MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 1 - continued

Alternate solutions/Generalizations to 1C (Norm Swanson):

Assume $\triangle ABC$ is isosceles with $AB = AC = \sqrt{7}$ and BC = 2. Then: $\cos B = \frac{1}{\sqrt{7}} = \sin\left(\frac{A}{2}\right)$

Using the double angle formula, $\cos A = 1 - 2\sin^2\left(\frac{A}{2}\right) = 1 - 2\left(\frac{1}{7}\right) = \frac{5}{7} \Rightarrow 7\left(\frac{25}{49}\right) - 4\left(\frac{1}{7}\right) = \frac{21}{7} = \mathbf{3}$.

Or

Consider the "collapsed" triangle ABC where $A = B = 0^{\circ}$ and $C = 180^{\circ}$.

Then: $7\cos^2 A - 4\cos^2 B = 7\cos^2 0^\circ - 4\cos^2 180^\circ = 7(1) - 4(1) = 3$

Try proving this generalization:

In any triangle ABC, where $\frac{BC}{AC} = \frac{n}{m}$, $m^2 \cos^2 A - n^2 \cos^2 B = m^2 - n^2$

This is equivalent to the identity $\frac{b\cos A - a\cos B}{b-a} \cdot \frac{b\cos A + a\cos B}{b+a} = 1$.