

#### Gomoku Deep

李佳陽,王泰淞,張騏岳,江尚紘,曾士桓

Symposium on Digital Life Technologies, 2019

Speaker:曾士桓

#### **Outline**



- Introduction
- Self-play reinforcement learning on Gomoku
- Experiment results
- Conclusion



#### Introduction



- AlphaGo[1] 讓人工智慧再度受到重視
  - 結合強化學習(Reinforcement learning)與深度學習 (Deep learning)的技術
- AlphaGo Zero[2] 有更好的表現
  - 僅使用深度強化學習(Deep reinforcement learning)
  - 以Self-play reinforcement learning稱之
- 目的:實作Self-play reinforcement learning在五子 棋對奕上
  - 五子棋的規則相較於圍棋簡單
  - 訓練時間也相較少
- [1] David Silver et al., "Mastering the game of Go with deep neural networks and tree search", *Nature*, 2016.
- [2] David Silver et al., "Mastering the Game of Go without Human Knowledge", Nature, 2017

#### Introduction



• AlphaGo Zero 結構圖[1]



[1] https://zhuanlan.zhihu.com/p/30339643



- 模型的評估方式
  - AlphaGo Zero
    - 新的模型與舊的模型對戰,有如自己去和與自己實力相當的人對戰
    - 收斂速度很慢
  - Gomoku Deep
    - 新的模型與啟發式的MCTS對戰,有如自己去跟會下 棋的人對戰
    - 收斂速度較快





- Monte-Carlo tree search (MCTS)
  - 對抗式遊戲常用的啟發式搜尋演算法





- Self-play for training
  - 自行產生 training data
  - 生成data的多樣性:加入exploration的方法
  - · Data 保存和擴充:因對稱性,可旋轉和鏡像





- 策略價值網路(policy-value network)  $f_{\theta}$ 
  - 輸入:盤面 S
  - 輸出:  $(p,v)=f_{\theta}(s)$ 
    - 盤面每個位置的機率 p
    - · 盤面的評分值 v
  - 卷積層:3
    - 32、64、128個 3x3 filter
  - 策略(Policy)
    - 4個1x1 filter 降維
    - 1個全連接層,透過softmax輸出
  - 價值(Value)
    - 2個1x1 filter 降維
    - 2個全連接層,透過tanh出書







- 策略價值網路訓練
  - 機率 p 接近 MCTS的機率π
  - 評分 17 接近實際結果 Z



[1] David Silver et al., "Mastering the Game of Go without Human Knowledge Nature, 2017

- 策略價值網路的評估方式
  - · 每50次的self-play,做一次評估
  - MCTS+新的策略價值網路 vs. MCTS + heuristic function
    - 每次評估對戰10局
    - 逐次增加 MCTS + heuristic function 的模擬次數,以 提高其強度
- 總結訓練過程
  - self-play 提供 data 訓練策略價值網路
  - 評估後,好的留下;壞的捨棄
  - self-play 重新產生新 data,構成訓練的循環



### Experiment and Results

• 實驗設定

| CPU              | Intel I7 8700k |
|------------------|----------------|
| GPU              | GTX 1080       |
| RAM              | DDR4 16GB      |
| Chess board size | 9x9            |

- •訓練時間
  - 3000 rounds in 3 days



#### **Experiment and Results**

- · Loss 函數變化
  - 收斂速度較快





#### **Experiment and Results**

- ·輸出落子機率分布(策略)的entropy變化
  - 慢慢學會在不同的局面下哪些位置應該有更大的落子概率





#### Conclusion



- 實作Self-play reinforcement learning方法在五子棋 對弈
  - Monte Carlo Tree Search
  - Policy-Value Neural Network
- 修改策略價值網路評估方式
  - 因為縮短了訓練時間,個人電腦也能實現Self-play reinforcement learning方法
- •實驗結果顯示本論文提出的修改方法不僅縮短了訓練時間,也確實強化對弈能力
- 對於棋面邊角的位置較缺乏對抗性,未來將會這部 分於Training改進與修改



#### Thank you for listening

