_3^T & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & B_{j-1} & A_{j-1} & B_j^T \\ 0 & \dots & 0 & B_j & A_j \end{bmatrix} \\
P_{j+1}B_{j+1} &= gr(AQ_j - Q_jA_j - Q_jA_j - Q_jA_j^T)
\end{aligned}$$

Προβλήματα Αριθμητικής Ευστάθειας

Ο αλγόριθμος του Lanczos έχει προβλήματα ευστάθειας όταν εκτελείται σε περιβάλλον μη ακριβούς αριθμητικής, όπως είναι οι υπολογιστές. Πιο συγκεκριμένα,

- Υπάρχει απώλεια στην καθετότητα των δύο πιο πρόσφατων μπλόκ διανυσμάτων της βάσης, Q_{j+1} και Q_j , λόγω σφαλμάτων στρογγυλοποιήσης. Το αντιμετωπίζουμε με τη χρήση του local reorthogonalization.
- Υπάρχει απώλεια στην καθετότητα όλων των διανυσμάτων της βάσης Q, εξαιτίας της σύγκλισης της 'Μεθόδου της Δύναμης', (Power Method). Το αντιμετωπίζουμε με τη χρήση του partial reorthogonalization.

Local/Partial Reorthogonalization

```
function V = loc_reorth(U1,U2)
    temp = U2.'*U1;
    V = U1 - U2*temp;
    [V,^{\sim}] = qr(V,0);
end
function [V1, V2] = part_reorth(U,i,b)
    V1 = U(:,(i-1)*b+1:i*b);
    V2 = U(:,(i-2)*b+1:(i-1)*b);
    for j=1:i-2
        Uj = U(:,(j-1)*b+1:j*b);
        temp = Uj.'*V1;
        V1 = V1 - Uj*temp;
        temp = Uj.'*V2;
        V2 = V2 - Uj*temp;
    end
end
```

1

4

5

Ανάλυση Χρόνου Εκτέλεσης

Για το παράδειγμα μας, χρησιμοποιήθηκε ο συμμετρικός πίνακας,

- 1,391,349 x 1,391,349
- 64, 131, 971 μη μηδενικά στοιχεία
- 50 μεγαλύτερες ιδιοτιμές

Ανάλυση Χρόνου Εκτέλεσης

Αυξάνοντας το μέγεθος του μπλόκ από 4 σε 7, έχουμε καλύτερη αξιοποίηση της μνήμης cache και καλύτερο λόγο computation σύγκλιση επιτυγχάνεται με λιγότερες επαναλήψεις.

Σημεία Βελτίωσης

- Καλύτερη αξιοποίηση της μνήμης RAM και GPU VRAM
- Μεταφορά λιγότερων αλλά μεγαλύτερων πινάκων από και πρός τη GPU για βελτίωση του λόγου computation communication
- Αξιοποίηση των Tensor Cores για βέλτιστα αποτελέσματα σε γινόμενα Dense x Dense