Tech Salaries Mini Project: Python Implementation

1. Project Overview

1.1 Project Title

Tech Salaries Analysis: US and International Salary & Experience Landscape

1.2 Objective

- Analyze and compare tech salaries across the US and international markets.
- Explore the relationship between salaries, experience, education, and skills.
- Provide actionable insights for job seekers, employers, and policymakers.

1.3 Key Questions

- How do tech salaries in the US compared to international markets?
- What is the impact of experience, education, and skills on salaries?
- Which countries or cities offer the highest salaries for tech roles?
- How do remote work trends affect salary structures?

2. Python Tools and Libraries

2.1 Core Libraries

- Programming Languages: Python,
- Data Manipulation: Pandas, NumPy
- Visualization: Matplotlib, Seaborn, Plotly
- Geospatial Analysis: Folium

3. Data Collection

```
#Load the dataset

df = pd.read_csv("salaries_clean.csv")

print(df.head())
```

4. Data Cleaning

4.1 Handling Missing Values

```
missing_values = df.isnull().sum()
print("Missing values per column:\n", missing_values)
```

```
#Imputation for critical columns
df['annual_base_pay'].fillna(df['annual_base_pay'].median(), inplace=True)

# Imputation for `total_experience_years` and `employer_experience_years` with
median
df['total_experience_years'].fillna(df['total_experience_years'].median(),
inplace=True)
df['employer_experience_years'].fillna(df['employer_experience_years'].median(),
inplace=True)

# Imputation for `employer_name`
df['employer_name'].fillna('A stranger', inplace=True)
```

```
#Imputation for `employer_name`
df['employer_name'].fillna('A stranger', inplace=True)

# Imputation for categorical columns with fashion
df['location_state'].fillna(df['location_state'].mode()[0], inplace=True)
df['location_country'].fillna(df['location_country'].mode()[0], inplace=True)
df['location_latitude'].fillna(df['location_latitude'].mode()[0], inplace=True)
df['location_longitude'].fillna(df['location_longitude'].mode()[0], inplace=True)
df['job_title_rank'].fillna(df['job_title_rank'].mode()[0], inplace=True)
```

5. Exploratory Data Analysis (EDA)

5.1 Exploratory Data Analysis (EDA)

- Summary statistics (mean, median, standard deviation).
- Distribution of salaries by role, location, and experience.
- Heatmaps and correlation matrices.

5.1 Visualization

Annual Base Salary Distribution

Annual Base Salary Distribution

• Boxplot of Annual Base Salary

Annual Base Salary vs Year of Experience

Distribution of Annual Base by job category

5.2 Summary Statistics

```
print(df['salary'].describe())
```

5.3 Uni Variate Visualization #1: Salary Histogram

```
plt.figure(figsize=(10, 6))
sns.histplot(df['annual_base_pay'], bins=30, kde=True)
plt.title('Annual Base Salary Distribution',fontsize=16)
plt.xlabel('Annual Base Salary',fontsize=12)
plt.ylabel('Frequency')
plt.show()
```

```
Uni variate Visualization #1: Salary Histogram

plt.figure(figsize=(10, 6))

sns.histplot(df2['annual_base_pay'], bins=30, kde=True)

plt.title('Annual Base Salary Distributio')

plt.xlabel('Annual Base Salary')

plt.ylabel('Frequency')

plt.show()
```

6. Visualization

6.1 Interactive Salary Map

7. Deliverables

- Cleaned Dataset: cleaned_tech_salaries.csv
- 2. Visualizations: Interactive dashboards and charts.
- 3. Final Report: Insights and recommendations.

8. Deliverables

- 1. Cleaned Dataset: salaries_clean.csv
- 2. Visualizations: Interactive dashboards and charts.
- 3. Final Report: Insights and recommendations

9. Project Timeline

Task	Timeline
Data Collection	Day's1-2
Data Cleaning	Day's 2
EDA and Visualization	Day's 3
Final Report	Day's 2