Introduction to Probability

Keegan Korthauer

Department of Statistics

UW Madison

Descriptive Statistics

Data Type	Summary Statistics	Graphical Summary
Numerical (Quantitative)	Location: Mean, Median, Quartiles, Percentiles	Univariate: Histogram, Boxplot, Dotplot
	Spread: Standard Deviation, Variance, Range, IQR	Bivariate: Scatterplot
Categorical (Qualitative)	Frequencies (counts), Proportions	Bar Chart, Pie Chart

BASIC TERMINOLOGY

Sample space

Events

History

Early
Development
17th Century

Modern Probability Theory

Well-established branch of mathematics

- Wide applications anything to do with uncertainty and random chance
- Statistics, physics, finance, meteorology, medicine

Terminology

Terminology

Sample Space:

The set of all possible outcomes of an experiment

An Event:

A subset of a sample space

Sample Space

- Coin tossing {Heads, Tails} (finite)
- Die rolling {1, 2, 3, 4, 5, 6}
- Bolt measuring $\{x \text{ cm} \mid 0.4 < x < 0.45\}$ (infinite)
- Cereal weighing $\{x \text{ gram} | 10 < x < 12\}$
- Fishing line strength measuring $\{x \mid b \mid 3.5 < x < 4.9\}$

Example 2.1

Two Boxes of Resistors

The engineer chooses one resistor from each box and determines the resistance of each

Event A -1st resistor has a resistance > 10

Event B -2^{nd} resistor has a resistance < 19

Event C – the sum of the resistances = 28

Example 2.1 Continued

• Find a sample space for this experiment

```
S = {(9,18), (9,19), (9,20), (9,21),
(10,18), (10,19), (10,20), (10,21),
(11,18), (11,19), (11,20), (11,21),
(12,18), (12,19), (12,20), (12,21)}
```

Each pair here represents one **outcome** of the experiment

• Specify the subsets corresponding to the events A, B, and C.

```
Event A = \{(11,18), (11,19), (11,20), (11,21), (12,18), (12,19), (12,20), (12,21)\}

Event B = \{(9,18), (10,18), (11,18), (12,18)\}

Event C = \{(9,19), (10,18)\}
```

Notes

Empty set Ø and the entire sample space S
are both events of the sample space

 A given event is said to have occurred if the outcome of the experiment is one of the outcomes in the event, e.g. if a die comes up 2, the events {2,4,6} and {1,2,3} have both occurred

Venn Diagram

Combining Events

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

FIGURE 2.1 Venn diagrams illustrating various events: (a) $A \cup B$, (b) $A \cap B$, (c) $B \cap A^c$.

- Union (A \cup B) outcomes belonging either to A or B, or both
- Intersection (A \cap B) outcomes belonging both to A and to B
- Complement (Ac) outcomes not belonging to A
- **Difference** (B-A) outcomes belonging to B **but not** to A

Mutually Exclusive Events

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

FIGURE 2.2 The events A and B are mutually exclusive.

Intersection between the events is empty.

Example 2.3

Refer to the events of Example 2.1

```
A = \{(11, 18), (11, 19), (11, 20), (11, 21), (12, 18), (12, 19), (12, 20), (12, 21)\}

B = \{(9, 18), (10, 18), (11, 18), (12, 18)\}

C = \{(9, 19), (10, 18)\}
```

- If the experiment is performed, is it possible for events A and B both to occur?
- How about B and C?
- A and C? Which pair of events is mutually exclusive?

Answers:

- A and B both occur with outcomes (11,18) and (12,18)
- B and C both occur with outcome (10,18)
- A and C are mutually exclusive because they have no common outcomes

AXIOMS OF PROBABILITY

Defining probability

Axioms of probability

Definition

 Probability: A quantitative measure of how likely the event is to occur

 The probability of event A occurring is denoted as P(A)

The Three Axioms of Probability

- 1. P(S) = 1, where S denotes the sample space
- 2. $0 \le P(A) \le 1$ for any event A

3. If A and B are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$

If
$$A_1$$
, A_2 , ... are mutually exclusive events, then $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$

Finding event probabilities

If A is an event containing outcomes O₁,...,O_n (so A={O₁,...,O_n}), then

$$P(A) = P(O_1) + P(O_2) + ... + P(O_n)$$

- Since outcomes are mutually exclusive, this follows from axiom three
- Be careful not to confuse events with outcomes

Lottery Revisited

- a.k.a. Sample Spaces with Equally Likely Outcomes
- A population from which an item is sampled at random can be thought of as a sample space with equally likely outcomes
- S a sample space with N equally likely outcomes
 A an event containing k outcomes
- P(A) = (# of ways A can happen) / (total # possible outcomes) = k / N

Properties

(a) If A, B \subseteq S and A \subseteq B, then P(A) \leq P(B)

(b)
$$P(A) = 1 - P(A^c)$$

(c) If A and B are mutually exclusive, then $P(A \cap B) = 0$

(d)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Example 2.8

In aluminum can manufacturing, the probability that a can has a flaw

- on its side is 0.02
- on the top is 0.03
- on both the side and the top is 0.01
- (a) What is the probability that a randomly chosen can has a flaw?
- (b) What is the probability that it has no flaw?

Example 2.8 (a)

```
P(Flaw on side) = 0.02
P(Flaw on top) = 0.03
P(Flaw on side AND Flaw on top) = 0.01
What property/formula to use? Property (d)
P(A randomly chosen can has a flaw)
   = P(Flaw on side OR top)
   = P(Flaw on side) + P(Flaw on top)
      P(Flaw on side AND top)
   = 0.02 + 0.03 - 0.01 = 0.04
```

Example 2.8 (b)

What property/formula to use? Property (b)

P(A randomly chosen can has no flaw)

= 1 – P(A randomly chosen can has a flaw)

= 1 - 0.04

= 0.96

Bonferroni Inequality

If A and B are two events in the same sample space, then $P(A \cap B) \ge P(A) + P(B) - 1$.

Proof:

We have property (d) which says $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

We also know that $P(A \cup B) \le 1$ by axiom 2.

So by rearranging the terms, $P(A \cap B) \ge P(A) + P(B) - 1$.

Additional Property

If events A_1 , A_2 , and A_3 are in the same sample space, then $P(A_1 \cup A_2 \cup A_3) \le P(A_1) + P(A_2) + P(A_3)$.

Proof:

$$P(A_1 \cup B) = P(A_1) + P(B) - P(A_1 \cap B) \le P(A_1) + P(B)$$

Now let $B = A_2 \cup A_3$. Similar argument shows $P(B) \le P(A_2) + P(A_3)$.

Then we get

$$P(A_1 \cup A_2 \cup A_3) \le P(A_1) + P(B) \le P(A_1) + P(A_2) + P(A_3)$$
.

COUNTING METHODS

Fundamental principle of counting
Permutations
combinations

Fundamental Principle of Counting

The Fundamental Principle of Counting

Assume that k operations are to be performed. If there are n_1 ways to perform the first operation, and if for each of these ways there are n_2 ways to perform the second operation, and if for each choice of ways to perform the first two operations there are n_3 ways to perform the third operation, and so on, then the total number of ways to perform the sequence of k operations is $n_1 n_2 \cdots n_k$.

Example 2.11

 When ordering a certain type of computer, there are 3 choices of hard drive, 4 choices for the amount of memory, 2 choices of video card, and 3 choices of monitor.

- In how many ways can a computer be ordered?
- Answer: 3*4*2*3 = 72.

Next

• Permutations and combinations (2.2)

Conditional probability (2.3)