Herbst 12 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Bestimmen Sie jeweils für $w_0=1$ und $w_0=\sqrt{2}$ die allgemeine reelle Lösung der Differentialgleichung

$$\ddot{y} + 2y = 2\cos w_0 t .$$

Lösungsvorschlag:

Die charakteristische Gleichung der homogenen Differentialgleichung lautet $0 = x^2 + 2$ was die einfachen Lösungen $x = \pm \sqrt{2}i$ besitzt. Daher lautet die allgemeine homogene Lösung $a\cos(\sqrt{2}t) + b\sin(\sqrt{2}t); \ a,b \in \mathbb{R}$.

Um die allgemeine Lösung der inhomogenen Gleichungen anzugeben, müssen wir nur eine partikuläre Lösung finden.

- $w_0 = 1$: Wir testen den Ansatz $y(t) = a \cos t + b \sin t$. Dann ist $y''(t) + 2y(t) = a \cos t + b \sin t$. Für a = 2, b = 0 erhalten wir eine partikuläre Lösung durch $y(t) = 2 \cos t$. Die allgemeine Lösung lautet $y(t) = 2 \cos t + a \cos(\sqrt{2}t) + b \sin(\sqrt{2}t)$; $a, b \in \mathbb{R}$.
- $w_0=\sqrt{2}$: Wir testen den Ansatz $y(t)=at\cos(\sqrt{2}t)+bt\sin(\sqrt{2}t)$. Dann ist $y''(t)+2y(t)=2\sqrt{2}(b\cos(\sqrt{2}t)-a\sin(\sqrt{2}t))$. Für $a=0,b=\frac{1}{\sqrt{2}}$ erhalten wir eine partikuläre Lösung durch $y(t)=\frac{t}{\sqrt{2}}\sin(\sqrt{2}t)$.

Die allgemeine Lösung lautet $y(t) = \frac{t}{\sqrt{2}}\sin(\sqrt{2}t) + a\cos(\sqrt{2}t) + b\sin(\sqrt{2}t); \ a, b \in \mathbb{R}.$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$