Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 19 (Sept 06, 2019)

Basis and Dimension

- **Definition:** Let V be a vector space over \mathbb{F} . Then a subset $B \subseteq V$ is a **basis** for V if
 - B is a linearly independent and,
 - 1 B spans (or generates) V i. e. $V = \operatorname{Span} B$.
- **Definition:** A space *V* which has a (finite) basis is said to be **finite** dimensional.
- A space which does not have a finite basis is said to be infinite dimensional.
- Example of Basis: In \mathbb{R}^n , consider the vectors (column vectors written as n-tuples for convenience): $e_1 = (1,0,0,\ldots,0), e_2 = (0,1,0,\ldots,0),\cdots, e_n = (0,0,\ldots,0,1)$ These vectors are linearly independent and Span (or generate) \mathbb{R}^n . Hence, they form a basis for \mathbb{R}^n , known as the **standard basis**. Note that these vectors change for different n.
- The plural of basis is bases.

Basis (Conti ...)

Example of an infinite dimensional space

- The space $\mathbb{R}[t]$ of polynomials with real coefficients.
- **Justification:** Suppose, by way of contradiction, that $\mathbb{R}[t]$ is finite-dimensional. Then it must have a finite basis, say $B = \{p_1(t), p_2(t), \dots, p_n(t)\}.$

Put $N = \max\{\deg p_1(t), \deg p_2(t), \ldots, \deg p_n(t)\}$, and let $p(t) = t^{N+1}$. Then we can easily see that $p(t) \notin \operatorname{Span} B$. The contradiction proves the desired result.

Basis (Conti ...)

Alternative Definition for Basis

- **Recall:** A **basis** for a vector space V is a linearly independent set of vectors which spans the space V. A space V which has a finite basis is said to be **finite dimensional**.
- **Proposition 11:** $B = \{v_1, v_2, \dots, v_n\}$ is a basis of the vector space V if and only if every vector $v \in V$ is **uniquely** expressible as a linear combination of the elements of B.
- Remark: In some books, the above is used as the definition of a basis, and then it is shown that a basis is a linearly independent spanning set.
 - Proof: Left as an exercise.

Fundamental Results

Proposition 12 (Steinitz Exchange Lemma): Suppose v_1, v_2, \ldots, v_n are linearly independent vectors in a vector space V, and suppose $V = \text{Span}\{w_1, w_2, \ldots, w_m\}$. Then:

- $\{v_1, v_2, \dots, v_n, w_{n+1}, w_{n+2}, \dots, w_m\}$ spans V, after re-ordering the w's if necessary.

Proof: So we have: v_1, v_2, \ldots, v_n are LI and w_1, w_2, \ldots, w_m span V i.e $V = \text{Span}\{w_1, \ldots, w_m\}$. Since w_1, w_2, \ldots, w_m span V, we must have

$$v_1 = c_1 w_1 + c_2 w_2 + \dots + c_m w_m, \tag{1}$$

for some sacalars c_i . If $c_i=0$ for all i, then $v_1=0$, which is not possible since any set containing the zero vector is LD. Therefore, $c_i\neq 0$ for at least one i, and re-numbering the w_i' s if necessary, we can assume that $c_1\neq 0$.

Fundamental Results (Conti . . .)

Proof of Proposition 12 (Cont'd)

So we can re-write (1) as:

$$c_1 w_1 = v_1 - c_2 w_2 - c_2 w_2 - \dots - c_m w_m, \tag{2}$$

and multiplying by c_1^{-1} , we get:

$$w_1 = c_1^{-1} v_1 - c_1^{-1} c_2 w_2 - \dots - c_1^{-1} c_m w_m, \tag{3}$$

or

$$w_1 = d_1 v_1 + d_2 w_2 + \dots + d_m w_m, \tag{4}$$

where d_i are scalars. From (4), it follows that:

$$Span\{v_1, w_2, ..., w_m\} = Span\{w_1, w_2, ..., w_m\} = V$$
 (5)

Fundamental Results (Conti ...)

Proof of Proposition 12 (Cont'd)

Justification of (5): Suppose $x \in V$, then $x \in \text{Span}\{w_1, \dots, w_m\}$, i.e.

$$x = b_1 w_1 + b_2 w_2 + \dots + b_m w_m.$$
(6)

Substituting for w_1 in (6) from (4), we get:

$$x = b_1(d_1v_1 + d_2w_2 + \dots + d_mw_m) + b_2w_2 + \dots + b_mw_m$$

= $b_1d_1v_1 + (b_1d_2 + b_2)w_2 + \dots + (b_1d_m + b_m)w_m$
= $h_1v_1 + h_2w_2 + \dots + h_mw_m$.

Thus $x \in \text{Span}\{v_1, w_2, \dots, w_m\}$, which implies that $V \subseteq \text{Span}\{v_1, w_2, \dots, w_m\}$. Hence $V = \text{Span}\{v_1, w_2, \dots, w_m\}$ as claimed.

Fundamental Results (Conti ...)

Proof of Proposition 12 (Cont'd)

So, at the next step, we get that $v_2=\ell_1v_1+\ell_2w_2+\cdots+\ell_mw_m$ for some scalars ℓ_i . We see that at least one of $\ell_2,\ell_3,\ldots,\ell_m$ is not zero; if all are zero, then $v_2=\ell_1v_1$ — contradicting the linear independence of v_i' s. By re-numbering w_j' s, if necessary, we may assume $\ell_2\neq 0$. So then: $\ell_2w_2=-\ell_1v_1+v_2-\ell_3w_3-\cdots-\ell_mw_m$, and arguing as before, we get that:

$$Span\{v_1, v_2, w_3 ..., w_m\} = Span\{v_1, w_2, ..., w_m\}$$

= $Span\{w_1, w_2, ..., w_m\}$
= V

Proceeding in this way, we can step-by-step replace w_1 by v_1 , w_2 by v_2 ,..., etc. The process has to stop after n-th step at most (since there are only n of the v vectors).

What is the situation when we come to the stop? There are two possible cases.

Fundamental Results (Conti . . .)

Proof of Proposition 12 (Cont'd)

Case 1: $n \le m$. In this case we get the following situation:

$$v_1, v_2, \dots, v_n$$
 $\downarrow \quad \downarrow \quad \dots \downarrow$
 $w_1, w_2, \dots, w_n, w_{n+1}, \dots, w_m$

We have replaced n of the w vectors, with re-numbering if necessary, and we get $V = \text{Span}\{v_1, v_2, \dots, v_n, w_{n+1}, \dots, w_m\}$. So in case 1, the proposition is proved.

[If n = m, then the vectors w_{n+1} , etc are not there in the original spanning set at all.]

Fundamental Results (Conti ...)

Proof of Proposition 12 (Cont'd)

<u>Case 2: n > m</u>. In this case, we are only able to replace w_1, w_2, \ldots, w_m and we are left with the vectors v_{m+1}, \ldots, v_n of the original linearly independent vectors. The situation looks like:

$$v_1, v_2, \ldots, v_m, v_{m+1}, \ldots, v_n$$
 $\downarrow \quad \downarrow \quad \ldots \downarrow$
 w_1, w_2, \ldots, w_m

i.e. $\{v_1, v_2, \ldots, v_m\}$ is now a spanning set for V. But, then $v_{m+1} \in \operatorname{Span}\{v_1, \ldots, v_m\}$ or $v_{m+1} = k_1v_1 + \cdots + k_mv_m$ for some scalars k_i . But this contradicts linear independence of the $v_i's$. Hence, Case 2 can not happen. Only case 1 can happen, and in this case as we saw before, the Proposition 12 has been proved.

Fundamental Results (Conti . . .)

Proposition 13: If V is a finite-dimensional vector space, then any two bases of V have the same number of elements.

Proof: Suppose B_1 and B_2 are two distinct bases of V such that $|B_1|=m$ and $|B_2|=n$. Then by Proposition 12(a), $|B_1|\leq |B_2|$ i.e. $m\leq n$, since B_1 is L. I. and B_2 is spanning set. In a similar way, $B_2\leq B_1$ i. e. $n\leq m$. Hence we get: m=n.

- **Definition:** The dimension of a finite-dimensional space is the number of elements in a basis for *V*. This is written dim *V*.
- Remark: Proposition 13 ensures that this is a proper definition.
- Special Case: The zero subspace {0} is defined to have dimension 0. However, it does not have a basis. So our insistence that dim{0} = 0 amounts to saying that the empty set of vectors is a basis of {0}. Thus the statement that "the dimension of a vector space is the number of vectors in any basis" holds even for zero space.