Math 501

Homework 6

Trevor Klar

October 8, 2017

1. Give an example of a closed, bounded subset of a metric space which is not compact.

Example: Consider the real numbers \mathbb{R} with the topology generated by the following metric:

$$d(x,y) = \min(|x-y|, 1)$$

where |x| denotes the usual absolute value, not the norm with respect to d. First, we will confirm that d is in fact a metric.

PROOF

Let $x, y, z \in \mathbb{R}$.

- Since |x-y|=0 iff x=y, then $d(x,y)=\min(0,1)=0$ iff x=y. This means that the definiteness property holds.
- Since |x-y|=|y-x|, then $d(x,y)=\min(|x-y|,1)=d(y,x)$. Thus, the symmetric property holds.
- We will show that the triangle inequality holds for d, that is, $d(x,z) \le d(x,y) + d(y,z)$. Case I: Either $|x-y| \ge 1$ or $|y-z| \ge 1$. Without loss of generality, suppose $|x-y| \ge 1$. Then,

$$\begin{array}{rcl} d(x,z) & = & \min(|x-z|,1) \\ & \leq & 1 \\ & \leq & 1+d(y,z) \\ & = & d(x,z)+d(y,z) \end{array}$$

Case II: Both |x - y| < 1 and |y - z| < 1. Then,

$$\begin{array}{rcl} d(x,z) & = & \min(|x-z|,1) \\ & \leq & |x-z| \\ & \leq & |x-y| + |y-z| \\ & = & d(x,z) + d(y,z) \end{array}$$

Thus, d is a metric.

Claim: \mathbb{R} is closed and bounded under the topology generated by d, but is not compact.

PROOF

- \mathbb{R} is the entire set, so is closed.
- Since $B_d(0,2) = \{x \in \mathbb{R} : d(0,x) < 2\} = \mathbb{R}$, then \mathbb{R} is bounded.

Now we will show that \mathbb{R} is not compact. Consider the open cover $\{U_n\}_{n\in\mathbb{Z}}=\{B_d(n,1):n\in\mathbb{Z}\}^1$. We can see that $\{U_n\}_{n\in\mathbb{Z}}$ covers \mathbb{R} , since for any $x\in\mathbb{R}$, then $x\in B_d(\lfloor x\rfloor,1)\in\{U_n\}_{n\in\mathbb{Z}}$.

¹Note: Since the sets in $\{U_n\}_{n\in\mathbb{Z}}$ are open, they only contain elements whose distance from n under d is less than 1.

Now, let

$$\{U_{a_n}\}_{n=1}^N \subset \{U_n\}_{n\in\mathbb{Z}}$$

be a finite subcollection of the sets in $\{U_n\}_{n\in\mathbb{Z}}$, with $a_n\in\{a_1,a_2,\ldots,a_N\}\subset\mathbb{Z}$. Now,

$$\max(\{a_1, a_2, \dots, a_N\}) + 1 \notin \bigcup_{n=1}^N \{U_{a_n}\},\$$

so $\{U_{a_n}\}_{n=1}^N$ does not cover \mathbb{R} . Thus, \mathbb{R} is not compact.

Remark. Though we omit the formal proof here, this also generalizes to \mathbb{R}^n with $d(x,y) = \min(d_{usual}(x,y), \sqrt{n})$. The open cover $\{U_n\}_{n\in\mathbb{Z}} = \{B_d((x_1,\ldots,x_n),\sqrt{n}): x_1,\ldots,x_n\in\mathbb{Z}\}$ has no finite subcover, since every finite subset has an element whose center has greatest absolute value (that is, farthest from the origin under d_{usual}), and thus cannot cover \mathbb{R}^n .