



# **Optimizing Next-Day Energy Price Predictions**

Integrating Forecaster Insights for Accurate Next-Day Energy Price Predictions

Katerina Psallida Konstantinos Tsagkaropoulos

Prepared for Big Blue Data Academy, Data Science Course, July 2024

### BIOGRAPHIES

### KATERINA PSALLIDA



### **Work Experience**

- Digital Sales for Data & Al Products
- Marketing Professional
- SAP Netweaver / Basis Consultant

#### **Studies**

- MSc Computational Physics
- BSc Physics

## KOSTAS TSAGKAROPOULOS



### **Work Experience**

- Internet/Field Sales
- Telecommunications
- Creative Marketing
- Internet Sales

#### **Studies**

o BA Marketing & Advertising

G Present the Business Need and the Question Posed by PPC Description of the Dataset Provided by PPC & Exploratory Data Analysis Comparative Analysis of Forecasters Forecasting the Best Next Price (Regression | Timeseries | RNN) Conclusions

Present the Business Need and the Question Posed by PPC Description of the Dataset provided by PPC & Exploratory Data Analysis Comparative Analysis of Forecasters Forecasting the Best Next Price (Regression Timeseries | RNN Analysis)

### BUSINESS CHALLENGE

#### SCOPE

- Utilize Historical Timeseries Data with Price Predictions from 3 Forecasters
- These are Combined with Actual Hourly Energy Prices
- Evaluate each Forecaster's Historical Performance compared to the Actual Energy Prices
- Enhance the Predictive Accuracy of the 3 Forecasters, by using their predictions to predict a more accurate Next Day Price

Ν G Present the Business Need and the Question Posed Description of the Dataset provided by PPC & Exploratory Data Analysis Comparative Analysis on Forecasters Forecasting the Best Next Price (Regression & Timeseries analysis) Conclusions

## T H E D A T A S E T





**Preprocessing** 

Interpolation

Merging

**Feature Engineering** 

Temporal Feature Engineering

Cyclical Feature Encoding

External Feature Implementation

#### MONTHLY ANALYSIS



- Decline in prices during the winter months.
- Prices start increasing again in the summer months indicating a seasonal pattern in electricity pricing.

### H O U R L Y A N A L Y S I S



- Afternoon is expensive
- Cheapest prices during the peak of Photo Voltaic production

### ENERGY RELATED EVENTS & PRICE





Geopolitical tensions and continued sanctions in Russian energy in **November 2023** caused a significant spike in energy prices.



Jan 2024: Downward Trend in Electricity prices in Greece. The repercussions of the crisis appear to be diminishing.



May 2024: Electricity prices in Greece increased by 41%. Decline in renewable energy production. Unfavorable weather conditions (African dust, cloud cover)

Description of the Dataset provided by PPC & Exploratory Data Analysis Comparative Analysis of Forecasters Forecasting the Best Next Price (Regression & Timeseries analysis)

## FORECASTER MEAN DEVIATIONS (MAE) OVER TIME INTERVALS







- **Similar** trends across all the time intervals
- **Monthly Fluctuations:** Forecaster 3 diverts from the rest exhibiting lower deviations from the actual price (months 6 to 10)
- Forecaster 3 is consistently the best performer

## ERROR COMPARISONS : FORECASTERS

|     | Forecaster1 | Forecaster2 | Forecaster3 |
|-----|-------------|-------------|-------------|
| MAE | 15.53       | 16.33       | 14.61       |

Description of the Dataset provided by PPC & Exploratory Data Analysis Forecasting the Best Next Prices (Regression | Timeseries | RNN Analysis)

## MACHINE LEARNING

# Regressors

- Linear Regression
- o XG Boost
- Adaptive Boost
- Light GBM

## Timeseries

- o Arima
- o Prophet

# **Recurrent Neural Networks**

- LSTM (Long-Short Term Memory)
- O GRU (Gated Recurrent Unit)

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

# MACHINE LEARNING

# Regressors

- Linear Regression
- o XG Boost
- Adaptive Boost
- o Light GBM

### Timeseries

- o Arima
- o Prophet

#### Recurrent Neural Networks

- o LSTM
- o GRU

### REGRESSORS: FINE TUNED LIGHT GBM



#### **EXTRA FEATURE IMPLEMENTATION**

- Temporal Feature Engineering
- Cyclical Feature Encoding
- Light GBM shows dependency on DAY and MONTH

|     | Light GBM |  |
|-----|-----------|--|
| MAE | 11.87     |  |

# MACHINE LEARNING

### Regressors

- Linear Regression
- XG Boost
- Adaptive Boost
- Light GBM

## Timeseries

- o Arima
- o Prophet

#### Recurrent Neural Networks

- o LSTM
- o GRU

### **ARIMA vs Prophet**

- SARIMA through Auto-ARIMA
- Prophet Grid Search Hyper-Tune
- Very Similar Results
- Not Good Enough

|     | Forecaster1 | Forecaster2 | Forecaster3 | ARIMA | Prophet |
|-----|-------------|-------------|-------------|-------|---------|
| MAE | 15.53       | 16.33       | 14.61       | 14.60 | 14.46   |

# MACHINE LEARNING

### Regressors

- Linear Regression
- XG Boost
- Adaptive Boos
- Light GBM

#### Timeseries

- o Arima
- o Prophet

# Recurrent Neural Networks

- $\circ$  LSTM
- $\circ$  GRU

## LONG SHORT – TERM MEMORY (LSTM) | GATED RECURRENT UNIT (GRU)



## RNN: GRU BEST MODEL PREDICTIONS vs. ACTUALS



|     | GRU  |
|-----|------|
| MAE | 9.78 |

### GRU BEST MODEL - FEATURE DEPENDENCIES



## FORECASTERS | REGRESSORS | TIMESERIES | RNN

## C O M P A R I S O N

|     | Forecaster<br>1 | Forecaster<br>2 | Forecaster<br>3 | Light GBM | LSTM | GRU  |  |
|-----|-----------------|-----------------|-----------------|-----------|------|------|--|
| MAE | 15.53           | 16.33           | 14.61           | 11.87     | 9.84 | 9.78 |  |

Conclusions

### CONCLUSIONS

- We can provide an algorithm designed to deliver more precise energy price predictions by leveraging forecasts from the three different forecasters.
- Further research could involve incorporating additional features that include lagged observations, such as weather and seasonal data, to enhance the robustness of our analysis.

## KATERINA PSALLIDA







# KOSTAS TSAGKAROPOULOS







A P P E N D I >

#### **Articles**

- Geopolitical Tensions Affecting Supply (November 2023) https://shorturl.at/4i07t
- Gas Supply drop due to Infrastructure Issues (February 2024) https://shorturl.at/pMGW7
- Temperature Data Acquisition: <a href="https://www.visualcrossing.com/weather/weather-data-services">https://www.visualcrossing.com/weather/weather-data-services</a>
- April Temperature Decrease: https://www.sunsave.energy/blog/april-2024-energy-price-cap
- Online Application to Log AI Experiment Results: https://app.neptune.ai/
- Should you use lagged features in LSTM: <a href="https://medium.com/@dclengacher/lstms-with-lagged-data-cc03a3a8cfcf">https://medium.com/@dclengacher/lstms-with-lagged-data-cc03a3a8cfcf</a>

#### **Best Model Parameters after Hyper Parameter Tuning**

- Best **Light GBM** Best GRU parameters: [colsample\_bytree: 0.8, learning\_rate: 0.1, max\_depth: 11, min\_child\_samples: 10, n\_estimators: 70, num\_leaves: 31, subsample: 0.1]
- Best **ARIMA**: [p: 0, q: 1, d: 0 (cyclical feature enconding on day of week, month of year)]
- Best **Prophet** parameters: [changepoint\_prior\_scale: 0.01, seasonality\_mode: additive, seasonality\_prior\_scale: 10, changepoint\_range: 0.9, weekly\_seasonality: True(cyclical feature enconding on day of week, month of year) ]
- Best LSTM parameters: [(MinMaxScaler(0,1)) (SingleStacked, OneDense Output, n\_lags = 48, batch\_size = 32, epochs = 40, Activation: 'elu', optimizer = 'adam', units: 32 (neurons)) (cyclical feature enconding on hour of day, day of week, month of year) (Additioanal Features: Public Holidays, is\_weekend)]
- Best **GRU** parameters: [(MinMaxScaler(0,1)) (Two Consecutive Stacks + OneDense(25, linear activation), OneDense(1, linear activation) n\_lags = 48, batch\_size = 32, epochs = 40, Activation1: 'elu', Activation2: 'relu', optimizer = 'adam', units1: 64 (neurons), units2: 128 (neurons)) (cyclical feature enconding on hour of day, day of week, month of year) (Additional Features: Public Holidays, is\_weekend)]