MATH 2135 Linear Algebra

Sets and Logic Notations

Alyssa Motas

February 13, 2021

Contents

1	Sets	3	3
	1.1	Finite sets	3
	1.2	Infinite sets	3
	1.3	Membership	3
	1.4	Equality	3
	1.5	Empty set	3
	1.6	Cartesian product	4
2	Log	ic Notations	5
	2.1	Propositional logic (Boolean logic)	5
	2.2	Predicate logic	5
	2.3	Quantifiers	5
		2.3.1 Universal Quantifier	5
		2.3.2 Existential Quantifer	6
		2.3.3 Nested Quantifiers	6
	2.4	"Vacuously true"	7

1 Sets

1.1 Finite sets

A set is an unordered collection of things. A finite set would look something like $\{1, 2, 3\}$. "Unordered" means that the order does not matter, i.e. $\{1, 2, 3\}$ and $\{2, 3, 1\}$ are the same set.

1.2 Infinite sets

An example of an infinite set is the set of natural numbers.

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

and its respective set comprehension notation would look like

$$\mathbb{N} = \{x \mid x \text{ is a natural number } \}.$$

Another example of an inifnite set would be

$$\{x \in \mathbb{N} \mid x \text{ is prime }\} = \{2, 3, 5, 7, 11, 13, 17, \dots\}.$$

1.3 Membership

The notation \in implies membership such as "x is an element of A" and conversely, the notation \notin implies "x is not an element of A."

1.4 Equality

Two sets A and B are equal if they have the same elements.

$$A = B \Leftrightarrow (\forall x, x \in A \Leftrightarrow x \in B).$$

We say that A is a *subset* of B, in symbols $A \subseteq B$, if all elements of A are elements of B.

$$A \subseteq B \Leftrightarrow (\forall x, x \in A \Rightarrow x \in B).$$

1.5 Empty set

The empty set (\emptyset) is the set with no elements.

1.6 Cartesian product

If A and B are sets, we define the $cartesian\ product$ of A and B, in symbols $A\times B,$ as

$$A\times B=\{(x,y)\mid x\in A \text{ and } y\in B\}.$$

Note that (x,y) is a pair or 2-tuple which is an ordered pair, i.e. $(1,2) \neq (2,1)$.

2 Logic Notations

2.1 Propositional logic (Boolean logic)

A proposition is a statement that can be true or false.

Let P and Q be propositions.

P	Q	P and Q
Т	Т	Τ
Т	F	F
F	Т	F
F	F	F

P	Q	P or Q
Т	Т	Τ
T	F	Т
F	Т	Τ
F	F	F

P	Q	$P \Rightarrow Q$
Т	Т	Τ
Т	F	\mathbf{F}
F	Т	Τ
F	F	Т

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

P	$\neg P$
Γ	F
F	Т

2.2 Predicate logic

A predicate is a proposition that depends on some "thing" x.

$$P(x) = x$$
 is a prime number

$$P(5) =$$
 "5 is a prime number" $TRUE$

$$P(6) =$$
 "6 is a prime number" $FALSE$

:

 $Q(x,y) \rightarrow$ "x is greater or equal to y"

$$Q(3,7) \rightarrow FALSE$$

$$Q(7,7) \rightarrow TRUE$$

$$Q(19,7) \rightarrow TRUE$$

:

2.3 Quantifiers

2.3.1 Universal Quantifier

If P(x) is a predicate, then "for all x, P(x)" is a proposition that is either true or false.

Example. Let $A = \{3, 5, 7, 8, 11\}, P(x) = "x \text{ is prime," } Q(x) = "x \text{ is even."}$

- For all $x \in A$, $P(x) \to FALSE$. This is because P(3), P(5), P(7), P(11) are all true but P(8) is false.
- For all $x \in A$, $(x \le 7 \Rightarrow P(x)) \to TRUE$.

x	$x \le 7$	P(x)	$x \le 7 \Rightarrow P(x)$
3	Т	T	Т
5	Т	Т	Т
7	Т	T	T
8	F	F	Т
11	F	Т	T

The notation for "for all" is \forall .

2.3.2 Existential Quantifer

The notation for "there exists" is \exists .

Example. Let $A = \{3, 5, 7, 8, 11\}.$

- There exists an $x \in A$ such that P(x). TRUE
- There exists $x \in A$ such that $x \leq 7$ and P(x). TRUE

2.3.3 Nested Quantifiers

Suppose that $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}.$

- $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x < y \to TRUE$
- $\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, x < y \to FALSE$
- $\forall x \in \mathbb{N}, (x \ge 3 \text{ and } (\forall y \in \mathbb{N}, \forall z \in \mathbb{N}, (x = yz \Rightarrow y = 1 \text{ or } z = 1)) \Rightarrow x \text{ is odd})$

2.4 "Vacuously true"

Question: Is the empty set a subset of every set? Yes. For $A \subseteq B$ it means $\forall x \in A, x \in B$. If A is empty, this is vacuously true.

What does "vacuously true" mean? Suppose we have the following sets and statements:

- $A = \{3, 5, 7, 8, 11\}, \forall x \in A, P(x) \to FALSE$
- $A = \{3, 5, 7\}, \forall x \in A, P(x) \rightarrow TRUE$
- $A = \{3\}, \forall x \in A, P(x) \to TRUE$
- $A = \emptyset, \forall x \in A, P(x) \rightarrow "vacuously true"$

If A is the empty set, the statement $\forall x \in A, P(x)$ is always true, no matter what P(x) is.

Another example would be: "All unicorns are green." This is true because there are 0 unicorns to check.