2. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 6)

Man untersuche die Monotonie und die Beschränktheit der Zahlenfolge $(x_n)_{n\in\mathbb{N}^*}$ in jedem der folgenden Fälle und begründe die jeweilige Antwort:

a)
$$x_n = \frac{4^n}{(n+3)!}$$
, b) $x_n = \left(-\frac{2}{3}\right)^n$, c) $x_n = \frac{n^2}{n^2+1}$.

(A 7) (Beispiele)

- a) Man gebe ein Beispiel für eine nach oben unbeschränkte Folge, die eine gegen 3 konvergierende Teilfolge hat.
- b) Man gebe ein Beispiel für eine nach unten unbeschränkte Folge, die keine konvergente Teilfolge hat.
- c) (Der nicht definierte Fall $\infty \infty$) Es sei $a \in \overline{\mathbb{R}}$ fest. Man gebe je ein Beispiel für Folgen $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$, die gleichzeitig den Bedingungen $\lim_{n \to \infty} a_n = \infty$, $\lim_{n \to \infty} b_n = \infty$ und $\lim_{n \to \infty} (a_n b_n) = a$ genügen.

(A 8)

Die Rechenregeln für Grenzwerte verwendend, bestimme man die folgenden Grenzwerte von Folgen:

a)
$$\lim_{n\to\infty} \frac{2-(-2)^n}{3^n+7}$$
, b) $\lim_{n\to\infty} (\sin(2023))^n$, c) $\lim_{n\to\infty} \left(8-\frac{5n^4+1}{n^2-2n^5}\right)^2$,

d)
$$\lim_{n\to\infty} \sqrt{9n^6 + 2n + 1} - 3n^3$$
, e) $\lim_{n\to\infty} \sqrt{n^2 + 3} - \sqrt{n^3 + 1}$, f) $\lim_{n\to\infty} \left(\frac{n^3 + 5n + 1}{n^2 - 1}\right)^{\frac{1 - 5n^4}{6n^4 + 1}}$,

g)
$$\lim_{n\to\infty} \left(2 + \frac{4^n + (-5)^n}{7^n + 1}\right)^{2n^3 - n^2}$$
, h) $\lim_{n\to\infty} \frac{1 + 2 + \dots + n}{n^2}$, i) $\lim_{n\to\infty} \left(\frac{n^3 + 4n + 1}{2n^3 + 5}\right)^{\frac{-2n^4 + 1}{n^4 + 3n + 1}}$, j) $\left(\frac{n^5 + 3n + 1}{2n^5 - n^4 + 3}\right)^{\frac{3n - n^4}{n^3 + 1}}$.