ОЛЕЙНИКОВ Р.В., КАЗИМИРОВ А.В.

Харьковский национальный университет радиоэлектроники

СРАВНЕНИЕ ФУНКЦИЙ РАЗВОРАЧИВАНИЯ КЛЮЧА СИММЕТРИЧНЫХ БЛОЧНЫХ ШИФРОВ

Симметричные блочные шифры являются наиболее ОДНИМ ИЗ распространённых криптографических примитивов. Помимо обеспечения шифровании сообщений, конфиденциальности при ЭТИ алгоритмы применяются как конструктивные элементы хэш-функций, генераторов псевдослучайных последовательностей, протоколов аутентификации и др. Современные блочные шифры проектировались с учетом необходимости увеличения производительности и в этих областях [1], что привело к минимизации сложности шифрующего преобразования и, особенно, функций разворачивания ключа (ФРК). Тенденция упрощения ФРК привела к тому, что в новых работах [2] были продемонстрированы методы, позволяющие в специфических условиях получить ключ достаточно шифрования ГОСТ 28147-89 и AES-192/256 со сложностью, значительно меньшей, чем полный перебор ключей.

В связи с этим актуальной становится задача сравнения функций разворачивания ключей существующих алгоритмов шифрования. классификация Предлагаемая ориентирована сложности на оценку восстановления криптоаналитиком ключа шифрования (мастер-ключа) при наличии одного или нескольких подключей (полученных в результате дифференциального анализа сбоев, алгебраического криптоанализа или После рассмотрения функций разворачивания ключей симметричных блочных шифров (Blowfish, DES, CAST-128, SHACAL1, SHACAL2, MISTY1, Camellia, Калина, Лабиринт, ГОСТ 28147, Rijndael и др.) предлагается разделить все ФРК на 3 класса:

класс 1 — знание подключа позволяет вычислить другой подключ, мастер-ключ или их части;

класс 2 – знание подключа позволяет вычислить другой подключ или его часть, но не даёт информации о мастер-ключе;

класс 3 — знание подключа не даёт явной информации о других подключах или мастер-ключе.

Учитывая особенности проведения криптоанализа современных ФРК, предложенные классы целесообразно разделить на подклассы в соответствии с таблицей 1.

Таблица 1 – Классификация ФРК

1A	Каждый последующий подключ формируется путём линейных операций из
	предыдущего подключа или мастер-ключа.
1Б	Каждый последующий подключ формируется путём нелинейных и линейных
12	операций из предыдущего подключа или мастер-ключа.
2A	Известен простой алгоритм, позволяющий гарантированно найти мастер-
27.1	ключи, которые дают хотя бы один одинаковый цикловой подключ.
2Б	Существует верхняя граница вероятности (меньшая 1) нахождения мастер-
25	ключей, которые дают хотя бы один одинаковый цикловой подключ.
3A	Неизвестен алгоритм, позволяющий сформировать мастер-ключи, которые
	дают хотя бы один одинаковый цикловой подключ.
3Б	Все подключи, для каждого из циклов, формируются независимо и длина
	мастер-ключа равна сумме длин подключей.

Классификация ФРК рассмотренных шифров приведёна в таблице 2.

Таблица 2 – классификация функций разворачивания ключа

1A	1Б	1Б 2Б		3Б
ΓΟCT 28147, DES	Rijndael, SHACAL2, Camellia, MISTY1, Лабиринт	Калина	Blowfish, SEED	DESI

ФРК, относящиеся к классу 1, потенциально уязвимы к атакам на связанных ключах, но при этом обеспечивают высокую производительность и простоту реализации. С другой стороны, алгоритмы, имеющие ФРК класса 3, имеют очень высокий уровень защищённости от криптографических атак, однако значительно проигрывают в быстродействии. Оставшийся класс 2 наиболее сбалансирован с точки зрения стойкости и производительности, но в большинстве случаев требует строгого обоснования выбранного решения.

Оценка быстродействия функций разворачивания ключа

Учитывая, что в большинстве случаев современные криптографические примитивы имеют программную реализацию (для архитектуры общего назначения или специализированных микроконтроллеров), оценку быстродействия и сложности реализации целесообразно выполнять с учетом именно этой особенности.

Количество операций для наименьшей длины ключа функций разворачивания ключа рассмотренных шифров приведено в таблице 3.

Название алгоритма	Размер подключей, биты	Сдвиги	XOR	AND	OR	N O T	Сложение по модулю	Выборка из памяти	Всего операций
ГОСТ 28147	1024	_	_	_	_	_	_	24	24
MISTY1	1024	_	40	8	16	_	_	24	88
Rijndael	1408	10	50	_	_	-	_	40	100
Лабиринт	512	1	57	1	ı	_	6	48	112
Camellia	1664	32	148	24	ı	9	9	ı	222
Калина	1536	9	168	1	1	2	12	96	287
SHAC-2	2048	228	192	_	_	_	144	_	564
DES	768	686	21	311	256	_	_	128	1402

Таблица 3 – число операций для рассмотренных ФРК

Скорость работы ФРК рассмотренных шифров на универсальной программной платформе (Intel Core 2 Duo E8200/2.66 ГГц/Windows 7/VS C++2008 SP1) приведена в таблице 4. В правой колонке таблицы указан показатель КА (key agility) [3], выражающий отношение производительности ФРК к скорости шифрования. Если КА < 1, то быстродействие систем, где необходимо вырабатывать ключи на каждый блок, будет напрямую зависеть от скорости ФРК. Как видно из таблицы 4, наибольшую скорость функции разворачивания ключей имеют алгоритмы ГОСТ, Rijndael, MISTY1 и Лабиринт. Тем не менее, простота конструкции ведет к возможности реализации эффективных криптоаналитических атак на ФРК. Алгоритмы с более медленными ФРК имеют лучший уровень защищенности, что необходимо учитывать при выборе шифра для конкретного применения.

Выводы

Предложенная классификация функций разворачивания ключей позволяет оценить частные показатели эффективности существующих алгоритмов шифрования и оптимизировать проектируемые.

Название алгоритма	Размер подключей, биты	ФРК, ключей/с	ФРК, Мбит/с	Шифрование, блоков/с	Шифрование, Мбит/с	K_{A}
ГОСТ-28147	1024	64516129,03	63004,03	6410256,41	391,25	10,06
MISTY1	1024	21276595,74	20777,93	5571030,64	350,03	3,82
Лабиринт	512	11695906,43	5710,89	2785515,32	340,23	4,20
Rijndael	1408	10695187,17	14361,21	6756756,76	824,80	1,58
Camellia	1664	7117437,72	11294,76	4140786,75	505,47	1,72
SHACAL-2	2048	7117437,72	13901,25	2564102,56	626,00	2,78
Калина	1536	6410256,41	9390,02	3466204,51	423,12	1,85
DES	768	4750593,82	3479,44	6410256,41	391,25	0,74

Таблица 4 – скорость работы рассмотренных ФРК на универсальной платформе

Алгоритмы, имеющие высокие показатели скорости разворачивания подключей, как правило, уязвимы для атак специального вида, поэтому необходимы дополнительные исследования перед использованием AES/Rijndael, ГОСТ 28147-89 в хэш-функциях, ГПСЧ и др.

Шифры, представленные на открытый криптографический конкурс в Украине (Калина, Лабиринт) имеют достаточно высокие показатели криптографической стойкости ФРК при среднем уровне быстродействия.

Литература

- 1. Biryukov A. Related-key cryptoanalysis of the full AES-192 and AES-256 [Electronic resource] / A. Biryukov, D. Khovratovich. Mode of access: WWW.URL: https://cryptolux.org/mediawiki/uploads/1/1a/Aes-192-256.pdf
- 2. Preneel B. Final report of European project number IST-1999-12324, named New European Shames for Signatures, Integrity, and Encryption [Electronic resource] / B. Preneel, A. Biryuov, C. De Canniere, etc. Mode of access: WWW.URL: https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
- 3. Whiting D. AES Key Agility Issues in Hight-Speed IPsec Implementations [Electronic resource] / D. Whiting, B. Schneier, S. Bellovin. Mode of access: WWW.URL: www.securiteinfo.com/ebooks/palm/AES-KeyAgile.pdf