图论作业(6.2)

中国人民大学 信息学院 崔冠宇 2018202147

P82, T16 设 G 是 k 次正则图, 顶数是偶数, 又至少删除不少于 k-1 条边才可能使 G 的连通片数目增多, 试证 G 中有完备匹配.

证明: k=1 时, 自然有完美匹配, 所以下面设 $k \geq 2$, 由题意图是连通的. 设 S 是 V(G) 的任意真子集.

- 1. 若 $S = \emptyset$, 由于顶点为偶数, 所以 $o(G S) = o(G) = 0 = |\emptyset|$.
- 2. 若 $S \neq \emptyset$, 设 G_1, G_2, \ldots, G_o 是 G S 的所有奇分支, m_i 表示端点分属于 S 和 G_i 的边数, 下面估计 m_i : G_i 在 G S 中的总度数为 $2|E(G_i)|$, 在 G 中总度数为 $k|V(G_i)|$, 所以 $m_i = k|V(G_i)| 2|E(G_i)|$. 又由题设"至少删除不少于 k-1 条边才可能使 G 的连通片数目增多", 得 $m_i \geq k-1$. 由于 $|V(G_i)|$ 为奇数, 若 k 是奇数, 上述 m_i 为 奇数, 但 k-1 为偶数, 所以 $m_i \geq k$; 若 k 是偶数, 则上述 m_i 为 偶数, 但 k-1 为奇数, 所以 $m_i \geq k$. 故 $k|S| \geq \sum_{i=1}^o m_i \geq ko(G-S)$, 即 $o(G-S) \leq |S|$.

综上,由托特定理,G 中有完备匹配. □

P82, T17 写出树有完备匹配的充要条件且加以证明.

充要条件: 树 T 有完备匹配的充要条件是: 对 $\forall v \in V(T), o(T-v) = 1$.

证明: \Rightarrow : 若树 T 有完美匹配, 则 |V(T)| 为偶数, 故 $o(T-v) \ge 1$. 又由托特定理, $o(T-v) \le |\{v\}| = 1$, 故 o(T-v) = 1.

 \Leftarrow : 若对 $\forall v \in V(T), \ o(T-v)=1$. 如下图所示, 记 v 与 T-v 内奇分支中某点(设为u)相邻的唯一的边为 e(v)=vu. 容易看出 e(u)=uv=e(v), 所以当 v 取遍 V(T) 中所有的点时, $\{e(v)|v\in V(T)\}$ 就是一个完美匹配. \square

P119, T2 给出求二分图正常 Δ 边着色的算法.

思路: 先将二分图扩充成 Δ 正则二分图, 所以有完美匹配, 进一步重复使用匈牙利算法, 把边集划分为 Δ 个完美匹配, 然后再去掉原图不存在的"虚拟点"和"虚拟边".

算法框架: 设 G = (X, Y) 是两分图, $\Delta(G) = \Delta$, 不妨设 $|X| \ge |Y|$.

- 1. 若 |X| > |Y|, 则在 Y 中增加一些点成为 Y^* , 使得 $|X| = |Y^*|$; 否则 $Y^* = Y$. 记 $G^* = (X, Y^*)$.
- 2. 若 $\delta(G^*) < \Delta(G^*)$, 则在 X 中找度数最小的点 x_0 , 在 Y 中找度数最小的点 y_0 , 将 (x_0, y_0) 加入图中. 重复至 $\delta(G^*) = \Delta(G^*)$, 令 k = 1, 进入下一步.
- 3. 任取 G^* 的一个匹配 M.
- 4. 若 X 是 M 饱和的, 转 6; 否则取 X 中未 M 饱和的点 v, 令 $S = \{v\}$, $T = \emptyset$.
- 5. 在 N(S) T 中取一点 y, 若 y 已经是 M 饱和的, 则存在 z 使得 $(y, z) \in M$, 用 $S \cup \{z\}$ 代替 S, 用 $T \cup \{y\}$ 代替 T, 重复本步至取出的 y 不是 M 饱和的. 此时存在 P(v, y) 路是 M 增广路, 用 $M \oplus E(P(v, y))$ 代替原来的 M, 转 4.
- 6. 若此时 $k = \Delta(G)$, 说明已经得到 Δ 组完美匹配, 分别着色, 然后将着色"限制"在 G 上即可, 算法终止; 否则令 k = k + 1, $G^* = G^* M$, 转 3.

P120, **T14** 若 G 是单图, 求证: $\chi(G) \ge \frac{\nu^2}{\nu^2 - 2\varepsilon}$, 其中 $\nu = |V(G)|$, $\varepsilon = |E(G)|$.

证明: 根据点正常着色的定义,设 V(G) 被划分为 $\chi(G)$ 个点集 $V_1, V_2, \dots, V_{\chi(G)}$, 其中同一集合中任意两点不相邻。记 $|V_i| = n_i$, 所以有 $\sum_{i=1}^{\chi(G)} n_i = \nu$. 由于同一集合内各点不相邻,所以 V_i 贡献的度数最多为 $n_i(\nu - n_i)$, 由握手定理 $2\varepsilon = \sum_{v \in V(G)} d(v) = \sum_{i=1}^{\chi(G)} (\sum_{v \in V_i} d(v)) \leq \sum_{i=1}^{\chi(G)} n_i(\nu - n_i) = \nu^2 - \sum_{i=1}^{\chi(G)} n_i^2$, 即 $\nu^2 - 2\varepsilon \geq \sum_{i=1}^{\chi(G)} n_i^2 \geq \chi(G)(\frac{\nu}{\chi(G)})^2 = \frac{\nu^2}{\chi(G)}$ (当且仅当 $n_1 = n_2 = \dots = n_{\chi(G)} = \frac{\nu}{\chi(G)}$ 第二个不等号取等),所以 $\chi(G) \geq \frac{\nu^2}{\nu^2 - 2\varepsilon}$. □

P120, **T15** 设图 G 中任二奇圈皆有公共顶点, 则 $\chi(G) \leq 5$.

证明: 用反证法, 假设 $\chi(G) \geq 6$. 对于 G 的一个 $\chi(G)$ 正常点着色, 设 G_1 是由颜色为 1,2,3 的顶点导出的子图, G_2 是其它颜色的顶点导出的子图. 容易看出 $\chi(G_1) = 3$, $\chi(G_2) = \chi(G) - 3 \geq 3$. 由于 $\chi(\Box)$ = 2, 所以 G_1 , G_2 均不是二分图, 因而含有奇圈, 但它们没有公共点, 矛盾. 所以假设不成立, $\chi(G) \leq 5$. \square

