Trabajo Práctico N° 1:

Representación en Punto Fijo. Números sin Signo y Números con Signo. Operaciones Aritméticas. Flags.

Ejercicio 1.

Representar los siguientes números en el sistema BSS y en los sistemas BCS, Ca1, Ca2 y Ex2, todos restringidos a 8 bits. En los casos que no se pueda representar, aclarar por qué.

Recordar: Los positivos se representan igual en los sistemas BSS, BCS, Ca1 y Ca2 (ver representación de números en binario en el apunte). Los negativos en BCS, signo en el bit de mayor peso (0 positivos y 1 negativos) y los restantes son módulo. En los negativos en Ca1, se obtiene el BSS del número en 8 bits y, luego, se cambian unos por ceros y ceros por unos. Los negativos en Ca2 se obtienen sumando 1 a la representación de Ca1 o copiando hasta el primer 1 (incluido) desde la derecha el número en BSS y, luego, se cambian unos por ceros y ceros por unos. En Ex2, se suma siempre el exceso (que en n bits será 2^{n-1}) y, luego, se representa como BSS.

Decimal	BSS	BCS	Ca1	Ca2	Ex2
0	00000000	00000000 - 10000000	00000000 - 11111111	00000000	10000000
1	00000001	00000001	00000001	00000001	10000001
45	00101101	00101101	00101101	00101101	10101101
90	01011010	01011010	01011010	01011010	11011010
127	01111111	01111111	01111111	01111111	11111111
128	10000000				
130	10000010				
255	11111111				
256					
-1		10000001	11111110	11111111	01111111
-7		10000111	11111000	11111001	01111001
-56		10111000	11000111	11001000	01001000
-90		11011010	10100101	10100110	00100110
-127		11111111	10000000	10000001	00000001
-128				10000000	00000000
-139					
0,75	000000,11	000000,11	000000,11	000000,11	10000,11
2,5	0000010,1	0000010,1	0000010,1	0000010,1	1000010,1

En los casos que no se puede representar, es debido al rango de representación de los diferentes sistemas:

BSS: $0 \le X \le 2^n - 1 = [0, 255]$.

BCS: $-(2^{n-1} - 1) \le X \le 2^{n-1} - 1 = [-127, 127].$

Ca1: $-(2^{n-1} - 1) \le X \le 2^{n-1} - 1 = [-127, 127].$

Ca2: $-2^{n-1} \le X \le 2^{n-1} - 1 = [-128, 127].$

Ex2: $-2^{n-1} < X < 2^{n-1} - 1 = [-128, 127]$.

Ejercicio 2.

Interpretar las siguientes cadenas de 8 bits en los sistemas BSS, BCS, Ca1, Ca2 y Ex2.

Cadena	BSS	BCS	Ca1	Ca2	Ex2
00000000	0	0	0	0	-128
00000001	1	1	1	1	-127
11111110	254	-126	-1	-2	126
01111111	127	127	127	127	-1
11111111	255	-127	0	-1	127
00010001	17	17	17	17	-111
10011001	153	-25	-102	-103	25
10101010	170	-42	-85	-86	42
01100110	102	102	102	102	-26

Ejercicio 3.

Calcular el rango y resolución de un sistema de punto fijo en BSS con 7 bits de parte entera y 3 de fraccionaria y de un sistema de punto fijo en BCS con 1 bit de signo, 5 bits de parte entera y 4 de fraccionaria.

Sistema	Rango	Resolución
BSS - 7 bits parte entera y 3 bits parte fraccionaria	[0; 127,875]	$2^{-3} = 0,125$
BCS - 1 bit de signo, 5 bits parte entera y 4 bits parte fraccionaria	[-31,9375; 31,9375]	$2^{-4} = 0.0625$

Ejercicio 4.

Representar los siguientes números en los sistemas del Ejercicio 3. Si no es posible, obtener una representación exacta, indicar cuál es la más próxima y calcular, en ese caso, el error cometido. Si el número a representar está fuera del rango del sistema, señalar que ese número "NO SE PUEDE REPRESENTAR".

	BSS - 7 bits parte entera	BCS - 1 bit de signo, 5
Número	y 3 bits parte	bits parte entera y 4 bits
	fraccionaria	parte fraccionaria
7	0000111 000	0 00111 0000
15,125	0001111 001	0 01111 0010
2,2	0000010 010	0 00010 0011
8,001	0001000 000	0 01000 0000
123,25	1111011 010	
50,5	0110010 100	
120	1111000 000	
1,2	0000001 010	0 00001 0011
1,25	0000001 010	0 00001 0100
35	0100011 000	
-1,25		1 00001 0100
1,0625	0000001 001	0 00001 0001
-1,5625		1 00001 1001
-35,5		

Ejercicio 5.

Interpretar las siguientes cadenas en los sistemas del Ejercicio 3.

Cadena	BSS - 7 bits parte entera y 3 bits parte fraccionaria	BCS - 1 bit de signo, 5 bits parte entera y 4 bits parte fraccionaria
000000000	0	0
0101010101	42,625	21,3125
100000000	64	0
1111111110	127,75	-31,875
1111111111	127,875	-31,9375
1010101010	85,25	-10,625
011111111	63,875	31,9375
0110110110	54,75	27,375

Ejercicio 6.

Representar los números 0, 1, 3, 8, 12, 13, 22, 35, 99, 100 y 1255 en los sistemas BCD y BCD empaquetado. Describir, con el mayor nivel de detalle posible, un procedimiento para calcular sumas en BCD. Sin considerar representación de signo, realizar las siguientes operaciones en BCD: 32 + 45; 22 + 89; 1307 + 708.

Número	BCD	BCD empaquetado
0	11000000	00001100
1	11000001	00011100
3	11000011	00111100
8	11001000	10001100
12	11110001 11000010	00000001 00011100
13	11110001 11000011	00000001 00111100
22	11110010 11000010	00000010 00101100
35	11110011 11000101	00000011 01011100
99	11111001 11001001	00001001 10011100
100	11110001 11110000 11000000	00010000 00001100
1255	11110001 11110010 11110101 11000101	00000001 00100101 01011100

Cuando la suma de los dos dígitos da mayor a 9, hay que generar el "acarreo" porque hay seis combinaciones no usadas. Entonces, cuando la suma de los dígitos es mayor a 9, hay que sumar 6 en ese dígito.

Suma	Operación	Resultado
32 + 45= 77	0011 0010	0111 0111
32 + 43= 77	+ 0100 0101	0111 0111
	0010 0010	
22 + 89= 111	+ 1000 1001 =	0001 0001 0001
22 + 89 = 111	1010 1011	0001 0001 0001
	+ 0110 0110	
	0001 0011 0000 0111	
	+ 0000 0111 0000 1000	
1307 + 708 = 2015	=	0010 0000 0001 0101
	0001 1010 0000 1111	
	+ 0000 0110 0000 0110	

Ejercicio 7.

Escribir los números 13160, 2988, 927 y 87127 en los sistemas BCD, BCD empaquetado y BSS. Observar la cantidad de bits necesarios. ¿Qué conclusiones se saca respecto de las ventajas y desventajas del sistema BCD sobre BSS?

Número	BCD	BCD empaquetado	BSS
13160	11110001 11110011 11110001 11110110 11000000	00010011 00010110 00001100	11001101101000
2988	11110010 11111001 11111000 11001000	00000010 10011000 10001100	101110101100
927	11111001 11110010 11000111	10010010 01111100	1110011111
87127	11111000 11110111 11110001 11110010 11000111	10000111 00010010 01111100	10101010001010111

Las conclusiones que se saca respecto de las ventajas y desventajas del sistema BCD sobre BSS son que, en aquél, es más rápida la representación, pero la cantidad de bits necesarios es mayor.

Ejercicio 8.

Hacer el pasaje de binario a hexadecimal y de hexadecimal a BCH en forma directa (sin utilizar sistema decimal). ¿Por qué cree que el sistema hexadecimal es muy utilizado?

Binario a Hexadecimal				
1010000010000	1410			
1110001011101	1C5D			
111010011001011	74CB			
1001111100100011	9F23			
1110101011001010	EACA			
101101101011010	5B5A			

Hexadecimal a BCH				
2801	0010100000000001			
1C5D	0001110001011101			
78AB	0111100010101011			
F79A	1111011110011010			
7EF1	0111111011110001			
324A	0011001001001010			

El sistema hexadecimal es muy utilizado porque permite representar números más grandes con menor cantidad de dígitos.

Ejercicio 9.

Calcular el resultado de realizar las sumas (ADD) y restas (SUB) indicadas a continuación. Calcular el valor en el que quedarán los flags luego de realizada cada operación, de acuerdo a que haya habido acarreo (flag C, de Carry) o se haya producido borrow (flag B, es el mismo que C pero en la resta), o que el resultado sea cero en todos sus bits (flag Z, de Zero), se haya producido desbordamiento (flag V, de oVerflow), o dé un resultado negativo (flag N, de Negative).

Recordar que:

```
0+0=0 con C=0; 1+0=1 con C=0; 0-0=0 con B=0; 1-1=0 con B=0. 0+1=1 con C=0; 1+1=0 con C=1; 1-0=1 con B=0; 0-1=1 con B=1.
```

También, tendremos casos de exceso en el rango de representación (llamado overflow) si a un número positivo se le suma otro positivo y da un resultado negativo ó a un número negativo se le suma otro negativo y da uno positivo ó a un número positivo se le resta otro negativo y da uno negativo ó a un número negativo se le resta otro positivo y da uno positivo. En todos estos casos de errores en la operación aritmética, se advierte el error, pues la ALU encenderá (pondrá en 1) el flag de overflow (V=1). Es de hacer notar que el flag V se encenderá aunque se sumen números sin signo (en BSS). La interpretación de los flags corre por cuenta del programador.

Operación	Resultado	Z (zero)	N (negative)	C (carry)	V (overflow)
00011101 + 00011011	00111000	0	0	0	0
01110000 + 11110001	01100001	0	0	1	0
10011101 + 01110010	00001111	0	0	1	0
01001100 + 01110000	10111100	0	1	0	1
01110110 + 01110001	11100111	0	1	0	1
11001100 + 11110000	10111100	0	1	1	0
10111001 + 11100011	10011100	0	1	1	0
10000000 + 10000000	00000000	1	0	1	1
00111010 + 00001111	01001001	0	0	0	0
00000000 + 10000000	10000000	0	1	0	0
00011101 - 00011011	00000010	0	0	0	0
01110000 - 11110001	01111111	0	0	1	0

Licenciatura en Informática UNLP - Organización de Computadoras | 10

Juan Menduiña

10011101 - 01110010	00101011	0	0	0	1
01001100 - 01110000	11011100	0	1	1	0
01110110 - 01110001	00000101	0	0	0	0
11001100 - 11110000	11011100	0	1	1	0
10111001 - 11100011	11010110	0	1	1	0
10000000 - 10000000	00000000	0	0	0	0
00111010 - 00001111	00101011	0	0	0	0
0000000 - 1000000	10000000	0	1	1	1

Ejercicio 10.

Suponer que los operandos del ejercicio anterior (Ejercicio 9) eran números representados en BSS, BCS, Ca1, Ca2 y Exceso2 (todos para cada sistema de representación). Verificar la correctitud del resultado interpretando el resultado obtenido y comparando con el resultado esperado. En caso de que la operación haya dado resultado incorrecto, indicar la posible cadena de bits que representa el resultado correcto.

Operación	Resultado	BSS	BCS	Ca1	Ca2	Ex2
00011101 + 00011011	00111000	29+27=56	29+27=56	29+27=56	29+27=56	-99+(-101)=- 72
01110000 + 11110001	01100001	112+241=97	112+(- 113)=97	112+(- 14)=97	112+(- 15)=97	-16+113=-31
10011101 + 01110010	00001111	157+114=15	-29+114=15	-98+114=15	-99+114=15	29+(-14)=- 113
01001100 + 01110000	10111100	76+112=188	76+112=-60	76+112=-67	76+112=-68	-52+(- 16)=60
01110110 + 01110001	11100111	118+113=231	118+113=- 103	118+113=- 24	118+113=- 25	-10+(-15)=- 103
11001100 + 11110000	10111100	204+240=188	-76+(-112)=- 60	-51+(-15)=- 67	-52+(-16)=- 68	76+112=60
10111001 + 11100011	10011100	185+227=156	-57+(-99)=- 28	-70+(-28)=- 99	-71+(-29)=- 100	57+99=28
10000000 + 10000000	00000000	128+128=0	0+0=0	-127+(- 127)=0	-128+(- 128)=0	0+0=-128
00111010 + 00001111	01001001	58+15=73	58+15=73	58+15=73	58+15=73	-70+(-113)=- 55
00000000 + 10000000	10000000	0+128=128	0+0=0	0+(-127)=- 127	0+(-128)=- 128	-128+0=0
00011101 - 00011011	00000010	29-27=2	29-27=2	29-27=2	29-27=2	-99-(-101)=- 126
01110000 - 11110001	01111111	112-241=127	112-(- 113)=127	112-(- 14)=127	112-(- 15)=127	-16-113=-1
10011101 - 01110010	00101011	157-114=43	-29-114=43	-98-114=43	-99-114=43	29-(-14)=-85
01001100 - 01110000	11011100	76-112=220	76-112=-92	76-112=-35	76-112=-36	-52-(-16)=92
01110110 - 01110001	00000101	118-113=5	118-113=5	118-113=5	118-113=5	-10-(-15)=- 123
11001100 - 11110000	11011100	204-240=220	-76-(-112)=- 92	-51-(-15)=- 35	-52-(-16)=- 36	76-112=-92
10111001 - 11100011	11010110	185-227=214	-57-(-99)=- 86	-70-(-28)=- 41	-71-(-29)=- 42	57-99=-86
10000000 - 10000000	00000000	128-128=0	0-0=0	-127-(- 127)=0	(-128)-(- 128)=0	0-0=-128
00111010 - 00001111	00101011	58-15=43	58-15=43	58-15=43	58-15=43	-70-(-113)=- 85
00000000 - 10000000	10000000	0-128=128	0-0=0	0-(-127)=- 127	0-(-128)=- 128	-128-0=0

Ejercicio 11.

Referido al Ejercicio 9 sobre la operación ADD: Observando cuáles resultados fueron correctos y cuáles fueron incorrectos y relacionándolos con los flags, describir una regla para determinar la correctitud de la operación ADD en el sistema BSS con la mera observación de los flags (sin verificar la operación pasando por el sistema decimal). Observar que, en el ejemplo dado para BSS, los flags V y N quedan en 1 y no importan, pues se supone que se está operando con números sin signo (BSS). Si se hace lo mismo con todos los ejercicios, se observará que, en los casos en que C= 1, el resultado es incorrecto, independientemente de los demás flags.

En el sistema BSS, la correctitud de la operación ADD depende de la bandera C (carry). Si se tiene C= 1, el resultado de la operación ADD en BSS va a ser incorrecto.

Ejercicio 12.

Trabajar de forma similar al Ejercicio 10, pero con la operación SUB. Luego, tratar de descubrir reglas análogas para ADD y SUB para el sistema Ca2, basándose en los ejercicios cuya cadena resultado es diferente de la correcta y observando los flags. Observar qué flags se encienden en los casos que da incorrecto y cuáles no, como así también los que es indistinto que tengan valor uno o cero.

En el sistema Ca2, la correctitud de la operación ADD y SUB depende de la bandera V (overflow). Si se tiene V= 1, el resultado de estas operaciones en Ca2 va a ser incorrecto. Esta bandera será V= 1 cuando, en ADD, a un número positivo se le suma otro positivo y da un resultado negativo ó a un número negativo se le suma otro negativo y da uno positivo ó, en SUB, a un número positivo se le resta otro negativo y da uno negativo ó a un número negativo se le resta otro positivo. Por otra parte, es indistinto que tengan valor uno o cero las banderas Z (zero), N (Negative) y C (carry).

Ejercicio 13.

Considerar, en el Ejercicio 9, que el punto o coma fraccionaria se encuentra entre el bit 2 y el 3. Interpretar el valor que tendrán las cadenas de bits que representan los operandos y los resultados como BSS y como Ca2. Observar los flags. ¿Qué se concluye?

Operación	Resultado	C (carry)	V (overflow)	BSS	Ca2
00011101 + 00011011	00111000	0	0	14	14
01110000 + 11110001	01100001	1	0	24,25	24,25
10011101 + 01110010	00001111	1	0	<mark>3,75</mark>	3,75
01001100 + 01110000	10111100	0	1	47	-17
01110110 + 01110001	11100111	0	1	57,75	<mark>-7,25</mark>
11001100 + 11110000	10111100	1	0	<mark>47</mark>	-17
10111001 + 11100011	10011100	1	0	<mark>39</mark>	-25
10000000 + 10000000	00000000	1	1	0	0
00111010 + 00001111	01001001	0	0	18,25	18,25
00000000 + 10000000	10000000	0	0	32	-32
00011101 - 00011011	00000010	0	0	0,5	0,5
01110000 - 11110001	01111111	1	0	127	127
10011101 - 01110010	00101011	0	1	10,75	10,75
01001100 - 01110000	11011100	1	0	<mark>55</mark>	-9
01110110 - 01110001	00000101	0	0	1,25	1,25
11001100 - 11110000	11011100	1	0	<mark>55</mark>	-9
10111001 - 11100011	11010110	1	0	53,5	-10,5
10000000 - 10000000	00000000	0	0	0	0
00111010 - 00001111	00101011	0	0	10,75	10,75
00000000 - 10000000	10000000	1	1	32	-32

Por lo tanto, se concluye que, cuando C=1, el resultado en BSS es incorrecto, mientras que, cuando V=1, el resultado en Ca2 es incorrecto.

Ejercicio 14.

Escribir todas las cadenas de los sistemas BSS, BCS, Ca1, Ca2 y $Ex2^{n-1}$ restringido a 4 bits. Considerar el punto (o coma fraccionaria) fijo en cada una de todas las posibles posiciones (son 5 posibilidades en total, considerando que el punto fijo puede estar colocado a la izquierda del MSB y a la derecha del LSB) y obtener el rango y resolución de cada uno de los sistemas de punto fijo resultantes. ¿Cuántas cadenas se pueden escribir en cada caso? ¿Cuántos números se pueden representar en los distintos sistemas?

Tabla 1 (Punto fijo en posición 1, antes del primer bit):

Cadena	BSS	BCS	Ca1	Ca2	$Ex2^{n-1}$
0000	0	0	0	0	-8
0001	1	1	1	1	-7
0010	2	2	2	2	-6
0011	3	3	3	3	-5
0100	4	4	4	4	-4
0101	5	5	5	5	-3
0110	6	6	6	6	-2
0111	7	7	7	7	-1
1000	8	0	-7	-8	0
1001	9	-1	-6	-7	1
1010	10	-2	-5	-6	2
1011	11	-3	-4	-5	3
1100	12	-4	-3	-4	4
1101	13	-5	-2	-3	5
1110	14	-6	-1	-2	6
1111	15	-7	0	-1	7
Rango	[0; 15]	[-7; 7]	[-7; 7]	[-8; 7]	[-8; 7]
Resolución	$2^0 = 1$	$2^0 = 1$	$2^0 = 1$	$2^0 = 1$	$2^0 = 1$

Tabla 2 (Punto fijo en posición 2, después del primer bit):

Cadena	BSS	BCS	Ca1	Ca2	$Ex2^{n-1}$
0000	0	0	0	0	-4
0001	0,5	0,5	0,5	0,5	-3,5
0010	1	1	1	1	-3
0011	1,5	1,5	1,5	1,5	-2,5
0100	2	2	2	2	-2
0101	2,5	2,5	2,5	2,5	-1,5
0110	3	3	3	3	-1
0111	3,5	3,5	3,5	3,5	-0,5
1000	4	0	-3,5	-4	0
1001	4,5	-0,5	-3	-3,5	0,5
1010	5	-1	-2,5	-3	1
1011	5,5	-1,5	-2	-2,5	1,5
1100	6	-2	-1,5	-2	2

1101	6,5	-2,5	-1	-1,5	2,5
1110	7	-3	-0,5	-1	3
1111	7,5	-3,5	0	-0,5	3,5
Rango	[0; 7,5]	[-3,5; 3,5]	[-3,5; 3,5]	[-4; 3,5]	[-4; 3,5]
Resolución	$2^{-1} = 0.5$	$2^{-1} = 0.5$	$2^{-1} = 0.5$	$2^{-1} = 0.5$	$2^{-1} = 0.5$

Tabla 3 (Punto fijo en posición 3, después del segundo bit):

Cadena	BSS	BCS	Ca1	Ca2	$Ex2^{n-1}$
0000	0	0	0	0	-2
0001	0,25	0,25	0,25	0,25	-1,75
0010	0,5	0,5	0,5	0,5	-1,5
0011	0,75	0,75	0,75	0,75	-1,25
0100	1	1	1	1	-1
0101	1,25	1,25	1,25	1,25	-0,75
0110	1,5	1,5	1,5	1,5	-0,5
0111	1,75	1,75	1,75	1,75	-0,25
1000	2	0	-1,75	-2	0
1001	2,25	-0,25	-1,5	-1,75	0,25
1010	2,5	-0,5	-1,25	-1,5	0,5
1011	2,75	-0,75	-1	-1,25	0,75
1100	3	-1	-0,75	-1	1
1101	3,25	-1,25	-0,5	-0,75	1,25
1110	3,5	-1,5	-0,25	-0,5	1,5
1111	3,75	-1,75	0	-0,25	1,75
Rango	[0; 3,75]	[-1,75; 1,75]	[-1,75; 1,75]	[-2; 1,75]	[-2; 1,75]
Resolución	$2^{-2} = 0.25$	$2^{-2} = 0.25$	$2^{-2} = 0.25$	$2^{-2} = 0.25$	$2^{-2} = 0.25$

Tabla 4 (Coma en posición 4, después del tercer bit):

Cadena	BSS	BCS	Ca1	Ca2	$Ex2^{n-1}$
0000	0	0	0	0	-1
0001	0,125	0,125	0,125	0,125	-0,875
0010	0,25	0,25	0,25	0,25	-0,75
0011	0,375	0,375	0,375	0,375	-0,625
0100	0,5	0,5	0,5	0,5	-0,5
0101	0,625	0,625	0,625	0,625	-0,375
0110	0,75	0,75	0,75	0,75	-0,25
0111	0,875	0,875	0,875	0,875	-0,125
1000	1	0	-0,875	-1	0
1001	1,125	-0,125	-0,75	-0,875	0,125
1010	1,25	-0,25	-0,625	-0,75	0,25
1011	1,375	-0,375	-0,5	-0,625	0,375
1100	1,5	-0,5	-0,375	-0,5	0,5
1101	1,625	-0,625	-0,25	-0,375	0,625
1110	1,75	-0,75	-0,125	-0,25	0,75
1111	1,875	-0,875	0	-0,125	0,875

Licenciatura en Informática UNLP - Organización de Computadoras | 18 Juan Menduiña

Rango	[0; 1,875]	[-0,875; 0,875]	[-0,875; 0,875]	[-1; 0,875]	[-1; 0,875]
Resolución	$2^{-3} = 0.125$	$2^{-3} = 0.125$	$2^{-3} = 0.125$	$2^{-3} = 0.125$	$2^{-3} = 0.125$

Tabla 5 (Coma en posición 5, después del cuarto bit):

Cadena	BSS	BCS	Ca1	Ca2	$Ex2^{n-1}$
0000	0	0	0	0	-0,5
0001	0,0625	0,125	0,0625	0,0625	-0,4375
0010	0,125	0,25	0,125	0,125	-0,375
0011	0,1875	0,375	0,1875	0,1875	-0,3125
0100	0,25	0,5	0,25	0,25	-0,25
0101	0,3125	0,625	0,3125	0,3125	-0,1875
0110	0,375	0,75	0,375	0,375	-0,125
0111	0,4375	0,875	0,4375	0,4375	-0,0625
1000	0,5	0	-0,4375	-0,5	0
1001	0,5625	-0,125	-0,375	-0,4375	0,0625
1010	0,625	-0,25	-0,3125	-0,375	0,125
1011	0,6875	-0,375	-0,25	-0,3125	0,1875
1100	0,75	-0,5	-0,1875	-0,25	0,25
1101	0,8125	-0,625	-0,125	-0,1875	0,3125
1110	0,875	-0,75	-0,0625	-0,125	0,375
1111	0,9375	-0,875	0	-0,0625	0,4375
Dango	[0; 0,9375]	[-0,875;	[-0,4375;	[-0,5;	[-0,5;
Rango	[0, 0,9373]	0,875]	0,4375]	0,4375]	0,4375]
Resolución	2-4=	$2^{-3} = 0.125$	$2^{-4} =$	2-4=	2-4=
Kesolucion	0,0625	2 -0,123	0,0625	0,0625	0,0625

Por lo tanto, las cadenas que se pueden escribir, en cada caso (BSS, BCS, Ca1, Ca2, $Ex2^{n-1}$), dadas las 5 posibles posiciones del punto fijo, son 16. Por otra parte, la cantidad de números que se pueden representar en estos distintos sistemas son 48, 47, 47, 48 y 48, respectivamente.

Ejercicio 15.

Definir el sistema Exceso a M (donde M es un entero cualquiera).

El sistema Exceso a M es un sistema de representación numérica que utiliza un desplazamiento en la escala de números positivos para permitir la representación de números negativos. En este sistema, se asigna un valor base M y se utiliza un código que representa números positivos con valores entre 0 y M-1.

Para representar números negativos en el sistema Exceso a M, se utiliza un código que se desplaza en una cantidad fija M, de modo que el valor negativo se convierte en un valor positivo. Por lo tanto, el valor representado en el sistema Exceso a M es igual al valor real del número más M.

En general, en el sistema Exceso a M, se representa el número x como x+M en código binario, lo que permite la representación de números negativos mediante un simple desplazamiento en la escala de números positivos.

Ejercicio 16.

Describir mecanismos para sumar y restar en BCS, Ca1 y Exceso, en base al análisis de los resultados y flags del Ejercicio 9, realizando la interpretación de los operandos y resultados en los distintos sistemas de representación citados. Observar de qué manera (qué operaciones deberían realizarse y en qué caso) se llegaría al resultado correcto.

El resultado de sumar y restar es incorrecto:

- En BCS, cuando hay C= 1 o V= 1, pero no ambas. Se llegaría al resultado correcto agregando un bit.
- En Ca1, cuando hay C= 1 o V= 1 o ambas. Se llegaría al resultado correcto agregando un bit.
- En Ex2, siempre. Cuando C= 0, se llegaría al resultado correcto contemplando excesos distintos para los operandos y para el resultado, es decir, contemplando en los operandos, un exceso de 2^{n+1} y, en el resultado, un exceso de 2^n en la suma y ningún exceso en la resta.

Ejercicio 17.

Interpretar las siguientes cadenas descriptas en sistema Ca2. ¿Qué pasa en el caso (e)?

Cadena	Interpretación
00100110	38
11011000	-40
00111000	56
00000000	0
10000000	-128

Ejercicio 18.

Interpretar las siguientes cadenas descriptas en sistema $Ex2^{n-1}$ con n=8. ¿Qué pasa en el caso (e)?

Cadena	Interpretación
10100110	38
01011000	-40
10111000	56
10000000	0
00000000	-128