Physical Layer: Theory

Kameswari Chebrolu

Recap

- Nodes generate data (bits: 1's and 0's)
- Links carry signals in the form of electromagnetic waves
- Task on hand: Convert data into signals
 - Process termed: Encoding/Modulation
- First: Some Theory

Link Characteristics

- Data Rate: How many bits per second can be transferred on the link? (expressed in bps,kbps,Mbps,Gbps)
- Loss rate: What is the probability of packet error (or bit error) rate on the link?
- Delay: How much time does it take for the bits to reach other end?

Simple Encoding

Data: 101111011

Your Friend (Far Away)
Wire Pair
I will follow the wire, reach other
end and convey the data in person

How would you send the data over the wires?

Signals and Bandwidth

 Fourier Analysis shows that any signal can be decomposed to sinusoids of different amplitude, frequency and phases

$$s(t) = A \times \frac{4}{\pi} \times \sum_{k \text{ odd}, k=1}^{\infty} \frac{\sin(2\pi k f t)}{k}$$

Fourier Transform

NRZ bandwidth

- Spectrum of a signal:
 Range of frequencies it contains
- Bandwidth: width of the spectrum
 - First Null Bandwidth = 1/T

Spectrum of a random NRZ signal

Link Bandwidth

 How much link bandwidth do I need to recover signal?

Random NRZ Signal Bandwidth

Nyquist Rate

- The number of independent pulses that could be put through a channel per unit time is limited to twice the bandwidth of the channel
- $f_p <= 2B$
 - f_p is pulse rate (number of pulses/sec)
 - B is bandwidth of the channel
- Example: Binary pulse with rate 2000 bps needs link bandwidth of at least 1000 Hz

Effect of Noise

Shannon's Theorem

- Provides an upper bound to the capacity (bps) of a link
- $C = B \log_2 (1 + S/N)$ bits/sec
 - C: capacity (bps), B: channel bandwidth (Hz), S/N: signal to noise ratio
 - S/N often expressed in dB, 10log₁₀(S/N)
 - E.g. 30dB corresponds to a ratio of 1000
- Example: Data over telephone line calculation
- B = 3300Hz 300Hz = 3000Hz; S/N = 1000 (30db); C ~ 30kbps

Implications

- If R < C, there exists a coding technique which permits transmission of data with arbitrary small error
 - The theorem does not specify how to reach this bound
 - Real systems rarely achieve this upper bound
 - E.g. WiFi: 64-QAM Modulation operating in 20Mhz bandwidth needs SNR of 27dB for packet error rate under 10% to provide 54Mbps
 - R is 54Mbps rate, B is 20Mhz band,, C is 124Mbps
- If R > C, the probability of error increases without bound

Error Rate

- What is the probability of bit error on a link?
- Function of received SNR and type of modulation
- For a given modulation, charts of SNR vs BER are often provided

Bit Error Rate (BER)

- Packet Error Rate
 (PER) = 1-(1-BER)^N,
 where N is the size of
 packet in bits
 - BER 10⁻⁸, PER = 0.008%
- Typical BERs:
 - Wireless ~ 10⁻⁶,
 Twisted Pair ~ 10⁻⁸,
 Fiber-optics ~ 10⁻⁹ to 10⁻¹²

Propagation Delay

- Time required for a bit to propagate from beginning of link to end of the link
 - Depends on speed of light in the medium (S) & distance
 (D)
 - speed of light: 2* 10⁸ to 3 * 10⁸ m/s
 - Formula: D/S
- Note that Transmission delay(TD) is different from propagation delay
 - TD(sec) = Length of the packet (bits)/Data rate(bps)

Tx
$$= 1 \text{Mbps} = 10^6 \text{ bps}$$
 $P = 1000 \text{ bits}$
 $P = 1000 \text{ bits$

RX

TX

1) = 2000 Km = 2 x 10 m

Goals of Modulation

- Bandwidth Efficiency: Data-rate/bandwidth-required, bps/Hz
 - Goal: Try to reach Shannon limit
 - Real Systems: Ranges from 0.001 to 16
- Power Efficiency: Energy per bit/N_o
 - N_o is noise power spectral density
 - Goal: Minimize SNR required for a given BER
- Tradeoff bandwidth efficiency and power efficiency
 - Can achieve high BW only at the expense of more energy per bit

Summary

- Signals and frequency domain representation (bandwidth they occupy)
- How many bits per sec can be sent on a link?
 - Upper bounded by Shannon theorem
 - In reality, depends on medium and modulation
- What is the packet error rate?
 - Function of BER which is determined by SNR and modulation
- Signal corresponding to a bit takes time to propagate
 - Propagation delay is function of speed of light in medium and distance
- Goals of Modulation