Lambda Calculus

John Mitchell

Reading: Chapter 4

Lambda Calculus

- ☐ Formal system with three parts
 - Notation for defining functions
 - Proof system for proving equations
 - Calculation rules called reduction

There is more detail in the book than we will cover in class

History

- Original intention
 - Foundations of mathematics (1930 Church)
- More successful for computable functions
 - Substitution --> symbolic computation
 - Church/Turing thesis
- ☐ Influenced design of Lisp, ML, other languages
 - See Boost Lambda Library for C++ function objects
- □ Important part of CS history and foundations

Why study this now?

- □ Basic syntactic notions
 - Free and bound variables
 - Functions
 - Declarations
- Calculation rule
 - Symbolic evaluation useful for discussing programs
 - Used in optimization (in-lining), macro expansion
 - Correct macro processing requires variable renaming
 - Illustrates some ideas about scope of binding
 - Lisp originally departed from standard lambda calculus, returned to the fold through Scheme, Common Lisp

Expressions and Functions

Expressions

$$x + y$$
 $x + 2*y + z$

Functions

$$\lambda x. (x+y)$$
 $\lambda z. (x + 2*y + z)$

Application

$$(\lambda x. (x+y)) 3 = 3 + y$$

 $(\lambda z. (x + 2*y + z)) 5 = x + 2*y + 5$

Parsing: $\lambda x. f(f x) = \lambda x.(f(f(x)))$

Higher-Order Functions

☐ Given function f, return function f ∘ f

$$\lambda f. \lambda x. f(f x)$$

☐ How does this work?

$$(\lambda f. \lambda x. f (f x)) (\lambda y. y+1)$$

$$= \lambda x. (\lambda y. y+1) ((\lambda y. y+1) (x)$$

$$= \lambda x. (\lambda y. y+1) (x+1)$$

$$= \lambda x. (x+1)+1$$

Same result if step 2 is altered.

Same procedure, Lisp syntax

```
☐ Given function f, return function f ∘ f
   (lambda (f) (lambda (x) (f (f x))))
☐ How does this work?
   ((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ y 1))
   = (lambda (x) ((lambda (y) (+ y 1))
                 ((lambda (y) (+ y 1)) x))))
   = (lambda (x) ((lambda (y) (+ y 1)) (+ x 1))))
   = (lambda (x) (+ (+ x 1) 1))
```

JavaScript next slide

Same procedure, JavaScript syntax

```
☐ Given function f, return function f ∘ f
   function (f) { return function (x) { return f(f(x)); } ; }
☐ How does this work?
        (function (f) { return function (x) { return f(f(x)); } ; )
           (function (y) { return y +1; })
        function (x) { return (function (y) { return y +1; })
                                ((function (y) \{ return y + 1; \})
        (x)); }
        function (x) { return (function (y) { return y +1; }) (x +
        1); }
        function (x) { return ((x + 1) + 1); }
```

Declarations as "Syntactic Sugar"

```
function f(x) {
       return x+2;
   f(5);
   (\lambda f. \ f(5)) \ (\lambda x. \ x+2)
block body declared function
   let x = e_1 in e_2 = (\lambda x. e_2) e_1
```

Free and Bound Variables

- Bound variable is "placeholder"
 - Variable x is bound in λx . (x+y)
 - Function λx . (x+y) is same function as λz . (z+y)
- Compare

$$\int x+y \ dx = \int z+y \ dz \qquad \forall x \ P(x) = \forall z \ P(z)$$

- □ Name of free (=unbound) variable does matter
 - Variable y is free in λx . (x+y)
 - Function λx . (x+y) is *not* same as λx . (x+z)
- Occurrences
 - y is free and bound in λx . ((λy . y+2) x) + y

Reduction

 \square Basic computation rule is β -reduction

$$(\lambda x. e_1) e_2 \rightarrow [e_2/x]e_1$$

where substitution involves renaming as needed

(next slide)

- □ Reduction:
 - Apply basic computation rule to any subexpression
 - Repeat
- Confluence:
 - Final result (if there is one) is uniquely determined

Rename Bound Variables

Function application

(
$$\lambda f$$
. λx . $f(f x)$) (λy . $y+x$)
apply twice add x to argument

Substitute "blindly"

$$\lambda x. [(\lambda y. y+x) ((\lambda y. y+x) x)] = \lambda x. x+x+x$$

Rename bound variables

$$(\lambda f. \lambda z. f (f z)) (\lambda y. y+x)$$

$$= \lambda z. [(\lambda y. y+x) ((\lambda y. y+x) z))] = \lambda z. z+x+x$$

Easy rule: always rename variables to be distinct

Main Points about Lambda Calculus

- \square λ captures "essence" of variable binding
 - Function parameters
 - Declarations
 - Bound variables can be renamed
- Succinct function expressions
- □ Simple symbolic evaluator via substitution
- Can be extended with
 - Types
 - Various functions
 - Stores and side-effects

(But we didn't cover these)