

### 1 Grundwissen

Gegeben ist eine ganzrationale Funktion

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

 $\mathsf{mit}\ x \in \mathbb{R}.$ 

Um diese Funktion (oder auch *Kurve*) untersuchen zu können, müssen wir auf Informationen aus vergangenen Lernabschnitten aber auch auf neues Wissen zurückgreifen. Nachfolgend werden die entsprechenden Informationen in Kurzform nochmal dargestellt.

# Symmetrie

 $\cdot$  Eine Funktion heißt <u>achsensymmetrisch</u>, wenn gilt: es kommen nur gerade Exponenten in dem Funktionsterm f(x) vor.

 $a_0$  gilt als Glied mit Geradem Exponenten.

In diesem Fall bedeutet das außerdem, dass f(x) = f(-x) für alle zulässigen x. Die Funktion nennt man dann auch gerade.

· Eine Funktion heißt **punktsymmetrisch**, wenn gilt: es kommen nur ungerade Exponenten in dem Funktionsterm f(x) vor.

Im Funktionsterm gibt es kein  $a_0$ .

In diesem Fall heißt das, dass f(x)=-f(x) für alle zulässigen x. Eine solche Funktion wird auch ungerade genannt.

 $\cdot$  Enthält der Funktionsterm f(x) sowohl gerade als auch ungerade Exponenten, so ist sie **nicht symmetrisch**.

## Verhalten für große x-Werte

Um das Verhalten für große x-Werte zu bestimmen, betrachten wir und lediglich den *charakteristischen Summanden*, also den Summanden, mit der höchsten Potenz  $(a_n x^n)$ .

| Das |   | Verhalte | n k     | kanr | n dann   |
|-----|---|----------|---------|------|----------|
| wie | 1 | folgt    | angegeb | en   | werden:  |
|     | n | gerade   |         |      | ungerade |

| $a_n$   | gerade                                                                               | ungerade                                                                            |
|---------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| positiv | $f(x) \xrightarrow{x \to -\infty} \infty$ $f(x) \xrightarrow{x \to \infty} \infty$   | $f(x) \xrightarrow{x \to -\infty} -\infty$ $f(x) \xrightarrow{x \to \infty} \infty$ |
| negativ | $f(x) \xrightarrow{x \to -\infty} -\infty$ $f(x) \xrightarrow{x \to \infty} -\infty$ | $f(x) \xrightarrow{x \to -\infty} \infty$ $f(x) \xrightarrow{x \to \infty} -\infty$ |

# Schnittstelle mit der y-Achse

Um den y-Achsenabschnitt zu bestimmen, setzen wir für x Null (0) in den Funktionsterm ein. Wir bestimmen also

$$f(0) = a_0$$

So erhalten wir  $S(0|a_0)$ . Ist  $f(0)=a_0=0$ , so verläuft der Graph durch den Ursprung.

#### Nullstellen

Die Nullstellen sind die Stellen, an denen der Funktionswert Null ist, der Funktionsgraph also die x-Achse schneidet.

Um die Nullstellen zu bestimmen, setzen wir

$$f(x) = 0$$

Wir merken uns:

- $a_1x + a_0 \Rightarrow$  Null setzen und nach x umformen  $(a_1x + a_0 = 0 \Rightarrow x = \frac{a_0}{a_1})$
- $a_2x^2 + a_1x + a_0 \Rightarrow$  Anwenden der **pq**-Formel

**Beachte:**  $a_2$  muss den Wert 1 haben (also muss gegebenenfalls :  $a_2$  gerechnet werden).

•  $a_2x^2 + a_0 \Rightarrow$  Null setzen und nach x umformen  $(a_2x^2 + a_0 = 0 \Rightarrow x = \sqrt{\frac{a_0}{a_2}})$ 



• Funktionen mit Grad 3 und Höher  $\Rightarrow$  NST ausprobieren (meist -2,-1,0,1,2); Dann mit **Polynomdivision** den Grad reduzieren

$$(a_n x^n + \ldots + a_1 x + a_0) : (x - NST) = p(x)$$

NST des Ergebnisses p(x) bestimmen

#### Monotonieverhalten

Wird noch nachgereicht.

#### Extremstellen

Notwendige Bedingung 1st  $x_0$  eine Extremstelle, dann muss f'(x) = 0 sein.

- 1. Hinreichende Bedingung  $\circ$   $f'(x_0) = 0$  und  $f''(x_0) > 0 \rightarrow f(x_0)$  ist <u>lokales</u> Minimum
- $\circ f'(x_0) = 0$  und  $f''(x_0) < 0 \rightarrow f(x_0)$  ist lokales Maximum

Wenn  $f'(x_0) = 0$  und  $f''(x_0) = 0$ , dann verwende nachfolgende Bedingung.

- 2. Hinreichende Bedingung f'(x) hat an der Stelle  $x_0$  einen Vorzeichenwechsel.
- $\circ$  Von + nach  $\rightarrow$   $f(x_0)$  ist <u>lokales</u> Minimum
- $\circ$  Von nach +  $\rightarrow$   $f(x_0)$  ist <u>lokales</u> Maximum

# Krümmungsverhalten und Wendestellen

Wird nachgereicht

#### Schaubild

Zeichne die Nullstellen, die Extrempunkte und die Wendepunkte in das Koordinatensystem.

Verbinde die Punkte entsprechen der Information, die du über die Symmetrie, das Randverhalten (Verhalten für große x-Werte), die Monotonie und das Krümmungsverhalten erhalten hast.

So erhältst du den <u>ungefähren</u> Verlauf der Funktion.