

Advancements in AGN, Galaxy, Cluster, and IGM Research

SIMULATING SUPER EARLY GALAXIES

Ranit Behera

Supervisor Prof. Raghunathan Srianand

CUHP, Dharamsala 2024

BLUE MONSTER

Blue Monsters refer to a population of galaxies discovered by the JWST:

- Super-Early & Abundant They exist at extremely high redshifts, with z > 10.
- Relatively Massive
 Their stellar mass ranges from $M_* \sim 10^{8-9} M_{\odot}$.
- **Evolved** Their metallicity is approximately $Z \sim 0.1 Z_{\odot}$.
- Blue Spectra
 Despite their early formation, they display blue spectra $\beta \ge -2.6$.
- Minimal Dust Attenuation

 Dust attenuation is remarkably low, with $A_V \leq 0.02$.

These observations are not compatible.

MOTIVATION

PROPOSALS:

Inayoshi et al. (2022) 💊

Chemerynska et al. (2023) 🗞

- Enhanced SFE ($\epsilon_* \simeq 0.1 0.3$)
- Modification to Mass-to-Light ratio
- Top Heavy IMF at early epoch
- Super-Eddington accreting SMBH
- Galactic Outflow & Feedbacks

AIM:

Simulations to address these non-linear physics, primarily the effect of <u>SFH</u> & <u>feedback</u> on high redshift luminosity functions and spectral signatures.

COMPUTATIONAL TOOLS

MP-GADGET

Cosmological simulation.

- CLASS Generate initial conditions from evolution of linear perturbations.
- TreePM Efficient computation of gravitationally force.
- Physics Gas pressure, cooling, sub-grid star formation, stellar winds, SMBH accretion and feedback.
- FoF Includes Friends-of-friends halo finder algorithm.

ROCKSTAR (Galaxies)

Improved halo finder algorithm based on adaptive hierarchical refinement of friends-offriends groups in six phase-space dimensions and one time dimension.

Consistent-Trees

Halo merger algorithm.

BAGPIPES

Spectral synthesis code.

Behroozi et al. (2012) 🗞

Behroozi et al. (2012) 💊

Carnall et al. (2018) 🗞

INITIAL CONDITIONS

Initial conditions are generated from evolution of linear perturbations at z=99.

COSMOLOGY					
h	Ω_m	Ω_{Λ}	Ω_b	σ_8	$n_{\scriptscriptstyle \mathcal{S}}$
0.697	0.2814	0.7186	0.0464	0.81	0.971

RESOLUTION					
BoxSize	Particle Count	Particle Mass (M_{\odot}/h)			
(cMpc/h)		DM	Gas	Star/BH	
50	640 ³	3.11×10^{7}	6.14×10^{6}	1.53×10^{6}	
50	1008 ³	7.96×10^6	1.57×10^{6}	3.93×10^{5}	
140	700^{3}	5.22×10^{8}	1.03×10^{8}	2.57×10^7	
140	896 ³	2.49×10^{8}	4.91×10^{7}	1.22×10^7	
140	1008 ³	1.75×10^{8}	3.45×10^{7}	8.62×10^{6}	

 $\rho_c = 27.754 \times 10^{10} h^2 M_{\odot} \text{Mpc}^{-3}$

Unresolved Gas Cloud

Stellar Population

N-BODY CODES

1) Force Calculation

Newtonian limits as scales are much smaller than Hubble radius $d_H = cH_0^{-1} (\approx 4200 \text{Mpc})$.

PP	PM	P ³ M	Tree	TreePM
 Visit every particle Apply force from every other particle. Accurate but costly O(N²) 	Solve Poisson	 PP for short range PM for long range Costly if particles are too much clustered 	 Generate Tree data structure Open a node if cell opening criterion is met Else apply force from center of mass of cell 	 Tree for short range PM for long range O(N log N)

Bagla & Padmanabhan. (1997) 🗞

Bagla (2002) %

Particle Movement

For velocity independent force: Leap-Frog method.

$$x_i(t+\epsilon) = x_i(t) + \epsilon v_i(t) + \frac{1}{2}\epsilon^2 a_i(t) + \mathcal{O}(\epsilon^3)$$
$$v_i(t+\epsilon) = v_i(t) + \frac{\epsilon}{2} (a_i(t) + a_i(t+\epsilon)) + \mathcal{O}(\epsilon^3)$$

1

Star formation converts cold clouds into stars on a characteristic timescale t_{\star} .

- 2
- A mass fraction of these stars are short-lived and instantly die as supernovae.
- 3

Cold clouds are evaporated inside the hot bubbles of exploding supernovae.

4

Radiative cooling by the hot gas leads to corresponding growth of the cold clouds.

5

Disk mass-loss rate that goes into a wind is proportional to the star formation rate itself.

The unresolved multiphase structure of gas cloud

STAR FORMATION MODEL

Springel & Hernquist (2003) %

Star Formation

Supernova

Evaporation

Cooling/Heating

Winds

	Mass Exchange	Energy Exchange	
COLD	$\frac{d\rho_c}{dt} = -\frac{\rho_c}{t_{\star}} - A\beta \frac{\rho_c}{t_{\star}} + \frac{1 - f}{u_h - u_c} \Lambda_{\text{net}}(\rho_h, u_h)$	$\frac{d}{dt}(\rho_c u_c) = -\frac{\rho_c}{t_{\star}} u_c - \frac{A\beta}{t_{\star}} \frac{\rho_c}{t_{\star}} u_c + \frac{(1-f)u_c}{u_h - u_c} \Lambda_{\text{net}}(\rho_h, u_h)$	
НОТ	$\frac{d\rho_h}{dt} = \frac{\beta \frac{\rho_c}{t_{\star}}}{t_{\star}} + \frac{A\beta \frac{\rho_c}{t_{\star}}}{t_{\star}} - \frac{1 - f}{u_h - u_c} \Lambda_{\text{net}}(\rho_h, u_h)$	$\frac{d}{dt}(\rho_h u_h) = \beta \frac{\rho_c}{t_{\star}} (u_c + u_{SN}) + A\beta \frac{\rho_c}{t_{\star}} u_c - \frac{u_h - f u_c}{u_h - u_c} \Lambda_{\text{net}}(\rho_h, u_h)$	

 t_{\star} : Time scale of star formation

 ϵ

Average thermal energy per unit volume $(\rho_h u_h + \rho_c u_c)$

 ρ_c : Density of cold clouds

 $\epsilon_{ ext{SN}}$

Average SN energy returned per M_{\odot} of star formed

 ρ_h : Density of hot ambient medium

β

Mass fraction of Massive stars ($> 8M_{\odot}$) via IMF

 ρ_{\star} : Density of stars

 $u_{\rm SN}$

: $(1-\beta)\beta^{-1}\epsilon_{SN}$

 ρ : Total gas density $(\rho_h + \rho_c)$

Α

The efficiency A of the evaporation process

 u_h : Energy per unit mass of hot medium

f

If thermally instable f = 0 ($\rho > \rho_{\rm th}$), else f = 1

 u_c : Energy per unit mass of cold cloud

 $\Lambda_{
m net}$

Cooling function

Summery:

• Self-regulated:

In equilibrium of quiescent mode of star formation, the growth of clouds is balanced by their evaporation.

• Temperature :

Cold clouds are assumed to be at fixed temperature around 10^3 K. The temperature of the hot medium evolve towards $u_h = u_c + [u_{\rm SN}/(A+1)]$. For sufficiently rapid star formation, the temperature of the hot phase is maintained typically at 10^6 K.

• Cold Gas Fraction:

The cold gas fraction $x_c = \rho_c/\rho$ is given by $x_c = 1 + \frac{1}{2y} - \sqrt{\frac{1}{y} + \frac{1}{4y^2}}$; $y = \frac{t_\star \Lambda_{\rm net}(\rho, u_h)}{\rho(\beta u_{\rm SN} - (1 - \beta)u_c)}$

• Effective Pressure:

It is given by $P_{\text{eff}} = (\gamma - 1)[\rho_h u_h + \rho_c u_c] = (\gamma - 1)\rho[(1 - x_c)u_h + x_c u_c] = (\gamma - 1)\rho u_{\text{eff}}$.

• Star Formation Rate:

It is given by $\dot{\rho}_{\star}=(1-\beta)\,\rho_c/t_{\star}=(1-\beta)\,\rho x_c/t_{\star}$. In discrete particles approximation using SPH:

$$\dot{M}_{\star} = (1 - \beta) M x_c / t_{\star}$$

• Winds:

Rate at which gas is fed to wind is proportional to SFR as $\dot{M}_w = \eta \dot{M}_\star$ carrying a fixed fraction χ of the supernova energy as $^1/_2$ $\dot{M}_w v_w^2 = \chi \epsilon_{\rm SN} \dot{M}_\star$.

HALO IDENTIFICATION

FOF

- Particles are "linked" together if their distance lies below the "linking length".
- Limitations : Sub-halos, Halo Bridging, Filaments

ROCKSTAR

• FoF but in 6D phase space with adaptive linking length.

FoF in black-and-white vs ROCKSTAR (Galaxies) in coloured.

HALO IDENTIFICATION

HALO DISTRIBUTION

Each point represents a halo/sub-halo found by ROCKSTAR (Galaxies).

MASS CUT-OFF

• Lower : Resolution

• Higher : Cosmic Variance

MASS CUT-OFF

• Lower : Resolution

• Higher : Cosmic Variance

MASS CUT-OFF

• Lower : Resolution

• Higher : Cosmic Variance

MASS CUT-OFF

• Lower : Resolution

• Higher : Cosmic Variance

PARTICLE DISTRIBUTION

SFH is needed for stellar population synthesis.

Dark Matter

Gas Cloud

SFH by adding SFR of backtracked gas particles.

Star Cluster

Blackhole

Contribution from central SMBH accretion (QSO).

SFR DISTRIBUTION

- All massive halos are star forming with high SFR.
- Star formation is less in low mass halos as gas can escape from shallow gravitational potential via winds.

STAR FORMATION HISTORY

SFR vs Redshift

Figure: The SFR vs redshift plots for top ten massive halos by virial mass at redshift z=8 are shown. The SFR for these halos at higher redshifts are obtained by adding SFRs of back-tracked gas particles found within the halo at lower redshift z=8. The IDs (external) of selected halos at redshift z=8 are shown in legend with corresponding number of gas particles back-tracked.

SPECTRAL SYNTHESIS

The SED at any given time can be obtained by summing the spectra of coeval populations with different ages once the SFH and the IMF are specified.

Normalised IMF $\int_{m_l}^{m_u} m\phi(m)dm = 1M_{\odot}$

Coeval Population

$$\mathcal{L}_{\lambda}^{(cp)}(\tau) = \int \mathcal{L}_{\lambda}^{\star}(m,\tau) \frac{\phi(m)}{M_{\odot}} dm$$

Composite Population

$$\mathcal{L}(t) = \int \mathcal{L}_{\lambda}^{(cp)}(t-t') \, \dot{M}_{\star} dt'$$

SCALING RELATION

$$\mathcal{K}_{\text{UV}} = \frac{\mathcal{L}_{\text{UV}}}{\text{SFR}} = 1.15 \times 10^{-28} \text{erg s}^{-1} \text{ Hz}^{-1} / M_{\odot} \text{yr}^{-1}$$

LUMINOSITY FUNCTION

GAS COMPONENTS

MERGERS

Galaxy mergers can:

- Chemically enrich ISM, enhance SFR.
- Trigger feedbacks.

Galaxy Spectra

Radiative transfer
through ISM and CGM

IGM absorption

Observed

FUTURE PLANS

- Nebular Emission Lines
- Contribution from central SMBH accretion (QSO).
- Radiative Transfer through ISM, CGM, IGM
- Alter various simulation and post-processing parameters for statistical analysis.

Cosmology | Gas Cooling | Star formation | Wind model | QSO model | Metal return model | IMF

Ranit Behera, IUCAA 29th March, 2024

FUTURE PLANS

- Nebular Emission Lines
- Contribution from central SMBH accretion (QSO).
- Radiative Transfer through ISM, CGM, IGM
- Alter various simulation and post-processing parameters for statistical analysis.

Cosmology | Gas Cooling | Star formation | Wind model | QSO model | Metal return model | IMF

Thank You

Ranit Behera, IUCAA 29th March, 2024