

SODA 24

A brief introduction to some interesting papers

Zhiwei Ying 2024-08-07

- 1 Other topics
- Online Algorithms

1 Other topics

Shortest Disjoint Path on a Grid

Online Algorithms

- 1 Other topics
 - Shortest Disjoint Path on a Grid
- 2 Online Algorithms

Shortest Disjoint Path on a Grid

Shortest Disjoint Path on a Grid

Settings

Given a graph G on a grid, and 2k points s_1,t_1,\ldots,s_k,t_k . The goal is to find k vertex-disjoint paths that joins s_i,t_i for $i\in[k]$ with the total length of the solution to be minimized.

Shortest Disjoint Path on a Grid

Settings

Given a graph G on a grid, and 2k points s_1,t_1,\ldots,s_k,t_k . The goal is to find k vertex-disjoint paths that joins s_i,t_i for $i\in[k]$ with the total length of the solution to be minimized.

Other Settings

1 The problem that given pairs of terminals with integer coordinates on a infinite grid, the player only need to decide whether vertex disjoint paths connecting these terminals exist is proved to be NP-Complete.

Other Settings

- 1 The problem that given pairs of terminals with integer coordinates on a infinite grid, the player only need to decide whether vertex disjoint paths connecting these terminals exist is proved to be NP-Complete.
- edge-disjoint
- 6 on directed graph or general planar graph
- with length bounds on paths
- **6** Given a set of terminals, return the largest value k that there exist k vertex-disjoint paths joining a pair of terminals.

Result

Given a set $\Gamma=\{(s_1,t_1),\ldots,(s_k,t_k)\}$ of k pairs of terminals placed arbitrarily on a grid, we can find the shortest k vertex-disjoint paths between Γ or attest that there is no feasible solution in time $k^{2^{O(k)}}O([\Gamma])$, where $[\Gamma]$ is the number of bits required to encode Γ in binary.

Main Technique

Irrelevant vertices:

- $oldsymbol{0}$ outside a bounding box of the terminals, whose border is at distance $\Theta(2^k)$ from the extreme terminals.
- 2 inside a bounding box of the terminals, whose border is at distance $\Theta(k \cdot 2^k)$ from the horizontal and vertical lines containing the terminals.

Main Technique

Irrelevant vertices:

- $oldsymbol{0}$ outside a bounding box of the terminals, whose border is at distance $\Theta(2^k)$ from the extreme terminals.
- 2 inside a bounding box of the terminals, whose border is at distance $\Theta(k \cdot 2^k)$ from the horizontal and vertical lines containing the terminals.

After excluding these irrelevant vertices, the number of solutions to enumerate is reduced to $\Theta(k \cdot 2^k \cdot L)$, where L is the distance between 2 terminals.

Structural lemma:

If there exists a routing of a set of terminals Γ , then there exists an optimal routing of Γ that does not use any irrelevant vertex.

Main Technique

Key lemma:

For those long horizontal tunnels that whose width is greater than its height, denote J_l and J_r as their junctions, and $\hat{J}_l = \{v_1, \dots, v_t\} \subseteq J_l$ ordered from top to bottom, $\hat{J}_r = \{v_1', \dots, v_t'\} \subseteq J_r$ ordered from top to bottom. Then there exists a family $(Q_j)_{j=1}^t$ of pairwise disjoint paths.

Algorithm

Map V' that consists of all vertices in a block, in a short tunnel, or in a junction of a long tunnel to $\{0, 1, \dots, k\}$. Enumerate all mappings and then get the result.

Running time:

The size of V' is $2^{O(k)}$. The number of all possible mappings is $(k+1)^{2^{O(k)}}$. All vertices in V' are contained in a bounding box that is at a distance at most 2^k from the coordinates of each vertex and can be encoded using $O(2(b+log(2^k)))=O([\Gamma])$ bits, where b is the maximum number of bits of a coordinate of a point in Γ . And we can decide in time $\operatorname{poly}(2^{O(k)})$ whether this configuration is valid or not.

Thus the overall running time is $k^{2^{O(k)}}O([\Gamma])$.

Open Problems

What will happen if more points are given? Given k sets of points S_1, \ldots, S_k on a grid with $\forall i \in [n], |S_i| \geq 2$, how to find k vertex-disjoint paths that connects each points in a set with the total length of the solution to be minimized?

Online Algorithms

Online Robust Mean Estimation

Dynamic algorithms for k-center on graphs

Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{2}$

- Online Algorithms
 - Online Robust Mean Estimation
 - Dynamic algorithms for k-center on graphs
 - Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{2}$

Online Robust Mean Estimation

Online Robust Mean Estimation

Background

Consider a general offline setting first. Given n samples from a distribution $\mathcal X$ on $\mathbb R^m$ with unknown mean μ^* . The algorithm should return an estimate $\hat \mu$ of μ^* , and make $||\hat \mu - \mu^*||$ as small as possible.

However, as is known to all, some samples are generated by malicious users, especially competitors, and thus a fraction of data might be misleading or meaningless.

A formal definition of this process is given below.

Definition 1.1.1 (ε -corrupted)

Given a parameter $0 \le \varepsilon \le \frac{1}{2}$ and a set $\mathcal C$ of n samples, an ε -corrupted version of $\mathcal C$ is generated after an adversary removes up to εn samples from $\mathcal C$ and replace them by arbitrary points.

Settings

Given $M,T\in\mathbb{Z}^+$, s.t. M is an interger multiple of T, $0\leq \varepsilon < \frac{1}{2}$, let $\mathcal{X}=\{x^{(1)},\dots,x^{(n)}\}$ be an ε -corrupted version of a clean set of i.i.d. samples from a distribution X on \mathbb{R}^M with unknown mean μ^* . The M coordinates of each data point are divided into T batches, each of size $d\triangleq \frac{M}{T}$, i.e. $x^{(i)}$ is the concatenation of $x_1^{(i)},\dots,x_T^{(i)}$, where $x_t^{(i)}\in\mathbb{R}^d$, $t\in[T]$. The interaction with the learner proceeds in T rounds as follows:

- $oldsymbol{0}$ In the t-th round, the t-th batch of coordinates $x_t^{(1)},\dots,x_t^{(n)}\in\mathbb{R}^d$ are revealed.
- **2** After the t-th round, the algorithm is required to output $\hat{\mu}_t \in \mathbb{R}^d$ at an estimate of μ_t^* the t-th batch of coordinates of μ^* .

Settings

At the end of this process, we say that the algorithm estimates the mean of $\mathcal X$ under ε -corruption in the T-round online setting with error $\varepsilon'>0$, failure probability $\tau\in(0,1)$ and sample complexity n if

$$\Pr[||\hat{\mu} - \mu^*||_2 - \varepsilon' \le 0] = \Pr[\sqrt{\sum_{t=1}^T ||\hat{\mu}_t - \mu_t^*||_2^2} - \varepsilon' \le 0] \ge 1 - \tau.$$

Online Robust Mean Estimation

Idea

This problem can be understood as calculating a weight for each sample. Suppose an algorithm generates a set of weights $w_t^{(i)}$ for each sample $i \in [n]$ at the end of round t. Then initialize the weights of the filtering algorithm in the (t+1)-th round to $w_t^{(i)}$. Unfortunately, the idea of simply applying the original weights and the current new input to update weights is theoretically not feasible. Consider the case where the unknown distribution X is the product of T isotropic Gaussians X_1, \ldots, X_T . Then, the adversary can contaminate the sample set \mathcal{C} to make them look like i.i.d. samples from another isotropic Gaussian distribution X'_t at each round $t \in [T]$, such that $||E[X_t']-E[X_t]||_2=c\cdot\varepsilon$ for some constant c. Then, the filtering algorithm should not downweight any sample, since the coordinates revealed in each round of contaminated samples are statistically indistinguishable from the *i.i.d.* samples from X'_t . Therefore, the algorithm's error still increases with \sqrt{T} , but the weights remain constant throughout. 4□▶ 4周▶ 4 三 ▶ 4 三 ▶ 9 0 ○

Online Robust Mean Estimation

Algorithm


```
Algorithm 1 Online Filter

    Input: The number of samples n, Byzantine fraction ε, round number T, sample coordinates x<sub>t</sub><sup>(1:n)</sup>

     revealed at the t^{th} round for t = 1, 2, \dots, T, filter threshold \lambda, and initialized weight w_o^{(i)} = 1/n, for
     i = 1 \ 2 \ \cdots \ n
  2: for t \equiv 1, 2, \dots, T do
       Initialize w_i \leftarrow w_{i-1} and update \bar{x}_i^{(i)} = (x_i^{(i)}, ..., x_i^{(i)}).
        Compute \Sigma \leftarrow WCov(\boldsymbol{w}_t, \bar{\boldsymbol{x}}_t^{(1:n)}).
        while \|\Sigma\|_2 > 1 + \lambda do
            Compute the top eigenvector v of \Sigma.
           Compute empirical weighted mean \mu(w_t) \leftarrow \sum_{i=1}^{n} w_t^{(i)} \bar{x}_t^{(i)}
            for i = 1, 2, \dots, n do
              Compute \rho^{(i)} \leftarrow (v, \mathbf{x}^{(i)} - \mu(\mathbf{w}_t))^2.
10:
            end for
            Sort \rho^{(1:n)} into a decreasing order denoted as \rho^{\pi(1)} \ge \rho^{\pi(2)} \ge \cdots \ge \rho^{\pi(n)}, and let \beta be the smallest
            number such that \sum_{i=1}^{\beta} \rho^{\pi(i)} > 2\epsilon.
          Apply WFilter to update weights for \{\pi(1), \dots, \pi(\beta)\} as \{w_i^{\pi(1)}, \dots, w_i^{\pi(\beta)}\} \leftarrow WFilter(\rho^{\pi(1:\beta)}, w^{\pi(1:\beta)}); while the remaining weights keep the same, i.e., w_i^{\pi(i)} = w_i^{\pi(i)} for
          Update \Sigma \leftarrow WCov(w_t, \bar{x}_t^{(1:n)})
       end while
15: Output: \mu_i = \sum_{i=1}^{n} w_i^{(i)} x_i^{(i)}.
16: end for
Subroutine 1: Weighted Filter (WFilter)

    Input: scores φ<sup>π</sup>(1:β), weights w<sup>π</sup>(1:β)

 2: for i = 1, 2, ..., \beta do
 3: w^{\pi(i)} \leftarrow (1 - \frac{\rho^{\pi(i)}}{\max_i \rho^{\pi(j)}})w^{\pi(i)}.
 4: end for

 Output: w<sup>π(1:β)</sup>.

Subroutine2: Weighted Covariance (WCov)
```

3: Compute weighted covariance estimation $\Sigma \leftarrow \sum_{i=1}^{n} \frac{w^{(i)}}{||\mathbf{x}||} (\bar{x}^{(i)} - \mu(\mathbf{w}))(\bar{x}^{(i)} - \mu(\mathbf{w}))^{T}$.

Input: weight w = w^(1:n) and samples x̄^(1:n).
 Compute μ(w) ← ∑_{i=1}ⁿ w⁽ⁱ⁾ |x̄⁽ⁱ⁾.

4: Output: Σ.

Result

Definition 1.1.2 ((ε, δ) -stability)

For $\varepsilon \in (0,\frac{1}{2})$ and $\delta \geq \varepsilon$, a finite set $\mathcal{S} \subset \mathbb{R}^d$ is (ε,δ) -stable with respect to a vector $\mu \in \mathbb{R}^d$ if for every unit vector $v \in \mathbb{R}^d$ and every subset $\mathcal{S}' \subseteq \mathcal{S}$, where $|\mathcal{S}'| \geq (1-\varepsilon)|\mathcal{S}|$, the following conditions are satisfied:

$$2 \left| \frac{1}{|S'|} \sum_{x \in S'} \left(v^T \cdot (x - \mu) \right)^2 - 1 \right| \le \frac{\delta^2}{\varepsilon}$$

Suppose that $\mathcal C$ is (ε,δ) -stable with respect to μ^* and $\mathcal X$ is an ε -corrupted version of $\mathcal C$. Then, for ε at most a sufficiently small positive constant, there exists some constant κ such that their algorithm, when $\lambda = \frac{\kappa \delta^2}{\varepsilon}$, outputs a sequence of estimates satisfying $||\hat{\mu} - \mu^*||_2 = O(\delta \log T)$.

Online Robust Mean Estimation

Result

If the distribution is more structured, there is an algorithm that achieves the error with no dependence on ${\cal T}$ whatsoever.

- Online Robust Mean Estimation
- Dynamic algorithms for k-center on graphs
- Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{2}$

Dynamic algorithms for k-center on graphs

Dynamic algorithms for k-center on graphs

Settings

Given a metric space with n points and a positive integer $k \leq n$, the goal of the k-center problem is to select k points, referred to as centers, such that the maximum distance of any point in the metric space to its closest center is minimized.

The formal distribution is given below:

Given a weighted undirected graph G=(V,E,w) and an integer $k\geq 1$, the goal is to output a subset of vertices $S\subseteq V$ of size at most k, such that the value $\max_{v\in V}d_G(v,S)$ is minimized.

In the online setting, edges can be inserted into G or deleted from G. And the goal is to minimize the time complexity in each update and achieve better performance.

Results

Given a weighted undirected graph G=(V,E,w) subject to edge updates, an integer parameter $k\geq 1$, and a positive constant parameter $\varepsilon\leq \frac{1}{2}$, there are two fully dynamic algorithms for the k-center problem on graphs, that maintain a $(2+\varepsilon)$ -approximation with the following guarantees (based on the current value of the matrix multiplication exponent):

- $\mbox{\bf 0}$ Deterministic algorithm with $O(kn^{1.529}\varepsilon^{-2})$ worst-case update time, if G has uniform weights;
- **2** Randomized algorithm, against an adaptive adversary, with $O(kn^{1.823}\varepsilon^{-2})$ worst-case update time, if G has general weights.

Both algorithms have preprocessing time $O(n^{2.373}\varepsilon^{-2}\log\varepsilon^{-1}).$

Results

Two special online setting are also concerned.

- ① For the incremental setting, in which only edge insertions are allowed, given a weighted undirected graph G=(V,E,w) subject to edge insertions, an integer parameter $k\geq 1$, and a positive constant parameter $\varepsilon<1$, there is a randomized incremental $(4+\varepsilon)$ -approximation algorithm for the k-center problem on graphs. The algorithm is correct w.h.p. and has $kn^{o(1)}$ amortized update time over a sequence of $\Theta(m)$ updates.
- 2 For the decremental setting, in which only edge deletions are allowed, given a weighted undirected graph G=(V,E,w) subject to edge deletions, an integer parameter $k\geq 1$, and a positive constant parameter $\varepsilon<1$, there is a deterministic decremental $(2+\varepsilon)$ -approximation algorithm for the k-center problem on graphs, with $kn^{o(1)}$ amortized update time over a sequence of $\Theta(m)$ updates.

Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{2}$

- Online Robust Mean Estimation
- Dynamic algorithms for k-center on graphs
- Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{2}$

Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{5}$

Settings

Given a list $I:=(x_1,\ldots,x_n)$, where $\forall i\in[n],x_i\in(0,1]$, the goal is to partition them into minimum number of unit size bins. In the online setting, item sizes are revealed one by one: in round i, the item x_i arrives and needs to be irrevocably assigned to a bin before the next items are revealed.

For a deterministic algorithm \mathcal{A} , the performance can be measured as the competitive ratio $R_{\mathcal{A}}^{\infty} = \limsup_{m \to \infty} \left(\sup_{I:OPT(I)=m} (\frac{\mathcal{A}(I)}{OPT(I)}) \right)$, where $\mathcal{A}(I)$ denotes the number of bins used by \mathcal{A} to pack an input sequence I.

Settings

For the online setting with the random-order model, the input set of items is chosen from adversary and the arrival order of the items is decided according to a permutation chosen uniformly at random from \mathcal{S}_n , the set of permutations of n elements. This reshuffling of the input items often weakens the adversary and provides better performance guarantees. In this model, the performance of an online algorithm \mathcal{A} can be measured using the following quantity, called random-order ratio (RR):

$$RR_{\mathcal{A}}^{\infty} = \lim \sup_{m \to \infty} \left(\sup_{I:OPT(I)=m} \left(\frac{\mathbf{E}_{\sigma}[\mathcal{A}(I_{\sigma})]}{OPT(I)} \right) \right)$$

History

Best-Fit algorithm is one of the most widely-used algorithms for bin packing. The idea is natural, simple and behaves well in practice. Best-Fit packs each item into the fullest bin where it fits, and open a new bin only if the item fits into none of the present opening bins.

It's proved that the RR of Best-Fit is upper-bounded by $\frac{3}{2}$ and lower-bounded by 1.08. And in that paper, the author conjectured that the true ratio should lie somewhere close to 1.15.

Bin Packing under Random-Order: Breaking the barrier of $\frac{3}{2}$

Results

- $\textbf{0} \ \ \text{Shows that Best-Fit achieves a} \ RR \ \text{of at most } 1.5-\varepsilon \ \text{for a small constant} \ \varepsilon>0.$
- 2 Improve the lower bound of random order ratio to 1.144.

Technique

Consider the last time t_σ of putting an item of size at most $\frac{1}{3}$ in a bin of load at most $\frac{1}{2}$. Previous result shows that all bins except at most one that opened by Best-Fit to pack the first t_σ items are filled up to the level of at least $\frac{2}{3}$. And to pack items arriving after t_σ , Best-Fit is within a $\frac{3}{2}$ factor of OPT. Combining these observations, an upper bound of $\frac{3}{2}$ was achieved.

To break the barrier, they did further analysis that either the factor of the period before t_σ can be improved to $\frac{3}{2}-2\varepsilon$, or the factor after t_σ can be improved to $\frac{3}{2}-2\varepsilon$. They did a case analysis based on t_σ and show that either a large fraction of the bin packed by Best-Fit is rather full (the load is at least $\frac{3}{4}$) or Best-Fit performs relatively well compared to OPT.

谢谢

